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CHAPTER 1

Introduction

0000 1.1. Overview

0001 Besides the book by Laumon and Moret-Bailly, see [LMB00], and the work (in
progress) by Fulton et al, we think there is a place for an open source textbook
on algebraic stacks and the algebraic geometry that is needed to define them. The
Stacks Project attempts to do this by building the foundations starting with com-
mutative algebra and proceeding via the theory of schemes and algebraic spaces to
a comprehensive foundation for the theory of algebraic stacks.
We expect this material to be read online as a key feature are the hyperlinks giving
quick access to internal references spread over many different pages. If you use an
embedded pdf or dvi viewer in your browser, the cross file links should work.
This project is a collaborative effort and we encourage you to help out. Please email
any typos or errors you find while reading or any suggestions, additional material,
or examples you have to stacks.project@gmail.com. You can download a tarball
containing all source files, extract, run make, and use a dvi or pdf viewer locally.
Please feel free to edit the LaTeX files and email your improvements.

1.2. Attribution

06LB The scope of this work is such that it is a daunting task to attribute correctly and
succinctly all of those mathematicians whose work has led to the development of the
theory we try to explain here. We hope eventually to generate enough community
interest to find contributors willing to write sections with historical remarks for
each and every chapter.
Those who contributed to this work are listed on the title page of the book version of
this work and online. Here we would like to name a selection of major contributions:

(1) Jarod Alper contributed a chapter discussing the literature on algebraic
stacks, see Guide to Literature, Section 112.1.

(2) Bhargav Bhatt wrote the initial version of a chapter on étale morphisms
of schemes, see Étale Morphisms, Section 41.1.

(3) Bhargav Bhatt wrote the initial version of More on Algebra, Section 15.89.
(4) Kiran Kedlaya contributed the initial writeup of Descent, Section 35.4.
(5) The initial versions of

(a) Algebra, Section 10.28,
(b) Injectives, Section 19.2, and
(c) the chapter on fields, see Fields, Section 9.1.

are from The CRing Project, courtesy of Akhil Mathew et al.
(6) Alex Perry wrote the material on projective modules, Mittag-Leffler mod-

ules, including the proof of Algebra, Theorem 10.95.6.
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(7) Alex Perry wrote the chapter on deformation theory a la Schlessinger and
Rim, see Formal Deformation Theory, Section 90.1.

(8) Thibaut Pugin, Zachary Maddock and Min Lee took notes for a course
which formed the basis for a chapter on étale cohomology and a chapter
on the trace formula. See Étale Cohomology, Section 59.1 and The Trace
Formula, Section 64.1.

(9) David Rydh has contributed many helpful comments, pointed out several
mistakes, helped out in an essential way with the material on residual
gerbes, and was the originator for the material in More on Groupoids in
Spaces, Sections 79.12 and 79.15.

(10) Burt Totaro contributed Examples, Sections 110.64, 110.65, and Proper-
ties of Stacks, Section 100.12.

(11) The chapter on pro-étale cohomology, see Pro-étale Cohomology, Section
61.1, is taken from a paper by Bhargav Bhatt and Peter Scholze.

(12) Bhargav Bhatt contributed Examples, Sections 110.71 and 110.75.
(13) Ofer Gabber found mistakes, contributed corrections and he contributed

Varieties, Lemma 33.7.17, Formal Spaces, Lemma 87.14.7, the material in
More on Groupoids, Section 40.15, the main result of Properties of Spaces,
Section 66.17, and the proof of More on Flatness, Proposition 38.25.13.

(14) János Kollár contributed Algebra, Lemma 10.119.2 and Local Cohomol-
ogy, Proposition 51.8.7.

(15) Kiran Kedlaya wrote the initial version of More on Algebra, Section 15.90.
(16) Matthew Emerton, Toby Gee, and Brandon Levin contributed some re-

sults on thickenings, in particular More on Morphisms of Stacks, Lemmas
106.3.7, 106.3.8, and 106.3.9.

(17) Lena Min Ji wrote the initial version of More on Algebra, Section 15.125.
(18) Matthew Emerton and Toby Gee wrote the initial versions of Geometry

of Stacks, Sections 107.3 and 107.5.

1.3. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps

(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Differential Graded Sheaves
(25) Hypercoverings

Schemes

(26) Schemes
(27) Constructions of Schemes
(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes
(31) Divisors
(32) Limits of Schemes
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(33) Varieties
(34) Topologies on Schemes
(35) Descent
(36) Derived Categories of Schemes
(37) More on Morphisms
(38) More on Flatness
(39) Groupoid Schemes
(40) More on Groupoid Schemes
(41) Étale Morphisms of Schemes

Topics in Scheme Theory
(42) Chow Homology
(43) Intersection Theory
(44) Picard Schemes of Curves
(45) Weil Cohomology Theories
(46) Adequate Modules
(47) Dualizing Complexes
(48) Duality for Schemes
(49) Discriminants and Differents
(50) de Rham Cohomology
(51) Local Cohomology
(52) Algebraic and Formal Geome-

try
(53) Algebraic Curves
(54) Resolution of Surfaces
(55) Semistable Reduction
(56) Functors and Morphisms
(57) Derived Categories of Varieties
(58) Fundamental Groups of

Schemes
(59) Étale Cohomology
(60) Crystalline Cohomology
(61) Pro-étale Cohomology
(62) Relative Cycles
(63) More Étale Cohomology
(64) The Trace Formula

Algebraic Spaces
(65) Algebraic Spaces
(66) Properties of Algebraic Spaces
(67) Morphisms of Algebraic Spaces
(68) Decent Algebraic Spaces
(69) Cohomology of Algebraic

Spaces
(70) Limits of Algebraic Spaces
(71) Divisors on Algebraic Spaces
(72) Algebraic Spaces over Fields
(73) Topologies on Algebraic Spaces
(74) Descent and Algebraic Spaces
(75) Derived Categories of Spaces

(76) More on Morphisms of Spaces
(77) Flatness on Algebraic Spaces
(78) Groupoids in Algebraic Spaces
(79) More on Groupoids in Spaces
(80) Bootstrap
(81) Pushouts of Algebraic Spaces

Topics in Geometry
(82) Chow Groups of Spaces
(83) Quotients of Groupoids
(84) More on Cohomology of Spaces
(85) Simplicial Spaces
(86) Duality for Spaces
(87) Formal Algebraic Spaces
(88) Algebraization of Formal

Spaces
(89) Resolution of Surfaces Revis-

ited
Deformation Theory

(90) Formal Deformation Theory
(91) Deformation Theory
(92) The Cotangent Complex
(93) Deformation Problems

Algebraic Stacks
(94) Algebraic Stacks
(95) Examples of Stacks
(96) Sheaves on Algebraic Stacks
(97) Criteria for Representability
(98) Artin’s Axioms
(99) Quot and Hilbert Spaces

(100) Properties of Algebraic Stacks
(101) Morphisms of Algebraic Stacks
(102) Limits of Algebraic Stacks
(103) Cohomology of Algebraic

Stacks
(104) Derived Categories of Stacks
(105) Introducing Algebraic Stacks
(106) More on Morphisms of Stacks
(107) The Geometry of Stacks

Topics in Moduli Theory
(108) Moduli Stacks
(109) Moduli of Curves

Miscellany
(110) Examples
(111) Exercises
(112) Guide to Literature
(113) Desirables
(114) Coding Style
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(115) Obsolete
(116) GNU Free Documentation Li-

cense

(117) Auto Generated Index



CHAPTER 2

Conventions

0002 2.1. Comments

0003 The philosophy behind the conventions used in writing these documents is to choose
those conventions that work.

2.2. Set theory

0004 We use Zermelo-Fraenkel set theory with the axiom of choice. See [Kun83]. We do
not use universes (different from SGA4). We do not stress set-theoretic issues, but
we make sure everything is correct (of course) and so we do not ignore them either.

2.3. Categories

0005 A category C consists of a set of objects and, for each pair of objects, a set of
morphisms between them. In other words, it is what is called a “small” category in
other texts. We will use “big” categories (categories whose objects form a proper
class) as well, but only those that are listed in Categories, Remark 4.2.2.

2.4. Algebra

0006 In these notes a ring is a commutative ring with a 1. Hence the category of rings
has an initial object Z and a final object {0} (this is the unique ring where 1 = 0).
Modules are assumed unitary. See [Eis95].

2.5. Notation

055X The natural integers are elements of N = {1, 2, 3, . . .}. The integers are elements
of Z = {. . . ,−2,−1, 0, 1, 2, . . .}. The field of rational numbers is denoted Q. The
field of real numbers is denoted R. The field of complex numbers is denoted C.

2.6. Other chapters

Preliminaries
(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra

(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites

10
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(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Differential Graded Sheaves
(25) Hypercoverings

Schemes
(26) Schemes
(27) Constructions of Schemes
(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes
(31) Divisors
(32) Limits of Schemes
(33) Varieties
(34) Topologies on Schemes
(35) Descent
(36) Derived Categories of Schemes
(37) More on Morphisms
(38) More on Flatness
(39) Groupoid Schemes
(40) More on Groupoid Schemes
(41) Étale Morphisms of Schemes

Topics in Scheme Theory
(42) Chow Homology
(43) Intersection Theory
(44) Picard Schemes of Curves
(45) Weil Cohomology Theories
(46) Adequate Modules
(47) Dualizing Complexes
(48) Duality for Schemes
(49) Discriminants and Differents
(50) de Rham Cohomology
(51) Local Cohomology
(52) Algebraic and Formal Geome-

try
(53) Algebraic Curves
(54) Resolution of Surfaces
(55) Semistable Reduction
(56) Functors and Morphisms
(57) Derived Categories of Varieties
(58) Fundamental Groups of

Schemes
(59) Étale Cohomology
(60) Crystalline Cohomology
(61) Pro-étale Cohomology
(62) Relative Cycles
(63) More Étale Cohomology
(64) The Trace Formula

Algebraic Spaces
(65) Algebraic Spaces
(66) Properties of Algebraic Spaces
(67) Morphisms of Algebraic Spaces
(68) Decent Algebraic Spaces
(69) Cohomology of Algebraic

Spaces
(70) Limits of Algebraic Spaces
(71) Divisors on Algebraic Spaces
(72) Algebraic Spaces over Fields
(73) Topologies on Algebraic Spaces
(74) Descent and Algebraic Spaces
(75) Derived Categories of Spaces
(76) More on Morphisms of Spaces
(77) Flatness on Algebraic Spaces
(78) Groupoids in Algebraic Spaces
(79) More on Groupoids in Spaces
(80) Bootstrap
(81) Pushouts of Algebraic Spaces

Topics in Geometry
(82) Chow Groups of Spaces
(83) Quotients of Groupoids
(84) More on Cohomology of Spaces
(85) Simplicial Spaces
(86) Duality for Spaces
(87) Formal Algebraic Spaces
(88) Algebraization of Formal

Spaces
(89) Resolution of Surfaces Revis-

ited
Deformation Theory

(90) Formal Deformation Theory
(91) Deformation Theory
(92) The Cotangent Complex
(93) Deformation Problems

Algebraic Stacks
(94) Algebraic Stacks
(95) Examples of Stacks
(96) Sheaves on Algebraic Stacks
(97) Criteria for Representability
(98) Artin’s Axioms
(99) Quot and Hilbert Spaces

(100) Properties of Algebraic Stacks
(101) Morphisms of Algebraic Stacks
(102) Limits of Algebraic Stacks
(103) Cohomology of Algebraic

Stacks
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(104) Derived Categories of Stacks
(105) Introducing Algebraic Stacks
(106) More on Morphisms of Stacks
(107) The Geometry of Stacks

Topics in Moduli Theory
(108) Moduli Stacks
(109) Moduli of Curves

Miscellany

(110) Examples
(111) Exercises
(112) Guide to Literature
(113) Desirables
(114) Coding Style
(115) Obsolete
(116) GNU Free Documentation Li-

cense
(117) Auto Generated Index



CHAPTER 3

Set Theory

0007 3.1. Introduction

0008 We need some set theory every now and then. We use Zermelo-Fraenkel set theory
with the axiom of choice (ZFC) as described in [Kun83] and [Jec02].

3.2. Everything is a set

0009 Most mathematicians think of set theory as providing the basic foundations for
mathematics. So how does this really work? For example, how do we translate the
sentence “X is a scheme” into set theory? Well, we just unravel the definitions: A
scheme is a locally ringed space such that every point has an open neighbourhood
which is an affine scheme. A locally ringed space is a ringed space such that
every stalk of the structure sheaf is a local ring. A ringed space is a pair (X,OX)
consisting of a topological space X and a sheaf of rings OX on it. A topological
space is a pair (X, τ) consisting of a set X and a set of subsets τ ⊂ P(X) satisfying
the axioms of a topology. And so on and so forth.
So how, given a set S would we recognize whether it is a scheme? The first thing
we look for is whether the set S is an ordered pair. This is defined (see [Jec02],
page 7) as saying that S has the form (a, b) := {{a}, {a, b}} for some sets a, b. If
this is the case, then we would take a look to see whether a is an ordered pair (c, d).
If so we would check whether d ⊂ P(c), and if so whether d forms the collection of
sets for a topology on the set c. And so on and so forth.
So even though it would take a considerable amount of work to write a complete
formula ϕscheme(x) with one free variable x in set theory that expresses the notion
“x is a scheme”, it is possible to do so. The same thing should be true for any
mathematical object.

3.3. Classes

000A Informally we use the notion of a class. Given a formula ϕ(x, p1, . . . , pn), we call
C = {x : ϕ(x, p1, . . . , pn)}

a class. A class is easier to manipulate than the formula that defines it, but it is not
strictly speaking a mathematical object. For example, if R is a ring, then we may
consider the class of all R-modules (since after all we may translate the sentence
“M is an R-module” into a formula in set theory, which then defines a class). A
proper class is a class which is not a set.
In this way we may consider the category of R-modules, which is a “big” category—
in other words, it has a proper class of objects. Similarly, we may consider the “big”
category of schemes, the “big” category of rings, etc.

13
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3.4. Ordinals

05N1 A set T is transitive if x ∈ T implies x ⊂ T . A set α is an ordinal if it is transitive
and well-ordered by ∈. In this case, we define α + 1 = α ∪ {α}, which is another
ordinal called the successor of α. An ordinal α is called a successor ordinal if there
exists an ordinal β such that α = β + 1. The smallest ordinal is ∅ which is also
denoted 0. If α is not 0, and not a successor ordinal, then α is called a limit ordinal
and we have

α =
⋃

γ∈α
γ.

The first limit ordinal is ω and it is also the first infinite ordinal. The first uncount-
able ordinal ω1 is the set of all countable ordinals. The collection of all ordinals is
a proper class. It is well-ordered by ∈ in the following sense: any nonempty set (or
even class) of ordinals has a least element. Given a set A of ordinals, we define the
supremum of A to be supα∈A α =

⋃
α∈A α. It is the least ordinal bigger or equal to

all α ∈ A. Given any well-ordered set (S,<), there is a unique ordinal α such that
(S,<) ∼= (α,∈); this is called the order type of the well-ordered set.

3.5. The hierarchy of sets

000B We define by transfinite recursion V0 = ∅, Vα+1 = P (Vα) (power set), and for a
limit ordinal α,

Vα =
⋃

β<α
Vβ .

Note that each Vα is a transitive set.

Lemma 3.5.1.000C Every set is an element of Vα for some ordinal α.

Proof. See [Jec02, Lemma 6.3]. □

In [Kun83, Chapter III] it is explained that this lemma is equivalent to the axiom
of foundation. The rank of a set S is the least ordinal α such that S ∈ Vα+1. By
a partial universe we shall mean a suitably large set of the form Vα which will be
clear from the context.

3.6. Cardinality

000D The cardinality of a set A is the least ordinal α such that there exists a bijection
between A and α. We sometimes use the notation α = |A| to indicate this. We
say an ordinal α is a cardinal if and only if it occurs as the cardinality of some set
A—in other words, if α = |A|. We use the greek letters κ, λ for cardinals. The first
infinite cardinal is ω, and in this context it is denoted ℵ0. A set is countable if its
cardinality is ≤ ℵ0. If α is an ordinal, then we denote α+ the least cardinal > α.
You can use this to define ℵ1 = ℵ+

0 , ℵ2 = ℵ+
1 , etc, and in fact you can define ℵα

for any ordinal α by transfinite recursion. We note the equality ℵ1 = ω1.

The addition of cardinals κ, λ is denoted κ⊕ λ; it is the cardinality of κ ⨿ λ. The
multiplication of cardinals κ, λ is denoted κ⊗ λ; it is the cardinality of κ× λ. If κ
and λ are infinite cardinals, then κ ⊕ λ = κ ⊗ λ = max(κ, λ). The exponentiation
of cardinals κ, λ is denoted κλ; it is the cardinality of the set of (set) maps from
λ to κ. Given any set K of cardinals, the supremum of K is supκ∈K κ =

⋃
κ∈K κ,

which is also a cardinal.

https://stacks.math.columbia.edu/tag/000C
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3.7. Cofinality

000E A cofinal subset S of a well-ordered set T is a subset S ⊂ T such that ∀t ∈ T∃s ∈
S(t ≤ s). Note that a subset of a well-ordered set is a well-ordered set (with induced
ordering). Given an ordinal α, the cofinality cf(α) of α is the least ordinal β which
occurs as the order type of some cofinal subset of α. The cofinality of an ordinal is
always a cardinal. Hence alternatively we can define the cofinality of α as the least
cardinality of a cofinal subset of α.

Lemma 3.7.1.05N2 Suppose that T = colimα<β Tα is a colimit of sets indexed by ordinals
less than a given ordinal β. Suppose that φ : S → T is a map of sets. Then φ lifts
to a map into Tα for some α < β provided that β is not a limit of ordinals indexed
by S, in other words, if β is an ordinal with cf(β) > |S|.

Proof. For each element s ∈ S pick a αs < β and an element ts ∈ Tαs which maps
to φ(s) in T . By assumption α = sups∈S αs is strictly smaller than β. Hence the
map φα : S → Tα which assigns to s the image of ts in Tα is a solution. □

The following is essentially Grothendieck’s argument for the existence of ordinals
with arbitrarily large cofinality which he used to prove the existence of enough
injectives in certain abelian categories, see [Gro57].

Proposition 3.7.2.05N3 Let κ be a cardinal. Then there exists an ordinal whose cofinality
is bigger than κ.

Proof. If κ is finite, then ω = cf(ω) works. Let us thus assume that κ is infinite.
Consider the smallest ordinal α whose cardinality is strictly greater than κ. We
claim that cf(α) > κ. Note that α is a limit ordinal, since if α = β + 1, then
|α| = |β| (because α and β are infinite) and this contradicts the minimality of α.
(Of course α is also a cardinal, but we do not need this.) To get a contradiction
suppose S ⊂ α is a cofinal subset with |S| ≤ κ. For β ∈ S, i.e., β < α, we have
|β| ≤ κ by minimality of α. As α is a limit ordinal and S cofinal in α we obtain
α =

⋃
β∈S β. Hence |α| ≤ |S| ⊗ κ ≤ κ ⊗ κ ≤ κ which is a contradiction with our

choice of α. □

3.8. Reflection principle

000F Some of this material is in the chapter of [Kun83] called “Easy consistency proofs”.
Let ϕ(x1, . . . , xn) be a formula of set theory. Let us use the convention that this
notation implies that all the free variables in ϕ occur among x1, . . . , xn. Let M be
a set. The formula ϕM (x1, . . . , xn) is the formula obtained from ϕ(x1, . . . , xn) by
replacing all the ∀x and ∃x by ∀x ∈ M and ∃x ∈ M , respectively. So the formula
ϕ(x1, x2) = ∃x(x ∈ x1 ∧ x ∈ x2) is turned into ϕM (x1, x2) = ∃x ∈ M(x ∈ x1 ∧ x ∈
x2). The formula ϕM is called the relativization of ϕ to M .

Theorem 3.8.1.000G Suppose given ϕ1(x1, . . . , xn), . . . , ϕm(x1, . . . , xn) a finite collection
of formulas of set theory. Let M0 be a set. There exists a set M such that M0 ⊂M
and ∀x1, . . . , xn ∈M , we have

∀i = 1, . . . ,m, ϕMi (x1, . . . , xn)⇔ ∀i = 1, . . . ,m, ϕi(x1, . . . , xn).
In fact we may take M = Vα for some limit ordinal α.

Proof. See [Jec02, Theorem 12.14] or [Kun83, Theorem 7.4]. □

https://stacks.math.columbia.edu/tag/05N2
https://stacks.math.columbia.edu/tag/05N3
https://stacks.math.columbia.edu/tag/000G
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We view this theorem as saying the following: Given any x1, . . . , xn ∈ M the
formulas hold with the bound variables ranging through all sets if and only if they
hold for the bound variables ranging through elements of Vα. This theorem is a
meta-theorem because it deals with the formulas of set theory directly. It actually
says that given the finite list of formulas ϕ1, . . . , ϕm with at most free variables
x1, . . . , xn the sentence

∀M0 ∃M, M0 ⊂M ∀x1, . . . , xn ∈M
ϕ1(x1, . . . , xn) ∧ . . . ∧ ϕm(x1, . . . , xn)↔ ϕM1 (x1, . . . , xn) ∧ . . . ∧ ϕMm (x1, . . . , xn)

is provable in ZFC. In other words, whenever we actually write down a finite list
of formulas ϕi, we get a theorem.
It is somewhat hard to use this theorem in “ordinary mathematics” since the mean-
ing of the formulas ϕMi (x1, . . . , xn) is not so clear! Instead, we will use the idea of
the proof of the reflection principle to prove the existence results we need directly.

3.9. Constructing categories of schemes

000H We will discuss how to apply this to produce, given an initial set of schemes, a
“small” category of schemes closed under a list of natural operations. Before we do
so, we introduce the size of a scheme. Given a scheme S we define

size(S) = max(ℵ0, κ1, κ2),
where we define the cardinal numbers κ1 and κ2 as follows:

(1) We let κ1 be the cardinality of the set of affine opens of S.
(2) We let κ2 be the supremum of all the cardinalities of all Γ(U,OS) for all

U ⊂ S affine open.
Lemma 3.9.1.000I For every cardinal κ, there exists a set A such that every element
of A is a scheme and such that for every scheme S with size(S) ≤ κ, there is an
element X ∈ A such that X ∼= S (isomorphism of schemes).
Proof. Omitted. Hint: think about how any scheme is isomorphic to a scheme
obtained by glueing affines. □

We denote Bound the function which to each cardinal κ associates
(3.9.1.1)046U Bound(κ) = max{κℵ0 , κ+}.
We could make this function grow much more rapidly, e.g., we could set Bound(κ) =
κκ, and the result below would still hold. For any ordinal α, we denote Schα the
full subcategory of category of schemes whose objects are elements of Vα. Here is
the result we are going to prove.
Lemma 3.9.2.000J With notations size, Bound and Schα as above. Let S0 be a set of
schemes. There exists a limit ordinal α with the following properties:

(1)000K We have S0 ⊂ Vα; in other words, S0 ⊂ Ob(Schα).
(2)000L For any S ∈ Ob(Schα) and any scheme T with size(T ) ≤ Bound(size(S)),

there exists a scheme S′ ∈ Ob(Schα) such that T ∼= S′.
(3)000M For any countable1 diagram category I and any functor F : I → Schα,

the limit limI F exists in Schα if and only if it exists in Sch and moreover,
in this case, the natural morphism between them is an isomorphism.

1Both the set of objects and the morphism sets are countable. In fact you can prove the
lemma with ℵ0 replaced by any cardinal whatsoever in (3) and (4).

https://stacks.math.columbia.edu/tag/000I
https://stacks.math.columbia.edu/tag/000J
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(4)000N For any countable index category I and any functor F : I → Schα, the
colimit colimI F exists in Schα if and only if it exists in Sch and moreover,
in this case, the natural morphism between them is an isomorphism.

Proof. We define, by transfinite induction, a function f which associates to every
ordinal an ordinal as follows. Let f(0) = 0. Given f(α), we define f(α + 1) to be
the least ordinal β such that the following hold:

(1) We have α+ 1 ≤ β and f(α) ≤ β.
(2) For any S ∈ Ob(Schf(α)) and any scheme T with size(T ) ≤ Bound(size(S)),

there exists a scheme S′ ∈ Ob(Schβ) such that T ∼= S′.
(3) For any countable index category I and any functor F : I → Schf(α), if

the limit limI F or the colimit colimI F exists in Sch, then it is isomorphic
to a scheme in Schβ .

To see β exists, we argue as follows. Since Ob(Schf(α)) is a set, we see that
κ = supS∈Ob(Schf(α)) Bound(size(S)) exists and is a cardinal. Let A be a set of
schemes obtained starting with κ as in Lemma 3.9.1. There is a set CountCat of
countable categories such that any countable category is isomorphic to an element
of CountCat. Hence in (3) above we may assume that I is an element in CountCat.
This means that the pairs (I, F ) in (3) range over a set. Thus, there exists a set
B whose elements are schemes such that for every (I, F ) as in (3), if the limit or
colimit exists, then it is isomorphic to an element in B. Hence, if we pick any β
such that A ∪ B ⊂ Vβ and β > max{α + 1, f(α)}, then (1)–(3) hold. Since every
nonempty collection of ordinals has a least element, we see that f(α + 1) is well
defined. Finally, if α is a limit ordinal, then we set f(α) = supα′<α f(α′).

Pick β0 such that S0 ⊂ Vβ0 . By construction f(β) ≥ β and we see that also
S0 ⊂ Vf(β0). Moreover, as f is nondecreasing, we see S0 ⊂ Vf(β) is true for any
β ≥ β0. Next, choose any ordinal β1 > β0 with cofinality cf(β1) > ω = ℵ0. This is
possible since the cofinality of ordinals gets arbitrarily large, see Proposition 3.7.2.
We claim that α = f(β1) is a solution to the problem posed in the lemma.

The first property of the lemma holds by our choice of β1 > β0 above.

Since β1 is a limit ordinal (as its cofinality is infinite), we get f(β1) = supβ<β1 f(β).
Hence {f(β) | β < β1} ⊂ f(β1) is a cofinal subset. Hence we see that

Vα = Vf(β1) =
⋃

β<β1
Vf(β).

Now, let S ∈ Ob(Schα). We define β(S) to be the least ordinal β such that S ∈
Ob(Schf(β)). By the above we see that always β(S) < β1. Since Ob(Schf(β+1)) ⊂
Ob(Schα), we see by construction of f above that the second property of the lemma
is satisfied.

Suppose that {S1, S2, . . .} ⊂ Ob(Schα) is a countable collection. Consider the
function ω → β1, n 7→ β(Sn). Since the cofinality of β1 is > ω, the image of
this function cannot be a cofinal subset. Hence there exists a β < β1 such that
{S1, S2, . . .} ⊂ Ob(Schf(β)). It follows that any functor F : I → Schα factors
through one of the subcategories Schf(β). Thus, if there exists a scheme X that
is the colimit or limit of the diagram F , then, by construction of f , we see X is
isomorphic to an object of Schf(β+1) which is a subcategory of Schα. This proves
the last two assertions of the lemma. □
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Remark 3.9.3.000O The lemma above can also be proved using the reflection principle.
However, one has to be careful. Namely, suppose the sentence ϕscheme(X) expresses
the property “X is a scheme”, then what does the formula ϕVαscheme(X) mean? It
is true that the reflection principle says we can find α such that for all X ∈ Vα we
have ϕscheme(X)↔ ϕVαscheme(X) but this is entirely useless. It is only by combining
two such statements that something interesting happens. For example suppose
ϕred(X,Y ) expresses the property “X, Y are schemes, and Y is the reduction of
X” (see Schemes, Definition 26.12.5). Suppose we apply the reflection principle to
the pair of formulas ϕ1(X,Y ) = ϕred(X,Y ), ϕ2(X) = ∃Y, ϕ1(X,Y ). Then it is easy
to see that any α produced by the reflection principle has the property that given
X ∈ Ob(Schα) the reduction of X is also an object of Schα (left as an exercise).

Lemma 3.9.4.000P Let S be an affine scheme. Let R = Γ(S,OS). Then the size of S is
equal to max{ℵ0, |R|}.

Proof. There are at most max{|R|,ℵ0} affine opens of Spec(R). This is clear since
any affine open U ⊂ Spec(R) is a finite union of principal opens D(f1)∪ . . .∪D(fn)
and hence the number of affine opens is at most supn |R|n = max{|R|,ℵ0}, see
[Kun83, Ch. I, 10.13]. On the other hand, we see that Γ(U,O) ⊂ Rf1 × . . . × Rfn
and hence |Γ(U,O)| ≤ max{ℵ0, |Rf1 |, . . . , |Rfn |}. Thus it suffices to prove that
|Rf | ≤ max{ℵ0, |R|} which is omitted. □

Lemma 3.9.5.000Q Let S be a scheme. Let S =
⋃
i∈I Si be an open covering. Then

size(S) ≤ max{|I|, supi{size(Si)}}.

Proof. Let U ⊂ S be any affine open. Since U is quasi-compact there exist finitely
many elements i1, . . . , in ∈ I and affine opens Ui ⊂ U ∩Si such that U = U1 ∪U2 ∪
. . . ∪ Un. Thus

|Γ(U,OU )| ≤ |Γ(U1,O)| ⊗ . . .⊗ |Γ(Un,O)| ≤ supi{size(Si)}
Moreover, it shows that the set of affine opens of S has cardinality less than or
equal to the cardinality of the set∐

n∈ω

∐
i1,...,in∈I

{affine opens of Si1} × . . .× {affine opens of Sin}.

Each of the sets inside the disjoint union has cardinality at most supi{size(Si)}. The
index set has cardinality at most max{|I|,ℵ0}, see [Kun83, Ch. I, 10.13]. Hence
by [Jec02, Lemma 5.8] the cardinality of the coproduct is at most max{ℵ0, |I|} ⊗
supi{size(Si)}. The lemma follows. □

Lemma 3.9.6.04T6 Let f : X → S, g : Y → S be morphisms of schemes. Then we have
size(X ×S Y ) ≤ max{size(X), size(Y )}.

Proof. Let S =
⋃
k∈K Sk be an affine open covering. LetX =

⋃
i∈I Ui, Y =

⋃
j∈J Vj

be affine open coverings with I, J of cardinality ≤ size(X), size(Y ). For each i ∈ I
there exists a finite set Ki of k ∈ K such that f(Ui) ⊂

⋃
k∈Ki Sk. For each j ∈ J

there exists a finite set Kj of k ∈ K such that g(Vj) ⊂
⋃
k∈Kj Sk. Hence f(X), g(Y )

are contained in S′ =
⋃
k∈K′ Sk with K ′ =

⋃
i∈I Ki ∪

⋃
j∈J Kj . Note that the

cardinality of K ′ is at most max{ℵ0, |I|, |J |}. Applying Lemma 3.9.5 we see that
it suffices to prove that size(f−1(Sk) ×Sk g−1(Sk)) ≤ max{size(X), size(Y ))} for
k ∈ K ′. In other words, we may assume that S is affine.

https://stacks.math.columbia.edu/tag/000O
https://stacks.math.columbia.edu/tag/000P
https://stacks.math.columbia.edu/tag/000Q
https://stacks.math.columbia.edu/tag/04T6
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Assume S affine. Let X =
⋃
i∈I Ui, Y =

⋃
j∈J Vj be affine open coverings with I,

J of cardinality ≤ size(X), size(Y ). Again by Lemma 3.9.5 it suffices to prove the
lemma for the products Ui ×S Vj . By Lemma 3.9.4 we see that it suffices to show
that

|A⊗C B| ≤ max{ℵ0, |A|, |B|}.
We omit the proof of this inequality. □

Lemma 3.9.7.04T7 Let S be a scheme. Let f : X → S be locally of finite type with X
quasi-compact. Then size(X) ≤ size(S).

Proof. We can find a finite affine open covering X =
⋃
i=1,...n Ui such that each

Ui maps into an affine open Si of S. Thus by Lemma 3.9.5 we reduce to the case
where both S and X are affine. In this case by Lemma 3.9.4 we see that it suffices
to show

|A[x1, . . . , xn]| ≤ max{ℵ0, |A|}.
We omit the proof of this inequality. □

In Algebra, Lemma 10.107.13 we will show that if A → B is an epimorphism of
rings, then |B| ≤ max(|A|,ℵ0). The analogue for schemes is the following lemma.

Lemma 3.9.8.04VA Let f : X → Y be a monomorphism of schemes. If at least one of
the following properties holds, then size(X) ≤ size(Y ):

(1) f is quasi-compact,
(2) f is locally of finite presentation,
(3) add more here as needed.

But the bound does not hold for monomorphisms which are locally of finite type.

Proof. Let Y =
⋃
j∈J Vj be an affine open covering of Y with |J | ≤ size(Y ). By

Lemma 3.9.5 it suffices to bound the size of the inverse image of Vj in X. Hence
we reduce to the case that Y is affine, say Y = Spec(B). For any affine open
Spec(A) ⊂ X we have |A| ≤ max(|B|,ℵ0) = size(Y ), see remark above and Lemma
3.9.4. Thus it suffices to show that X has at most size(Y ) affine opens. This is clear
if X is quasi-compact, whence case (1) holds. In case (2) the number of isomorphism
classes of B-algebras A that can occur is bounded by size(B), because each A is
of finite type over B, hence isomorphic to an algebra B[x1, . . . , xn]/(f1, . . . , fm)
for some n,m, and fj ∈ B[x1, . . . , xn]. However, as X → Y is a monomorphism,
there is a unique morphism Spec(A)→ X over Y = Spec(B) if there is one, hence
the number of affine opens of X is bounded by the number of these isomorphism
classes.

To prove the final statement of the lemma consider the ring B =
∏
n∈N F2 and

set Y = Spec(B). For every ultrafilter U on N we obtain a maximal ideal mU
with residue field F2; the map B → F2 sends the element (xn) to limU xn. Details
omitted. The morphism of schemes X =

∐
U Spec(F2) → Y is a monomorphism

as all the points are distinct. However the cardinality of the set of affine open
subschemes of X is equal to the cardinality of the set of ultrafilters on N which is
22ℵ0 . We conclude as |B| = 2ℵ0 < 22ℵ0 . □

Lemma 3.9.9.000R Let α be an ordinal as in Lemma 3.9.2 above. The category Schα
satisfies the following properties:

https://stacks.math.columbia.edu/tag/04T7
https://stacks.math.columbia.edu/tag/04VA
https://stacks.math.columbia.edu/tag/000R
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(1) If X,Y, S ∈ Ob(Schα), then for any morphisms f : X → S, g : Y → S the
fibre product X×S Y in Schα exists and is a fibre product in the category
of schemes.

(2) Given any at most countable collection S1, S2, . . . of elements of Ob(Schα),
the coproduct

∐
i Si exists in Ob(Schα) and is a coproduct in the category

of schemes.
(3) For any S ∈ Ob(Schα) and any open immersion U → S, there exists a

V ∈ Ob(Schα) with V ∼= U .
(4) For any S ∈ Ob(Schα) and any closed immersion T → S, there exists an

S′ ∈ Ob(Schα) with S′ ∼= T .
(5) For any S ∈ Ob(Schα) and any finite type morphism T → S, there exists

an S′ ∈ Ob(Schα) with S′ ∼= T .
(6) Suppose S is a scheme which has an open covering S =

⋃
i∈I Si such that

there exists a T ∈ Ob(Schα) with (a) size(Si) ≤ size(T )ℵ0 for all i ∈ I,
and (b) |I| ≤ size(T )ℵ0 . Then S is isomorphic to an object of Schα.

(7) For any S ∈ Ob(Schα) and any morphism f : T → S locally of finite
type such that T can be covered by at most size(S)ℵ0 open affines, there
exists an S′ ∈ Ob(Schα) with S′ ∼= T . For example this holds if T can be
covered by at most |R| = 2ℵ0 = ℵℵ0

0 open affines.
(8) For any S ∈ Ob(Schα) and any monomorphism T → S which is ei-

ther locally of finite presentation or quasi-compact, there exists an S′ ∈
Ob(Schα) with S′ ∼= T .

(9) Suppose that T ∈ Ob(Schα) is affine. Write R = Γ(T,OT ). Then any of
the following schemes is isomorphic to a scheme in Schα:
(a) For any ideal I ⊂ R with completion R∗ = limnR/I

n, the scheme
Spec(R∗).

(b) For any finite type R-algebra R′, the scheme Spec(R′).
(c) For any localization S−1R, the scheme Spec(S−1R).
(d) For any prime p ⊂ R, the scheme Spec(κ(p)).
(e) For any subring R′ ⊂ R, the scheme Spec(R′).
(f) Any scheme of finite type over a ring of cardinality at most |R|ℵ0 .
(g) And so on.

Proof. Statements (1) and (2) follow directly from the definitions. Statement (3)
follows as the size of an open subscheme U of S is clearly smaller than or equal
to the size of S. Statement (4) follows from (5). Statement (5) follows from (7).
Statement (6) follows as the size of S is ≤ max{|I|, supi size(Si)} ≤ size(T )ℵ0 by
Lemma 3.9.5. Statement (7) follows from (6). Namely, for any affine open V ⊂ T
we have size(V ) ≤ size(S) by Lemma 3.9.7. Thus, we see that (6) applies in the
situation of (7). Part (8) follows from Lemma 3.9.8.
Statement (9) is translated, via Lemma 3.9.4, into an upper bound on the cardi-
nality of the rings R∗, S−1R, κ(p), R′, etc. Perhaps the most interesting one is the
ring R∗. As a set, it is the image of a surjective map RN → R∗. Since |RN| = |R|ℵ0 ,
we see that it works by our choice of Bound(κ) being at least κℵ0 . Phew! (The
cardinality of the algebraic closure of a field is the same as the cardinality of the
field, or it is ℵ0.) □

Remark 3.9.10.000S Let R be a ring. Suppose we consider the ring
∏

p∈Spec(R) κ(p).
The cardinality of this ring is bounded by |R|2|R| , but is not bounded by |R|ℵ0 in

https://stacks.math.columbia.edu/tag/000S


3.10. SETS WITH GROUP ACTION 21

general. For example if R = C[x] it is not bounded by |R|ℵ0 and if R =
∏
n∈N F2

it is not bounded by |R||R|. Thus the “And so on” of Lemma 3.9.9 above should
be taken with a grain of salt. Of course, if it ever becomes necessary to consider
these rings in arguments pertaining to fppf/étale cohomology, then we can change
the function Bound above into the function κ 7→ κ2κ .

In the following lemma we use the notion of an fpqc covering which is introduced
in Topologies, Section 34.9.

Lemma 3.9.11.0AHK Let f : X → Y be a morphism of schemes. Assume there exists
an fpqc covering {gj : Yj → Y }j∈J such that gj factors through f . Then size(Y ) ≤
size(X).

Proof. Let V ⊂ Y be an affine open. By definition there exist n ≥ 0 and a :
{1, . . . , n} → J and affine opens Vi ⊂ Ya(i) such that V = ga(1)(V1)∪ . . .∪ga(n)(Vn).
Denote hj : Yj → X a morphism such that f ◦ hj = gj . Then ha(1)(V1) ∪ . . . ∪
ha(n)(Vn) is a quasi-compact subset of f−1(V ). Hence we can find a quasi-compact
open W ⊂ f−1(V ) which contains ha(i)(Vi) for i = 1, . . . , n. In particular V =
f(W ).

On the one hand this shows that the cardinality of the set of affine opens of Y
is at most the cardinality of the set S of quasi-compact opens of X. Since every
quasi-compact open of X is a finite union of affines, we see that the cardinality of
this set is at most sup |S|n = max(ℵ0, |S|). On the other hand, we have OY (V ) ⊂∏
i=1,...,nOYa(i)(Vi) because {Vi → V } is an fpqc covering. HenceOY (V ) ⊂ OX(W )

because Vi → V factors through W . Again since W has a finite covering by affine
opens of X we conclude that |OY (V )| is bounded by the size of X. The lemma
now follows from the definition of the size of a scheme. □

In the following lemma we use the notion of an fppf covering which is introduced
in Topologies, Section 34.7.

Lemma 3.9.12.0AHL Let {fi : Xi → X}i∈I be an fppf covering of a scheme. There exists
an fppf covering {Wj → X}j∈J which is a refinement of {Xi → X}i∈I such that
size(

∐
Wj) ≤ size(X).

Proof. Choose an affine open covering X =
⋃
a∈A Ua with |A| ≤ size(X). For

each a we can choose a finite subset Ia ⊂ I and for i ∈ Ia a quasi-compact open
Wa,i ⊂ Xi such that Ua =

⋃
i∈Ia fi(Wa,i). Then size(Wa,i) ≤ size(X) by Lemma

3.9.7. We conclude that size(
∐
a

∐
i∈IaWi,a) ≤ size(X) by Lemma 3.9.5. □

3.10. Sets with group action

000T Let G be a group. We denote G-Sets the “big” category of G-sets. For any ordinal
α, we denote G-Setsα the full subcategory of G-Sets whose objects are in Vα. As a
notion for size of a G-set we take size(S) = max{ℵ0, |G|, |S|} (where |G| and |S| are
the cardinality of the underlying sets). As above we use the function Bound(κ) =
κℵ0 .

Lemma 3.10.1.000U With notations G, G-Setsα, size, and Bound as above. Let S0 be
a set of G-sets. There exists a limit ordinal α with the following properties:

(1) We have S0 ∪ {GG} ⊂ Ob(G-Setsα).

https://stacks.math.columbia.edu/tag/0AHK
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(2) For any S ∈ Ob(G-Setsα) and anyG-set T with size(T ) ≤ Bound(size(S)),
there exists an S′ ∈ Ob(G-Setsα) that is isomorphic to T .

(3) For any countable index category I and any functor F : I → G-Setsα,
the limit limI F and colimit colimI F exist in G-Setsα and are the same
as in G-Sets.

Proof. Omitted. Similar to but easier than the proof of Lemma 3.9.2 above. □

Lemma 3.10.2.000V Let α be an ordinal as in Lemma 3.10.1 above. The category
G-Setsα satisfies the following properties:

(1) The G-set GG is an object of G-Setsα.
(2) (Co)Products, fibre products, and pushouts exist in G-Setsα and are the

same as their counterparts in G-Sets.
(3) Given an object U of G-Setsα, any G-stable subset O ⊂ U is isomorphic

to an object of G-Setsα.

Proof. Omitted. □

3.11. Coverings of a site

000W Suppose that C is a category (as in Categories, Definition 4.2.1) and that Cov(C) is
a proper class of coverings satisfying properties (1), (2), and (3) of Sites, Definition
7.6.2. We list them here:

(1) If V → U is an isomorphism, then {V → U} ∈ Cov(C).
(2) If {Ui → U}i∈I ∈ Cov(C) and for each i we have {Vij → Ui}j∈Ji ∈ Cov(C),

then {Vij → U}i∈I,j∈Ji ∈ Cov(C).
(3) If {Ui → U}i∈I ∈ Cov(C) and V → U is a morphism of C, then Ui ×U V

exists for all i and {Ui ×U V → V }i∈I ∈ Cov(C).
For an ordinal α, we set Cov(C)α = Cov(C)∩Vα. Given an ordinal α and a cardinal
κ, we set Cov(C)κ,α equal to the set of elements U = {φi : Ui → U}i∈I ∈ Cov(C)α
such that |I| ≤ κ.
We recall the following notion, see Sites, Definition 7.8.2. Two families of mor-
phisms, {φi : Ui → U}i∈I and {ψj : Wj → U}j∈J , with the same target of C are
called combinatorially equivalent if there exist maps α : I → J and β : J → I such
that φi = ψα(i) and ψj = φβ(j). This defines an equivalence relation on families of
morphisms having a fixed target.

Lemma 3.11.1.000X With notations as above. Let Cov0 ⊂ Cov(C) be a set contained in
Cov(C). There exist a cardinal κ and a limit ordinal α with the following properties:

(1) We have Cov0 ⊂ Cov(C)κ,α.
(2) The set of coverings Cov(C)κ,α satisfies (1), (2), and (3) of Sites, Definition

7.6.2 (see above). In other words (C,Cov(C)κ,α) is a site.
(3) Every covering in Cov(C) is combinatorially equivalent to a covering in

Cov(C)κ,α.

Proof. To prove this, we first consider the set S of all sets of morphisms of C with
fixed target. In other words, an element of S is a subset T of Arrows(C) such that
all elements of T have the same target. Given a family U = {φi : Ui → U}i∈I of
morphisms with fixed target, we define Supp(U) = {φ ∈ Arrows(C) | ∃i ∈ I, φ =
φi}. Note that two families U = {φi : Ui → U}i∈I and V = {Vj → V }j∈J are
combinatorially equivalent if and only if Supp(U) = Supp(V). Next, we define

https://stacks.math.columbia.edu/tag/000V
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Sτ ⊂ S to be the subset Sτ = {T ∈ S | ∃ U ∈ Cov(C) T = Supp(U)}. For
every element T ∈ Sτ , set β(T ) to equal the least ordinal β such that there exists a
U ∈ Cov(C)β such that T = Supp(U). Finally, set β0 = supT∈Sτ β(T ). At this point
it follows that every U ∈ Cov(C) is combinatorially equivalent to some element of
Cov(C)β0 .

Let κ be the maximum of ℵ0, the cardinality |Arrows(C)|,

sup{Ui→U}i∈I∈Cov(C)β0
|I|, and sup{Ui→U}i∈I∈Cov0 |I|.

Since κ is an infinite cardinal, we have κ⊗ κ = κ. Note that obviously Cov(C)β0 =
Cov(C)κ,β0 .

We define, by transfinite induction, a function f which associates to every ordinal
an ordinal as follows. Let f(0) = 0. Given f(α), we define f(α+ 1) to be the least
ordinal β such that the following hold:

(1) We have α+ 1 ≤ β and f(α) ≤ β.
(2) If {Ui → U}i∈I ∈ Cov(C)κ,f(α) and for each i we have {Wij → Ui}j∈Ji ∈

Cov(C)κ,f(α), then {Wij → U}i∈I,j∈Ji ∈ Cov(C)κ,β .
(3) If {Ui → U}i∈I ∈ Cov(C)κ,α and W → U is a morphism of C, then
{Ui ×U W →W}i∈I ∈ Cov(C)κ,β .

To see β exists we note that clearly the collection of all coverings {Wij → U} and
{Ui×UW →W} that occur in (2) and (3) form a set. Hence there is some ordinal β
such that Vβ contains all of these coverings. Moreover, the index set of the covering
{Wij → U} has cardinality

∑
i∈I |Ji| ≤ κ ⊗ κ = κ, and hence these coverings are

contained in Cov(C)κ,β . Since every nonempty collection of ordinals has a least
element we see that f(α + 1) is well defined. Finally, if α is a limit ordinal, then
we set f(α) = supα′<α f(α′).

Pick an ordinal β1 such that Arrows(C) ⊂ Vβ1 , Cov0 ⊂ Vβ0 , and β1 ≥ β0. By con-
struction f(β1) ≥ β1 and we see that the same properties hold for Vf(β1). Moreover,
as f is nondecreasing this remains true for any β ≥ β1. Next, choose any ordinal
β2 > β1 with cofinality cf(β2) > κ. This is possible since the cofinality of ordinals
gets arbitrarily large, see Proposition 3.7.2. We claim that the pair κ, α = f(β2) is
a solution to the problem posed in the lemma.

The first and third property of the lemma holds by our choices of κ, β2 > β1 > β0
above.

Since β2 is a limit ordinal (as its cofinality is infinite) we get f(β2) = supβ<β2 f(β).
Hence {f(β) | β < β2} ⊂ f(β2) is a cofinal subset. Hence we see that

Vα = Vf(β2) =
⋃

β<β2
Vf(β).

Now, let U ∈ Covκ,α. We define β(U) to be the least ordinal β such that U ∈
Covκ,f(β). By the above we see that always β(U) < β2.

We have to show properties (1), (2), and (3) defining a site hold for the pair
(C,Covκ,α). The first holds because by our choice of β2 all arrows of C are contained
in Vf(β2). For the third, we use that given a covering U = {Ui → U}i∈I ∈ Cov(C)κ,α
we have β(U) < β2 and hence any base change of U is by construction of f contained
in Cov(C)κ,f(β+1) and hence in Cov(C)κ,α.
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Finally, for the second condition, suppose that {Ui → U}i∈I ∈ Cov(C)κ,f(α) and
for each i we have Wi = {Wij → Ui}j∈Ji ∈ Cov(C)κ,f(α). Consider the function
I → β2, i 7→ β(Wi). Since the cofinality of β2 is > κ ≥ |I| the image of this function
cannot be a cofinal subset. Hence there exists a β < β1 such that Wi ∈ Covκ,f(β)
for all i ∈ I. It follows that the covering {Wij → U}i∈I,j∈Ji is an element of
Cov(C)κ,f(β+1) ⊂ Cov(C)κ,α as desired. □

Remark 3.11.2.000Y It is likely the case that, for some limit ordinal α, the set of
coverings Cov(C)α satisfies the conditions of the lemma. This is after all what
an application of the reflection principle would appear to give (modulo caveats as
described at the end of Section 3.8 and in Remark 3.9.3).

3.12. Abelian categories and injectives

000Z The following lemma applies to the category of modules over a sheaf of rings on a
site.

Lemma 3.12.1.0010 Suppose given a big category A (see Categories, Remark 4.2.2).
Assume A is abelian and has enough injectives. See Homology, Definitions 12.5.1
and 12.27.4. Then for any given set of objects {As}s∈S of A, there is an abelian
subcategory A′ ⊂ A with the following properties:

(1) Ob(A′) is a set,
(2) Ob(A′) contains As for each s ∈ S,
(3) A′ has enough injectives, and
(4) an object of A′ is injective if and only if it is an injective object of A.

Proof. Omitted. □
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CHAPTER 4

Categories

0011 4.1. Introduction

0012 Categories were first introduced in [EM45]. The category of categories (which is a
proper class) is a 2-category. Similarly, the category of stacks forms a 2-category.
If you already know about categories, but not about 2-categories you should read
Section 4.28 as an introduction to the formal definitions later on.

4.2. Definitions

0013 We recall the definitions, partly to fix notation.

Definition 4.2.1.0014 A category C consists of the following data:
(1) A set of objects Ob(C).
(2) For each pair x, y ∈ Ob(C) a set of morphisms MorC(x, y).
(3) For each triple x, y, z ∈ Ob(C) a composition map MorC(y, z)×MorC(x, y)→

MorC(x, z), denoted (ϕ, ψ) 7→ ϕ ◦ ψ.
These data are to satisfy the following rules:

(1) For every element x ∈ Ob(C) there exists a morphism idx ∈ MorC(x, x)
such that idx ◦ ϕ = ϕ and ψ ◦ idx = ψ whenever these compositions make
sense.

(2) Composition is associative, i.e., (ϕ ◦ ψ) ◦ χ = ϕ ◦ (ψ ◦ χ) whenever these
compositions make sense.

It is customary to require all the morphism sets MorC(x, y) to be disjoint. In this
way a morphism ϕ : x → y has a unique source x and a unique target y. This is
not strictly necessary, although care has to be taken in formulating condition (2)
above if it is not the case. It is convenient and we will often assume this is the case.
In this case we say that ϕ and ψ are composable if the source of ϕ is equal to the
target of ψ, in which case ϕ ◦ ψ is defined. An equivalent definition would be to
define a category as a quintuple (Ob,Arrows, s, t, ◦) consisting of a set of objects,
a set of morphisms (arrows), source, target and composition subject to a long list
of axioms. We will occasionally use this point of view.

Remark 4.2.2.0015 Big categories. In some texts a category is allowed to have a proper
class of objects. We will allow this as well in these notes but only in the following
list of cases (to be updated as we go along). In particular, when we say: “Let C be
a category” then it is understood that Ob(C) is a set.

(1) The category Sets of sets.
(2) The category Ab of abelian groups.
(3) The category Groups of groups.
(4) Given a group G the category G-Sets of sets with a left G-action.

26
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(5) Given a ring R the category ModR of R-modules.
(6) Given a field k the category of vector spaces over k.
(7) The category of rings.
(8) The category of divided power rings, see Divided Power Algebra, Section

23.3.
(9) The category of schemes.

(10) The category Top of topological spaces.
(11) Given a topological space X the category PSh(X) of presheaves of sets

over X.
(12) Given a topological space X the category Sh(X) of sheaves of sets over

X.
(13) Given a topological space X the category PAb(X) of presheaves of abelian

groups over X.
(14) Given a topological space X the category Ab(X) of sheaves of abelian

groups over X.
(15) Given a small category C the category of functors from C to Sets.
(16) Given a category C the category of presheaves of sets over C.
(17) Given a site C the category of sheaves of sets over C.

One of the reason to enumerate these here is to try and avoid working with some-
thing like the “collection” of “big” categories which would be like working with the
collection of all classes which I think definitively is a meta-mathematical object.
Remark 4.2.3.0016 It follows directly from the definition that any two identity mor-
phisms of an object x of A are the same. Thus we may and will speak of the identity
morphism idx of x.
Definition 4.2.4.0017 A morphism ϕ : x → y is an isomorphism of the category C if
there exists a morphism ψ : y → x such that ϕ ◦ ψ = idy and ψ ◦ ϕ = idx.
An isomorphism ϕ is also sometimes called an invertible morphism, and the mor-
phism ψ of the definition is called the inverse and denoted ϕ−1. It is unique if it
exists. Note that given an object x of a category A the set of invertible elements
AutA(x) of MorA(x, x) forms a group under composition. This group is called the
automorphism group of x in A.
Definition 4.2.5.0018 A groupoid is a category where every morphism is an isomorphism.
Example 4.2.6.0019 A group G gives rise to a groupoid with a single object x and
morphisms Mor(x, x) = G, with the composition rule given by the group law in G.
Every groupoid with a single object is of this form.
Example 4.2.7.001A A set C gives rise to a groupoid C defined as follows: As objects
we take Ob(C) := C and for morphisms we take Mor(x, y) empty if x ̸= y and equal
to {idx} if x = y.
Definition 4.2.8.001B A functor F : A → B between two categories A,B is given by the
following data:

(1) A map F : Ob(A)→ Ob(B).
(2) For every x, y ∈ Ob(A) a map F : MorA(x, y) → MorB(F (x), F (y)),

denoted ϕ 7→ F (ϕ).
These data should be compatible with composition and identity morphisms in the
following manner: F (ϕ◦ψ) = F (ϕ)◦F (ψ) for a composable pair (ϕ, ψ) of morphisms
of A and F (idx) = idF (x).
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Note that every category A has an identity functor idA. In addition, given a functor
G : B → C and a functor F : A → B there is a composition functor G ◦ F : A → C
defined in an obvious manner.

Definition 4.2.9.001C Let F : A → B be a functor.
(1) We say F is faithful if for any objects x, y ∈ Ob(A) the map

F : MorA(x, y)→ MorB(F (x), F (y))
is injective.

(2) If these maps are all bijective then F is called fully faithful.
(3) The functor F is called essentially surjective if for any object y ∈ Ob(B)

there exists an object x ∈ Ob(A) such that F (x) is isomorphic to y in B.

Definition 4.2.10.001D A subcategory of a category B is a category A whose objects
and arrows form subsets of the objects and arrows of B and such that source,
target and composition in A agree with those of B and such that the identity
morphism of an object of A matches the one in B. We say A is a full subcategory
of B if MorA(x, y) = MorB(x, y) for all x, y ∈ Ob(A). We say A is a strictly full
subcategory of B if it is a full subcategory and given x ∈ Ob(A) any object of B
which is isomorphic to x is also in A.

If A ⊂ B is a subcategory then the identity map is a functor from A to B. Fur-
thermore a subcategory A ⊂ B is full if and only if the inclusion functor is fully
faithful. Note that given a category B the set of full subcategories of B is the same
as the set of subsets of Ob(B).

Remark 4.2.11.001E Suppose that A is a category. A functor F from A to Sets is a
mathematical object (i.e., it is a set not a class or a formula of set theory, see Sets,
Section 3.2) even though the category of sets is “big”. Namely, the range of F on
objects will be a set F (Ob(A)) and then we may think of F as a functor between
A and the full subcategory of the category of sets whose objects are elements of
F (Ob(A)).

Example 4.2.12.001F A homomorphism p : G → H of groups gives rise to a functor
between the associated groupoids in Example 4.2.6. It is faithful (resp. fully faithful)
if and only if p is injective (resp. an isomorphism).

Example 4.2.13.001G Given a category C and an object X ∈ Ob(C) we define the
category of objects over X, denoted C/X as follows. The objects of C/X are
morphisms Y → X for some Y ∈ Ob(C). Morphisms between objects Y → X and
Y ′ → X are morphisms Y → Y ′ in C that make the obvious diagram commute.
Note that there is a functor pX : C/X → C which simply forgets the morphism.
Moreover given a morphism f : X ′ → X in C there is an induced functor F :
C/X ′ → C/X obtained by composition with f , and pX ◦ F = pX′ .

Example 4.2.14.001H Given a category C and an object X ∈ Ob(C) we define the
category of objects under X, denoted X/C as follows. The objects of X/C are
morphisms X → Y for some Y ∈ Ob(C). Morphisms between objects X → Y and
X → Y ′ are morphisms Y → Y ′ in C that make the obvious diagram commute.
Note that there is a functor pX : X/C → C which simply forgets the morphism.
Moreover given a morphism f : X ′ → X in C there is an induced functor F : X/C →
X ′/C obtained by composition with f , and pX′ ◦ F = pX .
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Definition 4.2.15.001I Let F,G : A → B be functors. A natural transformation, or a
morphism of functors t : F → G, is a collection {tx}x∈Ob(A) such that

(1) tx : F (x)→ G(x) is a morphism in the category B, and
(2) for every morphism ϕ : x→ y of A the following diagram is commutative

F (x) tx //

F (ϕ)
��

G(x)

G(ϕ)
��

F (y)
ty // G(y)

Sometimes we use the diagram

A
F
%%

G

99�� t B

to indicate that t is a morphism from F to G.

Note that every functor F comes with the identity transformation idF : F → F .
In addition, given a morphism of functors t : F → G and a morphism of functors
s : E → F then the composition t ◦ s is defined by the rule

(t ◦ s)x = tx ◦ sx : E(x)→ G(x)

for x ∈ Ob(A). It is easy to verify that this is indeed a morphism of functors from
E to G. In this way, given categories A and B we obtain a new category, namely
the category of functors between A and B.

Remark 4.2.16.02C2 This is one instance where the same thing does not hold if A is a
“big” category. For example consider functors Sets → Sets. As we have currently
defined it such a functor is a class and not a set. In other words, it is given by a
formula in set theory (with some variables equal to specified sets)! It is not a good
idea to try to consider all possible formulae of set theory as part of the definition of
a mathematical object. The same problem presents itself when considering sheaves
on the category of schemes for example. We will come back to this point later.

Definition 4.2.17.001J An equivalence of categories F : A → B is a functor such that
there exists a functor G : B → A such that the compositions F ◦G and G ◦ F are
isomorphic to the identity functors idB, respectively idA. In this case we say that
G is a quasi-inverse to F .

Lemma 4.2.18.05SG Let F : A → B be a fully faithful functor. Suppose for every X ∈
Ob(B) we are given an object j(X) of A and an isomorphism iX : X → F (j(X)).
Then there is a unique functor j : B → A such that j extends the rule on objects,
and the isomorphisms iX define an isomorphism of functors idB → F ◦j. Moreover,
j and F are quasi-inverse equivalences of categories.

Proof. To construct j : B → A, there are two steps. Firstly, we define the map
j : Ob(B)→ Ob(A) that associates j(X) to X ∈ B. Secondly, if X,Y ∈ Ob(B) and
ϕ : X → Y , we consider ϕ′ := iY ◦ϕ◦i−1

X . There is an unique φ verifying F (φ) = ϕ′,
using that F is fully faithful. We define j(ϕ) = φ. We omit the verification that j

https://stacks.math.columbia.edu/tag/001I
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is a functor. By construction the diagram

X
iX
//

ϕ

��

F (j(X))

F◦j(ϕ)
��

Y
iY // F (j(Y ))

commutes. Hence, as each iX is an isomorphism, {iX}X is an isomorphism of
functors idB → F ◦ j. To conclude, we have to also prove that j ◦ F is isomorphic
to idA. However, since F is fully faithful, in order to do this it suffices to prove this
after post-composing with F , i.e., it suffices to show that F ◦ j ◦F is isomorphic to
F ◦ idA (small detail omitted). Since F ◦ j ∼= idB this is clear. □

Lemma 4.2.19.02C3 A functor is an equivalence of categories if and only if it is both
fully faithful and essentially surjective.

Proof. Let F : A → B be essentially surjective and fully faithful. As by convention
all categories are small and as F is essentially surjective we can, using the axiom
of choice, choose for every X ∈ Ob(B) an object j(X) of A and an isomorphism
iX : X → F (j(X)). Then we apply Lemma 4.2.18 using that F is fully faithful. □

Definition 4.2.20.001K Let A, B be categories. We define the product category A× B
to be the category with objects Ob(A× B) = Ob(A)×Ob(B) and

MorA×B((x, y), (x′, y′)) := MorA(x, x′)×MorB(y, y′).

Composition is defined componentwise.

4.3. Opposite Categories and the Yoneda Lemma

001L
Definition 4.3.1.001M Given a category C the opposite category Copp is the category
with the same objects as C but all morphisms reversed.

In other words MorCopp(x, y) = MorC(y, x). Composition in Copp is the same as in
C except backwards: if ϕ : y → z and ψ : x → y are morphisms in Copp, in other
words arrows z → y and y → x in C, then ϕ ◦opp ψ is the morphism x→ z of Copp
which corresponds to the composition z → y → x in C.

Definition 4.3.2.001N Let C, S be categories. A contravariant functor F from C to S is
a functor Copp → S.

Concretely, a contravariant functor F is given by a map F : Ob(C) → Ob(S) and
for every morphism ψ : x → y in C a morphism F (ψ) : F (y) → F (x). These
should satisfy the property that, given another morphism ϕ : y → z, we have
F (ϕ ◦ ψ) = F (ψ) ◦ F (ϕ) as morphisms F (z)→ F (x). (Note the reverse of order.)

Definition 4.3.3.02X6 Let C be a category.
(1) A presheaf of sets on C or simply a presheaf is a contravariant functor F

from C to Sets.
(2) The category of presheaves is denoted PSh(C).

Of course the category of presheaves is a proper class.

https://stacks.math.columbia.edu/tag/02C3
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Example 4.3.4.001O Functor of points. For any U ∈ Ob(C) there is a contravariant
functor

hU : C −→ Sets
X 7−→ MorC(X,U)

which takes an object X to the set MorC(X,U). In other words hU is a presheaf.
Given a morphism f : X → Y the corresponding map hU (f) : MorC(Y,U) →
MorC(X,U) takes ϕ to ϕ◦f . We will always denote this presheaf hU : Copp → Sets.
It is called the representable presheaf associated to U . If C is the category of
schemes this functor is sometimes referred to as the functor of points of U .

Note that given a morphism ϕ : U → V in C we get a corresponding natural trans-
formation of functors h(ϕ) : hU → hV defined by composing with the morphism
U → V . This turns composition of morphisms in C into composition of transfor-
mations of functors. In other words we get a functor

h : C −→ PSh(C)

Note that the target is a “big” category, see Remark 4.2.2. On the other hand, h
is an actual mathematical object (i.e. a set), compare Remark 4.2.11.

Lemma 4.3.5 (Yoneda lemma).001P Appeared in some
form in [Yon54].
Used by
Grothendieck in a
generalized form in
[Gro95b].

Let U, V ∈ Ob(C). Given any morphism of functors
s : hU → hV there is a unique morphism ϕ : U → V such that h(ϕ) = s. In other
words the functor h is fully faithful. More generally, given any contravariant functor
F and any object U of C we have a natural bijection

MorPSh(C)(hU , F ) −→ F (U), s 7−→ sU (idU ).

Proof. For the first statement, just take ϕ = sU (idU ) ∈ MorC(U, V ). For the second
statement, given ξ ∈ F (U) define s by sV : hU (V )→ F (V ) by sending the element
f : V → U of hU (V ) = MorC(V,U) to F (f)(ξ). □

Definition 4.3.6.001Q A contravariant functor F : C → Sets is said to be representable
if it is isomorphic to the functor of points hU for some object U of C.

Let C be a category and let F : Copp → Sets be a representable functor. Choose
an object U of C and an isomorphism s : hU → F . The Yoneda lemma guarantees
that the pair (U, s) is unique up to unique isomorphism. The object U is called an
object representing F . By the Yoneda lemma the transformation s corresponds to
a unique element ξ ∈ F (U). This element is called the universal object. It has the
property that for V ∈ Ob(C) the map

MorC(V,U) −→ F (V ), (f : V → U) 7−→ F (f)(ξ)

is a bijection. Thus ξ is universal in the sense that every element of F (V ) is equal
to the image of ξ via F (f) for a unique morphism f : V → U in C.

4.4. Products of pairs

001R
Definition 4.4.1.001S Let x, y ∈ Ob(C). A product of x and y is an object x × y ∈
Ob(C) together with morphisms p ∈ MorC(x × y, x) and q ∈ MorC(x × y, y) such
that the following universal property holds: for any w ∈ Ob(C) and morphisms

https://stacks.math.columbia.edu/tag/001O
https://stacks.math.columbia.edu/tag/001P
https://stacks.math.columbia.edu/tag/001Q
https://stacks.math.columbia.edu/tag/001S


4.5. COPRODUCTS OF PAIRS 32

α ∈ MorC(w, x) and β ∈ MorC(w, y) there is a unique γ ∈ MorC(w, x × y) making
the diagram

w
β

**
γ

''
α

  

x× y
p

��

q
// y

x

commute.

If a product exists it is unique up to unique isomorphism. This follows from the
Yoneda lemma as the definition requires x× y to be an object of C such that

hx×y(w) = hx(w)× hy(w)
functorially in w. In other words the product x × y is an object representing the
functor w 7→ hx(w)× hy(w).

Definition 4.4.2.001T We say the category C has products of pairs of objects if a product
x× y exists for any x, y ∈ Ob(C).

We use this terminology to distinguish this notion from the notion of “having prod-
ucts” or “having finite products” which usually means something else (in particular
it always implies there exists a final object).

4.5. Coproducts of pairs

04AN
Definition 4.5.1.04AO Let x, y ∈ Ob(C). A coproduct, or amalgamated sum of x and
y is an object x ⨿ y ∈ Ob(C) together with morphisms i ∈ MorC(x, x ⨿ y) and
j ∈ MorC(y, x ⨿ y) such that the following universal property holds: for any w ∈
Ob(C) and morphisms α ∈ MorC(x,w) and β ∈ MorC(y, w) there is a unique γ ∈
MorC(x⨿ y, w) making the diagram

y

j

�� β

��

x
i //

α

**

x⨿ y
γ

''
w

commute.

If a coproduct exists it is unique up to unique isomorphism. This follows from the
Yoneda lemma (applied to the opposite category) as the definition requires x ⨿ y
to be an object of C such that

MorC(x⨿ y, w) = MorC(x,w)×MorC(y, w)
functorially in w.

Definition 4.5.2.04AP We say the category C has coproducts of pairs of objects if a
coproduct x⨿ y exists for any x, y ∈ Ob(C).

https://stacks.math.columbia.edu/tag/001T
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We use this terminology to distinguish this notion from the notion of “having co-
products” or “having finite coproducts” which usually means something else (in
particular it always implies there exists an initial object in C).

4.6. Fibre products

001U
Definition 4.6.1.001V Let x, y, z ∈ Ob(C), f ∈ MorC(x, y) and g ∈ MorC(z, y). A
fibre product of f and g is an object x ×y z ∈ Ob(C) together with morphisms
p ∈ MorC(x×y z, x) and q ∈ MorC(x×y z, z) making the diagram

x×y z q
//

p

��

z

g

��
x

f // y

commute, and such that the following universal property holds: for any w ∈ Ob(C)
and morphisms α ∈ MorC(w, x) and β ∈ MorC(w, z) with f ◦ α = g ◦ β there is a
unique γ ∈ MorC(w, x×y z) making the diagram

w
β

**
γ

''
α

  

x×y z
p

��

q
// z

g

��
x

f // y

commute.

If a fibre product exists it is unique up to unique isomorphism. This follows from
the Yoneda lemma as the definition requires x×y z to be an object of C such that

hx×yz(w) = hx(w)×hy(w) hz(w)
functorially in w. In other words the fibre product x×y z is an object representing
the functor w 7→ hx(w)×hy(w) hz(w).

Definition 4.6.2.08N0 We say a commutative diagram
w //

��

z

��
x // y

in a category is cartesian if w and the morphisms w → x and w → z form a fibre
product of the morphisms x→ y and z → y.

Definition 4.6.3.001W We say the category C has fibre products if the fibre product
exists for any f ∈ MorC(x, y) and g ∈ MorC(z, y).

Definition 4.6.4.001X A morphism f : x→ y of a category C is said to be representable
if for every morphism z → y in C the fibre product x×y z exists.

Lemma 4.6.5.001Y Let C be a category. Let f : x→ y, and g : y → z be representable.
Then g ◦ f : x→ z is representable.

https://stacks.math.columbia.edu/tag/001V
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Proof. Let t ∈ Ob(C) and φ ∈ MorC(t, z). As g and f are representable, we obtain
commutative diagrams

y ×z t q
//

p

��

t

φ

��
y

g // z

x×y (y×z t)
q′

//

p′

��

y ×z t

p

��
x

f // y

with the universal property of Definition 4.6.1. We claim that x×z t = x×y (y×z t)
with morphisms q ◦ q′ : x×z t → t and p′ : x×z t → x is a fibre product. First, it
follows from the commutativity of the diagrams above that φ◦ q ◦ q′ = f ◦g ◦p′. To
verify the universal property, let w ∈ Ob(C) and suppose α : w → x and β : w → y
are morphisms with φ ◦ β = f ◦ g ◦ α. By definition of the fibre product, there are
unique morphisms δ and γ such that

w
β

**
δ ''

f◦α

  

y ×z t
p

��

q
// t

φ

��
y

g // z

and
w

δ

++
γ ((

α

""

x×y (y×z t)

p′

��

q′
// y ×z t

p

��
x

f // y

commute. Then, γ makes the diagram

w
β

**
γ ((
α

  

x×z t

p′

��

q◦q′
// t

φ

��
x

g◦f // z

commute. To show its uniqueness, let γ′ verify q ◦ q′ ◦ γ′ = β and p′ ◦ γ′ = α.
Because γ is unique, we just need to prove that q′ ◦ γ′ = δ and p′ ◦ γ′ = α to
conclude. We supposed the second equality. For the first one, we also need to use
the uniqueness of delta. Notice that δ is the only morphism verifying q ◦ δ = β and
p◦ δ = f ◦α. We already supposed that q ◦ (q′ ◦γ′) = β. Furthermore, by definition
of the fibre product, we know that f ◦ p′ = p ◦ q′. Therefore:

p ◦ (q′ ◦ γ′) = (p ◦ q′) ◦ γ′ = (f ◦ p′) ◦ γ′ = f ◦ (p′ ◦ γ′) = f ◦ α.

Then q′ ◦ γ′ = δ, which concludes the proof. □
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Lemma 4.6.6.001Z Let C be a category. Let f : x→ y be representable. Let y′ → y be
a morphism of C. Then the morphism x′ := x×y y′ → y′ is representable also.

Proof. Let z → y′ be a morphism. The fibre product x′ ×y′ z is supposed to
represent the functor

w 7→ hx′(w)×hy′ (w) hz(w)
= (hx(w)×hy(w) hy′(w))×hy′ (w) hz(w)
= hx(w)×hy(w) hz(w)

which is representable by assumption. □

4.7. Examples of fibre products

0020 In this section we list examples of fibre products and we describe them.

As a really trivial first example we observe that the category of sets has fibre
products and hence every morphism is representable. Namely, if f : X → Y and
g : Z → Y are maps of sets then we define X ×Y Z as the subset of X × Z
consisting of pairs (x, z) such that f(x) = g(z). The morphisms p : X ×Y Z → X
and q : X ×Y Z → Z are the projection maps (x, z) 7→ x, and (x, z) 7→ z. Finally,
if α : W → X and β : W → Z are morphisms such that f ◦α = g ◦ β then the map
W → X × Z, w 7→ (α(w), β(w)) obviously ends up in X ×Y Z as desired.

In many categories whose objects are sets endowed with certain types of algebraic
structures the fibre product of the underlying sets also provides the fibre product
in the category. For example, suppose that X, Y and Z above are groups and that
f , g are homomorphisms of groups. Then the set-theoretic fibre product X ×Y Z
inherits the structure of a group, simply by defining the product of two pairs by
the formula (x, z) · (x′, z′) = (xx′, zz′). Here we list those categories for which a
similar reasoning works.

(1) The category Groups of groups.
(2) The category G-Sets of sets endowed with a left G-action for some fixed

group G.
(3) The category of rings.
(4) The category of R-modules given a ring R.

4.8. Fibre products and representability

0021 In this section we work out fibre products in the category of contravariant func-
tors from a category to the category of sets. This will later be superseded during
the discussion of sites, presheaves, sheaves. Of some interest is the notion of a
“representable morphism” between such functors.

Lemma 4.8.1.0022 Let C be a category. Let F,G,H : Copp → Sets be functors. Let
a : F → G and b : H → G be transformations of functors. Then the fibre product
F ×a,G,b H in the category PSh(C) exists and is given by the formula

(F ×a,G,b H)(X) = F (X)×aX ,G(X),bX H(X)

for any object X of C.

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/001Z
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As a special case suppose we have a morphism a : F → G, an object U ∈ Ob(C)
and an element ξ ∈ G(U). According to the Yoneda Lemma 4.3.5 this gives a
transformation ξ : hU → G. The fibre product in this case is described by the rule

(hU ×ξ,G,a F )(X) = {(f, ξ′) | f : X → U, ξ′ ∈ F (X), G(f)(ξ) = aX(ξ′)}
If F , G are also representable, then this is the functor representing the fibre product,
if it exists, see Section 4.6. The analogy with Definition 4.6.4 prompts us to define
a notion of representable transformations.
Definition 4.8.2.0023 Let C be a category. Let F,G : Copp → Sets be functors. We say
a morphism a : F → G is representable, or that F is relatively representable over
G, if for every U ∈ Ob(C) and any ξ ∈ G(U) the functor hU ×G F is representable.
Lemma 4.8.3.03KC Let C be a category. Let a : F → G be a morphism of contravariant
functors from C to Sets. If a is representable, and G is a representable functor, then
F is representable.
Proof. Omitted. □

Lemma 4.8.4.0024 Let C be a category. Let F : Copp → Sets be a functor. Assume C
has products of pairs of objects and fibre products. The following are equivalent:

(1) the diagonal ∆ : F → F × F is representable,
(2) for every U in C, and any ξ ∈ F (U) the map ξ : hU → F is representable,
(3) for every pair U, V in C and any ξ ∈ F (U), ξ′ ∈ F (V ) the fibre product

hU ×ξ,F,ξ′ hV is representable.
Proof. We will continue to use the Yoneda lemma to identify F (U) with transfor-
mations hU → F of functors.
Equivalence of (2) and (3). Let U, ξ, V, ξ′ be as in (3). Both (2) and (3) tell us
exactly that hU ×ξ,F,ξ′ hV is representable; the only difference is that the statement
(3) is symmetric in U and V whereas (2) is not.
Assume condition (1). Let U, ξ, V, ξ′ be as in (3). Note that hU × hV = hU×V is
representable. Denote η : hU×V → F × F the map corresponding to the product
ξ×ξ′ : hU×hV → F×F . Then the fibre product F×∆,F×F,ηhU×V is representable
by assumption. This means there exist W ∈ Ob(C), morphisms W → U , W → V
and hW → F such that

hW

��

// hU × hV

ξ×ξ′

��
F // F × F

is cartesian. Using the explicit description of fibre products in Lemma 4.8.1 the
reader sees that this implies that hW = hU ×ξ,F,ξ′ hV as desired.
Assume the equivalent conditions (2) and (3). Let U be an object of C and let
(ξ, ξ′) ∈ (F × F )(U). By (3) the fibre product hU ×ξ,F,ξ′ hU is representable.
Choose an object W and an isomorphism hW → hU×ξ,F,ξ′ hU . The two projections
pri : hU×ξ,F,ξ′hU → hU correspond to morphisms pi : W → U by Yoneda. Consider
W ′ = W ×(p1,p2),U×U U . It is formal to show that W ′ represents F ×∆,F×F hU
because

hW ′ = hW ×hU×hU hU = (hU ×ξ,F,ξ′ hU )×hU×hU hU = F ×F×F hU .

Thus ∆ is representable and this finishes the proof. □
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4.9. Pushouts

0025 The dual notion to fibre products is that of pushouts.

Definition 4.9.1.0026 Let x, y, z ∈ Ob(C), f ∈ MorC(y, x) and g ∈ MorC(y, z). A
pushout of f and g is an object x ⨿y z ∈ Ob(C) together with morphisms p ∈
MorC(x, x⨿y z) and q ∈ MorC(z, x⨿y z) making the diagram

y
g
//

f

��

z

q

��
x

p // x⨿y z

commute, and such that the following universal property holds: For any w ∈ Ob(C)
and morphisms α ∈ MorC(x,w) and β ∈ MorC(z, w) with α ◦ f = β ◦ g there is a
unique γ ∈ MorC(x⨿y z, w) making the diagram

y
g
//

f

��

z

q

�� β

  

x
p //

α

**

x⨿y z
γ

''
w

commute.

It is possible and straightforward to prove the uniqueness of the triple (x⨿y z, p, q)
up to unique isomorphism (if it exists) by direct arguments. Another possibility
is to think of the pushout as the fibre product in the opposite category, thereby
getting this uniqueness for free from the discussion in Section 4.6.

Definition 4.9.2.08N1 We say a commutative diagram

y //

��

z

��
x // w

in a category is cocartesian if w and the morphisms x → w and z → w form a
pushout of the morphisms y → x and y → z.

4.10. Equalizers

0027
Definition 4.10.1.0028 Suppose that X, Y are objects of a category C and that a, b :
X → Y are morphisms. We say a morphism e : Z → X is an equalizer for the pair
(a, b) if a◦e = b◦e and if (Z, e) satisfies the following universal property: For every
morphism t : W → X in C such that a ◦ t = b ◦ t there exists a unique morphism
s : W → Z such that t = e ◦ s.

As in the case of the fibre products above, equalizers when they exist are unique up
to unique isomorphism. There is a straightforward generalization of this definition
to the case where we have more than 2 morphisms.

https://stacks.math.columbia.edu/tag/0026
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4.11. Coequalizers

0029
Definition 4.11.1.002A Suppose that X, Y are objects of a category C and that a, b :
X → Y are morphisms. We say a morphism c : Y → Z is a coequalizer for the pair
(a, b) if c◦a = c◦ b and if (Z, c) satisfies the following universal property: For every
morphism t : Y → W in C such that t ◦ a = t ◦ b there exists a unique morphism
s : Z →W such that t = s ◦ c.
As in the case of the pushouts above, coequalizers when they exist are unique up
to unique isomorphism, and this follows from the uniqueness of equalizers upon
considering the opposite category. There is a straightforward generalization of this
definition to the case where we have more than 2 morphisms.

4.12. Initial and final objects

002B
Definition 4.12.1.002C Let C be a category.

(1) An object x of the category C is called an initial object if for every object
y of C there is exactly one morphism x→ y.

(2) An object x of the category C is called a final object if for every object y
of C there is exactly one morphism y → x.

In the category of sets the empty set ∅ is an initial object, and in fact the only
initial object. Also, any singleton, i.e., a set with one element, is a final object (so
it is not unique).

4.13. Monomorphisms and Epimorphisms

003A
Definition 4.13.1.003B Let C be a category and let f : X → Y be a morphism of C.

(1) We say that f is a monomorphism if for every object W and every pair of
morphisms a, b : W → X such that f ◦ a = f ◦ b we have a = b.

(2) We say that f is an epimorphism if for every object W and every pair of
morphisms a, b : Y →W such that a ◦ f = b ◦ f we have a = b.

Example 4.13.2.003C In the category of sets the monomorphisms correspond to injective
maps and the epimorphisms correspond to surjective maps.
Lemma 4.13.3.08LR Let C be a category, and let f : X → Y be a morphism of C. Then

(1) f is a monomorphism if and only if X is the fibre product X ×Y X, and
(2) f is an epimorphism if and only if Y is the pushout Y ⨿X Y .

Proof. Let suppose that f is a monomorphism. Let W be an object of C and
α, β ∈ MorC(W,X) such that f ◦ α = f ◦ β. Therefore α = β as f is monic. In
addition, we have the commutative diagram

X
idX //

idX
��

X

f

��
X

f // Y

which verify the universal property with γ := α = β. Thus X is indeed the fibre
product X ×Y X.
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Suppose that X ×Y X ∼= X. The diagram

X
idX //

idX
��

X

f

��
X

f // Y

commutes and if W ∈ Ob(C) and α, β : X → Y such that f ◦ α = f ◦ β, we have a
unique γ verifying

γ = idX ◦ γ = α = β

which proves that α = β.

The proof is exactly the same for the second point, but with the pushout Y ⨿X Y =
Y . □

4.14. Limits and colimits

002D Let C be a category. A diagram in C is simply a functor M : I → C. We say that
I is the index category or that M is an I-diagram. We will use the notation Mi

to denote the image of the object i of I. Hence for ϕ : i → i′ a morphism in I we
have M(ϕ) : Mi →Mi′ .

Definition 4.14.1.002E A limit of the I-diagram M in the category C is given by an
object limI M in C together with morphisms pi : limI M →Mi such that

(1) for ϕ : i→ i′ a morphism in I we have pi′ = M(ϕ) ◦ pi, and
(2) for any object W in C and any family of morphisms qi : W →Mi (indexed

by i ∈ Ob(I)) such that for all ϕ : i → i′ in I we have qi′ = M(ϕ) ◦ qi
there exists a unique morphism q : W → limI M such that qi = pi ◦ q for
every object i of I.

Limits (limI M, (pi)i∈Ob(I)) are (if they exist) unique up to unique isomorphism by
the uniqueness requirement in the definition. Products of pairs, fibre products, and
equalizers are examples of limits. The limit over the empty diagram is a final object
of C. In the category of sets all limits exist. The dual notion is that of colimits.

Definition 4.14.2.002F A colimit of the I-diagram M in the category C is given by an
object colimI M in C together with morphisms si : Mi → colimI M such that

(1) for ϕ : i→ i′ a morphism in I we have si = si′ ◦M(ϕ), and
(2) for any object W in C and any family of morphisms ti : Mi →W (indexed

by i ∈ Ob(I)) such that for all ϕ : i → i′ in I we have ti = ti′ ◦M(ϕ)
there exists a unique morphism t : colimI M → W such that ti = t ◦ si
for every object i of I.

Colimits (colimI M, (si)i∈Ob(I)) are (if they exist) unique up to unique isomorphism
by the uniqueness requirement in the definition. Coproducts of pairs, pushouts,
and coequalizers are examples of colimits. The colimit over an empty diagram is
an initial object of C. In the category of sets all colimits exist.

Remark 4.14.3.002G The index category of a (co)limit will never be allowed to have
a proper class of objects. In this project it means that it cannot be one of the
categories listed in Remark 4.2.2
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Remark 4.14.4.002H We often write limiMi, colimiMi, limi∈I Mi, or colimi∈I Mi in-
stead of the versions indexed by I. Using this notation, and using the description
of limits and colimits of sets in Section 4.15 below, we can say the following. Let
M : I → C be a diagram.

(1) The object limiMi if it exists satisfies the following property

MorC(W, limiMi) = limi MorC(W,Mi)

where the limit on the right takes place in the category of sets.
(2) The object colimiMi if it exists satisfies the following property

MorC(colimiMi,W ) = limi∈Iopp MorC(Mi,W )

where on the right we have the limit over the opposite category with value
in the category of sets.

By the Yoneda lemma (and its dual) this formula completely determines the limit,
respectively the colimit.

Remark 4.14.5.0G2U Let M : I → C be a diagram. In this setting a cone for M is given
by an object W and a family of morphisms qi : W → Mi, i ∈ Ob(I) such that for
all morphisms ϕ : i→ i′ of I the diagram

W
qi

}}

qi′

!!
Mi

M(ϕ) // Mi′

is commutative. The collection of cones forms a category with an obvious notion of
morphisms. Clearly, the limit of M , if it exists, is a final object in the category of
cones. Dually, a cocone for M is given by an object W and a family of morphisms
ti : Mi →W such that for all morphisms ϕ : i→ i′ in I the diagram

Mi

M(ϕ) //

ti !!

Mi′

ti′}}
W

commutes. The collection of cocones forms a category with an obvious notion of
morphisms. Similarly to the above the colimit of M exists if and only if the category
of cocones has an initial object.

As an application of the notions of limits and colimits we define products and
coproducts.

Definition 4.14.6.002I Suppose that I is a set, and suppose given for every i ∈ I an
object Mi of the category C. A product

∏
i∈IMi is by definition limI M (if it

exists) where I is the category having only identities as morphisms and having the
elements of I as objects.

An important special case is where I = ∅ in which case the product is a final
object of the category. The morphisms pi :

∏
Mi → Mi are called the projection

morphisms.
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Definition 4.14.7.002J Suppose that I is a set, and suppose given for every i ∈ I an
object Mi of the category C. A coproduct

∐
i∈IMi is by definition colimI M (if it

exists) where I is the category having only identities as morphisms and having the
elements of I as objects.

An important special case is where I = ∅ in which case the coproduct is an initial
object of the category. Note that the coproduct comes equipped with morphisms
Mi →

∐
Mi. These are sometimes called the coprojections.

Lemma 4.14.8.002K Suppose that M : I → C, and N : J → C are diagrams whose
colimits exist. Suppose H : I → J is a functor, and suppose t : M → N ◦H is a
transformation of functors. Then there is a unique morphism

θ : colimI M −→ colimJ N

such that all the diagrams
Mi

ti

��

// colimI M

θ

��
NH(i) // colimJ N

commute.

Proof. Omitted. □

Lemma 4.14.9.002L Suppose that M : I → C, and N : J → C are diagrams whose
limits exist. Suppose H : I → J is a functor, and suppose t : N ◦ H → M is a
transformation of functors. Then there is a unique morphism

θ : limJ N −→ limI M

such that all the diagrams
limJ N

θ

��

// NH(i)

ti

��
limI M // Mi

commute.

Proof. Omitted. □

Lemma 4.14.10.002M Let I, J be index categories. Let M : I × J → C be a functor.
We have

colimi colimjMi,j = colimi,jMi,j = colimj colimiMi,j

provided all the indicated colimits exist. Similar for limits.

Proof. Omitted. □

Lemma 4.14.11.002N Let M : I → C be a diagram. Write I = Ob(I) and A =
Arrows(I). Denote s, t : A→ I the source and target maps. Suppose that

∏
i∈IMi

and
∏
a∈AMt(a) exist. Suppose that the equalizer of

∏
i∈IMi

ϕ //

ψ
//
∏
a∈AMt(a)
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exists, where the morphisms are determined by their components as follows: pa◦ψ =
M(a) ◦ ps(a) and pa ◦ ϕ = pt(a). Then this equalizer is the limit of the diagram.

Proof. Omitted. □

Lemma 4.14.12.002P Let M : I → C be a diagram. Write I = Ob(I) and A =
Arrows(I). Denote s, t : A→ I the source and target maps. Suppose that

∐
i∈IMi

and
∐
a∈AMs(a) exist. Suppose that the coequalizer of

∐
a∈AMs(a)

ϕ //

ψ
//
∐
i∈IMi

exists, where the morphisms are determined by their components as follows: The
component Ms(a) maps via ψ to the component Mt(a) via the morphism M(a). The
component Ms(a) maps via ϕ to the component Ms(a) by the identity morphism.
Then this coequalizer is the colimit of the diagram.

Proof. Omitted. □

4.15. Limits and colimits in the category of sets

002U Not only do limits and colimits exist in Sets but they are also easy to describe.
Namely, let M : I → Sets, i 7→ Mi be a diagram of sets. Denote I = Ob(I). The
limit is described as

limI M = {(mi)i∈I ∈
∏

i∈I
Mi | ∀ϕ : i→ i′ in I,M(ϕ)(mi) = mi′}.

So we think of an element of the limit as a compatible system of elements of all the
sets Mi.
On the other hand, the colimit is

colimI M = (
∐

i∈I
Mi)/ ∼

where the equivalence relation ∼ is the equivalence relation generated by setting
mi ∼ mi′ if mi ∈Mi, mi′ ∈Mi′ and M(ϕ)(mi) = mi′ for some ϕ : i→ i′. In other
words, mi ∈Mi and mi′ ∈Mi′ are equivalent if there are a chain of morphisms in
I

i1

|| ��

i3

��

i2n−1

$$
i = i0 i2 . . . i2n = i′

and elements mij ∈ Mij mapping to each other under the maps Mi2k−1 → Mi2k−2

and Mi2k−1 →Mi2k induced from the maps in I above.
This is not a very pleasant type of object to work with. But if the diagram is
filtered then it is much easier to describe. We will explain this in Section 4.19.

4.16. Connected limits

04AQ A (co)limit is called connected if its index category is connected.

Definition 4.16.1.002S We say that a category I is connected if the equivalence relation
generated by x ∼ y ⇔ MorI(x, y) ̸= ∅ has exactly one equivalence class.
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Here we follow the convention of Topology, Definition 5.7.1 that connected spaces
are nonempty. The following in some vague sense characterizes connected limits.

Lemma 4.16.2.002T Let C be a category. Let X be an object of C. Let M : I → C/X be
a diagram in the category of objects over X. If the index category I is connected
and the limit of M exists in C/X, then the limit of the composition I → C/X → C
exists and is the same.

Proof. Let L→ X be an object representing the limit in C/X. Consider the functor
W 7−→ limi MorC(W,Mi).

Let (φi) be an element of the set on the right. Since each Mi comes equipped with
a morphism si : Mi → X we get morphisms fi = si ◦ φi : W → X. But as I
is connected we see that all fi are equal. Since I is nonempty there is at least
one fi. Hence this common value W → X defines the structure of an object of
W in C/X and (φi) defines an element of limi MorC/X(W,Mi). Thus we obtain a
unique morphism ϕ : W → L such that φi is the composition of ϕ with L→Mi as
desired. □

Lemma 4.16.3.04AR Let C be a category. LetX be an object of C. LetM : I → X/C be a
diagram in the category of objects underX. If the index category I is connected and
the colimit of M exists in X/C, then the colimit of the composition I → X/C → C
exists and is the same.

Proof. Omitted. Hint: This lemma is dual to Lemma 4.16.2. □

4.17. Cofinal and initial categories

09WN In the literature sometimes the word “final” is used instead of cofinal in the following
definition.

Definition 4.17.1.04E6 Let H : I → J be a functor between categories. We say I is
cofinal in J or that H is cofinal if

(1) for all y ∈ Ob(J ) there exist an x ∈ Ob(I) and a morphism y → H(x),
and

(2) given y ∈ Ob(J ), x, x′ ∈ Ob(I) and morphisms y → H(x) and y → H(x′)
there exist a sequence of morphisms

x = x0 ← x1 → x2 ← x3 → . . .→ x2n = x′

in I and morphisms y → H(xi) in J such that the diagrams
y

xx �� &&
H(x2k) H(x2k+1)oo // H(x2k+2)

commute for k = 0, . . . , n− 1.

Lemma 4.17.2.04E7 Let H : I → J be a functor of categories. Assume I is cofinal in
J . Then for every diagram M : J → C we have a canonical isomorphism

colimI M ◦H = colimJ M

if either side exists.

Proof. Omitted. □
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Definition 4.17.3.09WP Let H : I → J be a functor between categories. We say I is
initial in J or that H is initial if

(1) for all y ∈ Ob(J ) there exist an x ∈ Ob(I) and a morphism H(x)→ y,
(2) for any y ∈ Ob(J ), x, x′ ∈ Ob(I) and morphisms H(x) → y, H(x′) → y

in J there exist a sequence of morphisms
x = x0 ← x1 → x2 ← x3 → . . .→ x2n = x′

in I and morphisms H(xi)→ y in J such that the diagrams

H(x2k)

&&

H(x2k+1)oo //

��

H(x2k+2)

xx
y

commute for k = 0, . . . , n− 1.

This is just the dual notion to “cofinal” functors.

Lemma 4.17.4.002R Let H : I → J be a functor of categories. Assume I is initial in
J . Then for every diagram M : J → C we have a canonical isomorphism

limI M ◦H = limJ M

if either side exists.

Proof. Omitted. □

Lemma 4.17.5.05US Let F : I → I ′ be a functor. Assume
(1) the fibre categories (see Definition 4.32.2) of I over I ′ are all connected,

and
(2) for every morphism α′ : x′ → y′ in I ′ there exists a morphism α : x → y

in I such that F (α) = α′.
Then for every diagram M : I ′ → C the colimit colimI M ◦ F exists if and only if
colimI′ M exists and if so these colimits agree.

Proof. One can prove this by showing that I is cofinal in I ′ and applying Lemma
4.17.2. But we can also prove it directly as follows. It suffices to show that for any
object T of C we have

limIopp MorC(MF (i), T ) = lim(I′)opp MorC(Mi′ , T )
If (gi′)i′∈Ob(I′) is an element of the right hand side, then setting fi = gF (i) we
obtain an element (fi)i∈Ob(I) of the left hand side. Conversely, let (fi)i∈Ob(I) be
an element of the left hand side. Note that on each (connected) fibre category
Ii′ the functor M ◦ F is constant with value Mi′ . Hence the morphisms fi for
i ∈ Ob(I) with F (i) = i′ are all the same and determine a well defined morphism
gi′ : Mi′ → T . By assumption (2) the collection (gi′)i′∈Ob(I′) defines an element of
the right hand side. □

Lemma 4.17.6.0A2B Let I and J be a categories and denote p : I × J → J the
projection. If I is connected, then for a diagram M : J → C the colimit colimJ M
exists if and only if colimI×J M ◦ p exists and if so these colimits are equal.

Proof. This is a special case of Lemma 4.17.5. □
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4.18. Finite limits and colimits

04AS A finite (co)limit is a (co)limit whose index category is finite, i.e., the index cate-
gory has finitely many objects and finitely many morphisms. A (co)limit is called
nonempty if the index category is nonempty. A (co)limit is called connected if
the index category is connected, see Definition 4.16.1. It turns out that there are
“enough” finite index categories.

Lemma 4.18.1.05XU Let I be a category with
(1) Ob(I) is finite, and
(2) there exist finitely many morphisms f1, . . . , fm ∈ Arrows(I) such that

every morphism of I is a composition fj1 ◦ fj2 ◦ . . . ◦ fjk .
Then there exists a functor F : J → I such that

(a) J is a finite category, and
(b) for any diagram M : I → C the (co)limit of M over I exists if and only

if the (co)limit of M ◦ F over J exists and in this case the (co)limits are
canonically isomorphic.

Moreover, J is connected (resp. nonempty) if and only if I is so.

Proof. Say Ob(I) = {x1, . . . , xn}. Denote s, t : {1, . . . ,m} → {1, . . . , n} the func-
tions such that fj : xs(j) → xt(j). We set Ob(J ) = {y1, . . . , yn, z1, . . . , zn} Besides
the identity morphisms we introduce morphisms gj : ys(j) → zt(j), j = 1, . . . ,m
and morphisms hi : yi → zi, i = 1, . . . , n. Since all of the nonidentity morphisms
in J go from a y to a z there are no compositions to define and no associativities
to check. Set F (yi) = F (zi) = xi. Set F (gj) = fj and F (hi) = idxi . It is clear
that F is a functor. It is clear that J is finite. It is clear that J is connected, resp.
nonempty if and only if I is so.
Let M : I → C be a diagram. Consider an object W of C and morphisms qi :
W → M(xi) as in Definition 4.14.1. Then by taking qi : W → M(F (yi)) =
M(F (zi)) = M(xi) we obtain a family of maps as in Definition 4.14.1 for the
diagram M ◦ F . Conversely, suppose we are given maps qyi : W → M(F (yi)) and
qzi : W →M(F (zi)) as in Definition 4.14.1 for the diagram M ◦ F . Since

M(F (hi)) = id : M(F (yi)) = M(xi) −→M(xi) = M(F (zi))
we conclude that qyi = qzi for all i. Set qi equal to this common value. The
compatibility of qs(j) = qys(j) and qt(j) = qzt(j) with the morphism M(fj) guar-
antees that the family qi is compatible with all morphisms in I as by assumption
every such morphism is a composition of the morphisms fj . Thus we have found a
canonical bijection

limB∈Ob(J ) MorC(W,M(F (B))) = limA∈Ob(I) MorC(W,M(A))
which implies the statement on limits in the lemma. The statement on colimits is
proved in the same way (proof omitted). □

Lemma 4.18.2.04AT Let C be a category. The following are equivalent:
(1) Connected finite limits exist in C.
(2) Equalizers and fibre products exist in C.

Proof. Since equalizers and fibre products are finite connected limits we see that
(1) implies (2). For the converse, let I be a finite connected index category. Let
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F : J → I be the functor of index categories constructed in the proof of Lemma
4.18.1. Then we see that we may replace I by J . The result is that we may assume
that Ob(I) = {x1, . . . , xn} ⨿ {y1, . . . , ym} with n,m ≥ 1 such that all nonidentity
morphisms in I are morphisms f : xi → yj for some i and j.
Suppose that n > 1. Since I is connected there exist indices i1, i2 and j0 and
morphisms a : xi1 → yj0 and b : xi2 → yj0 . Consider the category

I ′ = {x} ⨿ {x1, . . . , x̂i1 , . . . , x̂i2 , . . . xn} ⨿ {y1, . . . , ym}
with

MorI′(x, yj) = MorI(xi1 , yj)⨿MorI(xi2 , yj)
and all other morphism sets the same as in I. For any functor M : I → C we can
construct a functor M ′ : I ′ → C by setting

M ′(x) = M(xi1)×M(a),M(yj0 ),M(b) M(xi2)
and for a morphism f ′ : x → yj corresponding to, say, f : xi1 → yj we set
M ′(f) = M(f) ◦ pr1. Then the functor M has a limit if and only if the functor M ′

has a limit (proof omitted). Hence by induction we reduce to the case n = 1.
If n = 1, then the limit of any M : I → C is the successive equalizer of pairs of
maps x1 → yj hence exists by assumption. □

Lemma 4.18.3.04AU Let C be a category. The following are equivalent:
(1) Nonempty finite limits exist in C.
(2) Products of pairs and equalizers exist in C.
(3) Products of pairs and fibre products exist in C.

Proof. Since products of pairs, fibre products, and equalizers are limits with nonempty
index categories we see that (1) implies both (2) and (3). Assume (2). Then finite
nonempty products and equalizers exist. Hence by Lemma 4.14.11 we see that finite
nonempty limits exist, i.e., (1) holds. Assume (3). If a, b : A → B are morphisms
of C, then the equalizer of a, b is

(A×a,B,b A)×(pr1,pr2),A×A,∆ A.

Thus (3) implies (2), and the lemma is proved. □

Lemma 4.18.4.002O Let C be a category. The following are equivalent:
(1) Finite limits exist in C.
(2) Finite products and equalizers exist.
(3) The category has a final object and fibre products exist.

Proof. Since finite products, fibre products, equalizers, and final objects are limits
over finite index categories we see that (1) implies both (2) and (3). By Lemma
4.14.11 above we see that (2) implies (1). Assume (3). Note that the product A×B
is the fibre product over the final object. If a, b : A→ B are morphisms of C, then
the equalizer of a, b is

(A×a,B,b A)×(pr1,pr2),A×A,∆ A.

Thus (3) implies (2) and the lemma is proved. □

Lemma 4.18.5.04AV Let C be a category. The following are equivalent:
(1) Connected finite colimits exist in C.
(2) Coequalizers and pushouts exist in C.
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Proof. Omitted. Hint: This is dual to Lemma 4.18.2. □

Lemma 4.18.6.04AW Let C be a category. The following are equivalent:
(1) Nonempty finite colimits exist in C.
(2) Coproducts of pairs and coequalizers exist in C.
(3) Coproducts of pairs and pushouts exist in C.

Proof. Omitted. Hint: This is the dual of Lemma 4.18.3. □

Lemma 4.18.7.002Q Let C be a category. The following are equivalent:
(1) Finite colimits exist in C.
(2) Finite coproducts and coequalizers exist in C.
(3) The category has an initial object and pushouts exist.

Proof. Omitted. Hint: This is dual to Lemma 4.18.4. □

4.19. Filtered colimits

04AX Colimits are easier to compute or describe when they are over a filtered diagram.
Here is the definition.

Definition 4.19.1.002V We say that a diagram M : I → C is directed, or filtered if the
following conditions hold:

(1) the category I has at least one object,
(2) for every pair of objects x, y of I there exist an object z and morphisms

x→ z, y → z, and
(3) for every pair of objects x, y of I and every pair of morphisms a, b : x→ y

of I there exists a morphism c : y → z of I such that M(c ◦ a) = M(c ◦ b)
as morphisms in C.

We say that an index category I is directed, or filtered if id : I → I is filtered (in
other words you erase the M in part (3) above).

We observe that any diagram with filtered index category is filtered, and this is how
filtered colimits usually come about. In fact, if M : I → C is a filtered diagram,
then we can factor M as I → I ′ → C where I ′ is a filtered index category1 such
that colimI M exists if and only if colimI′ M ′ exists in which case the colimits are
canonically isomorphic.

Suppose that M : I → Sets is a filtered diagram. In this case we may describe the
equivalence relation in the formula

colimI M = (
∐

i∈I
Mi)/ ∼

simply as follows

mi ∼ mi′ ⇔ ∃i′′, ϕ : i→ i′′, ϕ′ : i′ → i′′,M(ϕ)(mi) = M(ϕ′)(mi′).

In other words, two elements are equal in the colimit if and only if they “eventually
become equal”.

1Namely, let I′ have the same objects as I but where MorI′ (x, y) is the quotient of MorI(x, y)
by the equivalence relation which identifies a, b : x→ y if M(a) = M(b).
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Lemma 4.19.2.002W Let I and J be index categories. Assume that I is filtered and J
is finite. Let M : I × J → Sets, (i, j) 7→Mi,j be a diagram of diagrams of sets. In
this case

colimi limjMi,j = limj colimiMi,j .

In particular, colimits over I commute with finite products, fibre products, and
equalizers of sets.

Proof. Omitted. In fact, it is a fun exercise to prove that a category is filtered if
and only if colimits over the category commute with finite limits (into the category
of sets). □

We give a counter example to the lemma in the case where J is infinite. Namely,
let I consist of N = {1, 2, 3, . . .} with a unique morphism i → i′ whenever i ≤ i′.
Let J be the discrete category N = {1, 2, 3, . . .} (only morphisms are identities).
Let Mi,j = {1, 2, . . . , i} with obvious inclusion maps Mi,j → Mi′,j when i ≤ i′. In
this case colimiMi,j = N and hence

limj colimiMi,j =
∏

j
N = NN

On the other hand limjMi,j =
∏
jMi,j and hence

colimi limjMi,j =
⋃

i
{1, 2, . . . , i}N

which is smaller than the other limit.

Lemma 4.19.3.0BUC Let I be a category. Let J be a full subcategory. Assume that I
is filtered. Assume also that for any object i of I, there exists a morphism i → j
to some object j of J . Then J is filtered and cofinal in I.

Proof. Omitted. Pleasant exercise of the notions involved. □

It turns out we sometimes need a more finegrained control over the possible con-
ditions one can impose on index categories. Thus we add some lemmas on the
possible things one can require.

Lemma 4.19.4.09WQ Let I be an index category, i.e., a category. Assume that for every
pair of objects x, y of I there exist an object z and morphisms x → z and y → z.
Then

(1) If M and N are diagrams of sets over I, then colim(Mi×Ni)→ colimMi×
colimNi is surjective,

(2) in general colimits of diagrams of sets over I do not commute with finite
nonempty products.

Proof. Proof of (1). Let (m,n) be an element of colimMi × colimNi. Then we
can find m ∈ Mx and n ∈ Ny for some x, y ∈ Ob(I) such that m maps to m and
n maps to n. See Section 4.15. Choose a : x → z and b : y → z in I. Then
(M(a)(m), N(b)(n)) is an element of (M × N)z whose image in colim(Mi × Ni)
maps to (m,n) as desired.
Proof of (2). Let G be a non-trivial group and let I be the one-object category
with endomorphism monoid G. Then I trivially satisfies the condition stated in the
lemma. Now let G act on itself by translation and view the G-set G as a set-valued
I-diagram. Then

colimI G× colimI G ∼= G/G×G/G
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is not isomorphic to
colimI(G×G) ∼= (G×G)/G

This example indicates that you cannot just drop the additional condition Lemma
4.19.2 even if you only care about finite products. □

Lemma 4.19.5.09WR Let I be an index category, i.e., a category. Assume that for every
pair of objects x, y of I there exist an object z and morphisms x → z and y → z.
Let M : I → Ab be a diagram of abelian groups over I. Then the colimit of M
in the category of sets surjects onto the colimit of M in the category of abelian
groups.

Proof. Recall that the colimit in the category of sets is the quotient of the disjoint
union

∐
Mi by relation, see Section 4.15. Similarly, the colimit in the category

of abelian groups is a quotient of the direct sum
⊕
Mi. The assumption of the

lemma means that given i, j ∈ Ob(I) and m ∈ Mi and n ∈ Mj , then we can find
an object k and morphisms a : i → k and b : j → k. Thus m + n is represented
in the colimit by the element M(a)(m) +M(b)(n) of Mk. Thus the

∐
Mi surjects

onto the colimit. □

Lemma 4.19.6.09WS Let I be an index category, i.e., a category. Assume that for every
solid diagram

x

��

// y

��
z // w

in I there exist an object w and dotted arrows making the diagram commute. Then
I is either empty or a nonempty disjoint union of connected categories having the
same property.

Proof. If I is the empty category, then the lemma is true. Otherwise, we define a
relation on objects of I by saying that x ∼ y if there exist a z and morphisms x→ z
and y → z. This is an equivalence relation by the assumption of the lemma. Hence
Ob(I) is a disjoint union of equivalence classes. Let Ij be the full subcategories
corresponding to these equivalence classes. Then I =

∐
Ij with Ij nonempty as

desired. □

Lemma 4.19.7.09WT Let I be an index category, i.e., a category. Assume that for every
solid diagram

x

��

// y

��
z // w

in I there exist an object w and dotted arrows making the diagram commute. Then
(1) an injective morphism M → N of diagrams of sets over I gives rise to an

injective map colimMi → colimNi of sets,
(2) in general the same is not the case for diagrams of abelian groups and

their colimits.

Proof. If I is the empty category, then the lemma is true. Thus we may assume I
is nonempty. In this case we can write I =

∐
Ij where each Ij is nonempty and
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satisfies the same property, see Lemma 4.19.6. Since colimI M =
∐
j colimIj M |Ij

this reduces the proof of (1) to the connected case.

Assume I is connected and M → N is injective, i.e., all the maps Mi → Ni are
injective. We identify Mi with the image of Mi → Ni, i.e., we will think of Mi as
a subset of Ni. We will use the description of the colimits given in Section 4.15
without further mention. Let s, s′ ∈ colimMi map to the same element of colimNi.
Say s comes from an element m of Mi and s′ comes from an element m′ of Mi′ .
Then we can find a sequence i = i0, i1, . . . , in = i′ of objects of I and morphisms

i1

|| ��

i3

��

i2n−1

$$
i = i0 i2 . . . i2n = i′

and elements nij ∈ Nij mapping to each other under the maps Ni2k−1 → Ni2k−2

and Ni2k−1 → Ni2k induced from the maps in I above with ni0 = m and ni2n = m′.
We will prove by induction on n that this implies s = s′. The base case n = 0 is
trivial. Assume n ≥ 1. Using the assumption on I we find a commutative diagram

i1

�� ��
i0

  

i2

~~
w

We conclude that m and ni2 map to the same element of Nw because both are the
image of the element ni1 . In particular, this element is an element m′′ ∈Mw which
gives rise to the same element as s in colimMi. Then we find the chain

i3

�� ��

i5

��

i2n−1

$$
w i4 . . . i2n = i′

and the elements nij for j ≥ 3 which has a smaller length than the chain we started
with. This proves the induction step and the proof of (1) is complete.

Let G be a group and let I be the one-object category with endomorphism monoid
G. Then I satisfies the condition stated in the lemma because given g1, g2 ∈ G we
can find h1, h2 ∈ G with h1g1 = h2g2. An diagram M over I in Ab is the same
thing as an abelian group M with G-action and colimI M is the coinvariants MG

of M . Take G the group of order 2 acting trivially on M = Z/2Z mapping into
the first summand of N = Z/2Z×Z/2Z where the nontrivial element of G acts by
(x, y) 7→ (x+ y, y). Then MG → NG is zero. □

Lemma 4.19.8.002X Let I be an index category, i.e., a category. Assume
(1) for every pair of morphisms a : w → x and b : w → y in I there exist an

object z and morphisms c : x → z and d : y → z such that c ◦ a = d ◦ b,
and

https://stacks.math.columbia.edu/tag/002X
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(2) for every pair of morphisms a, b : x→ y there exists a morphism c : y → z
such that c ◦ a = c ◦ b.

Then I is a (possibly empty) union of disjoint filtered index categories Ij .

Proof. If I is the empty category, then the lemma is true. Otherwise, we define
a relation on objects of I by saying that x ∼ y if there exist a z and morphisms
x → z and y → z. This is an equivalence relation by the first assumption of the
lemma. Hence Ob(I) is a disjoint union of equivalence classes. Let Ij be the full
subcategories corresponding to these equivalence classes. The rest is clear from the
definitions. □

Lemma 4.19.9.002Y Let I be an index category satisfying the hypotheses of Lemma
4.19.8 above. Then colimits over I commute with fibre products and equalizers in
sets (and more generally with finite connected limits).

Proof. By Lemma 4.19.8 we may write I =
∐
Ij with each Ij filtered. By Lemma

4.19.2 we see that colimits of Ij commute with equalizers and fibre products. Thus
it suffices to show that equalizers and fibre products commute with coproducts in
the category of sets (including empty coproducts). In other words, given a set J
and sets Aj , Bj , Cj and set maps Aj → Bj , Cj → Bj for j ∈ J we have to show
that

(
∐

j∈J
Aj)×(

∐
j∈J

Bj) (
∐

j∈J
Cj) =

∐
j∈J

Aj ×Bj Cj

and given aj , a
′
j : Aj → Bj that

Equalizer(
∐

j∈J
aj ,
∐

j∈J
a′
j) =

∐
j∈J

Equalizer(aj , a′
j)

This is true even if J = ∅. Details omitted. □

4.20. Cofiltered limits

04AY Limits are easier to compute or describe when they are over a cofiltered diagram.
Here is the definition.

Definition 4.20.1.04AZ We say that a diagram M : I → C is codirected or cofiltered if
the following conditions hold:

(1) the category I has at least one object,
(2) for every pair of objects x, y of I there exist an object z and morphisms

z → x, z → y, and
(3) for every pair of objects x, y of I and every pair of morphisms a, b : x→ y

of I there exists a morphism c : w → x of I such that M(a◦ c) = M(b◦ c)
as morphisms in C.

We say that an index category I is codirected, or cofiltered if id : I → I is cofiltered
(in other words you erase the M in part (3) above).

We observe that any diagram with cofiltered index category is cofiltered, and this
is how this situation usually occurs.
As an example of why cofiltered limits of sets are “easier” than general ones, we men-
tion the fact that a cofiltered diagram of finite nonempty sets has nonempty limit
(Lemma 4.21.7). This result does not hold for a general limit of finite nonempty
sets.
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4.21. Limits and colimits over preordered sets

002Z A special case of diagrams is given by systems over preordered sets.

Definition 4.21.1.00D3 Let I be a set and let ≤ be a binary relation on I.
(1) We say ≤ is a preorder if it is transitive (if i ≤ j and j ≤ k then i ≤ k)

and reflexive (i ≤ i for all i ∈ I).
(2) A preordered set is a set endowed with a preorder.
(3) A directed set is a preordered set (I,≤) such that I is not empty and such

that ∀i, j ∈ I, there exists k ∈ I with i ≤ k, j ≤ k.
(4) We say ≤ is a partial order if it is a preorder which is antisymmetric (if

i ≤ j and j ≤ i, then i = j).
(5) A partially ordered set is a set endowed with a partial order.
(6) A directed partially ordered set is a directed set whose ordering is a partial

order.

It is customary to drop the ≤ from the notation when talking about preordered
sets, that is, one speaks of the preordered set I rather than of the preordered set
(I,≤). Given a preordered set I the symbol ≥ is defined by the rule i ≥ j ⇔ j ≤ i
for all i, j ∈ I. The phrase “partially ordered set” is sometimes abbreviated to
“poset”.
Given a preordered set I we can construct a category: the objects are the elements
of I, there is exactly one morphism i→ i′ if i ≤ i′, and otherwise none. Conversely,
given a category C with at most one arrow between any two objects, the set Ob(C)
is endowed with a preorder defined by the rule x ≤ y ⇔ MorC(x, y) ̸= ∅.

Definition 4.21.2.0030 Let (I,≤) be a preordered set. Let C be a category.
(1) A system over I in C, sometimes called a inductive system over I in C is

given by objects Mi of C and for every i ≤ i′ a morphism fii′ : Mi →Mi′

such that fii = id and such that fii′′ = fi′i′′ ◦ fii′ whenever i ≤ i′ ≤ i′′.
(2) An inverse system over I in C, sometimes called a projective system over

I in C is given by objects Mi of C and for every i′ ≤ i a morphism
fii′ : Mi → Mi′ such that fii = id and such that fii′′ = fi′i′′ ◦ fii′
whenever i′′ ≤ i′ ≤ i. (Note reversal of inequalities.)

We will say (Mi, fii′) is a (inverse) system over I to denote this. The maps fii′ are
sometimes called the transition maps.

In other words a system over I is just a diagram M : I → C where I is the category
we associated to I above: objects are elements of I and there is a unique arrow
i → i′ in I if and only if i ≤ i′. An inverse system is a diagram M : Iopp → C.
From this point of view we could take (co)limits of any (inverse) system over I.
However, it is customary to take only colimits of systems over I and only limits of
inverse systems over I. More precisely: Given a system (Mi, fii′) over I the colimit
of the system (Mi, fii′) is defined as

colimi∈IMi = colimI M,

i.e., as the colimit of the corresponding diagram. Given a inverse system (Mi, fii′)
over I the limit of the inverse system (Mi, fii′) is defined as

limi∈IMi = limIoppM,

i.e., as the limit of the corresponding diagram.
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Remark 4.21.3.0CN1 Let I be a preordered set. From I we can construct a canonical
partially ordered set I and an order preserving map π : I → I. Namely, we can
define an equivalence relation ∼ on I by the rule

i ∼ j ⇔ (i ≤ j and j ≤ i).
We set I = I/ ∼ and we let π : I → I be the quotient map. Finally, I comes with
a unique partial ordering such that π(i) ≤ π(j) ⇔ i ≤ j. Observe that if I is a
directed set, then I is a directed partially ordered set. Given an (inverse) system
N over I we obtain an (inverse) system M over I by setting Mi = Nπ(i). This
construction defines a functor between the category of inverse systems over I and
I. In fact, this is an equivalence. The reason is that if i ∼ j, then for any system
M over I the maps Mi → Mj and Mj → Mi are mutually inverse isomorphisms.
More precisely, choosing a section s : I → I of π a quasi-inverse of the functor
above sends M to N with Ni = Ms(i). Finally, this correspondence is compatible
with colimits of systems: if M and N are related as above and if either colimI N or
colimIM exists then so does the other and colimI N = colimIM . Similar results
hold for inverse systems and limits of inverse systems.

The upshot of Remark 4.21.3 is that while computing a colimit of a system or a
limit of an inverse system, we may always assume the preorder is a partial order.

Definition 4.21.4.0031 Let I be a preordered set. We say a system (resp. inverse system)
(Mi, fii′) is a directed system (resp. directed inverse system) if I is a directed set
(Definition 4.21.1): I is nonempty and for all i1, i2 ∈ I there exists i ∈ I such that
i1 ≤ i and i2 ≤ i.

In this case the colimit is sometimes (unfortunately) called the “direct limit”. We
will not use this last terminology. It turns out that diagrams over a filtered category
are no more general than directed systems in the following sense.

Lemma 4.21.5.0032 Let I be a filtered index category. There exist a directed set I and
a system (xi, φii′) over I in I with the following properties:

(1) For every category C and every diagram M : I → C with values in C, de-
note (M(xi),M(φii′)) the corresponding system over I. If colimi∈IM(xi)
exists then so does colimI M and the transformation

θ : colimi∈IM(xi) −→ colimI M

of Lemma 4.14.8 is an isomorphism.
(2) For every category C and every diagram M : Iopp → C in C, denote

(M(xi),M(φii′)) the corresponding inverse system over I. If limi∈IM(xi)
exists then so does limIoppM and the transformation

θ : limIoppM −→ limi∈IM(xi)
of Lemma 4.14.9 is an isomorphism.

Proof. As explained in the text following Definition 4.21.2, we may view preordered
sets as categories and systems as functors. Throughout the proof, we will freely
shift between these two points of view. We prove the first statement by constructing
a category I0, corresponding to a directed set2, and a cofinal functor M0 : I0 → I.
Then, by Lemma 4.17.2, the colimit of a diagram M : I → C coincides with the

2In fact, our construction will produce a directed partially ordered set.
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colimit of the diagram M ◦M0 : I0 → C, from which the statement follows. The
second statement is dual to the first and may be proved by interpreting a limit in
C as a colimit in Copp. We omit the details.

A category F is called finitely generated if there exists a finite set F of arrows
in F , such that each arrow in F may be obtained by composing arrows from F .
In particular, this implies that F has finitely many objects. We start the proof
by reducing to the case when I has the property that every finitely generated
subcategory of I may be extended to a finitely generated subcategory with a unique
final object.

Let ω denote the directed set of finite ordinals, which we view as a filtered category.
It is easy to verify that the product category I×ω is also filtered, and the projection
Π : I × ω → I is cofinal.

Now let F be any finitely generated subcategory of I ×ω. By using the axioms of a
filtered category and a simple induction argument on a finite set of generators of F ,
we may construct a cocone ({fi}, i∞) in I ×ω for the diagram F → I×ω. That is,
a morphism fi : i→ i∞ for every object i in F such that for each arrow f : i→ i′

in F we have fi = fi′ ◦f . We can also choose i∞ such that there are no arrows from
i∞ to an object in F . This is possible since we may always post-compose the arrows
fi with an arrow which is the identity on the I-component and strictly increasing
on the ω-component. Now let F+ denote the category consisting of all objects and
arrows in F together with the object i∞, the identity arrow idi∞ and the arrows
fi. Since there are no arrows from i∞ in F+ to any object of F , the arrow set in
F+ is closed under composition, so F+ is indeed a category. By construction, it is
a finitely generated subcategory of I which has i∞ as unique final object. Since,
by Lemma 4.17.2, the colimit of any diagram M : I → C coincides with the colimit
of M ◦Π , this gives the desired reduction.

The set of all finitely generated subcategories of I with a unique final object is
naturally ordered by inclusion. We take I0 to be the category corresponding to
this set. We also have a functor M0 : I0 → I, which takes an arrow F ⊂ F ′ in
I0 to the unique map from the final object of F to the final object of F ′. Given
any two finitely generated subcategories of I, the category generated by these two
categories is also finitely generated. By our assumption on I, it is also contained
in a finitely generated subcategory of I with a unique final object. This shows that
I0 is directed.

Finally, we verify that M0 is cofinal. Since any object of I is the final object in
the subcategory consisting of only that object and its identity arrow, the functor
M0 is surjective on objects. In particular, Condition (1) of Definition 4.17.1 is
satisfied. Given an object i of I, objects F1,F2 in I0 and maps φ1 : i → M0(F1)
and φ2 : i→M0(F2) in I, we can take F12 to be a finitely generated category with
a unique final object containing F1, F2 and the morphisms φ1, φ2. The resulting
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diagram commutes

M0(F12)

M0(F1)

99

M0(F2)

ee

i

ff 88

since it lives in the category F12 and M0(F12) is final in this category. Hence also
Condition (2) is satisfied, which concludes the proof. □

Remark 4.21.6.09P8 Note that a finite directed set (I,≥) always has a greatest object
i∞. Hence any colimit of a system (Mi, fii′) over such a set is trivial in the sense
that the colimit equals Mi∞ . In contrast, a colimit indexed by a finite filtered
category need not be trivial. For instance, let I be the category with a single
object i and a single non-trivial morphism e satisfying e = e ◦ e. The colimit of
a diagram M : I → Sets is the image of the idempotent M(e). This illustrates
that something like the trick of passing to I × ω in the proof of Lemma 4.21.5 is
essential.

Lemma 4.21.7.086J If S : I → Sets is a cofiltered diagram of sets and all the Si are
finite nonempty, then limi Si is nonempty. In other words, the limit of a directed
inverse system of finite nonempty sets is nonempty.

Proof. The two statements are equivalent by Lemma 4.21.5. Let I be a directed
set and let (Si)i∈I be an inverse system of finite nonempty sets over I. Let us say
that a subsystem T is a family T = (Ti)i∈I of nonempty subsets Ti ⊂ Si such that
Ti′ is mapped into Ti by the transition map Si′ → Si for all i′ ≥ i. Denote T the
set of subsystems. We order T by inclusion. Suppose Tα, α ∈ A is a totally ordered
family of elements of T . Say Tα = (Tα,i)i∈I . Then we can find a lower bound
T = (Ti)i∈I by setting Ti =

⋂
α∈A Tα,i which is manifestly a finite nonempty subset

of Si as all the Tα,i are nonempty and as the Tα form a totally ordered family. Thus
we may apply Zorn’s lemma to see that T has minimal elements.

Let’s analyze what a minimal element T ∈ T looks like. First observe that the
maps Ti′ → Ti are all surjective. Namely, as I is a directed set and Ti is finite, the
intersection T ′

i =
⋂
i′≥i Im(Ti′ → Ti) is nonempty. Thus T ′ = (T ′

i ) is a subsystem
contained in T and by minimality T ′ = T . Finally, we claim that Ti is a singleton
for each i. Namely, if x ∈ Ti, then we can define T ′

i′ = (Ti′ → Ti)−1({x}) for
i′ ≥ i and T ′

j = Tj if j ̸≥ i. This is another subsystem as we’ve seen above that
the transition maps of the subsystem T are surjective. By minimality we see that
T = T ′ which indeed implies that Ti is a singleton. This holds for every i ∈ I,
hence we see that Ti = {xi} for some xi ∈ Si with xi′ 7→ xi under the map Si′ → Si
for every i′ ≥ i. In other words, (xi) ∈ limSi and the lemma is proved. □

4.22. Essentially constant systems

05PT
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Let M : I → C be a diagram in a category C. Assume the index category I is
filtered. In this case there are three successively stronger notions which pick out
an object X of C. The first is just

X = colimi∈I Mi.

Then X comes equipped with the coprojections Mi → X. A stronger condition
would be to require that X is the colimit and that there exist an i ∈ I and a
morphism X → Mi such that the composition X → Mi → X is idX . An even
stronger condition is the following.

Definition 4.22.1.05PU Let M : I → C be a diagram in a category C.
(1) Assume the index category I is filtered and let (X, {Mi → X}i) be a

cocone for M , see Remark 4.14.5. We say M is essentially constant with
value X if there exist an i ∈ I and a morphism X →Mi such that
(a) X →Mi → X is idX , and
(b) for all j there exist k and morphisms i→ k and j → k such that the

morphism Mj →Mk equals the composition Mj → X →Mi →Mk.
(2) Assume the index category I is cofiltered and let (X, {X → Mi}i) be a

cone for M , see Remark 4.14.5. We say M is essentially constant with
value X if there exist an i ∈ I and a morphism Mi → X such that
(a) X →Mi → X is idX , and
(b) for all j there exist k and morphisms k → i and k → j such that the

morphism Mk →Mj equals the composition Mk →Mi → X →Mj .
Please keep in mind Lemma 4.22.3 when using this definition.

Which of the two versions is meant will be clear from context. If there is any
confusion we will distinguish between these by saying that the first version means
M is essentially constant as an ind-object, and in the second case we will say it
is essentially constant as a pro-object. This terminology is further explained in
Remarks 4.22.4 and 4.22.5. In fact we will often use the terminology “essentially
constant system” which formally speaking is only defined for systems over directed
sets.

Definition 4.22.2.05PV Let C be a category. A directed system (Mi, fii′) is an essentially
constant system if M viewed as a functor I → C defines an essentially constant
diagram. A directed inverse system (Mi, fii′) is an essentially constant inverse
system if M viewed as a functor Iopp → C defines an essentially constant inverse
diagram.

If (Mi, fii′) is an essentially constant system and the morphisms fii′ are monomor-
phisms, then for all i ≤ i′ sufficiently large the morphisms fii′ are isomorphisms.
On the other hand, consider the system

Z2 → Z2 → Z2 → . . .

with maps given by (a, b) 7→ (a + b, 0). This system is essentially constant with
value Z but every transition map has a kernel.
Here is an example of a system which is not essentially constant. Let M =

⊕
n≥0 Z

and to let S : M → M be the shift operator (a0, a1, . . .) 7→ (a1, a2, . . .). In this
case the system M →M →M → . . . with transition maps S has colimit 0 and the
composition 0→M → 0 is the identity, but the system is not essentially constant.
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The following lemma is a sanity check.

Lemma 4.22.3.0G2V Let M : I → C be a diagram. If I is filtered and M is essentially
constant as an ind-object, then X = colimMi exists and M is essentially constant
with value X. If I is cofiltered and M is essentially constant as a pro-object, then
X = limMi exists and M is essentially constant with value X.

Proof. Omitted. This is a good excercise in the definitions. □

Remark 4.22.4.05PW Let C be a category. There exists a big category Ind-C of ind-
objects of C. Namely, if F : I → C and G : J → C are filtered diagrams in C, then
we can define

MorInd-C(F,G) = limi colimj MorC(F (i), G(j)).
There is a canonical functor C → Ind-C which maps X to the constant system on
X. This is a fully faithful embedding. In this language one sees that a diagram F
is essentially constant if and only if F is isomorphic to a constant system. If we
ever need this material, then we will formulate this into a lemma and prove it here.

Remark 4.22.5.05PX Let C be a category. There exists a big category Pro-C of pro-
objects of C. Namely, if F : I → C and G : J → C are cofiltered diagrams in C,
then we can define

MorPro-C(F,G) = limj colimi MorC(F (i), G(j)).
There is a canonical functor C → Pro-C which maps X to the constant system on
X. This is a fully faithful embedding. In this language one sees that a diagram F
is essentially constant if and only if F is isomorphic to a constant system. If we
ever need this material, then we will formulate this into a lemma and prove it here.

Example 4.22.6.0G2W Let C be a category. Let (Xn) and (Yn) be inverse systems in C
over N with the usual ordering. Picture:

. . .→ X3 → X2 → X1 and . . .→ Y3 → Y2 → Y1

Let a : (Xn) → (Yn) be a morphism of pro-objects of C. What does a amount to?
Well, for each n ∈ N there should exist an m(n) and a morphism an : Xm(n) → Yn.
These morphisms ought to agree in the following sense: for all n′ ≥ n there exists
an m(n′, n) ≥ m(n′),m(n) such that the diagram

Xm(n,n′) //

��

Xm(n)

an

��
Xm(n′)

an′ // Yn′ // Yn

commutes. After replacing m(n) by maxk,l≤n{m(n, k),m(k, l)} we see that we
obtain . . . ≥ m(3) ≥ m(2) ≥ m(1) and a commutative diagram

. . . // Xm(3)

a3

��

// Xm(2)

a2

��

// Xm(1)

a1

��
. . . // Y3 // Y2 // Y1

Given an increasing map m′ : N → N with m′ ≥ m and setting a′
i : Xm′(i) →

Xm(i) → Yi the pair (m′, a′) defines the same morphism of pro-systems. Conversely,
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given two pairs (m1, a1) and (m1, a2) as above then these define the same morphism
of pro-objects if and only if we can find m′ ≥ m1,m2 such that a′

1 = a′
2.

Remark 4.22.7.0G2X Let C be a category. Let F : I → C and G : J → C be cofiltered
diagrams in C. Consider the functors A,B : C → Sets defined by

A(X) = colimi MorC(F (i), X) and B(X) = colimj MorC(G(j), X)
We claim that a morphism of pro-systems from F to G is the same thing as a
transformation of functors t : B → A. Namely, given t we can apply t to the
class of idG(j) in B(G(j)) to get a compatible system of elements ξj ∈ A(G(j)) =
colimi MorC(F (i), G(j)) which is exactly our definition of a morphism in Pro-C in
Remark 4.22.5. We omit the construction of a transformation B → A given a
morphism of pro-objects from F to G.

Lemma 4.22.8.05SH Let C be a category. Let M : I → C be a diagram with filtered
(resp. cofiltered) index category I. Let F : C → D be a functor. If M is essentially
constant as an ind-object (resp. pro-object), then so is F ◦M : I → D.

Proof. If X is a value for M , then it follows immediately from the definition that
F (X) is a value for F ◦M . □

Lemma 4.22.9.05PY Let C be a category. Let M : I → C be a diagram with filtered
index category I. The following are equivalent

(1) M is an essentially constant ind-object, and
(2) X = colimiMi exists and for any W in C the map

colimi MorC(W,Mi) −→ MorC(W,X)
is bijective.

Proof. Assume (2) holds. Then idX ∈ MorC(X,X) comes from a morphism X →
Mi for some i, i.e., X →Mi → X is the identity. Then both maps

MorC(W,X) −→ colimi MorC(W,Mi) −→ MorC(W,X)
are bijective for all W where the first one is induced by the morphism X →Mi we
found above, and the composition is the identity. This means that the composition

colimi MorC(W,Mi) −→ MorC(W,X) −→ colimi MorC(W,Mi)
is the identity too. Setting W = Mj and starting with idMj

in the colimit, we see
that Mj → X → Mi → Mk is equal to Mj → Mk for some k large enough. This
proves (1) holds. The proof of (1) ⇒ (2) is omitted. □

Lemma 4.22.10.05PZ Let C be a category. Let M : I → C be a diagram with cofiltered
index category I. The following are equivalent

(1) M is an essentially constant pro-object, and
(2) X = limiMi exists and for any W in C the map

colimi∈Iopp MorC(Mi,W ) −→ MorC(X,W )
is bijective.

Proof. Assume (2) holds. Then idX ∈ MorC(X,X) comes from a morphism Mi →
X for some i, i.e., X →Mi → X is the identity. Then both maps

MorC(X,W ) −→ colimi MorC(Mi,W ) −→ MorC(X,W )
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are bijective for all W where the first one is induced by the morphism Mi → X we
found above, and the composition is the identity. This means that the composition

colimi MorC(Mi,W ) −→ MorC(X,W ) −→ colimi MorC(Mi,W )
is the identity too. Setting W = Mj and starting with idMj

in the colimit, we see
that Mk → Mi → X → Mj is equal to Mk → Mj for some k large enough. This
proves (1) holds. The proof of (1) ⇒ (2) is omitted. □

Lemma 4.22.11.0A1S Let C be a category. Let H : I → J be a functor of filtered index
categories. If H is cofinal, then any diagram M : J → C is essentially constant if
and only if M ◦H is essentially constant.

Proof. This follows formally from Lemmas 4.22.9 and 4.17.2. □

Lemma 4.22.12.0A2C Let I and J be filtered categories and denote p : I ×J → J the
projection. Then I ×J is filtered and a diagram M : J → C is essentially constant
if and only if M ◦ p : I × J → C is essentially constant.

Proof. We omit the verification that I×J is filtered. The equivalence follows from
Lemma 4.22.11 because p is cofinal (verification omitted). □

Lemma 4.22.13.0A1T Let C be a category. Let H : I → J be a functor of cofiltered
index categories. If H is initial, then any diagram M : J → C is essentially constant
if and only if M ◦H is essentially constant.

Proof. This follows formally from Lemmas 4.22.10, 4.17.4, 4.17.2, and the fact that
if I is initial in J , then Iopp is cofinal in J opp. □

4.23. Exact functors

0033 In this section we define exact functors.

Definition 4.23.1.0034 Let F : A → B be a functor.
(1) Suppose all finite limits exist in A. We say F is left exact if it commutes

with all finite limits.
(2) Suppose all finite colimits exist in A. We say F is right exact if it com-

mutes with all finite colimits.
(3) We say F is exact if it is both left and right exact.

Lemma 4.23.2.0035 Let F : A → B be a functor. Suppose all finite limits exist in A,
see Lemma 4.18.4. The following are equivalent:

(1) F is left exact,
(2) F commutes with finite products and equalizers, and
(3) F transforms a final object of A into a final object of B, and commutes

with fibre products.

Proof. Lemma 4.14.11 shows that (2) implies (1). Suppose (3) holds. The fibre
product over the final object is the product. If a, b : A → B are morphisms of A,
then the equalizer of a, b is

(A×a,B,b A)×(pr1,pr2),A×A,∆ A.

Thus (3) implies (2). Finally (1) implies (3) because the empty limit is a final
object, and fibre products are limits. □
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Lemma 4.23.3.0GMN Let F : A → B be a functor. Suppose all finite colimits exist in A,
see Lemma 4.18.7. The following are equivalent:

(1) F is right exact,
(2) F commutes with finite coproducts and coequalizers, and
(3) F transforms an initial object of A into an initial object of B, and com-

mutes with pushouts.

Proof. Dual to Lemma 4.23.2. □

4.24. Adjoint functors

0036
Definition 4.24.1.0037 Let C, D be categories. Let u : C → D and v : D → C be
functors. We say that u is a left adjoint of v, or that v is a right adjoint to u if
there are bijections

MorD(u(X), Y ) −→ MorC(X, v(Y ))
functorial in X ∈ Ob(C), and Y ∈ Ob(D).

In other words, this means that there is a given isomorphism of functors Copp×D →
Sets from MorD(u(−),−) to MorC(−, v(−)). For any object X of C we obtain a
morphism X → v(u(X)) corresponding to idu(X). Similarly, for any object Y of
D we obtain a morphism u(v(Y )) → Y corresponding to idv(Y ). These maps are
called the adjunction maps. The adjunction maps are functorial in X and Y , hence
we obtain morphisms of functors

η : idC → v ◦ u (unit) and ϵ : u ◦ v → idD (counit).
Moreover, if α : u(X) → Y and β : X → v(Y ) are morphisms, then the following
are equivalent

(1) α and β correspond to each other via the bijection of the definition,
(2) β is the composition X → v(u(X)) v(α)−−−→ v(Y ), and
(3) α is the composition u(X) u(β)−−−→ u(v(Y ))→ Y .

In this way one can reformulate the notion of adjoint functors in terms of adjunction
maps.

Lemma 4.24.2.0A8B Let u : C → D be a functor between categories. If for each
y ∈ Ob(D) the functor x 7→ MorD(u(x), y) is representable, then u has a right
adjoint.

Proof. For each y choose an object v(y) and an isomorphism MorC(−, v(y)) →
MorD(u(−), y) of functors. By Yoneda’s lemma (Lemma 4.3.5) for any morphism
g : y → y′ the transformation of functors

MorC(−, v(y))→ MorD(u(−), y)→ MorD(u(−), y′)→ MorC(−, v(y′))
corresponds to a unique morphism v(g) : v(y) → v(y′). We omit the verification
that v is a functor and that it is right adjoint to u. □

Lemma 4.24.3.0FWV Bhargav Bhatt,
private
communication.

Let u be a left adjoint to v as in Definition 4.24.1.
(1) If v ◦ u is fully faithful, then u is fully faithful.
(2) If u ◦ v is fully faithful, then v is fully faithful.
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Proof. Proof of (2). Assume u ◦ v is fully faithful. Say we have X, Y in D. Then
the natural composite map

Mor(X,Y )→ Mor(v(X), v(Y ))→ Mor(u(v(X)), u(v(Y )))
is a bijection, so v is at least faithful. To show full faithfulness, we must show that
the second map above is injective. But the adjunction between u and v says that

Mor(v(X), v(Y ))→ Mor(u(v(X)), u(v(Y )))→ Mor(u(v(X)), Y )
is a bijection, where the first map is natural one and the second map comes from
the counit u(v(Y )) → Y of the adjunction. So this says that Mor(v(X), v(Y )) →
Mor(u(v(X)), u(v(Y ))) is also injective, as wanted. The proof of (1) is dual to
this. □

Lemma 4.24.4.07RB Let u be a left adjoint to v as in Definition 4.24.1. Then
(1) u is fully faithful ⇔ id ∼= v ◦ u ⇔ η : id→ v ◦ u is an isomorphism,
(2) v is fully faithful ⇔ u ◦ v ∼= id ⇔ ϵ : u ◦ v → id is an isomorphism.

Proof. Proof of (1). Assume u is fully faithful. We will show ηX : X → v(u(X)) is
an isomorphism. Let X ′ → v(u(X)) be any morphism. By adjointness this corre-
sponds to a morphism u(X ′) → u(X). By fully faithfulness of u this corresponds
to a unique morphism X ′ → X. Thus we see that post-composing by ηX defines a
bijection Mor(X ′, X) → Mor(X ′, v(u(X))). Hence ηX is an isomorphism. If there
exists an isomorphism id ∼= v ◦ u of functors, then v ◦ u is fully faithful. By Lemma
4.24.3 we see that u is fully faithful. By the above this implies η is an isomorphism.
Thus all 3 conditions are equivalent (and these conditions are also equivalent to
v ◦ u being fully faithful).
Part (2) is dual to part (1). □

Lemma 4.24.5.0038 Let u be a left adjoint to v as in Definition 4.24.1.
(1) Suppose that M : I → C is a diagram, and suppose that colimI M exists

in C. Then u(colimI M) = colimI u ◦M . In other words, u commutes
with (representable) colimits.

(2) Suppose that M : I → D is a diagram, and suppose that limI M exists
in D. Then v(limI M) = limI v ◦M . In other words v commutes with
representable limits.

Proof. A morphism from a colimit into an object is the same as a compatible system
of morphisms from the constituents of the limit into the object, see Remark 4.14.4.
So

MorD(u(colimi∈I Mi), Y ) = MorC(colimi∈I Mi, v(Y ))
= limi∈Iopp MorC(Mi, v(Y ))
= limi∈Iopp MorD(u(Mi), Y )

proves that u(colimi∈I Mi) is the colimit we are looking for. A similar argument
works for the other statement. □

Lemma 4.24.6.0039 Let u be a left adjoint of v as in Definition 4.24.1.
(1) If C has finite colimits, then u is right exact.
(2) If D has finite limits, then v is left exact.

Proof. Obvious from the definitions and Lemma 4.24.5. □
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Lemma 4.24.7.0GLL Let u : C → D be a left adjoint to the functor v : D → C. Let
ηX : X → v(u(X)) be the unit and ϵY : u(v(Y ))→ Y be the counit. Then

u(X) u(ηX)−−−−→ u(v(u(X))
ϵu(X)−−−→ u(X) and v(Y )

ηv(Y )−−−→ v(u(v(Y ))) v(ϵY )−−−→ v(Y )
are the identity morphisms.
Proof. Omitted. □

Lemma 4.24.8.0B65 Let u1, u2 : C → D be functors with right adjoints v1, v2 : D → C.
Let β : u2 → u1 be a transformation of functors. Let β∨ : v1 → v2 be the
corresponding transformation of adjoint functors. Then

u2 ◦ v1
β
//

β∨

��

u1 ◦ v1

��
u2 ◦ v2 // id

is commutative where the unlabeled arrows are the counit transformations.
Proof. This is true because β∨

D : v1D → v2D is the unique morphism such that the
induced maps Mor(C, v1D)→ Mor(C, v2D) is the map Mor(u1C,D)→ Mor(u2C,D)
induced by βC : u2C → u1C. Namely, this means the map

Mor(u1v1D,D
′)→ Mor(u2v1D,D

′)
induced by βv1D is the same as the map

Mor(v1D, v1D
′)→ Mor(v1D, v2D

′)
induced by β∨

D′ . Taking D′ = D we find that the counit u1v1D → D precomposed
by βv1D corresponds to β∨

D under adjunction. This exactly means that the diagram
commutes when evaluated on D. □

Lemma 4.24.9.0DV0 Let A, B, and C be categories. Let v : A → B and v′ : B → C be
functors with left adjoints u and u′ respectively. Then

(1) The functor v′′ = v′ ◦ v has a left adjoint equal to u′′ = u ◦ u′.
(2) Given X in A we have

(4.24.9.1)0DV1 ϵvX ◦ u(ϵv
′

v(X)) = ϵv
′′

X : u′′(v′′(X))→ X

Where ϵ is the counit of the adjunctions.
Proof. Let us unwind the formula in (2) because this will also immediately prove
(1). First, the counit of the adjunctions for the pairs (u, v) and (u′, v′) are maps
ϵvX : u(v(X)) → X and ϵv

′

Y : u′(v′(Y )) → Y , see discussion following Definition
4.24.1. With u′′ and v′′ as in (1) we unwind everything

u′′(v′′(X)) = u(u′(v′(v(X))))
u(ϵv

′
v(X))

−−−−−→ u(v(X)) ϵvX−−→ X

to get the map on the left hand side of (4.24.9.1). Let us denote this by ϵv′′

X for now.
To see that this is the counit of an adjoint pair (u′′, v′′) we have to show that given Z
in C the rule that sends a morphism β : Z → v′′(X) to α = ϵv

′′

X ◦u′′(β) : u′′(Z)→ X
is a bijection on sets of morphisms. This is true because, this is the composition
of the rule sending β to ϵv′

v(X) ◦ u
′(β) which is a bijection by assumption on (u′, v′)

and then sending this to ϵvX ◦ u(ϵv′

v(X) ◦ u
′(β)) which is a bijection by assumption

on (u, v). □
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4.25. A criterion for representability

0AHM The following lemma is often useful to prove the existence of universal objects in
big categories, please see the discussion in Remark 4.25.2.

Lemma 4.25.1.0AHN Let C be a big3 category which has limits. Let F : C → Sets be a
functor. Assume that

(1) F commutes with limits,
(2) there exist a family {xi}i∈I of objects of C and for each i ∈ I an element

fi ∈ F (xi) such that for y ∈ Ob(C) and g ∈ F (y) there exist an i and a
morphism φ : xi → y with F (φ)(fi) = g.

Then F is representable, i.e., there exists an object x of C such that

F (y) = MorC(x, y)

functorially in y.

Proof. Let I be the category whose objects are the pairs (xi, fi) and whose mor-
phisms (xi, fi) → (xi′ , fi′) are maps φ : xi → xi′ in C such that F (φ)(fi) = fi′ .
Set

x = lim(xi,fi)∈I xi

(this will not be the x we are looking for, see below). The limit exists by assumption.
As F commutes with limits we have

F (x) = lim(xi,fi)∈I F (xi).

Hence there is a universal element f ∈ F (x) which maps to fi ∈ F (xi) under F
applied to the projection map x → xi. Using f we obtain a transformation of
functors

ξ : MorC(x,−) −→ F (−)
see Section 4.3. Let y be an arbitrary object of C and let g ∈ F (y). Choose xi → y
such that fi maps to g which is possible by assumption. Then F applied to the
maps

x −→ xi −→ y

(the first being the projection map of the limit defining x) sends f to g. Hence the
transformation ξ is surjective.

In order to find the object representing F we let e : x′ → x be the equalizer of all
self maps φ : x→ x with F (φ)(f) = f . Since F commutes with limits, it commutes
with equalizers, and we see there exists an f ′ ∈ F (x′) mapping to f in F (x). Since
ξ is surjective and since f ′ maps to f we see that also ξ′ : MorC(x′,−) → F (−) is
surjective. Finally, suppose that a, b : x′ → y are two maps such that F (a)(f ′) =
F (b)(f ′). We have to show a = b. Consider the equalizer e′ : x′′ → x′. Again we
find f ′′ ∈ F (x′′) mapping to f ′. Choose a map ψ : x→ x′′ such that F (ψ)(f) = f ′′.
Then we see that e ◦ e′ ◦ ψ : x→ x is a morphism with F (e ◦ e′ ◦ ψ)(f) = f . Hence
e◦e′ ◦ψ ◦e = e. Since e is a monomorphism, this implies that e′ is an epimorphism,
thus a = b as desired. □

3See Remark 4.2.2.
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Remark 4.25.2.0AHP The lemma above is often used to construct the free something on
something. For example the free abelian group on a set, the free group on a set,
etc. The idea, say in the case of the free group on a set E is to consider the functor

F : Groups→ Sets, G 7−→ Map(E,G)
This functor commutes with limits. As our family of objects we can take a fam-
ily E → Gi consisting of groups Gi of cardinality at most max(ℵ0, |E|) and set
maps E → Gi such that every isomorphism class of such a structure occurs at
least once. Namely, if E → G is a map from E to a group G, then the sub-
group G′ generated by the image has cardinality at most max(ℵ0, |E|). The lemma
tells us the functor is representable, hence there exists a group FE such that
MorGroups(FE , G) = Map(E,G). In particular, the identity morphism of FE cor-
responds to a map E → FE and one can show that FE is generated by the image
without imposing any relations.
Another typical application is that we can use the lemma to construct colimits once
it is known that limits exist. We illustrate it using the category of topological spaces
which has limits by Topology, Lemma 5.14.1. Namely, suppose that I → Top,
i 7→ Xi is a functor. Then we can consider

F : Top −→ Sets, Y 7−→ limI MorTop(Xi, Y )
This functor commutes with limits. Moreover, given any topological space Y and
an element (φi : Xi → Y ) of F (Y ), there is a subspace Y ′ ⊂ Y of cardinality at
most |

∐
Xi| such that the morphisms φi map into Y ′. Namely, we can take the

induced topology on the union of the images of the φi. Thus it is clear that the
hypotheses of the lemma are satisfied and we find a topological space X representing
the functor F , which precisely means that X is the colimit of the diagram i 7→ Xi.
Theorem 4.25.3 (Adjoint functor theorem).0AHQ Let G : C → D be a functor of big
categories. Assume C has limits, G commutes with them, and for every object y of
D there exists a set of pairs (xi, fi)i∈I with xi ∈ Ob(C), fi ∈ MorD(y,G(xi)) such
that for any pair (x, f) with x ∈ Ob(C), f ∈ MorD(y,G(x)) there are an i and a
morphism h : xi → x such that f = G(h) ◦ fi. Then G has a left adjoint F .
Proof. The assumptions imply that for every object y of D the functor x 7→
MorD(y,G(x)) satisfies the assumptions of Lemma 4.25.1. Thus it is representable
by an object, let’s call it F (y). An application of Yoneda’s lemma (Lemma 4.3.5)
turns the rule y 7→ F (y) into a functor which by construction is an adjoint to G.
We omit the details. □

4.26. Categorically compact objects

0FWW A little bit about “small” objects of a category.
Definition 4.26.1.0FWX Let C be a big4 category. An objectX of C is called a categorically
compact if we have

MorC(X, colimiMi) = colimi MorC(X,Mi)
for every filtered diagram M : I → C such that colimiMi exists.
Often this definition is made only under the assumption that C has all filtered
colimits.

4See Remark 4.2.2.
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Lemma 4.26.2.0FWY Let C and D be big categories having filtered colimits. Let C′ ⊂ C
be a small full subcategory consisting of categorically compact objects of C such
that every object of C is a filtered colimit of objects of C′. Then every functor
F ′ : C′ → D has a unique extension F : C → D commuting with filtered colimits.

Proof. For every object X of C we may write X as a filtered colimit X = colimXi

with Xi ∈ Ob(C′). Then we set

F (X) = colimF ′(Xi)

in D. We will show below that this construction does not depend on the choice of
the colimit presentation of X.

Suppose given a morphism α : X → Y of C and X = colimi∈I Xi and Y =
colimj∈J Yi are written as filtered colimit of objects in C′. For each i ∈ I since Xi is
a categorically compact object of C we can find a j ∈ J and a commutative diagram

Xi
//

��

X

α

��
Yj // Y

Then we obtain a morphism F ′(Xi)→ F ′(Yj)→ F (Y ) where the second morphism
is the coprojection into F (Y ) = colimF ′(Yj). The arrow βi : F ′(Xi)→ F (Y ) does
not depend on the choice of j. For i ≤ i′ the composition

F ′(Xi)→ F ′(Xi′)
βi′−−→ F (Y )

is equal to βi. Thus we obtain a well defined arrow

F (α) : F (X) = colimF (Xi)→ F (Y )

by the universal property of the colimit. If α′ : Y → Z is a second morphism of
C and Z = colimZk is also written as filtered colimit of objects in C′, then it is a
pleasant exercise to show that the induced morphisms F (α) : F (X) → F (Y ) and
F (α′) : F (Y )→ F (Z) compose to the morphism F (α′ ◦ α). Details omitted.

In particular, if we are given two presentations X = colimXi and X = colimX ′
i′ as

filtered colimits of systems in C′, then we get mutually inverse arrows colimF ′(Xi)→
colimF ′(X ′

i′) and colimF ′(X ′
i′)→ colimF ′(Xi). In other words, the value F (X) is

well defined independent of the choice of the presentation of X as a filtered colimit
of objects of C′. Together with the functoriality of F discussed in the previous
paragraph, we find that F is a functor. Also, it is clear that F (X) = F ′(X) if
X ∈ Ob(C′).

The uniqueness statement in the lemma is clear, provided we show that F commutes
with filtered colimits (because this statement doesn’t make sense otherwise). To
show this, suppose that X = colimλ∈Λ Xλ is a filtered colimit of C. Since F is a
functor we certainly get a map

colimλ F (Xλ) −→ F (X)
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On the other hand, write X = colimXi as a filtered colimit of objects of C′. As
above, for each i ∈ I we can choose a λ ∈ Λ and a commutative diagram

Xi
//

  

Xλ

~~
X

As above this determines a well defined morphism F ′(Xi) → colimλ F (Xλ) com-
patible with transition morphisms and hence a morphism

F (X) = colimi F
′(Xi) −→ colimλ F (Xλ)

This morphism is inverse to the morphism above (details omitted) and proves that
F (X) = colimλ F (Xλ) as desired. □

4.27. Localization in categories

04VB The basic idea of this section is given a category C and a set of arrows S to construct
a functor F : C → S−1C such that all elements of S become invertible in S−1C and
such that F is universal among all functors with this property. References for this
section are [GZ67, Chapter I, Section 2] and [Ver96, Chapter II, Section 2].

Definition 4.27.1.04VC Let C be a category. A set of arrows S of C is called a left
multiplicative system if it has the following properties:

LMS1 The identity of every object of C is in S and the composition of two
composable elements of S is in S.

LMS2 Every solid diagram
X

t

��

g
// Y

s

��
Z

f // W
with t ∈ S can be completed to a commutative dotted square with s ∈ S.

LMS3 For every pair of morphisms f, g : X → Y and t ∈ S with target X such
that f ◦ t = g◦ t there exists an s ∈ S with source Y such that s◦f = s◦g.

A set of arrows S of C is called a right multiplicative system if it has the following
properties:

RMS1 The identity of every object of C is in S and the composition of two
composable elements of S is in S.

RMS2 Every solid diagram
X

t

��

g
// Y

s

��
Z

f // W
with s ∈ S can be completed to a commutative dotted square with t ∈ S.

RMS3 For every pair of morphisms f, g : X → Y and s ∈ S with source Y such
that s ◦ f = s ◦ g there exists a t ∈ S with target X such that f ◦ t = g ◦ t.

A set of arrows S of C is called a multiplicative system if it is both a left multi-
plicative system and a right multiplicative system. In other words, this means that
MS1, MS2, MS3 hold, where MS1 = LMS1 + RMS1, MS2 = LMS2 + RMS2, and
MS3 = LMS3 + RMS3. (That said, of course LMS1 = RMS1 = MS1.)

https://stacks.math.columbia.edu/tag/04VC
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These conditions are useful to construct the categories S−1C as follows.
Left calculus of fractions. Let C be a category and let S be a left multiplicative
system. We define a new category S−1C as follows (we verify this works in the
proof of Lemma 4.27.2):

(1) We set Ob(S−1C) = Ob(C).
(2) Morphisms X → Y of S−1C are given by pairs (f : X → Y ′, s : Y → Y ′)

with s ∈ S up to equivalence. (The equivalence is defined below. Think
of the equivalence class of a pair (f, s) as s−1f : X → Y .)

(3) Two pairs (f1 : X → Y1, s1 : Y → Y1) and (f2 : X → Y2, s2 : Y → Y2) are
said to be equivalent if there exist a third pair (f3 : X → Y3, s3 : Y →
Y3) and morphisms u : Y1 → Y3 and v : Y2 → Y3 of C fitting into the
commutative diagram

Y1

u

��
X

f1

>>

f3 //

f2   

Y3 Y

s1

__

s3oo

s2��
Y2

v

OO

(4) The composition of the equivalence classes of the pairs (f : X → Y ′, s :
Y → Y ′) and (g : Y → Z ′, t : Z → Z ′) is defined as the equivalence class
of a pair (h ◦ f : X → Z ′′, u ◦ t : Z → Z ′′) where h and u ∈ S are chosen
to fit into a commutative diagram

Y

s

��

g
// Z ′

u

��
Y ′ h // Z ′′

which exists by assumption.
(5) The identity morphism X → X in S−1C is the equivalence class of the

pair (id : X → X, id : X → X).

Lemma 4.27.2.04VD Let C be a category and let S be a left multiplicative system.
(1) The relation on pairs defined above is an equivalence relation.
(2) The composition rule given above is well defined on equivalence classes.
(3) Composition is associative (and the identity morphisms satisfy the identity

axioms), and hence S−1C is a category.

Proof. Proof of (1). Let us say two pairs p1 = (f1 : X → Y1, s1 : Y → Y1)
and p2 = (f2 : X → Y2, s2 : Y → Y2) are elementary equivalent if there exists a
morphism a : Y1 → Y2 of C such that a ◦ f1 = f2 and a ◦ s1 = s2. Diagram:

X
f1

// Y1

a

��

Y
s1
oo

X
f2 // Y2 Y

s2oo

Let us denote this property by saying p1Ep2. Note that pEp and aEb, bEc⇒ aEc.
(Despite its name, E is not an equivalence relation.) Part (1) claims that the

https://stacks.math.columbia.edu/tag/04VD
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relation p ∼ p′ ⇔ ∃q : pEq ∧ p′Eq (where q is supposed to be a pair satisfying the
same conditions as p and p′) is an equivalence relation. A simple formal argument,
using the properties of E above, shows that it suffices to prove p3Ep1, p3Ep2 ⇒
p1 ∼ p2. Thus suppose that we are given a commutative diagram

Y1

X

f1

>>

f3 //

f2   

Y3

a31

OO

a32

��

Y

s1

__

s3oo

s2��
Y2

with si ∈ S. First we apply LMS2 to get a commutative diagram

Y

s1

��

s2
// Y2

a24

��
Y1

a14 // Y4

with a24 ∈ S. Then, we have

a14 ◦ a31 ◦ s3 = a14 ◦ s1 = a24 ◦ s2 = a24 ◦ a32 ◦ s3.

Hence, by LMS3, there exists a morphism s44 : Y4 → Y ′
4 such that s44 ∈ S and

s44 ◦a14 ◦a31 = s44 ◦a24 ◦a32. Hence, after replacing Y4, a14 and a24 by Y ′
4 , s44 ◦a14

and s44 ◦ a24, we may assume that a14 ◦ a31 = a24 ◦ a32 (and we still have a24 ∈ S
and a14 ◦ s1 = a24 ◦ s2). Set

f4 = a14 ◦ f1 = a14 ◦ a31 ◦ f3 = a24 ◦ a32 ◦ f3 = a24 ◦ f2

and s4 = a14 ◦ s1 = a24 ◦ s2. Then, the diagram

X
f1

// Y1

a14

��

Y
s1
oo

X
f4 // Y4 Y

s4oo

commutes, and we have s4 ∈ S (by LMS1). Thus, p1Ep4, where p4 = (f4, s4).
Similarly, p2Ep4. Combining these, we find p1 ∼ p2.

Proof of (2). Let p = (f : X → Y ′, s : Y → Y ′) and q = (g : Y → Z ′, t : Z → Z ′) be
pairs as in the definition of composition above. To compose we choose a diagram

Y

s

��

g
// Z ′

u2

��
Y ′ h2 // Z2

with u2 ∈ S. We first show that the equivalence class of the pair r2 = (h2 ◦f : X →
Z2, u2 ◦ t : Z → Z2) is independent of the choice of (Z2, h2, u2). Namely, suppose
that (Z3, h3, u3) is another choice with corresponding composition r3 = (h3 ◦ f :
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X → Z3, u3 ◦ t : Z → Z3). Then by LMS2 we can choose a diagram

Z ′

u2

��

u3
// Z3

u34

��
Z2

h24 // Z4

with u34 ∈ S. We have h2 ◦ s = u2 ◦ g and similarly h3 ◦ s = u3 ◦ g. Now,

u34 ◦ h3 ◦ s = u34 ◦ u3 ◦ g = h24 ◦ u2 ◦ g = h24 ◦ h2 ◦ s.

Hence, LMS3 shows that there exist a Z ′
4 and an s44 : Z4 → Z ′

4 such that s44 ◦u34 ◦
h3 = s44 ◦ h24 ◦ h2. Replacing Z4, h24 and u34 by Z ′

4, s44 ◦ h24 and s44 ◦ u34, we
may assume that u34 ◦ h3 = h24 ◦ h2. Meanwhile, the relations u34 ◦ u3 = h24 ◦ u2
and u34 ∈ S continue to hold. We can now set h4 = u34 ◦ h3 = h24 ◦ h2 and
u4 = u34 ◦ u3 = h24 ◦ u2. Then, we have a commutative diagram

X
h2◦f

// Z2

h24

��

Z
u2◦t
oo

X
h4◦f // Z4 Z

u4◦too

X
h3◦f // Z3

u34

OO

Z
u3◦too

Hence we obtain a pair r4 = (h4 ◦ f : X → Z4, u4 ◦ t : Z → Z4) and the above
diagram shows that we have r2Er4 and r3Er4, whence r2 ∼ r3, as desired. Thus
it now makes sense to define p ◦ q as the equivalence class of all possible pairs r
obtained as above.

To finish the proof of (2) we have to show that given pairs p1, p2, q such that p1Ep2
then p1 ◦q = p2 ◦q and q ◦p1 = q ◦p2 whenever the compositions make sense. To do
this, write p1 = (f1 : X → Y1, s1 : Y → Y1) and p2 = (f2 : X → Y2, s2 : Y → Y2)
and let a : Y1 → Y2 be a morphism of C such that f2 = a ◦ f1 and s2 = a ◦ s1.
First assume that q = (g : Y → Z ′, t : Z → Z ′). In this case choose a commutative
diagram as the one on the left

Y

s2

��

g // Z ′

u

��
Y2

h // Z ′′

⇒

Y

s1

��

g // Z ′

u

��
Y1

h◦a // Z ′′

(with u ∈ S), which implies the diagram on the right is commutative as well. Using
these diagrams we see that both compositions q ◦ p1 and q ◦ p2 are the equivalence
class of (h ◦ a ◦ f1 : X → Z ′′, u ◦ t : Z → Z ′′). Thus q ◦ p1 = q ◦ p2. The proof of
the other case, in which we have to show p1 ◦ q = p2 ◦ q, is omitted. (It is similar
to the case we did.)
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Proof of (3). We have to prove associativity of composition. Consider a solid
diagram

Z

��
Y

��

// Z ′

��
X

��

// Y ′

��

// Z ′′

��
W // X ′ // Y ′′ // Z ′′′

(whose vertical arrows belong to S) which gives rise to three composable pairs.
Using LMS2 we can choose the dotted arrows making the squares commutative
and such that the vertical arrows are in S. Then it is clear that the composition of
the three pairs is the equivalence class of the pair (W → Z ′′′, Z → Z ′′′) gotten by
composing the horizontal arrows on the bottom row and the vertical arrows on the
right column.
We leave it to the reader to check the identity axioms. □

Remark 4.27.3.0BM1 The motivation for the construction of S−1C is to “force” the
morphisms in S to be invertible by artificially creating inverses to them (at the cost
of some existing morphisms possibly becoming identified with each other). This is
similar to the localization of a commutative ring at a multiplicative subset, and more
generally to the localization of a noncommutative ring at a right denominator set
(see [Lam99, Section 10A]). This is more than just a similarity: The construction of
S−1C (or, more precisely, its version for additive categories C) actually generalizes
the latter type of localization. Namely, a noncommutative ring can be viewed as
a pre-additive category with a single object (the morphisms being the elements of
the ring); a multiplicative subset of this ring then becomes a set S of morphisms
satisfying LMS1 (aka RMS1). Then, the conditions RMS2 and RMS3 for this
category and this subset S translate into the two conditions (“right permutable”
and “right reversible”) of a right denominator set (and similarly for LMS and left
denominator sets), and S−1C (with a properly defined additive structure) is the
one-object category corresponding to the localization of the ring.

Definition 4.27.4.0BM2 Let C be a category and let S be a left multiplicative system
of morphisms of C. Given any morphism f : X → Y ′ in C and any morphism
s : Y → Y ′ in S, we denote by s−1f the equivalence class of the pair (f : X →
Y ′, s : Y → Y ′). This is a morphism from X to Y in S−1C.

This notation is suggestive, and the things it suggests are true: Given any morphism
f : X → Y ′ in C and any two morphisms s : Y → Y ′ and t : Y ′ → Y ′′ in S, we
have (t ◦ s)−1 (t ◦ f) = s−1f . Also, for any f : X → Y ′ and g : Y ′ → Z ′ in C
and all s : Z → Z ′ in S, we have s−1 (g ◦ f) =

(
s−1g

)
◦
(
id−1
Y ′ f

)
. Finally, for

any f : X → Y ′ in C, all s : Y → Y ′ in S, and t : Z → Y in S, we have
(s ◦ t)−1

f =
(
t−1idY

)
◦
(
s−1f

)
. This is all clear from the definition. We can “write

any finite collection of morphisms with the same target as fractions with common
denominator”.

https://stacks.math.columbia.edu/tag/0BM1
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Lemma 4.27.5.04VE Let C be a category and let S be a left multiplicative system
of morphisms of C. Given any finite collection gi : Xi → Y of morphisms of
S−1C (indexed by i), we can find an element s : Y → Y ′ of S and a family of
morphisms fi : Xi → Y ′ of C such that each gi is the equivalence class of the pair
(fi : Xi → Y ′, s : Y → Y ′).

Proof. For each i choose a representative (Xi → Yi, si : Y → Yi) of gi. The lemma
follows if we can find a morphism s : Y → Y ′ in S such that for each i there is a
morphism ai : Yi → Y ′ with ai ◦ si = s. If we have two indices i = 1, 2, then we
can do this by completing the square

Y

s1

��

s2
// Y2

t2
��

Y1
a1 // Y ′

with t2 ∈ S as is possible by Definition 4.27.1. Then s = t2 ◦ s2 ∈ S works. If we
have n > 2 morphisms, then we use the above trick to reduce to the case of n− 1
morphisms, and we win by induction. □

There is an easy characterization of equality of morphisms if they have the same
denominator.

Lemma 4.27.6.04VF Let C be a category and let S be a left multiplicative system of
morphisms of C. Let A,B : X → Y be morphisms of S−1C which are the equivalence
classes of (f : X → Y ′, s : Y → Y ′) and (g : X → Y ′, s : Y → Y ′). The following
are equivalent

(1) A = B
(2) there exists a morphism t : Y ′ → Y ′′ in S with t ◦ f = t ◦ g, and
(3) there exists a morphism a : Y ′ → Y ′′ such that a ◦ f = a ◦ g and a ◦ s ∈ S.

Proof. We are going to use that S−1C is a category (Lemma 4.27.2) and we will use
the notation of Definition 4.27.4 as well as the discussion following that definition
to identify some morphisms in S−1C. Thus we write A = s−1f and B = s−1g.
If A = B then (id−1

Y ′ s) ◦ A = (id−1
Y ′ s) ◦ B. We have (id−1

Y ′ s) ◦ A = id−1
Y ′ f and

(id−1
Y ′ s) ◦ B = id−1

Y ′ g. The equality of id−1
Y ′ f and id−1

Y ′ g means by definition that
there exists a commutative diagram

Y ′

u

��
X

f

>>

h //

g   

Z Y ′

idY ′

``

too

idY ′~~
Y ′

v

OO

with t ∈ S. In particular u = v = t ∈ S and t ◦ f = t ◦ g. Thus (1) implies (2).
The implication (2)⇒ (3) is immediate. Assume a is as in (3). Denote s′ = a◦s ∈ S.
Then id−1

Y ′′s′ is an isomorphism in the category S−1C (with inverse (s′)−1idY ′′).
Thus to check A = B it suffices to check that id−1

Y ′′s′ ◦A = id−1
Y ′′s′ ◦B. We compute

using the rules discussed in the text following Definition 4.27.4 that id−1
Y ′′s′ ◦ A =

https://stacks.math.columbia.edu/tag/04VE
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id−1
Y ′′(a ◦ s) ◦ s−1f = id−1

Y ′′(a ◦ f) = id−1
Y ′′(a ◦ g) = id−1

Y ′′(a ◦ s) ◦ s−1g = id−1
Y ′′s′ ◦ B

and we see that (1) is true. □

Remark 4.27.7.05Q0 Let C be a category. Let S be a left multiplicative system. Given
an object Y of C we denote Y/S the category whose objects are s : Y → Y ′ with
s ∈ S and whose morphisms are commutative diagrams

Y

s

~~

t

  
Y ′ a // Y ′′

where a : Y ′ → Y ′′ is arbitrary. We claim that the category Y/S is filtered (see
Definition 4.19.1). Namely, LMS1 implies that idY : Y → Y is in Y/S; hence Y/S
is nonempty. LMS2 implies that given s1 : Y → Y1 and s2 : Y → Y2 we can find a
diagram

Y

s1

��

s2
// Y2

t

��
Y1

a // Y3

with t ∈ S. Hence s1 : Y → Y1 and s2 : Y → Y2 both have maps to t ◦ s2 : Y → Y3
in Y/S. Finally, given two morphisms a, b from s1 : Y → Y1 to s2 : Y → Y2 in Y/S
we see that a ◦ s1 = b ◦ s1; hence by LMS3 there exists a t : Y2 → Y3 in S such that
t ◦ a = t ◦ b. Now the combined results of Lemmas 4.27.5 and 4.27.6 tell us that

(4.27.7.1)05Q1 MorS−1C(X,Y ) = colim(s:Y→Y ′)∈Y/S MorC(X,Y ′)

This formula expressing morphism sets in S−1C as a filtered colimit of morphism
sets in C is occasionally useful.

Lemma 4.27.8.04VG Let C be a category and let S be a left multiplicative system of
morphisms of C.

(1) The rules X 7→ X and (f : X → Y ) 7→ (f : X → Y, idY : Y → Y ) define
a functor Q : C → S−1C.

(2) For any s ∈ S the morphism Q(s) is an isomorphism in S−1C.
(3) If G : C → D is any functor such that G(s) is invertible for every s ∈ S,

then there exists a unique functor H : S−1C → D such that H ◦Q = G.

Proof. Parts (1) and (2) are clear. (In (2), the inverse of Q(s) is the equivalence
class of the pair (idY , s).) To see (3) just set H(X) = G(X) and set H((f : X →
Y ′, s : Y → Y ′)) = G(s)−1 ◦G(f). Details omitted. □

Lemma 4.27.9.05Q2 Let C be a category and let S be a left multiplicative system of
morphisms of C. The localization functor Q : C → S−1C commutes with finite
colimits.

Proof. Let I be a finite category and let I → C, i 7→ Xi be a functor whose colimit
exists. Then using (4.27.7.1), the fact that Y/S is filtered, and Lemma 4.19.2 we

https://stacks.math.columbia.edu/tag/05Q0
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have
MorS−1C(Q(colimXi), Q(Y )) = colim(s:Y→Y ′)∈Y/S MorC(colimXi, Y

′)
= colim(s:Y→Y ′)∈Y/S limi MorC(Xi, Y

′)
= limi colim(s:Y→Y ′)∈Y/S MorC(Xi, Y

′)
= limi MorS−1C(Q(Xi), Q(Y ))

and this isomorphism commutes with the projections from both sides to the set
MorS−1C(Q(Xj), Q(Y )) for each j ∈ Ob(I). Thus, Q(colimXi) satisfies the univer-
sal property for the colimit of the functor i 7→ Q(Xi); hence, it is this colimit, as
desired. □

Lemma 4.27.10.05Q3 Let C be a category. Let S be a left multiplicative system. If
f : X → Y , f ′ : X ′ → Y ′ are two morphisms of C and if

Q(X)

Q(f)
��

a
// Q(X ′)

Q(f ′)
��

Q(Y ) b // Q(Y ′)

is a commutative diagram in S−1C, then there exist a morphism f ′′ : X ′′ → Y ′′ in
C and a commutative diagram

X

f

��

g
// X ′′

f ′′

��

X ′

f ′

��

s
oo

Y
h // Y ′′ Y ′too

in C with s, t ∈ S and a = s−1g, b = t−1h.

Proof. We choose maps and objects in the following way: First write a = s−1g for
some s : X ′ → X ′′ in S and g : X → X ′′. By LMS2 we can find t : Y ′ → Y ′′ in S
and f ′′ : X ′′ → Y ′′ such that

X

f

��

g
// X ′′

f ′′

��

X ′

f ′

��

s
oo

Y Y ′′ Y ′too

commutes. Now in this diagram we are going to repeatedly change our choice of

X ′′ f ′′

−−→ Y ′′ t←− Y ′

by postcomposing both t and f ′′ by a morphism d : Y ′′ → Y ′′′ with the property
that d◦t ∈ S. According to Remark 4.27.7 we may after such a replacement assume
that there exists a morphism h : Y → Y ′′ such that b = t−1h holds5. At this point
we have everything as in the lemma except that we don’t know that the left square
of the diagram commutes. But the definition of composition in S−1C shows that
b ◦ Q (f) is the equivalence class of the pair (h ◦ f : X → Y ′′, t : Y ′ → Y ′′) (since
b is the equivalence class of the pair (h : Y → Y ′′, t : Y ′ → Y ′′), while Q (f)

5Here is a more down-to-earth way to see this: Write b = q−1i for some q : Y ′ → Z in S and
some i : Y → Z. By LMS2 we can find r : Y ′′ → Y ′′′ in S and j : Z → Y ′′′ such that j ◦ q = r ◦ t.
Now, set d = r and h = j ◦ i.

https://stacks.math.columbia.edu/tag/05Q3
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is the equivalence class of the pair (f : X → Y, id : Y → Y )), while Q (f ′) ◦ a
is the equivalence class of the pair (f ′′ ◦ g : X → Y ′′, t : Y ′ → Y ′′) (since a is
the equivalence class of the pair (g : X → X ′′, s : X ′ → X ′′), while Q (f ′) is the
equivalence class of the pair (f ′ : X ′ → Y ′, id : Y ′ → Y ′)). Since we know that
b ◦ Q (f) = Q (f ′) ◦ a, we thus conclude that the equivalence classes of the pairs
(h◦f : X → Y ′′, t : Y ′ → Y ′′) and (f ′′ ◦g : X → Y ′′, t : Y ′ → Y ′′) are equal. Hence
using Lemma 4.27.6 we can find a morphism d : Y ′′ → Y ′′′ such that d ◦ t ∈ S and
d ◦ h ◦ f = d ◦ f ′′ ◦ g. Hence we make one more replacement of the kind described
above and we win. □

Right calculus of fractions. Let C be a category and let S be a right multiplicative
system. We define a new category S−1C as follows (we verify this works in the
proof of Lemma 4.27.11):

(1) We set Ob(S−1C) = Ob(C).
(2) Morphisms X → Y of S−1C are given by pairs (f : X ′ → Y, s : X ′ → X)

with s ∈ S up to equivalence. (The equivalence is defined below. Think
of the equivalence class of a pair (f, s) as fs−1 : X → Y .)

(3) Two pairs (f1 : X1 → Y, s1 : X1 → X) and (f2 : X2 → Y, s2 : X2 → X) are
said to be equivalent if there exist a third pair (f3 : X3 → Y, s3 : X3 → X)
and morphisms u : X3 → X1 and v : X3 → X2 of C fitting into the
commutative diagram

X1
s1

~~

f1

  
X X3

s3oo

u

OO

v

��

f3 // Y

X2

s2

``

f2

>>

(4) The composition of the equivalence classes of the pairs (f : X ′ → Y, s :
X ′ → X) and (g : Y ′ → Z, t : Y ′ → Y ) is defined as the equivalence class
of a pair (g ◦ h : X ′′ → Z, s ◦ u : X ′′ → X) where h and u ∈ S are chosen
to fit into a commutative diagram

X ′′

u

��

h // Y ′

t

��
X ′ f // Y

which exists by assumption.
(5) The identity morphism X → X in S−1C is the equivalence class of the

pair (id : X → X, id : X → X).

Lemma 4.27.11.04VH Let C be a category and let S be a right multiplicative system.
(1) The relation on pairs defined above is an equivalence relation.
(2) The composition rule given above is well defined on equivalence classes.
(3) Composition is associative (and the identity morphisms satisfy the identity

axioms), and hence S−1C is a category.

https://stacks.math.columbia.edu/tag/04VH
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Proof. This lemma is dual to Lemma 4.27.2. It follows formally from that lemma by
replacing C by its opposite category in which S is a left multiplicative system. □

Definition 4.27.12.0BM3 Let C be a category and let S be a right multiplicative system
of morphisms of C. Given any morphism f : X ′ → Y in C and any morphism
s : X ′ → X in S, we denote by fs−1 the equivalence class of the pair (f : X ′ →
Y, s : X ′ → X). This is a morphism from X to Y in S−1C.

Identities similar (actually, dual) to the ones in Definition 4.27.4 hold. We can
“write any finite collection of morphisms with the same source as fractions with
common denominator”.

Lemma 4.27.13.04VI Let C be a category and let S be a right multiplicative system
of morphisms of C. Given any finite collection gi : X → Yi of morphisms of
S−1C (indexed by i), we can find an element s : X ′ → X of S and a family of
morphisms fi : X ′ → Yi of C such that gi is the equivalence class of the pair
(fi : X ′ → Yi, s : X ′ → X).

Proof. This lemma is the dual of Lemma 4.27.5 and follows formally from that
lemma by replacing all categories in sight by their opposites. □

There is an easy characterization of equality of morphisms if they have the same
denominator.

Lemma 4.27.14.04VJ Let C be a category and let S be a right multiplicative system
of morphisms of C. Let A,B : X → Y be morphisms of S−1C which are the
equivalence classes of (f : X ′ → Y, s : X ′ → X) and (g : X ′ → Y, s : X ′ → X). The
following are equivalent

(1) A = B,
(2) there exists a morphism t : X ′′ → X ′ in S with f ◦ t = g ◦ t, and
(3) there exists a morphism a : X ′′ → X ′ with f ◦ a = g ◦ a and s ◦ a ∈ S.

Proof. This is dual to Lemma 4.27.6. □

Remark 4.27.15.05Q4 Let C be a category. Let S be a right multiplicative system.
Given an object X of C we denote S/X the category whose objects are s : X ′ → X
with s ∈ S and whose morphisms are commutative diagrams

X ′

s
  

a
// X ′′

t}}
X

where a : X ′ → X ′′ is arbitrary. The category S/X is cofiltered (see Definition
4.20.1). (This is dual to the corresponding statement in Remark 4.27.7.) Now the
combined results of Lemmas 4.27.13 and 4.27.14 tell us that
(4.27.15.1)05Q5 MorS−1C(X,Y ) = colim(s:X′→X)∈(S/X)opp MorC(X ′, Y )

This formula expressing morphisms in S−1C as a filtered colimit of morphisms in C
is occasionally useful.

Lemma 4.27.16.04VK Let C be a category and let S be a right multiplicative system of
morphisms of C.

https://stacks.math.columbia.edu/tag/0BM3
https://stacks.math.columbia.edu/tag/04VI
https://stacks.math.columbia.edu/tag/04VJ
https://stacks.math.columbia.edu/tag/05Q4
https://stacks.math.columbia.edu/tag/04VK
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(1) The rules X 7→ X and (f : X → Y ) 7→ (f : X → Y, idX : X → X) define
a functor Q : C → S−1C.

(2) For any s ∈ S the morphism Q(s) is an isomorphism in S−1C.
(3) If G : C → D is any functor such that G(s) is invertible for every s ∈ S,

then there exists a unique functor H : S−1C → D such that H ◦Q = G.
Proof. This lemma is the dual of Lemma 4.27.8 and follows formally from that
lemma by replacing all categories in sight by their opposites. □

Lemma 4.27.17.05Q6 Let C be a category and let S be a right multiplicative system
of morphisms of C. The localization functor Q : C → S−1C commutes with finite
limits.
Proof. This is dual to Lemma 4.27.9. □

Lemma 4.27.18.05Q7 Let C be a category. Let S be a right multiplicative system. If
f : X → Y , f ′ : X ′ → Y ′ are two morphisms of C and if

Q(X)

Q(f)
��

a
// Q(X ′)

Q(f ′)
��

Q(Y ) b // Q(Y ′)

is a commutative diagram in S−1C, then there exist a morphism f ′′ : X ′′ → Y ′′ in
C and a commutative diagram

X

f

��

X ′′
s

oo

f ′′

��

g
// X ′

f ′

��
Y Y ′′too h // Y ′

in C with s, t ∈ S and a = gs−1, b = ht−1.
Proof. This lemma is dual to Lemma 4.27.10. □

Multiplicative systems and two sided calculus of fractions. If S is a multiplica-
tive system then left and right calculus of fractions give canonically isomorphic
categories.
Lemma 4.27.19.04VL Let C be a category and let S be a multiplicative system. The
category of left fractions and the category of right fractions S−1C are canonically
isomorphic.
Proof. Denote Cleft, Cright the two categories of fractions. By the universal prop-
erties of Lemmas 4.27.8 and 4.27.16 we obtain functors Cleft → Cright and Cright →
Cleft. By the uniqueness statement in the universal properties, these functors are
each other’s inverse. □

Definition 4.27.20.05Q8 Let C be a category and let S be a multiplicative system. We
say S is saturated if, in addition to MS1, MS2, MS3, we also have

MS4 Given three composable morphisms f, g, h, if fg, gh ∈ S, then g ∈ S.
Note that a saturated multiplicative system contains all isomorphisms. Moreover, if
f, g, h are composable morphisms in a category and fg, gh are isomorphisms, then
g is an isomorphism (because then g has both a left and a right inverse, hence is
invertible).

https://stacks.math.columbia.edu/tag/05Q6
https://stacks.math.columbia.edu/tag/05Q7
https://stacks.math.columbia.edu/tag/04VL
https://stacks.math.columbia.edu/tag/05Q8
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Lemma 4.27.21.05Q9 Let C be a category and let S be a multiplicative system. Denote
Q : C → S−1C the localization functor. The set

Ŝ = {f ∈ Arrows(C) | Q(f) is an isomorphism}
is equal to

S′ = {f ∈ Arrows(C) | there exist g, h such that gf, fh ∈ S}
and is the smallest saturated multiplicative system containing S. In particular, if
S is saturated, then Ŝ = S.

Proof. It is clear that S ⊂ S′ ⊂ Ŝ because elements of S′ map to morphisms in
S−1C which have both left and right inverses. Note that S′ satisfies MS4, and that
Ŝ satisfies MS1. Next, we prove that S′ = Ŝ.
Let f ∈ Ŝ. Let s−1g = ht−1 be the inverse morphism in S−1C. (We may use
both left fractions and right fractions to describe morphisms in S−1C, see Lemma
4.27.19.) The relation idX = s−1gf in S−1C means there exists a commutative
diagram

X ′

u

��
X

gf

==

f ′
//

idX !!

X ′′ X

s

aa

s′
oo

idX}}
X

v

OO

for some morphisms f ′, u, v and s′ ∈ S. Hence ugf = s′ ∈ S. Similarly, using that
idY = fht−1 one proves that fhw ∈ S for some w. We conclude that f ∈ S′. Thus
S′ = Ŝ. Provided we prove that S′ = Ŝ is a multiplicative system it is now clear
that this implies that S′ = Ŝ is the smallest saturated system containing S.
Our remarks above take care of MS1 and MS4, so to finish the proof of the lemma
we have to show that LMS2, RMS2, LMS3, RMS3 hold for Ŝ. Let us check that
LMS2 holds for Ŝ. Suppose we have a solid diagram

X

t

��

g
// Y

s

��
Z

f // W

with t ∈ Ŝ. Pick a morphism a : Z → Z ′ such that at ∈ S. Then we can use LMS2
for S to find a commutative diagram

X

t

��

g
// Y

s

��

Z

a

��
Z ′ f ′

// W

and setting f = f ′ ◦ a we win. The proof of RMS2 is dual to this. Finally, suppose
given a pair of morphisms f, g : X → Y and t ∈ Ŝ with target X such that ft = gt.

https://stacks.math.columbia.edu/tag/05Q9
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Then we pick a morphism b such that tb ∈ S. Then ftb = gtb which implies by
LMS3 for S that there exists an s ∈ S with source Y such that sf = sg as desired.
The proof of RMS3 is dual to this. □

4.28. Formal properties

003D In this section we discuss some formal properties of the 2-category of categories.
This will lead us to the definition of a (strict) 2-category later.

Let us denote Ob(Cat) the class of all categories. For every pair of categories
A,B ∈ Ob(Cat) we have the “small” category of functors Fun(A,B). Composition
of transformation of functors such as

A

F ′′

""�� t′

F ′
//
==

F

�� t
B composes to A

F ′′

((

F

66�� t◦t′ B

is called vertical composition. We will use the usual symbol ◦ for this. Next, we
will define horizontal composition. In order to do this we explain a bit more of the
structure at hand.

Namely for every triple of categories A, B, and C there is a composition law

◦ : Ob(Fun(B, C))×Ob(Fun(A,B)) −→ Ob(Fun(A, C))

coming from composition of functors. This composition law is associative, and
identity functors act as units. In other words – forgetting about transformations of
functors – we see that Cat forms a category. How does this structure interact with
the morphisms between functors?

Well, given t : F → F ′ a transformation of functors F, F ′ : A → B and a functor
G : B → C we can define a transformation of functors G ◦ F → G ◦ F ′. We
will denote this transformation Gt. It is given by the formula (Gt)x = G(tx) :
G(F (x)) → G(F ′(x)) for all x ∈ A. In this way composition with G becomes a
functor

Fun(A,B) −→ Fun(A, C).
To see this you just have to check that G(idF ) = idG◦F and that G(t1◦t2) = Gt1◦Gt2.
Of course we also have that idAt = t.

Similarly, given s : G → G′ a transformation of functors G,G′ : B → C and
F : A → B a functor we can define sF to be the transformation of functors G◦F →
G′ ◦ F given by (sF )x = sF (x) : G(F (x)) → G′(F (x)) for all x ∈ A. In this way
composition with F becomes a functor

Fun(B, C) −→ Fun(A, C).

To see this you just have to check that (idG)F = idG◦F and that (s1 ◦ s2)F =
s1,F ◦ s2,F . Of course we also have that sidB = s.

These constructions satisfy the additional properties

G1(G2t) = G1◦G2t, (sF1)F2 = sF1◦F2 , and H(sF ) = (Hs)F
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whenever these make sense. Finally, given functors F, F ′ : A → B, and G,G′ :
B → C and transformations t : F → F ′, and s : G → G′ the following diagram is
commutative

G ◦ F Gt //

sF
��

G ◦ F ′

sF ′

��
G′ ◦ F

G′ t
// G′ ◦ F ′

in other words G′t ◦ sF = sF ′ ◦Gt. To prove this we just consider what happens on
any object x ∈ Ob(A):

G(F (x))
G(tx) //

sF (x)

��

G(F ′(x))
sF ′(x)

��
G′(F (x))

G′(tx)
// G′(F ′(x))

which is commutative because s is a transformation of functors. This compatibility
relation allows us to define horizontal composition.

Definition 4.28.1.003E Given a diagram as in the left hand side of:

A
F
%%

F ′

99�� t B
G
%%

G′

99�� s C gives A
G◦F

((

G′◦F ′

66�� s⋆t C

we define the horizontal composition s ⋆ t to be the transformation of functors
G′t ◦ sF = sF ′ ◦ Gt.

Now we see that we may recover our previously constructed transformations Gt and
sF as Gt = idG ⋆ t and sF = s ⋆ idF . Furthermore, all of the rules we found above
are consequences of the properties stated in the lemma that follows.

Lemma 4.28.2.003F The horizontal and vertical compositions have the following prop-
erties

(1) ◦ and ⋆ are associative,
(2) the identity transformations idF are units for ◦,
(3) the identity transformations of the identity functors ididA are units for ⋆

and ◦, and
(4) given a diagram

A

F

""�� t

F ′
//
==

F ′′

�� t′
B

G

!!�� s

G′
//
==

G′′

�� s′
C

we have (s′ ◦ s) ⋆ (t′ ◦ t) = (s′ ⋆ t′) ◦ (s ⋆ t).

Proof. The last statement turns using our previous notation into the following
equation

s′
F ′′ ◦ G′t′ ◦ sF ′ ◦ Gt = (s′ ◦ s)F ′′ ◦ G(t′ ◦ t).

https://stacks.math.columbia.edu/tag/003E
https://stacks.math.columbia.edu/tag/003F
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According to our result above applied to the middle composition we may rewrite
the left hand side as s′

F ′′ ◦ sF ′′ ◦ Gt′ ◦ Gt which is easily shown to be equal to the
right hand side. □

Another way of formulating condition (4) of the lemma is that composition of
functors and horizontal composition of transformation of functors gives rise to a
functor

(◦, ⋆) : Fun(B, C)× Fun(A,B) −→ Fun(A, C)
whose source is the product category, see Definition 4.2.20.

4.29. 2-categories

003G We will give a definition of (strict) 2-categories as they appear in the setting of
stacks. Before you read this take a look at Section 4.28 and Example 4.30.2. Basi-
cally, you take this example and you write out all the rules satisfied by the objects,
1-morphisms and 2-morphisms in that example.

Definition 4.29.1.003H A (strict) 2-category C consists of the following data
(1) A set of objects Ob(C).
(2) For each pair x, y ∈ Ob(C) a category MorC(x, y). The objects of MorC(x, y)

will be called 1-morphisms and denoted F : x → y. The morphisms be-
tween these 1-morphisms will be called 2-morphisms and denoted t : F ′ →
F . The composition of 2-morphisms in MorC(x, y) will be called vertical
composition and will be denoted t ◦ t′ for t : F ′ → F and t′ : F ′′ → F ′.

(3) For each triple x, y, z ∈ Ob(C) a functor
(◦, ⋆) : MorC(y, z)×MorC(x, y) −→ MorC(x, z).

The image of the pair of 1-morphisms (F,G) on the left hand side will be
called the composition of F and G, and denoted F ◦G. The image of the
pair of 2-morphisms (t, s) will be called the horizontal composition and
denoted t ⋆ s.

These data are to satisfy the following rules:
(1) The set of objects together with the set of 1-morphisms endowed with

composition of 1-morphisms forms a category.
(2) Horizontal composition of 2-morphisms is associative.
(3) The identity 2-morphism ididx of the identity 1-morphism idx is a unit for

horizontal composition.

This is obviously not a very pleasant type of object to work with. On the other
hand, there are lots of examples where it is quite clear how you work with it. The
only example we have so far is that of the 2-category whose objects are a given
collection of categories, 1-morphisms are functors between these categories, and 2-
morphisms are natural transformations of functors, see Section 4.28. As far as this
text is concerned all 2-categories will be sub 2-categories of this example. Here is
what it means to be a sub 2-category.

Definition 4.29.2.02X7 Let C be a 2-category. A sub 2-category C′ of C, is given by a
subset Ob(C′) of Ob(C) and sub categories MorC′(x, y) of the categories MorC(x, y)
for all x, y ∈ Ob(C′) such that these, together with the operations ◦ (composition 1-
morphisms), ◦ (vertical composition 2-morphisms), and ⋆ (horizontal composition)
form a 2-category.

https://stacks.math.columbia.edu/tag/003H
https://stacks.math.columbia.edu/tag/02X7
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Remark 4.29.3.003J Big 2-categories. In many texts a 2-category is allowed to have a
class of objects (but hopefully a “class of classes” is not allowed). We will allow
these “big” 2-categories as well, but only in the following list of cases (to be updated
as we go along):

(1) The 2-category of categories Cat.
(2) The (2, 1)-category of categories Cat.
(3) The 2-category of groupoids Groupoids; this is a (2, 1)-category.
(4) The 2-category of fibred categories over a fixed category.
(5) The (2, 1)-category of fibred categories over a fixed category.

See Definition 4.30.1. Note that in each case the class of objects of the 2-category C
is a proper class, but for all objects x, y ∈ Ob(C) the category MorC(x, y) is “small”
(according to our conventions).

The notion of equivalence of categories that we defined in Section 4.2 extends to
the more general setting of 2-categories as follows.

Definition 4.29.4.003L Two objects x, y of a 2-category are equivalent if there exist
1-morphisms F : x→ y and G : y → x such that F ◦G is 2-isomorphic to idy and
G ◦ F is 2-isomorphic to idx.

Sometimes we need to say what it means to have a functor from a category into a
2-category.

Definition 4.29.5.003N Let A be a category and let C be a 2-category.
(1) A functor from an ordinary category into a 2-category will ignore the

2-morphisms unless mentioned otherwise. In other words, it will be a
“usual” functor into the category formed out of 2-category by forgetting
all the 2-morphisms.

(2) A weak functor, or a pseudo functor φ from A into the 2-category C is
given by the following data
(a) a map φ : Ob(A)→ Ob(C),
(b) for every pair x, y ∈ Ob(A), and every morphism f : x → y a 1-

morphism φ(f) : φ(x)→ φ(y),
(c) for every x ∈ Ob(A) a 2-morphism αx : idφ(x) → φ(idx), and
(d) for every pair of composable morphisms f : x→ y, g : y → z of A a

2-morphism αg,f : φ(g ◦ f)→ φ(g) ◦ φ(f).
These data are subject to the following conditions:
(a) the 2-morphisms αx and αg,f are all isomorphisms,
(b) for any morphism f : x→ y in A we have αidy,f = αy ⋆ idφ(f):

φ(x)
φ(f)

**

φ(f)
44�� idφ(f) φ(y)

idφ(y)
**

φ(idy)
44��αy φ(y) = φ(x)

φ(f)
**

φ(idy)◦φ(f)
44�� αidy,f φ(y)

(c) for any morphism f : x→ y in A we have αf,idx = idφ(f) ⋆ αx,
(d) for any triple of composable morphisms f : w → x, g : x → y, and

h : y → z of A we have

(idφ(h) ⋆ αg,f ) ◦ αh,g◦f = (αh,g ⋆ idφ(f)) ◦ αh◦g,f

https://stacks.math.columbia.edu/tag/003J
https://stacks.math.columbia.edu/tag/003L
https://stacks.math.columbia.edu/tag/003N
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in other words the following diagram with objects 1-morphisms and
arrows 2-morphisms commutes

φ(h ◦ g ◦ f)

αh,g◦f

��

αh◦g,f
// φ(h ◦ g) ◦ φ(f)

αh,g⋆idφ(f)

��
φ(h) ◦ φ(g ◦ f)

idφ(h)⋆αg,f // φ(h) ◦ φ(g) ◦ φ(f)

Again this is not a very workable notion, but it does sometimes come up. There
is a theorem that says that any pseudo-functor is isomorphic to a functor. Finally,
there are the notions of functor between 2-categories, and pseudo functor between
2-categories. This last notion leads us into 3-category territory. We would like to
avoid having to define this at almost any cost!

4.30. (2, 1)-categories

02X8 Some 2-categories have the property that all 2-morphisms are isomorphisms. These
will play an important role in the following, and they are easier to work with.

Definition 4.30.1.003I A (strict) (2, 1)-category is a 2-category in which all 2-morphisms
are isomorphisms.

Example 4.30.2.003K The 2-category Cat, see Remark 4.29.3, can be turned into a
(2, 1)-category by only allowing isomorphisms of functors as 2-morphisms.

In fact, more generally any 2-category C produces a (2, 1)-category by consider-
ing the sub 2-category C′ with the same objects and 1-morphisms but whose 2-
morphisms are the invertible 2-morphisms of C. In this situation we will say “let C′

be the (2, 1)-category associated to C” or similar. For example, the (2, 1)-category of
groupoids means the 2-category whose objects are groupoids, whose 1-morphisms
are functors and whose 2-morphisms are isomorphisms of functors. Except that
this is a bad example as a transformation between functors between groupoids is
automatically an isomorphism!

Remark 4.30.3.003M Thus there are variants of the construction of Example 4.30.2 above
where we look at the 2-category of groupoids, or categories fibred in groupoids over
a fixed category, or stacks. And so on.

4.31. 2-fibre products

003O In this section we introduce 2-fibre products. Suppose that C is a 2-category. We
say that a diagram

w //

��

y

��
x // z

2-commutes if the two 1-morphisms w → y → z and w → x→ z are 2-isomorphic.
In a 2-category it is more natural to ask for 2-commutativity of diagrams than for
actually commuting diagrams. (Indeed, some may say that we should not work with
strict 2-categories at all, and in a “weak” 2-category the notion of a commutative
diagram of 1-morphisms does not even make sense.) Correspondingly the notion of
a fibre product has to be adjusted.

https://stacks.math.columbia.edu/tag/003I
https://stacks.math.columbia.edu/tag/003K
https://stacks.math.columbia.edu/tag/003M
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Let C be a 2-category. Let x, y, z ∈ Ob(C) and f ∈ MorC(x, z) and g ∈ MorC(y, z).
In order to define the 2-fibre product of f and g we are going to look at 2-
commutative diagrams

w
a
//

b

��

x

f

��
y

g // z.

Now in the case of categories, the fibre product is a final object in the category of
such diagrams. Correspondingly a 2-fibre product is a final object in a 2-category
(see definition below). The 2-category of 2-commutative diagrams over f and g is
the 2-category defined as follows:

(1) Objects are quadruples (w, a, b, ϕ) as above where ϕ is an invertible 2-
morphism ϕ : f ◦ a→ g ◦ b,

(2) 1-morphisms from (w′, a′, b′, ϕ′) to (w, a, b, ϕ) are given by (k : w′ → w,α :
a′ → a ◦ k, β : b′ → b ◦ k) such that

f ◦ a′
idf⋆α

//

ϕ′

��

f ◦ a ◦ k

ϕ⋆idk
��

g ◦ b′ idg⋆β // g ◦ b ◦ k

is commutative,
(3) given a second 1-morphism (k′, α′, β′) : (w′′, a′′, b′′, ϕ′′) → (w′, α′, β′, ϕ′)

the composition of 1-morphisms is given by the rule

(k, α, β) ◦ (k′, α′, β′) = (k ◦ k′, (α ⋆ idk′) ◦ α′, (β ⋆ idk′) ◦ β′),

(4) a 2-morphism between 1-morphisms (ki, αi, βi), i = 1, 2 with the same
source and target is given by a 2-morphism δ : k1 → k2 such that

a′

α2 ""

α1
// a ◦ k1

ida⋆δ
��

b ◦ k1

idb⋆δ
��

b′
β1

oo

β2}}
a ◦ k2 b ◦ k2

commute,
(5) vertical composition of 2-morphisms is given by vertical composition of

the morphisms δ in C, and
(6) horizontal composition of the diagram

(w′′, a′′, b′′, ϕ′′)
(k′

1,α
′
1,β

′
1) --

(k′
2,α

′
2,β

′
2)
11�� δ′ (w′, a′, b′, ϕ′)

(k1,α1,β1)
,,

(k2,α2,β2)
22�� δ (w, a, b, ϕ)

is given by the diagram

(w′′, a′′, b′′, ϕ′′)
(k1◦k′

1,(α1⋆idk′
1

)◦α′
1,(β1⋆idk′

1
)◦β′

1)
--

(k2◦k′
2,(α2⋆idk′

2
)◦α′

2,(β2⋆idk′
2

)◦β′
2)

11�� δ⋆δ′ (w, a, b, ϕ)
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Note that if C is actually a (2, 1)-category, the morphisms α and β in (2) above
are automatically also isomorphisms6. In addition the 2-category of 2-commutative
diagrams is also a (2, 1)-category if C is a (2, 1)-category.
Definition 4.31.1.003P A final object of a (2, 1)-category C is an object x such that

(1) for every y ∈ Ob(C) there is a morphism y → x, and
(2) every two morphisms y → x are isomorphic by a unique 2-morphism.

Likely, in the more general case of 2-categories there are different flavours of final
objects. We do not want to get into this and hence we only define 2-fibre products
in the (2, 1)-case.
Definition 4.31.2.003Q Let C be a (2, 1)-category. Let x, y, z ∈ Ob(C) and f ∈ MorC(x, z)
and g ∈ MorC(y, z). A 2-fibre product of f and g is a final object in the category of
2-commutative diagrams described above. If a 2-fibre product exists we will denote
it x ×z y ∈ Ob(C), and denote the required morphisms p ∈ MorC(x ×z y, x) and
q ∈ MorC(x×z y, y) making the diagram

x×z y
p //

q

��

x

f

��
y

g // z

2-commute and we will denote the given invertible 2-morphism exhibiting this by
ψ : f ◦ p→ g ◦ q.
Thus the following universal property holds: for any w ∈ Ob(C) and morphisms
a ∈ MorC(w, x) and b ∈ MorC(w, y) with a given 2-isomorphism ϕ : f ◦ a → g ◦ b
there is a γ ∈ MorC(w, x×z y) making the diagram

w

a

**
γ

((

b

  

x×z y p
//

q

��

x

f

��
y

g // z

2-commute such that for suitable choices of a→ p ◦ γ and b→ q ◦ γ the diagram
f ◦ a //

ϕ

��

f ◦ p ◦ γ

ψ⋆idγ
��

g ◦ b // g ◦ q ◦ γ
commutes. Moreover γ is unique up to isomorphism. Of course the exact properties
are finer than this. All of the cases of 2-fibre products that we will need later on
come from the following example of 2-fibre products in the 2-category of categories.
Example 4.31.3.003R Let A, B, and C be categories. Let F : A → C and G : B → C be
functors. We define a category A×C B as follows:

6In fact it seems in the 2-category case that one could define another 2-category of 2-
commutative diagrams where the direction of the arrows α, β is reversed, or even where the
direction of only one of them is reversed. This is why we restrict to (2, 1)-categories later on.
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(1) an object of A ×C B is a triple (A,B, f), where A ∈ Ob(A), B ∈ Ob(B),
and f : F (A)→ G(B) is an isomorphism in C,

(2) a morphism (A,B, f) → (A′, B′, f ′) is given by a pair (a, b), where a :
A → A′ is a morphism in A, and b : B → B′ is a morphism in B such
that the diagram

F (A) f //

F (a)
��

G(B)

G(b)
��

F (A′) f ′
// G(B′)

is commutative.
Moreover, we define functors p : A×C B → A and q : A×C B → B by setting

p(A,B, f) = A, q(A,B, f) = B,

in other words, these are the forgetful functors. We define a transformation of
functors ψ : F ◦ p → G ◦ q. On the object ξ = (A,B, f) it is given by ψξ = f :
F (p(ξ)) = F (A)→ G(B) = G(q(ξ)).

Lemma 4.31.4.02X9 In the (2, 1)-category of categories 2-fibre products exist and are
given by the construction of Example 4.31.3.

Proof. Let us check the universal property: let W be a category, let a : W → A
and b :W → B be functors, and let t : F ◦a→ G◦ b be an isomorphism of functors.

Consider the functor γ : W → A ×C B given by W 7→ (a(W ), b(W ), tW ). (Check
this is a functor omitted.) Moreover, consider α : a → p ◦ γ and β : b → q ◦ γ
obtained from the identities p ◦ γ = a and q ◦ γ = b. Then it is clear that (γ, α, β)
is a morphism from (W,a, b, t) to (A×C B, p, q, ψ).

Let (k, α′, β′) : (W,a, b, t) → (A ×C B, p, q, ψ) be a second such morphism. For an
objectW ofW let us write k(W ) = (ak(W ), bk(W ), tk,W ). Hence p(k(W )) = ak(W )
and so on. The map α′ corresponds to functorial maps α′ : a(W ) → ak(W ).
Since we are working in the (2, 1)-category of categories, in fact each of the maps
a(W ) → ak(W ) is an isomorphism. We can use these (and their counterparts
b(W )→ bk(W )) to get isomorphisms

δW : γ(W ) = (a(W ), b(W ), tW ) −→ (ak(W ), bk(W ), tk,W ) = k(W ).

It is straightforward to show that δ defines a 2-isomorphism between γ and k in
the 2-category of 2-commutative diagrams as desired. □

Remark 4.31.5.06RL Let A, B, and C be categories. Let F : A → C and G : B → C
be functors. Another, slightly more symmetrical, construction of a 2-fibre product
A ×C B is as follows. An object is a quintuple (A,B,C, a, b) where A,B,C are
objects of A,B, C and where a : F (A) → C and b : G(B) → C are isomorphisms.
A morphism (A,B,C, a, b) → (A′, B′, C ′, a′, b′) is given by a triple of morphisms
A→ A′, B → B′, C → C ′ compatible with the morphisms a, b, a′, b′. We can prove
directly that this leads to a 2-fibre product. However, it is easier to observe that
the functor (A,B,C, a, b) 7→ (A,B, b−1 ◦ a) gives an equivalence from the category
of quintuples to the category constructed in Example 4.31.3.

https://stacks.math.columbia.edu/tag/02X9
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Lemma 4.31.6.02XA Let
Y

I

��

K

��
X H //

L

  

Z
M

��

B

G
��

A F // C
be a 2-commutative diagram of categories. A choice of isomorphisms α : G ◦K →
M ◦ I and β : M ◦H → F ◦ L determines a morphism

X ×Z Y −→ A×C B

of 2-fibre products associated to this situation.

Proof. Just use the functor
(X,Y, ϕ) 7−→ (L(X),K(Y ), α−1

Y ◦M(ϕ) ◦ β−1
X )

on objects and
(a, b) 7−→ (L(a),K(b))

on morphisms. □

Lemma 4.31.7.02XB Assumptions as in Lemma 4.31.6.
(1) If K and L are faithful then the morphism X ×Z Y → A×C B is faithful.
(2) If K and L are fully faithful and M is faithful then the morphism X ×Z
Y → A×C B is fully faithful.

(3) If K and L are equivalences and M is fully faithful then the morphism
X ×Z Y → A×C B is an equivalence.

Proof. Let (X,Y, ϕ) and (X ′, Y ′, ϕ′) be objects of X ×Z Y. Set Z = H(X) and
identify it with I(Y ) via ϕ. Also, identify M(Z) with F (L(X)) via αX and identify
M(Z) with G(K(Y )) via βY . Similarly for Z ′ = H(X ′) and M(Z ′). The map on
morphisms is the map

MorX (X,X ′)×MorZ (Z,Z′) MorY(Y, Y ′)

��
MorA(L(X), L(X ′))×MorC(M(Z),M(Z′)) MorB(K(Y ),K(Y ′))

Hence parts (1) and (2) follow. Moreover, if K and L are equivalences and M is
fully faithful, then any object (A,B, ϕ) is in the essential image for the following
reasons: Pick X, Y such that L(X) ∼= A and K(Y ) ∼= B. Then the fully faithfulness
of M guarantees that we can find an isomorphism H(X) ∼= I(Y ). Some details
omitted. □

Lemma 4.31.8.02XC Let

A

��

C

�� ��

E

��
B D

https://stacks.math.columbia.edu/tag/02XA
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be a diagram of categories and functors. Then there is a canonical isomorphism
(A×B C)×D E ∼= A×B (C ×D E)

of categories.

Proof. Just use the functor
((A,C, ϕ), E, ψ) 7−→ (A, (C,E, ψ), ϕ)

if you know what I mean. □

Henceforth we do not write the parentheses when dealing with fibre products of
more than 2 categories.

Lemma 4.31.9.04S7 Let

A

��

C

��   

E

��
B

F ��

D

G~~
F

be a commutative diagram of categories and functors. Then there is a canonical
functor

pr02 : A×B C ×D E −→ A×F E
of categories.

Proof. If we write A×B C ×D E as (A×B C)×D E then we can just use the functor
((A,C, ϕ), E, ψ) 7−→ (A,E,G(ψ) ◦ F (ϕ))

if you know what I mean. □

Lemma 4.31.10.02XD Let
A → B ← C ← D

be a diagram of categories and functors. Then there is a canonical isomorphism
A×B C ×C D ∼= A×B D

of categories.

Proof. Omitted. □

We claim that this means you can work with these 2-fibre products just like with
ordinary fibre products. Here are some further lemmas that actually come up later.

Lemma 4.31.11.02XE Let
C3 //

��

S

∆
��

C1 × C2
G1×G2 // S × S

be a 2-fibre product of categories. Then there is a canonical isomorphism C3 ∼=
C1 ×G1,S,G2 C2.

https://stacks.math.columbia.edu/tag/04S7
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Proof. We may assume that C3 is the category (C1 × C2) ×S×S S constructed in
Example 4.31.3. Hence an object is a triple ((X1, X2), S, ϕ) where ϕ = (ϕ1, ϕ2) :
(G1(X1), G2(X2)) → (S, S) is an isomorphism. Thus we can associate to this the
triple (X1, X2, ϕ

−1
2 ◦ ϕ1). Conversely, if (X1, X2, ψ) is an object of C1 ×G1,S,G2 C2,

then we can associate to this the triple ((X1, X2), G2(X2), (ψ, idG2(X2))). We claim
these constructions given mutually inverse functors. We omit describing how to
deal with morphisms and showing they are mutually inverse. □

Lemma 4.31.12.02XF Let
C′ //

��

S

∆
��

C G1×G2// S × S
be a 2-fibre product of categories. Then there is a canonical isomorphism

C′ ∼= (C ×G1,S,G2 C)×(p,q),C×C,∆ C.
Proof. An object of the right hand side is given by ((C1, C2, ϕ), C3, ψ) where ϕ :
G1(C1)→ G2(C2) is an isomorphism and ψ = (ψ1, ψ2) : (C1, C2)→ (C3, C3) is an
isomorphism. Hence we can associate to this the triple (C3, G1(C1), (G1(ψ−1

1 ), ϕ−1◦
G2(ψ−1

2 ))) which is an object of C′. Details omitted. □

Lemma 4.31.13.04Z1 Let A → C, B → C and C → D be functors between categories.
Then the diagram

A×C B

��

// A×D B

��
C

∆C/D //// C ×D C
is a 2-fibre product diagram.
Proof. Omitted. □

Lemma 4.31.14.04YR Let
U

��

// V

��
X // Y

be a 2-fibre product of categories. Then the diagram
U

��

// U ×V U

��
X // X ×Y X

is 2-cartesian.
Proof. This is a purely 2-category theoretic statement, valid in any (2, 1)-category
with 2-fibre products. Explicitly, it follows from the following chain of equivalences:

X ×(X ×Y X ) (U ×V U) = X ×(X ×Y X ) ((X ×Y V)×V (X ×Y V))
= X ×(X ×Y X ) (X ×Y X ×Y V)
= X ×Y V = U

https://stacks.math.columbia.edu/tag/02XF
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see Lemmas 4.31.8 and 4.31.10. □

4.32. Categories over categories

02XG In this section we have a functor p : S → C. We think of S as being on top and of
C as being at the bottom. To make sure that everybody knows what we are talking
about we define the 2-category of categories over C.

Definition 4.32.1.003Y Let C be a category. The 2-category of categories over C is the
2-category defined as follows:

(1) Its objects will be functors p : S → C.
(2) Its 1-morphisms (S, p) → (S ′, p′) will be functors G : S → S ′ such that

p′ ◦G = p.
(3) Its 2-morphisms t : G→ H for G,H : (S, p)→ (S ′, p′) will be morphisms

of functors such that p′(tx) = idp(x) for all x ∈ Ob(S).
In this situation we will denote

MorCat/C(S,S ′)
the category of 1-morphisms between (S, p) and (S ′, p′)

In this 2-category we define horizontal and vertical composition exactly as is done
for Cat in Section 4.28. The axioms of a 2-category are satisfied for the same reason
that the hold in Cat. To see this one can also use that the axioms hold in Cat and
verify things such as “vertical composition of 2-morphisms over C gives another
2-morphism over C”. This is clear.
Analogously to the fibre of a map of spaces, we have the notion of a fibre category,
and some notions of lifting associated to this situation.

Definition 4.32.2.02XH Let C be a category. Let p : S → C be a category over C.
(1) The fibre category over an object U ∈ Ob(C) is the category SU with

objects
Ob(SU ) = {x ∈ Ob(S) : p(x) = U}

and morphisms
MorSU (x, y) = {ϕ ∈ MorS(x, y) : p(ϕ) = idU}.

(2) A lift of an object U ∈ Ob(C) is an object x ∈ Ob(S) such that p(x) = U ,
i.e., x ∈ Ob(SU ). We will also sometime say that x lies over U .

(3) Similarly, a lift of a morphism f : V → U in C is a morphism ϕ : y → x in
S such that p(ϕ) = f . We sometimes say that ϕ lies over f .

There are some observations we could make here. For example if F : (S, p) →
(S ′, p′) is a 1-morphism of categories over C, then F induces functors of fibre cate-
gories F : SU → S ′

U . Similarly for 2-morphisms.
Here is the obligatory lemma describing the 2-fibre product in the (2, 1)-category
of categories over C.

Lemma 4.32.3.0040 Let C be a category. The (2, 1)-category of categories over C has
2-fibre products. Suppose that F : X → S and G : Y → S are morphisms of
categories over C. An explicit 2-fibre product X ×S Y is given by the following
description

https://stacks.math.columbia.edu/tag/003Y
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(1) an object of X ×S Y is a quadruple (U, x, y, f), where U ∈ Ob(C), x ∈
Ob(XU ), y ∈ Ob(YU ), and f : F (x)→ G(y) is an isomorphism in SU ,

(2) a morphism (U, x, y, f) → (U ′, x′, y′, f ′) is given by a pair (a, b), where
a : x → x′ is a morphism in X , and b : y → y′ is a morphism in Y such
that
(a) a and b induce the same morphism U → U ′, and
(b) the diagram

F (x) f //

F (a)
��

G(y)

G(b)
��

F (x′) f ′
// G(y′)

is commutative.
The functors p : X ×S Y → X and q : X ×S Y → Y are the forgetful functors in this
case. The transformation ψ : F ◦ p → G ◦ q is given on the object ξ = (U, x, y, f)
by ψξ = f : F (p(ξ)) = F (x)→ G(y) = G(q(ξ)).

Proof. Let us check the universal property: let pW :W → C be a category over C,
let X : W → X and Y : W → Y be functors over C, and let t : F ◦ X → G ◦ Y
be an isomorphism of functors over C. The desired functor γ : W → X ×S Y is
given by W 7→ (pW(W ), X(W ), Y (W ), tW ). Details omitted; compare with Lemma
4.31.4. □

Example 4.32.4.0H2D The constructions of 2-fibre products of categories over categories
given in Lemma 4.32.3 and of categories in Lemma 4.31.4 (as in Example 4.31.3)
produce non-equivalent outputs in general. Namely, let S be the groupoid category
with one object and two arrows, and let X be the discrete category with one object.
Taking the 2-fibre product X ×S X as categories yields the discrete category with
two objects. However, if we view all of these as categories over S, the 2-fiber
product X ×S X as categories over S is the discrete category with one object. The
difference is that (in the notation of Lemma 4.32.3), we were allowed to choose any
comparison isomorphism f in the first situation, but could only choose the identity
arrow in the second situation.

Lemma 4.32.5.02XI Let C be a category. Let f : X → S and g : Y → S be morphisms
of categories over C. For any object U of C we have the following identity of fibre
categories

(X ×S Y)U = XU ×SU YU

Proof. Omitted. □

4.33. Fibred categories

02XJ A very brief discussion of fibred categories is warranted.

Let p : S → C be a category over C. Given an object x ∈ S with p(x) = U , and
given a morphism f : V → U , we can try to take some kind of “fibre product
V ×U x” (or a base change of x via V → U). Namely, a morphism from an object
z ∈ S into “V ×U x” should be given by a pair (φ, g), where φ : z → x, g : p(z)→ V

https://stacks.math.columbia.edu/tag/0H2D
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such that p(φ) = f ◦ g. Pictorially:

z

p

��

? //

p

��

x

p

��
p(z) // V

f // U

If such a morphism V ×U x → x exists then it is called a strongly cartesian mor-
phism.

Definition 4.33.1.02XK Let C be a category. Let p : S → C be a category over C. A
strongly cartesian morphism, or more precisely a strongly C-cartesian morphism is
a morphism φ : y → x of S such that for every z ∈ Ob(S) the map

MorS(z, y) −→ MorS(z, x)×MorC(p(z),p(x)) MorC(p(z), p(y)),

given by ψ 7−→ (φ ◦ ψ, p(ψ)) is bijective.

Note that by the Yoneda Lemma 4.3.5, given x ∈ Ob(S) lying over U ∈ Ob(C) and
the morphism f : V → U of C, if there is a strongly cartesian morphism φ : y → x
with p(φ) = f , then (y, φ) is unique up to unique isomorphism. This is clear from
the definition above, as the functor

z 7−→ MorS(z, x)×MorC(p(z),U) MorC(p(z), V )

only depends on the data (x, U, f : V → U). Hence we will sometimes use V ×U x→
x or f∗x→ x to denote a strongly cartesian morphism which is a lift of f .

Lemma 4.33.2.02XL Let C be a category. Let p : S → C be a category over C.
(1) The composition of two strongly cartesian morphisms is strongly cartesian.
(2) Any isomorphism of S is strongly cartesian.
(3) Any strongly cartesian morphism φ such that p(φ) is an isomorphism, is

an isomorphism.

Proof. Proof of (1). Let φ : y → x and ψ : z → y be strongly cartesian. Let t be
an arbitrary object of S. Then we have

MorS(t, z)
= MorS(t, y)×MorC(p(t),p(y)) MorC(p(t), p(z))
= MorS(t, x)×MorC(p(t),p(x)) MorC(p(t), p(y))×MorC(p(t),p(y)) MorC(p(t), p(z))
= MorS(t, x)×MorC(p(t),p(x)) MorC(p(t), p(z))

hence z → x is strongly cartesian.

Proof of (2). Let y → x be an isomorphism. Then p(y) → p(x) is an isomor-
phism too. Hence MorC(p(z), p(y)) → MorC(p(z), p(x)) is a bijection. Hence
MorS(z, x) ×MorC(p(z),p(x)) MorC(p(z), p(y)) is bijective to MorS(z, x). Hence the
displayed map of Definition 4.33.1 is a bijection as y → x is an isomorphism, and
we conclude that y → x is strongly cartesian.

Proof of (3). Assume φ : y → x is strongly cartesian with p(φ) : p(y) → p(x) an
isomorphism. Applying the definition with z = x shows that (idx, p(φ)−1) comes
from a unique morphism χ : x→ y. We omit the verification that χ is the inverse
of φ. □

https://stacks.math.columbia.edu/tag/02XK
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Lemma 4.33.3.09WU Let F : A → B and G : B → C be composable functors between
categories. Let x → y be a morphism of A. If x → y is strongly B-cartesian and
F (x)→ F (y) is strongly C-cartesian, then x→ y is strongly C-cartesian.

Proof. This follows directly from the definition. □

Lemma 4.33.4.06N4 Let C be a category. Let p : S → C be a category over C. Let
x→ y and z → y be morphisms of S. Assume

(1) x→ y is strongly cartesian,
(2) p(x)×p(y) p(z) exists, and
(3) there exists a strongly cartesian morphism a : w → z in S with p(w) =

p(x)×p(y) p(z) and p(a) = pr2 : p(x)×p(y) p(z)→ p(z).
Then the fibre product x×y z exists and is isomorphic to w.

Proof. Since x→ y is strongly cartesian there exists a unique morphism b : w → x
such that p(b) = pr1. To see that w is the fibre product we compute

MorS(t, w)
= MorS(t, z)×MorC(p(t),p(z)) MorC(p(t), p(w))
= MorS(t, z)×MorC(p(t),p(z)) (MorC(p(t), p(x))×MorC(p(t),p(y)) MorC(p(t), p(z)))
= MorS(t, z)×MorC(p(t),p(y)) MorC(p(t), p(x))
= MorS(t, z)×MorS (t,y) MorS(t, y)×MorC(p(t),p(y)) MorC(p(t), p(x))
= MorS(t, z)×MorS (t,y) MorS(t, x)

as desired. The first equality holds because a : w → z is strongly cartesian and the
last equality holds because x→ y is strongly cartesian. □

Definition 4.33.5.02XM Let C be a category. Let p : S → C be a category over C. We
say S is a fibred category over C if given any x ∈ Ob(S) lying over U ∈ Ob(C) and
any morphism f : V → U of C, there exists a strongly cartesian morphism f∗x→ x
lying over f .

Assume p : S → C is a fibred category. For every f : V → U and x ∈ Ob(SU )
as in the definition we may choose a strongly cartesian morphism f∗x → x lying
over f . By the axiom of choice we may choose f∗x → x for all f : V → U = p(x)
simultaneously. We claim that for every morphism ϕ : x→ x′ in SU and f : V → U
there is a unique morphism f∗ϕ : f∗x→ f∗x′ in SV such that

f∗x
f∗ϕ
//

��

f∗x′

��
x

ϕ // x′

commutes. Namely, the arrow exists and is unique because f∗x′ → x′ is strongly
cartesian. The uniqueness of this arrow guarantees that f∗ (now also defined on
morphisms) is a functor f∗ : SU → SV .

Definition 4.33.6.02XN Assume p : S → C is a fibred category.
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(1) A choice of pullbacks7 for p : S → C is given by a choice of a strongly
cartesian morphism f∗x → x lying over f for any morphism f : V → U
of C and any x ∈ Ob(SU ).

(2) Given a choice of pullbacks, for any morphism f : V → U of C the functor
f∗ : SU → SV described above is called a pullback functor (associated to
the choices f∗x→ x made above).

Of course we may always assume our choice of pullbacks has the property that
id∗
Ux = x, although in practice this is a useless property without imposing further

assumptions on the pullbacks.

Lemma 4.33.7.02XO Assume p : S → C is a fibred category. Assume given a choice of
pullbacks for p : S → C.

(1) For any pair of composable morphisms f : V → U , g : W → V there is a
unique isomorphism

αg,f : (f ◦ g)∗ −→ g∗ ◦ f∗

as functors SU → SW such that for every y ∈ Ob(SU ) the following
diagram commutes

g∗f∗y // f∗y

��
(f ◦ g)∗y //

(αg,f )y

OO

y

(2) If f = idU , then there is a canonical isomorphism αU : id → (idU )∗ as
functors SU → SU .

(3) The quadruple (U 7→ SU , f 7→ f∗, αg,f , αU ) defines a pseudo functor from
Copp to the (2, 1)-category of categories, see Definition 4.29.5.

Proof. In fact, it is clear that the commutative diagram of part (1) uniquely de-
termines the morphism (αg,f )y in the fibre category SW . It is an isomorphism
since both the morphism (f ◦ g)∗y → y and the composition g∗f∗y → f∗y → y
are strongly cartesian morphisms lifting f ◦ g (see discussion following Defini-
tion 4.33.1 and Lemma 4.33.2). In the same way, since idx : x → x is clearly
strongly cartesian over idU (with U = p(x)) we see that there exists an isomor-
phism (αU )x : x → (idU )∗x. (Of course we could have assumed beforehand that
f∗x = x whenever f is an identity morphism, but it is better for the sake of gen-
erality not to assume this.) We omit the verification that αg,f and αU so obtained
are transformations of functors. We also omit the verification of (3). □

Lemma 4.33.8.042G Let C be a category. Let S1, S2 be categories over C. Suppose that
S1 and S2 are equivalent as categories over C. Then S1 is fibred over C if and only
if S2 is fibred over C.

Proof. Denote pi : Si → C the given functors. Let F : S1 → S2, G : S2 → S1 be
functors over C, and let i : F ◦ G → idS2 , j : G ◦ F → idS1 be isomorphisms of
functors over C. We claim that in this case F maps strongly cartesian morphisms to

7This is probably nonstandard terminology. In some texts this is called a “cleavage” but
it conjures up the wrong image. Maybe a “cleaving” would be a better word. A related notion
is that of a “splitting”, but in many texts a “splitting” means a choice of pullbacks such that
g∗f∗ = (f ◦ g)∗ for any composable pair of morphisms. Compare also with Definition 4.36.2.
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strongly cartesian morphisms. Namely, suppose that φ : y → x is strongly cartesian
in S1. Set f : V → U equal to p1(φ). Suppose that z′ ∈ Ob(S2), with W = p2(z′),
and we are given g : W → V and ψ′ : z′ → F (x) such that p2(ψ′) = f ◦ g. Then

ψ = j ◦G(ψ′) : G(z′)→ G(F (x))→ x

is a morphism in S1 with p1(ψ) = f ◦ g. Hence by assumption there exists a unique
morphism ξ : G(z′) → y lying over g such that ψ = φ ◦ ξ. This in turn gives a
morphism

ξ′ = F (ξ) ◦ i−1 : z′ → F (G(z′))→ F (y)
lying over g with ψ′ = F (φ) ◦ ξ′. We omit the verification that ξ′ is unique. □

The conclusion from Lemma 4.33.8 is that equivalences map strongly cartesian
morphisms to strongly cartesian morphisms. But this may not be the case for an
arbitrary functor between fibred categories over C. Hence we define the 2-category
of fibred categories as follows.

Definition 4.33.9.02XP Let C be a category. The 2-category of fibred categories over C
is the sub 2-category of the 2-category of categories over C (see Definition 4.32.1)
defined as follows:

(1) Its objects will be fibred categories p : S → C.
(2) Its 1-morphisms (S, p) → (S ′, p′) will be functors G : S → S ′ such that

p′ ◦G = p and such that G maps strongly cartesian morphisms to strongly
cartesian morphisms.

(3) Its 2-morphisms t : G→ H for G,H : (S, p)→ (S ′, p′) will be morphisms
of functors such that p′(tx) = idp(x) for all x ∈ Ob(S).

In this situation we will denote
MorFib/C(S,S ′)

the category of 1-morphisms between (S, p) and (S ′, p′)

Note the condition on 1-morphisms. Note also that this is a true 2-category and not
a (2, 1)-category. Hence when taking 2-fibre products we first pass to the associated
(2, 1)-category.

Lemma 4.33.10.02XQ Let C be a category. The (2, 1)-category of fibred categories over
C has 2-fibre products, and they are described as in Lemma 4.32.3.

Proof. Basically what one has to show here is that given F : X → S and G : Y → S
morphisms of fibred categories over C, then the category X×SY described in Lemma
4.32.3 is fibred. Let us show that X×SY has plenty of strongly cartesian morphisms.
Namely, suppose we have (U, x, y, ϕ) an object of X ×S Y. And suppose f : V → U
is a morphism in C. Choose strongly cartesian morphisms a : f∗x → x in X lying
over f and b : f∗y → y in Y lying over f . By assumption F (a) and G(b) are strongly
cartesian. Since ϕ : F (x)→ G(y) is an isomorphism, by the uniqueness of strongly
cartesian morphisms we find a unique isomorphism f∗ϕ : F (f∗x) → G(f∗y) such
that G(b) ◦ f∗ϕ = ϕ ◦ F (a). In other words (a, b) : (V, f∗x, f∗y, f∗ϕ)→ (U, x, y, ϕ)
is a morphism in X ×S Y. We omit the verification that this is a strongly cartesian
morphism (and that these are in fact the only strongly cartesian morphisms). □

Lemma 4.33.11.02XR Let C be a category. Let U ∈ Ob(C). If p : S → C is a fibred
category and p factors through p′ : S → C/U then p′ : S → C/U is a fibred category.
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Proof. Suppose that φ : x′ → x is strongly cartesian with respect to p. We claim
that φ is strongly cartesian with respect to p′ also. Set g = p′(φ), so that g :
V ′/U → V/U for some morphisms f : V → U and f ′ : V ′ → U . Let z ∈ Ob(S).
Set p′(z) = (W → U). To show that φ is strongly cartesian for p′ we have to show

MorS(z, x′) −→ MorS(z, x)×MorC/U (W/U,V/U) MorC/U (W/U, V ′/U),
given by ψ′ 7−→ (φ ◦ ψ′, p′(ψ′)) is bijective. Suppose given an element (ψ, h) of
the right hand side, then in particular g ◦ h = p(ψ), and by the condition that φ
is strongly cartesian we get a unique morphism ψ′ : z → x′ with ψ = φ ◦ ψ′ and
p(ψ′) = h. OK, and now p′(ψ′) : W/U → V/U is a morphism whose corresponding
map W → V is h, hence equal to h as a morphism in C/U . Thus ψ′ is a unique
morphism z → x′ which maps to the given pair (ψ, h). This proves the claim.
Finally, suppose given g : V ′/U → V/U and x with p′(x) = V/U . Since p : S → C is
a fibred category we see there exists a strongly cartesian morphism φ : x′ → x with
p(φ) = g. By the same argument as above it follows that p′(φ) = g : V ′/U → V/U .
And as seen above the morphism φ is strongly cartesian. Thus the conditions of
Definition 4.33.5 are satisfied and we win. □

Lemma 4.33.12.09WV Let A → B → C be functors between categories. If A is fibred
over B and B is fibred over C, then A is fibred over C.

Proof. This follows from the definitions and Lemma 4.33.3. □

Lemma 4.33.13.06N5 Let p : S → C be a fibred category. Let x → y and z → y be
morphisms of S with x→ y strongly cartesian. If p(x)×p(y) p(z) exists, then x×y z
exists, p(x×y z) = p(x)×p(y) p(z), and x×y z → z is strongly cartesian.

Proof. Pick a strongly cartesian morphism pr∗
2z → z lying over pr2 : p(x) ×p(y)

p(z)→ p(z). Then pr∗
2z = x×y z by Lemma 4.33.4. □

Lemma 4.33.14.08NF Let C be a category. Let F : X → Y be a 1-morphism of fibred
categories over C. There exist 1-morphisms of fibred categories over C

X
u // X ′ v //
w
oo Y

such that F = v ◦ u and such that
(1) u : X → X ′ is fully faithful,
(2) w is left adjoint to u, and
(3) v : X ′ → Y is a fibred category.

Proof. Denote p : X → C and q : Y → C the structure functors. We construct
X ′ explicitly as follows. An object of X ′ is a quadruple (U, x, y, f) where x ∈
Ob(XU ), y ∈ Ob(YU ) and f : y → F (x) is a morphism in YU . A morphism
(a, b) : (U, x, y, f) → (U ′, x′, y′, f ′) is given by a : x → x′ and b : y → y′ with
p(a) = q(b) : U → U ′ and such that f ′ ◦ b = F (a) ◦ f .
Let us make a choice of pullbacks for both p and q and let us use the same notation
to indicate them. Let (U, x, y, f) be an object and let h : V → U be a morphism.
Consider the morphism c : (V, h∗x, h∗y, h∗f) → (U, x, y, f) coming from the given
strongly cartesian maps h∗x→ x and h∗y → y. We claim c is strongly cartesian in
X ′ over C. Namely, suppose we are given an object (W,x′, y′, f ′) of X ′, a morphism
(a, b) : (W,x′, y′, f ′) → (U, x, y, f) lying over W → U , and a factorization W →
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V → U of W → U through h. As h∗x→ x and h∗y → y are strongly cartesian we
obtain morphisms a′ : x′ → h∗x and b′ : y′ → h∗y lying over the given morphism
W → V . Consider the diagram

y′

f ′

��

// h∗y //

h∗f

��

y

f

��
F (x′) // F (h∗x) // F (x)

The outer rectangle and the right square commute. Since F is a 1-morphism of
fibred categories the morphism F (h∗x) → F (x) is strongly cartesian. Hence the
left square commutes by the universal property of strongly cartesian morphisms.
This proves that X ′ is fibred over C.
The functor u : X → X ′ is given by x 7→ (p(x), x, F (x), id). This is fully faithful.
The functor X ′ → Y is given by (U, x, y, f) 7→ y. The functor w : X ′ → X is given
by (U, x, y, f) 7→ x. Each of these functors is a 1-morphism of fibred categories over
C by our description of strongly cartesian morphisms of X ′ over C. Adjointness of
w and u means that

MorX (x, x′) = MorX ′((U, x, y, f), (p(x′), x′, F (x′), id)),
which follows immediately from the definitions.
Finally, we have to show that X ′ → Y is a fibred category. Let c : y′ → y be a
morphism in Y and let (U, x, y, f) be an object of X ′ lying over y. Set V = q(y′) and
let h = q(c) : V → U . Let a : h∗x → x and b : h∗y → y be the strongly cartesian
morphisms covering h. Since F is a 1-morphism of fibred categories we may identify
h∗F (x) = F (h∗x) with strongly cartesian morphism F (a) : F (h∗x) → F (x). By
the universal property of b : h∗y → y there is a morphism c′ : y′ → h∗y in YV such
that c = b ◦ c′. We claim that

(a, c) : (V, h∗x, y′, h∗f ◦ c′) −→ (U, x, y, f)
is strongly cartesian in X ′ over Y. To see this let (W,x1, y1, f1) be an object of X ′,
let (a1, b1) : (W,x1, y1, f1)→ (U, x, y, f) be a morphism and let b1 = c ◦ b′

1 for some
morphism b′

1 : y1 → y′. Then
(a′

1, b
′
1) : (W,x1, y1, f1) −→ (V, h∗x, y′, h∗f ◦ c′)

(where a′
1 : x1 → h∗x is the unique morphism lying over the given morphism

q(b′
1) : W → V such that a1 = a ◦ a′

1) is the desired morphism. □

4.34. Inertia

04Z2 Given fibred categories p : S → C and p′ : S ′ → C over a category C and a
1-morphism F : S → S ′ we have the diagonal morphism

∆ = ∆S/S′ : S −→ S ×S′ S
in the (2, 1)-category of fibred categories over C.

Lemma 4.34.1.034H Let C be a category. Let p : S → C and p′ : S ′ → C be fibred
categories. Let F : S → S ′ be a 1-morphism of fibred categories over C. Consider
the category IS/S′ over C whose

(1) objects are pairs (x, α) where x ∈ Ob(S) and α : x → x is an automor-
phism with F (α) = id,
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(2) morphisms (x, α)→ (y, β) are given by morphisms ϕ : x→ y such that
x

ϕ
//

α

��

y

β

��
x

ϕ // y

commutes, and
(3) the functor IS/S′ → C is given by (x, α) 7→ p(x).

Then
(1) there is an equivalence

IS/S′ −→ S ×∆,(S×S′ S),∆ S

in the (2, 1)-category of categories over C, and
(2) IS/S′ is a fibred category over C.

Proof. Note that (2) follows from (1) by Lemmas 4.33.10 and 4.33.8. Thus it suffices
to prove (1). We will use without further mention the construction of the 2-fibre
product from Lemma 4.33.10. In particular an object of S×∆,(S×S′ S),∆S is a triple
(x, y, (ι, κ)) where x and y are objects of S, and (ι, κ) : (x, x, idF (x))→ (y, y, idF (y))
is an isomorphism in S ×S′ S. This just means that ι, κ : x→ y are isomorphisms
and that F (ι) = F (κ). Consider the functor

IS/S′ −→ S ×∆,(S×S′ S),∆ S

which to an object (x, α) of the left hand side assigns the object (x, x, (α, idx)) of
the right hand side and to a morphism ϕ of the left hand side assigns the morphism
(ϕ, ϕ) of the right hand side. We claim that a quasi-inverse to that morphism is
given by the functor

S ×∆,(S×S′ S),∆ S −→ IS/S′

which to an object (x, y, (ι, κ)) of the left hand side assigns the object (x, κ−1 ◦ ι) of
the right hand side and to a morphism (ϕ, ϕ′) : (x, y, (ι, κ)) → (z, w, (λ, µ)) of the
left hand side assigns the morphism ϕ. Indeed, the endo-functor of IS/S′ induced
by composing the two functors above is the identity on the nose, and the endo-
functor induced on S ×∆,(S×S′ S),∆ S is isomorphic to the identity via the natural
isomorphism

(idx, κ) : (x, x, (κ−1 ◦ ι, idx)) −→ (x, y, (ι, κ)).
Some details omitted. □

Definition 4.34.2.034I Let C be a category.
(1) Let F : S → S ′ be a 1-morphism of fibred categories over C. The relative

inertia of S over S ′ is the fibred category IS/S′ → C of Lemma 4.34.1.
(2) By the inertia fibred category IS of S we mean IS = IS/C .

Note that there are canonical 1-morphisms
(4.34.2.1)042H IS/S′ −→ S and IS −→ S
of fibred categories over C. In terms of the description of Lemma 4.34.1 these simply
map the object (x, α) to the object x and the morphism ϕ : (x, α) → (y, β) to the
morphism ϕ : x→ y. There is also a neutral section
(4.34.2.2)04Z3 e : S → IS/S′ and e : S → IS
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defined by the rules x 7→ (x, idx) and (ϕ : x → y) 7→ ϕ. This is a right inverse to
(4.34.2.1). Given a 2-commutative square

S1

F1

��

G
// S2

F2

��
S ′

1
G′
// S ′

2

there are functoriality maps
(4.34.2.3)04Z4 IS1/S′

1
−→ IS2/S′

2
and IS1 −→ IS2

defined by the rules (x, α) 7→ (G(x), G(α)) and ϕ 7→ G(ϕ). In particular there is
always a comparison map
(4.34.2.4)04Z5 IS/S′ −→ IS

and all the maps above are compatible with this.

Lemma 4.34.3.04Z6 Let F : S → S ′ be a 1-morphism of categories fibred over a category
C. Then the diagram

IS/S′

F◦(4.34.2.1)
��

(4.34.2.4)
// IS

(4.34.2.3)
��

S ′ e // IS′

is a 2-fibre product.

Proof. Omitted. □

4.35. Categories fibred in groupoids

003S In this section we explain how to think about categories fibred in groupoids and we
see how they are basically the same as functors with values in the (2, 1)-category
of groupoids.

Definition 4.35.1.003T Let p : S → C be a functor. We say that S is fibred in groupoids
over C if the following two conditions hold:

(1) For every morphism f : V → U in C and every lift x of U there is a lift
ϕ : y → x of f with target x.

(2) For every pair of morphisms ϕ : y → x and ψ : z → x and any morphism
f : p(z) → p(y) such that p(ϕ) ◦ f = p(ψ) there exists a unique lift
χ : z → y of f such that ϕ ◦ χ = ψ.

Condition (2) phrased differently says that applying the functor p gives a bijection
between the sets of dotted arrows in the following commutative diagram below:

y // x p(y) // p(x)

z

OO AA

p(z)

OO <<

Another way to think about the second condition is the following. Suppose that
g : W → V and f : V → U are morphisms in C. Let x ∈ Ob(SU ). By the first
condition we can lift f to ϕ : y → x and then we can lift g to ψ : z → y. Instead of
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doing this two step process we can directly lift g ◦ f to γ : z′ → x. This gives the
solid arrows in the diagram

(4.35.1.1)03WP

z′

��

γ

''
z

OO

ψ //

p

��

y
ϕ //

p

��

x

p

��
W

g // V
f // U

where the squiggly arrows represent not morphisms but the functor p. Applying
the second condition to the arrows ϕ ◦ ψ, γ and idW we conclude that there is a
unique morphism χ : z → z′ in SW such that γ ◦ χ = ϕ ◦ ψ. Similarly there is a
unique morphism z′ → z. The uniqueness implies that the morphisms z′ → z and
z → z′ are mutually inverse, in other words isomorphisms.

It should be clear from this discussion that a category fibred in groupoids is very
closely related to a fibred category. Here is the result.

Lemma 4.35.2.003V Let p : S → C be a functor. The following are equivalent
(1) p : S → C is a category fibred in groupoids, and
(2) all fibre categories are groupoids and S is a fibred category over C.

Moreover, in this case every morphism of S is strongly cartesian. In addition, given
f∗x→ x lying over f for all f : V → U = p(x) the data (U 7→ SU , f 7→ f∗, αf,g, αU )
constructed in Lemma 4.33.7 defines a pseudo functor from Copp in to the (2, 1)-
category of groupoids.

Proof. Assume p : S → C is fibred in groupoids. To show all fibre categories SU
for U ∈ Ob(C) are groupoids, we must exhibit for every f : y → x in SU an inverse
morphism. The diagram on the left (in SU ) is mapped by p to the diagram on the
right:

y
f // x U

idU // U

x

OO

idx

@@

U

OO

idU

??

Since only idU makes the diagram on the right commute, there is a unique g : x→ y
making the diagram on the left commute, so fg = idx. By a similar argument there
is a unique h : y → x so that gh = idy. Then fgh = f : y → x. We have fg = idx,
so h = f . Condition (2) of Definition 4.35.1 says exactly that every morphism of
S is strongly cartesian. Hence condition (1) of Definition 4.35.1 implies that S is a
fibred category over C.

Conversely, assume all fibre categories are groupoids and S is a fibred category
over C. We have to check conditions (1) and (2) of Definition 4.35.1. The first
condition follows trivially. Let ϕ : y → x, ψ : z → x and f : p(z) → p(y) such
that p(ϕ) ◦ f = p(ψ) be as in condition (2) of Definition 4.35.1. Write U = p(x),
V = p(y), W = p(z), p(ϕ) = g : V → U , p(ψ) = h : W → U . Choose a strongly
cartesian g∗x→ x lying over g. Then we get a morphism i : y → g∗x in SV , which
is therefore an isomorphism. We also get a morphism j : z → g∗x corresponding to
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the pair (ψ, f) as g∗x→ x is strongly cartesian. Then one checks that χ = i−1 ◦ j
is a solution.

We have seen in the proof of (1) ⇒ (2) that every morphism of S is strongly
cartesian. The final statement follows directly from Lemma 4.33.7. □

Lemma 4.35.3.03WQ Let C be a category. Let p : S → C be a fibred category. Let S ′ be
the subcategory of S defined as follows

(1) Ob(S ′) = Ob(S), and
(2) for x, y ∈ Ob(S ′) the set of morphisms between x and y in S ′ is the set of

strongly cartesian morphisms between x and y in S.
Let p′ : S ′ → C be the restriction of p to S ′. Then p′ : S ′ → C is fibred in groupoids.

Proof. Note that the construction makes sense since by Lemma 4.33.2 the identity
morphism of any object of S is strongly cartesian, and the composition of strongly
cartesian morphisms is strongly cartesian. The first lifting property of Definition
4.35.1 follows from the condition that in a fibred category given any morphism
f : V → U and x lying over U there exists a strongly cartesian morphism φ : y → x
lying over f . Let us check the second lifting property of Definition 4.35.1 for the
category p′ : S ′ → C over C. To do this we argue as in the discussion following
Definition 4.35.1. Thus in Diagram 4.35.1.1 the morphisms ϕ, ψ and γ are strongly
cartesian morphisms of S. Hence γ and ϕ◦ψ are strongly cartesian morphisms of S
lying over the same arrow of C and having the same target in S. By the discussion
following Definition 4.33.1 this means these two arrows are isomorphic as desired
(here we use also that any isomorphism in S is strongly cartesian, by Lemma 4.33.2
again). □

Example 4.35.4.003U A homomorphism of groups p : G → H gives rise to a functor
p : S → C as in Example 4.2.12. This functor p : S → C is fibred in groupoids if and
only if p is surjective. The fibre category SU over the (unique) object U ∈ Ob(C)
is the category associated to the kernel of p as in Example 4.2.6.

Given p : S → C, we can ask: if the fibre category SU is a groupoid for all U ∈
Ob(C), must S be fibred in groupoids over C? We can see the answer is no as follows.
Start with a category fibred in groupoids p : S → C. Altering the morphisms in
S which do not map to the identity morphism on some object does not alter the
categories SU . Hence we can violate the existence and uniqueness conditions on lifts.
One example is the functor from Example 4.35.4 when G → H is not surjective.
Here is another example.

Example 4.35.5.02C4 Let Ob(C) = {A,B, T} and MorC(A,B) = {f}, MorC(B, T ) =
{g}, MorC(A, T ) = {h} = {gf}, plus the identity morphism for each object. See
the diagram below for a picture of this category. Now let Ob(S) = {A′, B′, T ′}
and MorS(A′, B′) = ∅, MorS(B′, T ′) = {g′}, MorS(A′, T ′) = {h′}, plus the identity
morphisms. The functor p : S → C is obvious. Then for every U ∈ Ob(C), SU
is the category with one object and the identity morphism on that object, so a
groupoid, but the morphism f : A → B cannot be lifted. Similarly, if we declare
MorS(A′, B′) = {f ′

1, f
′
2} and MorS(A′, T ′) = {h′} = {g′f ′

1} = {g′f ′
2}, then the fibre
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categories are the same and f : A→ B in the diagram below has two lifts.

B′ g′
// T ′ B

g // T

A′

??

OO

h′

>>

above

A

f

OO

gf=h

??

Later we would like to make assertions such as “any category fibred in groupoids
over C is equivalent to a split one”, or “any category fibred in groupoids whose
fibre categories are setlike is equivalent to a category fibred in sets”. The notion of
equivalence depends on the 2-category we are working with.

Definition 4.35.6.02XS Let C be a category. The 2-category of categories fibred in
groupoids over C is the sub 2-category of the 2-category of fibred categories over C
(see Definition 4.33.9) defined as follows:

(1) Its objects will be categories p : S → C fibred in groupoids.
(2) Its 1-morphisms (S, p) → (S ′, p′) will be functors G : S → S ′ such that

p′ ◦ G = p (since every morphism is strongly cartesian G automatically
preserves them).

(3) Its 2-morphisms t : G→ H for G,H : (S, p)→ (S ′, p′) will be morphisms
of functors such that p′(tx) = idp(x) for all x ∈ Ob(S).

Note that every 2-morphism is automatically an isomorphism! Hence this is actually
a (2, 1)-category and not just a 2-category. Here is the obligatory lemma on 2-fibre
products.

Lemma 4.35.7.0041 Let C be a category. The 2-category of categories fibred in groupoids
over C has 2-fibre products, and they are described as in Lemma 4.32.3.

Proof. By Lemma 4.33.10 the fibre product as described in Lemma 4.32.3 is a
fibred category. Hence it suffices to prove that the fibre categories are groupoids,
see Lemma 4.35.2. By Lemma 4.32.5 it is enough to show that the 2-fibre product
of groupoids is a groupoid, which is clear (from the construction in Lemma 4.31.4
for example). □

Remark 4.35.8.0H2E Let C be a category. Let f : X → S and g : Y → S be 1-morphisms
of categories fibred in groupoids over C. Let p : S → C be the given functor. We
claim the 2-fibre product of Lemma 4.35.7 is canonically equivalent (as a category)
to the one in Example 4.31.3. Objects of the former are quadruples (U, x, y, α)
where p(α) = idU (see Lemma 4.32.3) and objects of the latter are triples (x, y, α)
(see Example 4.31.3). The equivalence between the two categories is given by the
rules (U, x, y, α) 7→ (x, y, α) and (x, y, α) 7→ (p(f(x)), x, y′, α′) where α′ = g(γ)−1◦α
and γ : y′ → y is a lift of the arrow p(α) : p(f(x))→ p(g(y)). Details omitted.

Lemma 4.35.9.003Z Let p : S → C and p′ : S ′ → C be categories fibred in groupoids,
and suppose that G : S → S ′ is a functor over C.

(1) Then G is faithful (resp. fully faithful, resp. an equivalence) if and only if
for each U ∈ Ob(C) the induced functor GU : SU → S ′

U is faithful (resp.
fully faithful, resp. an equivalence).

(2) If G is an equivalence, then G is an equivalence in the 2-category of cate-
gories fibred in groupoids over C.

https://stacks.math.columbia.edu/tag/02XS
https://stacks.math.columbia.edu/tag/0041
https://stacks.math.columbia.edu/tag/0H2E
https://stacks.math.columbia.edu/tag/003Z


4.35. CATEGORIES FIBRED IN GROUPOIDS 102

Proof. Let x, y be objects of S lying over the same object U . Consider the commu-
tative diagram

MorS(x, y)

p
''

G
// MorS′(G(x), G(y))

p′
vv

MorC(U,U)

From this diagram it is clear that if G is faithful (resp. fully faithful) then so is
each GU .
Suppose G is an equivalence. For every object x′ of S ′ there exists an object x
of S such that G(x) is isomorphic to x′. Suppose that x′ lies over U ′ and x lies
over U . Then there is an isomorphism f : U ′ → U in C, namely, p′ applied to the
isomorphism x′ → G(x). By the axioms of a category fibred in groupoids there
exists an arrow f∗x → x of S lying over f . Hence there exists an isomorphism
α : x′ → G(f∗x) such that p′(α) = idU ′ (this time by the axioms for S ′). All in all
we conclude that for every object x′ of S ′ we can choose a pair (ox′ , αx′) consisting
of an object ox′ of S and an isomorphism αx′ : x′ → G(ox′) with p′(αx′) = idp′(x′).
From this point on we proceed as usual (see proof of Lemma 4.2.19) to produce an
inverse functor F : S ′ → S, by taking x′ 7→ ox′ and φ′ : x′ → y′ to the unique arrow
φφ′ : ox′ → oy′ with α−1

y′ ◦G(φφ′)◦αx′ = φ′. With these choices F is a functor over
C. We omit the verification that G◦F and F ◦G are 2-isomorphic to the respective
identity functors (in the 2-category of categories fibred in groupoids over C).
Suppose that GU is faithful (resp. fully faithful) for all U ∈ Ob(C). To show that G
is faithful (resp. fully faithful) we have to show for any objects x, y ∈ Ob(S) that G
induces an injection (resp. bijection) between MorS(x, y) and MorS′(G(x), G(y)).
Set U = p(x) and V = p(y). It suffices to prove that G induces an injection (resp.
bijection) between morphism x→ y lying over f to morphisms G(x)→ G(y) lying
over f for any morphism f : U → V . Now fix f : U → V . Denote f∗y → y a
pullback. Then also G(f∗y) → G(y) is a pullback. The set of morphisms from x
to y lying over f is bijective to the set of morphisms between x and f∗y lying over
idU . (By the second axiom of a category fibred in groupoids.) Similarly the set
of morphisms from G(x) to G(y) lying over f is bijective to the set of morphisms
between G(x) and G(f∗y) lying over idU . Hence the fact that GU is faithful (resp.
fully faithful) gives the desired result.
Finally suppose for all GU is an equivalence for all U , so it is fully faithful and
essentially surjective. We have seen this implies G is fully faithful, and thus to
prove it is an equivalence we have to prove that it is essentially surjective. This is
clear, for if z′ ∈ Ob(S ′) then z′ ∈ Ob(S ′

U ) where U = p′(z′). Since GU is essentially
surjective we know that z′ is isomorphic, in S ′

U , to an object of the form GU (z)
for some z ∈ Ob(SU ). But morphisms in S ′

U are morphisms in S ′ and hence z′ is
isomorphic to G(z) in S ′. □

Lemma 4.35.10.04Z7 Let C be a category. Let p : S → C and p′ : S ′ → C be categories
fibred in groupoids. Let G : S → S ′ be a functor over C. Then G is fully faithful if
and only if the diagonal

∆G : S −→ S ×G,S′,G S
is an equivalence.
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Proof. By Lemma 4.35.9 it suffices to look at fibre categories over an object U of
C. An object of the right hand side is a triple (x, x′, α) where α : G(x)→ G(x′) is a
morphism in S ′

U . The functor ∆G maps the object x of SU to the triple (x, x, idG(x)).
Note that (x, x′, α) is in the essential image of ∆G if and only if α = G(β) for some
morphism β : x → x′ in SU (details omitted). Hence in order for ∆G to be an
equivalence, every α has to be the image of a morphism β : x→ x′, and also every
two distinct morphisms β, β′ : x→ x′ have to give distinct morphisms G(β), G(β′).
This proves the lemma. □

Lemma 4.35.11.03YT Let C be a category. Let Si, i = 1, 2, 3, 4 be categories fibred in
groupoids over C. Suppose that φ : S1 → S2 and ψ : S3 → S4 are equivalences over
C. Then

MorCat/C(S2,S3) −→ MorCat/C(S1,S4), α 7−→ ψ ◦ α ◦ φ
is an equivalence of categories.

Proof. This is a generality and holds in any 2-category. □

Lemma 4.35.12.042I Let C be a category. If p : S → C is fibred in groupoids, then so
is the inertia fibred category IS → C.

Proof. Clear from the construction in Lemma 4.34.1 or by using (from the same
lemma) that IS → S ×∆,S×CS,∆ S is an equivalence and appealing to Lemma
4.35.7. □

Lemma 4.35.13.02XT Let C be a category. Let U ∈ Ob(C). If p : S → C is a category
fibred in groupoids and p factors through p′ : S → C/U then p′ : S → C/U is fibred
in groupoids.

Proof. We have already seen in Lemma 4.33.11 that p′ is a fibred category. Hence
it suffices to prove the fibre categories are groupoids, see Lemma 4.35.2. For V ∈
Ob(C) we have

SV =
∐

f :V→U
S(f :V→U)

where the left hand side is the fibre category of p and the right hand side is the
disjoint union of the fibre categories of p′. Hence the result. □

Lemma 4.35.14.09WW Let A → B → C be functors between categories. If A is fibred in
groupoids over B and B is fibred in groupoids over C, then A is fibred in groupoids
over C.

Proof. One can prove this directly from the definition. However, we will argue
using the criterion of Lemma 4.35.2. By Lemma 4.33.12 we see that A is fibred
over C. To finish the proof we show that the fibre category AU is a groupoid for U
in C. Namely, if x→ y is a morphism of AU , then its image in B is an isomorphism
as BU is a groupoid. But then x → y is an isomorphism, for example by Lemma
4.33.2 and the fact that every morphism of A is strongly B-cartesian (see Lemma
4.35.2). □

Lemma 4.35.15.06N6 Let p : S → C be a category fibred in groupoids. Let x → y
and z → y be morphisms of S. If p(x) ×p(y) p(z) exists, then x ×y z exists and
p(x×y z) = p(x)×p(y) p(z).

Proof. Follows from Lemma 4.33.13. □
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Lemma 4.35.16.06N7 Let C be a category. Let F : X → Y be a 1-morphism of cat-
egories fibred in groupoids over C. There exists a factorization X → X ′ → Y
by 1-morphisms of categories fibred in groupoids over C such that X → X ′ is an
equivalence over C and such that X ′ is a category fibred in groupoids over Y.

Proof. Denote p : X → C and q : Y → C the structure functors. We construct
X ′ explicitly as follows. An object of X ′ is a quadruple (U, x, y, f) where x ∈
Ob(XU ), y ∈ Ob(YU ) and f : F (x) → y is an isomorphism in YU . A morphism
(a, b) : (U, x, y, f) → (U ′, x′, y′, f ′) is given by a : x → x′ and b : y → y′ with
p(a) = q(b) and such that f ′ ◦ F (a) = b ◦ f . In other words X ′ = X ×F,Y,id Y with
the construction of the 2-fibre product from Lemma 4.32.3. By Lemma 4.35.7 we
see that X ′ is a category fibred in groupoids over C and that X ′ → Y is a morphism
of categories over C. As functor X → X ′ we take x 7→ (p(x), x, F (x), idF (x)) on
objects and (a : x→ x′) 7→ (a, F (a)) on morphisms. It is clear that the composition
X → X ′ → Y equals F . We omit the verification that X → X ′ is an equivalence of
fibred categories over C.

Finally, we have to show that X ′ → Y is a category fibred in groupoids. Let
b : y′ → y be a morphism in Y and let (U, x, y, f) be an object of X ′ lying over
y. Because X is fibred in groupoids over C we can find a morphism a : x′ → x
lying over U ′ = q(y′) → q(y) = U . Since Y is fibred in groupoids over C and
since both F (x′) → F (x) and y′ → y lie over the same morphism U ′ → U we
can find f ′ : F (x′) → y′ lying over idU ′ such that f ◦ F (a) = b ◦ f ′. Hence
we obtain (a, b) : (U ′, x′, y′, f ′) → (U, x, y, f). This verifies the first condition
(1) of Definition 4.35.1. To see (2) let (a, b) : (U ′, x′, y′, f ′) → (U, x, y, f) and
(a′, b′) : (U ′′, x′′, y′′, f ′′) → (U, x, y, f) be morphisms of X ′ and let b′′ : y′ → y′′

be a morphism of Y such that b′ ◦ b′′ = b. We have to show that there exists
a unique morphism a′′ : x′ → x′′ such that f ′′ ◦ F (a′′) = b′′ ◦ f ′ and such that
(a′, b′) ◦ (a′′, b′′) = (a, b). Because X is fibred in groupoids we know there exists a
unique morphism a′′ : x′ → x′′ such that a′◦a′′ = a and p(a′′) = q(b′′). Because Y is
fibred in groupoids we see that F (a′′) is the unique morphism F (x′)→ F (x′′) such
that F (a′) ◦F (a′′) = F (a) and q(F (a′′)) = q(b′′). The relation f ′′ ◦F (a′′) = b′′ ◦ f ′

follows from this and the given relations f ◦F (a) = b◦f ′ and f ◦F (a′) = b′ ◦f ′′. □

Lemma 4.35.17.06N8 Let C be a category. Let F : X → Y be a 1-morphism of categories
fibred in groupoids over C. Assume we have a 2-commutative diagram

X ′

f   

X
a
oo

F

��

b
// X ′′

g
~~

Y

where a and b are equivalences of categories over C and f and g are categories
fibred in groupoids. Then there exists an equivalence h : X ′′ → X ′ of categories
over Y such that h ◦ b is 2-isomorphic to a as 1-morphisms of categories over C.
If the diagram above actually commutes, then we can arrange it so that h ◦ b is
2-isomorphic to a as 1-morphisms of categories over Y.

Proof. We will show that both X ′ and X ′′ over Y are equivalent to the category
fibred in groupoids X ×F,Y,id Y over Y, see proof of Lemma 4.35.16. Choose a
quasi-inverse b−1 : X ′′ → X in the 2-category of categories over C. Since the right

https://stacks.math.columbia.edu/tag/06N7
https://stacks.math.columbia.edu/tag/06N8


4.36. PRESHEAVES OF CATEGORIES 105

triangle of the diagram is 2-commutative we see that

X

F

��

X ′′
b−1
oo

g

��
Y Yoo

is 2-commutative. Hence we obtain a 1-morphism c : X ′′ → X ×F,Y,id Y by the
universal property of the 2-fibre product. Moreover c is a morphism of categories
over Y (!) and an equivalence (by the assumption that b is an equivalence, see
Lemma 4.31.7). Hence c is an equivalence in the 2-category of categories fibred in
groupoids over Y by Lemma 4.35.9.

We still have to construct a 2-isomorphism between c ◦ b and the functor d : X →
X ×F,Y,id Y, x 7→ (p(x), x, F (x), idF (x)) constructed in the proof of Lemma 4.35.16.
Let α : F → g ◦ b and β : b−1 ◦ b→ id be 2-isomorphisms between 1-morphisms of
categories over C. Note that c ◦ b is given by the rule

x 7→ (p(x), b−1(b(x)), g(b(x)), αx ◦ F (βx))

on objects. Then we see that

(βx, αx) : (p(x), x, F (x), idF (x)) −→ (p(x), b−1(b(x)), g(b(x)), αx ◦ F (βx))

is a functorial isomorphism which gives our 2-morphism d → b ◦ c. Finally, if the
diagram commutes then αx is the identity for all x and we see that this 2-morphism
is a 2-morphism in the 2-category of categories over Y. □

4.36. Presheaves of categories

02XU In this section we compare the notion of fibred categories with the closely related
notion of a “presheaf of categories”. The basic construction is explained in the
following example.

Example 4.36.1.02XV Let C be a category. Suppose that F : Copp → Cat is a functor
to the 2-category of categories, see Definition 4.29.5. For f : V → U in C we will
suggestively write F (f) = f∗ for the functor from F (U) to F (V ). From this we
can construct a fibred category SF over C as follows. Define

Ob(SF ) = {(U, x) | U ∈ Ob(C), x ∈ Ob(F (U))}.

For (U, x), (V, y) ∈ Ob(SF ) we define

MorSF ((V, y), (U, x)) = {(f, ϕ) | f ∈ MorC(V,U), ϕ ∈ MorF (V )(y, f∗x)}

=
∐

f∈MorC(V,U)
MorF (V )(y, f∗x)

In order to define composition we use that g∗◦f∗ = (f ◦g)∗ for a pair of composable
morphisms of C (by definition of a functor into a 2-category). Namely, we define
the composition of ψ : z → g∗y and ϕ : y → f∗x to be g∗(ϕ) ◦ ψ. The functor
pF : SF → C is given by the rule (U, x) 7→ U . Let us check that this is indeed
a fibred category. Given f : V → U in C and (U, x) a lift of U , then we claim

https://stacks.math.columbia.edu/tag/02XV
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(f, idf∗x) : (V, f∗x)→ (U, x) is a strongly cartesian lift of f . We have to show a h
in the diagram on the left determines (h, ν) on the right:

V
f // U (V, f∗x)

(f,idf∗x)// (U, x)

W

h

OO

g

??

(W, z)

(h,ν)

OO

(g,ψ)

::

Just take ν = ψ which works because f ◦ h = g and hence g∗x = h∗f∗x. Moreover,
this is the only lift making the diagram (on the right) commute.

Definition 4.36.2.02XW Let C be a category. Suppose that F : Copp → Cat is a functor to
the 2-category of categories. We will write pF : SF → C for the fibred category con-
structed in Example 4.36.1. A split fibred category is a fibred category isomorphic
(!) over C to one of these categories SF .

Lemma 4.36.3.02XX Let C be a category. Let S be a fibred category over C. Then S is
split if and only if for some choice of pullbacks (see Definition 4.33.6) the pullback
functors (f ◦ g)∗ and g∗ ◦ f∗ are equal.

Proof. This is immediate from the definitions. □

Lemma 4.36.4.004A Let p : S → C be a fibred category. There exists a contravariant
functor F : C → Cat such that S is equivalent to SF in the 2-category of fibred
categories over C. In other words, every fibred category is equivalent to a split one.

Proof. Let us make a choice of pullbacks (see Definition 4.33.6). By Lemma 4.33.7
we get pullback functors f∗ for every morphism f of C.

We construct a new category S ′ as follows. The objects of S ′ are pairs (x, f)
consisting of a morphism f : V → U of C and an object x of S over U , i.e.,
x ∈ Ob(SU ). The functor p′ : S ′ → C will map the pair (x, f) to the source of
the morphism f , in other words p′(x, f : V → U) = V . A morphism φ : (x1, f1 :
V1 → U1) → (x2, f2 : V2 → U2) is given by a pair (φ, g) consisting of a morphism
g : V1 → V2 and a morphism φ : f∗

1x1 → f∗
2x2 with p(φ) = g. It is no problem to

define the composition law: (φ, g)◦ (ψ, h) = (φ◦ψ, g ◦h) for any pair of composable
morphisms. There is a natural functor S → S ′ which simply maps x over U to the
pair (x, idU ).

At this point we need to check that p′ makes S ′ into a fibred category over C,
and we need to check that S → S ′ is an equivalence of categories over C which
maps strongly cartesian morphisms to strongly cartesian morphisms. We omit the
verifications.

Finally, we can define pullback functors on S ′ by setting g∗(x, f) = (x, f ◦ g) on
objects if g : V ′ → V and f : V → U . On morphisms (φ, idV ) : (x1, f1) → (x2, f2)
between morphisms in S ′

V we set g∗(φ, idV ) = (g∗φ, idV ′) where we use the unique
identifications g∗f∗

i xi = (fi◦g)∗xi from Lemma 4.33.7 to think of g∗φ as a morphism
from (f1◦g)∗x1 to (f2◦g)∗x2. Clearly, these pullback functors g∗ have the property
that g∗

1 ◦ g∗
2 = (g2 ◦ g1)∗, in other words S ′ is split as desired. □
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4.37. Presheaves of groupoids

0048 In this section we compare the notion of categories fibred in groupoids with the
closely related notion of a “presheaf of groupoids”. The basic construction is ex-
plained in the following example.
Example 4.37.1.0049 This example is the analogue of Example 4.36.1, for “presheaves
of groupoids” instead of “presheaves of categories”. The output will be a category
fibred in groupoids instead of a fibred category. Suppose that F : Copp → Groupoids
is a functor to the category of groupoids, see Definition 4.29.5. For f : V → U in
C we will suggestively write F (f) = f∗ for the functor from F (U) to F (V ). We
construct a category SF fibred in groupoids over C as follows. Define

Ob(SF ) = {(U, x) | U ∈ Ob(C), x ∈ Ob(F (U))}.
For (U, x), (V, y) ∈ Ob(SF ) we define

MorSF ((V, y), (U, x)) = {(f, ϕ) | f ∈ MorC(V,U), ϕ ∈ MorF (V )(y, f∗x)}

=
∐

f∈MorC(V,U)
MorF (V )(y, f∗x)

In order to define composition we use that g∗◦f∗ = (f ◦g)∗ for a pair of composable
morphisms of C (by definition of a functor into a 2-category). Namely, we define
the composition of ψ : z → g∗y and ϕ : y → f∗x to be g∗(ϕ) ◦ ψ. The functor
pF : SF → C is given by the rule (U, x) 7→ U . The condition that F (U) is a
groupoid for every U guarantees that SF is fibred in groupoids over C, as we have
already seen in Example 4.36.1 that SF is a fibred category, see Lemma 4.35.2. But
we can also prove conditions (1), (2) of Definition 4.35.1 directly as follows: (1)
Lifts of morphisms exist since given f : V → U in C and (U, x) an object of SF
over U , then (f, idf∗x) : (V, f∗x) → (U, x) is a lift of f . (2) Suppose given solid
diagrams as follows

V
f // U (V, y)

(f,ϕ) // (U, x)

W

h

OO

g

??

(W, z)

(h,ν)

OO

(g,ψ)

;;

Then for the dotted arrows we have ν = (h∗ϕ)−1 ◦ ψ so given h there exists a ν
which is unique by uniqueness of inverses.
Definition 4.37.2.04TL Let C be a category. Suppose that F : Copp → Groupoids is
a functor to the 2-category of groupoids. We will write pF : SF → C for the
category fibred in groupoids constructed in Example 4.37.1. A split category fibred
in groupoids is a category fibred in groupoids isomorphic (!) over C to one of these
categories SF .
Lemma 4.37.3.02XY Let p : S → C be a category fibred in groupoids. There exists a
contravariant functor F : C → Groupoids such that S is equivalent to SF over C.
In other words, every category fibred in groupoids is equivalent to a split one.
Proof. Make a choice of pullbacks (see Definition 4.33.6). By Lemmas 4.33.7 and
4.35.2 we get pullback functors f∗ for every morphism f of C.
We construct a new category S ′ as follows. The objects of S ′ are pairs (x, f)
consisting of a morphism f : V → U of C and an object x of S over U , i.e.,
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x ∈ Ob(SU ). The functor p′ : S ′ → C will map the pair (x, f) to the source of
the morphism f , in other words p′(x, f : V → U) = V . A morphism φ : (x1, f1 :
V1 → U1) → (x2, f2 : V2 → U2) is given by a pair (φ, g) consisting of a morphism
g : V1 → V2 and a morphism φ : f∗

1x1 → f∗
2x2 with p(φ) = g. It is no problem to

define the composition law: (φ, g)◦ (ψ, h) = (φ◦ψ, g ◦h) for any pair of composable
morphisms. There is a natural functor S → S ′ which simply maps x over U to the
pair (x, idU ).
At this point we need to check that p′ makes S ′ into a category fibred in groupoids
over C, and we need to check that S → S ′ is an equivalence of categories over C.
We omit the verifications.
Finally, we can define pullback functors on S ′ by setting g∗(x, f) = (x, f ◦ g) on
objects if g : V ′ → V and f : V → U . On morphisms (φ, idV ) : (x1, f1) → (x2, f2)
between morphisms in S ′

V we set g∗(φ, idV ) = (g∗φ, idV ′) where we use the unique
identifications g∗f∗

i xi = (fi◦g)∗xi from Lemma 4.35.2 to think of g∗φ as a morphism
from (f1◦g)∗x1 to (f2◦g)∗x2. Clearly, these pullback functors g∗ have the property
that g∗

1 ◦ g∗
2 = (g2 ◦ g1)∗, in other words S ′ is split as desired. □

We will see an alternative proof of this lemma in Section 4.42.

4.38. Categories fibred in sets

0042
Definition 4.38.1.02Y0 A category is called discrete if the only morphisms are the
identity morphisms.

A discrete category has only one interesting piece of information: its set of objects.
Thus we sometime confuse discrete categories with sets.

Definition 4.38.2.0043 Let C be a category. A category fibred in sets, or a category
fibred in discrete categories is a category fibred in groupoids all of whose fibre
categories are discrete.

We want to clarify the relationship between categories fibred in sets and presheaves
(see Definition 4.3.3). To do this it makes sense to first make the following definition.

Definition 4.38.3.04S8 Let C be a category. The 2-category of categories fibred in sets
over C is the sub 2-category of the category of categories fibred in groupoids over
C (see Definition 4.35.6) defined as follows:

(1) Its objects will be categories p : S → C fibred in sets.
(2) Its 1-morphisms (S, p) → (S ′, p′) will be functors G : S → S ′ such that

p′ ◦ G = p (since every morphism is strongly cartesian G automatically
preserves them).

(3) Its 2-morphisms t : G→ H for G,H : (S, p)→ (S ′, p′) will be morphisms
of functors such that p′(tx) = idp(x) for all x ∈ Ob(S).

Note that every 2-morphism is automatically an isomorphism. Hence this 2-category
is actually a (2, 1)-category. Here is the obligatory lemma on the existence of 2-fibre
products.

Lemma 4.38.4.0047 Let C be a category. The 2-category of categories fibred in sets
over C has 2-fibre products. More precisely, the 2-fibre product described in Lemma
4.32.3 returns a category fibred in sets if one starts out with such.

https://stacks.math.columbia.edu/tag/02Y0
https://stacks.math.columbia.edu/tag/0043
https://stacks.math.columbia.edu/tag/04S8
https://stacks.math.columbia.edu/tag/0047
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Proof. Omitted. □

Example 4.38.5.04TM This example is the analogue of Examples 4.36.1 and 4.37.1 for
presheaves instead of “presheaves of categories”. The output will be a category
fibred in sets instead of a fibred category. Suppose that F : Copp → Sets is a
presheaf. For f : V → U in C we will suggestively write F (f) = f∗ : F (U)→ F (V ).
We construct a category SF fibred in sets over C as follows. Define

Ob(SF ) = {(U, x) | U ∈ Ob(C), x ∈ Ob(F (U))}.
For (U, x), (V, y) ∈ Ob(SF ) we define

MorSF ((V, y), (U, x)) = {f ∈ MorC(V,U) | f∗x = y}
Composition is inherited from composition in C which works as g∗ ◦ f∗ = (f ◦ g)∗

for a pair of composable morphisms of C. The functor pF : SF → C is given by
the rule (U, x) 7→ U . As every fibre category SF,U is discrete with underlying set
F (U) and we have already see in Example 4.37.1 that SF is a category fibred in
groupoids, we conclude that SF is fibred in sets.
Lemma 4.38.6.02Y2 Let C be a category. The only 2-morphisms between categories
fibred in sets are identities. In other words, the 2-category of categories fibred in
sets is a category. Moreover, there is an equivalence of categories{

the category of presheaves
of sets over C

}
↔
{

the category of categories
fibred in sets over C

}
The functor from left to right is the construction F → SF discussed in Example
4.38.5. The functor from right to left assigns to p : S → C the presheaf of objects
U 7→ Ob(SU ).
Proof. The first assertion is clear, as the only morphisms in the fibre categories are
identities.
Suppose that p : S → C is fibred in sets. Let f : V → U be a morphism in C and
let x ∈ Ob(SU ). Then there is exactly one choice for the object f∗x. Thus we see
that (f ◦ g)∗x = g∗(f∗x) for f, g as in Lemma 4.35.2. It follows that we may think
of the assignments U 7→ Ob(SU ) and f 7→ f∗ as a presheaf on C. □

Here is an important example of a category fibred in sets.
Example 4.38.7.0044 Let C be a category. Let X ∈ Ob(C). Consider the representable
presheaf hX = MorC(−, X) (see Example 4.3.4). On the other hand, consider the
category p : C/X → C from Example 4.2.13. The fibre category (C/X)U has as
objects morphisms h : U → X, and only identities as morphisms. Hence we see
that under the correspondence of Lemma 4.38.6 we have

hX ←→ C/X.
In other words, the category C/X is canonically equivalent to the category ShX
associated to hX in Example 4.38.5.
For this reason it is tempting to define a “representable” object in the 2-category
of categories fibred in groupoids to be a category fibred in sets whose associated
presheaf is representable. However, this is would not be a good definition for use
since we prefer to have a notion which is invariant under equivalences. To make
this precise we study exactly which categories fibred in groupoids are equivalent to
categories fibred in sets.

https://stacks.math.columbia.edu/tag/04TM
https://stacks.math.columbia.edu/tag/02Y2
https://stacks.math.columbia.edu/tag/0044
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4.39. Categories fibred in setoids

04S9
Definition 4.39.1.02XZ Let us call a category a setoid8 if it is a groupoid where every
object has exactly one automorphism: the identity.

If C is a set with an equivalence relation ∼, then we can make a setoid C as follows:
Ob(C) = C and MorC(x, y) = ∅ unless x ∼ y in which case we set MorC(x, y) = {1}.
Transitivity of ∼ means that we can compose morphisms. Conversely any setoid
category defines an equivalence relation on its objects (isomorphism) such that
you recover the category (up to unique isomorphism – not equivalence) from the
procedure just described.
Discrete categories are setoids. For any setoid C there is a canonical procedure to
make a discrete category equivalent to it, namely one replaces Ob(C) by the set of
isomorphism classes (and adds identity morphisms). In terms of sets endowed with
an equivalence relation this corresponds to taking the quotient by the equivalence
relation.

Definition 4.39.2.04SA Let C be a category. A category fibred in setoids is a category
fibred in groupoids all of whose fibre categories are setoids.

Below we will clarify the relationship between categories fibred in setoids and cat-
egories fibred in sets.

Definition 4.39.3.02Y1 Let C be a category. The 2-category of categories fibred in setoids
over C is the sub 2-category of the category of categories fibred in groupoids over
C (see Definition 4.35.6) defined as follows:

(1) Its objects will be categories p : S → C fibred in setoids.
(2) Its 1-morphisms (S, p) → (S ′, p′) will be functors G : S → S ′ such that

p′ ◦ G = p (since every morphism is strongly cartesian G automatically
preserves them).

(3) Its 2-morphisms t : G→ H for G,H : (S, p)→ (S ′, p′) will be morphisms
of functors such that p′(tx) = idp(x) for all x ∈ Ob(S).

Note that every 2-morphism is automatically an isomorphism. Hence this 2-category
is actually a (2, 1)-category.
Here is the obligatory lemma on the existence of 2-fibre products.

Lemma 4.39.4.04SB Let C be a category. The 2-category of categories fibred in setoids
over C has 2-fibre products. More precisely, the 2-fibre product described in Lemma
4.32.3 returns a category fibred in setoids if one starts out with such.

Proof. Omitted. □

Lemma 4.39.5.0045 Let C be a category. Let S be a category over C.
(1) If S → S ′ is an equivalence over C with S ′ fibred in sets over C, then

(a) S is fibred in setoids over C, and
(b) for each U ∈ Ob(C) the map Ob(SU )→ Ob(S ′

U ) identifies the target
as the set of isomorphism classes of the source.

(2) If p : S → C is a category fibred in setoids, then there exists a category
fibred in sets p′ : S ′ → C and an equivalence can : S → S ′ over C.

8A set on steroids!?

https://stacks.math.columbia.edu/tag/02XZ
https://stacks.math.columbia.edu/tag/04SA
https://stacks.math.columbia.edu/tag/02Y1
https://stacks.math.columbia.edu/tag/04SB
https://stacks.math.columbia.edu/tag/0045
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Proof. Let us prove (2). An object of the category S ′ will be a pair (U, ξ), where
U ∈ Ob(C) and ξ is an isomorphism class of objects of SU . A morphism (U, ξ) →
(V, ψ) is given by a morphism x→ y, where x ∈ ξ and y ∈ ψ. Here we identify two
morphisms x → y and x′ → y′ if they induce the same morphism U → V , and if
for some choices of isomorphisms x→ x′ in SU and y → y′ in SV the compositions
x → x′ → y′ and x → y → y′ agree. By construction there are surjective maps on
objects and morphisms from S → S ′. We define composition of morphisms in S ′

to be the unique law that turns S → S ′ into a functor. Some details omitted. □

Thus categories fibred in setoids are exactly the categories fibred in groupoids which
are equivalent to categories fibred in sets. Moreover, an equivalence of categories
fibred in sets is an isomorphism by Lemma 4.38.6.

Lemma 4.39.6.04SC Let C be a category. The construction of Lemma 4.39.5 part (2)
gives a functor

F :
{

the 2-category of categories
fibred in setoids over C

}
−→

{
the category of categories

fibred in sets over C

}
(see Definition 4.29.5). This functor is an equivalence in the following sense:

(1) for any two 1-morphisms f, g : S1 → S2 with F (f) = F (g) there exists a
unique 2-isomorphism f → g,

(2) for any morphism h : F (S1)→ F (S2) there exists a 1-morphism f : S1 →
S2 with F (f) = h, and

(3) any category fibred in sets S is equal to F (S).
In particular, defining Fi ∈ PSh(C) by the rule Fi(U) = Ob(Si,U )/ ∼=, we have

MorCat/C(S1,S2)
/

2-isomorphism = MorPSh(C)(F1, F2)

More precisely, given any map ϕ : F1 → F2 there exists a 1-morphism f : S1 → S2
which induces ϕ on isomorphism classes of objects and which is unique up to unique
2-isomorphism.

Proof. By Lemma 4.38.6 the target of F is a category hence the assertion makes
sense. The construction of Lemma 4.39.5 part (2) assigns to S the category fibred
in sets whose value over U is the set of isomorphism classes in SU . Hence it is clear
that it defines a functor as indicated. Let f, g : S1 → S2 with F (f) = F (g) be
as in (1). For each object U of C and each object x of S1,U we see that f(x) ∼=
g(x) by assumption. As S2 is fibred in setoids there exists a unique isomorphism
tx : f(x) → g(x) in S2,U . Clearly the rule x 7→ tx gives the desired 2-isomorphism
f → g. We omit the proofs of (2) and (3). To see the final assertion use Lemma
4.38.6 to see that the right hand side is equal to MorCat/C(F (S1), F (S2)) and apply
(1) and (2) above. □

Here is another characterization of categories fibred in setoids among all categories
fibred in groupoids.

Lemma 4.39.7.042J Let C be a category. Let p : S → C be a category fibred in
groupoids. The following are equivalent:

(1) p : S → C is a category fibred in setoids, and
(2) the canonical 1-morphism IS → S, see (4.34.2.1), is an equivalence (of

categories over C).

https://stacks.math.columbia.edu/tag/04SC
https://stacks.math.columbia.edu/tag/042J
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Proof. Assume (2). The category IS has objects (x, α) where x ∈ S, say with
p(x) = U , and α : x→ x is a morphism in SU . Hence if IS → S is an equivalence
over C then every pair of objects (x, α), (x, α′) are isomorphic in the fibre category
of IS over U . Looking at the definition of morphisms in IS we conclude that α,
α′ are conjugate in the group of automorphisms of x. Hence taking α′ = idx we
conclude that every automorphism of x is equal to the identity. Since S → C is
fibred in groupoids this implies that S → C is fibred in setoids. We omit the proof
of (1) ⇒ (2). □

Lemma 4.39.8.04SD Let C be a category. The construction of Lemma 4.39.6 which
associates to a category fibred in setoids a presheaf is compatible with products,
in the sense that the presheaf associated to a 2-fibre product X ×Y Z is the fibre
product of the presheaves associated to X ,Y,Z.
Proof. Let U ∈ Ob(C). The lemma just says that

Ob((X ×Y Z)U )/∼= equals Ob(XU )/∼= ×Ob(YU )/∼= Ob(ZU )/∼=
the proof of which we omit. (But note that this would not be true in general if the
category YU is not a setoid.) □

4.40. Representable categories fibred in groupoids

04SE Here is our definition of a representable category fibred in groupoids. As promised
this is invariant under equivalences.
Definition 4.40.1.0046 Let C be a category. A category fibred in groupoids p : S → C is
called representable if there exist an object X of C and an equivalence j : S → C/X
(in the 2-category of groupoids over C).
The usual abuse of notation is to say that X represents S and not mention the
equivalence j. We spell out what this entails.
Lemma 4.40.2.02Y3 Let C be a category. Let p : S → C be a category fibred in
groupoids.

(1) S is representable if and only if the following conditions are satisfied:
(a) S is fibred in setoids, and
(b) the presheaf U 7→ Ob(SU )/ ∼= is representable.

(2) If S is representable the pair (X, j), where j is the equivalence j : S →
C/X, is uniquely determined up to isomorphism.

Proof. The first assertion follows immediately from Lemma 4.39.5. For the second,
suppose that j′ : S → C/X ′ is a second such pair. Choose a 1-morphism t′ :
C/X ′ → S such that j′ ◦ t′ ∼= idC/X′ and t′ ◦ j′ ∼= idS . Then j ◦ t′ : C/X ′ → C/X
is an equivalence. Hence it is an isomorphism, see Lemma 4.38.6. Hence by the
Yoneda Lemma 4.3.5 (via Example 4.38.7 for example) it is given by an isomorphism
X ′ → X. □

Lemma 4.40.3.04SF Let C be a category. Let X , Y be categories fibred in groupoids
over C. Assume that X , Y are representable by objects X, Y of C. Then

MorCat/C(X ,Y)
/

2-isomorphism = MorC(X,Y )

More precisely, given ϕ : X → Y there exists a 1-morphism f : X → Y which
induces ϕ on isomorphism classes of objects and which is unique up to unique
2-isomorphism.

https://stacks.math.columbia.edu/tag/04SD
https://stacks.math.columbia.edu/tag/0046
https://stacks.math.columbia.edu/tag/02Y3
https://stacks.math.columbia.edu/tag/04SF
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Proof. By Example 4.38.7 we have C/X = ShX and C/Y = ShY . By Lemma 4.39.6
we have

MorCat/C(X ,Y)
/

2-isomorphism = MorPSh(C)(hX , hY )

By the Yoneda Lemma 4.3.5 we have MorPSh(C)(hX , hY ) = MorC(X,Y ). □

4.41. The 2-Yoneda lemma

0GWH Let C be a category. The 2-category of fibred categories over C was constructed/defined
in Definition 4.33.9. If S, S ′ are fibred categories over C then

MorFib/C(S,S ′)
denotes the category of 1-morphisms in this 2-category. Here is the 2-category
analogue of the Yoneda lemma in the setting of fibred categories.

Lemma 4.41.1 (2-Yoneda lemma for fibred categories).0GWI Let C be a category. Let
S → C be a fibred category over C. Let U ∈ Ob(C). The functor

MorFib/C(C/U,S) −→ SU
given by G 7→ G(idU ) is an equivalence.

Proof. Make a choice of pullbacks for S (see Definition 4.33.6). We define a functor
SU −→ MorFib/C(C/U,S)

as follows. Given x ∈ Ob(SU ) the associated functor is
(1) on objects: (f : V → U) 7→ f∗x, and
(2) on morphisms: the arrow (g : V ′/U → V/U) maps to the composition

(f ◦ g)∗x
(αg,f )x−−−−−→ g∗f∗x→ f∗x

where αg,f is as in Lemma 4.33.7.
We omit the verification that this is an inverse to the functor of the lemma. □

Let C be a category. The 2-category of categories fibred in groupoids over C is a
“full” sub 2-category of the 2-category of categories over C (see Definition 4.35.6).
Hence if S, S ′ are fibred in groupoids over C then

MorCat/C(S,S ′)
denotes the category of 1-morphisms in this 2-category (see Definition 4.32.1).
These are all groupoids, see remarks following Definition 4.35.6. Here is the 2-
category analogue of the Yoneda lemma.

Lemma 4.41.2 (2-Yoneda lemma).004B Let S → C be fibred in groupoids. Let U ∈
Ob(C). The functor

MorCat/C(C/U,S) −→ SU
given by G 7→ G(idU ) is an equivalence.

Proof. Make a choice of pullbacks for S (see Definition 4.33.6). We define a functor
SU −→ MorCat/C(C/U,S)

as follows. Given x ∈ Ob(SU ) the associated functor is
(1) on objects: (f : V → U) 7→ f∗x, and

https://stacks.math.columbia.edu/tag/0GWI
https://stacks.math.columbia.edu/tag/004B
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(2) on morphisms: the arrow (g : V ′/U → V/U) maps to the composition

(f ◦ g)∗x
(αg,f )x−−−−−→ g∗f∗x→ f∗x

where αg,f is as in Lemma 4.35.2.
We omit the verification that this is an inverse to the functor of the lemma. □

Remark 4.41.3.076J We can use the 2-Yoneda lemma to give an alternative proof of
Lemma 4.37.3. Let p : S → C be a category fibred in groupoids. We define a
contravariant functor F from C to the category of groupoids as follows: for U ∈
Ob(C) let

F (U) = MorCat/C(C/U,S).
If f : U → V the induced functor C/U → C/V induces the morphism F (f) :
F (V ) → F (U). Clearly F is a functor. Let S ′ be the associated category fibred
in groupoids from Example 4.37.1. There is an obvious functor G : S ′ → S over C
given by taking the pair (U, x), where U ∈ Ob(C) and x ∈ F (U), to x(idU ) ∈ S.
Now Lemma 4.41.2 implies that for each U ,

GU : S ′
U = F (U) = MorCat/C(C/U,S)→ SU

is an equivalence, and thus G is an equivalence between S and S ′ by Lemma 4.35.9.

4.42. Representable 1-morphisms

02Y4 Let C be a category. In this section we explain what it means for a 1-morphism
between categories fibred in groupoids over C to be representable.

Let C be a category. Let X , Y be categories fibred in groupoids over C. Let
U ∈ Ob(C). Let F : X → Y and G : C/U → Y be 1-morphisms of categories fibred
in groupoids over C. We want to describe the 2-fibre product

(C/U)×Y X //

��

X

F

��
C/U G // Y

Let y = G(idU ) ∈ YU . Make a choice of pullbacks for Y (see Definition 4.33.6).
Then G is isomorphic to the functor (f : V → U) 7→ f∗y, see Lemma 4.41.2 and its
proof. We may think of an object of (C/U)×YX as a quadruple (V, f : V → U, x, ϕ),
see Lemma 4.32.3. Using the description of G above we may think of ϕ as an
isomorphism ϕ : f∗y → F (x) in YV .

Lemma 4.42.1.02Y5 In the situation above the fibre category of (C/U) ×Y X over an
object f : V → U of C/U is the category described as follows:

(1) objects are pairs (x, ϕ), where x ∈ Ob(XV ), and ϕ : f∗y → F (x) is a
morphism in YV ,

(2) the set of morphisms between (x, ϕ) and (x′, ϕ′) is the set of morphisms
ψ : x→ x′ in XV such that F (ψ) = ϕ′ ◦ ϕ−1.

Proof. See discussion above. □

https://stacks.math.columbia.edu/tag/076J
https://stacks.math.columbia.edu/tag/02Y5
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Lemma 4.42.2.02Y6 Let C be a category. Let X , Y be categories fibred in groupoids
over C. Let F : X → Y be a 1-morphism. Let G : C/U → Y be a 1-morphism.
Then

(C/U)×Y X −→ C/U
is a category fibred in groupoids.

Proof. We have already seen in Lemma 4.35.7 that the composition
(C/U)×Y X −→ C/U −→ C

is a category fibred in groupoids. Then the lemma follows from Lemma 4.35.13. □

Definition 4.42.3.02Y7 Let C be a category. Let X , Y be categories fibred in groupoids
over C. Let F : X → Y be a 1-morphism. We say F is representable, or that X is
relatively representable over Y, if for every U ∈ Ob(C) and any G : C/U → Y the
category fibred in groupoids

(C/U)×Y X −→ C/U
is representable.

Lemma 4.42.4.02Y8 Let C be a category. Let X , Y be categories fibred in groupoids
over C. Let F : X → Y be a 1-morphism. If F is representable then every one of
the functors

FU : XU −→ YU
between fibre categories is faithful.

Proof. Clear from the description of fibre categories in Lemma 4.42.1 and the char-
acterization of representable fibred categories in Lemma 4.40.2. □

Lemma 4.42.5.02Y9 Let C be a category. Let X , Y be categories fibred in groupoids
over C. Let F : X → Y be a 1-morphism. Make a choice of pullbacks for Y. Assume

(1) each functor FU : XU −→ YU between fibre categories is faithful, and
(2) for each U and each y ∈ YU the presheaf

(f : V → U) 7−→ {(x, ϕ) | x ∈ XV , ϕ : f∗y → F (x)}/ ∼=
is a representable presheaf on C/U .

Then F is representable.

Proof. Clear from the description of fibre categories in Lemma 4.42.1 and the char-
acterization of representable fibred categories in Lemma 4.40.2. □

Before we state the next lemma we point out that the 2-category of categories
fibred in groupoids is a (2, 1)-category, and hence we know what it means to say
that it has a final object (see Definition 4.31.1). And it has a final object namely
id : C → C. Thus we define 2-products of categories fibred in groupoids over C as
the 2-fibre products

X × Y := X ×C Y.
With this definition in place the following lemma makes sense.

Lemma 4.42.6.02YA Let C be a category. Let S → C be a category fibred in groupoids.
Assume C has products of pairs of objects and fibre products. The following are
equivalent:

(1) The diagonal S → S × S is representable.

https://stacks.math.columbia.edu/tag/02Y6
https://stacks.math.columbia.edu/tag/02Y7
https://stacks.math.columbia.edu/tag/02Y8
https://stacks.math.columbia.edu/tag/02Y9
https://stacks.math.columbia.edu/tag/02YA
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(2) For every U in C, any G : C/U → S is representable.

Proof. Suppose the diagonal is representable, and let U,G be given. Consider
any V ∈ Ob(C) and any G′ : C/V → S. Note that C/U × C/V = C/U × V is
representable. Hence the fibre product

(C/U × V )×(S×S) S //

��

S

��
C/U × V

(G,G′) // S × S

is representable by assumption. This means there exists W → U × V in C, such
that

C/W

��

// S

��
C/U × C/V // S × S

is cartesian. This implies that C/W ∼= C/U×SC/V (see Lemma 4.31.11 and Remark
4.35.8) as desired.

Assume (2) holds. Consider any V ∈ Ob(C) and any (G,G′) : C/V → S × S. We
have to show that C/V ×S×S S is representable. What we know is that C/V ×G,S,G′

C/V is representable, say by a : W → V in C/V . The equivalence

C/W → C/V ×G,S,G′ C/V

followed by the second projection to C/V gives a second morphism a′ : W → V .
Consider W ′ = W ×(a,a′),V×V V . There exists an equivalence

C/W ′ ∼= C/V ×S×S S

namely

C/W ′ ∼= C/W ×(C/V×C/V ) C/V
∼=

(
C/V ×(G,S,G′) C/V

)
×(C/V×C/V ) C/V

∼= C/V ×(S×S) S

(for the last isomorphism see Lemma 4.31.12 and Remark 4.35.8) which proves the
lemma. □

Bibliographic notes: Parts of this have been taken from Vistoli’s notes [Vis04].

4.43. Monoidal categories

0FFJ Let C be a category. Suppose we are given a functor

⊗ : C × C −→ C

We often want to know whether ⊗ satisfies an associative rule and whether there
is a unit for ⊗.

An associativity constraint for (C,⊗) is a functorial isomorphism

ϕX,Y,Z : X ⊗ (Y ⊗ Z)→ (X ⊗ Y )⊗ Z
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such that for all objects X,Y, Z,W the diagram

X ⊗ (Y ⊗ (Z ⊗W )) //

��

(X ⊗ Y )⊗ (Z ⊗W ) // ((X ⊗ Y )⊗ Z)⊗W

X ⊗ ((Y ⊗ Z)⊗W ) // (X ⊗ (Y ⊗ Z))⊗W

OO

is commutative where every arrow is determined by a suitable application of ϕ and
functoriality of ⊗. Given an associativity constraint there are well defined functors

C × . . .× C −→ C, (X1, . . . , Xn) 7−→ X1 ⊗ . . .⊗Xn

for all n ≥ 1.

Let ϕ be an associativity constraint. A unit for (C,⊗, ϕ) is an object 1 of C together
with functorial isomorphisms

1⊗X → X and X ⊗ 1→ X

such that for all objects X,Y the diagram

X ⊗ (1⊗ Y )
ϕ

//

&&

(X ⊗ 1)⊗ Y

xx
X ⊗ Y

is commutative where the diagonal arrows are given by the isomorphisms introduced
above.

An equivalent definition would be that a unit is a pair (1, 1) where 1 is an object
of C and 1 : 1 ⊗ 1 → 1 is an isomorphism such that the functors L : X 7→ 1 ⊗X
and R : X 7→ X ⊗ 1 are equivalences. Certainly, given a unit as above we get
the isomorphism 1 : 1 ⊗ 1 → 1 for free and L and R are equivalences as they are
isomorphic to the identity functor. Conversely, given (1, 1) such that L and R are
equivalences, we obtain functorial isomorphisms l : 1⊗X → X and r : X ⊗1→ X
characterized by L(l) = 1 ⊗ idX and R(r) = idX ⊗ 1. Then we can use r and l in
the notion of unit as above.

A unit is unique up to unique isomorphism if it exists (exercise).

Definition 4.43.1.0FFK A triple (C,⊗, ϕ) where C is a category, ⊗ : C × C → C is a
functor, and ϕ is an associativity constraint is called a monoidal category if there
exists a unit 1.

We always write 1 to denote a unit of a monoidal category; as it is determined
up to unique isomorphism there is no harm in choosing one. From now on we no
longer write the brackets when taking tensor products in monoidal categories and
we always identify X ⊗ 1 and 1 ⊗ X with X. Moreover, we will say “let C be a
monoidal category” with ⊗, ϕ,1 understood.

Definition 4.43.2.0FFL Let C and C′ be monoidal categories. A functor of monoidal
categories F : C → C′ is given by a functor F as indicated and a isomorphism

F (X)⊗ F (Y )→ F (X ⊗ Y )

https://stacks.math.columbia.edu/tag/0FFK
https://stacks.math.columbia.edu/tag/0FFL
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functorial in X and Y such that for all objects X, Y , and Z the diagram

F (X)⊗ (F (Y )⊗ F (Z)) //

��

F (X)⊗ F (Y ⊗ Z) // F (X ⊗ (Y ⊗ Z))

��
(F (X)⊗ F (Y ))⊗ F (Z) // F (X ⊗ Y )⊗ F (Z) // F ((X ⊗ Y )⊗ Z)

commutes and such that F (1) is a unit in C′.

By our conventions about units, we may always assume F (1) = 1 if F is a functor
of monoidal categories. As an example, if A → B is a ring homomorphism, then
the functor M 7→M ⊗A B is functor of monoidal categories from ModA to ModB .

Lemma 4.43.3.0FFM Let C be a monoidal category. Let X be an object of C. The
following are equivalent

(1) the functor L : Y 7→ X ⊗ Y is an equivalence,
(2) the functor R : Y 7→ Y ⊗X is an equivalence,
(3) there exists an object X ′ such that X ⊗X ′ ∼= X ′ ⊗X ∼= 1.

Proof. Assume (1). Choose X ′ such that L(X ′) = 1, i.e., X ⊗ X ′ ∼= 1. Denote
L′ and R′ the functors corresponding to X ′. The equation X ⊗ X ′ ∼= 1 implies
L ◦ L′ ∼= id. Thus L′ must be the quasi-inverse to L (which exists by assumption).
Hence L′ ◦ L ∼= id. Hence X ′ ⊗X ∼= 1. Thus (3) holds.

The proof of (2) ⇒ (3) is dual to what we just said.

Assume (3). Then it is clear that L′ and L are quasi-inverse to each other and it is
clear that R′ and R are quasi-inverse to each other. Thus (1) and (2) hold. □

Definition 4.43.4.0FFN Let C be a monoidal category. An object X of C is called
invertible if any (or all) of the equivalent conditions of Lemma 4.43.3 hold.

Observe that if F : C → C′ is a functor of monoidal categories, then F sends
invertible objects to invertible objects.

Definition 4.43.5.0FFP Given a monoidal category (C,⊗, ϕ) and an object X a left dual
is an object Y together with morphisms η : 1 → X ⊗ Y and ϵ : Y ⊗X → 1 such
that the diagrams

X

1
%%

η⊗1
// X ⊗ Y ⊗X

1⊗ϵ
��
X

and
Y

1
%%

1⊗η
// Y ⊗X ⊗ Y

ϵ⊗1
��
Y

commute. In this situation we say that X is a right dual of Y .

Observe that if F : C → C′ is a functor of monoidal categories, then F (Y ) is a left
dual of F (X) if Y is a left dual of X.

Lemma 4.43.6.0FFQ Let C be a monoidal category. If Y is a left dual to X, then

Mor(Z ′ ⊗X,Z) = Mor(Z ′, Z ⊗ Y ) and Mor(Y ⊗ Z ′, Z) = Mor(Z ′, X ⊗ Z)

functorially in Z and Z ′.

https://stacks.math.columbia.edu/tag/0FFM
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Proof. Consider the maps
Mor(Z ′ ⊗X,Z)→ Mor(Z ′ ⊗X ⊗ Y, Z ⊗ Y )→ Mor(Z ′, Z ⊗ Y )

where we use η in the second arrow and the sequence of maps
Mor(Z ′, Z ⊗ Y )→ Mor(Z ′ ⊗X,Z ⊗ Y ⊗X)→ Mor(Z ′ ⊗X,Z)

where we use ϵ in the second arrow. A straightforward calculation using the proper-
ties of η and ϵ shows that the compositions of these are mutually inverse. Similarly
for the other equality. □

Remark 4.43.7.0FFR Lemma 4.43.6 says in particular that Z 7→ Z ⊗ Y is the right
adjoint of Z ′ 7→ Z ′ ⊗ X. In particular, uniqueness of adjoint functors guarantees
that a left dual of X, if it exists, is unique up to unique isomorphism. Conversely,
assume the functor Z 7→ Z ⊗ Y is a right adjoint of the functor Z ′ 7→ Z ′ ⊗X, i.e.,
we’re given a bijection

Mor(Z ′ ⊗X,Z) −→ Mor(Z ′, Z ⊗ Y )
functorial in both Z and Z ′. The unit of the adjunction produces maps

ηZ : Z → Z ⊗X ⊗ Y
functorial in Z and the counit of the adjoint produces maps

ϵZ′ : Z ′ ⊗ Y ⊗X → Z ′

functorial in Z ′. In particular, we find η = η1 : 1→ X ⊗ Y and ϵ = ϵ1 : Y ⊗X →
1. As an exercise in the relationship between units, counits, and the adjunction
isomorphism, the reader can show that we have

(ϵ⊗ idY ) ◦ ηY = idY and ϵX ◦ (η ⊗ idX) = idX
However, this isn’t enough to show that (ϵ ⊗ idY ) ◦ (idY ⊗ η) = idY and (idX ⊗
ϵ) ◦ (η ⊗ idX) = idX , because we don’t know in general that ηY = idY ⊗ η and we
don’t know that ϵX = ϵ⊗ idX . For this it would suffice to know that our adjunction
isomorphism has the following property: for every W,Z,Z ′ the diagram

Mor(Z ′ ⊗X,Z) //

idW⊗−
��

Mor(Z ′, Z ⊗ Y )

idW⊗−
��

Mor(W ⊗ Z ′ ⊗X,W ⊗ Z) // Mor(W ⊗ Z ′,W ⊗ Z ⊗ Y )
If this holds, we will say the adjunction is compatible with the given tensor struc-
ture. Thus the requirement that Z 7→ Z ⊗ Y be the right adjoint of Z ′ 7→ Z ′ ⊗X
compatible with the given tensor structure is an equivalent formulation of the prop-
erty of being a left dual.

Lemma 4.43.8.0FFS Let C be a monoidal category. If Yi, i = 1, 2 are left duals of Xi,
i = 1, 2, then Y2 ⊗ Y1 is a left dual of X1 ⊗X2.

Proof. Follows from uniqueness of adjoints and Remark 4.43.7. □

A commutativity constraint for (C,⊗) is a functorial isomorphism
ψ : X ⊗ Y −→ Y ⊗X

such that the composition

X ⊗ Y ψ−→ Y ⊗X ψ−→ X ⊗ Y

https://stacks.math.columbia.edu/tag/0FFR
https://stacks.math.columbia.edu/tag/0FFS


4.43. MONOIDAL CATEGORIES 120

is the identity. We say ψ is compatible with a given associativity constraint ϕ if for
all objects X,Y, Z the diagram

X ⊗ (Y ⊗ Z)
ϕ
//

ψ

��

(X ⊗ Y )⊗ Z
ψ
// Z ⊗ (X ⊗ Y )

ϕ

��
X ⊗ (Z ⊗ Y ) ϕ // (X ⊗ Z)⊗ Y ψ // (Z ⊗X)⊗ Y

commutes.

Definition 4.43.9.0FFW A quadruple (C,⊗, ϕ, ψ) where C is a category, ⊗ : C ⊗ C → C
is a functor, ϕ is an associativity constraint, and ψ is a commutativity constraint
compatible with ϕ is called a symmetric monoidal category if there exists a unit.

To be sure, if (C,⊗, ϕ, ψ) is a symmetric monoidal category, then (C,⊗, ϕ) is a
monoidal category.

Lemma 4.43.10.0FN8 Let (C,⊗, ϕ, ψ) be a symmetric monoidal category. Let X be an
object of C and let Y , η : 1→ X ⊗ Y , and ϵ : Y ⊗X → 1 be a left dual of X as in
Definition 4.43.5. Then η′ = ψ ◦ η : 1→ Y ⊗X and ϵ′ = ϵ ◦ ψ : X ⊗ Y → 1 makes
X into a left dual of Y .

Proof. Omitted. Hint: pleasant exercise in the definitions. □

Definition 4.43.11.0FFY Let C and C′ be symmetric monoidal categories. A functor of
symmetric monoidal categories F : C → C′ is given by a functor F as indicated and
an isomorphism

F (X)⊗ F (Y )→ F (X ⊗ Y )
functorial in X and Y such that F is a functor of monoidal categories and such
that for all objects X and Y the diagram

F (X)⊗ F (Y ) //

��

F (X ⊗ Y )

��
F (Y )⊗ F (X) // F (Y ⊗X)

commutes.

Remark 4.43.12.0GWJ Let C be a monoidal category. We say C has an internal hom if
for every pair of objects X,Y of C there is an object hom(X,Y ) of C such that we
have

Mor(X,hom(Y,Z)) = Mor(X ⊗ Y,Z)
functorially in X,Y, Z. By the Yoneda lemma the bifunctor (X,Y ) 7→ hom(X,Y )
is determined up to unique isomorphism if it exists. Given an internal hom we
obtain canonical maps

(1) hom(X,Y )⊗X → Y ,
(2) hom(Y,Z)⊗ hom(X,Y )→ hom(X,Z),
(3) Z ⊗ hom(X,Y )→ hom(X,Z ⊗ Y ),
(4) Y → hom(X,Y ⊗X), and
(5) hom(Y,Z)⊗X → hom(hom(X,Y ), Z) in case C is symmetric monoidal.

https://stacks.math.columbia.edu/tag/0FFW
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Namely, the map in (1) is the image of idhom(X,Y ) by Mor(hom(X,Y ), hom(X,Y ))→
Mor(hom(X,Y )⊗X,Y ). To construct the map in (2) by the defining property of
hom(X,Z) we need to construct a map

hom(Y,Z)⊗ hom(X,Y )⊗X −→ Z

and such a map exists since by (1) we have maps hom(X,Y ) ⊗ X → Y and
hom(Y,Z) ⊗ Y → Z. To construct the map in (3) by the defining property of
hom(X,Z ⊗ Y ) we need to construct a map

Z ⊗ hom(X,Y )⊗X → Z ⊗ Y

for which we use idZ ⊗ a where a is the map in (1). To construct the map in
(4) we note that we already have the map Y ⊗ hom(X,X) → hom(X,Y ⊗ X)
by (3). Thus it suffices to construct a map 1 → hom(X,X) and for this we take
the element in Mor(1, hom(X,X)) corresponding to the canonical isomorphism
1⊗X → X in Mor(1⊗X,X). Finally, we come to (5). By the universal property
of hom(hom(X,Y ), Z) it suffices to construct a map

hom(Y,Z)⊗X ⊗ hom(X,Y ) −→ Z

We do this by swapping the last two tensor products using the commutativity
constraint and then using the maps hom(X,Y )⊗X → Y and hom(Y,Z)⊗Y → Z.

4.44. Categories of dotted arrows

0H17 We discuss certain “categories of dotted arrows” in (2, 1)-categories. These will
appear when formulating various lifting criteria for algebraic stacks, see for example
Morphisms of Stacks, Section 101.39 and More on Morphisms of Stacks, Section
106.8.

Definition 4.44.1.0H18 Let C be a (2, 1)-category. Consider a 2-commutative solid
diagram

(4.44.1.1)0H19
S

x
//

j

��

X

f

��
T

y //

>>

Y

in C. Fix a 2-isomorphism
γ : y ◦ j → f ◦ x

witnessing the 2-commutativity of the diagram. Given (4.44.1.1) and γ, a dotted ar-
row is a triple (a, α, β) consisting of a morphism a : T → X and and 2-isomorphisms
α : a ◦ j → x, β : y → f ◦ a such that γ = (idf ⋆ α) ◦ (β ⋆ idj), in other words such
that

f ◦ a ◦ j
idf⋆α

$$
y ◦ j

β⋆idj
::

γ // f ◦ x

is commutative. A morphism of dotted arrows (a, α, β) → (a′, α′, β′) is a 2-arrow
θ : a→ a′ such that α = α′ ◦ (θ ⋆ idj) and β′ = (idf ⋆ θ) ◦ β.

https://stacks.math.columbia.edu/tag/0H18
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In the situation of Definition 4.44.1, there is an associated category of dotted arrows.
This category is a groupoid. It may depend on γ in general. The next two lemmas
say that categories of dotted arrows are well-behaved with respect to base change
and composition for f .

Lemma 4.44.2.0H1A Let C be a (2, 1)-category. Assume given a 2-commutative diagram

S
x′
//

j

��

X ′

p

��

q
// X

f

��
T

y′
// Y ′ g // Y

in C, where the right square is 2-cartesian with respect to a 2-isomorphism ϕ : g◦p→
f ◦ q. Choose a 2-arrow γ′ : y′ ◦ j → p ◦ x′. Set x = q ◦ x′, y = g ◦ y′ and let
γ : y ◦ j → f ◦ x be the 2-isomorphism γ = (ϕ ⋆ idx′) ◦ (idg ⋆ γ′). Then the category
D′ of dotted arrows for the left square and γ′ is equivalent to the category D of
dotted arrows for the outer rectangle and γ.

Proof. There is a functor D′ → D which is (a, α, β) 7→ (q◦a, idq⋆α, (ϕ⋆ida)◦(idg⋆β))
on objects and θ 7→ idq ⋆ θ on arrows. Checking that this functor D′ → D is an
equivalence follows formally from the universal property for 2-fibre products as in
Section 4.31. Details omitted. □

Lemma 4.44.3.0H1B Let C be a (2, 1)-category. Assume given a solid 2-commutative
diagram

S
x
//

j

��

X

f

��
Y

g

��
T

z //

GG

Z

in C. Choose a 2-isomorphism γ : z ◦ j → g ◦ f ◦ x. Let D be the category of dotted
arrows for the outer rectangle and γ. Let D′ be the category of dotted arrows for
the solid square

S
f◦x
//

j

��

Y

g

��
T

z //

??

Z

and γ. Then D is equivalent to a category D′′ which has the following property:
there is a functor D′′ → D′ which turns D′′ into a category fibred in groupoids
over D′ and whose fibre categories are isomorphic to categories of dotted arrows for
certain solid squares of the form

S
x
//

j

��

X

f

��
T

y //

>>

Y

and some choices of 2-isomorphism y ◦ j → f ◦ x.

https://stacks.math.columbia.edu/tag/0H1A
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Proof. Construct the category D′′ whose objects are tuples (a, α, β, b, η) where
(a, α, β) is an object of D and b : T → Y is a 1-morphism and η : b → f ◦ a is a
2-isomorphism. Morphisms (a, α, β, b, η)→ (a′, α′, β′, b′, η′) in D′′ are pairs (θ1, θ2),
where θ1 : a → a′ defines an arrow (a, α, β) → (a′, α′, β′) in D and θ2 : b → b′ is a
2-isomorphism with the compatibility condition η′ ◦ θ2 = (idf ⋆ θ1) ◦ η.
There is a functor D′′ → D′ which is (a, α, β, b, η) 7→ (b, (idf ⋆ α) ◦ (η ⋆ idj), (idg ⋆
η−1) ◦ β) on objects and (θ1, θ2) 7→ θ2 on arrows. Then D′′ → D′ is fibred in
groupoids.
If (y, δ, ϵ) is an object of D′, write Dy,δ for the category of dotted arrows for the last
displayed diagram with y◦j → f ◦x given by δ. There is a functor Dy,δ → D′′ given
by (a, α, η) 7→ (a, α, (idg ⋆ η) ◦ ϵ, y, η) on objects and θ 7→ (θ, idy) on arrows. This
exhibits an isomorphism from Dy,δ to the fibre category of D′′ → D′ over (y, δ, ϵ).
There is also a functor D → D′′ which is (a, α, β) 7→ (a, α, β, f ◦a, idf◦a) on objects
and θ 7→ (θ, idf⋆θ) on arrows. This functor is fully faithful and essentially surjective,
hence an equivalence. Details omitted. □

4.45. Other chapters

Preliminaries
(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Differential Graded Sheaves
(25) Hypercoverings

Schemes
(26) Schemes
(27) Constructions of Schemes

(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes
(31) Divisors
(32) Limits of Schemes
(33) Varieties
(34) Topologies on Schemes
(35) Descent
(36) Derived Categories of Schemes
(37) More on Morphisms
(38) More on Flatness
(39) Groupoid Schemes
(40) More on Groupoid Schemes
(41) Étale Morphisms of Schemes

Topics in Scheme Theory

(42) Chow Homology
(43) Intersection Theory
(44) Picard Schemes of Curves
(45) Weil Cohomology Theories
(46) Adequate Modules
(47) Dualizing Complexes
(48) Duality for Schemes
(49) Discriminants and Differents
(50) de Rham Cohomology
(51) Local Cohomology
(52) Algebraic and Formal Geome-

try
(53) Algebraic Curves
(54) Resolution of Surfaces



4.45. OTHER CHAPTERS 124

(55) Semistable Reduction
(56) Functors and Morphisms
(57) Derived Categories of Varieties
(58) Fundamental Groups of

Schemes
(59) Étale Cohomology
(60) Crystalline Cohomology
(61) Pro-étale Cohomology
(62) Relative Cycles
(63) More Étale Cohomology
(64) The Trace Formula

Algebraic Spaces

(65) Algebraic Spaces
(66) Properties of Algebraic Spaces
(67) Morphisms of Algebraic Spaces
(68) Decent Algebraic Spaces
(69) Cohomology of Algebraic

Spaces
(70) Limits of Algebraic Spaces
(71) Divisors on Algebraic Spaces
(72) Algebraic Spaces over Fields
(73) Topologies on Algebraic Spaces
(74) Descent and Algebraic Spaces
(75) Derived Categories of Spaces
(76) More on Morphisms of Spaces
(77) Flatness on Algebraic Spaces
(78) Groupoids in Algebraic Spaces
(79) More on Groupoids in Spaces
(80) Bootstrap
(81) Pushouts of Algebraic Spaces

Topics in Geometry

(82) Chow Groups of Spaces
(83) Quotients of Groupoids
(84) More on Cohomology of Spaces
(85) Simplicial Spaces
(86) Duality for Spaces
(87) Formal Algebraic Spaces

(88) Algebraization of Formal
Spaces

(89) Resolution of Surfaces Revis-
ited

Deformation Theory
(90) Formal Deformation Theory
(91) Deformation Theory
(92) The Cotangent Complex
(93) Deformation Problems

Algebraic Stacks
(94) Algebraic Stacks
(95) Examples of Stacks
(96) Sheaves on Algebraic Stacks
(97) Criteria for Representability
(98) Artin’s Axioms
(99) Quot and Hilbert Spaces

(100) Properties of Algebraic Stacks
(101) Morphisms of Algebraic Stacks
(102) Limits of Algebraic Stacks
(103) Cohomology of Algebraic

Stacks
(104) Derived Categories of Stacks
(105) Introducing Algebraic Stacks
(106) More on Morphisms of Stacks
(107) The Geometry of Stacks

Topics in Moduli Theory
(108) Moduli Stacks
(109) Moduli of Curves

Miscellany
(110) Examples
(111) Exercises
(112) Guide to Literature
(113) Desirables
(114) Coding Style
(115) Obsolete
(116) GNU Free Documentation Li-

cense
(117) Auto Generated Index



CHAPTER 5

Topology

004C 5.1. Introduction

004D Basic topology will be explained in this document. A reference is [Eng77].

5.2. Basic notions

004E The following is a list of basic notions in topology. Some of these notions are
discussed in more detail in the text that follows and some are defined in the list,
but others are considered basic and will not be defined. If you are not familiar with
most of the italicized concepts, then we suggest looking at an introductory text on
topology before continuing.

(1)004F X is a topological space,
(2)004G x ∈ X is a point,
(3)0B12 E ⊂ X is a locally closed subset,
(4)004H x ∈ X is a closed point,
(5)08ZA E ⊂ X is a dense subset,
(6)004I f : X1 → X2 is continuous,
(7)0BBW an extended real function f : X → R∪{∞,−∞} is upper semi-continuous

if {x ∈ X | f(x) < a} is open for all a ∈ R,
(8)0BBX an extended real function f : X → R∪{∞,−∞} is lower semi-continuous

if {x ∈ X | f(x) > a} is open for all a ∈ R,
(9) a continuous map of spaces f : X → Y is open if f(U) is open in Y for

U ⊂ X open,
(10) a continuous map of spaces f : X → Y is closed if f(Z) is closed in Y for

Z ⊂ X closed,
(11)004J a neighbourhood of x ∈ X is any subset E ⊂ X which contains an open

subset that contains x,
(12)09R7 the induced topology on a subset E ⊂ X,
(13)004K U : U =

⋃
i∈I Ui is an open covering of U (note: we allow any Ui to be

empty and we even allow, in case U is empty, the empty set for I),
(14)0GM1 a subcover of a covering as in (13) is an open covering U ′ : U =

⋃
i∈I′ Ui

where I ′ ⊂ I,
(15)004L the open covering V is a refinement of the open covering U (if V : U =⋃

j∈J Vj and U : U =
⋃
i∈I Ui this means each Vj is completely contained

in one of the Ui),
(16)004M {Ei}i∈I is a fundamental system of neighbourhoods of x in X,
(17)004N a topological space X is called Hausdorff or separated if and only if for

every distinct pair of points x, y ∈ X there exist disjoint opens U, V ⊂ X
such that x ∈ U , y ∈ V ,

125
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(18) the product of two topological spaces,08ZB
(19)08ZC the fibre product X ×Y Z of a pair of continuous maps f : X → Y and

g : Z → Y ,
(20)0B30 the discrete topology and the indiscrete topology on a set,
(21) etc.

5.3. Hausdorff spaces

08ZD The category of topological spaces has finite products.

Lemma 5.3.1.08ZE Let X be a topological space. The following are equivalent:
(1) X is Hausdorff,
(2) the diagonal ∆(X) ⊂ X ×X is closed.

Proof. We suppose that X is Hausdorff. Let (x, y) ̸∈ ∆(X), i.e., x ̸= y. There are
U and V disjoint open sets of X such that x ∈ U and y ∈ V . This implies that
U × V ⊂ (X × X) \ ∆(X). This shows that (X × X) \ ∆(X) is an open set of
X × X which is equivalent to say that the diagonal ∆(X) ⊂ X × X is closed in
X×X. The converse is similar: The complement (X×X)\∆(X) consist precisely
of (x, y) ∈ X × X with x ̸= y. Thus, if ∆(X) ⊂ X × X is closed, then, by the
definition of the product topology, for every such (x, y), there are opens U, V ⊂ X
with (x, y) ∈ U × V and (U × V ) ∩ ∆(X) = ∅. In other words, with x ∈ U and
y ∈ V such that U ∩ V = ∅. □

Lemma 5.3.2.08ZF Let f : X → Y be a continuous map of topological spaces. If Y is
Hausdorff, then the graph of f is closed in X × Y .

Proof. The graph is the inverse image of the diagonal under the map X × Y →
Y × Y . Thus the lemma follows from Lemma 5.3.1. □

Lemma 5.3.3.08ZG Let f : X → Y be a continuous map of topological spaces. Let
s : Y → X be a continuous map such that f ◦ s = idY . If X is Hausdorff, then
s(Y ) is closed.

Proof. This follows from Lemma 5.3.1 as s(Y ) = {x ∈ X | x = s(f(x))}. □

Lemma 5.3.4.08ZH Let X → Z and Y → Z be continuous maps of topological spaces.
If Z is Hausdorff, then X ×Z Y is closed in X × Y .

Proof. This follows from Lemma 5.3.1 as X ×Z Y is the inverse image of ∆(Z)
under X × Y → Z × Z. □

5.4. Separated maps

0CY0 Just the definition and some simple lemmas.

Definition 5.4.1.0CY1 A continuous map f : X → Y of topological spaces is called
separated if and only if the diagonal ∆ : X → X ×Y X is a closed map.

Lemma 5.4.2.0CY2 Let f : X → Y be continuous map of topological spaces. The
following are equivalent:

(1) f is separated,
(2) ∆(X) ⊂ X ×Y X is a closed subset,
(3) given distinct points x, x′ ∈ X mapping to the same point of Y , there

exist disjoint open neighbourhoods of x and x′.
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Proof. If f is separated, by Definition 5.4.1, ∆ is a closed map. The fact that X is
closed in X gives us that ∆(X) is closed in X ×Y X. Thus (1) implies (2).
Assune ∆(X) ⊂ X×Y X is a closed subset and denote U the complementary open.
This means we have an open set W ⊂ X × X such that W ∩ (X ×Y X) = U .
However, by definition of the product topology, if (x, x′) ∈ W ∩ (X ×Y X), we
have V and V ′ open sets of X such that x ∈ V , x′ ∈ V ′ and V × V ′ ⊂ W . If
we had V ∩ V ′ ̸= ∅, we would have z ∈ V ∩ V ′. However, (z, z) ∈ X ×Y X, so
(z, z) ∈ (V × V ′)∩ (X ×Y X) ⊂ U , which is absurd. Therefore V ∩ V ′ = ∅, and we
have two disjoint open neighborhoods for x and x′. It proves that (2) implies (3).
Finally, we suppose that given distinct points x, x′ ∈ X mapping to the same point
of Y , there exist disjoint open neighbourhoods of x and x′. Let F be a closed set
of X. We will show that ∆(F ) is a closed subset of X ×Y X. Let (x, x′) ∈ X ×Y X
be a point not contained in ∆(F ). Then either x ̸= x′ or x ̸∈ F . In the first
case, we choose disjoint open neighbourhoods V, V ′ ⊂ X of x, x′ and we see that
(V × V ′) ∩X ×Y X is an open neighbourood of (x, x′) not meeting ∆(F ). In the
second case, we see that ((X \F )×X)∩X×Y X is an open neighbourood of (x, x′)
not meeting ∆(F ). We have shown that (3) implies (1). □

Lemma 5.4.3.0CY3 Let f : X → Y be continuous map of topological spaces. If X is
Hausdorff, then f is separated.

Proof. Clear from Lemmas 5.4.2 and 5.3.1 as ∆(X) closed in X ×X implies ∆(X)
closed in X ×Y X. □

Lemma 5.4.4.0CY4 Let f : X → Y and Y ′ → Y be continuous maps of topological
spaces. If f is separated, then f ′ : Y ′ ×Y X → Z is separated.

Proof. Follows from characterization (3) of Lemma 5.4.2. Namely, with X ′ =
Y ′ ×Y X the image ∆(X ′) of the diagonal in the fibre product X ′ ×Y ′ X ′ is the
inverse image of ∆(X) in X ×Y X. □

5.5. Bases

004O Basic material on bases for topological spaces.

Definition 5.5.1.004P Let X be a topological space. A collection of subsets B of X is
called a base for the topology on X or a basis for the topology on X if the following
conditions hold:

(1) Every element B ∈ B is open in X.
(2) For every open U ⊂ X and every x ∈ U , there exists an element B ∈ B

such that x ∈ B ⊂ U .

The following lemma is sometimes used to define a topology.

Lemma 5.5.2.0D5P Let X be a set and let B be a collection of subsets. Assume that
X =

⋃
B∈B B and that given x ∈ B1 ∩ B2 with B1, B2 ∈ B there is a B3 ∈ B with

x ∈ B3 ⊂ B1 ∩B2. Then there is a unique topology on X such that B is a basis for
this topology.

Proof. Let σ(B) be the set of subsets of X which can be written as unions of
elements of B. We claim σ(B) is a topology. Namely, the empty set is an element of
σ(B) (as an empty union) and X is an element of σ(B) (as the union of all elements
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of B). It is clear that σ(B) is preserved under unions. Finally, if U, V ∈ σ(B) then
write U =

⋃
i∈I Ui and V =

⋃
j∈J Vj with Ui, Vj ∈ B for all i ∈ I and j ∈ J . Then

U ∩ V =
⋃

i∈I,j∈J
Ui ∩ Vj

The assumption in the lemma tells us that Ui ∩Vj ∈ σ(B) hence we see that U ∩V
is too. Thus σ(B is a topology. Properties (1) and (2) of Definition 5.5.1 are
immediate for this topology. To prove the uniqueness of this topology let T be a
topology on X such that B is a base for it. Then of course every element of B is in
T by (1) of Definition 5.5.1 and hence σ(B ⊂ T . Conversely, part (2) of Definition
5.5.1 tells us that every element of T is a union of elements of B, i.e., T ⊂ σ(B).
This finishes the proof. □

Lemma 5.5.3.004Q Let X be a topological space. Let B be a basis for the topology
on X. Let U : U =

⋃
i Ui be an open covering of U ⊂ X. There exists an open

covering U =
⋃
Vj which is a refinement of U such that each Vj is an element of

the basis B.

Proof. If x ∈ U =
⋃
i∈I Ui, there is an ix ∈ I such that x ∈ Uix . Thus we have

a Bix ∈ B verifying x ∈ Bix ⊂ Uix . Set J = {ix|x ∈ U} and for j = ix ∈ J set
Vj = Bix . This gives the desired open covering of U by {Vj}j∈J . □

Definition 5.5.4.08ZI Let X be a topological space. A collection of subsets B of X is
called a subbase for the topology on X or a subbasis for the topology on X if the
finite intersections of elements of B form a basis for the topology on X.

In particular every element of B is open.

Lemma 5.5.5.08ZJ Let X be a set. Given any collection B of subsets of X there is a
unique topology on X such that B is a subbase for this topology.

Proof. By convention
⋂

∅ B = X. Thus we can apply Lemma 5.5.2 to the set of
finite intersections of elements from B. □

Lemma 5.5.6.0D5Q Let X be a topological space. Let B be a collection of opens of X.
Assume X =

⋃
U∈B U and for U, V ∈ B we have U ∩ V =

⋃
W∈B,W⊂U∩V W . Then

there is a continuous map f : X → Y of topological spaces such that
(1) for U ∈ B the image f(U) is open,
(2) for U ∈ B we have f−1(f(U)) = U , and
(3) the opens f(U), U ∈ B form a basis for the topology on Y .

Proof. Define an equivalence relation ∼ on points of X by the rule
x ∼ y ⇔ (∀U ∈ B : x ∈ U ⇔ y ∈ U)

Let Y be the set of equivalence classes and f : X → Y the natural map. Part (2)
holds by construction. The assumptions on B exactly mirror the assumptions in
Lemma 5.5.2 on the set of subsets f(U), U ∈ B. Hence there is a unique topology
on Y such that (3) holds. Then (1) is clear as well. □

5.6. Submersive maps

0405 If X is a topological space and E ⊂ X is a subset, then we usually endow E with
the induced topology.
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Lemma 5.6.1.09R8 Let X be a topological space. Let Y be a set and let f : Y → X be
an injective map of sets. The induced topology on Y is the topology characterized
by each of the following statements:

(1) it is the weakest topology on Y such that f is continuous,
(2) the open subsets of Y are f−1(U) for U ⊂ X open,
(3) the closed subsets of Y are the sets f−1(Z) for Z ⊂ X closed.

Proof. The set T = {f−1(U)|U ⊂ X open} is a topology on Y . Firstly, ∅ = f−1(∅)
and f−1(X) = Y . So T contains ∅ and Y .
Now let {Vi}i∈I be a collection of open subsets where Vi ∈ T and write Vi = f−1(Ui)
where Ui is an open subset of X, then⋃

i∈I
Vi =

⋃
i∈I

f−1(Ui) = f−1
(⋃

i∈I
Ui

)
So
⋃
i∈I Vi ∈ T as

⋃
i∈I Ui is open in X. Now let V1, V2 ∈ T . We have U1, U2 open

in X such that V1 = f−1(U1) and V2 = f−1(U2). Then
V1 ∩ V2 = f−1(U1) ∩ f−1(U2) = f−1(U1 ∩ U2)

So V1 ∩ V2 ∈ T because U1 ∩ U2 is open in X.
Any topology on Y such that f is continuous contains T according to the definition
of a continuous map. Thus T is indeed the weakest topology on Y such that f is
continuous. This proves that (1) and (2) are equivalent.
The equivalence of (2) and (3) follows from the equality f−1(X \E) = Y \ f−1(E)
for all subsets E ⊂ X. □

Dually, if X is a topological space and X → Y is a surjection of sets, then Y can
be endowed with the quotient topology.

Lemma 5.6.2.08ZK Let X be a topological space. Let Y be a set and let f : X → Y be
a surjective map of sets. The quotient topology on Y is the topology characterized
by each of the following statements:

(1) it is the strongest topology on Y such that f is continuous,
(2) a subset V of Y is open if and only if f−1(V ) is open,
(3) a subset Z of Y is closed if and only if f−1(Z) is closed.

Proof. The set T = {V ⊂ Y |f−1(V ) is open} is a topology on Y . Firstly ∅ =
f−1(∅) and f−1(Y ) = X. So T contains ∅ and Y .
Let (Vi)i∈I be a family of elements Vi ∈ T . Then⋃

i∈I
f−1(Vi) = f−1

(⋃
i∈I

Vi

)
Thus

⋃
i∈I Vi ∈ T as

⋃
i∈I f

−1(Vi) is open in X. Furthermore if V1, V2 ∈ T then
f−1(V1) ∩ f−1(V2) = f−1(V1 ∩ V2)

So V1 ∩ V2 ∈ T because f−1(V1) ∩ f−1(V2) is open in X.
Finally a topology on Y such that f is continuous is included in T according to the
definition of a continuous function, so T is the strongest topology on Y such that
f is continuous. It proves that (1) and (2) are equivalent.
Finally, (2) and (3) equivalence follows from f−1(X\E) = Y \f−1(E) for all subsets
E ⊂ X. □
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Let f : X → Y be a continuous map of topological spaces. In this case we obtain
a factorization X → f(X) → Y of maps of sets. We can endow f(X) with the
quotient topology coming from the surjection X → f(X) or with the induced
topology coming from the injection f(X)→ Y . The map

(f(X), quotient topology) −→ (f(X), induced topology)
is continuous.

Definition 5.6.3.0406 Let f : X → Y be a continuous map of topological spaces.
(1) We say f is a strict map of topological spaces if the induced topology and

the quotient topology on f(X) agree (see discussion above).
(2) We say f is submersive1 if f is surjective and strict.

Thus a continuous map f : X → Y is submersive if f is a surjection and for any
T ⊂ Y we have T is open or closed if and only if f−1(T ) is so. In other words, Y
has the quotient topology relative to the surjection X → Y .

Lemma 5.6.4.02YB Let f : X → Y be surjective, open, continuous map of topological
spaces. Let T ⊂ Y be a subset. Then

(1) f−1(T ) = f−1(T ),
(2) T ⊂ Y is closed if and only if f−1(T ) is closed,
(3) T ⊂ Y is open if and only if f−1(T ) is open, and
(4) T ⊂ Y is locally closed if and only if f−1(T ) is locally closed.

In particular we see that f is submersive.

Proof. It is clear that f−1(T ) ⊂ f−1(T ). If x ∈ X, and x ̸∈ f−1(T ), then there
exists an open neighbourhood x ∈ U ⊂ X with U ∩ f−1(T ) = ∅. Since f is
open we see that f(U) is an open neighbourhood of f(x) not meeting T . Hence
x ̸∈ f−1(T ). This proves (1). Part (2) is an easy consequence of (1). Part (3) is
obvious from the fact that f is open and surjective. For (4), if f−1(T ) is locally
closed, then f−1(T ) ⊂ f−1(T ) = f−1(T ) is open, and hence by (3) applied to the
map f−1(T )→ T we see that T is open in T , i.e., T is locally closed. □

Lemma 5.6.5.0AAU Let f : X → Y be surjective, closed, continuous map of topological
spaces. Let T ⊂ Y be a subset. Then

(1) T = f(f−1(T )),
(2) T ⊂ Y is closed if and only if f−1(T ) is closed,
(3) T ⊂ Y is open if and only if f−1(T ) is open, and
(4) T ⊂ Y is locally closed if and only if f−1(T ) is locally closed.

In particular we see that f is submersive.

Proof. It is clear that f−1(T ) ⊂ f−1(T ). Then T ⊂ f(f−1(T )) ⊂ T is a closed
subset, hence we get (1). Part (2) is obvious from the fact that f is closed and
surjective. Part (3) follows from (2) applied to the complement of T . For (4), if
f−1(T ) is locally closed, then f−1(T ) ⊂ f−1(T ) is open. Since the map f−1(T )→ T

is surjective by (1) we can apply part (3) to the map f−1(T )→ T induced by f to
conclude that T is open in T , i.e., T is locally closed. □

1This is very different from the notion of a submersion between differential manifolds! It is
probably a good idea to use “strict and surjective” in stead of “submersive”.
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5.7. Connected components

004R
Definition 5.7.1.004S Let X be a topological space.

(1) We say X is connected if X is not empty and whenever X = T1⨿T2 with
Ti ⊂ X open and closed, then either T1 = ∅ or T2 = ∅.

(2) We say T ⊂ X is a connected component of X if T is a maximal connected
subset of X.

The empty space is not connected.

Lemma 5.7.2.0376 Let f : X → Y be a continuous map of topological spaces. If E ⊂ X
is a connected subset, then f(E) ⊂ Y is connected as well.

Proof. Let A ⊂ f(E) an open and closed subset of f(E). Because f is continuous,
f−1(A) is an open and closed subset of E. As E is connected, f−1(A) = ∅ or
f−1(A) = E. However, A ⊂ f(E) implies that A = f(f−1(A)). Indeed, if x ∈
f(f−1(A)) then there is y ∈ f−1(A) such that f(y) = x and because y ∈ f−1(A),
we have f(y) ∈ A i.e. x ∈ A. Reciprocally, if x ∈ A, A ⊂ f(E) implies that there is
y ∈ E such that f(y) = x. Therefore y ∈ f−1(A), and then x ∈ f(f−1(A)). Thus
A = ∅ or A = f(E) proving that f(E) is connected. □

Lemma 5.7.3.004T Let X be a topological space.
(1) If T ⊂ X is connected, then so is its closure.
(2) Any connected component of X is closed (but not necessarily open).
(3) Every connected subset of X is contained in a unique connected compo-

nent of X.
(4) Every point of X is contained in a unique connected component, in other

words, X is the disjoint union of its connected components.

Proof. Let T be the closure of the connected subset T . Suppose T = T1 ⨿ T2 with
Ti ⊂ T open and closed. Then T = (T ∩ T1)⨿ (T ∩ T2). Hence T equals one of the
two, say T = T1 ∩ T . Thus T ⊂ T1. This implies (1) and (2).
Let A be a nonempty set of connected subsets of X such that Ω =

⋂
T∈A T is

nonempty. We claim E =
⋃
T∈A T is connected. Namely, E is nonempty as it

contains Ω. Say E = E1 ⨿ E2 with Ei closed in E. We may assume E1 meets Ω
(after renumbering). Then each T ∈ A meets E1 and hence must be contained in
E1 as T is connected. Hence E ⊂ E1 which proves the claim.
Let W ⊂ X be a nonempty connected subset. If we apply the result of the previous
paragraph to the set of all connected subsets of X containing W , then we see that
E is a connected component of X. This implies existence and uniqueness in (3).
Let x ∈ X. Taking W = {x} in the previous paragraph we see that x is contained
in a unique connected component of X. Any two distinct connected components
must be disjoint (by the result of the second paragraph).
To get an example where connected components are not open, just take an infinite
product

∏
n∈N{0, 1} with the product topology. Its connected components are

singletons, which are not open. □

Remark 5.7.4.0FIY [Eng77, Example
6.1.24]

Let X be a topological space and x ∈ X. Let Z ⊂ X be the
connected component of X passing through x. Consider the intersection E of all
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open and closed subsets of X containing x. It is clear that Z ⊂ E. In general
Z ̸= E. For example, let X = {x, y, z1, z2, . . .} with the topology with the following
basis of opens, {zn}, {x, zn, zn+1, . . .}, and {y, zn, zn+1, . . .} for all n. Then Z = {x}
and E = {x, y}. We omit the details.
Lemma 5.7.5.0377 Let f : X → Y be a continuous map of topological spaces. Assume
that

(1) all fibres of f are connected, and
(2) a set T ⊂ Y is closed if and only if f−1(T ) is closed.

Then f induces a bijection between the sets of connected components of X and Y .
Proof. Let T ⊂ Y be a connected component. Note that T is closed, see Lemma
5.7.3. The lemma follows if we show that f−1(T ) is connected because any con-
nected subset of X maps into a connected component of Y by Lemma 5.7.2. Sup-
pose that f−1(T ) = Z1 ⨿ Z2 with Z1, Z2 closed. For any t ∈ T we see that
f−1({t}) = Z1 ∩ f−1({t})⨿Z2 ∩ f−1({t}). By (1) we see f−1({t}) is connected we
conclude that either f−1({t}) ⊂ Z1 or f−1({t}) ⊂ Z2. In other words T = T1 ⨿ T2
with f−1(Ti) = Zi. By (2) we conclude that Ti is closed in Y . Hence either T1 = ∅
or T2 = ∅ as desired. □

Lemma 5.7.6.0378 Let f : X → Y be a continuous map of topological spaces. Assume
that (a) f is open, (b) all fibres of f are connected. Then f induces a bijection
between the sets of connected components of X and Y .
Proof. This is a special case of Lemma 5.7.5. □

Lemma 5.7.7.07VB Let f : X → Y be a continuous map of nonempty topological
spaces. Assume that (a) Y is connected, (b) f is open and closed, and (c) there
is a point y ∈ Y such that the fiber f−1(y) is a finite set. Then X has at most
|f−1(y)| connected components. Hence any connected component T of X is open
and closed, and f(T ) is a nonempty open and closed subset of Y , which is therefore
equal to Y .
Proof. If the topological space X has at least N connected components for some
N ∈ N, we find by induction a decomposition X = X1⨿ . . .⨿XN of X as a disjoint
union of N nonempty open and closed subsets X1, . . . , XN of X. As f is open and
closed, each f(Xi) is a nonempty open and closed subset of Y and is hence equal
to Y . In particular the intersection Xi ∩ f−1(y) is nonempty for each 1 ≤ i ≤ N .
Hence f−1(y) has at least N elements. □

Definition 5.7.8.04MC A topological space is totally disconnected if the connected com-
ponents are all singletons.
A discrete space is totally disconnected. A totally disconnected space need not be
discrete, for example Q ⊂ R is totally disconnected but not discrete.
Lemma 5.7.9.08ZL Let X be a topological space. Let π0(X) be the set of connected
components of X. Let X → π0(X) be the map which sends x ∈ X to the connected
component ofX passing through x. Endow π0(X) with the quotient topology. Then
π0(X) is a totally disconnected space and any continuous map X → Y from X to
a totally disconnected space Y factors through π0(X).
Proof. By Lemma 5.7.5 the connected components of π0(X) are the singletons. We
omit the proof of the second statement. □
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Definition 5.7.10.04MD A topological space X is called locally connected if every point
x ∈ X has a fundamental system of connected neighbourhoods.

Lemma 5.7.11.04ME Let X be a topological space. If X is locally connected, then
(1) any open subset of X is locally connected, and
(2) the connected components of X are open.

So also the connected components of open subsets of X are open. In particular,
every point has a fundamental system of open connected neighbourhoods.

Proof. For all x ∈ X let write N (x) the fundamental system of connected neigh-
bourhoods of x and let U ⊂ X be an open subset of X. Then for all x ∈ U , U is
a neighbourhood of x, so the set {V ∈ N (x)|V ⊂ U} is not empty and is a funda-
mental system of connected neighbourhoods of x in U . Thus U is locally connected
and it proves (1).
Let x ∈ C ⊂ X where C is the connected component of x. Because X is locally
connected, there exists N a connected neighbourhood of x. Therefore by the def-
inition of a connected component, we have N ⊂ C and then C is a neighbourhood
of x. It implies that C is a neighbourhood of each of his point, in other words C is
open and (2) is proven. □

5.8. Irreducible components

004U
Definition 5.8.1.004V Let X be a topological space.

(1) We say X is irreducible, if X is not empty, and whenever X = Z1 ∪ Z2
with Zi closed, we have X = Z1 or X = Z2.

(2) We say Z ⊂ X is an irreducible component of X if Z is a maximal
irreducible subset of X.

An irreducible space is obviously connected.

Lemma 5.8.2.0379 Let f : X → Y be a continuous map of topological spaces. If E ⊂ X
is an irreducible subset, then f(E) ⊂ Y is irreducible as well.

Proof. Clearly we may assume E = X (i.e., X irreducible) and f(E) = Y (i.e., f
surjective). First, Y ̸= ∅ since X ̸= ∅. Next, assume Y = Y1∪Y2 with Y1, Y2 closed.
Then X = X1 ∪X2 with Xi = f−1(Yi) closed in X. By assumption on X, we must
have X = X1 or X = X2, hence Y = Y1 or Y = Y2 since f is surjective. □

Lemma 5.8.3.004W Let X be a topological space.
(1) If T ⊂ X is irreducible so is its closure in X.
(2) Any irreducible component of X is closed.
(3) Any irreducible subset of X is contained in an irreducible component of

X.
(4) Every point of X is contained in some irreducible component of X, in

other words, X is the union of its irreducible components.

Proof. Let T be the closure of the irreducible subset T . If T = Z1∪Z2 with Zi ⊂ T
closed, then T = (T ∩ Z1) ∪ (T ∩ Z2) and hence T equals one of the two, say
T = Z1 ∩ T . Thus clearly T ⊂ Z1. This proves (1). Part (2) follows immediately
from (1) and the definition of irreducible components.
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Let T ⊂ X be irreducible. Consider the set A of irreducible subsets T ⊂ Tα ⊂ X.
Note that A is nonempty since T ∈ A. There is a partial ordering on A coming
from inclusion: α ≤ α′ ⇔ Tα ⊂ Tα′ . Choose a maximal totally ordered subset
A′ ⊂ A, and let T ′ =

⋃
α∈A′ Tα. We claim that T ′ is irreducible. Namely, suppose

that T ′ = Z1 ∪ Z2 is a union of two closed subsets of T ′. For each α ∈ A′ we have
either Tα ⊂ Z1 or Tα ⊂ Z2, by irreducibility of Tα. Suppose that for some α0 ∈ A′

we have Tα0 ̸⊂ Z1 (say, if not we’re done anyway). Then, since A′ is totally ordered
we see immediately that Tα ⊂ Z2 for all α ∈ A′. Hence T ′ = Z2. This proves (3).
Part (4) is an immediate consequence of (3) as a singleton space is irreducible. □

Lemma 5.8.4.0G2Y Let X be a topological space and suppose X =
⋃
i=1,...,nXi where

each Xi is an irreducible closed subset of X and no Xi is contained in the union
of the other members. Then each Xi is an irreducible component of X and each
irreducible component of X is one of the Xi.

Proof. Let Y be an irreducible component of X. Write Y =
⋃
i=1,...,n(Y ∩Xi) and

note that each Y ∩Xi is closed in Y since Xi is closed in X. By irreducibility of
Y we see that Y is equal to one of the Y ∩ Xi, i.e., Y ⊂ Xi. By maximality of
irreducible components we get Y = Xi.
Conversely, take one of the Xi and expand it to an irreducible component Y , which
we have already shown is one of the Xj . So Xi ⊂ Xj and since the original union
does not have redundant members, Xi = Xj , which is an irreducible component. □

Lemma 5.8.5.0GM2 Let f : X → Y be a surjective, continuous map of topological
spaces. If X has a finite number, say n, of irreducible components, then Y has ≤ n
irreducible components.

Proof. Say X1, . . . , Xn are the irreducible components of X. By Lemmas 5.8.2 and
5.8.3 the closure Yi ⊂ Y of f(Xi) is irreducible. Since f is surjective, we see that Y
is the union of the Yi. We may choose a minimal subset I ⊂ {1, . . . , n} such that
Y =

⋃
i∈I Yi. Then we may apply Lemma 5.8.4 to see that the Yi for i ∈ I are the

irreducible components of Y . □

A singleton is irreducible. Thus if x ∈ X is a point then the closure {x} is an
irreducible closed subset of X.

Definition 5.8.6.004X Let X be a topological space.
(1) Let Z ⊂ X be an irreducible closed subset. A generic point of Z is a point

ξ ∈ Z such that Z = {ξ}.
(2) The space X is called Kolmogorov, if for every x, x′ ∈ X, x ̸= x′ there

exists a closed subset of X which contains exactly one of the two points.
(3) The space X is called quasi-sober if every irreducible closed subset has a

generic point.
(4) The space X is called sober if every irreducible closed subset has a unique

generic point.

A topological space X is Kolmogorov, quasi-sober, resp. sober if and only if the
map x 7→ {x} from X to the set of irreducible closed subsets of X is injective,
surjective, resp. bijective. Hence we see that a topological space is sober if and only
if it is quasi-sober and Kolmogorov.

Lemma 5.8.7.0B31 Let X be a topological space and let Y ⊂ X.
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(1) If X is Kolmogorov then so is Y .
(2) Suppose Y is locally closed in X. If X is quasi-sober then so is Y .
(3) Suppose Y is locally closed in X. If X is sober then so is Y .

Proof. Proof of (1). Suppose X is Kolmogorov. Let x, y ∈ Y with x ̸= y. Then
{x} ∩ Y = {x} ̸= {y} = {y} ∩ Y . Hence {x} ∩ Y ̸= {y} ∩ Y . This shows that Y is
Kolmogorov.
Proof of (2). Suppose X is quasi-sober. It suffices to consider the cases Y is closed
and Y is open. First, suppose Y is closed. Let Z be an irreducible closed subset
of Y . Then Z is an irreducible closed subset of X. Hence there exists x ∈ Z with
{x} = Z. It follows {x} ∩ Y = Z. This shows Y is quasi-sober. Second, suppose
Y is open. Let Z be an irreducible closed subset of Y . Then Z is an irreducible
closed subset of X. Hence there exists x ∈ Z with {x} = Z. If x /∈ Y we get the
contradiction Z = Z ∩ Y ⊂ Z ∩ Y = {x} ∩ Y = ∅. Therefore x ∈ Y . It follows
Z = Z ∩ Y = {x} ∩ Y . This shows Y is quasi-sober.
Proof of (3). Immediately from (1) and (2). □

Lemma 5.8.8.06N9 Let X be a topological space and let (Xi)i∈I be a covering of X.
(1) Suppose Xi is locally closed in X for every i ∈ I. Then, X is Kolmogorov

if and only if Xi is Kolmogorov for every i ∈ I.
(2) Suppose Xi is open in X for every i ∈ I. Then, X is quasi-sober if and

only if Xi is quasi-sober for every i ∈ I.
(3) Suppose Xi is open in X for every i ∈ I. Then, X is sober if and only if

Xi is sober for every i ∈ I.

Proof. Proof of (1). If X is Kolmogorov then so is Xi for every i ∈ I by Lemma
5.8.7. Suppose Xi is Kolmogorov for every i ∈ I. Let x, y ∈ X with {x} = {y}.
There exists i ∈ I with x ∈ Xi. There exists an open subset U ⊂ X such that Xi is
a closed subset of U . If y /∈ U we get the contradiction x ∈ {x}∩U = {y}∩U = ∅.
Hence y ∈ U . It follows y ∈ {y} ∩ U = {x} ∩ U ⊂ Xi. This shows y ∈ Xi. It
follows {x} ∩Xi = {y} ∩Xi. Since Xi is Kolmogorov we get x = y. This shows X
is Kolmogorov.
Proof of (2). If X is quasi-sober then so is Xi for every i ∈ I by Lemma 5.8.7.
Suppose Xi is quasi-sober for every i ∈ I. Let Y be an irreducible closed subset of
X. As Y ̸= ∅ there exists i ∈ I with Xi ∩ Y ̸= ∅. As Xi is open in X it follows
Xi∩Y is non-empty and open in Y , hence irreducible and dense in Y . Thus Xi∩Y
is an irreducible closed subset of Xi. As Xi is quasi-sober there exists x ∈ Xi ∩ Y
with Xi ∩ Y = {x} ∩Xi ⊂ {x}. Since Xi ∩ Y is dense in Y and Y is closed in X it
follows Y = Xi ∩ Y ∩ Y ⊂ Xi ∩ Y ⊂ {x} ⊂ Y . Therefore Y = {x}. This shows X
is quasi-sober.
Proof of (3). Immediately from (1) and (2). □

Example 5.8.9.0B32 Let X be an indiscrete space of cardinality at least 2. Then X is
quasi-sober but not Kolmogorov. Moreover, the family of its singletons is a covering
of X by discrete and hence Kolmogorov spaces.

Example 5.8.10.0B33 Let Y be an infinite set, furnished with the topology whose closed
sets are Y and the finite subsets of Y . Then Y is Kolmogorov but not quasi-sober.
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However, the family of its singletons (which are its irreducible components) is a
covering by discrete and hence sober spaces.

Example 5.8.11.0B34 Let X and Y be as in Example 5.8.9 and Example 5.8.10. Then,
X ⨿ Y is neither Kolmogorov nor quasi-sober.

Example 5.8.12.0B35 Let Z be an infinite set and let z ∈ Z. We furnish Z with the
topology whose closed sets are Z and the finite subsets of Z \ {z}. Then Z is sober
but its subspace Z \ {z} is not quasi-sober.

Example 5.8.13.004Y Recall that a topological space X is Hausdorff iff for every distinct
pair of points x, y ∈ X there exist disjoint opens U, V ⊂ X such that x ∈ U , y ∈ V .
In this case X is irreducible if and only if X is a singleton. Similarly, any subset of
X is irreducible if and only if it is a singleton. Hence a Hausdorff space is sober.

Lemma 5.8.14.004Z Let f : X → Y be a continuous map of topological spaces. Assume
that (a) Y is irreducible, (b) f is open, and (c) there exists a dense collection of
points y ∈ Y such that f−1(y) is irreducible. Then X is irreducible.

Proof. Suppose X = Z1∪Z2 with Zi closed. Consider the open sets U1 = Z1\Z2 =
X \ Z2 and U2 = Z2 \ Z1 = X \ Z1. To get a contradiction assume that U1 and U2
are both nonempty. By (b) we see that f(Ui) is open. By (a) we have Y irreducible
and hence f(U1)∩f(U2) ̸= ∅. By (c) there is a point y which corresponds to a point
of this intersection such that the fibre Xy = f−1(y) is irreducible. Then Xy ∩ U1
and Xy∩U2 are nonempty disjoint open subsets of Xy which is a contradiction. □

Lemma 5.8.15.037A Let f : X → Y be a continuous map of topological spaces. Assume
that (a) f is open, and (b) for every y ∈ Y the fibre f−1(y) is irreducible. Then f
induces a bijection between irreducible components.

Proof. We point out that assumption (b) implies that f is surjective (see Defini-
tion 5.8.1). Let T ⊂ Y be an irreducible component. Note that T is closed, see
Lemma 5.8.3. The lemma follows if we show that f−1(T ) is irreducible because
any irreducible subset of X maps into an irreducible component of Y by Lemma
5.8.2. Note that f−1(T )→ T satisfies the assumptions of Lemma 5.8.14. Hence we
win. □

The construction of the following lemma is sometimes called the “soberification”.

Lemma 5.8.16.0A2N Let X be a topological space. There is a canonical continuous map

c : X −→ X ′

from X to a sober topological space X ′ which is universal among continuous maps
from X to sober topological spaces. Moreover, the assignment U ′ 7→ c−1(U ′) is a
bijection between opens of X ′ and X which commutes with finite intersections and
arbitrary unions. The image c(X) is a Kolmogorov topological space and the map
c : X → c(X) is universal for maps of X into Kolmogorov spaces.

Proof. Let X ′ be the set of irreducible closed subsets of X and let
c : X → X ′, x 7→ {x}.

For U ⊂ X open, let U ′ ⊂ X ′ denote the set of irreducible closed subsets of X
which meet U . Then c−1(U ′) = U . In particular, if U1 ̸= U2 are open in X, then
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U ′
1 ̸= U ′

2. Hence c induces a bijection between the subsets of X ′ of the form U ′ and
the opens of X.
Let U1, U2 be open in X. Suppose that Z ∈ U ′

1 and Z ∈ U ′
2. Then Z ∩ U1 and

Z ∩U2 are nonempty open subsets of the irreducible space Z and hence Z ∩U1∩U2
is nonempty. Thus (U1 ∩U2)′ = U ′

1 ∩U ′
2. The rule U 7→ U ′ is also compatible with

arbitrary unions (details omitted). Thus it is clear that the collection of U ′ form a
topology on X ′ and that we have a bijection as stated in the lemma.
Next we show that X ′ is sober. Let T ⊂ X ′ be an irreducible closed subset. Let
U ⊂ X be the open such that X ′ \ T = U ′. Then Z = X \U is irreducible because
of the properties of the bijection of the lemma. We claim that Z ∈ T is the unique
generic point. Namely, any open of the form V ′ ⊂ X ′ which does not contain Z
must come from an open V ⊂ X which misses Z, i.e., is contained in U .
Finally, we check the universal property. Let f : X → Y be a continuous map to
a sober topological space. Then we let f ′ : X ′ → Y be the map which sends the
irreducible closed Z ⊂ X to the unique generic point of f(Z). It follows immediately
that f ′ ◦ c = f as maps of sets, and the properties of c imply that f ′ is continuous.
We omit the verification that the continuous map f ′ is unique. We also omit the
proof of the statements on Kolmogorov spaces. □

Lemma 5.8.17.0GM3 Let X be a connected topological space with a finite number of
irreducible components X1, . . . , Xn. If n > 1 there is an 1 ≤ j ≤ n such that
X ′ =

⋃
i ̸=j Xi is connected.

Proof. This is a graph theory problem. Let Γ be the graph with vertices V =
{1, . . . , n} and an edge between i and j if and only if Xi ∩Xj is nonempty. Con-
nectedness of X means that Γ is connected. Our problem is to find 1 ≤ j ≤ n such
that Γ \ {j} is still connected. You can do this by choosing j, j′ ∈ E with maximal
distance and then j works (choose a leaf!). Details omitted. □

5.9. Noetherian topological spaces

0050
Definition 5.9.1.0051 A topological space is called Noetherian if the descending chain
condition holds for closed subsets of X. A topological space is called locally Noe-
therian if every point has a neighbourhood which is Noetherian.

Lemma 5.9.2.0052 Let X be a Noetherian topological space.
(1) Any subset of X with the induced topology is Noetherian.
(2) The space X has finitely many irreducible components.
(3) Each irreducible component of X contains a nonempty open of X.

Proof. Let T ⊂ X be a subset of X. Let T1 ⊃ T2 ⊃ . . . be a descending chain of
closed subsets of T . Write Ti = T ∩Zi with Zi ⊂ X closed. Consider the descending
chain of closed subsets Z1 ⊃ Z1∩Z2 ⊃ Z1∩Z2∩Z3 . . . This stabilizes by assumption
and hence the original sequence of Ti stabilizes. Thus T is Noetherian.
Let A be the set of closed subsets of X which do not have finitely many irreducible
components. Assume that A is not empty to arrive at a contradiction. The set A
is partially ordered by inclusion: α ≤ α′ ⇔ Zα ⊂ Zα′ . By the descending chain
condition we may find a smallest element of A, say Z. As Z is not a finite union of
irreducible components, it is not irreducible. Hence we can write Z = Z ′ ∪Z ′′ and
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both are strictly smaller closed subsets. By construction Z ′ =
⋃
Z ′
i and Z ′′ =

⋃
Z ′′
j

are finite unions of their irreducible components. Hence Z =
⋃
Z ′
i ∪
⋃
Z ′′
j is a finite

union of irreducible closed subsets. After removing redundant members of this
expression, this will be the decomposition of Z into its irreducible components
(Lemma 5.8.4), a contradiction.
Let Z ⊂ X be an irreducible component of X. Let Z1, . . . , Zn be the other irre-
ducible components of X. Consider U = Z \ (Z1 ∪ . . . ∪ Zn). This is not empty
since otherwise the irreducible space Z would be contained in one of the other Zi.
Because X = Z ∪ Z1 ∪ . . . Zn (see Lemma 5.8.3), also U = X \ (Z1 ∪ . . . ∪ Zn) and
hence open in X. Thus Z contains a nonempty open of X. □

Lemma 5.9.3.04Z8 Let f : X → Y be a continuous map of topological spaces.
(1) If X is Noetherian, then f(X) is Noetherian.
(2) If X is locally Noetherian and f open, then f(X) is locally Noetherian.

Proof. In case (1), suppose that Z1 ⊃ Z2 ⊃ Z3 ⊃ . . . is a descending chain of
closed subsets of f(X) (as usual with the induced topology as a subset of Y ). Then
f−1(Z1) ⊃ f−1(Z2) ⊃ f−1(Z3) ⊃ . . . is a descending chain of closed subsets of X.
Hence this chain stabilizes. Since f(f−1(Zi)) = Zi we conclude that Z1 ⊃ Z2 ⊃
Z3 ⊃ . . . stabilizes also. In case (2), let y ∈ f(X). Choose x ∈ X with f(x) = y. By
assumption there exists a neighbourhood E ⊂ X of x which is Noetherian. Then
f(E) ⊂ f(X) is a neighbourhood which is Noetherian by part (1). □

Lemma 5.9.4.0053 Let X be a topological space. Let Xi ⊂ X, i = 1, . . . , n be a finite
collection of subsets. If each Xi is Noetherian (with the induced topology), then⋃
i=1,...,nXi is Noetherian (with the induced topology).

Proof. Let {Fm}m∈N a decreasing sequence of closed subsets of X ′ =
⋃
i=1,...,nXi

with the induced topology. Then we can find a decreasing sequence {Gm}m∈N of
closed subsets of X verifying Fm = Gm ∩X ′ for all m (small detail omitted). As
Xi is noetherian and {Gm ∩Xi}m∈N a decreasing sequence of closed subsets of Xi,
there exists mi ∈ N such that for all m ≥ mi we have Gm ∩Xi = Gmi ∩Xi. Let
m0 = maxi=1,...,nmi. Then clearly

Fm = Gm ∩X ′ = Gm ∩ (X1 ∪ . . . ∪Xn) = (Gm ∩X1) ∪ . . . (Gm ∩Xn)
stabilizes for m ≥ m0 and the proof is complete. □

Example 5.9.5.02HZ Any nonempty, Kolmogorov Noetherian topological space has a
closed point (combine Lemmas 5.12.8 and 5.12.13). Let X = {1, 2, 3, . . .}. Define
a topology on X with opens ∅, {1, 2, . . . , n}, n ≥ 1 and X. Thus X is a locally
Noetherian topological space, without any closed points. This space cannot be the
underlying topological space of a locally Noetherian scheme, see Properties, Lemma
28.5.9.
Lemma 5.9.6.04MF Let X be a locally Noetherian topological space. Then X is locally
connected.
Proof. Let x ∈ X. Let E be a neighbourhood of x. We have to find a connected
neighbourhood of x contained in E. By assumption there exists a neighbourhood
E′ of x which is Noetherian. Then E ∩ E′ is Noetherian, see Lemma 5.9.2. Let
E∩E′ = Y1∪. . .∪Yn be the decomposition into irreducible components, see Lemma
5.9.2. Let E′′ =

⋃
x∈Yi Yi. This is a connected subset of E ∩ E′ containing x. It
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contains the open E ∩E′ \ (
⋃
x ̸∈Yi Yi) of E ∩E′ and hence it is a neighbourhood of

x in X. This proves the lemma. □

5.10. Krull dimension

0054
Definition 5.10.1.0055 Let X be a topological space.

(1) A chain of irreducible closed subsets of X is a sequence Z0 ⊂ Z1 ⊂ . . . ⊂
Zn ⊂ X with Zi closed irreducible and Zi ̸= Zi+1 for i = 0, . . . , n− 1.

(2) The length of a chain Z0 ⊂ Z1 ⊂ . . . ⊂ Zn ⊂ X of irreducible closed
subsets of X is the integer n.

(3) The dimension or more precisely the Krull dimension dim(X) of X is the
element of {−∞, 0, 1, 2, 3, . . . ,∞} defined by the formula:

dim(X) = sup{lengths of chains of irreducible closed subsets}

Thus dim(X) = −∞ if and only if X is the empty space.
(4) Let x ∈ X. The Krull dimension of X at x is defined as

dimx(X) = min{dim(U), x ∈ U ⊂ X open}

the minimum of dim(U) where U runs over the open neighbourhoods of
x in X.

Note that if U ′ ⊂ U ⊂ X are open then dim(U ′) ≤ dim(U). Hence if dimx(X) =
d then x has a fundamental system of open neighbourhoods U with dim(U) =
dimx(X).

Lemma 5.10.2.0B7I Let X be a topological space. Then dim(X) = sup dimx(X) where
the supremum runs over the points x of X.

Proof. It is clear that dim(X) ≥ dimx(X) for all x ∈ X (see discussion following
Definition 5.10.1). Thus an inequality in one direction. For the converse, let n ≥ 0
and suppose that dim(X) ≥ n. Then we can find a chain of irreducible closed
subsets Z0 ⊂ Z1 ⊂ . . . ⊂ Zn ⊂ X. Pick x ∈ Z0. For every open neighbourhood U
of x we get a chain of irreducible closed subsets

Z0 ∩ U ⊂ Z1 ∩ U ⊂ . . . ⊂ Zn ∩ U

in U . Namely, the sets U ∩ Zi are irreducible closed in U and the inclusions are
strict (details omitted; hint: the closure of U ∩ Zi is Zi). In this way we see that
dimx(X) ≥ n which proves the other inequality. □

Example 5.10.3.0056 The Krull dimension of the usual Euclidean space Rn is 0.

Example 5.10.4.0057 LetX = {s, η} with open sets given by {∅, {η}, {s, η}}. In this case
a maximal chain of irreducible closed subsets is {s} ⊂ {s, η}. Hence dim(X) = 1.
It is easy to generalize this example to get a (n + 1)-element topological space of
Krull dimension n.

Definition 5.10.5.0058 Let X be a topological space. We say that X is equidimensional
if every irreducible component of X has the same dimension.
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5.11. Codimension and catenary spaces

02I0 We only define the codimension of irreducible closed subsets.

Definition 5.11.1.02I3 Let X be a topological space. Let Y ⊂ X be an irreducible
closed subset. The codimension of Y in X is the supremum of the lengths e of
chains

Y = Y0 ⊂ Y1 ⊂ . . . ⊂ Ye ⊂ X
of irreducible closed subsets in X starting with Y . We will denote this codim(Y,X).

The codimension is an element of {0, 1, 2, . . .} ∪ {∞}. If codim(Y,X) < ∞, then
every chain can be extended to a maximal chain (but these do not all have to have
the same length).

Lemma 5.11.2.02I4 Let X be a topological space. Let Y ⊂ X be an irreducible closed
subset. Let U ⊂ X be an open subset such that Y ∩ U is nonempty. Then

codim(Y,X) = codim(Y ∩ U,U)

Proof. The rule T 7→ T defines a bijective inclusion preserving map between the
closed irreducible subsets of U and the closed irreducible subsets of X which meet
U . Using this the lemma easily follows. Details omitted. □

Example 5.11.3.02I5 Let X = [0, 1] be the unit interval with the following topology:
The sets [0, 1], (1− 1/n, 1] for n ∈ N, and ∅ are open. So the closed sets are ∅, {0},
[0, 1− 1/n] for n > 1 and [0, 1]. This is clearly a Noetherian topological space. But
the irreducible closed subset Y = {0} has infinite codimension codim(Y,X) = ∞.
To see this we just remark that all the closed sets [0, 1− 1/n] are irreducible.

Definition 5.11.4.02I1 Let X be a topological space. We say X is catenary if for every
pair of irreducible closed subsets T ⊂ T ′ we have codim(T, T ′) < ∞ and every
maximal chain of irreducible closed subsets

T = T0 ⊂ T1 ⊂ . . . ⊂ Te = T ′

has the same length (equal to the codimension).

Lemma 5.11.5.02I2 Let X be a topological space. The following are equivalent:
(1) X is catenary,
(2) X has an open covering by catenary spaces.

Moreover, in this case any locally closed subspace of X is catenary.

Proof. Suppose that X is catenary and that U ⊂ X is an open subset. The rule
T 7→ T defines a bijective inclusion preserving map between the closed irreducible
subsets of U and the closed irreducible subsets of X which meet U . Using this the
lemma easily follows. Details omitted. □

Lemma 5.11.6.02I6 Let X be a topological space. The following are equivalent:
(1) X is catenary, and
(2) for every pair of irreducible closed subsets Y ⊂ Y ′ we have codim(Y, Y ′) <
∞ and for every triple Y ⊂ Y ′ ⊂ Y ′′ of irreducible closed subsets we have

codim(Y, Y ′′) = codim(Y, Y ′) + codim(Y ′, Y ′′).
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Proof. Let suppose thatX is catenary. According to Definition 5.11.4, for every pair
of irreducible closed subsets Y ⊂ Y ′ we have codim(Y, Y ′) <∞. Let Y ⊂ Y ′ ⊂ Y ′′

be a triple of irreducible closed subsets of X. Let
Y = Y0 ⊂ Y1 ⊂ ... ⊂ Ye1 = Y ′

be a maximal chain of irreducible closed subsets between Y and Y ′ where e1 =
codim(Y, Y ′). Let also

Y ′ = Ye1 ⊂ Ye1+1 ⊂ ... ⊂ Ye1+e2 = Y ′′

be a maximal chain of irreducible closed subsets between Y ′ and Y ′′ where e2 =
codim(Y ′, Y ′′). As the two chains are maximal, the concatenation

Y = Y0 ⊂ Y1 ⊂ ... ⊂ Ye1 = Y ′ = Ye1 ⊂ Ye1+1 ⊂ ... ⊂ Ye1+e2 = Y ′′

is maximal too (between Y and Y ′′) and its length equals to e1 + e2. As X is
catenary, each maximal chain has the same length equals to the codimension. Thus
the point (2) that codim(Y, Y ′′) = e1+e2 = codim(Y, Y ′)+codim(Y ′, Y ′′) is verified.
For the reciprocal, we show by induction that : if Y = Y1 ⊂ ... ⊂ Yn = Y ′, then
codim(Y, Y ′) = codim(Y1, Y2) + ...+ codim(Yn−1, Yn). Therefore, it forces maximal
chains to have the same length. □

5.12. Quasi-compact spaces and maps

0059 The phrase “compact” will be reserved for Hausdorff topological spaces. And many
spaces occurring in algebraic geometry are not Hausdorff.

Definition 5.12.1.005A Quasi-compactness.
(1) We say that a topological space X is quasi-compact if every open covering

of X has a finite subcover.
(2) We say that a continuous map f : X → Y is quasi-compact if the inverse

image f−1(V ) of every quasi-compact open V ⊂ Y is quasi-compact.
(3) We say a subset Z ⊂ X is retrocompact if the inclusion map Z → X is

quasi-compact.

In many texts on topology a space is called compact if it is quasi-compact and
Hausdorff; and in other texts the Hausdorff condition is omitted. To avoid confu-
sion in algebraic geometry we use the term quasi-compact. The notion of quasi-
compactness of a map is very different from the notion of a “proper map”, since
there we require (besides closedness and separatedness) the inverse image of any
quasi-compact subset of the target to be quasi-compact, whereas in the definition
above we only consider quasi-compact open sets.

Lemma 5.12.2.005B A composition of quasi-compact maps is quasi-compact.

Proof. This is immediate from the definition. □

Lemma 5.12.3.005C A closed subset of a quasi-compact topological space is quasi-
compact.

Proof. Let E ⊂ X be a closed subset of the quasi-compact space X. Let E =
⋃
Vj

be an open covering. Choose Uj ⊂ X open such that Vj = E ∩ Uj . Then X =
(X \E) ∪

⋃
Uj is an open covering of X. Hence X = (X \E) ∪ Uj1 ∪ . . . ∪ Ujn for

some n and indices ji. Thus E = Vj1 ∪ . . . ∪ Vjn as desired. □

https://stacks.math.columbia.edu/tag/005A
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Lemma 5.12.4.08YB Let X be a Hausdorff topological space.
(1) If E ⊂ X is quasi-compact, then it is closed.
(2) If E1, E2 ⊂ X are disjoint quasi-compact subsets then there exists opens

Ei ⊂ Ui with U1 ∩ U2 = ∅.

Proof. Proof of (1). Let x ∈ X, x ̸∈ E. For every e ∈ E we can find disjoint opens
Ve and Ue with e ∈ Ve and x ∈ Ue. Since E ⊂

⋃
Ve we can find finitely many

e1, . . . , en such that E ⊂ Ve1 ∪ . . . ∪ Ven . Then U = Ue1 ∩ . . . ∩ Uen is an open
neighbourhood of x which avoids Ve1 ∪ . . . ∪ Ven . In particular it avoids E. Thus
E is closed.

Proof of (2). In the proof of (1) we have seen that given x ∈ E1 we can find an
open neighbourhood x ∈ Ux and an open E2 ⊂ Vx such that Ux ∩ Vx = ∅. Because
E1 is quasi-compact we can find a finite number xi ∈ E1 such that E1 ⊂ U =
Ux1 ∪ . . . ∪ Uxn . We take V = Vx1 ∩ . . . ∩ Vxn to finish the proof. □

Lemma 5.12.5.08YC Let X be a quasi-compact Hausdorff space. Let E ⊂ X. The
following are equivalent: (a) E is closed in X, (b) E is quasi-compact.

Proof. The implication (a) ⇒ (b) is Lemma 5.12.3. The implication (b) ⇒ (a) is
Lemma 5.12.4. □

The following is really a reformulation of the quasi-compact property.

Lemma 5.12.6.005D Let X be a quasi-compact topological space. If {Zα}α∈A is a
collection of closed subsets such that the intersection of each finite subcollection is
nonempty, then

⋂
α∈A Zα is nonempty.

Proof. We suppose that
⋂
α∈A Zα = ∅. So we have

⋃
α∈A(X \ Zα) = X by com-

plementation. As the subsets Zα are closed,
⋃
α∈A(X \ Zα) is an open cover-

ing of the quasi-compact space X. Thus there exists a finite subset J ⊂ A such
that X =

⋃
α∈J(X \ Zα). The complementary is then empty, which means that⋂

α∈J Zα = ∅. It proves there exists a finite subcollection of {Zα}α∈J verifying⋂
α∈J Zα = ∅, which concludes by contraposition. □

Lemma 5.12.7.04Z9 Let f : X → Y be a continuous map of topological spaces.
(1) If X is quasi-compact, then f(X) is quasi-compact.
(2) If f is quasi-compact, then f(X) is retrocompact.

Proof. If f(X) =
⋃
Vi is an open covering, then X =

⋃
f−1(Vi) is an open covering.

Hence if X is quasi-compact then X = f−1(Vi1)∪. . .∪f−1(Vin) for some i1, . . . , in ∈
I and hence f(X) = Vi1∪. . .∪Vin . This proves (1). Assume f is quasi-compact, and
let V ⊂ Y be quasi-compact open. Then f−1(V ) is quasi-compact, hence by (1) we
see that f(f−1(V )) = f(X)∩V is quasi-compact. Hence f(X) is retrocompact. □

Lemma 5.12.8.005E Let X be a topological space. Assume that
(1) X is nonempty,
(2) X is quasi-compact, and
(3) X is Kolmogorov.

Then X has a closed point.
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Proof. Consider the set
T = {Z ⊂ X | Z = {x} for some x ∈ X}

of all closures of singletons in X. It is nonempty since X is nonempty. Make T
into a partially ordered set using the relation of inclusion. Suppose Zα, α ∈ A is
a totally ordered subset of T . By Lemma 5.12.6 we see that

⋂
α∈A Zα ̸= ∅. Hence

there exists some x ∈
⋂
α∈A Zα and we see that Z = {x} ∈ T is a lower bound

for the family. By Zorn’s lemma there exists a minimal element Z ∈ T . As X is
Kolmogorov we conclude that Z = {x} for some x and x ∈ X is a closed point. □

Lemma 5.12.9.08ZM Let X be a quasi-compact Kolmogorov space. Then the set X0 of
closed points of X is quasi-compact.

Proof. Let X0 =
⋃
Ui,0 be an open covering. Write Ui,0 = X0 ∩ Ui for some

open Ui ⊂ X. Consider the complement Z of
⋃
Ui. This is a closed subset of X,

hence quasi-compact (Lemma 5.12.3) and Kolmogorov. By Lemma 5.12.8 if Z is
nonempty it would have a closed point which contradicts the fact that X0 ⊂

⋃
Ui.

Hence Z = ∅ and X =
⋃
Ui. Since X is quasi-compact this covering has a finite

subcover and we conclude. □

Lemma 5.12.10.005F Let X be a topological space. Assume
(1) X is quasi-compact,
(2) X has a basis for the topology consisting of quasi-compact opens, and
(3) the intersection of two quasi-compact opens is quasi-compact.

For any x ∈ X the connected component of X containing x is the intersection of
all open and closed subsets of X containing x.

Proof. Let T be the connected component containing x. Let S =
⋂
α∈A Zα be the

intersection of all open and closed subsets Zα of X containing x. Note that S is
closed inX. Note that any finite intersection of Zα’s is a Zα. Because T is connected
and x ∈ T we have T ⊂ S. It suffices to show that S is connected. If not, then there
exists a disjoint union decomposition S = B ⨿C with B and C open and closed in
S. In particular, B and C are closed in X, and so quasi-compact by Lemma 5.12.3
and assumption (1). By assumption (2) there exist quasi-compact opens U, V ⊂ X
with B = S ∩ U and C = S ∩ V (details omitted). Then U ∩ V ∩ S = ∅. Hence⋂
α U ∩ V ∩ Zα = ∅. By assumption (3) the intersection U ∩ V is quasi-compact.

By Lemma 5.12.6 for some α′ ∈ A we have U ∩ V ∩ Zα′ = ∅. Since X \ (U ∪ V ) is
disjoint from S and closed in X hence quasi-compact, we can use the same lemma
to see that Zα′′ ⊂ U ∪ V for some α′′ ∈ A. Then Zα = Zα′ ∩ Zα′′ is contained in
U ∪ V and disjoint from U ∩ V . Hence Zα = U ∩ Zα ⨿ V ∩ Zα is a decomposition
into two open pieces, hence U ∩Zα and V ∩Zα are open and closed in X. Thus, if
x ∈ B say, then we see that S ⊂ U ∩ Zα and we conclude that C = ∅. □

Lemma 5.12.11.08ZN Let X be a topological space. Assume X is quasi-compact and
Hausdorff. For any x ∈ X the connected component of X containing x is the
intersection of all open and closed subsets of X containing x.

Proof. Let T be the connected component containing x. Let S =
⋂
α∈A Zα be

the intersection of all open and closed subsets Zα of X containing x. Note that
S is closed in X. Note that any finite intersection of Zα’s is a Zα. Because T is
connected and x ∈ T we have T ⊂ S. It suffices to show that S is connected. If not,
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then there exists a disjoint union decomposition S = B ⨿ C with B and C open
and closed in S. In particular, B and C are closed in X, and so quasi-compact by
Lemma 5.12.3. By Lemma 5.12.4 there exist disjoint opens U, V ⊂ X with B ⊂ U
and C ⊂ V . Then X \ U ∪ V is closed in X hence quasi-compact (Lemma 5.12.3).
It follows that (X \U ∪ V )∩Zα = ∅ for some α by Lemma 5.12.6. In other words,
Zα ⊂ U ∪V . Thus Zα = Zα ∩V ⨿Zα ∩U is a decomposition into two open pieces,
hence U ∩ Zα and V ∩ Zα are open and closed in X. Thus, if x ∈ B say, then we
see that S ⊂ U ∩ Zα and we conclude that C = ∅. □

Lemma 5.12.12.04PL Let X be a topological space. Assume
(1) X is quasi-compact,
(2) X has a basis for the topology consisting of quasi-compact opens, and
(3) the intersection of two quasi-compact opens is quasi-compact.

For a subset T ⊂ X the following are equivalent:
(a) T is an intersection of open and closed subsets of X, and
(b) T is closed in X and is a union of connected components of X.

Proof. It is clear that (a) implies (b). Assume (b). Let x ∈ X, x ̸∈ T . Let
x ∈ C ⊂ X be the connected component of X containing x. By Lemma 5.12.10 we
see that C =

⋂
Vα is the intersection of all open and closed subsets Vα of X which

contain C. In particular, any pairwise intersection Vα ∩ Vβ occurs as a Vα. As T is
a union of connected components of X we see that C ∩T = ∅. Hence T ∩

⋂
Vα = ∅.

Since T is quasi-compact as a closed subset of a quasi-compact space (see Lemma
5.12.3) we deduce that T ∩ Vα = ∅ for some α, see Lemma 5.12.6. For this α we
see that Uα = X \ Vα is an open and closed subset of X which contains T and not
x. The lemma follows. □

Lemma 5.12.13.04ZA Let X be a Noetherian topological space.
(1) The space X is quasi-compact.
(2) Any subset of X is retrocompact.

Proof. Suppose X =
⋃
Ui is an open covering of X indexed by the set I which

does not have a refinement by a finite open covering. Choose i1, i2, . . . elements of
I inductively in the following way: Choose in+1 such that Uin+1 is not contained in
Ui1 ∪ . . .∪Uin . Thus we see that X ⊃ (X \Ui1) ⊃ (X \Ui1 ∪Ui2) ⊃ . . . is a strictly
decreasing infinite sequence of closed subsets. This contradicts the fact that X is
Noetherian. This proves the first assertion. The second assertion is now clear since
every subset of X is Noetherian by Lemma 5.9.2. □

Lemma 5.12.14.04ZB A quasi-compact locally Noetherian space is Noetherian.

Proof. The conditions imply immediately that X has a finite covering by Noether-
ian subsets, and hence is Noetherian by Lemma 5.9.4. □

Lemma 5.12.15 (Alexander subbase theorem).08ZP Let X be a topological space. Let B
be a subbase for X. If every covering of X by elements of B has a finite refinement,
then X is quasi-compact.

Proof. Assume there is an open covering of X which does not have a finite refine-
ment. Using Zorn’s lemma we can choose a maximal open covering X =

⋃
i∈I Ui

which does not have a finite refinement (details omitted). In other words, if U ⊂ X
is any open which does not occur as one of the Ui, then the covering X = U∪

⋃
i∈I Ui
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does have a finite refinement. Let I ′ ⊂ I be the set of indices such that Ui ∈ B.
Then

⋃
i∈I′ Ui ̸= X, since otherwise we would get a finite refinement covering X

by our assumption on B. Pick x ∈ X, x ̸∈
⋃
i∈I′ Ui. Pick i ∈ I with x ∈ Ui. Pick

V1, . . . , Vn ∈ B such that x ∈ V1∩. . .∩Vn ⊂ Ui. This is possible as B is a subbasis for
X. Note that Vj does not occur as a Ui. By maximality of the chosen covering we
see that for each j there exist ij,1, . . . , ij,nj ∈ I such that X = Vj∪Uij,1∪. . .∪Uij,nj .
Since V1 ∩ . . . ∩ Vn ⊂ Ui we conclude that X = Ui ∪

⋃
Uij,l a contradiction. □

5.13. Locally quasi-compact spaces

08ZQ Recall that a neighbourhood of a point need not be open.

Definition 5.13.1.0068 A topological space X is called locally quasi-compact2 if every
point has a fundamental system of quasi-compact neighbourhoods.

The term locally compact space in the literature often refers to a space as in the
following lemma.

Lemma 5.13.2.08ZR A Hausdorff space is locally quasi-compact if and only if every
point has a quasi-compact neighbourhood.

Proof. Let X be a Hausdorff space. Let x ∈ X and let x ∈ E ⊂ X be a quasi-
compact neighbourhood. Then E is closed by Lemma 5.12.4. Suppose that x ∈
U ⊂ X is an open neighbourhood of x. Then Z = E \ U is a closed subset of
E not containing x. Hence we can find a pair of disjoint open subsets W,V ⊂ E
of E such that x ∈ V and Z ⊂ W , see Lemma 5.12.4. It follows that V ⊂ E is
a closed neighbourhood of x contained in E ∩ U . Also V is quasi-compact as a
closed subset of E (Lemma 5.12.3). In this way we obtain a fundamental system
of quasi-compact neighbourhoods of x. □

Lemma 5.13.3 (Baire category theorem).0CQN Let X be a locally quasi-compact Haus-
dorff space. Let Un ⊂ X, n ≥ 1 be dense open subsets. Then

⋂
n≥1 Un is dense in

X.

Proof. After replacing Un by
⋂
i=1,...,n Ui we may assume that U1 ⊃ U2 ⊃ . . ..

Let x ∈ X. We will show that x is in the closure of
⋂
n≥1 Un. Thus let E be a

neighbourhood of x. To show that E ∩
⋂
n≥1 Un is nonempty we may replace E by

a smaller neighbourhood. After replacing E by a smaller neighbourhood, we may
assume that E is quasi-compact.
Set x0 = x and E0 = E. Below, we will inductively choose a point xi ∈ Ei−1 ∩ Ui
and a quasi-compact neighbourhood Ei of xi with Ei ⊂ Ei−1 ∩ Ui. Because X is
Hausdorff, the subsets Ei ⊂ X are closed (Lemma 5.12.4). Since the Ei are also
nonempty we conclude that

⋂
i≥1 Ei is nonempty (Lemma 5.12.6). Since

⋂
i≥1 Ei ⊂

E ∩
⋂
n≥1 Un this proves the lemma.

The base case i = 0 we have done above. Induction step. Since Ei−1 is a neigh-
bourhood of xi−1 we can find an open xi−1 ∈W ⊂ Ei−1. Since Ui is dense in X we

2This may not be standard notation. Alternative notions used in the literature are: (1) Every
point has some quasi-compact neighbourhood, and (2) Every point has a closed quasi-compact
neighbourhood. A scheme has the property that every point has a fundamental system of open
quasi-compact neighbourhoods.
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see that W ∩Ui is nonempty. Pick any xi ∈W ∩Ui. By definition of locally quasi-
compact spaces we can find a quasi-compact neighbourhood Ei of xi contained in
W ∩ Ui. Then Ei ⊂ Ei−1 ∩ Ui as desired. □

Lemma 5.13.4.09UV Let X be a Hausdorff and quasi-compact space. Let X =
⋃
i∈I Ui

be an open covering. Then there exists an open covering X =
⋃
i∈I Vi such that

Vi ⊂ Ui for all i.

Proof. Let x ∈ X. Choose an i(x) ∈ I such that x ∈ Ui(x). Since X \ Ui(x) and
{x} are disjoint closed subsets of X, by Lemmas 5.12.3 and 5.12.4 there exists
an open neighbourhood Ux of x whose closure is disjoint from X \ Ui(x). Thus
Ux ⊂ Ui(x). Since X is quasi-compact, there is a finite list of points x1, . . . , xm such
that X = Ux1 ∪ . . . ∪ Uxm . Setting Vi =

⋃
i=i(xj) Uxj the proof is finished. □

Lemma 5.13.5.09UW Let X be a Hausdorff and quasi-compact space. Let X =
⋃
i∈I Ui

be an open covering. Suppose given an integer p ≥ 0 and for every (p + 1)-tuple
i0, . . . , ip of I an open covering Ui0 ∩ . . . ∩ Uip =

⋃
Wi0...ip,k. Then there exists an

open covering X =
⋃
j∈J Vj and a map α : J → I such that Vj ⊂ Uα(j) and such

that each Vj0 ∩ . . . ∩ Vjp is contained in Wα(j0)...α(jp),k for some k.

Proof. Since X is quasi-compact, there is a reduction to the case where I is finite
(details omitted). We prove the result for I finite by induction on p. The base
case p = 0 is immediate by taking a covering as in Lemma 5.13.4 refining the open
covering X =

⋃
Wi0,k.

Induction step. Assume the lemma proven for p − 1. For all p-tuples i′0, . . . , i′p−1
of I let Ui′0 ∩ . . . ∩ Ui′p−1

=
⋃
Wi′0...i

′
p−1,k

be a common refinement of the coverings
Ui0 ∩ . . . ∩ Uip =

⋃
Wi0...ip,k for those (p + 1)-tuples such that {i′0, . . . , i′p−1} =

{i0, . . . , ip} (equality of sets). (There are finitely many of these as I is finite.) By
induction there exists a solution for these opens, say X =

⋃
Vj and α : J → I. At

this point the covering X =
⋃
j∈J Vj and α satisfy Vj ⊂ Uα(j) and each Vj0∩. . .∩Vjp

is contained in Wα(j0)...α(jp),k for some k if there is a repetition in α(j0), . . . , α(jp).
Of course, we may and do assume that J is finite.
Fix i0, . . . , ip ∈ I pairwise distinct. Consider (p + 1)-tuples j0, . . . , jp ∈ J with
i0 = α(j0), . . . , ip = α(jp) such that Vj0 ∩ . . .∩Vjp is not contained in Wα(j0)...α(jp),k
for any k. Let N be the number of such (p+1)-tuples. We will show how to decrease
N . Since

Vj0 ∩ . . . ∩ Vjp ⊂ Ui0 ∩ . . . ∩ Uip =
⋃
Wi0...ip,k

we find a finite setK = {k1, . . . , kt} such that the LHS is contained in
⋃
k∈KWi0...ip,k.

Then we consider the open covering

Vj0 = (Vj0 \ (Vj1 ∩ . . . ∩ Vjp)) ∪ (
⋃

k∈K
Vj0 ∩Wi0...ip,k)

The first open on the RHS intersects Vj1 ∩ . . .∩ Vjp in the empty set and the other
opens Vj0,k of the RHS satisfy Vj0,k∩Vj1 . . .∩Vjp ⊂Wα(j0)...α(jp),k. Set J ′ = J⨿K.
For j ∈ J set V ′

j = Vj if j ̸= j0 and set V ′
j0

= Vj0 \ (Vj1 ∩ . . . ∩ Vjp). For k ∈ K
set V ′

k = Vj0,k. Finally, the map α′ : J ′ → I is given by α on J and maps every
element of K to i0. A simple check shows that N has decreased by one under this
replacement. Repeating this procedure N times we arrive at the situation where
N = 0.
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To finish the proof we argue by induction on the number M of (p + 1)-tuples
i0, . . . , ip ∈ I with pairwise distinct entries for which there exists a (p + 1)-tuple
j0, . . . , jp ∈ J with i0 = α(j0), . . . , ip = α(jp) such that Vj0 ∩ . . . ∩ Vjp is not
contained in Wα(j0)...α(jp),k for any k. To do this, we claim that the operation
performed in the previous paragraph does not increase M . This follows formally
from the fact that the map α′ : J ′ → I factors through a map β : J ′ → J such that
V ′
j′ ⊂ Vβ(j′). □

Lemma 5.13.6.09UX Let X be a Hausdorff and locally quasi-compact space. Let Z ⊂ X
be a quasi-compact (hence closed) subset. Suppose given an integer p ≥ 0, a set I,
for every i ∈ I an open Ui ⊂ X, and for every (p+ 1)-tuple i0, . . . , ip of I an open
Wi0...ip ⊂ Ui0 ∩ . . . ∩ Uip such that

(1) Z ⊂
⋃
Ui, and

(2) for every i0, . . . , ip we have Wi0...ip ∩ Z = Ui0 ∩ . . . ∩ Uip ∩ Z.
Then there exist opens Vi of X such that we have Z ⊂

⋃
Vi, for all i we have

Vi ⊂ Ui, and we have Vi0 ∩ . . . ∩ Vip ⊂Wi0...ip for all (p+ 1)-tuples i0, . . . , ip.

Proof. Since Z is quasi-compact, there is a reduction to the case where I is finite
(details omitted). Because X is locally quasi-compact and Z is quasi-compact, we
can find a neighbourhood Z ⊂ E which is quasi-compact, i.e., E is quasi-compact
and contains an open neighbourhood of Z inX. If we prove the result after replacing
X by E, then the result follows. Hence we may assume X is quasi-compact.
We prove the result in case I is finite and X is quasi-compact by induction on p.
The base case is p = 0. In this case we have X = (X \ Z) ∪

⋃
Wi. By Lemma

5.13.4 we can find a covering X = V ∪
⋃
Vi by opens Vi ⊂Wi and V ⊂ X \Z with

Vi ⊂ Wi for all i. Then we see that we obtain a solution of the problem posed by
the lemma.
Induction step. Assume the lemma proven for p − 1. Set Wj0...jp−1 equal to the
intersection of all Wi0...ip with {j0, . . . , jp−1} = {i0, . . . , ip} (equality of sets). By
induction there exists a solution for these opens, say Vi ⊂ Ui. It follows from our
choice of Wj0...jp−1 that we have Vi0 ∩ . . . ∩ Vip ⊂ Wi0...ip for all (p + 1)-tuples
i0, . . . , ip where ia = ib for some 0 ≤ a < b ≤ p. Thus we only need to modify our
choice of Vi if Vi0 ∩ . . .∩Vip ̸⊂Wi0...ip for some (p+1)-tuple i0, . . . , ip with pairwise
distinct elements. In this case we have

T = Vi0 ∩ . . . ∩ Vip \Wi0...ip ⊂ Vi0 ∩ . . . ∩ Vip \Wi0...ip

is a closed subset of X contained in Ui0 ∩ . . . ∩ Uip not meeting Z. Hence we can
replace Vi0 by Vi0 \T to “fix” the problem. After repeating this finitely many times
for each of the problem tuples, the lemma is proven. □

Lemma 5.13.7.0CY5 Let X be a topological space. Let Z ⊂ X be a quasi-compact
subset such that any two points of Z have disjoint open neighbourhoods in X.
Suppose given an integer p ≥ 0, a set I, for every i ∈ I an open Ui ⊂ X, and for
every (p+ 1)-tuple i0, . . . , ip of I an open Wi0...ip ⊂ Ui0 ∩ . . . ∩ Uip such that

(1) Z ⊂
⋃
Ui, and

(2) for every i0, . . . , ip we have Wi0...ip ∩ Z = Ui0 ∩ . . . ∩ Uip ∩ Z.
Then there exist opens Vi of X such that

(1) Z ⊂
⋃
Vi,
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(2) Vi ⊂ Ui for all i,
(3) Vi ∩ Z ⊂ Ui for all i, and
(4) Vi0 ∩ . . . ∩ Vip ⊂Wi0...ip for all (p+ 1)-tuples i0, . . . , ip.

Proof. Since Z is quasi-compact, there is a reduction to the case where I is finite
(details omitted). We prove the result in case I is finite by induction on p.

The base case is p = 0. For z ∈ Z ∩ Ui and z′ ∈ Z \ Ui there exist disjoint opens
z ∈ Vz,z′ and z′ ∈ Wz,z′ of X. Since Z \ Ui is quasi-compact (Lemma 5.12.3), we
can choose a finite nunber z′

1, . . . , z
′
r such that Z \ Ui ⊂ Wz,z′

1
∪ . . . ∪Wz,z′

r
. Then

we see that Vz = Vz,z′
1
∩ . . .∩Vz,z′

r
∩Ui is an open neighbourhood of z contained in

Ui with the property that Vz ∩ Z ⊂ Ui. Since z and i where arbitrary and since Z
is quasi-compact we can find a finite list z1, i1, . . . , zt, it and opens Vzj ⊂ Uij with
Vzj ∩Z ⊂ Uij and Z ⊂

⋃
Vzj . Then we can set Vi = Wi ∩ (

⋃
j:i=ij Vzj ) to solve the

problem for p = 0.

Induction step. Assume the lemma proven for p − 1. Set Wj0...jp−1 equal to the
intersection of all Wi0...ip with {j0, . . . , jp−1} = {i0, . . . , ip} (equality of sets). By
induction there exists a solution for these opens, say Vi ⊂ Ui. It follows from our
choice of Wj0...jp−1 that we have Vi0 ∩ . . . ∩ Vip ⊂ Wi0...ip for all (p + 1)-tuples
i0, . . . , ip where ia = ib for some 0 ≤ a < b ≤ p. Thus we only need to modify our
choice of Vi if Vi0 ∩ . . .∩Vip ̸⊂Wi0...ip for some (p+1)-tuple i0, . . . , ip with pairwise
distinct elements. In this case we have

T = Vi0 ∩ . . . ∩ Vip \Wi0...ip ⊂ Vi0 ∩ . . . ∩ Vip \Wi0...ip

is a closed subset of X not meeting Z by our property (3) of the opens Vi. Hence
we can replace Vi0 by Vi0 \ T to “fix” the problem. After repeating this finitely
many times for each of the problem tuples, the lemma is proven. □

5.14. Limits of spaces

08ZS The category of topological spaces has products. Namely, if I is a set and for
i ∈ I we are given a topological space Xi then we endow

∏
i∈I Xi with the product

topology. As a basis for the topology we use sets of the form
∏
Ui where Ui ⊂ Xi

is open and Ui = Xi for almost all i.

The category of topological spaces has equalizers. Namely, if a, b : X → Y are
morphisms of topological spaces, then the equalizer of a and b is the subset {x ∈
X | a(x) = b(x)} ⊂ X endowed with the induced topology.

Lemma 5.14.1.08ZT The category of topological spaces has limits and the forgetful
functor to sets commutes with them.

Proof. This follows from the discussion above and Categories, Lemma 4.14.11. It
follows from the description above that the forgetful functor commutes with lim-
its. Another way to see this is to use Categories, Lemma 4.24.5 and use that the
forgetful functor has a left adjoint, namely the functor which assigns to a set the
corresponding discrete topological space. □

Lemma 5.14.2.0A2P Let I be a cofiltered category. Let i 7→ Xi be a diagram of
topological spaces over I. Let X = limXi be the limit with projection maps
fi : X → Xi.

https://stacks.math.columbia.edu/tag/08ZT
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(1) Any open of X is of the form
⋃
j∈J f

−1
j (Uj) for some subset J ⊂ I and

opens Uj ⊂ Xj .
(2) Any quasi-compact open of X is of the form f−1

i (Ui) for some i and some
Ui ⊂ Xi open.

Proof. The construction of the limit given above shows that X ⊂
∏
Xi with the

induced topology. A basis for the topology of
∏
Xi are the opens

∏
Ui where

Ui ⊂ Xi is open and Ui = Xi for almost all i. Say i1, . . . , in ∈ Ob(I) are the
objects such that Uij ̸= Xij . Then

X ∩
∏

Ui = f−1
i1

(Ui1) ∩ . . . ∩ f−1
in

(Uin)

For a general limit of topological spaces these form a basis for the topology on X.
However, if I is cofiltered as in the statement of the lemma, then we can pick a
j ∈ Ob(I) and morphisms j → il, l = 1, . . . , n. Let

Uj = (Xj → Xi1)−1(Ui1) ∩ . . . ∩ (Xj → Xin)−1(Uin)

Then it is clear that X ∩
∏
Ui = f−1

j (Uj). Thus for any open W of X there is a set
A and a map α : A → Ob(I) and opens Ua ⊂ Xα(a) such that W =

⋃
f−1
α(a)(Ua).

Set J = Im(α) and for j ∈ J set Uj =
⋃
α(a)=j Ua to see that W =

⋃
j∈J f

−1
j (Uj).

This proves (1).

To see (2) suppose that
⋃
j∈J f

−1
j (Uj) is quasi-compact. Then it is equal to

f−1
j1

(Uj1) ∪ . . . ∪ f−1
jm

(Ujm) for some j1, . . . , jm ∈ J . Since I is cofiltered, we can
pick a i ∈ Ob(I) and morphisms i→ jl, l = 1, . . . ,m. Let

Ui = (Xi → Xj1)−1(Uj1) ∪ . . . ∪ (Xi → Xjm)−1(Ujm)

Then our open equals f−1
i (Ui) as desired. □

Lemma 5.14.3.0A2Q Let I be a cofiltered category. Let i 7→ Xi be a diagram of
topological spaces over I. Let X be a topological space such that

(1) X = limXi as a set (denote fi the projection maps),
(2) the sets f−1

i (Ui) for i ∈ Ob(I) and Ui ⊂ Xi open form a basis for the
topology of X.

Then X is the limit of the Xi as a topological space.

Proof. Follows from the description of the limit topology in Lemma 5.14.2. □

Theorem 5.14.4 (Tychonov).08ZU A product of quasi-compact spaces is quasi-compact.

Proof. Let I be a set and for i ∈ I let Xi be a quasi-compact topological space.
Set X =

∏
Xi. Let B be the set of subsets of X of the form Ui ×

∏
i′∈I,i′ ̸=iXi′

where Ui ⊂ Xi is open. By construction this family is a subbasis for the topology
on X. By Lemma 5.12.15 it suffices to show that any covering X =

⋃
j∈J Bj by

elements Bj of B has a finite refinement. We can decompose J =
∐
Ji so that if

j ∈ Ji, then Bj = Uj ×
∏
i′ ̸=iXi′ with Uj ⊂ Xi open. If Xi =

⋃
j∈Ji Uj , then there

is a finite refinement and we conclude that X =
⋃
j∈J Bj has a finite refinement. If

this is not the case, then for every i we can choose an point xi ∈ Xi which is not
in
⋃
j∈Ji Uj . But then the point x = (xi)i∈I is an element of X not contained in⋃

j∈J Bj , a contradiction. □

https://stacks.math.columbia.edu/tag/0A2Q
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The following lemma does not hold if one drops the assumption that the spaces Xi

are Hausdorff, see Examples, Section 110.4.

Lemma 5.14.5.08ZV Let I be a category and let i 7→ Xi be a diagram over I in the
category of topological spaces. If each Xi is quasi-compact and Hausdorff, then
limXi is quasi-compact.

Proof. Recall that limXi is a subspace of
∏
Xi. By Theorem 5.14.4 this product

is quasi-compact. Hence it suffices to show that limXi is a closed subspace of
∏
Xi

(Lemma 5.12.3). If φ : j → k is a morphism of I, then let Γφ ⊂ Xj ×Xk denote
the graph of the corresponding continuous map Xj → Xk. By Lemma 5.3.2 this
graph is closed. It is clear that limXi is the intersection of the closed subsets

Γφ ×
∏

l ̸=j,k
Xl ⊂

∏
Xi

Thus the result follows. □

The following lemma generalizes Categories, Lemma 4.21.7 and partially generalizes
Lemma 5.12.6.

Lemma 5.14.6.0A2R Let I be a cofiltered category and let i 7→ Xi be a diagram over I
in the category of topological spaces. If each Xi is quasi-compact, Hausdorff, and
nonempty, then limXi is nonempty.

Proof. In the proof of Lemma 5.14.5 we have seen that X = limXi is the intersec-
tion of the closed subsets

Zφ = Γφ ×
∏

l ̸=j,k
Xl

inside the quasi-compact space
∏
Xi where φ : j → k is a morphism of I and

Γφ ⊂ Xj × Xk is the graph of the corresponding morphism Xj → Xk. Hence by
Lemma 5.12.6 it suffices to show any finite intersection of these subsets is nonempty.
Assume φt : jt → kt, t = 1, . . . , n is a finite collection of morphisms of I. Since I
is cofiltered, we can pick an object j and a morphism ψt : j → jt for each t. For
each pair t, t′ such that either (a) jt = jt′ , or (b) jt = kt′ , or (c) kt = kt′ we obtain
two morphisms j → l with l = jt in case (a), (b) or l = kt in case (c). Because I is
cofiltered and since there are finitely many pairs (t, t′) we may choose a map j′ → j
which equalizes these two morphisms for all such pairs (t, t′). Pick an element
x ∈ Xj′ and for each t let xjt , resp. xkt be the image of x under the morphism
Xj′ → Xj → Xjt , resp. Xj′ → Xj → Xjt → Xkt . For any index l ∈ Ob(I) which
is not equal to jt or kt for some t we pick an arbitrary element xl ∈ Xl (using the
axiom of choice). Then (xi)i∈Ob(I) is in the intersection

Zφ1 ∩ . . . ∩ Zφn
by construction and the proof is complete. □

5.15. Constructible sets

04ZC
Definition 5.15.1.005G Let X be a topological space. Let E ⊂ X be a subset of X.

(1) We say E is constructible3 in X if E is a finite union of subsets of the
form U ∩ V c where U, V ⊂ X are open and retrocompact in X.

3In the second edition of EGA I [GD71] this was called a “globally constructible” set and a
the terminology “constructible” was used for what we call a locally constructible set.

https://stacks.math.columbia.edu/tag/08ZV
https://stacks.math.columbia.edu/tag/0A2R
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(2) We say E is locally constructible in X if there exists an open covering
X =

⋃
Vi such that each E ∩ Vi is constructible in Vi.

Lemma 5.15.2.005H The collection of constructible sets is closed under finite intersec-
tions, finite unions and complements.
Proof. Note that if U1, U2 are open and retrocompact in X then so is U1 ∪ U2
because the union of two quasi-compact subsets of X is quasi-compact. It is also
true that U1 ∩ U2 is retrocompact. Namely, suppose U ⊂ X is quasi-compact
open, then U2 ∩U is quasi-compact because U2 is retrocompact in X, and then we
conclude U1 ∩ (U2 ∩ U) is quasi-compact because U1 is retrocompact in X. From
this it is formal to show that the complement of a constructible set is constructible,
that finite unions of constructibles are constructible, and that finite intersections
of constructibles are constructible. □

Lemma 5.15.3.005I Let f : X → Y be a continuous map of topological spaces. If the
inverse image of every retrocompact open subset of Y is retrocompact in X, then
inverse images of constructible sets are constructible.
Proof. This is true because f−1(U ∩ V c) = f−1(U) ∩ f−1(V )c, combined with the
definition of constructible sets. □

Lemma 5.15.4.005J Let U ⊂ X be open. For a constructible set E ⊂ X the intersection
E ∩ U is constructible in U .
Proof. Suppose that V ⊂ X is retrocompact open in X. It suffices to show that
V ∩U is retrocompact in U by Lemma 5.15.3. To show this let W ⊂ U be open and
quasi-compact. Then W is open and quasi-compact in X. Hence V ∩W = V ∩U∩W
is quasi-compact as V is retrocompact in X. □

Lemma 5.15.5.09YD Let U ⊂ X be a retrocompact open. Let E ⊂ U . If E is con-
structible in U , then E is constructible in X.
Proof. Suppose that V,W ⊂ U are retrocompact open in U . Then V,W are retro-
compact open in X (Lemma 5.12.2). Hence V ∩ (U \ W ) = V ∩ (X \ W ) is
constructible in X. We conclude since every constructible subset of U is a finite
union of subsets of the form V ∩ (U \W ). □

Lemma 5.15.6.053W Let X be a topological space. Let E ⊂ X be a subset. Let X =
V1 ∪ . . . ∪ Vm be a finite covering by retrocompact opens. Then E is constructible
in X if and only if E ∩ Vj is constructible in Vj for each j = 1, . . . ,m.
Proof. If E is constructible in X, then by Lemma 5.15.4 we see that E ∩ Vj is
constructible in Vj for all j. Conversely, suppose that E ∩ Vj is constructible in Vj
for each j = 1, . . . ,m. Then E =

⋃
E ∩ Vj is a finite union of constructible sets by

Lemma 5.15.5 and hence constructible. □

Lemma 5.15.7.09YE Let X be a topological space. Let Z ⊂ X be a closed subset such
that X \ Z is quasi-compact. Then for a constructible set E ⊂ X the intersection
E ∩ Z is constructible in Z.
Proof. Suppose that V ⊂ X is retrocompact open in X. It suffices to show that
V ∩ Z is retrocompact in Z by Lemma 5.15.3. To show this let W ⊂ Z be open
and quasi-compact. The subset W ′ = W ∪ (X \ Z) is quasi-compact, open, and
W = Z∩W ′. Hence V ∩Z∩W = V ∩Z∩W ′ is a closed subset of the quasi-compact

https://stacks.math.columbia.edu/tag/005H
https://stacks.math.columbia.edu/tag/005I
https://stacks.math.columbia.edu/tag/005J
https://stacks.math.columbia.edu/tag/09YD
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open V ∩W ′ as V is retrocompact in X. Thus V ∩ Z ∩W is quasi-compact by
Lemma 5.12.3. □

Lemma 5.15.8.09YF Let X be a topological space. Let T ⊂ X be a subset. Suppose
(1) T is retrocompact in X,
(2) quasi-compact opens form a basis for the topology on X.

Then for a constructible set E ⊂ X the intersection E ∩ T is constructible in T .

Proof. Suppose that V ⊂ X is retrocompact open in X. It suffices to show that
V ∩ T is retrocompact in T by Lemma 5.15.3. To show this let W ⊂ T be open
and quasi-compact. By assumption (2) we can find a quasi-compact open W ′ ⊂ X
such that W = T ∩W ′ (details omitted). Hence V ∩ T ∩W = V ∩ T ∩W ′ is the
intersection of T with the quasi-compact open V ∩W ′ as V is retrocompact in X.
Thus V ∩ T ∩W is quasi-compact. □

Lemma 5.15.9.09YG Let Z ⊂ X be a closed subset whose complement is retrocompact
open. Let E ⊂ Z. If E is constructible in Z, then E is constructible in X.

Proof. Suppose that V ⊂ Z is retrocompact open in Z. Consider the open subset
Ṽ = V ∪ (X \ Z) of X. Let W ⊂ X be quasi-compact open. Then

W ∩ Ṽ = (V ∩W ) ∪ ((X \ Z) ∩W ) .

The first part is quasi-compact as V ∩W = V ∩ (Z ∩W ) and (Z ∩W ) is quasi-
compact open in Z (Lemma 5.12.3) and V is retrocompact in Z. The second part
is quasi-compact as (X \ Z) is retrocompact in X. In this way we see that Ṽ is
retrocompact in X. Thus if V1, V2 ⊂ Z are retrocompact open, then

V1 ∩ (Z \ V2) = Ṽ1 ∩ (X \ Ṽ2)

is constructible in X. We conclude since every constructible subset of Z is a finite
union of subsets of the form V1 ∩ (Z \ V2). □

Lemma 5.15.10.09YH Let X be a topological space. Every constructible subset of X is
retrocompact.

Proof. Let E =
⋃
i=1,...,n Ui ∩ V ci with Ui, Vi retrocompact open in X. Let W ⊂ X

be quasi-compact open. Then E ∩W =
⋃
i=1,...,n Ui ∩ V ci ∩W . Thus it suffices

to show that U ∩ V c ∩W is quasi-compact if U, V are retrocompact open and W
is quasi-compact open. This is true because U ∩ V c ∩W is a closed subset of the
quasi-compact U ∩W so Lemma 5.12.3 applies. □

Question: Does the following lemma also hold if we assume X is a quasi-compact
topological space? Compare with Lemma 5.15.7.

Lemma 5.15.11.09YI Let X be a topological space. Assume X has a basis consisting
of quasi-compact opens. For E,E′ constructible in X, the intersection E ∩ E′ is
constructible in E.

Proof. Combine Lemmas 5.15.8 and 5.15.10. □

Lemma 5.15.12.09YJ Let X be a topological space. Assume X has a basis consisting
of quasi-compact opens. Let E be constructible in X and F ⊂ E constructible in
E. Then F is constructible in X.

https://stacks.math.columbia.edu/tag/09YF
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Proof. Observe that any retrocompact subset T of X has a basis for the induced
topology consisting of quasi-compact opens. In particular this holds for any con-
structible subset (Lemma 5.15.10). Write E = E1 ∪ . . . ∪ En with Ei = Ui ∩ V ci
where Ui, Vi ⊂ X are retrocompact open. Note that Ei = E∩Ei is constructible in
E by Lemma 5.15.11. Hence F ∩Ei is constructible in Ei by Lemma 5.15.11. Thus
it suffices to prove the lemma in case E = U ∩V c where U, V ⊂ X are retrocompact
open. In this case the inclusion E ⊂ X is a composition

E = U ∩ V c → U → X

Then we can apply Lemma 5.15.9 to the first inclusion and Lemma 5.15.5 to the
second. □

Lemma 5.15.13.0F2K Let X be a quasi-compact topological space having a basis con-
sisting of quasi-compact opens such that the intersection of any two quasi-compact
opens is quasi-compact. Let T ⊂ X be a locally closed subset such that T is
quasi-compact and T c is retrocompact in X. Then T is constructible in X.

Proof. Note that T is quasi-compact and open in T . Using our basis of quasi-
compact opens we can write T = U ∩T where U is quasi-compact open in X. Then
V = U \ T = U ∩ T c is retrocompact in U as T c is retrocompact in X. Hence V
is quasi-compact. Since the intersection of any two quasi-compact opens is quasi-
compact any quasi-compact open of X is retrocompact. Thus T = U ∩ V c with U
and V = U \ T retrocompact opens of X. A fortiori, T is constructible in X. □

Lemma 5.15.14.09YK Let X be a topological space which has a basis for the topology
consisting of quasi-compact opens. Let E ⊂ X be a subset. Let X = E1 ∪ . . .∪Em
be a finite covering by constructible subsets. Then E is constructible in X if and
only if E ∩ Ej is constructible in Ej for each j = 1, . . . ,m.

Proof. Combine Lemmas 5.15.11 and 5.15.12. □

Lemma 5.15.15.005K Let X be a topological space. Suppose that Z ⊂ X is irreducible.
Let E ⊂ X be a finite union of locally closed subsets (e.g. E is constructible). The
following are equivalent

(1) The intersection E ∩ Z contains an open dense subset of Z.
(2) The intersection E ∩ Z is dense in Z.

If Z has a generic point ξ, then this is also equivalent to
(3) We have ξ ∈ E.

Proof. The implication (1) ⇒ (2) is clear. Assume (2). Note that E ∩Z is a finite
union of locally closed subsets Zi of Z. Since Z is irreducible, one of the Zi must
be dense in Z. Then this Zi is dense open in Z as it is open in its closure. Hence
(1) holds.
Suppose that ξ ∈ Z is a generic point. If the equivalent conditions (1) and (2) hold,
then ξ ∈ E. Conversely, if ξ ∈ E then ξ ∈ E∩Z and hence E∩Z is dense in Z. □

5.16. Constructible sets and Noetherian spaces

053X
Lemma 5.16.1.005L Let X be a Noetherian topological space. The constructible sets
in X are precisely the finite unions of locally closed subsets of X.
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Proof. This follows immediately from Lemma 5.12.13. □

Lemma 5.16.2.053Y Let f : X → Y be a continuous map of Noetherian topological
spaces. If E ⊂ Y is constructible in Y , then f−1(E) is constructible in X.

Proof. Follows immediately from Lemma 5.16.1 and the definition of a continuous
map. □

Lemma 5.16.3.053Z Let X be a Noetherian topological space. Let E ⊂ X be a subset.
The following are equivalent:

(1) E is constructible in X, and
(2) for every irreducible closed Z ⊂ X the intersection E ∩ Z either contains

a nonempty open of Z or is not dense in Z.

Proof. Assume E is constructible and Z ⊂ X irreducible closed. Then E ∩ Z is
constructible in Z by Lemma 5.16.2. Hence E ∩ Z is a finite union of nonempty
locally closed subsets Ti of Z. Clearly if none of the Ti is open in Z, then E ∩Z is
not dense in Z. In this way we see that (1) implies (2).
Conversely, assume (2) holds. Consider the set S of closed subsets Y of X such that
E ∩ Y is not constructible in Y . If S ≠ ∅, then it has a smallest element Y as X
is Noetherian. Let Y = Y1 ∪ . . .∪ Yr be the decomposition of Y into its irreducible
components, see Lemma 5.9.2. If r > 1, then each Yi ∩E is constructible in Yi and
hence a finite union of locally closed subsets of Yi. Thus E ∩ Y is a finite union of
locally closed subsets of Y too and we conclude that E ∩Y is constructible in Y by
Lemma 5.16.1. This is a contradiction and so r = 1. If r = 1, then Y is irreducible,
and by assumption (2) we see that E ∩ Y either (a) contains an open V of Y or
(b) is not dense in Y . In case (a) we see, by minimality of Y , that E ∩ (Y \ V ) is a
finite union of locally closed subsets of Y \V . Thus E∩Y is a finite union of locally
closed subsets of Y and is constructible by Lemma 5.16.1. This is a contradiction
and so we must be in case (b). In case (b) we see that E ∩ Y = E ∩ Y ′ for some
proper closed subset Y ′ ⊂ Y . By minimality of Y we see that E ∩ Y ′ is a finite
union of locally closed subsets of Y ′ and we see that E ∩ Y ′ = E ∩ Y is a finite
union of locally closed subsets of Y and is constructible by Lemma 5.16.1. This
contradiction finishes the proof of the lemma. □

Lemma 5.16.4.0540 Let X be a Noetherian topological space. Let x ∈ X. Let E ⊂ X
be constructible in X. The following are equivalent:

(1) E is a neighbourhood of x, and
(2) for every irreducible closed subset Y of X which contains x the intersection

E ∩ Y is dense in Y .

Proof. It is clear that (1) implies (2). Assume (2). Consider the set S of closed
subsets Y of X containing x such that E ∩ Y is not a neighbourhood of x in Y . If
S ≠ ∅, then it has a minimal element Y as X is Noetherian. Suppose Y = Y1 ∪ Y2
with two smaller nonempty closed subsets Y1, Y2. If x ∈ Yi for i = 1, 2, then
Yi ∩ E is a neighbourhood of x in Yi and we conclude Y ∩ E is a neighbourhood
of x in Y which is a contradiction. If x ∈ Y1 but x ̸∈ Y2 (say), then Y1 ∩ E is a
neighbourhood of x in Y1 and hence also in Y , which is a contradiction as well.
We conclude that Y is irreducible closed. By assumption (2) we see that E ∩ Y is
dense in Y . Thus E ∩ Y contains an open V of Y , see Lemma 5.16.3. If x ∈ V
then E ∩ Y is a neighbourhood of x in Y which is a contradiction. If x ̸∈ V , then
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Y ′ = Y \ V is a proper closed subset of Y containing x. By minimality of Y we
see that E ∩ Y ′ contains an open neighbourhood V ′ ⊂ Y ′ of x in Y ′. But then
V ′ ∪ V is an open neighbourhood of x in Y contained in E, a contradiction. This
contradiction finishes the proof of the lemma. □

Lemma 5.16.5.0541 Let X be a Noetherian topological space. Let E ⊂ X be a subset.
The following are equivalent:

(1) E is open in X, and
(2) for every irreducible closed subset Y of X the intersection E ∩ Y is either

empty or contains a nonempty open of Y .
Proof. This follows formally from Lemmas 5.16.3 and 5.16.4. □

5.17. Characterizing proper maps

005M We include a section discussing the notion of a proper map in usual topology.
We define a continuous map of topological spaces to be proper if it is universally
closed and separated. Although this matches well with the definition of a proper
morphism in algebraic geometry, this is different from the definition in Bourbaki.
With our definition of a proper map of topological spaces, the proper base change
theorem (Cohomology, Theorem 20.18.2) holds without any further assumptions.
Furthermore, given a morphism f : X → Y of finite type schemes over C one
has: f is proper as a morphism of schemes if and only if the continuous map
f : X(C) → Y (C) on C-points with the classical topology is proper. This is
explained in [Gro71, Exp. XII, Prop. 3.2(v)] which also has a footnote pointing out
that they take properness in topology to be Bourbaki’s notion with separatedness
added on.
We find it useful to have names for three distinct concepts: separated, universally
closed, and both of those together (i.e., properness). For a continuous map f : X →
Y of locally compact Hausdorff spaces the word “proper” has long been used for the
notion “f−1(compact) = compact” and this is equivalent to universal closedness for
such nice spaces. In fact, we will see the preimage condition formulated for clarity
using the word “quasi-compact” is equivalent to universal closedness in general, if
one includes the assumption of the map being closed. See also [Lan93, Exercises 22-
26 in Chapter II] but beware that Lang uses “proper” as a synonym for “universally
closed”, like Bourbaki does.
Lemma 5.17.1 (Tube lemma).005N Let X and Y be topological spaces. Let A ⊂ X and
B ⊂ Y be quasi-compact subsets. Let A×B ⊂W ⊂ X×Y with W open in X×Y .
Then there exists opens A ⊂ U ⊂ X and B ⊂ V ⊂ Y such that U × V ⊂W .
Proof. For every a ∈ A and b ∈ B there exist opens U(a,b) of X and V(a,b) of Y
such that (a, b) ∈ U(a,b) × V(a,b) ⊂W . Fix b and we see there exist a finite number
a1, . . . , an such that A ⊂ U(a1,b) ∪ . . . ∪ U(an,b). Hence

A× {b} ⊂ (U(a1,b) ∪ . . . ∪ U(an,b))× (V(a1,b) ∩ . . . ∩ V(an,b)) ⊂W.
Thus for every b ∈ B there exists opens Ub ⊂ X and Vb ⊂ Y such that A × {b} ⊂
Ub × Vb ⊂ W . As above there exist a finite number b1, . . . , bm such that B ⊂
Vb1∪. . .∪Vbm . Then we win because A×B ⊂ (Ub1∩. . .∩Ubm)×(Vb1∪. . .∪Vbm). □

The notation in the following definition may be slightly different from what you are
used to.

https://stacks.math.columbia.edu/tag/0541
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Definition 5.17.2.005O Let f : X → Y be a continuous map between topological spaces.
(1) We say that the map f is closed if the image of every closed subset is

closed.
(2) We say that the map f is Bourbaki-proper4 if the map Z ×X → Z × Y

is closed for any topological space Z.
(3) We say that the map f is quasi-proper if the inverse image f−1(V ) of

every quasi-compact subset V ⊂ Y is quasi-compact.
(4) We say that f is universally closed if the map f ′ : Z ×Y X → Z is closed

for any continuous map g : Z → Y .
(5) We say that f is proper if f is separated and universally closed.

The following lemma is useful later.

Lemma 5.17.3.005P Combination of
[Bou71, I, p. 75,
Lemme 1] and
[Bou71, I, p. 76,
Corrolaire 1].

A topological space X is quasi-compact if and only if the projection
map Z ×X → Z is closed for any topological space Z.

Proof. (See also remark below.) If X is not quasi-compact, there exists an open
covering X =

⋃
i∈I Ui such that no finite number of Ui cover X. Let Z be the

subset of the power set P(I) of I consisting of I and all nonempty finite subsets of
I. Define a topology on Z with as a basis for the topology the following sets:

(1) All subsets of Z \ {I}.
(2) For every finite subset K of I the set UK := {J ⊂ I | J ∈ Z, K ⊂ J}).

It is left to the reader to verify this is the basis for a topology. Consider the subset
of Z ×X defined by the formula

M = {(J, x) | J ∈ Z, x ∈
⋂

i∈J
U ci )}

If (J, x) ̸∈ M , then x ∈ Ui for some i ∈ J . Hence U{i} × Ui ⊂ Z × X is an open
subset containing (J, x) and not intersecting M . Hence M is closed. The projection
of M to Z is Z − {I} which is not closed. Hence Z ×X → Z is not closed.

Assume X is quasi-compact. Let Z be a topological space. Let M ⊂ Z × X be
closed. Let z ∈ Z be a point which is not in pr1(M). By the Tube Lemma 5.17.1
there exists an open U ⊂ Z such that U ×X is contained in the complement of M .
Hence pr1(M) is closed. □

Remark 5.17.4.005Q Lemma 5.17.3 is a combination of [Bou71, I, p. 75, Lemme 1] and
[Bou71, I, p. 76, Corollaire 1].

Theorem 5.17.5.005R In [Bou71, I, p. 75,
Theorem 1] you can
find: (2) ⇔ (4). In
[Bou71, I, p. 77,
Proposition 6] you
can find: (2) ⇒ (1).

Let f : X → Y be a continuous map between topological spaces.
The following conditions are equivalent:

(1) The map f is quasi-proper and closed.
(2) The map f is Bourbaki-proper.
(3) The map f is universally closed.
(4) The map f is closed and f−1(y) is quasi-compact for any y ∈ Y .

Proof. (See also the remark below.) If the map f satisfies (1), it automatically
satisfies (4) because any single point is quasi-compact.

4This is the terminology used in [Bou71]. Sometimes this property may be called “universally
closed” in the literature.
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Assume map f satisfies (4). We will prove it is universally closed, i.e., (3) holds.
Let g : Z → Y be a continuous map of topological spaces and consider the diagram

Z ×Y X
g′

//

f ′

��

X

f

��
Z

g // Y

During the proof we will use that Z ×Y X → Z ×X is a homeomorphism onto its
image, i.e., that we may identify Z×YX with the corresponding subset of Z×X with
the induced topology. The image of f ′ : Z×Y X → Z is Im(f ′) = {z : g(z) ∈ f(X)}.
Because f(X) is closed, we see that Im(f ′) is a closed subspace of Z. Consider a
closed subset P ⊂ Z ×Y X. Let z ∈ Z, z ̸∈ f ′(P ). If z ̸∈ Im(f ′), then Z \ Im(f ′)
is an open neighbourhood which avoids f ′(P ). If z is in Im(f ′) then (f ′)−1{z} =
{z} × f−1{g(z)} and f−1{g(z)} is quasi-compact by assumption. Because P is a
closed subset of Z×Y X, we have a closed P ′ of Z×X such that P = P ′∩Z×Y X.
Since (f ′)−1{z} is a subset of P c = P ′c∪ (Z×Y X)c, and since (f ′)−1{z} is disjoint
from (Z×Y X)c we see that (f ′)−1{z} is contained in P ′c. We may apply the Tube
Lemma 5.17.1 to (f ′)−1{z} = {z}× f−1{g(z)} ⊂ (P ′)c ⊂ Z×X. This gives V ×U
containing (f ′)−1{z} where U and V are open sets in X and Z respectively and
V × U has empty intersection with P ′. Then the set V ∩ g−1(Y − f(U c)) is open
in Z since f is closed, contains z, and has empty intersection with the image of P .
Thus f ′(P ) is closed. In other words, the map f is universally closed.
The implication (3)⇒ (2) is trivial. Namely, given any topological space Z consider
the projection morphism g : Z × Y → Y . Then it is easy to see that f ′ is the map
Z ×X → Z × Y , in other words that (Z × Y )×Y X = Z ×X. (This identification
is a purely categorical property having nothing to do with topological spaces per
se.)
Assume f satisfies (2). We will prove it satisfies (1). Note that f is closed as
f can be identified with the map {pt} × X → {pt} × Y which is assumed closed.
Choose any quasi-compact subset K ⊂ Y . Let Z be any topological space. Because
Z ×X → Z × Y is closed we see the map Z × f−1(K) → Z ×K is closed (if T is
closed in Z × f−1(K), write T = Z × f−1(K) ∩ T ′ for some closed T ′ ⊂ Z ×X).
Because K is quasi-compact, K × Z → Z is closed by Lemma 5.17.3. Hence the
composition Z × f−1(K) → Z ×K → Z is closed and therefore f−1(K) must be
quasi-compact by Lemma 5.17.3 again. □

Remark 5.17.6.005S Here are some references to the literature. In [Bou71, I, p. 75,
Theorem 1] you can find: (2) ⇔ (4). In [Bou71, I, p. 77, Proposition 6] you can
find: (2) ⇒ (1). Of course, trivially we have (1) ⇒ (4). Thus (1), (2) and (4) are
equivalent. The equivalence of (3) and (4) is [Lan93, Chapter II, Exercise 25].

Lemma 5.17.7.08YD Let f : X → Y be a continuous map of topological spaces. If X is
quasi-compact and Y is Hausdorff, then f is universally closed.

Proof. Since every point of Y is closed, we see from Lemma 5.12.3 that the closed
subset f−1(y) of X is quasi-compact for all y ∈ Y . Thus, by Theorem 5.17.5 it
suffices to show that f is closed. If E ⊂ X is closed, then it is quasi-compact
(Lemma 5.12.3), hence f(E) ⊂ Y is quasi-compact (Lemma 5.12.7), hence f(E) is
closed in Y (Lemma 5.12.4). □

https://stacks.math.columbia.edu/tag/005S
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Lemma 5.17.8.08YE Let f : X → Y be a continuous map of topological spaces. If f is
bijective, X is quasi-compact, and Y is Hausdorff, then f is a homeomorphism.

Proof. It suffices to prove f is closed, because this implies that f−1 is continuous.
If T ⊂ X is closed, then T is quasi-compact by Lemma 5.12.3, hence f(T ) is
quasi-compact by Lemma 5.12.7, hence f(T ) is closed by Lemma 5.12.4. □

5.18. Jacobson spaces

005T
Definition 5.18.1.005U Let X be a topological space. Let X0 be the set of closed points
of X. We say that X is Jacobson if every closed subset Z ⊂ X is the closure of
Z ∩X0.

Note that a topological space X is Jacobson if and only if every nonempty locally
closed subset of X has a point closed in X.
Let X be a Jacobson space and let X0 be the set of closed points of X with the
induced topology. Clearly, the definition implies that the morphism X0 → X
induces a bijection between the closed subsets of X0 and the closed subsets of X.
Thus many properties of X are inherited by X0. For example, the Krull dimensions
of X and X0 are the same.

Lemma 5.18.2.005V Let X be a topological space. Let X0 be the set of closed points of
X. Suppose that for every point x ∈ X the intersection X0 ∩ {x} is dense in {x}.
Then X is Jacobson.

Proof. Let Z be closed subset of X and U be and open subset of X such that U ∩Z
is nonempty. Then for x ∈ U ∩ Z we have that {x} ∩ U is a nonempty subset of
Z ∩ U , and by hypothesis it contains a point closed in X as required. □

Lemma 5.18.3.02I7 Let X be a Kolmogorov topological space with a basis of quasi-
compact open sets. If X is not Jacobson, then there exists a non-closed point x ∈ X
such that {x} is locally closed.

Proof. As X is not Jacobson there exists a closed set Z and an open set U in X
such that Z ∩ U is nonempty and does not contain points closed in X. As X has
a basis of quasi-compact open sets we may replace U by an open quasi-compact
neighborhood of a point in Z ∩ U and so we may assume that U is quasi-compact
open. By Lemma 5.12.8, there exists a point x ∈ Z ∩ U closed in Z ∩ U , and so
{x} is locally closed but not closed in X. □

Lemma 5.18.4.005W Let X be a topological space. Let X =
⋃
Ui be an open covering.

Then X is Jacobson if and only if each Ui is Jacobson. Moreover, in this case
X0 =

⋃
Ui,0.

Proof. Let X be a topological space. Let X0 be the set of closed points of X. Let
Ui,0 be the set of closed points of Ui. Then X0 ∩ Ui ⊂ Ui,0 but equality may not
hold in general.
First, assume that each Ui is Jacobson. We claim that in this case X0 ∩ Ui = Ui,0.
Namely, suppose that x ∈ Ui,0, i.e., x is closed in Ui. Let {x} be the closure in X.
Consider {x} ∩ Uj . If x ̸∈ Uj , then {x} ∩ Uj = ∅. If x ∈ Uj , then Ui ∩ Uj ⊂ Uj is
an open subset of Uj containing x. Let T ′ = Uj \ Ui ∩ Uj and T = {x} ⨿ T ′. Then

https://stacks.math.columbia.edu/tag/08YE
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T , T ′ are closed subsets of Uj and T contains x. As Uj is Jacobson we see that the
closed points of Uj are dense in T . Because T = {x}⨿ T ′ this can only be the case
if x is closed in Uj . Hence {x}∩Uj = {x}. We conclude that {x} = {x} as desired.

Let Z ⊂ X be a closed subset (still assuming each Ui is Jacobson). Since now we
know that X0 ∩ Z ∩ Ui = Ui,0 ∩ Z are dense in Z ∩ Ui it follows immediately that
X0 ∩ Z is dense in Z.

Conversely, assume that X is Jacobson. Let Z ⊂ Ui be closed. Then X0∩Z is dense
in Z. Hence also X0 ∩ Z is dense in Z, because Z \ Z is closed. As X0 ∩ Ui ⊂ Ui,0
we see that Ui,0 ∩ Z is dense in Z. Thus Ui is Jacobson as desired. □

Lemma 5.18.5.005X Let X be Jacobson. The following types of subsets T ⊂ X are
Jacobson:

(1) Open subspaces.
(2) Closed subspaces.
(3) Locally closed subspaces.
(4) Unions of locally closed subspaces.
(5) Constructible sets.
(6) Any subset T ⊂ X which locally on X is a union of locally closed subsets.

In each of these cases closed points of T are closed in X.

Proof. Let X0 be the set of closed points of X. For any subset T ⊂ X we let (∗)
denote the property:

(*) Every nonempty locally closed subset of T has a point closed in X.
Note that always X0 ∩ T ⊂ T0. Hence property (∗) implies that T is Jacobson. In
addition it clearly implies that every closed point of T is closed in X.

Suppose that T =
⋃
i Ti with Ti locally closed in X. Take A ⊂ T a locally closed

nonempty subset in T , then there exists a Ti such that A ∩ Ti is nonempty, it is
locally closed in Ti and so in X. As X is Jacobson A has a point closed in X. □

Lemma 5.18.6.07JU A finite Jacobson space is discrete.

Proof. If X is finite Jacobson, X0 ⊂ X the subset of closed points, then, on the
one hand, X0 = X. On the other hand, X, and hence X0 is finite, so X0 =
{x1, . . . , xn} =

⋃
i=1,...,n{xi} is a finite union of closed sets, hence closed, so X =

X0 = X0. Every point is closed, and by finiteness, every point is open. □

Lemma 5.18.7.005Z Suppose X is a Jacobson topological space. Let X0 be the set of
closed points of X. There is a bijective, inclusion preserving correspondence

{finite unions loc. closed subsets of X} ↔ {finite unions loc. closed subsets of X0}

given by E 7→ E ∩X0. This correspondence preserves the subsets of locally closed,
of open and of closed subsets.

Proof. We just prove that the correspondence E 7→ E ∩X0 is injective. Indeed if
E ̸= E′ then without loss of generality E \E′ is nonempty, and it is a finite union of
locally closed sets (details omitted). As X is Jacobson, we see that (E \E′)∩X0 =
E ∩X0 \ E′ ∩X0 is not empty. □

https://stacks.math.columbia.edu/tag/005X
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Lemma 5.18.8.005Y Suppose X is a Jacobson topological space. Let X0 be the set of
closed points of X. There is a bijective, inclusion preserving correspondence

{constructible subsets of X} ↔ {constructible subsets of X0}
given by E 7→ E ∩X0. This correspondence preserves the subset of retrocompact
open subsets, as well as complements of these.

Proof. From Lemma 5.18.7 above, we just have to see that if U is open in X then
U ∩X0 is retrocompact in X0 if and only if U is retrocompact in X. This follows
if we prove that for U open in X then U ∩ X0 is quasi-compact if and only if U
is quasi-compact. From Lemma 5.18.5 it follows that we may replace X by U and
assume that U = X. Finally notice that any collection of opens U of X cover X if
and only if they cover X0, using the Jacobson property of X in the closed X \

⋃
U

to find a point in X0 if it were nonempty. □

5.19. Specialization

0060
Definition 5.19.1.0061 Let X be a topological space.

(1) If x, x′ ∈ X then we say x is a specialization of x′, or x′ is a generalization
of x if x ∈ {x′}. Notation: x′ ⇝ x.

(2) A subset T ⊂ X is stable under specialization if for all x′ ∈ T and every
specialization x′ ⇝ x we have x ∈ T .

(3) A subset T ⊂ X is stable under generalization if for all x ∈ T and every
generalization x′ ⇝ x we have x′ ∈ T .

Lemma 5.19.2.0062 Let X be a topological space.
(1) Any closed subset of X is stable under specialization.
(2) Any open subset of X is stable under generalization.
(3) A subset T ⊂ X is stable under specialization if and only if the comple-

ment T c is stable under generalization.

Proof. Let F be a closed subset of X, if y ∈ F then {y} ⊂ F , so {y} ⊂ F = F as
F is closed. Thus for all specialization x of y, we have x ∈ F .
Let x, y ∈ X such that x ∈ {y} and let T be a subset of X. Saying that T is stable
under specialization means that y ∈ T implies x ∈ T and reciprocally saying that
T is stable under generalization means that x ∈ T implies y ∈ T . Therefore (3) is
proven using contraposition.
The second property follows from (1) and (3) by considering the complement. □

Lemma 5.19.3.0EES Let T ⊂ X be a subset of a topological space X. The following are
equivalent

(1) T is stable under specialization, and
(2) T is a (directed) union of closed subsets of X.

Proof. Suppose that T is stable under specialization, then for all y ∈ T we have
{y} ⊂ T . Thus T =

⋃
y∈T {y} which is an union of closed subsets of X. Recipro-

cally, suppose that T =
⋃
i∈I Fi where Fi are closed subsets of X. If y ∈ T then

there exists i ∈ I such that y ∈ Fi. As Fi is closed, we have {y} ⊂ Fi ⊂ T , which
proves that T is stable under specialization. □
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Definition 5.19.4.0063 Let f : X → Y be a continuous map of topological spaces.
(1) We say that specializations lift along f or that f is specializing if given

y′ ⇝ y in Y and any x′ ∈ X with f(x′) = y′ there exists a specialization
x′ ⇝ x of x′ in X such that f(x) = y.

(2) We say that generalizations lift along f or that f is generalizing if given
y′ ⇝ y in Y and any x ∈ X with f(x) = y there exists a generalization
x′ ⇝ x of x in X such that f(x′) = y′.

Lemma 5.19.5.0064 Suppose f : X → Y and g : Y → Z are continuous maps of
topological spaces. If specializations lift along both f and g then specializations lift
along g ◦ f . Similarly for “generalizations lift along”.

Proof. Let z′ ⇝ z be a specialization in Z and let x′ ∈ X such as g ◦ f(x′) = z′.
Then because specializations lift along g, there exists a specialization f(x′) ⇝ y
of f(x′) in Y such that g(y) = z. Likewise, because specializations lift along f ,
there exists a specialization x′ ⇝ x of x′ in X such that f(x) = y. It provides a
specialization x′ ⇝ x of x′ in X such that g◦f(x) = z. In other words, specialization
lift along g ◦ f . □

Lemma 5.19.6.0065 Let f : X → Y be a continuous map of topological spaces.
(1) If specializations lift along f , and if T ⊂ X is stable under specialization,

then f(T ) ⊂ Y is stable under specialization.
(2) If generalizations lift along f , and if T ⊂ X is stable under generalization,

then f(T ) ⊂ Y is stable under generalization.

Proof. Let y′ ⇝ y be a specialization in Y where y′ ∈ f(T ) and let x′ ∈ T such
that f(x′) = y′. Because specialization lift along f , there exists a specialization
x′ ⇝ x of x′ in X such that f(x) = y. But T is stable under specialization so x ∈ T
and then y ∈ f(T ). Therefore f(T ) is stable under specialization.
The proof of (2) is identical, using that generalizations lift along f . □

Lemma 5.19.7.0066 Let f : X → Y be a continuous map of topological spaces.
(1) If f is closed then specializations lift along f .
(2) If f is open, X is a Noetherian topological space, each irreducible closed

subset of X has a generic point, and Y is Kolmogorov then generalizations
lift along f .

Proof. Assume f is closed. Let y′ ⇝ y in Y and any x′ ∈ X with f(x′) = y′ be
given. Consider the closed subset T = {x′} of X. Then f(T ) ⊂ Y is a closed
subset, and y′ ∈ f(T ). Hence also y ∈ f(T ). Hence y = f(x) with x ∈ T , i.e.,
x′ ⇝ x.
Assume f is open, X Noetherian, every irreducible closed subset of X has a generic
point, and Y is Kolmogorov. Let y′ ⇝ y in Y and any x ∈ X with f(x) = y be
given. Consider T = f−1({y′}) ⊂ X. Take an open neighbourhood x ∈ U ⊂ X of
x. Then f(U) ⊂ Y is open and y ∈ f(U). Hence also y′ ∈ f(U). In other words,
T ∩U ̸= ∅. This proves that x ∈ T . Since X is Noetherian, T is Noetherian (Lemma
5.9.2). Hence it has a decomposition T = T1∪ . . .∪Tn into irreducible components.
Then correspondingly T = T1 ∪ . . . ∪ Tn. By the above x ∈ Ti for some i. By
assumption there exists a generic point x′ ∈ Ti, and we see that x′ ⇝ x. As x′ ∈ T
we see that f(x′) ∈ {y′}. Note that f(Ti) = f({x′}) ⊂ {f(x′)}. If f(x′) ̸= y′, then
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since Y is Kolmogorov f(x′) is not a generic point of the irreducible closed subset
{y′} and the inclusion {f(x′)} ⊂ {y′} is strict, i.e., y′ ̸∈ f(Ti). This contradicts the
fact that f(Ti) = {y′}. Hence f(x′) = y′ and we win. □

Lemma 5.19.8.06NA Suppose that s, t : R→ U and π : U → X are continuous maps of
topological spaces such that

(1) π is open,
(2) U is sober,
(3) s, t have finite fibres,
(4) generalizations lift along s, t,
(5) (t, s)(R) ⊂ U × U is an equivalence relation on U and X is the quotient

of U by this equivalence relation (as a set).
Then X is Kolmogorov.

Proof. Properties (3) and (5) imply that a point x corresponds to an finite equiv-
alence class {u1, . . . , un} ⊂ U of the equivalence relation. Suppose that x′ ∈ X is
a second point corresponding to the equivalence class {u′

1, . . . , u
′
m} ⊂ U . Suppose

that ui ⇝ u′
j for some i, j. Then for any r′ ∈ R with s(r′) = u′

j by (4) we can find
r ⇝ r′ with s(r) = ui. Hence t(r) ⇝ t(r′). Since {u′

1, . . . , u
′
m} = t(s−1({u′

j})) we
conclude that every element of {u′

1, . . . , u
′
m} is the specialization of an element of

{u1, . . . , un}. Thus {u1} ∪ . . .∪ {un} is a union of equivalence classes, hence of the
form π−1(Z) for some subset Z ⊂ X. By (1) we see that Z is closed in X and in
fact Z = {x} because π({ui}) ⊂ {x} for each i. In other words, x⇝ x′ if and only
if some lift of x in U specializes to some lift of x′ in U , if and only if every lift of x′

in U is a specialization of some lift of x in U .
Suppose that both x ⇝ x′ and x′ ⇝ x. Say x corresponds to {u1, . . . , un} and
x′ corresponds to {u′

1, . . . , u
′
m} as above. Then, by the results of the preceding

paragraph, we can find a sequence
. . .⇝ u′

j3
⇝ ui3 ⇝ u′

j2
⇝ ui2 ⇝ u′

j1
⇝ ui1

which must repeat, hence by (2) we conclude that {u1, . . . , un} = {u′
1, . . . , u

′
m},

i.e., x = x′. Thus X is Kolmogorov. □

Lemma 5.19.9.02JF Let f : X → Y be a morphism of topological spaces. Suppose
that Y is a sober topological space, and f is surjective. If either specializations or
generalizations lift along f , then dim(X) ≥ dim(Y ).

Proof. Assume specializations lift along f . Let Z0 ⊂ Z1 ⊂ . . . Ze ⊂ Y be a chain of
irreducible closed subsets of X. Let ξe ∈ X be a point mapping to the generic point
of Ze. By assumption there exists a specialization ξe ⇝ ξe−1 in X such that ξe−1
maps to the generic point of Ze−1. Continuing in this manner we find a sequence
of specializations

ξe ⇝ ξe−1 ⇝ . . .⇝ ξ0

with ξi mapping to the generic point of Zi. This clearly implies the sequence of
irreducible closed subsets

{ξ0} ⊂ {ξ1} ⊂ . . . {ξe}
is a chain of length e in X. The case when generalizations lift along f is similar. □

Lemma 5.19.10.0542 Let X be a Noetherian sober topological space. Let E ⊂ X be a
subset of X.
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(1) If E is constructible and stable under specialization, then E is closed.
(2) If E is constructible and stable under generalization, then E is open.

Proof. Let E be constructible and stable under generalization. Let Y ⊂ X be an
irreducible closed subset with generic point ξ ∈ Y . If E ∩ Y is nonempty, then
it contains ξ (by stability under generalization) and hence is dense in Y , hence it
contains a nonempty open of Y , see Lemma 5.16.3. Thus E is open by Lemma
5.16.5. This proves (2). To prove (1) apply (2) to the complement of E in X. □

5.20. Dimension functions

02I8 It scarcely makes sense to consider dimension functions unless the space considered
is sober (Definition 5.8.6). Thus the definition below can be improved by considering
the sober topological space associated to X. Since the underlying topological space
of a scheme is sober we do not bother with this improvement.

Definition 5.20.1.02I9 Let X be a topological space.
(1) Let x, y ∈ X, x ̸= y. Suppose x⇝ y, that is y is a specialization of x. We

say y is an immediate specialization of x if there is no z ∈ X \ {x, y} with
x⇝ z and z ⇝ y.

(2) A map δ : X → Z is called a dimension function5 if
(a) whenever x⇝ y and x ̸= y we have δ(x) > δ(y), and
(b) for every immediate specialization x⇝ y in X we have δ(x) = δ(y)+

1.

It is clear that if δ is a dimension function, then so is δ+ t for any t ∈ Z. Here is a
fun lemma.

Lemma 5.20.2.02IA Let X be a topological space. If X is sober and has a dimension
function, then X is catenary. Moreover, for any x⇝ y we have

δ(x)− δ(y) = codim
(
{y}, {x}

)
.

Proof. Suppose Y ⊂ Y ′ ⊂ X are irreducible closed subsets. Let ξ ∈ Y , ξ′ ∈
Y ′ be their generic points. Then we see immediately from the definitions that
codim(Y, Y ′) ≤ δ(ξ)−δ(ξ′) <∞. In fact the first inequality is an equality. Namely,
suppose

Y = Y0 ⊂ Y1 ⊂ . . . ⊂ Ye = Y ′

is any maximal chain of irreducible closed subsets. Let ξi ∈ Yi denote the generic
point. Then we see that ξi ⇝ ξi+1 is an immediate specialization. Hence we see that
e = δ(ξ)− δ(ξ′) as desired. This also proves the last statement of the lemma. □

Lemma 5.20.3.02IB Let X be a topological space. Let δ, δ′ be two dimension functions
on X. If X is locally Noetherian and sober then δ − δ′ is locally constant on X.

Proof. Let x ∈ X be a point. We will show that δ−δ′ is constant in a neighbourhood
of x. We may replace X by an open neighbourhood of x in X which is Noetherian.
Hence we may assume X is Noetherian and sober. Let Z1, . . . , Zr be the irreducible
components of X passing through x. (There are finitely many as X is Noetherian,
see Lemma 5.9.2.) Let ξi ∈ Zi be the generic point. Note Z1 ∪ . . . ∪ Zr is a

5This is likely nonstandard notation. This notion is usually introduced only for (locally)
Noetherian schemes, in which case condition (a) is implied by (b).
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neighbourhood of x in X (not necessarily closed). We claim that δ− δ′ is constant
on Z1 ∪ . . . ∪ Zr. Namely, if y ∈ Zi, then

δ(x)− δ(y) = δ(x)− δ(ξi) + δ(ξi)− δ(y) = −codim({x}, Zi) + codim({y}, Zi)
by Lemma 5.20.2. Similarly for δ′. Whence the result. □

Lemma 5.20.4.02IC Let X be locally Noetherian, sober and catenary. Then any point
has an open neighbourhood U ⊂ X which has a dimension function.

Proof. We will use repeatedly that an open subspace of a catenary space is cate-
nary, see Lemma 5.11.5 and that a Noetherian topological space has finitely many
irreducible components, see Lemma 5.9.2. In the proof of Lemma 5.20.3 we saw
how to construct such a function. Namely, we first replace X by a Noetherian open
neighbourhood of x. Next, we let Z1, . . . , Zr ⊂ X be the irreducible components of
X. Let

Zi ∩ Zj =
⋃
Zijk

be the decomposition into irreducible components. We replace X by

X \
(⋃

x ̸∈Zi
Zi ∪

⋃
x̸∈Zijk

Zijk

)
so that we may assume x ∈ Zi for all i and x ∈ Zijk for all i, j, k. For y ∈ X choose
any i such that y ∈ Zi and set

δ(y) = −codim({x}, Zi) + codim({y}, Zi).
We claim this is a dimension function. First we show that it is well defined, i.e.,
independent of the choice of i. Namely, suppose that y ∈ Zijk for some i, j, k. Then
we have (using Lemma 5.11.6)

δ(y) = −codim({x}, Zi) + codim({y}, Zi)
= −codim({x}, Zijk)− codim(Zijk, Zi) + codim({y}, Zijk) + codim(Zijk, Zi)
= −codim({x}, Zijk) + codim({y}, Zijk)

which is symmetric in i and j. We omit the proof that it is a dimension function. □

Remark 5.20.5.02ID Combining Lemmas 5.20.3 and 5.20.4 we see that on a catenary,
locally Noetherian, sober topological space the obstruction to having a dimension
function is an element of H1(X,Z).

5.21. Nowhere dense sets

03HM
Definition 5.21.1.03HN Let X be a topological space.

(1) Given a subset T ⊂ X the interior of T is the largest open subset of X
contained in T .

(2) A subset T ⊂ X is called nowhere dense if the closure of T has empty
interior.

Lemma 5.21.2.03HO Let X be a topological space. The union of a finite number of
nowhere dense sets is a nowhere dense set.

Proof. Omitted. □
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Lemma 5.21.3.03J0 Let X be a topological space. Let U ⊂ X be an open. Let T ⊂ U
be a subset. If T is nowhere dense in U , then T is nowhere dense in X.
Proof. Assume T is nowhere dense in U . Suppose that x ∈ X is an interior point
of the closure T of T in X. Say x ∈ V ⊂ T with V ⊂ X open in X. Note that
T ∩ U is the closure of T in U . Hence the interior of T ∩ U being empty implies
V ∩U = ∅. Thus x cannot be in the closure of U , a fortiori cannot be in the closure
of T , a contradiction. □

Lemma 5.21.4.03HP Let X be a topological space. Let X =
⋃
Ui be an open covering.

Let T ⊂ X be a subset. If T ∩Ui is nowhere dense in Ui for all i, then T is nowhere
dense in X.
Proof. Denote T i the closure of T ∩ Ui in Ui. We have T ∩ Ui = T i. Taking the
interior commutes with intersection with opens, thus

(interior of T ) ∩ Ui = interior of (T ∩ Ui) = interior in Ui of T i
By assumption the last of these is empty. Hence T is nowhere dense in X. □

Lemma 5.21.5.03HQ Let f : X → Y be a continuous map of topological spaces. Let
T ⊂ X be a subset. If f is a homeomorphism of X onto a closed subset of Y and
T is nowhere dense in X, then also f(T ) is nowhere dense in Y .
Proof. Omitted. □

Lemma 5.21.6.03HR Let f : X → Y be a continuous map of topological spaces. Let
T ⊂ Y be a subset. If f is open and T is a closed nowhere dense subset of Y , then
also f−1(T ) is a closed nowhere dense subset of X. If f is surjective and open, then
T is closed nowhere dense if and only if f−1(T ) is closed nowhere dense.
Proof. Omitted. (Hint: In the first case the interior of f−1(T ) maps into the
interior of T , and in the second case the interior of f−1(T ) maps onto the interior
of T .) □

5.22. Profinite spaces

08ZW Here is the definition.
Definition 5.22.1.08ZX A topological space is profinite if it is homeomorphic to a limit
of a diagram of finite discrete spaces.
This is not the most convenient characterization of a profinite space.
Lemma 5.22.2.08ZY Let X be a topological space. The following are equivalent

(1) X is a profinite space, and
(2) X is Hausdorff, quasi-compact, and totally disconnected.

If this is true, then X is a cofiltered limit of finite discrete spaces.
Proof. Assume (1). Choose a diagram i 7→ Xi of finite discrete spaces such that
X = limXi. As each Xi is Hausdorff and quasi-compact we find that X is quasi-
compact by Lemma 5.14.5. If x, x′ ∈ X are distinct points, then x and x′ map to
distinct points in some Xi. Hence x and x′ have disjoint open neighbourhoods, i.e.,
X is Hausdorff. In exactly the same way we see that X is totally disconnected.
Assume (2). Let I be the set of finite disjoint union decompositions X =

∐
i∈I Ui

with Ui nonempty open (and closed) for all i ∈ I. For each I ∈ I there is a
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continuous map X → I sending a point of Ui to i. We define a partial ordering:
I ≤ I ′ for I, I ′ ∈ I if and only if the covering corresponding to I ′ refines the
covering corresponding to I. In this case we obtain a canonical map I ′ → I. In
other words we obtain an inverse system of finite discrete spaces over I. The maps
X → I fit together and we obtain a continuous map

X −→ limI∈I I

We claim this map is a homeomorphism, which finishes the proof. (The final as-
sertion follows too as the partially ordered set I is directed: given two disjoint
union decompositions of X we can find a third refining both.) Namely, the map is
injective as X is totally disconnected and hence {x} is the intersection of all open
and closed subsets of X containing x (Lemma 5.12.11) and the map is surjective
by Lemma 5.12.6. By Lemma 5.17.8 the map is a homeomorphism. □

Lemma 5.22.3.0ET8 A limit of profinite spaces is profinite.

Proof. Let i 7→ Xi be a diagram of profinite spaces over the index category I.
Let us use the characterization of profinite spaces in Lemma 5.22.2. In particular
each Xi is Hausdorff, quasi-compact, and totally disconnected. By Lemma 5.14.1
the limit X = limXi exists. By Lemma 5.14.5 the limit X is quasi-compact. Let
x, x′ ∈ X be distinct points. Then there exists an i such that x and x′ have distinct
images xi and x′

i in Xi under the projection X → Xi. Then xi and x′
i have disjoint

open neighbourhoods in Xi. Taking the inverse images of these opens we conclude
that X is Hausdorff. Similarly, xi and x′

i are in distinct connected components of
Xi whence necessarily x and x′ must be in distinct connected components of X.
Hence X is totally disconnected. This finishes the proof. □

Lemma 5.22.4.08ZZ Let X be a profinite space. Every open covering of X has a
refinement by a finite covering X =

∐
Ui with Ui open and closed.

Proof. Write X = limXi as a limit of an inverse system of finite discrete spaces
over a directed set I (Lemma 5.22.2). Denote fi : X → Xi the projection. For
every point x = (xi) ∈ X a fundamental system of open neighbourhoods is the
collection f−1

i ({xi}). Thus, as X is quasi-compact, we may assume we have an
open covering

X = f−1
i1

({xi1}) ∪ . . . ∪ f−1
in

({xin})
Choose i ∈ I with i ≥ ij for j = 1, . . . , n (this is possible as I is a directed set).
Then we see that the covering

X =
∐

t∈Xi
f−1
i ({t})

refines the given covering and is of the desired form. □

Lemma 5.22.5.0900 Let X be a topological space. If X is quasi-compact and every con-
nected component of X is the intersection of the open and closed subsets containing
it, then π0(X) is a profinite space.

Proof. We will use Lemma 5.22.2 to prove this. Since π0(X) is the image of a
quasi-compact space it is quasi-compact (Lemma 5.12.7). It is totally disconnected
by construction (Lemma 5.7.9). Let C,D ⊂ X be distinct connected components
of X. Write C =

⋂
Uα as the intersection of the open and closed subsets of X

containing C. Any finite intersection of Uα’s is another. Since
⋂
Uα ∩ D = ∅ we
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conclude that Uα ∩D = ∅ for some α (use Lemmas 5.7.3, 5.12.3 and 5.12.6) Since
Uα is open and closed, it is the union of the connected components it contains, i.e.,
Uα is the inverse image of some open and closed subset Vα ⊂ π0(X). This proves
that the points corresponding to C and D are contained in disjoint open subsets,
i.e., π0(X) is Hausdorff. □

5.23. Spectral spaces

08YF The material in this section is taken from [Hoc69] and [Hoc67]. In his thesis
Hochster proves (among other things) that the spectral spaces are exactly the topo-
logical spaces that occur as the spectrum of a ring.

Definition 5.23.1.08YG A topological space X is called spectral if it is sober, quasi-
compact, the intersection of two quasi-compact opens is quasi-compact, and the
collection of quasi-compact opens forms a basis for the topology. A continuous
map f : X → Y of spectral spaces is called spectral if the inverse image of a
quasi-compact open is quasi-compact.

In other words a continuous map of spectral spaces is spectral if and only if it is
quasi-compact (Definition 5.12.1).
Let X be a spectral space. The constructible topology on X is the topology which
has as a subbase of opens the sets U and U c where U is a quasi-compact open of
X. Note that since X is spectral an open U ⊂ X is retrocompact if and only if U is
quasi-compact. Hence the constructible topology can also be characterized as the
coarsest topology such that every constructible subset of X is both open and closed
(see Section 5.15 for definitions and properties of constructible sets). It follows
that a subset of X is open, resp. closed in the constructible topology if and only
if it is a union, resp. intersection of constructible subsets. Since the collection of
quasi-compact opens is a basis for the topology on X we see that the constructible
topology is stronger than the given topology on X.

Lemma 5.23.2.0901 Let X be a spectral space. The constructible topology is Hausdorff,
totally disconnected, and quasi-compact.

Proof. Let x, y ∈ X with x ̸= y. Since X is sober, there is an open subset U
containing exactly one of the two points x, y. Say x ∈ U . We may replace U by a
quasi-compact open neighbourhood of x contained in U . Then U and U c are open
and closed in the constructible topology. Hence X is Hausdorff in the constructible
topology because x ∈ U and y ∈ U c are disjoint opens in the constructible topology.
The existence of U also implies x and y are in distinct connected components in
the constructible topology, whence X is totally disconnected in the constructible
topology.
Let B be the collection of subsets B ⊂ X with B either quasi-compact open or
closed with quasi-compact complement. If B ∈ B then Bc ∈ B. It suffices to
show every covering X =

⋃
i∈I Bi with Bi ∈ B has a finite refinement, see Lemma

5.12.15. Taking complements we see that we have to show that any family {Bi}i∈I
of elements of B such that Bi1 ∩ . . . ∩Bin ̸= ∅ for all n and all i1, . . . , in ∈ I has a
common point of intersection. We may and do assume Bi ̸= Bi′ for i ̸= i′.
To get a contradiction assume {Bi}i∈I is a family of elements of B having the finite
intersection property but empty intersection. An application of Zorn’s lemma shows
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that we may assume our family is maximal (details omitted). Let I ′ ⊂ I be those
indices such that Bi is closed and set Z =

⋂
i∈I′ Bi. This is a closed subset of

X which is nonempty by Lemma 5.12.6. If Z is reducible, then we can write
Z = Z ′ ∪ Z ′′ as a union of two closed subsets, neither equal to Z. This means in
particular that we can find a quasi-compact open U ′ ⊂ X meeting Z ′ but not Z ′′.
Similarly, we can find a quasi-compact open U ′′ ⊂ X meeting Z ′′ but not Z ′. Set
B′ = X \ U ′ and B′′ = X \ U ′′. Note that Z ′′ ⊂ B′ and Z ′ ⊂ B′′. If there exist
a finite number of indices i1, . . . , in ∈ I such that B′ ∩ Bi1 ∩ . . . ∩ Bin = ∅ as well
as a finite number of indices j1, . . . , jm ∈ I such that B′′ ∩ Bj1 ∩ . . . ∩ Bjm = ∅
then we find that Z ∩ Bi1 ∩ . . . ∩ Bin ∩ Bj1 ∩ . . . ∩ Bjm = ∅. However, the set
Bi1∩. . .∩Bin∩Bj1∩. . .∩Bjm is quasi-compact hence we would find a finite number
of indices i′1, . . . , i′l ∈ I ′ with Bi1 ∩ . . .∩Bin ∩Bj1 ∩ . . .∩Bjm ∩Bi′1 ∩ . . .∩Bi′l = ∅,
a contradiction. Thus we see that we may add either B′ or B′′ to the given family
contradicting maximality. We conclude that Z is irreducible. However, this leads
to a contradiction as well, as now every nonempty (by the same argument as above)
open Z∩Bi for i ∈ I \I ′ contains the unique generic point of Z. This contradiction
proves the lemma. □

Lemma 5.23.3.0A2S Let f : X → Y be a spectral map of spectral spaces. Then
(1) f is continuous in the constructible topology,
(2) the fibres of f are quasi-compact, and
(3) the image is closed in the constructible topology.

Proof. Let X ′ and Y ′ denote X and Y endowed with the constructible topology
which are quasi-compact Hausdorff spaces by Lemma 5.23.2. Part (1) says X ′ → Y ′

is continuous and follows immediately from the definitions. Part (3) follows as f(X ′)
is a quasi-compact subset of the Hausdorff space Y ′, see Lemma 5.12.4. We have a
commutative diagram

X ′ //

��

X

��
Y ′ // Y

of continuous maps of topological spaces. Since Y ′ is Hausdorff we see that the
fibres X ′

y are closed in X ′. As X ′ is quasi-compact we see that X ′
y is quasi-compact

(Lemma 5.12.3). As X ′
y → Xy is a surjective continuous map we conclude that Xy

is quasi-compact (Lemma 5.12.7). □

Lemma 5.23.4.0G1J Let X and Y be spectral spaces. Let f : X → Y be a continuous
map. Then f is spectral if and only if f is continuous in the constructible topology.

Proof. The only if part of this is Lemma 5.23.3. Assume f is continuous in the
constructible topology. Let V ⊂ Y be quasi-compact open. Then V is open and
closed in the constructible topology. Hence f−1(V ) is open and closed in the con-
structible topology. Hence f−1(V ) is quasi-compact in the constructible topology as
X is quasi-compact in the constructible topology by Lemma 5.23.2. Since the iden-
tity f−1(V )→ f−1(V ) is surjective and continuous from the constructible topology
to the usual topology, we conclude that f−1(V ) is quasi-compact in the topology
of X by Lemma 5.12.7. This finishes the proof. □
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Lemma 5.23.5.0902 Let X be a spectral space. Let E ⊂ X be closed in the constructible
topology (for example constructible or closed). Then E with the induced topology
is a spectral space.

Proof. Let Z ⊂ E be a closed irreducible subset. Let η be the generic point of the
closure Z of Z in X. To prove that E is sober, we show that η ∈ E. If not, then
since E is closed in the constructible topology, there exists a constructible subset
F ⊂ X such that η ∈ F and F ∩ E = ∅. By Lemma 5.15.15 this implies F ∩ Z
contains a nonempty open subset of Z. But this is impossible as Z is the closure
of Z and Z ∩ F = ∅.

Since E is closed in the constructible topology, it is quasi-compact in the con-
structible topology (Lemmas 5.12.3 and 5.23.2). Hence a fortiori it is quasi-compact
in the topology coming from X. If U ⊂ X is a quasi-compact open, then E ∩ U
is closed in the constructible topology, hence quasi-compact (as seen above). It
follows that the quasi-compact open subsets of E are the intersections E ∩ U with
U quasi-compact open in X. These form a basis for the topology. Finally, given two
U,U ′ ⊂ X quasi-compact opens, the intersection (E ∩U)∩ (E ∩U ′) = E ∩ (U ∩U ′)
and U ∩ U ′ is quasi-compact as X is spectral. This finishes the proof. □

Lemma 5.23.6.0903 Let X be a spectral space. Let E ⊂ X be a subset closed in the
constructible topology (for example constructible).

(1) If x ∈ E, then x is the specialization of a point of E.
(2) If E is stable under specialization, then E is closed.
(3) If E′ ⊂ X is open in the constructible topology (for example constructible)

and stable under generalization, then E′ is open.

Proof. Proof of (1). Let x ∈ E. Let {Ui} be the set of quasi-compact open neigh-
bourhoods of x. A finite intersection of the Ui is another one. The intersection
Ui∩E is nonempty for all i. Since the subsets Ui∩E are closed in the constructible
topology we see that

⋂
(Ui ∩E) is nonempty by Lemma 5.23.2 and Lemma 5.12.6.

Since {Ui} is a fundamental system of open neighbourhoods of x, we see that
⋂
Ui

is the set of generalizations of x. Thus x is a specialization of a point of E.

Part (2) is immediate from (1).

Proof of (3). Assume E′ is as in (3). The complement of E′ is closed in the
constructible topology (Lemma 5.15.2) and closed under specialization (Lemma
5.19.2). Hence the complement is closed by (2), i.e., E′ is open. □

Lemma 5.23.7.0904 Let X be a spectral space. Let x, y ∈ X. Then either there exists a
third point specializing to both x and y, or there exist disjoint open neighbourhoods
containing x and y.

Proof. Let {Ui} be the set of quasi-compact open neighbourhoods of x. A finite
intersection of the Ui is another one. Let {Vj} be the set of quasi-compact open
neighbourhoods of y. A finite intersection of the Vj is another one. If Ui ∩ Vj is
empty for some i, j we are done. If not, then the intersection Ui ∩ Vj is nonempty
for all i and j. The sets Ui ∩ Vj are closed in the constructible topology on X.
By Lemma 5.23.2 we see that

⋂
(Ui ∩ Vj) is nonempty (Lemma 5.12.6). Since X

is a sober space and {Ui} is a fundamental system of open neighbourhoods of x,
we see that

⋂
Ui is the set of generalizations of x. Similarly,

⋂
Vj is the set of
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generalizations of y. Thus any element of
⋂

(Ui ∩ Vj) specializes to both x and
y. □

Lemma 5.23.8.0905 Let X be a spectral space. The following are equivalent:
(1) X is profinite,
(2) X is Hausdorff,
(3) X is totally disconnected,
(4) every quasi-compact open is closed,
(5) there are no nontrivial specializations between points,
(6) every point of X is closed,
(7) every point of X is the generic point of an irreducible component of X,
(8) the constructible topology equals the given topology on X, and
(9) add more here.

Proof. Lemma 5.22.2 shows the implication (1) ⇒ (3). Irreducible components are
closed, so if X is totally disconnected, then every point is closed. So (3) implies
(6). The equivalence of (6) and (5) is immediate, and (6) ⇔ (7) holds because
X is sober. Assume (5). Then all constructible subsets of X are closed (Lemma
5.23.6), in particular all quasi-compact opens are closed. So (5) implies (4). Since
X is sober, for any two points there is a quasi-compact open containing exactly one
of them, hence (4) implies (2). Parts (4) and (8) are equivalent by the definition
of the constructible topology. It remains to prove (2) implies (1). Suppose X is
Hausdorff. Every quasi-compact open is also closed (Lemma 5.12.4). This implies
X is totally disconnected. Hence it is profinite, by Lemma 5.22.2. □

Lemma 5.23.9.0906 If X is a spectral space, then π0(X) is a profinite space.

Proof. Combine Lemmas 5.12.10 and 5.22.5. □

Lemma 5.23.10.0907 The product of two spectral spaces is spectral.

Proof. Let X, Y be spectral spaces. Denote p : X × Y → X and q : X × Y → Y
the projections. Let Z ⊂ X × Y be a closed irreducible subset. Then p(Z) ⊂ X
is irreducible and q(Z) ⊂ Y is irreducible. Let x ∈ X be the generic point of
the closure of p(X) and let y ∈ Y be the generic point of the closure of q(Y ). If
(x, y) ̸∈ Z, then there exist opens x ∈ U ⊂ X, y ∈ V ⊂ Y such that Z ∩U ×V = ∅.
Hence Z is contained in (X \ U)× Y ∪X × (Y \ V ). Since Z is irreducible, we see
that either Z ⊂ (X \U)× Y or Z ⊂ X × (Y \ V ). In the first case p(Z) ⊂ (X \U)
and in the second case q(Z) ⊂ (Y \V ). Both cases are absurd as x is in the closure
of p(Z) and y is in the closure of q(Z). Thus we conclude that (x, y) ∈ Z, which
means that (x, y) is the generic point for Z.
A basis of the topology of X × Y are the opens of the form U × V with U ⊂ X
and V ⊂ Y quasi-compact open (here we use that X and Y are spectral). Then
U × V is quasi-compact as the product of quasi-compact spaces is quasi-compact.
Moreover, any quasi-compact open of X×Y is a finite union of such quasi-compact
rectangles U×V . It follows that the intersection of two such is again quasi-compact
(since X and Y are spectral). This concludes the proof. □

Lemma 5.23.11.09XU Let f : X → Y be a continuous map of topological spaces. If
(1) X and Y are spectral,
(2) f is spectral and bijective, and
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(3) generalizations (resp. specializations) lift along f .
Then f is a homeomorphism.

Proof. Since f is spectral it defines a continuous map between X and Y in the
constructible topology. By Lemmas 5.23.2 and 5.17.8 it follows that X → Y is a
homeomorphism in the constructible topology. Let U ⊂ X be quasi-compact open.
Then f(U) is constructible in Y . Let y ∈ Y specialize to a point in f(U). By the
last assumption we see that f−1(y) specializes to a point of U . Hence f−1(y) ∈ U .
Thus y ∈ f(U). It follows that f(U) is open, see Lemma 5.23.6. Whence f is a
homeomorphism. To prove the lemma in case specializations lift along f one shows
instead that f(Z) is closed if X \ Z is a quasi-compact open of X. □

Lemma 5.23.12.09XV The inverse limit of a directed inverse system of finite sober
topological spaces is a spectral topological space.

Proof. Let I be a directed set. Let Xi be an inverse system of finite sober spaces
over I. Let X = limXi which exists by Lemma 5.14.1. As a set X = limXi.
Denote pi : X → Xi the projection. Because I is directed we may apply Lemma
5.14.2. A basis for the topology is given by the opens p−1

i (Ui) for Ui ⊂ Xi open.
Since an open covering of p−1

i (Ui) is in particular an open covering in the profinite
topology, we conclude that p−1

i (Ui) is quasi-compact. Given Ui ⊂ Xi and Uj ⊂ Xj ,
then p−1

i (Ui) ∩ p−1
j (Uj) = p−1

k (Uk) for some k ≥ i, j and open Uk ⊂ Xk. Finally,
if Z ⊂ X is irreducible and closed, then pi(Z) ⊂ Xi is irreducible and therefore
has a unique generic point ξi (because Xi is a finite sober topological space). Then
ξ = lim ξi is a generic point of Z (it is a point of Z as Z is closed). This finishes
the proof. □

Lemma 5.23.13.09XW Let W be the topological space with two points, one closed, the
other not. A topological space is spectral if and only if it is homeomorphic to a
subspace of a product of copies of W which is closed in the constructible topology.

Proof. Write W = {0, 1} where 0 is a specialization of 1 but not vice versa. Let
I be a set. The space

∏
i∈IW is spectral by Lemma 5.23.12. Thus we see that

a subspace of
∏
i∈IW closed in the constructible topology is a spectral space by

Lemma 5.23.5.

For the converse, let X be a spectral space. Let U ⊂ X be a quasi-compact open.
Consider the continuous map

fU : X −→W

which maps every point in U to 1 and every point in X \U to 0. Taking the product
of these maps we obtain a continuous map

f =
∏

fU : X −→
∏

U
W

By construction the map f : X → Y is spectral. By Lemma 5.23.3 the image of
f is closed in the constructible topology. If x′, x ∈ X are distinct, then since X is
sober either x′ is not a specialization of x or conversely. In either case (as the quasi-
compact opens form a basis for the topology of X) there exists a quasi-compact
open U ⊂ X such that fU (x′) ̸= fU (x). Thus f is injective. Let Y = f(X) endowed
with the induced topology. Let y′ ⇝ y be a specialization in Y and say f(x′) = y′

and f(x) = y. Arguing as above we see that x′ ⇝ x, since otherwise there is a U
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such that x ∈ U and x′ ̸∈ U , which would imply fU (x′) ̸⇝ fU (x). We conclude
that f : X → Y is a homeomorphism by Lemma 5.23.11. □

Lemma 5.23.14.09XX A topological space is spectral if and only if it is a directed inverse
limit of finite sober topological spaces.

Proof. One direction is given by Lemma 5.23.12. For the converse, assume X is
spectral. Then we may assume X ⊂

∏
i∈IW is a subset closed in the constructible

topology where W = {0, 1} as in Lemma 5.23.13. We can write∏
i∈I

W = limJ⊂I finite
∏

j∈J
W

as a cofiltered limit. For each J , let XJ ⊂
∏
j∈JW be the image of X. Then

we see that X = limXJ as sets because X is closed in the product with the
constructible topology (detail omitted). A formal argument (omitted) on limits
shows that X = limXJ as topological spaces. □

Lemma 5.23.15.0A2T Let X be a topological space and let c : X → X ′ be the universal
map from X to a sober topological space, see Lemma 5.8.16.

(1) If X is quasi-compact, so is X ′.
(2) If X is quasi-compact, has a basis of quasi-compact opens, and the inter-

section of two quasi-compact opens is quasi-compact, then X ′ is spectral.
(3) If X is Noetherian, then X ′ is a Noetherian spectral space.

Proof. Let U ⊂ X be open and let U ′ ⊂ X ′ be the corresponding open, i.e., the
open such that c−1(U ′) = U . Then U is quasi-compact if and only if U ′ is quasi-
compact, as pulling back by c is a bijection between the opens of X and X ′ which
commutes with unions. This in particular proves (1).

Proof of (2). It follows from the above that X ′ has a basis of quasi-compact opens.
Since c−1 also commutes with intersections of pairs of opens, we see that the in-
tersection of two quasi-compact opens X ′ is quasi-compact. Finally, X ′ is quasi-
compact by (1) and sober by construction. Hence X ′ is spectral.

Proof of (3). It is immediate that X ′ is Noetherian as this is defined in terms of
the acc for open subsets which holds for X. We have already seen in (2) that X ′ is
spectral. □

5.24. Limits of spectral spaces

0A2U Lemma 5.23.14 tells us that every spectral space is a cofiltered limit of finite sober
spaces. Every finite sober space is a spectral space and every continuous map of
finite sober spaces is a spectral map of spectral spaces. In this section we prove some
lemmas concerning limits of systems of spectral topological spaces along spectral
maps.

Lemma 5.24.1.0A2V Let I be a category. Let i 7→ Xi be a diagram of spectral spaces
such that for a : j → i in I the corresponding map fa : Xj → Xi is spectral.

(1) Given subsets Zi ⊂ Xi closed in the constructible topology with fa(Zj) ⊂
Zi for all a : j → i in I, then limZi is quasi-compact.

(2) The space X = limXi is quasi-compact.
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Proof. The limit Z = limZi exists by Lemma 5.14.1. Denote X ′
i the space Xi

endowed with the constructible topology and Z ′
i the corresponding subspace of

X ′
i. Let a : j → i in I be a morphism. As fa is spectral it defines a continuous

map fa : X ′
j → X ′

i. Thus fa|Zj : Z ′
j → Z ′

i is a continuous map of quasi-compact
Hausdorff spaces (by Lemmas 5.23.2 and 5.12.3). Thus Z ′ = limZi is quasi-compact
by Lemma 5.14.5. The maps Z ′

i → Zi are continuous, hence Z ′ → Z is continuous
and a bijection on underlying sets. Hence Z is quasi-compact as the image of the
surjective continuous map Z ′ → Z (Lemma 5.12.7). □

Lemma 5.24.2.0A2W Let I be a cofiltered category. Let i 7→ Xi be a diagram of spectral
spaces such that for a : j → i in I the corresponding map fa : Xj → Xi is spectral.

(1) Given nonempty subsets Zi ⊂ Xi closed in the constructible topology
with fa(Zj) ⊂ Zi for all a : j → i in I, then limZi is nonempty.

(2) If each Xi is nonempty, then X = limXi is nonempty.

Proof. Denote X ′
i the space Xi endowed with the constructible topology and Z ′

i

the corresponding subspace of X ′
i. Let a : j → i in I be a morphism. As fa is

spectral it defines a continuous map fa : X ′
j → X ′

i. Thus fa|Zj : Z ′
j → Z ′

i is a
continuous map of quasi-compact Hausdorff spaces (by Lemmas 5.23.2 and 5.12.3).
By Lemma 5.14.6 the space limZ ′

i is nonempty. Since limZ ′
i = limZi as sets we

conclude. □

Lemma 5.24.3.0A2X Let I be a cofiltered category. Let i 7→ Xi be a diagram of spectral
spaces such that for a : j → i in I the corresponding map fa : Xj → Xi is spectral.
Let X = limXi with projections pi : X → Xi. Let i ∈ Ob(I) and let E,F ⊂ Xi be
subsets with E closed in the constructible topology and F open in the constructible
topology. Then p−1

i (E) ⊂ p−1
i (F ) if and only if there is a morphism a : j → i in I

such that f−1
a (E) ⊂ f−1

a (F ).

Proof. Observe that

p−1
i (E) \ p−1

i (F ) = lima:j→i f
−1
a (E) \ f−1

a (F )

Since fa is a spectral map, it is continuous in the constructible topology hence the
set f−1

a (E) \ f−1
a (F ) is closed in the constructible topology. Hence Lemma 5.24.2

applies to show that the LHS is nonempty if and only if each of the spaces of the
RHS is nonempty. □

Lemma 5.24.4.0A2Y Let I be a cofiltered category. Let i 7→ Xi be a diagram of spectral
spaces such that for a : j → i in I the corresponding map fa : Xj → Xi is spectral.
Let X = limXi with projections pi : X → Xi. Let E ⊂ X be a constructible
subset. Then there exists an i ∈ Ob(I) and a constructible subset Ei ⊂ Xi such
that p−1

i (Ei) = E. If E is open, resp. closed, we may choose Ei open, resp. closed.

Proof. Assume E is a quasi-compact open of X. By Lemma 5.14.2 we can write
E = p−1

i (Ui) for some i and some open Ui ⊂ Xi. Write Ui =
⋃
Ui,α as a union

of quasi-compact opens. As E is quasi-compact we can find α1, . . . , αn such that
E = p−1

i (Ui,α1 ∪ . . . ∪ Ui,αn). Hence Ei = Ui,α1 ∪ . . . ∪ Ui,αn works.

Assume E is a constructible closed subset. Then Ec is quasi-compact open. So
Ec = p−1

i (Fi) for some i and quasi-compact open Fi ⊂ Xi by the result of the
previous paragraph. Then E = p−1

i (F ci ) as desired.
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If E is general we can write E =
⋃
l=1,...,n Ul∩Zl with Ul constructible open and Zl

constructible closed. By the result of the previous paragraphs we may write Ul =
p−1
il

(Ul,il) and Zl = p−1
jl

(Zl,jl) with Ul,il ⊂ Xil constructible open and Zl,jl ⊂ Xjl

constructible closed. As I is cofiltered we may choose an object k of I and morphism
al : k → il and bl : k → jl. Then taking Ek =

⋃
l=1,...,n f

−1
al

(Ul,il) ∩ f−1
bl

(Zl,jl) we
obtain a constructible subset of Xk whose inverse image in X is E. □

Lemma 5.24.5.0A2Z Let I be a cofiltered index category. Let i 7→ Xi be a diagram of
spectral spaces such that for a : j → i in I the corresponding map fa : Xj → Xi is
spectral. Then the inverse limit X = limXi is a spectral topological space and the
projection maps pi : X → Xi are spectral.
Proof. The limitX = limXi exists (Lemma 5.14.1) and is quasi-compact by Lemma
5.24.1.
Denote pi : X → Xi the projection. Because I is cofiltered we can apply Lemma
5.14.2. Hence a basis for the topology on X is given by the opens p−1

i (Ui) for
Ui ⊂ Xi open. Since a basis for the topology of Xi is given by the quasi-compact
open, we conclude that a basis for the topology on X is given by p−1

i (Ui) with
Ui ⊂ Xi quasi-compact open. A formal argument shows that

p−1
i (Ui) = lima:j→i f

−1
a (Ui)

as topological spaces. Since each fa is spectral the sets f−1
a (Ui) are closed in the

constructible topology of Xj and hence p−1
i (Ui) is quasi-compact by Lemma 5.24.1.

Thus X has a basis for the topology consisting of quasi-compact opens.
Any quasi-compact open U of X is of the form U = p−1

i (Ui) for some i and some
quasi-compact open Ui ⊂ Xi (see Lemma 5.24.4). Given Ui ⊂ Xi and Uj ⊂ Xj

quasi-compact open, then p−1
i (Ui) ∩ p−1

j (Uj) = p−1
k (Uk) for some k and quasi-

compact open Uk ⊂ Xk. Namely, choose k and morphisms k → i and k → j and
let Uk be the intersection of the pullbacks of Ui and Uj to Xk. Thus we see that
the intersection of two quasi-compact opens of X is quasi-compact open.
Finally, let Z ⊂ X be irreducible and closed. Then pi(Z) ⊂ Xi is irreducible and
therefore Zi = pi(Z) has a unique generic point ξi (because Xi is a spectral space).
Then fa(ξj) = ξi for a : j → i in I because fa(Zj) = Zi. Hence ξ = lim ξi is a point
of X. Claim: ξ ∈ Z. Namely, if not we can find a quasi-compact open containing ξ
disjoint from Z. This would be of the form p−1

i (Ui) for some i and quasi-compact
open Ui ⊂ Xi. Then ξi ∈ Ui but pi(Z) ∩ Ui = ∅ which contradicts ξi ∈ pi(Z). So
ξ ∈ Z and hence {ξ} ⊂ Z. Conversely, every z ∈ Z is in the closure of ξ. Namely,
given a quasi-compact open neighbourhood U of z we write U = p−1

i (Ui) for some
i and quasi-compact open Ui ⊂ Xi. We see that pi(z) ∈ Ui hence ξi ∈ Ui hence
ξ ∈ U . Thus ξ is a generic point of Z. We omit the proof that ξ is the unique
generic point of Z (hint: show that a second generic point has to be equal to ξ by
showing that it has to map to ξi in Xi since by spectrality of Xi the irreducible Zi
has a unique generic point). This finishes the proof. □

Lemma 5.24.6.0A30 Let I be a cofiltered index category. Let i 7→ Xi be a diagram of
spectral spaces such that for a : j → i in I the corresponding map fa : Xj → Xi is
spectral. Set X = limXi and denote pi : X → Xi the projection.

(1) Given any quasi-compact open U ⊂ X there exists an i ∈ Ob(I) and a
quasi-compact open Ui ⊂ Xi such that p−1

i (Ui) = U .
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(2) Given Ui ⊂ Xi and Uj ⊂ Xj quasi-compact opens such that p−1
i (Ui) ⊂

p−1
j (Uj) there exist k ∈ Ob(I) and morphisms a : k → i and b : k → j

such that f−1
a (Ui) ⊂ f−1

b (Uj).
(3) If Ui, U1,i, . . . , Un,i ⊂ Xi are quasi-compact opens and p−1

i (Ui) = p−1
i (U1,i)∪

. . . ∪ p−1
i (Un,i) then f−1

a (Ui) = f−1
a (U1,i) ∪ . . . ∪ f−1

a (Un,i) for some mor-
phism a : j → i in I.

(4) Same statement as in (3) but for intersections.

Proof. Part (1) is a special case of Lemma 5.24.4. Part (2) is a special case of
Lemma 5.24.3 as quasi-compact opens are both open and closed in the constructible
topology. Parts (3) and (4) follow formally from (1) and (2) and the fact that taking
inverse images of subsets commutes with taking unions and intersections. □

Lemma 5.24.7.0A31 Let W be a subset of a spectral space X. The following are
equivalent:

(1) W is an intersection of constructible sets and closed under generalizations,
(2) W is quasi-compact and closed under generalizations,
(3) there exists a quasi-compact subset E ⊂ X such that W is the set of

points specializing to E,
(4) W is an intersection of quasi-compact open subsets,
(5)0ANZ there exists a nonempty set I and quasi-compact opens Ui ⊂ X, i ∈ I such

that W =
⋂
Ui and for all i, j ∈ I there exists a k ∈ I with Uk ⊂ Ui ∩Uj .

In this case we have (a) W is a spectral space, (b) W = limUi as topological spaces,
and (c) for any open U containing W there exists an i with Ui ⊂ U .

Proof. Let W ⊂ X satisfy (1). Then W is closed in the constructible topology,
hence quasi-compact in the constructible topology (by Lemmas 5.23.2 and 5.12.3),
hence quasi-compact in the topology of X (because opens in X are open in the
constructible topology). Thus (2) holds.

It is clear that (2) implies (3) by taking E = W .

Let X be a spectral space and let E ⊂ W be as in (3). Since every point of W
specializes to a point of E we see that an open of W which contains E is equal to
W . Hence since E is quasi-compact, so is W . If x ∈ X, x ̸∈ W , then Z = {x} is
disjoint from W . Since W is quasi-compact we can find a quasi-compact open U
with W ⊂ U and U ∩ Z = ∅. We conclude that (4) holds.

If W =
⋂
j∈J Uj then setting I equal to the set of finite subsets of J and Ui =

Uj1 ∩ . . . ∩ Ujr for i = {j1, . . . , jr} shows that (4) implies (5). It is immediate that
(5) implies (1).

Let I and Ui be as in (5). Since W =
⋂
Ui we have W = limUi by the universal

property of limits. Then W is a spectral space by Lemma 5.24.5. Let U ⊂ X be
an open neighbourhood of W . Then Ei = Ui ∩ (X \ U) is a family of constructible
subsets of the spectral space Z = X \ U with empty intersection. Using that the
spectral topology on Z is quasi-compact (Lemma 5.23.2) we conclude from Lemma
5.12.6 that Ei = ∅ for some i. □

Lemma 5.24.8.0AP0 Let X be a spectral space. Let E ⊂ X be a constructible subset.
Let W ⊂ X be the set of points of X which specialize to a point of E. Then
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W \ E is a spectral space. If W =
⋂
Ui with Ui as in Lemma 5.24.7 (5) then

W \ E = lim(Ui \ E).

Proof. Since E is constructible, it is quasi-compact and hence Lemma 5.24.7 applies
to W . If E is constructible, then E is constructible in Ui for all i ∈ I. Hence Ui \E
is spectral by Lemma 5.23.5. Since W \E =

⋂
(Ui \E) we have W \E = limUi \E

by the universal property of limits. Then W \ E is a spectral space by Lemma
5.24.5. □

5.25. Stone-Čech compactification

0908 The Stone-Čech compactification of a topological space X is a map X → β(X)
from X to a Hausdorff quasi-compact space β(X) which is universal for such maps.
We prove this exists by a standard argument using the following simple lemma.

Lemma 5.25.1.0909 Let f : X → Y be a continuous map of topological spaces. Assume
that f(X) is dense in Y and that Y is Hausdorff. Then the cardinality of Y is at
most the cardinality of P (P (X)) where P is the power set operation.

Proof. Let S = f(X) ⊂ Y . Let D be the set of all closed domains of Y , i.e., subsets
D ⊂ Y which equal the closure of its interior. Note that the closure of an open
subset of Y is a closed domain. For y ∈ Y consider the set

Iy = {T ⊂ S | there exists D ∈ D with T = S ∩D and y ∈ D}.

Since S is dense in Y for every closed domain D we see that S ∩D is dense in D.
Hence, if D ∩ S = D′ ∩ S for D,D′ ∈ D, then D = D′. Thus Iy = Iy′ implies that
y = y′ because the Hausdorff condition assures us that we can find a closed domain
containing y but not y′. The result follows. □

Let X be a topological space. By Lemma 5.25.1, there is a set I of isomorphism
classes of continuous maps f : X → Y which have dense image and where Y is
Hausdorff and quasi-compact. For i ∈ I choose a representative fi : X → Yi.
Consider the map ∏

fi : X −→
∏

i∈I
Yi

and denote β(X) the closure of the image. Since each Yi is Hausdorff, so is β(X).
Since each Yi is quasi-compact, so is β(X) (use Theorem 5.14.4 and Lemma 5.12.3).
Let us show the canonical map X → β(X) satisfies the universal property with
respect to maps to Hausdorff, quasi-compact spaces. Namely, let f : X → Y be
such a morphism. Let Z ⊂ Y be the closure of f(X). Then X → Z is isomorphic
to one of the maps fi : X → Yi, say fi0 : X → Yi0 . Thus f factors as X → β(X)→∏
Yi → Yi0

∼= Z → Y as desired.

Lemma 5.25.2.090A Let X be a Hausdorff, locally quasi-compact space. There exists a
map X → X∗ which identifies X as an open subspace of a quasi-compact Hausdorff
space X∗ such that X∗\X is a singleton (one point compactification). In particular,
the map X → β(X) identifies X with an open subspace of β(X).

Proof. Set X∗ = X ⨿ {∞}. We declare a subset V of X∗ to be open if either
V ⊂ X is open in X, or ∞ ∈ V and U = V ∩X is an open of X such that X \ U
is quasi-compact. We omit the verification that this defines a topology. It is clear
that X → X∗ identifies X with an open subspace of X.
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Since X is locally quasi-compact, every point x ∈ X has a quasi-compact neighbour-
hood x ∈ E ⊂ X. Then E is closed (Lemma 5.12.4 part (1)) and V = (X\E)⨿{∞}
is an open neighbourhood of ∞ disjoint from the interior of E. Thus X∗ is Haus-
dorff.
Let X∗ =

⋃
Vi be an open covering. Then for some i, say i0, we have ∞ ∈ Vi0 . By

construction Z = X∗ \ Vi0 is quasi-compact. Hence the covering Z ⊂
⋃
i ̸=i0 Z ∩ Vi

has a finite refinement which implies that the given covering of X∗ has a finite
refinement. Thus X∗ is quasi-compact.
The map X → X∗ factors as X → β(X) → X∗ by the universal property of the
Stone-Čech compactification. Let φ : β(X) → X∗ be this factorization. Then
X → φ−1(X) is a section to φ−1(X)→ X hence has closed image (Lemma 5.3.3).
Since the image of X → β(X) is dense we conclude that X = φ−1(X). □

5.26. Extremally disconnected spaces

08YH The material in this section is taken from [Gle58] (with a slight modification as
in [Rai59]). In Gleason’s paper it is shown that in the category of quasi-compact
Hausdorff spaces, the “projective objects” are exactly the extremally disconnected
spaces.
Definition 5.26.1.08YI A topological space X is called extremally disconnected if the
closure of every open subset of X is open.
If X is Hausdorff and extremally disconnected, then X is totally disconnected (this
isn’t true in general). If X is quasi-compact, Hausdorff, and extremally discon-
nected, then X is profinite by Lemma 5.22.2, but the converse does not hold in
general. For example the p-adic integers Zp = lim Z/pnZ is a profinite space which
is not extremally disconnected. Namely, if U ⊂ Zp is the set of nonzero elements
whose valuation is even, then U is open but its closure is U ∪{0} which is not open.
Lemma 5.26.2.08YJ Let f : X → Y be a continuous map of topological spaces. Assume
f is surjective and f(E) ̸= Y for all proper closed subsets E ⊂ X. Then for U ⊂ X
open the subset f(U) is contained in the closure of Y \ f(X \ U).
Proof. Pick y ∈ f(U) and let V ⊂ Y be any open neighbourhood of y. We will show
that V intersects Y \ f(X \ U). Note that W = U ∩ f−1(V ) is a nonempty open
subset of X, hence f(X \W ) ̸= Y . Take y′ ∈ Y , y′ ̸∈ f(X \W ). It is elementary
to show that y′ ∈ V and y′ ∈ Y \ f(X \ U). □

Lemma 5.26.3.08YK Let X be an extremally disconnected space. If U, V ⊂ X are
disjoint open subsets, then U and V are disjoint too.
Proof. By assumption U is open, hence V ∩ U is open and disjoint from U , hence
empty because U is the intersection of all the closed subsets of X containing U .
This means the open V ∩ U avoids V hence is empty by the same argument. □

Lemma 5.26.4.08YL Let f : X → Y be a continuous map of Hausdorff quasi-compact
topological spaces. If Y is extremally disconnected, f is surjective, and f(Z) ̸= Y
for every proper closed subset Z of X, then f is a homeomorphism.
Proof. By Lemma 5.17.8 it suffices to show that f is injective. Suppose that x, x′ ∈
X are distinct points with y = f(x) = f(x′). Choose disjoint open neighbourhoods
U,U ′ ⊂ X of x, x′. Observe that f is closed (Lemma 5.17.7) hence T = f(X \ U)
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and T ′ = f(X \ U ′) are closed in Y . Since X is the union of X \ U and X \ U ′ we
see that Y = T ∪ T ′. By Lemma 5.26.2 we see that y is contained in the closure
of Y \ T and the closure of Y \ T ′. On the other hand, by Lemma 5.26.3, this
intersection is empty. In this way we obtain the desired contradiction. □

Lemma 5.26.5.08YM Let f : X → Y be a continuous surjective map of Hausdorff quasi-
compact topological spaces. There exists a quasi-compact subset E ⊂ X such that
f(E) = Y but f(E′) ̸= Y for all proper closed subsets E′ ⊂ E.

Proof. We will use without further mention that the quasi-compact subsets of X
are exactly the closed subsets (Lemma 5.12.5). Consider the collection E of all
quasi-compact subsets E ⊂ X with f(E) = Y ordered by inclusion. We will use
Zorn’s lemma to show that E has a minimal element. To do this it suffices to show
that given a totally ordered family Eλ of elements of E the intersection

⋂
Eλ is

an element of E . It is quasi-compact as it is closed. For every y ∈ Y the sets
Eλ ∩ f−1({y}) are nonempty and closed, hence the intersection

⋂
Eλ ∩ f−1({y}) =⋂

(Eλ ∩ f−1({y})) is nonempty by Lemma 5.12.6. This finishes the proof. □

Proposition 5.26.6.08YN Let X be a Hausdorff, quasi-compact topological space. The
following are equivalent

(1) X is extremally disconnected,
(2) for any surjective continuous map f : Y → X with Y Hausdorff quasi-

compact there exists a continuous section, and
(3) for any solid commutative diagram

Y

��
X

>>

// Z

of continuous maps of quasi-compact Hausdorff spaces with Y → Z surjec-
tive, there is a dotted arrow in the category of topological spaces making
the diagram commute.

Proof. It is clear that (3) implies (2). On the other hand, if (2) holds and X → Z
and Y → Z are as in (3), then (2) assures there is a section to the projection
X ×Z Y → X which implies a suitable dotted arrow exists (details omitted). Thus
(3) is equivalent to (2).

Assume X is extremally disconnected and let f : Y → X be as in (2). By Lemma
5.26.5 there exists a quasi-compact subset E ⊂ Y such that f(E) = X but f(E′) ̸=
X for all proper closed subsets E′ ⊂ E. By Lemma 5.26.4 we find that f |E : E → X
is a homeomorphism, the inverse of which gives the desired section.

Assume (2). Let U ⊂ X be open with complement Z. Consider the continuous
surjection f : U ⨿Z → X. Let σ be a section. Then U = σ−1(U) is open. Thus X
is extremally disconnected. □

Lemma 5.26.7.090B Let f : X → X be a surjective continuous selfmap of a Hausdorff
topological space. If f is not idX , then there exists a proper closed subset E ⊂ X
such that X = E ∪ f(E).
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Proof. Pick p ∈ X with f(p) ̸= p. Choose disjoint open neighbourhoods p ∈ U ,
f(p) ∈ V and set E = X \ U ∩ f−1(V ). Then p ̸∈ E hence E is a proper closed
subset. If x ∈ X, then either x ∈ E, or if not, then x ∈ U ∩ f−1(V ) and writing
x = f(y) (possible as f is surjective) we find y ∈ V ⊂ E and x ∈ f(E). □

Example 5.26.8.090C We can use Proposition 5.26.6 to see that the Stone-Čech com-
pactification β(X) of a discrete space X is extremally disconnected. Namely, let
f : Y → β(X) be a continuous surjection where Y is quasi-compact and Hausdorff.
Then we can lift the map X → β(X) to a continuous (!) map X → Y as X is
discrete. By the universal property of the Stone-Čech compactification we see that
we obtain a factorization X → β(X) → Y . Since β(X) → Y → β(X) equals the
identity on the dense subset X we conclude that we get a section. In particular,
we conclude that the Stone-Čech compactification of a discrete space is totally dis-
connected, whence profinite (see discussion following Definition 5.26.1 and Lemma
5.22.2).

Using the supply of extremally disconnected spaces given by Example 5.26.8 we
can prove that every quasi-compact Hausdorff space has a “projective cover” in the
category of quasi-compact Hausdorff spaces.

Lemma 5.26.9.090D Let X be a quasi-compact Hausdorff space. There exists a con-
tinuous surjection X ′ → X with X ′ quasi-compact, Hausdorff, and extremally
disconnected. If we require that every proper closed subset of X ′ does not map
onto X, then X ′ is unique up to isomorphism.

Proof. Let Y = X but endowed with the discrete topology. Let X ′ = β(Y ). The
continuous map Y → X factors as Y → X ′ → X. This proves the first statement
of the lemma by Example 5.26.8.
By Lemma 5.26.5 we can find a quasi-compact subset E ⊂ X ′ surjecting onto X
such that no proper closed subset of E surjects onto X. Because X ′ is extremally
disconnected there exists a continuous map f : X ′ → E over X (Proposition 5.26.6).
Composing f with the map E → X ′ gives a continuous selfmap f |E : E → E.
Observe that f |E has to be surjective as otherwise the image would be a proper
closed subset surjecting onto X. Hence f |E has to be idE as otherwise Lemma
5.26.7 shows that E isn’t minimal. Thus the idE factors through the extremally
disconnected space X ′. A formal, categorical argument (using the characterization
of Proposition 5.26.6) shows that E is extremally disconnected.
To prove uniqueness, suppose we have a second X ′′ → X minimal cover. By
the lifting property proven in Proposition 5.26.6 we can find a continuous map
g : X ′ → X ′′ over X. Observe that g is a closed map (Lemma 5.17.7). Hence
g(X ′) ⊂ X ′′ is a closed subset surjecting onto X and we conclude g(X ′) = X ′′ by
minimality of X ′′. On the other hand, if E ⊂ X ′ is a proper closed subset, then
g(E) ̸= X ′′ as E does not map onto X by minimality of X ′. By Lemma 5.26.4 we
see that g is an isomorphism. □

Remark 5.26.10.090E Let X be a quasi-compact Hausdorff space. Let κ be an infinite
cardinal bigger or equal than the cardinality of X. Then the cardinality of the
minimal quasi-compact, Hausdorff, extremally disconnected cover X ′ → X (Lemma
5.26.9) is at most 22κ . Namely, choose a subset S ⊂ X ′ mapping bijectively to X.
By minimality of X ′ the set S is dense in X ′. Thus |X ′| ≤ 22κ by Lemma 5.25.1.
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5.27. Miscellany

0067 The following lemma applies to the underlying topological space associated to a
quasi-separated scheme.
Lemma 5.27.1.0069 Let X be a topological space which

(1) has a basis of the topology consisting of quasi-compact opens, and
(2) has the property that the intersection of any two quasi-compact opens is

quasi-compact.
Then

(1) X is locally quasi-compact,
(2) a quasi-compact open U ⊂ X is retrocompact,
(3) any quasi-compact open U ⊂ X has a cofinal system of open coverings
U : U =

⋃
j∈J Uj with J finite and all Uj and Uj ∩ Uj′ quasi-compact,

(4) add more here.
Proof. Omitted. □

Definition 5.27.2.06RM Let X be a topological space. We say x ∈ X is an isolated point
of X if {x} is open in X.

5.28. Partitions and stratifications

09XY Stratifications can be defined in many different ways. We welcome comments on
the choice of definitions in this section.
Definition 5.28.1.09XZ Let X be a topological space. A partition of X is a decomposition
X =

∐
Xi into locally closed subsets Xi. The Xi are called the parts of the

partition. Given two partitions of X we say one refines the other if the parts of one
are unions of parts of the other.
Any topological space X has a partition into connected components. If X has
finitely many irreducible components Z1, . . . , Zr, then there is a partition with
parts XI =

⋂
i∈I Zi \ (

⋃
i ̸∈I Zi) whose indices are subsets I ⊂ {1, . . . , r} which

refines the partition into connected components.
Definition 5.28.2.09Y0 Let X be a topological space. A good stratification of X is a
partition X =

∐
Xi such that for all i, j ∈ I we have

Xi ∩Xj ̸= ∅ ⇒ Xi ⊂ Xj .

Given a good stratification X =
∐
i∈I Xi we obtain a partial ordering on I by

setting i ≤ j if and only if Xi ⊂ Xj . Then we see that

Xj =
⋃

i≤j
Xi

However, what often happens in algebraic geometry is that one just has that the
left hand side is a subset of the right hand side in the last displayed formula. This
leads to the following definition.
Definition 5.28.3.09Y1 Let X be a topological space. A stratification of X is given by
a partition X =

∐
i∈I Xi and a partial ordering on I such that for each j ∈ I we

have
Xj ⊂

⋃
i≤j

Xi

The parts Xi are called the strata of the stratification.
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We often impose additional conditions on the stratification. For example, stratifi-
cations are particularly nice if they are locally finite, which means that every point
has a neighbourhood which meets only finitely many strata. More generally we
introduce the following definition.

Definition 5.28.4.0BDS Let X be a topological space. Let I be a set and for i ∈ I let
Ei ⊂ X be a subset. We say the collection {Ei}i∈I is locally finite if for all x ∈ X
there exists an open neighbourhood U of x such that {i ∈ I|Ei ∩ U ̸= ∅} is finite.

Remark 5.28.5.09Y2 Given a locally finite stratification X =
∐
Xi of a topological

space X, we obtain a family of closed subsets Zi =
⋃
j≤iXj of X indexed by I such

that
Zi ∩ Zj =

⋃
k≤i,j

Zk

Conversely, given closed subsets Zi ⊂ X indexed by a partially ordered set I such
that X =

⋃
Zi, such that every point has a neighbourhood meeting only finitely

many Zi, and such that the displayed formula holds, then we obtain a locally finite
stratification of X by setting Xi = Zi \

⋃
j<i Zj .

Lemma 5.28.6.09Y3 Let X be a topological space. Let X =
∐
Xi be a finite partition

of X. Then there exists a finite stratification of X refining it.

Proof. Let Ti = Xi and ∆i = Ti \ Xi. Let S be the set of all intersections of Ti
and ∆i. (For example T1 ∩ T2 ∩∆4 is an element of S.) Then S = {Zs} is a finite
collection of closed subsets of X such that Zs ∩ Zs′ ∈ S for all s, s′ ∈ S. Define a
partial ordering on S by inclusion. Then set Ys = Zs \

⋃
s′<s Zs′ to get the desired

stratification. □

Lemma 5.28.7.09Y4 Let X be a topological space. Suppose X = T1∪ . . .∪Tn is written
as a union of constructible subsets. There exists a finite stratification X =

∐
Xi

with each Xi constructible such that each Tk is a union of strata.

Proof. By definition of constructible subsets, we can write each Ti as a finite union
of U ∩ V c with U, V ⊂ X retrocompact open. Hence we may assume that Ti =
Ui∩V ci with Ui, Vi ⊂ X retrocompact open. Let S be the finite set of closed subsets
of X consisting of ∅, X, U ci , V ci and finite intersections of these. If Z ∈ S, then Z is
constructible in X (Lemma 5.15.2). Moreover, Z ∩Z ′ ∈ S for all Z,Z ′ ∈ S. Define
a partial ordering on S by inclusion. For Z ∈ S set XZ = Z \

⋃
Z′<Z, Z′∈S Z

′ to get
a stratification X =

∐
Z∈S XZ satisfying the properties stated in the lemma. □

Lemma 5.28.8.09Y5 Let X be a Noetherian topological space. Any finite partition of
X can be refined by a finite good stratification.

Proof. Let X =
∐
Xi be a finite partition of X. Let Z be an irreducible component

of X. Since X =
⋃
Xi with finite index set, there is an i such that Z ⊂ Xi. Since Xi

is locally closed this implies that Z∩Xi contains an open of Z. Thus Z∩Xi contains
an open U of X (Lemma 5.9.2). Write Xi = U ⨿X1

i ⨿X2
i with X1

i = (Xi \U)∩U
and X2

i = (Xi \U)∩U c. For i′ ̸= i we set X1
i′ = Xi′ ∩U and X2

i′ = Xi′ ∩U
c. Then

X \ U =
∐

Xk
l

is a partition such that U \ U =
⋃
X1
l . Note that X \ U is closed and strictly

smaller than X. By Noetherian induction we can refine this partition by a finite
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good stratification X \ U =
∐
α∈A Tα. Then X = U ⨿

∐
α∈A Tα is a finite good

stratification of X refining the partition we started with. □

5.29. Colimits of spaces

0B1W The category of topological spaces has coproducts. Namely, if I is a set and for
i ∈ I we are given a topological space Xi then we endow the set

∐
i∈I Xi with the

coproduct topology. As a basis for this topology we use sets of the form Ui where
Ui ⊂ Xi is open.
The category of topological spaces has coequalizers. Namely, if a, b : X → Y are
morphisms of topological spaces, then the coequalizer of a and b is the coequalizer
Y/ ∼ in the category of sets endowed with the quotient topology (Section 5.6).

Lemma 5.29.1.0B1X The category of topological spaces has colimits and the forgetful
functor to sets commutes with them.

Proof. This follows from the discussion above and Categories, Lemma 4.14.12. An-
other proof of existence of colimits is sketched in Categories, Remark 4.25.2. It
follows from the above that the forgetful functor commutes with colimits. Another
way to see this is to use Categories, Lemma 4.24.5 and use that the forgetful functor
has a right adjoint, namely the functor which assigns to a set the corresponding
chaotic (or indiscrete) topological space. □

5.30. Topological groups, rings, modules

0B1Y This is just a short section with definitions and elementary properties.

Definition 5.30.1.0B1Z A topological group is a group G endowed with a topology such
that multiplication G × G → G, (x, y) 7→ xy and inverse G → G, x 7→ x−1 are
continuous. A homomorphism of topological groups is a homomorphism of groups
which is continuous.

If G is a topological group and H ⊂ G is a subgroup, then H with the induced
topology is a topological group. If G is a topological group and G → H is a
surjection of groups, then H endowed with the quotient topology is a topological
group.

Example 5.30.2.0BMC Let E be a set. We can endow the set of self maps Map(E,E)
with the compact open topology, i.e., the topology such that given f : E → E a
fundamental system of neighbourhoods of f is given by the sets US(f) = {f ′ : E →
E | f ′|S = f |S} where S ⊂ E is finite. With this topology the action

Map(E,E)× E −→ E, (f, e) 7−→ f(e)
is continuous when E is given the discrete topology. If X is a topological space and
X × E → E is a continuous map, then the map X → Map(E,E) is continuous.
In other words, the compact open topology is the coarsest topology such that the
“action” map displayed above is continuous. The composition

Map(E,E)×Map(E,E)→ Map(E,E)
is continuous as well (as is easily verified using the description of neighbourhoods
above). Finally, if Aut(E) ⊂ Map(E,E) is the subset of invertible maps, then the
inverse i : Aut(E) → Aut(E), f 7→ f−1 is continuous too. Namely, say S ⊂ E is

https://stacks.math.columbia.edu/tag/0B1X
https://stacks.math.columbia.edu/tag/0B1Z
https://stacks.math.columbia.edu/tag/0BMC


5.30. TOPOLOGICAL GROUPS, RINGS, MODULES 183

finite, then i−1(US(f−1)) = Uf−1(S)(f). Hence Aut(E) is a topological group as in
Definition 5.30.1.
Lemma 5.30.3.0B20 The category of topological groups has limits and limits commute
with the forgetful functors to (a) the category of topological spaces and (b) the
category of groups.
Proof. It is enough to prove the existence and commutation for products and equal-
izers, see Categories, Lemma 4.14.11. Let Gi, i ∈ I be a collection of topological
groups. Take the usual product G =

∏
Gi with the product topology. Since

G × G =
∏

(Gi × Gi) as a topological space (because products commutes with
products in any category), we see that multiplication on G is continuous. Simi-
larly for the inverse map. Let a, b : G → H be two homomorphisms of topological
groups. Then as the equalizer we can simply take the equalizer of a and b as maps
of topological spaces, which is the same thing as the equalizer as maps of groups
endowed with the induced topology. □

Lemma 5.30.4.0BR1 Let G be a topological group. The following are equivalent
(1) G as a topological space is profinite,
(2) G is a limit of a diagram of finite discrete topological groups,
(3) G is a cofiltered limit of finite discrete topological groups.

Proof. We have the corresponding result for topological spaces, see Lemma 5.22.2.
Combined with Lemma 5.30.3 we see that it suffices to prove that (1) implies (3).
We first prove that every neighbourhood E of the neutral element e contains an
open subgroup. Namely, since G is the cofiltered limit of finite discrete topological
spaces (Lemma 5.22.2), we can choose a continuous map f : G → T to a finite
discrete space T such that f−1(f({e})) ⊂ E. Consider

H = {g ∈ G | f(gg′) = f(g′) for all g′ ∈ G}
This is a subgroup of G and contained in E. Thus it suffices to show that H is
open. Pick t ∈ T and set W = f−1({t}). Observe that W ⊂ G is open and closed,
in particular quasi-compact. For each w ∈ W there exist open neighbourhoods
e ∈ Uw ⊂ G and w ∈ U ′

w ⊂ W such that UwU ′
w ⊂ W . By quasi-compactness we

can find w1, . . . , wn such that W =
⋃
U ′
wi . Then Ut = Uw1 ∩ . . . ∩ Uwn is an open

neighbourhood of e such that f(gw) = t for all w ∈ W . Since T is finite we see
that

⋂
t∈T Ut ⊂ H is an open neighbourhood of e. Since H ⊂ G is a subgroup it

follows that H is open.
Suppose that H ⊂ G is an open subgroup. Since G is quasi-compact we see that
the index of H in G is finite. Say G = Hg1∪ . . .∪Hgn. Then N =

⋂
i=1,...,n giHg

−1
i

is an open normal subgroup contained in H. Since N also has finite index we see
that G→ G/N is a surjection to a finite discrete topological group.
Consider the map

G −→ limN⊂G open and normal G/N

We claim that this map is an isomorphism of topological groups. This finishes the
proof of the lemma as the limit on the right is cofiltered (the intersection of two open
normal subgroups is open and normal). The map is continuous as each G→ G/N
is continuous. The map is injective as G is Hausdorff and every neighbourhood of
e contains an N by the arguments above. The map is surjective by Lemma 5.12.6.
By Lemma 5.17.8 the map is a homeomorphism. □

https://stacks.math.columbia.edu/tag/0B20
https://stacks.math.columbia.edu/tag/0BR1


5.30. TOPOLOGICAL GROUPS, RINGS, MODULES 184

Definition 5.30.5.0BR2 A topological group is called a profinite group if it satisfies the
equivalent conditions of Lemma 5.30.4.
If G1 → G2 → G3 → . . . is a system of topological groups then the colimit G =
colimGn as a topological group (Lemma 5.30.6) is in general different from the
colimit as a topological space (Lemma 5.29.1) even though these have the same
underlying set. See Examples, Section 110.77.
Lemma 5.30.6.0B21 The category of topological groups has colimits and colimits com-
mute with the forgetful functor to the category of groups.
Proof. We will use the argument of Categories, Remark 4.25.2 to prove existence
of colimits. Namely, suppose that I → Top, i 7→ Gi is a functor into the category
TopGroup of topological groups. Then we can consider

F : TopGroup −→ Sets, H 7−→ limI MorTopGroup(Gi, H)
This functor commutes with limits. Moreover, given any topological group H and
an element (φi : Gi → H) of F (H), there is a subgroup H ′ ⊂ H of cardinality
at most |

∐
Gi| (coproduct in the category of groups, i.e., the free product on the

Gi) such that the morphisms φi map into H ′. Namely, we can take the induced
topology on the subgroup generated by the images of the φi. Thus it is clear that
the hypotheses of Categories, Lemma 4.25.1 are satisfied and we find a topological
group G representing the functor F , which precisely means that G is the colimit of
the diagram i 7→ Gi.
To see the statement on commutation with the forgetful functor to groups we will
use Categories, Lemma 4.24.5. Indeed, the forgetful functor has a right adjoint,
namely the functor which assigns to a group the corresponding chaotic (or indis-
crete) topological group. □

Definition 5.30.7.0B22 A topological ring is a ring R endowed with a topology such that
addition R × R → R, (x, y) 7→ x + y and multiplication R × R → R, (x, y) 7→ xy
are continuous. A homomorphism of topological rings is a homomorphism of rings
which is continuous.
In the Stacks project rings are commutative with 1. If R is a topological ring, then
(R,+) is a topological group since x 7→ −x is continuous. If R is a topological ring
and R′ ⊂ R is a subring, then R′ with the induced topology is a topological ring. If
R is a topological ring and R → R′ is a surjection of rings, then R′ endowed with
the quotient topology is a topological ring.
Lemma 5.30.8.0B23 The category of topological rings has limits and limits commute
with the forgetful functors to (a) the category of topological spaces and (b) the
category of rings.
Proof. It is enough to prove the existence and commutation for products and equal-
izers, see Categories, Lemma 4.14.11. Let Ri, i ∈ I be a collection of topologi-
cal rings. Take the usual product R =

∏
Ri with the product topology. Since

R × R =
∏

(Ri × Ri) as a topological space (because products commutes with
products in any category), we see that addition and multiplication on R are con-
tinuous. Let a, b : R → R′ be two homomorphisms of topological rings. Then as
the equalizer we can simply take the equalizer of a and b as maps of topological
spaces, which is the same thing as the equalizer as maps of rings endowed with the
induced topology. □
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Lemma 5.30.9.0B24 The category of topological rings has colimits and colimits commute
with the forgetful functor to the category of rings.

Proof. The exact same argument as used in the proof of Lemma 5.30.6 shows
existence of colimits. To see the statement on commutation with the forgetful
functor to rings we will use Categories, Lemma 4.24.5. Indeed, the forgetful functor
has a right adjoint, namely the functor which assigns to a ring the corresponding
chaotic (or indiscrete) topological ring. □

Definition 5.30.10.0B25 Let R be a topological ring. A topological module is an R-
module M endowed with a topology such that addition M ×M → M and scalar
multiplication R×M →M are continuous. A homomorphism of topological mod-
ules is a homomorphism of modules which is continuous.

If R is a topological ring and M is a topological module, then (M,+) is a topological
group since x 7→ −x is continuous. If R is a topological ring, M is a topological
module and M ′ ⊂ M is a submodule, then M ′ with the induced topology is a
topological module. If R is a topological ring, M is a topological module, and
M → M ′ is a surjection of modules, then M ′ endowed with the quotient topology
is a topological module.

Lemma 5.30.11.0B26 Let R be a topological ring. The category of topological modules
over R has limits and limits commute with the forgetful functors to (a) the category
of topological spaces and (b) the category of R-modules.

Proof. It is enough to prove the existence and commutation for products and equal-
izers, see Categories, Lemma 4.14.11. Let Mi, i ∈ I be a collection of topological
modules over R. Take the usual product M =

∏
Mi with the product topology.

Since M ×M =
∏

(Mi ×Mi) as a topological space (because products commutes
with products in any category), we see that addition on M is continuous. Similarly
for multiplication R ×M → M . Let a, b : M → M ′ be two homomorphisms of
topological modules over R. Then as the equalizer we can simply take the equalizer
of a and b as maps of topological spaces, which is the same thing as the equalizer
as maps of modules endowed with the induced topology. □

Lemma 5.30.12.0B27 Let R be a topological ring. The category of topological modules
over R has colimits and colimits commute with the forgetful functor to the category
of modules over R.

Proof. The exact same argument as used in the proof of Lemma 5.30.6 shows
existence of colimits. To see the statement on commutation with the forgetful
functor to R-modules we will use Categories, Lemma 4.24.5. Indeed, the forgetful
functor has a right adjoint, namely the functor which assigns to a module the
corresponding chaotic (or indiscrete) topological module. □
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CHAPTER 6

Sheaves on Spaces

006A 6.1. Introduction

006B Basic properties of sheaves on topological spaces will be explained in this document.
A reference is [God73].

This will be superseded by the discussion of sheaves over sites later in the docu-
ments. But perhaps it makes sense to briefly define some of the notions here.

6.2. Basic notions

006C The following is a list of basic notions in topology.
(1) Let X be a topological space. The phrase: “Let U =

⋃
i∈I Ui be an open

covering” means the following: I is a set and for each i ∈ I we are given
an open subset Ui ⊂ X such that U is the union of the Ui. It is allowed
to have I = ∅ in which case there are no Ui and U = ∅. It is also allowed,
in case I ̸= ∅ to have any or all of the Ui be empty.

(2) etc, etc.

6.3. Presheaves

006D
Definition 6.3.1.006E Let X be a topological space.

(1) A presheaf F of sets on X is a rule which assigns to each open U ⊂ X a
set F(U) and to each inclusion V ⊂ U a map ρUV : F(U) → F(V ) such
that ρUU = idF(U) and whenever W ⊂ V ⊂ U we have ρUW = ρVW ◦ ρUV .

(2) A morphism φ : F → G of presheaves of sets on X is a rule which assigns
to each open U ⊂ X a map of sets φ : F(U) → G(U) compatible with
restriction maps, i.e., whenever V ⊂ U ⊂ X are open the diagram

F(U) φ //

ρUV
��

G(U)

ρUV
��

F(V ) φ // G(V )

commutes.
(3) The category of presheaves of sets on X will be denoted PSh(X).

The elements of the set F(U) are called the sections of F over U . For every V ⊂ U
the map ρUV : F(U)→ F(V ) is called the restriction map. We will use the notation
s|V := ρUV (s) if s ∈ F(U). This notation is consistent with the notion of restriction
of functions from topology because if W ⊂ V ⊂ U and s is a section of F over

188
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U then s|W = (s|V )|W by the property of the restriction maps expressed in the
definition above.

Another notation that is often used is to indicate sections over an open U by
the symbol Γ(U,−) or by H0(U,−). In other words, the following equalities are
tautological

Γ(U,F) = F(U) = H0(U,F).
In this chapter we will not use this notation, but in others we will.

Definition 6.3.2.006F Let X be a topological space. Let A be a set. The constant
presheaf with value A is the presheaf that assigns the set A to every open U ⊂ X,
and such that all restriction mappings are idA.

6.4. Abelian presheaves

006G In this section we briefly point out some features of the category of presheaves that
allow one to define presheaves of abelian groups.

Example 6.4.1.006H Let X be a topological space. Consider a rule F that associates
to every open subset of X a singleton set. Since every set has a unique map into a
singleton set, there exist unique restriction maps ρUV . The resulting structure is a
presheaf of sets on X. It is a final object in the category of presheaves of sets on
X, by the property of singleton sets mentioned above. Hence it is also unique up
to unique isomorphism. We will sometimes write ∗ for this presheaf.

Lemma 6.4.2.006I Let X be a topological space. The category of presheaves of sets on
X has products (see Categories, Definition 4.14.6). Moreover, the set of sections of
the product F × G over an open U is the product of the sets of sections of F and
G over U .

Proof. Namely, suppose F and G are presheaves of sets on the topological space
X. Consider the rule U 7→ F(U)× G(U), denoted F × G. If V ⊂ U ⊂ X are open
then define the restriction mapping

(F × G)(U) −→ (F × G)(V )

by mapping (s, t) 7→ (s|V , t|V ). Then it is immediately clear that F×G is a presheaf.
Also, there are projection maps p : F × G → F and q : F × G → G. We leave it
to the reader to show that for any third presheaf H we have Mor(H,F × G) =
Mor(H,F)×Mor(H,G). □

Recall that if (A,+ : A× A→ A,− : A→ A, 0 ∈ A) is an abelian group, then the
zero and the negation maps are uniquely determined by the addition law. In other
words, it makes sense to say “let (A,+) be an abelian group”.

Lemma 6.4.3.006J Let X be a topological space. Let F be a presheaf of sets. Consider
the following types of structure on F :

(1) For every open U the structure of an abelian group on F(U) such that all
restriction maps are abelian group homomorphisms.

(2) A map of presheaves + : F×F → F , a map of presheaves − : F → F and
a map 0 : ∗ → F (see Example 6.4.1) satisfying all the axioms of +,−, 0
in a usual abelian group.

https://stacks.math.columbia.edu/tag/006F
https://stacks.math.columbia.edu/tag/006H
https://stacks.math.columbia.edu/tag/006I
https://stacks.math.columbia.edu/tag/006J
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(3) A map of presheaves + : F × F → F , a map of presheaves − : F → F
and a map 0 : ∗ → F such that for each open U ⊂ X the quadruple
(F(U),+,−, 0) is an abelian group,

(4) A map of presheaves + : F ×F → F such that for every open U ⊂ X the
map + : F(U)×F(U)→ F(U) defines the structure of an abelian group.

There are natural bijections between the collections of types of data (1) - (4) above.

Proof. Omitted. □

The lemma says that to give an abelian group object F in the category of presheaves
is the same as giving a presheaf of sets F such that all the sets F(U) are endowed
with the structure of an abelian group and such that all the restriction mappings
are group homomorphisms. For most algebra structures we will take this approach
to (pre)sheaves of such objects, i.e., we will define a (pre)sheaf of such objects to
be a (pre)sheaf F of sets all of whose sets of sections F(U) are endowed with this
structure compatibly with the restriction mappings.

Definition 6.4.4.006K Let X be a topological space.
(1) A presheaf of abelian groups on X or an abelian presheaf over X is a

presheaf of sets F such that for each open U ⊂ X the set F(U) is endowed
with the structure of an abelian group, and such that all restriction maps
ρUV are homomorphisms of abelian groups, see Lemma 6.4.3 above.

(2) A morphism of abelian presheaves over X φ : F → G is a morphism
of presheaves of sets which induces a homomorphism of abelian groups
F(U)→ G(U) for every open U ⊂ X.

(3) The category of presheaves of abelian groups on X is denoted PAb(X).

Example 6.4.5.006L Let X be a topological space. For each x ∈ X suppose given an
abelian group Mx. For U ⊂ X open we set

F(U) =
⊕

x∈U
Mx.

We denote a typical element in this abelian group by
∑n
i=1 mxi , where xi ∈ U

and mxi ∈ Mxi . (Of course we may always choose our representation such that
x1, . . . , xn are pairwise distinct.) We define for V ⊂ U ⊂ X open a restriction
mapping F(U) → F(V ) by mapping an element s =

∑n
i=1 mxi to the element

s|V =
∑
xi∈V mxi . We leave it to the reader to verify that this is a presheaf of

abelian groups.

6.5. Presheaves of algebraic structures

006M Let us clarify the definition of presheaves of algebraic structures. Suppose that
C is a category and that F : C → Sets is a faithful functor. Typically F is a
“forgetful” functor. For an object M ∈ Ob(C) we often call F (M) the underlying
set of the object M . If M → M ′ is a morphism in C we call F (M) → F (M ′) the
underlying map of sets. In fact, we will often not distinguish between an object
and its underlying set, and similarly for morphisms. So we will say a map of sets
F (M) → F (M ′) is a morphism of algebraic structures, if it is equal to F (f) for
some morphism f : M →M ′ in C.
In analogy with Definition 6.4.4 above a “presheaf of objects of C” could be defined
by the following data:

https://stacks.math.columbia.edu/tag/006K
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(1) a presheaf of sets F , and
(2) for every open U ⊂ X a choice of an object A(U) ∈ Ob(C)

subject to the following conditions (using the phraseology above)
(1) for every open U ⊂ X the set F(U) is the underlying set of A(U), and
(2) for every V ⊂ U ⊂ X open the map of sets ρUV : F(U) → F(V ) is a

morphism of algebraic structures.
In other words, for every V ⊂ U open in X the restriction mappings ρUV is the
image F (αUV ) for some unique morphism αUV : A(U) → A(V ) in the category C.
The uniqueness is forced by the condition that F is faithful; it also implies that
αUW = αVW ◦ αUV whenever W ⊂ V ⊂ U are open in X. The system (A(−), αUV ) is
what we will define as a presheaf with values in C on X, compare Sites, Definition
7.2.2. We recover our presheaf of sets (F , ρUV ) via the rules F(U) = F (A(U)) and
ρUV = F (αUV ).
Definition 6.5.1.006N Let X be a topological space. Let C be a category.

(1) A presheaf F on X with values in C is given by a rule which assigns to
every open U ⊂ X an object F(U) of C and to each inclusion V ⊂ U a
morphism ρUV : F(U) → F(V ) in C such that whenever W ⊂ V ⊂ U we
have ρUW = ρVW ◦ ρUV .

(2) A morphism φ : F → G of presheaves with value in C is given by a
morphism φ : F(U)→ G(U) in C compatible with restriction morphisms.

Definition 6.5.2.006O Let X be a topological space. Let C be a category. Let F : C →
Sets be a faithful functor. Let F be a presheaf on X with values in C. The presheaf
of sets U 7→ F (F(U)) is called the underlying presheaf of sets of F .
It is customary to use the same letter F to denote the underlying presheaf of sets,
and this makes sense according to our discussion preceding Definition 6.5.1. In
particular, the phrase “let s ∈ F(U)” or “let s be a section of F over U” signifies
that s ∈ F (F(U)).
This notation and these definitions apply in particular to: Presheaves of (not nec-
essarily abelian) groups, rings, modules over a fixed ring, vector spaces over a fixed
field, etc and morphisms between these.

6.6. Presheaves of modules

006P Suppose that O is a presheaf of rings on X. We would like to define the notion of
a presheaf of O-modules over X. In analogy with Definition 6.4.4 we are tempted
to define this as a presheaf of sets F such that for every open U ⊂ X the set
F(U) is endowed with the structure of an O(U)-module compatible with restriction
mappings (of F and O). However, it is customary (and equivalent) to define it as
in the following definition.
Definition 6.6.1.006Q Let X be a topological space, and let O be a presheaf of rings on
X.

(1) A presheaf of O-modules is given by an abelian presheaf F together with
a map of presheaves of sets

O ×F −→ F
such that for every open U ⊂ X the map O(U) × F(U) → F(U) defines
the structure of an O(U)-module structure on the abelian group F(U).

https://stacks.math.columbia.edu/tag/006N
https://stacks.math.columbia.edu/tag/006O
https://stacks.math.columbia.edu/tag/006Q
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(2) A morphism φ : F → G of presheaves of O-modules is a morphism of
abelian presheaves φ : F → G such that the diagram

O ×F //

id×φ
��

F

φ

��
O × G // G

commutes.
(3) The set of O-module morphisms as above is denoted HomO(F ,G).
(4) The category of presheaves of O-modules is denoted PMod(O).

Suppose that O1 → O2 is a morphism of presheaves of rings on X. In this case, if
F is a presheaf of O2-modules then we can think of F as a presheaf of O1-modules
by using the composition

O1 ×F → O2 ×F → F .

We sometimes denote this by FO1 to indicate the restriction of rings. We call this
the restriction of F . We obtain the restriction functor

PMod(O2) −→ PMod(O1)

On the other hand, given a presheaf of O1-modules G we can construct a presheaf
of O2-modules O2 ⊗p,O1 G by the rule

(O2 ⊗p,O1 G) (U) = O2(U)⊗O1(U) G(U)
The index p stands for “presheaf” and not “point”. This presheaf is called the tensor
product presheaf. We obtain the change of rings functor

PMod(O1) −→ PMod(O2)

Lemma 6.6.2.006R With X, O1, O2, F and G as above there exists a canonical bijection

HomO1(G,FO1) = HomO2(O2 ⊗p,O1 G,F)
In other words, the restriction and change of rings functors are adjoint to each
other.

Proof. This follows from the fact that for a ring map A→ B the restriction functor
and the change of ring functor are adjoint to each other. □

6.7. Sheaves

006S In this section we explain the sheaf condition.

Definition 6.7.1.006T Let X be a topological space.
(1) A sheaf F of sets on X is a presheaf of sets which satisfies the follow-

ing additional property: Given any open covering U =
⋃
i∈I Ui and any

collection of sections si ∈ F(Ui), i ∈ I such that ∀i, j ∈ I
si|Ui∩Uj = sj |Ui∩Uj

there exists a unique section s ∈ F(U) such that si = s|Ui for all i ∈ I.
(2) A morphism of sheaves of sets is simply a morphism of presheaves of sets.
(3) The category of sheaves of sets on X is denoted Sh(X).

https://stacks.math.columbia.edu/tag/006R
https://stacks.math.columbia.edu/tag/006T
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Remark 6.7.2.006U There is always a bit of confusion as to whether it is necessary to
say something about the set of sections of a sheaf over the empty set ∅ ⊂ X. It is
necessary, and we already did if you read the definition right. Namely, note that
the empty set is covered by the empty open covering, and hence the “collection of
sections si” from the definition above actually form an element of the empty product
which is the final object of the category the sheaf has values in. In other words, if
you read the definition right you automatically deduce that F(∅) = a final object,
which in the case of a sheaf of sets is a singleton. If you do not like this argument,
then you can just require that F(∅) = {∗}.
In particular, this condition will then ensure that if U, V ⊂ X are open and disjoint
then

F(U ∪ V ) = F(U)×F(V ).
(Because the fibre product over a final object is a product.)

Example 6.7.3.006V Let X, Y be topological spaces. Consider the rule F which asso-
ciates to the open U ⊂ X the set

F(U) = {f : U → Y | f is continuous}
with the obvious restriction mappings. We claim that F is a sheaf. To see this
suppose that U =

⋃
i∈I Ui is an open covering, and fi ∈ F(Ui), i ∈ I with fi|Ui∩Uj =

fj |Ui∩Uj for all i, j ∈ I. In this case define f : U → Y by setting f(u) equal to the
value of fi(u) for any i ∈ I such that u ∈ Ui. This is well defined by assumption.
Moreover, f : U → Y is a map such that its restriction to Ui agrees with the
continuous map fi. Hence clearly f is continuous!

We can use the result of the example to define constant sheaves. Namely, suppose
that A is a set. Endow A with the discrete topology. Let U ⊂ X be an open subset.
Then we have

{f : U → A | f continuous} = {f : U → A | f locally constant}.
Thus the rule which assigns to an open all locally constant maps into A is a sheaf.

Definition 6.7.4.006W Let X be a topological space. Let A be a set. The constant sheaf
with value A denoted A, or AX is the sheaf that assigns to an open U ⊂ X the set
of all locally constant maps U → A with restriction mappings given by restrictions
of functions.

Example 6.7.5.006X Let X be a topological space. Let (Ax)x∈X be a family of sets Ax
indexed by points x ∈ X. We are going to construct a sheaf of sets Π from this
data. For U ⊂ X open set

Π(U) =
∏

x∈U
Ax.

For V ⊂ U ⊂ X open define a restriction mapping by the following rule: An
element s = (ax)x∈U ∈ Π(U) restricts to s|V = (ax)x∈V . It is obvious that this
defines a presheaf of sets. We claim this is a sheaf. Namely, let U =

⋃
Ui be an

open covering. Suppose that si ∈ Π(Ui) are such that si and sj agree over Ui ∩Uj .
Write si = (ai,x)x∈Ui . The compatibility condition implies that ai,x = aj,x in the
set Ax whenever x ∈ Ui ∩ Uj . Hence there exists a unique element s = (ax)x∈U in
Π(U) =

∏
x∈U Ax with the property that ax = ai,x whenever x ∈ Ui for some i. Of

course this element s has the property that s|Ui = si for all i.

https://stacks.math.columbia.edu/tag/006U
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Example 6.7.6.006Y Let X be a topological space. Suppose for each x ∈ X we are given
an abelian group Mx. Consider the presheaf F : U 7→

⊕
x∈U Mx defined in Example

6.4.5. This is not a sheaf in general. For example, if X is an infinite set with the
discrete topology, then the sheaf condition would imply that F(X) =

∏
x∈X F({x})

but by definition we have F(X) =
⊕

x∈XMx =
⊕

x∈X F({x}). And an infinite
direct sum is in general different from an infinite direct product.

However, if X is a topological space such that every open of X is quasi-compact,
then F is a sheaf. This is left as an exercise to the reader.

6.8. Abelian sheaves

006Z
Definition 6.8.1.0070 Let X be a topological space.

(1) An abelian sheaf on X or sheaf of abelian groups on X is an abelian
presheaf on X such that the underlying presheaf of sets is a sheaf.

(2) The category of sheaves of abelian groups is denoted Ab(X).

Let X be a topological space. In the case of an abelian presheaf F the sheaf
condition with regards to an open covering U =

⋃
Ui is often expressed by saying

that the complex of abelian groups

0→ F(U)→
∏

i
F(Ui)→

∏
(i0,i1)

F(Ui0 ∩ Ui1)

is exact. The first map is the usual one, whereas the second maps the element
(si)i∈I to the element

(si0 |Ui0 ∩Ui1 − si1 |Ui0 ∩Ui1 )(i0,i1) ∈
∏

(i0,i1)
F(Ui0 ∩ Ui1)

6.9. Sheaves of algebraic structures

0071 Let us clarify the definition of sheaves of certain types of structures. First, let us
reformulate the sheaf condition. Namely, suppose that F is a presheaf of sets on
the topological space X. The sheaf condition can be reformulated as follows. Let
U =

⋃
i∈I Ui be an open covering. Consider the diagram

F(U) // ∏
i∈I F(Ui)

//
//
∏

(i0,i1)∈I×I F(Ui0 ∩ Ui1)

Here the left map is defined by the rule s 7→
∏
i∈I s|Ui . The two maps on the right

are the maps∏
i
si 7→

∏
(i0,i1)

si0 |Ui0 ∩Ui1 resp.
∏

i
si 7→

∏
(i0,i1)

si1 |Ui0 ∩Ui1 .

The sheaf condition exactly says that the left arrow is the equalizer of the right two.
This generalizes immediately to the case of presheaves with values in a category as
long as the category has products.

Definition 6.9.1.0072 Let X be a topological space. Let C be a category with products.
A presheaf F with values in C on X is a sheaf if for every open covering the diagram

F(U) // ∏
i∈I F(Ui)

//
//
∏

(i0,i1)∈I×I F(Ui0 ∩ Ui1)

is an equalizer diagram in the category C.

https://stacks.math.columbia.edu/tag/006Y
https://stacks.math.columbia.edu/tag/0070
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Suppose that C is a category and that F : C → Sets is a faithful functor. A good
example to keep in mind is the case where C is the category of abelian groups and
F is the forgetful functor. Consider a presheaf F with values in C on X. We would
like to reformulate the condition above in terms of the underlying presheaf of sets
(Definition 6.5.2). Note that the underlying presheaf of sets is a sheaf of sets if and
only if all the diagrams

F (F(U)) // ∏
i∈I F (F(Ui))

//
//
∏

(i0,i1)∈I×I F (F(Ui0 ∩ Ui1))

of sets – after applying the forgetful functor F – are equalizer diagrams! Thus we
would like C to have products and equalizers and we would like F to commute with
them. This is equivalent to the condition that C has limits and that F commutes
with them, see Categories, Lemma 4.14.11. But this is not yet good enough (see
Example 6.9.4); we also need F to reflect isomorphisms. This property means that
given a morphism f : A→ A′ in C, then f is an isomorphism if (and only if) F (f)
is a bijection.

Lemma 6.9.2.0073 Suppose the category C and the functor F : C → Sets have the
following properties:

(1) F is faithful,
(2) C has limits and F commutes with them, and
(3) the functor F reflects isomorphisms.

Let X be a topological space. Let F be a presheaf with values in C. Then F is a
sheaf if and only if the underlying presheaf of sets is a sheaf.

Proof. Assume that F is a sheaf. Then F(U) is the equalizer of the diagram above
and by assumption we see F (F(U)) is the equalizer of the corresponding diagram
of sets. Hence F (F) is a sheaf of sets.
Assume that F (F) is a sheaf. Let E ∈ Ob(C) be the equalizer of the two parallel
arrows in Definition 6.9.1. We get a canonical morphism F(U) → E, simply be-
cause F is a presheaf. By assumption, the induced map F (F(U)) → F (E) is an
isomorphism, because F (E) is the equalizer of the corresponding diagram of sets.
Hence we see F(U)→ E is an isomorphism by condition (3) of the lemma. □

The lemma in particular applies to sheaves of groups, rings, algebras over a fixed
ring, modules over a fixed ring, vector spaces over a fixed field, etc. In other words,
these are presheaves of groups, rings, modules over a fixed ring, vector spaces over
a fixed field, etc such that the underlying presheaf of sets is a sheaf.

Example 6.9.3.0074 Let X be a topological space. For each open U ⊂ X consider the
R-algebra C0(U) = {f : U → R | f is continuous}. There are obvious restriction
mappings that turn this into a presheaf of R-algebras over X. By Example 6.7.3
it is a sheaf of sets. Hence by the Lemma 6.9.2 it is a sheaf of R-algebras over X.

Example 6.9.4.0075 Consider the category of topological spaces Top. There is a natural
faithful functor Top → Sets which commutes with products and equalizers. But
it does not reflect isomorphisms. And, in fact it turns out that the analogue of
Lemma 6.9.2 is wrong. Namely, suppose X = N with the discrete topology. Let
Ai, for i ∈ N be a discrete topological space. For any subset U ⊂ N define
F(U) =

∏
i∈U Ai with the discrete topology. Then this is a presheaf of topological

spaces whose underlying presheaf of sets is a sheaf, see Example 6.7.5. However,

https://stacks.math.columbia.edu/tag/0073
https://stacks.math.columbia.edu/tag/0074
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if each Ai has at least two elements, then this is not a sheaf of topological spaces
according to Definition 6.9.1. The reader may check that putting the product
topology on each F(U) =

∏
i∈U Ai does lead to a sheaf of topological spaces over

X.

6.10. Sheaves of modules

0076
Definition 6.10.1.0077 Let X be a topological space. Let O be a sheaf of rings on X.

(1) A sheaf of O-modules is a presheaf of O-modules F , see Definition 6.6.1,
such that the underlying presheaf of abelian groups F is a sheaf.

(2) A morphism of sheaves of O-modules is a morphism of presheaves of O-
modules.

(3) Given sheaves of O-modules F and G we denote HomO(F ,G) the set of
morphism of sheaves of O-modules.

(4) The category of sheaves of O-modules is denoted Mod(O).

This definition kind of makes sense even if O is just a presheaf of rings, although
we do not know any examples where this is useful, and we will avoid using the
terminology “sheaves of O-modules” in case O is not a sheaf of rings.

6.11. Stalks

0078 Let X be a topological space. Let x ∈ X be a point. Let F be a presheaf of sets
on X. The stalk of F at x is the set

Fx = colimx∈U F(U)
where the colimit is over the set of open neighbourhoods U of x in X. The set of
open neighbourhoods is partially ordered by (reverse) inclusion: We say U ≥ U ′ ⇔
U ⊂ U ′. The transition maps in the system are given by the restriction maps of F .
See Categories, Section 4.21 for notation and terminology regarding (co)limits over
systems. Note that the colimit is a directed colimit. Thus it is easy to describe Fx.
Namely,

Fx = {(U, s) | x ∈ U, s ∈ F(U)}/ ∼
with equivalence relation given by (U, s) ∼ (U ′, s′) if and only if there exists an
open U ′′ ⊂ U ∩ U ′ with x ∈ U ′′ and s|U ′′ = s′|U ′′ . By abuse of notation we will
often denote (U, s), sx, or even s the corresponding element in Fx. Also we will say
s = s′ in Fx for two local sections of F defined in an open neighbourhood of x to
denote that they have the same image in Fx.
An obvious consequence of this definition is that for any open U ⊂ X there is a
canonical map

F(U) −→
∏

x∈U
Fx

defined by s 7→
∏
x∈U (U, s). Think about it!

Lemma 6.11.1.0079 Let F be a sheaf of sets on the topological space X. For every
open U ⊂ X the map

F(U) −→
∏

x∈U
Fx

is injective.

https://stacks.math.columbia.edu/tag/0077
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Proof. Suppose that s, s′ ∈ F(U) map to the same element in every stalk Fx for
all x ∈ U . This means that for every x ∈ U , there exists an open V x ⊂ U , x ∈ V x
such that s|V x = s′|V x . But then U =

⋃
x∈U V

x is an open covering. Thus by the
uniqueness in the sheaf condition we see that s = s′. □

Definition 6.11.2.007A Let X be a topological space. A presheaf of sets F on X is
separated if for every open U ⊂ X the map F(U)→

∏
x∈U Fx is injective.

Another observation is that the construction of the stalk Fx is functorial in the
presheaf F . In other words, it gives a functor

PSh(X) −→ Sets, F 7−→ Fx.
This functor is called the stalk functor. Namely, if φ : F → G is a morphism
of presheaves, then we define φx : Fx → Gx by the rule (U, s) 7→ (U,φ(s)). To
see that this works we have to check that if (U, s) = (U ′, s′) in Fx then also
(U,φ(s)) = (U ′, φ(s′)) in Gx. This is clear since φ is compatible with the restriction
mappings.
Example 6.11.3.007B Let X be a topological space. Let A be a set. Denote temporarily
Ap the constant presheaf with value A (p for presheaf – not for point). There is
a canonical map of presheaves Ap → A into the constant sheaf with value A. For
every point we have canonical bijections A = (Ap)x = Ax, where the second map
is induced by functoriality from the map Ap → A.
Example 6.11.4.007C Suppose X = Rn with the Euclidean topology. Consider the
presheaf of C∞ functions on X, denoted C∞

Rn . In other words, C∞
Rn(U) is the set

of C∞-functions f : U → R. As in Example 6.7.3 it is easy to show that this is a
sheaf. In fact it is a sheaf of R-vector spaces.
Next, let x ∈ X = Rn be a point. How do we think of an element in the stalk
C∞

Rn,x? Such an element is given by a C∞-function f whose domain contains x.
And a pair of such functions f , g determine the same element of the stalk if they
agree in a neighbourhood of x. In other words, an element if C∞

Rn,x is the same
thing as what is sometimes called a germ of a C∞-function at x.
Example 6.11.5.007D Let X be a topological space. Let Ax be a set for each x ∈ X.
Consider the sheaf F : U 7→

∏
x∈U Ax of Example 6.7.5. We would just like to point

out here that the stalk Fx of F at x is in general not equal to the set Ax. Of course
there is a map Fx → Ax, but that is in general the best you can say. For example,
suppose x = lim xn with xn ̸= xm for all n ̸= m and suppose that Ay = {0, 1}
for all y ∈ X. Then Fx maps onto the (infinite) set of tails of sequences of 0s and
1s. Namely, every open neighbourhood of x contains almost all of the xn. On the
other hand, if every neighbourhood of x contains a point y such that Ay = ∅, then
Fx = ∅.

6.12. Stalks of abelian presheaves

007E We first deal with the case of abelian groups as a model for the general case.
Lemma 6.12.1.007F Let X be a topological space. Let F be a presheaf of abelian
groups on X. There exists a unique structure of an abelian group on Fx such that
for every U ⊂ X open, x ∈ U the map F(U) → Fx is a group homomorphism.
Moreover,

Fx = colimx∈U F(U)

https://stacks.math.columbia.edu/tag/007A
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holds in the category of abelian groups.

Proof. We define addition of a pair of elements (U, s) and (V, t) as the pair (U ∩
V, s|U∩V + t|U∩V ). The rest is easy to check. □

What is crucial in the proof above is that the partially ordered set of open neigh-
bourhoods is a directed set (Categories, Definition 4.21.1). Namely, the coproduct
of two abelian groups A,B is the direct sum A⊕B, whereas the coproduct in the
category of sets is the disjoint union A ⨿ B, showing that colimits in the category
of abelian groups do not agree with colimits in the category of sets in general.

6.13. Stalks of presheaves of algebraic structures

007G The proof of Lemma 6.12.1 will work for any type of algebraic structure such that
directed colimits commute with the forgetful functor.

Lemma 6.13.1.007H Let C be a category. Let F : C → Sets be a functor. Assume that
(1) F is faithful, and
(2) directed colimits exist in C and F commutes with them.

Let X be a topological space. Let x ∈ X. Let F be a presheaf with values in C.
Then

Fx = colimx∈U F(U)
exists in C. Its underlying set is equal to the stalk of the underlying presheaf of
sets of F . Furthermore, the construction F 7→ Fx is a functor from the category of
presheaves with values in C to C.

Proof. Omitted. □

By the very definition, all the morphisms F(U)→ Fx are morphisms in the category
C which (after applying the forgetful functor F ) turn into the corresponding maps
for the underlying sheaf of sets. As usual we will not distinguish between the
morphism in C and the underlying map of sets, which is permitted since F is
faithful.
This lemma applies in particular to: Presheaves of (not necessarily abelian) groups,
rings, modules over a fixed ring, vector spaces over a fixed field.

6.14. Stalks of presheaves of modules

007I
Lemma 6.14.1.007J Let X be a topological space. Let O be a presheaf of rings on X.
Let F be a presheaf of O-modules. Let x ∈ X. The canonical map Ox ×Fx → Fx
coming from the multiplication map O×F → F defines a Ox-module structure on
the abelian group Fx.

Proof. Omitted. □

Lemma 6.14.2.007K Let X be a topological space. Let O → O′ be a morphism of
presheaves of rings on X. Let F be a presheaf of O-modules. Let x ∈ X. We have

Fx ⊗Ox
O′
x = (F ⊗p,O O′)x

as O′
x-modules.

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/007H
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6.15. Algebraic structures

007L In this section we mildly formalize the notions we have encountered in the sections
above.

Definition 6.15.1.007M A type of algebraic structure is given by a category C and a
functor F : C → Sets with the following properties

(1) F is faithful,
(2) C has limits and F commutes with limits,
(3) C has filtered colimits and F commutes with them, and
(4) F reflects isomorphisms.

We make this definition to point out the properties we will use in a number of
arguments below. But we will not actually study this notion in any great detail,
since we are prohibited from studying “big” categories by convention, except for
those listed in Categories, Remark 4.2.2. Among those the following have the
required properties.

Lemma 6.15.2.007N The following categories, endowed with the obvious forgetful func-
tor, define types of algebraic structures:

(1) The category of pointed sets.
(2) The category of abelian groups.
(3) The category of groups.
(4) The category of monoids.
(5) The category of rings.
(6) The category of R-modules for a fixed ring R.
(7) The category of Lie algebras over a fixed field.

Proof. Omitted. □

From now on we will think of a (pre)sheaf of algebraic structures and their stalks,
in terms of the underlying (pre)sheaf of sets. This is allowable by Lemmas 6.9.2
and 6.13.1.

In the rest of this section we point out some results on algebraic structures that
will be useful in the future.

Lemma 6.15.3.007O Let (C, F ) be a type of algebraic structure.
(1) C has a final object 0 and F (0) = {∗}.
(2) C has products and F (

∏
Ai) =

∏
F (Ai).

(3) C has fibre products and F (A×B C) = F (A)×F (B) F (C).
(4) C has equalizers, and if E → A is the equalizer of a, b : A → B, then

F (E)→ F (A) is the equalizer of F (a), F (b) : F (A)→ F (B).
(5) A→ B is a monomorphism if and only if F (A)→ F (B) is injective.
(6) if F (a) : F (A)→ F (B) is surjective, then a is an epimorphism.
(7) given A1 → A2 → A3 → . . ., then colimAi exists and F (colimAi) =

colimF (Ai), and more generally for any filtered colimit.

Proof. Omitted. The only interesting statement is (5) which follows because A→ B
is a monomorphism if and only if A→ A×BA is an isomorphism, and then applying
the fact that F reflects isomorphisms. □

https://stacks.math.columbia.edu/tag/007M
https://stacks.math.columbia.edu/tag/007N
https://stacks.math.columbia.edu/tag/007O


6.16. EXACTNESS AND POINTS 200

Lemma 6.15.4.007P Let (C, F ) be a type of algebraic structure. Suppose that A,B,C ∈
Ob(C). Let f : A→ B and g : C → B be morphisms of C. If F (g) is injective, and
Im(F (f)) ⊂ Im(F (g)), then f factors as f = g ◦ t for some morphism t : A→ C.

Proof. Consider A×B C. The assumptions imply that F (A×B C) = F (A)×F (B)
F (C) = F (A). Hence A = A ×B C because F reflects isomorphisms. The result
follows. □

Example 6.15.5.007Q The lemma will be applied often to the following situation. Sup-
pose that we have a diagram

A // B

��
C // D

in C. Suppose C → D is injective on underlying sets, and suppose that the compo-
sition A→ B → D has image on underlying sets in the image of C → D. Then we
get a commutative diagram

A //

��

B

��
C // D

in C.

Example 6.15.6.007R Let F : C → Sets be a type of algebraic structures. Let X
be a topological space. Suppose that for every x ∈ X we are given an object
Ax ∈ Ob(C). Consider the presheaf Π with values in C on X defined by the rule
Π(U) =

∏
x∈U Ax (with obvious restriction mappings). Note that the associated

presheaf of sets U 7→ F (Π(U)) =
∏
x∈U F (Ax) is a sheaf by Example 6.7.5. Hence

Π is a sheaf of algebraic structures of type (C, F ). This gives many examples of
sheaves of abelian groups, groups, rings, etc.

6.16. Exactness and points

007S In any category we have the notion of epimorphism, monomorphism, isomorphism,
etc.

Lemma 6.16.1.007T Let X be a topological space. Let φ : F → G be a morphism of
sheaves of sets on X.

(1) The map φ is a monomorphism in the category of sheaves if and only if
for all x ∈ X the map φx : Fx → Gx is injective.

(2) The map φ is an epimorphism in the category of sheaves if and only if for
all x ∈ X the map φx : Fx → Gx is surjective.

(3) The map φ is an isomorphism in the category of sheaves if and only if for
all x ∈ X the map φx : Fx → Gx is bijective.

Proof. Omitted. □

It follows that in the category of sheaves of sets the notions epimorphism and
monomorphism can be described as follows.

Definition 6.16.2.007U Let X be a topological space.

https://stacks.math.columbia.edu/tag/007P
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(1) A presheaf F is called a subpresheaf of a presheaf G if F(U) ⊂ G(U) for
all open U ⊂ X such that the restriction maps of G induce the restriction
maps of F . If F and G are sheaves, then F is called a subsheaf of G. We
sometimes indicate this by the notation F ⊂ G.

(2) A morphism of presheaves of sets φ : F → G on X is called injective if
and only if F(U)→ G(U) is injective for all U open in X.

(3) A morphism of presheaves of sets φ : F → G on X is called surjective if
and only if F(U)→ G(U) is surjective for all U open in X.

(4) A morphism of sheaves of sets φ : F → G on X is called injective if and
only if F(U)→ G(U) is injective for all U open in X.

(5) A morphism of sheaves of sets φ : F → G on X is called surjective if and
only if for every open U of X and every section s of G(U) there exists an
open covering U =

⋃
Ui such that s|Ui is in the image of F(Ui)→ G(Ui)

for all i.

Lemma 6.16.3.007V Let X be a topological space.
(1) Epimorphisms (resp. monomorphisms) in the category of presheaves are

exactly the surjective (resp. injective) maps of presheaves.
(2) Epimorphisms (resp. monomorphisms) in the category of sheaves are ex-

actly the surjective (resp. injective) maps of sheaves, and are exactly those
maps which are surjective (resp. injective) on all the stalks.

(3) The sheafification of a surjective (resp. injective) morphism of presheaves
of sets is surjective (resp. injective).

Proof. Omitted. □

Lemma 6.16.4.007W let X be a topological space. Let (C, F ) be a type of algebraic
structure. Suppose that F , G are sheaves on X with values in C. Let φ : F → G be
a map of the underlying sheaves of sets. If for all points x ∈ X the map Fx → Gx
is a morphism of algebraic structures, then φ is a morphism of sheaves of algebraic
structures.

Proof. Let U be an open subset of X. Consider the diagram of (underlying) sets

F(U) //

��

∏
x∈U Fx

��
G(U) // ∏

x∈U Gx

By assumption, and previous results, all but the left vertical arrow are morphisms
of algebraic structures. In addition the bottom horizontal arrow is injective, see
Lemma 6.11.1. Hence we conclude by Lemma 6.15.4, see also Example 6.15.5 □

Short exact sequences of abelian sheaves, etc will be discussed in the chapter on
sheaves of modules. See Modules, Section 17.3.

6.17. Sheafification

007X In this section we explain how to get the sheafification of a presheaf on a topological
space. We will use stalks to describe the sheafification in this case. This is different
from the general procedure described in Sites, Section 7.10, and perhaps somewhat
easier to understand.
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The basic construction is the following. Let F be a presheaf of sets on a topological
space X. For every open U ⊂ X we define

F#(U) = {(su) ∈
∏

u∈U
Fu such that (∗)}

where (∗) is the property:
(*) For every u ∈ U , there exists an open neighbourhood u ∈ V ⊂ U , and a

section σ ∈ F(V ) such that for all v ∈ V we have sv = (V, σ) in Fv.
Note that (∗) is a condition for each u ∈ U , and that given u ∈ U the truth of
this condition depends only on the values sv for v in any open neighbourhood of u.
Thus it is clear that, if V ⊂ U ⊂ X are open, the projection maps∏

u∈U
Fu −→

∏
v∈V
Fv

maps elements of F#(U) into F#(V ). Using these maps as the restriction map-
pings, we turn F# into a presheaf of sets on X.
Furthermore, the map F(U) →

∏
u∈U Fu described in Section 6.11 clearly has

image in F#(U). In addition, if V ⊂ U ⊂ X are open then we have the following
commutative diagram

F(U) //

��

F#(U) //

��

∏
u∈U Fu

��
F(V ) // F#(V ) // ∏

v∈V Fv

where the vertical maps are induced from the restriction mappings. Thus we see
that there is a canonical morphism of presheaves F → F#.
In Example 6.7.5 we saw that the rule Π(F) : U 7→

∏
u∈U Fu is a sheaf, with

obvious restriction mappings. And by construction F# is a subpresheaf of this. In
other words, we have morphisms of presheaves

F → F# → Π(F).
In addition the rule that associates to F the sequence above is clearly functorial in
the presheaf F . This notation will be used in the proofs of the lemmas below.

Lemma 6.17.1.007Y The presheaf F# is a sheaf.

Proof. It is probably better for the reader to find their own explanation of this than
to read the proof here. In fact the lemma is true for the same reason as why the
presheaf of continuous function is a sheaf, see Example 6.7.3 (and this analogy can
be made precise using the “espace étalé”).
Anyway, let U =

⋃
Ui be an open covering. Suppose that si = (si,u)u∈Ui ∈ F#(Ui)

such that si and sj agree over Ui∩Uj . Because Π(F) is a sheaf, we find an element
s = (su)u∈U in

∏
u∈U Fu restricting to si on Ui. We have to check property (∗).

Pick u ∈ U . Then u ∈ Ui for some i. Hence by (∗) for si, there exists a V open,
u ∈ V ⊂ Ui and a σ ∈ F(V ) such that si,v = (V, σ) in Fv for all v ∈ V . Since
si,v = sv we get (∗) for s. □

Lemma 6.17.2.007Z Let X be a topological space. Let F be a presheaf of sets on X.
Let x ∈ X. Then Fx = F#

x .

https://stacks.math.columbia.edu/tag/007Y
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Proof. The map Fx → F#
x is injective, since already the map Fx → Π(F)x is

injective. Namely, there is a canonical map Π(F)x → Fx which is a left inverse to
the map Fx → Π(F)x, see Example 6.11.5. To show that it is surjective, suppose
that s ∈ F#

x . We can find an open neighbourhood U of x such that s is the
equivalence class of (U, s) with s ∈ F#(U). By definition, this means there exists
an open neighbourhood V ⊂ U of x and a section σ ∈ F(V ) such that s|V is the
image of σ in Π(F)(V ). Clearly the class of (V, σ) defines an element of Fx mapping
to s. □

Lemma 6.17.3.0080 Let F be a presheaf of sets on X. Any map F → G into a sheaf of
sets factors uniquely as F → F# → G.

Proof. Clearly, there is a commutative diagram

F //

��

F# //

��

Π(F)

��
G // G# // Π(G)

So it suffices to prove that G = G#. To see this it suffices to prove, for every point
x ∈ X the map Gx → G#

x is bijective, by Lemma 6.16.1. And this is Lemma 6.17.2
above. □

This lemma really says that there is an adjoint pair of functors: i : Sh(X) →
PSh(X) (inclusion) and # : PSh(X)→ Sh(X) (sheafification). The formula is that

MorPSh(X)(F , i(G)) = MorSh(X)(F#,G)
which says that sheafification is a left adjoint of the inclusion functor. See Cate-
gories, Section 4.24.

Example 6.17.4.0081 See Example 6.11.3 for notation. The map Ap → A induces a map
A#
p → A. It is easy to see that this is an isomorphism. In words: The sheafification

of the constant presheaf with value A is the constant sheaf with value A.

Lemma 6.17.5.0082 Let X be a topological space. A presheaf F is separated (see
Definition 6.11.2) if and only if the canonical map F → F# is injective.

Proof. This is clear from the construction of F# in this section. □

6.18. Sheafification of abelian presheaves

0083 The following strange looking lemma is likely unnecessary, but very convenient to
deal with sheafification of presheaves of algebraic structures.

Lemma 6.18.1.0084 Let X be a topological space. Let F be a presheaf of sets on X.
Let U ⊂ X be open. There is a canonical fibre product diagram

F#(U)

��

// Π(F)(U)

��∏
x∈U Fx // ∏

x∈U Π(F)x

where the maps are the following:
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(1) The left vertical map has components F#(U) → F#
x = Fx where the

equality is Lemma 6.17.2.
(2) The top horizontal map comes from the map of presheaves F → Π(F)

described in Section 6.17.
(3) The right vertical map has obvious component maps Π(F)(U)→ Π(F)x.
(4) The bottom horizontal map has components Fx → Π(F)x which come

from the map of presheaves F → Π(F) described in Section 6.17.

Proof. It is clear that the diagram commutes. We have to show it is a fibre product
diagram. The bottom horizontal arrow is injective since all the maps Fx → Π(F)x
are injective (see beginning proof of Lemma 6.17.2). A section s ∈ Π(F)(U) is in
F# if and only if (∗) holds. But (∗) says that around every point the section s
comes from a section of F . By definition of the stalk functors, this is equivalent to
saying that the value of s in every stalk Π(F)x comes from an element of the stalk
Fx. Hence the lemma. □

Lemma 6.18.2.0085 Let X be a topological space. Let F be an abelian presheaf on X.
Then there exists a unique structure of abelian sheaf on F# such that F → F#

is a morphism of abelian presheaves. Moreover, the following adjointness property
holds

MorPAb(X)(F , i(G)) = MorAb(X)(F#,G).

Proof. Recall the sheaf of sets Π(F) defined in Section 6.17. All the stalks Fx are
abelian groups, see Lemma 6.12.1. Hence Π(F) is a sheaf of abelian groups by
Example 6.15.6. Also, it is clear that the map F → Π(F) is a morphism of abelian
presheaves. If we show that condition (∗) of Section 6.17 defines a subgroup of
Π(F)(U) for all open subsets U ⊂ X, then F# canonically inherits the structure
of abelian sheaf. This is quite easy to do by hand, and we leave it to the reader
to find a good simple argument. The argument we use here, which generalizes to
presheaves of algebraic structures is the following: Lemma 6.18.1 show that F#(U)
is the fibre product of a diagram of abelian groups. Thus F# is an abelian subgroup
as desired.

Note that at this point F#
x is an abelian group by Lemma 6.12.1 and that Fx → F#

x

is a bijection (Lemma 6.17.2) and a homomorphism of abelian groups. Hence
Fx → F#

x is an isomorphism of abelian groups. This will be used below without
further mention.

To prove the adjointness property we use the adjointness property of sheafification
of presheaves of sets. For example if ψ : F → i(G) is morphism of presheaves then
we obtain a morphism of sheaves ψ′ : F# → G. What we have to do is to check
that this is a morphism of abelian sheaves. We may do this for example by noting
that it is true on stalks, by Lemma 6.17.2, and then using Lemma 6.16.4 above. □

6.19. Sheafification of presheaves of algebraic structures

0086
Lemma 6.19.1.0087 Let X be a topological space. Let (C, F ) be a type of algebraic
structure. Let F be a presheaf with values in C on X. Then there exists a sheaf
F# with values in C and a morphism F → F# of presheaves with values in C with
the following properties:

https://stacks.math.columbia.edu/tag/0085
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(1) The map F → F# identifies the underlying sheaf of sets of F# with the
sheafification of the underlying presheaf of sets of F .

(2) For any morphism F → G, where G is a sheaf with values in C there exists
a unique factorization F → F# → G.

Proof. The proof is the same as the proof of Lemma 6.18.2, with repeated appli-
cation of Lemma 6.15.4 (see also Example 6.15.5). The main idea however, is to
define F#(U) as the fibre product in C of the diagram

Π(F)(U)

��∏
x∈U Fx // ∏

x∈U Π(F)x

compare Lemma 6.18.1. □

6.20. Sheafification of presheaves of modules

0088
Lemma 6.20.1.0089 Let X be a topological space. Let O be a presheaf of rings on X.
Let F be a presheaf O-modules. Let O# be the sheafification of O. Let F# be the
sheafification of F as a presheaf of abelian groups. There exists a map of sheaves
of sets

O# ×F# −→ F#

which makes the diagram
O ×F //

��

F

��
O# ×F# // F#

commute and which makes F# into a sheaf of O#-modules. In addition, if G is
a sheaf of O#-modules, then any morphism of presheaves of O-modules F → G
(into the restriction of G to a O-module) factors uniquely as F → F# → G where
F# → G is a morphism of O#-modules.

Proof. Omitted. □

This actually means that the functor i : Mod(O#)→ PMod(O) (combining restric-
tion and including sheaves into presheaves) and the sheafification functor of the
lemma # : PMod(O)→ Mod(O#) are adjoint. In a formula

MorPMod(O)(F , iG) = MorMod(O#)(F#,G)

Let X be a topological space. Let O1 → O2 be a morphism of sheaves of rings on
X. In Section 6.6 we defined a restriction functor and a change of rings functor on
presheaves of modules associated to this situation.

If F is a sheaf of O2-modules then the restriction FO1 of F is clearly a sheaf of
O1-modules. We obtain the restriction functor

Mod(O2) −→ Mod(O1)

https://stacks.math.columbia.edu/tag/0089
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On the other hand, given a sheaf of O1-modules G the presheaf of O2-modules
O2 ⊗p,O1 G is in general not a sheaf. Hence we define the tensor product sheaf
O2 ⊗O1 G by the formula

O2 ⊗O1 G = (O2 ⊗p,O1 G)#

as the sheafification of our construction for presheaves. We obtain the change of
rings functor

Mod(O1) −→ Mod(O2)

Lemma 6.20.2.008A With X, O1, O2, F and G as above there exists a canonical bijection

HomO1(G,FO1) = HomO2(O2 ⊗O1 G,F)

In other words, the restriction and change of rings functors are adjoint to each
other.

Proof. This follows from Lemma 6.6.2 and the fact that HomO2(O2 ⊗O1 G,F) =
HomO2(O2 ⊗p,O1 G,F) because F is a sheaf. □

Lemma 6.20.3.008B Let X be a topological space. Let O → O′ be a morphism of
sheaves of rings on X. Let F be a sheaf O-modules. Let x ∈ X. We have

Fx ⊗Ox O′
x = (F ⊗O O′)x

as O′
x-modules.

Proof. Follows directly from Lemma 6.14.2 and the fact that taking stalks com-
mutes with sheafification. □

6.21. Continuous maps and sheaves

008C Let f : X → Y be a continuous map of topological spaces. We will define the
pushforward and pullback functors for presheaves and sheaves.

Let F be a presheaf of sets on X. We define the pushforward of F by the rule

f∗F(V ) = F(f−1(V ))

for any open V ⊂ Y . Given V1 ⊂ V2 ⊂ Y open the restriction map is given by the
commutativity of the diagram

f∗F(V2)

��

F(f−1(V2))

restriction for F
��

f∗F(V1) F(f−1(V1))

It is clear that this defines a presheaf of sets. The construction is clearly functorial
in the presheaf F and hence we obtain a functor

f∗ : PSh(X) −→ PSh(Y ).

Lemma 6.21.1.008D Let f : X → Y be a continuous map. Let F be a sheaf of sets on
X. Then f∗F is a sheaf on Y .

Proof. This immediately follows from the fact that if V =
⋃
Vj is an open covering

in Y , then f−1(V ) =
⋃
f−1(Vj) is an open covering in X. □

https://stacks.math.columbia.edu/tag/008A
https://stacks.math.columbia.edu/tag/008B
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As a consequence we obtain a functor
f∗ : Sh(X) −→ Sh(Y ).

This is compatible with composition in the following strong sense.

Lemma 6.21.2.008E Let f : X → Y and g : Y → Z be continuous maps of topological
spaces. The functors (g ◦ f)∗ and g∗ ◦ f∗ are equal (on both presheaves and sheaves
of sets).

Proof. This is because (g ◦ f)∗F(W ) = F((g ◦ f)−1W ) and (g∗ ◦ f∗)F(W ) =
F(f−1g−1W ) and (g ◦ f)−1W = f−1g−1W . □

Let G be a presheaf of sets on Y . The pullback presheaf fpG of a given presheaf G
is defined as the left adjoint of the pushforward f∗ on presheaves. In other words
it should be a presheaf fpG on X such that

MorPSh(X)(fpG,F) = MorPSh(Y )(G, f∗F).
By the Yoneda lemma this determines the pullback uniquely. It turns out that it
actually exists.

Lemma 6.21.3.008F Let f : X → Y be a continuous map. There exists a functor
fp : PSh(Y )→ PSh(X) which is left adjoint to f∗. For a presheaf G it is determined
by the rule

fpG(U) = colimf(U)⊂V G(V )
where the colimit is over the collection of open neighbourhoods V of f(U) in Y .
The colimits are over directed partially ordered sets. (The restriction mappings of
fpG are explained in the proof.)

Proof. The colimit is over the partially ordered set consisting of open subsets V ⊂ Y
which contain f(U) with ordering by reverse inclusion. This is a directed partially
ordered set, since if V, V ′ are in it then so is V ∩V ′. Furthermore, if U1 ⊂ U2, then
every open neighbourhood of f(U2) is an open neighbourhood of f(U1). Hence the
system defining fpG(U2) is a subsystem of the one defining fpG(U1) and we obtain
a restriction map (for example by applying the generalities in Categories, Lemma
4.14.8).
Note that the construction of the colimit is clearly functorial in G, and similarly for
the restriction mappings. Hence we have defined fp as a functor.
A small useful remark is that there exists a canonical map G(U) → fpG(f−1(U)),
because the system of open neighbourhoods of f(f−1(U)) contains the element U .
This is compatible with restriction mappings. In other words, there is a canonical
map iG : G → f∗fpG.
Let F be a presheaf of sets on X. Suppose that ψ : fpG → F is a map of presheaves
of sets. The corresponding map G → f∗F is the map f∗ψ ◦ iG : G → f∗fpG → f∗F .
Another small useful remark is that there exists a canonical map cF : fpf∗F → F .
Namely, let U ⊂ X open. For every open neighbourhood V ⊃ f(U) in Y there exists
a map f∗F(V ) = F(f−1(V ))→ F(U), namely the restriction map on F . And this
is compatible with the restriction mappings between values of F on f−1 of varying
opens containing f(U). Thus we obtain a canonical map fpf∗F(U) → F(U).
Another trivial verification shows that these maps are compatible with restriction
maps and define a map cF of presheaves of sets.

https://stacks.math.columbia.edu/tag/008E
https://stacks.math.columbia.edu/tag/008F
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Suppose that φ : G → f∗F is a map of presheaves of sets. Consider fpφ : fpG →
fpf∗F . Postcomposing with cF gives the desired map cF ◦ fpφ : fpG → F . We
omit the verification that this construction is inverse to the construction in the
other direction given above. □

Lemma 6.21.4.008G Let f : X → Y be a continuous map. Let x ∈ X. Let G be a
presheaf of sets on Y . There is a canonical bijection of stalks (fpG)x = Gf(x).

Proof. This you can see as follows
(fpG)x = colimx∈U fpG(U)

= colimx∈U colimf(U)⊂V G(V )
= colimf(x)∈V G(V )
= Gf(x)

Here we have used Categories, Lemma 4.14.10, and the fact that any V open in Y
containing f(x) occurs in the third description above. Details omitted. □

Let G be a sheaf of sets on Y . The pullback sheaf f−1G is defined by the formula
f−1G = (fpG)#.

The pullback f−1 is a left adjoint of pushforward on sheaves. In other words,
MorSh(X)(f−1G,F) = MorSh(Y )(G, f∗F).

Namely, we have
MorSh(X)(f−1G,F) = MorPSh(X)(fpG,F)

= MorPSh(Y )(G, f∗F)
= MorSh(Y )(G, f∗F)

For the first equality we use that sheafification is a left adjoint to the inclusion of
sheaves in presheaves. For the second equality we use that fp is a left adjoint to f∗
on presheaves. We will return to this statement in the proof of Lemma 6.21.8.

Lemma 6.21.5.008H Let x ∈ X. Let G be a sheaf of sets on Y . There is a canonical
bijection of stalks (f−1G)x = Gf(x).

Proof. This is a combination of Lemmas 6.17.2 and 6.21.4. □

Lemma 6.21.6.008I Let f : X → Y and g : Y → Z be continuous maps of topological
spaces. The functors (g ◦ f)−1 and f−1 ◦ g−1 are canonically isomorphic. Similarly
(g ◦ f)p ∼= fp ◦ gp on presheaves.

Proof. To see this use that adjoint functors are unique up to unique isomorphism,
and Lemma 6.21.2. □

Definition 6.21.7.008J Let f : X → Y be a continuous map. Let F be a sheaf of sets
on X and let G be a sheaf of sets on Y . An f -map ξ : G → F is a collection of
maps ξV : G(V )→ F(f−1(V )) indexed by open subsets V ⊂ Y such that

G(V )
ξV

//

restriction of G
��

F(f−1V )

restriction of F
��

G(V ′)
ξV ′ // F(f−1V ′)

https://stacks.math.columbia.edu/tag/008G
https://stacks.math.columbia.edu/tag/008H
https://stacks.math.columbia.edu/tag/008I
https://stacks.math.columbia.edu/tag/008J
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commutes for all V ′ ⊂ V ⊂ Y open.
In the literature we sometimes find this defined alternatively as in part (4) of Lemma
6.21.8 but as the lemma shows there is really no difference.
Lemma 6.21.8.008K Let f : X → Y be a continuous map. There are bijections between
the following four sets

(1) the set of maps G → f∗F ,
(2) the set of maps f−1G → F ,
(3) the set of f -maps ξ : G → F , and
(4) the set of all collections of maps ξU,V : G(V ) → F(U) for all U ⊂ X and

V ⊂ Y open such that f(U) ⊂ V compatible with all restriction maps,
functorially in F ∈ Sh(X) and G ∈ Sh(Y ).
Proof. A map of sheaves a : G → f∗F is by definition a rule which to each open V
of Y assigns a map aV : G(V )→ f∗F(V ) and we have f∗F(V ) = F(f−1(V )). Thus
at least the "data" corresponds exactly to what you need for an f -map ξ from G to
F . To show that the sets (1) and (3) are in bijection we observe that a is a map
of sheaves if and only if corresponding family of maps aV satisfy the condition in
Definition 6.21.7.
Recall that f−1G is the sheafification of fpG. By the universal property of sheafi-
fication a map of sheaves b : f−1G → F is the same thing as a map of presheaves
bp : fpG → F where fp is the functor defined earlier in the section. To give such a
map bp you need to specify for each open U of X a map

bp,U : colimf(U)⊂V G(V ) −→ F(U)
compatible with restriction mappings. We may and do view bp,U as a collection
of maps bp,U,V : G(V ) → F(U) for all V open in Y with f(U) ⊂ V . These maps
have to be compatible with all possible restriction mappings you can think of. In
other words, we see that bp corresponds to a collection of maps as in (4). Of course,
conversely such a collection defines a map bp and in turn a map b : f−1G → F .
To finish the proof of the lemma you have to show that by "forgetting structure" the
rule that to a collection ξU,V as in (4) associates the f -map ξ with ξV = ξf−1(V ),V
is bijective. To do this, if ξ is a usual f -map then we just define ξ̃U,V to be the
composition of ξV : G(V ) → F(f−1(V )) by the restruction map F(f−1(V )) →
F(U) which makes sense exactly because f(U) ⊂ V , i.e., U ⊂ f−1(V ). This
finishes the proof. □

It is sometimes convenient to think about f -maps instead of maps between sheaves
either on X or on Y . We define composition of f -maps as follows.
Definition 6.21.9.008L Suppose that f : X → Y and g : Y → Z are continuous maps
of topological spaces. Suppose that F is a sheaf on X, G is a sheaf on Y , and H
is a sheaf on Z. Let φ : G → F be an f -map. Let ψ : H → G be an g-map. The
composition of φ and ψ is the (g ◦ f)-map φ ◦ ψ defined by the commutativity of
the diagrams

H(W )
(φ◦ψ)W

//

ψW %%

F(f−1g−1W )

G(g−1W )
φg−1W

77

https://stacks.math.columbia.edu/tag/008K
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We leave it to the reader to verify that this works. Another way to think about
this is to think of φ ◦ ψ as the composition

H ψ−→ g∗G
g∗φ−−→ g∗f∗F = (g ◦ f)∗F

Now, doesn’t it seem that thinking about f -maps is somehow easier?
Finally, given a continuous map f : X → Y , and an f -map φ : G → F there is a
natural map on stalks

φx : Gf(x) −→ Fx
for all x ∈ X. The image of a representative (V, s) of an element in Gf(x) is mapped
to the element in Fx with representative (f−1V, φV (s)). We leave it to the reader
to see that this is well defined. Another way to state it is that it is the unique map
such that all diagrams

F(f−1V ) // Fx

G(V ) //

φV

OO

Gf(x)

φx

OO

(for f(x) ∈ V ⊂ Y open) commute.

Lemma 6.21.10.008M Suppose that f : X → Y and g : Y → Z are continuous maps of
topological spaces. Suppose that F is a sheaf on X, G is a sheaf on Y , and H is a
sheaf on Z. Let φ : G → F be an f -map. Let ψ : H → G be an g-map. Let x ∈ X
be a point. The map on stalks (φ ◦ ψ)x : Hg(f(x)) → Fx is the composition

Hg(f(x))
ψf(x)−−−→ Gf(x)

φx−−→ Fx
Proof. Immediate from Definition 6.21.9 and the definition of the map on stalks
above. □

6.22. Continuous maps and abelian sheaves

008N Let f : X → Y be a continuous map. We claim there are functors
f∗ : PAb(X) −→ PAb(Y )
f∗ : Ab(X) −→ Ab(Y )
fp : PAb(Y ) −→ PAb(X)
f−1 : Ab(Y ) −→ Ab(X)

with similar properties to their counterparts in Section 6.21. To see this we argue
in the following way.
Each of the functors will be constructed in the same way as the corresponding
functor in Section 6.21. This works because all the colimits in that section are
directed colimits (but we will work through it below).
First off, given an abelian presheaf F on X and an abelian presheaf G on Y we
define

f∗F(V ) = F(f−1(V ))
fpG(U) = colimf(U)⊂V G(V )

as abelian groups. The restriction mappings are the same as the restriction map-
pings for presheaves of sets (and they are all homomorphisms of abelian groups).

https://stacks.math.columbia.edu/tag/008M
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The assignments F 7→ f∗F and G → fpG are functors on the categories of presheaves
of abelian groups. This is clear, as (for example) a map of abelian presheaves
G1 → G2 gives rise to a map of directed systems {G1(V )}f(U)⊂V → {G2(V )}f(U)⊂V
all of whose maps are homomorphisms and hence gives rise to a homomorphism of
abelian groups fpG1(U)→ fpG2(U).

The functors f∗ and fp are adjoint on the category of presheaves of abelian groups,
i.e., we have

MorPAb(X)(fpG,F) = MorPAb(Y )(G, f∗F).
To prove this, note that the map iG : G → f∗fpG from the proof of Lemma 6.21.3 is
a map of abelian presheaves. Hence if ψ : fpG → F is a map of abelian presheaves,
then the corresponding map G → f∗F is the map f∗ψ ◦ iG : G → f∗fpG → f∗F
is also a map of abelian presheaves. For the other direction we point out that
the map cF : fpf∗F → F from the proof of Lemma 6.21.3 is a map of abelian
presheaves as well (since it is made out of restriction mappings of F which are all
homomorphisms). Hence given a map of abelian presheaves φ : G → f∗F the map
cF ◦fpφ : fpG → F is a map of abelian presheaves as well. Since these constructions
ψ 7→ f∗ψ and φ 7→ cF ◦ fpφ are inverse to each other as constructions on maps
of presheaves of sets we see they are also inverse to each other on maps of abelian
presheaves.

If F is an abelian sheaf on Y , then f∗F is an abelian sheaf on X. This is true
because of the definition of an abelian sheaf and because this is true for sheaves
of sets, see Lemma 6.21.1. This defines the functor f∗ on the category of abelian
sheaves.

We define f−1G = (fpG)# as before. Adjointness of f∗ and f−1 follows formally as
in the case of presheaves of sets. Here is the argument:

MorAb(X)(f−1G,F) = MorPAb(X)(fpG,F)
= MorPAb(Y )(G, f∗F)
= MorAb(Y )(G, f∗F)

Lemma 6.22.1.008O Let f : X → Y be a continuous map.
(1) Let G be an abelian presheaf on Y . Let x ∈ X. The bijection Gf(x) →

(fpG)x of Lemma 6.21.4 is an isomorphism of abelian groups.
(2) Let G be an abelian sheaf on Y . Let x ∈ X. The bijection Gf(x) →

(f−1G)x of Lemma 6.21.5 is an isomorphism of abelian groups.

Proof. Omitted. □

Given a continuous map f : X → Y and sheaves of abelian groups F on X, G
on Y , the notion of an f -map G → F of sheaves of abelian groups makes sense.
We can just define it exactly as in Definition 6.21.7 (replacing maps of sets with
homomorphisms of abelian groups) or we can simply say that it is the same as a
map of abelian sheaves G → f∗F . We will use this notion freely in the following.
The group of f -maps between G and F will be in canonical bijection with the groups
MorAb(X)(f−1G,F) and MorAb(Y )(G, f∗F).

Composition of f -maps is defined in exactly the same manner as in the case of f -
maps of sheaves of sets. In addition, given an f -map G → F as above, the induced

https://stacks.math.columbia.edu/tag/008O
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maps on stalks
φx : Gf(x) −→ Fx

are abelian group homomorphisms.

6.23. Continuous maps and sheaves of algebraic structures

008P Let (C, F ) be a type of algebraic structure. For a topological space X let us intro-
duce the notation:

(1) PSh(X, C) will be the category of presheaves with values in C.
(2) Sh(X, C) will be the category of sheaves with values in C.

Let f : X → Y be a continuous map of topological spaces. The same arguments as
in the previous section show there are functors

f∗ : PSh(X, C) −→ PSh(Y, C)
f∗ : Sh(X, C) −→ Sh(Y, C)
fp : PSh(Y, C) −→ PSh(X, C)
f−1 : Sh(Y, C) −→ Sh(X, C)

constructed in the same manner and with the same properties as the functors
constructed for abelian (pre)sheaves. In particular there are commutative diagrams

PSh(X, C) f∗ //

F

��

PSh(Y, C)

F

��

Sh(X, C) f∗ //

F

��

Sh(Y, C)

F

��
PSh(X) f∗ // PSh(Y ) Sh(X) f∗ // Sh(Y )

PSh(Y, C)
fp //

F

��

PSh(X, C)

F

��

Sh(Y, C) f−1
//

F

��

Sh(X, C)

F

��
PSh(Y )

fp // PSh(X) Sh(Y ) f−1
// Sh(X)

The main formulas to keep in mind are the following
f∗F(V ) = F(f−1(V ))
fpG(U) = colimf(U)⊂V G(V )
f−1G = (fpG)#

(fpG)x = Gf(x)

(f−1G)x = Gf(x)

Each of these formulas has the property that they hold in the category C and that
upon taking underlying sets we get the corresponding formula for presheaves of
sets. In addition we have the adjointness properties

MorPSh(X,C)(fpG,F) = MorPSh(Y,C)(G, f∗F)
MorSh(X,C)(f−1G,F) = MorSh(Y,C)(G, f∗F).

To prove these, the main step is to construct the maps
iG : G −→ f∗fpG
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and
cF : fpf∗F −→ F

which occur in the proof of Lemma 6.21.3 as morphisms of presheaves with values
in C. This may be safely left to the reader since the constructions are exactly the
same as in the case of presheaves of sets.
Given a continuous map f : X → Y and sheaves of algebraic structures F on X,
G on Y , the notion of an f -map G → F of sheaves of algebraic structures makes
sense. We can just define it exactly as in Definition 6.21.7 (replacing maps of sets
with morphisms in C) or we can simply say that it is the same as a map of sheaves
of algebraic structures G → f∗F . We will use this notion freely in the following.
The set of f -maps between G and F will be in canonical bijection with the sets
MorSh(X,C)(f−1G,F) and MorSh(Y,C)(G, f∗F).
Composition of f -maps is defined in exactly the same manner as in the case of f -
maps of sheaves of sets. In addition, given an f -map G → F as above, the induced
maps on stalks

φx : Gf(x) −→ Fx
are homomorphisms of algebraic structures.

Lemma 6.23.1.008Q Let f : X → Y be a continuous map of topological spaces. Suppose
given sheaves of algebraic structures F on X, G on Y . Let φ : G → F be an f -
map of underlying sheaves of sets. If for every V ⊂ Y open the map of sets
φV : G(V )→ F(f−1V ) is the effect of a morphism in C on underlying sets, then φ
comes from a unique f -morphism between sheaves of algebraic structures.

Proof. Omitted. □

6.24. Continuous maps and sheaves of modules

008R The case of sheaves of modules is more complicated. The reason is that the natural
setting for defining the pullback and pushforward functors, is the setting of ringed
spaces, which we will define below. First we state a few obvious lemmas.

Lemma 6.24.1.008S Let f : X → Y be a continuous map of topological spaces. Let O
be a presheaf of rings on X. Let F be a presheaf of O-modules. There is a natural
map of underlying presheaves of sets

f∗O × f∗F −→ f∗F
which turns f∗F into a presheaf of f∗O-modules. This construction is functorial in
F .

Proof. Let V ⊂ Y is open. We define the map of the lemma to be the map
f∗O(V )× f∗F(V ) = O(f−1V )×F(f−1V )→ F(f−1V ) = f∗F(V ).

Here the arrow in the middle is the multiplication map on X. We leave it to the
reader to see this is compatible with restriction mappings and defines a structure
of f∗O-module on f∗F . □

Lemma 6.24.2.008T Let f : X → Y be a continuous map of topological spaces. Let O
be a presheaf of rings on Y . Let G be a presheaf of O-modules. There is a natural
map of underlying presheaves of sets

fpO × fpG −→ fpG

https://stacks.math.columbia.edu/tag/008Q
https://stacks.math.columbia.edu/tag/008S
https://stacks.math.columbia.edu/tag/008T
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which turns fpG into a presheaf of fpO-modules. This construction is functorial in
G.

Proof. Let U ⊂ X is open. We define the map of the lemma to be the map
fpO(U)× fpG(U) = colimf(U)⊂V O(V )× colimf(U)⊂V G(V )

= colimf(U)⊂V (O(V )× G(V ))
→ colimf(U)⊂V G(V )
= fpG(U).

Here the arrow in the middle is the multiplication map on Y . The second equality
holds because directed colimits commute with finite limits, see Categories, Lemma
4.19.2. We leave it to the reader to see this is compatible with restriction mappings
and defines a structure of fpO-module on fpG. □

Let f : X → Y be a continuous map. Let OX be a presheaf of rings on X and let
OY be a presheaf of rings on Y . So at the moment we have defined functors

f∗ : PMod(OX) −→ PMod(f∗OX)
fp : PMod(OY ) −→ PMod(fpOY )

These satisfy some compatibilities as follows.

Lemma 6.24.3.008U Let f : X → Y be a continuous map of topological spaces. Let O
be a presheaf of rings on Y . Let G be a presheaf of O-modules. Let F be a presheaf
of fpO-modules. Then

MorPMod(fpO)(fpG,F) = MorPMod(O)(G, f∗F).
Here we use Lemmas 6.24.2 and 6.24.1, and we think of f∗F as an O-module via
the map iO : O → f∗fpO (defined first in the proof of Lemma 6.21.3).

Proof. Note that we have
MorPAb(X)(fpG,F) = MorPAb(Y )(G, f∗F).

according to Section 6.22. So what we have to prove is that under this correspon-
dence, the subsets of module maps correspond. In addition, the correspondence is
determined by the rule

(ψ : fpG → F) 7−→ (f∗ψ ◦ iG : G → f∗F)
and in the other direction by the rule

(φ : G → f∗F) 7−→ (cF ◦ fpφ : fpG → F)
where iG and cF are as in Section 6.22. Hence, using the functoriality of f∗ and fp
we see that it suffices to check that the maps iG : G → f∗fpG and cF : fpf∗F → F
are compatible with module structures, which we leave to the reader. □

Lemma 6.24.4.008V Let f : X → Y be a continuous map of topological spaces. Let O
be a presheaf of rings on X. Let F be a presheaf of O-modules. Let G be a presheaf
of f∗O-modules. Then

MorPMod(O)(O ⊗p,fpf∗O fpG,F) = MorPMod(f∗O)(G, f∗F).
Here we use Lemmas 6.24.2 and 6.24.1, and we use the map cO : fpf∗O → O in
the definition of the tensor product.

https://stacks.math.columbia.edu/tag/008U
https://stacks.math.columbia.edu/tag/008V


6.24. CONTINUOUS MAPS AND SHEAVES OF MODULES 215

Proof. This follows from the equalities
MorPMod(O)(O ⊗p,fpf∗O fpG,F) = MorPMod(fpf∗O)(fpG,Ffpf∗O)

= MorPMod(f∗O)(G, f∗(Ffpf∗O))
= MorPMod(f∗O)(G, f∗F).

The first equality is Lemma 6.6.2. The second equality is Lemma 6.24.3. The third
equality is given by the equality f∗(Ffpf∗O) = f∗F of abelian sheaves which is
f∗O-linear. Namely, idf∗O corresponds to cO under the adjunction described in the
proof of Lemma 6.21.3 and thus idf∗O = f∗cO ◦ if∗O. □

Lemma 6.24.5.008W Let f : X → Y be a continuous map of topological spaces. Let O
be a sheaf of rings on X. Let F be a sheaf of O-modules. The pushforward f∗F ,
as defined in Lemma 6.24.1 is a sheaf of f∗O-modules.
Proof. Obvious from the definition and Lemma 6.21.1. □

Lemma 6.24.6.008X Let f : X → Y be a continuous map of topological spaces. Let O
be a sheaf of rings on Y . Let G be a sheaf of O-modules. There is a natural map
of underlying presheaves of sets

f−1O × f−1G −→ f−1G
which turns f−1G into a sheaf of f−1O-modules.
Proof. Recall that f−1 is defined as the composition of the functor fp and sheafifi-
cation. Thus the lemma is a combination of Lemma 6.24.2 and Lemma 6.20.1. □

Let f : X → Y be a continuous map. Let OX be a sheaf of rings on X and let OY
be a sheaf of rings on Y . So now we have defined functors

f∗ : Mod(OX) −→ Mod(f∗OX)
f−1 : Mod(OY ) −→ Mod(f−1OY )

These satisfy some compatibilities as follows.
Lemma 6.24.7.008Y Let f : X → Y be a continuous map of topological spaces. Let
O be a sheaf of rings on Y . Let G be a sheaf of O-modules. Let F be a sheaf of
f−1O-modules. Then

MorMod(f−1O)(f−1G,F) = MorMod(O)(G, f∗F).
Here we use Lemmas 6.24.6 and 6.24.5, and we think of f∗F as an O-module by
restriction via O → f∗f

−1O.
Proof. Argue by the equalities

MorMod(f−1O)(f−1G,F) = MorMod(fpO)(fpG,F)
= MorMod(O)(G, f∗F).

where the second is Lemmas 6.24.3 and the first is by Lemma 6.20.1. □

Lemma 6.24.8.008Z Let f : X → Y be a continuous map of topological spaces. Let
O be a sheaf of rings on X. Let F be a sheaf of O-modules. Let G be a sheaf of
f∗O-modules. Then

MorMod(O)(O ⊗f−1f∗O f−1G,F) = MorMod(f∗O)(G, f∗F).
Here we use Lemmas 6.24.6 and 6.24.5, and we use the canonical map f−1f∗O → O
in the definition of the tensor product.
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Proof. This follows from the equalities
MorMod(O)(O ⊗f−1f∗O f−1G,F) = MorMod(f−1f∗O)(f−1G,Ff−1f∗O)

= MorMod(f∗O)(G, f∗F).
which are a combination of Lemma 6.20.2 and 6.24.7. □

Let f : X → Y be a continuous map. Let OX be a (pre)sheaf of rings on X and
let OY be a (pre)sheaf of rings on Y . So at the moment we have defined functors

f∗ : PMod(OX) −→ PMod(f∗OX)
f∗ : Mod(OX) −→ Mod(f∗OX)
fp : PMod(OY ) −→ PMod(fpOY )
f−1 : Mod(OY ) −→ Mod(f−1OY )

Clearly, usually the pair of functors (f∗, f
−1) on sheaves of modules are not adjoint,

because their target categories do not match. Namely, as we saw above, it works
only if by some miracle the sheaves of rings OX ,OY satisfy the relations OX =
f−1OY and OY = f∗OX . This is almost never true in practice. We interrupt the
discussion to define the correct notion of morphism for which a suitable adjoint pair
of functors on sheaves of modules exists.

6.25. Ringed spaces

0090 Let X be a topological space and let OX be a sheaf of rings on X. We are supposed
to think of the sheaf of rings OX as a sheaf of functions on X. And if f : X → Y
is a “suitable” map, then by composition a function on Y turns into a function on
X. Thus there should be a natural f -map from OY to OX , see Definition 6.21.7
and Lemma 6.21.8. For a precise example, see Example 6.25.2 below. Here is the
relevant abstract definition.

Definition 6.25.1.0091 A ringed space is a pair (X,OX) consisting of a topological space
X and a sheaf of rings OX on X. A morphism of ringed spaces (X,OX)→ (Y,OY )
is a pair consisting of a continuous map f : X → Y and an f -map of sheaves of
rings f ♯ : OY → OX .

Example 6.25.2.0092 Let f : X → Y be a continuous map of topological spaces.
Consider the sheaves of continuous real valued functions C0

X on X and C0
Y on Y , see

Example 6.9.3. We claim that there is a natural f -map f ♯ : C0
Y → C0

X associated
to f . Namely, we simply define it by the rule

C0
Y (V ) −→ C0

X(f−1V )
h 7−→ h ◦ f

Strictly speaking we should write f ♯(h) = h ◦ f |f−1(V ). It is clear that this is a
family of maps as in Definition 6.21.7 and compatible with the R-algebra structures.
Hence it is an f -map of sheaves of R-algebras, see Lemma 6.23.1.
Of course there are lots of other situations where there is a canonical morphism of
ringed spaces associated to a geometrical type of morphism. For example, if M , N
are C∞-manifolds and f : M → N is a infinitely differentiable map, then f induces a
canonical morphism of ringed spaces (M, C∞

M )→ (N, C∞
N ). The construction (which

is identical to the above) is left to the reader.
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It may not be completely obvious how to compose morphisms of ringed spaces hence
we spell it out here.
Definition 6.25.3.0093 Let (f, f ♯) : (X,OX)→ (Y,OY ) and (g, g♯) : (Y,OY )→ (Z,OZ)
be morphisms of ringed spaces. Then we define the composition of morphisms of
ringed spaces by the rule

(g, g♯) ◦ (f, f ♯) = (g ◦ f, f ♯ ◦ g♯).
Here we use composition of f -maps defined in Definition 6.21.9.

6.26. Morphisms of ringed spaces and modules

0094 We have now introduced enough notation so that we are able to define the pullback
and pushforward of modules along a morphism of ringed spaces.
Definition 6.26.1.0095 Let (f, f ♯) : (X,OX)→ (Y,OY ) be a morphism of ringed spaces.

(1) Let F be a sheaf of OX -modules. We define the pushforward of F as the
sheaf of OY -modules which as a sheaf of abelian groups equals f∗F and
with module structure given by the restriction via f ♯ : OY → f∗OX of
the module structure given in Lemma 6.24.5.

(2) Let G be a sheaf of OY -modules. We define the pullback f∗G to be the
sheaf of OX -modules defined by the formula

f∗G = OX ⊗f−1OY
f−1G

where the ring map f−1OY → OX is the map corresponding to f ♯, and
where the module structure is given by Lemma 6.24.6.

Thus we have defined functors
f∗ : Mod(OX) −→ Mod(OY )
f∗ : Mod(OY ) −→ Mod(OX)

The final result on these functors is that they are indeed adjoint as expected.
Lemma 6.26.2.0096 Let (f, f ♯) : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
Let F be a sheaf of OX -modules. Let G be a sheaf of OY -modules. There is a
canonical bijection

HomOX
(f∗G,F) = HomOY

(G, f∗F).
In other words: the functor f∗ is the left adjoint to f∗.
Proof. This follows from the work we did before:

HomOX
(f∗G,F) = MorMod(OX)(OX ⊗f−1OY

f−1G,F)
= MorMod(f−1OY )(f−1G,Ff−1OY

)
= HomOY

(G, f∗F).
Here we use Lemmas 6.20.2 and 6.24.7. □

Lemma 6.26.3.0097 Let f : X → Y and g : Y → Z be morphisms of ringed spaces.
The functors (g ◦ f)∗ and g∗ ◦ f∗ are equal. There is a canonical isomorphism of
functors (g ◦ f)∗ ∼= f∗ ◦ g∗.
Proof. The result on pushforwards is a consequence of Lemma 6.21.2 and our def-
initions. The result on pullbacks follows from this by the same argument as in the
proof of Lemma 6.21.6. □
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Given a morphism of ringed spaces (f, f ♯) : (X,OX) → (Y,OY ), and a sheaf of
OX -modules F , a sheaf of OY -modules G on Y , the notion of an f -map φ : G → F
of sheaves of modules makes sense. We can just define it as an f -map φ : G → F
of abelian sheaves (see Definition 6.21.7 and Lemma 6.21.8) such that for all open
V ⊂ Y the map

G(V ) −→ F(f−1V )
is an OY (V )-module map. Here we think of F(f−1V ) as an OY (V )-module via
the map f ♯V : OY (V ) → OX(f−1V ). The set of f -maps between G and F will be
in canonical bijection with the sets MorMod(OX)(f∗G,F) and MorMod(OY )(G, f∗F).
See above.
Composition of f -maps is defined in exactly the same manner as in the case of
f -maps of sheaves of sets. In addition, given an f -map G → F as above, and x ∈ X
the induced map on stalks

φx : Gf(x) −→ Fx
is an OY,f(x)-module map where the OY,f(x)-module structure on Fx comes from
the OX,x-module structure via the map f ♯x : OY,f(x) → OX,x. Here is a related
lemma.
Lemma 6.26.4.0098 Let (f, f ♯) : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
Let G be a sheaf of OY -modules. Let x ∈ X. Then

(f∗G)x = Gf(x) ⊗OY,f(x) OX,x
as OX,x-modules where the tensor product on the right uses f ♯x : OY,f(x) → OX,x.
Proof. This follows from Lemma 6.20.3 and the identification of the stalks of pull-
back sheaves at x with the corresponding stalks at f(x). See the formulae in Section
6.23 for example. □

6.27. Skyscraper sheaves and stalks

0099
Definition 6.27.1.009A Let X be a topological space.

(1) Let x ∈ X be a point. Denote ix : {x} → X the inclusion map. Let A be
a set and think of A as a sheaf on the one point space {x}. We call ix,∗A
the skyscraper sheaf at x with value A.

(2) If in (1) above A is an abelian group then we think of ix,∗A as a sheaf of
abelian groups on X.

(3) If in (1) above A is an algebraic structure then we think of ix,∗A as a sheaf
of algebraic structures.

(4) If (X,OX) is a ringed space, then we think of ix : {x} → X as a morphism
of ringed spaces ({x},OX,x)→ (X,OX) and if A is a OX,x-module, then
we think of ix,∗A as a sheaf of OX -modules.

(5) We say a sheaf of sets F is a skyscraper sheaf if there exists a point x of
X and a set A such that F ∼= ix,∗A.

(6) We say a sheaf of abelian groups F is a skyscraper sheaf if there exists a
point x of X and an abelian group A such that F ∼= ix,∗A as sheaves of
abelian groups.

(7) We say a sheaf of algebraic structures F is a skyscraper sheaf if there
exists a point x of X and an algebraic structure A such that F ∼= ix,∗A
as sheaves of algebraic structures.
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(8) If (X,OX) is a ringed space and F is a sheaf of OX -modules, then we say
F is a skyscraper sheaf if there exists a point x ∈ X and a OX,x-module
A such that F ∼= ix,∗A as sheaves of OX -modules.

Lemma 6.27.2.009B Let X be a topological space, x ∈ X a point, and A a set. For any
point x′ ∈ X the stalk of the skyscraper sheaf at x with value A at x′ is

(ix,∗A)x′ =
{
A if x′ ∈ {x}
{∗} if x′ ̸∈ {x}

A similar description holds for the case of abelian groups, algebraic structures and
sheaves of modules.
Proof. Omitted. □

Lemma 6.27.3.009C Let X be a topological space, and let x ∈ X a point. The functors
F 7→ Fx and A 7→ ix,∗A are adjoint. In a formula

MorSets(Fx, A) = MorSh(X)(F , ix,∗A).
A similar statement holds for the case of abelian groups, algebraic structures. In
the case of sheaves of modules we have

HomOX,x
(Fx, A) = HomOX

(F , ix,∗A).
Proof. Omitted. Hint: The stalk functor can be seen as the pullback functor for
the morphism ix : {x} → X. Then the adjointness follows from adjointness of i−1

x

and ix,∗ (resp. i∗x and ix,∗ in the case of sheaves of modules). □

6.28. Limits and colimits of presheaves

009D Let X be a topological space. Let I → PSh(X), i 7→ Fi be a diagram.
(1) Both limi Fi and colimi Fi exist.
(2) For any open U ⊂ X we have

(limi Fi)(U) = limi Fi(U)
and

(colimi Fi)(U) = colimi Fi(U).
(3) Let x ∈ X be a point. In general the stalk of limi Fi at x is not equal

to the limit of the stalks. But if the index category is finite then it is
the case. In other words, the stalk functor is left exact (see Categories,
Definition 4.23.1).

(4) Let x ∈ X. We always have
(colimi Fi)x = colimi Fi,x.

The proofs are all easy.

6.29. Limits and colimits of sheaves

009E Let X be a topological space. Let I → Sh(X), i 7→ Fi be a diagram.
(1) Both limi Fi and colimi Fi exist.
(2) The inclusion functor i : Sh(X) → PSh(X) commutes with limits. In

other words, we may compute the limit in the category of sheaves as the
limit in the category of presheaves. In particular, for any open U ⊂ X we
have

(limi Fi)(U) = limi Fi(U).
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(3) The inclusion functor i : Sh(X) → PSh(X) does not commute with col-
imits in general (not even with finite colimits – think surjections). The
colimit is computed as the sheafification of the colimit in the category of
presheaves:

colimi Fi =
(
U 7→ colimi Fi(U)

)#
.

(4) Let x ∈ X be a point. In general the stalk of limi Fi at x is not equal to
the limit of the stalks. But if the index category is finite then it is the
case. In other words, the stalk functor is left exact.

(5) Let x ∈ X. We always have
(colimi Fi)x = colimi Fi,x.

(6) The sheafification functor # : PSh(X) → Sh(X) commutes with all col-
imits, and with finite limits. But it does not commute with all limits.

The proofs are all easy. Here is an example of what is true for directed colimits of
sheaves.

Lemma 6.29.1.009F Let X be a topological space. Let I be a directed set. Let (Fi, φii′)
be a system of sheaves of sets over I, see Categories, Section 4.21. Let U ⊂ X be
an open subset. Consider the canonical map

Ψ : colimi Fi(U) −→ (colimi Fi) (U)
(1) If all the transition maps are injective then Ψ is injective for any open U .
(2) If U is quasi-compact, then Ψ is injective.
(3) If U is quasi-compact and all the transition maps are injective then Ψ is

an isomorphism.
(4) If U has a cofinal system of open coverings U : U =

⋃
j∈J Uj with J finite

and Uj ∩ Uj′ quasi-compact for all j, j′ ∈ J , then Ψ is bijective.

Proof. Assume all the transition maps are injective. In this case the presheaf
F ′ : V 7→ colimi Fi(V ) is separated (see Definition 6.11.2). By the discussion above
we have (F ′)# = colimi Fi. By Lemma 6.17.5 we see that F ′ → (F ′)# is injective.
This proves (1).
Assume U is quasi-compact. Suppose that s ∈ Fi(U) and s′ ∈ Fi′(U) give rise to
elements on the left hand side which have the same image under Ψ. Since U is
quasi-compact this means there exists a finite open covering U =

⋃
j=1,...,m Uj and

for each j an index ij ∈ I, ij ≥ i, ij ≥ i′ such that φiij (s) = φi′ij (s′). Let i′′ ∈ I
be ≥ than all of the ij . We conclude that φii′′(s) and φi′i′′(s) agree on the opens
Uj for all j and hence that φii′′(s) = φi′i′′(s). This proves (2).
Assume U is quasi-compact and all transition maps injective. Let s be an element
of the target of Ψ. Since U is quasi-compact there exists a finite open covering
U =

⋃
j=1,...,m Uj , for each j an index ij ∈ I and sj ∈ Fij (Uj) such that s|Uj comes

from sj for all j. Pick i ∈ I which is ≥ than all of the ij . By (1) the sections
φiji(sj) agree over the overlaps Uj ∩ Uj′ . Hence they glue to a section s′ ∈ Fi(U)
which maps to s under Ψ. This proves (3).
Assume the hypothesis of (4). In particular we see that U is quasi-compact and
hence by (2) we have injectivity of Ψ. Let s be an element of the target of Ψ.
By assumption there exists a finite open covering U =

⋃
j=1,...,m Uj , with Uj ∩ Uj′
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quasi-compact for all j, j′ ∈ J and for each j an index ij ∈ I and sj ∈ Fij (Uj) such
that s|Uj is the image of sj for all j. Since Uj ∩ Uj′ is quasi-compact we can apply
(2) and we see that there exists an ijj′ ∈ I, ijj′ ≥ ij , ijj′ ≥ ij′ such that φijijj′ (sj)
and φij′ ijj′ (sj′) agree over Uj ∩ Uj′ . Choose an index i ∈ I wich is bigger or equal
than all the ijj′ . Then we see that the sections φiji(sj) of Fi glue to a section of
Fi over U . This section is mapped to the element s as desired. □

Example 6.29.2.009G Let X = {s1, s2, ξ1, ξ2, ξ3, . . .} as a set. Declare a subset U ⊂ X to
be open if s1 ∈ U or s2 ∈ U implies U contains all of the ξi. Let Un = {ξn, ξn+1, . . .},
and let jn : Un → X be the inclusion map. Set Fn = jn,∗Z. There are transition
maps Fn → Fn+1. Let F = colimFn. Note that Fn,ξm = 0 if m < n because {ξm}
is an open subset of X which misses Un. Hence we see that Fξn = 0 for all n. On
the other hand the stalk Fsi , i = 1, 2 is the colimit

M = colimn

∏
m≥n

Z

which is not zero. We conclude that the sheaf F is the direct sum of the skyscraper
sheaves with value M at the closed points s1 and s2. Hence Γ(X,F) = M ⊕M .
On the other hand, the reader can verify that colimn Γ(X,Fn) = M . Hence some
condition is necessary in part (4) of Lemma 6.29.1 above.

There is a version of the previous lemma dealing with sheaves on a diagram of
spectral spaces. To state it we introduce some notation. Let I be a cofiltered index
category. Let i 7→ Xi be a diagram of spectral spaces over I such that for a : j → i
in I the corresponding map fa : Xj → Xi is spectral. Set X = limXi and denote
pi : X → Xi the projection.

Lemma 6.29.3.0A32 In the situation described above, let i ∈ Ob(I) and let G be a sheaf
on Xi. For Ui ⊂ Xi quasi-compact open we have

p−1
i G(p−1

i (Ui)) = colima:j→i f
−1
a G(f−1

a (Ui))

Proof. Let us prove the canonical map colima:j→i f
−1
a G(f−1

a (Ui))→ p−1
i G(p−1

i (Ui))
is injective. Let s, s′ be sections of f−1

a G over f−1
a (Ui) for some a : j → i. For

b : k → j let Zk ⊂ f−1
a◦b(Ui) be the closed subset of points x such that the image

of s and s′ in the stalk (f−1
a◦bG)x are different. If Zk is nonempty for all b : k → j,

then by Topology, Lemma 5.24.2 we see that limb:k→j Zk is nonempty too. Then
for x ∈ limb:k→j Zk ⊂ X (observe that I/j → I is initial) we see that the image
of s and s′ in the stalk of p−1

i G at x are different too since (p−1
i G)x = (f−1

b◦aG)pk(x)
for all b : k → j as above. Thus if the images of s and s′ in p−1

i G(p−1
i (Ui)) are the

same, then Zk is empty for some b : k → j. This proves injectivity.
Surjectivity. Let s be a section of p−1

i G over p−1
i (Ui). By Topology, Lemma 5.24.5

the set p−1
i (Ui) is a quasi-compact open of the spectral space X. By construction

of the pullback sheaf, we can find an open covering p−1
i (Ui) =

⋃
l∈LWl, opens

Vl,i ⊂ Xi, sections sl,i ∈ G(Vl,i) such that pi(Wl) ⊂ Vl,i and p−1
i sl,i|Wl

= s|Wl
.

Because X and Xi are spectral and p−1
i (Ui) is quasi-compact open, we may assume

L is finite andWl and Vl,i quasi-compact open for all l. Then we can apply Topology,
Lemma 5.24.6 to find a : j → i and open covering f−1

a (Ui) =
⋃
l∈LWl,j by quasi-

compact opens whose pullback to X is the covering p−1
i (Ui) =

⋃
l∈LWl and such

that moreover Wl,j ⊂ f−1
a (Vl,i). Write sl,j the restriction of the pullback of sl,i by

fa to Wl,j . Then we see that sl,j and sl′,j restrict to elements of (f−1
a G)(Wl,j∩Wl′,j)
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which pullback to the same element (p−1
i G)(Wl ∩Wl′), namely, the restriction of s.

Hence by injectivity, we can find b : k → j such that the sections f−1
b sl,j glue to a

section over f−1
a◦b(Ui) as desired. □

Next, in addition to the cofiltered system Xi of spectral spaces, assume given
(1) a sheaf Fi on Xi for all i ∈ Ob(I),
(2) for a : j → i an fa-map φa : Fi → Fj

such that φc = φb ◦ φa whenever c = a ◦ b. Set F = colim p−1
i Fi on X.

Lemma 6.29.4.0A33 In the situation described above, let i ∈ Ob(I) and let Ui ⊂ Xi be
a quasi-compact open. Then

colima:j→i Fj(f−1
a (Ui)) = F(p−1

i (Ui))

Proof. Recall that p−1
i (Ui) is a quasi-compact open of the spectral space X, see

Topology, Lemma 5.24.5. Hence Lemma 6.29.1 applies and we have
F(p−1

i (Ui)) = colima:j→i p
−1
j Fj(p−1

i (Ui)).
A formal argument shows that

colima:j→i Fj(f−1
a (Ui)) = colima:j→i colimb:k→j f

−1
b Fj(f

−1
a◦b(Ui))

Thus it suffices to show that
p−1
j Fj(p−1

i (Ui)) = colimb:k→j f
−1
b Fj(f

−1
a◦b(Ui))

This is Lemma 6.29.3 applied to Fj and the quasi-compact open f−1
a (Ui). □

6.30. Bases and sheaves

009H Sometimes there exists a basis for the topology consisting of opens that are easier
to work with than general opens. For convenience we give here some definitions and
simple lemmas in order to facilitate working with (pre)sheaves in such a situation.

Definition 6.30.1.009I Let X be a topological space. Let B be a basis for the topology
on X.

(1) A presheaf F of sets on B is a rule which assigns to each U ∈ B a set F(U)
and to each inclusion V ⊂ U of elements of B a map ρUV : F(U)→ F(V )
such that ρUU = idF(U) for all U ∈ B whenever W ⊂ V ⊂ U in B we have
ρUW = ρVW ◦ ρUV .

(2) A morphism φ : F → G of presheaves of sets on B is a rule which assigns
to each element U ∈ B a map of sets φ : F(U) → G(U) compatible with
restriction maps.

As in the case of usual presheaves we use the terminology of sections, restrictions
of sections, etc. In particular, we may define the stalk of F at a point x ∈ X by
the colimit

Fx = colimU∈B,x∈U F(U).
As in the case of the stalk of a presheaf on X this limit is directed. The reason is
that the collection of U ∈ B, x ∈ U is a fundamental system of open neighbourhoods
of x.
It is easy to make examples to show that the notion of a presheaf on X is very
different from the notion of a presheaf on a basis for the topology on X. This does
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not happen in the case of sheaves. A much more useful notion therefore, is the
following.

Definition 6.30.2.009J Let X be a topological space. Let B be a basis for the topology
on X.

(1) A sheaf F of sets on B is a presheaf of sets on B which satisfies the following
additional property: Given any U ∈ B, and any covering U =

⋃
i∈I Ui with

Ui ∈ B, and any coverings Ui ∩ Uj =
⋃
k∈Iij Uijk with Uijk ∈ B the sheaf

condition holds:
(**) For any collection of sections si ∈ F(Ui), i ∈ I such that ∀i, j ∈ I,

∀k ∈ Iij
si|Uijk = sj |Uijk

there exists a unique section s ∈ F(U) such that si = s|Ui for all
i ∈ I.

(2) A morphism of sheaves of sets on B is simply a morphism of presheaves
of sets.

First we explain that it suffices to check the sheaf condition (∗∗) on a cofinal system
of coverings. In the situation of the definition, suppose U ∈ B. Let us temporarily
denote CovB(U) the set of all coverings of U by elements of B. Note that CovB(U)
is preordered by refinement. A subset C ⊂ CovB(U) is a cofinal system, if for every
U ∈ CovB(U) there exists a covering V ∈ C which refines U .

Lemma 6.30.3.009K With notation as above. For each U ∈ B, let C(U) ⊂ CovB(U) be
a cofinal system. For each U ∈ B, and each U : U =

⋃
Ui in C(U), let coverings

Uij : Ui ∩ Uj =
⋃
Uijk, Uijk ∈ B be given. Let F be a presheaf of sets on B. The

following are equivalent
(1) The presheaf F is a sheaf on B.
(2) For every U ∈ B and every covering U : U =

⋃
Ui in C(U) the sheaf

condition (∗∗) holds (for the given coverings Uij).

Proof. We have to show that (2) implies (1). Suppose that U ∈ B, and that
U : U =

⋃
i∈I Ui is an arbitrary covering by elements of B. Because the system

C(U) is cofinal we can find an element V : U =
⋃
j∈J Vj in C(U) which refines U .

This means there exists a map α : J → I such that Vj ⊂ Uα(j).

Note that if s, s′ ∈ F(U) are sections such that s|Ui = s′|Ui , then

s|Vj = (s|Uα(j))|Vj = (s′|Uα(j))|Vj = s′|Vj

for all j. Hence by the uniqueness in (∗∗) for the covering V we conclude that
s = s′. Thus we have proved the uniqueness part of (∗∗) for our arbitrary covering
U .

Suppose furthermore that Ui∩Ui′ =
⋃
k∈Iii′

Uii′k are arbitrary coverings by Uii′k ∈
B. Let us try to prove the existence part of (∗∗) for the system (U ,Uij). Thus let
si ∈ F(Ui) and suppose we have

si|Uii′k = si′ |Uii′k
for all i, i′, k. Set tj = sα(j)|Vj , where V and α are as above.
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There is one small kink in the argument here. Namely, let Vjj′ : Vj ∩ Vj′ =⋃
l∈Jjj′ Vjj′l be the covering given to us by the statement of the lemma. It is not a

priori clear that
tj |Vjj′l = tj′ |Vjj′l

for all j, j′, l. To see this, note that we do have

tj |W = tj′ |W for all W ∈ B,W ⊂ Vjj′l ∩ Uα(j)α(j′)k

for all k ∈ Iα(j)α(j′), by our assumption on the family of elements si. And since
Vj ∩ Vj′ ⊂ Uα(j) ∩Uα(j′) we see that tj |Vjj′l and tj′ |Vjj′l agree on the members of a
covering of Vjj′l by elements of B. Hence by the uniqueness part proved above we
finally deduce the desired equality of tj |Vjj′l and tj′ |Vjj′l . Then we get the existence
of an element t ∈ F(U) by property (∗∗) for (V,Vjj′).

Again there is a small snag. We know that t restricts to tj on Vj but we do not yet
know that t restricts to si on Ui. To conclude this note that the sets Ui ∩Vj , j ∈ J
cover Ui. Hence also the sets Uiα(j)k ∩ Vj , j ∈ J , k ∈ Iiα(j) cover Ui. We leave it
to the reader to see that t and si restrict to the same section of F on any W ∈ B
which is contained in one of the open sets Uiα(j)k ∩ Vj , j ∈ J , k ∈ Iiα(j). Hence by
the uniqueness part seen above we win. □

Lemma 6.30.4.009L Let X be a topological space. Let B be a basis for the topology on
X. Assume that for every triple U,U ′, U ′′ ∈ B with U ′ ⊂ U and U ′′ ⊂ U we have
U ′ ∩ U ′′ ∈ B. For each U ∈ B, let C(U) ⊂ CovB(U) be a cofinal system. Let F be
a presheaf of sets on B. The following are equivalent

(1) The presheaf F is a sheaf on B.
(2) For every U ∈ B and every covering U : U =

⋃
Ui in C(U) and for every

family of sections si ∈ F(Ui) such that si|Ui∩Uj = sj |Ui∩Uj there exists a
unique section s ∈ F(U) which restricts to si on Ui.

Proof. This is a reformulation of Lemma 6.30.3 above in the special case where the
coverings Uij each consist of a single element. But also this case is much easier and
is an easy exercise to do directly. □

Lemma 6.30.5.009M Let X be a topological space. Let B be a basis for the topology on
X. Let U ∈ B. Let F be a sheaf of sets on B. The map

F(U)→
∏

x∈U
Fx

identifies F(U) with the elements (sx)x∈U with the property
(*) For any x ∈ U there exists a V ∈ B, with x ∈ V ⊂ U and a section

σ ∈ F(V ) such that for all y ∈ V we have sy = (V, σ) in Fy.

Proof. First note that the map F(U) →
∏
x∈U Fx is injective by the uniqueness

in the sheaf condition of Definition 6.30.2. Let (sx) be any element on the right
hand side which satisfies (∗). Clearly this means we can find a covering U =

⋃
Ui,

Ui ∈ B such that (sx)x∈Ui comes from certain σi ∈ F(Ui). For every y ∈ Ui∩Uj the
sections σi and σj agree in the stalk Fy. Hence there exists an element Vijy ∈ B,
y ∈ Vijy such that σi|Vijy = σj |Vijy . Thus the sheaf condition (∗∗) of Definition
6.30.2 applies to the system of σi and we obtain a section s ∈ F(U) with the desired
property. □

https://stacks.math.columbia.edu/tag/009L
https://stacks.math.columbia.edu/tag/009M


6.30. BASES AND SHEAVES 225

Let X be a topological space. Let B be a basis for the topology on X. There is a
natural restriction functor from the category of sheaves of sets on X to the category
of sheaves of sets on B. It turns out that this is an equivalence of categories. In
down to earth terms this means the following.

Lemma 6.30.6.009N Let X be a topological space. Let B be a basis for the topology on
X. Let F be a sheaf of sets on B. There exists a unique sheaf of sets Fext on X
such that Fext(U) = F(U) for all U ∈ B compatibly with the restriction mappings.

Proof. We first construct a presheaf Fext with the desired property. Namely, for an
arbitrary open U ⊂ X we define Fext(U) as the set of elements (sx)x∈U such that
(∗) of Lemma 6.30.5 holds. It is clear that there are restriction mappings that turn
Fext into a presheaf of sets. Also, by Lemma 6.30.5 we see that F(U) = Fext(U)
whenever U is an element of the basis B. To see Fext is a sheaf one may argue as
in the proof of Lemma 6.17.1. □

Note that we have
Fx = Fextx

in the situation of the lemma. This is so because the collection of elements of B
containing x forms a fundamental system of open neighbourhoods of x.

Lemma 6.30.7.009O Let X be a topological space. Let B be a basis for the topology
on X. Denote Sh(B) the category of sheaves on B. There is an equivalence of
categories

Sh(X) −→ Sh(B)
which assigns to a sheaf on X its restriction to the members of B.

Proof. The inverse functor in given in Lemma 6.30.6 above. Checking the obvious
functorialities is left to the reader. □

This ends the discussion of sheaves of sets on a basis B. Let (C, F ) be a type of
algebraic structure. At the end of this section we would like to point out that the
constructions above work for sheaves with values in C. Let us briefly define the
relevant notions.

Definition 6.30.8.009P Let X be a topological space. Let B be a basis for the topology
on X. Let (C, F ) be a type of algebraic structure.

(1) A presheaf F with values in C on B is a rule which assigns to each U ∈ B
an object F(U) of C and to each inclusion V ⊂ U of elements of B a
morphism ρUV : F(U) → F(V ) in C such that ρUU = idF(U) for all U ∈ B
and whenever W ⊂ V ⊂ U in B we have ρUW = ρVW ◦ ρUV .

(2) A morphism φ : F → G of presheaves with values in C on B is a rule
which assigns to each element U ∈ B a morphism of algebraic structures
φ : F(U)→ G(U) compatible with restriction maps.

(3) Given a presheaf F with values in C on B we say that U 7→ F (F(U)) is
the underlying presheaf of sets.

(4) A sheaf F with values in C on B is a presheaf with values in C on B whose
underlying presheaf of sets is a sheaf.

At this point we can define the stalk at x ∈ X of a presheaf with values in C on B
as the directed colimit

Fx = colimU∈B,x∈U F(U).
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It exists as an object of C because of our assumptions on C. Also, we see that the
underlying set of Fx is the stalk of the underlying presheaf of sets on B.
Note that Lemmas 6.30.3, 6.30.4 and 6.30.5 refer to the sheaf property which we
have defined in terms of the associated presheaf of sets. Hence they generalize
without change to the notion of a presheaf with values in C. The analogue of
Lemma 6.30.6 need some care. Here it is.
Lemma 6.30.9.009Q Let X be a topological space. Let (C, F ) be a type of algebraic
structure. Let B be a basis for the topology on X. Let F be a sheaf with values
in C on B. There exists a unique sheaf Fext with values in C on X such that
Fext(U) = F(U) for all U ∈ B compatibly with the restriction mappings.
Proof. By the conditions imposed on the pair (C, F ) it suffices to come up with a
presheaf Fext which does the correct thing on the level of underlying presheaves
of sets. Thus our first task is to construct a suitable object Fext(U) for all open
U ⊂ X. We could do this by imitating Lemma 6.18.1 in the setting of presheaves on
B. However, a slightly different method (but basically equivalent) is the following:
Define it as the directed colimit

Fext(U) := colimU FIB(U)
over all coverings U : U =

⋃
i∈I Ui by Ui ∈ B of the fibre product

FIB(U) //

��

∏
x∈U Fx

��∏
i∈I F(Ui) // ∏

i∈I
∏
x∈Ui Fx

By the usual arguments, see Lemma 6.15.4 and Example 6.15.5 it suffices to show
that this construction on underlying sets is the same as the definition using (∗∗)
above. Details left to the reader. □

Note that we have
Fx = Fextx

as objects in C in the situation of the lemma. This is so because the collection of
elements of B containing x forms a fundamental system of open neighbourhoods of
x.
Lemma 6.30.10.009R Let X be a topological space. Let B be a basis for the topology
on X. Let (C, F ) be a type of algebraic structure. Denote Sh(B, C) the category of
sheaves with values in C on B. There is an equivalence of categories

Sh(X, C) −→ Sh(B, C)
which assigns to a sheaf on X its restriction to the members of B.
Proof. The inverse functor in given in Lemma 6.30.9 above. Checking the obvious
functorialities is left to the reader. □

Finally we come to the case of (pre)sheaves of modules on a basis. We will use the
easy fact that the category of presheaves of sets on a basis has products and that
they are described by taking products of values on elements of the bases.
Definition 6.30.11.009S Let X be a topological space. Let B be a basis for the topology
on X. Let O be a presheaf of rings on B.
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(1) A presheaf of O-modules F on B is a presheaf of abelian groups on B
together with a morphism of presheaves of sets O×F → F such that for
all U ∈ B the map O(U)× F(U) → F(U) turns the group F(U) into an
O(U)-module.

(2) A morphism φ : F → G of presheaves of O-modules on B is a morphism of
abelian presheaves on B which induces an O(U)-module homomorphism
F(U)→ G(U) for every U ∈ B.

(3) Suppose that O is a sheaf of rings on B. A sheaf F of O-modules on B is a
presheaf of O-modules on B whose underlying presheaf of abelian groups
is a sheaf.

We can define the stalk at x ∈ X of a presheaf of O-modules on B as the directed
colimit

Fx = colimU∈B,x∈U F(U).
It is a Ox-module.

Note that Lemmas 6.30.3, 6.30.4 and 6.30.5 refer to the sheaf property which we
have defined in terms of the associated presheaf of sets. Hence they generalize
without change to the notion of a presheaf of O-modules. The analogue of Lemma
6.30.6 is as follows.

Lemma 6.30.12.009T Let X be a topological space. Let B be a basis for the topology
on X. Let O be a sheaf of rings on B. Let F be a sheaf of O-modules on B. Let
Oext be the sheaf of rings on X extending O and let Fext be the abelian sheaf on
X extending F , see Lemma 6.30.9. There exists a canonical map

Oext ×Fext −→ Fext

which agrees with the given map over elements of B and which endows Fext with
the structure of an Oext-module.

Proof. It suffices to construct the multiplication map on the level of presheaves of
sets. Perhaps the easiest way to see this is to prove directly that if (fx)x∈U , fx ∈ Ox
and (mx)x∈U , mx ∈ Fx satisfy (∗), then the element (fxmx)x∈U also satisfies (∗).
Then we get the desired result, because in the proof of Lemma 6.30.6 we construct
the extension in terms of families of elements of stalks satisfying (∗). □

Note that we have
Fx = Fextx

as Ox-modules in the situation of the lemma. This is so because the collection of
elements of B containing x forms a fundamental system of open neighbourhoods of
x, or simply because it is true on the underlying sets.

Lemma 6.30.13.009U Let X be a topological space. Let B be a basis for the topology
on X. Let O be a sheaf of rings on X. Denote Mod(O|B) the category of sheaves
of O|B-modules on B. There is an equivalence of categories

Mod(O) −→ Mod(O|B)

which assigns to a sheaf of O-modules on X its restriction to the members of B.

Proof. The inverse functor in given in Lemma 6.30.12 above. Checking the obvious
functorialities is left to the reader. □
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Finally, we address the question of the relationship of this with continuous maps.
This is now very easy thanks to the work above. First we do the case where there
is a basis on the target given.

Lemma 6.30.14.009V Let f : X → Y be a continuous map of topological spaces. Let
(C, F ) be a type of algebraic structures. Let F be a sheaf with values in C on X.
Let G be a sheaf with values in C on Y . Let B be a basis for the topology on Y .
Suppose given for every V ∈ B a morphism

φV : G(V ) −→ F(f−1V )
of C compatible with restriction mappings. Then there is a unique f -map (see
Definition 6.21.7 and discussion of f -maps in Section 6.23) φ : G → F recovering
φV for V ∈ B.

Proof. This is trivial because the collection of maps amounts to a morphism be-
tween the restrictions of G and f∗F to B. By Lemma 6.30.10 this is the same as
giving a morphism from G to f∗F , which by Lemma 6.21.8 is the same as an f -map.
See also Lemma 6.23.1 and the discussion preceding it for how to deal with the case
of sheaves of algebraic structures. □

Here is the analogue for ringed spaces.

Lemma 6.30.15.009W Let (f, f ♯) : (X,OX)→ (Y,OY ) be a morphism of ringed spaces.
Let F be a sheaf of OX -modules. Let G be a sheaf of OY -modules. Let B be a
basis for the topology on Y . Suppose given for every V ∈ B a OY (V )-module map

φV : G(V ) −→ F(f−1V )
(where F(f−1V ) has a module structure using f ♯V : OY (V ) → OX(f−1V )) com-
patible with restriction mappings. Then there is a unique f -map (see discussion of
f -maps in Section 6.26) φ : G → F recovering φV for V ∈ B.

Proof. Same as the proof of the corresponding lemma for sheaves of algebraic struc-
tures above. □

Lemma 6.30.16.009X Let f : X → Y be a continuous map of topological spaces. Let
(C, F ) be a type of algebraic structures. Let F be a sheaf with values in C on X.
Let G be a sheaf with values in C on Y . Let BY be a basis for the topology on Y .
Let BX be a basis for the topology on X. Suppose given for every V ∈ BY , and
U ∈ BX such that f(U) ⊂ V a morphism

φUV : G(V ) −→ F(U)
of C compatible with restriction mappings. Then there is a unique f -map (see
Definition 6.21.7 and the discussion of f -maps in Section 6.23) φ : G → F recovering
φUV as the composition

G(V ) φV−−→ F(f−1(V )) restr.−−−→ F(U)
for every pair (U, V ) as above.

Proof. Let us first proves this for sheaves of sets. Fix V ⊂ Y open. Pick s ∈ G(V ).
We are going to construct an element φV (s) ∈ F(f−1V ). We can define a value
φ(s)x in the stalk Fx for every x ∈ f−1V by picking a U ∈ BX with x ∈ U ⊂ f−1V
and setting φ(s)x equal to the equivalence class of (U,φUV (s)) in the stalk. Clearly,
the family (φ(s)x)x∈f−1V satisfies condition (∗) because the maps φUV for varying U
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are compatible with restrictions in the sheaf F . Thus, by the proof of Lemma 6.30.6
we see that (φ(s)x)x∈f−1V corresponds to a unique element φV (s) of F(f−1V ).
Thus we have defined a set map φV : G(V )→ F(f−1V ). The compatibility between
φV and φUV follows from Lemma 6.30.5.
We leave it to the reader to show that the construction of φV is compatible with
restriction mappings as we vary V ∈ BY . Thus we may apply Lemma 6.30.14 above
to “glue” them to the desired f -map.
Finally, we note that the map of sheaves of sets so constructed satisfies the property
that the map on stalks

Gf(x) −→ Fx
is the colimit of the system of maps φUV as V ∈ BY varies over those elements that
contain f(x) and U ∈ BX varies over those elements that contain x. In particular,
if G and F are the underlying sheaves of sets of sheaves of algebraic structures, then
we see that the maps on stalks is a morphism of algebraic structures. Hence we
conclude that the associated map of sheaves of underlying sets f−1G → F satisfies
the assumptions of Lemma 6.23.1. We conclude that f−1G → F is a morphism
of sheaves with values in C. And by adjointness this means that φ is an f -map of
sheaves of algebraic structures. □

Lemma 6.30.17.009Y Let (f, f ♯) : (X,OX)→ (Y,OY ) be a morphism of ringed spaces.
Let F be a sheaf of OX -modules. Let G be a sheaf of OY -modules. Let BY be a
basis for the topology on Y . Let BX be a basis for the topology on X. Suppose
given for every V ∈ BY , and U ∈ BX such that f(U) ⊂ V a OY (V )-module map

φUV : G(V ) −→ F(U)
compatible with restriction mappings. Here the OY (V )-module structure on F(U)
comes from the OX(U)-module structure via the map f ♯V : OY (V )→ OX(f−1V )→
OX(U). Then there is a unique f -map of sheaves of modules (see Definition 6.21.7
and the discussion of f -maps in Section 6.26) φ : G → F recovering φUV as the
composition

G(V ) φV−−→ F(f−1(V )) restr.−−−→ F(U)
for every pair (U, V ) as above.

Proof. Similar to the above and omitted. □

6.31. Open immersions and (pre)sheaves

009Z Let X be a topological space. Let j : U → X be the inclusion of an open subset U
into X. In Section 6.21 we have defined functors j∗ and j−1 such that j∗ is right
adjoint to j−1. It turns out that for an open immersion there is a left adjoint for
j−1, which we will denote j!. First we point out that j−1 has a particularly simple
description in the case of an open immersion.

Lemma 6.31.1.00A0 Let X be a topological space. Let j : U → X be the inclusion of
an open subset U into X.

(1) Let G be a presheaf of sets on X. The presheaf jpG (see Section 6.21) is
given by the rule V 7→ G(V ) for V ⊂ U open.

(2) Let G be a sheaf of sets on X. The sheaf j−1G is given by the rule
V 7→ G(V ) for V ⊂ U open.
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(3) For any point u ∈ U and any sheaf G on X we have a canonical identifi-
cation of stalks

j−1Gu = (G|U )u = Gu.
(4) On the category of presheaves of U we have jpj∗ = id.
(5) On the category of sheaves of U we have j−1j∗ = id.

The same description holds for (pre)sheaves of abelian groups, (pre)sheaves of al-
gebraic structures, and (pre)sheaves of modules.

Proof. The colimit in the definition of jpG(V ) is over collection of all W ⊂ X open
such that V ⊂ W ordered by reverse inclusion. Hence this has a largest element,
namely V . This proves (1). And (2) follows because the assignment V 7→ G(V ) for
V ⊂ U open is clearly a sheaf if G is a sheaf. Assertion (3) follows from (2) since
the collection of open neighbourhoods of u which are contained in U is cofinal in
the collection of all open neighbourhoods of u in X. Parts (4) and (5) follow by
computing j−1j∗F(V ) = j∗F(V ) = F(V ).
The exact same arguments work for (pre)sheaves of abelian groups and (pre)sheaves
of algebraic structures. □

Definition 6.31.2.00A1 Let X be a topological space. Let j : U → X be the inclusion
of an open subset.

(1) Let G be a presheaf of sets, abelian groups or algebraic structures on X.
The presheaf jpG described in Lemma 6.31.1 is called the restriction of G
to U and denoted G|U .

(2) Let G be a sheaf of sets on X, abelian groups or algebraic structures on
X. The sheaf j−1G is called the restriction of G to U and denoted G|U .

(3) If (X,O) is a ringed space, then the pair (U,O|U ) is called the open
subspace of (X,O) associated to U .

(4) If G is a presheaf of O-modules then G|U together with the multiplication
map O|U × G|U → G|U (see Lemma 6.24.6) is called the restriction of G
to U .

We leave a definition of the restriction of presheaves of modules to the reader. Ok,
so in this section we will discuss a left adjoint to the restriction functor. Here is
the definition in the case of (pre)sheaves of sets.

Definition 6.31.3.00A2 Let X be a topological space. Let j : U → X be the inclusion
of an open subset.

(1) Let F be a presheaf of sets on U . We define the extension of F by the
empty set jp!F to be the presheaf of sets on X defined by the rule

jp!F(V ) =
{
∅ if V ̸⊂ U
F(V ) if V ⊂ U

with obvious restriction mappings.
(2) Let F be a sheaf of sets on U . We define the extension of F by the empty

set j!F to be the sheafification of the presheaf jp!F .

Lemma 6.31.4.00A3 Let X be a topological space. Let j : U → X be the inclusion of
an open subset.

(1) The functor jp! is a left adjoint to the restriction functor jp (see Lemma
6.31.1).
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(2) The functor j! is a left adjoint to restriction, in a formula
MorSh(X)(j!F ,G) = MorSh(U)(F , j−1G) = MorSh(U)(F ,G|U )

bifunctorially in F and G.
(3) Let F be a sheaf of sets on U . The stalks of the sheaf j!F are described

as follows
j!Fx =

{
∅ if x ̸∈ U
Fx if x ∈ U

(4) On the category of presheaves of U we have jpjp! = id.
(5) On the category of sheaves of U we have j−1j! = id.

Proof. To map jp!F into G it is enough to map F(V ) → G(V ) whenever V ⊂ U
compatibly with restriction mappings. And by Lemma 6.31.1 the same description
holds for maps F → G|U . The adjointness of j! and restriction follows from this
and the properties of sheafification. The identification of stalks is obvious from the
definition of the extension by the empty set and the definition of a stalk. Statements
(4) and (5) follow by computing the value of the sheaf on any open of U . □

Note that if F is a sheaf of abelian groups on U , then in general j!F as defined
above, is not a sheaf of abelian groups, for example because some of its stalks are
empty (hence not abelian groups for sure). Thus we need to modify the definition
of j! depending on the type of sheaves we consider. The reason for choosing the
empty set in the definition of the extension by the empty set, is that it is the initial
object in the category of sets. Thus in the case of abelian groups we use 0 (and
more generally for sheaves with values in any abelian category).

Definition 6.31.5.00A4 Let X be a topological space. Let j : U → X be the inclusion
of an open subset.

(1) Let F be an abelian presheaf on U . We define the extension jp!F of F by
0 to be the abelian presheaf on X defined by the rule

jp!F(V ) =
{

0 if V ̸⊂ U
F(V ) if V ⊂ U

with obvious restriction mappings.
(2) Let F be an abelian sheaf on U . We define the extension j!F of F by 0

to be the sheafification of the abelian presheaf jp!F .
(3) Let C be a category having an initial object e. Let F be a presheaf on

U with values in C. We define the extension jp!F of F by e to be the
presheaf on X with values in C defined by the rule

jp!F(V ) =
{

e if V ̸⊂ U
F(V ) if V ⊂ U

with obvious restriction mappings.
(4) Let (C, F ) be a type of algebraic structure such that C has an initial object

e. Let F be a sheaf of algebraic structures on U (of the give type). We
define the extension j!F of F by e to be the sheafification of the presheaf
jp!F defined above.

(5) Let O be a presheaf of rings on X. Let F be a presheaf of O|U -modules.
In this case we define the extension by 0 to be the presheaf of O-modules
which is equal to jp!F as an abelian presheaf endowed with the multipli-
cation map O × jp!F → jp!F .

https://stacks.math.columbia.edu/tag/00A4
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(6) Let O be a sheaf of rings on X. Let F be a sheaf of O|U -modules. In this
case we define the extension by 0 to be the O-module which is equal to j!F
as an abelian sheaf endowed with the multiplication map O× j!F → j!F .

It is true that one can define j! in the setting of sheaves of algebraic structures (see
below). However, it depends on the type of algebraic structures involved what the
resulting object is. For example, if O is a sheaf of rings on U , then j!,ringsO ≠
j!,abelianO since the initial object in the category of rings is Z and the initial object
in the category of abelian groups is 0. In particular the functor j! does not commute
with taking underlying sheaves of sets, in contrast to what we have seen so far! We
separate out the case of (pre)sheaves of abelian groups, (pre)sheaves of algebraic
structures and (pre)sheaves of modules as usual.

Lemma 6.31.6.00A5 Let X be a topological space. Let j : U → X be the inclusion of
an open subset. Consider the functors of restriction and extension by 0 for abelian
(pre)sheaves.

(1) The functor jp! is a left adjoint to the restriction functor jp (see Lemma
6.31.1).

(2) The functor j! is a left adjoint to restriction, in a formula

MorAb(X)(j!F ,G) = MorAb(U)(F , j−1G) = MorAb(U)(F ,G|U )

bifunctorially in F and G.
(3) Let F be an abelian sheaf on U . The stalks of the sheaf j!F are described

as follows
j!Fx =

{
0 if x ̸∈ U
Fx if x ∈ U

(4) On the category of abelian presheaves of U we have jpjp! = id.
(5) On the category of abelian sheaves of U we have j−1j! = id.

Proof. Omitted. □

Lemma 6.31.7.00A6 Let X be a topological space. Let j : U → X be the inclusion of an
open subset. Let (C, F ) be a type of algebraic structure such that C has an initial
object e. Consider the functors of restriction and extension by e for (pre)sheaves
of algebraic structure defined above.

(1) The functor jp! is a left adjoint to the restriction functor jp (see Lemma
6.31.1).

(2) The functor j! is a left adjoint to restriction, in a formula

MorSh(X,C)(j!F ,G) = MorSh(U,C)(F , j−1G) = MorSh(U,C)(F ,G|U )

bifunctorially in F and G.
(3) Let F be a sheaf on U . The stalks of the sheaf j!F are described as follows

j!Fx =
{
e if x ̸∈ U
Fx if x ∈ U

(4) On the category of presheaves of algebraic structures on U we have jpjp! =
id.

(5) On the category of sheaves of algebraic structures on U we have j−1j! = id.

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/00A5
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Lemma 6.31.8.00A7 Let (X,O) be a ringed space. Let j : (U,O|U )→ (X,O) be an open
subspace. Consider the functors of restriction and extension by 0 for (pre)sheaves
of modules defined above.

(1) The functor jp! is a left adjoint to restriction, in a formula
MorPMod(O)(jp!F ,G) = MorPMod(O|U )(F ,G|U )

bifunctorially in F and G.
(2) The functor j! is a left adjoint to restriction, in a formula

MorMod(O)(j!F ,G) = MorMod(O|U )(F ,G|U )
bifunctorially in F and G.

(3) Let F be a sheaf of O-modules on U . The stalks of the sheaf j!F are
described as follows

j!Fx =
{

0 if x ̸∈ U
Fx if x ∈ U

(4) On the category of sheaves of O|U -modules on U we have j−1j! = id.

Proof. Omitted. □

Note that by the lemmas above, both the functors j∗ and j! are fully faithful
embeddings of the category of sheaves on U into the category of sheaves on X. It
is only true for the functor j! that one can easily describe the essential image of
this functor.

Lemma 6.31.9.00A8 Let X be a topological space. Let j : U → X be the inclusion of
an open subset. The functor

j! : Sh(U) −→ Sh(X)
is fully faithful. Its essential image consists exactly of those sheaves G such that
Gx = ∅ for all x ∈ X \ U .

Proof. Fully faithfulness follows formally from j−1j! = id. We have seen that any
sheaf in the image of the functor has the property on the stalks mentioned in the
lemma. Conversely, suppose that G has the indicated property. Then it is easy to
check that

j!j
−1G → G

is an isomorphism on all stalks and hence an isomorphism. □

Lemma 6.31.10.00A9 Let X be a topological space. Let j : U → X be the inclusion of
an open subset. The functor

j! : Ab(U) −→ Ab(X)
is fully faithful. Its essential image consists exactly of those sheaves G such that
Gx = 0 for all x ∈ X \ U .

Proof. Omitted. □

Lemma 6.31.11.00AA Let X be a topological space. Let j : U → X be the inclusion
of an open subset. Let (C, F ) be a type of algebraic structure such that C has an
initial object e. The functor

j! : Sh(U, C) −→ Sh(X, C)
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is fully faithful. Its essential image consists exactly of those sheaves G such that
Gx = e for all x ∈ X \ U .

Proof. Omitted. □

Lemma 6.31.12.00AB Let (X,O) be a ringed space. Let j : (U,O|U ) → (X,O) be an
open subspace. The functor

j! : Mod(O|U ) −→ Mod(O)
is fully faithful. Its essential image consists exactly of those sheaves G such that
Gx = 0 for all x ∈ X \ U .

Proof. Omitted. □

Remark 6.31.13.00AC Let j : U → X be an open immersion of topological spaces as
above. Let x ∈ X, x ̸∈ U . Let F be a sheaf of sets on U . Then j!Fx = ∅ by Lemma
6.31.4. Hence j! does not transform a final object of Sh(U) into a final object of
Sh(X) unless U = X. According to our conventions in Categories, Section 4.23
this means that the functor j! is not left exact as a functor between the categories
of sheaves of sets. It will be shown later that j! on abelian sheaves is exact, see
Modules, Lemma 17.3.4.

6.32. Closed immersions and (pre)sheaves

00AD Let X be a topological space. Let i : Z → X be the inclusion of a closed subset Z
into X. In Section 6.21 we have defined functors i∗ and i−1 such that i∗ is right
adjoint to i−1.

Lemma 6.32.1.00AE Let X be a topological space. Let i : Z → X be the inclusion of
a closed subset Z into X. Let F be a sheaf of sets on Z. The stalks of i∗F are
described as follows

i∗Fx =
{
{∗} if x ̸∈ Z
Fx if x ∈ Z

where {∗} denotes a singleton set. Moreover, i−1i∗ = id on the category of sheaves
of sets on Z. Moreover, the same holds for abelian sheaves on Z, resp. sheaves of
algebraic structures on Z where {∗} has to be replaced by 0, resp. a final object of
the category of algebraic structures.

Proof. If x ̸∈ Z, then there exist arbitrarily small open neighbourhoods U of x
which do not meet Z. Because F is a sheaf we have F(i−1(U)) = {∗} for any such
U , see Remark 6.7.2. This proves the first case. The second case comes from the
fact that for z ∈ Z any open neighbourhood of z is of the form Z∩U for some open
U of X. For the statement that i−1i∗ = id consider the canonical map i−1i∗F → F .
This is an isomorphism on stalks (see above) and hence an isomorphism.
For sheaves of abelian groups, and sheaves of algebraic structures you argue in the
same manner. □

Lemma 6.32.2.00AF Let X be a topological space. Let i : Z → X be the inclusion of a
closed subset. The functor

i∗ : Sh(Z) −→ Sh(X)
is fully faithful. Its essential image consists exactly of those sheaves G such that
Gx = {∗} for all x ∈ X \ Z.
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Proof. Fully faithfulness follows formally from i−1i∗ = id. We have seen that any
sheaf in the image of the functor has the property on the stalks mentioned in the
lemma. Conversely, suppose that G has the indicated property. Then it is easy to
check that

G → i∗i
−1G

is an isomorphism on all stalks and hence an isomorphism. □

Lemma 6.32.3.00AG Let X be a topological space. Let i : Z → X be the inclusion of a
closed subset. The functor

i∗ : Ab(Z) −→ Ab(X)
is fully faithful. Its essential image consists exactly of those sheaves G such that
Gx = 0 for all x ∈ X \ Z.

Proof. Omitted. □

Lemma 6.32.4.00AH Let X be a topological space. Let i : Z → X be the inclusion of a
closed subset. Let (C, F ) be a type of algebraic structure with final object 0. The
functor

i∗ : Sh(Z, C) −→ Sh(X, C)
is fully faithful. Its essential image consists exactly of those sheaves G such that
Gx = 0 for all x ∈ X \ Z.

Proof. Omitted. □

Remark 6.32.5.00AI Let i : Z → X be a closed immersion of topological spaces as
above. Let x ∈ X, x ̸∈ Z. Let F be a sheaf of sets on Z. Then (i∗F)x = {∗} by
Lemma 6.32.1. Hence if F = ∗⨿∗, where ∗ is the singleton sheaf, then i∗Fx = {∗} ≠
i∗(∗)x ⨿ i∗(∗)x because the latter is a two point set. According to our conventions
in Categories, Section 4.23 this means that the functor i∗ is not right exact as a
functor between the categories of sheaves of sets. In particular, it cannot have a
right adjoint, see Categories, Lemma 4.24.6.
On the other hand, we will see later (see Modules, Lemma 17.6.3) that i∗ on abelian
sheaves is exact, and does have a right adjoint, namely the functor that associates
to an abelian sheaf on X the sheaf of sections supported in Z.

Remark 6.32.6.00AJ We have not discussed the relationship between closed immersions
and ringed spaces. This is because the notion of a closed immersion of ringed spaces
is best discussed in the setting of quasi-coherent sheaves, see Modules, Section 17.13.

6.33. Glueing sheaves

00AK In this section we glue sheaves defined on the members of a covering of X. We first
deal with maps.

Lemma 6.33.1.04TN Let X be a topological space. Let X =
⋃
Ui be an open covering.

Let F , G be sheaves of sets on X. Given a collection
φi : F|Ui −→ G|Ui

of maps of sheaves such that for all i, j ∈ I the maps φi, φj restrict to the same
map F|Ui∩Uj → G|Ui∩Uj then there exists a unique map of sheaves

φ : F −→ G

https://stacks.math.columbia.edu/tag/00AG
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whose restriction to each Ui agrees with φi.

Proof. For each open subset U ⊂ X define
φU : F(U)→ G(U), s 7→ φU (s)

where φU (s) is the unique section verifying
(φU (s))|U∩Ui = (φi)U∩Ui(s|U∩Ui).

Existence and uniqueness of such a section follows from the sheaf axioms due to
the fact that

((φi)U∩Ui(s|U∩Ui))|U∩Ui∩Uj = (φi)U∩Ui∩Uj (s|U∩Ui∩Uj )
= (φj)U∩Ui∩Uj (s|U∩Ui∩Uj )
= ((φj)U∩Uj (s|U∩Uj ))|U∩Ui∩Uj .

This family of maps gives us indeed a map of sheaves: Let V ⊂ U ⊂ X be open
subsets then

(φU (s))|V = φV (s|V )
since for each i ∈ I the following holds

(φU (s))|V ∩Ui = ((φU (s))|U∩Ui)|V ∩Ui

= ((φi)U∩Ui(s|U∩Ui))|V ∩Ui

= (φi)V ∩Ui(s|V ∩Ui)
= φV (sV )|V ∩Ui .

Furthermore, its restriction to each Ui agrees with φi since given U ⊂ X open
subset and s ∈ F(U ∩ Ui) then

φU∩Ui(s) = φU∩Ui(s)|U∩Ui

= (φi)U∩Ui(s|U∩Ui)
= (φi)U∩Ui(s).

□

The previous lemma implies that given two sheaves F , G on the topological space
X the rule

U 7−→ MorSh(U)(F|U ,G|U )
defines a sheaf. This is a kind of internal hom sheaf. It is seldom used in the
setting of sheaves of sets, and more usually in the setting of sheaves of modules,
see Modules, Section 17.22.
Let X be a topological space. Let X =

⋃
i∈I Ui be an open covering. For each i ∈ I

let Fi be a sheaf of sets on Ui. For each pair i, j ∈ I, let
φij : Fi|Ui∩Uj −→ Fj |Ui∩Uj

be an isomorphism of sheaves of sets. Assume in addition that for every triple of
indices i, j, k ∈ I the following diagram is commutative

Fi|Ui∩Uj∩Uk φik
//

φij
''

Fk|Ui∩Uj∩Uk

Fj |Ui∩Uj∩Uk

φjk

77
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We will call such a collection of data (Fi, φij) a glueing data for sheaves of sets
with respect to the covering X =

⋃
Ui.

Lemma 6.33.2.00AL Let X be a topological space. Let X =
⋃
i∈I Ui be an open

covering. Given any glueing data (Fi, φij) for sheaves of sets with respect to the
covering X =

⋃
Ui there exists a sheaf of sets F on X together with isomorphisms

φi : F|Ui → Fi

such that the diagrams
F|Ui∩Uj φi

//

id
��

Fi|Ui∩Uj
φij

��
F|Ui∩Uj

φj // Fj |Ui∩Uj
are commutative.

Proof. First proof. In this proof we give a formula for the set of sections of F over
an open W ⊂ X. Namely, we define

F(W ) = {(si)i∈I | si ∈ Fi(W ∩ Ui), φij(si|W∩Ui∩Uj ) = sj |W∩Ui∩Uj}.

Restriction mappings for W ′ ⊂ W are defined by the restricting each of the si to
W ′ ∩ Ui. The sheaf condition for F follows immediately from the sheaf condition
for each of the Fi.

We still have to prove that F|Ui maps isomorphically to Fi. Let W ⊂ Ui. In this
case the condition in the definition of F(W ) implies that sj = φij(si|W∩Uj ). And
the commutativity of the diagrams in the definition of a glueing data assures that
we may start with any section s ∈ Fi(W ) and obtain a compatible collection by
setting si = s and sj = φij(si|W∩Uj ).

Second proof (sketch). Let B be the set of opens U ⊂ X such that U ⊂ Ui for
some i ∈ I. Then B is a base for the topology on X. For U ∈ B we pick i ∈ I
with U ⊂ Ui and we set F(U) = Fi(U). Using the isomorphisms φij we see that
this prescription is “independent of the choice of i”. Using the restriction mappings
of Fi we find that F is a sheaf on B. Finally, use Lemma 6.30.6 to extend F to a
unique sheaf F on X. □

Lemma 6.33.3.00AM Let X be a topological space. Let X =
⋃
Ui be an open covering.

Let (Fi, φij) be a glueing data of sheaves of abelian groups, resp. sheaves of algebraic
structures, resp. sheaves of O-modules for some sheaf of rings O on X. Then the
construction in the proof of Lemma 6.33.2 above leads to a sheaf of abelian groups,
resp. sheaf of algebraic structures, resp. sheaf of O-modules.

Proof. This is true because in the construction the set of sections F(W ) over an
open W is given as the equalizer of the maps∏

i∈I Fi(W ∩ Ui)
//
//
∏
i,j∈I Fi(W ∩ Ui ∩ Uj)

And in each of the cases envisioned this equalizer gives an object in the relevant
category whose underlying set is the object considered in the cited lemma. □
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Lemma 6.33.4.00AN Let X be a topological space. Let X =
⋃
i∈I Ui be an open covering.

The functor which associates to a sheaf of sets F the following collection of glueing
data

(F|Ui , (F|Ui)|Ui∩Uj → (F|Uj )|Ui∩Uj )
with respect to the covering X =

⋃
Ui defines an equivalence of categories between

Sh(X) and the category of glueing data. A similar statement holds for abelian
sheaves, resp. sheaves of algebraic structures, resp. sheaves of O-modules.

Proof. The functor is fully faithful by Lemma 6.33.1 and essentially surjective (via
an explicitly given quasi-inverse functor) by Lemma 6.33.2. □

This lemma means that if the sheaf F was constructed from the glueing data
(Fi, φij) and if G is a sheaf on X, then a morphism f : F → G is given by a
collection of morphisms of sheaves

fi : Fi −→ G|Ui
compatible with the glueing maps φij . Similarly, to give a morphism of sheaves
g : G → F is the same as giving a collection of morphisms of sheaves

gi : G|Ui −→ Fi
compatible with the glueing maps φij .
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CHAPTER 7

Sites and Sheaves

00UZ 7.1. Introduction

00V0 The notion of a site was introduced by Grothendieck to be able to study sheaves
in the étale topology of schemes. The basic reference for this notion is perhaps
[AGV71]. Our notion of a site differs from that in [AGV71]; what we call a site
is called a category endowed with a pretopology in [AGV71, Exposé II, Définition
1.3]. The reason we do this is that in algebraic geometry it is often convenient to
work with a given class of coverings, for example when defining when a property
of schemes is local in a given topology, see Descent, Section 35.15. Our exposition
will closely follow [Art62]. We will not use universes.

7.2. Presheaves

00V1 Let C be a category. A presheaf of sets is a contravariant functor F from C to Sets
(see Categories, Remark 4.2.11). So for every object U of C we have a set F(U).
The elements of this set are called the sections of F over U . For every morphism
f : V → U the map F(f) : F(U)→ F(V ) is called the restriction map and is often
denoted f∗ : F(U)→ F(V ). Another way of expressing this is to say that f∗(s) is
the pullback of s via f . Functoriality means that g∗f∗(s) = (f ◦ g)∗(s). Sometimes
we use the notation s|V := f∗(s). This notation is consistent with the notion of
restriction of functions from topology because if W → V → U are morphisms in C
and s is a section of F over U then s|W = (s|V )|W by the functorial nature of F .
Of course we have to be careful since it may very well happen that there is more
than one morphism V → U and it is certainly not going to be the case that the
corresponding pullback maps are equal.

Definition 7.2.1.00V2 A presheaf of sets on C is a contravariant functor from C to
Sets. Morphisms of presheaves are transformations of functors. The category of
presheaves of sets is denoted PSh(C).

Note that for any object U of C the functor of points hU , see Categories, Example
4.3.4 is a presheaf. These are called the representable presheaves. These presheaves
have the pleasing property that for any presheaf F we have
(7.2.1.1)090F MorPSh(C)(hU ,F) = F(U).
This is the Yoneda lemma (Categories, Lemma 4.3.5).
Similarly, we can define the notion of a presheaf of abelian groups, rings, etc. More
generally we may define a presheaf with values in a category.

Definition 7.2.2.00V3 Let C, A be categories. A presheaf F on C with values in A is a
contravariant functor from C to A, i.e., F : Copp → A. A morphism of presheaves
F → G on C with values in A is a transformation of functors from F to G.
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These form the objects and morphisms of the category of presheaves on C with
values in A.

Remark 7.2.3.00V4 As already pointed out we may consider the category of presheaves
with values in any of the “big” categories listed in Categories, Remark 4.2.2. These
will be “big” categories as well and they will be listed in the above mentioned
remark as we go along.

7.3. Injective and surjective maps of presheaves

00V5
Definition 7.3.1.00V6 Let C be a category, and let φ : F → G be a map of presheaves
of sets.

(1) We say that φ is injective if for every object U of C the map φU : F(U)→
G(U) is injective.

(2) We say that φ is surjective if for every object U of C the map φU : F(U)→
G(U) is surjective.

Lemma 7.3.2.00V7 The injective (resp. surjective) maps defined above are exactly the
monomorphisms (resp. epimorphisms) of PSh(C). A map is an isomorphism if and
only if it is both injective and surjective.

Proof. We shall show that φ : F → G is injective if and only if it is a monomorphism
of PSh(C). Indeed, the “only if” direction is straightforward, so let us show the “if”
direction. Assume that φ is a monomorphism. Let U ∈ Ob(C); we need to show
that φU is injective. So let a, b ∈ F(U) be such that φU (a) = φU (b); we need to
check that a = b. Under the isomorphism (7.2.1.1), the elements a and b of F(U)
correspond to two natural transformations a′, b′ ∈ MorPSh(C)(hU ,F). Similarly,
under the analogous isomorphism MorPSh(C)(hU ,G) = G(U), the two equal elements
φU (a) and φU (b) of G(U) correspond to the two natural transformations φ ◦ a′, φ ◦
b′ ∈ MorPSh(C)(hU ,G), which therefore must also be equal. So φ ◦ a′ = φ ◦ b′, and
thus a′ = b′ (since φ is monic), whence a = b. This finishes (1).
We shall show that φ : F → G is surjective if and only if it is an epimorphism of
PSh(C). Indeed, the “only if” direction is straightforward, so let us show the “if”
direction. Assume that φ is an epimorphism.
For any two morphisms f : A → B and g : A → C in the category Sets, we let
inlf,g and inrf,g denote the two canonical maps from B and C to B

∐
A C. (Here,

the pushout is evaluated in Sets.)
Now, we define a presheaf H of sets on C by setting H(U) = G(U)

∐
F(U) G(U)

(where the pushout is evaluated in Sets and induced by the map φU : F(U)→ G(U))
for every U ∈ Ob(C); its action on morphisms is defined in the obvious way (by the
functoriality of pushout). Then, there are two natural transformations i1 : G → H
and i2 : G → H whose components at an object U ∈ Ob(C) are given by the
maps inlφU ,φU and inrφU ,φU , respectively. The definition of a pushout shows that
i1 ◦ φ = i2 ◦ φ, whence i1 = i2 (since φ is an epimorphism). Thus, for every
U ∈ Ob(C), we have inlφU ,φU = inrφU ,φU . Thus, φU must be surjective (since a
simple combinatorial argument shows that if f : A → B is a morphism in Sets,
then inlf,f = inrf,f if and only if f is surjective). In other words, φ is surjective,
and (2) is proven.
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We shall show that φ : F → G is both injective and surjective if and only if it
is an isomorphism of PSh(C). This time, the “if” direction is straightforward. To
prove the “only if” direction, it suffices to observe that if φ is both injective and
surjective, then φU is an invertible map for every U ∈ Ob(C), and the inverses of
these maps for all U can be combined to a natural transformation G → F which is
an inverse to φ. □

Definition 7.3.3.00V8 We say F is a subpresheaf of G if for every object U ∈ Ob(C) the
set F(U) is a subset of G(U), compatibly with the restriction mappings.

In other words, the inclusion maps F(U)→ G(U) glue together to give an (injective)
morphism of presheaves F → G.

Lemma 7.3.4.00V9 Let C be a category. Suppose that φ : F → G is a morphism of
presheaves of sets on C. There exists a unique subpresheaf G′ ⊂ G such that φ
factors as F → G′ → G and such that the first map is surjective.

Proof. To prove existence, just set G′(U) = φU (F(U)) for every U ∈ Ob(C) (and
inherit the action on morphisms from G), and prove that this defines a subpresheaf
of G and that φ factors as F → G′ → G with the first map being surjective.
Uniqueness is straightforward. □

Definition 7.3.5.00VA Notation as in Lemma 7.3.4. We say that G′ is the image of φ.

7.4. Limits and colimits of presheaves

00VB Let C be a category. Limits and colimits exist in the category PSh(C). In addition,
for any U ∈ Ob(C) the functor

PSh(C) −→ Sets, F 7−→ F(U)

commutes with limits and colimits. Perhaps the easiest way to prove these state-
ments is the following. Given a diagram F : I → PSh(C) define presheaves

Flim : U 7−→ limi∈I Fi(U) and Fcolim : U 7−→ colimi∈I Fi(U)

There are clearly projection maps Flim → Fi and canonical maps Fi → Fcolim.
These maps satisfy the requirements of the maps of a limit (resp. colimit) of Cat-
egories, Definition 4.14.1 (resp. Categories, Definition 4.14.2). Indeed, they clearly
form a cone, resp. a cocone, over F . Furthermore, if (G, qi : G → Fi) is another
system (as in the definition of a limit), then we get for every U a system of maps
G(U) → Fi(U) with suitable functoriality requirements. And thus a unique map
G(U) → Flim(U). It is easy to verify these are compatible as we vary U and arise
from the desired map G → Flim. A similar argument works in the case of the
colimit.

7.5. Functoriality of categories of presheaves

00VC Let u : C → D be a functor between categories. In this case we denote

up : PSh(D) −→ PSh(C)

the functor that associates to G on D the presheaf upG = G ◦ u. Note that by the
previous section this functor commutes with all limits.
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For V ∈ Ob(D) let IuV denote the category with

(7.5.0.1)053L Ob(IuV ) = {(U, ϕ) | U ∈ Ob(C), ϕ : V → u(U)}
MorIu

V
((U, ϕ), (U ′, ϕ′)) = {f : U → U ′ in C | u(f) ◦ ϕ = ϕ′}

We sometimes drop the subscript u from the notation and we simply write IV . We
will use these categories to define a left adjoint to the functor up. Before we do so
we prove a few technical lemmas.

Lemma 7.5.1.00X4 Let u : C → D be a functor between categories. Suppose that C has
fibre products and equalizers, and that u commutes with them. Then the categories
(IV )opp satisfy the hypotheses of Categories, Lemma 4.19.8.

Proof. There are two conditions to check.
First, suppose we are given three objects ϕ : V → u(U), ϕ′ : V → u(U ′), and
ϕ′′ : V → u(U ′′) and morphisms a : U ′ → U , b : U ′′ → U such that u(a) ◦ ϕ′ = ϕ
and u(b)◦ϕ′′ = ϕ. We have to show there exists another object ϕ′′′ : V → u(U ′′′) and
morphisms c : U ′′′ → U ′ and d : U ′′′ → U ′′ such that u(c)◦ϕ′′′ = ϕ′, u(d)◦ϕ′′′ = ϕ′′

and a ◦ c = b ◦ d. We take U ′′′ = U ′×U U ′′ with c and d the projection morphisms.
This works as u commutes with fibre products; we omit the verification.
Second, suppose we are given two objects ϕ : V → u(U) and ϕ′ : V → u(U ′) and
morphisms a, b : (U, ϕ) → (U ′, ϕ′). We have to find a morphism c : (U ′′, ϕ′′) →
(U, ϕ) which equalizes a and b. Let c : U ′′ → U be the equalizer of a and b in the
category C. As u commutes with equalizers and since u(a) ◦ ϕ = u(b) ◦ ϕ = ϕ′ we
obtain a morphism ϕ′′ : V → u(U ′′). □

Lemma 7.5.2.00X3 Let u : C → D be a functor between categories. Assume
(1) the category C has a final object X and u(X) is a final object of D , and
(2) the category C has fibre products and u commutes with them.

Then the index categories (IuV )opp are filtered (see Categories, Definition 4.19.1).

Proof. The assumptions imply that the assumptions of Lemma 7.5.1 are satisfied
(see the discussion in Categories, Section 4.18). By Categories, Lemma 4.19.8 we
see that IV is a (possibly empty) disjoint union of directed categories. Hence it
suffices to show that IV is connected.
First, we show that IV is nonempty. Namely, let X be the final object of C, which
exists by assumption. Let V → u(X) be the morphism coming from the fact that
u(X) is final in D by assumption. This gives an object of IV .
Second, we show that IV is connected. Let ϕ1 : V → u(U1) and ϕ2 : V → u(U2)
be in Ob(IV ). By assumption U1 × U2 exists and u(U1 × U2) = u(U1) × u(U2).
Consider the morphism ϕ : V → u(U1 × U2) corresponding to (ϕ1, ϕ2) by the
universal property of products. Clearly the object ϕ : V → u(U1 × U2) maps to
both ϕ1 : V → u(U1) and ϕ2 : V → u(U2). □

Given g : V ′ → V in D we get a functor g : IV → IV ′ by setting g(U, ϕ) = (U, ϕ◦g)
on objects. Given a presheaf F on C we obtain a functor

FV : IoppV −→ Sets, (U, ϕ) 7−→ F(U).
In other words, FV is a presheaf of sets on IV . Note that we have FV ′ ◦ g = FV .
We define

upF(V ) = colimIopp
V
FV

https://stacks.math.columbia.edu/tag/00X4
https://stacks.math.columbia.edu/tag/00X3


7.5. FUNCTORIALITY OF CATEGORIES OF PRESHEAVES 244

As a colimit we obtain for each (U, ϕ) ∈ Ob(IV ) a canonical map F(U) c(ϕ)−−→
upF(V ). For g : V ′ → V as above there is a canonical restriction map g∗ :
upF(V ) → upF(V ′) compatible with FV ′ ◦ g = FV by Categories, Lemma 4.14.8.
It is the unique map so that for all (U, ϕ) ∈ Ob(IV ) the diagram

F(U)
c(ϕ) //

id
��

upF(V )

g∗

��
F(U)

c(ϕ◦g)// upF(V ′)

commutes. The uniqueness of these maps implies that we obtain a presheaf. This
presheaf will be denoted upF .

Lemma 7.5.3.00VD There is a canonical map F(U)→ upF(u(U)), which is compatible
with restriction maps (on F and on upF).

Proof. This is just the map c(idu(U)) introduced above. □

Note that any map of presheaves F → F ′ gives rise to compatible systems of maps
between functors FV → F ′

V , and hence to a map of presheaves upF → upF ′. In
other words, we have defined a functor

up : PSh(C) −→ PSh(D)

Lemma 7.5.4.00VE The functor up is a left adjoint to the functor up. In other words
the formula

MorPSh(C)(F , upG) = MorPSh(D)(upF ,G)
holds bifunctorially in F and G.

Proof. Let G be a presheaf on D and let F be a presheaf on C. We will show that
the displayed formula holds by constructing maps either way. We will leave it to
the reader to verify they are each others inverse.
Given a map α : upF → G we get upα : upupF → upG. Lemma 7.5.3 says that
there is a map F → upupF . The composition of the two gives the desired map.
(The good thing about this construction is that it is clearly functorial in everything
in sight.)
Conversely, given a map β : F → upG we get a map upβ : upF → upu

pG. We claim
that the functor upGY on IY has a canonical map to the constant functor with
value G(Y ). Namely, for every object (X,ϕ) of IY , the value of upGY on this object
is G(u(X)) which maps to G(Y ) by G(ϕ) = ϕ∗. This is a transformation of functors
because G is a functor itself. This leads to a map upu

pG(Y ) → G(Y ). Another
trivial verification shows that this is functorial in Y leading to a map of presheaves
upu

pG → G. The composition upF → upu
pG → G is the desired map. □

Remark 7.5.5.00VF Suppose that A is a category such that any diagram IY → A has
a colimit in A. In this case it is clear that there are functors up and up, defined in
exactly the same way as above, on the categories of presheaves with values in A.
Moreover, the adjointness of the pair up and up continues to hold in this setting.

Lemma 7.5.6.04D2 Let u : C → D be a functor between categories. For any object U of
C we have uphU = hu(U).
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Proof. By adjointness of up and up we have
MorPSh(D)(uphU ,G) = MorPSh(C)(hU , upG) = upG(U) = G(u(U))

and hence by Yoneda’s lemma we see that uphU = hu(U) as presheaves. □

7.6. Sites

00VG Our notion of a site uses the following type of structures.

Definition 7.6.1.0396 Let C be a category, see Conventions, Section 2.3. A family of
morphisms with fixed target in C is given by an object U ∈ Ob(C), a set I and
for each i ∈ I a morphism Ui → U of C with target U . We use the notation
{Ui → U}i∈I to indicate this.

It can happen that the set I is empty! This notation is meant to suggest an open
covering as in topology.

Definition 7.6.2.00VH A site1 is given by a category C and a set Cov(C) of families
of morphisms with fixed target {Ui → U}i∈I , called coverings of C, satisfying the
following axioms

(1) If V → U is an isomorphism then {V → U} ∈ Cov(C).
(2) If {Ui → U}i∈I ∈ Cov(C) and for each i we have {Vij → Ui}j∈Ji ∈ Cov(C),

then {Vij → U}i∈I,j∈Ji ∈ Cov(C).
(3) If {Ui → U}i∈I ∈ Cov(C) and V → U is a morphism of C then Ui ×U V

exists for all i and {Ui ×U V → V }i∈I ∈ Cov(C).

Clarifications. In axiom (1) we require there should be a covering {Ui → U}i∈I of
C such that I = {i} is a singleton set and such that the morphism Ui → U is equal
to the morphism V → U given in (1). In the following we often denote {V → U}
a family of morphisms with fixed target whose index set is a singleton. In axiom
(3) we require the existence of the covering for some choice of the fibre products
Ui ×U V for i ∈ I.

Remark 7.6.3.00VI (On set theoretic issues – skip on a first reading.) The main reason
for introducing sites is to study the category of sheaves on a site, because it is
the generalization of the category of sheaves on a topological space that has been
so important in algebraic geometry. In order to avoid thinking about things like
“classes of classes” and so on, we will not allow sites to be “big” categories, in
contrast to what we do for categories and 2-categories.
Suppose that C is a category and that Cov(C) is a proper class of coverings satisfying
(1), (2) and (3) above. We will not allow this as a site either, mainly because we
are going to take limits over coverings. However, there are several natural ways to
replace Cov(C) by a set of coverings or a slightly different structure that give rise
to the same category of sheaves. For example:

(1) In Sets, Section 3.11 we show how to pick a suitable set of coverings that
gives the same category of sheaves.

(2) Another thing we can do is to take the associated topology (see Definition
7.48.2). The resulting topology on C has the same category of sheaves.
Two topologies have the same categories of sheaves if and only if they
are equal, see Theorem 7.50.2. A topology on a category is given by a

1This notation differs from that of [AGV71], as explained in the introduction.
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choice of sieves on objects. The collection of all possible sieves and even
all possible topologies on C is a set.

(3) We could also slightly modify the notion of a site, see Remark 7.48.4
below, and end up with a canonical set of coverings.

Each of these solutions has some minor drawback. For the first, one has to check
that constructions later on do not depend on the choice of the set of coverings. For
the second, one has to learn about topologies and redo many of the arguments for
sites. For the third, see the last sentence of Remark 7.48.4.

Our approach will be to work with sites as in Definition 7.6.2 above. Given a
category C with a proper class of coverings as above, we will replace this by a set
of coverings producing a site using Sets, Lemma 3.11.1. It is shown in Lemma
7.8.8 below that the resulting category of sheaves (the topos) is independent of this
choice. We leave it to the reader to use one of the other two strategies to deal with
these issues if he/she so desires.

Example 7.6.4.00VJ Let X be a topological space. Let XZar be the category whose
objects consist of all the open sets U in X and whose morphisms are just the
inclusion maps. That is, there is at most one morphism between any two objects in
XZar. Now define {Ui → U}i∈I ∈ Cov(XZar) if and only if

⋃
Ui = U . Conditions

(1) and (2) above are clear, and (3) is also clear once we realize that in XZar

we have U × V = U ∩ V . Note that in particular the empty set has to be an
element of XZar since otherwise this would not work in general. Furthermore, it is
equally important, as we will see later, to allow the empty covering of the empty
set as a covering! We turn XZar into a site by choosing a suitable set of coverings
Cov(XZar)κ,α as in Sets, Lemma 3.11.1. Presheaves and sheaves (as defined below)
on the site XZar agree exactly with the usual notion of a presheaves and sheaves
on a topological space, as defined in Sheaves, Section 6.1.

Example 7.6.5.00VK Let G be a group. Consider the category G-Sets whose objects are
sets X with a left G-action, with G-equivariant maps as the morphisms. An impor-
tant example is GG which is the G-set whose underlying set is G and action given
by left multiplication. This category has fiber products, see Categories, Section 4.7.
We declare {φi : Ui → U}i∈I to be a covering if

⋃
i∈I φi(Ui) = U . This gives a

class of coverings on G-Sets which is easily seen to satisfy conditions (1), (2), and
(3) of Definition 7.6.2. The result is not a site since both the collection of objects
of the underlying category and the collection of coverings form a proper class. We
first replace by G-Sets by a full subcategory G-Setsα as in Sets, Lemma 3.10.1.
After this the site (G-Setsα,Covκ,α′(G-Setsα)) gotten by suitably restricting the
collection of coverings as in Sets, Lemma 3.11.1 will be denoted TG.

As a special case, if the group G is countable, then we can let TG be the category
of countable G-sets and coverings those jointly surjective families of morphisms
{φi : Ui → U}i∈I such that I is countable.

Example 7.6.6.07GE Let C be a category. There is a canonical way to turn this into a
site where {f : V → U | f is an isomorphism} are the coverings of U . Sheaves on
this site are the presheaves on C. This corresponding topology is called the chaotic
or indiscrete topology.
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7.7. Sheaves

00VL Let C be a site. Before we introduce the notion of a sheaf with values in a category
we explain what it means for a presheaf of sets to be a sheaf. Let F be a presheaf
of sets on C and let {Ui → U}i∈I be an element of Cov(C). By assumption all the
fibre products Ui ×U Uj exist in C. There are two natural maps

∏
i∈I F(Ui)

pr∗
0 //

pr∗
1

//
∏

(i0,i1)∈I×I F(Ui0 ×U Ui1)

which we will denote pr∗
i , i = 0, 1 as indicated in the displayed equation. Namely,

an element of the left hand side corresponds to a family (si)i∈I , where each si is a
section of F over Ui. For each pair (i0, i1) ∈ I×I we have the projection morphisms

pr(i0,i1)
i0

: Ui0 ×U Ui1 −→ Ui0 and pr(i0,i1)
i1

: Ui0 ×U Ui1 −→ Ui1 .

Thus we may pull back either the section si0 via the first of these maps or the
section si1 via the second. Explicitly the maps we referred to above are

pr∗
0 : (si)i∈I 7−→

(
pr(i0,i1),∗
i0

(si0)
)

(i0,i1)∈I×I

and
pr∗

1 : (si)i∈I 7−→
(

pr(i0,i1),∗
i1

(si1)
)

(i0,i1)∈I×I
.

Finally consider the natural map

F(U) −→
∏

i∈I
F(Ui), s 7−→ (s|Ui)i∈I

where we have used the notation s|Ui to indicate the pullback of s via the map
Ui → U . It is clear from the functorial nature of F and the commutativity of the
fibre product diagrams that pr∗

0((s|Ui)i∈I) = pr∗
1((s|Ui)i∈I).

Definition 7.7.1.00VM Let C be a site, and let F be a presheaf of sets on C. We say F
is a sheaf if for every covering {Ui → U}i∈I ∈ Cov(C) the diagram

(7.7.1.1)00VN F(U) // ∏
i∈I F(Ui)

pr∗
0 //

pr∗
1

//
∏

(i0,i1)∈I×I F(Ui0 ×U Ui1)

represents the first arrow as the equalizer of pr∗
0 and pr∗

1.

Loosely speaking this means that given sections si ∈ F(Ui) such that
si|Ui×UUj = sj |Ui×UUj

in F(Ui ×U Uj) for all pairs (i, j) ∈ I × I then there exists a unique s ∈ F(U) such
that si = s|Ui .

Remark 7.7.2.04B3 If the covering {Ui → U}i∈I is the empty family (this means that
I = ∅), then the sheaf condition signifies that F(U) = {∗} is a singleton set. This
is because in (7.7.1.1) the second and third sets are empty products in the category
of sets, which are final objects in the category of sets, hence singletons.

Example 7.7.3.00VO Let X be a topological space. Let XZar be the site constructed in
Example 7.6.4. The notion of a sheaf on XZar coincides with the notion of a sheaf
on X introduced in Sheaves, Definition 6.7.1.
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Example 7.7.4.00VP Let X be a topological space. Let us consider the site X ′
Zar which

is the same as the site XZar of Example 7.6.4 except that we disallow the empty
covering of the empty set. In other words, we do allow the covering {∅ → ∅} but
we do not allow the covering whose index set is empty. It is easy to show that this
still defines a site. However, we claim that the sheaves on X ′

Zar are different from
the sheaves on XZar. For example, as an extreme case consider the situation where
X = {p} is a singleton. Then the objects of X ′

Zar are ∅, X and every covering of
∅ can be refined by {∅ → ∅} and every covering of X by {X → X}. Clearly, a
sheaf on this is given by any choice of a set F(∅) and any choice of a set F(X),
together with any restriction map F(X) → F(∅). Thus sheaves on X ′

Zar are the
same as usual sheaves on the two point space {η, p} with open sets {∅, {η}, {p, η}}.
In general sheaves on X ′

Zar are the same as sheaves on the space X ⨿ {η}, with
opens given by the empty set and any set of the form U ∪ {η} for U ⊂ X open.

Definition 7.7.5.00VQ The category Sh(C) of sheaves of sets is the full subcategory of
the category PSh(C) whose objects are the sheaves of sets.

Let A be a category. If products indexed by I, and I × I exist in A for any I that
occurs as an index set for covering families then Definition 7.7.1 above makes sense,
and defines a notion of a sheaf on C with values in A. Note that the diagram in A

F(U) // ∏
i∈I F(Ui)

pr∗
0 //

pr∗
1

//
∏

(i0,i1)∈I×I F(Ui0 ×U Ui1)

is an equalizer diagram if and only if for every object X of A the diagram of sets

MorA(X,F(U)) // ∏MorA(X,F(Ui))
pr∗

0 //

pr∗
1

//
∏

MorA(X,F(Ui0 ×U Ui1))

is an equalizer diagram.

Suppose A is arbitrary. Let F be a presheaf with values in A. Choose any object
X ∈ Ob(A). Then we get a presheaf of sets FX defined by the rule

FX(U) = MorA(X,F(U)).

From the above it follows that a good definition is obtained by requiring all the
presheaves FX to be sheaves of sets.

Definition 7.7.6.00VR Let C be a site, let A be a category and let F be a presheaf on C
with values in A. We say that F is a sheaf if for all objects X of A the presheaf of
sets FX (defined above) is a sheaf.

7.8. Families of morphisms with fixed target

00VS This section is meant to introduce some notions regarding families of morphisms
with the same target.

Definition 7.8.1.00VT Let C be a category. Let U = {Ui → U}i∈I be a family of
morphisms of C with fixed target. Let V = {Vj → V }j∈J be another.

(1) A morphism of families of maps with fixed target of C from U to V, or
simply a morphism from U to V is given by a morphism U → V , a map

https://stacks.math.columbia.edu/tag/00VP
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of sets α : I → J and for each i ∈ I a morphism Ui → Vα(i) such that the
diagram

Ui //

��

Vα(i)

��
U // V

is commutative.
(2) In the special case that U = V and U → V is the identity we call U a

refinement of the family V.

A trivial but important remark is that if V = {Vj → V }j∈J is the empty family of
maps, i.e., if J = ∅, then no family U = {Ui → V }i∈I with I ̸= ∅ can refine V!

Definition 7.8.2.00VU Let C be a category. Let U = {φi : Ui → U}i∈I , and V = {ψj :
Vj → U}j∈J be two families of morphisms with fixed target.

(1) We say U and V are combinatorially equivalent if there exist maps α :
I → J and β : J → I such that φi = ψα(i) and ψj = φβ(j).

(2) We say U and V are tautologically equivalent if there exist maps α : I → J
and β : J → I and for all i ∈ I and j ∈ J commutative diagrams

Ui

��

// Vα(i)

}}

Vj

��

// Uβ(j)

}}
U U

with isomorphisms as horizontal arrows.

Lemma 7.8.3.00VV Let C be a category. Let U = {φi : Ui → U}i∈I , and V = {ψj :
Vj → U}j∈J be two families of morphisms with the same fixed target.

(1) If U and V are combinatorially equivalent then they are tautologically
equivalent.

(2) If U and V are tautologically equivalent then U is a refinement of V and
V is a refinement of U .

(3) The relation “being combinatorially equivalent” is an equivalence relation
on all families of morphisms with fixed target.

(4) The relation “being tautologically equivalent” is an equivalence relation
on all families of morphisms with fixed target.

(5) The relation “U refines V and V refines U” is an equivalence relation on
all families of morphisms with fixed target.

Proof. Omitted. □

In the following lemma, given a category C, a presheaf F on C, a family U = {Ui →
U}i∈I such that all fibre products Ui ×U Ui′ exist, we say that the sheaf condition
for F with respect to U holds if the diagram (7.7.1.1) is an equalizer diagram.

Lemma 7.8.4.00VW Let C be a category. Let U = {φi : Ui → U}i∈I , and V = {ψj :
Vj → U}j∈J be two families of morphisms with the same fixed target. Assume that
the fibre products Ui ×U Ui′ and Vj ×U Vj′ exist. If U and V are tautologically
equivalent, then for any presheaf F on C the sheaf condition for F with respect to
U is equivalent to the sheaf condition for F with respect to V.

https://stacks.math.columbia.edu/tag/00VU
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Proof. First, note that if φ : A→ B is an isomorphism in the category C, then φ∗ :
F(B)→ F(A) is an isomorphism. Let β : J → I be a map and let χj : Vj → Uβ(j)
be isomorphisms over U which are assumed to exist by hypothesis. Let us show
that the sheaf condition for V implies the sheaf condition for U . Suppose given
sections si ∈ F(Ui) such that

si|Ui×UUi′ = si′ |Ui×UUi′
in F(Ui ×U Ui′) for all pairs (i, i′) ∈ I × I. Then we can define sj = χ∗

jsβ(j). For
any pair (j, j′) ∈ J × J the morphism χj ×idU χj′ : Vj ×U Vj′ → Uβ(j) ×U Uβ(j′) is
an isomorphism as well. Hence by transport of structure we see that

sj |Vj×UVj′ = sj′ |Vj×UVj′

as well. The sheaf condition w.r.t. V implies there exists a unique s such that
s|Vj = sj for all j ∈ J . By the first remark of the proof this implies that s|Ui = si
for all i ∈ Im(β) as well. Suppose that i ∈ I, i ̸∈ Im(β). For such an i we
have isomorphisms Ui → Vα(i) → Uβ(α(i)) over U . This gives a morphism Ui →
Ui ×U Uβ(α(i)) which is a section of the projection. Because si and sβ(α(i)) restrict
to the same element on the fibre product we conclude that sβ(α(i)) pulls back to si
via Ui → Uβ(α(i)). Thus we see that also si = s|Ui as desired. □

Lemma 7.8.5.0G1K Let C be a category. Let V = {Vj → U}j∈J → U = {Ui → U}i∈I
be a morphism of families of maps with fixed target of C given by id : U → U ,
α : J → I and fj : Vj → Uα(j). Let F be a presheaf on C. If F(U)→

∏
j∈J F(Vj)

is injective then F(U)→
∏
i∈I F(Ui) is injective.

Proof. Omitted. □

Lemma 7.8.6.0G1L Let C be a category. Let V = {Vj → U}j∈J → U = {Ui → U}i∈I
be a morphism of families of maps with fixed target of C given by id : U → U ,
α : J → I and fj : Vj → Uα(j). Let F be a presheaf on C. If

(1) the fibre products Ui ×U Ui′ , Ui ×U Vj , Vj ×U Vj′ exist,
(2) F satisfies the sheaf condition with respect to V, and
(3) for every i ∈ I the map F(Ui)→

∏
j∈J F(Vj ×U Ui) is injective.

Then F satisfies the sheaf condition with respect to U .
Proof. By Lemma 7.8.5 the map F(U) →

∏
F(Ui) is injective. Suppose given

si ∈ F(Ui) such that si|Ui×UUi′ = si′ |Ui×UUi′ for all i, i′ ∈ I. Set sj = f∗
j (sα(j)) ∈

F(Vj). Since the morphisms fj are morphisms over U we obtain induced morphisms
fjj′ : Vj ×U Vj′ → Uα(i) ×U Uα(i′) compatible with the fj , fj′ via the projection
maps. It follows that

sj |Vj×UVj′ = f∗
jj′(sα(j)|Uα(j)×UUα(j′)) = f∗

jj′(sα(j′)|Uα(j)×UUα(j′)) = sj′ |Vj×UVj′

for all j, j′ ∈ J . Hence, by the sheaf condition for F with respect to V, we get
a section s ∈ F(U) which restricts to sj on each Vj . We are done if we show s
restricts to si on Ui for any i ∈ I. Since F satisfies (3) it suffices to show that s
and si restrict to the same element over Ui ×U Vj for all j ∈ J . To see this we use
s|Ui×UVj = sj |Ui×UVj = (id×fj)∗sα(j)|Ui×UUα(j) = (id×fj)∗si|Ui×UUα(j) = si|Ui×UVj
as desired. □

Lemma 7.8.7.00VX Let C be a category. Let Covi, i = 1, 2 be two sets of families of
morphisms with fixed target which each define the structure of a site on C.
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(1) If every U ∈ Cov1 is tautologically equivalent to some V ∈ Cov2, then
Sh(C,Cov2) ⊂ Sh(C,Cov1). If also, every U ∈ Cov2 is tautologically
equivalent to some V ∈ Cov1 then the category of sheaves are equal.

(2) Suppose that for each U ∈ Cov1 there exists a V ∈ Cov2 such that V refines
U . In this case Sh(C,Cov2) ⊂ Sh(C,Cov1). If also for every U ∈ Cov2
there exists a V ∈ Cov1 such that V refines U , then the categories of
sheaves are equal.

Proof. Part (1) follows directly from Lemma 7.8.4 and the definitions.
Proof of (2). Let F be a sheaf of sets for the site (C,Cov2). Let U ∈ Cov1, say
U = {Ui → U}i∈I . By assumption we may choose a refinement V ∈ Cov2 of U ,
say V = {Vj → U}j∈J and refinement given by α : J → I and fj : Vj → Uα(j).
Observe that F satisfies the sheaf condition for V and for the coverings {Vj×UUi →
Ui}j∈J as these are in Cov2. Hence F satisfies the sheaf condition for U by Lemma
7.8.6. □

Lemma 7.8.8.00VY Let C be a category. Let Cov(C) be a proper class of coverings sat-
isfying conditions (1), (2) and (3) of Definition 7.6.2. Let Cov1,Cov2 ⊂ Cov(C) be
two subsets of Cov(C) which endow C with the structure of a site. If every covering
U ∈ Cov(C) is combinatorially equivalent to a covering in Cov1 and combinatorially
equivalent to a covering in Cov2, then Sh(C,Cov1) = Sh(C,Cov2).

Proof. This is clear from Lemmas 7.8.7 and 7.8.3 above as the hypothesis implies
that every covering U ∈ Cov1 ⊂ Cov(C) is combinatorially equivalent to an element
of Cov2, and similarly with the roles of Cov1 and Cov2 reversed. □

7.9. The example of G-sets

00VZ As an example, consider the site TG of Example 7.6.5. We will describe the category
of sheaves on TG. The answer will turn out to be independent of the choices made
in defining TG. In fact, during the proof we will need only the following properties
of the site TG:

(a) TG is a full subcategory of G-Sets,
(b) TG contains the G-set GG,
(c) TG has fibre products and they are the same as in G-Sets,
(d) given U ∈ Ob(TG) and a G-invariant subset O ⊂ U , there exists an object

of TG isomorphic to O, and
(e) any surjective family of maps {Ui → U}i∈I , with U,Ui ∈ Ob(TG) is com-

binatorially equivalent to a covering of TG.
These properties hold by Sets, Lemmas 3.10.2 and 3.11.1.
Remark that the map

HomG(GG,GG) −→ Gopp, φ 7−→ φ(1)
is an isomorphism of groups. The inverse map sends g ∈ G to the map Rg : s 7→ sg
(i.e. right multiplication). Note that Rg1g2 = Rg2 ◦Rg1 so the opposite is necessary.
This implies that for every presheaf F on TG the value F(GG) inherits the structure
of a G-set as follows: g · s for g ∈ G and s ∈ F(GG) defined by F(Rg)(s). This is
a left action because

(g1g2) · s = F(Rg1g2)(s) = F(Rg2 ◦Rg1)(s) = F(Rg1)(F(Rg2)(s)) = g1 · (g2 · s).

https://stacks.math.columbia.edu/tag/00VY
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Here we’ve used that F is contravariant. Note that if F → G is a morphism of
presheaves of sets on TG then we get a map F(GG)→ G(GG) which is compatible
with the G-actions we have just defined. All in all we have constructed a functor

PSh(TG) −→ G-Sets, F 7−→ F(GG).
We leave it to the reader to verify that this construction has the pleasing property
that the representable presheaf hU is mapped to something canonically isomorphic
to U . In a formula hU (GG) = HomG(GG,U) ∼= U .
Suppose that S is a G-set. We define a presheaf FS by the formula2

FS(U) = MorG-Sets(U, S).
This is clearly a presheaf. On the other hand, suppose that {Ui → U}i∈I is a
covering in TG. This implies that

∐
i Ui → U is surjective. Thus it is clear that the

map
FS(U) = MorG-Sets(U, S) −→

∏
FS(Ui) =

∏
MorG-Sets(Ui, S)

is injective. And, given a family of G-equivariant maps si : Ui → S, such that all
the diagrams

Ui ×U Uj

��

// Uj

sj

��
Ui

si // S

commute, there is a unique G-equivariant map s : U → S such that si is the
composition Ui → U → S. Namely, we just define s(u) = si(ui) where i ∈ I is any
index such that there exists some ui ∈ Ui mapping to u under the map Ui → U .
The commutativity of the diagrams above implies exactly that this construction is
well defined. All in all we have constructed a functor

G-Sets −→ Sh(TG), S 7−→ FS .

We now have the following diagram of categories and functors

PSh(TG)
F7→F(GG) // G-Sets

S 7→FS

zz
Sh(TG)

ee

It is immediate from the definitions that FS(GG) = MorG(GG,S) = S, the last
equality by evaluation at 1. This almost proves the following.

Proposition 7.9.1.00W0 The functors F 7→ F(GG) and S 7→ FS define quasi-inverse
equivalences between Sh(TG) and G-Sets.

Proof. We have already seen that composing the functors one way around is iso-
morphic to the identity functor. In the other direction, for any sheaf H there is a
natural map of sheaves

can : H −→ FH(GG).

2It may appear this is the representable presheaf defined by S. This may not be the case
because S may not be an object of TG which was chosen to be a sufficiently large set of G-sets.

https://stacks.math.columbia.edu/tag/00W0
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Namely, for any object U of TG we let canU be the map
H(U) −→ FH(GG)(U) = MorG(U,H(GG))
s 7−→ (u 7→ α∗

us).

Here αu : GG → U is the map αu(g) = gu and α∗
u : H(U) → H(GG) is the

pullback map. A trivial but confusing verification shows that this is indeed a map
of presheaves. We have to show that can is an isomorphism. We do this by showing
canU is an isomorphism for all U ∈ Ob(TG). We leave the (important but easy)
case that U = GG to the reader. A general object U of TG is a disjoint union of G-
orbits: U =

∐
i∈I Oi. The family of maps {Oi → U}i∈I is tautologically equivalent

to a covering in TG (by the properties of TG listed at the beginning of this section).
Hence by Lemma 7.8.4 the sheaf H satisfies the sheaf property with respect to
{Oi → U}i∈I . The sheaf property for this covering implies H(U) =

∏
iH(Oi).

Hence it suffices to show that canU is an isomorphism when U consists of a single
G-orbit. Let u ∈ U and let H ⊂ G be its stabilizer. Clearly, MorG(U,H(GG)) =
H(GG)H equals the subset of H-invariant elements. On the other hand consider the
covering {GG→ U} given by g 7→ gu (again it is just combinatorially equivalent to
some covering of TG, and again this doesn’t matter). Note that the fibre product
(GG) ×U (GG) is equal to {(g, gh), g ∈ G, h ∈ H} ∼=

∐
h∈H GG. Hence the sheaf

property for this covering reads as

H(U) // H(GG)
pr∗

0 //

pr∗
1

//
∏
h∈H H(GG).

The two maps pr∗
i into the factor H(GG) differ by multiplication by h. Now the

result follows from this and the fact that can is an isomorphism for U = GG. □

7.10. Sheafification

00W1 In order to define the sheafification we study the zeroth Čech cohomology group of
a covering and its functoriality properties.

Let F be a presheaf of sets on C, and let U = {Ui → U}i∈I be a covering of C. Let
us use the notation F(U) to indicate the equalizer

H0(U ,F) = {(si)i∈I ∈
∏

i
F(Ui) | si|Ui×UUj = sj |Ui×UUj ∀i, j ∈ I}.

As we will see later, this is the zeroth Čech cohomology of F over U with respect
to the covering U . A small remark is that we can define H0(U ,F) as soon as all
the morphisms Ui → U are representable, i.e., U need not be a covering of the
site. There is a canonical map F(U) → H0(U ,F). It is clear that a morphism of
coverings U → V induces commutative diagrams

Ui // Vα(i)

Ui ×U Uj //

;;

##

Vα(i) ×V Vα(j)

88

&&
Uj // Vα(j)

.
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This in turn produces a map H0(V,F) → H0(U ,F), compatible with the map
F(V )→ F(U).
By construction, a presheaf F is a sheaf if and only if for every covering U of C the
natural map F(U) → H0(U ,F) is bijective. We will use this notion to prove the
following simple lemma about limits of sheaves.

Lemma 7.10.1.00W2 Let F : I → Sh(C) be a diagram. Then limI F exists and is equal
to the limit in the category of presheaves.

Proof. Let limi Fi be the limit as a presheaf. We will show that this is a sheaf and
then it will trivially follow that it is a limit in the category of sheaves. To prove the
sheaf property, let V = {Vj → V }j∈J be a covering. Let (sj)j∈J be an element of
H0(V, limi Fi). Using the projection maps we get elements (sj,i)j∈J in H0(V,Fi).
By the sheaf property for Fi we see that there is a unique si ∈ Fi(V ) such that
sj,i = si|Vj . Let ϕ : i → i′ be a morphism of the index category. We would like to
show that F(ϕ) : Fi → Fi′ maps si to si′ . We know this is true for the sections
si,j and si′,j for all j and hence by the sheaf property for Fi′ this is true. At this
point we have an element s = (si)i∈Ob(I) of (limi Fi)(V ). We leave it to the reader
to see this element has the required property that sj = s|Vj . □

Example 7.10.2.00W3 A particular example is the limit over the empty diagram. This
gives the final object in the category of (pre)sheaves. It is the presheaf that asso-
ciates to each object U of C a singleton set, with unique restriction mappings and
moreover this presheaf is a sheaf. We often denote this sheaf by ∗.

Let JU be the category of all coverings of U . In other words, the objects of JU are
the coverings of U in C, and the morphisms are the refinements. By our conventions
on sites this is indeed a category, i.e., the collection of objects and morphisms forms
a set. Note that Ob(JU ) is not empty since {idU} is an object of it. According to
the remarks above the construction U 7→ H0(U ,F) is a contravariant functor on
JU . We define

F+(U) = colimJ opp
U

H0(U ,F)
See Categories, Section 4.14 for a discussion of limits and colimits. We point out
that later we will see that F+(U) is the zeroth Čech cohomology of F over U .
Before we say more about the structure of the colimit, we turn the collection of
sets F+(U), U ∈ Ob(C) into a presheaf. Namely, let V → U be a morphism of C.
By the axioms of a site there is a functor3

JU −→ JV , {Ui → U} 7−→ {Ui ×U V → V }.
Note that the projection maps furnish a functorial morphism of coverings {Ui ×U
V → V } → {Ui → U} and hence, by the construction above, a functorial map
of sets H0({Ui → U},F) → H0({Ui ×U V → V },F). In other words, there
is a transformation of functors from H0(−,F) : J oppU → Sets to the composition
J oppU → J oppV

H0(−,F)−−−−−−→ Sets. Hence by generalities of colimits we obtain a canonical
map F+(U)→ F+(V ). In terms of the description of the set F+(U) above, it just
takes the element associated with s = (si) ∈ H0({Ui → U},F) to the element
associated with (si|V×UUi) ∈ H0({Ui ×U V → V },F).

3This construction actually involves a choice of the fibre products Ui ×U V and hence the
axiom of choice. The resulting map does not depend on the choices made, see below.
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Lemma 7.10.3.00W4 The constructions above define a presheaf F+ together with a
canonical map of presheaves F → F+.

Proof. All we have to do is to show that given morphisms W → V → U the
composition F+(U) → F+(V ) → F+(W ) equals the map F+(U) → F+(W ).
This can be shown directly by verifying that, given a covering {Ui → U} and
s = (si) ∈ H0({Ui → U},F), we have canonically W ×U Ui ∼= W ×V (V ×U Ui),
and si|W×UUi corresponds to (si|V×UUi)|W×V (V×UUi) via this isomorphism. □

More indirectly, the result of Lemma 7.10.6 shows that we may pullback an element
s as above via any morphism from any covering of W to {Ui → U} and we will
always end up with the same element in F+(W ).

Lemma 7.10.4.00W5 The association F 7→ (F → F+) is a functor.

Proof. Instead of proving this we state exactly what needs to be proven. Let F → G
be a map of presheaves. Prove the commutativity of:

F //

��

F+

��
G // G+

□

The next two lemmas imply that the colimits above are colimits over a directed set.

Lemma 7.10.5.00W6 Given a pair of coverings {Ui → U} and {Vj → U} of a given
object U of the site C, there exists a covering which is a common refinement.

Proof. Since C is a site we have that for every i the family {Vj ×U Ui → Ui}j is a
covering. And, then another axiom implies that {Vj ×U Ui → U}i,j is a covering of
U . Clearly this covering refines both given coverings. □

Lemma 7.10.6.00W7 Any two morphisms f, g : U → V of coverings inducing the same
morphism U → V induce the same map H0(V,F)→ H0(U ,F).

Proof. Let U = {Ui → U}i∈I and V = {Vj → V }j∈J . The morphism f consists of
a map U → V , a map α : I → J and maps fi : Ui → Vα(i). Likewise, g determines
a map β : I → J and maps gi : Ui → Vβ(i). As f and g induce the same map
U → V , the diagram

Vα(i)

!!
Ui

fi
==

gi !!

V

Vβ(i)

==
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is commutative for every i ∈ I. Hence f and g factor through the fibre product
Vα(i)

Ui
φ //

fi
99

gi
%%

Vα(i) ×V Vβ(i)

pr1

OO

pr2

��
Vβ(i).

Now let s = (sj)j ∈ H0(V,F). Then for all i ∈ I:
(f∗s)i = f∗

i (sα(i)) = φ∗pr∗
1(sα(i)) = φ∗pr∗

2(sβ(i)) = g∗
i (sβ(i)) = (g∗s)i,

where the middle equality is given by the definition of H0(V,F). This shows that
the maps H0(V,F)→ H0(U ,F) induced by f and g are equal. □

Remark 7.10.7.00W8 In particular this lemma shows that if U is a refinement of V, and if
V is a refinement of U , then there is a canonical identificationH0(U ,F) = H0(V,F).

From these two lemmas, and the fact that JU is nonempty, it follows that the
diagram H0(−,F) : J oppU → Sets is filtered, see Categories, Definition 4.19.1.
Hence, by Categories, Section 4.19 the colimit F+(U) may be described in the
following straightforward manner. Namely, every element in the set F+(U) arises
from an element s ∈ H0(U ,F) for some covering U of U . Given a second element
s′ ∈ H0(U ′,F) then s and s′ determine the same element of the colimit if and only
if there exists a covering V of U and refinements f : V → U and f ′ : V → U ′ such
that f∗s = (f ′)∗s′ in H0(V,F). Since the trivial covering {idU} is an object of JU
we get a canonical map F(U)→ F+(U).

Lemma 7.10.8.00W9 The map θ : F → F+ has the following property: For every object
U of C and every section s ∈ F+(U) there exists a covering {Ui → U} such that
s|Ui is in the image of θ : F(Ui)→ F+(Ui).

Proof. Namely, let {Ui → U} be a covering such that s arises from the element
(si) ∈ H0({Ui → U},F). According to Lemma 7.10.6 we may consider the covering
{Ui → Ui} and the (obvious) morphism of coverings {Ui → Ui} → {Ui → U} to
compute the pullback of s to an element of F+(Ui). And indeed, using this covering
we get exactly θ(si) for the restriction of s to Ui. □

Definition 7.10.9.00WA We say that a presheaf of sets F on a site C is separated if, for
all coverings of {Ui → U}, the map F(U)→

∏
F(Ui) is injective.

Theorem 7.10.10.00WB With F as above
(1)00WC The presheaf F+ is separated.
(2)00WD If F is separated, then F+ is a sheaf and the map of presheaves F → F+

is injective.
(3)00WE If F is a sheaf, then F → F+ is an isomorphism.
(4)00WF The presheaf F++ is always a sheaf.

Proof. Proof of (1). Suppose that s, s′ ∈ F+(U) and suppose that there exists some
covering {Ui → U} such that s|Ui = s′|Ui for all i. We now have three coverings
of U : the covering {Ui → U} above, a covering U for s as in Lemma 7.10.8, and a
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similar covering U ′ for s′. By Lemma 7.10.5, we can find a common refinement, say
{Wj → U}. This means we have sj , s′

j ∈ F(Wj) such that s|Wj = θ(sj), similarly
for s′|Wj , and such that θ(sj) = θ(s′

j). This last equality means that there exists
some covering {Wjk → Wj} such that sj |Wjk

= s′
j |Wjk

. Then since {Wjk → U}
is a covering we see that s, s′ map to the same element of H0({Wjk → U},F) as
desired.
Proof of (2). It is clear that F → F+ is injective because all the maps F(U) →
H0(U ,F) are injective. It is also clear that, if U → U ′ is a refinement, then
H0(U ′,F)→ H0(U ,F) is injective. Now, suppose that {Ui → U} is a covering, and
let (si) be a family of elements of F+(Ui) satisfying the sheaf condition si|Ui×UUi′ =
si′ |Ui×UUi′ for all i, i′ ∈ I. Choose coverings (as in Lemma 7.10.8) {Uij → Ui} such
that si|Uij is the image of the (unique) element sij ∈ F(Uij). The sheaf condition
implies that sij and si′j′ agree over Uij×U Ui′j′ because it maps to Ui×U Ui′ and we
have the equality there. Hence (sij) ∈ H0({Uij → U},F) gives rise to an element
s ∈ F+(U). We leave it to the reader to verify that s|Ui = si.
Proof of (3). This is immediate from the definitions because the sheaf property
says exactly that every map F → H0(U ,F) is bijective (for every covering U of U).
Statement (4) is now obvious. □

Definition 7.10.11.00WG Let C be a site and let F be a presheaf of sets on C. The
sheaf F# := F++ together with the canonical map F → F# is called the sheaf
associated to F .
Proposition 7.10.12.00WH The canonical map F → F# has the following universal
property: For any map F → G, where G is a sheaf of sets, there is a unique map
F# → G such that F → F# → G equals the given map.
Proof. By Lemma 7.10.4 we get a commutative diagram

F //

��

F+ //

��

F++

��
G // G+ // G++

and by Theorem 7.10.10 the lower horizontal maps are isomorphisms. The unique-
ness follows from Lemma 7.10.8 which says that every section of F# locally comes
from sections of F . □

It is clear from this result that the functor F 7→ (F → F#) is unique up to unique
isomorphism of functors. Actually, let us temporarily denote i : Sh(C) → PSh(C)
the functor of inclusion. The result above actually says that

MorPSh(C)(F , i(G)) = MorSh(C)(F#,G).
In other words, the functor of sheafification is the left adjoint to the inclusion
functor i. We finish this section with a couple of lemmas.
Lemma 7.10.13.00WI Let F : I → Sh(C) be a diagram. Then colimI F exists and is
the sheafification of the colimit in the category of presheaves.
Proof. Since the sheafification functor is a left adjoint it commutes with all colimits,
see Categories, Lemma 4.24.5. Hence, since PSh(C) has colimits, we deduce that
Sh(C) has colimits (which are the sheafifications of the colimits in presheaves). □
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Lemma 7.10.14.00WJ The functor PSh(C)→ Sh(C), F 7→ F# is exact.

Proof. Since it is a left adjoint it is right exact, see Categories, Lemma 4.24.6. On
the other hand, by Lemmas 7.10.5 and Lemma 7.10.6 the colimits in the construc-
tion of F+ are really over the directed set Ob(JU ) where U ≥ U ′ if and only if U
is a refinement of U ′. Hence by Categories, Lemma 4.19.2 we see that F → F+

commutes with finite limits (as a functor from presheaves to presheaves). Then we
conclude using Lemma 7.10.1. □

Lemma 7.10.15.00WK Let C be a site. Let F be a presheaf of sets on C. Denote
θ2 : F → F# the canonical map of F into its sheafification. Let U be an object of
C. Let s ∈ F#(U). There exists a covering {Ui → U} and sections si ∈ F(Ui) such
that

(1) s|Ui = θ2(si), and
(2) for every i, j there exists a covering {Uijk → Ui×U Uj} of C such that the

pullback of si and sj to each Uijk agree.
Conversely, given any covering {Ui → U}, elements si ∈ F(Ui) such that (2) holds,
then there exists a unique section s ∈ F#(U) such that (1) holds.

Proof. Omitted. □

7.11. Injective and surjective maps of sheaves

00WL
Definition 7.11.1.00WM Let C be a site, and let φ : F → G be a map of sheaves of sets.

(1) We say that φ is injective if for every object U of C the map φ : F(U)→
G(U) is injective.

(2) We say that φ is surjective if for every object U of C and every section
s ∈ G(U) there exists a covering {Ui → U} such that for all i the restriction
s|Ui is in the image of φ : F(Ui)→ G(Ui).

Lemma 7.11.2.00WN The injective (resp. surjective) maps defined above are exactly the
monomorphisms (resp. epimorphisms) of the category Sh(C). A map of sheaves is
an isomorphism if and only if it is both injective and surjective.

Proof. Omitted. □

Lemma 7.11.3.086K Let C be a site. Let F → G be a surjection of sheaves of sets. Then
the diagram

F ×G F
//
// F // G

represents G as a coequalizer.

Proof. Let H be a sheaf of sets and let φ : F → H be a map of sheaves equalizing
the two maps F ×G F → F . Let G′ ⊂ G be the presheaf image of the map F → G.
As the product F ×G F may be computed in the category of presheaves we see
that it is equal to the presheaf product F ×G′ F . Hence φ induces a unique map
of presheaves ψ′ : G′ → H. Since G is the sheafification of G′ by Lemma 7.11.2 we
conclude that ψ′ extends uniquely to a map of sheaves ψ : G → H. We omit the
verification that φ is equal to the composition of ψ and the given map. □
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7.12. Representable sheaves

00WO Let C be a category. The canonical topology is the finest topology such that all
representable presheaves are sheaves (it is formally defined in Definition 7.47.12
but we will not need this). This topology is not always the topology associated to
the structure of a site on C. We will give a collection of coverings that generates
this topology in case C has fibered products. First we give the following general
definition.
Definition 7.12.1.00WP Let C be a category. We say that a family {Ui → U}i∈I is an ef-
fective epimorphism if all the morphisms Ui → U are representable (see Categories,
Definition 4.6.4), and for any X ∈ Ob(C) the sequence

MorC(U,X) // ∏
i∈I MorC(Ui, X) //

//
∏

(i,j)∈I2 MorC(Ui ×U Uj , X)

is an equalizer diagram. We say that a family {Ui → U} is a universal effective
epimorphism if for any morphism V → U the base change {Ui ×U V → V } is an
effective epimorphism.
The class of families which are universal effective epimorphisms satisfies the axioms
of Definition 7.6.2. If C has fibre products, then the associated topology is the
canonical topology. (In this case, to get a site argue as in Sets, Lemma 3.11.1.)
Conversely, suppose that C is a site such that all representable presheaves are
sheaves. Then clearly, all coverings are universal effective epimorphisms. Thus
the following definition is the “correct” one in the setting of sites.
Definition 7.12.2.00WQ We say that the topology on a site C is weaker than the canonical
topology, or that the topology is subcanonical if all the coverings of C are universal
effective epimorphisms.
A representable sheaf is a representable presheaf which is also a sheaf. Since it is
perhaps better to avoid this terminology when the topology is not subcanonical,
we only define it formally in that case.
Definition 7.12.3.00WR Let C be a site whose topology is subcanonical. The Yoneda
embedding h (see Categories, Section 4.3) presents C as a full subcategory of the
category of sheaves of C. In this case we call sheaves of the form hU with U ∈
Ob(C) representable sheaves on C. Notation: Sometimes, the representable sheaf
hU associated to U is denoted U .
Note that we have in the situation of the definition

MorSh(C)(hU ,F) = F(U)
for every sheaf F , since it holds for presheaves, see (7.2.1.1). In general the
presheaves hU are not sheaves and to get a sheaf you have to sheafify them. In this
case we still have
(7.12.3.1)090I MorSh(C)(h#

U ,F) = MorPSh(C)(hU ,F) = F(U)
for every sheaf F . Namely, the first equality holds by the adjointness property of
# and the second is (7.2.1.1).
Lemma 7.12.4.00WT Let C be a site. If {Ui → U}i∈I is a covering of the site C, then
the morphism of presheaves of sets∐

i∈I
hUi → hU
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becomes surjective after sheafification.

Proof. By Lemma 7.11.2 above we have to show that
∐
i∈I h

#
Ui
→ h#

U is an epimor-
phism. Let F be a sheaf of sets. A morphism h#

U → F corresponds to a section
s ∈ F(U). Hence the injectivity of Mor(h#

U ,F) →
∏
i Mor(h#

Ui
,F) follows directly

from the sheaf property of F . □

The next lemma says, in the case the topology is weaker than the canonical topology,
that every sheaf is made up out of representable sheaves in a way.

Lemma 7.12.5.00WS Let C be a site. Let E ⊂ Ob(C) be a subset such that every object
of C has a covering by elements of E. Let F be a sheaf of sets. There exists a
diagram of sheaves of sets

F1
//
// F0 // F

which represents F as a coequalizer, such that Fi, i = 0, 1 are coproducts of sheaves
of the form h#

U with U ∈ E.

Proof. First we show there is an epimorphism F0 → F of the desired type. Namely,
just take

F0 =
∐

U∈E,s∈F(U)
(hU )# −→ F

Here the arrow restricted to the component corresponding to (U, s) maps the ele-
ment idU ∈ h#

U (U) to the section s ∈ F(U). This is an epimorphism according to
Lemma 7.11.2 and our condition on E. To construct F1 first set G = F0×F F0 and
then construct an epimorphism F1 → G as above. See Lemma 7.11.3. □

Lemma 7.12.6.0GLW Let C be a site. Let F be a sheaf of sets on C. Then there exists a
diagram I → C, i 7→ Ui such that

F = colimi∈I h
#
Ui

Moreover, if E ⊂ Ob(C) is a subset such that every object of C has a covering by
elements of E, then we may assume Ui is an element of E for all i ∈ Ob(I).

Proof. Let I be the category whose objects are pairs (U, s) with U ∈ Ob(C) and
s ∈ F(U) and whose morphisms (U, s) → (U ′, s′) are morphisms f : U → U ′ in
C with f∗s′ = s. For each object (U, s) of I the element s defines by the Yoneda
lemma a map s : hU → F of presheaves. Hence by the universal property of
sheafification a map h#

U → F . These maps are immediately seen to be compatible
with the morphisms in the category I. Hence we obtain a map colim(U,s) hU → F
of presheaves (where the colimit is taken in the category of presheaves) and a
map colim(U,s)(hU )# → F of sheaves (where the colimit is taken in the cate-
gory of sheaves). Since sheafification is the left adjoint to the inclusion functor
Sh(C)→ PSh(C) (Proposition 7.10.12) we have colim(hU )# = (colim hU )# by Cat-
egories, Lemma 4.24.5. Thus it suffices to show that colim(U,s) hU → F is an
isomorphism of presheaves. To see this we show that for every object X of C the
map colim(U,s) hU (X) → F(X) is bijective. Namely, it has an inverse sending the
element t ∈ F(X) to the element of the set colim(U,s) hU (X) corresponding to (X, t)
and idX ∈ hX(X).

We omit the proof of the final statement. □
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7.13. Continuous functors

00WU
Definition 7.13.1.00WV Let C and D be sites. A functor u : C → D is called continuous
if for every {Vi → V }i∈I ∈ Cov(C) we have the following

(1) {u(Vi)→ u(V )}i∈I is in Cov(D), and
(2) for any morphism T → V in C the morphism u(T ×V Vi) → u(T ) ×u(V )

u(Vi) is an isomorphism.

Recall that given a functor u as above, and a presheaf of sets F on D we have
defined upF to be simply the presheaf F ◦ u, in other words

upF(V ) = F(u(V ))
for every object V of C.

Lemma 7.13.2.00WW Let C and D be sites. Let u : C → D be a continuous functor. If F
is a sheaf on D then upF is a sheaf as well.

Proof. Let {Vi → V } be a covering. By assumption {u(Vi) → u(V )} is a covering
in D and u(Vi ×V Vj) = u(Vi)×u(V ) u(Vj). Hence the sheaf condition for upF and
the covering {Vi → V } is precisely the same as the sheaf condition for F and the
covering {u(Vi)→ u(V )}. □

In order to avoid confusion we sometimes denote
us : Sh(D) −→ Sh(C)

the functor up restricted to the subcategory of sheaves of sets. Recall that up has
a left adjoint up : PSh(C)→ PSh(D), see Section 7.5.

Lemma 7.13.3.00WX In the situation of Lemma 7.13.2. The functor us : G 7→ (upG)# is
a left adjoint to us.

Proof. Follows directly from Lemma 7.5.4 and Proposition 7.10.12. □

Here is a technical lemma.

Lemma 7.13.4.00WY In the situation of Lemma 7.13.2. For any presheaf G on C we have
(upG)# = (up(G#))#.

Proof. For any sheaf F on D we have
MorSh(D)(us(G#),F) = MorSh(C)(G#, usF)

= MorPSh(C)(G#, upF)
= MorPSh(C)(G, upF)
= MorPSh(D)(upG,F)
= MorSh(D)((upG)#,F)

and the result follows from the Yoneda lemma. □

Lemma 7.13.5.04D3 Let u : C → D be a continuous functor between sites. For any
object U of C we have ush#

U = h#
u(U).

Proof. Follows from Lemmas 7.5.6 and 7.13.4. □
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Remark 7.13.6.00WZ (Skip on first reading.) Let C and D be sites. Let us use the defi-
nition of tautologically equivalent families of maps, see Definition 7.8.2 to (slightly)
weaken the conditions defining continuity. Let u : C → D be a functor. Let us call
u quasi-continuous if for every V = {Vi → V }i∈I ∈ Cov(C) we have the following

(1’) the family of maps {u(Vi) → u(V )}i∈I is tautologically equivalent to an
element of Cov(D), and

(2) for any morphism T → V in C the morphism u(T ×V Vi) → u(T ) ×u(V )
u(Vi) is an isomorphism.

We are going to see that Lemmas 7.13.2 and 7.13.3 hold in case u is quasi-continuous
as well.
We first remark that the morphisms u(Vi)→ u(V ) are representable, since they are
isomorphic to representable morphisms (by the first condition). In particular, the
family u(V) = {u(Vi) → u(V )}i∈I gives rise to a zeroth Čech cohomology group
H0(u(V),F) for any presheaf F on D. Let U = {Uj → u(V )}j∈J be an element
of Cov(D) tautologically equivalent to {u(Vi) → u(V )}i∈I . Note that u(V) is a
refinement of U and vice versa. Hence by Remark 7.10.7 we see that H0(u(V),F) =
H0(U ,F). In particular, if F is a sheaf, then F(u(V )) = H0(u(V),F) because of the
sheaf property expressed in terms of zeroth Čech cohomology groups. We conclude
that upF is a sheaf if F is a sheaf, since H0(V, upF) = H0(u(V),F) which we just
observed is equal to F(u(V )) = upF(V ). Thus Lemma 7.13.2 holds. Lemma 7.13.3
follows immediately.

7.14. Morphisms of sites

00X0
Definition 7.14.1.00X1 Let C and D be sites. A morphism of sites f : D → C is given
by a continuous functor u : C → D such that the functor us is exact.

Notice how the functor u goes in the direction opposite the morphism f . If f ↔ u
is a morphism of sites then we use the notation f−1 = us and f∗ = us. The functor
f−1 is called the pullback functor and the functor f∗ is called the pushforward
functor. As in topology we have the following adjointness property

MorSh(D)(f−1G,F) = MorSh(C)(G, f∗F)
The motivation for this definition comes from the following example.

Example 7.14.2.00X2 Let f : X → Y be a continuous map of topological spaces.
Recall that we have sites XZar and YZar, see Example 7.6.4. Consider the functor
u : YZar → XZar, V 7→ f−1(V ). This functor is clearly continuous because inverse
images of open coverings are open coverings. (Actually, this depends on how you
chose sets of coverings for XZar and YZar. But in any case the functor is quasi-
continuous, see Remark 7.13.6.) It is easy to verify that the functor us equals the
usual pushforward functor f∗ from topology. Hence, since us is an adjoint and since
the usual topological pullback functor f−1 is an adjoint as well, we get a canonical
isomorphism f−1 ∼= us. Since f−1 is exact we deduce that us is exact. Hence u
defines a morphism of sites f : XZar → YZar, which we may denote f as well since
we’ve already seen the functors us, us agree with their usual notions anyway.

Example 7.14.3.0EWI Let C be a category. Let
Cov(C) ⊃ Cov′(C)
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be two sets of families of morphisms with fixed target which turn C into a site. De-
note Cτ the site corresponding to Cov(C) and Cτ ′ the site corresponding to Cov′(C).
We claim the identity functor on C defines a morphism of sites

ϵ : Cτ −→ Cτ ′

Namely, observe that id : Cτ ′ → Cτ is continuous as every τ ′-covering is a τ -covering.
Thus the functor ϵ∗ = ids is the identity functor on underlying presheaves. Hence
the left adjoint ϵ−1 of ϵ∗ sends a τ ′-sheaf F to the τ -sheafification of F (by the
universal property of sheafification). Finite limits of τ ′-sheaves agree with finite
limits of presheaves (Lemma 7.10.1) and τ -sheafification commutes with finite limits
(Lemma 7.10.14). Thus ϵ−1 is left exact. Since ϵ−1 is a left adjoint it is also right
exact (Categories, Lemma 4.24.6). Thus ϵ−1 is exact and we have checked all the
conditions of Definition 7.14.1.
Lemma 7.14.4.03CB Let Ci, i = 1, 2, 3 be sites. Let u : C2 → C1 and v : C3 → C2 be
continuous functors which induce morphisms of sites. Then the functor u◦v : C3 →
C1 is continuous and defines a morphism of sites C1 → C3.
Proof. It is immediate from the definitions that u ◦ v is a continuous functor. In
addition, we clearly have (u ◦ v)p = vp ◦ up, and hence (u ◦ v)s = vs ◦ us. Hence
functors (u◦v)s and us◦vs are both left adjoints of (u◦v)s. Therefore (u◦v)s ∼= us◦vs
and we conclude that (u ◦ v)s is exact as a composition of exact functors. □

Definition 7.14.5.03CC Let Ci, i = 1, 2, 3 be sites. Let f : C1 → C2 and g : C2 → C3 be
morphisms of sites given by continuous functors u : C2 → C1 and v : C3 → C2. The
composition g ◦ f is the morphism of sites corresponding to the functor u ◦ v.
In this situation we have (g ◦ f)∗ = g∗ ◦ f∗ and (g ◦ f)−1 = f−1 ◦ g−1 (see proof of
Lemma 7.14.4).
Lemma 7.14.6.00X5 Let C and D be sites. Let u : C → D be continuous. Assume all the
categories (IuV )opp of Section 7.5 are filtered. Then u defines a morphism of sites
D → C, in other words us is exact.
Proof. Since us is the left adjoint of us we see that us is right exact, see Categories,
Lemma 4.24.6. Hence it suffices to show that us is left exact. In other words we
have to show that us commutes with finite limits. Because the categories IoppY

are filtered we see that up commutes with finite limits, see Categories, Lemma
4.19.2 (this also uses the description of limits in PSh, see Section 7.4). And since
sheafification commutes with finite limits as well (Lemma 7.10.14) we conclude
because us = # ◦ up. □

Proposition 7.14.7.00X6 Let C and D be sites. Let u : C → D be continuous. Assume
furthermore the following:

(1) the category C has a final object X and u(X) is a final object of D , and
(2) the category C has fibre products and u commutes with them.

Then u defines a morphism of sites D → C, in other words us is exact.
Proof. This follows from Lemmas 7.5.2 and 7.14.6. □

Remark 7.14.8.00X7 The conditions of Proposition 7.14.7 above are equivalent to saying
that u is left exact, i.e., commutes with finite limits. See Categories, Lemmas 4.18.4
and 4.23.2. It seems more natural to phrase it in terms of final objects and fibre
products since this seems to have more geometric meaning in the examples.
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Lemma 7.19.4 will provide another way to prove a continuous functor gives rise to
a morphism of sites.

Remark 7.14.9.00X8 (Skip on first reading.) Let C and D be sites. Analogously to
Definition 7.14.1 we say that a quasi-morphism of sites f : D → C is given by a
quasi-continuous functor u : C → D (see Remark 7.13.6) such that us is exact. The
analogue of Proposition 7.14.7 in this setting is obtained by replacing the word
“continuous” by the word “quasi-continuous”, and replacing the word “morphism”
by “quasi-morphism”. The proof is literally the same.

In Definition 7.14.1 the condition that us be exact cannot be omitted. For example,
the conclusion of the following lemma need not hold if one only assumes that u is
continuous.

Lemma 7.14.10.08H2 Let f : D → C be a morphism of sites given by the functor
u : C → D. Given any object V of D there exists a covering {Vj → V } such that
for every j there exists a morphism Vj → u(Uj) for some object Uj of C.

Proof. Since f−1 = us is exact we have f−1∗ = ∗ where ∗ denotes the final object
of the category of sheaves (Example 7.10.2). Since f−1∗ = us∗ is the sheafification
of up∗ we see there exists a covering {Vj → V } such that (up∗)(Vj) is nonempty.
Since (up∗)(Vj) is a colimit over the category IuVj whose objects are morphisms
Vj → u(U) the lemma follows. □

7.15. Topoi

00X9 Here is a definition of a topos which is suitable for our purposes. Namely, a topos
is the category of sheaves on a site. In order to specify a topos you just specify
the site. The real difference between a topos and a site lies in the definition of
morphisms. Namely, it turns out that there are lots of morphisms of topoi which
do not come from morphisms of the underlying sites.

Definition 7.15.1 (Topoi).00XA A topos is the category Sh(C) of sheaves on a site C.
(1) Let C, D be sites. A morphism of topoi f from Sh(D) to Sh(C) is given

by a pair of functors f∗ : Sh(D) → Sh(C) and f−1 : Sh(C) → Sh(D) such
that
(a) we have

MorSh(D)(f−1G,F) = MorSh(C)(G, f∗F)

bifunctorially, and
(b) the functor f−1 commutes with finite limits, i.e., is left exact.

(2) Let C, D, E be sites. Given morphisms of topoi f : Sh(D) → Sh(C) and
g : Sh(E)→ Sh(D) the composition f ◦ g is the morphism of topoi defined
by the functors (f ◦ g)∗ = f∗ ◦ g∗ and (f ◦ g)−1 = g−1 ◦ f−1.

Suppose that α : S1 → S2 is an equivalence of (possibly “big”) categories. If S1,
S2 are topoi, then setting f∗ = α and f−1 equal to a quasi-inverse of α gives a
morphism f : S1 → S2 of topoi. Moreover this morphism is an equivalence in the
2-category of topoi (see Section 7.36). Thus it makes sense to say “S is a topos”
if S is equivalent to the category of sheaves on a site (and not necessarily equal to
the category of sheaves on a site). We will occasionally use this abuse of notation.
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The empty topos is topos of sheaves on the site C, where C is the empty category.
We will sometimes write ∅ for this site. This is a site which has a unique sheaf
(since ∅ has no objects). Thus Sh(∅) is equivalent to the category having a single
object and a single morphism.
The punctual topos is the topos of sheaves on the site C which has a single object
pt and one morphism idpt and whose only covering is the covering {idpt}. We will
simply write pt for this site. It is clear that the category of sheaves = the category
of presheaves = the category of sets. In a formula Sh(pt) = Sets.
Let C and D be sites. Let f : Sh(D) → Sh(C) be a morphism of topoi. Note
that f∗ commutes with all limits and that f−1 commutes with all colimits, see
Categories, Lemma 4.24.5. In particular, the condition on f−1 in the definition
above guarantees that f−1 is exact. Morphisms of topoi are often constructed
using either Lemma 7.21.1 or the following lemma.

Lemma 7.15.2.00XC Given a morphism of sites f : D → C corresponding to the functor
u : C → D the pair of functors (f−1 = us, f∗ = us) is a morphism of topoi.

Proof. This is obvious from Definition 7.14.1. □

Remark 7.15.3.00XD There are many sites that give rise to the topos Sh(pt). A useful
example is the following. Suppose that S is a set (of sets) which contains at least
one nonempty element. Let S be the category whose objects are elements of S and
whose morphisms are arbitrary set maps. Assume that S has fibre products. For
example this will be the case if S = P(infinite set) is the power set of any infinite
set (exercise in set theory). Make S into a site by declaring surjective families of
maps to be coverings (and choose a suitable sufficiently large set of covering families
as in Sets, Section 3.11). We claim that Sh(S) is equivalent to the category of sets.
We first prove this in case S contains e ∈ S which is a singleton. In this case, there
is an equivalence of topoi i : Sh(pt)→ Sh(S) given by the functors
(7.15.3.1)05UW i−1F = F(e), i∗E = (U 7→ MorSets(U,E))
Namely, suppose that F is a sheaf on S. For any U ∈ Ob(S) = S we can find
a covering {φu : e → U}u∈U , where φu maps the unique element of e to u ∈
U . The sheaf condition implies in this case that F(U) =

∏
u∈U F(e). In other

words F(U) = MorSets(U,F(e)). Moreover, this rule is compatible with restriction
mappings. Hence the functor

i∗ : Sets = Sh(pt) −→ Sh(S), E 7−→ (U 7→ MorSets(U,E))
is an equivalence of categories, and its inverse is the functor i−1 given above.
If S does not contain a singleton, then the functor i∗ as defined above still makes
sense. To show that it is still an equivalence in this case, choose any nonempty
ẽ ∈ S and a map φ : ẽ→ ẽ whose image is a singleton. For any sheaf F set

F(e) := Im(F(φ) : F(ẽ) −→ F(ẽ))
and show that this is a quasi-inverse to i∗. Details omitted.

Remark 7.15.4.00XB (Set theoretical issues related to morphisms of topoi. Skip on
a first reading.) A morphism of topoi as defined above is not a set but a class.
In other words it is given by a mathematical formula rather than a mathematical
object. Although we may contemplate the collection of all morphisms between two
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given topoi, it is not a good idea to introduce it as a mathematical object. On the
other hand, suppose C and D are given sites. Consider a functor Φ : C → Sh(D).
Such a thing is a set, in other words, it is a mathematical object. We may, in
succession, ask the following questions on Φ.

(1) Is it true, given a sheaf F on D, that the rule U 7→ MorSh(D)(Φ(U),F)
defines a sheaf on C? If so, this defines a functor Φ∗ : Sh(D)→ Sh(C).

(2) Is it true that Φ∗ has a left adjoint? If so, write Φ−1 for this left adjoint.
(3) Is it true that Φ−1 is exact?

If the last question still has the answer “yes”, then we obtain a morphism of topoi
(Φ∗,Φ−1). Moreover, given any morphism of topoi (f∗, f

−1) we may set Φ(U) =
f−1(h#

U ) and obtain a functor Φ as above with f∗ ∼= Φ∗ and f−1 ∼= Φ−1 (compatible
with adjoint property). The upshot is that by working with the collection of Φ
instead of morphisms of topoi, we (a) replaced the notion of a morphism of topoi
by a mathematical object, and (b) the collection of Φ forms a class (and not a
collection of classes). Of course, more can be said, for example one can work out
more precisely the significance of conditions (2) and (3) above; we do this in the
case of points of topoi in Section 7.32.

Remark 7.15.5.00XE (Skip on first reading.) Let C and D be sites. A quasi-morphism
of sites f : D → C (see Remark 7.14.9) gives rise to a morphism of topoi f from
Sh(D) to Sh(C) exactly as in Lemma 7.15.2.

7.16. G-sets and morphisms

04D4 Let φ : G→ H be a homomorphism of groups. Choose (suitable) sites TG and TH
as in Example 7.6.5 and Section 7.9. Let u : TH → TG be the functor which assigns
to a H-set U the G-set Uφ which has the same underlying set but G action defined
by g · ξ = φ(g)ξ for g ∈ G and ξ ∈ U . It is clear that u commutes with finite limits
and is continuous4. Applying Proposition 7.14.7 and Lemma 7.15.2 we obtain a
morphism of topoi

f : Sh(TG) −→ Sh(TH)
associated with φ. Using Proposition 7.9.1 we see that we get a pair of adjoint
functors

f∗ : G-Sets −→ H-Sets, f−1 : H-Sets −→ G-Sets.
Let’s work out what are these functors in this case.
We first work out a formula for f∗. Recall that given a G-set S the corresponding
sheaf FS on TG is given by the rule FS(U) = MorG(U, S). And on the other hand,
given a sheaf G on TH the corresponding H-set is given by the rule G(HH). Hence
we see that

f∗S = MorG-Sets((HH)φ, S).
If we work this out a little bit more then we get

f∗S = {a : H → S | a(gh) = ga(h)}
with left H-action given by (h · a)(h′) = a(h′h) for any element a ∈ f∗S.

4Set theoretical remark: First choose TH . Then choose TG to contain u(TH) and such that
every covering in TH corresponds to a covering in TG. This is possible by Sets, Lemmas 3.10.1,
3.10.2 and 3.11.1.
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Next, we explicitly compute f−1. Note that since the topology on TG and TH is
subcanonical, all representable presheaves are sheaves. Moreover, given an object
V of TH we see that f−1hV is equal to hu(V ) (see Lemma 7.13.5). Hence we see
that f−1S = Sφ for representable sheaves. Since every sheaf on TH is a coproduct
of representable sheaves we conclude that this is true in general. Hence we see that
for any H-set T we have

f−1T = Tφ.

The adjunction between f−1 and f∗ is evidenced by the formula
MorG-Sets(Tφ, S) = MorH-Sets(T, f∗S)

with f∗S as above. This can be proved directly. Moreover, it is then clear that
(f−1, f∗) form an adjoint pair and that f−1 is exact. So alternatively to the above
the morphism of topoi f : G-Sets→ H-Sets can be defined directly in this manner.

7.17. Quasi-compact objects and colimits

090G To be able to use the same language as in the case of topological spaces we introduce
the following terminology.

Definition 7.17.1.090H Let C be a site. An object U of C is quasi-compact if given a
covering U = {Ui → U}i∈I in C there exists another covering V = {Vj → U}j∈J
and a morphism V → U of families of maps with fixed target given by id : U → U ,
α : J → I, and Vj → Uα(j) (see Definition 7.8.1) such that the image of α is a finite
subset of I.

Of course the usual notion is sufficient to conclude that U is quasi-compact.

Lemma 7.17.2.0D05 Let C be a site. Let U be an object of C. Consider the following
conditions

(1) U is quasi-compact,
(2) for every covering {Ui → U}i∈I in C there exists a finite covering {Vj →

U}j=1,...,m of C refining U , and
(3) for every covering {Ui → U}i∈I in C there exists a finite subset I ′ ⊂ I

such that {Ui → U}i∈I′ is a covering in C.
Then we always have (3) ⇒ (2) ⇒ (1) but the reverse implications do not hold in
general.

Proof. The implications are immediate from the definitions. Let X = [0, 1] ⊂ R as
a topological space (with the usual ϵ-δ topology). Let C be the category of open
subspaces of X with inclusions as morphisms and usual open coverings (compare
with Example 7.6.4). However, then we change the notion of covering in C to
exclude all finite coverings, except for the coverings of the form {U → U}. It is
easy to see that this will be a site as in Definition 7.6.2. In this site the object
X = U = [0, 1] is quasi-compact in the sense of Definition 7.17.1 but U does not
satisfy (2). We leave it to the reader to make an example where (2) holds but not
(3). □

Here is the topos theoretic meaning of a quasi-compact object.

Lemma 7.17.3.0D06 Let C be a site. Let U be an object of C. The following are
equivalent

(1) U is quasi-compact, and
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(2) for every surjection of sheaves
∐
i∈I Fi → h#

U there is a finite subset J ⊂ I
such that

∐
i∈J Fi → h#

U is surjective.

Proof. Assume (1) and let
∐
i∈I Fi → h#

U be a surjection. Then idU is a section
of h#

U over U . Hence there exists a covering {Ua → U}a∈A and for each a ∈ A a
section sa of

∐
i∈I Fi over Ua mapping to idU . By the construction of coproducts as

sheafification of coproducts of presheaves (Lemma 7.10.13), for each a there exists
a covering {Uab → Ua}b∈Ba and for all b ∈ Ba an ι(b) ∈ I and a section sb of Fι(b)
over Uab mapping to idU |Uab . Thus after replacing the covering {Ua → U}a∈A by
{Uab → U}a∈A,b∈Ba we may assume we have a map ι : A → I and for each a ∈ A
a section sa of Fι(a) over Ua mapping to idU . Since U is quasi-compact, there is
a covering {Vc → U}c∈C , a map α : C → A with finite image, and Vc → Uα(c)

over U . Then we see that J = Im(ι ◦ α) ⊂ I works because
∐
c∈C h

#
Vc
→ h#

U is
surjective (Lemma 7.12.4) and factors through

∐
i∈J Fi → h#

U . (Here we use that
the composition h#

Vc
→ hUα(c)

sα(c)−−−→ Fι(α(c)) → h#
U is the map h#

Vc
→ h#

U coming
from the morphism Vc → U because sα(c) maps to idU |Uα(c) .)
Assume (2). Let {Ui → U}i∈I be a covering. By Lemma 7.12.4 we see that∐
i∈I h

#
Ui
→ h#

U is surjective. Thus we find a finite subset J ⊂ I such that∐
j∈J h

#
Uj
→ h#

U is surjective. Then arguing as above we find a covering {Vc →
U}c∈C of U in C and a map ι : C → J such that idU lifts to a section of sc of h#

Uι(c)

over Vc. Refining the covering even further we may assume sc ∈ hUι(c)(Vc) mapping
to idU . Then sc : Vc → Uι(c) is a morphism over U and we conclude. □

The lemma above motivates the following definition.
Definition 7.17.4.0D07 An object F of a topos Sh(C) is quasi-compact if for any sur-
jective map

∐
i∈I Fi → F of Sh(C) there exists a finite subset J ⊂ I such that∐

i∈J Fi → F is surjective. A topos Sh(C) is said to be quasi-compact if its final
object ∗ is a quasi-compact object.
By Lemma 7.17.3 if the site C has a final object X, then Sh(C) is quasi-compact if
and only if X is quasi-compact.
Lemma 7.17.5.0GMP Let C be a site.

(1) If U → V is a morphism of C such that h#
U → h#

V is surjective and U is
quasi-compact, then V is quasi-compact.

(2) If F → G is a surjection of sheaves of sets and F is quasi-compact, then
G is quasi-compact.

Proof. Omitted. □

Lemma 7.17.6.0GMQ Let C be a site. If n ≥ 1 and F1, . . . ,Fn are quasi-compact sheaves
on C, then

∐
i=1,...,n Fi is quasi-compact.

Proof. Omitted. □

The following two lemmas form the analogue of Sheaves, Lemma 6.29.1 for sites.
Lemma 7.17.7.0738 Let C be a site. Let I → Sh(C), i 7→ Fi be a filtered diagram of
sheaves of sets. Let U ∈ Ob(C). Consider the canonical map

Ψ : colimi Fi(U) −→ (colimi Fi) (U)
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With the terminology introduced above:
(1) If all the transition maps are injective then Ψ is injective for any U .
(2) If U is quasi-compact, then Ψ is injective.
(3) If U is quasi-compact and all the transition maps are injective then Ψ is

an isomorphism.
(4) If U has a cofinal system of coverings {Uj → U}j∈J with J finite and

Uj ×U Uj′ quasi-compact for all j, j′ ∈ J , then Ψ is bijective.

Proof. Assume all the transition maps are injective. In this case the presheaf
F ′ : V 7→ colimi Fi(V ) is separated (see Definition 7.10.9). By Lemma 7.10.13 we
have (F ′)# = colimi Fi. By Theorem 7.10.10 we see that F ′ → (F ′)# is injective.
This proves (1).
Assume U is quasi-compact. Suppose that s ∈ Fi(U) and s′ ∈ Fi′(U) give rise to
elements on the left hand side which have the same image under Ψ. This means
we can choose a covering {Ua → U}a∈A and for each a ∈ A an index ia ∈ I, ia ≥ i,
ia ≥ i′ such that φiia(s) = φi′ia(s′). Because U is quasi-compact we can choose
a covering {Vb → U}b∈B , a map α : B → A with finite image, and morphisms
Vb → Uα(b) over U . Pick i′′ ∈ I to be ≥ than all of the iα(b) which is possible
because the image of α is finite. We conclude that φii′′(s) and φi′i′′(s) agree on Vb
for all b ∈ B and hence that φii′′(s) = φi′i′′(s). This proves (2).
Assume U is quasi-compact and all transition maps injective. Let s be an element
of the target of Ψ. There exists a covering {Ua → U}a∈A and for each a ∈ A
an index ia ∈ I and a section sa ∈ Fia(Ua) such that s|Ua comes from sa for all
a ∈ A. Because U is quasi-compact we can choose a covering {Vb → U}b∈B , a map
α : B → A with finite image, and morphisms Vb → Uα(b) over U . Pick i ∈ I to be
≥ than all of the iα(b) which is possible because the image of α is finite. By (1) the
sections sb = φiα(b)i(sα(b))|Vb agree over Vb ×U Vb′ . Hence they glue to a section
s′ ∈ Fi(U) which maps to s under Ψ. This proves (3).
Assume the hypothesis of (4). By Lemma 7.17.2 the object U is quasi-compact,
hence Ψ is injective by (2). To prove surjectivity, let s be an element of the target of
Ψ. By assumption there exists a finite covering {Uj → U}j=1,...,m, with Uj ×U Uj′

quasi-compact for all 1 ≤ j, j′ ≤ m and for each j an index ij ∈ I and sj ∈ Fij (Uj)
such that s|Uj is the image of sj for all j. Since Uj ×U Uj′ is quasi-compact we can
apply (2) and we see that there exists an ijj′ ∈ I, ijj′ ≥ ij , ijj′ ≥ ij′ such that
φijijj′ (sj) and φij′ ijj′ (sj′) agree over Uj ×U Uj′ . Choose an index i ∈ I wich is
bigger or equal than all the ijj′ . Then we see that the sections φiji(sj) of Fi glue
to a section of Fi over U . This section is mapped to the element s as desired. □

Lemma 7.17.8.0GMR Let C be a site. Let I → Sh(C), i 7→ Fi be a filtered diagram of
sheaves of sets. Consider the canonical map

Ψ : colimi Γ(C,Fi) −→ Γ(C, colimi Fi)
We have the following:

(1) If all the transition maps are injective then Ψ is injective.
(2) If Sh(C) is quasi-compact, then Ψ is injective.
(3) If Sh(C) is quasi-compact and all the transition maps are injective then Ψ

is an isomorphism.
(4) Assume there exists a set S ⊂ Ob(Sh(C)) with the following properties:
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(a) for every surjection F → ∗ there exists a K ∈ S and a map K → F
such that K → ∗ is surjective,

(b) for K ∈ S the product K ×K is quasi-compact.
Then Ψ is bijective.

Proof. Proof of (1). Assume all the transition maps are injective. In this case the
presheaf F ′ : V 7→ colimi Fi(V ) is separated (see Definition 7.10.9). By Lemma
7.10.13 we have (F ′)# = colimi Fi. By Theorem 7.10.10 we see that F ′ → (F ′)#

is injective. This proves (1).
Proof of (2). Assume Sh(C) is quasi-compact. Recall that Γ(C,F) = Mor(∗,F)
for all F in Sh(C). Let ai, bi : ∗ → Fi and for i′ ≥ i denote ai′ , bi′ : ∗ → Fi′
the composition with the transition maps of the system. Set a = colimi′≥i ai′ and
similary for b. For i′ ≥ i denote

Ei′ = Equalizer(ai′ , bi′) ⊂ ∗ and E = Equalizer(a, b) ⊂ ∗
By Categories, Lemma 4.19.2 we have E = colimi′≥iEi′ . It follows that

∐
i′≥iEi′ →

E is a surjective map of sheaves. Hence, if E = ∗, i.e., if a = b, then because ∗ is
quasi-compact, we see that Ei′ = ∗ for some i′ ≥ i, and we conclude ai′ = bi′ for
some i′ ≥ i. This proves (2).
Proof of (3). Assume Sh(C) is quasi-compact and all transition maps are injective.
Let a : ∗ → colimFi be a map. Then Ei = a−1(Fi) ⊂ ∗ is a subsheaf and we have
colimEi = ∗ (by the reference above). Hence for some i we have Ei = ∗ and we see
that the image of a is contained in Fi as desired.
Proof of (4). Let S ⊂ Ob(Sh(C)) satisfy (4)(a), (b). Applying (4)(a) to id : ∗ → ∗ we
find there exists a K ∈ S such that K → ∗ is surjective. The maps K×K → K → ∗
are surjective. By (4)(b) and Lemma 7.17.5 we conclude that K and Sh(C) are
quasi-compact. Thus Ψ is injective by (2). Set F = colimFi. Let s : ∗ → F
be a global section of the colimit. Since

∐
Fi → F is surjective, we see that the

projection ∐
i∈I
∗ ×s,F Fi → ∗

is surjective. By (4)(a) we obtain K ∈ S and a map K →
∐
i∈I ∗×s,FFi with K → ∗

surjective. Since K is quasi-compact we obtain a factorization K →
∐
i′∈I′ ∗×s,FFi′

for some finite subset I ′ ⊂ I. Let i ∈ I be an upper bound for the finite subset I ′.
The transition maps define a map

∐
i′∈I′ Fi′ → Fi. This in turn produces a map

K → ∗ ×s,F Fi. In other words, we obtain K ∈ S with K → ∗ surjective and a
commutative diagram

K ×K //
// K

��

// ∗

s

��
Fi // F colimFi

Observe that the top row of this diagram is a coequalizer. Hence it suffices to show
that after increasing i the two induced maps ai, bi : K×K → Fi are equal. This is
done shown in the next paragraph using the exact same argument as in the proof
of (2) and we urge the reader to skip the rest of the proof.
For i′ ≥ i denote ai′ , bi′ : K×K → Fi′ the composition of ai, bi with the transition
maps of the system. Set a = colimi′≥i ai′ : K×K → F and similary for b. We have
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a = b by the commutativity of the diagram above. For i′ ≥ i denote
Ei′ = Equalizer(ai′ , bi′) ⊂ K ×K and E = Equalizer(a, b) ⊂ K ×K

By Categories, Lemma 4.19.2 we have E = colimi′≥iEi′ . It follows that
∐
i′≥iEi′ →

E is a surjective map of sheaves. Since a = b we have E = K × K. As K × K is
quasi-compact by (4)(b), we see that Ei′ = K×K for some i′ ≥ i, and we conclude
ai′ = bi′ for some i′ ≥ i. □

Remark 7.17.9.0GMS Let C be a site. There are several ways to ensure that the hy-
potheses of part (4) of Lemma 7.17.8 are satisfied. Here are a few.

(1) Assume there exists a set B ⊂ Ob(C) with the following properties:
(a) for every surjection F → ∗ there exist m ≥ 0 and U1, . . . , Um ∈ B

with F(Uj) nonempty and
∐
h#
Uj
→ ∗ surjective,

(b) for U,U ′ ∈ B the sheaf h#
U × h

#
U ′ is quasi-compact.

(2) Assume there exists a set B ⊂ Ob(C) with the following properties:
(a) there exist m ≥ 0 and U1, . . . , Um ∈ B with

∐
h#
Uj
→ ∗ surjective,

(b) for U ∈ B any covering of U can be refined by a finite covering
{Uj → U}j=1,...,m with Uj ∈ B, and

(c) for U,U ′ ∈ B there exist m ≥ 0, U1, . . . , Um ∈ B, and morphisms
Uj → U and Uj → U ′ such that

∐
h#
Uj
→ h#

U × h
#
U ′ is surjective.

(3) Suppose that
(a) Sh(C) is quasi-compact,
(b) every object of C has a covering whose members are quasi-compact

objects,
(c) if U and U ′ are quasi-compact, then the sheaf h#

U × h#
U ′ is quasi-

compact.
In cases (1) and (2) we set S ⊂ Ob(Sh(C)) equal to the set of finite coproducts of
the sheaves h#

U for U ∈ B. In case (3) we set S ⊂ Ob(Sh(C)) equal to the set of
finite coproducts of the sheaves h#

U for U ∈ Ob(C) quasi-compact.

Later we will need a bound on what can happen with colimits as follows.

Lemma 7.17.10.0GS0 Let C be a site. Let β be an ordinal. Let β → Sh(C), α 7→ Fα be
a system of sheaves over β. For U ∈ Ob(C) consider the canonical map

colimα<β Fα(U) −→ (colimα<β Fα) (U)
If the cofinality of β is large enough, then this map is bijective for all U .

Proof. The left hand side is the value on U of the colimit Fcolim taken in the
category of presheaves, see Section 7.4. Recall that colimα<β Fα is the sheafification
F#

colim of Fcolim, see Lemma 7.10.13. Let U = {Ui → U}i∈I be an element of the
set Cov(C) of coverings of C. If the cofinality of β is larger than the cardinality of
I, then we claim

H0(U ,Fcolim) = colimH0(U ,Fα) = colimFα(U) = Fcolim(U)
The second and third equality signs are clear. For the first, say s = (si) ∈
H0(U ,Fcolim). Then for each i the element si comes from an element si,αi ∈ Fαi(Ui)
for some αi < β. By the assumption on cofinality, we can choose αi = α indepen-
dent of i. Then si and sj map to the same element of Fαi,j (Ui ×U Uj) for some
αi,j < β. Since the cardinality if I × I is also less than the cofinality of β, we
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see that we may after increasing α assume αi,j = α for all i, j. This proves that
the natural map colimH0(U ,Fα) → H0(U ,Fcolim) is surjective. A very similar
argument shows that it is injective. In particular, we see that Fcolim satisfies the
sheaf condition for U . Thus if the cofinality of β is larger than the supremum of
the cardinalities of the set of index sets I of coverings, then we conclude. □

7.18. Colimits of sites

0EXI We need an analogue of Lemma 7.17.7 in the case that the site is the limit of an
inverse system of sites. For simplicity we only explain the construction in case the
index sets of coverings are finite.
Situation 7.18.1.0A34 Here we are given

(1) a cofiltered index category I,
(2) for i ∈ Ob(I) a site Ci such that every covering in Ci has a finite index

set,
(3) for a morphism a : i→ j in I a morphism of sites fa : Ci → Cj given by a

continuous functor ua : Cj → Ci,
such that fa ◦ fb = fc whenever c = a ◦ b in I.
Lemma 7.18.2.09YL In Situation 7.18.1 we can construct a site (C,Cov(C)) as follows

(1) as a category C = colim Ci, and
(2) Cov(C) is the union of the images of Cov(Ci) by ui : Ci → C.

Proof. Our definition of composition of morphisms of sites implies that ub ◦ua = uc
whenever c = a◦b in I. The formula C = colim Ci means that Ob(C) = colim Ob(Ci)
and Arrows(C) = colim Arrows(Ci). Then source, target, and composition are in-
herited from the source, target, and composition on Arrows(Ci). In this way we
obtain a category. Denote ui : Ci → C the obvious functor. Remark that given
any finite diagram in C there exists an i such that this diagram is the image of a
diagram in Ci.
Let {U t → U} be a covering of C. We first prove that if V → U is a morphism
of C, then U t ×U V exists. By our remark above and our definition of coverings,
we can find an i, a covering {U ti → Ui} of Ci and a morphism Vi → Ui whose
image by ui is the given data. We claim that U t ×U V is the image of U ti ×Ui Vi
by ui. Namely, for every a : j → i in I the functor ua is continuous, hence
ua(U ti ×Ui Vi) = ua(U ti ) ×ua(Ui) ua(Vi). In particular we can replace i by j, if we
so desire. Thus, if W is another object of C, then we may assume W = ui(Wi) and
we see that

MorC(W,ui(U ti ×Ui Vi))
= colima:j→i MorCj (ua(Wi), ua(U ti ×Ui Vi))
= colima:j→i MorCj (ua(Wi), ua(U ti ))×MorCj (ua(Wi),ua(Ui)) MorCj (ua(Wi), ua(Vi))

= MorC(W,U t)×MorC(W,U) MorC(W,V )
as filtered colimits commute with finite limits (Categories, Lemma 4.19.2). It also
follows that {U t ×U V → V } is a covering in C. In this way we see that axiom (3)
of Definition 7.6.2 holds.
To verify axiom (2) of Definition 7.6.2 let {U t → U}t∈T be a covering of C and for
each t let {U ts → U t} be a covering of C. Then we can find an i and a covering
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{U ti → Ui}t∈T of Ci whose image by ui is {U t → U}. Since T is finite we may
choose an a : j → i in I and coverings {U tsj → ua(U ti )} of Cj whose image by uj
gives {U ts → U t}. Then we conclude that {U ts → U} is a covering of C by an
application of axiom (2) to the site Cj .

We omit the proof of axiom (1) of Definition 7.6.2. □

Lemma 7.18.3.0A35 In Situation 7.18.1 let ui : Ci → C be as constructed in Lemma
7.18.2. Then ui defines a morphism of sites fi : C → Ci. For Ui ∈ Ob(Ci) and sheaf
F on Ci we have

(7.18.3.1)09YM f−1
i F(ui(Ui)) = colima:j→i f

−1
a F(ua(Ui))

Proof. It is immediate from the arguments in the proof of Lemma 7.18.2 that the
functors ui are continuous. To finish the proof we have to show that f−1

i := ui,s is
an exact functor Sh(Ci)→ Sh(C). In fact it suffices to show that f−1

i is left exact,
because it is right exact as a left adjoint (Categories, Lemma 4.24.6). We first prove
(7.18.3.1) and then we deduce exactness.

For an arbitrary object V of C we can pick a a : j → i and an object Vj ∈ Ob(C)
with V = uj(Vj). Then we can set

G(V ) = colimb:k→j f
−1
a◦bF(ub(Vj))

The value G(V ) of the colimit is independent of the choice of b : j → i and of the
object Vj with uj(Vj) = V ; we omit the verification. Moreover, if α : V → V ′ is a
morphism of C, then we can choose b : j → i and a morphism αj : Vj → V ′

j with
uj(αj) = α. This induces a map G(V ′)→ G(V ) by using the restrictions along the
morphisms ub(αj) : ub(Vj)→ ub(V ′

j ). A check shows that G is a presheaf (omitted).
In fact, G satisfies the sheaf condition. Namely, any covering U = {U t → U} in
C comes from a finite level. Say Uj = {U tj → Uj} is mapped to U by uj for some
a : j → i in I. Then we have

H0(U ,G) = colimb:k→j H
0(ub(Uj), f−1

b◦aF) = colimb:k→j f
−1
b◦aF(ub(Uj)) = G(U)

as desired. The first equality holds because filtered colimits commute with finite
limits (Categories, Lemma 4.19.2). By construction G(U) is given by the right hand
side of (7.18.3.1). Hence (7.18.3.1) is true if we can show that G is equal to f−1

i F .

In this paragraph we check that G is canonically isomorphic to f−1
i F . We strongly

encourage the reader to skip this paragraph. To check this we have to show there
is a bijection MorSh(C)(G,H) = MorSh(Ci)(F , fi,∗H) functorial in the sheaf H on C
where fi,∗ = upi . A map G → H is the same thing as a compatible system of maps

φa,b,Vj : f−1
a◦bF(ub(Vj)) −→ H(uj(Vj))

for all a : j → i, b : k → j and Vj ∈ Ob(Cj). The compatibilities force the maps
φa,b,Vj to be equal to φa◦b,id,ub(Vj). Given a : j → i, the family of maps φa,id,Vj
corresponds to a map of sheaves φa : f−1

a F → fj,∗H. The compatibilities between
the φa,id,ua(Vi) and the φid,id,Vi implies that φa is the adjoint of the map φid via

MorSh(Cj)(f−1
a F , fj,∗H) = MorSh(Ci)(F , fa,∗fj,∗H) = MorSh(Ci)(F , fi,∗H)

Thus finally we see that the whole system of maps φa,b,Vj is determined by the
map φid : F → fi,∗H. Conversely, given such a map ψ : F → fi,∗H we can read
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the argument just given backwards to construct the family of maps φa,b,Vj . This
finishes the proof that G = f−1

i F .
Assume (7.18.3.1) holds. Then the functor F 7→ f−1

i F(U) commutes with finite
limits because finite limits of sheaves are computed in the category of presheaves
(Lemma 7.10.1), the functors f−1

a commutes with finite limits, and filtered colimits
commute with finite limits. To see that F 7→ f−1

i F(V ) commutes with finite limits
for a general object V of C, we can use the same argument using the formula for
f−1
i F(V ) = G(V ) given above. Thus f−1

i is left exact and the proof of the lemma
is complete. □

Lemma 7.18.4.09YN In Situation 7.18.1 assume given
(1) a sheaf Fi on Ci for all i ∈ Ob(I),
(2) for a : j → i a map φa : f−1

a Fi → Fj of sheaves on Cj
such that φc = φb ◦ f−1

b φa whenever c = a ◦ b. Set F = colim f−1
i Fi on the site C

of Lemma 7.18.2. Let i ∈ Ob(I) and Xi ∈ Ob(Ci). Then
colima:j→i Fj(ua(Xi)) = F(ui(Xi))

Proof. A formal argument shows that
colima:j→i Fi(ua(Xi)) = colima:j→i colimb:k→j f

−1
b Fj(ua◦b(Xi))

By (7.18.3.1) we see that the inner colimit is equal to f−1
j Fj(ui(Xi)) hence we

conclude by Lemma 7.17.7. □

Lemma 7.18.5.0EXJ In Situation 7.18.1 assume we have a sheaf F on C. Then

F = colim f−1
i fi,∗F

where the transition maps are f−1
j φa for a : j → i where φa : f−1

a fi,∗F → fj,∗F is
a canonical map satisfying a cocycle condition as in Lemma 7.18.4.

Proof. For the morphism
φa : f−1

a fi,∗F → fj,∗F
we choose the adjoint to the identity map

fi,∗F → fa,∗fj,∗F
Hence φa is the counit for the adjunction given by (f−1

a , fa,∗). We must prove that
for all a : j → i and b : k → i with composition c = a ◦ b we have φc = φb ◦ f−1

b φa.
This follows from Categories, Lemma 4.24.9. Lastly, we must prove that the map
given by adjunction

colimi∈I f
−1
i fi,∗F −→ F

is an isomorphism. For an object U of C we need to show the map
(colimi∈I f

−1
i Fi)(U)→ F(U)

is bijective. Choose an i and an object Ui of Ci with ui(Ui) = U . Then the left
hand side is equal to

(colimi∈I f
−1
i Fi)(U) = colima:j→i fj,∗F(ua(Ui))

by Lemma 7.18.4. Since uj(ua(Ui)) = U we have fj,∗F(ua(Ui)) = F(U) for all
a : j → i by definition. Hence the value of the colimit is F(U) and the proof is
complete. □
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7.19. More functoriality of presheaves

00XF In this section we revisit the material of Section 7.5. Let u : C → D be a functor
between categories. Recall that

up : PSh(D) −→ PSh(C)

is the functor that associates to G on D the presheaf upG = G ◦u. It turns out that
this functor not only has a left adjoint (namely up) but also a right adjoint.

Namely, for any V ∈ Ob(D) we define a category V I = u
V I. Its objects are pairs

(U,ψ : u(U)→ V ). Note that the arrow is in the opposite direction from the arrow
we used in defining the category IuV in Section 7.5. A morphism (U,ψ)→ (U ′, ψ′)
is given by a morphism α : U → U ′ such that ψ = ψ′ ◦ u(α). In addition, given
any presheaf of sets F on C we introduce the functor V F : V Iopp → Sets, which is
defined by the rule V F(U,ψ) = F(U). We define

pu(F)(V ) := lim
V Iopp V F

As a limit there are projection maps c(ψ) : pu(F)(V ) → F(U) for every object
(U,ψ) of V I. In fact,

pu(F)(V ) =

 collections s(U,ψ) ∈ F(U)
∀β : (U1, ψ1)→ (U2, ψ2) in V I
we have β∗s(U2,ψ2) = s(U1,ψ1)


where the correspondence is given by s 7→ s(U,ψ) = c(ψ)(s). We leave it to the
reader to define the restriction mappings pu(F)(V )→ pu(F)(V ′) associated to any
morphism V ′ → V of D. The resulting presheaf will be denoted puF .

Lemma 7.19.1.00XG There is a canonical map puF(u(U))→ F(U), which is compatible
with restriction maps.

Proof. This is just the projection map c(idu(U)) above. □

Note that any map of presheaves F → F ′ gives rise to compatible systems of maps
between functors V F → V F ′, and hence to a map of presheaves puF → puF ′. In
other words, we have defined a functor

pu : PSh(C) −→ PSh(D)

Lemma 7.19.2.00XH The functor pu is a right adjoint to the functor up. In other words
the formula

MorPSh(C)(upG,F) = MorPSh(D)(G, puF)
holds bifunctorially in F and G.

Proof. This is proved in exactly the same way as the proof of Lemma 7.5.4. We
note that the map uppuF → F from Lemma 7.19.1 is the map that is used to go
from the right to the left.

Alternately, think of a presheaf of sets F on C as a presheaf F ′ on Copp with values in
Setsopp, and similarly on D. Check that (puF)′ = up(F ′), and that (upG)′ = up(G′).
By Remark 7.5.5 we have the adjointness of up and up for presheaves with values
in Setsopp. The result then follows formally from this. □
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Thus given a functor u : C → D of categories we obtain a sequence of functors
up, u

p, pu

between categories of presheaves where in each consecutive pair the first is left
adjoint to the second.

Lemma 7.19.3.09VQ Let u : C → D and v : D → C be functors of categories. Assume
that v is right adjoint to u. Then we have

(1) uphV = hv(V ) for any V in D,
(2) the category IvU has an initial object,
(3) the category u

V I has a final object,
(4) pu = vp, and
(5) up = vp.

Proof. Proof of (1). Let V be an object of D. We have uphV = hv(V ) because
uphV (U) = MorD(u(U), V ) = MorC(U, v(V )) by assumption.
Proof of (2). Let U be an object of C. Let η : U → v(u(U)) be the map adjoint
to the map id : u(U) → u(U). Then we claim (u(U), η) is an initial object of IvU .
Namely, given an object (V, ϕ : U → v(V )) of IvU the morphism ϕ is adjoint to a
map ψ : u(U)→ V which then defines a morphism (u(U), η)→ (V, ϕ).
Proof of (3). Let V be an object of D. Let ξ : u(v(V )) → V be the map adjoint
to the map id : v(V ) → v(V ). Then we claim (v(V ), ξ) is a final object of uV I.
Namely, given an object (U,ψ : u(U) → V ) of uV I the morphism ψ is adjoint to a
map ϕ : U → v(V ) which then defines a morphism (U,ψ)→ (v(V ), ξ).
Hence for any presheaf F on C we have

vpF(V ) = F(v(V ))
= MorPSh(C)(hv(V ),F)
= MorPSh(C)(uphV ,F)
= MorPSh(D)(hV , puF)
= puF(V )

which proves part (4). Part (5) follows by the uniqueness of adjoint functors. □

Lemma 7.19.4.09VR A continuous functor of sites which has a continuous left adjoint
defines a morphism of sites.

Proof. Let u : C → D be a continuous functor of sites. Let w : D → C be a
continuous left adjoint. Then up = wp by Lemma 7.19.3. Hence us = ws has a left
adjoint, namely ws (Lemma 7.13.3). Thus us has both a right and a left adjoint,
whence is exact (Categories, Lemma 4.24.6). □

7.20. Cocontinuous functors

00XI There is another way to construct morphisms of topoi. This involves using cocon-
tinuous functors between sites defined as follows.

Definition 7.20.1.00XJ Let C and D be sites. Let u : C → D be a functor. The functor u
is called cocontinuous if for every U ∈ Ob(C) and every covering {Vj → u(U)}j∈J of
D there exists a covering {Ui → U}i∈I of C such that the family of maps {u(Ui)→
u(U)}i∈I refines the covering {Vj → u(U)}j∈J .
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Note that {u(Ui)→ u(U)}i∈I is in general not a covering of the site D.

Lemma 7.20.2.00XK Let C and D be sites. Let u : C → D be cocontinuous. Let F be a
sheaf on C. Then puF is a sheaf on D, which we will denote suF .

Proof. Let {Vj → V }j∈J be a covering of the site D. We have to show that

puF(V ) // ∏
puF(Vj)

//
//
∏

puF(Vj ×V Vj′)

is an equalizer diagram. Since pu is right adjoint to up we have

puF(V ) = MorPSh(D)(hV , puF) = MorPSh(C)(uphV ,F) = MorSh(C)((uphV )#,F)
Hence it suffices to show that
(7.20.2.1)07GF

∐
uphVj×V Vj′

//
//
∐
uphVj // uphV

becomes a coequalizer diagram after sheafification. (Recall that a coproduct in
the category of sheaves is the sheafification of the coproduct in the category of
presheaves, see Lemma 7.10.13.)
We first show that the second arrow of (7.20.2.1) becomes surjective after sheafi-
fication. To do this we use Lemma 7.11.2. Thus it suffices to show a section s
of uphV over U lifts to a section of

∐
uphVj on the members of a covering of U .

Note that s is a morphism s : u(U) → V . Then {Vj ×V,s u(U) → u(U)} is a
covering of D. Hence, as u is cocontinuous, there is a covering {Ui → U} such that
{u(Ui) → u(U)} refines {Vj ×V,s u(U) → u(U)}. This means that each restriction
s|Ui : u(Ui) → V factors through a morphism si : u(Ui) → Vj for some j, i.e., s|Ui
is in the image of uphVj (Ui)→ uphV (Ui) as desired.
Let s, s′ ∈ (

∐
uphVj )#(U) map to the same element of (uphV )#(U). To finish the

proof of the lemma we show that after replacing U by the members of a covering
that s, s′ are the image of the same section of

∐
uphVj×V Vj′ by the two maps of

(7.20.2.1). We may first replace U by the members of a covering and assume that
s ∈ uphVj (U) and s′ ∈ uphVj′ (U). A second such replacement guarantees that s
and s′ have the same image in uphV (U) instead of in the sheafification. Hence
s : u(U)→ Vj and s′ : u(U)→ Vj′ are morphisms of D such that

u(U)
s′
//

s

��

Vj′

��
Vj // V

is commutative. Thus we obtain t = (s, s′) : u(U) → Vj ×V Vj′ , i.e., a section
t ∈ uphVj×V Vj′ (U) which maps to s, s′ as desired. □

Lemma 7.20.3.00XL Let C and D be sites. Let u : C → D be cocontinuous. The functor
Sh(D) → Sh(C), G 7→ (upG)# is a left adjoint to the functor su introduced in
Lemma 7.20.2 above. Moreover, it is exact.

Proof. Let us prove the adjointness property as follows
MorSh(C)((upG)#,F) = MorPSh(C)(upG,F)

= MorPSh(D)(G, puF)
= MorSh(D)(G, suF).
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Thus it is a left adjoint and hence right exact, see Categories, Lemma 4.24.6.
We have seen that sheafification is left exact, see Lemma 7.10.14. Moreover, the
inclusion i : Sh(D) → PSh(D) is left exact by Lemma 7.10.1. Finally, the functor
up is left exact because it is a right adjoint (namely to up). Thus the functor is the
composition # ◦ up ◦ i of left exact functors, hence left exact. □

We finish this section with a technical lemma.

Lemma 7.20.4.00XM In the situation of Lemma 7.20.3. For any presheaf G on D we
have (upG)# = (up(G#))#.

Proof. For any sheaf F on C we have

MorSh(C)((up(G#))#,F) = MorSh(D)(G#, suF)
= MorSh(D)(G#, puF)
= MorPSh(D)(G, puF)
= MorPSh(C)(upG,F)
= MorSh(C)((upG)#,F)

and the result follows from the Yoneda lemma. □

Remark 7.20.5.09W7 Let u : C → D be a functor between categories. Given morphisms
g : u(U)→ V and f : W → V in D we can consider the functor

Copp −→ Sets, T 7−→ MorC(T,U)×MorD(u(T ),V ) MorD(u(T ),W )

If this functor is representable, denote U ×g,V,f W the corresponding object of
C. Assume that C and D are sites. Consider the property P : for every covering
{fj : Vj → V } of D and any morphism g : u(U)→ V we have

(1) U ×g,V,fi Vi exists for all i, and
(2) {U ×g,V,fi Vi → U} is a covering of C.

Please note the similarity with the definition of continuous functors. If u has P
then u is cocontinuous (details omitted). Many of the cocontinuous functors we
will encounter satisfy P .

7.21. Cocontinuous functors and morphisms of topoi

00XN It is clear from the above that a cocontinuous functor u gives a morphism of topoi in
the same direction as u. Thus this is in the opposite direction from the morphism
of topoi associated (under certain conditions) to a continuous u as in Definition
7.14.1, Proposition 7.14.7, and Lemma 7.15.2.

Lemma 7.21.1.00XO Let C and D be sites. Let u : C → D be cocontinuous. The functors
g∗ = su and g−1 = (up )# define a morphism of topoi g from Sh(C) to Sh(D).

Proof. This is exactly the content of Lemma 7.20.3. □

Lemma 7.21.2.03L5 Let u : C → D, and v : D → E be cocontinuous functors. Then
v ◦ u is cocontinuous and we have h = g ◦ f where f : Sh(C) → Sh(D), resp.
g : Sh(D)→ Sh(E), resp. h : Sh(C)→ Sh(E) is the morphism of topoi associated to
u, resp. v, resp. v ◦ u.
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Proof. Let U ∈ Ob(C). Let {Ei → v(u(U))} be a covering of U in E . By as-
sumption there exists a covering {Dj → u(U)} in D such that {v(Dj)→ v(u(U))}
refines {Ei → v(u(U))}. Also by assumption there exists a covering {Cl → U}
in C such that {u(Cl) → u(U)} refines {Dj → u(U)}. Then it is true that
{v(u(Cl))→ v(u(U))} refines the covering {Ei → v(u(U))}. This proves that v ◦ u
is cocontinuous. To prove the last assertion it suffices to show that sv◦su = s(v◦u).
It suffices to prove that pv ◦ pu = p(v ◦ u), see Lemma 7.20.2. Since pu, resp. pv,
resp. p(v ◦ u) is right adjoint to up, resp. vp, resp. (v ◦ u)p it suffices to prove that
up ◦ vp = (v ◦ u)p. And this is direct from the definitions. □

Example 7.21.3.00XP Let X be a topological space. Let j : U → X be the inclusion of an
open subspace. Recall that we have sites XZar and UZar, see Example 7.6.4. Recall
that we have the functor u : XZar → UZar associated to j which is continuous and
gives rise to a morphism of sites UZar → XZar, see Example 7.14.2. This also
gives a morphism of topoi (j∗, j

−1). Next, consider the functor v : UZar → XZar,
V 7→ v(V ) = V (just the same open but now thought of as an object of XZar).
This functor is cocontinuous. Namely, if v(V ) =

⋃
j∈JWj is an open covering in X,

then each Wj must be a subset of U and hence is of the form v(Vj), and trivially
V =

⋃
j∈J Vj is an open covering in U . We conclude by Lemma 7.21.1 above that

there is a morphism of topoi associated to v
Sh(U) −→ Sh(X)

given by sv and (vp )#. We claim that actually (vp )# = j−1 and that sv = j∗,
in other words, that this is the same morphism of topoi as the one given above.
Perhaps the easiest way to see this is to realize that for any sheaf G on X we have
vpG(V ) = G(V ) which according to Sheaves, Lemma 6.31.1 is a description of j−1G
(and hence sheafification is superfluous in this case). The equality of sv and j∗
follows by uniqueness of adjoint functors (but may also be computed directly).
Example 7.21.4.00XQ This example is a slight generalization of Example 7.21.3. Let
f : X → Y be a continuous map of topological spaces. Assume that f is open.
Recall that we have sites XZar and YZar, see Example 7.6.4. Recall that we have
the functor u : YZar → XZar associated to f which is continuous and gives rise to
a morphism of sites XZar → YZar, see Example 7.14.2. This also gives a morphism
of topoi (f∗, f

−1). Next, consider the functor v : XZar → YZar, U 7→ v(U) = f(U).
This functor is cocontinuous. Namely, if f(U) =

⋃
j∈J Vj is an open covering in

Y , then setting Uj = f−1(Vj) ∩ U we get an open covering U =
⋃
Uj such that

f(U) =
⋃
f(Uj) is a refinement of f(U) =

⋃
Vj . We conclude by Lemma 7.21.1

above that there is a morphism of topoi associated to v
Sh(X) −→ Sh(Y )

given by sv and (vp )#. We claim that actually (vp )# = f−1 and that sv = f∗, in
other words, that this is the same morphism of topoi as the one given above. For
any sheaf G on Y we have vpG(U) = G(f(U)). On the other hand, we may compute
upG(U) = colimf(U)⊂V G(V ) = G(f(U)) because clearly (f(U), U ⊂ f−1(f(U))) is
an initial object of the category IuU of Section 7.5. Hence up = vp and we conclude
f−1 = us = (vp )#. The equality of sv and f∗ follows by uniqueness of adjoint
functors (but may also be computed directly).
In the first Example 7.21.3 the functor v is also continuous. But in the second
Example 7.21.4 it is generally not continuous because condition (2) of Definition
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7.13.1 may fail. Hence the following lemma applies to the first example, but not to
the second.
Lemma 7.21.5.00XR Let C and D be sites. Let u : C → D be a functor. Assume that

(a) u is cocontinuous, and
(b) u is continuous.

Let g : Sh(C)→ Sh(D) be the associated morphism of topoi. Then
(1) sheafification in the formula g−1 = (up )# is unnecessary, in other words

g−1(G)(U) = G(u(U)),
(2) g−1 has a left adjoint g! = (up )#, and
(3) g−1 commutes with arbitrary limits and colimits.

Proof. By Lemma 7.13.2 for any sheaf G on D the presheaf upG is a sheaf on C.
And then we see the adjointness by the following string of equalities

MorSh(C)(F , g−1G) = MorPSh(C)(F , upG)
= MorPSh(D)(upF ,G)
= MorSh(D)(g!F ,G)

The statement on limits and colimits follows from the discussion in Categories,
Section 4.24. □

In the situation of Lemma 7.21.5 above we see that we have a sequence of adjoint
functors

g!, g
−1, g∗.

The functor g! is not exact in general, because it does not transform a final object
of Sh(C) into a final object of Sh(D) in general. See Sheaves, Remark 6.31.13. On
the other hand, in the topological setting of Example 7.21.3 the functor j! is exact
on abelian sheaves, see Modules, Lemma 17.3.4. The following lemma gives the
generalization to the case of sites.
Lemma 7.21.6.00XS Let C and D be sites. Let u : C → D be a functor. Assume that

(a) u is cocontinuous,
(b) u is continuous, and
(c) fibre products and equalizers exist in C and u commutes with them.

In this case the functor g! above commutes with fibre products and equalizers (and
more generally with finite connected limits).
Proof. Assume (a), (b), and (c). We have g! = (up )#. Recall (Lemma 7.10.1)
that limits of sheaves are equal to the corresponding limits as presheaves. And
sheafification commutes with finite limits (Lemma 7.10.14). Thus it suffices to
show that up commutes with fibre products and equalizers. To do this it suffices
that colimits over the categories (IuV )opp of Section 7.5 commute with fibre products
and equalizers. This follows from Lemma 7.5.1 and Categories, Lemma 4.19.9. □

The following lemma deals with a case that is even more like the morphism associ-
ated to an open immersion of topological spaces.
Lemma 7.21.7.00XT Let C and D be sites. Let u : C → D be a functor. Assume that

(a) u is cocontinuous,
(b) u is continuous, and
(c) u is fully faithful.
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For g!, g
−1, g∗ as above the canonical maps F → g−1g!F and g−1g∗F → F are

isomorphisms for all sheaves F on C.

Proof. Let X be an object of C. In Lemmas 7.20.2 and 7.21.5 we have seen that
sheafification is not necessary for the functors g−1 = (up )# and g∗ = (pu )#. We
may compute (g−1g∗F)(X) = g∗F(u(X)) = limF(Y ). Here the limit is over the
category of pairs (Y, u(Y ) → u(X)) where the morphisms u(Y ) → u(X) are not
required to be of the form u(α) with α a morphism of C. By assumption (c) we see
that they automatically come from morphisms of C and we deduce that the limit
is the value on (X,u(idX)), i.e., F(X). This proves that g−1g∗F = F .

On the other hand, (g−1g!F)(X) = g!F(u(X)) = (upF)#(u(X)), and upF(u(X)) =
colimF(Y ). Here the colimit is over the category of pairs (Y, u(X)→ u(Y )) where
the morphisms u(X) → u(Y ) are not required to be of the form u(α) with α a
morphism of C. By assumption (c) we see that they automatically come from
morphisms of C and we deduce that the colimit is the value on (X,u(idX)), i.e.,
F(X). Thus for every X ∈ Ob(C) we have upF(u(X)) = F(X). Since u is co-
continuous and continuous any covering of u(X) in D can be refined by a covering
(!) {u(Xi) → u(X)} of D where {Xi → X} is a covering in C. This implies that
(upF)+(u(X)) = F(X) also, since in the colimit defining the value of (upF)+ on
u(X) we may restrict to the cofinal system of coverings {u(Xi)→ u(X)} as above.
Hence we see that (upF)+(u(X)) = F(X) for all objects X of C as well. Repeat-
ing this argument one more time gives the equality (upF)#(u(X)) = F(X) for all
objects X of C. This produces the desired equality g−1g!F = F . □

Finally, here is a case that does not have any corresponding topological example.
We will use this lemma to see what happens when we enlarge a “partial universe”
of schemes keeping the same topology. In the situation of the lemma, the morphism
of topoi g : Sh(C) → Sh(D) identifies Sh(C) as a subtopos of Sh(D) (Section 7.43)
and moreover, the given embedding has a retraction.

Lemma 7.21.8.00XU Let C and D be sites. Let u : C → D be a functor. Assume that
(a) u is cocontinuous,
(b) u is continuous,
(c) u is fully faithful,
(d) fibre products exist in C and u commutes with them, and
(e) there exist final objects eC ∈ Ob(C), eD ∈ Ob(D) such that u(eC) = eD.

Let g!, g
−1, g∗ be as above. Then, u defines a morphism of sites f : D → C with

f∗ = g−1, f−1 = g!. The composition

Sh(C) g // Sh(D) f // Sh(C)

is isomorphic to the identity morphism of the topos Sh(C). Moreover, the functor
f−1 is fully faithful.

Proof. By assumption the functor u satisfies the hypotheses of Proposition 7.14.7.
Hence u defines a morphism of sites and hence a morphism of topoi f as in Lemma
7.15.2. The formulas f∗ = g−1 and f−1 = g! are clear from the lemma cited and
Lemma 7.21.5. We have f∗ ◦ g∗ = g−1 ◦ g∗ ∼= id, and g−1 ◦ f−1 = g−1 ◦ g! ∼= id by
Lemma 7.21.7.
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We still have to show that f−1 is fully faithful. Let F ,G ∈ Ob(Sh(C)). We have to
show that the map

MorSh(C)(F ,G) −→ MorSh(D)(f−1F , f−1G)

is bijective. But the right hand side is equal to

MorSh(D)(f−1F , f−1G) = MorSh(C)(F , f∗f
−1G)

= MorSh(C)(F , g−1f−1G)
= MorSh(C)(F ,G)

(the first equality by adjunction) which proves what we want. □

Example 7.21.9.00XV Let X be a topological space. Let i : Z → X be the inclusion
of a subset (with induced topology). Consider the functor u : XZar → ZZar,
U 7→ u(U) = Z ∩U . At first glance it may appear that this functor is cocontinuous
as well. After all, since Z has the induced topology, shouldn’t any covering of U ∩Z
it come from a covering of U in X? Not so! Namely, what if U∩Z = ∅? In that case,
the empty covering is a covering of U∩Z, and the empty covering can only be refined
by the empty covering. Thus we conclude that u cocontinuous ⇒ every nonempty
open U of X has nonempty intersection with Z. But this is not sufficient. For
example, if X = R the real number line with the usual topology, and Z = R \ {0},
then there is an open covering of Z, namely Z = {x < 0} ∪

⋃
n{1/n < x} which

cannot be refined by the restriction of any open covering of X.

7.22. Cocontinuous functors which have a right adjoint

00XW It may happen that a cocontinuous functor u has a right adjoint v. In this case it
is often the case that v is continuous, and if so, then it defines a morphism of topoi
(which is the same as the one defined by u).

Lemma 7.22.1.00XX Let C and D be sites. Let u : C → D, and v : D → C be
functors. Assume that u is cocontinuous, and that v is a right adjoint to u. Let
g : Sh(C) → Sh(D) be the morphism of topoi associated to u, see Lemma 7.21.1.
Then g∗F is equal to the presheaf vpF , in other words, (g∗F)(V ) = F(v(V )).

Proof. We have uphV = hv(V ) by Lemma 7.19.3. By Lemma 7.20.4 this implies
that g−1(h#

V ) = (uph#
V )# = (uphV )# = h#

v(V ). Hence for any sheaf F on C we have

(g∗F)(V ) = MorSh(D)(h#
V , g∗F)

= MorSh(C)(g−1(h#
V ),F)

= MorSh(C)(h#
v(V ),F)

= F(v(V ))

which proves the lemma. □

In the situation of Lemma 7.22.1 we see that vp transforms sheaves into sheaves.
Hence we can define vs = vp restricted to sheaves. Just as in Lemma 7.13.3 we see
that vs : G 7→ (vpG)# is a left adjoint to vs. On the other hand, we have vs = g∗
and g−1 is a left adjoint of g∗ as well. We conclude that g−1 = vs is exact.
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Lemma 7.22.2.00XY In the situation of Lemma 7.22.1. We have g∗ = vs = vp and
g−1 = vs = (vp )#. If v is continuous then v defines a morphism of sites f from
C to D whose associated morphism of topoi is equal to the morphism g associated
to the cocontinuous functor u. In other words, a continuous functor which has a
cocontinuous left adjoint defines a morphism of sites.

Proof. Clear from the discussion above the lemma and Definitions 7.14.1 and Lemma
7.15.2. □

Example 7.22.3.0EWJ This example continues the discussion of Example 7.14.3 from
which we borrow the notation C, τ, τ ′, ϵ. Observe that the identity functor v : Cτ ′ →
Cτ is a continuous functor and the identity functor u : Cτ → Cτ ′ is a cocontinuous
functor. Moreover u is left adjoint to v. Hence the results of Lemmas 7.22.1 and
7.22.2 apply and we conclude v defines a morphism of sites, namely

ϵ : Cτ −→ Cτ ′

whose corresponding morphism of topoi is the same as the morphism of topoi
associated to the cocontinuous functor u.

7.23. Cocontinuous functors which have a left adjoint

08NG It may happen that a cocontinuous functor u has a left adjoint w.

Lemma 7.23.1.08NH Let C and D be sites. Let g : Sh(C)→ Sh(D) be the morphism of
topoi associated to a continuous and cocontinuous functor u : C → D, see Lemmas
7.21.1 and 7.21.5.

(1) If w : D → C is a left adjoint to u, then
(a) g!F is the sheaf associated to the presheaf wpF , and
(b) g! is exact.

(2) if w is a continuous left adjoint, then g! has a left adjoint.
(3) If w is a cocontinuous left adjoint, then g! = h−1 and g−1 = h∗ where

h : Sh(D)→ Sh(C) is the morphism of topoi associated to w.

Proof. Recall that g!F is the sheafification of upF . Hence (1)(a) follows from the
fact that up = wp by Lemma 7.19.3.
To see (1)(b) note that g! commutes with all colimits as g! is a left adjoint (Cat-
egories, Lemma 4.24.5). Let i 7→ Fi be a finite diagram in Sh(C). Then limFi is
computed in the category of presheaves (Lemma 7.10.1). Since wp is a right ad-
joint (Lemma 7.5.4) we see that wp limFi = limwpFi. Since sheafification is exact
(Lemma 7.10.14) we conclude by (1)(a).
Assume w is continuous. Then g! = (wp )# = ws but sheafification isn’t necessary
and one has the left adjoint ws, see Lemmas 7.13.2 and 7.13.3.
Assume w is cocontinuous. The equality g! = h−1 follows from (1)(a) and the defi-
nitions. The equality g−1 = h∗ follows from the equality g! = h−1 and uniqueness
of adjoint functor. Alternatively one can deduce it from Lemma 7.22.1. □

7.24. Existence of lower shriek

09YW In this section we discuss some cases of morphisms of topoi f for which f−1 has a
left adjoint f!.
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Lemma 7.24.1.09YX Let C, D be two sites. Let f : Sh(D) → Sh(C) be a morphism of
topoi. Let E ⊂ Ob(D) be a subset such that

(1) for V ∈ E there exists a sheaf G on C such that f−1F(V ) = MorSh(C)(G,F)
functorially for F in Sh(C),

(2) every object of D has a covering by objects of E.
Then f−1 has a left adjoint f!.

Proof. By the Yoneda lemma (Categories, Lemma 4.3.5) the sheaf GV correspond-
ing to V ∈ E is defined up to unique isomorphism by the formula f−1F(V ) =
MorSh(C)(GV ,F). Recall that f−1F(V ) = MorSh(D)(h#

V , f
−1F). Denote iV : h#

V →
f−1GV the map corresponding to id in Mor(GV ,GV ). Functoriality in (1) implies
that the bijection is given by

MorSh(C)(GV ,F)→ MorSh(D)(h#
V , f

−1F), φ 7→ f−1φ ◦ iV

For any V1, V2 ∈ E there is a canonical map

MorSh(D)(h#
V2
, h#
V1

)→ HomSh(C)(GV2 ,GV1), φ 7→ f!(φ)

which is characterized by f−1(f!(φ)) ◦ iV2 = iV1 ◦ φ. Note that φ 7→ f!(φ) is
compatible with composition; this can be seen directly from the characterization.
Hence h#

V 7→ GV and φ 7→ f!φ is a functor from the full subcategory of Sh(D) whose
objects are the h#

V .

Let J be a set and let J → E, j 7→ Vj be a map. Then we have a functorial bijection

MorSh(C)(
∐
GVj ,F) −→ MorSh(D)(

∐
h#
Vj
, f−1F)

using the product of the bijections above. Hence we can extend the functor f! to
the full subcategory of Sh(D) whose objects are coproducts of h#

V with V ∈ E.

Given an arbitrary sheaf H on D we choose a coequalizer diagram

H1
//
// H0 // H

where Hi =
∐
h#
Vi,j

is a coproduct with Vi,j ∈ E. This is possible by assumption
(2), see Lemma 7.12.5 (for those worried about set theoretical issues, note that the
construction given in Lemma 7.12.5 is canonical). Define f!(H) to be the sheaf on
C which makes

f!H1
//
// f!H0 // f!H

a coequalizer diagram. Then

Mor(f!H,F) = Equalizer( Mor(f!H0,F) //
// Mor(f!H1,F) )

= Equalizer( Mor(H0, f
−1F) //

// Mor(H1, f
−1F) )

= Hom(H, f−1F)

Hence we see that we can extend f! to the whole category of sheaves on D. □
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7.25. Localization

00XZ Let C be a site. Let U ∈ Ob(C). See Categories, Example 4.2.13 for the definition
of the category C/U of objects over U . We turn C/U into a site by declaring a
family of morphisms {Vj → V } of objects over U to be a covering of C/U if and
only if it is a covering in C. Consider the forgetful functor

jU : C/U −→ C.

This is clearly cocontinuous and continuous. Hence by the results of the previous
sections we obtain a morphism of topoi

jU : Sh(C/U) −→ Sh(C)

given by j−1
U and jU∗, as well as a functor jU !.

Definition 7.25.1.00Y0 Let C be a site. Let U ∈ Ob(C).
(1) The site C/U is called the localization of the site C at the object U .
(2) The morphism of topoi jU : Sh(C/U) → Sh(C) is called the localization

morphism.
(3) The functor jU∗ is called the direct image functor.
(4) For a sheaf F on C the sheaf j−1

U F is called the restriction of F to C/U .
(5) For a sheaf G on C/U the sheaf jU !G is called the extension of G by the

empty set.

The restriction j−1
U F is the sheaf defined by the rule j−1

U F(X/U) = F(X) as
expected. The extension by the empty set also has a very easy description in this
case; here it is.

Lemma 7.25.2.03CD Let C be a site. Let U ∈ Ob(C). Let G be a presheaf on C/U . Then
jU !(G#) is the sheaf associated to the presheaf

V 7−→
∐

φ∈MorC(V,U)
G(V φ−→ U)

with obvious restriction mappings.

Proof. By Lemma 7.21.5 we have jU !(G#) = ((jU )pG#)#. By Lemma 7.13.4 this
is equal to ((jU )pG)#. Hence it suffices to prove that (jU )p is given by the formula
above for any presheaf G on C/U . OK, and by the definition in Section 7.5 we have

(jU )pG(V ) = colim(W/U,V→W ) G(W )

Now it is clear that the category of pairs (W/U, V → W ) has an object Oφ = (φ :
V → U, id : V → V ) for every φ : V → U , and moreover for any object there is a
unique morphism from one of the Oφ into it. The result follows. □

Lemma 7.25.3.03HU Let C be a site. Let U ∈ Ob(C). Let X/U be an object of C/U .
Then we have jU !(h#

X/U ) = h#
X .

Proof. Denote p : X → U the structure morphism of X. By Lemma 7.25.2 we see
jU !(h#

X/U ) is the sheaf associated to the presheaf

V 7−→
∐

φ∈MorC(V,U)
{ψ : V → X | p ◦ ψ = φ}

This is clearly the same thing as MorC(V,X). Hence the lemma follows. □
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We have jU !(∗) = h#
U by either of the two lemmas above. Hence for every sheaf

G over C/U there is a canonical map of sheaves jU !G → h#
U . This characterizes

sheaves in the essential image of jU !.

Lemma 7.25.4.00Y1 Let C be a site. Let U ∈ Ob(C). The functor jU ! gives an equiva-
lence of categories

Sh(C/U) −→ Sh(C)/h#
U

Proof. Let us denote objects of C/U as pairs (X, a) where X is an object of C and
a : X → U is a morphism of C. Similarly, objects of Sh(C)/h#

U are pairs (F , φ).
The functor Sh(C/U) → Sh(C)/h#

U sends G to the pair (jU !G, γ) where γ is the
composition of jU !G → jU !∗ with the identification jU !∗ = h#

U .

Let us construct a functor from Sh(C)/h#
U to Sh(C/U). Suppose that (F , φ) is given.

For an object (X, a) of C/U we consider the set Fφ(X, a) of elements s ∈ F(X)
which under φ map to the image of a ∈ MorC(X,U) = hU (X) in h#

U (X). It is easy
to see that (X, a) 7→ Fφ(X, a) is a sheaf on C/U . Clearly, the rule (F , φ) 7→ Fφ
defines a functor Sh(C)/h#

U → Sh(C/U).
Consider also the functor PSh(C)/hU → PSh(C/U), (F , φ) 7→ Fφ where Fφ(X, a)
is defined as the set of elements of F(X) mapping to a ∈ hU (X). We claim that
the diagram

PSh(C)/hU //

��

PSh(C/U)

��
Sh(C)/h#

U
// Sh(C/U)

commutes, where the vertical arrows are given by sheafification. To see this5, it
suffices to prove that the construction commutes with the functor F 7→ F+ of
Lemmas 7.10.3 and 7.10.4 and Theorem 7.10.10. Commutation with F 7→ F+

follows from the fact that given (X, a) the categories of coverings of (X, a) in C/U
and coverings of X in C are canonically identified.
Next, let PSh(C/U) → PSh(C)/hU send G to the pair (jPShU ! G, γ) where jPShU ! G
the presheaf defined by the formula in Lemma 7.25.2 and γ is the composition of
jPShU ! G → jU !∗ with the identification jPShU ! ∗ = hU (obvious from the formula).
Then it is immediately clear that the diagram

PSh(C/U) //

��

PSh(C)/hU

��
Sh(C/U) // Sh(C)/h#

U

5An alternative is to describe Fφ by the cartesian diagram

Fφ //

��

∗

��
F|C/U // hU |C/U

for presheaves and

Fφ //

��

∗

��
F|C/U // h#

U |C/U

for sheaves and use that restriction to C/U commutes with sheafification.

https://stacks.math.columbia.edu/tag/00Y1


7.25. LOCALIZATION 287

commutes, where the vertical arrows are sheafification. Putting everything to-
gether it suffices to show there are functorial isomorphisms (jPShU ! G)γ = G for G in
PSh(C/U) and jPShU ! Fφ = F for (F , φ) in PSh(C)/hU . The value of the presheaf
(jPShU ! G)γ on (X, a) is the fibre of the map∐

a′:X→U
G(X, a′)→ MorC(X,U)

over a which is G(X, a). This proves the first equality. The value of the presheaf
jPShU ! Fφ is on X is ∐

a:X→U
Fφ(X, a) = F(X)

because given a set map S → S′ the set S is the disjoint union of its fibres. □

Lemma 7.25.4 says the functor jU ! is the composition

Sh(C/U)→ Sh(C)/h#
U → Sh(C)

where the first arrow is an equivalence.

Lemma 7.25.5.04BB Let C be a site. Let U ∈ Ob(C). The functor jU ! commutes
with fibre products and equalizers (and more generally finite connected limits). In
particular, if F ⊂ F ′ in Sh(C/U), then jU !F ⊂ jU !F ′.

Proof. Via Lemma 7.25.4 and the fact that an equivalence of categories commutes
with all limits, this reduces to the fact that the functor Sh(C)/h#

U → Sh(C) com-
mutes with fibre products and equalizers. Alternatively, one can prove this directly
using the description of jU ! in Lemma 7.25.2 using that sheafification is exact.
(Also, in case C has fibre products and equalizers, the result follows from Lemma
7.21.6.) □

Lemma 7.25.6.0E8E Let C be a site. Let U ∈ Ob(C). The functor jU ! reflects injections
and surjections.

Proof. We have to show jU ! reflects monomorphisms and epimorphisms, see Lemma
7.11.2. Via Lemma 7.25.4 this reduces to the fact that the functor Sh(C)/h#

U →
Sh(C) reflects monomorphisms and epimorphisms. □

Lemma 7.25.7.03EE Let C be a site. Let U ∈ Ob(C). For any sheaf F on C we have
jU !j

−1
U F = F × h#

U .

Proof. This is clear from the description of jU ! in Lemma 7.25.2. □

Lemma 7.25.8.03EH Let C be a site. Let f : V → U be a morphism of C. Then there
exists a commutative diagram

C/V

jV !!

j
// C/U

jU~~
C

of continuous and cocontinuous functors. The functor j : C/V → C/U , (a : W →
V ) 7→ (f ◦ a : W → U) is identified with the functor jV/U : (C/U)/(V/U) → C/U
via the identification (C/U)/(V/U) = C/V . Moreover we have jV ! = jU ! ◦ j!,
j−1
V = j−1 ◦ j−1

U , and jV ∗ = jU∗ ◦ j∗.
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Proof. The commutativity of the diagram is immediate. The agreement of j with
jV/U follows from the definitions. By Lemma 7.21.2 we see that the following
diagram of morphisms of topoi

(7.25.8.1)04IK

Sh(C/V )

jV %%

j
// Sh(C/U)

jUyy
Sh(C)

is commutative. This proves that j−1
V = j−1 ◦ j−1

U and jV ∗ = jU∗ ◦ j∗. The equality
jV ! = jU ! ◦ j! follows formally from adjointness properties. □

Lemma 7.25.9.04IL Notation C, f : V → U , jU , jV , and j as in Lemma 7.25.8. Via the
identifications Sh(C/V ) = Sh(C)/h#

V and Sh(C/U) = Sh(C)/h#
U of Lemma 7.25.4

we have
(1) the functor j−1 has the following description

j−1(H φ−→ h#
U ) = (H×φ,h#

U
,f h

#
V → h#

V ).

(2) the functor j! has the following description

j!(H
φ−→ h#

V ) = (H hf◦φ−−−→ h#
U )

Proof. Proof of (2). Recall that the identification Sh(C/V )→ Sh(C)/h#
V sends G to

jV !G → jV !(∗) = h#
V and similarly for Sh(C/U) → Sh(C)/h#

U . Thus j!G is mapped
to jU !(j!G)→ jU !(∗) = h#

U and (2) follows because jU !j! = jV ! by Lemma 7.25.8.

The reader can now prove (1) by using that j−1 is the right adjoint to j! and using
that the rule in (1) is the right adjoint to the rule in (2). Here is a direct proof.
Suppose that φ : H → h#

U is an object of Sh(C)/h#
U . By the proof of Lemma 7.25.4

this corresponds to the sheaf Hφ on C/U defined by the rule

(a : W → U) 7−→ {s ∈ H(W ) | φ(s) = a}

on C/U . The pullback j−1Hφ to C/V is given by the rule

(a : W → V ) 7−→ {s ∈ H(W ) | φ(s) = f ◦ a}

by the description of j−1 = j−1
U/V as the restriction of Hφ to C/V . On the other

hand, applying the rule to the object

H′ = H×φ,h#
U
,f h

#
V

φ′
// h#
V

of Sh(C)/h#
V we get H′

φ′ given by

(a : W → V ) 7−→{s′ ∈ H′(W ) | φ′(s′) = a}

={(s, a′) ∈ H(W )× h#
V (W ) | a′ = a and φ(s) = f ◦ a′}

which is exactly the same rule as the one describing j−1Hφ above. □

Remark 7.25.10.0494 Localization and presheaves. Let C be a category. Let U be an
object of C. Strictly speaking the functors j−1

U , jU∗ and jU ! have not been defined
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for presheaves. But of course, we can think of a presheaf as a sheaf for the chaotic
topology on C (see Example 7.6.6). Hence we also obtain a functor

j−1
U : PSh(C) −→ PSh(C/U)

and functors
jU∗, jU ! : PSh(C/U) −→ PSh(C)

which are right, left adjoint to j−1
U . By Lemma 7.25.2 we see that jU !G is the

presheaf
V 7−→

∐
φ∈MorC(V,U)

G(V φ−→ U)

In addition the functor jU ! commutes with fibre products and equalizers.
Remark 7.25.11.09W8 Let C be a site. Let U → V be a morphism of C. The cocontinuous
functors C/U → C and j : C/U → C/V (Lemma 7.25.8) satisfy property P of
Remark 7.20.5. For example, if we have objects (X/U), (W/V ), a morphism g :
j(X/U)→ (W/V ), and a covering {fi : (Wi/V )→ (W/V )} then (X ×W Wi/U) is
an avatar of (X/U)×g,(W/V ),fi (Wi/V ) and the family {(X ×W Wi/U)→ (X/U)}
is a covering of C/U .

7.26. Glueing sheaves

04TP This section is the analogue of Sheaves, Section 6.33.
Lemma 7.26.1.04TQ Let C be a site. Let {Ui → U} be a covering of C. Let F , G be
sheaves on C. Given a collection

φi : F|C/Ui −→ G|C/Ui
of maps of sheaves such that for all i, j ∈ I the maps φi, φj restrict to the same
map φij : F|C/Ui×UUj → G|C/Ui×UUj then there exists a unique map of sheaves

φ : F|C/U −→ G|C/U
whose restriction to each C/Ui agrees with φi.
Proof. The restrictions used in the lemma are those of Lemma 7.25.8. Let V/U
be an object of C/U . Set Vi = Ui ×U V and denote V = {Vi → V }. Observe
that (Ui ×U Uj) ×U V = Vi ×V Vj . Then we have F|C/Ui(Vi/Ui) = F(Vi) and
F|C/Ui×UUj (Vi ×V Vj/Ui ×U Uj) = F(Vi ×V Vj) and similarly for G. Thus we can
define φ on sections over V as the dotted arrows in the diagram

F(V ) H0(V,F)

��

// ∏F(Vi)∏
φi

��

//
//
∏
F(Vi ×V Vj)∏
φij

��
G(V ) H0(V,G) // ∏G(Vi)

//
//
∏
G(Vi ×V Vj)

The equality signs come from the sheaf condition; see Section 7.10 for the nota-
tion H0(V,−). We omit the verification that these maps are compatible with the
restriction maps. □

The previous lemma implies that given two sheaves F , G on a site C the rule
U 7−→ MorSh(C/U)(F|C/U ,G|C/U )

defines a sheaf Hom(F ,G). This is a kind of internal hom sheaf. It is seldom used in
the setting of sheaves of sets, and more usually in the setting of sheaves of modules,
see Modules on Sites, Section 18.27.
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Lemma 7.26.2.0BWQ Let C be a site. Let F , G and H be sheaves on C. There is a
canonical bijection

MorSh(C)(F × G,H) = MorSh(C)(F ,Hom(G,H))

which is functorial in all three entries.

Proof. The lemma says that the functors −×G and Hom(G,−) are adjoint to each
other. To show this, we use the notion of unit and counit, see Categories, Section
4.24. The unit

ηF : F −→ Hom(G,F × G)
sends s ∈ F(U) to the map G|C/U → F|C/U × G|C/U which over V/U is given by

G(V ) −→ F(V )× G(V ), t 7−→ (s|V , t).

The counit
ϵH : Hom(G,H)× G −→ H

is the evaluation map. It is given by the rule

MorSh(C/U)(G|C/U ,H|C/U )× G(U) −→ H(U), (φ, s) 7−→ φ(s).

Then for each φ : F × G → H, the corresponding morphism F → Hom(G,H) is
given by mapping each section s ∈ F(U) to the morphism of sheaves on C/U which
on sections over V/U is given by

G(V ) −→ H(V ), t 7−→ φ(s|V , t).

Conversely, for each ψ : F → Hom(G,H), the corresponding morphism F ×G → H
is given by

F(U)× G(U) −→ H(U), (s, t) 7−→ ψ(s)(t)
on sections over an object U . We omit the details of the proof showing that these
constructions are mutually inverse. □

Lemma 7.26.3.0D7X Let C be a site and U ∈ Ob(C). Then Hom(h#
U ,F) = j∗(F|C/U )

for F in Sh(C).

Proof. This can be shown by directly constructing an isomorphism of sheaves. In-
stead we argue as follows. Let G be a sheaf on C. Then

Mor(G, j∗(F|C/U )) = Mor(G|C/U ,F|C/U )
= Mor(j!(G|C/U ),F)

= Mor(G × h#
U ,F)

= Mor(G,Hom(h#
U ,F))

and we conclude by the Yoneda lemma. Here we used Lemmas 7.26.2 and 7.25.7. □

Let C be a site. Let {Ui → U}i∈I be a covering of C. For each i ∈ I let Fi be a
sheaf of sets on C/Ui. For each pair i, j ∈ I, let

φij : Fi|C/Ui×UUj −→ Fj |C/Ui×UUj
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be an isomorphism of sheaves of sets. Assume in addition that for every triple of
indices i, j, k ∈ I the following diagram is commutative

Fi|C/Ui×UUj×UUk φik
//

φij
))

Fk|C/Ui×UUj×UUk

Fj |C/Ui×UUj×UUk

φjk

55

We will call such a collection of data (Fi, φij) a glueing data for sheaves of sets
with respect to the covering {Ui → U}i∈I .

Lemma 7.26.4.04TR Let C be a site. Let {Ui → U}i∈I be a covering of C. Given any
glueing data (Fi, φij) for sheaves of sets with respect to the covering {Ui → U}i∈I
there exists a sheaf of sets F on C/U together with isomorphisms

φi : F|C/Ui → Fi
such that the diagrams

F|C/Ui×UUj

id
��

φi
// Fi|C/Ui×UUj

φij

��
F|C/Ui×UUj

φj // Fj |C/Ui×UUj
are commutative.

Proof. Let us describe how to construct the sheaf F on C/U . Let a : V → U be an
object of C/U . Then

F(V/U) = {(si)i∈I ∈
∏
i∈I
Fi(Ui ×U V/Ui) | φij(si|Ui×UUj×UV ) = sj |Ui×UUj×UV }

We omit the construction of the restriction mappings. We omit the verification
that this is a sheaf. We omit the construction of the isomorphisms φi, and we omit
proving the commutativity of the diagrams of the lemma. □

Let C be a site. Let {Ui → U}i∈I be a covering of C. Let F be a sheaf on C/U .
Associated to F we have its canonical glueing data given by the restrictions F|C/Ui
and the canonical isomorphisms(

F|C/Ui
)
|C/Ui×UUj =

(
F|C/Uj

)
|C/Ui×UUj

coming from the fact that the composition of the functors C/Ui ×U Uj → C/Ui →
C/U and C/Ui ×U Uj → C/Uj → C/U are equal.

Lemma 7.26.5.04TS Let C be a site. Let {Ui → U}i∈I be a covering of C. The category
Sh(C/U) is equivalent to the category of glueing data via the functor that associates
to F on C/U the canonical glueing data.

Proof. In Lemma 7.26.1 we saw that the functor is fully faithful, and in Lemma
7.26.4 we proved that it is essentially surjective (by explicitly constructing a quasi-
inverse functor). □

Let C be a site. We are going to discuss a version of glueing sheaves on the entire
site C. For each object U in C, let FU be a sheaf on C/U . Recall that there is a
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functor jf : C/V → C/U associated to each morphism f : V → U in C, given by
(a : W → V ) 7→ (f ◦ a : W → U). For each such f , let

cf : j−1
f FU → FV

be an isomorphism of sheaves. Assume that given any two arrows f : V → U and
g : W → V in C, the composition cg ◦ j−1

g cf is equal to cf◦g. We will call such
a collection of data (FU , cf ) an absolute glueing data for sheaves of sets on C. A
morphism of absolute glueing data (FU , cf )→ (GU , c′

f ) is given by a collection (φU )
of morphisms of sheaves φU : FU → GU , such that

j−1
f FU cf

//

j−1
f
φU

��

FV

φV

��
j−1
f GU

c′
f // GV

commutes for every morphism f : V → U in C.
Associated to any sheaf F on C is its canonical absolute glueing data (F|C/U , cf ),
where the canonical isomorphisms cf : j−1

f F|C/U → F|C/V for f : V → U come
from the relation jV = jU ◦ jf as in Lemma 7.25.8. Any morphism φ : F → G of
sheaves of C induces a morphism (φ|C/U ) of canonical absolute glueing data.
Lemma 7.26.6.0GWK Let C be a site. The category Sh(C) is equivalent to the category
of absolute glueing data via the functor that associates to F on C the canonical
absolute glueing data.
Proof. Given an absolute glueing data (FU , cf ), we construct a sheaf F on C by set-
ting F(U) = FU (U), where restriction along f : V → U given by the commutative
diagram

FU (U) // FU (V )
cf // FV (V )

F(U) // F(V )
The compatibility condition cg ◦j−1

g cf = cf◦g ensures that F is a presheaf, and also
ensures that the maps cf : FU (V ) → F(V ) define an isomorphism FU → F|C/U
for each U . Since each FU is a sheaf, this implies that F is a sheaf as well. The
functor (FU , cf ) 7→ F just constructed is quasi-inverse to the functor which takes
a sheaf on C to its canonical glueing data. Further details omitted. □

Remark 7.26.7.0GWL There is a variant of Lemma 7.26.6 which comes up in algebraic
geometry. Namely, suppose that C is a site with all fibre products and for each
U ∈ Ob(C) we are given a full subcategory Uτ ⊂ C/U with the following properties

(1) U/U is in Uτ ,
(2) for V/U in Uτ and covering {Vj → V } of C we have Vj/U in Uτ and
(3) for a morphism U ′ → U of C and V/U in Uτ the base change V ′ = V ×UU ′

is in U ′
τ .

In this setting Uτ is a site for all U in C and the base change functor Uτ → U ′
τ

defines a morphism fτ : Uτ → U ′
τ of sites for all morphisms f : U ′ → U of C. The

glueing statement we obtain then reads as follows: A sheaf F on C is given by the
following data:
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(1) for every U ∈ Ob(C) a sheaf FU on Uτ ,
(2) for every f : U ′ → U in C a map cf : f−1

τ FU → FU ′ .
These data are subject to the following conditions:

(a) given f : U ′ → U and g : U ′′ → U ′ in C the composition cg ◦ g−1
τ cf is

equal to cf◦g, and
(b) if f : U ′ → U is in Uτ then cf is an isomorphism.

If we ever need this we will precisely state and prove this here. (Note that this
result is slightly different from the statements above as we are not requiring all the
maps cf to be isomorphisms!)

7.27. More localization

04IM In this section we prove a few lemmas on localization where we impose some addi-
tional hypotheses on the site on or the object we are localizing at.

Lemma 7.27.1.03HT Let C be a site. Let U ∈ Ob(C). If the topology on C is subcanonical,
see Definition 7.12.2, and if G is a sheaf on C/U , then

jU !(G)(V ) =
∐

φ∈MorC(V,U)
G(V φ−→ U),

in other words sheafification is not necessary in Lemma 7.25.2.

Proof. Let V = {Vi → V }i∈I be a covering of V in the site C. We are going to check
the sheaf condition for the presheaf H of Lemma 7.25.2 directly. Let (si, φi)i∈I ∈∏
iH(Vi), This means φi : Vi → U is a morphism in C, and si ∈ G(Vi

φi−→ U). The
restriction of the pair (si, φi) to Vi ×V Vj is the pair (si|Vi×V Vj/U ,pr1 ◦ φi), and
likewise the restriction of the pair (sj , φj) to Vi×V Vj is the pair (sj |Vi×V Vj/U ,pr2 ◦
φj). Hence, if the family (si, φi) lies in Ȟ0(V,H), then we see that pr1 ◦ φi =
pr2◦φj . The condition that the topology on C is weaker than the canonical topology
then implies that there exists a unique morphism φ : V → U such that φi is the
composition of Vi → V with φ. At this point the sheaf condition for G guarantees
that the sections si glue to a unique section s ∈ G(V φ−→ U). Hence (s, φ) ∈ H(V )
as desired. □

Lemma 7.27.2.03CE Let C be a site. Let U ∈ Ob(C). Assume C has products of pairs
of objects. Then

(1) the functor jU has a continuous right adjoint, namely the functor v(X) =
X × U/U ,

(2) the functor v defines a morphism of sites C/U → C whose associated
morphism of topoi equals jU : Sh(C/U)→ Sh(C), and

(3) we have jU∗F(X) = F(X × U/U).

Proof. The functor v being right adjoint to jU means that given Y/U and X we
have

MorC(Y,X) = MorC/U (Y/U,X × U/U)
which is clear. To check that v is continuous let {Xi → X} be a covering of C. By
the third axiom of a site (Definition 7.6.2) we see that

{Xi ×X (X × U)→ X ×X (X × U)} = {Xi × U → X × U}
is a covering of C also. Hence v is continuous. The other statements of the lemma
follow from Lemmas 7.22.1 and 7.22.2. □
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Lemma 7.27.3.09W9 Let C be a site. Let U → V be a morphism of C. Assume C has
fibre products. Let j be as in Lemma 7.25.8. Then

(1) the functor j : C/U → C/V has a continuous right adjoint, namely the
functor v : (X/V ) 7→ (X ×V U/U),

(2) the functor v defines a morphism of sites C/U → C/V whose associated
morphism of topoi equals j, and

(3) we have j∗F(X/V ) = F(X ×V U/U).

Proof. Follows from Lemma 7.27.2 since j may be viewed as a localization functor
by Lemma 7.25.8. □

A fundamental property of an open immersion is that the restriction of the push-
forward and the restriction of the extension by the empty set produces back the
original sheaf. This is not always true for the functors associated to jU above. It
is true when U is a “subobject of the final object”.

Lemma 7.27.4.00Y2 Let C be a site. Let U ∈ Ob(C). Assume that every X in C
has at most one morphism to U . Let F be a sheaf on C/U . The canonical maps
F → j−1

U jU !F and j−1
U jU∗F → F are isomorphisms.

Proof. This is a special case of Lemma 7.21.7 because the assumption on U is
equivalent to the fully faithfulness of the localization functor C/U → C. □

Lemma 7.27.5.0EYV Let C be a site. Let

U ′

��

// U

��
V ′ // V

be a commutative diagram of C. The morphisms of Lemma 7.25.8 produce com-
mutative diagrams

C/U ′

jU′/V ′

��

jU′/U

// C/U

jU/V

��
C/V ′

jV ′/V // C/V

and

Sh(C/U ′)

jU′/V ′

��

jU′/U

// Sh(C/U)

jU/V

��
Sh(C/V ′)

jV ′/V // Sh(C/V )

of continuous and cocontinuous functors and of topoi. Moreover, if the initial
diagram of C is cartesian, then we have j−1

V ′/V ◦ jU/V,∗ = jU ′/V ′,∗ ◦ j−1
U ′/U .

Proof. The commutativity of the left square in the first statement of the lemma
is immediate from the definitions. It implies the commutativity of the diagram of
topoi by Lemma 7.21.2. Assume the diagram is cartesian. By the uniqueness of
adjoint functors, to show j−1

V ′/V ◦ jU/V,∗ = jU ′/V ′,∗ ◦ j−1
U ′/U is equivalent to showing

j−1
U/V ◦ jV ′/V ! = jU ′/U ! ◦ j−1

U ′/V ′ . Via the identifications of Lemma 7.25.4 we may
think of our diagram of topoi as

Sh(C)/h#
U ′

��

// Sh(C)/h#
U

��
Sh(C)/h#

V ′
// Sh(C)/h#

V
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and we know how to interpret the functors j−1 and j! by Lemma 7.25.9. Thus we
have to show given F → h#

V ′ that

F ×h#
V ′
h#
U ′ = F ×h#

V
h#
U

as sheaves with map to h#
U . This is true because hU ′ = hV ′ ×hV hU and hence also

h#
U ′ = h#

V ′ ×h#
V
h#
U

as sheafification is exact. □

7.28. Localization and morphisms

04I8 The following lemma is important in order to understand relation between local-
ization and morphisms of sites and topoi.

Lemma 7.28.1.03CF Let f : C → D be a morphism of sites corresponding to the
continuous functor u : D → C. Let V ∈ Ob(D) and set U = u(V ). Then the
functor u′ : D/V → C/U , V ′/V 7→ u(V ′)/U determines a morphism of sites f ′ :
C/U → D/V . The morphism f ′ fits into a commutative diagram of topoi

Sh(C/U)
jU

//

f ′

��

Sh(C)

f

��
Sh(D/V ) jV // Sh(D).

Using the identifications Sh(C/U) = Sh(C)/h#
U and Sh(D/V ) = Sh(D)/h#

V of
Lemma 7.25.4 the functor (f ′)−1 is described by the rule

(f ′)−1(H φ−→ h#
V ) = (f−1H f−1φ−−−→ h#

U ).

Finally, we have f ′
∗j

−1
U = j−1

V f∗.

Proof. It is clear that u′ is continuous, and hence we get functors f ′
∗ = (u′)s = (u′)p

(see Sections 7.5 and 7.13) and an adjoint (f ′)−1 = (u′)s = ((u′)p )#. The assertion
f ′

∗j
−1
U = j−1

V f∗ follows as

(j−1
V f∗F)(V ′/V ) = f∗F(V ′) = F(u(V ′)) = (j−1

U F)(u(V ′)/U) = (f ′
∗j

−1
U F)(V ′/V )

which holds even for presheaves. What isn’t clear a priori is that (f ′)−1 is exact,
that the diagram commutes, and that the description of (f ′)−1 holds.

Let H be a sheaf on D/V . Let us compute jU !(f ′)−1H. We have

jU !(f ′)−1H = ((jU )p(u′
pH)#)#

= ((jU )pu′
pH)#

= (up(jV )pH)#

= f−1jV !H

The first equality by unwinding the definitions. The second equality by Lemma
7.13.4. The third equality because u ◦ jV = jU ◦ u′. The fourth equality by Lemma
7.13.4 again. All of the equalities above are isomorphisms of functors, and hence we
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may interpret this as saying that the following diagram of categories and functors
is commutative

Sh(C/U)
jU!

// Sh(C)/h#
U

// Sh(C)

Sh(D/V ) jV ! //

(f ′)−1

OO

Sh(D)/h#
V

//

f−1

OO

Sh(D)

f−1

OO

The middle arrow makes sense as f−1h#
V = (hu(V ))# = h#

U , see Lemma 7.13.5. In
particular this proves the description of (f ′)−1 given in the statement of the lemma.
Since by Lemma 7.25.4 the left horizontal arrows are equivalences and since f−1 is
exact by assumption we conclude that (f ′)−1 = u′

s is exact. Namely, because it is
a left adjoint it is already right exact (Categories, Lemma 4.24.5). Hence we only
need to show that it transforms a final object into a final object and commutes with
fibre products (Categories, Lemma 4.23.2). Both are clear for the induced functor
f−1 : Sh(D)/h#

V → Sh(C)/h#
U . This proves that f ′ is a morphism of sites.

We still have to verify that (f ′)−1j−1
V = j−1

U f−1. To see this use the formula above
and the description in Lemma 7.25.7. Namely, combined these give, for any sheaf
G on D, that

jU !(f ′)−1j−1
V G = f−1jV !j

−1
V G = f−1(G × h#

V ) = f−1G × h#
U = jU !j

−1
U f−1G.

Since the functor jU ! induces an equivalence Sh(C/U)→ Sh(C)/h#
U we conclude. □

The following lemma is a special case of the more general Lemma 7.28.1 above.

Lemma 7.28.2.03EF Let C, D be sites. Let u : D → C be a functor. Let V ∈ Ob(D).
Set U = u(V ). Assume that

(1) C and D have all finite limits,
(2) u is continuous, and
(3) u commutes with finite limits.

There exists a commutative diagram of morphisms of sites

C/U
jU

//

f ′

��

C

f

��
D/V

jV // D

where the right vertical arrow corresponds to u, the left vertical arrow corresponds
to the functor u′ : D/V → C/U , V ′/V 7→ u(V ′)/u(V ) and the horizontal arrows
correspond to the functors C → C/U , X 7→ X × U and D → D/V , Y 7→ Y × V as
in Lemma 7.27.2. Moreover, the associated diagram of morphisms of topoi is equal
to the diagram of Lemma 7.28.1. In particular we have f ′

∗j
−1
U = j−1

V f∗.

Proof. Note that u satisfies the assumptions of Proposition 7.14.7 and hence induces
a morphism of sites f : C → D by that proposition. It is clear that u induces a
functor u′ as indicated. It is clear that this functor also satisfies the assumptions
of Proposition 7.14.7. Hence we get a morphism of sites f ′ : C/U → D/V . The
diagram commutes by our definition of composition of morphisms of sites (see
Definition 7.14.5) and because

u(Y × V ) = u(Y )× u(V ) = u(Y )× U
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which shows that the diagram of categories and functors opposite to the diagram
of the lemma commutes. □

At this point we can localize a site, we know how to relocalize, and we can localize
a morphism of sites at an object of the site downstairs. If we combine these then
we get the following kind of diagram.

Lemma 7.28.3.04IN Let f : C → D be a morphism of sites corresponding to the
continuous functor u : D → C. Let V ∈ Ob(D), U ∈ Ob(C) and c : U → u(V ) a
morphism of C. There exists a commutative diagram of topoi

Sh(C/U)
jU

//

fc

��

Sh(C)

f

��
Sh(D/V ) jV // Sh(D).

We have fc = f ′ ◦ jU/u(V ) where f ′ : Sh(C/u(V )) → Sh(D/V ) is as in Lemma
7.28.1 and jU/u(V ) : Sh(C/U) → Sh(C/u(V )) is as in Lemma 7.25.8. Using the
identifications Sh(C/U) = Sh(C)/h#

U and Sh(D/V ) = Sh(D)/h#
V of Lemma 7.25.4

the functor (fc)−1 is described by the rule

(fc)−1(H φ−→ h#
V ) = (f−1H×f−1φ,h#

u(V ),c
h#
U → h#

U ).

Finally, given any morphisms b : V ′ → V , a : U ′ → U and c′ : U ′ → u(V ′) such
that

U ′
c′
//

a

��

u(V ′)

u(b)
��

U
c // u(V )

commutes, then the diagram

Sh(C/U ′)
jU′/U

//

fc′

��

Sh(C/U)

fc

��
Sh(D/V ′)

jV ′/V // Sh(D/V ).

commutes.

Proof. This lemma proves itself, and is more a collection of things we know at
this stage of the development of theory. For example the commutativity of the first
square follows from the commutativity of Diagram (7.25.8.1) and the commutativity
of the diagram in Lemma 7.28.1. The description of f−1

c follows on combining
Lemma 7.25.9 with Lemma 7.28.1. The commutativity of the last square then
follows from the equality

f−1H×h#
u(V ),c

h#
U ×h#

U
h#
U ′ = f−1(H×h#

V
h#
V ′)×h#

u(V ′),c′
h#
U ′

which is formal using that f−1h#
V = h#

u(V ) and f−1h#
V ′ = h#

u(V ′), see Lemma
7.13.5. □

https://stacks.math.columbia.edu/tag/04IN
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In the following lemma we find another kind of functoriality of localization, in case
the morphism of topoi comes from a cocontinuous functor. This is a kind of diagram
which is different from the diagram in Lemma 7.28.1, and in particular, in general
the equality f ′

∗j
−1
U = j−1

V f∗ seen in Lemma 7.28.1 does not hold in the situation of
the following lemma.

Lemma 7.28.4.03EG Let C, D be sites. Let u : C → D be a cocontinuous functor. Let
U be an object of C, and set V = u(U). We have a commutative diagram

C/U
jU

//

u′

��

C

u

��
D/V

jV // D

where the left vertical arrow is u′ : C/U → D/V , U ′/U 7→ V ′/V . Then u′ is
cocontinuous also and we get a commutative diagram of topoi

Sh(C/U)
jU

//

f ′

��

Sh(C)

f

��
Sh(D/V ) jV // Sh(D)

where f (resp. f ′) corresponds to u (resp. u′).

Proof. The commutativity of the first diagram is clear. It implies the commutativ-
ity of the second diagram provided we show that u′ is cocontinuous.

Let U ′/U be an object of C/U . Let {Vj/V → u(U ′)/V }j∈J be a covering of u(U ′)/V
in D/V . Since u is cocontinuous there exists a covering {U ′

i → U ′}i∈I such that the
family {u(U ′

i) → u(U ′)} refines the covering {Vj → u(U ′)} in D. In other words,
there exists a map of index sets α : I → J and morphisms ϕi : u(U ′

i) → Vα(i) over
U ′. Think of U ′

i as an object over U via the composition U ′
i → U ′ → U . Then

{U ′
i/U → U ′/U} is a covering of C/U such that {u(U ′

i)/V → u(U ′)/V } refines
{Vj/V → u(U ′)/V } (use the same α and the same maps ϕi). Hence u′ : C/U →
D/V is cocontinuous. □

Lemma 7.28.5.0D5R Let C, D be sites. Let u : C → D be a cocontinuous functor. Let
V be an object of D. Let uV I be the category introduced in Section 7.19. We have
a commutative diagram

u
V I j

//

u′

��

C

u

��
D/V

jV // D

where j : (U,ψ) 7→ U
u′ : (U,ψ) 7→ (ψ : u(U)→ V )

Declare a family of morphisms {(Ui, ψi) → (U,ψ)} of uV I to be a covering if and
only if {Ui → U} is a covering in C. Then

(1) u
V I is a site,

(2) j is continuous and cocontinuous,
(3) u′ is cocontinuous,

https://stacks.math.columbia.edu/tag/03EG
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(4) we get a commutative diagram of topoi

Sh(uV I)
j
//

f ′

��

Sh(C)

f

��
Sh(D/V ) jV // Sh(D)

where f (resp. f ′) corresponds to u (resp. u′), and
(5) we have f ′

∗j
−1 = j−1

V f∗.
Proof. Parts (1), (2), (3), and (4) are straightforward consequences of the defini-
tions and the fact that the functor j commutes with fibre products. We omit the
details. To see (5) recall that f∗ is given by su = pu. Hence the value of j−1

V f∗F
on V ′/V is the value of puF on V ′ which is the limit of the values of F on the
category u

V ′I. Clearly, there is an equivalence of categories
u
V ′I → u′

V ′/V I

Since the value of f ′
∗j

−1F on V ′/V is given by the limit of the values of j−1F
on the category u′

V ′/V I and since the values of j−1F on objects of uV I are just the
values of F (by Lemma 7.21.5 as j is continuous and cocontinuous) we see that (5)
is true. □

The following two results are of a slightly different nature.
Lemma 7.28.6.0FN1 Assume given sites C′, C,D′,D and functors

C′
v′
//

u′

��

C

u

��
D′ v // D

Assume
(1) u, u′, v, and v′ are cocontinuous giving rise to morphisms of topoi f , f ′,

g, and g′ by Lemma 7.21.1,
(2) v ◦ u′ = u ◦ v′,
(3) v and v′ are continuous as well as cocontinuous, and
(4) for any object V ′ of D′ the functor u′

V ′I → u
v(V ′)I given by v is cofinal.

Then f ′
∗ ◦ (g′)−1 = g−1 ◦ f∗ and g′

! ◦ (f ′)−1 = f−1 ◦ g!.

Proof. The categories u′

V ′I and u
v(V ′)I are defined in Section 7.19. The functor in

condition (4) sends the object ψ : u′(U ′)→ V ′ of u′

V ′I to the object v(ψ) : uv′(U ′) =
vu′(U ′) → v(V ′) of u

v(V ′)I. Recall that g−1 is given by vp (Lemma 7.21.5) and f∗

is given by su = pu. Hence the value of g−1f∗F on V ′ is the value of puF on v(V ′)
which is the limit

limu(U)→v(V ′)∈Ob( u
v(V ′)Iopp) F(U)

By the same reasoning, the value of f ′
∗(g′)−1F on V ′ is given by the limit

limu′(U ′)→V ′∈Ob(u′
V ′ Iopp) F(v′(U ′))

Thus assumption (4) and Categories, Lemma 4.17.4 show that these agree and the
first equality of the lemma is proved. The second equality follows from the first by
uniqueness of adjoints. □

https://stacks.math.columbia.edu/tag/0FN1
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Lemma 7.28.7.0FN2 Assume given sites C′, C,D′,D and functors

C′
v′
// C

D′ v //

u′

OO

D

u

OO

With notation as in Sections 7.14 and 7.21 assume
(1) u and u′ are continuous giving rise to morphisms of sites f and f ′,
(2) v and v′ are cocontinuous giving rise to morphisms of topoi g and g′,
(3) u ◦ v = v′ ◦ u′, and
(4) v and v′ are continuous as well as cocontinuous.

Then6 f ′
∗ ◦ (g′)−1 = g−1 ◦ f∗ and g′

! ◦ (f ′)−1 = f−1 ◦ g!.

Proof. Namely, we have
f ′

∗(g′)−1F = (u′)p((v′)pF)# = (u′)p(v′)pF
The first equality by definition and the second by Lemma 7.21.5. We have

g−1f∗F = (vpupF)# = ((u′)p(v′)pF)# = (u′)p(v′)pF
The first equality by definition, the second because u◦v = v′ ◦u′, the third because
we already saw that (u′)p(v′)pF is a sheaf. This proves f ′

∗ ◦ (g′)−1 = g−1 ◦ f∗ and
the equality g′

! ◦ (f ′)−1 = f−1 ◦ g! follows by uniqueness of left adjoints. □

7.29. Morphisms of topoi

039Z In this section we show that any morphism of topoi is equivalent to a morphism of
topoi which comes from a morphism of sites. Please compare with [AGV71, Exposé
IV, Proposition 4.9.4].

Lemma 7.29.1.03A0 Let C, D be sites. Let u : C → D be a functor. Assume that
(1) u is cocontinuous,
(2) u is continuous,
(3) given a, b : U ′ → U in C such that u(a) = u(b), then there exists a covering
{fi : U ′

i → U ′} in C such that a ◦ fi = b ◦ fi,
(4) given U ′, U ∈ Ob(C) and a morphism c : u(U ′) → u(U) in D there exists

a covering {fi : U ′
i → U ′} in C and morphisms ci : U ′

i → U such that
u(ci) = c ◦ u(fi), and

(5) given V ∈ Ob(D) there exists a covering of V in D of the form {u(Ui)→
V }i∈I .

Then the morphism of topoi
g : Sh(C) −→ Sh(D)

associated to the cocontinuous functor u by Lemma 7.21.1 is an equivalence.

Proof. Assume u satisfies properties (1) – (5). We will show that the adjunction
mappings

G −→ g∗g
−1G and g−1g∗F −→ F

are isomorphisms.

6In this generality we don’t know f ◦ g′ is equal to g ◦ f ′ as morphisms of topoi (there is a
canonical 2-arrow from the first to the second which may not be an isomorphism).

https://stacks.math.columbia.edu/tag/0FN2
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Note that Lemma 7.21.5 applies and we have g−1G(U) = G(u(U)) for any sheaf G
on D. Next, let F be a sheaf on C, and let V be an object of D. By definition we
have g∗F(V ) = limu(U)→V F(U). Hence

g−1g∗F(U) = limU ′,u(U ′)→u(U) F(U ′)

where the morphisms ψ : u(U ′)→ u(U) need not be of the form u(α). The category
of such pairs (U ′, ψ) has a final object, namely (U, id), which gives rise to the map
from the limit into F(U). Let (s(U ′,ψ)) be an element of the limit. We want to
show that s(U ′,ψ) is uniquely determined by the value s(U,id) ∈ F(U). By property
(4) given any (U ′, ψ) there exists a covering {U ′

i → U ′} such that the compositions
u(U ′

i)→ u(U ′)→ u(U) are of the form u(ci) for some ci : U ′
i → U in C. Hence

s(U ′,ψ)|U ′
i

= c∗
i (s(U,id)).

Since F is a sheaf it follows that indeed s(U ′,ψ) is determined by s(U,id). This
proves uniqueness. For existence, assume given any s ∈ F(U), ψ : u(U ′) → u(U),
{fi : U ′

i → U ′} and ci : U ′
i → U such that ψ ◦ u(fi) = u(ci) as above. We claim

there exists a (unique) element s(U ′,ψ) ∈ F(U ′) such that

s(U ′,ψ)|U ′
i

= c∗
i (s).

Namely, a priori it is not clear the elements c∗
i (s)|U ′

i
×U′U ′

j
and c∗

j (s)|U ′
i
×U′U ′

j
agree,

since the diagram
U ′
i ×U ′ U ′

j pr2
//

pr1

��

U ′
j

cj

��
U ′
i

ci // U

need not commute. But condition (3) of the lemma guarantees that there exist
coverings {fijk : U ′

ijk → U ′
i ×U ′ U ′

j}k∈Kij such that ci ◦ pr1 ◦ fijk = cj ◦ pr2 ◦ fijk.
Hence

f∗
ijk

(
c∗
i s|U ′

i
×U′U ′

j

)
= f∗

ijk

(
c∗
js|U ′

i
×U′U ′

j

)
Hence c∗

i (s)|U ′
i
×U′U ′

j
= c∗

j (s)|U ′
i
×U′U ′

j
by the sheaf condition for F and hence the

existence of s(U ′,ψ) also by the sheaf condition for F . The uniqueness guarantees
that the collection (s(U ′,ψ)) so obtained is an element of the limit with s(U,ψ) = s.
This proves that g−1g∗F → F is an isomorphism.

Let G be a sheaf on D. Let V be an object of D. Then we see that

g∗g
−1G(V ) = limU,ψ:u(U)→V G(u(U))

By the preceding paragraph we see that the value of the sheaf g∗g
−1G on an object

V of the form V = u(U) is equal to G(u(U)). (Formally, this holds because we
have g−1g∗g

−1 ∼= g−1, and the description of g−1 given at the beginning of the
proof; informally just by comparing limits here and above.) Hence the adjunction
mapping G → g∗g

−1G has the property that it is a bijection on sections over any
object of the form u(U). Since by axiom (5) there exists a covering of V by objects
of the form u(U) we see easily that the adjunction map is an isomorphism. □

It will be convenient to give cocontinuous functors as in Lemma 7.29.1 a name.
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Definition 7.29.2.03CG Let C, D be sites. A special cocontinuous functor u from C to D
is a cocontinuous functor u : C → D satisfying the assumptions and conclusions of
Lemma 7.29.1.

Lemma 7.29.3.03CH Let C, D be sites. Let u : C → D be a special cocontinuous functor.
For every object U of C we have a commutative diagram

C/U
jU

//

��

C

u

��
D/u(U)

ju(U) // D

as in Lemma 7.28.4. The left vertical arrow is a special cocontinuous functor. Hence
in the commutative diagram of topoi

Sh(C/U)
jU

//

��

Sh(C)

u

��
Sh(D/u(U))

ju(U) // Sh(D)
the vertical arrows are equivalences.

Proof. We have seen the existence and commutativity of the diagrams in Lemma
7.28.4. We have to check hypotheses (1) – (5) of Lemma 7.29.1 for the induced
functor u : C/U → D/u(U). This is completely mechanical.
Property (1). This is Lemma 7.28.4.
Property (2). Let {U ′

i/U → U ′/U}i∈I be a covering of U ′/U in C/U . Because u is
continuous we see that {u(U ′

i)/u(U)→ u(U ′)/u(U)}i∈I is a covering of u(U ′)/u(U)
in D/u(U). Hence (2) holds for u : C/U → D/u(U).
Property (3). Let a, b : U ′′/U → U ′/U in C/U be morphisms such that u(a) = u(b)
in D/u(U). Because u satisfies (3) we see there exists a covering {fi : U ′′

i → U ′′}
in C such that a ◦ fi = b ◦ fi. This gives a covering {fi : U ′′

i /U → U ′′/U} in C/U
such that a ◦ fi = b ◦ fi. Hence (3) holds for u : C/U → D/u(U).
Property (4). Let U ′′/U,U ′/U ∈ Ob(C/U) and a morphism c : u(U ′′)/u(U) →
u(U ′)/u(U) in D/u(U) be given. Because u satisfies property (4) there exists a
covering {fi : U ′′

i → U ′′} in C and morphisms ci : U ′′
i → U ′ such that u(ci) =

c ◦ u(fi). We think of U ′′
i as an object over U via the composition U ′′

i → U ′′ → U .
It may not be true that ci is a morphism over U ! But since u(ci) is a morphism over
u(U) we may apply property (3) for u and find coverings {fik : U ′′

ik → U ′′
i } such

that cik = ci ◦ fik : U ′′
ik → U ′ are morphisms over U . Hence {fi ◦ fik : U ′′

ik/U →
U ′′/U} is a covering in C/U such that u(cik) = c ◦ u(fik). Hence (4) holds for
u : C/U → D/u(U).
Property (5). Let h : V → u(U) be an object of D/u(U). Because u satisfies
property (5) there exists a covering {ci : u(Ui) → V } in D. By property (4)
we can find coverings {fij : Uij → Ui} and morphisms cij : Uij → U such that
u(cij) = h ◦ ci ◦u(fij). Hence {u(Uij)/u(U)→ V/u(U)} is a covering in D/u(U) of
the desired shape and we conclude that (5) holds for u : C/U → D/u(U). □

Lemma 7.29.4.03A1 Let C be a site. Let C′ ⊂ Sh(C) be a full subcategory (with a set
of objects) such that

https://stacks.math.columbia.edu/tag/03CG
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(1) h#
U ∈ Ob(C′) for all U ∈ Ob(C), and

(2) C′ is preserved under fibre products in Sh(C).
Declare a covering of C′ to be any family {Fi → F}i∈I of maps such that

∐
i∈I Fi →

F is a surjective map of sheaves. Then
(1) C′ is a site (after choosing a set of coverings, see Sets, Lemma 3.11.1),
(2) representable presheaves on C′ are sheaves (i.e., the topology on C′ is

subcanonical, see Definition 7.12.2),
(3) the functor v : C → C′, U 7→ h#

U is a special cocontinuous functor, hence
induces an equivalence g : Sh(C)→ Sh(C′),

(4) for any F ∈ Ob(C′) we have g−1hF = F , and
(5) for any U ∈ Ob(C) we have g∗h

#
U = hv(U) = hh#

U
.

Proof. Warning: Some of the statements above may look be a bit confusing at
first; this is because objects of C′ can also be viewed as sheaves on C! We omit the
proof that the coverings of C′ as described in the lemma satisfy the conditions of
Definition 7.6.2.
Suppose that {Fi → F} is a surjective family of morphisms of sheaves. Let G be
another sheaf. Part (2) of the lemma says that the equalizer of

MorSh(C)(
∐
i∈I Fi,G) //

// MorSh(C)(
∐

(i0,i1)∈I×I Fi0 ×F Fi1 ,G)

is MorSh(C)(F ,G). This is clear (for example use Lemma 7.11.3).
To prove (3) we have to check conditions (1) – (5) of Lemma 7.29.1. The fact that
v is cocontinuous is equivalent to the description of surjective maps of sheaves in
Lemma 7.11.2. The functor v is continuous because U 7→ h#

U commutes with fibre
products, and transforms coverings into coverings (see Lemma 7.10.14, and Lemma
7.12.4). Properties (3), (4) of Lemma 7.29.1 are statements about morphisms f :
h#
U ′ → h#

U . Such a morphism is the same thing as an element of h#
U (U ′). Hence

(3) and (4) are immediate from the construction of the sheafification. Property (5)
of Lemma 7.29.1 is Lemma 7.12.5. Denote g : Sh(C) → Sh(C′) the equivalence of
topoi associated with v by Lemma 7.29.1.
Let F be as in part (4) of the lemma. For any U ∈ Ob(C) we have

g−1hF (U) = hF (v(U)) = MorSh(C)(h#
U ,F) = F(U)

The first equality by Lemma 7.21.5. Thus part (4) holds.
Let F ∈ Ob(C′). Let U ∈ Ob(C). Then

g∗h
#
U (F) = MorSh(C′)(hF , g∗h

#
U )

= MorSh(C)(g−1hF , h
#
U )

= MorSh(C)(F , h#
U )

= MorC′(F , h#
U )

as desired (where the third equality was shown above). □

Using this we can massage any topos to live over a site having all finite limits.
Lemma 7.29.5.03CI Let Sh(C) be a topos. Let {Fi}i∈I be a set of sheaves on C. There
exists an equivalence of topoi g : Sh(C)→ Sh(C′) induced by a special cocontinuous
functor u : C → C′ of sites such that

https://stacks.math.columbia.edu/tag/03CI
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(1) C′ has a subcanonical topology,
(2) a family {Vj → V } of morphisms of C′ is (combinatorially equivalent to)

a covering of C′ if and only if
∐
hVj → hV is surjective,

(3) C′ has fibre products and a final object (i.e., C′ has all finite limits),
(4) every subsheaf of a representable sheaf on C′ is representable, and
(5) each g∗Fi is a representable sheaf.

Proof. Consider the full subcategory C1 ⊂ Sh(C) consisting of all h#
U for all U ∈

Ob(C), the given sheaves Fi and the final sheaf ∗ (see Example 7.10.2). We are
going to inductively define full subcategories

C1 ⊂ C2 ⊂ C2 ⊂ . . . ⊂ Sh(C)
Namely, given Cn let Cn+1 be the full subcategory consisting of all fibre products and
subsheaves of objects of Cn. (Note that Cn+1 has a set of objects.) Set C′ =

⋃
n≥1 Cn.

A covering in C′ is any family {Gj → G}j∈J of morphisms of objects of C′ such that∐
Gj → G is surjective as a map of sheaves on C. The functor v : C → C′ is given

by U 7→ h#
U . Apply Lemma 7.29.4. □

Here is the goal of the current section.

Lemma 7.29.6.03A2 This statement is
closely related to
[AGV71,
Proposition 4.9.4.
Exposé IV]. In order
to get the whole
result, one should
also use [AGV71,
Remarque 4.7.4,
Exposé IV].

Let C, D be sites. Let f : Sh(C)→ Sh(D) be a morphism of topoi.
Then there exists a site C′ and a diagram of functors

C
v
// C′ D

u
oo

such that
(1) the functor v is a special cocontinuous functor,
(2) the functor u commutes with fibre products, is continuous and defines a

morphism of sites C′ → D, and
(3) the morphism of topoi f agrees with the composition of morphisms of

topoi
Sh(C) −→ Sh(C′) −→ Sh(D)

where the first arrow comes from v via Lemma 7.29.1 and the second
arrow from u via Lemma 7.15.2.

Proof. Consider the full subcategory C1 ⊂ Sh(C) consisting of all h#
U and all f−1h#

V

for all U ∈ Ob(C) and all V ∈ Ob(D). Let Cn+1 be a full subcategory consisting
of all fibre products of objects of Cn. Set C′ =

⋃
n≥1 Cn. A covering in C′ is any

family {Fi → F}i∈I such that
∐
i∈I Fi → F is surjective as a map of sheaves on

C. The functor v : C → C′ is given by U 7→ h#
U . The functor u : D → C′ is given by

V 7→ f−1h#
V .

Part (1) follows from Lemma 7.29.4.
Proof of (2) and (3) of the lemma. The functor u commutes with fibre products
as both V 7→ h#

V and f−1 do. Moreover, since f−1 is exact and commutes with
arbitrary colimits we see that it transforms a covering into a surjective family of
morphisms of sheaves. Hence u is continuous. To see that it defines a morphism
of sites we still have to see that us is exact. In order to do this we will show that
g−1 ◦ us = f−1. Namely, then since g−1 is an equivalence and f−1 is exact we will
conclude. Because g−1 is adjoint to g∗, and us is adjoint to us, and f−1 is adjoint

https://stacks.math.columbia.edu/tag/03A2
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to f∗ it also suffices to prove that us ◦ g∗ = f∗. Let U be an object of C and let V
be an object of D. Then

(usg∗h
#
U )(V ) = g∗h

#
U (f−1h#

V )

= MorSh(C)(f−1h#
V , h

#
U )

= MorSh(D)(h#
V , f∗h

#
U )

= f∗h
#
U (V )

The first equality because us = up. The second equality by Lemma 7.29.4 (5). The
third equality by adjointness of f∗ and f−1 and the final equality by properties of
sheafification and the Yoneda lemma. We omit the verification that these identities
are functorial in U and V . Hence we see that we have us ◦ g∗ = f∗ for sheaves of
the form h#

U . This implies that us ◦g∗ = f∗ and we win (some details omitted). □

Remark 7.29.7.03CJ Notation and assumptions as in Lemma 7.29.6. If the site D
has a final object and fibre products then the functor u : D → C′ satisfies all the
assumptions of Proposition 7.14.7. Namely, in addition to the properties mentioned
in the lemma u also transforms the final object of D into the final object of C′. This
is clear from the construction of u. Hence, if we first apply Lemmas 7.29.5 to D
and then Lemma 7.29.6 to the resulting morphism of topoi Sh(C) → Sh(D′) we
obtain the following statement: Any morphism of topoi f : Sh(C)→ Sh(D) fits into
a commutative diagram

Sh(C)

g

��

f
// Sh(D)

e

��
Sh(C′) f ′

// Sh(D′)
where the following properties hold:

(1) the morphisms e and g are equivalences given by special cocontinuous
functors C → C′ and D → D′,

(2) the sites C′ and D′ have fibre products, final objects and have subcanonical
topologies,

(3) the morphism f ′ : C′ → D′ comes from a morphism of sites corresponding
to a functor u : D′ → C′ to which Proposition 7.14.7 applies, and

(4) given any set of sheaves Fi (resp. Gj) on C (resp. D) we may assume each
of these is a representable sheaf on C′ (resp. D′).

It is often useful to replace C and D by C′ and D′.

Remark 7.29.8.03CK Notation and assumptions as in Lemma 7.29.6. Suppose that in
addition the original morphism of topoi Sh(C) → Sh(D) is an equivalence. Then
the construction in the proof of Lemma 7.29.6 gives two functors

C → C′ ← D

which are both special cocontinuous functors. Hence in this case we can actually
factor the morphism of topoi as a composition

Sh(C)→ Sh(C′) = Sh(D′)← Sh(D)

as in Remark 7.29.7, but with the middle morphism an identity.

https://stacks.math.columbia.edu/tag/03CJ
https://stacks.math.columbia.edu/tag/03CK


7.30. LOCALIZATION OF TOPOI 306

7.30. Localization of topoi

04GY We repeat some of the material on localization to the apparently more general
case of topoi. In reality this is not more general since we may always enlarge the
underlying sites to assume that we are localizing at objects of the site.

Lemma 7.30.1.04GZ Let C be a site. Let F be a sheaf on C. Then the category Sh(C)/F
is a topos. There is a canonical morphism of topoi

jF : Sh(C)/F −→ Sh(C)
which is a localization as in Section 7.25 such that

(1) the functor j−1
F is the functor H 7→ H×F/F , and

(2) the functor jF ! is the forgetful functor G/F 7→ G.

Proof. Apply Lemma 7.29.5. This means we may assume C is a site with sub-
canonical topology, and F = hU = h#

U for some U ∈ Ob(C). Hence the material
of Section 7.25 applies. In particular, there is an equivalence Sh(C/U) = Sh(C)/h#

U

such that the composition
Sh(C/U)→ Sh(C)/h#

U → Sh(C)

is equal to jU !, see Lemma 7.25.4. Denote a : Sh(C)/h#
U → Sh(C/U) the inverse

functor, so jF ! = jU ! ◦ a, j−1
F = a−1 ◦ j−1

U , and jF,∗ = jU,∗ ◦ a. The description of
jF ! follows from the above. The description of j−1

F follows from Lemma 7.25.7. □

Lemma 7.30.2.04H0 In the situation of Lemma 7.30.1, the functor jF,∗ is the one
associates to φ : G → F the sheaf

U 7−→ {α : F|U → G|U such that α is a right inverse to φ|U}.

Proof. For any φ : G → F , let us use the notation G/F to denote the corresponding
object of Sh(C)/F . We have

(jF,∗(G/F))(U) = MorSh(C)(h#
U , jF,∗(G/F)) = MorSh(C)/F (j−1

F h#
U , (G/F)).

By Lemma 7.30.1 this set is the fiber over the element h#
U ×F → F under the map

of sets
MorSh(C)(h#

U ×F ,G) φ◦−−→ MorSh(C)(h#
U ×F ,F).

By the adjunction in Lemma 7.26.2, we have
MorSh(C)(h#

U ×F ,G) = MorSh(C)(h#
U ,Hom(F ,G))

= MorSh(C/U)(F|C/U ,G|C/U ),

MorSh(C)(h#
U ×F ,F) = MorSh(C)(h#

U ,Hom(F ,F))
= MorSh(C/U)(F|C/U ,F|C/U ),

and under the adjunction, the map φ◦ becomes the map
MorSh(C/U)(F|C/U ,G|C/U ) −→ MorSh(C/U)(F|C/U ,F|C/U ), ψ 7−→ φ|C/U ◦ ψ,

the element h#
U × F → F becomes idF|C/U . Therefore (jF,∗G/F)(U) is isomorphic

to the fiber of idF|C/U under the map

MorSh(C/U)(F|C/U ,G|C/U )
φ|C/U◦
−−−−→ MorSh(C/U)(F|C/U ,F|C/U ),

which is {α : F|U → G|U such that α is a right inverse to φ|U} as desired. □

https://stacks.math.columbia.edu/tag/04GZ
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Lemma 7.30.3.0791 Let C be a site. Let F be a sheaf on C. Let C/F be the category
of pairs (U, s) where U ∈ Ob(C) and s ∈ F(U). Let a covering in C/F be a family
{(Ui, si) → (U, s)} such that {Ui → U} is a covering of C. Then j : C/F → C is
a continuous and cocontinuous functor of sites which induces a morphism of topoi
j : Sh(C/F) → Sh(C). In fact, there is an equivalence Sh(C/F) = Sh(C)/F which
turns j into jF .

Proof. We omit the verification that C/F is a site and that j is continuous and
cocontinuous. By Lemma 7.21.5 there exists a morphism of topoi j as indicated,
with j−1G(U, s) = G(U), and there is a left adjoint j! to j−1. A morphism φ : ∗ →
j−1G on C/F is the same thing as a rule which assigns to every pair (U, s) a section
φ(s) ∈ G(U) compatible with restriction maps. Hence this is the same thing as a
morphism φ : F → G over C. We conclude that j!∗ = F . In particular, for every
H ∈ Sh(C/F) there is a canonical map

j!H → j!∗ = F

i.e., we obtain a functor j′
! : Sh(C/F)→ Sh(C)/F . An inverse to this functor is the

rule which assigns to an object φ : G → F of Sh(C)/F the sheaf

a(G/F) : (U, s) 7−→ {t ∈ G(U) | φ(t) = s}

We omit the verification that a(G/F) is a sheaf and that a is inverse to j′
! . □

Definition 7.30.4.04IP Let C be a site. Let F be a sheaf on C.
(1) The topos Sh(C)/F is called the localization of the topos Sh(C) at F .
(2) The morphism of topoi jF : Sh(C)/F → Sh(C) of Lemma 7.30.1 is called

the localization morphism.

We are going to show that whenever the sheaf F is equal to h#
U for some object

U of the site, then the localization of the topos is equal to the category of sheaves
on the localization of the site at U . Moreover, we are going to check that any
functorialities are compatible with this identification.

Lemma 7.30.5.04IQ Let C be a site. Let F = h#
U for some object U of C. Then

jF : Sh(C)/F → Sh(C) constructed in Lemma 7.30.1 agrees with the morphism
of topoi jU : Sh(C/U) → Sh(C) constructed in Section 7.25 via the identification
Sh(C/U) = Sh(C)/h#

U of Lemma 7.25.4.

Proof. We have seen in Lemma 7.25.4 that the composition Sh(C/U)→ Sh(C)/h#
U →

Sh(C) is jU !. The functor Sh(C)/h#
U → Sh(C) is jF ! by Lemma 7.30.1. Hence

jF ! = jU ! via the identification. So j−1
F = j−1

U (by adjointness) and so jF,∗ = jU,∗
(by adjointness again). □

Lemma 7.30.6.04IR Let C be a site. If s : G → F is a morphism of sheaves on C then
there exists a natural commutative diagram of morphisms of topoi

Sh(C)/G

jG $$

j
// Sh(C)/F

jFyy
Sh(C)

https://stacks.math.columbia.edu/tag/0791
https://stacks.math.columbia.edu/tag/04IP
https://stacks.math.columbia.edu/tag/04IQ
https://stacks.math.columbia.edu/tag/04IR


7.31. LOCALIZATION AND MORPHISMS OF TOPOI 308

where j = jG/F is the localization of the topos Sh(C)/F at the object G/F . In
particular we have

j−1(H → F) = (H×F G → G)
and

j!(E
e−→ F) = (E s◦e−−→ G).

Proof. The description of j−1 and j! comes from the description of those functors in
Lemma 7.30.1. The equality of functors jG! = jF !◦j! is clear from the description of
these functors (as forgetful functors). By adjointness we also obtain the equalities
j−1

G = j−1 ◦ j−1
F , and jG,∗ = jF,∗ ◦ j∗. □

Lemma 7.30.7.04IS Assume C and s : G → F are as in Lemma 7.30.6. If G = h#
V

and F = h#
U and s : G → F comes from a morphism V → U of C then the

diagram in Lemma 7.30.6 is identified with diagram (7.25.8.1) via the identifications
Sh(C/V ) = Sh(C)/h#

V and Sh(C/U) = Sh(C)/h#
U of Lemma 7.25.4.

Proof. This is true because the descriptions of j−1 agree. See Lemma 7.25.9 and
Lemma 7.30.6. □

7.31. Localization and morphisms of topoi

04IT This section is the analogue of Section 7.28 for morphisms of topoi.

Lemma 7.31.1.04H1 Let f : Sh(C) → Sh(D) be a morphism of topoi. Let G be a sheaf
on D. Set F = f−1G. Then there exists a commutative diagram of topoi

Sh(C)/F
jF

//

f ′

��

Sh(C)

f

��
Sh(D)/G jG // Sh(D).

The morphism f ′ is characterized by the property that

(f ′)−1(H φ−→ G) = (f−1H f−1φ−−−→ F)

and we have f ′
∗j

−1
F = j−1

G f∗.

Proof. Since the statement is about topoi and does not refer to the underlying sites
we may change sites at will. Hence by the discussion in Remark 7.29.7 we may as-
sume that f is given by a continuous functor u : D → C satisfying the assumptions
of Proposition 7.14.7 between sites having all finite limits and subcanonical topolo-
gies, and such that G = hV for some object V of D. Then F = f−1hV = hu(V ) by
Lemma 7.13.5. By Lemma 7.28.1 we obtain a commutative diagram of morphisms
of topoi

Sh(C/U)
jU

//

f ′

��

Sh(C)

f

��
Sh(D/V ) jV // Sh(D),

and we have f ′
∗j

−1
U = j−1

V f∗. By Lemma 7.30.5 we may identify jF and jU and jG
and jV . The description of (f ′)−1 is given in Lemma 7.28.1. □

https://stacks.math.columbia.edu/tag/04IS
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Lemma 7.31.2.04IU Let f : C → D be a morphism of sites given by the continuous
functor u : D → C. Let V be an object of D. Set U = u(V ). Set G = h#

V , and
F = h#

U = f−1h#
V (see Lemma 7.13.5). Then the diagram of morphisms of topoi of

Lemma 7.31.1 agrees with the diagram of morphisms of topoi of Lemma 7.28.1 via
the identifications jF = jU and jG = jV of Lemma 7.30.5.

Proof. This is not a complete triviality as the choice of morphism of sites giving
rise to f made in the proof of Lemma 7.31.1 may be different from the morphisms
of sites given to us in the lemma. But in both cases the functor (f ′)−1 is described
by the same rule. Hence they agree and the associated morphism of topoi is the
same. Some details omitted. □

Lemma 7.31.3.04IV Let f : Sh(C) → Sh(D) be a morphism of topoi. Let G ∈ Sh(D),
F ∈ Sh(C) and s : F → f−1G a morphism of sheaves. There exists a commutative
diagram of topoi

Sh(C)/F
jF

//

fs

��

Sh(C)

f

��
Sh(D)/G jG // Sh(D).

We have fs = f ′ ◦ jF/f−1G where f ′ : Sh(C)/f−1G → Sh(D)/F is as in Lemma
7.31.1 and jF/f−1G : Sh(C)/F → Sh(C)/f−1G is as in Lemma 7.30.6. The functor
(fs)−1 is described by the rule

(fs)−1(H φ−→ G) = (f−1H×f−1φ,f−1G,s F → F).

Finally, given any morphisms b : G′ → G, a : F ′ → F and s′ : F ′ → f−1G′ such
that

F ′
s′
//

a

��

f−1G′

f−1b

��
F s // f−1G

commutes, then the diagram

Sh(C)/F ′
jF′/F

//

fs′

��

Sh(C)/F

fs

��
Sh(D)/G′

jG′/G // Sh(D)/G.

commutes.

Proof. The commutativity of the first square follows from the commutativity of the
diagram in Lemma 7.30.6 and the commutativity of the diagram in Lemma 7.31.1.
The description of f−1

s follows on combining the descriptions of (f ′)−1 in Lemma
7.31.1 with the description of (jF/f−1G)−1 in Lemma 7.30.6. The commutativity of
the last square then follows from the equality

f−1H×f−1G,s F ×F F ′ = f−1(H×G G′)×f−1G′,s′ F ′

which is formal. □

https://stacks.math.columbia.edu/tag/04IU
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Lemma 7.31.4.04IW Let f : C → D be a morphism of sites given by the continuous
functor u : D → C. Let V be an object of D. Let c : U → u(V ) be a morphism.
Set G = h#

V and F = h#
U = f−1h#

V . Let s : F → f−1G be the map induced by c.
Then the diagram of morphisms of topoi of Lemma 7.28.3 agrees with the diagram
of morphisms of topoi of Lemma 7.31.3 via the identifications jF = jU and jG = jV
of Lemma 7.30.5.

Proof. This follows on combining Lemmas 7.30.7 and 7.31.2. □

7.32. Points

00Y3
Definition 7.32.1.00Y4 Let C be a site. A point of the topos Sh(C) is a morphism of
topoi p from Sh(pt) to Sh(C).

We will define a point of a site in terms of a functor u : C → Sets. It will turn out
later that u will define a morphism of sites which gives rise to a point of the topos
associated to C, see Lemma 7.32.8.
Let C be a site. Let p = u be a functor u : C → Sets. This curious language is
introduced because it seems funny to talk about neighbourhoods of functors; so we
think of a “point” p as a geometric thing which is given by a categorical datum,
namely the functor u. The fact that p is actually equal to u does not matter. A
neighbourhood of p is a pair (U, x) with U ∈ Ob(C) and x ∈ u(U). A morphism of
neighbourhoods (V, y) → (U, x) is given by a morphism α : V → U of C such that
u(α)(y) = x. Note that the category of neighbourhoods isn’t a “big” category.
We define the stalk of a presheaf F at p as
(7.32.1.1)04EH Fp = colim{(U,x)}opp F(U).
The colimit is over the opposite of the category of neighbourhoods of p. In other
words, an element of Fp is given by a triple (U, x, s), where (U, x) is a neighbourhood
of p and s ∈ F(U). Equality of triples is the equivalence relation generated by
(U, x, s) ∼ (V, y, α∗s) when α is as above.
Note that if φ : F → G is a morphism of presheaves of sets, then we get a canonical
map of stalks φp : Fp → Gp. Thus we obtain a stalk functor

PSh(C) −→ Sets, F 7−→ Fp.

We have defined the stalk functor using any functor p = u : C → Sets. No conditions
are necessary for the definition to work7. On the other hand, it is probably better
not to use this notion unless p actually is a point (see definition below), since in
general the stalk functor does not have good properties.

Definition 7.32.2.00Y5 Let C be a site. A point p of the site C is given by a functor
u : C → Sets such that

(1) For every covering {Ui → U} of C the map
∐
u(Ui)→ u(U) is surjective.

(2) For every covering {Ui → U} of C and every morphism V → U the maps
u(Ui ×U V )→ u(Ui)×u(U) u(V ) are bijective.

(3) The stalk functor Sh(C)→ Sets, F 7→ Fp is left exact.

7One should try to avoid the case where u(U) = ∅ for all U .
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The conditions should be familiar since they are modeled after those of Definitions
7.13.1 and 7.14.1. Note that (3) implies that ∗p = {∗}, see Example 7.10.2. Hence
u(U) ̸= ∅ for at least some U (because the empty colimit produces the empty set).
We will show below (Lemma 7.32.7) that this does give rise to a point of the topos
Sh(C). Before we do so, we prove some lemmas for general functors u.

Lemma 7.32.3.00Y6 Let C be a site. Let p = u : C → Sets be a functor. There are
functorial isomorphisms (hU )p = u(U) for U ∈ Ob(C).

Proof. An element of (hU )p is given by a triple (V, y, f), where V ∈ Ob(C), y ∈
u(V ) and f ∈ hU (V ) = MorC(V,U). Two such (V, y, f), (V ′, y′, f ′) determine the
same object if there exists a morphism ϕ : V → V ′ such that u(ϕ)(y) = y′ and
f ′ ◦ ϕ = f , and in general you have to take chains of identities like this to get
the correct equivalence relation. In any case, every (V, y, f) is equivalent to the
element (U, u(f)(y), idU ). If ϕ exists as above, then the triples (V, y, f), (V ′, y′, f ′)
determine the same triple (U, u(f)(y), idU ) = (U, u(f ′)(y′), idU ). This proves that
the map u(U)→ (hU )p, x 7→ class of (U, x, idU ) is bijective. □

Let C be a site. Let p = u : C → Sets be a functor. In analogy with the constructions
in Section 7.5 given a set E we define a presheaf upE by the rule
(7.32.3.1)04EI U 7−→ upE(U) = MorSets(u(U), E) = Map(u(U), E).
This defines a functor up : Sets→ PSh(C), E 7→ upE.

Lemma 7.32.4.00Y7 For any functor u : C → Sets. The functor up is a right adjoint to
the stalk functor on presheaves.

Proof. Let F be a presheaf on C. Let E be a set. A morphism F → upE is given
by a compatible system of maps F(U)→ Map(u(U), E), i.e., a compatible system
of maps F(U) × u(U) → E. And by definition of Fp a map Fp → E is given by
a rule associating with each triple (U, x, σ) an element in E such that equivalent
triples map to the same element, see discussion surrounding Equation (7.32.1.1).
This also means a compatible system of maps F(U)× u(U)→ E. □

In analogy with Section 7.13 we have the following lemma.

Lemma 7.32.5.00Y8 Let C be a site. Let p = u : C → Sets be a functor. Suppose that
for every covering {Ui → U} of C

(1) the map
∐
u(Ui)→ u(U) is surjective, and

(2) the maps u(Ui ×U Uj)→ u(Ui)×u(U) u(Uj) are surjective.
Then we have

(1) the presheaf upE is a sheaf for all sets E, denote it usE,
(2) the stalk functor Sh(C) → Sets and the functor us : Sets → Sh(C) are

adjoint, and
(3) we have Fp = F#

p for every presheaf of sets F .

Proof. The first assertion is immediate from the definition of a sheaf, assumptions
(1) and (2), and the definition of upE. The second is a restatement of the adjointness
of up and the stalk functor (Lemma 7.32.4) restricted to sheaves. The third assertion
follows as, for any set E, we have

Map(Fp, E) = MorPSh(C)(F , upE) = MorSh(C)(F#, usE) = Map(F#
p , E)

by the adjointness property of sheafification. □

https://stacks.math.columbia.edu/tag/00Y6
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In particular Lemma 7.32.5 holds when p = u is a point. In this case we think of
the sheaf usE as the “skyscraper” sheaf with value E at p.

Definition 7.32.6.00Y9 Let p be a point of the site C given by the functor u. For a set
E we define p∗E = usE the sheaf described in Lemma 7.32.5 above. We sometimes
call this a skyscraper sheaf.

In particular we have the following adjointness property of skyscraper sheaves and
stalks:

MorSh(C)(F , p∗E) = Map(Fp, E)
This motivates the notation p−1F = Fp which we will sometimes use.

Lemma 7.32.7.00YA Let C be a site.
(1) Let p be a point of the site C. Then the pair of functors (p∗, p

−1) intro-
duced above define a morphism of topoi Sh(pt)→ Sh(C).

(2) Let p = (p∗, p
−1) be a point of the topos Sh(C). Then the functor u : U 7→

p−1(h#
U ) gives rise to a point p′ of the site C whose associated morphism

of topoi (p′
∗, (p′)−1) is equal to p.

Proof. Proof of (1). By the above the functors p∗ and p−1 are adjoint. The functor
p−1 is required to be exact by Definition 7.32.2. Hence the conditions imposed in
Definition 7.15.1 are all satisfied and we see that (1) holds.

Proof of (2). Let {Ui → U} be a covering of C. Then
∐

(hUi)# → h#
U is surjective,

see Lemma 7.12.4. Since p−1 is exact (by definition of a morphism of topoi) we
conclude that

∐
u(Ui) → u(U) is surjective. This proves part (1) of Definition

7.32.2. Sheafification is exact, see Lemma 7.10.14. Hence if U ×V W exists in C,
then

h#
U×VW = h#

U ×h#
V
h#
W

and we see that u(U ×V W ) = u(U) ×u(V ) u(W ) since p−1 is exact. This proves
part (2) of Definition 7.32.2. Let p′ = u, and let Fp′ be the stalk functor defined by
Equation (7.32.1.1) using u. There is a canonical comparison map c : Fp′ → Fp =
p−1F . Namely, given a triple (U, x, σ) representing an element ξ of Fp′ we think of σ
as a map σ : h#

U → F and we can set c(ξ) = p−1(σ)(x) since x ∈ u(U) = p−1(h#
U ).

By Lemma 7.32.3 we see that (hU )p′ = u(U). Since conditions (1) and (2) of
Definition 7.32.2 hold for p′ we also have (h#

U )p′ = (hU )p′ by Lemma 7.32.5. Hence
we have

(h#
U )p′ = (hU )p′ = u(U) = p−1(h#

U )
We claim this bijection equals the comparison map c : (h#

U )p′ → p−1(h#
U ) (verifica-

tion omitted). Any sheaf on C is a coequalizer of maps of coproducts of sheaves of
the form h#

U , see Lemma 7.12.5. The stalk functor F 7→ Fp′ and the functor p−1

commute with arbitrary colimits (as they are both left adjoints). We conclude c is
an isomorphism for every sheaf F . Thus the stalk functor F 7→ Fp′ is isomorphic to
p−1 and we in particular see that it is exact. This proves condition (3) of Definition
7.32.2 holds and p′ is a point. The final assertion has already been shown above,
since we saw that p−1 = (p′)−1. □

Actually a point always corresponds to a morphism of sites as we show in the
following lemma.
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Lemma 7.32.8.04EL Let C be a site. Let p be a point of C given by u : C → Sets. Let
S0 be an infinite set such that u(U) ⊂ S0 for all U ∈ Ob(C). Let S be the site
constructed out of the powerset S = P(S0) in Remark 7.15.3. Then

(1) there is an equivalence i : Sh(pt)→ Sh(S),
(2) the functor u : C → S induces a morphism of sites f : S → C, and
(3) the composition

Sh(pt)→ Sh(S)→ Sh(C)
is the morphism of topoi (p∗, p

−1) of Lemma 7.32.7.

Proof. Part (1) we saw in Remark 7.15.3. Moreover, recall that the equivalence
associates to the set E the sheaf i∗E on S defined by the rule V 7→ MorSets(V,E).
Part (2) is clear from the definition of a point of C (Definition 7.32.2) and the
definition of a morphism of sites (Definition 7.14.1). Finally, consider f∗i∗E. By
construction we have

f∗i∗E(U) = i∗E(u(U)) = MorSets(u(U), E)
which is equal to p∗E(U), see Equation (7.32.3.1). This proves (3). □

Contrary to what happens in the topological case it is not always true that the
stalk of the skyscraper sheaf with value E is E. Here is what is true in general.

Lemma 7.32.9.05UX Let C be a site. Let p : Sh(pt) → Sh(C) be a point of the topos
associated to C. For any set E there are canonical maps

E −→ (p∗E)p −→ E

whose composition is idE .

Proof. There is always an adjunction map (p∗E)p = p−1p∗E → E. This map is an
isomorphism when E = {∗} because p∗ and p−1 are both left exact, hence transform
the final object into the final object. Hence given e ∈ E we can consider the map
ie : {∗} → E which gives

p−1p∗{∗}
p−1p∗ie

//

∼=
��

p−1p∗E

��
{∗} ie // E

whence the map E → (p∗E)p = p−1p∗E as desired. □

Lemma 7.32.10.05UY Let C be a site. Let p : Sh(pt) → Sh(C) be a point of the topos
associated to C. The functor p∗ : Sets → Sh(C) has the following properties: It
commutes with arbitrary limits, it is left exact, it is faithful, it transforms surjec-
tions into surjections, it commutes with coequalizers, it reflects injections, it reflects
surjections, and it reflects isomorphisms.

Proof. Because p∗ is a right adjoint it commutes with arbitrary limits and it is left
exact. The fact that p−1p∗E → E is a canonically split surjection implies that
p∗ is faithful, reflects injections, reflects surjections, and reflects isomorphisms. By
Lemma 7.32.7 we may assume that p comes from a point u : C → Sets of the
underlying site C. In this case the sheaf p∗E is given by

p∗E(U) = MorSets(u(U), E)
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see Equation (7.32.3.1) and Definition 7.32.6. It follows immediately from this
formula that p∗ transforms surjections into surjections and coequalizers into co-
equalizers. □

7.33. Constructing points

05UZ In this section we give criteria for when a functor from a site to the category of sets
defines a point of that site.

Lemma 7.33.1.0F4E Let C be a site. Let p = u : C → Sets be a functor. If the category
of neighbourhoods of p is cofiltered, then the stalk functor (7.32.1.1) is left exact.

Proof. Let I → Sh(C), i 7→ Fi be a finite diagram of sheaves. We have to show
that the stalk of the limit of this system agrees with the limit of the stalks. Let
F be the limit of the system as a presheaf. According to Lemma 7.10.1 this is a
sheaf and it is the limit in the category of sheaves. Hence we have to show that
Fp = limI Fi,p. Recall also that F has a simple description, see Section 7.4. Thus
we have to show that

limi colim{(U,x)}opp Fi(U) = colim{(U,x)}opp limi Fi(U).

This holds, by Categories, Lemma 4.19.2, because the opposite of the category of
neighbourhoods is filtered by assumption. □

Lemma 7.33.2.00YB Let C be a site. Assume that C has a final object X and fibred
products. Let p = u : C → Sets be a functor such that

(1) u(X) is a singleton set, and
(2) for every pair of morphisms U → W and V → W with the same target

the map u(U ×W V )→ u(U)×u(W ) u(V ) is bijective.
Then the the category of neighbourhoods of p is cofiltered and consequently the
stalk functor Sh(C)→ Sets, F → Fp commutes with finite limits.

Proof. Please note the analogy with Lemma 7.5.2. The assumptions on C imply
that C has finite limits. See Categories, Lemma 4.18.4. Assumption (1) implies
that the category of neighbourhoods is nonempty. Suppose (U, x) and (V, y) are
neighbourhoods. Then u(U × V ) = u(U ×X V ) = u(U) ×u(X) u(V ) = u(U) ×
u(V ) by (2). Hence there exists a neighbourhood (U ×X V, z) mapping to both
(U, x) and (V, y). Let a, b : (V, y) → (U, x) be two morphisms in the category of
neighbourhoods. Let W be the equalizer of a, b : V → U . As in the proof of
Categories, Lemma 4.18.4 we may write W in terms of fibre products:

W = (V ×a,U,b V )×(pr1,pr2),V×V,∆ V

The bijectivity in (2) guarantees there exists an element z ∈ u(W ) which maps
to ((y, y), y). Then (W, z) → (V, y) equalizes a, b as desired. The “consequently”
clause is Lemma 7.33.1. □

Proposition 7.33.3.00YC Let C be a site. Assume that finite limits exist in C. (I.e., C
has fibre products, and a final object.) A point p of such a site C is given by a
functor u : C → Sets such that

(1) u commutes with finite limits, and
(2) if {Ui → U} is a covering, then

∐
i u(Ui)→ u(U) is surjective.
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Proof. Suppose first that p is a point (Definition 7.32.2) given by a functor u.
Condition (2) is satisfied directly from the definition of a point. By Lemma 7.32.3
we have (hU )p = u(U). By Lemma 7.32.5 we have (h#

U )p = (hU )p. Thus we see
that u is equal to the composition of functors

C h−→ PSh(C)
#

−→ Sh(C) ()p−−→ Sets
Each of these functors is left exact, and hence we see u satisfies (1).
Conversely, suppose that u satisfies (1) and (2). In this case we immediately see
that u satisfies the first two conditions of Definition 7.32.2. And its stalk functor
is exact, because it is a left adjoint by Lemma 7.32.5 and it commutes with finite
limits by Lemma 7.33.2. □

Remark 7.33.4.00YD In fact, let C be a site. Assume C has a final object X and fibre
products. Let p = u : C → Sets be a functor such that

(1) u(X) = {∗} a singleton, and
(2) for every pair of morphisms U → W and V → W with the same target

the map u(U ×W V )→ u(U)×u(W ) u(V ) is surjective.
(3) for every covering {Ui → U} the map

∐
u(Ui)→ u(U) is surjective.

Then, in general, p is not a point of C. An example is the category C with two
objects {U,X} and exactly one non-identity arrow, namely U → X. We endow
C with the trivial topology, i.e., the only coverings are {U → U} and {X → X}.
A sheaf F is the same thing as a presheaf and consists of a triple (A,B,A → B):
namely A = F(X), B = F(U) and A→ B is the restriction mapping corresponding
to U → X. Note that U ×X U = U so fibre products exist. Consider the functor
u = p with u(X) = {∗} and u(U) = {∗1, ∗2}. This satisfies (1), (2), and (3), but
the corresponding stalk functor (7.32.1.1) is the functor

(A,B,A→ B) 7−→ B ⨿A B
which isn’t exact. Namely, consider (∅, {1}, ∅ → {1}) → ({1}, {1}, {1} → {1})
which is an injective map of sheaves, but is transformed into the noninjective map
of sets

{1} ⨿ {1} −→ {1} ⨿{1} {1}
by the stalk functor.

Example 7.33.5.00YE Let X be a topological space. Let XZar be the site of Example
7.6.4. Let x ∈ X be a point. Consider the functor

u : XZar −→ Sets, U 7→
{
∅ if x ̸∈ U
{∗} if x ∈ U

This functor commutes with product and fibred products, and turns coverings into
surjective families of maps. Hence we obtain a point p of the site XZar. It is
immediately verified that the stalk functor agrees with the stalk at x defined in
Sheaves, Section 6.11.

Example 7.33.6.04EJ Let X be a topological space. What are the points of the topos
Sh(X)? To see this, let XZar be the site of Example 7.6.4. By Lemma 7.32.7 a
point of Sh(X) corresponds to a point of this site. Let p be a point of the site XZar

given by the functor u : XZar → Sets. We are going to use the characterization
of such a u in Proposition 7.33.3. This implies immediately that u(∅) = ∅ and
u(U ∩ V ) = u(U) × u(V ). In particular we have u(U) = u(U) × u(U) via the
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diagonal map which implies that u(U) is either a singleton or empty. Moreover, if
U =

⋃
Ui is an open covering then

u(U) = ∅ ⇒ ∀i, u(Ui) = ∅ and u(U) ̸= ∅ ⇒ ∃i, u(Ui) ̸= ∅.
We conclude that there is a unique largest open W ⊂ X with u(W ) = ∅, namely
the union of all the opens U with u(U) = ∅. Let Z = X \W . If Z = Z1 ∪ Z2 with
Zi ⊂ Z closed, then W = (X \Z1)∩ (X \Z2) so ∅ = u(W ) = u(X \Z1)×u(X \Z2)
and we conclude that u(X \ Z1) = ∅ or that u(X \ Z2) = ∅. This means that
X \ Z1 = W or that X \ Z2 = W . In other words, Z is irreducible. Now we see
that u is described by the rule

u : XZar −→ Sets, U 7→
{
∅ if Z ∩ U = ∅
{∗} if Z ∩ U ̸= ∅

Note that for any irreducible closed Z ⊂ X this functor satisfies assumptions (1),
(2) of Proposition 7.33.3 and hence defines a point. In other words we see that
points of the site XZar are in one-to-one correspondence with irreducible closed
subsets of X. In particular, if X is a sober topological space, then points of XZar

and points of X are in one to one correspondence, see Example 7.33.5.

Example 7.33.7.00YF Consider the site TG described in Example 7.6.5 and Section 7.9.
The forgetful functor u : TG → Sets commutes with products and fibred products
and turns coverings into surjective families. Hence it defines a point of TG. We
identify Sh(TG) and G-Sets. The stalk functor

p−1 : Sh(TG) = G-Sets −→ Sets
is the forgetful functor. The pushforward p∗ is the functor

Sets −→ Sh(TG) = G-Sets
which maps a set S to the G-set Map(G,S) with action g ·ψ = ψ ◦Rg where Rg is
right multiplication. In particular we have p−1p∗S = Map(G,S) as a set and the
maps S → Map(G,S)→ S of Lemma 7.32.9 are the obvious ones.

Example 7.33.8.08RH Let C be a category endowed with the chaotic topology (Example
7.6.6). For every object U0 of C the functor u : U 7→ MorC(U0, U) defines a point p
of C. Namely, conditions (1) and (2) of Definition 7.32.2 are immediate as the only
coverings are given by identity maps. Condition (2) holds because Fp = F(U0) and
since the topology is discrete taking sections over U0 is an exact functor.

7.34. Points and morphisms of topoi

05V0 In this section we make a few remarks about points and morphisms of topoi.

Lemma 7.34.1.0F4F Let u : C → D be a functor. Let v : D → Sets be a functor and set
w = v ◦ u. Denote q, resp., p the stalk functor (7.32.1.1) associated to v, resp. w.
Then (upF)q = Fp functorially in the presheaf F on C.

Proof. This is a simple categorical fact. We have
(upF)q = colim(V,y) colimU,ϕ:V→u(U) F(U)

= colim(V,y,U,ϕ:V→u(U)) F(U)
= colim(U,x) F(U)
= Fp
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The first equality holds by the definition of up and the definition of the stalk functor.
Observe that y ∈ v(V ). In the second equality we simply combine colimits. To see
the third equality we apply Categories, Lemma 4.17.5 to the functor F of diagram
categories defined by the rule

F ((V, y, U, ϕ : V → u(U))) = (U, v(ϕ)(y)).
This makes sense because w(U) = v(u(U)). Let us check the hypotheses of Cat-
egories, Lemma 4.17.5. Observe that F has a right inverse, namely (U, x) 7→
(u(U), x, U, id : u(U) → u(U)). Again this makes sense because x ∈ w(U) =
v(u(U)). On the other hand, there is always a morphism

(V, y, U, ϕ : V → u(U)) −→ (u(U), v(ϕ)(y), U, id : u(U)→ u(U))
in the fibre category over (U, x) which shows the fibre categories are connected.
The fourth and final equality is clear. □

Lemma 7.34.2.05V1 Let f : D → C be a morphism of sites given by a continuous functor
u : C → D. Let q be a point of D given by the functor v : D → Sets, see Definition
7.32.2. Then the functor v ◦ u : C → Sets defines a point p of C and moreover there
is a canonical identification

(f−1F)q = Fp
for any sheaf F on C.

First proof Lemma 7.34.2. Note that since u is continuous and since v defines a
point, it is immediate that v ◦u satisfies conditions (1) and (2) of Definition 7.32.2.
Let us prove the displayed equality. Let F be a sheaf on C. Then

(f−1F)q = (usF)q = (upF)q = Fp
The first equality since f−1 = us, the second equality by Lemma 7.32.5, and the
third by Lemma 7.34.1. Hence now we see that p also satisfies condition (3) of
Definition 7.32.2 because it is a composition of exact functors. This finishes the
proof. □

Second proof Lemma 7.34.2. By Lemma 7.32.8 we may factor (q∗, q
−1) as

Sh(pt) i−→ Sh(S) h−→ Sh(D)
where the second morphism of topoi comes from a morphism of sites h : S → D
induced by the functor v : D → S (which makes sense as S ⊂ Sets is a full
subcategory containing every object in the image of v). By Lemma 7.14.4 the
composition v ◦ u : C → S defines a morphism of sites g : S → C. In particular, the
functor v ◦ u : C → S is continuous which by the definition of the coverings in S,
see Remark 7.15.3, means that v ◦ u satisfies conditions (1) and (2) of Definition
7.32.2. On the other hand, we see that

g∗i∗E(U) = i∗E(v(u(U)) = MorSets(v(u(U)), E)
by the construction of i in Remark 7.15.3. Note that this is the same as the formula
for which is equal to (v◦u)pE, see Equation (7.32.3.1). By Lemma 7.32.5 the functor
g∗i∗ = (v ◦u)p = (v ◦u)s is right adjoint to the stalk functor F 7→ Fq. Hence we see
that the stalk functor p−1 is canonically isomorphic to i−1 ◦ g−1. Hence it is exact
and we conclude that p is a point. Finally, as we have g = f ◦h by construction we
see that p−1 = i−1 ◦ h−1 ◦ f−1 = q−1 ◦ f−1, i.e., we have the displayed formula of
the lemma. □
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Lemma 7.34.3.05V2 Let f : Sh(D) → Sh(C) be a morphism of topoi. Let q : Sh(pt) →
Sh(D) be a point. Then p = f ◦ q is a point of the topos Sh(C) and we have a
canonical identification

(f−1F)q = Fp
for any sheaf F on C.

Proof. This is immediate from the definitions and the fact that we can compose
morphisms of topoi. □

7.35. Localization and points

04EK In this section we show that points of a localization C/U are constructed in a simple
manner from the points of C.

Lemma 7.35.1.04H2 Let C be a site. Let p be a point of C given by u : C → Sets. Let
U be an object of C and let x ∈ u(U). The functor

v : C/U −→ Sets, (φ : V → U) 7−→ {y ∈ u(V ) | u(φ)(y) = x}
defines a point q of the site C/U such that the diagram

Sh(pt)

p

��

q

yy
Sh(C/U) jU // Sh(C)

commutes. In other words Fp = (j−1
U F)q for any sheaf on C.

Proof. Choose S and S as in Lemma 7.32.8. We may identify Sh(pt) = Sh(S) as in
that lemma, and we may write p = f : Sh(S) → Sh(C) for the morphism of topoi
induced by u. By Lemma 7.28.1 we get a commutative diagram of topoi

Sh(S/u(U))
ju(U)

//

p′

��

Sh(S)

p

��
Sh(C/U) jU // Sh(C),

where p′ is given by the functor u′ : C/U → S/u(U), V/U 7→ u(V )/u(U). Consider
the functor jx : S ∼= S/x obtained by assigning to a set E the set E endowed with
the constant map E → u(U) with value x. Then jx is a fully faithful cocontinuous
functor which has a continuous right adjoint vx : (ψ : E → u(U)) 7→ ψ−1({x}).
Note that ju(U) ◦ jx = idS , and vx ◦ u′ = v. These observations imply that we have
the following commutative diagram of topoi

Sh(S)
a

&&
q

��

p

oo

Sh(S/u(U))
ju(U)

//

p′

��

Sh(S)

p

��
Sh(C/U) jU // Sh(C)

Namely:
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(1) The morphism a : Sh(S)→ Sh(S/u(U)) is the morphism of topoi associ-
ated to the cocontinuous functor jx, which equals the morphism associated
to the continuous functor vx, see Lemma 7.21.1 and Section 7.22.

(2) The composition p ◦ ju(U) ◦ a = p since ju(U) ◦ jx = idS .
(3) The composition p′ ◦ a gives a morphism of topoi. Moreover, it is the

morphism of topoi associated to the continuous functor vx ◦u′ = v. Hence
v does indeed define a point q of C/U which fits into the diagram above
by construction.

This ends the proof of the lemma. □

Lemma 7.35.2.04H3 Let C, p, u, U be as in Lemma 7.35.1. The construction of Lemma
7.35.1 gives a one to one correspondence between points q of C/U lying over p and
elements x of u(U).

Proof. Let q be a point of C/U given by the functor v : C/U → Sets such that
jU ◦ q = p as morphisms of topoi. Recall that u(V ) = p−1(h#

V ) for any object V of
C, see Lemma 7.32.7. Similarly v(V/U) = q−1(h#

V/U ) for any object V/U of C/U .
Consider the following two diagrams

MorC/U (W/U, V/U) //

��

MorC(W,V )

��
MorC/U (W/U,U/U) // MorC(W,U)

h#
V/U

//

��

j−1
U (h#

V )

��
h#
U/U

// j−1
U (h#

U )

The right hand diagram is the sheafification of the diagram of presheaves on C/U
which maps W/U to the left hand diagram of sets. (There is a small technical
point to make here, namely, that we have (j−1

U hV )# = j−1
U (h#

V ) and similarly for
hU , see Lemma 7.20.4.) Note that the left hand diagram of sets is cartesian. Since
sheafification is exact (Lemma 7.10.14) we conclude that the right hand diagram is
cartesian.

Apply the exact functor q−1 to the right hand diagram to get a cartesian diagram

v(V/U) //

��

u(V )

��
v(U/U) // u(U)

of sets. Here we have used that q−1 ◦ j−1 = p−1. Since U/U is a final object of
C/U we see that v(U/U) is a singleton. Hence the image of v(U/U) in u(U) is an
element x, and the top horizontal map gives a bijection v(V/U)→ {y ∈ u(V ) | y 7→
x in u(U)} as desired. □

Lemma 7.35.3.04H4 Let C be a site. Let p be a point of C given by u : C → Sets. Let
U be an object of C. For any sheaf G on C/U we have

(jU !G)p =
∐

q
Gq

where the coproduct is over the points q of C/U associated to elements x ∈ u(U)
as in Lemma 7.35.1.
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Proof. We use the description of jU !G as the sheaf associated to the presheaf V 7→∐
φ∈MorC(V,U) G(V/φU) of Lemma 7.25.2. Also, the stalk of jU !G at p is equal to

the stalk of this presheaf, see Lemma 7.32.5. Hence we see that
(jU !G)p = colim(V,y)

∐
φ:V→U

G(V/φU)

To each element (V, y, φ, s) of this colimit, we can assign x = u(φ)(y) ∈ u(U).
Hence we obtain

(jU !G)p =
∐

x∈u(U)
colim(φ:V→U,y), u(φ)(y)=x G(V/φU).

This is equal to the expression of the lemma by our construction of the points q. □

Remark 7.35.4.04H5 Warning: The result of Lemma 7.35.3 has no analogue for jU,∗.

7.36. 2-morphisms of topoi

04I9 This is a brief section concerning the notion of a 2-morphism of topoi.
Definition 7.36.1.04IA Let f, g : Sh(C) → Sh(D) be two morphisms of topoi. A 2-
morphism from f to g is given by a transformation of functors t : f∗ → g∗.
Pictorially we sometimes represent t as follows:

Sh(C)
f

++

g

33�� t Sh(D)

Note that since f−1 is adjoint to f∗ and g−1 is adjoint to g∗ we see that t induces
also a transformation of functors t : g−1 → f−1 (usually denoted by the same
symbol) uniquely characterized by the condition that the diagram

MorSh(D)(G, f∗F)

t◦−
��

MorSh(C)(f−1G,F)

−◦t
��

MorSh(D)(G, g∗F) MorSh(C)(g−1G,F)

commutes. Because of set theoretic difficulties (see Remark 7.15.4) we do not obtain
a 2-category of topoi. But we can still define horizontal and vertical composition and
show that the axioms of a strict 2-category listed in Categories, Section 4.29 hold.
Namely, vertical composition of 2-morphisms is clear (just compose transformations
of functors), composition of 1-morphisms has been defined in Definition 7.15.1, and
horizontal composition of

Sh(C)
f ++

g
33�� t Sh(D)

f ′
++

g′
33��

s Sh(E)

is defined by the transformation of functors s⋆t introduced in Categories, Definition
4.28.1. Explicitly, s ⋆ t is given by

f ′
∗f∗F

f ′
∗t // f ′

∗g∗F
s // g′

∗g∗F or f ′
∗f∗F

s // g′
∗f∗F

g′
∗t // g′

∗g∗F

(these maps are equal). Since these definitions agree with the ones in Categories,
Section 4.28 it follows from Categories, Lemma 4.28.2 that the axioms of a strict
2-category hold with these definitions.
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7.37. Morphisms between points

00YG
Lemma 7.37.1.00YH Let C be a site. Let u, u′ : C → Sets be two functors, and let t : u′ →
u be a transformation of functors. Then we obtain a canonical transformation of
stalk functors tstalk : Fp′ → Fp which agrees with t via the identifications of Lemma
7.32.3.

Proof. Omitted. □

Definition 7.37.2.00YI Let C be a site. Let p, p′ be points of C given by functors
u, u′ : C → Sets. A morphism f : p→ p′ is given by a transformation of functors

fu : u′ → u.

Note how the transformation of functors goes the other way. This makes sense, as
we will see later, by thinking of the morphism f as a kind of 2-arrow pictorially as
follows:

Sets = Sh(pt)
p

++

p′
33�� f Sh(C)

Namely, we will see later that fu induces a canonical transformation of functors
p∗ → p′

∗ between the skyscraper sheaf constructions.
This is a fairly important notion, and deserves a more complete treatment here.
List of desiderata

(1) Describe the automorphisms of the point of TG described in Example
7.33.7.

(2) Describe Mor(p, p′) in terms of Mor(p∗, p
′
∗).

(3) Specialization of points in topological spaces. Show that if x′ ∈ {x} in
the topological space X, then there is a morphism p→ p′, where p (resp.
p′) is the point of XZar associated to x (resp. x′).

7.38. Sites with enough points

00YJ
Definition 7.38.1.00YK Let C be a site.

(1) A family of points {pi}i∈I is called conservative if every map of sheaves
ϕ : F → G which is an isomorphism on all the fibres Fpi → Gpi is an
isomorphism.

(2) We say that C has enough points if there exists a conservative family of
points.

It turns out that you can then check “exactness” at the stalks.

Lemma 7.38.2.00YL Let C be a site and let {pi}i∈I be a conservative family of points.
Then

(1) Given any map of sheaves φ : F → G we have ∀i, φpi injective implies φ
injective.

(2) Given any map of sheaves φ : F → G we have ∀i, φpi surjective implies φ
surjective.

(3) Given any pair of maps of sheaves φ1, φ2 : F → G we have ∀i, φ1,pi = φ2,pi
implies φ1 = φ2.
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(4) Given a finite diagram G : J → Sh(C), a sheaf F and morphisms qj : F →
Gj then (F , qj) is a limit of the diagram if and only if for each i the stalk
(Fpi , (qj)pi) is one.

(5) Given a finite diagram F : J → Sh(C), a sheaf G and morphisms ej :
Fj → G then (G, ej) is a colimit of the diagram if and only if for each i
the stalk (Gpi , (ej)pi) is one.

Proof. We will use over and over again that all the stalk functors commute with
any finite limits and colimits and hence with products, fibred products, etc. We
will also use that injective maps are the monomorphisms and the surjective maps
are the epimorphisms. A map of sheaves φ : F → G is injective if and only if
F → F ×G F is an isomorphism. Hence (1). Similarly, φ : F → G is surjective if
and only if G ⨿F G → G is an isomorphism. Hence (2). The maps a, b : F → G
are equal if and only if F ×a,G,b F → F × F is an isomorphism. Hence (3). The
assertions (4) and (5) follow immediately from the definitions and the remarks at
the start of this proof. □

Lemma 7.38.3.00YM Let C be a site and let {(pi, ui)}i∈I be a family of points. The
family is conservative if and only if for every sheaf F and every U ∈ Ob(C) and
every pair of distinct sections s, s′ ∈ F(U), s ̸= s′ there exists an i and x ∈ ui(U)
such that the triples (U, x, s) and (U, x, s′) define distinct elements of Fpi .

Proof. Suppose that the family is conservative and that F , U , and s, s′ are as in the
lemma. The sections s, s′ define maps a, a′ : (hU )# → F which are distinct. Hence,
by Lemma 7.38.2 there is an i such that api ̸= a′

pi . Recall that (hU )#
pi = ui(U),

by Lemmas 7.32.3 and 7.32.5. Hence there exists an x ∈ ui(U) such that api(x) ̸=
a′
pi(x) in Fpi . Unwinding the definitions you see that (U, x, s) and (U, x, s′) are as

in the statement of the lemma.
To prove the converse, assume the condition on the existence of points of the lemma.
Let ϕ : F → G be a map of sheaves which is an isomorphism at all the stalks. We
have to show that ϕ is both injective and surjective, see Lemma 7.11.2. Injectivity
is an immediate consequence of the assumption. To show surjectivity we have to
show that G ⨿F G → G is an isomorphism (Categories, Lemma 4.13.3). Since this
map is clearly surjective, it suffices to check injectivity which follows as G⨿F G → G
is injective on all stalks by assumption. □

In the following lemma the points qi,x are exactly all the points of C/U lying over
the point pi according to Lemma 7.35.2.

Lemma 7.38.4.04H6 Let C be a site. Let U be an object of C. let {(pi, ui)}i∈I be a
family of points of C. For x ∈ ui(U) let qi,x be the point of C/U constructed in
Lemma 7.35.1. If {pi} is a conservative family of points, then {qi,x}i∈I,x∈ui(U) is a
conservative family of points of C/U . In particular, if C has enough points, then so
does every localization C/U .

Proof. We know that jU ! induces an equivalence jU ! : Sh(C/U) → Sh(C)/h#
U , see

Lemma 7.25.4. Moreover, we know that (jU !G)pi =
∐
x Gqi,x , see Lemma 7.35.3.

Hence the result follows formally. □

The following lemma tells us we can check the existence of points locally on the
site.
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Lemma 7.38.5.06UL Let C be a site. Let {Ui}i∈I be a family of objects of C. Assume
(1)

∐
h#
Ui
→ ∗ is a surjective map of sheaves, and

(2) each localization C/Ui has enough points.
Then C has enough points.

Proof. For each i ∈ I let {pj}j∈Ji be a conservative family of points of C/Ui. For
j ∈ Ji denote qj : Sh(pt) → Sh(C) the composition of pj with the localization
morphism Sh(C/Ui) → Sh(C). Then qj is a point, see Lemma 7.34.3. We claim
that the family of points {qj}j∈∐ Ji

is conservative. Namely, let F → G be a
map of sheaves on C such that Fqj → Gqj is an isomorphism for all j ∈

∐
Ji.

Let W be an object of C. By assumption (1) there exists a covering {Wa → W}
and morphisms Wa → Ui(a). Since (F|C/Ui(a))pj = Fqj and (G|C/Ui(a))pj = Gqj by
Lemma 7.34.3 we see that F|Ui(a) → G|Ui(a) is an isomorphism since the family
of points {pj}j∈Ji(a) is conservative. Hence F(Wa) → G(Wa) is bijective for each
a. Similarly F(Wa ×W Wb) → G(Wa ×W Wb) is bijective for each a, b. By the
sheaf condition this shows that F(W ) → G(W ) is bijective, i.e., F → G is an
isomorphism. □

Lemma 7.38.6.0F4G Let u : C → D be a continuous functor of sites. Let {(qi, vi)}i∈I be
a conservative family of points of D. If each functor ui = vi ◦ u defines a point of
C, then u defines a morphism of sites f : D → C.

Proof. Denote pi the stalk functor (7.32.1.1) on PSh(C) corresponding to the func-
tor ui. We have

(f−1F)qi = (usF)qi = (upF)qi = Fpi
The first equality since f−1 = us, the second equality by Lemma 7.32.5, and the
third by Lemma 7.34.1. Hence if pi is a point, then pulling back by f and then
taking stalks at qi is an exact functor. Since the family of points {qi} is conservative,
this implies that f−1 is an exact functor and we see that f is a morphism of sites
by Definition 7.14.1. □

7.39. Criterion for existence of points

00YN This section corresponds to Deligne’s appendix to [AGV71, Exposé VI]. In fact it
is almost literally the same.
Let C be a site. Suppose that (I,≥) is a directed set, and that (Ui, fii′) is an inverse
system over I, see Categories, Definition 4.21.2. Given the data (I,≥, Ui, fii′) we
define

u : C −→ Sets, u(V ) = colimi MorC(Ui, V )
Let F 7→ Fp be the stalk functor associated to u as in Section 7.32. It is direct
from the definition that actually

Fp = colimi F(Ui)
in this special case. Note that u commutes with all finite limits (I mean those
that are representable in C) because each of the functors V 7→ MorC(Ui, V ) do, see
Categories, Lemma 4.19.2.
We say that a system (I,≥, Ui, fii′) is a refinement of (J,≥, Vj , gjj′) if J ⊂ I, the
ordering on J induced from that of I and Vj = Uj , gjj′ = fjj′ (in words, the
inverse system over J is induced by that over I). Let u be the functor associated to

https://stacks.math.columbia.edu/tag/06UL
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(I,≥, Ui, fii′) and let u′ be the functor associated to (J,≥, Vj , gjj′). This induces a
transformation of functors

u′ −→ u

simply because the colimits for u′ are over a subsystem of the systems in the colimits
for u. In particular we get an associated transformation of stalk functors Fp′ → Fp,
see Lemma 7.37.1.

Lemma 7.39.1.00YO Let C be a site. Let (J,≥, Vj , gjj′) be a system as above with
associated pair of functors (u′, p′). Let F be a sheaf on C. Let s, s′ ∈ Fp′ be
distinct elements. Let {Wk →W} be a finite covering of C. Let f ∈ u′(W ). There
exists a refinement (I,≥, Ui, fii′) of (J,≥, Vj , gjj′) such that s, s′ map to distinct
elements of Fp and that the image of f in u(W ) is in the image of one of the u(Wk).

Proof. There exists a j0 ∈ J such that f is defined by f ′ : Vj0 → W . For j ≥ j0
we set Vj,k = Vj ×f ′◦fjj0 ,W

Wk. Then {Vj,k → Vj} is a finite covering in the site C.
Hence F(Vj) ⊂

∏
k F(Vj,k). By Categories, Lemma 4.19.2 once again we see that

Fp′ = colimj F(Vj) −→
∏

k
colimj F(Vj,k)

is injective. Hence there exists a k such that s and s′ have distinct image in
colimj F(Vj,k). Let J0 = {j ∈ J, j ≥ j0} and I = J ⨿ J0. We order I so that
no element of the second summand is smaller than any element of the first, but
otherwise using the ordering on J . If j ∈ I is in the first summand then we use Vj
and if j ∈ I is in the second summand then we use Vj,k. We omit the definition of
the transition maps of the inverse system. By the above it follows that s, s′ have
distinct image in Fp. Moreover, the restriction of f ′ to Vj,k factors through Wk by
construction. □

Lemma 7.39.2.00YP Let C be a site. Let (J,≥, Vj , gjj′) be a system as above with
associated pair of functors (u′, p′). Let F be a sheaf on C. Let s, s′ ∈ Fp′ be
distinct elements. There exists a refinement (I,≥, Ui, fii′) of (J,≥, Vj , gjj′) such
that s, s′ map to distinct elements of Fp and such that for every finite covering
{Wk → W} of the site C, and any f ∈ u′(W ) the image of f in u(W ) is in the
image of one of the u(Wk).

Proof. Let E be the set of pairs ({Wk → W}, f ∈ u′(W )). Consider pairs (E′ ⊂
E, (I,≥, Ui, fii′)) such that

(1) (I,≥, Ui, gii′) is a refinement of (J,≥, Vj , gjj′),
(2) s, s′ map to distinct elements of Fp, and
(3) for every pair ({Wk →W}, f ∈ u′(W )) ∈ E′ we have that the image of f

in u(W ) is in the image of one of the u(Wk).
We order such pairs by inclusion in the first factor and by refinement in the second.
Denote S the class of all pairs (E′ ⊂ E, (I,≥, Ui, fii′)) as above. We claim that
the hypothesis of Zorn’s lemma holds for S. Namely, suppose that (E′

a, (Ia,≥
, Ui, fii′))a∈A is a totally ordered subset of S. Then we can define E′ =

⋃
a∈AE

′
a and

we can set I =
⋃
a∈A Ia. We claim that the corresponding pair (E′, (I,≥, Ui, fii′))

is an element of S. Conditions (1) and (3) are clear. For condition (2) you note
that

u = colima∈A ua and correspondingly Fp = colima∈A Fpa

https://stacks.math.columbia.edu/tag/00YO
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The distinctness of the images of s, s′ in this stalk follows from the description
of a directed colimit of sets, see Categories, Section 4.19. We will simply write
(E′, (I, . . .)) =

⋃
a∈A(E′

a, (Ia, . . .)) in this situation.

OK, so Zorn’s Lemma would apply if S was a set, and this would, combined with
Lemma 7.39.1 above easily prove the lemma. It doesn’t since S is a class. In order
to circumvent this we choose a well ordering on E. For e ∈ E set E′

e = {e′ ∈ E |
e′ ≤ e}. Using transfinite recursion we construct pairs (E′

e, (Ie, . . .)) ∈ S such that
e1 ≤ e2 ⇒ (E′

e1
, (Ie1 , . . .)) ≤ (E′

e2
, (Ie2 , . . .)). Let e ∈ E, say e = ({Wk → W}, f ∈

u′(W )). If e has a predecessor e−1, then we let (Ie, . . .) be a refinement of (Ie−1, . . .)
as in Lemma 7.39.1 with respect to the system e = ({Wk → W}, f ∈ u′(W )). If e
does not have a predecessor, then we let (Ie, . . .) be a refinement of

⋃
e′<e(Ie′ , . . .)

with respect to the system e = ({Wk → W}, f ∈ u′(W )). Finally, the union⋃
e∈E Ie will be a solution to the problem posed in the lemma. □

Proposition 7.39.3.00YQ [AGV71, Exposé VI,
Appendix by
Deligne, Proposition
9.0]

Let C be a site. Assume that
(1) finite limits exist in C, and
(2) every covering {Ui → U}i∈I has a refinement by a finite covering of C.

Then C has enough points.

Proof. We have to show that given any sheaf F on C, any U ∈ Ob(C), and any
distinct sections s, s′ ∈ F(U), there exists a point p such that s, s′ have distinct
image in Fp. See Lemma 7.38.3. Consider the system (J,≥, Vj , gjj′) with J = {1},
V1 = U , g11 = idU . Apply Lemma 7.39.2. By the result of that lemma we get a
system (I,≥, Ui, fii′) refining our system such that sp ̸= s′

p and such that moreover
for every finite covering {Wk → W} of the site C the map

∐
k u(Wk) → u(W ) is

surjective. Since every covering of C can be refined by a finite covering we conclude
that

∐
k u(Wk) → u(W ) is surjective for any covering {Wk → W} of the site C.

This implies that u = p is a point, see Proposition 7.33.3 (and the discussion at the
beginning of this section which guarantees that u commutes with finite limits). □

Lemma 7.39.4.0DW0 Let C be a site. Let I be a set and for i ∈ I let Ui be an object of
C such that

(1)
∐
hUi surjects onto the final object of Sh(C), and

(2) C/Ui satisfies the hypotheses of Proposition 7.39.3.
Then C has enough points.

Proof. By assumption (2) and the proposition C/Ui has enough points. The points
of C/Ui give points of C via the procedure of Lemma 7.34.2. Thus it suffices to
show: if ϕ : F → G is a map of sheaves on C such that ϕ|C/Ui is an isomorphism
for all i, then ϕ is an isomorphism. By assumption (1) for every object W of C
there is a covering {Wj → W}j∈J such that for j ∈ J there is an i ∈ I and
a morphism fj : Wj → Ui. Then the maps F(Wj) → G(Wj) are bijective and
similarly for F(Wj ×W Wj′) → G(Wj ×W Wj′). The sheaf condition tells us that
F(W )→ G(W ) is bijective as desired. □

7.40. Weakly contractible objects

090J A weakly contractible object of a site is one that satisfies the equivalent conditions
of the following lemma.
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Lemma 7.40.1.090K Let C be a site. Let U be an object of C. The following conditions
are equivalent

(1) For every covering {Ui → U} there exists a map of sheaves h#
U →

∐
h#
Ui

right inverse to the sheafification of
∐
hUi → hU .

(2) For every surjection of sheaves of sets F → G the map F(U) → G(U) is
surjective.

Proof. Assume (1) and let F → G be a surjective map of sheaves of sets. For
s ∈ G(U) there exists a covering {Ui → U} and ti ∈ F(Ui) mapping to s|Ui ,
see Definition 7.11.1. Think of ti as a map ti : h#

Ui
→ F via (7.12.3.1). Then

precomposing
∐
ti :

∐
h#
Ui
→ F with the map h#

U →
∐
h#
Ui

we get from (1) we
obtain a section t ∈ F(U) mapping to s. Thus (2) holds.

Assume (2) holds. Let {Ui → U} be a covering. Then
∐
h#
Ui
→ h#

U is surjective
(Lemma 7.12.4). Hence by (2) there exists a section s of

∐
h#
Ui

mapping to the
section idU of h#

U . This section corresponds to a map h#
U →

∐
h#
Ui

which is right
inverse to the sheafification of

∐
hUi → hU which proves (1). □

Definition 7.40.2.090L Let C be a site.
(1) We say an object U of C is weakly contractible if the equivalent conditions

of Lemma 7.40.1 hold.
(2) We say a site has enough weakly contractible objects if every object U of
C has a covering {Ui → U} with Ui weakly contractible for all i.

(3) More generally, if P is a property of objects of C we say that C has enough
P objects if every object U of C has a covering {Ui → U} such that Ui
has P for all i.

The small étale site of A1
C does not have any weakly contractible objects. On the

other hand, the small pro-étale site of any scheme has enough contractible objects.

7.41. Exactness properties of pushforward

04D5 Let f be a morphism of topoi. The functor f∗ in general is only left exact. There are
many additional conditions one can impose on this functor to single out particular
classes of morphisms of topoi. We collect them here and note some of the logical
dependencies. Some parts of the following lemma are purely category theoretical
(i.e., they do not depend on having a morphism of topoi, just having a pair of
adjoint functors is enough).

Lemma 7.41.1.04D6 Let f : Sh(C) → Sh(D) be a morphism of topoi. Consider the
following properties (on sheaves of sets):

(1) f∗ is faithful,
(2) f∗ is fully faithful,
(3) f−1f∗F → F is surjective for all F in Sh(C),
(4) f∗ transforms surjections into surjections,
(5) f∗ commutes with coequalizers,
(6) f∗ commutes with pushouts,
(7) f−1f∗F → F is an isomorphism for all F in Sh(C),
(8) f∗ reflects injections,
(9) f∗ reflects surjections,

https://stacks.math.columbia.edu/tag/090K
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(10) f∗ reflects bijections, and
(11) for any surjection F → f−1G there exists a surjection G′ → G such that

f−1G′ → f−1G factors through F → f−1G.
Then we have the following implications

(a) (2) ⇒ (1),
(b) (3) ⇒ (1),
(c) (7) ⇒ (1), (2), (3), (8), (9), (10).
(d) (3) ⇔ (9),
(e) (6) ⇒ (4) and (5) ⇒ (4),
(f) (4) ⇔ (11),
(g) (9) ⇒ (8), (10), and
(h) (2) ⇔ (7).

Picture
(6)

�$

(9) +3

�%

(8)

(4) ks +3 (11) (2) ks +3 (7)

:B

�$

(10)

(5)

:B

(3) +3 (1)

Proof. Proof of (a): This is immediate from the definitions.
Proof of (b). Suppose that a, b : F → F ′ are maps of sheaves on C. If f∗a = f∗b,
then f−1f∗a = f−1f∗b. Consider the commutative diagram

F //
// F ′

f−1f∗F //
//

OO

f−1f∗F ′

OO

If the bottom two arrows are equal and the vertical arrows are surjective then the
top two arrows are equal. Hence (b) follows.
Proof of (c). Suppose that a : F → F ′ is a map of sheaves on C. Consider the
commutative diagram

F // F ′

f−1f∗F //

OO

f−1f∗F ′

OO

If (7) holds, then the vertical arrows are isomorphisms. Hence if f∗a is injective
(resp. surjective, resp. bijective) then the bottom arrow is injective (resp. surjective,
resp. bijective) and hence the top arrow is injective (resp. surjective, resp. bijective).
Thus we see that (7) implies (8), (9), (10). It is clear that (7) implies (3). The
implications (7) ⇒ (2), (1) follow from (a) and (h) which we will see below.
Proof of (d). Assume (3). Suppose that a : F → F ′ is a map of sheaves on C
such that f∗a is surjective. As f−1 is exact this implies that f−1f∗a : f−1f∗F →
f−1f∗F ′ is surjective. Combined with (3) this implies that a is surjective. This



7.41. EXACTNESS PROPERTIES OF PUSHFORWARD 328

means that (9) holds. Assume (9). Let F be a sheaf on C. We have to show that
the map f−1f∗F → F is surjective. It suffices to show that f∗f

−1f∗F → f∗F is
surjective. And this is true because there is a canonical map f∗F → f∗f

−1f∗F
which is a one-sided inverse.

Proof of (e). We use Categories, Lemma 4.13.3 without further mention. If F → F ′

is surjective then F ′ ⨿F F ′ → F ′ is an isomorphism. Hence (6) implies that

f∗F ′ ⨿f∗F f∗F ′ = f∗(F ′ ⨿F F ′) −→ f∗F ′

is an isomorphism also. And this in turn implies that f∗F → f∗F ′ is surjective.
Hence we see that (6) implies (4). If F → F ′ is surjective then F ′ is the coequalizer
of the two projections F ×F ′ F → F by Lemma 7.11.3. Hence if (5) holds, then
f∗F ′ is the coequalizer of the two projections

f∗(F ×F ′ F) = f∗F ×f∗F ′ f∗F −→ f∗F

which clearly means that f∗F → f∗F ′ is surjective. Hence (5) implies (4) as well.

Proof of (f). Assume (4). Let F → f−1G be a surjective map of sheaves on C. By
(4) we see that f∗F → f∗f

−1G is surjective. Let G′ be the fibre product

f∗F // f∗f
−1G

G′

OO

// G

OO

so that G′ → G is surjective also. Consider the commutative diagram

F // f−1G

f−1f∗F //

OO

f−1f∗f
−1G

OO

f−1G′

OO

// f−1G

OO

and we see the required result. Conversely, assume (11). Let a : F → F ′ be
surjective map of sheaves on C. Consider the fibre product diagram

F // F ′

F ′′

OO

// f−1f∗F ′

OO

Because the lower horizontal arrow is surjective and by (11) we can find a surjection
γ : G′ → f∗F ′ such that f−1γ factors through F ′′ → f−1f∗F ′:

F // F ′

f−1G′ // F ′′

OO

// f−1f∗F ′

OO
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Pushing this down using f∗ we get a commutative diagram

f∗F // f∗F ′

f∗f
−1G′ // f∗F ′′

OO

// f∗f
−1f∗F ′

OO

G′

OO

// f∗F ′

OO

which proves that (4) holds.
Proof of (g). Assume (9). We use Categories, Lemma 4.13.3 without further men-
tion. Let a : F → F ′ be a map of sheaves on C such that f∗a is injective. This
means that f∗F → f∗F ×f∗F ′ f∗F = f∗(F ×F ′ F) is an isomorphism. Thus by (9)
we see that F → F ×F ′ F is surjective, i.e., an isomorphism. Thus a is injective,
i.e., (8) holds. Since (10) is trivially equivalent to (8) + (9) we are done with (g).
Proof of (h). This is Categories, Lemma 4.24.4. □

Here is a condition on a morphism of sites which guarantees that the functor f∗
transforms surjective maps into surjective maps.

Lemma 7.41.2.04D7 Let f : D → C be a morphism of sites associated to the continuous
functor u : C → D. Assume that for any object U of C and any covering {Vj →
u(U)} in D there exists a covering {Ui → U} in C such that the map of sheaves∐

h#
u(Ui) → h#

u(U)

factors through the map of sheaves∐
h#
Vj
→ h#

u(U).

Then f∗ transforms surjective maps of sheaves into surjective maps of sheaves.

Proof. Let a : F → G be a surjective map of sheaves on D. Let U be an object of C
and let s ∈ f∗G(U) = G(u(U)). By assumption there exists a covering {Vj → u(U)}
and sections sj ∈ F(Vj) with a(sj) = s|Vj . Now we may think of the sections s, sj
and a as giving a commutative diagram of maps of sheaves∐

h#
Vj ∐ sj

//

��

F

a

��
h#
u(U)

s // G

By assumption there exists a covering {Ui → U} such that we can enlarge the
commutative diagram above as follows ∐

h#
Vj ∐ sj

//

��

F

a

��∐
h#
u(Ui)

//

;;

h#
u(U)

s // G

https://stacks.math.columbia.edu/tag/04D7
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Because F is a sheaf the map from the left lower corner to the right upper corner
corresponds to a family of sections si ∈ F(u(Ui)), i.e., sections si ∈ f∗F(Ui). The
commutativity of the diagram implies that a(si) is equal to the restriction of s to
Ui. In other words we have shown that f∗a is a surjective map of sheaves. □

Example 7.41.3.04D8 Assume f : D → C satisfies the assumptions of Lemma 7.41.2.
Then it is in general not the case that f∗ commutes with coequalizers or pushouts.
Namely, suppose that f is the morphism of sites associated to the morphism of
topological spaces X = {1, 2} → Y = {∗} (see Example 7.14.2), where Y is a
singleton space, and X = {1, 2} is a discrete space with two points. A sheaf F on
X is given by a pair (A1, A2) of sets. Then f∗F corresponds to the set A1 × A2.
Hence if a = (a1, a2), b = (b1, b2) : (A1, A2) → (B1, B2) are maps of sheaves on X,
then the coequalizer of a, b is (C1, C2) where Ci is the coequalizer of ai, bi, and the
coequalizer of f∗a, f∗b is the coequalizer of

a1 × a2, b1 × b2 : A1 ×A2 −→ B1 ×B2

which is in general different from C1×C2. Namely, if A2 = ∅ then A1×A2 = ∅, and
hence the coequalizer of the displayed arrows is B1 × B2, but in general C1 ̸= B1.
A similar example works for pushouts.

The following lemma gives a criterion for when a morphism of sites has a functor
f∗ which reflects injections and surjections. Note that this also implies that f∗ is
faithful and that the map f−1f∗F → F is always surjective.

Lemma 7.41.4.04D9 Let f : D → C be a morphism of sites given by the functor
u : C → D. Assume that for every object V of D there exist objects Ui of C and
morphisms u(Ui)→ V such that {u(Ui)→ V } is a covering of D. In this case the
functor f∗ : Sh(D)→ Sh(C) reflects injections and surjections.

Proof. Let α : F → G be maps of sheaves on D. By assumption for every object
V of D we get F(V ) ⊂

∏
F(u(Ui)) =

∏
f∗F(Ui) by the sheaf condition for some

Ui ∈ Ob(C) and similarly for G. Hence it is clear that if f∗α is injective, then α is
injective. In other words f∗ reflects injections.
Suppose that f∗α is surjective. Then for V,Ui, u(Ui) → V as above and a section
s ∈ G(V ), there exist coverings {Uij → Ui} such that s|u(Uij) is in the image of
F(u(Uij)). Since {u(Uij)→ V } is a covering (as u is continuous and by the axioms
of a site) we conclude that s is locally in the image. Thus α is surjective. In other
words f∗ reflects surjections. □

Example 7.41.5.08LS We construct a morphism f : D → C satisfying the assumptions of
Lemma 7.41.4. Namely, let φ : G→ H be a morphism of finite groups. Consider the
sites D = TG and C = TH of countable G-sets and H-sets and coverings countable
families of jointly surjective maps (Example 7.6.5). Let u : TH → TG be the functor
described in Section 7.16 and f : TG → TH the corresponding morphism of sites. If
φ is injective, then every countable G-set is, as a G-set, the quotient of a countable
H-set (this fails if φ isn’t injective). Thus f satisfies the hypothesis of Lemma
7.41.4. If the sheaf F on TG corresponds to the G-set S, then the canonical map

f−1f∗F −→ F
corresponds to the map

MapG(H,S) −→ S, a 7−→ a(1H)
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If φ is injective but not surjective, then this map is surjective (as it should ac-
cording to Lemma 7.41.4) but not injective in general (for example take G = {1},
H = {1, σ}, and S = {1, 2}). Moreover, the functor f∗ does not commute with
coequalizers or pushouts (for G = {1} and H = {1, σ}).

7.42. Almost cocontinuous functors

04B4 Let C be a site. The category PSh(C) has an initial object, namely the presheaf
which assigns the empty set to each object of C. Let us denote this presheaf by ∅.
It follows from the properties of sheafification that the sheafification ∅# of ∅ is an
initial object of the category Sh(C) of sheaves on C.
Definition 7.42.1.04B5 Let C be a site. We say an object U of C is sheaf theoretically
empty if ∅# → h#

U is an isomorphism of sheaves.
The following lemma makes this notion more explicit.
Lemma 7.42.2.04B6 Let C be a site. Let U be an object of C. The following are
equivalent:

(1) U is sheaf theoretically empty,
(2) F(U) is a singleton for each sheaf F ,
(3) ∅#(U) is a singleton,
(4) ∅#(U) is nonempty, and
(5) the empty family is a covering of U in C.

Moreover, if U is sheaf theoretically empty, then for any morphism U ′ → U of C
the object U ′ is sheaf theoretically empty.
Proof. For any sheaf F we have F(U) = MorSh(C)(h#

U ,F). Hence, we see that (1)
and (2) are equivalent. It is clear that (2) implies (3) implies (4). If every covering
of U is given by a nonempty family, then ∅+(U) is empty by definition of the plus
construction. Note that ∅+ = ∅# as ∅ is a separated presheaf, see Theorem 7.10.10.
Thus we see that (4) implies (5). If (5) holds, then F(U) is a singleton for every
sheaf F by the sheaf condition for F , see Remark 7.7.2. Thus (5) implies (2) and
(1) – (5) are equivalent. The final assertion of the lemma follows from Axiom (3)
of Definition 7.6.2 applied the empty covering of U . □

Definition 7.42.3.04B7 Let C, D be sites. Let u : C → D be a functor. We say u is
almost cocontinuous if for every object U of C and every covering {Vj → u(U)}j∈J
there exists a covering {Ui → U}i∈I in C such that for each i in I we have at least
one of the following two conditions

(1) u(Ui) is sheaf theoretically empty, or
(2) the morphism u(Ui)→ u(U) factors through Vj for some j ∈ J .

The motivation for this definition comes from a closed immersion i : Z → X of
topological spaces. As discussed in Example 7.21.9 the continuous functor XZar →
ZZar, U 7→ Z ∩ U is not cocontinuous. But it is almost cocontinuous in the sense
defined above. We know that i∗ while not exact on sheaves of sets, is exact on
sheaves of abelian groups, see Sheaves, Remark 6.32.5. And this holds in general
for continuous and almost cocontinuous functors.
Lemma 7.42.4.04B8 Let C, D be sites. Let u : C → D be a functor. Assume that u is
continuous and almost cocontinuous. Let G be a presheaf on D such that G(V ) is
a singleton whenever V is sheaf theoretically empty. Then (upG)# = up(G#).

https://stacks.math.columbia.edu/tag/04B5
https://stacks.math.columbia.edu/tag/04B6
https://stacks.math.columbia.edu/tag/04B7
https://stacks.math.columbia.edu/tag/04B8


7.43. SUBTOPOI 332

Proof. Let U ∈ Ob(C). We have to show that (upG)#(U) = up(G#)(U). It suffices
to show that (upG)+(U) = up(G+)(U) since G+ is another presheaf for which the
assumption of the lemma holds. We have

up(G+)(U) = G+(u(U)) = colimV Ȟ
0(V,G)

where the colimit is over the coverings V of u(U) in D. On the other hand, we see
that

up(G)+(U) = colimU Ȟ
0(u(U),G)

where the colimit is over the category of coverings U = {Ui → U}i∈I of U in C and
u(U) = {u(Ui) → u(U)}i∈I . The condition that u is continuous means that each
u(U) is a covering. Write I = I1 ⨿ I2, where

I2 = {i ∈ I | u(Ui) is sheaf theoretically empty}
Then u(U)′ = {u(Ui) → u(U)}i∈I1 is still a covering of because each of the other
pieces can be covered by the empty family and hence can be dropped by Axiom
(2) of Definition 7.6.2. Moreover, Ȟ0(u(U),G) = Ȟ0(u(U)′,G) by our assumption
on G. Finally, the condition that u is almost cocontinuous implies that for every
covering V of u(U) there exists a covering U of U such that u(U)′ refines V. It
follows that the two colimits displayed above have the same value as desired. □

Lemma 7.42.5.04B9 Let C, D be sites. Let u : C → D be a functor. Assume that u is
continuous and almost cocontinuous. Then us = up : Sh(D) → Sh(C) commutes
with pushouts and coequalizers (and more generally finite connected colimits).

Proof. Let I be a finite connected index category. Let I → Sh(D), i 7→ Gi by
a diagram. We know that the colimit of this diagram is the sheafification of the
colimit in the category of presheaves, see Lemma 7.10.13. Denote colimPsh the
colimit in the category of presheaves. Since I is finite and connected we see that
colimPsh

i Gi is a presheaf satisfying the assumptions of Lemma 7.42.4 (because a
finite connected colimit of singleton sets is a singleton). Hence that lemma gives

us(colimi Gi) = us((colimPsh
i Gi)#)

= (up(colimPsh
i Gi))#

= (colimPSh
i up(Gi))#

= colimi u
s(Gi)

as desired. □

Lemma 7.42.6.04BA Let f : D → C be a morphism of sites associated to the continuous
functor u : C → D. If u is almost cocontinuous then f∗ commutes with pushouts
and coequalizers (and more generally finite connected colimits).

Proof. This is a special case of Lemma 7.42.5. □

7.43. Subtopoi

08LT Here is the definition.

Definition 7.43.1.08LU Let C and D be sites. A morphism of topoi f : Sh(D)→ Sh(C)
is called an embedding if f∗ is fully faithful.

According to Lemma 7.41.1 this is equivalent to asking the adjunction map f−1f∗F →
F to be an isomorphism for every sheaf F on D.
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Definition 7.43.2.08LV Let C be a site. A strictly full subcategory E ⊂ Sh(C) is a
subtopos if there exists an embedding of topoi f : Sh(D) → Sh(C) such that E is
equal to the essential image of the functor f∗.

The subtopoi constructed in the following lemma will be dubbed "open" in the
definition later on.

Lemma 7.43.3.08LW Let C be a site. Let F be a sheaf on C. The following are equivalent
(1) F is a subobject of the final object of Sh(C), and
(2) the topos Sh(C)/F is a subtopos of Sh(C).

Proof. We have seen in Lemma 7.30.1 that Sh(C)/F is a topos. In fact, we recall
the proof. First we apply Lemma 7.29.5 to see that we may assume C is a site
with a subcanonical topology, fibre products, a final object X, and an object U
with F = hU . The proof of Lemma 7.30.1 shows that the morphism of topoi
jF : Sh(C)/F → Sh(C) is equal (modulo certain identifications) to the localization
morphism jU : Sh(C/U)→ Sh(C).

Assume (2). This means that j−1
U jU,∗G → G is an isomorphism for all sheaves G on

C/U . For any object Z/U of C/U we have

(jU,∗hZ/U )(U) = MorC/U (U ×X U/U,Z/U)

by Lemma 7.27.2. Setting G = hZ/U in the equality above we obtain

MorC/U (U ×X U/U,Z/U) = MorC/U (U,Z/U)

for all Z/U . By Yoneda’s lemma (Categories, Lemma 4.3.5) this implies U ×X U =
U . By Categories, Lemma 4.13.3 U → X is a monomorphism, in other words (1)
holds.

Assume (1). Then j−1
U jU,∗ = id by Lemma 7.27.4. □

Definition 7.43.4.08LX Let C be a site. A strictly full subcategory E ⊂ Sh(C) is an open
subtopos if there exists a subsheaf F of the final object of Sh(C) such that E is the
subtopos Sh(C)/F described in Lemma 7.43.3.

This means there is a bijection between the collection of open subtopoi of Sh(C)
and the set of subobjects of the final object of Sh(C). Given an open subtopos there
is a "closed" complement.

Lemma 7.43.5.08LY Let C be a site. Let F be a subsheaf of the final object ∗ of Sh(C).
The full subcategory of sheaves G such that F × G → F is an isomorphism is a
subtopos of Sh(C).

Proof. We apply Lemma 7.29.5 to see that we may assume C is a site with the
properties listed in that lemma. In particular C has a final object X (so that
∗ = hX) and an object U with F = hU .

Let D = C as a category but a covering is a family {Vj → V } of morphisms such
that {Vi → V } ∪ {U ×X V → V } is a covering. By our choice of C this means
exactly that

hU×XV ⨿
∐

hVi −→ hV
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is surjective. We claim that D is a site, i.e., the coverings satisfy the conditions (1),
(2), (3) of Definition 7.6.2. Condition (1) holds. For condition (2) suppose that
{Vi → V } and {Vij → Vi} are coverings of D. Then the composition∐(

hU×XVi ⨿
∐

hVij

)
−→ hU×XV ⨿

∐
hVi −→ hV

is surjective. Since each of the morphisms U ×X Vi → V factors through U ×X V
we see that

hU×XV ⨿
∐

hVij −→ hV

is surjective, i.e., {Vij → V } is a covering of V in D. Condition (3) follows similarly
as a base change of a surjective map of sheaves is surjective.

Note that the (identity) functor u : C → D is continuous and commutes with
fibre products and final objects. Hence we obtain a morphism f : D → C of
sites (Proposition 7.14.7). Observe that f∗ is the identity functor on underlying
presheaves, hence fully faithful. To finish the proof we have to show that the
essential image of f∗ is the full subcategory E ⊂ Sh(C) singled out in the lemma.
To do this, note that G ∈ Ob(Sh(C)) is in E if and only if G(U×XV ) is a singleton for
all objects V of C. Thus such a sheaf satisfies the sheaf property for all coverings of
D (argument omitted). Conversely, if G satisfies the sheaf property for all coverings
of D, then G(U ×X V ) is a singleton, as in D the object U ×X V is covered by the
empty covering. □

Definition 7.43.6.08LZ Let C be a site. A strictly full subcategory E ⊂ Sh(C) is an
closed subtopos if there exists a subsheaf F of the final object of Sh(C) such that
E is the subtopos described in Lemma 7.43.5.

All right, and now we can define what it means to have a closed immersion and an
open immersion of topoi.

Definition 7.43.7.08M0 Let f : Sh(D)→ Sh(C) be a morphism of topoi.
(1) We say f is an open immersion if f is an embedding and the essential

image of f∗ is an open subtopos.
(2) We say f is a closed immersion if f is an embedding and the essential

image of f∗ is a closed subtopos.

Lemma 7.43.8.08M1 Let i : Sh(D) → Sh(C) be a closed immersion of topoi. Then i∗
is fully faithful, transforms surjections into surjections, commutes with coequaliz-
ers, commutes with pushouts, reflects injections, reflects surjections, and reflects
bijections.

Proof. Let F be a subsheaf of the final object ∗ of Sh(C) and let E ⊂ Sh(C) be the
full subcategory consisting of those G such that F ×G → F is an isomorphism. By
Lemma 7.43.5 the functor i∗ is isomorphic to the inclusion functor ι : E → Sh(C).

Let jF : Sh(C)/F → Sh(C) be the localization functor (Lemma 7.30.1). Note that
E can also be described as the collection of sheaves G such that j−1

F G = ∗.

Let a, b : G1 → G2 be two morphism of E. To prove ι commutes with coequalizers it
suffices to show that the coequalizer of a, b in Sh(C) lies in E. This is clear because
the coequalizer of two morphisms ∗ → ∗ is ∗ and because j−1

F is exact. Similarly
for pushouts.
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Thus i∗ satisfies properties (5), (6), and (7) of Lemma 7.41.1 and hence the mor-
phism i satisfies all properties mentioned in that lemma, in particular the ones
mentioned in this lemma. □

7.44. Sheaves of algebraic structures

00YR In Sheaves, Section 6.15 we introduced a type of algebraic structure to be a pair
(A, s), where A is a category, and s : A → Sets is a functor such that

(1) s is faithful,
(2) A has limits and s commutes with limits,
(3) A has filtered colimits and s commutes with them, and
(4) s reflects isomorphisms.

For such a type of algebraic structure we saw that a presheaf F with values inA on a
space X is a sheaf if and only if the associated presheaf of sets is a sheaf. Moreover,
we worked out the notion of stalk, and given a continuous map f : X → Y we
defined adjoint functors pushforward and pullback on sheaves of algebraic structures
which agrees with pushforward and pullback on the underlying sheaves of sets. In
addition extending a sheaf of algebraic structures from a basis to all opens of a
space, works as expected.
Part of this material still works in the setting of sites and sheaves. Let (A, s) be a
type of algebraic structure. Let C be a site. Let us denote PSh(C,A), resp. Sh(C,A)
the category of presheaves, resp. sheaves with values in A on C.

(α) A presheaf with values in A is a sheaf if and only if its underlying
presheaf of sets is a sheaf. See the proof of Sheaves, Lemma 6.9.2.
(β) Given a presheaf F with values in A the presheaf F# = (F+)+ is
a sheaf. This is true since the colimits in the sheafification process are
filtered, and even colimits over directed sets (see Section 7.10, especially
the proof of Lemma 7.10.14) and since s commutes with filtered colimits.
(γ) We get the following commutative diagram

Sh(C,A) //

s

��

PSh(C,A)
#

oo

s

��
Sh(C) // PSh(C)oo

(δ) We have F = F# if and only if F is a sheaf of algebraic structures.
(ϵ) The functor # is adjoint to the inclusion functor:

MorPSh(C,A)(G,F) = MorSh(C,A)(G#,F)
The proof is the same as the proof of Proposition 7.10.12.
(ζ) The functor F 7→ F# is left exact. The proof is the same as the proof
of Lemma 7.10.14.

Definition 7.44.1.00YS Let f : D → C be a morphism of sites given by a functor
u : C → D. We define the pushforward functor for presheaves of algebraic structures
by the rule upF(U) = F(uU), and for sheaves of algebraic structures by the same
rule, namely f∗F(U) = F(uU).

The problem comes with trying the define the pullback. The reason is that the
colimits defining the functor up in Section 7.5 may not be filtered. Thus the axioms
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above are not enough in general to define the pullback of a (pre)sheaf of algebraic
structures. Nonetheless, in almost all cases the following lemma is sufficient to
define pushforward, and pullback of (pre)sheaves of algebraic structures.

Lemma 7.44.2.00YT Suppose the functor u : C → D satisfies the hypotheses of Proposi-
tion 7.14.7, and hence gives rise to a morphism of sites f : D → C. In this case the
pullback functor f−1 (resp. up) and the pushforward functor f∗ (resp. up) extend
to an adjoint pair of functors on the categories of sheaves (resp. presheaves) of al-
gebraic structures. Moreover, these functors commute with taking the underlying
sheaf (resp. presheaf) of sets.

Proof. We have defined f∗ = up above. In the course of the proof of Proposi-
tion 7.14.7 we saw that all the colimits used to define up are filtered under the
assumptions of the proposition. Hence we conclude from the definition of a type
of algebraic structure that we may define up by exactly the same colimits as a
functor on presheaves of algebraic structures. Adjointness of up and up is proved
in exactly the same way as the proof of Lemma 7.5.4. The discussion of sheafifi-
cation of presheaves of algebraic structures above then implies that we may define
f−1(F) = (upF)#. □

We briefly discuss a method for dealing with pullback and pushforward for a general
morphism of sites, and more generally for any morphism of topoi.

Let C be a site. In the case A = Ab, we may think of an abelian (pre)sheaf on C as
a quadruple (F ,+, 0, i). Here the data are

(D1) F is a sheaf of sets,
(D2) + : F × F → F is a morphism of sheaves of sets,
(D3) 0 : ∗ → F is a morphism from the singleton sheaf (see Example 7.10.2) to

F , and
(D4) i : F → F is a morphism of sheaves of sets.

These data have to satisfy the following axioms
(A1) + is associative and commutative,
(A2) 0 is a unit for +, and
(A3) + ◦ (1, i) = 0 ◦ (F → ∗).

Compare Sheaves, Lemma 6.4.3. Let f : D → C be a morphism of sites. Note that
since f−1 is exact we have f−1∗ = ∗ and f−1(F×F) = f−1F×f−1F . Thus we can
define f−1F simply as the quadruple (f−1F , f−1+, f−10, f−1i). The axioms are
going to be preserved because f−1 is a functor which commutes with finite limits.
Finally it is not hard to check that f∗ and f−1 are adjoint as usual.

In [AGV71] this method is used. They introduce something called an “espèce the
structure algébrique ≪définie par limites projectives finie≫”. For such an espèce
you can use the method described above to define a pair of adjoint functors f−1 and
f∗ as above. This clearly works for most algebraic structures that one encounters
in practice. Instead of formalizing this construction we simply list those algebraic
structures for which this method works (to be verified case by case). In fact, this
method works for any morphism of topoi.

Proposition 7.44.3.00YV Let C, D be sites. Let f = (f−1, f∗) be a morphism of topoi
from Sh(D) → Sh(C). The method introduced above gives rise to an adjoint pair
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of functors (f−1, f∗) on sheaves of algebraic structures compatible with taking the
underlying sheaves of sets for the following types of algebraic structures:

(1) pointed sets,
(2) abelian groups,
(3) groups,
(4) monoids,
(5) rings,
(6) modules over a fixed ring, and
(7) lie algebras over a fixed field.

Moreover, in each of these cases the results above labeled (α), (β), (γ), (δ), (ϵ), and
(ζ) hold.

Proof. The final statement of the proposition holds simply since each of the listed
categories, endowed with the obvious forgetful functor, is indeed a type of algebraic
structure in the sense explained at the beginning of this section. See Sheaves,
Lemma 6.15.2.
Proof of (2). We think of a sheaf of abelian groups as a quadruple (F ,+, 0, i)
as explained in the discussion preceding the proposition. If (F ,+, 0, i) lives on
C, then its pullback is defined as (f−1F , f−1+, f−10, f−1i). If (G,+, 0, i) lives
on D, then its pushforward is defined as (f∗G, f∗+, f∗0, f∗i). This works because
f∗(G × G) = f∗G × f∗G. Adjointness follows from adjointness of the set based
functors, since

MorAb(C)((F1,+, 0, i), (F2,+, 0, i)) =
{

φ ∈ MorSh(C)(F1,F2)
φ is compatible with +, 0, i

}
Details left to the reader.
This method also works for sheaves of rings by thinking of a sheaf of rings (with
unit) as a sextuple (O,+, 0, i, ·, 1) satisfying a list of axioms that you can find in
any elementary algebra book.
A sheaf of pointed sets is a pair (F , p), where F is a sheaf of sets, and p : ∗ → F is
a map of sheaves of sets.
A sheaf of groups is given by a quadruple (F , ·, 1, i) with suitable axioms.
A sheaf of monoids is given by a pair (F , ·) with suitable axiom.
Let R be a ring. An sheaf of R-modules is given by a quintuple (F ,+, 0, i, {λr}r∈R),
where the quadruple (F ,+, 0, i) is a sheaf of abelian groups as above, and λr : F →
F is a family of morphisms of sheaves of sets such that λr◦0 = 0, λr◦+ = +◦(λr, λr),
λr+r′ = + ◦ λr × λr′ ◦ (id, id), λrr′ = λr ◦ λr′ , λ1 = id, λ0 = 0 ◦ (F → ∗). □

We will discuss the category of sheaves of modules over a sheaf of rings in Modules
on Sites, Section 18.10.

Remark 7.44.4.00YU Let C, D be sites. Let u : D → C be a continuous functor which
gives rise to a morphism of sites C → D. Note that even in the case of abelian
groups we have not defined a pullback functor for presheaves of abelian groups.
Since all colimits are representable in the category of abelian groups, we certainly
may define a functor uabp on abelian presheaves by the same colimits as we have
used to define up on presheaves of sets. It will also be the case that uabp is adjoint
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to up on the categories of abelian presheaves. However, it will not always be the
case that uabp agrees with up on the underlying presheaves of sets.

7.45. Pullback maps

06UM It sometimes happens that a site C does not have a final object. In this case we
define the global section functor as follows.

Definition 7.45.1.06UN The global sections of a presheaf of sets F over a site C is the
set

Γ(C,F) = MorPSh(C)(∗,F)
where ∗ is the final object in the category of presheaves on C, i.e., the presheaf
which associates to every object a singleton.

Of course the same definition applies to sheaves as well. Here is one way to compute
global sections.

Lemma 7.45.2.0792 Let C be a site. Let a, b : V → U be objects of C such that

h#
V

//
// h

#
U

// ∗

is a coequalizer in Sh(C). Then Γ(C,F) is the equalizer of a∗, b∗ : F(U)→ F(V ).

Proof. Since MorSh(C)(h#
U ,F) = F(U) this is clear from the definitions. □

Now, let f : Sh(D) → Sh(C) be a morphism of topoi. Then for any sheaf F on C
there is a pullback map

f−1 : Γ(C,F) −→ Γ(D, f−1F)
Namely, as f−1 is exact it transforms ∗ into ∗. Hence a global section s of F over
C, which is a map of sheaves s : ∗ → F , can be pulled back to f−1s : ∗ = f−1∗ →
f−1F .
We can generalize this a bit by considering a pair of sheaves F , G on C, D together
with a map f−1F → G. Then we compose the construction above with the obvious
map Γ(D, f−1F)→ Γ(D,G) to get a map

Γ(C,F) −→ Γ(D,G)
This map is sometimes also called a pullback map.
A slightly more general construction which occurs frequently in nature is the fol-
lowing. Suppose that we have a commutative diagram of morphisms of topoi

Sh(D)

h $$

f
// Sh(C)

g
{{

Sh(B)

Next, suppose that we have a sheaf F on C. Then there is a pullback map
f−1 : g∗F −→ h∗f

−1F
Namely, it is just the map coming from the identification g∗f∗f

−1F = h∗f
−1F

together with g∗ applied to the canonical map F → f∗f
−1F . If g is the identity,

then this map on global sections agrees with the pullback map above.

https://stacks.math.columbia.edu/tag/06UN
https://stacks.math.columbia.edu/tag/0792
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In the situation of the previous paragraph, suppose we have a pair of sheaves F , G
on C, D together with a map f−1F → G, then we compose the pullback map above
with h∗ applied to f−1F → G to get a map

g∗F −→ h∗G

Restricting to sections over an object of B one recovers the “pullback map” on
global sections discussed above (with suitable choices of sites).

An even more general situation is where we have a commutative diagram of topoi

Sh(D)

h

��

f
// Sh(C)

g

��
Sh(B) e // Sh(A)

and a sheaf G on C. Then there is a base change map

e−1g∗G −→ h∗f
−1G.

Namely, this map is adjoint to a map g∗G → e∗h∗f
−1G = (e◦h)∗f

−1G which is the
pullback map just described.

Remark 7.45.3.0F6X Consider a commutative diagram

Sh(B′)
k
//

f ′

��

Sh(B)

f

��
Sh(C′) l //

g′

��

Sh(C)

g

��
Sh(D′) m // Sh(D)

of topoi. Then the base change maps for the two squares compose to give the base
change map for the outer rectangle. More precisely, the composition

m−1 ◦ (g ◦ f)∗ = m−1 ◦ g∗ ◦ f∗

→ g′
∗ ◦ l−1 ◦ f∗

→ g′
∗ ◦ f ′

∗ ◦ k−1

= (g′ ◦ f ′)∗ ◦ k−1

is the base change map for the rectangle. We omit the verification.

Remark 7.45.4.0F6Y Consider a commutative diagram

Sh(C′′)
g′
//

f ′′

��

Sh(C′)
g
//

f ′

��

Sh(C)

f

��
Sh(D′′) h′

// Sh(D′) h // Sh(D)

https://stacks.math.columbia.edu/tag/0F6X
https://stacks.math.columbia.edu/tag/0F6Y
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of ringed topoi. Then the base change maps for the two squares compose to give
the base change map for the outer rectangle. More precisely, the composition

(h ◦ h′)−1 ◦ f∗ = (h′)−1 ◦ h−1 ◦ f∗

→ (h′)−1 ◦ f ′
∗ ◦ g−1

→ f ′′
∗ ◦ (g′)−1 ◦ g−1

= f ′′
∗ ◦ (g ◦ g′)−1

is the base change map for the rectangle. We omit the verification.

7.46. Comparison with SGA4

0CMZ Our notation for the functors up and up from Section 7.5 and us and us from Section
7.13 is taken from [Art62, pages 14 and 42]. Having made these choices, the notation
for the functor pu in Section 7.19 and su in Section 7.20 seems reasonable. In this
section we compare our notation with that of SGA4.

Presheaves: Let u : C → D be a functor between categories. The functor up is
denoted u∗ in [AGV71, Exposee I, Section 5]. The functor up is denoted u! in
[AGV71, Exposee I, Proposition 5.1]. The functor pu is denoted u∗ in [AGV71,
Exposee I, Proposition 5.1]. In other words, we have

up, u
p, pu (SP ) versus u!, u

∗, u∗ (SGA4)

The reader should be cautioned that different notation is used for these functors in
different parts of SGA4.

Sheaves and continuous functors: Suppose that C and D are sites and that u :
C → D is a continuous functor (Definition 7.13.1). The functor us is denoted us in
[AGV71, Exposee III, 1.11]. The functor us is denoted us in [AGV71, Exposee III,
Proposition 1.2]. In other words, we have

us, u
s (SP ) versus us, us (SGA4)

When u defines a morphism of sites f : D → C (Definition 7.14.1) we see that
the associated morphism of topoi (Lemma 7.15.2) is the same as that in [AGV71,
Exposee IV, (4.9.1.1)].

Sheaves and cocontinuous functors: Suppose that C and D are sites and that u :
C → D is a cocontinuous functor (Definition 7.20.1). The functor su (Lemma
7.20.2) is denoted u∗ in [AGV71, Exposee III, Proposition 2.3]. The functor (up )#

is denoted u∗ in [AGV71, Exposee III, Proposition 2.3]. In other words, we have

(up )#, su (SP ) versus u∗, u∗ (SGA4)

Thus the morphism of topoi associated to u in Lemma 7.21.1 is the same as that
in [AGV71, Exposee IV, 4.7].

Morphisms of Topoi: If f is a morphism of topoi given by the functors (f−1, f∗)
then the functor f−1 is denoted f∗ in [AGV71, Exposee IV, Definition 3.1]. We will
use f−1 to denote pullback of sheaves of sets or more generally sheaves of algebraic
structure (Section 7.44). We will use f∗ to denote pullback of sheaves of modules
for a morphism of ringed topoi (Modules on Sites, Definition 18.13.1).
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7.47. Topologies

00YW In this section we define what a topology on a category is as defined in [AGV71].
One can develop all of the machinery of sheaves and topoi in this language. A
modern exposition of this material can be found in [KS06]. However, the case
of most interest for algebraic geometry is the topology defined by a site on its
underlying category. Thus we strongly suggest the first time reader skip this section
and all other sections of this chapter!
Definition 7.47.1.00YX Let C be a category. Let U ∈ Ob(C). A sieve S on U is a
subpresheaf S ⊂ hU .
In other words, a sieve on U picks out for each object T ∈ Ob(C) a subset S(T ) of
the set of all morphisms T → U . In fact, the only condition on the collection of
subsets S(T ) ⊂ hU (T ) = MorC(T,U) is the following rule

(7.47.1.1)00YY (α : T → U) ∈ S(T )
g : T ′ → T

}
⇒ (α ◦ g : T ′ → U) ∈ S(T ′)

A good mental picture to keep in mind is to think of the map S → hU as a
“morphism from S to U”.
Lemma 7.47.2.00YZ Let C be a category. Let U ∈ Ob(C).

(1) The collection of sieves on U is a set.
(2) Inclusion defines a partial ordering on this set.
(3) Unions and intersections of sieves are sieves.
(4)00Z0 Given a family of morphisms {Ui → U}i∈I of C with target U there exists

a unique smallest sieve S on U such that each Ui → U belongs to S(Ui).
(5) The sieve S = hU is the maximal sieve.
(6) The empty subpresheaf is the minimal sieve.

Proof. By our definition of subpresheaf, the collection of all subpresheaves of a
presheaf F is a subset of

∏
U∈Ob(C) P(F(U)). And this is a set. (Here P(A)

denotes the powerset of A.) Hence the collection of sieves on U is a set.
The partial ordering is defined by: S ≤ S′ if and only if S(T ) ⊂ S′(T ) for all
T → U . Notation: S ⊂ S′.
Given a collection of sieves Si, i ∈ I on U we can define

⋃
Si as the sieve with

values (
⋃
Si)(T ) =

⋃
Si(T ) for all T ∈ Ob(C). We define the intersection

⋂
Si in

the same way.
Given {Ui → U}i∈I as in the statement, consider the morphisms of presheaves
hUi → hU . We simply define S as the union of the images (Definition 7.3.5) of
these maps of presheaves.
The last two statements of the lemma are obvious. □

Definition 7.47.3.00Z1 Let C be a category. Given a family of morphisms {fi : Ui →
U}i∈I of C with target U we say the sieve S on U described in Lemma 7.47.2 part
(4) is the sieve on U generated by the morphisms fi.
Definition 7.47.4.00Z2 Let C be a category. Let f : V → U be a morphism of C. Let
S ⊂ hU be a sieve. We define the pullback of S by f to be the sieve S ×U V of V
defined by the rule

(α : T → V ) ∈ (S ×U V )(T )⇔ (f ◦ α : T → U) ∈ S(T )

https://stacks.math.columbia.edu/tag/00YX
https://stacks.math.columbia.edu/tag/00YZ
https://stacks.math.columbia.edu/tag/00Z1
https://stacks.math.columbia.edu/tag/00Z2
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We leave it to the reader to see that this is indeed a sieve (hint: use Equation
7.47.1.1). We also sometimes call S ×U V the base change of S by f : V → U .

Lemma 7.47.5.00Z3 Let C be a category. Let U ∈ Ob(C). Let S be a sieve on U . If
f : V → U is in S, then S ×U V = hV is maximal.

Proof. Trivial from the definitions. □

Definition 7.47.6.00Z4 Let C be a category. A topology on C is given by a rule which
assigns to every U ∈ Ob(C) a subset J(U) of the set of all sieves on U satisfying
the following conditions

(1) For every morphism f : V → U in C, and every element S ∈ J(U) the
pullback S ×U V is an element of J(V ).

(2) If S and S′ are sieves on U ∈ Ob(C), if S ∈ J(U), and if for all f ∈ S(V )
the pullback S′ ×U V belongs to J(V ), then S′ belongs to J(U).

(3) For every U ∈ Ob(C) the maximal sieve S = hU belongs to J(U).

In this case, the sieves belonging to J(U) are called the covering sieves.

Lemma 7.47.7.00Z5 Let C be a category. Let J be a topology on C. Let U ∈ Ob(C).
(1) Finite intersections of elements of J(U) are in J(U).
(2) If S ∈ J(U) and S′ ⊃ S, then S′ ∈ J(U).

Proof. Let S, S′ ∈ J(U). Consider S′′ = S ∩S′. For every V → U in S(U) we have

S′ ×U V = S′′ ×U V

simply because V → U already is in S. Hence by the second axiom of the definition
we see that S′′ ∈ J(U).

Let S ∈ J(U) and S′ ⊃ S. For every V → U in S(U) we have S′ ×U V = hV by
Lemma 7.47.5. Thus S′×U V ∈ J(V ) by the third axiom. Hence S′ ∈ J(U) by the
second axiom. □

Definition 7.47.8.00Z6 Let C be a category. Let J , J ′ be two topologies on C. We say
that J is finer or stronger than J ′ if and only if for every object U of C we have
J ′(U) ⊂ J(U). In this case we also say that J ′ is coarser or weaker than J .

In other words, any covering sieve of J ′ is a covering sieve of J . There exists a finest
topology on C, namely that topology where any sieve is a covering sieve. This is
called the discrete topology of C. There also exists a coarsest topology. Namely,
the topology where J(U) = {hU} for all objects U . This is called the chaotic or
indiscrete topology.

Lemma 7.47.9.00Z7 Let C be a category. Let {Ji}i∈I be a set of topologies.
(1) The rule J(U) =

⋂
Ji(U) defines a topology on C.

(2) There is a coarsest topology finer than all of the topologies Ji.

Proof. The first part is direct from the definitions. The second follows by taking
the intersection of all topologies finer than all of the Ji. □

At this point we can define without any motivation what a sheaf is.

https://stacks.math.columbia.edu/tag/00Z3
https://stacks.math.columbia.edu/tag/00Z4
https://stacks.math.columbia.edu/tag/00Z5
https://stacks.math.columbia.edu/tag/00Z6
https://stacks.math.columbia.edu/tag/00Z7
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Definition 7.47.10.00Z8 Let C be a category endowed with a topology J . Let F be a
presheaf of sets on C. We say that F is a sheaf on C if for every U ∈ Ob(C) and for
every covering sieve S of U the canonical map

MorPSh(C)(hU ,F) −→ MorPSh(C)(S,F)

is bijective.

Recall that the left hand side of the displayed formula equals F(U). In other words,
F is a sheaf if and only if a section of F over U is the same thing as a compatible
collection of sections sT,α ∈ F(T ) parametrized by (α : T → U) ∈ S(T ), and this
for every covering sieve S on U .

Lemma 7.47.11.00Z9 Let C be a category. Let {Fi}i∈I be a collection of presheaves of
sets on C. For each U ∈ Ob(C) denote J(U) the set of sieves S with the following
property: For every morphism V → U , the maps

MorPSh(C)(hV ,Fi) −→ MorPSh(C)(S ×U V,Fi)

are bijective for all i ∈ I. Then J defines a topology on C. This topology is the
finest topology in which all of the Fi are sheaves.

Proof. If we show that J is a topology, then the last statement of the lemma
immediately follows. The first and third axioms of a topology are immediately
verified. Thus, assume that we have an object U , and sieves S, S′ of U such that
S ∈ J(U), and for all V → U in S(V ) we have S′ ×U V ∈ J(V ). We have to show
that S′ ∈ J(U). In other words, we have to show that for any f : W → U , the
maps

Fi(W ) = MorPSh(C)(hW ,Fi) −→ MorPSh(C)(S′ ×U W,Fi)
are bijective for all i ∈ I. Pick an element i ∈ I and pick an element φ ∈
MorPSh(C)(S′ ×U W,Fi). We will construct a section s ∈ Fi(W ) mapping to φ.

Suppose α : V → W is an element of S ×U W . According to the definition of
pullbacks we see that the composition f ◦α : V →W → U is in S. Hence S′ ×U V
is in J(W ) by assumption on the pair of sieves S, S′. Now we have a commutative
diagram of presheaves

S′ ×U V //

��

hV

��
S′ ×U W // hW

The restriction of φ to S′×U V corresponds to an element sV,α ∈ Fi(V ). This we see
from the definition of J , and because S′×U V is in J(W ). We leave it to the reader
to check that the rule (V, α) 7→ sV,α defines an element ψ ∈ MorPSh(C)(S×UW,Fi).
Since S ∈ J(U) we see immediately from the definition of J that ψ corresponds to
an element s of Fi(W ).

We leave it to the reader to verify that the construction φ 7→ s is inverse to the
natural map displayed above. □

Definition 7.47.12.00ZA Let C be a category. The finest topology on C such that all
representable presheaves are sheaves, see Lemma 7.47.11, is called the canonical
topology of C.

https://stacks.math.columbia.edu/tag/00Z8
https://stacks.math.columbia.edu/tag/00Z9
https://stacks.math.columbia.edu/tag/00ZA
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7.48. The topology defined by a site

00ZB Suppose that C is a category, and suppose that Cov1(C) and Cov2(C) are sets of
coverings that define the structure of a site on C. In this situation it can happen
that the categories of sheaves (of sets) for Cov1(C) and Cov2(C) are the same, see
for example Lemma 7.8.7.
It turns out that the category of sheaves on C with respect to some topology J
determines and is determined by the topology J . This is a nontrivial statement
which we will address later, see Theorem 7.50.2.
Accepting this for the moment it makes sense to study the topology determined by
a site.

Lemma 7.48.1.00ZC Let C be a site with coverings Cov(C). For every object U of C,
let J(U) denote the set of sieves S on U with the following property: there exists
a covering {fi : Ui → U}i∈I ∈ Cov(C) so that the sieve S′ generated by the fi (see
Definition 7.47.3) is contained in S.

(1) This J is a topology on C.
(2) A presheaf F is a sheaf for this topology (see Definition 7.47.10) if and

only if it is a sheaf on the site (see Definition 7.7.1).

Proof. To prove the first assertion we just note that axioms (1), (2) and (3) of the
definition of a site (Definition 7.6.2) directly imply the axioms (3), (2) and (1) of
the definition of a topology (Definition 7.47.6). As an example we prove J has
property (2). Namely, let U be an object of C, let S, S′ be sieves on U such that
S ∈ J(U), and such that for every V → U in S(V ) we have S′ ×U V ∈ J(V ). By
definition of J(U) we can find a covering {fi : Ui → U} of the site such that S the
image of hUi → hU is contained in S. Since each S′ ×U Ui is in J(Ui) we see that
there are coverings {Uij → Ui} of the site such that hUij → hUi is contained in
S′×U Ui. By definition of the base change this means that hUij → hU is contained
in the subpresheaf S′ ⊂ hU . By axiom (2) for sites we see that {Uij → U} is a
covering of U and we conclude that S′ ∈ J(U) by definition of J .
Let F be a presheaf. Suppose that F is a sheaf in the topology J . We will show
that F is a sheaf on the site as well. Let {fi : Ui → U}i∈I be a covering of the site.
Let si ∈ F(Ui) be a family of sections such that si|Ui×UUj = sj |Ui×UUj for all i, j.
We have to show that there exists a unique section s ∈ F(U) restricting back to
the si on the Ui. Let S ⊂ hU be the sieve generated by the fi. Note that S ∈ J(U)
by definition. In stead of constructing s, by the sheaf condition in the topology, it
suffices to construct an element

φ ∈ MorPSh(C)(S,F).
Take α ∈ S(T ) for some object T ∈ U . This means exactly that α : T → U is
a morphism which factors through fi for some i ∈ I (and maybe more than 1).
Pick such an index i and a factorization α = fi ◦ αi. Define φ(α) = α∗

i si. If i′,
α = fi◦α′

i′ is a second choice, then α∗
i si = (α′

i′)∗si′ exactly because of our condition
si|Ui×UUj = sj |Ui×UUj for all i, j. Thus φ(α) is well defined. We leave it to the
reader to verify that φ, which in turn determines s is correct in the sense that s
restricts back to si.
Let F be a presheaf. Suppose that F is a sheaf on the site (C,Cov(C)). We will
show that F is a sheaf for the topology J as well. Let U be an object of C. Let S

https://stacks.math.columbia.edu/tag/00ZC
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be a covering sieve on U with respect to the topology J . Let
φ ∈ MorPSh(C)(S,F).

We have to show there is a unique element in F(U) = MorPSh(C)(hU ,F) which
restricts back to φ. By definition there exists a covering {fi : Ui → U}i∈I ∈ Cov(C)
such that fi : Ui ∈ U belongs to S(Ui). Hence we can set si = φ(fi) ∈ F(Ui).
Then it is a pleasant exercise to see that si|Ui×UUj = sj |Ui×UUj for all i, j. Thus
we obtain the desired section s by the sheaf condition for F on the site (C,Cov(C)).
Details left to the reader. □

Definition 7.48.2.00ZD Let C be a site with coverings Cov(C). The topology associated
to C is the topology J constructed in Lemma 7.48.1 above.

Let C be a category. Let Cov1(C) and Cov2(C) be two coverings defining the struc-
ture of a site on C. It may very well happen that the topologies defined by these
are the same. If this happens then we say Cov1(C) and Cov2(C) define the same
topology on C. And if this happens then the categories of sheaves are the same, by
Lemma 7.48.1.
It is usually the case that we only care about the topology defined by a collection
of coverings, and we view the possibility of choosing different sets of coverings as a
tool to study the topology.

Remark 7.48.3.00ZE Enlarging the class of coverings. Clearly, if Cov(C) defines the
structure of a site on C then we may add to C any set of families of morphisms with
fixed target tautologically equivalent (see Definition 7.8.2) to elements of Cov(C)
without changing the topology.

Remark 7.48.4.00ZF Shrinking the class of coverings. Let C be a site. Consider the set
S = P (Arrows(C))×Ob(C)

where P (Arrows(C)) is the power set of the set of morphisms, i.e., the set of all sets
of morphisms. Let Sτ ⊂ S be the subset consisting of those (T,U) ∈ S such that
(a) all φ ∈ T have target U , (b) the collection {φ}φ∈T is tautologically equivalent
(see Definition 7.8.2) to some covering in Cov(C). Clearly, considering the elements
of Sτ as the coverings, we do not get exactly the notion of a site as defined in
Definition 7.6.2. The structure (C,Sτ ) we get satisfies slightly modified conditions.
The modified conditions are:

(0’) Cov(C) ⊂ P (Arrows(C))×Ob(C),
(1’) If V → U is an isomorphism then ({V → U}, U) ∈ Cov(C).
(2’) If (T,U) ∈ Cov(C) and for f : U ′ → U in T we are given (Tf , U ′) ∈ Cov(C),

then setting T ′ = {f ◦ f ′ | f ∈ T, f ′ ∈ Tf}, we get (T ′, U) ∈ Cov(C).
(3’) If (T,U) ∈ Cov(C) and g : V → U is a morphism of C then

(a) U ′ ×f,U,g V exists for f : U ′ → U in T , and
(b) setting T ′ = {pr2 : U ′ ×f,U,g V → V | f : U ′ → U ∈ T} for some

choice of fibre products we get (T ′, V ) ∈ Cov(C).
And it is easy to verify that, given a structure satisfying (0’) – (3’) above, then after
suitably enlarging Cov(C) (compare Sets, Section 3.11) we get a site. Obviously
there is little difference between this notion and the actual notion of a site, at least
from the point of view of the topology. There are two benefits: because of condition
(0’) above the coverings automatically form a set, and because of (0’) the totality

https://stacks.math.columbia.edu/tag/00ZD
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of all structures of this type forms a set as well. The price you pay for this is that
you have to keep writing “tautologically equivalent” everywhere.

7.49. Sheafification in a topology

00ZG In this section we explain the analogue of the sheafification construction in a topol-
ogy.
Let C be a category. Let J be a topology on C. Let F be a presheaf of sets. For
every U ∈ Ob(C) we define

LF(U) = colimS∈J(U)opp MorPSh(C)(S,F)
as a colimit. Here we think of J(U) as a partially ordered set, ordered by inclusion,
see Lemma 7.47.2. The transition maps in the system are defined as follows. If
S ⊂ S′ are in J(U), then S → S′ is a morphism of presheaves. Hence there is a
natural restriction mapping

MorPSh(C)(S′,F) −→ MorPSh(C)(S,F).
Thus we see that S 7→ MorPSh(C)(S,F) is a directed system as in Categories,
Definition 4.21.2 provided we reverse the ordering on J(U) (which is what the
superscript opp is supposed to indicate). In particular, since hU ∈ J(U) there is a
canonical map

ℓ : F(U) −→ LF(U)
coming from the identification F(U) = MorPSh(C)(hU ,F). In addition, the colimit
defining LF(U) is directed since for any pair of covering sieves S, S′ on U the sieve
S ∩ S′ is a covering sieve too, see Lemma 7.47.2.
Let f : V → U be a morphism in C. Let S ∈ J(U). There is a commutative
diagram

S ×U V //

��

hV

��
S // hU

We can use the left vertical map to get canonical restriction maps
MorPSh(C)(S,F)→ MorPSh(C)(S ×U V,F).

Base change S 7→ S ×U V induces an order preserving map J(U) → J(V ). And
the restriction maps define a transformation of functors as in Categories, Lemma
categories-lemma-functorial-colimit. Hence we get a natural restriction map

LF(U) −→ LF(V ).

Lemma 7.49.1.00ZH In the situation above.
(1) The assignment U 7→ LF(U) combined with the restriction mappings

defined above is a presheaf.
(2) The maps ℓ glue to give a morphism of presheaves ℓ : F → LF .
(3) The rule F 7→ (F ℓ−→ LF) is a functor.
(4) If F is a subpresheaf of G, then LF is a subpresheaf of LG.
(5) The map ℓ : F → LF has the following property: For every section

s ∈ LF(U) there exists a covering sieve S on U and an element φ ∈
MorPSh(C)(S,F) such that ℓ(φ) equals the restriction of s to S.

https://stacks.math.columbia.edu/tag/00ZH
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Proof. Omitted. □

Definition 7.49.2.00ZI Let C be a category. Let J be a topology on C. We say that a
presheaf of sets F is separated if for every object U and every covering sieve S on
U the canonical map F(U)→ MorPSh(C)(S,F) is injective.

Theorem 7.49.3.00ZJ Let C be a category. Let J be a topology on C. Let F be a
presheaf of sets.

(1) The presheaf LF is separated.
(2) If F is separated, then LF is a sheaf and the map of presheaves F → LF

is injective.
(3) If F is a sheaf, then F → LF is an isomorphism.
(4) The presheaf LLF is always a sheaf.

Proof. Part (3) is trivial from the definition of L and the definition of a sheaf
(Definition 7.47.10). Part (4) follows formally from the others.
We sketch the proof of (1). Suppose S is a covering sieve of the object U . Suppose
that φi ∈ LF(U), i = 1, 2 map to the same element in MorPSh(C)(S,LF). We may
find a single covering sieve S′ on U such that both φi are represented by elements
φi ∈ MorPSh(C)(S′,F). We may assume that S′ = S by replacing both S and S′

by S′ ∩ S which is also a covering sieve, see Lemma 7.47.2. Suppose V ∈ Ob(C),
and α : V → U in S(V ). Then we have S ×U V = hV , see Lemma 7.47.5. Thus
the restrictions of φi via V → U correspond to sections si,V,α of F over V . The
assumption is that there exist a covering sieve SV,α of V such that si,V,α restrict
to the same element of MorPSh(C)(SV,α,F). Consider the sieve S′′ on U defined by
the rule

00ZK (f : T → U) ∈ S′′(T ) ⇔ ∃ V, α : V → U, α ∈ S(V ),
∃ g : T → V, g ∈ SV,α(T ),(7.49.3.1)
f = α ◦ g

By axiom (2) of a topology we see that S′′ is a covering sieve on U . By construction
we see that φ1 and φ2 restrict to the same element of MorPSh(C)(S′′, LF) as desired.
We sketch the proof of (2). Assume that F is a separated presheaf of sets on C with
respect to the topology J . Let S be a covering sieve of the object U of C. Suppose
that φ ∈ MorC(S,LF). We have to find an element s ∈ LF(U) restricting to φ.
Suppose V ∈ Ob(C), and α : V → U in S(V ). The value φ(α) ∈ LF(V ) is given by
a covering sieve SV,α of V and a morphism of presheaves φV,α : SV,α → F . As in
the proof above, define a covering sieve S′′ on U by Equation (7.49.3.1). We define

φ′′ : S′′ −→ F

by the following simple rule: For every f : T → U , f ∈ S′′(T ) choose V, α, g as in
Equation (7.49.3.1). Then set

φ′′(f) = φV,α(g).
We claim this is independent of the choice of V, α, g. Consider a second such
choiceV ′, α′, g′. The restrictions of φV,α and φV ′,α′ to the intersection of the fol-
lowing covering sieves on T

(SV,α ×V,g T ) ∩ (SV ′,α′ ×V ′,g′ T )
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agree. Namely, these restrictions both correspond to the restriction of φ to T (via
f) and the desired equality follows because F is separated. Denote the common
restriction ψ. The independence of choice follows because φV,α(g) = ψ(idT ) =
φV ′,α′(g′). OK, so now φ′′ gives an element s ∈ LF(U). We leave it to the reader
to check that s restricts to φ. □

Definition 7.49.4.00ZL Let C be a category endowed with a topology J . Let F be a
presheaf of sets on C. The sheaf F# := LLF together with the canonical map
F → F# is called the sheaf associated to F .

Proposition 7.49.5.00ZM Let C be a category endowed with a topology. Let F be a
presheaf of sets on C. The canonical map F → F# has the following universal
property: For any map F → G, where G is a sheaf of sets, there is a unique map
F# → G such that F → F# → G equals the given map.

Proof. Same as the proof of Proposition 7.10.12. □

7.50. Topologies and sheaves

00ZN
Lemma 7.50.1.00ZO Let C be a category endowed with a topology J . Let U be an
object of C. Let S be a sieve on U . The following are equivalent

(1) The sieve S is a covering sieve.
(2) The sheafification S# → h#

U of the map S → hU is an isomorphism.

Proof. First we make a couple of general remarks. We will use that S# = LLS, and
h#
U = LLhU . In particular, by Lemma 7.49.1, we see that S# → h#

U is injective.
Note that idU ∈ hU (U). Hence it gives rise to sections of LhU and h#

U = LLhU
over U which we will also denote idU .

Suppose S is a covering sieve. It clearly suffices to find a morphism hU → S#

such that the composition hU → h#
U is the canonical map. To find such a map it

suffices to find a section s ∈ S#(U) wich restricts to idU . But since S is a covering
sieve, the element idS ∈ MorPSh(C)(S, S) gives rise to a section of LS over U which
restricts to idU in LhU . Hence we win.

Suppose that S# → h#
U is an isomorphism. Let 1 ∈ S#(U) be the element corre-

sponding to idU in h#
U (U). Because S# = LLS there exists a covering sieve S′ on

U such that 1 comes from a

φ ∈ MorPSh(C)(S′, LS).

This in turn means that for every α : V → U , α ∈ S′(V ) there exists a covering
sieve SV,α on V such that φ(α) corresponds to a morphism of presheaves SV,α → S.
In other words SV,α is contained in S×U V . By the second axiom of a topology we
see that S is a covering sieve. □

Theorem 7.50.2.00ZP Let C be a category. Let J , J ′ be topologies on C. The following
are equivalent

(1) J = J ′,
(2) sheaves for the topology J are the same as sheaves for the topology J ′.
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Proof. It is a tautology that if J = J ′ then the notions of sheaves are the same.
Conversely, Lemma 7.50.1 characterizes covering sieves in terms of the sheafification
functor. But the sheafification functor PSh(C)→ Sh(C, J) is the left adjoint of the
inclusion functor Sh(C, J) → PSh(C). Hence if the subcategories Sh(C, J) and
Sh(C, J ′) are the same, then the sheafification functors are the same and hence the
collections of covering sieves are the same. □

Lemma 7.50.3.00ZQ Assumption and notation as in Theorem 7.50.2. Then J ⊂ J ′ if
and only if every sheaf for the topology J ′ is a sheaf for the topology J .

Proof. One direction is clear. For the other direction suppose that Sh(C, J ′) ⊂
Sh(C, J). By formal nonsense this implies that if F is a presheaf of sets, and
F → F#, resp. F → F#,′ is the sheafification wrt J , resp. J ′ then there is a
canonical map F# → F#,′ such that F → F# → F#,′ equals the canonical map
F → F#,′. Of course, F# → F#,′ identifies the second sheaf as the sheafification
of the first with respect to the topology J ′. Apply this to the map S → hU of
Lemma 7.50.1. We get a commutative diagram

S //

��

S# //

��

S#,′

��
hU // h#

U
// h#,′
U

And clearly, if S is a covering sieve for the topology J then the middle vertical map
is an isomorphism (by the lemma) and we conclude that the right vertical map is
an isomorphism as it is the sheafification of the one in the middle wrt J ′. By the
lemma again we conclude that S is a covering sieve for J ′ as well. □

7.51. Topologies and continuous functors

00ZR Explain how a continuous functor gives an adjoint pair of functors on sheaves.

7.52. Points and topologies

00ZS Recall from Section 7.32 that given a functor p = u : C → Sets we can define a
stalk functor

PSh(C) −→ Sets,F 7−→ Fp.

Definition 7.52.1.00ZT Let C be a category. Let J be a topology on C. A point p of the
topology is given by a functor u : C → Sets such that

(1) For every covering sieve S on U the map Sp → (hU )p is surjective.
(2) The stalk functor Sh(C)→ Sets, F → Fp is exact.

7.53. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces

(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories

https://stacks.math.columbia.edu/tag/00ZQ
https://stacks.math.columbia.edu/tag/00ZT


7.53. OTHER CHAPTERS 350

(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Differential Graded Sheaves
(25) Hypercoverings

Schemes
(26) Schemes
(27) Constructions of Schemes
(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes
(31) Divisors
(32) Limits of Schemes
(33) Varieties
(34) Topologies on Schemes
(35) Descent
(36) Derived Categories of Schemes
(37) More on Morphisms
(38) More on Flatness
(39) Groupoid Schemes
(40) More on Groupoid Schemes
(41) Étale Morphisms of Schemes

Topics in Scheme Theory
(42) Chow Homology
(43) Intersection Theory
(44) Picard Schemes of Curves
(45) Weil Cohomology Theories
(46) Adequate Modules
(47) Dualizing Complexes
(48) Duality for Schemes
(49) Discriminants and Differents
(50) de Rham Cohomology
(51) Local Cohomology
(52) Algebraic and Formal Geome-

try
(53) Algebraic Curves
(54) Resolution of Surfaces
(55) Semistable Reduction
(56) Functors and Morphisms
(57) Derived Categories of Varieties

(58) Fundamental Groups of
Schemes

(59) Étale Cohomology
(60) Crystalline Cohomology
(61) Pro-étale Cohomology
(62) Relative Cycles
(63) More Étale Cohomology
(64) The Trace Formula

Algebraic Spaces
(65) Algebraic Spaces
(66) Properties of Algebraic Spaces
(67) Morphisms of Algebraic Spaces
(68) Decent Algebraic Spaces
(69) Cohomology of Algebraic

Spaces
(70) Limits of Algebraic Spaces
(71) Divisors on Algebraic Spaces
(72) Algebraic Spaces over Fields
(73) Topologies on Algebraic Spaces
(74) Descent and Algebraic Spaces
(75) Derived Categories of Spaces
(76) More on Morphisms of Spaces
(77) Flatness on Algebraic Spaces
(78) Groupoids in Algebraic Spaces
(79) More on Groupoids in Spaces
(80) Bootstrap
(81) Pushouts of Algebraic Spaces

Topics in Geometry
(82) Chow Groups of Spaces
(83) Quotients of Groupoids
(84) More on Cohomology of Spaces
(85) Simplicial Spaces
(86) Duality for Spaces
(87) Formal Algebraic Spaces
(88) Algebraization of Formal

Spaces
(89) Resolution of Surfaces Revis-

ited
Deformation Theory

(90) Formal Deformation Theory
(91) Deformation Theory
(92) The Cotangent Complex
(93) Deformation Problems

Algebraic Stacks
(94) Algebraic Stacks
(95) Examples of Stacks
(96) Sheaves on Algebraic Stacks



7.53. OTHER CHAPTERS 351

(97) Criteria for Representability
(98) Artin’s Axioms
(99) Quot and Hilbert Spaces

(100) Properties of Algebraic Stacks
(101) Morphisms of Algebraic Stacks
(102) Limits of Algebraic Stacks
(103) Cohomology of Algebraic

Stacks
(104) Derived Categories of Stacks
(105) Introducing Algebraic Stacks
(106) More on Morphisms of Stacks
(107) The Geometry of Stacks

Topics in Moduli Theory

(108) Moduli Stacks
(109) Moduli of Curves

Miscellany

(110) Examples
(111) Exercises
(112) Guide to Literature
(113) Desirables
(114) Coding Style
(115) Obsolete
(116) GNU Free Documentation Li-

cense
(117) Auto Generated Index



CHAPTER 8

Stacks

0266 8.1. Introduction

0267 In this very short chapter we introduce stacks, and stacks in groupoids. See [DM69],
and [Vis04].

8.2. Presheaves of morphisms associated to fibred categories

02Z9 Let C be a category. Let p : S → C be a fibred category, see Categories, Section
4.33. Suppose that x, y ∈ Ob(SU ) are objects in the fibre category over U . We are
going to define a functor

Mor(x, y) : (C/U)opp −→ Sets.

In other words this will be a presheaf on C/U , see Sites, Definition 7.2.2. Make a
choice of pullbacks as in Categories, Definition 4.33.6. Then, for f : V → U we set

Mor(x, y)(f : V → U) = MorSV (f∗x, f∗y).

Let f ′ : V ′ → U be a second object of C/U . We also have to define the restriction
map corresponding to a morphism g : V ′/U → V/U in C/U , in other words g :
V ′ → V and f ′ = f ◦ g. This will be a map

MorSV (f∗x, f∗y) −→ MorSV ′ (f ′∗x, f ′∗y), ϕ 7−→ ϕ|V ′

This map will basically be g∗, except that this transforms an element ϕ of the left
hand side into an element g∗ϕ of MorSV ′ (g∗f∗x, g∗f∗y). At this point we use the
transformation αg,f of Categories, Lemma 4.33.7. In a formula, the restriction map
is described by

ϕ|V ′ = (αg,f )−1
y ◦ g∗ϕ ◦ (αg,f )x.

Of course, nobody thinks of this restriction map in this way. We will only do this
once in order to verify the following lemma.

Lemma 8.2.1.026A This actually does give a presheaf.

Proof. Let g : V ′/U → V/U be as above and similarly g′ : V ′′/U → V ′/U be mor-
phisms in C/U . So f ′ = f ◦g and f ′′ = f ′ ◦g′ = f ◦g ◦g′. Let ϕ ∈ MorSV (f∗x, f∗y).
Then we have

(αg◦g′,f )−1
y ◦ (g ◦ g′)∗ϕ ◦ (αg◦g′,f )x

= (αg◦g′,f )−1
y ◦ (αg′,g)−1

f∗y ◦ (g′)∗g∗ϕ ◦ (αg′,g)f∗x ◦ (αg◦g′,f )x
= (αg′,f ′)−1

y ◦ (g′)∗(αg,f )−1
y ◦ (g′)∗g∗ϕ ◦ (g′)∗(αg,f )x ◦ (αg′,f ′)x

= (αg′,f ′)−1
y ◦ (g′)∗

(
(αg,f )−1

y ◦ g∗ϕ ◦ (αg,f )x
)
◦ (αg′,f ′)x

352

https://stacks.math.columbia.edu/tag/026A


8.2. PRESHEAVES OF MORPHISMS ASSOCIATED TO FIBRED CATEGORIES 353

which is what we want, namely ϕ|V ′′ = (ϕ|V ′)|V ′′ . The first equality holds because
αg′,g is a transformation of functors, and hence

(g ◦ g′)∗f∗x
(g◦g′)∗ϕ

//

(αg′,g)f∗x

��

(g ◦ g′)∗f∗y

(αg′,g)f∗y

��
(g′)∗g∗f∗x

(g′)∗g∗ϕ // (g′)∗g∗f∗y

commutes. The second equality holds because of property (d) of a pseudo functor
since f ′ = f ◦ g (see Categories, Definition 4.29.5). The last equality follows from
the fact that (g′)∗ is a functor. □

From now on we often omit mentioning the transformations αg,f and we simply
identify the functors g∗ ◦ f∗ and (f ◦ g)∗. In particular, given g : V ′/U → V/U the
restriction mappings for the presheaf Mor(x, y) will sometimes be denoted ϕ 7→ g∗ϕ.
We formalize the construction in a definition.

Definition 8.2.2.02ZB Let C be a category. Let p : S → C be a fibred category, see
Categories, Section 4.33. Given an object U of C and objects x, y of the fibre
category, the presheaf of morphisms from x to y is the presheaf

(f : V → U) 7−→ MorSV (f∗x, f∗y)
described above. It is denoted Mor(x, y). The subpresheaf Isom(x, y) whose values
over V is the set of isomorphisms f∗x→ f∗y in the fibre category SV is called the
presheaf of isomorphisms from x to y.

If S is fibred in groupoids then of course Isom(x, y) = Mor(x, y), and it is customary
to use the Isom notation.

Lemma 8.2.3.042V Let F : S1 → S2 be a 1-morphism of fibred categories over the
category C. Let U ∈ Ob(C) and x, y ∈ Ob((S1)U ). Then F defines a canonical
morphism of presheaves

MorS1(x, y) −→ MorS2(F (x), F (y))
on C/U .

Proof. By Categories, Definition 4.33.9 the functor F maps strongly cartesian
morphisms to strongly cartesian morphisms. Hence if f : V → U is a mor-
phism in C, then there are canonical isomorphisms αV : f∗F (x) → F (f∗x), βV :
f∗F (y)→ F (f∗y) such that f∗F (x)→ F (f∗x)→ F (x) is the canonical morphism
f∗F (x)→ F (x), and similarly for βV . Thus we may define

MorS1(x, y)(f : V → U) MorS1,V (f∗x, f∗y)

��
MorS2(F (x), F (y))(f : V → U) MorS2,V (f∗F (x), f∗F (y))

by ϕ 7→ β−1
V ◦ F (ϕ) ◦ αV . We omit the verification that this is compatible with the

restriction mappings. □

Remark 8.2.4.02ZA Suppose that p : S → C is fibred in groupoids. In this case we
can prove Lemma 8.2.1 using Categories, Lemma 4.36.4 which says that S → C is
equivalent to the category associated to a contravariant functor F : C → Groupoids.
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In the case of the fibred category associated to F we have g∗ ◦ f∗ = (f ◦ g)∗ on the
nose and there is no need to use the maps αg,f . In this case the lemma is (even
more) trivial. Of course then one uses that the Mor(x, y) presheaf is unchanged
when passing to an equivalent fibred category which follows from Lemma 8.2.3.

Lemma 8.2.5.04SI Let C be a category. Let p : S → C be a fibred category, see
Categories, Section 4.33. Let U ∈ Ob(C) and let x, y ∈ Ob(SU ). Denote x, y :
C/U → S also the corresponding 1-morphisms, see Categories, Lemma 4.41.2. Then

(1) the 2-fibre product S ×S×S,(x,y) C/U is fibred in setoids over C/U , and
(2) Isom(x, y) is the presheaf of sets corresponding to this category fibred in

setoids, see Categories, Lemma 4.39.6.

Proof. Omitted. Hint: Objects of the 2-fibre product are (a : V → U, z, (α, β))
where α : z → a∗x and β : z → a∗y are isomorphisms in SV . Thus the relationship
with Isom(x, y) comes by assigning to such an object the isomorphism β ◦α−1. □

8.3. Descent data in fibred categories

02ZC In this section we define the notion of a descent datum in the abstract setting of a
fibred category. Before we do so we point out that this is completely analogous to
descent data for quasi-coherent sheaves (Descent, Section 35.2) and descent data
for schemes over schemes (Descent, Section 35.34).
We will use the convention where the projection maps pri : X × . . .×X → X are
labeled starting with i = 0. Hence we have pr0,pr1 : X × X → X, pr0,pr1,pr2 :
X ×X ×X → X, etc.

Definition 8.3.1.026B Let C be a category. Let p : S → C be a fibred category. Make a
choice of pullbacks as in Categories, Definition 4.33.6. Let U = {fi : Ui → U}i∈I
be a family of morphisms of C. Assume all the fibre products Ui ×U Uj , and
Ui ×U Uj ×U Uk exist.

(1) A descent datum (Xi, φij) in S relative to the family {fi : Ui → U} is given
by an object Xi of SUi for each i ∈ I, an isomorphism φij : pr∗

0Xi → pr∗
1Xj

in SUi×UUj for each pair (i, j) ∈ I2 such that for every triple of indices
(i, j, k) ∈ I3 the diagram

pr∗
0Xi

pr∗
01φij $$

pr∗
02φik

// pr∗
2Xk

pr∗
1Xj

pr∗
12φjk

::

in the category SUi×UUj×UUk commutes. This is called the cocycle condi-
tion.

(2) A morphism ψ : (Xi, φij)→ (X ′
i, φ

′
ij) of descent data is given by a family

ψ = (ψi)i∈I of morphisms ψi : Xi → X ′
i in SUi such that all the diagrams

pr∗
0Xi φij

//

pr∗
0ψi

��

pr∗
1Xj

pr∗
1ψj

��
pr∗

0X
′
i

φ′
ij // pr∗

1X
′
j

in the categories SUi×UUj commute.
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(3) The category of descent data relative to U is denoted DD(U).

The fibre products Ui×U Uj and Ui×U Uj×U Uk will exist if each of the morphisms
fi : Ui → U is representable, see Categories, Definition 4.6.4. Recall that in a site
one of the conditions for a covering {Ui → U} is that each of the morphisms is
representable, see Sites, Definition 7.6.2 part (3). In fact the main interest in the
definition above is where C is a site and {Ui → U} is a covering of C. However,
a descent datum is just an abstract gadget that can be defined as above. This is
useful: for example, given a fibred category over C one can look at the collection
of families with respect to which descent data are effective, and try to use these as
the family of coverings for a site.

Remarks 8.3.2.026C Two remarks on Definition 8.3.1 are in order. Let p : S → C be a
fibred category. Let {fi : Ui → U}i∈I , and (Xi, φij) be as in Definition 8.3.1.

(1) There is a diagonal morphism ∆ : Ui → Ui ×U Ui. We can pull back
φii via this morphism to get an automorphism ∆∗φii ∈ AutUi(Xi). On
pulling back the cocycle condition for the triple (i, i, i) by ∆123 : Ui →
Ui×U Ui×U Ui we deduce that ∆∗φii ◦∆∗φii = ∆∗φii; thus ∆∗φii = idXi .

(2) There is a morphism ∆13 : Ui ×U Uj → Ui ×U Uj ×U Ui and we can
pull back the cocycle condition for the triple (i, j, i) to get the identity
(σ∗φji) ◦ φij = idpr∗

0Xi
, where σ : Ui ×U Uj → Uj ×U Ui is the switching

morphism.

Lemma 8.3.3.02ZD (Pullback of descent data.) Let C be a category. Let p : S → C be
a fibred category. Make a choice pullbacks as in Categories, Definition 4.33.6. Let
U = {fi : Ui → U}i∈I , and V = {Vj → V }j∈J be a families of morphisms of C with
fixed target. Assume all the fibre products Ui×U Ui′ , Ui×U Ui′ ×U Ui′′ , Vj ×V Vj′ ,
and Vj ×V Vj′ ×V Vj′′ exist. Let α : I → J , h : U → V and gi : Ui → Vα(i) be a
morphism of families of maps with fixed target, see Sites, Definition 7.8.1.

(1) Let (Yj , φjj′) be a descent datum relative to the family {Vj → V }. The
system (

g∗
i Yα(i), (gi × gi′)∗φα(i)α(i′)

)
is a descent datum relative to U .

(2) This construction defines a functor between descent data relative to V and
descent data relative to U .

(3) Given a second α′ : I → J , h′ : U → V and g′
i : Ui → Vα′(i) morphism

of families of maps with fixed target, then if h = h′ the two resulting
functors between descent data are canonically isomorphic.

Proof. Omitted. □

Definition 8.3.4.02ZE With U = {Ui → U}i∈I , V = {Vj → V }j∈J , α : I → J ,
h : U → V , and gi : Ui → Vα(i) as in Lemma 8.3.3 the functor

(Yj , φjj′) 7−→ (g∗
i Yα(i), (gi × gi′)∗φα(i)α(i′))

constructed in that lemma is called the pullback functor on descent data.

Given h : U → V , if there exists a morphism h̃ : U → V covering h then h̃∗ is
independent of the choice of h̃ as we saw in Lemma 8.3.3. Hence we will sometimes
simply write h∗ to indicate the pullback functor.
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Definition 8.3.5.026E Let C be a category. Let p : S → C be a fibred category. Make a
choice of pullbacks as in Categories, Definition 4.33.6. Let U = {fi : Ui → U}i∈I
be a family of morphisms with target U . Assume all the fibre products Ui ×U Uj
and Ui ×U Uj ×U Uk exist.

(1) Given an object X of SU the trivial descent datum is the descent datum
(X, idX) with respect to the family {idU : U → U}.

(2) Given an object X of SU we have a canonical descent datum on the family
of objects f∗

i X by pulling back the trivial descent datum (X, idX) via the
obvious map {fi : Ui → U} → {idU : U → U}. We denote this descent
datum (f∗

i X, can).
(3) A descent datum (Xi, φij) relative to {fi : Ui → U} is called effective

if there exists an object X of SU such that (Xi, φij) is isomorphic to
(f∗
i X, can).

Note that the rule that associates to X ∈ SU its canonical descent datum relative
to U defines a functor

SU −→ DD(U).
A descent datum is effective if and only if it is in the essential image of this functor.
Let us make explicit the canonical descent datum as follows.
Lemma 8.3.6.026D In the situation of Definition 8.3.5 part (2) the maps canij :
pr∗

0f
∗
i X → pr∗

1f
∗
jX are equal to (αpr1,fj )X ◦ (αpr0,fi)

−1
X where α·,· is as in Cat-

egories, Lemma 4.33.7 and where we use the equality fi ◦ pr0 = fj ◦ pr1 as maps
Ui ×U Uj → U .
Proof. Omitted. □

Lemma 8.3.7.0GEA Let C be a category. Let V = {Vj → U}j∈J → U = {Ui → U}i∈I
be a morphism of families of maps with fixed target of C given by id : U → U ,
α : J → I and fj : Vj → Uα(j). Let p : S → C be a fibred category. If

(1) for 0 ≤ p ≤ 3 and 0 ≤ q ≤ 3 with p + q ≥ 2 and i1, . . . , ip ∈ I and
j1, . . . , jq ∈ J the fibre products Ui1 ×U . . . ×U Uip ×U Vj1 ×U . . . ×U Vjq
exist,

(2) the functor SU → DD(V) is an equivalence,
(3) for every i ∈ I the functor SUi → DD(Vi) is fully faithful, and
(4) for every i, i′ ∈ I the functor SUi×UUi′ → DD(Vii′) is faithful.

Here Vi = {Ui×U Vj → Ui}j∈J and Vii′ = {Ui×U Ui′×U Vj → Ui×U Ui′}j∈J . Then
SU → DD(U) is an equivalence.
Proof. Condition (1) guarantees we have enough fibre products so that the state-
ment makes sense. We will show that the functor SU → DD(U) is essentially
surjective. Suppose given a descent datum (Xi, φii′) relative to U . By Lemma
8.3.3 we can pull this back to a descent datum (Xj , φjj′) for V. By assumption
(2) this descent datum is effective, hence we get an object X of SU such that the
pullback of the trivial descent datum (X, idX) by the morphism V → {U → U} is
isomorphic to (Xj , φjj′). Next, observe that we have a diagram

Vi //

��

V // U

��
{Ui → Ui} //

55

{U → U}
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of morphisms of families of maps with fixed target of C. This diagram does not
commute, but by Lemma 8.3.3 the pullback functors on descent data one gets are
canonically isomorphic. Hence (X, idX) and (Xi, idXi) pull back to isomorphic
objects in DD(Vi). Hence by assumption (3) we obtain an isomorphism (Ui →
U)∗X → Xi in the category SUi . We omit the verification that these arrows are
compatible with the morphisms φii′ ; hint: use the faithfulness of the functors in
condition (4). We also omit the verification that the functor SU → DD(U) is fully
faithful. □

8.4. Stacks

0268 Here is the definition of a stack. It mixes the notion of a fibred category with the
notion of descent.

Definition 8.4.1.026F Let C be a site. A stack over C is a category p : S → C over C
which satisfies the following conditions:

(1) p : S → C is a fibred category, see Categories, Definition 4.33.5,
(2) for any U ∈ Ob(C) and any x, y ∈ SU the presheaf Mor(x, y) (see Defini-

tion 8.2.2) is a sheaf on the site C/U , and
(3) for any covering U = {fi : Ui → U}i∈I of the site C, any descent datum

in S relative to U is effective.

We find the formulation above the most convenient way to think about a stack.
Namely, given a category over C in order to verify that it is a stack you proceed to
check properties (1), (2) and (3) in that order. Certainly properties (2) and (3) do
not make sense if the category isn’t fibred. Without (2) we cannot prove that the
descent in (3) is unique up to unique isomorphism and functorial.

The following lemma provides an alternative definition.

Lemma 8.4.2.02ZF Let C be a site. Let p : S → C be a fibred category over C. The
following are equivalent

(1) S is a stack over C, and
(2) for any covering U = {fi : Ui → U}i∈I of the site C the functor

SU −→ DD(U)

which associates to an object its canonical descent datum is an equiva-
lence.

Proof. Omitted. □

Lemma 8.4.3.04TU Let p : S → C be a stack over the site C. Let S ′ be a subcategory of
S. Assume

(1) if φ : y → x is a strongly cartesian morphism of S and x is an object of
S ′, then y is isomorphic to an object of S ′,

(2) S ′ is a full subcategory of S, and
(3) if {fi : Ui → U} is a covering of C, and x an object of S over U such that

f∗
i x is isomorphic to an object of S ′ for each i, then x is isomorphic to an

object of S ′.
Then S ′ → C is a stack.

https://stacks.math.columbia.edu/tag/026F
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Proof. Omitted. Hints: The first condition guarantees that S ′ is a fibred category.
The second condition guarantees that the Isom-presheaves of S ′ are sheaves (as
they are identical to their counter parts in S). The third condition guarantees that
the descent condition holds in S ′ as we can first descend in S and then (3) implies
the resulting object is isomorphic to an object of S ′. □

Lemma 8.4.4.042W Let C be a site. Let S1, S2 be categories over C. Suppose that S1
and S2 are equivalent as categories over C. Then S1 is a stack over C if and only if
S2 is a stack over C.

Proof. Let F : S1 → S2, G : S2 → S1 be functors over C, and let i : F ◦G→ idS2 ,
j : G ◦F → idS1 be isomorphisms of functors over C. By Categories, Lemma 4.33.8
we see that S1 is fibred if and only if S2 is fibred over C. Hence we may assume that
both S1 and S2 are fibred. Moreover, the proof of Categories, Lemma 4.33.8 shows
that F and G map strongly cartesian morphisms to strongly cartesian morphisms,
i.e., F and G are 1-morphisms of fibred categories over C. This means that given
U ∈ Ob(C), and x, y ∈ S1,U then the presheaves

MorS1(x, y),MorS1(F (x), F (y)) : (C/U)opp −→ Sets.
are identified, see Lemma 8.2.3. Hence the first is a sheaf if and only if the second is
a sheaf. Finally, we have to show that if every descent datum in S1 is effective, then
so is every descent datum in S2. To do this, let (Xi, φii′) be a descent datum in
S2 relative the covering {Ui → U} of the site C. Then (G(Xi), G(φii′)) is a descent
datum in S1 relative the covering {Ui → U}. Let X be an object of S1,U such
that the descent datum (f∗

i X, can) is isomorphic to (G(Xi), G(φii′)). Then F (X)
is an object of S2,U such that the descent datum (f∗

i F (X), can) is isomorphic to
(F (G(Xi)), F (G(φii′))) which in turn is isomorphic to the original descent datum
(Xi, φii′) using i. □

The 2-category of stacks over C is defined as follows.

Definition 8.4.5.02ZG Let C be a site. The 2-category of stacks over C is the sub 2-
category of the 2-category of fibred categories over C (see Categories, Definition
4.33.9) defined as follows:

(1) Its objects will be stacks p : S → C.
(2) Its 1-morphisms (S, p) → (S ′, p′) will be functors G : S → S ′ such that

p′ ◦G = p and such that G maps strongly cartesian morphisms to strongly
cartesian morphisms.

(3) Its 2-morphisms t : G→ H for G,H : (S, p)→ (S ′, p′) will be morphisms
of functors such that p′(tx) = idp(x) for all x ∈ Ob(S).

Lemma 8.4.6.026G Let C be a site. The (2, 1)-category of stacks over C has 2-fibre
products, and they are described as in Categories, Lemma 4.32.3.

Proof. Let f : X → S and g : Y → S be 1-morphisms of stacks over C as defined
above. The category X ×S Y described in Categories, Lemma 4.32.3 is a fibred
category according to Categories, Lemma 4.33.10. (This is where we use that f and
g preserve strongly cartesian morphisms.) It remains to show that the morphism
presheaves are sheaves and that descent relative to coverings of C is effective.
Recall that an object of X ×S Y is given by a quadruple (U, x, y, ϕ). It lies over
the object U of C. Next, let (U, x′, y′, ϕ′) be second object lying over U . Recall

https://stacks.math.columbia.edu/tag/042W
https://stacks.math.columbia.edu/tag/02ZG
https://stacks.math.columbia.edu/tag/026G


8.4. STACKS 359

that ϕ : f(x)→ g(y), and ϕ′ : f(x′)→ g(y′) are isomorphisms in the category SU .
Let us use these isomorphisms to identify z = f(x) = g(y) and z′ = f(x′) = g(y′).
With this identifications it is clear that

Mor((U, x, y, ϕ), (U, x′, y′, ϕ′)) = Mor(x, x′)×Mor(z,z′) Mor(y, y′)
as presheaves. However, as the fibred product in the category of presheaves pre-
serves sheaves (Sites, Lemma 7.10.1) we see that this is a sheaf.
Let U = {fi : Ui → U}i∈I be a covering of the site C. Let (Xi, χij) be a descent
datum in X ×S Y relative to U . Write Xi = (Ui, xi, yi, ϕi) as above. Write χij =
(φij , ψij) as in the definition of the category X×SY (see Categories, Lemma 4.32.3).
It is clear that (xi, φij) is a descent datum in X and that (yi, ψij) is a descent
datum in Y. Since X and Y are stacks these descent data are effective. Thus we
get x ∈ Ob(XU ), and y ∈ Ob(YU ) with xi = x|Ui , and yi = y|Ui compatibly with
descent data. Set z = f(x) and z′ = g(y) which are both objects of SU . The
morphisms ϕi are elements of Isom(z, z′)(Ui) with the property that ϕi|Ui×UUj =
ϕj |Ui×UUj . Hence by the sheaf property of Isom(z, z′) we obtain an isomorphism
ϕ : z = f(x) → z′ = g(y). We omit the verification that the canonical descent
datum associated to the object (U, x, y, ϕ) of (X×SY)U is isomorphic to the descent
datum we started with. □

Lemma 8.4.7.04WQ Let C be a site. Let S1, S2 be stacks over C. Let F : S1 → S2 be a
1-morphism. Then the following are equivalent

(1) F is fully faithful,
(2) for every U ∈ Ob(C) and for every x, y ∈ Ob(S1,U ) the map

F : MorS1(x, y) −→ MorS2(F (x), F (y))
is an isomorphism of sheaves on C/U .

Proof. Assume (1). For U, x, y as in (2) the displayed map F evaluates to the
map F : MorS1,V (x|V , y|V ) → MorS2,V (F (x|V ), F (y|V )) on an object V of C lying
over U . Now, since F is fully faithful, the corresponding map MorS1(x|V , y|V ) →
MorS2(F (x|V ), F (y|V )) is a bijection. Morphisms in the fibre category S1,V are
exactly those morphisms between x|V and y|V in S1 lying over idV . Similarly,
morphisms in the fibre category S2,V are exactly those morphisms between F (x|V )
and F (y|V ) in S2 lying over idV . Thus we find that F induces a bijection between
these also. Hence (2) holds.
Assume (2). Suppose given objects U , V of C and x ∈ Ob(S1,U ) and y ∈ Ob(S1,V ).
To show that F is fully faithful, it suffices to prove it induces a bijection on mor-
phisms lying over a fixed f : U → V . Choose a strongly Cartesian f∗y → y in S1
lying above f . This results in a bijection between the set of morphisms x→ y in S1
lying over f and MorS1,U (x, f∗y). Since F preserves strongly Cartesian morphisms
as a 1-morphism in the 2-category of stacks over C, we also get a bijection between
the set of morphisms F (x)→ F (y) in S2 lying over f and MorS2,U (F (x), F (f∗y)).
Since F induces a bijection MorS1,U (x, f∗y)→ MorS2,U (F (x), F (f∗y)) we conclude
(1) holds. □

Lemma 8.4.8.046N Let C be a site. Let S1, S2 be stacks over C. Let F : S1 → S2 be a
1-morphism which is fully faithful. Then the following are equivalent

(1) F is an equivalence,

https://stacks.math.columbia.edu/tag/04WQ
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(2) for every U ∈ Ob(C) and for every x ∈ Ob(S2,U ) there exists a covering
{fi : Ui → U} such that f∗

i x is in the essential image of the functor
F : S1,Ui → S2,Ui .

Proof. The implication (1)⇒ (2) is immediate. To see that (2) implies (1) we have
to show that every x as in (2) is in the essential image of the functor F . To do this
choose a covering as in (2), xi ∈ Ob(S1,Ui), and isomorphisms φi : F (xi) → f∗

i x.
Then we get a descent datum for S1 relative to {fi : Ui → U} by taking

φij : xi|Ui×UUj −→ xj |Ui×UUj
the arrow such that F (φij) = φ−1

j ◦ φi. This descent datum is effective by the
axioms of a stack, and hence we obtain an object x1 of S1 over U . We omit the
verification that F (x1) is isomorphic to x over U . □

Remark 8.4.9.03ZZ (Cutting down a “big” stack to get a stack.) Let C be a site.
Suppose that p : S → C is functor from a “big” category to C, i.e., suppose that
the collection of objects of S forms a proper class. Finally, suppose that p : S → C
satisfies conditions (1), (2), (3) of Definition 8.4.1. In general there is no way to
replace p : S → C by a equivalent category such that we obtain a stack. The
reason is that it can happen that a fibre categories SU may have a proper class of
isomorphism classes of objects. On the other hand, suppose that

(4) for every U ∈ Ob(C) there exists a set SU ⊂ Ob(SU ) such that every
object of SU is isomorphic in SU to an element of SU .

In this case we can find a full subcategory Ssmall of S such that, setting psmall =
p|Ssmall , we have

(a) the functor psmall : Ssmall → C defines a stack, and
(b) the inclusion Ssmall → S is fully faithful and essentially surjective.

(Hint: For every U ∈ Ob(C) let α(U) denote the smallest ordinal such that
Ob(SU ) ∩ Vα(U) surjects onto the set of isomorphism classes of SU , and set α =
supU∈Ob(C) α(U). Then take Ob(Ssmall) = Ob(S)∩Vα. For notation used see Sets,
Section 3.5.)

8.5. Stacks in groupoids

02ZH Among stacks those which are fibred in groupoids are somewhat easier to compre-
hend. We redefine them as follows.

Definition 8.5.1.02ZI A stack in groupoids over a site C is a category p : S → C over C
such that

(1) p : S → C is fibred in groupoids over C (see Categories, Definition 4.35.1),
(2) for all U ∈ Ob(C), for all x, y ∈ Ob(SU ) the presheaf Isom(x, y) is a sheaf

on the site C/U , and
(3) for all coverings U = {Ui → U} in C, all descent data (xi, ϕij) for U are

effective.

Usually the hardest part to check is the third condition. Here is the lemma com-
paring this with the notion of a stack.

Lemma 8.5.2.02ZJ Let C be a site. Let p : S → C be a category over C. The following
are equivalent

(1) S is a stack in groupoids over C,
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(2) S is a stack over C and all fibre categories are groupoids, and
(3) S is fibred in groupoids over C and is a stack over C.

Proof. Omitted, but see Categories, Lemma 4.35.2. □

Lemma 8.5.3.03YI Let C be a site. Let p : S → C be a stack. Let p′ : S ′ → C be
the category fibred in groupoids associated to S constructed in Categories, Lemma
4.35.3. Then p′ : S ′ → C is a stack in groupoids.

Proof. Recall that the morphisms in S ′ are exactly the strongly cartesian mor-
phisms of S, and that any isomorphism of S is such a morphism. Hence descent
data in S ′ are exactly the same thing as descent data in S. Now apply Lemma
8.4.2. Some details omitted. □

Lemma 8.5.4.042X Let C be a site. Let S1, S2 be categories over C. Suppose that S1
and S2 are equivalent as categories over C. Then S1 is a stack in groupoids over C
if and only if S2 is a stack in groupoids over C.

Proof. Follows by combining Lemmas 8.5.2 and 8.4.4. □

The 2-category of stacks in groupoids over C is defined as follows.

Definition 8.5.5.02ZK Let C be a site. The 2-category of stacks in groupoids over C is
the sub 2-category of the 2-category of stacks over C (see Definition 8.4.5) defined
as follows:

(1) Its objects will be stacks in groupoids p : S → C.
(2) Its 1-morphisms (S, p) → (S ′, p′) will be functors G : S → S ′ such that

p′ ◦ G = p. (Since every morphism is strongly cartesian every functor
preserves them.)

(3) Its 2-morphisms t : G→ H for G,H : (S, p)→ (S ′, p′) will be morphisms
of functors such that p′(tx) = idp(x) for all x ∈ Ob(S).

Note that any 2-morphism is automatically an isomorphism, so that in fact the
2-category of stacks in groupoids over C is a (strict) (2, 1)-category.

Lemma 8.5.6.02ZL Let C be a category. The 2-category of stacks in groupoids over C
has 2-fibre products, and they are described as in Categories, Lemma 4.32.3.

Proof. This is clear from Categories, Lemma 4.35.7 and Lemmas 8.5.2 and 8.4.6.
□

8.6. Stacks in setoids

042Y This is just a brief section saying that a stack in sets is the same thing as a sheaf
of sets. Please consult Categories, Section 4.39 for notation.

Definition 8.6.1.042Z Let C be a site.
(1) A stack in setoids over C is a stack over C all of whose fibre categories are

setoids.
(2) A stack in sets, or a stack in discrete categories is a stack over C all of

whose fibre categories are discrete.

From the discussion in Section 8.5 this is the same thing as a stack in groupoids
whose fibre categories are setoids (resp. discrete). Moreover, it is also the same
thing as a category fibred in setoids (resp. sets) which is a stack.
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Lemma 8.6.2.0430 Let C be a site. Under the equivalence{
the category of presheaves

of sets over C

}
↔
{

the category of categories
fibred in sets over C

}
of Categories, Lemma 4.38.6 the stacks in sets correspond precisely to the sheaves.

Proof. Omitted. Hint: Show that effectivity of descent corresponds exactly to the
sheaf condition. □

Lemma 8.6.3.0432 Let C be a site. Let S be a category fibred in setoids over C. Then
S is a stack in setoids if and only if the unique equivalent category S ′ fibred in sets
(see Categories, Lemma 4.39.5) is a stack in sets. In other words, if and only if the
presheaf

U 7−→ Ob(SU )/∼=
is a sheaf.

Proof. Omitted. □

Lemma 8.6.4.0431 Let C be a site. Let S1, S2 be categories over C. Suppose that S1
and S2 are equivalent as categories over C. Then S1 is a stack in setoids over C if
and only if S2 is a stack in setoids over C.

Proof. By Categories, Lemma 4.39.5 we see that a category S over C is fibred in
setoids over C if and only if it is equivalent over C to a category fibred in sets. Hence
we see that S1 is fibred in setoids over C if and only if S2 is fibred in setoids over
C. Hence now the lemma follows from Lemma 8.6.3. □

The 2-category of stacks in setoids over C is defined as follows.

Definition 8.6.5.0433 Let C be a site. The 2-category of stacks in setoids over C is the
sub 2-category of the 2-category of stacks over C (see Definition 8.4.5) defined as
follows:

(1) Its objects will be stacks in setoids p : S → C.
(2) Its 1-morphisms (S, p) → (S ′, p′) will be functors G : S → S ′ such that

p′ ◦ G = p. (Since every morphism is strongly cartesian every functor
preserves them.)

(3) Its 2-morphisms t : G→ H for G,H : (S, p)→ (S ′, p′) will be morphisms
of functors such that p′(tx) = idp(x) for all x ∈ Ob(S).

Note that any 2-morphism is automatically an isomorphism, so that in fact the
2-category of stacks in setoids over C is a (strict) (2, 1)-category.

Lemma 8.6.6.0434 Let C be a site. The 2-category of stacks in setoids over C has 2-fibre
products, and they are described as in Categories, Lemma 4.32.3.

Proof. This is clear from Categories, Lemmas 4.35.7 and 4.39.4 and Lemmas 8.5.2
and 8.4.6. □

Lemma 8.6.7.05UI Let C be a site. Let S, T be stacks in groupoids over C and let R
be a stack in setoids over C. Let f : T → S and g : R → S be 1-morphisms. If f is
faithful, then the 2-fibre product

T ×f,S,g R
is a stack in setoids over C.
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Proof. Immediate from the explicit description of the 2-fibre product in Categories,
Lemma 4.32.3. □

Lemma 8.6.8.05UJ Let C be a site. Let S be a stack in groupoids over C and let Si,
i = 1, 2 be stacks in setoids over C. Let fi : Si → S be 1-morphisms. Then the
2-fibre product

S1 ×f1,S,f2 S2

is a stack in setoids over C.

Proof. This is a special case of Lemma 8.6.7 as f2 is faithful. □

Lemma 8.6.9.06DV Let C be a site. Let

T2 //

G′

��

T1

G

��
S2

F // S1

be a 2-cartesian diagram of stacks in groupoids over C. Assume
(1) for every U ∈ Ob(C) and x ∈ Ob((S1)U ) there exists a covering {Ui → U}

such that x|Ui is in the essential image of F : (S2)Ui → (S1)Ui , and
(2) G′ is faithful,

then G is faithful.

Proof. We may assume that T2 is the category S2 ×S1 T1 described in Categories,
Lemma 4.32.3. By Categories, Lemma 4.35.9 the faithfulness of G,G′ can be
checked on fibre categories. Suppose that y, y′ are objects of T1 over the object
U of C. Let α, β : y → y′ be morphisms of (T1)U such that G(α) = G(β). Our
object is to show that α = β. Considering instead γ = α−1 ◦ β we see that
G(γ) = idG(y) and we have to show that γ = idy. By assumption we can find a cov-
ering {Ui → U} such that G(y)|Ui is in the essential image of F : (S2)Ui → (S1)Ui .
Since it suffices to show that γ|Ui = id for each i, we may therefore assume that we
have f : F (x) → G(y) for some object x of S2 over U and morphisms f of (S1)U .
In this case we get a morphism

(1, γ) : (U, x, y, f) −→ (U, x, y, f)
in the fibre category of S2 ×S1 T1 over U whose image under G′ in S1 is idx. As G′

is faithful we conclude that γ = idy and we win. □

Lemma 8.6.10.05W9 Let C be a site. Let

T2 //

��

T1

G

��
S2

F // S1

be a 2-cartesian diagram of stacks in groupoids over C. If
(1) F : S2 → S1 is fully faithful,
(2) for every U ∈ Ob(C) and x ∈ Ob((S1)U ) there exists a covering {Ui → U}

such that x|Ui is in the essential image of F : (S2)Ui → (S1)Ui , and
(3) T2 is a stack in setoids.

then T1 is a stack in setoids.
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Proof. We may assume that T2 is the category S2 ×S1 T1 described in Categories,
Lemma 4.32.3. Pick U ∈ Ob(C) and y ∈ Ob((T1)U ). We have to show that the
sheaf Aut(y) on C/U is trivial. To to this we may replace U by the members of a
covering of U . Hence by assumption (2) we may assume that there exists an object
x ∈ Ob((S2)U ) and an isomorphism f : F (x) → G(y). Then y′ = (U, x, y, f) is an
object of T2 over U which is mapped to y under the projection T2 → T1. Because
F is fully faithful by (1) the map Aut(y′) → Aut(y) is surjective, use the explicit
description of morphisms in T2 in Categories, Lemma 4.32.3. Since by (3) the sheaf
Aut(y′) is trivial we get the result of the lemma. □

Lemma 8.6.11.0CKJ Let C be a site. Let F : S → T be a 1-morphism of categories
fibred in groupoids over C. Assume that

(1) T is a stack in groupoids over C,
(2) for every U ∈ Ob(C) the functor SU → TU of fibre categories is faithful,
(3) for each U and each y ∈ Ob(TU ) the presheaf

(h : V → U) 7−→ {(x, f) | x ∈ Ob(SV ), f : F (x)→ f∗y over V }/ ∼=

is a sheaf on C/U .
Then S is a stack in groupoids over C.

Proof. We have to prove descent for morphisms and descent for objects.

Descent for morphisms. Let {Ui → U} be a covering of C. Let x, x′ be objects of
S over U . For each i let αi : x|Ui → x′|Ui be a morphism over Ui such that αi and
αj restrict to the same morphism x|Ui×UUj → x′|Ui×UUj . Because T is a stack in
groupoids, there is a morphism β : F (x) → F (x′) over U whose restriction to Ui
is F (αi). Then we can think of ξ = (x, β) and ξ′ = (x′, idF (x′)) as sections of the
presheaf associated to y = F (x′) over U in assumption (3). On the other hand,
the restrictions of ξ and ξ′ to Ui are (x|Ui , F (αi)) and (x′|Ui , idF (x′|Ui )). These are
isomorphic to each other by the morphism αi. Thus ξ and ξ′ are isomorphic by
assumption (3). This means there is a morphism α : x→ x′ over U with F (α) = β.
Since F is faithful on fibre categories we obtain α|Ui = αi.

Descent of objects. Let {Ui → U} be a covering of C. Let (xi, φij) be a descent
datum for S with respect to the given covering. Because T is a stack in groupoids,
there is an object y in TU and isomorphisms βi : F (xi)→ y|Ui such that F (φij) =
βj |Ui×UUj ◦ (βi|Ui×UUj )−1. Then (xi, βi) are sections of the presheaf associated to
y over U defined in assumption (3). Moreover, φij defines an isomorphism from
the pair (xi, βi)|Ui×UUj to the pair (xj , βj)|Ui×UUj . Hence by assumption (3) there
exists a pair (x, β) over U whose restriction to Ui is isomorphic to (xi, βi). This
means there are morphisms αi : xi → x|Ui with βi = β|Ui ◦F (αi). Since F is faithful
on fibre categories a calculation shows that φij = αj |Ui×UUj ◦ (αi|Ui×UUj )−1. This
finishes the proof. □

8.7. The inertia stack

036X Let p : S → C and p′ : S ′ → C be fibred categories over the category C. Let
F : S → S ′ be a 1-morphism of fibred categories over C. Recall that we have
defined in Categories, Definition 4.34.2 a relative inertia fibred category IS/S′ → C
as the category whose objects are pairs (x, α) where x ∈ Ob(S) and α : x→ x with

https://stacks.math.columbia.edu/tag/0CKJ
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F (α) = idF (x). There is also an absolute version, namely the inertia IS of S. These
inertia categories are actually stacks over C provided that S and S ′ are stacks.

Lemma 8.7.1.036Y Let C be a site. Let p : S → C and p′ : S ′ → C be stacks over the
site C. Let F : S → S ′ be a 1-morphism of stacks over C.

(1) The inertia IS/S′ and IS are stacks over C.
(2) If S,S ′ are stacks in groupoids over C, then so are IS/S′ and IS .
(3) If S,S ′ are stacks in setoids over C, then so are IS/S′ and IS .

Proof. The first three assertions follow from Lemmas 8.4.6, 8.5.6, and 8.6.6 and the
equivalence in Categories, Lemma 4.34.1 part (1). □

Lemma 8.7.2.04ZM Let C be a site. If S is a stack in groupoids, then the canonical
1-morphism IS → S is an equivalence if and only if S is a stack in setoids.

Proof. Follows directly from Categories, Lemma 4.39.7. □

8.8. Stackification of fibred categories

02ZM Here is the result.

Lemma 8.8.1.02ZN Let C be a site. Let p : S → C be a fibred category over C. There
exists a stack p′ : S ′ → C and a 1-morphism G : S → S ′ of fibred categories over C
(see Categories, Definition 4.33.9) such that

(1) for every U ∈ Ob(C), and any x, y ∈ Ob(SU ) the map
Mor(x, y) −→ Mor(G(x), G(y))

induced by G identifies the right hand side with the sheafification of the
left hand side, and

(2) for every U ∈ Ob(C), and any x′ ∈ Ob(S ′
U ) there exists a covering {Ui →

U}i∈I such that for every i ∈ I the object x′|Ui is in the essential image
of the functor G : SUi → S ′

Ui
.

Moreover the stack S ′ is determined up to unique 2-isomorphism by these condi-
tions.

Proof by naive method. In this proof method we proceed in stages:
First, given x lying over U and any object y of S, we say that two morphisms
a, b : x → y of S lying over the same arrow of C are locally equal if there exists a
covering {fi : Ui → U} of C such that the compositions

f∗
i x→ x

a−→ y, f∗
i x→ x

b−→ y

are equal. This gives an equivalence relation ∼ on arrows of S. If b ∼ b′ then
a ◦ b ◦ c ∼ a ◦ b′ ◦ c (verification omitted). Hence we can quotient out by this
equivalence relation to obtain a new category S1 over C together with a morphism
G1 : S → S1.
One checks that G1 preserves strongly cartesian morphisms and that S1 is a fibred
category over C. Checks omitted. Thus we reduce to the case where locally equal
morphisms are equal.
Next, we add morphisms as follows. Given x lying over U and any object y of lying
over V a locally defined morphism from x to y is given by

(1) a morphism f : U → V ,

https://stacks.math.columbia.edu/tag/036Y
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(2) a covering {fi : Ui → U} of U , and
(3) morphisms ai : f∗

i x→ y with p(ai) = f ◦ fi
with the property that the compositions

(fi × fj)∗x→ f∗
i x

ai−→ y, (fi × fj)∗x→ f∗
j x

aj−→ y

are equal. Note that a usual morphism a : x→ y gives a locally defined morphism
(p(a) : U → V, {idU}, a). We say two locally defined morphisms (f, {fi : Ui →
U}, ai) and (g, {gj : U ′

j → U}, bj) are equal if f = g and the compositions

(fi × gj)∗x→ f∗
i x

ai−→ y, (fi × gj)∗x→ g∗
jx

bj−→ y

are equal (this is the right condition since we are in the situation where locally
equal morphisms are equal). To compose locally defined morphisms (f, {fi : Ui →
U}, ai) from x to y and (g, {gj : Vj → V }, bj) from y to z lying over W , just take
g ◦ f : U →W , the covering {Ui ×V Vj → U}, and as maps the compositions

x|Ui×V Vj
pr∗

0ai−−−→ y|Vj
bj−→ z

We omit the verification that this is a locally defined morphism.
One checks that S2 with the same objects as S and with locally defined morphisms
as morphisms is a category over C, that there is a functor G2 : S → S2 over
C, that this functor preserves strongly cartesian objects, and that S2 is a fibred
category over C. Checks omitted. This reduces one to the case where the morphism
presheaves of S are all sheaves, by checking that the effect of using locally defined
morphisms is to take the sheafification of the (separated) morphisms presheaves.
Finally, in the case where the morphism presheaves are all sheaves we have to add
objects in order to make sure descent conditions are effective in the end result. The
simplest way to do this is to consider the category S ′ whose objects are pairs (U , ξ)
where U = {Ui → U} is a covering of C and ξ = (Xi, φii′) is a descent datum
relative U . Suppose given two such data (U , ξ) = ({fi : Ui → U}, xi, φii′) and
(V, η) = ({gj : Vj → V }, yj , ψjj′). We define

MorS′((U , ξ), (V, η))
as the set of (f, aij), where f : U → V and

aij : xi|Ui×V Vj −→ yj

are morphisms of S lying over Ui ×V Vj → Vj . These have to satisfy the following
condition: for any i, i′ ∈ I and j, j′ ∈ J set W = (Ui ×U Ui′)×V (Vj ×V Vj′). Then

xi|W
aij |W

//

φii′ |W
��

yj |W

ψjj′ |W
��

xi′ |W
ai′j′ |W // yj′ |W

commutes. At this point you have to verify the following things:
(1) there is a well defined composition on morphisms as above,
(2) this turns S ′ into a category over C,
(3) there is a functor G : S → S ′ over C,
(4) for x, y objects of S we have MorS(x, y) = MorS′(G(x), G(y)),
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(5) any object of S ′ locally comes from an object of S, i.e., part (2) of the
lemma holds,

(6) G preserves strongly cartesian morphisms,
(7) S ′ is a fibred category over C, and
(8) S ′ is a stack over C.

This is all not hard but there is a lot of it. Details omitted. □

Less naive proof. Here is a less naive proof. By Categories, Lemma 4.36.4 there
exists an equivalence of fibred categories S → S ′ where S ′ is a split fibred category,
i.e., one in which the pullback functors compose on the nose. Obviously the lemma
for S ′ implies the lemma for S. Hence we may think of S as a presheaf in categories.
Consider the 2-category Cat temporarily as a category by forgetting about 2-
morphisms. Let us think of a category as a quintuple (Ob,Arrows, s, t, ◦) as in
Categories, Section 4.2. Consider the forgetful functor

forget : Cat→ Sets× Sets, (Ob,Arrows, s, t, ◦) 7→ (Ob,Arrows).
Then forget is faithful, Cat has limits and forget commutes with them, Cat has di-
rected colimits and forget commutes with them, and forget reflects isomorphisms.
We can sheafify presheaves with values in Cat, and by an argument similar to the
one in the first part of Sites, Section 7.44 the result commutes with forget. Apply-
ing this to S we obtain a sheafification S# which has a sheaf of objects and a sheaf
of morphisms both of which are the sheafifications of the corresponding presheaves
for S. In this case it is quite easy to see that the map S → S# has the properties
(1) and (2) of the lemma.
However, the category S# may not yet be a stack since, although the presheaf of
objects is a sheaf, the descent condition may not yet be satisfied. To remedy this
we have to add more objects. But the argument above does reduce us to the case
where S = SF for some sheaf(!) F : Copp → Cat of categories. In this case consider
the functor F ′ : Copp → Cat defined by

(1) The set Ob(F ′(U)) is the set of pairs (U , ξ) where U = {Ui → U} is a
covering of U and ξ = (xi, φii′) is a descent datum relative to U .

(2) A morphism in F ′(U) from (U , ξ) to (V, η) is an element of
colim MorDD(W)(a∗ξ, b∗η)

where the colimit is over all common refinements a :W → U , b :W → V.
This colimit is filtered (verification omitted). Hence composition of mor-
phisms in F (U) is defined by finding a common refinement and composing
in DD(W).

(3) Given h : V → U and an object (U , ξ) of F ′(U) we set F ′(h)(U , ξ) equal
to (V ×U U ,pr∗

1ξ). More precisely, if U = {Ui → U} and ξ = (xi, φii′),
then V ×U U = {V ×U Ui → V } which comes with a canonical morphism
pr1 : V ×U U → U and pr∗

1ξ is the pullback of ξ with respect to this
morphism (see Definition 8.3.4).

(4) Given h : V → U , objects (U , ξ) and (V, η) and a morphism between them,
represented by a :W → U , b :W → V, and α : a∗ξ → b∗η, then F ′(h)(α)
is represented by a′ : V ×UW → V ×U U , b′ : V ×UW → V ×U V, and the
pullback α′ of the morphism α via the map V ×U W → W. This works
since pullbacks in SF commute on the nose.
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There is a map F → F ′ given by associating to an object x of F (U) the object
({U → U}, (x, triv)) of F ′(U). At this point you have to check that the correspond-
ing functor SF → SF ′ has properties (1) and (2) of the lemma, and finally that SF ′

is a stack. Details omitted. □

Lemma 8.8.2.0435 Let C be a site. Let p : S → C be a fibred category over C. Let
p′ : S ′ → C and G : S → S ′ the stack and 1-morphism constructed in Lemma 8.8.1.
This construction has the following universal property: Given a stack q : X → C
and a 1-morphism F : S → X of fibred categories over C there exists a 1-morphism
H : S ′ → X such that the diagram

S
F

//

G ��

X

S ′
H

>>

is 2-commutative.

Proof. Omitted. Hint: Suppose that x′ ∈ Ob(S ′
U ). By the result of Lemma

8.8.1 there exists a covering {Ui → U}i∈I such that x′|Ui = G(xi) for some
xi ∈ Ob(SUi). Moreover, there exist coverings {Uijk → Ui ×U Uj} and isomor-
phisms αijk : xi|Uijk → xj |Uijk with G(αijk) = idx′|Uijk . Set yi = F (xi). Then you
can check that

F (αijk) : yi|Uijk → yj |Uijk
agree on overlaps and therefore (as X is a stack) define a morphism βij : yi|Ui×UUj →
yj |Ui×UUj . Next, you check that the βij define a descent datum. Since X is a stack
these descent data are effective and we find an object y of XU agreeing with G(xi)
over Ui. The hint is to set H(x′) = y. □

Lemma 8.8.3.04W9 Notation and assumptions as in Lemma 8.8.2. There is a canonical
equivalence of categories

MorFib/C(S,X ) = MorStacks/C(S ′,X )
given by the constructions in the proof of the aforementioned lemma.

Proof. Omitted. □

Lemma 8.8.4.04Y1 Let C be a site. Let f : X → Y and g : Z → Y be morphisms of
fibred categories over C. In this case the stackification of the 2-fibre product is the
2-fibre product of the stackifications.

Proof. Let us denote X ′,Y ′,Z ′ the stackifications andW the stackification of X ×Y
Z. By construction of 2-fibre products there is a canonical 1-morphism X ×Y Z →
X ′ ×Y′ Z ′. As the second 2-fibre product is a stack (see Lemma 8.4.6) this 1-
morphism induces a 1-morphism h : W → X ′ ×Y′ Z ′ by the universal property of
stackification, see Lemma 8.8.2. Now h is a morphism of stacks, and we may check
that it is an equivalence using Lemmas 8.4.7 and 8.4.8.
Thus we first prove that h induces isomorphisms of Mor-sheaves. Let ξ, ξ′ be objects
of W over U ∈ Ob(C). We want to show that

h : Mor(ξ, ξ′) −→ Mor(h(ξ), h(ξ′))
is an isomorphism. To do this we may work locally on U (see Sites, Section 7.26).
Hence by construction of W (see Lemma 8.8.1) we may assume that ξ, ξ′ actually

https://stacks.math.columbia.edu/tag/0435
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come from objects (x, z, α) and (x′, z′, α′) of X ×Y Z over U . By the same lemma
once more we see that in this case Mor(ξ, ξ′) is the sheafification of

V/U 7−→ MorXV (x|V , x′|V )×MorYV (f(x)|V ,f(x′)|V ) MorZV (z|V , z′|V )

and that Mor(h(ξ), h(ξ′)) is equal to the fibre product

Mor(i(x), i(x′))×Mor(j(f(x)),j(f(x′)) Mor(k(z), k(z′))

where i : X → X ′, j : Y → Y ′, and k : Z → Z ′ are the canonical functors. Thus the
first displayed map of this paragraph is an isomorphism as sheafification is exact
(and hence the sheafification of a fibre product of presheaves is the fibre product of
the sheafifications).

Finally, we have to check that any object of X ′ ×Y′ Z ′ over U is locally on U
in the essential image of h. Write such an object as a triple (x′, z′, α). Then x′

locally comes from an object of X , z′ locally comes from an object of Z, and having
made suitable replacements for x′, z′ the morphism α of Y ′

U locally comes from a
morphism of Y. In other words, we have shown that any object of X ′ ×Y′ Z ′ over
U is locally on U in the essential image of X ×Y Z → X ′ ×Y′ Z ′, hence a fortiori it
is locally in the essential image of h. □

Lemma 8.8.5.06NS Let C be a site. Let X be a fibred category over C. The stackification
of the inertia fibred category IX is inertia of the stackification of X .

Proof. This follows from the fact that stackification is compatible with 2-fibre prod-
ucts by Lemma 8.8.4 and the fact that there is a formula for the inertia in terms
of 2-fibre products of categories over C, see Categories, Lemma 4.34.1. □

8.9. Stackification of categories fibred in groupoids

02ZO Here is the result.

Lemma 8.9.1.02ZP Let C be a site. Let p : S → C be a category fibred in groupoids over
C. There exists a stack in groupoids p′ : S ′ → C and a 1-morphism G : S → S ′ of
categories fibred in groupoids over C (see Categories, Definition 4.35.6) such that

(1) for every U ∈ Ob(C), and any x, y ∈ Ob(SU ) the map

Mor(x, y) −→ Mor(G(x), G(y))

induced by G identifies the right hand side with the sheafification of the
left hand side, and

(2) for every U ∈ Ob(C), and any x′ ∈ Ob(S ′
U ) there exists a covering {Ui →

U}i∈I such that for every i ∈ I the object x′|Ui is in the essential image
of the functor G : SUi → S ′

Ui
.

Moreover the stack in groupoids S ′ is determined up to unique 2-isomorphism by
these conditions.

Proof. Apply Lemma 8.8.1. The result will be a stack in groupoids by applying
Lemma 8.5.2. □

Lemma 8.9.2.0436 Let C be a site. Let p : S → C be a category fibred in groupoids
over C. Let p′ : S ′ → C and G : S → S ′ the stack in groupoids and 1-morphism
constructed in Lemma 8.9.1. This construction has the following universal property:

https://stacks.math.columbia.edu/tag/06NS
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Given a stack in groupoids q : X → C and a 1-morphism F : S → X of categories
over C there exists a 1-morphism H : S ′ → X such that the diagram

S
F

//

G ��

X

S ′
H

>>

is 2-commutative.

Proof. This is a special case of Lemma 8.8.2. □

Lemma 8.9.3.04Y2 Let C be a site. Let f : X → Y and g : Z → Y be morphisms of
categories fibred in groupoids over C. In this case the stackification of the 2-fibre
product is the 2-fibre product of the stackifications.

Proof. This is a special case of Lemma 8.8.4. □

8.10. Inherited topologies

06NT It turns out that a fibred category over a site inherits a canonical topology from
the underlying site.

Lemma 8.10.1.06NU Let C be a site. Let p : S → C be a fibred category. Let Cov(S)
be the set of families {xi → x}i∈I of morphisms in S with fixed target such that
(a) each xi → x is strongly cartesian, and (b) {p(xi)→ p(x)}i∈I is a covering of C.
Then (S,Cov(S)) is a site.

Proof. We have to check the three conditions of Sites, Definition 7.6.2.
(1) If x→ y is an isomorphism of S, then it is strongly cartesian by Categories,

Lemma 4.33.2 and p(x) → p(y) is an isomorphism of C. Thus {p(x) →
p(y)} is a covering of C whence {x→ y} ∈ Cov(S).

(2) If {xi → x}i∈I ∈ Cov(S) and for each i we have {yij → xi}j∈Ji ∈ Cov(S),
then each composition p(yij) → p(x) is strongly cartesian by Categories,
Lemma 4.33.2 and {p(yij) → p(x)}i∈I,j∈Ji ∈ Cov(C). Hence also {yij →
x}i∈I,j∈Ji ∈ Cov(S).

(3) Suppose {xi → x}i∈I ∈ Cov(S) and y → x is a morphism of S. As
{p(xi)→ p(x)} is a covering of C we see that p(xi)×p(x)p(y) exists. Hence
Categories, Lemma 4.33.13 implies that xi ×x y exists, that p(xi ×x y) =
p(xi) ×p(x) p(y), and that xi ×x y → y is strongly cartesian. Since also
{p(xi) ×p(x) p(y) → p(y)}i∈I ∈ Cov(C) we conclude that {xi ×x y →
y}i∈I ∈ Cov(S)

This finishes the proof. □

Note that if p : S → C is fibred in groupoids, then the coverings of the site S in
Lemma 8.10.1 are characterized by

{xi → x} ∈ Cov(S)⇔ {p(xi)→ p(x)} ∈ Cov(C)
because every morphism of S is strongly cartesian.

Definition 8.10.2.06NV Let C be a site. Let p : S → C be a fibred category. We say
(S,Cov(S)) as in Lemma 8.10.1 is the structure of site on S inherited from C. We
sometimes indicate this by saying that S is endowed with the topology inherited
from C.
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In particular we obtain a topos of sheaves Sh(S) in this situation. It turns out that
this topos is functorial with respect to 1-morphisms of fibred categories.

Lemma 8.10.3.06NW Let C be a site. Let F : X → Y be a 1-morphism of fibred categories
over C. Then F is a continuous and cocontinuous functor between the structure of
sites inherited from C. Hence F induces a morphism of topoi f : Sh(X ) → Sh(Y)
with f∗ = sF = pF and f−1 = F s = F p. In particular f−1(G)(x) = G(F (x)) for a
sheaf G on Y and object x of X .

Proof. We first prove that F is continuous. Let {xi → x}i∈I be a covering of X . By
Categories, Definition 4.33.9 the functor F transforms strongly cartesian morphisms
into strongly cartesian morphisms, hence {F (xi) → F (x)}i∈I is a covering of Y.
This proves part (1) of Sites, Definition 7.13.1. Moreover, let x′ → x be a morphism
of X . By Categories, Lemma 4.33.13 the fibre product xi×xx′ exists and xi×xx′ →
x′ is strongly cartesian. Hence F (xi ×x x′) → F (x′) is strongly cartesian. By
Categories, Lemma 4.33.13 applied to Y this means that F (xi×x x′) = F (xi)×F (x)
F (x′). This proves part (2) of Sites, Definition 7.13.1 and we conclude that F is
continuous.
Next we prove that F is cocontinuous. Let x ∈ Ob(X ) and let {yi → F (x)}i∈I
be a covering in Y. Denote {Ui → U}i∈I the corresponding covering of C. For
each i choose a strongly cartesian morphism xi → x in X lying over Ui → U .
Then F (xi)→ F (x) and yi → F (x) are both a strongly cartesian morphisms in Y
lying over Ui → U . Hence there exists a unique isomorphism F (xi) → yi in YUi
compatible with the maps to F (x). Thus {xi → x}i∈I is a covering of X such that
{F (xi)→ F (x)}i∈I is isomorphic to {yi → F (x)}i∈I . Hence F is cocontinuous, see
Sites, Definition 7.20.1.
The final assertion follows from the first two, see Sites, Lemmas 7.21.1, 7.20.2, and
7.21.5. □

Lemma 8.10.4.0CN0 Let C be a site. Let p : X → C be a category fibred in groupoids.
Let x ∈ Ob(X ) lying over U = p(x). The functor p induces an equivalence of sites
X/x→ C/U where X is endowed with the topology inherited from C.

Proof. Here C/U is the localization of the site C at the object U and similarly for
X/x. It follows from Categories, Definition 4.35.1 that the rule x′/x 7→ p(x′)/p(x)
defines an equivalence of categories X/x→ C/U . Whereupon it follows from Defini-
tion 8.10.2 that coverings of x′ in X/x are in bijective correspondence with coverings
of p(x′) in C/U . □

Lemma 8.10.5.06NX Let C be a site. Let p : X → C and q : Y → C be stacks in
groupoids. Let F : X → Y be a 1-morphism of categories over C. If F turns X into
a category fibred in groupoids over Y, then X is a stack in groupoids over Y (with
topology inherited from C).

Proof. Let us prove descent for objects. Let {yi → y} be a covering of Y. Let
(xi, φij) be a descent datum in X with respect to this covering. Then (xi, φij) is also
a descent datum with respect to the covering {q(yi)→ q(y)} of C. As X is a stack
in groupoids we obtain an object x over q(y) and isomorphisms ψi : x|q(yi) → xi
over q(yi) compatible with the φij , i.e., such that

φij = ψj |q(yi)×q(y)q(yj) ◦ ψ−1
i |q(yi)×q(y)q(yj).
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Consider the sheaf I = IsomY(F (x), y) on C/p(x). Note that si = F (ψi) ∈ I (q(xi))
because F (xi) = yi. Because F (φij) = id (as we started with a descent datum over
{yi → y}) the displayed formula shows that si|q(yi)×q(y)q(yj) = sj |q(yi)×q(y)q(yj).
Hence the local sections si glue to s : F (x)→ y. As F is fibred in groupoids we see
that x is isomorphic to an object x′ with F (x′) = y. We omit the verification that
x′ in the fibre category of X over y is a solution to the problem of descent posed
by the descent datum (xi, φij). We also omit the proof of the sheaf property of the
Isom-presheaves of X/Y. □

Lemma 8.10.6.09WX Let C be a site. Let p : X → C be a stack. Endow X with the
topology inherited from C and let q : Y → X be a stack. Then Y is a stack over C.
If p and q define stacks in groupoids, then Y is a stack in groupoids over C.

Proof. We check the three conditions in Definition 8.4.1 to prove that Y is a stack
over C. By Categories, Lemma 4.33.12 we find that Y is a fibred category over C.
Thus condition (1) holds.
Let U be an object of C and let y1, y2 be objects of Y over U . Denote xi = q(yi) in
X . Consider the map of presheaves

q : MorY/C(y1, y2) −→ MorX/C(x1, x2)
on C/U , see Lemma 8.2.3. Let {Ui → U} be a covering and let φi be a section of
the presheaf on the left over Ui such that φi and φj restrict to the same section
over Ui×U Uj . We have to find a morphism φ : x1 → x2 restricting to φi. Note that
q(φi) = ψ|Ui for some morphism ψ : x1 → x2 over U because the second presheaf
is a sheaf (by assumption). Let y12 → y2 be the stronly X -cartesian morphism of
Y lying over ψ. Then φi corresponds to a morphism φ′

i : y1|Ui → y12|Ui over x1|Ui .
In other words, φ′

i now define local sections of the presheaf
MorY/X (y1, y12)

over the members of the covering {x1|Ui → x1}. By assumption these glue to a
unique morphism y1 → y12 which composed with the given morphism y12 → y2
produces the desired morphism y1 → y2.
Finally, we show that descent data are effective. Let {fi : Ui → U} be a covering
of C and let (yi, φij) be a descent datum relative to this covering (Definition 8.3.1).
Setting xi = q(yi) and ψij = q(φij) we obtain a descent datum (xi, ψij) for the
covering in X . By assumption on X we may assume xi = x|Ui and the ψij equal
to the canonical descent datum (Definition 8.3.5). In this case {x|Ui → x} is a
covering and we can view (yi, φij) as a descent datum relative to this covering. By
our assumption that Y is a stack over C we see that it is effective which finishes the
proof of condition (3).
The final assertion follows because Y is a stack over C and is fibred in groupoids by
Categories, Lemma 4.35.14. □

8.11. Gerbes

06NY Gerbes are a special kind of stacks in groupoids.

Definition 8.11.1.06NZ A gerbe over a site C is a category p : S → C over C such that
(1) p : S → C is a stack in groupoids over C (see Definition 8.5.1),
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(2) for U ∈ Ob(C) there exists a covering {Ui → U} in C such that SUi is
nonempty, and

(3) for U ∈ Ob(C) and x, y ∈ Ob(SU ) there exists a covering {Ui → U} in C
such that x|Ui ∼= y|Ui in SUi .

In other words, a gerbe is a stack in groupoids such that any two objects are locally
isomorphic and such that objects exist locally.
Lemma 8.11.2.06P0 Let C be a site. Let S1, S2 be categories over C. Suppose that S1
and S2 are equivalent as categories over C. Then S1 is a gerbe over C if and only if
S2 is a gerbe over C.
Proof. Assume S1 is a gerbe over C. By Lemma 8.5.4 we see S2 is a stack in
groupoids over C. Let F : S1 → S2, G : S2 → S1 be equivalences of categories over
C. Given U ∈ Ob(C) we see that there exists a covering {Ui → U} such that (S1)Ui
is nonempty. Applying F we see that (S2)Ui is nonempty. Given U ∈ Ob(C) and
x, y ∈ Ob((S2)U ) there exists a covering {Ui → U} in C such that G(x)|Ui ∼= G(y)|Ui
in (S1)Ui . By Categories, Lemma 4.35.9 this implies x|Ui ∼= y|Ui in (S2)Ui . □

We want to generalize the definition of gerbes a bit. Namely, let F : X → Y be
a 1-morphism of stacks in groupoids over a site C. We want to say what it means
for X to be a gerbe over Y. By Section 8.10 the category Y inherits the structure
of a site from C. A naive guess is: Just require that X → Y is a gerbe in the
sense above. Except the notion so obtained is not invariant under replacing X by
an equivalent stack in groupoids over C; this is even the case for the property of
being fibred in groupoids over Y. However, it turns out that we can replace X by
an equivalent stack in groupoids over C which is fibred in groupoids over Y, and
then the property of being a gerbe over Y is independent of this choice. Here is the
precise formulation.
Lemma 8.11.3.06P1 Let C be a site. Let p : X → C and q : Y → C be stacks in
groupoids. Let F : X → Y be a 1-morphism of categories over C. The following are
equivalent

(1) For some (equivalently any) factorization F = F ′ ◦ a where a : X → X ′ is
an equivalence of categories over C and F ′ is fibred in groupoids, the map
F ′ : X ′ → Y is a gerbe (with the topology on Y inherited from C).

(2) The following two conditions are satisfied
(a) for y ∈ Ob(Y) lying over U ∈ Ob(C) there exists a covering {Ui → U}

in C and objects xi of X over Ui such that F (xi) ∼= y|Ui in YUi , and
(b) for U ∈ Ob(C), x, x′ ∈ Ob(XU ), and b : F (x) → F (x′) in YU there

exists a covering {Ui → U} in C and morphisms ai : x|Ui → x′|Ui in
XUi with F (ai) = b|Ui .

Proof. By Categories, Lemma 4.35.16 there exists a factorization F = F ′ ◦ a where
a : X → X ′ is an equivalence of categories over C and F ′ is fibred in groupoids. By
Categories, Lemma 4.35.17 given any two such factorizations F = F ′ ◦ a = F ′′ ◦ b
we have that X ′ is equivalent to X ′′ as categories over Y. Hence Lemma 8.11.2
guarantees that the condition (1) is independent of the choice of the factorization.
Moreover, this means that we may assume X ′ = X ×F,Y,id Y as in the proof of
Categories, Lemma 4.35.16
Let us prove that (a) and (b) imply that X ′ → Y is a gerbe. First of all, by
Lemma 8.10.5 we see that X ′ → Y is a stack in groupoids. Next, let y be an
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object of Y lying over U ∈ Ob(C). By (a) we can find a covering {Ui → U} in
C and objects xi of X over Ui and isomorphisms fi : F (xi) → y|Ui in YUi . Then
(Ui, xi, y|Ui , fi) are objects of X ′

Ui
, i.e., the second condition of Definition 8.11.1

holds. Finally, let (U, x, y, f) and (U, x′, y, f ′) be objects of X ′ lying over the same
object y ∈ Ob(Y). Set b = (f ′)−1 ◦ f . By condition (b) we can find a covering
{Ui → U} and isomorphisms ai : x|Ui → x′|Ui in XUi with F (ai) = b|Ui . Then

(ai, id) : (U, x, y, f)|Ui → (U, x′, y, f ′)|Ui
is a morphism in X ′

Ui
as desired. This proves that (2) implies (1).

To prove that (1) implies (2) one reads the arguments in the preceding paragraph
backwards. Details omitted. □

Definition 8.11.4.06P2 Let C be a site. Let X and Y be stacks in groupoids over C. Let
F : X → Y be a 1-morphism of categories over C. We say X is a gerbe over Y if
the equivalent conditions of Lemma 8.11.3 are satisfied.

This definition does not conflict with Definition 8.11.1 when Y = C because in this
case we may take X ′ = X in part (1) of Lemma 8.11.3. Note that conditions (2)(a)
and (2)(b) of Lemma 8.11.3 are quite close in spirit to conditions (2) and (3) of
Definition 8.11.1. Namely, (2)(a) says that the map of presheaves of isomorphism
classes of objects becomes a surjection after sheafification. Moreover, (2)(b) says
that

IsomX (x, x′) −→ IsomY(F (x), F (x′))
is a surjection of sheaves on C/U for any U and x, x′ ∈ Ob(XU ).

Lemma 8.11.5.06P3 Let C be a site. Let

X ′
G′
//

F ′

��

X

F

��
Y ′ G // Y

be a 2-fibre product of stacks in groupoids over C. If X is a gerbe over Y, then X ′

is a gerbe over Y ′.

Proof. By the uniqueness property of a 2-fibre product may assume that X ′ =
Y ′×Y X as in Categories, Lemma 4.32.3. Let us prove properties (2)(a) and (2)(b)
of Lemma 8.11.3 for Y ′ ×Y X → Y ′.
Let y′ be an object of Y ′ lying over the object U of C. By assumption there exists
a covering {Ui → U} of U and objects xi ∈ XUi with isomorphisms αi : G(y′)|Ui →
F (xi). Then (Ui, y′|Ui , xi, αi) is an object of Y ′ ×Y X over Ui whose image in Y ′ is
y′|Ui . Thus (2)(a) holds.
Let U ∈ Ob(C), let x′

1, x
′
2 be objects of Y ′×YX over U , and let b′ : F ′(x′

1)→ F ′(x′
2)

be a morphism in Y ′
U . Write x′

i = (U, y′
i, xi, αi). Note that F ′(x′

i) = xi and
G′(x′

i) = y′
i. By assumption there exists a covering {Ui → U} in C and morphisms

ai : x1|Ui → x2|Ui in XUi with F (ai) = G(b′)|Ui . Then (b′|Ui , ai) is a morphism
x′

1|Ui → x′
2|Ui as required in (2)(b). □

Lemma 8.11.6.06R3 Let C be a site. Let F : X → Y and G : Y → Z be 1-morphisms
of stacks in groupoids over C. If X is a gerbe over Y and Y is a gerbe over Z, then
X is a gerbe over Z.
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Proof. Let us prove properties (2)(a) and (2)(b) of Lemma 8.11.3 for X → Z.

Let z be an object of Z lying over the object U of C. By assumption on G there
exists a covering {Ui → U} of U and objects yi ∈ YUi such that G(yi) ∼= z|Ui . By
assumption on F there exist coverings {Uij → Ui} and objects xij ∈ XUij such that
F (xij) ∼= yi|Uij . Then {Uij → U} is a covering of C and (G ◦F )(xij) ∼= z|Uij . Thus
(2)(a) holds.

Let U ∈ Ob(C), let x1, x2 be objects of X over U , and let c : (G ◦ F )(x1) → (G ◦
F )(x2) be a morphism in ZU . By assumption on G there exists a covering {Ui → U}
of U and morphisms bi : F (x1)|Ui → F (x2)|Ui in YUi such that G(bi) = c|Ui . By
assumption on F there exist coverings {Uij → Ui} and morphisms aij : x1|Uij →
x2|Uij in XUij such that F (aij) = bi|Uij . Then {Uij → U} is a covering of C and
(G ◦ F )(aij) = c|Uij as required in (2)(b). □

Lemma 8.11.7.06P4 Let C be a site. Let

X ′
G′
//

F ′

��

X

F

��
Y ′ G // Y

be a 2-cartesian diagram of stacks in groupoids over C. If for every U ∈ Ob(C) and
x ∈ Ob(YU ) there exists a covering {Ui → U} such that x|Ui is in the essential
image of G : Y ′

Ui
→ YUi and X ′ is a gerbe over Y ′, then X is a gerbe over Y.

Proof. By the uniqueness property of a 2-fibre product may assume that X ′ =
Y ′×Y X as in Categories, Lemma 4.32.3. Let us prove properties (2)(a) and (2)(b)
of Lemma 8.11.3 for X → Y.

Let y be an object of Y lying over the object U of C. By assumption there exists
a covering {Ui → U} of U and objects y′

i ∈ Y ′
Ui

with G(y′
i) ∼= y|Ui . By (2)(a)

for X ′ → Y ′ there exist coverings {Uij → Ui} and objects x′
ij of X ′ over Uij with

F ′(x′
ij) isomorphic to the restriction of y′

i to Uij . Then {Uij → U} is a covering of
C and G′(x′

ij) are objects of X over Uij whose images in Y are isomorphic to the
restrictions y|Uij . This proves (2)(a) for X → Y.

Let U ∈ Ob(C), let x1, x2 be objects of X over U , and let b : F (x1) → F (x2) be a
morphism in YU . By assumption we may choose a covering {Ui → U} and objects
y′
i of Y ′ over Ui such that there exist isomorphisms αi : G(y′

i) → F (x1)|Ui . Then
we get objects

x′
1i = (Ui, y′

i, x1|Ui , αi) and x′
2i = (Ui, y′

i, x2|Ui , b|Ui ◦ αi)

of X ′ over Ui. The identity morphism on y′
i is a morphism F ′(x′

1i)→ F ′(x′
2i). By

(2)(b) for X ′ → Y ′ there exist coverings {Uij → Ui} and morphisms a′
ij : x′

1i|Uij →
x′

2i|Uij such that F ′(a′
ij) = idy′

i
|Uij . Unwinding the definition of morphisms in

Y ′ ×Y X we see that G′(a′
ij) : x1|Uij → x2|Uij are the morphisms we’re looking for,

i.e., (2)(b) holds for X → Y. □

Gerbes all of whose automorphism sheaves are abelian play an important role in
algebraic geometry.
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Lemma 8.11.8.0CJY Let p : S → C be a gerbe over a site C. Assume that for all
U ∈ Ob(C) and x ∈ Ob(SU ) the sheaf of groups Aut(x) = Isom(x, x) on C/U is
abelian. Then there exist

(1) a sheaf G of abelian groups on C,
(2) for every U ∈ Ob(C) and every x ∈ Ob(SU ) an isomorphism G|U → Aut(x)

such that for every U and every morphism φ : x→ y in SU the diagram

G|U

��

G|U

��
Aut(x) α7→φ◦α◦φ−1

// Aut(y)

is commutative.

Proof. Let x, y be two objects of S with U = p(x) = p(y).
If there is a morphism φ : x → y over U , then it is an isomorphism and then we
indeed get an isomorphism Aut(x) → Aut(y) sending α to φ ◦ α ◦ φ−1. Moreover,
since we are assuming Aut(x) is commutative, this isomorphism is independent of
the choice of φ by a simple computation: namely, if ψ is a second such map, then

φ ◦ α ◦ φ−1 = ψ ◦ ψ−1 ◦ φ ◦ α ◦ φ−1 = ψ ◦ α ◦ ψ−1 ◦ φ ◦ φ−1 = ψ ◦ α ◦ ψ−1

The upshot is a canonical isomorphism of sheaves Aut(x)→ Aut(y). Furthermore,
if there is a third object z and a morphism y → z (and hence also a morphism
x→ z), then the canonical isomorphisms Aut(x)→ Aut(y), Aut(y)→ Aut(z), and
Aut(x)→ Aut(z) are compatible in the sense that

Aut(x)

$$

// Aut(z)

Aut(y)

::

commutes.
If there is no morphism from x to y over U , then we can choose a covering {Ui → U}
such that there exist morphisms x|Ui → y|Ui . This gives canonical isomorphisms

Aut(x)|Ui −→ Aut(y)|Ui
which agree over Ui ×U Uj (by canonicity). By glueing of sheaves (Sites, Lemma
7.26.1) we get a unique isomorphism Aut(x) → Aut(y) whose restriction to any
Ui is the canonical isomorphism of the previous paragraph. Similarly to the above
these canonical isomorphisms satisfy a compatibility if we have a third object over
U .
What if the fibre category of S over U is empty? Well, in this case we can find a
covering {Ui → U} and objects xi of S over Ui. Then we set Gi = Aut(xi). By the
above we obtain canonical isomorphisms

φij : Gi|Ui×UUj −→ Gj |Ui×UUj
whose restrictions to Ui×UUj×UUk satisfy the cocycle condition explained in Sites,
Section 7.26. By Sites, Lemma 7.26.4 we obtain a sheaf G over U whose restriction
to Ui gives Gi in a manner compatible with the glueing maps φij .
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If C has a final object U , then this finishes the proof as we can take G equal
to the sheaf we just constructed. In the general case we need to verify that the
sheaves G constructed over varying U are compatible in a canonical manner. This
is omitted. □

8.12. Functoriality for stacks

04WA In this section we study what happens if we want to change the base site of a stack.
This section can be skipped on a first reading.

Let u : C → D be a functor between categories. Let p : S → D be a category over
D. In this situation we denote upS the category over C defined as follows

(1) An object of upS is a pair (U, y) consisting of an object U of C and an
object y of Su(U).

(2) A morphism (a, β) : (U, y)→ (U ′, y′) is given by a morphism a : U → U ′

of C and a morphism β : y → y′ of S such that p(β) = u(a).
Note that with these definitions the fibre category of upS over U is equal to the
fibre category of S over u(U).

Lemma 8.12.1.04WB In the situation above, if S is a fibred category over D then upS is
a fibred category over C.

Proof. Please take a look at the discussion surrounding Categories, Definitions
4.33.1 and 4.33.5 before reading this proof. Let (a, β) : (U, y) → (U ′, y′) be a
morphism of upS. We claim that (a, β) is strongly cartesian if and only if β is
strongly cartesian. First, assume β is strongly cartesian. Consider any second
morphism (a1, β1) : (U1, y1)→ (U ′, y′) of upS. Then

MorupS((U1, y1), (U, y))
= MorC(U1, U)×MorD(u(U1),u(U)) MorS(y1, y)
= MorC(U1, U)×MorD(u(U1),u(U)) MorS(y1, y

′)×MorD(u(U1),u(U ′)) MorD(u(U1), u(U))
= MorS(y1, y

′)×MorD(u(U1),u(U ′)) MorC(U1, U)
= MorupS((U1, y1), (U ′, y′))×MorC(U1,U ′) MorC(U1, U)

the second equality as β is strongly cartesian. Hence we see that indeed (a, β) is
strongly cartesian. Conversely, suppose that (a, β) is strongly cartesian. Choose
a strongly cartesian morphism β′ : y′′ → y′ in S with p(β′) = u(a). Then bot
(a, β) : (U, y) → (U, y′) and (a, β′) : (U, y′′) → (U, y) are strongly cartesian and
lift a. Hence, by the uniqueness of strongly cartesian morphisms (see discussion in
Categories, Section 4.33) there exists an isomorphism ι : y → y′′ in Su(U) such that
β = β′ ◦ ι, which implies that β is strongly cartesian in S by Categories, Lemma
4.33.2.

Finally, we have to show that given (U ′, y′) and U → U ′ we can find a strongly
cartesian morphism (U, y) → (U ′, y′) in upS lifting the morphism U → U ′. This
follows from the above as by assumption we can find a strongly cartesian morphism
y → y′ lifting the morphism u(U)→ u(U ′). □

Lemma 8.12.2.04WC Let u : C → D be a continuous functor of sites. Let p : S → D be
a stack over D. Then upS is a stack over C.
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Proof. We have seen in Lemma 8.12.1 that upS is a fibred category over C. More-
over, in the proof of that lemma we have seen that a morphism (a, β) of upS is
strongly cartesian if and only β is strongly cartesian in S. Hence, given a mor-
phism a : U → U ′ of C, not only do we have the equalities (upS)U = SU and
(upS)U ′ = SU ′ , but via these equalities the pullback functors agree; in a formula
a∗(U ′, y′) = (U, u(a)∗y′).
Having said this, let U = {Ui → U} be a covering of C. As u is continuous
we see that V = {u(Ui) → u(U)} is a covering of D, and that u(Ui ×U Uj) =
u(Ui)×u(U) u(Uj) and similarly for the triple fibre products Ui×U Uj×U Uk. As we
have the identifications of fibre categories and pullbacks we see that descend data
relative to U are identical to descend data relative to V. Since by assumption we
have effective descent in S we conclude the same holds for upS. □

Lemma 8.12.3.04WD Let u : C → D be a continuous functor of sites. Let p : S → D be
a stack in groupoids over D. Then upS is a stack in groupoids over C.

Proof. This follows immediately from Lemma 8.12.2 and the fact that all fibre
categories are groupoids. □

Definition 8.12.4.04WE Let f : D → C be a morphism of sites given by the continuous
functor u : C → D. Let S be a fibred category over D. In this setting we write f∗S
for the fibred category upS defined above. We say that f∗S is the pushforward of
S along f .

By the results above we know that f∗S is a stack (in groupoids) if S is a stack (in
groupoids). It is harder to define the pullback of a stack (and we’ll need additional
assumptions for our particular construction – feel free to write up and submit a
more general construction). We do this in several steps.
Let u : C → D be a functor between categories. Let p : S → C be a category over
C. In this setting we define a category uppS as follows:

(1) An object of uppS is a triple (U, ϕ : V → u(U), x) where U ∈ Ob(C), the
map ϕ : V → u(U) is a morphism in D, and x ∈ Ob(SU ).

(2) A morphism
(U1, ϕ1 : V1 → u(U1), x1) −→ (U2, ϕ2 : V2 → u(U2), x2)

of uppS is given by a (a, b, α) where a : U1 → U2 is a morphism of C,
b : V1 → V2 is a morphism of D, and α : x1 → x2 is morphism of S, such
that p(α) = a and the diagram

V1

ϕ1

��

b
// V2

ϕ2

��
u(U1)

u(a) // u(U2)

commutes in D.
We think of uppS as a category over D via

ppp : uppS −→ D, (U, ϕ : V → u(U), x) 7−→ V.

The fibre category of uppS over an object V of D does not have a simple description.

Lemma 8.12.5.04WF In the situation above assume
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(1) p : S → C is a fibred category,
(2) C has nonempty finite limits, and
(3) u : C → D commutes with nonempty finite limits.

Consider the set R ⊂ Arrows(uppS) of morphisms of the form
(a, idV , α) : (U ′, ϕ′ : V → u(U ′), x′) −→ (U, ϕ : V → u(U), x)

with α strongly cartesian. Then R is a right multiplicative system.

Proof. According to Categories, Definition 4.27.1 we have to check RMS1, RMS2,
RMS3. Condition RMS1 holds as a composition of strongly cartesian morphisms
is strongly cartesian, see Categories, Lemma 4.33.2.
To check RMS2 suppose we have a morphism

(a, b, α) : (U1, ϕ1 : V1 → u(U1), x1) −→ (U, ϕ : V → u(U), x)
of uppS and a morphism

(c, idV , γ) : (U ′, ϕ′ : V → u(U ′), x′) −→ (U, ϕ : V → u(U), x)
with γ strongly cartesian from R. In this situation set U ′

1 = U1 ×U U ′, and denote
a′ : U ′

1 → U ′ and c′ : U ′
1 → U1 the projections. As u(U ′

1) = u(U1) ×u(U) u(U ′)
we see that ϕ′

1 = (ϕ1, ϕ
′) : V1 → u(U ′

1) is a morphism in D. Let γ1 : x′
1 → x1 be

a strongly cartesian morphism of S with p(γ1) = ϕ′
1 (which exists because S is a

fibred category over C). Then as γ : x′ → x is strongly cartesian there exists a
unique morphism α′ : x′

1 → x′ with p(α′) = a′. At this point we see that
(a′, b, α′) : (U1, ϕ1 : V1 → u(U ′

1), x′
1) −→ (U, ϕ : V → u(U ′), x′)

is a morphism and that
(c′, idV1 , γ1) : (U ′

1, ϕ
′
1 : V1 → u(U ′

1), x′
1) −→ (U1, ϕ : V1 → u(U1), x1)

is an element of R which form a solution of the existence problem posed by RMS2.
Finally, suppose that

(a, b, α), (a′, b′, α′) : (U1, ϕ1 : V1 → u(U1), x1) −→ (U, ϕ : V → u(U), x)
are two morphisms of uppS and suppose that

(c, idV , γ) : (U, ϕ : V → u(U), x) −→ (U ′, ϕ : V → u(U ′), x′)
is an element of R which equalizes the morphisms (a, b, α) and (a′, b′, α′). This
implies in particular that b = b′. Let d : U2 → U1 be the equalizer of a, a′ which
exists (see Categories, Lemma 4.18.3). Moreover, u(d) : u(U2) → u(U1) is the
equalizer of u(a), u(a′) hence (as b = b′) there is a morphism ϕ2 : V1 → u(U2) such
that ϕ1 = u(d) ◦ ϕ1. Let δ : x2 → x1 be a strongly cartesian morphism of S with
p(δ) = u(d). Now we claim that α ◦ δ = α′ ◦ δ. This is true because γ is strongly
cartesian, γ ◦ α ◦ δ = γ ◦ α′ ◦ δ, and p(α ◦ δ) = p(α′ ◦ δ). Hence the arrow

(d, idV1 , δ) : (U2, ϕ2 : V1 → u(U2), x2) −→ (U1, ϕ1 : V1 → u(U1), x1)
is an element of R and equalizes (a, b, α) and (a′, b′, α′). Hence R satisfies RMS3
as well. □

Lemma 8.12.6.04WG With notation and assumptions as in Lemma 8.12.5. Set upS =
R−1uppS, see Categories, Section 4.27. Then upS is a fibred category over D.

https://stacks.math.columbia.edu/tag/04WG
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Proof. We use the description of upS given just above Categories, Lemma 4.27.11.
Note that the functor ppp : uppS → D transforms every element of R to an identity
morphism. Hence by Categories, Lemma 4.27.16 we obtain a canonical functor
pp : upS → D extending the given functor. This is how we think of upS as a
category over D.
First we want to characterize the D-strongly cartesian morphisms in upS. A mor-
phism f : X → Y of upS is the equivalence class of a pair (f ′ : X ′ → Y, r : X ′ → X)
with r ∈ R. In fact, in upS we have f = (f ′, 1)◦(r, 1)−1 with obvious notation. Note
that an isomorphism is always strongly cartesian, as are compositions of strongly
cartesian morphisms, see Categories, Lemma 4.33.2. Hence f is strongly cartesian if
and only if (f ′, 1) is so. Thus the following claim completely characterizes strongly
cartesian morphisms. Claim: A morphism

(a, b, α) : X1 = (U1, ϕ1 : V1 → u(U1), x1) −→ (U2, ϕ2 : V2 → u(U2), x2) = X2

of uppS has image f = ((a, b, α), 1) strongly cartesian in upS if and only if α is a
strongly cartesian morphism of S.
Assume α strongly cartesian. Let X = (U, ϕ : V → u(U), x) be another object,
and let f2 : X → X2 be a morphism of upS such that pp(f2) = b ◦ b1 for some
b1 : U → U1. To show that f is strongly cartesian we have to show that there exists
a unique morphism f1 : X → X1 in upS such that pp(f1) = b1 and f2 = f◦f1 in upS.
Write f2 = (f ′

2 : X ′ → X2, r : X ′ → X). Again we can write f2 = (f ′
2, 1) ◦ (r, 1)−1

in upS. Since (r, 1) is an isomorphism whose image in D is an identity we see that
finding a morphism f1 : X → X1 with the required properties is the same thing as
finding a morphism f ′

1 : X ′ → X1 in upS with p(f ′
1) = b1 and f ′

2 = f ◦ f ′
1. Hence

we may assume that f2 is of the form f2 = ((a2, b2, α2), 1) with b2 = b ◦ b1. Here is
a picture

(U1, V1 → u(U1), x1)

(a,b,α)
��

(U, V → u(U), x)
(a2,b2,α2) // (U2, V2 → u(U2), x2)

Now it is clear how to construct the morphism f1. Namely, set U ′ = U ×U2 U1 with
projections c : U ′ → U and a1 : U ′ → U1. Pick a strongly cartesian morphism γ :
x′ → x lifting the morphism c. Since b2 = b◦b1, and since u(U ′) = u(U)×u(U2)u(U1)
we see that ϕ′ = (ϕ, ϕ1 ◦ b1) : V → u(U ′). Since α is strongly cartesian, and
a ◦ a1 = a2 ◦ c = p(α2 ◦ γ) there exists a morphism α1 : x′ → x1 lifting a1 such that
α ◦ α1 = α2 ◦ γ. Set X ′ = (U ′, ϕ′ : V → u(U ′), x′). Thus we see that

f1 = ((a1, b1, α1) : X ′ → X1, (c, idV , γ) : X ′ → X) : X −→ X1

works, in fact the diagram

(U ′, ϕ′ : V → u(U ′), x′)

(c,idV ,γ)
��

(a1,b1,α1)
// (U1, V1 → u(U1), x1)

(a,b,α)
��

(U, V → u(U), x)
(a2,b2,α2) // (U2, V2 → u(U2), x2)

is commutative by construction. This proves existence.
Next we prove uniqueness, still in the special case f = ((a, b, α), 1) and f2 =
((a2, b2, α2), 1). We strongly advise the reader to skip this part. Suppose that
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g1, g
′
1 : X → X1 are two morphisms of upS such that pp(g1) = pp(g′

1) = b1 and
f2 = f◦g1 = f◦g′

1. Our goal is to show that g1 = g′
1. By Categories, Lemma 4.27.13

we may represent g1 and g′
1 as the equivalence classes of (f1 : X ′ → X1, r : X ′ → X)

and (f ′
1 : X ′ → X1, r : X ′ → X) for some r ∈ R. By Categories, Lemma 4.27.14

we see that f2 = f ◦ g1 = f ◦ g′
1 means that there exists a morphism r′ : X ′′ → X ′

in uppS such that r′ ◦ r ∈ R and
(a, b, α) ◦ f1 ◦ r′ = (a, b, α) ◦ f ′

1 ◦ r′ = (a2, b2, α2) ◦ r′

in uppS. Note that now g1 is represented by (f1 ◦ r′, r ◦ r′) and similarly for g′
1.

Hence we may assume that
(a, b, α) ◦ f1 = (a, b, α) ◦ f ′

1 = (a2, b2, α2).
Write r = (c, idV , γ) : (U ′, ϕ′ : V → u(U ′), x′), f1 = (a1, b1, α1), and f ′

1 =
(a′

1, b1, α
′
1). Here we have used the condition that pp(g1) = pp(g′

1). The equali-
ties above are now equivalent to a◦a1 = a◦a′

1 = a2 ◦c and α◦α1 = α◦α′
1 = α2 ◦γ.

It need not be the case that a1 = a′
1 in this situation. Thus we have to precom-

pose by one more morphism from R. Namely, let U ′′ = Eq(a1, a
′
1) be the equalizer

of a1 and a′
1 which is a subobject of U ′. Denote c′ : U ′′ → U ′ the canonical

monomorphism. Because of the relations among the morphisms above we see that
V → u(U ′) maps into u(U ′′) = u(Eq(a1, a

′
1)) = Eq(u(a1), u(a′

1)). Hence we get a
new object (U ′′, ϕ′′ : V → u(U ′′), x′′), where γ′ : x′′ → x′ is a strongly cartesian
morphism lifting γ. Then we see that we may precompose f1 and f ′

1 with the ele-
ment (c′, idV , γ′) of R. After doing this, i.e., replacing (U ′, ϕ′ : V → u(U ′), x′) with
(U ′′, ϕ′′ : V → u(U ′′), x′′), we get back to the previous situation where in addition
we now have that a1 = a′

1. In this case it follows formally from the fact that α is
strongly cartesian (!) that α1 = α′

1. This shows that g1 = g′
1 as desired.

We omit the proof of the fact that for any strongly cartesian morphism of upS
of the form ((a, b, α), 1) the morphism α is strongly cartesian in S. (We do not
need the characterization of strongly cartesian morphisms in the rest of the proof,
although we do use it later in this section.)
Let (U, ϕ : V → u(U), x) be an object of upS. Let b : V ′ → V be a morphism of D.
Then the morphism

(idU , b, idx) : (U, ϕ ◦ b : V ′ → u(U), x) −→ (U, ϕ : V → u(U), x)
is strongly cartesian by the result of the preceding paragraphs and we win. □

Lemma 8.12.7.04WH With notation and assumptions as in Lemma 8.12.6. If S is fibred
in groupoids, then upS is fibred in groupoids.

Proof. By Lemma 8.12.6 we know that upS is a fibred category. Let f : X → Y
be a morphism of upS with pp(f) = idV . We are done if we can show that f is
invertible, see Categories, Lemma 4.35.2. Write f as the equivalence class of a pair
((a, b, α), r) with r ∈ R. Then pp(r) = idV , hence ppp((a, b, α)) = idV . Hence
b = idV . But any morphism of S is strongly cartesian, see Categories, Lemma
4.35.2 hence we see that (a, b, α) ∈ R is invertible in upS as desired. □

Lemma 8.12.8.04WI Let u : C → D be a functor. Let p : S → C and q : T → D be
categories over C and D. Assume that

(1) p : S → C is a fibred category,
(2) q : T → D is a fibred category,

https://stacks.math.columbia.edu/tag/04WH
https://stacks.math.columbia.edu/tag/04WI
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(3) C has nonempty finite limits, and
(4) u : C → D commutes with nonempty finite limits.

Then we have a canonical equivalence of categories
MorFib/C(S, upT ) = MorFib/D(upS, T )

of morphism categories.

Proof. In this proof we use the notation x/U to denote an object x of S which lies
over U in C. Similarly y/V denotes an object y of T which lies over V in D. In
the same vein α/a : x/U → x′/U ′ denotes the morphism α : x → x′ with image
a : U → U ′ in C.
Let G : upS → T be a 1-morphism of fibred categories over D. Denote G′ : uppS →
T the composition of G with the canonical (localization) functor uppS → upS.
Then consider the functor H : S → upT given by

H(x/U) = (U,G′(U, idu(U) : u(U)→ u(U), x))
on objects and by

H((α, a) : x/U → x′/U ′) = G′(a, u(a), α)
on morphisms. Since G transforms strongly cartesian morphisms into strongly
cartesian morphisms, we see that if α is strongly cartesian, then H(α) is strongly
cartesian. Namely, we’ve seen in the proof of Lemma 8.12.6 that in this case the
map (a, u(a), α) becomes strongly cartesian in upS. Clearly this construction is
functorial in G and we obtain a functor

A : MorFib/D(upS, T ) −→ MorFib/C(S, upT )

Conversely, let H : S → upT be a 1-morphism of fibred categories. Recall that an
object of upT is a pair (U, y) with y ∈ Ob(Tu(U)). We denote pr : upT → T the
functor (U, y) 7→ y. In this case we define a functor G′ : uppS → T by the rules

G′(U, ϕ : V → u(U), x) = ϕ∗pr(H(x))
on objects and we let

G′((a, b, α) : (U, ϕ : V → u(U), x)→ (U ′, ϕ′ : V ′ → u(U ′), x′)) = β

be the unique morphism β : ϕ∗pr(H(x))→ (ϕ′)∗pr(H(x′)) such that q(β) = b and
the diagram

ϕ∗pr(H(x))

��

β
// (ϕ′)∗pr(H(x′))

��
pr(H(x))

pr(H(a,α))// pr(H(x′))
Such a morphism exists and is unique because T is a fibred category.
We check that G′(r) is an isomorphism if r ∈ R. Namely, if

(a, idV , α) : (U ′, ϕ′ : V → u(U ′), x′) −→ (U, ϕ : V → u(U), x)
with α strongly cartesian is an element of the right multiplicative system R of
Lemma 8.12.5 then H(α) is strongly cartesian, and pr(H(α)) is strongly cartesian,
see proof of Lemma 8.12.1. Hence in this case the morphism β has q(β) = idV
and is strongly cartesian. Hence β is an isomorphism by Categories, Lemma 4.33.2.
Thus by Categories, Lemma 4.27.16 we obtain a canonical extension G : upS → T .
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Next, let us prove that G transforms strongly cartesian morphisms into strongly
cartesian morphisms. Suppose that f : X → Y is a strongly cartesian. By the
characterization of strongly cartesian morphisms in upS we can write f as ((a, b, α) :
X ′ → Y, r : X ′ → Y ) where r ∈ R and α strongly cartesian in S. By the above
it suffices to show that G′(a, bα) is strongly cartesian. As before the condition
that α is strongly cartesian implies that pr(H(a, α)) : pr(H(x)) → pr(H(x′)) is
strongly cartesian in T . Since in the commutative square above now all arrows
except possibly β is strongly cartesian it follows that also β is strongly cartesian
as desired. Clearly the construction H 7→ G is functorial in H and we obtain a
functor

B : MorFib/C(S, upT ) −→ MorFib/D(upS, T )
To finish the proof of the lemma we have to show that the functors A and B are
mutually quasi-inverse. We omit the verifications. □

Definition 8.12.9.04WJ Let f : D → C be a morphism of sites given by a continuous
functor u : C → D satisfying the hypotheses and conclusions of Sites, Proposition
7.14.7. Let S be a stack over C. In this setting we write f−1S for the stackification
of the fibred category upS over D constructed above. We say that f−1S is the
pullback of S along f .

Of course, if S is a stack in groupoids, then f−1S is a stack in groupoids by Lemmas
8.9.1 and 8.12.7.

Lemma 8.12.10.04WK Let f : D → C be a morphism of sites given by a continuous
functor u : C → D satisfying the hypotheses and conclusions of Sites, Proposition
7.14.7. Let p : S → C and q : T → D be stacks. Then we have a canonical
equivalence of categories

MorStacks/C(S, f∗T ) = MorStacks/D(f−1S, T )
of morphism categories.

Proof. For i = 1, 2 an i-morphism of stacks is the same thing as a i-morphism of
fibred categories, see Definition 8.4.5. By Lemma 8.12.8 we have already

MorFib/C(S, upT ) = MorFib/D(upS, T )

Hence the result follows from Lemma 8.8.3 as upT = f∗T and f−1S is the stacki-
fication of upS. □

Lemma 8.12.11.04WR Let f : D → C be a morphism of sites given by a continuous
functor u : C → D satisfying the hypotheses and conclusions of Sites, Proposition
7.14.7. Let S → C be a fibred category, and let S → S ′ be the stackification of S.
Then f−1S ′ is the stackification of upS.

Proof. Omitted. Hint: This is the analogue of Sites, Lemma 7.13.4. □

The following lemma tells us that the 2-category of stacks over Schfppf is a “full
2-sub category” of the 2-category of stacks over Sch′

fppf provided that Sch′
fppf

contains Schfppf (see Topologies, Section 34.12).

Lemma 8.12.12.04WS Let C and D be sites. Let u : C → D be a functor satisfying the
assumptions of Sites, Lemma 7.21.8. Let f : D → C be the corresponding morphism
of sites. Then

https://stacks.math.columbia.edu/tag/04WJ
https://stacks.math.columbia.edu/tag/04WK
https://stacks.math.columbia.edu/tag/04WR
https://stacks.math.columbia.edu/tag/04WS
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(1) for every stack p : S → C the canonical functor S → f∗f
−1S is an equiv-

alence of stacks,
(2) given stacks S,S ′ over C the construction f−1 induces an equivalence

MorStacks/C(S,S ′) −→ MorStacks/D(f−1S, f−1S ′)
of morphism categories.

Proof. Note that by Lemma 8.12.10 we have an equivalence of categories
MorStacks/D(f−1S, f−1S ′) = MorStacks/C(S, f∗f

−1S ′)
Hence (2) follows from (1).
To prove (1) we are going to use Lemma 8.4.8. This lemma tells us that we have
to show that can : S → f∗f

−1S is fully faithful and that all objects of f∗f
−1S are

locally in the essential image.
We quickly describe the functor can, see proof of Lemma 8.12.8. To do this we
introduce the functor c′′ : S → uppS defined by c′′(x/U) = (U, id : u(U)→ u(U), x),
and c′′(α/a) = (a, u(a), α). We set c′ : S → upS equal to the composition of c′′ and
the canonical functor uppS → upS. We set c : S → f−1S equal to the composition
of c′ and the canonical functor upS → f−1S. Then can : S → f∗f

−1S is the functor
which to x/U associates the pair (U, c(x)) and to α/a the morphism (a, c(α)).
Fully faithfulness. To prove this we are going to use Lemma 8.4.7. Let U ∈ Ob(C).
Let x, y ∈ SU . First off, as u is fully faithful, we have

Mor(f∗f−1S)U (can(x), can(y)) = Mor(f−1S)u(U)(c(x), c(y))
directly from the definition of f∗. Similar holds after pulling back to any U ′/U . Be-
cause f−1S is the stackification of upS, and since u is continuous and cocontinuous
the presheaf

U ′/U 7−→ Mor(f−1S)u(U′)
(c(x|U ′), c(y|U ′))

is the sheafification of the presheaf
U ′/U 7−→ Mor(upS)u(U′)

(c′(x|U ′), c′(y|U ′))
Hence to finish the proof of fully faithfulness it suffices to show that for any U and
x, y the map

MorSU (x, y) −→ Mor(upS)U (c′(x), c′(y))
is bijective. A morphism f : x → y in upS over u(U) is given by an equivalence
class of diagrams

(U ′, ϕ : u(U)→ u(U ′), x′)

(c,idu(U),γ)
��

(a,b,α)
// (U, id : u(U)→ u(U), y)

(U, id : u(U)→ u(U), x)

with γ strongly cartesian and b = idu(U). But since u is fully faithful we can write
ϕ = u(c′) for some morphism c′ : U → U ′ and then we see that a ◦ c′ = idU and
c ◦ c′ = idU ′ . Because γ is strongly cartesian we can find a morphism γ′ : x → x′

lifting c′ such that γ ◦ γ′ = idx. By definition of the equivalence classes defining
morphisms in upS it follows that the morphism

(U, id : u(U)→ u(U), x)
(id,id,α◦γ′)

// (U, id : u(U)→ u(U), y)
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of uppS induces the morphism f in upS. This proves that the map is surjective.
We omit the proof that it is injective.
Finally, we have to show that any object of f∗f

−1S locally comes from an object
of S. This is clear from the constructions (details omitted). □

8.13. Stacks and localization

04WT Let C be a site. Let U be an object of C. We want to understand stacks over C/U
as stacks over C together with a morphism towards U . The following lemma is the
reason why this is easier to do when the presheaf hU is a sheaf.

Lemma 8.13.1.04WU Let C be a site. Let U ∈ Ob(C). Then jU : C/U → C is a stack
over C if and only if hU is a sheaf.

Proof. Combine Lemma 8.6.3 with Categories, Example 4.38.7. □

Assume that C is a site, and U is an object of C whose associated representable
presheaf is a sheaf. We denote j : C/U → C the localization functor.
Construction A. Let p : S → C/U be a stack over the site C/U . We define a stack
j!p : j!S → C as follows:

(1) As a category j!S = S, and
(2) the functor j!p : j!S → C is just the composition j ◦ p.

We omit the verification that this is a stack (hint: Use that hU is a sheaf to glue
morphisms to U). There is a canonical functor

j!S −→ C/U
namely the functor p which is a 1-morphism of stacks over C.
Construction B. Let q : T → C be a stack over C which is endowed with a morphism
of stacks p : T → C/U over C. In this case it is automatically the case that
p : T → C/U is a stack over C/U .

Lemma 8.13.2.04WV Assume that C is a site, and U is an object of C whose associated
representable presheaf is a sheaf. Constructions A and B above define mutually
inverse (!) functors of 2-categories{

2-category of
stacks over C/U

}
↔

2-category of pairs (T , p) consisting
of a stack T over C and a morphism

p : T → C/U of stacks over C


Proof. This is clear. □
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CHAPTER 9

Fields

09FA 9.1. Introduction

09FB In this chapter, we shall discuss the theory of fields. Recall that a field is a ring
in which all nonzero elements are invertible. Equivalently, the only two ideals of a
field are (0) and (1) since any nonzero element is a unit. Consequently fields will
be the simplest cases of much of the theory developed later.

The theory of field extensions has a different feel from standard commutative al-
gebra since, for instance, any morphism of fields is injective. Nonetheless, it turns
out that questions involving rings can often be reduced to questions about fields.
For instance, any domain can be embedded in a field (its quotient field), and any
local ring (that is, a ring with a unique maximal ideal; we have not defined this
term yet) has associated to it its residue field (that is, its quotient by the maximal
ideal). A knowledge of field extensions will thus be useful.

9.2. Basic definitions

09FC Because we have placed this chapter before the chapter discussing commutative
algebra we need to introduce some of the basic definitions here before we discuss
these in greater detail in the algebra chapters.

Definition 9.2.1.09FD A field is a nonzero ring where every nonzero element is invertible.
Given a field a subfield is a subring that is itself a field.

For a field k, we write k∗ for the subset k \{0}. This generalizes the usual notation
R∗ that refers to the group of invertible elements in a ring R.

Definition 9.2.2.09FE A domain or an integral domain is a nonzero ring where 0 is the
only zerodivisor.

9.3. Examples of fields

09FF To get started, let us begin by providing several examples of fields. The reader
should recall that if R is a ring and I ⊂ R an ideal, then R/I is a field precisely
when I is a maximal ideal.

Example 9.3.1 (Rational numbers).09FG The rational numbers form a field. It is called
the field of rational numbers and denoted Q.

Example 9.3.2 (Prime fields).09FH If p is a prime number, then Z/(p) is a field, denoted
Fp. Indeed, (p) is a maximal ideal in Z. Thus, fields may be finite: Fp contains p
elements.

388
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Example 9.3.3.09FI In a principal ideal domain, an ideal generated by an irreducible
element is maximal. Now, if k is a field, then the polynomial ring k[x] is a principal
ideal domain. It follows that if P ∈ k[x] is an irreducible polynomial (that is, a
nonconstant polynomial that does not admit a factorization into terms of smaller
degrees), then k[x]/(P ) is a field. It contains a copy of k in a natural way. This
is a very general way of constructing fields. For instance, the complex numbers C
can be constructed as R[x]/(x2 + 1).
Example 9.3.4 (Quotient fields).09FJ Recall that, given a domain A, there is an imbed-
ding A→ F into a field F constructed from A in exactly the same manner that Q
is constructed from Z. Formally the elements of F are (equivalence classes of) frac-
tions a/b, a, b ∈ A, b ̸= 0. As usual a/b = a′/b′ if and only if ab′ = ba′. The field F
is called the quotient field, or field of fractions, or fraction field of A. The quotient
field has the following universal property: given an injective ring map φ : A → K
to a field K, there is a unique map ψ : F → K making

F
ψ
// K

A

OO

φ

>>

commute. Indeed, it is clear how to define such a map: we set ψ(a/b) = φ(a)φ(b)−1

where injectivity of φ assures that φ(b) ̸= 0 if b ̸= 0.
Example 9.3.5 (Field of rational functions).09FK If k is a field, then we can consider the
field k(x) of rational functions over k. This is the quotient field of the polynomial
ring k[x]. In other words, it is the set of quotients F/G for F,G ∈ k[x], G ̸= 0 with
the obvious equivalence relation.
Example 9.3.6.09FL Let X be a Riemann surface. Let C(X) denote the set of mero-
morphic functions on X. Then C(X) is a ring under multiplication and addition of
functions. It turns out that in fact C(X) is a field. Namely, if a nonzero function
f(z) is meromorphic, so is 1/f(z). For example, let S2 be the Riemann sphere;
then we know from complex analysis that the ring of meromorphic functions C(S2)
is the field of rational functions C(z).

9.4. Vector spaces

09FM One reason fields are so nice is that the theory of modules over fields (i.e. vector
spaces), is very simple.
Lemma 9.4.1.09FN If k is a field, then every k-module is free.
Proof. Indeed, by linear algebra we know that a k-module (i.e. vector space) V
has a basis B ⊂ V , which defines an isomorphism from the free vector space on B
to V . □

Lemma 9.4.2.09FP Every exact sequence of modules over a field splits.
Proof. This follows from Lemma 9.4.1 as every vector space is a projective module.

□

This is another reason why much of the theory in future chapters will not say
very much about fields, since modules behave in such a simple manner. Note
that Lemma 9.4.2 is a statement about the category of k-modules (for k a field),
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because the notion of exactness is inherently arrow-theoretic, i.e., makes use of
purely categorical notions, and can in fact be phrased within a so-called abelian
category.
Henceforth, since the study of modules over a field is linear algebra, and since the
ideal theory of fields is not very interesting, we shall study what this chapter is
really about: extensions of fields.

9.5. The characteristic of a field

09FQ In the category of rings, there is an initial object Z: any ring R has a map from Z
into it in precisely one way. For fields, there is no such initial object. Nonetheless,
there is a family of objects such that every field can be mapped into in exactly one
way by exactly one of them, and in no way by the others.
Let F be a field. Think of F as a ring to get a ring map f : Z→ F . The image of
this ring map is a domain (as a subring of a field) hence the kernel of f is a prime
ideal in Z. Hence the kernel of f is either (0) or (p) for some prime number p.
In the first case we see that f is injective, and in this case we think of Z as a subring
of F . Moreover, since every nonzero element of F is invertible we see that it makes
sense to talk about p/q ∈ F for p, q ∈ Z with q ̸= 0. Hence in this case we may
and we do think of Q as a subring of F . One can easily see that this is the smallest
subfield of F in this case.
In the second case, i.e., when Ker(f) = (p) we see that Z/(p) = Fp is a subring of
F . Clearly it is the smallest subfield of F .
Arguing in this way we see that every field contains a smallest subfield which is
either Q or finite equal to Fp for some prime number p.

Definition 9.5.1.09FR The characteristic of a field F is 0 if Z ⊂ F , or is a prime p if
p = 0 in F . The prime subfield of F is the smallest subfield of F which is either
Q ⊂ F if the characteristic is zero, or Fp ⊂ F if the characteristic is p > 0.

It is easy to see that if E ⊂ F is a subfield, then the characteristic of E is the same
as the characteristic of F .

Example 9.5.2.09FS The characteristic of Fp is p, and that of Q is 0.

9.6. Field extensions

09FT In general, though, we are interested not so much in fields by themselves but in
field extensions. This is perhaps analogous to studying not rings but algebras over
a fixed ring. The nice thing for fields is that the notion of a “field over another
field” just recovers the notion of a field extension, by the next result.

Lemma 9.6.1.09FU If F is a field and R is a nonzero ring, then any ring homomorphism
φ : F → R is injective.

Proof. Indeed, let a ∈ Ker(φ) be a nonzero element. Then we have φ(1) =
φ(a−1a) = φ(a−1)φ(a) = 0. Thus 1 = φ(1) = 0 and R is the zero ring. □

Definition 9.6.2.09FV If F is a field contained in a field E, then E is said to be a field
extension of F . We shall write E/F to indicate that E is an extension of F .
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So if F, F ′ are fields, and F → F ′ is any ring-homomorphism, we see by Lemma
9.6.1 that it is injective, and F ′ can be regarded as an extension of F , by a slight
abuse of language. Alternatively, a field extension of F is just an F -algebra that
happens to be a field. This is completely different than the situation for general
rings, since a ring homomorphism is not necessarily injective.
Let k be a field. There is a category of field extensions of k. An object of this
category is an extension E/k, that is a (necessarily injective) morphism of fields

k → E,

while a morphism between extensions E/k and E′/k is a k-algebra morphism E →
E′; alternatively, it is a commutative diagram

E // E′

k

??__

The set of morphisms from E → E′ in the category of extensions of k will be
denoted by Mork(E,E′).
Definition 9.6.3.09FW A tower of fields En/En−1/ . . . /E0 consists of a sequence of ex-
tensions of fields En/En−1, En−1/En−2, . . ., E1/E0.
Let us give a few examples of field extensions.
Example 9.6.4.09FX Let k be a field, and P ∈ k[x] an irreducible polynomial. We have
seen that k[x]/(P ) is a field (Example 9.3.3). Since it is also a k-algebra in the
obvious way, it is an extension of k.
Example 9.6.5.09FY If X is a Riemann surface, then the field of meromorphic functions
C(X) (Example 9.3.6) is an extension field of C, because any element of C induces
a meromorphic — indeed, holomorphic — constant function on X.
Let F/k be a field extension. Let S ⊂ F be any subset. Then there is a smallest
subextension of F (that is, a subfield of F containing k) that contains S. To see this,
consider the family of subfields of F containing S and k, and take their intersection;
one checks that this is a field. By a standard argument one shows, in fact, that this
is the set of elements of F that can be obtained via a finite number of elementary
algebraic operations (addition, multiplication, subtraction, and division) involving
elements of k and S.
Definition 9.6.6.09FZ Let k be a field. If F/k is an extension of fields and S ⊂ F , we
write k(S) for the smallest subfield of F containing k and S. We will say that S
generates the field extension k(S)/k. If S = {α} is a singleton, then we write k(α)
instead of k({α}). We say F/k is a finitely generated field extension if there exists
a finite subset S ⊂ F with F = k(S).
For instance, C is generated by i over R.
Exercise 9.6.7.09G0 Show that C does not have a countable set of generators over Q.
Let us now classify extensions generated by one element.
Lemma 9.6.8 (Classification of simple extensions).09G1 If a field extension F/k is gen-
erated by one element, then it is k-isomorphic either to the rational function field
k(t)/k or to one of the extensions k[t]/(P ) for P ∈ k[t] irreducible.
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We will see that many of the most important cases of field extensions are generated
by one element, so this is actually useful.

Proof. Let α ∈ F be such that F = k(α); by assumption, such an α exists. There
is a morphism of rings

k[t]→ F

sending the indeterminate t to α. The image is a domain, so the kernel is a prime
ideal. Thus, it is either (0) or (P ) for P ∈ k[t] irreducible.
If the kernel is (P ) for P ∈ k[t] irreducible, then the map factors through k[t]/(P ),
and induces a morphism of fields k[t]/(P )→ F . Since the image contains α, we see
easily that the map is surjective, hence an isomorphism. In this case, k[t]/(P ) ≃ F .
If the kernel is trivial, then we have an injection k[t] → F . One may thus define
a morphism of the quotient field k(t) into F ; given a quotient R(t)/Q(t) with
R(t), Q(t) ∈ k[t], we map this to R(α)/Q(α). The hypothesis that k[t] → F is
injective implies that Q(α) ̸= 0 unless Q is the zero polynomial. The quotient field
of k[t] is the rational function field k(t), so we get a morphism k(t) → F whose
image contains α. It is thus surjective, hence an isomorphism. □

9.7. Finite extensions

09G2 If F/E is a field extension, then evidently F is also a vector space over E (the
scalar action is just multiplication in F ).

Definition 9.7.1.09G3 Let F/E be an extension of fields. The dimension of F considered
as an E-vector space is called the degree of the extension and is denoted [F : E].
If [F : E] <∞ then F is said to be a finite extension of E.

Example 9.7.2.09G4 The field C is a two dimensional vector space over R with basis
1, i. Thus C is a finite extension of R of degree 2.

Lemma 9.7.3.09G5 Let K/E/F be a tower of algebraic field extensions. If K is finite
over F , then K is finite over E.

Proof. Direct from the definition. □

Let us now consider the degree in the most important special example, that given
by Lemma 9.6.8, in the next two examples.

Example 9.7.4 (Degree of a rational function field).09G6 If k is any field, then the
rational function field k(t) is not a finite extension. For example the elements
{tn, n ∈ Z} are linearly independent over k.
In fact, if k is uncountable, then k(t) is uncountably dimensional as a k-vector
space. To show this, we claim that the family of elements {1/(t−α), α ∈ k} ⊂ k(t)
is linearly independent over k. A nontrivial relation between them would lead to
a contradiction: for instance, if one works over C, then this follows because 1

t−α ,
when considered as a meromorphic function on C, has a pole at α and nowhere
else. Consequently any sum

∑
ci

1
t−αi for the ci ∈ k∗, and αi ∈ k distinct, would

have poles at each of the αi. In particular, it could not be zero.
Amusingly, this leads to a quick proof of the Hilbert Nullstellensatz over the complex
numbers. For a slightly more general result, see Algebra, Theorem 10.35.11.
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Lemma 9.7.5.0BU1 A finite extension of fields is a finitely generated field extension.
The converse is not true.

Proof. Let F/E be a finite extension of fields. Let α1, . . . , αn be a basis of F as
a vector space over E. Then F = E(α1, . . . , αn) hence F/E is a finitely generated
field extension. The converse is not true as follows from Example 9.7.4. □

Example 9.7.6 (Degree of a simple algebraic extension).09G7 Consider a monogenic field
extension E/k of the form discussed in Example 9.6.4. In other words, E = k[t]/(P )
for P ∈ k[t] an irreducible polynomial. Then the degree [E : k] is just the degree
d = deg(P ) of the polynomial P . Indeed, say
(9.7.6.1)09G8 P = adt

d + ad−1t
d−1 + . . .+ a0.

with ad ̸= 0. Then the images of 1, t, . . . , td−1 in k[t]/(P ) are linearly independent
over k, because any relation involving them would have degree strictly smaller than
that of P , and P is the element of smallest degree in the ideal (P ).
Conversely, the set S = {1, t, . . . , td−1} (or more properly their images) spans
k[t]/(P ) as a vector space. Indeed, we have by (9.7.6.1) that adtd lies in the span of
S. Since ad is invertible, we see that td is in the span of S. Similarly, the relation
tP (t) = 0 shows that the image of td+1 lies in the span of {1, t, . . . , td} — by what
was just shown, thus in the span of S. Working upward inductively, we find that
the image of tn for n ≥ d lies in the span of S.

This confirms the observation that [C : R] = 2, for instance. More generally, if k
is a field, and α ∈ k is not a square, then the irreducible polynomial x2 − α ∈ k[x]
allows one to construct an extension k[x]/(x2 − α) of degree two. We shall write
this as k(

√
α). Such extensions will be called quadratic, for obvious reasons.

The basic fact about the degree is that it is multiplicative in towers.

Lemma 9.7.7 (Multiplicativity).09G9 Suppose given a tower of fields F/E/k. Then
[F : k] = [F : E][E : k]

Proof. Let α1, . . . , αn ∈ F be an E-basis for F . Let β1, . . . , βm ∈ E be a k-basis
for E. Then the claim is that the set of products {αiβj , 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a
k-basis for F . Indeed, let us check first that they span F over k.
By assumption, the {αi} span F over E. So if f ∈ F , there are ai ∈ E with

f =
∑

i
aiαi,

and, for each i, we can write ai =
∑
bijβj for some bij ∈ k. Putting these together,

we find
f =

∑
i,j
bijαiβj ,

proving that the {αiβj} span F over k.
Suppose now that there existed a nontrivial relation∑

i,j
cijαiβj = 0

for the cij ∈ k. In that case, we would have∑
i
αi

(∑
j
cijβj

)
= 0,
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and the inner terms lie in E as the βj do. Now E-linear independence of the {αi}
shows that the inner sums are all zero. Then k-linear independence of the {βj}
shows that the cij all vanish. □

We sidetrack to a slightly tangential definition.
Definition 9.7.8.09GA A field K is said to be a number field if it has characteristic 0
and the extension K/Q is finite.
Number fields are the basic objects in algebraic number theory. We shall see later
that, for the analog of the integers Z in a number field, something kind of like
unique factorization still holds (though strict unique factorization generally does
not!).

9.8. Algebraic extensions

09GB An important class of extensions are those where every element generates a finite
extension.
Definition 9.8.1.09GC Consider a field extension F/E. An element α ∈ F is said to be
algebraic over E if α is the root of some nonzero polynomial with coefficients in E.
If all elements of F are algebraic then F is said to be an algebraic extension of E.
By Lemma 9.6.8, the subextension E(α) is isomorphic either to the rational function
field E(t) or to a quotient ring E[t]/(P ) for P ∈ E[t] an irreducible polynomial. In
the latter case, α is algebraic over E (in fact, the proof of Lemma 9.6.8 shows that
we can pick P such that α is a root of P ); in the former case, it is not.
Example 9.8.2.09GD The field C is algebraic over R. Namely, if α = a+ ib in C, then
α2 − 2aα+ a2 + b2 = 0 is a polynomial equation for α over R.
Example 9.8.3.09GE Let X be a compact Riemann surface, and let f ∈ C(X)−C any
nonconstant meromorphic function on X (see Example 9.3.6). Then it is known
that C(X) is algebraic over the subextension C(f) generated by f . We shall not
prove this.
Lemma 9.8.4.09GF Let K/E/F be a tower of field extensions.

(1) If α ∈ K is algebraic over F , then α is algebraic over E.
(2) If K is algebraic over F , then K is algebraic over E.

Proof. This is immediate from the definitions. □

We now show that there is a deep connection between finiteness and being algebraic.
Lemma 9.8.5.09GG A finite extension is algebraic. In fact, an extension E/k is algebraic
if and only if every subextension k(α)/k generated by some α ∈ E is finite.
In general, it is very false that an algebraic extension is finite.

Proof. Let E/k be finite, say of degree n. Choose α ∈ E. Then the elements
{1, α, . . . , αn} are linearly dependent over E, or we would necessarily have [E :
k] > n. A relation of linear dependence now gives the desired polynomial that α
must satisfy.
For the last assertion, note that a monogenic extension k(α)/k is finite if and only
if α is algebraic over k, by Examples 9.7.4 and 9.7.6. So if E/k is algebraic, then
each k(α)/k, α ∈ E, is a finite extension, and conversely. □
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We can extract a lemma of the last proof (really of Examples 9.7.4 and 9.7.6):
a monogenic extension is finite if and only if it is algebraic. We shall use this
observation in the next result.
Lemma 9.8.6.09GH Let k be a field, and let α1, α2, . . . , αn be elements of some extension
field such that each αi is algebraic over k. Then the extension k(α1, . . . , αn)/k is
finite. That is, a finitely generated algebraic extension is finite.
Proof. Indeed, each extension k(α1, . . . , αi+1)/k(α1, . . . , αi) is generated by one
element and algebraic, hence finite. By multiplicativity of degree (Lemma 9.7.7)
we obtain the result. □

The set of complex numbers that are algebraic over Q are simply called the algebraic
numbers. For instance,

√
2 is algebraic, i is algebraic, but π is not. It is a basic fact

that the algebraic numbers form a field, although it is not obvious how to prove this
from the definition that a number is algebraic precisely when it satisfies a nonzero
polynomial equation with rational coefficients (e.g. by polynomial equations).
Lemma 9.8.7.09GI Let E/k be a field extension. Then the elements of E algebraic over
k form a subextension of E/k.
Proof. Let α, β ∈ E be algebraic over k. Then k(α, β)/k is a finite extension by
Lemma 9.8.6. It follows that k(α+β) ⊂ k(α, β) is a finite extension, which implies
that α + β is algebraic by Lemma 9.8.5. Similarly for the difference, product and
quotient of α and β. □

Many nice properties of field extensions, like those of rings, will have the property
that they will be preserved by towers and composita.
Lemma 9.8.8.09GJ Let E/k and F/E be algebraic extensions of fields. Then F/k is an
algebraic extension of fields.
Proof. Choose α ∈ F . Then α is algebraic over E. The key observation is that α
is algebraic over a finitely generated subextension of k. That is, there is a finite
set S ⊂ E such that α is algebraic over k(S): this is clear because being algebraic
means that a certain polynomial in E[x] that α satisfies exists, and as S we can
take the coefficients of this polynomial. It follows that α is algebraic over k(S). In
particular, the extension k(S, α)/k(S) is finite. Since S is a finite set, and k(S)/k is
algebraic, Lemma 9.8.6 shows that k(S)/k is finite. Using multiplicativity (Lemma
9.7.7) we find that k(S, α)/k is finite, so α is algebraic over k. □

The method of proof in the previous argument — that being algebraic over E was
a property that descended to a finitely generated subextension of E — is an idea
that recurs throughout algebra. It often allows one to reduce general commutative
algebra questions to the Noetherian case for example.
Lemma 9.8.9.09GK Let E/F be an algebraic extension of fields. Then the cardinality
|E| of E is at most max(ℵ0, |F |).
Proof. Let S be the set of nonconstant polynomials with coefficients in F . For every
P ∈ S the set of roots r(P,E) = {α ∈ E | P (α) = 0} is finite (details omitted).
Moreover, the fact that E is algebraic over F implies that E =

⋃
P∈S r(P,E). It

is clear that S has cardinality bounded by max(ℵ0, |F |) because the cardinality of
a countable product of copies of F has cardinality at most max(ℵ0, |F |). Thus so
does E. □
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Lemma 9.8.10.0BID Let E/F be a finite or more generally an algebraic extension of
fields. Any subring F ⊂ R ⊂ E is a field.

Proof. Let α ∈ R be nonzero. Then 1, α, α2, . . . are contained in R. By Lemma
9.8.5 we find a nontrivial relation a0 +a1α+ . . .+adα

d = 0. We may assume a0 ̸= 0
because if not we can divide the relation by α to decrease d. Then we see that

a0 = α(−a1 − . . .− adαd−1)
which proves that the inverse of α is the element a−1

0 (−a1− . . .−adαd−1) of R. □

Lemma 9.8.11.0BMD Let E/F an algebraic extension of fields. Any F -algebra map
f : E → E is an automorphism.

Proof. If E/F is finite, then f : E → E is an F -linear injective map (Lemma 9.6.1)
of finite dimensional vector spaces, and hence bijective. In general we still see that
f is injective. Let α ∈ E and let P ∈ F [x] be a polynomial such that P (α) = 0.
Let E′ ⊂ E be the subfield of E generated by the roots α = α1, . . . , αn of P in E.
Then E′ is finite over F by Lemma 9.8.6. Since f preserves the set of roots, we find
that f |E′ : E′ → E′. Hence f |E′ is an isomorphism by the first part of the proof
and we conclude that α is in the image of f . □

9.9. Minimal polynomials

09GL Let E/k be a field extension, and let α ∈ E be algebraic over k. Then α satisfies
a (nontrivial) polynomial equation in k[x]. Consider the set of polynomials P ∈
k[x] such that P (α) = 0; by hypothesis, this set does not just contain the zero
polynomial. It is easy to see that this set is an ideal. Indeed, it is the kernel of the
map

k[x]→ E, x 7→ α

Since k[x] is a PID, there is a generator P ∈ k[x] of this ideal. If we assume P
monic, without loss of generality, then P is uniquely determined.

Definition 9.9.1.09GM The polynomial P above is called the minimal polynomial of α
over k.

The minimal polynomial has the following characterization: it is the monic poly-
nomial, of smallest degree, that annihilates α. Any nonconstant multiple of P will
have larger degree, and only multiples of P can annihilate α. This explains the
name minimal.
Clearly the minimal polynomial is irreducible. This is equivalent to the assertion
that the ideal in k[x] consisting of polynomials annihilating α is prime. This follows
from the fact that the map k[x]→ E, x 7→ α is a map into a domain (even a field),
so the kernel is a prime ideal.

Lemma 9.9.2.09GN The degree of the minimal polynomial is [k(α) : k].

Proof. This is just a restatement of the argument in Lemma 9.6.8: the observation
is that if P is the minimal polynomial of α, then the map

k[x]/(P )→ k(α), x 7→ α

is an isomorphism as in the aforementioned proof, and we have counted the degree
of such an extension (see Example 9.7.6). □
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So the observation of the above proof is that if α ∈ E is algebraic, then k(α) ⊂ E
is isomorphic to k[x]/(P ).

9.10. Algebraic closure

09GP The “fundamental theorem of algebra” states that C is algebraically closed. A
beautiful proof of this result uses Liouville’s theorem in complex analysis, we shall
give another proof (see Lemma 9.23.1).

Definition 9.10.1.09GQ A field F is said to be algebraically closed if every algebraic
extension E/F is trivial, i.e., E = F .

This may not be the definition in every text. Here is the lemma comparing it with
the other one.

Lemma 9.10.2.09GR Let F be a field. The following are equivalent
(1) F is algebraically closed,
(2) every irreducible polynomial over F is linear,
(3) every nonconstant polynomial over F has a root,
(4) every nonconstant polynomial over F is a product of linear factors.

Proof. If F is algebraically closed, then every irreducible polynomial is linear.
Namely, if there exists an irreducible polynomial of degree > 1, then this gen-
erates a nontrivial finite (hence algebraic) field extension, see Example 9.7.6. Thus
(1) implies (2). If every irreducible polynomial is linear, then every irreducible
polynomial has a root, whence every nonconstant polynomial has a root. Thus (2)
implies (3).

Assume every nonconstant polynomial has a root. Let P ∈ F [x] be nonconstant.
If P (α) = 0 with α ∈ F , then we see that P = (x − α)Q for some Q ∈ F [x] (by
division with remainder). Thus we can argue by induction on the degree that any
nonconstant polynomial can be written as a product c

∏
(x− αi).

Finally, suppose that every nonconstant polynomial over F is a product of linear
factors. Let E/F be an algebraic extension. Then all the simple subextensions
F (α)/F of E are necessarily trivial (because the only irreducible polynomials are
linear by assumption). Thus E = F . We see that (4) implies (1) and we are
done. □

Now we want to define a “universal” algebraic extension of a field. Actually, we
should be careful: the algebraic closure is not a universal object. That is, the
algebraic closure is not unique up to unique isomorphism: it is only unique up to
isomorphism. But still, it will be very handy, if not functorial.

Definition 9.10.3.09GS Let F be a field. An algebraic closure of F is a field F containing
F such that:

(1) F is algebraic over F .
(2) F is algebraically closed.

If F is algebraically closed, then F is its own algebraic closure. We now prove the
basic existence result.

Theorem 9.10.4.09GT Every field has an algebraic closure.

https://stacks.math.columbia.edu/tag/09GQ
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The proof will mostly be a red herring to the rest of the chapter. However, we will
want to know that it is possible to embed a field inside an algebraically closed field,
and we will often assume it done.

Proof. Let F be a field. By Lemma 9.8.9 the cardinality of an algebraic ex-
tension of F is bounded by max(ℵ0, |F |). Choose a set S containing F with
|S| > max(ℵ0, |F |). Let’s consider triples (E, σE , µE) where

(1) E is a set with F ⊂ E ⊂ S, and
(2) σE : E × E → E and µE : E × E → E are maps of sets such that

(E, σE , µE) defines the structure of a field extension of F (in particular
σE(a, b) = a+F b for a, b ∈ F and similarly for µE), and

(3) E/F is an algebraic field extension.
The collection of all triples (E, σE , µE) forms a set I. For i ∈ I we will denote
Ei = (Ei, σi, µi) the corresponding field extension to F . We define a partial ordering
on I by declaring i ≤ i′ if and only if Ei ⊂ Ei′ (this makes sense as Ei and Ei′ are
subsets of the same set S) and we have σi = σi′ |Ei×Ei and µi = µi′ |Ei×Ei , in other
words, Ei′ is a field extension of Ei.

Let T ⊂ I be a totally ordered subset. Then it is clear that ET =
⋃
i∈T Ei with

induced maps σT =
⋃
σi and µT =

⋃
µi is another element of I. In other words

every totally order subset of I has a upper bound in I. By Zorn’s lemma there
exists a maximal element (E, σE , µE) in I. We claim that E is an algebraic closure.
Since by definition of I the extension E/F is algebraic, it suffices to show that E
is algebraically closed.

To see this we argue by contradiction. Namely, suppose that E is not alge-
braically closed. Then there exists an irreducible polynomial P over E of degree
> 1, see Lemma 9.10.2. By Lemma 9.8.5 we obtain a nontrivial finite extension
E′ = E[x]/(P ). Observe that E′/F is algebraic by Lemma 9.8.8. Thus the cardi-
nality of E′ is ≤ max(ℵ0, |F |). By elementary set theory we can extend the given
injection E ⊂ S to an injection E′ → S. In other words, we may think of E′

as an element of our set I contradicting the maximality of E. This contradiction
completes the proof. □

Lemma 9.10.5.09GU Let F be a field. Let F be an algebraic closure of F . Let M/F be
an algebraic extension. Then there is a morphism of F -extensions M → F .

Proof. Consider the set I of pairs (E,φ) where F ⊂ E ⊂M is a subextension and
φ : E → F is a morphism of F -extensions. We partially order the set I by declaring
(E,φ) ≤ (E′, φ′) if and only if E ⊂ E′ and φ′|E = φ. If T = {(Et, φt)} ⊂ I is a
totally ordered subset, then

⋃
φt :

⋃
Et → F is an element of I. Thus every totally

ordered subset of I has an upper bound. By Zorn’s lemma there exists a maximal
element (E,φ) in I. We claim that E = M , which will finish the proof. If not, then
pick α ∈ M , α ̸∈ E. The α is algebraic over E, see Lemma 9.8.4. Let P be the
minimal polynomial of α over E. Let Pφ be the image of P by φ in F [x]. Since
F is algebraically closed there is a root β of Pφ in F . Then we can extend φ to
φ′ : E(α) = E[x]/(P )→ F by mapping x to β. This contradicts the maximality of
(E,φ) as desired. □

Lemma 9.10.6.09GV Any two algebraic closures of a field are isomorphic.

https://stacks.math.columbia.edu/tag/09GU
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Proof. Let F be a field. If M and F are algebraic closures of F , then there exists
a morphism of F -extensions φ : M → F by Lemma 9.10.5. Now the image φ(M)
is algebraically closed. On the other hand, the extension φ(M) ⊂ F is algebraic by
Lemma 9.8.4. Thus φ(M) = F . □

9.11. Relatively prime polynomials

09GW Let K be an algebraically closed field. Then the ring K[x] has a very simple ideal
structure as we saw in Lemma 9.10.2. In particular, every polynomial P ∈ K[x]
can be written as

P = c(x− α1) . . . (x− αn),
where c is the constant term and the α1, . . . , αn ∈ k are the roots of P (counted
with multiplicity). Clearly, the only irreducible polynomials in K[x] are the linear
polynomials c(x− α), c, α ∈ K (and c ̸= 0).

Definition 9.11.1.09GX If k is any field, we say that two polynomials in k[x] are relatively
prime if they generate the unit ideal in k[x].

Continuing the discussion above, if K is an algebraically closed field, two polyno-
mials in K[x] are relatively prime if and only if they have no common roots. This
follows because the maximal ideals of K[x] are of the form (x − α), α ∈ K. So if
F,G ∈ K[x] have no common root, then (F,G) cannot be contained in any (x−α)
(as then they would have a common root at α).
If k is not algebraically closed, then this still gives information about when two
polynomials in k[x] generate the unit ideal.

Lemma 9.11.2.09GY Two polynomials in k[x] are relatively prime precisely when they
have no common roots in an algebraic closure k of k.

Proof. The claim is that any two polynomials P,Q generate (1) in k[x] if and only
if they generate (1) in k[x]. This is a piece of linear algebra: a system of linear
equations with coefficients in k has a solution if and only if it has a solution in any
extension of k. Consequently, we can reduce to the case of an algebraically closed
field, in which case the result is clear from what we have already proved. □

9.12. Separable extensions

09GZ In characteristic p something funny happens with irreducible polynomials over
fields. We explain this in the following lemma.

Lemma 9.12.1.09H0 Let F be a field. Let P ∈ F [x] be an irreducible polynomial over
F . Let P ′ = dP/dx be the derivative of P with respect to x. Then one of the
following two cases happens

(1) P and P ′ are relatively prime, or
(2) P ′ is the zero polynomial.

The second case can only happen if F has characteristic p > 0. In this case
P (x) = Q(xq) where q = pf is a power of p and Q ∈ F [x] is an irreducible
polynomial such that Q and Q′ are relatively prime.

Proof. Note that P ′ has degree < deg(P ). Hence if P and P ′ are not relatively
prime, then (P, P ′) = (R) where R is a polynomial of degree < deg(P ) contradicting
the irreducibility of P . This proves we have the dichotomy between (1) and (2).

https://stacks.math.columbia.edu/tag/09GX
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Assume we are in case (2) and P = adx
d + . . .+ a0. Then P ′ = dadx

d−1 + . . .+ a1.
In characteristic 0 we see that this forces ad, . . . , a1 = 0 which would mean P is
constant a contradiction. Thus we conclude that the characteristic p is positive.
In this case the condition P ′ = 0 forces ai = 0 whenever p does not divide i. In
other words, P (x) = P1(xp) for some nonconstant polynomial P1. Clearly, P1 is
irreducible as well. By induction on the degree we see that P1(x) = Q(xq) as in the
statement of the lemma, hence P (x) = Q(xpq) and the lemma is proved. □

Definition 9.12.2.09H1 Let F be a field. Let K/F be an extension of fields.
(1) We say an irreducible polynomial P over F is separable if it is relatively

prime to its derivative.
(2) Given α ∈ K algebraic over F we say α is separable over F if its minimal

polynomial is separable over F .
(3) If K is an algebraic extension of F , we say K is separable1 over F if every

element of K is separable over F .
By Lemma 9.12.1 in characteristic 0 every irreducible polynomial is separable, every
algebraic element in an extension is separable, and every algebraic extension is
separable.
Lemma 9.12.3.09H2 Let K/E/F be a tower of algebraic field extensions.

(1) If α ∈ K is separable over F , then α is separable over E.
(2) if K is separable over F , then K is separable over E.

Proof. We will use Lemma 9.12.1 without further mention. Let P be the minimal
polynomial of α over F . Let Q be the minimal polynomial of α over E. Then Q
divides P in the polynomial ring E[x], say P = QR. Then P ′ = Q′R+QR′. Thus
if Q′ = 0, then Q divides P and P ′ hence P ′ = 0 by the lemma. This proves (1).
Part (2) follows immediately from (1) and the definitions. □

Lemma 9.12.4.09H3 Let F be a field. An irreducible polynomial P over F is separable
if and only if P has pairwise distinct roots in an algebraic closure of F .
Proof. Suppose that α ∈ F is a root of both P and P ′. Then P = (x − α)Q for
some polynomial Q. Taking derivatives we obtain P ′ = Q + (x − α)Q′. Thus α
is a root of Q. Hence we see that if P and P ′ have a common root, then P does
not have pairwise distinct roots. Conversely, if P has a repeated root, i.e., (x−α)2

divides P , then α is a root of both P and P ′. Combined with Lemma 9.11.2 this
proves the lemma. □

Lemma 9.12.5.09H4 Let F be a field and let F be an algebraic closure of F . Let p > 0
be the characteristic of F . Let P be a polynomial over F . Then the set of roots of
P and P (xp) in F have the same cardinality (not counting multiplicity).
Proof. Clearly, α is a root of P (xp) if and only if αp is a root of P . In other
words, the roots of P (xp) are the roots of xp − β, where β is a root of P . Thus it
suffices to show that the map F → F , α 7→ αp is bijective. It is surjective, as F is
algebraically closed which means that every element has a pth root. It is injective
because αp = βp implies (α−β)p = 0 because the characteristic is p. And of course
in a field xp = 0 implies x = 0. □

1For nonalgebraic extensions this definition does not make sense and is not the correct one.
We refer the reader to Algebra, Sections 10.42 and 10.44.
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Let F be a field and let P be an irreducible polynomial over F . Then we know that
P = Q(xq) for some separable irreducible polynomial Q (Lemma 9.12.1) where q
is a power of the characteristic p (and if the characteristic is zero, then q = 12 and
Q = P ). By Lemma 9.12.5 the number of roots of P and Q in any algebraic closure
of F is the same. By Lemma 9.12.4 this number is equal to the degree of Q.

Definition 9.12.6.09H5 Let F be a field. Let P be an irreducible polynomial over F .
The separable degree of P is the cardinality of the set of roots of P in any algebraic
closure of F (see discussion above). Notation degs(P ).

The separable degree of P always divides the degree and the quotient is a power of
the characteristic. If the characteristic is zero, then degs(P ) = deg(P ).

Situation 9.12.7.09H6 Here F be a field and K/F is a finite extension generated by
elements α1, . . . , αn ∈ K. We set K0 = F and

Ki = F (α1, . . . , αi)
to obtain a tower of finite extensions K = Kn/Kn−1/ . . . /K0 = F . Denote Pi the
minimal polynomial of αi over Ki−1. Finally, we fix an algebraic closure F of F .

Let F , K, αi, and F be as in Situation 9.12.7. Suppose that φ : K → F is a
morphism of extensions of F . Then we obtain maps φi : Ki → F . In particular,
we can take the image of Pi ∈ Ki−1[x] by φi−1 to get a polynomial Pφi ∈ F [x].

Lemma 9.12.8.09H7 In Situation 9.12.7 the correspondence

MorF (K,F ) −→ {(β1, . . . , βn) as below}, φ 7−→ (φ(α1), . . . , φ(αn))
is a bijection. Here the right hand side is the set of n-tuples (β1, . . . , βn) of elements
of F such that βi is a root of Pφi .

Proof. Let (β1, . . . , βn) be an element of the right hand side. We construct a map
of fields corresponding to it by induction. Namely, we set φ0 : K0 → F equal to
the given map K0 = F ⊂ F . Having constructed φi−1 : Ki−1 → F we observe
that Ki = Ki−1[x]/(Pi). Hence we can set φi equal to the unique map Ki → F
inducing φi−1 on Ki−1 and mapping x to βi. This works precisely as βi is a root
of Pφi . Uniqueness implies that the two constructions are mutually inverse. □

Lemma 9.12.9.09H8 In Situation 9.12.7 we have |MorF (K,F )| =
∏n
i=1 degs(Pi).

Proof. This follows immediately from Lemma 9.12.8. Observe that a key ingredi-
ent we are tacitly using here is the well-definedness of the separable degree of an
irreducible polynomial which was observed just prior to Definition 9.12.6. □

We now use the result above to characterize separable field extensions.

Lemma 9.12.10.09H9 Assumptions and notation as in Situation 9.12.7. If each Pi is
separable, i.e., each αi is separable over Ki−1, then

|MorF (K,F )| = [K : F ]
and the field extension K/F is separable. If one of the αi is not separable over
Ki−1, then |MorF (K,F )| < [K : F ].

2A good convention for this chapter is to set 00 = 1.
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Proof. If αi is separable over Ki−1 then degs(Pi) = deg(Pi) = [Ki : Ki−1] (last
equality by Lemma 9.9.2). By multiplicativity (Lemma 9.7.7) we have

[K : F ] =
∏

[Ki : Ki−1] =
∏

deg(Pi) =
∏

degs(Pi) = |MorF (K,F )|

where the last equality is Lemma 9.12.9. By the exact same argument we get the
strict inequality |MorF (K,F )| < [K : F ] if one of the αi is not separable over Ki−1.

Finally, assume again that each αi is separable over Ki−1. We will show K/F
is separable. Let γ = γ1 ∈ K be arbitrary. Then we can find additional ele-
ments γ2, . . . , γm such that K = F (γ1, . . . , γm) (for example we could take γ2 =
α1, . . . , γn+1 = αn). Then we see by the last part of the lemma (already proven
above) that if γ is not separable over F we would have the strict inequality |MorF (K,F )| <
[K : F ] contradicting the very first part of the lemma (already prove above as
well). □

Lemma 9.12.11.09HA Let K/F be a finite extension of fields. Let F be an algebraic
closure of F . Then we have

|MorF (K,F )| ≤ [K : F ]

with equality if and only if K is separable over F .

Proof. This is a corollary of Lemma 9.12.10. Namely, since K/F is finite we can
find finitely many elements α1, . . . , αn ∈ K generating K over F (for example we
can choose the αi to be a basis of K over F ). If K/F is separable, then each αi
is separable over F (α1, . . . , αi−1) by Lemma 9.12.3 and we get equality by Lemma
9.12.10. On the other hand, if we have equality, then no matter how we choose
α1, . . . , αn we get that α1 is separable over F by Lemma 9.12.10. Since we can
start the sequence with an arbitrary element of K it follows that K is separable
over F . □

Lemma 9.12.12.09HB Let E/k and F/E be separable algebraic extensions of fields.
Then F/k is a separable extension of fields.

Proof. Choose α ∈ F . Then α is separable algebraic over E. Let P = xd +∑
i<d aix

i be the minimal polynomial of α over E. Each ai is separable algebraic
over k. Consider the tower of fields

k ⊂ k(a0) ⊂ k(a0, a1) ⊂ . . . ⊂ k(a0, . . . , ad−1) ⊂ k(a0, . . . , ad−1, α)

Because ai is separable algebraic over k it is separable algebraic over k(a0, . . . , ai−1)
by Lemma 9.12.3. Finally, α is separable algebraic over k(a0, . . . , ad−1) because it
is a root of P which is irreducible (as it is irreducible over the possibly bigger field
E) and separable (as it is separable over E). Thus k(a0, . . . , ad−1, α) is separable
over k by Lemma 9.12.10 and we conclude that α is separable over k as desired. □

Lemma 9.12.13.09HC Let E/k be a field extension. Then the elements of E separable
over k form a subextension of E/k.

Proof. Let α, β ∈ E be separable over k. Then β is separable over k(α) by Lemma
9.12.3. Thus we can apply Lemma 9.12.12 to k(α, β) to see that k(α, β) is separable
over k. □

https://stacks.math.columbia.edu/tag/09HA
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9.13. Linear independence of characters

0CKK Here is the statement.

Lemma 9.13.1.0CKL Let L be a field. Let G be a monoid, for example a group. Let
χ1, . . . , χn : G→ L be pairwise distinct homomorphisms of monoids where L is re-
garded as a monoid by multiplication. Then χ1, . . . , χn are L-linearly independent:
if λ1, . . . , λn ∈ L not all zero, then

∑
λiχi(g) ̸= 0 for some g ∈ G.

Proof. If n = 1 this is true because χ1(e) = 1 if e ∈ G is the neutral (identity)
element. We prove the result by induction for n > 1. Suppose that λ1, . . . , λn ∈ L
not all zero. If λi = 0 for some, then we win by induction on n. Since we want
to show that

∑
λiχi(g) ̸= 0 for some g ∈ G we may after dividing by −λn assume

that λn = −1. Then the only way we get in trouble is if

χn(g) =
∑

i=1,...,n−1
λiχi(g)

for all g ∈ G. Fix h ∈ G. Then we would also get
χn(h)χn(g) = χn(hg)

=
∑

i=1,...,n−1
λiχi(hg)

=
∑

i=1,...,n−1
λiχi(h)χi(g)

Multiplying the previous relation by χn(h) and substracting we obtain

0 =
∑

i=1,...,n−1
λi(χn(h)− χi(h))χi(g)

for all g ∈ G. Since λi ̸= 0 we conclude that χn(h) = χi(h) for all i by induction.
The choice of h above was arbitrary, so we conclude that χi = χn for i ≤ n − 1
which contradicts the assumption that our characters χi are pairwise distinct. □

Lemma 9.13.2.0EM9 Let L be a field. Let n ≥ 1 and α1, . . . , αn ∈ L pairwise distinct
elements of L. Then there exists an e ≥ 0 such that

∑
i=1,...,n α

e
i ̸= 0.

Proof. Apply linear independence of characters (Lemma 9.13.1) to the monoid ho-
momorphisms Z≥0 → L, e 7→ αei . □

Lemma 9.13.3.0CKM Let K/F and L/F be field extensions. Let σ1, . . . , σn : K → L
be pairwise distinct morphisms of F -extensions. Then σ1, . . . , σn are L-linearly
independent: if λ1, . . . , λn ∈ L not all zero, then

∑
λiσi(α) ̸= 0 for some α ∈ K.

Proof. Apply Lemma 9.13.1 to the restrictions of σi to the groups of units. □

Lemma 9.13.4.0CKN Let K/F and L/F be field extensions with K/F finite separable
and L algebraically closed. Then the map

K ⊗F L −→
∏

σ∈HomF (K,L)
L, α⊗ β 7→ (σ(α)β)σ

is an isomorphism of L-algebras.

Proof. Choose a basis α1, . . . , αn of K as a vector space over F . By Lemma 9.12.11
(and a tiny omitted argument) the set HomF (K,L) has n elements, say σ1, . . . , σn.
In particular, the two sides have the same dimension n as vector spaces over L.
Thus if the map is not an isomorphism, then it has a kernel. In other words, there
would exist µj ∈ L, j = 1, . . . , n not all zero, with

∑
αj⊗µj in the kernel. In other

https://stacks.math.columbia.edu/tag/0CKL
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words,
∑
σi(αj)µj = 0 for all i. This would mean the n × n matrix with entries

σi(αj) is not invertible. Thus we can find λ1, . . . , λn ∈ L not all zero, such that∑
λiσi(αj) = 0 for all j. Now any element α ∈ K can be written as α =

∑
βjαj

with βj ∈ F and we would get∑
λiσi(α) =

∑
λiσi(

∑
βjαj) =

∑
βj
∑

λiσi(αj) = 0

which contradicts Lemma 9.13.3. □

9.14. Purely inseparable extensions

09HD Purely inseparable extensions are the opposite of the separable extensions defined
in the previous section. These extensions only show up in positive characteristic.

Definition 9.14.1.09HE Let F be a field of characteristic p > 0. Let K/F be an extension.
(1) An element α ∈ K is purely inseparable over F if there exists a power q

of p such that αq ∈ F .
(2) The extension K/F is said to be purely inseparable if and only if every

element of K is purely inseparable over F .

Observe that a purely inseparable extension is necessarily algebraic. Let F be a
field of characteristic p > 0. An example of a purely inseparable extension is gotten
by adjoining the pth root of an element t ∈ F which does not yet have one. Namely,
the lemma below shows that P = xp − t is irreducible, and hence

K = F [x]/(P ) = F [t1/p]
is a field. And K is purely inseparable over F because every element

a0 + a1t
1/p + . . .+ ap−1t

(p−1)/p, ai ∈ F

of K has pth power equal to

(a0 + a1t
1/p + . . .+ ap−1t

(p−1)/p)p = ap0 + ap1t+ . . .+ app−1t
p−1 ∈ F

This situation occurs for the field Fp(t) of rational functions over Fp.

Lemma 9.14.2.09HF Let p be a prime number. Let F be a field of characteristic p. Let
t ∈ F be an element which does not have a pth root in F . Then the polynomial
xp − t is irreducible over F .

Proof. To see this, suppose that we have a factorization xp − t = fg. Taking
derivatives we get f ′g+ fg′ = 0. Note that neither f ′ = 0 nor g′ = 0 as the degrees
of f and g are smaller than p. Moreover, deg(f ′) < deg(f) and deg(g′) < deg(g).
We conclude that f and g have a factor in common. Thus if xp − t is reducible,
then it is of the form xp− t = cfn for some irreducible f , c ∈ F ∗, and n > 1. Since
p is a prime number this implies n = p and f linear, which would imply xp − t has
a root in F . Contradiction. □

We will see that taking pth roots is a very important operation in characteristic p.

Lemma 9.14.3.09HG Let E/k and F/E be purely inseparable extensions of fields. Then
F/k is a purely inseparable extension of fields.

Proof. Say the characteristic of k is p. Choose α ∈ F . Then αq ∈ E for some
p-power q. Whereupon (αq)q′ ∈ k for some p-power q′. Hence αqq′ ∈ k. □

https://stacks.math.columbia.edu/tag/09HE
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Lemma 9.14.4.09HH Let E/k be a field extension. Then the elements of E purely-
inseparable over k form a subextension of E/k.

Proof. Let p be the characteristic of k. Let α, β ∈ E be purely inseparable over
k. Say αq ∈ k and βq

′ ∈ k for some p-powers q, q′. If q′′ is a p-power, then
(α + β)q′′ = αq

′′ + βq
′′ . Hence if q′′ ≥ q, q′, then we conclude that α + β is purely

inseparable over k. Similarly for the difference, product and quotient of α and
β. □

Lemma 9.14.5.09HI Let E/F be a finite purely inseparable field extension of charac-
teristic p > 0. Then there exists a sequence of elements α1, . . . , αn ∈ E such that
we obtain a tower of fields

E = F (α1, . . . , αn) ⊃ F (α1, . . . , αn−1) ⊃ . . . ⊃ F (α1) ⊃ F

such that each intermediate extension is of degree p and comes from adjoining a
pth root. Namely, αpi ∈ F (α1, . . . , αi−1) is an element which does not have a pth
root in F (α1, . . . , αi−1) for i = 1, . . . , n.

Proof. By induction on the degree of E/F . If the degree of the extension is 1 then
the result is clear (with n = 0). If not, then choose α ∈ E, α ̸∈ F . Say αp

r ∈ F
for some r > 0. Pick r minimal and replace α by αpr−1 . Then α ̸∈ F , but αp ∈ F .
Then t = αp is not a pth power in F (because that would imply α ∈ F , see Lemma
9.12.5 or its proof). Thus F ⊂ F (α) is a subextension of degree p (Lemma 9.14.2).
By induction we find α1, . . . , αn ∈ E generating E/F (α) satisfying the conclusions
of the lemma. The sequence α, α1, . . . , αn does the job for the extension E/F . □

Lemma 9.14.6.030K Let E/F be an algebraic field extension. There exists a unique
subextension E/Esep/F such that Esep/F is separable and E/Esep is purely insep-
arable.

Proof. If the characteristic is zero we set Esep = E. Assume the characteristic is
p > 0. Let Esep be the set of elements of E which are separable over F . This is
a subextension by Lemma 9.12.13 and of course Esep is separable over F . Given
an α in E there exists a p-power q such that αq is separable over F . Namely,
q is that power of p such that the minimal polynomial of α is of the form P (xq)
with P separable algebraic, see Lemma 9.12.1. Hence E/Esep is purely inseparable.
Uniqueness is clear. □

Definition 9.14.7.030L Let E/F be an algebraic field extension. Let Esep be the subex-
tension found in Lemma 9.14.6.

(1) The integer [Esep : F ] is called the separable degree of the extension.
Notation [E : F ]s.

(2) The integer [E : Esep] is called the inseparable degree, or the degree of
inseparability of the extension. Notation [E : F ]i.

Of course in characteristic 0 we have [E : F ] = [E : F ]s and [E : F ]i = 1. By
multiplicativity (Lemma 9.7.7) we have

[E : F ] = [E : F ]s[E : F ]i
even in case some of these degrees are infinite. In fact, the separable degree and
the inseparable degree are multiplicative too (see Lemma 9.14.9).
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Lemma 9.14.8.09HJ Let K/F be a finite extension. Let F be an algebraic closure of F .
Then [K : F ]s = |MorF (K,F )|.
Proof. We first prove this when K/F is purely inseparable. Namely, we claim
that in this case there is a unique map K → F . This can be seen by choosing a
sequence of elements α1, . . . , αn ∈ K as in Lemma 9.14.5. The irreducible polyno-
mial of αi over F (α1, . . . , αi−1) is xp − αpi . Applying Lemma 9.12.9 we see that
|MorF (K,F )| = 1. On the other hand, [K : F ]s = 1 in this case hence the equality
holds.
Let’s return to a general finite extension K/F . In this case choose F ⊂ Ks ⊂ K
as in Lemma 9.14.6. By Lemma 9.12.11 we have |MorF (Ks, F )| = [Ks : F ] =
[K : F ]s. On the other hand, every field map σ′ : Ks → F extends to a unique
field map σ : K → F by the result of the previous paragraph. In other words
|MorF (K,F )| = |MorF (Ks, F )| and the proof is done. □

Lemma 9.14.9 (Multiplicativity).09HK Suppose given a tower of algebraic field exten-
sions K/E/F . Then

[K : F ]s = [K : E]s[E : F ]s and [K : F ]i = [K : E]i[E : F ]i
Proof. We first prove this in case K is finite over F . Since we have multiplicativity
for the usual degree (by Lemma 9.7.7) it suffices to prove one of the two formulas.
By Lemma 9.14.8 we have [K : F ]s = |MorF (K,F )|. By the same lemma, given
any σ ∈ MorF (E,F ) the number of extensions of σ to a map τ : K → F is [K : E]s.
Namely, via E ∼= σ(E) ⊂ F we can view F as an algebraic closure of E. Combined
with the fact that there are [E : F ]s = |MorF (E,F )| choices for σ we obtain the
result.
We omit the proof if the extensions are infinite. □

9.15. Normal extensions

09HL Let P ∈ F [x] be a nonconstant polynomial over a field F . We say P splits com-
pletely into linear factors over F or splits completely over F if there exist c ∈ F ∗,
n ≥ 1, α1, . . . , αn ∈ F such that

P = c(x− α1) . . . (x− αn)
in F [x]. Normal extensions are defined as follows.
Definition 9.15.1.09HM Let E/F be an algebraic field extension. We say E is normal
over F if for all α ∈ E the minimal polynomial P of α over F splits completely into
linear factors over E.
As in the case of separable extensions, it takes a bit of work to establish the basic
properties of this notion.
Lemma 9.15.2.09HN Let K/E/F be a tower of algebraic field extensions. If K is normal
over F , then K is normal over E.
Proof. Let α ∈ K. Let P be the minimal polynomial of α over F . Let Q be the
minimal polynomial of α over E. Then Q divides P in the polynomial ring E[x],
say P = QR. Hence, if P splits completely over K, then so does Q. □

Lemma 9.15.3.09HP Let F be a field. Let M/F be an algebraic extension. Let M/Ei/F ,
i ∈ I be subextensions with Ei/F normal. Then

⋂
Ei is normal over F .
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Proof. Direct from the definitions. □

Lemma 9.15.4.0EXK Let E/F be a normal algebraic field extension. Then the subex-
tension E/Esep/F of Lemma 9.14.6 is normal.

Proof. If the characteristic is zero, then Esep = E, and the result is clear. If the
characteristic is p > 0, then Esep is the set of elements of E which are separable
over F . Then if α ∈ Esep has minimal polynomial P write P = c(x − α)(x −
α2) . . . (x − αd) with α2, . . . , αd ∈ E. Since P is a separable polynomial and since
αi is a root of P , we conclude αi ∈ Esep as desired. □

Lemma 9.15.5.09HQ Let E/F be an algebraic extension of fields. Let F be an algebraic
closure of F . The following are equivalent

(1) E is normal over F , and
(2) for every pair σ, σ′ ∈ MorF (E,F ) we have σ(E) = σ′(E).

Proof. Let P be the set of all minimal polynomials over F of all elements of E. Set

T = {β ∈ F | P (β) = 0 for some P ∈ P}

It is clear that if E is normal over F , then σ(E) = T for all σ ∈ MorF (E,F ). Thus
we see that (1) implies (2).

Conversely, assume (2). Pick β ∈ T . We can find a corresponding α ∈ E whose
minimal polynomial P ∈ P annihilates β. Because F (α) = F [x]/(P ) we can find
an element σ0 ∈ MorF (F (α), F ) mapping α to β. By Lemma 9.10.5 we can extend
σ0 to a σ ∈ MorF (E,F ). Whence we see that β is in the common image of all
embeddings σ : E → F . It follows that σ(E) = T for any σ. Fix a σ. Now let
P ∈ P. Then we can write

P = (x− β1) . . . (x− βn)

for some n and βi ∈ F by Lemma 9.10.2. Observe that βi ∈ T . Thus βi = σ(αi)
for some αi ∈ E. Thus P = (x − α1) . . . (x − αn) splits completely over E. This
finishes the proof. □

Lemma 9.15.6.0BR3 Let E/F be an algebraic extension of fields. If E is generated by
αi ∈ E, i ∈ I over F and if for each i the minimal polynomial of αi over F splits
completely in E, then E/F is normal.

Proof. Let Pi be the minimal polynomial of αi over F . Let αi = αi,1, αi,2, . . . , αi,di
be the roots of Pi over E. Given two embeddings σ, σ′ : E → F over F we see that

{σ(αi,1), . . . , σ(αi,di)} = {σ′(αi,1), . . . , σ′(αi,di)}

because both sides are equal to the set of roots of Pi in F . The elements αi,j
generate E over F and we find that σ(E) = σ′(E). Hence E/F is normal by
Lemma 9.15.5. □

Lemma 9.15.7.0BME Let L/M/K be a tower of algebraic extensions.
(1) If M/K is normal, then any automorphism τ of L/K induces an auto-

morphism τ |M : M →M .
(2) If L/K is normal, then any K-algebra map σ : M → L extends to an

automorphism of L.
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Proof. Choose an algebraic closure L of L (Theorem 9.10.4).

Let τ be as in (1). Then τ(M) = M as subfields of L by Lemma 9.15.5 and hence
τ |M : M →M is an automorphism.

Let σ : M → L be as in (2). By Lemma 9.10.5 we can extend σ to a map τ : L→ L,
i.e., such that

L
τ
// L

M

OO

σ

>>

Koo

OO

is commutative. By Lemma 9.15.5 we see that τ(L) = L. Hence τ : L → L is an
automorphism which extends σ. □

Definition 9.15.8.09HR Let E/F be an extension of fields. Then Aut(E/F ) or AutF (E)
denotes the automorphism group of E as an object of the category of F -extensions.
Elements of Aut(E/F ) are called automorphisms of E over F or automorphisms of
E/F .

Here is a characterization of normal extensions in terms of automorphisms.

Lemma 9.15.9.09HS Let E/F be a finite extension. We have

|Aut(E/F )| ≤ [E : F ]s
with equality if and only if E is normal over F .

Proof. Choose an algebraic closure F of F . Recall that [E : F ]s = |MorF (E,F )|.
Pick an element σ0 ∈ MorF (E,F ). Then the map

Aut(E/F ) −→ MorF (E,F ), τ 7−→ σ0 ◦ τ

is injective. Thus the inequality. If equality holds, then every σ ∈ MorF (E,F ) is
gotten by precomposing σ0 by an automorphism. Hence σ(E) = σ0(E). Thus E is
normal over F by Lemma 9.15.5.

Conversely, assume that E/F is normal. Then by Lemma 9.15.5 we have σ(E) =
σ0(E) for all σ ∈ MorF (E,F ). Thus we get an automorphism of E over F by
setting τ = σ−1

0 ◦ σ. Whence the map displayed above is surjective. □

Lemma 9.15.10.0BR4 Let L/K be an algebraic normal extension of fields. Let E/K be
an extension of fields. Then either there is no K-embedding from L to E or there
is one τ : L→ E and every other one is of the form τ ◦ σ where σ ∈ Aut(L/K).

Proof. Given τ replace L by τ(L) ⊂ E and apply Lemma 9.15.7. □

9.16. Splitting fields

09HT The following lemma is a useful tool for constructing normal field extensions.

Lemma 9.16.1.09HU Let F be a field. Let P ∈ F [x] be a nonconstant polynomial.
There exists a smallest field extension E/F such that P splits completely over
E. Moreover, the field extension E/F is normal and unique up to (nonunique)
isomorphism.

https://stacks.math.columbia.edu/tag/09HR
https://stacks.math.columbia.edu/tag/09HS
https://stacks.math.columbia.edu/tag/0BR4
https://stacks.math.columbia.edu/tag/09HU


9.16. SPLITTING FIELDS 409

Proof. Choose an algebraic closure F . Then we can write P = c(x−β1) . . . (x−βn)
in F [x], see Lemma 9.10.2. Note that c ∈ F ∗. Set E = F (β1, . . . , βn). Then it is
clear that E is minimal with the requirement that P splits completely over E.
Next, let E′ be another minimal field extension of F such that P splits completely
over E′. Write P = c(x−α1) . . . (x−αn) with c ∈ F and αi ∈ E′. Again it follows
from minimality that E′ = F (α1, . . . , αn). Moreover, if we pick any σ : E′ → F
(Lemma 9.10.5) then we immediately see that σ(αi) = βτ(i) for some permutation
τ : {1, . . . , n} → {1, . . . , n}. Thus σ(E′) = E. This implies that E′ is a normal
extension of F by Lemma 9.15.5 and that E ∼= E′ as extensions of F thereby
finishing the proof. □

Definition 9.16.2.09HV Let F be a field. Let P ∈ F [x] be a nonconstant polynomial.
The field extension E/F constructed in Lemma 9.16.1 is called the splitting field
of P over F .

Lemma 9.16.3.09DT Let E/F be a finite extension of fields. There exists a unique
smallest finite extension K/E such that K is normal over F .

Proof. Choose generators α1, . . . , αn of E over F . Let P1, . . . , Pn be the minimal
polynomials of α1, . . . , αn over F . Set P = P1 . . . Pn. Observe that (x−α1) . . . (x−
αn) divides P , since each (x− αi) divides Pi. Say P = (x− α1) . . . (x− αn)Q. Let
K/E be the splitting field of P over E. We claim that K is the splitting field of
P over F as well (which implies that K is normal over F ). This is clear because
K/E is generated by the roots of Q over E and E is generated by the roots of
(x− α1) . . . (x− αn) over F , hence K is generated by the roots of P over F .
Uniqueness. Suppose that K ′/E is a second smallest extension such that K ′/F
is normal. Choose an algebraic closure F and an embedding σ0 : E → F . By
Lemma 9.10.5 we can extend σ0 to σ : K → F and σ′ : K ′ → F . By Lemma
9.15.3 we see that σ(K)∩σ′(K ′) is normal over F . By minimality we conclude that
σ(K) = σ(K ′). Thus σ ◦ (σ′)−1 : K ′ → K gives an isomorphism of extensions of
E. □

Definition 9.16.4.0BMF Let E/F be a finite extension of fields. The field extension K/E
constructed in Lemma 9.16.3 is called the normal closure E over F .

One can construct the normal closure inside any given normal extension.

Lemma 9.16.5.0BMG Let L/K be an algebraic normal extension.
(1) If L/M/K is a subextension with M/K finite, then there exists a tower

L/M ′/M/K with M ′/K finite and normal.
(2) If L/M ′/M/K is a tower with M/K normal and M ′/M finite, then there

exists a tower L/M ′′/M ′/M/K with M ′′/M finite and M ′′/K normal.

Proof. Proof of (1). Let M ′ be the smallest subextension of L/K containing M
which is normal over K. By Lemma 9.16.3 this is the normal closure of M/K and
is finite over K.
Proof of (2). Let α1, . . . , αn ∈ M ′ generate M ′ over M . Let P1, . . . , Pn be the
minimal polynomials of α1, . . . , αn over K. Let αi,j be the roots of Pi in L. Let
M ′′ = M(αi,j). It follows from Lemma 9.15.6 (applied with the set of generators
M ∪ {αi,j}) that M ′′ is normal over K. □
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The following lemma can sometimes be used to prove properties of the normal
closure.

Lemma 9.16.6.0EXL Let L/K be a finite extension. Let M/L be the normal closure of
L over K. Then there is a surjective map

L⊗K L⊗K . . .⊗K L −→M

of K-algebras where the number of tensors can be taken [L : K]s ≤ [L : K].

Proof. Choose an algebraic closure K of K. Set n = [L : K]s = |MorK(L,K)|
with equality by Lemma 9.14.8. Say MorK(L,K) = {σ1, . . . , σn}. Let M ′ ⊂ K be
the K-subalgebra generated by σi(L), i = 1, . . . , n. It follows from Lemma 9.15.5
that M ′ is normal over K and that it is the smallest normal subextension of K
containing σ1(L). By uniqueness of normal closure we have M ∼= M ′. Finally,
there is a surjective map

L⊗K L⊗K . . .⊗K L −→M ′, λ1 ⊗ . . .⊗ λn 7−→ σ1(λ1) . . . σn(λn)

and note that n ≤ [L : K] by definition. □

9.17. Roots of unity

09HW Let F be a field. For an integer n ≥ 1 we set

µn(F ) = {ζ ∈ F | ζn = 1}

This is called the group of nth roots of unity or nth roots of 1. It is an abelian
group under multiplication with neutral element given by 1. Observe that in a field
the number of roots of a polynomial of degree d is always at most d. Hence we see
that |µn(F )| ≤ n as it is defined by a polynomial equation of degree n. Of course
every element of µn(F ) has order dividing n. Moreover, the subgroups

µd(F ) ⊂ µn(F ), d|n

each have at most d elements. This implies that µn(F ) is cyclic.

Lemma 9.17.1.09HX Let A be an abelian group of exponent dividing n such that {x ∈
A | dx = 0} has cardinality at most d for all d|n. Then A is cyclic of order dividing
n.

Proof. The conditions imply that |A| ≤ n, in particular A is finite. The structure
of finite abelian groups shows that A = Z/e1Z ⊕ . . . ⊕ Z/erZ for some integers
1 < e1|e2| . . . |er. This would imply that {x ∈ A | e1x = 0} has cardinality er1.
Hence r = 1. □

Applying this to the field Fp we obtain the celebrated result that the group (Z/pZ)∗

is a cyclic group. More about this in the section on finite fields.

One more observation is often useful: If F has characteristic p > 0, then µpn(F ) =
{1}. This is true because raising to the pth power is an injective map on fields of
characteristic p as we have seen in the proof of Lemma 9.12.5. (Of course, it also
follows from the statement of that lemma itself.)
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9.18. Finite fields

09HY Let F be a finite field. It is clear that F has positive characteristic as we cannot
have an injection Q→ F . Say the characteristic of F is p. The extension Fp ⊂ F
is finite. Hence we see that F has q = pf elements for some f ≥ 1.

Let us think about the group of units F ∗. This is a finite abelian group, so it has
some exponent e. Then F ∗ = µe(F ) and we see from the discussion in Section 9.17
that F ∗ is a cyclic group of order q − 1. (A posteriori it follows that e = q − 1 as
well.) In particular, if α ∈ F ∗ is a generator then it clearly is true that

F = Fp(α)

In other words, the extension F/Fp is generated by a single element. Of course,
the same thing is true for any extension of finite fields E/F (because E is already
generated by a single element over the prime field).

9.19. Primitive elements

09HZ Let E/F be a finite extension of fields. An element α ∈ E is called a primitive
element of E over F if E = F (α).

Lemma 9.19.1 (Primitive element).030N Let E/F be a finite extension of fields. The
following are equivalent

(1) there exists a primitive element for E over F , and
(2) there are finitely many subextensions E/K/F .

Moreover, (1) and (2) hold if E/F is separable.

Proof. Let α ∈ E be a primitive element. Let P be the minimal polynomial of α
over F . Let E ⊂ M be a splitting field for P over E, so that P (x) = (x − α)(x −
α2) . . . (x − αn) over M . For ease of notation we set α1 = α. Next, let E/K/F
be a subextension. Let Q be the minimal polynomial of α over K. Observe that
deg(Q) = [E : K]. Writing Q = xd +

∑
i<d aix

i we claim that K is equal to L =
F (a0, . . . , ad−1). Indeed α has degree d over L and L ⊂ K. Hence [E : L] = [E : K]
and it follows that [K : L] = 1, i.e., K = L. Thus it suffices to show there are
at most finitely many possibilities for the polynomial Q. This is clear because we
have a factorization P = QR in K[x] in particular in E[x]. Since we have unique
factorization in E[x] there are at most finitely many monic factors of P in E[x].

If F is a finite field (equivalently E is a finite field), then E/F has a primitive
element by the discussion in Section 9.18. Next, assume F is infinite and there are
at most finitely many proper subfields E/K/F . List them, say K1, . . . ,KN . Then
each Ki ⊂ E is a proper sub F -vector space. As F is infinite we can find a vector
α ∈ E with α ̸∈ Ki for all i (a vector space can never be equal to a finite union
of proper subvector spaces; details omitted). Then α is a primitive element for E
over F .

Having established the equivalence of (1) and (2) we now turn to the final state-
ment of the lemma. Choose an algebraic closure F of F . Enumerate the elements
σ1, . . . , σn ∈ MorF (E,F ). Since E/F is separable we have n = [E : F ] by Lemma
9.12.11. Note that if i ̸= j, then

Vij = Ker(σi − σj : E −→ F )
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is not equal to E. Hence arguing as in the preceding paragraph we can find α ∈ E
with α ̸∈ Vij for all i ̸= j. It follows that |MorF (F (α), F )| ≥ n. On the other
hand [F (α) : F ] ≤ [E : F ]. Hence equality by Lemma 9.12.11 and we conclude that
E = F (α). □

9.20. Trace and norm

0BIE Let L/K be a finite extension of fields. By Lemma 9.4.1 we can choose an isomor-
phism L ∼= K⊕n of K-modules. Of course n = [L : K] is the degree of the field
extension. Using this isomorphism we get for a K-algebra map

L −→ Mat(n× n,K), α 7−→ matrix of multiplication by α
Thus given α ∈ L we can take the trace and the determinant of the corresponding
matrix. Of course these quantities are independent of the choice of the basis chosen
above. More canonically, simply thinking of L as a finite dimensional K-vector
space we have TraceK(α : L→ L) and the determinant detK(α : L→ L).
Definition 9.20.1.0BIF Let L/K be a finite extension of fields. For α ∈ L we define the
trace TraceL/K(α) = TraceK(α : L → L) and the norm NormL/K(α) = detK(α :
L→ L).
It is clear from the definition that TraceL/K is K-linear and satisfies TraceL/K(α) =
[L : K]α for α ∈ K. Similarly NormL/K is multiplicative and NormL/K(α) = α[L:K]

for α ∈ K. This is a special case of the more general construction discussed in
Exercises, Exercises 111.22.6 and 111.22.7.
Lemma 9.20.2.0BIG Let L/K be a finite extension of fields. Let α ∈ L and let P be
the minimal polynomial of α over K. Then the characteristic polynomial of the
K-linear map α : L→ L is equal to P e with edeg(P ) = [L : K].
Proof. Choose a basis β1, . . . , βe of L over K(α). Then e satisfies edeg(P ) = [L : K]
by Lemmas 9.9.2 and 9.7.7. Then we see that L =

⊕
K(α)βi is a direct sum

decomposition into α-invariant subspaces hence the characteristic polynomial of
α : L → L is equal to the characteristic polynomial of α : K(α) → K(α) to the
power e.
To finish the proof we may assume that L = K(α). In this case by Cayley-Hamilton
we see that α is a root of the characteristic polynomial. And since the characteristic
polynomial has the same degree as the minimal polynomial, we find that equality
holds. □

Lemma 9.20.3.0BIH Let L/K be a finite extension of fields. Let α ∈ L and let P =
xd + a1x

d−1 + . . .+ ad be the minimal polynomial of α over K. Then
NormL/K(α) = (−1)[L:K]aed and TraceL/K(α) = −ea1

where ed = [L : K].
Proof. Follows immediately from Lemma 9.20.2 and the definitions. □

Lemma 9.20.4.0BII Let L/K be a finite extension of fields. Let V be a finite dimensional
vector space over L. Let φ : V → V be an L-linear map. Then

TraceK(φ : V → V ) = TraceL/K(TraceL(φ : V → V ))
and

detK(φ : V → V ) = NormL/K(detL(φ : V → V ))
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Proof. Choose an isomorphism V = L⊕n so that φ corresponds to an n×n matrix.
In the case of traces, both sides of the formula are additive in φ. Hence we can
assume that φ corresponds to the matrix with exactly one nonzero entry in the
(i, j) spot. In this case a direct computation shows both sides are equal.
In the case of norms both sides are zero if φ has a nonzero kernel. Hence we may
assume φ corresponds to an element of GLn(L). Both sides of the formula are
multiplicative in φ. Since every element of GLn(L) is a product of elementary
matrices we may assume that φ either looks like

E12(λ) =

 1 λ . . .
0 1 . . .
. . . . . . . . .

 or E1(a) =

 a 0 . . .
0 1 . . .
. . . . . . . . .


(because we may also permute the basis elements if we like). In both cases the
formula is easy to verify by direct computation. □

Lemma 9.20.5.0BIJ Let M/L/K be a tower of finite extensions of fields. Then
TraceM/K = TraceL/K ◦ TraceM/L and NormM/K = NormL/K ◦NormM/L

Proof. Think of M as a vector space over L and apply Lemma 9.20.4. □

The trace pairing is defined using the trace.

Definition 9.20.6.0BIK Let L/K be a finite extension of fields. The trace pairing for
L/K is the symmetric K-bilinear form

QL/K : L× L −→ K, (α, β) 7−→ TraceL/K(αβ)

It turns out that a finite extension of fields is separable if and only if the trace
pairing is nondegenerate.

Lemma 9.20.7.0BIL Let L/K be a finite extension of fields. The following are equivalent:
(1) L/K is separable,
(2) TraceL/K is not identically zero, and
(3) the trace pairing QL/K is nondegenerate.

Proof. It is clear that (3) implies (2). If (2) holds, then pick γ ∈ L with TraceL/K(γ) ̸=
0. Then if α ∈ L is nonzero, we see that QL/K(α, γ/α) ̸= 0. Hence QL/K is non-
degenerate. This proves the equivalence of (2) and (3).
Suppose that K has characteristic p and L = K(α) with α ̸∈ K and αp ∈ K.
Then TraceL/K(1) = p = 0. For i = 1, . . . , p − 1 we see that xp − αpi is the
minimal polynomial for αi over K and we find TraceL/K(αi) = 0 by Lemma 9.20.3.
Hence for this kind of purely inseparable degree p extension we see that TraceL/K
is identically zero.
Assume that L/K is not separable. Then there exists a subfield L/K ′/K such
that L/K ′ is a purely inseparable degree p extension as in the previous paragraph,
see Lemmas 9.14.6 and 9.14.5. Hence by Lemma 9.20.5 we see that TraceL/K is
identically zero.
Assume on the other hand that L/K is separable. By induction on the degree we
will show that TraceL/K is not identically zero. Thus by Lemma 9.20.5 we may
assume that L/K is generated by a single element α (use that if the trace is nonzero
then it is surjective). We have to show that TraceL/K(αe) is nonzero for some e ≥ 0.
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Let P = xd + a1x
d−1 + . . .+ ad be the minimal polynomial of α over K. Then P is

also the characteristic polynomial of the linear maps α : L→ L, see Lemma 9.20.2.
Since L/k is separable we see from Lemma 9.12.4 that P has d pairwise distinct
roots α1, . . . , αd in an algebraic closure K of K. Thus these are the eigenvalues of
α : L → L. By linear algebra, the trace of αe is equal to αe1 + . . . + αed. Thus we
conclude by Lemma 9.13.2. □

Let K be a field and let Q : V × V → K be a bilinear form on a finite dimensional
vector space over K. Say dimK(V ) = n. Then Q defines a linear map Q : V → V ∗,
v 7→ Q(v,−) where V ∗ = HomK(V,K) is the dual vector space. Hence a linear
map

det(Q) : ∧n(V ) −→ ∧n(V )∗

If we pick a basis element ω ∈ ∧n(V ), then we can write det(Q)(ω) = λω∗, where ω∗

is the dual basis element in ∧n(V )∗. If we change our choice of ω into cω for some
c ∈ K∗, then ω∗ changes into c−1ω∗ and therefore λ changes into c2λ. Thus the
class of λ in K/(K∗)2 is well defined and is called the discriminant of Q. Unwinding
the definitions we see that

λ = det(Q(vi, vj)1≤i,j≤n)

if {v1, . . . , vn} is a basis for V over K. Observe that the discriminant is nonzero if
and only if Q is nondegenerate.

Definition 9.20.8.0BIM Let L/K be a finite extension of fields. The discriminant of L/K
is the discriminant of the trace pairing QL/K .

By the discussion above and Lemma 9.20.7 we see that the discriminant is nonzero
if and only if L/K is separable. For a ∈ K we often say “the discriminant is a”
when it would be more correct to say the discriminant is the class of a in K/(K∗)2.

Exercise 9.20.9.0BIN Let L/K be an extension of degree 2. Show that exactly one of
the following happens

(1) the discriminant is 0, the characteristic of K is 2, and L/K is purely
inseparable obtained by taking a square root of an element of K,

(2) the discriminant is 1, the characteristic of K is 2, and L/K is separable
of degree 2,

(3) the discriminant is not a square, the characteristic of K is not 2, and L is
obtained from K by taking the square root of the discriminant.

9.21. Galois theory

09DU Here is the definition.

Definition 9.21.1.09I0 A field extension E/F is called Galois if it is algebraic, separable,
and normal.

It turns out that a finite extension is Galois if and only if it has the “correct”
number of automorphisms.

Lemma 9.21.2.09I1 Let E/F be a finite extension of fields. Then E is Galois over F if
and only if |Aut(E/F )| = [E : F ].
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Proof. Assume |Aut(E/F )| = [E : F ]. By Lemma 9.15.9 this implies that E/F
is separable and normal, hence Galois. Conversely, if E/F is separable then [E :
F ] = [E : F ]s and if E/F is in addition normal, then Lemma 9.15.9 implies that
|Aut(E/F )| = [E : F ]. □

Motivated by the lemma above we introduce the Galois group as follows.

Definition 9.21.3.09DV If E/F is a Galois extension, then the group Aut(E/F ) is called
the Galois group and it is denoted Gal(E/F ).

If L/K is an infinite Galois extension, then one should think of the Galois group
as a topological group. We will return to this in Section 9.22.

Lemma 9.21.4.09I2 Let K/E/F be a tower of algebraic field extensions. If K is Galois
over F , then K is Galois over E.

Proof. Combine Lemmas 9.15.2 and 9.12.3. □

Lemma 9.21.5.0EXM Let L/K be a finite separable extension of fields. Let M be the
normal closure of L over K (Definition 9.16.4). Then M/K is Galois.

Proof. The subextension M/Msep/K of Lemma 9.14.6 is normal by Lemma 9.15.4.
Since L/K is separable we have L ⊂Msep. By minimality M = Msep and the proof
is done. □

Let G be a group acting on a field K (by field automorphisms). We will often use
the notation

KG = {x ∈ K | σ(x) = x ∀σ ∈ G}
and we will call this the fixed field for the action of G on K.

Lemma 9.21.6.09I3 Let K be a field. Let G be a finite group acting faithfully on K.
Then the extension K/KG is Galois, we have [K : KG] = |G|, and the Galois group
of the extension is G.

Proof. Given α ∈ K consider the orbit G · α ⊂ K of α under the group action.
Consider the polynomial

P =
∏

β∈G·α
(x− β) ∈ K[x]

The key to the whole lemma is that this polynomial is invariant under the action
of G and hence has coefficients in KG. Namely, for τ ∈ G we have

P τ =
∏

β∈G·α
(x− τ(β)) =

∏
β∈G·α

(x− β) = P

because the map β 7→ τ(β) is a permutation of the orbit G · α. Thus P ∈ KG[x].
Since also P (α) = 0 as α is an element of its orbit we conclude that the extension
K/KG is algebraic. Moreover, the minimal polynomial Q of α over KG divides
the polynomial P just constructed. Hence Q is separable (by Lemma 9.12.4 for
example) and we conclude that K/KG is separable. Thus K/KG is Galois. To
finish the proof it suffices to show that [K : KG] = |G| since then G will be the
Galois group by Lemma 9.21.2.
Pick finitely many elements αi ∈ K, i = 1, . . . , n such that σ(αi) = αi for i =
1, . . . , n implies σ is the neutral element of G. Set

L = KG({σ(αi); 1 ≤ i ≤ n, σ ∈ G}) ⊂ K
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and observe that the action of G on K induces an action of G on L. We will show
that L has degree |G| over KG. This will finish the proof, since if L ⊂ K is proper,
then we can add an element α ∈ K, α ̸∈ L to our list of elements α1, . . . , αn without
increasing L which is absurd. This reduces us to the case that K/KG is finite which
is treated in the next paragraph.
AssumeK/KG is finite. By Lemma 9.19.1 we can find α ∈ K such thatK = KG(α).
By the construction in the first paragraph of this proof we see that α has degree at
most |G| over K. However, the degree cannot be less than |G| as G acts faithfully
on KG(α) = L by construction and the inequality of Lemma 9.15.9. □

Theorem 9.21.7 (Fundamental theorem of Galois theory).09DW Let L/K be a finite
Galois extension with Galois group G. Then we have K = LG and the map

{subgroups of G} −→ {subextensions L/M/K}, H 7−→ LH

is a bijection whose inverse maps M to Gal(L/M). The normal subgroups H of G
correspond exactly to those subextensions M with M/K Galois.

Proof. By Lemma 9.21.4 given a subextension L/M/K the extension L/M is Galois.
Of course L/M is also finite (Lemma 9.7.3). Thus |Gal(L/M)| = [L : M ] by Lemma
9.21.2. Conversely, if H ⊂ G is a finite subgroup, then [L : LH ] = |H| by Lemma
9.21.6. It follows formally from these two observations that we obtain a bijective
correspondence as in the theorem.
If H ⊂ G is normal, then LH is fixed by the action of G and we obtain a canonical
map G/H → Aut(LH/K). This map has to be injective as Gal(L/LH) = H. Hence
|G/H| = [LH : K] and LH is Galois by Lemma 9.21.2.
Conversely, assume that K ⊂ M ⊂ L with M/K Galois. By Lemma 9.15.7 we
see that every element τ ∈ Gal(L/K) induces an element τ |M ∈ Gal(M/K). This
induces a homomorphism of Galois groups Gal(L/K) → Gal(M/K) whose kernel
is H. Thus H is a normal subgroup. □

Lemma 9.21.8.0BMH Let L/M/K be a tower of fields. Assume L/K and M/K are finite
Galois. Then we obtain a short exact sequence

1→ Gal(L/M)→ Gal(L/K)→ Gal(M/K)→ 1
of finite groups.

Proof. Namely, by Lemma 9.15.7 we see that every element τ ∈ Gal(L/K) induces
an element τ |M ∈ Gal(M/K) which gives us the homomorphism on the right. The
map on the left identifies the left group with the kernel of the right arrow. The
sequence is exact because the sizes of the groups work out correctly by multiplica-
tivity of degrees in towers of finite extensions (Lemma 9.7.7). One can also use
Lemma 9.15.7 directly to see that the map on the right is surjective. □

9.22. Infinite Galois theory

0BMI The Galois group comes with a canonical topology.

Lemma 9.22.1.0BMJ Let E/F be a Galois extension. Endow Gal(E/F ) with the coarsest
topology such that

Gal(E/F )× E −→ E

is continuous when E is given the discrete topology. Then
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(1) for any topological space X and map X → Aut(E/F ) such that the action
X×E → E is continuous the induced map X → Gal(E/F ) is continuous,

(2) this topology turns Gal(E/F ) into a profinite topological group.

Proof. Throughout this proof we think of E as a discrete topological space. Recall
that the compact open topology on the set of self maps Map(E,E) is the universal
topology such that the action Map(E,E) × E → E is continuous. See Topology,
Example 5.30.2 for a precise statement. The topology of the lemma on Gal(E/F )
is the induced topology coming from the injective map Gal(E/F ) → Map(E,E).
Hence the universal property (1) follows from the corresponding universal property
of the compact open topology. Since the set of invertible self maps Aut(E) endowed
with the compact open topology forms a topological group, see Topology, Example
5.30.2, and since Gal(E/F ) = Aut(E/F )→ Map(E,E) factors through Aut(E) we
obtain a topological group. In other words, we are using the injection

Gal(E/F ) ⊂ Aut(E)

to endow Gal(E/F ) with the induced structure of a topological group (see Topology,
Section 5.30) and by construction this is the coarsest structure of a topological group
such that the action Gal(E/F )× E → E is continuous.

To show that Gal(E/F ) is profinite we argue as follows (our argument is necessarily
nonstandard because we have defined the topology before showing that the Galois
group is an inverse limit of finite groups). By Topology, Lemma 5.30.4 it suffices
to show that the underlying topological space of Gal(E/F ) is profinite. For any
subset S ⊂ E consider the set

G(S) = {f : S → E | f(α) is a root of the minimal polynomial
of α over F for all α ∈ S }

Since a polynomial has only a finite number of roots we see that G(S) is finite for all
S ⊂ E finite. If S ⊂ S′ then restriction gives a map G(S′)→ G(S). Also, observe
that if α ∈ S ∩ F and f ∈ G(S), then f(α) = α because the minimal polynomial is
linear in this case. Consider the profinite topological space

G = limS⊂E finite G(S)

Consider the canonical map

c : Gal(E/F ) −→ G, σ 7−→ (σ|S : S → E)S

This is injective and unwinding the definitions the reader sees the topology on
Gal(E/F ) as defined above is the induced topology from G. An element (fS) ∈ G
is in the image of c exactly if (A) fS(α)+fS(β) = fS(α+β) and (M) fS(α)fS(β) =
fS(αβ) whenever this makes sense (i.e., α, β, α + β, αβ ∈ S). Namely, this means
lim fS : E → E will be an F -algebra map and hence an automorphism by Lemma
9.8.11. The conditions (A) and (M) for a given triple (S, α, β) define a closed subset
of G and hence Gal(E/F ) is homeomorphic to a closed subset of a profinite space
and therefore profinite itself. □

Lemma 9.22.2.0BMK Let L/M/K be a tower of fields. Assume both L/K and M/K
are Galois. Then there is a canonical surjective continuous homomorphism c :
Gal(L/K)→ Gal(M/K).

https://stacks.math.columbia.edu/tag/0BMK
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Proof. By Lemma 9.15.7 given τ : L→ L in Gal(L/K) the restriction τ |M : M →
M is an element of Gal(M/K). This defines the homomorphism c. Continuity
follows from the universal property of the topology: the action

Gal(L/K)×M −→M, (τ, x) 7−→ τ(x) = c(τ)(x)
is continuous as M ⊂ L and the action Gal(L/K) × L → L is continuous. Hence
continuity of c by part (1) of Lemma 9.22.1. Lemma 9.15.7 also shows that the
map is surjective. □

Here is a more standard way to think about the Galois group of an infinite Galois
extension.

Lemma 9.22.3.0BU2 Let L/K be a Galois extension with Galois group G. Let Λ be the
set of finite Galois subextensions, i.e., λ ∈ Λ corresponds to L/Lλ/K with Lλ/K
finite Galois with Galois group Gλ. Define a partial ordering on Λ by the rule
λ ≥ λ′ if and only if Lλ ⊃ Lλ′ . Then

(1) Λ is a directed partially ordered set,
(2) Lλ is a system of K-extensions over Λ and L = colimLλ,
(3) Gλ is an inverse system of finite groups over Λ, the transition maps are

surjective, and
G = limλ∈Λ Gλ

as a profinite group, and
(4) each of the projections G→ Gλ is continuous and surjective.

Proof. Every subfield of L containing K is separable over K (follows immediately
from the definition). Let S ⊂ L be a finite subset. Then K(S)/K is finite and
there exists a tower L/E/K(S)/K such that E/K is finite Galois, see Lemma
9.16.5. Hence E = Lλ for some λ ∈ Λ. This certainly implies the set Λ is not
empty. Also, given λ1, λ2 ∈ Λ we can write Lλi = K(Si) for finite sets S1, S2 ⊂ L
(Lemma 9.7.5). Then there exists a λ ∈ Λ such that K(S1 ∪ S2) ⊂ Lλ. Hence
λ ≥ λ1, λ2 and Λ is directed (Categories, Definition 4.21.4). Finally, since every
element in L is contained in Lλ for some λ ∈ Λ, it follows from the description of
filtered colimits in Categories, Section 4.19 that colimLλ = L.
If λ ≥ λ′ in Λ, then we obtain a canonical surjective map Gλ → Gλ′ , σ 7→ σ|Lλ′

by Lemma 9.21.8. Thus we get an inverse system of finite groups with surjective
transition maps.
Recall that G = Aut(L/K). By Lemma 9.22.2 the restriction σ|Lλ of a σ ∈ G to
Lλ is an element of Gλ. Moreover, this procedure gives a continuous surjection
G → Gλ. Since the transition mappings in the inverse system of Gλ are given by
restriction also, it is clear that we obtain a canonical continuous map

G −→ limλ∈Λ Gλ

Continuity by definition of limits in the category of topological groups; recall that
these limits commute with the forgetful functor to the categories of sets and topo-
logical spaces by Topology, Lemma 5.30.3. On the other hand, since L = colimLλ
it is clear that any element of the inverse limit (viewed as a set) defines an auto-
morphism of L. Thus the map is bijective. Since the topology on both sides is
profinite, and since a bijective continuous map of profinite spaces is a homeomor-
phism (Topology, Lemma 5.17.8), the proof is complete. □
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Theorem 9.22.4 (Fundamental theorem of infinite Galois theory).0BML Let L/K be a
Galois extension. Let G = Gal(L/K) be the Galois group viewed as a profinite
topological group (Lemma 9.22.1). Then we have K = LG and the map

{closed subgroups of G} −→ {subextensions L/M/K}, H 7−→ LH

is a bijection whose inverse maps M to Gal(L/M). The finite subextensions M
correspond exactly to the open subgroups H ⊂ G. The normal closed subgroups
H of G correspond exactly to subextensions M Galois over K.

Proof. We will use the result of finite Galois theory (Theorem 9.21.7) without
further mention. Let S ⊂ L be a finite subset. There exists a tower L/E/K such
that K(S) ⊂ E and such that E/K is finite Galois, see Lemma 9.16.5. In other
words, we see that L/K is the union of its finite Galois subextensions. For such an
E, by Lemma 9.22.2 the map Gal(L/K)→ Gal(E/K) is surjective and continuous,
i.e., the kernel is open because the topology on Gal(E/K) is discrete. In particular
we see that no element of L \ K is fixed by Gal(L/K) as EGal(E/K) = K. This
proves that LG = K.
By Lemma 9.21.4 given a subextension L/M/K the extension L/M is Galois. It is
immediate from the definition of the topology on G that the subgroup Gal(L/M)
is closed. By the above applied to L/M we see that LGal(L/M) = M .
Conversely, let H ⊂ G be a closed subgroup. We claim that H = Gal(L/LH).
The inclusion H ⊂ Gal(L/LH) is clear. Suppose that g ∈ Gal(L/LH). Let S ⊂ L
be a finite subset. We will show that the open neighbourhood US(g) = {g′ ∈ G |
g′(s) = g(s)} of g meets H. This implies that g ∈ H because H is closed. Let
L/E/K be a finite Galois subextension containing K(S) as in the first paragraph
of the proof and consider the homomorphism c : Gal(L/K) → Gal(E/K). Then
LH ∩ E = Ec(H). Since g fixes LH it fixes Ec(H) and hence c(g) ∈ c(H) by finite
Galois theory. Pick h ∈ H with c(h) = c(g). Then h ∈ US(g) as desired.
At this point we have established the correspondence between closed subgroups and
subextensions.
Assume H ⊂ G is open. Arguing as above we find that H containes Gal(L/E) for
some large enough finite Galois subextension E and we find that LH is contained
in E whence finite over K. Conversely, if M is a finite subextension, then M is
generated by a finite subset S and the corresponding subgroup is the open subset
US(e) where e ∈ G is the neutral element.
Assume that K ⊂M ⊂ L with M/K Galois. By Lemma 9.22.2 there is a surjective
continuous homomorphism of Galois groups Gal(L/K)→ Gal(M/K) whose kernel
is Gal(L/M). Thus Gal(L/M) is a normal closed subgroup.
Finally, assume N ⊂ G is normal and closed. For any L/E/K as in the first
paragraph of the proof, the image c(N) ⊂ Gal(E/K) is a normal subgroup. Hence
LN =

⋃
Ec(N) is a union of Galois extensions of K (by finite Galois theory) whence

Galois over K. □

Lemma 9.22.5.0BMM Let L/M/K be a tower of fields. Assume L/K and M/K are
Galois. Then we obtain a short exact sequence

1→ Gal(L/M)→ Gal(L/K)→ Gal(M/K)→ 1
of profinite topological groups.
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Proof. This is a reformulation of Lemma 9.22.2. □

9.23. The complex numbers

09I4 The fundamental theorem of algebra states that the field of complex numbers is an
algebraically closed field. In this section we discuss this briefly.
The first remark we’d like to make is that you need to use a little bit of input
from calculus in order to prove this. We will use the intuitively clear fact that
every odd degree polynomial over the reals has a real root. Namely, let P (x) =
a2k+1x

2k+1 + . . .+a0 ∈ R[x] for some k ≥ 0 and a2k+1 ̸= 0. We may and do assume
a2k+1 > 0. Then for x ∈ R very large (positive) we see that P (x) > 0 as the term
a2k+1x

2k+1 dominates all the other terms. Similarly, if x ≪ 0, then P (x) < 0 by
the same reason (and this is where we use that the degree is odd). Hence by the
intermediate value theorem there is an x ∈ R with P (x) = 0.
A conclusion we can draw from the above is that R has no nontrivial odd degree
field extensions, as elements of such extensions would have odd degree minimal
polynomials.
Next, let K/R be a finite Galois extension with Galois group G. Let P ⊂ G be
a 2-sylow subgroup. Then KP /R is an odd degree extension, hence by the above
KP = R, which in turn implies G = P . (All of these arguments rely on Galois
theory of course.) Thus G is a 2-group. If G is nontrivial, then we see that C ⊂ K
as C is (up to isomorphism) the only degree 2 extension of R. If G has more than
2 elements we would obtain a quadratic extension of C. This is absurd as every
complex number has a square root.
The conclusion: C is algebraically closed. Namely, if not then we’d get a nontrivial
finite extension K/C which we could assume normal (hence Galois) over R by
Lemma 9.16.3. But we’ve seen above that then K = C.
Lemma 9.23.1 (Fundamental theorem of algebra).09I5 The field C is algebraically
closed.
Proof. See discussion above. □

9.24. Kummer extensions

09I6 Let K be a field. Let n ≥ 2 be an integer such that K contains a primitive nth
root of 1. Let a ∈ K. Let L be an extension of K obtained by adjoining a root b of
the equation xn = a. Then L/K is Galois. If G = Gal(L/K) is the Galois group,
then the map

G −→ µn(K), σ 7−→ σ(b)/b
is an injective homomorphism of groups. In particular, G is cyclic of order dividing
n as a subgroup of the cyclic group µn(K). Kummer theory gives a converse.
Lemma 9.24.1 (Kummer extensions).09DX Let L/K be a Galois extension of fields whose
Galois group is Z/nZ. Assume moreover that the characteristic of K is prime to n
and that K contains a primitive nth root of 1. Then L = K[z] with zn ∈ K.
Proof. Let ζ ∈ K be a primitive nth root of 1. Let σ be a generator of Gal(L/K).
Consider σ : L → L as a K-linear operator. Note that σn − 1 = 0 as a linear
operator. Applying linear independence of characters (Lemma 9.13.1), we see that
there cannot be a polynomial over K of degree < n annihilating σ. Hence the

https://stacks.math.columbia.edu/tag/09I5
https://stacks.math.columbia.edu/tag/09DX


9.24. KUMMER EXTENSIONS 421

minimal polynomial of σ as a linear operator is xn − 1. Since ζ is a root of xn − 1
by linear algebra there is a 0 ̸= z ∈ L such that σ(z) = ζz. This z satisfies
zn ∈ K because σ(zn) = (ζz)n = zn. Moreover, we see that z, σ(z), . . . , σn−1(z) =
z, ζz, . . . ζn−1z are pairwise distinct which guarantees that z generates L over K.
Hence L = K[z] as required. □

Lemma 9.24.2.0EXN Let K be a field with algebraic closure K. Let p be a prime different
from the characteristic of K. Let ζ ∈ K be a primitive pth root of 1. Then K(ζ)/K
is a Galois extension of degree dividing p− 1.

Proof. The polynomial xp−1 splits completely overK(ζ) as its roots are 1, ζ, ζ2, . . . , ζp−1.
Hence K(ζ)/K is a splitting field and hence normal. The extension is separable as
xp− 1 is a separable polynomial. Thus the extension is Galois. Any automorphism
of K(ζ) over K sends ζ to ζi for some 1 ≤ i ≤ p − 1. Thus the Galois group is a
subgroup of (Z/pZ)∗. □

Lemma 9.24.3.0EXP Let K be a field. Let L/K be a finite extension of degree e which
is generated by an element α with a = αe ∈ K. Then any sub extension L/L′/K
is generated by αd for some d|e.

Proof. Observe that for d|e the subfield K(αd) has [K(αd) : K] = e/d and [L :
K(αd)] = d and that both extensions K(αd)/K and L/K(αd) are extensions as in
the lemma.
We will use induction on the pair of integers ([L : L′], [L′ : K]) ordered lexicograph-
ically. Let p be a prime number dividing e and set d = e/p. If K(αd) is contained
in L′, then we win by induction, because then it suffices to prove the lemma for
L/L′/K(αd). If not, then [L′(αd) : L′] = p and by induction hypothesis we have
L′(αd) = K(αi) for some i|d. If i ̸= 1 we are done by induction. Thus we may
assume that [L : L′] = p.
If e is not a power of p, then we can do this trick again with a second prime number
and we win. Thus we may assume e is a power of p.
If the characteristic of K is p and e is a pth power, then L/K is purely inseparable.
Hence L/L′ is purely inseparable of degree p and hence αp ∈ L′. Thus L′ = K(αp)
and this case is done.
The final case is where e is a power of p, the characteristic of K is not p, L/L′ is
a degree p extension, and L = L′(αe/p). Claim: this can only happen if e = p and
L′ = K. The claim finishes the proof.
First, we prove the claim when K contains a primitive pth root of unity ζ. In this
case the degree p extension K(αe/p)/K is Galois with Galois group generated by
the automorphism αe/p 7→ ζαe/p. On the other hand, since L is generated by αe/p
and L′ we see that the map

K(αe/p)⊗K L′ −→ L

is an isomorphism ofK-algebras (look at dimensions). Thus L has an automorphism
σ of order p over K sending αe/p to ζαe/p. Then σ(α) = ζ ′α for some eth root of
unity ζ ′ (as αe is in K). Then on the one hand (ζ ′)e/p = ζ and on the other hand
ζ ′ has to be a pth root of 1 as σ has order p. Thus e/p = 1 and the claim has been
shown.
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Finally, suppose that K does not contain a primitive pth root of 1. Choose a
primitive pth root ζ in some algebraic closure L of L. Consider the diagram

K(ζ) // L(ζ)

K

OO

// L

OO

By Lemma 9.24.2 the vertical extensions have degree prime to p. Hence [L(ζ) :
K(ζ)] is divisible by e. On the other hand, L(ζ) is generated by α over K(ζ) and
hence [L(ζ) : K(ζ)] ≤ e. Thus [L(ζ) : K(ζ)] = e. Similarly we have [K(αe/p, ζ) :
K(ζ)] = p and [L(ζ) : L′(ζ)] = p. Thus the fields K(ζ), L′(ζ), L(ζ) and the element
α fall into the case discussed in the previous paragraph we conclude e = p as
desired. □

9.25. Artin-Schreier extensions

09I7 Let K be a field of characteristic p > 0. Let a ∈ K. Let L be an extension of K
obtained by adjoining a root b of the equation xp − x = a. Then L/K is Galois. If
G = Gal(L/K) is the Galois group, then the map

G −→ Z/pZ, σ 7−→ σ(b)− b
is an injective homomorphism of groups. In particular, G is cyclic of order dividing
p as a subgroup of Z/pZ. The theory of Artin-Schreier extensions gives a converse.
Lemma 9.25.1 (Artin-Schreier extensions).09DY Let L/K be a Galois extension of fields
of characteristic p > 0 with Galois group Z/pZ. Then L = K[z] with zp − z ∈ K.
Proof. Let σ be a generator of Gal(L/K). Consider σ : L→ L as a K-linear opera-
tor. Observe that σp− 1 = 0 as a linear operator. Applying linear independence of
characters (Lemma 9.13.1), there cannot be a polynomial of degree < p annihilating
σ. We conclude that the minimal polynomial of σ is xp−1 = (x−1)p. This implies
that there exists w ∈ L such that (σ − 1)p−1(w) = y is nonzero. Then σ(y) = y,
i.e., y ∈ K. Thus z = y−1(σ − 1)p−2(w) satisfies σ(z) = z + 1. Since z ̸∈ K we
have L = K[z]. Moreover since σ(zp − z) = (z + 1)p − (z + 1) = zp − z we see that
zp − z ∈ K and the proof is complete. □

9.26. Transcendence

030D We recall the standard definitions.
Definition 9.26.1.030E Let K/k be a field extension.

(1) A collection of elements {xi}i∈I of K is called algebraically independent
over k if the map

k[Xi; i ∈ I] −→ K

which maps Xi to xi is injective.
(2) The field of fractions of a polynomial ring k[xi; i ∈ I] is denoted k(xi; i ∈

I).
(3) A purely transcendental extension of k is any field extension K/k isomor-

phic to the field of fractions of a polynomial ring over k.
(4) A transcendence basis of K/k is a collection of elements {xi}i∈I which are

algebraically independent over k and such that the extension K/k(xi; i ∈
I) is algebraic.
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Example 9.26.2.09I8 The field Q(π) is purely transcendental because π isn’t the root
of a nonzero polynomial with rational coefficients. In particular, Q(π) ∼= Q(x).

Lemma 9.26.3.030F Let E/F be a field extension. A transcendence basis of E over F
exists. Any two transcendence bases have the same cardinality.

Proof. Let A be an algebraically independent subset of E. Let G be a subset of
E containing A that generates E/F . We claim we can find a transcendence basis
B such that A ⊂ B ⊂ G. To prove this, consider the collection B of algebraically
independent subsets whose members are subsets of G that contain A. Define a
partial ordering on B using inclusion. Then B contains at least one element A.
The union of the elements of a totally ordered subset T of B is an algebraically
independent subset of E over F since any algebraic dependence relation would
have occurred in one of the elements of T (since polynomials only involve finitely
many variables). The union also contains A and is contained in G. By Zorn’s
lemma, there is a maximal element B ∈ B. Now we claim E is algebraic over F (B).
This is because if it wasn’t then there would be an element f ∈ G transcendental
over F (B) since F (G) = E. Then B ∪ {f} would be algebraically independent
contradicting the maximality of B. Thus B is our transcendence basis.

Let B and B′ be two transcendence bases. Without loss of generality, we can
assume that |B′| ≤ |B|. Now we divide the proof into two cases: the first case is
that B is an infinite set. Then for each α ∈ B′, there is a finite set Bα ⊂ B such
that α is algebraic over F (Bα) since any algebraic dependence relation only uses
finitely many indeterminates. Then we define B∗ =

⋃
α∈B′ Bα. By construction,

B∗ ⊂ B, but we claim that in fact the two sets are equal. To see this, suppose that
they are not equal, say there is an element β ∈ B \ B∗. We know β is algebraic
over F (B′) which is algebraic over F (B∗). Therefore β is algebraic over F (B∗), a
contradiction. So |B| ≤ |

⋃
α∈B′ Bα|. Now if B′ is finite, then so is B so we can

assume B′ is infinite; this means

|B| ≤ |
⋃

α∈B′
Bα| = |B′|

because each Bα is finite and B′ is infinite. Therefore in the infinite case, |B| = |B′|.

Now we need to look at the case where B is finite. In this case, B′ is also finite,
so suppose B = {α1, . . . , αn} and B′ = {β1, . . . , βm} with m ≤ n. We perform
induction on m: if m = 0 then E/F is algebraic so B = ∅ so n = 0. If m > 0, there
is an irreducible polynomial f ∈ F [x, y1, . . . , yn] such that f(β1, α1, . . . , αn) = 0
and such that x occurs in f . Since β1 is not algebraic over F , f must involve some
yi so without loss of generality, assume f uses y1. Let B∗ = {β1, α2, . . . , αn}. We
claim that B∗ is a basis for E/F . To prove this claim, we see that we have a tower
of algebraic extensions

E/F (B∗, α1)/F (B∗)
since α1 is algebraic over F (B∗). Now we claim that B∗ (counting multiplicity
of elements) is algebraically independent over F because if it weren’t, then there
would be an irreducible g ∈ F [x, y2, . . . , yn] such that g(β1, α2, . . . , αn) = 0 which
must involve x making β1 algebraic over F (α2, . . . , αn) which would make α1 alge-
braic over F (α2, . . . , αn) which is impossible. So this means that {α2, . . . , αn} and
{β2, . . . , βm} are bases for E over F (β1) which means by induction, m = n. □
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Definition 9.26.4.030G LetK/k be a field extension. The transcendence degree ofK over
k is the cardinality of a transcendence basis of K over k. It is denoted trdegk(K).

Lemma 9.26.5.030H Let L/K/k be field extensions. Then
trdegk(L) = trdegK(L) + trdegk(K).

Proof. Choose a transcendence basis A ⊂ K of K over k. Choose a transcendence
basis B ⊂ L of L over K. Then it is straightforward to see that A ∪ B is a
transcendence basis of L over k. □

Example 9.26.6.09I9 Consider the field extension Q(e, π) formed by adjoining the
numbers e and π. This field extension has transcendence degree at least 1 since both
e and π are transcendental over the rationals. However, this field extension might
have transcendence degree 2 if e and π are algebraically independent. Whether or
not this is true is unknown and whence the problem of determining trdeg(Q(e, π))
is open.

Example 9.26.7.09IA Let F be a field and E = F (t). Then {t} is a transcendence basis
since E = F (t). However, {t2} is also a transcendence basis since F (t)/F (t2) is
algebraic. This illustrates that while we can always decompose an extension E/F
into an algebraic extension E/F ′ and a purely transcendental extension F ′/F , this
decomposition is not unique and depends on choice of transcendence basis.

Example 9.26.8.09IB Let X be a compact Riemann surface. Then the function field
C(X) (see Example 9.3.6) has transcendence degree one over C. In fact, any finitely
generated extension of C of transcendence degree one arises from a Riemann surface.
There is even an equivalence of categories between the category of compact Riemann
surfaces and (non-constant) holomorphic maps and the opposite of the category of
finitely generated extensions of C of transcendence degree 1 and morphisms of
C-algebras. See [For91].
There is an algebraic version of the above statement as well. Given an (irreducible)
algebraic curve in projective space over an algebraically closed field k (e.g. the com-
plex numbers), one can consider its “field of rational functions”: basically, functions
that look like quotients of polynomials, where the denominator does not identically
vanish on the curve. There is a similar anti-equivalence of categories (Algebraic
Curves, Theorem 53.2.6) between smooth projective curves and non-constant mor-
phisms of curves and finitely generated extensions of k of transcendence degree one.
See [Har77].

Definition 9.26.9.037I Let K/k be a field extension.
(1) The algebraic closure of k inK is the subfield k′ ofK consisting of elements

of K which are algebraic over k.
(2) We say k is algebraically closed in K if every element of K which is

algebraic over k is contained in k.

Lemma 9.26.10.0G1M Let k′/k be a finite extension of fields. Let k′(x1, . . . , xr)/k(x1, . . . , xr)
be the induced extension of purely transcendental extensions. Then [k′(x1, . . . , xr) :
k(x1, . . . , xr)] = [k′ : k] <∞.

Proof. By multiplicativity of degrees of extensions (Lemma 9.7.7) it suffices to prove
this when k′ is generated by a single element α ∈ k′ over k. Let f ∈ k[T ] be the
minimal polynomial of α over k. Then k′(x1, . . . , xr) is generated by α, x1, . . . , xr
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over k and hence k′(x1, . . . , xr) is generated by α over k(x1, . . . , xr). Thus it suffices
to show that f is still irreducible as an element of k(x1, . . . , xr)[T ]. We only sketch
the proof. It is clear that f is irreducible as an element of k[x1, . . . , xr, T ] for
example because f is monic as a polynomial in T and any putative factorization in
k[x1, . . . , xr, T ] would lead to a factorization in k[T ] by setting xi equal to 0. By
Gauss’ lemma we conclude. □

Lemma 9.26.11.037J Let K/k be a finitely generated field extension. The algebraic
closure of k in K is finite over k.

Proof. Let x1, . . . , xr ∈ K be a transcendence basis for K over k. Then n = [K :
k(x1, . . . , xr)] < ∞. Suppose that k ⊂ k′ ⊂ K with k′/k finite. In this case
[k′(x1, . . . , xr) : k(x1, . . . , xr)] = [k′ : k] <∞, see Lemma 9.26.10. Hence

[k′ : k] = [k′(x1, . . . , xr) : k(x1, . . . , xr)] ≤ [K : k(x1, . . . , xr)] = n.

In other words, the degrees of finite subextensions are bounded and the lemma
follows. □

9.27. Linearly disjoint extensions

09IC Let k be a field, K and L field extensions of k. Suppose also that K and L are
embedded in some larger field Ω.

Definition 9.27.1.09ID Consider a diagram

(9.27.1.1)09IE
L // Ω

k //

OO

K

OO

of field extensions. The compositum of K and L in Ω written KL is the smallest
subfield of Ω containing both L and K.

It is clear that KL is generated by the set K ∪ L over k, generated by the set K
over L, and generated by the set L over K.
Warning: The (isomorphism class of the) composition depends on the choice of
the embeddings of K and L into Ω. For example consider the number fields K =
Q(21/8) ⊂ R and L = Q(21/12) ⊂ R. The compositum inside R is the field
Q(21/24) of degree 24 over Q. However, if we embed K = Q[x]/(x8 − 2) into
C by mapping x to 21/8e2πi/8, then the compositum Q(21/12, 21/8e2πi/8) contains
i = e2πi/4 and has degree 48 over Q (we omit showing the degree is 48, but the
existence of i certainly proves the two composita are not isomorphic).

Definition 9.27.2.09IF Consider a diagram of fields as in (9.27.1.1). We say that K and
L are linearly disjoint over k in Ω if the map

K ⊗k L −→ KL,
∑

xi ⊗ yi 7−→
∑

xiyi

is injective.

The following lemma does not seem to fit anywhere else.

Lemma 9.27.3.030M Let E/F be a normal algebraic field extension. There exist subex-
tensions E/Esep/F and E/Einsep/F such that

(1) F ⊂ Esep is Galois and Esep ⊂ E is purely inseparable,
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(2) F ⊂ Einsep is purely inseparable and Einsep ⊂ E is Galois,
(3) E = Esep ⊗F Einsep.

Proof. We found the subfield Esep in Lemma 9.14.6. We set Einsep = EAut(E/F ).
Details omitted. □

9.28. Review

037H In this section we give a quick review of what has transpired above.
Let K/k be a field extension. Let α ∈ K. Then we have the following possibilities:

(1) The element α is transcendental over k.
(2) The element α is algebraic over k. Denote P (T ) ∈ k[T ] its minimal

polynomial. This is a monic polynomial P (T ) = T d + a1T
d−1 + . . . + ad

with coefficients in k. It is irreducible and P (α) = 0. These properties
uniquely determine P , and the integer d is called the degree of α over k.
There are two subcases:
(a) The polynomial dP/dT is not identically zero. This is equivalent to

the condition that P (T ) =
∏
i=1,...,d(T − αi) for pairwise distinct

elements α1, . . . , αd in the algebraic closure of k. In this case we say
that α is separable over k.

(b) The dP/dT is identically zero. In this case the characteristic p of k
is > 0, and P is actually a polynomial in T p. Clearly there exists a
largest power q = pe such that P is a polynomial in T q. Then the
element αq is separable over k.

Definition 9.28.1.030J Algebraic field extensions.
(1) A field extension K/k is called algebraic if every element of K is algebraic

over k.
(2) An algebraic extension k′/k is called separable if every α ∈ k′ is separable

over k.
(3) An algebraic extension k′/k is called purely inseparable if the character-

istic of k is p > 0 and for every element α ∈ k′ there exists a power q of p
such that αq ∈ k.

(4) An algebraic extension k′/k is called normal if for every α ∈ k′ the minimal
polynomial P (T ) ∈ k[T ] of α over k splits completely into linear factors
over k′.

(5) An algebraic extension k′/k is called Galois if it is separable and normal.

The following lemma does not seem to fit anywhere else.

Lemma 9.28.2.031V Let K be a field of characteristic p > 0. Let L/K be a separable
algebraic extension. Let α ∈ L.

(1) If the coefficients of the minimal polynomial of α over K are pth powers
in K then α is a pth power in L.

(2) More generally, if P ∈ K[T ] is a polynomial such that (a) α is a root of
P , (b) P has pairwise distinct roots in an algebraic closure, and (c) all
coefficients of P are pth powers, then α is a pth power in L.

Proof. It follows from the definitions that (2) implies (1). Assume P is as in (2).
Write P (T ) =

∑d
i=0 aiT

d−i and ai = bpi . The polynomial Q(T ) =
∑d
i=0 biT

d−i

has distinct roots in an algebraic closure as well, because the roots of Q are the
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pth roots of the roots of P . If α is not a pth power, then T p − α is an irreducible
polynomial over L (Lemma 9.14.2). Moreover Q and T p−α have a root in common
in an algebraic closure L. Thus Q and T p − α are not relatively prime, which
implies T p−α|Q in L[T ]. This contradicts the fact that the roots of Q are pairwise
distinct. □
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CHAPTER 10

Commutative Algebra

00AO 10.1. Introduction

00AP Basic commutative algebra will be explained in this document. A reference is
[Mat70a].

10.2. Conventions

00AQ A ring is commutative with 1. The zero ring is a ring. In fact it is the only ring
that does not have a prime ideal. The Kronecker symbol δij will be used. If R→ S
is a ring map and q a prime of S, then we use the notation “p = R∩ q” to indicate
the prime which is the inverse image of q under R → S even if R is not a subring
of S and even if R→ S is not injective.

10.3. Basic notions

00AR The following is a list of basic notions in commutative algebra. Some of these
notions are discussed in more detail in the text that follows and some are defined
in the list, but others are considered basic and will not be defined. If you are
not familiar with most of the italicized concepts, then we suggest looking at an
introductory text on algebra before continuing.

(1) R is a ring,00AS
(2) x ∈ R is nilpotent,00AT
(3) x ∈ R is a zerodivisor,00AU
(4) x ∈ R is a unit,00AV
(5) e ∈ R is an idempotent,00AW
(6) an idempotent e ∈ R is called trivial if e = 1 or e = 0,00AX
(7) φ : R1 → R2 is a ring homomorphism,00AY
(8)00AZ φ : R1 → R2 is of finite presentation, or R2 is a finitely presented R1-

algebra, see Definition 10.6.1,
(9)00B0 φ : R1 → R2 is of finite type, or R2 is a finite type R1-algebra, see

Definition 10.6.1,
(10)00B1 φ : R1 → R2 is finite, or R2 is a finite R1-algebra,
(11) R is a (integral) domain,00B2
(12) R is reduced,00B3
(13) R is Noetherian,00B4
(14) R is a principal ideal domain or a PID,00B5
(15) R is a Euclidean domain,00B6
(16) R is a unique factorization domain or a UFD,00B7
(17) R is a discrete valuation ring or a dvr,00B8

429
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(18) K is a field,00B9
(19) L/K is a field extension,00BA
(20) L/K is an algebraic field extension,00BB
(21) {ti}i∈I is a transcendence basis for L over K,00BC
(22) the transcendence degree trdeg(L/K) of L over K,00BD
(23) the field k is algebraically closed,00BE
(24)00BF if L/K is algebraic, and Ω/K an extension with Ω algebraically closed,

then there exists a ring map L→ Ω extending the map on K,
(25) I ⊂ R is an ideal,00BG
(26) I ⊂ R is radical,00BH
(27) if I is an ideal then we have its radical

√
I,00BI

(28)00BJ I ⊂ R is nilpotent means that In = 0 for some n ∈ N,
(29)0543 I ⊂ R is locally nilpotent means that every element of I is nilpotent,
(30) p ⊂ R is a prime ideal,00BK
(31)00BL if p ⊂ R is prime and if I, J ⊂ R are ideal, and if IJ ⊂ p, then I ⊂ p or

J ⊂ p.
(32) m ⊂ R is a maximal ideal,00BM
(33) any nonzero ring has a maximal ideal,00BN
(34)00BO the Jacobson radical of R is rad(R) =

⋂
m⊂Rm the intersection of all the

maximal ideals of R,
(35) the ideal (T ) generated by a subset T ⊂ R,00BP
(36) the quotient ring R/I,00BQ
(37) an ideal I in the ring R is prime if and only if R/I is a domain,00BR
(38)00BS an ideal I in the ring R is maximal if and only if the ring R/I is a field,
(39)00BT if φ : R1 → R2 is a ring homomorphism, and if I ⊂ R2 is an ideal, then

φ−1(I) is an ideal of R1,
(40)00BU if φ : R1 → R2 is a ring homomorphism, and if I ⊂ R1 is an ideal, then

φ(I) ·R2 (sometimes denoted I ·R2, or IR2) is the ideal of R2 generated
by φ(I),

(41)00BV if φ : R1 → R2 is a ring homomorphism, and if p ⊂ R2 is a prime ideal,
then φ−1(p) is a prime ideal of R1,

(42) M is an R-module,00BW
(43)055Y for m ∈M the annihilator I = {f ∈ R | fm = 0} of m in R,
(44) N ⊂M is an R-submodule,00BX
(45) M is an Noetherian R-module,00BY
(46) M is a finite R-module,00BZ
(47) M is a finitely generated R-module,00C0
(48) M is a finitely presented R-module,00C1
(49) M is a free R-module,00C2
(50)0516 if 0→ K → L→ M → 0 is a short exact sequence of R-modules and K,

M are free, then L is free,
(51) if N ⊂M ⊂ L are R-modules, then L/M = (L/N)/(M/N),00C3
(52) S is a multiplicative subset of R,00C4
(53) the localization R→ S−1R of R,00C5
(54)00C6 if R is a ring and S is a multiplicative subset of R then S−1R is the zero

ring if and only if S contains 0,
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(55)00C7 if R is a ring and if the multiplicative subset S consists completely of
nonzerodivisors, then R→ S−1R is injective,

(56) if φ : R1 → R2 is a ring homomorphism, and S is a multiplicative subsets
of R1, then φ(S) is a multiplicative subset of R2,

(57)00C8 if S, S′ are multiplicative subsets of R, and if SS′ denotes the set of prod-
ucts SS′ = {r ∈ R | ∃s ∈ S,∃s′ ∈ S′, r = ss′} then SS′ is a multiplicative
subset of R,

(58)00C9 if S, S′ are multiplicative subsets of R, and if S denotes the image of S
in (S′)−1R, then (SS′)−1R = S

−1((S′)−1R),
(59) the localization S−1M of the R-module M ,00CA
(60)00CB the functor M 7→ S−1M preserves injective maps, surjective maps, and

exactness,
(61)00CC if S, S′ are multiplicative subsets of R, and if M is an R-module, then

(SS′)−1M = S−1((S′)−1M),
(62)00CD if R is a ring, I an ideal of R, and S a multiplicative subset of R, then

S−1I is an ideal of S−1R, and we have S−1R/S−1I = S
−1(R/I), where

S is the image of S in R/I,
(63)00CE if R is a ring, and S a multiplicative subset of R, then any ideal I ′ of

S−1R is of the form S−1I, where one can take I to be the inverse image
of I ′ in R,

(64)00CF if R is a ring, M an R-module, and S a multiplicative subset of R, then
any submodule N ′ of S−1M is of the form S−1N for some submodule
N ⊂M , where one can take N to be the inverse image of N ′ in M ,

(65) if S = {1, f, f2, . . .} then Rf = S−1R and Mf = S−1M ,00CG
(66)00CH if S = R\p = {x ∈ R | x ̸∈ p} for some prime ideal p, then it is customary

to denote Rp = S−1R and Mp = S−1M ,
(67) a local ring is a ring with exactly one maximal ideal,00CI
(68) a semi-local ring is a ring with finitely many maximal ideals,03C0
(69)00CJ if p is a prime in R, then Rp is a local ring with maximal ideal pRp,
(70)00CK the residue field, denoted κ(p), of the prime p in the ring R is the field of

fractions of the domain R/p; it is equal to Rp/pRp = (R \ p)−1R/p,
(71) given R and M1, M2 the tensor product M1 ⊗RM2,00CL
(72)0F0K given matrices A and B in a ring R of sizes m × n and n × m we

have det(AB) =
∑

det(AS) det(SB) in R where the sum is over sub-
sets S ⊂ {1, . . . , n} of size m and AS is the m ×m submatrix of A with
columns corresponding to S and SB is the m ×m submatrix of B with
rows corresponding to S,

(73) etc.

10.4. Snake lemma

07JV The snake lemma and its variants are discussed in the setting of abelian categories
in Homology, Section 12.5.
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Lemma 10.4.1.07JW [CE56, III, Lemma
3.3]

Given a commutative diagram

X //

α

��

Y //

β

��

Z //

γ

��

0

0 // U // V // W

of abelian groups with exact rows, there is a canonical exact sequence
Ker(α)→ Ker(β)→ Ker(γ)→ Coker(α)→ Coker(β)→ Coker(γ)

Moreover: if X → Y is injective, then the first map is injective; if V → W is
surjective, then the last map is surjective.

Proof. The map ∂ : Ker(γ) → Coker(α) is defined as follows. Take z ∈ Ker(γ).
Choose y ∈ Y mapping to z. Then β(y) ∈ V maps to zero in W . Hence β(y) is
the image of some u ∈ U . Set ∂z = u, the class of u in the cokernel of α. Proof of
exactness is omitted. □

10.5. Finite modules and finitely presented modules

0517 Just some basic notation and lemmas.

Definition 10.5.1.0518 Let R be a ring. Let M be an R-module.
(1) We say M is a finite R-module, or a finitely generated R-module if there

exist n ∈ N and x1, . . . , xn ∈ M such that every element of M is an
R-linear combination of the xi. Equivalently, this means there exists a
surjection R⊕n →M for some n ∈ N.

(2) We say M is a finitely presented R-module or an R-module of finite pre-
sentation if there exist integers n,m ∈ N and an exact sequence

R⊕m −→ R⊕n −→M −→ 0

Informally, M is a finitely presented R-module if and only if it is finitely generated
and the module of relations among these generators is finitely generated as well. A
choice of an exact sequence as in the definition is called a presentation of M .

Lemma 10.5.2.07JX Let R be a ring. Let α : R⊕n → M and β : N → M be module
maps. If Im(α) ⊂ Im(β), then there exists an R-module map γ : R⊕n → N such
that α = β ◦ γ.

Proof. Let ei = (0, . . . , 0, 1, 0, . . . , 0) be the ith basis vector of R⊕n. Let xi ∈ N
be an element with α(ei) = β(xi) which exists by assumption. Set γ(a1, . . . , an) =∑
aixi. By construction α = β ◦ γ. □

Lemma 10.5.3.0519 Let R be a ring. Let
0→M1 →M2 →M3 → 0

be a short exact sequence of R-modules.
(1) If M1 and M3 are finite R-modules, then M2 is a finite R-module.
(2) If M1 and M3 are finitely presented R-modules, then M2 is a finitely

presented R-module.
(3) If M2 is a finite R-module, then M3 is a finite R-module.
(4) If M2 is a finitely presented R-module and M1 is a finite R-module, then

M3 is a finitely presented R-module.

https://stacks.math.columbia.edu/tag/07JW
https://stacks.math.columbia.edu/tag/0518
https://stacks.math.columbia.edu/tag/07JX
https://stacks.math.columbia.edu/tag/0519
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(5) If M3 is a finitely presented R-module and M2 is a finite R-module, then
M1 is a finite R-module.

Proof. Proof of (1). If x1, . . . , xn are generators of M1 and y1, . . . , ym ∈ M2 are
elements whose images in M3 are generators of M3, then x1, . . . , xn, y1, . . . , ym
generate M2.
Part (3) is immediate from the definition.
Proof of (5). Assume M3 is finitely presented and M2 finite. Choose a presentation

R⊕m → R⊕n →M3 → 0
By Lemma 10.5.2 there exists a map R⊕n →M2 such that the solid diagram

R⊕m //

��

R⊕n //

��

M3 //

id
��

0

0 // M1 // M2 // M3 // 0
commutes. This produces the dotted arrow. By the snake lemma (Lemma 10.4.1)
we see that we get an isomorphism

Coker(R⊕m →M1) ∼= Coker(R⊕n →M2)
In particular we conclude that Coker(R⊕m → M1) is a finite R-module. Since
Im(R⊕m →M1) is finite by (3), we see that M1 is finite by part (1).
Proof of (4). Assume M2 is finitely presented and M1 is finite. Choose a pre-
sentation R⊕m → R⊕n → M2 → 0. Choose a surjection R⊕k → M1. By
Lemma 10.5.2 there exists a factorization R⊕k → R⊕n → M2 of the composition
R⊕k →M1 →M2. Then R⊕k+m → R⊕n →M3 → 0 is a presentation.
Proof of (2). Assume that M1 and M3 are finitely presented. The argument in the
proof of part (1) produces a commutative diagram

0 // R⊕n

��

// R⊕n+m

��

// R⊕m

��

// 0

0 // M1 // M2 // M3 // 0
with surjective vertical arrows. By the snake lemma we obtain a short exact se-
quence

0→ Ker(R⊕n →M1)→ Ker(R⊕n+m →M2)→ Ker(R⊕m →M3)→ 0
By part (5) we see that the outer two modules are finite. Hence the middle one is
finite too. By (4) we see that M2 is of finite presentation. □

Lemma 10.5.4.00KZ Let R be a ring, and let M be a finite R-module. There exists a
filtration by R-submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mi/Mi−1 is isomorphic to R/Ii for some ideal Ii of R.
Proof. By induction on the number of generators of M . Let x1, . . . , xr ∈ M be
a minimal number of generators. Let M ′ = Rx1 ⊂ M . Then M/M ′ has r − 1
generators and the induction hypothesis applies. And clearly M ′ ∼= R/I1 with
I1 = {f ∈ R | fx1 = 0}. □

https://stacks.math.columbia.edu/tag/00KZ
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Lemma 10.5.5.0560 Let R → S be a ring map. Let M be an S-module. If M is finite
as an R-module, then M is finite as an S-module.

Proof. In fact, any R-generating set of M is also an S-generating set of M , since
the R-module structure is induced by the image of R in S. □

10.6. Ring maps of finite type and of finite presentation

00F2
Definition 10.6.1.00F3 Let R→ S be a ring map.

(1) We say R→ S is of finite type, or that S is a finite type R-algebra if there
exist an n ∈ N and an surjection of R-algebras R[x1, . . . , xn]→ S.

(2) We say R→ S is of finite presentation if there exist integers n,m ∈ N and
polynomials f1, . . . , fm ∈ R[x1, . . . , xn] and an isomorphism of R-algebras
R[x1, . . . , xn]/(f1, . . . , fm) ∼= S.

Informally, R → S is of finite presentation if and only if S is finitely generated as
an R-algebra and the ideal of relations among the generators is finitely generated.
A choice of a surjection R[x1, . . . , xn] → S as in the definition is sometimes called
a presentation of S.

Lemma 10.6.2.00F4 The notions finite type and finite presentation have the following
permanence properties.

(1) A composition of ring maps of finite type is of finite type.
(2) A composition of ring maps of finite presentation is of finite presentation.
(3) Given R → S′ → S with R → S of finite type, then S′ → S is of finite

type.
(4) Given R → S′ → S, with R → S of finite presentation, and R → S′ of

finite type, then S′ → S is of finite presentation.

Proof. We only prove the last assertion. Write S = R[x1, . . . , xn]/(f1, . . . , fm) and
S′ = R[y1, . . . , ya]/I. Say that the class ȳi of yi maps to hi mod (f1, . . . , fm) in S.
Then it is clear that S = S′[x1, . . . , xn]/(f1, . . . , fm, h1 − ȳ1, . . . , ha − ȳa). □

Lemma 10.6.3.00R2 Let R→ S be a ring map of finite presentation. For any surjection
α : R[x1, . . . , xn]→ S the kernel of α is a finitely generated ideal in R[x1, . . . , xn].

Proof. Write S = R[y1, . . . , ym]/(f1, . . . , fk). Choose gi ∈ R[y1, . . . , ym] which
are lifts of α(xi). Then we see that S = R[xi, yj ]/(fl, xi − gi). Choose hj ∈
R[x1, . . . , xn] such that α(hj) corresponds to yj mod (f1, . . . , fk). Consider the
map ψ : R[xi, yj ]→ R[xi], xi 7→ xi, yj 7→ hj . Then the kernel of α is the image of
(fl, xi − gi) under ψ and we win. □

Lemma 10.6.4.0561 Let R→ S be a ring map. Let M be an S-module. Assume R→ S
is of finite type and M is finitely presented as an R-module. Then M is finitely
presented as an S-module.

Proof. This is similar to the proof of part (4) of Lemma 10.6.2. We may assume
S = R[x1, . . . , xn]/J . Choose y1, . . . , ym ∈ M which generate M as an R-module
and choose relations

∑
aijyj = 0, i = 1, . . . , t which generate the kernel of R⊕m →

M . For any i = 1, . . . , n and j = 1, . . . ,m write

xiyj =
∑

aijkyk

https://stacks.math.columbia.edu/tag/0560
https://stacks.math.columbia.edu/tag/00F3
https://stacks.math.columbia.edu/tag/00F4
https://stacks.math.columbia.edu/tag/00R2
https://stacks.math.columbia.edu/tag/0561
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for some aijk ∈ R. Consider the S-module N generated by y1, . . . , ym subject to
the relations

∑
aijyj = 0, i = 1, . . . , t and xiyj =

∑
aijkyk, i = 1, . . . , n and

j = 1, . . . ,m. Then N has a presentation

S⊕nm+t −→ S⊕m −→ N −→ 0

By construction there is a surjective map φ : N →M . To finish the proof we show
φ is injective. Suppose z =

∑
bjyj ∈ N for some bj ∈ S. We may think of bj

as a polynomial in x1, . . . , xn with coefficients in R. By applying the relations of
the form xiyj =

∑
aijkyk we can inductively lower the degree of the polynomials.

Hence we see that z =
∑
cjyj for some cj ∈ R. Hence if φ(z) = 0 then the vector

(c1, . . . , cm) is an R-linear combination of the vectors (ai1, . . . , aim) and we conclude
that z = 0 as desired. □

10.7. Finite ring maps

0562 Here is the definition.

Definition 10.7.1.0563 Let φ : R→ S be a ring map. We say φ : R→ S is finite if S is
finite as an R-module.

Lemma 10.7.2.00GJ Let R→ S be a finite ring map. Let M be an S-module. Then M
is finite as an R-module if and only if M is finite as an S-module.

Proof. One of the implications follows from Lemma 10.5.5. To see the other assume
that M is finite as an S-module. Pick x1, . . . , xn ∈ S which generate S as an R-
module. Pick y1, . . . , ym ∈ M which generate M as an S-module. Then xiyj
generate M as an R-module. □

Lemma 10.7.3.00GL Suppose that R→ S and S → T are finite ring maps. Then R→ T
is finite.

Proof. If ti generate T as an S-module and sj generate S as an R-module, then
tisj generate T as an R-module. (Also follows from Lemma 10.7.2.) □

Lemma 10.7.4.0D46 Let φ : R→ S be a ring map.
(1) If φ is finite, then φ is of finite type.
(2) If S is of finite presentation as an R-module, then φ is of finite presenta-

tion.

Proof. For (1) if x1, . . . , xn ∈ S generate S as an R-module, then x1, . . . , xn gen-
erate S as an R-algebra. For (2), suppose that

∑
rijxi = 0, j = 1, . . . ,m is a set

of generators of the relations among the xi when viewed as R-module generators
of S. Furthermore, write 1 =

∑
rixi for some ri ∈ R and xixj =

∑
rkijxk for some

rkij ∈ R. Then

S = R[t1, . . . , tn]/(
∑

rijti, 1−
∑

riti, titj −
∑

rkijtk)

as an R-algebra which proves (2). □

For more information on finite ring maps, please see Section 10.36.

https://stacks.math.columbia.edu/tag/0563
https://stacks.math.columbia.edu/tag/00GJ
https://stacks.math.columbia.edu/tag/00GL
https://stacks.math.columbia.edu/tag/0D46
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10.8. Colimits

07N7 Some of the material in this section overlaps with the general discussion on colimits
in Categories, Sections 4.14 – 4.21. The notion of a preordered set is defined in
Categories, Definition 4.21.1. It is a slightly weaker notion than a partially ordered
set.

Definition 10.8.1.00D4 Let (I,≤) be a preordered set. A system (Mi, µij) of R-modules
over I consists of a family of R-modules {Mi}i∈I indexed by I and a family of
R-module maps {µij : Mi →Mj}i≤j such that for all i ≤ j ≤ k

µii = idMi
µik = µjk ◦ µij

We say (Mi, µij) is a directed system if I is a directed set.

This is the same as the notion defined in Categories, Definition 4.21.2 and Section
4.21. We refer to Categories, Definition 4.14.2 for the definition of a colimit of a
diagram/system in any category.

Lemma 10.8.2.00D5 Let (Mi, µij) be a system of R-modules over the preordered set I.
The colimit of the system (Mi, µij) is the quotient R-module (

⊕
i∈IMi)/Q where

Q is the R-submodule generated by all elements
ιi(xi)− ιj(µij(xi))

where ιi : Mi →
⊕

i∈IMi is the natural inclusion. We denote the colimit M =
colimiMi. We denote π :

⊕
i∈IMi →M the projection map and ϕi = π ◦ ιi : Mi →

M .

Proof. This lemma is a special case of Categories, Lemma 4.14.12 but we will
also prove it directly in this case. Namely, note that ϕi = ϕj ◦ µij in the above
construction. To show the pair (M,ϕi) is the colimit we have to show it satisfies the
universal property: for any other such pair (Y, ψi) with ψi : Mi → Y , ψi = ψj ◦µij ,
there is a unique R-module homomorphism g : M → Y such that the following
diagram commutes:

Mi

µij //

ϕi

  
ψi

��

Mj

ϕj

}}
ψj

��

M

g

��
Y

And this is clear because we can define g by taking the map ψi on the summand
Mi in the direct sum

⊕
Mi. □

Lemma 10.8.3.00D6 Let (Mi, µij) be a system of R-modules over the preordered set
I. Assume that I is directed. The colimit of the system (Mi, µij) is canonically
isomorphic to the module M defined as follows:

(1) as a set let
M =

(∐
i∈I

Mi

)
/ ∼

where for m ∈Mi and m′ ∈Mi′ we have
m ∼ m′ ⇔ µij(m) = µi′j(m′) for some j ≥ i, i′

https://stacks.math.columbia.edu/tag/00D4
https://stacks.math.columbia.edu/tag/00D5
https://stacks.math.columbia.edu/tag/00D6
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(2) as an abelian group for m ∈ Mi and m′ ∈ Mi′ we define the sum of the
classes of m and m′ in M to be the class of µij(m) +µi′j(m′) where j ∈ I
is any index with i ≤ j and i′ ≤ j, and

(3) as an R-module define for m ∈ Mi and x ∈ R the product of x and the
class of m in M to be the class of xm in M .

The canonical maps ϕi : Mi → M are induced by the canonical maps Mi →∐
i∈IMi.

Proof. Omitted. Compare with Categories, Section 4.19. □

Lemma 10.8.4.00D7 Let (Mi, µij) be a directed system. Let M = colimMi with µi :
Mi → M . Then, µi(xi) = 0 for xi ∈ Mi if and only if there exists j ≥ i such that
µij(xi) = 0.

Proof. This is clear from the description of the directed colimit in Lemma 10.8.3.
□

Example 10.8.5.00D8 Consider the partially ordered set I = {a, b, c} with a < b and a <
c and no other strict inequalities. A system (Ma,Mb,Mc, µab, µac) over I consists of
three R-modules Ma,Mb,Mc and two R-module homomorphisms µab : Ma → Mb

and µac : Ma →Mc. The colimit of the system is just

M := colimi∈IMi = Coker(Ma →Mb ⊕Mc)

where the map is µab ⊕ −µac. Thus the kernel of the canonical map Ma → M is
Ker(µab) + Ker(µac). And the kernel of the canonical map Mb → M is the image
of Ker(µac) under the map µab. Hence clearly the result of Lemma 10.8.4 is false
for general systems.

Definition 10.8.6.00D9 Let (Mi, µij), (Ni, νij) be systems of R-modules over the same
preordered set I. A homomorphism of systems Φ from (Mi, µij) to (Ni, νij) is by
definition a family of R-module homomorphisms ϕi : Mi → Ni such that ϕj ◦µij =
νij ◦ ϕi for all i ≤ j.

This is the same notion as a transformation of functors between the associated
diagrams M : I → ModR and N : I → ModR, in the language of categories. The
following lemma is a special case of Categories, Lemma 4.14.8.

Lemma 10.8.7.00DA Let (Mi, µij), (Ni, νij) be systems of R-modules over the same
preordered set. A morphism of systems Φ = (ϕi) from (Mi, µij) to (Ni, νij) induces
a unique homomorphism

colimϕi : colimMi −→ colimNi

such that
Mi

//

ϕi

��

colimMi

colimϕi

��
Ni // colimNi

commutes for all i ∈ I.

Proof. Write M = colimMi and N = colimNi and ϕ = colimϕi (as yet to be
constructed). We will use the explicit description of M and N in Lemma 10.8.2

https://stacks.math.columbia.edu/tag/00D7
https://stacks.math.columbia.edu/tag/00D8
https://stacks.math.columbia.edu/tag/00D9
https://stacks.math.columbia.edu/tag/00DA
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without further mention. The condition of the lemma is equivalent to the condition
that ⊕

i∈IMi
//⊕

ϕi

��

M

ϕ

��⊕
i∈I Ni

// N

commutes. Hence it is clear that if ϕ exists, then it is unique. To see that ϕ exists,
it suffices to show that the kernel of the upper horizontal arrow is mapped by

⊕
ϕi

to the kernel of the lower horizontal arrow. To see this, let j ≤ k and xj ∈ Mj .
Then

(
⊕

ϕi)(xj − µjk(xj)) = ϕj(xj)− ϕk(µjk(xj)) = ϕj(xj)− νjk(ϕj(xj))

which is in the kernel of the lower horizontal arrow as required. □

Lemma 10.8.8.00DB Let I be a directed set. Let (Li, λij), (Mi, µij), and (Ni, νij) be
systems of R-modules over I. Let φi : Li → Mi and ψi : Mi → Ni be morphisms
of systems over I. Assume that for all i ∈ I the sequence of R-modules

Li
φi // Mi

ψi // Ni

is a complex with homology Hi. Then the R-modules Hi form a system over I, the
sequence of R-modules

colimi Li
φ // colimiMi

ψ // colimiNi

is a complex as well, and denoting H its homology we have
H = colimiHi.

Proof. It is clear that colimi Li
φ // colimiMi

ψ // colimiNi is a complex. For
each i ∈ I, there is a canonical R-module morphism Hi → H (sending each [m] ∈
Hi = Ker(ψi)/ Im(φi) to the residue class in H = Ker(ψ)/ Im(φ) of the image of m
in colimiMi). These give rise to a morphism colimiHi → H. It remains to show
that this morphism is surjective and injective.
We are going to repeatedly use the description of colimits over I as in Lemma 10.8.3
without further mention. Let h ∈ H. Since H = Ker(ψ)/ Im(φ) we see that h is
the class mod Im(φ) of an element [m] in Ker(ψ) ⊂ colimiMi. Choose an i such
that [m] comes from an element m ∈Mi. Choose a j ≥ i such that νij(ψi(m)) = 0
which is possible since [m] ∈ Ker(ψ). After replacing i by j and m by µij(m) we
see that we may assume m ∈ Ker(ψi). This shows that the map colimiHi → H is
surjective.
Suppose that hi ∈ Hi has image zero on H. Since Hi = Ker(ψi)/ Im(φi) we may
represent hi by an element m ∈ Ker(ψi) ⊂Mi. The assumption on the vanishing of
hi in H means that the class of m in colimiMi lies in the image of φ. Hence there
exists a j ≥ i and an l ∈ Lj such that φj(l) = µij(m). Clearly this shows that the
image of hi in Hj is zero. This proves the injectivity of colimiHi → H. □

Example 10.8.9.00DC Taking colimits is not exact in general. Consider the partially
ordered set I = {a, b, c} with a < b and a < c and no other strict inequalities, as in
Example 10.8.5. Consider the map of systems (0,Z,Z, 0, 0)→ (Z,Z,Z, 1, 1). From

https://stacks.math.columbia.edu/tag/00DB
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the description of the colimit in Example 10.8.5 we see that the associated map of
colimits is not injective, even though the map of systems is injective on each object.
Hence the result of Lemma 10.8.8 is false for general systems.

Lemma 10.8.10.04B0 Let I be an index category satisfying the assumptions of Cate-
gories, Lemma 4.19.8. Then taking colimits of diagrams of abelian groups over I
is exact (i.e., the analogue of Lemma 10.8.8 holds in this situation).

Proof. By Categories, Lemma 4.19.8 we may write I =
∐
j∈J Ij with each Ij

a filtered category, and J possibly empty. By Categories, Lemma 4.21.5 taking
colimits over the index categories Ij is the same as taking the colimit over some
directed set. Hence Lemma 10.8.8 applies to these colimits. This reduces the
problem to showing that coproducts in the category of R-modules over the set J
are exact. In other words, exact sequences Lj → Mj → Nj of R modules we have
to show that ⊕

j∈J
Lj −→

⊕
j∈J

Mj −→
⊕

j∈J
Nj

is exact. This can be verified by hand, and holds even if J is empty. □

10.9. Localization

00CM
Definition 10.9.1.00CN Let R be a ring, S a subset of R. We say S is a multiplicative
subset of R if 1 ∈ S and S is closed under multiplication, i.e., s, s′ ∈ S ⇒ ss′ ∈ S.

Given a ring A and a multiplicative subset S, we define a relation on A × S as
follows:

(x, s) ∼ (y, t)⇔ ∃u ∈ S such that (xt− ys)u = 0
It is easily checked that this is an equivalence relation. Let x/s (or x

s ) be the
equivalence class of (x, s) and S−1A be the set of all equivalence classes. Define
addition and multiplication in S−1A as follows:

x/s+ y/t = (xt+ ys)/st, x/s · y/t = xy/st

One can check that S−1A becomes a ring under these operations.

Definition 10.9.2.00CO This ring is called the localization of A with respect to S.

We have a natural ring map from A to its localization S−1A,
A −→ S−1A, x 7−→ x/1

which is sometimes called the localization map. In general the localization map is
not injective, unless S contains no zerodivisors. For, if x/1 = 0, then there is a
u ∈ S such that xu = 0 in A and hence x = 0 since there are no zerodivisors in S.
The localization of a ring has the following universal property.

Proposition 10.9.3.00CP Let f : A→ B be a ring map that sends every element in S to
a unit of B. Then there is a unique homomorphism g : S−1A → B such that the
following diagram commutes.

A
f //

""

B

S−1A

g

<<

https://stacks.math.columbia.edu/tag/04B0
https://stacks.math.columbia.edu/tag/00CN
https://stacks.math.columbia.edu/tag/00CO
https://stacks.math.columbia.edu/tag/00CP
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Proof. Existence. We define a map g as follows. For x/s ∈ S−1A, let g(x/s) =
f(x)f(s)−1 ∈ B. It is easily checked from the definition that this is a well-defined
ring map. And it is also clear that this makes the diagram commutative.

Uniqueness. We now show that if g′ : S−1A → B satisfies g′(x/1) = f(x), then
g = g′. Hence f(s) = g′(s/1) for s ∈ S by the commutativity of the diagram.
But then g′(1/s)f(s) = 1 in B, which implies that g′(1/s) = f(s)−1 and hence
g′(x/s) = g′(x/1)g′(1/s) = f(x)f(s)−1 = g(x/s). □

Lemma 10.9.4.00CQ The localization S−1A is the zero ring if and only if 0 ∈ S.

Proof. If 0 ∈ S, any pair (a, s) ∼ (0, 1) by definition. If 0 ̸∈ S, then clearly
1/1 ̸= 0/1 in S−1A. □

Lemma 10.9.5.07JY Let R be a ring. Let S ⊂ R be a multiplicative subset. The
category of S−1R-modules is equivalent to the category of R-modules N with the
property that every s ∈ S acts as an automorphism on N .

Proof. The functor which defines the equivalence associates to an S−1R-module
M the same module but now viewed as an R-module via the localization map
R → S−1R. Conversely, if N is an R-module, such that every s ∈ S acts via an
automorphism sN , then we can think of N as an S−1R-module by letting x/s act
via xN ◦ s−1

N . We omit the verification that these two functors are quasi-inverse to
each other. □

The notion of localization of a ring can be generalized to the localization of a
module. Let A be a ring, S a multiplicative subset of A and M an A-module. We
define a relation on M × S as follows

(m, s) ∼ (n, t)⇔ ∃u ∈ S such that (mt− ns)u = 0

This is clearly an equivalence relation. Denote by m/s (or m
s ) be the equivalence

class of (m, s) and S−1M be the set of all equivalence classes. Define the addition
and scalar multiplication as follows

m/s+ n/t = (mt+ ns)/st, m/s · n/t = mn/st

It is clear that this makes S−1M an S−1A-module.

Definition 10.9.6.07JZ The S−1A-module S−1M is called the localization of M at S.

Note that there is an A-module map M → S−1M , m 7→ m/1 which is sometimes
called the localization map. It satisfies the following universal property.

Lemma 10.9.7.07K0 Let R be a ring. Let S ⊂ R a multiplicative subset. Let M , N be
R-modules. Assume all the elements of S act as automorphisms on N . Then the
canonical map

HomR(S−1M,N) −→ HomR(M,N)
induced by the localization map, is an isomorphism.

Proof. It is clear that the map is well-defined and R-linear. Injectivity: Let α ∈
HomR(S−1M,N) and take an arbitrary element m/s ∈ S−1M . Then, since s ·
α(m/s) = α(m/1), we have α(m/s) = s−1(α(m/1)), so α is completely determined
by what it does on the image of M in S−1M . Surjectivity: Let β : M → N be a

https://stacks.math.columbia.edu/tag/00CQ
https://stacks.math.columbia.edu/tag/07JY
https://stacks.math.columbia.edu/tag/07JZ
https://stacks.math.columbia.edu/tag/07K0
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given R-linear map. We need to show that it can be "extended" to S−1M . Define
a map of sets

M × S → N, (m, s) 7→ s−1β(m)
Clearly, this map respects the equivalence relation from above, so it descends to a
well-defined map α : S−1M → N . It remains to show that this map is R-linear, so
take r, r′ ∈ R as well as s, s′ ∈ S and m,m′ ∈M . Then

α(r ·m/s+ r′ ·m′/s′) = α((r · s′ ·m+ r′ · s ·m′)/(ss′))
= (ss′)−1β(r · s′ ·m+ r′ · s ·m′)
= (ss′)−1(r · s′β(m) + r′ · sβ(m′))
= rα(m/s) + r′α(m′/s′)

and we win. □

Example 10.9.8.02C5 Let A be a ring and let M be an A-module. Here are some
important examples of localizations.

(1) Given p a prime ideal of A consider S = A \ p. It is immediately checked
that S is a multiplicative set. In this case we denote Ap and Mp the
localization of A and M with respect to S respectively. These are called
the localization of A, resp. M at p.

(2) Let f ∈ A. Consider S = {1, f, f2, . . .}. This is clearly a multiplicative
subset of A. In this case we denote Af (resp. Mf ) the localization S−1A
(resp. S−1M). This is called the localization of A, resp. M with respect
to f . Note that Af = 0 if and only if f is nilpotent in A.

(3) Let S = {f ∈ A | f is not a zerodivisor in A}. This is a multiplicative
subset of A. In this case the ring Q(A) = S−1A is called either the total
quotient ring, or the total ring of fractions of A.

(4) If A is a domain, then the total quotient ring Q(A) is the field of fractions
of A. Please see Fields, Example 9.3.4.

Lemma 10.9.9.00CR Let R be a ring. Let S ⊂ R be a multiplicative subset. Let M be
an R-module. Then

S−1M = colimf∈SMf

where the preorder on S is given by f ≥ f ′ ⇔ f = f ′f ′′ for some f ′′ ∈ R in which
case the map Mf ′ →Mf is given by m/(f ′)e 7→ m(f ′′)e/fe.

Proof. Omitted. Hint: Use the universal property of Lemma 10.9.7. □

In the following paragraph, let A denote a ring, and M,N denote modules over A.
If S and S′ are multiplicative sets of A, then it is clear that

SS′ = {ss′ : s ∈ S, s′ ∈ S′}
is also a multiplicative set of A. Then the following holds.

Proposition 10.9.10.02C6 Let S be the image of S in S′−1A, then (SS′)−1A is isomorphic
to S−1(S′−1A).

Proof. The map sending x ∈ A to x/1 ∈ (SS′)−1A induces a map sending x/s ∈
S′−1A to x/s ∈ (SS′)−1A, by universal property. The image of the elements in S are
invertible in (SS′)−1A. By the universal property we get a map f : S−1(S′−1A)→
(SS′)−1A which maps (x/t′)/(s/s′) to (x/t′) · (s/s′)−1.

https://stacks.math.columbia.edu/tag/02C5
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On the other hand, the map from A to S−1(S′−1A) sending x ∈ A to (x/1)/(1/1)
also induces a map g : (SS′)−1A→ S

−1(S′−1A) which sends x/ss′ to (x/s′)/(s/1),
by the universal property again. It is immediately checked that f and g are inverse
to each other, hence they are both isomorphisms. □

For the module M we have

Proposition 10.9.11.02C7 View S′−1M as an A-module, then S−1(S′−1M) is isomorphic
to (SS′)−1M .

Proof. Note that given a A-module M, we have not proved any universal property
for S−1M . Hence we cannot reason as in the preceding proof; we have to construct
the isomorphism explicitly.

We define the maps as follows

f : S−1(S′−1M) −→ (SS′)−1M,
x/s′

s
7→ x/ss′

g : (SS′)−1M −→ S−1(S′−1M), x/t 7→ x/s′

s
for some s ∈ S, s′ ∈ S′, and t = ss′

We have to check that these homomorphisms are well-defined, that is, independent
the choice of the fraction. This is easily checked and it is also straightforward to
show that they are inverse to each other. □

If u : M → N is an A homomorphism, then the localization indeed induces a
well-defined S−1A homomorphism S−1u : S−1M → S−1N which sends x/s to
u(x)/s. It is immediately checked that this construction is functorial, so that S−1

is actually a functor from the category of A-modules to the category of S−1A-
modules. Moreover this functor is exact, as we show in the following proposition.

Proposition 10.9.12.00CS Let L u−→M
v−→ N be an exact sequence of R-modules. Then

S−1L→ S−1M → S−1N is also exact.

Proof. First it is clear that S−1L→ S−1M → S−1N is a complex since localization
is a functor. Next suppose that x/s maps to zero in S−1N for some x/s ∈ S−1M .
Then by definition there is a t ∈ S such that v(xt) = v(x)t = 0 in M , which means
xt ∈ Ker(v). By the exactness of L→M → N we have xt = u(y) for some y in L.
Then x/s is the image of y/st. This proves the exactness. □

Lemma 10.9.13.02C8 Localization respects quotients, i.e. if N is a submodule of M ,
then S−1(M/N) ≃ (S−1M)/(S−1N).

Proof. From the exact sequence

0 −→ N −→M −→M/N −→ 0

we have
0 −→ S−1N −→ S−1M −→ S−1(M/N) −→ 0

The corollary then follows. □

If, in the preceding Corollary, we take N = I and M = A for an ideal I of A, we
see that S−1A/S−1I ≃ S−1(A/I) as A-modules. The next proposition shows that
they are isomorphic as rings.

https://stacks.math.columbia.edu/tag/02C7
https://stacks.math.columbia.edu/tag/00CS
https://stacks.math.columbia.edu/tag/02C8


10.10. INTERNAL HOM 443

Proposition 10.9.14.00CT Let I be an ideal of A, S a multiplicative set of A. Then
S−1I is an ideal of S−1A and S

−1(A/I) is isomorphic to S−1A/S−1I, where S is
the image of S in A/I.

Proof. The fact that S−1I is an ideal is clear since I itself is an ideal. Define

f : S−1A −→ S
−1(A/I), x/s 7→ x/s

where x and s are the images of x and s in A/I. We shall keep similar notations in
this proof. This map is well-defined by the universal property of S−1A, and S−1I
is contained in the kernel of it, therefore it induces a map

f : S−1A/S−1I −→ S
−1(A/I), x/s 7→ x/s

On the other hand, the map A → S−1A/S−1I sending x to x/1 induces a map
A/I → S−1A/S−1I sending x to x/1. The image of S is invertible in S−1A/S−1I,
thus induces a map

g : S−1(A/I) −→ S−1A/S−1I,
x

s
7→ x/s

by the universal property. It is then clear that f and g are inverse to each other,
hence are both isomorphisms. □

We now consider how submodules behave in localization.

Lemma 10.9.15.00CU Any submoduleN ′ of S−1M is of the form S−1N for someN ⊂M .
Indeed one can take N to be the inverse image of N ′ in M .

Proof. Let N be the inverse image of N ′ in M . Then one can see that S−1N ⊃ N ′.
To show they are equal, take x/s in S−1N , where s ∈ S and x ∈ N . This yields
that x/1 ∈ N ′. Since N ′ is an S−1R-submodule we have x/s = x/1 · 1/s ∈ N ′.
This finishes the proof. □

Taking M = A and N = I an ideal of A, we have the following corollary, which can
be viewed as a converse of the first part of Proposition 10.9.14.

Lemma 10.9.16.02C9 Each ideal I ′ of S−1A takes the form S−1I, where one can take
I to be the inverse image of I ′ in A.

Proof. Immediate from Lemma 10.9.15. □

10.10. Internal Hom

0581 If R is a ring, and M , N are R-modules, then

HomR(M,N) = {φ : M → N}

is the set of R-linear maps from M to N . This set comes with the structure of an
abelian group by setting (φ+ψ)(m) = φ(m)+ψ(m), as usual. In fact, HomR(M,N)
is also an R-module via the rule (xφ)(m) = xφ(m) = φ(xm).

Given maps a : M → M ′ and b : N → N ′ of R-modules, we can pre-compose and
post-compose homomorphisms by a and b. This leads to the following commutative

https://stacks.math.columbia.edu/tag/00CT
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diagram
HomR(M ′, N)

−◦a
��

b◦−
// HomR(M ′, N ′)

−◦a
��

HomR(M,N) b◦− // HomR(M,N ′)

In fact, the maps in this diagram are R-module maps. Thus HomR defines an
additive functor

ModoppR ×ModR −→ ModR, (M,N) 7−→ HomR(M,N)

Lemma 10.10.1.0582 Exactness and HomR. Let R be a ring.
(1) Let M1 →M2 →M3 → 0 be a complex of R-modules. Then M1 →M2 →

M3 → 0 is exact if and only if 0 → HomR(M3, N) → HomR(M2, N) →
HomR(M1, N) is exact for all R-modules N .

(2) Let 0 → M1 → M2 → M3 be a complex of R-modules. Then 0 → M1 →
M2 → M3 is exact if and only if 0→ HomR(N,M1)→ HomR(N,M2)→
HomR(N,M3) is exact for all R-modules N .

Proof. Omitted. □

Lemma 10.10.2.0583 Let R be a ring. Let M be a finitely presented R-module. Let N
be an R-module.

(1) For f ∈ R we have HomR(M,N)f = HomRf (Mf , Nf ) = HomR(Mf , Nf ),
(2) for a multiplicative subset S of R we have

S−1 HomR(M,N) = HomS−1R(S−1M,S−1N) = HomR(S−1M,S−1N).

Proof. Part (1) is a special case of part (2). The second equality in (2) follows from
Lemma 10.9.7. Choose a presentation⊕

j=1,...,m
R −→

⊕
i=1,...,n

R→M → 0.

By Lemma 10.10.1 this gives an exact sequence

0→ HomR(M,N)→
⊕

i=1,...,n
N −→

⊕
j=1,...,m

N.

Inverting S and using Proposition 10.9.12 we get an exact sequence

0→ S−1 HomR(M,N)→
⊕

i=1,...,n
S−1N −→

⊕
j=1,...,m

S−1N

and the result follows since S−1M sits in an exact sequence⊕
j=1,...,m

S−1R −→
⊕

i=1,...,n
S−1R→ S−1M → 0

which induces (by Lemma 10.10.1) the exact sequence

0→ HomS−1R(S−1M,S−1N)→
⊕

i=1,...,n
S−1N −→

⊕
j=1,...,m

S−1N

which is the same as the one above. □

https://stacks.math.columbia.edu/tag/0582
https://stacks.math.columbia.edu/tag/0583


10.11. CHARACTERIZING FINITE AND FINITELY PRESENTED MODULES 445

10.11. Characterizing finite and finitely presented modules

0G8M Given a module N over a ring R, you can characterize whether or not N is a finite
module or a finitely presented module in terms of the functor HomR(N,−).

Lemma 10.11.1.0G8N Let R be a ring. Let N be an R-module. The following are
equivalent

(1) N is a finite R-module,
(2) for any filtered colimitM = colimMi ofR-modules the map colim HomR(N,Mi)→

HomR(N,M) is injective.

Proof. Assume (1) and choose generators x1, . . . , xm for N . If N →Mi is a module
map and the composition N → Mi → M is zero, then because M = colimi′≥iMi′

for each j ∈ {1, . . . ,m} we can find a i′ ≥ i such that xj maps to zero in Mi′ . Since
there are finitely many xj we can find a single i′ which works for all of them. Then
the composition N →Mi →Mi′ is zero and we conclude the map is injective, i.e.,
part (2) holds.
Assume (2). For a finite subset E ⊂ N denote NE ⊂ N the R-submodule generated
by the elements of E. Then 0 = colimN/NE is a filtered colimit. Hence we see
that id : N → N maps into NE for some E, i.e., N is finitely generated. □

For purposes of reference, we define what it means to have a relation between
elements of a module.

Definition 10.11.2.07N8 Let R be a ring. Let M be an R-module. Let n ≥ 0 and
xi ∈ M for i = 1, . . . , n. A relation between x1, . . . , xn in M is a sequence of
elements f1, . . . , fn ∈ R such that

∑
i=1,...,n fixi = 0.

Lemma 10.11.3.00HA Let R be a ring and let M be an R-module. Then M is the
colimit of a directed system (Mi, µij) of R-modules with all Mi finitely presented
R-modules.

Proof. Consider any finite subset S ⊂ M and any finite collection of relations E
among the elements of S. So each s ∈ S corresponds to xs ∈ M and each e ∈ E
consists of a vector of elements fe,s ∈ R such that

∑
fe,sxs = 0. Let MS,E be the

cokernel of the map

R#E −→ R#S , (ge)e∈E 7−→ (
∑

gefe,s)s∈S .

There are canonical maps MS,E → M . If S ⊂ S′ and if the elements of E corre-
spond, via this map, to relations in E′, then there is an obvious mapMS,E →MS′,E′

commuting with the maps to M . Let I be the set of pairs (S,E) with ordering by
inclusion as above. It is clear that the colimit of this directed system is M . □

Lemma 10.11.4.0G8P Let R be a ring. Let N be an R-module. The following are
equivalent

(1) N is a finitely presented R-module,
(2) for any filtered colimitM = colimMi ofR-modules the map colim HomR(N,Mi)→

HomR(N,M) is bijective.

Proof. Assume (1) and choose an exact sequence F−1 → F0 → N → 0 with Fi
finite free. Then we have an exact sequence

0→ HomR(N,M)→ HomR(F0,M)→ HomR(F−1,M)

https://stacks.math.columbia.edu/tag/0G8N
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functorial in the R-module M . The functors HomR(Fi,M) commute with filtered
colimits as HomR(R⊕n,M) = M⊕n. Since filtered colimits are exact (Lemma
10.8.8) we see that (2) holds.
Assume (2). By Lemma 10.11.3 we can write N = colimNi as a filtered colimit
such that Ni is of finite presentation for all i. Thus idN factors through Ni for
some i. This means that N is a direct summand of a finitely presented R-module
(namely Ni) and hence finitely presented. □

10.12. Tensor products

00CV
Definition 10.12.1.00CW Let R be a ring, M,N,P be three R-modules. A mapping
f : M × N → P (where M × N is viewed only as Cartesian product of two R-
modules) is said to be R-bilinear if for each x ∈ M the mapping y 7→ f(x, y) of N
into P is R-linear, and for each y ∈ N the mapping x 7→ f(x, y) is also R-linear.

Lemma 10.12.2.00CX Let M,N be R-modules. Then there exists a pair (T, g) where
T is an R-module, and g : M ×N → T an R-bilinear mapping, with the following
universal property: For any R-module P and any R-bilinear mapping f : M×N →
P , there exists a unique R-linear mapping f̃ : T → P such that f = f̃ ◦ g. In other
words, the following diagram commutes:

M ×N
f //

g
##

P

T
f̃

??

Moreover, if (T, g) and (T ′, g′) are two pairs with this property, then there exists a
unique isomorphism j : T → T ′ such that j ◦ g = g′.

The R-module T which satisfies the above universal property is called the tensor
product of R-modules M and N , denoted as M ⊗R N .

Proof. We first prove the existence of such R-module T . Let M,N be R-modules.
Let T be the quotient module P/Q, where P is the free R-module R(M×N) and Q
is the R-module generated by all elements of the following types: (x ∈M,y ∈ N)

(x+ x′, y)− (x, y)− (x′, y),
(x, y + y′)− (x, y)− (x, y′),

(ax, y)− a(x, y),
(x, ay)− a(x, y)

Let π : M × N → T denote the natural map. This map is R-bilinear, as implied
by the above relations when we check the bilinearity conditions. Denote the image
π(x, y) = x ⊗ y, then these elements generate T . Now let f : M × N → P be
an R-bilinear map, then we can define f ′ : T → P by extending the mapping
f ′(x⊗ y) = f(x, y). Clearly f = f ′ ◦π. Moreover, f ′ is uniquely determined by the
value on the generating sets {x⊗ y : x ∈M,y ∈ N}. Suppose there is another pair
(T ′, g′) satisfying the same properties. Then there is a unique j : T → T ′ and also
j′ : T ′ → T such that g′ = j ◦ g, g = j′ ◦ g′. But then both the maps (j ◦ j′) ◦ g
and g satisfies the universal properties, so by uniqueness they are equal, and hence

https://stacks.math.columbia.edu/tag/00CW
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j′ ◦ j is identity on T . Similarly (j′ ◦ j) ◦ g′ = g′ and j ◦ j′ is identity on T ′. So j is
an isomorphism. □

Lemma 10.12.3.00CY Let M,N,P be R-modules, then the bilinear maps

(x, y) 7→ y ⊗ x
(x+ y, z) 7→ x⊗ z + y ⊗ z

(r, x) 7→ rx

induce unique isomorphisms

M ⊗R N → N ⊗RM,

(M ⊕N)⊗R P → (M ⊗R P )⊕ (N ⊗R P ),
R⊗RM →M

Proof. Omitted. □

We may generalize the tensor product of twoR-modules to finitely manyR-modules,
and set up a correspondence between the multi-tensor product with multilinear
mappings. Using almost the same construction one can prove that:

Lemma 10.12.4.00CZ Let M1, . . . ,Mr be R-modules. Then there exists a pair (T, g)
consisting of an R-module T and an R-multilinear mapping g : M1× . . .×Mr → T
with the universal property: For any R-multilinear mapping f : M1× . . .×Mr → P
there exists a unique R-module homomorphism f ′ : T → P such that f ′ ◦ g = f .
Such a module T is unique up to unique isomorphism. We denote it M1⊗R . . .⊗RMr

and we denote the universal multilinear map (m1, . . . ,mr) 7→ m1 ⊗ . . .⊗mr.

Proof. Omitted. □

Lemma 10.12.5.00D0 The homomorphisms

(M ⊗R N)⊗R P →M ⊗R N ⊗R P →M ⊗R (N ⊗R P )

such that f((x⊗y)⊗z) = x⊗y⊗z and g(x⊗y⊗z) = x⊗(y⊗z), x ∈M,y ∈ N, z ∈ P
are well-defined and are isomorphisms.

Proof. We shall prove f is well-defined and is an isomorphism, and this proof carries
analogously to g. Fix any z ∈ P , then the mapping (x, y) 7→ x⊗y⊗z, x ∈M,y ∈ N ,
is R-bilinear in x and y, and hence induces homomorphism fz : M⊗N →M⊗N⊗P
which sends fz(x⊗y) = x⊗y⊗z. Then consider (M ⊗N)×P →M ⊗N ⊗P given
by (w, z) 7→ fz(w). The map is R-bilinear and thus induces f : (M ⊗RN)⊗R P →
M ⊗R N ⊗R P and f((x⊗ y)⊗ z) = x⊗ y ⊗ z. To construct the inverse, we note
that the map π : M ×N × P → (M ⊗N)⊗ P is R-trilinear. Therefore, it induces
an R-linear map h : M ⊗N ⊗ P → (M ⊗N)⊗ P which agrees with the universal
property. Here we see that h(x⊗ y⊗ z) = (x⊗ y)⊗ z. From the explicit expression
of f and h, f ◦ h and h ◦ f are identity maps of M ⊗ N ⊗ P and (M ⊗ N) ⊗ P
respectively, hence f is our desired isomorphism. □

Doing induction we see that this extends to multi-tensor products. Combined with
Lemma 10.12.3 we see that the tensor product operation on the category of R-
modules is associative, commutative and distributive.

https://stacks.math.columbia.edu/tag/00CY
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Definition 10.12.6.00D1 An abelian group N is called an (A,B)-bimodule if it is both
an A-module and a B-module, and the actions A → End(M) and B → End(M)
are compatible in the sense that (ax)b = a(xb) for all a ∈ A, b ∈ B, x ∈ N . Usually
we denote it as ANB .

Lemma 10.12.7.00D2 For A-module M , B-module P and (A,B)-bimodule N , the mod-
ules (M ⊗A N) ⊗B P and M ⊗A (N ⊗B P ) can both be given (A,B)-bimodule
structure, and moreover

(M ⊗A N)⊗B P ∼= M ⊗A (N ⊗B P ).

Proof. A priori M ⊗A N is an A-module, but we can give it a B-module structure
by letting

(x⊗ y)b = x⊗ yb, x ∈M,y ∈ N, b ∈ B
Thus M ⊗A N becomes an (A,B)-bimodule. Similarly for N ⊗B P , and thus for
(M ⊗A N)⊗B P and M ⊗A (N ⊗B P ). By Lemma 10.12.5, these two modules are
isomorphic as both as A-module and B-module via the same mapping. □

Lemma 10.12.8.00DE For any three R-modules M,N,P ,
HomR(M ⊗R N,P ) ∼= HomR(M,HomR(N,P ))

Proof. An R-linear map f̂ ∈ HomR(M ⊗RN,P ) corresponds to an R-bilinear map
f : M × N → P . For each x ∈ M the mapping y 7→ f(x, y) is R-linear by the
universal property. Thus f corresponds to a map ϕf : M → HomR(N,P ). This
map is R-linear since

ϕf (ax+ y)(z) = f(ax+ y, z) = af(x, z) + f(y, z) = (aϕf (x) + ϕf (y))(z),
for all a ∈ R, x ∈M , y ∈M and z ∈ N . Conversely, any f ∈ HomR(M,HomR(N,P ))
defines an R-bilinear map M ×N → P , namely (x, y) 7→ f(x)(y). So this is a nat-
ural one-to-one correspondence between the two modules HomR(M ⊗R N,P ) and
HomR(M,HomR(N,P )). □

Lemma 10.12.9 (Tensor products commute with colimits).00DD Let (Mi, µij) be a sys-
tem over the preordered set I. Let N be an R-module. Then

colim(Mi ⊗N) ∼= (colimMi)⊗N.
Moreover, the isomorphism is induced by the homomorphisms µi ⊗ 1 : Mi ⊗N →
M ⊗N where M = colimiMi with natural maps µi : Mi →M .

Proof. First proof. The functor M ′ 7→ M ′ ⊗R N is left adjoint to the functor
N ′ 7→ HomR(N,N ′) by Lemma 10.12.8. Thus M ′ 7→ M ′ ⊗R N commutes with all
colimits, see Categories, Lemma 4.24.5.
Second direct proof. Let P = colim(Mi ⊗N) with coprojections λi : Mi ⊗N → P .
Let M = colimMi with coprojections µi : Mi → M . Then for all i ≤ j, the
following diagram commutes:

Mi ⊗N
µi⊗1

//

µij⊗1
��

M ⊗N

id
��

Mj ⊗N
µj⊗1 // M ⊗N

By Lemma 10.8.7 these maps induce a unique homomorphism ψ : P → M ⊗ N
such that µi ⊗ 1 = ψ ◦ λi.

https://stacks.math.columbia.edu/tag/00D1
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To construct the inverse map, for each i ∈ I, there is the canonical R-bilinear
mapping gi : Mi ×N →Mi ⊗N . This induces a unique mapping ϕ̂ : M ×N → P

such that ϕ̂◦(µi×1) = λi◦gi. It is R-bilinear. Thus it induces an R-linear mapping
ϕ : M ⊗N → P . From the commutative diagram below:

Mi ×N
gi //

µi×id
��

Mi ⊗N id
//

λi
��

Mi ⊗N

µi⊗id
��

λi

##
M ×N

ϕ̂ // P
ψ // M ⊗N

ϕ // P

we see that ψ ◦ ϕ̂ = g, the canonical R-bilinear mapping g : M ×N →M ⊗N . So
ψ ◦ ϕ is identity on M ⊗N . From the right-hand square and triangle, ϕ ◦ ψ is also
identity on P . □

Lemma 10.12.10.00DF Let

M1
f−→M2

g−→M3 → 0
be an exact sequence of R-modules and homomorphisms, and let N be any R-
module. Then the sequence

(10.12.10.1)00DG M1 ⊗N
f⊗1−−−→M2 ⊗N

g⊗1−−→M3 ⊗N → 0
is exact. In other words, the functor − ⊗R N is right exact, in the sense that
tensoring each term in the original right exact sequence preserves the exactness.

Proof. We apply the functor Hom(−,Hom(N,P )) to the first exact sequence. We
obtain

0→ Hom(M3,Hom(N,P ))→ Hom(M2,Hom(N,P ))→ Hom(M1,Hom(N,P ))
By Lemma 10.12.8, we have

0→ Hom(M3 ⊗N,P )→ Hom(M2 ⊗N,P )→ Hom(M1 ⊗N,P )
Using the pullback property again, we arrive at the desired exact sequence. □

Remark 10.12.11.00DH However, tensor product does NOT preserve exact sequences in
general. In other words, if M1 →M2 →M3 is exact, then it is not necessarily true
that M1 ⊗N →M2 ⊗N →M3 ⊗N is exact for arbitrary R-module N .

Example 10.12.12.00DI Consider the injective map 2 : Z → Z viewed as a map of
Z-modules. Let N = Z/2. Then the induced map Z ⊗ Z/2 → Z ⊗ Z/2 is NOT
injective. This is because for x⊗ y ∈ Z⊗ Z/2,

(2⊗ 1)(x⊗ y) = 2x⊗ y = x⊗ 2y = x⊗ 0 = 0
Therefore the induced map is the zero map while Z⊗N ̸= 0.

Remark 10.12.13.00DJ For R-modules N , if the functor −⊗RN is exact, i.e. tensoring
with N preserves all exact sequences, then N is said to be flat R-module. We will
discuss this later in Section 10.39.

Lemma 10.12.14.05BS Let R be a ring. Let M and N be R-modules.
(1) If N and M are finite, then so is M ⊗R N .
(2) If N and M are finitely presented, then so is M ⊗R N .

https://stacks.math.columbia.edu/tag/00DF
https://stacks.math.columbia.edu/tag/00DH
https://stacks.math.columbia.edu/tag/00DI
https://stacks.math.columbia.edu/tag/00DJ
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Proof. Suppose M is finite. Then choose a presentation 0→ K → R⊕n →M → 0.
This gives an exact sequence K⊗RN → N⊕n →M⊗RN → 0 by Lemma 10.12.10.
We conclude that if N is finite too then M ⊗R N is a quotient of a finite module,
hence finite, see Lemma 10.5.3. Similarly, if both N and M are finitely presented,
then we see that K is finite and that M ⊗RN is a quotient of the finitely presented
module N⊕n by a finite module, namely K ⊗RN , and hence finitely presented, see
Lemma 10.5.3. □

Lemma 10.12.15.00DK Let M be an R-module. Then the S−1R-modules S−1M and
S−1R⊗RM are canonically isomorphic, and the canonical isomorphism f : S−1R⊗R
M → S−1M is given by

f((a/s)⊗m) = am/s,∀a ∈ R,m ∈M, s ∈ S

Proof. Obviously, the map f ′ : S−1R ×M → S−1M given by f ′(a/s,m) = am/s
is bilinear, and thus by the universal property, this map induces a unique S−1R-
module homomorphism f : S−1R ⊗R M → S−1M as in the statement of the
lemma. Actually every element in S−1M is of the form m/s, m ∈ M, s ∈ S and
every element in S−1R ⊗RM is of the form 1/s⊗m. To see the latter fact, write
an element in S−1R⊗RM as∑

k

ak
sk
⊗mk =

∑
k

aktk
s
⊗mk = 1

s
⊗
∑
k

aktkmk = 1
s
⊗m

Where m =
∑
k aktkmk. Then it is obvious that f is surjective, and if f( 1

s ⊗m) =
m/s = 0 then there exists t′ ∈ S with tm = 0 in M . Then we have

1
s
⊗m = 1

st
⊗ tm = 1

st
⊗ 0 = 0

Therefore f is injective. □

Lemma 10.12.16.00DL Let M,N be R-modules, then there is a canonical S−1R-module
isomorphism f : S−1M ⊗S−1R S

−1N → S−1(M ⊗R N), given by
f((m/s)⊗ (n/t)) = (m⊗ n)/st

Proof. We may use Lemma 10.12.7 and Lemma 10.12.15 repeatedly to see that these
two S−1R-modules are isomorphic, noting that S−1R is an (R,S−1R)-bimodule:

S−1(M ⊗R N) ∼= S−1R⊗R (M ⊗R N)
∼= S−1M ⊗R N
∼= (S−1M ⊗S−1R S

−1R)⊗R N
∼= S−1M ⊗S−1R (S−1R⊗R N)
∼= S−1M ⊗S−1R S

−1N

This isomorphism is easily seen to be the one stated in the lemma. □

10.13. Tensor algebra

00DM Let R be a ring. Let M be an R-module. We define the tensor algebra of M over
R to be the noncommutative R-algebra

T(M) = TR(M) =
⊕

n≥0
Tn(M)

https://stacks.math.columbia.edu/tag/00DK
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with T0(M) = R, T1(M) = M , T2(M) = M ⊗R M , T3(M) = M ⊗R M ⊗R M ,
and so on. Multiplication is defined by the rule that on pure tensors we have
(x1 ⊗ x2 ⊗ . . .⊗ xn) · (y1 ⊗ y2 ⊗ . . .⊗ ym) = x1 ⊗ x2 ⊗ . . .⊗ xn ⊗ y1 ⊗ y2 ⊗ . . .⊗ ym
and we extend this by linearity.
We define the exterior algebra ∧(M) of M over R to be the quotient of T(M) by
the two sided ideal generated by the elements x⊗x ∈ T2(M). The image of a pure
tensor x1 ⊗ . . . ⊗ xn in ∧n(M) is denoted x1 ∧ . . . ∧ xn. These elements generate
∧n(M), they are R-linear in each xi and they are zero when two of the xi are equal
(i.e., they are alternating as functions of x1, x2, . . . , xn). The multiplication on
∧(M) is graded commutative, i.e., every x ∈M and y ∈M satisfy x ∧ y = −y ∧ x.
An example of this is when M = Rx1 ⊕ . . . ⊕ Rxn is a finite free module. In this
case ∧(M) is free over R with basis the elements

xi1 ∧ . . . ∧ xir
with 0 ≤ r ≤ n and 1 ≤ i1 < i2 < . . . < ir ≤ n.
We define the symmetric algebra Sym(M) of M over R to be the quotient of T(M)
by the two sided ideal generated by the elements x ⊗ y − y ⊗ x ∈ T2(M). The
image of a pure tensor x1 ⊗ . . .⊗ xn in Symn(M) is denoted just x1 . . . xn. These
elements generate Symn(M), these are R-linear in each xi and x1 . . . xn = x′

1 . . . x
′
n

if the sequence of elements x1, . . . , xn is a permutation of the sequence x′
1, . . . , x

′
n.

Thus we see that Sym(M) is commutative.
An example of this is when M = Rx1 ⊕ . . . ⊕ Rxn is a finite free module. In this
case Sym(M) = R[x1, . . . , xn] is a polynomial algebra.
Lemma 10.13.1.00DN Let R be a ring. Let M be an R-module. If M is a free R-module,
so is each symmetric and exterior power.
Proof. Omitted, but see above for the finite free case. □

Lemma 10.13.2.00DO Let R be a ring. Let M2 → M1 → M → 0 be an exact sequence
of R-modules. There are exact sequences

M2 ⊗R Symn−1(M1)→ Symn(M1)→ Symn(M)→ 0
and similarly

M2 ⊗R ∧n−1(M1)→ ∧n(M1)→ ∧n(M)→ 0
Proof. Omitted. □

Lemma 10.13.3.00DP Let R be a ring. Let M be an R-module. Let xi, i ∈ I be a given
system of generators of M as an R-module. Let n ≥ 2. There exists a canonical
exact sequence⊕

1≤j1<j2≤n

⊕
i1,i2∈I

Tn−2(M)⊕
⊕

1≤j1<j2≤n

⊕
i∈I

Tn−2(M)→ Tn(M)→ ∧n(M)→ 0

where the pure tensor m1 ⊗ . . .⊗mn−2 in the first summand maps to
m1 ⊗ . . .⊗ xi1 ⊗ . . .⊗ xi2 ⊗ . . .⊗mn−2︸ ︷︷ ︸

with xi1 and xi2 occupying slots j1 and j2 in the tensor

+ m1 ⊗ . . .⊗ xi2 ⊗ . . .⊗ xi1 ⊗ . . .⊗mn−2︸ ︷︷ ︸
with xi2 and xi1 occupying slots j1 and j2 in the tensor

https://stacks.math.columbia.edu/tag/00DN
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and m1 ⊗ . . .⊗mn−2 in the second summand maps to
m1 ⊗ . . .⊗ xi ⊗ . . .⊗ xi ⊗ . . .⊗mn−2︸ ︷︷ ︸

with xi and xi occupying slots j1 and j2 in the tensor

There is also a canonical exact sequence⊕
1≤j1<j2≤n

⊕
i1,i2∈I

Tn−2(M)→ Tn(M)→ Symn(M)→ 0

where the pure tensor m1 ⊗ . . .⊗mn−2 maps to
m1 ⊗ . . .⊗ xi1 ⊗ . . .⊗ xi2 ⊗ . . .⊗mn−2︸ ︷︷ ︸

with xi1 and xi2 occupying slots j1 and j2 in the tensor

− m1 ⊗ . . .⊗ xi2 ⊗ . . .⊗ xi1 ⊗ . . .⊗mn−2︸ ︷︷ ︸
with xi2 and xi1 occupying slots j1 and j2 in the tensor

Proof. Omitted. □

Lemma 10.13.4.0H1C Let A→ B be a ring map. Let M be a B-module. Let n > 1. The
kernel of the A-linear map M ⊗A . . .⊗AM → ∧nB(M) is generated as an A-module
by the elements m1 ⊗ . . . ⊗ mn with mi = mj for i ̸= j, m1, . . . ,mn ∈ M and
the elements m1 ⊗ . . . ⊗ bmi ⊗ . . . ⊗ mn − m1 ⊗ . . . ⊗ bmj ⊗ . . . ⊗ mn for i ̸= j,
m1, . . . ,mn ∈M , and b ∈ B.

Proof. Omitted. □

Lemma 10.13.5.00DQ Let R be a ring. Let Mi be a directed system of R-modules.
Then colimi T(Mi) = T(colimiMi) and similarly for the symmetric and exterior
algebras.

Proof. Omitted. Hint: Apply Lemma 10.12.9. □

Lemma 10.13.6.0C6F Let R be a ring and let S ⊂ R be a multiplicative subset. Then
S−1TR(M) = TS−1R(S−1M) for any R-module M . Similar for symmetric and
exterior algebras.

Proof. Omitted. Hint: Apply Lemma 10.12.16. □

10.14. Base change

05G3 We formally introduce base change in algebra as follows.

Definition 10.14.1.05G4 Let φ : R → S be a ring map. Let M be an S-module. Let
R → R′ be any ring map. The base change of φ by R → R′ is the ring map
R′ → S ⊗R R′. In this situation we often write S′ = S ⊗R R′. The base change of
the S-module M is the S′-module M ⊗R R′.

If S = R[xi]/(fj) for some collection of variables xi, i ∈ I and some collection of
polynomials fj ∈ R[xi], j ∈ J , then S⊗RR′ = R′[xi]/(f ′

j), where f ′
j ∈ R′[xi] is the

image of fj under the map R[xi]→ R′[xi] induced by R→ R′. This simple remark
is the key to understanding base change.

Lemma 10.14.2.05G5 Let R → S be a ring map. Let M be an S-module. Let R → R′

be a ring map and let S′ = S ⊗R R′ and M ′ = M ⊗R R′ be the base changes.
(1) If M is a finite S-module, then the base change M ′ is a finite S′-module.

https://stacks.math.columbia.edu/tag/0H1C
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(2) If M is an S-module of finite presentation, then the base change M ′ is an
S′-module of finite presentation.

(3) If R→ S is of finite type, then the base change R′ → S′ is of finite type.
(4) If R → S is of finite presentation, then the base change R′ → S′ is of

finite presentation.

Proof. Proof of (1). Take a surjective, S-linear map S⊕n → M → 0. By Lemma
10.12.3 and 10.12.10 the result after tensoring with R′ is a surjection S′⊕n →
M ′ → 0, so M ′ is a finitely generated S′-module. Proof of (2). Take a presentation
S⊕m → S⊕n →M → 0. By Lemma 10.12.3 and 10.12.10 the result after tensoring
with R′ gives a finite presentation S′⊕m → S′⊕n →M ′ → 0, of the S′-module M ′.
Proof of (3). This follows by the remark preceding the lemma as we can take I to
be finite by assumption. Proof of (4). This follows by the remark preceding the
lemma as we can take I and J to be finite by assumption. □

Let φ : R → S be a ring map. Given an S-module N we obtain an R-module NR
by the rule r · n = φ(r)n. This is sometimes called the restriction of N to R.

Lemma 10.14.3.05DQ Let R→ S be a ring map. The functors ModS → ModR, N 7→ NR
(restriction) and ModR → ModS , M 7→M⊗RS (base change) are adjoint functors.
In a formula

HomR(M,NR) = HomS(M ⊗R S,N)

Proof. If α : M → NR is an R-module map, then we define α′ : M ⊗R S → N by
the rule α′(m ⊗ s) = sα(m). If β : M ⊗R S → N is an S-module map, we define
β′ : M → NR by the rule β′(m) = β(m ⊗ 1). We omit the verification that these
constructions are mutually inverse. □

The lemma above tells us that restriction has a left adjoint, namely base change.
It also has a right adjoint.

Lemma 10.14.4.08YP Let R→ S be a ring map. The functors ModS → ModR, N 7→ NR
(restriction) and ModR → ModS , M 7→ HomR(S,M) are adjoint functors. In a
formula

HomR(NR,M) = HomS(N,HomR(S,M))

Proof. If α : NR →M is an R-module map, then we define α′ : N → HomR(S,M)
by the rule α′(n) = (s 7→ α(sn)). If β : N → HomR(S,M) is an S-module map,
we define β′ : NR →M by the rule β′(n) = β(n)(1). We omit the verification that
these constructions are mutually inverse. □

Lemma 10.14.5.08YQ Let R → S be a ring map. Given S-modules M,N and an
R-module P we have

HomR(M ⊗S N,P ) = HomS(M,HomR(N,P ))

Proof. This can be proved directly, but it is also a consequence of Lemmas 10.14.4
and 10.12.8. Namely, we have

HomR(M ⊗S N,P ) = HomS(M ⊗S N,HomR(S, P ))
= HomS(M,HomS(N,HomR(S, P )))
= HomS(M,HomR(N,P ))

as desired. □

https://stacks.math.columbia.edu/tag/05DQ
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10.15. Miscellany

00DR The proofs in this section should not refer to any results except those from the
section on basic notions, Section 10.3.

Lemma 10.15.1.07K1 Let R be a ring, I and J two ideals and p a prime ideal containing
the product IJ . Then p contains I or J .

Proof. Assume the contrary and take x ∈ I \ p and y ∈ J \ p. Their product is an
element of IJ ⊂ p, which contradicts the assumption that p was prime. □

Lemma 10.15.2 (Prime avoidance).00DS Let R be a ring. Let Ii ⊂ R, i = 1, . . . , r, and
J ⊂ R be ideals. Assume

(1) J ̸⊂ Ii for i = 1, . . . , r, and
(2) all but two of Ii are prime ideals.

Then there exists an x ∈ J , x ̸∈ Ii for all i.

Proof. The result is true for r = 1. If r = 2, then let x, y ∈ J with x ̸∈ I1 and
y ̸∈ I2. We are done unless x ∈ I2 and y ∈ I1. Then the element x + y cannot be
in I1 (since that would mean x+ y − y ∈ I1) and it also cannot be in I2.
For r ≥ 3, assume the result holds for r − 1. After renumbering we may assume
that Ir is prime. We may also assume there are no inclusions among the Ii. Pick
x ∈ J , x ̸∈ Ii for all i = 1, . . . , r − 1. If x ̸∈ Ir we are done. So assume x ∈ Ir.
If JI1 . . . Ir−1 ⊂ Ir then J ⊂ Ir (by Lemma 10.15.1) a contradiction. Pick y ∈
JI1 . . . Ir−1, y ̸∈ Ir. Then x+ y works. □

Lemma 10.15.3.0EHL Let R be a ring. Let x ∈ R, I ⊂ R an ideal, and pi, i = 1, . . . , r
be prime ideals. Suppose that x+ I ̸⊂ pi for i = 1, . . . , r. Then there exists a y ∈ I
such that x+ y ̸∈ pi for all i.

Proof. We may assume there are no inclusions among the pi. After reordering we
may assume x ̸∈ pi for i < s and x ∈ pi for i ≥ s. If s = r + 1 then we are done.
If not, then we can find y ∈ I with y ̸∈ ps. Choose f ∈

⋂
i<s pi with f ̸∈ ps. Then

x+ fy is not contained in p1, . . . , ps. Thus we win by induction on s. □

Lemma 10.15.4 (Chinese remainder).00DT Let R be a ring.
(1) If I1, . . . , Ir are ideals such that Ia+Ib = R when a ̸= b, then I1∩. . .∩Ir =

I1I2 . . . Ir and R/(I1I2 . . . Ir) ∼= R/I1 × . . .×R/Ir.
(2) If m1, . . . ,mr are pairwise distinct maximal ideals then ma + mb = R for

a ̸= b and the above applies.

Proof. Let us first prove I1∩ . . .∩Ir = I1 . . . Ir as this will also imply the injectivity
of the induced ring homomorphism R/(I1 . . . Ir)→ R/I1×. . .×R/Ir. The inclusion
I1∩ . . .∩ Ir ⊃ I1 . . . Ir is always fulfilled since ideals are closed under multiplication
with arbitrary ring elements. To prove the other inclusion, we claim that the ideals

I1 . . . Îi . . . Ir, i = 1, . . . , r
generate the ring R. We prove this by induction on r. It holds when r = 2. If
r > 2, then we see that R is the sum of the ideals I1 . . . Îi . . . Ir−1, i = 1, . . . , r − 1.
Hence Ir is the sum of the ideals I1 . . . Îi . . . Ir, i = 1, . . . , r − 1. Applying the
same argument with the reverse ordering on the ideals we see that I1 is the sum
of the ideals I1 . . . Îi . . . Ir, i = 2, . . . , r. Since R = I1 + Ir by assumption we see

https://stacks.math.columbia.edu/tag/07K1
https://stacks.math.columbia.edu/tag/00DS
https://stacks.math.columbia.edu/tag/0EHL
https://stacks.math.columbia.edu/tag/00DT
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that R is the sum of the ideals displayed above. Therefore we can find elements
ai ∈ I1 . . . Îi . . . Ir such that their sum is one. Multiplying this equation by an
element of I1 ∩ . . . ∩ Ir gives the other inclusion. It remains to show that the
canonical map R/(I1 . . . Ir) → R/I1 × . . . × R/Ir is surjective. For this, consider
its action on the equation 1 =

∑r
i=1 ai we derived above. On the one hand, a ring

morphism sends 1 to 1 and on the other hand, the image of any ai is zero in R/Ij
for j ̸= i. Therefore, the image of ai in R/Ii is the identity. So given any element
(b̄1, . . . , b̄r) ∈ R/I1 × . . .×R/Ir, the element

∑r
i=1 ai · bi is an inverse image in R.

To see (2), by the very definition of being distinct maximal ideals, we have ma+mb =
R for a ̸= b and so the above applies. □

Lemma 10.15.5.07DQ Let R be a ring. Let n ≥ m. Let A be an n × m matrix with
coefficients in R. Let J ⊂ R be the ideal generated by the m×m minors of A.

(1) For any f ∈ J there exists a m× n matrix B such that BA = f1m×m.
(2) If f ∈ R and BA = f1m×m for some m× n matrix B, then fm ∈ J .

Proof. For I ⊂ {1, . . . , n} with |I| = m, we denote by EI the m× n matrix of the
projection

R⊕n =
⊕

i∈{1,...,n}
R −→

⊕
i∈I

R

and set AI = EIA, i.e., AI is the m × m matrix whose rows are the rows of A
with indices in I. Let BI be the adjugate (transpose of cofactor) matrix to AI ,
i.e., such that AIBI = BIAI = det(AI)1m×m. The m × m minors of A are the
determinants detAI for all the I ⊂ {1, . . . , n} with |I| = m. If f ∈ J then we can
write f =

∑
cI det(AI) for some cI ∈ R. Set B =

∑
cIBIEI to see that (1) holds.

If f1m×m = BA then by the Cauchy-Binet formula (72) we have fm =
∑
bI det(AI)

where bI is the determinant of the m ×m matrix whose columns are the columns
of B with indices in I. □

Lemma 10.15.6.080R Let R be a ring. Let n ≥ m. Let A = (aij) be an n ×m matrix
with coefficients in R, written in block form as

A =
(
A1
A2

)
where A1 has size m×m. Let B be the adjugate (transpose of cofactor) matrix to
A1. Then

AB =
(
f1m×m
C

)
where f = det(A1) and cij is (up to sign) the determinant of the m ×m minor of
A corresponding to the rows 1, . . . , ĵ, . . . ,m, i.

Proof. Since the adjugate has the property A1B = BA1 = f the first block of the
expression for AB is correct. Note that

cij =
∑

k
aikbkj =

∑
(−1)j+kaik det(Ajk1 )

where Aij1 means A1 with the jth row and kth column removed. This last expression
is the row expansion of the determinant of the matrix in the statement of the
lemma. □

https://stacks.math.columbia.edu/tag/07DQ
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Lemma 10.15.7.05WI Let R be a nonzero ring. Let n ≥ 1. Let M be an R-module
generated by < n elements. Then any R-module map f : R⊕n →M has a nonzero
kernel.

Proof. Choose a surjection R⊕n−1 → M . We may lift the map f to a map f ′ :
R⊕n → R⊕n−1 (Lemma 10.5.2). It suffices to prove f ′ has a nonzero kernel. The
map f ′ : R⊕n → R⊕n−1 is given by a matrix A = (aij). If one of the aij is not
nilpotent, say a = aij is not, then we can replace R by the localization Ra and we
may assume aij is a unit. Since if we find a nonzero kernel after localization then
there was a nonzero kernel to start with as localization is exact, see Proposition
10.9.12. In this case we can do a base change on both R⊕n and R⊕n−1 and reduce
to the case where

A =


1 0 0 . . .
0 a22 a23 . . .
0 a32 . . .
. . . . . .


Hence in this case we win by induction on n. If not then each aij is nilpotent. Set
I = (aij) ⊂ R. Note that Im+1 = 0 for some m ≥ 0. Let m be the largest integer
such that Im ̸= 0. Then we see that (Im)⊕n is contained in the kernel of the map
and we win. □

Lemma 10.15.8.0FJ7 Let R be a nonzero ring. Let n,m ≥ 0 be integers. If R⊕n is
isomorphic to R⊕m as R-modules, then n = m.

Proof. Immediate from Lemma 10.15.7. □

10.16. Cayley-Hamilton

05G6
Lemma 10.16.1.00DX Let R be a ring. Let A = (aij) be an n × n matrix with coef-
ficients in R. Let P (x) ∈ R[x] be the characteristic polynomial of A (defined as
det(xidn×n −A)). Then P (A) = 0 in Mat(n× n,R).

Proof. We reduce the question to the well-known Cayley-Hamilton theorem from
linear algebra in several steps:

(1) If ϕ : S → R is a ring morphism and bij are inverse images of the aij under
this map, then it suffices to show the statement for S and (bij) since ϕ is
a ring morphism.

(2) If ψ : R ↪→ S is an injective ring morphism, it clearly suffices to show the
result for S and the aij considered as elements of S.

(3) Thus we may first reduce to the caseR = Z[Xij ], aij = Xij of a polynomial
ring and then further to the case R = Q(Xij) where we may finally apply
Cayley-Hamilton.

□

Lemma 10.16.2.05BT Let R be a ring. Let M be a finite R-module. Let φ : M → M
be an endomorphism. Then there exists a monic polynomial P ∈ R[T ] such that
P (φ) = 0 as an endomorphism of M .

Proof. Choose a surjective R-module map R⊕n → M , given by (a1, . . . , an) 7→∑
aixi for some generators xi ∈M . Choose (ai1, . . . , ain) ∈ R⊕n such that φ(xi) =

https://stacks.math.columbia.edu/tag/05WI
https://stacks.math.columbia.edu/tag/0FJ7
https://stacks.math.columbia.edu/tag/00DX
https://stacks.math.columbia.edu/tag/05BT
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aijxj . In other words the diagram

R⊕n

A
��

// M

φ

��
R⊕n // M

is commutative whereA = (aij). By Lemma 10.16.1 there exists a monic polynomial
P such that P (A) = 0. Then it follows that P (φ) = 0. □

Lemma 10.16.3.05G7 Let R be a ring. Let I ⊂ R be an ideal. Let M be a finite R-
module. Let φ : M →M be an endomorphism such that φ(M) ⊂ IM . Then there
exists a monic polynomial P = tn + a1t

n−1 + . . .+ an ∈ R[T ] such that aj ∈ Ij and
P (φ) = 0 as an endomorphism of M .

Proof. Choose a surjective R-module map R⊕n → M , given by (a1, . . . , an) 7→∑
aixi for some generators xi ∈M . Choose (ai1, . . . , ain) ∈ I⊕n such that φ(xi) =∑
aijxj . In other words the diagram

R⊕n

A
��

// M

φ

��
I⊕n // M

is commutative where A = (aij). By Lemma 10.16.1 the polynomial P (t) =
det(tidn×n −A) has all the desired properties. □

As a fun example application we prove the following surprising lemma.

Lemma 10.16.4.05G8 Let R be a ring. Let M be a finite R-module. Let φ : M → M
be a surjective R-module map. Then φ is an isomorphism.

First proof. Write R′ = R[x] and think of M as a finite R′-module with x acting
via φ. Set I = (x) ⊂ R′. By our assumption that φ is surjective we have IM = M .
Hence we may apply Lemma 10.16.3 to M as an R′-module, the ideal I and the
endomorphism idM . We conclude that (1 + a1 + . . . + an)idM = 0 with aj ∈ I.
Write aj = bj(x)x for some bj(x) ∈ R[x]. Translating back into φ we see that
idM = −(

∑
j=1,...,n bj(φ))φ, and hence φ is invertible. □

Second proof. We perform induction on the number of generators of M over R. If
M is generated by one element, then M ∼= R/I for some ideal I ⊂ R. In this case
we may replace R by R/I so that M = R. In this case φ : R → R is given by
multiplication on M by an element r ∈ R. The surjectivity of φ forces r invertible,
since φ must hit 1, which implies that φ is invertible.

Now assume that we have proven the lemma in the case of modules generated by
n − 1 elements, and are examining a module M generated by n elements. Let
A mean the ring R[t], and regard the module M as an A-module by letting t
act via φ; since M is finite over R, it is finite over R[t] as well, and since we’re
trying to prove φ injective, a set-theoretic property, we might as well prove the
endomorphism t : M → M over A injective. We have reduced our problem to the
case our endomorphism is multiplication by an element of the ground ring. Let

https://stacks.math.columbia.edu/tag/05G7
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M ′ ⊂M denote the sub-A-module generated by the first n− 1 of the generators of
M , and consider the diagram

0 // M ′ //

φ|M′

��

M

φ

��

// M/M ′

φ mod M ′

��

// 0

0 // M ′ // M // M/M ′ // 0,

where the restriction of φ to M ′ and the map induced by φ on the quotient M/M ′

are well-defined since φ is multiplication by an element in the base, and M ′ and
M/M ′ are A-modules in their own right. By the case n = 1 the map M/M ′ →
M/M ′ is an isomorphism. A diagram chase implies that φ|M ′ is surjective hence
by induction φ|M ′ is an isomorphism. This forces the middle column to be an
isomorphism by the snake lemma. □

10.17. The spectrum of a ring

00DY We arbitrarily decide that the spectrum of a ring as a topological space is part of
the algebra chapter, whereas an affine scheme is part of the chapter on schemes.

Definition 10.17.1.00DZ Let R be a ring.
(1) The spectrum of R is the set of prime ideals of R. It is usually denoted

Spec(R).
(2) Given a subset T ⊂ R we let V (T ) ⊂ Spec(R) be the set of primes

containing T , i.e., V (T ) = {p ∈ Spec(R) | ∀f ∈ T, f ∈ p}.
(3) Given an element f ∈ R we let D(f) ⊂ Spec(R) be the set of primes not

containing f .

Lemma 10.17.2.00E0 Let R be a ring.
(1) The spectrum of a ring R is empty if and only if R is the zero ring.
(2) Every nonzero ring has a maximal ideal.
(3) Every nonzero ring has a minimal prime ideal.
(4) Given an ideal I ⊂ R and a prime ideal I ⊂ p there exists a prime

I ⊂ q ⊂ p such that q is minimal over I.
(5) If T ⊂ R, and if (T ) is the ideal generated by T in R, then V ((T )) = V (T ).
(6) If I is an ideal and

√
I is its radical, see basic notion (27), then V (I) =

V (
√
I).

(7) Given an ideal I of R we have
√
I =

⋂
I⊂p p.

(8) If I is an ideal then V (I) = ∅ if and only if I is the unit ideal.
(9) If I, J are ideals of R then V (I) ∪ V (J) = V (I ∩ J).

(10) If (Ia)a∈A is a set of ideals of R then
⋂
a∈A V (Ia) = V (

⋃
a∈A Ia).

(11) If f ∈ R, then D(f)⨿ V (f) = Spec(R).
(12) If f ∈ R then D(f) = ∅ if and only if f is nilpotent.
(13) If f = uf ′ for some unit u ∈ R, then D(f) = D(f ′).
(14) If I ⊂ R is an ideal, and p is a prime of R with p ̸∈ V (I), then there exists

an f ∈ R such that p ∈ D(f), and D(f) ∩ V (I) = ∅.
(15) If f, g ∈ R, then D(fg) = D(f) ∩D(g).
(16) If fi ∈ R for i ∈ I, then

⋃
i∈I D(fi) is the complement of V ({fi}i∈I) in

Spec(R).
(17) If f ∈ R and D(f) = Spec(R), then f is a unit.

https://stacks.math.columbia.edu/tag/00DZ
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Proof. We address each part in the corresponding item below.

(1) This is a direct consequence of (2) or (3).
(2) Let A be the set of all proper ideals of R. This set is ordered by inclusion

and is non-empty, since (0) ∈ A is a proper ideal. Let A be a totally
ordered subset of A. Then

⋃
I∈A I is in fact an ideal. Since 1 /∈ I for all

I ∈ A, the union does not contain 1 and thus is proper. Hence
⋃
I∈A I is

in A and is an upper bound for the set A. Thus by Zorn’s lemma A has
a maximal element, which is the sought-after maximal ideal.

(3) Since R is nonzero, it contains a maximal ideal which is a prime ideal.
Thus the set A of all prime ideals of R is nonempty. A is ordered by
reverse-inclusion. Let A be a totally ordered subset of A. It’s pretty clear
that J =

⋂
I∈A I is in fact an ideal. Not so clear, however, is that it is

prime. Let xy ∈ J . Then xy ∈ I for all I ∈ A. Now letB = {I ∈ A|y ∈ I}.
Let K =

⋂
I∈B I. Since A is totally ordered, either K = J (and we’re

done, since then y ∈ J) or K ⊃ J and for all I ∈ A such that I is properly
contained in K, we have y /∈ I. But that means that for all those I, x ∈ I,
since they are prime. Hence x ∈ J . In either case, J is prime as desired.
Hence by Zorn’s lemma we get a maximal element which in this case is a
minimal prime ideal.

(4) This is the same exact argument as (3) except you only consider prime
ideals contained in p and containing I.

(5) (T ) is the smallest ideal containing T . Hence if T ⊂ I, some ideal, then
(T ) ⊂ I as well. Hence if I ∈ V (T ), then I ∈ V ((T )) as well. The other
inclusion is obvious.

(6) Since I ⊂
√
I, V (

√
I) ⊂ V (I). Now let p ∈ V (I). Let x ∈

√
I. Then

xn ∈ I for some n. Hence xn ∈ p. But since p is prime, a boring induction
argument gets you that x ∈ p. Hence

√
I ⊂ p and p ∈ V (

√
I).

(7) Let f ∈ R \
√
I. Then fn /∈ I for all n. Hence S = {1, f, f2, . . .} is

a multiplicative subset, not containing 0. Take a prime ideal p̄ ⊂ S−1R
containing S−1I. Then the pull-back p in R of p̄ is a prime ideal containing
I that does not intersect S. This shows that

⋂
I⊂p p ⊂

√
I. Now if a ∈

√
I,

then an ∈ I for some n. Hence if I ⊂ p, then an ∈ p. But since p is prime,
we have a ∈ p. Thus the equality is shown.

(8) I is not the unit ideal if and only if I is contained in some maximal ideal
(to see this, apply (2) to the ring R/I) which is therefore prime.

(9) If p ∈ V (I)∪V (J), then I ⊂ p or J ⊂ p which means that I ∩J ⊂ p. Now
if I ∩ J ⊂ p, then IJ ⊂ p and hence either I of J is in p, since p is prime.

(10) p ∈
⋂
a∈A V (Ia)⇔ Ia ⊂ p,∀a ∈ A⇔ p ∈ V (

⋃
a∈A Ia)

(11) If p is a prime ideal and f ∈ R, then either f ∈ p or f /∈ p (strictly) which
is what the disjoint union says.

(12) If a ∈ R is nilpotent, then an = 0 for some n. Hence an ∈ p for any prime
ideal. Thus a ∈ p as can be shown by induction and D(a) = ∅. Now, as
shown in (7), if a ∈ R is not nilpotent, then there is a prime ideal that
does not contain it.

(13) f ∈ p⇔ uf ∈ p, since u is invertible.
(14) If p /∈ V (I), then ∃f ∈ I \ p. Then f /∈ p so p ∈ D(f). Also if q ∈ D(f),

then f /∈ q and thus I is not contained in q. Thus D(f) ∩ V (I) = ∅.
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(15) If fg ∈ p, then f ∈ p or g ∈ p. Hence if f /∈ p and g /∈ p, then fg /∈ p.
Since p is an ideal, if fg /∈ p, then f /∈ p and g /∈ p.

(16) p ∈
⋃
i∈I D(fi)⇔ ∃i ∈ I, fi /∈ p⇔ p ∈ Spec(R) \ V ({fi}i∈I)

(17) If D(f) = Spec(R), then V (f) = ∅ and hence fR = R, so f is a unit.
□

The lemma implies that the subsets V (T ) from Definition 10.17.1 form the closed
subsets of a topology on Spec(R). And it also shows that the sets D(f) are open
and form a basis for this topology.
Definition 10.17.3.00E1 Let R be a ring. The topology on Spec(R) whose closed sets
are the sets V (T ) is called the Zariski topology. The open subsets D(f) are called
the standard opens of Spec(R).
It should be clear from context whether we consider Spec(R) just as a set or as a
topological space.
Lemma 10.17.4.00E2 Suppose that φ : R → R′ is a ring homomorphism. The induced
map

Spec(φ) : Spec(R′) −→ Spec(R), p′ 7−→ φ−1(p′)
is continuous for the Zariski topologies. In fact, for any element f ∈ R we have
Spec(φ)−1(D(f)) = D(φ(f)).
Proof. It is basic notion (41) that p := φ−1(p′) is indeed a prime ideal of R. The
last assertion of the lemma follows directly from the definitions, and implies the
first. □

If φ′ : R′ → R′′ is a second ring homomorphism then the composition
Spec(R′′) −→ Spec(R′) −→ Spec(R)

equals Spec(φ′ ◦ φ). In other words, Spec is a contravariant functor from the
category of rings to the category of topological spaces.
Lemma 10.17.5.00E3 Let R be a ring. Let S ⊂ R be a multiplicative subset. The map
R→ S−1R induces via the functoriality of Spec a homeomorphism

Spec(S−1R) −→ {p ∈ Spec(R) | S ∩ p = ∅}
where the topology on the right hand side is that induced from the Zariski topology
on Spec(R). The inverse map is given by p 7→ S−1p.
Proof. Denote the right hand side of the arrow of the lemma by D. Choose a prime
p′ ⊂ S−1R and let p the inverse image of p′ in R. Since p′ does not contain 1
we see that p does not contain any element of S. Hence p ∈ D and we see that
the image is contained in D. Let p ∈ D. By assumption the image S does not
contain 0. By basic notion (54) S−1(R/p) is not the zero ring. By basic notion
(62) we see S−1R/S−1p = S

−1(R/p) is a domain, and hence S−1p is a prime.
The equality of rings also shows that the inverse image of S−1p in R is equal to
p, because R/p → S

−1(R/p) is injective by basic notion (55). This proves that
the map Spec(S−1R) → Spec(R) is bijective onto D with inverse as given. It is
continuous by Lemma 10.17.4. Finally, let D(g) ⊂ Spec(S−1R) be a standard open.
Write g = h/s for some h ∈ R and s ∈ S. Since g and h/1 differ by a unit we have
D(g) = D(h/1) in Spec(S−1R). Hence by Lemma 10.17.4 and the bijectivity above
the image of D(g) = D(h/1) is D ∩D(h). This proves the map is open as well. □

https://stacks.math.columbia.edu/tag/00E1
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Lemma 10.17.6.00E4 Let R be a ring. Let f ∈ R. The map R → Rf induces via the
functoriality of Spec a homeomorphism

Spec(Rf ) −→ D(f) ⊂ Spec(R).
The inverse is given by p 7→ p ·Rf .

Proof. This is a special case of Lemma 10.17.5. □

It is not the case that every “affine open” of a spectrum is a standard open. See
Example 10.27.4.

Lemma 10.17.7.00E5 Let R be a ring. Let I ⊂ R be an ideal. The map R → R/I
induces via the functoriality of Spec a homeomorphism

Spec(R/I) −→ V (I) ⊂ Spec(R).
The inverse is given by p 7→ p/I.

Proof. It is immediate that the image is contained in V (I). On the other hand, if
p ∈ V (I) then p ⊃ I and we may consider the ideal p/I ⊂ R/I. Using basic notion
(51) we see that (R/I)/(p/I) = R/p is a domain and hence p/I is a prime ideal.
From this it is immediately clear that the image of D(f + I) is D(f) ∩ V (I), and
hence the map is a homeomorphism. □

Remark 10.17.8.00E6 A fundamental commutative diagram associated to a ring map
φ : R → S, a prime q ⊂ S and the corresponding prime p = φ−1(q) of R is the
following

κ(q) = Sq/qSq Sq
oo S //oo S/q // κ(q)

κ(p)⊗R S = Sp/pSp

OO

Sp

OO

oo S

OO

//oo S/pS

OO

// (R \ p)−1S/pS

OO

κ(p) = Rp/pRp

OO

Rp

OO

oo R

OO

//oo R/p

OO

// κ(p)

OO

In this diagram the arrows in the outer left and outer right columns are identical.
The horizontal maps induce on the associated spectra always a homeomorphism
onto the image. The lower two rows of the diagram make sense without assuming q
exists. The lower squares induce fibre squares of topological spaces. This diagram
shows that p is in the image of the map on Spec if and only if S ⊗R κ(p) is not the
zero ring.

Lemma 10.17.9.00E7 Let φ : R → S be a ring map. Let p be a prime of R. The
following are equivalent

(1) p is in the image of Spec(S)→ Spec(R),
(2) S ⊗R κ(p) ̸= 0,
(3) Sp/pSp ̸= 0,
(4) (S/pS)p ̸= 0, and
(5) p = φ−1(pS).

Proof. We have already seen the equivalence of the first two in Remark 10.17.8.
The others are just reformulations of this. □

https://stacks.math.columbia.edu/tag/00E4
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Lemma 10.17.10.00E8 Let R be a ring. The space Spec(R) is quasi-compact.

Proof. It suffices to prove that any covering of Spec(R) by standard opens can be
refined by a finite covering. Thus suppose that Spec(R) = ∪D(fi) for a set of
elements {fi}i∈I of R. This means that ∩V (fi) = ∅. According to Lemma 10.17.2
this means that V ({fi}) = ∅. According to the same lemma this means that the
ideal generated by the fi is the unit ideal of R. This means that we can write
1 as a finite sum: 1 =

∑
i∈J rifi with J ⊂ I finite. And then it follows that

Spec(R) = ∪i∈JD(fi). □

Lemma 10.17.11.04PM Let R be a ring. The topology on X = Spec(R) has the following
properties:

(1) X is quasi-compact,
(2) X has a basis for the topology consisting of quasi-compact opens, and
(3) the intersection of any two quasi-compact opens is quasi-compact.

Proof. The spectrum of a ring is quasi-compact, see Lemma 10.17.10. It has a
basis for the topology consisting of the standard opens D(f) = Spec(Rf ) (Lemma
10.17.6) which are quasi-compact by the first remark. The intersection of two
standard opens is quasi-compact as D(f) ∩ D(g) = D(fg). Given any two quasi-
compact opens U, V ⊂ X we may write U = D(f1) ∪ . . . ∪D(fn) and V = D(g1) ∪
. . . ∪D(gm). Then U ∩ V =

⋃
D(figj) which is quasi-compact. □

10.18. Local rings

07BH Local rings are the bread and butter of algebraic geometry.

Definition 10.18.1.07BI A local ring is a ring with exactly one maximal ideal. The
maximal ideal is often denoted mR in this case. We often say “let (R,m, κ) be a
local ring” to indicate that R is local, m is its unique maximal ideal and κ = R/m
is its residue field. A local homomorphism of local rings is a ring map φ : R → S
such that R and S are local rings and such that φ(mR) ⊂ mS . If it is given that R
and S are local rings, then the phrase “local ring map φ : R→ S” means that φ is
a local homomorphism of local rings.

A field is a local ring. Any ring map between fields is a local homomorphism of
local rings.

Lemma 10.18.2.00E9 Let R be a ring. The following are equivalent:
(1) R is a local ring,
(2) Spec(R) has exactly one closed point,
(3) R has a maximal ideal m and every element of R \m is a unit, and
(4) R is not the zero ring and for every x ∈ R either x or 1 − x is invertible

or both.

Proof. Let R be a ring, and m a maximal ideal. If x ∈ R \ m, and x is not a
unit then there is a maximal ideal m′ containing x. Hence R has at least two
maximal ideals. Conversely, if m′ is another maximal ideal, then choose x ∈ m′,
x ̸∈ m. Clearly x is not a unit. This proves the equivalence of (1) and (3). The
equivalence (1) and (2) is tautological. If R is local then (4) holds since x is either
in m or not. If (4) holds, and m, m′ are distinct maximal ideals then we may choose
x ∈ R such that x mod m′ = 0 and x mod m = 1 by the Chinese remainder theorem
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(Lemma 10.15.4). This element x is not invertible and neither is 1 − x which is a
contradiction. Thus (4) and (1) are equivalent. □

The localization Rp of a ring R at a prime p is a local ring with maximal ideal pRp.
Namely, the quotient Rp/pRp is the fraction field of the domain R/p and every
element of Rp which is not contained in pRp is invertible.

Lemma 10.18.3.07BJ Let φ : R → S be a ring map. Assume R and S are local rings.
The following are equivalent:

(1) φ is a local ring map,
(2) φ(mR) ⊂ mS , and
(3) φ−1(mS) = mR.
(4) For any x ∈ R, if φ(x) is invertible in S, then x is invertible in R.

Proof. Conditions (1) and (2) are equivalent by definition. If (3) holds then (2)
holds. Conversely, if (2) holds, then φ−1(mS) is a prime ideal containing the max-
imal ideal mR, hence φ−1(mS) = mR. Finally, (4) is the contrapositive of (2) by
Lemma 10.18.2. □

Let φ : R→ S be a ring map. Let q ⊂ S be a prime and set p = φ−1(q). Then the
induced ring map Rp → Sq is a local ring map.

10.19. The Jacobson radical of a ring

0AMD We recall that the Jacobson radical rad(R) of a ring R is the intersection of all
maximal ideals of R. If R is local then rad(R) is the maximal ideal of R.

Lemma 10.19.1.0AME Let R be a ring with Jacobson radical rad(R). Let I ⊂ R be an
ideal. The following are equivalent

(1) I ⊂ rad(R), and
(2) every element of 1 + I is a unit in R.

In this case every element of R which maps to a unit of R/I is a unit.

Proof. If f ∈ rad(R), then f ∈ m for all maximal ideals m of R. Hence 1 + f ̸∈ m
for all maximal ideals m of R. Thus the closed subset V (1+f) of Spec(R) is empty.
This implies that 1 + f is a unit, see Lemma 10.17.2.

Conversely, assume that 1 + f is a unit for all f ∈ I. If m is a maximal ideal and
I ̸⊂ m, then I + m = R. Hence 1 = f + g for some g ∈ m and f ∈ I. Then
g = 1 + (−f) is not a unit, contradiction.

For the final statement let f ∈ R map to a unit in R/I. Then we can find g ∈ R
mapping to the multiplicative inverse of f mod I. Then fg = 1 mod I. Hence fg
is a unit of R by (2) which implies that f is a unit. □

Lemma 10.19.2.0B7C Let φ : R → S be a ring map such that the induced map
Spec(S) → Spec(R) is surjective. Then an element x ∈ R is a unit if and only
if φ(x) ∈ S is a unit.

Proof. If x is a unit, then so is φ(x). Conversely, if φ(x) is a unit, then φ(x) ̸∈ q for
all q ∈ Spec(S). Hence x ̸∈ φ−1(q) = Spec(φ)(q) for all q ∈ Spec(S). Since Spec(φ)
is surjective we conclude that x is a unit by part (17) of Lemma 10.17.2. □
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10.20. Nakayama’s lemma

07RC We quote from [Mat70a]: “This simple but important lemma is due to T. Nakayama,
G. Azumaya and W. Krull. Priority is obscure, and although it is usually called
the Lemma of Nakayama, late Prof. Nakayama did not like the name.”

Lemma 10.20.1 (Nakayama’s lemma).00DV [Mat70a, 1.M
Lemma (NAK) page
11]

Let R be a ring with Jacobson radical
rad(R). Let M be an R-module. Let I ⊂ R be an ideal.

(1)00DW If IM = M and M is finite, then there exists an f ∈ 1 + I such that
fM = 0.

(2) If IM = M , M is finite, and I ⊂ rad(R), then M = 0.
(3) If N,N ′ ⊂ M , M = N + IN ′, and N ′ is finite, then there exists an

f ∈ 1 + I such that fM ⊂ N and Mf = Nf .
(4) If N,N ′ ⊂M , M = N + IN ′, N ′ is finite, and I ⊂ rad(R), then M = N .
(5) If N → M is a module map, N/IN → M/IM is surjective, and M is

finite, then there exists an f ∈ 1 + I such that Nf →Mf is surjective.
(6) If N → M is a module map, N/IN → M/IM is surjective, M is finite,

and I ⊂ rad(R), then N →M is surjective.
(7) If x1, . . . , xn ∈ M generate M/IM and M is finite, then there exists an

f ∈ 1 + I such that x1, . . . , xn generate Mf over Rf .
(8) If x1, . . . , xn ∈ M generate M/IM , M is finite, and I ⊂ rad(R), then M

is generated by x1, . . . , xn.
(9) If IM = M , I is nilpotent, then M = 0.

(10) If N,N ′ ⊂M , M = N + IN ′, and I is nilpotent then M = N .
(11) If N → M is a module map, I is nilpotent, and N/IN → M/IM is

surjective, then N →M is surjective.
(12) If {xα}α∈A is a set of elements of M which generate M/IM and I is

nilpotent, then M is generated by the xα.

Proof. Proof of (1). Choose generators y1, . . . , ym of M over R. For each i we can
write yi =

∑
zijyj with zij ∈ I (since M = IM). In other words

∑
j(δij − zij)yj =

0. Let f be the determinant of the m × m matrix A = (δij − zij). Note that
f ∈ 1 + I (since the matrix A is entrywise congruent to the m×m identity matrix
modulo I). By Lemma 10.15.5 (1), there exists an m × m matrix B such that
BA = f1m×m. Writing out we see that

∑
i bhiaij = fδhj for all h and j; hence,∑

i,j bhiaijyj =
∑
j fδhjyj = fyh for every h. In other words, 0 = fyh for every h

(since each i satisfies
∑
j aijyj = 0). This implies that f annihilates M .

By Lemma 10.19.1 an element of 1 + rad(R) is invertible element of R. Hence we
see that (1) implies (2). We obtain (3) by applying (1) to M/N which is finite as
N ′ is finite. We obtain (4) by applying (2) to M/N which is finite as N ′ is finite.
We obtain (5) by applying (3) to M and the submodules Im(N →M) and M . We
obtain (6) by applying (4) to M and the submodules Im(N → M) and M . We
obtain (7) by applying (5) to the map R⊕n →M , (a1, . . . , an) 7→ a1x1 + . . .+anxn.
We obtain (8) by applying (6) to the map R⊕n →M , (a1, . . . , an) 7→ a1x1 + . . .+
anxn.
Part (9) holds because if M = IM then M = InM for all n ≥ 0 and I being
nilpotent means In = 0 for some n≫ 0. Parts (10), (11), and (12) follow from (9)
by the arguments used above. □
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Lemma 10.20.2.0GLX Let R be a ring, let S ⊂ R be a multiplicative subset, let I ⊂ R be
an ideal, and let M be a finite R-module. If x1, . . . , xr ∈M generate S−1(M/IM)
as an S−1(R/I)-module, then there exists an f ∈ S+I such that x1, . . . , xr generate
Mf as an Rf -module.1

Proof. Special case I = 0. Let y1, . . . , ys be generators for M over R. Since S−1M
is generated by x1, . . . , xr, for each i we can write yi =

∑
(aij/sij)xj for some

aij ∈ R and sij ∈ S. Let s ∈ S be the product of all of the sij . Then we see that yi
is contained in the Rs-submodule of Ms generated by x1, . . . , xr. Hence x1, . . . , xr
generates Ms.
General case. By the special case, we can find an s ∈ S such that x1, . . . , xr generate
(M/IM)s over (R/I)s. By Lemma 10.20.1 we can find a g ∈ 1 + Is ⊂ Rs such that
x1, . . . , xr generate (Ms)g over (Rs)g. Write g = 1 + i/s′. Then f = ss′ + is works;
details omitted. □

Lemma 10.20.3.0E8M Let A→ B be a local homomorphism of local rings. Assume
(1) B is finite as an A-module,
(2) mB is a finitely generated ideal,
(3) A→ B induces an isomorphism on residue fields, and
(4) mA/m

2
A → mB/m

2
B is surjective.

Then A→ B is surjective.

Proof. To show that A → B is surjective, we view it as a map of A-modules and
apply Lemma 10.20.1 (6). We conclude it suffices to show that A/mA → B/mAB
is surjective. As A/mA = B/mB it suffices to show that mAB → mB is surjective.
View mAB → mB as a map of B-modules and apply Lemma 10.20.1 (6). We
conclude it suffices to see that mAB/mAmB → mB/m

2
B is surjective. This follows

from assumption (4). □

10.21. Open and closed subsets of spectra

04PN It turns out that open and closed subsets of a spectrum correspond to idempotents
of the ring.

Lemma 10.21.1.00EC Let R be a ring. Let e ∈ R be an idempotent. In this case
Spec(R) = D(e)⨿D(1− e).

Proof. Note that an idempotent e of a domain is either 1 or 0. Hence we see that
D(e) = {p ∈ Spec(R) | e ̸∈ p}

= {p ∈ Spec(R) | e ̸= 0 in κ(p)}
= {p ∈ Spec(R) | e = 1 in κ(p)}

Similarly we have
D(1− e) = {p ∈ Spec(R) | 1− e ̸∈ p}

= {p ∈ Spec(R) | e ̸= 1 in κ(p)}
= {p ∈ Spec(R) | e = 0 in κ(p)}

1Special cases: (I) I = 0. The lemma says if x1, . . . , xr generate S−1M , then x1, . . . , xr
generate Mf for some f ∈ S. (II) I = p is a prime ideal and S = R \ p. The lemma says if
x1, . . . , xr generate M ⊗R κ(p) then x1, . . . , xr generate Mf for some f ∈ R, f ̸∈ p.
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Since the image of e in any residue field is either 1 or 0 we deduce that D(e) and
D(1− e) cover all of Spec(R). □

Lemma 10.21.2.00ED Let R1 and R2 be rings. Let R = R1 × R2. The maps R → R1,
(x, y) 7→ x and R → R2, (x, y) 7→ y induce continuous maps Spec(R1) → Spec(R)
and Spec(R2)→ Spec(R). The induced map

Spec(R1)⨿ Spec(R2) −→ Spec(R)
is a homeomorphism. In other words, the spectrum of R = R1 ×R2 is the disjoint
union of the spectrum of R1 and the spectrum of R2.
Proof. Write 1 = e1 + e2 with e1 = (1, 0) and e2 = (0, 1). Note that e1 and
e2 = 1−e1 are idempotents. We leave it to the reader to show that R1 = Re1 is the
localization of R at e1. Similarly for e2. Thus the statement of the lemma follows
from Lemma 10.21.1 combined with Lemma 10.17.6. □

We reprove the following lemma later after introducing a glueing lemma for func-
tions. See Section 10.24.
Lemma 10.21.3.00EE Let R be a ring. For each U ⊂ Spec(R) which is open and closed
there exists a unique idempotent e ∈ R such that U = D(e). This induces a 1-1
correspondence between open and closed subsets U ⊂ Spec(R) and idempotents
e ∈ R.
Proof. Let U ⊂ Spec(R) be open and closed. Since U is closed it is quasi-compact
by Lemma 10.17.10, and similarly for its complement. Write U =

⋃n
i=1 D(fi) as

a finite union of standard opens. Similarly, write Spec(R) \ U =
⋃m
j=1 D(gj) as a

finite union of standard opens. Since ∅ = D(fi)∩D(gj) = D(figj) we see that figj
is nilpotent by Lemma 10.17.2. Let I = (f1, . . . , fn) ⊂ R and let J = (g1, . . . , gm) ⊂
R. Note that V (J) equals U , that V (I) equals the complement of U , so Spec(R) =
V (I) ⨿ V (J). By the remark on nilpotency above, we see that (IJ)N = (0) for
some sufficiently large integer N . Since

⋃
D(fi) ∪

⋃
D(gj) = Spec(R) we see that

I + J = R, see Lemma 10.17.2. By raising this equation to the 2Nth power we
conclude that IN + JN = R. Write 1 = x + y with x ∈ IN and y ∈ JN . Then
0 = xy = x(1 − x) as INJN = (0). Thus x = x2 is idempotent and contained in
IN ⊂ I. The idempotent y = 1 − x is contained in JN ⊂ J . This shows that the
idempotent x maps to 1 in every residue field κ(p) for p ∈ V (J) and that x maps
to 0 in κ(p) for every p ∈ V (I).
To see uniqueness suppose that e1, e2 are distinct idempotents in R. We have to
show there exists a prime p such that e1 ∈ p and e2 ̸∈ p, or conversely. Write
e′
i = 1− ei. If e1 ̸= e2, then 0 ̸= e1 − e2 = e1(e2 + e′

2)− (e1 + e′
1)e2 = e1e

′
2 − e′

1e2.
Hence either the idempotent e1e

′
2 ̸= 0 or e′

1e2 ̸= 0. An idempotent is not nilpotent,
and hence we find a prime p such that either e1e

′
2 ̸∈ p or e′

1e2 ̸∈ p, by Lemma
10.17.2. It is easy to see this gives the desired prime. □

Lemma 10.21.4.00EF Let R be a nonzero ring. Then Spec(R) is connected if and only
if R has no nontrivial idempotents.
Proof. Obvious from Lemma 10.21.3 and the definition of a connected topological
space. □

Lemma 10.21.5.00EH Let I ⊂ R be a finitely generated ideal of a ring R such that
I = I2. Then
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(1) there exists an idempotent e ∈ R such that I = (e),
(2) R/I ∼= Re′ for the idempotent e′ = 1− e ∈ R, and
(3) V (I) is open and closed in Spec(R).

Proof. By Nakayama’s Lemma 10.20.1 there exists an element f = 1+ i, i ∈ I such
that fI = 0. Then f2 = f + fi = f is an idempotent. Consider the idempotent
e = 1− f = −i ∈ I. For j ∈ I we have ej = j − fj = j hence I = (e). This proves
(1).
Parts (2) and (3) follow from (1). Namely, we have V (I) = V (e) = Spec(R) \D(e)
which is open and closed by either Lemma 10.21.1 or Lemma 10.21.3. This proves
(3). For (2) observe that the map R → Re′ is surjective since x/(e′)n = x/e′ =
xe′/(e′)2 = xe′/e′ = x/1 in Re′ . The kernel of the map R → Re′ is the set of
elements of R annihilated by a positive power of e′. Since e′ is idempotent this is
the ideal of elements annihilated by e′ which is the ideal I = (e) as e+ e′ = 1 is a
pair of orthognal idempotents. This proves (2). □

10.22. Connected components of spectra

00EB Connected components of spectra are not as easy to understand as one may think
at first. This is because we are used to the topology of locally connected spaces,
but the spectrum of a ring is in general not locally connected.

Lemma 10.22.1.04PP Let R be a ring. Let T ⊂ Spec(R) be a subset of the spectrum.
The following are equivalent

(1) T is closed and is a union of connected components of Spec(R),
(2) T is an intersection of open and closed subsets of Spec(R), and
(3) T = V (I) where I ⊂ R is an ideal generated by idempotents.

Moreover, the ideal in (3) if it exists is unique.

Proof. By Lemma 10.17.11 and Topology, Lemma 5.12.12 we see that (1) and (2)
are equivalent. Assume (2) and write T =

⋂
Uα with Uα ⊂ Spec(R) open and

closed. Then Uα = D(eα) for some idempotent eα ∈ R by Lemma 10.21.3. Then
setting I = (1 − eα) we see that T = V (I), i.e., (3) holds. Finally, assume (3).
Write T = V (I) and I = (eα) for some collection of idempotents eα. Then it is
clear that T =

⋂
V (eα) =

⋂
D(1− eα).

Suppose that I is an ideal generated by idempotents. Let e ∈ R be an idempotent
such that V (I) ⊂ V (e). Then by Lemma 10.17.2 we see that en ∈ I for some n ≥ 1.
As e is an idempotent this means that e ∈ I. Hence we see that I is generated
by exactly those idempotents e such that T ⊂ V (e). In other words, the ideal I is
completely determined by the closed subset T which proves uniqueness. □

Lemma 10.22.2.00EG Let R be a ring. A connected component of Spec(R) is of the form
V (I), where I is an ideal generated by idempotents such that every idempotent of
R either maps to 0 or 1 in R/I.

Proof. Let p be a prime of R. By Lemma 10.17.11 we have see that the hypotheses
of Topology, Lemma 5.12.10 are satisfied for the topological space Spec(R). Hence
the connected component of p in Spec(R) is the intersection of open and closed
subsets of Spec(R) containing p. Hence it equals V (I) where I is generated by
the idempotents e ∈ R such that e maps to 0 in κ(p), see Lemma 10.21.3. Any
idempotent e which is not in this collection clearly maps to 1 in R/I. □
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10.23. Glueing properties

00EN In this section we put a number of standard results of the form: if something is
true for all members of a standard open covering then it is true. In fact, it often
suffices to check things on the level of local rings as in the following lemma.

Lemma 10.23.1.00HN Let R be a ring.
(1) For an element x of an R-module M the following are equivalent

(a) x = 0,
(b) x maps to zero in Mp for all p ∈ Spec(R),
(c) x maps to zero in Mm for all maximal ideals m of R.

In other words, the map M →
∏

mMm is injective.
(2) Given an R-module M the following are equivalent

(a) M is zero,
(b) Mp is zero for all p ∈ Spec(R),
(c) Mm is zero for all maximal ideals m of R.

(3) Given a complex M1 → M2 → M3 of R-modules the following are equiv-
alent
(a) M1 →M2 →M3 is exact,
(b) for every prime p of R the localization M1,p →M2,p →M3,p is exact,
(c) for every maximal ideal m of R the localization M1,m → M2,m →

M3,m is exact.
(4) Given a map f : M →M ′ of R-modules the following are equivalent

(a) f is injective,
(b) fp : Mp →M ′

p is injective for all primes p of R,
(c) fm : Mm →M ′

m is injective for all maximal ideals m of R.
(5) Given a map f : M →M ′ of R-modules the following are equivalent

(a) f is surjective,
(b) fp : Mp →M ′

p is surjective for all primes p of R,
(c) fm : Mm →M ′

m is surjective for all maximal ideals m of R.
(6) Given a map f : M →M ′ of R-modules the following are equivalent

(a) f is bijective,
(b) fp : Mp →M ′

p is bijective for all primes p of R,
(c) fm : Mm →M ′

m is bijective for all maximal ideals m of R.

Proof. Let x ∈ M as in (1). Let I = {f ∈ R | fx = 0}. It is easy to see that I is
an ideal (it is the annihilator of x). Condition (1)(c) means that for all maximal
ideals m there exists an f ∈ R \ m such that fx = 0. In other words, V (I) does
not contain a closed point. By Lemma 10.17.2 we see I is the unit ideal. Hence x
is zero, i.e., (1)(a) holds. This proves (1).

Part (2) follows by applying (1) to all elements of M simultaneously.

Proof of (3). Let H be the homology of the sequence, i.e., H = Ker(M2 →
M3)/ Im(M1 → M2). By Proposition 10.9.12 we have that Hp is the homology
of the sequence M1,p →M2,p →M3,p. Hence (3) is a consequence of (2).

Parts (4) and (5) are special cases of (3). Part (6) follows formally on combining
(4) and (5). □
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Lemma 10.23.2.00EO Let R be a ring. Let M be an R-module. Let S be an R-algebra.
Suppose that f1, . . . , fn is a finite list of elements of R such that

⋃
D(fi) = Spec(R),

in other words (f1, . . . , fn) = R.
(1) If each Mfi = 0 then M = 0.
(2) If each Mfi is a finite Rfi-module, then M is a finite R-module.
(3) If each Mfi is a finitely presented Rfi -module, then M is a finitely pre-

sented R-module.
(4) Let M → N be a map of R-modules. If Mfi → Nfi is an isomorphism for

each i then M → N is an isomorphism.
(5) Let 0→M ′′ →M →M ′ → 0 be a complex of R-modules. If 0→M ′′

fi
→

Mfi → M ′
fi
→ 0 is exact for each i, then 0 → M ′′ → M → M ′ → 0 is

exact.
(6) If each Rfi is Noetherian, then R is Noetherian.
(7) If each Sfi is a finite type R-algebra, so is S.
(8) If each Sfi is of finite presentation over R, so is S.

Proof. We prove each of the parts in turn.
(1) By Proposition 10.9.10 this implies Mp = 0 for all p ∈ Spec(R), so we

conclude by Lemma 10.23.1.
(2) For each i take a finite generating setXi ofMfi . Without loss of generality,

we may assume that the elements of Xi are in the image of the localization
map M → Mfi , so we take a finite set Yi of preimages of the elements
of Xi in M . Let Y be the union of these sets. This is still a finite set.
Consider the obvious R-linear map RY →M sending the basis element ey
to y. By assumption this map is surjective after localizing at an arbitrary
prime ideal p of R, so it is surjective by Lemma 10.23.1 and M is finitely
generated.

(3) By (2) we have a short exact sequence
0→ K → Rn →M → 0

Since localization is an exact functor and Mfi is finitely presented we see
that Kfi is finitely generated for all 1 ≤ i ≤ n by Lemma 10.5.3. By
(2) this implies that K is a finite R-module and therefore M is finitely
presented.

(4) By Proposition 10.9.10 the assumption implies that the induced morphism
on localizations at all prime ideals is an isomorphism, so we conclude by
Lemma 10.23.1.

(5) By Proposition 10.9.10 the assumption implies that the induced sequence
of localizations at all prime ideals is short exact, so we conclude by Lemma
10.23.1.

(6) We will show that every ideal of R has a finite generating set: For this,
let I ⊂ R be an arbitrary ideal. By Proposition 10.9.12 each Ifi ⊂ Rfi is
an ideal. These are all finitely generated by assumption, so we conclude
by (2).

(7) For each i take a finite generating set Xi of Sfi . Without loss of generality,
we may assume that the elements of Xi are in the image of the localization
map S → Sfi , so we take a finite set Yi of preimages of the elements of Xi

in S. Let Y be the union of these sets. This is still a finite set. Consider
the algebra homomorphism R[Xy]y∈Y → S induced by Y . Since it is an

https://stacks.math.columbia.edu/tag/00EO
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algebra homomorphism, the image T is an R-submodule of the R-module
S, so we can consider the quotient module S/T . By assumption, this is
zero if we localize at the fi, so it is zero by (1) and therefore S is an
R-algebra of finite type.

(8) By the previous item, there exists a surjective R-algebra homomorphism
R[X1, . . . , Xn]→ S. Let K be the kernel of this map. This is an ideal in
R[X1, . . . , Xn], finitely generated in each localization at fi. Since the
fi generate the unit ideal in R, they also generate the unit ideal in
R[X1, . . . , Xn], so an application of (2) finishes the proof.

□

Lemma 10.23.3.00EP Let R→ S be a ring map. Suppose that g1, . . . , gn is a finite list
of elements of S such that

⋃
D(gi) = Spec(S) in other words (g1, . . . , gn) = S.

(1) If each Sgi is of finite type over R, then S is of finite type over R.
(2) If each Sgi is of finite presentation over R, then S is of finite presentation

over R.

Proof. Choose h1, . . . , hn ∈ S such that
∑
higi = 1.

Proof of (1). For each i choose a finite list of elements xi,j ∈ Sgi , j = 1, . . . ,mi which
generate Sgi as an R-algebra. Write xi,j = yi,j/g

ni,j
i for some yi,j ∈ S and some

ni,j ≥ 0. Consider the R-subalgebra S′ ⊂ S generated by g1, . . . , gn, h1, . . . , hn and
yi,j , i = 1, . . . , n, j = 1, . . . ,mi. Since localization is exact (Proposition 10.9.12),
we see that S′

gi → Sgi is injective. On the other hand, it is surjective by our choice
of yi,j . The elements g1, . . . , gn generate the unit ideal in S′ as h1, . . . , hn ∈ S′.
Thus S′ → S viewed as an S′-module map is an isomorphism by Lemma 10.23.2.
Proof of (2). We already know that S is of finite type. Write S = R[x1, . . . , xm]/J
for some ideal J . For each i choose a lift g′

i ∈ R[x1, . . . , xm] of gi and we choose a
lift h′

i ∈ R[x1, . . . , xm] of hi. Then we see that
Sgi = R[x1, . . . , xm, yi]/(Ji + (1− yig′

i))
where Ji is the ideal of R[x1, . . . , xm, yi] generated by J . Small detail omitted. By
Lemma 10.6.3 we may choose a finite list of elements fi,j ∈ J , j = 1, . . . ,mi such
that the images of fi,j in Ji and 1− yig′

i generate the ideal Ji + (1− yig′
i). Set

S′ = R[x1, . . . , xm]/
(∑

h′
ig

′
i − 1, fi,j ; i = 1, . . . , n, j = 1, . . . ,mi

)
There is a surjective R-algebra map S′ → S. The classes of the elements g′

1, . . . , g
′
n

in S′ generate the unit ideal and by construction the maps S′
g′
i
→ Sgi are injective.

Thus we conclude as in part (1). □

10.24. Glueing functions

00EI In this section we show that given an open covering

Spec(R) =
⋃n

i=1
D(fi)

by standard opens, and given an element hi ∈ Rfi for each i such that hi = hj as
elements of Rfifj then there exists a unique h ∈ R such that the image of h in Rfi
is hi. This result can be interpreted in two ways:

(1) The rule D(f) 7→ Rf is a sheaf of rings on the standard opens, see Sheaves,
Section 6.30.
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(2) If we think of elements of Rf as the “algebraic” or “regular” functions on
D(f), then these glue as would continuous, resp. differentiable functions
on a topological, resp. differentiable manifold.

Lemma 10.24.1.00EK Let R be a ring. Let f1, . . . , fn be elements of R generating the
unit ideal. Let M be an R-module. The sequence

0→M
α−→
⊕n

i=1
Mfi

β−→
⊕n

i,j=1
Mfifj

is exact, where α(m) = (m/1, . . . ,m/1) and β(m1/f
e1
1 , . . . ,mn/f

en
n ) = (mi/f

ei
i −

mj/f
ej
j )(i,j).

Proof. It suffices to show that the localization of the sequence at any maximal
ideal m is exact, see Lemma 10.23.1. Since f1, . . . , fn generate the unit ideal, there
is an i such that fi ̸∈ m. After renumbering we may assume i = 1. Note that
(Mfi)m = (Mm)fi and (Mfifj )m = (Mm)fifj , see Proposition 10.9.11. In particular
(Mf1)m = Mm and (Mf1fi)m = (Mm)fi , because f1 is a unit. Note that the maps
in the sequence are the canonical ones coming from Lemma 10.9.7 and the identity
map on M . Having said all of this, after replacing R by Rm, M by Mm, and fi by
their image in Rm, and f1 by 1 ∈ Rm, we reduce to the case where f1 = 1.
Assume f1 = 1. Injectivity of α is now trivial. Let m = (mi) ∈

⊕n
i=1 Mfi be in

the kernel of β. Then m1 ∈ Mf1 = M . Moreover, β(m) = 0 implies that m1 and
mi map to the same element of Mf1fi = Mfi . Thus α(m1) = m and the proof is
complete. □

Lemma 10.24.2.00EJ Let R be a ring, and let f1, f2, . . . fn ∈ R generate the unit ideal
in R. Then the following sequence is exact:

0 −→ R −→
⊕

i
Rfi −→

⊕
i,j
Rfifj

where the maps α : R −→
⊕

iRfi and β :
⊕

iRfi −→
⊕

i,j Rfifj are defined as

α(x) =
(x

1 , . . . ,
x

1

)
and β

(
x1

fr1
1
, . . . ,

xn
frnn

)
=
(
xi
frii
− xj

f
rj
j

in Rfifj

)
.

Proof. Special case of Lemma 10.24.1. □

The following we have already seen above, but we state it explicitly here for con-
venience.

Lemma 10.24.3.00EM Let R be a ring. If Spec(R) = U ⨿ V with both U and V open
then R ∼= R1 ×R2 with U ∼= Spec(R1) and V ∼= Spec(R2) via the maps in Lemma
10.21.2. Moreover, both R1 and R2 are localizations as well as quotients of the ring
R.

Proof. By Lemma 10.21.3 we have U = D(e) and V = D(1−e) for some idempotent
e. By Lemma 10.24.2 we see that R ∼= Re ×R1−e (since clearly Re(1−e) = 0 so the
glueing condition is trivial; of course it is trivial to prove the product decomposition
directly in this case). The lemma follows. □

Lemma 10.24.4.0565 Let R be a ring. Let f1, . . . , fn ∈ R. Let M be an R-module.
Then M →

⊕
Mfi is injective if and only if

M −→
⊕

i=1,...,n
M, m 7−→ (f1m, . . . , fnm)
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is injective.
Proof. The map M →

⊕
Mfi is injective if and only if for all m ∈ M and

e1, . . . , en ≥ 1 such that feii m = 0, i = 1, . . . , n we have m = 0. This clearly
implies the displayed map is injective. Conversely, suppose the displayed map is
injective and m ∈ M and e1, . . . , en ≥ 1 are such that feii m = 0, i = 1, . . . , n. If
ei = 1 for all i, then we immediately conclude that m = 0 from the injectivity of
the displayed map. Next, we prove this holds for any such data by induction on
e =

∑
ei. The base case is e = n, and we have just dealt with this. If some ei > 1,

then set m′ = fim. By induction we see that m′ = 0. Hence we see that fim = 0,
i.e., we may take ei = 1 which decreases e and we win. □

The following lemma is better stated and proved in the more general context of flat
descent. However, it makes sense to state it here since it fits well with the above.
Lemma 10.24.5.00EQ Let R be a ring. Let f1, . . . , fn ∈ R. Suppose we are given the
following data:

(1) For each i an Rfi-module Mi.
(2) For each pair i, j an Rfifj -module isomorphism ψij : (Mi)fj → (Mj)fi .

which satisfy the “cocycle condition” that all the diagrams

(Mi)fjfk

ψij %%

ψik // (Mk)fifj

(Mj)fifk
ψjk

99

commute (for all triples i, j, k). Given this data define

M = Ker
(⊕

1≤i≤n
Mi −→

⊕
1≤i,j≤n

(Mi)fj
)

where (m1, . . . ,mn) maps to the element whose (i, j)th entry is mi/1−ψji(mj/1).
Then the natural map M → Mi induces an isomorphism Mfi → Mi. Moreover
ψij(m/1) = m/1 for all m ∈M (with obvious notation).
Proof. To show that Mf1 → M1 is an isomorphism, it suffices to show that its
localization at every prime p′ of Rf1 is an isomorphism, see Lemma 10.23.1. Write
p′ = pRf1 for some prime p ⊂ R, f1 ̸∈ p, see Lemma 10.17.6. Since localization is
exact (Proposition 10.9.12), we see that

(Mf1)p′ = Mp

= Ker
(⊕

1≤i≤n
Mi,p −→

⊕
1≤i,j≤n

((Mi)fj )p
)

= Ker
(⊕

1≤i≤n
Mi,p −→

⊕
1≤i,j≤n

(Mi,p)fj
)

Here we also used Proposition 10.9.11. Since f1 is a unit in Rp, this reduces us to
the case where f1 = 1 by replacing R by Rp, fi by the image of fi in Rp, M by
Mp, and f1 by 1.
Assume f1 = 1. Then ψ1j : (M1)fj →Mj is an isomorphism for j = 2, . . . , n. If we
use these isomorphisms to identify Mj = (M1)fj , then we see that ψij : (M1)fifj →
(M1)fifj is the canonical identification. Thus the complex

0→M1 →
⊕

1≤i≤n
(M1)fi −→

⊕
1≤i,j≤n

(M1)fifj

https://stacks.math.columbia.edu/tag/00EQ
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is exact by Lemma 10.24.1. Thus the first map identifies M1 with M in this case
and everything is clear. □

10.25. Zerodivisors and total rings of fractions

02LV The local ring at a minimal prime has the following properties.

Lemma 10.25.1.00EU Let p be a minimal prime of a ring R. Every element of the
maximal ideal of Rp is nilpotent. If R is reduced then Rp is a field.

Proof. If some element x of pRp is not nilpotent, then D(x) ̸= ∅, see Lemma
10.17.2. This contradicts the minimality of p. If R is reduced, then pRp = 0 and
hence it is a field. □

Lemma 10.25.2.00EW Let R be a reduced ring. Then
(1) R is a subring of a product of fields,
(2) R→

∏
p minimal Rp is an embedding into a product of fields,

(3)
⋃

p minimal p is the set of zerodivisors of R.

Proof. By Lemma 10.25.1 each of the rings Rp is a field. In particular, the kernel
of the ring map R → Rp is p. By Lemma 10.17.2 we have

⋂
p p = (0). Hence (2)

and (1) are true. If xy = 0 and y ̸= 0, then y ̸∈ p for some minimal prime p.
Hence x ∈ p. Thus every zerodivisor of R is contained in

⋃
p minimal p. Conversely,

suppose that x ∈ p for some minimal prime p. Then x maps to zero in Rp, hence
there exists y ∈ R, y ̸∈ p such that xy = 0. In other words, x is a zerodivisor. This
finishes the proof of (3) and the lemma. □

The total ring of fractions Q(R) of a ring R was introduced in Example 10.9.8.

Lemma 10.25.3.02LW Let R be a ring. Let S ⊂ R be a multiplicative subset consisting
of nonzerodivisors. Then Q(R) ∼= Q(S−1R). In particular Q(R) ∼= Q(Q(R)).

Proof. If x ∈ S−1R is a nonzerodivisor, and x = r/f for some r ∈ R, f ∈ S, then
r is a nonzerodivisor in R. Whence the lemma. □

We can apply glueing results to prove something about total rings of fractions Q(R)
which we introduced in Example 10.9.8.

Lemma 10.25.4.02LX Let R be a ring. Assume that R has finitely many minimal primes
q1, . . . , qt, and that q1 ∪ . . . ∪ qt is the set of zerodivisors of R. Then the total ring
of fractions Q(R) is equal to Rq1 × . . .×Rqt .

Proof. There are natural maps Q(R)→ Rqi since any nonzerodivisor is contained
in R \ qi. Hence a natural map Q(R) → Rq1 × . . . × Rqt . For any nonminimal
prime p ⊂ R we see that p ̸⊂ q1 ∪ . . .∪ qt by Lemma 10.15.2. Hence Spec(Q(R)) =
{q1, . . . , qt} (as subsets of Spec(R), see Lemma 10.17.5). Therefore Spec(Q(R)) is
a finite discrete set and it follows that Q(R) = A1× . . .×At with Spec(Ai) = {qi},
see Lemma 10.24.3. Moreover Ai is a local ring, which is a localization of R. Hence
Ai ∼= Rqi . □
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10.26. Irreducible components of spectra

00ER We show that irreducible components of the spectrum of a ring correspond to the
minimal primes in the ring.

Lemma 10.26.1.00ES Let R be a ring.
(1) For a prime p ⊂ R the closure of {p} in the Zariski topology is V (p). In

a formula {p} = V (p).
(2) The irreducible closed subsets of Spec(R) are exactly the subsets V (p),

with p ⊂ R a prime.
(3) The irreducible components (see Topology, Definition 5.8.1) of Spec(R)

are exactly the subsets V (p), with p ⊂ R a minimal prime.

Proof. Note that if p ∈ V (I), then I ⊂ p. Hence, clearly {p} = V (p). In particular
V (p) is the closure of a singleton and hence irreducible. The second assertion implies
the third. To show the second, let V (I) ⊂ Spec(R) with I a radical ideal. If I is not
prime, then choose a, b ∈ R, a, b ̸∈ I with ab ∈ I. In this case V (I, a) ∪ V (I, b) =
V (I), but neither V (I, b) = V (I) nor V (I, a) = V (I), by Lemma 10.17.2. Hence
V (I) is not irreducible. □

In other words, this lemma shows that every irreducible closed subset of Spec(R) is
of the form V (p) for some prime p. Since V (p) = {p} we see that each irreducible
closed subset has a unique generic point, see Topology, Definition 5.8.6. In par-
ticular, Spec(R) is a sober topological space. We record this fact in the following
lemma.

Lemma 10.26.2.090M The spectrum of a ring is a spectral space, see Topology, Definition
5.23.1.

Proof. Formally this follows from Lemma 10.26.1 and Lemma 10.17.11. See also
discussion above. □

Lemma 10.26.3.00ET Let R be a ring. Let p ⊂ R be a prime.
(1) the set of irreducible closed subsets of Spec(R) passing through p is in

one-to-one correspondence with primes q ⊂ Rp.
(2) The set of irreducible components of Spec(R) passing through p is in one-

to-one correspondence with minimal primes q ⊂ Rp.

Proof. Follows from Lemma 10.26.1 and the description of Spec(Rp) in Lemma
10.17.5 which shows that Spec(Rp) corresponds to primes q in R with q ⊂ p. □

Lemma 10.26.4.00EV Let R be a ring. Let p be a minimal prime of R. Let W ⊂ Spec(R)
be a quasi-compact open not containing the point p. Then there exists an f ∈ R,
f ̸∈ p such that D(f) ∩W = ∅.

Proof. Since W is quasi-compact we may write it as a finite union of standard affine
opens D(gi), i = 1, . . . , n. Since p ̸∈W we have gi ∈ p for all i. By Lemma 10.25.1
each gi is nilpotent in Rp. Hence we can find an f ∈ R, f ̸∈ p such that for all i we
have fgnii = 0 for some ni > 0. Then D(f) works. □

Lemma 10.26.5.04MG Let R be a ring. Let X = Spec(R) as a topological space. The
following are equivalent

(1) X is profinite,
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(2) X is Hausdorff,
(3) X is totally disconnected.
(4) every quasi-compact open of X is closed,
(5) there are no nontrivial inclusions between its prime ideals,
(6) every prime ideal is a maximal ideal,
(7) every prime ideal is minimal,
(8) every standard open D(f) ⊂ X is closed, and
(9) add more here.

Proof. First proof. It is clear that (5), (6), and (7) are equivalent. It is clear that
(4) and (8) are equivalent as every quasi-compact open is a finite union of standard
opens. The implication (7) ⇒ (4) follows from Lemma 10.26.4. Assume (4) holds.
Let p, p′ be distinct primes of R. Choose an f ∈ p′, f ̸∈ p (if needed switch p with
p′). Then p′ ̸∈ D(f) and p ∈ D(f). By (4) the open D(f) is also closed. Hence p
and p′ are in disjoint open neighbourhoods whose union is X. Thus X is Hausdorff
and totally disconnected. Thus (4) ⇒ (2) and (3). If (3) holds then there cannot
be any specializations between points of Spec(R) and we see that (5) holds. If X is
Hausdorff then every point is closed, so (2) implies (6). Thus (2), (3), (4), (5), (6),
(7) and (8) are equivalent. Any profinite space is Hausdorff, so (1) implies (2). If X
satisfies (2) and (3), then X (being quasi-compact by Lemma 10.17.10) is profinite
by Topology, Lemma 5.22.2.

Second proof. Besides the equivalence of (4) and (8) this follows from Lemma
10.26.2 and purely topological facts, see Topology, Lemma 5.23.8. □

10.27. Examples of spectra of rings

00EX In this section we put some examples of spectra.

Example 10.27.1.00EY In this example we describe X = Spec(Z[x]/(x2 − 4)). Let p be
an arbitrary prime in X. Let ϕ : Z→ Z[x]/(x2−4) be the natural ring map. Then,
ϕ−1(p) is a prime in Z. If ϕ−1(p) = (2), then since p contains 2, it corresponds to
a prime ideal in Z[x]/(x2 − 4, 2) ∼= (Z/2Z)[x]/(x2) via the map Z[x]/(x2 − 4) →
Z[x]/(x2− 4, 2). Any prime in (Z/2Z)[x]/(x2) corresponds to a prime in (Z/2Z)[x]
containing (x2). Such primes will then contain x. Since (Z/2Z) ∼= (Z/2Z)[x]/(x)
is a field, (x) is a maximal ideal. Since any prime contains (x) and (x) is maximal,
the ring contains only one prime (x). Thus, in this case, p = (2, x). Now, if
ϕ−1(p) = (q) for q > 2, then since p contains q, it corresponds to a prime ideal in
Z[x]/(x2−4, q) ∼= (Z/qZ)[x]/(x2−4) via the map Z[x]/(x2−4)→ Z[x]/(x2−4, q).
Any prime in (Z/qZ)[x]/(x2 − 4) corresponds to a prime in (Z/qZ)[x] containing
(x2 − 4) = (x− 2)(x+ 2). Hence, these primes must contain either x− 2 or x+ 2.
Since (Z/qZ)[x] is a PID, all nonzero primes are maximal, and so there are precisely
2 primes in (Z/qZ)[x] containing (x − 2)(x + 2), namely (x − 2) and (x + 2). In
conclusion, there exist two primes (q, x − 2) and (q, x + 2) since 2 ̸= −2 ∈ Z/(q).
Finally, we treat the case where ϕ−1(p) = (0). Notice that p corresponds to a
prime ideal in Z[x] that contains (x2 − 4) = (x − 2)(x + 2). Hence, p contains
either (x − 2) or (x + 2). Hence, p corresponds to a prime in Z[x]/(x − 2) or one
in Z[x]/(x+ 2) that intersects Z only at 0, by assumption. Since Z[x]/(x− 2) ∼= Z
and Z[x]/(x+2) ∼= Z, this means that p must correspond to 0 in one of these rings.
Thus, p = (x− 2) or p = (x+ 2) in the original ring.
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Example 10.27.2.00EZ In this example we describe X = Spec(Z[x]). Fix p ∈ X.
Let ϕ : Z→ Z[x] and notice that ϕ−1(p) ∈ Spec(Z). If ϕ−1(p) = (q) for q a prime
number q > 0, then p corresponds to a prime in (Z/(q))[x], which must be generated
by a polynomial that is irreducible in (Z/(q))[x]. If we choose a representative
of this polynomial with minimal degree, then it will also be irreducible in Z[x].
Hence, in this case p = (q, fq) where fq is an irreducible polynomial in Z[x] that
is irreducible when viewed in (Z/(q)[x]). Now, assume that ϕ−1(p) = (0). In this
case, p must be generated by nonconstant polynomials which, since p is prime, may
be assumed to be irreducible in Z[x]. By Gauss’ lemma, these polynomials are also
irreducible in Q[x]. Since Q[x] is a Euclidean domain, if there are at least two
distinct irreducibles f, g generating p, then 1 = af + bg for a, b ∈ Q[x]. Multiplying
through by a common denominator, we see that m = āf + b̄g for ā, b̄ ∈ Z[x] and
nonzero m ∈ Z. This is a contradiction. Hence, p is generated by one irreducible
polynomial in Z[x].
Example 10.27.3.00F0 In this example we describe X = Spec(k[x, y]) when k is an arbi-
trary field. Clearly (0) is prime, and any principal ideal generated by an irreducible
polynomial will also be a prime since k[x, y] is a unique factorization domain. Now
assume p is an element of X that is not principal. Since k[x, y] is a Noetherian UFD,
the prime ideal p can be generated by a finite number of irreducible polynomials
(f1, . . . , fn). Now, I claim that if f, g are irreducible polynomials in k[x, y] that are
not associates, then (f, g) ∩ k[x] ̸= 0. To do this, it is enough to show that f and
g are relatively prime when viewed in k(x)[y]. In this case, k(x)[y] is a Euclidean
domain, so by applying the Euclidean algorithm and clearing denominators, we
obtain p = af + bg for p, a, b ∈ k[x]. Thus, assume this is not the case, that is,
that some nonunit h ∈ k(x)[y] divides both f and g. Then, by Gauss’s lemma, for
some a, b ∈ k(x) we have ah|f and bh|g for ah, bh ∈ k[x]. By irreducibility, ah = f
and bh = g (since h /∈ k(x)). So, back in k(x)[y], f, g are associates, as a

b g = f .
Since k(x) is the fraction field of k[x], we can write g = r

sf for elements r, s ∈ k[x]
sharing no common factors. This implies that sg = rf in k[x, y] and so s must
divide f since k[x, y] is a UFD. Hence, s = 1 or s = f . If s = f , then r = g,
implying f, g ∈ k[x] and thus must be units in k(x) and relatively prime in k(x)[y],
contradicting our hypothesis. If s = 1, then g = rf , another contradiction. Thus,
we must have f, g relatively prime in k(x)[y], a Euclidean domain. Thus, we have
reduced to the case p contains some irreducible polynomial p ∈ k[x] ⊂ k[x, y]. By
the above, p corresponds to a prime in the ring k[x, y]/(p) = k(α)[y], where α is an
element algebraic over k with minimum polynomial p. This is a PID, and so any
prime ideal corresponds to (0) or an irreducible polynomial in k(α)[y]. Thus, p is
of the form (p) or (p, f) where f is a polynomial in k[x, y] that is irreducible in the
quotient k[x, y]/(p).
Example 10.27.4.00F1 Consider the ring

R = {f ∈ Q[z] with f(0) = f(1)}.
Consider the map

φ : Q[A,B]→ R

defined by φ(A) = z2− z and φ(B) = z3− z2. It is easily checked that (A3−B2 +
AB) ⊂ Ker(φ) and that A3 −B2 +AB is irreducible. Assume that φ is surjective;
then since R is an integral domain (it is a subring of an integral domain), Ker(φ)
must be a prime ideal of Q[A,B]. The prime ideals which contain (A3−B2 +AB)

https://stacks.math.columbia.edu/tag/00EZ
https://stacks.math.columbia.edu/tag/00F0
https://stacks.math.columbia.edu/tag/00F1
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are (A3−B2 +AB) itself and any maximal ideal (f, g) with f, g ∈ Q[A,B] such that
f is irreducible mod g. But R is not a field, so the kernel must be (A3−B2 +AB);
hence φ gives an isomorphism R→ Q[A,B]/(A3 −B2 +AB).
To see that φ is surjective, we must express any f ∈ R as a Q-coefficient polynomial
in A(z) = z2 − z and B(z) = z3 − z2. Note the relation zA(z) = B(z). Let
a = f(0) = f(1). Then z(z − 1) must divide f(z) − a, so we can write f(z) =
z(z − 1)g(z) + a = A(z)g(z) + a. If deg(g) < 2, then h(z) = c1z + c0 and f(z) =
A(z)(c1z + c0) + a = c1B(z) + c0A(z) + a, so we are done. If deg(g) ≥ 2, then
by the polynomial division algorithm, we can write g(z) = A(z)h(z) + b1z + b0
(deg(h) ≤ deg(g) − 2), so f(z) = A(z)2h(z) + b1B(z) + b0A(z). Applying division
to h(z) and iterating, we obtain an expression for f(z) as a polynomial in A(z) and
B(z); hence φ is surjective.
Now let a ∈ Q, a ̸= 0, 1

2 , 1 and consider

Ra = {f ∈ Q[z, 1
z − a

] with f(0) = f(1)}.

This is a finitely generated Q-algebra as well: it is easy to check that the functions
z2 − z, z3 − z, and a2−a

z−a + z generate Ra as an Q-algebra. We have the following
inclusions:

R ⊂ Ra ⊂ Q[z, 1
z − a

], R ⊂ Q[z] ⊂ Q[z, 1
z − a

].

Recall (Lemma 10.17.5) that for a ring T and a multiplicative subset S ⊂ T , the
ring map T → S−1T induces a map on spectra Spec(S−1T )→ Spec(T ) which is a
homeomorphism onto the subset

{p ∈ Spec(T ) | S ∩ p = ∅} ⊂ Spec(T ).
When S = {1, f, f2, . . .} for some f ∈ T , this is the open set D(f) ⊂ T . We now
verify a corresponding property for the ring map R → Ra: we will show that the
map θ : Spec(Ra) → Spec(R) induced by inclusion R ⊂ Ra is a homeomorphism
onto an open subset of Spec(R) by verifying that θ is an injective local homeomor-
phism. We do so with respect to an open cover of Spec(Ra) by two distinguished
opens, as we now describe. For any r ∈ Q, let evr : R→ Q be the homomorphism
given by evaluation at r. Note that for r = 0 and r = 1−a, this can be extended to
a homomorphism ev′

r : Ra → Q (the latter because 1
z−a is well-defined at z = 1−a,

since a ̸= 1
2 ). However, eva does not extend to Ra. Write mr = Ker(evr). We have

m0 = (z2 − z, z3 − z),

ma = ((z − 1 + a)(z − a), (z2 − 1 + a)(z − a)), and
m1−a = ((z − 1 + a)(z − a), (z − 1 + a)(z2 − a)).

To verify this, note that the right-hand sides are clearly contained in the left-hand
sides. Then check that the right-hand sides are maximal ideals by writing the
generators in terms of A and B, and viewing R as Q[A,B]/(A3 −B2 +AB). Note
that ma is not in the image of θ: we have

(z2 − z)2(z − a)
(
a2 − a
z − a

+ z

)
= (z2 − z)2(a2 − a) + (z2 − z)2(z − a)z

The left hand side is in maRa because (z2 − z)(z − a) is in ma and because (z2 −
z)(a2−a

z−a + z) is in Ra. Similarly the element (z2 − z)2(z − a)z is in maRa because
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(z2 − z) is in Ra and (z2 − z)(z − a) is in ma. As a ̸∈ {0, 1} we conclude that
(z2 − z)2 ∈ maRa. Hence no ideal I of Ra can satisfy I ∩ R = ma, as such an I
would have to contain (z2 − z)2, which is in R but not in ma. The distinguished
open set D((z − 1 + a)(z − a)) ⊂ Spec(R) is equal to the complement of the
closed set {ma,m1−a}. Then check that R(z−1+a)(z−a) = (Ra)(z−1+a)(z−a); calling
this localized ring R′, then, it follows that the map R → R′ factors as R →
Ra → R′. By Lemma 10.17.5, then, these maps express Spec(R′) ⊂ Spec(Ra)
and Spec(R′) ⊂ Spec(R) as open subsets; hence θ : Spec(Ra) → Spec(R), when
restricted to D((z − 1 + a)(z − a)), is a homeomorphism onto an open subset.
Similarly, θ restricted to D((z2+z+2a−2)(z−a)) ⊂ Spec(Ra) is a homeomorphism
onto the open subset D((z2 +z+2a−2)(z−a)) ⊂ Spec(R). Depending on whether
z2 + z + 2a − 2 is irreducible or not over Q, this former distinguished open set
has complement equal to one or two closed points along with the closed point ma.
Furthermore, the ideal in Ra generated by the elements (z2 +z+2a−a)(z−a) and
(z− 1 + a)(z− a) is all of Ra, so these two distinguished open sets cover Spec(Ra).
Hence in order to show that θ is a homeomorphism onto Spec(R)−{ma}, it suffices
to show that these one or two points can never equal m1−a. And this is indeed the
case, since 1− a is a root of z2 + z + 2a− 2 if and only if a = 0 or a = 1, both of
which do not occur.
Despite this homeomorphism which mimics the behavior of a localization at an
element of R, while Q[z, 1

z−a ] is the localization of Q[z] at the maximal ideal (z−a),
the ring Ra is not a localization of R: Any localization S−1R results in more units
than the original ring R. The units of R are Q×, the units of Q. In fact, it is easy
to see that the units of Ra are Q∗. Namely, the units of Q[z, 1

z−a ] are c(z− a)n for
c ∈ Q∗ and n ∈ Z and it is clear that these are in Ra only if n = 0. Hence Ra has
no more units than R does, and thus cannot be a localization of R.
We used the fact that a ̸= 0, 1 to ensure that 1

z−a makes sense at z = 0, 1. We
used the fact that a ̸= 1/2 in a few places: (1) In order to be able to talk about
the kernel of ev1−a on Ra, which ensures that m1−a is a point of Ra (i.e., that Ra
is missing just one point of R). (2) At the end in order to conclude that (z− a)k+ℓ

can only be in R for k = ℓ = 0; indeed, if a = 1/2, then this is in R as long as k+ ℓ
is even. Hence there would indeed be more units in Ra than in R, and Ra could
possibly be a localization of R.

10.28. A meta-observation about prime ideals

05K7 This section is taken from the CRing project. Let R be a ring and let S ⊂ R be
a multiplicative subset. A consequence of Lemma 10.17.5 is that an ideal I ⊂ R
maximal with respect to the property of not intersecting S is prime. The reason
is that I = R ∩ m for some maximal ideal m of the ring S−1R. It turns out that
for many properties of ideals, the maximal ones are prime. A general method of
seeing this was developed in [LR08]. In this section, we digress to explain this
phenomenon.
Let R be a ring. If I is an ideal of R and a ∈ R, we define

(I : a) = {x ∈ R | xa ∈ I} .
More generally, if J ⊂ R is an ideal, we define

(I : J) = {x ∈ R | xJ ⊂ I} .
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Lemma 10.28.1.05K8 Let R be a ring. For a principal ideal J ⊂ R, and for any ideal
I ⊂ J we have I = J(I : J).

Proof. Say J = (a). Then (I : J) = (I : a). Since I ⊂ J we see that any y ∈ I is of
the form y = xa for some x ∈ (I : a). Hence I ⊂ J(I : J). Conversely, if x ∈ (I : a),
then xJ = (xa) ⊂ I, which proves the other inclusion. □

Let F be a collection of ideals of R. We are interested in conditions that will
guarantee that the maximal elements in the complement of F are prime.

Definition 10.28.2.05K9 Let R be a ring. Let F be a set of ideals of R. We say F is
an Oka family if R ∈ F and whenever I ⊂ R is an ideal and (I : a), (I, a) ∈ F for
some a ∈ R, then I ∈ F .

Let us give some examples of Oka families. The first example is the basic example
discussed in the introduction to this section.

Example 10.28.3.05KA Let R be a ring and let S be a multiplicative subset of R. We
claim that F = {I ⊂ R | I ∩ S ̸= ∅} is an Oka family. Namely, suppose that
(I : a), (I, a) ∈ F for some a ∈ R. Then pick s ∈ (I, a) ∩ S and s′ ∈ (I : a) ∩ S.
Then ss′ ∈ I ∩ S and hence I ∈ F . Thus F is an Oka family.

Example 10.28.4.05KB Let R be a ring, I ⊂ R an ideal, and a ∈ R. If (I : a) is generated
by a1, . . . , an and (I, a) is generated by a, b1, . . . , bm with b1, . . . , bm ∈ I, then I is
generated by aa1, . . . , aan, b1, . . . , bm. To see this, note that if x ∈ I, then x ∈ (I, a)
is a linear combination of a, b1, . . . , bm, but the coefficient of a must lie in (I : a).
As a result, we deduce that the family of finitely generated ideals is an Oka family.

Example 10.28.5.05KC Let us show that the family of principal ideals of a ring R is an
Oka family. Indeed, suppose I ⊂ R is an ideal, a ∈ R, and (I, a) and (I : a) are
principal. Note that (I : a) = (I : (I, a)). Setting J = (I, a), we find that J is
principal and (I : J) is too. By Lemma 10.28.1 we have I = J(I : J). Thus we find
in our situation that since J = (I, a) and (I : J) are principal, I is principal.

Example 10.28.6.05KD Let R be a ring. Let κ be an infinite cardinal. The family
of ideals which can be generated by at most κ elements is an Oka family. The
argument is analogous to the argument in Example 10.28.4 and is omitted.

Example 10.28.7.0G1N Let A be a ring, I ⊂ A an ideal, and a ∈ A an element. There is
a short exact sequence 0→ A/(I : a)→ A/I → A/(I, a)→ 0 where the first arrow
is given by multiplication by a. Thus if P is a property of A-modules that is stable
under extensions and holds for 0, then the family of ideals I such that A/I has P
is an Oka family.

Proposition 10.28.8.05KE If F is an Oka family of ideals, then any maximal element of
the complement of F is prime.

Proof. Suppose I ̸∈ F is maximal with respect to not being in F but I is not prime.
Note that I ̸= R because R ∈ F . Since I is not prime we can find a, b ∈ R − I
with ab ∈ I. It follows that (I, a) ̸= I and (I : a) contains b ̸∈ I so also (I : a) ̸= I.
Thus (I : a), (I, a) both strictly contain I, so they must belong to F . By the Oka
condition, we have I ∈ F , a contradiction. □

At this point we are able to turn most of the examples above into a lemma about
prime ideals in a ring.

https://stacks.math.columbia.edu/tag/05K8
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https://stacks.math.columbia.edu/tag/05KC
https://stacks.math.columbia.edu/tag/05KD
https://stacks.math.columbia.edu/tag/0G1N
https://stacks.math.columbia.edu/tag/05KE
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Lemma 10.28.9.05KF Let R be a ring. Let S be a multiplicative subset of R. An ideal
I ⊂ R which is maximal with respect to the property that I ∩ S = ∅ is prime.

Proof. This is the example discussed in the introduction to this section. For an
alternative proof, combine Example 10.28.3 with Proposition 10.28.8. □

Lemma 10.28.10.05KG Let R be a ring.
(1) An ideal I ⊂ R maximal with respect to not being finitely generated is

prime.
(2) If every prime ideal of R is finitely generated, then every ideal of R is

finitely generated2.

Proof. The first assertion is an immediate consequence of Example 10.28.4 and
Proposition 10.28.8. For the second, suppose that there exists an ideal I ⊂ R
which is not finitely generated. The union of a totally ordered chain {Iα} of ideals
that are not finitely generated is not finitely generated; indeed, if I =

⋃
Iα were

generated by a1, . . . , an, then all the generators would belong to some Iα and would
consequently generate it. By Zorn’s lemma, there is an ideal maximal with respect
to being not finitely generated. By the first part this ideal is prime. □

Lemma 10.28.11.05KH Let R be a ring.
(1) An ideal I ⊂ R maximal with respect to not being principal is prime.
(2) If every prime ideal of R is principal, then every ideal of R is principal.

Proof. The first part follows from Example 10.28.5 and Proposition 10.28.8. For
the second, suppose that there exists an ideal I ⊂ R which is not principal. The
union of a totally ordered chain {Iα} of ideals that not principal is not principal;
indeed, if I =

⋃
Iα were generated by a, then a would belong to some Iα and a

would generate it. By Zorn’s lemma, there is an ideal maximal with respect to not
being principal. This ideal is necessarily prime by the first part. □

Lemma 10.28.12.05KI Let R be a ring.
(1) An ideal maximal among the ideals which do not contain a nonzerodivisor

is prime.
(2) If R is nonzero and every nonzero prime ideal in R contains a nonzerodi-

visor, then R is a domain.

Proof. Consider the set S of nonzerodivisors. It is a multiplicative subset of R.
Hence any ideal maximal with respect to not intersecting S is prime, see Lemma
10.28.9. Thus, if every nonzero prime ideal contains a nonzerodivisor, then (0) is
prime, i.e., R is a domain. □

Remark 10.28.13.05KJ Let R be a ring. Let κ be an infinite cardinal. By applying
Example 10.28.6 and Proposition 10.28.8 we see that any ideal maximal with respect
to the property of not being generated by κ elements is prime. This result is not so
useful because there exists a ring for which every prime ideal of R can be generated
by ℵ0 elements, but some ideal cannot. Namely, let k be a field, let T be a set
whose cardinality is greater than ℵ0 and let

R = k[{xn}n≥1, {zt,n}t∈T,n≥0]/(x2
n, z

2
t,n, xnzt,n − zt,n−1)

2Later we will say that R is Noetherian.
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This is a local ring with unique prime ideal m = (xn). But the ideal (zt,n) cannot
be generated by countably many elements.

Example 10.28.14.0G2Z Comment by Lukas
Heger of November
12, 2020.

Let R be a ring and X = Spec(R). Since closed subsets of X
correspond to radical ideas of R (Lemma 10.17.2) we see that X is a Noetherian
topological space if and only if we have ACC for radical ideals. This holds if and
only if every radical ideal is the radical of a finitely generated ideal (details omitted).
Let

F = {I ⊂ R |
√
I =

√
(f1, . . . , fn) for some n and f1, . . . , fn ∈ R}.

The reader can show that F is an Oka family by using the identity
√
I =

√
(I, a)(I : a)

which holds for any ideal I ⊂ R and any element a ∈ R. On the other hand, if
we have a totally ordered chain of ideals {Iα} none of which are in F , then the
union I =

⋃
Iα cannot be in F either. Otherwise

√
I =

√
(f1, . . . , fn), then fei ∈ I

for some e, then fei ∈ Iα for some α independent of i, then
√
Iα =

√
(f1, . . . , fn),

contradiction. Thus if the set of ideals not in F is nonempty, then it has maximal
elements and exactly as in Lemma 10.28.10 we conclude that X is a Noetherian
topological space if and only if every prime ideal of R is equal to

√
(f1, . . . , fn) for

some f1, . . . , fn ∈ R. If we ever need this result we will carefully state and prove
this result here.

10.29. Images of ring maps of finite presentation

00F5 In this section we prove some results on the topology of maps Spec(S)→ Spec(R)
induced by ring maps R → S, mainly Chevalley’s Theorem. In order to do this
we will use the notions of constructible sets, quasi-compact sets, retrocompact sets,
and so on which are defined in Topology, Section 5.15.

Lemma 10.29.1.00F6 Let U ⊂ Spec(R) be open. The following are equivalent:
(1) U is retrocompact in Spec(R),
(2) U is quasi-compact,
(3) U is a finite union of standard opens, and
(4) there exists a finitely generated ideal I ⊂ R such that X \ V (I) = U .

Proof. We have (1) ⇒ (2) because Spec(R) is quasi-compact, see Lemma 10.17.10.
We have (2) ⇒ (3) because standard opens form a basis for the topology. Proof
of (3) ⇒ (1). Let U =

⋃
i=1...nD(fi). To show that U is retrocompact in Spec(R)

it suffices to show that U ∩ V is quasi-compact for any quasi-compact open V of
Spec(R). Write V =

⋃
j=1...mD(gj) which is possible by (2) ⇒ (3). Each standard

open is homeomorphic to the spectrum of a ring and hence quasi-compact, see
Lemmas 10.17.6 and 10.17.10. Thus U ∩ V = (

⋃
i=1...nD(fi))∩ (

⋃
j=1...mD(gj)) =⋃

i,j D(figj) is a finite union of quasi-compact opens hence quasi-compact. To finish
the proof note that (4) is equivalent to (3) by Lemma 10.17.2. □

Lemma 10.29.2.00F7 Let φ : R → S be a ring map. The induced continuous map
f : Spec(S) → Spec(R) is quasi-compact. For any constructible set E ⊂ Spec(R)
the inverse image f−1(E) is constructible in Spec(S).

Proof. We first show that the inverse image of any quasi-compact open U ⊂
Spec(R) is quasi-compact. By Lemma 10.29.1 we may write U as a finite open

https://stacks.math.columbia.edu/tag/0G2Z
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of standard opens. Thus by Lemma 10.17.4 we see that f−1(U) is a finite union
of standard opens. Hence f−1(U) is quasi-compact by Lemma 10.29.1 again. The
second assertion now follows from Topology, Lemma 5.15.3. □

Lemma 10.29.3.0G1P Let R be a ring. A subset of Spec(R) is constructible if and only
if it can be written as a finite union of subsets of the form D(f)∩V (g1, . . . , gm) for
f, g1, . . . , gm ∈ R.

Proof. By Lemma 10.29.1 the subset D(f) and the complement of V (g1, . . . , gm)
are retro-compact open. Hence D(f) ∩ V (g1, . . . , gm) is a constructible subset and
so is any finite union of such. Conversely, let T ⊂ Spec(R) be constructible. By
Topology, Definition 5.15.1, we may assume that T = U∩V c, where U, V ⊂ Spec(R)
are retrocompact open. By Lemma 10.29.1 we may write U =

⋃
i=1,...,nD(fi) and

V =
⋃
j=1,...,mD(gj). Then T =

⋃
i=1,...,n

(
D(fi) ∩ V (g1, . . . , gm)

)
. □

Lemma 10.29.4.00F8 Let R be a ring and let T ⊂ Spec(R) be constructible. Then there
exists a ring map R→ S of finite presentation such that T is the image of Spec(S)
in Spec(R).

Proof. The spectrum of a finite product of rings is the disjoint union of the spectra,
see Lemma 10.21.2. Hence if T = T1 ∪ T2 and the result holds for T1 and T2, then
the result holds for T . By Lemma 10.29.3 we may assume that T = D(f) ∩
V (g1, . . . , gm). In this case T is the image of the map Spec((R/(g1, . . . , gm))f ) →
Spec(R), see Lemmas 10.17.6 and 10.17.7. □

Lemma 10.29.5.00F9 Let R be a ring. Let f be an element of R. Let S = Rf . Then
the image of a constructible subset of Spec(S) is constructible in Spec(R).

Proof. We repeatedly use Lemma 10.29.1 without mention. Let U, V be quasi-
compact open in Spec(S). We will show that the image of U ∩ V c is constructible.
Under the identification Spec(S) = D(f) of Lemma 10.17.6 the sets U, V correspond
to quasi-compact opens U ′, V ′ of Spec(R). Hence it suffices to show that U ′∩ (V ′)c
is constructible in Spec(R) which is clear. □

Lemma 10.29.6.00FA Let R be a ring. Let I be a finitely generated ideal of R. Let
S = R/I. Then the image of a constructible subset of Spec(S) is constructible in
Spec(R).

Proof. If I = (f1, . . . , fm), then we see that V (I) is the complement of
⋃
D(fi),

see Lemma 10.17.2. Hence it is constructible, by Lemma 10.29.1. Denote the map
R→ S by f 7→ f . We have to show that if U, V are retrocompact opens of Spec(S),
then the image of U ∩ V c in Spec(R) is constructible. By Lemma 10.29.1 we may
write U =

⋃
D(gi). Setting U =

⋃
D(gi) we see U has image U ∩ V (I) which

is constructible in Spec(R). Similarly the image of V equals V ∩ V (I) for some
retrocompact open V of Spec(R). Hence the image of U ∩V c equals U ∩V (I)∩V c
as desired. □

Lemma 10.29.7.00FB Let R be a ring. The map Spec(R[x]) → Spec(R) is open, and
the image of any standard open is a quasi-compact open.

Proof. It suffices to show that the image of a standard open D(f), f ∈ R[x] is
quasi-compact open. The image of D(f) is the image of Spec(R[x]f ) → Spec(R).
Let p ⊂ R be a prime ideal. Let f be the image of f in κ(p)[x]. Recall, see Lemma
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10.17.9, that p is in the image if and only if R[x]f ⊗Rκ(p) = κ(p)[x]f is not the zero
ring. This is exactly the condition that f does not map to zero in κ(p)[x], in other
words, that some coefficient of f is not in p. Hence we see: if f = adx

d + . . .+ a0,
then the image of D(f) is D(ad) ∪ . . . ∪D(a0). □

We prove a property of characteristic polynomials which will be used below.

Lemma 10.29.8.00FC Let R→ A be a ring homomorphism. Assume A ∼= R⊕n as an R-
module. Let f ∈ A. The multiplication map mf : A→ A is R-linear and hence has
a characteristic polynomial P (T ) = Tn+rn−1T

n−1 +. . .+r0 ∈ R[T ]. For any prime
p ∈ Spec(R), f acts nilpotently on A⊗R κ(p) if and only if p ∈ V (r0, . . . , rn−1).

Proof. This follows quite easily once we prove that the characteristic polynomial
P̄ (T ) ∈ κ(p)[T ] of the multiplication map mf̄ : A ⊗R κ(p) → A ⊗R κ(p) which
multiplies elements of A⊗Rκ(p) by f̄ , the image of f viewed in κ(p), is just the image
of P (T ) in κ(p)[T ]. Let (aij) be the matrix of the map mf with entries in R, using
a basis e1, . . . , en of A as an R-module. Then, A⊗R κ(p) ∼= (R⊗R κ(p))⊕n = κ(p)n,
which is an n-dimensional vector space over κ(p) with basis e1⊗ 1, . . . , en⊗ 1. The
image f̄ = f ⊗ 1, and so the multiplication map mf̄ has matrix (aij ⊗ 1). Thus,
the characteristic polynomial is precisely the image of P (T ).
From linear algebra, we know that a linear transformation acts nilpotently on an n-
dimensional vector space if and only if the characteristic polynomial is Tn (since the
characteristic polynomial divides some power of the minimal polynomial). Hence,
f acts nilpotently on A⊗R κ(p) if and only if P̄ (T ) = Tn. This occurs if and only
if ri ∈ p for all 0 ≤ i ≤ n− 1, that is when p ∈ V (r0, . . . , rn−1). □

Lemma 10.29.9.00FD Let R be a ring. Let f, g ∈ R[x] be polynomials. Assume the
leading coefficient of g is a unit of R. There exists elements ri ∈ R, i = 1 . . . , n
such that the image of D(f) ∩ V (g) in Spec(R) is

⋃
i=1,...,nD(ri).

Proof. Write g = uxd + ad−1x
d−1 + . . .+ a0, where d is the degree of g, and hence

u ∈ R∗. Consider the ring A = R[x]/(g). It is, as an R-module, finite free with
basis the images of 1, x, . . . , xd−1. Consider multiplication by (the image of) f on
A. This is an R-module map. Hence we can let P (T ) ∈ R[T ] be the characteristic
polynomial of this map. Write P (T ) = T d + rd−1T

d−1 + . . . + r0. We claim
that r0, . . . , rd−1 have the desired property. We will use below the property of
characteristic polynomials that

p ∈ V (r0, . . . , rd−1)⇔ multiplication by f is nilpotent on A⊗R κ(p).
This was proved in Lemma 10.29.8.
Suppose q ∈ D(f) ∩ V (g), and let p = q ∩ R. Then there is a nonzero map
A ⊗R κ(p) → κ(q) which is compatible with multiplication by f . And f acts as a
unit on κ(q). Thus we conclude p ̸∈ V (r0, . . . , rd−1).
On the other hand, suppose that ri ̸∈ p for some prime p of R and some 0 ≤ i ≤ d−1.
Then multiplication by f is not nilpotent on the algebra A ⊗R κ(p). Hence there
exists a prime ideal q ⊂ A ⊗R κ(p) not containing the image of f . The inverse
image of q in R[x] is an element of D(f) ∩ V (g) mapping to p. □

Theorem 10.29.10 (Chevalley’s Theorem).00FE Suppose that R→ S is of finite presen-
tation. The image of a constructible subset of Spec(S) in Spec(R) is constructible.
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Proof. Write S = R[x1, . . . , xn]/(f1, . . . , fm). We may factor R → S as R →
R[x1] → R[x1, x2] → . . . → R[x1, . . . , xn−1] → S. Hence we may assume that
S = R[x]/(f1, . . . , fm). In this case we factor the map as R → R[x] → S, and
by Lemma 10.29.6 we reduce to the case S = R[x]. By Lemma 10.29.1 suffices to
show that if T = (

⋃
i=1...nD(fi))∩V (g1, . . . , gm) for fi, gj ∈ R[x] then the image in

Spec(R) is constructible. Since finite unions of constructible sets are constructible,
it suffices to deal with the case n = 1, i.e., when T = D(f) ∩ V (g1, . . . , gm).
Note that if c ∈ R, then we have

Spec(R) = V (c)⨿D(c) = Spec(R/(c))⨿ Spec(Rc),
and correspondingly Spec(R[x]) = V (c) ⨿ D(c) = Spec(R/(c)[x]) ⨿ Spec(Rc[x]).
The intersection of T = D(f) ∩ V (g1, . . . , gm) with each part still has the same
shape, with f , gi replaced by their images in R/(c)[x], respectively Rc[x]. Note
that the image of T in Spec(R) is the union of the image of T ∩V (c) and T ∩D(c).
Using Lemmas 10.29.5 and 10.29.6 it suffices to prove the images of both parts are
constructible in Spec(R/(c)), respectively Spec(Rc).
Let us assume we have T = D(f) ∩ V (g1, . . . , gm) as above, with deg(g1) ≤
deg(g2) ≤ . . . ≤ deg(gm). We are going to use induction on m, and on the de-
grees of the gi. Let d = deg(g1), i.e., g1 = cxd1 + l.o.t with c ∈ R not zero.
Cutting R up into the pieces R/(c) and Rc we either lower the degree of g1 (and
this is covered by induction) or we reduce to the case where c is invertible. If
c is invertible, and m > 1, then write g2 = c′xd2 + l.o.t. In this case consider
g′

2 = g2 − (c′/c)xd2−d1g1. Since the ideals (g1, g2, . . . , gm) and (g1, g
′
2, g3, . . . , gm)

are equal we see that T = D(f)∩ V (g1, g
′
2, g3 . . . , gm). But here the degree of g′

2 is
strictly less than the degree of g2 and hence this case is covered by induction.
The bases case for the induction above are the cases (a) T = D(f) ∩ V (g) where
the leading coefficient of g is invertible, and (b) T = D(f). These two cases are
dealt with in Lemmas 10.29.9 and 10.29.7. □

10.30. More on images

00FF In this section we collect a few additional lemmas concerning the image on Spec
for ring maps. See also Section 10.41 for example.

Lemma 10.30.1.00FG Let R ⊂ S be an inclusion of domains. Assume that R→ S is of
finite type. There exists a nonzero f ∈ R, and a nonzero g ∈ S such that Rf → Sfg
is of finite presentation.

Proof. By induction on the number of generators of S over R. During the proof we
may replace R by Rf and S by Sf for some nonzero f ∈ R.
Suppose that S is generated by a single element over R. Then S = R[x]/q for some
prime ideal q ⊂ R[x]. If q = (0) there is nothing to prove. If q ̸= (0), then let h ∈ q
be a nonzero element with minimal degree in x. Write h = fxd+ad−1x

d−1 +. . .+a0
with ai ∈ R and f ̸= 0. After inverting f in R and S we may assume that h is
monic. We obtain a surjective R-algebra map R[x]/(h)→ S. We have R[x]/(h) =
R⊕Rx⊕ . . .⊕Rxd−1 as an R-module and by minimality of d we see that R[x]/(h)
maps injectively into S. Thus R[x]/(h) ∼= S is finitely presented over R.
Suppose that S is generated by n > 1 elements over R. Say x1, . . . , xn ∈ S generate
S. Denote S′ ⊂ S the subring generated by x1, . . . , xn−1. By induction hypothesis

https://stacks.math.columbia.edu/tag/00FG
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we see that there exist f ∈ R and g ∈ S′ nonzero such that Rf → S′
fg is of finite

presentation. Next we apply the induction hypothesis to S′
fg → Sfg to see that

there exist f ′ ∈ S′
fg and g′ ∈ Sfg such that S′

fgf ′ → Sfgf ′g′ is of finite presentation.
We leave it to the reader to conclude. □

Lemma 10.30.2.00FH Let R → S be a finite type ring map. Denote X = Spec(R) and
Y = Spec(S). Write f : Y → X the induced map of spectra. Let E ⊂ Y = Spec(S)
be a constructible set. If a point ξ ∈ X is in f(E), then {ξ} ∩ f(E) contains an
open dense subset of {ξ}.

Proof. Let ξ ∈ X be a point of f(E). Choose a point η ∈ E mapping to ξ. Let
p ⊂ R be the prime corresponding to ξ and let q ⊂ S be the prime corresponding
to η. Consider the diagram

η //
_

��

E ∩ Y ′ //

��

Y ′ = Spec(S/q) //

��

Y

��
ξ // f(E) ∩X ′ // X ′ = Spec(R/p) // X

By Lemma 10.29.2 the set E ∩ Y ′ is constructible in Y ′. It follows that we may
replace X by X ′ and Y by Y ′. Hence we may assume that R ⊂ S is an inclusion of
domains, ξ is the generic point of X, and η is the generic point of Y . By Lemma
10.30.1 combined with Chevalley’s theorem (Theorem 10.29.10) we see that there
exist dense opens U ⊂ X, V ⊂ Y such that f(V ) ⊂ U and such that f : V → U
maps constructible sets to constructible sets. Note that E ∩ V is constructible
in V , see Topology, Lemma 5.15.4. Hence f(E ∩ V ) is constructible in U and
contains ξ. By Topology, Lemma 5.15.15 we see that f(E ∩ V ) contains a dense
open U ′ ⊂ U . □

At the end of this section we present a few more results on images of maps on
Spectra that have nothing to do with constructible sets.

Lemma 10.30.3.00FI Let φ : R→ S be a ring map. The following are equivalent:
(1) The map Spec(S)→ Spec(R) is surjective.
(2) For any ideal I ⊂ R the inverse image of

√
IS in R is equal to

√
I.

(3) For any radical ideal I ⊂ R the inverse image of IS in R is equal to I.
(4) For every prime p of R the inverse image of pS in R is p.

In this case the same is true after any base change: Given a ring map R→ R′ the
ring map R′ → R′ ⊗R S has the equivalent properties (1), (2), (3) as well.

Proof. If J ⊂ S is an ideal, then
√
φ−1(J) = φ−1(

√
J). This shows that (2) and

(3) are equivalent. The implication (3) ⇒ (4) is immediate. If I ⊂ R is a radical
ideal, then Lemma 10.17.2 guarantees that I =

⋂
I⊂p p. Hence (4) ⇒ (2). By

Lemma 10.17.9 we have p = φ−1(pS) if and only if p is in the image. Hence (1) ⇔
(4). Thus (1), (2), (3), and (4) are equivalent.
Assume (1) holds. Let R → R′ be a ring map. Let p′ ⊂ R′ be a prime ideal lying
over the prime p of R. To see that p′ is in the image of Spec(R′ ⊗R S)→ Spec(R′)
we have to show that (R′ ⊗R S)⊗R′ κ(p′) is not zero, see Lemma 10.17.9. But we
have

(R′ ⊗R S)⊗R′ κ(p′) = S ⊗R κ(p)⊗κ(p) κ(p′)

https://stacks.math.columbia.edu/tag/00FH
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which is not zero as S ⊗R κ(p) is not zero by assumption and κ(p) → κ(p′) is an
extension of fields. □

Lemma 10.30.4.00FJ Let R be a domain. Let φ : R→ S be a ring map. The following
are equivalent:

(1) The ring map R→ S is injective.
(2) The image Spec(S)→ Spec(R) contains a dense set of points.
(3) There exists a prime ideal q ⊂ S whose inverse image in R is (0).

Proof. Let K be the field of fractions of the domain R. Assume that R → S is
injective. Since localization is exact we see that K → S ⊗R K is injective. Hence
there is a prime mapping to (0) by Lemma 10.17.9.

Note that (0) is dense in Spec(R), so that the last condition implies the second.

Suppose the second condition holds. Let f ∈ R, f ̸= 0. As R is a domain we see
that V (f) is a proper closed subset of R. By assumption there exists a prime q of
S such that φ(f) ̸∈ q. Hence φ(f) ̸= 0. Hence R→ S is injective. □

Lemma 10.30.5.00FK Let R ⊂ S be an injective ring map. Then Spec(S) → Spec(R)
hits all the minimal primes.

Proof. Let p ⊂ R be a minimal prime. In this case Rp has a unique prime ideal.
Hence it suffices to show that Sp is not zero. And this follows from the fact that
localization is exact, see Proposition 10.9.12. □

Lemma 10.30.6.00FL Let R→ S be a ring map. The following are equivalent:
(1) The kernel of R→ S consists of nilpotent elements.
(2) The minimal primes of R are in the image of Spec(S)→ Spec(R).
(3) The image of Spec(S)→ Spec(R) is dense in Spec(R).

Proof. Let I = Ker(R → S). Note that
√

(0) =
⋂

q⊂S q, see Lemma 10.17.2.
Hence

√
I =

⋂
q⊂S R ∩ q. Thus V (I) = V (

√
I) is the closure of the image of

Spec(S) → Spec(R). This shows that (1) is equivalent to (3). It is clear that (2)
implies (3). Finally, assume (1). We may replace R by R/I and S by S/IS without
affecting the topology of the spectra and the map. Hence the implication (1) ⇒
(2) follows from Lemma 10.30.5. □

Lemma 10.30.7.0CAN Let R → S be a ring map. If a minimal prime p ⊂ R is in the
image of Spec(S)→ Spec(R), then it is the image of a minimal prime.

Proof. Say p = q ∩R. Then choose a minimal prime r ⊂ S with r ⊂ q, see Lemma
10.17.2. By minimality of p we see that p = r ∩R. □

10.31. Noetherian rings

00FM A ring R is Noetherian if any ideal of R is finitely generated. This is clearly
equivalent to the ascending chain condition for ideals of R. By Lemma 10.28.10 it
suffices to check that every prime ideal of R is finitely generated.

Lemma 10.31.1.00FN Any finitely generated ring over a Noetherian ring is Noetherian.
Any localization of a Noetherian ring is Noetherian.
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Proof. The statement on localizations follows from the fact that any ideal J ⊂
S−1R is of the form I ·S−1R. Any quotient R/I of a Noetherian ring R is Noetherian
because any ideal J ⊂ R/I is of the form J/I for some ideal I ⊂ J ⊂ R. Thus
it suffices to show that if R is Noetherian so is R[X]. Suppose J1 ⊂ J2 ⊂ . . . is
an ascending chain of ideals in R[X]. Consider the ideals Ii,d defined as the ideal
of elements of R which occur as leading coefficients of degree d polynomials in Ji.
Clearly Ii,d ⊂ Ii′,d′ whenever i ≤ i′ and d ≤ d′. By the ascending chain condition in
R there are at most finitely many distinct ideals among all of the Ii,d. (Hint: Any
infinite set of elements of N×N contains an increasing infinite sequence.) Take i0
so large that Ii,d = Ii0,d for all i ≥ i0 and all d. Suppose f ∈ Ji for some i ≥ i0.
By induction on the degree d = deg(f) we show that f ∈ Ji0 . Namely, there exists
a g ∈ Ji0 whose degree is d and which has the same leading coefficient as f . By
induction f − g ∈ Ji0 and we win. □

Lemma 10.31.2.0306 If R is a Noetherian ring, then so is the formal power series ring
R[[x1, . . . , xn]].

Proof. Since R[[x1, . . . , xn+1]] ∼= R[[x1, . . . , xn]][[xn+1]] it suffices to prove the state-
ment that R[[x]] is Noetherian if R is Noetherian. Let I ⊂ R[[x]] be a ideal.
We have to show that I is a finitely generated ideal. For each integer d denote
Id = {a ∈ R | axd + h.o.t. ∈ I}. Then we see that I0 ⊂ I1 ⊂ . . . stabilizes as R
is Noetherian. Choose d0 such that Id0 = Id0+1 = . . .. For each d ≤ d0 choose
elements fd,j ∈ I ∩ (xd), j = 1, . . . , nd such that if we write fd,j = ad,jx

d + h.o.t
then Id = (ad,j). Denote I ′ = ({fd,j}d=0,...,d0,j=1,...,nd). Then it is clear that I ′ ⊂ I.
Pick f ∈ I. First we may choose cd,i ∈ R such that

f −
∑

cd,ifd,i ∈ (xd0+1) ∩ I.

Next, we can choose ci,1 ∈ R, i = 1, . . . , nd0 such that

f −
∑

cd,ifd,i −
∑

ci,1xfd0,i ∈ (xd0+2) ∩ I.

Next, we can choose ci,2 ∈ R, i = 1, . . . , nd0 such that

f −
∑

cd,ifd,i −
∑

ci,1xfd0,i −
∑

ci,2x
2fd0,i ∈ (xd0+3) ∩ I.

And so on. In the end we see that
f =

∑
cd,ifd,i +

∑
i
(
∑

e
ci,ex

e)fd0,i

is contained in I ′ as desired. □

The following lemma, although easy, is useful because finite type Z-algebras come
up quite often in a technique called “absolute Noetherian reduction”.

Lemma 10.31.3.00FO Any finite type algebra over a field is Noetherian. Any finite type
algebra over Z is Noetherian.

Proof. This is immediate from Lemma 10.31.1 and the fact that fields are Noether-
ian rings and that Z is Noetherian ring (because it is a principal ideal domain). □

Lemma 10.31.4.00FP Let R be a Noetherian ring.
(1) Any finite R-module is of finite presentation.
(2) Any submodule of a finite R-module is finite.
(3) Any finite type R-algebra is of finite presentation over R.
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Proof. Let M be a finite R-module. By Lemma 10.5.4 we can find a finite filtration
of M whose successive quotients are of the form R/I. Since any ideal is finitely
generated, each of the quotients R/I is finitely presented. Hence M is finitely
presented by Lemma 10.5.3. This proves (1).
Let N ⊂ M be a submodule. As M is finite, the quotient M/N is finite. Thus
M/N is of finite presentation by part (1). Thus we see that N is finite by Lemma
10.5.3 part (5). This proves part (2).
To see (3) note that any ideal of R[x1, . . . , xn] is finitely generated by Lemma
10.31.1. □

Lemma 10.31.5.00FQ If R is a Noetherian ring then Spec(R) is a Noetherian topological
space, see Topology, Definition 5.9.1.
Proof. This is because any closed subset of Spec(R) is uniquely of the form V (I)
with I a radical ideal, see Lemma 10.17.2. And this correspondence is inclusion
reversing. Thus the result follows from the definitions. □

Lemma 10.31.6.00FR If R is a Noetherian ring then Spec(R) has finitely many irre-
ducible components. In other words R has finitely many minimal primes.
Proof. By Lemma 10.31.5 and Topology, Lemma 5.9.2 we see there are finitely
many irreducible components. By Lemma 10.26.1 these correspond to minimal
primes of R. □

Lemma 10.31.7.0CY6 Let R → S be a ring map. Let R → R′ be of finite type. If S is
Noetherian, then the base change S′ = R′ ⊗R S is Noetherian.
Proof. By Lemma 10.14.2 finite type is stable under base change. Thus S → S′ is
of finite type. Since S is Noetherian we can apply Lemma 10.31.1. □

Lemma 10.31.8.045I Let k be a field and let R be a Noetherian k-algebra. If K/k is a
finitely generated field extension then K ⊗k R is Noetherian.
Proof. Since K/k is a finitely generated field extension, there exists a finitely gen-
erated k-algebra B ⊂ K such that K is the fraction field of B. In other words,
K = S−1B with S = B \ {0}. Then K ⊗k R = S−1(B ⊗k R). Then B ⊗k R is
Noetherian by Lemma 10.31.7. Finally, K ⊗k R = S−1(B ⊗k R) is Noetherian by
Lemma 10.31.1. □

Here are some fun lemmas that are sometimes useful.
Lemma 10.31.9.0BX1 Let R be a ring and p ⊂ R be a prime. There exists an f ∈ R,
f ̸∈ p such that Rf → Rp is injective in each of the following cases

(1) R is a domain,
(2) R is Noetherian, or
(3) R is reduced and has finitely many minimal primes.

Proof. If R is a domain, then R ⊂ Rp, hence f = 1 works. If R is Noetherian,
then the kernel I of R → Rp is a finitely generated ideal and we can find f ∈ R,
f ̸∈ p such that IRf = 0. For this f the map Rf → Rp is injective and f works.
If R is reduced with finitely many minimal primes p1, . . . , pn, then we can choose
f ∈

⋂
pi ̸⊂p pi, f ̸∈ p. Indeed, if pi ̸⊂ p then there exist fi ∈ pi, fi ̸∈ p and f =

∏
fi

works. For this f we have Rf ⊂ Rp because the minimal primes of Rf correspond to
minimal primes of Rp and we can apply Lemma 10.25.2 (some details omitted). □
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Lemma 10.31.10.06RN Any surjective endomorphism of a Noetherian ring is an isomor-
phism.

Proof. If f : R→ R were such an endomorphism but not injective, then

Ker(f) ⊂ Ker(f ◦ f) ⊂ Ker(f ◦ f ◦ f) ⊂ . . .

would be a strictly increasing chain of ideals. □

10.32. Locally nilpotent ideals

0AMF Here is the definition.

Definition 10.32.1.00IL Let R be a ring. Let I ⊂ R be an ideal. We say I is locally
nilpotent if for every x ∈ I there exists an n ∈ N such that xn = 0. We say I is
nilpotent if there exists an n ∈ N such that In = 0.

Example 10.32.2.0EGG Let R = k[xn|n ∈ N] be the polynomial ring in infinitely many
variables over a field k. Let I be the ideal generated by the elements xnn for n ∈ N
and S = R/I. Then the ideal J ⊂ S generated by the images of xn, n ∈ N is locally
nilpotent, but not nilpotent. Indeed, since S-linear combinations of nilpotents are
nilpotent, to prove that J is locally nilpotent it is enough to observe that all its
generators are nilpotent (which they obviously are). On the other hand, for each
n ∈ N it holds that xnn+1 ̸∈ I, so that Jn ̸= 0. It follows that J is not nilpotent.

Lemma 10.32.3.0544 Let R → R′ be a ring map and let I ⊂ R be a locally nilpotent
ideal. Then IR′ is a locally nilpotent ideal of R′.

Proof. This follows from the fact that if x, y ∈ R′ are nilpotent, then x + y is
nilpotent too. Namely, if xn = 0 and ym = 0, then (x+ y)n+m−1 = 0. □

Lemma 10.32.4.0AMG Let R be a ring and let I ⊂ R be a locally nilpotent ideal. An
element x of R is a unit if and only if the image of x in R/I is a unit.

Proof. If x is a unit in R, then its image is clearly a unit in R/I. It remains to
prove the converse. Assume the image of y ∈ R in R/I is the inverse of the image
of x. Then xy = 1− z for some z ∈ I. This means that 1 ≡ z modulo xR. Since z
lies in the locally nilpotent ideal I, we have zN = 0 for some sufficiently large N .
It follows that 1 = 1N ≡ zN = 0 modulo xR. In other words, x divides 1 and is
hence a unit. □

Lemma 10.32.5.00IM Let R be a Noetherian ring. Let I, J be ideals of R. Suppose
J ⊂

√
I. Then Jn ⊂ I for some n. In particular, in a Noetherian ring the notions

of “locally nilpotent ideal” and “nilpotent ideal” coincide.

Proof. Say J = (f1, . . . , fs). By assumption fdii ∈ I. Take n = d1 + d2 + . . .+ ds +
1. □

Lemma 10.32.6.00J9 Let R be a ring. Let I ⊂ R be a locally nilpotent ideal. Then
R→ R/I induces a bijection on idempotents.

First proof of Lemma 10.32.6. As I is locally nilpotent it is contained in every
prime ideal. Hence Spec(R/I) = V (I) = Spec(R). Hence the lemma follows from
Lemma 10.21.3. □
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Second proof of Lemma 10.32.6. Suppose e ∈ R/I is an idempotent. We have to
lift e to an idempotent of R.

First, choose any lift f ∈ R of e, and set x = f2− f . Then, x ∈ I, so x is nilpotent
(since I is locally nilpotent). Let now J be the ideal of R generated by x. Then, J
is nilpotent (not just locally nilpotent), since it is generated by the nilpotent x.

Now, assume that we have found a lift e ∈ R of e such that e2 − e ∈ Jk for some
k ≥ 1. Let e′ = e − (2e − 1)(e2 − e) = 3e2 − 2e3, which is another lift of e (since
the idempotency of e yields e2 − e ∈ I). Then

(e′)2 − e′ = (4e2 − 4e− 3)(e2 − e)2 ∈ J2k

by a simple computation.

We thus have started with a lift e of e such that e2 − e ∈ Jk, and obtained a
lift e′ of e such that (e′)2 − e′ ∈ J2k. This way we can successively improve the
approximation (starting with e = f , which fits the bill for k = 1). Eventually,
we reach a stage where Jk = 0, and at that stage we have a lift e of e such that
e2 − e ∈ Jk = 0, that is, this e is idempotent.

We thus have seen that if e ∈ R/I is any idempotent, then there exists a lift of e
which is an idempotent of R. It remains to prove that this lift is unique. Indeed,
let e1 and e2 be two such lifts. We need to show that e1 = e2.

By definition of e1 and e2, we have e1 ≡ e2 mod I, and both e1 and e2 are idempo-
tent. From e1 ≡ e2 mod I, we see that e1−e2 ∈ I, so that e1−e2 is nilpotent (since
I is locally nilpotent). A straightforward computation (using the idempotency of
e1 and e2) reveals that (e1 − e2)3 = e1 − e2. Using this and induction, we obtain
(e1 − e2)k = e1 − e2 for any positive odd integer k. Since all high enough k satisfy
(e1 − e2)k = 0 (since e1 − e2 is nilpotent), this shows e1 − e2 = 0, so that e1 = e2,
which completes our proof. □

Lemma 10.32.7.05BU Let A be a possibly noncommutative algebra. Let e ∈ A be an
element such that x = e2 − e is nilpotent. Then there exists an idempotent of the
form e′ = e+ x(

∑
ai,je

ixj) ∈ A with ai,j ∈ Z.

Proof. Consider the ring Rn = Z[e]/((e2− e)n). It is clear that if we can prove the
result for each Rn then the lemma follows. In Rn consider the ideal I = (e2 − e)
and apply Lemma 10.32.6. □

Lemma 10.32.8.0CAP Let R be a ring. Let I ⊂ R be a locally nilpotent ideal. Let n ≥ 1
be an integer which is invertible in R/I. Then

(1) the nth power map 1 + I → 1 + I, 1 + x 7→ (1 + x)n is a bijection,
(2) a unit of R is a nth power if and only if its image in R/I is an nth power.

Proof. Let a ∈ R be a unit whose image in R/I is the same as the image of bn with
b ∈ R. Then b is a unit (Lemma 10.32.4) and ab−n = 1 + x for some x ∈ I. Hence
ab−n = cn by part (1). Thus (2) follows from (1).

https://stacks.math.columbia.edu/tag/05BU
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Proof of (1). This is true because there is an inverse to the map 1 + x 7→ (1 + x)n.
Namely, we can consider the map which sends 1 + x to

(1 + x)1/n = 1 +
(

1/n
1

)
x+

(
1/n
2

)
x2 +

(
1/n
3

)
x3 + . . .

= 1 + 1
n
x+ 1− n

2n2 x2 + (1− n)(1− 2n)
6n3 x3 + . . .

as in elementary calculus. This makes sense because the series is finite as xk = 0
for all k ≫ 0 and each coefficient

(1/n
k

)
∈ Z[1/n] (details omitted; observe that n is

invertible in R by Lemma 10.32.4). □

10.33. Curiosity

02JG Lemma 10.24.3 explains what happens if V (I) is open for some ideal I ⊂ R. But
what if Spec(S−1R) is closed in Spec(R)? The next two lemmas give a partial
answer. For more information see Section 10.108.

Lemma 10.33.1.02JH Let R be a ring. Let S ⊂ R be a multiplicative subset. Assume
the image of the map Spec(S−1R) → Spec(R) is closed. Then S−1R ∼= R/I for
some ideal I ⊂ R.

Proof. Let I = Ker(R → S−1R) so that V (I) contains the image. Say the image
is the closed subset V (I ′) ⊂ Spec(R) for some ideal I ′ ⊂ R. So V (I ′) ⊂ V (I). For
f ∈ I ′ we see that f/1 ∈ S−1R is contained in every prime ideal. Hence fn maps
to zero in S−1R for some n ≥ 1 (Lemma 10.17.2). Hence V (I ′) = V (I). Then this
implies every g ∈ S is invertible mod I. Hence we get ring maps R/I → S−1R and
S−1R → R/I. The first map is injective by choice of I. The second is the map
S−1R → S−1(R/I) = R/I which has kernel S−1I because localization is exact.
Since S−1I = 0 we see also the second map is injective. Hence S−1R ∼= R/I. □

Lemma 10.33.2.02JI Let R be a ring. Let S ⊂ R be a multiplicative subset. Assume
the image of the map Spec(S−1R) → Spec(R) is closed. If R is Noetherian, or
Spec(R) is a Noetherian topological space, or S is finitely generated as a monoid,
then R ∼= S−1R×R′ for some ring R′.

Proof. By Lemma 10.33.1 we have S−1R ∼= R/I for some ideal I ⊂ R. By Lemma
10.24.3 it suffices to show that V (I) is open. If R is Noetherian then Spec(R)
is a Noetherian topological space, see Lemma 10.31.5. If Spec(R) is a Noether-
ian topological space, then the complement Spec(R) \ V (I) is quasi-compact, see
Topology, Lemma 5.12.13. Hence there exist finitely many f1, . . . , fn ∈ I such that
V (I) = V (f1, . . . , fn). Since each fi maps to zero in S−1R there exists a g ∈ S such
that gfi = 0 for i = 1, . . . , n. Hence D(g) = V (I) as desired. In case S is finitely
generated as a monoid, say S is generated by g1, . . . , gm, then S−1R ∼= Rg1...gm and
we conclude that V (I) = D(g1 . . . gm). □

10.34. Hilbert Nullstellensatz

00FS
Theorem 10.34.1 (Hilbert Nullstellensatz).00FV Let k be a field.

(1)00FW For any maximal ideal m ⊂ k[x1, . . . , xn] the field extension κ(m)/k is
finite.

https://stacks.math.columbia.edu/tag/02JH
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(2)00FX Any radical ideal I ⊂ k[x1, . . . , xn] is the intersection of maximal ideals
containing it.

The same is true in any finite type k-algebra.

Proof. It is enough to prove part (1) of the theorem for the case of a polynomial
algebra k[x1, . . . , xn], because any finitely generated k-algebra is a quotient of such
a polynomial algebra. We prove this by induction on n. The case n = 0 is clear.
Suppose that m is a maximal ideal in k[x1, . . . , xn]. Let p ⊂ k[xn] be the intersection
of m with k[xn].
If p ̸= (0), then p is maximal and generated by an irreducible monic polynomial P
(because of the Euclidean algorithm in k[xn]). Then k′ = k[xn]/p is a finite field
extension of k and contained in κ(m). In this case we get a surjection

k′[x1, . . . , xn−1]→ k′[x1, . . . , xn] = k′ ⊗k k[x1, . . . , xn] −→ κ(m)
and hence we see that κ(m) is a finite extension of k′ by induction hypothesis. Thus
κ(m) is finite over k as well.
If p = (0) we consider the ring extension k[xn] ⊂ k[x1, . . . , xn]/m. This is a finitely
generated ring extension, hence of finite presentation by Lemmas 10.31.3 and
10.31.4. Thus the image of Spec(k[x1, . . . , xn]/m) in Spec(k[xn]) is constructible
by Theorem 10.29.10. Since the image contains (0) we conclude that it contains a
standard open D(f) for some f ∈ k[xn] nonzero. Since clearly D(f) is infinite we
get a contradiction with the assumption that k[x1, . . . , xn]/m is a field (and hence
has a spectrum consisting of one point).
Proof of (2). Let I ⊂ R be a radical ideal, with R of finite type over k. Let f ∈ R,
f ̸∈ I. We have to find a maximal ideal m ⊂ R with I ⊂ m and f ̸∈ m. The ring
(R/I)f is nonzero, since 1 = 0 in this ring would mean fn ∈ I and since I is radical
this would mean f ∈ I contrary to our assumption on f . Thus we may choose a
maximal ideal m′ in (R/I)f , see Lemma 10.17.2. Let m ⊂ R be the inverse image
of m′ in R. We see that I ⊂ m and f ̸∈ m. If we show that m is a maximal ideal of
R, then we are done. We clearly have

k ⊂ R/m ⊂ κ(m′).
By part (1) the field extension κ(m′)/k is finite. Hence R/m is a field by Fields,
Lemma 9.8.10. Thus m is maximal and the proof is complete. □

Lemma 10.34.2.00FY Let R be a ring. Let K be a field. If R ⊂ K and K is of finite
type over R, then there exists an f ∈ R such that Rf is a field, and K/Rf is a
finite field extension.

Proof. By Lemma 10.30.2 there exist a nonempty open U ⊂ Spec(R) contained in
the image {(0)} of Spec(K)→ Spec(R). Choose f ∈ R, f ̸= 0 such that D(f) ⊂ U ,
i.e., D(f) = {(0)}. Then Rf is a domain whose spectrum has exactly one point and
Rf is a field. Then K is a finitely generated algebra over the field Rf and hence a
finite field extension of Rf by the Hilbert Nullstellensatz (Theorem 10.34.1). □

10.35. Jacobson rings

00FZ Let R be a ring. The closed points of Spec(R) are the maximal ideals of R. Often
rings which occur naturally in algebraic geometry have lots of maximal ideals. For

https://stacks.math.columbia.edu/tag/00FY
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example finite type algebras over a field or over Z. We will show that these are
examples of Jacobson rings.
Definition 10.35.1.00G0 Let R be a ring. We say that R is a Jacobson ring if every
radical ideal I is the intersection of the maximal ideals containing it.
Lemma 10.35.2.00G1 Any algebra of finite type over a field is Jacobson.
Proof. This follows from Theorem 10.34.1 and Definition 10.35.1. □

Lemma 10.35.3.00G2 Let R be a ring. If every prime ideal of R is the intersection of
the maximal ideals containing it, then R is Jacobson.
Proof. This is immediately clear from the fact that every radical ideal I ⊂ R is the
intersection of the primes containing it. See Lemma 10.17.2. □

Lemma 10.35.4.00G3 A ring R is Jacobson if and only if Spec(R) is Jacobson, see
Topology, Definition 5.18.1.
Proof. Suppose R is Jacobson. Let Z ⊂ Spec(R) be a closed subset. We have to
show that the set of closed points in Z is dense in Z. Let U ⊂ Spec(R) be an
open such that U ∩Z is nonempty. We have to show Z ∩U contains a closed point
of Spec(R). We may assume U = D(f) as standard opens form a basis for the
topology on Spec(R). According to Lemma 10.17.2 we may assume that Z = V (I),
where I is a radical ideal. We see also that f ̸∈ I. By assumption, there exists a
maximal ideal m ⊂ R such that I ⊂ m but f ̸∈ m. Hence m ∈ D(f)∩V (I) = U ∩Z
as desired.
Conversely, suppose that Spec(R) is Jacobson. Let I ⊂ R be a radical ideal. Let
J = ∩I⊂mm be the intersection of the maximal ideals containing I. Clearly J
is a radical ideal, V (J) ⊂ V (I), and V (J) is the smallest closed subset of V (I)
containing all the closed points of V (I). By assumption we see that V (J) = V (I).
But Lemma 10.17.2 shows there is a bijection between Zariski closed sets and radical
ideals, hence I = J as desired. □

Lemma 10.35.5.034J Let R be a ring. If R is not Jacobson there exist a prime p ⊂ R,
an element f ∈ R such that the following hold

(1) p is not a maximal ideal,
(2) f ̸∈ p,
(3) V (p) ∩D(f) = {p}, and
(4) (R/p)f is a field.

On the other hand, if R is Jacobson, then for any pair (p, f) such that (1) and (2)
hold the set V (p) ∩D(f) is infinite.
Proof. Assume R is not Jacobson. By Lemma 10.35.4 this means there exists an
closed subset T ⊂ Spec(R) whose set T0 ⊂ T of closed points is not dense in T .
Choose an f ∈ R such that T0 ⊂ V (f) but T ̸⊂ V (f). Note that T ∩ D(f) is
homeomorphic to Spec((R/I)f ) if T = V (I), see Lemmas 10.17.7 and 10.17.6. As
any ring has a maximal ideal (Lemma 10.17.2) we can choose a closed point t of
space T ∩D(f). Then t corresponds to a prime ideal p ⊂ R which is not maximal
(as t ̸∈ T0). Thus (1) holds. By construction f ̸∈ p, hence (2). As t is a closed point
of T ∩D(f) we see that V (p)∩D(f) = {p}, i.e., (3) holds. Hence we conclude that
(R/p)f is a domain whose spectrum has one point, hence (4) holds (for example
combine Lemmas 10.18.2 and 10.25.1).

https://stacks.math.columbia.edu/tag/00G0
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Conversely, suppose that R is Jacobson and (p, f) satisfy (1) and (2). If V (p) ∩
D(f) = {p, q1, . . . , qt} then p ̸= qi implies there exists an element g ∈ R such that
g ̸∈ p but g ∈ qi for all i. Hence V (p)∩D(fg) = {p} which is impossible since each
locally closed subset of Spec(R) contains at least one closed point as Spec(R) is a
Jacobson topological space. □

Lemma 10.35.6.00G4 The ring Z is a Jacobson ring. More generally, let R be a ring
such that

(1) R is a domain,
(2) R is Noetherian,
(3) any nonzero prime ideal is a maximal ideal, and
(4) R has infinitely many maximal ideals.

Then R is a Jacobson ring.

Proof. Let R satisfy (1), (2), (3) and (4). The statement means that (0) =
⋂

m⊂Rm.
Since R has infinitely many maximal ideals it suffices to show that any nonzero
x ∈ R is contained in at most finitely many maximal ideals, in other words that
V (x) is finite. By Lemma 10.17.7 we see that V (x) is homeomorphic to Spec(R/xR).
By assumption (3) every prime of R/xR is minimal and hence corresponds to an
irreducible component of Spec(R/xR) (Lemma 10.26.1). As R/xR is Noetherian,
the topological space Spec(R/xR) is Noetherian (Lemma 10.31.5) and has finitely
many irreducible components (Topology, Lemma 5.9.2). Thus V (x) is finite as
desired. □

Example 10.35.7.02CC Let A be an infinite set. For each α ∈ A, let kα be a field. We
claim that R =

∏
α∈A kα is Jacobson. First, note that any element f ∈ R has the

form f = ue, with u ∈ R a unit and e ∈ R an idempotent (left to the reader). Hence
D(f) = D(e), and Rf = Re = R/(1− e) is a quotient of R. Actually, any ring with
this property is Jacobson. Namely, say p ⊂ R is a prime ideal and f ∈ R, f ̸∈ p.
We have to find a maximal ideal m of R such that p ⊂ m and f ̸∈ m. Because Rf
is a quotient of R we see that any maximal ideal of Rf corresponds to a maximal
ideal of R not containing f . Hence the result follows by choosing a maximal ideal
of Rf containing pRf .

Example 10.35.8.00G5 A domain R with finitely many maximal ideals mi, i = 1, . . . , n
is not a Jacobson ring, except when it is a field. Namely, in this case (0) is not the
intersection of the maximal ideals (0) ̸= m1 ∩m2 ∩ . . .∩mn ⊃ m1 ·m2 · . . . ·mn ̸= 0.
In particular a discrete valuation ring, or any local ring with at least two prime
ideals is not a Jacobson ring.

Lemma 10.35.9.00GA Let R → S be a ring map. Let m ⊂ R be a maximal ideal.
Let q ⊂ S be a prime ideal lying over m such that κ(q)/κ(m) is an algebraic field
extension. Then q is a maximal ideal of S.

Proof. Consider the diagram

S // S/q // κ(q)

R //

OO

R/m

OO

https://stacks.math.columbia.edu/tag/00G4
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We see that κ(m) ⊂ S/q ⊂ κ(q). Because the field extension κ(m) ⊂ κ(q) is
algebraic, any ring between κ(m) and κ(q) is a field (Fields, Lemma 9.8.10). Thus
S/q is a field, and a posteriori equal to κ(q). □

Lemma 10.35.10.00FT Suppose that k is a field and suppose that V is a nonzero vector
space over k. Assume the dimension of V (which is a cardinal number) is smaller
than the cardinality of k. Then for any linear operator T : V → V there exists
some monic polynomial P (t) ∈ k[t] such that P (T ) is not invertible.

Proof. If not then V inherits the structure of a vector space over the field k(t). But
the dimension of k(t) over k is at least the cardinality of k for example due to the
fact that the elements 1

t−λ are k-linearly independent. □

Here is another version of Hilbert’s Nullstellensatz.

Theorem 10.35.11.00FU Let k be a field. Let S be a k-algebra generated over k by the
elements {xi}i∈I . Assume the cardinality of I is smaller than the cardinality of k.
Then

(1) for all maximal ideals m ⊂ S the field extension κ(m)/k is algebraic, and
(2) S is a Jacobson ring.

Proof. If I is finite then the result follows from the Hilbert Nullstellensatz, Theorem
10.34.1. In the rest of the proof we assume I is infinite. It suffices to prove the
result for m ⊂ k[{xi}i∈I ] maximal in the polynomial ring on variables xi, since S
is a quotient of this. As I is infinite the set of monomials xe1

i1
. . . xerir , i1, . . . , ir ∈ I

and e1, . . . , er ≥ 0 has cardinality at most equal to the cardinality of I. Because the
cardinality of I × . . .× I is the cardinality of I, and also the cardinality of

⋃
n≥0 I

n

has the same cardinality. (If I is finite, then this is not true and in that case this
proof only works if k is uncountable.)
To arrive at a contradiction pick T ∈ κ(m) transcendental over k. Note that the
k-linear map T : κ(m)→ κ(m) given by multiplication by T has the property that
P (T ) is invertible for all monic polynomials P (t) ∈ k[t]. Also, κ(m) has dimension
at most the cardinality of I over k since it is a quotient of the vector space k[{xi}i∈I ]
over k (whose dimension is #I as we saw above). This is impossible by Lemma
10.35.10.
To show that S is Jacobson we argue as follows. If not then there exists a prime
q ⊂ S and an element f ∈ S, f ̸∈ q such that q is not maximal and (S/q)f is a
field, see Lemma 10.35.5. But note that (S/q)f is generated by at most #I + 1
elements. Hence the field extension (S/q)f/k is algebraic (by the first part of the
proof). This implies that κ(q) is an algebraic extension of k hence q is maximal by
Lemma 10.35.9. This contradiction finishes the proof. □

Lemma 10.35.12.046V Let k be a field. Let S be a k-algebra. For any field extension
K/k whose cardinality is larger than the cardinality of S we have

(1) for every maximal ideal m of SK the field κ(m) is algebraic over K, and
(2) SK is a Jacobson ring.

Proof. Choose k ⊂ K such that the cardinality of K is greater than the cardinality
of S. Since the elements of S generate the K-algebra SK we see that Theorem
10.35.11 applies. □
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Example 10.35.13.02CB The trick in the proof of Theorem 10.35.11 really does not work
if k is a countable field and I is countable too. Let k be a countable field. Let x
be a variable, and let k(x) be the field of rational functions in x. Consider the
polynomial algebra R = k[x, {xf}f∈k[x]−{0}]. Let I = ({fxf − 1}f∈k[x]−{0}). Note
that I is a proper ideal in R. Choose a maximal ideal I ⊂ m. Then k ⊂ R/m is
isomorphic to k(x), and is not algebraic over k.

Lemma 10.35.14.00G6 Let R be a Jacobson ring. Let f ∈ R. The ring Rf is Jacobson
and maximal ideals of Rf correspond to maximal ideals of R not containing f .

Proof. By Topology, Lemma 5.18.5 we see that D(f) = Spec(Rf ) is Jacobson and
that closed points of D(f) correspond to closed points in Spec(R) which happen to
lie in D(f). Thus Rf is Jacobson by Lemma 10.35.4. □

Example 10.35.15.00G7 Here is a simple example that shows Lemma 10.35.14 to be
false if R is not Jacobson. Consider the ring R = Z(2), i.e., the localization of Z
at the prime (2). The localization of R at the element 2 is isomorphic to Q, in a
formula: R2 ∼= Q. Clearly the map R → R2 maps the closed point of Spec(Q) to
the generic point of Spec(R).

Example 10.35.16.00G8 Here is a simple example that shows Lemma 10.35.14 is false if
R is Jacobson but we localize at infinitely many elements. Namely, let R = Z and
consider the localization (R \ {0})−1R ∼= Q of R at the set of all nonzero elements.
Clearly the map Z → Q maps the closed point of Spec(Q) to the generic point of
Spec(Z).

Lemma 10.35.17.00G9 Let R be a Jacobson ring. Let I ⊂ R be an ideal. The ring
R/I is Jacobson and maximal ideals of R/I correspond to maximal ideals of R
containing I.

Proof. The proof is the same as the proof of Lemma 10.35.14. □

Lemma 10.35.18.0CY7 Let R be a Jacobson ring. Let K be a field. Let R ⊂ K and K
is of finite type over R. Then R is a field and K/R is a finite field extension.

Proof. First note that R is a domain. By Lemma 10.34.2 we see that Rf is a field
and K/Rf is a finite field extension for some nonzero f ∈ R. Hence (0) is a maximal
ideal of Rf and by Lemma 10.35.14 we conclude (0) is a maximal ideal of R. □

Proposition 10.35.19.00GB Let R be a Jacobson ring. Let R→ S be a ring map of finite
type. Then

(1) The ring S is Jacobson.
(2) The map Spec(S)→ Spec(R) transforms closed points to closed points.
(3) For m′ ⊂ S maximal lying over m ⊂ R the field extension κ(m′)/κ(m) is

finite.

Proof. Let m′ ⊂ S be a maximal ideal and R∩m′ = m. Then R/m→ S/m′ satisfies
the conditions of Lemma 10.35.18 by Lemma 10.35.17. Hence R/m is a field and m
a maximal ideal and the induced residue field extension is finite. This proves (2)
and (3).
If S is not Jacobson, then by Lemma 10.35.5 there exists a non-maximal prime ideal
q of S and an g ∈ S, g ̸∈ q such that (S/q)g is a field. To arrive at a contradiction
we show that q is a maximal ideal. Let p = q∩R. Then R/p→ (S/q)g satisfies the
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conditions of Lemma 10.35.18 by Lemma 10.35.17. Hence R/p is a field and the
field extension κ(p)→ (S/q)g = κ(q) is finite, thus algebraic. Then q is a maximal
ideal of S by Lemma 10.35.9. Contradiction. □

Lemma 10.35.20.00GC Any finite type algebra over Z is Jacobson.

Proof. Combine Lemma 10.35.6 and Proposition 10.35.19. □

Lemma 10.35.21.00GD Let R→ S be a finite type ring map of Jacobson rings. Denote
X = Spec(R) and Y = Spec(S). Write f : Y → X the induced map of spectra.
Let E ⊂ Y = Spec(S) be a constructible set. Denote with a subscript 0 the set of
closed points of a topological space.

(1) We have f(E)0 = f(E0) = X0 ∩ f(E).
(2) A point ξ ∈ X is in f(E) if and only if {ξ} ∩ f(E0) is dense in {ξ}.

Proof. We have a commutative diagram of continuous maps

E //

��

Y

��
f(E) // X

Suppose x ∈ f(E) is closed in f(E). Then f−1({x}) ∩ E is nonempty and closed
in E. Applying Topology, Lemma 5.18.5 to both inclusions

f−1({x}) ∩ E ⊂ E ⊂ Y

we find there exists a point y ∈ f−1({x})∩E which is closed in Y . In other words,
there exists y ∈ Y0 and y ∈ E0 mapping to x. Hence x ∈ f(E0). This proves
that f(E)0 ⊂ f(E0). Proposition 10.35.19 implies that f(E0) ⊂ X0 ∩ f(E). The
inclusion X0 ∩ f(E) ⊂ f(E)0 is trivial. This proves the first assertion.

Suppose that ξ ∈ f(E). According to Lemma 10.30.2 the set f(E)∩{ξ} contains a
dense open subset of {ξ}. Since X is Jacobson we conclude that f(E)∩{ξ} contains
a dense set of closed points, see Topology, Lemma 5.18.5. We conclude by part (1)
of the lemma.

On the other hand, suppose that {ξ} ∩ f(E0) is dense in {ξ}. By Lemma 10.29.4
there exists a ring map S → S′ of finite presentation such that E is the image of
Y ′ := Spec(S′) → Y . Then E0 is the image of Y ′

0 by the first part of the lemma
applied to the ring map S → S′. Thus we may assume that E = Y by replacing S
by S′. Suppose ξ corresponds to p ⊂ R. Consider the diagram

S // S/pS

R //

OO

R/p

OO

This diagram and the density of f(Y0) ∩ V (p) in V (p) shows that the morphism
R/p → S/pS satisfies condition (2) of Lemma 10.30.4. Hence we conclude there
exists a prime q ⊂ S/pS mapping to (0). In other words the inverse image q of q
in S maps to p as desired. □
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The conclusion of the lemma above is that we can read off the image of f from the
set of closed points of the image. This is a little nicer in case the map is of finite
presentation because then we know that images of a constructible is constructible.
Before we state it we introduce some notation. Denote Constr(X) the set of con-
structible sets. Let R→ S be a ring map. Denote X = Spec(R) and Y = Spec(S).
Write f : Y → X the induced map of spectra. Denote with a subscript 0 the set of
closed points of a topological space.

Lemma 10.35.22.00GE With notation as above. Assume that R is a Noetherian Jacobson
ring. Further assume R→ S is of finite type. There is a commutative diagram

Constr(Y ) E 7→E0 //

E 7→f(E)
��

Constr(Y0)

E 7→f(E)
��

Constr(X) E 7→E0// Constr(X0)

where the horizontal arrows are the bijections from Topology, Lemma 5.18.8.

Proof. Since R→ S is of finite type, it is of finite presentation, see Lemma 10.31.4.
Thus the image of a constructible set in X is constructible in Y by Chevalley’s
theorem (Theorem 10.29.10). Combined with Lemma 10.35.21 the lemma follows.

□

To illustrate the use of Jacobson rings, we give the following two examples.

Example 10.35.23.00GF Let k be a field. The space Spec(k[x, y]/(xy)) has two irre-
ducible components: namely the x-axis and the y-axis. As a generalization, let

R = k[x11, x12, x21, x22, y11, y12, y21, y22]/a,
where a is the ideal in k[x11, x12, x21, x22, y11, y12, y21, y22] generated by the entries
of the 2× 2 product matrix (

x11 x12
x21 x22

)(
y11 y12
y21 y22

)
.

In this example we will describe Spec(R).
To prove the statement about Spec(k[x, y]/(xy)) we argue as follows. If p ⊂ k[x, y]
is any ideal containing xy, then either x or y would be contained in p. Hence the
minimal such prime ideals are just (x) and (y). In case k is algebraically closed,
the max-Spec of these components can then be visualized as the point sets of y-
and x-axis.
For the generalization, note that we may identify the closed points of the spectrum
of k[x11, x12, x21, x22, y11, y12, y21, y22]) with the space of matrices{

(X,Y ) ∈ Mat(2, k)×Mat(2, k) | X =
(
x11 x12
x21 x22

)
, Y =

(
y11 y12
y21 y22

)}
at least if k is algebraically closed. Now define a group action of GL(2, k) ×
GL(2, k)×GL(2, k) on the space of matrices {(X,Y )} by

(g1, g2, g3)× (X,Y ) 7→ ((g1Xg
−1
2 , g2Y g

−1
3 )).

Here, also observe that the algebraic set
GL(2, k)×GL(2, k)×GL(2, k) ⊂ Mat(2, k)×Mat(2, k)×Mat(2, k)

https://stacks.math.columbia.edu/tag/00GE
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is irreducible since it is the max spectrum of the domain
k[x11, x12, . . . , z21, z22, (x11x22−x12x21)−1, (y11y22−y12y21)−1, (z11z22−z12z21)−1].
Since the image of irreducible an algebraic set is still irreducible, it suffices to
classify the orbits of the set {(X,Y ) ∈ Mat(2, k) ×Mat(2, k)|XY = 0} and take
their closures. From standard linear algebra, we are reduced to the following three
cases:

(1) ∃(g1, g2) such that g1Xg
−1
2 = I2×2. Then Y is necessarily 0, which as

an algebraic set is invariant under the group action. It follows that this
orbit is contained in the irreducible algebraic set defined by the prime
ideal (y11, y12, y21, y22). Taking the closure, we see that (y11, y12, y21, y22)
is actually a component.

(2) ∃(g1, g2) such that

g1Xg
−1
2 =

(
1 0
0 0

)
.

This case occurs if and only if X is a rank 1 matrix, and furthermore, Y
is killed by such an X if and only if

x11y11 + x12y21 = 0; x11y12 + x12y22 = 0;
x21y11 + x22y21 = 0; x21y12 + x22y22 = 0.

Fix a rank 1 X, such non zero Y ’s satisfying the above equations form an
irreducible algebraic set for the following reason(Y = 0 is contained the
previous case): 0 = g1Xg

−1
2 g2Y implies that

g2Y =
(

0 0
y′

21 y′
22

)
.

With a further GL(2, k)-action on the right by g3, g2Y can be brought
into

g2Y g
−1
3 =

(
0 0
0 1

)
,

and thus such Y ’s form an irreducible algebraic set isomorphic to the
image of GL(2, k) under this action. Finally, notice that the “rank 1"
condition for X’s forms an open dense subset of the irreducible algebraic
set detX = x11x22−x12x21 = 0. It now follows that all the five equations
define an irreducible component (x11y11 +x12y21, x11y12 +x12y22, x21y11 +
x22y21, x21y12 + x22y22, x11x22 − x12x21) in the open subset of the space
of pairs of nonzero matrices. It can be shown that the pair of equations
detX = 0, detY = 0 cuts Spec(R) in an irreducible component with the
above locus an open dense subset.

(3) ∃(g1, g2) such that g1Xg
−1
2 = 0, or equivalently, X = 0. Then Y can be

arbitrary and this component is thus defined by (x11, x12, x21, x22).

Example 10.35.24.00GG For another example, consider R = k[{tij}ni,j=1]/a, where a is
the ideal generated by the entries of the product matrix T 2 − T , T = (tij). From
linear algebra, we know that under the GL(n, k)-action defined by g, T 7→ gTg−1, T
is classified by the its rank and each T is conjugate to some diag(1, . . . , 1, 0, . . . , 0),
which has r 1’s and n−r 0’s. Thus each orbit of such a diag(1, . . . , 1, 0, . . . , 0) under
the group action forms an irreducible component and every idempotent matrix
is contained in one such orbit. Next we will show that any two different orbits

https://stacks.math.columbia.edu/tag/00GG
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are necessarily disjoint. For this purpose we only need to cook up polynomial
functions that take different values on different orbits. In characteristic 0 cases,
such a function can be taken to be f(tij) = trace(T ) =

∑n
i=1 tii. In positive

characteristic cases, things are slightly more tricky since we might have trace(T ) = 0
even if T ̸= 0. For instance, char = 3

trace

1
1

1

 = 3 = 0

Anyway, these components can be separated using other functions. For instance, in
the characteristic 3 case, tr(∧3T ) takes value 1 on the components corresponding
to diag(1, 1, 1) and 0 on other components.

10.36. Finite and integral ring extensions

00GH Trivial lemmas concerning finite and integral ring maps. We recall the definition.
Definition 10.36.1.00GI Let φ : R→ S be a ring map.

(1) An element s ∈ S is integral over R if there exists a monic polynomial
P (x) ∈ R[x] such that Pφ(s) = 0, where Pφ(x) ∈ S[x] is the image of P
under φ : R[x]→ S[x].

(2) The ring map φ is integral if every s ∈ S is integral over R.
Lemma 10.36.2.052I Let φ : R → S be a ring map. Let y ∈ S. If there exists a finite
R-submodule M of S such that 1 ∈M and yM ⊂M , then y is integral over R.
Proof. Consider the map φ : M →M , x 7→ y · x. By Lemma 10.16.2 there exists a
monic polynomial P ∈ R[T ] with P (φ) = 0. In the ring S we get P (y) = P (y) · 1 =
P (φ)(1) = 0. □

Lemma 10.36.3.00GK A finite ring extension is integral.
Proof. Let R → S be finite. Let y ∈ S. Apply Lemma 10.36.2 to M = S to see
that y is integral over R. □

Lemma 10.36.4.00GM Let φ : R → S be a ring map. Let s1, . . . , sn be a finite set of
elements of S. In this case si is integral over R for all i = 1, . . . , n if and only if
there exists an R-subalgebra S′ ⊂ S finite over R containing all of the si.
Proof. If each si is integral, then the subalgebra generated by φ(R) and the si
is finite over R. Namely, if si satisfies a monic equation of degree di over R,
then this subalgebra is generated as an R-module by the elements se1

1 . . . senn with
0 ≤ ei ≤ di − 1. Conversely, suppose given a finite R-subalgebra S′ containing all
the si. Then all of the si are integral by Lemma 10.36.3. □

Lemma 10.36.5.02JJ Let R→ S be a ring map. The following are equivalent
(1) R→ S is finite,
(2) R→ S is integral and of finite type, and
(3) there exist x1, . . . , xn ∈ S which generate S as an algebra over R such

that each xi is integral over R.
Proof. Clear from Lemma 10.36.4. □

Lemma 10.36.6.00GN Suppose that R → S and S → T are integral ring maps. Then
R→ T is integral.
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Proof. Let t ∈ T . Let P (x) ∈ S[x] be a monic polynomial such that P (t) = 0.
Apply Lemma 10.36.4 to the finite set of coefficients of P . Hence t is integral
over some subalgebra S′ ⊂ S finite over R. Apply Lemma 10.36.4 again to find
a subalgebra T ′ ⊂ T finite over S′ and containing t. Lemma 10.7.3 applied to
R→ S′ → T ′ shows that T ′ is finite over R. The integrality of t over R now follows
from Lemma 10.36.3. □

Lemma 10.36.7.00GO Let R→ S be a ring homomorphism. The set
S′ = {s ∈ S | s is integral over R}

is an R-subalgebra of S.

Proof. This is clear from Lemmas 10.36.4 and 10.36.3. □

Lemma 10.36.8.0CY8 Let Ri → Si be ring maps i = 1, . . . , n. Let R and S denote the
product of the Ri and Si respectively. Then an element s = (s1, . . . , sn) ∈ S is
integral over R if and only if each si is integral over Ri.

Proof. Omitted. □

Definition 10.36.9.00GP Let R→ S be a ring map. The ring S′ ⊂ S of elements integral
over R, see Lemma 10.36.7, is called the integral closure of R in S. If R ⊂ S we
say that R is integrally closed in S if R = S′.

In particular, we see that R→ S is integral if and only if the integral closure of R
in S is all of S.

Lemma 10.36.10.0CY9 Let Ri → Si be ring maps i = 1, . . . , n. Denote the integral
closure of Ri in Si by S′

i. Further let R and S denote the product of the Ri and
Si respectively. Then the integral closure of R in S is the product of the S′

i. In
particular R→ S is integrally closed if and only if each Ri → Si is integrally closed.

Proof. This follows immediately from Lemma 10.36.8. □

Lemma 10.36.11.0307 Integral closure commutes with localization: If A→ B is a ring
map, and S ⊂ A is a multiplicative subset, then the integral closure of S−1A in
S−1B is S−1B′, where B′ ⊂ B is the integral closure of A in B.

Proof. Since localization is exact we see that S−1B′ ⊂ S−1B. Suppose x ∈ B′ and
f ∈ S. Then xd +

∑
i=1,...,d aix

d−i = 0 in B for some ai ∈ A. Hence also

(x/f)d +
∑

i=1,...,d
ai/f

i(x/f)d−i = 0

in S−1B. In this way we see that S−1B′ is contained in the integral closure of
S−1A in S−1B. Conversely, suppose that x/f ∈ S−1B is integral over S−1A. Then
we have

(x/f)d +
∑

i=1,...,d
(ai/fi)(x/f)d−i = 0

in S−1B for some ai ∈ A and fi ∈ S. This means that

(f ′f1 . . . fdx)d +
∑

i=1,...,d
f i(f ′)if i1 . . . f i−1

i . . . f idai(f ′f1 . . . fdx)d−i = 0

for a suitable f ′ ∈ S. Hence f ′f1 . . . fdx ∈ B′ and thus x/f ∈ S−1B′ as desired. □

Lemma 10.36.12.034K Let φ : R → S be a ring map. Let x ∈ S. The following are
equivalent:
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(1) x is integral over R, and
(2) for every prime ideal p ⊂ R the element x ∈ Sp is integral over Rp.

Proof. It is clear that (1) implies (2). Assume (2). Consider the R-algebra S′ ⊂ S
generated by φ(R) and x. Let p be a prime ideal of R. Then we know that
xd +

∑
i=1,...,d φ(ai)xd−i = 0 in Sp for some ai ∈ Rp. Hence we see, by looking

at which denominators occur, that for some f ∈ R, f ̸∈ p we have ai ∈ Rf and
xd +

∑
i=1,...,d φ(ai)xd−i = 0 in Sf . This implies that S′

f is finite over Rf . Since p

was arbitrary and Spec(R) is quasi-compact (Lemma 10.17.10) we can find finitely
many elements f1, . . . , fn ∈ R which generate the unit ideal of R such that S′

fi
is

finite over Rfi . Hence we conclude from Lemma 10.23.2 that S′ is finite over R.
Hence x is integral over R by Lemma 10.36.4. □

Lemma 10.36.13.02JK Let R→ S and R→ R′ be ring maps. Set S′ = R′ ⊗R S.
(1) If R→ S is integral so is R′ → S′.
(2) If R→ S is finite so is R′ → S′.

Proof. We prove (1). Let si ∈ S be generators for S over R. Each of these satisfies
a monic polynomial equation Pi over R. Hence the elements 1⊗si ∈ S′ generate S′

over R′ and satisfy the corresponding polynomial P ′
i over R′. Since these elements

generate S′ over R′ we see that S′ is integral over R′. Proof of (2) omitted. □

Lemma 10.36.14.02JL Let R→ S be a ring map. Let f1, . . . , fn ∈ R generate the unit
ideal.

(1) If each Rfi → Sfi is integral, so is R→ S.
(2) If each Rfi → Sfi is finite, so is R→ S.

Proof. Proof of (1). Let s ∈ S. Consider the ideal I ⊂ R[x] of polynomials P such
that P (s) = 0. Let J ⊂ R denote the ideal (!) of leading coefficients of elements
of I. By assumption and clearing denominators we see that fnii ∈ J for all i and
certain ni ≥ 0. Hence J contains 1 and we see s is integral over R. Proof of (2)
omitted. □

Lemma 10.36.15.02JM Let A→ B → C be ring maps.
(1) If A→ C is integral so is B → C.
(2) If A→ C is finite so is B → C.

Proof. Omitted. □

Lemma 10.36.16.0308 Let A→ B → C be ring maps. Let B′ be the integral closure of
A in B, let C ′ be the integral closure of B′ in C. Then C ′ is the integral closure of
A in C.

Proof. Omitted. □

Lemma 10.36.17.00GQ Suppose that R → S is an integral ring extension with R ⊂ S.
Then φ : Spec(S)→ Spec(R) is surjective.

Proof. Let p ⊂ R be a prime ideal. We have to show pSp ̸= Sp, see Lemma
10.17.9. The localization Rp → Sp is injective (as localization is exact) and integral
by Lemma 10.36.11 or 10.36.13. Hence we may replace R, S by Rp, Sp and we
may assume R is local with maximal ideal m and it suffices to show that mS ̸= S.
Suppose 1 =

∑
fisi with fi ∈ m and si ∈ S in order to get a contradiction. Let
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R ⊂ S′ ⊂ S be such that R → S′ is finite and si ∈ S′, see Lemma 10.36.4. The
equation 1 =

∑
fisi implies that the finite R-module S′ satisfies S′ = mS′. Hence

by Nakayama’s Lemma 10.20.1 we see S′ = 0. Contradiction. □

Lemma 10.36.18.00GR Let R be a ring. Let K be a field. If R ⊂ K and K is integral
over R, then R is a field and K is an algebraic extension. If R ⊂ K and K is finite
over R, then R is a field and K is a finite algebraic extension.

Proof. Assume that R ⊂ K is integral. By Lemma 10.36.17 we see that Spec(R)
has 1 point. Since clearly R is a domain we see that R = R(0) is a field (Lemma
10.25.1). The other assertions are immediate from this. □

Lemma 10.36.19.00GS Let k be a field. Let S be a k-algebra over k.
(1) If S is a domain and finite dimensional over k, then S is a field.
(2) If S is integral over k and a domain, then S is a field.
(3) If S is integral over k then every prime of S is a maximal ideal (see Lemma

10.26.5 for more consequences).

Proof. The statement on primes follows from the statement “integral + domain ⇒
field”. Let S integral over k and assume S is a domain, Take s ∈ S. By Lemma
10.36.4 we may find a finite dimensional k-subalgebra k ⊂ S′ ⊂ S containing s.
Hence S is a field if we can prove the first statement. Assume S finite dimensional
over k and a domain. Pick s ∈ S. Since S is a domain the multiplication map
s : S → S is surjective by dimension reasons. Hence there exists an element s1 ∈ S
such that ss1 = 1. So S is a field. □

Lemma 10.36.20.00GT Suppose R → S is integral. Let q, q′ ∈ Spec(S) be distinct
primes having the same image in Spec(R). Then neither q ⊂ q′ nor q′ ⊂ q.

Proof. Let p ⊂ R be the image. By Remark 10.17.8 the primes q, q′ correspond to
ideals in S ⊗R κ(p). Thus the lemma follows from Lemma 10.36.19. □

Lemma 10.36.21.05DR Suppose R→ S is finite. Then the fibres of Spec(S)→ Spec(R)
are finite.

Proof. By the discussion in Remark 10.17.8 the fibres are the spectra of the rings
S⊗Rκ(p). As R→ S is finite, these fibre rings are finite over κ(p) hence Noetherian
by Lemma 10.31.1. By Lemma 10.36.20 every prime of S⊗Rκ(p) is a minimal prime.
Hence by Lemma 10.31.6 there are at most finitely many. □

Lemma 10.36.22.00GU Let R → S be a ring map such that S is integral over R. Let
p ⊂ p′ ⊂ R be primes. Let q be a prime of S mapping to p. Then there exists a
prime q′ with q ⊂ q′ mapping to p′.

Proof. We may replace R by R/p and S by S/q. This reduces us to the situation
of having an integral extension of domains R ⊂ S and a prime p′ ⊂ R. By Lemma
10.36.17 we win. □

The property expressed in the lemma above is called the “going up property” for
the ring map R→ S, see Definition 10.41.1.

Lemma 10.36.23.0564 Let R → S be a finite and finitely presented ring map. Let M
be an S-module. Then M is finitely presented as an R-module if and only if M is
finitely presented as an S-module.
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Proof. One of the implications follows from Lemma 10.6.4. To see the other assume
that M is finitely presented as an S-module. Pick a presentation

S⊕m −→ S⊕n −→M −→ 0

As S is finite as an R-module, the kernel of S⊕n → M is a finite R-module. Thus
from Lemma 10.5.3 we see that it suffices to prove that S is finitely presented as
an R-module.

Pick y1, . . . , yn ∈ S such that y1, . . . , yn generate S as an R-module. By Lemma
10.36.2 each yi is integral over R. Choose monic polynomials Pi(x) ∈ R[x] with
Pi(yi) = 0. Consider the ring

S′ = R[x1, . . . , xn]/(P1(x1), . . . , Pn(xn))

Then we see that S is of finite presentation as an S′-algebra by Lemma 10.6.2.
Since S′ → S is surjective, the kernel J = Ker(S′ → S) is finitely generated as
an ideal by Lemma 10.6.3. Hence J is a finite S′-module (immediate from the
definitions). Thus S = Coker(J → S′) is of finite presentation as an S′-module by
Lemma 10.5.3. Hence, arguing as in the first paragraph, it suffices to show that S′

is of finite presentation as an R-module. Actually, S′ is free as an R-module with
basis the monomials xe1

1 . . . xenn for 0 ≤ ei < deg(Pi). Namely, write R→ S′ as the
composition

R→ R[x1]/(P1(x1))→ R[x1, x2]/(P1(x1), P2(x2))→ . . .→ S′

This shows that the ith ring in this sequence is free as a module over the (i− 1)st
one with basis 1, xi, . . . , xdeg(Pi)−1

i . The result follows easily from this by induction.
Some details omitted. □

Lemma 10.36.24.052J Let R be a ring. Let x, y ∈ R be nonzerodivisors. Let R[x/y] ⊂
Rxy be the R-subalgebra generated by x/y, and similarly for the subalgebras R[y/x]
and R[x/y, y/x]. If R is integrally closed in Rx or Ry, then the sequence

0→ R
(−1,1)−−−−→ R[x/y]⊕R[y/x] (1,1)−−−→ R[x/y, y/x]→ 0

is a short exact sequence of R-modules.

Proof. Since x/y · y/x = 1 it is clear that the map R[x/y]⊕R[y/x]→ R[x/y, y/x]
is surjective. Let α ∈ R[x/y] ∩ R[y/x]. To show exactness in the middle we have
to prove that α ∈ R. By assumption we may write

α = a0 + a1x/y + . . .+ an(x/y)n = b0 + b1y/x+ . . .+ bm(y/x)m

for some n,m ≥ 0 and ai, bj ∈ R. Pick some N > max(n,m). Consider the finite
R-submodule M of Rxy generated by the elements

(x/y)N , (x/y)N−1, . . . , x/y, 1, y/x, . . . , (y/x)N−1, (y/x)N

We claim that αM ⊂ M . Namely, it is clear that (x/y)i(b0 + b1y/x + . . . +
bm(y/x)m) ∈M for 0 ≤ i ≤ N and that (y/x)i(a0 + a1x/y + . . .+ an(x/y)n) ∈M
for 0 ≤ i ≤ N . Hence α is integral over R by Lemma 10.36.2. Note that α ∈ Rx,
so if R is integrally closed in Rx then α ∈ R as desired. □
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10.37. Normal rings

037B We first introduce the notion of a normal domain, and then we introduce the (very
general) notion of a normal ring.

Definition 10.37.1.0309 A domain R is called normal if it is integrally closed in its field
of fractions.

Lemma 10.37.2.034L Let R → S be a ring map. If S is a normal domain, then the
integral closure of R in S is a normal domain.

Proof. Omitted. □

The following notion is occasionally useful when studying normality.

Definition 10.37.3.00GW Let R be a domain.
(1) An element g of the fraction field of R is called almost integral over R if

there exists an element r ∈ R, r ̸= 0 such that rgn ∈ R for all n ≥ 0.
(2) The domain R is called completely normal if every almost integral element

of the fraction field of R is contained in R.

The following lemma shows that a Noetherian domain is normal if and only if it is
completely normal.

Lemma 10.37.4.00GX Let R be a domain with fraction field K. If u, v ∈ K are almost
integral over R, then so are u+v and uv. Any element g ∈ K which is integral over
R is almost integral over R. If R is Noetherian then the converse holds as well.

Proof. If run ∈ R for all n ≥ 0 and vnr′ ∈ R for all n ≥ 0, then (uv)nrr′ and
(u + v)nrr′ are in R for all n ≥ 0. Hence the first assertion. Suppose g ∈ K
is integral over R. In this case there exists an d > 0 such that the ring R[g] is
generated by 1, g, . . . , gd as an R-module. Let r ∈ R be a common denominator of
the elements 1, g, . . . , gd ∈ K. It is follows that rR[g] ⊂ R, and hence g is almost
integral over R.
Suppose R is Noetherian and g ∈ K is almost integral over R. Let r ∈ R, r ̸= 0 be
as in the definition. Then R[g] ⊂ 1

rR as an R-module. Since R is Noetherian this
implies that R[g] is finite over R. Hence g is integral over R, see Lemma 10.36.3. □

Lemma 10.37.5.00GY Any localization of a normal domain is normal.

Proof. Let R be a normal domain, and let S ⊂ R be a multiplicative subset.
Suppose g is an element of the fraction field of R which is integral over S−1R.
Let P = xd +

∑
j<d ajx

j be a polynomial with ai ∈ S−1R such that P (g) = 0.
Choose s ∈ S such that sai ∈ R for all i. Then sg satisfies the monic polynomial
xd +

∑
j<d s

d−jajx
j which has coefficients sd−jaj in R. Hence sg ∈ R because R

is normal. Hence g ∈ S−1R. □

Lemma 10.37.6.00GZ A principal ideal domain is normal.

Proof. Let R be a principal ideal domain. Let g = a/b be an element of the fraction
field of R integral over R. Because R is a principal ideal domain we may divide
out a common factor of a and b and assume (a, b) = R. In this case, any equation
(a/b)n + rn−1(a/b)n−1 + . . . + r0 = 0 with ri ∈ R would imply an ∈ (b). This
contradicts (a, b) = R unless b is a unit in R. □
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Lemma 10.37.7.00H0 Let R be a domain with fraction field K. Suppose f =
∑
αix

i is
an element of K[x].

(1) If f is integral over R[x] then all αi are integral over R, and
(2) If f is almost integral over R[x] then all αi are almost integral over R.

Proof. We first prove the second statement. Write f = α0 +α1x+ . . .+αrx
r with

αr ̸= 0. By assumption there exists h = b0 + b1x + . . . + bsx
s ∈ R[x], bs ̸= 0 such

that fnh ∈ R[x] for all n ≥ 0. This implies that bsαnr ∈ R for all n ≥ 0. Hence αr
is almost integral over R. Since the set of almost integral elements form a subring
(Lemma 10.37.4) we deduce that f − αrxr = α0 + α1x+ . . .+ αr−1x

r−1 is almost
integral over R[x]. By induction on r we win.
In order to prove the first statement we will use absolute Noetherian reduction.
Namely, write αi = ai/bi and let P (t) = td +

∑
j<d fjt

j be a polynomial with
coefficients fj ∈ R[x] such that P (f) = 0. Let fj =

∑
fjix

i. Consider the subring
R0 ⊂ R generated by the finite list of elements ai, bi, fji of R. It is a domain; let
K0 be its field of fractions. Since R0 is a finite type Z-algebra it is Noetherian, see
Lemma 10.31.3. It is still the case that f ∈ K0[x] is integral over R0[x], because
all the identities in R among the elements ai, bi, fji also hold in R0. By Lemma
10.37.4 the element f is almost integral over R0[x]. By the second statement of the
lemma, the elements αi are almost integral over R0. And since R0 is Noetherian,
they are integral over R0, see Lemma 10.37.4. Of course, then they are integral
over R. □

Lemma 10.37.8.030A Let R be a normal domain. Then R[x] is a normal domain.

Proof. The result is true if R is a field K because K[x] is a euclidean domain and
hence a principal ideal domain and hence normal by Lemma 10.37.6. Let g be an
element of the fraction field of R[x] which is integral over R[x]. Because g is integral
over K[x] where K is the fraction field of R we may write g = αdx

d + αd−1x
d−1 +

. . .+ α0 with αi ∈ K. By Lemma 10.37.7 the elements αi are integral over R and
hence are in R. □

Lemma 10.37.9.0BI0 LetR be a Noetherian normal domain. ThenR[[x]] is a Noetherian
normal domain.

Proof. The power series ring is Noetherian by Lemma 10.31.2. Let f, g ∈ R[[x]] be
nonzero elements such that w = f/g is integral over R[[x]]. Let K be the fraction
field of R. Since the ring of Laurent series K((x)) = K[[x]][1/x] is a field, we can
write w = anx

n +an+1x
n+1 + . . .) for some n ∈ Z, ai ∈ K, and an ̸= 0. By Lemma

10.37.4 we see there exists a nonzero element h = bmx
m + bm+1x

m+1 + . . . in R[[x]]
with bm ̸= 0 such that weh ∈ R[[x]] for all e ≥ 1. We conclude that n ≥ 0 and that
bma

e
n ∈ R for all e ≥ 1. Since R is Noetherian this implies that an ∈ R by the same

lemma. Now, if an, an+1, . . . , aN−1 ∈ R, then we can apply the same argument to
w − anxn − . . .− aN−1x

N−1 = aNx
N + . . .. In this way we see that all ai ∈ R and

the lemma is proved. □

Lemma 10.37.10.030B Let R be a domain. The following are equivalent:
(1) The domain R is a normal domain,
(2) for every prime p ⊂ R the local ring Rp is a normal domain, and
(3) for every maximal ideal m the ring Rm is a normal domain.

https://stacks.math.columbia.edu/tag/00H0
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Proof. This follows easily from the fact that for any domain R we have
R =

⋂
m
Rm

inside the fraction field of R. Namely, if g is an element of the right hand side then
the ideal I = {x ∈ R | xg ∈ R} is not contained in any maximal ideal m, whence
I = R. □

Lemma 10.37.10 shows that the following definition is compatible with Definition
10.37.1. (It is the definition from EGA – see [DG67, IV, 5.13.5 and 0, 4.1.4].)
Definition 10.37.11.00GV A ring R is called normal if for every prime p ⊂ R the local-
ization Rp is a normal domain (see Definition 10.37.1).
Note that a normal ring is a reduced ring, as R is a subring of the product of its
localizations at all primes (see for example Lemma 10.23.1).
Lemma 10.37.12.034M A normal ring is integrally closed in its total ring of fractions.

Proof. Let R be a normal ring. Let x ∈ Q(R) be an element of the total ring of
fractions of R integral over R. Set I = {f ∈ R, fx ∈ R}. Let p ⊂ R be a prime.
As R → Rp is flat we see that Rp ⊂ Q(R) ⊗R Rp. As Rp is a normal domain we
see that x ⊗ 1 is an element of Rp. Hence we can find a, f ∈ R, f ̸∈ p such that
x ⊗ 1 = a ⊗ 1/f . This means that fx − a maps to zero in Q(R) ⊗R Rp = Q(R)p,
which in turn means that there exists an f ′ ∈ R, f ′ ̸∈ p such that f ′fx = f ′a in
R. In other words, ff ′ ∈ I. Thus I is an ideal which isn’t contained in any of the
prime ideals of R, i.e., I = R and x ∈ R. □

Lemma 10.37.13.037C A localization of a normal ring is a normal ring.
Proof. Omitted. □

Lemma 10.37.14.00H1 Let R be a normal ring. Then R[x] is a normal ring.

Proof. Let q be a prime of R[x]. Set p = R ∩ q. Then we see that Rp[x] is a
normal domain by Lemma 10.37.8. Hence (R[x])q is a normal domain by Lemma
10.37.5. □

Lemma 10.37.15.0CYA A finite product of normal rings is normal.
Proof. It suffices to show that the product of two normal rings, say R and S, is
normal. By Lemma 10.21.3 the prime ideals of R × S are of the form p × S and
R × q, where p and q are primes of R and S respectively. Localization yields
(R× S)p×S = Rp which is a normal domain by assumption. Similarly for S. □

Lemma 10.37.16.030C Let R be a ring. Assume R is reduced and has finitely many
minimal primes. Then the following are equivalent:

(1) R is a normal ring,
(2) R is integrally closed in its total ring of fractions, and
(3) R is a finite product of normal domains.

Proof. The implications (1) ⇒ (2) and (3) ⇒ (1) hold in general, see Lemmas
10.37.12 and 10.37.15.
Let p1, . . . , pn be the minimal primes of R. By Lemmas 10.25.2 and 10.25.4 we
have Q(R) = Rp1 × . . .×Rpn , and by Lemma 10.25.1 each factor is a field. Denote
ei = (0, . . . , 0, 1, 0, . . . , 0) the ith idempotent of Q(R).
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If R is integrally closed in Q(R), then it contains in particular the idempotents ei,
and we see that R is a product of n domains (see Sections 10.22 and 10.24). Each
factor is of the form R/pi with field of fractions Rpi . By Lemma 10.36.10 each map
R/pi → Rpi is integrally closed. Hence R is a finite product of normal domains. □

Lemma 10.37.17.037D Let (Ri, φii′) be a directed system (Categories, Definition 10.8.1)
of rings. If each Ri is a normal ring so is R = colimiRi.

Proof. Let p ⊂ R be a prime ideal. Set pi = Ri ∩ p (usual abuse of notation).
Then we see that Rp = colimi(Ri)pi . Since each (Ri)pi is a normal domain we
reduce to proving the statement of the lemma for normal domains. If a, b ∈ R
and a/b satisfies a monic polynomial P (T ) ∈ R[T ], then we can find a (sufficiently
large) i ∈ I such that a, b come from objects ai, bi over Ri, P comes from a monic
polynomial Pi ∈ Ri[T ] and Pi(ai/bi) = 0. Since Ri is normal we see ai/bi ∈ Ri and
hence also a/b ∈ R. □

10.38. Going down for integral over normal

037E We first play around a little bit with the notion of elements integral over an ideal,
and then we prove the theorem referred to in the section title.

Definition 10.38.1.00H2 Let φ : R → S be a ring map. Let I ⊂ R be an ideal.
We say an element g ∈ S is integral over I if there exists a monic polynomial
P = xd +

∑
j<d ajx

j with coefficients aj ∈ Id−j such that Pφ(g) = 0 in S.

This is mostly used when φ = idR : R → R. In this case the set I ′ of elements
integral over I is called the integral closure of I. We will see that I ′ is an ideal of
R (and of course I ⊂ I ′).

Lemma 10.38.2.00H3 Let φ : R → S be a ring map. Let I ⊂ R be an ideal. Let
A =

∑
Intn ⊂ R[t] be the subring of the polynomial ring generated byR⊕It ⊂ R[t].

An element s ∈ S is integral over I if and only if the element st ∈ S[t] is integral
over A.

Proof. Suppose st is integral over A. Let P = xd +
∑
j<d ajx

j be a monic polyno-
mial with coefficients in A such that Pφ(st) = 0. Let a′

j ∈ A be the degree d − j
part of ai, in other words a′

j = a′′
j t
d−j with a′′

j ∈ Id−j . For degree reasons we still
have (st)d +

∑
j<d φ(a′′

j )td−j(st)j = 0. Hence we see that s is integral over I.

Suppose that s is integral over I. Say P = xd +
∑
j<d ajx

j with aj ∈ Id−j . Then
we immediately find a polynomial Q = xd +

∑
j<d(ajtd−j)xj with coefficients in A

which proves that st is integral over A. □

Lemma 10.38.3.00H4 Let φ : R→ S be a ring map. Let I ⊂ R be an ideal. The set of
elements of S which are integral over I form a R-submodule of S. Furthermore, if
s ∈ S is integral over R, and s′ is integral over I, then ss′ is integral over I.

Proof. Closure under addition is clear from the characterization of Lemma 10.38.2.
Any element s ∈ S which is integral over R corresponds to the degree 0 element s
of S[x] which is integral over A (because R ⊂ A). Hence we see that multiplication
by s on S[x] preserves the property of being integral over A, by Lemma 10.36.7. □

Lemma 10.38.4.00H5 Suppose φ : R→ S is integral. Suppose I ⊂ R is an ideal. Then
every element of IS is integral over I.
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Proof. Immediate from Lemma 10.38.3. □

Lemma 10.38.5.00H6 LetK be a field. Let n,m ∈ N and a0, . . . , an−1, b0, . . . , bm−1 ∈ K.
If the polynomial xn+an−1x

n−1 +. . .+a0 divides the polynomial xm+bm−1x
m−1 +

. . .+ b0 in K[x] then
(1) a0, . . . , an−1 are integral over any subring R0 of K containing the elements

b0, . . . , bm−1, and
(2) each ai lies in

√
(b0, . . . , bm−1)R for any subring R ⊂ K containing the

elements a0, . . . , an−1, b0, . . . , bm−1.
Proof. Let L/K be a field extension such that we can write xm+bm−1x

m−1 + . . .+
b0 =

∏m
i=1(x − βi) with βi ∈ L. See Fields, Section 9.16. Each βi is integral over

R0. Since each ai is a homogeneous polynomial in β1, . . . , βm we deduce the same
for the ai (use Lemma 10.36.7).
Choose c0, . . . , cm−n−1 ∈ K such that

xm + bm−1x
m−1 + . . .+ b0 =

(xn + an−1x
n−1 + . . .+ a0)(xm−n + cm−n−1x

m−n−1 + . . .+ c0).
By part (1) the elements ci are integral over R. Consider the integral extension

R ⊂ R′ = R[c0, . . . , cm−n−1] ⊂ K
By Lemmas 10.36.17 and 10.30.3 we see thatR∩

√
(b0, . . . , bm−1)R′ =

√
(b0, . . . , bm−1)R.

Thus we may replace R by R′ and assume ci ∈ R. Dividing out the radical√
(b0, . . . , bm−1) we get a reduced ring R. We have to show that the images ai ∈ R

are zero. And in R[x] we have the relation
xm = xm + bm−1x

m−1 + . . .+ b0 =
(xn + an−1x

n−1 + . . .+ a0)(xm−n + cm−n−1x
m−n−1 + . . .+ c0).

It is easy to see that this implies ai = 0 for all i. Indeed by Lemma 10.25.1
the localization of R at a minimal prime p is a field and Rp[x] a UFD. Thus
f = xn +

∑
aix

i is associated to xn and since f is monic f = xn in Rp[x]. Then
there exists an s ∈ R, s ̸∈ p such that s(f − xn) = 0. Therefore all ai lie in p and
we conclude by Lemma 10.25.2. □

Lemma 10.38.6.00H7 Let R ⊂ S be an inclusion of domains. Assume R is normal. Let
g ∈ S be integral over R. Then the minimal polynomial of g has coefficients in R.
Proof. Let P = xm + bm−1x

m−1 + . . . + b0 be a polynomial with coefficients in R
such that P (g) = 0. Let Q = xn + an−1x

n−1 + . . .+ a0 be the minimal polynomial
for g over the fraction field K of R. Then Q divides P in K[x]. By Lemma 10.38.5
we see the ai are integral over R. Since R is normal this means they are in R. □

Proposition 10.38.7.00H8 Let R ⊂ S be an inclusion of domains. Assume R is normal
and S integral over R. Let p ⊂ p′ ⊂ R be primes. Let q′ be a prime of S with
p′ = R ∩ q′. Then there exists a prime q with q ⊂ q′ such that p = R ∩ q. In other
words: the going down property holds for R→ S, see Definition 10.41.1.
Proof. Let p, p′ and q′ be as in the statement. We have to show there is a prime q,
with q ⊂ q′ and R∩q = p. This is the same as finding a prime of Sq′ mapping to p.
According to Lemma 10.17.9 we have to show that pSq′ ∩R = p. Pick z ∈ pSq′ ∩R.
We may write z = y/g with y ∈ pS and g ∈ S, g ̸∈ q′. Written differently we have
zg = y.
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By Lemma 10.38.4 there exists a monic polynomial P = xm + bm−1x
m−1 + . . .+ b0

with bi ∈ p such that P (y) = 0.

By Lemma 10.38.6 the minimal polynomial of g over K has coefficients in R. Write
it as Q = xn + an−1x

n−1 + . . .+ a0. Note that not all ai, i = n− 1, . . . , 0 are in p
since that would imply gn =

∑
j<n ajg

j ∈ pS ⊂ p′S ⊂ q′ which is a contradiction.

Since y = zg we see immediately from the above that Q′ = xn + zan−1x
n−1 +

. . . + zna0 is the minimal polynomial for y. Hence Q′ divides P and by Lemma
10.38.5 we see that zjan−j ∈

√
(b0, . . . , bm−1) ⊂ p, j = 1, . . . , n. Because not all

ai, i = n− 1, . . . , 0 are in p we conclude z ∈ p as desired. □

10.39. Flat modules and flat ring maps

00H9 One often used result is that if M = colimi∈I Mi is a colimit of R-modules and if
N is an R-module then

M ⊗N = colimi∈I Mi ⊗R N,

see Lemma 10.12.9. This property is usually expressed by saying that ⊗ commutes
with colimits. Another often used result is that if 0 → N1 → N2 → N3 → 0 is an
exact sequence and if M is any R-module, then

M ⊗R N1 →M ⊗R N2 →M ⊗R N3 → 0

is still exact, see Lemma 10.12.10. Both of these properties tell us that the functor
N 7→ M ⊗R N is right exact. See Categories, Section 4.23 and Homology, Section
12.7. An R-module M is flat if N 7→ N ⊗RM is also left exact, i.e., if it is exact.
Here is the precise definition.

Definition 10.39.1.00HB Let R be a ring.
(1) An R-module M is called flat if whenever N1 → N2 → N3 is an exact

sequence of R-modules the sequence M ⊗R N1 →M ⊗R N2 →M ⊗R N3
is exact as well.

(2) An R-module M is called faithfully flat if the complex of R-modules N1 →
N2 → N3 is exact if and only if the sequence M ⊗R N1 → M ⊗R N2 →
M ⊗R N3 is exact.

(3) A ring map R→ S is called flat if S is flat as an R-module.
(4) A ring map R → S is called faithfully flat if S is faithfully flat as an

R-module.

Here is an example of how you can use the flatness condition.

Lemma 10.39.2.0BBY Let R be a ring. Let I, J ⊂ R be ideals. Let M be a flat R-module.
Then IM ∩ JM = (I ∩ J)M .

Proof. Consider the exact sequence 0→ I ∩ J → R→ R/I ⊕R/J . Tensoring with
the flat module M we obtain an exact sequence

0→ (I ∩ J)⊗RM →M →M/IM ⊕M/JM

Since the kernel of M →M/IM ⊕M/JM is equal to IM ∩ JM we conclude. □

Lemma 10.39.3.05UT Let R be a ring. Let {Mi, φii′} be a directed system of flat
R-modules. Then colimiMi is a flat R-module.
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Proof. This follows as ⊗ commutes with colimits and because directed colimits are
exact, see Lemma 10.8.8. □

Lemma 10.39.4.00HC A composition of (faithfully) flat ring maps is (faithfully) flat. If
R → R′ is (faithfully) flat, and M ′ is a (faithfully) flat R′-module, then M ′ is a
(faithfully) flat R-module.
Proof. The first statement of the lemma is a particular case of the second, so it is
clearly enough to prove the latter. Let R→ R′ be a flat ring map, and M ′ a flat R′-
module. We need to prove that M ′ is a flat R-module. Let N1 → N2 → N3 be an
exact complex of R-modules. Then, the complex R′⊗RN1 → R′⊗RN2 → R′⊗RN3
is exact (since R′ is flat as an R-module), and so the complex M ′⊗R′ (R′ ⊗R N1)→
M ′ ⊗R′ (R′ ⊗R N2)→ M ′ ⊗R′ (R′ ⊗R N3) is exact (since M ′ is a flat R′-module).
Since M ′ ⊗R′ (R′ ⊗R N) ∼= (M ′ ⊗R′ R′) ⊗R N ∼= M ′ ⊗R N for any R-module N
functorially (by Lemmas 10.12.7 and 10.12.3), this complex is isomorphic to the
complex M ′ ⊗R N1 →M ′ ⊗R N2 →M ′ ⊗R N3, which is therefore also exact. This
shows that M ′ is a flat R-module. Tracing this argument backwards, we can show
that if R → R′ is faithfully flat, and if M ′ is faithfully flat as an R′-module, then
M ′ is faithfully flat as an R-module. □

Lemma 10.39.5.00HD Let M be an R-module. The following are equivalent:
(1)00HE M is flat over R.
(2)00HF for every injection of R-modules N ⊂ N ′ the map N ⊗RM → N ′ ⊗RM

is injective.
(3)00HG for every ideal I ⊂ R the map I ⊗RM → R⊗RM = M is injective.
(4)00HH for every finitely generated ideal I ⊂ R the map I⊗RM → R⊗RM = M

is injective.
Proof. The implications (1) implies (2) implies (3) implies (4) are all trivial. Thus
we prove (4) implies (1). Suppose that N1 → N2 → N3 is exact. Let K =
Ker(N2 → N3) and Q = Im(N2 → N3). Then we get maps

N1 ⊗RM → K ⊗RM → N2 ⊗RM → Q⊗RM → N3 ⊗RM
Observe that the first and third arrows are surjective. Thus if we show that the
second and fourth arrows are injective, then we are done3. Hence it suffices to show
that −⊗RM transforms injective R-module maps into injective R-module maps.
AssumeK → N is an injectiveR-module map and let x ∈ Ker(K⊗RM → N⊗RM).
We have to show that x is zero. The R-module K is the union of its finite R-
submodules; hence, K⊗RM is the colimit of R-modules of the form Ki⊗RM where
Ki runs over all finite R-submodules of K (because tensor product commutes with
colimits). Thus, for some i our x comes from an element xi ∈ Ki ⊗RM . Thus we
may assume that K is a finite R-module. Assume this. We regard the injection
K → N as an inclusion, so that K ⊂ N .

3Here is the argument in more detail: Assume that we know that the second and fourth ar-
rows are injective. Lemma 10.12.10 (applied to the exact sequence K → N2 → Q→ 0) yields that
the sequence K⊗RM → N2⊗RM → Q⊗RM → 0 is exact. Hence, Ker (N2 ⊗RM → Q⊗RM) =
Im (K ⊗RM → N2 ⊗RM). Since Im (K ⊗RM → N2 ⊗RM) = Im (N1 ⊗RM → N2 ⊗RM)
(due to the surjectivity of N1 ⊗R M → K ⊗R M) and Ker (N2 ⊗RM → Q⊗RM) =
Ker (N2 ⊗RM → N3 ⊗RM) (due to the injectivity of Q ⊗R M → N3 ⊗R M), this be-
comes Ker (N2 ⊗RM → N3 ⊗RM) = Im (N1 ⊗RM → N2 ⊗RM), which shows that the functor
−⊗RM is exact, whence M is flat.
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The R-module N is the union of its finite R-submodules that contain K. Hence,
N ⊗R M is the colimit of R-modules of the form Ni ⊗R M where Ni runs over
all finite R-submodules of N that contain K (again since tensor product commutes
with colimits). Notice that this is a colimit over a directed system (since the sum of
two finite submodules of N is again finite). Hence, (by Lemma 10.8.4) the element
x ∈ K ⊗R M maps to zero in at least one of these R-modules Ni ⊗R M (since x
maps to zero in N ⊗RM). Thus we may assume N is a finite R-module.

Assume N is a finite R-module. Write N = R⊕n/L and K = L′/L for some
L ⊂ L′ ⊂ R⊕n. For any R-submodule G ⊂ R⊕n, we have a canonical map G ⊗R
M → M⊕n obtained by composing G ⊗R M → Rn ⊗R M = M⊕n. It suffices to
prove that L ⊗R M → M⊕n and L′ ⊗R M → M⊕n are injective. Namely, if so,
then we see that K ⊗RM = L′ ⊗RM/L⊗RM →M⊕n/L⊗RM is injective too4.

Thus it suffices to show that L ⊗R M → M⊕n is injective when L ⊂ R⊕n is an
R-submodule. We do this by induction on n. The base case n = 1 we handle below.
For the induction step assume n > 1 and set L′ = L∩R⊕ 0⊕n−1. Then L′′ = L/L′

is a submodule of R⊕n−1. We obtain a diagram

L′ ⊗RM //

��

L⊗RM //

��

L′′ ⊗RM //

��

0

0 // M // M⊕n // M⊕n−1 // 0

By induction hypothesis and the base case the left and right vertical arrows are
injective. The rows are exact. It follows that the middle vertical arrow is injective
too.

The base case of the induction above is when L ⊂ R is an ideal. In other words,
we have to show that I ⊗R M → M is injective for any ideal I of R. We know
this is true when I is finitely generated. However, I =

⋃
Iα is the union of the

finitely generated ideals Iα contained in it. In other words, I = colim Iα. Since
⊗ commutes with colimits we see that I ⊗R M = colim Iα ⊗R M and since all
the morphisms Iα ⊗R M → M are injective by assumption, the same is true for
I ⊗RM →M . □

Lemma 10.39.6.05UU Let {Ri, φii′} be a system of rings over the directed set I. Let
R = colimiRi.

(1) If M is an R-module such that M is flat as an Ri-module for all i, then
M is flat as an R-module.

(2) For i ∈ I let Mi be a flat Ri-module and for i′ ≥ i let fii′ : Mi →Mi′ be
a φii′ -linear map such that fi′i′′ ◦ fii′ = fii′′ . Then M = colimi∈IMi is a
flat R-module.

Proof. Part (1) is a special case of part (2) with Mi = M for all i and fii′ = idM .
Proof of (2). Let a ⊂ R be a finitely generated ideal. By Lemma 10.39.5 it suffices
to show that a⊗RM →M is injective. We can find an i ∈ I and a finitely generated

4This becomes obvious if we identify L′⊗RM and L⊗RM with submodules of M⊕n (which
is legitimate since the maps L⊗R M → M⊕n and L′ ⊗R M → M⊕n are injective and commute
with the obvious map L′ ⊗RM → L⊗RM).

https://stacks.math.columbia.edu/tag/05UU
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ideal a′ ⊂ Ri such that a = a′R. Then a = colimi′≥i a
′Ri′ . Since ⊗ commutes with

colimits the map a⊗RM →M is the colimit of the maps

a′Ri′ ⊗Ri′ Mi′ −→Mi′

These maps are all injective by assumption. Since colimits over I are exact by
Lemma 10.8.8 we win. □

Lemma 10.39.7.00HI Suppose that M is (faithfully) flat over R, and that R→ R′ is a
ring map. Then M ⊗R R′ is (faithfully) flat over R′.

Proof. For any R′-module N we have a canonical isomorphism N ⊗R′ (R′⊗RM) =
N ⊗RM . Hence the desired exactness properties of the functor −⊗R′ (R′ ⊗RM)
follow from the corresponding exactness properties of the functor −⊗RM . □

Lemma 10.39.8.00HJ Let R → R′ be a faithfully flat ring map. Let M be a module
over R, and set M ′ = R′⊗RM . Then M is flat over R if and only if M ′ is flat over
R′.

Proof. By Lemma 10.39.7 we see that if M is flat then M ′ is flat. For the converse,
suppose that M ′ is flat. Let N1 → N2 → N3 be an exact sequence of R-modules.
We want to show that N1 ⊗RM → N2 ⊗RM → N3 ⊗RM is exact. We know that
N1⊗RR′ → N2⊗RR′ → N3⊗RR′ is exact, because R→ R′ is flat. Flatness of M ′

implies that N1⊗RR′⊗R′ M ′ → N2⊗RR′⊗R′ M ′ → N3⊗RR′⊗R′ M ′ is exact. We
may write this as N1 ⊗RM ⊗R R′ → N2 ⊗RM ⊗R R′ → N3 ⊗RM ⊗R R′. Finally,
faithful flatness implies that N1 ⊗RM → N2 ⊗RM → N3 ⊗RM is exact. □

Lemma 10.39.9.0584 Let R be a ring. Let S → S′ be a flat map of R-algebras. Let M
be a module over S, and set M ′ = S′ ⊗S M .

(1) If M is flat over R, then M ′ is flat over R.
(2) If S → S′ is faithfully flat, then M is flat over R if and only if M ′ is flat

over R.

Proof. Let N → N ′ be an injection of R-modules. By the flatness of S → S′ we
have

Ker(N ⊗RM → N ′ ⊗RM)⊗S S′ = Ker(N ⊗RM ′ → N ′ ⊗RM ′)

If M is flat over R, then the left hand side is zero and we find that M ′ is flat over
R by the second characterization of flatness in Lemma 10.39.5. If M ′ is flat over
R then we have the vanishing of the right hand side and if in addition S → S′ is
faithfully flat, this implies that Ker(N ⊗R M → N ′ ⊗R M) is zero which in turn
shows that M is flat over R. □

Lemma 10.39.10.039V Let R→ S be a ring map. Let M be an S-module. If M is flat
as an R-module and faithfully flat as an S-module, then R→ S is flat.

Proof. Let N1 → N2 → N3 be an exact sequence of R-modules. By assumption
N1 ⊗RM → N2 ⊗RM → N3 ⊗RM is exact. We may write this as

N1 ⊗R S ⊗S M → N2 ⊗R S ⊗S M → N3 ⊗R S ⊗S M.

By faithful flatness of M over S we conclude that N1⊗R S → N2⊗R S → N3⊗R S
is exact. Hence R→ S is flat. □

https://stacks.math.columbia.edu/tag/00HI
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Let R be a ring. Let M be an R-module. Let
∑
fixi = 0 be a relation in M . We

say the relation
∑
fixi is trivial if there exist an integer m ≥ 0, elements yj ∈ M ,

j = 1, . . . ,m, and elements aij ∈ R, i = 1, . . . , n, j = 1, . . . ,m such that

xi =
∑

j
aijyj ,∀i, and 0 =

∑
i
fiaij ,∀j.

Lemma 10.39.11 (Equational criterion of flatness).00HK A module M over R is flat if
and only if every relation in M is trivial.

Proof. AssumeM is flat and let
∑
fixi = 0 be a relation inM . Let I = (f1, . . . , fn),

and let K = Ker(Rn → I, (a1, . . . , an) 7→
∑
i aifi). So we have the short exact

sequence 0 → K → Rn → I → 0. Then
∑
fi ⊗ xi is an element of I ⊗RM which

maps to zero in R⊗RM = M . By flatness
∑
fi⊗xi is zero in I⊗RM . Thus there

exists an element of K ⊗RM mapping to
∑
ei⊗ xi ∈ Rn⊗RM where ei is the ith

basis element of Rn. Write this element as
∑
kj ⊗ yj and then write the image of

kj in Rn as
∑
aijei to get the result.

Assume every relation is trivial, let I be a finitely generated ideal, and let x =∑
fi ⊗ xi be an element of I ⊗R M mapping to zero in R ⊗R M = M . This just

means exactly that
∑
fixi is a relation in M . And the fact that it is trivial implies

easily that x is zero, because

x =
∑

fi ⊗ xi =
∑

fi ⊗
(∑

aijyj

)
=
∑(∑

fiaij

)
⊗ yj = 0

□

Lemma 10.39.12.00HL Suppose that R is a ring, 0 → M ′′ → M ′ → M → 0 a short
exact sequence, and N an R-module. If M is flat then N ⊗R M ′′ → N ⊗R M ′ is
injective, i.e., the sequence

0→ N ⊗RM ′′ → N ⊗RM ′ → N ⊗RM → 0

is a short exact sequence.

Proof. Let R(I) → N be a surjection from a free module onto N with kernel K.
The result follows from the snake lemma applied to the following diagram

0 0 0
↑ ↑ ↑

M ′′ ⊗R N → M ′ ⊗R N → M ⊗R N → 0
↑ ↑ ↑

0 → (M ′′)(I) → (M ′)(I) → M (I) → 0
↑ ↑ ↑

M ′′ ⊗R K → M ′ ⊗R K → M ⊗R K → 0
↑
0

with exact rows and columns. The middle row is exact because tensoring with the
free module R(I) is exact. □

Lemma 10.39.13.00HM Suppose that 0→M ′ →M →M ′′ → 0 is a short exact sequence
of R-modules. If M ′ and M ′′ are flat so is M . If M and M ′′ are flat so is M ′.

https://stacks.math.columbia.edu/tag/00HK
https://stacks.math.columbia.edu/tag/00HL
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Proof. We will use the criterion that a module N is flat if for every ideal I ⊂ R
the map N ⊗R I → N is injective, see Lemma 10.39.5. Consider an ideal I ⊂ R.
Consider the diagram

0 → M ′ → M → M ′′ → 0
↑ ↑ ↑

M ′ ⊗R I → M ⊗R I → M ′′ ⊗R I → 0
with exact rows. This immediately proves the first assertion. The second follows
because if M ′′ is flat then the lower left horizontal arrow is injective by Lemma
10.39.12. □

Lemma 10.39.14.00HO Let R be a ring. Let M be an R-module. The following are
equivalent

(1) M is faithfully flat, and
(2) M is flat and for all R-module homomorphisms α : N → N ′ we have

α = 0 if and only if α⊗ idM = 0.

Proof. If M is faithfully flat, then 0 → Ker(α) → N → N ′ is exact if and only
if the same holds after tensoring with M . This proves (1) implies (2). For the
other, assume (2). Let N1 → N2 → N3 be a complex, and assume the complex
N1⊗RM → N2⊗RM → N3⊗RM is exact. Take x ∈ Ker(N2 → N3), and consider
the map α : R→ N2/ Im(N1), r 7→ rx+ Im(N1). By the exactness of the complex
−⊗RM we see that α⊗ idM is zero. By assumption we get that α is zero. Hence
x is in the image of N1 → N2. □

Lemma 10.39.15.00HP Let M be a flat R-module. The following are equivalent:
(1) M is faithfully flat,
(2) for every nonzero R-module N , then tensor product M ⊗R N is nonzero,
(3) for all p ∈ Spec(R) the tensor product M ⊗R κ(p) is nonzero, and
(4) for all maximal ideals m of R the tensor product M ⊗R κ(m) = M/mM

is nonzero.

Proof. Assume M faithfully flat and N ̸= 0. By Lemma 10.39.14 the nonzero map
1 : N → N induces a nonzero map M ⊗R N → M ⊗R N , so M ⊗R N ̸= 0. Thus
(1) implies (2). The implications (2) ⇒ (3) ⇒ (4) are immediate.
Assume (4). Suppose that N1 → N2 → N3 is a complex and suppose that N1 ⊗R
M → N2 ⊗R M → N3 ⊗R M is exact. Let H be the cohomology of the complex,
so H = Ker(N2 → N3)/ Im(N1 → N2). To finish the proof we will show H = 0.
By flatness we see that H ⊗R M = 0. Take x ∈ H and let I = {f ∈ R | fx = 0}
be its annihilator. Since R/I ⊂ H we get M/IM ⊂ H ⊗R M = 0 by flatness of
M . If I ̸= R we may choose a maximal ideal I ⊂ m ⊂ R. This immediately gives
a contradiction. □

Lemma 10.39.16.00HQ Let R→ S be a flat ring map. The following are equivalent:
(1) R→ S is faithfully flat,
(2) the induced map on Spec is surjective, and
(3) any closed point x ∈ Spec(R) is in the image of the map Spec(S) →

Spec(R).

Proof. This follows quickly from Lemma 10.39.15, because we saw in Remark
10.17.8 that p is in the image if and only if the ring S ⊗R κ(p) is nonzero. □

https://stacks.math.columbia.edu/tag/00HO
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Lemma 10.39.17.00HR A flat local ring homomorphism of local rings is faithfully flat.

Proof. Immediate from Lemma 10.39.16. □

Flatness meshes well with localization.

Lemma 10.39.18.00HT Let R be a ring. Let S ⊂ R be a multiplicative subset.
(1) The localization S−1R is a flat R-algebra.
(2) If M is an S−1R-module, then M is a flat R-module if and only if M is a

flat S−1R-module.
(3) Suppose M is an R-module. Then M is a flat R-module if and only if Mp

is a flat Rp-module for all primes p of R.
(4) Suppose M is an R-module. Then M is a flat R-module if and only if Mm

is a flat Rm-module for all maximal ideals m of R.
(5) Suppose R → A is a ring map, M is an A-module, and g1, . . . , gm ∈ A

are elements generating the unit ideal of A. Then M is flat over R if and
only if each localization Mgi is flat over R.

(6) Suppose R→ A is a ring map, and M is an A-module. Then M is a flat
R-module if and only if the localization Mq is a flat Rp-module (with p
the prime of R lying under q) for all primes q of A.

(7) Suppose R → A is a ring map, and M is an A-module. Then M is a
flat R-module if and only if the localization Mm is a flat Rp-module (with
p = R ∩m) for all maximal ideals m of A.

Proof. Let us prove the last statement of the lemma. In the proof we will use
repeatedly that localization is exact and commutes with tensor product, see Sections
10.9 and 10.12.
Suppose R → A is a ring map, and M is an A-module. Assume that Mm is a flat
Rp-module for all maximal ideals m of A (with p = R∩m). Let I ⊂ R be an ideal.
We have to show the map I ⊗R M → M is injective. We can think of this as a
map of A-modules. By assumption the localization (I ⊗RM)m → Mm is injective
because (I ⊗R M)m = Ip ⊗Rp

Mm. Hence the kernel of I ⊗R M → M is zero by
Lemma 10.23.1. Hence M is flat over R.
Conversely, assume M is flat over R. Pick a prime q of A lying over the prime p
of R. Suppose that I ⊂ Rp is an ideal. We have to show that I ⊗Rp

Mq → Mq is
injective. We can write I = Jp for some ideal J ⊂ R. Then the map I⊗Rp

Mq →Mq

is just the localization (at q) of the map J ⊗R M → M which is injective. Since
localization is exact we see that Mq is a flat Rp-module.
This proves (7) and (6). The other statements follow in a straightforward way from
the last statement (proofs omitted). □

Lemma 10.39.19.00HS Let R → S be flat. Let p ⊂ p′ be primes of R. Let q′ ⊂ S be a
prime of S mapping to p′. Then there exists a prime q ⊂ q′ mapping to p.

Proof. By Lemma 10.39.18 the local ring map Rp′ → Sq′ is flat. By Lemma 10.39.17
this local ring map is faithfully flat. By Lemma 10.39.16 there is a prime mapping
to pRp′ . The inverse image of this prime in S does the job. □

The property of R→ S described in the lemma is called the “going down property”.
See Definition 10.41.1.
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Lemma 10.39.20.090N Let R be a ring. Let {Si, φii′} be a directed system of faithfully
flat R-algebras. Then S = colimi Si is a faithfully flat R-algebra.

Proof. By Lemma 10.39.3 we see that S is flat. Let m ⊂ R be a maximal ideal.
By Lemma 10.39.16 none of the rings Si/mSi is zero. Hence S/mS = colimSi/mSi
is nonzero as well because 1 is not equal to zero. Thus the image of Spec(S) →
Spec(R) contains m and we see that R→ S is faithfully flat by Lemma 10.39.16. □

10.40. Supports and annihilators

080S Some very basic definitions and lemmas.

Definition 10.40.1.00L1 Let R be a ring and let M be an R-module. The support of M
is the set

Supp(M) = {p ∈ Spec(R) |Mp ̸= 0}

Lemma 10.40.2.0585 Let R be a ring. Let M be an R-module. Then
M = (0)⇔ Supp(M) = ∅.

Proof. Actually, Lemma 10.23.1 even shows that Supp(M) always contains a max-
imal ideal if M is not zero. □

Definition 10.40.3.07T7 Let R be a ring. Let M be an R-module.
(1) Given an element m ∈M the annihilator of m is the ideal

AnnR(m) = Ann(m) = {f ∈ R | fm = 0}.
(2) The annihilator of M is the ideal

AnnR(M) = Ann(M) = {f ∈ R | fm = 0 ∀m ∈M}.

Lemma 10.40.4.07T8 Let R → S be a flat ring map. Let M be an R-module and
m ∈ M . Then AnnR(m)S = AnnS(m ⊗ 1). If M is a finite R-module, then
AnnR(M)S = AnnS(M ⊗R S).

Proof. Set I = AnnR(m). By definition there is an exact sequence 0 → I →
R → M where the map R → M sends f to fm. Using flatness we obtain an
exact sequence 0 → I ⊗R S → S → M ⊗R S which proves the first assertion. If
m1, . . . ,mn is a set of generators of M then AnnR(M) =

⋂
AnnR(mi). Similarly

AnnS(M ⊗R S) =
⋂

AnnS(mi ⊗ 1). Set Ii = AnnR(mi). Then it suffices to show
that

⋂
i=1,...,n(IiS) = (

⋂
i=1,...,n Ii)S. This is Lemma 10.39.2. □

Lemma 10.40.5.00L2 Let R be a ring and let M be an R-module. If M is finite, then
Supp(M) is closed. More precisely, if I = Ann(M) is the annihilator of M , then
V (I) = Supp(M).

Proof. We will show that V (I) = Supp(M).
Suppose p ∈ Supp(M). Then Mp ̸= 0. Choose an element m ∈ M whose image in
Mp is nonzero. Then the annihilator of m is contained in p by construction of the
localization Mp. Hence a fortiori I = Ann(M) must be contained in p.
Conversely, suppose that p ̸∈ Supp(M). Then Mp = 0. Let x1, . . . , xr ∈ M be
generators. By Lemma 10.9.9 there exists an f ∈ R, f ̸∈ p such that xi/1 = 0
in Mf . Hence fnixi = 0 for some ni ≥ 1. Hence fnM = 0 for n = max{ni} as
desired. □
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Lemma 10.40.6.0BUR Let R→ R′ be a ring map and let M be a finite R-module. Then
Supp(M ⊗R R′) is the inverse image of Supp(M).

Proof. Let p ∈ Supp(M). By Nakayama’s lemma (Lemma 10.20.1) we see that

M ⊗R κ(p) = Mp/pMp

is a nonzero κ(p) vector space. Hence for every prime p′ ⊂ R′ lying over p we see
that

(M ⊗R R′)p′/p′(M ⊗R R′)p′ = (M ⊗R R′)⊗R′ κ(p′) = M ⊗R κ(p)⊗κ(p) κ(p′)

is nonzero. This implies p′ ∈ Supp(M ⊗R R′). For the converse, if p′ ⊂ R′ is a
prime lying over an arbitrary prime p ⊂ R, then

(M ⊗R R′)p′ = Mp ⊗Rp
R′

p′ .

Hence if p′ ∈ Supp(M ⊗R R′) lies over the prime p ⊂ R, then p ∈ Supp(M). □

Lemma 10.40.7.07Z5 Let R be a ring, let M be an R-module, and let m ∈ M . Then
p ∈ V (Ann(m)) if and only if m does not map to zero in Mp.

Proof. We may replace M by Rm ⊂ M . Then (1) Ann(m) = Ann(M) and (2) m
does not map to zero in Mp if and only if p ∈ Supp(M). The result now follows
from Lemma 10.40.5. □

Lemma 10.40.8.051B Let R be a ring and let M be an R-module. If M is a finitely
presentedR-module, then Supp(M) is a closed subset of Spec(R) whose complement
is quasi-compact.

Proof. Choose a presentation

R⊕m −→ R⊕n −→M → 0

Let A ∈ Mat(n × m,R) be the matrix of the first map. By Nakayama’s Lemma
10.20.1 we see that

Mp ̸= 0⇔M ⊗ κ(p) ̸= 0⇔ rank(A mod p) < n.

Hence, if I is the ideal of R generated by the n× n minors of A, then Supp(M) =
V (I). Since I is finitely generated, say I = (f1, . . . , ft), we see that Spec(R) \V (I)
is a finite union of the standard opens D(fi), hence quasi-compact. □

Lemma 10.40.9.00L3 Let R be a ring and let M be an R-module.
(1) If M is finite then the support of M/IM is Supp(M) ∩ V (I).
(2) If N ⊂M , then Supp(N) ⊂ Supp(M).
(3) If Q is a quotient module of M then Supp(Q) ⊂ Supp(M).
(4) If 0 → N → M → Q → 0 is a short exact sequence then Supp(M) =

Supp(Q) ∪ Supp(N).

Proof. The functors M 7→Mp are exact. This immediately implies all but the first
assertion. For the first assertion we need to show that Mp ̸= 0 and I ⊂ p implies
(M/IM)p = Mp/IMp ̸= 0. This follows from Nakayama’s Lemma 10.20.1. □
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10.41. Going up and going down

00HU Suppose p, p′ are primes of the ring R. Let X = Spec(R) with the Zariski topology.
Denote x ∈ X the point corresponding to p and x′ ∈ X the point corresponding to
p′. Then we have:

x′ ⇝ x⇔ p′ ⊂ p.

In words: x is a specialization of x′ if and only if p′ ⊂ p. See Topology, Section
5.19 for terminology and notation.

Definition 10.41.1.00HV Let φ : R→ S be a ring map.
(1) We say a φ : R → S satisfies going up if given primes p ⊂ p′ in R and a

prime q in S lying over p there exists a prime q′ of S such that (a) q ⊂ q′,
and (b) q′ lies over p′.

(2) We say a φ : R→ S satisfies going down if given primes p ⊂ p′ in R and a
prime q′ in S lying over p′ there exists a prime q of S such that (a) q ⊂ q′,
and (b) q lies over p.

So far we have see the following cases of this:
(1) An integral ring map satisfies going up, see Lemma 10.36.22.
(2) As a special case finite ring maps satisfy going up.
(3) As a special case quotient maps R→ R/I satisfy going up.
(4) A flat ring map satisfies going down, see Lemma 10.39.19
(5) As a special case any localization satisfies going down.
(6) An extension R ⊂ S of domains, with R normal and S integral over R

satisfies going down, see Proposition 10.38.7.
Here is another case where going down holds.

Lemma 10.41.2.0407 Let R → S be a ring map. If the induced map φ : Spec(S) →
Spec(R) is open, then R→ S satisfies going down.

Proof. Suppose that p ⊂ p′ ⊂ R and q′ ⊂ S lies over p′. As φ is open, for every
g ∈ S, g ̸∈ q′ we see that p is in the image of D(g) ⊂ Spec(S). In other words
Sg⊗R κ(p) is not zero. Since Sq′ is the directed colimit of these Sg this implies that
Sq′ ⊗R κ(p) is not zero, see Lemmas 10.9.9 and 10.12.9. Hence p is in the image of
Spec(Sq′)→ Spec(R) as desired. □

Lemma 10.41.3.00HW Let R→ S be a ring map.
(1) R → S satisfies going down if and only if generalizations lift along the

map Spec(S)→ Spec(R), see Topology, Definition 5.19.4.
(2) R → S satisfies going up if and only if specializations lift along the map

Spec(S)→ Spec(R), see Topology, Definition 5.19.4.

Proof. Omitted. □

Lemma 10.41.4.00HX Suppose R→ S and S → T are ring maps satisfying going down.
Then so does R→ T . Similarly for going up.

Proof. According to Lemma 10.41.3 this follows from Topology, Lemma 5.19.5 □

Lemma 10.41.5.00HY Let R → S be a ring map. Let T ⊂ Spec(R) be the image of
Spec(S). If T is stable under specialization, then T is closed.
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Proof. We give two proofs.
First proof. Let p ⊂ R be a prime ideal such that the corresponding point of
Spec(R) is in the closure of T . This means that for every f ∈ R, f ̸∈ p we have
D(f) ∩ T ̸= ∅. Note that D(f) ∩ T is the image of Spec(Sf ) in Spec(R). Hence we
conclude that Sf ̸= 0. In other words, 1 ̸= 0 in the ring Sf . Since Sp is the directed
colimit of the rings Sf we conclude that 1 ̸= 0 in Sp. In other words, Sp ̸= 0 and
considering the image of Spec(Sp) → Spec(S) → Spec(R) we see there exists a
p′ ∈ T with p′ ⊂ p. As we assumed T closed under specialization we conclude p is
a point of T as desired.
Second proof. Let I = Ker(R → S). We may replace R by R/I. In this case the
ring map R → S is injective. By Lemma 10.30.5 all the minimal primes of R are
contained in the image T . Hence if T is stable under specialization then it contains
all primes. □

Lemma 10.41.6.00HZ Let R→ S be a ring map. The following are equivalent:
(1) Going up holds for R→ S, and
(2) the map Spec(S)→ Spec(R) is closed.

Proof. It is a general fact that specializations lift along a closed map of topological
spaces, see Topology, Lemma 5.19.7. Hence the second condition implies the first.
Assume that going up holds for R → S. Let V (I) ⊂ Spec(S) be a closed set.
We want to show that the image of V (I) in Spec(R) is closed. The ring map
S → S/I obviously satisfies going up. Hence R → S → S/I satisfies going up, by
Lemma 10.41.4. Replacing S by S/I it suffices to show the image T of Spec(S)
in Spec(R) is closed. By Topology, Lemmas 5.19.2 and 5.19.6 this image is stable
under specialization. Thus the result follows from Lemma 10.41.5. □

Lemma 10.41.7.00I0 Let R be a ring. Let E ⊂ Spec(R) be a constructible subset.
(1) If E is stable under specialization, then E is closed.
(2) If E is stable under generalization, then E is open.

Proof. First proof. The first assertion follows from Lemma 10.41.5 combined with
Lemma 10.29.4. The second follows because the complement of a constructible
set is constructible (see Topology, Lemma 5.15.2), the first part of the lemma and
Topology, Lemma 5.19.2.
Second proof. Since Spec(R) is a spectral space by Lemma 10.26.2 this is a special
case of Topology, Lemma 5.23.6. □

Proposition 10.41.8.00I1 Let R→ S be flat and of finite presentation. Then Spec(S)→
Spec(R) is open. More generally this holds for any ring map R → S of finite
presentation which satisfies going down.

Proof. If R→ S is flat, then R→ S satisfies going down by Lemma 10.39.19. Thus
to prove the lemma we may assume that R→ S has finite presentation and satisfies
going down.
Since the standard opens D(g) ⊂ Spec(S), g ∈ S form a basis for the topology, it
suffices to prove that the image of D(g) is open. Recall that Spec(Sg)→ Spec(S) is
a homeomorphism of Spec(Sg) onto D(g) (Lemma 10.17.6). Since S → Sg satisfies
going down (see above), we see that R → Sg satisfies going down by Lemma
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10.41.4. Thus after replacing S by Sg we see it suffices to prove the image is open.
By Chevalley’s theorem (Theorem 10.29.10) the image is a constructible set E. And
E is stable under generalization because R→ S satisfies going down, see Topology,
Lemmas 5.19.2 and 5.19.6. Hence E is open by Lemma 10.41.7. □

Lemma 10.41.9.037F Let k be a field, and let R, S be k-algebras. Let S′ ⊂ S be a sub
k-algebra, and let f ∈ S′ ⊗k R. In the commutative diagram

Spec((S ⊗k R)f )

''

// Spec((S′ ⊗k R)f )

ww
Spec(R)

the images of the diagonal arrows are the same.

Proof. Let p ⊂ R be in the image of the south-west arrow. This means (Lemma
10.17.9) that

(S′ ⊗k R)f ⊗R κ(p) = (S′ ⊗k κ(p))f
is not the zero ring, i.e., S′ ⊗k κ(p) is not the zero ring and the image of f in it
is not nilpotent. The ring map S′ ⊗k κ(p) → S ⊗k κ(p) is injective. Hence also
S ⊗k κ(p) is not the zero ring and the image of f in it is not nilpotent. Hence
(S ⊗k R)f ⊗R κ(p) is not the zero ring. Thus (Lemma 10.17.9) we see that p is in
the image of the south-east arrow as desired. □

Lemma 10.41.10.037G Let k be a field. Let R and S be k-algebras. The map Spec(S⊗k
R)→ Spec(R) is open.

Proof. Let f ∈ S ⊗k R. It suffices to prove that the image of the standard open
D(f) is open. Let S′ ⊂ S be a finite type k-subalgebra such that f ∈ S′ ⊗k R.
The map R → S′ ⊗k R is flat and of finite presentation, hence the image U of
Spec((S′ ⊗k R)f ) → Spec(R) is open by Proposition 10.41.8. By Lemma 10.41.9
this is also the image of D(f) and we win. □

Here is a tricky lemma that is sometimes useful.

Lemma 10.41.11.00EA Let R→ S be a ring map. Let p ⊂ R be a prime. Assume that
(1) there exists a unique prime q ⊂ S lying over p, and
(2) either

(a) going up holds for R→ S, or
(b) going down holds for R → S and there is at most one prime of S

above every prime of R.
Then Sp = Sq.

Proof. Consider any prime q′ ⊂ S which corresponds to a point of Spec(Sp). This
means that p′ = R ∩ q′ is contained in p. Here is a picture

q′ ? S

p′ p R
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Assume (1) and (2)(a). By going up there exists a prime q′′ ⊂ S with q′ ⊂ q′′ and
q′′ lying over p. By the uniqueness of q we conclude that q′′ = q. In other words q′

defines a point of Spec(Sq).
Assume (1) and (2)(b). By going down there exists a prime q′′ ⊂ q lying over p′.
By the uniqueness of primes lying over p′ we see that q′ = q′′. In other words q′

defines a point of Spec(Sq).
In both cases we conclude that the map Spec(Sq)→ Spec(Sp) is bijective. Clearly
this means all the elements of S − q are all invertible in Sp, in other words Sp =
Sq. □

The following lemma is a generalization of going down for flat ring maps.

Lemma 10.41.12.080T Let R→ S be a ring map. Let N be a finite S-module flat over
R. Endow Supp(N) ⊂ Spec(S) with the induced topology. Then generalizations
lift along Supp(N)→ Spec(R).

Proof. The meaning of the statement is as follows. Let p ⊂ p′ ⊂ R be primes. Let
q′ ⊂ S be a prime q′ ∈ Supp(N) Then there exists a prime q ⊂ q′, q ∈ Supp(N)
lying over p. As N is flat over R we see that Nq′ is flat over Rp′ , see Lemma
10.39.18. As Nq′ is finite over Sq′ and not zero since q′ ∈ Supp(N) we see that
Nq′ ⊗Sq′ κ(q′) is nonzero by Nakayama’s Lemma 10.20.1. Thus Nq′ ⊗Rp′ κ(p′) is
also not zero. We conclude from Lemma 10.39.15 that Nq′ ⊗Rp′ κ(p) is nonzero.
Let J ⊂ Sq′⊗Rp′ κ(p) be the annihilator of the finite nonzero module Nq′⊗Rp′ κ(p).
Since J is a proper ideal we can choose a prime q ⊂ S which corresponds to a prime
of Sq′ ⊗Rp′ κ(p)/J . This prime is in the support of N , lies over p, and is contained
in q′ as desired. □

10.42. Separable extensions

030I In this section we talk about separability for nonalgebraic field extensions. This
is closely related to the concept of geometrically reduced algebras, see Definition
10.43.1.

Definition 10.42.1.030O Let K/k be a field extension.
(1) We say K is separably generated over k if there exists a transcendence

basis {xi; i ∈ I} of K/k such that the extension K/k(xi; i ∈ I) is a
separable algebraic extension.

(2) We say K is separable over k if for every subextension k ⊂ K ′ ⊂ K with
K ′ finitely generated over k, the extension K ′/k is separably generated.

With this awkward definition it is not clear that a separably generated field exten-
sion is itself separable. It will turn out that this is the case, see Lemma 10.44.2.

Lemma 10.42.2.030P Let K/k be a separable field extension. For any subextension
K/K ′/k the field extension K ′/k is separable.

Proof. This is direct from the definition. □

Lemma 10.42.3.030Q Let K/k be a separably generated, and finitely generated field
extension. Set r = trdegk(K). Then there exist elements x1, . . . , xr+1 of K such
that

(1) x1, . . . , xr is a transcendence basis of K over k,
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(2) K = k(x1, . . . , xr+1), and
(3) xr+1 is separable over k(x1, . . . , xr).

Proof. Combine the definition with Fields, Lemma 9.19.1. □

Lemma 10.42.4.04KM Let K/k be a finitely generated field extension. There exists a
diagram

K // K ′

k

OO

// k′

OO

where k′/k, K ′/K are finite purely inseparable field extensions such that K ′/k′ is
a separably generated field extension.

Proof. This lemma is only interesting when the characteristic of k is p > 0. Choose
x1, . . . , xr a transcendence basis of K over k. As K is finitely generated over k the
extension k(x1, . . . , xr) ⊂ K is finite. Let K/Ksep/k(x1, . . . , xr) be the subexten-
sion found in Fields, Lemma 9.14.6. If K = Ksep then we are done. We will use
induction on d = [K : Ksep].

Assume that d > 1. Choose a β ∈ K with α = βp ∈ Ksep and β ̸∈ Ksep. Let
P = Tn+a1T

n−1 + . . .+an be the minimal polynomial of α over k(x1, . . . , xr). Let
k′/k be a finite purely inseparable extension obtained by adjoining pth roots such
that each ai is a pth power in k′(x1/p

1 , . . . , x
1/p
r ). Such an extension exists; details

omitted. Let L be a field fitting into the diagram

K // L

k(x1, . . . , xr)

OO

// k′(x1/p
1 , . . . , x

1/p
r )

OO

We may and do assume L is the compositum of K and k′(x1/p
1 , . . . , x

1/p
r ). Let

L/Lsep/k
′(x1/p

1 , . . . , x
1/p
r ) be the subextension found in Fields, Lemma 9.14.6. Then

Lsep is the compositum of Ksep and k′(x1/p
1 , . . . , x

1/p
r ). The element α ∈ Lsep is a

zero of the polynomial P all of whose coefficients are pth powers in k′(x1/p
1 , . . . , x

1/p
r )

and whose roots are pairwise distinct. By Fields, Lemma 9.28.2 we see that α =
(α′)p for some α′ ∈ Lsep. Clearly, this means that β maps to α′ ∈ Lsep. In other

https://stacks.math.columbia.edu/tag/04KM
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words, we get the tower of fields

K // L

Ksep(β) //

OO

Lsep

OO

Ksep
//

OO

Lsep

k(x1, . . . , xr)

OO

// k′(x1/p
1 , . . . , x

1/p
r )

OO

k //

OO

k′

OO

Thus this construction leads to a new situation with [L : Lsep] < [K : Ksep]. By
induction we can find k′ ⊂ k′′ and L ⊂ L′ as in the lemma for the extension L/k′.
Then the extensions k′′/k and L′/K work for the extension K/k. This proves the
lemma. □

10.43. Geometrically reduced algebras

05DS The main result on geometrically reduced algebras is Lemma 10.44.3. We suggest
the reader skip to the lemma after reading the definition.

Definition 10.43.1.030S Let k be a field. Let S be a k-algebra. We say S is geometrically
reduced over k if for every field extension K/k the K-algebra K ⊗k S is reduced.

Let k be a field and let S be a reduced k-algebra. To check that S is geometrically
reduced it will suffice to check that k⊗kS is reduced (where k denotes the algebraic
closure of k). In fact it is enough to check this for finite purely inseparable field
extensions k′/k. See Lemma 10.44.3.

Lemma 10.43.2.030T Elementary properties of geometrically reduced algebras. Let k
be a field. Let S be a k-algebra.

(1) If S is geometrically reduced over k so is every k-subalgebra.
(2) If all finitely generated k-subalgebras of S are geometrically reduced, then

S is geometrically reduced.
(3) A directed colimit of geometrically reduced k-algebras is geometrically

reduced.
(4) If S is geometrically reduced over k, then any localization of S is geomet-

rically reduced over k.

Proof. Omitted. The second and third property follow from the fact that tensor
product commutes with colimits. □

Lemma 10.43.3.04KN Let k be a field. If R is geometrically reduced over k, and S ⊂ R
is a multiplicative subset, then the localization S−1R is geometrically reduced over
k. If R is geometrically reduced over k, then R[x] is geometrically reduced over k.
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https://stacks.math.columbia.edu/tag/030T
https://stacks.math.columbia.edu/tag/04KN


10.43. GEOMETRICALLY REDUCED ALGEBRAS 525

Proof. Omitted. Hints: A localization of a reduced ring is reduced, and localization
commutes with tensor products. □

In the proofs of the following lemmas we will repeatedly use the following observa-
tion: Suppose that R′ ⊂ R and S′ ⊂ S are inclusions of k-algebras. Then the map
R′ ⊗k S′ → R⊗k S is injective.
Lemma 10.43.4.00I3 Let k be a field. Let R, S be k-algebras.

(1) If R ⊗k S is nonreduced, then there exist finitely generated subalgebras
R′ ⊂ R, S′ ⊂ S such that R′ ⊗k S′ is not reduced.

(2) If R ⊗k S contains a nonzero zerodivisor, then there exist finitely gener-
ated subalgebras R′ ⊂ R, S′ ⊂ S such that R′ ⊗k S′ contains a nonzero
zerodivisor.

(3) If R⊗k S contains a nontrivial idempotent, then there exist finitely gener-
ated subalgebras R′ ⊂ R, S′ ⊂ S such that R′ ⊗k S′ contains a nontrivial
idempotent.

Proof. Suppose z ∈ R ⊗k S is nilpotent. We may write z =
∑
i=1,...,n xi ⊗ yi.

Thus we may take R′ the k-subalgebra generated by the xi and S′ the k-subalgebra
generated by the yi. The second and third statements are proved in the same
way. □

Lemma 10.43.5.034N Let k be a field. Let S be a geometrically reduced k-algebra. Let
R be any reduced k-algebra. Then R⊗k S is reduced.
Proof. By Lemma 10.43.4 we may assume that R is of finite type over k. Then R,
as a reduced Noetherian ring, embeds into a finite product of fields (see Lemmas
10.25.4, 10.31.6, and 10.25.1). Hence we may assume R is a finite product of fields.
In this case it follows from Definition 10.43.1 that R⊗k S is reduced. □

Lemma 10.43.6.030U Let k be a field. Let S be a reduced k-algebra. Let K/k be either
a separable field extension, or a separably generated field extension. Then K ⊗k S
is reduced.
Proof. Assume k ⊂ K is separable. By Lemma 10.43.4 we may assume that S is of
finite type over k and K is finitely generated over k. Then S embeds into a finite
product of fields, namely its total ring of fractions (see Lemmas 10.25.1 and 10.25.4).
Hence we may actually assume that S is a domain. We choose x1, . . . , xr+1 ∈ K as
in Lemma 10.42.3. Let P ∈ k(x1, . . . , xr)[T ] be the minimal polynomial of xr+1. It
is a separable polynomial. It is easy to see that k[x1, . . . , xr] ⊗k S = S[x1, . . . , xr]
is a domain. This implies k(x1, . . . , xr) ⊗k S is a domain as it is a localization of
S[x1, . . . , xr]. The ring extension k(x1, . . . , xr) ⊗k S ⊂ K ⊗k S is generated by a
single element xr+1 with a single equation, namely P . Hence K ⊗k S embeds into
F [T ]/(P ) where F is the fraction field of k(x1, . . . , xr) ⊗k S. Since P is separable
this is a finite product of fields and we win.
At this point we do not yet know that a separably generated field extension is
separable, so we have to prove the lemma in this case also. To do this suppose
that {xi}i∈I is a separating transcendence basis for K over k. For any finite set
of elements λj ∈ K there exists a finite subset T ⊂ I such that k({xi}i∈T ) ⊂
k({xi}i∈T ∪ {λj}) is finite separable. Hence we see that K is a directed colimit of
finitely generated and separably generated extensions of k. Thus the argument of
the preceding paragraph applies to this case as well. □
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Lemma 10.43.7.07K2 Let k be a field and let S be a k-algebra. Assume that S is reduced
and that Sp is geometrically reduced for every minimal prime p of S. Then S is
geometrically reduced.

Proof. Since S is reduced the map S →
∏

p minimal Sp is injective, see Lemma
10.25.2. If K/k is a field extension, then the maps

S ⊗k K → (
∏

Sp)⊗k K →
∏

Sp ⊗k K

are injective: the first as k → K is flat and the second by inspection because K is
a free k-module. As Sp is geometrically reduced the ring on the right is reduced.
Thus we see that S ⊗k K is reduced as a subring of a reduced ring. □

Lemma 10.43.8.0C2X Let k′/k be a separable algebraic extension. Then there exists a
multiplicative subset S ⊂ k′ ⊗k k′ such that the multiplication map k′ ⊗k k′ → k′

is identified with k′ ⊗k k′ → S−1(k′ ⊗k k′).

Proof. First assume k′/k is finite separable. Then k′ = k(α), see Fields, Lemma
9.19.1. Let P ∈ k[x] be the minimal polynomial of α over k. Then P is an irre-
ducible, separable, monic polynomial, see Fields, Section 9.12. Then k′[x]/(P ) →
k′⊗k k′,

∑
αix

i 7→ αi⊗αi is an isomorphism. We can factor P = (x−α)Q in k′[x]
and since P is separable we see that Q(α) ̸= 0. Then it is clear that the multiplica-
tive set S′ generated by Q in k′[x]/(P ) works, i.e., that k′ = (S′)−1(k′[x]/(P )). By
transport of structure the image S of S′ in k′ ⊗k k′ works.
In the general case we write k′ =

⋃
ki as the union of its finite subfield extensions

over k. For each i there is a multiplicative subset Si ⊂ ki ⊗k ki such that ki =
S−1
i (ki ⊗k ki). Then S =

⋃
Si ⊂ k′ ⊗k k′ works. □

Lemma 10.43.9.0C2Y Let k′/k be a separable algebraic field extension. Let A be an alge-
bra over k′. Then A is geometrically reduced over k if and only if it is geometrically
reduced over k′.

Proof. Assume A is geometrically reduced over k′. Let K/k be a field extension.
Then K ⊗k k′ is a reduced ring by Lemma 10.43.6. Hence by Lemma 10.43.5 we
find that K ⊗k A = (K ⊗k k′)⊗k′ A is reduced.
Assume A is geometrically reduced over k. Let K/k′ be a field extension. Then

K ⊗k′ A = (K ⊗k A)⊗(k′⊗kk′) k
′

Since k′ ⊗k k′ → k′ is a localization by Lemma 10.43.8, we see that K ⊗k′ A is a
localization of a reduced algebra, hence reduced. □

10.44. Separable extensions, continued

05DT In this section we continue the discussion started in Section 10.42. Let p be a prime
number and let k be a field of characteristic p. In this case we write k1/p for the
extension of k gotten by adjoining pth roots of all the elements of k to k. (In other
words it is the subfield of an algebraic closure of k generated by the pth roots of
elements of k.)

Lemma 10.44.1.030W Let k be a field of characteristic p > 0. Let K/k be a field
extension. The following are equivalent:

(1) K is separable over k,
(2) the ring K ⊗k k1/p is reduced, and
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(3) K is geometrically reduced over k.
Proof. The implication (1)⇒ (3) follows from Lemma 10.43.6. The implication (3)
⇒ (2) is immediate.
Assume (2). Let K/L/k be a subextension such that L is a finitely generated
field extension of k. We have to show that we can find a separating transcendence
basis of L. The assumption implies that L⊗k k1/p is reduced. Let x1, . . . , xr be a
transcendence basis of L over k such that the degree of inseparability of the finite
extension k(x1, . . . , xr) ⊂ L is minimal. If L is separable over k(x1, . . . , xr) then we
win. Assume this is not the case to get a contradiction. Then there exists an element
α ∈ L which is not separable over k(x1, . . . , xr). Let P (T ) ∈ k(x1, . . . , xr)[T ] be
the minimal polynomial of α over k(x1, . . . , xr). After replacing α by fα for some
nonzero f ∈ k[x1, . . . , xr] we may and do assume that P lies in k[x1, . . . , xr, T ].
Because α is not separable P is a polynomial in T p, see Fields, Lemma 9.12.1. Let
dp be the degree of P as a polynomial in T . Since P is the minimal polynomial of
α the monomials

xe1
1 . . . xerr α

e

for e < dp are linearly independent over k in L. We claim that the element ∂P/∂xi ∈
k[x1, . . . , xr, T ] is not zero for at least one i. Namely, if this was not the case, then
P is actually a polynomial in xp1, . . . , x

p
r , T

p. In that case we can consider P 1/p ∈
k1/p[x1, . . . , xr, T ]. This would map to P 1/p(x1, . . . , xr, α) which is a nilpotent
element of k1/p ⊗k L and hence zero. On the other hand, P 1/p(x1, . . . , xr, α) is a
k1/p-linear combination the monomials listed above, hence nonzero in k1/p ⊗k L.
This is a contradiction which proves our claim.
Thus, after renumbering, we may assume that ∂P/∂x1 is not zero. As P is an
irreducible polynomial in T over k(x1, . . . , xr) it is irreducible as a polynomial in
x1, . . . , xr, T , hence by Gauss’s lemma it is irreducible as a polynomial in x1 over
k(x2, . . . , xr, T ). Since the transcendence degree of L is r we see that x2, . . . , xr, α
are algebraically independent. Hence P (X,x2, . . . , xr, α) ∈ k(x2, . . . , xr, α)[X] is
irreducible. It follows that x1 is separably algebraic over k(x2, . . . , xr, α). This
means that the degree of inseparability of the finite extension k(x2, . . . , xr, α) ⊂ L
is less than the degree of inseparability of the finite extension k(x1, . . . , xr) ⊂ L,
which is a contradiction. □

Lemma 10.44.2.030X A separably generated field extension is separable.
Proof. Combine Lemma 10.43.6 with Lemma 10.44.1. □

In the following lemma we will use the notion of the perfect closure which is defined
in Definition 10.45.5.
Lemma 10.44.3.030V Let k be a field. Let S be a k-algebra. The following are equivalent:

(1) k′ ⊗k S is reduced for every finite purely inseparable extension k′ of k,
(2) k1/p ⊗k S is reduced,
(3) kperf ⊗k S is reduced, where kperf is the perfect closure of k,
(4) k ⊗k S is reduced, where k is the algebraic closure of k, and
(5) S is geometrically reduced over k.

Proof. Note that any finite purely inseparable extension k′/k embeds in kperf .
Moreover, k1/p embeds into kperf which embeds into k. Thus it is clear that (5) ⇒
(4) ⇒ (3) ⇒ (2) and that (3) ⇒ (1).
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We prove that (1) ⇒ (5). Assume k′ ⊗k S is reduced for every finite purely insep-
arable extension k′ of k. Let K/k be an extension of fields. We have to show that
K⊗kS is reduced. By Lemma 10.43.4 we reduce to the case where K/k is a finitely
generated field extension. Choose a diagram

K // K ′

k

OO

// k′

OO

as in Lemma 10.42.4. By assumption k′ ⊗k S is reduced. By Lemma 10.43.6 it
follows that K ′ ⊗k S is reduced. Hence we conclude that K ⊗k S is reduced as
desired.
Finally we prove that (2) ⇒ (5). Assume k1/p⊗k S is reduced. Then S is reduced.
Moreover, for each localization Sp at a minimal prime p, the ring k1/p ⊗k Sp is a
localization of k1/p⊗kS hence is reduced. But Sp is a field by Lemma 10.25.1, hence
Sp is geometrically reduced by Lemma 10.44.1. It follows from Lemma 10.43.7 that
S is geometrically reduced. □

10.45. Perfect fields

05DU Here is the definition.

Definition 10.45.1.030Y Let k be a field. We say k is perfect if every field extension of
k is separable over k.

Lemma 10.45.2.030Z A field k is perfect if and only if it is a field of characteristic 0 or
a field of characteristic p > 0 such that every element has a pth root.

Proof. The characteristic zero case is clear. Assume the characteristic of k is p > 0.
If k is perfect, then all the field extensions where we adjoin a pth root of an element
of k have to be trivial, hence every element of k has a pth root. Conversely if every
element has a pth root, then k = k1/p and every field extension of k is separable by
Lemma 10.44.1. □

Lemma 10.45.3.030R Let K/k be a finitely generated field extension. There exists a
diagram

K // K ′

k

OO

// k′

OO

where k′/k, K ′/K are finite purely inseparable field extensions such that K ′/k′ is
a separable field extension. In this situation we can assume that K ′ = k′K is the
compositum, and also that K ′ = (k′ ⊗k K)red.

Proof. By Lemma 10.42.4 we can find such a diagram with K ′/k′ separably gener-
ated. By Lemma 10.44.2 this implies that K ′ is separable over k′. The compositum
k′K is a subextension of K ′/k′ and hence k′ ⊂ k′K is separable by Lemma 10.42.2.
The ring (k′ ⊗k K)red is a domain as for some n ≫ 0 the map x 7→ xp

n maps it
into K. Hence it is a field by Lemma 10.36.19. Thus (k′ ⊗k K)red → K ′ maps it
isomorphically onto k′K. □
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Lemma 10.45.4.046W For every field k there exists a purely inseparable extension k′/k
such that k′ is perfect. The field extension k′/k is unique up to unique isomorphism.

Proof. If the characteristic of k is zero, then k′ = k is the unique choice. Assume
the characteristic of k is p > 0. For every n > 0 there exists a unique algebraic
extension k ⊂ k1/pn such that (a) every element λ ∈ k has a pnth root in k1/pn

and (b) for every element µ ∈ k1/pn we have µpn ∈ k. Namely, consider the ring
map k → k1/pn = k, x 7→ xp

n . This is injective and satisfies (a) and (b). It is clear
that k1/pn ⊂ k1/pn+1 as extensions of k via the map y 7→ yp. Then we can take
k′ =

⋃
k1/pn . Some details omitted. □

Definition 10.45.5.046X Let k be a field. The field extension k′/k of Lemma 10.45.4 is
called the perfect closure of k. Notation kperf/k.

Note that if k′/k is any algebraic purely inseparable extension, then k′ is a subex-
tension of kperf , i.e., kperf/k′/k. Namely, (k′)perf is isomorphic to kperf by the
uniqueness of Lemma 10.45.4.

Lemma 10.45.6.00I4 Let k be a perfect field. Any reduced k algebra is geometrically
reduced over k. Let R, S be k-algebras. Assume both R and S are reduced. Then
the k-algebra R⊗k S is reduced.

Proof. The first statement follows from Lemma 10.44.3. For the second statement
use the first statement and Lemma 10.43.5. □

10.46. Universal homeomorphisms

0BR5 Let k′/k be an algebraic purely inseparable field extension. Then for any k-algebra
R the ring map R→ k′⊗k R induces a homeomorphism of spectra. The reason for
this is the slightly more general Lemma 10.46.7 below.

Lemma 10.46.1.0BR6 Let φ : R→ S be a surjective map with locally nilpotent kernel.
Then φ induces a homeomorphism of spectra and isomorphisms on residue fields.
For any ring map R → R′ the ring map R′ → R′ ⊗R S is surjective with locally
nilpotent kernel.

Proof. By Lemma 10.17.7 the map Spec(S)→ Spec(R) is a homeomorphism onto
the closed subset V (Ker(φ)). Of course V (Ker(φ)) = Spec(R) because every prime
ideal of R contains every nilpotent element of R. This also implies the statement
on residue fields. By right exactness of tensor product we see that Ker(φ)R′ is the
kernel of the surjective map R′ → R′ ⊗R S. Hence the final statement by Lemma
10.32.3. □

Lemma 10.46.2.0BR7 [Alp14, Lemma
3.1.6]

Let k′/k be a field extension. The following are equivalent
(1) for each x ∈ k′ there exists an n > 0 such that xn ∈ k, and
(2) k′ = k or k and k′ have characteristic p > 0 and either k′/k is a purely

inseparable extension or k and k′ are algebraic extensions of Fp.

Proof. Observe that each of the possibilities listed in (2) satisfies (1). Thus we
assume k′/k satisfies (1) and we prove that we are in one of the cases of (2).
Discarding the case k = k′ we may assume k′ ̸= k. It is clear that k′/k is algebraic.
Hence we may assume that k′/k is a nontrivial finite extension. Let k′/k′

sep/k be
the separable subextension found in Fields, Lemma 9.14.6. We have to show that
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k = k′
sep or that k is an algebraic over Fp. Thus we may assume that k′/k is a

nontrivial finite separable extension and we have to show k is algebraic over Fp.
Pick x ∈ k′, x ̸∈ k. Pick n,m > 0 such that xn ∈ k and (x + 1)m ∈ k. Let
k be an algebraic closure of k. We can choose embeddings σ, τ : k′ → k with
σ(x) ̸= τ(x). This follows from the discussion in Fields, Section 9.12 (more precisely,
after replacing k′ by the k-extension generated by x it follows from Fields, Lemma
9.12.8). Then we see that σ(x) = ζτ(x) for some nth root of unity ζ in k. Similarly,
we see that σ(x + 1) = ζ ′τ(x + 1) for some mth root of unity ζ ′ ∈ k. Since
σ(x+ 1) ̸= τ(x+ 1) we see ζ ′ ̸= 1. Then

ζ ′(τ(x) + 1) = ζ ′τ(x+ 1) = σ(x+ 1) = σ(x) + 1 = ζτ(x) + 1
implies that

τ(x)(ζ ′ − ζ) = 1− ζ ′

hence ζ ′ ̸= ζ and
τ(x) = (1− ζ ′)/(ζ ′ − ζ)

Hence every element of k′ which is not in k is algebraic over the prime subfield.
Since k′ is generated over the prime subfield by the elements of k′ which are not in
k, we conclude that k′ (and hence k) is algebraic over the prime subfield.
Finally, if the characteristic of k is 0, the above leads to a contradiction as follows
(we encourage the reader to find their own proof). For every rational number y we
similarly get a root of unity ζy such that σ(x+ y) = ζyτ(x+ y). Then we find

ζτ(x) + y = ζy(τ(x) + y)
and by our formula for τ(x) above we conclude ζy ∈ Q(ζ, ζ ′). Since the number
field Q(ζ, ζ ′) contains only a finite number of roots of unity we find two distinct
rational numbers y, y′ with ζy = ζy′ . Then we conclude that

y − y′ = σ(x+ y)− σ(x+ y′) = ζy(τ(x+ y))− ζy′τ(x+ y′) = ζy(y − y′)
which implies ζy = 1 a contradiction. □

Lemma 10.46.3.0BR8 Let φ : R→ S be a ring map. If
(1) for any x ∈ S there exists n > 0 such that xn is in the image of φ, and
(2) Ker(φ) is locally nilpotent,

then φ induces a homeomorphism on spectra and induces residue field extensions
satisfying the equivalent conditions of Lemma 10.46.2.

Proof. Assume (1) and (2). Let q, q′ be primes of S lying over the same prime ideal
p of R. Suppose x ∈ S with x ∈ q, x ̸∈ q′. Then xn ∈ q and xn ̸∈ q′ for all n > 0.
If xn = φ(y) with y ∈ R for some n > 0 then

xn ∈ q⇒ y ∈ p⇒ xn ∈ q′

which is a contradiction. Hence there does not exist an x as above and we conclude
that q = q′, i.e., the map on spectra is injective. By assumption (2) the kernel
I = Ker(φ) is contained in every prime, hence Spec(R) = Spec(R/I) as topological
spaces. As the induced map R/I → S is integral by assumption (1) Lemma 10.36.17
shows that Spec(S) → Spec(R/I) is surjective. Combining the above we see that
Spec(S)→ Spec(R) is bijective. If x ∈ S is arbitrary, and we pick y ∈ R such that
φ(y) = xn for some n > 0, then we see that the open D(x) ⊂ Spec(S) corresponds
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to the open D(y) ⊂ Spec(R) via the bijection above. Hence we see that the map
Spec(S)→ Spec(R) is a homeomorphism.
To see the statement on residue fields, let q ⊂ S be a prime lying over a prime
ideal p ⊂ R. Let x ∈ κ(q). If we think of κ(q) as the residue field of the local ring
Sq, then we see that x is the image of some y/z ∈ Sq with y ∈ S, z ∈ S, z ̸∈ q.
Choose n,m > 0 such that yn, zm are in the image of φ. Then xnm is the residue
of (y/z)nm = (yn)m/(zm)n which is in the image of Rp → Sq. Hence xnm is in the
image of κ(p)→ κ(q). □

Lemma 10.46.4.0EUH Let φ : R→ S be a ring map. Assume
(a) S is generated as an R-algebra by elements x such that x2, x3 ∈ φ(R),

and
(b) Ker(φ) is locally nilpotent,

Then φ induces isomorphisms on residue fields and a homeomorphism of spectra.
For any ring map R→ R′ the ring map R′ → R′ ⊗R S also satisfies (a) and (b).

Proof. Assume (a) and (b). The map on spectra is closed as S is integral over R,
see Lemmas 10.41.6 and 10.36.22. The image is dense by Lemma 10.30.6. Thus
Spec(S)→ Spec(R) is surjective. If q ⊂ S is a prime lying over p ⊂ R then the field
extension κ(q)/κ(p) is generated by elements α ∈ κ(q) whose square and cube are in
κ(p). Thus clearly α ∈ κ(p) and we find that κ(q) = κ(p). If q, q′ were two distinct
primes lying over p, then at least one of the generators x of S as in (a) would have
distinct images in κ(q) = κ(p) and κ(q′) = κ(p). This would contradict the fact
that both x2 and x3 do have the same image. This proves that Spec(S)→ Spec(R)
is injective hence a homeomorphism (by what was already shown).
Since φ induces a homeomorphism on spectra, it is in particular surjective on
spectra which is a property preserved under any base change, see Lemma 10.30.3.
Therefore for any R → R′ the kernel of the ring map R′ → R′ ⊗R S consists of
nilpotent elements, see Lemma 10.30.6, in other words (b) holds for R′ → R′⊗R S.
It is clear that (a) is preserved under base change. □

Lemma 10.46.5.0545 Let p be a prime number. Let n,m > 0 be two integers. There
exists an integer a such that (x+ y)pa , pa(x+ y) ∈ Z[xpn , pnx, ypm , pmy].

Proof. This is clear for pa(x+y) as soon as a ≥ n,m. In fact, pick a≫ n,m. Write

(x+ y)p
a

=
∑

i,j≥0,i+j=pa

(
pa

i, j

)
xiyj

For every i, j ≥ 0 with i+ j = pa write i = qpn+ r with r ∈ {0, . . . , pn−1} and j =
q′pm+r′ with r′ ∈ {0, . . . , pm−1}. The condition (x+y)pa ∈ Z[xpn , pnx, ypm , pmy]
holds if

pnr+mr′
divides

(
pa

i, j

)
If r = r′ = 0 then the divisibility holds. If r ̸= 0, then we write(

pa

i, j

)
= pa

i

(
pa − 1
i− 1, j

)
Since r ̸= 0 the rational number pa/i has p-adic valuation at least a−(n−1) (because
i is not divisible by pn). Thus

(
pa

i,j

)
is divisible by pa−n+1 in this case. Similarly, we
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see that if r′ ̸= 0, then
(
pa

i,j

)
is divisible by pa−m+1. Picking a = npn+mpm+n+m

will work. □

Lemma 10.46.6.0BR9 Let k′/k be a field extension. Let p be a prime number. The
following are equivalent

(1) k′ is generated as a field extension of k by elements x such that there
exists an n > 0 with xp

n ∈ k and pnx ∈ k, and
(2) k = k′ or the characteristic of k and k′ is p and k′/k is purely inseparable.

Proof. Let x ∈ k′. If there exists an n > 0 with xp
n ∈ k and pnx ∈ k and if the

characteristic is not p, then x ∈ k. If the characteristic is p, then we find xp
n ∈ k

and hence x is purely inseparable over k. □

Lemma 10.46.7.0BRA Let φ : R→ S be a ring map. Let p be a prime number. Assume
(a) S is generated as an R-algebra by elements x such that there exists an

n > 0 with xp
n ∈ φ(R) and pnx ∈ φ(R), and

(b) Ker(φ) is locally nilpotent,
Then φ induces a homeomorphism of spectra and induces residue field extensions
satisfying the equivalent conditions of Lemma 10.46.6. For any ring map R → R′

the ring map R′ → R′ ⊗R S also satisfies (a) and (b).

Proof. Assume (a) and (b). Note that (b) is equivalent to condition (2) of Lemma
10.46.3. Let T ⊂ S be the set of elements x ∈ S such that there exists an integer
n > 0 such that xpn , pnx ∈ φ(R). We claim that T = S. This will prove that
condition (1) of Lemma 10.46.3 holds and hence φ induces a homeomorphism on
spectra. By assumption (a) it suffices to show that T ⊂ S is an R-sub algebra. If
x ∈ T and y ∈ R, then it is clear that yx ∈ T . Suppose x, y ∈ T and n,m > 0 such
that xpn , ypm , pnx, pmy ∈ φ(R). Then (xy)pn+m

, pn+mxy ∈ φ(R) hence xy ∈ T .
We have x+ y ∈ T by Lemma 10.46.5 and the claim is proved.

Since φ induces a homeomorphism on spectra, it is in particular surjective on
spectra which is a property preserved under any base change, see Lemma 10.30.3.
Therefore for any R → R′ the kernel of the ring map R′ → R′ ⊗R S consists of
nilpotent elements, see Lemma 10.30.6, in other words (b) holds for R′ → R′⊗R S.
It is clear that (a) is preserved under base change. Finally, the condition on residue
fields follows from (a) as generators for S as an R-algebra map to generators for
the residue field extensions. □

Lemma 10.46.8.0BRB Let φ : R→ S be a ring map. Assume
(1) φ induces an injective map of spectra,
(2) φ induces purely inseparable residue field extensions.

Then for any ring map R→ R′ properties (1) and (2) are true for R′ → R′ ⊗R S.

Proof. Set S′ = R′ ⊗R S so that we have a commutative diagram of continuous
maps of spectra of rings

Spec(S′) //

��

Spec(S)

��
Spec(R′) // Spec(R)
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Let p′ ⊂ R′ be a prime ideal lying over p ⊂ R. If there is no prime ideal of S
lying over p, then there is no prime ideal of S′ lying over p′. Otherwise, by Remark
10.17.8 there is a unique prime ideal r of F = S⊗Rκ(p) whose residue field is purely
inseparable over κ(p). Consider the ring maps

κ(p)→ F → κ(r)
By Lemma 10.25.1 the ideal r ⊂ F is locally nilpotent, hence we may apply Lemma
10.46.1 to the ring map F → κ(r). We may apply Lemma 10.46.7 to the ring map
κ(p)→ κ(r). Hence the composition and the second arrow in the maps

κ(p′)→ κ(p′)⊗κ(p) F → κ(p′)⊗κ(p) κ(r)
induces bijections on spectra and purely inseparable residue field extensions. This
implies the same thing for the first map. Since

κ(p′)⊗κ(p) F = κ(p′)⊗κ(p) κ(p)⊗R S = κ(p′)⊗R S = κ(p′)⊗R′ R′ ⊗R S
we conclude by the discussion in Remark 10.17.8. □

Lemma 10.46.9.0BRC Let φ : R→ S be a ring map. Assume
(1) φ is integral,
(2) φ induces an injective map of spectra,
(3) φ induces purely inseparable residue field extensions.

Then φ induces a homeomorphism from Spec(S) onto a closed subset of Spec(R)
and for any ring map R→ R′ properties (1), (2), (3) are true for R′ → R′ ⊗R S.

Proof. The map on spectra is closed by Lemmas 10.41.6 and 10.36.22. The prop-
erties are preserved under base change by Lemmas 10.46.8 and 10.36.13. □

Lemma 10.46.10.0BRD Let φ : R→ S be a ring map. Assume
(1) φ is integral,
(2) φ induces an bijective map of spectra,
(3) φ induces purely inseparable residue field extensions.

Then φ induces a homeomorphism on spectra and for any ring map R→ R′ prop-
erties (1), (2), (3) are true for R′ → R′ ⊗R S.

Proof. Follows from Lemmas 10.46.9 and 10.30.3. □

Lemma 10.46.11.09EF Let φ : R→ S be a ring map such that
(1) the kernel of φ is locally nilpotent, and
(2) S is generated as an R-algebra by elements x such that there exist n > 0

and a polynomial P (T ) ∈ R[T ] whose image in S[T ] is (T − x)n.
Then Spec(S)→ Spec(R) is a homeomorphism and R→ S induces purely insepa-
rable extensions of residue fields. Moreover, conditions (1) and (2) remain true on
arbitrary base change.

Proof. We may replace R by R/Ker(φ), see Lemma 10.46.1. Assumption (2) im-
plies S is generated over R by elements which are integral over R. Hence R ⊂ S
is integral (Lemma 10.36.7). In particular Spec(S) → Spec(R) is surjective and
closed (Lemmas 10.36.17, 10.41.6, and 10.36.22).
Let x ∈ S be one of the generators in (2), i.e., there exists an n > 0 be such that
(T − x)n ∈ R[T ]. Let p ⊂ R be a prime. The κ(p) ⊗R S ring is nonzero by the
above and Lemma 10.17.9. If the characteristic of κ(p) is zero then we see that
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nx ∈ R implies 1⊗x is in the image of κ(p)→ κ(p)⊗R S. Hence κ(p)→ κ(p)⊗R S
is an isomorphism. If the characteristic of κ(p) is p > 0, then write n = pkm with
m prime to p. In κ(p)⊗R S[T ] we have

(T − 1⊗ x)n = ((T − 1⊗ x)p
k

)m = (T p
k

− 1⊗ xp
k

)m

and we see that mxpk ∈ R. This implies that 1 ⊗ xpk is in the image of κ(p) →
κ(p) ⊗R S. Hence Lemma 10.46.7 applies to κ(p) → κ(p) ⊗R S. In both cases
we conclude that κ(p) ⊗R S has a unique prime ideal with residue field purely
inseparable over κ(p). By Remark 10.17.8 we conclude that φ is bijective on spectra.
The statement on base change is immediate. □

10.47. Geometrically irreducible algebras

00I2 An algebra S over a field k is geometrically irreducible if the algebra S ⊗k k′ has a
unique minimal prime for every field extension k′/k. In this section we develop a
bit of theory relevant to this notion.

Lemma 10.47.1.00I6 Let R→ S be a ring map. Assume
(a) Spec(R) is irreducible,
(b) R→ S is flat,
(c) R→ S is of finite presentation,
(d) the fibre rings S ⊗R κ(p) have irreducible spectra for a dense collection of

primes p of R.
Then Spec(S) is irreducible. This is true more generally with (b) + (c) replaced
by “the map Spec(S)→ Spec(R) is open”.

Proof. The assumptions (b) and (c) imply that the map on spectra is open, see
Proposition 10.41.8. Hence the lemma follows from Topology, Lemma 5.8.14. □

Lemma 10.47.2.00I7 Let k be a separably closed field. Let R, S be k-algebras. If R, S
have a unique minimal prime, so does R⊗k S.

Proof. Let k ⊂ k be a perfect closure, see Definition 10.45.5. By assumption
k is algebraically closed. The ring maps R → R ⊗k k and S → S ⊗k k and
R⊗k S → (R⊗k S)⊗k k = (R⊗k k)⊗k (S⊗k k) satisfy the assumptions of Lemma
10.46.7. Hence we may assume k is algebraically closed.
We may replace R and S by their reductions. Hence we may assume that R and S
are domains. By Lemma 10.45.6 we see that R⊗k S is reduced. Hence its spectrum
is reducible if and only if it contains a nonzero zerodivisor. By Lemma 10.43.4 we
reduce to the case where R and S are domains of finite type over k algebraically
closed.
Note that the ring map R→ R⊗k S is of finite presentation and flat. Moreover, for
every maximal ideal m of R we have (R ⊗k S) ⊗R R/m ∼= S because k ∼= R/m by
the Hilbert Nullstellensatz Theorem 10.34.1. Moreover, the set of maximal ideals is
dense in the spectrum of R since Spec(R) is Jacobson, see Lemma 10.35.2. Hence
we see that Lemma 10.47.1 applies to the ring map R → R ⊗k S and we conclude
that the spectrum of R⊗k S is irreducible as desired. □

Lemma 10.47.3.037K Let k be a field. Let R be a k-algebra. The following are equivalent
(1) for every field extension k′/k the spectrum of R⊗k k′ is irreducible,
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(2) for every finite separable field extension k′/k the spectrum of R ⊗k k′ is
irreducible,

(3) the spectrum of R ⊗k k is irreducible where k is the separable algebraic
closure of k, and

(4) the spectrum of R⊗k k is irreducible where k is the algebraic closure of k.

Proof. It is clear that (1) implies (2).

Assume (2) and let k is the separable algebraic closure of k. Suppose qi ⊂ R⊗k k,
i = 1, 2 are two minimal prime ideals. For every finite subextension k/k′/k the
extension k′/k is separable and the ring map R ⊗k k′ → R ⊗k k is flat. Hence
pi = (R ⊗k k′) ∩ qi are minimal prime ideals (as we have going down for flat ring
maps by Lemma 10.39.19). Thus we see that p1 = p2 by assumption (2). Since
k =

⋃
k′ we conclude q1 = q2. Hence Spec(R⊗k k) is irreducible.

Assume (3) and let k be the algebraic closure of k. Let k/k′
/k be the correspond-

ing separable algebraic closure of k. Then k/k
′ is purely inseparable (in positive

characteristic) or trivial. Hence R ⊗k k
′ → R ⊗k k induces a homeomorphism on

spectra, for example by Lemma 10.46.7. Thus we have (4).

Assume (4). Let k′/k be an arbitrary field extension and let k be the algebraic
closure of k. We may choose a field F such that both k′ and k are isomorphic to
subfields of F . Then

R⊗k F = (R⊗k k)⊗k F
and hence we see from Lemma 10.47.2 that R ⊗k F has a unique minimal prime.
Finally, the ring map R⊗k k′ → R⊗k F is flat and injective and hence any minimal
prime of R ⊗k k′ is the image of a minimal prime of R ⊗k F (by Lemma 10.30.5
and going down). We conclude that there is only one such minimal prime and the
proof is complete. □

Definition 10.47.4.037L Let k be a field. Let S be a k-algebra. We say S is geometri-
cally irreducible over k if for every field extension k′/k the spectrum of S ⊗k k′ is
irreducible5.

By Lemma 10.47.3 it suffices to check this for finite separable field extensions k′/k
or for k′ equal to the separable algebraic closure of k.

Lemma 10.47.5.037M Let k be a field. Let R be a k-algebra. If k is separably alge-
braically closed then R is geometrically irreducible over k if and only if the spectrum
of R is irreducible.

Proof. Immediate from the remark following Definition 10.47.4. □

Lemma 10.47.6.037N Let k be a field. Let S be a k-algebra.
(1) If S is geometrically irreducible over k so is every k-subalgebra.
(2) If all finitely generated k-subalgebras of S are geometrically irreducible,

then S is geometrically irreducible.
(3) A directed colimit of geometrically irreducible k-algebras is geometrically

irreducible.

5An irreducible space is nonempty.
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Proof. Let S′ ⊂ S be a subalgebra. Then for any extension k′/k the ring map
S′⊗k k′ → S⊗k k′ is injective also. Hence (1) follows from Lemma 10.30.5 (and the
fact that the image of an irreducible space under a continuous map is irreducible).
The second and third property follow from the fact that tensor product commutes
with colimits. □

Lemma 10.47.7.037O Let k be a field. Let S be a geometrically irreducible k-algebra.
Let R be any k-algebra. The map

Spec(R⊗k S) −→ Spec(R)
induces a bijection on irreducible components.

Proof. Recall that irreducible components correspond to minimal primes (Lemma
10.26.1). As R→ R⊗k S is flat we see by going down (Lemma 10.39.19) that any
minimal prime of R⊗k S lies over a minimal prime of R. Conversely, if p ⊂ R is a
(minimal) prime then

R⊗k S/p(R⊗k S) = (R/p)⊗k S ⊂ κ(p)⊗k S
by flatness of R → R ⊗k S. The ring κ(p) ⊗k S has irreducible spectrum by
assumption. It follows that R⊗k S/p(R⊗k S) has a single minimal prime (Lemma
10.30.5). In other words, the inverse image of the irreducible set V (p) is irreducible.
Hence the lemma follows. □

Let us make some remarks on the notion of geometrically irreducible field exten-
sions.

Lemma 10.47.8.037P Let K/k be a field extension. If k is algebraically closed in K,
then K is geometrically irreducible over k.

Proof. Assume k is algebraically closed in K. By Definition 10.47.4 and Lemma
10.47.3 it suffices to show that the spectrum of K ⊗k k′ is irreducible for every
finite separable extension k′/k. Say k′ is generated by α ∈ k′ over k, see Fields,
Lemma 9.19.1. Let P = T d + a1T

d−1 + . . .+ ad ∈ k[T ] be the minimal polynomial
of α. Then K ⊗k k′ ∼= K[T ]/(P ). The only way the spectrum of K[T ]/(P ) can be
reducible is if P is reducible in K[T ]. Assume P = P1P2 is a nontrivial factorization
in K[T ] to get a contradiction. By Lemma 10.38.5 we see that the coefficients of
P1 and P2 are algebraic over k. Our assumption implies the coefficients of P1 and
P2 are in k which contradicts the fact that P is irreducible over k. □

Lemma 10.47.9.0G30 Let K/k be a geometrically irreducible field extension. Let S be
a geometrically irreducible K-algebra. Then S is geometrically irreducible over k.

Proof. By Definition 10.47.4 and Lemma 10.47.3 it suffices to show that the spec-
trum of S ⊗k k′ is irreducible for every finite separable extension k′/k. Since K is
geometrically irreducible over k we see that K ′ = K⊗k k′ is a finite, separable field
extension of K. Hence the spectrum of S ⊗k k′ = S ⊗K K ′ is irreducible as S is
assumed geometrically irreducible over K. □

Lemma 10.47.10.0G31 Let K/k be a field extension. The following are equivalent
(1) K is geometrically irreducible over k, and
(2) the induced extension K(t)/k(t) of purely transcendental extensions is

geometrically irreducible.

https://stacks.math.columbia.edu/tag/037O
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Proof. Assume (1). Denote Ω an algebraic closure of k(t). By Definition 10.47.4
we find that the spectrum of

K ⊗k Ω = K ⊗k k(t)⊗k(t) Ω

is irreducible. Since K(t) is a localization of K ⊗k k(T ) we conclude that the
spectrum of K(t) ⊗k(t) Ω is irreducible. Thus by Lemma 10.47.3 we find that
K(t)/k(t) is geometrically irreducible.

Assume (2). Let k′/k be a field extension. We have to show that K ⊗k k′ has a
unique minimal prime. We know that the spectrum of

K(t)⊗k(t) k
′(t)

is irreducible, i.e., has a unique minimal prime. Since there is an injective map
K ⊗k k′ → K(t) ⊗k(t) k

′(t) (details omitted) we conclude by Lemmas 10.30.5 and
10.30.7. □

Lemma 10.47.11.0G32 Let K/L/M be a tower of fields with L/M geometrically irre-
ducible. Let x ∈ K be transcendental over L. Then L(x)/M(x) is geometrically
irreducible.

Proof. This follows from Lemma 10.47.10 because the fields L(x) and M(x) are
purely transcendental extensions of L and M . □

Lemma 10.47.12.0G33 Let K/k be a field extension. The following are equivalent
(1) K/k is geometrically irreducible, and
(2) every element α ∈ K separably algebraic over k is in k.

Proof. Assume (1) and let α ∈ K be separably algebraic over k. Then k′ = k(α) is
a finite separable extension of k contained in K. By Lemma 10.47.6 the extension
k′/k is geometrically irreducible. In particular, we see that the spectrum of k′⊗k k
is irreducible (and hence if it is a product of fields, then there is exactly one factor).
By Fields, Lemma 9.13.4 it follows that Homk(k′, k) has one element which in turn
implies that k′ = k by Fields, Lemma 9.12.11. Thus (2) holds.

Assume (2). Let k′ ⊂ K be the subfield consisting of elements algebraic over k.
By Lemma 10.47.8 the extension K/k′ is geometrically irreducible. By assumption
k′/k is a purely inseparable extension. By Lemma 10.46.7 the extension k′/k is
geometrically irreducible. Hence by Lemma 10.47.9 we see thatK/k is geometrically
irreducible. □

Lemma 10.47.13.037Q Let K/k be a field extension. Consider the subextension K/k′/k
consisting of elements separably algebraic over k. Then K is geometrically irre-
ducible over k′. If K/k is a finitely generated field extension, then [k′ : k] <∞.

Proof. The first statement is immediate from Lemma 10.47.12 and the fact that
elements separably algebraic over k′ are in k′ by the transitivity of separable alge-
braic extensions, see Fields, Lemma 9.12.12. If K/k is finitely generated, then k′ is
finite over k by Fields, Lemma 9.26.11. □

Lemma 10.47.14.04KP Let K/k be an extension of fields. Let k/k be a separable
algebraic closure. Then Gal(k/k) acts transitively on the primes of k ⊗k K.

https://stacks.math.columbia.edu/tag/0G32
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Proof. Let K/k′/k be the subextension found in Lemma 10.47.13. Note that as
k ⊂ k is integral all the prime ideals of k⊗kK and k⊗k k′ are maximal, see Lemma
10.36.20. By Lemma 10.47.7 the map

Spec(k ⊗k K)→ Spec(k ⊗k k′)

is bijective because (1) all primes are minimal primes, (2) k⊗kK = (k⊗k k′)⊗k′ K,
and (3) K is geometrically irreducible over k′. Hence it suffices to prove the lemma
for the action of Gal(k/k) on the primes of k ⊗k k′.

As every prime of k⊗k k′ is maximal, the residue fields are isomorphic to k. Hence
the prime ideals of k ⊗k k′ correspond one to one to elements of Homk(k′, k) with
σ ∈ Homk(k′, k) corresponding to the kernel pσ of 1⊗σ : k⊗k k′ → k. In particular
Gal(k/k) acts transitively on this set as desired. □

10.48. Geometrically connected algebras

05DV
Lemma 10.48.1.037R Let k be a separably algebraically closed field. Let R, S be
k-algebras. If Spec(R), and Spec(S) are connected, then so is Spec(R⊗k S).

Proof. Recall that Spec(R) is connected if and only if R has no nontrivial idem-
potents, see Lemma 10.21.4. Hence, by Lemma 10.43.4 we may assume R and S
are of finite type over k. In this case R and S are Noetherian, and have finitely
many minimal primes, see Lemma 10.31.6. Thus we may argue by induction on
n+m where n, resp. m is the number of irreducible components of Spec(R), resp.
Spec(S). Of course the case where either n or m is zero is trivial. If n = m = 1,
i.e., Spec(R) and Spec(S) both have one irreducible component, then the result
holds by Lemma 10.47.2. Suppose that n > 1. Let p ⊂ R be a minimal prime cor-
responding to the irreducible closed subset T ⊂ Spec(R). Let T ′ ⊂ Spec(R) be the
union of the other n− 1 irreducible components. Choose an ideal I ⊂ R such that
T ′ = V (I) = Spec(R/I) (Lemma 10.17.7). By choosing our minimal prime care-
fully we may in addition arrange it so that T ′ is connected, see Topology, Lemma
5.8.17. Then T ∪ T ′ = Spec(R) and T ∩ T ′ = V (p + I) = Spec(R/(p + I)) is not
empty as Spec(R) is assumed connected. The inverse image of T in Spec(R⊗k S) is
Spec(R/p⊗kS), and the inverse of T ′ in Spec(R⊗kS) is Spec(R/I⊗kS). By induc-
tion these are both connected. The inverse image of T ∩T ′ is Spec(R/(p+ I)⊗k S)
which is nonempty. Hence Spec(R⊗k S) is connected. □

Lemma 10.48.2.037S Let k be a field. Let R be a k-algebra. The following are equivalent
(1) for every field extension k′/k the spectrum of R⊗k k′ is connected, and
(2) for every finite separable field extension k′/k the spectrum of R ⊗k k′ is

connected.

Proof. For any extension of fields k′/k the connectivity of the spectrum of R⊗kk′ is
equivalent to R⊗kk′ having no nontrivial idempotents, see Lemma 10.21.4. Assume
(2). Let k ⊂ k be a separable algebraic closure of k. Using Lemma 10.43.4 we see
that (2) is equivalent to R ⊗k k having no nontrivial idempotents. For any field
extension k′/k, there exists a field extension k′

/k with k′ ⊂ k′. By Lemma 10.48.1
we see that R ⊗k k

′ has no nontrivial idempotents. If R ⊗k k′ has a nontrivial
idempotent, then also R⊗k k

′, contradiction. □

https://stacks.math.columbia.edu/tag/037R
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Definition 10.48.3.037T Let k be a field. Let S be a k-algebra. We say S is geometrically
connected over k if for every field extension k′/k the spectrum of S⊗kk′ is connected.

By Lemma 10.48.2 it suffices to check this for finite separable field extensions k′/k.

Lemma 10.48.4.037U Let k be a field. Let R be a k-algebra. If k is separably alge-
braically closed then R is geometrically connected over k if and only if the spectrum
of R is connected.

Proof. Immediate from the remark following Definition 10.48.3. □

Lemma 10.48.5.037V Let k be a field. Let S be a k-algebra.
(1) If S is geometrically connected over k so is every k-subalgebra.
(2) If all finitely generated k-subalgebras of S are geometrically connected,

then S is geometrically connected.
(3) A directed colimit of geometrically connected k-algebras is geometrically

connected.

Proof. This follows from the characterization of connectedness in terms of the
nonexistence of nontrivial idempotents. The second and third property follow from
the fact that tensor product commutes with colimits. □

The following lemma will be superseded by the more general Varieties, Lemma
33.7.4.

Lemma 10.48.6.037W Let k be a field. Let S be a geometrically connected k-algebra.
Let R be any k-algebra. The map

R −→ R⊗k S

induces a bijection on idempotents, and the map
Spec(R⊗k S) −→ Spec(R)

induces a bijection on connected components.

Proof. The second assertion follows from the first combined with Lemma 10.22.2.
By Lemmas 10.48.5 and 10.43.4 we may assume that R and S are of finite type
over k. Then we see that also R⊗k S is of finite type over k. Note that in this case
all the rings are Noetherian and hence their spectra have finitely many connected
components (since they have finitely many irreducible components, see Lemma
10.31.6). In particular, all connected components in question are open! Hence via
Lemma 10.24.3 we see that the first statement of the lemma in this case is equivalent
to the second. Let’s prove this. As the algebra S is geometrically connected and
nonzero we see that all fibres of X = Spec(R⊗k S)→ Spec(R) = Y are connected
and nonempty. Also, as R→ R ⊗k S is flat of finite presentation the map X → Y
is open (Proposition 10.41.8). Topology, Lemma 5.7.6 shows that X → Y induces
bijection on connected components. □

10.49. Geometrically integral algebras

05DW Here is the definition.

Definition 10.49.1.05DX Let k be a field. Let S be a k-algebra. We say S is geometrically
integral over k if for every field extension k′/k the ring of S ⊗k k′ is a domain.
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Any question about geometrically integral algebras can be translated in a question
about geometrically reduced and irreducible algebras.

Lemma 10.49.2.05DY Let k be a field. Let S be a k-algebra. In this case S is geo-
metrically integral over k if and only if S is geometrically irreducible as well as
geometrically reduced over k.

Proof. Omitted. □

Lemma 10.49.3.0FWF Let k be a field. Let S be a k-algebra. The following are equivalent
(1) S is geometrically integral over k,
(2) for every finite extension k′/k of fields the ring S ⊗k k′ is a domain,
(3) S ⊗k k is a domain where k is the algebraic closure of k.

Proof. Follows from Lemmas 10.49.2, 10.44.3, and 10.47.3. □

Lemma 10.49.4.09P9 Let k be a field. Let S be a geometrically integral k-algebra. Let
R be a k-algebra and an integral domain. Then R⊗k S is an integral domain.

Proof. By Lemma 10.43.5 the ring R ⊗k S is reduced and by Lemma 10.47.7 the
ring R ⊗k S is irreducible (the spectrum has just one irreducible component), so
R⊗k S is an integral domain. □

10.50. Valuation rings

00I8 Here are some definitions.

Definition 10.50.1.00I9 Valuation rings.
(1) Let K be a field. Let A, B be local rings contained in K. We say that B

dominates A if A ⊂ B and mA = A ∩mB .
(2) Let A be a ring. We say A is a valuation ring if A is a local domain and if

A is maximal for the relation of domination among local rings contained
in the fraction field of A.

(3) Let A be a valuation ring with fraction field K. If R ⊂ K is a subring of
K, then we say A is centered on R if R ⊂ A.

With this definition a field is a valuation ring.

Lemma 10.50.2.00IA Let K be a field. Let A ⊂ K be a local subring. Then there exists
a valuation ring with fraction field K dominating A.

Proof. We consider the collection of local subrings of K as a partially ordered
set using the relation of domination. Suppose that {Ai}i∈I is a totally ordered
collection of local subrings of K. Then B =

⋃
Ai is a local subring which dominates

all of the Ai. Hence by Zorn’s Lemma, it suffices to show that if A ⊂ K is a local
ring whose fraction field is not K, then there exists a local ring B ⊂ K, B ̸= A
dominating A.
Pick t ∈ K which is not in the fraction field of A. If t is transcendental over A,
then A[t] ⊂ K and hence A[t](t,m) ⊂ K is a local ring distinct from A dominating
A. Suppose t is algebraic over A. Then for some nonzero a ∈ A the element at is
integral over A. In this case the subring A′ ⊂ K generated by A and ta is finite
over A. By Lemma 10.36.17 there exists a prime ideal m′ ⊂ A′ lying over m. Then
A′

m′ dominates A. If A = A′
m′ , then t is in the fraction field of A which we assumed

not to be the case. Thus A ̸= A′
m′ as desired. □
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Lemma 10.50.3.00IC Let A be a valuation ring. Then A is a normal domain.
Proof. Suppose x is in the field of fractions of A and integral over A. Let A′ denote
the subring of K generated by A and x. Since A ⊂ A′ is an integral extension, we
see by Lemma 10.36.17 that there is a prime ideal m′ ⊂ A′ lying over m. Then A′

m′

dominates A. Since A is a valuation ring we conclude that A = A′
m′ and therefore

that x ∈ A. □

Lemma 10.50.4.00IB Let A be a valuation ring with maximal ideal m and fraction field
K. Let x ∈ K. Then either x ∈ A or x−1 ∈ A or both.
Proof. Assume that x is not in A. Let A′ denote the subring of K generated
by A and x. Since A is a valuation ring we see that there is no prime of A′

lying over m. Since m is maximal we see that V (mA′) = ∅. Then mA′ = A′ by
Lemma 10.17.2. Hence we can write 1 =

∑d
i=0 tix

i with ti ∈ m. This implies that
(1 − t0)(x−1)d −

∑
ti(x−1)d−i = 0. In particular we see that x−1 is integral over

A, and hence x−1 ∈ A by Lemma 10.50.3. □

Lemma 10.50.5.052K Let A ⊂ K be a subring of a field K such that for all x ∈ K either
x ∈ A or x−1 ∈ A or both. Then A is a valuation ring with fraction field K.
Proof. If A is not K, then A is not a field and there is a nonzero maximal ideal m.
If m′ is a second maximal ideal, then choose x, y ∈ A with x ∈ m, y ̸∈ m, x ̸∈ m′,
and y ∈ m′ (see Lemma 10.15.2). Then neither x/y ∈ A nor y/x ∈ A contradicting
the assumption of the lemma. Thus we see that A is a local ring. Suppose that A′

is a local ring contained in K which dominates A. Let x ∈ A′. We have to show
that x ∈ A. If not, then x−1 ∈ A, and of course x−1 ∈ mA. But then x−1 ∈ mA′

which contradicts x ∈ A′. □

Lemma 10.50.6.0AS4 Let I be a directed set. Let (Ai, φij) be a system of valuation
rings over I. Then A = colimAi is a valuation ring.
Proof. It is clear that A is a domain. Let a, b ∈ A. Lemma 10.50.5 tells us we have
to show that either a|b or b|a in A. Choose i so large that there exist ai, bi ∈ Ai
mapping to a, b. Then Lemma 10.50.4 applied to ai, bi in Ai implies the result for
a, b in A. □

Lemma 10.50.7.052L Let L/K be an extension of fields. If B ⊂ L is a valuation ring,
then A = K ∩B is a valuation ring.
Proof. We can replace L by the fraction field F of B and K by K ∩ F . Then the
lemma follows from a combination of Lemmas 10.50.4 and 10.50.5. □

Lemma 10.50.8.0AAV Let L/K be an algebraic extension of fields. If B ⊂ L is a
valuation ring with fraction field L and not a field, then A = K ∩B is a valuation
ring and not a field.
Proof. By Lemma 10.50.7 the ring A is a valuation ring. If A is a field, then A = K.
Then A = K ⊂ B is an integral extension, hence there are no proper inclusions
among the primes of B (Lemma 10.36.20). This contradicts the assumption that
B is a local domain and not a field. □

Lemma 10.50.9.088Y Let A be a valuation ring. For any prime ideal p ⊂ A the quotient
A/p is a valuation ring. The same is true for the localization Ap and in fact any
localization of A.
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Proof. Use the characterization of valuation rings given in Lemma 10.50.5. □

Lemma 10.50.10.088Z Let A′ be a valuation ring with residue field K. Let A be a
valuation ring with fraction field K. Then C = {λ ∈ A′ | λ mod mA′ ∈ A} is a
valuation ring.

Proof. Note that mA′ ⊂ C and C/mA′ = A. In particular, the fraction field of C
is equal to the fraction field of A′. We will use the criterion of Lemma 10.50.5 to
prove the lemma. Let x be an element of the fraction field of C. By the lemma we
may assume x ∈ A′. If x ∈ mA′ , then we see x ∈ C. If not, then x is a unit of A′

and we also have x−1 ∈ A′. Hence either x or x−1 maps to an element of A by the
lemma again. □

Lemma 10.50.11.090P Let A be a normal domain with fraction field K.
(1) For every x ∈ K, x ̸∈ A there exists a valuation ring A ⊂ V ⊂ K with

fraction field K such that x ̸∈ V .
(2) If A is local, we can moreover choose V which dominates A.

In other words, A is the intersection of all valuation rings in K containing A and if
A is local, then A is the intersection of all valuation rings in K dominating A.

Proof. Suppose x ∈ K, x ̸∈ A. Consider B = A[x−1]. Then x ̸∈ B. Namely, if
x = a0 + a1x

−1 + . . .+ adx
−d then xd+1− a0x

d− . . .− ad = 0 and x is integral over
A in contradiction with the fact that A is normal. Thus x−1 is not a unit in B.
Thus V (x−1) ⊂ Spec(B) is not empty (Lemma 10.17.2), and we can choose a prime
p ⊂ B with x−1 ∈ p. Choose a valuation ring V ⊂ K dominating Bp (Lemma
10.50.2). Then x ̸∈ V as x−1 ∈ mV .
If A is local, then we claim that x−1B + mAB ̸= B. Namely, if 1 = (a0 + a1x

−1 +
. . .+ adx

−d)x−1 + a′
0 + . . .+ a′

dx
−d with ai ∈ A and a′

i ∈ mA, then we’d get
(1− a′

0)xd+1 − (a0 + a′
1)xd − . . .− ad = 0

Since a′
0 ∈ mA we see that 1 − a′

0 is a unit in A and we conclude that x would be
integral over A, a contradiction as before. Then choose the prime p ⊃ x−1B+mAB
we find V dominating A. □

An totally ordered abelian group is a pair (Γ,≥) consisting of an abelian group
Γ endowed with a total ordering ≥ such that γ ≥ γ′ ⇒ γ + γ′′ ≥ γ′ + γ′′ for all
γ, γ′, γ′′ ∈ Γ.

Lemma 10.50.12.00ID Let A be a valuation ring with field of fractions K. Set Γ =
K∗/A∗ (with group law written additively). For γ, γ′ ∈ Γ define γ ≥ γ′ if and only
if γ − γ′ is in the image of A − {0} → Γ. Then (Γ,≥) is a totally ordered abelian
group.

Proof. Omitted, but follows easily from Lemma 10.50.4. Note that in case A = K
we obtain the zero group Γ = {0} endowed with its unique total ordering. □

Definition 10.50.13.00IE Let A be a valuation ring.
(1) The totally ordered abelian group (Γ,≥) of Lemma 10.50.12 is called the

value group of the valuation ring A.
(2) The map v : A − {0} → Γ and also v : K∗ → Γ is called the valuation

associated to A.
(3) The valuation ring A is called a discrete valuation ring if Γ ∼= Z.
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Note that if Γ ∼= Z then there is a unique such isomorphism such that 1 ≥ 0. If the
isomorphism is chosen in this way, then the ordering becomes the usual ordering of
the integers.

Lemma 10.50.14.00IF Let A be a valuation ring. The valuation v : A−{0} → Γ≥0 has
the following properties:

(1) v(a) = 0⇔ a ∈ A∗,
(2) v(ab) = v(a) + v(b),
(3) v(a+ b) ≥ min(v(a), v(b)).

Proof. Omitted. □

Lemma 10.50.15.090Q Let A be a ring. The following are equivalent
(1) A is a valuation ring,
(2) A is a local domain and every finitely generated ideal of A is principal.

Proof. Assume A is a valuation ring and let f1, . . . , fn ∈ A. Choose i such that
v(fi) is minimal among v(fj). Then (fi) = (f1, . . . , fn). Conversely, assume A is a
local domain and every finitely generated ideal of A is principal. Pick f, g ∈ A and
write (f, g) = (h). Then f = ah and g = bh and h = cf + dg for some a, b, c, d ∈ A.
Thus ac + bd = 1 and we see that either a or b is a unit, i.e., either g/f or f/g is
an element of A. This shows A is a valuation ring by Lemma 10.50.5. □

Lemma 10.50.16.00IG Let (Γ,≥) be a totally ordered abelian group. Let K be a field.
Let v : K∗ → Γ be a homomorphism of abelian groups such that v(a + b) ≥
min(v(a), v(b)) for a, b ∈ K with a, b, a+ b not zero. Then

A = {x ∈ K | x = 0 or v(x) ≥ 0}
is a valuation ring with value group Im(v) ⊂ Γ, with maximal ideal

m = {x ∈ K | x = 0 or v(x) > 0}
and with group of units

A∗ = {x ∈ K∗ | v(x) = 0}.

Proof. Omitted. □

Let (Γ,≥) be a totally ordered abelian group. An ideal of Γ is a subset I ⊂ Γ such
that all elements of I are ≥ 0 and γ ∈ I, γ′ ≥ γ implies γ′ ∈ I. We say that such
an ideal is prime if γ + γ′ ∈ I, γ, γ′ ≥ 0⇒ γ ∈ I or γ′ ∈ I.

Lemma 10.50.17.00IH Let A be a valuation ring. Ideals in A correspond 1 − 1 with
ideals of Γ. This bijection is inclusion preserving, and maps prime ideals to prime
ideals.

Proof. Omitted. □

Lemma 10.50.18.00II A valuation ring is Noetherian if and only if it is a discrete
valuation ring or a field.

Proof. Suppose A is a discrete valuation ring with valuation v : A \ {0} → Z
normalized so that Im(v) = Z≥0. By Lemma 10.50.17 the ideals of A are the
subsets In = {0} ∪ v−1(Z≥n). It is clear that any element x ∈ A with v(x) = n
generates In. Hence A is a PID so certainly Noetherian.
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Suppose A is a Noetherian valuation ring with value group Γ. By Lemma 10.50.17
we see the ascending chain condition holds for ideals in Γ. We may assume A is not
a field, i.e., there is a γ ∈ Γ with γ > 0. Applying the ascending chain condition to
the subsets γ + Γ≥0 with γ > 0 we see there exists a smallest element γ0 which is
bigger than 0. Let γ ∈ Γ be an element γ > 0. Consider the sequence of elements
γ, γ − γ0, γ − 2γ0, etc. By the ascending chain condition these cannot all be > 0.
Let γ − nγ0 be the last one ≥ 0. By minimality of γ0 we see that 0 = γ − nγ0.
Hence Γ is a cyclic group as desired. □

10.51. More Noetherian rings

00IJ
Lemma 10.51.1.00IK Let R be a Noetherian ring. Any finite R-module is of finite
presentation. Any submodule of a finite R-module is finite. The ascending chain
condition holds for R-submodules of a finite R-module.

Proof. We first show that any submodule N of a finite R-module M is finite. We
do this by induction on the number of generators of M . If this number is 1, then
N = J/I ⊂M = R/I for some ideals I ⊂ J ⊂ R. Thus the definition of Noetherian
implies the result. If the number of generators of M is greater than 1, then we can
find a short exact sequence 0 → M ′ → M → M ′′ → 0 where M ′ and M ′′ have
fewer generators. Note that setting N ′ = M ′ ∩ N and N ′′ = Im(N → M ′′) gives
a similar short exact sequence for N . Hence the result follows from the induction
hypothesis since the number of generators of N is at most the number of generators
of N ′ plus the number of generators of N ′′.

To show that M is finitely presented just apply the previous result to the kernel of
a presentation Rn →M .

It is well known and easy to prove that the ascending chain condition for R-
submodules of M is equivalent to the condition that every submodule of M is
a finite R-module. We omit the proof. □

Lemma 10.51.2 (Artin-Rees).00IN Suppose that R is Noetherian, I ⊂ R an ideal. Let
N ⊂ M be finite R-modules. There exists a constant c > 0 such that InM ∩N =
In−c(IcM ∩N) for all n ≥ c.

Proof. Consider the ring S = R ⊕ I ⊕ I2 ⊕ . . . =
⊕

n≥0 I
n. Convention: I0 =

R. Multiplication maps In × Im into In+m by multiplication in R. Note that if
I = (f1, . . . , ft) then S is a quotient of the Noetherian ring R[X1, . . . , Xt]. The
map just sends the monomial Xe1

1 . . . Xet
t to fe1

1 . . . fett . Thus S is Noetherian.
Similarly, consider the module M⊕IM⊕I2M⊕. . . =

⊕
n≥0 I

nM . This is a finitely
generated S-module. Namely, if x1, . . . , xr generate M over R, then they also
generate

⊕
n≥0 I

nM over S. Next, consider the submodule
⊕

n≥0 I
nM ∩N . This

is an S-submodule, as is easily verified. By Lemma 10.51.1 it is finitely generated
as an S-module, say by ξj ∈

⊕
n≥0 I

nM ∩ N , j = 1, . . . , s. We may assume by
decomposing each ξj into its homogeneous pieces that each ξj ∈ IdjM ∩N for some
dj . Set c = max{dj}. Then for all n ≥ c every element in InM ∩ N is of the
form

∑
hjξj with hj ∈ In−dj . The lemma now follows from this and the trivial

observation that In−dj (IdjM ∩N) ⊂ In−c(IcM ∩N). □
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Lemma 10.51.3.00IO Suppose that 0 → K → M
f−→ N is an exact sequence of finitely

generated modules over a Noetherian ring R. Let I ⊂ R be an ideal. Then there
exists a c such that

f−1(InN) = K + In−cf−1(IcN) and f(M) ∩ InN ⊂ f(In−cM)
for all n ≥ c.

Proof. Apply Lemma 10.51.2 to Im(f) ⊂ N and note that f : In−cM → In−cf(M)
is surjective. □

Lemma 10.51.4 (Krull’s intersection theorem).00IP Let R be a Noetherian local ring.
Let I ⊂ R be a proper ideal. Let M be a finite R-module. Then

⋂
n≥0 I

nM = 0.

Proof. Let N =
⋂
n≥0 I

nM . Then N = InM ∩N for all n ≥ 0. By the Artin-Rees
Lemma 10.51.2 we see that N = InM ∩ N ⊂ IN for some suitably large n. By
Nakayama’s Lemma 10.20.1 we see that N = 0. □

Lemma 10.51.5.00IQ Let R be a Noetherian ring. Let I ⊂ R be an ideal. Let M be a
finite R-module. Let N =

⋂
n I

nM .
(1) For every prime p, I ⊂ p there exists a f ∈ R, f ̸∈ p such that Nf = 0.
(2) If I is contained in the Jacobson radical of R, then N = 0.

Proof. Proof of (1). Let x1, . . . , xn be generators for the module N , see Lemma
10.51.1. For every prime p, I ⊂ p we see that the image of N in the localization
Mp is zero, by Lemma 10.51.4. Hence we can find gi ∈ R, gi ̸∈ p such that xi maps
to zero in Ngi . Thus Ng1g2...gn = 0.
Part (2) follows from (1) and Lemma 10.23.1. □

Remark 10.51.6.00IR Lemma 10.51.4 in particular implies that
⋂
n I

n = (0) when
I ⊂ R is a non-unit ideal in a Noetherian local ring R. More generally, let R be
a Noetherian ring and I ⊂ R an ideal. Suppose that f ∈

⋂
n∈N In. Then Lemma

10.51.5 says that for every prime ideal I ⊂ p there exists a g ∈ R, g ̸∈ p such that
f maps to zero in Rg. In algebraic geometry we express this by saying that “f is
zero in an open neighbourhood of the closed set V (I) of Spec(R)”.

Lemma 10.51.7 (Artin-Tate).00IS Let R be a Noetherian ring. Let S be a finitely
generated R-algebra. If T ⊂ S is an R-subalgebra such that S is finitely generated
as a T -module, then T is of finite type over R.

Proof. Choose elements x1, . . . , xn ∈ S which generate S as an R-algebra. Choose
y1, . . . , ym in S which generate S as a T -module. Thus there exist aij ∈ T such that
xi =

∑
aijyj . There also exist bijk ∈ T such that yiyj =

∑
bijkyk. Let T ′ ⊂ T be

the sub R-algebra generated by aij and bijk. This is a finitely generated R-algebra,
hence Noetherian. Consider the algebra

S′ = T ′[Y1, . . . , Ym]/(YiYj −
∑

bijkYk).

Note that S′ is finite over T ′, namely as a T ′-module it is generated by the classes
of 1, Y1, . . . , Ym. Consider the T ′-algebra homomorphism S′ → S which maps Yi
to yi. Because aij ∈ T ′ we see that xj is in the image of this map. Thus S′ → S
is surjective. Therefore S is finite over T ′ as well. Since T ′ is Noetherian and we
conclude that T ⊂ S is finite over T ′ and we win. □
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10.52. Length

00IU
Definition 10.52.1.02LY Let R be a ring. For any R-module M we define the length of
M over R by the formula

lengthR(M) = sup{n | ∃ 0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M, Mi ̸= Mi+1}.

In other words it is the supremum of the lengths of chains of submodules. There
is an obvious notion of when a chain of submodules is a refinement of another.
This gives a partial ordering on the collection of all chains of submodules, with the
smallest chain having the shape 0 = M0 ⊂M1 = M if M is not zero. We note the
obvious fact that if the length of M is finite, then every chain can be refined to
a maximal chain. But it is not as obvious that all maximal chains have the same
length (as we will see later).

Lemma 10.52.2.02LZ Let R be a ring. Let M be an R-module. If lengthR(M) < ∞
then M is a finite R-module.

Proof. Omitted. □

Lemma 10.52.3.00IV If 0→M ′ →M →M ′′ → 0 is a short exact sequence of modules
over R then the length of M is the sum of the lengths of M ′ and M ′′.

Proof. Given filtrations of M ′ and M ′′ of lengths n′, n′′ it is easy to make a cor-
responding filtration of M of length n′ + n′′. Thus we see that lengthRM ≥
lengthRM ′ + lengthRM ′′. Conversely, given a filtration M0 ⊂ M1 ⊂ . . . ⊂ Mn

of M consider the induced filtrations M ′
i = Mi ∩M ′ and M ′′

i = Im(Mi → M ′′).
Let n′ (resp. n′′) be the number of steps in the filtration {M ′

i} (resp. {M ′′
i }). If

M ′
i = M ′

i+1 and M ′′
i = M ′′

i+1 then Mi = Mi+1. Hence we conclude that n′+n′′ ≥ n.
Combined with the earlier result we win. □

Lemma 10.52.4.00IW Let R be a local ring with maximal ideal m. If M is an R-module
and mnM ̸= 0 for all n ≥ 0, then lengthR(M) =∞. In other words, if M has finite
length then mnM = 0 for some n.

Proof. Assume mnM ̸= 0 for all n ≥ 0. Choose x ∈ M and f1, . . . , fn ∈ m such
that f1f2 . . . fnx ̸= 0. The first n steps in the filtration

0 ⊂ Rf1 . . . fnx ⊂ Rf1 . . . fn−1x ⊂ . . . ⊂ Rx ⊂M
are distinct. For example, if Rf1x = Rf1f2x , then f1x = gf1f2x for some g, hence
(1 − gf2)f1x = 0 hence f1x = 0 as 1 − gf2 is a unit which is a contradiction with
the choice of x and f1, . . . , fn. Hence the length is infinite. □

Lemma 10.52.5.00IX Let R → S be a ring map. Let M be an S-module. We always
have lengthR(M) ≥ lengthS(M). If R→ S is surjective then equality holds.

Proof. A filtration ofM by S-submodules gives rise a filtration ofM byR-submodules.
This proves the inequality. And if R → S is surjective, then any R-submodule of
M is automatically an S-submodule. Hence equality in this case. □

Lemma 10.52.6.00IY Let R be a ring with maximal ideal m. Suppose that M is an
R-module with mM = 0. Then the length of M as an R-module agrees with the
dimension of M as a R/m vector space. The length is finite if and only if M is a
finite R-module.
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Proof. The first part is a special case of Lemma 10.52.5. Thus the length is finite
if and only if M has a finite basis as a R/m-vector space if and only if M has a
finite set of generators as an R-module. □

Lemma 10.52.7.00IZ Let R be a ring. Let M be an R-module. Let S ⊂ R be a
multiplicative subset. Then lengthR(M) ≥ lengthS−1R(S−1M).
Proof. Any submodule N ′ ⊂ S−1M is of the form S−1N for some R-submodule
N ⊂M , by Lemma 10.9.15. The lemma follows. □

Lemma 10.52.8.00J0 Let R be a ring with finitely generated maximal ideal m. (For
example R Noetherian.) Suppose that M is a finite R-module with mnM = 0 for
some n. Then lengthR(M) <∞.
Proof. Consider the filtration 0 = mnM ⊂ mn−1M ⊂ . . . ⊂ mM ⊂ M . All of the
subquotients are finitely generated R-modules to which Lemma 10.52.6 applies. We
conclude by additivity, see Lemma 10.52.3. □

Definition 10.52.9.00J1 Let R be a ring. Let M be an R-module. We say M is simple
if M ̸= 0 and every submodule of M is either equal to M or to 0.
Lemma 10.52.10.00J2 Let R be a ring. Let M be an R-module. The following are
equivalent:

(1) M is simple,
(2) lengthR(M) = 1, and
(3) M ∼= R/m for some maximal ideal m ⊂ R.

Proof. Let m be a maximal ideal of R. By Lemma 10.52.6 the module R/m has
length 1. The equivalence of the first two assertions is tautological. Suppose that
M is simple. Choose x ∈ M , x ̸= 0. As M is simple we have M = R · x. Let
I ⊂ R be the annihilator of x, i.e., I = {f ∈ R | fx = 0}. The map R/I → M ,
f mod I 7→ fx is an isomorphism, hence R/I is a simple R-module. Since R/I ̸= 0
we see I ̸= R. Let I ⊂ m be a maximal ideal containing I. If I ̸= m, then
m/I ⊂ R/I is a nontrivial submodule contradicting the simplicity of R/I. Hence
we see I = m as desired. □

Lemma 10.52.11.00J3 Let R be a ring. Let M be a finite length R-module. Choose
any maximal chain of submodules

0 = M0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mn = M

with Mi ̸= Mi−1, i = 1, . . . , n. Then
(1) n = lengthR(M),
(2) each Mi/Mi−1 is simple,
(3) each Mi/Mi−1 is of the form R/mi for some maximal ideal mi,
(4) given a maximal ideal m ⊂ R we have

#{i | mi = m} = lengthRm
(Mm).

Proof. If Mi/Mi−1 is not simple then we can refine the filtration and the filtration
is not maximal. Thus we see that Mi/Mi−1 is simple. By Lemma 10.52.10 the
modules Mi/Mi−1 have length 1 and are of the form R/mi for some maximal
ideals mi. By additivity of length, Lemma 10.52.3, we see n = lengthR(M). Since
localization is exact, we see that

0 = (M0)m ⊂ (M1)m ⊂ (M2)m ⊂ . . . ⊂ (Mn)m = Mm
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is a filtration of Mm with successive quotients (Mi/Mi−1)m. Thus the last statement
follows directly from the fact that given maximal ideals m, m′ of R we have

(R/m′)m ∼=
{

0 if m ̸= m′,
Rm/mRm if m = m′

This we leave to the reader. □

Lemma 10.52.12.02M0 Let A be a local ring with maximal ideal m. Let B be a semi-local
ring with maximal ideals mi, i = 1, . . . , n. Suppose that A→ B is a homomorphism
such that each mi lies over m and such that

[κ(mi) : κ(m)] <∞.

Let M be a B-module of finite length. Then

lengthA(M) =
∑

i=1,...,n
[κ(mi) : κ(m)]lengthBmi

(Mmi),

in particular lengthA(M) <∞.

Proof. Choose a maximal chain

0 = M0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mm = M

by B-submodules as in Lemma 10.52.11. Then each quotient Mj/Mj−1 is isomor-
phic to κ(mi(j)) for some i(j) ∈ {1, . . . , n}. Moreover lengthA(κ(mi)) = [κ(mi) :
κ(m)] by Lemma 10.52.6. The lemma follows by additivity of lengths (Lemma
10.52.3). □

Lemma 10.52.13.02M1 Let A → B be a flat local homomorphism of local rings. Then
for any A-module M we have

lengthA(M)lengthB(B/mAB) = lengthB(M ⊗A B).

In particular, if lengthB(B/mAB) < ∞ then M has finite length if and only if
M ⊗A B has finite length.

Proof. The ring map A → B is faithfully flat by Lemma 10.39.17. Hence if 0 =
M0 ⊂ M1 ⊂ . . . ⊂ Mn = M is a chain of length n in M , then the corresponding
chain 0 = M0⊗AB ⊂M1⊗AB ⊂ . . . ⊂Mn⊗AB = M⊗AB has length n also. This
proves lengthA(M) = ∞ ⇒ lengthB(M ⊗A B) = ∞. Next, assume lengthA(M) <
∞. In this case we see that M has a filtration of length ℓ = lengthA(M) whose
quotients are A/mA. Arguing as above we see that M ⊗A B has a filtration of
length ℓ whose quotients are isomorphic to B ⊗A A/mA = B/mAB. Thus the
lemma follows. □

Lemma 10.52.14.02M2 Let A → B → C be flat local homomorphisms of local rings.
Then

lengthB(B/mAB)lengthC(C/mBC) = lengthC(C/mAC)

Proof. Follows from Lemma 10.52.13 applied to the ring map B → C and the
B-module M = B/mAB □
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10.53. Artinian rings

00J4 Artinian rings, and especially local Artinian rings, play an important role in alge-
braic geometry, for example in deformation theory.

Definition 10.53.1.00J5 A ring R is Artinian if it satisfies the descending chain condition
for ideals.

Lemma 10.53.2.00J6 Suppose R is a finite dimensional algebra over a field. Then R is
Artinian.

Proof. The descending chain condition for ideals obviously holds. □

Lemma 10.53.3.00J7 If R is Artinian then R has only finitely many maximal ideals.

Proof. Suppose that mi, i = 1, 2, 3, . . . are pairwise distinct maximal ideals. Then
m1 ⊃ m1 ∩m2 ⊃ m1 ∩m2 ∩m3 ⊃ . . . is an infinite descending sequence (because by
the Chinese remainder theorem all the maps R→ ⊕ni=1R/mi are surjective). □

Lemma 10.53.4.00J8 Let R be Artinian. The Jacobson radical of R is a nilpotent ideal.

Proof. Let I ⊂ R be the Jacobson radical. Note that I ⊃ I2 ⊃ I3 ⊃ . . . is a
descending sequence. Thus In = In+1 for some n. Set J = {x ∈ R | xIn = 0}.
We have to show J = R. If not, choose an ideal J ′ ̸= J , J ⊂ J ′ minimal (possible
by the Artinian property). Then J ′ = J + Rx for some x ∈ R. By NAK, Lemma
10.20.1, we have IJ ′ ⊂ J . Hence xIn+1 ⊂ xI · In ⊂ J · In = 0. Since In+1 = In we
conclude x ∈ J . Contradiction. □

Lemma 10.53.5.00JA Any ring with finitely many maximal ideals and locally nilpotent
Jacobson radical is the product of its localizations at its maximal ideals. Also, all
primes are maximal.

Proof. Let R be a ring with finitely many maximal ideals m1, . . . ,mn. Let I =⋂n
i=1 mi be the Jacobson radical of R. Assume I is locally nilpotent. Let p be a

prime ideal of R. Since every prime contains every nilpotent element of R we see
p ⊃ m1 ∩ . . . ∩ mn. Since m1 ∩ . . . ∩ mn ⊃ m1 . . .mn we conclude p ⊃ m1 . . .mn.
Hence p ⊃ mi for some i, and so p = mi. By the Chinese remainder theorem
(Lemma 10.15.4) we have R/I ∼=

⊕
R/mi which is a product of fields. Hence by

Lemma 10.32.6 there are idempotents ei, i = 1, . . . , n with ei mod mj = δij . Hence
R =

∏
Rei, and each Rei is a ring with exactly one maximal ideal. □

Lemma 10.53.6.00JB A ring R is Artinian if and only if it has finite length as a module
over itself. Any such ring R is both Artinian and Noetherian, any prime ideal of R
is a maximal ideal, and R is equal to the (finite) product of its localizations at its
maximal ideals.

Proof. If R has finite length over itself then it satisfies both the ascending chain
condition and the descending chain condition for ideals. Hence it is both Noetherian
and Artinian. Any Artinian ring is equal to product of its localizations at maximal
ideals by Lemmas 10.53.3, 10.53.4, and 10.53.5.
Suppose that R is Artinian. We will show R has finite length over itself. It suffices
to exhibit a chain of submodules whose successive quotients have finite length. By
what we said above we may assume that R is local, with maximal ideal m. By
Lemma 10.53.4 we have mn = 0 for some n. Consider the sequence 0 = mn ⊂
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mn−1 ⊂ . . . ⊂ m ⊂ R. By Lemma 10.52.6 the length of each subquotient mj/mj+1

is the dimension of this as a vector space over κ(m). This has to be finite since
otherwise we would have an infinite descending chain of sub vector spaces which
would correspond to an infinite descending chain of ideals in R. □

10.54. Homomorphisms essentially of finite type

07DR Some simple remarks on localizations of finite type ring maps.

Definition 10.54.1.00QM Let R→ S be a ring map.
(1) We say that R → S is essentially of finite type if S is the localization of

an R-algebra of finite type.
(2) We say that R → S is essentially of finite presentation if S is the local-

ization of an R-algebra of finite presentation.

Lemma 10.54.2.07DS The class of ring maps which are essentially of finite type is
preserved under composition. Similarly for essentially of finite presentation.

Proof. Omitted. □

Lemma 10.54.3.0AUF The class of ring maps which are essentially of finite type is
preserved by base change. Similarly for essentially of finite presentation.

Proof. Omitted. □

Lemma 10.54.4.07DT Let R → S be a ring map. Assume S is an Artinian local ring
with maximal ideal m. Then

(1) R→ S is finite if and only if R→ S/m is finite,
(2) R→ S is of finite type if and only if R→ S/m is of finite type.
(3) R→ S is essentially of finite type if and only if the composition R→ S/m

is essentially of finite type.

Proof. If R → S is finite, then R → S/m is finite by Lemma 10.7.3. Conversely,
assume R → S/m is finite. As S has finite length over itself (Lemma 10.53.6) we
can choose a filtration

0 ⊂ I1 ⊂ . . . ⊂ In = S

by ideals such that Ii/Ii−1 ∼= S/m as S-modules. Thus S has a filtration by R-
submodules Ii such that each successive quotient is a finite R-module. Thus S is a
finite R-module by Lemma 10.5.3.
If R → S is of finite type, then R → S/m is of finite type by Lemma 10.6.2.
Conversely, assume that R → S/m is of finite type. Choose f1, . . . , fn ∈ S which
map to generators of S/m. Then A = R[x1, . . . , xn] → S, xi 7→ fi is a ring map
such that A → S/m is surjective (in particular finite). Hence A → S is finite by
part (1) and we see that R→ S is of finite type by Lemma 10.6.2.
If R → S is essentially of finite type, then R → S/m is essentially of finite type
by Lemma 10.54.2. Conversely, assume that R → S/m is essentially of finite type.
Suppose S/m is the localization of R[x1, . . . , xn]/I. Choose f1, . . . , fn ∈ S whose
congruence classes modulo m correspond to the congruence classes of x1, . . . , xn
modulo I. Consider the map R[x1, . . . , xn] → S, xi 7→ fi with kernel J . Set
A = R[x1, . . . , xn]/J ⊂ S and p = A ∩ m. Note that A/p ⊂ S/m is equal to the
image of R[x1, . . . , xn]/I in S/m. Hence κ(p) = S/m. Thus Ap → S is finite by
part (1). We conclude that S is essentially of finite type by Lemma 10.54.2. □
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The following lemma can be proven using properness of projective space instead of
the algebraic argument we give here.
Lemma 10.54.5.0AUG Let φ : R → S be essentially of finite type with R and S lo-
cal (but not necessarily φ local). Then there exists an n and a maximal ideal
m ⊂ R[x1, . . . , xn] lying over mR such that S is a localization of a quotient of
R[x1, . . . , xn]m.
Proof. We can write S as a localization of a quotient of R[x1, . . . , xn]. Hence
it suffices to prove the lemma in case S = R[x1, . . . , xn]q for some prime q ⊂
R[x1, . . . , xn]. If q + mRR[x1, . . . , xn] ̸= R[x1, . . . , xn] then we can find a maximal
ideal m as in the statement of the lemma with q ⊂ m and the result is clear.
Choose a valuation ring A ⊂ κ(q) which dominates the image of R→ κ(q) (Lemma
10.50.2). If the image λi ∈ κ(q) of xi is contained in A, then q is contained in
the inverse image of mA via R[x1, . . . , xn] → A which means we are back in the
preceding case. Hence there exists an i such that λ−1

i ∈ A and such that λj/λi ∈ A
for all j = 1, . . . , n (because the value group of A is totally ordered, see Lemma
10.50.12). Then we consider the map

R[y0, y1, . . . , ŷi, . . . , yn]→ R[x1, . . . , xn]q, y0 7→ 1/xi, yj 7→ xj/xi

Let q′ ⊂ R[y0, . . . , ŷi, . . . , yn] be the inverse image of q. Since y0 ̸∈ q′ it is easy to
see that the displayed arrow defines an isomorphism on localizations. On the other
hand, the result of the first paragraph applies to R[y0, . . . , ŷi, . . . , yn] because yj
maps to an element of A. This finishes the proof. □

10.55. K-groups

00JC Let R be a ring. We will introduce two abelian groups associated to R. The first
of the two is denoted K ′

0(R) and has the following properties6:
(1) For every finite R-module M there is given an element [M ] in K ′

0(R),
(2) for every short exact sequence 0 → M ′ → M → M ′′ → 0 of finite R-

modules we have the relation [M ] = [M ′] + [M ′′],
(3) the group K ′

0(R) is generated by the elements [M ], and
(4) all relations in K ′

0(R) among the generators [M ] are Z-linear combinations
of the relations coming from exact sequences as above.

The actual construction is a bit more annoying since one has to take care that
the collection of all finitely generated R-modules is a proper class. However, this
problem can be overcome by taking as set of generators of the group K ′

0(R) the
elements [Rn/K] where n ranges over all integers and K ranges over all submodules
K ⊂ Rn. The generators for the subgroup of relations imposed on these elements
will be the relations coming from short exact sequences whose terms are of the form
Rn/K. The element [M ] is defined by choosing n and K such that M ∼= Rn/K
and putting [M ] = [Rn/K]. Details left to the reader.
Lemma 10.55.1.00JD If R is an Artinian local ring then the length function defines a
natural abelian group homomorphism lengthR : K ′

0(R)→ Z.
Proof. The length of any finite R-module is finite, because it is the quotient of Rn
which has finite length by Lemma 10.53.6. And the length function is additive, see
Lemma 10.52.3. □

6The definition makes sense for any ring but is rarely used unless R is Noetherian.
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The second of the two is denoted K0(R) and has the following properties:
(1) For every finite projective R-module M there is given an element [M ] in

K0(R),
(2) for every short exact sequence 0→M ′ →M →M ′′ → 0 of finite projec-

tive R-modules we have the relation [M ] = [M ′] + [M ′′],
(3) the group K0(R) is generated by the elements [M ], and
(4) all relations in K0(R) are Z-linear combinations of the relations coming

from exact sequences as above.
The construction of this group is done as above.
We note that there is an obvious map K0(R)→ K ′

0(R) which is not an isomorphism
in general.

Example 10.55.2.00JE Note that if R = k is a field then we clearly have K0(k) =
K ′

0(k) ∼= Z with the isomorphism given by the dimension function (which is also
the length function).

Example 10.55.3.0FJ8 Let R be a PID. We claim K0(R) = K ′
0(R) = Z. Namely, any

finite projective R-module is finite free. A finite free module has a well defined rank
by Lemma 10.15.8. Given a short exact sequence of finite free modules

0→M ′ →M →M ′′ → 0
we have rank(M) = rank(M ′) + rank(M ′′) because we have M ∼= M ′ ⊕M ′ in this
case (for example we have a splitting by Lemma 10.5.2). We conclude K0(R) = Z.
The structure theorem for modules of a PID says that any finitely generated R-
module is of the form M = R⊕r ⊕R/(d1)⊕ . . .⊕R/(dk). Consider the short exact
sequence

0→ (di)→ R→ R/(di)→ 0
Since the ideal (di) is isomorphic to R as a module (it is free with generator di),
in K ′

0(R) we have [(di)] = [R]. Then [R/(di)] = [(di)] − [R] = 0. From this it
follows that a torsion module has zero class in K ′

0(R). Using the rank of the free
part gives an identification K ′

0(R) = Z and the canonical homomorphism from
K0(R)→ K ′

0(R) is an isomorphism.

Example 10.55.4.00JF Let k be a field. Then K0(k[x]) = K ′
0(k[x]) = Z. This follows

from Example 10.55.3 as R = k[x] is a PID.

Example 10.55.5.00JG Let k be a field. Let R = {f ∈ k[x] | f(0) = f(1)}, compare
Example 10.27.4. In this case K0(R) ∼= k∗ ⊕ Z, but K ′

0(R) = Z.

Lemma 10.55.6.00JH Let R = R1×R2. Then K0(R) = K0(R1)×K0(R2) and K ′
0(R) =

K ′
0(R1)×K ′

0(R2)

Proof. Omitted. □

Lemma 10.55.7.00JI Let R be an Artinian local ring. The map lengthR : K ′
0(R)→ Z

of Lemma 10.55.1 is an isomorphism.

Proof. Omitted. □

Lemma 10.55.8.00JJ Let (R,m) be a local ring. Every finite projective R-module is
finite free. The map rankR : K0(R) → Z defined by [M ] → rankR(M) is well
defined and an isomorphism.

https://stacks.math.columbia.edu/tag/00JE
https://stacks.math.columbia.edu/tag/0FJ8
https://stacks.math.columbia.edu/tag/00JF
https://stacks.math.columbia.edu/tag/00JG
https://stacks.math.columbia.edu/tag/00JH
https://stacks.math.columbia.edu/tag/00JI
https://stacks.math.columbia.edu/tag/00JJ


10.56. GRADED RINGS 553

Proof. Let P be a finite projective R-module. Choose elements x1, . . . , xn ∈ P
which map to a basis of P/mP . By Nakayama’s Lemma 10.20.1 these elements
generate P . The corresponding surjection u : R⊕n → P has a splitting as P is
projective. Hence R⊕n = P ⊕Q with Q = Ker(u). It follows that Q/mQ = 0, hence
Q is zero by Nakayama’s lemma. In this way we see that every finite projective
R-module is finite free. A finite free module has a well defined rank by Lemma
10.15.8. Given a short exact sequence of finite free R-modules

0→M ′ →M →M ′′ → 0

we have rank(M) = rank(M ′) + rank(M ′′) because we have M ∼= M ′ ⊕M ′ in this
case (for example we have a splitting by Lemma 10.5.2). We conclude K0(R) =
Z. □

Lemma 10.55.9.00JK Let R be a local Artinian ring. There is a commutative diagram

K0(R) //

rankR
��

K ′
0(R)

lengthR
��

Z
lengthR(R) // Z

where the vertical maps are isomorphisms by Lemmas 10.55.7 and 10.55.8.

Proof. Let P be a finite projective R-module. We have to show that lengthR(P ) =
rankR(P )lengthR(R). By Lemma 10.55.8 the module P is finite free. So P ∼=
R⊕n for some n ≥ 0. Then rankR(P ) = n and lengthR(R⊕n) = nlengthR(R) by
additivity of lenghts (Lemma 10.52.3). Thus the result holds. □

10.56. Graded rings

00JL A graded ring will be for us a ring S endowed with a direct sum decomposition
S =

⊕
d≥0 Sd of the underlying abelian group such that Sd · Se ⊂ Sd+e. Note

that we do not allow nonzero elements in negative degrees. The irrelevant ideal
is the ideal S+ =

⊕
d>0 Sd. A graded module will be an S-module M endowed

with a direct sum decomposition M =
⊕

n∈Z Mn of the underlying abelian group
such that Sd ·Me ⊂ Md+e. Note that for modules we do allow nonzero elements
in negative degrees. We think of S as a graded S-module by setting S−k = (0) for
k > 0. An element x (resp. f) of M (resp. S) is called homogeneous if x ∈ Md

(resp. f ∈ Sd) for some d. A map of graded S-modules is a map of S-modules
φ : M → M ′ such that φ(Md) ⊂ M ′

d. We do not allow maps to shift degrees. Let
us denote GrHom0(M,N) the S0-module of homomorphisms of graded modules
from M to N .

At this point there are the notions of graded ideal, graded quotient ring, graded
submodule, graded quotient module, graded tensor product, etc. We leave it to the
reader to find the relevant definitions, and lemmas. For example: A short exact
sequence of graded modules is short exact in every degree.

Given a graded ring S, a graded S-module M and n ∈ Z we denote M(n) the
graded S-module with M(n)d = Mn+d. This is called the twist of M by n. In
particular we get modules S(n), n ∈ Z which will play an important role in the
study of projective schemes. There are some obvious functorial isomorphisms such

https://stacks.math.columbia.edu/tag/00JK
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as (M ⊕ N)(n) = M(n) ⊕ N(n), (M ⊗S N)(n) = M ⊗S N(n) = M(n) ⊗S N . In
addition we can define a graded S-module structure on the S0-module

GrHom(M,N) =
⊕

n∈Z
GrHomn(M,N), GrHomn(M,N) = GrHom0(M,N(n)).

We omit the definition of the multiplication.

Lemma 10.56.1.0EKB Let S be a graded ring. Let M be a graded S-module.
(1) If S+M = M and M is finite, then M = 0.
(2) If N,N ′ ⊂ M are graded submodules, M = N + S+N

′, and N ′ is finite,
then M = N .

(3) If N →M is a map of graded modules, N/S+N →M/S+M is surjective,
and M is finite, then N →M is surjective.

(4) If x1, . . . , xn ∈M are homogeneous and generate M/S+M and M is finite,
then x1, . . . , xn generate M .

Proof. Proof of (1). Choose generators y1, . . . , yr of M over S. We may assume that
yi is homogeneous of degree di. After renumbering we may assume dr = min(di).
Then the condition that S+M = M implies yr = 0. Hence M = 0 by induction on
r. Part (2) follows by applying (1) to M/N . Part (3) follows by applying (2) to the
submodules Im(N → M) and M . Part (4) follows by applying (3) to the module
map

⊕
S(−di)→M , (s1, . . . , sn) 7→

∑
sixi. □

Let S be a graded ring. Let d ≥ 1 be an integer. We set S(d) =
⊕

n≥0 Snd.
We think of S(d) as a graded ring with degree n summand (S(d))n = Snd. Given
a graded S-module M we can similarly consider M (d) =

⊕
n∈Z Mnd which is a

graded S(d)-module.

Lemma 10.56.2.0EGH Let S be a graded ring, which is finitely generated over S0. Then
for all sufficiently divisible d the algebra S(d) is generated in degree 1 over S0.

Proof. Say S is generated by f1, . . . , fr ∈ S over S0. After replacing fi by their
homogeneous parts, we may assume fi is homogeneous of degree di > 0. Then any
element of Sn is a linear combination with coefficients in S0 of monomials fe1

1 . . . ferr
with

∑
eidi = n. Let m be a multiple of lcm(di). For any N ≥ r if∑

eidi = Nm

then for some i we have ei ≥ m/di by an elementary argument. Hence every
monomial of degree Nm is a product of a monomial of degree m, namely f

m/di
i ,

and a monomial of degree (N − 1)m. It follows that any monomial of degree nrm
with n ≥ 2 is a product of monomials of degree rm. Thus S(rm) is generated in
degree 1 over S0. □

Lemma 10.56.3.077G Let R → S be a homomorphism of graded rings. Let S′ ⊂ S be
the integral closure of R in S. Then

S′ =
⊕

d≥0
S′ ∩ Sd,

i.e., S′ is a graded R-subalgebra of S.

Proof. We have to show the following: If s = sn + sn+1 + . . . + sm ∈ S′, then
each homogeneous part sj ∈ S′. We will prove this by induction on m− n over all
homomorphisms R → S of graded rings. First note that it is immediate that s0
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is integral over R0 (hence over R) as there is a ring map S → S0 compatible with
the ring map R → R0. Thus, after replacing s by s − s0, we may assume n > 0.
Consider the extension of graded rings R[t, t−1] → S[t, t−1] where t has degree 0.
There is a commutative diagram

S[t, t−1]
s7→tdeg(s)s

// S[t, t−1]

R[t, t−1]

OO

r 7→tdeg(r)r // R[t, t−1]

OO

where the horizontal maps are ring automorphisms. Hence the integral closure C
of S[t, t−1] over R[t, t−1] maps into itself. Thus we see that

tm(sn + sn+1 + . . .+ sm)− (tnsn + tn+1sn+1 + . . .+ tmsm) ∈ C

which implies by induction hypothesis that each (tm−ti)si ∈ C for i = n, . . . ,m−1.
Note that for any ring A and m > i ≥ n > 0 we have A[t, t−1]/(tm − ti − 1) ∼=
A[t]/(tm − ti − 1) ⊃ A because t(tm−1 − ti−1) = 1 in A[t]/(tm − ti − 1). Since
tm − ti maps to 1 we see the image of si in the ring S[t]/(tm − ti − 1) is integral
over R[t]/(tm− ti−1) for i = n, . . . ,m−1. Since R→ R[t]/(tm− ti−1) is finite we
see that si is integral over R by transitivity, see Lemma 10.36.6. Finally, we also
conclude that sm = s−

∑
i=n,...,m−1 si is integral over R. □

10.57. Proj of a graded ring

00JM Let S be a graded ring. A homogeneous ideal is simply an ideal I ⊂ S which is also
a graded submodule of S. Equivalently, it is an ideal generated by homogeneous
elements. Equivalently, if f ∈ I and

f = f0 + f1 + . . .+ fn

is the decomposition of f into homogeneous parts in S then fi ∈ I for each i. To
check that a homogeneous ideal p is prime it suffices to check that if ab ∈ p with
a, b homogeneous then either a ∈ p or b ∈ p.

Definition 10.57.1.00JN Let S be a graded ring. We define Proj(S) to be the set of
homogeneous prime ideals p of S such that S+ ̸⊂ p. The set Proj(S) is a subset of
Spec(S) and we endow it with the induced topology. The topological space Proj(S)
is called the homogeneous spectrum of the graded ring S.

Note that by construction there is a continuous map

Proj(S) −→ Spec(S0).

Let S = ⊕d≥0Sd be a graded ring. Let f ∈ Sd and assume that d ≥ 1. We
define S(f) to be the subring of Sf consisting of elements of the form r/fn with
r homogeneous and deg(r) = nd. If M is a graded S-module, then we define the
S(f)-module M(f) as the sub module of Mf consisting of elements of the form x/fn

with x homogeneous of degree nd.

Lemma 10.57.2.00JO Let S be a Z-graded ring containing a homogeneous invertible
element of positive degree. Then the set G ⊂ Spec(S) of Z-graded primes of S
(with induced topology) maps homeomorphically to Spec(S0).
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Proof. First we show that the map is a bijection by constructing an inverse. Let
f ∈ Sd, d > 0 be invertible in S. If p0 is a prime of S0, then p0S is a Z-graded
ideal of S such that p0S ∩ S0 = p0. And if ab ∈ p0S with a, b homogeneous, then
adbd/fdeg(a)+deg(b) ∈ p0. Thus either ad/fdeg(a) ∈ p0 or bd/fdeg(b) ∈ p0, in other
words either ad ∈ p0S or bd ∈ p0S. It follows that

√
p0S is a Z-graded prime ideal

of S whose intersection with S0 is p0.
To show that the map is a homeomorphism we show that the image of G ∩ D(g)
is open. If g =

∑
gi with gi ∈ Si, then by the above G ∩D(g) maps onto the set⋃

D(gdi /f i) which is open. □

For f ∈ S homogeneous of degree > 0 we define
D+(f) = {p ∈ Proj(S) | f ̸∈ p}.

Finally, for a homogeneous ideal I ⊂ S we define
V+(I) = {p ∈ Proj(S) | I ⊂ p}.

We will use more generally the notation V+(E) for any set E of homogeneous
elements E ⊂ S.

Lemma 10.57.3 (Topology on Proj).00JP Let S = ⊕d≥0Sd be a graded ring.
(1) The sets D+(f) are open in Proj(S).
(2) We have D+(ff ′) = D+(f) ∩D+(f ′).
(3) Let g = g0 + . . .+ gm be an element of S with gi ∈ Si. Then

D(g) ∩ Proj(S) = (D(g0) ∩ Proj(S)) ∪
⋃

i≥1
D+(gi).

(4) Let g0 ∈ S0 be a homogeneous element of degree 0. Then

D(g0) ∩ Proj(S) =
⋃

f∈Sd, d≥1
D+(g0f).

(5) The open sets D+(f) form a basis for the topology of Proj(S).
(6) Let f ∈ S be homogeneous of positive degree. The ring Sf has a natural

Z-grading. The ring maps S → Sf ← S(f) induce homeomorphisms
D+(f)← {Z-graded primes of Sf} → Spec(S(f)).

(7) There exists an S such that Proj(S) is not quasi-compact.
(8) The sets V+(I) are closed.
(9) Any closed subset T ⊂ Proj(S) is of the form V+(I) for some homogeneous

ideal I ⊂ S.
(10) For any graded ideal I ⊂ S we have V+(I) = ∅ if and only if S+ ⊂

√
I.

Proof. Since D+(f) = Proj(S) ∩D(f), these sets are open. This proves (1). Also
(2) follows as D(ff ′) = D(f) ∩D(f ′). Similarly the sets V+(I) = Proj(S) ∩ V (I)
are closed. This proves (8).
Suppose that T ⊂ Proj(S) is closed. Then we can write T = Proj(S) ∩ V (J) for
some ideal J ⊂ S. By definition of a homogeneous ideal if g ∈ J , g = g0 + . . .+ gm
with gd ∈ Sd then gd ∈ p for all p ∈ T . Thus, letting I ⊂ S be the ideal generated
by the homogeneous parts of the elements of J we have T = V+(I). This proves
(9).
The formula for Proj(S) ∩ D(g), with g ∈ S is direct from the definitions. This
proves (3). Consider the formula for Proj(S) ∩ D(g0). The inclusion of the right
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hand side in the left hand side is obvious. For the other inclusion, suppose g0 ̸∈ p
with p ∈ Proj(S). If all g0f ∈ p for all homogeneous f of positive degree, then
we see that S+ ⊂ p which is a contradiction. This gives the other inclusion. This
proves (4).

The collection of opens D(g) ∩ Proj(S) forms a basis for the topology since the
standard opens D(g) ⊂ Spec(S) form a basis for the topology on Spec(S). By the
formulas above we can express D(g) ∩ Proj(S) as a union of opens D+(f). Hence
the collection of opens D+(f) forms a basis for the topology also. This proves (5).

Proof of (6). First we note that D+(f) may be identified with a subset (with
induced topology) of D(f) = Spec(Sf ) via Lemma 10.17.6. Note that the ring
Sf has a Z-grading. The homogeneous elements are of the form r/fn with r ∈ S
homogeneous and have degree deg(r/fn) = deg(r) − ndeg(f). The subset D+(f)
corresponds exactly to those prime ideals p ⊂ Sf which are Z-graded ideals (i.e.,
generated by homogeneous elements). Hence we have to show that the set of Z-
graded prime ideals of Sf maps homeomorphically to Spec(S(f)). This follows from
Lemma 10.57.2.

Let S = Z[X1, X2, X3, . . .] with grading such that each Xi has degree 1. Then it is
easy to see that

Proj(S) =
⋃∞

i=1
D+(Xi)

does not have a finite refinement. This proves (7).

Let I ⊂ S be a graded ideal. If
√
I ⊃ S+ then V+(I) = ∅ since every prime

p ∈ Proj(S) does not contain S+ by definition. Conversely, suppose that S+ ̸⊂
√
I.

Then we can find an element f ∈ S+ such that f is not nilpotent modulo I. Clearly
this means that one of the homogeneous parts of f is not nilpotent modulo I, in
other words we may (and do) assume that f is homogeneous. This implies that
ISf ̸= Sf , in other words that (S/I)f is not zero. Hence (S/I)(f) ̸= 0 since it is
a ring which maps into (S/I)f . Pick a prime q ⊂ (S/I)(f). This corresponds to a
graded prime of S/I, not containing the irrelevant ideal (S/I)+. And this in turn
corresponds to a graded prime ideal p of S, containing I but not containing S+ as
desired. This proves (10) and finishes the proof. □

Example 10.57.4.00JQ Let R be a ring. If S = R[X] with deg(X) = 1, then the natural
map Proj(S) → Spec(R) is a bijection and in fact a homeomorphism. Namely,
suppose p ∈ Proj(S). Since S+ ̸⊂ p we see that X ̸∈ p. Thus if aXn ∈ p with a ∈ R
and n > 0, then a ∈ p. It follows that p = p0S with p0 = p ∩R.

If p ∈ Proj(S), then we define S(p) to be the ring whose elements are fractions
r/f where r, f ∈ S are homogeneous elements of the same degree such that f ̸∈ p.
As usual we say r/f = r′/f ′ if and only if there exists some f ′′ ∈ S homogeneous,
f ′′ ̸∈ p such that f ′′(rf ′−r′f) = 0. Given a graded S-module M we let M(p) be the
S(p)-module whose elements are fractions x/f with x ∈M and f ∈ S homogeneous
of the same degree such that f ̸∈ p. We say x/f = x′/f ′ if and only if there exists
some f ′′ ∈ S homogeneous, f ′′ ̸∈ p such that f ′′(xf ′ − x′f) = 0.

Lemma 10.57.5.00JR Let S be a graded ring. Let M be a graded S-module. Let p
be an element of Proj(S). Let f ∈ S be a homogeneous element of positive degree
such that f ̸∈ p, i.e., p ∈ D+(f). Let p′ ⊂ S(f) be the element of Spec(S(f))
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corresponding to p as in Lemma 10.57.3. Then S(p) = (S(f))p′ and compatibly
M(p) = (M(f))p′ .

Proof. We define a map ψ : M(p) → (M(f))p′ . Let x/g ∈M(p). We set

ψ(x/g) = (xgdeg(f)−1/fdeg(x))/(gdeg(f)/fdeg(g)).

This makes sense since deg(x) = deg(g) and since gdeg(f)/fdeg(g) ̸∈ p′. We omit the
verification that ψ is well defined, a module map and an isomorphism. Hint: the
inverse sends (x/fn)/(g/fm) to (xfm)/(gfn). □

Here is a graded variant of Lemma 10.15.2.

Lemma 10.57.6.00JS Suppose S is a graded ring, pi, i = 1, . . . , r homogeneous prime
ideals and I ⊂ S+ a graded ideal. Assume I ̸⊂ pi for all i. Then there exists a
homogeneous element x ∈ I of positive degree such that x ̸∈ pi for all i.

Proof. We may assume there are no inclusions among the pi. The result is true
for r = 1. Suppose the result holds for r − 1. Pick x ∈ I homogeneous of positive
degree such that x ̸∈ pi for all i = 1, . . . , r − 1. If x ̸∈ pr we are done. So assume
x ∈ pr. If Ip1 . . . pr−1 ⊂ pr then I ⊂ pr a contradiction. Pick y ∈ Ip1 . . . pr−1
homogeneous and y ̸∈ pr. Then xdeg(y) + ydeg(x) works. □

Lemma 10.57.7.00JT Let S be a graded ring. Let p ⊂ S be a prime. Let q be the
homogeneous ideal of S generated by the homogeneous elements of p. Then q is a
prime ideal of S.

Proof. Suppose f, g ∈ S are such that fg ∈ q. Let fd (resp. ge) be the homogeneous
part of f (resp. g) of degree d (resp. e). Assume d, e are maxima such that fd ̸= 0
and ge ̸= 0. By assumption we can write fg =

∑
aifi with fi ∈ p homogeneous.

Say deg(fi) = di. Then fdge =
∑
a′
ifi with a′

i to homogeneous par of degree
d + e − di of ai (or 0 if d + e − di < 0). Hence fd ∈ p or ge ∈ p. Hence fd ∈ q or
ge ∈ q. In the first case replace f by f − fd, in the second case replace g by g− ge.
Then still fg ∈ q but the discrete invariant d+ e has been decreased. Thus we may
continue in this fashion until either f or g is zero. This clearly shows that fg ∈ q
implies either f ∈ q or g ∈ q as desired. □

Lemma 10.57.8.00JU Let S be a graded ring.
(1) Any minimal prime of S is a homogeneous ideal of S.
(2) Given a homogeneous ideal I ⊂ S any minimal prime over I is homoge-

neous.

Proof. The first assertion holds because the prime q constructed in Lemma 10.57.7
satisfies q ⊂ p. The second because we may consider S/I and apply the first
part. □

Lemma 10.57.9.07Z2 Let R be a ring. Let S be a graded R-algebra. Let f ∈ S+ be
homogeneous. Assume that S is of finite type over R. Then

(1) the ring S(f) is of finite type over R, and
(2) for any finite graded S-module M the module M(f) is a finite S(f)-module.

https://stacks.math.columbia.edu/tag/00JS
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Proof. Choose f1, . . . , fn ∈ S which generate S as an R-algebra. We may assume
that each fi is homogeneous (by decomposing each fi into its homogeneous com-
ponents). An element of S(f) is a sum of the form∑

e deg(f)=
∑

ei deg(fi)
λe1...enf

e1
1 . . . fenn /fe

with λe1...en ∈ R. Thus S(f) is generated as an R-algebra by the fe1
1 . . . fenn /fe with

the property that edeg(f) =
∑
ei deg(fi). If ei ≥ deg(f) then we can write this as

fe1
1 . . . fenn /fe = f

deg(f)
i /fdeg(fi) · fe1

1 . . . f
ei−deg(f)
i . . . fenn /fe−deg(fi)

Thus we only need the elements fdeg(f)
i /fdeg(fi) as well as the elements fe1

1 . . . fenn /fe

with edeg(f) =
∑
ei deg(fi) and ei < deg(f). This is a finite list and we see that

(1) is true.
To see (2) suppose that M is generated by homogeneous elements x1, . . . , xm. Then
arguing as above we find that M(f) is generated as an S(f)-module by the finite
list of elements of the form fe1

1 . . . fenn xj/f
e with edeg(f) =

∑
ei deg(fi) + deg(xj)

and ei < deg(f). □

Lemma 10.57.10.052N Let R be a ring. Let R′ be a finite type R-algebra, and let M
be a finite R′-module. There exists a graded R-algebra S, a graded S-module N
and an element f ∈ S homogeneous of degree 1 such that

(1) R′ ∼= S(f) and M ∼= N(f) (as modules),
(2) S0 = R and S is generated by finitely many elements of degree 1 over R,

and
(3) N is a finite S-module.

Proof. We may write R′ = R[x1, . . . , xn]/I for some ideal I. For an element g ∈
R[x1, . . . , xn] denote g̃ ∈ R[X0, . . . , Xn] the element homogeneous of minimal degree
such that g = g̃(1, x1, . . . , xn). Let Ĩ ⊂ R[X0, . . . , Xn] generated by all elements
g̃, g ∈ I. Set S = R[X0, . . . , Xn]/Ĩ and denote f the image of X0 in S. By
construction we have an isomorphism

S(f) −→ R′, Xi/X0 7−→ xi.

To do the same thing with the module M we choose a presentation

M = (R′)⊕r/
∑

j∈J
R′kj

with kj = (k1j , . . . , krj). Let dij = deg(k̃ij). Set dj = max{dij}. Set Kij =
X
dj−dij
0 k̃ij which is homogeneous of degree dj . With this notation we set

N = Coker
(⊕

j∈J
S(−dj)

(Kij)−−−→ S⊕r
)

which works. Some details omitted. □

10.58. Noetherian graded rings

00JV A bit of theory on Noetherian graded rings including some material on Hilbert
polynomials.

Lemma 10.58.1.07Z4 Let S be a graded ring. A set of homogeneous elements fi ∈ S+
generates S as an algebra over S0 if and only if they generate S+ as an ideal of S.

https://stacks.math.columbia.edu/tag/052N
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Proof. If the fi generate S as an algebra over S0 then every element in S+ is a
polynomial without constant term in the fi and hence S+ is generated by the fi as
an ideal. Conversely, suppose that S+ =

∑
Sfi. We will prove that any element

f of S can be written as a polynomial in the fi with coefficients in S0. It suffices
to do this for homogeneous elements. Say f has degree d. Then we may perform
induction on d. The case d = 0 is immediate. If d > 0 then f ∈ S+ hence we
can write f =

∑
gifi for some gi ∈ S. As S is graded we can replace gi by its

homogeneous component of degree d− deg(fi). By induction we see that each gi is
a polynomial in the fi and we win. □

Lemma 10.58.2.00JW A graded ring S is Noetherian if and only if S0 is Noetherian and
S+ is finitely generated as an ideal of S.
Proof. It is clear that if S is Noetherian then S0 = S/S+ is Noetherian and S+ is
finitely generated. Conversely, assume S0 is Noetherian and S+ finitely generated
as an ideal of S. Pick generators S+ = (f1, . . . , fn). By decomposing the fi into
homogeneous pieces we may assume each fi is homogeneous. By Lemma 10.58.1
we see that S0[X1, . . . Xn]→ S sending Xi to fi is surjective. Thus S is Noetherian
by Lemma 10.31.1. □

Definition 10.58.3.00JX Let A be an abelian group. We say that a function f : n 7→
f(n) ∈ A defined for all sufficient large integers n is a numerical polynomial if there
exists r ≥ 0, elements a0, . . . , ar ∈ A such that

f(n) =
∑r

i=0

(
n

i

)
ai

for all n≫ 0.
The reason for using the binomial coefficients is the elementary fact that any poly-
nomial P ∈ Q[T ] all of whose values at integer points are integers, is equal to a
sum P (T ) =

∑
ai
(
T
i

)
with ai ∈ Z. Note that in particular the expressions

(
T+1
i+1
)

are of this form.
Lemma 10.58.4.00JY If A → A′ is a homomorphism of abelian groups and if f : n 7→
f(n) ∈ A is a numerical polynomial, then so is the composition.
Proof. This is immediate from the definitions. □

Lemma 10.58.5.00JZ Suppose that f : n 7→ f(n) ∈ A is defined for all n sufficiently
large and suppose that n 7→ f(n)− f(n− 1) is a numerical polynomial. Then f is
a numerical polynomial.
Proof. Let f(n) − f(n − 1) =

∑r
i=0
(
n
i

)
ai for all n ≫ 0. Set g(n) = f(n) −∑r

i=0
(
n+1
i+1
)
ai. Then g(n)− g(n− 1) = 0 for all n≫ 0. Hence g is eventually con-

stant, say equal to a−1. We leave it to the reader to show that a−1 +
∑r
i=0
(
n+1
i+1
)
ai

has the required shape (see remark above the lemma). □

Lemma 10.58.6.00K0 If M is a finitely generated graded S-module, and if S is finitely
generated over S0, then each Mn is a finite S0-module.
Proof. Suppose the generators of M are mi and the generators of S are fi. By
taking homogeneous components we may assume that the mi and the fi are ho-
mogeneous and we may assume fi ∈ S+. In this case it is clear that each Mn is
generated over S0 by the “monomials”

∏
feii mj whose degree is n. □

https://stacks.math.columbia.edu/tag/00JW
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Proposition 10.58.7.00K1 Suppose that S is a Noetherian graded ring and M a finite
graded S-module. Consider the function

Z −→ K ′
0(S0), n 7−→ [Mn]

see Lemma 10.58.6. If S+ is generated by elements of degree 1, then this function
is a numerical polynomial.

Proof. We prove this by induction on the minimal number of generators of S1. If
this number is 0, then Mn = 0 for all n ≫ 0 and the result holds. To prove the
induction step, let x ∈ S1 be one of a minimal set of generators, such that the
induction hypothesis applies to the graded ring S/(x).

First we show the result holds if x is nilpotent on M . This we do by induction on
the minimal integer r such that xrM = 0. If r = 1, then M is a module over S/xS
and the result holds (by the other induction hypothesis). If r > 1, then we can find
a short exact sequence 0 → M ′ → M → M ′′ → 0 such that the integers r′, r′′ are
strictly smaller than r. Thus we know the result for M ′′ and M ′. Hence we get the
result for M because of the relation [Md] = [M ′

d] + [M ′′
d ] in K ′

0(S0).

If x is not nilpotent on M , let M ′ ⊂ M be the largest submodule on which x
is nilpotent. Consider the exact sequence 0 → M ′ → M → M/M ′ → 0 we see
again it suffices to prove the result for M/M ′. In other words we may assume that
multiplication by x is injective.

Let M = M/xM . Note that the map x : M →M is not a map of graded S-modules,
since it does not map Md into Md. Namely, for each d we have the following short
exact sequence

0→Md
x−→Md+1 →Md+1 → 0

This proves that [Md+1]− [Md] = [Md+1]. Hence we win by Lemma 10.58.5. □

Remark 10.58.8.02CD If S is still Noetherian but S is not generated in degree 1, then
the function associated to a graded S-module is a periodic polynomial (i.e., it is a
numerical polynomial on the congruence classes of integers modulo n for some n).

Example 10.58.9.00K2 Suppose that S = k[X1, . . . , Xd]. By Example 10.55.2 we may
identify K0(k) = K ′

0(k) = Z. Hence any finitely generated graded k[X1, . . . , Xd]-
module gives rise to a numerical polynomial n 7→ dimk(Mn).

Lemma 10.58.10.00K3 Let k be a field. Suppose that I ⊂ k[X1, . . . , Xd] is a nonzero
graded ideal. Let M = k[X1, . . . , Xd]/I. Then the numerical polynomial n 7→
dimk(Mn) (see Example 10.58.9) has degree < d− 1 (or is zero if d = 1).

Proof. The numerical polynomial associated to the graded module k[X1, . . . , Xd]
is n 7→

(
n−1+d
d−1

)
. For any nonzero homogeneous f ∈ I of degree e and any degree

n >> e we have In ⊃ f ·k[X1, . . . , Xd]n−e and hence dimk(In) ≥
(
n−e−1+d
d−1

)
. Hence

dimk(Mn) ≤
(
n−1+d
d−1

)
−
(
n−e−1+d
d−1

)
. We win because the last expression has degree

< d− 1 (or is zero if d = 1). □

10.59. Noetherian local rings

00K4
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In all of this section (R,m, κ) is a Noetherian local ring. We develop some theory
on Hilbert functions of modules in this section. Let M be a finite R-module. We
define the Hilbert function of M to be the function

φM : n 7−→ lengthR(mnM/mn+1M)
defined for all integers n ≥ 0. Another important invariant is the function

χM : n 7−→ lengthR(M/mn+1M)
defined for all integers n ≥ 0. Note that we have by Lemma 10.52.3 that

χM (n) =
∑n

i=0
φM (i).

There is a variant of this construction which uses an ideal of definition.

Definition 10.59.1.07DU Let (R,m) be a local Noetherian ring. An ideal I ⊂ R such
that

√
I = m is called an ideal of definition of R.

Let I ⊂ R be an ideal of definition. Because R is Noetherian this means that
mr ⊂ I for some r, see Lemma 10.32.5. Hence any finite R-module annihilated by
a power of I has a finite length, see Lemma 10.52.8. Thus it makes sense to define

φI,M (n) = lengthR(InM/In+1M) and χI,M (n) = lengthR(M/In+1M)
for all n ≥ 0. Again we have that

χI,M (n) =
∑n

i=0
φI,M (i).

Lemma 10.59.2.00K5 Suppose that M ′ ⊂ M are finite R-modules with finite length
quotient. Then there exists a constants c1, c2 such that for all n ≥ c2 we have

c1 + χI,M ′(n− c2) ≤ χI,M (n) ≤ c1 + χI,M ′(n)

Proof. Since M/M ′ has finite length there is a c2 ≥ 0 such that Ic2M ⊂ M ′. Let
c1 = lengthR(M/M ′). For n ≥ c2 we have

χI,M (n) = lengthR(M/In+1M)
= c1 + lengthR(M ′/In+1M)
≤ c1 + lengthR(M ′/In+1M ′)
= c1 + χI,M ′(n)

On the other hand, since Ic2M ⊂ M ′, we have InM ⊂ In−c2M ′ for n ≥ c2. Thus
for n ≥ c2 we get

χI,M (n) = lengthR(M/In+1M)
= c1 + lengthR(M ′/In+1M)
≥ c1 + lengthR(M ′/In+1−c2M ′)
= c1 + χI,M ′(n− c2)

which finishes the proof. □

Lemma 10.59.3.00K6 Suppose that 0→M ′ →M →M ′′ → 0 is a short exact sequence
of finite R-modules. Then there exists a submodule N ⊂M ′ with finite colength l
and c ≥ 0 such that

χI,M (n) = χI,M ′′(n) + χI,N (n− c) + l

https://stacks.math.columbia.edu/tag/07DU
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and
φI,M (n) = φI,M ′′(n) + φI,N (n− c)

for all n ≥ c.

Proof. Note that M/InM → M ′′/InM ′′ is surjective with kernel M ′/M ′ ∩ InM .
By the Artin-Rees Lemma 10.51.2 there exists a constant c such that M ′ ∩ InM =
In−c(M ′ ∩ IcM). Denote N = M ′ ∩ IcM . Note that IcM ′ ⊂ N ⊂ M ′. Hence
lengthR(M ′/M ′ ∩ InM) = lengthR(M ′/N) + lengthR(N/In−cN) for n ≥ c. From
the short exact sequence

0→M ′/M ′ ∩ InM →M/InM →M ′′/InM ′′ → 0
and additivity of lengths (Lemma 10.52.3) we obtain the equality

χI,M (n− 1) = χI,M ′′(n− 1) + χI,N (n− c− 1) + lengthR(M ′/N)
for n ≥ c. We have φI,M (n) = χI,M (n)−χI,M (n−1) and similarly for the modules
M ′′ and N . Hence we get φI,M (n) = φI,M ′′(n) + φI,N (n− c) for n ≥ c. □

Lemma 10.59.4.00K7 Suppose that I, I ′ are two ideals of definition for the Noetherian
local ring R. Let M be a finite R-module. There exists a constant a such that
χI,M (n) ≤ χI′,M (an) for n ≥ 1.

Proof. There exists an integer c ≥ 1 such that (I ′)c ⊂ I. Hence we get a surjection
M/(I ′)c(n+1)M →M/In+1M . Whence the result with a = 2c− 1. □

Proposition 10.59.5.00K8 Let R be a Noetherian local ring. Let M be a finite R-module.
Let I ⊂ R be an ideal of definition. The Hilbert function φI,M and the function
χI,M are numerical polynomials.

Proof. Consider the graded ring S = R/I ⊕ I/I2 ⊕ I2/I3 ⊕ . . . =
⊕

d≥0 I
d/Id+1.

Consider the graded S-module N = M/IM⊕IM/I2M⊕ . . . =
⊕

d≥0 I
dM/Id+1M .

This pair (S,N) satisfies the hypotheses of Proposition 10.58.7. Hence the result
for φI,M follows from that proposition and Lemma 10.55.1. The result for χI,M
follows from this and Lemma 10.58.5. □

Definition 10.59.6.09CA Let R be a Noetherian local ring. Let M be a finite R-module.
The Hilbert polynomial of M over R is the element P (t) ∈ Q[t] such that P (n) =
φM (n) for n≫ 0.

By Proposition 10.59.5 we see that the Hilbert polynomial exists.

Lemma 10.59.7.00K9 Let R be a Noetherian local ring. Let M be a finite R-module.
(1) The degree of the numerical polynomial φI,M is independent of the ideal

of definition I.
(2) The degree of the numerical polynomial χI,M is independent of the ideal

of definition I.

Proof. Part (2) follows immediately from Lemma 10.59.4. Part (1) follows from (2)
because φI,M (n) = χI,M (n)− χI,M (n− 1) for n ≥ 1. □

Definition 10.59.8.00KA Let R be a local Noetherian ring and M a finite R-module. We
denote d(M) the element of {−∞, 0, 1, 2, . . .} defined as follows:

(1) If M = 0 we set d(M) = −∞,
(2) if M ̸= 0 then d(M) is the degree of the numerical polynomial χM .
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If mnM ̸= 0 for all n, then we see that d(M) is the degree +1 of the Hilbert
polynomial of M .
Lemma 10.59.9.00KB Let R be a Noetherian local ring. Let I ⊂ R be an ideal of
definition. Let M be a finite R-module which does not have finite length. If
M ′ ⊂M is a submodule with finite colength, then χI,M −χI,M ′ is a polynomial of
degree < degree of either polynomial.
Proof. Follows from Lemma 10.59.2 by elementary calculus. □

Lemma 10.59.10.00KC Let R be a Noetherian local ring. Let I ⊂ R be an ideal of
definition. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of finite
R-modules. Then

(1) if M ′ does not have finite length, then χI,M−χI,M ′′−χI,M ′ is a numerical
polynomial of degree < the degree of χI,M ′ ,

(2) max{deg(χI,M ′),deg(χI,M ′′)} = deg(χI,M ), and
(3) max{d(M ′), d(M ′′)} = d(M),

Proof. We first prove (1). Let N ⊂M ′ be as in Lemma 10.59.3. By Lemma 10.59.9
the numerical polynomial χI,M ′ − χI,N has degree < the common degree of χI,M ′

and χI,N . By Lemma 10.59.3 the difference
χI,M (n)− χI,M ′′(n)− χI,N (n− c)

is constant for n≫ 0. By elementary calculus the difference χI,N (n)−χI,N (n− c)
has degree < the degree of χI,N which is bigger than zero (see above). Putting
everything together we obtain (1).
Note that the leading coefficients of χI,M ′ and χI,M ′′ are nonnegative. Thus the
degree of χI,M ′ + χI,M ′′ is equal to the maximum of the degrees. Thus if M ′ does
not have finite length, then (2) follows from (1). If M ′ does have finite length, then
InM → InM ′′ is an isomorphism for all n ≫ 0 by Artin-Rees (Lemma 10.51.2).
Thus M/InM → M ′′/InM ′′ is a surjection with kernel M ′ for n ≫ 0 and we see
that χI,M (n) − χI,M ′′(n) = length(M ′) for all n ≫ 0. Thus (2) holds in this case
also.
Proof of (3). This follows from (2) except if one of M , M ′, or M ′′ is zero. We omit
the proof in these special cases. □

10.60. Dimension

00KD Please compare with Topology, Section 5.10.
Definition 10.60.1.0GIE Let R be a ring. A chain of prime ideals is a sequence p0 ⊂
p1 ⊂ . . . ⊂ pn of prime ideals of R such that pi ̸= pi+1 for i = 0, . . . , n − 1. The
length of this chain of prime ideals is n.
Recall that we have an inclusion reversing bijection between prime ideals of a ring
R and irreducible closed subsets of Spec(R), see Lemma 10.26.1.
Definition 10.60.2.00KE The Krull dimension of the ring R is the Krull dimension of
the topological space Spec(R), see Topology, Definition 5.10.1. In other words it is
the supremum of the integers n ≥ 0 such that R has a chain of prime ideals

p0 ⊂ p1 ⊂ . . . ⊂ pn, pi ̸= pi+1.

of length n.
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Definition 10.60.3.00KF The height of a prime ideal p of a ring R is the dimension of
the local ring Rp.

Lemma 10.60.4.00KG The Krull dimension of R is the supremum of the heights of its
(maximal) primes.

Proof. This is so because we can always add a maximal ideal at the end of a chain
of prime ideals. □

Lemma 10.60.5.00KH A Noetherian ring of dimension 0 is Artinian. Conversely, any
Artinian ring is Noetherian of dimension zero.

Proof. Assume R is a Noetherian ring of dimension 0. By Lemma 10.31.5 the space
Spec(R) is Noetherian. By Topology, Lemma 5.9.2 we see that Spec(R) has finitely
many irreducible components, say Spec(R) = Z1 ∪ . . . ∪ Zr. According to Lemma
10.26.1 each Zi = V (pi) with pi a minimal ideal. Since the dimension is 0 these
pi are also maximal. Thus Spec(R) is the discrete topological space with elements
pi. All elements f of the Jacobson radical

⋂
pi are nilpotent since otherwise Rf

would not be the zero ring and we would have another prime. By Lemma 10.53.5
R is equal to

∏
Rpi . Since Rpi is also Noetherian and dimension 0, the previous

arguments show that its radical piRpi is locally nilpotent. Lemma 10.32.5 gives
pni Rpi = 0 for some n ≥ 1. By Lemma 10.52.8 we conclude that Rpi has finite
length over R. Hence we conclude that R is Artinian by Lemma 10.53.6.
If R is an Artinian ring then by Lemma 10.53.6 it is Noetherian. All of its primes
are maximal by a combination of Lemmas 10.53.3, 10.53.4 and 10.53.5. □

In the following we will use the invariant d(−) defined in Definition 10.59.8. Here
is a warm up lemma.

Lemma 10.60.6.00KI Let R be a Noetherian local ring. Then dim(R) = 0⇔ d(R) = 0.

Proof. This is because d(R) = 0 if and only if R has finite length as an R-module.
See Lemma 10.53.6. □

Proposition 10.60.7.00KJ Let R be a ring. The following are equivalent:
(1) R is Artinian,
(2) R is Noetherian and dim(R) = 0,
(3) R has finite length as a module over itself,
(4) R is a finite product of Artinian local rings,
(5) R is Noetherian and Spec(R) is a finite discrete topological space,
(6) R is a finite product of Noetherian local rings of dimension 0,
(7) R is a finite product of Noetherian local rings Ri with d(Ri) = 0,
(8) R is a finite product of Noetherian local rings Ri whose maximal ideals

are nilpotent,
(9) R is Noetherian, has finitely many maximal ideals and its Jacobson radical

ideal is nilpotent, and
(10) R is Noetherian and there are no strict inclusions among its primes.

Proof. This is a combination of Lemmas 10.53.5, 10.53.6, 10.60.5, and 10.60.6. □

Lemma 10.60.8.00KK Let R be a local Noetherian ring. The following are equivalent:
(1)00KL dim(R) = 1,
(2)00KM d(R) = 1,
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(3)00KN there exists an x ∈ m, x not nilpotent such that V (x) = {m},
(4)00KO there exists an x ∈ m, x not nilpotent such that m =

√
(x), and

(5)00KP there exists an ideal of definition generated by 1 element, and no ideal of
definition is generated by 0 elements.

Proof. First, assume that dim(R) = 1. Let pi be the minimal primes of R. Because
the dimension is 1 the only other prime of R is m. According to Lemma 10.31.6
there are finitely many. Hence we can find x ∈ m, x ̸∈ pi, see Lemma 10.15.2. Thus
the only prime containing x is m and hence (3).

If (3) then m =
√

(x) by Lemma 10.17.2, and hence (4). The converse is clear as
well. The equivalence of (4) and (5) follows from directly the definitions.
Assume (5). Let I = (x) be an ideal of definition. Note that In/In+1 is a quotient
of R/I via multiplication by xn and hence lengthR(In/In+1) is bounded. Thus
d(R) = 0 or d(R) = 1, but d(R) = 0 is excluded by the assumption that 0 is not an
ideal of definition.
Assume (2). To get a contradiction, assume there exist primes p ⊂ q ⊂ m, with both
inclusions strict. Pick some ideal of definition I ⊂ R. We will repeatedly use Lemma
10.59.10. First of all it implies, via the exact sequence 0 → p → R → R/p → 0,
that d(R/p) ≤ 1. But it clearly cannot be zero. Pick x ∈ q, x ̸∈ p. Consider the
short exact sequence

0→ R/p→ R/p→ R/(xR+ p)→ 0.
This implies that χI,R/p − χI,R/p − χI,R/(xR+p) = −χI,R/(xR+p) has degree < 1.
In other words, d(R/(xR + p)) = 0, and hence dim(R/(xR + p)) = 0, by Lemma
10.60.6. But R/(xR+ p) has the distinct primes q/(xR+ p) and m/(xR+ p) which
gives the desired contradiction. □

Proposition 10.60.9.00KQ Let R be a local Noetherian ring. Let d ≥ 0 be an integer.
The following are equivalent:

(1)00KR dim(R) = d,
(2)00KS d(R) = d,
(3)00KT there exists an ideal of definition generated by d elements, and no ideal of

definition is generated by fewer than d elements.

Proof. This proof is really just the same as the proof of Lemma 10.60.8. We will
prove the proposition by induction on d. By Lemmas 10.60.6 and 10.60.8 we may
assume that d > 1. Denote the minimal number of generators for an ideal of
definition of R by d′(R). We will prove the inequalities dim(R) ≥ d′(R) ≥ d(R) ≥
dim(R), and hence they are all equal.
First, assume that dim(R) = d. Let pi be the minimal primes of R. According
to Lemma 10.31.6 there are finitely many. Hence we can find x ∈ m, x ̸∈ pi, see
Lemma 10.15.2. Note that every maximal chain of primes starts with some pi,
hence the dimension of R/xR is at most d − 1. By induction there are x2, . . . , xd
which generate an ideal of definition in R/xR. Hence R has an ideal of definition
generated by (at most) d elements.
Assume d′(R) = d. Let I = (x1, . . . , xd) be an ideal of definition. Note that
In/In+1 is a quotient of a direct sum of

(
d+n−1
d−1

)
copies R/I via multiplication by
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all degree n monomials in x1, . . . , xd. Hence lengthR(In/In+1) is bounded by a
polynomial of degree d− 1. Thus d(R) ≤ d.
Assume d(R) = d. Consider a chain of primes p ⊂ q ⊂ q2 ⊂ . . . ⊂ qe = m,
with all inclusions strict, and e ≥ 2. Pick some ideal of definition I ⊂ R. We
will repeatedly use Lemma 10.59.10. First of all it implies, via the exact sequence
0 → p → R → R/p → 0, that d(R/p) ≤ d. But it clearly cannot be zero. Pick
x ∈ q, x ̸∈ p. Consider the short exact sequence

0→ R/p→ R/p→ R/(xR+ p)→ 0.
This implies that χI,R/p − χI,R/p − χI,R/(xR+p) = −χI,R/(xR+p) has degree < d.
In other words, d(R/(xR + p)) ≤ d − 1, and hence dim(R/(xR + p)) ≤ d − 1, by
induction. Now R/(xR+p) has the chain of prime ideals q/(xR+p) ⊂ q2/(xR+p) ⊂
. . . ⊂ qe/(xR + p) which gives e − 1 ≤ d − 1. Since we started with an arbitrary
chain of primes this proves that dim(R) ≤ d(R).
Reading back the reader will see we proved the circular inequalities as desired. □

Let (R,m) be a Noetherian local ring. From the above it is clear that m cannot
be generated by fewer than dim(R) variables. By Nakayama’s Lemma 10.20.1
the minimal number of generators of m equals dimκ(m) m/m

2. Hence we have the
following fundamental inequality

dim(R) ≤ dimκ(m) m/m
2.

It turns out that the rings where equality holds have a lot of good properties. They
are called regular local rings.

Definition 10.60.10.00KU Let (R,m) be a Noetherian local ring of dimension d.
(1) A system of parameters of R is a sequence of elements x1, . . . , xd ∈ m

which generates an ideal of definition of R,
(2) if there exist x1, . . . , xd ∈ m such that m = (x1, . . . , xd) then we call R a

regular local ring and x1, . . . , xd a regular system of parameters.

The following lemmas are clear from the proofs of the lemmas and proposition
above, but we spell them out so we have convenient references.

Lemma 10.60.11.00KV Let R be a Noetherian ring. Let x ∈ R.
(1) If p is minimal over (x) then the height of p is 0 or 1.
(2) If p, q ∈ Spec(R) and q is minimal over (p, x), then there is no prime

strictly between p and q.

Proof. Proof of (1). If p is minimal over x, then the only prime ideal of Rp contain-
ing x is the maximal ideal pRp. This is true because the primes of Rp correspond
1-to-1 with the primes of R contained in p, see Lemma 10.17.5. Hence Lemma
10.60.8 shows dim(Rp) = 1 if x is not nilpotent in Rp. Of course, if x is nilpotent in
Rp the argument gives that pRp is the only prime ideal and we see that the height
is 0.
Proof of (2). By part (1) we see that q/p is a prime of height 1 or 0 in R/p. This
immediately implies there cannot be a prime strictly between p and q. □

Lemma 10.60.12.0BBZ Let R be a Noetherian ring. Let f1, . . . , fr ∈ R.
(1) If p is minimal over (f1, . . . , fr) then the height of p is ≤ r.
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(2) If p, q ∈ Spec(R) and q is minimal over (p, f1, . . . , fr), then every chain of
primes between p and q has length at most r.

Proof. Proof of (1). If p is minimal over f1, . . . , fr, then the only prime ideal of
Rp containing f1, . . . , fr is the maximal ideal pRp. This is true because the primes
of Rp correspond 1-to-1 with the primes of R contained in p, see Lemma 10.17.5.
Hence Proposition 10.60.9 shows dim(Rp) ≤ r.

Proof of (2). By part (1) we see that q/p is a prime of height ≤ r. This immediately
implies the statement about chains of primes between p and q. □

Lemma 10.60.13.00KW Suppose that R is a Noetherian local ring and x ∈ m an element
of its maximal ideal. Then dimR ≤ dimR/xR+ 1. If x is not contained in any of
the minimal primes of R then equality holds. (For example if x is a nonzerodivisor.)

Proof. If x1, . . . , xdimR/xR ∈ R map to elements of R/xR which generate an ideal
of definition for R/xR, then x, x1, . . . , xdimR/xR generate an ideal of definition for
R. Hence the inequality by Proposition 10.60.9. On the other hand, if x is not
contained in any minimal prime of R, then the chains of primes in R/xR all give
rise to chains in R which are at least one step away from being maximal. □

Lemma 10.60.14.02IE Let (R,m) be a Noetherian local ring. Suppose x1, . . . , xd ∈ m
generate an ideal of definition and d = dim(R). Then dim(R/(x1, . . . , xi)) = d− i
for all i = 1, . . . , d.

Proof. Follows either from the proof of Proposition 10.60.9, or by using induction
on d and Lemma 10.60.13. □

10.61. Applications of dimension theory

02IF We can use the results on dimension to prove certain rings have infinite spectra and
to produce more Jacobson rings.

Lemma 10.61.1.02IG LetR be a Noetherian local domain of dimension≥ 2. A nonempty
open subset U ⊂ Spec(R) is infinite.

Proof. To get a contradiction, assume that U ⊂ Spec(R) is finite. In this case
(0) ∈ U and {(0)} is an open subset of U (because the complement of {(0)} is
the union of the closures of the other points). Thus we may assume U = {(0)}.
Let m ⊂ R be the maximal ideal. We can find an x ∈ m, x ̸= 0 such that
V (x) ∪ U = Spec(R). In other words we see that D(x) = {(0)}. In particular we
see that dim(R/xR) = dim(R)− 1 ≥ 1, see Lemma 10.60.13. Let y2, . . . , ydim(R) ∈
R/xR generate an ideal of definition of R/xR, see Proposition 10.60.9. Choose lifts
y2, . . . , ydim(R) ∈ R, so that x, y2, . . . , ydim(R) generate an ideal of definition in R.
This implies that dim(R/(y2)) = dim(R) − 1 and dim(R/(y2, x)) = dim(R) − 2,
see Lemma 10.60.14. Hence there exists a prime p containing y2 but not x. This
contradicts the fact that D(x) = {(0)}. □

The rings k[[t]] where k is a field, or the ring of p-adic numbers are Noetherian
rings of dimension 1 with finitely many primes. This is the maximum dimension
for which this can happen.

Lemma 10.61.2.0ALV A Noetherian ring with finitely many primes has dimension ≤ 1.
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Proof. Let R be a Noetherian ring with finitely many primes. If R is a local
domain, then the lemma follows from Lemma 10.61.1. If R is a domain, then Rm

has dimension ≤ 1 for all maximal ideals m by the local case. Hence dim(R) ≤ 1
by Lemma 10.60.4. If R is general, then dim(R/q) ≤ 1 for every minimal prime q
of R. Since every prime contains a minimal prime (Lemma 10.17.2), this implies
dim(R) ≤ 1. □

Lemma 10.61.3.0ALW Let S be a nonzero finite type algebra over a field k. Then
dim(S) = 0 if and only if S has finitely many primes.

Proof. Recall that Spec(S) is sober, Noetherian, and Jacobson, see Lemmas 10.26.2,
10.31.5, 10.35.2, and 10.35.4. If it has dimension 0, then every point defines an
irreducible component and there are only a finite number of irreducible components
(Topology, Lemma 5.9.2). Conversely, if Spec(S) is finite, then it is discrete by
Topology, Lemma 5.18.6 and hence the dimension is 0. □

Lemma 10.61.4.00KX Noetherian Jacobson rings.
(1) Any Noetherian domain R of dimension 1 with infinitely many primes is

Jacobson.
(2) Any Noetherian ring such that every prime p is either maximal or con-

tained in infinitely many prime ideals is Jacobson.

Proof. Part (1) is a reformulation of Lemma 10.35.6.
Let R be a Noetherian ring such that every non-maximal prime p is contained in
infinitely many prime ideals. Assume Spec(R) is not Jacobson to get a contradic-
tion. By Lemmas 10.26.1 and 10.31.5 we see that Spec(R) is a sober, Noetherian
topological space. By Topology, Lemma 5.18.3 we see that there exists a non-
maximal ideal p ⊂ R such that {p} is a locally closed subset of Spec(R). In other
words, p is not maximal and {p} is an open subset of V (p). Consider a prime
q ⊂ R with p ⊂ q. Recall that the topology on the spectrum of (R/p)q = Rq/pRq

is induced from that of Spec(R), see Lemmas 10.17.5 and 10.17.7. Hence we see
that {(0)} is a locally closed subset of Spec((R/p)q). By Lemma 10.61.1 we con-
clude that dim((R/p)q) = 1. Since this holds for every q ⊃ p we conclude that
dim(R/p) = 1. At this point we use the assumption that p is contained in infinitely
many primes to see that Spec(R/p) is infinite. Hence by part (1) of the lemma we
see that V (p) ∼= Spec(R/p) is the closure of its closed points. This is the desired
contradiction since it means that {p} ⊂ V (p) cannot be open. □

10.62. Support and dimension of modules

00KY Some basic results on the support and dimension of modules.

Lemma 10.62.1.00L0 Let R be a Noetherian ring, and let M be a finite R-module.
There exists a filtration by R-submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mi/Mi−1 is isomorphic to R/pi for some prime ideal pi of
R.

First proof. By Lemma 10.5.4 it suffices to do the case M = R/I for some ideal I.
Consider the set S of ideals J such that the lemma does not hold for the module
R/J , and order it by inclusion. To arrive at a contradiction, assume that S is
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not empty. Because R is Noetherian, S has a maximal element J . By definition
of S, the ideal J cannot be prime. Pick a, b ∈ R such that ab ∈ J , but neither
a ∈ J nor b ∈ J . Consider the filtration 0 ⊂ aR/(J ∩ aR) ⊂ R/J . Note that both
the submodule aR/(J ∩ aR) and the quotient module (R/J)/(aR/(J ∩ aR)) are
cyclic modules; write them as R/J ′ and R/J ′′ so we have a short exact sequence
0 → R/J ′ → R/J → R/J ′′ → 0. The inclusion J ⊂ J ′ is strict as b ∈ J ′ and the
inclusion J ⊂ J ′′ is strict as a ∈ J ′′. Hence by maximality of J , both R/J ′ and
R/J ′′ have a filtration as above and hence so does R/J . Contradiction. □

Second proof. For an R-module M we say P (M) holds if there exists a filtration as
in the statement of the lemma. Observe that P is stable under extensions and holds
for 0. By Lemma 10.5.4 it suffices to prove P (R/I) holds for every ideal I. If not
then because R is Noetherian, there is a maximal counter example J . By Example
10.28.7 and Proposition 10.28.8 the ideal J is prime which is a contradiction. □

Lemma 10.62.2.00L4 Let R, M , Mi, pi as in Lemma 10.62.1. Then Supp(M) =
⋃
V (pi)

and in particular pi ∈ Supp(M).

Proof. This follows from Lemmas 10.40.5 and 10.40.9. □

Lemma 10.62.3.00L5 Suppose that R is a Noetherian local ring with maximal ideal m.
Let M be a nonzero finite R-module. Then Supp(M) = {m} if and only if M has
finite length over R.

Proof. Assume that Supp(M) = {m}. It suffices to show that all the primes pi
in the filtration of Lemma 10.62.1 are the maximal ideal. This is clear by Lemma
10.62.2.
Suppose that M has finite length over R. Then mnM = 0 by Lemma 10.52.4.
Since some element of m maps to a unit in Rp for any prime p ̸= m in R we see
Mp = 0. □

Lemma 10.62.4.00L6 Let R be a Noetherian ring. Let I ⊂ R be an ideal. Let M be a
finite R-module. Then InM = 0 for some n ≥ 0 if and only if Supp(M) ⊂ V (I).

Proof. Indeed, InM = 0 is equivalent to In ⊂ Ann(M). Since R is Noetherian,
this is equivalent to I ⊂

√
Ann(M), see Lemma 10.32.5. This in turn is equivalent

to V (I) ⊃ V (Ann(M)), see Lemma 10.17.2. By Lemma 10.40.5 this is equivalent
to V (I) ⊃ Supp(M). □

Lemma 10.62.5.00L7 Let R, M , Mi, pi as in Lemma 10.62.1. The minimal elements of
the set {pi} are the minimal elements of Supp(M). The number of times a minimal
prime p occurs is

#{i | pi = p} = lengthRp
Mp.

Proof. The first statement follows because Supp(M) =
⋃
V (pi), see Lemma 10.62.2.

Let p ∈ Supp(M) be minimal. The support of Mp is the set consisting of the max-
imal ideal pRp. Hence by Lemma 10.62.3 the length of Mp is finite and > 0. Next
we note that Mp has a filtration with subquotients (R/pi)p = Rp/piRp. These are
zero if pi ̸⊂ p and equal to κ(p) if pi ⊂ p because by minimality of p we have pi = p
in this case. The result follows since κ(p) has length 1. □

Lemma 10.62.6.00L8 Let R be a Noetherian local ring. Let M be a finite R-module.
Then d(M) = dim(Supp(M)) where d(M) is as in Definition 10.59.8.
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Proof. Let Mi, pi be as in Lemma 10.62.1. By Lemma 10.59.10 we obtain the equal-
ity d(M) = max{d(R/pi)}. By Proposition 10.60.9 we have d(R/pi) = dim(R/pi).
Trivially dim(R/pi) = dimV (pi). Since all minimal primes of Supp(M) occur
among the pi (Lemma 10.62.5) we win. □

Lemma 10.62.7.0B51 Let R be a Noetherian ring. Let 0→ M ′ → M → M ′′ → 0 be a
short exact sequence of finiteR-modules. Then max{dim(Supp(M ′)),dim(Supp(M ′′))} =
dim(Supp(M)).

Proof. If R is local, this follows immediately from Lemmas 10.62.6 and 10.59.10.
A more elementary argument, which works also if R is not local, is to use that
Supp(M ′), Supp(M ′′), and Supp(M) are closed (Lemma 10.40.5) and that Supp(M) =
Supp(M ′) ∪ Supp(M ′′) (Lemma 10.40.9). □

10.63. Associated primes

00L9 Here is the standard definition. For non-Noetherian rings and non-finite modules
it may be more appropriate to use the definition in Section 10.66.

Definition 10.63.1.00LA Let R be a ring. Let M be an R-module. A prime p of R is
associated to M if there exists an element m ∈ M whose annihilator is p. The set
of all such primes is denoted AssR(M) or Ass(M).

Lemma 10.63.2.0586 Let R be a ring. Let M be an R-module. Then Ass(M) ⊂
Supp(M).

Proof. If m ∈M has annihilator p, then in particular no element of R\p annihilates
m. Hence m is a nonzero element of Mp, i.e., p ∈ Supp(M). □

Lemma 10.63.3.02M3 Let R be a ring. Let 0 → M ′ → M → M ′′ → 0 be a short
exact sequence of R-modules. Then Ass(M ′) ⊂ Ass(M) and Ass(M) ⊂ Ass(M ′) ∪
Ass(M ′′). Also Ass(M ′ ⊕M ′′) = Ass(M ′) ∪Ass(M ′′).

Proof. If m′ ∈ M ′, then the annihilator of m′ viewed as an element of M ′ is
the same as the annihilator of m′ viewed as an element of M . Hence the inclusion
Ass(M ′) ⊂ Ass(M). Let m ∈M be an element whose annihilator is a prime ideal p.
If there exists a g ∈ R, g ̸∈ p such that m′ = gm ∈M ′ then the annihilator of m′ is
p. If there does not exist a g ∈ R, g ̸∈ p such that gm ∈M ′, then the annilator of the
image m′′ ∈M ′′ of m is p. This proves the inclusion Ass(M) ⊂ Ass(M ′)∪Ass(M ′′).
We omit the proof of the final statement. □

Lemma 10.63.4.00LB Let R be a ring, and M an R-module. Suppose there exists a
filtration by R-submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mi/Mi−1 is isomorphic to R/pi for some prime ideal pi of
R. Then Ass(M) ⊂ {p1, . . . , pn}.

Proof. By induction on the length n of the filtration {Mi}. Pick m ∈ M whose
annihilator is a prime p. If m ∈ Mn−1 we are done by induction. If not, then m
maps to a nonzero element of M/Mn−1 ∼= R/pn. Hence we have p ⊂ pn. If equality
does not hold, then we can find f ∈ pn, f ̸∈ p. In this case the annihilator of fm
is still p and fm ∈Mn−1. Thus we win by induction. □
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Lemma 10.63.5.00LC Let R be a Noetherian ring. Let M be a finite R-module. Then
Ass(M) is finite.

Proof. Immediate from Lemma 10.63.4 and Lemma 10.62.1. □

Proposition 10.63.6.02CE Let R be a Noetherian ring. Let M be a finite R-module.
The following sets of primes are the same:

(1) The minimal primes in the support of M .
(2) The minimal primes in Ass(M).
(3) For any filtration 0 = M0 ⊂ M1 ⊂ . . . ⊂ Mn−1 ⊂ Mn = M with

Mi/Mi−1 ∼= R/pi the minimal primes of the set {pi}.

Proof. Choose a filtration as in (3). In Lemma 10.62.5 we have seen that the sets
in (1) and (3) are equal.

Let p be a minimal element of the set {pi}. Let i be minimal such that p = pi.
Pick m ∈Mi, m ̸∈Mi−1. The annihilator of m is contained in pi = p and contains
p1p2 . . . pi. By our choice of i and p we have pj ̸⊂ p for j < i and hence we have
p1p2 . . . pi−1 ̸⊂ pi. Pick f ∈ p1p2 . . . pi−1, f ̸∈ p. Then fm has annihilator p. In
this way we see that p is an associated prime of M . By Lemma 10.63.2 we have
Ass(M) ⊂ Supp(M) and hence p is minimal in Ass(M). Thus the set of primes in
(1) is contained in the set of primes of (2).

Let p be a minimal element of Ass(M). Since Ass(M) ⊂ Supp(M) there is a
minimal element q of Supp(M) with q ⊂ p. We have just shown that q ∈ Ass(M).
Hence q = p by minimality of p. Thus the set of primes in (2) is contained in the
set of primes of (1). □

Lemma 10.63.7.0587 Let R be a Noetherian ring. Let M be an R-module. Then

M = (0)⇔ Ass(M) = ∅.

Proof. If M = (0), then Ass(M) = ∅ by definition. If M ̸= 0, pick any nonzero
finitely generated submodule M ′ ⊂ M , for example a submodule generated by a
single nonzero element. By Lemma 10.40.2 we see that Supp(M ′) is nonempty. By
Proposition 10.63.6 this implies that Ass(M ′) is nonempty. By Lemma 10.63.3 this
implies Ass(M) ̸= ∅. □

Lemma 10.63.8.05BV Let R be a Noetherian ring. Let M be an R-module. Any
p ∈ Supp(M) which is minimal among the elements of Supp(M) is an element of
Ass(M).

Proof. If M is a finite R-module, then this is a consequence of Proposition 10.63.6.
In general write M =

⋃
Mλ as the union of its finite submodules, and use that

Supp(M) =
⋃

Supp(Mλ) and Ass(M) =
⋃

Ass(Mλ). □

Lemma 10.63.9.00LD Let R be a Noetherian ring. Let M be an R-module. The union⋃
q∈Ass(M) q is the set of elements of R which are zerodivisors on M .

Proof. Any element in any associated prime clearly is a zerodivisor on M . Con-
versely, suppose x ∈ R is a zerodivisor on M . Consider the submodule N = {m ∈
M | xm = 0}. Since N is not zero it has an associated prime q by Lemma 10.63.7.
Then x ∈ q and q is an associated prime of M by Lemma 10.63.3. □
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Lemma 10.63.10.0B52 Let R is a Noetherian local ring, M a finite R-module, and f ∈ m
an element of the maximal ideal of R. Then

dim(Supp(M/fM)) ≤ dim(Supp(M)) ≤ dim(Supp(M/fM)) + 1
If f is not in any of the minimal primes of the support of M (for example if f is a
nonzerodivisor on M), then equality holds for the right inequality.

Proof. (The parenthetical statement follows from Lemma 10.63.9.) The first in-
equality follows from Supp(M/fM) ⊂ Supp(M), see Lemma 10.40.9. For the
second inequality, note that Supp(M/fM) = Supp(M)∩V (f), see Lemma 10.40.9.
It follows, for example by Lemma 10.62.2 and elementary properties of dimension,
that it suffices to show dimV (p) ≤ dim(V (p) ∩ V (f)) + 1 for primes p of R. This
is a consequence of Lemma 10.60.13. Finally, if f is not contained in any minimal
prime of the support of M , then the chains of primes in Supp(M/fM) all give rise
to chains in Supp(M) which are at least one step away from being maximal. □

Lemma 10.63.11.05BW Let φ : R → S be a ring map. Let M be an S-module. Then
Spec(φ)(AssS(M)) ⊂ AssR(M).

Proof. If q ∈ AssS(M), then there exists an m in M such that the annihilator of
m in S is q. Then the annihilator of m in R is q ∩R. □

Remark 10.63.12.05BX Let φ : R→ S be a ring map. Let M be an S-module. Then it
is not always the case that Spec(φ)(AssS(M)) ⊃ AssR(M). For example, consider
the ring map R = k → S = k[x1, x2, x3, . . .]/(x2

i ) and M = S. Then AssR(M) is
not empty, but AssS(S) is empty.

Lemma 10.63.13.05DZ Let φ : R → S be a ring map. Let M be an S-module. If S is
Noetherian, then Spec(φ)(AssS(M)) = AssR(M).

Proof. We have already seen in Lemma 10.63.11 that Spec(φ)(AssS(M)) ⊂ AssR(M).
For the converse, choose a prime p ∈ AssR(M). Let m ∈ M be an element such
that the annihilator of m in R is p. Let I = {g ∈ S | gm = 0} be the annihilator
of m in S. Then R/p ⊂ S/I is injective. Combining Lemmas 10.30.5 and 10.30.7
we see that there is a prime q ⊂ S minimal over I mapping to p. By Proposition
10.63.6 we see that q is an associated prime of S/I, hence q is an associated prime
of M by Lemma 10.63.3 and we win. □

Lemma 10.63.14.05BY Let R be a ring. Let I be an ideal. Let M be an R/I-module.
Via the canonical injection Spec(R/I)→ Spec(R) we have AssR/I(M) = AssR(M).

Proof. Omitted. □

Lemma 10.63.15.0310 Let R be a ring. Let M be an R-module. Let p ⊂ R be a prime.
(1) If p ∈ Ass(M) then pRp ∈ Ass(Mp).
(2) If p is finitely generated then the converse holds as well.

Proof. If p ∈ Ass(M) there exists an element m ∈ M whose annihilator is p. As
localization is exact (Proposition 10.9.12) we see that the annihilator of m/1 in Mp

is pRp hence (1) holds. Assume pRp ∈ Ass(Mp) and p = (f1, . . . , fn). Let m/g be
an element of Mp whose annihilator is pRp. This implies that the annihilator of m
is contained in p. As fim/g = 0 in Mp we see there exists a gi ∈ R, gi ̸∈ p such
that gifim = 0 in M . Combined we see the annihilator of g1 . . . gnm is p. Hence
p ∈ Ass(M). □

https://stacks.math.columbia.edu/tag/0B52
https://stacks.math.columbia.edu/tag/05BW
https://stacks.math.columbia.edu/tag/05BX
https://stacks.math.columbia.edu/tag/05DZ
https://stacks.math.columbia.edu/tag/05BY
https://stacks.math.columbia.edu/tag/0310
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Lemma 10.63.16.05BZ Let R be a ring. Let M be an R-module. Let S ⊂ R be a
multiplicative subset. Via the canonical injection Spec(S−1R)→ Spec(R) we have

(1) AssR(S−1M) = AssS−1R(S−1M),
(2) AssR(M) ∩ Spec(S−1R) ⊂ AssR(S−1M), and
(3) if R is Noetherian this inclusion is an equality.

Proof. The first equality follows, since if m ∈ S−1M , then the annihilator of m
in R is the intersection of the annihilator of m in S−1R with R. The displayed
inclusion and equality in the Noetherian case follows from Lemma 10.63.15 since
for p ∈ R, S ∩ p = ∅ we have Mp = (S−1M)S−1p. □

Lemma 10.63.17.05C0 Let R be a ring. Let M be an R-module. Let S ⊂ R be a
multiplicative subset. Assume that every s ∈ S is a nonzerodivisor on M . Then

AssR(M) = AssR(S−1M).

Proof. As M ⊂ S−1M by assumption we get the inclusion Ass(M) ⊂ Ass(S−1M)
from Lemma 10.63.3. Conversely, suppose that n/s ∈ S−1M is an element whose
annihilator is a prime ideal p. Then the annihilator of n ∈M is also p. □

Lemma 10.63.18.00LL Let R be a Noetherian local ring with maximal ideal m. Let
I ⊂ m be an ideal. Let M be a finite R-module. The following are equivalent:

(1) There exists an x ∈ I which is not a zerodivisor on M .
(2) We have I ̸⊂ q for all q ∈ Ass(M).

Proof. If there exists a nonzerodivisor x in I, then x clearly cannot be in any
associated prime of M . Conversely, suppose I ̸⊂ q for all q ∈ Ass(M). In this case
we can choose x ∈ I, x ̸∈ q for all q ∈ Ass(M) by Lemmas 10.63.5 and 10.15.2. By
Lemma 10.63.9 the element x is not a zerodivisor on M . □

Lemma 10.63.19.0311 Let R be a ring. Let M be an R-module. If R is Noetherian the
map

M −→
∏

p∈Ass(M)
Mp

is injective.

Proof. Let x ∈M be an element of the kernel of the map. Then if p is an associated
prime of Rx ⊂ M we see on the one hand that p ∈ Ass(M) (Lemma 10.63.3) and
on the other hand that (Rx)p ⊂ Mp is not zero. This contradiction shows that
Ass(Rx) = ∅. Hence Rx = 0 by Lemma 10.63.7. □

This lemma should probably be put somewhere else.

Lemma 10.63.20.0GEC Let k be a field. Let S be a finite type k algebra. If dim(S) > 0,
then there exists an element f ∈ S which is a nonzerodivisor and a nonunit.

Proof. By Lemma 10.63.5 the ring S has finitely many associated prime ideals. By
Lemma 10.61.3 the ring S has infinitely many maximal ideals. Hence we can choose
a maximal ideal m ⊂ S which is not an associated prime of S. By prime avoidance
(Lemma 10.15.2), we can choose a nonzero f ∈ m which is not contained in any of
the associated primes of S. By Lemma 10.63.9 the element f is a nonzerodivisor
and as f ∈ m we see that f is not a unit. □

https://stacks.math.columbia.edu/tag/05BZ
https://stacks.math.columbia.edu/tag/05C0
https://stacks.math.columbia.edu/tag/00LL
https://stacks.math.columbia.edu/tag/0311
https://stacks.math.columbia.edu/tag/0GEC
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10.64. Symbolic powers

05G9 Here is the definition.

Definition 10.64.1.0313 Let R be a ring. Let p be a prime ideal. For n ≥ 0 the nth
symbolic power of p is the ideal p(n) = Ker(R→ Rp/p

nRp).

Note that pn ⊂ p(n) but equality does not always hold.

Lemma 10.64.2.0314 Let R be a Noetherian ring. Let p be a prime ideal. Let n > 0.
Then Ass(R/p(n)) = {p}.

Proof. If q is an associated prime of R/p(n) then clearly p ⊂ q. On the other hand,
any element x ∈ R, x ̸∈ p is a nonzerodivisor on R/p(n). Namely, if y ∈ R and
xy ∈ p(n) = R∩pnRp then y ∈ pnRp, hence y ∈ p(n). Hence the lemma follows. □

Lemma 10.64.3.0BC0 Let R → S be flat ring map. Let p ⊂ R be a prime such that
q = pS is a prime of S. Then p(n)S = q(n).

Proof. Since p(n) = Ker(R → Rp/p
nRp) we see using flatness that p(n)S is the

kernel of the map S → Sp/p
nSp. On the other hand q(n) is the kernel of the map

S → Sq/q
nSq = Sq/p

nSq. Hence it suffices to show that
Sp/p

nSp −→ Sq/p
nSq

is injective. Observe that the right hand module is the localization of the left
hand module by elements f ∈ S, f ̸∈ q. Thus it suffices to show these elements are
nonzerodivisors on Sp/p

nSp. By flatness, the module Sp/p
nSp has a finite filtration

whose subquotients are
piSp/p

i+1Sp
∼= piRp/p

i+1Rp ⊗Rp
Sp
∼= V ⊗κ(p) (S/q)p

where V is a κ(p) vector space. Thus f acts invertibly as desired. □

10.65. Relative assassin

05GA Discussion of relative assassins. Let R→ S be a ring map. Let N be an S-module.
In this situation we can introduce the following sets of primes q of S:

(1) A: with p = R ∩ q we have that q ∈ AssS(N ⊗R κ(p)),
(2) A′: with p = R∩q we have that q is in the image of AssS⊗κ(p)(N⊗Rκ(p))

under the canonical map Spec(S ⊗R κ(p))→ Spec(S),
(3) Afin: with p = R ∩ q we have that q ∈ AssS(N/pN),
(4) A′

fin: for some prime p′ ⊂ R we have q ∈ AssS(N/p′N),
(5) B: for some R-module M we have q ∈ AssS(N ⊗RM), and
(6) Bfin: for some finite R-module M we have q ∈ AssS(N ⊗RM).

Let us determine some of the relations between theses sets.

Lemma 10.65.1.05GB Let R → S be a ring map. Let N be an S-module. Let A, A′,
Afin, B, and Bfin be the subsets of Spec(S) introduced above.

(1) We always have A = A′.
(2) We always have Afin ⊂ A, Bfin ⊂ B, Afin ⊂ A′

fin ⊂ Bfin and A ⊂ B.
(3) If S is Noetherian, then A = Afin and B = Bfin.
(4) If N is flat over R, then A = Afin = A′

fin and B = Bfin.
(5) If R is Noetherian and N is flat over R, then all of the sets are equal, i.e.,

A = A′ = Afin = A′
fin = B = Bfin.

https://stacks.math.columbia.edu/tag/0313
https://stacks.math.columbia.edu/tag/0314
https://stacks.math.columbia.edu/tag/0BC0
https://stacks.math.columbia.edu/tag/05GB
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Proof. Some of the arguments in the proof will be repeated in the proofs of later
lemmas which are more precise than this one (because they deal with a given module
M or a given prime p and not with the collection of all of them).
Proof of (1). Let p be a prime of R. Then we have

AssS(N ⊗R κ(p)) = AssS/pS(N ⊗R κ(p)) = AssS⊗Rκ(p)(N ⊗R κ(p))
the first equality by Lemma 10.63.14 and the second by Lemma 10.63.16 part (1).
This prove that A = A′. The inclusion Afin ⊂ A′

fin is clear.

Proof of (2). Each of the inclusions is immediate from the definitions except perhaps
Afin ⊂ A which follows from Lemma 10.63.16 and the fact that we require p = R∩q
in the formulation of Afin.
Proof of (3). The equality A = Afin follows from Lemma 10.63.16 part (3) if S
is Noetherian. Let q = (g1, . . . , gm) be a finitely generated prime ideal of S. Say
z ∈ N ⊗RM is an element whose annihilator is q. We may pick a finite submodule
M ′ ⊂M such that z is the image of z′ ∈ N⊗RM ′. Then AnnS(z′) ⊂ q = AnnS(z).
Since N ⊗R − commutes with colimits and since M is the directed colimit of finite
R-modules we can find M ′ ⊂ M ′′ ⊂ M such that the image z′′ ∈ N ⊗R M ′′ is
annihilated by g1, . . . , gm. Hence AnnS(z′′) = q. This proves that B = Bfin if S is
Noetherian.
Proof of (4). If N is flat, then the functor N⊗R− is exact. In particular, if M ′ ⊂M ,
then N ⊗RM ′ ⊂ N ⊗RM . Hence if z ∈ N ⊗RM is an element whose annihilator
q = AnnS(z) is a prime, then we can pick any finite R-submodule M ′ ⊂ M such
that z ∈ N ⊗RM ′ and we see that the annihilator of z as an element of N ⊗RM ′ is
equal to q. Hence B = Bfin. Let p′ be a prime of R and let q be a prime of S which
is an associated prime of N/p′N . This implies that p′S ⊂ q. As N is flat over R we
see that N/p′N is flat over the integral domain R/p′. Hence every nonzero element
of R/p′ is a nonzerodivisor on N/p′. Hence none of these elements can map to an
element of q and we conclude that p′ = R ∩ q. Hence Afin = A′

fin. Finally, by
Lemma 10.63.17 we see that AssS(N/p′N) = AssS(N ⊗R κ(p′)), i.e., A′

fin = A.

Proof of (5). We only need to prove A′
fin = Bfin as the other equalities have been

proved in (4). To see this let M be a finite R-module. By Lemma 10.62.1 there
exists a filtration by R-submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mi/Mi−1 is isomorphic to R/pi for some prime ideal pi of
R. Since N is flat we obtain a filtration by S-submodules

0 = N ⊗RM0 ⊂ N ⊗RM1 ⊂ . . . ⊂ N ⊗RMn = N ⊗RM

such that each subquotient is isomorphic to N/piN . By Lemma 10.63.3 we conclude
that AssS(N ⊗RM) ⊂

⋃
AssS(N/piN). Hence we see that Bfin ⊂ A′

fin. Since the
other inclusion is part of (2) we win. □

We define the relative assassin of N over S/R to be the set A = A′ above. As a
motivation we point out that it depends only on the fibre modules N ⊗R κ(p) over
the fibre rings. As in the case of the assassin of a module we warn the reader that
this notion makes most sense when the fibre rings S ⊗R κ(p) are Noetherian, for
example if R→ S is of finite type.
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Definition 10.65.2.05GC Let R→ S be a ring map. Let N be an S-module. The relative
assassin of N over S/R is the set

AssS/R(N) = {q ⊂ S | q ∈ AssS(N ⊗R κ(p)) with p = R ∩ q}.
This is the set named A in Lemma 10.65.1.

The spirit of the next few results is that they are about the relative assassin, even
though this may not be apparent.

Lemma 10.65.3.0312 Let R→ S be a ring map. Let M be an R-module, and let N be
an S-module. If N is flat as R-module, then

AssS(M ⊗R N) ⊃
⋃

p∈AssR(M)
AssS(N/pN)

and if R is Noetherian then we have equality.

Proof. If p ∈ AssR(M) then there exists an injection R/p→ M . As N is flat over
R we obtain an injection R/p ⊗R N → M ⊗R N . Since R/p ⊗R N = N/pN we
conclude that AssS(N/pN) ⊂ AssS(M ⊗RN), see Lemma 10.63.3. Hence the right
hand side is contained in the left hand side.
Write M =

⋃
Mλ as the union of its finitely generated R-submodules. Then also

N ⊗RM =
⋃
N ⊗RMλ (as N is R-flat). By definition of associated primes we see

that AssS(N ⊗RM) =
⋃

AssS(N ⊗RMλ) and AssR(M) =
⋃

Ass(Mλ). Hence we
may assume M is finitely generated.
Let q ∈ AssS(M ⊗R N), and assume R is Noetherian and M is a finite R-module.
To finish the proof we have to show that q is an element of the right hand side.
First we observe that qSq ∈ AssSq

((M ⊗RN)q), see Lemma 10.63.15. Let p be the
corresponding prime of R. Note that

(M ⊗R N)q = M ⊗R Nq = Mp ⊗Rp
Nq

If pRp ̸∈ AssRp
(Mp) then there exists an element x ∈ pRp which is a nonzerodivisor

in Mp (see Lemma 10.63.18). Since Nq is flat over Rp we see that the image of x in
qSq is a nonzerodivisor on (M⊗RN)q. This is a contradiction with the assumption
that qSq ∈ AssS((M ⊗R N)q). Hence we conclude that p is one of the associated
primes of M .
Continuing the argument we choose a filtration

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mi/Mi−1 is isomorphic to R/pi for some prime ideal pi of
R, see Lemma 10.62.1. (By Lemma 10.63.4 we have pi = p for at least one i.) This
gives a filtration

0 = M0 ⊗R N ⊂M1 ⊗R N ⊂ . . . ⊂Mn ⊗R N = M ⊗R N
with subquotients isomorphic toN/piN . If pi ̸= p then q cannot be associated to the
module N/piN by the result of the preceding paragraph (as AssR(R/pi) = {pi}).
Hence we conclude that q is associated to N/pN as desired. □

Lemma 10.65.4.05C1 Let R→ S be a ring map. Let N be an S-module. Assume N is
flat as an R-module and R is a domain with fraction field K. Then

AssS(N) = AssS(N ⊗R K) = AssS⊗RK(N ⊗R K)
via the canonical inclusion Spec(S ⊗R K) ⊂ Spec(S).

https://stacks.math.columbia.edu/tag/05GC
https://stacks.math.columbia.edu/tag/0312
https://stacks.math.columbia.edu/tag/05C1
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Proof. Note that S ⊗R K = (R \ {0})−1S and N ⊗R K = (R \ {0})−1N . For any
nonzero x ∈ R multiplication by x on N is injective as N is flat over R. Hence the
lemma follows from Lemma 10.63.17 combined with Lemma 10.63.16 part (1). □

Lemma 10.65.5.05C2 Let R→ S be a ring map. Let M be an R-module, and let N be
an S-module. Assume N is flat as R-module. Then

AssS(M ⊗R N) ⊃
⋃

p∈AssR(M)
AssS⊗Rκ(p)(N ⊗R κ(p))

where we use Remark 10.17.8 to think of the spectra of fibre rings as subsets of
Spec(S). If R is Noetherian then this inclusion is an equality.

Proof. This is equivalent to Lemma 10.65.3 by Lemmas 10.63.14, 10.39.7, and
10.65.4. □

Remark 10.65.6.05E0 Let R → S be a ring map. Let N be an S-module. Let p be a
prime of R. Then

AssS(N ⊗R κ(p)) = AssS/pS(N ⊗R κ(p)) = AssS⊗Rκ(p)(N ⊗R κ(p)).
The first equality by Lemma 10.63.14 and the second by Lemma 10.63.16 part (1).

10.66. Weakly associated primes

0546 This is a variant on the notion of an associated prime that is useful for non-
Noetherian ring and non-finite modules.

Definition 10.66.1.0547 Let R be a ring. Let M be an R-module. A prime p of R is
weakly associated to M if there exists an element m ∈ M such that p is minimal
among the prime ideals containing the annihilator Ann(m) = {f ∈ R | fm = 0}.
The set of all such primes is denoted WeakAssR(M) or WeakAss(M).

Thus an associated prime is a weakly associated prime. Here is a characterization
in terms of the localization at the prime.

Lemma 10.66.2.0566 Let R be a ring. Let M be an R-module. Let p be a prime of R.
The following are equivalent:

(1) p is weakly associated to M ,
(2) pRp is weakly associated to Mp, and
(3) Mp contains an element whose annihilator has radical equal to pRp.

Proof. Assume (1). Then there exists an element m ∈ M such that p is minimal
among the primes containing the annihilator I = {x ∈ R | xm = 0} of m. As
localization is exact, the annihilator of m in Mp is Ip. Hence pRp is a minimal
prime of Rp containing the annihilator Ip of m in Mp. This implies (2) holds, and
also (3) as it implies that

√
Ip = pRp.

Applying the implication (1) ⇒ (3) to Mp over Rp we see that (2) ⇒ (3).
Finally, assume (3). This means there exists an element m/f ∈ Mp whose annihi-
lator has radical equal to pRp. Then the annihilator I = {x ∈ R | xm = 0} of m in
M is such that

√
Ip = pRp. Clearly this means that p contains I and is minimal

among the primes containing I, i.e., (1) holds. □

Lemma 10.66.3.0EMA For a reduced ring the weakly associated primes of the ring are
the minimal primes.

https://stacks.math.columbia.edu/tag/05C2
https://stacks.math.columbia.edu/tag/05E0
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https://stacks.math.columbia.edu/tag/0566
https://stacks.math.columbia.edu/tag/0EMA
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Proof. Let (R,m) be a reduced local ring. Suppose x ∈ R is an element whose
annihilator has radical m. If m ̸= 0, then x cannot be a unit, so x ∈ m. Then
in particular x1+n = 0 for some n ≥ 0. Hence x = 0. Which contradicts the
assumption that the annihilator of x is contained in m. Thus we see that m = 0,
i.e., R is a field. By Lemma 10.66.2 this implies the statement of the lemma. □

Lemma 10.66.4.0548 Let R be a ring. Let 0→ M ′ → M → M ′′ → 0 be a short exact
sequence of R-modules. Then WeakAss(M ′) ⊂ WeakAss(M) and WeakAss(M) ⊂
WeakAss(M ′) ∪WeakAss(M ′′).

Proof. We will use the characterization of weakly associated primes of Lemma
10.66.2. Let p be a prime of R. As localization is exact we obtain the short exact
sequence 0 → M ′

p → Mp → M ′′
p → 0. Suppose that m ∈ Mp is an element

whose annihilator has radical pRp. Then either the image m of m in M ′′
p is zero

and m ∈ M ′
p, or the radical of the annihilator of m is pRp. This proves that

WeakAss(M) ⊂ WeakAss(M ′) ∪WeakAss(M ′′). The inclusion WeakAss(M ′) ⊂
WeakAss(M) is immediate from the definitions. □

Lemma 10.66.5.0588 Let R be a ring. Let M be an R-module. Then
M = (0)⇔WeakAss(M) = ∅

Proof. If M = (0) then WeakAss(M) = ∅ by definition. Conversely, suppose that
M ̸= 0. Pick a nonzero element m ∈ M . Write I = {x ∈ R | xm = 0} the
annihilator of m. Then R/I ⊂ M . Hence WeakAss(R/I) ⊂ WeakAss(M) by
Lemma 10.66.4. But as I ̸= R we have V (I) = Spec(R/I) contains a minimal
prime, see Lemmas 10.17.2 and 10.17.7, and we win. □

Lemma 10.66.6.0589 Let R be a ring. Let M be an R-module. Then
Ass(M) ⊂WeakAss(M) ⊂ Supp(M).

Proof. The first inclusion is immediate from the definitions. If p ∈ WeakAss(M),
then by Lemma 10.66.2 we have Mp ̸= 0, hence p ∈ Supp(M). □

Lemma 10.66.7.05C3 LetR be a ring. LetM be anR-module. The union
⋃

q∈WeakAss(M) q

is the set of elements of R which are zerodivisors on M .

Proof. Suppose f ∈ q ∈ WeakAss(M). Then there exists an element m ∈ M such
that q is minimal over I = {x ∈ R | xm = 0}. Hence there exists a g ∈ R,
g ̸∈ q and n > 0 such that fngm = 0. Note that gm ̸= 0 as g ̸∈ I. If we take
n minimal as above, then f(fn−1gm) = 0 and fn−1gm ̸= 0, so f is a zerodivisor
on M . Conversely, suppose f ∈ R is a zerodivisor on M . Consider the submodule
N = {m ∈ M | fm = 0}. Since N is not zero it has a weakly associated prime q
by Lemma 10.66.5. Clearly f ∈ q and by Lemma 10.66.4 q is a weakly associated
prime of M . □

Lemma 10.66.8.05C4 Let R be a ring. Let M be an R-module. Any p ∈ Supp(M)
which is minimal among the elements of Supp(M) is an element of WeakAss(M).

Proof. Note that Supp(Mp) = {pRp} in Spec(Rp). In particular Mp is nonzero, and
hence WeakAss(Mp) ̸= ∅ by Lemma 10.66.5. Since WeakAss(Mp) ⊂ Supp(Mp) by
Lemma 10.66.6 we conclude that WeakAss(Mp) = {pRp}, whence p ∈WeakAss(M)
by Lemma 10.66.2. □

https://stacks.math.columbia.edu/tag/0548
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Lemma 10.66.9.058A Let R be a ring. Let M be an R-module. Let p be a prime ideal
of R which is finitely generated. Then

p ∈ Ass(M)⇔ p ∈WeakAss(M).
In particular, if R is Noetherian, then Ass(M) = WeakAss(M).

Proof. Write p = (g1, . . . , gn) for some gi ∈ R. It is enough the prove the impli-
cation “⇐” as the other implication holds in general, see Lemma 10.66.6. Assume
p ∈ WeakAss(M). By Lemma 10.66.2 there exists an element m ∈ Mp such that
I = {x ∈ Rp | xm = 0} has radical pRp. Hence for each i there exists a smallest
ei > 0 such that geii m = 0 in Mp. If ei > 1 for some i, then we can replace m
by gei−1

i m ̸= 0 and decrease
∑
ei. Hence we may assume that the annihilator of

m ∈Mp is (g1, . . . , gn)Rp = pRp. By Lemma 10.63.15 we see that p ∈ Ass(M). □

Remark 10.66.10.05C5 Let φ : R→ S be a ring map. Let M be an S-module. Then it
is not always the case that Spec(φ)(WeakAssS(M)) ⊂ WeakAssR(M) contrary to
the case of associated primes (see Lemma 10.63.11). An example is to consider the
ring map
R = k[x1, x2, x3, . . .]→ S = k[x1, x2, x3, . . . , y1, y2, y3, . . .]/(x1y1, x2y2, x3y3, . . .)

and M = S. In this case q =
∑
xiS is a minimal prime of S, hence a weakly

associated prime of M = S (see Lemma 10.66.8). But on the other hand, for any
nonzero element of S the annihilator in R is finitely generated, and hence does not
have radical equal to R ∩ q = (x1, x2, x3, . . .) (details omitted).

Lemma 10.66.11.05C6 Let φ : R→ S be a ring map. Let M be an S-module. Then we
have Spec(φ)(WeakAssS(M)) ⊃WeakAssR(M).

Proof. Let p be an element of WeakAssR(M). Then there exists an m ∈Mp whose
annihilator I = {x ∈ Rp | xm = 0} has radical pRp. Consider the annihilator
J = {x ∈ Sp | xm = 0} of m in Sp. As ISp ⊂ J we see that any minimal prime
q ⊂ Sp over J lies over p. Moreover such a q corresponds to a weakly associated
prime of M for example by Lemma 10.66.2. □

Remark 10.66.12.05C7 Let φ : R→ S be a ring map. Let M be an S-module. Denote
f : Spec(S)→ Spec(R) the associated map on spectra. Then we have

f(AssS(M)) ⊂ AssR(M) ⊂WeakAssR(M) ⊂ f(WeakAssS(M))
see Lemmas 10.63.11, 10.66.11, and 10.66.6. In general all of the inclusions may be
strict, see Remarks 10.63.12 and 10.66.10. If S is Noetherian, then all the inclusions
are equalities as the outer two are equal by Lemma 10.66.9.

Lemma 10.66.13.05E1 Let φ : R → S be a ring map. Let M be an S-module. Denote
f : Spec(S) → Spec(R) the associated map on spectra. If φ is a finite ring map,
then

WeakAssR(M) = f(WeakAssS(M)).

Proof. One of the inclusions has already been proved, see Remark 10.66.12. To
prove the other assume q ∈ WeakAssS(M) and let p be the corresponding prime
of R. Let m ∈ M be an element such that q is a minimal prime over J = {g ∈
S | gm = 0}. Thus the radical of JSq is qSq. As R → S is finite there are finitely
many primes q = q1, q2, . . . , ql over p, see Lemma 10.36.21. Pick x ∈ q with x ̸∈ qi
for i > 1, see Lemma 10.15.2. By the above there exists an element y ∈ S, y ̸∈ q
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and an integer t > 0 such that yxtm = 0. Thus the element ym ∈M is annihilated
by xt, hence ym maps to zero in Mqi , i = 2, . . . , l. To be sure, ym does not map
to zero in Sq.
The ring Sp is semi-local with maximal ideals qiSp by going up for finite ring maps,
see Lemma 10.36.22. If f ∈ pRp then some power of f ends up in JSq hence for
some n > 0 we see that f tym maps to zero in Mq. As ym vanishes at the other
maximal ideals of Sp we conclude that f tym is zero in Mp, see Lemma 10.23.1. In
this way we see that p is a minimal prime over the annihilator of ym in R and we
win. □

Lemma 10.66.14.05C8 Let R be a ring. Let I be an ideal. Let M be an R/I-module.
Via the canonical injection Spec(R/I) → Spec(R) we have WeakAssR/I(M) =
WeakAssR(M).

Proof. Special case of Lemma 10.66.13. □

Lemma 10.66.15.05C9 Let R be a ring. Let M be an R-module. Let S ⊂ R be a
multiplicative subset. Via the canonical injection Spec(S−1R)→ Spec(R) we have
WeakAssR(S−1M) = WeakAssS−1R(S−1M) and

WeakAss(M) ∩ Spec(S−1R) = WeakAss(S−1M).

Proof. Suppose that m ∈ S−1M . Let I = {x ∈ R | xm = 0} and I ′ = {x′ ∈
S−1R | x′m = 0}. Then I ′ = S−1I and I ∩ S = ∅ unless I = R (verifications
omitted). Thus primes in S−1R minimal over I ′ correspond bijectively to primes in
R minimal over I and avoiding S. This proves the equality WeakAssR(S−1M) =
WeakAssS−1R(S−1M). The second equality follows from Lemma 10.66.2 since for
p ∈ R, S ∩ p = ∅ we have Mp = (S−1M)S−1p. □

Lemma 10.66.16.05CA Let R be a ring. Let M be an R-module. Let S ⊂ R be a
multiplicative subset. Assume that every s ∈ S is a nonzerodivisor on M . Then

WeakAss(M) = WeakAss(S−1M).

Proof. As M ⊂ S−1M by assumption we obtain WeakAss(M) ⊂WeakAss(S−1M)
from Lemma 10.66.4. Conversely, suppose that n/s ∈ S−1M is an element with
annihilator I and p a prime which is minimal over I. Then the annihilator of n ∈M
is I and p is a prime minimal over I. □

Lemma 10.66.17.05CB Let R be a ring. Let M be an R-module. The map

M −→
∏

p∈WeakAss(M)
Mp

is injective.

Proof. Let x ∈ M be an element of the kernel of the map. Set N = Rx ⊂
M . If p is a weakly associated prime of N we see on the one hand that p ∈
WeakAss(M) (Lemma 10.66.4) and on the other hand that Np ⊂ Mp is not zero.
This contradiction shows that WeakAss(N) = ∅. Hence N = 0, i.e., x = 0 by
Lemma 10.66.5. □

Lemma 10.66.18.05CC Let R → S be a ring map. Let N be an S-module. Assume N
is flat as an R-module and R is a domain with fraction field K. Then

WeakAssS(N) = WeakAssS⊗RK(N ⊗R K)
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via the canonical inclusion Spec(S ⊗R K) ⊂ Spec(S).

Proof. Note that S ⊗R K = (R \ {0})−1S and N ⊗R K = (R \ {0})−1N . For any
nonzero x ∈ R multiplication by x on N is injective as N is flat over R. Hence the
lemma follows from Lemma 10.66.16. □

Lemma 10.66.19.0CUB Let K/k be a field extension. Let R be a k-algebra. Let M be an
R-module. Let q ⊂ R⊗k K be a prime lying over p ⊂ R. If q is weakly associated
to M ⊗k K, then p is weakly associated to M .

Proof. Let z ∈M ⊗k K be an element such that q is minimal over the annihilator
J ⊂ R ⊗k K of z. Choose a finitely generated subextension K/L/k such that
z ∈ M ⊗k L. Since R ⊗k L → R ⊗k K is flat we see that J = I(R ⊗k K) where
I ⊂ R ⊗k L is the annihilator of z in the smaller ring (Lemma 10.40.4). Thus
q ∩ (R ⊗k L) is minimal over I by going down (Lemma 10.39.19). In this way we
reduce to the case described in the next paragraph.
Assume K/k is a finitely generated field extension. Let x1, . . . , xr ∈ K be a tran-
scendence basis of K over k, see Fields, Section 9.26. Set L = k(x1, . . . , xr). Say
[K : L] = n. Then R ⊗k L → R ⊗k K is a finite ring map. Hence q ∩ (R ⊗k L)
is a weakly associated prime of M ⊗k K viewed as a R ⊗k L-module by Lemma
10.66.13. Since M⊗kK ∼= (M⊗kL)⊕n as a R⊗kL-module, we see that q∩(R⊗kL)
is a weakly associated prime of M ⊗k L (for example by using Lemma 10.66.4 and
induction). In this way we reduce to the case discussed in the next paragraph.
Assume K = k(x1, . . . , xr) is a purely transcendental field extension. We may
replace R by Rp, M by Mp and q by q(Rp ⊗k K). See Lemma 10.66.15. In this
way we reduce to the case discussed in the next paragraph.
Assume K = k(x1, . . . , xr) is a purely transcendental field extension and R is
local with maximal ideal p. We claim that any f ∈ R ⊗k K, f ̸∈ p(R ⊗k K) is a
nonzerodivisor on M⊗kK. Namely, let z ∈M⊗kK be an element. There is a finite
R-submodule M ′ ⊂ M such that z ∈ M ′ ⊗k K and such that M ′ is minimal with
this property: choose a basis {tα} of K as a k-vector space, write z =

∑
mα⊗tα and

let M ′ be the R-submodule generated by the mα. If z ∈ p(M ′ ⊗kK) = pM ′ ⊗kK,
then pM ′ = M ′ and M ′ = 0 by Lemma 10.20.1 a contradiction. Thus z has
nonzero image z in M ′/pM ′ ⊗k K But R/p ⊗k K is a domain as a localization of
κ(p)[x1, . . . , xn] and M ′/pM ′⊗kK is a free module, hence fz ̸= 0. This proves the
claim.
Finally, pick z ∈M ⊗k K such that q is minimal over the annihilator J ⊂ R⊗k K
of z. For f ∈ p there exists an n ≥ 1 and a g ∈ R⊗k K, g ̸∈ q such that gfnz ∈ J ,
i.e., gfnz = 0. (This holds because q lies over p and q is minimal over J .) Above
we have seen that g is a nonzerodivisor hence fnz = 0. This means that p is a
weakly associated prime of M ⊗k K viewed as an R-module. Since M ⊗k K is a
direct sum of copies of M we conclude that p is a weakly associated prime of M as
before. □

10.67. Embedded primes

02M4 Here is the definition.

Definition 10.67.1.02M5 Let R be a ring. Let M be an R-module.

https://stacks.math.columbia.edu/tag/0CUB
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(1) The associated primes of M which are not minimal among the associated
primes of M are called the embedded associated primes of M .

(2) The embedded primes of R are the embedded associated primes of R as
an R-module.

Here is a way to get rid of these.

Lemma 10.67.2.02M6 Let R be a Noetherian ring. Let M be a finite R-module. Consider
the set of R-submodules

{K ⊂M | Supp(K) nowhere dense in Supp(M)}.

This set has a maximal element K and the quotient M ′ = M/K has the following
properties

(1) Supp(M) = Supp(M ′),
(2) M ′ has no embedded associated primes,
(3) for any f ∈ R which is contained in all embedded associated primes of M

we have Mf
∼= M ′

f .

Proof. We will use Lemma 10.63.5 and Proposition 10.63.6 without further mention.
Let q1, . . . , qt denote the minimal primes in the support of M . Let p1, . . . , ps denote
the embedded associated primes of M . Then Ass(M) = {qj , pi}. Let

K = {m ∈M | Supp(Rm) ⊂
⋃
V (pi)}

It is immediately seen to be a submodule. Since M is finite over a Noetherian
ring, we know K is finite too. Hence Supp(K) is nowhere dense in Supp(M). Let
K ′ ⊂ M be another submodule with support nowhere dense in Supp(M). This
means that Kqj = 0. Hence if m ∈ K ′, then m maps to zero in Mqj which in turn
implies (Rm)qj = 0. On the other hand we have Ass(Rm) ⊂ Ass(M). Hence the
support of Rm is contained in

⋃
V (pi). Therefore m ∈ K and thus K ′ ⊂ K as m

was arbitrary in K ′.

Let M ′ = M/K. Since Kqj = 0 we know M ′
qj = Mqj for all j. Hence M and M ′

have the same support.

Suppose q = Ann(m) ∈ Ass(M ′) where m ∈ M ′ is the image of m ∈ M . Then
m ̸∈ K and hence the support of Rm must contain one of the qj . Since Mqj = M ′

qj ,
we know m does not map to zero in M ′

qj . Hence q ⊂ qj (actually we have equality),
which means that all the associated primes of M ′ are not embedded.

Let f be an element contained in all pi. Then D(f)∩supp(K) = 0. Hence Mf = M ′
f

because Kf = 0. □

Lemma 10.67.3.02M7 Let R be a Noetherian ring. Let M be a finite R-module. For any
f ∈ R we have (M ′)f = (Mf )′ where M →M ′ and Mf → (Mf )′ are the quotients
constructed in Lemma 10.67.2.

Proof. Omitted. □

Lemma 10.67.4.02M8 Let R be a Noetherian ring. Let M be a finite R-module without
embedded associated primes. Let I = {x ∈ R | xM = 0}. Then the ring R/I has
no embedded primes.
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Proof. We may replace R by R/I. Hence we may assume every nonzero element
of R acts nontrivially on M . By Lemma 10.40.5 this implies that Spec(R) equals
the support of M . Suppose that p is an embedded prime of R. Let x ∈ R be
an element whose annihilator is p. Consider the nonzero module N = xM ⊂ M .
It is annihilated by p. Hence any associated prime q of N contains p and is also
an associated prime of M . Then q would be an embedded associated prime of M
which contradicts the assumption of the lemma. □

10.68. Regular sequences

0AUH In this section we develop some basic properties of regular sequences.

Definition 10.68.1.00LF Let R be a ring. Let M be an R-module. A sequence of
elements f1, . . . , fr of R is called an M -regular sequence if the following conditions
hold:

(1) fi is a nonzerodivisor on M/(f1, . . . , fi−1)M for each i = 1, . . . , r, and
(2) the module M/(f1, . . . , fr)M is not zero.

If I is an ideal of R and f1, . . . , fr ∈ I then we call f1, . . . , fr an M -regular sequence
in I. If M = R, we call f1, . . . , fr simply a regular sequence (in I).

Please pay attention to the fact that the definition depends on the order of the
elements f1, . . . , fr (see examples below). Some papers/books drop the requirement
that the module M/(f1, . . . , fr)M is nonzero. This has the advantage that being a
regular sequence is preserved under localization. However, we will use this definition
mainly to define the depth of a module in case R is local; in that case the fi are
required to be in the maximal ideal – a condition which is not preserved under
going from R to a localization Rp.

Example 10.68.2.00LG Let k be a field. In the ring k[x, y, z] the sequence x, y(1 −
x), z(1− x) is regular but the sequence y(1− x), z(1− x), x is not.

Example 10.68.3.00LH Let k be a field. Consider the ring k[x, y, w0, w1, w2, . . .]/I where
I is generated by ywi, i = 0, 1, 2, . . . and wi − xwi+1, i = 0, 1, 2, . . .. The sequence
x, y is regular, but y is a zerodivisor. Moreover you can localize at the maximal
ideal (x, y, wi) and still get an example.

Lemma 10.68.4.00LJ Let R be a local Noetherian ring. Let M be a finite R-module.
Let x1, . . . , xc be an M -regular sequence. Then any permutation of the xi is a
regular sequence as well.

Proof. First we do the case c = 2. Consider K ⊂M the kernel of x2 : M →M . For
any z ∈ K we know that z = x1z

′ for some z′ ∈ M because x2 is a nonzerodivisor
on M/x1M . Because x1 is a nonzerodivisor on M we see that x2z

′ = 0 as well.
Hence x1 : K → K is surjective. Thus K = 0 by Nakayama’s Lemma 10.20.1.
Next, consider multiplication by x1 on M/x2M . If z ∈ M maps to an element
z ∈ M/x2M in the kernel of this map, then x1z = x2y for some y ∈ M . But then
since x1, x2 is a regular sequence we see that y = x1y

′ for some y′ ∈ M . Hence
x1(z − x2y

′) = 0 and hence z = x2y
′ and hence z = 0 as desired.

For the general case, observe that any permutation is a composition of transposi-
tions of adjacent indices. Hence it suffices to prove that

x1, . . . , xi−2, xi, xi−1, xi+1, . . . , xc
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is an M -regular sequence. This follows from the case we just did applied to the
module M/(x1, . . . , xi−2) and the length 2 regular sequence xi−1, xi. □

Lemma 10.68.5.00LM Let R,S be local rings. Let R→ S be a flat local ring homomor-
phism. Let x1, . . . , xr be a sequence in R. Let M be an R-module. The following
are equivalent

(1) x1, . . . , xr is an M -regular sequence in R, and
(2) the images of x1, . . . , xr in S form a M ⊗R S-regular sequence.

Proof. This is so because R→ S is faithfully flat by Lemma 10.39.17. □

Lemma 10.68.6.061L Let R be a Noetherian ring. Let M be a finite R-module. Let p be
a prime. Let x1, . . . , xr be a sequence in R whose image in Rp forms an Mp-regular
sequence. Then there exists a g ∈ R, g ̸∈ p such that the image of x1, . . . , xr in Rg
forms an Mg-regular sequence.

Proof. Set
Ki = Ker (xi : M/(x1, . . . , xi−1)M →M/(x1, . . . , xi−1)M) .

This is a finite R-module whose localization at p is zero by assumption. Hence there
exists a g ∈ R, g ̸∈ p such that (Ki)g = 0 for all i = 1, . . . , r. This g works. □

Lemma 10.68.7.065K Let A be a ring. Let I be an ideal generated by a regular sequence
f1, . . . , fn in A. Let g1, . . . , gm ∈ A be elements whose images g1, . . . , gm form a
regular sequence in A/I. Then f1, . . . , fn, g1, . . . , gm is a regular sequence in A.

Proof. This follows immediately from the definitions. □

Lemma 10.68.8.0F1T Let R be a ring. Let 0 → M1 → M2 → M3 → 0 be a short
exact sequence of R-modules. Let f1, . . . , fr ∈ R. If f1, . . . , fr is M1-regular and
M3-regular, then f1, . . . , fr is M2-regular.

Proof. By Lemma 10.4.1, if f1 : M1 → M1 and f1 : M3 → M3 are injective, then
so is f1 : M2 →M2 and we obtain a short exact sequence

0→M1/f1M1 →M2/f1M2 →M3/f1M3 → 0
The lemma follows from this and induction on r. Some details omitted. □

Lemma 10.68.9.07DV Let R be a ring. Let M be an R-module. Let f1, . . . , fr ∈ R
and e1, . . . , er > 0 integers. Then f1, . . . , fr is an M -regular sequence if and only if
fe1

1 , . . . , ferr is an M -regular sequence.

Proof. We will prove this by induction on r. If r = 1 this follows from the following
two easy facts: (a) a power of a nonzerodivisor on M is a nonzerodivisor on M and
(b) a divisor of a nonzerodivisor on M is a nonzerodivisor on M . If r > 1, then by
induction applied to M/f1M we have that f1, f2, . . . , fr is an M -regular sequence
if and only if f1, f

e2
2 , . . . , ferr is an M -regular sequence. Thus it suffices to show,

given e > 0, that fe1 , f2, . . . , fr is an M -regular sequence if and only if f1, . . . , fr is
an M -regular sequence. We will prove this by induction on e. The case e = 1 is
trivial. Since f1 is a nonzerodivisor under both assumptions (by the case r = 1) we
have a short exact sequence

0→M/f1M
fe−1

1−−−→M/fe1M →M/fe−1
1 M → 0
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Suppose that f1, f2, . . . , fr is an M -regular sequence. Then by induction the ele-
ments f2, . . . , fr are M/f1M and M/fe−1

1 M -regular sequences. By Lemma 10.68.8
f2, . . . , fr is M/fe1M -regular. Hence fe1 , f2, . . . , fr is M -regular. Conversely, sup-
pose that fe1 , f2, . . . , fr is an M -regular sequence. Then f2 : M/fe1M → M/fe1M
is injective, hence f2 : M/f1M → M/f1M is injective, hence by induction(!)
f2 : M/fe−1

1 M →M/fe−1
1 M is injective, hence

0→M/(f1, f2)M
fe−1

1−−−→M/(fe1 , f2)M →M/(fe−1
1 , f2)M → 0

is a short exact sequence by Lemma 10.4.1. This proves the converse for r = 2.
If r > 2, then we have f3 : M/(fe1 , f2)M → M/(fe1 , f2)M is injective, hence
f3 : M/(f1, f2)M →M/(f1, f2)M is injective, and so on. Some details omitted. □

Lemma 10.68.10.07DW Let R be a ring. Let f1, . . . , fr ∈ R which do not generate the
unit ideal. The following are equivalent:

(1) any permutation of f1, . . . , fr is a regular sequence,
(2) any subsequence of f1, . . . , fr (in the given order) is a regular sequence,

and
(3) f1x1, . . . , frxr is a regular sequence in the polynomial ring R[x1, . . . , xr].

Proof. It is clear that (1) implies (2). We prove (2) implies (1) by induction on r.
The case r = 1 is trivial. The case r = 2 says that if a, b ∈ R are a regular sequence
and b is a nonzerodivisor, then b, a is a regular sequence. This is clear because the
kernel of a : R/(b)→ R/(b) is isomorphic to the kernel of b : R/(a)→ R/(a) if both
a and b are nonzerodivisors. The case r > 2. Assume (2) holds and say we want
to prove fσ(1), . . . , fσ(r) is a regular sequence for some permutation σ. We already
know that fσ(1), . . . , fσ(r−1) is a regular sequence by induction. Hence it suffices to
show that fs where s = σ(r) is a nonzerodivisor modulo f1, . . . , f̂s, . . . , fr. If s = r
we are done. If s < r, then note that fs and fr are both nonzerodivisors in the ring
R/(f1, . . . , f̂s, . . . , fr−1) (by induction hypothesis again). Since we know fs, fr is a
regular sequence in that ring we conclude by the case of sequence of length 2 that
fr, fs is too.

Note that R[x1, . . . , xr]/(f1x1, . . . , fixi) as an R-module is a direct sum of the
modules

R/IE · xe1
1 . . . xerr

indexed by multi-indices E = (e1, . . . , er) where IE is the ideal generated by fj for
1 ≤ j ≤ i with ej > 0. Hence fi+1xi is a nonzerodivisor on this if and only if fi+1 is
a nonzerodivisor on R/IE for all E. Taking E with all positive entries, we see that
fi+1 is a nonzerodivisor on R/(f1, . . . , fi). Thus (3) implies (2). Conversely, if (2)
holds, then any subsequence of f1, . . . , fi, fi+1 is a regular sequence in particular
fi+1 is a nonzerodivisor on all R/IE . In this way we see that (2) implies (3). □

10.69. Quasi-regular sequences

061M We introduce the notion of quasi-regular sequence which is slightly weaker than
that of a regular sequence and easier to use. Let R be a ring and let f1, . . . , fc ∈ R.
Set J = (f1, . . . , fc). Let M be an R-module. Then there is a canonical map

(10.69.0.1)061N M/JM ⊗R/J R/J [X1, . . . , Xc] −→
⊕

n≥0
JnM/Jn+1M
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of graded R/J [X1, . . . , Xc]-modules defined by the rule
m⊗Xe1

1 . . . Xec
c 7−→ fe1

1 . . . fecc m mod Je1+...+ec+1M.

Note that (10.69.0.1) is always surjective.

Definition 10.69.1.061P Let R be a ring. Let M be an R-module. A sequence of
elements f1, . . . , fc of R is called M -quasi-regular if (10.69.0.1) is an isomorphism.
If M = R, we call f1, . . . , fc simply a quasi-regular sequence.

So if f1, . . . , fc is a quasi-regular sequence, then

R/J [X1, . . . , Xc] =
⊕

n≥0
Jn/Jn+1

where J = (f1, . . . , fc). It is clear that being a quasi-regular sequence is independent
of the order of f1, . . . , fc.

Lemma 10.69.2.00LN Let R be a ring.
(1) A regular sequence f1, . . . , fc of R is a quasi-regular sequence.
(2) Suppose that M is an R-module and that f1, . . . , fc is an M -regular se-

quence. Then f1, . . . , fc is an M -quasi-regular sequence.

Proof. Set J = (f1, . . . , fc). We prove the first assertion by induction on c. We
have to show that given any relation

∑
|I|=n aIf

I ∈ Jn+1 with aI ∈ R we actually
have aI ∈ J for all multi-indices I. Since any element of Jn+1 is of the form∑

|I|=n bIf
I with bI ∈ J we may assume, after replacing aI by aI − bI , the relation

reads
∑

|I|=n aIf
I = 0. We can rewrite this as∑n

e=0

(∑
|I′|=n−e

aI′,ef
I′
)
fec = 0

Here and below the “primed” multi-indices I ′ are required to be of the form I ′ =
(i1, . . . , ic−1, 0). We will show by descending induction on l ∈ {0, . . . , n} that if we
have a relation ∑l

e=0

(∑
|I′|=n−e

aI′,ef
I′
)
fec = 0

then aI′,e ∈ J for all I ′, e. Namely, set J ′ = (f1, . . . , fc−1). Observe that
∑

|I′|=n−l aI′,lf
I′

is mapped into (J ′)n−l+1 by f lc. By induction hypothesis (for the induction on c)
we see that f lcaI′,l ∈ J ′. Because fc is not a zerodivisor on R/J ′ (as f1, . . . , fc is a
regular sequence) we conclude that aI′,l ∈ J ′. This allows us to rewrite the term
(
∑

|I′|=n−l aI′,lf
I′)f lc in the form (

∑
|I′|=n−l+1 fcbI′,l−1f

I′)f l−1
c . This gives a new

relation of the form(∑
|I′|=n−l+1

(aI′,l−1 + fcbI′,l−1)f I
′
)
f l−1
c +

∑l−2

e=0

(∑
|I′|=n−e

aI′,ef
I′
)
fec = 0

Now by the induction hypothesis (on l this time) we see that all aI′,l−1 +fcbI′,l−1 ∈
J and all aI′,e ∈ J for e ≤ l − 2. This, combined with aI′,l ∈ J ′ ⊂ J seen above,
finishes the proof of the induction step.
The second assertion means that given any formal expression F =

∑
|I|=nmIX

I ,
mI ∈ M with

∑
mIf

I ∈ Jn+1M , then all the coefficients mI are in J . This is
proved in exactly the same way as we prove the corresponding result for the first
assertion above. □

https://stacks.math.columbia.edu/tag/061P
https://stacks.math.columbia.edu/tag/00LN
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Lemma 10.69.3.065L Let R → R′ be a flat ring map. Let M be an R-module. Sup-
pose that f1, . . . , fr ∈ R form an M -quasi-regular sequence. Then the images of
f1, . . . , fr in R′ form a M ⊗R R′-quasi-regular sequence.

Proof. Set J = (f1, . . . , fr), J ′ = JR′ and M ′ = M ⊗R R′. We have to show
the canonical map µ : R′/J ′[X1, . . . Xr]⊗R′/J′ M ′/J ′M ′ →

⊕
(J ′)nM ′/(J ′)n+1M ′

is an isomorphism. Because R → R′ is flat the sequences 0 → JnM → M and
0 → Jn+1M → JnM → JnM/Jn+1M → 0 remain exact on tensoring with R′.
This first implies that JnM ⊗RR′ = (J ′)nM ′ and then that (J ′)nM ′/(J ′)n+1M ′ =
JnM/Jn+1M ⊗R R′. Thus µ is the tensor product of (10.69.0.1), which is an
isomorphism by assumption, with idR′ and we conclude. □

Lemma 10.69.4.061Q Let R be a Noetherian ring. Let M be a finite R-module. Let p
be a prime. Let x1, . . . , xc be a sequence in R whose image in Rp forms an Mp-
quasi-regular sequence. Then there exists a g ∈ R, g ̸∈ p such that the image of
x1, . . . , xc in Rg forms an Mg-quasi-regular sequence.

Proof. Consider the kernelK of the map (10.69.0.1). AsM/JM⊗R/JR/J [X1, . . . , Xc]
is a finite R/J [X1, . . . , Xc]-module and as R/J [X1, . . . , Xc] is Noetherian, we see
that K is also a finite R/J [X1, . . . , Xc]-module. Pick homogeneous generators
k1, . . . , kt ∈ K. By assumption for each i = 1, . . . , t there exists a gi ∈ R, gi ̸∈ p
such that giki = 0. Hence g = g1 . . . gt works. □

Lemma 10.69.5.061R Let R be a ring. Let M be an R-module. Let f1, . . . , fc ∈
R be an M -quasi-regular sequence. For any i the sequence f i+1, . . . , f c of R =
R/(f1, . . . , fi) is an M = M/(f1, . . . , fi)M -quasi-regular sequence.

Proof. It suffices to prove this for i = 1. Set J = (f2, . . . , f c) ⊂ R. Then

J
n
M/J

n+1
M = (JnM + f1M)/(Jn+1M + f1M)

= JnM/(Jn+1M + JnM ∩ f1M).

Thus, in order to prove the lemma it suffices to show that Jn+1M +JnM ∩ f1M =
Jn+1M+f1J

n−1M because that will show that
⊕

n≥0 J
n
M/J

n+1
M is the quotient

of
⊕

n≥0 J
nM/Jn+1 ∼= M/JM [X1, . . . , Xc] by X1. Actually, we have JnM∩f1M =

f1J
n−1M . Namely, if m ̸∈ Jn−1M , then f1m ̸∈ JnM because

⊕
JnM/Jn+1M is

the polynomial algebra M/J [X1, . . . , Xc] by assumption. □

Lemma 10.69.6.061S Let (R,m) be a local Noetherian ring. Let M be a nonzero finite
R-module. Let f1, . . . , fc ∈ m be an M -quasi-regular sequence. Then f1, . . . , fc is
an M -regular sequence.

Proof. Set J = (f1, . . . , fc). Let us show that f1 is a nonzerodivisor on M . Suppose
x ∈ M is not zero. By Krull’s intersection theorem there exists an integer r such
that x ∈ JrM but x ̸∈ Jr+1M , see Lemma 10.51.4. Then f1x ∈ Jr+1M is an
element whose class in Jr+1M/Jr+2M is nonzero by the assumed structure of⊕
JnM/Jn+1M . Whence f1x ̸= 0.

Now we can finish the proof by induction on c using Lemma 10.69.5. □

Remark 10.69.7 (Other types of regular sequences).061T In the paper [Kab71] the
author discusses two more regularity conditions for sequences x1, . . . , xr of elements
of a ring R. Namely, we say the sequence is Koszul-regular if Hi(K•(R, x•)) = 0

https://stacks.math.columbia.edu/tag/065L
https://stacks.math.columbia.edu/tag/061Q
https://stacks.math.columbia.edu/tag/061R
https://stacks.math.columbia.edu/tag/061S
https://stacks.math.columbia.edu/tag/061T
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for i ≥ 1 where K•(R, x•) is the Koszul complex. The sequence is called H1-regular
if H1(K•(R, x•)) = 0. One has the implications regular ⇒ Koszul-regular ⇒ H1-
regular ⇒ quasi-regular. By examples the author shows that these implications
cannot be reversed in general even if R is a (non-Noetherian) local ring and the
sequence generates the maximal ideal of R. We introduce these notions in more
detail in More on Algebra, Section 15.30.

Remark 10.69.8.065M Let k be a field. Consider the ring

A = k[x, y, w, z0, z1, z2, . . .]/(y2z0 − wx, z0 − yz1, z1 − yz2, . . .)
In this ring x is a nonzerodivisor and the image of y in A/xA gives a quasi-regular
sequence. But it is not true that x, y is a quasi-regular sequence in A because
(x, y)/(x, y)2 isn’t free of rank two over A/(x, y) due to the fact that wx = 0 in
(x, y)/(x, y)2 but w isn’t zero in A/(x, y). Hence the analogue of Lemma 10.68.7
does not hold for quasi-regular sequences.

Lemma 10.69.9.065N Let R be a ring. Let J = (f1, . . . , fr) be an ideal of R. Let M
be an R-module. Set R = R/

⋂
n≥0 J

n, M = M/
⋂
n≥0 J

nM , and denote f i the
image of fi in R. Then f1, . . . , fr is M -quasi-regular if and only if f1, . . . , fr is
M -quasi-regular.

Proof. This is true because JnM/Jn+1M ∼= J
n
M/J

n+1
M . □

10.70. Blow up algebras

052P In this section we make some elementary observations about blowing up.

Definition 10.70.1.052Q Let R be a ring. Let I ⊂ R be an ideal.
(1) The blowup algebra, or the Rees algebra, associated to the pair (R, I) is

the graded R-algebra

BlI(R) =
⊕

n≥0
In = R⊕ I ⊕ I2 ⊕ . . .

where the summand In is placed in degree n.
(2) Let a ∈ I be an element. Denote a(1) the element a seen as an element of

degree 1 in the Rees algebra. Then the affine blowup algebra R[ Ia ] is the
algebra (BlI(R))(a(1)) constructed in Section 10.57.

In other words, an element of R[ Ia ] is represented by an expression of the form x/an

with x ∈ In. Two representatives x/an and y/am define the same element if and
only if ak(amx− any) = 0 for some k ≥ 0.

Lemma 10.70.2.07Z3 Let R be a ring, I ⊂ R an ideal, and a ∈ I. Let R′ = R[ Ia ] be the
affine blowup algebra. Then

(1) the image of a in R′ is a nonzerodivisor,
(2) IR′ = aR′, and
(3) (R′)a = Ra.

Proof. Immediate from the description of R[ Ia ] above. □

Lemma 10.70.3.0BIP Let R→ S be a ring map. Let I ⊂ R be an ideal and a ∈ I. Set
J = IS and let b ∈ J be the image of a. Then S[Jb ] is the quotient of S ⊗R R[ Ia ]
by the ideal of elements annihilated by some power of b.

https://stacks.math.columbia.edu/tag/065M
https://stacks.math.columbia.edu/tag/065N
https://stacks.math.columbia.edu/tag/052Q
https://stacks.math.columbia.edu/tag/07Z3
https://stacks.math.columbia.edu/tag/0BIP
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Proof. Let S′ be the quotient of S ⊗R R[ Ia ] by its b-power torsion elements. The
ring map

S ⊗R R[ Ia ] −→ S[Jb ]
is surjective and annihilates a-power torsion as b is a nonzerodivisor in S[Jb ]. Hence
we obtain a surjective map S′ → S[Jb ]. To see that the kernel is trivial, we construct
an inverse map. Namely, let z = y/bn be an element of S[Jb ], i.e., y ∈ Jn. Write
y =

∑
xisi with xi ∈ In and si ∈ S. We map z to the class of

∑
si ⊗ xi/an in S′.

This is well defined because an element of the kernel of the map S ⊗R In → Jn is
annihilated by an, hence maps to zero in S′. □

Example 10.70.4.0G8Q Let R be a ring. Let P = R[t1, . . . , tn] be the polynomial
algebra. Let I = (t1, . . . , tn) ⊂ P . With notation as in Definition 10.70.1 there is
an isomorphism

P [T1, . . . , Tn]/(tiTj − tjTi) −→ BlI(P )
sending Ti to t(1)

i . We leave it to the reader to show that this map is well defined.
Since I is generated by t1, . . . , tn we see that our map is surjective. To see that our
map is injective one has to show: for each e ≥ 1 the P -module Ie is generated by
the monomials tE = te1

1 . . . xenn for multiindices E = (e1, . . . , en) of degree |E| = e

subject only to the relations titE = tjt
E′ when |E| = |E′| = e and ea + δai =

e′
a + δaj , a = 1, . . . , n (Kronecker delta). We omit the details.

Example 10.70.5.0G8R Let R be a ring. Let P = R[t1, . . . , tn] be the polynomial algebra.
Let I = (t1, . . . , tn) ⊂ P . Let a = t1. With notation as in Definition 10.70.1 there
is an isomorphism

P [x2, . . . , xn]/(t1x2 − t2, . . . , t1xn − tn) −→ P [ Ia ] = P [ It1 ]

sending xi to ti/t1. We leave it to the reader to show that this map is well defined.
Since I is generated by t1, . . . , tn we see that our map is surjective. To see that our
map is injective, the reader can argue that the source and target of our map are
t1-torsion free and that the map is an isomorphism after inverting t1, see Lemma
10.70.2. Alternatively, the reader can use the description of the Rees algebra in
Example 10.70.4. We omit the details.

Lemma 10.70.6.0G8S Let R be a ring. Let I = (a1, . . . , an) be an ideal of R. Let a = a1.
Then there is a surjection

R[x2, . . . , xn]/(ax2 − a2, . . . , axn − an) −→ R[ Ia ]
whose kernel is the a-power torsion in the source.

Proof. Consider the ring map P = Z[t1, . . . , tn] → R sending ti to ai. Set J =
(t1, . . . , tn). By Example 10.70.5 we have P [ Jt1 ] = P [x2, . . . , xn]/(t1x2−t2, . . . , t1xn−
tn). Apply Lemma 10.70.3 to the map P → A to conclude. □

Lemma 10.70.7.080U Let R be a ring, I ⊂ R an ideal, and a ∈ I. Set R′ = R[ Ia ].
If f ∈ R is such that V (f) = V (I), then f maps to a nonzerodivisor in R′ and
R′
f = R′

a = Ra.

Proof. We will use the results of Lemma 10.70.2 without further mention. The
assumption V (f) = V (I) implies V (fR′) = V (IR′) = V (aR′). Hence an = fb and
fm = ac for some b, c ∈ R′. The lemma follows. □

https://stacks.math.columbia.edu/tag/0G8Q
https://stacks.math.columbia.edu/tag/0G8R
https://stacks.math.columbia.edu/tag/0G8S
https://stacks.math.columbia.edu/tag/080U
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Lemma 10.70.8.0BBI Let R be a ring, I ⊂ R an ideal, a ∈ I, and f ∈ R. Set R′ = R[ Ia ]
and R′′ = R[ fIfa ]. Then there is a surjective R-algebra map R′ → R′′ whose kernel
is the set of f -power torsion elements of R′.

Proof. The map is given by sending x/an for x ∈ In to fnx/(fa)n. It is straight-
forward to check this map is well defined and surjective. Since af is a nonzero
divisor in R′′ (Lemma 10.70.2) we see that the set of f -power torsion elements are
mapped to zero. Conversely, if x ∈ R′ and fnx ̸= 0 for all n > 0, then (af)nx ̸= 0
for all n as a is a nonzero divisor in R′. It follows that the image of x in R′′ is not
zero by the description of R′′ following Definition 10.70.1. □

Lemma 10.70.9.052S If R is reduced then every (affine) blowup algebra of R is reduced.

Proof. Let I ⊂ R be an ideal and a ∈ I. Suppose x/an with x ∈ In is a nilpotent
element of R[ Ia ]. Then (x/an)m = 0. Hence aNxm = 0 in R for some N ≥ 0.
After increasing N if necessary we may assume N = me for some e ≥ 0. Then
(aex)m = 0 and since R is reduced we find aex = 0. This means that x/an = 0 in
R[ Ia ]. □

Lemma 10.70.10.052R Let R be a domain, I ⊂ R an ideal, and a ∈ I a nonzero element.
Then the affine blowup algebra R[ Ia ] is a domain.

Proof. Suppose x/an, y/am with x ∈ In, y ∈ Im are elements of R[ Ia ] whose
product is zero. Then aNxy = 0 in R. Since R is a domain we conclude that either
x = 0 or y = 0. □

Lemma 10.70.11.052T Let R be a ring. Let I ⊂ R be an ideal. Let a ∈ I. If a is
not contained in any minimal prime of R, then Spec(R[ Ia ]) → Spec(R) has dense
image.

Proof. If akx = 0 for x ∈ R, then x is contained in all the minimal primes of R
and hence nilpotent, see Lemma 10.17.2. Thus the kernel of R → R[ Ia ] consists of
nilpotent elements. Hence the result follows from Lemma 10.30.6. □

Lemma 10.70.12.052M Let (R,m) be a local domain with fraction field K. Let R ⊂ A ⊂
K be a valuation ring which dominates R. Then

A = colimR[ Ia ]

is a directed colimit of affine blowups R→ R[ Ia ] with the following properties
(1) a ∈ I ⊂ m,
(2) I is finitely generated, and
(3) the fibre ring of R→ R[ Ia ] at m is not zero.

Proof. Any blowup algebra R[ Ia ] is a domain contained in K see Lemma 10.70.10.
The lemma simply says that A is the directed union of the ones where a ∈ I have
properties (1), (2), (3). If R[ Ia ] ⊂ A and R[Jb ] ⊂ A, then we have

R[ Ia ] ∪R[Jb ] ⊂ R[ IJab ] ⊂ A

The first inclusion because x/an = bnx/(ab)n and the second one because if z ∈
(IJ)n, then z =

∑
xiyi with xi ∈ In and yi ∈ Jn and hence z/(ab)n =

∑
(xi/an)(yi/bn)

is contained in A.

https://stacks.math.columbia.edu/tag/0BBI
https://stacks.math.columbia.edu/tag/052S
https://stacks.math.columbia.edu/tag/052R
https://stacks.math.columbia.edu/tag/052T
https://stacks.math.columbia.edu/tag/052M
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Consider a finite subset E ⊂ A. Say E = {e1, . . . , en}. Choose a nonzero a ∈ R
such that we can write ei = fi/a for all i = 1, . . . , n. Set I = (f1, . . . , fn, a).
We claim that R[ Ia ] ⊂ A. This is clear as an element of R[ Ia ] can be represented
as a polynomial in the elements ei. The lemma follows immediately from this
observation. □

10.71. Ext groups

00LO In this section we do a tiny bit of homological algebra, in order to establish some
fundamental properties of depth over Noetherian local rings.

Lemma 10.71.1.00LP Let R be a ring. Let M be an R-module.
(1) There exists an exact complex

. . .→ F2 → F1 → F0 →M → 0.
with Fi free R-modules.

(2) If R is Noetherian and M finite over R, then we can choose the complex
such that Fi is finite free. In other words, we can find an exact complex

. . .→ R⊕n2 → R⊕n1 → R⊕n0 →M → 0.

Proof. Let us explain only the Noetherian case. As a first step choose a surjection
Rn0 → M . Then having constructed an exact complex of length e we simply
choose a surjection Rne+1 → Ker(Rne → Rne−1) which is possible because R is
Noetherian. □

Definition 10.71.2.00LQ Let R be a ring. Let M be an R-module.
(1) A (left) resolution F• →M of M is an exact complex

. . .→ F2 → F1 → F0 →M → 0
of R-modules.

(2) A resolution of M by free R-modules is a resolution F• →M where each
Fi is a free R-module.

(3) A resolution of M by finite free R-modules is a resolution F• →M where
each Fi is a finite free R-module.

We often use the notation F• to denote a complex of R-modules
. . .→ Fi → Fi−1 → . . .

In this case we often use di or dF,i to denote the map Fi → Fi−1. In this section we
are always going to assume that F0 is the last nonzero term in the complex. The ith
homology group of the complex F• is the group Hi = Ker(dF,i)/ Im(dF,i+1). A map
of complexes α : F• → G• is given by maps αi : Fi → Gi such that αi−1 ◦ dF,i =
dG,i−1 ◦ αi. Such a map induces a map on homology Hi(α) : Hi(F•)→ Hi(G•). If
α, β : F• → G• are maps of complexes, then a homotopy between α and β is given
by a collection of maps hi : Fi → Gi+1 such that αi− βi = dG,i+1 ◦ hi + hi−1 ◦ dF,i.
Two maps α, β : F• → G• are said to be homotopic if a homotopy between α and
β exists.
We will use a very similar notation regarding complexes of the form F • which look
like

. . .→ F i
di−→ F i+1 → . . .

https://stacks.math.columbia.edu/tag/00LP
https://stacks.math.columbia.edu/tag/00LQ
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There are maps of complexes, homotopies, etc. In this case we set Hi(F •) =
Ker(di)/ Im(di−1) and we call it the ith cohomology group.

Lemma 10.71.3.00LR Any two homotopic maps of complexes induce the same maps on
(co)homology groups.

Proof. Omitted. □

Lemma 10.71.4.00LS Let R be a ring. Let M → N be a map of R-modules. Let
N• → N be an arbitrary resolution. Let

. . .→ F2 → F1 → F0 →M

be a complex of R-modules where each Fi is a free R-module. Then
(1) there exists a map of complexes F• → N• such that

F0 //

��

M

��
N0 // N

is commutative, and
(2) any two maps α, β : F• → N• as in (1) are homotopic.

Proof. Proof of (1). Because F0 is free we can find a map F0 → N0 lifting the map
F0 → M → N . We obtain an induced map F1 → F0 → N0 which ends up in the
image of N1 → N0. Since F1 is free we may lift this to a map F1 → N1. This in
turn induces a map F2 → F1 → N1 which maps to zero into N0. Since N• is exact
we see that the image of this map is contained in the image of N2 → N1. Hence
we may lift to get a map F2 → N2. Repeat.

Proof of (2). To show that α, β are homotopic it suffices to show the difference
γ = α− β is homotopic to zero. Note that the image of γ0 : F0 → N0 is contained
in the image of N1 → N0. Hence we may lift γ0 to a map h0 : F0 → N1. Consider
the map γ′

1 = γ1 − h0 ◦ dF,1. By our choice of h0 we see that the image of γ′
1 is

contained in the kernel of N1 → N0. Since N• is exact we may lift γ′
1 to a map

h1 : F1 → N2. At this point we have γ1 = h0 ◦ dF,1 + dN,2 ◦ h1. Repeat. □

At this point we are ready to define the groups ExtiR(M,N). Namely, choose a
resolution F• of M by free R-modules, see Lemma 10.71.1. Consider the (cohomo-
logical) complex

HomR(F•, N) : HomR(F0, N)→ HomR(F1, N)→ HomR(F2, N)→ . . .

We define ExtiR(M,N) for i ≥ 0 to be the ith cohomology group of this complex7.
For i < 0 we set ExtiR(M,N) = 0. Before we continue we point out that

Ext0
R(M,N) = Ker(HomR(F0, N)→ HomR(F1, N)) = HomR(M,N)

because we can apply part (1) of Lemma 10.10.1 to the exact sequence F1 → F0 →
M → 0. The following lemma explains in what sense this is well defined.

7At this point it would perhaps be more appropriate to say “an” in stead of “the” Ext-group.
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Lemma 10.71.5.00LT Let R be a ring. Let M1,M2, N be R-modules. Suppose that F•
is a free resolution of the module M1, and G• is a free resolution of the module
M2. Let φ : M1 →M2 be a module map. Let α : F• → G• be a map of complexes
inducing φ on M1 = Coker(dF,1) → M2 = Coker(dG,1), see Lemma 10.71.4. Then
the induced maps

Hi(α) : Hi(HomR(F•, N)) −→ Hi(HomR(G•, N))
are independent of the choice of α. If φ is an isomorphism, so are all the maps
Hi(α). If M1 = M2, F• = G•, and φ is the identity, so are all the maps Hi(α).

Proof. Another map β : F• → G• inducing φ is homotopic to α by Lemma 10.71.4.
Hence the maps HomR(F•, N) → HomR(G•, N) are homotopic. Hence the inde-
pendence result follows from Lemma 10.71.3.
Suppose that φ is an isomorphism. Let ψ : M2 → M1 be an inverse. Choose
β : G• → F• be a map inducing ψ : M2 = Coker(dG,1) → M1 = Coker(dF,1), see
Lemma 10.71.4. OK, and now consider the map Hi(α)◦Hi(β) = Hi(α◦β). By the
above the map Hi(α ◦ β) is the same as the map Hi(idG•) = id. Similarly for the
composition Hi(β)◦Hi(α). Hence Hi(α) and Hi(β) are inverses of each other. □

Lemma 10.71.6.00LU Let R be a ring. Let M be an R-module. Let 0 → N ′ → N →
N ′′ → 0 be a short exact sequence. Then we get a long exact sequence

0→ HomR(M,N ′)→ HomR(M,N)→ HomR(M,N ′′)
→ Ext1

R(M,N ′)→ Ext1
R(M,N)→ Ext1

R(M,N ′′)→ . . .

Proof. Pick a free resolution F• →M . Since each of the Fi are free we see that we
get a short exact sequence of complexes

0→ HomR(F•, N
′)→ HomR(F•, N)→ HomR(F•, N

′′)→ 0
Thus we get the long exact sequence from the snake lemma applied to this. □

Lemma 10.71.7.065P Let R be a ring. Let N be an R-module. Let 0 → M ′ → M →
M ′′ → 0 be a short exact sequence. Then we get a long exact sequence

0→ HomR(M ′′, N)→ HomR(M,N)→ HomR(M ′, N)
→ Ext1

R(M ′′, N)→ Ext1
R(M,N)→ Ext1

R(M ′, N)→ . . .

Proof. Pick sets of generators {m′
i′}i′∈I′ and {m′′

i′′}i′′∈I′′ of M ′ and M ′′. For each
i′′ ∈ I ′′ choose a lift m̃′′

i′′ ∈ M of the element m′′
i′′ ∈ M ′′. Set F ′ =

⊕
i′∈I′ R,

F ′′ =
⊕

i′′∈I′′ R and F = F ′ ⊕ F ′′. Mapping the generators of these free modules
to the corresponding chosen generators gives surjective R-module maps F ′ → M ′,
F ′′ →M ′′, and F →M . We obtain a map of short exact sequences

0 → M ′ → M → M ′′ → 0
↑ ↑ ↑

0 → F ′ → F → F ′′ → 0
By the snake lemma we see that the sequence of kernels 0→ K ′ → K → K ′′ → 0 is
short exact sequence of R-modules. Hence we can continue this process indefinitely.
In other words we obtain a short exact sequence of resolutions fitting into the
diagram

0 → M ′ → M → M ′′ → 0
↑ ↑ ↑

0 → F ′
• → F• → F ′′

• → 0

https://stacks.math.columbia.edu/tag/00LT
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Because each of the sequences 0→ F ′
n → Fn → F ′′

n → 0 is split exact (by construc-
tion) we obtain a short exact sequence of complexes

0→ HomR(F ′′
• , N)→ HomR(F•, N)→ HomR(F ′

•, N)→ 0
by applying the HomR(−, N) functor. Thus we get the long exact sequence from
the snake lemma applied to this. □

Lemma 10.71.8.00LV Let R be a ring. Let M , N be R-modules. Any x ∈ R such that
either xN = 0, or xM = 0 annihilates each of the modules ExtiR(M,N).

Proof. Pick a free resolution F• of M . Since ExtiR(M,N) is defined as the coho-
mology of the complex HomR(F•, N) the lemma is clear when xN = 0. If xM = 0,
then we see that multiplication by x on F• lifts the zero map on M . Hence by
Lemma 10.71.5 we see that it induces the same map on Ext groups as the zero
map. □

Lemma 10.71.9.08YR Let R be a Noetherian ring. Let M , N be finite R-modules. Then
ExtiR(M,N) is a finite R-module for all i.

Proof. This holds because ExtiR(M,N) is computed as the cohomology groups of a
complex HomR(F•, N) with each Fn a finite free R-module, see Lemma 10.71.1. □

10.72. Depth

00LE Here is our definition.
Definition 10.72.1.00LI Let R be a ring, and I ⊂ R an ideal. Let M be a finite
R-module. The I-depth of M , denoted depthI(M), is defined as follows:

(1) if IM ̸= M , then depthI(M) is the supremum in {0, 1, 2, . . . ,∞} of the
lengths of M -regular sequences in I,

(2) if IM = M we set depthI(M) =∞.
If (R,m) is local we call depthm(M) simply the depth of M .
Explanation. By Definition 10.68.1 the empty sequence is not a regular sequence on
the zero module, but for practical purposes it turns out to be convenient to set the
depth of the 0 module equal to +∞. Note that if I = R, then depthI(M) =∞ for
all finite R-modules M . If I is contained in the Jacobson radical of R (e.g., if R is
local and I ⊂ mR), then M ̸= 0⇒ IM ̸= M by Nakayama’s lemma. A module M
has I-depth 0 if and only if M is nonzero and I does not contain a nonzerodivisor
on M .
Example 10.68.2 shows depth does not behave well even if the ring is Noetherian,
and Example 10.68.3 shows that it does not behave well if the ring is local but
non-Noetherian. We will see depth behaves well if the ring is local Noetherian.
Lemma 10.72.2.0AUI Let R be a ring, I ⊂ R an ideal, and M a finite R-module. Then
depthI(M) is equal to the supremum of the lengths of sequences f1, . . . , fr ∈ I such
that fi is a nonzerodivisor on M/(f1, . . . , fi−1)M .
Proof. Suppose that IM = M . Then Lemma 10.20.1 shows there exists an f ∈ I
such that f : M →M is idM . Hence f, 0, 0, 0, . . . is an infinite sequence of successive
nonzerodivisors and we see agreement holds in this case. If IM ̸= M , then we see
that a sequence as in the lemma is an M -regular sequence and we conclude that
agreement holds as well. □

https://stacks.math.columbia.edu/tag/00LV
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Lemma 10.72.3.00LK Let (R,m) be a Noetherian local ring. Let M be a nonzero finite
R-module. Then dim(Supp(M)) ≥ depth(M).

Proof. The proof is by induction on dim(Supp(M)). If dim(Supp(M)) = 0, then
Supp(M) = {m}, whence Ass(M) = {m} (by Lemmas 10.63.2 and 10.63.7), and
hence the depth of M is zero for example by Lemma 10.63.18. For the induction step
we assume dim(Supp(M)) > 0. Let f1, . . . , fd be a sequence of elements of m such
that fi is a nonzerodivisor on M/(f1, . . . , fi−1)M . According to Lemma 10.72.2 it
suffices to prove dim(Supp(M)) ≥ d. We may assume d > 0 otherwise the lemma
holds. By Lemma 10.63.10 we have dim(Supp(M/f1M)) = dim(Supp(M))− 1. By
induction we conclude dim(Supp(M/f1M)) ≥ d− 1 as desired. □

Lemma 10.72.4.0AUJ Let R be a Noetherian ring, I ⊂ R an ideal, and M a finite
nonzero R-module such that IM ̸= M . Then depthI(M) <∞.

Proof. Since M/IM is nonzero we can choose p ∈ Supp(M/IM) by Lemma 10.40.2.
Then (M/IM)p ̸= 0 which implies I ⊂ p and moreover implies Mp ̸= IMp

as localization is exact. Let f1, . . . , fr ∈ I be an M -regular sequence. Then
Mp/(f1, . . . , fr)Mp is nonzero as (f1, . . . , fr) ⊂ I. As localization is flat we see
that the images of f1, . . . , fr form a Mp-regular sequence in Ip. Since this works for
every M -regular sequence in I we conclude that depthI(M) ≤ depthIp(Mp). The
latter is ≤ depth(Mp) which is <∞ by Lemma 10.72.3. □

Lemma 10.72.5.00LW Let R be a Noetherian local ring with maximal ideal m. Let M
be a nonzero finite R-module. Then depth(M) is equal to the smallest integer i
such that ExtiR(R/m,M) is nonzero.

Proof. Let δ(M) denote the depth of M and let i(M) denote the smallest integer i
such that ExtiR(R/m,M) is nonzero. We will see in a moment that i(M) <∞. By
Lemma 10.63.18 we have δ(M) = 0 if and only if i(M) = 0, because m ∈ Ass(M)
exactly means that i(M) = 0. Hence if δ(M) or i(M) is > 0, then we may choose
x ∈ m such that (a) x is a nonzerodivisor on M , and (b) depth(M/xM) = δ(M)−
1. Consider the long exact sequence of Ext-groups associated to the short exact
sequence 0→M →M →M/xM → 0 by Lemma 10.71.6:

0→ HomR(κ,M)→ HomR(κ,M)→ HomR(κ,M/xM)
→ Ext1

R(κ,M)→ Ext1
R(κ,M)→ Ext1

R(κ,M/xM)→ . . .

Since x ∈ m all the maps ExtiR(κ,M)→ ExtiR(κ,M) are zero, see Lemma 10.71.8.
Thus it is clear that i(M/xM) = i(M)−1. Induction on δ(M) finishes the proof. □

Lemma 10.72.6.00LX Let R be a local Noetherian ring. Let 0 → N ′ → N → N ′′ → 0
be a short exact sequence of nonzero finite R-modules.

(1) depth(N) ≥ min{depth(N ′),depth(N ′′)}
(2) depth(N ′′) ≥ min{depth(N),depth(N ′)− 1}
(3) depth(N ′) ≥ min{depth(N),depth(N ′′) + 1}

Proof. Use the characterization of depth using the Ext groups Exti(κ,N), see
Lemma 10.72.5, and use the long exact cohomology sequence

0→ HomR(κ,N ′)→ HomR(κ,N)→ HomR(κ,N ′′)
→ Ext1

R(κ,N ′)→ Ext1
R(κ,N)→ Ext1

R(κ,N ′′)→ . . .

from Lemma 10.71.6. □
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Lemma 10.72.7.090R Let R be a local Noetherian ring and M a nonzero finite R-module.
(1) If x ∈ m is a nonzerodivisor on M , then depth(M/xM) = depth(M)− 1.
(2) Any M -regular sequence x1, . . . , xr can be extended to an M -regular se-

quence of length depth(M).

Proof. Part (2) is a formal consequence of part (1). Let x ∈ R be as in (1). By the
short exact sequence 0→M →M →M/xM → 0 and Lemma 10.72.6 we see that
the depth drops by at most 1. On the other hand, if x1, . . . , xr ∈ m is a regular
sequence for M/xM , then x, x1, . . . , xr is a regular sequence for M . Hence we see
that the depth drops by at least 1. □

Lemma 10.72.8.0CN5 Let (R,m) be a local Noetherian ring and M a finite R-module.
Let x ∈ m, p ∈ Ass(M), and q minimal over p + (x). Then q ∈ Ass(M/xnM) for
some n ≥ 1.

Proof. Pick a submodule N ⊂ M with N ∼= R/p. By the Artin-Rees lemma
(Lemma 10.51.2) we can pick n > 0 such that N ∩ xnM ⊂ xN . Let N ⊂M/xnM
be the image of N → M → M/xnM . By Lemma 10.63.3 it suffices to show
q ∈ Ass(N). By our choice of n there is a surjection N → N/xN = R/p + (x) and
hence q is in the support of N . Since N is annihilated by xn and p we see that q is
minimal among the primes in the support of N . Thus q is an associated prime of
N by Lemma 10.63.8. □

Lemma 10.72.9.0BK4 Let (R,m) be a local Noetherian ring and M a finite R-module.
For p ∈ Ass(M) we have dim(R/p) ≥ depth(M).

Proof. If m ∈ Ass(M) then there is a nonzero element x ∈M which is annihilated
by all elements of m. Thus depth(M) = 0. In particular the lemma holds in this
case.
If depth(M) = 1, then by the first paragraph we find that m ̸∈ Ass(M). Hence
dim(R/p) ≥ 1 for all p ∈ Ass(M) and the lemma is true in this case as well.
We will prove the lemma in general by induction on depth(M) which we may and
do assume to be > 1. Pick x ∈ m which is a nonzerodivisor on M . Note x ̸∈ p
(Lemma 10.63.9). By Lemma 10.60.13 we have dim(R/p + (x)) = dim(R/p) − 1.
Thus there exists a prime q minimal over p + (x) with dim(R/q) = dim(R/p) − 1
(small argument omitted; hint: the dimension of a Noetherian local ring A is the
maximum of the dimensions of A/r taken over the minimal primes r of A). Pick n
as in Lemma 10.72.8 so that q is an associated prime of M/xnM . We may apply
induction hypothesis to M/xnM and q because depth(M/xnM) = depth(M) − 1
by Lemma 10.72.7. We find dim(R/q) ≥ depth(M/xnM) and we win. □

Lemma 10.72.10.0FCC Let R be a local Noetherian ring and M a finite R-module. For
a prime ideal p ⊂ R we have depth(Mp) + dim(R/p) ≥ depth(M).

Proof. If Mp = 0, then depth(Mp) = ∞ and the lemma holds. If depth(M) ≤
dim(R/p), then the lemma is true. If depth(M) > dim(R/p), then p is not contained
in any associated prime q of M by Lemma 10.72.9. Hence we can find an x ∈ p
not contained in any associated prime of M by Lemma 10.15.2 and Lemma 10.63.5.
Then x is a nonzerodivisor on M , see Lemma 10.63.9. Hence depth(M/xM) =
depth(M)− 1 and depth(Mp/xMp) = depth(Mp)− 1 provided Mp is nonzero, see
Lemma 10.72.7. Thus we conclude by induction on depth(M). □
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Lemma 10.72.11.0AUK Let (R,m) be a Noetherian local ring. Let R → S be a finite
ring map. Let m1, . . . ,mn be the maximal ideals of S. Let N be a finite S-module.
Then

mini=1,...,n depth(Nmi) = depthm(N)
Proof. By Lemmas 10.36.20, 10.36.22, and Lemma 10.36.21 the maximal ideals of S
are exactly the primes of S lying over m and there are finitely many of them. Hence
the statement of the lemma makes sense. We will prove the lemma by induction
on k = mini=1,...,n depth(Nmi). If k = 0, then depth(Nmi) = 0 for some i. By
Lemma 10.72.5 this means miSmi is an associated prime of Nmi and hence mi is an
associated prime of N (Lemma 10.63.16). By Lemma 10.63.13 we see that m is an
associated prime of N as an R-module. Whence depthm(N) = 0. This proves the
base case. If k > 0, then we see that mi ̸∈ AssS(N). Hence m ̸∈ AssR(N), again
by Lemma 10.63.13. Thus we can find f ∈ m which is not a zerodivisor on N , see
Lemma 10.63.18. By Lemma 10.72.7 all the depths drop exactly by 1 when passing
from N to N/fN and the induction hypothesis does the rest. □

10.73. Functorialities for Ext

087M In this section we briefly discuss the functoriality of Ext with respect to change of
ring, etc. Here is a list of items to work out.

(1) Given R → R′, an R-module M and an R′-module N ′ the R-module
ExtiR(M,N ′) has a natural R′-module structure. Moreover, there is a
canonical R′-linear map ExtiR′(M ⊗R R′, N ′)→ ExtiR(M,N ′).

(2) Given R → R′ and R-modules M , N there is a natural R-module map
ExtiR(M,N)→ ExtiR(M,N ⊗R R′).

Lemma 10.73.1.087N Given a flat ring map R→ R′, an R-module M , and an R′-module
N ′ the natural map

ExtiR′(M ⊗R R′, N ′)→ ExtiR(M,N ′)
is an isomorphism for i ≥ 0.
Proof. Choose a free resolution F• of M . Since R→ R′ is flat we see that F•⊗RR′

is a free resolution of M ⊗R R′ over R′. The statement is that the map
HomR′(F• ⊗R R′, N ′)→ HomR(F•, N

′)
induces an isomorphism on homology groups, which is true because it is an isomor-
phism of complexes by Lemma 10.14.3. □

10.74. An application of Ext groups

02HN Here it is.
Lemma 10.74.1.02HO Let R be a Noetherian ring. Let I ⊂ R be an ideal contained in
the Jacobson radical of R. Let N → M be a homomorphism of finite R-modules.
Suppose that there exists arbitrarily large n such that N/InN →M/InM is a split
injection. Then N →M is a split injection.
Proof. Assume φ : N →M satisfies the assumptions of the lemma. Note that this
implies that Ker(φ) ⊂ InN for arbitrarily large n. Hence by Lemma 10.51.5 we see
that φ is injection. Let Q = M/N so that we have a short exact sequence

0→ N →M → Q→ 0.
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Let
F2

d2−→ F1
d1−→ F0 → Q→ 0

be a finite free resolution of Q. We can choose a map α : F0 → M lifting the map
F0 → Q. This induces a map β : F1 → N such that β ◦ d2 = 0. The extension
above is split if and only if there exists a map γ : F0 → N such that β = γ ◦ d1. In
other words, the class of β in Ext1

R(Q,N) is the obstruction to splitting the short
exact sequence above.

Suppose n is a large integer such that N/InN →M/InM is a split injection. This
implies

0→ N/InN →M/InM → Q/InQ→ 0.
is still short exact. Also, the sequence

F1/I
nF1

d1−→ F0/I
nF0 → Q/InQ→ 0

is still exact. Arguing as above we see that the map β : F1/I
nF1 → N/InN induced

by β is equal to γn ◦ d1 for some map γn : F0/I
nF0 → N/InN . Since F0 is free we

can lift γn to a map γn : F0 → N and then we see that β − γn ◦ d1 is a map from
F1 into InN . In other words we conclude that

β ∈ Im
(

HomR(F0, N)→ HomR(F1, N)
)

+ In HomR(F1, N).

for this n.

Since we have this property for arbitrarily large n by assumption we conclude that
the image of β in the cokernel of HomR(F0, N)→ HomR(F1, N) is zero by Lemma
10.51.5. Hence β is in the image of the map HomR(F0, N) → HomR(F1, N) as
desired. □

10.75. Tor groups and flatness

00LY In this section we use some of the homological algebra developed in the previous
section to explain what Tor groups are. Namely, suppose that R is a ring and that
M , N are two R-modules. Choose a resolution F• of M by free R-modules. See
Lemma 10.71.1. Consider the homological complex

F• ⊗R N : . . .→ F2 ⊗R N → F1 ⊗R N → F0 ⊗R N

We define TorRi (M,N) to be the ith homology group of this complex. The following
lemma explains in what sense this is well defined.

Lemma 10.75.1.00LZ Let R be a ring. Let M1,M2, N be R-modules. Suppose that F•
is a free resolution of the module M1 and that G• is a free resolution of the module
M2. Let φ : M1 →M2 be a module map. Let α : F• → G• be a map of complexes
inducing φ on M1 = Coker(dF,1) → M2 = Coker(dG,1), see Lemma 10.71.4. Then
the induced maps

Hi(α) : Hi(F• ⊗R N) −→ Hi(G• ⊗R N)

are independent of the choice of α. If φ is an isomorphism, so are all the maps
Hi(α). If M1 = M2, F• = G•, and φ is the identity, so are all the maps Hi(α).

Proof. The proof of this lemma is identical to the proof of Lemma 10.71.5. □
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Not only does this lemma imply that the Tor modules are well defined, but it also
provides for the functoriality of the constructions (M,N) 7→ TorRi (M,N) in the
first variable. Of course the functoriality in the second variable is evident. We
leave it to the reader to see that each of the TorRi is in fact a functor

ModR ×ModR → ModR.
Here ModR denotes the category of R-modules, and for the definition of the product
category see Categories, Definition 4.2.20. Namely, given morphisms of R-modules
M1 →M2 and N1 → N2 we get a commutative diagram

TorRi (M1, N1) //

��

TorRi (M1, N2)

��
TorRi (M2, N1) // TorRi (M2, N2)

Lemma 10.75.2.00M0 Let R be a ring and let M be an R-module. Suppose that 0 →
N ′ → N → N ′′ → 0 is a short exact sequence of R-modules. There exists a long
exact sequence
TorR1 (M,N ′)→ TorR1 (M,N)→ TorR1 (M,N ′′)→M⊗RN ′ →M⊗RN →M⊗RN ′′ → 0

Proof. The proof of this is the same as the proof of Lemma 10.71.6. □

Consider a homological double complex of R-modules

. . .
d // A2,0

d // A1,0
d // A0,0

. . .
d // A2,1

d //

δ

OO

A1,1
d //

δ

OO

A0,1

δ

OO

. . .
d // A2,2

d //

δ

OO

A1,2
d //

δ

OO

A0,2

δ

OO

. . .

δ

OO

. . .

δ

OO

. . .

δ

OO

This means that di,j : Ai,j → Ai−1,j and δi,j : Ai,j → Ai,j−1 have the following
properties

(1) Any composition of two di,j is zero. In other words the rows of the double
complex are complexes.

(2) Any composition of two δi,j is zero. In other words the columns of the
double complex are complexes.

(3) For any pair (i, j) we have δi−1,j ◦ di,j = di,j−1 ◦ δi,j . In other words, all
the squares commute.

The correct thing to do is to associate a spectral sequence to any such double
complex. However, for the moment we can get away with doing something slightly
easier.
Namely, for the purposes of this section only, given a double complex (A•,•, d, δ)
set R(A)j = Coker(A1,j → A0,j) and U(A)i = Coker(Ai,1 → Ai,0). (The letters R
and U are meant to suggest Right and Up.) We endow R(A)• with the structure
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of a complex using the maps δ. Similarly we endow U(A)• with the structure
of a complex using the maps d. In other words we obtain the following huge
commutative diagram

. . .
d // U(A)2

d // U(A)1
d // U(A)0

. . .
d // A2,0

d //

OO

A1,0
d //

OO

A0,0 //

OO

R(A)0

. . .
d // A2,1

d //

δ

OO

A1,1
d //

δ

OO

A0,1 //

δ

OO

R(A)1

δ

OO

. . .
d // A2,2

d //

δ

OO

A1,2
d //

δ

OO

A0,2 //

δ

OO

R(A)2

δ

OO

. . .

δ

OO

. . .

δ

OO

. . .

δ

OO

. . .

δ

OO

(This is no longer a double complex of course.) It is clear what a morphism Φ :
(A•,•, d, δ) → (B•,•, d, δ) of double complexes is, and it is clear that this induces
morphisms of complexes R(Φ) : R(A)• → R(B)• and U(Φ) : U(A)• → U(B)•.

Lemma 10.75.3.00M1 Let (A•,•, d, δ) be a double complex such that
(1) Each row A•,j is a resolution of R(A)j .
(2) Each column Ai,• is a resolution of U(A)i.

Then there are canonical isomorphisms

Hi(R(A)•) ∼= Hi(U(A)•).

The isomorphisms are functorial with respect to morphisms of double complexes
with the properties above.

Proof. We will show that Hi(R(A)•)) and Hi(U(A)•) are canonically isomorphic
to a third group. Namely

Hi(A) := {(ai,0, ai−1,1, . . . , a0,i) | d(ai,0) = δ(ai−1,1), . . . , d(a1,i−1) = δ(a0,i)}
{d(ai+1,0) + δ(ai,1), d(ai,1) + δ(ai−1,2), . . . , d(a1,i) + δ(a0,i+1)}

Here we use the notational convention that ai,j denotes an element of Ai,j . In other
words, an element of Hi is represented by a zig-zag, represented as follows for i = 2

a2,0
� // d(a2,0) = δ(a1,1)

a1,1
_

OO

� // d(a1,1) = δ(a0,2)

a0,2
_

OO

Naturally, we divide out by “trivial” zig-zags, namely the submodule generated by
elements of the form (0, . . . , 0,−δ(at+1,t−i), d(at+1,t−i), 0, . . . , 0). Note that there

https://stacks.math.columbia.edu/tag/00M1
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are canonical homomorphisms
Hi(A)→ Hi(R(A)•), (ai,0, ai−1,1, . . . , a0,i) 7→ class of image of a0,i

and
Hi(A)→ Hi(U(A)•), (ai,0, ai−1,1, . . . , a0,i) 7→ class of image of ai,0

First we show that these maps are surjective. Suppose that r ∈ Hi(R(A)•). Let
r ∈ R(A)i be a cocycle representing the class of r. Let a0,i ∈ A0,i be an element
which maps to r. Because δ(r) = 0, we see that δ(a0,i) is in the image of d. Hence
there exists an element a1,i−1 ∈ A1,i−1 such that d(a1,i−1) = δ(a0,i). This in turn
implies that δ(a1,i−1) is in the kernel of d (because d(δ(a1,i−1)) = δ(d(a1,i−1)) =
δ(δ(a0,i)) = 0. By exactness of the rows we find an element a2,i−2 such that
d(a2,i−2) = δ(a1,i−1). And so on until a full zig-zag is found. Of course surjectivity
of Hi → Hi(U(A)) is shown similarly.
To prove injectivity we argue in exactly the same way. Namely, suppose we are
given a zig-zag (ai,0, ai−1,1, . . . , a0,i) which maps to zero in Hi(R(A)•). This means
that a0,i maps to an element of Coker(Ai,1 → Ai,0) which is in the image of δ :
Coker(Ai+1,1 → Ai+1,0)→ Coker(Ai,1 → Ai,0). In other words, a0,i is in the image
of δ⊕d : A0,i+1⊕A1,i → A0,i. From the definition of trivial zig-zags we see that we
may modify our zig-zag by a trivial one and assume that a0,i = 0. This immediately
implies that d(a1,i−1) = 0. As the rows are exact this implies that a1,i−1 is in the
image of d : A2,i−1 → A1,i−1. Thus we may modify our zig-zag once again by a
trivial zig-zag and assume that our zig-zag looks like (ai,0, ai−1,1, . . . , a2,i−2, 0, 0).
Continuing like this we obtain the desired injectivity.
If Φ : (A•,•, d, δ) → (B•,•, d, δ) is a morphism of double complexes both of which
satisfy the conditions of the lemma, then we clearly obtain a commutative diagram

Hi(U(A)•)

��

Hi(A) //oo

��

Hi(R(A)•)

��
Hi(U(B)•) Hi(B) //oo Hi(R(B)•)

This proves the functoriality. □

Remark 10.75.4.00M2 The isomorphism constructed above is the “correct” one only up
to signs. A good part of homological algebra is concerned with choosing signs for
various maps and showing commutativity of diagrams with intervention of suitable
signs. For the moment we will simply use the isomorphism as given in the proof
above, and worry about signs later.

Lemma 10.75.5.00M3 Let R be a ring. For any i ≥ 0 the functors ModR ×ModR →
ModR, (M,N) 7→ TorRi (M,N) and (M,N) 7→ TorRi (N,M) are canonically isomor-
phic.

Proof. Let F• be a free resolution of the module M and let G• be a free resolution
of the module N . Consider the double complex (Ai,j , d, δ) defined as follows:

(1) set Ai,j = Fi ⊗R Gj ,
(2) set di,j : Fi ⊗R Gj → Fi−1 ⊗Gj equal to dF,i ⊗ id, and
(3) set δi,j : Fi ⊗R Gj → Fi ⊗Gj−1 equal to id⊗ dG,j .

https://stacks.math.columbia.edu/tag/00M2
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This double complex is usually simply denoted F• ⊗R G•.
Since each Gj is free, and hence flat we see that each row of the double complex is
exact except in homological degree 0. Since each Fi is free and hence flat we see
that each column of the double complex is exact except in homological degree 0.
Hence the double complex satisfies the conditions of Lemma 10.75.3.
To see what the lemma says we compute R(A)• and U(A)•. Namely,

R(A)i = Coker(A1,i → A0,i)
= Coker(F1 ⊗R Gi → F0 ⊗R Gi)
= Coker(F1 → F0)⊗R Gi
= M ⊗R Gi

In fact these isomorphisms are compatible with the differentials δ and we see that
R(A)• = M ⊗RG• as homological complexes. In exactly the same way we see that
U(A)• = F• ⊗R N . We get

TorRi (M,N) = Hi(F• ⊗R N)
= Hi(U(A)•)
= Hi(R(A)•)
= Hi(M ⊗R G•)
= Hi(G• ⊗RM)
= TorRi (N,M)

Here the third equality is Lemma 10.75.3, and the fifth equality uses the isomor-
phism V ⊗W = W ⊗ V of the tensor product.
Functoriality. Suppose that we have R-modules Mν , Nν , ν = 1, 2. Let φ : M1 →
M2 and ψ : N1 → N2 be morphisms of R-modules. Suppose that we have free
resolutions Fν,• for Mν and free resolutions Gν,• for Nν . By Lemma 10.71.4 we may
choose maps of complexes α : F1,• → F2,• and β : G1,• → G2,• compatible with φ
and ψ. We claim that the pair (α, β) induces a morphism of double complexes

α⊗ β : F1,• ⊗R G1,• −→ F2,• ⊗R G2,•

This is really a very straightforward check using the rule that F1,i⊗RG1,j → F2,i⊗R
G2,j is given by αi ⊗ βj where αi, resp. βj is the degree i, resp. j component of α,
resp. β. The reader also readily verifies that the induced maps R(F1,•⊗RG1,•)• →
R(F2,•⊗RG2,•)• agrees with the map M1⊗RG1,• →M2⊗RG2,• induced by φ⊗β.
Similarly for the map induced on the U(−)• complexes. Thus the statement on
functoriality follows from the statement on functoriality in Lemma 10.75.3. □

Remark 10.75.6.00M4 An interesting case occurs when M = N in the above. In this
case we get a canonical map TorRi (M,M) → TorRi (M,M). Note that this map
is not the identity, because even when i = 0 this map is not the identity! For
example, if V is a vector space of dimension n over a field, then the switch map
V ⊗k V → V ⊗k V has (n2 + n)/2 eigenvalues +1 and (n2 − n)/2 eigenvalues −1.
In characteristic 2 it is not even diagonalizable. Note that even changing the sign
of the map will not get rid of this.

Lemma 10.75.7.0AZ4 Let R be a Noetherian ring. Let M , N be finite R-modules. Then
TorRp (M,N) is a finite R-module for all p.

https://stacks.math.columbia.edu/tag/00M4
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Proof. This holds because TorRp (M,N) is computed as the cohomology groups of
a complex F• ⊗R N with each Fn a finite free R-module, see Lemma 10.71.1. □

Lemma 10.75.8.00M5 Let R be a ring. Let M be an R-module. The following are
equivalent:

(1) The module M is flat over R.
(2) For all i > 0 the functor TorRi (M,−) is zero.
(3) The functor TorR1 (M,−) is zero.
(4) For all ideals I ⊂ R we have TorR1 (M,R/I) = 0.
(5) For all finitely generated ideals I ⊂ R we have TorR1 (M,R/I) = 0.

Proof. Suppose M is flat. Let N be an R-module. Let F• be a free resolution of
N . Then F• ⊗RM is a resolution of N ⊗RM , by flatness of M . Hence all higher
Tor groups vanish.
It now suffices to show that the last condition implies that M is flat. Let I ⊂ R
be an ideal. Consider the short exact sequence 0 → I → R → R/I → 0. Apply
Lemma 10.75.2. We get an exact sequence

TorR1 (M,R/I)→M ⊗R I →M ⊗R R→M ⊗R R/I → 0
Since obviously M ⊗R R = M we conclude that the last hypothesis implies that
M ⊗R I → M is injective for every finitely generated ideal I. Thus M is flat by
Lemma 10.39.5. □

Remark 10.75.9.00M6 The proof of Lemma 10.75.8 actually shows that

TorR1 (M,R/I) = Ker(I ⊗RM →M).

10.76. Functorialities for Tor

00M7 In this section we briefly discuss the functoriality of Tor with respect to change of
ring, etc. Here is a list of items to work out.

(1) Given a ring map R → R′, an R-module M and an R′-module N ′ the
R-modules TorRi (M,N ′) have a natural R′-module structure.

(2) Given a ring map R → R′ and R-modules M , N there is a natural R-
module map TorRi (M,N)→ TorR

′

i (M ⊗R R′, N ⊗R R′).
(3) Given a ring map R → R′ an R-module M and an R′-module N ′ there

exists a natural R′-module map TorRi (M,N ′)→ TorR
′

i (M ⊗R R′, N ′).

Lemma 10.76.1.00M8 Given a flat ring map R→ R′ and R-modules M , N the natural
R-module map TorRi (M,N)⊗RR′ → TorR

′

i (M ⊗RR′, N ⊗RR′) is an isomorphism
for all i.

Proof. Omitted. This is true because a free resolution F• of M over R stays exact
when tensoring with R′ over R and hence (F•⊗RN)⊗RR′ computes the Tor groups
over R′. □

The following lemma does not seem to fit anywhere else.

Lemma 10.76.2.0BNF Let R be a ring. Let M = colimMi be a filtered colimit of R-
modules. Let N be an R-module. Then TorRn (M,N) = colim TorRn (Mi, N) for all
n.

https://stacks.math.columbia.edu/tag/00M5
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Proof. Choose a free resolution F• of N . Then F• ⊗R M = colimF• ⊗R Mi as
complexes by Lemma 10.12.9. Thus the result by Lemma 10.8.8. □

10.77. Projective modules

05CD Some lemmas on projective modules.

Definition 10.77.1.05CE Let R be a ring. An R-module P is projective if and only if
the functor HomR(P,−) : ModR → ModR is an exact functor.

The functor HomR(M,−) is left exact for any R-module M , see Lemma 10.10.1.
Hence the condition for P to be projective really signifies that given a surjection of
R-modules N → N ′ the map HomR(P,N)→ HomR(P,N ′) is surjective.

Lemma 10.77.2.05CF Let R be a ring. Let P be an R-module. The following are
equivalent

(1) P is projective,
(2) P is a direct summand of a free R-module, and
(3) Ext1

R(P,M) = 0 for every R-module M .

Proof. Assume P is projective. Choose a surjection π : F → P where F is a free
R-module. As P is projective there exists a i ∈ HomR(P, F ) such that π ◦ i = idP .
In other words F ∼= Ker(π)⊕ i(P ) and we see that P is a direct summand of F .
Conversely, assume that P ⊕Q = F is a free R-module. Note that the free module
F =

⊕
i∈I R is projective as HomR(F,M) =

∏
i∈IM and the functor M 7→

∏
i∈IM

is exact. Then HomR(F,−) = HomR(P,−)×HomR(Q,−) as functors, hence both
P and Q are projective.
Assume P ⊕ Q = F is a free R-module. Then we have a free resolution F• of the
form

. . . F
a−→ F

b−→ F → P → 0
where the maps a, b alternate and are equal to the projector onto P and Q. Hence
the complex HomR(F•,M) is split exact in degrees ≥ 1, whence we see the vanishing
in (3).
Assume Ext1

R(P,M) = 0 for every R-module M . Pick a free resolution F• → P .
Set M = Im(F1 → F0) = Ker(F0 → P ). Consider the element ξ ∈ Ext1

R(P,M)
given by the class of the quotient map π : F1 → M . Since ξ is zero there exists a
map s : F0 →M such that π = s ◦ (F1 → F0). Clearly, this means that

F0 = Ker(s)⊕Ker(F0 → P ) = P ⊕Ker(F0 → P )
and we win. □

Lemma 10.77.3.0G8T Let R be a Noetherian ring. Let P be a finite R-module. If
Ext1

R(P,M) = 0 for every finite R-module M , then P is projective.

This lemma can be strengthened: There is a version for finitely presentedR-modules
if R is not assumed Noetherian. There is a version with M running through all
finite length modules in the Noetherian case.

Proof. Choose a surjection R⊕n → P with kernel M . Since Ext1
R(P,M) = 0 this

surjection is split and we conclude by Lemma 10.77.2. □

Lemma 10.77.4.065Q A direct sum of projective modules is projective.

https://stacks.math.columbia.edu/tag/05CE
https://stacks.math.columbia.edu/tag/05CF
https://stacks.math.columbia.edu/tag/0G8T
https://stacks.math.columbia.edu/tag/065Q


10.77. PROJECTIVE MODULES 606

Proof. This is true by the characterization of projectives as direct summands of
free modules in Lemma 10.77.2. □

Lemma 10.77.5.07LV Let R be a ring. Let I ⊂ R be a nilpotent ideal. Let P be
a projective R/I-module. Then there exists a projective R-module P such that
P/IP ∼= P .

Proof. By Lemma 10.77.2 we can choose a set A and a direct sum decomposition⊕
α∈AR/I = P ⊕ K for some R/I-module K. Write F =

⊕
α∈AR for the free

R-module on A. Choose a lift p : F → F of the projector p associated to the
direct summand P of

⊕
α∈AR/I. Note that p2 − p ∈ EndR(F ) is a nilpotent

endomorphism of F (as I is nilpotent and the matrix entries of p2 − p are in I;
more precisely, if In = 0, then (p2 − p)n = 0). Hence by Lemma 10.32.7 we can
modify our choice of p and assume that p is a projector. Set P = Im(p). □

Lemma 10.77.6.0D47 Let R be a ring. Let I ⊂ R be a locally nilpotent ideal. Let P be
a finite projective R/I-module. Then there exists a finite projective R-module P
such that P/IP ∼= P .

Proof. Recall that P is a direct summand of a free R/I-module
⊕

α∈AR/I by
Lemma 10.77.2. As P is finite, it follows that P is contained in

⊕
α∈A′ R/I for

some A′ ⊂ A finite. Hence we may assume we have a direct sum decomposition
(R/I)⊕n = P ⊕K for some n and some R/I-module K. Choose a lift p ∈ Mat(n×
n,R) of the projector p associated to the direct summand P of (R/I)⊕n. Note that
p2− p ∈ Mat(n×n,R) is nilpotent: as I is locally nilpotent and the matrix entries
cij of p2 − p are in I we have ctij = 0 for some t > 0 and then (p2 − p)tn2 = 0 (by
looking at the matrix coefficients). Hence by Lemma 10.32.7 we can modify our
choice of p and assume that p is a projector. Set P = Im(p). □

Lemma 10.77.7.05CG Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
Assume

(1) I is nilpotent,
(2) M/IM is a projective R/I-module,
(3) M is a flat R-module.

Then M is a projective R-module.

Proof. By Lemma 10.77.5 we can find a projective R-module P and an isomorphism
P/IP →M/IM . We are going to show that M is isomorphic to P which will finish
the proof. Because P is projective we can lift the map P → P/IP →M/IM to an
R-module map P →M which is an isomorphism modulo I. Since In = 0 for some
n, we can use the filtrations

0 = InM ⊂ In−1M ⊂ . . . ⊂ IM ⊂M
0 = InP ⊂ In−1P ⊂ . . . ⊂ IP ⊂ P

to see that it suffices to show that the induced maps IaP/Ia+1P → IaM/Ia+1M
are bijective. Since both P and M are flat R-modules we can identify this with the
map

Ia/Ia+1 ⊗R/I P/IP −→ Ia/Ia+1 ⊗R/I M/IM

induced by P → M . Since we chose P → M such that the induced map P/IP →
M/IM is an isomorphism, we win. □
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10.78. Finite projective modules

00NV
Definition 10.78.1.00NW Let R be a ring and M an R-module.

(1) We say that M is locally free if we can cover Spec(R) by standard opens
D(fi), i ∈ I such that Mfi is a free Rfi-module for all i ∈ I.

(2) We say that M is finite locally free if we can choose the covering such that
each Mfi is finite free.

(3) We say that M is finite locally free of rank r if we can choose the covering
such that each Mfi is isomorphic to R⊕r

fi
.

Note that a finite locally free R-module is automatically finitely presented by
Lemma 10.23.2. Moreover, if M is a finite locally free module of rank r over a
ring R and if R is nonzero, then r is uniquely determined by Lemma 10.15.8 (be-
cause at least one of the localizations Rfi is a nonzero ring).

Lemma 10.78.2.00NX Let R be a ring and let M be an R-module. The following are
equivalent

(1) M is finitely presented and R-flat,
(2) M is finite projective,
(3) M is a direct summand of a finite free R-module,
(4) M is finitely presented and for all p ∈ Spec(R) the localization Mp is free,
(5) M is finitely presented and for all maximal ideals m ⊂ R the localization

Mm is free,
(6) M is finite and locally free,
(7) M is finite locally free, and
(8) M is finite, for every prime p the module Mp is free, and the function

ρM : Spec(R)→ Z, p 7−→ dimκ(p) M ⊗R κ(p)

is locally constant in the Zariski topology.

Proof. First suppose M is finite projective, i.e., (2) holds. Take a surjection Rn →
M and let K be the kernel. Since M is projective, 0→ K → Rn →M → 0 splits.
Hence (2) ⇒ (3). The implication (3) ⇒ (2) follows from the fact that a direct
summand of a projective is projective, see Lemma 10.77.2.

Assume (3), so we can write K ⊕M ∼= R⊕n. So K is a direct summand of Rn and
thus finitely generated. This shows M = R⊕n/K is finitely presented. In other
words, (3) ⇒ (1).

Assume M is finitely presented and flat, i.e., (1) holds. We will prove that (7)
holds. Pick any prime p and x1, . . . , xr ∈ M which map to a basis of M ⊗R κ(p).
By Nakayama’s lemma (in the form of Lemma 10.20.2) these elements generate
Mg for some g ∈ R, g ̸∈ p. The corresponding surjection φ : R⊕r

g → Mg has the
following two properties: (a) Ker(φ) is a finite Rg-module (see Lemma 10.5.3) and
(b) Ker(φ)⊗ κ(p) = 0 by flatness of Mg over Rg (see Lemma 10.39.12). Hence by
Nakayama’s lemma again there exists a g′ ∈ Rg such that Ker(φ)g′ = 0. In other
words, Mgg′ is free.

A finite locally free module is a finite module, see Lemma 10.23.2, hence (7)⇒ (6).
It is clear that (6) ⇒ (7) and that (7) ⇒ (8).
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A finite locally free module is a finitely presented module, see Lemma 10.23.2,
hence (7)⇒ (4). Of course (4) implies (5). Since we may check flatness locally (see
Lemma 10.39.18) we conclude that (5) implies (1). At this point we have

(2) ks +3 (3) +3 (1) +3 (7) ks +3

�$��

(6)

(5)

KS

(4)ks (8)

Suppose that M satisfies (1), (4), (5), (6), and (7). We will prove that (3) holds. It
suffices to show that M is projective. We have to show that HomR(M,−) is exact.
Let 0 → N ′′ → N → N ′ → 0 be a short exact sequence of R-module. We have to
show that 0→ HomR(M,N ′′)→ HomR(M,N)→ HomR(M,N ′)→ 0 is exact. As
M is finite locally free there exist a covering Spec(R) =

⋃
D(fi) such that Mfi is

finite free. By Lemma 10.10.2 we see that

0→ HomR(M,N ′′)fi → HomR(M,N)fi → HomR(M,N ′)fi → 0

is equal to 0→ HomRfi
(Mfi , N

′′
fi

)→ HomRfi
(Mfi , Nfi)→ HomRfi

(Mfi , N
′
fi

)→ 0
which is exact as Mfi is free and as the localization 0 → N ′′

fi
→ Nfi → N ′

fi
→ 0

is exact (as localization is exact). Whence we see that 0 → HomR(M,N ′′) →
HomR(M,N)→ HomR(M,N ′)→ 0 is exact by Lemma 10.23.2.

Finally, assume that (8) holds. Pick a maximal ideal m ⊂ R. Pick x1, . . . , xr ∈ M
which map to a κ(m)-basis of M ⊗R κ(m) = M/mM . In particular ρM (m) = r.
By Nakayama’s Lemma 10.20.1 there exists an f ∈ R, f ̸∈ m such that x1, . . . , xr
generate Mf over Rf . By the assumption that ρM is locally constant there exists
a g ∈ R, g ̸∈ m such that ρM is constant equal to r on D(g). We claim that

Ψ : R⊕r
fg −→Mfg, (a1, . . . , ar) 7−→

∑
aixi

is an isomorphism. This claim will show that M is finite locally free, i.e., that (7)
holds. To see the claim it suffices to show that the induced map on localizations
Ψp : R⊕r

p → Mp is an isomorphism for all p ∈ D(fg), see Lemma 10.23.1. By our
choice of f the map Ψp is surjective. By assumption (8) we have Mp

∼= R
⊕ρM (p)
p

and by our choice of g we have ρM (p) = r. Hence Ψp determines a surjection
R⊕r

p → Mp
∼= R⊕r

p whence is an isomorphism by Lemma 10.16.4. (Of course this
last fact follows from a simple matrix argument also.) □

Lemma 10.78.3.0FWG Let R be a reduced ring and let M be an R-module. Then the
equivalent conditions of Lemma 10.78.2 are also equivalent to

(9) M is finite and the function ρM : Spec(R) → Z, p 7→ dimκ(p) M ⊗R κ(p)
is locally constant in the Zariski topology.

Proof. Pick a maximal ideal m ⊂ R. Pick x1, . . . , xr ∈ M which map to a κ(m)-
basis of M ⊗R κ(m) = M/mM . In particular ρM (m) = r. By Nakayama’s Lemma
10.20.1 there exists an f ∈ R, f ̸∈ m such that x1, . . . , xr generate Mf over Rf . By
the assumption that ρM is locally constant there exists a g ∈ R, g ̸∈ m such that
ρM is constant equal to r on D(g). We claim that

Ψ : R⊕r
fg −→Mfg, (a1, . . . , ar) 7−→

∑
aixi
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is an isomorphism. This claim will show that M is finite locally free, i.e., that
(7) holds. Since Ψ is surjective, it suffices to show that Ψ is injective. Since Rfg
is reduced, it suffices to show that Ψ is injective after localization at all minimal
primes p of Rfg, see Lemma 10.25.2. However, we know that Rp = κ(p) by Lemma
10.25.1 and ρM (p) = r hence Ψp : R⊕r

p → M ⊗R κ(p) is an isomorphism as a
surjective map of finite dimensional vector spaces of the same dimension. □

Remark 10.78.4.00NY It is not true that a finite R-module which is R-flat is automat-
ically projective. A counter example is where R = C∞(R) is the ring of infinitely
differentiable functions on R, and M = Rm = R/I where m = {f ∈ R | f(0) = 0}
and I = {f ∈ R | ∃ϵ, ϵ > 0 : f(x) = 0 ∀x, |x| < ϵ}.

Lemma 10.78.5.00NZ (Warning: see Remark 10.78.4.) Suppose R is a local ring, and
M is a finite flat R-module. Then M is finite free.

Proof. Follows from the equational criterion of flatness, see Lemma 10.39.11. Namely,
suppose that x1, . . . , xr ∈ M map to a basis of M/mM . By Nakayama’s Lemma
10.20.1 these elements generate M . We want to show there is no relation among
the xi. Instead, we will show by induction on n that if x1, . . . , xn ∈M are linearly
independent in the vector space M/mM then they are independent over R.

The base case of the induction is where we have x ∈ M , x ̸∈ mM and a relation
fx = 0. By the equational criterion there exist yj ∈ M and aj ∈ R such that
x =

∑
ajyj and faj = 0 for all j. Since x ̸∈ mM we see that at least one aj is a

unit and hence f = 0.

Suppose that
∑
fixi is a relation among x1, . . . , xn. By our choice of xi we have

fi ∈ m. According to the equational criterion of flatness there exist aij ∈ R and
yj ∈ M such that xi =

∑
aijyj and

∑
fiaij = 0. Since xn ̸∈ mM we see that

anj ̸∈ m for at least one j. Since
∑
fiaij = 0 we get fn =

∑n−1
i=1 (−aij/anj)fi. The

relation
∑
fixi = 0 now can be rewritten as

∑n−1
i=1 fi(xi+(−aij/anj)xn) = 0. Note

that the elements xi + (−aij/anj)xn map to n− 1 linearly independent elements of
M/mM . By induction assumption we get that all the fi, i ≤ n− 1 have to be zero,
and also fn =

∑n−1
i=1 (−aij/anj)fi. This proves the induction step. □

Lemma 10.78.6.00O1 Let R → S be a flat local homomorphism of local rings. Let M
be a finite R-module. Then M is finite projective over R if and only if M ⊗R S is
finite projective over S.

Proof. By Lemma 10.78.2 being finite projective over a local ring is the same thing
as being finite free. Suppose that M⊗RS is a finite free S-module. Pick x1, . . . , xr ∈
M whose images in M/mRM form a basis over κ(m). Then we see that x1 ⊗
1, . . . , xr ⊗ 1 are a basis for M ⊗R S. This implies that the map R⊕r →M, (ai) 7→∑
aixi becomes an isomorphism after tensoring with S. By faithful flatness of

R→ S, see Lemma 10.39.17 we see that it is an isomorphism. □

Lemma 10.78.7.02M9 Let R be a semi-local ring. Let M be a finite locally free module.
If M has constant rank, then M is free. In particular, if R has connected spectrum,
then M is free.

Proof. Omitted. Hints: First show that M/miM has the same dimension d for all
maximal ideal m1, . . . ,mn of R using the rank is constant. Next, show that there

https://stacks.math.columbia.edu/tag/00NY
https://stacks.math.columbia.edu/tag/00NZ
https://stacks.math.columbia.edu/tag/00O1
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exist elements x1, . . . , xd ∈M which form a basis for each M/miM by the Chinese
remainder theorem. Finally show that x1, . . . , xd is a basis for M . □

Here is a technical lemma that is used in the chapter on groupoids.

Lemma 10.78.8.03C1 Let R be a local ring with maximal ideal m and infinite residue
field. Let R → S be a ring map. Let M be an S-module and let N ⊂ M be an
R-submodule. Assume

(1) S is semi-local and mS is contained in the Jacobson radical of S,
(2) M is a finite free S-module, and
(3) N generates M as an S-module.

Then N contains an S-basis of M .

Proof. Assume M is free of rank n. Let I ⊂ S be the Jacobson radical. By
Nakayama’s Lemma 10.20.1 a sequence of elements m1, . . . ,mn is a basis for M if
and only if mi ∈M/IM generate M/IM . Hence we may replace M by M/IM , N
by N/(N ∩ IM), R by R/m, and S by S/IS. In this case we see that S is a finite
product of fields S = k1× . . .×kr and M = k⊕n

1 × . . .×k⊕n
r . The fact that N ⊂M

generates M as an S-module means that there exist xj ∈ N such that a linear
combination

∑
ajxj with aj ∈ S has a nonzero component in each factor k⊕n

i .
Because R = k is an infinite field, this means that also some linear combination
y =

∑
cjxj with cj ∈ k has a nonzero component in each factor. Hence y ∈ N

generates a free direct summand Sy ⊂ M . By induction on n the result holds for
M/Sy and the submodule N = N/(N ∩ Sy). In other words there exist y2, . . . , yn
in N which (freely) generate M/Sy. Then y, y2, . . . , yn (freely) generate M and we
win. □

Lemma 10.78.9.0DVB Let R be ring. Let L, M , N be R-modules. The canonical map
HomR(M,N)⊗R L→ HomR(M,N ⊗R L)

is an isomorphism if M is finite projective.

Proof. By Lemma 10.78.2 we see that M is finitely presented as well as finite
locally free. By Lemmas 10.10.2 and 10.12.16 formation of the left and right hand
side of the arrow commutes with localization. We may check that our map is an
isomorphism after localization, see Lemma 10.23.2. Thus we may assume M is
finite free. In this case the lemma is immediate. □

10.79. Open loci defined by module maps

05GD The set of primes where a given module map is surjective, or an isomorphism is
sometimes open. In the case of finite projective modules we can look at the rank
of the map.

Lemma 10.79.1.05GE Let R be a ring. Let φ : M → N be a map of R-modules with N
a finite R-module. Then we have the equality

U = {p ⊂ R | φp : Mp → Np is surjective}
= {p ⊂ R | φ⊗ κ(p) : M ⊗ κ(p)→ N ⊗ κ(p) is surjective}

and U is an open subset of Spec(R). Moreover, for any f ∈ R such that D(f) ⊂ U
the map Mf → Nf is surjective.

https://stacks.math.columbia.edu/tag/03C1
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Proof. The equality in the displayed formula follows from Nakayama’s lemma.
Nakayama’s lemma also implies that U is open. See Lemma 10.20.1 especially
part (3). If D(f) ⊂ U , then Mf → Nf is surjective on all localizations at primes of
Rf , and hence it is surjective by Lemma 10.23.1. □

Lemma 10.79.2.05GF Let R be a ring. Let φ : M → N be a map of R-modules with M
finite and N finitely presented. Then

U = {p ⊂ R | φp : Mp → Np is an isomorphism}

is an open subset of Spec(R).

Proof. Let p ∈ U . Pick a presentation N = R⊕n/
∑
j=1,...,mRkj . Denote ei the

image in N of the ith basis vector of R⊕n. For each i ∈ {1, . . . , n} choose an
element mi ∈ Mp such that φ(mi) = fiei for some fi ∈ R, fi ̸∈ p. This is possible
as φp is an isomorphism. Set f = f1 . . . fn and let ψ : R⊕n

f → Mf be the map
which maps the ith basis vector to mi/fi. Note that φf ◦ ψ is the localization at
f of the given map R⊕n → N . As φp is an isomorphism we see that ψ(kj) is an
element of M which maps to zero in Mp. Hence we see that there exist gj ∈ R,
gj ̸∈ p such that gjψ(kj) = 0. Setting g = g1 . . . gm, we see that ψg factors through
Nfg to give a map χ : Nfg → Mfg. By construction χ is a right inverse to φfg.
It follows that χp is an isomorphism. By Lemma 10.79.1 there is an h ∈ R, h ̸∈ p
such that χh : Nfgh →Mfgh is surjective. Hence φfgh and χh are mutually inverse
maps, which implies that D(fgh) ⊂ U as desired. □

Lemma 10.79.3.0GWM Let R be a ring. Let p ⊂ R be a prime. Let M be a finitely
presented R-module. If Mp is free, then there is an f ∈ R, f ̸∈ p such that Mf is
a free Rf -module.

Proof. Choose a basis x1, . . . , xn ∈ Mp. We can choose an f ∈ R, f ̸∈ p such
that xi is the image of some yi ∈ Mf . After replacing yi by fmyi for m ≫ 0 we
may assume yi ∈ M . Namely, this replaces x1, . . . , xn by fmx1, . . . , f

mxn which
is still a basis as f maps to a unit in Rp. Hence we obtain a homomorphism φ =
(y1, . . . , yn) : R⊕n → M of R-modules whose localization at p is an isomorphism.
By Lemma 10.79.2 we can find an f ∈ R, f ̸∈ p such that φq is an isomorphism for
all primes q ⊂ R with f ̸∈ q. Then it follows from Lemma 10.23.1 that φf is an
isomorphism and the proof is complete. □

Lemma 10.79.4.00O0 Let R be a ring. Let φ : P1 → P2 be a map of finite projective
modules. Then

(1) The set U of primes p ∈ Spec(R) such that φ ⊗ κ(p) is injective is open
and for any f ∈ R such that D(f) ⊂ U we have
(a) P1,f → P2,f is injective, and
(b) the module Coker(φ)f is finite projective over Rf .

(2) The set W of primes p ∈ Spec(R) such that φ⊗ κ(p) is surjective is open
and for any f ∈ R such that D(f) ⊂W we have
(a) P1,f → P2,f is surjective, and
(b) the module Ker(φ)f is finite projective over Rf .

(3) The set V of primes p ∈ Spec(R) such that φ⊗ κ(p) is an isomorphism is
open and for any f ∈ R such that D(f) ⊂ V the map φ : P1,f → P2,f is
an isomorphism of modules over Rf .

https://stacks.math.columbia.edu/tag/05GF
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Proof. To prove the set U is open we may work locally on Spec(R). Thus we may
replace R by a suitable localization and assume that P1 = Rn1 and P2 = Rn2 , see
Lemma 10.78.2. In this case injectivity of φ ⊗ κ(p) is equivalent to n1 ≤ n2 and
some n1 × n1 minor f of the matrix of φ being invertible in κ(p). Thus D(f) ⊂ U .
This argument also shows that P1,p → P2,p is injective for p ∈ U .

Now suppose D(f) ⊂ U . By the remark in the previous paragraph and Lemma
10.23.1 we see that P1,f → P2,f is injective, i.e., (1)(a) holds. By Lemma 10.78.2 to
prove (1)(b) it suffices to prove that Coker(φ) is finite projective locally on D(f).
Thus, as we saw above, we may assume that P1 = Rn1 and P2 = Rn2 and that some
minor of the matrix of φ is invertible in R. If the minor in question corresponds to
the first n1 basis vectors of Rn2 , then using the last n2 − n1 basis vectors we get a
map Rn2−n1 → Rn2 → Coker(φ) which is easily seen to be an isomorphism.

Openness of W and (2)(a) for D(f) ⊂ W follow from Lemma 10.79.1. Since P2,f
is projective over Rf we see that φf : P1,f → P2,f has a section and it follows that
Ker(φ)f is a direct summand of P2,f . Therefore Ker(φ)f is finite projective. Thus
(2)(b) holds as well.

It is clear that V = U ∩W is open and the other statement in (3) follows from
(1)(a) and (2)(a). □

10.80. Faithfully flat descent for projectivity of modules

058B
In the next few sections we prove, following Raynaud and Gruson [GR71], that the
projectivity of modules descends along faithfully flat ring maps. The idea of the
proof is to use dévissage à la Kaplansky [Kap58] to reduce to the case of countably
generated modules. Given a well-behaved filtration of a module M , dévissage allows
us to express M as a direct sum of successive quotients of the filtering submodules
(see Section 10.84). Using this technique, we prove that a projective module is a
direct sum of countably generated modules (Theorem 10.84.5). To prove descent
of projectivity for countably generated modules, we introduce a “Mittag-Leffler”
condition on modules, prove that a countably generated module is projective if
and only if it is flat and Mittag-Leffler (Theorem 10.93.3), and then show that
the property of being a Mittag-Leffler module descends (Lemma 10.95.1). Finally,
given an arbitrary module M whose base change by a faithfully flat ring map is
projective, we filter M by submodules whose successive quotients are countably
generated projective modules, and then by dévissage conclude M is a direct sum
of projectives, hence projective itself (Theorem 10.95.6).

We note that there is an error in the proof of faithfully flat descent of projectivity
in [GR71]. There, descent of projectivity along faithfully flat ring maps is deduced
from descent of projectivity along a more general type of ring map ([GR71, Example
3.1.4(1) of Part II]). However, the proof of descent along this more general type
of map is incorrect. In [Gru73], Gruson explains what went wrong, although he
does not provide a fix for the case of interest. Patching this hole in the proof of
faithfully flat descent of projectivity comes down to proving that the property of
being a Mittag-Leffler module descends along faithfully flat ring maps. We do this
in Lemma 10.95.1.
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10.81. Characterizing flatness

058C In this section we discuss criteria for flatness. The main result in this section is
Lazard’s theorem (Theorem 10.81.4 below), which says that a flat module is the
colimit of a directed system of free finite modules. We remind the reader of the
“equational criterion for flatness”, see Lemma 10.39.11. It turns out that this can
be massaged into a seemingly much stronger property.

Lemma 10.81.1.058D Let M be an R-module. The following are equivalent:
(1) M is flat.
(2) If f : Rn → M is a module map and x ∈ Ker(f), then there are module

maps h : Rn → Rm and g : Rm →M such that f = g ◦h and x ∈ Ker(h).
(3) Suppose f : Rn →M is a module map, N ⊂ Ker(f) any submodule, and

h : Rn → Rm a map such that N ⊂ Ker(h) and f factors through h.
Then given any x ∈ Ker(f) we can find a map h′ : Rn → Rm

′ such that
N +Rx ⊂ Ker(h′) and f factors through h′.

(4) If f : Rn → M is a module map and N ⊂ Ker(f) is a finitely generated
submodule, then there are module maps h : Rn → Rm and g : Rm → M
such that f = g ◦ h and N ⊂ Ker(h).

Proof. That (1) is equivalent to (2) is just a reformulation of the equational criterion
for flatness8. To show (2) implies (3), let g : Rm → M be the map such that f
factors as f = g ◦ h. By (2) find h′′ : Rm → Rm

′ such that h′′ kills h(x) and
g : Rm →M factors through h′′. Then taking h′ = h′′ ◦h works. (3) implies (4) by
induction on the number of generators of N ⊂ Ker(f) in (4). Clearly (4) implies
(2). □

Lemma 10.81.2.058E Let M be an R-module. Then M is flat if and only if the following
condition holds: if P is a finitely presented R-module and f : P → M a module
map, then there is a free finite R-module F and module maps h : P → F and
g : F →M such that f = g ◦ h.

Proof. This is just a reformulation of condition (4) from Lemma 10.81.1. □

Lemma 10.81.3.058F Let M be an R-module. Then M is flat if and only if the following
condition holds: for every finitely presented R-module P , if N →M is a surjective
R-module map, then the induced map HomR(P,N)→ HomR(P,M) is surjective.

Proof. First suppose M is flat. We must show that if P is finitely presented, then
given a map f : P → M , it factors through the map N → M . By Lemma 10.81.2
the map f factors through a map F → M where F is free and finite. Since F is
free, this map factors through N →M . Thus f factors through N →M .
Conversely, suppose the condition of the lemma holds. Let f : P → M be a
map from a finitely presented module P . Choose a free module N with a surjection
N →M onto M . Then f factors through N →M , and since P is finitely generated,

8In fact, a module map f : Rn →M corresponds to a choice of elements x1, x2, . . . , xn of M
(namely, the images of the standard basis elements e1, e2, . . . , en); furthermore, an element x ∈
Ker(f) corresponds to a relation between these x1, x2, . . . , xn (namely, the relation

∑
i
fixi = 0,

where the fi are the coordinates of x). The module map h (represented as an m × n-matrix)
corresponds to the matrix (aij) from Lemma 10.39.11, and the yj of Lemma 10.39.11 are the
images of the standard basis vectors of Rm under g.
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f factors through a free finite submodule of N . Thus M satisfies the condition of
Lemma 10.81.2, hence is flat. □

Theorem 10.81.4 (Lazard’s theorem).058G Let M be an R-module. Then M is flat if
and only if it is the colimit of a directed system of free finite R-modules.

Proof. A colimit of a directed system of flat modules is flat, as taking directed
colimits is exact and commutes with tensor product. Hence if M is the colimit of
a directed system of free finite modules then M is flat.
For the converse, first recall that any module M can be written as the colimit of
a directed system of finitely presented modules, in the following way. Choose a
surjection f : RI → M for some set I, and let K be the kernel. Let E be the set
of ordered pairs (J,N) where J is a finite subset of I and N is a finitely generated
submodule of RJ ∩ K. Then E is made into a directed partially ordered set by
defining (J,N) ≤ (J ′, N ′) if and only if J ⊂ J ′ and N ⊂ N ′. Define Me = RJ/N
for e = (J,N), and define fee′ : Me → Me′ to be the natural map for e ≤ e′.
Then (Me, fee′) is a directed system and the natural maps fe : Me →M induce an
isomorphism colime∈EMe

∼=−→M .
Now suppose M is flat. Let I = M×Z, write (xi) for the canonical basis of RI , and
take in the above discussion f : RI →M to be the map sending xi to the projection
of i onto M . To prove the theorem it suffices to show that the e ∈ E such that Me

is free form a cofinal subset of E. So let e = (J,N) ∈ E be arbitrary. By Lemma
10.81.2 there is a free finite module F and maps h : RJ/N → F and g : F → M

such that the natural map fe : RJ/N → M factors as RJ/N h−→ F
g−→ M . We are

going to realize F as Me′ for some e′ ≥ e.
Let {b1, . . . , bn} be a finite basis of F . Choose n distinct elements i1, . . . , in ∈ I
such that iℓ /∈ J for all ℓ, and such that the image of xiℓ under f : RI →M equals
the image of bℓ under g : F → M . This is possible since every element of M can
be written as f(xi) for infinitely many distinct i ∈ I (by our choice of I). Now let
J ′ = J ∪ {i1, . . . , in}, and define RJ′ → F by xi 7→ h(xi) for i ∈ J and xiℓ 7→ bℓ for
ℓ = 1, . . . , n. Let N ′ = Ker(RJ′ → F ). Observe:

(1) The square
RJ

′ //� _

��

F

g

��
RI

f
// M

is commutative, hence N ′ ⊂ K = Ker(f);
(2) RJ

′ → F is a surjection onto a free finite module, hence it splits and so
N ′ is finitely generated;

(3) J ⊂ J ′ and N ⊂ N ′.
By (1) and (2) e′ = (J ′, N ′) is in E, by (3) e′ ≥ e, and by construction Me′ =
RJ

′
/N ′ ∼= F is free. □

10.82. Universally injective module maps

058H
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Next we discuss universally injective module maps, which are in a sense comple-
mentary to flat modules (see Lemma 10.82.5). We follow Lazard’s thesis [Laz69];
also see [Lam99].

Definition 10.82.1.058I Let f : M → N be a map of R-modules. Then f is called
universally injective if for every R-module Q, the map f ⊗R idQ : M ⊗R Q →
N ⊗R Q is injective. A sequence 0→M1 →M2 →M3 → 0 of R-modules is called
universally exact if it is exact and M1 →M2 is universally injective.

Example 10.82.2.058J Examples of universally exact sequences.
(1) A split short exact sequence is universally exact since tensoring commutes

with taking direct sums.
(2) The colimit of a directed system of universally exact sequences is uni-

versally exact. This follows from the fact that taking directed colimits is
exact and that tensoring commutes with taking colimits. In particular the
colimit of a directed system of split exact sequences is universally exact.
We will see below that, conversely, any universally exact sequence arises
in this way.

Next we give a list of criteria for a short exact sequence to be universally exact. They
are analogues of criteria for flatness given above. Parts (3)-(6) below correspond,
respectively, to the criteria for flatness given in Lemmas 10.39.11, 10.81.1, 10.81.3,
and Theorem 10.81.4.

Theorem 10.82.3.058K Let

0→M1
f1−→M2

f2−→M3 → 0
be an exact sequence of R-modules. The following are equivalent:

(1) The sequence 0→M1 →M2 →M3 → 0 is universally exact.
(2) For every finitely presented R-module Q, the sequence

0→M1 ⊗R Q→M2 ⊗R Q→M3 ⊗R Q→ 0
is exact.

(3) Given elements xi ∈ M1 (i = 1, . . . , n), yj ∈ M2 (j = 1, . . . ,m), and
aij ∈ R (i = 1, . . . , n, j = 1, . . . ,m) such that for all i

f1(xi) =
∑

j
aijyj ,

there exists zj ∈M1 (j = 1, . . . ,m) such that for all i,

xi =
∑

j
aijzj .

(4) Given a commutative diagram of R-module maps

Rn //

��

Rm

��
M1

f1 // M2

where m and n are integers, there exists a map Rm →M1 making the top
triangle commute.

(5) For every finitely presentedR-module P , theR-module map HomR(P,M2)→
HomR(P,M3) is surjective.
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(6) The sequence 0 → M1 → M2 → M3 → 0 is the colimit of a directed
system of split exact sequences of the form

0→M1 →M2,i →M3,i → 0
where the M3,i are finitely presented.

Proof. Obviously (1) implies (2).
Next we show (2) implies (3). Let f1(xi) =

∑
j aijyj be relations as in (3). Let

(dj) be a basis for Rm, (ei) a basis for Rn, and Rm → Rn the map given by dj 7→∑
i aijei. Let Q be the cokernel of Rm → Rn. Then tensoring Rm → Rn → Q→ 0

by the map f1 : M1 →M2, we get a commutative diagram

M⊕m
1

//

��

M⊕n
1

//

��

M1 ⊗R Q //

��

0

M⊕m
2

// M⊕n
2

// M2 ⊗R Q // 0

where M⊕m
1 →M⊕n

1 is given by

(z1, . . . , zm) 7→ (
∑

j
a1jzj , . . . ,

∑
j
anjzj),

and M⊕m
2 → M⊕n

2 is given similarly. We want to show x = (x1, . . . , xn) ∈ M⊕n
1

is in the image of M⊕m
1 → M⊕n

1 . By (2) the map M1 ⊗Q→ M2 ⊗Q is injective,
hence by exactness of the top row it is enough to show x maps to 0 in M2⊗Q, and
so by exactness of the bottom row it is enough to show the image of x in M⊕n

2 is
in the image of M⊕m

2 →M⊕n
2 . This is true by assumption.

Condition (4) is just a translation of (3) into diagram form.
Next we show (4) implies (5). Let φ : P →M3 be a map from a finitely presented
R-module P . We must show that φ lifts to a map P →M2. Choose a presentation
of P ,

Rn
g1−→ Rm

g2−→ P → 0.
Using freeness of Rn and Rm, we can construct h2 : Rm →M2 and then h1 : Rn →
M1 such that the following diagram commutes

Rn
g1 //

h1
��

Rm
g2 //

h2
��

P //

φ

��

0

0 // M1
f1 // M2

f2 // M3 // 0.

By (4) there is a map k1 : Rm →M1 such that k1 ◦g1 = h1. Now define h′
2 : Rm →

M2 by h′
2 = h2 − f1 ◦ k1. Then

h′
2 ◦ g1 = h2 ◦ g1 − f1 ◦ k1 ◦ g1 = h2 ◦ g1 − f1 ◦ h1 = 0.

Hence by passing to the quotient h′
2 defines a map φ′ : P →M2 such that φ′ ◦ g2 =

h′
2. In a diagram, we have

Rm
g2 //

h′
2
��

P

φ

��

φ′

||
M2

f2 // M3.
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where the top triangle commutes. We claim that φ′ is the desired lift, i.e. that
f2 ◦ φ′ = φ. From the definitions we have

f2 ◦ φ′ ◦ g2 = f2 ◦ h′
2 = f2 ◦ h2 − f2 ◦ f1 ◦ k1 = f2 ◦ h2 = φ ◦ g2.

Since g2 is surjective, this finishes the proof.
Now we show (5) implies (6). Write M3 as the colimit of a directed system of finitely
presented modules M3,i, see Lemma 10.11.3. Let M2,i be the fiber product of M3,i
and M2 over M3—by definition this is the submodule of M2 ×M3,i consisting of
elements whose two projections onto M3 are equal. Let M1,i be the kernel of the
projection M2,i →M3,i. Then we have a directed system of exact sequences

0→M1,i →M2,i →M3,i → 0,
and for each i a map of exact sequences

0 // M1,i

��

// M2,i //

��

M3,i

��

// 0

0 // M1 // M2 // M3 // 0
compatible with the directed system. From the definition of the fiber product M2,i,
it follows that the map M1,i → M1 is an isomorphism. By (5) there is a map
M3,i → M2 lifting M3,i → M3, and by the universal property of the fiber product
this gives rise to a section of M2,i →M3,i. Hence the sequences

0→M1,i →M2,i →M3,i → 0
split. Passing to the colimit, we have a commutative diagram

0 // colimM1,i

∼=
��

// colimM2,i //

��

colimM3,i

∼=
��

// 0

0 // M1 // M2 // M3 // 0
with exact rows and outer vertical maps isomorphisms. Hence colimM2,i →M2 is
also an isomorphism and (6) holds.
Condition (6) implies (1) by Example 10.82.2 (2). □

The previous theorem shows that a universally exact sequence is always a colimit of
split short exact sequences. If the cokernel of a universally injective map is finitely
presented, then in fact the map itself splits:

Lemma 10.82.4.058L Let
0→M1 →M2 →M3 → 0

be an exact sequence of R-modules. Suppose M3 is of finite presentation. Then
0→M1 →M2 →M3 → 0

is universally exact if and only if it is split.

Proof. A split short exact sequence is always universally exact, see Example 10.82.2.
Conversely, if the sequence is universally exact, then by Theorem 10.82.3 (5) applied
to P = M3, the map M2 →M3 admits a section. □

The following lemma shows how universally injective maps are complementary to
flat modules.

https://stacks.math.columbia.edu/tag/058L
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Lemma 10.82.5.058M Let M be an R-module. Then M is flat if and only if any exact
sequence of R-modules

0→M1 →M2 →M → 0
is universally exact.

Proof. This follows from Lemma 10.81.3 and Theorem 10.82.3 (5). □

Example 10.82.6.058N Non-split and non-flat universally exact sequences.
(1) In spite of Lemma 10.82.4, it is possible to have a short exact sequence of

R-modules
0→M1 →M2 →M3 → 0

that is universally exact but non-split. For instance, take R = Z, let
M1 =

⊕∞
n=1 Z, let M2 =

∏∞
n=1 Z, and let M3 be the cokernel of the

inclusion M1 →M2. Then M1,M2,M3 are all flat since they are torsion-
free (More on Algebra, Lemma 15.22.11), so by Lemma 10.82.5,

0→M1 →M2 →M3 → 0
is universally exact. However there can be no section s : M3 → M2. In
fact, if x is the image of (2, 22, 23, . . .) ∈M2 in M3, then any module map
s : M3 →M2 must kill x. This is because x ∈ 2nM3 for any n ≥ 1, hence
s(x) is divisible by 2n for all n ≥ 1 and so must be 0.

(2) In spite of Lemma 10.82.5, it is possible to have a short exact sequence of
R-modules

0→M1 →M2 →M3 → 0
that is universally exact but with M1,M2,M3 all non-flat. In fact if M is
any non-flat module, just take the split exact sequence

0→M →M ⊕M →M → 0.
For instance over R = Z, take M to be any torsion module.

(3) Taking the direct sum of an exact sequence as in (1) with one as in (2),
we get a short exact sequence of R-modules

0→M1 →M2 →M3 → 0
that is universally exact, non-split, and such that M1,M2,M3 are all non-
flat.

Lemma 10.82.7.058P Let 0→M1 →M2 →M3 → 0 be a universally exact sequence of
R-modules, and suppose M2 is flat. Then M1 and M3 are flat.

Proof. Let 0 → N → N ′ → N ′′ → 0 be a short exact sequence of R-modules.
Consider the commutative diagram

M1 ⊗R N //

��

M2 ⊗R N //

��

M3 ⊗R N

��
M1 ⊗R N ′ //

��

M2 ⊗R N ′ //

��

M3 ⊗R N ′

��
M1 ⊗R N ′′ // M2 ⊗R N ′′ // M3 ⊗R N ′′

https://stacks.math.columbia.edu/tag/058M
https://stacks.math.columbia.edu/tag/058N
https://stacks.math.columbia.edu/tag/058P
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(we have dropped the 0’s on the boundary). By assumption the rows give short
exact sequences and the arrow M2⊗N →M2⊗N ′ is injective. Clearly this implies
that M1⊗N →M1⊗N ′ is injective and we see that M1 is flat. In particular the left
and middle columns give rise to short exact sequences. It follows from a diagram
chase that the arrow M3 ⊗N →M3 ⊗N ′ is injective. Hence M3 is flat. □

Lemma 10.82.8.05CH Let R be a ring. Let M →M ′ be a universally injective R-module
map. Then for any R-module N the map M ⊗R N → M ′ ⊗R N is universally
injective.

Proof. Omitted. □

Lemma 10.82.9.05CI Let R be a ring. A composition of universally injective R-module
maps is universally injective.

Proof. Omitted. □

Lemma 10.82.10.05CJ Let R be a ring. Let M → M ′ and M ′ → M ′′ be R-module
maps. If their composition M → M ′′ is universally injective, then M → M ′ is
universally injective.

Proof. Omitted. □

Lemma 10.82.11.05CK Let R → S be a faithfully flat ring map. Then R → S is
universally injective as a map of R-modules. In particular R∩ IS = I for any ideal
I ⊂ R.

Proof. Let N be an R-module. We have to show that N → N ⊗R S is injective. As
S is faithfully flat as an R-module, it suffices to prove this after tensoring with S.
Hence it suffices to show that N⊗RS → N⊗RS⊗RS, n⊗s 7→ n⊗1⊗s is injective.
This is true because there is a retraction, namely, n⊗ s⊗ s′ 7→ n⊗ ss′. □

Lemma 10.82.12.05CL Let R→ S be a ring map. Let M →M ′ be a map of S-modules.
The following are equivalent

(1) M →M ′ is universally injective as a map of R-modules,
(2) for each prime q of S the map Mq →M ′

q is universally injective as a map
of R-modules,

(3) for each maximal ideal m of S the map Mm →M ′
m is universally injective

as a map of R-modules,
(4) for each prime q of S the map Mq →M ′

q is universally injective as a map
of Rp-modules, where p is the inverse image of q in R, and

(5) for each maximal ideal m of S the map Mm →M ′
m is universally injective

as a map of Rp-modules, where p is the inverse image of m in R.

Proof. Let N be an R-module. Let q be a prime of S lying over the prime p of R.
Then we have

(M ⊗R N)q = Mq ⊗R N = Mq ⊗Rp
Np.

Moreover, the same thing holds for M ′ and localization is exact. Also, if N is
an Rp-module, then Np = N . Using this the equivalences can be proved in a
straightforward manner.
For example, suppose that (5) holds. Let K = Ker(M ⊗R N →M ′ ⊗R N). By the
remarks above we see that Km = 0 for each maximal ideal m of S. Hence K = 0
by Lemma 10.23.1. Thus (1) holds. Conversely, suppose that (1) holds. Take

https://stacks.math.columbia.edu/tag/05CH
https://stacks.math.columbia.edu/tag/05CI
https://stacks.math.columbia.edu/tag/05CJ
https://stacks.math.columbia.edu/tag/05CK
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any q ⊂ S lying over p ⊂ R. Take any module N over Rp. Then by assumption
Ker(M ⊗R N → M ′ ⊗R N) = 0. Hence by the formulae above and the fact that
N = Np we see that Ker(Mq ⊗Rp

N →M ′
q ⊗Rp

N) = 0. In other words (4) holds.
Of course (4) ⇒ (5) is immediate. Hence (1), (4) and (5) are all equivalent. We
omit the proof of the other equivalences. □

Lemma 10.82.13.05CM Let φ : A → B be a ring map. Let S ⊂ A and S′ ⊂ B be
multiplicative subsets such that φ(S) ⊂ S′. Let M →M ′ be a map of B-modules.

(1) IfM →M ′ is universally injective as a map ofA-modules, then (S′)−1M →
(S′)−1M ′ is universally injective as a map of A-modules and as a map of
S−1A-modules.

(2) If M and M ′ are (S′)−1B-modules, then M →M ′ is universally injective
as a map of A-modules if and only if it is universally injective as a map
of S−1A-modules.

Proof. You can prove this using Lemma 10.82.12 but you can also prove it directly
as follows. Assume M → M ′ is A-universally injective. Let Q be an A-module.
Then Q ⊗A M → Q ⊗A M ′ is injective. Since localization is exact we see that
(S′)−1(Q ⊗A M) → (S′)−1(Q ⊗A M ′) is injective. As (S′)−1(Q ⊗A M) = Q ⊗A
(S′)−1M and similarly for M ′ we see that Q ⊗A (S′)−1M → Q ⊗A (S′)−1M ′

is injective, hence (S′)−1M → (S′)−1M ′ is universally injective as a map of A-
modules. This proves the first part of (1). To see (2) we can use the following two
facts: (a) if Q is an S−1A-module, then Q ⊗A S−1A = Q, i.e., tensoring with Q
over A is the same thing as tensoring with Q over S−1A, (b) if M is any A-module
on which the elements of S are invertible, then M ⊗A Q = M ⊗S−1A S

−1Q. Part
(2) follows from this immediately. □

Lemma 10.82.14.0AS5 Let R be a ring and let M →M ′ be a map of R-modules. If M ′

is flat, then M → M ′ is universally injective if and only if M/IM → M ′/IM ′ is
injective for every finitely generated ideal I of R.

Proof. It suffices to show that M ⊗R Q → M ′ ⊗R Q is injective for every finite
R-module Q, see Theorem 10.82.3. Then Q has a finite filtration 0 = Q0 ⊂ Q1 ⊂
. . . ⊂ Qn = Q by submodules whose subquotients are isomorphic to cyclic modules
R/Ii, see Lemma 10.5.4. Since M ′ is flat, we obtain a filtration

M ⊗Q1 //

��

M ⊗Q2 //

��

. . . // M ⊗Q

��
M ′ ⊗Q1

� � // M ′ ⊗Q2
� � // . . . �

� // M ′ ⊗Q

of M ′⊗RQ by submodules M ′⊗RQi whose successive quotients are M ′⊗RR/Ii =
M ′/IiM

′. A simple induction argument shows that it suffices to check M/IiM →
M ′/IiM

′ is injective. Note that the collection of finitely generated ideals I ′
i ⊂ Ii

is a directed set. Thus M/IiM = colimM/I ′
iM is a filtered colimit, similarly for

M ′, the maps M/I ′
iM → M ′/I ′

iM
′ are injective by assumption, and since filtered

colimits are exact (Lemma 10.8.8) we conclude. □

10.83. Descent for finite projective modules

058Q In this section we give an elementary proof of the fact that the property of being a
finite projective module descends along faithfully flat ring maps. The proof does not

https://stacks.math.columbia.edu/tag/05CM
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apply when we drop the finiteness condition. However, the method is indicative
of the one we shall use to prove descent for the property of being a countably
generated projective module—see the comments at the end of this section.

Lemma 10.83.1.058R Let M be an R-module. Then M is finite projective if and only
if M is finitely presented and flat.

Proof. This is part of Lemma 10.78.2. However, at this point we can give a more
elegant proof of the implication (1)⇒ (2) of that lemma as follows. If M is finitely
presented and flat, then take a surjection Rn →M . By Lemma 10.81.3 applied to
P = M , the map Rn → M admits a section. So M is a direct summand of a free
module and hence projective. □

Here are some properties of modules that descend.

Lemma 10.83.2.03C4 Let R→ S be a faithfully flat ring map. Let M be an R-module.
Then

(1) if the S-module M ⊗R S is of finite type, then M is of finite type,
(2) if the S-module M ⊗R S is of finite presentation, then M is of finite

presentation,
(3) if the S-module M ⊗R S is flat, then M is flat, and
(4) add more here as needed.

Proof. Assume M ⊗R S is of finite type. Let y1, . . . , ym be generators of M ⊗R S
over S. Write yj =

∑
xi ⊗ fi for some x1, . . . , xn ∈M . Then we see that the map

φ : R⊕n → M has the property that φ⊗ idS : S⊕n → M ⊗R S is surjective. Since
R→ S is faithfully flat we see that φ is surjective, and M is finitely generated.

Assume M ⊗R S is of finite presentation. By (1) we see that M is of finite type.
Choose a surjection R⊕n → M and denote K the kernel. As R → S is flat we see
that K ⊗R S is the kernel of the base change S⊕n → M ⊗R S. As M ⊗R S is of
finite presentation we conclude that K ⊗R S is of finite type. Hence by (1) we see
that K is of finite type and hence M is of finite presentation.

Part (3) is Lemma 10.39.8. □

Proposition 10.83.3.058S Let R → S be a faithfully flat ring map. Let M be an
R-module. If the S-module M ⊗R S is finite projective, then M is finite projective.

Proof. Follows from Lemmas 10.83.1 and 10.83.2. □

The next few sections are about removing the finiteness assumption by using dévis-
sage to reduce to the countably generated case. In the countably generated case,
the strategy is to find a characterization of countably generated projective modules
analogous to Lemma 10.83.1, and then to prove directly that this characterization
descends. We do this by introducing the notion of a Mittag-Leffler module and
proving that if a module M is countably generated, then it is projective if and only
if it is flat and Mittag-Leffler (Theorem 10.93.3). When M is finitely generated,
this statement reduces to Lemma 10.83.1 (since, according to Example 10.91.1 (1),
a finitely generated module is Mittag-Leffler if and only if it is finitely presented).

https://stacks.math.columbia.edu/tag/058R
https://stacks.math.columbia.edu/tag/03C4
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10.84. Transfinite dévissage of modules

058T In this section we introduce a dévissage technique for decomposing a module into a
direct sum. The main result is that a projective module is a direct sum of countably
generated modules (Theorem 10.84.5 below). We follow [Kap58].

Definition 10.84.1.058U Let M be an R-module. A direct sum dévissage of M is a family
of submodules (Mα)α∈S , indexed by an ordinal S and increasing (with respect to
inclusion), such that:

(0) M0 = 0;
(1) M =

⋃
αMα;

(2) if α ∈ S is a limit ordinal, then Mα =
⋃
β<αMβ ;

(3) if α+ 1 ∈ S, then Mα is a direct summand of Mα+1.
If moreover

(4) Mα+1/Mα is countably generated for α+ 1 ∈ S,
then (Mα)α∈S is called a Kaplansky dévissage of M .

The terminology is justified by the following lemma.

Lemma 10.84.2.058V Let M be an R-module. If (Mα)α∈S is a direct sum dévissage of
M , then M ∼=

⊕
α+1∈SMα+1/Mα.

Proof. By property (3) of a direct sum dévissage, there is an inclusion Mα+1/Mα →
M for each α ∈ S. Consider the map

f :
⊕

α+1∈S
Mα+1/Mα →M

given by the sum of these inclusions. Further consider the restrictions

fβ :
⊕

α+1≤β
Mα+1/Mα −→M

for β ∈ S. Transfinite induction on S shows that the image of fβ is Mβ . For β = 0
this is true by (0). If β+ 1 is a successor ordinal and it is true for β, then it is true
for β + 1 by (3). And if β is a limit ordinal and it is true for α < β, then it is true
for β by (2). Hence f is surjective by (1).
Transfinite induction on S also shows that the restrictions fβ are injective. For
β = 0 it is true. If β+1 is a successor ordinal and fβ is injective, then let x be in the
kernel and write x = (xα+1)α+1≤β+1 in terms of its components xα+1 ∈Mα+1/Mα.
By property (3) and the fact that the image of fβ is Mβ both (xα+1)α+1≤β and
xβ+1 map to 0. Hence xβ+1 = 0 and, by the assumption that the restriction fβ is
injective also xα+1 = 0 for every α + 1 ≤ β. So x = 0 and fβ+1 is injective. If β
is a limit ordinal consider an element x of the kernel. Then x is already contained
in the domain of fα for some α < β. Thus x = 0 which finishes the induction. We
conclude that f is injective since fβ is for each β ∈ S. □

Lemma 10.84.3.058W Let M be an R-module. Then M is a direct sum of countably
generated R-modules if and only if it admits a Kaplansky dévissage.

Proof. The lemma takes care of the “if” direction. Conversely, suppose M =⊕
i∈I Ni where each Ni is a countably generated R-module. Well-order I so that

we can think of it as an ordinal. Then setting Mi =
⊕

j<iNj gives a Kaplansky
dévissage (Mi)i∈I of M . □

https://stacks.math.columbia.edu/tag/058U
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Theorem 10.84.4.058X Suppose M is a direct sum of countably generated R-modules.
If P is a direct summand of M , then P is also a direct sum of countably generated
R-modules.

Proof. Write M = P ⊕ Q. We are going to construct a Kaplansky dévissage
(Mα)α∈S of M which, in addition to the defining properties (0)-(4), satisfies:

(5) Each Mα is a direct summand of M ;
(6) Mα = Pα ⊕Qα, where Pα = P ∩Mα and Q = Q ∩Mα.

(Note: if properties (0)-(2) hold, then in fact property (3) is equivalent to property
(5).)

To see how this implies the theorem, it is enough to show that (Pα)α∈S forms a
Kaplansky dévissage of P . Properties (0), (1), and (2) are clear. By (5) and (6)
for (Mα), each Pα is a direct summand of M . Since Pα ⊂ Pα+1, this implies Pα is
a direct summand of Pα+1; hence (3) holds for (Pα). For (4), note that

Mα+1/Mα
∼= Pα+1/Pα ⊕Qα+1/Qα,

so Pα+1/Pα is countably generated because this is true of Mα+1/Mα.

It remains to construct the Mα. Write M =
⊕

i∈I Ni where each Ni is a countably
generated R-module. Choose a well-ordering of I. By transfinite recursion we are
going to define an increasing family of submodules Mα of M , one for each ordinal
α, such that Mα is a direct sum of some subset of the Ni.

For α = 0 let M0 = 0. If α is a limit ordinal and Mβ has been defined for all β < α,
then define Mα =

⋃
β<αMβ . Since each Mβ for β < α is a direct sum of a subset

of the Ni, the same will be true of Mα. If α + 1 is a successor ordinal and Mα

has been defined, then define Mα+1 as follows. If Mα = M , then let Mα+1 = M .
If not, choose the smallest j ∈ I such that Nj is not contained in Mα. We will
construct an infinite matrix (xmn),m, n = 1, 2, 3, . . . such that:

(1) Nj is contained in the submodule of M generated by the entries xmn;
(2) if we write any entry xkℓ in terms of its P - and Q-components, xkℓ =

ykℓ + zkℓ, then the matrix (xmn) contains a set of generators for each Ni
for which ykℓ or zkℓ has nonzero component.

Then we define Mα+1 to be the submodule of M generated by Mα and all xmn;
by property (2) of the matrix (xmn), Mα+1 will be a direct sum of some subset of
the Ni. To construct the matrix (xmn), let x11, x12, x13, . . . be a countable set of
generators for Nj . Then if x11 = y11 + z11 is the decomposition into P - and Q-
components, let x21, x22, x23, . . . be a countable set of generators for the sum of the
Ni for which y11 or z11 have nonzero component. Repeat this process on x12 to get
elements x31, x32, . . ., the third row of our matrix. Repeat on x21 to get the fourth
row, on x13 to get the fifth, and so on, going down along successive anti-diagonals
as indicated below: 

x11 x12
zz

x13
zz

x14
zz

. . .

x21 x22
zz

x23
zz

. . .

x31 x32
zz

. . .

x41 . . .

. . .


.
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Transfinite induction on I (using the fact that we constructed Mα+1 to contain Nj
for the smallest j such that Nj is not contained in Mα) shows that for each i ∈ I,
Ni is contained in some Mα. Thus, there is some large enough ordinal S satisfying:
for each i ∈ I there is α ∈ S such that Ni is contained in Mα. This means (Mα)α∈S
satisfies property (1) of a Kaplansky dévissage of M . The family (Mα)α∈S moreover
satisfies the other defining properties, and also (5) and (6) above: properties (0),
(2), (4), and (6) are clear by construction; property (5) is true because each Mα

is by construction a direct sum of some Ni; and (3) is implied by (5) and the fact
that Mα ⊂Mα+1. □

As a corollary we get the result for projective modules stated at the beginning of
the section.

Theorem 10.84.5.058Y If P is a projective R-module, then P is a direct sum of countably
generated projective R-modules.

Proof. A module is projective if and only if it is a direct summand of a free module,
so this follows from Theorem 10.84.4. □

10.85. Projective modules over a local ring

058Z In this section we prove a very cute result: a projective module M over a local ring
is free (Theorem 10.85.4 below). Note that with the additional assumption that M
is finite, this result is Lemma 10.78.5. In general we have:

Lemma 10.85.1.0590 Let R be a ring. Then every projective R-module is free if and
only if every countably generated projective R-module is free.

Proof. Follows immediately from Theorem 10.84.5. □

Here is a criterion for a countably generated module to be free.

Lemma 10.85.2.0591 Let M be a countably generated R-module with the following
property: if M = N ⊕N ′ with N ′ a finite free R-module, then any element of N is
contained in a free direct summand of N . Then M is free.

Proof. Let x1, x2, . . . be a countable set of generators for M . We inductively con-
struct finite free direct summands F1, F2, . . . of M such that for all n we have that
F1 ⊕ . . .⊕ Fn is a direct summand of M which contains x1, . . . , xn. Namely, given
F1, . . . , Fn with the desired properties, write

M = F1 ⊕ . . .⊕ Fn ⊕N
and let x ∈ N be the image of xn+1. Then we can find a free direct summand
Fn+1 ⊂ N containing x by the assumption in the statement of the lemma. Of course
we can replace Fn+1 by a finite free direct summand of Fn+1 and the induction step
is complete. Then M =

⊕∞
i=1 Fi is free. □

Lemma 10.85.3.0592 Let P be a projective module over a local ring R. Then any
element of P is contained in a free direct summand of P .

Proof. Since P is projective it is a direct summand of some free R-module F , say
F = P ⊕Q. Let x ∈ P be the element that we wish to show is contained in a free
direct summand of P . Let B be a basis of F such that the number of basis elements
needed in the expression of x is minimal, say x =

∑n
i=1 aiei for some ei ∈ B and

ai ∈ R. Then no aj can be expressed as a linear combination of the other ai; for if
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aj =
∑
i ̸=j aibi for some bi ∈ R, then replacing ei by ei + biej for i ̸= j and leaving

unchanged the other elements of B, we get a new basis for F in terms of which x
has a shorter expression.
Let ei = yi + zi, yi ∈ P, zi ∈ Q be the decomposition of ei into its P - and Q-
components. Write yi =

∑n
j=1 bijej+ti, where ti is a linear combination of elements

in B other than e1, . . . , en. To finish the proof it suffices to show that the matrix
(bij) is invertible. For then the map F → F sending ei 7→ yi for i = 1, . . . , n
and fixing B \ {e1, . . . , en} is an isomorphism, so that y1, . . . , yn together with
B \ {e1, . . . , en} form a basis for F . Then the submodule N spanned by y1, . . . , yn
is a free submodule of P ; N is a direct summand of P since N ⊂ P and both N
and P are direct summands of F ; and x ∈ N since x ∈ P implies x =

∑n
i=1 aiei =∑n

i=1 aiyi.
Now we prove that (bij) is invertible. Plugging yi =

∑n
j=1 bijej+ti into

∑n
i=1 aiei =∑n

i=1 aiyi and equating the coefficients of ej gives aj =
∑n
i=1 aibij . But as noted

above, our choice of B guarantees that no aj can be written as a linear combination
of the other ai. Thus bij is a non-unit for i ̸= j, and 1 − bii is a non-unit—so in
particular bii is a unit—for all i. But a matrix over a local ring having units along
the diagonal and non-units elsewhere is invertible, as its determinant is a unit. □

Theorem 10.85.4.0593 If P is a projective module over a local ring R, then P is free.

Proof. Follows from Lemmas 10.85.1, 10.85.2, and 10.85.3. □

10.86. Mittag-Leffler systems

0594 The purpose of this section is to define Mittag-Leffler systems and why this is a
useful notion.
In the following, I will be a directed set, see Categories, Definition 4.21.1. Let
(Ai, φji : Aj → Ai) be an inverse system of sets or of modules indexed by I, see
Categories, Definition 4.21.4. This is a directed inverse system as we assumed I
directed (Categories, Definition 4.21.4). For each i ∈ I, the images φji(Aj) ⊂ Ai
for j ≥ i form a decreasing directed family of subsets (or submodules) of Ai. Let
A′
i =

⋂
j≥i φji(Aj). Then φji(A′

j) ⊂ A′
i for j ≥ i, hence by restricting we get

a directed inverse system (A′
i, φji|A′

j
). From the construction of the limit of an

inverse system in the category of sets or modules, we have limAi = limA′
i. The

Mittag-Leffler condition on (Ai, φji) is that A′
i equals φji(Aj) for some j ≥ i (and

hence equals φki(Ak) for all k ≥ j):

Definition 10.86.1.0595 Let (Ai, φji) be a directed inverse system of sets over I. Then
we say (Ai, φji) is Mittag-Leffler if for each i ∈ I, the family φji(Aj) ⊂ Ai for j ≥ i
stabilizes. Explicitly, this means that for each i ∈ I, there exists j ≥ i such that
for k ≥ j we have φki(Ak) = φji(Aj). If (Ai, φji) is a directed inverse system of
modules over a ring R, we say that it is Mittag-Leffler if the underlying inverse
system of sets is Mittag-Leffler.

Example 10.86.2.0596 If (Ai, φji) is a directed inverse system of sets or of modules and
the maps φji are surjective, then clearly the system is Mittag-Leffler. Conversely,
suppose (Ai, φji) is Mittag-Leffler. Let A′

i ⊂ Ai be the stable image of φji(Aj) for
j ≥ i. Then φji|A′

j
: A′

j → A′
i is surjective for j ≥ i and limAi = limA′

i. Hence

https://stacks.math.columbia.edu/tag/0593
https://stacks.math.columbia.edu/tag/0595
https://stacks.math.columbia.edu/tag/0596
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the limit of the Mittag-Leffler system (Ai, φji) can also be written as the limit of a
directed inverse system over I with surjective maps.

Lemma 10.86.3.0597 Let (Ai, φji) be a directed inverse system over I. Suppose I is
countable. If (Ai, φji) is Mittag-Leffler and the Ai are nonempty, then limAi is
nonempty.

Proof. Let i1, i2, i3, . . . be an enumeration of the elements of I. Define inductively
a sequence of elements jn ∈ I for n = 1, 2, 3, . . . by the conditions: j1 = i1, and
jn ≥ in and jn ≥ jm for m < n. Then the sequence jn is increasing and forms a
cofinal subset of I. Hence we may assume I = {1, 2, 3, . . .}. So by Example 10.86.2
we are reduced to showing that the limit of an inverse system of nonempty sets with
surjective maps indexed by the positive integers is nonempty. This is obvious. □

The Mittag-Leffler condition will be important for us because of the following ex-
actness property.

Lemma 10.86.4.0598 Let
0→ Ai

fi−→ Bi
gi−→ Ci → 0

be an exact sequence of directed inverse systems of abelian groups over I. Suppose
I is countable. If (Ai) is Mittag-Leffler, then

0→ limAi → limBi → limCi → 0
is exact.

Proof. Taking limits of directed inverse systems is left exact, hence we only need
to prove surjectivity of limBi → limCi. So let (ci) ∈ limCi. For each i ∈ I, let
Ei = g−1

i (ci), which is nonempty since gi : Bi → Ci is surjective. The system of
maps φji : Bj → Bi for (Bi) restrict to maps Ej → Ei which make (Ei) into an
inverse system of nonempty sets. It is enough to show that (Ei) is Mittag-Leffler.
For then Lemma 10.86.3 would show limEi is nonempty, and taking any element
of limEi would give an element of limBi mapping to (ci).
By the injection fi : Ai → Bi we will regard Ai as a subset of Bi. Since (Ai) is
Mittag-Leffler, if i ∈ I then there exists j ≥ i such that φki(Ak) = φji(Aj) for
k ≥ j. We claim that also φki(Ek) = φji(Ej) for k ≥ j. Always φki(Ek) ⊂ φji(Ej)
for k ≥ j. For the reverse inclusion let ej ∈ Ej , and we need to find xk ∈ Ek such
that φki(xk) = φji(ej). Let e′

k ∈ Ek be any element, and set e′
j = φkj(e′

k). Then
gj(ej − e′

j) = cj − cj = 0, hence ej − e′
j = aj ∈ Aj . Since φki(Ak) = φji(Aj), there

exists ak ∈ Ak such that φki(ak) = φji(aj). Hence
φki(e′

k + ak) = φji(e′
j) + φji(aj) = φji(ej),

so we can take xk = e′
k + ak. □

10.87. Inverse systems

03C9 In many papers (and in this section) the term inverse system is used to indicate
an inverse system over the partially ordered set (N,≥). We briefly discuss such
systems in this section. This material will be discussed more broadly in Homology,
Section 12.31. Suppose we are given a ring R and a sequence of R-modules

M1
φ2←−M2

φ3←−M3 ← . . .

https://stacks.math.columbia.edu/tag/0597
https://stacks.math.columbia.edu/tag/0598
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with maps as indicated. By composing successive maps we obtain maps φii′ : Mi →
Mi′ whenever i ≥ i′ such that moreover φii′′ = φi′i′′ ◦ φii′ whenever i ≥ i′ ≥ i′′.
Conversely, given the system of maps φii′ we can set φi = φi(i−1) and recover the
maps displayed above. In this case

limMi = {(xi) ∈
∏

Mi | φi(xi) = xi−1, i = 2, 3, . . .}
compare with Categories, Section 4.15. As explained in Homology, Section 12.31
this is actually a limit in the category of R-modules, as defined in Categories,
Section 4.14.
Lemma 10.87.1.03CA Let R be a ring. Let 0 → Ki → Li → Mi → 0 be short exact
sequences of R-modules, i ≥ 1 which fit into maps of short exact sequences

0 // Ki
// Li // Mi

// 0

0 // Ki+1 //

OO

Li+1 //

OO

Mi+1 //

OO

0

If for every i there exists a c = c(i) ≥ i such that Im(Kc → Ki) = Im(Kj → Ki)
for all j ≥ c, then the sequence

0→ limKi → limLi → limMi → 0
is exact.
Proof. This is a special case of the more general Lemma 10.86.4. □

10.88. Mittag-Leffler modules

0599 A Mittag-Leffler module is (very roughly) a module which can be written as a
directed limit whose dual is a Mittag-Leffler system. To be able to give a precise
definition we need to do a bit of work.
Definition 10.88.1.059A Let (Mi, fij) be a directed system of R-modules. We say that
(Mi, fij) is a Mittag-Leffler directed system of modules if each Mi is an R-module
of finite presentation and if for every R-module N , the inverse system

(HomR(Mi, N),HomR(fij , N))
is Mittag-Leffler.
We are going to characterize those R-modules that are colimits of Mittag-Leffler
directed systems of modules.
Definition 10.88.2.059B Let f : M → N and g : M →M ′ be maps of R-modules. Then
we say g dominates f if for anyR-moduleQ, we have Ker(f⊗RidQ) ⊂ Ker(g⊗RidQ).
It is enough to check this condition for finitely presented modules.
Lemma 10.88.3.059C Let f : M → N and g : M → M ′ be maps of R-modules.
Then g dominates f if and only if for any finitely presented R-module Q, we have
Ker(f ⊗R idQ) ⊂ Ker(g ⊗R idQ).
Proof. Suppose Ker(f ⊗R idQ) ⊂ Ker(g ⊗R idQ) for all finitely presented modules
Q. If Q is an arbitrary module, write Q = colimi∈I Qi as a colimit of a directed
system of finitely presented modules Qi. Then Ker(f ⊗R idQi) ⊂ Ker(g ⊗R idQi)
for all i. Since taking directed colimits is exact and commutes with tensor product,
it follows that Ker(f ⊗R idQ) ⊂ Ker(g ⊗R idQ). □

https://stacks.math.columbia.edu/tag/03CA
https://stacks.math.columbia.edu/tag/059A
https://stacks.math.columbia.edu/tag/059B
https://stacks.math.columbia.edu/tag/059C
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Lemma 10.88.4.0AUM Let f : M → N and g : M →M ′ be maps of R-modules. Consider
the pushout of f and g,

M
f
//

g

��

N

g′

��
M ′ f ′

// N ′

Then g dominates f if and only if f ′ is universally injective.

Proof. Recall that N ′ is M ′ ⊕ N modulo the submodule consisting of elements
(g(x),−f(x)) for x ∈ M . From the construction of N ′ we have a short exact
sequence

0→ Ker(f) ∩Ker(g)→ Ker(f)→ Ker(f ′)→ 0.
Since tensoring commutes with taking pushouts, we have such a short exact se-
quence

0→ Ker(f ⊗ idQ) ∩Ker(g ⊗ idQ)→ Ker(f ⊗ idQ)→ Ker(f ′ ⊗ idQ)→ 0
for every R-module Q. So f ′ is universally injective if and only if Ker(f ⊗ idQ) ⊂
Ker(g ⊗ idQ) for every Q, if and only if g dominates f . □

The above definition of domination is sometimes related to the usual notion of
domination of maps as the following lemma shows.

Lemma 10.88.5.059D Let f : M → N and g : M → M ′ be maps of R-modules.
Suppose Coker(f) is of finite presentation. Then g dominates f if and only if g
factors through f , i.e. there exists a module map h : N →M ′ such that g = h ◦ f .

Proof. Consider the pushout of f and g as in the statement of Lemma 10.88.4. From
the construction of the pushout it follows that Coker(f ′) = Coker(f), so Coker(f ′)
is of finite presentation. Then by Lemma 10.82.4, f ′ is universally injective if and
only if

0→M ′ f ′

−→ N ′ → Coker(f ′)→ 0
splits. This is the case if and only if there is a map h′ : N ′ → M ′ such that
h′ ◦ f ′ = idM ′ . From the universal property of the pushout, the existence of such
an h′ is equivalent to g factoring through f . □

Proposition 10.88.6.059E Let M be an R-module. Let (Mi, fij) be a directed system
of finitely presented R-modules, indexed by I, such that M = colimMi. Let fi :
Mi →M be the canonical map. The following are equivalent:

(1) For every finitely presented R-module P and module map f : P → M ,
there exists a finitely presented R-module Q and a module map g : P → Q
such that g and f dominate each other, i.e., Ker(f⊗RidN ) = Ker(g⊗RidN )
for every R-module N .

(2) For each i ∈ I, there exists j ≥ i such that fij : Mi → Mj dominates
fi : Mi →M .

(3) For each i ∈ I, there exists j ≥ i such that fij : Mi →Mj factors through
fik : Mi →Mk for all k ≥ i.

(4) For every R-module N , the inverse system (HomR(Mi, N),HomR(fij , N))
is Mittag-Leffler.

(5) For N =
∏
s∈IMs, the inverse system (HomR(Mi, N),HomR(fij , N)) is

Mittag-Leffler.

https://stacks.math.columbia.edu/tag/0AUM
https://stacks.math.columbia.edu/tag/059D
https://stacks.math.columbia.edu/tag/059E
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Proof. First we prove the equivalence of (1) and (2). Suppose (1) holds and let
i ∈ I. Corresponding to the map fi : Mi → M , we can choose g : Mi → Q as in
(1). Since Mi and Q are of finite presentation, so is Coker(g). Then by Lemma
10.88.5, fi : Mi → M factors through g : Mi → Q, say fi = h ◦ g for some
h : Q → M . Then since Q is finitely presented, h factors through Mj → M for
some j ≥ i, say h = fj ◦ h′ for some h′ : Q→Mj . In total we have a commutative
diagram

M

Mi

g
  

fi

>>

fij // Mj

fj

aa

Q

h′

>>

Thus fij dominates g. But g dominates fi, so fij dominates fi.
Conversely, suppose (2) holds. Let P be of finite presentation and f : P → M a
module map. Then f factors through fi : Mi → M for some i ∈ I, say f = fi ◦ g′

for some g′ : P →Mi. Choose by (2) a j ≥ i such that fij dominates fi. We have
a commutative diagram

P

g′

��

f // M

Mi

fi

==

fij

// Mj

fj

OO

From the diagram and the fact that fij dominates fi, we find that f and fij ◦ g′

dominate each other. Hence taking g = fij ◦ g′ : P →Mj works.
Next we prove (2) is equivalent to (3). Let i ∈ I. It is always true that fi dominates
fik for k ≥ i, since fi factors through fik. If (2) holds, choose j ≥ i such that fij
dominates fi. Then since domination is a transitive relation, fij dominates fik for
k ≥ i. All Mi are of finite presentation, so Coker(fik) is of finite presentation for
k ≥ i. By Lemma 10.88.5, fij factors through fik for all k ≥ i. Thus (2) implies
(3). On the other hand, if (3) holds then for any R-module N , fij ⊗R idN factors
through fik⊗R idN for k ≥ i. So Ker(fik⊗R idN ) ⊂ Ker(fij ⊗R idN ) for k ≥ i. But
Ker(fi ⊗R idN : Mi ⊗R N → M ⊗R N) is the union of Ker(fik ⊗R idN ) for k ≥ i.
Thus Ker(fi ⊗R idN ) ⊂ Ker(fij ⊗R idN ) for any R-module N , which by definition
means fij dominates fi.
It is trivial that (3) implies (4) implies (5). We show (5) implies (3). Let N =∏
s∈IMs. If (5) holds, then given i ∈ I choose j ≥ i such that

Im(Hom(Mj , N)→ Hom(Mi, N)) = Im(Hom(Mk, N)→ Hom(Mi, N))
for all k ≥ j. Passing the product over s ∈ I outside of the Hom’s and looking at
the maps on each component of the product, this says

Im(Hom(Mj ,Ms)→ Hom(Mi,Ms)) = Im(Hom(Mk,Ms)→ Hom(Mi,Ms))
for all k ≥ j and s ∈ I. Taking s = j we have

Im(Hom(Mj ,Mj)→ Hom(Mi,Mj)) = Im(Hom(Mk,Mj)→ Hom(Mi,Mj))
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for all k ≥ j. Since fij is the image of id ∈ Hom(Mj ,Mj) under Hom(Mj ,Mj) →
Hom(Mi,Mj), this shows that for any k ≥ j there is h ∈ Hom(Mk,Mj) such that
fij = h ◦ fik. If j ≥ k then we can take h = fkj . Hence (3) holds. □

Definition 10.88.7.059F Let M be an R-module. We say that M is Mittag-Leffler if the
equivalent conditions of Proposition 10.88.6 hold.

In particular a finitely presented module is Mittag-Leffler.

Remark 10.88.8.059G Let M be a flat R-module. By Lazard’s theorem (Theorem
10.81.4) we can write M = colimMi as the colimit of a directed system (Mi, fij)
where the Mi are free finite R-modules. For M to be Mittag-Leffler, it is enough
for the inverse system of duals (HomR(Mi, R),HomR(fij , R)) to be Mittag-Leffler.
This follows from criterion (4) of Proposition 10.88.6 and the fact that for a
free finite R-module F , there is a functorial isomorphism HomR(F,R) ⊗R N ∼=
HomR(F,N) for any R-module N .

Lemma 10.88.9.05CN If R is a ring and M , N are Mittag-Leffler modules over R, then
M ⊗R N is a Mittag-Leffler module.

Proof. Write M = colimi∈IMi and N = colimj∈J Nj as directed colimits of finitely
presented R-modules. Denote fii′ : Mi → Mi′ and gjj′ : Nj → Nj′ the transition
maps. Then Mi⊗RNj is a finitely presented R-module (see Lemma 10.12.14), and
M ⊗R N = colim(i,j)∈I×JMi ⊗R Mj . Pick (i, j) ∈ I × J . By the definition of a
Mittag-Leffler module we have Proposition 10.88.6 (3) for both systems. In other
words there exist i′ ≥ i and j′ ≥ j such that for every choice of i′′ ≥ i and j′′ ≥ j
there exist maps a : Mi′′ → Mi′ and b : Mj′′ → Mj′ such that fii′ = a ◦ fii′′ and
gjj′ = b ◦ gjj′′ . Then it is clear that a ⊗ b : Mi′′ ⊗R Nj′′ → Mi′ ⊗R Nj′ serves the
same purpose for the system (Mi ⊗R Nj , fii′ ⊗ gjj′). Thus by the characterization
Proposition 10.88.6 (3) we conclude that M ⊗R N is Mittag-Leffler. □

Lemma 10.88.10.05CP Let R be a ring and M an R-module. Then M is Mittag-Leffler
if and only if for every finite free R-module F and module map f : F → M , there
exists a finitely presented R-module Q and a module map g : F → Q such that g
and f dominate each other, i.e., Ker(f⊗R idN ) = Ker(g⊗R idN ) for every R-module
N .

Proof. Since the condition is clear weaker than condition (1) of Proposition 10.88.6
we see that a Mittag-Leffler module satisfies the condition. Conversely, suppose
that M satisfies the condition and that f : P → M is an R-module map from
a finitely presented R-module P into M . Choose a surjection F → P where F
is a finite free R-module. By assumption we can find a map F → Q where Q
is a finitely presented R-module such that F → Q and F → M dominate each
other. In particular, the kernel of F → Q contains the kernel of F → P , hence we
obtain an R-module map g : P → Q such that F → Q is equal to the composition
F → P → Q. Let N be any R-module and consider the commutative diagram

F ⊗R N

��

// Q⊗R N

P ⊗R N

88

// M ⊗R N

https://stacks.math.columbia.edu/tag/059F
https://stacks.math.columbia.edu/tag/059G
https://stacks.math.columbia.edu/tag/05CN
https://stacks.math.columbia.edu/tag/05CP
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By assumption the kernels of F⊗RN → Q⊗RN and F⊗RN →M⊗RN are equal.
Hence, as F ⊗R N → P ⊗R N is surjective, also the kernels of P ⊗R N → Q⊗R N
and P ⊗R N →M ⊗R N are equal. □

Lemma 10.88.11.05CQ Let R → S be a finite and finitely presented ring map. Let M
be an S-module. If M is a Mittag-Leffler module over S then M is a Mittag-Leffler
module over R.

Proof. Assume M is a Mittag-Leffler module over S. Write M = colimMi as a
directed colimit of finitely presented S-modules Mi. As M is Mittag-Leffler over S
there exists for each i an index j ≥ i such that for all k ≥ j there is a factorization
fij = h ◦ fik (where h depends on i, the choice of j and k). Note that by Lemma
10.36.23 the modules Mi are also finitely presented as R-modules. Moreover, all
the maps fij , fik, h are maps of R-modules. Thus we see that the system (Mi, fij)
satisfies the same condition when viewed as a system of R-modules. Thus M is
Mittag-Leffler as an R-module. □

Lemma 10.88.12.05CR Let R be a ring. Let S = R/I for some finitely generated ideal
I. Let M be an S-module. Then M is a Mittag-Leffler module over R if and only
if M is a Mittag-Leffler module over S.

Proof. One implication follows from Lemma 10.88.11. To prove the other, assume
M is Mittag-Leffler as an R-module. Write M = colimMi as a directed colimit
of finitely presented S-modules. As I is finitely generated, the ring S is finite and
finitely presented as an R-algebra, hence the modules Mi are finitely presented as
R-modules, see Lemma 10.36.23. Next, let N be any S-module. Note that for
each i we have HomR(Mi, N) = HomS(Mi, N) as R → S is surjective. Hence the
condition that the inverse system (HomR(Mi, N))i satisfies Mittag-Leffler, implies
that the system (HomS(Mi, N))i satisfies Mittag-Leffler. Thus M is Mittag-Leffler
over S by definition. □

Remark 10.88.13.05CS Let R → S be a finite and finitely presented ring map. Let M
be an S-module which is Mittag-Leffler as an R-module. Then it is in general not
the case that M is Mittag-Leffler as an S-module. For example suppose that S is
the ring of dual numbers over R, i.e., S = R⊕Rϵ with ϵ2 = 0. Then an S-module
consists of an R-module M endowed with a square zero R-linear endomorphism
ϵ : M → M . Now suppose that M0 is an R-module which is not Mittag-Leffler.
Choose a presentation F1

u−→ F0 → M0 → 0 with F1 and F0 free R-modules. Set
M = F1 ⊕ F0 with

ϵ =
(

0 0
u 0

)
: M −→M.

Then M/ϵM ∼= F1 ⊕M0 is not Mittag-Leffler over R = S/ϵS, hence not Mittag-
Leffler over S (see Lemma 10.88.12). On the other hand, M/ϵM = M ⊗S S/ϵS
which would be Mittag-Leffler over S if M was, see Lemma 10.88.9.

10.89. Interchanging direct products with tensor

059H Let M be an R-module and let (Qα)α∈A be a family of R-modules. Then there
is a canonical map M ⊗R

(∏
α∈AQα

)
→
∏
α∈A(M ⊗R Qα) given on pure tensors

by x⊗ (qα) 7→ (x⊗ qα). This map is not necessarily injective or surjective, as the
following example shows.

https://stacks.math.columbia.edu/tag/05CQ
https://stacks.math.columbia.edu/tag/05CR
https://stacks.math.columbia.edu/tag/05CS
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Example 10.89.1.059I Take R = Z, M = Q, and consider the family Qn = Z/n for
n ≥ 1. Then

∏
n(M ⊗Qn) = 0. However there is an injection Q→ M ⊗ (

∏
nQn)

obtained by tensoring the injection Z→
∏
nQn by M , so M ⊗ (

∏
nQn) is nonzero.

Thus M ⊗ (
∏
nQn)→

∏
n(M ⊗Qn) is not injective.

On the other hand, take again R = Z, M = Q, and let Qn = Z for n ≥ 1. The
image of M ⊗ (

∏
nQn)→

∏
n(M ⊗Qn) =

∏
nM consists precisely of sequences of

the form (an/m)n≥1 with an ∈ Z and m some nonzero integer. Hence the map is
not surjective.

We determine below the precise conditions needed on M for the map M ⊗R
(
∏
αQα)→

∏
α(M ⊗R Qα) to be surjective, bijective, or injective for all choices of

(Qα)α∈A. This is relevant because the modules for which it is injective turn out to
be exactly Mittag-Leffler modules (Proposition 10.89.5). In what follows, if M is
an R-module and A a set, we write MA for the product

∏
α∈AM .

Proposition 10.89.2.059J Let M be an R-module. The following are equivalent:
(1) M is finitely generated.
(2) For every family (Qα)α∈A ofR-modules, the canonical mapM⊗R(

∏
αQα)→∏

α(M ⊗R Qα) is surjective.
(3) For every R-module Q and every set A, the canonical map M ⊗R QA →

(M ⊗R Q)A is surjective.
(4) For every set A, the canonical map M ⊗R RA →MA is surjective.

Proof. First we prove (1) implies (2). Choose a surjection Rn → M and consider
the commutative diagram

Rn ⊗R (
∏
αQα)

∼= //

��

∏
α(Rn ⊗R Qα)

��
M ⊗R (

∏
αQα) // ∏

α(M ⊗R Qα).

The top arrow is an isomorphism and the vertical arrows are surjections. We
conclude that the bottom arrow is a surjection.
Obviously (2) implies (3) implies (4), so it remains to prove (4) implies (1). In fact
for (1) to hold it suffices that the element d = (x)x∈M of MM is in the image of
the map f : M ⊗R RM →MM . In this case d =

∑n
i=1 f(xi ⊗ ai) for some xi ∈M

and ai ∈ RM . If for x ∈ M we write px : MM → M for the projection onto the
x-th factor, then

x = px(d) =
∑n

i=1
px(f(xi ⊗ ai)) =

∑n

i=1
px(ai)xi.

Thus x1, . . . , xn generate M . □

Proposition 10.89.3.059K Let M be an R-module. The following are equivalent:
(1) M is finitely presented.
(2) For every family (Qα)α∈A ofR-modules, the canonical mapM⊗R(

∏
αQα)→∏

α(M ⊗R Qα) is bijective.
(3) For every R-module Q and every set A, the canonical map M ⊗R QA →

(M ⊗R Q)A is bijective.
(4) For every set A, the canonical map M ⊗R RA →MA is bijective.

https://stacks.math.columbia.edu/tag/059I
https://stacks.math.columbia.edu/tag/059J
https://stacks.math.columbia.edu/tag/059K
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Proof. First we prove (1) implies (2). Choose a presentation Rm → Rn → M and
consider the commutative diagram

Rm ⊗R (
∏
αQα) //

∼=
��

Rn ⊗R (
∏
αQα) //

∼=
��

M ⊗R (
∏
αQα) //

��

0

∏
α(Rm ⊗R Qα) // ∏

α(Rn ⊗R Qα) // ∏
α(M ⊗R Qα) // 0.

The first two vertical arrows are isomorphisms and the rows are exact. This implies
that the map M ⊗R (

∏
αQα) →

∏
α(M ⊗R Qα) is surjective and, by a diagram

chase, also injective. Hence (2) holds.

Obviously (2) implies (3) implies (4), so it remains to prove (4) implies (1). From
Proposition 10.89.2, if (4) holds we already know that M is finitely generated. So
we can choose a surjection F →M where F is free and finite. Let K be the kernel.
We must show K is finitely generated. For any set A, we have a commutative
diagram

K ⊗R RA //

f3
��

F ⊗R RA //

f2 ∼=
��

M ⊗R RA //

f1 ∼=
��

0

0 // KA // FA // MA // 0.
The map f1 is an isomorphism by assumption, the map f2 is a isomorphism since
F is free and finite, and the rows are exact. A diagram chase shows that f3 is
surjective, hence by Proposition 10.89.2 we get that K is finitely generated. □

We need the following lemma for the next proposition.

Lemma 10.89.4.059L Let M be an R-module, P a finitely presented R-module, and
f : P →M a map. Let Q be an R-module and suppose x ∈ Ker(P ⊗Q→M ⊗Q).
Then there exists a finitely presented R-module P ′ and a map f ′ : P → P ′ such
that f factors through f ′ and x ∈ Ker(P ⊗Q→ P ′ ⊗Q).

Proof. Write M as a colimit M = colimi∈IMi of a directed system of finitely
presented modules Mi. Since P is finitely presented, the map f : P → M factors
through Mj → M for some j ∈ I. Upon tensoring by Q we have a commutative
diagram

Mj ⊗Q

%%
P ⊗Q

99

// M ⊗Q.

The image y of x in Mj ⊗Q is in the kernel of Mj ⊗Q→M ⊗Q. Since M ⊗Q =
colimi∈I(Mi ⊗ Q), this means y maps to 0 in Mj′ ⊗ Q for some j′ ≥ j. Thus we
may take P ′ = Mj′ and f ′ to be the composite P →Mj →Mj′ . □

Proposition 10.89.5.059M Let M be an R-module. The following are equivalent:
(1) M is Mittag-Leffler.
(2) For every family (Qα)α∈A ofR-modules, the canonical mapM⊗R(

∏
αQα)→∏

α(M ⊗R Qα) is injective.

https://stacks.math.columbia.edu/tag/059L
https://stacks.math.columbia.edu/tag/059M
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Proof. First we prove (1) implies (2). Suppose M is Mittag-Leffler and let x be
in the kernel of M ⊗R (

∏
αQα) →

∏
α(M ⊗R Qα). Write M as a colimit M =

colimi∈IMi of a directed system of finitely presented modules Mi. Then M ⊗R
(
∏
αQα) is the colimit of Mi ⊗R (

∏
αQα). So x is the image of an element xi ∈

Mi ⊗R (
∏
αQα). We must show that xi maps to 0 in Mj ⊗R (

∏
αQα) for some

j ≥ i. Since M is Mittag-Leffler, we may choose j ≥ i such that Mi → Mj and
Mi →M dominate each other. Then consider the commutative diagram

M ⊗R (
∏
αQα) // ∏

α(M ⊗R Qα)

Mi ⊗R (
∏
αQα)

∼= //

��

OO

∏
α(Mi ⊗R Qα)

��

OO

Mj ⊗R (
∏
αQα)

∼= // ∏
α(Mj ⊗R Qα)

whose bottom two horizontal maps are isomorphisms, according to Proposition
10.89.3. Since xi maps to 0 in

∏
α(M ⊗R Qα), its image in

∏
α(Mi ⊗R Qα) is in

the kernel of the map
∏
α(Mi ⊗R Qα) →

∏
α(M ⊗R Qα). But this kernel equals

the kernel of
∏
α(Mi⊗RQα)→

∏
α(Mj ⊗RQα) according to the choice of j. Thus

xi maps to 0 in
∏
α(Mj ⊗R Qα) and hence to 0 in Mj ⊗R (

∏
αQα).

Now suppose (2) holds. We prove M satisfies formulation (1) of being Mittag-
Leffler from Proposition 10.88.6. Let f : P →M be a map from a finitely presented
module P to M . Choose a set B of representatives of the isomorphism classes of
finitely presented R-modules. Let A be the set of pairs (Q, x) where Q ∈ B and
x ∈ Ker(P ⊗Q → M ⊗Q). For α = (Q, x) ∈ A, we write Qα for Q and xα for x.
Consider the commutative diagram

M ⊗R (
∏
αQα) // ∏

α(M ⊗R Qα)

P ⊗R (
∏
αQα)

∼= //

OO

∏
α(P ⊗R Qα)

OO

The top arrow is an injection by assumption, and the bottom arrow is an isomor-
phism by Proposition 10.89.3. Let x ∈ P ⊗R (

∏
αQα) be the element corresponding

to (xα) ∈
∏
α(P ⊗R Qα) under this isomorphism. Then x ∈ Ker(P ⊗R (

∏
αQα)→

M⊗R (
∏
αQα)) since the top arrow in the diagram is injective. By Lemma 10.89.4,

we get a finitely presented module P ′ and a map f ′ : P → P ′ such that f : P →M
factors through f ′ and x ∈ Ker(P ⊗R (

∏
αQα) → P ′ ⊗R (

∏
αQα)). We have a

commutative diagram

P ′ ⊗R (
∏
αQα)

∼= // ∏
α(P ′ ⊗R Qα)

P ⊗R (
∏
αQα)

∼= //

OO

∏
α(P ⊗R Qα)

OO

where both the top and bottom arrows are isomorphisms by Proposition 10.89.3.
Thus since x is in the kernel of the left vertical map, (xα) is in the kernel of the right
vertical map. This means xα ∈ Ker(P ⊗R Qα → P ′ ⊗R Qα) for every α ∈ A. By
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the definition of A this means Ker(P ⊗RQ→ P ′⊗RQ) ⊃ Ker(P ⊗RQ→M ⊗RQ)
for all finitely presented Q and, since f : P → M factors through f ′ : P → P ′,
actually equality holds. By Lemma 10.88.3, f and f ′ dominate each other. □

Lemma 10.89.6.0AS6 Let M be a flat Mittag-Leffler module over R. Let F be an R-
module and let x ∈ F ⊗RM . Then there exists a smallest submodule F ′ ⊂ F such
that x ∈ F ′ ⊗RM . Also, F ′ is a finite R-module.

Proof. Since M is flat we have F ′ ⊗R M ⊂ F ⊗R M if F ′ ⊂ F is a submodule,
hence the statement makes sense. Let I = {F ′ ⊂ F | x ∈ F ′ ⊗RM} and for i ∈ I
denote Fi ⊂ F the corresponding submodule. Then x maps to zero under the map

F ⊗RM −→
∏

(F/Fi ⊗RM)

whence by Proposition 10.89.5 x maps to zero under the map

F ⊗RM −→
(∏

F/Fi

)
⊗RM

Since M is flat the kernel of this arrow is (
⋂
Fi)⊗RM which proves that F ′ =

⋂
Fi.

To see that F ′ is a finite module, suppose that x =
∑
j=1,...,m fj ⊗mj with fj ∈ F ′

and mj ∈ M . Then x ∈ F ′′ ⊗RM where F ′′ ⊂ F ′ is the submodule generated by
f1, . . . , fm. Of course then F ′′ = F ′ and we conclude the final statement holds. □

Lemma 10.89.7.059N Let 0→M1 →M2 →M3 → 0 be a universally exact sequence of
R-modules. Then:

(1) If M2 is Mittag-Leffler, then M1 is Mittag-Leffler.
(2) If M1 and M3 are Mittag-Leffler, then M2 is Mittag-Leffler.

Proof. For any family (Qα)α∈A of R-modules we have a commutative diagram

0 // M1 ⊗R (
∏
αQα) //

��

M2 ⊗R (
∏
αQα) //

��

M3 ⊗R (
∏
αQα) //

��

0

0 // ∏
α(M1 ⊗Qα) // ∏

α(M2 ⊗Qα) // ∏
α(M3 ⊗Qα) // 0

with exact rows. Thus (1) and (2) follow from Proposition 10.89.5. □

Lemma 10.89.8.0EGI Let M1 →M2 →M3 → 0 be an exact sequence of R-modules. If
M1 is finitely generated and M2 is Mittag-Leffler, then M3 is Mittag-Leffler.

Proof. For any family (Qα)α∈A of R-modules, since tensor product is right exact,
we have a commutative diagram

M1 ⊗R (
∏
αQα) //

��

M2 ⊗R (
∏
αQα) //

��

M3 ⊗R (
∏
αQα) //

��

0

∏
α(M1 ⊗Qα) // ∏

α(M2 ⊗Qα) // ∏
α(M3 ⊗Qα) // 0

with exact rows. By Proposition 10.89.2 the left vertical arrow is surjective. By
Proposition 10.89.5 the middle vertical arrow is injective. A diagram chase shows
the right vertical arrow is injective. Hence M3 is Mittag-Leffler by Proposition
10.89.5. □

https://stacks.math.columbia.edu/tag/0AS6
https://stacks.math.columbia.edu/tag/059N
https://stacks.math.columbia.edu/tag/0EGI
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Lemma 10.89.9.0AS7 If M = colimMi is the colimit of a directed system of Mittag-
Leffler R-modules Mi with universally injective transition maps, then M is Mittag-
Leffler.

Proof. Let (Qα)α∈A be a family of R-modules. We have to show that M ⊗R
(
∏
Qα)→

∏
M⊗RQα is injective and we know that Mi⊗R (

∏
Qα)→

∏
Mi⊗RQα

is injective for each i, see Proposition 10.89.5. Since ⊗ commutes with filtered
colimits, it suffices to show that

∏
Mi ⊗R Qα →

∏
M ⊗R Qα is injective. This is

clear as each of the maps Mi ⊗R Qα → M ⊗R Qα is injective by our assumption
that the transition maps are universally injective. □

Lemma 10.89.10.059P If M =
⊕

i∈IMi is a direct sum of R-modules, then M is
Mittag-Leffler if and only if each Mi is Mittag-Leffler.

Proof. The “only if” direction follows from Lemma 10.89.7 (1) and the fact that a
split short exact sequence is universally exact. The converse follows from Lemma
10.89.9 but we can also argue it directly as follows. First note that if I is finite then
this follows from Lemma 10.89.7 (2). For general I, if all Mi are Mittag-Leffler
then we prove the same of M by verifying condition (1) of Proposition 10.88.6.
Let f : P → M be a map from a finitely presented module P . Then f factors
as P f ′

−→
⊕

i′∈I′ Mi′ ↪→
⊕

i∈IMi for some finite subset I ′ of I. By the finite case⊕
i′∈I′ Mi′ is Mittag-Leffler and hence there exists a finitely presented module Q

and a map g : P → Q such that g and f ′ dominate each other. Then also g and f
dominate each other. □

Lemma 10.89.11.05CT Let R → S be a ring map. Let M be an S-module. If S is
Mittag-Leffler as an R-module, and M is flat and Mittag-Leffler as an S-module,
then M is Mittag-Leffler as an R-module.

Proof. We deduce this from the characterization of Proposition 10.89.5. Namely,
suppose that Qα is a family of R-modules. Consider the composition

M ⊗R
∏
αQα = M ⊗S S ⊗R

∏
αQα

��
M ⊗S

∏
α(S ⊗R Qα)

��∏
α(M ⊗S S ⊗R Qα) =

∏
α(M ⊗R Qα)

The first arrow is injective as M is flat over S and S is Mittag-Leffler over R and the
second arrow is injective as M is Mittag-Leffler over S. Hence M is Mittag-Leffler
over R. □

10.90. Coherent rings

05CU We use the discussion on interchanging
∏

and ⊗ to determine for which rings
products of flat modules are flat. It turns out that these are the so-called coherent
rings. You may be more familiar with the notion of a coherent OX -module on a
ringed space, see Modules, Section 17.12.

Definition 10.90.1.05CV Let R be a ring. Let M be an R-module.

https://stacks.math.columbia.edu/tag/0AS7
https://stacks.math.columbia.edu/tag/059P
https://stacks.math.columbia.edu/tag/05CT
https://stacks.math.columbia.edu/tag/05CV
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(1) We say M is a coherent module if it is finitely generated and every finitely
generated submodule of M is finitely presented over R.

(2) We say R is a coherent ring if it is coherent as a module over itself.

Thus a ring is coherent if and only if every finitely generated ideal is finitely pre-
sented as a module.

Example 10.90.2.0EWV A valuation ring is a coherent ring. Namely, every nonzero
finitely generated ideal is principal (Lemma 10.50.15), hence free as a valuation
ring is a domain, hence finitely presented.

The category of coherent modules is abelian.

Lemma 10.90.3.05CW Let R be a ring.
(1) A finite submodule of a coherent module is coherent.
(2) Let φ : N → M be a homomorphism from a finite module to a coher-

ent module. Then Ker(φ) is finite, Im(φ) is coherent, and Coker(φ) is
coherent.

(3) Let φ : N → M be a homomorphism of coherent modules. Then Ker(φ)
and Coker(φ) are coherent modules.

(4) Given a short exact sequence of R-modules 0 → M1 → M2 → M3 → 0 if
two out of three are coherent so is the third.

Proof. The first statement is immediate from the definition.

Let φ : N →M satisfy the assumptions of (2). First, Im(φ) is finite, hence coherent
by (1). In particular Im(φ) is finitely presented, so applying Lemma 10.5.3 to the
exact sequence 0 → Ker(φ) → N → Im(φ) → 0 we see that Ker(φ) is finite. To
prove that Coker(φ) is coherent, let E ⊂ Coker(φ) be a finite subomdule, and let
E′ be its inverse image in M . From the exact sequence 0→ Ker(φ)→ E′ → E → 0
and since Ker(φ) is finite we conclude by Lemma 10.5.3 that E′ ⊂M is finite, hence
finitely presented because M is coherent. The same exact sequence then shows that
E is finitely presented, whence our claim.

Part (3) follows immediately from (1) and (2).

Let 0→M1
i−→M2

p−→M3 → 0 be a short exact sequence of R-modules as in (4). It
remains to prove that if M1 and M3 are coherent so is M2. By Lemma 10.5.3 we see
that M2 is finite. Let N2 ⊂M2 be a finite submodule. Put N3 = p(N2) ⊂M3 and
N1 = i−1(N2) ⊂M1. We have an exact sequence 0→ N1 → N2 → N3 → 0. Clearly
N3 is finite (as a quotient of N2), hence finitely presented (as a finite submodule of
M3). It follows by Lemma 10.5.3 (5) that N1 is finite, hence finitely presented (as
a finite submodule of M1). We conclude by Lemma 10.5.3 (2) that M2 is finitely
presented. □

Lemma 10.90.4.05CX Let R be a ring. If R is coherent, then a module is coherent if
and only if it is finitely presented.

Proof. It is clear that a coherent module is finitely presented (over any ring). Con-
versely, if R is coherent, then R⊕n is coherent and so is the cokernel of any map
R⊕m → R⊕n, see Lemma 10.90.3. □

Lemma 10.90.5.05CY A Noetherian ring is a coherent ring.

https://stacks.math.columbia.edu/tag/0EWV
https://stacks.math.columbia.edu/tag/05CW
https://stacks.math.columbia.edu/tag/05CX
https://stacks.math.columbia.edu/tag/05CY
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Proof. By Lemma 10.31.4 any finite R-module is finitely presented. In particular
any ideal of R is finitely presented. □

Proposition 10.90.6.05CZ This is [Cha60,
Theorem 2.1].

Let R be a ring. The following are equivalent
(1) R is coherent,
(2) any product of flat R-modules is flat, and
(3) for every set A the module RA is flat.

Proof. Assume R coherent, and let Qα, α ∈ A be a set of flat R-modules. We have
to show that I⊗R

∏
αQα →

∏
Qα is injective for every finitely generated ideal I of

R, see Lemma 10.39.5. Since R is coherent I is an R-module of finite presentation.
Hence I ⊗R

∏
αQα =

∏
I ⊗R Qα by Proposition 10.89.3. The desired injectivity

follows as I ⊗R Qα → Qα is injective by flatness of Qα.
The implication (2) ⇒ (3) is trivial.
Assume that the R-module RA is flat for every set A. Let I be a finitely generated
ideal in R. Then I⊗RRA → RA is injective by assumption. By Proposition 10.89.2
and the finiteness of I the image is equal to IA. Hence I ⊗R RA = IA for every set
A and we conclude that I is finitely presented by Proposition 10.89.3. □

10.91. Examples and non-examples of Mittag-Leffler modules

059Q We end this section with some examples and non-examples of Mittag-Leffler mod-
ules.

Example 10.91.1.059R Mittag-Leffler modules.
(1) Any finitely presented module is Mittag-Leffler. This follows, for instance,

from Proposition 10.88.6 (1). In general, it is true that a finitely generated
module is Mittag-Leffler if and only it is finitely presented. This follows
from Propositions 10.89.2, 10.89.3, and 10.89.5.

(2) A free module is Mittag-Leffler since it satisfies condition (1) of Proposi-
tion 10.88.6.

(3) By the previous example together with Lemma 10.89.10, projective mod-
ules are Mittag-Leffler.

We also want to add to our list of examples power series rings over a Noetherian
ring R. This will be a consequence the following lemma.

Lemma 10.91.2.059S Let M be a flat R-module. The following are equivalent
(1) M is Mittag-Leffler, and
(2) if F is a finite free R-module and x ∈ F⊗RM , then there exists a smallest

submodule F ′ of F such that x ∈ F ′ ⊗RM .

Proof. The implication (1) ⇒ (2) is a special case of Lemma 10.89.6. Assume (2).
By Theorem 10.81.4 we can write M as the colimit M = colimi∈IMi of a directed
system (Mi, fij) of finite free R-modules. By Remark 10.88.8, it suffices to show
that the inverse system (HomR(Mi, R),HomR(fij , R)) is Mittag-Leffler. In other
words, fix i ∈ I and for j ≥ i let Qj be the image of HomR(Mj , R)→ HomR(Mi, R);
we must show that the Qj stabilize.
Since Mi is free and finite, we can make the identification HomR(Mi,Mj) =
HomR(Mi, R)⊗RMj for all j. Using the fact that the Mj are free, it follows that
for j ≥ i, Qj is the smallest submodule of HomR(Mi, R) such that fij ∈ Qj ⊗RMj .

https://stacks.math.columbia.edu/tag/05CZ
https://stacks.math.columbia.edu/tag/059R
https://stacks.math.columbia.edu/tag/059S


10.91. EXAMPLES AND NON-EXAMPLES OF MITTAG-LEFFLER MODULES 639

Under the identification HomR(Mi,M) = HomR(Mi, R)⊗RM , the canonical map
fi : Mi → M is in HomR(Mi, R) ⊗R M . By the assumption on M , there exists a
smallest submodule Q of HomR(Mi, R) such that fi ∈ Q ⊗R M . We are going to
show that the Qj stabilize to Q.

For j ≥ i we have a commutative diagram

Qj ⊗RMj
//

��

HomR(Mi, R)⊗RMj

��
Qj ⊗RM // HomR(Mi, R)⊗RM.

Since fij ∈ Qj ⊗R Mj maps to fi ∈ HomR(Mi, R) ⊗R M , it follows that fi ∈
Qj ⊗RM . Hence, by the choice of Q, we have Q ⊂ Qj for all j ≥ i.

Since the Qj are decreasing and Q ⊂ Qj for all j ≥ i, to show that the Qj stabilize
to Q it suffices to find a j ≥ i such that Qj ⊂ Q. As an element of

HomR(Mi, R)⊗RM = colimj∈J(HomR(Mi, R)⊗RMj),

fi is the colimit of fij for j ≥ i, and fi also lies in the submodule

colimj∈J(Q⊗RMj) ⊂ colimj∈J(HomR(Mi, R)⊗RMj).

It follows that for some j ≥ i, fij lies in Q ⊗R Mj . Since Qj is the smallest
submodule of HomR(Mi, R) with fij ∈ Qj ⊗RMj , we conclude Qj ⊂ Q. □

Lemma 10.91.3.05D0 Let R be a Noetherian ring and A a set. Then M = RA is a flat
and Mittag-Leffler R-module.

Proof. Combining Lemma 10.90.5 and Proposition 10.90.6 we see that M is flat
over R. We show that M satisfies the condition of Lemma 10.91.2. Let F be a free
finite R-module. If F ′ is any submodule of F then it is finitely presented since R
is Noetherian. So by Proposition 10.89.3 we have a commutative diagram

F ′ ⊗RM //

∼=
��

F ⊗RM

∼=
��

(F ′)A // FA

by which we can identify the map F ′⊗RM → F ⊗RM with (F ′)A → FA. Hence if
x ∈ F ⊗RM corresponds to (xα) ∈ FA, then the submodule of F ′ of F generated
by the xα is the smallest submodule of F such that x ∈ F ′ ⊗RM . □

Lemma 10.91.4.059T Let R be a Noetherian ring and n a positive integer. Then the
R-module M = R[[t1, . . . , tn]] is flat and Mittag-Leffler.

Proof. As an R-module, we have M = RA for a (countable) set A. Hence this
lemma is a special case of Lemma 10.91.3. □

Example 10.91.5.059U Non Mittag-Leffler modules.
(1) By Example 10.89.1 and Proposition 10.89.5, Q is not a Mittag-Leffler

Z-module.

https://stacks.math.columbia.edu/tag/05D0
https://stacks.math.columbia.edu/tag/059T
https://stacks.math.columbia.edu/tag/059U
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(2) We prove below (Theorem 10.93.3) that for a flat and countably generated
module, projectivity is equivalent to being Mittag-Leffler. Thus any flat,
countably generated, non-projective module M is an example of a non-
Mittag-Leffler module. For such an example, see Remark 10.78.4.

(3) Let k be a field. Let R = k[[x]]. The R-module M =
∏
n∈N R/(xn) is not

Mittag-Leffler. Namely, consider the element ξ = (ξ1, ξ2, ξ3, . . .) defined
by ξ2m = x2m−1 and ξn = 0 else, so

ξ = (0, x, 0, x2, 0, 0, 0, x4, 0, 0, 0, 0, 0, 0, 0, x8, . . .)

Then the annihilator of ξ in M/x2mM is generated x2m−1 for m≫ 0. But
if M was Mittag-Leffler, then there would exist a finite R-module Q and
an element ξ′ ∈ Q such that the annihilator of ξ′ in Q/xlQ agrees with
the annihilator of ξ in M/xlM for all l ≥ 1, see Proposition 10.88.6 (1).
Now you can prove there exists an integer a ≥ 0 such that the annihilator
of ξ′ in Q/xlQ is generated by either xa or xl−a for all l ≫ 0 (depending
on whether ξ′ ∈ Q is torsion or not). The combination of the above would
give for all l = 2m >> 0 the equality a = l/2 or l − a = l/2 which is
nonsensical.

(4) The same argument shows that (x)-adic completion of
⊕

n∈N R/(xn) is
not Mittag-Leffler over R = k[[x]] (hint: ξ is actually an element of this
completion).

(5) Let R = k[a, b]/(a2, ab, b2). Let S be the finitely presented R-algebra with
presentation S = R[t]/(at − b). Then as an R-module S is countably
generated and indecomposable (details omitted). On the other hand, R
is Artinian local, hence complete local, hence a henselian local ring, see
Lemma 10.153.9. If S was Mittag-Leffler as an R-module, then it would be
a direct sum of finite R-modules by Lemma 10.153.13. Thus we conclude
that S is not Mittag-Leffler as an R-module.

10.92. Countably generated Mittag-Leffler modules

05D1 It turns out that countably generated Mittag-Leffler modules have a particularly
simple structure.

Lemma 10.92.1.059W Let M be an R-module. Write M = colimi∈IMi where (Mi, fij)
is a directed system of finitely presented R-modules. If M is Mittag-Leffler and
countably generated, then there is a directed countable subset I ′ ⊂ I such that
M ∼= colimi∈I′ Mi.

Proof. Let x1, x2, . . . be a countable set of generators for M . For each xn choose
i ∈ I such that xn is in the image of the canonical map fi : Mi → M ; let I ′

0 ⊂ I
be the set of all these i. Now since M is Mittag-Leffler, for each i ∈ I ′

0 we can
choose j ∈ I such that j ≥ i and fij : Mi → Mj factors through fik : Mi → Mk

for all k ≥ i (condition (3) of Proposition 10.88.6); let I ′
1 be the union of I ′

0 with
all of these j. Since I ′

1 is a countable, we can enlarge it to a countable directed set
I ′

2 ⊂ I. Now we can apply the same procedure to I ′
2 as we did to I ′

0 to get a new
countable set I ′

3 ⊂ I. Then we enlarge I ′
3 to a countable directed set I ′

4. Continuing
in this way—adding in a j as in Proposition 10.88.6 (3) for each i ∈ I ′

ℓ if ℓ is odd
and enlarging I ′

ℓ to a directed set if ℓ is even—we get a sequence of subsets I ′
ℓ ⊂ I

for ℓ ≥ 0. The union I ′ =
⋃
I ′
ℓ satisfies:

https://stacks.math.columbia.edu/tag/059W
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(1) I ′ is countable and directed;
(2) each xn is in the image of fi : Mi →M for some i ∈ I ′;
(3) if i ∈ I ′, then there is j ∈ I ′ such that j ≥ i and fij : Mi → Mj

factors through fik : Mi → Mk for all k ∈ I with k ≥ i. In particular
Ker(fik) ⊂ Ker(fij) for k ≥ i.

We claim that the canonical map colimi∈I′ Mi → colimi∈IMi = M is an isomor-
phism. By (2) it is surjective. For injectivity, suppose x ∈ colimi∈I′ Mi maps to 0
in colimi∈IMi. Representing x by an element x̃ ∈ Mi for some i ∈ I ′, this means
that fik(x̃) = 0 for some k ∈ I, k ≥ i. But then by (3) there is j ∈ I ′, j ≥ i, such
that fij(x̃) = 0. Hence x = 0 in colimi∈I′ Mi. □

Lemma 10.92.1 implies that a countably generated Mittag-Leffler module M over
R is the colimit of a system

M1 →M2 →M3 →M4 → . . .

with each Mn a finitely presented R-module. To see this argue as in the proof of
Lemma 10.86.3 to see that a countable directed set has a cofinal subset isomorphic
to (N,≥). Suppose R = k[x1, x2, x3, . . .] and M = R/(xi). Then M is finitely gen-
erated but not finitely presented, hence not Mittag-Leffler (see Example 10.91.1 part
(1)). But of course you can write M = colimnMn by taking Mn = R/(x1, . . . , xn),
hence the condition that you can write M as such a limit does not imply that M
is Mittag-Leffler.

Lemma 10.92.2.05D2 Let R be a ring. Let M be an R-module. Assume M is Mittag-
Leffler and countably generated. For any R-module map f : P →M with P finitely
generated there exists an endomorphism α : M →M such that

(1) α : M →M factors through a finitely presented R-module, and
(2) α ◦ f = f .

Proof. Write M = colimi∈IMi as a directed colimit of finitely presented R-modules
with I countable, see Lemma 10.92.1. The transition maps are denoted fij and we
use fi : Mi →M to denote the canonical maps into M . Set N =

∏
s∈IMs. Denote

M∗
i = HomR(Mi, N) =

∏
s∈I

HomR(Mi,Ms)

so that (M∗
i ) is an inverse system of R-modules over I. Note that HomR(M,N) =

limM∗
i . As M is Mittag-Leffler, we find for every i ∈ I an index k(i) ≥ i such that

Ei :=
⋂

i′≥i
Im(M∗

i′ →M∗
i ) = Im(M∗

k(i) →M∗
i )

Choose and fix j ∈ I such that Im(P → M) ⊂ Im(Mj → M). This is possible as
P is finitely generated. Set k = k(j). Let x = (0, . . . , 0, idMk

, 0, . . . , 0) ∈ M∗
k and

note that this maps to y = (0, . . . , 0, fjk, 0, . . . , 0) ∈M∗
j . By our choice of k we see

that y ∈ Ej . By Example 10.86.2 the transition maps Ei → Ej are surjective for
each i ≥ j and limEi = limM∗

i = HomR(M,N). Hence Lemma 10.86.3 guarantees
there exists an element z ∈ HomR(M,N) which maps to y in Ej ⊂M∗

j . Let zk be
the kth component of z. Then zk : M →Mk is a homomorphism such that

M
zk
// Mk

Mj

fjk

==

fj

OO

https://stacks.math.columbia.edu/tag/05D2
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commutes. Let α : M → M be the composition fk ◦ zk : M → Mk → M . Then α
factors through a finitely presented module by construction and α ◦ fj = fj . Since
the image of f is contained in the image of fj this also implies that α ◦ f = f . □

We will see later (see Lemma 10.153.13) that Lemma 10.92.2 means that a countably
generated Mittag-Leffler module over a henselian local ring is a direct sum of finitely
presented modules.

10.93. Characterizing projective modules

059V The goal of this section is to prove that a module is projective if and only if it
is flat, Mittag-Leffler, and a direct sum of countably generated modules (Theorem
10.93.3 below).

Lemma 10.93.1.059X Let M be an R-module. If M is flat, Mittag-Leffler, and countably
generated, then M is projective.

Proof. By Lazard’s theorem (Theorem 10.81.4), we can write M = colimi∈IMi for
a directed system of finite free R-modules (Mi, fij) indexed by a set I. By Lemma
10.92.1, we may assume I is countable. Now let

0→ N1 → N2 → N3 → 0
be an exact sequence of R-modules. We must show that applying HomR(M,−)
preserves exactness. Since Mi is finite free,

0→ HomR(Mi, N1)→ HomR(Mi, N2)→ HomR(Mi, N3)→ 0
is exact for each i. Since M is Mittag-Leffler, (HomR(Mi, N1)) is a Mittag-Leffler
inverse system. So by Lemma 10.86.4,
0→ limi∈I HomR(Mi, N1)→ limi∈I HomR(Mi, N2)→ limi∈I HomR(Mi, N3)→ 0

is exact. But for any R-module N there is a functorial isomorphism HomR(M,N) ∼=
limi∈I HomR(Mi, N), so

0→ HomR(M,N1)→ HomR(M,N2)→ HomR(M,N3)→ 0
is exact. □

Remark 10.93.2.059Y Lemma 10.93.1 does not hold without the countable generation
assumption. For example, the Z-module M = Z[[x]] is flat and Mittag-Leffler but
not projective. It is Mittag-Leffler by Lemma 10.91.4. Subgroups of free abelian
groups are free, hence a projective Z-module is in fact free and so are its submodules.
Thus to show M is not projective it suffices to produce a non-free submodule. Fix
a prime p and consider the submodule N consisting of power series f(x) =

∑
aix

i

such that for every integer m ≥ 1, pm divides ai for all but finitely many i. Then∑
aip

ixi is in N for all ai ∈ Z, so N is uncountable. Thus if N were free it would
have uncountable rank and the dimension of N/pN over Z/p would be uncountable.
This is not true as the elements xi ∈ N/pN for i ≥ 0 span N/pN .

Theorem 10.93.3.059Z Let M be an R-module. Then M is projective if and only it
satisfies:

(1) M is flat,
(2) M is Mittag-Leffler,
(3) M is a direct sum of countably generated R-modules.

https://stacks.math.columbia.edu/tag/059X
https://stacks.math.columbia.edu/tag/059Y
https://stacks.math.columbia.edu/tag/059Z
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Proof. First supposeM is projective. ThenM is a direct summand of a free module,
so M is flat and Mittag-Leffler since these properties pass to direct summands. By
Kaplansky’s theorem (Theorem 10.84.5), M satisfies (3).
Conversely, suppose M satisfies (1)-(3). Since being flat and Mittag-Leffler passes
to direct summands, M is a direct sum of flat, Mittag-Leffler, countably generated
R-modules. Lemma 10.93.1 implies M is a direct sum of projective modules. Hence
M is projective. □

Lemma 10.93.4.05A0 Let f : M → N be universally injective map of R-modules.
Suppose M is a direct sum of countably generated R-modules, and suppose N is
flat and Mittag-Leffler. Then M is projective.
Proof. By Lemmas 10.82.7 and 10.89.7, M is flat and Mittag-Leffler, so the con-
clusion follows from Theorem 10.93.3. □

Lemma 10.93.5.05A1 Let R be a Noetherian ring and let M be a R-module. Suppose M
is a direct sum of countably generated R-modules, and suppose there is a universally
injective map M → R[[t1, . . . , tn]] for some n. Then M is projective.
Proof. Follows from Lemmas 10.93.4 and 10.91.4. □

10.94. Ascending properties of modules

05A2 All of the properties of a module in Theorem 10.93.3 ascend along arbitrary ring
maps:
Lemma 10.94.1.05A3 Let R→ S be a ring map. Let M be an R-module. Then:

(1) If M is flat, then the S-module M ⊗R S is flat.
(2) If M is Mittag-Leffler, then the S-module M ⊗R S is Mittag-Leffler.
(3) If M is a direct sum of countably generated R-modules, then the S-module

M ⊗R S is a direct sum of countably generated S-modules.
(4) If M is projective, then the S-module M ⊗R S is projective.

Proof. All are obvious except (2). For this, use formulation (3) of being Mittag-
Leffler from Proposition 10.88.6 and the fact that tensoring commutes with taking
colimits. □

10.95. Descending properties of modules

05A4 We address the faithfully flat descent of the properties from Theorem 10.93.3 that
characterize projectivity. In the presence of flatness, the property of being a Mittag-
Leffler module descends:
Lemma 10.95.1.05A5 Email from Juan

Pablo Acosta Lopez
dated 12/20/14.

Let R→ S be a faithfully flat ring map. Let M be an R-module.
If the S-module M ⊗R S is Mittag-Leffler, then M is Mittag-Leffler.
Proof. Write M = colimi∈IMi as a directed colimit of finitely presented R-modules
Mi. Using Proposition 10.88.6, we see that we have to prove that for each i ∈ I
there exists i ≤ j, j ∈ I such that Mi →Mj dominates Mi →M .
Take N the pushout

Mi
//

��

Mj

��
M // N

https://stacks.math.columbia.edu/tag/05A0
https://stacks.math.columbia.edu/tag/05A1
https://stacks.math.columbia.edu/tag/05A3
https://stacks.math.columbia.edu/tag/05A5
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Then the lemma is equivalent to the existence of j such that Mj → N is universally
injective, see Lemma 10.88.4. Observe that the tensorization by S

Mi ⊗R S //

��

Mj ⊗R S

��
M ⊗R S // N ⊗R S

Is a pushout diagram. So because M ⊗R S = colimi∈IMi ⊗R S expresses M ⊗R S
as a colimit of S-modules of finite presentation, and M⊗RS is Mittag-Leffler, there
exists j ≥ i such that Mj ⊗R S → N ⊗R S is universally injective. So using that
R→ S is faithfully flat we conclude that Mj → N is universally injective too. □

Lemma 10.95.2.0GVD Let R→ S be a faithfully flat ring map. Let M be an R-module.
If the S-module M ⊗R S is countably generated, then M is countably generated.

Proof. Say M ⊗R S is generated by the elements yi, i = 1, 2, 3, . . .. Write yi =∑
j=1,...,ni xij ⊗ sij for some ni ≥ 0, xij ∈ M and sij ∈ S. Denote M ′ ⊂ M the

submodule generated by the countable collection of elements xij . Then M ′⊗RS →
M ⊗R S is surjective as the image contains the generators yi. Since S is faithfully
flat over R we conclude that M ′ = M as desired. □

At this point the faithfully flat descent of countably generated projective modules
follows easily.

Lemma 10.95.3.05A6 Let R→ S be a faithfully flat ring map. Let M be an R-module.
If the S-module M⊗RS is countably generated and projective, then M is countably
generated and projective.

Proof. Follows from Lemmas 10.83.2, 10.95.1, and 10.95.2 and Theorem 10.93.3.
□

All that remains is to use dévissage to reduce descent of projectivity in the general
case to the countably generated case. First, two simple lemmas.

Lemma 10.95.4.05A7 Let R → S be a ring map, let M be an R-module, and let Q
be a countably generated S-submodule of M ⊗R S. Then there exists a countably
generated R-submodule P of M such that Im(P ⊗R S →M ⊗R S) contains Q.

Proof. Let y1, y2, . . . be generators for Q and write yj =
∑
k xjk ⊗ sjk for some

xjk ∈ M and sjk ∈ S. Then take P be the submodule of M generated by the
xjk. □

Lemma 10.95.5.05A8 Let R → S be a ring map, and let M be an R-module. Suppose
M ⊗R S =

⊕
i∈I Qi is a direct sum of countably generated S-modules Qi. If N

is a countably generated submodule of M , then there is a countably generated
submodule N ′ of M such that N ′ ⊃ N and Im(N ′ ⊗R S → M ⊗R S) =

⊕
i∈I′ Qi

for some subset I ′ ⊂ I.

Proof. Let N ′
0 = N . We construct by induction an increasing sequence of countably

generated submodules N ′
ℓ ⊂M for ℓ = 0, 1, 2, . . . such that: if I ′

ℓ is the set of i ∈ I
such that the projection of Im(N ′

ℓ ⊗R S → M ⊗R S) onto Qi is nonzero, then
Im(N ′

ℓ+1 ⊗R S → M ⊗R S) contains Qi for all i ∈ I ′
ℓ. To construct N ′

ℓ+1 from
N ′
ℓ, let Q be the sum of (the countably many) Qi for i ∈ I ′

ℓ, choose P as in

https://stacks.math.columbia.edu/tag/0GVD
https://stacks.math.columbia.edu/tag/05A6
https://stacks.math.columbia.edu/tag/05A7
https://stacks.math.columbia.edu/tag/05A8
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Lemma 10.95.4, and then let N ′
ℓ+1 = N ′

ℓ +P . Having constructed the N ′
ℓ, just take

N ′ =
⋃
ℓN

′
ℓ and I ′ =

⋃
ℓ I

′
ℓ. □

Theorem 10.95.6.05A9 Let R→ S be a faithfully flat ring map. Let M be an R-module.
If the S-module M ⊗R S is projective, then M is projective.

Proof. We are going to construct a Kaplansky dévissage of M to show that it is a
direct sum of projective modules and hence projective. By Theorem 10.84.5 we can
write M ⊗R S =

⊕
i∈I Qi as a direct sum of countably generated S-modules Qi.

Choose a well-ordering on M . Using transfinite recursion we are going to define
an increasing family of submodules Mα of M , one for each ordinal α, such that
Mα ⊗R S is a direct sum of some subset of the Qi.
For α = 0 let M0 = 0. If α is a limit ordinal and Mβ has been defined for all β < α,
then define Mβ =

⋃
β<αMβ . Since each Mβ ⊗R S for β < α is a direct sum of a

subset of the Qi, the same will be true of Mα⊗RS. If α+1 is a successor ordinal and
Mα has been defined, then defineMα+1 as follows. IfMα = M , then letMα+1 = M .
Otherwise choose the smallest x ∈M (with respect to the fixed well-ordering) such
that x /∈Mα. Since S is flat over R, (M/Mα)⊗R S = M ⊗R S/Mα ⊗R S, so since
Mα⊗R S is a direct sum of some Qi, the same is true of (M/Mα)⊗R S. By Lemma
10.95.5, we can find a countably generated R-submodule P of M/Mα containing the
image of x in M/Mα and such that P ⊗R S (which equals Im(P ⊗R S →M ⊗R S)
since S is flat over R) is a direct sum of some Qi. Since M ⊗R S =

⊕
i∈I Qi is

projective and projectivity passes to direct summands, P ⊗R S is also projective.
Thus by Lemma 10.95.3, P is projective. Finally we define Mα+1 to be the preimage
of P in M , so that Mα+1/Mα = P is countably generated and projective. In
particular Mα is a direct summand of Mα+1 since projectivity of Mα+1/Mα implies
the sequence 0→Mα →Mα+1 →Mα+1/Mα → 0 splits.
Transfinite induction on M (using the fact that we constructed Mα+1 to contain
the smallest x ∈ M not contained in Mα) shows that each x ∈ M is contained in
some Mα. Thus, there is some large enough ordinal S satisfying: for each x ∈ M
there is α ∈ S such that x ∈ Mα. This means (Mα)α∈S satisfies property (1)
of a Kaplansky dévissage of M . The other properties are clear by construction.
We conclude M =

⊕
α+1∈SMα+1/Mα. Since each Mα+1/Mα is projective by

construction, M is projective. □

10.96. Completion

00M9 Suppose that R is a ring and I is an ideal. We define the completion of R with
respect to I to be the limit

R∧ = limnR/I
n.

An element of R∧ is given by a sequence of elements fn ∈ R/In such that fn ≡
fn+1 mod In for all n. We will view R∧ as an R-algebra. Similarly, if M is an
R-module then we define the completion of M with respect to I to be the limit

M∧ = limnM/InM.

An element of M∧ is given by a sequence of elements mn ∈ M/InM such that
mn ≡ mn+1 mod InM for all n. We will view M∧ as an R∧-module. From this
description it is clear that there are always canonical maps

M −→M∧ and M ⊗R R∧ −→M∧.

https://stacks.math.columbia.edu/tag/05A9
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Moreover, given a map φ : M → N of modules we get an induced map φ∧ : M∧ →
N∧ on completions making the diagram

M //

��

N

��
M∧ // N∧

commute. In general completion is not an exact functor, see Examples, Section
110.9. Here are some initial positive results.

Lemma 10.96.1.0315 Let R be a ring. Let I ⊂ R be an ideal. Let φ : M → N be a
map of R-modules.

(1) If M/IM → N/IN is surjective, then M∧ → N∧ is surjective.
(2) If M → N is surjective, then M∧ → N∧ is surjective.
(3) If 0→ K → M → N → 0 is a short exact sequence of R-modules and N

is flat, then 0→ K∧ →M∧ → N∧ → 0 is a short exact sequence.
(4) The map M ⊗R R∧ →M∧ is surjective for any finite R-module M .

Proof. Assume M/IM → N/IN is surjective. Then the map M/InM → N/InN
is surjective for each n ≥ 1 by Nakayama’s lemma. More precisely, apply Lemma
10.20.1 part (11) to the map M/InM → N/InN over the ring R/In and the
nilpotent ideal I/In to see this. Set Kn = {x ∈ M | φ(x) ∈ InN}. Thus we get
short exact sequences

0→ Kn/I
nM →M/InM → N/InN → 0

We claim that the canonical map Kn+1/I
n+1M → Kn/I

nM is surjective. Namely,
if x ∈ Kn write φ(x) =

∑
zjnj with zj ∈ In, nj ∈ N . By assumption we can write

nj = φ(mj) +
∑
zjknjk with mj ∈M , zjk ∈ I and njk ∈ N . Hence

φ(x−
∑

zjmj) =
∑

zjzjknjk.

This means that x′ = x −
∑
zjmj ∈ Kn+1 maps to x mod InM which proves the

claim. Now we may apply Lemma 10.87.1 to the inverse system of short exact
sequences above to see (1). Part (2) is a special case of (1). If the assumptions of
(3) hold, then for each n the sequence

0→ K/InK →M/InM → N/InN → 0
is short exact by Lemma 10.39.12. Hence we can directly apply Lemma 10.87.1
to conclude (3) is true. To see (4) choose generators xi ∈ M , i = 1, . . . , n. Then
the map R⊕n → M , (a1, . . . , an) 7→

∑
aixi is surjective. Hence by (2) we see

(R∧)⊕n → M∧, (a1, . . . , an) 7→
∑
aixi is surjective. Assertion (4) follows from

this. □

Definition 10.96.2.0317 Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
We say M is I-adically complete if the map

M −→M∧ = limnM/InM

is an isomorphism9. We say R is I-adically complete if R is I-adically complete as
an R-module.

9This includes the condition that
⋂
InM = 0.

https://stacks.math.columbia.edu/tag/0315
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It is not true that the completion of an R-module M with respect to I is I-adically
complete. For an example see Examples, Section 110.7. If the ideal is finitely
generated, then the completion is complete.

Lemma 10.96.3.05GG [Mat78, Theorem
15]. The slick proof
given here is from
an email of Bjorn
Poonen dated Nov
5, 2016.

Let R be a ring. Let I be a finitely generated ideal of R. Let M
be an R-module. Then

(1) the completion M∧ is I-adically complete, and
(2) InM∧ = Ker(M∧ →M/InM) = (InM)∧ for all n ≥ 1.

In particular R∧ is I-adically complete, InR∧ = (In)∧, and R∧/InR∧ = R/In.

Proof. Since I is finitely generated, In is finitely generated, say by f1, . . . , fr. Ap-
plying Lemma 10.96.1 part (2) to the surjection (f1, . . . , fr) : M⊕r → InM yields
a surjection

(M∧)⊕r (f1,...,fr)−−−−−−→ (InM)∧ = limm≥n I
nM/ImM = Ker(M∧ →M/InM).

On the other hand, the image of (f1, . . . , fr) : (M∧)⊕r → M∧ is InM∧. Thus
M∧/InM∧ ≃ M/InM . Taking inverse limits yields (M∧)∧ ≃ M∧; that is, M∧ is
I-adically complete. □

Lemma 10.96.4.0BNG LetR be a ring. Let I ⊂ R be an ideal. Let 0→M → N → Q→ 0
be an exact sequence of R-modules such that Q is annihilated by a power of I. Then
completion produces an exact sequence 0→M∧ → N∧ → Q→ 0.

Proof. Say IcQ = 0. Then Q/InQ = Q for n ≥ c. On the other hand, it is clear
that InM ⊂M ∩ InN ⊂ In−cM for n ≥ c. Thus M∧ = limM/(M ∩ InN). Apply
Lemma 10.87.1 to the system of exact sequences

0→M/(M ∩ InN)→ N/InN → Q→ 0
for n ≥ c to conclude. □

Lemma 10.96.5.0318 Taken from an
unpublished note of
Lenstra and de
Smit.

Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
Denote Kn = Ker(M∧ →M/InM). Then M∧ is I-adically complete if and only if
Kn is equal to InM∧ for all n ≥ 1.

Proof. The module InM∧ is contained in Kn. Thus for each n ≥ 1 there is a
canonical exact sequence

0→ Kn/I
nM∧ →M∧/InM∧ →M/InM → 0.

As InM∧ maps onto InM/In+1M we see that Kn+1 + InM∧ = Kn. Thus the
inverse system {Kn/I

nM∧}n≥1 has surjective transition maps. By Lemma 10.87.1
we see that there is a short exact sequence

0→ limnKn/I
nM∧ → (M∧)∧ →M∧ → 0

Hence M∧ is complete if and only if Kn/I
nM∧ = 0 for all n ≥ 1. □

Lemma 10.96.6.05GI Let R be a ring, let I ⊂ R be an ideal, and let R∧ = limR/In.
(1) any element of R∧ which maps to a unit of R/I is a unit,
(2) any element of 1 + I maps to an invertible element of R∧,
(3) any element of 1 + IR∧ is invertible in R∧, and
(4) the ideals IR∧ and Ker(R∧ → R/I) are contained in the Jacobson radical

of R∧.

https://stacks.math.columbia.edu/tag/05GG
https://stacks.math.columbia.edu/tag/0BNG
https://stacks.math.columbia.edu/tag/0318
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Proof. Let x ∈ R∧ map to a unit x1 in R/I. Then x maps to a unit xn in R/In

for every n by Lemma 10.32.4. Hence y = (x−1
n ) ∈ limR/In = R∧ is an inverse

to x. Parts (2) and (3) follow immediately from (1). Part (4) follows from (1) and
Lemma 10.19.1. □

Lemma 10.96.7.090S Let A be a ring. Let I = (f1, . . . , fr) be a finitely generated ideal.
If M → limM/fni M is surjective for each i, then M → limM/InM is surjective.

Proof. Note that limM/InM = limM/(fn1 , . . . , fnr )M as In ⊃ (fn1 , . . . , fnr ) ⊃ Irn.
An element ξ of limM/(fn1 , . . . , fnr )M can be symbolically written as

ξ =
∑

n≥0

∑
i
fni xn,i

with xn,i ∈M . If M → limM/fni M is surjective, then there is an xi ∈M mapping
to
∑
xn,if

n
i in limM/fni M . Then x =

∑
xi maps to ξ in limM/InM . □

Lemma 10.96.8.090T Let A be a ring. Let I ⊂ J ⊂ A be ideals. If M is J-adically
complete and I is finitely generated, then M is I-adically complete.

Proof. Assume M is J-adically complete and I is finitely generated. We have⋂
InM = 0 because

⋂
JnM = 0. By Lemma 10.96.7 it suffices to prove the

surjectivity of M → limM/InM in case I is generated by a single element. Say
I = (f). Let xn ∈ M with xn+1 − xn ∈ fnM . We have to show there exists
an x ∈ M such that xn − x ∈ fnM for all n. As xn+1 − xn ∈ JnM and as M
is J-adically complete, there exists an element x ∈ M such that xn − x ∈ JnM .
Replacing xn by xn − x we may assume that xn ∈ JnM . To finish the proof we
will show that this implies xn ∈ InM . Namely, write xn − xn+1 = fnzn. Then

xn = fn(zn + fzn+1 + f2zn+2 + . . .)

The sum zn + fzn+1 + f2zn+2 + . . . converges in M as f c ∈ Jc. The sum fn(zn +
fzn+1+f2zn+2+. . .) converges in M to xn because the partial sums equal xn−xn+c
and xn+c ∈ Jn+cM . □

Lemma 10.96.9.0319 Let R be a ring. Let I, J be ideals of R. Assume there exist
integers c, d > 0 such that Ic ⊂ J and Jd ⊂ I. Then completion with respect to
I agrees with completion with respect to J for any R-module. In particular an
R-module M is I-adically complete if and only if it is J-adically complete.

Proof. Consider the system of maps M/InM → M/J⌊n/d⌋M and the system of
maps M/JmM →M/I⌊m/c⌋M to get mutually inverse maps between the comple-
tions. □

Lemma 10.96.10.031A Let R be a ring. Let I be an ideal of R. Let M be an I-
adically complete R-module, and let K ⊂ M be an R-submodule. The following
are equivalent

(1) K =
⋂

(K + InM) and
(2) M/K is I-adically complete.

Proof. Set N = M/K. By Lemma 10.96.1 the map M = M∧ → N∧ is surjective.
Hence N → N∧ is surjective. It is easy to see that the kernel of N → N∧ is the
module

⋂
(K + InM)/K. □

https://stacks.math.columbia.edu/tag/090S
https://stacks.math.columbia.edu/tag/090T
https://stacks.math.columbia.edu/tag/0319
https://stacks.math.columbia.edu/tag/031A


10.97. COMPLETION FOR NOETHERIAN RINGS 649

Lemma 10.96.11.031B Let R be a ring. Let I be an ideal of R. Let M be an R-module.
If (a) R is I-adically complete, (b) M is a finite R-module, and (c)

⋂
InM = (0),

then M is I-adically complete.
Proof. By Lemma 10.96.1 the map M = M ⊗RR = M ⊗RR∧ →M∧ is surjective.
The kernel of this map is

⋂
InM hence zero by assumption. Hence M ∼= M∧ and

M is complete. □

Lemma 10.96.12.031D Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
Assume

(1) R is I-adically complete,
(2)

⋂
n≥1 I

nM = (0), and
(3) M/IM is a finite R/I-module.

Then M is a finite R-module.
Proof. Let x1, . . . , xn ∈ M be elements whose images in M/IM generate M/IM
as a R/I-module. Denote M ′ ⊂ M the R-submodule generated by x1, . . . , xn.
By Lemma 10.96.1 the map (M ′)∧ → M∧ is surjective. Since

⋂
InM = 0 we

see in particular that
⋂
InM ′ = (0). Hence by Lemma 10.96.11 we see that M ′

is complete, and we conclude that M ′ → M∧ is surjective. Finally, the kernel
of M → M∧ is zero since it is equal to

⋂
InM = (0). Hence we conclude that

M ∼= M ′ ∼= M∧ is finitely generated. □

10.97. Completion for Noetherian rings

0BNH In this section we discuss completion with respect to ideals in Noetherian rings.
Lemma 10.97.1.00MA Let I be an ideal of a Noetherian ring R. Denote ∧ completion
with respect to I.

(1) If K → N is an injective map of finite R-modules, then the map on
completions K∧ → N∧ is injective.

(2) If 0 → K → N → M → 0 is a short exact sequence of finite R-modules,
then 0→ K∧ → N∧ →M∧ → 0 is a short exact sequence.

(3) If M is a finite R-module, then M∧ = M ⊗R R∧.
Proof. Setting M = N/K we find that part (1) follows from part (2). Let 0 →
K → N →M → 0 be as in (2). For each n we get the short exact sequence

0→ K/(InN ∩K)→ N/InN →M/InM → 0.
By Lemma 10.87.1 we obtain the exact sequence

0→ limK/(InN ∩K)→ N∧ →M∧ → 0.
By the Artin-Rees Lemma 10.51.2 we may choose c such that InK ⊂ InN ∩K ⊂
In−cK for n ≥ c. Hence K∧ = limK/InK = limK/(InN ∩K) and we conclude
that (2) is true.
Let M be as in (3) and let 0 → K → R⊕t → M → 0 be a presentation of M . We
get a commutative diagram

K ⊗R R∧ //

��

R⊕t ⊗R R∧ //

��

M ⊗R R∧ //

��

0

0 // K∧ // (R⊕t)∧ // M∧ // 0
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The top row is exact, see Section 10.39. The bottom row is exact by part (2). By
Lemma 10.96.1 the vertical arrows are surjective. The middle vertical arrow is an
isomorphism. We conclude (3) holds by the Snake Lemma 10.4.1. □

Lemma 10.97.2.00MB Let I be a ideal of a Noetherian ring R. Denote ∧ completion
with respect to I.

(1) The ring map R→ R∧ is flat.
(2) The functor M 7→ M∧ is exact on the category of finitely generated R-

modules.

Proof. Consider J ⊗R R∧ → R ⊗R R∧ = R∧ where J is an arbitrary ideal of R.
According to Lemma 10.97.1 this is identified with J∧ → R∧ and J∧ → R∧ is
injective. Part (1) follows from Lemma 10.39.5. Part (2) is a reformulation of
Lemma 10.97.1 part (2). □

Lemma 10.97.3.00MC Let (R,m) be a Noetherian local ring. Let I ⊂ m be an ideal.
Denote R∧ the completion of R with respect to I. The ring map R → R∧ is
faithfully flat. In particular the completion with respect to m, namely limnR/m

n

is faithfully flat.

Proof. By Lemma 10.97.2 it is flat. The composition R → R∧ → R/m where the
last map is the projection map R∧ → R/I combined with R/I → R/m shows that
m is in the image of Spec(R∧) → Spec(R). Hence the map is faithfully flat by
Lemma 10.39.15. □

Lemma 10.97.4.031C Let R be a Noetherian ring. Let I be an ideal of R. Let M be an
R-module. Then the completion M∧ of M with respect to I is I-adically complete,
InM∧ = (InM)∧, and M∧/InM∧ = M/InM .

Proof. This is a special case of Lemma 10.96.3 because I is a finitely generated
ideal. □

Lemma 10.97.5.05GH Let I be an ideal of a ring R. Assume
(1) R/I is a Noetherian ring,
(2) I is finitely generated.

Then the completion R∧ of R with respect to I is a Noetherian ring complete with
respect to IR∧.

Proof. By Lemma 10.96.3 we see that R∧ is I-adically complete. Hence it is also
IR∧-adically complete. Since R∧/IR∧ = R/I is Noetherian we see that after
replacing R by R∧ we may in addition to assumptions (1) and (2) assume that also
R is I-adically complete.

Let f1, . . . , ft be generators of I. Then there is a surjection of ringsR/I[T1, . . . , Tt]→⊕
In/In+1 mapping Ti to the element f i ∈ I/I2. Hence

⊕
In/In+1 is a Noetherian

ring. Let J ⊂ R be an ideal. Consider the ideal⊕
J ∩ In/J ∩ In+1 ⊂

⊕
In/In+1.

Let g1, . . . , gm be generators of this ideal. We may choose gj to be a homogeneous
element of degree dj and we may pick gj ∈ J∩Idj mapping to gj ∈ J∩Idj/J∩Idj+1.
We claim that g1, . . . , gm generate J .
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Let x ∈ J ∩ In. There exist aj ∈ Imax(0,n−dj) such that x −
∑
ajgj ∈ J ∩ In+1.

The reason is that J ∩ In/J ∩ In+1 is equal to
∑
gjI

n−dj/In−dj+1 by our choice
of g1, . . . , gm. Hence starting with x ∈ J we can find a sequence of vectors
(a1,n, . . . , am,n)n≥0 with aj,n ∈ Imax(0,n−dj) such that

x =
∑

n=0,...,N

∑
j=1,...,m

aj,ngj mod IN+1

Setting Aj =
∑
n≥0 aj,n we see that x =

∑
Ajgj as R is complete. Hence J is

finitely generated and we win. □

Lemma 10.97.6.0316 LetR be a Noetherian ring. Let I be an ideal ofR. The completion
R∧ of R with respect to I is Noetherian.

Proof. This is a consequence of Lemma 10.97.5. It can also be seen directly as
follows. Choose generators f1, . . . , fn of I. Consider the map

R[[x1, . . . , xn]] −→ R∧, xi 7−→ fi.

This is a well defined and surjective ring map (details omitted). SinceR[[x1, . . . , xn]]
is Noetherian (see Lemma 10.31.2) we win. □

Suppose R→ S is a local homomorphism of local rings (R,m) and (S, n). Let S∧ be
the completion of S with respect to n. In general S∧ is not the m-adic completion
of S. If nt ⊂ mS for some t ≥ 1 then we do have S∧ = limS/mnS by Lemma
10.96.9. In some cases this even implies that S∧ is finite over R∧.

Lemma 10.97.7.0394 Let R → S be a local homomorphism of local rings (R,m) and
(S, n). Let R∧, resp. S∧ be the completion of R, resp. S with respect to m, resp.
n. If m and n are finitely generated and dimκ(m) S/mS <∞, then

(1) S∧ is equal to the m-adic completion of S, and
(2) S∧ is a finite R∧-module.

Proof. We have mS ⊂ n because R → S is a local ring map. The assumption
dimκ(m) S/mS < ∞ implies that S/mS is an Artinian ring, see Lemma 10.53.2.
Hence has dimension 0, see Lemma 10.60.5, hence n =

√
mS. This and the fact

that n is finitely generated implies that nt ⊂ mS for some t ≥ 1. By Lemma 10.96.9
we see that S∧ can be identified with the m-adic completion of S. As m is finitely
generated we see from Lemma 10.96.3 that S∧ and R∧ are m-adically complete. At
this point we may apply Lemma 10.96.12 to S∧ as an R∧-module to conclude. □

Lemma 10.97.8.07N9 Let R be a Noetherian ring. Let R → S be a finite ring map.
Let p ⊂ R be a prime and let q1, . . . , qm be the primes of S lying over p (Lemma
10.36.21). Then

R∧
p ⊗R S = (Sp)∧ = S∧

q1
× . . .× S∧

qm

where the (Sp)∧ is the completion with respect to p and the local rings Rp and Sqi

are completed with respect to their maximal ideals.

Proof. The first equality follows from Lemma 10.97.1. We may replace R by the
localization Rp and S by Sp = S ⊗R Rp. Hence we may assume that R is a local
Noetherian ring and that p = m is its maximal ideal. The qiSqi -adic completion
S∧
qi is equal to the m-adic completion by Lemma 10.97.7. For every n ≥ 1 prime

ideals of S/mnS are in 1-to-1 correspondence with the maximal ideals q1, . . . , qm of
S (by going up for S over R, see Lemma 10.36.22). Hence S/mnS =

∏
Sqi/m

nSqi
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by Lemma 10.53.6 (using for example Proposition 10.60.7 to see that S/mnS is
Artinian). Hence the m-adic completion S∧ of S is equal to

∏
S∧
qi . Finally, we have

R∧ ⊗R S = S∧ by Lemma 10.97.1. □

Lemma 10.97.9.05D3 LetR be a ring. Let I ⊂ R be an ideal. Let 0→ K → P →M → 0
be a short exact sequence of R-modules. If M is flat over R and M/IM is a
projective R/I-module, then the sequence of I-adic completions

0→ K∧ → P∧ →M∧ → 0
is a split exact sequence.

Proof. As M is flat, each of the sequences
0→ K/InK → P/InP →M/InM → 0

is short exact, see Lemma 10.39.12 and the sequence 0 → K∧ → P∧ → M∧ → 0
is a short exact sequence, see Lemma 10.96.1. It suffices to show that we can find
splittings sn : M/InM → P/InP such that sn+1 mod In = sn. We will construct
these sn by induction on n. Pick any splitting s1, which exists as M/IM is a
projective R/I-module. Assume given sn for some n > 0. Set Pn+1 = {x ∈ P |
x mod InP ∈ Im(sn)}. The map π : Pn+1/I

n+1Pn+1 → M/In+1M is surjective
(details omitted). As M/In+1M is projective as a R/In+1-module by Lemma
10.77.7 we may choose a section t : M/In+1M → Pn+1/I

n+1Pn+1 of π. Setting
sn+1 equal to the composition of t with the canonical map Pn+1/I

n+1Pn+1 →
P/In+1P works. □

Lemma 10.97.10.0DYC Let A be a Noetherian ring. Let I, J ⊂ A be ideals. If A is
I-adically complete and A/I is J-adically complete, then A is J-adically complete.

Proof. Let B be the (I + J)-adic completion of A. By Lemma 10.97.2 B/IB is the
J-adic completion of A/I hence isomorphic to A/I by assumption. Moreover B is
I-adically complete by Lemma 10.96.8. Hence B is a finite A-module by Lemma
10.96.12. By Nakayama’s lemma (Lemma 10.20.1 using I is in the Jacobson radical
of A by Lemma 10.96.6) we find that A → B is surjective. The map A → B is
flat by Lemma 10.97.2. The image of Spec(B) → Spec(A) contains V (I) and as I
is contained in the Jacobson radical of A we find A→ B is faithfully flat (Lemma
10.39.16). Thus A → B is injective. Thus A is complete with respect to I + J ,
hence a fortiori complete with respect to J . □

10.98. Taking limits of modules

09B7 In this section we discuss what happens when we take a limit of modules.

Lemma 10.98.1.0G1Q Let I ⊂ A be a finitely generated ideal of a ring. Let (Mn) be
an inverse system of A-modules with InMn = 0. Then M = limMn is I-adically
complete.

Proof. We have M → M/InM → Mn. Taking the limit we get M → M∧ → M .
Hence M is a direct summand of M∧. Since M∧ is I-adically complete by Lemma
10.96.3, so is M . □

Lemma 10.98.2.09B8 Let I ⊂ A be a finitely generated ideal of a ring. Let (Mn) be
an inverse system of A-modules with Mn = Mn+1/I

nMn+1. Then M/InM = Mn

and M is I-adically complete.
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Proof. By Lemma 10.98.1 we see that M is I-adically complete. Since the transition
maps are surjective, the maps M →Mn are surjective. Consider the inverse system
of short exact sequences

0→ Nn →M →Mn → 0
defining Nn. Since Mn = Mn+1/I

nMn+1 the map Nn+1 +InM → Nn is surjective.
Hence Nn+1/(Nn+1 ∩ In+1M)→ Nn/(Nn ∩ InM) is surjective. Taking the inverse
limit of the short exact sequences

0→ Nn/(Nn ∩ InM)→M/InM →Mn → 0
we obtain an exact sequence

0→ limNn/(Nn ∩ InM)→M∧ →M

Since M is I-adically complete we conclude that limNn/(Nn∩InM) = 0 and hence
by the surjectivity of the transition maps we get Nn/(Nn ∩ InM) = 0 for all n.
Thus Mn = M/InM as desired. □

Lemma 10.98.3.0EKC Let A be a Noetherian graded ring. Let I ⊂ A+ be a homoge-
neous ideal. Let (Nn) be an inverse system of finite graded A-modules with Nn =
Nn+1/I

nNn+1. Then there is a finite graded A-module N such that Nn = N/InN
as graded modules for all n.

Proof. Pick r and homogeneous elements x1,1, . . . , x1,r ∈ N1 of degrees d1, . . . , dr
generating N1. Since the transition maps are surjective, we can pick a compatible
system of homogeneous elements xn,i ∈ Nn lifting x1,i. By the graded Nakayama
lemma (Lemma 10.56.1) we see that Nn is generated by the elements xn,1, . . . , xn,r
sitting in degrees d1, . . . , dr. Thus for m ≤ n we see that Nn → Nn/I

mNn is an
isomorphism in degrees < min(di) + m (as ImNn is zero in those degrees). Thus
the inverse system of degree d parts
. . . = N2+d−min(di),d = N1+d−min(di),d = Nd−min(di),d → N−1+d−min(di),d → . . .

stabilizes as indicated. Let N be the graded A-module whose dth graded part is
this stabilization. In particular, we have the elements xi = lim xn,i in N . We claim
the xi generate N : any x ∈ Nd is a linear combination of x1, . . . , xr because we
can check this in Nd−min(di),d where it holds as xd−min(di),i generate Nd−min(di).
Finally, the reader checks that the surjective map N/InN → Nn is an isomorphism
by checking to see what happens in each degree as before. Details omitted. □

Lemma 10.98.4.0EKD Let A be a graded ring. Let I ⊂ A+ be a homogeneous ideal.
Denote A′ = limA/In. Let (Gn) be an inverse system of graded A-modules with
Gn annihilated by In. Let M be a graded A-module and let φn : M → Gn be a
compatible system of graded A-module maps. If the induced map

φ : M ⊗A A′ −→ limGn

is an isomorphism, then Md → limGn,d is an isomorphism for all d ∈ Z.

Proof. By convention graded rings are in degrees ≥ 0 and graded modules may
have nonzero parts of any degree, see Section 10.56. The map φ exists because
limGn is a module over A′ as Gn is annihilated by In. Another useful thing to
keep in mind is that we have⊕

d∈Z
limGn,d ⊂ limGn ⊂

∏
d∈Z

limGn,d
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where a subscript d indicates the dth graded part.

Injective. Let x ∈ Md. If x 7→ 0 in limGn,d then x ⊗ 1 = 0 in M ⊗A A′. Then
we can find a finitely generated submodule M ′ ⊂ M with x ∈ M ′ such that x⊗ 1
is zero in M ′ ⊗A A′. Say M ′ is generated by homogeneous elements sitting in
degrees d1, . . . , dr. Let n = d−min(di) + 1. Since A′ has a map to A/In and since
A → A/In is an isomorphism in degrees ≤ n − 1 we see that M ′ → M ′ ⊗A A′ is
injective in degrees ≤ n− 1. Thus x = 0 as desired.

Surjective. Let y ∈ limGn,d. Choose a finite sum
∑
xi ⊗ f ′

i in M ⊗A A′ mapping
to y. We may assume xi is homogeneous, say of degree di. Observe that although
A′ is not a graded ring, it is a limit of the graded rings A/InA and moreover, in
any given degree the transition maps eventually become isomorphisms (see above).
This gives

A =
⊕

d≥0
Ad ⊂ A′ ⊂

∏
d≥0

Ad

Thus we can write
f ′
i =

∑
j=0,...,d−di−1

fi,j + fi + g′
i

with fi,j ∈ Aj , fi ∈ Ad−di , and g′
i ∈ A′ mapping to zero in

∏
j≤d−di Aj . Now if

we compute φn(
∑
i,j fi,jxi) ∈ Gn, then we get a sum of homogeneous elements of

degree < d. Hence φ(
∑
xi⊗fi,j) maps to zero in limGn,d. Similarly, a computation

shows the element φ(
∑
xi ⊗ g′

i) maps to zero in
∏
d′≤d limGn,d′ . Since we know

that φ(
∑
xi ⊗ f ′

i) is y, we conclude that
∑
fixi ∈Md maps to y as desired. □

10.99. Criteria for flatness

00MD In this section we prove some important technical lemmas in the Noetherian case.
We will (partially) generalize these to the non-Noetherian case in Section 10.128.

Lemma 10.99.1.00ME Suppose that R→ S is a local homomorphism of Noetherian local
rings. Denote m the maximal ideal of R. Let M be a flat R-module and N a finite
S-module. Let u : N → M be a map of R-modules. If u : N/mN → M/mM is
injective then u is injective. In this case M/u(N) is flat over R.

Proof. First we claim that un : N/mnN → M/mnM is injective for all n ≥ 1. We
proceed by induction, the base case is that u = u1 is injective. By our assumption
that M is flat over R we have a short exact sequence 0 → M ⊗R mn/mn+1 →
M/mn+1M → M/mnM → 0. Also, M ⊗R mn/mn+1 = M/mM ⊗R/m mn/mn+1.
We have a similar exact sequence N ⊗R mn/mn+1 → N/mn+1N → N/mnN → 0
for N except we do not have the zero on the left. We also have N ⊗R mn/mn+1 =
N/mN ⊗R/m mn/mn+1. Thus the map un+1 is injective as both un and the map
u⊗ idmn/mn+1 are.

By Krull’s intersection theorem (Lemma 10.51.4) applied to N over the ring S and
the ideal mS we have

⋂
mnN = 0. Thus the injectivity of un for all n implies u is

injective.

To show that M/u(N) is flat over R, it suffices to show that TorR1 (M/u(N), R/I) =
0 for every ideal I ⊂ R, see Lemma 10.75.8. From the short exact sequence

0→ N
u−→M →M/u(N)→ 0
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and the flatness of M we obtain an exact sequence of Tors
0→ TorR1 (M/u(N), R/I)→ N/IN →M/IM

See Lemma 10.75.2. Thus it suffices to show that N/IN injects into M/IM . Note
that R/I → S/IS is a local homomorphism of Noetherian local rings, N/IN →
M/IM is a map of R/I-modules, N/IN is finite over S/IS, and M/IM is flat over
R/I and u mod I : N/IN → M/IM is injective modulo m. Thus we may apply
the first part of the proof to u mod I and we conclude. □

Lemma 10.99.2.00MF Suppose that R → S is a flat and local ring homomorphism of
Noetherian local rings. Denote m the maximal ideal of R. Suppose f ∈ S is a
nonzerodivisor in S/mS. Then S/fS is flat over R, and f is a nonzerodivisor in S.

Proof. Follows directly from Lemma 10.99.1. □

Lemma 10.99.3.00MG Suppose that R → S is a flat and local ring homomorphism of
Noetherian local rings. Denote m the maximal ideal of R. Suppose f1, . . . , fc is a
sequence of elements of S such that the images f1, . . . , f c form a regular sequence
in S/mS. Then f1, . . . , fc is a regular sequence in S and each of the quotients
S/(f1, . . . , fi) is flat over R.

Proof. Induction and Lemma 10.99.2. □

Lemma 10.99.4.00MH Let R → S be a local homomorphism of Noetherian local rings.
Let m be the maximal ideal of R. Let M be a finite S-module. Suppose that (a)
M/mM is a free S/mS-module, and (b) M is flat over R. Then M is free and S is
flat over R.

Proof. Let x1, . . . , xn be a basis for the free module M/mM . Choose x1, . . . , xn ∈
M with xi mapping to xi. Let u : S⊕n → M be the map which maps the ith
standard basis vector to xi. By Lemma 10.99.1 we see that u is injective. On
the other hand, by Nakayama’s Lemma 10.20.1 the map is surjective. The lemma
follows. □

Lemma 10.99.5.00MI Let R → S be a local homomorphism of local Noetherian rings.
Let m be the maximal ideal of R. Let 0 → Fe → Fe−1 → . . . → F0 be a finite
complex of finite S-modules. Assume that each Fi is R-flat, and that the complex
0 → Fe/mFe → Fe−1/mFe−1 → . . . → F0/mF0 is exact. Then 0 → Fe → Fe−1 →
. . .→ F0 is exact, and moreover the module Coker(F1 → F0) is R-flat.

Proof. By induction on e. If e = 1, then this is exactly Lemma 10.99.1. If e > 1, we
see by Lemma 10.99.1 that Fe → Fe−1 is injective and that C = Coker(Fe → Fe−1)
is a finite S-module flat over R. Hence we can apply the induction hypothesis to
the complex 0 → C → Fe−2 → . . . → F0. We deduce that C → Fe−2 is injective
and the exactness of the complex follows, as well as the flatness of the cokernel of
F1 → F0. □

In the rest of this section we prove two versions of what is called the “local criterion
of flatness”. Note also the interesting Lemma 10.128.1 below.

Lemma 10.99.6.00MJ Let R be a local ring with maximal ideal m and residue field
κ = R/m. Let M be an R-module. If TorR1 (κ,M) = 0, then for every finite length
R-module N we have TorR1 (N,M) = 0.

https://stacks.math.columbia.edu/tag/00MF
https://stacks.math.columbia.edu/tag/00MG
https://stacks.math.columbia.edu/tag/00MH
https://stacks.math.columbia.edu/tag/00MI
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Proof. By descending induction on the length of N . If the length of N is 1, then
N ∼= κ and we are done. If the length of N is more than 1, then we can fit N
into a short exact sequence 0 → N ′ → N → N ′′ → 0 where N ′, N ′′ are finite
length R-modules of smaller length. The vanishing of TorR1 (N,M) follows from the
vanishing of TorR1 (N ′,M) and TorR1 (N ′′,M) (induction hypothesis) and the long
exact sequence of Tor groups, see Lemma 10.75.2. □

Lemma 10.99.7 (Local criterion for flatness).00MK Let R→ S be a local homomorphism
of local Noetherian rings. Let m be the maximal ideal of R, and let κ = R/m. Let
M be a finite S-module. If TorR1 (κ,M) = 0, then M is flat over R.

Proof. Let I ⊂ R be an ideal. By Lemma 10.39.5 it suffices to show that I⊗RM →
M is injective. By Remark 10.75.9 we see that this kernel is equal to TorR1 (M,R/I).
By Lemma 10.99.6 we see that J ⊗R M → M is injective for all ideals of finite
colength.
Choose n >> 0 and consider the following short exact sequence

0→ I ∩mn → I ⊕mn → I + mn → 0
This is a sub sequence of the short exact sequence 0→ R→ R⊕2 → R→ 0. Thus
we get the diagram

(I ∩mn)⊗RM //

��

I ⊗RM ⊕mn ⊗RM //

��

(I + mn)⊗RM

��
M // M ⊕M // M

Note that I + mn and mn are ideals of finite colength. Thus a diagram chase
shows that Ker((I ∩ mn) ⊗R M → M) → Ker(I ⊗R M → M) is surjective. We
conclude in particular that K = Ker(I ⊗R M → M) is contained in the image
of (I ∩ mn) ⊗R M in I ⊗R M . By Artin-Rees, Lemma 10.51.2 we see that K is
contained in mn−c(I⊗RM) for some c > 0 and all n >> 0. Since I⊗RM is a finite
S-module (!) and since S is Noetherian, we see that this implies K = 0. Namely,
the above implies K maps to zero in the mS-adic completion of I ⊗RM . But the
map from S to its mS-adic completion is faithfully flat by Lemma 10.97.3. Hence
K = 0, as desired. □

In the following we often encounter the conditions “M/IM is flat over R/I and
TorR1 (R/I,M) = 0”. The following lemma gives some consequences of these condi-
tions (it is a generalization of Lemma 10.99.6).

Lemma 10.99.8.051C Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
If M/IM is flat over R/I and TorR1 (R/I,M) = 0 then

(1) M/InM is flat over R/In for all n ≥ 1, and
(2) for any module N which is annihilated by Im for some m ≥ 0 we have

TorR1 (N,M) = 0.
In particular, if I is nilpotent, then M is flat over R.

Proof. Assume M/IM is flat over R/I and TorR1 (R/I,M) = 0. Let N be an
R/I-module. Choose a short exact sequence

0→ K →
⊕

i∈I
R/I → N → 0

https://stacks.math.columbia.edu/tag/00MK
https://stacks.math.columbia.edu/tag/051C
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By the long exact sequence of Tor and the vanishing of TorR1 (R/I,M) we get

0→ TorR1 (N,M)→ K ⊗RM → (
⊕

i∈I
R/I)⊗RM → N ⊗RM → 0

But since K,
⊕

i∈I R/I, and N are all annihilated by I we see that

K ⊗RM = K ⊗R/I M/IM,

(
⊕

i∈I
R/I)⊗RM = (

⊕
i∈I

R/I)⊗R/I M/IM,

N ⊗RM = N ⊗R/I M/IM.

As M/IM is flat over R/I we conclude that

0→ K ⊗R/I M/IM → (
⊕

i∈I
R/I)⊗R/I M/IM → N ⊗R/M/IM → 0

is exact. Combining this with the above we conclude that TorR1 (N,M) = 0 for any
R-module N annihilated by I.

In particular, if we apply this to the module I/I2, then we conclude that the
sequence

0→ I2 ⊗RM → I ⊗RM → I/I2 ⊗RM → 0
is short exact. This implies that I2 ⊗R M → M is injective and it implies that
I/I2 ⊗R/I M/IM = IM/I2M .

Let us prove that M/I2M is flat over R/I2. Let I2 ⊂ J be an ideal. We have
to show that J/I2 ⊗R/I2 M/I2M → M/I2M is injective, see Lemma 10.39.5. As
M/IM is flat over R/I we know that the map (I + J)/I ⊗R/IM/IM →M/IM is
injective. The sequence

(I ∩ J)/I2 ⊗R/I2 M/I2M → J/I2 ⊗R/I2 M/I2M → (I + J)/I ⊗R/I M/IM → 0

is exact, as you get it by tensoring the exact sequence 0 → (I ∩ J) → J →
(I + J)/I → 0 by M/I2M . Hence suffices to prove the injectivity of the map (I ∩
J)/I2 ⊗R/I M/IM → IM/I2M . However, the map (I ∩ J)/I2 → I/I2 is injective
and as M/IM is flat over R/I the map (I∩J)/I2⊗R/IM/IM → I/I2⊗R/IM/IM

is injective. Since we have previously seen that I/I2 ⊗R/I M/IM = IM/I2M we
obtain the desired injectivity.

Hence we have proven that the assumptions imply: (a) TorR1 (N,M) = 0 for all N
annihilated by I, (b) I2⊗RM →M is injective, and (c) M/I2M is flat over R/I2.
Thus we can continue by induction to get the same results for In for all n ≥ 1. □

Lemma 10.99.9.0AS8 Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
(1) If M/IM is flat over R/I and M ⊗R I/I2 → IM/I2M is injective, then

M/I2M is flat over R/I2.
(2) If M/IM is flat over R/I and M ⊗R In/In+1 → InM/In+1M is injective

for n = 1, . . . , k, then M/Ik+1M is flat over R/Ik+1.

Proof. The first statement is a consequence of Lemma 10.99.8 applied with R re-
placed by R/I2 and M replaced by M/I2M using that

TorR/I
2

1 (M/I2M,R/I) = Ker(M ⊗R I/I2 → IM/I2M),

https://stacks.math.columbia.edu/tag/0AS8
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see Remark 10.75.9. The second statement follows in the same manner using in-
duction on n to show that M/In+1M is flat over R/In+1 for n = 1, . . . , k. Here we
use that

TorR/I
n+1

1 (M/In+1M,R/I) = Ker(M ⊗R In/In+1 → InM/In+1M)

for every n. □

Lemma 10.99.10 (Variant of the local criterion).00ML Let R→ S be a local homomor-
phism of Noetherian local rings. Let I ̸= R be an ideal in R. Let M be a finite
S-module. If TorR1 (M,R/I) = 0 and M/IM is flat over R/I, then M is flat over
R.

Proof. First proof: By Lemma 10.99.8 we see that TorR1 (κ,M) is zero where κ is
the residue field of R. Hence we see that M is flat over R by Lemma 10.99.7.

Second proof: Let m be the maximal ideal of R. We will show that m⊗RM →M
is injective, and then apply Lemma 10.99.7. Suppose that

∑
fi ⊗ xi ∈ m ⊗R M

and that
∑
fixi = 0 in M . By the equational criterion for flatness Lemma 10.39.11

applied to M/IM over R/I we see there exist aij ∈ R/I and yj ∈M/IM such that
xi mod IM =

∑
j aijyj and 0 =

∑
i(fi mod I)aij . Let aij ∈ R be a lift of aij and

similarly let yj ∈M be a lift of yj . Then we see that∑
fi ⊗ xi =

∑
fi ⊗ xi +

∑
fiaij ⊗ yj −

∑
fi ⊗ aijyj

=
∑

fi ⊗ (xi −
∑

aijyj) +
∑

(
∑

fiaij)⊗ yj

Since xi −
∑
aijyj ∈ IM and

∑
fiaij ∈ I we see that there exists an element in

I ⊗RM which maps to our given element
∑
fi⊗xi in m⊗RM . But I ⊗RM →M

is injective by assumption (see Remark 10.75.9) and we win. □

In particular, in the situation of Lemma 10.99.10, suppose that I = (x) is generated
by a single element x which is a nonzerodivisor in R. Then TorR1 (M,R/(x)) = (0)
if and only if x is a nonzerodivisor on M .

Lemma 10.99.11.0523 Let R→ S be a ring map. Let I ⊂ R be an ideal. Let M be an
S-module. Assume

(1) R is a Noetherian ring,
(2) S is a Noetherian ring,
(3) M is a finite S-module, and
(4) for each n ≥ 1 the module M/InM is flat over R/In.

Then for every q ∈ V (IS) the localization Mq is flat over R. In particular, if S is
local and IS is contained in its maximal ideal, then M is flat over R.

Proof. We are going to use Lemma 10.99.10. By assumption M/IM is flat over
R/I. Hence it suffices to check that TorR1 (M,R/I) is zero on localization at q. By
Remark 10.75.9 this Tor group is equal to K = Ker(I ⊗RM → M). We know for
each n ≥ 1 that the kernel Ker(I/In ⊗R/In M/InM → M/InM) is zero. Since
there is a module map I/In⊗R/InM/InM → (I⊗RM)/In−1(I⊗RM) we conclude
that K ⊂ In−1(I ⊗RM) for each n. By the Artin-Rees lemma, and more precisely
Lemma 10.51.5 we conclude that Kq = 0, as desired. □

https://stacks.math.columbia.edu/tag/00ML
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Lemma 10.99.12.00MM Let R → R′ → R′′ be ring maps. Let M be an R-module.
Suppose that M⊗RR′ is flat over R′. Then the natural map TorR1 (M,R′)⊗R′R′′ →
TorR1 (M,R′′) is onto.

Proof. Let F• be a free resolution of M over R. The complex F2 ⊗R R′ → F1 ⊗R
R′ → F0 ⊗R R′ computes TorR1 (M,R′). The complex F2 ⊗R R′′ → F1 ⊗R R′′ →
F0 ⊗R R′′ computes TorR1 (M,R′′). Note that Fi ⊗R R′ ⊗R′ R′′ = Fi ⊗R R′′. Let
K ′ = Ker(F1⊗R R′ → F0⊗R R′) and similarly K ′′ = Ker(F1⊗R R′′ → F0⊗R R′′).
Thus we have an exact sequence

0→ K ′ → F1 ⊗R R′ → F0 ⊗R R′ →M ⊗R R′ → 0.
By the assumption that M ⊗R R′ is flat over R′, the sequence

K ′ ⊗R′ R′′ → F1 ⊗R R′′ → F0 ⊗R R′′ →M ⊗R R′′ → 0
is still exact. This means that K ′ ⊗R′ R′′ → K ′′ is surjective. Since TorR1 (M,R′)
is a quotient of K ′ and TorR1 (M,R′′) is a quotient of K ′′ we win. □

Lemma 10.99.13.00MN Let R→ R′ be a ring map. Let I ⊂ R be an ideal and I ′ = IR′.
Let M be an R-module and set M ′ = M⊗RR′. The natural map TorR1 (R′/I ′,M)→
TorR

′

1 (R′/I ′,M ′) is surjective.

Proof. Let F2 → F1 → F0 → M → 0 be a free resolution of M over R. Set
F ′
i = Fi ⊗R R′. The sequence F ′

2 → F ′
1 → F ′

0 → M ′ → 0 may no longer be exact
at F ′

1. A free resolution of M ′ over R′ therefore looks like
F ′

2 ⊕ F ′′
2 → F ′

1 → F ′
0 →M ′ → 0

for a suitable free module F ′′
2 over R′. Next, note that Fi ⊗R R′/I ′ = F ′

i/IF
′
i =

F ′
i/I

′F ′
i . So the complex F ′

2/I
′F ′

2 → F ′
1/I

′F ′
1 → F ′

0/I
′F ′

0 computes TorR1 (M,R′/I ′).
On the other hand F ′

i ⊗R′ R′/I ′ = F ′
i/I

′F ′
i and similarly for F ′′

2 . Thus the complex
F ′

2/I
′F ′

2 ⊕ F ′′
2 /I

′F ′′
2 → F ′

1/I
′F ′

1 → F ′
0/I

′F ′
0 computes TorR

′

1 (M ′, R′/I ′). Since the
vertical map on complexes

F ′
2/I

′F ′
2

//

��

F ′
1/I

′F ′
1

//

��

F ′
0/I

′F ′
0

��
F ′

2/I
′F ′

2 ⊕ F ′′
2 /I

′F ′′
2

// F ′
1/I

′F ′
1

// F ′
0/I

′F ′
0

clearly induces a surjection on cohomology we win. □

Lemma 10.99.14.00MO Let
S // S′

R //

OO

R′

OO

be a commutative diagram of local homomorphisms of local Noetherian rings. Let
I ⊂ R be a proper ideal. Let M be a finite S-module. Denote I ′ = IR′ and
M ′ = M ⊗S S′. Assume that

(1) S′ is a localization of the tensor product S ⊗R R′,
(2) M/IM is flat over R/I,
(3) TorR1 (M,R/I)→ TorR

′

1 (M ′, R′/I ′) is zero.

https://stacks.math.columbia.edu/tag/00MM
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Then M ′ is flat over R′.

Proof. Since S′ is a localization of S ⊗R R′ we see that M ′ is a localization of
M ⊗R R′. Note that by Lemma 10.39.7 the module M/IM ⊗R/I R′/I ′ = M ⊗R
R′/I ′(M ⊗R R′) is flat over R′/I ′. Hence also M ′/I ′M ′ is flat over R′/I ′ as the
localization of a flat module is flat. By Lemma 10.99.10 it suffices to show that
TorR

′

1 (M ′, R′/I ′) is zero. Since M ′ is a localization of M⊗RR′, the last assumption
implies that it suffices to show that TorR1 (M,R/I)⊗RR′ → TorR

′

1 (M ⊗RR′, R′/I ′)
is surjective.
By Lemma 10.99.13 we see that TorR1 (M,R′/I ′) → TorR

′

1 (M ⊗R R′, R′/I ′) is sur-
jective. So now it suffices to show that TorR1 (M,R/I) ⊗R R′ → TorR1 (M,R′/I ′)
is surjective. This follows from Lemma 10.99.12 by looking at the ring maps
R→ R/I → R′/I ′ and the module M . □

Please compare the lemma below to Lemma 10.101.8 (the case of a nilpotent ideal)
and Lemma 10.128.8 (the case of finitely presented algebras).

Lemma 10.99.15 (Critère de platitude par fibres; Noetherian case).00MP Let R, S, S′

be Noetherian local rings and let R → S → S′ be local ring homomorphisms. Let
m ⊂ R be the maximal ideal. Let M be an S′-module. Assume

(1) The module M is finite over S′.
(2) The module M is not zero.
(3) The module M/mM is a flat S/mS-module.
(4) The module M is a flat R-module.

Then S is flat over R and M is a flat S-module.

Proof. Set I = mS ⊂ S. Then we see that M/IM is a flat S/I-module because of
(3). Since m⊗R S′ → I ⊗S S′ is surjective we see that also m⊗RM → I ⊗S M is
surjective. Consider

m⊗RM → I ⊗S M →M.

As M is flat over R the composition is injective and so both arrows are injective. In
particular TorS1 (S/I,M) = 0 see Remark 10.75.9. By Lemma 10.99.10 we conclude
that M is flat over S. Note that since M/mS′M is not zero by Nakayama’s Lemma
10.20.1 we see that actually M is faithfully flat over S by Lemma 10.39.15 (since
it forces M/mSM ̸= 0).
Consider the exact sequence 0 → m → R → κ → 0. This gives an exact sequence
0 → TorR1 (κ, S) → m ⊗R S → I → 0. Since M is flat over S this gives an exact
sequence 0 → TorR1 (κ, S) ⊗S M → m ⊗R M → I ⊗S M → 0. By the above this
implies that TorR1 (κ, S) ⊗S M = 0. Since M is faithfully flat over S this implies
that TorR1 (κ, S) = 0 and we conclude that S is flat over R by Lemma 10.99.7. □

10.100. Base change and flatness

051D Some lemmas which deal with what happens with flatness when doing a base change.

Lemma 10.100.1.00MQ Let
S // S′

R //

OO

R′

OO

https://stacks.math.columbia.edu/tag/00MP
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be a commutative diagram of local homomorphisms of local rings. Assume that S′

is a localization of the tensor product S ⊗R R′. Let M be an S-module and set
M ′ = S′ ⊗S M .

(1) If M is flat over R then M ′ is flat over R′.
(2) If M ′ is flat over R′ and R→ R′ is flat then M is flat over R.

In particular we have
(3) If S is flat over R then S′ is flat over R′.
(4) If R′ → S′ and R→ R′ are flat then S is flat over R.

Proof. Proof of (1). If M is flat over R, then M ⊗R R′ is flat over R′ by Lemma
10.39.7. If W ⊂ S⊗RR′ is the multiplicative subset such that W−1(S⊗RR′) = S′

then M ′ = W−1(M ⊗R R′). Hence M ′ is flat over R′ as the localization of a flat
module, see Lemma 10.39.18 part (5). This proves (1) and in particular, we see
that (3) holds.

Proof of (2). Suppose that M ′ is flat over R′ and R→ R′ is flat. By (3) applied to
the diagram reflected in the northwest diagonal we see that S → S′ is flat. Thus
S → S′ is faithfully flat by Lemma 10.39.17. We are going to use the criterion of
Lemma 10.39.5 (3) to show that M is flat. Let I ⊂ R be an ideal. If I ⊗RM →M
has a kernel, so does (I ⊗RM)⊗S S′ →M ⊗S S′ = M ′. Note that I ⊗R R′ = IR′

as R→ R′ is flat, and that

(I ⊗RM)⊗S S′ = (I ⊗R R′)⊗R′ (M ⊗S S′) = IR′ ⊗R′ M ′.

From flatness of M ′ over R′ we conclude that this maps injectively into M ′. This
concludes the proof of (2), and hence (4) is true as well. □

Here is yet another application of the local criterion of flatness.

Lemma 10.100.2.0GEB Consider a commutative diagram of local rings and local homo-
morphisms

S // S′

R //

OO

R′

OO

Let M be a finite S-module. Assume that
(1) the horizontal arrows are flat ring maps
(2) M is flat over R,
(3) mRR

′ = mR′ ,
(4) R′ and S′ are Noetherian.

Then M ′ = M ⊗S S′ is flat over R′.

Proof. Since mR ⊂ R and R → R′ is flat, we get mR ⊗R R′ = mRR
′ = mR′ by

assumption (3). Observe that M ′ is a finite S′-module which is flat over R by
Lemma 10.39.9. Thus mR ⊗RM ′ →M ′ is injective. Then we get

mR ⊗RM ′ = mR ⊗R R′ ⊗R′ M ′ = mR′ ⊗R′ M ′

Thus mR′ ⊗R′ M ′ →M ′ is injective. This shows that TorR
′

1 (κR′ ,M ′) = 0 (Remark
10.75.9). Thus M ′ is flat over R′ by Lemma 10.99.7. □

https://stacks.math.columbia.edu/tag/0GEB
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10.101. Flatness criteria over Artinian rings

051E We discuss some flatness criteria for modules over Artinian rings. Note that an
Artinian local ring has a nilpotent maximal ideal so that the following two lemmas
apply to Artinian local rings.

Lemma 10.101.1.051F Let (R,m) be a local ring with nilpotent maximal ideal m. Let
M be a flat R-module. If A is a set and xα ∈M , α ∈ A is a collection of elements
of M , then the following are equivalent:

(1) {xα}α∈A forms a basis for the vector space M/mM over R/m, and
(2) {xα}α∈A forms a basis for M over R.

Proof. The implication (2) ⇒ (1) is immediate. Assume (1). By Nakayama’s
Lemma 10.20.1 the elements xα generate M . Then one gets a short exact sequence

0→ K →
⊕

α∈A
R→M → 0

Tensoring withR/m and using Lemma 10.39.12 we obtainK/mK = 0. By Nakayama’s
Lemma 10.20.1 we conclude K = 0. □

Lemma 10.101.2.051G Let R be a local ring with nilpotent maximal ideal. Let M be
an R-module. The following are equivalent

(1) M is flat over R,
(2) M is a free R-module, and
(3) M is a projective R-module.

Proof. Since any projective module is flat (as a direct summand of a free module)
and every free module is projective, it suffices to prove that a flat module is free.
Let M be a flat module. Let A be a set and let xα ∈ M , α ∈ A be elements such
that xα ∈ M/mM forms a basis over the residue field of R. By Lemma 10.101.1
the xα are a basis for M over R and we win. □

Lemma 10.101.3.051H Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
Let A be a set and let xα ∈M , α ∈ A be a collection of elements of M . Assume

(1) I is nilpotent,
(2) {xα}α∈A forms a basis for M/IM over R/I, and
(3) TorR1 (R/I,M) = 0.

Then M is free on {xα}α∈A over R.

Proof. Let R, I, M , {xα}α∈A be as in the lemma and satisfy assumptions (1), (2),
and (3). By Nakayama’s Lemma 10.20.1 the elements xα generate M over R. The
assumption TorR1 (R/I,M) = 0 implies that we have a short exact sequence

0→ I ⊗RM →M →M/IM → 0.

Let
∑
fαxα = 0 be a relation in M . By choice of xα we see that fα ∈ I. Hence we

conclude that
∑
fα ⊗ xα = 0 in I ⊗RM . The map I ⊗RM → I/I2 ⊗R/I M/IM

and the fact that {xα}α∈A forms a basis for M/IM implies that fα ∈ I2! Hence
we conclude that there are no relations among the images of the xα in M/I2M . In
other words, we see that M/I2M is free with basis the images of the xα. Using the
map I ⊗R M → I/I3 ⊗R/I2 M/I2M we then conclude that fα ∈ I3! And so on.
Since In = 0 for some n by assumption (1) we win. □
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Lemma 10.101.4.051I Let φ : R → R′ be a ring map. Let I ⊂ R be an ideal. Let M
be an R-module. Assume

(1) M/IM is flat over R/I, and
(2) R′ ⊗RM is flat over R′.

Set I2 = φ−1(φ(I2)R′). Then M/I2M is flat over R/I2.

Proof. We may replace R, M , and R′ by R/I2, M/I2M , and R′/φ(I)2R′. Then
I2 = 0 and φ is injective. By Lemma 10.99.8 and the fact that I2 = 0 it suffices to
prove that TorR1 (R/I,M) = K = Ker(I ⊗RM → M) is zero. Set M ′ = M ⊗R R′

and I ′ = IR′. By assumption the map I ′⊗R′ M ′ →M ′ is injective. Hence K maps
to zero in

I ′ ⊗R′ M ′ = I ′ ⊗RM = I ′ ⊗R/I M/IM.

Then I → I ′ is an injective map of R/I-modules. Since M/IM is flat over R/I the
map

I ⊗R/I M/IM −→ I ′ ⊗R/I M/IM

is injective. This implies that K is zero in I ⊗RM = I ⊗R/IM/IM as desired. □

Lemma 10.101.5.051J Let φ : R → R′ be a ring map. Let I ⊂ R be an ideal. Let M
be an R-module. Assume

(1) I is nilpotent,
(2) R→ R′ is injective,
(3) M/IM is flat over R/I, and
(4) R′ ⊗RM is flat over R′.

Then M is flat over R.

Proof. Define inductively I1 = I and In+1 = φ−1(φ(In)2R′) for n ≥ 1. Note that
by Lemma 10.101.4 we find that M/InM is flat over R/In for each n ≥ 1. It is
clear that φ(In) ⊂ φ(I)2nR′. Since I is nilpotent we see that φ(In) = 0 for some
n. As φ is injective we conclude that In = 0 for some n and we win. □

Here is the local Artinian version of the local criterion for flatness.

Lemma 10.101.6.051K Let R be an Artinian local ring. Let M be an R-module. Let
I ⊂ R be a proper ideal. The following are equivalent

(1) M is flat over R, and
(2) M/IM is flat over R/I and TorR1 (R/I,M) = 0.

Proof. The implication (1)⇒ (2) follows immediately from the definitions. Assume
M/IM is flat over R/I and TorR1 (R/I,M) = 0. By Lemma 10.101.2 this implies
that M/IM is free over R/I. Pick a set A and elements xα ∈ M such that the
images in M/IM form a basis. By Lemma 10.101.3 we conclude that M is free and
in particular flat. □

It turns out that flatness descends along injective homomorphism whose source is
an Artinian ring.

Lemma 10.101.7.051L Let R→ S be a ring map. Let M be an R-module. Assume
(1) R is Artinian
(2) R→ S is injective, and
(3) M ⊗R S is a flat S-module.

Then M is a flat R-module.

https://stacks.math.columbia.edu/tag/051I
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Proof. First proof: Let I ⊂ R be the Jacobson radical of R. Then I is nilpotent
and M/IM is flat over R/I as R/I is a product of fields, see Section 10.53. Hence
M is flat by an application of Lemma 10.101.5.

Second proof: By Lemma 10.53.6 we may write R =
∏
Ri as a finite product of

local Artinian rings. This induces similar product decompositions for both R and
S. Hence we reduce to the case where R is local Artinian (details omitted).

Assume that R → S, M are as in the lemma satisfying (1), (2), and (3) and in
addition that R is local with maximal ideal m. Let A be a set and xα ∈ A be
elements such that xα forms a basis for M/mM over R/m. By Nakayama’s Lemma
10.20.1 we see that the elements xα generate M as an R-module. Set N = S⊗RM
and I = mS. Then {1 ⊗ xα}α∈A is a family of elements of N which form a basis
for N/IN . Moreover, since N is flat over S we have TorS1 (S/I,N) = 0. Thus we
conclude from Lemma 10.101.3 that N is free on {1 ⊗ xα}α∈A. The injectivity of
R → S then guarantees that there cannot be a nontrivial relation among the xα
with coefficients in R. □

Please compare the lemma below to Lemma 10.99.15 (the case of Noetherian lo-
cal rings), Lemma 10.128.8 (the case of finitely presented algebras), and Lemma
10.128.10 (the case of locally nilpotent ideals).

Lemma 10.101.8 (Critère de platitude par fibres: Nilpotent case).06A5 Let

S // S′

R

__ >>

be a commutative diagram in the category of rings. Let I ⊂ R be a nilpotent ideal
and M an S′-module. Assume

(1) The module M/IM is a flat S/IS-module.
(2) The module M is a flat R-module.

Then M is a flat S-module and Sq is flat over R for every q ⊂ S such that M⊗Sκ(q)
is nonzero.

Proof. As M is flat over R tensoring with the short exact sequence 0→ I → R→
R/I → 0 gives a short exact sequence

0→ I ⊗RM →M →M/IM → 0.

Note that I ⊗RM → IS ⊗S M is surjective. Combined with the above this means
both maps in

I ⊗RM → IS ⊗S M →M

are injective. Hence TorS1 (IS,M) = 0 (see Remark 10.75.9) and we conclude that
M is a flat S-module by Lemma 10.99.8. To finish we need to show that Sq is flat
over R for any prime q ⊂ S such that M ⊗S κ(q) is nonzero. This follows from
Lemma 10.39.15 and 10.39.10. □

https://stacks.math.columbia.edu/tag/06A5
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10.102. What makes a complex exact?

00MR Some of this material can be found in the paper [BE73] by Buchsbaum and Eisen-
bud.
Situation 10.102.1.00MS Here R is a ring, and we have a complex

0→ Rne
φe−→ Rne−1

φe−1−−−→ . . .
φi+1−−−→ Rni

φi−→ Rni−1
φi−1−−−→ . . .

φ1−→ Rn0

In other words we require φi ◦ φi+1 = 0 for i = 1, . . . , e− 1.
Lemma 10.102.2.00MT Suppose R is a ring. Let

. . .
φi+1−−−→ Rni

φi−→ Rni−1
φi−1−−−→ . . .

be a complex of finite free R-modules. Suppose that for some i some matrix coeffi-
cient of the map φi is invertible. Then the displayed complex is isomorphic to the
direct sum of a complex

. . .→ Rni+2
φi+2−−−→ Rni+1 → Rni−1 → Rni−1−1 → Rni−2

φi−2−−−→ Rni−3 → . . .

and the complex . . . → 0 → R → R → 0 → . . . where the map R → R is the
identity map.
Proof. The assumption means, after a change of basis of Rni and Rni−1 that the
first basis vector of Rni is mapped via φi to the first basis vector of Rni−1 . Let
ej denote the jth basis vector of Rni and fk the kth basis vector of Rni−1 . Write
φi(ej) =

∑
ajkfk. So a1k = 0 unless k = 1 and a11 = 1. Change basis on Rni

again by setting e′
j = ej −aj1e1 for j > 1. After this change of coordinates we have

aj1 = 0 for j > 1. Note the image of Rni+1 → Rni is contained in the subspace
spanned by ej , j > 1. Note also that Rni−1 → Rni−2 has to annihilate f1 since it is
in the image. These conditions and the shape of the matrix (ajk) for φi imply the
lemma. □

In Situation 10.102.1 we say a complex of the form

0→ . . .→ 0→ R
1−→ R→ 0→ . . .→ 0

or of the form
0→ . . .→ 0→ R

is trivial. More precisely, we say 0→ Rne → Rne−1 → . . .→ Rn0 is trivial if either
there exists an e ≥ i ≥ 1 with ni = ni−1 = 1, φi = idR, and nj = 0 for j ̸∈ {i, i−1}
or n0 = 1 and ni = 0 for i > 0. The lemma above clearly says that any finite
complex of finite free modules over a local ring is up to direct sums with trivial
complexes the same as a complex all of whose maps have all matrix coefficients in
the maximal ideal.
Lemma 10.102.3.00MY In Situation 10.102.1. Suppose R is a local Noetherian ring with
maximal ideal m. Assume m ∈ Ass(R), in other words R has depth 0. Suppose
that 0 → Rne → Rne−1 → . . . → Rn0 is exact at Rne , . . . , Rn1 . Then the complex
is isomorphic to a direct sum of trivial complexes.
Proof. Pick x ∈ R, x ̸= 0, with mx = 0. Let i be the biggest index such that
ni > 0. If i = 0, then the statement is true. If i > 0 denote f1 the first basis vector
of Rni . Since xf1 is not mapped to zero by exactness of the complex we deduce
that some matrix coefficient of the map Rni → Rni−1 is not in m. Lemma 10.102.2
then allows us to decrease ne + . . .+ n1. Induction finishes the proof. □
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Lemma 10.102.4.00MU In Situation 10.102.1. Let R be a Artinian local ring. Suppose
that 0 → Rne → Rne−1 → . . . → Rn0 is exact at Rne , . . . , Rn1 . Then the complex
is isomorphic to a direct sum of trivial complexes.

Proof. This is a special case of Lemma 10.102.3 because an Artinian local ring has
depth 0. □

Below we define the rank of a map of finite free modules. This is just one possible
definition of rank. It is just the definition that works in this section; there are
others that may be more convenient in other settings.

Definition 10.102.5.00MV Let R be a ring. Suppose that φ : Rm → Rn is a map of finite
free modules.

(1) The rank of φ is the maximal r such that ∧rφ : ∧rRm → ∧rRn is nonzero.
(2) We let I(φ) ⊂ R be the ideal generated by the r× r minors of the matrix

of φ, where r is the rank as defined above.

The rank of φ : Rm → Rn is 0 if and only if φ = 0 and in this case I(φ) = R.

Lemma 10.102.6.00MW In Situation 10.102.1, suppose the complex is isomorphic to a
direct sum of trivial complexes. Then we have

(1) the maps φi have rank ri = ni−ni+1 + . . .+ (−1)e−i−1ne−1 + (−1)e−ine,
(2) for all i, 1 ≤ i ≤ e− 1 we have rank(φi+1) + rank(φi) = ni,
(3) each I(φi) = R.

Proof. We may assume the complex is the direct sum of trivial complexes. Then
for each i we can split the standard basis elements of Rni into those that map to a
basis element of Rni−1 and those that are mapped to zero (and these are mapped
onto by basis elements of Rni+1 if i > 0). Using descending induction starting with
i = e it is easy to prove that there are ri+1-basis elements of Rni which are mapped
to zero and ri which are mapped to basis elements of Rni−1 . From this the result
follows. □

Lemma 10.102.7.00MZ In Situation 10.102.1. Suppose R is a local ring with maximal
ideal m. Suppose that 0 → Rne → Rne−1 → . . . → Rn0 is exact at Rne , . . . , Rn1 .
Let x ∈ m be a nonzerodivisor. The complex 0→ (R/xR)ne → . . .→ (R/xR)n1 is
exact at (R/xR)ne , . . . , (R/xR)n2 .

Proof. Denote F• the complex with terms Fi = Rni and differential given by φi.
Then we have a short exact sequence of complexes

0→ F•
x−→ F• → F•/xF• → 0

Applying the snake lemma we get a long exact sequence

Hi(F•) x−→ Hi(F•)→ Hi(F•/xF•)→ Hi−1(F•) x−→ Hi−1(F•)

The lemma follows. □

Lemma 10.102.8 (Acyclicity lemma).00N0 [PS73, Lemma 1.8]Let R be a local Noetherian ring. Let 0 →
Me →Me−1 → . . .→M0 be a complex of finite R-modules. Assume depth(Mi) ≥
i. Let i be the largest index such that the complex is not exact at Mi. If i > 0 then
Ker(Mi →Mi−1)/ Im(Mi+1 →Mi) has depth ≥ 1.

https://stacks.math.columbia.edu/tag/00MU
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Proof. Let H = Ker(Mi → Mi−1)/ Im(Mi+1 → Mi) be the cohomology group
in question. We may break the complex into short exact sequences 0 → Me →
Me−1 → Ke−2 → 0, 0 → Kj → Mj → Kj−1 → 0, for i + 2 ≤ j ≤ e − 2,
0 → Ki+1 → Mi+1 → Bi → 0, 0 → Ki → Mi → Mi−1, and 0 → Bi → Ki →
H → 0. We proceed up through these complexes to prove the statements about
depths, repeatedly using Lemma 10.72.6. First of all, since depth(Me) ≥ e, and
depth(Me−1) ≥ e − 1 we deduce that depth(Ke−2) ≥ e − 1. At this point the
sequences 0 → Kj → Mj → Kj−1 → 0 for i + 2 ≤ j ≤ e − 2 imply similarly that
depth(Kj−1) ≥ j for i+ 2 ≤ j ≤ e− 2. The sequence 0→ Ki+1 →Mi+1 → Bi → 0
then shows that depth(Bi) ≥ i + 1. The sequence 0 → Ki → Mi → Mi−1 shows
that depth(Ki) ≥ 1 since Mi has depth ≥ i ≥ 1 by assumption. The sequence
0→ Bi → Ki → H → 0 then implies the result. □

Proposition 10.102.9.00N1 [BE73, Corollary 1]In Situation 10.102.1, suppose R is a local Noetherian ring.
The following are equivalent

(1) 0→ Rne → Rne−1 → . . .→ Rn0 is exact at Rne , . . . , Rn1 , and
(2) for all i, 1 ≤ i ≤ e the following two conditions are satisfied:

(a) rank(φi) = ri where ri = ni−ni+1+. . .+(−1)e−i−1ne−1+(−1)e−ine,
(b) I(φi) = R, or I(φi) contains a regular sequence of length i.

Proof. If for some i some matrix coefficient of φi is not in m, then we apply Lemma
10.102.2. It is easy to see that the proposition for a complex and for the same
complex with a trivial complex added to it are equivalent. Thus we may assume
that all matrix entries of each φi are elements of the maximal ideal. We may also
assume that e ≥ 1.

Assume the complex is exact at Rne , . . . , Rn1 . Let q ∈ Ass(R). Note that the
ring Rq has depth 0 and that the complex remains exact after localization at q.
We apply Lemmas 10.102.3 and 10.102.6 to the localized complex over Rq. We
conclude that φi,q has rank ri for all i. Since R →

⊕
q∈Ass(R) Rq is injective

(Lemma 10.63.19), we conclude that φi has rank ri over R by the definition of rank
as given in Definition 10.102.5. Therefore we see that I(φi)q = I(φi,q) as the ranks
do not change. Since all of the ideals I(φi)q, e ≥ i ≥ 1 are equal to Rq (by the
lemmas referenced above) we conclude none of the ideals I(φi) is contained in q.
This implies that I(φe)I(φe−1) . . . I(φ1) is not contained in any of the associated
primes of R. By Lemma 10.15.2 we may choose x ∈ I(φe)I(φe−1) . . . I(φ1), x ̸∈ q
for all q ∈ Ass(R). Observe that x is a nonzerodivisor (Lemma 10.63.9). According
to Lemma 10.102.7 the complex 0 → (R/xR)ne → . . . → (R/xR)n1 is exact at
(R/xR)ne , . . . , (R/xR)n2 . By induction on e all the ideals I(φi)/xR have a regular
sequence of length i − 1. This proves that I(φi) contains a regular sequence of
length i.

Assume (2)(a) and (2)(b) hold. We claim that for any prime p ⊂ R conditions
(2)(a) and (2)(b) hold for the complex 0→ Rnep → R

ne−1
p → . . .→ Rn0

p with maps
φi,p over Rp. Namely, since I(φi) contains a nonzero divisor, the image of I(φi) in
Rp is nonzero. This implies that the rank of φi,p is the same as the rank of φi: the
rank as defined above of a matrix φ over a ring R can only drop when passing to an
R-algebra R′ and this happens if and only if I(φ) maps to zero in R′. Thus (2)(a)
holds. Having said this we know that I(φi,p) = I(φi)p and we see that (2)(b) is
preserved under localization as well. By induction on the dimension of R we may
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assume the complex is exact when localized at any nonmaximal prime p of R. Thus
Ker(φi)/ Im(φi+1) has support contained in {m} and hence if nonzero has depth
0. As I(φi) ⊂ m for all i because of what was said in the first paragraph of the
proof, we see that (2)(b) implies depth(R) ≥ e. By Lemma 10.102.8 we see that
the complex is exact at Rne , . . . , Rn1 concluding the proof. □

Remark 10.102.10.0GLM If in Proposition 10.102.9 the equivalent conditions (1) and (2)
are satisfied, then there exists a j such that I(φi) = R if and only if i ≥ j. As in the
proof of the proposition, it suffices to see this when all the matrices have coefficients
in the maximal ideal m of R. In this case we see that I(φj) = R if and only if φj = 0.
But if φj = 0, then we get arbitrarily long exact complexes 0 → Rne → Rne−1 →
. . .→ Rnj → 0→ 0→ . . .→ 0 and hence by the proposition we see that I(φi) for
i > j has to be R (since otherwise it is a proper ideal of a Noetherian local ring
containing arbitrary long regular sequences which is impossible).

10.103. Cohen-Macaulay modules

00N2 Here we show that Cohen-Macaulay modules have good properties. We postpone
using Ext groups to establish the connection with duality and so on.

Definition 10.103.1.00N3 Let R be a Noetherian local ring. Let M be a finite R-module.
We say M is Cohen-Macaulay if dim(Supp(M)) = depth(M).

A first goal will be to establish Proposition 10.103.4. We do this by a (perhaps
nonstandard) sequence of elementary lemmas involving almost none of the earlier
results on depth. Let us introduce some notation.
Let R be a local Noetherian ring. Let M be a Cohen-Macaulay module, and
let f1, . . . , fd be an M -regular sequence with d = dim(Supp(M)). We say that
g ∈ m is good with respect to (M,f1, . . . , fd) if for all i = 0, 1, . . . , d − 1 we have
dim(Supp(M) ∩ V (g, f1, . . . , fi)) = d − i − 1. This is equivalent to the condition
that dim(Supp(M/(f1, . . . , fi)M) ∩ V (g)) = d− i− 1 for i = 0, 1, . . . , d− 1.

Lemma 10.103.2.00N4 Notation and assumptions as above. If g is good with respect
to (M,f1, . . . , fd), then (a) g is a nonzerodivisor on M , and (b) M/gM is Cohen-
Macaulay with maximal regular sequence f1, . . . , fd−1.

Proof. We prove the lemma by induction on d. If d = 0, then M is finite and
there is no case to which the lemma applies. If d = 1, then we have to show that
g : M → M is injective. The kernel K has support {m} because by assumption
dim Supp(M) ∩ V (g) = 0. Hence K has finite length. Hence f1 : K → K injective
implies the length of the image is the length of K, and hence f1K = K, which by
Nakayama’s Lemma 10.20.1 implies K = 0. Also, dim Supp(M/gM) = 0 and so
M/gM is Cohen-Macaulay of depth 0.
Assume d > 1. Observe that g is good for (M/f1M,f2, . . . , fd), as is easily seen from
the definition. By induction, we have that (a) g is a nonzerodivisor on M/f1M and
(b) M/(g, f1)M is Cohen-Macaulay with maximal regular sequence f2, . . . , fd−1.
By Lemma 10.68.4 we see that g, f1 is an M -regular sequence. Hence g is a nonze-
rodivisor on M and f1, . . . , fd−1 is an M/gM -regular sequence. □

Lemma 10.103.3.00N5 Let R be a Noetherian local ring. Let M be a Cohen-Macaulay
module overR. Suppose g ∈ m is such that dim(Supp(M)∩V (g)) = dim(Supp(M))−
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1. Then (a) g is a nonzerodivisor on M , and (b) M/gM is Cohen-Macaulay of depth
one less.

Proof. Choose a M -regular sequence f1, . . . , fd with d = dim(Supp(M)). If g is
good with respect to (M,f1, . . . , fd) we win by Lemma 10.103.2. In particular
the lemma holds if d = 1. (The case d = 0 does not occur.) Assume d > 1.
Choose an element h ∈ R such that (i) h is good with respect to (M,f1, . . . , fd),
and (ii) dim(Supp(M) ∩ V (h, g)) = d − 2. To see h exists, let {qj} be the (finite)
set of minimal primes of the closed sets Supp(M), Supp(M) ∩ V (f1, . . . , fi), i =
1, . . . , d − 1, and Supp(M) ∩ V (g). None of these qj is equal to m and hence we
may find h ∈ m, h ̸∈ qj by Lemma 10.15.2. It is clear that h satisfies (i) and (ii).
From Lemma 10.103.2 we conclude that M/hM is Cohen-Macaulay. By (ii) we see
that the pair (M/hM, g) satisfies the induction hypothesis. Hence M/(h, g)M is
Cohen-Macaulay and g : M/hM → M/hM is injective. By Lemma 10.68.4 we see
that g : M → M and h : M/gM → M/gM are injective. Combined with the fact
that M/(g, h)M is Cohen-Macaulay this finishes the proof. □

Proposition 10.103.4.00N6 Let R be a Noetherian local ring, with maximal ideal m. Let
M be a Cohen-Macaulay module over R whose support has dimension d. Suppose
that g1, . . . , gc are elements of m such that dim(Supp(M/(g1, . . . , gc)M)) = d − c.
Then g1, . . . , gc is an M -regular sequence, and can be extended to a maximal M -
regular sequence.

Proof. Let Z = Supp(M) ⊂ Spec(R). By Lemma 10.60.13 in the chain Z ⊃
Z ∩ V (g1) ⊃ . . . ⊃ Z ∩ V (g1, . . . , gc) each step decreases the dimension at most by
1. Hence by assumption each step decreases the dimension by exactly 1 each time.
Thus we may successively apply Lemma 10.103.3 to the modules M/(g1, . . . , gi)
and the element gi+1.
To extend g1, . . . , gc by one element if c < d we simply choose an element gc+1 ∈ m
which is not in any of the finitely many minimal primes of Z ∩ V (g1, . . . , gc), using
Lemma 10.15.2. □

Having proved Proposition 10.103.4 we continue the development of standard the-
ory.

Lemma 10.103.5.0C6G Let R be a Noetherian local ring with maximal ideal m. Let M
be a finite R-module. Let x ∈ m be a nonzerodivisor on M . Then M is Cohen-
Macaulay if and only if M/xM is Cohen-Macaulay.

Proof. By Lemma 10.72.7 we have depth(M/xM) = depth(M) − 1. By Lemma
10.63.10 we have dim(Supp(M/xM)) = dim(Supp(M))− 1. □

Lemma 10.103.6.0AAD Let R → S be a surjective homomorphism of Noetherian local
rings. Let N be a finite S-module. Then N is Cohen-Macaulay as an S-module if
and only if N is Cohen-Macaulay as an R-module.

Proof. Omitted. □

Lemma 10.103.7.0BUS [DG67, Chapter 0,
Proposition 16.5.4]

Let R be a Noetherian local ring. Let M be a finite Cohen-
Macaulay R-module. If p ∈ Ass(M), then dim(R/p) = dim(Supp(M)) and p is a
minimal prime in the support of M . In particular, M has no embedded associated
primes.
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Proof. By Lemma 10.72.9 we have depth(M) ≤ dim(R/p). Of course dim(R/p) ≤
dim(Supp(M)) as p ∈ Supp(M) (Lemma 10.63.2). Thus we have equality in both
inequalities as M is Cohen-Macaulay. Then p must be minimal in Supp(M) oth-
erwise we would have dim(R/p) < dim(Supp(M)). Finally, minimal primes in the
support of M are equal to the minimal elements of Ass(M) (Proposition 10.63.6)
hence M has no embedded associated primes (Definition 10.67.1). □

Definition 10.103.8.00NF Let R be a Noetherian local ring. A finite module M over R
is called a maximal Cohen-Macaulay module if depth(M) = dim(R).

In other words, a maximal Cohen-Macaulay module over a Noetherian local ring
is a finite module with the largest possible depth over that ring. Equivalently,
a maximal Cohen-Macaulay module over a Noetherian local ring R is a Cohen-
Macaulay module of dimension equal to the dimension of the ring. In particular, if
M is a Cohen-Macaulay R-module with Spec(R) = Supp(M), then M is maximal
Cohen-Macaulay. Thus the following two lemmas are on maximal Cohen-Macaulay
modules.

Lemma 10.103.9.0AAE Let R be a Noetherian local ring. Assume there exists a Cohen-
Macaulay module M with Spec(R) = Supp(M). Then any maximal chain of prime
ideals p0 ⊂ p1 ⊂ . . . ⊂ pn has length n = dim(R).

Proof. We will prove this by induction on dim(R). If dim(R) = 0, then the state-
ment is clear. Assume dim(R) > 0. Then n > 0. Choose an element x ∈ p1, with
x not in any of the minimal primes of R, and in particular x ̸∈ p0. (See Lemma
10.15.2.) Then dim(R/xR) = dim(R)−1 by Lemma 10.60.13. The module M/xM
is Cohen-Macaulay over R/xR by Proposition 10.103.4 and Lemma 10.103.6. The
support of M/xM is Spec(R/xR) by Lemma 10.40.9. After replacing x by xn

for some n, we may assume that p1 is an associated prime of M/xM , see Lemma
10.72.8. By Lemma 10.103.7 we conclude that p1/(x) is a minimal prime of R/xR.
It follows that the chain p1/(x) ⊂ . . . ⊂ pn/(x) is a maximal chain of primes in
R/xR. By induction we find that this chain has length dim(R/xR) = dim(R)− 1
as desired. □

Lemma 10.103.10.0AAF Suppose R is a Noetherian local ring. Assume there exists a
Cohen-Macaulay module M with Spec(R) = Supp(M). Then for a prime p ⊂ R
we have

dim(R) = dim(Rp) + dim(R/p).

Proof. Follows immediately from Lemma 10.103.9. □

Lemma 10.103.11.0AAG Suppose R is a Noetherian local ring. Let M be a Cohen-
Macaulay module over R. For any prime p ⊂ R the module Mp is Cohen-Macaulay
over Rp.

Proof. We may and do assume p ̸= m and M not zero. Choose a maximal chain
of primes p = pc ⊂ pc−1 ⊂ . . . ⊂ p1 ⊂ m. If we prove the result for Mp1 over Rp1 ,
then the lemma will follow by induction on c. Thus we may assume that there is no
prime strictly between p and m. Note that dim(Supp(Mp)) ≤ dim(Supp(M)) − 1
because any chain of primes in the support of Mp can be extended by one more
prime (namely m) in the support of M . On the other hand, we have depth(Mp) ≥
depth(M) − dim(R/p) = depth(M) − 1 by Lemma 10.72.10 and our choice of
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p. Thus depth(Mp) ≥ dim(Supp(Mp)) as desired (the other inequality is Lemma
10.72.3). □

Definition 10.103.12.0AAH Let R be a Noetherian ring. Let M be a finite R-module.
We say M is Cohen-Macaulay if Mp is a Cohen-Macaulay module over Rp for all
primes p of R.

By Lemma 10.103.11 it suffices to check this in the maximal ideals of R.

Lemma 10.103.13.0AAI Let R be a Noetherian ring. Let M be a Cohen-Macaulay
module over R. Then M ⊗R R[x1, . . . , xn] is a Cohen-Macaulay module over
R[x1, . . . , xn].

Proof. By induction on the number of variables it suffices to prove this for M [x] =
M ⊗R R[x] over R[x]. Let m ⊂ R[x] be a maximal ideal, and let p = R ∩ m.
Let f1, . . . , fd be a Mp-regular sequence in the maximal ideal of Rp of length d =
dim(Supp(Mp)). Note that since R[x] is flat over R the localization R[x]m is flat
over Rp. Hence, by Lemma 10.68.5, the sequence f1, . . . , fd is a M [x]m-regular
sequence of length d in R[x]m. The quotient

Q = M [x]m/(f1, . . . , fd)M [x]m = Mp/(f1, . . . , fd)Mp ⊗Rp
R[x]m

has support equal to the primes lying over p because Rp → R[x]m is flat and the
support of Mp/(f1, . . . , fd)Mp is equal to {p} (details omitted; hint: follows from
Lemmas 10.40.4 and 10.40.5). Hence the dimension is 1. To finish the proof it
suffices to find an f ∈ m which is a nonzerodivisor on Q. Since m is a maximal
ideal, the field extension κ(m)/κ(p) is finite (Theorem 10.34.1). Hence we can find
f ∈ m which viewed as a polynomial in x has leading coefficient not in p. Such an
f acts as a nonzerodivisor on

Mp/(f1, . . . , fd)Mp ⊗R R[x] =
⊕

n≥0
Mp/(f1, . . . , fd)Mp · xn

and hence acts as a nonzerodivisor on Q. □

10.104. Cohen-Macaulay rings

00N7 Most of the results of this section are special cases of the results in Section 10.103.

Definition 10.104.1.00N8 A Noetherian local ring R is called Cohen-Macaulay if it is
Cohen-Macaulay as a module over itself.

Note that this is equivalent to requiring the existence of a R-regular sequence
x1, . . . , xd of the maximal ideal such that R/(x1, . . . , xd) has dimension 0. We will
usually just say “regular sequence” and not “R-regular sequence”.

Lemma 10.104.2.02JN Let R be a Noetherian local Cohen-Macaulay ring with maximal
ideal m. Let x1, . . . , xc ∈ m be elements. Then

x1, . . . , xc is a regular sequence ⇔ dim(R/(x1, . . . , xc)) = dim(R)− c
If so x1, . . . , xc can be extended to a regular sequence of length dim(R) and each
quotient R/(x1, . . . , xi) is a Cohen-Macaulay ring of dimension dim(R)− i.

Proof. Special case of Proposition 10.103.4. □

Lemma 10.104.3.00N9 Let R be Noetherian local. Suppose R is Cohen-Macaulay of
dimension d. Any maximal chain of ideals p0 ⊂ p1 ⊂ . . . ⊂ pn has length n = d.
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Proof. Special case of Lemma 10.103.9. □

Lemma 10.104.4.00NA Suppose R is a Noetherian local Cohen-Macaulay ring of dimen-
sion d. For any prime p ⊂ R we have

dim(R) = dim(Rp) + dim(R/p).

Proof. Follows immediately from Lemma 10.104.3. (Also, this is a special case of
Lemma 10.103.10.) □

Lemma 10.104.5.00NB Suppose R is a Cohen-Macaulay local ring. For any prime p ⊂ R
the ring Rp is Cohen-Macaulay as well.

Proof. Special case of Lemma 10.103.11. □

Definition 10.104.6.00NC A Noetherian ring R is called Cohen-Macaulay if all its local
rings are Cohen-Macaulay.

Lemma 10.104.7.00ND Suppose R is a Noetherian Cohen-Macaulay ring. Any polyno-
mial algebra over R is Cohen-Macaulay.

Proof. Special case of Lemma 10.103.13. □

Lemma 10.104.8.00NE Let R be a Noetherian local Cohen-Macaulay ring of dimension
d. Let 0→ K → R⊕n → M → 0 be an exact sequence of R-modules. Then either
M = 0, or depth(K) > depth(M), or depth(K) = depth(M) = d.

Proof. This is a special case of Lemma 10.72.6. □

Lemma 10.104.9.00NG Let R be a local Noetherian Cohen-Macaulay ring of dimension
d. Let M be a finite R-module of depth e. There exists an exact complex

0→ K → Fd−e−1 → . . .→ F0 →M → 0
with each Fi finite free and K maximal Cohen-Macaulay.

Proof. Immediate from the definition and Lemma 10.104.8. □

Lemma 10.104.10.06LC Let φ : A → B be a map of local rings. Assume that B is
Noetherian and Cohen-Macaulay and that mB =

√
φ(mA)B. Then there exists

a sequence of elements f1, . . . , fdim(B) in A such that φ(f1), . . . , φ(fdim(B)) is a
regular sequence in B.

Proof. By induction on dim(B) it suffices to prove: If dim(B) ≥ 1, then we can
find an element f of A which maps to a nonzerodivisor in B. By Lemma 10.104.2
it suffices to find f ∈ A whose image in B is not contained in any of the finitely
many minimal primes q1, . . . , qr of B. By the assumption that mB =

√
φ(mA)B

we see that mA ̸⊂ φ−1(qi). Hence we can find f by Lemma 10.15.2. □

10.105. Catenary rings

00NH Compare with Topology, Section 5.11.

Definition 10.105.1.00NI A ring R is said to be catenary if for any pair of prime ideals
p ⊂ q, there exists an integer bounding the lengths of all finite chains of prime
ideals p = p0 ⊂ p1 ⊂ . . . ⊂ pe = q and all maximal such chains have the same
length.
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Lemma 10.105.2.02IH A ring R is catenary if and only if the topological space Spec(R)
is catenary (see Topology, Definition 5.11.4).

Proof. Immediate from the definition and the characterization of irreducible closed
subsets in Lemma 10.26.1. □

In general it is not the case that a finitely generated R-algebra is catenary if R is.
Thus we make the following definition.

Definition 10.105.3.00NL A Noetherian ring R is said to be universally catenary if every
R algebra of finite type is catenary.

We restrict to Noetherian rings as it is not clear this definition is the right one
for non-Noetherian rings. By Lemma 10.105.7 to check a Noetherian ring R is
universally catenary, it suffices to check each polynomial algebra R[x1, . . . , xn] is
catenary.

Lemma 10.105.4.00NJ Any localization of a catenary ring is catenary. Any localization
of a Noetherian universally catenary ring is universally catenary.

Proof. Let A be a ring and let S ⊂ A be a multiplicative subset. The description
of Spec(S−1A) in Lemma 10.17.5 shows that if A is catenary, then so is S−1A. If
S−1A→ C is of finite type, then C = S−1B for some finite type ring map A→ B.
Hence if A is Noetherian and universally catenary, then B is catenary and we see
that C is catenary too. This proves the lemma. □

Lemma 10.105.5.0ECE Let A be a Noetherian universally catenary ring. Any A-algebra
essentially of finite type over A is universally catenary.

Proof. If B is a finite type A-algebra, then B is Noetherian by Lemma 10.31.1.
Any finite type B-algebra is a finite type A-algebra and hence catenary by our
assumption that A is universally catenary. Thus B is universally catenary. Any
localization of B is universally catenary by Lemma 10.105.4 and this finishes the
proof. □

Lemma 10.105.6.0AUN Let R be a ring. The following are equivalent
(1) R is catenary,
(2) Rp is catenary for all prime ideals p,
(3) Rm is catenary for all maximal ideals m.

Assume R is Noetherian. The following are equivalent
(1) R is universally catenary,
(2) Rp is universally catenary for all prime ideals p,
(3) Rm is universally catenary for all maximal ideals m.

Proof. The implication (1) ⇒ (2) follows from Lemma 10.105.4 in both cases. The
implication (2) ⇒ (3) is immediate in both cases. Assume Rm is catenary for all
maximal ideals m of R. If p ⊂ q are primes in R, then choose a maximal ideal
q ⊂ m. Chains of primes ideals between p and q are in 1-to-1 correspondence with
chains of prime ideals between pRm and qRm hence we see R is catenary. Assume
R is Noetherian and Rm is universally catenary for all maximal ideals m of R. Let
R→ S be a finite type ring map. Let q be a prime ideal of S lying over the prime
p ⊂ R. Choose a maximal ideal p ⊂ m in R. Then Rp is a localization of Rm hence
universally catenary by Lemma 10.105.4. Then Sp is catenary as a finite type ring
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over Rp. Hence Sq is catenary as a localization. Thus S is catenary by the first
case treated above. □

Lemma 10.105.7.00NK Any quotient of a catenary ring is catenary. Any quotient of a
Noetherian universally catenary ring is universally catenary.

Proof. Let A be a ring and let I ⊂ A be an ideal. The description of Spec(A/I) in
Lemma 10.17.7 shows that if A is catenary, then so is A/I. The second statement
is a special case of Lemma 10.105.5. □

Lemma 10.105.8.0AUP Let R be a Noetherian ring.
(1) R is catenary if and only if R/p is catenary for every minimal prime p.
(2) R is universally catenary if and only if R/p is universally catenary for

every minimal prime p.

Proof. If a ⊂ b is an inclusion of primes of R, then we can find a minimal prime
p ⊂ a and the first assertion is clear. We omit the proof of the second. □

Lemma 10.105.9.00NM A Noetherian Cohen-Macaulay ring is universally catenary. More
generally, if R is a Noetherian ring and M is a Cohen-Macaulay R-module with
Supp(M) = Spec(R), then R is universally catenary.

Proof. Since a polynomial algebra over R is Cohen-Macaulay, by Lemma 10.104.7,
it suffices to show that a Cohen-Macaulay ring is catenary. Let R be Cohen-
Macaulay and p ⊂ q primes of R. By definition Rq and Rp are Cohen-Macaulay.
Take a maximal chain of primes p = p0 ⊂ p1 ⊂ . . . ⊂ pn = q. Next choose
a maximal chain of primes q0 ⊂ q1 ⊂ . . . ⊂ qm = p. By Lemma 10.104.3 we
have n + m = dim(Rq). And we have m = dim(Rp) by the same lemma. Hence
n = dim(Rq)− dim(Rp) is independent of choices.
To prove the more general statement, argue exactly as above but using Lemmas
10.103.13 and 10.103.9. □

Lemma 10.105.10.0ECF Let (A,m) be a Noetherian local ring. The following are equiv-
alent

(1) A is catenary, and
(2) p 7→ dim(A/p) is a dimension function on Spec(A).

Proof. If A is catenary, then Spec(A) has a dimension function δ by Topology,
Lemma 5.20.4 (and Lemma 10.105.2). We may assume δ(m) = 0. Then we see that

δ(p) = codim(V (m), V (p)) = dim(A/p)
by Topology, Lemma 5.20.2. In this way we see that (1) implies (2). The reverse
implication follows from Topology, Lemma 5.20.2 as well. □

10.106. Regular local rings

00NN It is not that easy to show that all prime localizations of a regular local ring are
regular. In fact, quite a bit of the material developed so far is geared towards a
proof of this fact. See Proposition 10.110.5, and trace back the references.

Lemma 10.106.1.00NO Let (R,m, κ) be a regular local ring of dimension d. The graded
ring

⊕
mn/mn+1 is isomorphic to the graded polynomial algebra κ[X1, . . . , Xd].
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Proof. Let x1, . . . , xd be a minimal set of generators for the maximal ideal m, see
Definition 10.60.10. There is a surjection κ[X1, . . . , Xd] →

⊕
mn/mn+1, which

maps Xi to the class of xi in m/m2. Since d(R) = d by Proposition 10.60.9 we
know that the numerical polynomial n 7→ dimκm

n/mn+1 has degree d − 1. By
Lemma 10.58.10 we conclude that the surjection κ[X1, . . . , Xd] →

⊕
mn/mn+1 is

an isomorphism. □

Lemma 10.106.2.00NP Any regular local ring is a domain.

Proof. We will use that
⋂
mn = 0 by Lemma 10.51.4. Let f, g ∈ R such that fg = 0.

Suppose that f ∈ ma and g ∈ mb, with a, b maximal. Since fg = 0 ∈ ma+b+1

we see from the result of Lemma 10.106.1 that either f ∈ ma+1 or g ∈ mb+1.
Contradiction. □

Lemma 10.106.3.00NQ Let R be a regular local ring and let x1, . . . , xd be a minimal set
of generators for the maximal ideal m. Then x1, . . . , xd is a regular sequence, and
each R/(x1, . . . , xc) is a regular local ring of dimension d − c. In particular R is
Cohen-Macaulay.

Proof. Note that R/x1R is a Noetherian local ring of dimension ≥ d−1 by Lemma
10.60.13 with x2, . . . , xd generating the maximal ideal. Hence it is a regular local
ring by definition. Since R is a domain by Lemma 10.106.2 x1 is a nonzerodivisor.

□

Lemma 10.106.4.00NR Let R be a regular local ring. Let I ⊂ R be an ideal such that
R/I is a regular local ring as well. Then there exists a minimal set of generators
x1, . . . , xd for the maximal ideal m of R such that I = (x1, . . . , xc) for some 0 ≤
c ≤ d.

Proof. Say dim(R) = d and dim(R/I) = d− c. Denote m = m/I the maximal ideal
of R/I. Let κ = R/m. We have

dimκ((I + m2)/m2) = dimκ(m/m2)− dim(m/m2) = d− (d− c) = c

by the definition of a regular local ring. Hence we can choose x1, . . . , xc ∈ I whose
images in m/m2 are linearly independent and supplement with xc+1, . . . , xd to get
a minimal system of generators of m. The induced map R/(x1, . . . , xc)→ R/I is a
surjection between regular local rings of the same dimension (Lemma 10.106.3). It
follows that the kernel is zero, i.e., I = (x1, . . . , xc). Namely, if not then we would
have dim(R/I) < dim(R/(x1, . . . , xc)) by Lemmas 10.106.2 and 10.60.13. □

Lemma 10.106.5.00NS Let R be a Noetherian local ring. Let x ∈ m. Let M be a finite
R-module such that x is a nonzerodivisor on M and M/xM is free over R/xR.
Then M is free over R.

Proof. Let m1, . . . ,mr be elements of M which map to a R/xR-basis of M/xM . By
Nakayama’s Lemma 10.20.1 m1, . . . ,mr generate M . If

∑
aimi = 0 is a relation,

then ai ∈ xR for all i. Hence ai = bix for some bi ∈ R. Hence the kernel K of
Rr →M satisfies xK = K and hence is zero by Nakayama’s lemma. □

Lemma 10.106.6.00NT Let R be a regular local ring. Any maximal Cohen-Macaulay
module over R is free.
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Proof. Let M be a maximal Cohen-Macaulay module over R. Let x ∈ m be part
of a regular sequence generating m. Then x is a nonzerodivisor on M by Proposi-
tion 10.103.4, and M/xM is a maximal Cohen-Macaulay module over R/xR. By
induction on dim(R) we see that M/xM is free. We win by Lemma 10.106.5. □

Lemma 10.106.7.00NU Suppose R is a Noetherian local ring. Let x ∈ m be a nonze-
rodivisor such that R/xR is a regular local ring. Then R is a regular local ring.
More generally, if x1, . . . , xr is a regular sequence in R such that R/(x1, . . . , xr) is
a regular local ring, then R is a regular local ring.

Proof. This is true because x together with the lifts of a system of minimal gener-
ators of the maximal ideal of R/xR will give dim(R) generators of m. Use Lemma
10.60.13. The last statement follows from the first and induction. □

Lemma 10.106.8.07DX Let (Ri, φii′) be a directed system of local rings whose transition
maps are local ring maps. If each Ri is a regular local ring and R = colimRi is
Noetherian, then R is a regular local ring.

Proof. Let m ⊂ R be the maximal ideal; it is the colimit of the maximal ideal mi ⊂
Ri. We prove the lemma by induction on d = dimm/m2. If d = 0, then R = R/m
is a field and R is a regular local ring. If d > 0 pick an x ∈ m, x ̸∈ m2. For some
i we can find an xi ∈ mi mapping to x. Note that R/xR = colimi′≥iRi′/xiRi′ is a
Noetherian local ring. By Lemma 10.106.3 we see that Ri′/xiRi′ is a regular local
ring. Hence by induction we see that R/xR is a regular local ring. Since each Ri is
a domain (Lemma 10.106.1) we see that R is a domain. Hence x is a nonzerodivisor
and we conclude that R is a regular local ring by Lemma 10.106.7. □

10.107. Epimorphisms of rings

04VM In any category there is a notion of an epimorphism. Some of this material is taken
from [Laz69] and [Maz68].

Lemma 10.107.1.04VN Let R→ S be a ring map. The following are equivalent
(1) R→ S is an epimorphism,
(2) the two ring maps S → S ⊗R S are equal,
(3) either of the ring maps S → S ⊗R S is an isomorphism, and
(4) the ring map S ⊗R S → S is an isomorphism.

Proof. Omitted. □

Lemma 10.107.2.04VP The composition of two epimorphisms of rings is an epimorphism.

Proof. Omitted. Hint: This is true in any category. □

Lemma 10.107.3.04VQ If R → S is an epimorphism of rings and R → R′ is any ring
map, then R′ → R′ ⊗R S is an epimorphism.

Proof. Omitted. Hint: True in any category with pushouts. □

Lemma 10.107.4.04VR If A→ B → C are ring maps and A→ C is an epimorphism, so
is B → C.

Proof. Omitted. Hint: This is true in any category. □
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This means in particular, that if R→ S is an epimorphism with image R ⊂ S, then
R → S is an epimorphism. Hence while proving results for epimorphisms we may
often assume the map is injective. The following lemma means in particular that
every localization is an epimorphism.

Lemma 10.107.5.04VS Let R→ S be a ring map. The following are equivalent:
(1) R→ S is an epimorphism, and
(2) Rp → Sp is an epimorphism for each prime p of R.

Proof. Since Sp = Rp ⊗R S (see Lemma 10.12.15) we see that (1) implies (2) by
Lemma 10.107.3. Conversely, assume that (2) holds. Let a, b : S → A be two ring
maps from S to a ring A equalizing the map R → S. By assumption we see that
for every prime p of R the induced maps ap, bp : Sp → Ap are the same. Hence
a = b as A ⊂

∏
pAp, see Lemma 10.23.1. □

Lemma 10.107.6.04VT Let R→ S be a ring map. The following are equivalent
(1) R→ S is an epimorphism and finite, and
(2) R→ S is surjective.

Proof. (This lemma seems to have been reproved many times in the literature, and
has many different proofs.) It is clear that a surjective ring map is an epimorphism.
Suppose that R→ S is a finite ring map such that S⊗R S → S is an isomorphism.
Our goal is to show that R→ S is surjective. Assume S/R is not zero. The exact
sequence R→ S → S/R→ 0 leads to an exact sequence

R⊗R S → S ⊗R S → S/R⊗R S → 0.

Our assumption implies that the first arrow is an isomorphism, hence we conclude
that S/R ⊗R S = 0. Hence also S/R ⊗R S/R = 0. By Lemma 10.5.4 there exists
a surjection of R-modules S/R → R/I for some proper ideal I ⊂ R. Hence there
exists a surjection S/R⊗R S/R→ R/I ⊗R R/I = R/I ̸= 0, contradiction. □

Lemma 10.107.7.04VU A faithfully flat epimorphism is an isomorphism.

Proof. This is clear from Lemma 10.107.1 part (3) as the map S → S ⊗R S is the
map R→ S tensored with S. □

Lemma 10.107.8.04VV If k → S is an epimorphism and k is a field, then S = k or S = 0.

Proof. This is clear from the result of Lemma 10.107.7 (as any nonzero algebra over
k is faithfully flat), or by arguing directly that R → R ⊗k R cannot be surjective
unless dimk(R) ≤ 1. □

Lemma 10.107.9.04VW Let R→ S be an epimorphism of rings. Then
(1) Spec(S)→ Spec(R) is injective, and
(2) for q ⊂ S lying over p ⊂ R we have κ(p) = κ(q).

Proof. Let p be a prime of R. The fibre of the map is the spectrum of the fibre
ring S⊗R κ(p). By Lemma 10.107.3 the map κ(p)→ S⊗R κ(p) is an epimorphism,
and hence by Lemma 10.107.8 we have either S ⊗R κ(p) = 0 or S ⊗R κ(p) = κ(p)
which proves (1) and (2). □

https://stacks.math.columbia.edu/tag/04VS
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Lemma 10.107.10.04VX Let R be a ring. Let M , N be R-modules. Let {xi}i∈I be a
set of generators of M . Let {yj}j∈J be a set of generators of N . Let {mj}j∈J be a
family of elements of M with mj = 0 for all but finitely many j. Then∑

j∈J
mj ⊗ yj = 0 in M ⊗R N

is equivalent to the following: There exist ai,j ∈ R with ai,j = 0 for all but finitely
many pairs (i, j) such that

mj =
∑

i∈I
ai,jxi for all j ∈ J,

0 =
∑

j∈J
ai,jyj for all i ∈ I.

Proof. The sufficiency is immediate. Suppose that
∑
j∈J mj ⊗ yj = 0. Consider

the short exact sequence

0→ K →
⊕

j∈J
R→ N → 0

where the jth basis vector of
⊕

j∈J R maps to yj . Tensor this with M to get the
exact sequence

K ⊗RM →
⊕

j∈J
M → N ⊗RM → 0.

The assumption implies that there exist elements ki ∈ K such that
∑
ki⊗xi maps

to the element (mj)j∈J of the middle. Writing ki = (ai,j)j∈J and we obtain what
we want. □

Lemma 10.107.11.04VY Let φ : R → S be a ring map. Let g ∈ S. The following are
equivalent:

(1) g ⊗ 1 = 1⊗ g in S ⊗R S, and
(2) there exist n ≥ 0 and elements yi, zj ∈ S and xi,j ∈ R for 1 ≤ i, j ≤ n

such that
(a) g =

∑
i,j≤n xi,jyizj ,

(b) for each j we have
∑
xi,jyi ∈ φ(R), and

(c) for each i we have
∑
xi,jzj ∈ φ(R).

Proof. It is clear that (2) implies (1). Conversely, suppose that g ⊗ 1 = 1 ⊗ g.
Choose generators {si}i∈I of S as an R-module with 0, 1 ∈ I and s0 = 1 and
s1 = g. Apply Lemma 10.107.10 to the relation g ⊗ s0 + (−1) ⊗ s1 = 0. We see
that there exist ai,j ∈ R such that g =

∑
i ai,0si, −1 =

∑
i ai,1si, and for j ̸= 0, 1

we have 0 =
∑
i ai,jsi, and moreover for all i we have

∑
j ai,jsj = 0. Then we have∑

i,j ̸=0
ai,jsisj = −g + a0,0

and for each j ̸= 0 we have
∑
i ̸=0 ai,jsi ∈ R. This proves that −g + a0,0 can be

written as in (2). It follows that g can be written as in (2). Details omitted. Hint:
Show that the set of elements of S which have an expression as in (2) form an
R-subalgebra of S. □

Remark 10.107.12.04VZ Let R → S be a ring map. Sometimes the set of elements
g ∈ S such that g ⊗ 1 = 1 ⊗ g is called the epicenter of S. It is an R-algebra. By
the construction of Lemma 10.107.11 we get for each g in the epicenter a matrix
factorization

(g) = Y XZ

https://stacks.math.columbia.edu/tag/04VX
https://stacks.math.columbia.edu/tag/04VY
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with X ∈ Mat(n × n,R), Y ∈ Mat(1 × n, S), and Z ∈ Mat(n × 1, S). Namely, let
xi,j , yi, zj be as in part (2) of the lemma. Set X = (xi,j), let y be the row vector
whose entries are the yi and let z be the column vector whose entries are the zj .
With this notation conditions (b) and (c) of Lemma 10.107.11 mean exactly that
Y X ∈ Mat(1 × n,R), XZ ∈ Mat(n × 1, R). It turns out to be very convenient to
consider the triple of matrices (X,Y X,XZ). Given n ∈ N and a triple (P,U, V ) we
say that (P,U, V ) is a n-triple associated to g if there exists a matrix factorization
as above such that P = X, U = Y X and V = XZ.

Lemma 10.107.13.04W0 Let R → S be an epimorphism of rings. Then the cardinality
of S is at most the cardinality of R. In a formula: |S| ≤ |R|.

Proof. The condition that R→ S is an epimorphism means that each g ∈ S satisfies
g⊗ 1 = 1⊗ g, see Lemma 10.107.1. We are going to use the notation introduced in
Remark 10.107.12. Suppose that g, g′ ∈ S and suppose that (P,U, V ) is an n-triple
which is associated to both g and g′. Then we claim that g = g′. Namely, write
(P,U, V ) = (X,Y X,XZ) for a matrix factorization (g) = Y XZ of g and write
(P,U, V ) = (X ′, Y ′X ′, X ′Z ′) for a matrix factorization (g′) = Y ′X ′Z ′ of g′. Then
we see that

(g) = Y XZ = UZ = Y ′X ′Z = Y ′PZ = Y ′XZ = Y ′V = Y ′X ′Z ′ = (g′)
and hence g = g′. This implies that the cardinality of S is bounded by the number
of possible triples, which has cardinality at most supn∈N |R|n. If R is infinite then
this is at most |R|, see [Kun83, Ch. I, 10.13].
If R is a finite ring then the argument above only proves that S is at worst countable.
In fact in this case R is Artinian and the map R → S is surjective. We omit the
proof of this case. □

Lemma 10.107.14.08YS Let R → S be an epimorphism of rings. Let N1, N2 be S-
modules. Then HomS(N1, N2) = HomR(N1, N2). In other words, the restriction
functor ModS → ModR is fully faithful.

Proof. Let φ : N1 → N2 be an R-linear map. For any x ∈ N1 consider the map
S⊗RS → N2 defined by the rule g⊗g′ 7→ gφ(g′x). Since both maps S → S⊗RS are
isomorphisms (Lemma 10.107.1), we conclude that gφ(g′x) = gg′φ(x) = φ(gg′x).
Thus φ is S-linear. □

10.108. Pure ideals

04PQ The material in this section is discussed in many papers, see for example [Laz67],
[Bko70], and [DM83].

Definition 10.108.1.04PR Let R be a ring. We say that I ⊂ R is pure if the quotient
ring R/I is flat over R.

Lemma 10.108.2.04PS Let R be a ring. Let I ⊂ R be an ideal. The following are
equivalent:

(1) I is pure,
(2) for every ideal J ⊂ R we have J ∩ I = IJ ,
(3) for every finitely generated ideal J ⊂ R we have J ∩ I = JI,
(4) for every x ∈ R we have (x) ∩ I = xI,
(5) for every x ∈ I we have x = yx for some y ∈ I,

https://stacks.math.columbia.edu/tag/04W0
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(6) for every x1, . . . , xn ∈ I there exists a y ∈ I such that xi = yxi for all
i = 1, . . . , n,

(7) for every prime p of R we have IRp = 0 or IRp = Rp,
(8) Supp(I) = Spec(R) \ V (I),
(9) I is the kernel of the map R→ (1 + I)−1R,

(10) R/I ∼= S−1R as R-algebras for some multiplicative subset S of R, and
(11) R/I ∼= (1 + I)−1R as R-algebras.

Proof. For any ideal J of R we have the short exact sequence 0→ J → R→ R/J →
0. Tensoring with R/I we get an exact sequence J ⊗RR/I → R/I → R/I + J → 0
and J ⊗R R/I = J/JI. Thus the equivalence of (1), (2), and (3) follows from
Lemma 10.39.5. Moreover, these imply (4).
The implication (4)⇒ (5) is trivial. Assume (5) and let x1, . . . , xn ∈ I. Choose yi ∈
I such that xi = yixi. Let y ∈ I be the element such that 1−y =

∏
i=1,...,n(1−yi).

Then xi = yxi for all i = 1, . . . , n. Hence (6) holds, and it follows that (5) ⇔ (6).
Assume (5). Let x ∈ I. Then x = yx for some y ∈ I. Hence x(1 − y) = 0,
which shows that x maps to zero in (1 + I)−1R. Of course the kernel of the map
R→ (1+I)−1R is always contained in I. Hence we see that (5) implies (9). Assume
(9). Then for any x ∈ I we see that x(1 − y) = 0 for some y ∈ I. In other words,
x = yx. We conclude that (5) is equivalent to (9).
Assume (5). Let p be a prime of R. If p ̸∈ V (I), then IRp = Rp. If p ∈ V (I), in
other words, if I ⊂ p, then x ∈ I implies x(1 − y) = 0 for some y ∈ I, implies x
maps to zero in Rp, i.e., IRp = 0. Thus we see that (7) holds.
Assume (7). Then (R/I)p is either 0 or Rp for any prime p of R. Hence by Lemma
10.39.18 we see that (1) holds. At this point we see that all of (1) – (7) and (9) are
equivalent.
As IRp = Ip we see that (7) implies (8). Finally, if (8) holds, then this means
exactly that Ip is the zero module if and only if p ∈ V (I), which is clearly saying
that (7) holds. Now (1) – (9) are equivalent.
Assume (1) – (9) hold. Then R/I ⊂ (1 + I)−1R by (9) and the map R/I →
(1 + I)−1R is also surjective by the description of localizations at primes afforded
by (7). Hence (11) holds.
The implication (11) ⇒ (10) is trivial. And (10) implies that (1) holds because a
localization of R is flat over R, see Lemma 10.39.18. □

Lemma 10.108.3.04PT Let R be a ring. If I, J ⊂ R are pure ideals, then V (I) = V (J)
implies I = J .

Proof. For example, by property (7) of Lemma 10.108.2 we see that I = Ker(R→∏
p∈V (I) Rp) can be recovered from the closed subset associated to it. □

Lemma 10.108.4.04PU Let R be a ring. The rule I 7→ V (I) determines a bijection
{I ⊂ R pure} ↔ {Z ⊂ Spec(R) closed and closed under generalizations}

Proof. Let I be a pure ideal. Then since R → R/I is flat, by going down general-
izations lift along the map Spec(R/I)→ Spec(R). Hence V (I) is closed under gen-
eralizations. This shows that the map is well defined. By Lemma 10.108.3 the map
is injective. Suppose that Z ⊂ Spec(R) is closed and closed under generalizations.

https://stacks.math.columbia.edu/tag/04PT
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Let J ⊂ R be the radical ideal such that Z = V (J). Let I = {x ∈ R : x ∈ xJ}.
Note that I is an ideal: if x, y ∈ I then there exist f, g ∈ J such that x = xf and
y = yg. Then

x+ y = (x+ y)(f + g − fg)
Verification left to the reader. We claim that I is pure and that V (I) = V (J). If
the claim is true then the map of the lemma is surjective and the lemma holds.
Note that I ⊂ J , so that V (J) ⊂ V (I). Let I ⊂ p be a prime. Consider the
multiplicative subset S = (R \ p)(1 + J). By definition of I and I ⊂ p we see that
0 ̸∈ S. Hence we can find a prime q of R which is disjoint from S, see Lemmas 10.9.4
and 10.17.5. Hence q ⊂ p and q ∩ (1 + J) = ∅. This implies that q + J is a proper
ideal of R. Let m be a maximal ideal containing q+ J . Then we get m ∈ V (J) and
hence q ∈ V (J) = Z as Z was assumed to be closed under generalization. This in
turn implies p ∈ V (J) as q ⊂ p. Thus we see that V (I) = V (J).

Finally, since V (I) = V (J) (and J radical) we see that J =
√
I. Pick x ∈ I, so

that x = xy for some y ∈ J by definition. Then x = xy = xy2 = . . . = xyn. Since
yn ∈ I for some n > 0 we conclude that property (5) of Lemma 10.108.2 holds and
we see that I is indeed pure. □

Lemma 10.108.5.05KK Let R be a ring. Let I ⊂ R be an ideal. The following are
equivalent

(1) I is pure and finitely generated,
(2) I is generated by an idempotent,
(3) I is pure and V (I) is open, and
(4) R/I is a projective R-module.

Proof. If (1) holds, then I = I ∩ I = I2 by Lemma 10.108.2. Hence I is generated
by an idempotent by Lemma 10.21.5. Thus (1)⇒ (2). If (2) holds, then I = (e) and
R = (1−e)⊕(e) as an R-module hence R/I is flat and I is pure and V (I) = D(1−e)
is open. Thus (2) ⇒ (1) + (3). Finally, assume (3). Then V (I) is open and closed,
hence V (I) = D(1− e) for some idempotent e of R, see Lemma 10.21.3. The ideal
J = (e) is a pure ideal such that V (J) = V (I) hence I = J by Lemma 10.108.3. In
this way we see that (3) ⇒ (2). By Lemma 10.78.2 we see that (4) is equivalent to
the assertion that I is pure and R/I finitely presented. Moreover, R/I is finitely
presented if and only if I is finitely generated, see Lemma 10.5.3. Hence (4) is
equivalent to (1). □

We can use the above to characterize those rings for which every finite flat module
is finitely presented.

Lemma 10.108.6.052U Let R be a ring. The following are equivalent:
(1) every Z ⊂ Spec(R) which is closed and closed under generalizations is

also open, and
(2) any finite flat R-module is finite locally free.

Proof. If any finite flat R-module is finite locally free then the support of R/I
where I is a pure ideal is open. Hence the implication (2) ⇒ (1) follows from
Lemma 10.108.3.
For the converse assume that R satisfies (1). Let M be a finite flat R-module. The
support Z = Supp(M) of M is closed, see Lemma 10.40.5. On the other hand, if
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p ⊂ p′, then by Lemma 10.78.5 the module Mp′ is free, and Mp = Mp′ ⊗Rp′ Rp

Hence p′ ∈ Supp(M)⇒ p ∈ Supp(M), in other words, the support is closed under
generalization. As R satisfies (1) we see that the support of M is open and closed.
Suppose that M is generated by r elements m1, . . . ,mr. The modules ∧i(M),
i = 1, . . . , r are finite flat R-modules also, because ∧i(M)p = ∧i(Mp) is free over
Rp. Note that Supp(∧i+1(M)) ⊂ Supp(∧i(M)). Thus we see that there exists a
decomposition

Spec(R) = U0 ⨿ U1 ⨿ . . .⨿ Ur
by open and closed subsets such that the support of ∧i(M) is Ur ∪ . . . ∪ Ui for all
i = 0, . . . , r. Let p be a prime of R, and say p ∈ Ui. Note that ∧i(M) ⊗R κ(p) =
∧i(M⊗Rκ(p)). Hence, after possibly renumbering m1, . . . ,mr we may assume that
m1, . . . ,mi generate M⊗Rκ(p). By Nakayama’s Lemma 10.20.1 we get a surjection

R⊕i
f −→Mf , (a1, . . . , ai) 7−→

∑
aimi

for some f ∈ R, f ̸∈ p. We may also assume that D(f) ⊂ Ui. This means
that ∧i(Mf ) = ∧i(M)f is a flat Rf module whose support is all of Spec(Rf ).
By the above it is generated by a single element, namely m1 ∧ . . . ∧ mi. Hence
∧i(M)f ∼= Rf/J for some pure ideal J ⊂ Rf with V (J) = Spec(Rf ). Clearly this
means that J = (0), see Lemma 10.108.3. Thus m1 ∧ . . .∧mi is a basis for ∧i(Mf )
and it follows that the displayed map is injective as well as surjective. This proves
that M is finite locally free as desired. □

10.109. Rings of finite global dimension

00O2 The following lemma is often used to compare different projective resolutions of a
given module.

Lemma 10.109.1 (Schanuel’s lemma).00O3 Let R be a ring. Let M be an R-module.
Suppose that

0→ K
c1−→ P1

p1−→M → 0 and 0→ L
c2−→ P2

p2−→M → 0

are two short exact sequences, with Pi projective. Then K ⊕ P2 ∼= L ⊕ P1. More
precisely, there exist a commutative diagram

0 // K ⊕ P2 (c1,id)
//

��

P1 ⊕ P2(p1,0)
//

��

M // 0

0 // P1 ⊕ L
(id,c2) // P1 ⊕ P2

(0,p2) // M // 0

whose vertical arrows are isomorphisms.

Proof. Consider the module N defined by the short exact sequence 0 → N →
P1 ⊕ P2 → M → 0, where the last map is the sum of the two maps Pi → M . It is
easy to see that the projection N → P1 is surjective with kernel L, and that N → P2
is surjective with kernel K. Since Pi are projective we have N ∼= K ⊕P2 ∼= L⊕P1.
This proves the first statement.

To prove the second statement (and to reprove the first), choose a : P1 → P2 and
b : P2 → P1 such that p1 = p2 ◦ a and p2 = p1 ◦ b. This is possible because P1 and

https://stacks.math.columbia.edu/tag/00O3
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P2 are projective. Then we get a commutative diagram

0 // K ⊕ P2 (c1,id)
// P1 ⊕ P2(p1,0)

// M // 0

0 // N //

��

OO

P1 ⊕ P2(p1,p2)
//

S

��

T

OO

M // 0

0 // P1 ⊕ L
(id,c2) // P1 ⊕ P2

(0,p2) // M // 0

with T and S given by the matrices

S =
(

id 0
a id

)
and T =

(
id b
0 id

)
Then S, T and the maps N → P1 ⊕ L and N → K ⊕ P2 are isomorphisms as
desired. □

Definition 10.109.2.00O4 Let R be a ring. Let M be an R-module. We say M has finite
projective dimension if it has a finite length resolution by projective R-modules.
The minimal length of such a resolution is called the projective dimension of M .

It is clear that the projective dimension of M is 0 if and only if M is a projective
module. The following lemma explains to what extent the projective dimension is
independent of the choice of a projective resolution.

Lemma 10.109.3.00O5 Let R be a ring. Suppose that M is an R-module of projective
dimension d. Suppose that Fe → Fe−1 → . . . → F0 → M → 0 is exact with Fi
projective and e ≥ d− 1. Then the kernel of Fe → Fe−1 is projective (or the kernel
of F0 →M is projective in case e = 0).

Proof. We prove this by induction on d. If d = 0, then M is projective. In this case
there is a splitting F0 = Ker(F0 →M)⊕M , and hence Ker(F0 →M) is projective.
This finishes the proof if e = 0, and if e > 0, then replacing M by Ker(F0 → M)
we decrease e.
Next assume d > 0. Let 0 → Pd → Pd−1 → . . . → P0 → M → 0 be a minimal
length finite resolution with Pi projective. According to Schanuel’s Lemma 10.109.1
we have P0 ⊕ Ker(F0 → M) ∼= F0 ⊕ Ker(P0 → M). This proves the case d = 1,
e = 0, because then the right hand side is F0 ⊕ P1 which is projective. Hence now
we may assume e > 0. The module F0 ⊕ Ker(P0 → M) has the finite projective
resolution

0→ Pd → Pd−1 → . . .→ P2 → P1 ⊕ F0 → Ker(P0 →M)⊕ F0 → 0
of length d− 1. By induction applied to the exact sequence

Fe → Fe−1 → . . .→ F2 → P0 ⊕ F1 → P0 ⊕Ker(F0 →M)→ 0
of length e−1 we conclude Ker(Fe → Fe−1) is projective (if e ≥ 2) or that Ker(F1⊕
P0 → F0 ⊕ P0) is projective. This implies the lemma. □

Lemma 10.109.4.0CXC Let R be a ring. Let M be an R-module. Let d ≥ 0. The
following are equivalent

(1) M has projective dimension ≤ d,
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(2) there exists a resolution 0 → Pd → Pd−1 → . . . → P0 → M → 0 with Pi
projective,

(3) for some resolution . . . → P2 → P1 → P0 → M → 0 with Pi projective
we have Ker(Pd−1 → Pd−2) is projective if d ≥ 2, or Ker(P0 → M) is
projective if d = 1, or M is projective if d = 0,

(4) for any resolution . . . → P2 → P1 → P0 → M → 0 with Pi projective
we have Ker(Pd−1 → Pd−2) is projective if d ≥ 2, or Ker(P0 → M) is
projective if d = 1, or M is projective if d = 0.

Proof. The equivalence of (1) and (2) is the definition of projective dimension, see
Definition 10.109.2. We have (2) ⇒ (4) by Lemma 10.109.3. The implications (4)
⇒ (3) and (3) ⇒ (2) are immediate. □

Lemma 10.109.5.0CXD Let R be a local ring. Let M be an R-module. Let d ≥ 0. The
equivalent conditions (1) – (4) of Lemma 10.109.4 are also equivalent to

(5) there exists a resolution 0 → Pd → Pd−1 → . . . → P0 → M → 0 with Pi
free.

Proof. Follows from Lemma 10.109.4 and Theorem 10.85.4. □

Lemma 10.109.6.0CXE Let R be a Noetherian ring. Let M be a finite R-module. Let
d ≥ 0. The equivalent conditions (1) – (4) of Lemma 10.109.4 are also equivalent
to

(6) there exists a resolution 0 → Pd → Pd−1 → . . . → P0 → M → 0 with Pi
finite projective.

Proof. Choose a resolution . . . → F2 → F1 → F0 → M → 0 with Fi finite free
(Lemma 10.71.1). By Lemma 10.109.4 we see that Pd = Ker(Fd−1 → Fd−2) is
projective at least if d ≥ 2. Then Pd is a finite R-module as R is Noetherian and
Pd ⊂ Fd−1 which is finite free. Whence 0→ Pd → Fd−1 → . . .→ F1 → F0 →M →
0 is the desired resolution. □

Lemma 10.109.7.0CXF Let R be a local Noetherian ring. Let M be a finite R-module.
Let d ≥ 0. The equivalent conditions (1) – (4) of Lemma 10.109.4, condition (5) of
Lemma 10.109.5, and condition (6) of Lemma 10.109.6 are also equivalent to

(7) there exists a resolution 0 → Fd → Fd−1 → . . . → F0 → M → 0 with Fi
finite free.

Proof. This follows from Lemmas 10.109.4, 10.109.5, and 10.109.6 and because a
finite projective module over a local ring is finite free, see Lemma 10.78.2. □

Lemma 10.109.8.065R Let R be a ring. Let M be an R-module. Let n ≥ 0. The
following are equivalent

(1) M has projective dimension ≤ n,
(2) ExtiR(M,N) = 0 for all R-modules N and all i ≥ n+ 1, and
(3) Extn+1

R (M,N) = 0 for all R-modules N .

Proof. Assume (1). Choose a free resolution F• → M of M . Denote de : Fe →
Fe−1. By Lemma 10.109.3 we see that Pe = Ker(de) is projective for e ≥ n −
1. This implies that Fe ∼= Pe ⊕ Pe−1 for e ≥ n where de maps the summand
Pe−1 isomorphically to Pe−1 in Fe−1. Hence, for any R-module N the complex
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HomR(F•, N) is split exact in degrees ≥ n+ 1. Whence (2) holds. The implication
(2) ⇒ (3) is trivial.
Assume (3) holds. If n = 0 then M is projective by Lemma 10.77.2 and we see that
(1) holds. If n > 0 choose a free R-module F and a surjection F →M with kernel
K. By Lemma 10.71.7 and the vanishing of ExtiR(F,N) for all i > 0 by part (1)
we see that ExtnR(K,N) = 0 for all R-modules N . Hence by induction we see that
K has projective dimension ≤ n− 1. Then M has projective dimension ≤ n as any
finite projective resolution of K gives a projective resolution of length one more for
M by adding F to the front. □

Lemma 10.109.9.065S Let R be a ring. Let 0→M ′ →M →M ′′ → 0 be a short exact
sequence of R-modules.

(1) If M has projective dimension ≤ n and M ′′ has projective dimension
≤ n+ 1, then M ′ has projective dimension ≤ n.

(2) If M ′ and M ′′ have projective dimension ≤ n then M has projective
dimension ≤ n.

(3) If M ′ has projective dimension ≤ n and M has projective dimension ≤
n+ 1 then M ′′ has projective dimension ≤ n+ 1.

Proof. Combine the characterization of projective dimension in Lemma 10.109.8
with the long exact sequence of ext groups in Lemma 10.71.7. □

Definition 10.109.10.00O6 Let R be a ring. The ring R is said to have finite global
dimension if there exists an integer n such that every R-module has a resolution by
projective R-modules of length at most n. The minimal such n is then called the
global dimension of R.

The argument in the proof of the following lemma can be found in the paper [Aus55]
by Auslander.

Lemma 10.109.11.0D1U Let R be a ring. Suppose we have a module M =
⋃
e∈EMe

where the Me are submodules well-ordered by inclusion. Assume the quotients
Me/

⋃
e′<eMe′ have projective dimension ≤ n. Then M has projective dimension

≤ n.

Proof. We will prove this by induction on n.
Base case: n = 0. Then Pe = Me/

⋃
e′<eMe′ is projective. Thus we may choose

a section Pe → Me of the projection Me → Pe. We claim that the induced map
ψ :

⊕
e∈E Pe → M is an isomorphism. Namely, if x =

∑
xe ∈

⊕
Pe is nonzero,

then we let emax be maximal such that xemax is nonzero and we conclude that
y = ψ(x) = ψ(

∑
xe) is nonzero because y ∈ Memax has nonzero image xemax

in Pemax . On the other hand, let y ∈ M . Then y ∈ Me for some e. We show
that y ∈ Im(ψ) by transfinite induction on e. Let xe ∈ Pe be the image of y. Then
y−ψ(xe) ∈

⋃
e′<eMe′ . By induction hypothesis we conclude that y−ψ(xe) ∈ Im(ψ)

hence y ∈ Im(ψ). Thus the claim is true and ψ is an isomorphism. We conclude
that M is projective as a direct sum of projectives, see Lemma 10.77.4.
If n > 0, then for e ∈ E we denote Fe the free R-module on the set of elements of
Me. Then we have a system of short exact sequences

0→ Ke → Fe →Me → 0

https://stacks.math.columbia.edu/tag/065S
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over the well-ordered set E. Note that the transition maps Fe′ → Fe and Ke′ → Ke

are injective too. Set F =
⋃
Fe and K =

⋃
Ke. Then

0→ Ke/
⋃

e′<e
Ke′ → Fe/

⋃
e′<e

Fe′ →Me/
⋃

e′<e
Me′ → 0

is a short exact sequence of R-modules too and Fe/
⋃
e′<e Fe′ is the free R-module

on the set of elements in Me which are not contained in
⋃
e′<eMe′ . Hence by

Lemma 10.109.9 we see that the projective dimension of Ke/
⋃
e′<eKe′ is at most

n − 1. By induction we conclude that K has projective dimension at most n − 1.
Whence M has projective dimension at most n and we win. □

Lemma 10.109.12.065T Let R be a ring. The following are equivalent
(1) R has finite global dimension ≤ n,
(2) every finite R-module has projective dimension ≤ n, and
(3) every cyclic R-module R/I has projective dimension ≤ n.

Proof. It is clear that (1)⇒ (2) and (2)⇒ (3). Assume (3). Choose a set E ⊂M of
generators of M . Choose a well ordering on E. For e ∈ E denote Me the submodule
of M generated by the elements e′ ∈ E with e′ ≤ e. Then M =

⋃
e∈EMe. Note

that for each e ∈ E the quotient

Me/
⋃

e′<e
Me′

is either zero or generated by one element, hence has projective dimension ≤ n by
(3). By Lemma 10.109.11 this means that M has projective dimension ≤ n. □

Lemma 10.109.13.00O8 Let R be a ring. Let M be an R-module. Let S ⊂ R be a
multiplicative subset.

(1) If M has projective dimension ≤ n, then S−1M has projective dimension
≤ n over S−1R.

(2) IfR has finite global dimension≤ n, then S−1R has finite global dimension
≤ n.

Proof. Let 0 → Pn → Pn−1 → . . . → P0 → M → 0 be a projective resolution.
As localization is exact, see Proposition 10.9.12, and as each S−1Pi is a projective
S−1R-module, see Lemma 10.94.1, we see that 0 → S−1Pn → . . . → S−1P0 →
S−1M → 0 is a projective resolution of S−1M . This proves (1). Let M ′ be
an S−1R-module. Note that M ′ = S−1M ′. Hence we see that (2) follows from
(1). □

10.110. Regular rings and global dimension

065U We can use the material on rings of finite global dimension to give another charac-
terization of regular local rings.

Proposition 10.110.1.00O7 Let R be a regular local ring of dimension d. Every finite
R-module M of depth e has a finite free resolution

0→ Fd−e → . . .→ F0 →M → 0.
In particular a regular local ring has global dimension ≤ d.

Proof. The first part holds in view of Lemma 10.106.6 and Lemma 10.104.9. The
last part follows from this and Lemma 10.109.12. □

https://stacks.math.columbia.edu/tag/065T
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Lemma 10.110.2.00O9 Let R be a Noetherian ring. Then R has finite global dimension
if and only if there exists an integer n such that for all maximal ideals m of R the
ring Rm has global dimension ≤ n.

Proof. We saw, Lemma 10.109.13 that if R has finite global dimension n, then all
the localizations Rm have finite global dimension at most n. Conversely, suppose
that all the Rm have global dimension ≤ n. Let M be a finite R-module. Let
0 → Kn → Fn−1 → . . . → F0 → M → 0 be a resolution with Fi finite free. Then
Kn is a finite R-module. According to Lemma 10.109.3 and the assumption all the
modules Kn ⊗R Rm are projective. Hence by Lemma 10.78.2 the module Kn is
finite projective. □

Lemma 10.110.3.00OA Suppose that R is a Noetherian local ring with maximal ideal m
and residue field κ. In this case the projective dimension of κ is ≥ dimκm/m

2.

Proof. Let x1, . . . , xn be elements of m whose images in m/m2 form a basis. Con-
sider the Koszul complex on x1, . . . , xn. This is the complex

0→ ∧nRn → ∧n−1Rn → ∧n−2Rn → . . .→ ∧iRn → . . .→ Rn → R

with maps given by

ej1 ∧ . . . ∧ eji 7−→
i∑

a=1
(−1)a+1xjaej1 ∧ . . . ∧ êja ∧ . . . ∧ eji

It is easy to see that this is a complex K•(R, x•). Note that the cokernel of the last
map of K•(R, x•) is κ by Lemma 10.20.1 part (8).

If κ has finite projective dimension d, then we can find a resolution F• → κ by finite
free R-modules of length d (Lemma 10.109.7). By Lemma 10.102.2 we may assume
all the maps in the complex F• have the property that Im(Fi → Fi−1) ⊂ mFi−1,
because removing a trivial summand from the resolution can at worst shorten the
resolution. By Lemma 10.71.4 we can find a map of complexes α : K•(R, x•)→ F•
inducing the identity on κ. We will prove by induction that the maps αi : ∧iRn =
Ki(R, x•)→ Fi have the property that αi ⊗ κ : ∧iκn → Fi ⊗ κ are injective. This
shows that Fn ̸= 0 and hence d ≥ n as desired.

The result is clear for i = 0 because the composition R
α0−→ F0 → κ is nonzero.

Note that F0 must have rank 1 since otherwise the map F1 → F0 whose cokernel is
a single copy of κ cannot have image contained in mF0.

Next we check the case i = 1 as we feel that it is instructive; the reader can skip this
as the induction step will deduce the i = 1 case from the case i = 0. We saw above
that F0 = R and F1 → F0 = R has image m. We have a commutative diagram

Rn = K1(R, x•) → K0(R, x•) = R
↓ ↓ ↓
F1 → F0 = R

where the rightmost vertical arrow is given by multiplication by a unit. Hence we
see that the image of the composition Rn → F1 → F0 = R is also equal to m. Thus
the map Rn ⊗ κ→ F1 ⊗ κ has to be injective since dimκ(m/m2) = n.

https://stacks.math.columbia.edu/tag/00O9
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Let i ≥ 1 and assume injectivity of αj⊗κ has been proved for all j ≤ i−1. Consider
the commutative diagram

∧iRn = Ki(R, x•) → Ki−1(R, x•) = ∧i−1Rn

↓ ↓
Fi → Fi−1

We know that ∧i−1κn → Fi−1⊗κ is injective. This proves that ∧i−1κn⊗κm/m2 →
Fi−1 ⊗m/m2 is injective. Also, by our choice of the complex, Fi maps into mFi−1,
and similarly for the Koszul complex. Hence we get a commutative diagram

∧iκn → ∧i−1κn ⊗m/m2

↓ ↓
Fi ⊗ κ → Fi−1 ⊗m/m2

At this point it suffices to verify the map ∧iκn → ∧i−1κn⊗m/m2 is injective, which
can be done by hand. □

Lemma 10.110.4.00OB Let R be a Noetherian local ring. Suppose that the residue field
κ has finite projective dimension n over R. In this case dim(R) ≥ n.

Proof. Let F• be a finite resolution of κ by finite free R-modules (Lemma 10.109.7).
By Lemma 10.102.2 we may assume all the maps in the complex F• have to property
that Im(Fi → Fi−1) ⊂ mFi−1, because removing a trivial summand from the
resolution can at worst shorten the resolution. Say Fn ̸= 0 and Fi = 0 for i > n,
so that the projective dimension of κ is n. By Proposition 10.102.9 we see that
depthI(φn)(R) ≥ n since I(φn) cannot equal R by our choice of the complex. Thus
by Lemma 10.72.3 also dim(R) ≥ n. □

Proposition 10.110.5.00OC Let (R,m, κ) be a Noetherian local ring. The following are
equivalent

(1) κ has finite projective dimension as an R-module,
(2) R has finite global dimension,
(3) R is a regular local ring.

Moreover, in this case the global dimension of R equals dim(R) = dimκ(m/m2).

Proof. We have (3) ⇒ (2) by Proposition 10.110.1. The implication (2) ⇒ (1)
is trivial. Assume (1). By Lemmas 10.110.3 and 10.110.4 we see that dim(R) ≥
dimκ(m/m2). Thus R is regular, see Definition 10.60.10 and the discussion preced-
ing it. Assume the equivalent conditions (1) – (3) hold. By Proposition 10.110.1
the global dimension of R is at most dim(R) and by Lemma 10.110.3 it is at least
dimκ(m/m2). Thus the stated equality holds. □

Lemma 10.110.6.0AFS A Noetherian local ring R is a regular local ring if and only if it
has finite global dimension. In this case Rp is a regular local ring for all primes p.

Proof. By Propositions 10.110.5 and 10.110.1 we see that a Noetherian local ring
is a regular local ring if and only if it has finite global dimension. Furthermore, any
localization Rp has finite global dimension, see Lemma 10.109.13, and hence is a
regular local ring. □

By Lemma 10.110.6 it makes sense to make the following definition, because it does
not conflict with the earlier definition of a regular local ring.

https://stacks.math.columbia.edu/tag/00OB
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Definition 10.110.7.00OD A Noetherian ring R is said to be regular if all the localizations
Rp at primes are regular local rings.

It is enough to require the local rings at maximal ideals to be regular. Note that
this is not the same as asking R to have finite global dimension, even assuming R
is Noetherian. This is because there is an example of a regular Noetherian ring
which does not have finite global dimension, namely because it does not have finite
dimension.

Lemma 10.110.8.00OE Let R be a Noetherian ring. The following are equivalent:
(1) R has finite global dimension n,
(2) R is a regular ring of dimension n,
(3) there exists an integer n such that all the localizations Rm at maximal

ideals are regular of dimension ≤ n with equality for at least one m, and
(4) there exists an integer n such that all the localizations Rp at prime ideals

are regular of dimension ≤ n with equality for at least one p.

Proof. This follows from the discussion above. More precisely, it follows by com-
bining Definition 10.110.7 with Lemma 10.110.2 and Proposition 10.110.5. □

Lemma 10.110.9.00OF Let R→ S be a local homomorphism of local Noetherian rings.
Assume that R→ S is flat and that S is regular. Then R is regular.

Proof. Let m ⊂ R be the maximal ideal and let κ = R/m be the residue field. Let
d = dimS. Choose any resolution F• → κ with each Fi a finite free R-module. Set
Kd = Ker(Fd−1 → Fd−2). By flatness of R → S the complex 0 → Kd ⊗R S →
Fd−1 ⊗R S → . . . → F0 ⊗R S → κ ⊗R S → 0 is still exact. Because the global
dimension of S is d, see Proposition 10.110.1, we see that Kd⊗RS is a finite free S-
module (see also Lemma 10.109.3). By Lemma 10.78.6 we see that Kd is a finite free
R-module. Hence κ has finite projective dimension and R is regular by Proposition
10.110.5. □

10.111. Auslander-Buchsbaum

090U The following result can be found in [AB57].

Proposition 10.111.1.090V Let R be a Noetherian local ring. Let M be a nonzero finite
R-module which has finite projective dimension pdR(M). Then we have

depth(R) = pdR(M) + depth(M)

Proof. We prove this by induction on depth(M). The most interesting case is the
case depth(M) = 0. In this case, let

0→ Rne → Rne−1 → . . .→ Rn0 →M → 0

be a minimal finite free resolution, so e = pdR(M). By Lemma 10.102.2 we may
assume all matrix coefficients of the maps in the complex are contained in the
maximal ideal of R. Then on the one hand, by Proposition 10.102.9 we see that
depth(R) ≥ e. On the other hand, breaking the long exact sequence into short

https://stacks.math.columbia.edu/tag/00OD
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exact sequences

0→ Rne → Rne−1 → Ke−2 → 0,
0→ Ke−2 → Rne−2 → Ke−3 → 0,

. . . ,

0→ K0 → Rn0 →M → 0

we see, using Lemma 10.72.6, that

depth(Ke−2) ≥ depth(R)− 1,
depth(Ke−3) ≥ depth(R)− 2,

. . . ,

depth(K0) ≥ depth(R)− (e− 1),
depth(M) ≥ depth(R)− e

and since depth(M) = 0 we conclude depth(R) ≤ e. This finishes the proof of the
case depth(M) = 0.

Induction step. If depth(M) > 0, then we pick x ∈ m which is a nonzerodivisor on
both M and R. This is possible, because either pdR(M) > 0 and depth(R) > 0 by
the aforementioned Proposition 10.102.9 or pdR(M) = 0 in which case M is finite
free hence also depth(R) = depth(M) > 0. Thus depth(R ⊕M) > 0 by Lemma
10.72.6 (for example) and we can find an x ∈ m which is a nonzerodivisor on both
R and M . Let

0→ Rne → Rne−1 → . . .→ Rn0 →M → 0
be a minimal resolution as above. An application of the snake lemma shows that

0→ (R/xR)ne → (R/xR)ne−1 → . . .→ (R/xR)n0 →M/xM → 0

is a minimal resolution too. Thus pdR(M) = pdR/xR(M/xM). By Lemma 10.72.7
we have depth(R/xR) = depth(R)−1 and depth(M/xM) = depth(M)−1. Till now
depths have all been depths as R modules, but we observe that depthR(M/xM) =
depthR/xR(M/xM) and similarly for R/xR. By induction hypothesis we see that
the Auslander-Buchsbaum formula holds for M/xM over R/xR. Since the depths
of both R/xR and M/xM have decreased by one and the projective dimension has
not changed we conclude. □

10.112. Homomorphisms and dimension

00OG This section contains a collection of easy results relating dimensions of rings when
there are maps between them.

Lemma 10.112.1.00OH Suppose R → S is a ring map satisfying either going up, see
Definition 10.41.1, or going down see Definition 10.41.1. Assume in addition that
Spec(S)→ Spec(R) is surjective. Then dim(R) ≤ dim(S).

Proof. Assume going up. Take any chain p0 ⊂ p1 ⊂ . . . ⊂ pe of prime ideals in
R. By surjectivity we may choose a prime q0 mapping to p0. By going up we may
extend this to a chain of length e of primes qi lying over pi. Thus dim(S) ≥ dim(R).
The case of going down is exactly the same. See also Topology, Lemma 5.19.9 for
a purely topological version. □

https://stacks.math.columbia.edu/tag/00OH
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Lemma 10.112.2.00OI Suppose that R → S is a ring map with the going up property,
see Definition 10.41.1. If q ⊂ S is a maximal ideal. Then the inverse image of q in
R is a maximal ideal too.

Proof. Trivial. □

Lemma 10.112.3.00OJ Suppose that R → S is a ring map such that S is integral over
R. Then dim(R) ≥ dim(S), and every closed point of Spec(S) maps to a closed
point of Spec(R).

Proof. Immediate from Lemmas 10.36.20 and 10.112.2 and the definitions. □

Lemma 10.112.4.00OK Suppose R ⊂ S and S integral over R. Then dim(R) = dim(S).

Proof. This is a combination of Lemmas 10.36.22, 10.36.17, 10.112.1, and 10.112.3.
□

Definition 10.112.5.00OL Suppose that R → S is a ring map. Let q ⊂ S be a prime
lying over the prime p of R. The local ring of the fibre at q is the local ring

Sq/pSq = (S/pS)q = (S ⊗R κ(p))q

Lemma 10.112.6.00OM Let R→ S be a homomorphism of Noetherian rings. Let q ⊂ S
be a prime lying over the prime p. Then

dim(Sq) ≤ dim(Rp) + dim(Sq/pSq).

Proof. We use the characterization of dimension of Proposition 10.60.9. Let x1, . . . , xd
be elements of p generating an ideal of definition of Rp with d = dim(Rp). Let
y1, . . . , ye be elements of q generating an ideal of definition of Sq/pSq with e =
dim(Sq/pSq). It is clear that Sq/(x1, . . . , xd, y1, . . . , ye) has a nilpotent maximal
ideal. Hence x1, . . . , xd, y1, . . . , ye generate an ideal of definition of Sq. □

Lemma 10.112.7.00ON Let R→ S be a homomorphism of Noetherian rings. Let q ⊂ S
be a prime lying over the prime p. Assume the going down property holds for
R→ S (for example if R→ S is flat, see Lemma 10.39.19). Then

dim(Sq) = dim(Rp) + dim(Sq/pSq).

Proof. By Lemma 10.112.6 we have an inequality dim(Sq) ≤ dim(Rp)+dim(Sq/pSq).
To get equality, choose a chain of primes pS ⊂ q0 ⊂ q1 ⊂ . . . ⊂ qd = q with d =
dim(Sq/pSq). On the other hand, choose a chain of primes p0 ⊂ p1 ⊂ . . . ⊂ pe = p
with e = dim(Rp). By the going down theorem we may choose q−1 ⊂ q0 lying over
pe−1. And then we may choose q−2 ⊂ qe−1 lying over pe−2. Inductively we keep
going until we get a chain q−e ⊂ . . . ⊂ qd of length e+ d. □

Lemma 10.112.8.031E Let R→ S be a local homomorphism of local Noetherian rings.
Assume

(1) R is regular,
(2) S/mRS is regular, and
(3) R→ S is flat.

Then S is regular.
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Proof. By Lemma 10.112.7 we have dim(S) = dim(R) + dim(S/mRS). Pick gen-
erators x1, . . . , xd ∈ mR with d = dim(R), and pick y1, . . . , ye ∈ mS which gen-
erate the maximal ideal of S/mRS with e = dim(S/mRS). Then we see that
x1, . . . , xd, y1, . . . , ye are elements which generate the maximal ideal of S and e+d =
dim(S). □

The lemma below will later be used to show that rings of finite type over a field
are Cohen-Macaulay if and only if they are quasi-finite flat over a polynomial ring.
It is a partial converse to Lemma 10.128.1.

Lemma 10.112.9.00R5 Let R→ S be a local homomorphism of Noetherian local rings.
Assume R Cohen-Macaulay. If S is finite flat over R, or if S is flat over R and
dim(S) ≤ dim(R), then S is Cohen-Macaulay and dim(R) = dim(S).

Proof. Let x1, . . . , xd ∈ mR be a regular sequence of length d = dim(R). By
Lemma 10.68.5 this maps to a regular sequence in S. Hence S is Cohen-Macaulay
if dim(S) ≤ d. This is true if S is finite flat over R by Lemma 10.112.4. And in the
second case we assumed it. □

10.113. The dimension formula

02II Recall the definitions of catenary (Definition 10.105.1) and universally catenary
(Definition 10.105.3).

Lemma 10.113.1.02IJ Let R→ S be a ring map. Let q be a prime of S lying over the
prime p of R. Assume that

(1) R is Noetherian,
(2) R→ S is of finite type,
(3) R, S are domains, and
(4) R ⊂ S.

Then we have
height(q) ≤ height(p) + trdegR(S)− trdegκ(p)κ(q)

with equality if R is universally catenary.

Proof. Suppose that R ⊂ S′ ⊂ S is a finitely generated R-subalgebra of S. In this
case set q′ = S′ ∩ q. The lemma for the ring maps R→ S′ and S′ → S implies the
lemma for R→ S by additivity of transcendence degree in towers of fields (Fields,
Lemma 9.26.5). Hence we can use induction on the number of generators of S over
R and reduce to the case where S is generated by one element over R.
Case I: S = R[x] is a polynomial algebra over R. In this case we have trdegR(S) = 1.
Also R→ S is flat and hence

dim(Sq) = dim(Rp) + dim(Sq/pSq)
see Lemma 10.112.7. Let r = pS. Then trdegκ(p)κ(q) = 1 is equivalent to q = r,
and implies that dim(Sq/pSq) = 0. In the same vein trdegκ(p)κ(q) = 0 is equivalent
to having a strict inclusion r ⊂ q, which implies that dim(Sq/pSq) = 1. Thus we
are done with case I with equality in every instance.
Case II: S = R[x]/n with n ̸= 0. In this case we have trdegR(S) = 0. Denote
q′ ⊂ R[x] the prime corresponding to q. Thus we have

Sq = (R[x])q′/n(R[x])q′

https://stacks.math.columbia.edu/tag/00R5
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By the previous case we have dim((R[x])q′) = dim(Rp) + 1 − trdegκ(p)κ(q). Since
n ̸= 0 we see that the dimension of Sq decreases by at least one, see Lemma
10.60.13, which proves the inequality of the lemma. To see the equality in case R is
universally catenary note that n ⊂ R[x] is a height one prime as it corresponds to a
nonzero prime in F [x] where F is the fraction field of R. Hence any maximal chain of
primes in Sq = R[x]q′/nR[x]q′ corresponds to a maximal chain of primes with length
1 greater between q′ and (0) in R[x]. If R is universally catenary these all have the
same length equal to the height of q′. This proves that dim(Sq) = dim(R[x]q′)− 1
and this implies equality holds as desired. □

The following lemma says that generically finite maps tend to be quasi-finite in
codimension 1.

Lemma 10.113.2.02MA Let A→ B be a ring map. Assume
(1) A ⊂ B is an extension of domains,
(2) the induced extension of fraction fields is finite,
(3) A is Noetherian, and
(4) A→ B is of finite type.

Let p ⊂ A be a prime of height 1. Then there are at most finitely many primes of
B lying over p and they all have height 1.

Proof. By the dimension formula (Lemma 10.113.1) for any prime q lying over p
we have

dim(Bq) ≤ dim(Ap)− trdegκ(p)κ(q).
As the domain Bq has at least 2 prime ideals we see that dim(Bq) ≥ 1. We conclude
that dim(Bq) = 1 and that the extension κ(p) ⊂ κ(q) is algebraic. Hence q defines
a closed point of its fibre Spec(B ⊗A κ(p)), see Lemma 10.35.9. Since B ⊗A κ(p)
is a Noetherian ring the fibre Spec(B ⊗A κ(p)) is a Noetherian topological space,
see Lemma 10.31.5. A Noetherian topological space consisting of closed points is
finite, see for example Topology, Lemma 5.9.2. □

10.114. Dimension of finite type algebras over fields

00OO In this section we compute the dimension of a polynomial ring over a field. We
also prove that the dimension of a finite type domain over a field is the dimension
of its local rings at maximal ideals. We will establish the connection with the
transcendence degree over the ground field in Section 10.116.

Lemma 10.114.1.00OP Let m be a maximal ideal in k[x1, . . . , xn]. The ideal m is gen-
erated by n elements. The dimension of k[x1, . . . , xn]m is n. Hence k[x1, . . . , xn]m
is a regular local ring of dimension n.

Proof. By the Hilbert Nullstellensatz (Theorem 10.34.1) we know the residue field
κ = κ(m) is a finite extension of k. Denote αi ∈ κ the image of xi. Denote
κi = k(α1, . . . , αi) ⊂ κ, i = 1, . . . , n and κ0 = k. Note that κi = k[α1, . . . , αi]
by field theory. Define inductively elements fi ∈ m ∩ k[x1, . . . , xi] as follows: Let
Pi(T ) ∈ κi−1[T ] be the monic minimal polynomial of αi over κi−1. Let Qi(T ) ∈
k[x1, . . . , xi−1][T ] be a monic lift of Pi(T ) (of the same degree). Set fi = Qi(xi).
Note that if di = degT (Pi) = degT (Qi) = degxi(fi) then d1d2 . . . di = [κi : k] by
Fields, Lemmas 9.7.7 and 9.9.2.
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We claim that for all i = 0, 1, . . . , n there is an isomorphism
ψi : k[x1, . . . , xi]/(f1, . . . , fi) ∼= κi.

By construction the composition k[x1, . . . , xi] → k[x1, . . . , xn] → κ is surjective
onto κi and f1, . . . , fi are in the kernel. This gives a surjective homomorphism.
We prove ψi is injective by induction. It is clear for i = 0. Given the state-
ment for i we prove it for i + 1. The ring extension k[x1, . . . , xi]/(f1, . . . , fi) →
k[x1, . . . , xi+1]/(f1, . . . , fi+1) is generated by 1 element over a field and one irre-
ducible equation. By elementary field theory k[x1, . . . , xi+1]/(f1, . . . , fi+1) is a field,
and hence ψi is injective.
This implies that m = (f1, . . . , fn). Moreover, we also conclude that

k[x1, . . . , xn]/(f1, . . . , fi) ∼= κi[xi+1, . . . , xn].
Hence (f1, . . . , fi) is a prime ideal. Thus

(0) ⊂ (f1) ⊂ (f1, f2) ⊂ . . . ⊂ (f1, . . . , fn) = m

is a chain of primes of length n. The lemma follows. □

Proposition 10.114.2.00OQ A polynomial algebra in n variables over a field is a regular
ring. It has global dimension n. All localizations at maximal ideals are regular
local rings of dimension n.

Proof. By Lemma 10.114.1 all localizations k[x1, . . . , xn]m at maximal ideals are
regular local rings of dimension n. Hence we conclude by Lemma 10.110.8. □

Lemma 10.114.3.00OR Let k be a field. Let p ⊂ q ⊂ k[x1, . . . , xn] be a pair of primes.
Any maximal chain of primes between p and q has length height(q)− height(p).

Proof. By Proposition 10.114.2 any local ring of k[x1, . . . , xn] is regular. Hence all
local rings are Cohen-Macaulay, see Lemma 10.106.3. The local rings at maximal
ideals have dimension n hence every maximal chain of primes in k[x1, . . . , xn] has
length n, see Lemma 10.104.3. Hence every maximal chain of primes between (0)
and p has length height(p), see Lemma 10.104.4 for example. Putting these together
leads to the assertion of the lemma. □

Lemma 10.114.4.00OS Let k be a field. Let S be a finite type k-algebra which is an
integral domain. Then dim(S) = dim(Sm) for any maximal ideal m of S. In words:
every maximal chain of primes has length equal to the dimension of S.

Proof. Write S = k[x1, . . . , xn]/p. By Proposition 10.114.2 and Lemma 10.114.3
all the maximal chains of primes in S (which necessarily end with a maximal ideal)
have length n − height(p). Thus this number is the dimension of S and of Sm for
any maximal ideal m of S. □

Recall that we defined the dimension dimx(X) of a topological space X at a point
x in Topology, Definition 5.10.1.

Lemma 10.114.5.00OT Let k be a field. Let S be a finite type k-algebra. Let X =
Spec(S). Let p ⊂ S be a prime ideal and let x ∈ X be the corresponding point.
The following numbers are equal

(1) dimx(X),
(2) max dim(Z) where the maximum is over those irreducible components Z

of X passing through x, and

https://stacks.math.columbia.edu/tag/00OQ
https://stacks.math.columbia.edu/tag/00OR
https://stacks.math.columbia.edu/tag/00OS
https://stacks.math.columbia.edu/tag/00OT


10.114. DIMENSION OF FINITE TYPE ALGEBRAS OVER FIELDS 695

(3) min dim(Sm) where the minimum is over maximal ideals m with p ⊂ m.

Proof. Let X =
⋃
i∈I Zi be the decomposition of X into its irreducible components.

There are finitely many of them (see Lemmas 10.31.3 and 10.31.5). Let I ′ = {i |
x ∈ Zi}, and let T =

⋃
i̸∈I′ Zi. Then U = X \ T is an open subset of X containing

the point x. The number (2) is maxi∈I′ dim(Zi). For any open W ⊂ U with
x ∈ W the irreducible components of W are the irreducible sets Wi = Zi ∩W for
i ∈ I ′ and x is contained in each of these. Note that each Wi, i ∈ I ′ contains a
closed point because X is Jacobson, see Section 10.35. Since Wi ⊂ Zi we have
dim(Wi) ≤ dim(Zi). The existence of a closed point implies, via Lemma 10.114.4,
that there is a chain of irreducible closed subsets of length equal to dim(Zi) in the
open Wi. Thus dim(Wi) = dim(Zi) for any i ∈ I ′. Hence dim(W ) is equal to the
number (2). This proves that (1) = (2).

Let m ⊃ p be any maximal ideal containing p. Let x0 ∈ X be the corresponding
point. First of all, x0 is contained in all the irreducible components Zi, i ∈ I ′. Let
qi denote the minimal primes of S corresponding to the irreducible components Zi.
For each i such that x0 ∈ Zi (which is equivalent to m ⊃ qi) we have a surjection

Sm −→ Sm/qiSm = (S/qi)m

Moreover, the primes qiSm so obtained exhaust the minimal primes of the Noether-
ian local ring Sm, see Lemma 10.26.3. We conclude, using Lemma 10.114.4, that
the dimension of Sm is the maximum of the dimensions of the Zi passing through
x0. To finish the proof of the lemma it suffices to show that we can choose x0 such
that x0 ∈ Zi ⇒ i ∈ I ′. Because S is Jacobson (as we saw above) it is enough
to show that V (p) \ T (with T as above) is nonempty. And this is clear since it
contains the point x (i.e. p). □

Lemma 10.114.6.00OU Let k be a field. Let S be a finite type k-algebra. Let X =
Spec(S). Let m ⊂ S be a maximal ideal and let x ∈ X be the associated closed
point. Then dimx(X) = dim(Sm).

Proof. This is a special case of Lemma 10.114.5. □

Lemma 10.114.7.00OV Let k be a field. Let S be a finite type k algebra. Assume
that S is Cohen-Macaulay. Then Spec(S) =

∐
Td is a finite disjoint union of open

and closed subsets Td with Td equidimensional (see Topology, Definition 5.10.5) of
dimension d. Equivalently, S is a product of rings Sd, d = 0, . . . ,dim(S) such that
every maximal ideal m of Sd has height d.

Proof. The equivalence of the two statements follows from Lemma 10.24.3. Let
m ⊂ S be a maximal ideal. Every maximal chain of primes in Sm has the same
length equal to dim(Sm), see Lemma 10.104.3. Hence, the dimension of the irre-
ducible components passing through the point corresponding to m all have dimen-
sion equal to dim(Sm), see Lemma 10.114.4. Since Spec(S) is a Jacobson topologi-
cal space the intersection of any two irreducible components of it contains a closed
point if nonempty, see Lemmas 10.35.2 and 10.35.4. Thus we have shown that any
two irreducible components that meet have the same dimension. The lemma fol-
lows easily from this, and the fact that Spec(S) has a finite number of irreducible
components (see Lemmas 10.31.3 and 10.31.5). □
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10.115. Noether normalization

00OW In this section we prove variants of the Noether normalization lemma. The key
ingredient we will use is contained in the following two lemmas.

Lemma 10.115.1.051M Let n ∈ N. Let N be a finite nonempty set of multi-indices
ν = (ν1, . . . , νn). Given e = (e1, . . . , en) we set e · ν =

∑
eiνi. Then for e1 ≫ e2 ≫

. . .≫ en−1 ≫ en we have: If ν, ν′ ∈ N then
(e · ν = e · ν′)⇔ (ν = ν′)

Proof. Say N = {νj} with νj = (νj1, . . . , νjn). Let Ai = maxj νji −minj νji. If for
each i we have ei−1 > Aiei + Ai+1ei+1 + . . . + Anen then the lemma holds. For
suppose that e · (ν − ν′) = 0. Then for n ≥ 2,

e1(ν1 − ν′
1) =

∑n

i=2
ei(ν′

i − νi).

We may assume that (ν1 − ν′
1) ≥ 0. If (ν1 − ν′

1) > 0, then

e1(ν1 − ν′
1) ≥ e1 > A2e2 + . . .+Anen ≥

∑n

i=2
ei|ν′

i − νi| ≥
∑n

i=2
ei(ν′

i − νi).

This contradiction implies that ν′
1 = ν1. By induction, ν′

i = νi for 2 ≤ i ≤ n. □

Lemma 10.115.2.051N Let R be a ring. Let g ∈ R[x1, . . . , xn] be an element which is
nonconstant, i.e., g ̸∈ R. For e1 ≫ e2 ≫ . . .≫ en−1 ≫ en = 1 the polynomial

g(x1 + xe1
n , x2 + xe2

n , . . . , xn−1 + xen−1
n , xn) = axdn + lower order terms in xn

where d > 0 and a ∈ R is one of the nonzero coefficients of g.

Proof. Write g =
∑
ν∈N aνx

ν with aν ∈ R not zero. Here N is a finite set of
multi-indices as in Lemma 10.115.1 and xν = xν1

1 . . . xνnn . Note that the leading
term in

(x1 + xe1
n )ν1 . . . (xn−1 + xen−1

n )νn−1xνnn is xe1ν1+...+en−1νn−1+νn
n .

Hence the lemma follows from Lemma 10.115.1 which guarantees that there is
exactly one nonzero term aνx

ν of g which gives rise to the leading term of g(x1 +
xe1
n , x2 +xe2

n , . . . , xn−1 +x
en−1
n , xn), i.e., a = aν for the unique ν ∈ N such that e ·ν

is maximal. □

Lemma 10.115.3.00OX Let k be a field. Let S = k[x1, . . . , xn]/I for some proper ideal
I. If I ̸= 0, then there exist y1, . . . , yn−1 ∈ k[x1, . . . , xn] such that S is finite
over k[y1, . . . , yn−1]. Moreover we may choose yi to be in the Z-subalgebra of
k[x1, . . . , xn] generated by x1, . . . , xn.

Proof. Pick f ∈ I, f ̸= 0. It suffices to show the lemma for k[x1, . . . , xn]/(f) since
S is a quotient of that ring. We will take yi = xi−xein , i = 1, . . . , n− 1 for suitable
integers ei. When does this work? It suffices to show that xn ∈ k[x1, . . . , xn]/(f)
is integral over the ring k[y1, . . . , yn−1]. The equation for xn over this ring is

f(y1 + xe1
n , . . . , yn−1 + xen−1

n , xn) = 0.
Hence we are done if we can show there exists integers ei such that the leading
coefficient with respect to xn of the equation above is a nonzero element of k.
This can be achieved for example by choosing e1 ≫ e2 ≫ . . . ≫ en−1, see Lemma
10.115.2. □
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Lemma 10.115.4.00OY Let k be a field. Let S = k[x1, . . . , xn]/I for some ideal I. If
I ̸= (1), there exist r ≥ 0, and y1, . . . , yr ∈ k[x1, . . . , xn] such that (a) the map
k[y1, . . . , yr] → S is injective, and (b) the map k[y1, . . . , yr] → S is finite. In this
case the integer r is the dimension of S. Moreover we may choose yi to be in the
Z-subalgebra of k[x1, . . . , xn] generated by x1, . . . , xn.

Proof. By induction on n, with n = 0 being trivial. If I = 0, then take r = n and
yi = xi. If I ̸= 0, then choose y1, . . . , yn−1 as in Lemma 10.115.3. Let S′ ⊂ S
be the subring generated by the images of the yi. By induction we can choose r
and z1, . . . , zr ∈ k[y1, . . . , yn−1] such that (a), (b) hold for k[z1, . . . , zr]→ S′. Since
S′ → S is injective and finite we see (a), (b) hold for k[z1, . . . , zr] → S. The last
assertion follows from Lemma 10.112.4. □

Lemma 10.115.5.00OZ Let k be a field. Let S be a finite type k algebra and denote
X = Spec(S). Let q be a prime of S, and let x ∈ X be the corresponding point.
There exists a g ∈ S, g ̸∈ q such that dim(Sg) = dimx(X) =: d and such that there
exists a finite injective map k[y1, . . . , yd]→ Sg.

Proof. Note that by definition dimx(X) is the minimum of the dimensions of Sg for
g ∈ S, g ̸∈ q, i.e., the minimum is attained. Thus the lemma follows from Lemma
10.115.4. □

Lemma 10.115.6.051P Let k be a field. Let q ⊂ k[x1, . . . , xn] be a prime ideal. Set
r = trdegk κ(q). Then there exists a finite ring map φ : k[y1, . . . , yn]→ k[x1, . . . , xn]
such that φ−1(q) = (yr+1, . . . , yn).

Proof. By induction on n. The case n = 0 is clear. Assume n > 0. If r = n, then
q = (0) and the result is clear. Choose a nonzero f ∈ q. Of course f is nonconstant.
After applying an automorphism of the form

k[x1, . . . , xn] −→ k[x1, . . . , xn], xn 7→ xn, xi 7→ xi + xein (i < n)
we may assume that f is monic in xn over k[x1, . . . , xn], see Lemma 10.115.2. Hence
the ring map

k[y1, . . . , yn] −→ k[x1, . . . , xn], yn 7→ f, yi 7→ xi (i < n)
is finite. Moreover yn ∈ q ∩ k[y1, . . . , yn] by construction. Thus q ∩ k[y1, . . . , yn] =
pk[y1, . . . , yn] + (yn) where p ⊂ k[y1, . . . , yn−1] is a prime ideal. Note that κ(p) ⊂
κ(q) is finite, and hence r = trdegk κ(p). Apply the induction hypothesis to
the pair (k[y1, . . . , yn−1], p) and we obtain a finite ring map k[z1, . . . , zn−1] →
k[y1, . . . , yn−1] such that p∩k[z1, . . . , zn−1] = (zr+1, . . . , zn−1). We extend the ring
map k[z1, . . . , zn−1] → k[y1, . . . , yn−1] to a ring map k[z1, . . . , zn] → k[y1, . . . , yn]
by mapping zn to yn. The composition of the ring maps

k[z1, . . . , zn]→ k[y1, . . . , yn]→ k[x1, . . . , xn]
solves the problem. □

Lemma 10.115.7.07NA Let R→ S be an injective finite type ring map. Assume R is a
domain. Then there exists an integer d and a factorization

R→ R[y1, . . . , yd]→ S′ → S

by injective maps such that S′ is finite over R[y1, . . . , yd] and such that S′
f
∼= Sf

for some nonzero f ∈ R.
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Proof. Pick x1, . . . , xn ∈ S which generate S over R. Let K be the fraction field
of R and SK = S ⊗R K. By Lemma 10.115.4 we can find y1, . . . , yd ∈ S such that
K[y1, . . . , yd]→ SK is a finite injective map. Note that yi ∈ S because we may pick
the yj in the Z-algebra generated by x1, . . . , xn. As a finite ring map is integral
(see Lemma 10.36.3) we can find monic Pi ∈ K[y1, . . . , yd][T ] such that Pi(xi) = 0
in SK . Let f ∈ R be a nonzero element such that fPi ∈ R[y1, . . . , yd][T ] for all
i. Then fPi(xi) maps to zero in SK . Hence after replacing f by another nonzero
element of R we may also assume fPi(xi) is zero in S. Set x′

i = fxi and let S′ ⊂ S
be the R-subalgebra generated by y1, . . . , yd and x′

1, . . . , x
′
n. Note that x′

i is integral
over R[y1, . . . , yd] as we have Qi(x′

i) = 0 where Qi = fdegT (Pi)Pi(T/f) which is a
monic polynomial in T with coefficients in R[y1, . . . , yd] by our choice of f . Hence
R[y1, . . . , yd] ⊂ S′ is finite by Lemma 10.36.5. Since S′ ⊂ S we have S′

f ⊂ Sf
(localization is exact). On the other hand, the elements xi = x′

i/f in S′
f generate

Sf over Rf and hence S′
f → Sf is surjective. Whence S′

f
∼= Sf and we win. □

10.116. Dimension of finite type algebras over fields, reprise

07NB This section is a continuation of Section 10.114. In this section we establish the
connection between dimension and transcendence degree over the ground field for
finite type domains over a field.

Lemma 10.116.1.00P0 Let k be a field. Let S be a finite type k algebra which is an
integral domain. Let K be the field of fractions of S. Let r = trdeg(K/k) be the
transcendence degree of K over k. Then dim(S) = r. Moreover, the local ring of S
at every maximal ideal has dimension r.

Proof. We may write S = k[x1, . . . , xn]/p. By Lemma 10.114.3 all local rings of
S at maximal ideals have the same dimension. Apply Lemma 10.115.4. We get a
finite injective ring map

k[y1, . . . , yd]→ S

with d = dim(S). Clearly, k(y1, . . . , yd) ⊂ K is a finite extension and we win. □

Lemma 10.116.2.06RP Let k be a field. Let S be a finite type k-algebra. Let q ⊂ q′ ⊂ S
be distinct prime ideals. Then trdegk κ(q′) < trdegk κ(q).

Proof. By Lemma 10.116.1 we have dimV (q) = trdegk κ(q) and similarly for q′.
Hence the result follows as the strict inclusion V (q′) ⊂ V (q) implies a strict in-
equality of dimensions. □

The following lemma generalizes Lemma 10.114.6.

Lemma 10.116.3.00P1 Let k be a field. Let S be a finite type k algebra. Let X =
Spec(S). Let p ⊂ S be a prime ideal, and let x ∈ X be the corresponding point.
Then we have

dimx(X) = dim(Sp) + trdegk κ(p).

Proof. By Lemma 10.116.1 we know that r = trdegk κ(p) is equal to the dimension
of V (p). Pick any maximal chain of primes p ⊂ p1 ⊂ . . . ⊂ pr starting with p in
S. This has length r by Lemma 10.114.4. Let qj , j ∈ J be the minimal primes of
S which are contained in p. These correspond 1 − 1 to minimal primes in Sp via
the rule qj 7→ qjSp. By Lemma 10.114.5 we know that dimx(X) is equal to the
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maximum of the dimensions of the rings S/qj . For each j pick a maximal chain of
primes qj ⊂ p′

1 ⊂ . . . ⊂ p′
s(j) = p. Then dim(Sp) = maxj∈J s(j). Now, each chain

qi ⊂ p′
1 ⊂ . . . ⊂ p′

s(j) = p ⊂ p1 ⊂ . . . ⊂ pr

is a maximal chain in S/qj , and by what was said before we have dimx(X) =
maxj∈J r + s(j). The lemma follows. □

The following lemma says that the codimension of one finite type Spec in another
is the difference of heights.
Lemma 10.116.4.00P2 Let k be a field. Let S′ → S be a surjection of finite type k
algebras. Let p ⊂ S be a prime ideal, and let p′ be the corresponding prime ideal
of S′. Let X = Spec(S), resp. X ′ = Spec(S′), and let x ∈ X, resp. x′ ∈ X ′ be the
point corresponding to p, resp. p′. Then

dimx′ X ′ − dimxX = height(p′)− height(p).
Proof. Immediate from Lemma 10.116.3. □

Lemma 10.116.5.00P3 Let k be a field. Let S be a finite type k-algebra. Let K/k be a
field extension. Then dim(S) = dim(K ⊗k S).
Proof. By Lemma 10.115.4 there exists a finite injective map k[y1, . . . , yd]→ S with
d = dim(S). Since K is flat over k we also get a finite injective map K[y1, . . . , yd]→
K ⊗k S. The result follows from Lemma 10.112.4. □

Lemma 10.116.6.00P4 Let k be a field. Let S be a finite type k-algebra. Set X =
Spec(S). Let K/k be a field extension. Set SK = K ⊗k S, and XK = Spec(SK).
Let q ⊂ S be a prime corresponding to x ∈ X and let qK ⊂ SK be a prime
corresponding to xK ∈ XK lying over q. Then dimxX = dimxK XK .
Proof. Choose a presentation S = k[x1, . . . , xn]/I. This gives a presentation K ⊗k
S = K[x1, . . . , xn]/(K⊗kI). Let q′

K ⊂ K[x1, . . . , xn], resp. q′ ⊂ k[x1, . . . , xn] be the
corresponding primes. Consider the following commutative diagram of Noetherian
local rings

K[x1, . . . , xn]q′
K

// (K ⊗k S)qK

k[x1, . . . , xn]q′ //

OO

Sq

OO

Both vertical arrows are flat because they are localizations of the flat ring maps
S → SK and k[x1, . . . , xn]→ K[x1, . . . , xn]. Moreover, the vertical arrows have the
same fibre rings. Hence, we see from Lemma 10.112.7 that height(q′)−height(q) =
height(q′

K) − height(qK). Denote x′ ∈ X ′ = Spec(k[x1, . . . , xn]) and x′
K ∈ X ′

K =
Spec(K[x1, . . . , xn]) the points corresponding to q′ and q′

K . By Lemma 10.116.4
and what we showed above we have

n− dimxX = dimx′ X ′ − dimxX

= height(q′)− height(q)
= height(q′

K)− height(qK)
= dimx′

K
X ′
K − dimxK XK

= n− dimxK XK

and the lemma follows. □
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Lemma 10.116.7.0CWE Let k be a field. Let S be a finite type k-algebra. Let K/k be
a field extension. Set SK = K ⊗k S. Let q ⊂ S be a prime and let qK ⊂ SK be a
prime lying over q. Then

dim(SK ⊗S κ(q))qK = dim(SK)qK − dimSq = trdegkκ(q)− trdegKκ(qK)
Moreover, given q we can always choose qK such that the number above is zero.
Proof. Observe that Sq → (SK)qK is a flat local homomorphism of local Noetherian
rings with special fibre (SK⊗Sκ(q))qK . Hence the first equality by Lemma 10.112.7.
The second equality follows from the fact that we have dimxX = dimxK XK with
notation as in Lemma 10.116.6 and we have dimxX = dimSq + trdegkκ(q) by
Lemma 10.116.3 and similarly for dimxK XK . If we choose qK minimal over qSK ,
then the dimension of the fibre ring will be zero. □

10.117. Dimension of graded algebras over a field

00P5 Here is a basic result.
Lemma 10.117.1.00P6 Let k be a field. Let S be a graded k-algebra generated over k
by finitely many elements of degree 1. Assume S0 = k. Let P (T ) ∈ Q[T ] be the
polynomial such that dim(Sd) = P (d) for all d≫ 0. See Proposition 10.58.7. Then

(1) The irrelevant ideal S+ is a maximal ideal m.
(2) Any minimal prime of S is a homogeneous ideal and is contained in S+ =

m.
(3) We have dim(S) = deg(P ) + 1 = dimx Spec(S) (with the convention that

deg(0) = −1) where x is the point corresponding to the maximal ideal
S+ = m.

(4) The Hilbert function of the local ring R = Sm is equal to the Hilbert
function of S.

Proof. The first statement is obvious. The second follows from Lemma 10.57.8.
By (2) every irreducible component passes through x. Thus we have dim(S) =
dimx Spec(S) = dim(Sm) by Lemma 10.114.5. Since md/md+1 ∼= mdSm/m

d+1Sm

we see that the Hilbert function of the local ring Sm is equal to the Hilbert function
of S, which is (4). We conclude the last equality of (3) by Proposition 10.60.9. □

10.118. Generic flatness

051Q Basically this says that a finite type algebra over a domain becomes flat after
inverting a single element of the domain. There are several versions of this result
(in increasing order of strength).
Lemma 10.118.1.051R Let R→ S be a ring map. Let M be an S-module. Assume

(1) R is Noetherian,
(2) R is a domain,
(3) R→ S is of finite type, and
(4) M is a finite type S-module.

Then there exists a nonzero f ∈ R such that Mf is a free Rf -module.
Proof. Let K be the fraction field of R. Set SK = K ⊗R S. This is an algebra of
finite type over K. We will argue by induction on d = dim(SK) (which is finite
for example by Noether normalization, see Section 10.115). Fix d ≥ 0. Assume we
know that the lemma holds in all cases where dim(SK) < d.

https://stacks.math.columbia.edu/tag/0CWE
https://stacks.math.columbia.edu/tag/00P6
https://stacks.math.columbia.edu/tag/051R


10.118. GENERIC FLATNESS 701

Suppose given R → S and M as in the lemma with dim(SK) = d. By Lemma
10.62.1 there exists a filtration 0 ⊂ M1 ⊂ M2 ⊂ . . . ⊂ Mn = M so that Mi/Mi−1
is isomorphic to S/q for some prime q of S. Note that dim((S/q)K) ≤ dim(SK).
Also, note that an extension of free modules is free (see basic notion 50). Thus we
may assume M = S and that S is a domain of finite type over R.
If R→ S has a nontrivial kernel, then take a nonzero f ∈ R in this kernel. In this
case Sf = 0 and the lemma holds. (This is really the case d = −1 and the start
of the induction.) Hence we may assume that R → S is a finite type extension of
Noetherian domains.
Apply Lemma 10.115.7 and replace R by Rf (with f as in the lemma) to get a
factorization

R ⊂ R[y1, . . . , yd] ⊂ S
where the second extension is finite. Choose z1, . . . , zr ∈ S which form a basis for
the fraction field of S over the fraction field of R[y1, . . . , yd]. This gives a short
exact sequence

0→ R[y1, . . . , yd]⊕r
(z1,...,zr)−−−−−−→ S → N → 0

By construction N is a finite R[y1, . . . , yd]-module whose support does not con-
tain the generic point (0) of Spec(R[y1, . . . , yd]). By Lemma 10.40.5 there ex-
ists a nonzero g ∈ R[y1, . . . , yd] such that g annihilates N , so we may view N
as a finite module over S′ = R[y1, . . . , yd]/(g). Since dim(S′

K) < d by induc-
tion there exists a nonzero f ∈ R such that Nf is a free Rf -module. Since
(R[y1, . . . , yd])f ∼= Rf [y1, . . . , yd] is free also we conclude by the already mentioned
fact that an extension of free modules is free. □

Lemma 10.118.2.051S Let R→ S be a ring map. Let M be an S-module. Assume
(1) R is a domain,
(2) R→ S is of finite presentation, and
(3) M is an S-module of finite presentation.

Then there exists a nonzero f ∈ R such that Mf is a free Rf -module.
Proof. Write S = R[x1, . . . , xn]/(g1, . . . , gm). For g ∈ R[x1, . . . , xn] denote g its
image in S. We may write M = S⊕t/

∑
Sni for some ni ∈ S⊕t. Write ni =

(gi1, . . . , git) for some gij ∈ R[x1, . . . , xn]. Let R0 ⊂ R be the subring generated
by all the coefficients of all the elements gi, gij ∈ R[x1, . . . , xn]. Define S0 =
R0[x1, . . . , xn]/(g1, . . . , gm). Define M0 = S⊕t

0 /
∑
S0ni. Then R0 is a domain of

finite type over Z and hence Noetherian (see Lemma 10.31.1). Moreover via the
injection R0 → R we have S ∼= R ⊗R0 S0 and M ∼= R ⊗R0 M0. Applying Lemma
10.118.1 we obtain a nonzero f ∈ R0 such that (M0)f is a free (R0)f -module. Hence
Mf = Rf ⊗(R0)f (M0)f is a free Rf -module. □

Lemma 10.118.3.051T Let R→ S be a ring map. Let M be an S-module. Assume
(1) R is a domain,
(2) R→ S is of finite type, and
(3) M is a finite type S-module.

Then there exists a nonzero f ∈ R such that
(a) Mf and Sf are free as Rf -modules, and
(b) Sf is a finitely presented Rf -algebra and Mf is a finitely presented Sf -

module.

https://stacks.math.columbia.edu/tag/051S
https://stacks.math.columbia.edu/tag/051T
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Proof. We first prove the lemma for S = R[x1, . . . , xn], and then we deduce the
result in general.

Assume S = R[x1, . . . , xn]. Choose elements m1, . . . ,mt which generate M . This
gives a short exact sequence

0→ N → S⊕t (m1,...,mt)−−−−−−−→M → 0.

Denote K the fraction field of R. Denote SK = K ⊗R S = K[x1, . . . , xn], and
similarly NK = K ⊗R N , MK = K ⊗R M . As R → K is flat the sequence
remains exact after tensoring with K. As SK = K[x1, . . . , xn] is a Noetherian ring
(see Lemma 10.31.1) we can find finitely many elements n′

1, . . . , n
′
s ∈ NK which

generate it. Choose n1, . . . , nr ∈ N such that n′
i =

∑
aijnj for some aij ∈ K. Set

M ′ = S⊕t/
∑

i=1,...,r
Sni

By construction M ′ is a finitely presented S-module, and there is a surjection
M ′ → M which induces an isomorphism M ′

K
∼= MK . We may apply Lemma

10.118.2 to R→ S and M ′ and we find an f ∈ R such that M ′
f is a free Rf -module.

Thus M ′
f →Mf is a surjection of modules over the domain Rf where the source is

a free module and which becomes an isomorphism upon tensoring with K. Thus it
is injective as M ′

f ⊂ M ′
K as it is free over the domain Rf . Hence M ′

f → Mf is an
isomorphism and the result is proved.

For the general case, choose a surjection R[x1, . . . , xn] → S. Think of both S
and M as finite modules over R[x1, . . . , xn]. By the special case proved above
there exists a nonzero f ∈ R such that both Sf and Mf are free as Rf -modules
and finitely presented as Rf [x1, . . . , xn]-modules. Clearly this implies that Sf is a
finitely presented Rf -algebra and that Mf is a finitely presented Sf -module. □

Let R→ S be a ring map. Let M be an S-module. Consider the following condition
on an element f ∈ R:

(10.118.3.1)051U

 Sf is of finite presentation over Rf
Mf is of finite presentation as Sf -module

Sf ,Mf are free as Rf -modules

We define

(10.118.3.2)051V U(R→ S,M) =
⋃

f∈R with (10.118.3.1)
D(f)

which is an open subset of Spec(R).

Lemma 10.118.4.051W Let R → S be a ring map. Let 0→ M1 → M2 → M3 → 0 be a
short exact sequence of S-modules. Then

U(R→ S,M1) ∩ U(R→ S,M3) ⊂ U(R→ S,M2).

Proof. Let u ∈ U(R → S,M1) ∩ U(R → S,M3). Choose f1, f3 ∈ R such that
u ∈ D(f1), u ∈ D(f3) and such that (10.118.3.1) holds for f1 and M1 and for
f3 and M3. Then set f = f1f3. Then u ∈ D(f) and (10.118.3.1) holds for f
and both M1 and M3. An extension of free modules is free, and an extension of
finitely presented modules is finitely presented (Lemma 10.5.3). Hence we see that
(10.118.3.1) holds for f and M2. Thus u ∈ U(R→ S,M2) and we win. □

https://stacks.math.columbia.edu/tag/051W
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Lemma 10.118.5.051X Let R → S be a ring map. Let M be an S-module. Let
f ∈ R. Using the identification Spec(Rf ) = D(f) we have U(Rf → Sf ,Mf ) =
D(f) ∩ U(R→ S,M).

Proof. Suppose that u ∈ U(Rf → Sf ,Mf ). Then there exists an element g ∈
Rf such that u ∈ D(g) and such that (10.118.3.1) holds for the pair ((Rf )g →
(Sf )g, (Mf )g). Write g = a/fn for some a ∈ R. Set h = af . Then Rh = (Rf )g,
Sh = (Sf )g, and Mh = (Mf )g. Moreover u ∈ D(h). Hence u ∈ U(R → S,M).
Conversely, suppose that u ∈ D(f) ∩ U(R → S,M). Then there exists an ele-
ment g ∈ R such that u ∈ D(g) and such that (10.118.3.1) holds for the pair
(Rg → Sg,Mg). Then it is clear that (10.118.3.1) also holds for the pair (Rfg →
Sfg,Mfg) = ((Rf )g → (Sf )g, (Mf )g). Hence u ∈ U(Rf → Sf ,Mf ) and we win. □

Lemma 10.118.6.051Y Let R → S be a ring map. Let M be an S-module. Let
U ⊂ Spec(R) be a dense open. Assume there is a covering U =

⋃
i∈I D(fi) of opens

such that U(Rfi → Sfi ,Mfi) is dense in D(fi) for each i ∈ I. Then U(R→ S,M)
is dense in Spec(R).

Proof. In view of Lemma 10.118.5 this is a purely topological statement. Namely,
by that lemma we see that U(R → S,M) ∩D(fi) is dense in D(fi) for each i ∈ I.
By Topology, Lemma 5.21.4 we see that U(R→ S,M) ∩ U is dense in U . Since U
is dense in Spec(R) we conclude that U(R→ S,M) is dense in Spec(R). □

Lemma 10.118.7.051Z Let R→ S be a ring map. Let M be an S-module. Assume
(1) R→ S is of finite type,
(2) M is a finite S-module, and
(3) R is reduced.

Then there exists a subset U ⊂ Spec(R) such that
(1) U is open and dense in Spec(R),
(2) for every u ∈ U there exists an f ∈ R such that u ∈ D(f) ⊂ U and such

that we have
(a) Mf and Sf are free over Rf ,
(b) Sf is a finitely presented Rf -algebra, and
(c) Mf is a finitely presented Sf -module.

Proof. Note that the lemma is equivalent to the statement that the open U(R →
S,M), see Equation (10.118.3.2), is dense in Spec(R). We first prove the lemma
for S = R[x1, . . . , xn], and then we deduce the result in general.

Proof of the case S = R[x1, . . . , xn] and M any finite module over S. Note that in
this case Sf = Rf [x1, . . . , xn] is free and of finite presentation over Rf , so we do
not have to worry about the conditions regarding S, only those that concern M .
We will use induction on n.

There exists a finite filtration

0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mt = M

such that Mi/Mi−1 ∼= S/Ji for some ideal Ji ⊂ S, see Lemma 10.5.4. Since a
finite intersection of dense opens is dense open, we see from Lemma 10.118.4 that
it suffices to prove the lemma for each of the modules R/Ji. Hence we may assume
that M = S/J for some ideal J of S = R[x1, . . . , xn].

https://stacks.math.columbia.edu/tag/051X
https://stacks.math.columbia.edu/tag/051Y
https://stacks.math.columbia.edu/tag/051Z
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Let I ⊂ R be the ideal generated by the coefficients of elements of J . Let U1 =
Spec(R) \ V (I) and let

U2 = Spec(R) \ U1.

Then it is clear that U = U1 ∪ U2 is dense in Spec(R). Let f ∈ R be an element
such that either (a) D(f) ⊂ U1 or (b) D(f) ⊂ U2. If for any such f the lemma
holds for the pair (Rf → Rf [x1, . . . , xn],Mf ) then by Lemma 10.118.6 we see that
U(R→ S,M) is dense in Spec(R). Hence we may assume either (a) I = R, or (b)
V (I) = Spec(R).

In case (b) we actually have I = 0 as R is reduced! Hence J = 0 and M = S and
the lemma holds in this case.

In case (a) we have to do a little bit more work. Note that every element of I
is actually the coefficient of a monomial of an element of J , because the set of
coefficients of elements of J forms an ideal (details omitted). Hence we find an
element

g =
∑

K∈E
aKx

K ∈ J

where E is a finite set of multi-indices K = (k1, . . . , kn) with at least one coefficient
aK0 a unit in R. Actually we can find one which has a coefficient equal to 1 as 1 ∈ I
in case (a). Let m = #{K ∈ E | aK is not a unit}. Note that 0 ≤ m ≤ #E − 1.
We will argue by induction on m.

The case m = 0. In this case all the coefficients aK , K ∈ E of g are units and
E ̸= ∅. If E = {K0} is a singleton and K0 = (0, . . . , 0), then g is a unit and J = S
so the result holds for sure. (This happens in particular when n = 0 and it provides
the base case of the induction on n.) If not E = {(0, . . . , 0)}, then at least one K
is not equal to (0, . . . , 0), i.e., g ̸∈ R. At this point we employ the usual trick of
Noether normalization. Namely, we consider

G(y1, . . . , yn) = g(y1 + ye1
n , y2 + ye2

n , . . . , yn−1 + yen−1
n , yn)

with 0≪ en−1 ≪ en−2 ≪ . . .≪ e1. By Lemma 10.115.2 it follows thatG(y1, . . . , yn)
as a polynomial in yn looks like

aKy
kn+
∑

i=1,...,n−1
eiki

n + lower order terms in yn

As aK is a unit we conclude that M = R[x1, . . . , xn]/J is finite over R[y1, . . . , yn−1].
Hence U(R → R[x1, . . . , xn],M) = U(R → R[y1, . . . , yn−1],M) and we win by
induction on n.

The case m > 0. Pick a multi-index K ∈ E such that aK is not a unit. As before
set U1 = Spec(RaK ) = Spec(R) \ V (aK) and set

U2 = Spec(R) \ U1.

Then it is clear that U = U1 ∪ U2 is dense in Spec(R). Let f ∈ R be an element
such that either (a) D(f) ⊂ U1 or (b) D(f) ⊂ U2. If for any such f the lemma
holds for the pair (Rf → Rf [x1, . . . , xn],Mf ) then by Lemma 10.118.6 we see that
U(R → S,M) is dense in Spec(R). Hence we may assume either (a) aKR = R, or
(b) V (aK) = Spec(R). In case (a) the number m drops, as aK has turned into a
unit. In case (b), since R is reduced, we conclude that aK = 0. Hence the set E
decreases so the number m drops as well. In both cases we win by induction on m.
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At this point we have proven the lemma in case S = R[x1, . . . , xn]. Assume that
(R → S,M) is an arbitrary pair satisfying the conditions of the lemma. Choose
a surjection R[x1, . . . , xn] → S. Observe that, with the notation introduced in
(10.118.3.2), we have

U(R→ S,M) = U(R→ R[x1, . . . , xn], S) ∩ U(R→ R[x1, . . . , xn],M)
Hence as we’ve just finished proving the right two opens are dense also the open
on the left is dense. □

10.119. Around Krull-Akizuki

00P7 One application of Krull-Akizuki is to show that there are plenty of discrete val-
uation rings. More generally in this section we show how to construct discrete
valuation rings dominating Noetherian local rings.
First we show how to dominate a Noetherian local domain by a 1-dimensional
Noetherian local domain by blowing up the maximal ideal.

Lemma 10.119.1.00P8 Let R be a local Noetherian domain with fraction field K. As-
sume R is not a field. Then there exist R ⊂ R′ ⊂ K with

(1) R′ local Noetherian of dimension 1,
(2) R→ R′ a local ring map, i.e., R′ dominates R, and
(3) R→ R′ essentially of finite type.

Proof. Choose any valuation ring A ⊂ K dominating R (which exist by Lemma
10.50.2). Denote v the corresponding valuation. Let x1, . . . , xr be a minimal set
of generators of the maximal ideal m of R. We may and do assume that v(xr) =
min{v(x1), . . . , v(xr)}. Consider the ring

S = R[x1/xr, x2/xr, . . . , xr−1/xr] ⊂ K.
Note that mS = xrS is a principal ideal. Note that S ⊂ A and that v(xr) > 0, hence
we see that xrS ̸= S. Choose a minimal prime q over xrS. Then height(q) = 1 by
Lemma 10.60.11 and q lies over m. Hence we see that R′ = Sq is a solution. □

Lemma 10.119.2 (Kollár).0BHZ This is taken from a
forthcoming paper
by János Kollár
entitled “Variants of
normality for
Noetherian
schemes”.

Let (R,m) be a local Noetherian ring. Then exactly one
of the following holds:

(1) (R,m) is Artinian,
(2) (R,m) is regular of dimension 1,
(3) depth(R) ≥ 2, or
(4) there exists a finite ring map R→ R′ which is not an isomorphism whose

kernel and cokernel are annihilated by a power of m such that m is not an
associated prime of R′ and R′ ̸= 0.

Proof. Observe that (R,m) is not Artinian if and only if V (m) ⊂ Spec(R) is nowhere
dense. See Proposition 10.60.7. We assume this from now on.
Let J ⊂ R be the largest ideal killed by a power of m. If J ̸= 0 then R → R/J
shows that (R,m) is as in (4).
Otherwise J = 0. In particular m is not an associated prime of R and we see that
there is a nonzerodivisor x ∈ m by Lemma 10.63.18. If m is not an associated prime
of R/xR then depth(R) ≥ 2 by the same lemma. Thus we are left with the case
when there is a y ∈ R, y ̸∈ xR such that ym ⊂ xR.

https://stacks.math.columbia.edu/tag/00P8
https://stacks.math.columbia.edu/tag/0BHZ
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If ym ⊂ xm then we can consider the map φ : m → m, f 7→ yf/x (well defined as
x is a nonzerodivisor). By the determinantal trick of Lemma 10.16.2 there exists a
monic polynomial P with coefficients in R such that P (φ) = 0. We conclude that
P (y/x) = 0 in Rx. Let R′ ⊂ Rx be the ring generated by R and y/x. Then R ⊂ R′

and R′/R is a finite R-module annihilated by a power of m. Thus R is as in (4).
Otherwise there is a t ∈ m such that yt = ux for some unit u of R. After replacing
t by u−1t we get yt = x. In particular y is a nonzerodivisor. For any t′ ∈ m we have
yt′ = xs for some s ∈ R. Thus y(t′−st) = xs−xs = 0. Since y is not a zero-divisor
this implies that t′ = ts and so m = (t). Thus (R,m) is regular of dimension 1. □

Lemma 10.119.3.00P9 Let R be a local ring with maximal ideal m. Assume R is
Noetherian, has dimension 1, and that dim(m/m2) > 1. Then there exists a ring
map R→ R′ such that

(1) R→ R′ is finite,
(2) R→ R′ is not an isomorphism,
(3) the kernel and cokernel of R→ R′ are annihilated by a power of m, and
(4) m is not an associated prime of R′.

Proof. This follows from Lemma 10.119.2 and the fact that R is not Artinian, not
regular, and does not have depth ≥ 2 (the last part because the depth does not
exceed the dimension by Lemma 10.72.3). □

Example 10.119.4.00PA Consider the Noetherian local ring

R = k[[x, y]]/(y2)
It has dimension 1 and it is Cohen-Macaulay. An example of an extension as in
Lemma 10.119.3 is the extension

k[[x, y]]/(y2) ⊂ k[[x, z]]/(z2), y 7→ xz

in other words it is gotten by adjoining y/x to R. The effect of repeating the
construction n > 1 times is to adjoin the element y/xn.

Example 10.119.5.00PB Let k be a field of characteristic p > 0 such that k has infi-
nite degree over its subfield kp of pth powers. For example k = Fp(t1, t2, t3, . . .).
Consider the ring

A =
{∑

aix
i ∈ k[[x]] such that [kp(a0, a1, a2, . . .) : kp] <∞

}
Then A is a discrete valuation ring and its completion is A∧ = k[[x]]. Note that
the induced extension of fraction fields of A ⊂ k[[x]] is infinite purely inseparable.
Choose any f ∈ k[[x]], f ̸∈ A. Let R = A[f ] ⊂ k[[x]]. Then R is a Noetherian local
domain of dimension 1 whose completion R∧ is nonreduced (think!).

Remark 10.119.6.00PC Suppose that R is a 1-dimensional semi-local Noetherian domain.
If there is a maximal ideal m ⊂ R such that Rm is not regular, then we may apply
Lemma 10.119.3 to (R,m) to get a finite ring extension R ⊂ R1. (For example
one can do this so that Spec(R1)→ Spec(R) is the blowup of Spec(R) in the ideal
m.) Of course R1 is a 1-dimensional semi-local Noetherian domain with the same
fraction field as R. If R1 is not a regular semi-local ring, then we may repeat the
construction to get R1 ⊂ R2. Thus we get a sequence

R ⊂ R1 ⊂ R2 ⊂ R3 ⊂ . . .

https://stacks.math.columbia.edu/tag/00P9
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of finite ring extensions which may stop if Rn is regular for some n. Resolution
of singularities would be the claim that eventually Rn is indeed regular. In reality
this is not the case. Namely, there exists a characteristic 0 Noetherian local domain
A of dimension 1 whose completion is nonreduced, see [FR70, Proposition 3.1] or
our Examples, Section 110.16. For an example in characteristic p > 0 see Example
10.119.5. Since the construction of blowing up commutes with completion it is easy
to see the sequence never stabilizes. See [Ben73] for a discussion (mostly in positive
characteristic). On the other hand, if the completion of R in all of its maximal
ideals is reduced, then the procedure stops (insert future reference here).
Lemma 10.119.7.00PD Let A be a ring. The following are equivalent.

(1) The ring A is a discrete valuation ring.
(2) The ring A is a valuation ring and Noetherian but not a field.
(3) The ring A is a regular local ring of dimension 1.
(4) The ring A is a Noetherian local domain with maximal ideal m generated

by a single nonzero element.
(5) The ring A is a Noetherian local normal domain of dimension 1.

In this case if π is a generator of the maximal ideal of A, then every element of A
can be uniquely written as uπn, where u ∈ A is a unit.
Proof. The equivalence of (1) and (2) is Lemma 10.50.18. Moreover, in the proof
of Lemma 10.50.18 we saw that if A is a discrete valuation ring, then A is a PID,
hence (3). Note that a regular local ring is a domain (see Lemma 10.106.2). Using
this the equivalence of (3) and (4) follows from dimension theory, see Section 10.60.
Assume (3) and let π be a generator of the maximal ideal m. For all n ≥ 0 we
have dimA/m mn/mn+1 = 1 because it is generated by πn (and it cannot be zero).
In particular mn = (πn) and the graded ring

⊕
mn/mn+1 is isomorphic to the

polynomial ring A/m[T ]. For x ∈ A \ {0} define v(x) = max{n | x ∈ mn}. In other
words x = uπv(x) with u ∈ A∗. By the remarks above we have v(xy) = v(x) + v(y)
for all x, y ∈ A \ {0}. We extend this to the field of fractions K of A by setting
v(a/b) = v(a)−v(b) (well defined by multiplicativity shown above). Then it is clear
that A is the set of elements of K which have valuation ≥ 0. Hence we see that A
is a valuation ring by Lemma 10.50.16.
A valuation ring is a normal domain by Lemma 10.50.3. Hence we see that the
equivalent conditions (1) – (3) imply (5). Assume (5). Suppose that m cannot be
generated by 1 element to get a contradiction. Then Lemma 10.119.3 implies there
is a finite ring map A → A′ which is an isomorphism after inverting any nonzero
element of m but not an isomorphism. In particular we may identify A′ with a
subset of the fraction field of A. Since A → A′ is finite it is integral (see Lemma
10.36.3). Since A is normal we get A = A′ a contradiction. □

Definition 10.119.8.09DZ Let A be a discrete valuation ring. A uniformizer is an element
π ∈ A which generates the maximal ideal of A.
By Lemma 10.119.7 any two uniformizers of a discrete valuation ring are associates.
Lemma 10.119.9.00PE Let R be a domain with fraction field K. Let M be an R-
submodule of K⊕r. Assume R is local Noetherian of dimension 1. For any nonzero
x ∈ R we have lengthR(R/xR) <∞ and

lengthR(M/xM) ≤ r · lengthR(R/xR).

https://stacks.math.columbia.edu/tag/00PD
https://stacks.math.columbia.edu/tag/09DZ
https://stacks.math.columbia.edu/tag/00PE


10.119. AROUND KRULL-AKIZUKI 708

Proof. If x is a unit then the result is true. Hence we may assume x ∈ m the
maximal ideal of R. Since x is not zero and R is a domain we have dim(R/xR) = 0,
and hence R/xR has finite length. Consider M ⊂ K⊕r as in the lemma. We may
assume that the elements of M generate K⊕r as a K-vector space after replacing
K⊕r by a smaller subspace if necessary.
Suppose first that M is a finite R-module. In that case we can clear denominators
and assume M ⊂ R⊕r. Since M generates K⊕r as a vectors space we see that
R⊕r/M has finite length. In particular there exists an integer c ≥ 0 such that
xcR⊕r ⊂ M . Note that M ⊃ xM ⊃ x2M ⊃ . . . is a sequence of modules with
successive quotients each isomorphic to M/xM . Hence we see that

nlengthR(M/xM) = lengthR(M/xnM).
The same argument for M = R⊕r shows that

nlengthR(R⊕r/xR⊕r) = lengthR(R⊕r/xnR⊕r).
By our choice of c above we see that xnM is sandwiched between xnR⊕r and
xn+cR⊕r. This easily gives that

r(n+ c)lengthR(R/xR) ≥ nlengthR(M/xM) ≥ r(n− c)lengthR(R/xR)
Hence in the finite case we actually get the result of the lemma with equality.
Suppose now that M is not finite. Suppose that the length of M/xM is ≥ k for
some natural number k. Then we can find

0 ⊂ N0 ⊂ N1 ⊂ N2 ⊂ . . . Nk ⊂M/xM

with Ni ̸= Ni+1 for i = 0, . . . k − 1. Choose an element mi ∈M whose congruence
class mod xM falls into Ni but not into Ni−1 for i = 1, . . . , k. Consider the finite
R-module M ′ = Rm1 + . . . + Rmk ⊂ M . Let N ′

i ⊂ M ′/xM ′ be the inverse
image of Ni. It is clear that N ′

i ̸= N ′
i+1 by our choice of mi. Hence we see that

lengthR(M ′/xM ′) ≥ k. By the finite case we conclude k ≤ rlengthR(R/xR) as
desired. □

Here is a first application.

Lemma 10.119.10.031F Let R → S be a homomorphism of domains inducing an in-
jection of fraction fields K ⊂ L. If R is Noetherian local of dimension 1 and
[L : K] <∞ then

(1) each prime ideal ni of S lying over the maximal ideal m of R is maximal,
(2) there are finitely many of these, and
(3) [κ(ni) : κ(m)] <∞ for each i.

Proof. Pick x ∈ m nonzero. Apply Lemma 10.119.9 to the submodule S ⊂ L ∼=
K⊕n where n = [L : K]. Thus the ring S/xS has finite length over R. It follows
that S/mS has finite length over κ(m). In other words, dimκ(m) S/mS is finite
(Lemma 10.52.6). Thus S/mS is Artinian (Lemma 10.53.2). The structural results
on Artinian rings implies parts (1) and (2), see for example Lemma 10.53.6. Part
(3) is implied by the finiteness established above. □

Lemma 10.119.11.00PF Let R be a domain with fraction field K. Let M be an R-
submodule of K⊕r. Assume R is Noetherian of dimension 1. For any nonzero
x ∈ R we have lengthR(M/xM) <∞.

https://stacks.math.columbia.edu/tag/031F
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Proof. Since R has dimension 1 we see that x is contained in finitely many primes
mi, i = 1, . . . , n, each maximal. Since R is Noetherian we see that R/xR is Ar-
tinian and R/xR =

∏
i=1,...,n(R/xR)mi by Proposition 10.60.7 and Lemma 10.53.6.

Hence M/xM similarly decomposes as the product M/xM =
∏

(M/xM)mi of its
localizations at the mi. By Lemma 10.119.9 applied to Mmi over Rmi we see each
Mmi/xMmi = (M/xM)mi has finite length over Rmi . Thus M/xM has finite length
over R as the above implies M/xM has a finite filtration by R-submodules whose
successive quotients are isomorphic to the residue fields κ(mi). □

Lemma 10.119.12 (Krull-Akizuki).00PG Let R be a domain with fraction field K. Let
L/K be a finite extension of fields. Assume R is Noetherian and dim(R) = 1. In
this case any ring A with R ⊂ A ⊂ L is Noetherian.

Proof. To begin we may assume that L is the fraction field of A by replacing L
by the fraction field of A if necessary. Let I ⊂ A be a nonzero ideal. Clearly I
generates L as a K-vector space. Hence we see that I ∩R ̸= (0). Pick any nonzero
x ∈ I ∩R. Then we get I/xA ⊂ A/xA. By Lemma 10.119.11 the R-module A/xA
has finite length as an R-module. Hence I/xA has finite length as an R-module.
Hence I is finitely generated as an ideal in A. □

Lemma 10.119.13.00PH Let R be a Noetherian local domain with fraction field K.
Assume that R is not a field. Let L/K be a finitely generated field extension. Then
there exists discrete valuation ring A with fraction field L which dominates R.

Proof. If L is not finite over K choose a transcendence basis x1, . . . , xr of L over
K and replace R by R[x1, . . . , xr] localized at the maximal ideal generated by mR
and x1, . . . , xr. Thus we may assume K ⊂ L finite.
By Lemma 10.119.1 we may assume dim(R) = 1.
Let A ⊂ L be the integral closure of R in L. By Lemma 10.119.12 this is Noetherian.
By Lemma 10.36.17 there is a prime ideal q ⊂ A lying over the maximal ideal of
R. By Lemma 10.119.7 the ring Aq is a discrete valuation ring dominating R as
desired. □

10.120. Factorization

034O Here are some notions and relations between them that are typically taught in a
first year course on algebra at the undergraduate level.

Definition 10.120.1.034P Let R be a domain.
(1) Elements x, y ∈ R are called associates if there exists a unit u ∈ R∗ such

that x = uy.
(2) An element x ∈ R is called irreducible if it is nonzero, not a unit and

whenever x = yz, y, z ∈ R, then y is either a unit or an associate of x.
(3) An element x ∈ R is called prime if the ideal generated by x is a prime

ideal.

Lemma 10.120.2.034Q Let R be a domain. Let x, y ∈ R. Then x, y are associates if
and only if (x) = (y).

Proof. If x = uy for some unit u ∈ R, then (x) ⊂ (y) and y = u−1x so also
(y) ⊂ (x). Conversely, suppose that (x) = (y). Then x = fy and y = gx for

https://stacks.math.columbia.edu/tag/00PG
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some f, g ∈ A. Then x = fgx and since R is a domain fg = 1. Thus x and y are
associates. □

Lemma 10.120.3.034R Let R be a domain. Consider the following conditions:
(1) The ring R satisfies the ascending chain condition for principal ideals.
(2) Every nonzero, nonunit element a ∈ R has a factorization a = b1 . . . bk

with each bi an irreducible element of R.
Then (1) implies (2).

Proof. Let x be a nonzero element, not a unit, which does not have a factorization
into irreducibles. Set x1 = x. We can write x = yz where neither y nor z is
irreducible or a unit. Then either y does not have a factorization into irreducibles,
in which case we set x2 = y, or z does not have a factorization into irreducibles, in
which case we set x2 = z. Continuing in this fashion we find a sequence

x1|x2|x3| . . .
of elements of R with xn/xn+1 not a unit. This gives a strictly increasing sequence
of principal ideals (x1) ⊂ (x2) ⊂ (x3) ⊂ . . . thereby finishing the proof. □

Definition 10.120.4.034S A unique factorization domain, abbreviated UFD, is a do-
main R such that if x ∈ R is a nonzero, nonunit, then x has a factorization into
irreducibles, and if

x = a1 . . . am = b1 . . . bn

are factorizations into irreducibles then n = m and there exists a permutation
σ : {1, . . . , n} → {1, . . . , n} such that ai and bσ(i) are associates.

Lemma 10.120.5.034T Let R be a domain. Assume every nonzero, nonunit factors into
irreducibles. Then R is a UFD if and only if every irreducible element is prime.

Proof. Assume R is a UFD and let x ∈ R be an irreducible element. Say ab ∈ (x),
i.e., ab = cx. Choose factorizations a = a1 . . . an, b = b1 . . . bm, and c = c1 . . . cr.
By uniqueness of the factorization

a1 . . . anb1 . . . bm = c1 . . . crx

we find that x is an associate of one of the elements a1, . . . , bm. In other words,
either a ∈ (x) or b ∈ (x) and we conclude that x is prime.
Assume every irreducible element is prime. We have to prove that factorization
into irreducibles is unique up to permutation and taking associates. Say a1 . . . am =
b1 . . . bn with ai and bj irreducible. Since a1 is prime, we see that bj ∈ (a1) for some
j. After renumbering we may assume b1 ∈ (a1). Then b1 = a1u and since b1 is
irreducible we see that u is a unit. Hence a1 and b1 are associates and a2 . . . an =
ub2 . . . bm. By induction on n + m we see that n = m and ai associate to bσ(i) for
i = 2, . . . , n as desired. □

Lemma 10.120.6.0AFT Let R be a Noetherian domain. Then R is a UFD if and only if
every height 1 prime ideal is principal.

Proof. Assume R is a UFD and let p be a height 1 prime ideal. Take x ∈ p nonzero
and let x = a1 . . . an be a factorization into irreducibles. Since p is prime we see
that ai ∈ p for some i. By Lemma 10.120.5 the ideal (ai) is prime. Since p has
height 1 we conclude that (ai) = p.

https://stacks.math.columbia.edu/tag/034R
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Assume every height 1 prime is principal. Since R is Noetherian every nonzero
nonunit element x has a factorization into irreducibles, see Lemma 10.120.3. It
suffices to prove that an irreducible element x is prime, see Lemma 10.120.5. Let
(x) ⊂ p be a prime minimal over (x). Then p has height 1 by Lemma 10.60.11.
By assumption p = (y). Hence x = yz and z is a unit as x is irreducible. Thus
(x) = (y) and we see that x is prime. □

Lemma 10.120.7 (Nagata’s criterion for factoriality).0AFU [Nag57b, Lemma 2]Let A be a domain. Let
S ⊂ A be a multiplicative subset generated by prime elements. Let x ∈ A be
irreducible. Then

(1) the image of x in S−1A is irreducible or a unit, and
(2) x is prime if and only if the image of x in S−1A is a unit or a prime

element in S−1A.
Moreover, then A is a UFD if and only if every element of A has a factorization
into irreducibles and S−1A is a UFD.

Proof. Say x = αβ for α, β ∈ S−1A. Then α = a/s and β = b/s′ for a, b ∈ A,
s, s′ ∈ S. Thus we get ss′x = ab. By assumption we can write ss′ = p1 . . . pr for
some prime elements pi. For each i the element pi divides either a or b. Dividing
we find a factorization x = a′b′ and a = s′′a′, b = s′′′b′ for some s′′, s′′′ ∈ S. As x
is irreducible, either a′ or b′ is a unit. Tracing back we find that either α or β is a
unit. This proves (1).
Suppose x is prime. Then A/(x) is a domain. Hence S−1A/xS−1A = S−1(A/(x))
is a domain or zero. Thus x maps to a prime element or a unit.
Suppose that the image of x in S−1A is a unit. Then yx = s for some s ∈ S and
y ∈ A. By assumption s = p1 . . . pr with pi a prime element. For each i either
pi divides y or pi divides x. In the second case pi and x are associates (as x is
irreducible) and we are done. But if the first case happens for all i = 1, . . . , r, then
x is a unit which is a contradiction.
Suppose that the image of x in S−1A is a prime element. Assume a, b ∈ A and
ab ∈ (x). Then sa = xy or sb = xy for some s ∈ S and y ∈ A. Say the first case
happens. By assumption s = p1 . . . pr with pi a prime element. For each i either
pi divides y or pi divides x. In the second case pi and x are associates (as x is
irreducible) and we are done. If the first case happens for all i = 1, . . . , r, then
a ∈ (x) as desired. This completes the proof of (2).
The final statement of the lemma follows from (1) and (2) and Lemma 10.120.5. □

Lemma 10.120.8.0BUD A UFD satisfies the ascending chain condition for principal ideals.

Proof. Consider an ascending chain (a1) ⊂ (a2) ⊂ (a3) ⊂ . . . of principal ideals in
R. Write a1 = pe1

1 . . . perr with pi prime. Then we see that an is an associate of
pc1

1 . . . pcrr for some 0 ≤ ci ≤ ei. Since there are only finitely many possibilities we
conclude. □

Lemma 10.120.9.0BUE Let R be a domain. Assume R has the ascending chain condition
for principal ideals. Then the same property holds for a polynomial ring over R.

Proof. Consider an ascending chain (f1) ⊂ (f2) ⊂ (f3) ⊂ . . . of principal ideals in
R[x]. Since fn+1 divides fn we see that the degrees decrease in the sequence. Thus
fn has fixed degree d ≥ 0 for all n≫ 0. Let an be the leading coefficient of fn. The

https://stacks.math.columbia.edu/tag/0AFU
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condition fn ∈ (fn+1) implies that an+1 divides an for all n. By our assumption on
R we see that an+1 and an are associates for all n large enough (Lemma 10.120.2).
Thus for large n we see that fn = ufn+1 where u ∈ R (for reasons of degree) is a
unit (as an and an+1 are associates). □

Lemma 10.120.10.0BC1 A polynomial ring over a UFD is a UFD. In particular, if k is
a field, then k[x1, . . . , xn] is a UFD.

Proof. Let R be a UFD. Then R satisfies the ascending chain condition for principal
ideals (Lemma 10.120.8), hence R[x] satisfies the ascending chain condition for prin-
cipal ideals (Lemma 10.120.9), and hence every element of R[x] has a factorization
into irreducibles (Lemma 10.120.3). Let S ⊂ R be the multiplicative subset gener-
ated by prime elements. Since every nonunit of R is a product of prime elements
we see that K = S−1R is the fraction field of R. Observe that every prime element
of R maps to a prime element of R[x] and that S−1(R[x]) = S−1R[x] = K[x] is a
UFD (and even a PID). Thus we may apply Lemma 10.120.7 to conclude. □

Lemma 10.120.11.0AFV A unique factorization domain is normal.

Proof. Let R be a UFD. Let x be an element of the fraction field of R which is
integral over R. Say xd − a1x

d−1 − . . . − ad = 0 with ai ∈ R. We can write
x = upe1

1 . . . perr with u a unit, ei ∈ Z, and p1, . . . , pr irreducible elements which are
not associates. To prove the lemma we have to show ei ≥ 0. If not, say e1 < 0,
then for N ≫ 0 we get

udpde2+N
2 . . . pder+N

r = p−de1
1 pN2 . . . pNr (

∑
i=1,...,d

aix
d−i) ∈ (p1)

which contradicts uniqueness of factorization in R. □

Definition 10.120.12.034U A principal ideal domain, abbreviated PID, is a domain R
such that every ideal is a principal ideal.

Lemma 10.120.13.034V A principal ideal domain is a unique factorization domain.

Proof. As a PID is Noetherian this follows from Lemma 10.120.6. □

Definition 10.120.14.034W A Dedekind domain is a domain R such that every nonzero
ideal I ⊂ R can be written as a product

I = p1 . . . pr

of nonzero prime ideals uniquely up to permutation of the pi.

Lemma 10.120.15.0AUQ A PID is a Dedekind domain.

Proof. Let R be a PID. Since every nonzero ideal of R is principal, and R is a UFD
(Lemma 10.120.13), this follows from the fact that every irreducible element in R is
prime (Lemma 10.120.5) so that factorizations of elements turn into factorizations
into primes. □

Lemma 10.120.16.09ME Let A be a ring. Let I and J be nonzero ideals of A such that
IJ = (f) for some nonzerodivisor f ∈ A. Then I and J are finitely generated ideals
and finitely locally free of rank 1 as A-modules.
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Proof. It suffices to show that I and J are finite locally free A-modules of rank 1,
see Lemma 10.78.2. To do this, write f =

∑
i=1,...,n xiyi with xi ∈ I and yi ∈ J .

We can also write xiyi = aif for some ai ∈ A. Since f is a nonzerodivisor we see
that

∑
ai = 1. Thus it suffices to show that each Iai and Jai is free of rank 1 over

Aai . After replacing A by Aai we conclude that f = xy for some x ∈ I and y ∈ J .
Note that both x and y are nonzerodivisors. We claim that I = (x) and J = (y)
which finishes the proof. Namely, if x′ ∈ I, then x′y = af = axy for some a ∈ A.
Hence x′ = ax and we win. □

Lemma 10.120.17.034X Let R be a ring. The following are equivalent
(1) R is a Dedekind domain,
(2) R is a Noetherian domain, and for every maximal ideal m the local ring

Rm is a discrete valuation ring, and
(3) R is a Noetherian, normal domain, and dim(R) ≤ 1.

Proof. Assume (1). The argument is nontrivial because we did not assume that
R was Noetherian in our definition of a Dedekind domain. Let p ⊂ R be a prime
ideal. Observe that p ̸= p2 by uniqueness of the factorizations in the definition.
Pick x ∈ p with x ̸∈ p2. Let y ∈ p be a second element (for example y = 0). Write
(x, y) = p1 . . . pr. Since (x, y) ⊂ p at least one of the primes pi is contained in p.
But as x ̸∈ p2 there is at most one. Thus exactly one of p1, . . . , pr is contained in
p, say p1 ⊂ p. We conclude that (x, y)Rp = p1Rp is prime for every choice of y.
We claim that (x)Rp = pRp. Namely, pick y ∈ p. By the above applied with y2 we
see that (x, y2)Rp is prime. Hence y ∈ (x, y2)Rp, i.e., y = ax + by2 in Rp. Thus
(1− by)y = ax ∈ (x)Rp, i.e., y ∈ (x)Rp as desired.
Writing (x) = p1 . . . pr anew with p1 ⊂ p we conclude that p1Rp = pRp, i.e.,
p1 = p. Moreover, p1 = p is a finitely generated ideal of R by Lemma 10.120.16.
We conclude that R is Noetherian by Lemma 10.28.10. Moreover, it follows that
Rm is a discrete valuation ring for every prime ideal p, see Lemma 10.119.7.
The equivalence of (2) and (3) follows from Lemmas 10.37.10 and 10.119.7. Assume
(2) and (3) are satisfied. Let I ⊂ R be an ideal. We will construct a factorization
of I. If I is prime, then there is nothing to prove. If not, pick I ⊂ p with p ⊂ R
maximal. Let J = {x ∈ R | xp ⊂ I}. We claim Jp = I. It suffices to check
this after localization at the maximal ideals m of R (the formation of J commutes
with localization and we use Lemma 10.23.1). Then either pRm = Rm and the
result is clear, or pRm = mRm. In the last case pRm = (π) and the case where p
is principal is immediate. By Noetherian induction the ideal J has a factorization
and we obtain the desired factorization of I. We omit the proof of uniqueness of
the factorization. □

The following is a variant of the Krull-Akizuki lemma.
Lemma 10.120.18.09IG Let A be a Noetherian domain of dimension 1 with fraction field
K. Let L/K be a finite extension. Let B be the integral closure of A in L. Then B
is a Dedekind domain and Spec(B) → Spec(A) is surjective, has finite fibres, and
induces finite residue field extensions.
Proof. By Krull-Akizuki (Lemma 10.119.12) the ring B is Noetherian. By Lemma
10.112.4 dim(B) = 1. Thus B is a Dedekind domain by Lemma 10.120.17. Surjec-
tivity of the map on spectra follows from Lemma 10.36.17. The last two statements
follow from Lemma 10.119.10. □
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10.121. Orders of vanishing

02MB
Lemma 10.121.1.02MC Let R be a semi-local Noetherian ring of dimension 1. If a, b ∈ R
are nonzerodivisors then

lengthR(R/(ab)) = lengthR(R/(a)) + lengthR(R/(b))

and these lengths are finite.

Proof. We saw the finiteness in Lemma 10.119.11. Additivity holds since there is
a short exact sequence 0 → R/(a) → R/(ab) → R/(b) → 0 where the first map is
given by multiplication by b. (Use length is additive, see Lemma 10.52.3.) □

Definition 10.121.2.02MD Suppose that K is a field, and R ⊂ K is a local10 Noetherian
subring of dimension 1 with fraction field K. In this case we define the order of
vanishing along R

ordR : K∗ −→ Z
by the rule

ordR(x) = lengthR(R/(x))
if x ∈ R and we set ordR(x/y) = ordR(x)− ordR(y) for x, y ∈ R both nonzero.

We can use the order of vanishing to compare lattices in a vector space. Here is
the definition.

Definition 10.121.3.02ME Let R be a Noetherian local domain of dimension 1 with
fraction field K. Let V be a finite dimensional K-vector space. A lattice in V is a
finite R-submodule M ⊂ V such that V = K ⊗RM .

The condition V = K ⊗RM signifies that M contains a basis for the vector space
V . We remark that in many places in the literature the notion of a lattice may
be defined only in case the ring R is a discrete valuation ring. If R is a discrete
valuation ring then any lattice is a free R-module, and this may not be the case in
general.

Lemma 10.121.4.02MF Let R be a Noetherian local domain of dimension 1 with fraction
field K. Let V be a finite dimensional K-vector space.

(1) If M is a lattice in V and M ⊂M ′ ⊂ V is an R-submodule of V containing
M then the following are equivalent
(a) M ′ is a lattice,
(b) lengthR(M ′/M) is finite, and
(c) M ′ is finitely generated.

(2) If M is a lattice in V and M ′ ⊂M is an R-submodule of M then M ′ is a
lattice if and only if lengthR(M/M ′) is finite.

(3) If M , M ′ are lattices in V , then so are M ∩M ′ and M +M ′.
(4) If M ⊂M ′ ⊂M ′′ ⊂ V are lattices in V then

lengthR(M ′′/M) = lengthR(M ′/M) + lengthR(M ′′/M ′).

10We could also define this when R is only semi-local but this is probably never really what
you want!
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(5) If M , M ′, N , N ′ are lattices in V and N ⊂M ∩M ′, M +M ′ ⊂ N ′, then
we have

lengthR(M/M ∩M ′)− lengthR(M ′/M ∩M ′)
= lengthR(M/N)− lengthR(M ′/N)
= lengthR(M +M ′/M ′)− lengthR(M +M ′/M)
= lengthR(N ′/M ′)− lengthR(N ′/M)

Proof. Proof of (1). Assume (1)(a). Say y1, . . . , ym generate M ′. Then each yi =
xi/fi for some xi ∈ M and nonzero fi ∈ R. Hence we see that f1 . . . fmM

′ ⊂
M . Since R is Noetherian local of dimension 1 we see that mn ⊂ (f1 . . . fm) for
some n (for example combine Lemmas 10.60.13 and Proposition 10.60.7 or combine
Lemmas 10.119.9 and 10.52.4). In other words mnM ′ ⊂ M for some n Hence
length(M ′/M) < ∞ by Lemma 10.52.8, in other words (1)(b) holds. Assume
(1)(b). Then M ′/M is a finite R-module (see Lemma 10.52.2). Hence M ′ is a
finite R-module as an extension of finite R-modules. Hence (1)(c). The implication
(1)(c) ⇒ (1)(a) follows from the remark following Definition 10.121.3.
Proof of (2). Suppose M is a lattice in V and M ′ ⊂M is an R-submodule. We have
seen in (1) that if M ′ is a lattice, then lengthR(M/M ′) < ∞. Conversely, assume
that lengthR(M/M ′) < ∞. Then M ′ is finitely generated as R is Noetherian and
for some n we have mnM ⊂M ′ (Lemma 10.52.4). Hence it follows that M ′ contains
a basis for V , and M ′ is a lattice.
Proof of (3). Assume M , M ′ are lattices in V . Since R is Noetherian the submodule
M ∩M ′ of M is finite. As M is a lattice we can find x1, . . . , xn ∈ M which form
a K-basis for V . Because M ′ is a lattice we can write xi = yi/fi with yi ∈ M ′

and fi ∈ R. Hence fixi ∈ M ∩M ′. Hence M ∩M ′ is a lattice also. The fact that
M +M ′ is a lattice follows from part (1).
Part (4) follows from additivity of lengths (Lemma 10.52.3) and the exact sequence

0→M ′/M →M ′′/M →M ′′/M ′ → 0
Part (5) follows from repeatedly applying part (4). □

Definition 10.121.5.02MG Let R be a Noetherian local domain of dimension 1 with
fraction field K. Let V be a finite dimensional K-vector space. Let M , M ′ be two
lattices in V . The distance between M and M ′ is the integer

d(M,M ′) = lengthR(M/M ∩M ′)− lengthR(M ′/M ∩M ′)
of Lemma 10.121.4 part (5).

In particular, if M ′ ⊂M , then d(M,M ′) = lengthR(M/M ′).

Lemma 10.121.6.02MH Let R be a Noetherian local domain of dimension 1 with fraction
field K. Let V be a finite dimensional K-vector space. This distance function has
the property that

d(M,M ′′) = d(M,M ′) + d(M ′,M ′′)
whenever given three lattices M , M ′, M ′′ of V . In particular we have d(M,M ′) =
−d(M ′,M).

Proof. Omitted. □
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Lemma 10.121.7.02MI Let R be a Noetherian local domain of dimension 1 with fraction
field K. Let V be a finite dimensional K-vector space. Let φ : V → V be a K-linear
isomorphism. For any lattice M ⊂ V we have

d(M,φ(M)) = ordR(det(φ))

Proof. We can see that the integer d(M,φ(M)) does not depend on the lattice M
as follows. Suppose that M ′ is a second such lattice. Then we see that

d(M,φ(M)) = d(M,M ′) + d(M ′, φ(M))
= d(M,M ′) + d(φ(M ′), φ(M)) + d(M ′, φ(M ′))

Since φ is an isomorphism we see that d(φ(M ′), φ(M)) = d(M ′,M) = −d(M,M ′),
and hence d(M,φ(M)) = d(M ′, φ(M ′)). Moreover, both sides of the equation (of
the lemma) are additive in φ, i.e.,

ordR(det(φ ◦ ψ)) = ordR(det(φ)) + ordR(det(ψ))

and also

d(M,φ(ψ((M))) = d(M,ψ(M)) + d(ψ(M), φ(ψ(M)))
= d(M,ψ(M)) + d(M,φ(M))

by the independence shown above. Hence it suffices to prove the lemma for gen-
erators of GL(V ). Choose an isomorphism K⊕n ∼= V . Then GL(V ) = GLn(K) is
generated by elementary matrices E. The result is clear for E equal to the identity
matrix. If E = Eij(λ) with i ̸= j, λ ∈ K, λ ̸= 0, for example

E12(λ) =

 1 λ . . .
0 1 . . .
. . . . . . . . .


then with respect to a different basis we get E12(1). The result is clear for E =
E12(1) by taking as lattice R⊕n ⊂ K⊕n. Finally, if E = Ei(a), with a ∈ K∗ for
example

E1(a) =

 a 0 . . .
0 1 . . .
. . . . . . . . .


then E1(a)(R⊕b) = aR⊕R⊕n−1 and it is clear that d(R⊕n, aR⊕R⊕n−1) = ordR(a)
as desired. □

Lemma 10.121.8.02MJ Let A→ B be a ring map. Assume
(1) A is a Noetherian local domain of dimension 1,
(2) A ⊂ B is a finite extension of domains.

Let L/K be the corresponding finite extension of fraction fields. Let y ∈ L∗ and
x = NmL/K(y). In this situation B is semi-local. Let mi, i = 1, . . . , n be the
maximal ideals of B. Then

ordA(x) =
∑

i
[κ(mi) : κ(mA)]ordBmi

(y)

where ord is defined as in Definition 10.121.2.

Proof. The ring B is semi-local by Lemma 10.113.2. Write y = b/b′ for some
b, b′ ∈ B. By the additivity of ord and multiplicativity of Nm it suffices to prove
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the lemma for y = b or y = b′. In other words we may assume y ∈ B. In this case
the right hand side of the formula is∑

[κ(mi) : κ(mA)]lengthBmi
((B/yB)mi)

By Lemma 10.52.12 this is equal to lengthA(B/yB). By Lemma 10.121.7 we have

lengthA(B/yB) = d(B, yB) = ordA(detK(L y−→ L)).

Since x = NmL/K(y) = detK(L y−→ L) by definition the lemma is proved. □

10.122. Quasi-finite maps

02MK Consider a ring map R → S of finite type. A map Spec(S) → Spec(R) is quasi-
finite at a point if that point is isolated in its fibre. This means that the fibre is
zero dimensional at that point. In this section we study the basic properties of this
important but technical notion. More advanced material can be found in the next
section.

Lemma 10.122.1.00PJ Let k be a field. Let S be a finite type k-algebra. Let q be a
prime of S. The following are equivalent:

(1) q is an isolated point of Spec(S),
(2) Sq is finite over k,
(3) there exists a g ∈ S, g ̸∈ q such that D(g) = {q},
(4) dimq Spec(S) = 0,
(5) q is a closed point of Spec(S) and dim(Sq) = 0, and
(6) the field extension κ(q)/k is finite and dim(Sq) = 0.

In this case S = Sq × S′ for some finite type k-algebra S′. Also, the element g as
in (3) has the property Sq = Sg.

Proof. Suppose q is an isolated point of Spec(S), i.e., {q} is open in Spec(S).
Because Spec(S) is a Jacobson space (see Lemmas 10.35.2 and 10.35.4) we see that
q is a closed point. Hence {q} is open and closed in Spec(S). By Lemmas 10.21.3
and 10.24.3 we may write S = S1 × S2 with q corresponding to the only point
Spec(S1). Hence S1 = Sq is a zero dimensional ring of finite type over k. Hence it
is finite over k for example by Lemma 10.115.4. We have proved (1) implies (2).
Suppose Sq is finite over k. Then Sq is Artinian local, see Lemma 10.53.2. So
Spec(Sq) = {qSq} by Lemma 10.53.6. Consider the exact sequence 0→ K → S →
Sq → Q → 0. It is clear that Kq = Qq = 0. Also, K is a finite S-module as S is
Noetherian and Q is a finite S-module since Sq is finite over k. Hence there exists
g ∈ S, g ̸∈ q such that Kg = Qg = 0. Thus Sq = Sg and D(g) = {q}. We have
proved that (2) implies (3).
Suppose D(g) = {q}. Since D(g) is open by construction of the topology on Spec(S)
we see that q is an isolated point of Spec(S). We have proved that (3) implies (1).
In other words (1), (2) and (3) are equivalent.
Assume dimq Spec(S) = 0. This means that there is some open neighbourhood of
q in Spec(S) which has dimension zero. Then there is an open neighbourhood of
the form D(g) which has dimension zero. Since Sg is Noetherian we conclude that
Sg is Artinian and D(g) = Spec(Sg) is a finite discrete set, see Proposition 10.60.7.
Thus q is an isolated point of D(g) and, by the equivalence of (1) and (2) above
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applied to qSg ⊂ Sg, we see that Sq = (Sg)qSg is finite over k. Hence (4) implies
(2). It is clear that (1) implies (4). Thus (1) – (4) are all equivalent.
Lemma 10.114.6 gives the implication (5)⇒ (4). The implication (4)⇒ (6) follows
from Lemma 10.116.3. The implication (6) ⇒ (5) follows from Lemma 10.35.9. At
this point we know (1) – (6) are equivalent.
The two statements at the end of the lemma we saw during the course of the proof
of the equivalence of (1), (2) and (3) above. □

Lemma 10.122.2.00PK Let R → S be a ring map of finite type. Let q ⊂ S be a prime
lying over p ⊂ R. Let F = Spec(S ⊗R κ(p)) be the fibre of Spec(S) → Spec(R),
see Remark 10.17.8. Denote q ∈ F the point corresponding to q. The following are
equivalent

(1) q is an isolated point of F ,
(2) Sq/pSq is finite over κ(p),
(3) there exists a g ∈ S, g ̸∈ q such that the only prime of D(g) mapping to

p is q,
(4) dimq(F ) = 0,
(5) q is a closed point of F and dim(Sq/pSq) = 0, and
(6) the field extension κ(q)/κ(p) is finite and dim(Sq/pSq) = 0.

Proof. Note that Sq/pSq = (S⊗R κ(p))q. Moreover S⊗R κ(p) is of finite type over
κ(p). The conditions correspond exactly to the conditions of Lemma 10.122.1 for
the κ(p)-algebra S ⊗R κ(p) and the prime q, hence they are equivalent. □

Definition 10.122.3.00PL Let R→ S be a finite type ring map. Let q ⊂ S be a prime.
(1) If the equivalent conditions of Lemma 10.122.2 are satisfied then we say

R→ S is quasi-finite at q.
(2) We say a ring map A → B is quasi-finite if it is of finite type and quasi-

finite at all primes of B.

Lemma 10.122.4.00PM Let R→ S be a finite type ring map. Then R→ S is quasi-finite
if and only if for all primes p ⊂ R the fibre S ⊗R κ(p) is finite over κ(p).

Proof. If the fibres are finite then the map is clearly quasi-finite. For the converse,
note that S ⊗R κ(p) is a κ(p)-algebra of finite type and of dimension 0. Hence it is
finite over κ(p) for example by Lemma 10.115.4. □

Lemma 10.122.5.077H Let R → S be a finite type ring map. Let q ⊂ S be a prime
lying over p ⊂ R. Let f ∈ R, f ̸∈ p and g ∈ S, g ̸∈ q. Then R → S is quasi-finite
at q if and only if Rf → Sfg is quasi-finite at qSfg.

Proof. The fibre of Spec(Sfg) → Spec(Rf ) is homeomorphic to an open subset of
the fibre of Spec(S) → Spec(R). Hence the lemma follows from part (1) of the
equivalent conditions of Lemma 10.122.2. □

Lemma 10.122.6.00PN Let

S // S′ q q′

R

OO

// R′

OO

p p′
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be a commutative diagram of rings with primes as indicated. Assume R → S of
finite type, and S⊗RR′ → S′ surjective. If R→ S is quasi-finite at q, then R′ → S′

is quasi-finite at q′.

Proof. Write S ⊗R κ(p) = S1 × S2 with S1 finite over κ(p) and such that q cor-
responds to a point of S1 as in Lemma 10.122.1. This product decomposition
induces a corresponding product decomposition for any S ⊗R κ(p)-algebra. In par-
ticular, we obtain S′ ⊗R′ κ(p′) = S′

1 × S′
2. Because S ⊗R R′ → S′ is surjective

the canonical map (S ⊗R κ(p)) ⊗κ(p) κ(p′) → S′ ⊗R′ κ(p′) is surjective and hence
Si ⊗κ(p) κ(p′) → S′

i is surjective. It follows that S′
1 is finite over κ(p′). The map

S′ ⊗R′ κ(p′) → κ(q′) factors through S′
1 (i.e. it annihilates the factor S′

2) because
the map S ⊗R κ(p) → κ(q) factors through S1 (i.e. it annihilates the factor S2).
Thus q′ corresponds to a point of Spec(S′

1) in the disjoint union decomposition of
the fibre: Spec(S′ ⊗R′ κ(p′)) = Spec(S′

1)⨿ Spec(S′
2), see Lemma 10.21.2. Since S′

1
is finite over a field, it is Artinian ring, and hence Spec(S′

1) is a finite discrete set.
(See Proposition 10.60.7.) We conclude q′ is isolated in its fibre as desired. □

Lemma 10.122.7.00PO A composition of quasi-finite ring maps is quasi-finite.

Proof. Suppose A → B and B → C are quasi-finite ring maps. By Lemma 10.6.2
we see that A → C is of finite type. Let r ⊂ C be a prime of C lying over q ⊂ B
and p ⊂ A. Since A→ B and B → C are quasi-finite at q and r respectively, then
there exist b ∈ B and c ∈ C such that q is the only prime of D(b) which maps to p
and similarly r is the only prime of D(c) which maps to q. If c′ ∈ C is the image
of b ∈ B, then r is the only prime of D(cc′) which maps to p. Therefore A→ C is
quasi-finite at r. □

Lemma 10.122.8.00PP Let R→ S be a ring map of finite type. Let R→ R′ be any ring
map. Set S′ = R′ ⊗R S.

(1) The set {q′ | R′ → S′ quasi-finite at q′} is the inverse image of the corre-
sponding set of Spec(S) under the canonical map Spec(S′)→ Spec(S).

(2) If Spec(R′)→ Spec(R) is surjective, then R→ S is quasi-finite if and only
if R′ → S′ is quasi-finite.

(3) Any base change of a quasi-finite ring map is quasi-finite.

Proof. Let p′ ⊂ R′ be a prime lying over p ⊂ R. Then the fibre ring S′⊗R′ κ(p′) is
the base change of the fibre ring S⊗Rκ(p) by the field extension κ(p)→ κ(p′). Hence
the first assertion follows from the invariance of dimension under field extension
(Lemma 10.116.6) and Lemma 10.122.1. The stability of quasi-finite maps under
base change follows from this and the stability of finite type property under base
change. The second assertion follows since the assumption implies that given a
prime q ⊂ S we can find a prime q′ ⊂ S′ lying over it. □

Lemma 10.122.9.0C6H Let A → B and B → C be ring homomorphisms such that
A → C is of finite type. Let r be a prime of C lying over q ⊂ B and p ⊂ A. If
A→ C is quasi-finite at r, then B → C is quasi-finite at r.

Proof. Observe that B → C is of finite type (Lemma 10.6.2) so that the statement
makes sense. Let us use characterization (3) of Lemma 10.122.2. If A → C is
quasi-finite at r, then there exists some c ∈ C such that

{r′ ⊂ C lying over p} ∩D(c) = {r}.

https://stacks.math.columbia.edu/tag/00PO
https://stacks.math.columbia.edu/tag/00PP
https://stacks.math.columbia.edu/tag/0C6H


10.123. ZARISKI’S MAIN THEOREM 720

Since the primes r′ ⊂ C lying over q form a subset of the primes r′ ⊂ C lying over
p we conclude B → C is quasi-finite at r. □

The following lemma is not quite about quasi-finite ring maps, but it does not seem
to fit anywhere else so well.

Lemma 10.122.10.02ML Let R→ S be a ring map of finite type. Let p ⊂ R be a minimal
prime. Assume that there are at most finitely many primes of S lying over p. Then
there exists a g ∈ R, g ̸∈ p such that the ring map Rg → Sg is finite.

Proof. Let x1, . . . , xn be generators of S over R. Since p is a minimal prime we have
that pRp is a locally nilpotent ideal, see Lemma 10.25.1. Hence pSp is a locally
nilpotent ideal, see Lemma 10.32.3. By assumption the finite type κ(p)-algebra
Sp/pSp has finitely many primes. Hence (for example by Lemmas 10.61.3 and
10.115.4) κ(p)→ Sp/pSp is a finite ring map. Thus we may find monic polynomials
Pi ∈ Rp[X] such that Pi(xi) maps to zero in Sp/pSp. By what we said above there
exist ei ≥ 1 such that P (xi)ei = 0 in Sp. Let g1 ∈ R, g1 ̸∈ p be an element such
that Pi has coefficients in R[1/g1] for all i. Next, let g2 ∈ R, g2 ̸∈ p be an element
such that P (xi)ei = 0 in Sg1g2 . Setting g = g1g2 we win. □

10.123. Zariski’s Main Theorem

00PI In this section our aim is to prove the algebraic version of Zariski’s Main theorem.
This theorem will be the basis of many further developments in the theory of
schemes and morphisms of schemes later in the Stacks project.
Let R→ S be a ring map of finite type. Our goal in this section is to show that the
set of points of Spec(S) where the map is quasi-finite is open (Theorem 10.123.12).
In fact, it will turn out that there exists a finite ring map R→ S′ such that in some
sense the quasi-finite locus of S/R is open in Spec(S′) (but we will not prove this
in the algebra chapter since we do not develop the language of schemes here – for
the case where R → S is quasi-finite see Lemma 10.123.14). These statements are
somewhat tricky to prove and we do it by a long list of lemmas concerning integral
and finite extensions of rings. This material may be found in [Ray70], and [Pes66].
We also found notes by Thierry Coquand helpful.

Lemma 10.123.1.00PQ Let φ : R → S be a ring map. Suppose t ∈ S satisfies the
relation φ(a0) + φ(a1)t+ . . .+ φ(an)tn = 0. Then φ(an)t is integral over R.

Proof. Namely, multiply the equation φ(a0) + φ(a1)t + . . . + φ(an)tn = 0 with
φ(an)n−1 and write it as φ(a0a

n−1
n )+φ(a1a

n−2
n )(φ(an)t)+ . . .+(φ(an)t)n = 0. □

The following lemma is in some sense the key lemma in this section.

Lemma 10.123.2.00PT Let R be a ring. Let φ : R[x] → S be a ring map. Let t ∈ S.
Assume that (a) t is integral over R[x], and (b) there exists a monic p ∈ R[x] such
that tφ(p) ∈ Im(φ). Then there exists a q ∈ R[x] such that t−φ(q) is integral over
R.

Proof. Write tφ(p) = φ(r) for some r ∈ R[x]. Using euclidean division, write
r = qp + r′ with q, r′ ∈ R[x] and deg(r′) < deg(p). We may replace t by t − φ(q)
which is still integral over R[x], so that we obtain tφ(p) = φ(r′). In the ring St we
may write this as φ(p)− (1/t)φ(r′) = 0. This implies that φ(x) gives an element of
the localization St which is integral over φ(R)[1/t] ⊂ St. On the other hand, t is
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integral over the subring φ(R)[φ(x)] ⊂ S. Combined we conclude that t is integral
over the subring φ(R)[1/t] ⊂ St, see Lemma 10.36.6. In other words there exists
an equation of the form

td +
∑

i<d

(∑
j=0,...,ni

φ(ri,j)/tj
)
ti = 0

in St with ri,j ∈ R. This means that td+N +
∑
i<d

∑
j=0,...,ni φ(ri,j)ti+N−j = 0 in

S for some N large enough. In other words t is integral over R. □

Lemma 10.123.3.00PV Let R be a ring. Let φ : R[x] → S be a ring map. Let t ∈ S.
Assume t is integral over R[x]. Let p ∈ R[x], p = a0 + a1x + . . . + akx

k such that
tφ(p) ∈ Im(φ). Then there exists a q ∈ R[x] and n ≥ 0 such that φ(ak)nt−φ(q) is
integral over R.

Proof. Let R′ and S′ be the localization of R and S at the element ak. Let φ′ :
R′[x]→ S′ be the localization of φ. Let t′ ∈ S′ be the image of t. Set p′ = p/ak ∈
R′[x]. Then t′φ′(p′) ∈ Im(φ′) since tφ(p) ∈ Im(φ). As p′ is monic, by Lemma
10.123.2 there exists a q′ ∈ R′[x] such that t′ − φ′(q′) is integral over R′. We may
choose an n ≥ 0 and an element q ∈ R[x] such that ankq′ is the image of q. Then
φ(ak)nt−φ(q) is an element of S whose image in S′ is integral over R′. By Lemma
10.36.11 there exists an m ≥ 0 such that φ(ak)m(φ(ak)nt − φ(q)) is integral over
R. Thus φ(ak)m+nt− φ(amk q) is integral over R as desired. □

Situation 10.123.4.00PW Let R be a ring. Let φ : R[x]→ S be finite. Let
J = {g ∈ S | gS ⊂ Im(φ)}

be the “conductor ideal” of φ. Assume φ(R) ⊂ S integrally closed in S.

Lemma 10.123.5.00PX In Situation 10.123.4. Suppose u ∈ S, a0, . . . , ak ∈ R, uφ(a0 +
a1x+ . . .+ akx

k) ∈ J . Then there exists an m ≥ 0 such that uφ(ak)m ∈ J .

Proof. Assume that S is generated by t1, . . . , tn as an R[x]-module. In this case
J = {g ∈ S | gti ∈ Im(φ) for all i}. Note that each element uti is integral over
R[x], see Lemma 10.36.3. We have φ(a0 +a1x+ . . .+akx

k)uti ∈ Im(φ). By Lemma
10.123.3, for each i there exists an integer ni and an element qi ∈ R[x] such that
φ(anik )uti − φ(qi) is integral over R. By assumption this element is in φ(R) and
hence φ(anik )uti ∈ Im(φ). It follows that m = max{n1, . . . , nn} works. □

Lemma 10.123.6.00PY In Situation 10.123.4. Suppose u ∈ S, a0, . . . , ak ∈ R, uφ(a0 +
a1x+ . . .+ akx

k) ∈
√
J . Then uφ(ai) ∈

√
J for all i.

Proof. Under the assumptions of the lemma we have unφ(a0+a1x+. . .+akxk)n ∈ J
for some n ≥ 1. By Lemma 10.123.5 we deduce unφ(anmk ) ∈ J for some m ≥ 1.
Thus uφ(ak) ∈

√
J , and so uφ(a0 + a1x+ . . .+ akx

k)− uφ(akxk) = uφ(a0 + a1x+
. . .+ ak−1x

k−1) ∈
√
J . We win by induction on k. □

This lemma suggests the following definition.

Definition 10.123.7.00PZ Given an inclusion of rings R ⊂ S and an element x ∈ S we
say that x is strongly transcendental over R if whenever u(a0 +a1x+. . .+akxk) = 0
with u ∈ S and ai ∈ R, then we have uai = 0 for all i.

Note that if S is a domain then this is the same as saying that x as an element of
the fraction field of S is transcendental over the fraction field of R.
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Lemma 10.123.8.00Q0 Suppose R ⊂ S is an inclusion of reduced rings and suppose that
x ∈ S is strongly transcendental over R. Let q ⊂ S be a minimal prime and let
p = R ∩ q. Then the image of x in S/q is strongly transcendental over the subring
R/p.

Proof. Suppose u(a0 + a1x+ . . .+ akx
k) ∈ q. By Lemma 10.25.1 the local ring Sq

is a field, and hence u(a0 + a1x + . . . + akx
k) is zero in Sq. Thus uu′(a0 + a1x +

. . .+ akx
k) = 0 for some u′ ∈ S, u′ ̸∈ q. Since x is strongly transcendental over R

we get uu′ai = 0 for all i. This in turn implies that uai ∈ q. □

Lemma 10.123.9.00Q1 Suppose R ⊂ S is an inclusion of domains and let x ∈ S. Assume
x is (strongly) transcendental over R and that S is finite over R[x]. Then R → S
is not quasi-finite at any prime of S.

Proof. As a first case, assume that R is normal, see Definition 10.37.11. By Lemma
10.37.14 we see that R[x] is normal. Take a prime q ⊂ S, and set p = R∩q. Assume
that the extension κ(p) ⊂ κ(q) is finite. This would be the case if R→ S is quasi-
finite at q. Let r = R[x] ∩ q. Then since κ(p) ⊂ κ(r) ⊂ κ(q) we see that the
extension κ(p) ⊂ κ(r) is finite too. Thus the inclusion r ⊃ pR[x] is strict. By going
down for R[x] ⊂ S, see Proposition 10.38.7, we find a prime q′ ⊂ q, lying over
the prime pR[x]. Hence the fibre Spec(S ⊗R κ(p)) contains a point not equal to q,
namely q′, whose closure contains q and hence q is not isolated in its fibre.
If R is not normal, let R ⊂ R′ ⊂ K be the integral closure R′ of R in its field
of fractions K. Let S ⊂ S′ ⊂ L be the subring S′ of the field of fractions L of
S generated by R′ and S. Note that by construction the map S ⊗R R′ → S′ is
surjective. This implies that R′[x] ⊂ S′ is finite. Also, the map S ⊂ S′ induces a
surjection on Spec, see Lemma 10.36.17. We conclude by Lemma 10.122.6 and the
normal case we just discussed. □

Lemma 10.123.10.00Q2 Suppose R ⊂ S is an inclusion of reduced rings. Assume x ∈ S
be strongly transcendental over R, and S finite over R[x]. Then R → S is not
quasi-finite at any prime of S.

Proof. Let q ⊂ S be any prime. Choose a minimal prime q′ ⊂ q. According to
Lemmas 10.123.8 and 10.123.9 the extension R/(R ∩ q′) ⊂ S/q′ is not quasi-finite
at the prime corresponding to q. By Lemma 10.122.6 the extension R → S is not
quasi-finite at q. □

Lemma 10.123.11.00Q8 Let R be a ring. Let S = R[x]/I. Let q ⊂ S be a prime.
Assume R → S is quasi-finite at q. Let S′ ⊂ S be the integral closure of R in S.
Then there exists an element g ∈ S′, g ̸∈ q such that S′

g
∼= Sg.

Proof. Let p be the image of q in Spec(R). There exists an f ∈ I, f = anx
n+. . .+a0

such that ai ̸∈ p for some i. Namely, otherwise the fibre ring S ⊗R κ(p) would be
κ(p)[x] and the map would not be quasi-finite at any prime lying over p. We
conclude there exists a relation bmxm + . . .+ b0 = 0 with bj ∈ S′, j = 0, . . . ,m and
bj ̸∈ q ∩ S′ for some j. We prove the lemma by induction on m. The base case is
m = 0 is vacuous (because the statements b0 = 0 and b0 ̸∈ q are contradictory).
The case bm ̸∈ q. In this case x is integral over S′

bm
, in fact bmx ∈ S′ by Lemma

10.123.1. Hence the injective map S′
bm
→ Sbm is also surjective, i.e., an isomorphism

as desired.
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The case bm ∈ q. In this case we have bmx ∈ S′ by Lemma 10.123.1. Set b′
m−1 =

bmx+ bm−1. Then
b′
m−1x

m−1 + bm−2x
m−2 + . . .+ b0 = 0

Since b′
m−1 is congruent to bm−1 modulo S′ ∩ q we see that it is still the case that

one of b′
m−1, bm−2, . . . , b0 is not in S′ ∩ q. Thus we win by induction on m. □

Theorem 10.123.12 (Zariski’s Main Theorem).00Q9 Let R be a ring. Let R → S be a
finite type R-algebra. Let S′ ⊂ S be the integral closure of R in S. Let q ⊂ S be a
prime of S. If R→ S is quasi-finite at q then there exists a g ∈ S′, g ̸∈ q such that
S′
g
∼= Sg.

Proof. There exist finitely many elements x1, . . . , xn ∈ S such that S is finite over
the R-sub algebra generated by x1, . . . , xn. (For example generators of S over R.)
We prove the proposition by induction on the minimal such number n.
The case n = 0 is trivial, because in this case S′ = S, see Lemma 10.36.3.
The case n = 1. We may replace R by its integral closure in S (Lemma 10.122.9
guarantees that R → S is still quasi-finite at q). Thus we may assume R ⊂ S is
integrally closed in S, in other words R = S′. Consider the map φ : R[x] → S,
x 7→ x1. (We will see that φ is not injective below.) By assumption φ is finite.
Hence we are in Situation 10.123.4. Let J ⊂ S be the “conductor ideal” defined in
Situation 10.123.4. Consider the diagram

R[x] // S // S/
√
J R/(R ∩

√
J)[x]oo

R

``

//

OO

R/(R ∩
√
J)

OO 66

According to Lemma 10.123.6 the image of x in the quotient S/
√
J is strongly

transcendental over R/(R∩
√
J). Hence by Lemma 10.123.10 the ring map R/(R∩√

J) → S/
√
J is not quasi-finite at any prime of S/

√
J . By Lemma 10.122.6 we

deduce that q does not lie in V (J) ⊂ Spec(S). Thus there exists an element s ∈ J ,
s ̸∈ q. By definition of J we may write s = φ(f) for some polynomial f ∈ R[x].
Let I = Ker(φ : R[x] → S). Since φ(f) ∈ J we get (R[x]/I)f ∼= Sφ(f). Also s ̸∈ q

means that f ̸∈ φ−1(q). Thus φ−1(q) is a prime of R[x]/I at which R→ R[x]/I is
quasi-finite, see Lemma 10.122.5. Note that R is integrally closed in R[x]/I since
R is integrally closed in S. By Lemma 10.123.11 there exists an element h ∈ R,
h ̸∈ R ∩ q such that Rh ∼= (R[x]/I)h. Thus (R[x]/I)fh = Sφ(fh) is isomorphic to a
principal localization Rh′ of R for some h′ ∈ R, h′ ̸∈ q.
The case n > 1. Consider the subring R′ ⊂ S which is the integral closure of
R[x1, . . . , xn−1] in S. By Lemma 10.122.9 the extension S/R′ is quasi-finite at q.
Also, note that S is finite over R′[xn]. By the case n = 1 above, there exists a
g′ ∈ R′, g′ ̸∈ q such that (R′)g′ ∼= Sg′ . At this point we cannot apply induction to
R→ R′ since R′ may not be finite type over R. Since S is finitely generated over R
we deduce in particular that (R′)g′ is finitely generated over R. Say the elements
g′, and y1/(g′)n1 , . . . , yN/(g′)nN with yi ∈ R′ generate (R′)g′ over R. Let R′′ be
the R-sub algebra of R′ generated by x1, . . . , xn−1, y1, . . . , yN , g

′. This has the
property (R′′)g′ ∼= Sg′ . Surjectivity because of how we chose yi, injectivity because
R′′ ⊂ R′, and localization is exact. Note that R′′ is finite over R[x1, . . . , xn−1]
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because of our choice of R′, see Lemma 10.36.4. Let q′′ = R′′∩q. Since (R′′)q′′ = Sq

we see that R → R′′ is quasi-finite at q′′, see Lemma 10.122.2. We apply our
induction hypothesis to R → R′′, q′′ and x1, . . . , xn−1 ∈ R′′ and we find a subring
R′′′ ⊂ R′′ which is integral over R and an element g′′ ∈ R′′′, g′′ ̸∈ q′′ such that
(R′′′)g′′ ∼= (R′′)g′′ . Write the image of g′ in (R′′)g′′ as g′′′/(g′′)n for some g′′′ ∈ R′′′.
Set g = g′′g′′′ ∈ R′′′. Then it is clear that g ̸∈ q and (R′′′)g ∼= Sg. Since by
construction we have R′′′ ⊂ S′ we also have S′

g
∼= Sg as desired. □

Lemma 10.123.13.00QA Let R → S be a finite type ring map. The set of points q of
Spec(S) at which S/R is quasi-finite is open in Spec(S).

Proof. Let q ⊂ S be a point at which the ring map is quasi-finite. By Theorem
10.123.12 there exists an integral ring extension R → S′, S′ ⊂ S and an element
g ∈ S′, g ̸∈ q such that S′

g
∼= Sg. Since S and hence Sg are of finite type over

R we may find finitely many elements y1, . . . , yN of S′ such that S′′
g
∼= Sg where

S′′ ⊂ S′ is the sub R-algebra generated by g, y1, . . . , yN . Since S′′ is finite over R
(see Lemma 10.36.4) we see that S′′ is quasi-finite over R (see Lemma 10.122.4). It
is easy to see that this implies that S′′

g is quasi-finite over R, for example because
the property of being quasi-finite at a prime depends only on the local ring at the
prime. Thus we see that Sg is quasi-finite over R. By the same token this implies
that R→ S is quasi-finite at every prime of S which lies in D(g). □

Lemma 10.123.14.00QB Let R → S be a finite type ring map. Suppose that S is
quasi-finite over R. Let S′ ⊂ S be the integral closure of R in S. Then

(1) Spec(S)→ Spec(S′) is a homeomorphism onto an open subset,
(2) if g ∈ S′ and D(g) is contained in the image of the map, then S′

g
∼= Sg,

and
(3) there exists a finite R-algebra S′′ ⊂ S′ such that (1) and (2) hold for the

ring map S′′ → S.

Proof. Because S/R is quasi-finite we may apply Theorem 10.123.12 to each point
q of Spec(S). Since Spec(S) is quasi-compact, see Lemma 10.17.10, we may choose
a finite number of gi ∈ S′, i = 1, . . . , n such that S′

gi = Sgi , and such that g1, . . . , gn
generate the unit ideal in S (in other words the standard opens of Spec(S) associated
to g1, . . . , gn cover all of Spec(S)).
Suppose that D(g) ⊂ Spec(S′) is contained in the image. Then D(g) ⊂

⋃
D(gi).

In other words, g1, . . . , gn generate the unit ideal of S′
g. Note that S′

ggi
∼= Sggi by

our choice of gi. Hence S′
g
∼= Sg by Lemma 10.23.2.

We construct a finite algebra S′′ ⊂ S′ as in (3). To do this note that each S′
gi
∼= Sgi

is a finite type R-algebra. For each i pick some elements yij ∈ S′ such that each
S′
gi is generated as R-algebra by 1/gi and the elements yij . Then set S′′ equal to

the sub R-algebra of S′ generated by all gi and all the yij . Details omitted. □

10.124. Applications of Zariski’s Main Theorem

03GB Here is an immediate application characterizing the finite maps of 1-dimensional
semi-local rings among the quasi-finite ones as those where equality always holds
in the formula of Lemma 10.121.8.

Lemma 10.124.1.02MM Let A ⊂ B be an extension of domains. Assume
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(1) A is a local Noetherian ring of dimension 1,
(2) A→ B is of finite type, and
(3) the induced extension L/K of fraction fields is finite.

Then B is semi-local. Let x ∈ mA, x ̸= 0. Let mi, i = 1, . . . , n be the maximal
ideals of B. Then

[L : K]ordA(x) ≥
∑

i
[κ(mi) : κ(mA)]ordBmi

(x)

where ord is defined as in Definition 10.121.2. We have equality if and only if
A→ B is finite.

Proof. The ring B is semi-local by Lemma 10.113.2. Let B′ be the integral closure
of A in B. By Lemma 10.123.14 we can find a finite A-subalgebra C ⊂ B′ such that
on setting ni = C ∩ mi we have Cni

∼= Bmi and the primes n1, . . . , nn are pairwise
distinct. The ring C is semi-local by Lemma 10.113.2. Let pj , j = 1, . . . ,m be the
other maximal ideals of C (the “missing points”). By Lemma 10.121.8 we have

ordA(x[L:K]) =
∑

i
[κ(ni) : κ(mA)]ordCni

(x) +
∑

j
[κ(pj) : κ(mA)]ordCpj

(x)

hence the inequality follows. In case of equality we conclude that m = 0 (no
“missing points”). Hence C ⊂ B is an inclusion of semi-local rings inducing a
bijection on maximal ideals and an isomorphism on all localizations at maximal
ideals. So if b ∈ B, then I = {x ∈ C | xb ∈ C} is an ideal of C which is not
contained in any of the maximal ideals of C, and hence I = C, hence b ∈ C. Thus
B = C and B is finite over A. □

Here is a more standard application of Zariski’s main theorem to the structure of
local homomorphisms of local rings.

Lemma 10.124.2.052V Let (R,mR)→ (S,mS) be a local homomorphism of local rings.
Assume

(1) R→ S is essentially of finite type,
(2) κ(mR) ⊂ κ(mS) is finite, and
(3) dim(S/mRS) = 0.

Then S is the localization of a finite R-algebra.

Proof. Let S′ be a finite type R-algebra such that S = S′
q′ for some prime q′ of

S′. By Definition 10.122.3 we see that R→ S′ is quasi-finite at q′. After replacing
S′ by S′

g′ for some g′ ∈ S′, g′ ̸∈ q′ we may assume that R → S′ is quasi-finite,
see Lemma 10.123.13. Then by Lemma 10.123.14 there exists a finite R-algebra S′′

and elements g′ ∈ S′, g′ ̸∈ q′ and g′′ ∈ S′′ such that S′
g′
∼= S′′

g′′ as R-algebras. This
proves the lemma. □

Lemma 10.124.3.07NC Let R→ S be a ring map, q a prime of S lying over p in R. If
(1) R is Noetherian,
(2) R→ S is of finite type, and
(3) R→ S is quasi-finite at q,

then R∧
p ⊗R S = S∧

q ×B for some R∧
p -algebra B.

Proof. There exists a finite R-algebra S′ ⊂ S and an element g ∈ S′, g ̸∈ q′ = S′∩q
such that S′

g = Sg and in particular S′
q′ = Sq, see Lemma 10.123.14. We have

R∧
p ⊗R S′ = (S′

q′)∧ ×B′
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by Lemma 10.97.8. Observe that under this product decomposition g maps to a
pair (u, b′) with u ∈ (S′

q′)∧ a unit because g ̸∈ q′. The product decomposition for
R∧

p ⊗R S′ induces a product decomposition

R∧
p ⊗R S = A×B

Since S′
g = Sg we also have (R∧

p ⊗R S′)g = (R∧
p ⊗R S)g and since g 7→ (u, b′) where

u is a unit we see that (S′
q′)∧ = A. Since the isomorphism S′

q′ = Sq determines
an isomorphism on completions this also tells us that A = S∧

q . This finishes the
proof, except that we should perform the sanity check that the induced map ϕ :
R∧

p ⊗R S → A = S∧
q is the natural one. For elements of the form x⊗1 with x ∈ R∧

p

this is clear as the natural map R∧
p → S∧

q factors through (S′
q′)∧. For elements of

the form 1 ⊗ y with y ∈ S we can argue that for some n ≥ 1 the element gny is
the image of some y′ ∈ S′. Thus ϕ(1⊗ gny) is the image of y′ by the composition
S′ → (S′

q′)∧ → S∧
q which is equal to the image of gny by the map S → S∧

q . Since g
maps to a unit this also implies that ϕ(1⊗ y) has the correct value, i.e., the image
of y by S → S∧

q . □

10.125. Dimension of fibres

00QC We study the behaviour of dimensions of fibres, using Zariski’s main theorem.
Recall that we defined the dimension dimx(X) of a topological space X at a point
x in Topology, Definition 5.10.1.

Definition 10.125.1.00QD Suppose that R→ S is of finite type, and let q ⊂ S be a prime
lying over a prime p of R. We define the relative dimension of S/R at q, denoted
dimq(S/R), to be the dimension of Spec(S ⊗R κ(p)) at the point corresponding to
q. We let dim(S/R) be the supremum of dimq(S/R) over all q. This is called the
relative dimension of S/R.

In particular, R→ S is quasi-finite at q if and only if dimq(S/R) = 0. The following
lemma is more or less a reformulation of Zariski’s Main Theorem.

Lemma 10.125.2.00QE Let R → S be a finite type ring map. Let q ⊂ S be a prime.
Suppose that dimq(S/R) = n. There exists a g ∈ S, g ̸∈ q such that Sg is quasi-
finite over a polynomial algebra R[t1, . . . , tn].

Proof. The ring S = S ⊗R κ(p) is of finite type over κ(p). Let q be the prime of S
corresponding to q. By definition of the dimension of a topological space at a point
there exists an open U ⊂ Spec(S) with q ∈ U and dim(U) = n. Since the topology
on Spec(S) is induced from the topology on Spec(S) (see Remark 10.17.8), we can
find a g ∈ S, g ̸∈ q with image g ∈ S such that D(g) ⊂ U . Thus after replacing S
by Sg we see that dim(S) = n.
Next, choose generators x1, . . . , xN for S as an R-algebra. By Lemma 10.115.4 there
exist elements y1, . . . , yn in the Z-subalgebra of S generated by x1, . . . , xN such
that the map R[t1, . . . , tn] → S, ti 7→ yi has the property that κ(p)[t1 . . . , tn] → S
is finite. In particular, S is quasi-finite over R[t1, . . . , tn] at q. Hence, by Lemma
10.123.13 we may replace S by Sg for some g ∈ S, g ̸∈ q such that R[t1, . . . , tn]→ S
is quasi-finite. □

Lemma 10.125.3.0520 Let R→ S be a ring map. Let q ⊂ S be a prime lying over the
prime p of R. Assume
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(1) R→ S is of finite type,
(2) dimq(S/R) = n, and
(3) trdegκ(p)κ(q) = r.

Then there exist f ∈ R, f ̸∈ p, g ∈ S, g ̸∈ q and a quasi-finite ring map
φ : Rf [x1, . . . , xn] −→ Sg

such that φ−1(qSg) = (p, xr+1, . . . , xn)Rf [xr+1, . . . , xn]

Proof. After replacing S by a principal localization we may assume there exists a
quasi-finite ring map φ : R[t1, . . . , tn] → S, see Lemma 10.125.2. Set q′ = φ−1(q).
Let q′ ⊂ κ(p)[t1, . . . , tn] be the prime corresponding to q′. By Lemma 10.115.6 there
exists a finite ring map κ(p)[x1, . . . , xn] → κ(p)[t1, . . . , tn] such that the inverse
image of q′ is (xr+1, . . . , xn). Let hi ∈ κ(p)[t1, . . . , tn] be the image of xi. We
can find an element f ∈ R, f ̸∈ p and hi ∈ Rf [t1, . . . , tn] which map to hi in
κ(p)[t1, . . . , tn]. Then the ring map

Rf [x1, . . . , xn] −→ Rf [t1, . . . , tn]
becomes finite after tensoring with κ(p). In particular, Rf [t1, . . . , tn] is quasi-
finite over Rf [x1, . . . , xn] at the prime q′Rf [t1, . . . , tn]. Hence, by Lemma 10.123.13
there exists a g ∈ Rf [t1, . . . , tn], g ̸∈ q′Rf [t1, . . . , tn] such that Rf [x1, . . . , xn] →
Rf [t1, . . . , tn, 1/g] is quasi-finite. Thus we see that the composition

Rf [x1, . . . , xn] −→ Rf [t1, . . . , tn, 1/g] −→ Sφ(g)

is quasi-finite and we win. □

Lemma 10.125.4.00QF Let R → S be a finite type ring map. Let q ⊂ S be a prime
lying over p ⊂ R. If R→ S is quasi-finite at q, then dim(Sq) ≤ dim(Rp).

Proof. If Rp is Noetherian (and hence Sq Noetherian since it is essentially of fi-
nite type over Rp) then this follows immediately from Lemma 10.112.6 and the
definitions. In the general case, let S′ be the integral closure of Rp in Sp. By
Zariski’s Main Theorem 10.123.12 we have Sq = S′

q′ for some q′ ⊂ S′ lying
over q. By Lemma 10.112.3 we have dim(S′) ≤ dim(Rp) and hence a fortiori
dim(Sq) = dim(S′

q′) ≤ dim(Rp). □

Lemma 10.125.5.00QG Let k be a field. Let S be a finite type k-algebra. Suppose there
is a quasi-finite k-algebra map k[t1, . . . , tn] ⊂ S. Then dim(S) ≤ n.

Proof. By Lemma 10.114.1 the dimension of any local ring of k[t1, . . . , tn] is at most
n. Thus the result follows from Lemma 10.125.4. □

Lemma 10.125.6.00QH Let R → S be a finite type ring map. Let q ⊂ S be a prime.
Suppose that dimq(S/R) = n. There exists an open neighbourhood V of q in
Spec(S) such that dimq′(S/R) ≤ n for all q′ ∈ V .

Proof. By Lemma 10.125.2 we see that we may assume that S is quasi-finite over
a polynomial algebra R[t1, . . . , tn]. Considering the fibres, we reduce to Lemma
10.125.5. □

In other words, the lemma says that the set of points where the fibre has dimension
≤ n is open in Spec(S). The next lemma says that formation of this open commutes
with base change. If the ring map is of finite presentation then this set is quasi-
compact open (see below).
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Lemma 10.125.7.00QI Let R → S be a finite type ring map. Let R → R′ be any ring
map. Set S′ = R′ ⊗R S and denote f : Spec(S′) → Spec(S) the associated map
on spectra. Let n ≥ 0. The inverse image f−1({q ∈ Spec(S) | dimq(S/R) ≤ n}) is
equal to {q′ ∈ Spec(S′) | dimq′(S′/R′) ≤ n}.

Proof. The condition is formulated in terms of dimensions of fibre rings which are of
finite type over a field. Combined with Lemma 10.116.6 this yields the lemma. □

Lemma 10.125.8.00QJ Let R→ S be a ring homomorphism of finite presentation. Let
n ≥ 0. The set

Vn = {q ∈ Spec(S) | dimq(S/R) ≤ n}
is a quasi-compact open subset of Spec(S).

Proof. It is open by Lemma 10.125.6. Let S = R[x1, . . . , xn]/(f1, . . . , fm) be a
presentation of S. Let R0 be the Z-subalgebra of R generated by the coefficients of
the polynomials fi. Let S0 = R0[x1, . . . , xn]/(f1, . . . , fm). Then S = R⊗R0 S0. By
Lemma 10.125.7 Vn is the inverse image of an open V0,n under the quasi-compact
continuous map Spec(S) → Spec(S0). Since S0 is Noetherian we see that V0,n is
quasi-compact. □

Lemma 10.125.9.00QK Let R be a valuation ring with residue field k and field of fractions
K. Let S be a domain containing R such that S is of finite type over R. If S ⊗R k
is not the zero ring then

dim(S ⊗R k) = dim(S ⊗R K)

In fact, Spec(S ⊗R k) is equidimensional.

Proof. It suffices to show that dimq(S/k) is equal to dim(S ⊗RK) for every prime
q of S containing mRS. Pick such a prime. By Lemma 10.125.6 the inequality
dimq(S/k) ≥ dim(S ⊗R K) holds. Set n = dimq(S/k). By Lemma 10.125.2 after
replacing S by Sg for some g ∈ S, g ̸∈ q there exists a quasi-finite ring map
R[t1, . . . , tn]→ S. If dim(S⊗RK) < n, then K[t1, . . . , tn]→ S⊗RK has a nonzero
kernel. Say f =

∑
aIt

i1
1 . . . tinn . After dividing f by a nonzero coefficient of f with

minimal valuation, we may assume f ∈ R[t1, . . . , tn] and some aI does not map to
zero in k. Hence the ring map k[t1, . . . , tn] → S ⊗R k has a nonzero kernel which
implies that dim(S ⊗R k) < n. Contradiction. □

10.126. Algebras and modules of finite presentation

05N4 In this section we discuss some standard results where the key feature is that the
assumption involves a finite type or finite presentation assumption.

Lemma 10.126.1.00QP Let R → S be a ring map. Let R → R′ be a faithfully flat ring
map. Set S′ = R′ ⊗R S. Then R → S is of finite type if and only if R′ → S′ is of
finite type.

Proof. It is clear that if R → S is of finite type then R′ → S′ is of finite type.
Assume that R′ → S′ is of finite type. Say y1, . . . , ym generate S′ over R′. Write
yj =

∑
i aij ⊗ xji for some aij ∈ R′ and xji ∈ S. Let A ⊂ S be the R-subalgebra

generated by the xij . By flatness we have A′ := R′⊗RA ⊂ S′, and by construction
yj ∈ A′. Hence A′ = S′. By faithful flatness A = S. □
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Lemma 10.126.2.00QQ Let R → S be a ring map. Let R → R′ be a faithfully flat ring
map. Set S′ = R′⊗RS. Then R→ S is of finite presentation if and only if R′ → S′

is of finite presentation.

Proof. It is clear that if R → S is of finite presentation then R′ → S′ is of finite
presentation. Assume that R′ → S′ is of finite presentation. By Lemma 10.126.1
we see that R → S is of finite type. Write S = R[x1, . . . , xn]/I. By flatness
S′ = R′[x1, . . . , xn]/R′ ⊗ I. Say g1, . . . , gm generate R′ ⊗ I over R′[x1, . . . , xn].
Write gj =

∑
i aij ⊗ fji for some aij ∈ R′ and fji ∈ I. Let J ⊂ I be the ideal

generated by the fij . By flatness we have R′ ⊗R J ⊂ R′ ⊗R I, and both are ideals
over R′[x1, . . . , xn]. By construction gj ∈ R′ ⊗R J . Hence R′ ⊗R J = R′ ⊗R I. By
faithful flatness J = I. □

Lemma 10.126.3.05N5 Let R be a ring. Let I ⊂ R be an ideal. Let S ⊂ R be a
multiplicative subset. Set R′ = S−1(R/I) = S−1R/S−1I.

(1) For any finite R′-module M ′ there exists a finite R-module M such that
S−1(M/IM) ∼= M ′.

(2) For any finitely presented R′-module M ′ there exists a finitely presented
R-module M such that S−1(M/IM) ∼= M ′.

Proof. Proof of (1). Choose a short exact sequence 0→ K ′ → (R′)⊕n → M ′ → 0.
Let K ⊂ R⊕n be the inverse image of K ′ under the map R⊕n → (R′)⊕n. Then
M = R⊕n/K works.
Proof of (2). Choose a presentation (R′)⊕m → (R′)⊕n → M ′ → 0. Suppose that
the first map is given by the matrix A′ = (a′

ij) and the second map is determined
by generators x′

i ∈ M ′, i = 1, . . . , n. As R′ = S−1(R/I) we can choose s ∈ S and
a matrix A = (aij) with coefficients in R such that a′

ij = aij/s mod S−1I. Let
M be the finitely presented R-module with presentation R⊕m → R⊕n → M → 0
where the first map is given by the matrix A and the second map is determined
by generators xi ∈ M , i = 1, . . . , n. Then the map M → M ′, xi 7→ x′

i induces an
isomorphism S−1(M/IM) ∼= M ′. □

Lemma 10.126.4.05N6 Let R be a ring. Let S ⊂ R be a multiplicative subset. Let M
be an R-module.

(1) If S−1M is a finite S−1R-module then there exists a finite R-module M ′

and a map M ′ →M which induces an isomorphism S−1M ′ → S−1M .
(2) If S−1M is a finitely presented S−1R-module then there exists an R-

module M ′ of finite presentation and a map M ′ → M which induces an
isomorphism S−1M ′ → S−1M .

Proof. Proof of (1). Let x1, . . . , xn ∈ M be elements which generate S−1M as an
S−1R-module. Let M ′ be the R-submodule of M generated by x1, . . . , xn.
Proof of (2). Let x1, . . . , xn ∈ M be elements which generate S−1M as an S−1R-
module. LetK = Ker(R⊕n →M) where the map is given by the rule (a1, . . . , an) 7→∑
aixi. By Lemma 10.5.3 we see that S−1K is a finite S−1R-module. By (1) we

can find a finite submodule K ′ ⊂ K with S−1K ′ = S−1K. Take M ′ = Coker(K ′ →
R⊕n). □

Lemma 10.126.5.05GJ Let R be a ring. Let p ⊂ R be a prime ideal. Let M be an
R-module.
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(1) If Mp is a finite Rp-module then there exists a finite R-module M ′ and a
map M ′ →M which induces an isomorphism M ′

p →Mp.
(2) If Mp is a finitely presented Rp-module then there exists an R-module M ′

of finite presentation and a map M ′ →M which induces an isomorphism
M ′

p →Mp.

Proof. This is a special case of Lemma 10.126.4 □

Lemma 10.126.6.00QR Let φ : R → S be a ring map. Let q ⊂ S be a prime lying over
p ⊂ R. Assume

(1) S is of finite presentation over R,
(2) φ induces an isomorphism Rp

∼= Sq.
Then there exist f ∈ R, f ̸∈ p and an Rf -algebra C such that Sf ∼= Rf × C as
Rf -algebras.

Proof. Write S = R[x1, . . . , xn]/(g1, . . . , gm). Let ai ∈ Rp be an element mapping
to the image of xi in Sq. Write ai = bi/f for some f ∈ R, f ̸∈ p. After replacing R
by Rf and xi by xi − ai we may assume that S = R[x1, . . . , xn]/(g1, . . . , gm) such
that xi maps to zero in Sq. Then if cj denotes the constant term of gj we conclude
that cj maps to zero in Rp. After another replacement of R we may assume that
the constant coefficients cj of the gj are zero. Thus we obtain an R-algebra map
S → R, xi 7→ 0 whose kernel is the ideal (x1, . . . , xn).

Note that q = pS + (x1, . . . , xn). Write gj =
∑
ajixi + h.o.t.. Since Sq = Rp

we have p ⊗ κ(p) = q ⊗ κ(q). It follows that m × n matrix A = (aji) defines a
surjective map κ(p)⊕m → κ(p)⊕n. Thus after inverting some element of R not in p
we may assume there are bij ∈ R such that

∑
bijgj = xi+h.o.t.. We conclude that

(x1, . . . , xn) = (x1, . . . , xn)2 in S. It follows from Lemma 10.21.5 that (x1, . . . , xn)
is generated by an idempotent e. Setting C = eS finishes the proof. □

Lemma 10.126.7.00QS Let R be a ring. Let S, S′ be of finite presentation over R. Let
q ⊂ S and q′ ⊂ S′ be primes. If Sq

∼= S′
q′ as R-algebras, then there exist g ∈ S,

g ̸∈ q and g′ ∈ S′, g′ ̸∈ q′ such that Sg ∼= S′
g′ as R-algebras.

Proof. Let ψ : Sq → S′
q′ be the isomorphism of the hypothesis of the lemma.

Write S = R[x1, . . . , xn]/(f1, . . . , fr) and S′ = R[y1, . . . , ym]/J . For each i =
1, . . . , n choose a fraction hi/gi with hi, gi ∈ R[y1, . . . , ym] and gi mod J not in
q′ which represents the image of xi under ψ. After replacing S′ by S′

g1...gn and
R[y1, . . . , ym, ym+1] (mapping ym+1 to 1/(g1 . . . gn)) we may assume that ψ(xi) is
the image of some hi ∈ R[y1, . . . , ym]. Consider the elements fj(h1, . . . , hn) ∈
R[y1, . . . , ym]. Since ψ kills each fj we see that there exists a g ∈ R[y1, . . . , ym],
g mod J ̸∈ q′ such that gfj(h1, . . . , hn) ∈ J for each j = 1, . . . , r. After replacing
S′ by S′

g and R[y1, . . . , ym, ym+1] as before we may assume that fj(h1, . . . , hn) ∈ J .
Thus we obtain a ring map S → S′, xi 7→ hi which induces ψ on local rings. By
Lemma 10.6.2 the map S → S′ is of finite presentation. By Lemma 10.126.6 we
may assume that S′ = S × C. Thus localizing S′ at the idempotent corresponding
to the factor C we obtain the result. □

Lemma 10.126.8.0G8U Let R be a ring. Let I ⊂ R be a nilpotent ideal. Let S be an
R-algebra such that R/I → S/IS is of finite type. Then R→ S is of finite type.
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Proof. Choose s1, . . . , sn ∈ S whose images in S/IS generate S/IS as an al-
gebra over R/I. By Lemma 10.20.1 part (11) we see that the R-algebra map
R[x1, . . . , xn → S, xi 7→ si is surjective and we conclude. □

Lemma 10.126.9.07RD Let R be a ring. Let I ⊂ R be a locally nilpotent ideal. Let
S → S′ be an R-algebra map such that S → S′/IS′ is surjective and such that S′

is of finite type over R. Then S → S′ is surjective.

Proof. Write S′ = R[x1, . . . , xm]/K for some ideal K. By assumption there exist
gj = xj+

∑
δj,Jx

J ∈ R[x1, . . . , xn] with δj,J ∈ I and with gj mod K ∈ Im(S → S′).
Hence it suffices to show that g1, . . . , gm generate R[x1, . . . , xn]. Let R0 ⊂ R be a
finitely generated Z-subalgebra of R containing at least the δj,J . Then R0 ∩ I is
a nilpotent ideal (by Lemma 10.32.5). It follows that R0[x1, . . . , xn] is generated
by g1, . . . , gm (because xj 7→ gj defines an automorphism of R0[x1, . . . , xm]; details
omitted). Since R is the union of the subrings R0 we win. □

Lemma 10.126.10.087P Let R be a ring. Let I ⊂ R be an ideal. Let S → S′ be an
R-algebra map. Let IS ⊂ q ⊂ S be a prime ideal. Assume that

(1) S → S′ is surjective,
(2) Sq/ISq → S′

q/IS
′
q is an isomorphism,

(3) S is of finite type over R,
(4) S′ of finite presentation over R, and
(5) S′

q is flat over R.
Then Sg → S′

g is an isomorphism for some g ∈ S, g ̸∈ q.

Proof. Let J = Ker(S → S′). By Lemma 10.6.2 J is a finitely generated ideal.
Since S′

q is flat over R we see that Jq/IJq ⊂ Sq/ISq (apply Lemma 10.39.12 to
0 → J → S → S′ → 0). By assumption (2) we see that Jq/IJq is zero. By
Nakayama’s lemma (Lemma 10.20.1) we see that there exists a g ∈ S, g ̸∈ q such
that Jg = 0. Hence Sg ∼= S′

g as desired. □

Lemma 10.126.11.07RE Let R be a ring. Let I ⊂ R be an ideal. Let S → S′ be an
R-algebra map. Assume that

(1) I is locally nilpotent,
(2) S/IS → S′/IS′ is an isomorphism,
(3) S is of finite type over R,
(4) S′ of finite presentation over R, and
(5) S′ is flat over R.

Then S → S′ is an isomorphism.

Proof. By Lemma 10.126.9 the map S → S′ is surjective. As I is locally nilpotent,
so are the ideals IS and IS′ (Lemma 10.32.3). Hence every prime ideal q of S
contains IS and (trivially) Sq/ISq

∼= S′
q/IS

′
q. Thus Lemma 10.126.10 applies and

we see that Sq → S′
q is an isomorphism for every prime q ⊂ S. It follows that

S → S′ is injective for example by Lemma 10.23.1. □

10.127. Colimits and maps of finite presentation

00QL In this section we prove some preliminary lemmas which will eventually help us
prove result using absolute Noetherian reduction. In Categories, Section 4.19 we
discuss filtered colimits in general. Here is an example of this very general notion.
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Lemma 10.127.1.0BUF Let R → A be a ring map. Consider the category I of all
diagrams of R-algebra maps A′ → A with A′ finitely presented over R. Then I is
filtered, and the colimit of the A′ over I is isomorphic to A.

Proof. The category11 I is nonempty as R→ R is an object of it. Consider a pair
of objects A′ → A, A′′ → A of I. Then A′ ⊗R A′′ → A is in I (use Lemmas 10.6.2
and 10.14.2). The ring maps A′ → A′⊗RA′′ and A′′ → A′⊗RA′′ define arrows in I
thereby proving the second defining property of a filtered category, see Categories,
Definition 4.19.1. Finally, suppose that we have two morphisms σ, τ : A′ → A′′ in
I. If x1, . . . , xr ∈ A′ are generators of A′ as an R-algebra, then we can consider
A′′′ = A′′/(σ(xi) − τ(xi)). This is a finitely presented R-algebra and the given
R-algebra map A′′ → A factors through the surjection ν : A′′ → A′′′. Thus ν is a
morphism in I equalizing σ and τ as desired.
The fact that our index category is cofiltered means that we may compute the value
of B = colimA′→AA

′ in the category of sets (some details omitted; compare with
the discussion in Categories, Section 4.19). To see that B → A is surjective, for
every a ∈ A we can use R[x] → A, x 7→ a to see that a is in the image of B → A.
Conversely, if b ∈ B is mapped to zero in A, then we can find A′ → A in I and
a′ ∈ A′ which maps to b. Then A′/(a′) → A is in I as well and the map A′ → B
factors as A′ → A′/(a′)→ B which shows that b = 0 as desired. □

Often it is easier to think about colimits over preordered sets. Let (Λ,≥) a pre-
ordered set. A system of rings over Λ is given by a ring Rλ for every λ ∈ Λ, and
a morphism Rλ → Rµ whenever λ ≤ µ. These morphisms have to satisfy the rule
that Rλ → Rµ → Rν is equal to the map Rλ → Rν for all λ ≤ µ ≤ ν. See Cat-
egories, Section 4.21. We will often assume that (I,≤) is directed, which means
that Λ is nonempty and given λ, µ ∈ Λ there exists a ν ∈ Λ with λ ≤ ν and µ ≤ ν.
Recall that the colimit colimλRλ is sometimes called a “direct limit” in this case
(but we will not use this terminology).
Note that Categories, Lemma 4.21.5 tells us that colimits over filtered index cate-
gories are the same thing as colimits over directed sets.

Lemma 10.127.2.00QN Let R → A be a ring map. There exists a directed system Aλ
of R-algebras of finite presentation such that A = colimλAλ. If A is of finite type
over R we may arrange it so that all the transition maps in the system of Aλ are
surjective.

Proof. The first proof is that this follows from Lemma 10.127.1 and Categories,
Lemma 4.21.5.
Second proof. Compare with the proof of Lemma 10.11.3. Consider any finite subset
S ⊂ A, and any finite collection of polynomial relations E among the elements of
S. So each s ∈ S corresponds to xs ∈ A and each e ∈ E consists of a polynomial
fe ∈ R[Xs; s ∈ S] such that fe(xs) = 0. Let AS,E = R[Xs; s ∈ S]/(fe; e ∈ E) which
is a finitely presented R-algebra. There are canonical maps AS,E → A. If S ⊂ S′

and if the elements of E correspond, via the map R[Xs; s ∈ S]→ R[Xs; s ∈ S′], to
a subset of E′, then there is an obvious map AS,E → AS′,E′ commuting with the
maps to A. Thus, setting Λ equal the set of pairs (S,E) with ordering by inclusion

11To avoid set theoretical difficulties we consider only A′ → A such that A′ is a quotient of
R[x1, x2, x3, . . .].
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as above, we get a directed partially ordered set. It is clear that the colimit of this
directed system is A.
For the last statement, suppose A = R[x1, . . . , xn]/I. In this case, consider the
subset Λ′ ⊂ Λ consisting of those systems (S,E) above with S = {x1, . . . , xn}. It is
easy to see that still A = colimλ′∈Λ′ Aλ′ . Moreover, the transition maps are clearly
surjective. □

It turns out that we can characterize ring maps of finite presentation as follows.
This in some sense says that the algebras of finite presentation are the “compact”
objects in the category of R-algebras.

Lemma 10.127.3.00QO Let φ : R→ S be a ring map. The following are equivalent
(1) φ is of finite presentation,
(2) for every directed system Aλ of R-algebras the map

colimλ HomR(S,Aλ) −→ HomR(S, colimλAλ)
is bijective, and

(3) for every directed system Aλ of R-algebras the map
colimλ HomR(S,Aλ) −→ HomR(S, colimλAλ)

is surjective.

Proof. Assume (1) and write S = R[x1, . . . , xn]/(f1, . . . , fm). Let A = colimAλ.
Observe that an R-algebra homomorphism S → A or S → Aλ is determined by the
images of x1, . . . , xn. Hence it is clear that colimλ HomR(S,Aλ)→ HomR(S,A) is
injective. To see that it is surjective, let χ : S → A be an R-algebra homomorphism.
Then each xi maps to some element in the image of some Aλi . We may pick
µ ≥ λi, i = 1, . . . , n and assume χ(xi) is the image of yi ∈ Aµ for i = 1, . . . , n.
Consider zj = fj(y1, . . . , yn) ∈ Aµ. Since χ is a homomorphism the image of zj
in A = colimλAλ is zero. Hence there exists a µj ≥ µ such that zj maps to zero
in Aµj . Pick ν ≥ µj , j = 1, . . . ,m. Then the images of z1, . . . , zm are zero in Aν .
This exactly means that the yi map to elements y′

i ∈ Aν which satisfy the relations
fj(y′

1, . . . , y
′
n) = 0. Thus we obtain a ring map S → Aν . This shows that (1)

implies (2).
It is clear that (2) implies (3). Assume (3). By Lemma 10.127.2 we may write
S = colimλ Sλ with Sλ of finite presentation over R. Then the identity map factors
as

S → Sλ → S

for some λ. This implies that S is finitely presented over Sλ by Lemma 10.6.2 part
(4) applied to S → Sλ → S. Applying part (2) of the same lemma to R→ Sλ → S
we conclude that S is of finite presentation over R. □

Using the basic material above we can give a criterion of when an algebra A is a
filtered colimit of given type of algebra as follows.

Lemma 10.127.4.07C3 Let R → Λ be a ring map. Let E be a set of R-algebras such
that each A ∈ E is of finite presentation over R. Then the following two statements
are equivalent

(1) Λ is a filtered colimit of elements of E , and
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(2) for any R algebra map A→ Λ with A of finite presentation over R we can
find a factorization A→ B → Λ with B ∈ E .

Proof. Suppose that I → E , i 7→ Ai is a filtered diagram such that Λ = colimiAi.
Let A→ Λ be an R-algebra map with A of finite presentation over R. Then we get
a factorization A→ Ai → Λ by applying Lemma 10.127.3. Thus (1) implies (2).
Consider the category I of Lemma 10.127.1. By Categories, Lemma 4.19.3 the full
subcategory J consisting of those A→ Λ with A ∈ E is cofinal in I and is a filtered
category. Then Λ is also the colimit over J by Categories, Lemma 4.17.2. □

But more is true. Namely, given R = colimλRλ we see that the category of finitely
presented R-modules is equivalent to the limit of the category of finitely presented
Rλ-modules. Similarly for the categories of finitely presented R-algebras.

Lemma 10.127.5.05LI Let A be a ring and let M,N be A-modules. Suppose that
R = colimi∈I Ri is a directed colimit of A-algebras.

(1) If M is a finite A-module, and u, u′ : M → N are A-module maps such
that u ⊗ 1 = u′ ⊗ 1 : M ⊗A R → N ⊗A R then for some i we have
u⊗ 1 = u′ ⊗ 1 : M ⊗A Ri → N ⊗A Ri.

(2) If N is a finite A-module and u : M → N is an A-module map such
that u ⊗ 1 : M ⊗A R → N ⊗A R is surjective, then for some i the map
u⊗ 1 : M ⊗A Ri → N ⊗A Ri is surjective.

(3) If N is a finitely presented A-module, and v : N ⊗AR→M ⊗AR is an R-
module map, then there exists an i and an Ri-module map vi : N⊗ARi →
M ⊗A Ri such that v = vi ⊗ 1.

(4) If M is a finite A-module, N is a finitely presented A-module, and u :
M → N is an A-module map such that u⊗ 1 : M ⊗A R→ N ⊗A R is an
isomorphism, then for some i the map u⊗ 1 : M ⊗A Ri → N ⊗A Ri is an
isomorphism.

Proof. To prove (1) assume u is as in (1) and let x1, . . . , xm ∈ M be generators.
Since N⊗AR = colimiN⊗ARi we may pick an i ∈ I such that u(xj)⊗1 = u′(xj)⊗1
in M⊗ARi, j = 1, . . . ,m. For such an i we have u⊗1 = u′⊗1 : M⊗ARi → N⊗ARi.
To prove (2) assume u ⊗ 1 surjective and let y1, . . . , ym ∈ N be generators. Since
N ⊗A R = colimiN ⊗A Ri we may pick an i ∈ I and zj ∈ M ⊗A Ri, j = 1, . . . ,m
whose images in N ⊗A R equal yj ⊗ 1. For such an i the map u⊗ 1 : M ⊗A Ri →
N ⊗A Ri is surjective.
To prove (3) let y1, . . . , ym ∈ N be generators. Let K = Ker(A⊕m → N) where
the map is given by the rule (a1, . . . , am) 7→

∑
ajxj . Let k1, . . . , kt be generators

for K. Say ks = (ks1, . . . , ksm). Since M ⊗A R = colimiM ⊗A Ri we may pick an
i ∈ I and zj ∈M ⊗ARi, j = 1, . . . ,m whose images in M ⊗AR equal v(yj⊗1). We
want to use the zj to define the map vi : N ⊗A Ri →M ⊗A Ri. Since K ⊗A Ri →
R⊕m
i → N ⊗A Ri → 0 is a presentation, it suffices to check that ξs =

∑
j ksjzj is

zero in M ⊗A Ri for each s = 1, . . . , t. This may not be the case, but since the
image of ξs in M ⊗AR is zero we see that it will be the case after increasing i a bit.
To prove (4) assume u⊗1 is an isomorphism, that M is finite, and that N is finitely
presented. Let v : N ⊗A R → M ⊗A R be an inverse to u ⊗ 1. Apply part (3) to
get a map vi : N ⊗A Ri → M ⊗A Ri for some i. Apply part (1) to see that, after
increasing i we have vi ◦ (u⊗ 1) = idM⊗RRi and (u⊗ 1) ◦ vi = idN⊗RRi . □
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Lemma 10.127.6.05N7 Suppose that R = colimλ∈Λ Rλ is a directed colimit of rings.
Then the category of finitely presented R-modules is the colimit of the categories
of finitely presented Rλ-modules. More precisely

(1) Given a finitely presented R-module M there exists a λ ∈ Λ and a finitely
presented Rλ-module Mλ such that M ∼= Mλ ⊗Rλ R.

(2) Given a λ ∈ Λ, finitely presented Rλ-modules Mλ, Nλ, and an R-module
map φ : Mλ ⊗Rλ R → Nλ ⊗Rλ R, then there exists a µ ≥ λ and an
Rµ-module map φµ : Mλ ⊗Rλ Rµ → Nλ ⊗Rλ Rµ such that φ = φµ ⊗ 1R.

(3) Given a λ ∈ Λ, finitely presented Rλ-modules Mλ, Nλ, and R-module
maps φλ, ψλ : Mλ → Nλ such that φ⊗1R = ψ⊗1R, then φ⊗1Rµ = ψ⊗1Rµ
for some µ ≥ λ.

Proof. To prove (1) choose a presentation R⊕m → R⊕n → M → 0. Suppose that
the first map is given by the matrix A = (aij). We can choose a λ ∈ Λ and a matrix
Aλ = (aλ,ij) with coefficients in Rλ which maps to A in R. Then we simply let
Mλ be the Rλ-module with presentation R⊕m

λ → R⊕n
λ → Mλ → 0 where the first

arrow is given by Aλ.

Parts (2) and (3) follow from Lemma 10.127.5. □

Lemma 10.127.7.05N8 Let A be a ring and let B,C be A-algebras. Suppose that
R = colimi∈I Ri is a directed colimit of A-algebras.

(1) If B is a finite type A-algebra, and u, u′ : B → C are A-algebra maps
such that u ⊗ 1 = u′ ⊗ 1 : B ⊗A R → C ⊗A R then for some i we have
u⊗ 1 = u′ ⊗ 1 : B ⊗A Ri → C ⊗A Ri.

(2) If C is a finite type A-algebra and u : B → C is an A-algebra map such
that u ⊗ 1 : B ⊗A R → C ⊗A R is surjective, then for some i the map
u⊗ 1 : B ⊗A Ri → C ⊗A Ri is surjective.

(3) If C is of finite presentation over A and v : C ⊗A R → B ⊗A R is an R-
algebra map, then there exists an i and an Ri-algebra map vi : C⊗ARi →
B ⊗A Ri such that v = vi ⊗ 1.

(4) If B is a finite type A-algebra, C is a finitely presented A-algebra, and
u ⊗ 1 : B ⊗A R → C ⊗A R is an isomorphism, then for some i the map
u⊗ 1 : B ⊗A Ri → C ⊗A Ri is an isomorphism.

Proof. To prove (1) assume u is as in (1) and let x1, . . . , xm ∈ B be generators.
Since B⊗AR = colimiB⊗ARi we may pick an i ∈ I such that u(xj)⊗1 = u′(xj)⊗1
in B⊗ARi, j = 1, . . . ,m. For such an i we have u⊗1 = u′⊗1 : B⊗ARi → C⊗ARi.

To prove (2) assume u ⊗ 1 surjective and let y1, . . . , ym ∈ C be generators. Since
B⊗AR = colimiB⊗ARi we may pick an i ∈ I and zj ∈ B⊗ARi, j = 1, . . . ,m whose
images in C ⊗A R equal yj ⊗ 1. For such an i the map u⊗ 1 : B ⊗A Ri → C ⊗A Ri
is surjective.

To prove (3) let c1, . . . , cm ∈ C be generators. Let K = Ker(A[x1, . . . , xm] → N)
where the map is given by the rule xj 7→

∑
cj . Let f1, . . . , ft be generators for K as

an ideal in A[x1, . . . , xm]. We think of fj = fj(x1, . . . , xm) as a polynomial. Since
B ⊗A R = colimiB ⊗A Ri we may pick an i ∈ I and zj ∈ B ⊗A Ri, j = 1, . . . ,m
whose images in B ⊗A R equal v(cj ⊗ 1). We want to use the zj to define a map
vi : C ⊗A Ri → B ⊗A Ri. Since K ⊗A Ri → Ri[x1, . . . , xm] → C ⊗A Ri → 0 is
a presentation, it suffices to check that ξs = fj(z1, . . . , zm) is zero in B ⊗A Ri for
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each s = 1, . . . , t. This may not be the case, but since the image of ξs in B ⊗A R
is zero we see that it will be the case after increasing i a bit.
To prove (4) assume u⊗1 is an isomorphism, that B is a finite type A-algebra, and
that C is a finitely presented A-algebra. Let v : B ⊗A R → C ⊗A R be an inverse
to u⊗ 1. Let vi : C⊗ARi → B⊗ARi be as in part (3). Apply part (1) to see that,
after increasing i we have vi ◦ (u⊗ 1) = idB⊗RRi and (u⊗ 1) ◦ vi = idC⊗RRi . □

Lemma 10.127.8.05N9 Suppose that R = colimλ∈Λ Rλ is a directed colimit of rings.
Then the category of finitely presented R-algebras is the colimit of the categories
of finitely presented Rλ-algebras. More precisely

(1) Given a finitely presented R-algebra A there exists a λ ∈ Λ and a finitely
presented Rλ-algebra Aλ such that A ∼= Aλ ⊗Rλ R.

(2) Given a λ ∈ Λ, finitely presented Rλ-algebras Aλ, Bλ, and an R-algebra
map φ : Aλ ⊗Rλ R → Bλ ⊗Rλ R, then there exists a µ ≥ λ and an
Rµ-algebra map φµ : Aλ ⊗Rλ Rµ → Bλ ⊗Rλ Rµ such that φ = φµ ⊗ 1R.

(3) Given a λ ∈ Λ, finitely presented Rλ-algebras Aλ, Bλ, and Rλ-algebra
maps φλ, ψλ : Aλ → Bλ such that φ⊗1R = ψ⊗1R, then φ⊗1Rµ = ψ⊗1Rµ
for some µ ≥ λ.

Proof. To prove (1) choose a presentation A = R[x1, . . . , xn]/(f1, . . . , fm). We can
choose a λ ∈ Λ and elements fλ,j ∈ Rλ[x1, . . . , xn] mapping to fj ∈ R[x1, . . . , xn].
Then we simply let Aλ = Rλ[x1, . . . , xn]/(fλ,1, . . . , fλ,m).
Parts (2) and (3) follow from Lemma 10.127.7. □

Lemma 10.127.9.00QT Suppose R → S is a local homomorphism of local rings. There
exists a directed set (Λ,≤), and a system of local homomorphisms Rλ → Sλ of local
rings such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is essentially of finite type over Z.
(3) Each Sλ is essentially of finite type over Rλ.

Proof. Denote φ : R→ S the ring map. Let m ⊂ R be the maximal ideal of R and
let n ⊂ S be the maximal ideal of S. Let

Λ = {(A,B) | A ⊂ R,B ⊂ S,#A <∞,#B <∞, φ(A) ⊂ B}.
As partial ordering we take the inclusion relation. For each λ = (A,B) ∈ Λ we let
R′
λ be the sub Z-algebra generated by a ∈ A, and we let S′

λ be the sub Z-algebra
generated by b, b ∈ B. Let Rλ be the localization of R′

λ at the prime ideal R′
λ ∩m

and let Sλ be the localization of S′
λ at the prime ideal S′

λ ∩ n. In a picture

B // S′
λ

// Sλ // S

A //

OO

R′
λ

//

OO

Rλ //

OO

R

OO .

The transition maps are clear. We leave the proofs of the other assertions to the
reader. □

Lemma 10.127.10.00QU Suppose R→ S is a local homomorphism of local rings. Assume
that S is essentially of finite type over R. Then there exists a directed set (Λ,≤),
and a system of local homomorphisms Rλ → Sλ of local rings such that
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(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is essentially of finite type over Z.
(3) Each Sλ is essentially of finite type over Rλ.
(4) For each λ ≤ µ the map Sλ ⊗Rλ Rµ → Sµ presents Sµ as the localization

of a quotient of Sλ ⊗Rλ Rµ.

Proof. Denote φ : R→ S the ring map. Let m ⊂ R be the maximal ideal of R and
let n ⊂ S be the maximal ideal of S. Let x1, . . . , xn ∈ S be elements such that S is
a localization of the sub R-algebra of S generated by x1, . . . , xn. In other words, S
is a quotient of a localization of the polynomial ring R[x1, . . . , xn].

Let Λ = {A ⊂ R | #A < ∞} be the set of finite subsets of R. As partial ordering
we take the inclusion relation. For each λ = A ∈ Λ we let R′

λ be the sub Z-algebra
generated by a ∈ A, and we let S′

λ be the sub Z-algebra generated by φ(a), a ∈ A
and the elements x1, . . . , xn. Let Rλ be the localization of R′

λ at the prime ideal
R′
λ ∩m and let Sλ be the localization of S′

λ at the prime ideal S′
λ ∩ n. In a picture

φ(A)⨿ {xi} // S′
λ

// Sλ // S

A //

OO

R′
λ

//

OO

Rλ //

OO

R

OO

It is clear that if A ⊂ B corresponds to λ ≤ µ in Λ, then there are canonical maps
Rλ → Rµ, and Sλ → Sµ and we obtain a system over the directed set Λ.

The assertion that R = colimRλ is clear because all the maps Rλ → R are injective
and any element of R eventually is in the image. The same argument works for
S = colimSλ. Assertions (2), (3) are true by construction. The final assertion
holds because clearly the maps S′

λ ⊗R′
λ
R′
µ → S′

µ are surjective. □

Lemma 10.127.11.00QV Suppose R→ S is a local homomorphism of local rings. Assume
that S is essentially of finite presentation over R. Then there exists a directed set
(Λ,≤), and a system of local homomorphism Rλ → Sλ of local rings such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is essentially of finite type over Z.
(3) Each Sλ is essentially of finite type over Rλ.
(4) For each λ ≤ µ the map Sλ ⊗Rλ Rµ → Sµ presents Sµ as the localization

of Sλ ⊗Rλ Rµ at a prime ideal.

Proof. By assumption we may choose an isomorphism Φ : (R[x1, . . . , xn]/I)q → S
where I ⊂ R[x1, . . . , xn] is a finitely generated ideal, and q ⊂ R[x1, . . . , xn]/I
is a prime. (Note that R ∩ q is equal to the maximal ideal m of R.) We also
choose generators f1, . . . , fm ∈ I for the ideal I. Write R in any way as a colimit
R = colimRλ over a directed set (Λ,≤), with each Rλ local and essentially of
finite type over Z. There exists some λ0 ∈ Λ such that fj is the image of some
fj,λ0 ∈ Rλ0 [x1, . . . , xn]. For all λ ≥ λ0 denote fj,λ ∈ Rλ[x1, . . . , xn] the image of
fj,λ0 . Thus we obtain a system of ring maps

Rλ[x1, . . . , xn]/(f1,λ, . . . , fm,λ)→ R[x1, . . . , xn]/(f1, . . . , fm)→ S

Set qλ the inverse image of q. Set Sλ = (Rλ[x1, . . . , xn]/(f1,λ, . . . , fm,λ))qλ . We
leave it to the reader to see that this works. □
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Remark 10.127.12.00QW Suppose that R → S is a local homomorphism of local rings,
which is essentially of finite presentation. Take any system (Λ,≤), Rλ → Sλ with
the properties listed in Lemma 10.127.10. What may happen is that this is the
“wrong” system, namely, it may happen that property (4) of Lemma 10.127.11 is
not satisfied. Here is an example. Let k be a field. Consider the ring

R = k[[z, y1, y2, . . .]]/(y2
i − zyi+1).

Set S = R/zR. As system take Λ = N and Rn = k[[z, y1, . . . , yn]]/({y2
i −

zyi+1}i≤n−1) and Sn = Rn/(z, y2
n). All the maps Sn ⊗Rn Rn+1 → Sn+1 are not

localizations (i.e., isomorphisms in this case) since 1 ⊗ y2
n+1 maps to zero. If we

take instead S′
n = Rn/zRn then the maps S′

n⊗Rn Rn+1 → S′
n+1 are isomorphisms.

The moral of this remark is that we do have to be a little careful in choosing the
systems.

Lemma 10.127.13.00QX Suppose R→ S is a local homomorphism of local rings. Assume
that S is essentially of finite presentation over R. Let M be a finitely presented
S-module. Then there exists a directed set (Λ,≤), and a system of local homomor-
phisms Rλ → Sλ of local rings together with Sλ-modules Mλ, such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S. The colimit of the
system Mλ is M .

(2) Each Rλ is essentially of finite type over Z.
(3) Each Sλ is essentially of finite type over Rλ.
(4) Each Mλ is finite over Sλ.
(5) For each λ ≤ µ the map Sλ ⊗Rλ Rµ → Sµ presents Sµ as the localization

of Sλ ⊗Rλ Rµ at a prime ideal.
(6) For each λ ≤ µ the map Mλ ⊗Sλ Sµ →Mµ is an isomorphism.

Proof. As in the proof of Lemma 10.127.11 we may first write R = colimRλ as a
directed colimit of local Z-algebras which are essentially of finite type. Next, we
may assume that for some λ1 ∈ Λ there exist fj,λ1 ∈ Rλ1 [x1, . . . , xn] such that

S = colimλ≥λ1 Sλ, with Sλ = (Rλ[x1, . . . , xn]/(f1,λ, . . . , fm,λ))qλ
Choose a presentation

S⊕s → S⊕t →M → 0
of M over S. Let A ∈ Mat(t × s, S) be the matrix of the presentation. For some
λ2 ∈ Λ, λ2 ≥ λ1 we can find a matrix Aλ2 ∈ Mat(t× s, Sλ2) which maps to A. For
all λ ≥ λ2 we let Mλ = Coker(S⊕s

λ

Aλ−−→ S⊕t
λ ). We leave it to the reader to see that

this works. □

Lemma 10.127.14.00QY Suppose R→ S is a ring map. Then there exists a directed set
(Λ,≤), and a system of ring maps Rλ → Sλ such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is of finite type over Z.
(3) Each Sλ is of finite type over Rλ.

Proof. This is the non-local version of Lemma 10.127.9. Proof is similar and left
to the reader. □

Lemma 10.127.15.0BTG Suppose R → S is a ring map. Assume that S is integral over
R. Then there exists a directed set (Λ,≤), and a system of ring maps Rλ → Sλ
such that
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(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is of finite type over Z.
(3) Each Sλ is finite over Rλ.

Proof. Consider the set Λ of pairs (E,F ) where E ⊂ R is a finite subset, F ⊂ S
is a finite subset, and every element f ∈ F is the root of a monic P (X) ∈ R[X]
whose coefficients are in E. Say (E,F ) ≤ (E′, F ′) if E ⊂ E′ and F ⊂ F ′. Given
λ = (E,F ) ∈ Λ set Rλ ⊂ R equal to the Z-subalgebra of R generated by E and
Sλ ⊂ S equal to the Z-subalgebra generated by F and the image of E in S. It is
clear that R = colimRλ. We have S = colimSλ as every element of S is integral
over S. The ring maps Rλ → Sλ are finite by Lemma 10.36.5 and the fact that
Sλ is generated over Rλ by the elements of F which are integral over Rλ by our
condition on the pairs (E,F ). The lemma follows. □

Lemma 10.127.16.00QZ Suppose R→ S is a ring map. Assume that S is of finite type
over R. Then there exists a directed set (Λ,≤), and a system of ring maps Rλ → Sλ
such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is of finite type over Z.
(3) Each Sλ is of finite type over Rλ.
(4) For each λ ≤ µ the map Sλ ⊗Rλ Rµ → Sµ presents Sµ as a quotient of

Sλ ⊗Rλ Rµ.

Proof. This is the non-local version of Lemma 10.127.10. Proof is similar and left
to the reader. □

Lemma 10.127.17.00R0 Suppose R → S is a ring map. Assume that S is of finite
presentation over R. Then there exists a directed set (Λ,≤), and a system of ring
maps Rλ → Sλ such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is of finite type over Z.
(3) Each Sλ is of finite type over Rλ.
(4) For each λ ≤ µ the map Sλ ⊗Rλ Rµ → Sµ is an isomorphism.

Proof. This is the non-local version of Lemma 10.127.11. Proof is similar and left
to the reader. □

Lemma 10.127.18.00R1 Suppose R → S is a ring map. Assume that S is of finite
presentation over R. Let M be a finitely presented S-module. Then there exists a
directed set (Λ,≤), and a system of ring maps Rλ → Sλ together with Sλ-modules
Mλ, such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S. The colimit of the
system Mλ is M .

(2) Each Rλ is of finite type over Z.
(3) Each Sλ is of finite type over Rλ.
(4) Each Mλ is finite over Sλ.
(5) For each λ ≤ µ the map Sλ ⊗Rλ Rµ → Sµ is an isomorphism.
(6) For each λ ≤ µ the map Mλ ⊗Sλ Sµ →Mµ is an isomorphism.

In particular, for every λ ∈ Λ we have
M = Mλ ⊗Sλ S = Mλ ⊗Rλ R.

https://stacks.math.columbia.edu/tag/00QZ
https://stacks.math.columbia.edu/tag/00R0
https://stacks.math.columbia.edu/tag/00R1


10.128. MORE FLATNESS CRITERIA 740

Proof. This is the non-local version of Lemma 10.127.13. Proof is similar and left
to the reader. □

10.128. More flatness criteria

00R3 The following lemma is often used in algebraic geometry to show that a finite
morphism from a normal surface to a smooth surface is flat. It is a partial converse
to Lemma 10.112.9 because an injective finite local ring map certainly satisfies
condition (3).

Lemma 10.128.1.00R4 Let R→ S be a local homomorphism of Noetherian local rings.
Assume

(1) R is regular,
(2) S Cohen-Macaulay,
(3) dim(S) = dim(R) + dim(S/mRS).

Then R→ S is flat.

Proof. By induction on dim(R). The case dim(R) = 0 is trivial, because then R is
a field. Assume dim(R) > 0. By (3) this implies that dim(S) > 0. Let q1, . . . , qr
be the minimal primes of S. Note that qi ̸⊃ mRS since

dim(S/qi) = dim(S) > dim(S/mRS)

the first equality by Lemma 10.104.3 and the inequality by (3). Thus pi = R ∩ qi
is not equal to mR. Pick x ∈ mR, x ̸∈ m2

R, and x ̸∈ pi, see Lemma 10.15.2. Hence
we see that x is not contained in any of the minimal primes of S. Hence x is a
nonzerodivisor on S by (2), see Lemma 10.104.2 and S/xS is Cohen-Macaulay with
dim(S/xS) = dim(S) − 1. By (1) and Lemma 10.106.3 the ring R/xR is regular
with dim(R/xR) = dim(R) − 1. By induction we see that R/xR → S/xS is flat.
Hence we conclude by Lemma 10.99.10 and the remark following it. □

Lemma 10.128.2.07DY Let R → S be a homomorphism of Noetherian local rings.
Assume that R is a regular local ring and that a regular system of parameters
maps to a regular sequence in S. Then R→ S is flat.

Proof. Suppose that x1, . . . , xd are a system of parameters of R which map to
a regular sequence in S. Note that S/(x1, . . . , xd)S is flat over R/(x1, . . . , xd)
as the latter is a field. Then xd is a nonzerodivisor in S/(x1, . . . , xd−1)S hence
S/(x1, . . . , xd−1)S is flat over R/(x1, . . . , xd−1) by the local criterion of flatness
(see Lemma 10.99.10 and remarks following). Then xd−1 is a nonzerodivisor in
S/(x1, . . . , xd−2)S hence S/(x1, . . . , xd−2)S is flat over R/(x1, . . . , xd−2) by the local
criterion of flatness (see Lemma 10.99.10 and remarks following). Continue till one
reaches the conclusion that S is flat over R. □

The following lemma is the key to proving that results for finitely presented modules
over finitely presented rings over a base ring follow from the corresponding results
for finite modules in the Noetherian case.

Lemma 10.128.3.00R6 Let R → S, M , Λ, Rλ → Sλ, Mλ be as in Lemma 10.127.13.
Assume that M is flat over R. Then for some λ ∈ Λ the module Mλ is flat over
Rλ.
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Proof. Pick some λ ∈ Λ and consider
TorRλ1 (Mλ, Rλ/mλ) = Ker(mλ ⊗Rλ Mλ →Mλ).

See Remark 10.75.9. The right hand side shows that this is a finitely generated
Sλ-module (because Sλ is Noetherian and the modules in question are finite). Let
ξ1, . . . , ξn be generators. Because M is flat over R we have that 0 = Ker(mλR ⊗R
M → M). Since ⊗ commutes with colimits we see there exists a λ′ ≥ λ such that
each ξi maps to zero in mλRλ′ ⊗Rλ′ Mλ′ . Hence we see that

TorRλ1 (Mλ, Rλ/mλ) −→ TorRλ′
1 (Mλ′ , Rλ′/mλRλ′)

is zero. Note that Mλ ⊗Rλ Rλ/mλ is flat over Rλ/mλ because this last ring is a
field. Hence we may apply Lemma 10.99.14 to get that Mλ′ is flat over Rλ′ . □

Using the lemma above we can start to reprove the results of Section 10.99 in the
non-Noetherian case.

Lemma 10.128.4.046Y Suppose that R → S is a local homomorphism of local rings.
Denote m the maximal ideal of R. Let u : M → N be a map of S-modules. Assume

(1) S is essentially of finite presentation over R,
(2) M , N are finitely presented over S,
(3) N is flat over R, and
(4) u : M/mM → N/mN is injective.

Then u is injective, and N/u(M) is flat over R.

Proof. By Lemma 10.127.13 and its proof we can find a system Rλ → Sλ of local
ring maps together with maps of Sλ-modules uλ : Mλ → Nλ satisfying the conclu-
sions (1) – (6) for both N and M of that lemma and such that the colimit of the
maps uλ is u. By Lemma 10.128.3 we may assume that Nλ is flat over Rλ for all
sufficiently large λ. Denote mλ ⊂ Rλ the maximal ideal and κλ = Rλ/mλ, resp.
κ = R/m the residue fields.
Consider the map

Ψλ : Mλ/mλMλ ⊗κλ κ −→M/mM.

Since Sλ/mλSλ is essentially of finite type over the field κλ we see that the tensor
product Sλ/mλSλ⊗κλ κ is essentially of finite type over κ. Hence it is a Noetherian
ring and we conclude the kernel of Ψλ is finitely generated. Since M/mM is the
colimit of the system Mλ/mλMλ and κ is the colimit of the fields κλ there exists a
λ′ > λ such that the kernel of Ψλ is generated by the kernel of

Ψλ,λ′ : Mλ/mλMλ ⊗κλ κλ′ −→Mλ′/mλ′Mλ′ .

By construction there exists a multiplicative subset W ⊂ Sλ ⊗Rλ Rλ′ such that
Sλ′ = W−1(Sλ ⊗Rλ Rλ′) and

W−1(Mλ/mλMλ ⊗κλ κλ′) = Mλ′/mλ′Mλ′ .

Now suppose that x is an element of the kernel of
Ψλ′ : Mλ′/mλ′Mλ′ ⊗κλ′ κ −→M/mM.

Then for some w ∈W we have wx ∈Mλ/mλMλ ⊗ κ. Hence wx ∈ Ker(Ψλ). Hence
wx is a linear combination of elements in the kernel of Ψλ,λ′ . Hence wx = 0 in
Mλ′/mλ′Mλ′ ⊗κλ′ κ, hence x = 0 because w is invertible in Sλ′ . We conclude that
the kernel of Ψλ′ is zero for all sufficiently large λ′!
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By the result of the preceding paragraph we may assume that the kernel of Ψλ is
zero for all λ sufficiently large, which implies that the map Mλ/mλMλ → M/mM
is injective. Combined with u being injective this formally implies that also uλ :
Mλ/mλMλ → Nλ/mλNλ is injective. By Lemma 10.99.1 we conclude that (for all
sufficiently large λ) the map uλ is injective and that Nλ/uλ(Mλ) is flat over Rλ.
The lemma follows. □

Lemma 10.128.5.046Z Suppose that R→ S is a local ring homomorphism of local rings.
Denote m the maximal ideal of R. Suppose

(1) S is essentially of finite presentation over R,
(2) S is flat over R, and
(3) f ∈ S is a nonzerodivisor in S/mS.

Then S/fS is flat over R, and f is a nonzerodivisor in S.

Proof. Follows directly from Lemma 10.128.4. □

Lemma 10.128.6.0470 Suppose that R→ S is a local ring homomorphism of local rings.
Denote m the maximal ideal of R. Suppose

(1) R→ S is essentially of finite presentation,
(2) R→ S is flat, and
(3) f1, . . . , fc is a sequence of elements of S such that the images f1, . . . , f c

form a regular sequence in S/mS.
Then f1, . . . , fc is a regular sequence in S and each of the quotients S/(f1, . . . , fi)
is flat over R.

Proof. Induction and Lemma 10.128.5. □

Here is the version of the local criterion of flatness for the case of local ring maps
which are locally of finite presentation.

Lemma 10.128.7.0471 Let R → S be a local homomorphism of local rings. Let I ̸= R
be an ideal in R. Let M be an S-module. Assume

(1) S is essentially of finite presentation over R,
(2) M is of finite presentation over S,
(3) TorR1 (M,R/I) = 0, and
(4) M/IM is flat over R/I.

Then M is flat over R.

Proof. Let Λ, Rλ → Sλ, Mλ be as in Lemma 10.127.13. Denote Iλ ⊂ Rλ the inverse
image of I. In this case the system R/I → S/IS, M/IM , Rλ → Sλ/IλSλ, and
Mλ/IλMλ satisfies the conclusions of Lemma 10.127.13 as well. Hence by Lemma
10.128.3 we may assume (after shrinking the index set Λ) that Mλ/IλMλ is flat for
all λ. Pick some λ and consider

TorRλ1 (Mλ, Rλ/Iλ) = Ker(Iλ ⊗Rλ Mλ →Mλ).

See Remark 10.75.9. The right hand side shows that this is a finitely generated
Sλ-module (because Sλ is Noetherian and the modules in question are finite).
Let ξ1, . . . , ξn be generators. Because TorR1 (M,R/I) = 0 and since ⊗ commutes
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with colimits we see there exists a λ′ ≥ λ such that each ξi maps to zero in
TorRλ′

1 (Mλ′ , Rλ′/Iλ′). The composition of the maps

Rλ′ ⊗Rλ TorRλ1 (Mλ, Rλ/Iλ)

surjective by Lemma 10.99.12
��

TorRλ1 (Mλ, Rλ′/IλRλ′)

surjective up to localization by Lemma 10.99.13
��

TorRλ′
1 (Mλ′ , Rλ′/IλRλ′)

surjective by Lemma 10.99.12
��

TorRλ′
1 (Mλ′ , Rλ′/Iλ′).

is surjective up to a localization by the reasons indicated. The localization is
necessary since Mλ′ is not equal to Mλ⊗Rλ Rλ′ . Namely, it is equal to Mλ⊗Sλ Sλ′

and Sλ′ is the localization of Sλ⊗Rλ Rλ′ whence the statement up to a localization
(or tensoring with Sλ′). Note that Lemma 10.99.12 applies to the first and third
arrows because Mλ/IλMλ is flat over Rλ/Iλ and because Mλ′/IλMλ′ is flat over
Rλ′/IλRλ′ as it is a base change of the flat module Mλ/IλMλ. The composition
maps the generators ξi to zero as we explained above. We finally conclude that
TorRλ′

1 (Mλ′ , Rλ′/Iλ′) is zero. This implies that Mλ′ is flat over Rλ′ by Lemma
10.99.10. □

Please compare the lemma below to Lemma 10.99.15 (the case of Noetherian local
rings) and Lemma 10.101.8 (the case of a nilpotent ideal in the base).

Lemma 10.128.8 (Critère de platitude par fibres).00R7 Let R, S, S′ be local rings and
let R→ S → S′ be local ring homomorphisms. Let M be an S′-module. Let m ⊂ R
be the maximal ideal. Assume

(1) The ring maps R→ S and R→ S′ are essentially of finite presentation.
(2) The module M is of finite presentation over S′.
(3) The module M is not zero.
(4) The module M/mM is a flat S/mS-module.
(5) The module M is a flat R-module.

Then S is flat over R and M is a flat S-module.

Proof. As in the proof of Lemma 10.127.11 we may first write R = colimRλ as a
directed colimit of local Z-algebras which are essentially of finite type. Denote pλ
the maximal ideal of Rλ. Next, we may assume that for some λ1 ∈ Λ there exist
fj,λ1 ∈ Rλ1 [x1, . . . , xn] such that

S = colimλ≥λ1 Sλ, with Sλ = (Rλ[x1, . . . , xn]/(f1,λ, . . . , fu,λ))qλ
For some λ2 ∈ Λ, λ2 ≥ λ1 there exist gj,λ2 ∈ Rλ2 [x1, . . . , xn, y1, . . . , ym] with images
gj,λ2 ∈ Sλ2 [y1, . . . , ym] such that

S′ = colimλ≥λ2 S
′
λ, with S′

λ = (Sλ[y1, . . . , ym]/(g1,λ, . . . , gv,λ))q′
λ

Note that this also implies that
S′
λ = (Rλ[x1, . . . , xn, y1, . . . , ym]/(g1,λ, . . . , gv,λ))q′

λ
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Choose a presentation
(S′)⊕s → (S′)⊕t →M → 0

of M over S′. Let A ∈ Mat(t× s, S′) be the matrix of the presentation. For some
λ3 ∈ Λ, λ3 ≥ λ2 we can find a matrix Aλ3 ∈ Mat(t× s, Sλ3) which maps to A. For
all λ ≥ λ3 we let Mλ = Coker((S′

λ)⊕s Aλ−−→ (S′
λ)⊕t).

With these choices, we have for each λ3 ≤ λ ≤ µ that Sλ ⊗Rλ Rµ → Sµ is a
localization, S′

λ⊗Sλ Sµ → S′
µ is a localization, and the map Mλ⊗S′

λ
S′
µ →Mµ is an

isomorphism. This also implies that S′
λ⊗Rλ Rµ → S′

µ is a localization. Thus, since
M is flat over R we see by Lemma 10.128.3 that for all λ big enough the module
Mλ is flat over Rλ. Moreover, note that m = colim pλ, S/mS = colimSλ/pλSλ,
S′/mS′ = colimS′

λ/pλS
′
λ, and M/mM = colimMλ/pλMλ. Also, for each λ3 ≤ λ ≤

µ we see (from the properties listed above) that

S′
λ/pλS

′
λ ⊗Sλ/pλSλ Sµ/pµSµ −→ S′

µ/pµS
′
µ

is a localization, and the map

Mλ/pλMλ ⊗S′
λ
/pλS′

λ
S′
µ/pµS

′
µ −→Mµ/pµMµ

is an isomorphism. Hence the system (Sλ/pλSλ → S′
λ/pλS

′
λ,Mλ/pλMλ) is a system

as in Lemma 10.127.13 as well. We may apply Lemma 10.128.3 again because
M/mM is assumed flat over S/mS and we see that Mλ/pλMλ is flat over Sλ/pλSλ
for all λ big enough. Thus for λ big enough the data Rλ → Sλ → S′

λ,Mλ satisfies
the hypotheses of Lemma 10.99.15. Pick such a λ. Then S = Sλ ⊗Rλ R is flat over
R, and M = Mλ ⊗Sλ S is flat over S (since the base change of a flat module is
flat). □

The following is an easy consequence of the “critère de platitude par fibres” Lemma
10.128.8. For more results of this kind see More on Flatness, Section 38.1.

Lemma 10.128.9.05UV Let R, S, S′ be local rings and let R → S → S′ be local ring
homomorphisms. Let M be an S′-module. Let m ⊂ R be the maximal ideal.
Assume

(1) R→ S′ is essentially of finite presentation,
(2) R→ S is essentially of finite type,
(3) M is of finite presentation over S′,
(4) M is not zero,
(5) M/mM is a flat S/mS-module, and
(6) M is a flat R-module.

Then S is essentially of finite presentation and flat over R and M is a flat S-module.

Proof. As S is essentially of finite presentation over R we can write S = Cq for some
finite type R-algebra C. Write C = R[x1, . . . , xn]/I. Denote q ⊂ R[x1, . . . , xn]
be the prime ideal corresponding to q. Then we see that S = B/J where B =
R[x1, . . . , xn]q is essentially of finite presentation over R and J = IB. We can find
f1, . . . , fk ∈ J such that the images f i ∈ B/mB generate the image J of J in the
Noetherian ring B/mB. Hence there exist finitely generated ideals J ′ ⊂ J such
that B/J ′ → B/J induces an isomorphism

(B/J ′)⊗R R/m −→ B/J ⊗R R/m = S/mS.

https://stacks.math.columbia.edu/tag/05UV
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For any J ′ as above we see that Lemma 10.128.8 applies to the ring maps

R −→ B/J ′ −→ S′

and the module M . Hence we conclude that B/J ′ is flat over R for any choice J ′

as above. Now, if J ′ ⊂ J ′ ⊂ J are two finitely generated ideals as above, then we
conclude that B/J ′ → B/J ′′ is a surjective map between flat R-algebras which are
essentially of finite presentation which is an isomorphism modulo m. Hence Lemma
10.128.4 implies that B/J ′ = B/J ′′, i.e., J ′ = J ′′. Clearly this means that J is
finitely generated, i.e., S is essentially of finite presentation over R. Thus we may
apply Lemma 10.128.8 to R→ S → S′ and we win. □

Lemma 10.128.10 (Critère de platitude par fibres: locally nilpotent case).0CEL Let

S // S′

R

__ >>

be a commutative diagram in the category of rings. Let I ⊂ R be a locally nilpotent
ideal and M an S′-module. Assume

(1) R→ S is of finite type,
(2) R→ S′ is of finite presentation,
(3) M is a finitely presented S′-module,
(4) M/IM is flat as a S/IS-module, and
(5) M is flat as an R-module.

Then M is a flat S-module and Sq is flat and essentially of finite presentation over
R for every q ⊂ S such that M ⊗S κ(q) is nonzero.

Proof. If M ⊗S κ(q) is nonzero, then S′ ⊗S κ(q) is nonzero and hence there exists
a prime q′ ⊂ S′ lying over q (Lemma 10.17.9). Let p ⊂ R be the image of q in
Spec(R). Then I ⊂ p as I is locally nilpotent hence M/pM is flat over S/pS. Hence
we may apply Lemma 10.128.9 to Rp → Sq → S′

q′ and Mq′ . We conclude that Mq′

is flat over S and Sq is flat and essentially of finite presentation over R. Since q′ was
an arbitrary prime of S′ we also see that M is flat over S (Lemma 10.39.18). □

10.129. Openness of the flat locus

00R8 We use Lemma 10.128.3 to reduce to the Noetherian case. The Noetherian case is
handled using the characterization of exact complexes given in Section 10.102.

Lemma 10.129.1.00R9 Let k be a field. Let S be a finite type k-algebra. Let f1, . . . , fi be
elements of S. Assume that S is Cohen-Macaulay and equidimensional of dimension
d, and that dimV (f1, . . . , fi) ≤ d − i. Then equality holds and f1, . . . , fi forms a
regular sequence in Sq for every prime q of V (f1, . . . , fi).

Proof. If S is Cohen-Macaulay and equidimensional of dimension d, then we have
dim(Sm) = d for all maximal ideals m of S, see Lemma 10.114.7. By Proposition
10.103.4 we see that for all maximal ideals m ∈ V (f1, . . . , fi) the sequence is a
regular sequence in Sm and the local ring Sm/(f1, . . . , fi) is Cohen-Macaulay of
dimension d − i. This actually means that S/(f1, . . . , fi) is Cohen-Macaulay and
equidimensional of dimension d− i. □
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Lemma 10.129.2.00RA Let R → S be a finite type ring map. Let d be an integer such
that all fibres S ⊗R κ(p) are Cohen-Macaulay and equidimensional of dimension d.
Let f1, . . . , fi be elements of S. The set

{q ∈ V (f1, . . . , fi) | f1, . . . , fi are a regular sequence in Sq/pSq where p = R ∩ q}

is open in V (f1, . . . , fi).

Proof. Write S = S/(f1, . . . , fi). Suppose q is an element of the set defined in the
lemma, and p is the corresponding prime of R. We will use relative dimension as
defined in Definition 10.125.1. First, note that d = dimq(S/R) = dim(Sq/pSq) +
trdegκ(p) κ(q) by Lemma 10.116.3. Since f1, . . . , fi form a regular sequence in
the Noetherian local ring Sq/pSq Lemma 10.60.13 tells us that dim(Sq/pSq) =
dim(Sq/pSq)− i. We conclude that dimq(S/R) = dim(Sq/pSq) + trdegκ(p) κ(q) =
d− i by Lemma 10.116.3. By Lemma 10.125.6 we have dimq′(S/R) ≤ d− i for all
q′ ∈ V (f1, . . . , fi) = Spec(S) in a neighbourhood of q. Thus after replacing S by
Sg for some g ∈ S, g ̸∈ q we may assume that the inequality holds for all q′. The
result follows from Lemma 10.129.1. □

Lemma 10.129.3.00RB Let R→ S be a ring map. Consider a finite homological complex
of finite free S-modules:

F• : 0→ Sne
φe−→ Sne−1

φe−1−−−→ . . .
φi+1−−−→ Sni

φi−→ Sni−1
φi−1−−−→ . . .

φ1−→ Sn0

For every prime q of S consider the complex F •,q = F•,q⊗R κ(p) where p is inverse
image of q in R. Assume R is Noetherian and there exists an integer d such that
R → S is finite type, flat with fibres S ⊗R κ(p) Cohen-Macaulay of dimension d.
The set

{q ∈ Spec(S) | F •,q is exact}
is open in Spec(S).

Proof. Let q be an element of the set defined in the lemma. We are going to use
Proposition 10.102.9 to show there exists a g ∈ S, g ̸∈ q such that D(g) is contained
in the set defined in the lemma. In other words, we are going to show that after
replacing S by Sg, the set of the lemma is all of Spec(S). Thus during the proof
we will, finitely often, replace S by such a localization. Recall that Proposition
10.102.9 characterizes exactness of complexes in terms of ranks of the maps φi and
the ideals I(φi), in case the ring is local. We first address the rank condition. Set
ri = ni − ni+1 + . . .+ (−1)e−ine. Note that ri + ri+1 = ni and note that ri is the
expected rank of φi (in the exact case).

By Lemma 10.99.5 we see that if F •,q is exact, then the localization F•,q is exact.
In particular the complex F• becomes exact after localizing by an element g ∈ S,
g ̸∈ q. In this case Proposition 10.102.9 applied to all localizations of S at prime
ideals implies that all (ri + 1) × (ri + 1)-minors of φi are zero. Thus we see that
the rank of φi is at most ri.

Let Ii ⊂ S denote the ideal generated by the ri× ri-minors of the matrix of φi. By
Proposition 10.102.9 the complex F •,q is exact if and only if for every 1 ≤ i ≤ e
we have either (Ii)q = Sq or (Ii)q contains a Sq/pSq-regular sequence of length i.
Namely, by our choice of ri above and by the bound on the ranks of the φi this is
the only way the conditions of Proposition 10.102.9 can be satisfied.
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If (Ii)q = Sq, then after localizing S at some element g ̸∈ q we may assume that
Ii = S. Clearly, this is an open condition.

If (Ii)q ̸= Sq, then we have a sequence f1, . . . , fi ∈ (Ii)q which form a regular
sequence in Sq/pSq. Note that for any prime q′ ⊂ S such that (f1, . . . , fi) ̸⊂ q′ we
have (Ii)q′ = Sq′ . Thus the result follows from Lemma 10.129.2. □

Theorem 10.129.4.00RC Let R be a ring. Let R→ S be a ring map of finite presentation.
Let M be a finitely presented S-module. The set

{q ∈ Spec(S) |Mq is flat over R}

is open in Spec(S).

Proof. Let q ∈ Spec(S) be a prime. Let p ⊂ R be the inverse image of q in R. Note
that Mq is flat over R if and only if it is flat over Rp. Let us assume that Mq is
flat over R. We claim that there exists a g ∈ S, g ̸∈ q such that Mg is flat over R.

We first reduce to the case where R and S are of finite type over Z. Choose a
directed set Λ and a system (Rλ → Sλ,Mλ) as in Lemma 10.127.18. Set pλ equal
to the inverse image of p in Rλ. Set qλ equal to the inverse image of q in Sλ. Then
the system

((Rλ)pλ , (Sλ)qλ , (Mλ)qλ)

is a system as in Lemma 10.127.13. Hence by Lemma 10.128.3 we see that for
some λ the module Mλ is flat over Rλ at the prime qλ. Suppose we can prove our
claim for the system (Rλ → Sλ,Mλ, qλ). In other words, suppose that we can find
a g ∈ Sλ, g ̸∈ qλ such that (Mλ)g is flat over Rλ. By Lemma 10.127.18 we have
M = Mλ ⊗Rλ R and hence also Mg = (Mλ)g ⊗Rλ R. Thus by Lemma 10.39.7 we
deduce the claim for the system (R→ S,M, q).

At this point we may assume that R and S are of finite type over Z. We may write
S as a quotient of a polynomial ring R[x1, . . . , xn]. Of course, we may replace S by
R[x1, . . . , xn] and assume that S is a polynomial ring over R. In particular we see
that R→ S is flat and all fibres rings S ⊗R κ(p) have global dimension n.

Choose a resolution F• of M over S with each Fi finite free, see Lemma 10.71.1.
Let Kn = Ker(Fn−1 → Fn−2). Note that (Kn)q is flat over R, since each Fi is flat
over R and by assumption on M , see Lemma 10.39.13. In addition, the sequence

0→ Kn/pKn → Fn−1/pFn−1 → . . .→ F0/pF0 →M/pM → 0

is exact upon localizing at q, because of vanishing of TorRp

i (κ(p),Mq). Since the
global dimension of Sq/pSq is n we conclude that Kn/pKn localized at q is a finite
free module over Sq/pSq. By Lemma 10.99.4 (Kn)q is free over Sq. In particular,
there exists a g ∈ S, g ̸∈ q such that (Kn)g is finite free over Sg.

By Lemma 10.129.3 there exists a further localization Sg such that the complex

0→ Kn → Fn−1 → . . .→ F0

is exact on all fibres of R → S. By Lemma 10.99.5 this implies that the cokernel
of F1 → F0 is flat. This proves the theorem in the Noetherian case. □
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10.130. Openness of Cohen-Macaulay loci

00RD In this section we characterize the Cohen-Macaulay property of finite type algebras
in terms of flatness. We then use this to prove the set of points where such an
algebra is Cohen-Macaulay is open.

Lemma 10.130.1.00RE Let S be a finite type algebra over a field k. Let φ : k[y1, . . . , yd]→
S be a quasi-finite ring map. As subsets of Spec(S) we have

{q | Sq flat over k[y1, . . . , yd]} = {q | Sq CM and dimq(S/k) = d}
For notation see Definition 10.125.1.

Proof. Let q ⊂ S be a prime. Denote p = k[y1, . . . , yd] ∩ q. Note that always
dim(Sq) ≤ dim(k[y1, . . . , yd]p) by Lemma 10.125.4 for example. Moreover, the field
extension κ(q)/κ(p) is finite and hence trdegk(κ(p)) = trdegk(κ(q)).
Let q be an element of the left hand side. Then Lemma 10.112.9 applies and we
conclude that Sq is Cohen-Macaulay and dim(Sq) = dim(k[y1, . . . , yd]p). Combined
with the equality of transcendence degrees above and Lemma 10.116.3 this implies
that dimq(S/k) = d. Hence q is an element of the right hand side.
Let q be an element of the right hand side. By the equality of transcendence degrees
above, the assumption that dimq(S/k) = d and Lemma 10.116.3 we conclude that
dim(Sq) = dim(k[y1, . . . , yd]p). Hence Lemma 10.128.1 applies and we see that q is
an element of the left hand side. □

Lemma 10.130.2.00RF Let S be a finite type algebra over a field k. The set of primes
q such that Sq is Cohen-Macaulay is open in S.

This lemma is a special case of Lemma 10.130.4 below, so you can skip straight to
the proof of that lemma if you like.

Proof. Let q ⊂ S be a prime such that Sq is Cohen-Macaulay. We have to show
there exists a g ∈ S, g ̸∈ q such that the ring Sg is Cohen-Macaulay. For any
g ∈ S, g ̸∈ q we may replace S by Sg and q by qSg. Combining this with Lemmas
10.115.5 and 10.116.3 we may assume that there exists a finite injective ring map
k[y1, . . . , yd] → S with d = dim(Sq) + trdegk(κ(q)). Set p = k[y1, . . . , yd] ∩ q. By
construction we see that q is an element of the right hand side of the displayed
equality of Lemma 10.130.1. Hence it is also an element of the left hand side.
By Theorem 10.129.4 we see that for some g ∈ S, g ̸∈ q the ring Sg is flat over
k[y1, . . . , yd]. Hence by the equality of Lemma 10.130.1 again we conclude that all
local rings of Sg are Cohen-Macaulay as desired. □

Lemma 10.130.3.00RG Let k be a field. Let S be a finite type k algebra. The set of
Cohen-Macaulay primes forms a dense open U ⊂ Spec(S).

Proof. The set is open by Lemma 10.130.2. It contains all minimal primes q ⊂ S
since the local ring at a minimal prime Sq has dimension zero and hence is Cohen-
Macaulay. □

Lemma 10.130.4.00RH Let R be a ring. Let R → S be of finite presentation and flat.
For any d ≥ 0 the set{

q ∈ Spec(S) such that setting p = R ∩ q the fibre ring
Sq/pSq is Cohen-Macaulay and dimq(S/R) = d

}
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is open in Spec(S).

Proof. Let q be an element of the set indicated, with p the corresponding prime of
R. We have to find a g ∈ S, g ̸∈ q such that all fibre rings of R → Sg are Cohen-
Macaulay. During the course of the proof we may (finitely many times) replace S
by Sg for a g ∈ S, g ̸∈ q. Thus by Lemma 10.125.2 we may assume there is a quasi-
finite ring map R[t1, . . . , td] → S with d = dimq(S/R). Let q′ = R[t1, . . . , td] ∩ q.
By Lemma 10.130.1 we see that the ring map

R[t1, . . . , td]q′/pR[t1, . . . , td]q′ −→ Sq/pSq

is flat. Hence by the critère de platitude par fibres Lemma 10.128.8 we see that
R[t1, . . . , td]q′ → Sq is flat. Hence by Theorem 10.129.4 we see that for some g ∈ S,
g ̸∈ q the ring map R[t1, . . . , td] → Sg is flat. Replacing S by Sg we see that for
every prime r ⊂ S, setting r′ = R[t1, . . . , td] ∩ r and p′ = R ∩ r the local ring map
R[t1, . . . , td]r′ → Sr is flat. Hence also the base change

R[t1, . . . , td]r′/p′R[t1, . . . , td]r′ −→ Sr/p
′Sr

is flat. Hence by Lemma 10.130.1 applied with k = κ(p′) we see r is in the set of
the lemma as desired. □

Lemma 10.130.5.00RI Let R be a ring. Let R→ S be flat of finite presentation. The set
of primes q such that the fibre ring Sq ⊗R κ(p), with p = R ∩ q is Cohen-Macaulay
is open and dense in every fibre of Spec(S)→ Spec(R).

Proof. The set, call it W , is open by Lemma 10.130.4. It is dense in the fibres
because the intersection of W with a fibre is the corresponding set of the fibre to
which Lemma 10.130.3 applies. □

Lemma 10.130.6.00RJ Let k be a field. Let S be a finite type k-algebra. Let K/k be a
field extension, and set SK = K ⊗k S. Let q ⊂ S be a prime of S. Let qK ⊂ SK
be a prime of SK lying over q. Then Sq is Cohen-Macaulay if and only if (SK)qK
is Cohen-Macaulay.

Proof. During the course of the proof we may (finitely many times) replace S by
Sg for any g ∈ S, g ̸∈ q. Hence using Lemma 10.115.5 we may assume that
dim(S) = dimq(S/k) =: d and find a finite injective map k[x1, . . . , xd] → S. Note
that this also induces a finite injective map K[x1, . . . , xd]→ SK by base change. By
Lemma 10.116.6 we have dimqK (SK/K) = d. Set p = k[x1, . . . , xd] ∩ q and pK =
K[x1, . . . , xd] ∩ qK . Consider the following commutative diagram of Noetherian
local rings

Sq
// (SK)qK

k[x1, . . . , xd]p //

OO

K[x1, . . . , xd]pK

OO

By Lemma 10.130.1 we have to show that the left vertical arrow is flat if and only
if the right vertical arrow is flat. Because the bottom arrow is flat this equivalence
holds by Lemma 10.100.1. □

Lemma 10.130.7.00RK Let R be a ring. Let R→ S be of finite type. Let R→ R′ be any
ring map. Set S′ = R′ ⊗R S. Denote f : Spec(S′) → Spec(S) the map associated
to the ring map S → S′. Set W equal to the set of primes q such that the fibre
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ring Sq ⊗R κ(p), p = R ∩ q is Cohen-Macaulay, and let W ′ denote the analogue for
S′/R′. Then W ′ = f−1(W ).

Proof. Trivial from Lemma 10.130.6 and the definitions. □

Lemma 10.130.8.00RL Let R be a ring. Let R → S be a ring map which is (a)
flat, (b) of finite presentation, (c) has Cohen-Macaulay fibres. Then we can write
S = S0× . . .×Sn as a product of R-algebras Sd such that each Sd satisfies (a), (b),
(c) and has all fibres equidimensional of dimension d.

Proof. For each integer d denote Wd ⊂ Spec(S) the set defined in Lemma 10.130.4.
Clearly we have Spec(S) =

∐
Wd, and each Wd is open by the lemma we just

quoted. Hence the result follows from Lemma 10.24.3. □

10.131. Differentials

00RM In this section we define the module of differentials of a ring map.

Definition 10.131.1.00RN Let φ : R → S be a ring map and let M be an S-module. A
derivation, or more precisely an R-derivation into M is a map D : S → M which
is additive, annihilates elements of φ(R), and satisfies the Leibniz rule: D(ab) =
aD(b) + bD(a).

Note that D(ra) = rD(a) if r ∈ R and a ∈ S. An equivalent definition is that
an R-derivation is an R-linear map D : S → M which satisfies the Leibniz rule.
The set of all R-derivations forms an S-module: Given two R-derivations D,D′

the sum D + D′ : S → M , a 7→ D(a) + D′(a) is an R-derivation, and given an
R-derivation D and an element c ∈ S the scalar multiple cD : S →M , a 7→ cD(a)
is an R-derivation. We denote this S-module

DerR(S,M).

Also, if α : M → N is an S-module map, then the composition α ◦ D is an R-
derivation into N . In this way the assignment M 7→ DerR(S,M) is a covariant
functor.

Consider the following map of free S-modules⊕
(a,b)∈S2

S[(a, b)]⊕
⊕

(f,g)∈S2
S[(f, g)]⊕

⊕
r∈R

S[r] −→
⊕

a∈S
S[a]

defined by the rules

[(a, b)] 7−→ [a+ b]− [a]− [b], [(f, g)] 7−→ [fg]− f [g]− g[f ], [r] 7−→ [φ(r)]

with obvious notation. Let ΩS/R be the cokernel of this map. There is a map
d : S → ΩS/R which maps a to the class da of [a] in the cokernel. This is an
R-derivation by the relations imposed on ΩS/R, in other words

d(a+ b) = da+ db, d(fg) = fdg + gdf, dφ(r) = 0

where a, b, f, g ∈ S and r ∈ R.

Definition 10.131.2.07BK The pair (ΩS/R,d) is called the module of Kähler differentials
or the module of differentials of S over R.

https://stacks.math.columbia.edu/tag/00RL
https://stacks.math.columbia.edu/tag/00RN
https://stacks.math.columbia.edu/tag/07BK
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Lemma 10.131.3.00RO The module of differentials of S over R has the following universal
property. The map

HomS(ΩS/R,M) −→ DerR(S,M), α 7−→ α ◦ d

is an isomorphism of functors.

Proof. By definition an R-derivation is a rule which associates to each a ∈ S an
element D(a) ∈ M . Thus D gives rise to a map [D] :

⊕
S[a] → M . However, the

conditions of being an R-derivation exactly mean that [D] annihilates the image of
the map in the displayed presentation of ΩS/R above. □

Lemma 10.131.4.00RP Suppose that R→ S is surjective. Then ΩS/R = 0.

Proof. You can see this either because all R-derivations clearly have to be zero, or
because the map in the presentation of ΩS/R is surjective. □

Suppose that

(10.131.4.1)00RQ
S

φ
// S′

R
ψ //

α

OO

R′

β

OO

is a commutative diagram of rings. In this case there is a natural map of modules
of differentials fitting into the commutative diagram

ΩS/R // ΩS′/R′

S

d

OO

φ // S′

d

OO

To construct the map just use the obvious map between the presentations for ΩS/R
and ΩS′/R′ . Namely,

(10.131.4.2)0H2F

⊕
S′[(a′, b′)]⊕

⊕
S′[(f ′, g′)]⊕

⊕
S′[r′] //⊕S′[a′]

⊕
S[(a, b)]⊕

⊕
S[(f, g)]⊕

⊕
S[r] //

[(a, b)] 7→ [(φ(a), φ(b))]
[(f, g)] 7→ [(φ(f), φ(g))]

[r] 7→ [ψ(r)]

OO

⊕
S[a]

[a] 7→[φ(a)]

OO

The result is simply that fdg ∈ ΩS/R is mapped to φ(f)dφ(g).

Lemma 10.131.5.031G Let I be a directed set. Let (Ri → Si, φii′) be a system of ring
maps over I, see Categories, Section 4.21. Then we have

ΩS/R = colimi ΩSi/Ri .

where R→ S = colim(Ri → Si).

Proof. This is clear from the defining presentation of ΩS/R and the functoriality of
this described above. □

https://stacks.math.columbia.edu/tag/00RO
https://stacks.math.columbia.edu/tag/00RP
https://stacks.math.columbia.edu/tag/031G
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Lemma 10.131.6.00RR In diagram (10.131.4.1), suppose that S → S′ is surjective with
kernel I ⊂ S. Then ΩS/R → ΩS′/R′ is surjective with kernel generated as an S-
module by the elements da, where a ∈ S is such that φ(a) ∈ β(R′). (This includes
in particular the elements d(i), i ∈ I.)

First proof. Consider the map of presentations (10.131.4.2). Clearly the right ver-
tical map of free modules is surjective. Thus the map is surjective. Suppose that
some element η of ΩS/R maps to zero in ΩS′/R′ . Write η as the image of

∑
si[ai]

for some si, ai ∈ S. Then we see that
∑
φ(si)[φ(ai)] is the image of an element

θ =
∑

s′
j [a′

j , b
′
j ] +

∑
s′
k[f ′

k, g
′
k] +

∑
s′
l[r′
l]

in the upper left corner of the diagram. Since φ is surjective, the terms s′
j [a′

j , b
′
j ] and

s′
k[f ′

k, g
′
k] are in the image of elements in the lower right corner. Thus, modifying η

and θ by substracting the images of these elements, we may assume θ =
∑
s′
l[r′
l].

In other words, we see
∑
φ(si)[φ(ai)] is of the form

∑
s′
l[β(r′

l)]. Pick a′ ∈ S′.
Next, we may assume that we have some a′ ∈ S′ such that a′ = φ(ai) for all i and
a′ = β(r′

l) for all l. This is clear from the direct sum decomposition of the upper
right corner of the diagram. Choose a ∈ S with φ(a) = a′. Then we can write
ai = a + xi for some xi ∈ I. Thus we may assume that all ai are equal to a by
using the relations that are allowed. But then we may assume our element is of the
form s[a]. We still know that φ(s)[a′] =

∑
φ(s′

l)[β(r′
l)]. Hence either φ(s) = 0 and

we’re done, or a′ = φ(a) is in the image of β and we’re done as well. □

Second proof. We will use the universal property of modules of differentials given
in Lemma 10.131.3 without further mention.

In (10.131.4.1) let R′′ = S ×S′ R′. Then we have following diagram:

S // S // S′

R //

OO

R′′ //

OO

R′

OO

Let M be an S-module. It follows immediately from the definitions that an R-
derivation D : S →M is an R′′-derivation if and only if it annihilates the elements
in the image of R′′ → S. The universal property translates this into the statement
that the natural map ΩS/R → ΩS/R′′ is surjective with kernel generated as an
S-module by the image of R′′.

From the previous paragraph we see that it suffices to show that ΩS/R → ΩS′/R′

is an isomorphism when S → S′ is surjective and R = S ×S′ R′. Let M ′ be an
S′-module. Observe that any R′-derivation D′ : S′ → M ′ gives an R-derivation
by precomposing with S → S′. Conversely, suppose M is an S-module and D :
S → M is an R-derivation. If i ∈ I, then there exist an a ∈ R with α(a) = i
(as R = S ×S′ R′). It follows that D(i) = 0 and hence 0 = D(is) = iD(s) for all
s ∈ S. Thus the image of D is contained in the submodule M ′ ⊂ M of elements
annihilated by I and moreover the induced map S → M ′ factors through an R′-
derivation S′ →M ′. It is an exercise to use the universal property to see that this
means ΩS/R → ΩS′/R′ is an isomorphism; details omitted. □

https://stacks.math.columbia.edu/tag/00RR
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Lemma 10.131.7.00RS Let A→ B → C be ring maps. Then there is a canonical exact
sequence

C ⊗B ΩB/A → ΩC/A → ΩC/B → 0
of C-modules.
Proof. We get a diagram (10.131.4.1) by putting R = A, S = C, R′ = B, and
S′ = C. By Lemma 10.131.6 the map ΩC/A → ΩC/B is surjective, and the kernel
is generated by the elements d(c), where c ∈ C is in the image of B → C. The
lemma follows. □

Lemma 10.131.8.00RT Let φ : A→ B be a ring map.
(1) If S ⊂ A is a multiplicative subset mapping to invertible elements of B,

then ΩB/A = ΩB/S−1A.
(2) If S ⊂ B is a multiplicative subset then S−1ΩB/A = ΩS−1B/A.

Proof. To show the equality of (1) it is enough to show that any A-derivation
D : B → M annihilates the elements φ(s)−1. This is clear from the Leibniz
rule applied to 1 = φ(s)φ(s)−1. To show (2) note that there is an obvious map
S−1ΩB/A → ΩS−1B/A. To show it is an isomorphism it is enough to show that
there is a A-derivation d′ of S−1B into S−1ΩB/A. To define it we simply set
d′(b/s) = (1/s)db− (1/s2)bds. Details omitted. □

Lemma 10.131.9.00RU In diagram (10.131.4.1), suppose that S → S′ is surjective with
kernel I ⊂ S, and assume that R′ = R. Then there is a canonical exact sequence
of S′-modules

I/I2 −→ ΩS/R ⊗S S′ −→ ΩS′/R −→ 0
The leftmost map is characterized by the rule that f ∈ I maps to df ⊗ 1.
Proof. The middle term is ΩS/R ⊗S S/I. For f ∈ I denote f the image of f in
I/I2. To show that the map f 7→ df ⊗ 1 is well defined we just have to check that
df1f2 ⊗ 1 = 0 if f1, f2 ∈ I. And this is clear from the Leibniz rule df1f2 ⊗ 1 =
(f1df2 + f2df1) ⊗ 1 = df2 ⊗ f1 + df1 ⊗ f2 = 0. A similar computation show this
map is S′ = S/I-linear.
The map ΩS/R ⊗S S′ → ΩS′/R is the canonical S′-linear map associated to the
S-linear map ΩS/R → ΩS′/R. It is surjective because ΩS/R → ΩS′/R is surjective
by Lemma 10.131.6.
The composite of the two maps is zero because df maps to zero in ΩS′/R for f ∈ I.
Note that exactness just says that the kernel of ΩS/R → ΩS′/R is generated as an S-
submodule by the submodule IΩS/R together with the elements df , with f ∈ I. We
know by Lemma 10.131.6 that this kernel is generated by the elements d(a) where
φ(a) = β(r) for some r ∈ R. But then a = α(r) + a− α(r), so d(a) = d(a− α(r)).
And a − α(r) ∈ I since φ(a − α(r)) = φ(a) − φ(α(r)) = β(r) − β(r) = 0. We
conclude the elements df with f ∈ I already generate the kernel as an S-module,
as desired. □

Lemma 10.131.10.02HP In diagram (10.131.4.1), suppose that S → S′ is surjective with
kernel I ⊂ S, and assume that R′ = R. Moreover, assume that there exists an
R-algebra map S′ → S which is a right inverse to S → S′. Then the exact sequence
of S′-modules of Lemma 10.131.9 turns into a short exact sequence

0 −→ I/I2 −→ ΩS/R ⊗S S′ −→ ΩS′/R −→ 0

https://stacks.math.columbia.edu/tag/00RS
https://stacks.math.columbia.edu/tag/00RT
https://stacks.math.columbia.edu/tag/00RU
https://stacks.math.columbia.edu/tag/02HP
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which is even a split short exact sequence.

Proof. Let β : S′ → S be the right inverse to the surjection α : S → S′, so
S = I ⊕ β(S′). Clearly we can use β : ΩS′/R → ΩS/R, to get a right inverse to the
map ΩS/R ⊗S S′ → ΩS′/R. On the other hand, consider the map

D : S −→ I/I2, x 7−→ x− β(α(x))
It is easy to show that D is an R-derivation (omitted). Moreover xD(s) = 0 if x ∈
I, s ∈ S. Hence, by the universal property D induces a map τ : ΩS/R⊗S S′ → I/I2.
We omit the verification that it is a left inverse to d : I/I2 → ΩS/R ⊗S S′. Hence
we win. □

Lemma 10.131.11.02HQ Let R → S be a ring map. Let I ⊂ S be an ideal. Let n ≥ 1
be an integer. Set S′ = S/In+1. The map ΩS/R → ΩS′/R induces an isomorphism

ΩS/R ⊗S S/In −→ ΩS′/R ⊗S′ S/In.

Proof. This follows from Lemma 10.131.9 and the fact that d(In+1) ⊂ InΩS/R by
the Leibniz rule for d. □

Lemma 10.131.12.00RV Suppose that we have ring maps R → R′ and R → S. Set
S′ = S ⊗R R′, so that we obtain a diagram (10.131.4.1). Then the canonical map
defined above induces an isomorphism ΩS/R ⊗R R′ = ΩS′/R′ .

Proof. Let d′ : S′ = S ⊗R R′ → ΩS/R ⊗R R′ denote the map d′(
∑
ai ⊗ xi) =∑

d(ai)⊗ xi. It exists because the map S ×R′ → ΩS/R ⊗R R′, (a, x) 7→ da⊗R x is
R-bilinear. This is an R′-derivation, as can be verified by a simple computation. We
will show that (ΩS/R ⊗R R′,d′) satisfies the universal property. Let D : S′ → M ′

be an R′ derivation into an S′-module. The composition S → S′ → M ′ is an
R-derivation, hence we get an S-linear map φD : ΩS/R →M ′. We may tensor this
with R′ and get the map φ′

D : ΩS/R ⊗R R′ →M ′, φ′
D(η ⊗ x) = xφD(η). It is clear

that D = φ′
D ◦ d′. □

The multiplication map S ⊗R S → S is the R-algebra map which maps a⊗ b to ab
in S. It is also an S-algebra map, if we think of S ⊗R S as an S-algebra via either
of the maps S → S ⊗R S.

Lemma 10.131.13.00RW Let R → S be a ring map. Let J = Ker(S ⊗R S → S) be the
kernel of the multiplication map. There is a canonical isomorphism of S-modules
ΩS/R → J/J2, adb 7→ a⊗ b− ab⊗ 1.

First proof. Apply Lemma 10.131.10 to the commutative diagram
S ⊗R S // S

S //

OO

S

OO

where the left vertical arrow is a 7→ a⊗ 1. We get the exact sequence 0→ J/J2 →
ΩS⊗RS/S ⊗S⊗RS S → ΩS/S → 0. By Lemma 10.131.4 the term ΩS/S is 0, and
we obtain an isomorphism between the other two terms. We have ΩS⊗RS/S =
ΩS/R⊗S (S⊗RS) by Lemma 10.131.12 as S → S⊗RS is the base change of R→ S
and hence

ΩS⊗RS/S ⊗S⊗RS S = ΩS/R ⊗S (S ⊗R S)⊗S⊗RS S = ΩS/R

https://stacks.math.columbia.edu/tag/02HQ
https://stacks.math.columbia.edu/tag/00RV
https://stacks.math.columbia.edu/tag/00RW
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We omit the verification that the map is given by the rule of the lemma. □

Second proof. First we show that the rule adb 7→ a⊗ b− ab⊗ 1 is well defined. In
order to do this we have to show that dr and adb+ bda− d(ab) map to zero. The
first because r ⊗ 1 − 1 ⊗ r = 0 by definition of the tensor product. The second
because

(a⊗ b− ab⊗ 1) + (b⊗ a− ba⊗ 1)− (1⊗ ab− ab⊗ 1) = (a⊗ 1− 1⊗ a)(1⊗ b− b⊗ 1)

is in J2.

We construct a map in the other direction. We may think of S → S⊗RS, a 7→ a⊗1
as the base change of R → S. Hence we have ΩS⊗RS/S = ΩS/R ⊗S (S ⊗R S), by
Lemma 10.131.12. At this point the sequence of Lemma 10.131.9 gives a map

J/J2 → ΩS⊗RS/S ⊗S⊗RS S = (ΩS/R ⊗S (S ⊗R S))⊗S⊗RS S = ΩS/R.

We leave it to the reader to see it is the inverse of the map above. □

Lemma 10.131.14.00RX If S = R[x1, . . . , xn], then ΩS/R is a finite free S-module with
basis dx1, . . . ,dxn.

Proof. We first show that dx1, . . . ,dxn generate ΩS/R as an S-module. To prove
this we show that dg can be expressed as a sum

∑
gidxi for any g ∈ R[x1, . . . , xn].

We do this by induction on the (total) degree of g. It is clear if the degree of g is 0,
because then dg = 0. If the degree of g is > 0, then we may write g as c+

∑
gixi with

c ∈ R and deg(gi) < deg(g). By the Leibniz rule we have dg =
∑
gidxi +

∑
xidgi,

and hence we win by induction.

Consider the R-derivation ∂/∂xi : R[x1, . . . , xn] → R[x1, . . . , xn]. (We leave it to
the reader to define this; the defining property being that ∂/∂xi(xj) = δij .) By the
universal property this corresponds to an S-module map li : ΩS/R → R[x1, . . . , xn]
which maps dxi to 1 and dxj to 0 for j ̸= i. Thus it is clear that there are no
S-linear relations among the elements dx1, . . . ,dxn. □

Lemma 10.131.15.00RY Suppose R→ S is of finite presentation. Then ΩS/R is a finitely
presented S-module.

Proof. Write S = R[x1, . . . , xn]/(f1, . . . , fm). Write I = (f1, . . . , fm). According
to Lemma 10.131.9 there is an exact sequence of S-modules

I/I2 → ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S → ΩS/R → 0

The result follows from the fact that I/I2 is a finite S-module (generated by the
images of the fi), and that the middle term is finite free by Lemma 10.131.14. □

Lemma 10.131.16.00RZ Suppose R→ S is of finite type. Then ΩS/R is finitely generated
S-module.

Proof. This is very similar to, but easier than the proof of Lemma 10.131.15. □

https://stacks.math.columbia.edu/tag/00RX
https://stacks.math.columbia.edu/tag/00RY
https://stacks.math.columbia.edu/tag/00RZ
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10.132. The de Rham complex

0FKF Let A→ B be a ring map. Denote d : B → ΩB/A the module of differentials with
its universal A-derivation constructed in Section 10.131. Let ΩiB/A = ∧iB(ΩB/A)
for i ≥ 0 be the ith exterior power as in Section 10.13. The de Rham complex of
B over A is the complex

Ω0
B/A → Ω1

B/A → Ω2
B/A → . . .

with A-linear differentials constructed and described below.

The map d : Ω0
B/A → Ω1

B/A is the universal derivation d : B → ΩB/A. Observe
that this is indeed A-linear.

For p ≥ 1 we claim there is a unique A-linear map d : ΩpB/A → Ωp+1
B/A such that

(10.132.0.1)0FKG d (b0db1 ∧ . . . ∧ dbp) = db0 ∧ db1 ∧ . . . ∧ dbp
Recall that ΩB/A is generated as a B-module by the elements db. Thus ΩpB/A is
generated as an A-module by the element b0db1 ∧ . . . ∧ dbp and it follows that the
map d : ΩpB/A → Ωp+1

B/A if it exists is unique.

Construction of d : Ω1
B/A → Ω2

B/A. By Definition 10.131.2 the elements db freely
generate ΩB/A as a B-module subject to the relations da = 0 for a ∈ A and
d(b′ + b′′) = db′ + db′′ and d(b′b′′) = b′db′′ + b′′db′ for b′, b′′ ∈ B. Hence to show
that the rule ∑

b′
idbi 7−→

∑
db′
i ∧ dbi

is well defined we have to show that the elements

bda, and bd(b′ + b′′)− bdb′ − bdb′′ and bd(b′b′′)− bb′db′′ − bb′′db′

for a ∈ A and b, b′, b′′ ∈ B are mapped to zero. This is clear by direct computation
using the Leibniz rule for d.

Observe that the composition Ω0
B/A → Ω1

B/A → Ω2
B/A is zero as d(d(b)) = d(1db) =

d(1) ∧ d(b) = 0 ∧ db = 0. Here d(1) = 0 as 1 ∈ B is in the image of A → B. We
will use this below.

Construction of d : ΩpB/A → Ωp+1
B/A for p ≥ 2. We will show the A-linear map

γ : Ω1
B/A ⊗A . . .⊗A Ω1

B/A −→ Ωp+1
B/A

defined by the formula

ω1 ⊗ . . .⊗ ωp 7−→
∑

(−1)i+1ω1 ∧ . . . ∧ d(ωi) ∧ . . . ∧ ωp

factors over the natural surjection Ω1
B/A⊗A . . .⊗AΩ1

B/A → ΩpB/A to give the desired
map d : ΩpB/A → Ωp+1

B/A. According to Lemma 10.13.4 the kernel of Ω1
B/A⊗A . . .⊗A

Ω1
B/A → ΩpB/A is generated as an A-module by the elements ω1 ⊗ . . . ⊗ ωp with

ωi = ωj for some i ̸= j and ω1⊗ . . .⊗ fωi⊗ . . .⊗ωp−ω1⊗ . . .⊗ fωj ⊗ . . .⊗ωp for
some f ∈ B. A direct computation shows the first type of element is mapped to 0
by γ, in other words, γ is alternating. To finish we have to show that

γ(ω1 ⊗ . . .⊗ fωi ⊗ . . .⊗ ωp) = γ(ω1 ⊗ . . .⊗ fωj ⊗ . . .⊗ ωp)
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for f ∈ B. By A-linearity and the alternating property, it is enough to show this
for p = 2, i = 1, j = 2, ω1 = bdb′ and ω2 = cdc′ for b, b′, c, c′ ∈ B. Thus we need to
show that

d(fb) ∧ db′ ∧ cdc′ − fbdb′ ∧ dc ∧ dc′

= db ∧ db′ ∧ fcdc′ − bdb′ ∧ d(fc) ∧ dc′

in other words that
(cd(fb) + fbdc− fcdb− bd(fc)) ∧ db′ ∧ dc′ = 0.

This follows from the Leibniz rule. Observe that the value of γ on the element
b0db1⊗db2⊗ . . .⊗dbp is db0∧db1∧ . . .∧dbp and hence (10.132.0.1) will be satisfied
for the map d : ΩpB/A → Ωp+1

B/A so obtained.

Finally, since ΩpB/A is additively generated by the elements b0db1 ∧ . . . ∧ dbp and
since d(b0db1 ∧ . . . ∧ dbp) = db0 ∧ . . . ∧ dbp we see in exactly the same manner that
the composition ΩpB/A → Ωp+1

B/A → Ωp+2
B/A is zero for p ≥ 1. Thus the de Rham

complex is indeed a complex.
Given just a ring R we set ΩR = ΩR/Z. This is sometimes called the absolute
module of differentials of R; this makes sense: if ΩR is the module of differentials
where we only assume the Leibniz rule and not the vanishing of d1, then the Leibniz
rule gives d1 = d(1 · 1) = 1d1 + 1d1 = 2d1 and hence d1 = 0 in ΩR. In this case
the absolute de Rham complex of R is the corresponding complex

Ω0
R → Ω1

R → Ω2
R → . . .

where we set ΩiR = ΩiR/Z and so on.

Suppose we have a commutative diagram of rings

B // B′

A //

OO

A′

OO

There is a natural map of de Rham complexes
Ω•
B/A −→ Ω•

B′/A′

Namely, in degree 0 this is the map B → B′, in degree 1 this is the map ΩB/A →
ΩB′/A′ constructed in Section 10.131, and for p ≥ 2 it is the induced map ΩpB/A =
∧pB(ΩB/A) → ∧pB′(ΩB′/A′) = ΩpB′/A′ . The compatibility with differentials follows
from the characterization of the differentials by the formula (10.132.0.1).

Lemma 10.132.1.07HY Let A→ B be a ring map. Let π : ΩB/A → Ω be a surjective B-
module map. Denote d : B → Ω the composition of π with the universal derivation
dB/A : B → ΩB/A. Set Ωi = ∧iB(Ω). Assume that the kernel of π is generated, as
a B-module, by elements ω ∈ ΩB/A such that dB/A(ω) ∈ Ω2

B/A maps to zero in Ω2.
Then there is a de Rham complex

Ω0 → Ω1 → Ω2 → . . .

whose differential is defined by the rule
d : Ωp → Ωp+1, d (f0df1 ∧ . . . ∧ dfp) = df0 ∧ df1 ∧ . . . ∧ dfp

https://stacks.math.columbia.edu/tag/07HY
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Proof. We will show that there exists a commutative diagram

Ω0
B/A

��

dB/A
// Ω1
B/A

π

��

dB/A
// Ω2
B/A

∧2π
��

dB/A
// . . .

Ω0 d // Ω1 d // Ω2 d // . . .

the description of the map d will follow from the construction of the differentials
dB/A : ΩpB/A → Ωp+1

B/A of the de Rham complex of B over A given above. Since the
left most vertical arrow is an isomorphism we have the first square. Because π is
surjective, to get the second square it suffices to show that dB/A maps the kernel
of π into the kernel of ∧2π. We are given that any element of the kernel of π is of
the form

∑
biωi with π(ωi) = 0 and ∧2π(dB/A(ωi)) = 0. By the Leibniz rule for

dB/A we have dB/A(
∑
biωi) =

∑
bidB/A(ωi) +

∑
dB/A(bi) ∧ ωi. Hence this maps

to zero under ∧2π.

For i > 1 we note that ∧iπ is surjective with kernel the image of Ker(π)∧Ωi−1
B/A →

ΩiB/A. For ω1 ∈ Ker(π) and ω2 ∈ Ωi−1
B/A we have

dB/A(ω1 ∧ ω2) = dB/A(ω1) ∧ ω2 − ω1 ∧ dB/A(ω2)

which is in the kernel of ∧i+1π by what we just proved above. Hence we get the
(i+ 1)st square in the diagram above. This concludes the proof. □

10.133. Finite order differential operators

09CH In this section we introduce differential operators of finite order.

Definition 10.133.1.09CI Let R→ S be a ring map. Let M , N be S-modules. Let k ≥ 0
be an integer. We inductively define a differential operator D : M → N of order k
to be an R-linear map such that for all g ∈ S the map m 7→ D(gm)− gD(m) is a
differential operator of order k− 1. For the base case k = 0 we define a differential
operator of order 0 to be an S-linear map.

If D : M → N is a differential operator of order k, then for all g ∈ S the map gD
is a differential operator of order k. The sum of two differential operators of order
k is another. Hence the set of all these

Diffk(M,N) = DiffkS/R(M,N)

is an S-module. We have

Diff0(M,N) ⊂ Diff1(M,N) ⊂ Diff2(M,N) ⊂ . . .

Lemma 10.133.2.09CJ Let R → S be a ring map. Let L,M,N be S-modules. If
D : L → M and D′ : M → N are differential operators of order k and k′, then
D′ ◦D is a differential operator of order k + k′.

Proof. Let g ∈ S. Then the map which sends x ∈ L to

D′(D(gx))− gD′(D(x)) = D′(D(gx))−D′(gD(x)) +D′(gD(x))− gD′(D(x))

is a sum of two compositions of differential operators of lower order. Hence the
lemma follows by induction on k + k′. □

https://stacks.math.columbia.edu/tag/09CI
https://stacks.math.columbia.edu/tag/09CJ
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Lemma 10.133.3.09CK Let R → S be a ring map. Let M be an S-module. Let k ≥ 0.
There exists an S-module P kS/R(M) and a canonical isomorphism

DiffkS/R(M,N) = HomS(P kS/R(M), N)

functorial in the S-module N .

Proof. The existence of P kS/R(M) follows from general category theoretic argu-
ments (insert future reference here), but we will also give a construction. Set
F =

⊕
m∈M S[m] where [m] is a symbol indicating the basis element in the sum-

mand corresponding to m. Given any differential operator D : M → N we obtain
an S-linear map LD : F → N sending [m] to D(m). If D has order 0, then LD
annihilates the elements

[m+m′]− [m]− [m′], g0[m]− [g0m]

where g0 ∈ S and m,m′ ∈M . If D has order 1, then LD annihilates the elements

[m+m′]− [m]− [m′], f [m]− [fm], g0g1[m]− g0[g1m]− g1[g0m] + [g1g0m]

where f ∈ R, g0, g1 ∈ S, and m ∈ M . If D has order k, then LD annihilates the
elements [m+m′]− [m]− [m′], f [m]− [fm], and the elements

g0g1 . . . gk[m]−
∑

g0 . . . ĝi . . . gk[gim] + . . .+ (−1)k+1[g0 . . . gkm]

Conversely, if L : F → N is an S-linear map annihilating all the elements listed in
the previous sentence, then m 7→ L([m]) is a differential operator of order k. Thus
we see that P kS/R(M) is the quotient of F by the submodule generated by these
elements. □

Definition 10.133.4.09CL Let R → S be a ring map. Let M be an S-module. The
module P kS/R(M) constructed in Lemma 10.133.3 is called the module of principal
parts of order k of M .

Note that the inclusions

Diff0(M,N) ⊂ Diff1(M,N) ⊂ Diff2(M,N) ⊂ . . .

correspond via Yoneda’s lemma (Categories, Lemma 4.3.5) to surjections

. . .→ P 2
S/R(M)→ P 1

S/R(M)→ P 0
S/R(M) = M

Example 10.133.5.09CM Let R→ S be a ring map and let N be an S-module. Observe
that Diff1(S,N) = DerR(S,N)⊕N . Namely, if D : S → N is a differential operator
of order 1 then σD : S → N defined by σD(g) := D(g)− gD(1) is an R-derivation
and D = σD+λD(1) where λx : S → N is the linear map sending g to gx. It follows
that P 1

S/R = ΩS/R ⊕ S by the universal property of ΩS/R.

Lemma 10.133.6.09CN Let R → S be a ring map. Let M be an S-module. There is a
canonical short exact sequence

0→ ΩS/R ⊗S M → P 1
S/R(M)→M → 0

functorial in M called the sequence of principal parts.

https://stacks.math.columbia.edu/tag/09CK
https://stacks.math.columbia.edu/tag/09CL
https://stacks.math.columbia.edu/tag/09CM
https://stacks.math.columbia.edu/tag/09CN
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Proof. The map P 1
S/R(M) → M is given above. Let N be an S-module and let

D : M → N be a differential operator of order 1. For m ∈M the map

g 7−→ D(gm)− gD(m)

is an R-derivation S → N by the axioms for differential operators of order 1.
Thus it corresponds to a linear map Dm : ΩS/R → N determined by the rule
adb 7→ aD(bm)− abD(m) (see Lemma 10.131.3). The map

ΩS/R ×M −→ N, (η,m) 7−→ Dm(η)

is S-bilinear (details omitted) and hence determines an S-linear map

σD : ΩS/R ⊗S M → N

In this way we obtain a map Diff1(M,N) → HomS(ΩS/R ⊗S M,N), D 7→ σD
functorial in N . By the Yoneda lemma this corresponds a map ΩS/R ⊗S M →
P 1
S/R(M). It is immediate from the construction that this map is functorial in M .

The sequence
ΩS/R ⊗S M → P 1

S/R(M)→M → 0
is exact because for every module N the sequence

0→ HomS(M,N)→ Diff1(M,N)→ HomS(ΩS/R ⊗S M,N)

is exact by inspection.

To see that ΩS/R ⊗S M → P 1
S/R(M) is injective we argue as follows. Choose an

exact sequence
0→M ′ → F →M → 0

with F a free S-module. This induces an exact sequence

0→ Diff1(M,N)→ Diff1(F,N)→ Diff1(M ′, N)

for all N . This proves that in the commutative diagram

0 // ΩS/R ⊗S M ′ //

��

P 1
S/R(M ′) //

��

M ′ //

��

0

0 // ΩS/R ⊗S F //

��

P 1
S/R(F ) //

��

F //

��

0

0 // ΩS/R ⊗S M //

��

P 1
S/R(M) //

��

M //

��

0

0 0 0

the middle column is exact. The left column is exact by right exactness of ΩS/R⊗S
−. By the snake lemma (see Section 10.4) it suffices to prove exactness on the
left for the free module F . Using that P 1

S/R(−) commutes with direct sums we
reduce to the case M = S. This case is a consequence of the discussion in Example
10.133.5. □
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Remark 10.133.7.09CP Suppose given a commutative diagram of rings

B // B′

A

OO

// A′

OO

a B-module M , a B′-module M ′, and a B-linear map M → M ′. Then we get a
compatible system of module maps

. . . // P 2
B′/A′(M ′) // P 1

B′/A′(M ′) // P 0
B′/A′(M ′)

. . . // P 2
B/A(M) //

OO

P 1
B/A(M) //

OO

P 0
B/A(M)

OO

These maps are compatible with further composition of maps of this type. The
easiest way to see this is to use the description of the modules P kB/A(M) in terms
of generators and relations in the proof of Lemma 10.133.3 but it can also be seen
directly from the universal property of these modules. Moreover, these maps are
compatible with the short exact sequences of Lemma 10.133.6.

Lemma 10.133.8.0G34 Let A → B be a ring map. The differentials d : ΩiB/A → Ωi+1
B/A

are differential operators of order 1.

Proof. Given b ∈ B we have to show that d ◦ b− b ◦ d is a linear operator. Thus we
have to show that

d ◦ b ◦ b′ − b ◦ d ◦ b′ − b′ ◦ d ◦ b+ b′ ◦ b ◦ d = 0
To see this it suffices to check this on additive generators for ΩiB/A. Thus it suffices
to show that
d(bb′b0db1∧. . .∧dbi)−bd(b′b0db1∧. . .∧dbi)−b′d(bb0db1∧. . .∧dbi)+bb′d(b0db1∧. . .∧dbi)
is zero. This is a pleasant calculation using the Leibniz rule which is left to the
reader. □

Lemma 10.133.9.0G35 Let A → B be a ring map. Let gi ∈ B, i ∈ I be a set of
generators for B as an A-algebra. Let M,N be B-modules. Let D : M → N be
an A-linear map. In order to show that D is a differential operator of order k it
suffices to show that D ◦gi−gi ◦D is a differential operator of order k−1 for i ∈ I.

Proof. Namely, we claim that the set of elements g ∈ B such that D ◦ g− g ◦D is a
differential operator of order k − 1 is an A-subalgebra of B. This follows from the
relations

D ◦ (g + g′)− (g + g′) ◦D = (D ◦ g − g ◦D) + (D ◦ g′ − g′ ◦D)
and

D ◦ gg′ − gg′ ◦D = (D ◦ g − g ◦D) ◦ g′ + g ◦ (D ◦ g′ − g′ ◦D)
Strictly speaking, to conclude for products we also use Lemma 10.133.2. □

Lemma 10.133.10.0G36 Let A→ B be a ring map. Let M,N be B-modules. Let S ⊂ B
be a multiplicative subset. Any differential operator D : M → N of order k extends
uniquely to a differential operator E : S−1M → S−1N of order k.

https://stacks.math.columbia.edu/tag/09CP
https://stacks.math.columbia.edu/tag/0G34
https://stacks.math.columbia.edu/tag/0G35
https://stacks.math.columbia.edu/tag/0G36
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Proof. By induction on k. If k = 0, then D is B-linear and hence we get the
extension by the functoriality of localization. Given b ∈ B the operator Lb : m 7→
D(bm)− bD(m) has order k − 1. Hence it has a unique extension to a differential
operator Eb : S−1M → S−1N of order k−1 by induction. Moreover, a computation
shows that Lb′b = Lb′◦b+b′◦Lb hence by uniqueness we obtain Eb′b = Eb′◦b+b′◦Eb.
Similarly, we obtain Eb′ ◦ b− b ◦Eb′ = Eb ◦ b′ − b′ ◦Eb. Now for m ∈M and g ∈ S
we set

E(m/g) = (1/g)(D(m)− Eg(m/g))
To show that this is well defined it suffices to show that for g′ ∈ S if we use the
representative g′m/g′g we get the same result. We compute

(1/g′g)(D(g′m)− Eg′g(g′m/gg′)) = (1/gg′)(g′D(m) + Eg′(m)− Eg′g(g′m/gg′))
= (1/g′g)(g′D(m)− g′Eg(m/g))

which is the same as before. It is clear that E is R-linear as D and Eg are R-linear.
Taking g = 1 and using that E1 = 0 we see that E extends D. By Lemma 10.133.9
it now suffices to show that E ◦ b− b◦E for b ∈ B and E ◦1/g′−1/g′ ◦E for g′ ∈ S
are differential operators of order k − 1 in order to show that E is a differential
operator of order k. For the first, choose an element m/g in S−1M and observe
that

E(bm/g)− bE(m/g) = (1/g)(D(bm)− bD(m)− Eg(bm/g) + bEg(m/g))
= (1/g)(Lb(m)− Eb(m) + gEb(m/g))
= Eb(m/g)

which is a differential operator of order k − 1. Finally, we have
E(m/g′g)− (1/g′)E(m/g) = (1/g′g)(D(m)− Eg′g(m/g′g))− (1/g′g)(D(m)− Eg(m/g))

= −(1/g′)Eg′(m/g′g)
which also is a differential operator of order k−1 as the composition of linear maps
(multiplication by 1/g′ and signs) and Eg′ . We omit the proof of uniqueness. □

Lemma 10.133.11.0G37 Let R → A and R → B be ring maps. Let M and M ′ be
A-modules. Let D : M → M ′ be a differential operator of order k with respect to
R→ A. Let N be any B-module. Then the map

D ⊗ idN : M ⊗R N →M ′ ⊗R N
is a differential operator of order k with respect to B → A⊗R B.

Proof. It is clear that D′ = D ⊗ idN is B-linear. By Lemma 10.133.9 it suffices to
show that

D′ ◦ a⊗ 1− a⊗ 1 ◦D′ = (D ◦ a− a ◦D)⊗ idN
is a differential operator of order k − 1 which follows by induction on k. □

10.134. The naive cotangent complex

00S0 Let R→ S be a ring map. Denote R[S] the polynomial ring whose variables are the
elements s ∈ S. Let’s denote [s] ∈ R[S] the variable corresponding to s ∈ S. Thus
R[S] is a free R-module on the basis elements [s1] . . . [sn] where s1, . . . , sn ranges
over all unordered sequences of elements of S. There is a canonical surjection
(10.134.0.1)07BL R[S] −→ S, [s] 7−→ s

https://stacks.math.columbia.edu/tag/0G37
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whose kernel we denote I ⊂ R[S]. It is a simple observation that I is generated
by the elements [s+ s′]− [s]− [s′], [s][s′]− [ss′] and [r]− r. According to Lemma
10.131.9 there is a canonical map
(10.134.0.2)07BM I/I2 −→ ΩR[S]/R ⊗R[S] S

whose cokernel is canonically isomorphic to ΩS/R. Observe that the S-module
ΩR[S]/R ⊗R[S] S is free on the generators d[s].

Definition 10.134.1.07BN Let R → S be a ring map. The naive cotangent complex
NLS/R is the chain complex (10.134.0.2)

NLS/R =
(
I/I2 −→ ΩR[S]/R ⊗R[S] S

)
with I/I2 placed in (homological) degree 1 and ΩR[S]/R⊗R[S] S placed in degree 0.
We will denote H1(LS/R) = H1(NLS/R)12 the homology in degree 1.

Before we continue let us say a few words about the actual cotangent complex
(Cotangent, Section 92.3). Given a ring map R → S there exists a canonical
simplicial R-algebra P• whose terms are polynomial algebras and which comes
equipped with a canonical homotopy equivalence

P• −→ S

The cotangent complex LS/R of S over R is defined as the chain complex associated
to the cosimplicial module

ΩP•/R ⊗P• S

The naive cotangent complex as defined above is canonically isomorphic to the
truncation τ≤1LS/R (see Homology, Section 12.15 and Cotangent, Section 92.11).
In particular, it is indeed the case that H1(NLS/R) = H1(LS/R) so our definition
is compatible with the one using the cotangent complex. Moreover, H0(LS/R) =
H0(NLS/R) = ΩS/R as we’ve seen above.
Let R→ S be a ring map. A presentation of S over R is a surjection α : P → S of
R-algebras where P is a polynomial algebra (on a set of variables). Often, when S
is of finite type over R we will indicate this by saying: “Let R[x1, . . . , xn] → S be
a presentation of S/R”, or “Let 0→ I → R[x1, . . . , xn]→ S → 0 be a presentation
of S/R” if we want to indicate that I is the kernel of the presentation. Note that
the map R[S] → S used to define the naive cotangent complex is an example of a
presentation.
Note that for every presentation α we obtain a two term chain complex of S-modules

NL(α) : I/I2 −→ ΩP/R ⊗P S.

Here the term I/I2 is placed in degree 1 and the term ΩP/R⊗S is placed in degree
0. The class of f ∈ I in I/I2 is mapped to df ⊗1 in ΩP/R⊗S. The cokernel of this
complex is canonically ΩS/R, see Lemma 10.131.9. We call the complex NL(α) the
naive cotangent complex associated to the presentation α : P → S of S/R. Note
that if P = R[S] with its canonical surjection onto S, then we recover NLS/R. If
P = R[x1, . . . , xn] then will sometimes use the notation I/I2 →

⊕
i=1,...,n Sdxi to

denote this complex.

12This module is sometimes denoted ΓS/R in the literature.

https://stacks.math.columbia.edu/tag/07BN
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Suppose we are given a commutative diagram

(10.134.1.1)06RQ
S

ϕ
// S′

R //

OO

R′

OO

of rings. Let α : P → S be a presentation of S over R and let α′ : P ′ → S′ be
a presentation of S′ over R′. A morphism of presentations from α : P → S to
α′ : P ′ → S′ is defined to be an R-algebra map

φ : P → P ′

such that ϕ ◦ α = α′ ◦ φ. Note that in this case φ(I) ⊂ I ′, where I = Ker(α)
and I ′ = Ker(α′). Thus φ induces a map of S-modules I/I2 → I ′/(I ′)2 and by
functoriality of differentials also an S-module map ΩP/R⊗S → ΩP ′/R′ ⊗S′. These
maps are compatible with the differentials of NL(α) and NL(α′) and we obtain a
map of naive cotangent complexes

NL(α) −→ NL(α′).

It is often convenient to consider the induced map NL(α)⊗S S′ → NL(α′).

In the special case that P = R[S] and P ′ = R′[S′] the map ϕ : S → S′ induces a
canonical ring map φ : P → P ′ by the rule [s] 7→ [ϕ(s)]. Hence the construction
above determines canonical(!) maps of chain complexes

NLS/R −→ NLS′/R′ , and NLS/R⊗SS′ −→ NLS′/R′

associated to the diagram (10.134.1.1). Note that this construction is compatible
with composition: given a commutative diagram

S
ϕ
// S′

ϕ′
// S′′

R //

OO

R′

OO

// R′′

OO

we see that the composition of

NLS/R −→ NLS′/R′ −→ NLS′′/R′′

is the map NLS/R → NLS′′/R′′ given by the outer square.

It turns out that NL(α) is homotopy equivalent to NLS/R and that the maps con-
structed above are well defined up to homotopy (homotopies of maps of complexes
are discussed in Homology, Section 12.13 but we also spell out the exact meaning
of the statements in the lemma below in its proof).

Lemma 10.134.2.00S1 Suppose given a diagram (10.134.1.1). Let α : P → S and
α′ : P ′ → S′ be presentations.

(1) There exists a morphism of presentations from α to α′.
(2) Any two morphisms of presentations induce homotopic morphisms of com-

plexes NL(α)→ NL(α′).
(3) The construction is compatible with compositions of morphisms of pre-

sentations (see proof for exact statement).

https://stacks.math.columbia.edu/tag/00S1
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(4) If R → R′ and S → S′ are isomorphisms, then for any map φ of presen-
tations from α to α′ the induced map NL(α) → NL(α′) is a homotopy
equivalence and a quasi-isomorphism.

In particular, comparing α to the canonical presentation (10.134.0.1) we conclude
there is a quasi-isomorphism NL(α) → NLS/R well defined up to homotopy and
compatible with all functorialities (up to homotopy).

Proof. Since P is a polynomial algebra over R we can write P = R[xa, a ∈ A]
for some set A. As α′ is surjective, we can choose for every a ∈ A an element
fa ∈ P ′ such that α′(fa) = ϕ(α(xa)). Let φ : P = R[xa, a ∈ A]→ P ′ be the unique
R-algebra map such that φ(xa) = fa. This gives the morphism in (1).
Let φ and φ′ morphisms of presentations from α to α′. Let I = Ker(α) and
I ′ = Ker(α′). We have to construct the diagonal map h in the diagram

I/I2 d //

φ′
1
��

φ1

��

ΩP/R ⊗P S

φ′
0

��
φ0

��

h

xx
I ′/(I ′)2 d // ΩP ′/R′ ⊗P ′ S′

where the vertical maps are induced by φ, φ′ such that
φ1 − φ′

1 = h ◦ d and φ0 − φ′
0 = d ◦ h

Consider the map φ−φ′ : P → P ′. Since both φ and φ′ are compatible with α and
α′ we obtain φ − φ′ : P → I ′. This implies that φ,φ′ : P → P ′ induce the same
P -module structure on I ′/(I ′)2, since φ(p)i′ − φ′(p)i′ = (φ− φ′)(p)i′ ∈ (I ′)2. Also
φ− φ′ is R-linear and

(φ− φ′)(fg) = φ(f)(φ− φ′)(g) + (φ− φ′)(f)φ′(g)
Hence the induced map D : P → I ′/(I ′)2 is a R-derivation. Thus we obtain a
canonical map h : ΩP/R ⊗P S → I ′/(I ′)2 such that D = h ◦ d. A calculation
(omitted) shows that h is the desired homotopy.
Suppose that we have a commutative diagram

S
ϕ
// S′

ϕ′
// S′′

R //

OO

R′

OO

// R′′

OO

and that
(1) α : P → S,
(2) α′ : P ′ → S′, and
(3) α′′ : P ′′ → S′′

are presentations. Suppose that
(1) φ : P → P ′ is a morphism of presentations from α to α′ and
(2) φ′ : P ′ → P ′′ is a morphism of presentations from α′ to α′′.

Then it is immediate that φ′ ◦ φ : P → P ′′ is a morphism of presentations from α
to α′′ and that the induced map NL(α)→ NL(α′′) of naive cotangent complexes is
the composition of the maps NL(α) → NL(α′) and NL(α′) → NL(α′′) induced by
φ and φ′.
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In the simple case of complexes with 2 terms a quasi-isomorphism is just a map
that induces an isomorphism on both the cokernel and the kernel of the maps
between the terms. Note that homotopic maps of 2 term complexes (as explained
above) define the same maps on kernel and cokernel. Hence if φ is a map from
a presentation α of S over R to itself, then the induced map NL(α) → NL(α)
is a quasi-isomorphism being homotopic to the identity by part (2). To prove
(4) in full generality, consider a morphism φ′ from α′ to α which exists by (1).
The compositions NL(α)→ NL(α′)→ NL(α) and NL(α′)→ NL(α)→ NL(α′) are
homotopic to the identity maps by (3), hence these maps are homotopy equivalences
by definition. It follows formally that both maps NL(α)→ NL(α′) and NL(α′)→
NL(α) are quasi-isomorphisms. Some details omitted. □

Lemma 10.134.3.08Q1 Let A→ B be a polynomial algebra. Then NLB/A is homotopy
equivalent to the chain complex (0→ ΩB/A) with ΩB/A in degree 0.

Proof. Follows from Lemma 10.134.2 and the fact that idB : B → B is a presenta-
tion of B over A with zero kernel. □

The following lemma is part of the motivation for introducing the naive cotangent
complex. The cotangent complex extends this to a genuine long exact cohomology
sequence. If B → C is a local complete intersection, then one can extend the
sequence with a zero on the left, see More on Algebra, Lemma 15.33.6.

Lemma 10.134.4 (Jacobi-Zariski sequence).00S2 Let A→ B → C be ring maps. Choose
a presentation α : A[xs, s ∈ S] → B with kernel I. Choose a presentation β :
B[yt, t ∈ T ]→ C with kernel J . Let γ : A[xs, yt]→ C be the induced presentation
of C with kernel K. Then we get a canonical commutative diagram

0 // ΩA[xs]/A ⊗ C // ΩA[xs,yt]/A ⊗ C // ΩB[yt]/B ⊗ C // 0

I/I2 ⊗ C //

OO

K/K2 //

OO

J/J2 //

OO

0

with exact rows. We get the following exact sequence of homology groups

H1(NLB/A⊗BC)→ H1(LC/A)→ H1(LC/B)→ C ⊗B ΩB/A → ΩC/A → ΩC/B → 0

of C-modules extending the sequence of Lemma 10.131.7. If TorB1 (ΩB/A, C) = 0,
then H1(NLB/A⊗BC) = H1(LB/A)⊗B C.

Proof. The precise definition of the maps is omitted. The exactness of the top row
follows as the dxs, dyt form a basis for the middle module. The map γ factors

A[xs, yt]→ B[yt]→ C

with surjective first arrow and second arrow equal to β. Thus we see that K → J
is surjective. Moreover, the kernel of the first displayed arrow is IA[xs, yt]. Hence
I/I2 ⊗ C surjects onto the kernel of K/K2 → J/J2. Finally, we can use Lemma
10.134.2 to identify the terms as homology groups of the naive cotangent complexes.
The final assertion follows as the degree 0 term of the complex NLB/A is a free B-
module. □

https://stacks.math.columbia.edu/tag/08Q1
https://stacks.math.columbia.edu/tag/00S2
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Remark 10.134.5.07VC Let A → B and ϕ : B → C be ring maps. Then the compo-
sition NLB/A → NLC/A → NLC/B is homotopy equivalent to zero. Namely, this
composition is the functoriality of the naive cotangent complex for the square

B
ϕ
// C

A //

OO

B

OO

Write J = Ker(B[C]→ C). An explicit homotopy is given by the map ΩA[B]/A⊗A
B → J/J2 which maps the basis element d[b] to the class of [ϕ(b)]− b in J/J2.

Lemma 10.134.6.07BP Let A→ B be a surjective ring map with kernel I. Then NLB/A
is homotopy equivalent to the chain complex (I/I2 → 0) with I/I2 in degree 1. In
particular H1(LB/A) = I/I2.

Proof. Follows from Lemma 10.134.2 and the fact that A→ B is a presentation of
B over A. □

Lemma 10.134.7.065V Let A → B → C be ring maps. Assume A → C is surjective
(so also B → C is). Denote I = Ker(A → C) and J = Ker(B → C). Then the
sequence

I/I2 → J/J2 → ΩB/A ⊗B B/J → 0
is exact.

Proof. Follows from Lemma 10.134.4 and the description of the naive cotangent
complexes NLC/B and NLC/A in Lemma 10.134.6. □

Lemma 10.134.8 (Flat base change).00S4 Let R→ S be a ring map. Let α : P → S be
a presentation. Let R→ R′ be a flat ring map. Let α′ : P ⊗R R′ → S′ = S ⊗R R′

be the induced presentation. Then NL(α) ⊗R R′ = NL(α) ⊗S S′ = NL(α′). In
particular, the canonical map

NLS/R⊗SS′ −→ NLS⊗RR′/R′

is a homotopy equivalence if R→ R′ is flat.

Proof. This is true because Ker(α′) = R′ ⊗R Ker(α) since R→ R′ is flat. □

Lemma 10.134.9.07BQ Let Ri → Si be a system of ring maps over the directed set I.
Set R = colimRi and S = colimSi. Then NLS/R = colimNLSi/Ri .

Proof. Recall that NLS/R is the complex I/I2 →
⊕

s∈S Sd[s] where I ⊂ R[S] is
the kernel of the canonical presentation R[S] → S. Now it is clear that R[S] =
colimRi[Si] and similarly that I = colim Ii where Ii = Ker(Ri[Si] → Si). Hence
the lemma is clear. □

Lemma 10.134.10.07BR If S ⊂ A is a multiplicative subset of A, then NLS−1A/A is
homotopy equivalent to the zero complex.

Proof. Since A→ S−1A is flat we see that NLS−1A/A⊗AS−1A→ NLS−1A/S−1A is
a homotopy equivalence by flat base change (Lemma 10.134.8). Since the source
of the arrow is isomorphic to NLS−1A/A and the target of the arrow is zero (by
Lemma 10.134.6) we win. □

https://stacks.math.columbia.edu/tag/07VC
https://stacks.math.columbia.edu/tag/07BP
https://stacks.math.columbia.edu/tag/065V
https://stacks.math.columbia.edu/tag/00S4
https://stacks.math.columbia.edu/tag/07BQ
https://stacks.math.columbia.edu/tag/07BR
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Lemma 10.134.11.07BS Let S ⊂ A is a multiplicative subset of A. Let S−1A → B be
a ring map. Then NLB/A → NLB/S−1A is a homotopy equivalence.

Proof. Choose a presentation α : P → B of B over A. Then β : S−1P → B is a
presentation of B over S−1A. A direct computation shows that we have NL(α) =
NL(β) which proves the lemma as the naive cotangent complex is well defined up
to homotopy by Lemma 10.134.2. □

Lemma 10.134.12.08JZ Let A → B be a ring map. Let g ∈ B. Suppose α : P → B is
a presentation with kernel I. Then a presentation of Bg over A is the map

β : P [x] −→ Bg

extending α and sending x to 1/g. The kernel J of β is generated by I and the
element fx− 1 where f ∈ P is an element mapped to g ∈ B by α. In this situation
we have

(1) J/J2 = (I/I2)g ⊕Bg(fx− 1),
(2) ΩP [x]/A ⊗P [x] Bg = ΩP/A ⊗P Bg ⊕Bgdx,
(3) NL(β) ∼= NL(α)⊗B Bg ⊕ (Bg

g−→ Bg)
Hence the canonical map NLB/A⊗BBg → NLBg/A is a homotopy equivalence.

Proof. Since P [x]/(I, fx− 1) = B[x]/(gx− 1) = Bg we get the statement about I
and fx− 1 generating J . Consider the commutative diagram

0 // ΩP/A ⊗Bg // ΩP [x]/A ⊗Bg // ΩB[x]/B ⊗Bg // 0

(I/I2)g //

OO

J/J2 //

OO

(gx− 1)/(gx− 1)2 //

OO

0

with exact rows of Lemma 10.134.4. The Bg-module ΩB[x]/B ⊗Bg is free of rank 1
on dx. The element dx in the Bg-module ΩP [x]/A ⊗Bg provides a splitting for the
top row. The element gx−1 ∈ (gx−1)/(gx−1)2 is mapped to gdx in ΩB[x]/B⊗Bg
and hence (gx − 1)/(gx − 1)2 is free of rank 1 over Bg. (This can also be seen
by arguing that gx− 1 is a nonzerodivisor in B[x] because it is a polynomial with
invertible constant term and any nonzerodivisor gives a quasi-regular sequence of
length 1 by Lemma 10.69.2.)
Let us prove (I/I2)g → J/J2 injective. Consider the P -algebra map

π : P [x]→ (P/I2)f = Pf/I
2
f

sending x to 1/f . Since J is generated by I and fx−1 we see that π(J) ⊂ (I/I2)f =
(I/I2)g. Since this is an ideal of square zero we see that π(J2) = 0. If a ∈ I maps
to an element of J2 in J , then π(a) = 0, which implies that a maps to zero in If/I2

f .
This proves the desired injectivity.
Thus we have a short exact sequence of two term complexes

0→ NL(α)⊗B Bg → NL(β)→ (Bg
g−→ Bg)→ 0

Such a short exact sequence can always be split in the category of complexes. In
our particular case we can take as splittings
J/J2 = (I/I2)g ⊕Bg(fx− 1) and ΩP [x]/A⊗Bg = ΩP/A⊗Bg ⊕Bg(g−2df + dx)
This works because d(fx− 1) = xdf + fdx = g(g−2df + dx) in ΩP [x]/A ⊗Bg. □

https://stacks.math.columbia.edu/tag/07BS
https://stacks.math.columbia.edu/tag/08JZ
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Lemma 10.134.13.00S7 Let A → B be a ring map. Let S ⊂ B be a multiplicative
subset. The canonical map NLB/A⊗BS−1B → NLS−1B/A is a quasi-isomorphism.

Proof. We have S−1B = colimg∈S Bg where we think of S as a directed set (or-
dering by divisibility), see Lemma 10.9.9. By Lemma 10.134.12 each of the maps
NLB/A⊗BBg → NLBg/A are quasi-isomorphisms. The lemma follows from Lemma
10.134.9. □

Lemma 10.134.14.00S3 Let R be a ring. Let A1 → A0, and B1 → B0 be two term
complexes. Suppose that there exist morphisms of complexes φ : A• → B• and
ψ : B• → A• such that φ ◦ ψ and ψ ◦ φ are homotopic to the identity maps. Then
A1 ⊕B0 ∼= B1 ⊕A0 as R-modules.

Proof. Choose a map h : A0 → A1 such that
idA1 − ψ1 ◦ φ1 = h ◦ dA and idA0 − ψ0 ◦ φ0 = dA ◦ h.

Similarly, choose a map h′ : B0 → B1 such that
idB1 − φ1 ◦ ψ1 = h′ ◦ dB and idB0 − φ0 ◦ ψ0 = dB ◦ h′.

A trivial computation shows that(
idA1 −h′ ◦ ψ1 + h ◦ ψ0

0 idB0

)
=
(
ψ1 h
−dB φ0

)(
φ1 −h′

dA ψ0

)
This shows that both matrices on the right hand side are invertible and proves the
lemma. □

Lemma 10.134.15.00S5 Let R→ S be a ring map of finite type. For any presentations
α : R[x1, . . . , xn]→ S, and β : R[y1, . . . , ym]→ S we have

I/I2 ⊕ S⊕m ∼= J/J2 ⊕ S⊕n

as S-modules where I = Ker(α) and J = Ker(β).

Proof. See Lemmas 10.134.2 and 10.134.14. □

Lemma 10.134.16.00S6 Let R → S be a ring map of finite type. Let g ∈ S. For any
presentations α : R[x1, . . . , xn]→ S, and β : R[y1, . . . , ym]→ Sg we have

(I/I2)g ⊕ S⊕m
g
∼= J/J2 ⊕ S⊕n

g

as Sg-modules where I = Ker(α) and J = Ker(β).

Proof. Let β′ : R[x1, . . . , xn, x]→ Sg be the presentation of Lemma 10.134.12 con-
structed starting with α. Then we know that NL(α)⊗S Sg is homotopy equivalent
to NL(β′). We know that NL(β) and NL(β′) are homotopy equivalent by Lemma
10.134.2. We conclude that NL(α)⊗S Sg is homotopy equivalent to NL(β). Finally,
we apply Lemma 10.134.15. □

10.135. Local complete intersections

00S8 The property of being a local complete intersection is an intrinsic property of a
Noetherian local ring. This will be discussed in Divided Power Algebra, Section
23.8. However, for the moment we just define this property for finite type algebras
over a field.

Definition 10.135.1.00S9 Let k be a field. Let S be a finite type k-algebra.

https://stacks.math.columbia.edu/tag/00S7
https://stacks.math.columbia.edu/tag/00S3
https://stacks.math.columbia.edu/tag/00S5
https://stacks.math.columbia.edu/tag/00S6
https://stacks.math.columbia.edu/tag/00S9
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(1) We say that S is a global complete intersection over k if there exists a
presentation S = k[x1, . . . , xn]/(f1, . . . , fc) such that dim(S) = n− c.

(2) We say that S is a local complete intersection over k if there exists a
covering Spec(S) =

⋃
D(gi) such that each of the rings Sgi is a global

complete intersection over k.
We will also use the convention that the zero ring is a global complete intersection
over k.
Suppose S is a global complete intersection S = k[x1, . . . , xn]/(f1, . . . , fc) as in Defi-
nition 10.135.1. For a maximal ideal m ⊂ k[x1, . . . , xn] we have dim(k[x1, . . . , xn]m) =
n (Lemma 10.114.1). If (f1, . . . , fc) ⊂ m, then we conclude that dim(Sm) ≥ n − c
by Lemma 10.60.13. Since dim(S) = n− c by Definition 10.135.1 we conclude that
dim(Sm) = n − c for all maximal ideals of S and that Spec(S) is equidimensional
(Topology, Definition 5.10.5) of dimension n−c, see Lemma 10.114.5. We will often
use this without further mention.
Lemma 10.135.2.00SA Let k be a field. Let S be a finite type k-algebra. Let g ∈ S.

(1) If S is a global complete intersection so is Sg.
(2) If S is a local complete intersection so is Sg.

Proof. The second statement follows immediately from the first. Proof of the first
statement. If Sg is the zero ring, then it is true. Assume Sg is nonzero. Write S =
k[x1, . . . , xn]/(f1, . . . , fc) with n− c = dim(S) as in Definition 10.135.1. By the re-
marks following the definition dim(Sg) = n−c. Let g′ ∈ k[x1, . . . , xn] be an element
whose residue class corresponds to g. Then Sg = k[x1, . . . , xn, xn+1]/(f1, . . . , fc, xn+1g

′−
1) as desired. □

Lemma 10.135.3.00SB Let k be a field. Let S be a finite type k-algebra. If S is a local
complete intersection, then S is a Cohen-Macaulay ring.
Proof. Choose a maximal prime m of S. We have to show that Sm is Cohen-
Macaulay. By assumption we may assume S = k[x1, . . . , xn]/(f1, . . . , fc) with
dim(S) = n − c. Let m′ ⊂ k[x1, . . . , xn] be the maximal ideal corresponding to
m. According to Proposition 10.114.2 the local ring k[x1, . . . , xn]m′ is regular lo-
cal of dimension n. In particular it is Cohen-Macaulay by Lemma 10.106.3. By
Lemma 10.60.13 applied c times the local ring Sm = k[x1, . . . , xn]m′/(f1, . . . , fc)
has dimension ≥ n − c. By assumption dim(Sm) ≤ n − c. Thus we get equality.
This implies that f1, . . . , fc is a regular sequence in k[x1, . . . , xn]m′ and that Sm is
Cohen-Macaulay, see Proposition 10.103.4. □

The following is the technical key to the rest of the material in this section. An
important feature of this lemma is that we may choose any presentation for the
ring S, but that condition (1) does not depend on this choice.
Lemma 10.135.4.00SC Let k be a field. Let S be a finite type k-algebra. Let q be
a prime of S. Choose any presentation S = k[x1, . . . , xn]/I. Let q′ be the prime
of k[x1, . . . , xn] corresponding to q. Set c = height(q′) − height(q), in other words
dimq(S) = n− c (see Lemma 10.116.4). The following are equivalent

(1) There exists a g ∈ S, g ̸∈ q such that Sg is a global complete intersection
over k.

(2) The ideal Iq′ ⊂ k[x1, . . . , xn]q′ can be generated by c elements.
(3) The conormal module (I/I2)q can be generated by c elements over Sq.

https://stacks.math.columbia.edu/tag/00SA
https://stacks.math.columbia.edu/tag/00SB
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(4) The conormal module (I/I2)q is a free Sq-module of rank c.
(5) The ideal Iq′ can be generated by a regular sequence in the regular local

ring k[x1, . . . , xn]q′ .
In this case any c elements of Iq′ which generate Iq′/q′Iq′ form a regular sequence
in the local ring k[x1, . . . , xn]q′ .

Proof. Set R = k[x1, . . . , xn]q′ . This is a Cohen-Macaulay local ring of dimension
height(q′), see for example Lemma 10.135.3. Moreover, R = R/IR = R/Iq′ = Sq is
a quotient of dimension height(q). Let f1, . . . , fc ∈ Iq′ be elements which generate
(I/I2)q. By Lemma 10.20.1 we see that f1, . . . , fc generate Iq′ . Since the dimensions
work out, we conclude by Proposition 10.103.4 that f1, . . . , fc is a regular sequence
in R. By Lemma 10.69.2 we see that (I/I2)q is free. These arguments show that
(2), (3), (4) are equivalent and that they imply the last statement of the lemma,
and therefore they imply (5).

If (5) holds, say Iq′ is generated by a regular sequence of length e, then height(q) =
dim(Sq) = dim(k[x1, . . . , xn]q′)−e = height(q′)−e by dimension theory, see Section
10.60. We conclude that e = c. Thus (5) implies (2).

We continue with the notation introduced in the first paragraph. For each fi we
may find di ∈ k[x1, . . . , xn], di ̸∈ q′ such that f ′

i = difi ∈ k[x1, . . . , xn]. Then it is
still true that Iq′ = (f ′

1, . . . , f
′
c)R. Hence there exists a g′ ∈ k[x1, . . . , xn], g′ ̸∈ q′

such that Ig′ = (f ′
1, . . . , f

′
c). Moreover, pick g′′ ∈ k[x1, . . . , xn], g′′ ̸∈ q′ such that

dim(Sg′′) = dimq Spec(S). By Lemma 10.116.4 this dimension is equal to n − c.
Finally, set g equal to the image of g′g′′ in S. Then we see that

Sg ∼= k[x1, . . . , xn, xn+1]/(f ′
1, . . . , f

′
c, xn+1g

′g′′ − 1)

and by our choice of g′′ this ring has dimension n − c. Therefore it is a global
complete intersection. Thus each of (2), (3), and (4) implies (1).

Assume (1). Let Sg ∼= k[y1, . . . , ym]/(f1, . . . , ft) be a presentation of Sg as a global
complete intersection. Write J = (f1, . . . , ft). Let q′′ ⊂ k[y1, . . . , ym] be the prime
corresponding to qSg. Note that t = m − dim(Sg) = height(q′′) − height(q), see
Lemma 10.116.4 for the last equality. As seen in the proof of Lemma 10.135.3
(and also above) the elements f1, . . . , ft form a regular sequence in the local ring
k[y1, . . . , ym]q′′ . By Lemma 10.69.2 we see that (J/J2)q is free of rank t. By Lemma
10.134.16 we have

J/J2 ⊕ Sng ∼= (I/I2)g ⊕ Smg
Thus (I/I2)q is free of rank t + n −m = m − dim(Sg) + n −m = n − dim(Sg) =
height(q′)− height(q) = c. Thus we obtain (4). □

The result of Lemma 10.135.4 suggests the following definition.

Definition 10.135.5.00SD Let k be a field. Let S be a local k-algebra essentially of finite
type over k. We say S is a complete intersection (over k) if there exists a local
k-algebra R and elements f1, . . . , fc ∈ mR such that

(1) R is essentially of finite type over k,
(2) R is a regular local ring,
(3) f1, . . . , fc form a regular sequence in R, and
(4) S ∼= R/(f1, . . . , fc) as k-algebras.

https://stacks.math.columbia.edu/tag/00SD
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By the Cohen structure theorem (see Theorem 10.160.8) any complete Noetherian
local ring may be written as the quotient of some regular complete local ring. Hence
we may use the definition above to define the notion of a complete intersection ring
for any complete Noetherian local ring. We will discuss this in Divided Power
Algebra, Section 23.8. In the meantime the following lemma shows that such a
definition makes sense.

Lemma 10.135.6.00SE Let A → B → C be surjective local ring homomorphisms.
Assume A and B are regular local rings. The following are equivalent

(1) Ker(A→ C) is generated by a regular sequence,
(2) Ker(A→ C) is generated by dim(A)− dim(C) elements,
(3) Ker(B → C) is generated by a regular sequence, and
(4) Ker(B → C) is generated by dim(B)− dim(C) elements.

Proof. A regular local ring is Cohen-Macaulay, see Lemma 10.106.3. Hence the
equivalences (1)⇔ (2) and (3)⇔ (4), see Proposition 10.103.4. By Lemma 10.106.4
the ideal Ker(A → B) can be generated by dim(A) − dim(B) elements. Hence we
see that (4) implies (2).
It remains to show that (1) implies (4). We do this by induction on dim(A) −
dim(B). The case dim(A) − dim(B) = 0 is trivial. Assume dim(A) > dim(B).
Write I = Ker(A → C) and J = Ker(A → B). Note that J ⊂ I. Our assumption
is that the minimal number of generators of I is dim(A)− dim(C). Let m ⊂ A be
the maximal ideal. Consider the maps

J/mJ → I/mI → m/m2

By Lemma 10.106.4 and its proof the composition is injective. Take any element
x ∈ J which is not zero in J/mJ . By the above and Nakayama’s lemma x is an
element of a minimal set of generators of I. Hence we may replace A by A/xA and
I by I/xA which decreases both dim(A) and the minimal number of generators of
I by 1. Thus we win. □

Lemma 10.135.7.00SF Let k be a field. Let S be a local k-algebra essentially of finite
type over k. The following are equivalent:

(1) S is a complete intersection over k,
(2) for any surjection R → S with R a regular local ring essentially of finite

presentation over k the ideal Ker(R → S) can be generated by a regular
sequence,

(3) for some surjection R → S with R a regular local ring essentially of
finite presentation over k the ideal Ker(R → S) can be generated by
dim(R)− dim(S) elements,

(4) there exists a global complete intersection A over k and a prime a of A
such that S ∼= Aa, and

(5) there exists a local complete intersection A over k and a prime a of A such
that S ∼= Aa.

Proof. It is clear that (2) implies (1) and (1) implies (3). It is also clear that
(4) implies (5). Let us show that (3) implies (4). Thus we assume there exists
a surjection R → S with R a regular local ring essentially of finite presentation
over k such that the ideal Ker(R → S) can be generated by dim(R) − dim(S)
elements. We may write R = (k[x1, . . . , xn]/J)q for some J ⊂ k[x1, . . . , xn] and

https://stacks.math.columbia.edu/tag/00SE
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some prime q ⊂ k[x1, . . . , xn] with J ⊂ q. Let I ⊂ k[x1, . . . , xn] be the kernel of the
map k[x1, . . . , xn] → S so that S ∼= (k[x1, . . . , xn]/I)q. By assumption (I/J)q is
generated by dim(R)− dim(S) elements. We conclude that Iq can be generated by
dim(k[x1, . . . , xn]q)− dim(S) elements by Lemma 10.135.6. From Lemma 10.135.4
we see that for some g ∈ k[x1, . . . , xn], g ̸∈ q the algebra (k[x1, . . . , xn]/I)g is a
global complete intersection and S is isomorphic to a local ring of it.

To finish the proof of the lemma we have to show that (5) implies (2). Assume (5)
and let π : R→ S be a surjection with R a regular local k-algebra essentially of finite
type over k. By assumption we have S = Aa for some local complete intersection A
over k. Choose a presentation R = (k[y1, . . . , ym]/J)q with J ⊂ q ⊂ k[y1, . . . , ym].
We may and do assume that J is the kernel of the map k[y1, . . . , ym] → R. Let
I ⊂ k[y1, . . . , ym] be the kernel of the map k[y1, . . . , ym] → S = Aa. Then J ⊂ I
and (I/J)q is the kernel of the surjection π : R→ S. So S = (k[y1, . . . , ym]/I)q.

By Lemma 10.126.7 we see that there exist g ∈ A, g ̸∈ a and g′ ∈ k[y1, . . . , ym],
g′ ̸∈ q such that Ag ∼= (k[y1, . . . , ym]/I)g′ . After replacing A by Ag and k[y1, . . . , ym]
by k[y1, . . . , ym+1] we may assume thatA ∼= k[y1, . . . , ym]/I. Consider the surjective
maps of local rings

k[y1, . . . , ym]q → R→ S.

We have to show that the kernel of R→ S is generated by a regular sequence. By
Lemma 10.135.4 we know that k[y1, . . . , ym]q → Aa = S has this property (as A is
a local complete intersection over k). We win by Lemma 10.135.6. □

Lemma 10.135.8.00SG Let k be a field. Let S be a finite type k-algebra. Let q be a
prime of S. The following are equivalent:

(1) The local ring Sq is a complete intersection ring (Definition 10.135.5).
(2) There exists a g ∈ S, g ̸∈ q such that Sg is a local complete intersection

over k.
(3) There exists a g ∈ S, g ̸∈ q such that Sg is a global complete intersection

over k.
(4) For any presentation S = k[x1, . . . , xn]/I with q′ ⊂ k[x1, . . . , xn] corre-

sponding to q any of the equivalent conditions (1) – (5) of Lemma 10.135.4
hold.

Proof. This is a combination of Lemmas 10.135.4 and 10.135.7 and the definitions.
□

Lemma 10.135.9.00SH Let k be a field. Let S be a finite type k-algebra. The following
are equivalent:

(1) The ring S is a local complete intersection over k.
(2) All local rings of S are complete intersection rings over k.
(3) All localizations of S at maximal ideals are complete intersection rings

over k.

Proof. This follows from Lemma 10.135.8, the fact that Spec(S) is quasi-compact
and the definitions. □

The following lemma says that being a complete intersection is preserved under
change of base field (in a strong sense).

https://stacks.math.columbia.edu/tag/00SG
https://stacks.math.columbia.edu/tag/00SH


10.135. LOCAL COMPLETE INTERSECTIONS 774

Lemma 10.135.10.00SI Let K/k be a field extension. Let S be a finite type algebra
over k. Let qK be a prime of SK = K ⊗k S and let q be the corresponding prime
of S. Then Sq is a complete intersection over k (Definition 10.135.5) if and only if
(SK)qK is a complete intersection over K.

Proof. Choose a presentation S = k[x1, . . . , xn]/I. This gives a presentation SK =
K[x1, . . . , xn]/IK where IK = K ⊗k I. Let q′

K ⊂ K[x1, . . . , xn], resp. q′ ⊂
k[x1, . . . , xn] be the corresponding prime. We will show that the equivalent con-
ditions of Lemma 10.135.4 hold for the pair (S = k[x1, . . . , xn]/I, q) if and only if
they hold for the pair (SK = K[x1, . . . , xn]/IK , qK). The lemma will follow from
this (see Lemma 10.135.8).

By Lemma 10.116.6 we have dimq S = dimqK SK . Hence the integer c occurring
in Lemma 10.135.4 is the same for the pair (S = k[x1, . . . , xn]/I, q) as for the pair
(SK = K[x1, . . . , xn]/IK , qK). On the other hand we have

I ⊗k[x1,...,xn] κ(q′)⊗κ(q′) κ(q′
K) = I ⊗k[x1,...,xn] κ(q′

K)
= I ⊗k[x1,...,xn] K[x1, . . . , xn]⊗K[x1,...,xn] κ(q′

K)
= (K ⊗k I)⊗K[x1,...,xn] κ(q′

K)
= IK ⊗K[x1,...,xn] κ(q′

K).

Therefore, dimκ(q′) I ⊗k[x1,...,xn] κ(q′) = dimκ(q′
K

) IK ⊗K[x1,...,xn] κ(q′
K). Thus it

follows from Nakayama’s Lemma 10.20.1 that the minimal number of generators of
Iq′ is the same as the minimal number of generators of (IK)q′

K
. Thus the lemma

follows from characterization (2) of Lemma 10.135.4. □

Lemma 10.135.11.00SJ Let k → K be a field extension. Let S be a finite type k-
algebra. Then S is a local complete intersection over k if and only if S ⊗k K is a
local complete intersection over K.

Proof. This follows from a combination of Lemmas 10.135.9 and 10.135.10. But we
also give a different proof here (based on the same principles).

Set S′ = S ⊗k K. Let α : k[x1, . . . , xn] → S be a presentation with kernel I. Let
α′ : K[x1, . . . , xn]→ S′ be the induced presentation with kernel I ′.

Suppose that S is a local complete intersection. Pick a prime q ⊂ S′. Denote q′ the
corresponding prime of K[x1, . . . , xn], p the corresponding prime of S, and p′ the
corresponding prime of k[x1, . . . , xn]. Consider the following diagram of Noetherian
local rings

S′
q K[x1, . . . , xn]q′oo

Sp

OO

k[x1, . . . , xn]p′

OO

oo

By Lemma 10.135.4 we know that Sp is cut out by some regular sequence f1, . . . , fc
in k[x1, . . . , xn]p′ . Since the right vertical arrow is flat we see that the images of
f1, . . . , fc form a regular sequence inK[x1, . . . , xn]q′ . Because tensoring withK over
k is an exact functor we have S′

q = K[x1, . . . , xn]q′/(f1, . . . , fc). Hence by Lemma
10.135.4 again we see that S′ is a local complete intersection in a neighbourhood
of q. Since q was arbitrary we see that S′ is a local complete intersection over K.

https://stacks.math.columbia.edu/tag/00SI
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Suppose that S′ is a local complete intersection. Pick a maximal ideal m of S. Let
m′ denote the corresponding maximal ideal of k[x1, . . . , xn]. Denote κ = κ(m) the
residue field. By Remark 10.17.8 the primes of S′ lying over m correspond to primes
in K ⊗k κ. By the Hilbert-Nullstellensatz Theorem 10.34.1 we have [κ : k] < ∞.
Hence K ⊗k κ is finite nonzero over K. Hence K ⊗k κ has a finite number > 0 of
primes which are all maximal, each of which has a residue field finite over K (see
Section 10.53). Hence there are finitely many > 0 prime ideals n ⊂ S′ lying over
m, each of which is maximal and has a residue field which is finite over K. Pick
one, say n ⊂ S′, and let n′ ⊂ K[x1, . . . , xn] denote the corresponding prime ideal of
K[x1, . . . , xn]. Note that since V (mS′) is finite, we see that n is an isolated closed
point of it, and we deduce that mS′

n is an ideal of definition of S′
n. This implies

that dim(Sm) = dim(S′
n) for example by Lemma 10.112.7. (This can also be seen

using Lemma 10.116.6.) Consider the corresponding diagram of Noetherian local
rings

S′
n K[x1, . . . , xn]n′oo

Sm

OO

k[x1, . . . , xn]m′

OO

oo

According to Lemma 10.134.8 we have NL(α) ⊗S S′ = NL(α′), in particular
I ′/(I ′)2 = I/I2⊗S S′. Thus (I/I2)m⊗Sm

κ and (I ′/(I ′)2)n⊗S′
n
κ(n) have the same

dimension. Since (I ′/(I ′)2)n is free of rank n− dimS′
n we deduce that (I/I2)m can

be generated by n − dimS′
n = n − dimSm elements. By Lemma 10.135.4 we see

that S is a local complete intersection in a neighbourhood of m. Since m was any
maximal ideal we conclude that S is a local complete intersection. □

We end with a lemma which we will later use to prove that given ring maps T →
A→ B where B is syntomic over T , and B is syntomic over A, then A is syntomic
over T .

Lemma 10.135.12.02JP Let
B Soo

A

OO

Roo

OO

be a commutative square of local rings. Assume
(1) R and S = S/mRS are regular local rings,
(2) A = R/I and B = S/J for some ideals I, J ,
(3) J ⊂ S and J = J/mR ∩ J ⊂ S are generated by regular sequences, and
(4) A→ B and R→ S are flat.

Then I is generated by a regular sequence.

Proof. Set B = B/mRB = B/mAB so that B = S/J . Let f1, . . . , fc ∈ J be
elements such that f1, . . . , f c ∈ J form a regular sequence generating J . Note
that c = dim(S) − dim(B), see Lemma 10.135.6. By Lemma 10.99.3 the ring
S/(f1, . . . , fc) is flat over R. Hence S/(f1, . . . , fc) + IS is flat over A. The map
S/(f1, . . . , fc)+ IS → B is therefore a surjection of finite S/IS-modules flat over A
which is an isomorphism modulo mA, and hence an isomorphism by Lemma 10.99.1.
In other words, J = (f1, . . . , fc) + IS.

https://stacks.math.columbia.edu/tag/02JP
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By Lemma 10.135.6 again the ideal J is generated by a regular sequence of c =
dim(S) − dim(B) elements. Hence J/mSJ is a vector space of dimension c. By
the description of J above there exist g1, . . . , gc−c ∈ I such that J is generated by
f1, . . . , fc, g1, . . . , gc−c (use Nakayama’s Lemma 10.20.1). Consider the ring A′ =
R/(g1, . . . , gc−c) and the surjection A′ → A. We see from the above that B =
S/(f1, . . . , fc, g1, . . . , gc−c) is flat over A′ (as S/(f1, . . . , fc) is flat over R). Hence
A′ → B is injective (as it is faithfully flat, see Lemma 10.39.17). Since this map
factors through A we get A′ = A. Note that dim(B) = dim(A) + dim(B), and
dim(S) = dim(R) + dim(S), see Lemma 10.112.7. Hence c− c = dim(R)− dim(A)
by elementary algebra. Thus I = (g1, . . . , gc−c) is generated by a regular sequence
according to Lemma 10.135.6. □

10.136. Syntomic morphisms

00SK Syntomic ring maps are flat finitely presented ring maps all of whose fibers are local
complete intersections. We discuss general local complete intersection ring maps in
More on Algebra, Section 15.33.

Definition 10.136.1.00SL A ring map R → S is called syntomic, or we say S is a flat
local complete intersection over R if it is flat, of finite presentation, and if all of its
fibre rings S ⊗R κ(p) are local complete intersections, see Definition 10.135.1.

Clearly, an algebra over a field is syntomic over the field if and only if it is a local
complete intersection. Here is a pleasing feature of this definition.

Lemma 10.136.2.00SM Let R → S be a ring map. Let R → R′ be a faithfully flat
ring map. Set S′ = R′ ⊗R S. Then R → S is syntomic if and only if R′ → S′ is
syntomic.

Proof. By Lemma 10.126.2 and Lemma 10.39.8 this holds for the property of being
flat and for the property of being of finite presentation. The map Spec(R′) →
Spec(R) is surjective, see Lemma 10.39.16. Thus it suffices to show given primes
p′ ⊂ R′ lying over p ⊂ R that S ⊗R κ(p) is a local complete intersection if and
only if S′ ⊗R′ κ(p′) is a local complete intersection. Note that S′ ⊗R′ κ(p′) =
S ⊗R κ(p)⊗κ(p) κ(p′). Thus Lemma 10.135.11 applies. □

Lemma 10.136.3.00SN Any base change of a syntomic map is syntomic.

Proof. This is true for being flat, for being of finite presentation, and for having
local complete intersections as fibres by Lemmas 10.39.7, 10.6.2 and 10.135.11. □

Lemma 10.136.4.00SO Let R → S be a ring map. Suppose we have g1, . . . gm ∈ S
which generate the unit ideal such that each R→ Sgi is syntomic. Then R→ S is
syntomic.

Proof. This is true for being flat and for being of finite presentation by Lemmas
10.39.18 and 10.23.3. The property of having fibre rings which are local complete
intersections is local on S by its very definition, see Definition 10.135.1. □

Definition 10.136.5.00SP Let R → S be a ring map. We say that R → S is a relative
global complete intersection if there exists a presentation S = R[x1, . . . , xn]/(f1, . . . , fc)
and every nonempty fibre of Spec(S)→ Spec(R) has dimension n− c. We will say
“let S = R[x1, . . . , xn]/(f1, . . . , fc) be a relative global complete intersection” to
indicate this situation.

https://stacks.math.columbia.edu/tag/00SL
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The following lemma is occasionally useful to find global presentations.

Lemma 10.136.6.07CF Let S be a finitely presented R-algebra which has a presentation
S = R[x1, . . . , xn]/I such that I/I2 is free over S. Then S has a presentation
S = R[y1, . . . , ym]/(f1, . . . , fc) such that (f1, . . . , fc)/(f1, . . . , fc)2 is free with basis
given by the classes of f1, . . . , fc.

Proof. Note that I is a finitely generated ideal by Lemma 10.6.3. Let f1, . . . , fc ∈ I
be elements which map to a basis of I/I2. By Nakayama’s lemma (Lemma 10.20.1)
there exists a g ∈ 1 + I such that

g · I ⊂ (f1, . . . , fc)

and Ig ∼= (f1, . . . , fc)g. Hence we see that

S ∼= R[x1, . . . , xn]/(f1, . . . , fc)[1/g] ∼= R[x1, . . . , xn, xn+1]/(f1, . . . , fc, gxn+1 − 1)

as desired. It follows that f1, . . . , fc, gxn+1− 1 form a basis for (f1, . . . , fc, gxn+1−
1)/(f1, . . . , fc, gxn+1 − 1)2 for example by applying Lemma 10.134.12. □

Example 10.136.7.00SQ Let n,m ≥ 1 be integers. Consider the ring map

R = Z[a1, . . . , an+m] −→ S = Z[b1, . . . , bn, c1, . . . , cm]
a1 7−→ b1 + c1

a2 7−→ b2 + b1c1 + c2

. . . . . . . . .

an+m 7−→ bncm

In other words, this is the unique ring map of polynomial rings as indicated such
that the polynomial factorization

xn+m+a1x
n+m−1 + . . .+an+m = (xn+ b1x

n−1 + . . .+ bn)(xm+ c1x
m−1 + . . .+ cm)

holds. Note that S is generated by n+m elements over R (namely, bi, cj) and that
there are n + m equations (namely ak = ak(bi, cj)). In order to show that S is a
relative global complete intersection over R it suffices to prove that all fibres have
dimension 0.

To prove this, let R → k be a ring map into a field k. Say ai maps to αi ∈ k.
Consider the fibre ring Sk = k ⊗R S. Let k → K be a field extension. A k-algebra
map of Sk → K is the same thing as finding β1, . . . , βn, γ1, . . . , γm ∈ K such that

xn+m+α1x
n+m−1 + . . .+αn+m = (xn+β1x

n−1 + . . .+βn)(xm+γ1x
m−1 + . . .+γm).

Hence we see there are at most finitely many choices of such n+m-tuples in K. This
proves that all fibres have finitely many closed points (use Hilbert’s Nullstellensatz
to see they all correspond to solutions in k for example) and hence that R → S is
a relative global complete intersection.

Another way to argue this is to show Z[a1, . . . , an+m]→ Z[b1, . . . , bn, c1, . . . , cm] is
actually also a finite ring map. Namely, by Lemma 10.38.5 each of bi, cj is integral
over R, and hence R→ S is finite by Lemma 10.36.4.

https://stacks.math.columbia.edu/tag/07CF
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Example 10.136.8.00SR Consider the ring map

R = Z[a1, . . . , an] −→ S = Z[α1, . . . , αn]
a1 7−→ α1 + . . .+ αn

. . . . . . . . .

an 7−→ α1 . . . αn

In other words this is the unique ring map of polynomial rings as indicated such
that

xn + a1x
n−1 + . . .+ an =

∏n

i=1
(x+ αi)

holds in Z[αi, x]. Another way to say this is that ai maps to the ith elementary
symmetric function in α1, . . . , αn. Note that S is generated by n elements over
R subject to n equations. Hence to show that S is a relative global complete
intersection over R we have to show that the fibre rings S ⊗R κ(p) have dimension
0. This follows as in Example 10.136.7 because the ring map Z[a1, . . . , an] →
Z[α1, . . . , αn] is actually finite since each αi ∈ S satisfies the monic equation xn −
a1x

n−1 + . . .+ (−1)nan over R.

Lemma 10.136.9.00SS Let S = R[x1, . . . , xn]/(f1, . . . , fc) be a relative global complete
intersection (Definition 10.136.5)

(1) For any R→ R′ the base change R′ ⊗R S = R′[x1, . . . , xn]/(f1, . . . , fc) is
a relative global complete intersection.

(2) For any g ∈ S which is the image of h ∈ R[x1, . . . , xn] the ring Sg =
R[x1, . . . , xn, xn+1]/(f1, . . . , fc, hxn+1 − 1) is a relative global complete
intersection.

(3) If R → S factors as R → Rf → S for some f ∈ R. Then the ring
S = Rf [x1, . . . , xn]/(f1, . . . , fc) is a relative global complete intersection
over Rf .

Proof. By Lemma 10.116.5 the fibres of a base change have the same dimension
as the fibres of the original map. Moreover R′ ⊗R R[x1, . . . , xn]/(f1, . . . , fc) =
R′[x1, . . . , xn]/(f1, . . . , fc). Thus (1) follows. The proof of (2) is that the localiza-
tion at one element can be described as Sg ∼= S[xn+1]/(gxn+1 − 1). Assertion (3)
follows from (1) since under the assumptions of (3) we have Rf ⊗R S ∼= S. □

Lemma 10.136.10.00ST Let R be a ring. Let S = R[x1, . . . , xn]/(f1, . . . , fc). We will
find h ∈ R[x1, . . . , xn] which maps to g ∈ S such that

Sg = R[x1, . . . , xn, xn+1]/(f1, . . . , fc, hxn+1 − 1)

is a relative global complete intersection with a presentation as in Definition 10.136.5
in each of the following cases:

(1) Let I ⊂ R be an ideal. If the fibres of Spec(S/IS) → Spec(R/I) have
dimension n − c, then we can find (h, g) as above such that g maps to
1 ∈ S/IS.

(2) Let p ⊂ R be a prime. If dim(S ⊗R κ(p)) = n− c, then we can find (h, g)
as above such that g maps to a unit of S ⊗R κ(p).

(3) Let q ⊂ S be a prime lying over p ⊂ R. If dimq(S/R) = n − c, then we
can find (h, g) as above such that g ̸∈ q.

https://stacks.math.columbia.edu/tag/00SR
https://stacks.math.columbia.edu/tag/00SS
https://stacks.math.columbia.edu/tag/00ST


10.136. SYNTOMIC MORPHISMS 779

Proof. Ad (1). By Lemma 10.125.6 there exists an open subset W ⊂ Spec(S)
containing V (IS) such that all fibres of W → Spec(R) have dimension ≤ n−c. Say
W = Spec(S) \ V (J). Then V (J) ∩ V (IS) = ∅ hence we can find a g ∈ J which
maps to 1 ∈ S/IS. Let h ∈ R[x1, . . . , xn] be any preimage of g.

Ad (2). By Lemma 10.125.6 there exists an open subset W ⊂ Spec(S) containing
Spec(S ⊗R κ(p)) such that all fibres of W → Spec(R) have dimension ≤ n− c. Say
W = Spec(S) \ V (J). Then V (J · S ⊗R κ(p)) = ∅. Hence we can find a g ∈ J
which maps to a unit in S ⊗R κ(p) (details omitted). Let h ∈ R[x1, . . . , xn] be any
preimage of g.

Ad (3). By Lemma 10.125.6 there exists a g ∈ S, g ̸∈ q such that all nonempty
fibres of R → Sg have dimension ≤ n − c. Let h ∈ R[x1, . . . , xn] be any element
that maps to g. □

The following lemma says we can do absolute Noetherian approximation for relative
global complete intersections.

Lemma 10.136.11.00SU Let R be a ring. Let S = R[x1, . . . , xn]/(f1, . . . , fc) be a relative
global complete intersection (Definition 10.136.5). There exist a finite type Z-
subalgebra R0 ⊂ R such that fi ∈ R0[x1, . . . , xn] and such that

S0 = R0[x1, . . . , xn]/(f1, . . . , fc)

is a relative global complete intersection.

Proof. Let R0 ⊂ R be the Z-algebra of R generated by all the coefficients of the
polynomials f1, . . . , fc. Let S0 = R0[x1, . . . , xn]/(f1, . . . , fc). Clearly, S = R⊗R0S0.
Pick a prime q ⊂ S and denote p ⊂ R, q0 ⊂ S0, and p0 ⊂ R0 the primes it lies
over. Because dim(S ⊗R κ(p)) = n− c we also have dim(S0⊗R0 κ(p0)) = n− c, see
Lemma 10.116.5. By Lemma 10.125.6 there exists a g ∈ S0, g ̸∈ q0 such that all
nonempty fibres of R0 → (S0)g have dimension ≤ n − c. As q was arbitrary and
Spec(S) quasi-compact, we can find finitely many g1, . . . , gm ∈ S0 such that (a) for
j = 1, . . . ,m the nonempty fibres of R0 → (S0)gj have dimension ≤ n − c and (b)
the image of Spec(S) → Spec(S0) is contained in D(g1) ∪ . . . ∪ D(gm). In other
words, the images of g1, . . . , gm in S = R ⊗R0 S0 generate the unit ideal. After
increasing R0 we may assume that g1, . . . , gm generate the unit ideal in S0. By (a)
the nonempty fibres of R0 → S0 all have dimension ≤ n− c and we conclude. □

Lemma 10.136.12.00SV Let R be a ring. Let S = R[x1, . . . , xn]/(f1, . . . , fc) be a relative
global complete intersection (Definition 10.136.5). For every prime q of S, let q′

denote the corresponding prime of R[x1, . . . , xn]. Then
(1) f1, . . . , fc is a regular sequence in the local ring R[x1, . . . , xn]q′ ,
(2) each of the rings R[x1, . . . , xn]q′/(f1, . . . , fi) is flat over R, and
(3) the S-module (f1, . . . , fc)/(f1, . . . , fc)2 is free with basis given by the ele-

ments fi mod (f1, . . . , fc)2.

Proof. By Lemma 10.69.2 part (3) follows from part (1).

Assume R is Noetherian. Let p = R ∩ q′. By Lemma 10.135.4 for example we
see that f1, . . . , fc form a regular sequence in the local ring R[x1, . . . , xn]q′ ⊗R
κ(p). Moreover, the local ring R[x1, . . . , xn]q′ is flat over Rp. Since R, and hence
R[x1, . . . , xn]q′ is Noetherian we see from Lemma 10.99.3 that (1) and (2) hold.
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Let R be general. Write R = colimλ∈Λ Rλ as the filtered colimit of finite type
Z-subalgebras (compare with Section 10.127). We may assume that f1, . . . , fc ∈
Rλ[x1, . . . , xn] for all λ. Let R0 ⊂ R be as in Lemma 10.136.11. Then we may
assume R0 ⊂ Rλ for all λ. It follows that Sλ = Rλ[x1, . . . , xn]/(f1, . . . , fc) is
a relative global complete intersection (as base change of S0 via R0 → Rλ, see
Lemma 10.136.9). Denote pλ, qλ, q′

λ the prime of Rλ, Sλ, Rλ[x1, . . . , xn] induced
by p, q, q′. With this notation, we have (1) and (2) for each λ. Since

R[x1, . . . , xn]q′/(f1, . . . , fi) = colimRλ[x1, . . . , xn]q′
λ
/(f1, . . . , fi)

we deduce flatness in (2) over R from Lemma 10.39.6. Since we have

R[x1, . . . , xn]q′/(f1, . . . , fi)
fi+1−−−→ R[x1, . . . , xn]q′/(f1, . . . , fi)

= colim
(
Rλ[x1, . . . , xn]q′

λ
/(f1, . . . , fi)

fi+1−−−→ Rλ[x1, . . . , xn]q′
λ
/(f1, . . . , fi)

)
and since filtered colimits are exact (Lemma 10.8.8) we conclude that we have
(1). □

Lemma 10.136.13.00SW A relative global complete intersection is syntomic, i.e., flat.

Proof. Let R→ S be a relative global complete intersection. The fibres are global
complete intersections, and S is of finite presentation over R. Thus the only thing
to prove is that R→ S is flat. This is true by (2) of Lemma 10.136.12. □

Lemma 10.136.14.03HS Suppose that A is a ring, and P (x) = xn + b1x
n−1 + . . .+ bn ∈

A[x] is a monic polynomial over A. Then there exists a syntomic, finite locally free,
faithfully flat ring extension A ⊂ A′ such that P (x) =

∏
i=1,...,n(x− βi) for certain

βi ∈ A′.

Proof. Take A′ = A⊗RS, where R and S are as in Example 10.136.8, where R→ A
maps ai to bi, and let βi = −1 ⊗ αi. Observe that R → S is syntomic (Lemma
10.136.13), R → S is finite by construction, and R is Noetherian (so any finite
R-module is finitely presented). Hence S is finite locally free as an R-module by
Lemma 10.78.2. We omit the verification that Spec(S) → Spec(R) is surjective,
which shows that S is faithfully flat over R (Lemma 10.39.16). These properties
are inherited by the base change A→ A′; some details omitted. □

Lemma 10.136.15.00SY Let R→ S be a ring map. Let q ⊂ S be a prime lying over the
prime p of R. The following are equivalent:

(1) There exists an element g ∈ S, g ̸∈ q such that R→ Sg is syntomic.
(2) There exists an element g ∈ S, g ̸∈ q such that Sg is a relative global

complete intersection over R.
(3) There exists an element g ∈ S, g ̸∈ q, such that R → Sg is of finite

presentation, the local ring map Rp → Sq is flat, and the local ring Sq/pSq

is a complete intersection ring over κ(p) (see Definition 10.135.5).

Proof. The implication (1) ⇒ (3) is Lemma 10.135.8. The implication (2) ⇒ (1) is
Lemma 10.136.13. It remains to show that (3) implies (2).
Assume (3). After replacing S by Sg for some g ∈ S, g ̸∈ q we may assume
S is finitely presented over R. Choose a presentation S = R[x1, . . . , xn]/I. Let
q′ ⊂ R[x1, . . . , xn] be the prime corresponding to q. Write κ(p) = k. Note that
S ⊗R k = k[x1, . . . , xn]/I where I ⊂ k[x1, . . . , xn] is the ideal generated by the

https://stacks.math.columbia.edu/tag/00SW
https://stacks.math.columbia.edu/tag/03HS
https://stacks.math.columbia.edu/tag/00SY


10.136. SYNTOMIC MORPHISMS 781

image of I. Let q′ ⊂ k[x1, . . . , xn] be the prime ideal generated by the image of q′.
By Lemma 10.135.8 the equivalent conditions of Lemma 10.135.4 hold for I and q′.
Say the dimension of Iq′/q′Iq′ over κ(q′) is c. Pick f1, . . . , fc ∈ I mapping to a basis
of this vector space. The images f j ∈ I generate Iq′ (by Lemma 10.135.4). Set
S′ = R[x1, . . . , xn]/(f1, . . . , fc). Let J be the kernel of the surjection S′ → S. Since
S is of finite presentation J is a finitely generated ideal (Lemma 10.6.2). Consider
the short exact sequence

0→ J → S′ → S → 0
As Sq is flat over R we see that Jq′ ⊗R k → S′

q′ ⊗R k is injective (Lemma 10.39.12).
However, by construction S′

q′ ⊗R k maps isomorphically to Sq ⊗R k. Hence we
conclude that Jq′ ⊗R k = Jq′/pJq′ = 0. By Nakayama’s lemma (Lemma 10.20.1)
we conclude that there exists a g ∈ R[x1, . . . , xn], g ̸∈ q′ such that Jg = 0. In other
words S′

g
∼= Sg. After further localizing we see that S′ (and hence S) becomes a

relative global complete intersection by Lemma 10.136.10 as desired. □

Lemma 10.136.16.07BT Let R be a ring. Let S = R[x1, . . . , xn]/I for some finitely
generated ideal I. If g ∈ S is such that Sg is syntomic over R, then (I/I2)g is a
finite projective Sg-module.

Proof. By Lemma 10.136.15 there exist finitely many elements g1, . . . , gm ∈ S which
generate the unit ideal in Sg such that each Sggj is a relative global complete
intersection over R. Since it suffices to prove that (I/I2)ggj is finite projective, see
Lemma 10.78.2, we may assume that Sg is a relative global complete intersection.
In this case the result follows from Lemmas 10.134.16 and 10.136.12. □

Lemma 10.136.17.00SZ Let R→ S, S → S′ be ring maps.
(1) If R→ S and S → S′ are syntomic, then R→ S′ is syntomic.
(2) If R → S and S → S′ are relative global complete intersections, then

R→ S′ is a relative global complete intersection.

Proof. Proof of (2). Say R → S and S → S′ are relative global complete in-
tersections and we have presentations S = R[x1, . . . , xn]/(f1, . . . , fc) and S′ =
S[y1, . . . , ym]/(h1, . . . , hd) as in Definition 10.136.5. Then

S′ ∼= R[x1, . . . , xn, y1, . . . , ym]/(f1, . . . , fc, h
′
1, . . . , h

′
d)

for some lifts h′
j ∈ R[x1, . . . , xn, y1, . . . , ym] of the hj . Hence it suffices to bound

the dimensions of the fibre rings. Thus we may assume R = k is a field. In this
case we see that we have a ring, namely S, which is of finite type over k and
equidimensional of dimension n− c, and a finite type ring map S → S′ all of whose
nonempty fibre rings are equidimensional of dimension m − d. Then, by Lemma
10.112.6 for example applied to localizations at maximal ideals of S′, we see that
dim(S′) ≤ n− c+m− d as desired.
We will reduce part (1) to part (2). Assume R→ S and S → S′ are syntomic. Let
q′ ⊂ S be a prime ideal lying over q ⊂ S. By Lemma 10.136.15 there exists a g′ ∈ S′,
g′ ̸∈ q′ such that S → S′

g′ is a relative global complete intersection. Similarly, we
find g ∈ S, g ̸∈ q such that R → Sg is a relative global complete intersection. By
Lemma 10.136.9 the ring map Sg → Sgg′ is a relative global complete intersection.
By part (2) we see that R → Sgg′ is a relative global complete intersection and
gg′ ̸∈ q′. Since q′ was arbitrary combining Lemmas 10.136.15 and 10.136.4 we see
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that R → S′ is syntomic (this also uses that the spectrum of S′ is quasi-compact,
see Lemma 10.17.10). □

The following lemma will be improved later, see Smoothing Ring Maps, Proposition
16.3.2.

Lemma 10.136.18.00T0 Let R be a ring and let I ⊂ R be an ideal. Let R/I → S be
a syntomic map. Then there exists elements gi ∈ S which generate the unit ideal
of S such that each Sgi

∼= Si/ISi for some relative global complete intersection Si
over R.

Proof. By Lemma 10.136.15 we find a collection of elements gi ∈ S which generate
the unit ideal of S such that each Sgi is a relative global complete intersection
over R/I. Hence we may assume that S is a relative global complete intersec-
tion. Write S = (R/I)[x1, . . . , xn]/(f1, . . . , f c) as in Definition 10.136.5. Choose
f1, . . . , fc ∈ R[x1, . . . , xn] lifting f1, . . . , f c. Set S = R[x1, . . . , xn]/(f1, . . . , fc).
Note that S/IS ∼= S. By Lemma 10.136.10 we can find g ∈ S mapping to 1 in S
such that Sg is a relative global complete intersection over R. Since S ∼= Sg/ISg
this finishes the proof. □

10.137. Smooth ring maps

00T1 Let us motivate the definition of a smooth ring map by an example. Suppose R is
a ring and S = R[x, y]/(f) for some nonzero f ∈ R[x, y]. In this case there is an
exact sequence

S → Sdx⊕ Sdy → ΩS/R → 0
where the first arrow maps 1 to ∂f

∂xdx+ ∂f
∂ydy see Section 10.134. We conclude that

ΩS/R is locally free of rank 1 if the partial derivatives of f generate the unit ideal
in S. In this case S is smooth of relative dimension 1 over R. But it can happen
that ΩS/R is locally free of rank 2 namely if both partial derivatives of f are zero.
For example if for a prime p we have p = 0 in R and f = xp+yp then this happens.
Here R→ S is a relative global complete intersection of relative dimension 1 which
is not smooth. Hence, in order to check that a ring map is smooth it is not sufficient
to check whether the module of differentials is free. The correct condition is the
following.

Definition 10.137.1.00T2 A ring map R → S is smooth if it is of finite presentation
and the naive cotangent complex NLS/R is quasi-isomorphic to a finite projective
S-module placed in degree 0.

In particular, if R → S is smooth then the module ΩS/R is a finite projective
S-module. Moreover, by Lemma 10.137.2 the naive cotangent complex of any
presentation has the same structure. Thus, for a surjection α : R[x1, . . . , xn] → S
with kernel I the map

I/I2 −→ ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S

is a split injection. In other words
⊕n

i=1 Sdxi ∼= I/I2 ⊕ ΩS/R as S-modules. This
implies that I/I2 is a finite projective S-module too!

Lemma 10.137.2.05GK Let R→ S be a ring map of finite presentation. If for some pre-
sentation α of S over R the naive cotangent complex NL(α) is quasi-isomorphic to
a finite projective S-module placed in degree 0, then this holds for any presentation.
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Proof. Immediate from Lemma 10.134.2. □

Lemma 10.137.3.00T3 Let R→ S be a smooth ring map. Any localization Sg is smooth
over R. If f ∈ R maps to an invertible element of S, then Rf → S is smooth.

Proof. By Lemma 10.134.13 the naive cotangent complex for Sg over R is the
base change of the naive cotangent complex of S over R. The assumption is that
the naive cotangent complex of S/R is ΩS/R and that this is a finite projective
S-module. Hence so is its base change. Thus Sg is smooth over R.

The second assertion follows in the same way from Lemma 10.134.11. □

Lemma 10.137.4.00T4 Let R→ S be a smooth ring map. Let R→ R′ be any ring map.
Then the base change R′ → S′ = R′ ⊗R S is smooth.

Proof. Let α : R[x1, . . . , xn] → S be a presentation with kernel I. Let α′ :
R′[x1, . . . , xn] → R′ ⊗R S be the induced presentation. Let I ′ = Ker(α′). Since
0→ I → R[x1, . . . , xn]→ S → 0 is exact, the sequence R′⊗R I → R′[x1, . . . , xn]→
R′ ⊗R S → 0 is exact. Thus R′ ⊗R I → I ′ is surjective. By Definition 10.137.1
there is a short exact sequence

0→ I/I2 → ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S → ΩS/R → 0

and the S-module ΩS/R is finite projective. In particular I/I2 is a direct summand
of ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S. Consider the commutative diagram

R′ ⊗R (I/I2) //

��

R′ ⊗R (ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S)

��
I ′/(I ′)2 // ΩR′[x1,...,xn]/R′ ⊗R′[x1,...,xn] (R′ ⊗R S)

Since the right vertical map is an isomorphism we see that the left vertical map is
injective and surjective by what was said above. Thus we conclude that NL(α′) is
quasi-isomorphic to ΩS′/R′ ∼= S′ ⊗S ΩS/R. And this is finite projective since it is
the base change of a finite projective module. □

Lemma 10.137.5.00T5 Let k be a field. Let S be a smooth k-algebra. Then S is a local
complete intersection.

Proof. By Lemmas 10.137.4 and 10.135.11 it suffices to prove this when k is alge-
braically closed. Choose a presentation α : k[x1, . . . , xn] → S with kernel I. Let
m be a maximal ideal of S, and let m′ ⊃ I be the corresponding maximal ideal of
k[x1, . . . , xn]. We will show that condition (5) of Lemma 10.135.4 holds (with m
instead of q). We may write m′ = (x1 − a1, . . . , xn − an) for some ai ∈ k, because
k is algebraically closed, see Theorem 10.34.1. By our assumption that k → S is
smooth the S-module map d : I/I2 →

⊕n
i=1 Sdxi is a split injection. Hence the

corresponding map I/m′I →
⊕
κ(m′)dxi is injective. Say dimκ(m′)(I/m′I) = c

and pick f1, . . . , fc ∈ I which map to a κ(m′)-basis of I/m′I. By Nakayama’s
Lemma 10.20.1 we see that f1, . . . , fc generate Im′ over k[x1, . . . , xn]m′ . Consider
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the commutative diagram

I //

��

I/I2 //

��

I/m′I

��
Ωk[x1,...,xn]/k //⊕Sdxi

dxi 7→xi−ai // m′/(m′)2

(proof commutativity omitted). The middle vertical map is the one defining the
naive cotangent complex of α. Note that the right lower horizontal arrow induces
an isomorphism

⊕
κ(m′)dxi → m′/(m′)2. Hence our generators f1, . . . , fc of Im′

map to a collection of elements in k[x1, . . . , xn]m′ whose classes in m′/(m′)2 are
linearly independent over κ(m′). Therefore they form a regular sequence in the ring
k[x1, . . . , xn]m′ by Lemma 10.106.3. This verifies condition (5) of Lemma 10.135.4
hence Sg is a global complete intersection over k for some g ∈ S, g ̸∈ m. As this
works for any maximal ideal of S we conclude that S is a local complete intersection
over k. □

Definition 10.137.6.00T6 Let R be a ring. Given integers n ≥ c ≥ 0 and f1, . . . , fc ∈
R[x1, . . . , xn] we say

S = R[x1, . . . , xn]/(f1, . . . , fc)
is a standard smooth algebra over R if the polynomial

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fc/∂x1
∂f1/∂x2 ∂f2/∂x2 . . . ∂fc/∂x2
. . . . . . . . . . . .

∂f1/∂xc ∂f2/∂xc . . . ∂fc/∂xc


maps to an invertible element in S.

Lemma 10.137.7.00T7 Let S = R[x1, . . . , xn]/(f1, . . . , fc) = R[x1, . . . , xn]/I be a stan-
dard smooth algebra. Then

(1) the ring map R→ S is smooth,
(2) the S-module ΩS/R is free on dxc+1, . . . ,dxn,
(3) the S-module I/I2 is free on the classes of f1, . . . , fc,
(4) for any g ∈ S the ring map R→ Sg is standard smooth,
(5) for any ring map R → R′ the base change R′ → R′ ⊗R S is standard

smooth,
(6) if f ∈ R maps to an invertible element in S, then Rf → S is standard

smooth, and
(7) the ring S is a relative global complete intersection over R.

Proof. Consider the naive cotangent complex of the given presentation

(f1, . . . , fc)/(f1, . . . , fc)2 −→
⊕n

i=1
Sdxi

Let us compose this map with the projection onto the first c direct summands
of the direct sum. According to the definition of a standard smooth algebra
the classes fi mod (f1, . . . , fc)2 map to a basis of

⊕c
i=1 Sdxi. We conclude that

(f1, . . . , fc)/(f1, . . . , fc)2 is free of rank c with a basis given by the elements fi mod
(f1, . . . , fc)2, and that the homology in degree 0, i.e., ΩS/R, of the naive cotangent
complex is a free S-module with basis the images of dxc+j , j = 1, . . . , n − c. In
particular, this proves R→ S is smooth.
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The proofs of (4) and (6) are omitted. But see the example below and the proof of
Lemma 10.136.9.
Let φ : R → R′ be any ring map. Denote S′ = R′[x1, . . . , xn]/(fφ1 , . . . , fφc )
where fφ is the polynomial obtained from f ∈ R[x1, . . . , xn] by applying φ to
all the coefficients. Then S′ ∼= R′ ⊗R S. Moreover, the determinant of Definition
10.137.6 for S′/R′ is equal to gφ. Its image in S′ is therefore the image of g via
R[x1, . . . , xn]→ S → S′ and hence invertible. This proves (5).
To prove (7) it suffices to show that S ⊗R κ(p) has dimension n − c for every
prime p ⊂ R. By (5) it suffices to prove that any standard smooth algebra
k[x1, . . . , xn]/(f1, . . . , fc) over a field k has dimension n − c. We already know
that k[x1, . . . , xn]/(f1, . . . , fc) is a local complete intersection by Lemma 10.137.5.
Hence, since I/I2 is free of rank c we see that k[x1, . . . , xn]/(f1, . . . , fc) has dimen-
sion n− c, by Lemma 10.135.4 for example. □

Example 10.137.8.00T8 Let R be a ring. Let f1, . . . , fc ∈ R[x1, . . . , xn]. Let

h = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fc/∂x1
∂f1/∂x2 ∂f2/∂x2 . . . ∂fc/∂x2
. . . . . . . . . . . .

∂f1/∂xc ∂f2/∂xc . . . ∂fc/∂xc

 .

Set S = R[x1, . . . , xn+1]/(f1, . . . , fc, xn+1h− 1). This is an example of a standard
smooth algebra, except that the presentation is wrong and the variables should be
in the following order: x1, . . . , xc, xn+1, xc+1, . . . , xn.
Lemma 10.137.9.00T9 A composition of standard smooth ring maps is standard smooth.
Proof. Suppose that R → S and S → S′ are standard smooth. We choose presen-
tations S = R[x1, . . . , xn]/(f1, . . . , fc) and S′ = S[y1, . . . , ym]/(g1, . . . , gd). Choose
elements g′

j ∈ R[x1, . . . , xn, y1, . . . , ym] mapping to the gj . In this way we see
S′ = R[x1, . . . , xn, y1, . . . , ym]/(f1, . . . , fc, g

′
1, . . . , g

′
d). To show that S′ is standard

smooth it suffices to verify that the determinant

det


∂f1/∂x1 . . . ∂fc/∂x1 ∂g1/∂x1 . . . ∂gd/∂x1
. . . . . . . . . . . . . . . . . .

∂f1/∂xc . . . ∂fc/∂xc ∂g1/∂xc . . . ∂gd/∂xc
0 . . . 0 ∂g1/∂y1 . . . ∂gd/∂y1
. . . . . . . . . . . . . . . . . .
0 . . . 0 ∂g1/∂yd . . . ∂gd/∂yd


is invertible in S′. This is clear since it is the product of the two determinants
which were assumed to be invertible by hypothesis. □

Lemma 10.137.10.00TA Let R → S be a smooth ring map. There exists an open
covering of Spec(S) by standard opens D(g) such that each Sg is standard smooth
over R. In particular R→ S is syntomic.
Proof. Choose a presentation α : R[x1, . . . , xn] → S with kernel I = (f1, . . . , fm).
For every subset E ⊂ {1, . . . ,m} consider the open subset UE where the classes
fe, e ∈ E freely generate the finite projective S-module I/I2, see Lemma 10.79.4.
We may cover Spec(S) by standard opens D(g) each completely contained in one
of the opens UE . For such a g we look at the presentation

β : R[x1, . . . , xn, xn+1] −→ Sg
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mapping xn+1 to 1/g. Setting J = Ker(β) we use Lemma 10.134.12 to see that
J/J2 ∼= (I/I2)g ⊕ Sg is free. We may and do replace S by Sg. Then using Lemma
10.136.6 we may assume we have a presentation α : R[x1, . . . , xn]→ S with kernel
I = (f1, . . . , fc) such that I/I2 is free on the classes of f1, . . . , fc.
Using the presentation α obtained at the end of the previous paragraph, we more
or less repeat this argument with the basis elements dx1, . . . ,dxn of ΩR[x1,...,xn]/R.
Namely, for any subset E ⊂ {1, . . . , n} of cardinality c we may consider the open
subset UE of Spec(S) where the differential of NL(α) composed with the projection

S⊕c ∼= I/I2 −→ ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S −→
⊕

i∈E
Sdxi

is an isomorphism. Again we may find a covering of Spec(S) by (finitely many)
standard opensD(g) such that eachD(g) is completely contained in one of the opens
UE . By renumbering, we may assume E = {1, . . . , c}. For a g with D(g) ⊂ UE we
look at the presentation

β : R[x1, . . . , xn, xn+1]→ Sg

mapping xn+1 to 1/g. Setting J = Ker(β) we conclude from Lemma 10.134.12 that
J = (f1, . . . , fc, fxn+1 − 1) where α(f) = g and that the composition

J/J2 −→ ΩR[x1,...,xn+1]/R ⊗R[x1,...,xn+1] Sg −→
⊕c

i=1
Sgdxi ⊕ Sgdxn+1

is an isomorphism. Reordering the coordinates as x1, . . . , xc, xn+1, xc+1, . . . , xn we
conclude that Sg is standard smooth over R as desired.
This finishes the proof as standard smooth algebras are syntomic (Lemmas 10.137.7
and 10.136.13) and being syntomic over R is local on S (Lemma 10.136.4). □

Definition 10.137.11.00TB Let R → S be a ring map. Let q be a prime of S. We say
R→ S is smooth at q if there exists a g ∈ S, g ̸∈ q such that R→ Sg is smooth.

For ring maps of finite presentation we can characterize this as follows.

Lemma 10.137.12.07BU Let R → S be of finite presentation. Let q be a prime of S.
The following are equivalent

(1) R→ S is smooth at q,
(2) H1(LS/R)q = 0 and ΩS/R,q is a finite free Sq-module,
(3) H1(LS/R)q = 0 and ΩS/R,q is a projective Sq-module, and
(4) H1(LS/R)q = 0 and ΩS/R,q is a flat Sq-module.

Proof. We will use without further mention that formation of the naive cotan-
gent complex commutes with localization, see Section 10.134, especially Lemma
10.134.13. Note that ΩS/R is a finitely presented S-module, see Lemma 10.131.15.
Hence (2), (3), and (4) are equivalent by Lemma 10.78.2. It is clear that (1) implies
the equivalent conditions (2), (3), and (4). Assume (2) holds. Writing Sq as the col-
imit of principal localizations we see from Lemma 10.127.6 that we can find a g ∈ S,
g ̸∈ q such that (ΩS/R)g is finite free. Choose a presentation α : R[x1, . . . , xn]→ S
with kernel I. We may work with NL(α) instead of NLS/R, see Lemma 10.134.2.
The surjection

ΩR[x1,...,xn]/R ⊗R S → ΩS/R → 0
has a right inverse after inverting g because (ΩS/R)g is projective. Hence the image
of d : (I/I2)g → ΩR[x1,...,xn]/R⊗R Sg is a direct summand and this map has a right
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inverse too. We conclude that H1(LS/R)g is a quotient of (I/I2)g. In particular
H1(LS/R)g is a finite Sg-module. Thus the vanishing of H1(LS/R)q implies the
vanishing of H1(LS/R)gg′ for some g′ ∈ S, g′ ̸∈ q. Then R → Sgg′ is smooth by
definition. □

Lemma 10.137.13.00TC Let R→ S be a ring map. Then R→ S is smooth if and only
if R→ S is smooth at every prime q of S.

Proof. The direct implication is trivial. Suppose that R → S is smooth at every
prime q of S. Since Spec(S) is quasi-compact, see Lemma 10.17.10, there exists a
finite covering Spec(S) =

⋃
D(gi) such that each Sgi is smooth. By Lemma 10.23.3

this implies that S is of finite presentation over R. According to Lemma 10.134.13
we see that NLS/R⊗SSgi is quasi-isomorphic to a finite projective Sgi -module. By
Lemma 10.78.2 this implies that NLS/R is quasi-isomorphic to a finite projective
S-module. □

Lemma 10.137.14.00TD A composition of smooth ring maps is smooth.

Proof. You can prove this in many different ways. One way is to use the snake
lemma (Lemma 10.4.1), the Jacobi-Zariski sequence (Lemma 10.134.4), combined
with the characterization of projective modules as being direct summands of free
modules (Lemma 10.77.2). Another proof can be obtained by combining Lemmas
10.137.10, 10.137.9 and 10.137.13. □

Lemma 10.137.15.0GIF Let R be a ring. Let S = S′ × S′′ be a product of R-algebras.
Then S is smooth over R if and only if both S′ and S′′ are smooth over R.

Proof. Omitted. Hints: By Lemma 10.137.13 we can check smoothness one prime
at a time. Since Spec(S) is the disjoint union of Spec(S′) and Spec(S′′) by Lemma
10.21.2 we find that smoothness of R→ S at q corresponds to either smoothness of
R→ S′ at the corresponding prime or smoothness of R→ S′′ at the corresponding
prime. □

Lemma 10.137.16.00TE Let R be a ring. Let S = R[x1, . . . , xn]/(f1, . . . , fc) be a relative
global complete intersection. Let q ⊂ S be a prime. Then R → S is smooth at
q if and only if there exists a subset I ⊂ {1, . . . , n} of cardinality c such that the
polynomial

gI = det(∂fj/∂xi)j=1,...,c, i∈I .

does not map to an element of q.

Proof. By Lemma 10.136.12 we see that the naive cotangent complex associated to
the given presentation of S is the complex⊕c

j=1
S · fj −→

⊕n

i=1
S · dxi, fj 7−→

∑ ∂fj
∂xi

dxi.

The maximal minors of the matrix giving the map are exactly the polynomials gI .
Assume gI maps to g ∈ S, with g ̸∈ q. Then the algebra Sg is smooth over
R. Namely, its naive cotangent complex is quasi-isomorphic to the complex above
localized at g, see Lemma 10.134.13. And by construction it is quasi-isomorphic to
a free rank n− c module in degree 0.
Conversely, suppose that all gI end up in q. In this case the complex above tensored
with κ(q) does not have maximal rank, and hence there is no localization by an

https://stacks.math.columbia.edu/tag/00TC
https://stacks.math.columbia.edu/tag/00TD
https://stacks.math.columbia.edu/tag/0GIF
https://stacks.math.columbia.edu/tag/00TE
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element g ∈ S, g ̸∈ q where this map becomes a split injection. By Lemma 10.134.13
again there is no such localization which is smooth over R. □

Lemma 10.137.17.00TF Let R→ S be a ring map. Let q ⊂ S be a prime lying over the
prime p of R. Assume

(1) there exists a g ∈ S, g ̸∈ q such that R→ Sg is of finite presentation,
(2) the local ring homomorphism Rp → Sq is flat,
(3) the fibre S ⊗R κ(p) is smooth over κ(p) at the prime corresponding to q.

Then R→ S is smooth at q.

Proof. By Lemmas 10.136.15 and 10.137.5 we see that there exists a g ∈ S such
that Sg is a relative global complete intersection. Replacing S by Sg we may
assume S = R[x1, . . . , xn]/(f1, . . . , fc) is a relative global complete intersection.
For any subset I ⊂ {1, . . . , n} of cardinality c consider the polynomial gI =
det(∂fj/∂xi)j=1,...,c,i∈I of Lemma 10.137.16. Note that the image gI of gI in the
polynomial ring κ(p)[x1, . . . , xn] is the determinant of the partial derivatives of the
images f j of the fj in the ring κ(p)[x1, . . . , xn]. Thus the lemma follows by applying
Lemma 10.137.16 both to R→ S and to κ(p)→ S ⊗R κ(p). □

Note that the sets U, V in the following lemma are open by definition.

Lemma 10.137.18.00TG Let R → S be a ring map of finite presentation. Let R → R′

be a flat ring map. Denote S′ = R′ ⊗R S the base change. Let U ⊂ Spec(S) be
the set of primes at which R → S is smooth. Let V ⊂ Spec(S′) the set of primes
at which R′ → S′ is smooth. Then V is the inverse image of U under the map
f : Spec(S′)→ Spec(S).

Proof. By Lemma 10.134.8 we see that NLS/R⊗SS′ is homotopy equivalent to
NLS′/R′ . This already implies that f−1(U) ⊂ V .
Let q′ ⊂ S′ be a prime lying over q ⊂ S. Assume q′ ∈ V . We have to show
that q ∈ U . Since S → S′ is flat, we see that Sq → S′

q′ is faithfully flat (Lemma
10.39.17). Thus the vanishing of H1(LS′/R′)q′ implies the vanishing of H1(LS/R)q.
By Lemma 10.78.6 applied to the Sq-module (ΩS/R)q and the map Sq → S′

q′ we see
that (ΩS/R)q is projective. Hence R→ S is smooth at q by Lemma 10.137.12. □

Lemma 10.137.19.02UQ Let K/k be a field extension. Let S be a finite type algebra
over k. Let qK be a prime of SK = K ⊗k S and let q be the corresponding prime
of S. Then S is smooth over k at q if and only if SK is smooth at qK over K.

Proof. This is a special case of Lemma 10.137.18. □

Lemma 10.137.20.04B1 Let R be a ring and let I ⊂ R be an ideal. Let R/I → S be a
smooth ring map. Then there exists elements gi ∈ S which generate the unit ideal
of S such that each Sgi

∼= Si/ISi for some (standard) smooth ring Si over R.

Proof. By Lemma 10.137.10 we find a collection of elements gi ∈ S which generate
the unit ideal of S such that each Sgi is standard smooth over R/I. Hence we may
assume that S is standard smooth overR/I. Write S = (R/I)[x1, . . . , xn]/(f1, . . . , f c)
as in Definition 10.137.6. Choose f1, . . . , fc ∈ R[x1, . . . , xn] lifting f1, . . . , f c. Set
S = R[x1, . . . , xn, xn+1]/(f1, . . . , fc, xn+1∆ − 1) where ∆ = det(∂fj∂xi

)i,j=1,...,c as in
Example 10.137.8. This proves the lemma. □

https://stacks.math.columbia.edu/tag/00TF
https://stacks.math.columbia.edu/tag/00TG
https://stacks.math.columbia.edu/tag/02UQ
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10.138. Formally smooth maps

00TH In this section we define formally smooth ring maps. It will turn out that a ring map
of finite presentation is formally smooth if and only if it is smooth, see Proposition
10.138.13.

Definition 10.138.1.00TI Let R→ S be a ring map. We say S is formally smooth over
R if for every commutative solid diagram

S //

!!

A/I

R //

OO

A

OO

where I ⊂ A is an ideal of square zero, a dotted arrow exists which makes the
diagram commute.

Lemma 10.138.2.00TJ Let R→ S be a formally smooth ring map. Let R→ R′ be any
ring map. Then the base change S′ = R′ ⊗R S is formally smooth over R′.

Proof. Let a solid diagram

S //

))

R′ ⊗R S //

$$

A/I

R

OO

// R′ //

OO

A

OO

as in Definition 10.138.1 be given. By assumption the longer dotted arrow exists.
By the universal property of tensor product we obtain the shorter dotted arrow. □

Lemma 10.138.3.031H A composition of formally smooth ring maps is formally smooth.

Proof. Omitted. (Hint: This is completely formal, and follows from considering a
suitable diagram.) □

Lemma 10.138.4.00TK A polynomial ring over R is formally smooth over R.

Proof. Suppose we have a diagram as in Definition 10.138.1 with S = R[xj ; j ∈ J ].
Then there exists a dotted arrow simply by choosing lifts aj ∈ A of the elements in
A/I to which the elements xj map to under the top horizontal arrow. □

Lemma 10.138.5.00TL Let R→ S be a ring map. Let P → S be a surjective R-algebra
map from a polynomial ring P onto S. Denote J ⊂ P the kernel. Then R → S is
formally smooth if and only if there exists an R-algebra map σ : S → P/J2 which
is a right inverse to the surjection P/J2 → S.

Proof. Assume R→ S is formally smooth. Consider the commutative diagram

S //

!!

P/J

R //

OO

P/J2

OO

By assumption the dotted arrow exists. This proves that σ exists.

https://stacks.math.columbia.edu/tag/00TI
https://stacks.math.columbia.edu/tag/00TJ
https://stacks.math.columbia.edu/tag/031H
https://stacks.math.columbia.edu/tag/00TK
https://stacks.math.columbia.edu/tag/00TL
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Conversely, suppose we have a σ as in the lemma. Let a solid diagram

S //

!!

A/I

R //

OO

A

OO

as in Definition 10.138.1 be given. Because P is formally smooth by Lemma
10.138.4, there exists an R-algebra homomorphism ψ : P → A which lifts the map
P → S → A/I. Clearly ψ(J) ⊂ I and since I2 = 0 we conclude that ψ(J2) = 0.
Hence ψ factors as ψ : P/J2 → A. The desired dotted arrow is the composition
ψ ◦ σ : S → A. □

Remark 10.138.6.00TM Lemma 10.138.5 holds more generally whenever P is formally
smooth over R.

Lemma 10.138.7.031I Let R→ S be a ring map. Let P → S be a surjective R-algebra
map from a polynomial ring P onto S. Denote J ⊂ P the kernel. Then R → S is
formally smooth if and only if the sequence

0→ J/J2 → ΩP/R ⊗P S → ΩS/R → 0

of Lemma 10.131.9 is a split exact sequence.

Proof. Assume S is formally smooth over R. By Lemma 10.138.5 this means there
exists an R-algebra map S → P/J2 which is a right inverse to the canonical map
P/J2 → S. By Lemma 10.131.11 we have ΩP/R ⊗P S = Ω(P/J2)/R ⊗P/J2 S. By
Lemma 10.131.10 the sequence is split.

Assume the exact sequence of the lemma is split exact. Choose a splitting σ :
ΩS/R → ΩP/R ⊗P S. For each λ ∈ S choose xλ ∈ P which maps to λ. Next, for
each λ ∈ S choose fλ ∈ J such that

dfλ = dxλ − σ(dλ)

in the middle term of the exact sequence. We claim that s : λ 7→ xλ − fλ mod J2

is an R-algebra homomorphism s : S → P/J2. To prove this we will repeatedly
use that if h ∈ J and dh = 0 in ΩP/R ⊗R S, then h ∈ J2. Let λ, µ ∈ S. Then
σ(dλ+ dµ− d(λ+ µ)) = 0. This implies

d(xλ + xµ − xλ+µ − fλ − fµ + fλ+µ) = 0

which means that xλ +xµ−xλ+µ− fλ− fµ + fλ+µ ∈ J2, which in turn means that
s(λ) + s(µ) = s(λ+ µ). Similarly, we have σ(λdµ+ µdλ− dλµ) = 0 which implies
that

µ(dxλ − dfλ) + λ(dxµ − dfµ)− dxλµ + dfλµ = 0
in the middle term of the exact sequence. Moreover we have

d(xλxµ) = xλdxµ + xµdxλ = λdxµ + µdxλ
in the middle term again. Combined these equations mean that xλxµ−xλµ−µfλ−
λfµ + fλµ ∈ J2, hence (xλ − fλ)(xµ − fµ)− (xλµ − fλµ) ∈ J2 as fλfµ ∈ J2, which
means that s(λ)s(µ) = s(λµ). If λ ∈ R, then dλ = 0 and we see that dfλ = dxλ,
hence λ− xλ + fλ ∈ J2 and hence s(λ) = λ as desired. At this point we can apply
Lemma 10.138.5 to conclude that S/R is formally smooth. □

https://stacks.math.columbia.edu/tag/00TM
https://stacks.math.columbia.edu/tag/031I
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Proposition 10.138.8.031J Let R → S be a ring map. Consider a formally smooth
R-algebra P and a surjection P → S with kernel J . The following are equivalent

(1) S is formally smooth over R,
(2) for some P → S as above there exists a section to P/J2 → S,
(3) for all P → S as above there exists a section to P/J2 → S,
(4) for some P → S as above the sequence 0→ J/J2 → ΩP/R⊗S → ΩS/R →

0 is split exact,
(5) for all P → S as above the sequence 0→ J/J2 → ΩP/R ⊗S → ΩS/R → 0

is split exact, and
(6) the naive cotangent complex NLS/R is quasi-isomorphic to a projective

S-module placed in degree 0.

Proof. It is clear that (1) implies (3) implies (2), see first part of the proof of Lemma
10.138.5. It is also true that (3) implies (5) implies (4) and that (2) implies (4), see
first part of the proof of Lemma 10.138.7. Finally, Lemma 10.138.7 applied to the
canonical surjection R[S]→ S (10.134.0.1) shows that (1) implies (6).
Assume (4) and let’s prove (6). Consider the sequence of Lemma 10.134.4 associated
to the ring maps R → P → S. By the implication (1) ⇒ (6) proved above we see
that NLP/R⊗RS is quasi-isomorphic to ΩP/R ⊗P S placed in degree 0. Hence
H1(NLP/R⊗PS) = 0. Since P → S is surjective we see that NLS/P is homotopy
equivalent to J/J2 placed in degree 1 (Lemma 10.134.6). Thus we obtain the exact
sequence 0 → H1(LS/R) → J/J2 → ΩP/R ⊗P S → ΩS/R → 0. By assumption we
see that H1(LS/R) = 0 and that ΩS/R is a projective S-module. Thus (6) follows.

Finally, let’s prove that (6) implies (1). The assumption means that the com-
plex J/J2 → ΩP/R ⊗ S where P = R[S] and P → S is the canonical surjection
(10.134.0.1). Hence Lemma 10.138.7 shows that S is formally smooth over R. □

Lemma 10.138.9.031K Let A → B → C be ring maps. Assume B → C is formally
smooth. Then the sequence

0→ ΩB/A ⊗B C → ΩC/A → ΩC/B → 0
of Lemma 10.131.7 is a split short exact sequence.

Proof. Follows from Proposition 10.138.8 and Lemma 10.134.4. □

Lemma 10.138.10.06A6 Let A → B → C be ring maps with A → C formally smooth
and B → C surjective with kernel J ⊂ B. Then the exact sequence

0→ J/J2 → ΩB/A ⊗B C → ΩC/A → 0
of Lemma 10.131.9 is split exact.

Proof. Follows from Proposition 10.138.8, Lemma 10.134.4, and Lemma 10.131.9.
□

Lemma 10.138.11.06A7 Let A → B → C be ring maps. Assume A → C is surjective
(so also B → C is) and A → B formally smooth. Denote I = Ker(A → C) and
J = Ker(B → C). Then the sequence

0→ I/I2 → J/J2 → ΩB/A ⊗B B/J → 0
of Lemma 10.134.7 is split exact.

https://stacks.math.columbia.edu/tag/031J
https://stacks.math.columbia.edu/tag/031K
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Proof. Since A → B is formally smooth there exists a ring map σ : B → A/I2

whose composition with A → B equals the quotient map A → A/I2. Then σ
induces a map J/J2 → I/I2 which is inverse to the map I/I2 → J/J2. □

Lemma 10.138.12.031L Let R→ S be a ring map. Let I ⊂ R be an ideal. Assume
(1) I2 = 0,
(2) R→ S is flat, and
(3) R/I → S/IS is formally smooth.

Then R→ S is formally smooth.

Proof. Assume (1), (2) and (3). Let P = R[{xt}t∈T ] → S be a surjection of R-
algebras with kernel J . Thus 0 → J → P → S → 0 is a short exact sequence of
flat R-modules. This implies that I ⊗R S = IS, I ⊗R P = IP and I ⊗R J = IJ as
well as J ∩ IP = IJ . We will use throughout the proof that

Ω(S/IS)/(R/I) = ΩS/R ⊗S (S/IS) = ΩS/R ⊗R R/I = ΩS/R/IΩS/R
and similarly for P (see Lemma 10.131.12). By Lemma 10.138.7 the sequence

(10.138.12.1)031M 0→ J/(IJ + J2)→ ΩP/R ⊗P S/IS → ΩS/R ⊗S S/IS → 0
is split exact. Of course the middle term is

⊕
t∈T S/ISdxt. Choose a splitting

σ : ΩP/R ⊗P S/IS → J/(IJ + J2). For each t ∈ T choose an element ft ∈ J which
maps to σ(dxt) in J/(IJ + J2). This determines a unique S-module map

σ̃ : ΩP/R ⊗R S =
⊕

Sdxt −→ J/J2

with the property that σ̃(dxt) = ft. As σ is a section to d the difference
∆ = idJ/J2 − σ̃ ◦ d

is a self map J/J2 → J/J2 whose image is contained in (IJ+J2)/J2. In particular
∆((IJ + J2)/J2) = 0 because I2 = 0. This means that ∆ factors as

J/J2 → J/(IJ + J2) ∆−→ (IJ + J2)/J2 → J/J2

where ∆ is a S/IS-module map. Using again that the sequence (10.138.12.1) is
split, we can find a S/IS-module map δ : ΩP/R ⊗P S/IS → (IJ + J2)/J2 such
that δ ◦ d is equal to ∆. In the same manner as above the map δ determines
an S-module map δ : ΩP/R ⊗P S → J/J2. After replacing σ̃ by σ̃ + δ a simple
computation shows that ∆ = 0. In other words σ̃ is a section of J/J2 → ΩP/R⊗P S.
By Lemma 10.138.7 we conclude that R→ S is formally smooth. □

Proposition 10.138.13.00TN Let R→ S be a ring map. The following are equivalent
(1) R→ S is of finite presentation and formally smooth,
(2) R→ S is smooth.

Proof. Follows from Proposition 10.138.8 and Definition 10.137.1. (Note that ΩS/R
is a finitely presented S-module if R → S is of finite presentation, see Lemma
10.131.15.) □

Lemma 10.138.14.00TP Let R→ S be a smooth ring map. Then there exists a subring
R0 ⊂ R of finite type over Z and a smooth ring map R0 → S0 such that S ∼=
R⊗R0 S0.

https://stacks.math.columbia.edu/tag/031L
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Proof. We are going to use that smooth is equivalent to finite presentation and
formally smooth, see Proposition 10.138.13. Write S = R[x1, . . . , xn]/(f1, . . . , fm)
and denote I = (f1, . . . , fm). Choose a right inverse σ : S → R[x1, . . . , xn]/I2

to the projection to S as in Lemma 10.138.5. Choose hi ∈ R[x1, . . . , xn] such
that σ(xi mod I) = hi mod I2. The fact that σ is an R-algebra homomorphism
R[x1, . . . , xn]/I → R[x1, . . . , xn]/I2 is equivalent to the condition that

fj(h1, . . . , hn) =
∑

j1j2
aj1j2fj1fj2

for certain akl ∈ R[x1, . . . , xn]. Let R0 ⊂ R be the subring generated over Z by all
the coefficients of the polynomials fj , hi, akl. Set S0 = R0[x1, . . . , xn]/(f1, . . . , fm),
with I0 = (f1, . . . , fm). Let σ0 : S0 → R0[x1, . . . , xn]/I2

0 defined by the rule
xi 7→ hi mod I2

0 ; this works since the alk are defined over R0 and satisfy the same
relations. Thus by Lemma 10.138.5 the ring S0 is formally smooth over R0. □

Lemma 10.138.15.0CAQ Let A = colimAi be a filtered colimit of rings. Let A → B be
a smooth ring map. There exists an i and a smooth ring map Ai → Bi such that
B = Bi ⊗Ai A.

Proof. Follows from Lemma 10.138.14 since R0 → A will factor through Ai for
some i by Lemma 10.127.3. □

Lemma 10.138.16.06CM Let R→ S be a ring map. Let R→ R′ be a faithfully flat ring
map. Set S′ = S ⊗R R′. Then R→ S is formally smooth if and only if R′ → S′ is
formally smooth.

Proof. If R → S is formally smooth, then R′ → S′ is formally smooth by Lemma
10.138.2. To prove the converse, assume R′ → S′ is formally smooth. Note that
N⊗RR′ = N⊗SS′ for any S-module N . In particular S → S′ is faithfully flat also.
Choose a polynomial ring P = R[{xi}i∈I ] and a surjection of R-algebras P → S
with kernel J . Note that P ′ = P ⊗R R′ is a polynomial algebra over R′. Since
R → R′ is flat the kernel J ′ of the surjection P ′ → S′ is J ⊗R R′. Hence the split
exact sequence (see Lemma 10.138.7)

0→ J ′/(J ′)2 → ΩP ′/R′ ⊗P ′ S′ → ΩS′/R′ → 0

is the base change via S → S′ of the corresponding sequence

J/J2 → ΩP/R ⊗P S → ΩS/R → 0

see Lemma 10.131.9. As S → S′ is faithfully flat we conclude two things: (1)
this sequence (without ′) is exact too, and (2) ΩS/R is a projective S-module.
Namely, ΩS′/R′ is projective as a direct sum of the free module ΩP ′/R′ ⊗P ′ S′

and ΩS/R ⊗S S′ = ΩS′/R′ by what we said above. Thus (2) follows by descent
of projectivity through faithfully flat ring maps, see Theorem 10.95.6. Hence the
sequence 0 → J/J2 → ΩP/R ⊗P S → ΩS/R → 0 is exact also and we win by
applying Lemma 10.138.7 once more. □

It turns out that smooth ring maps satisfy the following strong lifting property.

https://stacks.math.columbia.edu/tag/0CAQ
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Lemma 10.138.17.07K4 Let R→ S be a smooth ring map. Given a commutative solid
diagram

S //

!!

A/I

R //

OO

A

OO

where I ⊂ A is a locally nilpotent ideal, a dotted arrow exists which makes the
diagram commute.

Proof. By Lemma 10.138.14 we can extend the diagram to a commutative diagram

S0 // S //

  

A/I

R0 //

OO

R //

OO

A

OO

with R0 → S0 smooth, R0 of finite type over Z, and S = S0⊗R0R. Let x1, . . . , xn ∈
S0 be generators of S0 over R0. Let a1, . . . , an be elements of A which map to the
same elements in A/I as the elements x1, . . . , xn. Denote A0 ⊂ A the subring
generated by the image of R0 and the elements a1, . . . , an. Set I0 = A0 ∩ I. Then
A0/I0 ⊂ A/I and S0 → A/I maps into A0/I0. Thus it suffices to find the dotted
arrow in the diagram

S0 //

""

A0/I0

R0 //

OO

A0

OO

The ring A0 is of finite type over Z by construction. Hence A0 is Noetherian, whence
I0 is nilpotent, see Lemma 10.32.5. Say In0 = 0. By Proposition 10.138.13 we can
successively lift the R0-algebra map S0 → A0/I0 to S0 → A0/I

2
0 , S0 → A0/I

3
0 , . . .,

and finally S0 → A0/I
n
0 = A0. □

10.139. Smoothness and differentials

05D4 Some results on differentials and smooth ring maps.

Lemma 10.139.1.04B2 Given ring maps A → B → C with B → C smooth, then the
sequence

0→ C ⊗B ΩB/A → ΩC/A → ΩC/B → 0
of Lemma 10.131.7 is exact.

Proof. This follows from the more general Lemma 10.138.9 because a smooth ring
map is formally smooth, see Proposition 10.138.13. But it also follows directly
from Lemma 10.134.4 since H1(LC/B) = 0 is part of the definition of smoothness
of B → C. □

Lemma 10.139.2.06A8 Let A→ B → C be ring maps with A→ C smooth and B → C
surjective with kernel J ⊂ B. Then the exact sequence

0→ J/J2 → ΩB/A ⊗B C → ΩC/A → 0
of Lemma 10.131.9 is split exact.

https://stacks.math.columbia.edu/tag/07K4
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Proof. This follows from the more general Lemma 10.138.10 because a smooth ring
map is formally smooth, see Proposition 10.138.13. □

Lemma 10.139.3.06A9 Let A→ B → C be ring maps. Assume A→ C is surjective (so
also B → C is) and A → B smooth. Denote I = Ker(A → C) and J = Ker(B →
C). Then the sequence

0→ I/I2 → J/J2 → ΩB/A ⊗B B/J → 0

of Lemma 10.134.7 is exact.

Proof. This follows from the more general Lemma 10.138.11 because a smooth ring
map is formally smooth, see Proposition 10.138.13. □

Lemma 10.139.4.05D5 Let φ : R → S be a smooth ring map. Let σ : S → R be a left
inverse to φ. Set I = Ker(σ). Then

(1) I/I2 is a finite locally free R-module, and
(2) if I/I2 is free, then S∧ ∼= R[[t1, . . . , td]] as R-algebras, where S∧ is the

I-adic completion of S.

Proof. By Lemma 10.131.10 applied to R→ S → R we see that I/I2 = ΩS/R ⊗S,σ
R. Since by definition of a smooth morphism the module ΩS/R is finite locally free
over S we deduce that (1) holds. If I/I2 is free, then choose f1, . . . , fd ∈ I whose
images in I/I2 form an R-basis. Consider the R-algebra map defined by

Ψ : R[[x1, . . . , xd]] −→ S∧, xi 7−→ fi.

Denote P = R[[x1, . . . , xd]] and J = (x1, . . . , xd) ⊂ P . We write Ψn : P/Jn → S/In

for the induced map of quotient rings. Note that S/I2 = φ(R) ⊕ I/I2. Thus Ψ2
is an isomorphism. Denote σ2 : S/I2 → P/J2 the inverse of Ψ2. We will prove by
induction on n that for all n > 2 there exists an inverse σn : S/In → P/Jn of Ψn.
Namely, as S is formally smooth over R (by Proposition 10.138.13) we see that in
the solid diagram

S //

σn−1 ""

P/Jn

��
P/Jn−1

of R-algebras we can fill in the dotted arrow by some R-algebra map τ : S → P/Jn

making the diagram commute. This induces an R-algebra map τ : S/In → P/Jn

which is equal to σn−1 modulo Jn. By construction the map Ψn is surjective and
now τ ◦Ψn is an R-algebra endomorphism of P/Jn which maps xi to xi + δi,n with
δi,n ∈ Jn−1/Jn. It follows that Ψn is an isomorphism and hence it has an inverse
σn. This proves the lemma. □

10.140. Smooth algebras over fields

00TQ Warning: The following two lemmas do not hold over nonperfect fields in general.

Lemma 10.140.1.00TR Let k be an algebraically closed field. Let S be a finite type
k-algebra. Let m ⊂ S be a maximal ideal. Then

dimκ(m) ΩS/k ⊗S κ(m) = dimκ(m) m/m
2.

https://stacks.math.columbia.edu/tag/06A9
https://stacks.math.columbia.edu/tag/05D5
https://stacks.math.columbia.edu/tag/00TR
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Proof. Consider the exact sequence
m/m2 → ΩS/k ⊗S κ(m)→ Ωκ(m)/k → 0

of Lemma 10.131.9. We would like to show that the first map is an isomorphism.
Since k is algebraically closed the composition k → κ(m) is an isomorphism by The-
orem 10.34.1. So the surjection S → κ(m) splits as a map of k-algebras, and Lemma
10.131.10 shows that the sequence above is exact on the left. Since Ωκ(m)/k = 0,
we win. □

Lemma 10.140.2.00TS Let k be an algebraically closed field. Let S be a finite type
k-algebra. Let m ⊂ S be a maximal ideal. The following are equivalent:

(1) The ring Sm is a regular local ring.
(2) We have dimκ(m) ΩS/k ⊗S κ(m) ≤ dim(Sm).
(3) We have dimκ(m) ΩS/k ⊗S κ(m) = dim(Sm).
(4) There exists a g ∈ S, g ̸∈ m such that Sg is smooth over k. In other words

S/k is smooth at m.

Proof. Note that (1), (2) and (3) are equivalent by Lemma 10.140.1 and Definition
10.110.7.
Assume that S is smooth at m. By Lemma 10.137.10 we see that Sg is standard
smooth over k for a suitable g ∈ S, g ̸∈ m. Hence by Lemma 10.137.7 we see that
ΩSg/k is free of rank dim(Sg). Hence by Lemma 10.140.1 we see that dim(Sm) =
dim(m/m2) in other words Sm is regular.
Conversely, suppose that Sm is regular. Let d = dim(Sm) = dimm/m2. Choose a
presentation S = k[x1, . . . , xn]/I such that xi maps to an element of m for all i. In
other words, m′′ = (x1, . . . , xn) is the corresponding maximal ideal of k[x1, . . . , xn].
Note that we have a short exact sequence

I/m′′I → m′′/(m′′)2 → m/(m)2 → 0
Pick c = n − d elements f1, . . . , fc ∈ I such that their images in m′′/(m′′)2 span
the kernel of the map to m/m2. This is clearly possible. Denote J = (f1, . . . , fc).
So J ⊂ I. Denote S′ = k[x1, . . . , xn]/J so there is a surjection S′ → S. Denote
m′ = m′′S′ the corresponding maximal ideal of S′. Hence we have

k[x1, . . . , xn] // S′ // S

m′′

OO

// m′ //

OO

m

OO

By our choice of J the exact sequence
J/m′′J → m′′/(m′′)2 → m′/(m′)2 → 0

shows that dim(m′/(m′)2) = d. Since S′
m′ surjects onto Sm we see that dim(Sm′) ≥

d. Hence by the discussion preceding Definition 10.60.10 we conclude that S′
m′ is

regular of dimension d as well. Because S′ was cut out by c = n − d equations
we conclude that there exists a g′ ∈ S′, g′ ̸∈ m′ such that S′

g′ is a global complete
intersection over k, see Lemma 10.135.4. Also the map S′

m′ → Sm is a surjection of
Noetherian local domains of the same dimension and hence an isomorphism. Hence
S′ → S is surjective with finitely generated kernel and becomes an isomorphism
after localizing at m′. Thus we can find g′ ∈ S′, g ̸∈ m′ such that S′

g′ → Sg′

https://stacks.math.columbia.edu/tag/00TS
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is an isomorphism. All in all we conclude that after replacing S by a principal
localization we may assume that S is a global complete intersection.
At this point we may write S = k[x1, . . . , xn]/(f1, . . . , fc) with dimS = n − c.
Recall that the naive cotangent complex of this algebra is given by⊕

S · fj →
⊕

S · dxi
see Lemma 10.136.12. By Lemma 10.137.16 in order to show that S is smooth at m
we have to show that one of the c× c minors gI of the matrix “A” giving the map
above does not vanish at m. By Lemma 10.140.1 the matrix A mod m has rank c.
Thus we win. □

Lemma 10.140.3.00TT Let k be any field. Let S be a finite type k-algebra. Let X =
Spec(S). Let q ⊂ S be a prime corresponding to x ∈ X. The following are
equivalent:

(1) The k-algebra S is smooth at q over k.
(2) We have dimκ(q) ΩS/k ⊗S κ(q) ≤ dimxX.
(3) We have dimκ(q) ΩS/k ⊗S κ(q) = dimxX.

Moreover, in this case the local ring Sq is regular.

Proof. If S is smooth at q over k, then there exists a g ∈ S, g ̸∈ q such that Sg
is standard smooth over k, see Lemma 10.137.10. A standard smooth algebra over
k has a module of differentials which is free of rank equal to the dimension, see
Lemma 10.137.7 (use that a relative global complete intersection over a field has
dimension equal to the number of variables minus the number of equations). Thus
we see that (1) implies (3). To finish the proof of the lemma it suffices to show that
(2) implies (1) and that it implies that Sq is regular.
Assume (2). By Nakayama’s Lemma 10.20.1 we see that ΩS/k,q can be generated
by ≤ dimxX elements. We may replace S by Sg for some g ∈ S, g ̸∈ q such that
ΩS/k is generated by at most dimxX elements. Let K/k be an algebraically closed
field extension such that there exists a k-algebra map ψ : κ(q) → K. Consider
SK = K ⊗k S. Let m ⊂ SK be the maximal ideal corresponding to the surjection

SK = K ⊗k S // K ⊗k κ(q) idK⊗ψ// K.

Note that m ∩ S = q, in other words m lies over q. By Lemma 10.116.6 the
dimension of XK = Spec(SK) at the point corresponding to m is dimxX. By
Lemma 10.114.6 this is equal to dim((SK)m). By Lemma 10.131.12 the module
of differentials of SK over K is the base change of ΩS/k, hence also generated by
at most dimxX = dim((SK)m) elements. By Lemma 10.140.2 we see that SK is
smooth at m over K. By Lemma 10.137.18 this implies that S is smooth at q over
k. This proves (1). Moreover, we know by Lemma 10.140.2 that the local ring
(SK)m is regular. Since Sq → (SK)m is flat we conclude from Lemma 10.110.9 that
Sq is regular. □

The following lemma can be significantly generalized (in several different ways).

Lemma 10.140.4.00TU Let k be a field. Let R be a Noetherian local ring containing k.
Assume that the residue field κ = R/m is a finitely generated separable extension
of k. Then the map

d : m/m2 −→ ΩR/k ⊗R κ(m)

https://stacks.math.columbia.edu/tag/00TT
https://stacks.math.columbia.edu/tag/00TU
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is injective.

Proof. We may replace R by R/m2. Hence we may assume that m2 = 0. By
assumption we may write κ = k(x1, . . . , xr, y) where x1, . . . , xr is a transcendence
basis of κ over k and y is separable algebraic over k(x1, . . . , xr). Say its minimal
equation is P (y) = 0 with P (T ) = T d +

∑
i<d aiT

i, with ai ∈ k(x1, . . . , xr) and
P ′(y) ̸= 0. Choose any lifts xi ∈ R of the elements xi ∈ κ. This gives a commutative
diagram

R // κ

k(x1, . . . , xr)
φ

ee OO

of k-algebras. We want to extend the left upwards arrow φ to a k-algebra map from
κ to R. To do this choose any y ∈ R lifting y. To see that it defines a k-algebra
map defined on κ ∼= k(x1, . . . , xr)[T ]/(P ) all we have to show is that we may choose
y such that Pφ(y) = 0. If not then we compute for δ ∈ m that

P (y + δ) = P (y) + P ′(y)δ
because m2 = 0. Since P ′(y)δ = P ′(y)δ we see that we can adjust our choice as
desired. This shows that R ∼= κ ⊕ m as k-algebras! From a direct computation of
Ωκ⊕m/k the lemma follows. □

Lemma 10.140.5.00TV Let k be a field. Let S be a finite type k-algebra. Let q ⊂ S be
a prime. Assume κ(q) is separable over k. The following are equivalent:

(1) The algebra S is smooth at q over k.
(2) The ring Sq is regular.

Proof. Denote R = Sq and denote its maximal by m and its residue field κ. By
Lemma 10.140.4 and 10.131.9 we see that there is a short exact sequence

0→ m/m2 → ΩR/k ⊗R κ→ Ωκ/k → 0
Note that ΩR/k = ΩS/k,q, see Lemma 10.131.8. Moreover, since κ is separable over
k we have dimκ Ωκ/k = trdegk(κ). Hence we get

dimκ ΩR/k ⊗R κ = dimκm/m
2 + trdegk(κ) ≥ dimR+ trdegk(κ) = dimq S

(see Lemma 10.116.3 for the last equality) with equality if and only if R is regular.
Thus we win by applying Lemma 10.140.3. □

Lemma 10.140.6.00TW Let R → S be a Q-algebra map. Let f ∈ S be such that
ΩS/R = Sdf ⊕ C for some S-submodule C. Then

(1) f is not nilpotent, and
(2) if S is a Noetherian local ring, then f is a nonzerodivisor in S.

Proof. For a ∈ S write d(a) = θ(a)df + c(a) for some θ(a) ∈ S and c(a) ∈ C.
Consider the R-derivation S → S, a 7→ θ(a). Note that θ(f) = 1.
If fn = 0 with n > 1 minimal, then 0 = θ(fn) = nfn−1 contradicting the minimal-
ity of n. We conclude that f is not nilpotent.
Suppose fa = 0. If f is a unit then a = 0 and we win. Assume f is not a unit.
Then 0 = θ(fa) = fθ(a) + a by the Leibniz rule and hence a ∈ (f). By induction
suppose we have shown fa = 0 ⇒ a ∈ (fn). Then writing a = fnb we get 0 =

https://stacks.math.columbia.edu/tag/00TV
https://stacks.math.columbia.edu/tag/00TW
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θ(fn+1b) = (n+ 1)fnb+ fn+1θ(b). Hence a = fnb = −fn+1θ(b)/(n+ 1) ∈ (fn+1).
Since in the Noetherian local ring S we have

⋂
(fn) = 0, see Lemma 10.51.4 we

win. □

The following is probably quite useless in applications.
Lemma 10.140.7.00TX Let k be a field of characteristic 0. Let S be a finite type k-
algebra. Let q ⊂ S be a prime. The following are equivalent:

(1) The algebra S is smooth at q over k.
(2) The Sq-module ΩS/k,q is (finite) free.
(3) The ring Sq is regular.

Proof. In characteristic zero any field extension is separable and hence the equiva-
lence of (1) and (3) follows from Lemma 10.140.5. Also (1) implies (2) by definition
of smooth algebras. Assume that ΩS/k,q is free over Sq. We are going to use the
notation and observations made in the proof of Lemma 10.140.5. So R = Sq with
maximal ideal m and residue field κ. Our goal is to prove R is regular.
If m/m2 = 0, then m = 0 and R ∼= κ. Hence R is regular and we win.
If m/m2 ̸= 0, then choose any f ∈ m whose image in m/m2 is not zero. By
Lemma 10.140.4 we see that df has nonzero image in ΩR/k/mΩR/k. By assumption
ΩR/k = ΩS/k,q is finite free and hence by Nakayama’s Lemma 10.20.1 we see that
df generates a direct summand. We apply Lemma 10.140.6 to deduce that f is a
nonzerodivisor in R. Furthermore, by Lemma 10.131.9 we get an exact sequence

(f)/(f2)→ ΩR/k ⊗R R/fR→ Ω(R/fR)/k → 0
This implies that Ω(R/fR)/k is finite free as well. Hence by induction we see that
R/fR is a regular local ring. Since f ∈ m was a nonzerodivisor we conclude that
R is regular, see Lemma 10.106.7. □

Example 10.140.8.00TY Lemma 10.140.7 does not hold in characteristic p > 0. The
standard examples are the ring maps

Fp −→ Fp[x]/(xp)
whose module of differentials is free but is clearly not smooth, and the ring map
(p > 2)

Fp(t)→ Fp(t)[x, y]/(xp + y2 + α)
which is not smooth at the prime q = (y, xp + α) but is regular.
Using the material above we can characterize smoothness at the generic point in
terms of field extensions.
Lemma 10.140.9.07ND Let R → S be an injective finite type ring map with R and S
domains. Then R → S is smooth at q = (0) if and only if the induced extension
L/K of fraction fields is separable.
Proof. Assume R→ S is smooth at (0). We may replace S by Sg for some nonzero
g ∈ S and assume that R → S is smooth. Then K → S ⊗R K is smooth (Lemma
10.137.4). Moreover, for any field extension K ′/K the ring map K ′ → S ⊗R K ′ is
smooth as well. Hence S ⊗R K ′ is a regular ring by Lemma 10.140.3, in particular
reduced. It follows that S ⊗R K is a geometrically reduced over K. Hence L is
geometrically reduced over K, see Lemma 10.43.3. Hence L/K is separable by
Lemma 10.44.1.

https://stacks.math.columbia.edu/tag/00TX
https://stacks.math.columbia.edu/tag/00TY
https://stacks.math.columbia.edu/tag/07ND
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Conversely, assume that L/K is separable. We may assume R → S is of finite
presentation, see Lemma 10.30.1. It suffices to prove that K → S ⊗R K is smooth
at (0), see Lemma 10.137.18. This follows from Lemma 10.140.5, the fact that a
field is a regular ring, and the assumption that L/K is separable. □

10.141. Smooth ring maps in the Noetherian case

02HR
Definition 10.141.1.02HS Let φ : B′ → B be a ring map. We say φ is a small extension
if B′ and B are local Artinian rings, φ is surjective and I = Ker(φ) has length 1 as
a B′-module.

Clearly this means that I2 = 0 and that I = (x) for some x ∈ B′ such that m′x = 0
where m′ ⊂ B′ is the maximal ideal.

Lemma 10.141.2.02HT Let R → S be a ring map. Let q be a prime ideal of S lying
over p ⊂ R. Assume R is Noetherian and R → S of finite type. The following are
equivalent:

(1) R→ S is smooth at q,
(2) for every surjection of local R-algebras (B′,m′)→ (B,m) with Ker(B′ →

B) having square zero and every solid commutative diagram

S //

  

B

R //

OO

B′

OO

such that q = S ∩ m there exists a dotted arrow making the diagram
commute,

(3) same as in (2) but with B′ → B ranging over small extensions, and
(4) same as in (2) but with B′ → B ranging over small extensions such that

in addition S → B induces an isomorphism κ(q) ∼= κ(m).

Proof. Assume (1). This means there exists a g ∈ S, g ̸∈ q such that R → Sg is
smooth. By Proposition 10.138.13 we know that R→ Sg is formally smooth. Note
that given any diagram as in (2) the map S → B factors automatically through Sq

and a fortiori through Sg. The formal smoothness of Sg over R gives us a morphism
Sg → B′ fitting into a similar diagram with Sg at the upper left corner. Composing
with S → Sg gives the desired arrow. In other words, we have shown that (1)
implies (2).

Clearly (2) implies (3) and (3) implies (4).

Assume (4). We are going to show that (1) holds, thereby finishing the proof of the
lemma. Choose a presentation S = R[x1, . . . , xn]/(f1, . . . , fm). This is possible as
S is of finite type over R and therefore of finite presentation (see Lemma 10.31.4).
Set I = (f1, . . . , fm). Consider the naive cotangent complex

d : I/I2 −→
⊕m

j=1
Sdxj

of this presentation (see Section 10.134). It suffices to show that when we localize
this complex at q then the map becomes a split injection, see Lemma 10.137.12.

https://stacks.math.columbia.edu/tag/02HS
https://stacks.math.columbia.edu/tag/02HT
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Denote S′ = R[x1, . . . , xn]/I2. By Lemma 10.131.11 we have

S ⊗S′ ΩS′/R = S ⊗R[x1,...,xn] ΩR[x1,...,xn]/R =
⊕m

j=1
Sdxj .

Thus the map
d : I/I2 −→ S ⊗S′ ΩS′/R

is the same as the map in the naive cotangent complex above. In particular the truth
of the assertion we are trying to prove depends only on the three rings R→ S′ → S.
Let q′ ⊂ R[x1, . . . , xn] be the prime ideal corresponding to q. Since localization
commutes with taking modules of differentials (Lemma 10.131.8) we see that it
suffices to show that the map
(10.141.2.1)02HU d : Iq′/I2

q′ −→ Sq ⊗S′
q′

ΩS′
q′/R

coming from R→ S′
q′ → Sq is a split injection.

Let N ∈ N be an integer. Consider the ring
B′
N = S′

q′/(q′)NS′
q′ = (S′/(q′)NS′)q′

and its quotient BN = B′
N/IB

′
N . Note that BN ∼= Sq/q

NSq. Observe that B′
N

is an Artinian local ring since it is the quotient of a local Noetherian ring by a
power of its maximal ideal. Consider a filtration of the kernel IN of B′

N → BN by
B′
N -submodules

0 ⊂ JN,1 ⊂ JN,2 ⊂ . . . ⊂ JN,n(N) = IN

such that each successive quotient JN,i/JN,i−1 has length 1. (As B′
N is Artinian

such a filtration exists.) This gives a sequence of small extensions
B′
N → B′

N/JN,1 → B′
N/JN,2 → . . .→ B′

N/JN,n(N) = B′
N/IN = BN = Sq/q

NSq

Applying condition (4) successively to these small extensions starting with the map
S → BN we see there exists a commutative diagram

S //

  

BN

R //

OO

B′
N

OO

Clearly the ring map S → B′
N factors as S → Sq → B′

N where Sq → B′
N is a local

homomorphism of local rings. Moreover, since the maximal ideal of B′
N to the

Nth power is zero we conclude that Sq → B′
N factors through Sq/(q)NSq = BN .

In other words we have shown that for all N ∈ N the surjection of R-algebras
B′
N → BN has a splitting.

Consider the presentation
IN → BN ⊗B′

N
ΩB′

N
/R → ΩBN/R → 0

coming from the surjection B′
N → BN with kernel IN (see Lemma 10.131.9). By

the above the R-algebra map B′
N → BN has a right inverse. Hence by Lemma

10.131.10 we see that the sequence above is split exact! Thus for every N the map
IN −→ BN ⊗B′

N
ΩB′

N
/R

is a split injection. The rest of the proof is gotten by unwinding what this means
exactly. Note that

IN = Iq′/(I2
q′ + (q′)N ∩ Iq′)
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By Artin-Rees (Lemma 10.51.2) we find a c ≥ 0 such that
Sq/q

N−cSq ⊗Sq
IN = Sq/q

N−cSq ⊗Sq
Iq′/I2

q′

for all N ≥ c (these tensor product are just a fancy way of dividing by qN−c). We
may of course assume c ≥ 1. By Lemma 10.131.11 we see that

S′
q′/(q′)N−cS′

q′ ⊗S′
q′

ΩB′
N
/R = S′

q′/(q′)N−cS′
q′ ⊗S′

q′
ΩS′

q′/R

we can further tensor this by BN = Sq/q
N to see that

Sq/q
N−cSq ⊗S′

q′
ΩB′

N
/R = Sq/q

N−cSq ⊗S′
q′

ΩS′
q′/R

.

Since a split injection remains a split injection after tensoring with anything we see
that
Sq/q

N−cSq ⊗Sq
(10.141.2.1) = Sq/q

N−cSq ⊗Sq/qNSq
(IN −→ BN ⊗B′

N
ΩB′

N
/R)

is a split injection for all N ≥ c. By Lemma 10.74.1 we see that (10.141.2.1) is a
split injection. This finishes the proof. □

10.142. Overview of results on smooth ring maps

00TZ Here is a list of results on smooth ring maps that we proved in the preceding
sections. For more precise statements and definitions please consult the references
given.

(1) A ring map R → S is smooth if it is of finite presentation and the naive
cotangent complex of S/R is quasi-isomorphic to a finite projective S-
module in degree 0, see Definition 10.137.1.

(2) If S is smooth over R, then ΩS/R is a finite projective S-module, see
discussion following Definition 10.137.1.

(3) The property of being smooth is local on S, see Lemma 10.137.13.
(4) The property of being smooth is stable under base change, see Lemma

10.137.4.
(5) The property of being smooth is stable under composition, see Lemma

10.137.14.
(6) A smooth ring map is syntomic, in particular flat, see Lemma 10.137.10.
(7) A finitely presented, flat ring map with smooth fibre rings is smooth, see

Lemma 10.137.17.
(8) A finitely presented ring map R→ S is smooth if and only if it is formally

smooth, see Proposition 10.138.13.
(9) If R → S is a finite type ring map with R Noetherian then to check

that R → S is smooth it suffices to check the lifting property of formal
smoothness along small extensions of Artinian local rings, see Lemma
10.141.2.

(10) A smooth ring map R → S is the base change of a smooth ring map
R0 → S0 with R0 of finite type over Z, see Lemma 10.138.14.

(11) Formation of the set of points where a ring map is smooth commutes with
flat base change, see Lemma 10.137.18.

(12) If S is of finite type over an algebraically closed field k, and m ⊂ S a
maximal ideal, then the following are equivalent
(a) S is smooth over k in a neighbourhood of m,
(b) Sm is a regular local ring,
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(c) dim(Sm) = dimκ(m) ΩS/k ⊗S κ(m).
see Lemma 10.140.2.

(13) If S is of finite type over a field k, and q ⊂ S a prime ideal, then the
following are equivalent
(a) S is smooth over k in a neighbourhood of q,
(b) dimq(S/k) = dimκ(q) ΩS/k ⊗S κ(q).
see Lemma 10.140.3.

(14) If S is smooth over a field, then all its local rings are regular, see Lemma
10.140.3.

(15) If S is of finite type over a field k, q ⊂ S a prime ideal, the field extension
κ(q)/k is separable and Sq is regular, then S is smooth over k at q, see
Lemma 10.140.5.

(16) If S is of finite type over a field k, if k has characteristic 0, if q ⊂ S a
prime ideal, and if ΩS/k,q is free, then S is smooth over k at q, see Lemma
10.140.7.

Some of these results were proved using the notion of a standard smooth ring map,
see Definition 10.137.6. This is the analogue of what a relative global complete
intersection map is for the case of syntomic morphisms. It is also the easiest way
to make examples.

10.143. Étale ring maps

00U0 An étale ring map is a smooth ring map whose relative dimension is equal to zero.
This is the same as the following slightly more direct definition.

Definition 10.143.1.00U1 Let R → S be a ring map. We say R → S is étale if it is of
finite presentation and the naive cotangent complex NLS/R is quasi-isomorphic to
zero. Given a prime q of S we say that R→ S is étale at q if there exists a g ∈ S,
g ̸∈ q such that R→ Sg is étale.

In particular we see that ΩS/R = 0 if S is étale over R. If R → S is smooth, then
R→ S is étale if and only if ΩS/R = 0. From our results on smooth ring maps we
automatically get a whole host of results for étale maps. We summarize these in
Lemma 10.143.3 below. But before we do so we prove that any étale ring map is
standard smooth.

Lemma 10.143.2.00U9 Any étale ring map is standard smooth. More precisely, if R→ S
is étale, then there exists a presentation S = R[x1, . . . , xn]/(f1, . . . , fn) such that
the image of det(∂fj/∂xi) is invertible in S.

Proof. Let R→ S be étale. Choose a presentation S = R[x1, . . . , xn]/I. As R→ S
is étale we know that

d : I/I2 −→
⊕

i=1,...,n
Sdxi

is an isomorphism, in particular I/I2 is a free S-module. Thus by Lemma 10.136.6
we may assume (after possibly changing the presentation), that I = (f1, . . . , fc)
such that the classes fi mod I2 form a basis of I/I2. It follows immediately from
the fact that the displayed map above is an isomorphism that c = n and that
det(∂fj/∂xi) is invertible in S. □

Lemma 10.143.3.00U2 Results on étale ring maps.
(1) The ring map R→ Rf is étale for any ring R and any f ∈ R.

https://stacks.math.columbia.edu/tag/00U1
https://stacks.math.columbia.edu/tag/00U9
https://stacks.math.columbia.edu/tag/00U2
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(2) Compositions of étale ring maps are étale.
(3) A base change of an étale ring map is étale.
(4) The property of being étale is local: Given a ring map R→ S and elements

g1, . . . , gm ∈ S which generate the unit ideal such that R → Sgj is étale
for j = 1, . . . ,m then R→ S is étale.

(5) Given R → S of finite presentation, and a flat ring map R → R′, set
S′ = R′ ⊗R S. The set of primes where R′ → S′ is étale is the inverse
image via Spec(S′)→ Spec(S) of the set of primes where R→ S is étale.

(6) An étale ring map is syntomic, in particular flat.
(7) If S is finite type over a field k, then S is étale over k if and only if

ΩS/k = 0.
(8) Any étale ring mapR→ S is the base change of an étale ring mapR0 → S0

with R0 of finite type over Z.
(9) Let A = colimAi be a filtered colimit of rings. Let A → B be an étale

ring map. Then there exists an étale ring map Ai → Bi for some i such
that B ∼= A⊗Ai Bi.

(10) Let A be a ring. Let S be a multiplicative subset of A. Let S−1A→ B′ be
étale. Then there exists an étale ring map A→ B such that B′ ∼= S−1B.

(11) Let A be a ring. Let B = B′×B′′ be a product of A-algebras. Then B is
étale over A if and only if both B′ and B′′ are étale over A.

Proof. In each case we use the corresponding result for smooth ring maps with a
small argument added to show that ΩS/R is zero.
Proof of (1). The ring map R→ Rf is smooth and ΩRf/R = 0.
Proof of (2). The composition A → C of smooth maps A → B and B → C is
smooth, see Lemma 10.137.14. By Lemma 10.131.7 we see that ΩC/A is zero as
both ΩC/B and ΩB/A are zero.
Proof of (3). Let R→ S be étale and R→ R′ be arbitrary. Then R′ → S′ = R′⊗RS
is smooth, see Lemma 10.137.4. Since ΩS′/R′ = S′ ⊗S ΩS/R by Lemma 10.131.12
we conclude that ΩS′/R′ = 0. Hence R′ → S′ is étale.
Proof of (4). Assume the hypotheses of (4). By Lemma 10.137.13 we see that
R → S is smooth. We are also given that ΩSgi/R = (ΩS/R)gi = 0 for all i. Then
ΩS/R = 0, see Lemma 10.23.2.
Proof of (5). The result for smooth maps is Lemma 10.137.18. In the proof of that
lemma we used that NLS/R⊗SS′ is homotopy equivalent to NLS′/R′ . This reduces
us to showing that if M is a finitely presented S-module the set of primes q′ of S′

such that (M ⊗S S′)q′ = 0 is the inverse image of the set of primes q of S such that
Mq = 0. This follows from Lemma 10.40.6.
Proof of (6). Follows directly from the corresponding result for smooth ring maps
(Lemma 10.137.10).
Proof of (7). Follows from Lemma 10.140.3 and the definitions.
Proof of (8). Lemma 10.138.14 gives the result for smooth ring maps. The resulting
smooth ring map R0 → S0 satisfies the hypotheses of Lemma 10.130.8, and hence
we may replace S0 by the factor of relative dimension 0 over R0.
Proof of (9). Follows from (8) since R0 → A will factor through Ai for some i by
Lemma 10.127.3.
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Proof of (10). Follows from (9), (1), and (2) since S−1A is a filtered colimit of
principal localizations of A.
Proof of (11). Use Lemma 10.137.15 to see the result for smoothness and then use
that ΩB/A is zero if and only if both ΩB′/A and ΩB′′/A are zero. □

Next we work out in more detail what it means to be étale over a field.

Lemma 10.143.4.00U3 Let k be a field. A ring map k → S is étale if and only if S is
isomorphic as a k-algebra to a finite product of finite separable extensions of k.

Proof. We are going to use without further mention: if S = S1× . . .×Sn is a finite
product of k-algebras, then S is étale over k if and only if each Si is étale over k.
See Lemma 10.143.3 part (11).
If k′/k is a finite separable field extension then we can write k′ = k(α) ∼= k[x]/(f).
Here f is the minimal polynomial of the element α. Since k′ is separable over k we
have gcd(f, f ′) = 1. This implies that d : k′ · f → k′ · dx is an isomorphism. Hence
k → k′ is étale. Thus if S is a finite product of finite separable extension of k, then
S is étale over k.
Conversely, suppose that k → S is étale. Then S is smooth over k and ΩS/k = 0.
By Lemma 10.140.3 we see that dimm Spec(S) = 0 for every maximal ideal m of
S. Thus dim(S) = 0. By Proposition 10.60.7 we find that S is a finite product
of Artinian local rings. By the already used Lemma 10.140.3 these local rings are
fields. Hence we may assume S = k′ is a field. By the Hilbert Nullstellensatz
(Theorem 10.34.1) we see that the extension k′/k is finite. The smoothness of
k → k′ implies by Lemma 10.140.9 that k′/k is a separable extension and the proof
is complete. □

Lemma 10.143.5.00U4 Let R→ S be a ring map. Let q ⊂ S be a prime lying over p in
R. If S/R is étale at q then

(1) we have pSq = qSq is the maximal ideal of the local ring Sq, and
(2) the field extension κ(q)/κ(p) is finite separable.

Proof. First we may replace S by Sg for some g ∈ S, g ̸∈ q and assume that R→ S
is étale. Then the lemma follows from Lemma 10.143.4 by unwinding the fact that
S ⊗R κ(p) is étale over κ(p). □

Lemma 10.143.6.00U5 An étale ring map is quasi-finite.

Proof. Let R → S be an étale ring map. By definition R → S is of finite type.
For any prime p ⊂ R the fibre ring S ⊗R κ(p) is étale over κ(p) and hence a finite
products of fields finite separable over κ(p), in particular finite over κ(p). Thus
R→ S is quasi-finite by Lemma 10.122.4. □

Lemma 10.143.7.00U6 Let R → S be a ring map. Let q be a prime of S lying over a
prime p of R. If

(1) R→ S is of finite presentation,
(2) Rp → Sq is flat
(3) pSq is the maximal ideal of the local ring Sq, and
(4) the field extension κ(q)/κ(p) is finite separable,

then R→ S is étale at q.

https://stacks.math.columbia.edu/tag/00U3
https://stacks.math.columbia.edu/tag/00U4
https://stacks.math.columbia.edu/tag/00U5
https://stacks.math.columbia.edu/tag/00U6
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Proof. Apply Lemma 10.122.2 to find a g ∈ S, g ̸∈ q such that q is the only
prime of Sg lying over p. We may and do replace S by Sg. Then S ⊗R κ(p) has a
unique prime, hence is a local ring, hence is equal to Sq/pSq

∼= κ(q). By Lemma
10.137.17 there exists a g ∈ S, g ̸∈ q such that R→ Sg is smooth. Replace S by Sg
again we may assume that R → S is smooth. By Lemma 10.137.10 we may even
assume that R → S is standard smooth, say S = R[x1, . . . , xn]/(f1, . . . , fc). Since
S ⊗R κ(p) = κ(q) has dimension 0 we conclude that n = c, i.e., R→ S is étale. □

Here is a completely new phenomenon.

Lemma 10.143.8.00U7 Let R → S and R → S′ be étale. Then any R-algebra map
S′ → S is étale.

Proof. First of all we note that S′ → S is of finite presentation by Lemma 10.6.2.
Let q ⊂ S be a prime ideal lying over the primes q′ ⊂ S′ and p ⊂ R. By Lemma
10.143.5 the ring map S′

q′/pS′
q′ → Sq/pSq is a map finite separable extensions of

κ(p). In particular it is flat. Hence by Lemma 10.128.8 we see that S′
q′ → Sq is flat.

Thus S′ → S is flat. Moreover, the above also shows that q′Sq is the maximal ideal
of Sq and that the residue field extension of S′

q′ → Sq is finite separable. Hence
from Lemma 10.143.7 we conclude that S′ → S is étale at q. Since being étale is
local (see Lemma 10.143.3) we win. □

Lemma 10.143.9.00U8 Let φ : R → S be a ring map. If R → S is surjective, flat and
finitely presented then there exist an idempotent e ∈ R such that S = Re.

First proof. Let I be the kernel of φ. We have that I is finitely generated by Lemma
10.6.3 since φ is of finite presentation. Moreover, since S is flat over R, tensoring
the exact sequence 0 → I → R → S → 0 over R with S gives I/I2 = 0. Now we
conclude by Lemma 10.21.5. □

Second proof. Since Spec(S)→ Spec(R) is a homeomorphism onto a closed subset
(see Lemma 10.17.7) and is open (see Proposition 10.41.8) we see that the image
is D(e) for some idempotent e ∈ R (see Lemma 10.21.3). Thus Re → S induces
a bijection on spectra. Now this map induces an isomorphism on all local rings
for example by Lemmas 10.78.5 and 10.20.1. Then it follows that Re → S is also
injective, for example see Lemma 10.23.1. □

Lemma 10.143.10.04D1 Let R be a ring and let I ⊂ R be an ideal. Let R/I → S be an
étale ring map. Then there exists an étale ring map R→ S such that S ∼= S/IS as
R/I-algebras.

Proof. By Lemma 10.143.2 we can write S = (R/I)[x1, . . . , xn]/(f1, . . . , fn) as in
Definition 10.137.6 with ∆ = det( ∂fi∂xj

)i,j=1,...,n invertible in S. Just take some lifts
fi and set S = R[x1, . . . , xn, xn+1]/(f1, . . . , fn, xn+1∆−1) where ∆ = det( ∂fi∂xj

)i,j=1,...,n
as in Example 10.137.8. This proves the lemma. □

Lemma 10.143.11.05YT Consider a commutative diagram

0 // J // B′ // B // 0

0 // I //

OO

A′ //

OO

A //

OO

0

https://stacks.math.columbia.edu/tag/00U7
https://stacks.math.columbia.edu/tag/00U8
https://stacks.math.columbia.edu/tag/04D1
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with exact rows where B′ → B and A′ → A are surjective ring maps whose kernels
are ideals of square zero. If A→ B is étale, and J = I⊗AB, then A′ → B′ is étale.

Proof. By Lemma 10.143.10 there exists an étale ring map A′ → C such that
C/IC = B. Then A′ → C is formally smooth (by Proposition 10.138.13) hence
we get an A′-algebra map φ : C → B′. Since A′ → C is flat we have I ⊗A B =
I ⊗A C/IC = IC. Hence the assumption that J = I ⊗A B implies that φ induces
an isomorphism IC → J and an isomorphism C/IC → B′/IB′, whence φ is an
isomorphism. □

Example 10.143.12.00UA Let n,m ≥ 1 be integers. Consider the ring map
R = Z[a1, . . . , an+m] −→ S = Z[b1, . . . , bn, c1, . . . , cm]

a1 7−→ b1 + c1

a2 7−→ b2 + b1c1 + c2

. . . . . . . . .

an+m 7−→ bncm

of Example 10.136.7. Write symbolically
S = R[b1, . . . , cm]/({ak(bi, cj)− ak}k=1,...,n+m)

where for example a1(bi, cj) = b1 + c1. The matrix of partial derivatives is

1 c1 . . . cm 0 . . . . . . 0
0 1 c1 . . . cm 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 1 c1 c2 . . . cm
1 b1 . . . bn−1 bn 0 . . . 0
0 1 b1 . . . bn−1 bn . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . 0 1 b1 . . . bn


The determinant ∆ of this matrix is better known as the resultant of the polynomi-
als g = xn+b1x

n−1 + . . .+bn and h = xm+c1x
m−1 + . . .+cm, and the matrix above

is known as the Sylvester matrix associated to g, h. In a formula ∆ = Resx(g, h).
The Sylvester matrix is the transpose of the matrix of the linear map

S[x]<m ⊕ S[x]<n −→ S[x]<n+m

a⊕ b 7−→ ag + bh

Let q ⊂ S be any prime. By the above the following are equivalent:
(1) R→ S is étale at q,
(2) ∆ = Resx(g, h) ̸∈ q,
(3) the images g, h ∈ κ(q)[x] of the polynomials g, h are relatively prime in

κ(q)[x].
The equivalence of (2) and (3) holds because the image of the Sylvester matrix in
Mat(n + m,κ(q)) has a kernel if and only if the polynomials g, h have a factor in
common. We conclude that the ring map

R −→ S[ 1
∆] = S[ 1

Resx(g, h) ]

is étale.

https://stacks.math.columbia.edu/tag/00UA
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Lemma 10.143.13.00UH Let R be a ring. Let f ∈ R[x] be a monic polynomial. Let p

be a prime of R. Let f mod p = gh be a factorization of the image of f in κ(p)[x].
If gcd(g, h) = 1, then there exist

(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p, and
(3) a factorization f = gh in R′[x]

such that
(1) κ(p) = κ(p′),
(2) g = g mod p′, h = h mod p′, and
(3) the polynomials g, h generate the unit ideal in R′[x].

Proof. Suppose g = b0x
n + b1x

n−1 + . . . + bn, and h = c0x
m + c1x

m−1 + . . . + cm
with b0, c0 ∈ κ(p) nonzero. After localizing R at some element of R not contained
in p we may assume b0 is the image of an invertible element b0 ∈ R. Replacing
g by g/b0 and h by b0h we reduce to the case where g, h are monic (verification
omitted). Say g = xn + b1x

n−1 + . . .+ bn, and h = xm + c1x
m−1 + . . .+ cm. Write

f = xn+m + a1x
n+m−1 + . . .+ an+m. Consider the fibre product
R′ = R⊗Z[a1,...,an+m] Z[b1, . . . , bn, c1, . . . , cm]

where the map Z[ak] → Z[bi, cj ] is as in Examples 10.136.7 and 10.143.12. By
construction there is an R-algebra map

R′ = R⊗Z[a1,...,an+m] Z[b1, . . . , bn, c1, . . . , cm] −→ κ(p)

which maps bi to bi and cj to cj . Denote p′ ⊂ R′ the kernel of this map. Since
by assumption the polynomials g, h are relatively prime we see that the element
∆ = Resx(g, h) ∈ Z[bi, cj ] (see Example 10.143.12) does not map to zero in κ(p)
under the displayed map. We conclude that R → R′ is étale at p′. In fact a
solution to the problem posed in the lemma is the ring map R→ R′[1/∆] and the
prime p′R′[1/∆]. Because Resx(f, g) is invertible in this ring the Sylvester matrix
is invertible over R′[1/∆] and hence 1 = ag + bh for some a, b ∈ R′[1/∆][x] see
Example 10.143.12. □

10.144. Local structure of étale ring maps

0G1A Lemma 10.143.2 tells us that it does not really make sense to define a standard étale
morphism to be a standard smooth morphism of relative dimension 0. As a model
for an étale morphism we take the example given by a finite separable extension
k′/k of fields. Namely, we can always find an element α ∈ k′ such that k′ = k(α)
and such that the minimal polynomial f(x) ∈ k[x] of α has derivative f ′ which is
relatively prime to f .

Definition 10.144.1.00UB Let R be a ring. Let g, f ∈ R[x]. Assume that f is monic and
the derivative f ′ is invertible in the localization R[x]g/(f). In this case the ring
map R→ R[x]g/(f) is said to be standard étale.

In Proposition 10.144.4 we show that every étale ring map is locally standard étale.

Lemma 10.144.2.00UC Let R→ R[x]g/(f) be standard étale.
(1) The ring map R→ R[x]g/(f) is étale.
(2) For any ring map R→ R′ the base changeR′ → R′[x]g/(f) of the standard

étale ring map R→ R[x]g/(f) is standard étale.

https://stacks.math.columbia.edu/tag/00UH
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(3) Any principal localization of R[x]g/(f) is standard étale over R.
(4) A composition of standard étale maps is not standard étale in general.

Proof. Omitted. Here is an example for (4). The ring map F2 → F22 is standard
étale. The ring map F22 → F22 × F22 × F22 × F22 is standard étale. But the ring
map F2 → F22 × F22 × F22 × F22 is not standard étale. □

Standard étale morphisms are a convenient way to produce étale maps. Here is an
example.

Lemma 10.144.3.00UD Let R be a ring. Let p be a prime of R. Let L/κ(p) be a finite
separable field extension. There exists an étale ring map R → R′ together with
a prime p′ lying over p such that the field extension κ(p′)/κ(p) is isomorphic to
κ(p) ⊂ L.

Proof. By the theorem of the primitive element we may write L = κ(p)[α]. Let
f ∈ κ(p)[x] denote the minimal polynomial for α (in particular this is monic). After
replacing α by cα for some c ∈ R, c ̸∈ p we may assume all the coefficients of f
are in the image of R → κ(p) (verification omitted). Thus we can find a monic
polynomial f ∈ R[x] which maps to f in κ(p)[x]. Since κ(p) ⊂ L is separable, we
see that gcd(f, f ′) = 1. Hence there is an element γ ∈ L such that f ′(α)γ = 1.
Thus we get a R-algebra map

R[x, 1/f ′]/(f) −→ L

x 7−→ α

1/f ′ 7−→ γ

The left hand side is a standard étale algebra R′ over R and the kernel of the ring
map gives the desired prime. □

Proposition 10.144.4.00UE Let R→ S be a ring map. Let q ⊂ S be a prime. If R→ S
is étale at q, then there exists a g ∈ S, g ̸∈ q such that R→ Sg is standard étale.

Proof. The following proof is a little roundabout and there may be ways to shorten
it.
Step 1. By Definition 10.143.1 there exists a g ∈ S, g ̸∈ q such that R → Sg is
étale. Thus we may assume that S is étale over R.
Step 2. By Lemma 10.143.3 there exists an étale ring map R0 → S0 with R0 of
finite type over Z, and a ring map R0 → R such that R = R ⊗R0 S0. Denote q0
the prime of S0 corresponding to q. If we show the result for (R0 → S0, q0) then
the result follows for (R → S, q) by base change. Hence we may assume that R is
Noetherian.
Step 3. Note that R→ S is quasi-finite by Lemma 10.143.6. By Lemma 10.123.14
there exists a finite ring map R → S′, an R-algebra map S′ → S, an element
g′ ∈ S′ such that g′ ̸∈ q such that S′ → S induces an isomorphism S′

g′
∼= Sg′ . (Note

that of course S′ is not étale over R in general.) Thus we may assume that (a)
R is Noetherian, (b) R → S is finite and (c) R → S is étale at q (but no longer
necessarily étale at all primes).
Step 4. Let p ⊂ R be the prime corresponding to q. Consider the fibre ring
S ⊗R κ(p). This is a finite algebra over κ(p). Hence it is Artinian (see Lemma

https://stacks.math.columbia.edu/tag/00UD
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10.53.2) and so a finite product of local rings

S ⊗R κ(p) =
∏n

i=1
Ai

see Proposition 10.60.7. One of the factors, say A1, is the local ring Sq/pSq which
is isomorphic to κ(q), see Lemma 10.143.5. The other factors correspond to the
other primes, say q2, . . . , qn of S lying over p.
Step 5. We may choose a nonzero element α ∈ κ(q) which generates the finite
separable field extension κ(q)/κ(p) (so even if the field extension is trivial we do
not allow α = 0). Note that for any λ ∈ κ(p)∗ the element λα also generates κ(q)
over κ(p). Consider the element

t = (α, 0, . . . , 0) ∈
∏n

i=1
Ai = S ⊗R κ(p).

After possibly replacing α by λα as above we may assume that t is the image of
t ∈ S. Let I ⊂ R[x] be the kernel of the R-algebra map R[x]→ S which maps x to
t. Set S′ = R[x]/I, so S′ ⊂ S. Here is a diagram

R[x] // S′ // S

R

OO == 66

By construction the primes qj , j ≥ 2 of S all lie over the prime (p, x) of R[x],
whereas the prime q lies over a different prime of R[x] because α ̸= 0.
Step 6. Denote q′ ⊂ S′ the prime of S′ corresponding to q. By the above q is the
only prime of S lying over q′. Thus we see that Sq = Sq′ , see Lemma 10.41.11 (we
have going up for S′ → S by Lemma 10.36.22 since S′ → S is finite as R → S
is finite). It follows that S′

q′ → Sq is finite and injective as the localization of the
finite injective ring map S′ → S. Consider the maps of local rings

Rp → S′
q′ → Sq

The second map is finite and injective. We have Sq/pSq = κ(q), see Lemma
10.143.5. Hence a fortiori Sq/q

′Sq = κ(q). Since
κ(p) ⊂ κ(q′) ⊂ κ(q)

and since α is in the image of κ(q′) in κ(q) we conclude that κ(q′) = κ(q). Hence
by Nakayama’s Lemma 10.20.1 applied to the S′

q′ -module map S′
q′ → Sq, the map

S′
q′ → Sq is surjective. In other words, S′

q′
∼= Sq.

Step 7. By Lemma 10.126.7 there exist g ∈ S, g ̸∈ q and g′ ∈ S′, g′ ̸∈ q′ such
that S′

g′
∼= Sg. As R is Noetherian the ring S′ is finite over R because it is an R-

submodule of the finite R-module S. Hence after replacing S by S′ we may assume
that (a) R is Noetherian, (b) S finite over R, (c) S is étale over R at q, and (d)
S = R[x]/I.

Step 8. Consider the ring S ⊗R κ(p) = κ(p)[x]/I where I = I · κ(p)[x] is the ideal
generated by I in κ(p)[x]. As κ(p)[x] is a PID we know that I = (h) for some monic
h ∈ κ(p)[x]. After replacing h by λ · h for some λ ∈ κ(p) we may assume that h is
the image of some h ∈ I ⊂ R[x]. (The problem is that we do not know if we may
choose h monic.) Also, as in Step 4 we know that S ⊗R κ(p) = A1 × . . .×An with
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A1 = κ(q) a finite separable extension of κ(p) and A2, . . . , An local. This implies
that

h = h1h
e2
2 . . . h

en
n

for certain pairwise coprime irreducible monic polynomials hi ∈ κ(p)[x] and certain
e2, . . . , en ≥ 1. Here the numbering is chosen so that Ai = κ(p)[x]/(heii ) as κ(p)[x]-
algebras. Note that h1 is the minimal polynomial of α ∈ κ(q) and hence is a
separable polynomial (its derivative is prime to itself).
Step 9. Let m ∈ I be a monic element; such an element exists because the ring
extension R→ R[x]/I is finite hence integral. Denote m the image in κ(p)[x]. We
may factor

m = kh
d1
1 h

d2
2 . . . h

dn
n

for some d1 ≥ 1, dj ≥ ej , j = 2, . . . , n and k ∈ κ(p)[x] prime to all the hi. Set
f = ml + h where l deg(m) > deg(h), and l ≥ 2. Then f is monic as a polynomial
over R. Also, the image f of f in κ(p)[x] factors as

f = h1h
e2
2 . . . h

en
n +klhld1

1 h
ld2
2 . . . h

ldn
n = h1(he2

2 . . . h
en
n +klhld1−1

1 h
ld2
2 . . . h

ldn
n ) = h1w

with w a polynomial relatively prime to h1. Set g = f ′ (the derivative with respect
to x).
Step 10. The ring map R[x] → S = R[x]/I has the properties: (1) it maps f to
zero, and (2) it maps g to an element of S \ q. The first assertion is clear since f
is an element of I. For the second assertion we just have to show that g does not
map to zero in κ(q) = κ(p)[x]/(h1). The image of g in κ(p)[x] is the derivative of
f . Thus (2) is clear because

g = df
dx = w

dh1

dx + h1
dw
dx ,

w is prime to h1 and h1 is separable.
Step 11. We conclude that φ : R[x]/(f)→ S is a surjective ring map, R[x]g/(f) is
étale over R (because it is standard étale, see Lemma 10.144.2) and φ(g) ̸∈ q. Pick
an element g′ ∈ R[x]/(f) such that also φ(g′) ̸∈ q and Sφ(g′) is étale over R (which
exists since S is étale over R at q). Then the ring map R[x]gg′/(f) → Sφ(gg′) is a
surjective map of étale algebras over R. Hence it is étale by Lemma 10.143.8. Hence
it is a localization by Lemma 10.143.9. Thus a localization of S at an element not
in q is isomorphic to a localization of a standard étale algebra over R which is what
we wanted to show. □

The following two lemmas say that the étale topology is coarser than the topology
generated by Zariski coverings and finite flat morphisms. They should be skipped
on a first reading.
Lemma 10.144.5.00UF Let R → S be a standard étale morphism. There exists a ring
map R→ S′ with the following properties

(1) R → S′ is finite, finitely presented, and flat (in other words S′ is finite
projective as an R-module),

(2) Spec(S′)→ Spec(R) is surjective,
(3) for every prime q ⊂ S, lying over p ⊂ R and every prime q′ ⊂ S′ lying

over p there exists a g′ ∈ S′, g′ ̸∈ q′ such that the ring map R → S′
g′

factors through a map φ : S → S′
g′ with φ−1(q′S′

g′) = q.

https://stacks.math.columbia.edu/tag/00UF
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Proof. Let S = R[x]g/(f) be a presentation of S as in Definition 10.144.1. Write
f = xn + a1x

n−1 + . . .+ an with ai ∈ R. By Lemma 10.136.14 there exists a finite
locally free and faithfully flat ring map R→ S′ such that f =

∏
(x−αi) for certain

αi ∈ S′. Hence R → S′ satisfies conditions (1), (2). Let q ⊂ R[x]/(f) be a prime
ideal with g ̸∈ q (i.e., it corresponds to a prime of S). Let p = R∩ q and let q′ ⊂ S′

be a prime lying over p. Note that there are n maps of R-algebras
φi : R[x]/(f) −→ S′

x 7−→ αi

To finish the proof we have to show that for some i we have (a) the image of φi(g)
in κ(q′) is not zero, and (b) φ−1

i (q′) = q. Because then we can just take g′ = φi(g),
and φ = φi for that i.
Let f denote the image of f in κ(p)[x]. Note that as a point of Spec(κ(p)[x]/(f))
the prime q corresponds to an irreducible factor f1 of f . Moreover, g ̸∈ q means
that f1 does not divide the image g of g in κ(p)[x]. Denote α1, . . . , αn the images
of α1, . . . , αn in κ(q′). Note that the polynomial f splits completely in κ(q′)[x],
namely

f =
∏

i
(x− αi)

Moreover φi(g) reduces to g(αi). It follows we may pick i such that f1(αi) = 0 and
g(αi) ̸= 0. For this i properties (a) and (b) hold. Some details omitted. □

Lemma 10.144.6.00UG Let R→ S be a ring map. Assume that
(1) R→ S is étale, and
(2) Spec(S)→ Spec(R) is surjective.

Then there exists a ring map R→ S′ such that
(1) R → S′ is finite, finitely presented, and flat (in other words it is finite

projective as an R-module),
(2) Spec(S′)→ Spec(R) is surjective,
(3) for every prime q′ ⊂ S′ there exists a g′ ∈ S′, g′ ̸∈ q′ such that the ring

map R→ S′
g′ factors as R→ S → S′

g′ .

Proof. By Proposition 10.144.4 and the quasi-compactness of Spec(S) (see Lemma
10.17.10) we can find g1, . . . , gn ∈ S generating the unit ideal of S such that
each R → Sgi is standard étale. If we prove the lemma for the ring map R →∏
i=1,...,n Sgi then the lemma follows for the ring map R → S. Hence we may

assume that S =
∏
i=1,...,n Si is a finite product of standard étale morphisms.

For each i choose a ring map R→ S′
i as in Lemma 10.144.5 adapted to the standard

étale morphism R→ Si. Set S′ = S′
1⊗R . . .⊗R S′

n; we will use the R-algebra maps
S′
i → S′ without further mention below. We claim this works. Properties (1) and

(2) are immediate. For property (3) suppose that q′ ⊂ S′ is a prime. Denote
p its image in Spec(R). Choose i ∈ {1, . . . , n} such that p is in the image of
Spec(Si) → Spec(R); this is possible by assumption. Set q′

i ⊂ S′
i the image of

q′ in the spectrum of S′
i. By construction of S′

i there exists a g′
i ∈ S′

i such that
R→ (S′

i)g′
i

factors as R→ Si → (S′
i)g′

i
. Hence also R→ S′

g′
i

factors as

R→ Si → (S′
i)g′

i
→ S′

g′
i

as desired. □

https://stacks.math.columbia.edu/tag/00UG
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10.145. Étale local structure of quasi-finite ring maps

0G1B The following lemmas say roughly that after an étale extension a quasi-finite ring
map becomes finite. To help interpret the results recall that the locus where a finite
type ring map is quasi-finite is open (see Lemma 10.123.13) and that formation of
this locus commutes with arbitrary base change (see Lemma 10.122.8).

Lemma 10.145.1.00UI Let R → S′ → S be ring maps. Let p ⊂ R be a prime. Let
g ∈ S′ be an element. Assume

(1) R→ S′ is integral,
(2) R→ S is finite type,
(3) S′

g
∼= Sg, and

(4) g invertible in S′ ⊗R κ(p).
Then there exists a f ∈ R, f ̸∈ p such that Rf → Sf is finite.

Proof. By assumption the image T of V (g) ⊂ Spec(S′) under the morphism Spec(S′)→
Spec(R) does not contain p. By Section 10.41 especially, Lemma 10.41.6 we see T
is closed. Pick f ∈ R, f ̸∈ p such that T ∩D(f) = ∅. Then we see that g becomes
invertible in S′

f . Hence S′
f
∼= Sf . Thus Sf is both of finite type and integral over

Rf , hence finite. □

Lemma 10.145.2.00UJ Let R→ S be a ring map. Let q ⊂ S be a prime lying over the
prime p ⊂ R. Assume R→ S finite type and quasi-finite at q. Then there exists

(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p,
(3) a product decomposition

R′ ⊗R S = A×B

with the following properties
(1) κ(p) = κ(p′),
(2) R′ → A is finite,
(3) A has exactly one prime r lying over p′, and
(4) r lies over q.

Proof. Let S′ ⊂ S be the integral closure of R in S. Let q′ = S′ ∩ q. By Zariski’s
Main Theorem 10.123.12 there exists a g ∈ S′, g ̸∈ q′ such that S′

g
∼= Sg. Consider

the fibre rings F = S ⊗R κ(p) and F ′ = S′ ⊗R κ(p). Denote q′ the prime of F ′

corresponding to q′. Since F ′ is integral over κ(p) we see that q′ is a closed point
of Spec(F ′), see Lemma 10.36.19. Note that q defines an isolated closed point q
of Spec(F ) (see Definition 10.122.3). Since S′

g
∼= Sg we have F ′

g
∼= Fg, so q and

q′ have isomorphic open neighbourhoods in Spec(F ) and Spec(F ′). We conclude
the set {q′} ⊂ Spec(F ′) is open. Combined with q′ being closed (shown above) we
conclude that q′ defines an isolated closed point of Spec(F ′) as well.
An additional small remark is that under the map Spec(F ) → Spec(F ′) the point
q is the only point mapping to q′. This follows from the discussion above.
By Lemma 10.24.3 we may write F ′ = F ′

1 × F ′
2 with Spec(F ′

1) = {q′}. Since F ′ =
S′⊗R κ(p), there exists an s′ ∈ S′ which maps to the element (r, 0) ∈ F ′

1×F ′
2 = F ′

for some r ∈ R, r ̸∈ p. In fact, what we will use about s′ is that it is an element of
S′, not contained in q′, and contained in any other prime lying over p.

https://stacks.math.columbia.edu/tag/00UI
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Let f(x) ∈ R[x] be a monic polynomial such that f(s′) = 0. Denote f ∈ κ(p)[x]
the image. We can factor it as f = xeh where h(0) ̸= 0. After replacing f by xf
if necessary, we may assume e ≥ 1. By Lemma 10.143.13 we can find an étale ring
extension R→ R′, a prime p′ lying over p, and a factorization f = hi in R′[x] such
that κ(p) = κ(p′), h = h mod p′, xe = i mod p′, and we can write ah + bi = 1 in
R′[x] (for suitable a, b).

Consider the elements h(s′), i(s′) ∈ R′⊗R S′. By construction we have h(s′)i(s′) =
f(s′) = 0. On the other hand they generate the unit ideal since a(s′)h(s′) +
b(s′)i(s′) = 1. Thus we see that R′⊗RS′ is the product of the localizations at these
elements:

R′ ⊗R S′ = (R′ ⊗R S′)i(s′) × (R′ ⊗R S′)h(s′) = S′
1 × S′

2

Moreover this product decomposition is compatible with the product decomposition
we found for the fibre ring F ′; this comes from our choices of s′, i, h which guarantee
that q′ is the only prime of F ′ which does not contain the image of i(s′) in F ′. Here
we use that the fibre ring of R′ ⊗R S′ over R′ at p′ is the same as F ′ due to the
fact that κ(p) = κ(p′). It follows that S′

1 has exactly one prime, say r′, lying over
p′ and that this prime lies over q′. Hence the element g ∈ S′ maps to an element
of S′

1 not contained in r′.

The base change R′ ⊗R S inherits a similar product decomposition

R′ ⊗R S = (R′ ⊗R S)i(s′) × (R′ ⊗R S)h(s′) = S1 × S2

It follows from the above that S1 has exactly one prime, say r, lying over p′ (consider
the fibre ring as above), and that this prime lies over q.

Now we may apply Lemma 10.145.1 to the ring maps R′ → S′
1 → S1, the prime p′

and the element g to see that after replacing R′ by a principal localization we can
assume that S1 is finite over R′ as desired. □

Lemma 10.145.3.00UK Let R → S be a ring map. Let p ⊂ R be a prime. Assume
R→ S finite type. Then there exists

(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p,
(3) a product decomposition

R′ ⊗R S = A1 × . . .×An ×B

with the following properties
(1) we have κ(p) = κ(p′),
(2) each Ai is finite over R′,
(3) each Ai has exactly one prime ri lying over p′, and
(4) R′ → B not quasi-finite at any prime lying over p′.

Proof. Denote F = S ⊗R κ(p) the fibre ring of S/R at the prime p. As F is of
finite type over κ(p) it is Noetherian and hence Spec(F ) has finitely many isolated
closed points. If there are no isolated closed points, i.e., no primes q of S over p
such that S/R is quasi-finite at q, then the lemma holds. If there exists at least

https://stacks.math.columbia.edu/tag/00UK
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one such prime q, then we may apply Lemma 10.145.2. This gives a diagram

S // R′ ⊗R S A1 ×B′

R //

OO

R′

OO 88

as in said lemma. Since the residue fields at p and p′ are the same, the fibre rings of
S/R and (A1×B′)/R′ are the same. Hence, by induction on the number of isolated
closed points of the fibre we may assume that the lemma holds for R′ → B′ and p′.
Thus we get an étale ring map R′ → R′′, a prime p′′ ⊂ R′′ and a decomposition

R′′ ⊗R′ B′ = A2 × . . .×An ×B
We omit the verification that the ring map R→ R′′, the prime p′′ and the resulting
decomposition

R′′ ⊗R S = (R′′ ⊗R′ A1)×A2 × . . .×An ×B
is a solution to the problem posed in the lemma. □

Lemma 10.145.4.00UL Let R → S be a ring map. Let p ⊂ R be a prime. Assume
R→ S finite type. Then there exists

(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p,
(3) a product decomposition

R′ ⊗R S = A1 × . . .×An ×B
with the following properties

(1) each Ai is finite over R′,
(2) each Ai has exactly one prime ri lying over p′,
(3) the finite field extensions κ(ri)/κ(p′) are purely inseparable, and
(4) R′ → B not quasi-finite at any prime lying over p′.

Proof. The strategy of the proof is to make two étale ring extensions: first we
control the residue fields, then we apply Lemma 10.145.3.
Denote F = S⊗Rκ(p) the fibre ring of S/R at the prime p. As in the proof of Lemma
10.145.3 there are finitely may primes, say q1, . . . , qn of S lying over R at which
the ring map R → S is quasi-finite. Let κ(p) ⊂ Li ⊂ κ(qi) be the subfield such
that κ(p) ⊂ Li is separable, and the field extension κ(qi)/Li is purely inseparable.
Let L/κ(p) be a finite Galois extension into which Li embeds for i = 1, . . . , n. By
Lemma 10.144.3 we can find an étale ring extension R→ R′ together with a prime
p′ lying over p such that the field extension κ(p′)/κ(p) is isomorphic to κ(p) ⊂ L.
Thus the fibre ring of R′ ⊗R S at p′ is isomorphic to F ⊗κ(p) L. The primes lying
over qi correspond to primes of κ(qi) ⊗κ(p) L which is a product of fields purely
inseparable over L by our choice of L and elementary field theory. These are also
the only primes over p′ at which R′ → R′ ⊗R S is quasi-finite, by Lemma 10.122.8.
Hence after replacing R by R′, p by p′, and S by R′ ⊗R S we may assume that for
all primes q lying over p for which S/R is quasi-finite the field extensions κ(q)/κ(p)
are purely inseparable.
Next apply Lemma 10.145.3. The result is what we want since the field extensions
do not change under this étale ring extension. □

https://stacks.math.columbia.edu/tag/00UL
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10.146. Local homomorphisms

053J Some lemmas which don’t have a natural section to go into. The first lemma says,
loosely speaking, that an étale map of local rings is an isomorphism modulo all
powers of a nonunit principal ideal.

Lemma 10.146.1.0GSD [Lin82, Lemma on
page 321], [Ces22,
Lemma 4.1.5]

Let (R,mR)→ (S,mS) be a local homomorphism of local rings.
Assume S is the localization of an étale ring extension ofR and that κ(mR)→ κ(mS)
is an isomorphism. Then there exists an t ∈ mR such that R/tnR → S/tnS is an
isomorphsm for all n ≥ 1.

Proof. Write S = Tq for some étale R-algebra T and prime ideal q ⊂ T lying over
mR. By Proposition 10.144.4 we may assume R → T is standard étale. Write
T = R[x]g/(f) as in Definition 10.144.1. By our assumption on residue fields, we
may choose a ∈ R such that x and a have the same image in κ(q) = κ(mS) = κ(mR).
Then after replacing x by x − a we may assume that q is generated by x and mR
in T . In particular t = f(0) ∈ mR. We will show that t = f(0) works.
Write f = xd +

∑
i=1,...,d−1 aix

i + t. Since R→ T is standard étale we find that a1
is a unit in R: the derivative of f is invertible in T in particular is not contained in
q. Let h = a1 + a2x+ . . .+ ad−1x

d−2 + xd−1 ∈ R[x] so that f = t+ xh in R[x]. We
see that h ̸∈ q and hence we may replace T by R[x]hg/(f). After this replacement
we see that

T/tT = (R/tR)[x]hg/(f) = (R/tR)[x]hg/(xh) = (R/tR)[x]hg/(x)
is a quotient of R/tR. By Lemma 10.126.9 we conclude that R/tnR → T/tnT is
surjective for all n ≥ 1. On the other hand, we know that the flat local ring map
R/tnR → S/tnS factors through R/tnR → T/tnT for all n, hence these maps are
also injective (a flat local homomorphism of local rings is faithfully flat and hence
injective, see Lemmas 10.39.17 and 10.82.11). As S is the localization of T we see
that S/tnS is the localization of T/tnT = R/tnR at a prime lying over the maximal
ideal, but this ring is already local and the proof is complete. □

Lemma 10.146.2.053K Let (R,mR)→ (S,mS) be a local homomorphism of local rings.
Assume S is the localization of an étale ring extension of R. Then there exists
a finite, finitely presented, faithfully flat ring map R → S′ such that for every
maximal ideal m′ of S′ there is a factorization

R→ S → S′
m′ .

of the ring map R→ S′
m′ .

Proof. Write S = Tq for some étale R-algebra T . By Proposition 10.144.4 we may
assume T is standard étale. Apply Lemma 10.144.5 to the ring map R→ T to get
R→ S′. Then in particular for every maximal ideal m′ of S′ we get a factorization
φ : T → S′

g′ for some g′ ̸∈ m′ such that q = φ−1(m′S′
g′). Thus φ induces the desired

local ring map S → S′
m′ . □

10.147. Integral closure and smooth base change

03GC
Lemma 10.147.1.03GD Let R be a ring. Let f ∈ R[x] be a monic polynomial. Let
R→ B be a ring map. If h ∈ B[x]/(f) is integral over R, then the element f ′h can
be written as f ′h =

∑
i bix

i with bi ∈ B integral over R.

https://stacks.math.columbia.edu/tag/0GSD
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Proof. Say he + r1h
e−1 + . . . + re = 0 in the ring B[x]/(f) with ri ∈ R. There

exists a finite free ring extension B ⊂ B′ such that f = (x − α1) . . . (x − αd) for
some αi ∈ B′, see Lemma 10.136.14. Note that each αi is integral over R. We may
represent h = h0 + h1x + . . . + hd−1x

d−1 with hi ∈ B. Then it is a universal fact
that

f ′h =
∑

i=1,...,d
h(αi)(x− α1) . . . ̂(x− αi) . . . (x− αd)

as elements of B′[x]/(f). You prove this by evaluating both sides at the points αi
over the ring Buniv = Z[αi, hj ] (some details omitted). By our assumption that h
satisfies he + r1h

e−1 + . . .+ re = 0 in the ring B[x]/(f) we see that

h(αi)e + r1h(αi)e−1 + . . .+ re = 0

in B′. Hence h(αi) is integral over R. Using the formula above we see that f ′h ≡∑
j=0,...,d−1 b

′
jx
j in B′[x]/(f) with b′

j ∈ B′ integral over R. However, since f ′h ∈
B[x]/(f) and since 1, x, . . . , xd−1 is a B′-basis for B′[x]/(f) we see that b′

j ∈ B as
desired. □

Lemma 10.147.2.03GE Let R→ S be an étale ring map. Let R→ B be any ring map.
Let A ⊂ B be the integral closure of R in B. Let A′ ⊂ S ⊗R B be the integral
closure of S in S ⊗R B. Then the canonical map S ⊗R A→ A′ is an isomorphism.

Proof. The map S⊗RA→ A′ is injective because A ⊂ B and R→ S is flat. We are
going to use repeatedly that taking integral closure commutes with localization, see
Lemma 10.36.11. Hence we may localize on S, by Lemma 10.23.2 (the criterion for
checking whether an S-module map is an isomorphism). Thus we may assume that
S = R[x]g/(f) = (R[x]/(f))g is standard étale over R, see Proposition 10.144.4.
Applying localization one more time we see that A′ is (A′′)g where A′′ is the integral
closure of R[x]/(f) in B[x]/(f). Suppose that a ∈ A′′. It suffices to show that a
is in S ⊗R A. By Lemma 10.147.1 we see that f ′a =

∑
aix

i with ai ∈ A. Since
f ′ is invertible in S (by definition of a standard étale ring map) we conclude that
a ∈ S ⊗R A as desired. □

Example 10.147.3.03GF Let p be a prime number. The ring extension

R = Z[1/p] ⊂ R′ = Z[1/p][x]/(xp−1 + . . .+ x+ 1)

has the following property: For d < p there exist elements α0, . . . , αd−1 ∈ R′ such
that ∏

0≤i<j<d
(αi − αj)

is a unit in R′. Namely, take αi equal to the class of xi in R′ for i = 0, . . . , p − 1.
Then we have

T p − 1 =
∏

i=0,...,p−1
(T − αi)

in R′[T ]. Namely, the ring Q[x]/(xp−1 + . . . + x + 1) is a field because the cyclo-
tomic polynomial xp−1 + . . . + x + 1 is irreducible over Q and the αi are pairwise
distinct roots of T p − 1, whence the equality. Taking derivatives on both sides and
substituting T = αi we obtain

pαp−1
i = (αi − α1) . . . ̂(αi − αi) . . . (αi − α1)

and we see this is invertible in R′.

https://stacks.math.columbia.edu/tag/03GE
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Lemma 10.147.4.03GG Let R→ S be a smooth ring map. Let R→ B be any ring map.
Let A ⊂ B be the integral closure of R in B. Let A′ ⊂ S ⊗R B be the integral
closure of S in S ⊗R B. Then the canonical map S ⊗R A→ A′ is an isomorphism.

Proof. Arguing as in the proof of Lemma 10.147.2 we may localize on S. Hence we
may assume that R→ S is a standard smooth ring map, see Lemma 10.137.10. By
definition of a standard smooth ring map we see that S is étale over a polynomial
ring R[x1, . . . , xn]. Since we have seen the result in the case of an étale ring exten-
sion (Lemma 10.147.2) this reduces us to the case where S = R[x]. Thus we have
to show

f =
∑

bix
i integral over R[x]⇔ each bi integral over R.

The implication from right to left holds because the set of elements in B[x] integral
over R[x] is a ring (Lemma 10.36.7) and contains x.
Suppose that f ∈ B[x] is integral over R[x], and assume that f =

∑
i<d bix

i has
degree < d. Since integral closure and localization commute, it suffices to show
there exist distinct primes p, q such that each bi is integral both over R[1/p] and
over R[1/q]. Hence, we can find a finite free ring extension R ⊂ R′ such that
R′ contains α1, . . . , αd with the property that

∏
i<j(αi − αj) is a unit in R′, see

Example 10.147.3. In this case we have the universal equality

f =
∑
i

f(αi)
(x− α1) . . . ̂(x− αi) . . . (x− αd)

(αi − α1) . . . ̂(αi − αi) . . . (αi − αd)
.

OK, and the elements f(αi) are integral over R′ since (R′ ⊗R B)[x] → R′ ⊗R B,
h 7→ h(αi) is a ring map. Hence we see that the coefficients of f in (R′ ⊗R B)[x]
are integral over R′. Since R′ is finite over R (hence integral over R) we see that
they are integral over R also, as desired. □

Lemma 10.147.5.0CBF Let R→ S and R→ B be ring maps. Let A ⊂ B be the integral
closure of R in B. Let A′ ⊂ S ⊗R B be the integral closure of S in S ⊗R B. If S is
a filtered colimit of smooth R-algebras, then the canonical map S⊗R A→ A′ is an
isomorphism.

Proof. This follows from the straightforward fact that taking tensor products and
taking integral closures commutes with filtered colimits and Lemma 10.147.4. □

10.148. Formally unramified maps

00UM It turns out to be logically more efficient to define the notion of a formally unram-
ified map before introducing the notion of a formally étale one.

Definition 10.148.1.00UN Let R → S be a ring map. We say S is formally unramified
over R if for every commutative solid diagram

S //

!!

A/I

R //

OO

A

OO

where I ⊂ A is an ideal of square zero, there exists at most one dotted arrow
making the diagram commute.

Lemma 10.148.2.00UO Let R→ S be a ring map. The following are equivalent:

https://stacks.math.columbia.edu/tag/03GG
https://stacks.math.columbia.edu/tag/0CBF
https://stacks.math.columbia.edu/tag/00UN
https://stacks.math.columbia.edu/tag/00UO
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(1) R→ S is formally unramified,
(2) the module of differentials ΩS/R is zero.

Proof. Let J = Ker(S ⊗R S → S) be the kernel of the multiplication map. Let
Auniv = S ⊗R S/J2. Recall that Iuniv = J/J2 is isomorphic to ΩS/R, see Lemma
10.131.13. Moreover, the two R-algebra maps σ1, σ2 : S → Auniv, σ1(s) = s ⊗
1 mod J2, and σ2(s) = 1 ⊗ s mod J2 differ by the universal derivation d : S →
ΩS/R = Iuniv.

Assume R → S formally unramified. Then we see that σ1 = σ2. Hence d(s) = 0
for all s ∈ S. Hence ΩS/R = 0.

Assume that ΩS/R = 0. Let A, I,R → A,S → A/I be a solid diagram as in
Definition 10.148.1. Let τ1, τ2 : S → A be two dotted arrows making the diagram
commute. Consider the R-algebra map Auniv → A defined by the rule s1 ⊗ s2 7→
τ1(s1)τ2(s2). We omit the verification that this is well defined. Since Auniv ∼= S as
Iuniv = ΩS/R = 0 we conclude that τ1 = τ2. □

Lemma 10.148.3.04E8 Let R→ S be a ring map. The following are equivalent:
(1) R→ S is formally unramified,
(2) R→ Sq is formally unramified for all primes q of S, and
(3) Rp → Sq is formally unramified for all primes q of S with p = R ∩ q.

Proof. We have seen in Lemma 10.148.2 that (1) is equivalent to ΩS/R = 0. Simi-
larly, by Lemma 10.131.8 we see that (2) and (3) are equivalent to (ΩS/R)q = 0 for
all q. Hence the equivalence follows from Lemma 10.23.1. □

Lemma 10.148.4.04E9 Let A→ B be a formally unramified ring map.
(1) For S ⊂ A a multiplicative subset, S−1A→ S−1B is formally unramified.
(2) For S ⊂ B a multiplicative subset, A→ S−1B is formally unramified.

Proof. Follows from Lemma 10.148.3. (You can also deduce it from Lemma 10.148.2
combined with Lemma 10.131.8.) □

Lemma 10.148.5.07QE Let R be a ring. Let I be a directed set. Let (Si, φii′) be a system
of R-algebras over I. If each R → Si is formally unramified, then S = colimi∈I Si
is formally unramified over R

Proof. Consider a diagram as in Definition 10.148.1. By assumption there exists
at most one R-algebra map Si → A lifting the compositions Si → S → A/I. Since
every element of S is in the image of one of the maps Si → S we see that there is
at most one map S → A fitting into the diagram. □

10.149. Conormal modules and universal thickenings

04EA It turns out that one can define the first infinitesimal neighbourhood not just for
a closed immersion of schemes, but already for any formally unramified morphism.
This is based on the following algebraic fact.

Lemma 10.149.1.04EB Let R → S be a formally unramified ring map. There exists a
surjection of R-algebras S′ → S whose kernel is an ideal of square zero with the

https://stacks.math.columbia.edu/tag/04E8
https://stacks.math.columbia.edu/tag/04E9
https://stacks.math.columbia.edu/tag/07QE
https://stacks.math.columbia.edu/tag/04EB
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following universal property: Given any commutative diagram

S
a
// A/I

R
b //

OO

A

OO

where I ⊂ A is an ideal of square zero, there is a unique R-algebra map a′ : S′ → A
such that S′ → A→ A/I is equal to S′ → S → A/I.

Proof. Choose a set of generators zi ∈ S, i ∈ I for S as an R-algebra. Let P =
R[{xi}i∈I ] denote the polynomial ring on generators xi, i ∈ I. Consider the R-
algebra map P → S which maps xi to zi. Let J = Ker(P → S). Consider the
map

d : J/J2 −→ ΩP/R ⊗P S
see Lemma 10.131.9. This is surjective since ΩS/R = 0 by assumption, see Lemma
10.148.2. Note that ΩP/R is free on dxi, and hence the module ΩP/R ⊗P S is free
over S. Thus we may choose a splitting of the surjection above and write

J/J2 = K ⊕ ΩP/R ⊗P S
Let J2 ⊂ J ′ ⊂ J be the ideal of P such that J ′/J2 is the second summand in the
decomposition above. Set S′ = P/J ′. We obtain a short exact sequence

0→ J/J ′ → S′ → S → 0
and we see that J/J ′ ∼= K is a square zero ideal in S′. Hence

S
1
// S

R //

OO

S′

OO

is a diagram as above. In fact we claim that this is an initial object in the category
of diagrams. Namely, let (I ⊂ A, a, b) be an arbitrary diagram. We may choose an
R-algebra map β : P → A such that

S
1
// S

a
// A/I

R //

b

33

OO

P

OO

β // A

OO

is commutative. Now it may not be the case that β(J ′) = 0, in other words it may
not be true that β factors through S′ = P/J ′. But what is clear is that β(J ′) ⊂ I
and since β(J) ⊂ I and I2 = 0 we have β(J2) = 0. Thus the “obstruction” to finding
a morphism from (J/J ′ ⊂ S′, 1, R → S′) to (I ⊂ A, a, b) is the corresponding S-
linear map β : J ′/J2 → I. The choice in picking β lies in the choice of β(xi). A
different choice of β, say β′, is gotten by taking β′(xi) = β(xi) + δi with δi ∈ I. In
this case, for g ∈ J ′, we obtain

β′(g) = β(g) +
∑

i
δi
∂g

∂xi
.

Since the map d|J′/J2 : J ′/J2 → ΩP/R⊗P S given by g 7→ ∂g
∂xi

dxi is an isomorphism
by construction, we see that there is a unique choice of δi ∈ I such that β′(g) = 0
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for all g ∈ J ′. (Namely, δi is −β(g) where g ∈ J ′/J2 is the unique element with
∂g
∂xj

= 1 if i = j and 0 else.) The uniqueness of the solution implies the uniqueness
required in the lemma. □

In the situation of Lemma 10.149.1 the R-algebra map S′ → S is unique up to
unique isomorphism.

Definition 10.149.2.04EC Let R→ S be a formally unramified ring map.
(1) The universal first order thickening of S over R is the surjection of R-

algebras S′ → S of Lemma 10.149.1.
(2) The conormal module of R→ S is the kernel I of the universal first order

thickening S′ → S, seen as an S-module.
We often denote the conormal module CS/R in this situation.

Lemma 10.149.3.04ED Let I ⊂ R be an ideal of a ring. The universal first order
thickening of R/I over R is the surjection R/I2 → R/I. The conormal module of
R/I over R is C(R/I)/R = I/I2.

Proof. Omitted. □

Lemma 10.149.4.04EE Let A→ B be a formally unramified ring map. Let φ : B′ → B
be the universal first order thickening of B over A.

(1) Let S ⊂ A be a multiplicative subset. Then S−1B′ → S−1B is the univer-
sal first order thickening of S−1B over S−1A. In particular S−1CB/A =
CS−1B/S−1A.

(2) Let S ⊂ B be a multiplicative subset. Then S′ = φ−1(S) is a multi-
plicative subset in B′ and (S′)−1B′ → S−1B is the universal first order
thickening of S−1B over A. In particular S−1CB/A = CS−1B/A.

Note that the lemma makes sense by Lemma 10.148.4.

Proof. With notation and assumptions as in (1). Let (S−1B)′ → S−1B be the
universal first order thickening of S−1B over S−1A. Note that S−1B′ → S−1B is
a surjection of S−1A-algebras whose kernel has square zero. Hence by definition
we obtain a map (S−1B)′ → S−1B′ compatible with the maps towards S−1B.
Consider any commutative diagram

B // S−1B // D/I

A //

OO

S−1A //

OO

D

OO

where I ⊂ D is an ideal of square zero. Since B′ is the universal first order
thickening of B over A we obtain an A-algebra map B′ → D. But it is clear that
the image of S in D is mapped to invertible elements of D, and hence we obtain a
compatible map S−1B′ → D. Applying this to D = (S−1B)′ we see that we get a
map S−1B′ → (S−1B)′. We omit the verification that this map is inverse to the
map described above.
With notation and assumptions as in (2). Let (S−1B)′ → S−1B be the universal
first order thickening of S−1B over A. Note that (S′)−1B′ → S−1B is a surjection
of A-algebras whose kernel has square zero. Hence by definition we obtain a map

https://stacks.math.columbia.edu/tag/04EC
https://stacks.math.columbia.edu/tag/04ED
https://stacks.math.columbia.edu/tag/04EE
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(S−1B)′ → (S′)−1B′ compatible with the maps towards S−1B. Consider any
commutative diagram

B // S−1B // D/I

A //

OO

A //

OO

D

OO

where I ⊂ D is an ideal of square zero. Since B′ is the universal first order
thickening of B over A we obtain an A-algebra map B′ → D. But it is clear that
the image of S′ in D is mapped to invertible elements of D, and hence we obtain a
compatible map (S′)−1B′ → D. Applying this to D = (S−1B)′ we see that we get
a map (S′)−1B′ → (S−1B)′. We omit the verification that this map is inverse to
the map described above. □

Lemma 10.149.5.04EF Let R → A → B be ring maps. Assume A → B formally
unramified. Let B′ → B be the universal first order thickening of B over A. Then
B′ is formally unramified over A, and the canonical map ΩA/R⊗AB → ΩB′/R⊗B′B
is an isomorphism.

Proof. We are going to use the construction of B′ from the proof of Lemma 10.149.1
although in principle it should be possible to deduce these results formally from
the definition. Namely, we choose a presentation B = P/J , where P = A[xi] is a
polynomial ring over A. Next, we choose elements fi ∈ J such that dfi = dxi ⊗ 1
in ΩP/A⊗P B. Having made these choices we have B′ = P/J ′ with J ′ = (fi) + J2,
see proof of Lemma 10.149.1.

Consider the canonical exact sequence

J ′/(J ′)2 → ΩP/A ⊗P B′ → ΩB′/A → 0

see Lemma 10.131.9. By construction the classes of the fi ∈ J ′ map to elements
of the module ΩP/A ⊗P B′ which generate it modulo J ′/J2 by construction. Since
J ′/J2 is a nilpotent ideal, we see that these elements generate the module altogether
(by Nakayama’s Lemma 10.20.1). This proves that ΩB′/A = 0 and hence that B′

is formally unramified over A, see Lemma 10.148.2.

Since P is a polynomial ring over A we have ΩP/R = ΩA/R ⊗A P ⊕
⊕
Pdxi. We

are going to use this decomposition. Consider the following exact sequence

J ′/(J ′)2 → ΩP/R ⊗P B′ → ΩB′/R → 0

see Lemma 10.131.9. We may tensor this with B and obtain the exact sequence

J ′/(J ′)2 ⊗B′ B → ΩP/R ⊗P B → ΩB′/R ⊗B′ B → 0

If we remember that J ′ = (fi) + J2 then we see that the first arrow annihilates
the submodule J2/(J ′)2. In terms of the direct sum decomposition ΩP/R ⊗P B =
ΩA/R ⊗A B ⊕

⊕
Bdxi given we see that the submodule (fi)/(J ′)2 ⊗B′ B maps

isomorphically onto the summand
⊕
Bdxi. Hence what is left of this exact sequence

is an isomorphism ΩA/R ⊗A B → ΩB′/R ⊗B′ B as desired. □

https://stacks.math.columbia.edu/tag/04EF
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10.150. Formally étale maps

00UP
Definition 10.150.1.00UQ Let R→ S be a ring map. We say S is formally étale over R
if for every commutative solid diagram

S //

!!

A/I

R //

OO

A

OO

where I ⊂ A is an ideal of square zero, there exists a unique dotted arrow making
the diagram commute.

Clearly a ring map is formally étale if and only if it is both formally smooth and
formally unramified.

Lemma 10.150.2.00UR Let R → S be a ring map of finite presentation. The following
are equivalent:

(1) R→ S is formally étale,
(2) R→ S is étale.

Proof. Assume that R→ S is formally étale. Then R→ S is smooth by Proposition
10.138.13. By Lemma 10.148.2 we have ΩS/R = 0. Hence R → S is étale by
definition.

Assume that R → S is étale. Then R → S is formally smooth by Proposition
10.138.13. By Lemma 10.148.2 it is formally unramified. Hence R→ S is formally
étale. □

Lemma 10.150.3.031N Let R be a ring. Let I be a directed set. Let (Si, φii′) be a
system of R-algebras over I. If each R→ Si is formally étale, then S = colimi∈I Si
is formally étale over R

Proof. Consider a diagram as in Definition 10.150.1. By assumption we get unique
R-algebra maps Si → A lifting the compositions Si → S → A/I. Hence these are
compatible with the transition maps φii′ and define a lift S → A. This proves
existence. The uniqueness is clear by restricting to each Si. □

Lemma 10.150.4.04EG Let R be a ring. Let S ⊂ R be any multiplicative subset. Then
the ring map R→ S−1R is formally étale.

Proof. Let I ⊂ A be an ideal of square zero. What we are saying here is that given
a ring map φ : R → A such that φ(f) mod I is invertible for all f ∈ S we have
also that φ(f) is invertible in A for all f ∈ S. This is true because A∗ is the inverse
image of (A/I)∗ under the canonical map A→ A/I. □

Lemma 10.150.5.0H1D Let R → S be a ring map. Let J ⊂ S be an ideal such that
R → S/J is surjective; let I ⊂ R be the kernel. If R → S is formally étale, then⊕
In/In+1 →

⊕
Jn/Jn+1 is an isomorphism of graded rings.

https://stacks.math.columbia.edu/tag/00UQ
https://stacks.math.columbia.edu/tag/00UR
https://stacks.math.columbia.edu/tag/031N
https://stacks.math.columbia.edu/tag/04EG
https://stacks.math.columbia.edu/tag/0H1D
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Proof. Using the lifting property inductively we find dotted arrows

S //

$$

S/J = R/I

R //

OO

R/I2

OO
S //

!!

R/I2

R //

OO

R/I3

OO
S //

!!

R/I3

R //

OO

R/I4

OO

The corresponding maps S/Jn → R/In are isomorphisms since the compositions
S/Jn → R/In → S/Jn are (inductively) the identity by the uniqueness in the
lifting property of formally étale ring maps. □

10.151. Unramified ring maps

00US The definition of a G-unramified ring map is the one from EGA. The definition of
an unramified ring map is the one from [Ray70].
Definition 10.151.1.00UT Let R→ S be a ring map.

(1) We say R→ S is unramified if R→ S is of finite type and ΩS/R = 0.
(2) We say R → S is G-unramified if R → S is of finite presentation and

ΩS/R = 0.
(3) Given a prime q of S we say that S is unramified at q if there exists a

g ∈ S, g ̸∈ q such that R→ Sg is unramified.
(4) Given a prime q of S we say that S is G-unramified at q if there exists a

g ∈ S, g ̸∈ q such that R→ Sg is G-unramified.
Of course a G-unramified map is unramified.
Lemma 10.151.2.00UU Let R→ S be a ring map. The following are equivalent

(1) R→ S is formally unramified and of finite type, and
(2) R→ S is unramified.

Moreover, also the following are equivalent
(1) R→ S is formally unramified and of finite presentation, and
(2) R→ S is G-unramified.

Proof. Follows from Lemma 10.148.2 and the definitions. □

Lemma 10.151.3.00UV Properties of unramified and G-unramified ring maps.
(1) The base change of an unramified ring map is unramified. The base change

of a G-unramified ring map is G-unramified.
(2) The composition of unramified ring maps is unramified. The composition

of G-unramified ring maps is G-unramified.
(3) Any principal localization R→ Rf is G-unramified and unramified.
(4) If I ⊂ R is an ideal, then R → R/I is unramified. If I ⊂ R is a finitely

generated ideal, then R→ R/I is G-unramified.
(5) An étale ring map is G-unramified and unramified.
(6) If R→ S is of finite type (resp. finite presentation), q ⊂ S is a prime and

(ΩS/R)q = 0, then R→ S is unramified (resp. G-unramified) at q.
(7) If R→ S is of finite type (resp. finite presentation), q ⊂ S is a prime and

ΩS/R ⊗S κ(q) = 0, then R→ S is unramified (resp. G-unramified) at q.
(8) If R→ S is of finite type (resp. finite presentation), q ⊂ S is a prime lying

over p ⊂ R and (ΩS⊗Rκ(p)/κ(p))q = 0, then R → S is unramified (resp.
G-unramified) at q.

https://stacks.math.columbia.edu/tag/00UT
https://stacks.math.columbia.edu/tag/00UU
https://stacks.math.columbia.edu/tag/00UV
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(9) If R→ S is of finite type (resp. presentation), q ⊂ S is a prime lying over
p ⊂ R and (ΩS⊗Rκ(p)/κ(p))⊗S⊗Rκ(p) κ(q) = 0, then R → S is unramified
(resp. G-unramified) at q.

(10) If R → S is a ring map, g1, . . . , gm ∈ S generate the unit ideal and
R→ Sgj is unramified (resp. G-unramified) for j = 1, . . . ,m, then R→ S
is unramified (resp. G-unramified).

(11) If R→ S is a ring map which is unramified (resp. G-unramified) at every
prime of S, then R→ S is unramified (resp. G-unramified).

(12) If R → S is G-unramified, then there exists a finite type Z-algebra R0
and a G-unramified ring map R0 → S0 and a ring map R0 → R such that
S = R⊗R0 S0.

(13) If R → S is unramified, then there exists a finite type Z-algebra R0 and
an unramified ring map R0 → S0 and a ring map R0 → R such that S is
a quotient of R⊗R0 S0.

Proof. We prove each point, in order.

Ad (1). Follows from Lemmas 10.131.12 and 10.14.2.

Ad (2). Follows from Lemmas 10.131.7 and 10.14.2.

Ad (3). Follows by direct computation of ΩRf/R which we omit.

Ad (4). We have Ω(R/I)/R = 0, see Lemma 10.131.4, and the ring map R→ R/I is
of finite type. If I is a finitely generated ideal then R→ R/I is of finite presentation.

Ad (5). See discussion following Definition 10.143.1.

Ad (6). In this case ΩS/R is a finite S-module (see Lemma 10.131.16) and hence
there exists a g ∈ S, g ̸∈ q such that (ΩS/R)g = 0. By Lemma 10.131.8 this means
that ΩSg/R = 0 and hence R→ Sg is unramified as desired.

Ad (7). Use Nakayama’s lemma (Lemma 10.20.1) to see that the condition is
equivalent to the condition of (6).

Ad (8) and (9). These are equivalent in the same manner that (6) and (7) are
equivalent. Moreover ΩS⊗Rκ(p)/κ(p) = ΩS/R ⊗S (S ⊗R κ(p)) by Lemma 10.131.12.
Hence we see that (9) is equivalent to (7) since the κ(q) vector spaces in both are
canonically isomorphic.

Ad (10). Follows from Lemmas 10.23.2 and 10.131.8.

Ad (11). Follows from (6) and (7) and the fact that the spectrum of S is quasi-
compact.

Ad (12). Write S = R[x1, . . . , xn]/(g1, . . . , gm). As ΩS/R = 0 we can write

dxi =
∑

hijdgj +
∑

aijkgjdxk

in ΩR[x1,...,xn]/R for some hij , aijk ∈ R[x1, . . . , xn]. Choose a finitely generated Z-
subalgebra R0 ⊂ R containing all the coefficients of the polynomials gi, hij , aijk.
Set S0 = R0[x1, . . . , xn]/(g1, . . . , gm). This works.

Ad (13). Write S = R[x1, . . . , xn]/I. As ΩS/R = 0 we can write

dxi =
∑

hijdgij +
∑

g′
ikdxk
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in ΩR[x1,...,xn]/R for some hij ∈ R[x1, . . . , xn] and gij , g
′
ik ∈ I. Choose a finitely

generated Z-subalgebra R0 ⊂ R containing all the coefficients of the polynomials
gij , hij , g

′
ik. Set S0 = R0[x1, . . . , xn]/(gij , g′

ik). This works. □

Lemma 10.151.4.02FL Let R → S be a ring map. If R → S is unramified, then
there exists an idempotent e ∈ S ⊗R S such that S ⊗R S → S is isomorphic to
S ⊗R S → (S ⊗R S)e.

Proof. Let J = Ker(S⊗RS → S). By assumption J/J2 = 0, see Lemma 10.131.13.
Since S is of finite type over R we see that J is finitely generated, namely by
xi ⊗ 1− 1⊗ xi, where xi generate S over R. We win by Lemma 10.21.5. □

Lemma 10.151.5.00UW Let R→ S be a ring map. Let q ⊂ S be a prime lying over p in
R. If S/R is unramified at q then

(1) we have pSq = qSq is the maximal ideal of the local ring Sq, and
(2) the field extension κ(q)/κ(p) is finite separable.

Proof. We may first replace S by Sg for some g ∈ S, g ̸∈ q and assume that R→ S
is unramified. The base change S ⊗R κ(p) is unramified over κ(p) by Lemma
10.151.3. By Lemma 10.140.3 it is smooth hence étale over κ(p). Hence we see that
S ⊗R κ(p) = (R \ p)−1S/pS is a product of finite separable field extensions of κ(p)
by Lemma 10.143.4. This implies the lemma. □

Lemma 10.151.6.02UR Let R → S be a finite type ring map. Let q be a prime of S.
If R → S is unramified at q then R → S is quasi-finite at q. In particular, an
unramified ring map is quasi-finite.

Proof. An unramified ring map is of finite type. Thus it is clear that the second
statement follows from the first. To see the first statement apply the characteriza-
tion of Lemma 10.122.2 part (2) using Lemma 10.151.5. □

Lemma 10.151.7.02FM Let R → S be a ring map. Let q be a prime of S lying over a
prime p of R. If

(1) R→ S is of finite type,
(2) pSq is the maximal ideal of the local ring Sq, and
(3) the field extension κ(q)/κ(p) is finite separable,

then R→ S is unramified at q.

Proof. By Lemma 10.151.3 (8) it suffices to show that ΩS⊗Rκ(p)/κ(p) is zero when
localized at q. Hence we may replace S by S ⊗R κ(p) and R by κ(p). In other
words, we may assume that R = k is a field and S is a finite type k-algebra. In this
case the hypotheses imply that Sq

∼= κ(q). Thus (ΩS/k)q = ΩSq/k = Ωκ(q)/k is zero
as desired (the first equality is Lemma 10.131.8). □

Lemma 10.151.8.08WD Let R→ S be a ring map. The following are equivalent
(1) R→ S is étale,
(2) R→ S is flat and G-unramified, and
(3) R→ S is flat, unramified, and of finite presentation.

Proof. Parts (2) and (3) are equivalent by definition. The implication (1) ⇒ (3)
follows from the fact that étale ring maps are of finite presentation, Lemma 10.143.3
(flatness of étale maps), and Lemma 10.151.3 (étale maps are unramified). Con-
versely, the characterization of étale ring maps in Lemma 10.143.7 and the structure

https://stacks.math.columbia.edu/tag/02FL
https://stacks.math.columbia.edu/tag/00UW
https://stacks.math.columbia.edu/tag/02UR
https://stacks.math.columbia.edu/tag/02FM
https://stacks.math.columbia.edu/tag/08WD
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of unramified ring maps in Lemma 10.151.5 shows that (3) implies (1). (This uses
thatR→ S is étale ifR→ S is étale at every prime q ⊂ S, see Lemma 10.143.3.) □

Lemma 10.151.9.0G1C Let k be a field. Let
φ : k[x1, . . . , xn]→ A, xi 7−→ ai

be a finite type ring map. Then φ is étale if and only if we have the following two
conditions: (a) the local rings of A at maximal ideals have dimension n, and (b)
the elements d(a1), . . . ,d(an) generate ΩA/k as an A-module.

Proof. Assume (a) and (b). Condition (b) implies that ΩA/k[x1,...,xn] = 0 and hence
φ is unramified. Thus it suffices to prove that φ is flat, see Lemma 10.151.8. Let
m ⊂ A be a maximal ideal. Set X = Spec(A) and denote x ∈ X the closed point
corresponding to m. Then dim(Am) is dimxX, see Lemma 10.114.6. Thus by
Lemma 10.140.3 we see that if (a) and (b) hold, then Am is a regular local ring for
every maximal ideal m. Then k[x1, . . . , xn]φ−1(m) → Am is flat by Lemma 10.128.1
(and the fact that a regular local ring is CM, see Lemma 10.106.3). Thus φ is flat
by Lemma 10.39.18.
Assume φ is étale. Then ΩA/k[x1,...,xn] = 0 and hence (b) holds. On the other hand,
étale ring maps are flat (Lemma 10.143.3) and quasi-finite (Lemma 10.143.6). Hence
for every maximal ideal m ofA we my apply Lemma 10.112.7 to k[x1, . . . , xn]φ−1(m) →
Am to see that dim(Am) = n and hence (a) holds. □

10.152. Local structure of unramified ring maps

0G1D An unramified morphism is locally (in a suitable sense) the composition of a closed
immersion and an étale morphism. The algebraic underpinnings of this fact are
discussed in this section.

Proposition 10.152.1.0395 Let R→ S be a ring map. Let q ⊂ S be a prime. If R→ S
is unramified at q, then there exist

(1) a g ∈ S, g ̸∈ q,
(2) a standard étale ring map R→ S′, and
(3) a surjective R-algebra map S′ → Sg.

Proof. This proof is the “same” as the proof of Proposition 10.144.4. The proof is
a little roundabout and there may be ways to shorten it.
Step 1. By Definition 10.151.1 there exists a g ∈ S, g ̸∈ q such that R → Sg is
unramified. Thus we may assume that S is unramified over R.
Step 2. By Lemma 10.151.3 there exists an unramified ring map R0 → S0 with
R0 of finite type over Z, and a ring map R0 → R such that S is a quotient of
R⊗R0 S0. Denote q0 the prime of S0 corresponding to q. If we show the result for
(R0 → S0, q0) then the result follows for (R→ S, q) by base change. Hence we may
assume that R is Noetherian.
Step 3. Note that R→ S is quasi-finite by Lemma 10.151.6. By Lemma 10.123.14
there exists a finite ring map R→ S′, an R-algebra map S′ → S, an element g′ ∈ S′

such that g′ ̸∈ q such that S′ → S induces an isomorphism S′
g′
∼= Sg′ . (Note that

S′ may not be unramified over R.) Thus we may assume that (a) R is Noetherian,
(b) R → S is finite and (c) R → S is unramified at q (but no longer necessarily
unramified at all primes).

https://stacks.math.columbia.edu/tag/0G1C
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Step 4. Let p ⊂ R be the prime corresponding to q. Consider the fibre ring
S ⊗R κ(p). This is a finite algebra over κ(p). Hence it is Artinian (see Lemma
10.53.2) and so a finite product of local rings

S ⊗R κ(p) =
∏n

i=1
Ai

see Proposition 10.60.7. One of the factors, say A1, is the local ring Sq/pSq which
is isomorphic to κ(q), see Lemma 10.151.5. The other factors correspond to the
other primes, say q2, . . . , qn of S lying over p.
Step 5. We may choose a nonzero element α ∈ κ(q) which generates the finite
separable field extension κ(q)/κ(p) (so even if the field extension is trivial we do
not allow α = 0). Note that for any λ ∈ κ(p)∗ the element λα also generates κ(q)
over κ(p). Consider the element

t = (α, 0, . . . , 0) ∈
∏n

i=1
Ai = S ⊗R κ(p).

After possibly replacing α by λα as above we may assume that t is the image of
t ∈ S. Let I ⊂ R[x] be the kernel of the R-algebra map R[x]→ S which maps x to
t. Set S′ = R[x]/I, so S′ ⊂ S. Here is a diagram

R[x] // S′ // S

R

OO == 66

By construction the primes qj , j ≥ 2 of S all lie over the prime (p, x) of R[x],
whereas the prime q lies over a different prime of R[x] because α ̸= 0.
Step 6. Denote q′ ⊂ S′ the prime of S′ corresponding to q. By the above q is the
only prime of S lying over q′. Thus we see that Sq = Sq′ , see Lemma 10.41.11 (we
have going up for S′ → S by Lemma 10.36.22 since S′ → S is finite as R → S
is finite). It follows that S′

q′ → Sq is finite and injective as the localization of the
finite injective ring map S′ → S. Consider the maps of local rings

Rp → S′
q′ → Sq

The second map is finite and injective. We have Sq/pSq = κ(q), see Lemma
10.151.5. Hence a fortiori Sq/q

′Sq = κ(q). Since
κ(p) ⊂ κ(q′) ⊂ κ(q)

and since α is in the image of κ(q′) in κ(q) we conclude that κ(q′) = κ(q). Hence
by Nakayama’s Lemma 10.20.1 applied to the S′

q′ -module map S′
q′ → Sq, the map

S′
q′ → Sq is surjective. In other words, S′

q′
∼= Sq.

Step 7. By Lemma 10.126.7 there exist g ∈ S, g ̸∈ q and g′ ∈ S′, g′ ̸∈ q′ such
that S′

g′
∼= Sg. As R is Noetherian the ring S′ is finite over R because it is an R-

submodule of the finite R-module S. Hence after replacing S by S′ we may assume
that (a) R is Noetherian, (b) S finite over R, (c) S is unramified over R at q, and
(d) S = R[x]/I.
Step 8. Consider the ring S ⊗R κ(p) = κ(p)[x]/I where I = I · κ(p)[x] is the ideal
generated by I in κ(p)[x]. As κ(p)[x] is a PID we know that I = (h) for some monic
h ∈ κ(p). After replacing h by λ · h for some λ ∈ κ(p) we may assume that h is the
image of some h ∈ R[x]. (The problem is that we do not know if we may choose h
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monic.) Also, as in Step 4 we know that S⊗R κ(p) = A1× . . .×An with A1 = κ(q)
a finite separable extension of κ(p) and A2, . . . , An local. This implies that

h = h1h
e2
2 . . . h

en
n

for certain pairwise coprime irreducible monic polynomials hi ∈ κ(p)[x] and certain
e2, . . . , en ≥ 1. Here the numbering is chosen so that Ai = κ(p)[x]/(heii ) as κ(p)[x]-
algebras. Note that h1 is the minimal polynomial of α ∈ κ(q) and hence is a
separable polynomial (its derivative is prime to itself).
Step 9. Let m ∈ I be a monic element; such an element exists because the ring
extension R→ R[x]/I is finite hence integral. Denote m the image in κ(p)[x]. We
may factor

m = kh
d1
1 h

d2
2 . . . h

dn
n

for some d1 ≥ 1, dj ≥ ej , j = 2, . . . , n and k ∈ κ(p)[x] prime to all the hi. Set
f = ml + h where l deg(m) > deg(h), and l ≥ 2. Then f is monic as a polynomial
over R. Also, the image f of f in κ(p)[x] factors as

f = h1h
e2
2 . . . h

en
n +klhld1

1 h
ld2
2 . . . h

ldn
n = h1(he2

2 . . . h
en
n +klhld1−1

1 h
ld2
2 . . . h

ldn
n ) = h1w

with w a polynomial relatively prime to h1. Set g = f ′ (the derivative with respect
to x).
Step 10. The ring map R[x] → S = R[x]/I has the properties: (1) it maps f to
zero, and (2) it maps g to an element of S \ q. The first assertion is clear since f
is an element of I. For the second assertion we just have to show that g does not
map to zero in κ(q) = κ(p)[x]/(h1). The image of g in κ(p)[x] is the derivative of
f . Thus (2) is clear because

g = df
dx = w

dh1

dx + h1
dw
dx ,

w is prime to h1 and h1 is separable.
Step 11. We conclude that φ : R[x]/(f)→ S is a surjective ring map, R[x]g/(f) is
étale over R (because it is standard étale, see Lemma 10.144.2) and φ(g) ̸∈ q. Thus
the map (R[x]/(f))g → Sφ(g) is the desired surjection. □

Lemma 10.152.2.00UX Let R → S be a ring map. Let q be a prime of S lying over
p ⊂ R. Assume that R→ S is of finite type and unramified at q. Then there exist

(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p.
(3) a product decomposition

R′ ⊗R S = A×B

with the following properties
(1) R′ → A is surjective, and
(2) p′A is a prime of A lying over p′ and over q.

Proof. We may replace (R → S, p, q) with any base change (R′ → R′ ⊗R S, p′, q′)
by an étale ring map R→ R′ with a prime p′ lying over p, and a choice of q′ lying
over both q and p′. Note also that given R→ R′ and p′ a suitable q′ can always be
found.

https://stacks.math.columbia.edu/tag/00UX


10.153. HENSELIAN LOCAL RINGS 830

The assumption that R → S is of finite type means that we may apply Lemma
10.145.4. Thus we may assume that S = A1 × . . . × An × B, that each R → Ai
is finite with exactly one prime ri lying over p such that κ(p) ⊂ κ(ri) is purely
inseparable and that R → B is not quasi-finite at any prime lying over p. Then
clearly q = ri for some i, since an unramified morphism is quasi-finite (see Lemma
10.151.6). Say q = r1. By Lemma 10.151.5 we see that κ(r1)/κ(p) is separable hence
the trivial field extension, and that p(A1)r1 is the maximal ideal. Also, by Lemma
10.41.11 (which applies to R → A1 because a finite ring map satisfies going up
by Lemma 10.36.22) we have (A1)r1 = (A1)p. It follows from Nakayama’s Lemma
10.20.1 that the map of local rings Rp → (A1)p = (A1)r1 is surjective. Since A1
is finite over R we see that there exists a f ∈ R, f ̸∈ p such that Rf → (A1)f is
surjective. After replacing R by Rf we win. □

Lemma 10.152.3.00UY Let R → S be a ring map. Let p be a prime of R. If R → S is
unramified then there exist

(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p.
(3) a product decomposition

R′ ⊗R S = A1 × . . .×An ×B
with the following properties

(1) R′ → Ai is surjective,
(2) p′Ai is a prime of Ai lying over p′, and
(3) there is no prime of B lying over p′.

Proof. We may apply Lemma 10.145.4. Thus, after an étale base change, we may
assume that S = A1 × . . . × An × B, that each R → Ai is finite with exactly one
prime ri lying over p such that κ(p) ⊂ κ(ri) is purely inseparable, and that R→ B
is not quasi-finite at any prime lying over p. Since R→ S is quasi-finite (see Lemma
10.151.6) we see there is no prime of B lying over p. By Lemma 10.151.5 we see
that κ(ri)/κ(p) is separable hence the trivial field extension, and that p(Ai)ri is the
maximal ideal. Also, by Lemma 10.41.11 (which applies to R→ Ai because a finite
ring map satisfies going up by Lemma 10.36.22) we have (Ai)ri = (Ai)p. It follows
from Nakayama’s Lemma 10.20.1 that the map of local rings Rp → (Ai)p = (Ai)ri
is surjective. Since Ai is finite over R we see that there exists a f ∈ R, f ̸∈ p such
that Rf → (Ai)f is surjective. After replacing R by Rf we win. □

10.153. Henselian local rings

04GE In this section we discuss a bit the notion of a henselian local ring. Let (R,m, κ) be
a local ring. For a ∈ R we denote a the image of a in κ. For a polynomial f ∈ R[T ]
we often denote f the image of f in κ[T ]. Given a polynomial f ∈ R[T ] we denote
f ′ the derivative of f with respect to T . Note that f ′ = f ′.

Definition 10.153.1.04GF Let (R,m, κ) be a local ring.
(1) We say R is henselian if for every monic f ∈ R[T ] and every root a0 ∈ κ

of f such that f ′(a0) ̸= 0 there exists an a ∈ R such that f(a) = 0 and
a0 = a.

(2) We say R is strictly henselian if R is henselian and its residue field is
separably algebraically closed.

https://stacks.math.columbia.edu/tag/00UY
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Note that the condition f ′(a0) ̸= 0 is equivalent to the condition that a0 is a simple
root of the polynomial f . In fact, it implies that the lift a ∈ R, if it exists, is unique.

Lemma 10.153.2.06RR Let (R,m, κ) be a local ring. Let f ∈ R[T ]. Let a, b ∈ R such
that f(a) = f(b) = 0, a = b mod m, and f ′(a) ̸∈ m. Then a = b.

Proof. Write f(x+ y)− f(x) = f ′(x)y+ g(x, y)y2 in R[x, y] (this is possible as one
sees by expanding f(x+ y); details omitted). Then we see that 0 = f(b)− f(a) =
f(a+(b−a))−f(a) = f ′(a)(b−a)+ c(b−a)2 for some c ∈ R. By assumption f ′(a)
is a unit in R. Hence (b − a)(1 + f ′(a)−1c(b − a)) = 0. By assumption b − a ∈ m,
hence 1 + f ′(a)−1c(b− a) is a unit in R. Hence b− a = 0 in R. □

Here is the characterization of henselian local rings.

Lemma 10.153.3.04GG Let (R,m, κ) be a local ring. The following are equivalent
(1) R is henselian,
(2) for every f ∈ R[T ] and every root a0 ∈ κ of f such that f ′(a0) ̸= 0 there

exists an a ∈ R such that f(a) = 0 and a0 = a,
(3) for any monic f ∈ R[T ] and any factorization f = g0h0 with gcd(g0, h0) =

1 there exists a factorization f = gh in R[T ] such that g0 = g and h0 = h,
(4) for any monic f ∈ R[T ] and any factorization f = g0h0 with gcd(g0, h0) =

1 there exists a factorization f = gh in R[T ] such that g0 = g and h0 = h
and moreover degT (g) = degT (g0),

(5) for any f ∈ R[T ] and any factorization f = g0h0 with gcd(g0, h0) = 1
there exists a factorization f = gh in R[T ] such that g0 = g and h0 = h,

(6) for any f ∈ R[T ] and any factorization f = g0h0 with gcd(g0, h0) = 1
there exists a factorization f = gh in R[T ] such that g0 = g and h0 = h
and moreover degT (g) = degT (g0),

(7) for any étale ring map R→ S and prime q of S lying over m with κ = κ(q)
there exists a section τ : S → R of R→ S,

(8) for any étale ring map R→ S and prime q of S lying over m with κ = κ(q)
there exists a section τ : S → R of R→ S with q = τ−1(m),

(9) any finite R-algebra is a product of local rings,
(10) any finite R-algebra is a finite product of local rings,
(11) any finite type R-algebra S can be written as A × B with R → A finite

and R→ B not quasi-finite at any prime lying over m,
(12) any finite type R-algebra S can be written as A × B with R → A finite

such that each irreducible component of Spec(B⊗Rκ) has dimension ≥ 1,
and

(13) any quasi-finite R-algebra S can be written as S = A × B with R → A
finite such that B ⊗R κ = 0.

Proof. Here is a list of the easier implications:
(1) 2⇒1 because in (2) we consider all polynomials and in (1) only monic

ones,
(2) 5⇒3 because in (5) we consider all polynomials and in (3) only monic

ones,
(3) 6⇒4 because in (6) we consider all polynomials and in (4) only monic

ones,
(4) 4⇒3 is obvious,

https://stacks.math.columbia.edu/tag/06RR
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(5) 6⇒5 is obvious,
(6) 8⇒7 is obvious,
(7) 10⇒9 is obvious,
(8) 11⇔12 by definition of being quasi-finite at a prime,
(9) 11⇒13 by definition of being quasi-finite,

Proof of 1⇒8. Assume (1). Let R→ S be étale, and let q ⊂ S be a prime ideal such
that κ(q) ∼= κ. By Proposition 10.144.4 we can find a g ∈ S, g ̸∈ q such that R→ Sg
is standard étale. After replacing S by Sg we may assume that S = R[t]g/(f) is
standard étale. Since the prime q has residue field κ it corresponds to a root a0 of
f which is not a root of g. By definition of a standard étale algebra this also means
that f ′(a0) ̸= 0. Since also f is monic by definition of a standard étale algebra
again we may use that R is henselian to conclude that there exists an a ∈ R with
a0 = a such that f(a) = 0. This implies that g(a) is a unit of R and we obtain the
desired map τ : S = R[t]g/(f)→ R by the rule t 7→ a. By construction τ−1(q) = m.
This proves (8) holds.

Proof of 7⇒8. (This is really unimportant and should be skipped.) Assume (7)
holds and assume R→ S is étale. Let q1, . . . , qr be the other primes of S lying over
m. Then we can find a g ∈ S, g ̸∈ q and g ∈ qi for i = 1, . . . , r. Namely, we can argue
that

⋂r
i=1 qi ̸⊂ q since otherwise qi ⊂ q for some i, but this cannot happen as the

fiber of an étale morphism is discrete (use Lemma 10.143.4 for example). Apply (7)
to the étale ring map R→ Sg and the prime qSg. This gives a section τg : Sg → R
such that the composition τ : S → Sg → R has the property τ−1(m) = q. Minor
details omitted.

Proof of 8⇒11. Assume (8) and let R → S be a finite type ring map. Apply
Lemma 10.145.3. We find an étale ring map R → R′ and a prime m′ ⊂ R′ lying
over m with κ = κ(m′) such that R′ ⊗R S = A′ × B′ with A′ finite over R′ and
B′ not quasi-finite over R′ at any prime lying over m′. Apply (8) to get a section
τ : R′ → R with m = τ−1(m′). Then use that

S = (S ⊗R R′)⊗R′,τ R = (A′ ×B′)⊗R′,τ R = (A′ ⊗R′,τ R)× (B′ ⊗R′,τ R)

which gives a decomposition as in (11).

Proof of 8⇒10. Assume (8) and let R → S be a finite ring map. Apply Lemma
10.145.3. We find an étale ring map R→ R′ and a prime m′ ⊂ R′ lying over m with
κ = κ(m′) such that R′ ⊗R S = A′

1 × . . . × A′
n × B′ with A′

i finite over R′ having
exactly one prime over m′ and B′ not quasi-finite over R′ at any prime lying over
m′. Apply (8) to get a section τ : R′ → R with m′ = τ−1(m). Then we obtain

S = (S ⊗R R′)⊗R′,τ R

= (A′
1 × . . .×A′

n ×B′)⊗R′,τ R

= (A′
1 ⊗R′,τ R)× . . .× (A′

1 ⊗R′,τ R)× (B′ ⊗R′,τ R)
= A1 × . . .×An ×B

The factor B is finite over R but R→ B is not quasi-finite at any prime lying over
m. Hence B = 0. The factors Ai are finite R-algebras having exactly one prime
lying over m, hence they are local rings. This proves that S is a finite product of
local rings.
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Proof of 9⇒10. This holds because if S is finite over the local ring R, then it has at
most finitely many maximal ideals. Namely, by going up for R → S the maximal
ideals of S all lie over m, and S/mS is Artinian hence has finitely many primes.
Proof of 10⇒1. Assume (10). Let f ∈ R[T ] be a monic polynomial and a0 ∈ κ
a simple root of f . Then S = R[T ]/(f) is a finite R-algebra. Applying (10)
we get S = A1 × . . . × Ar is a finite product of local R-algebras. In particular
we see that S/mS =

∏
Ai/mAi is the decomposition of κ[T ]/(f) as a product

of local rings. This means that one of the factors, say A1/mA1 is the quotient
κ[T ]/(f)→ κ[T ]/(T − a0). Since A1 is a summand of the finite free R-module S it
is a finite free R-module itself. As A1/mA1 is a κ-vector space of dimension 1 we see
that A1 ∼= R as an R-module. Clearly this means that R→ A1 is an isomorphism.
Let a ∈ R be the image of T under the map R[T ]→ S → A1 → R. Then f(a) = 0
and a = a0 as desired.
Proof of 13⇒1. Assume (13). Let f ∈ R[T ] be a monic polynomial and a0 ∈ κ a
simple root of f . Then S1 = R[T ]/(f) is a finite R-algebra. Let g ∈ R[T ] be any
element such that g = f/(T − a0). Then S = (S1)g is a quasi-finite R-algebra such
that S⊗Rκ ∼= κ[T ]g/(f) ∼= κ[T ]/(T−a0) ∼= κ. Applying (13) to S we get S = A×B
with A finite over R and B⊗Rκ = 0. In particular we see that κ ∼= S/mS = A/mA.
Since A is a summand of the flat R-algebra S we see that it is finite flat, hence
free over R. As A/mA is a κ-vector space of dimension 1 we see that A ∼= R as an
R-module. Clearly this means that R → A is an isomorphism. Let a ∈ R be the
image of T under the map R[T ] → S → A → R. Then f(a) = 0 and a = a0 as
desired.
Proof of 8⇒2. Assume (8). Let f ∈ R[T ] be any polynomial and let a0 ∈ κ be a
simple root. Then the algebra S = R[T ]f ′/(f) is étale over R. Let q ⊂ S be the
prime generated by m and T − b where b ∈ R is any element such that b = a0.
Apply (8) to S and q to get τ : S → R. Then the image τ(T ) = a ∈ R works in
(2).
At this point we see that (1), (2), (7), (8), (9), (10), (11), (12), (13) are all equiva-
lent. The weakest assertion of (3), (4), (5) and (6) is (3) and the strongest is (6).
Hence we still have to prove that (3) implies (1) and (1) implies (6).
Proof of 3⇒1. Assume (3). Let f ∈ R[T ] be monic and let a0 ∈ κ be a simple root of
f . This gives a factorization f = (T−a0)h0 with h0(a0) ̸= 0, so gcd(T−a0, h0) = 1.
Apply (3) to get a factorization f = gh with g = T − a0 and h = h0. Set S =
R[T ]/(f) which is a finite free R-algebra. We will write g, h also for the images of
g and h in S. Then gS + hS = S by Nakayama’s Lemma 10.20.1 as the equality
holds modulo m. Since gh = f = 0 in S this also implies that gS ∩ hS = 0. Hence
by the Chinese Remainder theorem we obtain S = S/(g)×S/(h). This implies that
A = S/(g) is a summand of a finite free R-module, hence finite free. Moreover, the
rank of A is 1 as A/mA = κ[T ]/(T −a0). Thus the map R→ A is an isomorphism.
Setting a ∈ R equal to the image of T under the maps R[T ] → S → A → R gives
an element of R with f(a) = 0 and a = a0.
Proof of 1⇒6. Assume (1) or equivalently all of (1), (2), (7), (8), (9), (10), (11), (12),
(13). Let f ∈ R[T ] be a polynomial. Suppose that f = g0h0 is a factorization with
gcd(g0, h0) = 1. We may and do assume that g0 is monic. Consider S = R[T ]/(f).
Because we have the factorization we see that the coefficients of f generate the unit
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ideal in R. This implies that S has finite fibres over R, hence is quasi-finite over R.
It also implies that S is flat over R by Lemma 10.128.5. Combining (13) and (10)
we may write S = A1 × . . .×An ×B where each Ai is local and finite over R, and
B ⊗R κ = 0. After reordering the factors A1, . . . , An we may assume that
κ[T ]/(g0) = A1/mA1 × . . .×Ar/mAr, κ[T ]/(h0) = Ar+1/mAr+1 × . . .×An/mAn
as quotients of κ[T ]. The finite flat R-algebra A = A1 × . . . × Ar is free as an R-
module, see Lemma 10.78.5. Its rank is degT (g0). Let g ∈ R[T ] be the characteristic
polynomial of the R-linear operator T : A → A. Then g is a monic polynomial of
degree degT (g) = degT (g0) and moreover g = g0. By Cayley-Hamilton (Lemma
10.16.1) we see that g(TA) = 0 where TA indicates the image of T in A. Hence
we obtain a well defined surjective map R[T ]/(g) → A which is an isomorphism
by Nakayama’s Lemma 10.20.1. The map R[T ] → A factors through R[T ]/(f) by
construction hence we may write f = gh for some h. This finishes the proof. □

Lemma 10.153.4.04GH Let (R,m, κ) be a henselian local ring.
(1) If R→ S is a finite ring map then S is a finite product of henselian local

rings each finite over R.
(2) If R → S is a finite ring map and S is local, then S is a henselian local

ring and R→ S is a (finite) local ring map.
(3) If R → S is a finite type ring map, and q is a prime of S lying over m at

which R→ S is quasi-finite, then Sq is henselian and finite over R.
(4) If R → S is quasi-finite then Sq is henselian and finite over R for every

prime q lying over m.

Proof. Part (2) implies part (1) since S as in part (1) is a finite product of its
localizations at the primes lying over m by Lemma 10.153.3 part (10). Part (2) also
follows from Lemma 10.153.3 part (10) since any finite S-algebra is also a finite
R-algebra (of course any finite ring map between local rings is local).
Let R → S and q be as in (3). Write S = A × B with A finite over R and B not
quasi-finite over R at any prime lying over m, see Lemma 10.153.3 part (11). Hence
Sq is a localization of A at a maximal ideal and we deduce (3) from (1). Part (4)
follows from part (3). □

Lemma 10.153.5.04GJ Let (R,m, κ) be a henselian local ring. Any finite type R-algebra
S can be written as S = A1 × . . . × An × B with Ai local and finite over R and
R→ B not quasi-finite at any prime of B lying over m.

Proof. This is a combination of parts (11) and (10) of Lemma 10.153.3. □

Lemma 10.153.6.06DD Let (R,m, κ) be a strictly henselian local ring. Any finite type
R-algebra S can be written as S = A1× . . .×An×B with Ai local and finite over R
and κ ⊂ κ(mAi) finite purely inseparable and R→ B not quasi-finite at any prime
of B lying over m.

Proof. First write S = A1× . . .×An×B as in Lemma 10.153.5. The field extension
κ(mAi)/κ is finite and κ is separably algebraically closed, hence it is finite purely
inseparable. □

Lemma 10.153.7.04GK Let (R,m, κ) be a henselian local ring. The category of finite
étale ring extensions R → S is equivalent to the category of finite étale algebras
κ→ S via the functor S 7→ S/mS.
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Proof. Denote C → D the functor of categories of the statement. Suppose that
R→ S is finite étale. Then we may write

S = A1 × . . .×An
with Ai local and finite étale over S, use either Lemma 10.153.5 or Lemma 10.153.3
part (10). In particular Ai/mAi is a finite separable field extension of κ, see Lemma
10.143.5. Thus we see that every object of C and D decomposes canonically into
irreducible pieces which correspond via the given functor. Next, suppose that S1,
S2 are finite étale over R such that κ1 = S1/mS1 and κ2 = S2/mS2 are fields (finite
separable over κ). Then S1 ⊗R S2 is finite étale over R and we may write

S1 ⊗R S2 = A1 × . . .×An
as before. Then we see that HomR(S1, S2) is identified with the set of indices
i ∈ {1, . . . , n} such that S2 → Ai is an isomorphism. To see this use that given
any R-algebra map φ : S1 → S2 the map φ× 1 : S1 ⊗R S2 → S2 is surjective, and
hence is equal to projection onto one of the factors Ai. But in exactly the same
way we see that Homκ(κ1, κ2) is identified with the set of indices i ∈ {1, . . . , n}
such that κ2 → Ai/mAi is an isomorphism. By the discussion above these sets of
indices match, and we conclude that our functor is fully faithful. Finally, let κ′/κ
be a finite separable field extension. By Lemma 10.144.3 there exists an étale ring
map R → S and a prime q of S lying over m such that κ ⊂ κ(q) is isomorphic to
the given extension. By part (1) we may write S = A1× . . .×An×B. Since R→ S
is quasi-finite we see that there exists no prime of B over m. Hence Sq is equal to
Ai for some i. Hence R → Ai is finite étale and produces the given residue field
extension. Thus the functor is essentially surjective and we win. □

Lemma 10.153.8.04GL Let (R,m, κ) be a strictly henselian local ring. Let R→ S be an
unramified ring map. Then

S = A1 × . . .×An ×B
with each R→ Ai surjective and no prime of B lying over m.

Proof. First write S = A1 × . . .×An ×B as in Lemma 10.153.5. Now we see that
R→ Ai is finite unramified and Ai local. Hence the maximal ideal of Ai is mAi and
its residue field Ai/mAi is a finite separable extension of κ, see Lemma 10.151.5.
However, the condition that R is strictly henselian means that κ is separably alge-
braically closed, so κ = Ai/mAi. By Nakayama’s Lemma 10.20.1 we conclude that
R→ Ai is surjective as desired. □

Lemma 10.153.9.04GM Let (R,m, κ) be a complete local ring, see Definition 10.160.1.
Then R is henselian.

Proof. Let f ∈ R[T ] be monic. Denote fn ∈ R/mn+1[T ] the image. Denote f ′
n

the derivative of fn with respect to T . Let a0 ∈ κ be a simple root of f0. We lift
this to a solution of f over R inductively as follows: Suppose given an ∈ R/mn+1

such that an mod m = a0 and fn(an) = 0. Pick any element b ∈ R/mn+2 such that
an = b mod mn+1. Then fn+1(b) ∈ mn+1/mn+2. Set

an+1 = b− fn+1(b)/f ′
n+1(b)

(Newton’s method). This makes sense as f ′
n+1(b) ∈ R/mn+1 is invertible by the

condition on a0. Then we compute fn+1(an+1) = fn+1(b)−fn+1(b) = 0 in R/mn+2.
Since the system of elements an ∈ R/mn+1 so constructed is compatible we get an

https://stacks.math.columbia.edu/tag/04GL
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element a ∈ limR/mn = R (here we use that R is complete). Moreover, f(a) = 0
since it maps to zero in each R/mn. Finally a = a0 and we win. □

Lemma 10.153.10.06RS Let (R,m) be a local ring of dimension 0. Then R is henselian.

Proof. Let R → S be a finite ring map. By Lemma 10.153.3 it suffices to show
that S is a product of local rings. By Lemma 10.36.21 S has finitely many primes
m1, . . . ,mr which all lie over m. There are no inclusions among these primes, see
Lemma 10.36.20, hence they are all maximal. Every element of m1 ∩ . . . ∩ mr is
nilpotent by Lemma 10.17.2. It follows S is the product of the localizations of S at
the primes mi by Lemma 10.53.5. □

The following lemma will be the key to the uniqueness and functorial properties of
henselization and strict henselization.

Lemma 10.153.11.08HQ Let R→ S be a ring map with S henselian local. Given
(1) an étale ring map R→ A,
(2) a prime q of A lying over p = R ∩mS ,
(3) a κ(p)-algebra map τ : κ(q)→ S/mS ,

then there exists a unique homomorphism of R-algebras f : A → S such that
q = f−1(mS) and f mod q = τ .

Proof. Consider A ⊗R S. This is an étale algebra over S, see Lemma 10.143.3.
Moreover, the kernel

q′ = Ker(A⊗R S → κ(q)⊗κ(p) κ(mS)→ κ(mS))

of the map using the map given in (3) is a prime ideal lying over mS with residue
field equal to the residue field of S. Hence by Lemma 10.153.3 there exists a unique
splitting τ : A ⊗R S → S with τ−1(mS) = q′. Set f equal to the composition
A→ A⊗R S → S. □

Lemma 10.153.12.04GX Let φ : R→ S be a local homomorphism of strictly henselian lo-
cal rings. Let P1, . . . , Pn ∈ R[x1, . . . , xn] be polynomials such thatR[x1, . . . , xn]/(P1, . . . , Pn)
is étale over R. Then the map

Rn −→ Sn, (h1, . . . , hn) 7−→ (φ(h1), . . . , φ(hn))

induces a bijection between

{(r1, . . . , rn) ∈ Rn | Pi(r1, . . . , rn) = 0, i = 1, . . . , n}

and
{(s1, . . . , sn) ∈ Sn | Pφi (s2, . . . , sn) = 0, i = 1, . . . , n}

where Pφi ∈ S[x1, . . . , xn] are the images of the Pi under φ.

Proof. The first solution set is canonically isomorphic to the set

HomR(R[x1, . . . , xn]/(P1, . . . , Pn), R).

As R is henselian the map R→ R/mR induces a bijection between this set and the
set of solutions in the residue field R/mR, see Lemma 10.153.3. The same is true
for S. Now since R[x1, . . . , xn]/(P1, . . . , Pn) is étale over R and R/mR is separably
algebraically closed we see that R/mR[x1, . . . , xn]/(P 1, . . . , Pn) is a finite product
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of copies of R/mR where P i is the image of Pi in R/mR[x1, . . . , xn]. Hence the
tensor product
R/mR[x1, . . . , xn]/(P 1, . . . , Pn)⊗R/mR S/mS = S/mS [x1, . . . , xn]/(Pφ1 , . . . , P

φ

n)
is also a finite product of copies of S/mS with the same index set. This proves the
lemma. □

Lemma 10.153.13.05D6 Let R be a henselian local ring. Any countably generated
Mittag-Leffler module over R is a direct sum of finitely presented R-modules.

Proof. Let M be a countably generated and Mittag-Leffler R-module. We claim
that for any element x ∈ M there exists a direct sum decomposition M = N ⊕K
with x ∈ N , the module N finitely presented, and K Mittag-Leffler.
Suppose the claim is true. Choose generators x1, x2, x3, . . . of M . By the claim we
can inductively find direct sum decompositions

M = N1 ⊕N2 ⊕ . . .⊕Nn ⊕Kn

with Ni finitely presented, x1, . . . , xn ∈ N1 ⊕ . . . ⊕ Nn, and Kn Mittag-Leffler.
Repeating ad infinitum we see that M =

⊕
Ni.

We still have to prove the claim. Let x ∈ M . By Lemma 10.92.2 there exists
an endomorphism α : M → M such that α factors through a finitely presented
module, and α(x) = x. Say α factors as

M
π // P

i // M

Set a = π ◦α ◦ i : P → P , so i ◦ a ◦π = α3. By Lemma 10.16.2 there exists a monic
polynomial P ∈ R[T ] such that P (a) = 0. Note that this implies formally that
α2P (α) = 0. Hence we may think of M as a module over R[T ]/(T 2P ). Assume
that x ̸= 0. Then α(x) = x implies that 0 = α2P (α)x = P (1)x hence P (1) = 0 in
R/I where I = {r ∈ R | rx = 0} is the annihilator of x. As x ̸= 0 we see I ⊂ mR,
hence 1 is a root of P = P mod mR ∈ R/mR[T ]. As R is henselian we can find a
factorization

T 2P = (T 2Q1)Q2

for some Q1, Q2 ∈ R[T ] with Q2 = (T − 1)e mod mRR[T ] and Q1(1) ̸= 0 mod mR,
see Lemma 10.153.3. Let N = Im(α2Q1(α) : M → M) and K = Im(Q2(α) :
M → M). As T 2Q1 and Q2 generate the unit ideal of R[T ] we get a direct sum
decomposition M = N ⊕ K. Moreover, Q2 acts as zero on N and T 2Q1 acts as
zero on K. Note that N is a quotient of P hence is finitely generated. Also x ∈ N
because α2Q1(α)x = Q1(1)x and Q1(1) is a unit in R. By Lemma 10.89.10 the
modules N and K are Mittag-Leffler. Finally, the finitely generated module N is
finitely presented as a finitely generated Mittag-Leffler module is finitely presented,
see Example 10.91.1 part (1). □

10.154. Filtered colimits of étale ring maps

0BSG This section is a precursor to the section on ind-étale ring maps (Pro-étale Cohomol-
ogy, Section 61.7). The material will also be useful to prove uniqueness properties
of the henselization and strict henselization of a local ring.

Lemma 10.154.1.0BSH Let R→ A and R→ R′ be ring maps. If A is a filtered colimit
of étale ring maps, then so is R′ → R′ ⊗R A.

https://stacks.math.columbia.edu/tag/05D6
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Proof. This is true because colimits commute with tensor products and étale ring
maps are preserved under base change (Lemma 10.143.3). □

Lemma 10.154.2.0BSI Let A→ B → C be ring maps. If A→ B is a filtered colimit of
étale ring maps and B → C is a filtered colimit of étale ring maps, then A→ C is
a filtered colimit of étale ring maps.

Proof. We will use the criterion of Lemma 10.127.4. Let A → P → C be a fac-
torization of A → C with P of finite presentation over A. Write B = colimi∈I Bi
where I is a directed set and where Bi is an étale A-algebra. Write C = colimj∈J Cj
where J is a directed set and where Cj is an étale B-algebra. We can factor P → C
as P → Cj → C for some j by Lemma 10.127.3. By Lemma 10.143.3 we can find
an i ∈ I and an étale ring map Bi → C ′

j such that Cj = B ⊗Bi C ′
j . Then Cj =

colimi′≥iBi′⊗Bi C ′
j and again we see that P → Cj factors as P → Bi′⊗Bi C ′

j → C.
As A→ C ′ = Bi′ ⊗Bi C ′

j is étale as compositions and tensor products of étale ring
maps are étale. Hence we have factored P → C as P → C ′ → C with C ′ étale over
A and the criterion of Lemma 10.127.4 applies. □

Lemma 10.154.3.0BSJ Let R be a ring. Let A = colimAi be a filtered colimit of R-
algebras such that each Ai is a filtered colimit of étale R-algebras. Then A is a
filtered colimit of étale R-algebras.

Proof. Write Ai = colimj∈Ji Aj where Ji is a directed set and Aj is an étale R-
algebra. For each i ≤ i′ and j ∈ Ji there exists an j′ ∈ Ji′ and an R-algebra map
φjj′ : Aj → Aj′ making the diagram

Ai // Ai′

Aj

OO

φjj′
// Aj′

OO

commute. This is true because R → Aj is of finite presentation so that Lemma
10.127.3 applies. Let J be the category with objects

∐
i∈I Ji and morphisms triples

(j, j′, φjj′) as above (and obvious composition law). Then J is a filtered category
and A = colimJ Aj . Details omitted. □

Lemma 10.154.4.0GIM Let I be a directed set. Let i 7→ (Ri → Ai) be a system of arrows
of rings over I. Set R = colimRi and A = colimAi. If each Ai is a filtered colimit
of étale Ri-algebras, then A is a filtered colimit of étale R-algebras.

Proof. This is true because A = A⊗RR = colimAi⊗Ri R and hence we can apply
Lemma 10.154.3 because R → Ai ⊗Ri R is a filtered colimit of étale ring maps by
Lemma 10.154.1. □

Lemma 10.154.5.08HS Let R be a ring. Let A → B be an R-algebra homomorphism.
If A and B are filtered colimits of étale R-algebras, then B is a filtered colimit of
étale A-algebras.

Proof. Write A = colimAi and B = colimBj as filtered colimits with Ai and Bj
étale over R. For each i we can find a j such that Ai → B factors through Bj , see
Lemma 10.127.3. The factorization Ai → Bj is étale by Lemma 10.143.8. Since
A→ A⊗AiBj is étale (Lemma 10.143.3) it suffices to prove that B = colimA⊗AiBj
where the colimit is over pairs (i, j) and factorizations Ai → Bj → B of Ai → B
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(this is a directed system; details omitted). This is clear because colimits commute
with tensor products and hence colimA⊗Ai Bj = A⊗A B = B. □

Lemma 10.154.6.08HR Let R→ S be a ring map with S henselian local. Given
(1) an R-algebra A which is a filtered colimit of étale R-algebras,
(2) a prime q of A lying over p = R ∩mS ,
(3) a κ(p)-algebra map τ : κ(q)→ S/mS ,

then there exists a unique homomorphism of R-algebras f : A → S such that
q = f−1(mS) and f mod q = τ .
Proof. Write A = colimAi as a filtered colimit of étale R-algebras. Set qi = Ai∩q.
We obtain fi : Ai → S by applying Lemma 10.153.11. Set f = colim fi. □

Lemma 10.154.7.08HT Let R be a ring. Given a commutative diagram of ring maps

S // K

R

OO

// S′

OO

where S, S′ are henselian local, S, S′ are filtered colimits of étale R-algebras, K is
a field and the arrows S → K and S′ → K identify K with the residue field of both
S and S′. Then there exists an unique R-algebra isomorphism S → S′ compatible
with the maps to K.
Proof. Follows immediately from Lemma 10.154.6. □

The following lemma is not strictly speaking about colimits of étale ring maps.
Lemma 10.154.8.04GI A filtered colimit of (strictly) henselian local rings along local
homomorphisms is (strictly) henselian.
Proof. Categories, Lemma 4.21.5 says that this is really just a question about a
colimit of (strictly) henselian local rings over a directed set. Let (Ri, φii′) be such
a system with each φii′ local. Then R = colimiRi is local, and its residue field κ is
colim κi (argument omitted). It is easy to see that colim κi is separably algebraically
closed if each κi is so; thus it suffices to prove R is henselian if each Ri is henselian.
Suppose that f ∈ R[T ] is monic and that a0 ∈ κ is a simple root of f . Then for
some large enough i there exists an fi ∈ Ri[T ] mapping to f and an a0,i ∈ κi
mapping to a0. Since fi(a0,i) ∈ κi, resp. f ′

i(a0,i) ∈ κi maps to 0 = f(a0) ∈ κ, resp.
0 ̸= f ′(a0) ∈ κ we conclude that a0,i is a simple root of fi. As Ri is henselian we
can find ai ∈ Ri such that fi(ai) = 0 and a0,i = ai. Then the image a ∈ R of ai is
the desired solution. Thus R is henselian. □

10.155. Henselization and strict henselization

0BSK In this section we construct the henselization. We encourage the reader to keep
in mind the uniqueness already proved in Lemma 10.154.7 and the functorial be-
haviour pointed out in Lemma 10.154.6 while reading this material.
Lemma 10.155.1.04GN Let (R,m, κ) be a local ring. There exists a local ring map
R→ Rh with the following properties

(1) Rh is henselian,
(2) Rh is a filtered colimit of étale R-algebras,
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(3) mRh is the maximal ideal of Rh, and
(4) κ = Rh/mRh.

Proof. Consider the category of pairs (S, q) where R→ S is an étale ring map, and
q is a prime of S lying over m with κ = κ(q). A morphism of pairs (S, q)→ (S′, q′)
is given by an R-algebra map φ : S → S′ such that φ−1(q′) = q. We set

Rh = colim(S,q) S.

Let us show that the category of pairs is filtered, see Categories, Definition 4.19.1.
The category contains the pair (R,m) and hence is not empty, which proves part (1)
of Categories, Definition 4.19.1. For any pair (S, q) the prime ideal q is maximal with
residue field κ since the composition κ→ S/q→ κ(q) is an isomorphism. Suppose
that (S, q) and (S′, q′) are two objects. Set S′′ = S ⊗R S′ and q′′ = qS′′ + q′S′′.
Then S′′/q′′ = S/q⊗RS′/q′ = κ by what we said above. Moreover, R→ S′′ is étale
by Lemma 10.143.3. This proves part (2) of Categories, Definition 4.19.1. Next,
suppose that φ,ψ : (S, q) → (S′, q′) are two morphisms of pairs. Then φ, ψ, and
S′ ⊗R S′ → S′ are étale ring maps by Lemma 10.143.8. Consider

S′′ = (S′ ⊗φ,S,ψ S′)⊗S′⊗RS′ S′

with prime ideal
q′′ = (q′ ⊗ S′ + S′ ⊗ q′)⊗ S′ + (S′ ⊗φ,S,ψ S′)⊗ q′

Arguing as above (base change of étale maps is étale, composition of étale maps
is étale) we see that S′′ is étale over R. Moreover, the canonical map S′ → S′′

(using the right most factor for example) equalizes φ and ψ. This proves part
(3) of Categories, Definition 4.19.1. Hence we conclude that Rh consists of triples
(S, q, f) with f ∈ S, and two such triples (S, q, f), (S′, q′, f ′) define the same
element of Rh if and only if there exists a pair (S′′, q′′) and morphisms of pairs
φ : (S, q)→ (S′′, q′′) and φ′ : (S′, q′)→ (S′′, q′′) such that φ(f) = φ′(f ′).
Suppose that x ∈ Rh. Represent x by a triple (S, q, f). Let q1, . . . , qr be the other
primes of S lying over m. Then q ̸⊂ qi as we have seen above that q is maximal.
Thus, since q is a prime ideal, we can find a g ∈ S, g ̸∈ q and g ∈ qi for i = 1, . . . , r.
Consider the morphism of pairs (S, q)→ (Sg, qSg). In this way we see that we may
always assume that x is given by a triple (S, q, f) where q is the only prime of S
lying over m, i.e.,

√
mS = q. But since R → S is étale, we have mSq = qSq, see

Lemma 10.143.5. Hence we actually get that mS = q.
Suppose that x ̸∈ mRh. Represent x by a triple (S, q, f) with mS = q. Then
f ̸∈ mS, i.e., f ̸∈ q. Hence (S, q)→ (Sf , qSf ) is a morphism of pairs such that the
image of f becomes invertible. Hence x is invertible with inverse represented by
the triple (Sf , qSf , 1/f). We conclude that Rh is a local ring with maximal ideal
mRh. The residue field is κ since we can define Rh/mRh → κ by mapping a triple
(S, q, f) to the residue class of f modulo q.
We still have to show that Rh is henselian. Namely, suppose that P ∈ Rh[T ] is a
monic polynomial and a0 ∈ κ is a simple root of the reduction P ∈ κ[T ]. Then we
can find a pair (S, q) such that P is the image of a monic polynomialQ ∈ S[T ]. Since
S → Rh induces an isomorphism of residue fields we see that S′ = S[T ]/(Q) has a
prime ideal q′ = (q, T −a0) at which S → S′ is standard étale. Moreover, κ = κ(q′).
Pick g ∈ S′, g ̸∈ q′ such that S′′ = S′

g is étale over S. Then (S, q) → (S′′, q′S′′) is
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a morphism of pairs. Now that triple (S′′, q′S′′, class of T ) determines an element
a ∈ Rh with the properties P (a) = 0, and a = a0 as desired. □

Lemma 10.155.2.04GP Let (R,m, κ) be a local ring. Let κ ⊂ κsep be a separable
algebraic closure. There exists a commutative diagram

κ // κ // κsep

R //

OO

Rh //

OO

Rsh

OO

with the following properties
(1) the map Rh → Rsh is local
(2) Rsh is strictly henselian,
(3) Rsh is a filtered colimit of étale R-algebras,
(4) mRsh is the maximal ideal of Rsh, and
(5) κsep = Rsh/mRsh.

Proof. This is proved by exactly the same proof as used for Lemma 10.155.1. The
only difference is that, instead of pairs, one uses triples (S, q, α) where R→ S étale,
q is a prime of S lying over m, and α : κ(q) → κsep is an embedding of extensions
of κ. □

Definition 10.155.3.04GQ Let (R,m, κ) be a local ring.
(1) The local ring map R→ Rh constructed in Lemma 10.155.1 is called the

henselization of R.
(2) Given a separable algebraic closure κ ⊂ κsep the local ring map R→ Rsh

constructed in Lemma 10.155.2 is called the strict henselization of R with
respect to κ ⊂ κsep.

(3) A local ring map R → Rsh is called a strict henselization of R if it is
isomorphic to one of the local ring maps constructed in Lemma 10.155.2

The maps R→ Rh → Rsh are flat local ring homomorphisms. By Lemma 10.154.7
the R-algebras Rh and Rsh are well defined up to unique isomorphism by the condi-
tions that they are henselian local, filtered colimits of étale R-algebras with residue
field κ and κsep. In the rest of this section we mostly just discuss functoriality of
the (strict) henselizations. We will discuss more intricate results concerning the
relationship between R and its henselization in More on Algebra, Section 15.45.

Remark 10.155.4.0BSL We can also construct Rsh from Rh. Namely, for any finite
separable subextension κsep/κ′/κ there exists a unique (up to unique isomorphism)
finite étale local ring extension Rh ⊂ Rh(κ′) whose residue field extension repro-
duces the given extension, see Lemma 10.153.7. Hence we can set

Rsh =
⋃

κ⊂κ′⊂κsep
Rh(κ′)

The arrows in this system, compatible with the arrows on the level of residue fields,
exist by Lemma 10.153.7. This will produce a henselian local ring by Lemma
10.154.8 since each of the rings Rh(κ′) is henselian by Lemma 10.153.4. By con-
struction the residue field extension induced by Rh → Rsh is the field extension
κsep/κ. Hence Rsh so constructed is strictly henselian. By Lemma 10.154.2 the
R-algebra Rsh is a colimit of étale R-algebras. Hence the uniqueness of Lemma
10.154.7 shows that Rsh is the strict henselization.
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Lemma 10.155.5.04GR Let R → S be a local map of local rings. Let S → Sh be the
henselization. Let R → A be an étale ring map and let q be a prime of A lying
over mR such that R/mR ∼= κ(q). Then there exists a unique morphism of rings
f : A→ Sh fitting into the commutative diagram

A
f
// Sh

R

OO

// S

OO

such that f−1(mSh) = q.

Proof. This is a special case of Lemma 10.153.11. □

Lemma 10.155.6.04GS Let R → S be a local map of local rings. Let R → Rh and
S → Sh be the henselizations. There exists a unique local ring map Rh → Sh

fitting into the commutative diagram

Rh
f
// Sh

R

OO

// S

OO

Proof. Follows immediately from Lemma 10.154.6. □

Here is a slightly different construction of the henselization.

Lemma 10.155.7.04GV Let R be a ring. Let p ⊂ R be a prime ideal. Consider the
category of pairs (S, q) where R → S is étale and q is a prime lying over p such
that κ(p) = κ(q). This category is filtered and

(Rp)h = colim(S,q) S = colim(S,q) Sq

canonically.

Proof. A morphism of pairs (S, q)→ (S′, q′) is given by an R-algebra map φ : S →
S′ such that φ−1(q′) = q. Let us show that the category of pairs is filtered, see
Categories, Definition 4.19.1. The category contains the pair (R, p) and hence is
not empty, which proves part (1) of Categories, Definition 4.19.1. Suppose that
(S, q) and (S′, q′) are two pairs. Note that q, resp. q′ correspond to primes of the
fibre rings S ⊗ κ(p), resp. S′ ⊗ κ(p) with residue fields κ(p), hence they correspond
to maximal ideals of S ⊗ κ(p), resp. S′ ⊗ κ(p). Set S′′ = S ⊗R S′. By the above
there exists a unique prime q′′ ⊂ S′′ lying over q and over q′ whose residue field
is κ(p). The ring map R → S′′ is étale by Lemma 10.143.3. This proves part (2)
of Categories, Definition 4.19.1. Next, suppose that φ,ψ : (S, q)→ (S′, q′) are two
morphisms of pairs. Then φ, ψ, and S′ ⊗R S′ → S′ are étale ring maps by Lemma
10.143.8. Consider

S′′ = (S′ ⊗φ,S,ψ S′)⊗S′⊗RS′ S′

Arguing as above (base change of étale maps is étale, composition of étale maps is
étale) we see that S′′ is étale over R. The fibre ring of S′′ over p is

F ′′ = (F ′ ⊗φ,F,ψ F ′)⊗F ′⊗κ(p)F ′ F ′

where F ′, F are the fibre rings of S′ and S. Since φ and ψ are morphisms of pairs
the map F ′ → κ(p) corresponding to p′ extends to a map F ′′ → κ(p) and in turn
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corresponds to a prime ideal q′′ ⊂ S′′ whose residue field is κ(p). The canonical
map S′ → S′′ (using the right most factor for example) is a morphism of pairs
(S′, q′) → (S′′, q′′) which equalizes φ and ψ. This proves part (3) of Categories,
Definition 4.19.1. Hence we conclude that the category is filtered.

Recall that in the proof of Lemma 10.155.1 we constructed (Rp)h as the corre-
sponding colimit but starting with Rp and its maximal ideal pRp. Now, given any
pair (S, q) for (R, p) we obtain a pair (Sp, qSp) for (Rp, pRp). Moreover, in this
situation

Sp = colimf∈R,f ̸∈p Sf .

Hence in order to show the equalities of the lemma, it suffices to show that any
pair (Sloc, qloc) for (Rp, pRp) is of the form (Sp, qSp) for some pair (S, q) over (R, p)
(some details omitted). This follows from Lemma 10.143.3. □

Lemma 10.155.8.08HU Let R → S be a ring map. Let q ⊂ S be a prime lying over
p ⊂ R. Let R→ Rh and S → Sh be the henselizations of Rp and Sq. The local ring
map Rh → Sh of Lemma 10.155.6 identifies Sh with the henselization of Rh ⊗R S
at the unique prime lying over mh and q.

Proof. By Lemma 10.155.7 we see that Rh, resp. Sh are filtered colimits of étale R,
resp. S-algebras. Hence we see that Rh⊗R S is a filtered colimit of étale S-algebras
Ai (Lemma 10.143.3). By Lemma 10.154.5 we see that Sh is a filtered colimit of
étale Rh ⊗R S-algebras. Since moreover Sh is a henselian local ring with residue
field equal to κ(q), the statement follows from the uniqueness result of Lemma
10.154.7. □

Lemma 10.155.9.04GT Let φ : R → S be a local map of local rings. Let S/mS ⊂ κsep

be a separable algebraic closure. Let S → Ssh be the strict henselization of S with
respect to S/mS ⊂ κsep. Let R → A be an étale ring map and let q be a prime of
A lying over mR. Given any commutative diagram

κ(q)
ϕ
// κsep

R/mR
φ //

OO

S/mS

OO

there exists a unique morphism of rings f : A → Ssh fitting into the commutative
diagram

A
f
// Ssh

R

OO

φ // S

OO

such that f−1(mSh) = q and the induced map κ(q)→ κsep is the given one.

Proof. This is a special case of Lemma 10.153.11. □

Lemma 10.155.10.04GU Let R → S be a local map of local rings. Choose separable
algebraic closures R/mR ⊂ κsep1 and S/mS ⊂ κsep2 . Let R → Rsh and S → Ssh be
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the corresponding strict henselizations. Given any commutative diagram

κsep1 ϕ
// κsep2

R/mR
φ //

OO

S/mS

OO

There exists a unique local ring map Rsh → Ssh fitting into the commutative
diagram

Rsh
f
// Ssh

R

OO

// S

OO

and inducing ϕ on the residue fields of Rsh and Ssh.

Proof. Follows immediately from Lemma 10.154.6. □

Lemma 10.155.11.04GW Let R be a ring. Let p ⊂ R be a prime ideal. Let κ(p) ⊂ κsep

be a separable algebraic closure. Consider the category of triples (S, q, ϕ) where
R → S is étale, q is a prime lying over p, and ϕ : κ(q) → κsep is a κ(p)-algebra
map. This category is filtered and

(Rp)sh = colim(S,q,ϕ) S = colim(S,q,ϕ) Sq

canonically.

Proof. A morphism of triples (S, q, ϕ) → (S′, q′, ϕ′) is given by an R-algebra map
φ : S → S′ such that φ−1(q′) = q and such that ϕ′ ◦ φ = ϕ. Let us show that
the category of pairs is filtered, see Categories, Definition 4.19.1. The category
contains the triple (R, p, κ(p) ⊂ κsep) and hence is not empty, which proves part
(1) of Categories, Definition 4.19.1. Suppose that (S, q, ϕ) and (S′, q′, ϕ′) are two
triples. Note that q, resp. q′ correspond to primes of the fibre rings S ⊗ κ(p), resp.
S′ ⊗ κ(p) with residue fields finite separable over κ(p) and ϕ, resp. ϕ′ correspond
to maps into κsep. Hence this data corresponds to κ(p)-algebra maps

ϕ : S ⊗R κ(p) −→ κsep, ϕ′ : S′ ⊗R κ(p) −→ κsep.

Set S′′ = S ⊗R S′. Combining the maps the above we get a unique κ(p)-algebra
map

ϕ′′ = ϕ⊗ ϕ′ : S′′ ⊗R κ(p) −→ κsep

whose kernel corresponds to a prime q′′ ⊂ S′′ lying over q and over q′, and whose
residue field maps via ϕ′′ to the compositum of ϕ(κ(q)) and ϕ′(κ(q′)) in κsep. The
ring map R→ S′′ is étale by Lemma 10.143.3. Hence (S′′, q′′, ϕ′′) is a triple domi-
nating both (S, q, ϕ) and (S′, q′, ϕ′). This proves part (2) of Categories, Definition
4.19.1. Next, suppose that φ,ψ : (S, q, ϕ)→ (S′, q′, ϕ′) are two morphisms of pairs.
Then φ, ψ, and S′ ⊗R S′ → S′ are étale ring maps by Lemma 10.143.8. Consider

S′′ = (S′ ⊗φ,S,ψ S′)⊗S′⊗RS′ S′

Arguing as above (base change of étale maps is étale, composition of étale maps is
étale) we see that S′′ is étale over R. The fibre ring of S′′ over p is

F ′′ = (F ′ ⊗φ,F,ψ F ′)⊗F ′⊗κ(p)F ′ F ′

https://stacks.math.columbia.edu/tag/04GW
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where F ′, F are the fibre rings of S′ and S. Since φ and ψ are morphisms of triples
the map ϕ′ : F ′ → κsep extends to a map ϕ′′ : F ′′ → κsep which in turn corresponds
to a prime ideal q′′ ⊂ S′′. The canonical map S′ → S′′ (using the right most factor
for example) is a morphism of triples (S′, q′, ϕ′) → (S′′, q′′, ϕ′′) which equalizes φ
and ψ. This proves part (3) of Categories, Definition 4.19.1. Hence we conclude
that the category is filtered.

We still have to show that the colimit Rcolim of the system is equal to the strict
henselization of Rp with respect to κsep. To see this note that the system of triples
(S, q, ϕ) contains as a subsystem the pairs (S, q) of Lemma 10.155.7. Hence Rcolim
contains Rhp by the result of that lemma. Moreover, it is clear that Rhp ⊂ Rcolim
is a directed colimit of étale ring extensions. It follows that Rcolim is henselian
by Lemmas 10.153.4 and 10.154.8. Finally, by Lemma 10.144.3 we see that the
residue field of Rcolim is equal to κsep. Hence we conclude that Rcolim is strictly
henselian and hence equals the strict henselization of Rp as desired. Some details
omitted. □

Lemma 10.155.12.08HV Let R → S be a ring map. Let q ⊂ S be a prime lying over
p ⊂ R. Choose separable algebraic closures κ(p) ⊂ κsep1 and κ(q) ⊂ κsep2 . Let
Rsh and Ssh be the corresponding strict henselizations of Rp and Sq. Given any
commutative diagram

κsep1 ϕ
// κsep2

κ(p) φ //

OO

κ(q)

OO

The local ring map Rsh → Ssh of Lemma 10.155.10 identifies Ssh with the strict
henselization of Rsh⊗RS at a prime lying over q and the maximal ideal msh ⊂ Rsh.

Proof. The proof is identical to the proof of Lemma 10.155.8 except that it uses
Lemma 10.155.11 instead of Lemma 10.155.7. □

Lemma 10.155.13.0C2Z Let R → S be a ring map. Let q ⊂ S be a prime lying over
p ⊂ R such that κ(p) → κ(q) is an isomorphism. Choose a separable algebraic
closure κsep of κ(p) = κ(q). Then

(Sq)sh = (Sq)h ⊗(Rp)h (Rp)sh

Proof. This follows from the alternative construction of the strict henselization of
a local ring in Remark 10.155.4 and the fact that the residue fields are equal. Some
details omitted. □

10.156. Henselization and quasi-finite ring maps

0GIN In this section we prove some results concerning the functorial maps between (strict)
henselizations for quasi-finite ring maps.
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Lemma 10.156.1.05WP Let R→ S be a ring map. Let q be a prime of S lying over p in
R. Assume R→ S is quasi-finite at q. The commutative diagram

Rhp // Shq

Rp

OO

// Sq

OO

of Lemma 10.155.6 identifies Shq with the localization of Rhp ⊗Rp
Sq at the prime

generated by q. Moreover, the ring map Rhp → Shq is finite.

Proof. Note that Rhp ⊗R S is quasi-finite over Rhp at the prime ideal corresponding
to q, see Lemma 10.122.6. Hence the localization S′ of Rhp ⊗Rp

Sq is henselian and
finite over Rhp , see Lemma 10.153.4. As a localization S′ is a filtered colimit of
étale Rhp ⊗Rp

Sq-algebras. By Lemma 10.155.8 we see that Shq is the henselization
of Rhp ⊗Rp

Sq. Thus S′ = Shq by the uniqueness result of Lemma 10.154.7. □

Lemma 10.156.2.05WQ Let R be a local ring with henselization Rh. Let I ⊂ mR. Then
Rh/IRh is the henselization of R/I.

Proof. This is a special case of Lemma 10.156.1. □

Lemma 10.156.3.05WR Let R → S be a ring map. Let q be a prime of S lying over p
in R. Assume R → S is quasi-finite at q. Let κsep2 /κ(q) be a separable algebraic
closure and denote κsep1 ⊂ κsep2 the subfield of elements separable algebraic over
κ(q) (Fields, Lemma 9.14.6). The commutative diagram

Rshp // Sshq

Rp

OO

// Sq

OO

of Lemma 10.155.10 identifies Sshq with the localization of Rshp ⊗Rp
Sq at the prime

ideal which is the kernel of the map
Rshp ⊗Rp

Sq −→ κsep1 ⊗κ(p) κ(q) −→ κsep2

Moreover, the ring map Rshp → Sshq is a finite local homomorphism of local rings
whose residue field extension is the extension κsep2 /κsep1 which is both finite and
purely inseparable.

Proof. Since R → S is quasi-finite at q we see that the extension κ(q)/κ(p) is
finite, see Definition 10.122.3 and Lemma 10.122.2. Hence κsep1 is a separable
algebraic closure of κ(p) (small detail omitted). In particular Lemma 10.155.10
does really apply. Next, the compositum of κ(p) and κsep1 in κsep2 is separably
algebraically closed and hence equal to κsep2 . We conclude that κsep2 /κsep1 is finite.
By construction the extension κsep2 /κsep1 is purely inseparable. The ring map Rshp →
Sshq is indeed local and induces the residue field extension κsep2 /κsep1 which is indeed
finite purely inseparable.
Note that Rshp ⊗R S is quasi-finite over Rshp at the prime ideal q′ given in the
statement of the lemma, see Lemma 10.122.6. Hence the localization S′ of Rshp ⊗Rp
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Sq at q′ is henselian and finite over Rshp , see Lemma 10.153.4. Note that the residue
field of S′ is κsep2 as the map κsep1 ⊗κ(p) κ(q)→ κsep2 is surjective by the discussion
in the previous paragraph. Furthermore, as a localization S′ is a filtered colimit
of étale Rshp ⊗Rp

Sq-algebras. By Lemma 10.155.12 we see that Sshq is the strict
henselization of Rshp ⊗Rp

Sq at q′. Thus S′ = Sshq by the uniqueness result of Lemma
10.154.7. □

Lemma 10.156.4.05WS Let R be a local ring with strict henselization Rsh. Let I ⊂ mR.
Then Rsh/IRsh is a strict henselization of R/I.
Proof. This is a special case of Lemma 10.156.3. □

Lemma 10.156.5.092Y Let A→ B and A→ C be local homomorphisms of local rings. If
A→ C is integral and either κ(mC)/κ(mA) or κ(mB)/κ(mA) is purely inseparable,
then D = B ⊗A C is a local ring and B → D and C → D are local.
Proof. Any maximal ideal of D lies over the maximal ideal of B by going up for
the integral ring map B → D (Lemma 10.36.22). Now D/mBD = κ(mB) ⊗A C =
κ(mB)⊗κ(mA) C/mAC. The spectrum of C/mAC consists of a single point, namely
mC . Thus the spectrum of D/mBD is the same as the spectrum of κ(mB)⊗κ(mA)
κ(mC) which is a single point by our assumption that either κ(mC)/κ(mA) or
κ(mB)/κ(mA) is purely inseparable. This proves that D is local and that the ring
maps B → D and C → D are local. □

Lemma 10.156.6.0GIP Let A → B and A → C be ring maps. Let κ be a separably
algebraically closed field and let B ⊗A C → κ be a ring homomorphism. Denote

Bsh // (B ⊗A C)sh

Ash

OO

// Csh

OO

the corresponding maps of strict henselizations (see proof). If
(1) A→ B is quasi-finite at the prime pB = Ker(B → κ), or
(2) B is a filtered colimit of quasi-finite A-algebras, or
(3) BpB is a filtered colimit of quasi-finite algebras over ApA , or
(4) B is integral over A,

then Bsh ⊗Ash Csh → (B ⊗A C)sh is an isomorphism.
Proof. Write D = B⊗AC. Denote pA = Ker(A→ κ) and similarly for pB , pC , and
pD. Denote κA ⊂ κ the separable algebraic closure of κ(pA) in κ and similarly for
κB , κC , and κD. Denote Ash the strict henselization of ApA constructed using the
separable algebraic closure κA/κ(pA). Similarly for Bsh, Csh, and Dsh. We obtain
the commutative diagram of the lemma from the functoriality of Lemma 10.155.10.
Consider the map

c : Bsh ⊗Ash Csh → Dsh = (B ⊗A C)sh

we obtain from the commutative diagram. If A → B is quasi-finite at pB =
Ker(B → κ), then the ring map C → D is quasi-finite at pD by Lemma 10.122.6.
Hence by Lemma 10.156.3 (and Lemma 10.36.13) the ring map c is a homomor-
phism of finite Csh-algebras and

Bsh = (B ⊗A Ash)q and Dsh = (D ⊗C Csh)r = (B ⊗A Csh)r
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for some primes q and r. Since
Bsh ⊗Ash Csh = (B ⊗A Ash)q ⊗Ash Csh = a localization of B ⊗A Csh

we conclude that source and target of c are both localizations of B ⊗A Csh (com-
patibly with the map). Hence it suffices to show that Bsh ⊗Ash Csh is local (small
detail omitted). This follows from Lemma 10.156.5 and the fact that Ash → Bsh

is finite with purely inseparable residue field extension by the already used Lemma
10.156.3. This proves case (1) of the lemma.
In case (2) write B = colimBi as a filtered colimit of quasi-finite A-algebras. We
correspondingly get D = colimDi with Di = Bi ⊗A C. Observe that Bsh =
colimBshi . Namely, the ring colimBshi is a strictly henselian local ring by Lemma
10.154.8. Also colimBshi is a filtered colimit of étale B-algebras by Lemma 10.154.4.
Finally, the residue field of colimBshi is a separable algebraic closure of κ(pB)
(details omitted). Hence we conclude that Bsh = colimBshi , see discussion following
Definition 10.155.3. Similarly, we have Dsh = colimDsh

i . Then we conclude by case
(1) because

Dsh = colimDsh
i = colimBshi ⊗Ash Csh = Bsh ⊗Ash Csh

since filtered colimit commute with tensor products.
Case (3). We may replace A, B, C by their localizations at pA, pB , and pC . Thus
(3) follows from (2).
Since an integral ring map is a filtered colimit of finite ring maps, we see that (4)
follows from (2) as well. □

10.157. Serre’s criterion for normality

031O We introduce the following properties of Noetherian rings.

Definition 10.157.1.031P Let R be a Noetherian ring. Let k ≥ 0 be an integer.
(1) We say R has property (Rk) if for every prime p of height ≤ k the local

ring Rp is regular. We also say that R is regular in codimension ≤ k.
(2) We say R has property (Sk) if for every prime p the local ring Rp has

depth at least min{k,dim(Rp)}.
(3) Let M be a finite R-module. We say M has property (Sk) if for every

prime p the module Mp has depth at least min{k,dim(Supp(Mp))}.

Any Noetherian ring has property (S0) and so does any finite module over it. Our
convention that the depth of the zero module is ∞ (see Section 10.72) and the
dimension of the empty set is −∞ (see Topology, Section 5.10) guarantees that the
zero module has property (Sk) for all k.

Lemma 10.157.2.031Q Let R be a Noetherian ring. Let M be a finite R-module. The
following are equivalent:

(1) M has no embedded associated prime, and
(2) M has property (S1).

Proof. Let p be an embedded associated prime of M . Then there exists an-
other associated prime q of M such that p ⊃ q. In particular this implies that
dim(Supp(Mp)) ≥ 1 (since q is in the support as well). On the other hand pRp

is associated to Mp (Lemma 10.63.15) and hence depth(Mp) = 0 (see Lemma
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10.63.18). In other words (S1) does not hold. Conversely, if (S1) does not hold
then there exists a prime p such that dim(Supp(Mp)) ≥ 1 and depth(Mp) = 0.
Since depth(Mp) = 0, we see that p ∈ Ass(M) by the two Lemmas 10.63.15 and
10.63.18. Since dim(Supp(Mp)) ≥ 1, there is a prime q ∈ Supp(M) with q ⊂ p,
q ̸= p. We can take such a q that is minimal in Supp(M). Then by Proposition
10.63.6 we have q ∈ Ass(M) and hence p is an embedded associated prime. □

Lemma 10.157.3.031R Let R be a Noetherian ring. The following are equivalent:
(1) R is reduced, and
(2) R has properties (R0) and (S1).

Proof. Suppose that R is reduced. Then Rp is a field for every minimal prime p of
R, according to Lemma 10.25.1. Hence we have (R0). Let p be a prime of height
≥ 1. Then A = Rp is a reduced local ring of dimension ≥ 1. Hence its maximal
ideal m is not an associated prime since this would mean there exists an x ∈ m with
annihilator m so x2 = 0. Hence the depth of A = Rp is at least one, by Lemma
10.63.9. This shows that (S1) holds.

Conversely, assume that R satisfies (R0) and (S1). If p is a minimal prime of R,
then Rp is a field by (R0), and hence is reduced. If p is not minimal, then we see
that Rp has depth ≥ 1 by (S1) and we conclude there exists an element t ∈ pRp

such that Rp → Rp[1/t] is injective. Now Rp[1/t] is contained in the product of its
localizations at prime ideals, see Lemma 10.23.1. This implies that Rp is a subring
of a product of localizations of R at q ⊃ p with t ̸∈ q. Since theses primes have
smaller height by induction on the height we conclude that R is reduced. □

Lemma 10.157.4 (Serre’s criterion for normality).031S [DG67, IV,
Theorem 5.8.6]

Let R be a Noetherian ring. The
following are equivalent:

(1) R is a normal ring, and
(2) R has properties (R1) and (S2).

Proof. Proof of (1) ⇒ (2). Assume R is normal, i.e., all localizations Rp at primes
are normal domains. In particular we see that R has (R0) and (S1) by Lemma
10.157.3. Hence it suffices to show that a local Noetherian normal domain R of
dimension d has depth ≥ min(2, d) and is regular if d = 1. The assertion if d = 1
follows from Lemma 10.119.7.

Let R be a local Noetherian normal domain with maximal ideal m and dimension
d ≥ 2. Apply Lemma 10.119.2 to R. It is clear that R does not fall into cases (1)
or (2) of the lemma. Let R → R′ as in (4) of the lemma. Since R is a domain we
have R ⊂ R′. Since m is not an associated prime of R′ there exists an x ∈ m which
is a nonzerodivisor on R′. Then Rx = R′

x so R and R′ are domains with the same
fraction field. But finiteness of R ⊂ R′ implies every element of R′ is integral over
R (Lemma 10.36.3) and we conclude that R = R′ as R is normal. This means (4)
does not happen. Thus we get the remaining possibility (3), i.e., depth(R) ≥ 2 as
desired.

Proof of (2) ⇒ (1). Assume R satisfies (R1) and (S2). By Lemma 10.157.3 we
conclude that R is reduced. Hence it suffices to show that if R is a reduced local
Noetherian ring of dimension d satisfying (S2) and (R1) then R is a normal domain.
If d = 0, the result is clear. If d = 1, then the result follows from Lemma 10.119.7.
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Let R be a reduced local Noetherian ring with maximal ideal m and dimension
d ≥ 2 which satisfies (R1) and (S2). By Lemma 10.37.16 it suffices to show that R is
integrally closed in its total ring of fractions Q(R). Pick x ∈ Q(R) which is integral
over R. Then R′ = R[x] is a finite ring extension of R (Lemma 10.36.5). Because
dim(Rp) < d for every nonmaximal prime p ⊂ R we have Rp = R′

p by induction.
Hence the support of R′/R is {m}. It follows that R′/R is annihilated by a power
of m (Lemma 10.62.4). By Lemma 10.119.2 this contradicts the assumption that
the depth of R is ≥ 2 = min(2, d) and the proof is complete. □

Lemma 10.157.5.0567 A regular ring is normal.

Proof. Let R be a regular ring. By Lemma 10.157.4 it suffices to prove that R is
(R1) and (S2). As a regular local ring is Cohen-Macaulay, see Lemma 10.106.3, it
is clear that R is (S2). Property (R1) is immediate. □

Lemma 10.157.6.031T Let R be a Noetherian normal domain with fraction field K.
Then

(1) for any nonzero a ∈ R the quotient R/aR has no embedded primes, and
all its associated primes have height 1

(2)
R =

⋂
height(p)=1

Rp

(3) For any nonzero x ∈ K the quotient R/(R∩xR) has no embedded primes,
and all its associates primes have height 1.

Proof. By Lemma 10.157.4 we see that R has (S2). Hence for any nonzero element
a ∈ R we see that R/aR has (S1) (use Lemma 10.72.6 for example) Hence R/aR
has no embedded primes (Lemma 10.157.2). We conclude the associated primes of
R/aR are exactly the minimal primes p over (a), which have height 1 as a is not
zero (Lemma 10.60.11). This proves (1).
Thus, given b ∈ R we have b ∈ aR if and only if b ∈ aRp for every minimal prime
p over (a) (see Lemma 10.63.19). These primes all have height 1 as seen above so
b/a ∈ R if and only if b/a ∈ Rp for all height 1 primes. Hence (2) holds.
For (3) write x = a/b. Let p1, . . . , pr be the minimal primes over (ab). These all
have height 1 by the above. Then we see that R∩xR =

⋂
i=1,...,r(R∩xRpi) by part

(2) of the lemma. Hence R/(R ∩ xR) is a submodule of
⊕
R/(R ∩ xRpi). As Rpi

is a discrete valuation ring (by property (R1) for the Noetherian normal domain
R, see Lemma 10.157.4) we have xRpi = peii Rpi for some ei ∈ Z. Hence the direct
sum is equal to

⊕
ei>0 R/p

(ei)
i , see Definition 10.64.1. By Lemma 10.64.2 the only

associated prime of the module R/p(n) is p. Hence the set of associate primes of
R/(R ∩ xR) is a subset of {pi} and there are no inclusion relations among them.
This proves (3). □

10.158. Formal smoothness of fields

031U In this section we show that field extensions are formally smooth if and only if
they are separable. However, we first prove finitely generated field extensions are
separable algebraic if and only if they are formally unramified.

Lemma 10.158.1.090W Let K/k be a finitely generated field extension. The following
are equivalent
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(1) K is a finite separable field extension of k,
(2) ΩK/k = 0,
(3) K is formally unramified over k,
(4) K is unramified over k,
(5) K is formally étale over k,
(6) K is étale over k.

Proof. The equivalence of (2) and (3) is Lemma 10.148.2. By Lemma 10.143.4 we
see that (1) is equivalent to (6). Property (6) implies (5) and (4) which both in
turn imply (3) (Lemmas 10.150.2, 10.151.3, and 10.151.2). Thus it suffices to show
that (2) implies (1). Choose a finitely generated k-subalgebra A ⊂ K such that K
is the fraction field of the domain A. Set S = A \ {0}. Since 0 = ΩK/k = S−1ΩA/k
(Lemma 10.131.8) and since ΩA/k is finitely generated (Lemma 10.131.16), we can
replace A by a localization Af to reduce to the case that ΩA/k = 0 (details omitted).
Then A is unramified over k, hence K/k is finite separable for example by Lemma
10.151.5 applied with q = (0). □

Lemma 10.158.2.031W Let k be a perfect field of characteristic p > 0. Let K/k be an
extension. Let a ∈ K. Then da = 0 in ΩK/k if and only if a is a pth power.

Proof. By Lemma 10.131.5 we see that there exists a subfield k ⊂ L ⊂ K such that
L/k is a finitely generated field extension and such that da is zero in ΩL/k. Hence
we may assume that K is a finitely generated field extension of k.

Choose a transcendence basis x1, . . . , xr ∈ K such that K is finite separable
over k(x1, . . . , xr). This is possible by the definitions, see Definitions 10.45.1 and
10.42.1. We remark that the result holds for the purely transcendental subfield
k(x1, . . . , xr) ⊂ K. Namely,

Ωk(x1,...,xr)/k =
⊕r

i=1
k(x1, . . . , xr)dxi

and any rational function all of whose partial derivatives are zero is a pth power.
Moreover, we also have

ΩK/k =
⊕r

i=1
Kdxi

since k(x1, . . . , xr) ⊂ K is finite separable (computation omitted). Suppose a ∈ K
is an element such that da = 0 in the module of differentials. By our choice of xi we
see that the minimal polynomial P (T ) ∈ k(x1, . . . , xr)[T ] of a is separable. Write

P (T ) = T d +
∑d

i=1
aiT

d−i

and hence
0 = dP (a) =

∑d

i=1
ad−idai

in ΩK/k. By the description of ΩK/k above and the fact that P was the minimal
polynomial of a, we see that this implies dai = 0. Hence ai = bpi for each i.
Therefore by Fields, Lemma 9.28.2 we see that a is a pth power. □

Lemma 10.158.3.07DZ Let k be a field of characteristic p > 0. Let a1, . . . , an ∈ k be
elements such that da1, . . . ,dan are linearly independent in Ωk/Fp . Then the field
extension k(a1/p

1 , . . . , a
1/p
n ) has degree pn over k.
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Proof. By induction on n. If n = 1 the result is Lemma 10.158.2. For the induction
step, suppose that k(a1/p

1 , . . . , a
1/p
n−1) has degree pn−1 over k. We have to show that

an does not map to a pth power in k(a1/p
1 , . . . , a

1/p
n−1). If it does then we can write

an =
(∑

I=(i1,...,in−1), 0≤ij≤p−1
λIa

i1/p
1 . . . a

in−1/p
n−1

)p
=
∑

I=(i1,...,in−1), 0≤ij≤p−1
λpIa

i1
1 . . . a

in−1
n−1

Applying d we see that dan is linearly dependent on dai, i < n. This is a contra-
diction. □

Lemma 10.158.4.031X Let k be a field of characteristic p > 0. The following are
equivalent:

(1) the field extension K/k is separable (see Definition 10.42.1), and
(2) the map K ⊗k Ωk/Fp → ΩK/Fp is injective.

Proof. Write K as a directed colimit K = colimiKi of finitely generated field
extensions Ki/k. By definition K is separable if and only if each Ki is separable
over k, and by Lemma 10.131.5 we see that K ⊗k Ωk/Fp → ΩK/Fp is injective if
and only if each Ki ⊗k Ωk/Fp → ΩKi/Fp is injective. Hence we may assume that
K/k is a finitely generated field extension.
Assume K/k is a finitely generated field extension which is separable. Choose
x1, . . . , xr+1 ∈ K as in Lemma 10.42.3. In this case there exists an irreducible
polynomial G(X1, . . . , Xr+1) ∈ k[X1, . . . , Xr+1] such that G(x1, . . . , xr+1) = 0 and
such that ∂G/∂Xr+1 is not identically zero. Moreover K is the field of fractions of
the domain. S = K[X1, . . . , Xr+1]/(G). Write

G =
∑

aIX
I , XI = Xi1

1 . . . X
ir+1
r+1 .

Using the presentation of S above we see that

ΩS/Fp =
S ⊗k Ωk ⊕

⊕
i=1,...,r+1 SdXi

⟨
∑
XIdaI +

∑
∂G/∂XidXi⟩

Since ΩK/Fp is the localization of the S-module ΩS/Fp (see Lemma 10.131.8) we
conclude that

ΩK/Fp =
K ⊗k Ωk ⊕

⊕
i=1,...,r+1 KdXi

⟨
∑
XIdaI +

∑
∂G/∂XidXi⟩

Now, since the polynomial ∂G/∂Xr+1 is not identically zero we conclude that the
map K ⊗k Ωk/Fp → ΩS/Fp is injective as desired.
Assume K/k is a finitely generated field extension and that K ⊗k Ωk/Fp → ΩK/Fp
is injective. (This part of the proof is the same as the argument proving Lemma
10.44.1.) Let x1, . . . , xr be a transcendence basis of K over k such that the degree
of inseparability of the finite extension k(x1, . . . , xr) ⊂ K is minimal. If K is
separable over k(x1, . . . , xr) then we win. Assume this is not the case to get a
contradiction. Then there exists an element α ∈ K which is not separable over
k(x1, . . . , xr). Let P (T ) ∈ k(x1, . . . , xr)[T ] be its minimal polynomial. Because α
is not separable actually P is a polynomial in T p. Clear denominators to get an
irreducible polynomial

G(X1, . . . , Xr, T ) =
∑

aI,iX
IT i ∈ k[X1, . . . , Xr, T ]

https://stacks.math.columbia.edu/tag/031X
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such that G(x1, . . . , xr, α) = 0 in L. Note that this means k[X1, . . . , Xr, T ]/(G) ⊂
L. We may assume that for some pair (I0, i0) the coefficient aI0,i0 = 1. We claim
that dG/dXi is not identically zero for at least one i. Namely, if this is not the
case, then G is actually a polynomial in Xp

1 , . . . , X
p
r , T

p. Then this means that∑
(I,i)̸=(I0,i0)

xIαidaI,i

is zero in ΩK/Fp . Note that there is no k-linear relation among the elements

{xIαi | aI,i ̸= 0 and (I, i) ̸= (I0, i0)}
of K. Hence the assumption that K ⊗k Ωk/Fp → ΩK/Fp is injective this implies
that daI,i = 0 in Ωk/Fp for all (I, i). By Lemma 10.158.2 we see that each aI,i is a
pth power, which implies that G is a pth power contradicting the irreducibility of
G. Thus, after renumbering, we may assume that dG/dX1 is not zero. Then we
see that x1 is separably algebraic over k(x2, . . . , xr, α), and that x2, . . . , xr, α is a
transcendence basis of L over k. This means that the degree of inseparability of
the finite extension k(x2, . . . , xr, α) ⊂ L is less than the degree of inseparability of
the finite extension k(x1, . . . , xr) ⊂ L, which is a contradiction. □

Lemma 10.158.5.031Y Let K/k be an extension of fields. If K is formally smooth over
k, then K is a separable extension of k.

Proof. Assume K is formally smooth over k. By Lemma 10.138.9 we see that K⊗k
Ωk/Z → ΩK/Z is injective. Hence K is separable over k by Lemma 10.158.4. □

Lemma 10.158.6.031Z Let K/k be an extension of fields. Then K is formally smooth
over k if and only if H1(LK/k) = 0.

Proof. This follows from Proposition 10.138.8 and the fact that a vector spaces is
free (hence projective). □

Lemma 10.158.7.0320 Let K/k be an extension of fields.
(1) If K is purely transcendental over k, then K is formally smooth over k.
(2) If K is separable algebraic over k, then K is formally smooth over k.
(3) If K is separable over k, then K is formally smooth over k.

Proof. For (1) write K = k(xj ; j ∈ J). Suppose that A is a k-algebra, and I ⊂ A
is an ideal of square zero. Let φ : K → A/I be a k-algebra map. Let aj ∈ A be an
element such that aj mod I = φ(xj). Then it is easy to see that there is a unique
k-algebra map K → A which maps xj to aj and which reduces to φ mod I. Hence
k ⊂ K is formally smooth.
In case (2) we see that k ⊂ K is a colimit of étale ring extensions. An étale ring map
is formally étale (Lemma 10.150.2). Hence this case follows from Lemma 10.150.3
and the trivial observation that a formally étale ring map is formally smooth.
In case (3), write K = colimKi as the filtered colimit of its finitely generated sub
k-extensions. By Definition 10.42.1 each Ki is separable algebraic over a purely
transcendental extension of k. Hence Ki/k is formally smooth by cases (1) and (2)
and Lemma 10.138.3. Thus H1(LKi/k) = 0 by Lemma 10.158.6. Hence H1(LK/k) =
0 by Lemma 10.134.9. Hence K/k is formally smooth by Lemma 10.158.6 again. □

Lemma 10.158.8.0321 Let k be a field.
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(1) If the characteristic of k is zero, then any extension field of k is formally
smooth over k.

(2) If the characteristic of k is p > 0, then K/k is formally smooth if and only
if it is a separable field extension.

Proof. Combine Lemmas 10.158.5 and 10.158.7. □

Here we put together all the different characterizations of separable field extensions.

Proposition 10.158.9.0322 Let K/k be a field extension. If the characteristic of k is
zero then

(1) K is separable over k,
(2) K is geometrically reduced over k,
(3) K is formally smooth over k,
(4) H1(LK/k) = 0, and
(5) the map K ⊗k Ωk/Z → ΩK/Z is injective.

If the characteristic of k is p > 0, then the following are equivalent:
(1) K is separable over k,
(2) the ring K ⊗k k1/p is reduced,
(3) K is geometrically reduced over k,
(4) the map K ⊗k Ωk/Fp → ΩK/Fp is injective,
(5) H1(LK/k) = 0, and
(6) K is formally smooth over k.

Proof. This is a combination of Lemmas 10.44.1, 10.158.8 10.158.5, and 10.158.4.
□

Here is yet another characterization of finitely generated separable field extensions.

Lemma 10.158.10.037X Let K/k be a finitely generated field extension. Then K is
separable over k if and only if K is the localization of a smooth k-algebra.

Proof. Choose a finite type k-algebra R which is a domain whose fraction field is K.
Lemma 10.140.9 says that k → R is smooth at (0) if and only if K/k is separable.
This proves the lemma. □

Lemma 10.158.11.07BV Let K/k be a field extension. Then K is a filtered colimit
of global complete intersection algebras over k. If K/k is separable, then K is a
filtered colimit of smooth algebras over k.

Proof. Suppose that E ⊂ K is a finite subset. It suffices to show that there exists
a k subalgebra A ⊂ K which contains E and which is a global complete inter-
section (resp. smooth) over k. The separable/smooth case follows from Lemma
10.158.10. In general let L ⊂ K be the subfield generated by E. Pick a transcen-
dence basis x1, . . . , xd ∈ L over k. The extension L/k(x1, . . . , xd) is finite. Say L =
k(x1, . . . , xd)[y1, . . . , yr]. Pick inductively polynomials Pi ∈ k(x1, . . . , xd)[Y1, . . . , Yr]
such that Pi = Pi(Y1, . . . , Yi) is monic in Yi over k(x1, . . . , xd)[Y1, . . . , Yi−1] and
maps to the minimum polynomial of yi in k(x1, . . . , xd)[y1, . . . , yi−1][Yi]. Then it is
clear that P1, . . . , Pr is a regular sequence in k(x1, . . . , xr)[Y1, . . . , Yr] and that L =
k(x1, . . . , xr)[Y1, . . . , Yr]/(P1, . . . , Pr). If h ∈ k[x1, . . . , xd] is a polynomial such that
Pi ∈ k[x1, . . . , xd, 1/h, Y1, . . . , Yr], then we see that P1, . . . , Pr is a regular sequence
in k[x1, . . . , xd, 1/h, Y1, . . . , Yr] and A = k[x1, . . . , xd, 1/h, Y1, . . . , Yr]/(P1, . . . , Pr)
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is a global complete intersection. After adjusting our choice of h we may assume
E ⊂ A and we win. □

10.159. Constructing flat ring maps

03C2 The following lemma is occasionally useful.

Lemma 10.159.1.03C3 Let (R,m, k) be a local ring. Let K/k be a field extension. There
exists a local ring (R′,m′, k′), a flat local ring map R → R′ such that m′ = mR′

and such that k′ is isomorphic to K as an extension of k.

Proof. Suppose that k′ = k(α) is a monogenic extension of k. Then k′ is the residue
field of a flat local extension R ⊂ R′ as in the lemma. Namely, if α is transcendental
over k, then we let R′ be the localization of R[x] at the prime mR[x]. If α is algebraic
with minimal polynomial T d +

∑
λiT

d−i, then we let R′ = R[T ]/(T d +
∑
λiT

d−i).
Consider the collection of triples (k′, R → R′, ϕ), where k ⊂ k′ ⊂ K is a subfield,
R→ R′ is a local ring map as in the lemma, and ϕ : R′ → k′ induces an isomorphism
R′/mR′ ∼= k′ of k-extensions. These form a “big” category C with morphisms
(k1, R1, ϕ1)→ (k2, R2, ϕ2) given by ring maps ψ : R1 → R2 such that

R1

ψ

��

ϕ1

// k1 // K

R2
ϕ2 // k2 // K

commutes. This implies that k1 ⊂ k2.
Suppose that I is a directed set, and ((Ri, ki, ϕi), ψii′) is a system over I, see
Categories, Section 4.21. In this case we can consider

R′ = colimi∈I Ri

This is a local ring with maximal ideal mR′, and residue field k′ =
⋃
i∈I ki. More-

over, the ring map R→ R′ is flat as it is a colimit of flat maps (and tensor products
commute with directed colimits). Hence we see that (R′, k′, ϕ′) is an “upper bound”
for the system.
An almost trivial application of Zorn’s Lemma would finish the proof if C was a set,
but it isn’t. (Actually, you can make this work by finding a reasonable bound on
the cardinals of the local rings occurring.) To get around this problem we choose a
well ordering on K. For x ∈ K we let K(x) be the subfield of K generated by all
elements of K which are≤ x. By transfinite recursion on x ∈ K we will produce ring
maps R ⊂ R(x) as in the lemma with residue field extension K(x)/k. Moreover, by
construction we will have that R(x) will contain R(y) for all y ≤ x. Namely, if x
has a predecessor x′, then K(x) = K(x′)[x] and hence we can let R(x′) ⊂ R(x) be
the local ring extension constructed in the first paragraph of the proof. If x does
not have a predecessor, then we first set R′(x) = colimx′<xR(x′) as in the third
paragraph of the proof. The residue field of R′(x) is K ′(x) =

⋃
x′<xK(x′). Since

K(x) = K ′(x)[x] we see that we can use the construction of the first paragraph of
the proof to produce R′(x) ⊂ R(x). This finishes the proof of the lemma. □

Lemma 10.159.2.09E0 Let (R,m, k) be a local ring. If k ⊂ K is a separable algebraic
extension, then there exists a directed set I and a system of finite étale extensions
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R ⊂ Ri, i ∈ I of local rings such that R′ = colimRi has residue field K (as extension
of k).

Proof. Let R ⊂ R′ be the extension constructed in the proof of Lemma 10.159.1.
By construction R′ = colimα∈ARα where A is a well-ordered set and the transition
maps Rα → Rα+1 are finite étale and Rα = colimβ<αRβ if α is not a successor.
We will prove the result by transfinite induction.
Suppose the result holds for Rα, i.e., Rα = colimRi with Ri finite étale over
R. Since Rα → Rα+1 is finite étale there exists an i and a finite étale extension
Ri → Ri,1 such that Rα+1 = Rα ⊗Ri Ri,1. Thus Rα+1 = colimi′≥iRi′ ⊗Ri Ri,1 and
the result holds for α+ 1. Suppose α is not a successor and the result holds for Rβ
for all β < α. Since every finite subset E ⊂ Rα is contained in Rβ for some β < α
and we see that E is contained in a finite étale subextension by assumption. Thus
the result holds for Rα. □

Lemma 10.159.3.07NE Let R be a ring. Let p ⊂ R be a prime and let L/κ(p) be a
finite extension of fields. Then there exists a finite free ring map R→ S such that
q = pS is prime and κ(q)/κ(p) is isomorphic to the given extension L/κ(p).

Proof. By induction of the degree of κ(p) ⊂ L. If the degree is 1, then we take
R = S. In general, if there exists a sub extension κ(p) ⊂ L′ ⊂ L then we win
by induction on the degree (by first constructing R ⊂ S′ corresponding to L′/κ(p)
and then construction S′ ⊂ S corresponding to L/L′). Thus we may assume that
L ⊃ κ(p) is generated by a single element α ∈ L. Let Xd +

∑
i<d aiX

i be the
minimal polynomial of α over κ(p), so ai ∈ κ(p). We may write ai as the image of
fi/g for some fi, g ∈ R and g ̸∈ p. After replacing α by gα (and correspondingly
replacing ai by gd−iai) we may assume that ai is the image of some fi ∈ R. Then
we simply take S = R[x]/(xd +

∑
fix

i). □

Lemma 10.159.4.0GIL Let A be a ring. Let κ = max(|A|,ℵ0). Then every flat A-algebra
B is the filtered colimit of its flat A-subalgebras B′ ⊂ B of cardinality |B′| ≤ κ.
(Observe that B′ is faithfully flat over A if B is faithfully flat over A.)

Proof. If B has cardinality ≤ κ then this is true. Let E ⊂ B be an A-subalgebra
with |E| ≤ κ. We will show that E is contained in a flat A-subalgebra B′ with
|B′| ≤ κ. The lemma follows because (a) every finite subset of B is contained in
an A-subalgebra of cardinality at most κ and (b) every pair of A-subalgebras of B
of cardinality at most κ is contained in an A-subalgebra of cardinality at most κ.
Details omitted.
We will inductively construct a sequence of A-subalgebras

E = E0 ⊂ E1 ⊂ E2 ⊂ . . .
each having cardinality ≤ κ and we will show that B′ =

⋃
Ek is flat over A to

finish the proof.
The construction is as follows. Set E0 = E. Given Ek for k ≥ 0 we consider the
set Sk of relations between elements of Ek with coefficients in A. Thus an element
s ∈ Sk is given by an integer n ≥ 1 and a1, . . . , an ∈ A, and e1, . . . , en ∈ Ek such
that

∑
aiei = 0 in Ek. The flatness of A→ B implies by Lemma 10.39.11 that for

every s = (n, a1, . . . , an, e1, . . . , en) ∈ Sk we may choose
(ms, bs,1, . . . , bs,ms , as,11, . . . , as,nms)
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where ms ≥ 0 is an integer, bs,j ∈ B, as,ij ∈ A, and

ei =
∑

j
as,ijbs,j ,∀i, and 0 =

∑
i
aias,ij ,∀j.

Given these choicse, we let Ek+1 ⊂ B be the A-subalgebra generated by
(1) Ek and
(2) the elements bs,1, . . . , bs,ms for every s ∈ Sk.

Some set theory (omitted) shows that Ek+1 has at most cardinality κ (this uses
that we inductively know |Ek| ≤ κ and consequently the cardinality of Sk is also
at most κ).
To show that B′ =

⋃
Ek is flat over A we consider a relation

∑
i=1,...,n aib

′
i = 0 in

B′ with coefficients in A. Choose k large enough so that b′
i ∈ Ek for i = 1, . . . , n.

Then (n, a1, . . . , an, b
′
1, . . . , b

′
n) ∈ Sk and hence we see that the relation is trivial in

Ek+1 and a fortiori in B′. Thus A→ B′ is flat by Lemma 10.39.11. □

10.160. The Cohen structure theorem

0323 Here is a fundamental notion in commutative algebra.

Definition 10.160.1.0324 Let (R,m) be a local ring. We say R is a complete local ring
if the canonical map

R −→ limnR/m
n

to the completion of R with respect to m is an isomorphism13.

Note that an Artinian local ring R is a complete local ring because mnR = 0 for
some n > 0. In this section we mostly focus on Noetherian complete local rings.

Lemma 10.160.2.0325 Let R be a Noetherian complete local ring. Any quotient of R
is also a Noetherian complete local ring. Given a finite ring map R→ S, then S is
a product of Noetherian complete local rings.

Proof. The ring S is Noetherian by Lemma 10.31.1. As an R-module S is complete
by Lemma 10.97.1. Hence S is the product of the completions at its maximal ideals
by Lemma 10.97.8. □

Lemma 10.160.3.032B Let (R,m) be a complete local ring. If m is a finitely generated
ideal then R is Noetherian.

Proof. See Lemma 10.97.5. □

Definition 10.160.4.0326 Let (R,m) be a complete local ring. A subring Λ ⊂ R is called
a coefficient ring if the following conditions hold:

(1) Λ is a complete local ring with maximal ideal Λ ∩m,
(2) the residue field of Λ maps isomorphically to the residue field of R, and
(3) Λ ∩m = pΛ, where p is the characteristic of the residue field of R.

Let us make some remarks on this definition. We split the discussion into the
following cases:

13This includes the condition that
⋂

mn = (0); in some texts this may be indicated by saying
that R is complete and separated. Warning: It can happen that the completion limnR/mn of a
local ring is non-complete, see Examples, Lemma 110.7.1. This does not happen when m is finitely
generated, see Lemma 10.96.3 in which case the completion is Noetherian, see Lemma 10.97.5.

https://stacks.math.columbia.edu/tag/0324
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(1) The local ring R contains a field. This happens if either Q ⊂ R, or pR = 0
where p is the characteristic of R/m. In this case a coefficient ring Λ is a
field contained in R which maps isomorphically to R/m.

(2) The characteristic of R/m is p > 0 but no power of p is zero in R. In
this case Λ is a complete discrete valuation ring with uniformizer p and
residue field R/m.

(3) The characteristic of R/m is p > 0, and for some n > 1 we have pn−1 ̸= 0,
pn = 0 in R. In this case Λ is an Artinian local ring whose maximal ideal
is generated by p and which has residue field R/m.

The complete discrete valuation rings with uniformizer p above play a special role
and we baptize them as follows.

Definition 10.160.5.0327 A Cohen ring is a complete discrete valuation ring with uni-
formizer p a prime number.

Lemma 10.160.6.0328 Let p be a prime number. Let k be a field of characteristic p.
There exists a Cohen ring Λ with Λ/pΛ ∼= k.

Proof. First note that the p-adic integers Zp form a Cohen ring for Fp. Let k be
an arbitrary field of characteristic p. Let Zp → R be a flat local ring map such that
mR = pR and R/pR = k, see Lemma 10.159.1. By Lemma 10.97.5 the completion
Λ = R∧ is Noetherian. It is a complete Noetherian local ring with maximal ideal
(p) as Λ/pΛ = R/pR is a field (use Lemma 10.96.3). Since Zp → R→ Λ is flat (by
Lemma 10.97.2) we see that p is a nonzerodivisor in Λ. Hence Λ has dimension ≥ 1
(Lemma 10.60.13) and we conclude that Λ is regular of dimension 1, i.e., a discrete
valuation ring by Lemma 10.119.7. We conclude Λ is a Cohen ring for k. □

Lemma 10.160.7.0329 Let p > 0 be a prime. Let Λ be a Cohen ring with residue field
of characteristic p. For every n ≥ 1 the ring map

Z/pnZ→ Λ/pnΛ

is formally smooth.

Proof. If n = 1, this follows from Proposition 10.158.9. For general n we argue
by induction on n. Namely, if Z/pnZ → Λ/pnΛ is formally smooth, then we
can apply Lemma 10.138.12 to the ring map Z/pn+1Z → Λ/pn+1Λ and the ideal
I = (pn) ⊂ Z/pn+1Z. □

Theorem 10.160.8 (Cohen structure theorem).032A Let (R,m) be a complete local ring.
(1) R has a coefficient ring (see Definition 10.160.4),
(2) if m is a finitely generated ideal, then R is isomorphic to a quotient

Λ[[x1, . . . , xn]]/I

where Λ is either a field or a Cohen ring.

Proof. Let us prove a coefficient ring exists. First we prove this in case the charac-
teristic of the residue field κ is zero. Namely, in this case we will prove by induction
on n > 0 that there exists a section

φn : κ −→ R/mn

https://stacks.math.columbia.edu/tag/0327
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to the canonical map R/mn → κ = R/m. This is trivial for n = 1. If n > 1, let
φn−1 be given. The field extension κ/Q is formally smooth by Proposition 10.158.9.
Hence we can find the dotted arrow in the following diagram

R/mn−1 R/mnoo

κ

φn−1

OO 99

Qoo

OO

This proves the induction step. Putting these maps together
limn φn : κ −→ R = limn R/mn

gives a map whose image is the desired coefficient ring.
Next, we prove the existence of a coefficient ring in the case where the characteristic
of the residue field κ is p > 0. Namely, choose a Cohen ring Λ with κ = Λ/pΛ, see
Lemma 10.160.6. In this case we will prove by induction on n > 0 that there exists
a map

φn : Λ/pnΛ −→ R/mn

whose composition with the reduction map R/mn → κ produces the given isomor-
phism Λ/pΛ = κ. This is trivial for n = 1. If n > 1, let φn−1 be given. The ring
map Z/pnZ → Λ/pnΛ is formally smooth by Lemma 10.160.7. Hence we can find
the dotted arrow in the following diagram

R/mn−1 R/mnoo

Λ/pnΛ

φn−1

OO 99

Z/pnZoo

OO

This proves the induction step. Putting these maps together
limn φn : Λ = limn Λ/pnΛ −→ R = limn R/mn

gives a map whose image is the desired coefficient ring.
The final statement of the theorem follows readily. Namely, if y1, . . . , yn are gen-
erators of the ideal m, then we can use the map Λ → R just constructed to get a
map

Λ[[x1, . . . , xn]] −→ R, xi 7−→ yi.

Since both sides are (x1, . . . , xn)-adically complete this map is surjective by Lemma
10.96.1 as it is surjective modulo (x1, . . . , xn) by construction. □

Remark 10.160.9.032C If k is a field then the power series ring k[[X1, . . . , Xd]] is a
Noetherian complete local regular ring of dimension d. If Λ is a Cohen ring then
Λ[[X1, . . . , Xd]] is a complete local Noetherian regular ring of dimension d+1. Hence
the Cohen structure theorem implies that any Noetherian complete local ring is a
quotient of a regular local ring. In particular we see that a Noetherian complete
local ring is universally catenary, see Lemma 10.105.9 and Lemma 10.106.3.

Lemma 10.160.10.0C0S Let (R,m) be a Noetherian complete local ring. Assume R is
regular.

(1) If R contains either Fp or Q, then R is isomorphic to a power series ring
over its residue field.

https://stacks.math.columbia.edu/tag/032C
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(2) If k is a field and k → R is a ring map inducing an isomorphism k → R/m,
then R is isomorphic as a k-algebra to a power series ring over k.

Proof. In case (1), by the Cohen structure theorem (Theorem 10.160.8) there exists
a coefficient ring which must be a field mapping isomorphically to the residue field.
Thus it suffices to prove (2). In case (2) we pick f1, . . . , fd ∈ m which map to a
basis of m/m2 and we consider the continuous k-algebra map k[[x1, . . . , xd]] → R
sending xi to fi. As both source and target are (x1, . . . , xd)-adically complete, this
map is surjective by Lemma 10.96.1. On the other hand, it has to be injective
because otherwise the dimension of R would be < d by Lemma 10.60.13. □

Lemma 10.160.11.032D Let (R,m) be a Noetherian complete local domain. Then there
exists a R0 ⊂ R with the following properties

(1) R0 is a regular complete local ring,
(2) R0 ⊂ R is finite and induces an isomorphism on residue fields,
(3) R0 is either isomorphic to k[[X1, . . . , Xd]] where k is a field or Λ[[X1, . . . , Xd]]

where Λ is a Cohen ring.

Proof. Let Λ be a coefficient ring of R. Since R is a domain we see that either Λ is
a field or Λ is a Cohen ring.
Case I: Λ = k is a field. Let d = dim(R). Choose x1, . . . , xd ∈ m which generate an
ideal of definition I ⊂ R. (See Section 10.60.) By Lemma 10.96.9 we see that R is I-
adically complete as well. Consider the map R0 = k[[X1, . . . , Xd]]→ R which maps
Xi to xi. Note that R0 is complete with respect to the ideal I0 = (X1, . . . , Xd),
and that R/I0R ∼= R/IR is finite over k = R0/I0 (because dim(R/I) = 0, see
Section 10.60.) Hence we conclude that R0 → R is finite by Lemma 10.96.12. Since
dim(R) = dim(R0) this implies that R0 → R is injective (see Lemma 10.112.3),
and the lemma is proved.
Case II: Λ is a Cohen ring. Let d+ 1 = dim(R). Let p > 0 be the characteristic of
the residue field k. As R is a domain we see that p is a nonzerodivisor in R. Hence
dim(R/pR) = d, see Lemma 10.60.13. Choose x1, . . . , xd ∈ R which generate an
ideal of definition in R/pR. Then I = (p, x1, . . . , xd) is an ideal of definition of R.
By Lemma 10.96.9 we see that R is I-adically complete as well. Consider the map
R0 = Λ[[X1, . . . , Xd]] → R which maps Xi to xi. Note that R0 is complete with
respect to the ideal I0 = (p,X1, . . . , Xd), and that R/I0R ∼= R/IR is finite over
k = R0/I0 (because dim(R/I) = 0, see Section 10.60.) Hence we conclude that
R0 → R is finite by Lemma 10.96.12. Since dim(R) = dim(R0) this implies that
R0 → R is injective (see Lemma 10.112.3), and the lemma is proved. □

10.161. Japanese rings

0BI1 In this section we begin to discuss finiteness of integral closure.

Definition 10.161.1.032F [DG67, Chapter 0,
Definition 23.1.1]

Let R be a domain with field of fractions K.
(1) We say R is N-1 if the integral closure of R in K is a finite R-module.
(2) We say R is N-2 or Japanese if for any finite extension L/K of fields the

integral closure of R in L is finite over R.

The main interest in these notions is for Noetherian rings, but here is a non-
Noetherian example.

https://stacks.math.columbia.edu/tag/032D
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Example 10.161.2.0350 Let k be a field. The domain R = k[x1, x2, x3, . . .] is N-2, but
not Noetherian. The reason is the following. Suppose that R ⊂ L and the field L is
a finite extension of the fraction field of R. Then there exists an integer n such that
L comes from a finite extension L0/k(x1, . . . , xn) by adjoining the (transcendental)
elements xn+1, xn+2, etc. Let S0 be the integral closure of k[x1, . . . , xn] in L0. By
Proposition 10.162.16 below it is true that S0 is finite over k[x1, . . . , xn]. Moreover,
the integral closure of R in L is S = S0[xn+1, xn+2, . . .] (use Lemma 10.37.8) and
hence finite over R. The same argument works for R = Z[x1, x2, x3, . . .].

Lemma 10.161.3.032G Let R be a domain. If R is N-1 then so is any localization of R.
Same for N-2.

Proof. These statements hold because taking integral closure commutes with local-
ization, see Lemma 10.36.11. □

Lemma 10.161.4.032H Let R be a domain. Let f1, . . . , fn ∈ R generate the unit ideal.
If each domain Rfi is N-1 then so is R. Same for N-2.

Proof. Assume Rfi is N-2 (or N-1). Let L be a finite extension of the fraction field
of R (equal to the fraction field in the N-1 case). Let S be the integral closure of R
in L. By Lemma 10.36.11 we see that Sfi is the integral closure of Rfi in L. Hence
Sfi is finite over Rfi by assumption. Thus S is finite over R by Lemma 10.23.2. □

Lemma 10.161.5.032I Let R be a domain. Let R ⊂ S be a quasi-finite extension of
domains (for example finite). Assume R is N-2 and Noetherian. Then S is N-2.

Proof. Let L/K be the induced extension of fraction fields. Note that this is a finite
field extension (for example by Lemma 10.122.2 (2) applied to the fibre S ⊗R K,
and the definition of a quasi-finite ring map). Let S′ be the integral closure of R
in S. Then S′ is contained in the integral closure of R in L which is finite over
R by assumption. As R is Noetherian this implies S′ is finite over R. By Lemma
10.123.14 there exist elements g1, . . . , gn ∈ S′ such that S′

gi
∼= Sgi and such that

g1, . . . , gn generate the unit ideal in S. Hence it suffices to show that S′ is N-2 by
Lemmas 10.161.3 and 10.161.4. Thus we have reduced to the case where S is finite
over R.
Assume R ⊂ S with hypotheses as in the lemma and moreover that S is finite over
R. Let M be a finite field extension of the fraction field of S. Then M is also a
finite field extension of K and we conclude that the integral closure T of R in M
is finite over R. By Lemma 10.36.16 we see that T is also the integral closure of S
in M and we win by Lemma 10.36.15. □

Lemma 10.161.6.032J Let R be a Noetherian domain. If R[z, z−1] is N-1, then so is R.

Proof. Let R′ be the integral closure of R in its field of fractions K. Let S′ be the
integral closure of R[z, z−1] in its field of fractions. Clearly R′ ⊂ S′. Since K[z, z−1]
is a normal domain we see that S′ ⊂ K[z, z−1]. Suppose that f1, . . . , fn ∈ S′

generate S′ as R[z, z−1]-module. Say fi =
∑
aijz

j (finite sum), with aij ∈ K. For
any x ∈ R′ we can write

x =
∑

hifi

with hi ∈ R[z, z−1]. Thus we see that R′ is contained in the finite R-submodule∑
Raij ⊂ K. Since R is Noetherian we conclude that R′ is a finite R-module. □

https://stacks.math.columbia.edu/tag/0350
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Lemma 10.161.7.032K Let R be a Noetherian domain, and let R ⊂ S be a finite
extension of domains. If S is N-1, then so is R. If S is N-2, then so is R.

Proof. Omitted. (Hint: Integral closures of R in extension fields are contained in
integral closures of S in extension fields.) □

Lemma 10.161.8.032L Let R be a Noetherian normal domain with fraction field K. Let
L/K be a finite separable field extension. Then the integral closure of R in L is
finite over R.

Proof. Consider the trace pairing (Fields, Definition 9.20.6)
L× L −→ K, (x, y) 7−→ ⟨x, y⟩ := TraceL/K(xy).

Since L/K is separable this is nondegenerate (Fields, Lemma 9.20.7). Moreover,
if x ∈ L is integral over R, then TraceL/K(x) is in R. This is true because the
minimal polynomial of x over K has coefficients in R (Lemma 10.38.6) and be-
cause TraceL/K(x) is an integer multiple of one of these coefficients (Fields, Lemma
9.20.3). Pick x1, . . . , xn ∈ L which are integral over R and which form a K-basis
of L. Then the integral closure S ⊂ L is contained in the R-module

M = {y ∈ L | ⟨xi, y⟩ ∈ R, i = 1, . . . , n}
By linear algebra we see that M ∼= R⊕n as an R-module. Hence S ⊂ R⊕n is a
finitely generated R-module as R is Noetherian. □

Example 10.161.9.03B7 Lemma 10.161.8 does not work if the ring is not Noetherian.
For example consider the action of G = {+1,−1} on A = C[x1, x2, x3, . . .] where −1
acts by mapping xi to −xi. The invariant ring R = AG is the C-algebra generated
by all xixj . Hence R ⊂ A is not finite. But R is a normal domain with fraction
field K = LG the G-invariants in the fraction field L of A. And clearly A is the
integral closure of R in L.

The following lemma can sometimes be used as a substitute for Lemma 10.161.8 in
case of purely inseparable extensions.

Lemma 10.161.10.0AE0 Let R be a Noetherian normal domain with fraction field K of
characteristic p > 0. Let a ∈ K be an element such that there exists a derivation
D : R→ R with D(a) ̸= 0. Then the integral closure of R in L = K[x]/(xp − a) is
finite over R.

Proof. After replacing x by fx and a by fpa for some f ∈ R we may assume a ∈ R.
Hence also D(a) ∈ R. We will show by induction on i ≤ p− 1 that if

y = a0 + a1x+ . . .+ aix
i, aj ∈ K

is integral over R, then D(a)iaj ∈ R. Thus the integral closure is contained in the
finite R-module with basis D(a)−p+1xj , j = 0, . . . , p − 1. Since R is Noetherian
this proves the lemma.
If i = 0, then y = a0 is integral over R if and only if a0 ∈ R and the statement is
true. Suppose the statement holds for some i < p− 1 and suppose that

y = a0 + a1x+ . . .+ ai+1x
i+1, aj ∈ K

is integral over R. Then
yp = ap0 + ap1a+ . . .+ api+1a

i+1
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is an element of R (as it is in K and integral over R). Applying D we obtain
(ap1 + 2ap2a+ . . .+ (i+ 1)api+1a

i)D(a)
is in R. Hence it follows that

D(a)a1 + 2D(a)a2x+ . . .+ (i+ 1)D(a)ai+1x
i

is integral over R. By induction we find D(a)i+1aj ∈ R for j = 1, . . . , i+ 1. (Here
we use that 1, . . . , i + 1 are invertible.) Hence D(a)i+1a0 is also in R because it
is the difference of y and

∑
j>0 D(a)i+1ajx

j which are integral over R (since x is
integral over R as a ∈ R). □

Lemma 10.161.11.032M A Noetherian domain whose fraction field has characteristic
zero is N-1 if and only if it is N-2 (i.e., Japanese).

Proof. This is clear from Lemma 10.161.8 since every field extension in character-
istic zero is separable. □

Lemma 10.161.12.032N Let R be a Noetherian domain with fraction field K of char-
acteristic p > 0. Then R is N-2 if and only if for every finite purely inseparable
extension L/K the integral closure of R in L is finite over R.

Proof. Assume the integral closure of R in every finite purely inseparable field
extension of K is finite. Let L/K be any finite extension. We have to show the
integral closure of R in L is finite over R. Choose a finite normal field extension
M/K containing L. As R is Noetherian it suffices to show that the integral closure
of R in M is finite over R. By Fields, Lemma 9.27.3 there exists a subextension
M/Minsep/K such thatMinsep/K is purely inseparable, andM/Minsep is separable.
By assumption the integral closure R′ of R in Minsep is finite over R. By Lemma
10.161.8 the integral closure R′′ of R′ in M is finite over R′. Then R′′ is finite over
R by Lemma 10.7.3. Since R′′ is also the integral closure of R in M (see Lemma
10.36.16) we win. □

Lemma 10.161.13.032O Let R be a Noetherian domain. If R is N-1 then R[x] is N-1.
If R is N-2 then R[x] is N-2.

Proof. Assume R is N-1. Let R′ be the integral closure of R which is finite over R.
Hence also R′[x] is finite over R[x]. The ring R′[x] is normal (see Lemma 10.37.8),
hence N-1. This proves the first assertion.
For the second assertion, by Lemma 10.161.7 it suffices to show that R′[x] is N-2. In
other words we may and do assume that R is a normal N-2 domain. In characteristic
zero we are done by Lemma 10.161.11. In characteristic p > 0 we have to show
that the integral closure of R[x] is finite in any finite purely inseparable extension of
L/K(x) where K is the fraction field of R. There exists a finite purely inseparable
field extension L′/K and q = pe such that L ⊂ L′(x1/q); some details omitted. As
R[x] is Noetherian it suffices to show that the integral closure of R[x] in L′(x1/q)
is finite over R[x]. And this integral closure is equal to R′[x1/q] with R ⊂ R′ ⊂ L′

the integral closure of R in L′. Since R is N-2 we see that R′ is finite over R and
hence R′[x1/q] is finite over R[x]. □

Lemma 10.161.14.0332 Let R be a Noetherian domain. If there exists an f ∈ R such
that Rf is normal then

U = {p ∈ Spec(R) | Rp is normal}
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is open in Spec(R).

Proof. It is clear that the standard openD(f) is contained in U . By Serre’s criterion
Lemma 10.157.4 we see that p ̸∈ U implies that for some q ⊂ p we have either

(1) Case I: depth(Rq) < 2 and dim(Rq) ≥ 2, and
(2) Case II: Rq is not regular and dim(Rq) = 1.

This in particular also means that Rq is not normal, and hence f ∈ q. In case I we
see that depth(Rq) = depth(Rq/fRq) + 1. Hence such a prime q is the same thing
as an embedded associated prime of R/fR. In case II q is an associated prime of
R/fR of height 1. Thus there is a finite set E of such primes q (see Lemma 10.63.5)
and

Spec(R) \ U =
⋃

q∈E
V (q)

as desired. □

Lemma 10.161.15.0333 Let R be a Noetherian domain. Then R is N-1 if and only if
the following two conditions hold

(1) there exists a nonzero f ∈ R such that Rf is normal, and
(2) for every maximal ideal m ⊂ R the local ring Rm is N-1.

Proof. First assume R is N-1. Let R′ be the integral closure of R in its field of
fractions K. By assumption we can find x1, . . . , xn in R′ which generate R′ as an
R-module. Since R′ ⊂ K we can find fi ∈ R nonzero such that fixi ∈ R. Then
Rf ∼= R′

f where f = f1 . . . fn. Hence Rf is normal and we have (1). Part (2) follows
from Lemma 10.161.3.

Assume (1) and (2). Let K be the fraction field of R. Suppose that R ⊂ R′ ⊂ K
is a finite extension of R contained in K. Note that Rf = R′

f since Rf is already
normal. Hence by Lemma 10.161.14 the set of primes p′ ∈ Spec(R′) with R′

p′ non-
normal is closed in Spec(R′). Since Spec(R′)→ Spec(R) is closed the image of this
set is closed in Spec(R). For such a ring R′ denote ZR′ ⊂ Spec(R) this image.

Pick a maximal ideal m ⊂ R. Let Rm ⊂ R′
m be the integral closure of the local ring

in K. By assumption this is a finite ring extension. By Lemma 10.36.11 we can find
finitely many elements x1, . . . , xn ∈ K integral over R such that R′

m is generated
by x1, . . . , xn over Rm. Let R′ = R[x1, . . . , xn] ⊂ K. With this choice it is clear
that m ̸∈ ZR′ .

As Spec(R) is quasi-compact, the above shows that we can find a finite collection
R ⊂ R′

i ⊂ K such that
⋂
ZR′

i
= ∅. Let R′ be the subring of K generated by all of

these. It is finite over R. Also ZR′ = ∅. Namely, every prime p′ lies over a prime
p′
i such that (R′

i)p′
i

is normal. This implies that R′
p′ = (R′

i)p′
i

is normal too. Hence
R′ is normal, in other words R′ is the integral closure of R in K. □

Lemma 10.161.16 (Tate).032P [DG67, Theorem
23.1.3]

Let R be a ring. Let x ∈ R. Assume
(1) R is a normal Noetherian domain,
(2) R/xR is a domain and N-2,
(3) R ∼= limnR/x

nR is complete with respect to x.
Then R is N-2.

https://stacks.math.columbia.edu/tag/0333
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Proof. We may assume x ̸= 0 since otherwise the lemma is trivial. Let K be the
fraction field of R. If the characteristic of K is zero the lemma follows from (1),
see Lemma 10.161.11. Hence we may assume that the characteristic of K is p > 0,
and we may apply Lemma 10.161.12. Thus given L/K a finite purely inseparable
field extension we have to show that the integral closure S of R in L is finite over
R.
Let q be a power of p such that Lq ⊂ K. By enlarging L if necessary we may
assume there exists an element y ∈ L such that yq = x. Since R → S induces a
homeomorphism of spectra (see Lemma 10.46.7) there is a unique prime ideal q ⊂ S
lying over the prime ideal p = xR. It is clear that

q = {f ∈ S | fq ∈ p} = yS

since yq = x. Observe that Rp is a discrete valuation ring by Lemma 10.119.7. Then
Sq is Noetherian by Krull-Akizuki (Lemma 10.119.12). Whereupon we conclude Sq

is a discrete valuation ring by Lemma 10.119.7 once again. By Lemma 10.119.10 we
see that κ(q)/κ(p) is a finite field extension. Hence the integral closure S′ ⊂ κ(q)
of R/xR is finite over R/xR by assumption (2). Since S/yS ⊂ S′ this implies that
S/yS is finite over R. Note that S/ynS has a finite filtration whose subquotients
are the modules yiS/yi+1S ∼= S/yS. Hence we see that each S/ynS is finite over
R. In particular S/xS is finite over R. Also, it is clear that

⋂
xnS = (0) since

an element in the intersection has qth power contained in
⋂
xnR = (0) (Lemma

10.51.4). Thus we may apply Lemma 10.96.12 to conclude that S is finite over R,
and we win. □

Lemma 10.161.17.032Q Let R be a ring. If R is Noetherian, a domain, and N-2, then
so is R[[x]].

Proof. Observe that R[[x]] is Noetherian by Lemma 10.31.2. Let R′ ⊃ R be the
integral closure of R in its fraction field. Because R is N-2 this is finite over R.
Hence R′[[x]] is finite over R[[x]]. By Lemma 10.37.9 we see that R′[[x]] is a normal
domain. Apply Lemma 10.161.16 to the element x ∈ R′[[x]] to see that R′[[x]] is
N-2. Then Lemma 10.161.7 shows that R[[x]] is N-2. □

10.162. Nagata rings

032E Here is the definition.

Definition 10.162.1.032R Let R be a ring.
(1) We say R is universally Japanese if for any finite type ring map R → S

with S a domain we have that S is N-2 (i.e., Japanese).
(2) We say that R is a Nagata ring if R is Noetherian and for every prime

ideal p the ring R/p is N-2.

It is clear that a Noetherian universally Japanese ring is a Nagata ring. It is our
goal to show that a Nagata ring is universally Japanese. This is not obvious at all,
and requires some work. But first, here is a useful lemma.

Lemma 10.162.2.03GH Let R be a Nagata ring. Let R→ S be essentially of finite type
with S reduced. Then the integral closure of R in S is finite over R.

Proof. As S is essentially of finite type over R it is Noetherian and has finitely
many minimal primes q1, . . . , qm, see Lemma 10.31.6. Since S is reduced we have

https://stacks.math.columbia.edu/tag/032Q
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S ⊂
∏
Sqi and each Sqi = Ki is a field, see Lemmas 10.25.4 and 10.25.1. It suffices

to show that the integral closure A′
i of R in each Ki is finite over R. This is true

because R is Noetherian and A ⊂
∏
A′
i. Let pi ⊂ R be the prime of R corresponding

to qi. As S is essentially of finite type over R we see that Ki = Sqi = κ(qi) is a
finitely generated field extension of κ(pi). Hence the algebraic closure Li of κ(pi) in
Ki is finite over κ(pi), see Fields, Lemma 9.26.11. It is clear that A′

i is the integral
closure of R/pi in Li, and hence we win by definition of a Nagata ring. □

Lemma 10.162.3.0351 Let R be a ring. To check that R is universally Japanese it
suffices to show: If R→ S is of finite type, and S a domain then S is N-1.

Proof. Namely, assume the condition of the lemma. Let R → S be a finite type
ring map with S a domain. Let L be a finite extension of the fraction field of S.
Then there exists a finite ring extension S ⊂ S′ ⊂ L such that L is the fraction field
of S′. By assumption S′ is N-1, and hence the integral closure S′′ of S′ in L is finite
over S′. Thus S′′ is finite over S (Lemma 10.7.3) and S′′ is the integral closure of
S in L (Lemma 10.36.16). We conclude that R is universally Japanese. □

Lemma 10.162.4.032S If R is universally Japanese then any algebra essentially of finite
type over R is universally Japanese.

Proof. The case of an algebra of finite type over R is immediate from the definition.
The general case follows on applying Lemma 10.161.3. □

Lemma 10.162.5.032T Let R be a Nagata ring. If R→ S is a quasi-finite ring map (for
example finite) then S is a Nagata ring also.

Proof. First note that S is Noetherian as R is Noetherian and a quasi-finite ring
map is of finite type. Let q ⊂ S be a prime ideal, and set p = R ∩ q. Then
R/p ⊂ S/q is quasi-finite and hence we conclude that S/q is N-2 by Lemma 10.161.5
as desired. □

Lemma 10.162.6.032U A localization of a Nagata ring is a Nagata ring.

Proof. Clear from Lemma 10.161.3. □

Lemma 10.162.7.032V Let R be a ring. Let f1, . . . , fn ∈ R generate the unit ideal.
(1) If each Rfi is universally Japanese then so is R.
(2) If each Rfi is Nagata then so is R.

Proof. Let φ : R → S be a finite type ring map so that S is a domain. Then
φ(f1), . . . , φ(fn) generate the unit ideal in S. Hence if each Sfi = Sφ(fi) is N-1
then so is S, see Lemma 10.161.4. This proves (1).
If each Rfi is Nagata, then each Rfi is Noetherian and hence R is Noetherian, see
Lemma 10.23.2. And if p ⊂ R is a prime, then we see each Rfi/pRfi = (R/p)fi is
N-2 and hence we conclude R/p is N-2 by Lemma 10.161.4. This proves (2). □

Lemma 10.162.8.032W A Noetherian complete local ring is a Nagata ring.

Proof. Let R be a complete local Noetherian ring. Let p ⊂ R be a prime. Then
R/p is also a complete local Noetherian ring, see Lemma 10.160.2. Hence it suffices
to show that a Noetherian complete local domain R is N-2. By Lemmas 10.161.5
and 10.160.11 we reduce to the case R = k[[X1, . . . , Xd]] where k is a field or
R = Λ[[X1, . . . , Xd]] where Λ is a Cohen ring.

https://stacks.math.columbia.edu/tag/0351
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In the case k[[X1, . . . , Xd]] we reduce to the statement that a field is N-2 by Lemma
10.161.17. This is clear. In the case Λ[[X1, . . . , Xd]] we reduce to the statement
that a Cohen ring Λ is N-2. Applying Lemma 10.161.16 once more with x = p ∈ Λ
we reduce yet again to the case of a field. Thus we win. □

Definition 10.162.9.032X Let (R,m) be a Noetherian local ring. We say R is analytically
unramified if its completion R∧ = limnR/m

n is reduced. A prime ideal p ⊂ R is
said to be analytically unramified if R/p is analytically unramified.

At this point we know the following are true for any Noetherian local ring R:
The map R → R∧ is a faithfully flat local ring homomorphism (Lemma 10.97.3).
The completion R∧ is Noetherian (Lemma 10.97.5) and complete (Lemma 10.97.4).
Hence the completion R∧ is a Nagata ring (Lemma 10.162.8). Moreover, we have
seen in Section 10.160 that R∧ is a quotient of a regular local ring (Theorem
10.160.8), and hence universally catenary (Remark 10.160.9).

Lemma 10.162.10.032Y Let (R,m) be a Noetherian local ring.
(1) If R is analytically unramified, then R is reduced.
(2) If R is analytically unramified, then each minimal prime of R is analyti-

cally unramified.
(3) If R is reduced with minimal primes q1, . . . , qt, and each qi is analytically

unramified, then R is analytically unramified.
(4) If R is analytically unramified, then the integral closure of R in its total

ring of fractions Q(R) is finite over R.
(5) If R is a domain and analytically unramified, then R is N-1.

Proof. In this proof we will use the remarks immediately following Definition 10.162.9.
As R → R∧ is a faithfully flat local ring homomorphism it is injective and (1) fol-
lows.

Let q be a minimal prime of R, and assume R is analytically unramified. Then
q is an associated prime of R (see Proposition 10.63.6). Hence there exists an
f ∈ R such that {x ∈ R | fx = 0} = q. Note that (R/q)∧ = R∧/q∧, and that
{x ∈ R∧ | fx = 0} = q∧, because completion is exact (Lemma 10.97.2). If x ∈ R∧

is such that x2 ∈ q∧, then fx2 = 0 hence (fx)2 = 0 hence fx = 0 hence x ∈ q∧.
Thus q is analytically unramified and (2) holds.

Assume R is reduced with minimal primes q1, . . . , qt, and each qi is analytically
unramified. Then R → R/q1 × . . . × R/qt is injective. Since completion is exact
(see Lemma 10.97.2) we see that R∧ ⊂ (R/q1)∧× . . .× (R/qt)∧. Hence (3) is clear.

Assume R is analytically unramified. Let p1, . . . , ps be the minimal primes of R∧.
Then we see that

Q(R∧) = R∧
p1
× . . .×R∧

ps

with each R∧
pi a field as R∧ is reduced (see Lemma 10.25.4). Hence the integral

closure S of R∧ in Q(R∧) is equal to S = S1 × . . . × Ss with Si the integral
closure of R∧/pi in its fraction field. In particular S is finite over R∧. Denote R′

the integral closure of R in Q(R). As R → R∧ is flat we see that R′ ⊗R R∧ ⊂
Q(R)⊗R R∧ ⊂ Q(R∧). Moreover R′ ⊗R R∧ is integral over R∧ (Lemma 10.36.13).
Hence R′ ⊗R R∧ ⊂ S is a R∧-submodule. As R∧ is Noetherian it is a finite R∧-
module. Thus we may find f1, . . . , fn ∈ R′ such that R′ ⊗R R∧ is generated by the

https://stacks.math.columbia.edu/tag/032X
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elements fi⊗ 1 as a R∧-module. By faithful flatness we see that R′ is generated by
f1, . . . , fn as an R-module. This proves (4).
Part (5) is a special case of part (4). □

Lemma 10.162.11.032Z Let R be a Noetherian local ring. Let p ⊂ R be a prime.
Assume

(1) Rp is a discrete valuation ring, and
(2) p is analytically unramified.

Then for any associated prime q of R∧/pR∧ the local ring (R∧)q is a discrete
valuation ring.

Proof. Assumption (2) says that R∧/pR∧ is a reduced ring. Hence an associated
prime q ⊂ R∧ of R∧/pR∧ is the same thing as a minimal prime over pR∧. In
particular we see that the maximal ideal of (R∧)q is p(R∧)q. Choose x ∈ R such
that xRp = pRp. By the above we see that x ∈ (R∧)q generates the maximal ideal.
As R→ R∧ is faithfully flat we see that x is a nonzerodivisor in (R∧)q. Hence we
win. □

Lemma 10.162.12.0330 Let (R,m) be a Noetherian local domain. Let x ∈ m. Assume
(1) x ̸= 0,
(2) R/xR has no embedded primes, and
(3) for each associated prime p ⊂ R of R/xR we have

(a) the local ring Rp is regular, and
(b) p is analytically unramified.

Then R is analytically unramified.

Proof. Let p1, . . . , pt be the associated primes of the R-module R/xR. Since R/xR
has no embedded primes we see that each pi has height 1, and is a minimal prime
over (x). For each i, let qi1, . . . , qisi be the associated primes of the R∧-module
R∧/piR

∧. By Lemma 10.162.11 we see that (R∧)qij is regular. By Lemma 10.65.3
we see that

AssR∧(R∧/xR∧) =
⋃

p∈AssR(R/xR)
AssR∧(R∧/pR∧) = {qij}.

Let y ∈ R∧ with y2 = 0. As (R∧)qij is regular, and hence a domain (Lemma
10.106.2) we see that y maps to zero in (R∧)qij . Hence y maps to zero in R∧/xR∧

by Lemma 10.63.19. Hence y = xy′. Since x is a nonzerodivisor (as R → R∧ is
flat) we see that (y′)2 = 0. Hence we conclude that y ∈

⋂
xnR∧ = (0) (Lemma

10.51.4). □

Lemma 10.162.13.0331 Let (R,m) be a local ring. If R is Noetherian, a domain, and
Nagata, then R is analytically unramified.

Proof. By induction on dim(R). The case dim(R) = 0 is trivial. Hence we as-
sume dim(R) = d and that the lemma holds for all Noetherian Nagata domains of
dimension < d.
Let R ⊂ S be the integral closure of R in the field of fractions of R. By assumption
S is a finite R-module. By Lemma 10.162.5 we see that S is Nagata. By Lemma
10.112.4 we see dim(R) = dim(S). Let m1, . . . ,mt be the maximal ideals of S. Each
of these lies over the maximal ideal m of R. Moreover

(m1 ∩ . . . ∩mt)n ⊂ mS

https://stacks.math.columbia.edu/tag/032Z
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for sufficiently large n as S/mS is Artinian. By Lemma 10.97.2 R∧ → S∧ is
an injective map, and by the Chinese Remainder Lemma 10.15.4 combined with
Lemma 10.96.9 we have S∧ =

∏
S∧
i where S∧

i is the completion of S with respect to
the maximal ideal mi. Hence it suffices to show that Smi is analytically unramified.
In other words, we have reduced to the case where R is a Noetherian normal Nagata
domain.

Assume R is a Noetherian, normal, local Nagata domain. Pick a nonzero x ∈ m
in the maximal ideal. We are going to apply Lemma 10.162.12. We have to check
properties (1), (2), (3)(a) and (3)(b). Property (1) is clear. We have that R/xR
has no embedded primes by Lemma 10.157.6. Thus property (2) holds. The same
lemma also tells us each associated prime p of R/xR has height 1. Hence Rp

is a 1-dimensional normal domain hence regular (Lemma 10.119.7). Thus (3)(a)
holds. Finally (3)(b) holds by induction hypothesis, since R/p is Nagata (by Lemma
10.162.5 or directly from the definition). Thus we conclude R is analytically un-
ramified. □

Lemma 10.162.14.0BI2 Let (R,m) be a Noetherian local ring. The following are equiv-
alent

(1) R is Nagata,
(2) for R→ S finite with S a domain and m′ ⊂ S maximal the local ring Sm′

is analytically unramified,
(3) for (R,m)→ (S,m′) finite local homomorphism with S a domain, then S

is analytically unramified.

Proof. Assume R is Nagata and let R → S and m′ ⊂ S be as in (2). Then S is
Nagata by Lemma 10.162.5. Hence the local ring Sm′ is Nagata (Lemma 10.162.6).
Thus it is analytically unramified by Lemma 10.162.13. It is clear that (2) implies
(3).

Assume (3) holds. Let p ⊂ R be a prime ideal and let L/κ(p) be a finite extension
of fields. To prove (1) we have to show that the integral closure of R/p is finite
over R/p. Choose x1, . . . , xn ∈ L which generate L over κ(p). For each i let
Pi(T ) = T di + ai,1T

di−1 + . . . + ai,di be the minimal polynomial for xi over κ(p).
After replacing xi by fixi for a suitable fi ∈ R, fi ̸∈ p we may assume ai,j ∈ R/p. In
fact, after further multiplying by elements of m, we may assume ai,j ∈ m/p ⊂ R/p
for all i, j. Having done this let S = R/p[x1, . . . , xn] ⊂ L. Then S is finite over R,
a domain, and S/mS is a quotient of R/m[T1, . . . , Tn]/(T d1

1 , . . . , T dnn ). Hence S is
local. By (3) S is analytically unramified and by Lemma 10.162.10 we find that its
integral closure S′ in L is finite over S. Since S′ is also the integral closure of R/p
in L we win. □

The following proposition says in particular that an algebra of finite type over a
Nagata ring is a Nagata ring.

Proposition 10.162.15 (Nagata).0334 Let R be a ring. The following are equivalent:
(1) R is a Nagata ring,
(2) any finite type R-algebra is Nagata, and
(3) R is universally Japanese and Noetherian.

https://stacks.math.columbia.edu/tag/0BI2
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Proof. It is clear that a Noetherian universally Japanese ring is universally Nagata
(i.e., condition (2) holds). Let R be a Nagata ring. We will show that any finitely
generated R-algebra S is Nagata. This will prove the proposition.
Step 1. There exists a sequence of ring maps R = R0 → R1 → R2 → . . .→ Rn = S
such that each Ri → Ri+1 is generated by a single element. Hence by induction it
suffices to prove S is Nagata if S ∼= R[x]/I.
Step 2. Let q ⊂ S be a prime of S, and let p ⊂ R be the corresponding prime
of R. We have to show that S/q is N-2. Hence we have reduced to the proving
the following: (*) Given a Nagata domain R and a monogenic extension R ⊂ S of
domains then S is N-2.
Step 3. Let R be a Nagata domain and R ⊂ S a monogenic extension of domains.
Let R ⊂ R′ be the integral closure of R in its fraction field. Let S′ be the subring of
the fraction field of S generated by R′ and S. As R′ is finite over R (by the Nagata
property) also S′ is finite over S. Since S is Noetherian it suffices to prove that S′

is N-2 (Lemma 10.161.7). Hence we have reduced to proving the following: (**)
Given a normal Nagata domain R and a monogenic extension R ⊂ S of domains
then S is N-2.
Step 4: Let R be a normal Nagata domain and let R ⊂ S be a monogenic extension
of domains. Suppose the induced extension of fraction fields of R and S is purely
transcendental. In this case S = R[x]. By Lemma 10.161.13 we see that S is N-
2. Hence we have reduced to proving the following: (**) Given a normal Nagata
domain R and a monogenic extension R ⊂ S of domains inducing a finite extension
of fraction fields then S is N-2.
Step 5. Let R be a normal Nagata domain and let R ⊂ S be a monogenic extension
of domains inducing a finite extension of fraction fields L/K. Choose an element
x ∈ S which generates S as an R-algebra. Let M/L be a finite extension of fields.
Let R′ be the integral closure of R in M . Then the integral closure S′ of S in
M is equal to the integral closure of R′[x] in M . Also the fraction field of R′ is
M and R ⊂ R′ is finite (by the Nagata property of R). This implies that R′ is
a Nagata ring (Lemma 10.162.5). To show that S′ is finite over S is the same as
showing that S′ is finite over R′[x]. Replace R by R′ and S by R′[x] to reduce to
the following statement: (***) Given a normal Nagata domain R with fraction field
K, and x ∈ K, the ring S ⊂ K generated by R and x is N-1.
Step 6. Let R be a normal Nagata domain with fraction field K. Let x = b/a ∈ K.
We have to show that the ring S ⊂ K generated by R and x is N-1. Note that
Sa ∼= Ra is normal. Hence by Lemma 10.161.15 it suffices to show that Sm is N-1
for every maximal ideal m of S.
With assumptions as in the preceding paragraph, pick such a maximal ideal and
set n = R ∩ m. The residue field extension κ(m)/κ(n) is finite (Theorem 10.34.1)
and generated by the image of x. Hence there exists a monic polynomial f(X) =
Xd +

∑
i=1,...,d aiX

d−i with f(x) ∈ m. Let K ′′/K be a finite extension of fields
such that f(X) splits completely in K ′′[X]. Let R′ be the integral closure of R
in K ′′. Let S′ ⊂ K ′′ be the subring generated by R′ and x. As R is Nagata we
see R′ is finite over R and Nagata (Lemma 10.162.5). Moreover, S′ is finite over
S. If for every maximal ideal m′ of S′ the local ring S′

m′ is N-1, then S′
m is N-1

by Lemma 10.161.15, which in turn implies that Sm is N-1 by Lemma 10.161.7.
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After replacing R by R′ and S by S′, and m by any of the maximal ideals m′

lying over m we reach the situation where the polynomial f above split completely:
f(X) =

∏
i=1,...,d(X − ai) with ai ∈ R. Since f(x) ∈ m we see that x− ai ∈ m for

some i. Finally, after replacing x by x− ai we may assume that x ∈ m.
To recapitulate: R is a normal Nagata domain with fraction field K, x ∈ K and S
is the subring of K generated by x and R, finally m ⊂ S is a maximal ideal with
x ∈ m. We have to show Sm is N-1.
We will show that Lemma 10.162.12 applies to the local ring Sm and the element
x. This will imply that Sm is analytically unramified, whereupon we see that it is
N-1 by Lemma 10.162.10.
We have to check properties (1), (2), (3)(a) and (3)(b). Property (1) is trivial. Let
I = Ker(R[X] → S) where X 7→ x. We claim that I is generated by all linear
forms aX − b such that ax = b in K. Clearly all these linear forms are in I. If
g = adX

d + . . . a1X + a0 ∈ I, then we see that adx is integral over R (Lemma
10.123.1) and hence b := adx ∈ R as R is normal. Then g − (adX − b)Xd−1 ∈ I
and we win by induction on the degree. As a consequence we see that

S/xS = R[X]/(X, I) = R/J

where
J = {b ∈ R | ax = b for some a ∈ R} = xR ∩R

By Lemma 10.157.6 we see that S/xS = R/J has no embedded primes as an R-
module, hence as an R/J-module, hence as an S/xS-module, hence as an S-module.
This proves property (2). Take such an associated prime q ⊂ S with the property
q ⊂ m (so that it is an associated prime of Sm/xSm – it does not matter for the
arguments). Then q is minimal over xS and hence has height 1. By the sequence
of equalities above we see that p = R∩ q is an associated prime of R/J , and so has
height 1 (see Lemma 10.157.6). Thus Rp is a discrete valuation ring and therefore
Rp ⊂ Sq is an equality. This shows that Sq is regular. This proves property (3)(a).
Finally, (S/q)m is a localization of S/q, which is a quotient of S/xS = R/J . Hence
(S/q)m is a localization of a quotient of the Nagata ring R, hence Nagata (Lemmas
10.162.5 and 10.162.6) and hence analytically unramified (Lemma 10.162.13). This
shows (3)(b) holds and we are done. □

Proposition 10.162.16.0335 The following types of rings are Nagata and in particular
universally Japanese:

(1) fields,
(2) Noetherian complete local rings,
(3) Z,
(4) Dedekind domains with fraction field of characteristic zero,
(5) finite type ring extensions of any of the above.

Proof. The Noetherian complete local ring case is Lemma 10.162.8. In the other
cases you just check if R/p is N-2 for every prime ideal p of the ring. This is clear
whenever R/p is a field, i.e., p is maximal. Hence for the Dedekind ring case we
only need to check it when p = (0). But since we assume the fraction field has
characteristic zero Lemma 10.161.11 kicks in. □

Example 10.162.17.09E1 A discrete valuation ring is Nagata if and only if it is N-2
(because the quotient by the maximal ideal is a field and hence N-2). The discrete
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valuation ring A of Example 10.119.5 is not Nagata, i.e., it is not N-2. Namely,
the finite extension A ⊂ R = A[f ] is not N-1. To see this say f =

∑
aix

i. For
every n ≥ 1 set gn =

∑
i<n aix

i ∈ A. Then hn = (f − gn)/xn is an element of the
fraction field of R and hpn ∈ kp[[x]] ⊂ A. Hence the integral closure R′ of R contains
h1, h2, h3, . . .. Now, if R′ were finite over R and hence A, then f = xnhn+gn would
be contained in the submodule A+xnR′ for all n. By Artin-Rees this would imply
f ∈ A (Lemma 10.51.4), a contradiction.

Lemma 10.162.18.09E2 Let (A,m) be a Noetherian local domain which is Nagata and
has fraction field of characteristic p. If a ∈ A has a pth root in A∧, then a has a
pth root in A.

Proof. Consider the ring extension A ⊂ B = A[x]/(xp−a). If a does not have a pth
root in A, then B is a domain whose completion isn’t reduced. This contradicts our
earlier results, as B is a Nagata ring (Proposition 10.162.15) and hence analytically
unramified by Lemma 10.162.13. □

10.163. Ascending properties

0336 In this section we start proving some algebraic facts concerning the “ascent” of
properties of rings. To do this for depth of rings one uses the following result on
ascending depth of modules, see [DG67, IV, Proposition 6.3.1].

Lemma 10.163.1.0338 [DG67, IV,
Proposition 6.3.1]

We have

depth(M ⊗R N) = depth(M) + depth(N/mRN)

where R → S is a local homomorphism of local Noetherian rings, M is a finite
R-module, and N is a finite S-module flat over R.

Proof. In the statement and in the proof below, we take the depth of M as an
R-module, the depth of M ⊗R N as an S-module, and the depth of N/mRN as
an S/mRS-module. Denote n the right hand side. First assume that n is zero.
Then both depth(M) = 0 and depth(N/mRN) = 0. This means there is a z ∈ M
whose annihilator is mR and a y ∈ N/mRN whose annihilator is mS/mRS. Let
y ∈ N be a lift of y. Since N is flat over R the map z : R/mR → M produces an
injective map N/mRN → M ⊗R N . Hence the annihilator of z ⊗ y is mS . Thus
depth(M ⊗R N) = 0 as well.

Assume n > 0. If depth(N/mRN) > 0, then we may choose f ∈ mS mapping
to f ∈ S/mRS which is a nonzerodivisor on N/mRN . Then depth(N/mRN) =
depth(N/(f,mR)N) + 1 by Lemma 10.72.7. According to Lemma 10.99.1 the ele-
ment f ∈ S is a nonzerodivisor on N and N/fN is flat over R. Hence by induction
on n we have

depth(M ⊗R N/fN) = depth(M) + depth(N/(f,mR)N).

Because N/fN is flat over R the sequence

0→M ⊗R N →M ⊗R N →M ⊗R N/fN → 0

is exact where the first map is multiplication by f (Lemma 10.39.12). Hence by
Lemma 10.72.7 we find that depth(M ⊗R N) = depth(M ⊗R N/fN) + 1 and we
conclude that equality holds in the formula of the lemma.

https://stacks.math.columbia.edu/tag/09E2
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If n > 0, but depth(N/mRN) = 0, then we can choose f ∈ mR which is a nonzero-
divisor on M . As N is flat over R it is also the case that f is a nonzerodivisor on
M ⊗R N . By induction on n again we have

depth(M/fM ⊗R N) = depth(M/fM) + depth(N/mRN).
In this case depth(M⊗RN) = depth(M/fM⊗RN)+1 and depth(M) = depth(M/fM)+
1 by Lemma 10.72.7 and we conclude that equality holds in the formula of the
lemma. □

Lemma 10.163.2.0337 Suppose that R → S is a flat and local ring homomorphism of
Noetherian local rings. Then

depth(S) = depth(R) + depth(S/mRS).

Proof. This is a special case of Lemma 10.163.1. □

Lemma 10.163.3.045J Let R → S be a flat local homomorphism of local Noetherian
rings. Then the following are equivalent

(1) S is Cohen-Macaulay, and
(2) R and S/mRS are Cohen-Macaulay.

Proof. Follows from the definitions and Lemmas 10.163.2 and 10.112.7. □

Lemma 10.163.4.0339 Let φ : R→ S be a ring map. Assume
(1) R is Noetherian,
(2) S is Noetherian,
(3) φ is flat,
(4) the fibre rings S ⊗R κ(p) are (Sk), and
(5) R has property (Sk).

Then S has property (Sk).

Proof. Let q be a prime of S lying over a prime p of R. By Lemma 10.163.2 we
have

depth(Sq) = depth(Sq/pSq) + depth(Rp).
On the other hand, we have

dim(Rp) + dim(Sq/pSq) ≥ dim(Sq)
by Lemma 10.112.6. (Actually equality holds, by Lemma 10.112.7 but strictly
speaking we do not need this.) Finally, as the fibre rings of the map are assumed
(Sk) we see that depth(Sq/pSq) ≥ min(k, dim(Sq/pSq)). Thus the lemma follows
by the following string of inequalities
depth(Sq) = depth(Sq/pSq) + depth(Rp)

≥ min(k,dim(Sq/pSq)) + min(k, dim(Rp))
= min(2k, dim(Sq/pSq) + k, k + dim(Rp),dim(Sq/pSq) + dim(Rp))
≥ min(k,dim(Sq))

as desired. □

Lemma 10.163.5.033A Let φ : R→ S be a ring map. Assume
(1) R is Noetherian,
(2) S is Noetherian
(3) φ is flat,

https://stacks.math.columbia.edu/tag/0337
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(4) the fibre rings S ⊗R κ(p) have property (Rk), and
(5) R has property (Rk).

Then S has property (Rk).

Proof. Let q be a prime of S lying over a prime p of R. Assume that dim(Sq) ≤ k.
Since dim(Sq) = dim(Rp)+dim(Sq/pSq) by Lemma 10.112.7 we see that dim(Rp) ≤
k and dim(Sq/pSq) ≤ k. HenceRp and Sq/pSq are regular by assumption. It follows
that Sq is regular by Lemma 10.112.8. □

Lemma 10.163.6.0C21 Let φ : R→ S be a ring map. Assume
(1) R is Noetherian,
(2) S is Noetherian
(3) φ is flat,
(4) the fibre rings S ⊗R κ(p) are reduced,
(5) R is reduced.

Then S is reduced.

Proof. For Noetherian rings reduced is the same as having properties (S1) and (R0),
see Lemma 10.157.3. Thus we know R and the fibre rings have these properties.
Hence we may apply Lemmas 10.163.4 and 10.163.5 and we see that S is (S1) and
(R0), in other words reduced by Lemma 10.157.3 again. □

Lemma 10.163.7.033B Let φ : R→ S be a ring map. Assume
(1) φ is smooth,
(2) R is reduced.

Then S is reduced.

Proof. Observe that R → S is flat with regular fibres (see the list of results on
smooth ring maps in Section 10.142). In particular, the fibres are reduced. Thus if
R is Noetherian, then S is Noetherian and we get the result from Lemma 10.163.6.
In the general case we may find a finitely generated Z-subalgebra R0 ⊂ R and a
smooth ring map R0 → S0 such that S ∼= R ⊗R0 S0, see remark (10) in Section
10.142. Now, if x ∈ S is an element with x2 = 0, then we can enlarge R0 and
assume that x comes from an element x0 ∈ S0. After enlarging R0 once more we
may assume that x2

0 = 0 in S0. However, since R0 ⊂ R is reduced we see that S0
is reduced and hence x0 = 0 as desired. □

Lemma 10.163.8.0C22 Let φ : R→ S be a ring map. Assume
(1) R is Noetherian,
(2) S is Noetherian,
(3) φ is flat,
(4) the fibre rings S ⊗R κ(p) are normal, and
(5) R is normal.

Then S is normal.

Proof. For a Noetherian ring being normal is the same as having properties (S2)
and (R1), see Lemma 10.157.4. Thus we know R and the fibre rings have these
properties. Hence we may apply Lemmas 10.163.4 and 10.163.5 and we see that S
is (S2) and (R1), in other words normal by Lemma 10.157.4 again. □

Lemma 10.163.9.033C Let φ : R→ S be a ring map. Assume

https://stacks.math.columbia.edu/tag/0C21
https://stacks.math.columbia.edu/tag/033B
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(1) φ is smooth,
(2) R is normal.

Then S is normal.

Proof. Observe that R → S is flat with regular fibres (see the list of results on
smooth ring maps in Section 10.142). In particular, the fibres are normal. Thus if
R is Noetherian, then S is Noetherian and we get the result from Lemma 10.163.8.
The general case. First note that R is reduced and hence S is reduced by Lemma
10.163.7. Let q be a prime of S and let p be the corresponding prime of R. Note
that Rp is a normal domain. We have to show that Sq is a normal domain. To
do this we may replace R by Rp and S by Sp. Hence we may assume that R is a
normal domain.
Assume R→ S smooth, and R a normal domain. We may find a finitely generated
Z-subalgebra R0 ⊂ R and a smooth ring map R0 → S0 such that S ∼= R ⊗R0 S0,
see remark (10) in Section 10.142. As R0 is a Nagata domain (see Proposition
10.162.16) we see that its integral closure R′

0 is finite over R0. Moreover, as R is
a normal domain it is clear that R′

0 ⊂ R. Hence we may replace R0 by R′
0 and

S0 by R′
0 ⊗R0 S0 and assume that R0 is a normal Noetherian domain. By the

first paragraph of the proof we conclude that S0 is a normal ring (it need not be
a domain of course). In this way we see that R =

⋃
Rλ is the union of normal

Noetherian domains and correspondingly S = colimRλ ⊗R0 S0 is the colimit of
normal rings. This implies that S is a normal ring. Some details omitted. □

Lemma 10.163.10.07NF Let φ : R→ S be a ring map. Assume
(1) φ is smooth,
(2) R is a regular ring.

Then S is regular.

Proof. This follows from Lemma 10.163.5 applied for all (Rk) using Lemma 10.140.3
to see that the hypotheses are satisfied. □

10.164. Descending properties

033D In this section we start proving some algebraic facts concerning the “descent” of
properties of rings. It turns out that it is often “easier” to descend properties than
it is to ascend them. In other words, the assumption on the ring map R → S are
often weaker than the assumptions in the corresponding lemma of the preceding
section. However, we warn the reader that the results on descent are often useless
unless the corresponding ascent can also be shown! Here is a typical result which
illustrates this phenomenon.

Lemma 10.164.1.033E Let R→ S be a ring map. Assume that
(1) R→ S is faithfully flat, and
(2) S is Noetherian.

Then R is Noetherian.

Proof. Let I0 ⊂ I1 ⊂ I2 ⊂ . . . be a growing sequence of ideals of R. By assumption
we have InS = In+1S = In+2S = . . . for some n. Since R → S is flat we have
IkS = Ik ⊗R S. Hence, as R → S is faithfully flat we see that InS = In+1S =
In+2S = . . . implies that In = In+1 = In+2 = . . . as desired. □

https://stacks.math.columbia.edu/tag/07NF
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Lemma 10.164.2.033F Let R→ S be a ring map. Assume that
(1) R→ S is faithfully flat, and
(2) S is reduced.

Then R is reduced.

Proof. This is clear as R→ S is injective. □

Lemma 10.164.3.033G Let R→ S be a ring map. Assume that
(1) R→ S is faithfully flat, and
(2) S is a normal ring.

Then R is a normal ring.

Proof. Since S is reduced it follows that R is reduced. Let p be a prime of R. We
have to show that Rp is a normal domain. Since Sp is faithfully over Rp too we
may assume that R is local with maximal ideal m. Let q be a prime of S lying
over m. Then we see that R → Sq is faithfully flat (Lemma 10.39.17). Hence we
may assume S is local as well. In particular S is a normal domain. Since R→ S is
faithfully flat and S is a normal domain we see that R is a domain. Next, suppose
that a/b is integral over R with a, b ∈ R. Then a/b ∈ S as S is normal. Hence
a ∈ bS. This means that a : R → R/bR becomes the zero map after base change
to S. By faithful flatness we see that a ∈ bR, so a/b ∈ R. Hence R is normal. □

Lemma 10.164.4.07NG Let R→ S be a ring map. Assume that
(1) R→ S is faithfully flat, and
(2) S is a regular ring.

Then R is a regular ring.

Proof. We see that R is Noetherian by Lemma 10.164.1. Let p ⊂ R be a prime.
Choose a prime q ⊂ S lying over p. Then Lemma 10.110.9 applies to Rp → Sq and
we conclude that Rp is regular. Since p was arbitrary we see R is regular. □

Lemma 10.164.5.0352 Let R→ S be a ring map. Assume that
(1) R→ S is faithfully flat, and
(2) S is Noetherian and has property (Sk).

Then R is Noetherian and has property (Sk).

Proof. We have already seen that (1) and (2) imply that R is Noetherian, see
Lemma 10.164.1. Let p ⊂ R be a prime ideal. Choose a prime q ⊂ S lying
over p which corresponds to a minimal prime of the fibre ring S ⊗R κ(p). Then
A = Rp → Sq = B is a flat local ring homomorphism of Noetherian local rings
with mAB an ideal of definition of B. Hence dim(A) = dim(B) (Lemma 10.112.7)
and depth(A) = depth(B) (Lemma 10.163.2). Hence since B has (Sk) we see that
A has (Sk). □

Lemma 10.164.6.0353 Let R→ S be a ring map. Assume that
(1) R→ S is faithfully flat, and
(2) S is Noetherian and has property (Rk).

Then R is Noetherian and has property (Rk).

https://stacks.math.columbia.edu/tag/033F
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Proof. We have already seen that (1) and (2) imply that R is Noetherian, see
Lemma 10.164.1. Let p ⊂ R be a prime ideal and assume dim(Rp) ≤ k. Choose a
prime q ⊂ S lying over p which corresponds to a minimal prime of the fibre ring
S⊗Rκ(p). Then A = Rp → Sq = B is a flat local ring homomorphism of Noetherian
local rings with mAB an ideal of definition of B. Hence dim(A) = dim(B) (Lemma
10.112.7). As S has (Rk) we conclude that B is a regular local ring. By Lemma
10.110.9 we conclude that A is regular. □

Lemma 10.164.7.0354 Let R→ S be a ring map. Assume that
(1) R→ S is smooth and surjective on spectra, and
(2) S is a Nagata ring.

Then R is a Nagata ring.

Proof. Recall that a Nagata ring is the same thing as a Noetherian universally
Japanese ring (Proposition 10.162.15). We have already seen that R is Noetherian
in Lemma 10.164.1. Let R→ A be a finite type ring map into a domain. According
to Lemma 10.162.3 it suffices to check that A is N-1. It is clear that B = A⊗R S
is a finite type S-algebra and hence Nagata (Proposition 10.162.15). Since A→ B
is smooth (Lemma 10.137.4) we see that B is reduced (Lemma 10.163.7). Since B
is Noetherian it has only a finite number of minimal primes q1, . . . , qt (see Lemma
10.31.6). As A → B is flat each of these lies over (0) ⊂ A (by going down, see
Lemma 10.39.19) The total ring of fractions Q(B) is the product of the Li = κ(qi)
(Lemmas 10.25.4 and 10.25.1). Moreover, the integral closure B′ of B in Q(B) is
the product of the integral closures B′

i of the B/qi in the factors Li (compare with
Lemma 10.37.16). Since B is universally Japanese the ring extensions B/qi ⊂ B′

i

are finite and we conclude that B′ =
∏
B′
i is finite over B. Since A→ B is flat we

see that any nonzerodivisor on Amaps to a nonzerodivisor on B. The corresponding
map

Q(A)⊗A B = (A \ {0})−1A⊗A B = (A \ {0})−1B → Q(B)
is injective (we used Lemma 10.12.15). Via this map A′ maps into B′. This induces
a map

A′ ⊗A B −→ B′

which is injective (by the above and the flatness of A → B). Since B′ is a finite
B-module and B is Noetherian we see that A′ ⊗A B is a finite B-module. Hence
there exist finitely many elements xi ∈ A′ such that the elements xi ⊗ 1 generate
A′ ⊗A B as a B-module. Finally, by faithful flatness of A → B we conclude that
the xi also generated A′ as an A-module, and we win. □

Remark 10.164.8.0355 The property of being “universally catenary” does not descend;
not even along étale ring maps. In Examples, Section 110.18 there is a construction
of a finite ring map A→ B with A local Noetherian and not universally catenary,
B semi-local with two maximal ideals m, n with Bm and Bn regular of dimension
2 and 1 respectively, and the same residue fields as that of A. Moreover, mA
generates the maximal ideal in both Bm and Bn (so A→ B is unramified as well as
finite). By Lemma 10.152.3 there exists a local étale ring map A → A′ such that
B ⊗A A′ = B1 × B2 decomposes with A′ → Bi surjective. This shows that A′ has
two minimal primes qi with A′/qi ∼= Bi. Since Bi is regular local (since it is étale
over either Bm or Bn) we conclude that A′ is universally catenary.

https://stacks.math.columbia.edu/tag/0354
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10.165. Geometrically normal algebras

037Y In this section we put some applications of ascent and descent of properties of rings.

Lemma 10.165.1.037Z Let k be a field. Let A be a k-algebra. The following properties
of A are equivalent:

(1) k′ ⊗k A is a normal ring for every field extension k′/k,
(2) k′ ⊗k A is a normal ring for every finitely generated field extension k′/k,
(3) k′⊗kA is a normal ring for every finite purely inseparable extension k′/k,
(4) kperf ⊗k A is a normal ring.

Here normal ring is defined in Definition 10.37.11.

Proof. It is clear that (1) ⇒ (2) ⇒ (3) and (1) ⇒ (4).

If k′/k is a finite purely inseparable extension, then there is an embedding k′ →
kperf of k-extensions. The ring map k′ ⊗k A→ kperf ⊗k A is faithfully flat, hence
k′ ⊗k A is normal if kperf ⊗k A is normal by Lemma 10.164.3. In this way we see
that (4) ⇒ (3).

Assume (2) and let k′/k be any field extension. Then we can write k′ = colimi ki as
a directed colimit of finitely generated field extensions. Hence we see that k′⊗kA =
colimi ki ⊗k A is a directed colimit of normal rings. Thus we see that k′ ⊗k A is a
normal ring by Lemma 10.37.17. Hence (1) holds.

Assume (3) and let K/k be a finitely generated field extension. By Lemma 10.45.3
we can find a diagram

K // K ′

k

OO

// k′

OO

where k′/k, K ′/K are finite purely inseparable field extensions such that K ′/k′

is separable. By Lemma 10.158.10 there exists a smooth k′-algebra B such that
K ′ is the fraction field of B. Now we can argue as follows: Step 1: k′ ⊗k A is a
normal ring because we assumed (3). Step 2: B ⊗k′ k′ ⊗k A is a normal ring as
k′⊗kA→ B⊗k′ k′⊗kA is smooth (Lemma 10.137.4) and ascent of normality along
smooth maps (Lemma 10.163.9). Step 3. K ′ ⊗k′ k′ ⊗k A = K ′ ⊗k A is a normal
ring as it is a localization of a normal ring (Lemma 10.37.13). Step 4. Finally
K ⊗k A is a normal ring by descent of normality along the faithfully flat ring map
K ⊗k A→ K ′ ⊗k A (Lemma 10.164.3). This proves the lemma. □

Definition 10.165.2.0380 Let k be a field. A k-algebra R is called geometrically normal
over k if the equivalent conditions of Lemma 10.165.1 hold.

Lemma 10.165.3.06DE Let k be a field. A localization of a geometrically normal k-
algebra is geometrically normal.

Proof. This is clear as being a normal ring is checked at the localizations at prime
ideals. □

Lemma 10.165.4.0C30 Let k be a field. Let K/k be a separable field extension. Then
K is geometrically normal over k.

https://stacks.math.columbia.edu/tag/037Z
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Proof. This is true because kperf ⊗k K is a field. Namely, it is reduced by Lemma
10.43.6. By Lemma 10.45.4 (or by Definition 10.45.5) the field extension kperf/k
is purely inseparable. Hence by Lemma 10.46.10 the ring kperf ⊗k K has a unique
prime ideal. A reduced ring with a unique prime ideal is a field. □

Lemma 10.165.5.06DF Let k be a field. Let A,B be k-algebras. Assume A is geometri-
cally normal over k and B is a normal ring. Then A⊗k B is a normal ring.

Proof. Let r be a prime ideal of A⊗kB. Denote p, resp. q the corresponding prime
of A, resp. B. Then (A ⊗k B)r is a localization of Ap ⊗k Bq. Hence it suffices to
prove the result for the ring Ap ⊗k Bq, see Lemma 10.37.13 and Lemma 10.165.3.
Thus we may assume A and B are domains.

Assume that A and B are domains with fractions fields K and L. Note that B is
the filtered colimit of its finite type normal k-sub algebras (as k is a Nagata ring, see
Proposition 10.162.16, and hence the integral closure of a finite type k-sub algebra
is still a finite type k-sub algebra by Proposition 10.162.15). By Lemma 10.37.17
we reduce to the case that B is of finite type over k.

Assume that A and B are domains with fractions fields K and L and B of finite
type over k. In this case the ring K⊗kB is of finite type over K, hence Noetherian
(Lemma 10.31.1). In particular K ⊗k B has finitely many minimal primes (Lemma
10.31.6). Since A → A ⊗k B is flat, this implies that A ⊗k B has finitely many
minimal primes (by going down for flat ring maps – Lemma 10.39.19 – these primes
all lie over (0) ⊂ A). Thus it suffices to prove that A ⊗k B is integrally closed in
its total ring of fractions (Lemma 10.37.16).

We claim that K ⊗k B and A ⊗k L are both normal rings. If this is true then
any element x of Q(A⊗k B) which is integral over A⊗k B is (by Lemma 10.37.12)
contained in K⊗kB ∩A⊗k L = A⊗kB and we’re done. Since A⊗K L is a normal
ring by assumption, it suffices to prove that K ⊗k B is normal.

AsA is geometrically normal over k we seeK is geometrically normal over k (Lemma
10.165.3) hence K is geometrically reduced over k. Hence K =

⋃
Ki is the union

of finitely generated field extensions of k which are geometrically reduced (Lemma
10.43.2). Each Ki is the localization of a smooth k-algebra (Lemma 10.158.10). So
Ki⊗kB is the localization of a smooth B-algebra hence normal (Lemma 10.163.9).
Thus K ⊗k B is a normal ring (Lemma 10.37.17) and we win. □

Lemma 10.165.6.0C31 Let k′/k be a separable algebraic field extension. Let A be
an algebra over k′. Then A is geometrically normal over k if and only if it is
geometrically normal over k′.

Proof. Let L/k be a finite purely inseparable field extension. Then L′ = k′ ⊗k L is
a field (see material in Fields, Section 9.28) and A⊗k L = A⊗k′ L′. Hence if A is
geometrically normal over k′, then A is geometrically normal over k.

Assume A is geometrically normal over k. Let K/k′ be a field extension. Then

K ⊗k′ A = (K ⊗k A)⊗(k′⊗kk′) k
′

Since k′ ⊗k k′ → k′ is a localization by Lemma 10.43.8, we see that K ⊗k′ A is a
localization of a normal ring, hence normal. □
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10.166. Geometrically regular algebras

045K Let k be a field. Let A be a Noetherian k-algebra. Let K/k be a finitely generated
field extension. Then the ring K ⊗k A is Noetherian as well, see Lemma 10.31.8.
Thus the following lemma makes sense.
Lemma 10.166.1.0381 Let k be a field. Let A be a k-algebra. Assume A is Noetherian.
The following properties of A are equivalent:

(1) k′ ⊗k A is regular for every finitely generated field extension k′/k, and
(2) k′ ⊗k A is regular for every finite purely inseparable extension k′/k.

Here regular ring is as in Definition 10.110.7.
Proof. The lemma makes sense by the remarks preceding the lemma. It is clear
that (1) ⇒ (2).
Assume (2) and let K/k be a finitely generated field extension. By Lemma 10.45.3
we can find a diagram

K // K ′

k

OO

// k′

OO

where k′/k, K ′/K are finite purely inseparable field extensions such that K ′/k′

is separable. By Lemma 10.158.10 there exists a smooth k′-algebra B such that
K ′ is the fraction field of B. Now we can argue as follows: Step 1: k′ ⊗k A is a
regular ring because we assumed (2). Step 2: B ⊗k′ k′ ⊗k A is a regular ring as
k′⊗kA→ B⊗k′ k′⊗kA is smooth (Lemma 10.137.4) and ascent of regularity along
smooth maps (Lemma 10.163.10). Step 3. K ′ ⊗k′ k′ ⊗k A = K ′ ⊗k A is a regular
ring as it is a localization of a regular ring (immediate from the definition). Step
4. Finally K ⊗k A is a regular ring by descent of regularity along the faithfully flat
ring map K ⊗k A→ K ′ ⊗k A (Lemma 10.164.4). This proves the lemma. □

Definition 10.166.2.0382 Let k be a field. Let R be a Noetherian k-algebra. The
k-algebra R is called geometrically regular over k if the equivalent conditions of
Lemma 10.166.1 hold.
It is clear from the definition that K ⊗k R is a geometrically regular algebra over
K for any finitely generated field extension K of k. We will see later (More on
Algebra, Proposition 15.35.1) that it suffices to check R ⊗k k′ is regular whenever
k ⊂ k′ ⊂ k1/p (finite).
Lemma 10.166.3.07NH Let k be a field. Let A→ B be a faithfully flat k-algebra map.
If B is geometrically regular over k, so is A.
Proof. Assume B is geometrically regular over k. Let k′/k be a finite, purely
inseparable extension. Then A⊗k k′ → B⊗k k′ is faithfully flat as a base change of
A→ B (by Lemmas 10.30.3 and 10.39.7) and B⊗k k′ is regular by our assumption
on B over k. Then A⊗k k′ is regular by Lemma 10.164.4. □

Lemma 10.166.4.07QF Let k be a field. Let A→ B be a smooth ring map of k-algebras.
If A is geometrically regular over k, then B is geometrically regular over k.
Proof. Let k′/k be a finitely generated field extension. Then A ⊗k k′ → B ⊗k k′

is a smooth ring map (Lemma 10.137.4) and A ⊗k k′ is regular. Hence B ⊗k k′ is
regular by Lemma 10.163.10. □

https://stacks.math.columbia.edu/tag/0381
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Lemma 10.166.5.07QG Let k be a field. Let A be an algebra over k. Let k = colim ki
be a directed colimit of subfields. If A is geometrically regular over each ki, then
A is geometrically regular over k.

Proof. Let k′/k be a finite purely inseparable field extension. We can get k′ by
adjoining finitely many variables to k and imposing finitely many polynomial re-
lations. Hence we see that there exists an i and a finite purely inseparable field
extension k′

i/ki such that ki = k⊗ki k′
i. Thus A⊗k k′ = A⊗ki k′

i and the lemma is
clear. □

Lemma 10.166.6.07QH Let k′/k be a separable algebraic field extension. Let A be
an algebra over k′. Then A is geometrically regular over k if and only if it is
geometrically regular over k′.

Proof. Let L/k be a finite purely inseparable field extension. Then L′ = k′ ⊗k L is
a field (see material in Fields, Section 9.28) and A⊗k L = A⊗k′ L′. Hence if A is
geometrically regular over k′, then A is geometrically regular over k.
Assume A is geometrically regular over k. Since k′ is the filtered colimit of finite
extensions of k we may assume by Lemma 10.166.5 that k′/k is finite separable.
Consider the ring maps

k′ → A⊗k k′ → A.

Note that A⊗k k′ is geometrically regular over k′ as a base change of A to k′. Note
that A⊗k k′ → A is the base change of k′⊗k k′ → k′ by the map k′ → A. Since k′/k
is an étale extension of rings, we see that k′ ⊗k k′ → k′ is étale (Lemma 10.143.3).
Hence A is geometrically regular over k′ by Lemma 10.166.4. □

10.167. Geometrically Cohen-Macaulay algebras

045L This section is a bit of a misnomer, since Cohen-Macaulay algebras are automat-
ically geometrically Cohen-Macaulay. Namely, see Lemma 10.130.6 and Lemma
10.167.2 below.

Lemma 10.167.1.045M Let k be a field and let K/k and L/k be two field extensions such
that one of them is a field extension of finite type. Then K ⊗k L is a Noetherian
Cohen-Macaulay ring.

Proof. The ring K⊗kL is Noetherian by Lemma 10.31.8. Say K is a finite extension
of the purely transcendental extension k(t1, . . . , tr). Then k(t1, . . . , tr) ⊗k L →
K ⊗k L is a finite free ring map. By Lemma 10.112.9 it suffices to show that
k(t1, . . . , tr) ⊗k L is Cohen-Macaulay. This is clear because it is a localization of
the polynomial ring L[t1, . . . , tr]. (See for example Lemma 10.104.7 for the fact
that a polynomial ring is Cohen-Macaulay.) □

Lemma 10.167.2.045N Let k be a field. Let S be a Noetherian k-algebra. Let K/k be
a finitely generated field extension, and set SK = K ⊗k S. Let q ⊂ S be a prime
of S. Let qK ⊂ SK be a prime of SK lying over q. Then Sq is Cohen-Macaulay if
and only if (SK)qK is Cohen-Macaulay.

Proof. By Lemma 10.31.8 the ring SK is Noetherian. Hence Sq → (SK)qK is a flat
local homomorphism of Noetherian local rings. Note that the fibre

(SK)qK/q(SK)qK ∼= (κ(q)⊗k K)q′

https://stacks.math.columbia.edu/tag/07QG
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is the localization of the Cohen-Macaulay (Lemma 10.167.1) ring κ(q) ⊗k K at a
suitable prime ideal q′. Hence the lemma follows from Lemma 10.163.3. □

10.168. Colimits and maps of finite presentation, II

07RF This section is a continuation of Section 10.127.
We start with an application of the openness of flatness. It says that we can
approximate flat modules by flat modules which is useful.

Lemma 10.168.1.02JO Let R→ S be a ring map. Let M be an S-module. Assume that
(1) R→ S is of finite presentation,
(2) M is a finitely presented S-module, and
(3) M is flat over R.

In this case we have the following:
(1) There exists a finite type Z-algebra R0 and a finite type ring map R0 → S0

and a finite S0-module M0 such that M0 is flat over R0, together with a
ring maps R0 → R and S0 → S and an S0-module map M0 → M such
that S ∼= R⊗R0 S0 and M = S ⊗S0 M0.

(2) If R = colimλ∈Λ Rλ is written as a directed colimit, then there exists
a λ and a ring map Rλ → Sλ of finite presentation, and an Sλ-module
Mλ of finite presentation such that Mλ is flat over Rλ and such that
S = R⊗Rλ Sλ and M = S ⊗Sλ Mλ.

(3) If
(R→ S,M) = colimλ∈Λ(Rλ → Sλ,Mλ)

is written as a directed colimit such that
(a) Rµ⊗Rλ Sλ → Sµ and Sµ⊗SλMλ →Mµ are isomorphisms for µ ≥ λ,
(b) Rλ → Sλ is of finite presentation,
(c) Mλ is a finitely presented Sλ-module,

then for all sufficiently large λ the module Mλ is flat over Rλ.

Proof. We first write (R→ S,M) as the directed colimit of a system (Rλ → Sλ,Mλ)
as in as in Lemma 10.127.18. Let q ⊂ S be a prime. Let p ⊂ R, qλ ⊂ Sλ, and
pλ ⊂ Rλ the corresponding primes. As seen in the proof of Theorem 10.129.4

((Rλ)pλ , (Sλ)qλ , (Mλ)qλ)
is a system as in Lemma 10.127.13, and hence by Lemma 10.128.3 we see that for
some λq ∈ Λ for all λ ≥ λq the module Mλ is flat over Rλ at the prime qλ.
By Theorem 10.129.4 we get an open subset Uλ ⊂ Spec(Sλ) such that Mλ flat over
Rλ at all the primes of Uλ. Denote Vλ ⊂ Spec(S) the inverse image of Uλ under the
map Spec(S) → Spec(Sλ). The argument above shows that for every q ∈ Spec(S)
there exists a λq such that q ∈ Vλ for all λ ≥ λq. Since Spec(S) is quasi-compact
we see this implies there exists a single λ0 ∈ Λ such that Vλ0 = Spec(S).
The complement Spec(Sλ0)\Uλ0 is V (I) for some ideal I ⊂ Sλ0 . As Vλ0 = Spec(S)
we see that IS = S. Choose f1, . . . , fr ∈ I and s1, . . . , sn ∈ S such that

∑
fisi = 1.

Since colimSλ = S, after increasing λ0 we may assume there exist si,λ0 ∈ Sλ0 such
that

∑
fisi,λ0 = 1. Hence for this λ0 we have Uλ0 = Spec(Sλ0). This proves (1).

Proof of (2). Let (R0 → S0,M0) be as in (1) and suppose that R = colimRλ.
Since R0 is a finite type Z algebra, there exists a λ and a map R0 → Rλ such that

https://stacks.math.columbia.edu/tag/02JO
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R0 → Rλ → R is the given map R0 → R (see Lemma 10.127.3). Then, part (2)
follows by taking Sλ = Rλ ⊗R0 S0 and Mλ = Sλ ⊗S0 M0.

Finally, we come to the proof of (3). Let (Rλ → Sλ,Mλ) be as in (3). Choose
(R0 → S0,M0) and R0 → R as in (1). As in the proof of (2), there exists a λ0
and a ring map R0 → Rλ0 such that R0 → Rλ0 → R is the given map R0 → R.
Since S0 is of finite presentation over R0 and since S = colimSλ we see that for
some λ1 ≥ λ0 we get an R0-algebra map S0 → Sλ1 such that the composition
S0 → Sλ1 → S is the given map S0 → S (see Lemma 10.127.3). For all λ ≥ λ1 this
gives maps

Ψλ : Rλ ⊗R0 S0 −→ Rλ ⊗Rλ1
Sλ1
∼= Sλ

the last isomorphism by assumption. By construction colimλ Ψλ is an isomorphism.
Hence Ψλ is an isomorphism for all λ large enough by Lemma 10.127.8. In the
same vein, there exists a λ2 ≥ λ1 and an S0-module map M0 → Mλ2 such that
M0 → Mλ2 → M is the given map M0 → M (see Lemma 10.127.5). For λ ≥ λ2
there is an induced map

Sλ ⊗S0 M0 −→ Sλ ⊗Sλ2
Mλ2

∼= Mλ

and for λ large enough this map is an isomorphism by Lemma 10.127.6. This
implies (3) because M0 is flat over R0. □

Lemma 10.168.2.034Y Let R→ A→ B be ring maps. Assume A→ B faithfully flat of
finite presentation. Then there exists a commutative diagram

R // A0

��

// B0

��
R // A // B

with R → A0 of finite presentation, A0 → B0 faithfully flat of finite presentation
and B = A⊗A0 B0.

Proof. We first prove the lemma with R replaced Z. By Lemma 10.168.1 there
exists a diagram

A0 // A

B0

OO

// B

OO

where A0 is of finite type over Z, B0 is flat of finite presentation over A0 such that
B = A ⊗A0 B0. As A0 → B0 is flat of finite presentation we see that the image
of Spec(B0) → Spec(A0) is open, see Proposition 10.41.8. Hence the complement
of the image is V (I0) for some ideal I0 ⊂ A0. As A → B is faithfully flat the
map Spec(B) → Spec(A) is surjective, see Lemma 10.39.16. Now we use that the
base change of the image is the image of the base change. Hence I0A = A. Pick a
relation

∑
firi = 1, with ri ∈ A, fi ∈ I0. Then after enlarging A0 to contain the

elements ri (and correspondingly enlarging B0) we see that A0 → B0 is surjective
on spectra also, i.e., faithfully flat.

Thus the lemma holds in case R = Z. In the general case, take the solution A′
0 → B′

0
just obtained and set A0 = A′

0 ⊗Z R, B0 = B′
0 ⊗Z R. □

https://stacks.math.columbia.edu/tag/034Y
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Lemma 10.168.3.07RG Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I
and φ0 : B0 → C0 a map of A0-algebras. Assume

(1) A⊗A0 B0 → A⊗A0 C0 is finite,
(2) C0 is of finite type over B0.

Then there exists an i ≥ 0 such that the map Ai ⊗A0 B0 → Ai ⊗A0 C0 is finite.

Proof. Let x1, . . . , xm be generators for C0 over B0. Pick monic polynomials Pj ∈
A ⊗A0 B0[T ] such that Pj(1 ⊗ xj) = 0 in A ⊗A0 C0. For some i ≥ 0 we can find
Pj,i ∈ Ai ⊗A0 B0[T ] mapping to Pj . Since ⊗ commutes with colimits we see that
Pj,i(1⊗ xj) is zero in Ai ⊗A0 C0 after possibly increasing i. Then this i works. □

Lemma 10.168.4.07RH Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I
and φ0 : B0 → C0 a map of A0-algebras. Assume

(1) A⊗A0 B0 → A⊗A0 C0 is surjective,
(2) C0 is of finite type over B0.

Then for some i ≥ 0 the map Ai ⊗A0 B0 → Ai ⊗A0 C0 is surjective.

Proof. Let x1, . . . , xm be generators for C0 over B0. Pick bj ∈ A⊗A0 B0 mapping
to 1⊗ xj in A⊗A0 C0. For some i ≥ 0 we can find bj,i ∈ Ai ⊗A0 B0 mapping to bj .
Then this i works. □

Lemma 10.168.5.0C4F Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I
and φ0 : B0 → C0 a map of A0-algebras. Assume

(1) A⊗A0 B0 → A⊗A0 C0 is unramified,
(2) C0 is of finite type over B0.

Then for some i ≥ 0 the map Ai ⊗A0 B0 → Ai ⊗A0 C0 is unramified.

Proof. Set Bi = Ai⊗A0B0, Ci = Ai⊗A0C0, B = A⊗A0B0, and C = A⊗A0C0. Let
x1, . . . , xm be generators for C0 over B0. Then dx1, . . . ,dxm generate ΩC0/B0 over
C0 and their images generate ΩCi/Bi over Ci (Lemmas 10.131.14 and 10.131.9).
Observe that 0 = ΩC/B = colim ΩCi/Bi (Lemma 10.131.5). Thus there is an i such
that dx1, . . . ,dxm map to zero and hence ΩCi/Bi = 0 as desired. □

Lemma 10.168.6.0C32 Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I
and φ0 : B0 → C0 a map of A0-algebras. Assume

(1) A⊗A0 B0 → A⊗A0 C0 is an isomorphism,
(2) B0 → C0 is of finite presentation.

Then for some i ≥ 0 the map Ai ⊗A0 B0 → Ai ⊗A0 C0 is an isomorphism.

Proof. By Lemma 10.168.4 there exists an i such that Ai ⊗A0 B0 → Ai ⊗A0 C0 is
surjective. Since the map is of finite presentation the kernel is a finitely generated
ideal. Let g1, . . . , gr ∈ Ai ⊗A0 B0 generate the kernel. Then we may pick i′ ≥ i
such that gj map to zero in Ai′ ⊗A0 B0. Then Ai′ ⊗A0 B0 → Ai′ ⊗A0 C0 is an
isomorphism. □

Lemma 10.168.7.07RI Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I
and φ0 : B0 → C0 a map of A0-algebras. Assume

(1) A⊗A0 B0 → A⊗A0 C0 is étale,
(2) B0 → C0 is of finite presentation.

Then for some i ≥ 0 the map Ai ⊗A0 B0 → Ai ⊗A0 C0 is étale.
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Proof. Write C0 = B0[x1, . . . , xn]/(f1,0, . . . , fm,0). Write Bi = Ai ⊗A0 B0 and
Ci = Ai ⊗A0 C0. Note that Ci = Bi[x1, . . . , xn]/(f1,i, . . . , fm,i) where fj,i is the
image of fj,0 in the polynomial ring over Bi. Write B = A⊗A0B0 and C = A⊗A0C0.
Note that C = B[x1, . . . , xn]/(f1, . . . , fm) where fj is the image of fj,0 in the
polynomial ring over B. The assumption is that the map

d : (f1, . . . , fm)/(f1, . . . , fm)2 −→
⊕

Cdxk
is an isomorphism. Thus for sufficiently large i we can find elements

ξk,i ∈ (f1,i, . . . , fm,i)/(f1,i, . . . , fm,i)2

with dξk,i = dxk in
⊕
Cidxk. Moreover, on increasing i if necessary, we see that∑

(∂fj,i/∂xk)ξk,i = fj,i mod (f1,i, . . . , fm,i)2 since this is true in the limit. Then
this i works. □

Lemma 10.168.8.0C0B Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I
and φ0 : B0 → C0 a map of A0-algebras. Assume

(1) A⊗A0 B0 → A⊗A0 C0 is smooth,
(2) B0 → C0 is of finite presentation.

Then for some i ≥ 0 the map Ai ⊗A0 B0 → Ai ⊗A0 C0 is smooth.

Proof. Write C0 = B0[x1, . . . , xn]/(f1,0, . . . , fm,0). Write Bi = Ai ⊗A0 B0 and
Ci = Ai ⊗A0 C0. Note that Ci = Bi[x1, . . . , xn]/(f1,i, . . . , fm,i) where fj,i is the
image of fj,0 in the polynomial ring over Bi. Write B = A⊗A0B0 and C = A⊗A0C0.
Note that C = B[x1, . . . , xn]/(f1, . . . , fm) where fj is the image of fj,0 in the
polynomial ring over B. The assumption is that the map

d : (f1, . . . , fm)/(f1, . . . , fm)2 −→
⊕

Cdxk

is a split injection. Let ξk ∈ (f1, . . . , fm)/(f1, . . . , fm)2 be elements such that∑
(∂fj/∂xk)ξk = fj mod (f1, . . . , fm)2. Then for sufficiently large i we can find

elements
ξk,i ∈ (f1,i, . . . , fm,i)/(f1,i, . . . , fm,i)2

with
∑

(∂fj,i/∂xk)ξk,i = fj,i mod (f1,i, . . . , fm,i)2 since this is true in the limit.
Then this i works. □

Lemma 10.168.9.0C33 Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I
and φ0 : B0 → C0 a map of A0-algebras. Assume

(1) A⊗A0 B0 → A⊗A0 C0 is syntomic (resp. a relative global complete inter-
section),

(2) C0 is of finite presentation over B0.
Then there exists an i ≥ 0 such that the map Ai ⊗A0 B0 → Ai ⊗A0 C0 is syntomic
(resp. a relative global complete intersection).

Proof. Assume A⊗A0 B0 → A⊗A0 C0 is a relative global complete intersection. By
Lemma 10.136.11 there exists a finite type Z-algebra R, a ring map R→ A⊗A0 B0,
a relative global complete intersection R→ S, and an isomorphism

(A⊗A0 B0)⊗R S −→ A⊗A0 C0

Because R is of finite type (and hence finite presentation) over Z, there exists an i
and a map R → Ai ⊗A0 B0 lifting the map R → A ⊗A0 B0, see Lemma 10.127.3.
Using the same lemma, there exists an i′ ≥ i such that (Ai⊗A0B0)⊗RS → A⊗A0C0
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comes from a map (Ai ⊗A0 B0) ⊗R S → Ai′ ⊗A0 C0. Thus we may assume, after
replacing i by i′, that the displayed map comes from an Ai ⊗A0 B0-algebra map

(Ai ⊗A0 B0)⊗R S −→ Ai ⊗A0 C0

By Lemma 10.168.6 after increasing i this map is an isomorphism. This finishes the
proof in this case because the base change of a relative global complete intersection
is a relative global complete intersection by Lemma 10.136.9.
Assume A⊗A0 B0 → A⊗A0 C0 is syntomic. Then there exist elements g1, . . . , gm in
A⊗A0 C0 generating the unit ideal such that A⊗A0 B0 → (A⊗A0 C0)gj is a relative
global complete intersection, see Lemma 10.136.15. We can find an i and elements
gi,j ∈ Ai ⊗A0 C0 mapping to gj . After increasing i we may assume gi,1, . . . , gi,m
generate the unit ideal of Ai ⊗A0 C0. The result of the previous paragraph implies
that, after increasing i, we may assume the maps Ai ⊗A0 B0 → (Ai ⊗A0 C0)gi,j are
relative global complete intersections. Then Ai ⊗A0 B0 → Ai ⊗A0 C0 is syntomic
by Lemma 10.136.4 (and the already used Lemma 10.136.15). □

The following lemma is an application of the results above which doesn’t seem to
fit well anywhere else.

Lemma 10.168.10.034Z Let R → S be a faithfully flat ring map of finite presentation.
Then there exists a commutative diagram

S // S′

R

__ >>

where R→ S′ is quasi-finite, faithfully flat and of finite presentation.

Proof. As a first step we reduce this lemma to the case where R is of finite type
over Z. By Lemma 10.168.2 there exists a diagram

S0 // S

R0

OO

// R

OO

where R0 is of finite type over Z, and S0 is faithfully flat of finite presentation over
R0 such that S = R⊗R0 S0. If we prove the lemma for the ring map R0 → S0, then
the lemma follows for R → S by base change, as the base change of a quasi-finite
ring map is quasi-finite, see Lemma 10.122.8. (Of course we also use that base
changes of flat maps are flat and base changes of maps of finite presentation are of
finite presentation.)
Assume R → S is a faithfully flat ring map of finite presentation and that R
is Noetherian (which we may assume by the preceding paragraph). Let W ⊂
Spec(S) be the open set of Lemma 10.130.4. As R → S is faithfully flat the map
Spec(S) → Spec(R) is surjective, see Lemma 10.39.16. By Lemma 10.130.5 the
map W → Spec(R) is also surjective. Hence by replacing S with a product Sg1 ×
. . .×Sgm we may assume W = Spec(S); here we use that Spec(R) is quasi-compact
(Lemma 10.17.10), and that the map Spec(S) → Spec(R) is open (Proposition
10.41.8). Suppose that p ⊂ R is a prime. Choose a prime q ⊂ S lying over p
which corresponds to a maximal ideal of the fibre ring S ⊗R κ(p). The Noetherian

https://stacks.math.columbia.edu/tag/034Z
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local ring Sq = Sq/pSq is Cohen-Macaulay, say of dimension d. We may choose
f1, . . . , fd in the maximal ideal of Sq which map to a regular sequence in Sq. Choose
a common denominator g ∈ S, g ̸∈ q of f1, . . . , fd, and consider the R-algebra

S′ = Sg/(f1, . . . , fd).
By construction there is a prime ideal q′ ⊂ S′ lying over p and corresponding to q
(via Sg → S′

g). Also by construction the ring map R → S′ is quasi-finite at q as
the local ring

S′
q′/pS′

q′ = Sq/(f1, . . . , fd) + pSq = Sq/(f1, . . . , fd)
has dimension zero, see Lemma 10.122.2. Also by construction R → S′ is of fi-
nite presentation. Finally, by Lemma 10.99.3 the local ring map Rp → S′

q′ is flat
(this is where we use that R is Noetherian). Hence, by openness of flatness (The-
orem 10.129.4), and openness of quasi-finiteness (Lemma 10.123.13) we may after
replacing g by gg′ for a suitable g′ ∈ S, g′ ̸∈ q assume that R → S′ is flat and
quasi-finite. The image Spec(S′)→ Spec(R) is open and contains p. In other words
we have shown a ring S′ as in the statement of the lemma exists (except possibly
the faithfulness part) whose image contains any given prime. Using one more time
the quasi-compactness of Spec(R) we see that a finite product of such rings does
the job. □
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CHAPTER 11

Brauer groups

073W 11.1. Introduction

073X A reference is the lectures by Serre in the Seminaire Cartan, see [Ser55a]. Serre in
turn refers to [Deu68] and [ANT44]. We changed some of the proofs, in particular
we used a fun argument of Rieffel to prove Wedderburn’s theorem. Very likely this
change is not an improvement and we strongly encourage the reader to read the
original exposition by Serre.

11.2. Noncommutative algebras

073Y Let k be a field. In this chapter an algebra A over k is a possibly noncommutative
ring A together with a ring map k → A such that k maps into the center of A and
such that 1 maps to an identity element of A. An A-module is a right A-module
such that the identity of A acts as the identity.

Definition 11.2.1.073Z Let A be a k-algebra. We say A is finite if dimk(A) < ∞. In
this case we write [A : k] = dimk(A).

Definition 11.2.2.0740 A skew field is a possibly noncommutative ring with an identity
element 1, with 1 ̸= 0, in which every nonzero element has a multiplicative inverse.

A skew field is a k-algebra for some k (e.g., for the prime field contained in it). We
will use below that any module over a skew field is free because a maximal linearly
independent set of vectors forms a basis and exists by Zorn’s lemma.

Definition 11.2.3.0741 Let A be a k-algebra. We say an A-module M is simple if it is
nonzero and the only A-submodules are 0 and M . We say A is simple if the only
two-sided ideals of A are 0 and A.

Definition 11.2.4.0742 A k-algebra A is central if the center of A is the image of k → A.

Definition 11.2.5.0743 Given a k-algebra A we denote Aop the k-algebra we get by
reversing the order of multiplication in A. This is called the opposite algebra.

11.3. Wedderburn’s theorem

0744 The following cute argument can be found in a paper of Rieffel, see [Rie65]. The
proof could not be simpler (quote from Carl Faith’s review).

Lemma 11.3.1.0745 Let A be a possibly noncommutative ring with 1 which contains
no nontrivial two-sided ideal. Let M be a nonzero right ideal in A, and view M as
a right A-module. Then A coincides with the bicommutant of M .
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Proof. Let A′ = EndA(M), so M is a left A′-module. Set A′′ = EndA′(M) (the
bicommutant of M). We view M as a right A′′-module1. Let R : A → A′′ be
the natural homomorphism such that mR(a) = ma. Then R is injective, since
R(1) = idM and A contains no nontrivial two-sided ideal. We claim that R(M) is
a right ideal in A′′. Namely, R(m)a′′ = R(ma′′) for a′′ ∈ A′′ and m in M , because
left multiplication of M by any element n of M represents an element of A′, and
so (nm)a′′ = n(ma′′) for all n in M . Finally, the product ideal AM is a two-sided
ideal, and so A = AM . Thus R(A) = R(A)R(M), so that R(A) is a right ideal in
A′′. But R(A) contains the identity element of A′′, and so R(A) = A′′. □

Lemma 11.3.2.0746 Let A be a k-algebra. If A is finite, then
(1) A has a simple module,
(2) any nonzero module contains a simple submodule,
(3) a simple module over A has finite dimension over k, and
(4) if M is a simple A-module, then EndA(M) is a skew field.

Proof. Of course (1) follows from (2) since A is a nonzero A-module. For (2), any
submodule of minimal (finite) dimension as a k-vector space will be simple. There
exists a finite dimensional one because a cyclic submodule is one. If M is simple,
then mA ⊂M is a sub-module, hence we see (3). Any nonzero element of EndA(M)
is an isomorphism, hence (4) holds. □

Theorem 11.3.3.0747 Let A be a simple finite k-algebra. Then A is a matrix algebra
over a finite k-algebra K which is a skew field.

Proof. We may choose a simple submodule M ⊂ A and then the k-algebra K =
EndA(M) is a skew field, see Lemma 11.3.2. By Lemma 11.3.1 we see that A =
EndK(M). Since K is a skew field and M is finitely generated (since dimk(M) <
∞) we see that M is finite free as a left K-module. It follows immediately that
A ∼= Mat(n× n,Kop). □

11.4. Lemmas on algebras

0748 Let A be a k-algebra. Let B ⊂ A be a subalgebra. The centralizer of B in A is the
subalgebra

C = {y ∈ A | xy = yx for all x ∈ B}.
It is a k-algebra.

Lemma 11.4.1.0749 Let A, A′ be k-algebras. Let B ⊂ A, B′ ⊂ A′ be subalgebras with
centralizers C, C ′. Then the centralizer of B ⊗k B′ in A⊗k A′ is C ⊗k C ′.

Proof. Denote C ′′ ⊂ A⊗kA′ the centralizer ofB⊗kB′. It is clear that C⊗kC ′ ⊂ C ′′.
Conversely, every element of C ′′ commutes with B⊗1 hence is contained in C⊗kA′.
Similarly C ′′ ⊂ A⊗k C ′. Thus C ′′ ⊂ C ⊗k A′ ∩A⊗k C ′ = C ⊗k C ′. □

Lemma 11.4.2.074A Let A be a finite simple k-algebra. Then the center k′ of A is a
finite field extension of k.

1This means that given a′′ ∈ A′′ and m ∈ M we have a product ma′′ ∈ M . In particu-
lar, the multiplication in A′′ is the opposite of what you’d get if you wrote elements of A′′ as
endomorphisms acting on the left.

https://stacks.math.columbia.edu/tag/0746
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Proof. Write A = Mat(n× n,K) for some skew field K finite over k, see Theorem
11.3.3. By Lemma 11.4.1 the center of A is k ⊗k k′ where k′ ⊂ K is the center of
K. Since the center of a skew field is a field, we win. □

Lemma 11.4.3.074B Let V be a k vector space. Let K be a central k-algebra which
is a skew field. Let W ⊂ V ⊗k K be a two-sided K-sub vector space. Then W is
generated as a left K-vector space by W ∩ (V ⊗ 1).

Proof. Let V ′ ⊂ V be the k-sub vector space generated by v ∈ V such that v⊗ 1 ∈
W . Then V ′ ⊗k K ⊂W and we have

W/(V ′ ⊗k K) ⊂ (V/V ′)⊗k K.
If v ∈ V/V ′ is a nonzero vector such that v ⊗ 1 is contained in W/(V ′ ⊗k K), then
we see that v⊗ 1 ∈W where v ∈ V lifts v. This contradicts our construction of V ′.
Hence we may replace V by V/V ′ and W by W/(V ′ ⊗k K) and it suffices to prove
that W ∩ (V ⊗ 1) is nonzero if W is nonzero.
To see this let w ∈ W be a nonzero element which can be written as w =∑
i=1,...,n vi ⊗ ki with n minimal. We may right multiply with k−1

1 and assume
that k1 = 1. If n = 1, then we win because v1 ⊗ 1 ∈W . If n > 1, then we see that
for any c ∈ K

cw − wc =
∑

i=2,...,n
vi ⊗ (cki − kic) ∈W

and hence cki − kic = 0 by minimality of n. This implies that ki is in the center
of K which is k by assumption. Hence w = (v1 +

∑
kivi) ⊗ 1 contradicting the

minimality of n. □

Lemma 11.4.4.074C Let A be a k-algebra. Let K be a central k-algebra which is a
skew field. Then any two-sided ideal I ⊂ A ⊗k K is of the form J ⊗k K for some
two-sided ideal J ⊂ A. In particular, if A is simple, then so is A⊗k K.

Proof. Set J = {a ∈ A | a⊗1 ∈ I}. This is a two-sided ideal of A. And I = J⊗kK
by Lemma 11.4.3. □

Lemma 11.4.5.074D Let R be a possibly noncommutative ring. Let n ≥ 1 be an integer.
Let Rn = Mat(n× n,R).

(1) The functors M 7→M⊕n and N 7→ Ne11 define quasi-inverse equivalences
of categories ModR ↔ ModRn .

(2) A two-sided ideal of Rn is of the form IRn for some two-sided ideal I of
R.

(3) The center of Rn is equal to the center of R.

Proof. Part (1) proves itself. If J ⊂ Rn is a two-sided ideal, then J =
⊕
eiiJejj

and all of the summands eiiJejj are equal to each other and are a two-sided ideal
I of R. This proves (2). Part (3) is clear. □

Lemma 11.4.6.074E Let A be a finite simple k-algebra.
(1) There exists exactly one simple A-module M up to isomorphism.
(2) Any finite A-module is a direct sum of copies of a simple module.
(3) Two finite A-modules are isomorphic if and only if they have the same

dimension over k.
(4) If A = Mat(n × n,K) with K a finite skew field extension of k, then

M = K⊕n is a simple A-module and EndA(M) = Kop.

https://stacks.math.columbia.edu/tag/074B
https://stacks.math.columbia.edu/tag/074C
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11.5. THE BRAUER GROUP OF A FIELD 892

(5) If M is a simple A-module, then L = EndA(M) is a skew field finite over
k acting on the left on M , we have A = EndL(M), and the centers of A
and L agree. Also [A : k][L : k] = dimk(M)2.

(6) For a finite A-module N the algebra B = EndA(N) is a matrix algebra
over the skew field L of (5). Moreover EndB(N) = A.

Proof. By Theorem 11.3.3 we can write A = Mat(n×n,K) for some finite skew field
extension K of k. By Lemma 11.4.5 the category of modules over A is equivalent to
the category of modules over K. Thus (1), (2), and (3) hold because every module
over K is free. Part (4) holds because the equivalence transforms the K-module K
to M = K⊕n. Using M = K⊕n in (5) we see that L = Kop. The statement about
the center of L = Kop follows from Lemma 11.4.5. The statement about EndL(M)
follows from the explicit form of M . The formula of dimensions is clear. Part (6)
follows as N is isomorphic to a direct sum of copies of a simple module. □

Lemma 11.4.7.074F Let A, A′ be two simple k-algebras one of which is finite and central
over k. Then A⊗k A′ is simple.
Proof. Suppose that A′ is finite and central over k. Write A′ = Mat(n × n,K ′),
see Theorem 11.3.3. Then the center of K ′ is k and we conclude that A ⊗k K ′

is simple by Lemma 11.4.4. Hence A ⊗k A′ = Mat(n × n,A ⊗k K ′) is simple by
Lemma 11.4.5. □

Lemma 11.4.8.074G The tensor product of finite central simple algebras over k is finite,
central, and simple.
Proof. Combine Lemmas 11.4.1 and 11.4.7. □

Lemma 11.4.9.074H Let A be a finite central simple algebra over k. Let k′/k be a field
extension. Then A′ = A⊗k k′ is a finite central simple algebra over k′.
Proof. Combine Lemmas 11.4.1 and 11.4.7. □

Lemma 11.4.10.074I Let A be a finite central simple algebra over k. Then A⊗k Aop ∼=
Mat(n× n, k) where n = [A : k].
Proof. By Lemma 11.4.8 the algebra A⊗k Aop is simple. Hence the map

A⊗k Aop −→ Endk(A), a⊗ a′ 7−→ (x 7→ axa′)
is injective. Since both sides of the arrow have the same dimension we win. □

11.5. The Brauer group of a field

074J Let k be a field. Consider two finite central simple algebras A and B over k. We say
A and B are similar if there exist n,m > 0 such that Mat(n×n,A) ∼= Mat(m×m,B)
as k-algebras.
Lemma 11.5.1.074K Similarity.

(1) Similarity defines an equivalence relation on the set of isomorphism classes
of finite central simple algebras over k.

(2) Every similarity class contains a unique (up to isomorphism) finite central
skew field extension of k.

(3) If A = Mat(n × n,K) and B = Mat(m ×m,K ′) for some finite central
skew fields K, K ′ over k then A and B are similar if and only if K ∼= K ′

as k-algebras.

https://stacks.math.columbia.edu/tag/074F
https://stacks.math.columbia.edu/tag/074G
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Proof. Note that by Wedderburn’s theorem (Theorem 11.3.3) we can always write
a finite central simple algebra as a matrix algebra over a finite central skew field.
Hence it suffices to prove the third assertion. To see this it suffices to show that if
A = Mat(n × n,K) ∼= Mat(m ×m,K ′) = B then K ∼= K ′. To see this note that
for a simple module M of A we have EndA(M) = Kop, see Lemma 11.4.6. Hence
A ∼= B implies Kop ∼= (K ′)op and we win. □

Given two finite central simple k-algebras A, B the tensor product A ⊗k B is
another, see Lemma 11.4.8. Moreover if A is similar to A′, then A⊗k B is similar
to A′ ⊗k B because tensor products and taking matrix algebras commute. Hence
tensor product defines an operation on equivalence classes of finite central simple
algebras which is clearly associative and commutative. Finally, Lemma 11.4.10
shows that A⊗k Aop is isomorphic to a matrix algebra, i.e., that A⊗k Aop is in the
similarity class of k. Thus we obtain an abelian group.

Definition 11.5.2.074L Let k be a field. The Brauer group of k is the abelian group of
similarity classes of finite central simple k-algebras defined above. Notation Br(k).

For any map of fields k → k′ we obtain a group homomorphism
Br(k) −→ Br(k′), A 7−→ A⊗k k′

see Lemma 11.4.9. In other words, Br(−) is a functor from the category of fields
to the category of abelian groups. Observe that the Brauer group of a field is zero
if and only if every finite central skew field extension k ⊂ K is trivial.

Lemma 11.5.3.074M The Brauer group of an algebraically closed field is zero.

Proof. Let k ⊂ K be a finite central skew field extension. For any element x ∈ K
the subring k[x] ⊂ K is a commutative finite integral k-sub algebra, hence a field,
see Algebra, Lemma 10.36.19. Since k is algebraically closed we conclude that
k[x] = k. Since x was arbitrary we conclude k = K. □

Lemma 11.5.4.074N Let A be a finite central simple algebra over a field k. Then [A : k]
is a square.

Proof. This is true because A⊗k k is a matrix algebra over k by Lemma 11.5.3. □

11.6. Skolem-Noether

074P
Theorem 11.6.1.074Q Let A be a finite central simple k-algebra. Let B be a simple
k-algebra. Let f, g : B → A be two k-algebra homomorphisms. Then there exists
an invertible element x ∈ A such that f(b) = xg(b)x−1 for all b ∈ B.

Proof. Choose a simple A-module M . Set L = EndA(M). Then L is a skew
field with center k which acts on the left on M , see Lemmas 11.3.2 and 11.4.6.
Then M has two B ⊗k Lop-module structures defined by m ·1 (b⊗ l) = lmf(b) and
m ·2 (b⊗ l) = lmg(b). The k-algebra B⊗kLop is simple by Lemma 11.4.7. Since B is
simple, the existence of a k-algebra homomorphism B → A implies that B is finite.
Thus B⊗kLop is finite simple and we conclude the two B⊗kLop-module structures
on M are isomorphic by Lemma 11.4.6. Hence we find φ : M → M intertwining
these operations. In particular φ is in the commutant of L which implies that φ is
multiplication by some x ∈ A, see Lemma 11.4.6. Working out the definitions we
see that x is a solution to our problem. □

https://stacks.math.columbia.edu/tag/074L
https://stacks.math.columbia.edu/tag/074M
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Lemma 11.6.2.074R Let A be a finite central simple k-algebra. Any automorphism of
A is inner. In particular, any automorphism of Mat(n× n, k) is inner.

Proof. Note that A is a finite central simple algebra over the center of A which is
a finite field extension of k, see Lemma 11.4.2. Hence the Skolem-Noether theorem
(Theorem 11.6.1) applies. □

11.7. The centralizer theorem

074S
Theorem 11.7.1.074T Let A be a finite central simple algebra over k, and let B be a
simple subalgebra of A. Then

(1) the centralizer C of B in A is simple,
(2) [A : k] = [B : k][C : k], and
(3) the centralizer of C in A is B.

Proof. Throughout this proof we use the results of Lemma 11.4.6 freely. Choose a
simple A-module M . Set L = EndA(M). Then L is a skew field with center k which
acts on the left on M and A = EndL(M). Then M is a right B⊗k Lop-module and
C = EndB⊗kLop(M). Since the algebra B⊗k Lop is simple by Lemma 11.4.7 we see
that C is simple (by Lemma 11.4.6 again).

Write B ⊗k Lop = Mat(m × m,K) for some skew field K finite over k. Then
C = Mat(n× n,Kop) if M is isomorphic to a direct sum of n copies of the simple
B ⊗k Lop-module K⊕m (the lemma again). Thus we have dimk(M) = nm[K : k],
[B : k][L : k] = m2[K : k], [C : k] = n2[K : k], and [A : k][L : k] = dimk(M)2 (by
the lemma again). We conclude that (2) holds.

Part (3) follows because of (2) applied to C ⊂ A shows that [B : k] = [C ′ : k] where
C ′ is the centralizer of C in A (and the obvious fact that B ⊂ C ′). □

Lemma 11.7.2.074U Let A be a finite central simple algebra over k, and let B be a
simple subalgebra of A. If B is a central k-algebra, then A = B ⊗k C where C is
the (central simple) centralizer of B in A.

Proof. We have dimk(A) = dimk(B ⊗k C) by Theorem 11.7.1. By Lemma 11.4.7
the tensor product is simple. Hence the natural map B⊗kC → A is injective hence
an isomorphism. □

Lemma 11.7.3.074V Let A be a finite central simple algebra over k. If K ⊂ A is a
subfield, then the following are equivalent

(1) [A : k] = [K : k]2,
(2) K is its own centralizer, and
(3) K is a maximal commutative subring.

Proof. Theorem 11.7.1 shows that (1) and (2) are equivalent. It is clear that (3)
and (2) are equivalent. □

Lemma 11.7.4.074W Let A be a finite central skew field over k. Then every maximal
subfield K ⊂ A satisfies [A : k] = [K : k]2.

Proof. Special case of Lemma 11.7.3. □

https://stacks.math.columbia.edu/tag/074R
https://stacks.math.columbia.edu/tag/074T
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11.8. Splitting fields

074X
Definition 11.8.1.074Y Let A be a finite central simple k-algebra. We say a field exten-
sion k′/k splits A, or k′ is a splitting field for A if A⊗k k′ is a matrix algebra over
k′.

Another way to say this is that the class of A maps to zero under the map Br(k)→
Br(k′).

Theorem 11.8.2.074Z Let A be a finite central simple k-algebra. Let k′/k be a finite
field extension. The following are equivalent

(1) k′ splits A, and
(2) there exists a finite central simple algebra B similar to A such that k′ ⊂ B

and [B : k] = [k′ : k]2.

Proof. Assume (2). It suffices to show that B ⊗k k′ is a matrix algebra. We know
that B ⊗k Bop ∼= Endk(B). Since k′ is the centralizer of k′ in Bop by Lemma
11.7.3 we see that B ⊗k k′ is the centralizer of k ⊗ k′ in B ⊗k Bop = Endk(B). Of
course this centralizer is just Endk′(B) where we view B as a k′ vector space via
the embedding k′ → B. Thus the result.
Assume (1). This means that we have an isomorphism A ⊗k k′ ∼= Endk′(V ) for
some k′-vector space V . Let B be the commutant of A in Endk(V ). Note that k′

sits in B. By Lemma 11.7.2 the classes of A and B add up to zero in Br(k). From
the dimension formula in Theorem 11.7.1 we see that

[B : k][A : k] = dimk(V )2 = [k′ : k]2 dimk′(V )2 = [k′ : k]2[A : k].
Hence [B : k] = [k′ : k]2. Thus we have proved the result for the opposite to the
Brauer class of A. However, k′ splits the Brauer class of A if and only if it splits
the Brauer class of the opposite algebra, so we win anyway. □

Lemma 11.8.3.0750 A maximal subfield of a finite central skew field K over k is a
splitting field for K.

Proof. Combine Lemma 11.7.4 with Theorem 11.8.2. □

Lemma 11.8.4.0751 Consider a finite central skew field K over k. Let d2 = [K : k]. For
any finite splitting field k′ for K the degree [k′ : k] is divisible by d.

Proof. By Theorem 11.8.2 there exists a finite central simple algebra B in the
Brauer class of K such that [B : k] = [k′ : k]2. By Lemma 11.5.1 we see that
B = Mat(n× n,K) for some n. Then [k′ : k]2 = n2d2 whence the result. □

Proposition 11.8.5.0752 Consider a finite central skew field K over k. There exists a
maximal subfield k ⊂ k′ ⊂ K which is separable over k. In particular, every Brauer
class has a finite separable spitting field.

Proof. Since every Brauer class is represented by a finite central skew field over k,
we see that the second statement follows from the first by Lemma 11.8.3.
To prove the first statement, suppose that we are given a separable subfield k′ ⊂ K.
Then the centralizer K ′ of k′ in K has center k′, and the problem reduces to finding
a maximal subfield of K ′ separable over k′. Thus it suffices to prove, if k ̸= K, that
we can find an element x ∈ K, x ̸∈ k which is separable over k. This statement is

https://stacks.math.columbia.edu/tag/074Y
https://stacks.math.columbia.edu/tag/074Z
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clear in characteristic zero. Hence we may assume that k has characteristic p > 0.
If the ground field k is finite then, the result is clear as well (because extensions of
finite fields are always separable). Thus we may assume that k is an infinite field
of positive characteristic.
To get a contradiction assume no element ofK is separable over k. By the discussion
in Fields, Section 9.28 this means the minimal polynomial of any x ∈ K is of the
form T q − a where q is a power of p and a ∈ k. Since it is clear that every element
of K has a minimal polynomial of degree ≤ dimk(K) we conclude that there exists
a fixed p-power q such that xq ∈ k for all x ∈ K.
Consider the map

(−)q : K −→ K

and write it out in terms of a k-basis {a1, . . . , an} of K with a1 = 1. So

(
∑

xiai)q =
∑

fi(x1, . . . , xn)ai.
Since multiplication on K is k-bilinear we see that each fi is a polynomial in
x1, . . . , xn (details omitted). The choice of q above and the fact that k is infinite
shows that fi is identically zero for i ≥ 2. Hence we see that it remains zero on
extending k to its algebraic closure k. But the algebra K ⊗k k is a matrix algebra
(for example by Lemmas 11.4.9 and 11.5.3), which implies there are some elements
whose qth power is not central (e.g., e11). This is the desired contradiction. □

The results above allow us to characterize finite central simple algebras as follows.

Lemma 11.8.6.0753 Let k be a field. For a k-algebra A the following are equivalent
(1) A is finite central simple k-algebra,
(2) A is a finite dimensional k-vector space, k is the center of A, and A has

no nontrivial two-sided ideal,
(3) there exists d ≥ 1 such that A⊗k k̄ ∼= Mat(d× d, k̄),
(4) there exists d ≥ 1 such that A⊗k ksep ∼= Mat(d× d, ksep),
(5) there exist d ≥ 1 and a finite Galois extension k′/k such that A ⊗k k′ ∼=

Mat(d× d, k′),
(6) there exist n ≥ 1 and a finite central skew field K over k such that

A ∼= Mat(n× n,K).
The integer d is called the degree of A.

Proof. The equivalence of (1) and (2) is a consequence of the definitions, see Section
11.2. Assume (1). By Proposition 11.8.5 there exists a separable splitting field
k ⊂ k′ for A. Of course, then a Galois closure of k′/k is a splitting field also. Thus
we see that (1) implies (5). It is clear that (5) ⇒ (4) ⇒ (3). Assume (3). Then
A ⊗k k is a finite central simple k-algebra for example by Lemma 11.4.5. This
trivially implies that A is a finite central simple k-algebra. Finally, the equivalence
of (1) and (6) is Wedderburn’s theorem, see Theorem 11.3.3. □

11.9. Other chapters
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CHAPTER 12

Homological Algebra

00ZU 12.1. Introduction

00ZV Basic homological algebra will be explained in this document. We add as needed
in the other parts, since there is clearly an infinite amount of this stuff around. A
reference is [ML63].

12.2. Basic notions

00ZW The following notions are considered basic and will not be defined, and or proved.
This does not mean they are all necessarily easy or well known.

(1) Nothing yet.

12.3. Preadditive and additive categories

09SE Here is the definition of a preadditive category.
Definition 12.3.1.00ZY A categoryA is called preadditive if each morphism set MorA(x, y)
is endowed with the structure of an abelian group such that the compositions

Mor(x, y)×Mor(y, z) −→ Mor(x, z)
are bilinear. A functor F : A → B of preadditive categories is called additive if and
only if F : Mor(x, y)→ Mor(F (x), F (y)) is a homomorphism of abelian groups for
all x, y ∈ Ob(A).
In particular for every x, y there exists at least one morphism x → y, namely the
zero map.
Lemma 12.3.2.00ZZ Let A be a preadditive category. Let x be an object of A. The
following are equivalent

(1) x is an initial object,
(2) x is a final object, and
(3) idx = 0 in MorA(x, x).

Furthermore, if such an object 0 exists, then a morphism α : x→ y factors through
0 if and only if α = 0.
Proof. First assume that x is either (1) initial or (2) final. In both cases, it follows
that Mor(x, x) is a trivial abelian group containing idx, thus idx = 0 in Mor(x, x),
which shows that each of (1) and (2) implies (3).
Now assume that idx = 0 in Mor(x, x). Let y be an arbitrary object of A and let
f ∈ Mor(x, y). Denote C : Mor(x, x) × Mor(x, y) → Mor(x, y) the composition
map. Then f = C(0, f) and since C is bilinear we have C(0, f) = 0. Thus f = 0.
Hence x is initial in A. A similar argument for f ∈ Mor(y, x) can be used to show
that x is also final. Thus (3) implies both (1) and (2). □

899
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Definition 12.3.3.0100 In a preadditive category A we call zero object, and we denote
it 0 any final and initial object as in Lemma 12.3.2 above.
Lemma 12.3.4.0101 Let A be a preadditive category. Let x, y ∈ Ob(A). If the product
x× y exists, then so does the coproduct x ⨿ y. If the coproduct x ⨿ y exists, then
so does the product x× y. In this case also x⨿ y ∼= x× y.
Proof. Suppose that z = x × y with projections p : z → x and q : z → y. Denote
i : x → z the morphism corresponding to (1, 0). Denote j : y → z the morphism
corresponding to (0, 1). Thus we have the commutative diagram

x
1 //

i

  

x

z

p
??

q

��
y

1 //

j
??

y

where the diagonal compositions are zero. It follows that i ◦ p + j ◦ q : z → z is
the identity since it is a morphism which upon composing with p gives p and upon
composing with q gives q. Suppose given morphisms a : x → w and b : y → w.
Then we can form the map a ◦ p + b ◦ q : z → w. In this way we get a bijection
Mor(z, w) = Mor(x,w)×Mor(y, w) which show that z = x⨿ y.
We leave it to the reader to construct the morphisms p, q given a coproduct x ⨿ y
instead of a product. □

Definition 12.3.5.0102 Given a pair of objects x, y in a preadditive category A, the
direct sum x⊕y of x and y is the direct product x×y endowed with the morphisms
i, j, p, q as in Lemma 12.3.4 above.
Remark 12.3.6.0103 Note that the proof of Lemma 12.3.4 shows that given p and q
the morphisms i, j are uniquely determined by the rules p ◦ i = idx, q ◦ j = idy,
p◦ j = 0, q ◦ i = 0. Moreover, we automatically have i◦p+ j ◦ q = idx⊕y. Similarly,
given i, j the morphisms p and q are uniquely determined. Finally, given objects
x, y, z and morphisms i : x → z, j : y → z, p : z → x and q : z → y such that
p ◦ i = idx, q ◦ j = idy, p ◦ j = 0, q ◦ i = 0 and i ◦ p+ j ◦ q = idz, then z is the direct
sum of x and y with the four morphisms equal to i, j, p, q.
Lemma 12.3.7.0105 Let A, B be preadditive categories. Let F : A → B be an additive
functor. Then F transforms direct sums to direct sums and zero to zero.
Proof. Suppose F is additive. A direct sum z of x and y is characterized by having
morphisms i : x → z, j : y → z, p : z → x and q : z → y such that p ◦ i = idx,
q ◦ j = idy, p ◦ j = 0, q ◦ i = 0 and i ◦ p+ j ◦ q = idz, according to Remark 12.3.6.
Clearly F (x), F (y), F (z) and the morphisms F (i), F (j), F (p), F (q) satisfy exactly
the same relations (by additivity) and we see that F (z) is a direct sum of F (x) and
F (y). Hence, F transforms direct sums to direct sums.
To see that F transforms zero to zero, use the characterization (3) of the zero object
in Lemma 12.3.2. □

Definition 12.3.8.0104 A category A is called additive if it is preadditive and finite
products exist, in other words it has a zero object and direct sums.

https://stacks.math.columbia.edu/tag/0100
https://stacks.math.columbia.edu/tag/0101
https://stacks.math.columbia.edu/tag/0102
https://stacks.math.columbia.edu/tag/0103
https://stacks.math.columbia.edu/tag/0105
https://stacks.math.columbia.edu/tag/0104
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Namely the empty product is a finite product and if it exists, then it is a final
object.

Definition 12.3.9.0106 Let A be a preadditive category. Let f : x→ y be a morphism.
(1) A kernel of f is a morphism i : z → x such that (a) f ◦ i = 0 and (b)

for any i′ : z′ → x such that f ◦ i′ = 0 there exists a unique morphism
g : z′ → z such that i′ = i ◦ g.

(2) If the kernel of f exists, then we denote this Ker(f)→ x.
(3) A cokernel of f is a morphism p : y → z such that (a) p ◦ f = 0 and (b)

for any p′ : y → z′ such that p′ ◦ f = 0 there exists a unique morphism
g : z → z′ such that p′ = g ◦ p.

(4) If a cokernel of f exists we denote this y → Coker(f).
(5) If a kernel of f exists, then a coimage of f is a cokernel for the morphism

Ker(f)→ x.
(6) If a kernel and coimage exist then we denote this x→ Coim(f).
(7) If a cokernel of f exists, then the image of f is a kernel of the morphism

y → Coker(f).
(8) If a cokernel and image of f exist then we denote this Im(f)→ y.

In the above definition, we have spoken of “the kernel” and “the cokernel”, tacitly
using their uniqueness up to unique isomorphism. This follows from the Yoneda
lemma (Categories, Section 4.3) because the kernel of f : x → y represents the
functor sending an object z to the set Ker(MorA(z, x)→ MorA(z, y)). The case of
cokernels is dual.
We first relate the direct sum to kernels as follows.

Lemma 12.3.10.09QG Let C be a preadditive category. Let x ⊕ y with morphisms
i, j, p, q as in Lemma 12.3.4 be a direct sum in C. Then i : x→ x⊕ y is a kernel of
q : x⊕ y → y. Dually, p is a cokernel for j.

Proof. Let f : z′ → x⊕y be a morphism such that q ◦f = 0. We have to show that
there exists a unique morphism g : z′ → x such that f = i ◦ g. Since i ◦ p+ j ◦ q is
the identity on x⊕ y we see that

f = (i ◦ p+ j ◦ q) ◦ f = i ◦ p ◦ f
and hence g = p ◦ f works. Uniqueness holds because p ◦ i is the identity on x. The
proof of the second statement is dual. □

Lemma 12.3.11.0E43 Let C be a preadditive category. Let f : x→ y be a morphism in
C.

(1) If a kernel of f exists, then this kernel is a monomorphism.
(2) If a cokernel of f exists, then this cokernel is an epimorphism.
(3) If a kernel and coimage of f exist, then the coimage is an epimorphism.
(4) If a cokernel and image of f exist, then the image is a monomorphism.

Proof. Part (1) follows easily from the uniqueness required in the definition of a
kernel. The proof of (2) is dual. Part (3) follows from (2), since the coimage is a
cokernel. Similarly, (4) follows from (1). □

Lemma 12.3.12.0107 Let f : x→ y be a morphism in a preadditive category such that
the kernel, cokernel, image and coimage all exist. Then f can be factored uniquely
as x→ Coim(f)→ Im(f)→ y.

https://stacks.math.columbia.edu/tag/0106
https://stacks.math.columbia.edu/tag/09QG
https://stacks.math.columbia.edu/tag/0E43
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Proof. There is a canonical morphism Coim(f) → y because Ker(f) → x → y is
zero. The composition Coim(f) → y → Coker(f) is zero, because it is the unique
morphism which gives rise to the morphism x → y → Coker(f) which is zero (the
uniqueness follows from Lemma 12.3.11 (3)). Hence Coim(f)→ y factors uniquely
through Im(f)→ y, which gives us the desired map. □

Example 12.3.13.0108 Let k be a field. Consider the category of filtered vector spaces
over k. (See Definition 12.19.1.) Consider the filtered vector spaces (V, F ) and
(W,F ) with V = W = k and

F iV =
{
V if i < 0
0 if i ≥ 0 and F iW =

{
W if i ≤ 0
0 if i > 0

The map f : V → W corresponding to idk on the underlying vector spaces has
trivial kernel and cokernel but is not an isomorphism. Note also that Coim(f) = V
and Im(f) = W . This means that the category of filtered vector spaces over k is
not abelian.

12.4. Karoubian categories

09SF Skip this section on a first reading.

Definition 12.4.1.09SG Let C be a preadditive category. We say C is Karoubian if every
idempotent endomorphism of an object of C has a kernel.

The dual notion would be that every idempotent endomorphism of an object has a
cokernel. However, in view of the (dual of the) following lemma that would be an
equivalent notion.

Lemma 12.4.2.09SH Let C be a preadditive category. The following are equivalent
(1) C is Karoubian,
(2) every idempotent endomorphism of an object of C has a cokernel, and
(3) given an idempotent endomorphism p : z → z of C there exists a direct

sum decomposition z = x ⊕ y such that p corresponds to the projection
onto y.

Proof. Assume (1) and let p : z → z be as in (3). Let x = Ker(p) and y = Ker(1−p).
There are maps x→ z and y → z. Since (1− p)p = 0 we see that p : z → z factors
through y, hence we obtain a morphism z → y. Similarly we obtain a morphism
z → x. We omit the verification that these four morphisms induce an isomorphism
x = y⊕ z as in Remark 12.3.6. Thus (1) ⇒ (3). The implication (2) ⇒ (3) is dual.
Finally, condition (3) implies (1) and (2) by Lemma 12.3.10. □

Lemma 12.4.3.05QV Let D be a preadditive category.
(1) IfD has countable products and kernels of maps which have a right inverse,

then D is Karoubian.
(2) If D has countable coproducts and cokernels of maps which have a left

inverse, then D is Karoubian.

Proof. Let X be an object of D and let e : X → X be an idempotent. The functor

W 7−→ Ker(MorD(W,X) e−→ MorD(W,X))

https://stacks.math.columbia.edu/tag/0108
https://stacks.math.columbia.edu/tag/09SG
https://stacks.math.columbia.edu/tag/09SH
https://stacks.math.columbia.edu/tag/05QV


12.5. ABELIAN CATEGORIES 903

if representable if and only if e has a kernel. Note that for any abelian group A
and idempotent endomorphism e : A→ A we have

Ker(e : A→ A) = Ker(Φ :
∏

n∈N
A→

∏
n∈N

A)

where
Φ(a1, a2, a3, . . .) = (ea1 + (1− e)a2, ea2 + (1− e)a3, . . .)

Moreover, Φ has the right inverse
Ψ(a1, a2, a3, . . .) = (a1, (1− e)a1 + ea2, (1− e)a2 + ea3, . . .).

Hence (1) holds. The proof of (2) is dual (using the dual definition of a Karoubian
category, namely condition (2) of Lemma 12.4.2). □

12.5. Abelian categories

00ZX An abelian category is a category satisfying just enough axioms so the snake lemma
holds. An axiom (that is sometimes forgotten) is that the canonical map Coim(f)→
Im(f) of Lemma 12.3.12 is always an isomorphism. Example 12.3.13 shows that it
is necessary.

Definition 12.5.1.0109 A categoryA is abelian if it is additive, if all kernels and cokernels
exist, and if the natural map Coim(f)→ Im(f) is an isomorphism for all morphisms
f of A.

Lemma 12.5.2.010A Let A be a preadditive category. The additions on sets of mor-
phisms make Aopp into a preadditive category. Furthermore, A is additive if and
only if Aopp is additive, and A is abelian if and only if Aopp is abelian.

Proof. The first statement is straightforward. To see that A is additive if and only
if Aopp is additive, recall that additivity can be characterized by the existence of a
zero object and direct sums, which are both preserved when passing to the opposite
category. Finally, to see thatA is abelian if and only ifAopp is abelian, observes that
kernels, cokernels, images and coimages in Aopp correspond to cokernels, kernels,
coimages and images in A, respectively. □

Definition 12.5.3.010B Let f : x→ y be a morphism in an abelian category.
(1) We say f is injective if Ker(f) = 0.
(2) We say f is surjective if Coker(f) = 0.

If x→ y is injective, then we say that x is a subobject of y and we use the notation
x ⊂ y. If x→ y is surjective, then we say that y is a quotient of x.

Lemma 12.5.4.010C Let f : x→ y be a morphism in an abelian category A. Then
(1) f is injective if and only if f is a monomorphism, and
(2) f is surjective if and only if f is an epimorphism.

Proof. Proof of (1). Recall that Ker(f) is an object representing the functor sending
z to Ker(MorA(z, x) → MorA(z, y)), see Definition 12.3.9. Thus Ker(f) is 0 if
and only if MorA(z, x) → MorA(z, y) is injective for all z if and only if f is a
monomorphism. The proof of (2) is similar. □

In an abelian category, if x ⊂ y is a subobject, then we denote
y/x = Coker(x→ y).

https://stacks.math.columbia.edu/tag/0109
https://stacks.math.columbia.edu/tag/010A
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Lemma 12.5.5.010D Let A be an abelian category. All finite limits and finite colimits
exist in A.

Proof. To show that finite limits exist it suffices to show that finite products and
equalizers exist, see Categories, Lemma 4.18.4. Finite products exist by definition
and the equalizer of a, b : x → y is the kernel of a − b. The argument for finite
colimits is similar but dual to this. □

Example 12.5.6.05PJ Let A be an abelian category. Pushouts and fibre products in A
have the following simple descriptions:

(1) If a : x→ y, b : z → y are morphisms in A, then we have the fibre product:
x×y z = Ker((a,−b) : x⊕ z → y).

(2) If a : y → x, b : y → z are morphisms in A, then we have the pushout:
x⨿y z = Coker((a,−b) : y → x⊕ z).

Definition 12.5.7.010E LetA be an additive category. Consider a sequence of morphisms
. . .→ x→ y → z → . . . or x1 → x2 → . . .→ xn

in A. We say such a sequence is a complex if the composition of any two consecutive
(drawn) arrows is zero. If A is abelian then we say a complex of the first type above
is exact at y if Im(x→ y) = Ker(y → z) and we say a complex of the second kind
is exact at xi where 1 < i < n if Im(xi−1 → xi) = Ker(xi → xi+1). We a sequence
as above is exact or is an exact sequence or is an exact complex if it is a complex
and exact at every object (in the first case) or exact at xi for all 1 < i < n (in the
second case). There are variants of these notions for sequences of the form

. . .→ x−3 → x−2 → x−1 and x1 → x2 → x3 → . . .

A short exact sequence is an exact complex of the form
0→ A→ B → C → 0.

In the following lemma we assume the reader knows what it means for a sequence
of abelian groups to be exact.

Lemma 12.5.8.05AA Let A be an abelian category. Let 0→M1 →M2 →M3 → 0 be a
complex of A.

(1) M1 →M2 →M3 → 0 is exact if and only if
0→ HomA(M3, N)→ HomA(M2, N)→ HomA(M1, N)

is an exact sequence of abelian groups for all objects N of A, and
(2) 0→M1 →M2 →M3 is exact if and only if

0→ HomA(N,M1)→ HomA(N,M2)→ HomA(N,M3)
is an exact sequence of abelian groups for all objects N of A.

Proof. Omitted. Hint: See Algebra, Lemma 10.10.1. □

Definition 12.5.9.010F Let A be an abelian category. Let i : A→ B and q : B → C be
morphisms of A such that 0→ A→ B → C → 0 is a short exact sequence. We say
the short exact sequence is split if there exist morphisms j : C → B and p : B → A
such that (B, i, j, p, q) is the direct sum of A and C.

Lemma 12.5.10.010G Let A be an abelian category. Let 0 → A → B → C → 0 be a
short exact sequence.

https://stacks.math.columbia.edu/tag/010D
https://stacks.math.columbia.edu/tag/05PJ
https://stacks.math.columbia.edu/tag/010E
https://stacks.math.columbia.edu/tag/05AA
https://stacks.math.columbia.edu/tag/010F
https://stacks.math.columbia.edu/tag/010G
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(1) Given a morphism s : C → B left inverse to B → C, there exists a unique
π : B → A such that (s, π) splits the short exact sequence as in Definition
12.5.9.

(2) Given a morphism π : B → A right inverse to A → B, there exists a
unique s : C → B such that (s, π) splits the short exact sequence as in
Definition 12.5.9.

Proof. Omitted. □

Lemma 12.5.11.08N2 Let A be an abelian category. Let

w
f //

g

��

y

h

��
x

k // z

be a commutative diagram.
(1) The diagram is cartesian if and only if

0→ w
(g,f)−−−→ x⊕ y (k,−h)−−−−→ z

is exact.
(2) The diagram is cocartesian if and only if

w
(g,−f)−−−−→ x⊕ y (k,h)−−−→ z → 0

is exact.

Proof. Let u = (g, f) : w → x⊕ y and v = (k,−h) : x⊕ y → z. Let p : x⊕ y → x
and q : x ⊕ y → y be the canonical projections. Let i : Ker(v) → x ⊕ y be the
canonical injection. By Example 12.5.6, the diagram is cartesian if and only if there
exists an isomorphism r : Ker(v) → w with f ◦ r = q ◦ i and g ◦ r = p ◦ i. The
sequence 0 → w

u→ x ⊕ y v→ z is exact if and only if there exists an isomorphism
r : Ker(v)→ w with u ◦ r = i. But given r : Ker(v)→ w, we have f ◦ r = q ◦ i and
g ◦ r = p ◦ i if and only if q ◦ u ◦ r = f ◦ r = q ◦ i and p ◦ u ◦ r = g ◦ r = p ◦ i, hence
if and only if u ◦ r = i. This proves (1), and then (2) follows by duality. □

Lemma 12.5.12.08N3 Let A be an abelian category. Let

w
f //

g

��

y

h

��
x

k // z

be a commutative diagram.
(1) If the diagram is cartesian, then the morphism Ker(f)→ Ker(k) induced

by g is an isomorphism.
(2) If the diagram is cocartesian, then the morphism Coker(f) → Coker(k)

induced by h is an isomorphism.

Proof. Suppose the diagram is cartesian. Let e : Ker(f) → Ker(k) be induced by
g. Let i : Ker(f)→ w and j : Ker(k)→ x be the canonical injections. There exists
t : Ker(k)→ w with f ◦t = 0 and g◦t = j. Hence, there exists u : Ker(k)→ Ker(f)
with i◦u = t. It follows g◦i◦u◦e = g◦t◦e = j◦e = g◦i and f◦i◦u◦e = 0 = f◦i, hence

https://stacks.math.columbia.edu/tag/08N2
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i ◦ u ◦ e = i. Since i is a monomorphism this implies u ◦ e = idKer(f). Furthermore,
we have j ◦ e ◦ u = g ◦ i ◦ u = g ◦ t = j. Since j is a monomorphism this implies
e ◦ u = idKer(k). This proves (1). Now, (2) follows by duality. □

Lemma 12.5.13.08N4 Let A be an abelian category. Let

w
f //

g

��

y

h

��
x

k // z

be a commutative diagram.
(1) If the diagram is cartesian and k is an epimorphism, then the diagram is

cocartesian and f is an epimorphism.
(2) If the diagram is cocartesian and g is a monomorphism, then the diagram

is cartesian and h is a monomorphism.

Proof. Suppose the diagram is cartesian and k is an epimorphism. Let u = (g, f) :
w → x ⊕ y and let v = (k,−h) : x ⊕ y → z. As k is an epimorphism, v is
an epimorphism, too. Therefore and by Lemma 12.5.11, the sequence 0 → w

u→
x ⊕ y

v→ z → 0 is exact. Thus, the diagram is cocartesian by Lemma 12.5.11.
Finally, f is an epimorphism by Lemma 12.5.12 and Lemma 12.5.4. This proves
(1), and (2) follows by duality. □

Lemma 12.5.14.05PK Let A be an abelian category.
(1) If x → y is surjective, then for every z → y the projection x ×y z → z is

surjective.
(2) If x → y is injective, then for every x → z the morphism z → z ⨿x y is

injective.

Proof. Immediately from Lemma 12.5.4 and Lemma 12.5.13. □

Lemma 12.5.15.08N5 Let A be an abelian category. Let f : x → y and g : y → z be
morphisms with g ◦ f = 0. Then, the following statements are equivalent:

(1) The sequence x f→ y
g→ z is exact.

(2) For every h : w → y with g◦h = 0 there exist an object v, an epimorphism
k : v → w and a morphism l : v → x with h ◦ k = f ◦ l.

Proof. Let i : Ker(g) → y be the canonical injection. Let p : x → Coim(f) be the
canonical projection. Let j : Im(f)→ Ker(g) be the canonical injection.

Suppose (1) holds. Let h : w → y with g ◦ h = 0. There exists c : w → Ker(g) with
i ◦ c = h. Let v = x×Ker(g) w with canonical projections k : v → w and l : v → x,
so that c ◦ k = j ◦ p ◦ l. Then, h ◦ k = i ◦ c ◦ k = i ◦ j ◦ p ◦ l = f ◦ l. As j ◦ p is an
epimorphism by hypothesis, k is an epimorphism by Lemma 12.5.13. This implies
(2).

Suppose (2) holds. Then, g ◦ i = 0. So, there are an object w, an epimorphism
k : w → Ker(g) and a morphism l : w → x with f ◦ l = i ◦ k. It follows i ◦ j ◦ p ◦ l =
f ◦ l = i ◦ k. Since i is a monomorphism we see that j ◦ p ◦ l = k is an epimorphism.
So, j is an epimorphisms and thus an isomorphism. This implies (1). □

https://stacks.math.columbia.edu/tag/08N4
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Lemma 12.5.16.08N6 Let A be an abelian category. Let

x
f //

α

��

y
g //

β

��

z

γ

��
u

k // v
l // w

be a commutative diagram.
(1) If the first row is exact and k is a monomorphism, then the induced

sequence Ker(α)→ Ker(β)→ Ker(γ) is exact.
(2) If the second row is exact and g is an epimorphism, then the induced

sequence Coker(α)→ Coker(β)→ Coker(γ) is exact.

Proof. Suppose the first row is exact and k is a monomorphism. Let a : Ker(α)→
Ker(β) and b : Ker(β) → Ker(γ) be the induced morphisms. Let h : Ker(α) →
x, i : Ker(β) → y and j : Ker(γ) → z be the canonical injections. As j is a
monomorphism we have b ◦ a = 0. Let c : s → Ker(β) with b ◦ c = 0. Then,
g ◦ i ◦ c = j ◦ b ◦ c = 0. By Lemma 12.5.15 there are an object t, an epimorphism
d : t → s and a morphism e : t → x with i ◦ c ◦ d = f ◦ e. Then, k ◦ α ◦ e =
β ◦ f ◦ e = β ◦ i ◦ c ◦ d = 0. As k is a monomorphism we get α ◦ e = 0. So, there
exists m : t→ Ker(α) with h◦m = e. It follows i◦a◦m = f ◦h◦m = f ◦e = i◦c◦d.
As i is a monomorphism we get a ◦m = c ◦ d. Thus, Lemma 12.5.15 implies (1),
and then (2) follows by duality. □

Lemma 12.5.17.010H Let A be an abelian category. Let

x
f //

α

��

y
g //

β

��

z //

γ

��

0

0 // u
k // v

l // w

be a commutative diagram with exact rows.
(1) There exists a unique morphism δ : Ker(γ) → Coker(α) such that the

diagram

y

β

��

y ×z Ker(γ)π′
oo π // Ker(γ)

δ

��
v

ι′// Coker(α)⨿u v Coker(α)ιoo

commutes, where π and π′ are the canonical projections and ι and ι′ are
the canonical coprojections.

(2) The induced sequence

Ker(α) f ′

−→ Ker(β) g′

−→ Ker(γ) δ−→ Coker(α) k′

−→ Coker(β) l′−→ Coker(γ)

is exact. If f is injective then so is f ′, and if l is surjective then so is l′.

Proof. As π is an epimorphism and ι is a monomorphism by Lemma 12.5.13,
uniqueness of δ is clear. Let p = y ×z Ker(γ) and q = Coker(α) ⨿u v. Let

https://stacks.math.columbia.edu/tag/08N6
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h : Ker(β) → y, i : Ker(γ) → z and j : Ker(π) → p be the canonical injec-
tions. Let π′′ : u→ Coker(α) be the canonical projection. Keeping in mind Lemma
12.5.13 we get a commutative diagram with exact rows

0 // Ker(π) j // p
π //

π′

��

Ker(γ)

i

��

// 0

x
f //

α

��

y
g //

β

��

z

γ

��

// 0

0 // u
k //

π′′

��

v
l //

ι′

��

w

0 // Coker(α) ι // q

As l ◦ β ◦ π′ = γ ◦ i ◦ π = 0 and as the third row of the diagram above is exact,
there is an a : p → u with k ◦ a = β ◦ π′. As the upper right quadrangle of the
diagram above is cartesian, Lemma 12.5.12 yields an epimorphism b : x → Ker(π)
with π′ ◦ j ◦ b = f . It follows k ◦ a ◦ j ◦ b = β ◦ π′ ◦ j ◦ b = β ◦ f = k ◦ α. As k is
a monomorphism this implies a ◦ j ◦ b = α. It follows π′′ ◦ a ◦ j ◦ b = π′′ ◦ α = 0.
As b is an epimorphism this implies π′′ ◦ a ◦ j = 0. Therefore, as the top row of the
diagram above is exact, there exists δ : Ker(γ)→ Coker(α) with δ ◦ π = π′′ ◦ a. It
follows ι ◦ δ ◦ π = ι ◦ π′′ ◦ a = ι′ ◦ k ◦ a = ι′ ◦ β ◦ π′ as desired.

As the upper right quadrangle in the diagram above is cartesian there is a c :
Ker(β) → p with π′ ◦ c = h and π ◦ c = g′. It follows ι ◦ δ ◦ g′ = ι ◦ δ ◦ π ◦ c =
ι′ ◦ β ◦ π′ ◦ c = ι′ ◦ β ◦ h = 0. As ι is a monomorphism this implies δ ◦ g′ = 0.

Next, let d : r → Ker(γ) with δ ◦ d = 0. Applying Lemma 12.5.15 to the exact
sequence p π−→ Ker(γ)→ 0 and d yields an object s, an epimorphism m : s→ r and
a morphism n : s → p with π ◦ n = d ◦m. As π′′ ◦ a ◦ n = δ ◦ d ◦m = 0, applying
Lemma 12.5.15 to the exact sequence x α−→ u

p−→ Coker(α) and a◦n yields an object
t, an epimorphism ε : t → s and a morphism ζ : t → x with a ◦ n ◦ ε = α ◦ ζ. It
holds β ◦ π′ ◦ n ◦ ε = k ◦ α ◦ ζ = β ◦ f ◦ ζ. Let η = π′ ◦ n ◦ ε − f ◦ ζ : t → y.
Then, β ◦ η = 0. It follows that there is a ϑ : t → Ker(β) with η = h ◦ ϑ. It holds
i ◦ g′ ◦ ϑ = g ◦ h ◦ ϑ = g ◦ π′ ◦ n ◦ ε − g ◦ f ◦ ζ = i ◦ π ◦ n ◦ ε = i ◦ d ◦m ◦ ε. As i
is a monomorphism we get g′ ◦ ϑ = d ◦m ◦ ε. Thus, as m ◦ ε is an epimorphism,
Lemma 12.5.15 implies that Ker(β) g′

−→ Ker(γ) δ−→ Coker(α) is exact. Then, the
claim follows by Lemma 12.5.16 and duality. □
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Lemma 12.5.18.08N7 Let A be an abelian category. Let

x

��

//

α

��

y

��

//

β

��

z

��

//

γ

��

0

x′ //

α′

��

y′ //

β′

��

z′ //

γ′

��

0

0 // u

��

// v

��

// w

~~
0 // u′ // v′ // w′

be a commutative diagram with exact rows. Then, the induced diagram

Ker(α) //

��

Ker(β) //

��

Ker(γ) δ //

��

Coker(α) //

��

Coker(β) //

��

Coker(γ)

��
Ker(α′) // Ker(β′) // Ker(γ′) δ′

// Coker(α′) // Coker(β′) // Coker(γ′)
commutes.
Proof. Omitted. □

Lemma 12.5.19.05QA Let A be an abelian category. Let
w //

α

��

x //

β

��

y //

γ

��

z

δ
��

w′ // x′ // y′ // z′

be a commutative diagram with exact rows.
(1) If α, γ are surjective and δ is injective, then β is surjective.
(2) If β, δ are injective and α is surjective, then γ is injective.

Proof. Assume α, γ are surjective and δ is injective. We may replace w′ by Im(w′ →
x′), i.e., we may assume that w′ → x′ is injective. We may replace z by Im(y → z),
i.e., we may assume that y → z is surjective. Then we may apply Lemma 12.5.17
to

Ker(y → z) //

��

y //

��

z //

��

0

0 // Ker(y′ → z′) // y′ // z′

to conclude that Ker(y → z) → Ker(y′ → z′) is surjective. Finally, we apply
Lemma 12.5.17 to

w //

��

x //

��

Ker(y → z) //

��

0

0 // w′ // x′ // Ker(y′ → z′)

to conclude that x → x′ is surjective. This proves (1). The proof of (2) is dual to
this. □

https://stacks.math.columbia.edu/tag/08N7
https://stacks.math.columbia.edu/tag/05QA
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Lemma 12.5.20.05QB [ES52, Lemma 4.5
page 16]

Let A be an abelian category. Let
v //

α

��

w //

β

��

x //

γ

��

y //

δ
��

z

ϵ

��
v′ // w′ // x′ // y′ // z′

be a commutative diagram with exact rows. If β, δ are isomorphisms, ϵ is injective,
and α is surjective then γ is an isomorphism.
Proof. Immediate consequence of Lemma 12.5.19. □

12.6. Extensions

010I
Definition 12.6.1.010J Let A be an abelian category. Let A,B ∈ Ob(A). An extension
E of B by A is a short exact sequence

0→ A→ E → B → 0.
A morphism of extensions between two extensions 0 → A → E → B → 0 and
0→ A→ F → B → 0 means a morphism f : E → F in A making the diagram

0 // A //

id
��

E //

f

��

B //

id
��

0

0 // A // F // B // 0
commutative. Thus, the extensions of B by A form a category.
By abuse of language we often omit mention of the morphisms A→ E and E → B,
although they are definitively part of the structure of an extension.
Definition 12.6.2.010K Let A be an abelian category. Let A,B ∈ Ob(A). The set of
isomorphism classes of extensions of B by A is denoted

ExtA(B,A).
This is called the Ext-group.
This definition works, because by our conventions Ob(A) is a set, and hence
ExtA(B,A) is a set. In any of the cases of “big” abelian categories listed in Cate-
gories, Remark 4.2.2 one can check by hand that ExtA(B,A) is a set as well. Also,
we will see later that this is always the case when A has either enough projectives
or enough injectives. Insert future reference here.
Actually we can turn ExtA(−,−) into a functor

A×Aopp −→ Sets, (A,B) 7−→ ExtA(B,A)
as follows:

(1) Given a morphism B′ → B and an extension E of B by A we define
E′ = E ×B B′ so that we have the following commutative diagram of
short exact sequences

0 // A //

��

E′ //

��

B′ //

��

0

0 // A // E // B // 0

https://stacks.math.columbia.edu/tag/05QB
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https://stacks.math.columbia.edu/tag/010K


12.6. EXTENSIONS 911

The extension E′ is called the pullback of E via B′ → B.
(2) Given a morphism A → A′ and an extension E of B by A we define

E′ = A′ ⨿A E so that we have the following commutative diagram of
short exact sequences

0 // A //

��

E //

��

B //

��

0

0 // A′ // E′ // B // 0

The extension E′ is called the pushout of E via A→ A′.
To see that this defines a functor as indicated above there are several things to verify.
First of all functoriality in the variable B requires that (E×BB′)×B′B′′ = E×BB′′

which is a general property of fibre products. Dually one deals with functoriality
in the variable A. Finally, given A→ A′ and B′ → B we have to show that

A′ ⨿A (E ×B B′) ∼= (A′ ⨿A E)×B B′

as extensions of B′ by A′. Recall that A′ ⨿A E is a quotient of A′ ⊕ E. Thus the
right hand side is a quotient of A′ ⊕E ×B B′, and it is straightforward to see that
the kernel is exactly what you need in order to get the left hand side.

Note that if E1 and E2 are extensions of B by A, then E1 ⊕ E2 is an extension of
B ⊕ B by A ⊕ A. We push out by the sum map A ⊕ A → A and we pull back by
the diagonal map B → B ⊕B to get an extension E1 + E2 of B by A.

0 // A⊕A //

Σ
��

E1 ⊕ E2 //

��

B ⊕B //

��

0

0 // A // E′ // B ⊕B // 0

0 // A //

OO

E1 + E2 //

OO

B //

∆

OO

0

The extension E1 + E2 is called the Baer sum of the given extensions.

Lemma 12.6.3.010L The construction (E1, E2) 7→ E1 +E2 above defines a commutative
group law on ExtA(B,A) which is functorial in both variables.

Proof. Omitted. □

Lemma 12.6.4.05E2 Let A be an abelian category. Let 0→M1 →M2 →M3 → 0 be a
short exact sequence in A.

(1) There is a canonical six term exact sequence of abelian groups

0 // HomA(M3, N) // HomA(M2, N) // HomA(M1, N)

rr
ExtA(M3, N) // ExtA(M2, N) // ExtA(M1, N)

for all objects N of A, and

https://stacks.math.columbia.edu/tag/010L
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(2) there is a canonical six term exact sequence of abelian groups

0 // HomA(N,M1) // HomA(N,M2) // HomA(N,M3)

rr
ExtA(N,M1) // ExtA(N,M2) // ExtA(N,M3)

for all objects N of A.
Proof. Omitted. Hint: The boundary maps are defined using either the pushout
or pullback of the given short exact sequence. □

12.7. Additive functors

010M First a completely silly lemma characterizing additive functors between additive
categories.
Lemma 12.7.1.0DLP Let A and B be additive categories. Let F : A → B be a functor.
The following are equivalent

(1) F is additive,
(2) F (A)⊕ F (B)→ F (A⊕B) is an isomorphism for all A,B ∈ A, and
(3) F (A⊕B)→ F (A)⊕ F (B) is an isomorphism for all A,B ∈ A.

Proof. Additive functors commute with direct sums by Lemma 12.3.7 hence (1)
implies (2) and (3). On the other hand (2) and (3) are equivalent because the
composition F (A) ⊕ F (B) → F (A ⊕ B) → F (A) ⊕ F (B) is the identity map.
Assume (2) and (3) hold. Let f, g : A → B be maps. Then f + g is equal to the
composition

A→ A⊕A diag(f,g)−−−−−−→ B ⊕B → B

Apply the functor F and consider the following diagram
F (A) //

&&

F (A⊕A)
F (diag(f,g))

// F (B ⊕B) //

��

F (B)

F (A)⊕ F (A)

OO

diag(F (f),F (g))// F (B)⊕ F (B)

88

We claim this is commutative. For the middle square we can verify it separately
for each of the four induced maps F (A) → F (B) where it follows from the fact
that F is a functor (in other words this square commutes even if F does not satisfy
any properties beyond being a functor). For the triangle on the left, we use that
F (A ⊕ A) → F (A) ⊕ F (A) is an isomorphism to see that it suffice to check after
composition with this map and this check is trivial. Dually for the other triangle.
Thus going around the bottom is equal to F (f + g) and we conclude. □

Recall that we defined, in Categories, Definition 4.23.1 the notion of a “right exact”,
“left exact” and “exact” functor in the setting of a functor between categories that
have finite (co)limits. Thus this applies in particular to functors between abelian
categories.
Lemma 12.7.2.010N Let A and B be abelian categories. Let F : A → B be a functor.

(1) If F is either left or right exact, then it is additive.
(2) F is left exact if and only if for every short exact sequence 0→ A→ B →

C → 0 the sequence 0→ F (A)→ F (B)→ F (C) is exact.

https://stacks.math.columbia.edu/tag/0DLP
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(3) F is right exact if and only if for every short exact sequence 0 → A →
B → C → 0 the sequence F (A)→ F (B)→ F (C)→ 0 is exact.

(4) F is exact if and only if for every short exact sequence 0 → A → B →
C → 0 the sequence 0→ F (A)→ F (B)→ F (C)→ 0 is exact.

Proof. If F is left exact, i.e., F commutes with finite limits, then F sends products
to products, hence F preserved direct sums, hence F is additive by Lemma 12.7.1.
On the other hand, suppose that for every short exact sequence 0 → A → B →
C → 0 the sequence 0→ F (A)→ F (B)→ F (C) is exact. Let A,B be two objects.
Then we have a short exact sequence

0→ A→ A⊕B → B → 0
see for example Lemma 12.3.10. By assumption, the lower row in the commutative
diagram

0 // F (A)

��

// F (A)⊕ F (B) //

��

F (B)

��

// 0

0 // F (A) // F (A⊕B) // F (B)
is exact. Hence by the snake lemma (Lemma 12.5.17) we conclude that F (A) ⊕
F (B) → F (A ⊕ B) is an isomorphism. Hence F is additive in this case as well.
Thus for the rest of the proof we may assume F is additive.
Denote f : B → C a map from B to C. Exactness of 0→ A→ B → C just means
that A = Ker(f). Clearly the kernel of f is the equalizer of the two maps f and
0 from B to C. Hence if F commutes with limits, then F (Ker(f)) = Ker(F (f))
which exactly means that 0→ F (A)→ F (B)→ F (C) is exact.
Conversely, suppose that F is additive and transforms any short exact sequence
0 → A → B → C → 0 into an exact sequence 0 → F (A) → F (B) → F (C).
Because it is additive it commutes with direct sums and hence finite products in A.
To show it commutes with finite limits it therefore suffices to show that it commutes
with equalizers. But equalizers in an abelian category are the same as the kernel of
the difference map, hence it suffices to show that F commutes with taking kernels.
Let f : A→ B be a morphism. Factor f as A→ I → B with f ′ : A→ I surjective
and i : I → B injective. (This is possible by the definition of an abelian category.)
Then it is clear that Ker(f) = Ker(f ′). Also 0 → Ker(f ′) → A → I → 0 and
0 → I → B → B/I → 0 are short exact. By the condition imposed on F we see
that 0→ F (Ker(f ′))→ F (A)→ F (I) and 0→ F (I)→ F (B)→ F (B/I) are exact.
Hence it is also the case that F (Ker(f ′)) is the kernel of the map F (A) → F (B),
and we win.
The proof of (3) is similar to the proof of (2). Statement (4) is a combination of
(2) and (3). □

Lemma 12.7.3.010O Let A and B be abelian categories. Let F : A → B be an exact
functor. For every pair of objects A,B of A the functor F induces an abelian group
homomorphism

ExtA(B,A) −→ ExtB(F (B), F (A))
which maps the extension E to F (E).

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/010O
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The following lemma is used in the proof that the category of abelian sheaves on a
site is abelian, where the functor b is sheafification.

Lemma 12.7.4.03A3 Let a : A → B and b : B → A be functors. Assume that
(1) A, B are additive categories, a, b are additive functors, and a is right

adjoint to b,
(2) B is abelian and b is left exact, and
(3) ba ∼= idA.

Then A is abelian.

Proof. As B is abelian we see that all finite limits and colimits exist in B by Lemma
12.5.5. Since b is a left adjoint we see that b is also right exact and hence exact, see
Categories, Lemma 4.24.6. Let φ : B1 → B2 be a morphism of B. In particular, if
K = Ker(B1 → B2), thenK is the equalizer of 0 and φ and hence bK is the equalizer
of 0 and bφ, hence bK is the kernel of bφ. Similarly, if Q = Coker(B1 → B2), then
Q is the coequalizer of 0 and φ and hence bQ is the coequalizer of 0 and bφ, hence
bQ is the cokernel of bφ. Thus we see that every morphism of the form bφ in A has
a kernel and a cokernel. However, since ba ∼= id we see that every morphism of A
is of this form, and we conclude that kernels and cokernels exist in A. In fact, the
argument shows that if ψ : A1 → A2 is a morphism then

Ker(ψ) = bKer(aψ), and Coker(ψ) = bCoker(aψ).

Now we still have to show that Coim(ψ) = Im(ψ). We do this as follows. First
note that since A has kernels and cokernels it has all finite limits and colimits (see
proof of Lemma 12.5.5). Hence we see by Categories, Lemma 4.24.6 that a is left
exact and hence transforms kernels (=equalizers) into kernels.

Coim(ψ) = Coker(Ker(ψ)→ A1) by definition
= bCoker(a(Ker(ψ)→ A1)) by formula above
= bCoker(Ker(aψ)→ aA1)) a preserves kernels
= bCoim(aψ) by definition
= b Im(aψ) B is abelian
= bKer(aA2 → Coker(aψ)) by definition
= Ker(baA2 → bCoker(aψ)) b preserves kernels
= Ker(A2 → bCoker(aψ)) ba = idA

= Ker(A2 → Coker(ψ)) by formula above
= Im(ψ) by definition

Thus the lemma holds. □

12.8. Localization

05QC In this section we note how Gabriel-Zisman localization interacts with the additive
structure on a category.

Lemma 12.8.1.05QD Let C be a preadditive category. Let S be a left or right multi-
plicative system. There exists a canonical preadditive structure on S−1C such that
the localization functor Q : C → S−1C is additive.

https://stacks.math.columbia.edu/tag/03A3
https://stacks.math.columbia.edu/tag/05QD
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Proof. We will prove this in the case S is a left multiplicative system. The case
where S is a right multiplicative system is dual. Suppose that X,Y are objects of C
and that α, β : X → Y are morphisms in S−1C. According to Categories, Lemma
4.27.5 we may represent these by pairs s−1f, s−1g with common denominator s. In
this case we define α + β to be the equivalence class of s−1(f + g). In the rest of
the proof we show that this is well defined and that composition is bilinear. Once
this is done it is clear that Q is an additive functor.
Let us show construction above is well defined. An abstract way of saying this is
that filtered colimits of abelian groups agree with filtered colimits of sets and to
use Categories, Equation (4.27.7.1). We can work this out in a bit more detail
as follows. Say s : Y → Y1 and f, g : X → Y1. Suppose we have a second
representation of α, β as (s′)−1f ′, (s′)−1g′ with s′ : Y → Y2 and f ′, g′ : X → Y2.
By Categories, Remark 4.27.7 we can find a morphism s3 : Y → Y3 and morphisms
a1 : Y1 → Y3, a2 : Y2 → Y3 such that a1 ◦ s = s3 = a2 ◦ s′ and also a1 ◦ f = a2 ◦ f ′

and a1 ◦ g = a2 ◦ g′. Hence we see that s−1(f + g) is equivalent to
s−1

3 (a1 ◦ (f + g)) = s−1
3 (a1 ◦ f + a1 ◦ g)

= s−1
3 (a2 ◦ f ′ + a2 ◦ g′)

= s−1
3 (a2 ◦ (f ′ + g′))

which is equivalent to (s′)−1(f ′ + g′).
Fix s : Y → Y ′ and f, g : X → Y ′ with α = s−1f and β = s−1g as morphisms
X → Y in S−1C. To show that composition is bilinear first consider the case of a
morphism γ : Y → Z in S−1C. Say γ = t−1h for some h : Y → Z ′ and t : Z → Z ′

in S. Using LMS2 we choose morphisms a : Y ′ → Z ′′ and t′ : Z ′ → Z ′′ in S such
that a ◦ s = t′ ◦ h. Picture

Z

t
��

Y
h //

s

��

Z ′

t′

��
X

f,g // Y ′ a // Z ′′

Then γ ◦ α = (t′ ◦ t)−1(a ◦ f) and γ ◦ β = (t′ ◦ t)−1(a ◦ g). Hence we see that
γ ◦ (α+ β) is represented by (t′ ◦ t)−1(a ◦ (f + g)) = (t′ ◦ t)−1(a ◦ f + a ◦ g) which
represents γ ◦ α+ γ ◦ β.
Finally, assume that δ : W → X is another morphism of S−1C. Say δ = r−1i for
some i : W → X ′ and r : X → X ′ in S. We claim that we can find a morphism
s′ : Y ′ → Y ′′ in S and morphisms a′′, b′′ : X ′ → Y ′′ such that the following diagram
commutes

Y

s

��
X

f,g,f+g //

r

��

Y ′

s′

��
W

i // X ′ a′′,b′′,a′′+b′′
// Y ′′
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Namely, using LMS2 we can first choose s1 : Y ′ → Y1, s2 : Y ′ → Y2 in S and
a : X ′ → Y1, b : X ′ → Y2 such that a ◦ r = s1 ◦ f and b ◦ r = s2 ◦ f . Then using
that the category Y ′/S is filtered (see Categories, Remark 4.27.7), we can find a
s′ : Y ′ → Y ′′ and morphisms a′ : Y1 → Y ′′, b′ : Y2 → Y ′′ such that s′ = a′ ◦ s1 and
s′ = b′ ◦ s2. Setting a′′ = a′ ◦ a and b′′ = b′ ◦ b works. At this point we see that the
compositions α◦δ and β ◦δ are represented by (s′ ◦s)−1(a′′ ◦ i) and (s′ ◦s)−1(b′′ ◦ i).
Hence α◦δ+β ◦δ is represented by (s′ ◦s)−1(a′′ ◦ i+b′′ ◦ i) = (s′ ◦s)−1((a′′ +b′′)◦ i)
which by the diagram again is a representative of (α+ β) ◦ δ. □

Lemma 12.8.2.05QE Let C be an additive category. Let S be a left or right multiplicative
system. Then S−1C is an additive category and the localization functor Q : C →
S−1C is additive.

Proof. By Lemma 12.8.1 we see that S−1C is preadditive and that Q is additive.
Recall that the functor Q commutes with finite colimits (resp. finite limits), see
Categories, Lemmas 4.27.9 and 4.27.17. We conclude that S−1C has a zero object
and direct sums, see Lemmas 12.3.2 and 12.3.4. □

The following lemma describes the “kernel” of the localization functor in case we
invert a multiplicative system.

Lemma 12.8.3.05QF Let C be an additive category. Let S be a multiplicative system.
Let X be an object of C. The following are equivalent

(1) Q(X) = 0 in S−1C,
(2) there exists Y ∈ Ob(C) such that 0 : X → Y is an element of S, and
(3) there exists Z ∈ Ob(C) such that 0 : Z → X is an element of S.

Proof. If (2) holds we see that 0 = Q(0) : Q(X)→ Q(Y ) is an isomorphism. In the
additive category S−1C this implies that Q(X) = 0. Hence (2) ⇒ (1). Similarly,
(3) ⇒ (1). Suppose that Q(X) = 0. This implies that the morphism f : 0 → X
is transformed into an isomorphism in S−1C. Hence by Categories, Lemma 4.27.21
there exists a morphism g : Z → 0 such that fg ∈ S. This proves (1) ⇒ (3).
Similarly, (1) ⇒ (2). □

Lemma 12.8.4.05QG Let A be an abelian category.
(1) If S is a left multiplicative system, then the category S−1A has cokernels

and the functor Q : A → S−1A commutes with them.
(2) If S is a right multiplicative system, then the category S−1A has kernels

and the functor Q : A → S−1A commutes with them.
(3) If S is a multiplicative system, then the category S−1A is abelian and the

functor Q : A → S−1A is exact.

Proof. Assume S is a left multiplicative system. Let a : X → Y be a morphism
of S−1A. Then a = s−1f for some s : Y → Y ′ in S and f : X → Y ′. Since Q(s)
is an isomorphism we see that the existence of Coker(a : X → Y ) is equivalent to
the existence of Coker(Q(f) : X → Y ′). Since Coker(Q(f)) is the coequalizer of 0
and Q(f) we see that Coker(Q(f)) is represented by Q(Coker(f)) by Categories,
Lemma 4.27.9. This proves (1).
Part (2) is dual to part (1).
If S is a multiplicative system, then S is both a left and a right multiplicative
system. Thus we see that S−1A has kernels and cokernels and Q commutes with

https://stacks.math.columbia.edu/tag/05QE
https://stacks.math.columbia.edu/tag/05QF
https://stacks.math.columbia.edu/tag/05QG
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kernels and cokernels. To finish the proof of (3) we have to show that Coim = Im
in S−1A. Again using that any arrow in S−1A is isomorphic to an arrow Q(f) we
see that the result follows from the result for A. □

12.9. Jordan-Hölder

0FCD The Jordan-Hölder lemma is Lemma 12.9.7. First we state some definitions.

Definition 12.9.1.0FCE Let A be an abelian category. An object A of A is said to be
simple if it is nonzero and the only subobjects of A are 0 and A.

Definition 12.9.2.0FCF Let A be an abelian category.
(1) We say an object A of A is Artinian if and only if it satisfies the descending

chain condition for subobjects.
(2) We say A is Artinian if every object of A is Artinian.

Definition 12.9.3.0FCG Let A be an abelian category.
(1) We say an object A of A is Noetherian if and only if it satisfies the as-

cending chain condition for subobjects.
(2) We say A is Noetherian if every object of A is Noetherian.

Lemma 12.9.4.0FCH Let A be an abelian category. Let 0 → A1 → A2 → A3 → 0 be
a short exact sequence of A. Then A2 is Artinian if and only if A1 and A3 are
Artinian.

Proof. Omitted. □

Lemma 12.9.5.0FCI Let A be an abelian category. Let 0 → A1 → A2 → A3 → 0 be
a short exact sequence of A. Then A2 is Noetherian if and only if A1 and A3 are
Noetherian.

Proof. Omitted. □

Lemma 12.9.6.0FCJ Let A be an abelian category. Let A be an object of A. The
following are equivalent

(1) A is Artinian and Noetherian, and
(2) there exists a filtration 0 ⊂ A1 ⊂ A2 ⊂ . . . ⊂ An = A by subobjects such

that Ai/Ai−1 is simple for i = 1, . . . , n.

Proof. Assume (1). If A is zero, then (2) holds. If A is not zero, then there exists a
smallest nonzero object A1 ⊂ A by the Artinian property. Of course A1 is simple.
If A1 = A, then we are done. If not, then we can find A1 ⊂ A2 ⊂ A minimal with
A2 ̸= A1. Then A2/A1 is simple. Continuing in this way, we can find a sequence
0 ⊂ A1 ⊂ A2 ⊂ . . . of subobjects of A such that Ai/Ai−1 is simple. Since A is
Noetherian, we conclude that the process stops. Hence (2) follows.
Assume (2). We will prove (1) by induction on n. If n = 1, then A is simple and
clearly Noetherian and Artinian. If the result holds for n−1, then we use the short
exact sequence 0 → An−1 → An → An/An−1 → 0 and Lemmas 12.9.4 and 12.9.5
to conclude for n. □

Lemma 12.9.7 (Jordan-Hölder).0FCK Let A be an abelian category. Let A be an object
of A satisfying the equivalent conditions of Lemma 12.9.6. Given two filtrations

0 ⊂ A1 ⊂ A2 ⊂ . . . ⊂ An = A and 0 ⊂ B1 ⊂ B2 ⊂ . . . ⊂ Bm = A

https://stacks.math.columbia.edu/tag/0FCE
https://stacks.math.columbia.edu/tag/0FCF
https://stacks.math.columbia.edu/tag/0FCG
https://stacks.math.columbia.edu/tag/0FCH
https://stacks.math.columbia.edu/tag/0FCI
https://stacks.math.columbia.edu/tag/0FCJ
https://stacks.math.columbia.edu/tag/0FCK
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with Si = Ai/Ai−1 and Tj = Bj/Bj−1 simple objects we have n = m and there
exists a permutation σ of {1, . . . , n} such that Si ∼= Tσ(i) for all i ∈ {1, . . . , n}.
Proof. Let j be the smallest index such that A1 ⊂ Bj . Then the map S1 = A1 →
Bj/Bj−1 = Tj is an isomorphism. Moreover, the object A/A1 = An/A1 = Bm/A1
has the two filtrations

0 ⊂ A2/A1 ⊂ A3/A1 ⊂ . . . ⊂ An/A1

and
0 ⊂ (B1 +A1)/A1 ⊂ . . . ⊂ (Bj−1 +A1)/A1 = Bj/A1 ⊂ Bj+1/A1 ⊂ . . . ⊂ Bm/A1

We conclude by induction. □

12.10. Serre subcategories

02MN In [Ser53, Chapter I, Section 1] a notion of a “class” of abelian groups is defined.
This notion has been extended to abelian categories by many authors (in slightly
different ways). We will use the following variant which is virtually identical to
Serre’s original definition.
Definition 12.10.1.02MO [Ser53, Condition

(I) on page 259]
Let A be an abelian category.

(1) A Serre subcategory of A is a nonempty full subcategory C of A such that
given an exact sequence1

A→ B → C

with A,C ∈ Ob(C), then also B ∈ Ob(C).
(2) A weak Serre subcategory of A is a nonempty full subcategory C of A

such that given an exact sequence
A0 → A1 → A2 → A3 → A4

with A0, A1, A3, A4 in C, then also A2 in C.
In some references the second notion is called a “thick” subcategory and in other
references the first notion is called a “thick” subcategory. However, it seems that
the notion of a Serre subcategory is universally accepted to be the one defined
above. Note that in both cases the category C is abelian and that the inclusion
functor C → A is a fully faithful exact functor. Let’s characterize these types of
subcategories in more detail.
Lemma 12.10.2.02MP Let A be an abelian category. Let C be a subcategory of A. Then
C is a Serre subcategory if and only if the following conditions are satisfied:

(1) 0 ∈ Ob(C),
(2) C is a strictly full subcategory of A,
(3) any subobject or quotient of an object of C is an object of C,
(4) if A ∈ Ob(A) is an extension of objects of C then also A ∈ Ob(C).

Moreover, a Serre subcategory is an abelian category and the inclusion functor is
exact.
Proof. Omitted. □

Lemma 12.10.3.0754 Let A be an abelian category. Let C be a subcategory of A. Then
C is a weak Serre subcategory if and only if the following conditions are satisfied:

1By Definition 12.5.7 this means Im(A→ B) = Ker(B → C).

https://stacks.math.columbia.edu/tag/02MO
https://stacks.math.columbia.edu/tag/02MP
https://stacks.math.columbia.edu/tag/0754
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(1) 0 ∈ Ob(C),
(2) C is a strictly full subcategory of A,
(3) kernels and cokernels in A of morphisms between objects of C are in C,
(4) if A ∈ Ob(A) is an extension of objects of C then also A ∈ Ob(C).

Moreover, a weak Serre subcategory is an abelian category and the inclusion functor
is exact.

Proof. Omitted. □

Lemma 12.10.4.02MQ Let A, B be abelian categories. Let F : A → B be an exact
functor. Then the full subcategory of objects C of A such that F (C) = 0 forms a
Serre subcategory of A.

Proof. Omitted. □

Definition 12.10.5.02MR Let A, B be abelian categories. Let F : A → B be an exact
functor. Then the full subcategory of objects C of A such that F (C) = 0 is called
the kernel of the functor F , and is sometimes denoted Ker(F ).

Any Serre subcategory of an abelian category is the kernel of an exact functor.
In Examples, Section 110.76 we discuss this for Serre’s original example of torsion
groups.

Lemma 12.10.6.02MS Let A be an abelian category. Let C ⊂ A be a Serre subcategory.
There exists an abelian category A/C and an exact functor

F : A −→ A/C

which is essentially surjective and whose kernel is C. The category A/C and the
functor F are characterized by the following universal property: For any exact
functor G : A → B such that C ⊂ Ker(G) there exists a factorization G = H ◦ F
for a unique exact functor H : A/C → B.

Proof. Consider the set of arrows of A defined by the following formula

S = {f ∈ Arrows(A) | Ker(f),Coker(f) ∈ Ob(C)}.

We claim that S is a multiplicative system. To prove this we have to check MS1,
MS2, MS3, see Categories, Definition 4.27.1.

It is clear that identities are elements of S. Suppose that f : A→ B and g : B → C
are elements of S. There are exact sequences

0→ Ker(f)→ Ker(gf)→ Ker(g)
Coker(f)→ Coker(gf)→ Coker(g)→ 0

Hence it follows that gf ∈ S. This proves MS1. (In fact, a similar argument
will show that S is a saturated multiplicative system, see Categories, Definition
4.27.20.)

Consider a solid diagram
A

t

��

g
// B

s

��
C

f // C ⨿A B

https://stacks.math.columbia.edu/tag/02MQ
https://stacks.math.columbia.edu/tag/02MR
https://stacks.math.columbia.edu/tag/02MS
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with t ∈ S. Set W = C⨿AB = Coker((t,−g) : A→ C⊕B). Then Ker(t)→ Ker(s)
is surjective and Coker(t)→ Coker(s) is an isomorphism. Hence s is an element of
S. This proves LMS2 and the proof of RMS2 is dual.

Finally, consider morphisms f, g : B → C and a morphism s : A → B in S
such that f ◦ s = g ◦ s. This means that (f − g) ◦ s = 0. In turn this means
that I = Im(f − g) ⊂ C is a quotient of Coker(s) hence an object of C. Thus
t : C → C ′ = C/I is an element of S such that t ◦ (f − g) = 0, i.e., such that
t ◦ f = t ◦ g. This proves LMS3 and the proof of RMS3 is dual.

Having proved that S is a multiplicative system we set A/C = S−1A, and we set F
equal to the localization functor Q. By Lemma 12.8.4 the category A/C is abelian
and F is exact. If X is in the kernel of F = Q, then by Lemma 12.8.3 we see that
0 : X → Z is an element of S and hence X is an object of C, i.e., the kernel of F is
C. Finally, if G is as in the statement of the lemma, then G turns every element of S
into an isomorphism. Hence we obtain the functor H : A/C → B from the universal
property of localization, see Categories, Lemma 4.27.8. We still have to show the
functor H is exact. To do this it suffices to show that H commutes with taking
kernels and cokernels, see Lemma 12.7.2. Let A → B be a morphism in A/C. We
may represent A→ B as fs−1 where s : A′ → A is in S and f : A′ → B an arbitrary
morphism of A. Since F = Q maps s to an isomorphism in the quotient category
A/C, it suffices to show that H commutes with taking kernels and cokernels of
morphisms f : A→ B of A. But here we have H(f) = G(f) and the result follows
from the fact that G is exact. □

Lemma 12.10.7.06XK Let A, B be abelian categories. Let F : A → B be an exact
functor. Let C ⊂ A be a Serre subcategory contained in the kernel of F . Then
C = Ker(F ) if and only if the induced functor F : A/C → B (Lemma 12.10.6) is
faithful.

Proof. We will use the results of Lemma 12.10.6 without further mention. The
“only if” direction is true because the kernel of F is zero by construction. Namely,
if f : X → Y is a morphism in A/C such that F (f) = 0, then F (Im(f)) =
Im(F (f)) = 0, hence Im(f) = 0 by the assumption on the kernel of F . Thus f = 0.

For the “if” direction, let X be an object of A such that F (X) = 0. Then F (idX) =
idF (X) = 0, thus idX = 0 in A/C by faithfulness of F . Hence X = 0 in A/C, that
is X ∈ Ob(C). □

12.11. K-groups

02MT A tiny bit about K0 of an abelian category.

Definition 12.11.1.02MU Let A be an abelian category. We denote K0(A) the zeroth
K-group of A. It is the abelian group constructed as follows. Take the free abelian
group on the objects on A and for every short exact sequence 0→ A→ B → C → 0
impose the relation [B]− [A]− [C] = 0.

Another way to say this is that there is a presentation⊕
A→B→C ses

Z[A→ B → C] −→
⊕

A∈Ob(A)

Z[A] −→ K0(A) −→ 0

https://stacks.math.columbia.edu/tag/06XK
https://stacks.math.columbia.edu/tag/02MU
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with [A → B → C] 7→ [B] − [A] − [C] of K0(A). The short exact sequence
0 → 0 → 0 → 0 → 0 leads to the relation [0] = 0 in K0(A). There are no set-
theoretical issues as all of our categories are “small” if not mentioned otherwise.
Some examples of K-groups for categories of modules over rings where computed
in Algebra, Section 10.55.

Lemma 12.11.2.02MV Let F : A → B be an exact functor between abelian categories.
Then F induces a homomorphism of K-groups K0(F ) : K0(A)→ K0(B) by simply
setting K0(F )([A]) = [F (A)].

Proof. Proves itself. □

Suppose we are given an object M of an abelian category A and a complex of the
form

(12.11.2.1)02MW . . . // M
φ // M

ψ // M
φ // M // . . .

In this situation we define
H0(M,φ, ψ) = Ker(ψ)/ Im(φ), and H1(M,φ, ψ) = Ker(φ)/ Im(ψ).

Lemma 12.11.3.02MX Let A be an abelian category. Let C ⊂ A be a Serre subcategory
and set B = A/C.

(1) The exact functors C → A and A → B induce an exact sequence
K0(C)→ K0(A)→ K0(B)→ 0

of K-groups, and
(2) the kernel of K0(C)→ K0(A) is equal to the collection of elements of the

form
[H0(M,φ, ψ)]− [H1(M,φ, ψ)]

where (M,φ, ψ) is a complex as in (12.11.2.1) with the property that it
becomes exact in B; in other words that H0(M,φ, ψ) and H1(M,φ, ψ)
are objects of C.

Proof. Proof of (1). It is clear that K0(A) → K0(B) is surjective and that the
composition K0(C) → K0(A) → K0(B) is zero. Let x ∈ K0(A) be an element
mapping to zero in K0(B). We can write x = [A] − [A′] with A,A′ in A (fun
exercise). Denote B,B′ the corresponding objects of B. The fact that x maps to
zero in K0(B) means that there exists a finite set I = I+ ⨿ I−, for each i ∈ I a
short exact sequence

0→ Bi → B′
i → B′′

i → 0
in B such that we have

[B]− [B′] =
∑

i∈I+
([B′

i]− [Bi]− [B′′
i ])−

∑
i∈I−

([B′
i]− [Bi]− [B′′

i ])

in the free abelian group on isomorphism classes of objects of B. We can rewrite
this as
[B]+

∑
i∈I+

([Bi]+ [B′′
i ])+

∑
i∈I−

[B′
i] = [B′]+

∑
i∈I−

([Bi]+ [B′′
i ])+

∑
i∈I+

[B′
i].

Since the right and left hand side should contain the same isomorphism classes of
objects of B counted with multiplicity, this means there should be a bijection
τ : {B}⨿{Bi, B′′

i ; i ∈ I+}⨿{B′
i; i ∈ I−} −→ {B′}⨿{Bi, B′′

i ; i ∈ I−}⨿{B′
i; i ∈ I+}

https://stacks.math.columbia.edu/tag/02MV
https://stacks.math.columbia.edu/tag/02MX
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such that N and τ(N) are isomorphic in B. The proof of Lemmas 12.10.6 and
12.8.4 show that we choose for i ∈ I a short exact sequence

0→ Ai → A′
i → A′′

i → 0
in A such that Bi, B′

i, B
′′
i are isomorphic to the images of Ai, A′

i, A
′′
i in B. This

implies that the corresponding bijection
τ : {A}⨿{Ai, A′′

i ; i ∈ I+}⨿{A′
i; i ∈ I−} −→ {A′}⨿{Ai, A′′

i ; i ∈ I−}⨿{A′
i; i ∈ I+}

satisfies the property that M and τ(M) are objects of A which become isomorphic
in B. This means [M ] − [τ(M)] is in the image of K0(C) → K0(A). Namely,
the isomorphism in B is given by a diagram M ← M ′ → τ(M) in A where both
M ′ → M and M ′ → τ(M) have kernel and cokernel in C. Working backwards we
conclude that x = [A] − [A′] is in the image of K0(C) → K0(A) and the proof of
part (1) is complete.
Proof of (2). The proof is similar to the proof of (1) but slightly more bookkeeping
is involved. First we remark that any class of the type [H0(M,φ, ψ)]−[H1(M,φ, ψ)]
is zero in K0(A) by the following calculation

0 = [M ]− [M ]
= [Ker(φ)] + [Im(φ)]− [Ker(ψ)]− [Im(ψ)]
= [Ker(φ)/ Im(ψ)]− [Ker(ψ)/ Im(φ)]
= [H1(M,φ, ψ)]− [H0(M,φ, ψ)]

as desired. Hence it suffices to show that any element in the kernel of K0(C) →
K0(A) is of this form.
Any element x in K0(C) can be represented as the difference x = [P ] − [Q] of two
objects of C (fun exercise). Suppose that this element maps to zero in K0(A). This
means that there exist

(1) a finite set I = I+ ⨿ I−,
(2) for i ∈ I a short exact sequence 0→ Ai → Bi → Ci → 0 in A

such that
[P ]− [Q] =

∑
i∈I+

([Bi]− [Ai]− [Ci])−
∑

i∈I−
([Bi]− [Ai]− [Ci])

in the free abelian group on the objects of A. We can rewrite this as
[P ] +

∑
i∈I+

([Ai] + [Ci]) +
∑

i∈I−
[Bi] = [Q] +

∑
i∈I−

([Ai] + [Ci]) +
∑

i∈I+
[Bi].

Since the right and left hand side should contain the same objects of A counted
with multiplicity, this means there should be a bijection τ between the terms which
occur above. Set

T+ = {p} ⨿ {a, c} × I+ ⨿ {b} × I−

and
T− = {q} ⨿ {a, c} × I− ⨿ {b} × I+.

Set T = T+ ⨿ T− = {p, q} ⨿ {a, b, c} × I. For t ∈ T define

O(t) =


P if t = p
Q if t = q
Ai if t = (a, i)
Bi if t = (b, i)
Ci if t = (c, i)
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Hence we can view τ : T+ → T− as a bijection such that O(t) = O(τ(t)) for all
t ∈ T+. Let t−0 = τ(p) and let t+0 ∈ T+ be the unique element such that τ(t+0 ) = q.
Consider the object

M+ =
⊕

t∈T+
O(t)

By using τ we see that it is equal to the object

M− =
⊕

t∈T−
O(t)

Consider the map
φ : M+ −→M−

which on the summand O(t) = Ai corresponding to t = (a, i), i ∈ I+ uses the
map Ai → Bi into the summand O((b, i)) = Bi of M− and on the summand
O(t) = Bi corresponding to (b, i), i ∈ I− uses the map Bi → Ci into the summand
O((c, i)) = Ci of M−. The map is zero on the summands corresponding to p and
(c, i), i ∈ I+. Similarly, consider the map

ψ : M− −→M+

which on the summand O(t) = Ai corresponding to t = (a, i), i ∈ I− uses the
map Ai → Bi into the summand O((b, i)) = Bi of M+ and on the summand
O(t) = Bi corresponding to (b, i), i ∈ I+ uses the map Bi → Ci into the summand
O((c, i)) = Ci of M+. The map is zero on the summands corresponding to q and
(c, i), i ∈ I−.

Note that the kernel of φ is equal to the direct sum of the summand P and the
summands O((c, i)) = Ci, i ∈ I+ and the subobjects Ai inside the summands
O((b, i)) = Bi, i ∈ I−. The image of ψ is equal to the direct sum of the summands
O((c, i)) = Ci, i ∈ I+ and the subobjects Ai inside the summands O((b, i)) = Bi,
i ∈ I−. In other words we see that

P ∼= Ker(φ)/ Im(ψ).

In exactly the same way we see that

Q ∼= Ker(ψ)/ Im(φ).

Since as we remarked above the existence of the bijection τ shows that M+ = M−

we see that the lemma follows. □

12.12. Cohomological delta-functors

010P
Definition 12.12.1.010Q Let A,B be abelian categories. A cohomological δ-functor or
simply a δ-functor from A to B is given by the following data:

(1) a collection Fn : A → B, n ≥ 0 of additive functors, and
(2) for every short exact sequence 0 → A → B → C → 0 of A a collection

δA→B→C : Fn(C)→ Fn+1(A), n ≥ 0 of morphisms of B.
These data are assumed to satisfy the following axioms

https://stacks.math.columbia.edu/tag/010Q
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(1) for every short exact sequence as above the sequence

0 // F 0(A) // F 0(B) // F 0(C)

δA→B→C
uu

F 1(A) // F 1(B) // F 1(C)

δA→B→C
uu

F 2(A) // F 2(B) // . . .

is exact, and
(2) for every morphism (A → B → C) → (A′ → B′ → C ′) of short exact

sequences of A the diagrams

Fn(C)

��

δA→B→C

// Fn+1(A)

��
Fn(C ′)

δA′→B′→C′ // Fn+1(A′)
are commutative.

Note that this in particular implies that F 0 is left exact.

Definition 12.12.2.010R Let A,B be abelian categories. Let (Fn, δF ) and (Gn, δG) be
δ-functors from A to B. A morphism of δ-functors from F to G is a collection of
transformation of functors tn : Fn → Gn, n ≥ 0 such that for every short exact
sequence 0→ A→ B → C → 0 of A the diagrams

Fn(C)

tn

��

δF,A→B→C

// Fn+1(A)

tn+1

��
Gn(C)

δG,A→B→C // Gn+1(A)
are commutative.

Definition 12.12.3.010S Let A,B be abelian categories. Let F = (Fn, δF ) be a δ-functor
from A to B. We say F is a universal δ-functor if and only if for every δ-functor
G = (Gn, δG) and any morphism of functors t : F 0 → G0 there exists a unique
morphism of δ-functors {tn}n≥0 : F → G such that t = t0.

Lemma 12.12.4.010T Let A,B be abelian categories. Let F = (Fn, δF ) be a δ-functor
from A to B. Suppose that for every n > 0 and any A ∈ Ob(A) there exists an
injective morphism u : A→ B (depending on A and n) such that Fn(u) : Fn(A)→
Fn(B) is zero. Then F is a universal δ-functor.

Proof. Let G = (Gn, δG) be a δ-functor from A to B and let t : F 0 → G0 be
a morphism of functors. We have to show there exists a unique morphism of δ-
functors {tn}n≥0 : F → G such that t = t0. We construct tn by induction on n.
For n = 0 we set t0 = t. Suppose we have already constructed a unique sequence of
transformation of functors ti for i ≤ n compatible with the maps δ in degrees ≤ n.
Let A ∈ Ob(A). By assumption we may choose a embedding u : A → B such
that Fn+1(u) = 0. Let C = B/u(A). The long exact cohomology sequence for

https://stacks.math.columbia.edu/tag/010R
https://stacks.math.columbia.edu/tag/010S
https://stacks.math.columbia.edu/tag/010T
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the short exact sequence 0 → A → B → C → 0 and the δ-functor F gives that
Fn+1(A) = Coker(Fn(B) → Fn(C)) by our choice of u. Since we have already
defined tn we can set

tn+1
A : Fn+1(A)→ Gn+1(A)

equal to the unique map such that

Coker(Fn(B)→ Fn(C))
tn
//

δF,A→B→C

��

Coker(Gn(B)→ Gn(C))

δG,A→B→C

��
Fn+1(A)

tn+1
A // Gn+1(A)

commutes. This is clearly uniquely determined by the requirements imposed. We
omit the verification that this defines a transformation of functors. □

Lemma 12.12.5.010U Let A,B be abelian categories. Let F : A → B be a functor. If
there exists a universal δ-functor (Fn, δF ) from A to B with F 0 = F , then it is
determined up to unique isomorphism of δ-functors.

Proof. Immediate from the definitions. □

12.13. Complexes

010V Of course the notions of a chain complex and a cochain complex are dual and you
only have to read one of the two parts of this section. So pick the one you like.
(Actually, this doesn’t quite work right since the conventions on numbering things
are not adapted to an easy transition between chain and cochain complexes.)
A chain complex A• in an additive category A is a complex

. . .→ An+1
dn+1−−−→ An

dn−→ An−1 → . . .

of A. In other words, we are given an object Ai of A for all i ∈ Z and for all i ∈ Z
a morphism di : Ai → Ai−1 such that di−1 ◦ di = 0 for all i. A morphism of chain
complexes f : A• → B• is given by a family of morphisms fi : Ai → Bi such that
all the diagrams

Ai
di

//

fi

��

Ai−1

fi−1

��
Bi

di // Bi−1

commute. The category of chain complexes of A is denoted Ch(A). The full
subcategory consisting of objects of the form

. . .→ A2 → A1 → A0 → 0→ 0→ . . .

is denoted Ch≥0(A). In other words, a chain complex A• belongs to Ch≥0(A) if
and only if Ai = 0 for all i < 0.
Given an additive category A we identify A with the full subcategory of Ch(A)
consisting of chain complexes zero except in degree 0 by the functor

A −→ Ch(A), A 7−→ (. . .→ 0→ A→ 0→ . . .)
By abuse of notation we often denote the object on the right hand side simply A.
If we want to stress that we are viewing A as a chain complex we may sometimes
use the notation A[0], see Section 12.14.

https://stacks.math.columbia.edu/tag/010U
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A homotopy h between a pair of morphisms of chain complexes f, g : A• → B• is
a collection of morphisms hi : Ai → Bi+1 such that we have

fi − gi = di+1 ◦ hi + hi−1 ◦ di
for all i. Two morphisms f, g : A• → B• are said to be homotopic if a homotopy
between f and g exists. Clearly, the notions of chain complex, morphism of chain
complexes, and homotopies between morphisms of chain complexes make sense even
in a preadditive category.

Lemma 12.13.1.010W Let A be an additive category. Let f, g : B• → C• be morphisms
of chain complexes. Suppose given morphisms of chain complexes a : A• → B•,
and c : C• → D•. If {hi : Bi → Ci+1} defines a homotopy between f and g, then
{ci+1 ◦ hi ◦ ai} defines a homotopy between c ◦ f ◦ a and c ◦ g ◦ a.

Proof. Omitted. □

In particular this means that it makes sense to define the category of chain com-
plexes with maps up to homotopy. We’ll return to this later.

Definition 12.13.2.010X Let A be an additive category. We say a morphism a : A• → B•
is a homotopy equivalence if there exists a morphism b : B• → A• such that there
exists a homotopy between a ◦ b and idA and there exists a homotopy between b ◦ a
and idB . If there exists such a morphism between A• and B•, then we say that A•
and B• are homotopy equivalent.

In other words, two complexes are homotopy equivalent if they become isomorphic
in the category of complexes up to homotopy.

Lemma 12.13.3.010Y Let A be an abelian category.
(1) The category of chain complexes in A is abelian.
(2) A morphism of complexes f : A• → B• is injective if and only if each

fn : An → Bn is injective.
(3) A morphism of complexes f : A• → B• is surjective if and only if each

fn : An → Bn is surjective.
(4) A sequence of chain complexes

A•
f−→ B•

g−→ C•

is exact at B• if and only if each sequence

Ai
fi−→ Bi

gi−→ Ci

is exact at Bi.

Proof. Omitted. □

For any i ∈ Z the ith homology group of a chain complex A• in an abelian category
is defined by the following formula

Hi(A•) = Ker(di)/ Im(di+1).
If f : A• → B• is a morphism of chain complexes of A then we get an induced
morphism Hi(f) : Hi(A•) → Hi(B•) because clearly fi(Ker(di : Ai → Ai−1)) ⊂
Ker(di : Bi → Bi−1), and similarly for Im(di+1). Thus we obtain a functor

Hi : Ch(A) −→ A.

https://stacks.math.columbia.edu/tag/010W
https://stacks.math.columbia.edu/tag/010X
https://stacks.math.columbia.edu/tag/010Y
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Definition 12.13.4.010Z Let A be an abelian category.
(1) A morphism of chain complexes f : A• → B• is called a quasi-isomorphism

if the induced map Hi(f) : Hi(A•) → Hi(B•) is an isomorphism for all
i ∈ Z.

(2) A chain complex A• is called acyclic if all of its homology objects Hi(A•)
are zero.

Lemma 12.13.5.0110 Let A be an abelian category.
(1) If the maps f, g : A• → B• are homotopic, then the induced maps Hi(f)

and Hi(g) are equal.
(2) If the map f : A• → B• is a homotopy equivalence, then f is a quasi-

isomorphism.

Proof. Omitted. □

Lemma 12.13.6.0111 Let A be an abelian category. Suppose that

0→ A• → B• → C• → 0

is a short exact sequence of chain complexes of A. Then there is a canonical long
exact homology sequence

. . . . . . . . .

ss
Hi(A•) // Hi(B•) // Hi(C•)

ss
Hi−1(A•) // Hi−1(B•) // Hi−1(C•)

ss. . . . . . . . .

Proof. Omitted. The maps come from the Snake Lemma 12.5.17 applied to the
diagrams

Ai/ Im(dA,i+1) //

dA,i

��

Bi/ Im(dB,i+1) //

dB,i

��

Ci/ Im(dC,i+1) //

dC,i

��

0

0 // Ker(dA,i−1) // Ker(dB,i−1) // Ker(dC,i−1)

□

A cochain complex A• in an additive category A is a complex

. . .→ An−1 dn−1

−−−→ An
dn−→ An+1 → . . .

of A. In other words, we are given an object Ai of A for all i ∈ Z and for all i ∈ Z
a morphism di : Ai → Ai+1 such that di+1 ◦di = 0 for all i. A morphism of cochain
complexes f : A• → B• is given by a family of morphisms f i : Ai → Bi such that

https://stacks.math.columbia.edu/tag/010Z
https://stacks.math.columbia.edu/tag/0110
https://stacks.math.columbia.edu/tag/0111
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all the diagrams
Ai

di
//

fi

��

Ai+1

fi+1

��
Bi

di // Bi+1

commute. The category of cochain complexes of A is denoted CoCh(A). The full
subcategory consisting of objects of the form

. . .→ 0→ 0→ A0 → A1 → A2 → . . .

is denoted CoCh≥0(A). In other words, a cochain complex A• belongs to the
subcategory CoCh≥0(A) if and only if Ai = 0 for all i < 0.
Given an additive category A we identify A with the full subcategory of CoCh(A)
consisting of cochain complexes zero except in degree 0 by the functor

A −→ CoCh(A), A 7−→ (. . .→ 0→ A→ 0→ . . .)
By abuse of notation we often denote the object on the right hand side simply A.
If we want to stress that we are viewing A as a cochain complex we may sometimes
use the notation A[0], see Section 12.14.
A homotopy h between a pair of morphisms of cochain complexes f, g : A• → B•

is a collection of morphisms hi : Ai → Bi−1 such that we have
f i − gi = di−1 ◦ hi + hi+1 ◦ di

for all i. Two morphisms f, g : A• → B• are said to be homotopic if a homotopy
between f and g exists. Clearly, the notions of cochain complex, morphism of
cochain complexes, and homotopies between morphisms of cochain complexes make
sense even in a preadditive category.

Lemma 12.13.7.0112 Let A be an additive category. Let f, g : B• → C• be morphisms
of cochain complexes. Suppose given morphisms of cochain complexes a : A• → B•,
and c : C• → D•. If {hi : Bi → Ci−1} defines a homotopy between f and g, then
{ci−1 ◦ hi ◦ ai} defines a homotopy between c ◦ f ◦ a and c ◦ g ◦ a.

Proof. Omitted. □

In particular this means that it makes sense to define the category of cochain
complexes with maps up to homotopy. We’ll return to this later.

Definition 12.13.8.0113 Let A be an additive category. We say a morphism a : A• → B•

is a homotopy equivalence if there exists a morphism b : B• → A• such that there
exists a homotopy between a ◦ b and idA and there exists a homotopy between b ◦ a
and idB . If there exists such a morphism between A• and B•, then we say that A•

and B• are homotopy equivalent.

In other words, two complexes are homotopy equivalent if they become isomorphic
in the category of complexes up to homotopy.

Lemma 12.13.9.0114 Let A be an abelian category.
(1) The category of cochain complexes in A is abelian.
(2) A morphism of cochain complexes f : A• → B• is injective if and only if

each fn : An → Bn is injective.

https://stacks.math.columbia.edu/tag/0112
https://stacks.math.columbia.edu/tag/0113
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(3) A morphism of cochain complexes f : A• → B• is surjective if and only if
each fn : An → Bn is surjective.

(4) A sequence of cochain complexes

A• f−→ B• g−→ C•

is exact at B• if and only if each sequence

Ai
fi−→ Bi

gi−→ Ci

is exact at Bi.

Proof. Omitted. □

For any i ∈ Z the ith cohomology group of a cochain complex A• is defined by the
following formula

Hi(A•) = Ker(di)/ Im(di−1).
If f : A• → B• is a morphism of cochain complexes of A then we get an induced
morphism Hi(f) : Hi(A•) → Hi(B•) because clearly f i(Ker(di : Ai → Ai+1)) ⊂
Ker(di : Bi → Bi+1), and similarly for Im(di−1). Thus we obtain a functor

Hi : CoCh(A) −→ A.

Definition 12.13.10.0115 Let A be an abelian category.
(1) A morphism of cochain complexes f : A• → B• of A is called a quasi-

isomorphism if the induced maps Hi(f) : Hi(A•)→ Hi(B•) is an isomor-
phism for all i ∈ Z.

(2) A cochain complex A• is called acyclic if all of its cohomology objects
Hi(A•) are zero.

Lemma 12.13.11.0116 Let A be an abelian category.
(1) If the maps f, g : A• → B• are homotopic, then the induced maps Hi(f)

and Hi(g) are equal.
(2) If f : A• → B• is a homotopy equivalence, then f is a quasi-isomorphism.

Proof. Omitted. □

Lemma 12.13.12.0117 Let A be an abelian category. Suppose that
0→ A• → B• → C• → 0

is a short exact sequence of cochain complexes of A. Then there is a long exact
cohomology sequence

. . . . . . . . .

ss
Hi(A•) // Hi(B•) // Hi(C•)

ss
Hi+1(A•) // Hi+1(B•) // Hi+1(C•)

ss. . . . . . . . .

https://stacks.math.columbia.edu/tag/0115
https://stacks.math.columbia.edu/tag/0116
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The construction produces long exact cohomology sequences which are functorial
in the short exact sequence and compatible with shifts.

Proof. For the horizontal maps Hi(A•) → Hi(B•) and Hi(B•) → Hi(C•) we use
the fact that Hi is a functor, see above. For the “boundary map” Hi(C•) →
Hi+1(A•) we use the map δ of the Snake Lemma 12.5.17 applied to the diagram

Ai/ Im(di−1
A ) //

diA
��

Bi/ Im(di−1
B ) //

diB
��

Ci/ Im(di−1
C ) //

diC
��

0

0 // Ker(di+1
A ) // Ker(di+1

B ) // Ker(di+1
C )

This works as the kernel of the right vertical map is equal toHi(C•) and the cokernel
of the left vertical map is Hi+1(A•). We omit the verification that we obtain a long
exact sequence and we omit the verification of the properties mentioned at the end
of the statement of the lemma. □

12.14. Homotopy and the shift functor

0119 It is an annoying feature that signs and indices have to be part of any discussion
of homological algebra2.

Definition 12.14.1.011A Let A be an additive category. Let A• be a chain complex with
boundary maps dA,n : An → An−1. For any k ∈ Z we define the k-shifted chain
complex A[k]• as follows:

(1) we set A[k]n = An+k, and
(2) we set dA[k],n : A[k]n → A[k]n−1 equal to dA[k],n = (−1)kdA,n+k.

If f : A• → B• is a morphism of chain complexes, then we let f [k] : A[k]• → B[k]•
be the morphism of chain complexes with f [k]n = fk+n.

Of course this means we have functors [k] : Ch(A) → Ch(A) which mutually
commute (on the nose, without any intervening isomorphisms of functors), such
that A[k][l]• = A[k + l]• and with [0] = idCh(A).
Recall that we view A as a full subcategory of Ch(A), see Section 12.13. Thus for
any object A of A the notation A[k] refers to the unique chain complex zero in all
degrees except having A in degree −k.

Definition 12.14.2.011B Let A be an abelian category. Let A• be a chain complex
with boundary maps dA,n : An → An−1. For any k ∈ Z we identify Hi+k(A•) →
Hi(A[k]•) via the identification Ai+k = A[k]i.

This identification is functorial in A•. Note that since no signs are involved in
this definition we actually get a compatible system of identifications of all the
homology objectsHi−k(A[k]•), which are further compatible with the identifications
A[k][l]• = A[k + l]• and with [0] = idCh(A).
Let A be an additive category. Suppose that A• and B• are chain complexes,
a, b : A• → B• are morphisms of chain complexes, and {hi : Ai → Bi+1} is a
homotopy between a and b. Recall that this means that ai−bi = di+1◦hi+hi−1◦di.
What if a = b? Then we obtain the formula 0 = di+1 ◦hi+hi−1 ◦di, in other words,

2Please let us know if you notice sign errors or if you have improvements to our conventions.
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−di+1 ◦ hi = hi−1 ◦ di. By definition above this means the collection {hi} above
defines a morphism of chain complexes

A• −→ B[1]•.
Such a thing is the same as a morphism A[−1]• → B• by our remarks above. This
proves the following lemma.

Lemma 12.14.3.011C Let A be an additive category. Suppose that A• and B• are
chain complexes. Given any morphism of chain complexes a : A• → B• there
is a bijection between the set of homotopies from a to a and MorCh(A)(A•, B[1]•).
More generally, the set of homotopies between a and b is either empty or a principal
homogeneous space under the group MorCh(A)(A•, B[1]•).

Proof. See above. □

Lemma 12.14.4.011D Let A be an abelian category. Let
0→ A• → B• → C• → 0

be a short exact sequence of complexes. Suppose that {sn : Cn → Bn} is a family
of morphisms which split the short exact sequences 0→ An → Bn → Cn → 0. Let
πn : Bn → An be the associated projections, see Lemma 12.5.10. Then the family
of morphisms

πn−1 ◦ dB,n ◦ sn : Cn → An−1

define a morphism of complexes δ(s) : C• → A[−1]•.

Proof. Denote i : A• → B• and q : B• → C• the maps of complexes in the
short exact sequence. Then in−1 ◦ πn−1 ◦ dB,n ◦ sn = dB,n ◦ sn − sn−1 ◦ dC,n.
Hence in−2 ◦ dA,n−1 ◦ πn−1 ◦ dB,n ◦ sn = dB,n−1 ◦ (dB,n ◦ sn − sn−1 ◦ dC,n) =
−dB,n−1 ◦ sn−1 ◦ dC,n as desired. □

Lemma 12.14.5.011E Notation and assumptions as in Lemma 12.14.4 above. The mor-
phism of complexes δ(s) : C• → A[−1]• induces the maps

Hi(δ(s)) : Hi(C•) −→ Hi(A[−1]•) = Hi−1(A•)
which occur in the long exact homology sequence associated to the short exact
sequence of chain complexes by Lemma 12.13.6.

Proof. Omitted. □

Lemma 12.14.6.011F Notation and assumptions as in Lemma 12.14.4 above. Suppose
{s′
n : Cn → Bn} is a second choice of splittings. Write s′

n = sn + in ◦ hn for some
unique morphisms hn : Cn → An. The family of maps {hn : Cn → A[−1]n+1} is a
homotopy between the associated morphisms δ(s), δ(s′) : C• → A[−1]•.

Proof. Omitted. □

Definition 12.14.7.011G Let A be an additive category. Let A• be a cochain complex
with boundary maps dnA : An → An+1. For any k ∈ Z we define the k-shifted
cochain complex A[k]• as follows:

(1) we set A[k]n = An+k, and
(2) we set dnA[k] : A[k]n → A[k]n+1 equal to dnA[k] = (−1)kdn+k

A .
If f : A• → B• is a morphism of cochain complexes, then we let f [k] : A[k]• → B[k]•
be the morphism of cochain complexes with f [k]n = fk+n.

https://stacks.math.columbia.edu/tag/011C
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Of course this means we have functors [k] : CoCh(A)→ CoCh(A) which mutually
commute (on the nose, without any intervening isomorphisms of functors) and such
that A[k][l]• = A[k + l]• and with [0] = idCoCh(A).

Recall that we view A as a full subcategory of CoCh(A), see Section 12.13. Thus
for any object A of A the notation A[k] refers to the unique cochain complex zero
in all degrees except having A in degree −k.

Definition 12.14.8.011H Let A be an abelian category. Let A• be a cochain complex
with boundary maps dnA : An → An+1. For any k ∈ Z we identify Hi+k(A•) −→
Hi(A[k]•) via the identification Ai+k = A[k]i.

This identification is functorial in A•. Note that since no signs are involved in
this definition we actually get a compatible system of identifications of all the ho-
mology objects Hi−k(A[k]•), which are further compatible with the identifications
A[k][l]• = A[k + l]• and with [0] = idCoCh(A).

Let A be an additive category. Suppose that A• and B• are cochain complexes,
a, b : A• → B• are morphisms of cochain complexes, and {hi : Ai → Bi−1} is a
homotopy between a and b. Recall that this means that ai−bi = di−1◦hi+hi+1◦di.
What if a = b? Then we obtain the formula 0 = di−1 ◦hi+hi+1 ◦di, in other words,
−di−1 ◦ hi = hi+1 ◦ di. By definition above this means the collection {hi} above
defines a morphism of cochain complexes

A• −→ B[−1]•.

Such a thing is the same as a morphism A[1]• → B• by our remarks above. This
proves the following lemma.

Lemma 12.14.9.011I Let A be an additive category. Suppose that A• and B• are
cochain complexes. Given any morphism of cochain complexes a : A• → B• there is
a bijection between the set of homotopies from a to a and MorCoCh(A)(A•, B[−1]•).
More generally, the set of homotopies between a and b is either empty or a principal
homogeneous space under the group MorCoCh(A)(A•, B[−1]•).

Proof. See above. □

Lemma 12.14.10.011J Let A be an additive category. Let

0→ A• → B• → C• → 0

be a complex (!) of complexes. Suppose that we are given splittings Bn = An⊕Cn
compatible with the maps in the displayed sequence. Let sn : Cn → Bn and
πn : Bn → An be the corresponding maps. Then the family of morphisms

πn+1 ◦ dnB ◦ sn : Cn → An+1

define a morphism of complexes δ : C• → A[1]•.

Proof. Denote i : A• → B• and q : B• → C• the maps of complexes in the
short exact sequence. Then in+1 ◦ πn+1 ◦ dnB ◦ sn = dnB ◦ sn − sn+1 ◦ dnC . Hence
in+2 ◦ dn+1

A ◦ πn+1 ◦ dnB ◦ sn = dn+1
B ◦ (dnB ◦ sn − sn+1 ◦ dnC) = −dn+1

B ◦ sn+1 ◦ dnC as
desired. □

https://stacks.math.columbia.edu/tag/011H
https://stacks.math.columbia.edu/tag/011I
https://stacks.math.columbia.edu/tag/011J
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Lemma 12.14.11.011K Notation and assumptions as in Lemma 12.14.10 above. Assume
in addition that A is abelian. The morphism of complexes δ : C• → A[1]• induces
the maps

Hi(δ) : Hi(C•) −→ Hi(A[1]•) = Hi+1(A•)
which occur in the long exact homology sequence associated to the short exact
sequence of cochain complexes by Lemma 12.13.12.

Proof. Omitted. □

Lemma 12.14.12.011L Notation and assumptions as in Lemma 12.14.10. Let α : A• →
B•, β : B• → C• be the given morphisms of complexes. Suppose (s′)n : Cn → Bn

and (π′)n : Bn → An is a second choice of splittings. Write (s′)n = sn+αn ◦hn and
(π′)n = πn+ gn ◦βn for some unique morphisms hn : Cn → An and gn : Cn → An.
Then

(1) gn = −hn, and
(2) the family of maps {gn : Cn → A[1]n−1} is a homotopy between δ, δ′ :

C• → A[1]•, more precisely (δ′)n = δn + gn+1 ◦ dnC + dn−1
A[1] ◦ g

n.

Proof. As (s′)n and (π′)n are splittings we have (π′)n ◦ (s′)n = 0. Hence

0 = (πn + gn ◦ βn) ◦ (sn + αn ◦ hn) = gn ◦ βn ◦ sn + πn ◦ αn ◦ hn = gn + hn

which proves (1). We compute (δ′)n as follows

(πn+1 + gn+1 ◦ βn+1) ◦ dnB ◦ (sn + αn ◦ hn) = δn + gn+1 ◦ dnC + dnA ◦ hn

Since hn = −gn and since dn−1
A[1] = −dnA we conclude that (2) holds. □

12.15. Truncation of complexes

0118 Let A be an abelian category. Let A• be a chain complex. There are several ways
to truncate the complex A•.

(1) The “stupid” truncation σ≤n is the subcomplex σ≤nA• defined by the rule
(σ≤nA•)i = 0 if i > n and (σ≤nA•)i = Ai if i ≤ n. In a picture

σ≤nA•

��

. . . // 0 //

��

An //

��

An−1 //

��

. . .

A• . . . // An+1 // An // An−1 // . . .

Note the property σ≤nA•/σ≤n−1A• = An[−n].
(2) The “stupid” truncation σ≥n is the quotient complex σ≥nA• defined by

the rule (σ≥nA•)i = Ai if i ≥ n and (σ≥nA•)i = 0 if i < n. In a picture

A•

��

. . . // An+1 //

��

An //

��

An−1 //

��

. . .

σ≥nA• . . . // An+1 // An // 0 // . . .

The map of complexes σ≥nA• → σ≥n+1A• is surjective with kernelAn[−n].

https://stacks.math.columbia.edu/tag/011K
https://stacks.math.columbia.edu/tag/011L
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(3) The canonical truncation τ≥nA• is defined by the picture

τ≥nA•

��

. . . // An+1 //

��

Ker(dn) //

��

0 //

��

. . .

A• . . . // An+1 // An // An−1 // . . .

Note that these complexes have the property that

Hi(τ≥nA•) =
{
Hi(A•) if i ≥ n

0 if i < n

(4) The canonical truncation τ≤nA• is defined by the picture

A•

��

. . . // An+1 //

��

An //

��

An−1 //

��

. . .

τ≤nA• . . . // 0 // Coker(dn+1) // An−1 // . . .

Note that these complexes have the property that

Hi(τ≤nA•) =
{
Hi(A•) if i ≤ n

0 if i > n

Let A be an abelian category. Let A• be a cochain complex. There are four ways
to truncate the complex A•.

(1) The “stupid” truncation σ≥n is the subcomplex σ≥nA
• defined by the rule

(σ≥nA
•)i = 0 if i < n and (σ≥nA

•)i = Ai if i ≥ n. In a picture

σ≥nA
•

��

. . . // 0 //

��

An //

��

An+1 //

��

. . .

A• . . . // An−1 // An // An+1 // . . .

Note the property σ≥nA
•/σ≥n+1A

• = An[−n].
(2) The “stupid” truncation σ≤n is the quotient complex σ≤nA

• defined by
the rule (σ≤nA

•)i = 0 if i > n and (σ≤nA
•)i = Ai if i ≤ n. In a picture

A•

��

. . . // An−1 //

��

An //

��

An+1 //

��

. . .

σ≤nA
• . . . // An−1 // An // 0 // . . .

The map of complexes σ≤nA
• → σ≤n−1A

• is surjective with kernelAn[−n].
(3) The canonical truncation τ≤nA

• is defined by the picture

τ≤nA
•

��

. . . // An−1 //

��

Ker(dn) //

��

0 //

��

. . .

A• . . . // An−1 // An // An+1 // . . .

Note that these complexes have the property that

Hi(τ≤nA
•) =

{
Hi(A•) if i ≤ n

0 if i > n
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(4) The canonical truncation τ≥nA
• is defined by the picture

A•

��

. . . // An−1 //

��

An //

��

An+1 //

��

. . .

τ≥nA
• . . . // 0 // Coker(dn−1) // An+1 // . . .

Note that these complexes have the property that

Hi(τ≥nA
•) =

{
0 if i < n

Hi(A•) if i ≥ n

12.16. Graded objects

09MF We make the following definition.

Definition 12.16.1.0125 Let A be an additive category. The category of graded objects
of A, denoted Gr(A), is the category with

(1) objects A = (Ai) are families of objects Ai, i ∈ Z of objects of A, and
(2) morphisms f : A = (Ai)→ B = (Bi) are families of morphisms f i : Ai →

Bi of A.

If A has countable direct sums, then we can associate to an object A = (Ai) of
Gr(A) the object

A =
⊕

i∈Z
Ai

and set kiA = Ai. In this case Gr(A) is equivalent to the category of pairs (A, k)
consisting of an object A of A and a direct sum decomposition

A =
⊕

i∈Z
kiA

by direct summands indexed by Z and a morphism (A, k)→ (B, k) of such objects
is given by a morphism φ : A → B of A such that φ(kiA) ⊂ kiB for all i ∈
Z. Whenever our additive category A has countable direct sums we will use this
equivalence without further mention.
However, with our definitions an additive or abelian category does not necessarily
have all (countable) direct sums. In this case our definition still makes sense. For
example, if A = Vectk is the category of finite dimensional vector spaces over a
field k, then Gr(Vectk) is the category of vector spaces with a given gradation
all of whose graded pieces are finite dimensional, and not the category of finite
dimensional vector spaces with a given graduation.

Lemma 12.16.2.0126 Let A be an abelian category. The category of graded objects
Gr(A) is abelian.

Proof. Let f : A = (Ai) → B = (Bi) be a morphism of graded objects of A
given by morphisms f i : Ai → Bi of A. Then we have Ker(f) = (Ker(f i)) and
Coker(f) = (Coker(f i)) in the category Gr(A). Since we have Im = Coim in A we
see the same thing holds in Gr(A). □

Remark 12.16.3 (Warning).0AMH There are abelian categories A having countable direct
sums but where countable direct sums are not exact. An example is the opposite
of the category of abelian sheaves on R. Namely, the category of abelian sheaves
on R has countable products, but countable products are not exact. For such a

https://stacks.math.columbia.edu/tag/0125
https://stacks.math.columbia.edu/tag/0126
https://stacks.math.columbia.edu/tag/0AMH


12.17. ADDITIVE MONOIDAL CATEGORIES 936

category the functor Gr(A) → A, (Ai) 7→
⊕
Ai described above is not exact. It

is still true that Gr(A) is equivalent to the category of graded objects (A, k) of A,
but the kernel in the category of graded objects of a map φ : (A, k) → (B, k) is
not equal to Ker(φ) endowed with a direct sum decomposition, but rather it is the
direct sum of the kernels of the maps kiA→ kiB.

Definition 12.16.4.09MG Let A be an additive category. If A = (Ai) is a graded object,
then the kth shift A[k] is the graded object with A[k]i = Ak+i.

If A and B are graded objects of A, then we have
(12.16.4.1)09MH HomGr(A)(A,B[k]) = HomGr(A)(A[−k], B)
and an element of this group is sometimes called a map of graded objects homoge-
neous of degree k.
Given any set G we can define G-graded objects of A as the category whose objects
are A = (Ag)g∈G families of objects parametrized by elements of G. Morphisms
f : A → B are defined as families of maps fg : Ag → Bg where g runs over the
elements of G. If G is an abelian group, then we can (unambiguously) define shift
functors [g] on the category of G-graded objects by the rule (A[g])g0 = Ag+g0 . A
particular case of this type of construction is when G = Z × Z. In this case the
objects of the category are called bigraded objects of A. The (p, q) component of
a bigraded object A is usually denoted Ap,q. For (a, b) ∈ Z× Z we write A[a, b] in
stead of A[(a, b)]. A morphism A → A[a, b] is sometimes called a map of bidegree
(a, b).

12.17. Additive monoidal categories

0FN9 Some material about the interaction between a monoidal structure and an additive
structure on a category.

Definition 12.17.1.0FNA An additive monoidal category is an additive category A en-
dowed with a monoidal structure ⊗, ϕ (Categories, Definition 4.43.1) such that ⊗
is an additive functor in each variable.

Lemma 12.17.2.0FFT Let A be an additive monoidal category. If Yi, i = 1, 2 are left
duals of Xi, i = 1, 2, then Y1 ⊕ Y2 is a left dual of X1 ⊕X2.

Proof. Follows from uniqueness of adjoints and Categories, Remark 4.43.7. □

Lemma 12.17.3.0FFU In a Karoubian additive monoidal category every summand of an
object which has a left dual has a left dual.

Proof. We will use Categories, Lemma 4.43.6 without further mention. Let X be
an object which has a left dual Y . We have

Hom(X,X) = Hom(1, X ⊗ Y ) = Hom(Y, Y )
If a : X → X corresponds to b : Y → Y then b is the unique endomorphism of Y
such that precomposing by a on

Hom(Z ′ ⊗X,Z) = Hom(Z ′, Z ⊗ Y )
is the same as postcomposing by 1⊗b. Hence the bijection Hom(X,X)→ Hom(Y, Y ),
a 7→ b is an isomorphism of the opposite of the algebra Hom(X,X) with the algebra
Hom(Y, Y ). In particular, if X = X1⊕X2, then the corresponding projectors e1, e2

https://stacks.math.columbia.edu/tag/09MG
https://stacks.math.columbia.edu/tag/0FNA
https://stacks.math.columbia.edu/tag/0FFT
https://stacks.math.columbia.edu/tag/0FFU
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are mapped to idempotents in Hom(Y, Y ). If Y = Y1 ⊕ Y2 is the corresponding
direct sum decomposition of Y (Section 12.4) then we see that under the bijection
Hom(Z ′ ⊗X,Z) = Hom(Z ′, Z ⊗ Y ) we have Hom(Z ′ ⊗Xi, Z) = Hom(Z ′, Z ⊗ Yi)
functorially as subgroups for i = 1, 2. It follows that Yi is the left dual of Xi by the
discussion in Categories, Remark 4.43.7. □

Example 12.17.4.0FFX Let F be a field. Let C be the category of graded F -vector
spaces. Given graded vector spaces V and W we let V ⊗ W denote the graded
F -vector space whose degree n part is

(V ⊗W )n =
⊕

n=p+q
V p ⊗F W q

Given a third graded vector space U as associativity constraint ϕ : U ⊗ (V ⊗W )→
(U ⊗ V )⊗W we use the “usual” isomorphisms

Up ⊗F (V q ⊗F W r)→ (Up ⊗F V q)⊗F W r

of vectors spaces. As unit we use the graded F -vector space 1 which has F in degree
0 and is zero in other degrees. There are two commutativity constraints on C which
turn C into a symmetric monoidal category: one involves the intervention of signs
and the other does not. We will usually use the one that does. To be explicit, if V
and W are graded F -vector spaces we will use the isomorphism ψ : V ⊗W →W⊗V
which in degree n uses

V p ⊗F W q →W q ⊗F V p, v ⊗ w 7→ (−1)pqw ⊗ v
We omit the verification that this works.

Lemma 12.17.5.0FFV Let F be a field. Let C be the category of graded F -vector
spaces viewed as a monoidal category as in Example 12.17.4. If V in C has a left
dual W , then

∑
n dimF V

n < ∞ and the map ϵ defines nondegenerate pairings
W−n × V n → F .

Proof. As unit we take By Categories, Definition 4.43.5 we have maps
η : 1→ V ⊗W ϵ : W ⊗ V → 1

Since 1 = F placed in degree 0, we may think of ϵ as a sequence of pairings
W−n × V n → F as in the statement of the lemma. Choose bases {en,i}i∈In for V n
for all n. Write

η(1) =
∑

en,i ⊗ w−n,i

for some elements w−n,i ∈ W−n almost all of which are zero! The condition that
(ϵ⊗ 1) ◦ (1⊗ η) is the identity on W means that∑

n,i
ϵ(w, en,i)w−n,i = w

Thus we see that W is generated as a graded vector space by the finitely many
nonzero vectors w−n,i. The condition that (1 ⊗ ϵ) ◦ (η ⊗ 1) is the identity of V
means that ∑

n,i
en,i ϵ(w−n,i, v) = v

In particular, setting v = en,i we conclude that ϵ(w−n,i, en,i′) = δii′ . Thus we find
that the statement of the lemma holds and that {w−n,i}i∈In is the dual basis for
W−n to the chosen basis for V n. □

https://stacks.math.columbia.edu/tag/0FFX
https://stacks.math.columbia.edu/tag/0FFV
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12.18. Double complexes and associated total complexes

0FNB We discuss double complexes and associated total complexes.

Definition 12.18.1.012Y Let A be an additive category. A double complex in A is
given by a system ({Ap,q, dp,q1 , dp,q2 }p,q∈Z), where each Ap,q is an object of A and
dp,q1 : Ap,q → Ap+1,q and dp,q2 : Ap,q → Ap,q+1 are morphisms of A such that the
following rules hold:

(1) dp+1,q
1 ◦ dp,q1 = 0

(2) dp,q+1
2 ◦ dp,q2 = 0

(3) dp,q+1
1 ◦ dp,q2 = dp+1,q

2 ◦ dp,q1
for all p, q ∈ Z.

This is just the cochain version of the definition. It says that each Ap,• is a cochain
complex and that each dp,•1 is a morphism of complexes Ap,• → Ap+1,• such that
dp+1,•

1 ◦ dp,•1 = 0 as morphisms of complexes. In other words a double complex can
be seen as a complex of complexes. So in the diagram

. . . . . . . . . . . .

. . . // Ap,q+1 dp,q+1
1 //

OO

Ap+1,q+1 //

OO

. . .

. . . // Ap,q
dp,q1 //

dp,q2

OO

Ap+1,q //

dp+1,q
2

OO

. . .

. . . . . .

OO

. . .

OO

. . .

any square commutes. Warning: In the literature one encounters a different defini-
tion where a “bicomplex” or a “double complex” has the property that the squares
in the diagram anti-commute.

Example 12.18.2.0A5J Let A, B, C be additive categories. Suppose that
⊗ : A× B −→ C, (X,Y ) 7−→ X ⊗ Y

is a functor which is bilinear on morphisms, see Categories, Definition 4.2.20 for
the definition of A×B. Given complexes X• of A and Y • of B we obtain a double
complex

K•,• = X• ⊗ Y •

in C. Here the first differential Kp,q → Kp+1,q is the morphism Xp ⊗ Y q →
Xp+1⊗Y q induced by the morphism Xp → Xp+1 and the identity on Y q. Similarly
for the second differential.

Definition 12.18.3.012Z Let A be an additive category. Let A•,• be a double complex.
The associated simple complex, denoted sA•, also often called the associated total
complex, denoted Tot(A•,•), is given by

sAn = Totn(A•,•) =
⊕

n=p+q
Ap,q

(if it exists) with differential

dnsA• = dnTot(A•,•) =
∑

n=p+q
(dp,q1 + (−1)pdp,q2 )

https://stacks.math.columbia.edu/tag/012Y
https://stacks.math.columbia.edu/tag/0A5J
https://stacks.math.columbia.edu/tag/012Z
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If countable direct sums exist in A or if for each n at most finitely many Ap,n−p

are nonzero, then Tot(A•,•) exists. Note that the definition is not symmetric in the
indices (p, q).

Remark 12.18.4.08BI Let A be an additive category. Let A•,•,• be a triple complex.
The associated total complex is the complex with terms

Totn(A•,•,•) =
⊕

p+q+r=n
Ap,q,r

and differential
dnTot(A•,•,•) =

∑
p+q+r=n

dp,q,r1 + (−1)pdp,q,r2 + (−1)p+qdp,q,r3

With this definition a simple calculation shows that the associated total complex
is equal to

Tot(A•,•,•) = Tot(Tot12(A•,•,•)) = Tot(Tot23(A•,•,•))
In other words, we can either first combine the first two of the variables and then
combine sum of those with the last, or we can first combine the last two variables
and then combine the first with the sum of the last two.

Remark 12.18.5.0FLG Let A be an additive category. Let A•,• be a double complex
with differentials dp,q1 and dp,q2 . Denote A•,•[a, b] the double complex with

(A•,•[a, b])p,q = Ap+a,q+b

and differentials
dp,qA•,•[a,b],1 = (−1)adp+a,q+b

1 and dp,qA•,•[a,b],2 = (−1)bdp+a,q+b
2

In this situation there is a well defined isomorphism
γ : Tot(A•,•)[a+ b] −→ Tot(A•,•[a, b])

which in degree n is given by the map

(Tot(A•,•)[a+ b])n =
⊕

p+q=n+a+bA
p,q

ϵ(p,q,a,b)idAp,q
��

Tot(A•,•[a, b])n =
⊕

p′+q′=nA
p′+a,q′+b

for some sign ϵ(p, q, a, b). Of course the summand Ap,q maps to the summand
Ap

′+a,q′+b when p = p′ + a and q = q′ + b. To figure out the conditions on these
signs observe that on the source we have

d|Ap,q = (−1)a+b (dp,q1 + (−1)pdp,q2 )
whereas on the target we have

d|Ap′+a,q′+b = (−1)adp
′+a,q′+b

1 + (−1)p
′
(−1)bdp

′+a,q′+b
2

Thus our constraints are that
(−1)aϵ(p, q, a, b) = ϵ(p+ 1, q, a, b)(−1)a+b ⇔ ϵ(p+ 1, q, a, b) = (−1)bϵ(p, q, a, b)

and
(−1)p

′+bϵ(p, q, a, b) = ϵ(p, q + 1, a, b)(−1)a+b+p ⇔ ϵ(p, q, a, b) = ϵ(p, q + 1, a, b)
Thus we choose ϵ(p, q, a, b) = (−1)pb.

https://stacks.math.columbia.edu/tag/08BI
https://stacks.math.columbia.edu/tag/0FLG
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Remark 12.18.6.0G6A Let A be an additive category with countable direct sums. Let
DoubleComp(A) denote the category of double complexes. We can consider an
object A•,• of DoubleComp(A) as a complex of complexes as follows

. . .→ A•,−1 → A•,0 → A•,1 → . . .

For the variant where we switch the role of the indices, see Remark 12.18.7. In this
remark we show that taking the associated total complex is compatible with all the
structures on complexes we have studied in the chapter so far.
First, observe that the shift functor on double complexes viewed as complexes of
complexes in the manner given above is the functor [0, 1] defined in Remark 12.18.5.
By Remark 12.18.5 the functor

Tot : DoubleComp(A)→ Comp(A)
is compatible with shift functors, in the sense that we have a functorial isomorphism
γ : Tot(A•,•)[1]→ Tot(A•,•[0, 1]).
Second, if

f, g : A•,• → B•,•

are homotopic when f and g are viewed as morphisms of complexes of complexes
in the manner given above, then

Tot(f),Tot(g) : Tot(A•,•)→ Tot(B•,•)
are homotopic maps of complexes. Indeed, let h = (hq) be a homotopy between f
and g. If we denote hp,q : Ap,q → Bp,q−1 the component in degree p of hq, then
this means that

fp,q − gp,q = dp,q−1
2 ◦ hp,q + hp,q+1 ◦ dp,q2

The fact that hq : A•,q → B•,q−1 is a map of complexes means that
dp,q−1

1 ◦ hp,q = hp+1,q ◦ dp,q1

Let us define h′ = ((h′)n) the homotopy given by the maps (h′)n : Totn(A•,•) →
Totn−1(B•,•) using (−1)php,q on the summand Ap,q for p + q = n. Then we see
that

dTot(B•,•) ◦ h′ + h′ ◦ dTot(A•,•)

restricted to the summand Ap,q is equal to
dp,q−1

1 ◦(−1)php,q+(−1)pdp,q−1
2 ◦(−1)php,q+(−1)p+1hp+1,q◦dp,q1 +(−1)php,q+1◦(−1)pdp,q2

which evaluates to fp,q−gp,q by the equations given above. This proves the second
compatibility.
Third, suppose that in the paragraph above we have f = g. Then the assignment
h ⇝ h′ above is compatible with the identification of Lemma 12.14.9. More pre-
cisely, if we view h as a morphism of complexes of complexes A•,• → B•,•[0,−1]
via this lemma then

Tot(A•,•) Tot(h)−−−−→ Tot(B•,•[0,−1]) γ−1

−−→ Tot(B•,•)[−1]
is equal to h′ viewed as a morphism of complexes via the lemma. Here γ is the
identification of Remark 12.18.5. The verification of this third point is immediate.
Fourth, let

0→ A•,• → B•,• → C•,• → 0

https://stacks.math.columbia.edu/tag/0G6A
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be a complex of double complexes and suppose we are given splittings sq : C•,q →
B•,q and πq : B•,q → A•,q of this as in Lemma 12.14.10 when we view double
complexes as complexes of complexes in the manner given above. This on the one
hand produces a map

δ : C•,• −→ A•,•[0, 1]
by the procedure in Lemma 12.14.10. On the other hand taking Tot we obtain a
complex

0→ Tot(A•,•)→ Tot(B•,•)→ Tot(C•,•)→ 0
which is termwise split (see below) and hence comes with a morphism

δ′ : Tot(C•,•) −→ Tot(A•,•)[1]
well defined up to homotopy by Lemmas 12.14.10 and 12.14.12. Claim: these maps
agree in the sense that

Tot(C•,•) Tot(δ)−−−−→ Tot(A•,•[0, 1]) γ−1

−−→ Tot(A•,•)[1]
is equal to δ′ where γ is as in Remark 12.18.5. To see this denote sp,q : Cp,q →
B•,q and πp,q : Bp,q → Ap,q the components of sq and πq. As splittings (s′)n :
Totn(C•,•) → Totn(B•,•) and (π′)n : Totn(B•,•) → Totn(A•,•) we use the maps
whose components are sp,q and πp,q for p+ q = n. We recall that

(δ′)n = (π′)n+1 ◦ dnTot(B•,•) ◦ (s′)n : Totn(C•,•)→ Totn+1(A•,•)
The restriction of this to the summand Cp,q is equal to

πp+1,q ◦ dp,q1 ◦ sp,q + πp,q+1 ◦ (−1)pdp,q2 ◦ sp,q = πp,q+1 ◦ (−1)pdp,q2 ◦ sp,q

The equality holds because sq is a morphism of complexes (with d1 as differential)
and because πp+1,q◦sp+1,q = 0 as s and π correspond to a direct sum decomposition
of B in every bidegree. On the other hand, for δ we have

δq = πq ◦ d2 ◦ sq : C•,q → A•,q+1

whose restriction to the summand Cp,q is equal to πp,q+1 ◦dp,q2 ◦sp,q. The difference
in signs is exactly canceled out by the sign of (−1)p in the isomorphism γ and the
fourth claim is proven.
Remark 12.18.7.0G6B Let A be an additive category with countable direct sums. Let
DoubleComp(A) denote the category of double complexes. We can consider an
object A•,• of DoubleComp(A) as a complex of complexes as follows

. . .→ A−1,• → A0,• → A1,• → . . .

For the variant where we switch the role of the indices, see Remark 12.18.6. In this
remark we show that taking the associated total complex is compatible with all the
structures on complexes we have studied in the chapter so far.
First, observe that the shift functor on double complexes viewed as complexes of
complexes in the manner given above is the functor [1, 0] defined in Remark 12.18.5.
By Remark 12.18.5 the functor

Tot : DoubleComp(A)→ Comp(A)
is compatible with shift functors, in the sense that we have a functorial isomorphism
γ : Tot(A•,•)[1]→ Tot(A•,•[1, 0]).
Second, if

f, g : A•,• → B•,•

https://stacks.math.columbia.edu/tag/0G6B
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are homotopic when f and g are viewed as morphisms of complexes of complexes
in the manner given above, then

Tot(f),Tot(g) : Tot(A•,•)→ Tot(B•,•)
are homotopic maps of complexes. Indeed, let h = (hp) be a homotopy between f
and g. If we denote hp,q : Ap,q → Bp−1,q the component in degree p of hq, then
this means that

fp,q − gp,q = dp−1,q
1 ◦ hp,q + hp+1,q ◦ dp,q1

The fact that hp : Ap,• → Bp−1,• is a map of complexes means that
dp−1,q

2 ◦ hp,q = hp,q+1 ◦ dp,q2

Let us define h′ = ((h′)n) the homotopy given by the maps (h′)n : Totn(A•,•) →
Totn−1(B•,•) using hp,q on the summand Ap,q for p+ q = n. Then we see that

dTot(B•,•) ◦ h′ + h′ ◦ dTot(A•,•)

restricted to the summand Ap,q is equal to
dp−1,q

1 ◦ hp,q + (−1)p−1dp−1,q
2 ◦ hp,q + hp+1,q ◦ dp,q1 + hp,q+1 ◦ (−1)pdp,q2

which evaluates to fp,q−gp,q by the equations given above. This proves the second
compatibility.
Third, suppose that in the paragraph above we have f = g. Then the assignment
h ⇝ h′ above is compatible with the identification of Lemma 12.14.9. More pre-
cisely, if we view h as a morphism of complexes of complexes A•,• → B•,•[−1, 0]
via this lemma then

Tot(A•,•) Tot(h)−−−−→ Tot(B•,•[−1, 0]) γ−1

−−→ Tot(B•,•)[−1]
is equal to h′ viewed as a morphism of complexes via the lemma. Here γ is the
identification of Remark 12.18.5. The verification of this third point is immediate.
Fourth, let

0→ A•,• → B•,• → C•,• → 0
be a complex of double complexes and suppose we are given splittings sp : Cp,• →
Bp,• and πp : Bp,• → Ap,• of this as in Lemma 12.14.10 when we view double
complexes as complexes of complexes in the manner given above. This on the one
hand produces a map

δ : C•,• −→ A•,•[0, 1]
by the procedure in Lemma 12.14.10. On the other hand taking Tot we obtain a
complex

0→ Tot(A•,•)→ Tot(B•,•)→ Tot(C•,•)→ 0
which is termwise split (see below) and hence comes with a morphism

δ′ : Tot(C•,•) −→ Tot(A•,•)[1]
well defined up to homotopy by Lemmas 12.14.10 and 12.14.12. Claim: these maps
agree in the sense that

Tot(C•,•) Tot(δ)−−−−→ Tot(A•,•[1, 0]) γ−1

−−→ Tot(A•,•)[1]
is equal to δ′ where γ is as in Remark 12.18.5. To see this denote sp,q : Cp,q →
B•,q and πp,q : Bp,q → Ap,q the components of sq and πq. As splittings (s′)n :



12.19. FILTRATIONS 943

Totn(C•,•) → Totn(B•,•) and (π′)n : Totn(B•,•) → Totn(A•,•) we use the maps
whose components are sp,q and πp,q for p+ q = n. We recall that

(δ′)n = (π′)n+1 ◦ dnTot(B•,•) ◦ (s′)n : Totn(C•,•)→ Totn+1(A•,•)
The restriction of this to the summand Cp,q is equal to

πp+1,q ◦ dp,q1 ◦ sp,q + πp,q+1 ◦ (−1)pdp,q2 ◦ sp,q = πp+1,q ◦ dp,q1 ◦ sp,q

The equality holds because sp is a morphism of complexes (with d2 as differential)
and because πp,q+1◦sp,q+1 = 0 as s and π correspond to a direct sum decomposition
of B in every bidegree. On the other hand, for δ we have

δp = πp ◦ d1 ◦ sp : Cp,• → Ap+1,•

whose restriction to the summand Cp,q is equal to πp+1,q ◦ dp,q1 ◦ sp,q. Thus we
get the same as before which matches with the fact that the isomorphism γ :
Tot(A•,•)[1]→ Tot(A•,•[1, 0]) is defined without the intervention of signs.

12.19. Filtrations

0120 A nice reference for this material is [Del71, Section 1]. (Note that our conventions
regarding abelian categories are different.)

Definition 12.19.1.0121 Let A be an abelian category.
(1) A decreasing filtration F on an object A is a family (FnA)n∈Z of subob-

jects of A such that
A ⊃ . . . ⊃ FnA ⊃ Fn+1A ⊃ . . . ⊃ 0

(2) A filtered object of A is pair (A,F ) consisting of an object A of A and a
decreasing filtration F on A.

(3) A morphism (A,F ) → (B,F ) of filtered objects is given by a morphism
φ : A→ B of A such that φ(F iA) ⊂ F iB for all i ∈ Z.

(4) The category of filtered objects is denoted Fil(A).
(5) Given a filtered object (A,F ) and a subobjectX ⊂ A the induced filtration

on X is the filtration with FnX = X ∩ FnA.
(6) Given a filtered object (A,F ) and a surjection π : A → Y the quotient

filtration is the filtration with FnY = π(FnA).
(7) A filtration F on an object A is said to be finite if there exist n,m such

that FnA = A and FmA = 0.
(8) Given a filtered object (A,F ) we say

⋂
F iA exists if there exists a biggest

subobject of A contained in all F iA. We say
⋃
F iA exists if there exists

a smallest subobject of A containing all F iA.
(9) The filtration on a filtered object (A,F ) is said to be separated if

⋂
F iA =

0 and exhaustive if
⋃
F iA = A.

By abuse of notation we say that a morphism f : (A,F )→ (B,F ) of filtered objects
is injective if f : A → B is injective in the abelian category A. Similarly we say
f is surjective if f : A → B is surjective in the category A. Being injective (resp.
surjective) is equivalent to being a monomorphism (resp. epimorphism) in Fil(A).
By Lemma 12.19.2 this is also equivalent to having zero kernel (resp. cokernel).

Lemma 12.19.2.0122 Let A be an abelian category. The category of filtered objects
Fil(A) has the following properties:

(1) It is an additive category.

https://stacks.math.columbia.edu/tag/0121
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(2) It has a zero object.
(3) It has kernels and cokernels, images and coimages.
(4) In general it is not an abelian category.

Proof. It is clear that Fil(A) is additive with direct sum given by (A,F )⊕(B,F ) =
(A ⊕ B,F ) where F p(A ⊕ B) = F pA ⊕ F pB. The kernel of a morphism f :
(A,F ) → (B,F ) of filtered objects is the injection Ker(f) ⊂ A where Ker(f) is
endowed with the induced filtration. The cokernel of a morphism f : A → B of
filtered objects is the surjection B → Coker(f) where Coker(f) is endowed with
the quotient filtration. Since all kernels and cokernels exist, so do all coimages and
images. See Example 12.3.13 for the last statement. □

Definition 12.19.3.0123 Let A be an abelian category. A morphism f : A → B of
filtered objects of A is said to be strict if f(F iA) = f(A) ∩ F iB for all i ∈ Z.

This also equivalent to requiring that f−1(F iB) = F iA+ Ker(f) for all i ∈ Z. We
characterize strict morphisms as follows.

Lemma 12.19.4.05SI Let A be an abelian category. Let f : A → B be a morphism of
filtered objects of A. The following are equivalent

(1) f is strict,
(2) the morphism Coim(f)→ Im(f) of Lemma 12.3.12 is an isomorphism.

Proof. Note that Coim(f) → Im(f) is an isomorphism of objects of A, and that
part (2) signifies that it is an isomorphism of filtered objects. By the description
of kernels and cokernels in the proof of Lemma 12.19.2 we see that the filtration
on Coim(f) is the quotient filtration coming from A → Coim(f). Similarly, the
filtration on Im(f) is the induced filtration coming from the injection Im(f) →
B. The definition of strict is exactly that the quotient filtration is the induced
filtration. □

Lemma 12.19.5.05SK Let A be an abelian category. Let f : A→ B be a strict monomor-
phism of filtered objects. Let g : A → C be a morphism of filtered objects. Then
f ⊕ g : A→ B ⊕ C is a strict monomorphism.

Proof. Clear from the definitions. □

Lemma 12.19.6.05SL Let A be an abelian category. Let f : B → A be a strict epimor-
phism of filtered objects. Let g : C → A be a morphism of filtered objects. Then
f ⊕ g : B ⊕ C → A is a strict epimorphism.

Proof. Clear from the definitions. □

Lemma 12.19.7.0124 Let A be an abelian category. Let (A,F ), (B,F ) be filtered
objects. Let u : A → B be a morphism of filtered objects. If u is injective then u
is strict if and only if the filtration on A is the induced filtration. If u is surjective
then u is strict if and only if the filtration on B is the quotient filtration.

Proof. This is immediate from the definition. □

Lemma 12.19.8.05SJ Let A be an abelian category. Let f : A → B, g : B → C be
strict morphisms of filtered objects.

(1) In general the composition g ◦ f is not strict.
(2) If g is injective, then g ◦ f is strict.

https://stacks.math.columbia.edu/tag/0123
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(3) If f is surjective, then g ◦ f is strict.

Proof. Let B a vector space over a field k with basis e1, e2, with the filtration
FnB = B for n < 0, with F 0B = ke1, and FnB = 0 for n > 0. Now take
A = k(e1 +e2) and C = B/ke2 with filtrations induced by B, i.e., such that A→ B
and B → C are strict (Lemma 12.19.7). Then Fn(A) = A for n < 0 and Fn(A) = 0
for n ≥ 0. Also Fn(C) = C for n ≤ 0 and Fn(C) = 0 for n > 0. So the (nonzero)
composition A→ C is not strict.

Assume g is injective. Then

g(f(F pA)) = g(f(A) ∩ F pB)
= g(f(A)) ∩ g(F p(B))
= (g ◦ f)(A) ∩ (g(B) ∩ F pC)
= (g ◦ f)(A) ∩ F pC.

The first equality as f is strict, the second because g is injective, the third because
g is strict, and the fourth because (g ◦ f)(A) ⊂ g(B).

Assume f is surjective. Then

(g ◦ f)−1(F iC) = f−1(F iB + Ker(g))
= f−1(F iB) + f−1(Ker(g))
= F iA+ Ker(f) + Ker(g ◦ f)
= F iA+ Ker(g ◦ f)

The first equality because g is strict, the second because f is surjective, the third
because f is strict, and the last because Ker(f) ⊂ Ker(g ◦ f). □

The following lemma says that subobjects of a filtered object have a well defined
filtration independent of a choice of writing the object as a cokernel.

Lemma 12.19.9.0129 Let A be an abelian category. Let (A,F ) be a filtered object of
A. Let X ⊂ Y ⊂ A be subobjects of A. On the object

Y/X = Ker(A/X → A/Y )

the quotient filtration coming from the induced filtration on Y and the induced
filtration coming from the quotient filtration on A/X agree. Any of the morphisms
X → Y , X → A, Y → A, Y → A/X, Y → Y/X, Y/X → A/X are strict (with
induced/quotient filtrations).

Proof. The quotient filtration Y/X is given by F p(Y/X) = F pY/(X ∩ F pY ) =
F pY/F pX because F pY = Y ∩ F pA and F pX = X ∩ F pA. The induced filtration
from the injection Y/X → A/X is given by

F p(Y/X) = Y/X ∩ F p(A/X)
= Y/X ∩ (F pA+X)/X
= (Y ∩ F pA)/(X ∩ F pA)
= F pY/F pX.

Hence the first statement of the lemma. The proof of the other cases is similar. □

https://stacks.math.columbia.edu/tag/0129
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Lemma 12.19.10.05SM Let A be an abelian category. Let A,B,C ∈ Fil(A). Let f :
A→ B and g : A→ C be morphisms. Then there exists a pushout

A
f

//

g

��

B

g′

��
C

f ′
// C ⨿A B

in Fil(A). If f is strict, so is f ′.

Proof. Set C ⨿A B equal to Coker((1,−1) : A → C ⊕ B) in Fil(A). This cokernel
exists, by Lemma 12.19.2. It is a pushout, see Example 12.5.6. Note that F p(C⨿A
B) is the image of F pC ⊕ F pB. Hence

(f ′)−1(F p(C ⨿A B)) = g(f−1(F pB))) + F pC

Whence the last statement. □

Lemma 12.19.11.05SN Let A be an abelian category. Let A,B,C ∈ Fil(A). Let f :
B → A and g : C → A be morphisms. Then there exists a fibre product

B ×A C
g′

//

f ′

��

B

f

��
C

g // A

in Fil(A). If f is strict, so is f ′.

Proof. This lemma is dual to Lemma 12.19.10. □

Let A be an abelian category. Let (A,F ) be a filtered object of A. We denote
grpF (A) = grp(A) the object F pA/F p+1A of A. This defines an additive functor

grp : Fil(A) −→ A, (A,F ) 7−→ grp(A).
Recall that we have defined the category Gr(A) of graded objects of A in Section
12.16. For (A,F ) in Fil(A) we may set

gr(A) = the graded object of A whose pth graded piece is grp(A)
and if A has countable direct sums, then we simply have

gr(A) =
⊕

grp(A)
This defines an additive functor

gr : Fil(A) −→ Gr(A), (A,F ) 7−→ gr(A).

Lemma 12.19.12.05SP Let A be an abelian category.
(1) Let A be a filtered object and X ⊂ A. Then for each p the sequence

0→ grp(X)→ grp(A)→ grp(A/X)→ 0
is exact (with induced filtration on X and quotient filtration on A/X).

(2) Let f : A → B be a morphism of filtered objects of A. Then for each p
the sequences

0→ grp(Ker(f))→ grp(A)→ grp(Coim(f))→ 0
and

0→ grp(Im(f))→ grp(B)→ grp(Coker(f))→ 0

https://stacks.math.columbia.edu/tag/05SM
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are exact.

Proof. We have F p+1X = X ∩ F p+1A, hence map grp(X) → grp(A) is injective.
Dually the map grp(A) → grp(A/X) is surjective. The kernel of F pA/F p+1A →
A/X+F p+1A is clearly F p+1A+X∩F pA/F p+1A = F pX/F p+1X hence exactness
in the middle. The two short exact sequence of (2) are special cases of the short
exact sequence of (1). □

Lemma 12.19.13.0127 Let A be an abelian category. Let f : A→ B be a morphism of
finite filtered objects of A. The following are equivalent

(1) f is strict,
(2) the morphism Coim(f)→ Im(f) is an isomorphism,
(3) gr(Coim(f))→ gr(Im(f)) is an isomorphism,
(4) the sequence gr(Ker(f))→ gr(A)→ gr(B) is exact,
(5) the sequence gr(A)→ gr(B)→ gr(Coker(f)) is exact, and
(6) the sequence

0→ gr(Ker(f))→ gr(A)→ gr(B)→ gr(Coker(f))→ 0
is exact.

Proof. The equivalence of (1) and (2) is Lemma 12.19.4. By Lemma 12.19.12 we
see that (4), (5), (6) imply (3) and that (3) implies (4), (5), (6). Hence it suffices
to show that (3) implies (2). Thus we have to show that if f : A → B is an
injective and surjective map of finite filtered objects which induces and isomorphism
gr(A)→ gr(B), then f induces an isomorphism of filtered objects. In other words,
we have to show that f(F pA) = F pB for all p. As the filtrations are finite we may
prove this by descending induction on p. Suppose that f(F p+1A) = F p+1B. Then
commutative diagram

0 // F p+1A //

f

��

F pA //

f

��

grp(A) //

grp(f)
��

0

0 // F p+1B // F pB // grp(B) // 0

and the five lemma imply that f(F pA) = F pB. □

Lemma 12.19.14.0128 Let A be an abelian category. Let A→ B → C be a complex of
filtered objects of A. Assume α : A → B and β : B → C are strict morphisms of
filtered objects. Then gr(Ker(β)/ Im(α)) = Ker(gr(β))/ Im(gr(α))).

Proof. This follows formally from Lemma 12.19.12 and the fact that Coim(α) ∼=
Im(α) and Coim(β) ∼= Im(β) by Lemma 12.19.4. □

Lemma 12.19.15.05QH Let A be an abelian category. Let A → B → C be a complex
of filtered objects of A. Assume A,B,C have finite filtrations and that gr(A) →
gr(B)→ gr(C) is exact. Then

(1) for each p ∈ Z the sequence grp(A)→ grp(B)→ grp(C) is exact,
(2) for each p ∈ Z the sequence F p(A)→ F p(B)→ F p(C) is exact,
(3) for each p ∈ Z the sequence A/F p(A)→ B/F p(B)→ C/F p(C) is exact,
(4) the maps A→ B and B → C are strict, and
(5) A→ B → C is exact (as a sequence in A).

https://stacks.math.columbia.edu/tag/0127
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Proof. Part (1) is immediate from the definitions. We will prove (3) by induction
on the length of the filtrations. If each of A, B, C has only one nonzero graded part,
then (3) holds as gr(A) = A, etc. Let n be the largest integer such that at least
one of FnA,FnB,FnC is nonzero. Set A′ = A/FnA, B′ = B/FnB, C ′ = C/FnC
with induced filtrations. Note that gr(A) = FnA ⊕ gr(A′) and similarly for B
and C. The induction hypothesis applies to A′ → B′ → C ′, which implies that
A/F p(A) → B/F p(B) → C/F p(C) is exact for p ≥ n. To conclude the same for
p = n+ 1, i.e., to prove that A→ B → C is exact we use the commutative diagram

0 // FnA //

��

A //

��

A′ //

��

0

0 // FnB //

��

B //

��

B′ //

��

0

0 // FnC // C // C ′ // 0
whose rows are short exact sequences of objects of A. The proof of (2) is dual. Of
course (5) follows from (2).
To prove (4) denote f : A → B and g : B → C the given morphisms. We know
that f(F p(A)) = Ker(F p(B) → F p(C)) by (2) and f(A) = Ker(g) by (5). Hence
f(F p(A)) = Ker(F p(B)→ F p(C)) = Ker(g)∩F p(B) = f(A)∩F p(B) which proves
that f is strict. The proof that g is strict is dual to this. □

12.20. Spectral sequences

011M A nice discussion of spectral sequences may be found in [Eis95]. See also [McC01],
[Lan02], etc.

Definition 12.20.1.011N Let A be an abelian category.
(1) A spectral sequence in A is given by a system (Er, dr)r≥1 where each Er

is an object of A, each dr : Er → Er is a morphism such that dr ◦ dr = 0
and Er+1 = Ker(dr)/ Im(dr) for r ≥ 1.

(2) A morphism of spectral sequences f : (Er, dr)r≥1 → (E′
r, d

′
r)r≥1 is given

by a family of morphisms fr : Er → E′
r such that fr ◦ dr = d′

r ◦ fr
and such that fr+1 is the morphism induced by fr via the identifications
Er+1 = Ker(dr)/ Im(dr) and E′

r+1 = Ker(d′
r)/ Im(d′

r).

We will sometimes loosen this definition somewhat and allow Er+1 to be an object
with a given isomorphism Er+1 → Ker(dr)/ Im(dr). In addition we sometimes have
a system (Er, dr)r≥r0 for some r0 ∈ Z satisfying the properties of the definition
above for indices ≥ r0. We will also call this a spectral sequence since by a simple
renumbering it falls under the definition anyway. In fact, the cases r0 = 0 and
r0 = −1 can be found in the literature.
Given a spectral sequence (Er, dr)r≥1 we define

0 = B1 ⊂ B2 ⊂ . . . ⊂ Br ⊂ . . . ⊂ Zr ⊂ . . . ⊂ Z2 ⊂ Z1 = E1

by the following simple procedure. Set B2 = Im(d1) and Z2 = Ker(d1). Then it is
clear that d2 : Z2/B2 → Z2/B2. Hence we can define B3 as the unique subobject
of E1 containing B2 such that B3/B2 is the image of d2. Similarly we can define

https://stacks.math.columbia.edu/tag/011N
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Z3 as the unique subobject of E1 containing B2 such that Z3/B2 is the kernel of
d2. And so on and so forth. In particular we have

Er = Zr/Br

for all r ≥ 1. In case the spectral sequence starts at r = r0 then we can similarly
construct Bi, Zi as subobjects in Er0 . In fact, in the literature one sometimes finds
the notation
0 = Br(Er) ⊂ Br+1(Er) ⊂ Br+2(Er) ⊂ . . . ⊂ Zr+2(Er) ⊂ Zr+1(Er) ⊂ Zr(Er) = Er

to denote the filtration described above but starting with Er.

Definition 12.20.2.011O Let A be an abelian category. Let (Er, dr)r≥1 be a spectral
sequence.

(1) If the subobjects Z∞ =
⋂
Zr and B∞ =

⋃
Br of E1 exist then we define

the limit3 of the spectral sequence to be the object E∞ = Z∞/B∞.
(2) We say that the spectral sequence degenerates at Er if the differentials

dr, dr+1, . . . are all zero.

Note that if the spectral sequence degenerates at Er, then we have Er = Er+1 =
. . . = E∞ (and the limit exists of course). Also, almost any abelian category we
will encounter has countable sums and intersections.

Remark 12.20.3 (Variant).0AMI It is often the case that the terms of a spectral sequence
have additional structure, for example a grading or a bigrading. To accomodate
this (and to get around certain technical issues) we introduce the following notion.
Let A be an abelian category. Let (Tr)r≥1 be a sequence of translation or shift
functors, i.e., Tr : A → A is an isomorphism of categories. In this setting a spectral
sequence is given by a system (Er, dr)r≥1 where each Er is an object of A, each
dr : Er → TrEr is a morphism such that Trdr ◦ dr = 0 so that

. . . // T−1
r Er

T−1
r dr // Er

dr // TrEr
Trdr // T 2

rEr // . . .

is a complex and Er+1 = Ker(dr)/ Im(T−1
r dr) for r ≥ 1. It is clear what a morphism

of spectral sequences means in this setting. In this setting we can still define
0 = B1 ⊂ B2 ⊂ . . . ⊂ Br ⊂ . . . ⊂ Zr ⊂ . . . ⊂ Z2 ⊂ Z1 = E1

and Z∞ and B∞ (if they exist) as above.

12.21. Spectral sequences: exact couples

011P
Definition 12.21.1.011Q Let A be an abelian category.

(1) An exact couple is a datum (A,E, α, f, g) where A, E are objects of A
and α, f , g are morphisms as in the following diagram

A
α

// A

g
��

E

f

__

3This notation is not universally accepted. In some references an additional pair of subobjects
Z∞ and B∞ of E1 such that 0 = B1 ⊂ B2 ⊂ . . . ⊂ B∞ ⊂ Z∞ ⊂ . . . ⊂ Z2 ⊂ Z1 = E1 is part of
the data comprising a spectral sequence!

https://stacks.math.columbia.edu/tag/011O
https://stacks.math.columbia.edu/tag/0AMI
https://stacks.math.columbia.edu/tag/011Q
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with the property that the kernel of each arrow is the image of its prede-
cessor. So Ker(α) = Im(f), Ker(f) = Im(g), and Ker(g) = Im(α).

(2) A morphism of exact couples t : (A,E, α, f, g)→ (A′, E′, α′, f ′, g′) is given
by morphisms tA : A → A′ and tE : E → E′ such that α′ ◦ tA = tA ◦ α,
f ′ ◦ tE = tA ◦ f , and g′ ◦ tA = tE ◦ g.

Lemma 12.21.2.011R Let (A,E, α, f, g) be an exact couple in an abelian category A.
Set

(1) d = g ◦ f : E → E so that d ◦ d = 0,
(2) E′ = Ker(d)/ Im(d),
(3) A′ = Im(α),
(4) α′ : A′ → A′ induced by α,
(5) f ′ : E′ → A′ induced by f ,
(6) g′ : A′ → E′ induced by “g ◦ α−1”.

Then we have
(1) Ker(d) = f−1(Ker(g)) = f−1(Im(α)),
(2) Im(d) = g(Im(f)) = g(Ker(α)),
(3) (A′, E′, α′, f ′, g′) is an exact couple.

Proof. Omitted. □

Hence it is clear that given an exact couple (A,E, α, f, g) we get a spectral sequence
by setting E1 = E, d1 = d, E2 = E′, d2 = d′ = g′ ◦ f ′, E3 = E′′, d3 = d′′ = g′′ ◦ f ′′,
and so on.

Definition 12.21.3.011S Let A be an abelian category. Let (A,E, α, f, g) be an exact
couple. The spectral sequence associated to the exact couple is the spectral sequence
(Er, dr)r≥1 with E1 = E, d1 = d, E2 = E′, d2 = d′ = g′ ◦ f ′, E3 = E′′, d3 = d′′ =
g′′ ◦ f ′′, and so on.

Lemma 12.21.4.011T Let A be an abelian category. Let (A,E, α, f, g) be an exact
couple. Let (Er, dr)r≥1 be the spectral sequence associated to the exact couple. In
this case we have
0 = B1 ⊂ . . . ⊂ Br+1 = g(Ker(αr)) ⊂ . . . ⊂ Zr+1 = f−1(Im(αr)) ⊂ . . . ⊂ Z1 = E

and the map dr+1 : Er+1 → Er+1 is described by the following rule: For any (test)
object T of A and any elements x : T → Zr+1 and y : T → A such that f ◦x = αr◦y
we have

dr+1 ◦ x = g ◦ y
where x : T → Er+1 is the induced morphism.

Proof. Omitted. □

Note that in the situation of the lemma we obviously have

B∞ = g
(⋃

r
Ker(αr)

)
⊂ Z∞ = f−1

(⋂
r

Im(αr)
)

provided
⋃

Ker(αr) and
⋂

Im(αr) exist. This produces as limit E∞ = Z∞/B∞,
see Definition 12.20.2.

Remark 12.21.5 (Variant).0AMJ Let A be an abelian category. Let S, T : A → A be shift
functors, i.e., isomorphisms of categories. We will indicate the n-fold compositions
by SnA and TnA for A ∈ Ob(A) and n ∈ Z. In this situation an exact couple is a

https://stacks.math.columbia.edu/tag/011R
https://stacks.math.columbia.edu/tag/011S
https://stacks.math.columbia.edu/tag/011T
https://stacks.math.columbia.edu/tag/0AMJ
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datum (A,E, α, f, g) where A, E are objects of A and α : A→ T−1A, f : E → A,
g : A→ SE are morphisms such that

TE
Tf // TA

Tα // A
g // SE

Sf // SA

is an exact complex. Let’s visualize this as follows

TA
Tα

// A

g
~~

α
// T−1A

T−1gyy
TE

Tf

aa

SE E

f

__

T−1SE

We set d = g ◦ f : E → SE. Then d ◦ S−1d = g ◦ f ◦ S−1g ◦ S−1f = 0 because
f ◦ S−1g = 0. Set E′ = Ker(d)/ Im(S−1d). Set A′ = Im(Tα). Let α′ : A′ → T−1A′

induced by α. Let f ′ : E′ → A′ be induced by f which works because f(Ker(d)) ⊂
Ker(g) = Im(Tα). Finally, let g′ : A′ → TSE′ induced by “Tg ◦ (Tα)−1”4.

In exactly the same way as above we find
(1) Ker(d) = f−1(Ker(g)) = f−1(Im(Tα)),
(2) Im(d) = g(Im(f)) = g(Ker(α)),
(3) (A′, E′, α′, f ′, g′) is an exact couple for the shift functors TS and T .

We obtain a spectral sequence (as in Remark 12.20.3) with E1 = E, E2 = E′, etc,
with dr : Er → T r−1SEr for all r ≥ 1. Lemma 12.21.4 tells us that

SBr+1 = g(Ker(T−r+1α ◦ . . . ◦ T−1α ◦ α))

and
Zr+1 = f−1(Im(Tα ◦ T 2α ◦ . . . ◦ T rα))

in this situation. The description of the map dr+1 is similar to that given in the
lemma. (It may be easier to use these explicit descriptions to prove one gets a
spectral sequence from such an exact couple.)

12.22. Spectral sequences: differential objects

011U
Definition 12.22.1.011V Let A be an abelian category. A differential object of A is
a pair (A, d) consisting of an object A of A endowed with a selfmap d such that
d◦d = 0. A morphism of differential objects (A, d)→ (B, d) is given by a morphism
α : A→ B such that d ◦ α = α ◦ d.

Lemma 12.22.2.011W Let A be an abelian category. The category of differential objects
of A is abelian.

Proof. Omitted. □

Definition 12.22.3.011X For a differential object (A, d) we denote

H(A, d) = Ker(d)/ Im(d)

its homology.

4This works because TSE′ = Ker(TSd)/ Im(Td) and Tg(Ker(Tα)) = Tg(Im(Tf)) =
Im(T (d)) and TS(d)(Im(Tg)) = Im(TSg ◦ TSf ◦ Tg) = 0.

https://stacks.math.columbia.edu/tag/011V
https://stacks.math.columbia.edu/tag/011W
https://stacks.math.columbia.edu/tag/011X
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Lemma 12.22.4.011Y Let A be an abelian category. Let 0 → (A, d) → (B, d) →
(C, d)→ 0 be a short exact sequence of differential objects. Then we get an exact
homology sequence

. . .→ H(C, d)→ H(A, d)→ H(B, d)→ H(C, d)→ . . .

Proof. Apply Lemma 12.13.12 to the short exact sequence of complexes
0 → A → B → C → 0

↓ ↓ ↓
0 → A → B → C → 0

↓ ↓ ↓
0 → A → B → C → 0

where the vertical arrows are d. □

We come to an important example of a spectral sequence. Let A be an abelian
category. Let (A, d) be a differential object of A. Let α : (A, d) → (A, d) be an
endomorphism of this differential object. If we assume α injective, then we get a
short exact sequence

0→ (A, d)→ (A, d)→ (A/αA, d)→ 0
of differential objects. By the Lemma 12.22.4 we get an exact couple

H(A, d)
α

// H(A, d)

g
xx

H(A/αA, d)
f

ff

where g is the canonical map and f is the map defined in the snake lemma. Thus we
get an associated spectral sequence! Since in this case we have E1 = H(A/αA, d)
we see that it makes sense to define E0 = A/αA and d0 = d. In other words, we
start the spectral sequence with r = 0. According to our conventions in Section
12.20 we define a sequence of subobjects

0 = B0 ⊂ . . . ⊂ Br ⊂ . . . ⊂ Zr ⊂ . . . ⊂ Z0 = E0

with the property that Er = Zr/Br. Namely we have for r ≥ 1 that
(1) Br is the image of (αr−1)−1(dA) under the natural map A→ A/αA,
(2) Zr is the image of d−1(αrA) under the natural map A→ A/αA, and
(3) dr : Er → Er is given as follows: given an element z ∈ Zr choose an

element y ∈ A such that d(z) = αr(y). Then dr(z+Br+αA) = y+Br+αA.
Warning: It is not necessarily the case that αA ⊂ (αr−1)−1(dA), nor αA ⊂
d−1(αrA). It is true that (αr−1)−1(dA) ⊂ d−1(αrA). We have

Er = d−1(αrA) + αA

(αr−1)−1(dA) + αA
.

It is not hard to verify directly that (1) – (3) give a spectral sequence.

Definition 12.22.5.011Z Let A be an abelian category. Let (A, d) be a differential
object of A. Let α : A → A be an injective selfmap of A which commutes with d.
The spectral sequence associated to (A, d, α) is the spectral sequence (Er, dr)r≥0
described above.

https://stacks.math.columbia.edu/tag/011Y
https://stacks.math.columbia.edu/tag/011Z


12.23. SPECTRAL SEQUENCES: FILTERED DIFFERENTIAL OBJECTS 953

Remark 12.22.6 (Variant).0AMK Let A be an abelian category and let S, T : A →
A be shift functors, i.e., isomorphisms of categories. Assume that TS = ST as
functors. Consider pairs (A, d) consisting of an object A of A and a morphism
d : A → SA such that d ◦ S−1d = 0. The category of these objects is abelian. We
define H(A, d) = Ker(d)/ Im(S−1d) and we observe that H(SA, Sd) = SH(A, d)
(canonical isomorphism). Given a short exact sequence

0→ (A, d)→ (B, d)→ (C, d)→ 0

we obtain a long exact homology sequence

. . .→ S−1H(C, d)→ H(A, d)→ H(B, d)→ H(C, d)→ SH(A, d)→ . . .

(note the shifts in the boundary maps). Since ST = TS the functor T defines a shift
functor on pairs by setting T (A, d) = (TA, Td). Next, let α : (A, d) → T−1(A, d)
be injective with cokernel (Q, d). Then we get an exact couple as in Remark 12.21.5
with shift functors TS and T given by

(H(A, d), S−1H(Q, d), α, f, g)

where α : H(A, d) → T−1H(A, d) is induced by α, the map f : S−1H(Q, d) →
H(A, d) is the boundary map and g : H(A, d) → TH(Q, d) = TS(S−1H(Q, d))
is induced by the quotient map A → TQ. Thus we get a spectral sequence as
above with E1 = S−1H(Q, d) and differentials dr : Er → T rSEr. As above we set
E0 = S−1Q and d0 : E0 → SE0 given by S−1d : S−1Q → Q. If according to our
conventions we define Br ⊂ Zr ⊂ E0, then we have for r ≥ 1 that

(1) SBr is the image of

(T−r+1α ◦ . . . ◦ T−1α)−1 Im(T−rS−1d)

under the natural map T−1A→ Q,
(2) Zr is the image of

(S−1T−1d)−1 Im(α ◦ . . . ◦ T r−1α)

under the natural map S−1T−1A→ S−1Q.
The differentials can be described as follows: if x ∈ Zr, then pick x′ ∈ S−1T−1A
mapping to x. Then S−1T−1d(x′) is (α ◦ . . . ◦ T r−1α)(y) for some y ∈ T r−1A.
Then dr(x) ∈ T rSEr is represented by the class of the image of y in T rSE0 = T rQ
modulo T rSBr.

12.23. Spectral sequences: filtered differential objects

012A We can build a spectral sequence starting with a filtered differential object.

Definition 12.23.1.012B Let A be an abelian category. A filtered differential ob-
ject (K,F, d) is a filtered object (K,F ) of A endowed with an endomorphism
d : (K,F )→ (K,F ) whose square is zero: d ◦ d = 0.

To describe the spectral sequence associated to such an object we assume, for
the moment, that A is an abelian category which has countable direct sums and
countable direct sums are exact (this is not automatic, see Remark 12.16.3). Let
(K,F, d) be a filtered differential object of A. Note that each FnK is a differential
object by itself. Consider the object A =

⊕
FnK and endow it with a differential d

https://stacks.math.columbia.edu/tag/0AMK
https://stacks.math.columbia.edu/tag/012B
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by using d on each summand. Then (A, d) is a differential object of A which comes
equipped with a grading. Consider the map

α : A→ A

which is given by the inclusions FnK → Fn−1K. This is clearly an injective
morphism of differential objects α : (A, d) → (A, d). Hence, by Definition 12.22.5
we get a spectral sequence. We will call this the spectral sequence associated to
the filtered differential object (K,F, d).
Let us figure out the terms of this spectral sequence. First, note that A/αA = gr(K)
endowed with its differential d = gr(d). Hence we see that

E0 = gr(K), d0 = gr(d).
Hence the homology of the graded differential object gr(K) is the next term:

E1 = H(gr(K), gr(d)).
In addition we see that E0 is a graded object of A and that d0 is compatible with
the grading. Hence clearly E1 is a graded object as well. But it turns out that the
differential d1 does not preserve this grading; instead it shifts the degree by 1.
To work this out precisely, we define

Zpr = F pK ∩ d−1(F p+rK) + F p+1K

F p+1K
and

Bpr = F pK ∩ d(F p−r+1K) + F p+1K

F p+1K
.

This notation, although quite natural, seems to be different from the notation in
most places in the literature. Perhaps it does not matter, since the literature does
not seem to have a consistent choice of notation either. With these choices we see
that Br ⊂ E0, resp. Zr ⊂ E0 (as defined in Section 12.22) is equal to

⊕
pB

p
r , resp.⊕

p Z
p
r . Hence if we define

Epr = Zpr /B
p
r

for r ≥ 0 and p ∈ Z, then we have Er =
⊕

pE
p
r . We can define a differential

dpr : Epr → Ep+r
r by the rule

z + F p+1K 7−→ dz + F p+r+1K

where z ∈ F pK ∩ d−1(F p+rK).

Lemma 12.23.2.012C Let A be an abelian category. Let (K,F, d) be a filtered differ-
ential object of A. There is a spectral sequence (Er, dr)r≥0 in Gr(A) associated to
(K,F, d) such that dr : Er → Er[r] for all r and such that the graded pieces Epr and
maps dpr : Epr → Ep+r

r are as given above. Furthermore, Ep0 = grpK, dp0 = grp(d),
and Ep1 = H(grpK, d).

Proof. If A has countable direct sums and if countable direct sums are exact, then
this follows from the discussion above. In general, we proceed as follows; we strongly
suggest the reader skip this proof. Consider the object A = (F p+1K) of Gr(A), i.e.,
we put F p+1K in degree p (the funny shift in numbering to get numbering correct
later on). We endow it with a differential d by using d on each component. Then
(A, d) is a differential object of Gr(A). Consider the map

α : A→ A[−1]

https://stacks.math.columbia.edu/tag/012C
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which is given in degree p by the inclusions F p+1A → F pA. This is clearly an
injective morphism of differential objects α : (A, d) → (A, d)[−1]. Hence, we can
apply Remark 12.22.6 with S = id and T = [1]. The corresponding spectral
sequence (Er, dr)r≥0 in Gr(A) is the spectral sequence we are looking for. Let us
unwind the definitions a bit. First of all we have Er = (Epr ) is an object of Gr(A).
Then, since T rS = [r] we have dr : Er → Er[r] which means that dpr : Epr → Ep+r

r .
To see that the description of the graded pieces hold, we argue as above. Namely,
first we have E0 = Coker(α : A → A[−1]) and by our choice of numbering above
this gives Ep0 = grpK. The first differential is given by dp0 = grpd : Ep0 → Ep0 .
Next, the description of the boundaries Br and the cocycles Zr in Remark 12.22.6
translates into a straightforward manner into the formulae for Zpr and Bpr given
above. □

Lemma 12.23.3.012D LetA be an abelian category. Let (K,F, d) be a filtered differential
object of A. The spectral sequence (Er, dr)r≥0 associated to (K,F, d) has

dp1 : Ep1 = H(grpK) −→ H(grp+1K) = Ep+1
1

equal to the boundary map in homology associated to the short exact sequence of
differential objects

0→ grp+1K → F pK/F p+2K → grpK → 0.

Proof. This is clear from the formula for the differential dp1 given just above Lemma
12.23.2. □

Definition 12.23.4.012E Let A be an abelian category. Let (K,F, d) be a filtered dif-
ferential object of A. The induced filtration on H(K, d) is the filtration defined by
F pH(K, d) = Im(H(F pK, d)→ H(K, d)).

Writing out what this means we see that

F pH(K, d) = Ker(d) ∩ F pK + Im(d)
Im(d)

and hence we see that

grpH(K) = Ker(d) ∩ F pK + Im(d)
Ker(d) ∩ F p+1K + Im(d) = Ker(d) ∩ F pK

Ker(d) ∩ F p+1K + Im(d) ∩ F pK

Lemma 12.23.5.012F LetA be an abelian category. Let (K,F, d) be a filtered differential
object of A. If Zp∞ and Bp∞ exist (see proof), then

(1) the limit E∞ exists and is graded having Ep∞ = Zp∞/B
p
∞ in degree p, and

(2) the associated graded gr(H(K)) of the cohomology of K is a graded sub-
quotient of the graded limit object E∞.

Proof. The objects Z∞, B∞, and the limit E∞ = Z∞/B∞ of Definition 12.20.2
are objects of Gr(A) by our construction of the spectral sequence in the proof of
Lemma 12.23.2. Since Zr =

⊕
Zpr and Br =

⊕
Bpr , if we assume that

Zp∞ =
⋂

r
Zpr =

⋂
r(F pK ∩ d−1(F p+rK) + F p+1K)

F p+1K

and
Bp∞ =

⋃
r
Bpr =

⋃
r(F pK ∩ d(F p−r+1K) + F p+1K)

F p+1K
.

https://stacks.math.columbia.edu/tag/012D
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exist, then Z∞ and B∞ exist with degree p parts Zp∞ and Bp∞ (follows from an
elementary argument about unions and intersections of graded subobjects). Thus

Ep∞ =
⋂
r(F pK ∩ d−1(F p+rK) + F p+1K)⋃
r(F pK ∩ d(F p−r+1K) + F p+1K) .

where the top and bottom exist. We have
(12.23.5.1)012G Ker(d) ∩ F pK + F p+1K ⊂

⋂
r

(
F pK ∩ d−1(F p+rK) + F p+1K

)
and
(12.23.5.2)012H

⋃
r

(
F pK ∩ d(F p−r+1K) + F p+1K

)
⊂ Im(d) ∩ F pK + F p+1K.

Thus a subquotient of Ep∞ is
Ker(d) ∩ F pK + F p+1K

Im(d) ∩ F pK + F p+1K
= Ker(d) ∩ F pK

Im(d) ∩ F pK + Ker(d) ∩ F p+1K

Comparing with the formula given for grpH(K) in the discussion following Defini-
tion 12.23.4 we conclude. □

Definition 12.23.6.012I Let A be an abelian category. Let (K,F, d) be a filtered differ-
ential object of A. We say the spectral sequence associated to (K,F, d)

(1) weakly converges to H(K) if grH(K) = E∞ via Lemma 12.23.5,
(2) abuts toH(K) if it weakly converges toH(K) and we have

⋂
F pH(K) = 0

and
⋃
F pH(K) = H(K),

Unfortunately, it seems hard to find a consistent terminology for these notions in
the literature.

Lemma 12.23.7.012J LetA be an abelian category. Let (K,F, d) be a filtered differential
object of A. The associated spectral sequence

(1) weakly converges to H(K) if and only if for every p ∈ Z we have equality
in equations (12.23.5.2) and (12.23.5.1),

(2) abuts to H(K) if and only if it weakly converges to H(K) and
⋂
p(Ker(d)∩

F pK + Im(d)) = Im(d) and
⋃
p(Ker(d) ∩ F pK + Im(d)) = Ker(d).

Proof. Immediate from the discussions above. □

12.24. Spectral sequences: filtered complexes

012K
Definition 12.24.1.012L Let A be an abelian category. A filtered complex K• of A is a
complex of Fil(A) (see Definition 12.19.1).

We will denote the filtration on the objects by F . Thus F pKn denotes the pth step
in the filtration of the nth term of the complex. Note that each F pK• is a complex
of A. Hence we could also have defined a filtered complex as a filtered object in
the (abelian) category of complexes of A. In particular grK• is a graded object of
the category of complexes of A.
To describe the spectral sequence associated to such an object we assume, for
the moment, that A is an abelian category which has countable direct sums and
countable direct sums are exact (this is not automatic, see Remark 12.16.3). Let
us denote d the differential of K. Forgetting the grading we can think of

⊕
Kn

as a filtered differential object of A. Hence according to Section 12.23 we obtain

https://stacks.math.columbia.edu/tag/012I
https://stacks.math.columbia.edu/tag/012J
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a spectral sequence (Er, dr)r≥0. In this section we work out the terms of this
spectral sequence, and we endow the terms of this spectral sequence with additional
structure coming from the grading of K.
First we point out that Ep0 = grpK• is a complex and hence is graded. Thus E0 is
bigraded in a natural way. It is customary to use the bigrading

E0 =
⊕

p,q
Ep,q0 , Ep,q0 = grpKp+q

The idea is that p+ q should be thought of as the total degree of the (co)homology
classes. Also, p is called the filtration degree, and q is called the complementary
degree. The differential d0 is compatible with this bigrading in the following way

d0 =
⊕

dp,q0 , dp,q0 : Ep,q0 → Ep,q+1
0 .

Namely, dp0 is just the differential on the complex grpK• (which occurs as grpE0
just shifted a bit).
To go further we identify the objects Bpr and Zpr introduced in Section 12.23 as
graded objects and we work out the corresponding decompositions of the differen-
tials. We do this in a completely straightforward manner, but again we warn the
reader that our notation is not the same as notation found elsewhere. We define

Zp,qr = F pKp+q ∩ d−1(F p+rKp+q+1) + F p+1Kp+q

F p+1Kp+q

and
Bp,qr = F pKp+q ∩ d(F p−r+1Kp+q−1) + F p+1Kp+q

F p+1Kp+q

and of course Ep,qr = Zp,qr /Bp,qr . With these definitions it is completely clear that
Zpr =

⊕
q Z

p,q
r , Bpr =

⊕
q B

p,q
r , and Epr =

⊕
q E

p,q
r . Moreover, we have

0 ⊂ . . . ⊂ Bp,qr ⊂ . . . ⊂ Zp,qr ⊂ . . . ⊂ Ep,q0

Also, the map dpr decomposes as the direct sum of the maps
dp,qr : Ep,qr −→ Ep+r,q−r+1

r , z + F p+1Kp+q 7→ dz + F p+r+1Kp+q+1

where z ∈ F pKp+q ∩ d−1(F p+rKp+q+1).

Lemma 12.24.2.012M Let A be an abelian category. Let (K•, F ) be a filtered complex
of A. There is a spectral sequence (Er, dr)r≥0 in the category of bigraded objects of
A associated to (K•, F ) such that dr has bidegree (r,−r+ 1) and such that Er has
bigraded pieces Ep,qr and maps dp,qr : Ep,qr → Ep+r,q−r+1

r as given above. Further-
more, we have Ep,q0 = grp(Kp+q), dp,q0 = grp(dp+q), and Ep,q1 = Hp+q(grp(K•)).

Proof. If A has countable direct sums and if countable direct sums are exact, then
this follows from the discussion above. In general, we proceed as follows; we strongly
suggest the reader skip this proof. Consider the bigraded object A = (F p+1Kp+1+q)
of A, i.e., we put F p+1Kp+1+q in degree (p, q) (the funny shift in numbering to get
numbering correct later on). We endow it with a differential d : A → A[0, 1] by
using d on each component. Then (A, d) is a differential bigraded object. Consider
the map

α : A→ A[−1, 1]
which is given in degree (p, q) by the inclusion F p+1Kp+1+q → F pKp+1+q. This
is an injective morphism of differential objects α : (A, d) → (A, d)[−1, 1]. Hence,
we can apply Remark 12.22.6 with S = [0, 1] and T = [1,−1]. The corresponding

https://stacks.math.columbia.edu/tag/012M
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spectral sequence (Er, dr)r≥0 of bigraded objects is the spectral sequence we are
looking for. Let us unwind the definitions a bit. First of all we have Er = (Ep,qr ).
Then, since T rS = [r,−r + 1] we have dr : Er → Er[r,−r + 1] which means that
dp,qr : Ep,qr → Ep+r,q−r+1

r .
To see that the description of the graded pieces hold, we argue as above. Namely,
first we have
E0 = Coker(α : A→ A[−1, 1])[0,−1] = Coker(α[0,−1] : A[0,−1]→ A[−1, 0])

and by our choice of numbering above this gives
Ep,q0 = Coker(F p+1Kp+q → F pKp+q) = grpKp+q

The first differential is given by dp,q0 = grpdp+q : Ep,q0 → Ep,q+1
0 . Next, the descrip-

tion of the boundaries Br and the cocycles Zr in Remark 12.22.6 translates into a
straightforward manner into the formulae for Zp,qr and Bp,qr given above. □

Lemma 12.24.3.012N Let A be an abelian category. Let (K•, F ) be a filtered complex of
A. Assume A has countable direct sums. Let (Er, dr)r≥0 be the spectral sequence
associated to (K•, F ).

(1) The map

dp,q1 : Ep,q1 = Hp+q(grp(K•)) −→ Ep+1,q
1 = Hp+q+1(grp+1(K•))

is equal to the boundary map in cohomology associated to the short exact
sequence of complexes

0→ grp+1(K•)→ F pK•/F p+2K• → grp(K•)→ 0.
(2) Assume that d(F pK) ⊂ F p+1K for all p ∈ Z. Then d induces the zero

differential on grp(K•) and hence Ep,q1 = grp(K•)p+q. Furthermore, in
this case

dp,q1 : Ep,q1 = grp(K•)p+q −→ Ep+1,q
1 = grp+1(K•)p+q+1

is the morphism induced by d.

Proof. This is clear from the formula given for the differential dp,q1 just above
Lemma 12.24.2. □

Lemma 12.24.4.012O Let A be an abelian category. Let α : (K•, F ) → (L•, F ) be a
morphism of filtered complexes of A. Let (Er(K), dr)r≥0, resp. (Er(L), dr)r≥0 be
the spectral sequence associated to (K•, F ), resp. (L•, F ). The morphism α induces
a canonical morphism of spectral sequences {αr : Er(K)→ Er(L)}r≥0 compatible
with the bigradings.

Proof. Obvious from the explicit representation of the terms of the spectral se-
quences. □

Definition 12.24.5.012P Let A be an abelian category. Let (K•, F ) be a filtered complex
of A. The induced filtration on Hn(K•) is the filtration defined by F pHn(K•) =
Im(Hn(F pK•)→ Hn(K•)).

Writing out what this means we see that

(12.24.5.1)012R F pHn(K•, d) = Ker(d) ∩ F pKn + Im(d) ∩Kn

Im(d) ∩Kn

https://stacks.math.columbia.edu/tag/012N
https://stacks.math.columbia.edu/tag/012O
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and hence we see that

(12.24.5.2)0BDT grpHn(K•) = Ker(d) ∩ F pKn

Ker(d) ∩ F p+1Kn + Im(d) ∩ F pKn

(one intermediate step omitted).

Lemma 12.24.6.012Q Let A be an abelian category. Let (K•, F ) be a filtered complex
of A. If Zp,q∞ and Bp,q∞ exist (see proof), then

(1) the limit E∞ exists and is a bigraded object having Ep,q∞ = Zp,q∞ /Bp,q∞ in
bidegree (p, q),

(2) the pth graded part grpHn(K•) of the nth cohomology object of K• is a
subquotient of Ep,n−p

∞ .

Proof. The objects Z∞, B∞, and the limit E∞ = Z∞/B∞ of Definition 12.20.2
are bigraded objects of A by our construction of the spectral sequence in Lemma
12.24.2. Since Zr =

⊕
Zp,qr and Br =

⊕
Bp,qr , if we assume that

Zp,q∞ =
⋂

r
Zp,qr =

⋂
r

F pKp+q ∩ d−1(F p+rKp+q+1) + F p+1Kp+q

F p+1Kp+q

and
Bp,q∞ =

⋃
r
Bp,qr =

⋃
r

F pKp+q ∩ d(F p−r+1Kp+q−1) + F p+1Kp+q

F p+1Kp+q

exist, then Z∞ and B∞ exist with bidegree (p, q) parts Zp,q∞ and Bp,q∞ (follows from
an elementary argument about unions and intersections of bigraded objects). Thus

Ep,q∞ =
⋂
r(F pKp+q ∩ d−1(F p+rKp+q+1) + F p+1Kp+q)⋃
r(F pKp+q ∩ d(F p−r+1Kp+q−1) + F p+1Kp+q) .

where the top and the bottom exist. With n = p+ q we have
(12.24.6.1)

012S Ker(d) ∩ F pKn + F p+1Kn ⊂
⋂

r

(
F pKn ∩ d−1(F p+rKn+1) + F p+1Kn

)
and
(12.24.6.2)

012T
⋃

r

(
F pKn ∩ d(F p−r+1Kn−1) + F p+1Kn

)
⊂ Im(d) ∩ F pKn + F p+1Kn.

Thus a subquotient of Ep,q∞ is
Ker(d) ∩ F pKn + F p+1Kn

Im(d) ∩ F pKn + F p+1Kn
= Ker(d) ∩ F pKn

Im(d) ∩ F pKn + Ker(d) ∩ F p+1Kn

Comparing with (12.24.5.2) we conclude. □

Definition 12.24.7.0BDU Let A be an abelian category. Let (Er, dr)r≥r0 be a spectral
sequence of bigraded objects of A with dr of bidegree (r,−r + 1). We say such a
spectral sequence is

(1) regular if for all p, q ∈ Z there is a b = b(p, q) such that the maps dp,qr :
Ep,qr → Ep+r,q−r+1

r are zero for r ≥ b,
(2) coregular if for all p, q ∈ Z there is a b = b(p, q) such that the maps

dp−r,q+r−1
r : Ep−r,q+r−1

r → Ep,qr are zero for r ≥ b,
(3) bounded if for all n there are only a finite number of nonzero Ep,n−p

r0
,

(4) bounded below if for all n there is a b = b(n) such that Ep,n−p
r0

= 0 for
p ≥ b.

https://stacks.math.columbia.edu/tag/012Q
https://stacks.math.columbia.edu/tag/0BDU
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(5) bounded above if for all n there is a b = b(n) such that Ep,n−p
r0

= 0 for
p ≤ b.

Bounded below means that if we look at Ep,qr on the line p + q = n (whose slope
is −1) we obtain zeros as (p, q) moves down and to the right. As mentioned above
there is no consistent terminology regarding these notions in the literature.

Lemma 12.24.8.0BDV In the situation of Definition 12.24.7. Let Zp,qr , Bp,qr ⊂ Ep,qr0
be

the (p, q)-graded parts of Zr, Br defined as in Section 12.20.
(1) The spectral sequence is regular if and only if for all p, q there exists an

r = r(p, q) such that Zp,qr = Zp,qr+1 = . . .
(2) The spectral sequence is coregular if and only if for all p, q there exists an

r = r(p, q) such that Bp,qr = Bp,qr+1 = . . .
(3) The spectral sequence is bounded if and only if it is both bounded below

and bounded above.
(4) If the spectral sequence is bounded below, then it is regular.
(5) If the spectral sequence is bounded above, then it is coregular.

Proof. Omitted. Hint: If Ep,qr = 0, then we have Ep,qr′ = 0 for all r′ ≥ r. □

Definition 12.24.9.012U Let A be an abelian category. Let (K•, F ) be a filtered complex
of A. We say the spectral sequence associated to (K•, F )

(1) weakly converges to H∗(K•) if grpHn(K•) = Ep,n−p
∞ via Lemma 12.24.6

for all p, n ∈ Z,
(2) abuts to H∗(K•) if it weakly converges to H∗(K•) and

⋂
p F

pHn(K•) = 0
and

⋃
p F

pHn(K•) = Hn(K•) for all n,
(3) converges to H∗(K•) if it is regular, abuts to H∗(K•), and Hn(K•) =

limpH
n(K•)/F pHn(K•).

Weak convergence, abutment, or convergence is symbolized by the notation Ep,qr ⇒
Hp+q(K•). As mentioned above there is no consistent terminology regarding these
notions in the literature.

Lemma 12.24.10.012V Let A be an abelian category. Let (K•, F ) be a filtered complex
of A. The associated spectral sequence

(1) weakly converges to H∗(K•) if and only if for every p, q ∈ Z we have
equality in equations (12.24.6.2) and (12.24.6.1),

(2) abuts to H∗(K) if and only if it weakly converges to H∗(K•) and we have⋂
p(Ker(d)∩F pKn+Im(d)∩Kn) = Im(d)∩Kn and

⋃
p(Ker(d)∩F pKn+

Im(d) ∩Kn) = Ker(d) ∩Kn.

Proof. Immediate from the discussions above. □

Lemma 12.24.11.012W Let A be an abelian category. Let (K•, F ) be a filtered complex
of A. Assume that the filtration on each Kn is finite (see Definition 12.19.1). Then

(1) the spectral sequence associated to (K•, F ) is bounded,
(2) the filtration on each Hn(K•) is finite,
(3) the spectral sequence associated to (K•, F ) converges to H∗(K•),
(4) if C ⊂ A is a weak Serre subcategory and for some r we have Ep,qr ∈ C for

all p, q ∈ Z, then Hn(K•) is in C.

https://stacks.math.columbia.edu/tag/0BDV
https://stacks.math.columbia.edu/tag/012U
https://stacks.math.columbia.edu/tag/012V
https://stacks.math.columbia.edu/tag/012W
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Proof. Part (1) follows as Ep,n−p
0 = grpKn. Part (2) is clear from Equation

(12.24.5.1). We will use Lemma 12.24.10 to prove that the spectral sequence
weakly converges. Fix p, n ∈ Z. The right hand side of (12.24.6.1) is equal to
F pKn ∩ Ker(d) + F p+1Kn because F p+rKn = 0 for r ≫ 0. Thus (12.24.6.1) is
an equality. The left hand side of (12.24.6.2) is equal to F pKn ∩ Im(d) + F p+1Kn

because F p−r+1Kn−1 = Kn−1 for r ≫ 0. Thus (12.24.6.2) is an equality. Since
the filtration on Hn(K•) is finite by (2) we see that we have abutment. To prove
we have convergence we have to show the spectral sequence is regular which fol-
lows as it is bounded (Lemma 12.24.8) and we have to show that Hn(K•) =
limpH

n(K•)/F pHn(K•) which follows from the fact that the filtration on H∗(K•)
is finite proved in part (2).

Proof of (4). Assume that for some r ≥ 0 we have Ep,qr ∈ C for some weak
Serre subcategory C of A. Then Ep,qr+1 is in C as well, see Lemma 12.10.3. By
boundedness proved above (which implies that the spectral sequence is both regular
and coregular, see Lemma 12.24.8) we can find an r′ ≥ r such that Ep,q∞ = Ep,qr′

for all p, q with p + q = n. Thus Hn(K•) is an object of A which has a finite
filtration whose graded pieces are in C. This implies that Hn(K•) is in C by Lemma
12.10.3. □

Lemma 12.24.12.0BDW Let A be an abelian category. Let (K•, F ) be a filtered complex
of A. Assume that the filtration on each Kn is finite (see Definition 12.19.1) and
that for some r we have only a finite number of nonzero Ep,qr . Then only a finite
number of Hn(K•) are nonzero and we have∑

(−1)n[Hn(K•)] =
∑

(−1)p+q[Ep,qr ]

in K0(A′) where A′ is the smallest weak Serre subcategory of A containing the
objects Ep,qr .

Proof. Denote Eevenr and Eoddr the even and odd part of Er defined as the direct
sum of the (p, q) components with p + q even and odd. The differential dr defines
maps φ : Eevenr → Eoddr and ψ : Eoddr → Eevenr whose compositions either way give
zero. Then we see that

[Eevenr ]− [Eoddr ] = [Ker(φ)] + [Im(φ)]− [Ker(ψ)]− [Im(ψ)]
= [Ker(φ)/ Im(ψ)]− [Ker(ψ)/ Im(φ)]
= [Eevenr+1 ]− [Eoddr+1]

Note that all the intervening objects are in the smallest Serre subcategory contain-
ing the objects Ep,qr . Continuing in this manner we see that we can increase r at
will. Since there are only a finite number of pairs (p, q) for which Ep,qr is nonzero,
a property which is inherited by Er+1, Er+2, . . ., we see that we may assume that
dr = 0. At this stage we see that Hn(K•) has a finite filtration (Lemma 12.24.11)
whose graded pieces are exactly the Ep,n−p

r and the result is clear. □

The following lemma is more a kind of sanity check for our definitions. Surely, if
we have a filtered complex such that for every n we have

Hn(F pK•) = 0 for p≫ 0 and Hn(F pK•) = Hn(K•) for p≪ 0,

then the corresponding spectral sequence should converge?

https://stacks.math.columbia.edu/tag/0BDW
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Lemma 12.24.13.0BK5 Let A be an abelian category. Let (K•, F ) be a filtered complex
of A. Assume

(1) for every n there exist p0(n) such that Hn(F pK•) = 0 for p ≥ p0(n),
(2) for every n there exist p1(n) such that Hn(F pK•) → Hn(K•) is an iso-

morphism for p ≤ p1(n).
Then

(1) the spectral sequence associated to (K•, F ) is bounded,
(2) the filtration on each Hn(K•) is finite,
(3) the spectral sequence associated to (K•, F ) converges to H∗(K•).

Proof. Fix n. Using the long exact cohomology sequence associated to the short
exact sequence of complexes

0→ F p+1K• → F pK• → grpK• → 0

we find that Ep,n−p
1 = 0 for p ≥ max(p0(n), p0(n+1)) and p < min(p1(n), p1(n+1)).

Hence the spectral sequence is bounded (Definition 12.24.7). This proves (1).

It is clear from the assumptions and Definition 12.24.5 that the filtration on Hn(K•)
is finite. This proves (2).

Next we prove that the spectral sequence weakly converges to H∗(K•) using Lemma
12.24.10. Let us show that we have equality in (12.24.6.1). Namely, for p + r >
p0(n+ 1) the map

d : F pKn ∩ d−1(F p+rKn+1)→ F p+rKn+1

ends up in the image of d : F p+rKn → F p+rKn+1 because the complex F p+rK• is
exact in degree n+ 1. We conclude that F pKn ∩ d−1(F p+rKn+1) = d(F p+rKn) +
Ker(d) ∩ F pKn. Hence for such r we have

Ker(d) ∩ F pKn + F p+1Kn = F pKn ∩ d−1(F p+rKn+1) + F p+1Kn

which proves the desired equality. To show that we have equality in (12.24.6.2) we
use that for p− r + 1 < p1(n− 1) we have

d(F p−r+1Kn−1) = Im(d) ∩ F p−r+1Kn

because the map F p−r+1K• → K• induces an isomorphism on cohomology in
degree n− 1. This shows that we have

F pKn ∩ d(F p−r+1Kn−1) + F p+1Kn = Im(d) ∩ F pKn + F p+1Kn

for such r which proves the desired equality.

To see that the spectral sequence abuts toH∗(K•) using Lemma 12.24.10 we have to
show that

⋂
p(Ker(d)∩F pKn+Im(d)∩Kn) = Im(d)∩Kn and

⋃
p(Ker(d)∩F pKn+

Im(d)∩Kn) = Ker(d)∩Kn. For p ≥ p0(n) we have Ker(d)∩F pKn+Im(d)∩Kn =
Im(d)∩Kn and for p ≤ p1(n) we have Ker(d)∩F pKn+Im(d)∩Kn = Ker(d)∩Kn.
Combining weak convergence, abutment, and boundedness we see that (2) and (3)
are true. □

https://stacks.math.columbia.edu/tag/0BK5
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12.25. Spectral sequences: double complexes

012X Let K•,• be a double complex, see Section 12.18. It is customary to denote
Hp
I (K•,•) the complex with terms Ker(dp,q1 )/ Im(dp−1,q

1 ) (varying q) and differen-
tial induced by d2. Then Hq

II(H
p
I (K•,•)) denotes its cohomology in degree q. It is

also customary to denote Hq
II(K•,•) the complex with terms Ker(dp,q2 )/ Im(dp,q−1

2 )
(varying p) and differential induced by d1. Then Hp

I (Hq
II(K•,•)) denotes its coho-

mology in degree p. It will turn out that these cohomology groups show up as the
terms in the spectral sequence for a filtration on the associated total complex or
simple complex, see Definition 12.18.3.
There are two natural filtrations on the total complex Tot(K•,•) associated to the
double complex K•,•. Namely, we define

F pI (Totn(K•,•)) =
⊕

i+j=n, i≥p
Ki,j and F pII(Totn(K•,•)) =

⊕
i+j=n, j≥p

Ki,j .

It is immediately verified that (Tot(K•,•), FI) and (Tot(K•,•), FII) are filtered
complexes. By Section 12.24 we obtain two spectral sequences. It is customary
to denote (′Er,

′dr)r≥0 the spectral sequence associated to the filtration FI and to
denote (′′Er,

′′dr)r≥0 the spectral sequence associated to the filtration FII . Here is
a description of these spectral sequences.

Lemma 12.25.1.0130 Let A be an abelian category. Let K•,• be a double complex.
The spectral sequences associated to K•,• have the following terms:

(1) ′Ep,q0 = Kp,q with ′dp,q0 = (−1)pdp,q2 : Kp,q → Kp,q+1,
(2) ′′Ep,q0 = Kq,p with ′′dp,q0 = dq,p1 : Kq,p → Kq+1,p,
(3) ′Ep,q1 = Hq(Kp,•) with ′dp,q1 = Hq(dp,•1 ),
(4) ′′Ep,q1 = Hq(K•,p) with ′′dp,q1 = (−1)qHq(d•,p

2 ),
(5) ′Ep,q2 = Hp

I (Hq
II(K•,•)),

(6) ′′Ep,q2 = Hp
II(H

q
I (K•,•)).

Proof. Omitted. □

These spectral sequences define two filtrations on Hn(Tot(K•,•)). We will denote
these FI and FII .

Definition 12.25.2.0131 Let A be an abelian category. Let K•,• be a double complex.
We say the spectral sequence (′Er,

′dr)r≥0 weakly converges to Hn(Tot(K•,•)),
abuts to Hn(Tot(K•,•)), or converges to Hn(Tot(K•,•)) if Definition 12.24.9 ap-
plies. Similarly we say the spectral sequence (′′Er,

′′dr)r≥0 weakly converges to
Hn(Tot(K•,•)), abuts to Hn(Tot(K•,•)), or converges to Hn(Tot(K•,•)) if Defini-
tion 12.24.9 applies.

As mentioned above there is no consistent terminology regarding these notions in
the literature. In the situation of the definition, we have weak convergence of the
first spectral sequence if for all n

grFI (H
n(Tot(K•,•))) = ⊕p+q=n

′Ep,q∞

via the canonical comparison of Lemma 12.24.6. Similarly the second spectral
sequence (′′Er,

′′dr)r≥0 weakly converges if for all n
grFII (H

n(Tot(K•,•))) = ⊕p+q=n
′′Ep,q∞

via the canonical comparison of Lemma 12.24.6.

https://stacks.math.columbia.edu/tag/0130
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Lemma 12.25.3.0132 Let A be an abelian category. Let K•,• be a double complex.
Assume that for every n ∈ Z there are only finitely many nonzero Kp,q with p+q =
n. Then

(1) the two spectral sequences associated to K•,• are bounded,
(2) the filtrations FI , FII on each Hn(Tot(K•,•)) are finite,
(3) the spectral sequences (′Er,

′dr)r≥0 and (′′Er,
′′dr)r≥0 converge toH∗(Tot(K•,•)),

(4) if C ⊂ A is a weak Serre subcategory and for some r we have ′Ep,qr ∈ C
for all p, q ∈ Z, then Hn(Tot(K•,•)) is in C. Similarly for (′′Er,

′′dr)r≥0.
Proof. Follows immediately from Lemma 12.24.11. □

Here is our first application of spectral sequences.
Lemma 12.25.4.0133 Let A be an abelian category. Let K• be a complex. Let A•,• be
a double complex. Let αp : Kp → Ap,0 be morphisms. Assume that

(1) For every n ∈ Z there are only finitely many nonzero Ap,q with p+ q = n.
(2) We have Ap,q = 0 if q < 0.
(3) The morphisms αp give rise to a morphism of complexes α : K• → A•,0.
(4) The complex Ap,• is exact in all degrees q ̸= 0 and the morphism Kp →

Ap,0 induces an isomorphism Kp → Ker(dp,02 ).
Then α induces a quasi-isomorphism

K• −→ Tot(A•,•)
of complexes. Moreover, there is a variant of this lemma involving the second
variable q instead of p.
Proof. The map is simply the map given by the morphismsKn → An,0 → Totn(A•,•),
which are easily seen to define a morphism of complexes. Consider the spectral se-
quence (′Er,

′dr)r≥0 associated to the double complex A•,•. By Lemma 12.25.3 this
spectral sequence converges and the induced filtration on Hn(Tot(A•,•)) is finite for
each n. By Lemma 12.25.1 and assumption (4) we have ′Ep,q1 = 0 unless q = 0 and
′Ep,01 = Kp with differential ′dp,01 identified with dpK . Hence ′Ep,02 = Hp(K•) and
zero otherwise. This clearly implies dp,q2 = dp,q3 = . . . = 0 for degree reasons. Hence
we conclude that Hn(Tot(A•,•)) = Hn(K•). We omit the verification that this
identification is given by the morphism of complexes K• → Tot(A•,•) introduced
above. □

Lemma 12.25.5.0FKH Let A be an abelian category. Let M• be a complex of A. Let
a : M•[0] −→

(
A0,• → A1,• → A2,• → . . .

)
be a homotopy equivalence in the category of complexes of complexes of A. Then
the map α : M• → Tot(A•,•) induced by M• → A0,• is a homotopy equivalence.
Proof. The statement makes sense as a complex of complexes is the same thing as
a double complex. The assumption means there is a map

b :
(
A0,• → A1,• → A2,• → . . .

)
−→M•[0]

such that a ◦ b and b ◦ a are homotopic to the identity in the category of complexes
of complexes. This means that b ◦ a is the identity of M•[0] (because there is only
one term in degree 0). Also, observe that b is given by a map b0 : A0,• → M• and
zero in all other degrees. Thus b induces a map β : Tot(A•,•) → M• and β ◦ α is
the identity on M•. Finally, we have to show that the map α ◦ β is homotopic to

https://stacks.math.columbia.edu/tag/0132
https://stacks.math.columbia.edu/tag/0133
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the identity. For this we choose maps of complexes hn : An,• → An−1,• such that
a◦b−id = d1◦h+h◦d1 which exist by assumption. Here d1 : An,• → An+1,• are the
differentials of the complex of complexes. We will also denote d2 the differentials
of the complexes An,• for all n. Let hn,m : An,m → An−1,m be the components of
hn. Then we can consider

h′ : Tot(A•,•)k =
⊕

n+m=k
An,m →

⊕
n+m=k−1

An,m = Tot(A•,•)k−1

given by hn,m on the summand An,m. Then we compute that the map
dTot(A•,•) ◦ h′ + h′ ◦ dTot(A•,•)

restricted to the summand An,m is equal to
dn−1,m

1 ◦ hn,m + (−1)n−1dn−1,m
2 ◦ hn,m + hn+1,m ◦ dn,m1 + hn,m+1 ◦ (−1)ndn,m2

Since hn is a map of complexes, the terms (−1)n−1dn−1,m
2 ◦ hn,m and hn,m+1 ◦

(−1)ndn,m2 cancel. The other two terms give (α◦β)|An,m−idAn,m because a◦b−id =
d1 ◦ h+ h ◦ d1. This finishes the proof. □

12.26. Double complexes of abelian groups

0E1P In this section we put some results on double complexes of abelian groups for which
do not (yet) have the analogues results for general abelian categories. Please be
careful not to use these lemmas except when the underlying abelian category is the
category of abelian groups or some such (e.g., the category of modules over a ring).
Some of the arguments will be difficult to follow without drawing “zig-zags” on a
napkin – compare with the proof of Algebra, Lemma 10.75.3.

Lemma 12.26.1.0E1Q Let M• be a complex of abelian groups. Let
0→M• → A•

0 → A•
1 → A•

2 → . . .

be an exact complex of complexes of abelian groups. Set Ap,q = Aqp to obtain
a double complex. Then the map M• → Tot(A•,•) induced by M• → A•

0 is a
quasi-isomorphism.

Proof. If there exists a t ∈ Z such that Aq0 = 0 for q < t, then this follows immedi-
ately from Lemma 12.25.4 (with p and q swapped as in the final statement of that
lemma). OK, but for every t ∈ Z we have a complex

0→ σ≥tM
• → σ≥tA

•
0 → σ≥tA

•
1 → σ≥tA

•
2 → . . .

of stupid truncations. Denote A(t)•,• the corresponding double complex. Every
element ξ of Hn(Tot(A•,•)) is the image of an element of Hn(Tot(A(t)•,•)) for
some t (look at explicit representatives of cohomology classes). Hence ξ is in the
image of Hn(σ≥tM

•). Thus the map Hn(M•) → Hn(Tot(A•,•)) is surjective. It
is injective because for all t the map Hn(σ≥tM

•) → Hn(Tot(A(t)•,•)) is injective
and similar arguments. □

Lemma 12.26.2.09IZ Let M• be a complex of abelian groups. Let
. . .→ A•

2 → A•
1 → A•

0 →M• → 0
be an exact complex of complexes of abelian groups such that for all p ∈ Z the
complexes

. . .→ Ker(dpA•
2
)→ Ker(dpA•

1
)→ Ker(dpA•

0
)→ Ker(dpM•)→ 0

https://stacks.math.columbia.edu/tag/0E1Q
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are exact as well. Set Ap,q = Aq−p to obtain a double complex. Then Tot(A•,•)→
M• induced by A•

0 →M• is a quasi-isomorphism.

Proof. Using the short exact sequences 0 → Ker(dpA•
n
) → Apn → Im(dpA•

n
) → 0 and

the assumptions we see that
. . .→ Im(dpA•

2
)→ Im(dpA•

1
)→ Im(dpA•

0
)→ Im(dpM•)→ 0

is exact for all p ∈ Z. Repeating with the exact sequences 0 → Im(dp−1
A•
n

) →
Ker(dpA•

n
)→ Hp(A•

n)→ 0 we find that

. . .→ Hp(A•
2)→ Hp(A•

1)→ Hp(A•
0)→ Hp(M•)→ 0

is exact for all p ∈ Z.
Write T • = Tot(A•,•). We will show that H0(T •) → H0(M•) is an isomorphism.
The same argument works for other degrees. Let x ∈ Ker(d0

T•) represent an element
ξ ∈ H0(T •). Write x =

∑
i=n,...,0 xi with xi ∈ Aii. Assume n > 0. Then xn is in

the kernel of dnA•
n

and maps to zero in Hn(A•
n−1) because it maps to an element

which is the boundary of xn−1 up to sign. By the first paragraph of the proof, we
find that xn mod Im(dn−1

A•
n

) is in the image of Hn(A•
n+1)→ Hn(A•

n). Thus we can
modify x by a boundary and reach the situation where xn is a boundary. Modifying
x once more we see that we may assume xn = 0. By induction we see that every
cohomology class ξ is represented by a cocycle x = x0. Finally, the condition on
exactness of kernels tells us two such cocycles x0 and x′

0 are cohomologous if and
only if their image in H0(M•) are the same. □

Lemma 12.26.3.09J0 Let M• be a complex of abelian groups. Let
0→M• → A•

0 → A•
1 → A•

2 → . . .

be an exact complex of complexes of abelian groups such that for all p ∈ Z the
complexes

0→ Coker(dpM•)→ Coker(dpA•
0
)→ Coker(dpA•

1
)→ Coker(dpA•

2
)→ . . .

are exact as well. Set Ap,q = Aqp to obtain a double complex. Let Totπ(A•,•) be
the product total complex associated to the double complex (see proof). Then the
map M• → Totπ(A•,•) induced by M• → A•

0 is a quasi-isomorphism.

Proof. Abbreviating T • = Totπ(A•,•) we define

Tn =
∏

p+q=n
Ap,q =

∏
p+q=n

Aqp with dnT• =
∏

n=p+q
(fqp + (−1)pdqA•

p
)

where f•
p : A•

p → A•
p+1 are the maps of complexes in the lemma.

We will show that H0(M•) → H0(T •) is an isomorphism. The same argument
works for other degrees. Let x ∈ Ker(d0

T•) represent ξ ∈ H0(T •). Write x = (xi)
with xi ∈ A−i

i . Note that x0 maps to zero in Coker(A−1
1 → A0

1). Hence we see
that x0 = m0 + d−1

A•
0
(y) for some m0 ∈ M0 and y ∈ A−1

0 . Then dM•(m0) = 0
because dA•

0
(x0) = 0 as dT•(x) = 0. Thus, replacing ξ by something in the image

of H0(M•)→ H0(T •) we may assume that x0 is in Im(d−1
A•

0
).

Assume x0 ∈ Im(d−1
A•

0
). We claim that in this case ξ = 0. To prove this we find, by

induction on n elements y0, y1, . . . , yn with yi ∈ A−i−1
i such that x0 = d−1

A0
(y0) and

https://stacks.math.columbia.edu/tag/09J0
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xj = f−j
j−1(yj−1)+(−1)jd−j−1

A•
−j

(yj) for j = 1, . . . , n. This is clear for n = 0. Proof of
induction step: suppose we have found y0, . . . , yn−1. Then wn = xn−f−n

n−1(yn−1) is
in the kernel of d−n

A•
n

and maps to zero in Hn(A•
n+1) (because it maps to an element

which is a boundary the boundary of xn+1 up to sign). Exactly as in the proof of
Lemma 12.26.2 the assumptions of the lemma imply that

0→ Hp(M•)→ Hp(A•
0)→ Hp(A•

1)→ Hp(A•
2)→ . . .

is exact for all p ∈ Z. Thus after changing yn−1 by an element in Ker(dn−1
A•
n−1

) we may
assume that wn maps to zero in H−n(A•

n). This means we can find yn as desired.
Observe that this procedure does not change y0, . . . , yn−2. Hence continuing ad
infinitum we find an element y = (yi) in Tn−1 with dT•(y) = ξ. This shows that
H0(M•)→ H0(T •) is surjective.

Suppose that m0 ∈ Ker(d0
M•) maps to zero in H0(T •). Say it maps to the differ-

ential applied to y = (yi) ∈ T−1 . Then y0 ∈ A−1
0 maps to zero in Coker(d−2

A•
1
).

By assumption this means that y0 mod Im(d−2
A•

0
) is the image of some z ∈M−1. It

follows that m0 = d−1
M•(z). This proves injectivity and the proof is complete. □

Lemma 12.26.4.0E1R Let M• be a complex of abelian groups. Let

. . .→ A•
2 → A•

1 → A•
0 →M• → 0

be an exact complex of complexes of abelian groups. Set Ap,q = Aq−p to obtain
a double complex. Let Totπ(A•,•) be the product total complex associated to the
double complex (see proof). Then the map Totπ(A•,•)→M• induced by A•

0 →M•

is a quasi-isomorphism.

Proof. Abbreviating T • = Totπ(A•,•) we define

Tn =
∏

p+q=n
Ap,q =

∏
p+q=n

Aq−p with dnT• =
∏

n=p+q
(fq−p + (−1)pdqA•

−p
)

where f•
p : A•

p → A•
p−1 are the maps of complexes in the lemma. We will show that

T • is acyclic when M• is the zero complex. This will suffice by the following trick.
Set B•

n = A•
n+1 and B•

0 = M•. Then we have an exact sequence

. . .→ B•
2 → B•

1 → B•
0 → 0→ 0

as in the lemma. Let S• = Totπ(B•,•). Then there is an obvious short exact
sequence of complexes

0→M• → S• → T •[1]→ 0

and we conclude by the long exact cohomology sequence. Some details omitted.

Assume M• = 0. We will show H0(T •) = 0. The same argument works for other
degrees. Let x = (xn) ∈ Ker(dT•) map to ξ ∈ H0(T •) with xn ∈ A−n,n = Ann. Since
M0 = 0 we find that x0 = f0

1 (y0) for some y0 ∈ A0
1. Then x1 − d0

A•
1
(y0) = f1

2 (y1)
because it is mapped to zero by f1

1 as x is a cocycle. for some y1 ∈ A1
2. Continuing,

using induction, we find y = (yi) ∈ T−1 with dT•(y) = x as desired. □

https://stacks.math.columbia.edu/tag/0E1R
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12.27. Injectives

0134
Definition 12.27.1.0135 Let A be an abelian category. An object J ∈ Ob(A) is called
injective if for every injection A ↪→ B and every morphism A → J there exists a
morphism B → J making the following diagram commute

A //

��

B

��
J

Here is the obligatory characterization of injective objects.

Lemma 12.27.2.0136 Let A be an abelian category. Let I be an object of A. The
following are equivalent:

(1) The object I is injective.
(2) The functor B 7→ HomA(B, I) is exact.
(3) Any short exact sequence

0→ I → A→ B → 0
in A is split.

(4) We have ExtA(B, I) = 0 for all B ∈ Ob(A).

Proof. Omitted. □

Lemma 12.27.3.0137 Let A be an abelian category. Suppose Iω, ω ∈ Ω is a set of
injective objects of A. If

∏
ω∈Ω Iω exists then it is injective.

Proof. Omitted. □

Definition 12.27.4.0138 Let A be an abelian category. We say A has enough injectives
if every object A has an injective morphism A→ J into an injective object J .

Definition 12.27.5.0139 Let A be an abelian category. We say that A has functorial
injective embeddings if there exists a functor

J : A −→ Arrows(A)
such that

(1) s ◦ J = idA,
(2) for any object A ∈ Ob(A) the morphism J(A) is injective, and
(3) for any object A ∈ Ob(A) the object t(J(A)) is an injective object of A.

We will denote such a functor by A 7→ (A→ J(A)).

12.28. Projectives

013A
Definition 12.28.1.013B Let A be an abelian category. An object P ∈ Ob(A) is called
projective if for every surjection A→ B and every morphism P → B there exists a
morphism P → A making the following diagram commute

A // B

P

OO ??

https://stacks.math.columbia.edu/tag/0135
https://stacks.math.columbia.edu/tag/0136
https://stacks.math.columbia.edu/tag/0137
https://stacks.math.columbia.edu/tag/0138
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12.29. INJECTIVES AND ADJOINT FUNCTORS 969

Here is the obligatory characterization of projective objects.

Lemma 12.28.2.013C Let A be an abelian category. Let P be an object of A. The
following are equivalent:

(1) The object P is projective.
(2) The functor B 7→ HomA(P,B) is exact.
(3) Any short exact sequence

0→ A→ B → P → 0

in A is split.
(4) We have ExtA(P,A) = 0 for all A ∈ Ob(A).

Proof. Omitted. □

Lemma 12.28.3.013D Let A be an abelian category. Suppose Pω, ω ∈ Ω is a set of
projective objects of A. If

∐
ω∈Ω Pω exists then it is projective.

Proof. Omitted. □

Definition 12.28.4.013E Let A be an abelian category. We say A has enough projectives
if every object A has an surjective morphism P → A from an projective object P
onto it.

Definition 12.28.5.013F Let A be an abelian category. We say that A has functorial
projective surjections if there exists a functor

P : A −→ Arrows(A)

such that
(1) t ◦ J = idA,
(2) for any object A ∈ Ob(A) the morphism P (A) is surjective, and
(3) for any object A ∈ Ob(A) the object s(P (A)) is an projective object of A.

We will denote such a functor by A 7→ (P (A)→ A).

12.29. Injectives and adjoint functors

015Y Here are some lemmas on adjoint functors and their relationship with injectives.
See also Lemma 12.7.4.

Lemma 12.29.1.015Z Let A and B be abelian categories. Let u : A → B and v : B → A
be additive functors. Assume

(1) u is right adjoint to v, and
(2) v transforms injective maps into injective maps.

Then u transforms injectives into injectives.

Proof. Let I be an injective object of A. Let φ : N →M be an injective map in B
and let α : N → uI be a morphism. By adjointness we get a morphism α : vN → I
and by assumption vφ : vN → vM is injective. Hence as I is an injective object we
get a morphism β : vM → I extending α. By adjointness again this corresponds to
a morphism β : M → uI as desired. □

https://stacks.math.columbia.edu/tag/013C
https://stacks.math.columbia.edu/tag/013D
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Remark 12.29.2.03B8 Let A, B, u : A → B and v : B → A be as in Lemma 12.29.1. In
the presence of assumption (1) assumption (2) is equivalent to requiring that v is
exact. Moreover, condition (2) is necessary. Here is an example. Let A → B be a
ring map. Let u : ModB → ModA be u(N) = NA and let v : ModA → ModB be
v(M) = M ⊗A B. Then u is right adjoint to v, and u is exact and v is right exact,
but v does not transform injective maps into injective maps in general (i.e., v is
not left exact). Moreover, it is not the case that u transforms injective B-modules
into injective A-modules. For example, if A = Z and B = Z/pZ, then the injective
B-module Z/pZ is not an injective Z-module. In fact, the lemma applies to this
example if and only if the ring map A→ B is flat.

Lemma 12.29.3.0160 Let A and B be abelian categories. Let u : A → B and v : B → A
be additive functors. Assume

(1) u is right adjoint to v,
(2) v transforms injective maps into injective maps,
(3) A has enough injectives, and
(4) vB = 0 implies B = 0 for any B ∈ Ob(B).

Then B has enough injectives.

Proof. Pick B ∈ Ob(B). Pick an injection vB → I for I an injective object of A.
According to Lemma 12.29.1 and the assumptions the corresponding map B → uI
is the injection of B into an injective object. □

Remark 12.29.4.03B9 Let A, B, u : A → B and v : B → A be as In Lemma 12.29.3. In
the presence of conditions (1) and (2) condition (4) is equivalent to v being faithful.
Moreover, condition (4) is needed. An example is to consider the case where the
functors u and v are both the zero functor.

Lemma 12.29.5.0161 Let A and B be abelian categories. Let u : A → B and v : B → A
be additive functors. Assume

(1) u is right adjoint to v,
(2) v transforms injective maps into injective maps,
(3) A has enough injectives,
(4) vB = 0 implies B = 0 for any B ∈ Ob(B), and
(5) A has functorial injective hulls.

Then B has functorial injective hulls.

Proof. Let A 7→ (A→ J(A)) be a functorial injective hull on A. Then B 7→ (B →
uJ(vB)) is a functorial injective hull on B. Compare with the proof of Lemma
12.29.3. □

Lemma 12.29.6.0793 Let A and B be abelian categories. Let u : A → B be a functor.
If there exists a subset P ⊂ Ob(B) such that

(1) every object of B is a quotient of an element of P, and
(2) for every P ∈ P there exists an object Q of A such that HomA(Q,A) =

HomB(P, u(A)) functorially in A,
then there exists a left adjoint v of u.

Proof. By the Yoneda lemma (Categories, Lemma 4.3.5) the object Q of A corre-
sponding to P is defined up to unique isomorphism by the formula HomA(Q,A) =

https://stacks.math.columbia.edu/tag/03B8
https://stacks.math.columbia.edu/tag/0160
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HomB(P, u(A)). Let us write Q = v(P ). Denote iP : P → u(v(P )) the map cor-
responding to idv(P ) in HomA(v(P ), v(P )). Functoriality in (2) implies that the
bijection is given by

HomA(v(P ), A)→ HomB(P, u(A)), φ 7→ u(φ) ◦ iP
For any pair of elements P1, P2 ∈ P there is a canonical map

HomB(P2, P1)→ HomA(v(P2), v(P1)), φ 7→ v(φ)
which is characterized by the rule u(v(φ)) ◦ iP2 = iP1 ◦ φ in HomB(P2, u(v(P1))).
Note that φ 7→ v(φ) is compatible with composition; this can be seen directly from
the characterization. Hence P 7→ v(P ) is a functor from the full subcategory of B
whose objects are the elements of P.
Given an arbitrary object B of B choose an exact sequence

P2 → P1 → B → 0
which is possible by assumption (1). Define v(B) to be the object of A fitting into
the exact sequence

v(P2)→ v(P1)→ v(B)→ 0
Then

HomA(v(B), A) = Ker(HomA(v(P1), A)→ HomA(v(P2), A))
= Ker(HomB(P1, u(A))→ HomB(P2, u(A)))
= HomB(B, u(A))

Hence we see that we may take P = Ob(B), i.e., we see that v is everywhere
defined. □

12.30. Essentially constant systems

0A2D In this section we discuss essentially constant systems with values in additive cat-
egories.

Lemma 12.30.1.0A2E Let I be a category, let A be a pre-additive Karoubian category,
and let M : I → A be a diagram.

(1) Assume I is filtered. The following are equivalent
(a) M is essentially constant,
(b) X = colimM exists and there exists a cofinal filtered subcategory
I ′ ⊂ I and for i′ ∈ Ob(I ′) a direct sum decompositionMi′ = Xi′⊕Zi′
such that Xi′ maps isomorphically to X and Zi′ to zero in Mi′′ for
some i′ → i′′ in I ′.

(2) Assume I is cofiltered. The following are equivalent
(a) M is essentially constant,
(b) X = limM exists and there exists an initial cofiltered subcategory
I ′ ⊂ I and for i′ ∈ Ob(I ′) a direct sum decompositionMi′ = Xi′⊕Zi′
such that X maps isomorphically to Xi′ and Mi′′ → Zi′ is zero for
some i′′ → i′ in I ′.

Proof. Assume (1)(a), i.e., I is filtered and M is essentially constant. Let X =
colimMi. Choose i and X → Mi as in Categories, Definition 4.22.1. Let I ′ be
the full subcategory consisting of objects which are the target of a morphism with
source i. Suppose i′ ∈ Ob(I ′) and choose a morphism i→ i′. Then X →Mi →Mi′

https://stacks.math.columbia.edu/tag/0A2E
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composed with Mi′ → X is the identity on X. As A is Karoubian, we find a direct
summand decomposition Mi′ = Xi′ ⊕ Zi′ , where Zi′ = Ker(Mi′ → X) and Xi′

maps isomorphically to X. Pick i→ k and i′ → k such that Mi′ → X →Mi →Mk

equals Mi′ →Mk as in Categories, Definition 4.22.1. Then we see that Mi′ →Mk

annihilates Zi′ . Thus (1)(b) holds.
Assume (1)(b), i.e., I is filtered and we have I ′ ⊂ I and for i′ ∈ Ob(I ′) a direct
sum decomposition Mi′ = Xi′ ⊕ Zi′ as stated in the lemma. To see that M is
essentially constant we can replace I by I ′, see Categories, Lemma 4.22.11. Pick
any i ∈ Ob(I) and denote X →Mi the inverse of the isomorphism Xi → X followed
by the inclusion map Xi → Mi. If j is a second object, then choose j → k such
that Zj →Mk is zero. Since I is filtered we may also assume there is a morphism
i → k (after possibly increasing k). Then Mj → X → Mi → Mk and Mj → Mk

both annihilate Zj . Thus after postcomposing by a morphism Mk → Ml which
annihilates the summand Zk, we find that Mj → X → Mi → Ml and Mj → Ml

are equal, i.e., M is essentially constant.
The proof of (2) is dual. □

Lemma 12.30.2.0A2F Let I be a category. Let A be an additive, Karoubian category.
Let F : I → A and G : I → A be functors. The following are equivalent

(1) colimI F ⊕G exists, and
(2) colimI F and colimI G exist.

In this case colimI F ⊕G = colimI F ⊕ colimI G.

Proof. Assume (1) holds. Set W = colimI F ⊕ G. Note that the projection onto
F defines natural transformation F ⊕G→ F ⊕G which is idempotent. Hence we
obtain an idempotent endomorphism W →W by Categories, Lemma 4.14.8. Since
A is Karoubian we get a corresponding direct sum decomposition W = X ⊕ Y , see
Lemma 12.4.2. A straightforward argument (omitted) shows that X = colimI F
and Y = colimI G. Thus (2) holds. We omit the proof that (2) implies (1). □

Lemma 12.30.3.0A2G Let I be a filtered category. Let A be an additive, Karoubian
category. Let F : I → A and G : I → A be functors. The following are equivalent

(1) F ⊕G : I → A is essentially constant, and
(2) F and G are essentially constant.

Proof. Assume (1) holds. In particular W = colimI F ⊕ G exists and hence by
Lemma 12.30.2 we have W = X ⊕ Y with X = colimI F and Y = colimI G.
A straightforward argument (omitted) using for example the characterization of
Categories, Lemma 4.22.9 shows that F is essentially constant with value X and
G is essentially constant with value Y . Thus (2) holds. The proof that (2) implies
(1) is omitted. □

12.31. Inverse systems

02MY Let C be a category. In Categories, Section 4.21 we defined the notion of an inverse
system over a preordered set (with values in the category C). If the preordered
set is N = {1, 2, 3, . . .} with the usual ordering such an inverse system over N is
often simply called an inverse system. It consists quite simply of a pair (Mi, fii′)
where each Mi, i ∈ N is an object of C, and for each i > i′, i, i′ ∈ N a morphism
fii′ : Mi →Mi′ such that moreover fi′i′′ ◦ fii′ = fii′′ whenever this makes sense. It

https://stacks.math.columbia.edu/tag/0A2F
https://stacks.math.columbia.edu/tag/0A2G
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is clear that in fact it suffices to give the morphisms M2 →M1, M3 →M2, and so
on. Hence an inverse system is frequently pictured as follows

M1
φ2←−M2

φ3←−M3 ← . . .

Moreover, we often omit the transition maps φi from the notation and we simply
say “let (Mi) be an inverse system”.
The collection of all inverse systems with values in C forms a category with the
obvious notion of morphism.

Lemma 12.31.1.02MZ Let C be a category.
(1) If C is an additive category, then the category of inverse systems with

values in C is an additive category.
(2) If C is an abelian category, then the category of inverse systems with values

in C is an abelian category. A sequence (Ki) → (Li) → (Mi) of inverse
systems is exact if and only if each Ki → Li → Ni is exact.

Proof. Omitted. □

The limit (see Categories, Section 4.21) of such an inverse system is denoted limMi,
or limiMi. If C is the category of abelian groups (or sets), then the limit always
exists and in fact can be described as follows

limiMi = {(xi) ∈
∏

Mi | φi(xi) = xi−1, i = 2, 3, . . .}

see Categories, Section 4.15. However, given a short exact sequence
0→ (Ai)→ (Bi)→ (Ci)→ 0

of inverse systems of abelian groups it is not always the case that the associated
system of limits is exact. In order to discuss this further we introduce the following
notion.

Definition 12.31.2.02N0 Let C be an abelian category. We say the inverse system (Ai)
satisfies the Mittag-Leffler condition, or for short is ML, if for every i there exists
a c = c(i) ≥ i such that

Im(Ak → Ai) = Im(Ac → Ai)
for all k ≥ c.

It turns out that the Mittag-Leffler condition is good enough to ensure that the lim-
functor is exact, provided one works within the abelian category of abelian groups,
modules over a ring, etc. It is shown in a paper by A. Neeman (see [Nee02]) that
this condition is not strong enough in an abelian category having AB4* (having
exact products).

Lemma 12.31.3.02N1 Let
0→ (Ai)→ (Bi)→ (Ci)→ 0

be a short exact sequence of inverse systems of abelian groups.
(1) In any case the sequence

0→ limiAi → limiBi → limi Ci

is exact.
(2) If (Bi) is ML, then also (Ci) is ML.

https://stacks.math.columbia.edu/tag/02MZ
https://stacks.math.columbia.edu/tag/02N0
https://stacks.math.columbia.edu/tag/02N1
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(3) If (Ai) is ML, then
0→ limiAi → limiBi → limi Ci → 0

is exact.

Proof. Nice exercise. See Algebra, Lemma 10.87.1 for part (3). □

Lemma 12.31.4.070B Let
(Ai)→ (Bi)→ (Ci)→ (Di)

be an exact sequence of inverse systems of abelian groups. If the system (Ai) is
ML, then the sequence

limiBi → limi Ci → limiDi

is exact.

Proof. Let Zi = Ker(Ci → Di) and Ii = Im(Ai → Bi). Then limZi = Ker(limCi →
limDi) and we get a short exact sequence of systems

0→ (Ii)→ (Bi)→ (Zi)→ 0
Moreover, by Lemma 12.31.3 we see that (Ii) has (ML), thus another application
of Lemma 12.31.3 shows that limBi → limZi is surjective which proves the lemma.

□

The following characterization of essentially constant inverse systems shows in par-
ticular that they have ML.

Lemma 12.31.5.070C Let A be an abelian category. Let (Ai) be an inverse system in A
with limit A = limAi. Then (Ai) is essentially constant (see Categories, Definition
4.22.1) if and only if there exists an i and for all j ≥ i a direct sum decomposition
Aj = A⊕Zj such that (a) the maps Aj′ → Aj are compatible with the direct sum
decompositions, (b) for all j there exists some j′ ≥ j such that Zj′ → Zj is zero.

Proof. Assume (Ai) is essentially constant. Then there exists an i and a morphism
Ai → A such that A → Ai → A is the identity and for all j ≥ i there exists a
j′ ≥ j such that Aj′ → Aj factors as Aj′ → Ai → A → Aj (the last map comes
from A = limAi). Hence setting Zj = Ker(Aj → A) for all j ≥ i works. Proof of
the converse is omitted. □

We will improve on the following lemma in More on Algebra, Lemma 15.86.13.

Lemma 12.31.6.070D Let
0→ (Ai)→ (Bi)→ (Ci)→ 0

be an exact sequence of inverse systems of abelian groups. If (Ci) is essentially
constant, then (Ai) has ML if and only if (Bi) has ML.

Proof. After renumbering we may assume that Ci = C ⊕Zi compatible with tran-
sition maps and that for all i there exists an i′ ≥ i such that Zi′ → Zi is zero, see
Lemma 12.31.5.
First, assume C = 0, i.e., we have Ci = Zi. In this case choose 1 = n1 < n2 < n3 <
. . . such that Zni+1 → Zni is zero. Then Bni+1 → Bni factors through Ani ⊂ Bni .
It follows that for j ≥ i+ 1 we have

Im(Anj → Ani) ⊂ Im(Bnj → Bni) ⊂ Im(Anj−1 → Ani)

https://stacks.math.columbia.edu/tag/070B
https://stacks.math.columbia.edu/tag/070C
https://stacks.math.columbia.edu/tag/070D
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as subsets of Ani . Thus the images Im(Anj → Ani) stabilize for j ≥ i + 1 if and
only if the same is true for the images Im(Bnj → Bni). The equivalence follows
from this (small detail omitted).
If C ̸= 0, denote B′

i ⊂ Bi the inverse image of C by the map Bi → C ⊕ Zi. Then
by the previous paragraph we see that (B′

i) has ML if and only if (Bi) has ML.
Thus we may replace (Bi) by (B′

i). In this case we have exact sequences 0→ Ai →
Bi → C → 0 for all i. It follows that 0→ Im(Aj → Ai)→ Im(Bj → Bi)→ C → 0
is short exact for all j ≥ i. Hence the images Im(Aj → Ai) stabilize for j ≥ i if
and only if the same is true for Im(Bj → Bi) as desired. □

The “correct” version of the following lemma is More on Algebra, Lemma 15.86.3.

Lemma 12.31.7.070E Let
(A−2

i → A−1
i → A0

i → A1
i )

be an inverse system of complexes of abelian groups and denote A−2 → A−1 →
A0 → A1 its limit. Denote (H−1

i ), (H0
i ) the inverse systems of cohomologies, and

denote H−1, H0 the cohomologies of A−2 → A−1 → A0 → A1. If (A−2
i ) and (A−1

i )
are ML and (H−1

i ) is essentially constant, then H0 = limH0
i .

Proof. Let Zji = Ker(Aji → Aj+1
i ) and Iji = Im(Aj−1

i → Aji ). Note that limZ0
i =

Ker(limA0
i → limA1

i ) as taking kernels commutes with limits. The systems (I−1
i )

and (I0
i ) have ML as quotients of the systems (A−2

i ) and (A−1
i ), see Lemma 12.31.3.

Thus an exact sequence
0→ (I−1

i )→ (Z−1
i )→ (H−1

i )→ 0
of inverse systems where (I−1

i ) has ML and where (H−1
i ) is essentially constant by

assumption. Hence (Z−1
i ) has ML by Lemma 12.31.6. The exact sequence

0→ (Z−1
i )→ (A−1

i )→ (I0
i )→ 0

and an application of Lemma 12.31.3 shows that limA−1
i → lim I0

i is surjective.
Finally, the exact sequence

0→ (I0
i )→ (Z0

i )→ (H0
i )→ 0

and Lemma 12.31.3 show that lim I0
i → limZ0

i → limH0
i → 0 is exact. Putting

everything together we win. □

Sometimes we need a version of the lemma above where we take limits over big
ordinals.

Lemma 12.31.8.0AAT Let α be an ordinal. Let K•
β , β < α be an inverse system of

complexes of abelian groups over α. If for all β < α the complex K•
β is acyclic and

the map
Kn
β −→ limγ<βK

n
γ

is surjective, then the complex limβ<αK
•
β is acyclic.

Proof. By transfinite induction we prove this holds for every ordinal α and every
system as in the lemma. In particular, whilst proving the result for α we may
assume the complexes limγ<βK

n
γ are acyclic.

Let x ∈ limβ<αK
0
α with d(x) = 0. We will find a y ∈ K−1

α with d(y) = x. Write
x = (xβ) where xβ ∈ K0

β is the image of x for β < α. We will construct y = (yβ)
by transfinite recursion.

https://stacks.math.columbia.edu/tag/070E
https://stacks.math.columbia.edu/tag/0AAT
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For β = 0 let y0 ∈ K−1
0 be any element with d(y0) = x0.

For β = γ + 1 a successor, we have to find an element yβ which maps both to
yγ by the transition map f : K•

β → K•
γ and to xβ under the differential. As a

first approximation we choose y′
β with d(y′

β) = xβ . Then the difference yγ − f(y′
β)

is in the kernel of the differential, hence equal to d(zγ) for some zγ ∈ K−2
γ . By

assumption, the map f−2 : K−2
β → K−2

γ is surjective. Hence we write zγ = f(zβ)
and change y′

β into yβ = y′
β + d(zβ) which works.

If β is a limit ordinal, then we have the element (yγ)γ<β in limγ<βK
−1
γ whose

differential is the image of xβ . Thus we can argue in exactly the same manner as
above using the termwise surjective map of complexes f : K•

β → limγ<βK
•
γ and

the fact (see first paragraph of proof) that we may assume limγ<βK
•
γ is acyclic by

induction. □

12.32. Exactness of products

060J
Lemma 12.32.1.060K Let I be a set. For i ∈ I let Li → Mi → Ni be a complex of
abelian groups. Let Hi = Ker(Mi → Ni)/ Im(Li →Mi) be the cohomology. Then∏

Li →
∏

Mi →
∏

Ni

is a complex of abelian groups with homology
∏
Hi.

Proof. Omitted. □
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CHAPTER 13

Derived Categories

05QI 13.1. Introduction

05QJ We first discuss triangulated categories and localization in triangulated categories.
Next, we prove that the homotopy category of complexes in an additive category
is a triangulated category. Once this is done we define the derived category of
an abelian category as the localization of the homotopy category with respect to
quasi-isomorphisms. A good reference is Verdier’s thesis [Ver96].

13.2. Triangulated categories

0143 Triangulated categories are a convenient tool to describe the type of structure
inherent in the derived category of an abelian category. Some references are [Ver96],
[KS06], and [Nee01].

13.3. The definition of a triangulated category

05QK In this section we collect most of the definitions concerning triangulated and pre-
triangulated categories.

Definition 13.3.1.0144 Let D be an additive category. Let [1] : D → D, E 7→ E[1] be
an additive functor which is an auto-equivalence of D.

(1) A triangle is a sextuple (X,Y, Z, f, g, h) where X,Y, Z ∈ Ob(D) and f :
X → Y , g : Y → Z and h : Z → X[1] are morphisms of D.

(2) A morphism of triangles (X,Y, Z, f, g, h) → (X ′, Y ′, Z ′, f ′, g′, h′) is given
by morphisms a : X → X ′, b : Y → Y ′ and c : Z → Z ′ of D such that
b ◦ f = f ′ ◦ a, c ◦ g = g′ ◦ b and a[1] ◦ h = h′ ◦ c.

A morphism of triangles is visualized by the following commutative diagram

X //

a

��

Y //

b

��

Z //

c

��

X[1]

a[1]
��

X ′ // Y ′ // Z ′ // X ′[1]

In the setting of Definition 13.3.1, we write [0] = id, for n > 0 we denote [n] the
n-fold composition of [1], we choose a quasi-inverse [−1] of [1], and we set [−n]
equal to the n-fold composition of [−1]. Then {[n]}n∈Z is a collection of additive
auto-equivalences of D indexed by n ∈ Z such that we are given isomorphisms of
functors [n] ◦ [m] ∼= [n+m].
Here is the definition of a triangulated category as given in Verdier’s thesis.

Definition 13.3.2.0145 A triangulated category consists of a triple (D, {[n]}n∈Z, T )
where

978

https://stacks.math.columbia.edu/tag/0144
https://stacks.math.columbia.edu/tag/0145
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(1) D is an additive category,
(2) [1] : D → D, E 7→ E[1] is an additive auto-equivalence and [n] for n ∈ Z

is as discussed above, and
(3) T is a set of triangles (Definition 13.3.1) called the distinguished triangles

subject to the following conditions
TR1 Any triangle isomorphic to a distinguished triangle is a distinguished tri-

angle. Any triangle of the form (X,X, 0, id, 0, 0) is distinguished. For any
morphism f : X → Y of D there exists a distinguished triangle of the
form (X,Y, Z, f, g, h).

TR2 The triangle (X,Y, Z, f, g, h) is distinguished if and only if the triangle
(Y, Z,X[1], g, h,−f [1]) is.

TR3 Given a solid diagram

X
f //

a

��

Y
g //

b

��

Z
h //

��

X[1]

a[1]
��

X ′ f ′
// Y ′ g′

// Z ′ h′
// X ′[1]

whose rows are distinguished triangles and which satisfies b ◦ f = f ′ ◦ a,
there exists a morphism c : Z → Z ′ such that (a, b, c) is a morphism of
triangles.

TR4 Given objects X, Y , Z of D, and morphisms f : X → Y , g : Y → Z,
and distinguished triangles (X,Y,Q1, f, p1, d1), (X,Z,Q2, g◦f, p2, d2), and
(Y, Z,Q3, g, p3, d3), there exist morphisms a : Q1 → Q2 and b : Q2 → Q3
such that
(a) (Q1, Q2, Q3, a, b, p1[1] ◦ d3) is a distinguished triangle,
(b) the triple (idX , g, a) is a morphism of triangles (X,Y,Q1, f, p1, d1)→

(X,Z,Q2, g ◦ f, p2, d2), and
(c) the triple (f, idZ , b) is a morphism of triangles (X,Z,Q2, g◦f, p2, d2)→

(Y, Z,Q3, g, p3, d3).
We will call (D, [ ], T ) a pre-triangulated category if TR1, TR2 and TR3 hold.1

The explanation of TR4 is that if you think of Q1 as Y/X, Q2 as Z/X and Q3 as
Z/Y , then TR4(a) expresses the isomorphism (Z/X)/(Y/X) ∼= Z/Y and TR4(b)
and TR4(c) express that we can compare the triangles X → Y → Q1 → X[1] etc
with morphisms of triangles. For a more precise reformulation of this idea see the
proof of Lemma 13.10.2.
The sign in TR2 means that if (X,Y, Z, f, g, h) is a distinguished triangle then in
the long sequence
(13.3.2.1)

05QL . . .→ Z[−1] −h[−1]−−−−→ X
f−→ Y

g−→ Z
h−→ X[1] −f [1]−−−→ Y [1] −g[1]−−−→ Z[1]→ . . .

each four term sequence gives a distinguished triangle.
As usual we abuse notation and we simply speak of a (pre-)triangulated category
D without explicitly introducing notation for the additional data. The notion of a
pre-triangulated category is useful in finding statements equivalent to TR4.
We have the following definition of a triangulated functor.

1We use [ ] as an abbreviation for the family {[n]}n∈Z.
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Definition 13.3.3.014V Let D, D′ be pre-triangulated categories. An exact functor, or a
triangulated functor from D to D′ is a functor F : D → D′ together with given func-
torial isomorphisms ξX : F (X[1])→ F (X)[1] such that for every distinguished tri-
angle (X,Y, Z, f, g, h) of D the triangle (F (X), F (Y ), F (Z), F (f), F (g), ξX ◦ F (h))
is a distinguished triangle of D′.
An exact functor is additive, see Lemma 13.4.17. When we say two triangulated
categories are equivalent we mean that they are equivalent in the 2-category of
triangulated categories. A 2-morphism a : (F, ξ) → (F ′, ξ′) in this 2-category is
simply a transformation of functors a : F → F ′ which is compatible with ξ and ξ′,
i.e.,

F ◦ [1]
ξ
//

a⋆1
��

[1] ◦ F

1⋆a
��

F ′ ◦ [1] ξ′
// [1] ◦ F ′

commutes.
Definition 13.3.4.05QM Let (D, [ ], T ) be a pre-triangulated category. A pre-triangulated
subcategory2 is a pair (D′, T ′) such that

(1) D′ is an additive subcategory of D which is preserved under [1] and such
that [1] : D′ → D′ is an auto-equivalence,

(2) T ′ ⊂ T is a subset such that for every (X,Y, Z, f, g, h) ∈ T ′ we have
X,Y, Z ∈ Ob(D′) and f, g, h ∈ Arrows(D′), and

(3) (D′, [ ], T ′) is a pre-triangulated category.
If D is a triangulated category, then we say (D′, T ′) is a triangulated subcategory
if it is a pre-triangulated subcategory and (D′, [ ], T ′) is a triangulated category.
In this situation the inclusion functor D′ → D is an exact functor with ξX : X[1]→
X[1] given by the identity on X[1].
We will see in Lemma 13.4.1 that for a distinguished triangle (X,Y, Z, f, g, h) in a
pre-triangulated category the composition g◦f : X → Z is zero. Thus the sequence
(13.3.2.1) is a complex. A homological functor is one that turns this complex into
a long exact sequence.
Definition 13.3.5.0147 Let D be a pre-triangulated category. Let A be an abelian cate-
gory. An additive functor H : D → A is called homological if for every distinguished
triangle (X,Y, Z, f, g, h) the sequence

H(X)→ H(Y )→ H(Z)
is exact in the abelian category A. An additive functor H : Dopp → A is called
cohomological if the corresponding functor D → Aopp is homological.
If H : D → A is a homological functor we often write Hn(X) = H(X[n]) so that
H(X) = H0(X). Our discussion of TR2 above implies that a distinguished triangle
(X,Y, Z, f, g, h) determines a long exact sequence
(13.3.5.1)

0148 H−1(Z)
H(h[−1]) // H0(X)

H(f) // H0(Y )
H(g) // H0(Z)

H(h) // H1(X)

2This definition may be nonstandard. If D′ is a full subcategory then T ′ is the intersection of
the set of triangles in D′ with T , see Lemma 13.4.16. In this case we drop T ′ from the notation.

https://stacks.math.columbia.edu/tag/014V
https://stacks.math.columbia.edu/tag/05QM
https://stacks.math.columbia.edu/tag/0147
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This will be called the long exact sequence associated to the distinguished triangle
and the homological functor. As indicated we will not use any signs for the mor-
phisms in the long exact sequence. This has the side effect that maps in the long
exact sequence associated to the rotation (TR2) of a distinguished triangle differ
from the maps in the sequence above by some signs.

Definition 13.3.6.0150 Let A be an abelian category. Let D be a triangulated category.
A δ-functor from A to D is given by a functor G : A → D and a rule which assigns
to every short exact sequence

0→ A
a−→ B

b−→ C → 0
a morphism δ = δA→B→C : G(C)→ G(A)[1] such that

(1) the triangle (G(A), G(B), G(C), G(a), G(b), δA→B→C) is a distinguished
triangle of D for any short exact sequence as above, and

(2) for every morphism (A → B → C) → (A′ → B′ → C ′) of short exact
sequences the diagram

G(C)

��

δA→B→C

// G(A)[1]

��
G(C ′)

δA′→B′→C′ // G(A′)[1]

is commutative.
In this situation we call (G(A), G(B), G(C), G(a), G(b), δA→B→C) the image of the
short exact sequence under the given δ-functor.

Note how a δ-functor comes equipped with additional structure. Strictly speaking
it does not make sense to say that a given functor A → D is a δ-functor, but we
will often do so anyway.

13.4. Elementary results on triangulated categories

05QN Most of the results in this section are proved for pre-triangulated categories and a
fortiori hold in any triangulated category.

Lemma 13.4.1.0146 Let D be a pre-triangulated category. Let (X,Y, Z, f, g, h) be a
distinguished triangle. Then g ◦ f = 0, h ◦ g = 0 and f [1] ◦ h = 0.

Proof. By TR1 we know (X,X, 0, 1, 0, 0) is a distinguished triangle. Apply TR3 to

X //

1
��

X //

f

��

0 //

��

X[1]

1[1]
��

X
f // Y

g // Z
h // X[1]

Of course the dotted arrow is the zero map. Hence the commutativity of the
diagram implies that g ◦ f = 0. For the other cases rotate the triangle, i.e., apply
TR2. □

Lemma 13.4.2.0149 Let D be a pre-triangulated category. For any object W of D the
functor HomD(W,−) is homological, and the functor HomD(−,W ) is cohomologi-
cal.

https://stacks.math.columbia.edu/tag/0150
https://stacks.math.columbia.edu/tag/0146
https://stacks.math.columbia.edu/tag/0149
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Proof. Consider a distinguished triangle (X,Y, Z, f, g, h). We have already seen
that g ◦ f = 0, see Lemma 13.4.1. Suppose a : W → Y is a morphism such that
g ◦ a = 0. Then we get a commutative diagram

W
1
//

b

��

W //

a

��

0 //

0
��

W [1]

b[1]
��

X // Y // Z // X[1]

Both rows are distinguished triangles (use TR1 for the top row). Hence we can fill
the dotted arrow b (first rotate using TR2, then apply TR3, and then rotate back).
This proves the lemma. □

Lemma 13.4.3.014A Let D be a pre-triangulated category. Let
(a, b, c) : (X,Y, Z, f, g, h)→ (X ′, Y ′, Z ′, f ′, g′, h′)

be a morphism of distinguished triangles. If two among a, b, c are isomorphisms so
is the third.

Proof. Assume that a and c are isomorphisms. For any object W of D write
HW (−) = HomD(W,−). Then we get a commutative diagram of abelian groups

HW (Z[−1]) //

��

HW (X) //

��

HW (Y ) //

��

HW (Z) //

��

HW (X[1])

��
HW (Z ′[−1]) // HW (X ′) // HW (Y ′) // HW (Z ′) // HW (X ′[1])

By assumption the right two and left two vertical arrows are bijective. As HW

is homological by Lemma 13.4.2 and the five lemma (Homology, Lemma 12.5.20)
it follows that the middle vertical arrow is an isomorphism. Hence by Yoneda’s
lemma, see Categories, Lemma 4.3.5 we see that b is an isomorphism. This implies
the other cases by rotating (using TR2). □

Remark 13.4.4.09WA Let D be an additive category with translation functors [n] as in
Definition 13.3.1. Let us call a triangle (X,Y, Z, f, g, h) special3 if for every object
W of D the long sequence of abelian groups
. . .→ HomD(W,X)→ HomD(W,Y )→ HomD(W,Z)→ HomD(W,X[1])→ . . .

is exact. The proof of Lemma 13.4.3 shows that if
(a, b, c) : (X,Y, Z, f, g, h)→ (X ′, Y ′, Z ′, f ′, g′, h′)

is a morphism of special triangles and if two among a, b, c are isomorphisms so is the
third. There is a dual statement for co-special triangles, i.e., triangles which turn
into long exact sequences on applying the functor HomD(−,W ). Thus distinguished
triangles are special and co-special, but in general there are many more (co-)special
triangles, than there are distinguished triangles.

Lemma 13.4.5.05QP Let D be a pre-triangulated category. Let
(0, b, 0), (0, b′, 0) : (X,Y, Z, f, g, h)→ (X,Y, Z, f, g, h)

be endomorphisms of a distinguished triangle. Then bb′ = 0.
3This is nonstandard notation.

https://stacks.math.columbia.edu/tag/014A
https://stacks.math.columbia.edu/tag/09WA
https://stacks.math.columbia.edu/tag/05QP
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Proof. Picture
X //

0
��

Y //

b,b′

��
α

��

Z //

0
��β��

X[1]

0
��

X // Y // Z // X[1]
Applying Lemma 13.4.2 we find dotted arrows α and β such that b′ = f ◦ α and
b = β ◦ g. Then bb′ = β ◦ g ◦ f ◦ α = 0 as g ◦ f = 0 by Lemma 13.4.1. □

Lemma 13.4.6.05QQ Let D be a pre-triangulated category. Let (X,Y, Z, f, g, h) be a
distinguished triangle. If

Z
h
//

c

��

X[1]

a[1]
��

Z
h // X[1]

is commutative and a2 = a, c2 = c, then there exists a morphism b : Y → Y with
b2 = b such that (a, b, c) is an endomorphism of the triangle (X,Y, Z, f, g, h).
Proof. By TR3 there exists a morphism b′ such that (a, b′, c) is an endomorphism
of (X,Y, Z, f, g, h). Then (0, (b′)2 − b′, 0) is also an endomorphism. By Lemma
13.4.5 we see that (b′)2 − b′ has square zero. Set b = b′ − (2b′ − 1)((b′)2 − b′) =
3(b′)2 − 2(b′)3. A computation shows that (a, b, c) is an endomorphism and that
b2 − b = (4(b′)2 − 4b′ − 3)((b′)2 − b′)2 = 0. □

Lemma 13.4.7.014B Let D be a pre-triangulated category. Let f : X → Y be a
morphism of D. There exists a distinguished triangle (X,Y, Z, f, g, h) which is
unique up to (nonunique) isomorphism of triangles. More precisely, given a second
such distinguished triangle (X,Y, Z ′, f, g′, h′) there exists an isomorphism

(1, 1, c) : (X,Y, Z, f, g, h) −→ (X,Y, Z ′, f, g′, h′)
Proof. Existence by TR1. Uniqueness up to isomorphism by TR3 and Lemma
13.4.3. □

Lemma 13.4.8.0FWZ Let D be a pre-triangulated category. Let
(a, b, c) : (X,Y, Z, f, g, h)→ (X ′, Y ′, Z ′, f ′, g′, h′)

be a morphism of distinguished triangles. If one of the following conditions holds
(1) Hom(Y,X ′) = 0,
(2) Hom(Z, Y ′) = 0,
(3) Hom(X,X ′) = Hom(Z,X ′) = 0,
(4) Hom(Z,X ′) = Hom(Z,Z ′) = 0, or
(5) Hom(X[1], Z ′) = Hom(Z,X ′) = 0

then b is the unique morphism from Y → Y ′ such that (a, b, c) is a morphism of
triangles.
Proof. If we have a second morphism of triangles (a, b′, c) then (0, b − b′, 0) is a
morphism of triangles. Hence we have to show: the only morphism b : Y → Y ′

such that X → Y → Y ′ and Y → Y ′ → Z ′ are zero is 0. We will use Lemma 13.4.2
without further mention. In particular, condition (3) implies (1). Given condition
(1) if the composition g′ ◦ b : Y → Y ′ → Z ′ is zero, then b lifts to a morphism
Y → X ′ which has to be zero. This proves (1).

https://stacks.math.columbia.edu/tag/05QQ
https://stacks.math.columbia.edu/tag/014B
https://stacks.math.columbia.edu/tag/0FWZ
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The proof of (2) and (4) are dual to this argument.

Assume (5). Consider the diagram

X
f
//

0
��

Y
g
//

b

��

Z
h
//

0
��

ϵ
��

X[1]

0
��

X ′ f ′
// Y ′ g′

// Z ′ h′
// X ′[1]

We may choose ϵ such that b = ϵ ◦ g. Then g′ ◦ ϵ ◦ g = 0 which implies that
g′ ◦ ϵ = δ ◦ h for some δ ∈ Hom(X[1], Z ′). Since Hom(X[1], Z ′) = 0 we conclude
that g′ ◦ ϵ = 0. Hence ϵ = f ′ ◦ γ for some γ ∈ Hom(Z,X ′). Since Hom(Z,X ′) = 0
we conclude that ϵ = 0 and hence b = 0 as desired. □

Lemma 13.4.9.05QR Let D be a pre-triangulated category. Let f : X → Y be a
morphism of D. The following are equivalent

(1) f is an isomorphism,
(2) (X,Y, 0, f, 0, 0) is a distinguished triangle, and
(3) for any distinguished triangle (X,Y, Z, f, g, h) we have Z = 0.

Proof. By TR1 the triangle (X,X, 0, 1, 0, 0) is distinguished. Let (X,Y, Z, f, g, h) be
a distinguished triangle. By TR3 there is a map of distinguished triangles (1, f, 0) :
(X,X, 0) → (X,Y, Z). If f is an isomorphism, then (1, f, 0) is an isomorphism of
triangles by Lemma 13.4.3 and Z = 0. Conversely, if Z = 0, then (1, f, 0) is an
isomorphism of triangles as well, hence f is an isomorphism. □

Lemma 13.4.10.05QS Let D be a pre-triangulated category. Let (X,Y, Z, f, g, h) and
(X ′, Y ′, Z ′, f ′, g′, h′) be triangles. The following are equivalent

(1) (X ⊕X ′, Y ⊕ Y ′, Z ⊕Z ′, f ⊕ f ′, g ⊕ g′, h⊕ h′) is a distinguished triangle,
(2) both (X,Y, Z, f, g, h) and (X ′, Y ′, Z ′, f ′, g′, h′) are distinguished triangles.

Proof. Assume (2). By TR1 we may choose a distinguished triangle (X ⊕X ′, Y ⊕
Y ′, Q, f ⊕ f ′, g′′, h′′). By TR3 we can find morphisms of distinguished triangles
(X,Y, Z, f, g, h) → (X ⊕X ′, Y ⊕ Y ′, Q, f ⊕ f ′, g′′, h′′) and (X ′, Y ′, Z ′, f ′, g′, h′) →
(X ⊕X ′, Y ⊕ Y ′, Q, f ⊕ f ′, g′′, h′′). Taking the direct sum of these morphisms we
obtain a morphism of triangles

(X ⊕X ′, Y ⊕ Y ′, Z ⊕ Z ′, f ⊕ f ′, g ⊕ g′, h⊕ h′)

(1,1,c)
��

(X ⊕X ′, Y ⊕ Y ′, Q, f ⊕ f ′, g′′, h′′).

In the terminology of Remark 13.4.4 this is a map of special triangles (because a
direct sum of special triangles is special) and we conclude that c is an isomorphism.
Thus (1) holds.

Assume (1). We will show that (X,Y, Z, f, g, h) is a distinguished triangle. First
observe that (X,Y, Z, f, g, h) is a special triangle (terminology from Remark 13.4.4)
as a direct summand of the distinguished hence special triangle (X⊕X ′, Y ⊕Y ′, Z⊕
Z ′, f⊕f ′, g⊕g′, h⊕h′). Using TR1 let (X,Y,Q, f, g′′, h′′) be a distinguished triangle.
By TR3 there exists a morphism of distinguished triangles (X ⊕ X ′, Y ⊕ Y ′, Z ⊕

https://stacks.math.columbia.edu/tag/05QR
https://stacks.math.columbia.edu/tag/05QS
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Z ′, f ⊕ f ′, g ⊕ g′, h⊕ h′)→ (X,Y,Q, f, g′′, h′′). Composing this with the inclusion
map we get a morphism of triangles

(1, 1, c) : (X,Y, Z, f, g, h) −→ (X,Y,Q, f, g′′, h′′)
By Remark 13.4.4 we find that c is an isomorphism and we conclude that (2)
holds. □

Lemma 13.4.11.05QT Let D be a pre-triangulated category. Let (X,Y, Z, f, g, h) be a
distinguished triangle.

(1) If h = 0, then there exists a right inverse s : Z → Y to g.
(2) For any right inverse s : Z → Y of g the map f ⊕ s : X ⊕ Z → Y is an

isomorphism.
(3) For any objects X ′, Z ′ of D the triangle (X ′, X ′⊕Z ′, Z ′, (1, 0), (0, 1), 0) is

distinguished.
Proof. To see (1) use that HomD(Z, Y )→ HomD(Z,Z)→ HomD(Z,X[1]) is exact
by Lemma 13.4.2. By the same token, if s is as in (2), then h = 0 and the sequence

0→ HomD(W,X)→ HomD(W,Y )→ HomD(W,Z)→ 0
is split exact (split by s : Z → Y ). Hence by Yoneda’s lemma we see thatX⊕Z → Y
is an isomorphism. The last assertion follows from TR1 and Lemma 13.4.10. □

Lemma 13.4.12.05QU Let D be a pre-triangulated category. Let f : X → Y be a
morphism of D. The following are equivalent

(1) f has a kernel,
(2) f has a cokernel,
(3) f is the isomorphic to a composition K⊕Z → Z → Z⊕Q of a projection

and coprojection for some objects K,Z,Q of D.
Proof. Any morphism isomorphic to a map of the form X ′⊕Z → Z ⊕Y ′ has both
a kernel and a cokernel. Hence (3) ⇒ (1), (2). Next we prove (1) ⇒ (3). Suppose
first that f : X → Y is a monomorphism, i.e., its kernel is zero. By TR1 there
exists a distinguished triangle (X,Y, Z, f, g, h). By Lemma 13.4.1 the composition
f ◦ h[−1] = 0. As f is a monomorphism we see that h[−1] = 0 and hence h = 0.
Then Lemma 13.4.11 implies that Y = X ⊕ Z, i.e., we see that (3) holds. Next,
assume f has a kernel K. As K → X is a monomorphism we conclude X = K⊕X ′

and f |X′ : X ′ → Y is a monomorphism. Hence Y = X ′ ⊕ Y ′ and we win. The
implication (2) ⇒ (3) is dual to this. □

Lemma 13.4.13.0CRG Let D be a pre-triangulated category. Let I be a set.
(1) Let Xi, i ∈ I be a family of objects of D.

(a) If
∏
Xi exists, then (

∏
Xi)[1] =

∏
Xi[1].

(b) If
⊕
Xi exists, then (

⊕
Xi)[1] =

⊕
Xi[1].

(2) Let Xi → Yi → Zi → Xi[1] be a family of distinguished triangles of D.
(a) If

∏
Xi,

∏
Yi,
∏
Zi exist, then

∏
Xi →

∏
Yi →

∏
Zi →

∏
Xi[1] is

a distinguished triangle.
(b) If

⊕
Xi,

⊕
Yi,
⊕
Zi exist, then

⊕
Xi →

⊕
Yi →

⊕
Zi →

⊕
Xi[1]

is a distinguished triangle.
Proof. Part (1) is true because [1] is an autoequivalence of D and because direct
sums and products are defined in terms of the category structure. Let us prove
(2)(a). Choose a distinguished triangle

∏
Xi →

∏
Yi → Z →

∏
Xi[1]. For each

https://stacks.math.columbia.edu/tag/05QT
https://stacks.math.columbia.edu/tag/05QU
https://stacks.math.columbia.edu/tag/0CRG
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j we can use TR3 to choose a morphism pj : Z → Zj fitting into a morphism of
distinguished triangles with the projection maps

∏
Xi → Xj and

∏
Yi → Yj . Using

the definition of products we obtain a map
∏
pi : Z →

∏
Zi fitting into a morphism

of triangles from the distinguished triangle to the triangle made out of the products.
Observe that the “product” triangle

∏
Xi →

∏
Yi →

∏
Zi →

∏
Xi[1] is special in

the terminology of Remark 13.4.4 because products of exact sequences of abelian
groups are exact. Hence Remark 13.4.4 shows that the morphism of triangles is an
isomorphism and we conclude by TR1. The proof of (2)(b) is dual. □

Lemma 13.4.14.05QW Let D be a pre-triangulated category. If D has countable products,
then D is Karoubian. If D has countable coproducts, then D is Karoubian.

Proof. Assume D has countable products. By Homology, Lemma 12.4.3 it suffices
to check that morphisms which have a right inverse have kernels. Any morphism
which has a right inverse is an epimorphism, hence has a kernel by Lemma 13.4.12.
The second statement is dual to the first. □

The following lemma makes it slightly easier to prove that a pre-triangulated cate-
gory is triangulated.

Lemma 13.4.15.014C Let D be a pre-triangulated category. In order to prove TR4 it
suffices to show that given any pair of composable morphisms f : X → Y and
g : Y → Z there exist

(1) isomorphisms i : X ′ → X, j : Y ′ → Y and k : Z ′ → Z, and then setting
f ′ = j−1fi : X ′ → Y ′ and g′ = k−1gj : Y ′ → Z ′ there exist

(2) distinguished triangles (X ′, Y ′, Q1, f
′, p1, d1), (X ′, Z ′, Q2, g

′ ◦ f ′, p2, d2)
and (Y ′, Z ′, Q3, g

′, p3, d3), such that the assertion of TR4 holds.

Proof. The replacement of X,Y, Z by X ′, Y ′, Z ′ is harmless by our definition of
distinguished triangles and their isomorphisms. The lemma follows from the fact
that the distinguished triangles (X ′, Y ′, Q1, f

′, p1, d1), (X ′, Z ′, Q2, g
′◦f ′, p2, d2) and

(Y ′, Z ′, Q3, g
′, p3, d3) are unique up to isomorphism by Lemma 13.4.7. □

Lemma 13.4.16.05QX Let D be a pre-triangulated category. Assume that D′ is an
additive full subcategory of D. The following are equivalent

(1) there exists a set of triangles T ′ such that (D′, T ′) is a pre-triangulated
subcategory of D,

(2) D′ is preserved under [1] and [1] : D′ → D′ is an auto-equivalence and
given any morphism f : X → Y in D′ there exists a distinguished triangle
(X,Y, Z, f, g, h) in D such that Z is isomorphic to an object of D′.

In this case T ′ as in (1) is the set of distinguished triangles (X,Y, Z, f, g, h) of D
such that X,Y, Z ∈ Ob(D′). Finally, if D is a triangulated category, then (1) and
(2) are also equivalent to

(3) D′ is a triangulated subcategory.

Proof. Omitted. □

Lemma 13.4.17.05QY An exact functor of pre-triangulated categories is additive.

Proof. Let F : D → D′ be an exact functor of pre-triangulated categories. Since
(0, 0, 0, 10, 10, 0) is a distinguished triangle of D the triangle

(F (0), F (0), F (0), 1F (0), 1F (0), F (0))

https://stacks.math.columbia.edu/tag/05QW
https://stacks.math.columbia.edu/tag/014C
https://stacks.math.columbia.edu/tag/05QX
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is distinguished in D′. This implies that 1F (0) ◦ 1F (0) is zero, see Lemma 13.4.1.
Hence F (0) is the zero object of D′. This also implies that F applied to any zero
morphism is zero (since a morphism in an additive category is zero if and only if
it factors through the zero object). Next, using that (X,X ⊕ Y, Y, (1, 0), (0, 1), 0)
is a distinguished triangle by Lemma 13.4.11 part (3), we see that (F (X), F (X ⊕
Y ), F (Y ), F (1, 0), F (0, 1), 0) is one too. This implies that the map F (X)⊕F (Y )→
F (X ⊕ Y ) is an isomorphism by Lemma 13.4.11 part (2). To finish we apply
Homology, Lemma 12.7.1. □

Lemma 13.4.18.05SQ Let F : D → D′ be a fully faithful exact functor of pre-triangulated
categories. Then a triangle (X,Y, Z, f, g, h) of D is distinguished if and only if
(F (X), F (Y ), F (Z), F (f), F (g), F (h)) is distinguished in D′.

Proof. The “only if” part is clear. Assume (F (X), F (Y ), F (Z)) is distinguished in
D′. Pick a distinguished triangle (X,Y, Z ′, f, g′, h′) in D. By Lemma 13.4.7 there
exists an isomorphism of triangles

(1, 1, c′) : (F (X), F (Y ), F (Z)) −→ (F (X), F (Y ), F (Z ′)).

Since F is fully faithful, there exists a morphism c : Z → Z ′ such that F (c) = c′.
Then (1, 1, c) is an isomorphism between (X,Y, Z) and (X,Y, Z ′). Hence (X,Y, Z)
is distinguished by TR1. □

Lemma 13.4.19.014Y Let D,D′,D′′ be pre-triangulated categories. Let F : D → D′ and
F ′ : D′ → D′′ be exact functors. Then F ′ ◦ F is an exact functor.

Proof. Omitted. □

Lemma 13.4.20.05QZ Let D be a pre-triangulated category. Let A be an abelian cate-
gory. Let H : D → A be a homological functor.

(1) Let D′ be a pre-triangulated category. Let F : D′ → D be an exact
functor. Then the composition H ◦ F is a homological functor as well.

(2) Let A′ be an abelian category. Let G : A → A′ be an exact functor. Then
G ◦H is a homological functor as well.

Proof. Omitted. □

Lemma 13.4.21.0151 Let D be a triangulated category. Let A be an abelian category.
Let G : A → D be a δ-functor.

(1) Let D′ be a triangulated category. Let F : D → D′ be an exact functor.
Then the composition F ◦G is a δ-functor as well.

(2) Let A′ be an abelian category. Let H : A′ → A be an exact functor. Then
G ◦H is a δ-functor as well.

Proof. Omitted. □

Lemma 13.4.22.05SR Let D be a triangulated category. Let A and B be abelian cate-
gories. Let G : A → D be a δ-functor. Let H : D → B be a homological functor.
Assume that H−1(G(A)) = 0 for all A in A. Then the collection

{Hn ◦G,Hn(δA→B→C)}n≥0

is a δ-functor from A → B, see Homology, Definition 12.12.1.

https://stacks.math.columbia.edu/tag/05SQ
https://stacks.math.columbia.edu/tag/014Y
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Proof. The notation signifies the following. If 0 → A
a−→ B

b−→ C → 0 is a short
exact sequence in A, then

δ = δA→B→C : G(C)→ G(A)[1]
is a morphism in D such that (G(A), G(B), G(C), a, b, δ) is a distinguished triangle,
see Definition 13.3.6. Then Hn(δ) : Hn(G(C)) → Hn(G(A)[1]) = Hn+1(G(A)) is
clearly functorial in the short exact sequence. Finally, the long exact cohomology
sequence (13.3.5.1) combined with the vanishing of H−1(G(C)) gives a long exact
sequence

0→ H0(G(A))→ H0(G(B))→ H0(G(C)) H0(δ)−−−−→ H1(G(A))→ . . .

in B as desired. □

The proof of the following result uses TR4.

Proposition 13.4.23.05R0 Let D be a triangulated category. Any commutative diagram

X //

��

Y

��
X ′ // Y ′

can be extended to a diagram
X //

��

Y //

��

Z //

��

X[1]

��
X ′ //

��

Y ′ //

��

Z ′ //

��

X ′[1]

��
X ′′ //

��

Y ′′ //

��

Z ′′ //

��

X ′′[1]

��
X[1] // Y [1] // Z[1] // X[2]

where all the squares are commutative, except for the lower right square which
is anticommutative. Moreover, each of the rows and columns are distinguished
triangles. Finally, the morphisms on the bottom row (resp. right column) are
obtained from the morphisms of the top row (resp. left column) by applying [1].

Proof. During this proof we avoid writing the arrows in order to make the proof legi-
ble. Choose distinguished triangles (X,Y, Z), (X ′, Y ′, Z ′), (X,X ′, X ′′), (Y, Y ′, Y ′′),
and (X,Y ′, A). Note that the morphism X → Y ′ is both equal to the composition
X → Y → Y ′ and equal to the composition X → X ′ → Y ′. Hence, we can find
morphisms

(1) a : Z → A and b : A→ Y ′′, and
(2) a′ : X ′′ → A and b′ : A→ Z ′

as in TR4. Denote c : Y ′′ → Z[1] the composition Y ′′ → Y [1] → Z[1] and denote
c′ : Z ′ → X ′′[1] the composition Z ′ → X ′[1] → X ′′[1]. The conclusion of our
application TR4 are that

(1) (Z,A, Y ′′, a, b, c), (X ′′, A, Z ′, a′, b′, c′) are distinguished triangles,

https://stacks.math.columbia.edu/tag/05R0
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(2) (X,Y, Z)→ (X,Y ′, A), (X,Y ′, A)→ (Y, Y ′, Y ′′), (X,X ′, X ′′)→ (X,Y ′, A),
(X,Y ′, A)→ (X ′, Y ′, Z ′) are morphisms of triangles.

First using that (X,X ′, X ′′) → (X,Y ′, A) and (X,Y ′, A) → (Y, Y ′, Y ′′). are mor-
phisms of triangles we see the first of the diagrams

X ′ //

��

Y ′

��
X ′′ b◦a′

//

��

Y ′′

��
X[1] // Y [1]

and

Y //

��

Z

b′◦a
��

// X[1]

��
Y ′ // Z ′ // X ′[1]

is commutative. The second is commutative too using that (X,Y, Z)→ (X,Y ′, A)
and (X,Y ′, A)→ (X ′, Y ′, Z ′) are morphisms of triangles. At this point we choose
a distinguished triangle (X ′′, Y ′′, Z ′′) starting with the map b ◦ a′ : X ′′ → Y ′′.
Next we apply TR4 one more time to the morphisms X ′′ → A → Y ′′ and the tri-
angles (X ′′, A, Z ′, a′, b′, c′), (X ′′, Y ′′, Z ′′), and (A, Y ′′, Z[1], b, c,−a[1]) to get mor-
phisms a′′ : Z ′ → Z ′′ and b′′ : Z ′′ → Z[1]. Then (Z ′, Z ′′, Z[1], a′′, b′′,−b′[1] ◦ a[1])
is a distinguished triangle, hence also (Z,Z ′, Z ′′,−b′ ◦ a, a′′,−b′′) and hence also
(Z,Z ′, Z ′′, b′◦a, a′′, b′′). Moreover, (X ′′, A, Z ′)→ (X ′′, Y ′′, Z ′′) and (X ′′, Y ′′, Z ′′)→
(A, Y ′′, Z[1], b, c,−a[1]) are morphisms of triangles. At this point we have defined
all the distinguished triangles and all the morphisms, and all that’s left is to verify
some commutativity relations.
To see that the middle square in the diagram commutes, note that the arrow
Y ′ → Z ′ factors as Y ′ → A → Z ′ because (X,Y ′, A) → (X ′, Y ′, Z ′) is a mor-
phism of triangles. Similarly, the morphism Y ′ → Y ′′ factors as Y ′ → A → Y ′′

because (X,Y ′, A) → (Y, Y ′, Y ′′) is a morphism of triangles. Hence the mid-
dle square commutes because the square with sides (A,Z ′, Z ′′, Y ′′) commutes as
(X ′′, A, Z ′)→ (X ′′, Y ′′, Z ′′) is a morphism of triangles (by TR4). The square with
sides (Y ′′, Z ′′, Y [1], Z[1]) commutes because (X ′′, Y ′′, Z ′′)→ (A, Y ′′, Z[1], b, c,−a[1])
is a morphism of triangles and c : Y ′′ → Z[1] is the composition Y ′′ → Y [1]→ Z[1].
The square with sides (Z ′, X ′[1], X ′′[1], Z ′′) is commutative because (X ′′, A, Z ′)→
(X ′′, Y ′′, Z ′′) is a morphism of triangles and c′ : Z ′ → X ′′[1] is the compo-
sition Z ′ → X ′[1] → X ′′[1]. Finally, we have to show that the square with
sides (Z ′′, X ′′[1], Z[1], X[2]) anticommutes. This holds because (X ′′, Y ′′, Z ′′) →
(A, Y ′′, Z[1], b, c,−a[1]) is a morphism of triangles and we’re done. □

13.5. Localization of triangulated categories

05R1 In order to construct the derived category starting from the homotopy category of
complexes, we will use a localization process.

Definition 13.5.1.05R2 Let D be a pre-triangulated category. We say a multiplicative
system S is compatible with the triangulated structure if the following two condi-
tions hold:

MS5 For a morphism f of D we have f ∈ S ⇔ f [1] ∈ S4.

4See Remark 13.5.3.
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MS6 Given a solid commutative square
X //

s

��

Y //

s′

��

Z //

��

X[1]

s[1]
��

X ′ // Y ′ // Z ′ // X ′[1]

whose rows are distinguished triangles with s, s′ ∈ S there exists a mor-
phism s′′ : Z → Z ′ in S such that (s, s′, s′′) is a morphism of triangles.

It turns out that these axioms are not independent of the axioms defining multi-
plicative systems.
Lemma 13.5.2.05R3 Let D be a pre-triangulated category. Let S ⊂ Arrows(D).

(1) If S contains all identities and MS6 holds (Definition 13.5.1), then every
isomorphism of D is in S.

(2) If MS1, MS5 (Categories, Definition 4.27.1) and MS6 hold, then MS2
holds.

Proof. Assume S contains all identities and MS6 holds. Let f : X → Y be an
isomorphism of D. Consider the diagram

0 //

1
��

X
1
//

1
��

X //

��

0[1]

1[1]
��

0 // X
f // Y // 0[1]

The rows are distinguished triangles by Lemma 13.4.9. By MS6 we see that the
dotted arrow exists and is in S, so f is in S.
Assume MS1, MS5, MS6. Suppose that f : X → Y is a morphism of D and
t : X → X ′ an element of S. Choose a distinguished triangle (X,Y, Z, f, g, h).
Next, choose a distinguished triangle (X ′, Y ′, Z, f ′, g′, t[1] ◦ h) (here we use TR1
and TR2). By MS5, MS6 (and TR2 to rotate) we can find the dotted arrow in the
commutative diagram

X //

t

��

Y //

s′

��

Z //

1
��

X[1]

t[1]
��

X ′ // Y ′ // Z // X ′[1]

with moreover s′ ∈ S. This proves LMS2. The proof of RMS2 is dual. □

Remark 13.5.3.0H30 In the presence of MS1 and MS6, condition MS5 is equivalent to
asking s[n] ∈ S for all s ∈ S and n ∈ Z. For example, suppose MS5 holds, we have
s ∈ S, and we want to show s[−1] ∈ S. This isn’t immediate because s[−1][1] is
not equal to s, only isomorphic to s as an arrow of D. Still, this does imply that
s[−1][1] = f ◦ s ◦ g for isomorphisms f , g. By Lemma 13.5.2 (1) we find f, g ∈ S,
hence s[−1][1] ∈ S by MS1, hence s[−1] ∈ S by MS5. We leave a complete proof
to the reader as an exercise.
Lemma 13.5.4.05R4 Let F : D → D′ be an exact functor of pre-triangulated categories.
Let

S = {f ∈ Arrows(D) | F (f) is an isomorphism}

https://stacks.math.columbia.edu/tag/05R3
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Then S is a saturated (see Categories, Definition 4.27.20) multiplicative system
compatible with the triangulated structure on D.

Proof. We have to prove axioms MS1 – MS6, see Categories, Definitions 4.27.1 and
4.27.20 and Definition 13.5.1. MS1, MS4, and MS5 are direct from the definitions.
MS6 follows from TR3 and Lemma 13.4.3. By Lemma 13.5.2 we conclude that
MS2 holds. To finish the proof we have to show that MS3 holds. To do this let
f, g : X → Y be morphisms of D, and let t : Z → X be an element of S such that
f ◦ t = g ◦ t. As D is additive this simply means that a ◦ t = 0 with a = f − g.
Choose a distinguished triangle (Z,X,Q, t, d, h) using TR1. Since a ◦ t = 0 we see
by Lemma 13.4.2 there exists a morphism i : Q → Y such that i ◦ d = a. Finally,
using TR1 again we can choose a triangle (Q,Y,W, i, j, k). Here is a picture

Z
t
// X

d
//

1
��

Q //

i

��

Z[1]

X
a
// Y

j

��
W

OK, and now we apply the functor F to this diagram. Since t ∈ S we see that
F (Q) = 0, see Lemma 13.4.9. Hence F (j) is an isomorphism by the same lemma,
i.e., j ∈ S. Finally, j ◦ a = j ◦ i ◦ d = 0 as j ◦ i = 0. Thus j ◦ f = j ◦ g and we see
that LMS3 holds. The proof of RMS3 is dual. □

Lemma 13.5.5.05R5 LetH : D → A be a homological functor between a pre-triangulated
category and an abelian category. Let

S = {f ∈ Arrows(D) | Hi(f) is an isomorphism for all i ∈ Z}

Then S is a saturated (see Categories, Definition 4.27.20) multiplicative system
compatible with the triangulated structure on D.

Proof. We have to prove axioms MS1 – MS6, see Categories, Definitions 4.27.1 and
4.27.20 and Definition 13.5.1. MS1, MS4, and MS5 are direct from the definitions.
MS6 follows from TR3 and the long exact cohomology sequence (13.3.5.1). By
Lemma 13.5.2 we conclude that MS2 holds. To finish the proof we have to show
that MS3 holds. To do this let f, g : X → Y be morphisms of D, and let t : Z → X
be an element of S such that f ◦ t = g ◦ t. As D is additive this simply means that
a ◦ t = 0 with a = f − g. Choose a distinguished triangle (Z,X,Q, t, g, h) using
TR1 and TR2. Since a ◦ t = 0 we see by Lemma 13.4.2 there exists a morphism
i : Q → Y such that i ◦ g = a. Finally, using TR1 again we can choose a triangle
(Q,Y,W, i, j, k). Here is a picture

Z
t
// X

g
//

1
��

Q //

i

��

Z[1]

X
a
// Y

j

��
W

https://stacks.math.columbia.edu/tag/05R5
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OK, and now we apply the functors Hi to this diagram. Since t ∈ S we see that
Hi(Q) = 0 by the long exact cohomology sequence (13.3.5.1). Hence Hi(j) is an
isomorphism for all i by the same argument, i.e., j ∈ S. Finally, j ◦a = j ◦ i ◦ g = 0
as j ◦ i = 0. Thus j ◦ f = j ◦ g and we see that LMS3 holds. The proof of RMS3 is
dual. □

Proposition 13.5.6.05R6 Let D be a pre-triangulated category. Let S be a multiplicative
system compatible with the triangulated structure. Then there exists a unique
structure of a pre-triangulated category on S−1D such that [1] ◦ Q = Q ◦ [1] and
the localization functor Q : D → S−1D is exact. Moreover, if D is a triangulated
category, so is S−1D.

Proof. We have seen that S−1D is an additive category and that the localization
functor Q is additive in Homology, Lemma 12.8.2. It follows from MS5 that there
is a unique additive auto-equivalence [1] : S−1D → S−1D such that Q ◦ [1] =
[1] ◦ Q (equality of functors); we omit the details. We say a triangle of S−1D is
distinguished if it is isomorphic to the image of a distinguished triangle under the
localization functor Q.

Proof of TR1. The only thing to prove here is that if a : Q(X) → Q(Y ) is a
morphism of S−1D, then a fits into a distinguished triangle. Write a = Q(s)−1 ◦
Q(f) for some s : Y → Y ′ in S and f : X → Y ′. Choose a distinguished triangle
(X,Y ′, Z, f, g, h) in D. Then we see that (Q(X), Q(Y ), Q(Z), a,Q(g) ◦Q(s), Q(h))
is a distinguished triangle of S−1D.

Proof of TR2. This is immediate from the definitions.

Proof of TR3. Note that the existence of the dotted arrow which is required to exist
may be proven after replacing the two triangles by isomorphic triangles. Hence we
may assume given distinguished triangles (X,Y, Z, f, g, h) and (X ′, Y ′, Z ′, f ′, g′, h′)
of D and a commutative diagram

Q(X)
Q(f)

//

a

��

Q(Y )

b

��
Q(X ′)

Q(f ′) // Q(Y ′)

in S−1D. Now we apply Categories, Lemma 4.27.10 to find a morphism f ′′ : X ′′ →
Y ′′ in D and a commutative diagram

X

f

��

k
// X ′′

f ′′

��

X ′

f ′

��

s
oo

Y
l // Y ′′ Y ′too

https://stacks.math.columbia.edu/tag/05R6
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in D with s, t ∈ S and a = s−1k, b = t−1l. At this point we can use TR3 for D and
MS6 to find a commutative diagram

X //

k

��

Y //

l

��

Z //

m

��

X[1]

g[1]
��

X ′′ // Y ′′ // Z ′′ // X ′′[1]

X ′ //

s

OO

Y ′ //

t

OO

Z ′ //

r

OO

X ′[1]

s[1]

OO

with r ∈ S. It follows that setting c = Q(r)−1Q(m) we obtain the desired morphism
of triangles

(Q(X), Q(Y ), Q(Z), Q(f), Q(g), Q(h))

(a,b,c)
��

(Q(X ′), Q(Y ′), Q(Z ′), Q(f ′), Q(g′), Q(h′))

This proves the first statement of the lemma. If D is also a triangulated category,
then we still have to prove TR4 in order to show that S−1D is triangulated as
well. To do this we reduce by Lemma 13.4.15 to the following statement: Given
composable morphisms a : Q(X) → Q(Y ) and b : Q(Y ) → Q(Z) we have to
produce an octahedron after possibly replacing Q(X), Q(Y ), Q(Z) by isomorphic
objects. To do this we may first replace Y by an object such that a = Q(f)
for some morphism f : X → Y in D. (More precisely, write a = s−1f with
s : Y → Y ′ in S and f : X → Y ′. Then replace Y by Y ′.) After this we similarly
replace Z by an object such that b = Q(g) for some morphism g : Y → Z. Now
we can find distinguished triangles (X,Y,Q1, f, p1, d1), (X,Z,Q2, g ◦ f, p2, d2), and
(Y, Z,Q3, g, p3, d3) in D (by TR1), and morphisms a : Q1 → Q2 and b : Q2 → Q3
as in TR4. Then it is immediately verified that applying the functor Q to all these
data gives a corresponding structure in S−1D □

The universal property of the localization of a triangulated category is as follows
(we formulate this for pre-triangulated categories, hence it holds a fortiori for tri-
angulated categories).

Lemma 13.5.7.05R7 Let D be a pre-triangulated category. Let S be a multiplicative
system compatible with the triangulated structure. Let Q : D → S−1D be the
localization functor, see Proposition 13.5.6.

(1) If H : D → A is a homological functor into an abelian category A such
that H(s) is an isomorphism for all s ∈ S, then the unique factorization
H ′ : S−1D → A such that H = H ′ ◦Q (see Categories, Lemma 4.27.8) is
a homological functor too.

(2) If F : D → D′ is an exact functor into a pre-triangulated category D′ such
that F (s) is an isomorphism for all s ∈ S, then the unique factorization
F ′ : S−1D → D′ such that F = F ′ ◦Q (see Categories, Lemma 4.27.8) is
an exact functor too.

Proof. This lemma proves itself. Details omitted. □
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Lemma 13.5.8.0GSL Let D be a pre-triangulated category and let D′ ⊂ D be a full,
pre-triangulated subcategory. Let S be a saturated multiplicative system of D
compatible with the triangulated structure. Assume that for each X in D there
exists an s : X ′ → X in S such that X ′ is an object of D′. Then S′ = S∩Arrows(D′)
is a saturated multiplicative system compatible with the triangulated structure and
the functor

(S′)−1D′ −→ S−1D
is an equivalence of pre-triangulated categories.

Proof. Consider the quotient functor Q : D → S−1D of Proposition 13.5.6. Since
S is saturated we have that a morphism f : X → Y is in S if and only if Q(f) is
invertible, see Categories, Lemma 4.27.21. Thus S′ is the collection of arrows which
are turned into isomorphisms by the composition D′ → D → S−1D. Hence S′ is
is a saturated multiplicative system compatible with the triangulated structure by
Lemma 13.5.4. By Lemma 13.5.7 we obtain the exact functor (S′)−1D′ → S−1D
of pre-triangulated categories. By assumption this functor is essentially surjective.
Let X ′, Y ′ be objects of D′. By Categories, Remark 4.27.15 we have

MorS−1D(X ′, Y ′) = colims:X→X′ in S MorD(X,Y ′)
Our assumption implies that for any s : X → X ′ in S we can find a morphism
s′ : X ′′ → X in S with X ′′ in D′. Then s◦ s′ : X ′′ → X ′ is in S′. Hence the colimit
above is equal to

colims′′:X′′→X′ in S′ MorD′(X ′′, Y ′) = Mor(S′)−1D′(X ′, Y ′)
This proves our functor is also fully faithful and the proof is complete. □

The following lemma describes the kernel (see Definition 13.6.5) of the localization
functor.

Lemma 13.5.9.05R8 Let D be a pre-triangulated category. Let S be a multiplicative
system compatible with the triangulated structure. Let Z be an object of D. The
following are equivalent

(1) Q(Z) = 0 in S−1D,
(2) there exists Z ′ ∈ Ob(D) such that 0 : Z → Z ′ is an element of S,
(3) there exists Z ′ ∈ Ob(D) such that 0 : Z ′ → Z is an element of S, and
(4) there exists an object Z ′ and a distinguished triangle (X,Y, Z⊕Z ′, f, g, h)

such that f ∈ S.
If S is saturated, then these are also equivalent to

(5) the morphism 0→ Z is an element of S,
(6) the morphism Z → 0 is an element of S,
(7) there exists a distinguished triangle (X,Y, Z, f, g, h) such that f ∈ S.

Proof. The equivalence of (1), (2), and (3) is Homology, Lemma 12.8.3. If (2) holds,
then (Z ′[−1], Z ′[−1] ⊕ Z,Z, (1, 0), (0, 1), 0) is a distinguished triangle (see Lemma
13.4.11) with “0 ∈ S”. By rotating we conclude that (4) holds. If (X,Y, Z ⊕
Z ′, f, g, h) is a distinguished triangle with f ∈ S then Q(f) is an isomorphism
hence Q(Z ⊕ Z ′) = 0 hence Q(Z) = 0. Thus (1) – (4) are all equivalent.
Next, assume that S is saturated. Note that each of (5), (6), (7) implies one of
the equivalent conditions (1) – (4). Suppose that Q(Z) = 0. Then 0 → Z is a
morphism of D which becomes an isomorphism in S−1D. According to Categories,

https://stacks.math.columbia.edu/tag/0GSL
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Lemma 4.27.21 the fact that S is saturated implies that 0→ Z is in S. Hence (1)⇒
(5). Dually (1) ⇒ (6). Finally, if 0→ Z is in S, then the triangle (0, Z, Z, 0, idZ , 0)
is distinguished by TR1 and TR2 and is a triangle as in (4). □

Lemma 13.5.10.05R9 Let D be a triangulated category. Let S be a saturated mul-
tiplicative system in D that is compatible with the triangulated structure. Let
(X,Y, Z, f, g, h) be a distinguished triangle in D. Consider the category of mor-
phisms of triangles

I = {(s, s′, s′′) : (X,Y, Z, f, g, h)→ (X ′, Y ′, Z ′, f ′, g′, h′) | s, s′, s′′ ∈ S}

Then I is a filtered category and the functors I → X/S, I → Y/S, and I → Z/S
are cofinal.

Proof. We strongly suggest the reader skip the proof of this lemma and instead
work it out on a napkin.

The first remark is that using rotation of distinguished triangles (TR2) gives an
equivalence of categories between I and the corresponding category for the distin-
guished triangle (Y,Z,X[1], g, h,−f [1]). Using this we see for example that if we
prove the functor I → X/S is cofinal, then the same thing is true for the functors
I → Y/S and I → Z/S.

Note that if s : X → X ′ is a morphism of S, then using MS2 we can find s′ : Y → Y ′

and f ′ : X ′ → Y ′ such that f ′ ◦ s = s′ ◦ f , whereupon we can use MS6 to complete
this into an object of I. Hence the functor I → X/S is surjective on objects. Using
rotation as above this implies the same thing is true for the functors I → Y/S and
I → Z/S.

Suppose given objects s1 : X → X1 and s2 : X → X2 in X/S and a morphism a :
X1 → X2 in X/S. Since S is saturated, we see that a ∈ S, see Categories, Lemma
4.27.21. By the argument of the previous paragraph we can complete s1 : X → X1
to an object (s1, s

′
1, s

′′
1) : (X,Y, Z, f, g, h) → (X1, Y1, Z1, f1, g1, h1) in I. Then we

can repeat and find (a, b, c) : (X1, Y1, Z1, f1, g1, h1) → (X2, Y2, Z2, f2, g2, h2) with
a, b, c ∈ S completing the given a : X1 → X2. But then (a, b, c) is a morphism
in I. In this way we conclude that the functor I → X/S is also surjective on
arrows. Using rotation as above, this implies the same thing is true for the functors
I → Y/S and I → Z/S.

The category I is nonempty as the identity provides an object. This proves the
condition (1) of the definition of a filtered category, see Categories, Definition 4.19.1.

We check condition (2) of Categories, Definition 4.19.1 for the category I. Suppose
given objects (s1, s

′
1, s

′′
1) : (X,Y, Z, f, g, h)→ (X1, Y1, Z1, f1, g1, h1) and (s2, s

′
2, s

′′
2) :

(X,Y, Z, f, g, h)→ (X2, Y2, Z2, f2, g2, h2) in I. We want to find an object of I which
is the target of an arrow from both (X1, Y1, Z1, f1, g1, h1) and (X2, Y2, Z2, f2, g2, h2).
By Categories, Remark 4.27.7 the categories X/S, Y/S, Z/S are filtered. Thus
we can find X → X3 in X/S and morphisms s : X2 → X3 and a : X1 →
X3. By the above we can find a morphism (s, s′, s′′) : (X2, Y2, Z2, f2, g2, h2) →
(X3, Y3, Z3, f3, g3, h3) with s′, s′′ ∈ S. After replacing (X2, Y2, Z2) by (X3, Y3, Z3)
we may assume that there exists a morphism a : X1 → X2 in X/S. Repeating the
argument for Y and Z (by rotating as above) we may assume there is a morphism
a : X1 → X2 in X/S, b : Y1 → Y2 in Y/S, and c : Z1 → Z2 in Z/S. However,
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these morphisms do not necessarily give rise to a morphism of distinguished tri-
angles. On the other hand, the necessary diagrams do commute in S−1D. Hence
we see (for example) that there exists a morphism s′

2 : Y2 → Y3 in S such that
s′

2 ◦f2 ◦a = s′
2 ◦ b◦f1. Another replacement of (X2, Y2, Z2) as above then gets us to

the situation where f2 ◦ a = b ◦ f1. Rotating and applying the same argument two
more times we see that we may assume (a, b, c) is a morphism of triangles. This
proves condition (2).

Next we check condition (3) of Categories, Definition 4.19.1. Suppose (s1, s
′
1, s

′′
1) :

(X,Y, Z) → (X1, Y1, Z1) and (s2, s
′
2, s

′′
2) : (X,Y, Z) → (X2, Y2, Z2) are objects of

I, and suppose (a, b, c), (a′, b′, c′) are two morphisms between them. Since a ◦ s1 =
a′ ◦ s1 there exists a morphism s3 : X2 → X3 such that s3 ◦ a = s3 ◦ a′. Using the
surjectivity statement we can complete this to a morphism of triangles (s3, s

′
3, s

′′
3) :

(X2, Y2, Z2) → (X3, Y3, Z3) with s3, s
′
3, s

′′
3 ∈ S. Thus (s3 ◦ s2, s

′
3 ◦ s′

2, s
′′
3 ◦ s′′

2) :
(X,Y, Z) → (X3, Y3, Z3) is also an object of I and after composing the maps
(a, b, c), (a′, b′, c′) with (s3, s

′
3, s

′′
3) we obtain a = a′. By rotating we may do the

same to get b = b′ and c = c′.

Finally, we check that I → X/S is cofinal, see Categories, Definition 4.17.1.
The first condition is true as the functor is surjective. Suppose that we have
an object s : X → X ′ in X/S and two objects (s1, s

′
1, s

′′
1) : (X,Y, Z, f, g, h) →

(X1, Y1, Z1, f1, g1, h1) and (s2, s
′
2, s

′′
2) : (X,Y, Z, f, g, h) → (X2, Y2, Z2, f2, g2, h2) in

I as well as morphisms t1 : X ′ → X1 and t2 : X ′ → X2 in X/S. By property
(2) of I proved above we can find morphisms (s3, s

′
3, s

′′
3) : (X1, Y1, Z1, f1, g1, h1)→

(X3, Y3, Z3, f3, g3, h3) and (s4, s
′
4, s

′′
4) : (X2, Y2, Z2, f2, g2, h2)→ (X3, Y3, Z3, f3, g3, h3)

in I. We would be done if the compositions X ′ → X1 → X3 and X ′ → X2 → X3
where equal (see displayed equation in Categories, Definition 4.17.1). If not, then,
because X/S is filtered, we can choose a morphism X3 → X4 in S such that the
compositions X ′ → X1 → X3 → X4 and X ′ → X2 → X3 → X4 are equal. Then
we finally complete X3 → X4 to a morphism (X3, Y3, Z3) → (X4, Y4, Z4) in I and
compose with that morphism to see that the result is true. □

13.6. Quotients of triangulated categories

05RA Given a triangulated category and a triangulated subcategory we can construct
another triangulated category by taking the “quotient”. The construction uses a
localization. This is similar to the quotient of an abelian category by a Serre
subcategory, see Homology, Section 12.10. Before we do the actual construction we
briefly discuss kernels of exact functors.

Definition 13.6.1.05RB LetD be a pre-triangulated category. We say a full pre-triangulated
subcategory D′ of D is saturated if whenever X ⊕ Y is isomorphic to an object of
D′ then both X and Y are isomorphic to objects of D′.

A saturated triangulated subcategory is sometimes called a thick triangulated sub-
category. In some references, this is only used for strictly full triangulated sub-
categories (and sometimes the definition is written such that it implies strictness).
There is another notion, that of an épaisse triangulated subcategory. The definition

https://stacks.math.columbia.edu/tag/05RB
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is that given a commutative diagram

S

��
X

??

// Y // T // X[1]

where the second line is a distinguished triangle and S and T are isomorphic to
objects of D′, then also X and Y are isomorphic to objects of D′. It turns out
that this is equivalent to being saturated (this is elementary and can be found in
[Ric89a]) and the notion of a saturated category is easier to work with.

Lemma 13.6.2.05RC Let F : D → D′ be an exact functor of pre-triangulated categories.
Let D′′ be the full subcategory of D with objects

Ob(D′′) = {X ∈ Ob(D) | F (X) = 0}
Then D′′ is a strictly full saturated pre-triangulated subcategory of D. If D is a
triangulated category, then D′′ is a triangulated subcategory.

Proof. It is clear that D′′ is preserved under [1] and [−1]. If (X,Y, Z, f, g, h)
is a distinguished triangle of D and F (X) = F (Y ) = 0, then also F (Z) = 0
as (F (X), F (Y ), F (Z), F (f), F (g), F (h)) is distinguished. Hence we may apply
Lemma 13.4.16 to see that D′′ is a pre-triangulated subcategory (respectively a
triangulated subcategory if D is a triangulated category). The final assertion of
being saturated follows from F (X)⊕ F (Y ) = 0⇒ F (X) = F (Y ) = 0. □

Lemma 13.6.3.05RD Let H : D → A be a homological functor of a pre-triangulated
category into an abelian category. Let D′ be the full subcategory of D with objects

Ob(D′) = {X ∈ Ob(D) | H(X[n]) = 0 for all n ∈ Z}

Then D′ is a strictly full saturated pre-triangulated subcategory of D. If D is a
triangulated category, then D′ is a triangulated subcategory.

Proof. It is clear that D′ is preserved under [1] and [−1]. If (X,Y, Z, f, g, h) is
a distinguished triangle of D and H(X[n]) = H(Y [n]) = 0 for all n, then also
H(Z[n]) = 0 for all n by the long exact sequence (13.3.5.1). Hence we may apply
Lemma 13.4.16 to see that D′ is a pre-triangulated subcategory (respectively a
triangulated subcategory if D is a triangulated category). The assertion of being
saturated follows from

H((X ⊕ Y )[n]) = 0⇒ H(X[n]⊕ Y [n]) = 0
⇒ H(X[n])⊕H(Y [n]) = 0
⇒ H(X[n]) = H(Y [n]) = 0

for all n ∈ Z. □

Lemma 13.6.4.05RE Let H : D → A be a homological functor of a pre-triangulated
category into an abelian category. Let D+

H ,D
−
H ,DbH be the full subcategory of D

with objects
Ob(D+

H) = {X ∈ Ob(D) | H(X[n]) = 0 for all n≪ 0}
Ob(D−

H) = {X ∈ Ob(D) | H(X[n]) = 0 for all n≫ 0}
Ob(DbH) = {X ∈ Ob(D) | H(X[n]) = 0 for all |n| ≫ 0}

https://stacks.math.columbia.edu/tag/05RC
https://stacks.math.columbia.edu/tag/05RD
https://stacks.math.columbia.edu/tag/05RE
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Each of these is a strictly full saturated pre-triangulated subcategory of D. If D is
a triangulated category, then each is a triangulated subcategory.

Proof. Let us prove this for D+
H . It is clear that it is preserved under [1] and [−1]. If

(X,Y, Z, f, g, h) is a distinguished triangle of D and H(X[n]) = H(Y [n]) = 0 for all
n ≪ 0, then also H(Z[n]) = 0 for all n ≪ 0 by the long exact sequence (13.3.5.1).
Hence we may apply Lemma 13.4.16 to see that D+

H is a pre-triangulated subcate-
gory (respectively a triangulated subcategory if D is a triangulated category). The
assertion of being saturated follows from

H((X ⊕ Y )[n]) = 0⇒ H(X[n]⊕ Y [n]) = 0
⇒ H(X[n])⊕H(Y [n]) = 0
⇒ H(X[n]) = H(Y [n]) = 0

for all n ∈ Z. □

Definition 13.6.5.05RF Let D be a (pre-)triangulated category.
(1) Let F : D → D′ be an exact functor. The kernel of F is the strictly full

saturated (pre-)triangulated subcategory described in Lemma 13.6.2.
(2) Let H : D → A be a homological functor. The kernel of H is the strictly

full saturated (pre-)triangulated subcategory described in Lemma 13.6.3.
These are sometimes denoted Ker(F ) or Ker(H).

The proof of the following lemma uses TR4.

Lemma 13.6.6.05RG Let D be a triangulated category. Let D′ ⊂ D be a full triangulated
subcategory. Set

(13.6.6.1)05RH S =
{
f ∈ Arrows(D) such that there exists a distinguished triangle

(X,Y, Z, f, g, h) of D with Z isomorphic to an object of D′

}
Then S is a multiplicative system compatible with the triangulated structure on
D. In this situation the following are equivalent

(1) S is a saturated multiplicative system,
(2) D′ is a saturated triangulated subcategory.

Proof. To prove the first assertion we have to prove that MS1, MS2, MS3 and MS5,
MS6 hold.

Proof of MS1. It is clear that identities are in S because (X,X, 0, 1, 0, 0) is distin-
guished for every object X of D and because 0 is an object of D′. Let f : X → Y
and g : Y → Z be composable morphisms contained in S. Choose distinguished
triangles (X,Y,Q1, f, p1, d1), (X,Z,Q2, g ◦ f, p2, d2), and (Y, Z,Q3, g, p3, d3). By
assumption we know that Q1 and Q3 are isomorphic to objects of D′. By TR4 we
know there exists a distinguished triangle (Q1, Q2, Q3, a, b, c). Since D′ is a trian-
gulated subcategory we conclude that Q2 is isomorphic to an object of D′. Hence
g ◦ f ∈ S.

Proof of MS3. Let a : X → Y be a morphism and let t : Z → X be an element
of S such that a ◦ t = 0. To prove LMS3 it suffices to find an s ∈ S such that
s◦a = 0, compare with the proof of Lemma 13.5.4. Choose a distinguished triangle
(Z,X,Q, t, g, h) using TR1 and TR2. Since a ◦ t = 0 we see by Lemma 13.4.2 there

https://stacks.math.columbia.edu/tag/05RF
https://stacks.math.columbia.edu/tag/05RG
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exists a morphism i : Q→ Y such that i ◦ g = a. Finally, using TR1 again we can
choose a triangle (Q,Y,W, i, s, k). Here is a picture

Z
t
// X

g
//

1
��

Q //

i

��

Z[1]

X
a
// Y

s

��
W

Since t ∈ S we see that Q is isomorphic to an object of D′. Hence s ∈ S. Finally,
s ◦ a = s ◦ i ◦ g = 0 as s ◦ i = 0 by Lemma 13.4.1. We conclude that LMS3 holds.
The proof of RMS3 is dual.
Proof of MS5. Follows as distinguished triangles and D′ are stable under transla-
tions
Proof of MS6. Suppose given a commutative diagram

X //

s

��

Y

s′

��
X ′ // Y ′

with s, s′ ∈ S. By Proposition 13.4.23 we can extend this to a nine square diagram.
As s, s′ are elements of S we see that X ′′, Y ′′ are isomorphic to objects of D′. Since
D′ is a full triangulated subcategory we see that Z ′′ is also isomorphic to an object
of D′. Whence the morphism Z → Z ′ is an element of S. This proves MS6.
MS2 is a formal consequence of MS1, MS5, and MS6, see Lemma 13.5.2. This
finishes the proof of the first assertion of the lemma.
Let’s assume that S is saturated. (In the following we will use rotation of distin-
guished triangles without further mention.) LetX⊕Y be an object isomorphic to an
object of D′. Consider the morphism f : 0→ X. The composition 0→ X → X⊕Y
is an element of S as (0, X ⊕ Y,X ⊕ Y, 0, 1, 0) is a distinguished triangle. The com-
position Y [−1] → 0 → X is an element of S as (X,X ⊕ Y, Y, (1, 0), (0, 1), 0) is a
distinguished triangle, see Lemma 13.4.11. Hence 0→ X is an element of S (as S
is saturated). Thus X is isomorphic to an object of D′ as desired.
Finally, assume D′ is a saturated triangulated subcategory. Let

W
h−→ X

g−→ Y
f−→ Z

be composable morphisms of D such that fg, gh ∈ S. We will build up a picture
of objects as in the diagram below.

Q12

!!

Q23

!!
Q1

+1

~~

==

Q2
+1

}}

+1oo

==

Q3
+1

}}

+1oo

W // X

aa

// Y

aa

// Z

``
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First choose distinguished triangles (W,X,Q1), (X,Y,Q2), (Y, Z,Q3) (W,Y,Q12),
and (X,Z,Q23). Denote s : Q2 → Q1[1] the composition Q2 → X[1] → Q1[1].
Denote t : Q3 → Q2[1] the composition Q3 → Y [1] → Q2[1]. By TR4 applied
to the composition W → X → Y and the composition X → Y → Z there exist
distinguished triangles (Q1, Q12, Q2) and (Q2, Q23, Q3) which use the morphisms
s and t. The objects Q12 and Q23 are isomorphic to objects of D′ as W → Y
and X → Z are assumed in S. Hence also s[1]t is an element of S as S is closed
under compositions and shifts. Note that s[1]t = 0 as Y [1] → Q2[1] → X[2] is
zero, see Lemma 13.4.1. Hence Q3[1]⊕Q1[2] is isomorphic to an object of D′, see
Lemma 13.4.11. By assumption on D′ we conclude that Q3 and Q1 are isomorphic
to objects of D′. Looking at the distinguished triangle (Q1, Q12, Q2) we conclude
that Q2 is also isomorphic to an object of D′. Looking at the distinguished triangle
(X,Y,Q2) we finally conclude that g ∈ S. (It is also follows that h, f ∈ S, but we
don’t need this.) □

Definition 13.6.7.05RI Let D be a triangulated category. Let B be a full triangulated
subcategory. We define the quotient category D/B by the formula D/B = S−1D,
where S is the multiplicative system of D associated to B via Lemma 13.6.6. The
localization functor Q : D → D/B is called the quotient functor in this case.

Note that the quotient functor Q : D → D/B is an exact functor of triangulated
categories, see Proposition 13.5.6. The universal property of this construction is
the following.

Lemma 13.6.8.05RJ Let D be a triangulated category. Let B be a full triangulated
subcategory of D. Let Q : D → D/B be the quotient functor.

(1) If H : D → A is a homological functor into an abelian category A such
that B ⊂ Ker(H) then there exists a unique factorization H ′ : D/B → A
such that H = H ′ ◦Q and H ′ is a homological functor too.

(2) If F : D → D′ is an exact functor into a pre-triangulated category D′ such
that B ⊂ Ker(F ) then there exists a unique factorization F ′ : D/B → D′

such that F = F ′ ◦Q and F ′ is an exact functor too.

Proof. This lemma follows from Lemma 13.5.7. Namely, if f : X → Y is a mor-
phism of D such that for some distinguished triangle (X,Y, Z, f, g, h) the object Z
is isomorphic to an object of B, then H(f), resp. F (f) is an isomorphism under the
assumptions of (1), resp. (2). Details omitted. □

The kernel of the quotient functor can be described as follows.

Lemma 13.6.9.05RK Let D be a triangulated category. Let B be a full triangulated
subcategory. The kernel of the quotient functor Q : D → D/B is the strictly full
subcategory of D whose objects are

Ob(Ker(Q)) =
{
Z ∈ Ob(D) such that there exists a Z ′ ∈ Ob(D)
such that Z ⊕ Z ′ is isomorphic to an object of B

}
In other words it is the smallest strictly full saturated triangulated subcategory of
D containing B.

Proof. First note that the kernel is automatically a strictly full triangulated subcat-
egory containing summands of any of its objects, see Lemma 13.6.2. The description
of its objects follows from the definitions and Lemma 13.5.9 part (4). □

https://stacks.math.columbia.edu/tag/05RI
https://stacks.math.columbia.edu/tag/05RJ
https://stacks.math.columbia.edu/tag/05RK
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Let D be a triangulated category. At this point we have constructions which induce
order preserving maps between

(1) the partially ordered set of multiplicative systems S in D compatible with
the triangulated structure, and

(2) the partially ordered set of full triangulated subcategories B ⊂ D.
Namely, the constructions are given by S 7→ B(S) = Ker(Q : D → S−1D) and
B 7→ S(B) where S(B) is the multiplicative set of (13.6.6.1), i.e.,

S(B) =
{
f ∈ Arrows(D) such that there exists a distinguished triangle

(X,Y, Z, f, g, h) of D with Z isomorphic to an object of B

}
Note that it is not the case that these operations are mutually inverse.
Lemma 13.6.10.05RL Let D be a triangulated category. The operations described above
have the following properties

(1) S(B(S)) is the “saturation” of S, i.e., it is the smallest saturated multi-
plicative system in D containing S, and

(2) B(S(B)) is the “saturation” of B, i.e., it is the smallest strictly full satu-
rated triangulated subcategory of D containing B.

In particular, the constructions define mutually inverse maps between the (par-
tially ordered) set of saturated multiplicative systems in D compatible with the
triangulated structure on D and the (partially ordered) set of strictly full saturated
triangulated subcategories of D.
Proof. First, let’s start with a full triangulated subcategory B. Then B(S(B)) =
Ker(Q : D → D/B) and hence (2) is the content of Lemma 13.6.9.
Next, suppose that S is multiplicative system in D compatible with the triangula-
tion on D. Then B(S) = Ker(Q : D → S−1D). Hence (using Lemma 13.4.9 in the
localized category)

S(B(S)) =
{
f ∈ Arrows(D) such that there exists a distinguished

triangle (X,Y, Z, f, g, h) of D with Q(Z) = 0

}
= {f ∈ Arrows(D) | Q(f) is an isomorphism}
= Ŝ = S′

in the notation of Categories, Lemma 4.27.21. The final statement of that lemma
finishes the proof. □

Lemma 13.6.11.05RM Let H : D → A be a homological functor from a triangulated
categoryD to an abelian categoryA, see Definition 13.3.5. The subcategory Ker(H)
of D is a strictly full saturated triangulated subcategory of D whose corresponding
saturated multiplicative system (see Lemma 13.6.10) is the set

S = {f ∈ Arrows(D) | Hi(f) is an isomorphism for all i ∈ Z}.
The functor H factors through the quotient functor Q : D → D/Ker(H).
Proof. The category Ker(H) is a strictly full saturated triangulated subcategory
of D by Lemma 13.6.3. The set S is a saturated multiplicative system compatible
with the triangulated structure by Lemma 13.5.5. Recall that the multiplicative
system corresponding to Ker(H) is the set{

f ∈ Arrows(D) such that there exists a distinguished triangle
(X,Y, Z, f, g, h) with Hi(Z) = 0 for all i

}

https://stacks.math.columbia.edu/tag/05RL
https://stacks.math.columbia.edu/tag/05RM
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By the long exact cohomology sequence, see (13.3.5.1), it is clear that f is an
element of this set if and only if f is an element of S. Finally, the factorization of
H through Q is a consequence of Lemma 13.6.8. □

13.7. Adjoints for exact functors

0A8C Results on adjoint functors between triangulated categories.
Lemma 13.7.1.0A8D Let F : D → D′ be an exact functor between triangulated cate-
gories. If F admits a right adjoint G : D′ → D, then G is also an exact functor.
Proof. Let X be an object of D and A an object of D′. Since F is an exact functor
we see that

MorD(X,G(A[1]) = MorD′(F (X), A[1])
= MorD′(F (X)[−1], A)
= MorD′(F (X[−1]), A)
= MorD(X[−1], G(A))
= MorD(X,G(A)[1])

By Yoneda’s lemma (Categories, Lemma 4.3.5) we obtain a canonical isomorphism
G(A)[1] = G(A[1]). Let A → B → C → A[1] be a distinguished triangle in D′.
Choose a distinguished triangle

G(A)→ G(B)→ X → G(A)[1]
in D. Then F (G(A)) → F (G(B)) → F (X) → F (G(A))[1] is a distinguished
triangle in D′. By TR3 we can choose a morphism of distinguished triangles

F (G(A)) //

��

F (G(B)) //

��

F (X) //

��

F (G(A))[1]

��
A // B // C // A[1]

Since G is the adjoint the new morphism determines a morphism X → G(C) such
that the diagram

G(A) //

��

G(B) //

��

X //

��

G(A)[1]

��
G(A) // G(B) // G(C) // G(A)[1]

commutes. Applying the homological functor HomD′(W,−) for an object W of D′

we deduce from the 5 lemma that
HomD′(W,X)→ HomD′(W,G(C))

is a bijection and using the Yoneda lemma once more we conclude that X → G(C)
is an isomorphism. Hence we conclude that G(A) → G(B) → G(C) → G(A)[1] is
a distinguished triangle which is what we wanted to show. □

Lemma 13.7.2.09J1 Let D, D′ be triangulated categories. Let F : D → D′ and G :
D′ → D be functors. Assume that

(1) F and G are exact functors,
(2) F is fully faithful,

https://stacks.math.columbia.edu/tag/0A8D
https://stacks.math.columbia.edu/tag/09J1
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(3) G is a right adjoint to F , and
(4) the kernel of G is zero.

Then F is an equivalence of categories.
Proof. Since F is fully faithful the adjunction map id → G ◦ F is an isomorphism
(Categories, Lemma 4.24.4). Let X be an object of D′. Choose a distinguished
triangle

F (G(X))→ X → Y → F (G(X))[1]
in D′. Applying G and using that G(F (G(X))) = G(X) we find a distinguished
triangle

G(X)→ G(X)→ G(Y )→ G(X)[1]
Hence G(Y ) = 0. Thus Y = 0. Thus F (G(X))→ X is an isomorphism. □

13.8. The homotopy category

05RN Let A be an additive category. The homotopy category K(A) of A is the category of
complexes of A with morphisms given by morphisms of complexes up to homotopy.
Here is the formal definition.
Definition 13.8.1.013H Let A be an additive category.

(1) We set Comp(A) = CoCh(A) be the category of (cochain) complexes.
(2) A complex K• is said to be bounded below if Kn = 0 for all n≪ 0.
(3) A complex K• is said to be bounded above if Kn = 0 for all n≫ 0.
(4) A complex K• is said to be bounded if Kn = 0 for all |n| ≫ 0.
(5) We let Comp+(A), Comp−(A), resp. Compb(A) be the full subcategory

of Comp(A) whose objects are the complexes which are bounded below,
bounded above, resp. bounded.

(6) We let K(A) be the category with the same objects as Comp(A) but as
morphisms homotopy classes of maps of complexes (see Homology, Lemma
12.13.7).

(7) We let K+(A), K−(A), resp. Kb(A) be the full subcategory of K(A)
whose objects are bounded below, bounded above, resp. bounded com-
plexes of A.

It will turn out that the categories K(A), K+(A), K−(A), and Kb(A) are trian-
gulated categories. To prove this we first develop some machinery related to cones
and split exact sequences.

13.9. Cones and termwise split sequences

014D Let A be an additive category, and let K(A) denote the category of complexes of
A with morphisms given by morphisms of complexes up to homotopy. Note that
the shift functors [n] on complexes, see Homology, Definition 12.14.7, give rise to
functors [n] : K(A)→ K(A) such that [n] ◦ [m] = [n+m] and [0] = id.
Definition 13.9.1.014E Let A be an additive category. Let f : K• → L• be a morphism
of complexes of A. The cone of f is the complex C(f)• given by C(f)n = Ln⊕Kn+1

and differential
dnC(f) =

(
dnL fn+1

0 −dn+1
K

)
It comes equipped with canonical morphisms of complexes i : L• → C(f)• and
p : C(f)• → K•[1] induced by the obvious maps Ln → C(f)n → Kn+1.

https://stacks.math.columbia.edu/tag/013H
https://stacks.math.columbia.edu/tag/014E
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In other words (K,L,C(f), f, i, p) forms a triangle:

K• → L• → C(f)• → K•[1]

The formation of this triangle is functorial in the following sense.

Lemma 13.9.2.014F Suppose that

K•
1 f1

//

a

��

L•
1

b

��
K•

2
f2 // L•

2

is a diagram of morphisms of complexes which is commutative up to homotopy.
Then there exists a morphism c : C(f1)• → C(f2)• which gives rise to a morphism of
triangles (a, b, c) : (K•

1 , L
•
1, C(f1)•, f1, i1, p1)→ (K•

2 , L
•
2, C(f2)•, f2, i2, p2) of K(A).

Proof. Let hn : Kn
1 → Ln−1

2 be a family of morphisms such that b ◦ f1 − f2 ◦ a =
d ◦ h+ h ◦ d. Define cn by the matrix

cn =
(
bn hn+1

0 an+1

)
: Ln1 ⊕Kn+1

1 → Ln2 ⊕Kn+1
2

A matrix computation show that c is a morphism of complexes. It is trivial that
c ◦ i1 = i2 ◦ b, and it is trivial also to check that p2 ◦ c = a ◦ p1. □

Note that the morphism c : C(f1)• → C(f2)• constructed in the proof of Lemma
13.9.2 in general depends on the chosen homotopy h between f2 ◦ a and b ◦ f1.

Lemma 13.9.3.08RI Suppose that f : K• → L• and g : L• → M• are morphisms of
complexes such that g ◦ f is homotopic to zero. Then

(1) g factors through a morphism C(f)• →M•, and
(2) f factors through a morphism K• → C(g)•[−1].

Proof. The assumptions say that the diagram

K•
f
//

��

L•

g

��
0 // M•

commutes up to homotopy. Since the cone on 0 → M• is M• the map C(f)• →
C(0 → M•) = M• of Lemma 13.9.2 is the map in (1). The cone on K• → 0 is
K•[1] and applying Lemma 13.9.2 gives a map K•[1] → C(g)•. Applying [−1] we
obtain the map in (2). □

Note that the morphisms C(f)• → M• and K• → C(g)•[−1] constructed in the
proof of Lemma 13.9.3 in general depend on the chosen homotopy.

Definition 13.9.4.014G Let A be an additive category. A termwise split injection α :
A• → B• is a morphism of complexes such that each An → Bn is isomorphic to
the inclusion of a direct summand. A termwise split surjection β : B• → C• is a
morphism of complexes such that each Bn → Cn is isomorphic to the projection
onto a direct summand.

https://stacks.math.columbia.edu/tag/014F
https://stacks.math.columbia.edu/tag/08RI
https://stacks.math.columbia.edu/tag/014G
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Lemma 13.9.5.014H Let A be an additive category. Let

A•
f
//

a

��

B•

b
��

C• g // D•

be a diagram of morphisms of complexes commuting up to homotopy. If f is
a termwise split injection, then b is homotopic to a morphism which makes the
diagram commute. If g is a termwise split surjection, then a is homotopic to a
morphism which makes the diagram commute.

Proof. Let hn : An → Dn−1 be a collection of morphisms such that bf − ga =
dh + hd. Suppose that πn : Bn → An are morphisms splitting the morphisms fn.
Take b′ = b − dhπ − hπd. Suppose sn : Dn → Cn are morphisms splitting the
morphisms gn : Cn → Dn. Take a′ = a+ dsh+ shd. Computations omitted. □

The following lemma can be used to replace a morphism of complexes by a mor-
phism where in each degree the map is the injection of a direct summand.

Lemma 13.9.6.013N Let A be an additive category. Let α : K• → L• be a morphism
of complexes of A. There exists a factorization

K• α̃ //

α

66L̃• π // L•

such that
(1) α̃ is a termwise split injection (see Definition 13.9.4),
(2) there is a map of complexes s : L• → L̃• such that π ◦ s = idL• and such

that s ◦ π is homotopic to idL̃• .
Moreover, if both K• and L• are in K+(A), K−(A), or Kb(A), then so is L̃•.

Proof. We set
L̃n = Ln ⊕Kn ⊕Kn+1

and we define

dn
L̃

=

dnL 0 0
0 dnK idKn+1

0 0 −dn+1
K


In other words, L̃• = L• ⊕ C(1K•). Moreover, we set

α̃ =

 α
idKn

0


which is clearly a split injection. It is also clear that it defines a morphism of
complexes. We define

π =
(
idLn 0 0

)
so that clearly π ◦ α̃ = α. We set

s =

idLn
0
0
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so that π ◦ s = idL• . Finally, let hn : L̃n → L̃n−1 be the map which maps the
summand Kn of L̃n via the identity morphism to the summand Kn of L̃n−1. Then
it is a trivial matter (see computations in remark below) to prove that

idL̃• − s ◦ π = d ◦ h+ h ◦ d

which finishes the proof of the lemma. □

Remark 13.9.7.013O To see the last displayed equality in the proof above we can argue
with elements as follows. We have sπ(l, k, k+) = (l, 0, 0). Hence the morphism of the
left hand side maps (l, k, k+) to (0, k, k+). On the other hand h(l, k, k+) = (0, 0, k)
and d(l, k, k+) = (dl, dk + k+,−dk+). Hence (dh + hd)(l, k, k+) = d(0, 0, k) +
h(dl, dk + k+,−dk+) = (0, k,−dk) + (0, 0, dk + k+) = (0, k, k+) as desired.

Lemma 13.9.8.0642 Let A be an additive category. Let α : K• → L• be a morphism
of complexes of A. There exists a factorization

K• i //

α

66K̃• α̃ // L•

such that
(1) α̃ is a termwise split surjection (see Definition 13.9.4),
(2) there is a map of complexes s : K̃• → K• such that s ◦ i = idK• and such

that i ◦ s is homotopic to idK̃• .
Moreover, if both K• and L• are in K+(A), K−(A), or Kb(A), then so is K̃•.

Proof. Dual to Lemma 13.9.6. Take

K̃n = Kn ⊕ Ln−1 ⊕ Ln

and we define

dn
K̃

=

dnK 0 0
0 −dn−1

L idLn
0 0 dnL


in other words K̃• = K• ⊕ C(1L•[−1]). Moreover, we set

α̃ =
(
α 0 idLn

)
which is clearly a split surjection. It is also clear that it defines a morphism of
complexes. We define

i =

idKn

0
0


so that clearly α̃ ◦ i = α. We set

s =
(
idKn 0 0

)
so that s ◦ i = idK• . Finally, let hn : K̃n → K̃n−1 be the map which maps the
summand Ln−1 of K̃n via the identity morphism to the summand Ln−1 of K̃n−1.
Then it is a trivial matter to prove that

idK̃• − i ◦ s = d ◦ h+ h ◦ d

which finishes the proof of the lemma. □
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Definition 13.9.9.014I Let A be an additive category. A termwise split exact sequence
of complexes of A is a complex of complexes

0→ A• α−→ B• β−→ C• → 0
together with given direct sum decompositions Bn = An ⊕Cn compatible with αn
and βn. We often write sn : Cn → Bn and πn : Bn → An for the maps induced by
the direct sum decompositions. According to Homology, Lemma 12.14.10 we get
an associated morphism of complexes

δ : C• −→ A•[1]
which in degree n is the map πn+1 ◦ dnB ◦ sn. In other words (A•, B•, C•, α, β, δ)
forms a triangle

A• → B• → C• → A•[1]
This will be the triangle associated to the termwise split sequence of complexes.

Lemma 13.9.10.05SS Let A be an additive category. Let 0→ A• → B• → C• → 0 be
termwise split exact sequences as in Definition 13.9.9. Let (π′)n, (s′)n be a second
collection of splittings. Denote δ′ : C• −→ A•[1] the morphism associated to this
second set of splittings. Then

(1, 1, 1) : (A•, B•, C•, α, β, δ) −→ (A•, B•, C•, α, β, δ′)
is an isomorphism of triangles in K(A).

Proof. The statement simply means that δ and δ′ are homotopic maps of complexes.
This is Homology, Lemma 12.14.12. □

Remark 13.9.11.014J Let A be an additive category. Let 0 → A•
i → B•

i → C•
i → 0,

i = 1, 2 be termwise split exact sequences. Suppose that a : A•
1 → A•

2, b : B•
1 → B•

2 ,
and c : C•

1 → C•
2 are morphisms of complexes such that

A•
1

a

��

// B•
1

//

b

��

C•
1

c

��
A•

2
// B•

2
// C•

2

commutes in K(A). In general, there does not exist a morphism b′ : B•
1 → B•

2
which is homotopic to b such that the diagram above commutes in the category of
complexes. Namely, consider Examples, Equation (110.63.0.1). If we could replace
the middle map there by a homotopic one such that the diagram commutes, then
we would have additivity of traces which we do not.

Lemma 13.9.12.086L Let A be an additive category. Let 0 → A•
i → B•

i → C•
i → 0,

i = 1, 2, 3 be termwise split exact sequences of complexes. Let b : B•
1 → B•

2 and
b′ : B•

2 → B•
3 be morphisms of complexes such that

A•
1

0
��

// B•
1

//

b

��

C•
1

0
��

A•
2

// B•
2

// C•
2

and

A•
2

0
��

// B•
2

//

b′

��

C•
2

0
��

A•
3

// B•
3

// C•
3

commute in K(A). Then b′ ◦ b = 0 in K(A).

https://stacks.math.columbia.edu/tag/014I
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Proof. By Lemma 13.9.5 we can replace b and b′ by homotopic maps such that the
right square of the left diagram commutes and the left square of the right diagram
commutes. In other words, we have Im(bn) ⊂ Im(An2 → Bn2 ) and Ker((b′)n) ⊃
Im(An2 → Bn2 ). Then b′ ◦ b = 0 as a map of complexes. □

Lemma 13.9.13.014K Let A be an additive category. Let f1 : K•
1 → L•

1 and f2 : K•
2 →

L•
2 be morphisms of complexes. Let

(a, b, c) : (K•
1 , L

•
1, C(f1)•, f1, i1, p1) −→ (K•

2 , L
•
2, C(f2)•, f2, i2, p2)

be any morphism of triangles of K(A). If a and b are homotopy equivalences then
so is c.

Proof. Let a−1 : K•
2 → K•

1 be a morphism of complexes which is inverse to a in
K(A). Let b−1 : L•

2 → L•
1 be a morphism of complexes which is inverse to b in

K(A). Let c′ : C(f2)• → C(f1)• be the morphism from Lemma 13.9.2 applied
to f1 ◦ a−1 = b−1 ◦ f2. If we can show that c ◦ c′ and c′ ◦ c are isomorphisms in
K(A) then we win. Hence it suffices to prove the following: Given a morphism of
triangles (1, 1, c) : (K•, L•, C(f)•, f, i, p) inK(A) the morphism c is an isomorphism
in K(A). By assumption the two squares in the diagram

L• //

1
��

C(f)• //

c

��

K•[1]

1
��

L• // C(f)• // K•[1]

commute up to homotopy. By construction of C(f)• the rows form termwise split
sequences of complexes. Thus we see that (c− 1)2 = 0 in K(A) by Lemma 13.9.12.
Hence c is an isomorphism in K(A) with inverse 2− c. □

Hence if a and b are homotopy equivalences then the resulting morphism of triangles
is an isomorphism of triangles in K(A). It turns out that the collection of triangles
of K(A) given by cones and the collection of triangles of K(A) given by termwise
split sequences of complexes are the same up to isomorphisms, at least up to sign!

Lemma 13.9.14.014L Let A be an additive category.
(1) Given a termwise split sequence of complexes (α : A• → B•, β : B• →

C•, sn, πn) there exists a homotopy equivalence C(α)• → C• such that
the diagram

A• //

��

B•

��

// C(α)•
−p
//

��

A•[1]

��
A• // B• // C• δ // A•[1]

defines an isomorphism of triangles in K(A).
(2) Given a morphism of complexes f : K• → L• there exists an isomorphism

of triangles

K• //

��

L̃•

��

// M•
δ
//

��

K•[1]

��
K• // L• // C(f)• −p // K•[1]
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where the upper triangle is the triangle associated to a termwise split
exact sequence K• → L̃• →M•.

Proof. Proof of (1). We have C(α)n = Bn ⊕An+1 and we simply define C(α)n →
Cn via the projection ontoBn followed by βn. This defines a morphism of complexes
because the compositions An+1 → Bn+1 → Cn+1 are zero. To get a homotopy
inverse we take C• → C(α)• given by (sn,−δn) in degree n. This is a morphism of
complexes because the morphism δn can be characterized as the unique morphism
Cn → An+1 such that d ◦ sn − sn+1 ◦ d = α ◦ δn, see proof of Homology, Lemma
12.14.10. The composition C• → C(α)• → C• is the identity. The composition
C(α)• → C• → C(α)• is equal to the morphism(

sn ◦ βn 0
−δn ◦ βn 0

)
To see that this is homotopic to the identity map use the homotopy hn : C(α)n →
C(α)n−1 given by the matrix(

0 0
πn 0

)
: C(α)n = Bn ⊕An+1 → Bn−1 ⊕An = C(α)n−1

It is trivial to verify that(
1 0
0 1

)
−
(
sn

−δn
)(

βn 0
)

=
(
d αn

0 −d

)(
0 0
πn 0

)
+
(

0 0
πn+1 0

)(
d αn+1

0 −d

)
To finish the proof of (1) we have to show that the morphisms −p : C(α)• → A•[1]
(see Definition 13.9.1) and C(α)• → C• → A•[1] agree up to homotopy. This is clear
from the above. Namely, we can use the homotopy inverse (s,−δ) : C• → C(α)• and
check instead that the two maps C• → A•[1] agree. And note that p◦ (s,−δ) = −δ
as desired.
Proof of (2). We let f̃ : K• → L̃•, s : L• → L̃• and π : L̃• → L• be as in
Lemma 13.9.6. By Lemmas 13.9.2 and 13.9.13 the triangles (K•, L•, C(f), i, p)
and (K•, L̃•, C(f̃), ĩ, p̃) are isomorphic. Note that we can compose isomorphisms
of triangles. Thus we may replace L• by L̃• and f by f̃ . In other words we may
assume that f is a termwise split injection. In this case the result follows from part
(1). □

Lemma 13.9.15.014M Let A be an additive category. Let A•
1 → A•

2 → . . . → A•
n be

a sequence of composable morphisms of complexes. There exists a commutative
diagram

A•
1

// A•
2

// . . . // A•
n

B•
1

//

OO

B•
2

//

OO

. . . // B•
n

OO

such that each morphism B•
i → B•

i+1 is a split injection and each B•
i → A•

i is a
homotopy equivalence. Moreover, if all A•

i are in K+(A), K−(A), or Kb(A), then
so are the B•

i .

Proof. The case n = 1 is without content. Lemma 13.9.6 is the case n = 2.
Suppose we have constructed the diagram except for B•

n. Apply Lemma 13.9.6 to
the composition B•

n−1 → A•
n−1 → A•

n. The result is a factorization B•
n−1 → B•

n →
A•
n as desired. □
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Lemma 13.9.16.014N Let A be an additive category. Let (α : A• → B•, β : B• →
C•, sn, πn) be a termwise split sequence of complexes. Let (A•, B•, C•, α, β, δ) be
the associated triangle. Then the triangle (C•[−1], A•, B•, δ[−1], α, β) is isomorphic
to the triangle (C•[−1], A•, C(δ[−1])•, δ[−1], i, p).

Proof. We write Bn = An⊕Cn and we identify αn and βn with the natural inclusion
and projection maps. By construction of δ we have

dnB =
(
dnA δn

0 dnC

)
On the other hand the cone of δ[−1] : C•[−1]→ A• is given as C(δ[−1])n = An⊕Cn
with differential identical with the matrix above! Whence the lemma. □

Lemma 13.9.17.014O Let A be an additive category. Let f : K• → L• be a morphism
of complexes. The triangle (L•, C(f)•,K•[1], i, p, f [1]) is the triangle associated to
the termwise split sequence

0→ L• → C(f)• → K•[1]→ 0

coming from the definition of the cone of f .

Proof. Immediate from the definitions. □

13.10. Distinguished triangles in the homotopy category

014P Since we want our boundary maps in long exact sequences of cohomology to be given
by the maps in the snake lemma without signs we define distinguished triangles in
the homotopy category as follows.

Definition 13.10.1.014Q Let A be an additive category. A triangle (X,Y, Z, f, g, h) of
K(A) is called a distinguished triangle of K(A) if it is isomorphic to the triangle
associated to a termwise split exact sequence of complexes, see Definition 13.9.9.
Same definition for K+(A), K−(A), and Kb(A).

Note that according to Lemma 13.9.14 a triangle of the form (K•, L•, C(f)•, f, i,−p)
is a distinguished triangle. This does indeed lead to a triangulated category, see
Proposition 13.10.3. Before we can prove the proposition we need one more lemma
in order to be able to prove TR4.

Lemma 13.10.2.014R Let A be an additive category. Suppose that α : A• → B• and
β : B• → C• are split injections of complexes. Then there exist distinguished
triangles (A•, B•, Q•

1, α, p1, d1), (A•, C•, Q•
2, β ◦α, p2, d2) and (B•, C•, Q•

3, β, p3, d3)
for which TR4 holds.

Proof. Say πn1 : Bn → An, and πn3 : Cn → Bn are the splittings. Then also
A• → C• is a split injection with splittings πn2 = πn1 ◦ πn3 . Let us write Q•

1, Q•
2 and

Q•
3 for the “quotient” complexes. In other words, Qn1 = Ker(πn1 ), Qn3 = Ker(πn3 )

and Qn2 = Ker(πn2 ). Note that the kernels exist. Then Bn = An ⊕ Qn1 and Cn =
Bn ⊕ Qn3 , where we think of An as a subobject of Bn and so on. This implies
Cn = An ⊕Qn1 ⊕Qn3 . Note that πn2 = πn1 ◦ πn3 is zero on both Qn1 and Qn3 . Hence
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Qn2 = Qn1 ⊕Qn3 . Consider the commutative diagram
0 → A• → B• → Q•

1 → 0
↓ ↓ ↓

0 → A• → C• → Q•
2 → 0

↓ ↓ ↓
0 → B• → C• → Q•

3 → 0
The rows of this diagram are termwise split exact sequences, and hence determine
distinguished triangles by definition. Moreover downward arrows in the diagram
above are compatible with the chosen splittings and hence define morphisms of
triangles

(A• → B• → Q•
1 → A•[1]) −→ (A• → C• → Q•

2 → A•[1])
and

(A• → C• → Q•
2 → A•[1]) −→ (B• → C• → Q•

3 → B•[1]).
Note that the splittings Qn3 → Cn of the bottom split sequence in the diagram
provides a splitting for the split sequence 0→ Q•

1 → Q•
2 → Q•

3 → 0 upon composing
with Cn → Qn2 . It follows easily from this that the morphism δ : Q•

3 → Q•
1[1] in

the corresponding distinguished triangle
(Q•

1 → Q•
2 → Q•

3 → Q•
1[1])

is equal to the composition Q•
3 → B•[1] → Q•

1[1]. Hence we get a structure as in
the conclusion of axiom TR4. □

Proposition 13.10.3.014S Let A be an additive category. The category K(A) of com-
plexes up to homotopy with its natural translation functors and distinguished tri-
angles as defined above is a triangulated category.
Proof. Proof of TR1. By definition every triangle isomorphic to a distinguished
one is distinguished. Also, any triangle (A•, A•, 0, 1, 0, 0) is distinguished since
0 → A• → A• → 0 → 0 is a termwise split sequence of complexes. Finally,
given any morphism of complexes f : K• → L• the triangle (K,L,C(f), f, i,−p) is
distinguished by Lemma 13.9.14.
Proof of TR2. Let (X,Y, Z, f, g, h) be a triangle. Assume (Y,Z,X[1], g, h,−f [1])
is distinguished. Then there exists a termwise split sequence of complexes A• →
B• → C• such that the associated triangle (A•, B•, C•, α, β, δ) is isomorphic to
(Y, Z,X[1], g, h,−f [1]). Rotating back we see that (X,Y, Z, f, g, h) is isomorphic
to (C•[−1], A•, B•,−δ[−1], α, β). It follows from Lemma 13.9.16 that the trian-
gle (C•[−1], A•, B•, δ[−1], α, β) is isomorphic to (C•[−1], A•, C(δ[−1])•, δ[−1], i, p).
Precomposing the previous isomorphism of triangles with −1 on Y it follows that
(X,Y, Z, f, g, h) is isomorphic to (C•[−1], A•, C(δ[−1])•, δ[−1], i,−p). Hence it is
distinguished by Lemma 13.9.14. On the other hand, suppose that (X,Y, Z, f, g, h)
is distinguished. By Lemma 13.9.14 this means that it is isomorphic to a triangle of
the form (K•, L•, C(f), f, i,−p) for some morphism of complexes f . Then the ro-
tated triangle (Y,Z,X[1], g, h,−f [1]) is isomorphic to (L•, C(f),K•[1], i,−p,−f [1])
which is isomorphic to the triangle (L•, C(f),K•[1], i, p, f [1]). By Lemma 13.9.17
this triangle is distinguished. Hence (Y, Z,X[1], g, h,−f [1]) is distinguished as de-
sired.
Proof of TR3. Let (X,Y, Z, f, g, h) and (X ′, Y ′, Z ′, f ′, g′, h′) be distinguished trian-
gles of K(A) and let a : X → X ′ and b : Y → Y ′ be morphisms such that f ′◦a = b◦
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f . By Lemma 13.9.14 we may assume that (X,Y, Z, f, g, h) = (X,Y,C(f), f, i,−p)
and (X ′, Y ′, Z ′, f ′, g′, h′) = (X ′, Y ′, C(f ′), f ′, i′,−p′). At this point we simply ap-
ply Lemma 13.9.2 to the commutative diagram given by f, f ′, a, b.
Proof of TR4. At this point we know that K(A) is a pre-triangulated category.
Hence we can use Lemma 13.4.15. Let A• → B• and B• → C• be composable
morphisms of K(A). By Lemma 13.9.15 we may assume that A• → B• and B• →
C• are split injective morphisms. In this case the result follows from Lemma 13.10.2.

□

Remark 13.10.4.05RP Let A be an additive category. Exactly the same proof as the
proof of Proposition 13.10.3 shows that the categories K+(A), K−(A), and Kb(A)
are triangulated categories. Namely, the cone of a morphism between bounded
(above, below) is bounded (above, below). But we prove below that these are
triangulated subcategories of K(A) which gives another proof.

Lemma 13.10.5.05RQ Let A be an additive category. The categories K+(A), K−(A),
and Kb(A) are full triangulated subcategories of K(A).

Proof. Each of the categories mentioned is a full additive subcategory. We use the
criterion of Lemma 13.4.16 to show that they are triangulated subcategories. It is
clear that each of the categories K+(A), K−(A), and Kb(A) is preserved under
the shift functors [1], [−1]. Finally, suppose that f : A• → B• is a morphism in
K+(A), K−(A), orKb(A). Then (A•, B•, C(f)•, f, i,−p) is a distinguished triangle
of K(A) with C(f)• ∈ K+(A), K−(A), or Kb(A) as is clear from the construction
of the cone. Thus the lemma is proved. (Alternatively, K• → L• is isomorphic to
an termwise split injection of complexes in K+(A), K−(A), or Kb(A), see Lemma
13.9.6 and then one can directly take the associated distinguished triangle.) □

Lemma 13.10.6.014X Let A, B be additive categories. Let F : A → B be an additive
functor. The induced functors

F : K(A) −→ K(B)
F : K+(A) −→ K+(B)
F : K−(A) −→ K−(B)
F : Kb(A) −→ Kb(B)

are exact functors of triangulated categories.

Proof. Suppose A• → B• → C• is a termwise split sequence of complexes of A
with splittings (sn, πn) and associated morphism δ : C• → A•[1], see Definition
13.9.9. Then F (A•) → F (B•) → F (C•) is a termwise split sequence of complexes
with splittings (F (sn), F (πn)) and associated morphism F (δ) : F (C•)→ F (A•)[1].
Thus F transforms distinguished triangles into distinguished triangles. □

Lemma 13.10.7.0G6C Let A be an additive category. Let (A•, B•, C•, a, b, c) be a distin-
guished triangle in K(A). Then there exists an isomorphic distinguished triangle
(A•, (B′)•, C•, a′, b′, c) such that 0→ An → (B′)n → Cn → 0 is a split short exact
sequence for all n.

Proof. We will use that K(A) is a triangulated category by Proposition 13.10.3.
Let W • be the cone on c : C• → A•[1] with its maps i : A•[1] → W • and p :
W • → C•[1]. Then (C•, A•[1],W •, c, i,−p) is a distinguished triangle by Lemma
13.9.14. Rotating backwards twice we see that (A•,W •[−1], C•,−i[−1], p[−1], c)
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is a distinguished triangle. By TR3 there is a morphism of distinguished triangles
(id, β, id) : (A•, B•, C•, a, b, c) → (A•,W •[−1], C•,−i[−1], p[−1], c) which must be
an isomorphism by Lemma 13.4.3. This finishes the proof because 0 → A• →
W •[−1] → C• → 0 is a termwise split short exact sequence of complexes by the
very construction of cones in Section 13.9. □

Remark 13.10.8.0G6D Let A be an additive category with countable direct sums. Let
DoubleComp(A) denote the category of double complexes in A, see Homology,
Section 12.18. We can use this category to construct two triangulated categories.

(1) We can consider an object A•,• of DoubleComp(A) as a complex of com-
plexes as follows

. . .→ A•,−1 → A•,0 → A•,1 → . . .

and take the homotopy category Kfirst(DoubleComp(A)) with the corre-
sponding triangulated structure given by Proposition 13.10.3. By Homol-
ogy, Remark 12.18.6 the functor

Tot : Kfirst(DoubleComp(A)) −→ K(A)
is an exact functor of triangulated categories.

(2) We can consider an object A•,• of DoubleComp(A) as a complex of com-
plexes as follows

. . .→ A−1,• → A0,• → A1,• → . . .

and take the homotopy category Ksecond(DoubleComp(A)) with the cor-
responding triangulated structure given by Proposition 13.10.3. By Ho-
mology, Remark 12.18.7 the functor

Tot : Ksecond(DoubleComp(A)) −→ K(A)
is an exact functor of triangulated categories.

Remark 13.10.9.0G6E Let A, B, C be additive categories and assume C has countable
direct sums. Suppose that

⊗ : A× B −→ C, (X,Y ) 7−→ X ⊗ Y
is a functor which is bilinear on morphisms. This determines a functor

Comp(A)× Comp(B) −→ DoubleComp(C), (X•, Y •) 7−→ X• ⊗ Y •

See Homology, Example 12.18.2.
(1) For a fixed object X• of Comp(A) the functor

K(B) −→ K(C), Y • 7−→ Tot(X• ⊗ Y •)
is an exact functor of triangulated categories.

(2) For a fixed object Y • of Comp(B) the functor
K(A) −→ K(C), X• 7−→ Tot(X• ⊗ Y •)

is an exact functor of triangulated categories.
This follows from Remark 13.10.8 since the functors Comp(A)→ DoubleComp(C),
Y • 7→ X•⊗Y • and Comp(B)→ DoubleComp(C), X• 7→ X•⊗Y • are immediately
seen to be compatible with homotopies and termwise split short exact sequences
and hence induce exact functors of triangulated categories

K(B)→ Kfirst(DoubleComp(C)) and K(A)→ Ksecond(DoubleComp(C))

https://stacks.math.columbia.edu/tag/0G6D
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Observe that for the first of the two the isomorphism
Tot(X• ⊗ Y •[1]) ∼= Tot(X• ⊗ Y •)[1]

involves signs (this goes back to the signs chosen in Homology, Remark 12.18.5).

13.11. Derived categories

05RR In this section we construct the derived category of an abelian category A by in-
verting the quasi-isomorphisms in K(A). Before we do this recall that the functors
Hi : Comp(A) → A factor through K(A), see Homology, Lemma 12.13.11. More-
over, in Homology, Definition 12.14.8 we have defined identifications Hi(K•[n]) =
Hi+n(K•). At this point it makes sense to redefine

Hi(K•) = H0(K•[i])
in order to avoid confusion and possible sign errors.

Lemma 13.11.1.05RS Let A be an abelian category. The functor

H0 : K(A) −→ A
is homological.

Proof. Because H0 is a functor, and by our definition of distinguished triangles
it suffices to prove that given a termwise split short exact sequence of complexes
0 → A• → B• → C• → 0 the sequence H0(A•) → H0(B•) → H0(C•) is exact.
This follows from Homology, Lemma 12.13.12. □

In particular, this lemma implies that a distinguished triangle (X,Y, Z, f, g, h) in
K(A) gives rise to a long exact cohomology sequence
(13.11.1.1)

05ST . . . // Hi(X)
Hi(f) // Hi(Y )

Hi(g) // Hi(Z)
Hi(h)// Hi+1(X) // . . .

see (13.3.5.1). Moreover, there is a compatibility with the long exact sequence of co-
homology associated to a short exact sequence of complexes (insert future reference
here). For example, if (A•, B•, C•, α, β, δ) is the distinguished triangle associated
to a termwise split exact sequence of complexes (see Definition 13.9.9), then the
cohomology sequence above agrees with the one defined using the snake lemma, see
Homology, Lemma 12.13.12 and for agreement of sequences, see Homology, Lemma
12.14.11.
Recall that a complex K• is acyclic if Hi(K•) = 0 for all i ∈ Z. Moreover, recall
that a morphism of complexes f : K• → L• is a quasi-isomorphism if and only if
Hi(f) is an isomorphism for all i. See Homology, Definition 12.13.10.

Lemma 13.11.2.05RT LetA be an abelian category. The full subcategory Ac(A) of K(A)
consisting of acyclic complexes is a strictly full saturated triangulated subcategory
of K(A). The corresponding saturated multiplicative system (see Lemma 13.6.10)
of K(A) is the set Qis(A) of quasi-isomorphisms. In particular, the kernel of the
localization functor Q : K(A) → Qis(A)−1K(A) is Ac(A) and the functor H0

factors through Q.

Proof. We know that H0 is a homological functor by Lemma 13.11.1. Thus this
lemma is a special case of Lemma 13.6.11. □

https://stacks.math.columbia.edu/tag/05RS
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Definition 13.11.3.05RU Let A be an abelian category. Let Ac(A) and Qis(A) be as in
Lemma 13.11.2. The derived category of A is the triangulated category

D(A) = K(A)/Ac(A) = Qis(A)−1K(A).

We denote H0 : D(A)→ A the unique functor whose composition with the quotient
functor gives back the functor H0 defined above. Using Lemma 13.6.4 we introduce
the strictly full saturated triangulated subcategories D+(A), D−(A), Db(A) whose
sets of objects are

Ob(D+(A)) = {X ∈ Ob(D(A)) | Hn(X) = 0 for all n≪ 0}
Ob(D−(A)) = {X ∈ Ob(D(A)) | Hn(X) = 0 for all n≫ 0}
Ob(Db(A)) = {X ∈ Ob(D(A)) | Hn(X) = 0 for all |n| ≫ 0}

The category Db(A) is called the bounded derived category of A.

If K• and L• are complexes of A then we sometimes say “K• is quasi-isomorphic
to L•” to indicate that K• and L• are isomorphic objects of D(A).

Remark 13.11.4.09PA In this chapter, we consistently work with “small” abelian cat-
egories (as is the convention in the Stacks project). For a “big” abelian category
A, it isn’t clear that the derived category D(A) exists, because it isn’t clear that
morphisms in the derived category are sets. In fact, in general they aren’t, see
Examples, Lemma 110.61.1. However, if A is a Grothendieck abelian category, and
given K•, L• in K(A), then by Injectives, Theorem 19.12.6 there exists a quasi-
isomorphism L• → I• to a K-injective complex I• and Lemma 13.31.2 shows that

HomD(A)(K•, L•) = HomK(A)(K•, I•)

which is a set. Some examples of Grothendieck abelian categories are the category
of modules over a ring, or more generally the category of sheaves of modules on a
ringed site.

Each of the variants D+(A), D−(A), Db(A) can be constructed as a localization of
the corresponding homotopy category. This relies on the following simple lemma.

Lemma 13.11.5.05RV Let A be an abelian category. Let K• be a complex.
(1) If Hn(K•) = 0 for all n ≪ 0, then there exists a quasi-isomorphism

K• → L• with L• bounded below.
(2) If Hn(K•) = 0 for all n ≫ 0, then there exists a quasi-isomorphism

M• → K• with M• bounded above.
(3) If Hn(K•) = 0 for all |n| ≫ 0, then there exists a commutative diagram

of morphisms of complexes

K• // L•

M•

OO

// N•

OO

where all the arrows are quasi-isomorphisms, L• bounded below, M•

bounded above, and N• a bounded complex.

Proof. Pick a ≪ 0 ≪ b and set M• = τ≤bK
•, L• = τ≥aK

•, and N• = τ≤bL
• =

τ≥aM
•. See Homology, Section 12.15 for the truncation functors. □

https://stacks.math.columbia.edu/tag/05RU
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To state the following lemma denote Ac+(A), Ac−(A), resp. Acb(A) the intersection
of K+(A), K−(A), resp. Kb(A) with Ac(A). Denote Qis+(A), Qis−(A), resp.
Qisb(A) the intersection of K+(A), K−(A), resp. Kb(A) with Qis(A).

Lemma 13.11.6.05RW LetA be an abelian category. The subcategories Ac+(A), Ac−(A),
resp. Acb(A) are strictly full saturated triangulated subcategories ofK+(A), K−(A),
resp. Kb(A). The corresponding saturated multiplicative systems (see Lemma
13.6.10) are the sets Qis+(A), Qis−(A), resp. Qisb(A).

(1) The kernel of the functor K+(A) → D+(A) is Ac+(A) and this induces
an equivalence of triangulated categories

K+(A)/Ac+(A) = Qis+(A)−1K+(A) −→ D+(A)

(2) The kernel of the functor K−(A) → D−(A) is Ac−(A) and this induces
an equivalence of triangulated categories

K−(A)/Ac−(A) = Qis−(A)−1K−(A) −→ D−(A)

(3) The kernel of the functor Kb(A)→ Db(A) is Acb(A) and this induces an
equivalence of triangulated categories

Kb(A)/Acb(A) = Qisb(A)−1Kb(A) −→ Db(A)

Proof. The initial statements follow from Lemma 13.6.11 by considering the re-
striction of the homological functor H0. The statement on kernels in (1), (2), (3)
is a consequence of the definitions in each case. Each of the functors is essentially
surjective by Lemma 13.11.5. To finish the proof we have to show the functors are
fully faithful. We first do this for the bounded below version.
Suppose that K•, L• are bounded above complexes. A morphism between these
in D(A) is of the form s−1f for a pair f : K• → (L′)•, s : L• → (L′)• where s
is a quasi-isomorphism. This implies that (L′)• has cohomology bounded below.
Hence by Lemma 13.11.5 we can choose a quasi-isomorphism s′ : (L′)• → (L′′)•

with (L′′)• bounded below. Then the pair (s′ ◦ f, s′ ◦ s) defines a morphism in
Qis+(A)−1K+(A). Hence the functor is “full”. Finally, suppose that the pair
f : K• → (L′)•, s : L• → (L′)• defines a morphism in Qis+(A)−1K+(A) which is
zero in D(A). This means that there exists a quasi-isomorphism s′ : (L′)• → (L′′)•

such that s′◦f = 0. Using Lemma 13.11.5 once more we obtain a quasi-isomorphism
s′′ : (L′′)• → (L′′′)• with (L′′′)• bounded below. Thus we see that s′′ ◦ s′ ◦ f = 0
which implies that s−1f is zero in Qis+(A)−1K+(A). This finishes the proof that
the functor in (1) is an equivalence.
The proof of (2) is dual to the proof of (1). To prove (3) we may use the result of (2).
Hence it suffices to prove that the functor Qisb(A)−1Kb(A) → Qis−(A)−1K−(A)
is fully faithful. The argument given in the previous paragraph applies directly to
show this where we consistently work with complexes which are already bounded
above. □

13.12. The canonical delta-functor

014Z The derived category should be the receptacle for the universal cohomology functor.
In order to state the result we use the notion of a δ-functor from an abelian category
into a triangulated category, see Definition 13.3.6.

https://stacks.math.columbia.edu/tag/05RW
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Consider the functor Comp(A)→ K(A). This functor is not a δ-functor in general.
The easiest way to see this is to consider a nonsplit short exact sequence 0 →
A → B → C → 0 of objects of A. Since HomK(A)(C[0], A[1]) = 0 we see that
any distinguished triangle arising from this short exact sequence would look like
(A[0], B[0], C[0], a, b, 0). But the existence of such a distinguished triangle in K(A)
implies that the extension is split. A contradiction.

It turns out that the functor Comp(A)→ D(A) is a δ-functor. In order to see this
we have to define the morphisms δ associated to a short exact sequence

0→ A• a−→ B• b−→ C• → 0

of complexes in the abelian category A. Consider the cone C(a)• of the morphism
a. We have C(a)n = Bn ⊕An+1 and we define qn : C(a)n → Cn via the projection
to Bn followed by bn. Hence a morphism of complexes

q : C(a)• −→ C•.

It is clear that q ◦ i = b where i is as in Definition 13.9.1. Note that, as a• is
injective in each degree, the kernel of q is identified with the cone of idA• which is
acyclic. Hence we see that q is a quasi-isomorphism. According to Lemma 13.9.14
the triangle

(A,B,C(a), a, i,−p)
is a distinguished triangle in K(A). As the localization functor K(A) → D(A) is
exact we see that (A,B,C(a), a, i,−p) is a distinguished triangle in D(A). Since q
is a quasi-isomorphism we see that q is an isomorphism in D(A). Hence we deduce
that

(A,B,C, a, b,−p ◦ q−1)
is a distinguished triangle of D(A). This suggests the following lemma.

Lemma 13.12.1.0152 Let A be an abelian category. The functor Comp(A) → D(A)
defined has the natural structure of a δ-functor, with

δA•→B•→C• = −p ◦ q−1

with p and q as explained above. The same construction turns the functors Comp+(A)→
D+(A), Comp−(A)→ D−(A), and Compb(A)→ Db(A) into δ-functors.

Proof. We have already seen that this choice leads to a distinguished triangle when-
ever given a short exact sequence of complexes. We have to show that given a
commutative diagram

0 // A•
a
//

f

��

B•
b
//

g

��

C• //

h

��

0

0 // (A′)• a′
// (B′)• b′

// (C ′)• // 0

we get the desired commutative diagram of Definition 13.3.6 (2). By Lemma 13.9.2
the pair (f, g) induces a canonical morphism c : C(a)• → C(a′)•. It is a simple
computation to show that q′ ◦ c = h ◦ q and f [1] ◦ p = p′ ◦ c. From this the result
follows directly. □

https://stacks.math.columbia.edu/tag/0152
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Lemma 13.12.2.0153 Let A be an abelian category. Let

0 // A• //

��

B• //

��

C• //

��

0

0 // D• // E• // F • // 0
be a commutative diagram of morphisms of complexes such that the rows are short
exact sequences of complexes, and the vertical arrows are quasi-isomorphisms. The
δ-functor of Lemma 13.12.1 above maps the short exact sequences 0→ A• → B• →
C• → 0 and 0→ D• → E• → F • → 0 to isomorphic distinguished triangles.

Proof. Trivial from the fact that K(A) → D(A) transforms quasi-isomorphisms
into isomorphisms and that the associated distinguished triangles are functorial. □

Lemma 13.12.3.0154 Let A be an abelian category. Let

0 // A• // B• // C• // 0

be a short exact sequences of complexes. Assume this short exact sequence is
termwise split. Let (A•, B•, C•, α, β, δ) be the distinguished triangle of K(A) asso-
ciated to the sequence. The δ-functor of Lemma 13.12.1 above maps the short exact
sequences 0 → A• → B• → C• → 0 to a triangle isomorphic to the distinguished
triangle

(A•, B•, C•, α, β, δ).

Proof. Follows from Lemma 13.9.14. □

Remark 13.12.4.08J5 Let A be an abelian category. Let K• be a complex of A. Let
a ∈ Z. We claim there is a canonical distinguished triangle

τ≤aK
• → K• → τ≥a+1K

• → (τ≤aK
•)[1]

in D(A). Here we have used the canonical truncation functors τ from Homology,
Section 12.15. Namely, we first take the distinguished triangle associated by our
δ-functor (Lemma 13.12.1) to the short exact sequence of complexes

0→ τ≤aK
• → K• → K•/τ≤aK

• → 0

Next, we use that the map K• → τ≥a+1K
• factors through a quasi-isomorphism

K•/τ≤aK
• → τ≥a+1K

• by the description of cohomology groups in Homology,
Section 12.15. In a similar way we obtain canonical distinguished triangles

τ≤aK
• → τ≤a+1K

• → Ha+1(K•)[−a− 1]→ (τ≤aK
•)[1]

and
Ha(K•)[−a]→ τ≥aK

• → τ≥a+1K
• → Ha(K•)[−a+ 1]

Lemma 13.12.5.08Q2 Let A be an abelian category. Let

K•
0 → K•

1 → . . .→ K•
n

be maps of complexes such that
(1) Hi(K•

0 ) = 0 for i > 0,
(2) H−j(K•

j )→ H−j(K•
j+1) is zero.

https://stacks.math.columbia.edu/tag/0153
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Then the composition K•
0 → K•

n factors through τ≤−nK
•
n → K•

n in D(A). Dually,
given maps of complexes

K•
n → K•

n−1 → . . .→ K•
0

such that
(1) Hi(K•

0 ) = 0 for i < 0,
(2) Hj(K•

j+1)→ Hj(K•
j ) is zero,

then the composition K•
n → K•

0 factors through K•
n → τ≥nK

•
n in D(A).

Proof. The case n = 1. Since τ≤0K
•
0 = K•

0 in D(A) we can replace K•
0 by τ≤0K

•
0

and K•
1 by τ≤0K

•
1 . Consider the distinguished triangle

τ≤−1K
•
1 → K•

1 → H0(K•
1 )[0]→ (τ≤−1K

•
1 )[1]

(Remark 13.12.4). The composition K•
0 → K•

1 → H0(K•
1 )[0] is zero as it is equal

to K•
0 → H0(K•

0 )[0] → H0(K•
1 )[0] which is zero by assumption. The fact that

HomD(A)(K•
0 ,−) is a homological functor (Lemma 13.4.2), allows us to find the

desired factorization. For n = 2 we get a factorization K•
0 → τ≤−1K

•
1 by the case

n = 1 and we can apply the case n = 1 to the map of complexes τ≤−1K
•
1 → τ≤−1K

•
2

to get a factorization τ≤−1K
•
1 → τ≤−2K

•
2 . The general case is proved in exactly

the same manner. □

13.13. Filtered derived categories

05RX A reference for this section is [Ill72, I, Chapter V]. Let A be an abelian category. In
this section we will define the filtered derived category DF (A) of A. In short, we
will define it as the derived category of the exact category of objects of A endowed
with a finite filtration. (Thus our construction is a special case of a more general
construction of the derived category of an exact category, see for example [Büh10],
[Kel90].) Illusie’s filtered derived category is the full subcategory of ours consisting
of those objects whose filtration is finite. (In our category the filtration is still finite
in each degree, but may not be uniformly bounded.) The rationale for our choice
is that it is not harder and it allows us to apply the discussion to the spectral
sequences of Lemma 13.21.3, see also Remark 13.21.4.

We will use the notation regarding filtered objects introduced in Homology, Section
12.19. The category of filtered objects of A is denoted Fil(A). All filtrations will
be decreasing by fiat.

Definition 13.13.1.05RY Let A be an abelian category. The category of finite filtered
objects of A is the category of filtered objects (A,F ) of A whose filtration F is
finite. We denote it Filf (A).

Thus Filf (A) is a full subcategory of Fil(A). For each p ∈ Z there is a functor
grp : Filf (A)→ A. There is a functor

gr =
⊕

p∈Z
grp : Filf (A)→ Gr(A)

where Gr(A) is the category of graded objects of A, see Homology, Definition
12.16.1. Finally, there is a functor

(forget F ) : Filf (A) −→ A

https://stacks.math.columbia.edu/tag/05RY
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which associates to the filtered object (A,F ) the underlying object of A. The
category Filf (A) is an additive category, but not abelian in general, see Homology,
Example 12.3.13.

Because the functors grp, gr, (forget F ) are additive they induce exact functors of
triangulated categories

grp, (forget F ) : K(Filf (A))→ K(A) and gr : K(Filf (A))→ K(Gr(A))

by Lemma 13.10.6. By analogy with the case of the homotopy category of an
abelian category we make the following definitions.

Definition 13.13.2.05RZ Let A be an abelian category.
(1) Let α : K• → L• be a morphism of K(Filf (A)). We say that α is a

filtered quasi-isomorphism if the morphism gr(α) is a quasi-isomorphism.
(2) Let K• be an object of K(Filf (A)). We say that K• is filtered acyclic if

the complex gr(K•) is acyclic.

Note that α : K• → L• is a filtered quasi-isomorphism if and only if each grp(α) is
a quasi-isomorphism. Similarly a complex K• is filtered acyclic if and only if each
grp(K•) is acyclic.

Lemma 13.13.3.05S0 Let A be an abelian category.
(1) The functor K(Filf (A)) −→ Gr(A), K• 7−→ H0(gr(K•)) is homological.
(2) The functor K(Filf (A))→ A, K• 7−→ H0(grp(K•)) is homological.
(3) The functor K(Filf (A)) −→ A, K• 7−→ H0((forget F )K•) is homological.

Proof. This follows from the fact that H0 : K(A)→ A is homological, see Lemma
13.11.1 and the fact that the functors gr, grp, (forget F ) are exact functors of tri-
angulated categories. See Lemma 13.4.20. □

Lemma 13.13.4.05S1 Let A be an abelian category. The full subcategory FAc(A) of
K(Filf (A)) consisting of filtered acyclic complexes is a strictly full saturated tri-
angulated subcategory of K(Filf (A)). The corresponding saturated multiplicative
system (see Lemma 13.6.10) of K(Filf (A)) is the set FQis(A) of filtered quasi-
isomorphisms. In particular, the kernel of the localization functor

Q : K(Filf (A)) −→ FQis(A)−1K(Filf (A))

is FAc(A) and the functor H0 ◦ gr factors through Q.

Proof. We know that H0 ◦ gr is a homological functor by Lemma 13.13.3. Thus
this lemma is a special case of Lemma 13.6.11. □

Definition 13.13.5.05S2 Let A be an abelian category. Let FAc(A) and FQis(A) be as
in Lemma 13.13.4. The filtered derived category of A is the triangulated category

DF (A) = K(Filf (A))/FAc(A) = FQis(A)−1K(Filf (A)).

Lemma 13.13.6.05S3 The functors grp, gr, (forget F ) induce canonical exact functors

grp, gr, (forget F ) : DF (A) −→ D(A)

which commute with the localization functors.

https://stacks.math.columbia.edu/tag/05RZ
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Proof. This follows from the universal property of localization, see Lemma 13.5.7,
provided we can show that a filtered quasi-isomorphism is turned into a quasi-
isomorphism by each of the functors grp, gr, (forget F ). This is true by definition
for the first two. For the last one the statement we have to do a little bit of work. Let
f : K• → L• be a filtered quasi-isomorphism in K(Filf (A)). Choose a distinguished
triangle (K•, L•,M•, f, g, h) which contains f . Then M• is filtered acyclic, see
Lemma 13.13.4. Hence by the corresponding lemma for K(A) it suffices to show
that a filtered acyclic complex is an acyclic complex if we forget the filtration. This
follows from Homology, Lemma 12.19.15. □

Definition 13.13.7.05S4 Let A be an abelian category. The bounded filtered derived
category DF b(A) is the full subcategory of DF (A) with objects those X such that
gr(X) ∈ Db(A). Similarly for the bounded below filtered derived category DF+(A)
and the bounded above filtered derived category DF−(A).

Lemma 13.13.8.05S5 Let A be an abelian category. Let K• ∈ K(Filf (A)).
(1) If Hn(gr(K•)) = 0 for all n < a, then there exists a filtered quasi-

isomorphism K• → L• with Ln = 0 for all n < a.
(2) If Hn(gr(K•)) = 0 for all n > b, then there exists a filtered quasi-

isomorphism M• → K• with Mn = 0 for all n > b.
(3) If Hn(gr(K•)) = 0 for all |n| ≫ 0, then there exists a commutative

diagram of morphisms of complexes

K• // L•

M•

OO

// N•

OO

where all the arrows are filtered quasi-isomorphisms, L• bounded below,
M• bounded above, and N• a bounded complex.

Proof. Suppose that Hn(gr(K•)) = 0 for all n < a. By Homology, Lemma 12.19.15
the sequence

Ka−1 da−2

−−−→ Ka−1 da−1

−−−→ Ka

is an exact sequence of objects of A and the morphisms da−2 and da−1 are strict.
Hence Coim(da−1) = Im(da−1) in Filf (A) and the map gr(Im(da−1)) → gr(Ka)
is injective with image equal to the image of gr(Ka−1) → gr(Ka), see Homology,
Lemma 12.19.13. This means that the map K• → τ≥aK

• into the truncation

τ≥aK
• = (. . .→ 0→ Ka/ Im(da−1)→ Ka+1 → . . .)

is a filtered quasi-isomorphism. This proves (1). The proof of (2) is dual to the
proof of (1). Part (3) follows formally from (1) and (2). □

To state the following lemma denote FAc+(A), FAc−(A), resp. FAcb(A) the inter-
section ofK+(FilfA), K−(FilfA), resp.Kb(FilfA) with FAc(A). Denote FQis+(A),
FQis−(A), resp. FQisb(A) the intersection ofK+(FilfA), K−(FilfA), resp.Kb(FilfA)
with FQis(A).

Lemma 13.13.9.05S6 Let A be an abelian category. The subcategories FAc+(A),
FAc−(A), resp. FAcb(A) are strictly full saturated triangulated subcategories of

https://stacks.math.columbia.edu/tag/05S4
https://stacks.math.columbia.edu/tag/05S5
https://stacks.math.columbia.edu/tag/05S6
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K+(FilfA), K−(FilfA), resp. Kb(FilfA). The corresponding saturated multiplica-
tive systems (see Lemma 13.6.10) are the sets FQis+(A), FQis−(A), resp. FQisb(A).

(1) The kernel of the functor K+(FilfA) → DF+(A) is FAc+(A) and this
induces an equivalence of triangulated categories
K+(FilfA)/FAc+(A) = FQis+(A)−1K+(FilfA) −→ DF+(A)

(2) The kernel of the functor K−(FilfA) → DF−(A) is FAc−(A) and this
induces an equivalence of triangulated categories
K−(FilfA)/FAc−(A) = FQis−(A)−1K−(FilfA) −→ DF−(A)

(3) The kernel of the functor Kb(FilfA) → DF b(A) is FAcb(A) and this
induces an equivalence of triangulated categories
Kb(FilfA)/FAcb(A) = FQisb(A)−1Kb(FilfA) −→ DF b(A)

Proof. This follows from the results above, in particular Lemma 13.13.8, by exactly
the same arguments as used in the proof of Lemma 13.11.6. □

13.14. Derived functors in general

05S7 A reference for this section is Deligne’s exposé XVII in [AGV71]. A very general
notion of right and left derived functors exists where we have an exact functor
between triangulated categories, a multiplicative system in the source category and
we want to find the “correct” extension of the exact functor to the localized category.

Situation 13.14.1.05S8 Here F : D → D′ is an exact functor of triangulated categories
and S is a saturated multiplicative system in D compatible with the structure of
triangulated category on D.

Let X ∈ Ob(D). Recall from Categories, Remark 4.27.7 the filtered category X/S
of arrows s : X → X ′ in S with source X. Dually, in Categories, Remark 4.27.15
we defined the cofiltered category S/X of arrows s : X ′ → X in S with target X.

Definition 13.14.2.05S9 Assumptions and notation as in Situation 13.14.1. Let X ∈
Ob(D).

(1) we say the right derived functor RF is defined at X if the ind-object
(X/S) −→ D′, (s : X → X ′) 7−→ F (X ′)

is essentially constant5; in this case the value Y in D′ is called the value
of RF at X.

(2) we say the left derived functor LF is defined at X if the pro-object
(S/X) −→ D′, (s : X ′ → X) 7−→ F (X ′)

is essentially constant; in this case the value Y in D′ is called the value of
LF at X.

By abuse of notation we often denote the values simply RF (X) or LF (X).

It will turn out that the full subcategory of D consisting of objects where RF is de-
fined is a triangulated subcategory, and RF will define a functor on this subcategory
which transforms morphisms of S into isomorphisms.

5For a discussion of when an ind-object or pro-object of a category is essentially constant we
refer to Categories, Section 4.22.

https://stacks.math.columbia.edu/tag/05S8
https://stacks.math.columbia.edu/tag/05S9
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Lemma 13.14.3.05SA Assumptions and notation as in Situation 13.14.1. Let f : X → Y
be a morphism of D.

(1) If RF is defined at X and Y then there exists a unique morphism RF (f) :
RF (X) → RF (Y ) between the values such that for any commutative
diagram

X

f

��

s
// X ′

f ′

��
Y

s′
// Y ′

with s, s′ ∈ S the diagram

F (X)

��

// F (X ′)

��

// RF (X)

��
F (Y ) // F (Y ′) // RF (Y )

commutes.
(2) If LF is defined at X and Y then there exists a unique morphism LF (f) :

LF (X) → LF (Y ) between the values such that for any commutative
diagram

X ′

f ′

��

s
// X

f

��
Y ′ s′

// Y

with s, s′ in S the diagram

LF (X)

��

// F (X ′)

��

// F (X)

��
LF (Y ) // F (Y ′) // F (Y )

commutes.

Proof. Part (1) holds if we only assume that the colimits
RF (X) = colims:X→X′ F (X ′) and RF (Y ) = colims′:Y→Y ′ F (Y ′)

exist. Namely, to give a morphism RF (X) → RF (Y ) between the colimits is the
same thing as giving for each s : X → X ′ in Ob(X/S) a morphism F (X ′)→ RF (Y )
compatible with morphisms in the category X/S. To get the morphism we choose
a commutative diagram

X

f

��

s
// X ′

f ′

��
Y

s′
// Y ′

with s, s′ in S as is possible by MS2 and we set F (X ′) → RF (Y ) equal to the
composition F (X ′) → F (Y ′) → RF (Y ). To see that this is independent of the
choice of the diagram above use MS3. Details omitted. The proof of (2) is dual. □

Lemma 13.14.4.05SB Assumptions and notation as in Situation 13.14.1. Let s : X → Y
be an element of S.

https://stacks.math.columbia.edu/tag/05SA
https://stacks.math.columbia.edu/tag/05SB
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(1) RF is defined at X if and only if it is defined at Y . In this case the map
RF (s) : RF (X)→ RF (Y ) between values is an isomorphism.

(2) LF is defined at X if and only if it is defined at Y . In this case the map
LF (s) : LF (X)→ LF (Y ) between values is an isomorphism.

Proof. Omitted. □

Lemma 13.14.5.05SU Assumptions and notation as in Situation 13.14.1. Let X be an
object of D and n ∈ Z.

(1) RF is defined at X if and only if it is defined at X[n]. In this case there
is a canonical isomorphism RF (X)[n] = RF (X[n]) between values.

(2) LF is defined at X if and only if it is defined at X[n]. In this case there
is a canonical isomorphism LF (X)[n]→ LF (X[n]) between values.

Proof. Omitted. □

Lemma 13.14.6.05SC Assumptions and notation as in Situation 13.14.1. Let (X,Y, Z, f, g, h)
be a distinguished triangle of D. If RF is defined at two out of three of X,Y, Z,
then it is defined at the third. Moreover, in this case

(RF (X), RF (Y ), RF (Z), RF (f), RF (g), RF (h))
is a distinguished triangle in D′. Similarly for LF .

Proof. Say RF is defined at X,Y with values A,B. Let RF (f) : A → B be the
induced morphism, see Lemma 13.14.3. We may choose a distinguished triangle
(A,B,C,RF (f), b, c) in D′. We claim that C is a value of RF at Z.
To see this pick s : X → X ′ in S such that there exists a morphism α : A→ F (X ′)
as in Categories, Definition 4.22.1. We may choose a commutative diagram

X

f

��

s
// X ′

f ′

��
Y

s′
// Y ′

with s′ ∈ S by MS2. Using that Y/S is filtered we can (after replacing s′ by some
s′′ : Y → Y ′′ in S) assume that there exists a morphism β : B → F (Y ′) as in
Categories, Definition 4.22.1. Picture

A

RF (f)
��

α
// F (X ′) //

F (f ′)
��

A

RF (f)
��

B
β // F (Y ′) // B

It may not be true that the left square commutes, but the outer and right squares
commute. The assumption that the ind-object {F (Y ′)}s′:Y ′→Y is essentially con-
stant means that there exists a s′′ : Y → Y ′′ in S and a morphism h : Y ′ → Y ′′

such that s′′ = h ◦ s′ and such that F (h) equal to F (Y ′)→ B → F (Y ′)→ F (Y ′′).
Hence after replacing Y ′ by Y ′′ and β by F (h) ◦ β the diagram will commute (by
direct computation with arrows).
Using MS6 choose a morphism of triangles

(s, s′, s′′) : (X,Y, Z, f, g, h) −→ (X ′, Y ′, Z ′, f ′, g′, h′)

https://stacks.math.columbia.edu/tag/05SU
https://stacks.math.columbia.edu/tag/05SC
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with s′′ ∈ S. By TR3 choose a morphism of triangles

(α, β, γ) : (A,B,C,RF (f), b, c) −→ (F (X ′), F (Y ′), F (Z ′), F (f ′), F (g′), F (h′))

By Lemma 13.14.4 it suffices to prove that RF (Z ′) is defined and has value C.
Consider the category I of Lemma 13.5.10 of triangles

I = {(t, t′, t′′) : (X ′, Y ′, Z ′, f ′, g′, h′)→ (X ′′, Y ′′, Z ′′, f ′′, g′′, h′′) | (t, t′, t′′) ∈ S}

To show that the system F (Z ′′) is essentially constant over the category Z ′/S
is equivalent to showing that the system of F (Z ′′) is essentially constant over I
because I → Z ′/S is cofinal, see Categories, Lemma 4.22.11 (cofinality is proven
in Lemma 13.5.10). For any object W in D′ we consider the diagram

colimI MorD′(W,F (X ′′)) MorD′(W,A)oo

colimI MorD′(W,F (Y ′′))

OO

MorD′(W,B)

OO

oo

colimI MorD′(W,F (Z ′′))

OO

MorD′(W,C)

OO

oo

colimI MorD′(W,F (X ′′[1]))

OO

MorD′(W,A[1])

OO

oo

colimI MorD′(W,F (Y ′′[1]))

OO

MorD′(W,B[1])

OO

oo

where the horizontal arrows are given by composing with (α, β, γ). Since filtered
colimits are exact (Algebra, Lemma 10.8.8) the left column is an exact sequence.
Thus the 5 lemma (Homology, Lemma 12.5.20) tells us the

colimI MorD′(W,F (Z ′′)) −→ MorD′(W,C)

is bijective. Choose an object (t, t′, t′′) : (X ′, Y ′, Z ′)→ (X ′′, Y ′′, Z ′′) of I. Applying
what we just showed to W = F (Z ′′) and the element idF (X′′) of the colimit we find
a unique morphism c(X′′,Y ′′,Z′′) : F (Z ′′) → C such that for some (X ′′, Y ′′, Z ′′) →
(X ′′′, Y ′′′, Z ′′) in I

F (Z ′′)
c(X′′,Y ′′,Z′′)−−−−−−−−→ C

γ−→ F (Z ′)→ F (Z ′′)→ F (Z ′′′) equals F (Z ′′)→ F (Z ′′′)

The family of morphisms c(X′′,Y ′′,Z′′) form an element c of limI MorD′(F (Z ′′), C)
by uniqueness (computation omitted). Finally, we show that colimI F (Z ′′) = C via
the morphisms c(X′′,Y ′′,Z′′) which will finish the proof by Categories, Lemma 4.22.9.
Namely, let W be an object of D′ and let d(X′′,Y ′′,Z′′) : F (Z ′′)→W be a family of
maps corresponding to an element of limI MorD′(F (Z ′′),W ). If d(X′,Y ′,Z′) ◦ γ = 0,
then for every object (X ′′, Y ′′, Z ′′) of I the morphism d(X′′,Y ′′,Z′′) is zero by the
existence of c(X′′,Y ′′,Z′′) and the morphism (X ′′, Y ′′, Z ′′) → (X ′′′, Y ′′′, Z ′′) in I
satisfying the displayed equality above. Hence the map

limI MorD′(F (Z ′′),W ) −→ MorD′(C,W )
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(coming from precomposing by γ) is injective. However, it is also surjective because
the element c gives a left inverse. We conclude that C is the colimit by Categories,
Remark 4.14.4. □

Lemma 13.14.7.05SD Assumptions and notation as in Situation 13.14.1. Let X,Y be
objects of D.

(1) If RF is defined at X and Y , then RF is defined at X ⊕ Y .
(2) If D′ is Karoubian and RF is defined at X ⊕ Y , then RF is defined at

both X and Y .
In either case we have RF (X ⊕ Y ) = RF (X)⊕RF (Y ). Similarly for LF .

Proof. If RF is defined at X and Y , then the distinguished triangle X → X ⊕
Y → Y → X[1] (Lemma 13.4.11) and Lemma 13.14.6 shows that RF is defined
at X ⊕ Y and that we have a distinguished triangle RF (X) → RF (X ⊕ Y ) →
RF (Y ) → RF (X)[1]. Applying Lemma 13.4.11 to this once more we find that
RF (X ⊕ Y ) = RF (X)⊕RF (Y ). This proves (1) and the final assertion.
Conversely, assume that RF is defined at X ⊕ Y and that D′ is Karoubian. Since
S is a saturated system S is the set of arrows which become invertible under the
additive localization functor Q : D → S−1D, see Categories, Lemma 4.27.21. Thus
for any s : X → X ′ and s′ : Y → Y ′ in S the morphism s⊕ s′ : X ⊕ Y → X ′ ⊕ Y ′

is an element of S. In this way we obtain a functor
X/S × Y/S −→ (X ⊕ Y )/S

Recall that the categories X/S, Y/S, (X ⊕ Y )/S are filtered (Categories, Remark
4.27.7). By Categories, Lemma 4.22.12X/S×Y/S is filtered and F |X/S : X/S → D′

(resp. G|Y/S : Y/S → D′) is essentially constant if and only if F |X/S ◦ pr1 : X/S ×
Y/S → D′ (resp. G|Y/S ◦ pr2 : X/S × Y/S → D′) is essentially constant. Below we
will show that the displayed functor is cofinal, hence by Categories, Lemma 4.22.11.
we see that F |(X⊕Y )/S is essentially constant implies that F |X/S ◦pr1⊕F |Y/S ◦pr2 :
X/S × Y/S → D′ is essentially constant. By Homology, Lemma 12.30.3 (and this
is where we use that D′ is Karoubian) we see that F |X/S ◦ pr1 ⊕ F |Y/S ◦ pr2 being
essentially constant implies F |X/S ◦ pr1 and F |Y/S ◦ pr2 are essentially constant
proving that RF is defined at X and Y .
Proof that the displayed functor is cofinal. To do this pick any t : X⊕Y → Z in S.
Using MS2 we can find morphisms Z → X ′, Z → Y ′ and s : X → X ′, s′ : Y → Y ′

in S such that
X

s

��

X ⊕ Y

��

oo // Y

s′

��
X ′ Zoo // Y ′

commutes. This proves there is a map Z → X ′ ⊕ Y ′ in (X ⊕ Y )/S, i.e., we get
part (1) of Categories, Definition 4.17.1. To prove part (2) it suffices to prove that
given t : X ⊕ Y → Z and morphisms si ⊕ s′

i : Z → X ′
i ⊕ Y ′

i , i = 1, 2 in (X ⊕ Y )/S
we can find morphisms a : X ′

1 → X ′, b : X ′
2 → X ′, c : Y ′

1 → Y ′, d : Y ′
2 → Y ′

in S such that a ◦ s1 = b ◦ s2 and c ◦ s′
1 = d ◦ s′

2. To do this we first choose any
X ′ and Y ′ and maps a, b, c, d in S; this is possible as X/S and Y/S are filtered.
Then the two maps a ◦ s1, b ◦ s2 : Z → X ′ become equal in S−1D. Hence we can
find a morphism X ′ → X ′′ in S equalizing them. Similarly we find Y ′ → Y ′′ in S

https://stacks.math.columbia.edu/tag/05SD
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equalizing c◦s′
1 and d◦s′

2. Replacing X ′ by X ′′ and Y ′ by Y ′′ we get a◦s1 = b◦s2
and c ◦ s′

1 = d ◦ s′
2.

The proof of the corresponding statements for LF are dual. □

Proposition 13.14.8.05SE Assumptions and notation as in Situation 13.14.1.
(1) The full subcategory E of D consisting of objects at which RF is defined

is a strictly full triangulated subcategory of D.
(2) We obtain an exact functor RF : E −→ D′ of triangulated categories.
(3) Elements of S with either source or target in E are morphisms of E .
(4) The functor S−1

E E → S−1D is a fully faithful exact functor of triangulated
categories.

(5) Any element of SE = Arrows(E)∩S is mapped to an isomorphism by RF .
(6) We obtain an exact functor

RF : S−1
E E −→ D

′.

(7) If D′ is Karoubian, then E is a saturated triangulated subcategory of D.
A similar result holds for LF .

Proof. Since S is saturated it contains all isomorphisms (see remark following Cat-
egories, Definition 4.27.20). Hence (1) follows from Lemmas 13.14.4, 13.14.6, and
13.14.5. We get (2) from Lemmas 13.14.3, 13.14.5, and 13.14.6. We get (3) from
Lemma 13.14.4. The fully faithfulness in (4) follows from (3) and the definitions.
The fact that S−1

E E → S−1D is exact follows from the fact that a triangle in S−1
E E is

distinguished if and only if it is isomorphic to the image of a distinguished triangle
in E , see proof of Proposition 13.5.6. Part (5) follows from Lemma 13.14.4. The
factorization of RF : E → D′ through an exact functor S−1

E E → D′ follows from
Lemma 13.5.7. Part (7) follows from Lemma 13.14.7. □

Proposition 13.14.8 tells us that RF lives on a maximal strictly full triangulated
subcategory of S−1D and is an exact functor on this triangulated category. Picture:

D

Q

��

F
// D′

S−1D S−1
E E

fully faithful
exact

oo
RF

<<

Definition 13.14.9.05SV In Situation 13.14.1. We say F is right derivable, or that RF
everywhere defined if RF is defined at every object of D. We say F is left derivable,
or that LF everywhere defined if LF is defined at every object of D.

In this case we obtain a right (resp. left) derived functor
(13.14.9.1)05SW RF : S−1D −→ D′, (resp. LF : S−1D −→ D′),
see Proposition 13.14.8. In most interesting situations it is not the case that RF ◦Q
is equal to F . In fact, it might happen that the canonical map F (X) → RF (X)
is never an isomorphism. In practice this does not happen, because in practice we
only know how to prove F is right derivable by showing that RF can be computed
by evaluating F at judiciously chosen objects of the triangulated category D. This
warrants a definition.

Definition 13.14.10.05SX In Situation 13.14.1.

https://stacks.math.columbia.edu/tag/05SE
https://stacks.math.columbia.edu/tag/05SV
https://stacks.math.columbia.edu/tag/05SX
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(1) An object X of D computes RF if RF is defined at X and the canonical
map F (X)→ RF (X) is an isomorphism.

(2) An object X of D computes LF if LF is defined at X and the canonical
map LF (X)→ F (X) is an isomorphism.

Lemma 13.14.11.05SY Assumptions and notation as in Situation 13.14.1. Let X be an
object of D and n ∈ Z.

(1) X computes RF if and only if X[n] computes RF .
(2) X computes LF if and only if X[n] computes LF .

Proof. Omitted. □

Lemma 13.14.12.05SZ Assumptions and notation as in Situation 13.14.1. Let (X,Y, Z, f, g, h)
be a distinguished triangle of D. If X,Y compute RF then so does Z. Similar for
LF .

Proof. By Lemma 13.14.6 we know that RF is defined at Z and that RF applied
to the triangle produces a distinguished triangle. Consider the morphism of distin-
guished triangles

(F (X), F (Y ), F (Z), F (f), F (g), F (h))

��
(RF (X), RF (Y ), RF (Z), RF (f), RF (g), RF (h))

Two out of three maps are isomorphisms, hence so is the third. □

Lemma 13.14.13.05T0 Assumptions and notation as in Situation 13.14.1. Let X,Y be
objects of D. If X ⊕ Y computes RF , then X and Y compute RF . Similarly for
LF .

Proof. If X ⊕ Y computes RF , then RF (X ⊕ Y ) = F (X)⊕ F (Y ). In the proof of
Lemma 13.14.7 we have seen that the functor X/S × Y/S → (X ⊕ Y )/S, (s, s′) 7→
s ⊕ s′ is cofinal. We will use this without further mention. Let s : X → X ′ be an
element of S. Then F (X)→ F (X ′) has a section, namely,
F (X ′)→ F (X ′ ⊕ Y )→ RF (X ′ ⊕ Y ) = RF (X ⊕ Y ) = F (X)⊕ F (Y )→ F (X).

where we have used Lemma 13.14.4. Hence F (X ′) = F (X)⊕ E for some object E
of D′ such that E → F (X ′ ⊕ Y ) → RF (X ′ ⊕ Y ) = RF (X ⊕ Y ) is zero (Lemma
13.4.12). Because RF is defined at X ′ ⊕ Y with value F (X) ⊕ F (Y ) we can find
a morphism t : X ′ ⊕ Y → Z of S such that F (t) annihilates E. We may assume
Z = X ′′ ⊕ Y ′′ and t = t′ ⊕ t′′ with t′, t′′ ∈ S. Then F (t′) annihilates E. It follows
that F is essentially constant on X/S with value F (X) as desired. □

Lemma 13.14.14.05T1 Assumptions and notation as in Situation 13.14.1.
(1) If for every object X ∈ Ob(D) there exists an arrow s : X → X ′ in S such

that X ′ computes RF , then RF is everywhere defined.
(2) If for every object X ∈ Ob(D) there exists an arrow s : X ′ → X in S such

that X ′ computes LF , then LF is everywhere defined.

Proof. This is clear from the definitions. □

Lemma 13.14.15.06XN Assumptions and notation as in Situation 13.14.1. If there exists
a subset I ⊂ Ob(D) such that

https://stacks.math.columbia.edu/tag/05SY
https://stacks.math.columbia.edu/tag/05SZ
https://stacks.math.columbia.edu/tag/05T0
https://stacks.math.columbia.edu/tag/05T1
https://stacks.math.columbia.edu/tag/06XN
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(1) for all X ∈ Ob(D) there exists s : X → X ′ in S with X ′ ∈ I, and
(2) for every arrow s : X → X ′ in S with X,X ′ ∈ I the map F (s) : F (X)→

F (X ′) is an isomorphism,
then RF is everywhere defined and every X ∈ I computes RF . Dually, if there
exists a subset P ⊂ Ob(D) such that

(1) for all X ∈ Ob(D) there exists s : X ′ → X in S with X ′ ∈ P, and
(2) for every arrow s : X → X ′ in S with X,X ′ ∈ P the map F (s) : F (X)→

F (X ′) is an isomorphism,
then LF is everywhere defined and every X ∈ P computes LF .

Proof. Let X be an object of D. Assumption (1) implies that the arrows s : X → X ′

in S with X ′ ∈ I are cofinal in the category X/S. Assumption (2) implies that F
is constant on this cofinal subcategory. Clearly this implies that F : (X/S) → D′

is essentially constant with value F (X ′) for any s : X → X ′ in S with X ′ ∈ I. □

Lemma 13.14.16.05T2 Let A,B, C be triangulated categories. Let S, resp. S′ be a
saturated multiplicative system in A, resp. B compatible with the triangulated
structure. Let F : A → B and G : B → C be exact functors. Denote F ′ : A →
(S′)−1B the composition of F with the localization functor.

(1) If RF ′, RG, R(G ◦ F ) are everywhere defined, then there is a canonical
transformation of functors t : R(G ◦ F ) −→ RG ◦RF ′.

(2) If LF ′, LG, L(G ◦ F ) are everywhere defined, then there is a canonical
transformation of functors t : LG ◦ LF ′ → L(G ◦ F ).

Proof. In this proof we try to be careful. Hence let us think of the derived functors
as the functors

RF ′ : S−1A → (S′)−1B, R(G ◦ F ) : S−1A → C, RG : (S′)−1B → C.

Let us denote QA : A → S−1A and QB : B → (S′)−1B the localization functors.
Then F ′ = QB ◦ F . Note that for every object Y of B there is a canonical map

G(Y ) −→ RG(QB(Y ))

in other words, there is a transformation of functors t′ : G→ RG ◦QB . Let X be
an object of A. We have

R(G ◦ F )(QA(X)) = colims:X→X′∈S G(F (X ′))
t′−→ colims:X→X′∈S RG(QB(F (X ′)))
= colims:X→X′∈S RG(F ′(X ′))
= RG(colims:X→X′∈S F

′(X ′))
= RG(RF ′(X)).

The system F ′(X ′) is essentially constant in the category (S′)−1B. Hence we may
pull the colimit inside the functor RG in the third equality of the diagram above,
see Categories, Lemma 4.22.8 and its proof. We omit the proof this defines a
transformation of functors. The case of left derived functors is similar. □

https://stacks.math.columbia.edu/tag/05T2
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13.15. Derived functors on derived categories

05T3 In practice derived functors come about most often when given an additive functor
between abelian categories.

Situation 13.15.1.05T4 Here F : A → B is an additive functor between abelian cate-
gories. This induces exact functors

F : K(A)→ K(B), K+(A)→ K+(B), K−(A)→ K−(B).

See Lemma 13.10.6. We also denote F the composition K(A)→ D(B), K+(A)→
D+(B), and K−(A) → D−(B) of F with the localization functor K(B) → D(B),
etc. This situation leads to four derived functors we will consider in the following.

(1) The right derived functor of F : K(A)→ D(B) relative to the multiplica-
tive system Qis(A).

(2) The right derived functor of F : K+(A) → D+(B) relative to the multi-
plicative system Qis+(A).

(3) The left derived functor of F : K(A)→ D(B) relative to the multiplicative
system Qis(A).

(4) The left derived functor of F : K−(A) → D−(B) relative to the multi-
plicative system Qis−(A).

Each of these cases is an example of Situation 13.14.1.

Some of the ambiguity that may arise is alleviated by the following.

Lemma 13.15.2.05T5 In Situation 13.15.1.
(1) Let X be an object of K+(A). The right derived functor of K(A)→ D(B)

is defined at X if and only if the right derived functor of K+(A)→ D+(B)
is defined at X. Moreover, the values are canonically isomorphic.

(2) Let X be an object of K+(A). Then X computes the right derived functor
of K(A) → D(B) if and only if X computes the right derived functor of
K+(A)→ D+(B).

(3) Let X be an object of K−(A). The left derived functor of K(A)→ D(B)
is defined at X if and only if the left derived functor of K−(A)→ D−(B)
is defined at X. Moreover, the values are canonically isomorphic.

(4) Let X be an object of K−(A). Then X computes the left derived functor
of K(A) → D(B) if and only if X computes the left derived functor of
K−(A)→ D−(B).

Proof. Let X be an object of K+(A). Consider a quasi-isomorphism s : X → X ′

in K(A). By Lemma 13.11.5 there exists quasi-isomorphism X ′ → X ′′ with X ′′

bounded below. Hence we see that X/Qis+(A) is cofinal in X/Qis(A). Thus it is
clear that (1) holds. Part (2) follows directly from part (1). Parts (3) and (4) are
dual to parts (1) and (2). □

Given an object A of an abelian category A we get a complex

A[0] = (. . .→ 0→ A→ 0→ . . .)

where A is placed in degree zero. Hence a functor A → K(A), A 7→ A[0]. Let us
temporarily say that a partial functor is one that is defined on a subcategory.

Definition 13.15.3.0157 In Situation 13.15.1.

https://stacks.math.columbia.edu/tag/05T4
https://stacks.math.columbia.edu/tag/05T5
https://stacks.math.columbia.edu/tag/0157
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(1) The right derived functors of F are the partial functors RF associated to
cases (1) and (2) of Situation 13.15.1.

(2) The left derived functors of F are the partial functors LF associated to
cases (3) and (4) of Situation 13.15.1.

(3) An object A of A is said to be right acyclic for F , or acyclic for RF if
A[0] computes RF .

(4) An object A of A is said to be left acyclic for F , or acyclic for LF if A[0]
computes LF .

The following few lemmas give some criteria for the existence of enough acyclics.

Lemma 13.15.4.05T7 Let A be an abelian category. Let P ⊂ Ob(A) be a subset
containing 0 such that every object of A is a quotient of an element of P. Let
a ∈ Z.

(1) Given K• with Kn = 0 for n > a there exists a quasi-isomorphism P • →
K• with Pn ∈ P and Pn → Kn surjective for all n and Pn = 0 for n > a.

(2) Given K• with Hn(K•) = 0 for n > a there exists a quasi-isomorphism
P • → K• with Pn ∈ P for all n and Pn = 0 for n > a.

Proof. Proof of part (1). Consider the following induction hypothesis IHn: There
are P j ∈ P, j ≥ n, with P j = 0 for j > a, maps dj : P j → P j+1 for j ≥ n, and
surjective maps αj : P j → Kj for j ≥ n such that the diagram

Pn

α

��

// Pn+1

α

��

// Pn+2

α

��

// . . .

. . . // Kn−1 // Kn // Kn+1 // Kn+2 // . . .

is commutative, such that dj+1◦dj = 0 for j ≥ n, such that α induces isomorphisms
Hj(K•) → Ker(dj)/ Im(dj−1) for j > n, and such that α : Ker(dn) → Ker(dnK) is
surjective. Then we choose a surjection

Pn−1 −→ Kn−1 ×Kn Ker(dn) = Kn−1 ×Ker(dn
K

) Ker(dn)

with Pn−1 in P. This allows us to extend the diagram above to

Pn−1

α

��

// Pn

α

��

// Pn+1

α

��

// Pn+2

α

��

// . . .

. . . // Kn−1 // Kn // Kn+1 // Kn+2 // . . .

The reader easily checks that IHn−1 holds with this choice.
We finish the proof of (1) as follows. First we note that IHn is true for n = a+ 1
since we can just take P j = 0 for j > a. Hence we see that proceeding by descending
induction we produce a complex P • with Pn = 0 for n > a consisting of objects
from P, and a termwise surjective quasi-isomorphism α : P • → K• as desired.
Proof of part (2). The assumption implies that the morphism τ≤aK

• → K• (Ho-
mology, Section 12.15) is a quasi-isomorphism. Apply part (1) to find P • → τ≤aK

•.
The composition P • → K• is the desired quasi-isomorphism. □

Lemma 13.15.5.05T6 Let A be an abelian category. Let I ⊂ Ob(A) be a subset
containing 0 such that every object of A is a subobject of an element of I. Let
a ∈ Z.

https://stacks.math.columbia.edu/tag/05T7
https://stacks.math.columbia.edu/tag/05T6
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(1) Given K• with Kn = 0 for n < a there exists a quasi-isomorphism K• →
I• with Kn → In injective and In ∈ I for all n and In = 0 for n < a,

(2) Given K• with Hn(K•) = 0 for n < a there exists a quasi-isomorphism
K• → I• with In ∈ I and In = 0 for n < a.

Proof. This lemma is dual to Lemma 13.15.4. □

Lemma 13.15.6.05T8 In Situation 13.15.1. Let I ⊂ Ob(A) be a subset with the following
properties:

(1) every object of A is a subobject of an element of I,
(2) for any short exact sequence 0 → P → Q → R → 0 of A with P,Q ∈ I,

then R ∈ I, and 0→ F (P )→ F (Q)→ F (R)→ 0 is exact.
Then every object of I is acyclic for RF .

Proof. We may add 0 to I if necessary. Pick A ∈ I. Let A[0] → K• be a quasi-
isomorphism with K• bounded below. Then we can find a quasi-isomorphism
K• → I• with I• bounded below and each In ∈ I, see Lemma 13.15.5. Hence we
see that these resolutions are cofinal in the category A[0]/Qis+(A). To finish the
proof it therefore suffices to show that for any quasi-isomorphism A[0] → I• with
I• bounded below and In ∈ I we have F (A)[0] → F (I•) is a quasi-isomorphism.
To see this suppose that In = 0 for n < n0. Of course we may assume that n0 < 0.
Starting with n = n0 we prove inductively that Im(dn−1) = Ker(dn) and Im(d−1)
are elements of I using property (2) and the exact sequences

0→ Ker(dn)→ In → Im(dn)→ 0.
Moreover, property (2) also guarantees that the complex

0→ F (In0)→ F (In0+1)→ . . .→ F (I−1)→ F (Im(d−1))→ 0
is exact. The exact sequence 0 → Im(d−1) → I0 → I0/ Im(d−1) → 0 implies that
I0/ Im(d−1) is an element of I. The exact sequence 0 → A → I0/ Im(d−1) →
Im(d0)→ 0 then implies that Im(d0) = Ker(d1) is an elements of I and from then
on one continues as before to show that Im(dn−1) = Ker(dn) is an element of I for
all n > 0. Applying F to each of the short exact sequences mentioned above and
using (2) we observe that F (A)[0]→ F (I•) is an isomorphism as desired. □

Lemma 13.15.7.05T9 In Situation 13.15.1. Let P ⊂ Ob(A) be a subset with the
following properties:

(1) every object of A is a quotient of an element of P,
(2) for any short exact sequence 0 → P → Q → R → 0 of A with Q,R ∈ P,

then P ∈ P, and 0→ F (P )→ F (Q)→ F (R)→ 0 is exact.
Then every object of P is acyclic for LF .

Proof. Dual to the proof of Lemma 13.15.6. □

13.16. Higher derived functors

05TB The following simple lemma shows that right derived functors “move to the right”.

Lemma 13.16.1.05TC Let F : A → B be an additive functor between abelian categories.
Let K• be a complex of A and a ∈ Z.

(1) If Hi(K•) = 0 for all i < a and RF is defined at K•, then Hi(RF (K•)) =
0 for all i < a.

https://stacks.math.columbia.edu/tag/05T8
https://stacks.math.columbia.edu/tag/05T9
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(2) If RF is defined at K• and τ≤aK
•, then Hi(RF (τ≤aK

•)) = Hi(RF (K•))
for all i ≤ a.

Proof. Assume K• satisfies the assumptions of (1). Let K• → L• be any quasi-
isomorphism. Then it is also true that K• → τ≥aL

• is a quasi-isomorphism by our
assumption on K•. Hence in the category K•/Qis+(A) the quasi-isomorphisms
s : K• → L• with Ln = 0 for n < a are cofinal. Thus RF is the value of the
essentially constant ind-object F (L•) for these s it follows that Hi(RF (K•)) = 0
for i < a.

To prove (2) we use the distinguished triangle

τ≤aK
• → K• → τ≥a+1K

• → (τ≤aK
•)[1]

of Remark 13.12.4 to conclude via Lemma 13.14.6 that RF is defined at τ≥a+1K
•

as well and that we have a distinguished triangle

RF (τ≤aK
•)→ RF (K•)→ RF (τ≥a+1K

•)→ RF (τ≤aK
•)[1]

in D(B). By part (1) we see that RF (τ≥a+1K
•) has vanishing cohomology in

degrees < a+ 1. The long exact cohomology sequence of this distinguished triangle
then shows what we want. □

Definition 13.16.2.015A Let F : A → B be an additive functor between abelian cate-
gories. Assume RF : D+(A) → D+(B) is everywhere defined. Let i ∈ Z. The ith
right derived functor RiF of F is the functor

RiF = Hi ◦RF : A −→ B

The following lemma shows that it really does not make a lot of sense to take the
right derived functor unless the functor is left exact.

Lemma 13.16.3.05TD Let F : A → B be an additive functor between abelian categories
and assume RF : D+(A)→ D+(B) is everywhere defined.

(1) We have RiF = 0 for i < 0,
(2) R0F is left exact,
(3) the map F → R0F is an isomorphism if and only if F is left exact.

Proof. Let A be an object of A. Let A[0] → K• be any quasi-isomorphism. Then
it is also true that A[0] → τ≥0K

• is a quasi-isomorphism. Hence in the category
A[0]/Qis+(A) the quasi-isomorphisms s : A[0] → K• with Kn = 0 for n < 0 are
cofinal. Thus it is clear that Hi(RF (A[0])) = 0 for i < 0. Moreover, for such an s
the sequence

0→ A→ K0 → K1

is exact. Hence if F is left exact, then 0 → F (A) → F (K0) → F (K1) is exact as
well, and we see that F (A) → H0(F (K•)) is an isomorphism for every s : A[0] →
K• as above which implies that H0(RF (A[0])) = F (A).

Let 0 → A → B → C → 0 be a short exact sequence of A. By Lemma 13.12.1 we
obtain a distinguished triangle (A[0], B[0], C[0], a, b, c) in D+(A). From the long
exact cohomology sequence (and the vanishing for i < 0 proved above) we deduce
that 0 → R0F (A) → R0F (B) → R0F (C) is exact. Hence R0F is left exact. Of
course this also proves that if F → R0F is an isomorphism, then F is left exact. □

https://stacks.math.columbia.edu/tag/015A
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Lemma 13.16.4.015C Let F : A → B be an additive functor between abelian categories
and assume RF : D+(A) → D+(B) is everywhere defined. Let A be an object of
A.

(1) A is right acyclic for F if and only if F (A)→ R0F (A) is an isomorphism
and RiF (A) = 0 for all i > 0,

(2) if F is left exact, then A is right acyclic for F if and only if RiF (A) = 0
for all i > 0.

Proof. If A is right acyclic for F , then RF (A[0]) = F (A)[0] and in particular
F (A) → R0F (A) is an isomorphism and RiF (A) = 0 for i ̸= 0. Conversely, if
F (A)→ R0F (A) is an isomorphism and RiF (A) = 0 for all i > 0 then F (A[0])→
RF (A[0]) is a quasi-isomorphism by Lemma 13.16.3 part (1) and hence A is acyclic.
If F is left exact then F = R0F , see Lemma 13.16.3. □

Lemma 13.16.5.015D Let F : A → B be a left exact functor between abelian categories
and assume RF : D+(A) → D+(B) is everywhere defined. Let 0 → A → B →
C → 0 be a short exact sequence of A.

(1) If A and C are right acyclic for F then so is B.
(2) If A and B are right acyclic for F then so is C.
(3) If B and C are right acyclic for F and F (B)→ F (C) is surjective then A

is right acyclic for F .
In each of the three cases

0→ F (A)→ F (B)→ F (C)→ 0

is a short exact sequence of B.

Proof. By Lemma 13.12.1 we obtain a distinguished triangle (A[0], B[0], C[0], a, b, c)
in K+(A). As RF is an exact functor and since RiF = 0 for i < 0 and R0F = F
(Lemma 13.16.3) we obtain an exact cohomology sequence

0→ F (A)→ F (B)→ F (C)→ R1F (A)→ . . .

in the abelian category B. Thus the lemma follows from the characterization of
acyclic objects in Lemma 13.16.4. □

Lemma 13.16.6.05TE Let F : A → B be an additive functor between abelian categories
and assume RF : D+(A)→ D+(B) is everywhere defined.

(1) The functors RiF , i ≥ 0 come equipped with a canonical structure of a
δ-functor from A → B, see Homology, Definition 12.12.1.

(2) If every object of A is a subobject of a right acyclic object for F , then
{RiF, δ}i≥0 is a universal δ-functor, see Homology, Definition 12.12.3.

Proof. The functorA → Comp+(A), A 7→ A[0] is exact. The functor Comp+(A)→
D+(A) is a δ-functor, see Lemma 13.12.1. The functor RF : D+(A) → D+(B) is
exact. Finally, the functor H0 : D+(B)→ B is a homological functor, see Definition
13.11.3. Hence we get the structure of a δ-functor from Lemma 13.4.22 and Lemma
13.4.21. Part (2) follows from Homology, Lemma 12.12.4 and the description of
acyclics in Lemma 13.16.4. □

https://stacks.math.columbia.edu/tag/015C
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Lemma 13.16.7 (Leray’s acyclicity lemma).015E Let F : A → B be an additive functor
between abelian categories. Let A• be a bounded below complex of right F -acyclic
objects such that RF is defined at A•6. The canonical map

F (A•) −→ RF (A•)

is an isomorphism in D+(B), i.e., A• computes RF .

Proof. Let A• be a bounded complex of right F -acyclic objects. We claim that RF
is defined at A• and that F (A•)→ RF (A•) is an isomorphism in D+(B). Namely,
it holds for complexes with at most one nonzero right F -acyclic object for example
by Lemma 13.16.4. Next, suppose that An = 0 for n ̸∈ [a, b]. Using the “stupid”
truncations we obtain a termwise split short exact sequence of complexes

0→ σ≥a+1A
• → A• → σ≤aA

• → 0

see Homology, Section 12.15. Thus a distinguished triangle (σ≥a+1A
•, A•, σ≤aA

•).
By induction hypothesis RF is defined for the two outer complexes and these com-
plexes compute RF . Then the same is true for the middle one by Lemma 13.14.12.

Suppose that A• is a bounded below complex of acyclic objects such that RF is
defined at A•. To show that F (A•) → RF (A•) is an isomorphism in D+(B) it
suffices to show that Hi(F (A•)) → Hi(RF (A•)) is an isomorphism for all i. Pick
i. Consider the termwise split short exact sequence of complexes

0→ σ≥i+2A
• → A• → σ≤i+1A

• → 0.

Note that this induces a termwise split short exact sequence

0→ σ≥i+2F (A•)→ F (A•)→ σ≤i+1F (A•)→ 0.

Hence we get distinguished triangles

(σ≥i+2A
•, A•, σ≤i+1A

•) and (σ≥i+2F (A•), F (A•), σ≤i+1F (A•))

Since RF is defined at A• (by assumption) and at σ≤i+1A
• (by the first paragraph)

we see that RF is defined at σ≥i+1A
• and we get a distinghuished triangle

(RF (σ≥i+2A
•), RF (A•), RF (σ≤i+1A

•))

See Lemma 13.14.6. Using these distinguished triangles we obtain a map of exact
sequences

Hi(σ≥i+2F (A•)) //

��

Hi(F (A•)) //

α

��

Hi(σ≤i+1F (A•)) //

β

��

Hi+1(σ≥i+2F (A•))

��
Hi(RF (σ≥i+2A

•)) // Hi(RF (A•)) // Hi(RF (σ≤i+1A
•)) // Hi+1(RF (σ≥i+2A

•))

By the results of the first paragraph the map β is an isomorphism. By inspection
the objects on the upper left and the upper right are zero. Hence to finish the proof
it suffices to show that Hi(RF (σ≥i+2A

•)) = 0 and Hi+1(RF (σ≥i+2A
•)) = 0. This

follows immediately from Lemma 13.16.1. □

Proposition 13.16.8.05TA Let F : A → B be an additive functor of abelian categories.

6For example this holds if RF : D+(A)→ D+(B) is everywhere defined.

https://stacks.math.columbia.edu/tag/015E
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(1) If every object of A injects into an object acyclic for RF , then RF is
defined on all of K+(A) and we obtain an exact functor

RF : D+(A) −→ D+(B)
see (13.14.9.1). Moreover, any bounded below complex A• whose terms
are acyclic for RF computes RF .

(2) If every object of A is quotient of an object acyclic for LF , then LF is
defined on all of K−(A) and we obtain an exact functor

LF : D−(A) −→ D−(B)
see (13.14.9.1). Moreover, any bounded above complex A• whose terms
are acyclic for LF computes LF .

Proof. Assume every object of A injects into an object acyclic for RF . Let I be the
set of objects acyclic for RF . Let K• be a bounded below complex in A. By Lemma
13.15.5 there exists a quasi-isomorphism α : K• → I• with I• bounded below and
In ∈ I. Hence in order to prove (1) it suffices to show that F (I•)→ F ((I ′)•) is a
quasi-isomorphism when s : I• → (I ′)• is a quasi-isomorphism of bounded below
complexes of objects from I, see Lemma 13.14.15. Note that the cone C(s)• is an
acyclic bounded below complex all of whose terms are in I. Hence it suffices to
show: given an acyclic bounded below complex I• all of whose terms are in I the
complex F (I•) is acyclic.
Say In = 0 for n < n0. Setting Jn = Im(dn) we break I• into short exact se-
quences 0 → Jn → In+1 → Jn+1 → 0 for n ≥ n0. These sequences induce
distinguished triangles (Jn, In+1, Jn+1) in D+(A) by Lemma 13.12.1. For each
k ∈ Z denote Hk the assertion: For all n ≤ k the right derived functor RF is
defined at Jn and RiF (Jn) = 0 for i ̸= 0. Then Hk holds trivially for k ≤ n0.
If Hn holds, then, using Proposition 13.14.8, we see that RF is defined at Jn+1

and (RF (Jn), RF (In+1), RF (Jn+1)) is a distinguished triangle of D+(B). Thus
the long exact cohomology sequence (13.11.1.1) associated to this triangle gives an
exact sequence

0→ R−1F (Jn+1)→ R0F (Jn)→ F (In+1)→ R0F (Jn+1)→ 0
and gives that RiF (Jn+1) = 0 for i ̸∈ {−1, 0}. By Lemma 13.16.1 we see that
R−1F (Jn+1) = 0. This proves that Hn+1 is true hence Hk holds for all k. We also
conclude that

0→ R0F (Jn)→ F (In+1)→ R0F (Jn+1)→ 0
is short exact for all n. This in turn proves that F (I•) is exact.
The proof in the case of LF is dual. □

Lemma 13.16.9.015F Let F : A → B be an exact functor of abelian categories. Then
(1) every object of A is right acyclic for F ,
(2) RF : D+(A)→ D+(B) is everywhere defined,
(3) RF : D(A)→ D(B) is everywhere defined,
(4) every complex computes RF , in other words, the canonical map F (K•)→

RF (K•) is an isomorphism for all complexes, and
(5) RiF = 0 for i ̸= 0.

Proof. This is true because F transforms acyclic complexes into acyclic complexes
and quasi-isomorphisms into quasi-isomorphisms. Details omitted. □

https://stacks.math.columbia.edu/tag/015F
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13.17. Triangulated subcategories of the derived category

06UP LetA be an abelian category. In this section we look at certain strictly full saturated
triangulated subcategories D′ ⊂ D(A).

Let B ⊂ A be a weak Serre subcategory, see Homology, Definition 12.10.1 and
Lemma 12.10.3. We let DB(A) the full subcategory of D(A) whose objects are

Ob(DB(A)) = {X ∈ Ob(D(A)) | Hn(X) is an object of B for all n}

We also define D+
B (A) = D+(A) ∩ DB(A) and similarly for the other bounded

versions.

Lemma 13.17.1.06UQ Let A be an abelian category. Let B ⊂ A be a weak Serre sub-
category. The category DB(A) is a strictly full saturated triangulated subcategory
of D(A). Similarly for the bounded versions.

Proof. It is clear that DB(A) is an additive subcategory preserved under the trans-
lation functors. If X ⊕ Y is in DB(A), then both Hn(X) and Hn(Y ) are kernels
of maps between maps of objects of B as Hn(X ⊕ Y ) = Hn(X) ⊕Hn(Y ). Hence
both X and Y are in DB(A). By Lemma 13.4.16 it therefore suffices to show that
given a distinguished triangle (X,Y, Z, f, g, h) such that X and Y are in DB(A)
then Z is an object of DB(A). The long exact cohomology sequence (13.11.1.1) and
the definition of a weak Serre subcategory (see Homology, Definition 12.10.1) show
that Hn(Z) is an object of B for all n. Thus Z is an object of DB(A). □

We continue to assume that B is a weak Serre subcategory of the abelian category
A. Then B is an abelian category and the inclusion functor B → A is exact. Hence
we obtain a derived functor D(B)→ D(A), see Lemma 13.16.9. Clearly the functor
D(B)→ D(A) factors through a canonical exact functor

(13.17.1.1)06UR D(B) −→ DB(A)

After all a complex made from objects of B certainly gives rise to an object of DB(A)
and as distinguished triangles in DB(A) are exactly the distinguished triangles of
D(A) whose vertices are in DB(A) we see that the functor is exact since D(B) →
D(A) is exact. Similarly we obtain functors D+(B) → D+

B (A), D−(B) → D−
B (A),

and Db(B) → Db
B(A) for the bounded versions. A key question in many cases is

whether the displayed functor is an equivalence.

Now, suppose that B is a Serre subcategory of A. In this case we have the quotient
functor A → A/B, see Homology, Lemma 12.10.6. In this case DB(A) is the kernel
of the functor D(A)→ D(A/B). Thus we obtain a canonical functor

D(A)/DB(A) −→ D(A/B)

by Lemma 13.6.8. Similarly for the bounded versions.

Lemma 13.17.2.06XL Let A be an abelian category. Let B ⊂ A be a Serre subcategory.
Then D(A)→ D(A/B) is essentially surjective.

Proof. We will use the description of the category A/B in the proof of Homology,
Lemma 12.10.6. Let (X•, d•) be a complex of A/B. This means that Xi is an
object of A and di : Xi → Xi+1 is a morphism in A/B such that di ◦ di−1 = 0 in
A/B.

https://stacks.math.columbia.edu/tag/06UQ
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For i ≥ 0 we may write di = (si, f i) where si : Y i → Xi is a morphism of A
whose kernel and cokernel are in B (equivalently si becomes an isomorphism in the
quotient category) and f i : Y i → Xi+1 is a morphism of A. By induction we will
construct a commutative diagram

(X ′)1 // (X ′)2 // . . .

X0

<<

X1

OO

X2

OO

. . .

Y 0

s0

OO

f0

<<

Y 1

s1

OO

f1

::

Y 2

s2

OO

f2

<<

. . .

where the vertical arrows Xi → (X ′)i become isomorphisms in the quotient cate-
gory. Namely, we first let (X ′)1 = Coker(Y 0 → X0 ⊕X1) (or rather the pushout
of the diagram with arrows s0 and f0) which gives the first commutative diagram.
Next, we take (X ′)2 = Coker(Y 1 → (X ′)1 ⊕X2). And so on. Setting additionally
(X ′)n = Xn for n ≤ 0 we see that the map (X•, d•)→ ((X ′)•, (d′)•) is an isomor-
phism of complexes in A/B. Hence we may assume dn : Xn → Xn+1 is given by a
map Xn → Xn+1 in A for n ≥ 0.

Dually, for i < 0 we may write di = (gi, ti+1) where ti+1 : Xi+1 → Zi+1 is an
isomorphism in the quotient category and gi : Xi → Zi+1 is a morphism. By
induction we will construct a commutative diagram

. . . Z−2 Z−1 Z0

. . . X−2

t−2

OO

g−2

99

X−1

t−1

OO

g−1

;;

X0

t0

OO

. . . (X ′)−2

OO

// (X ′)−1

OO ;;

where the vertical arrows (X ′)i → Xi become isomorphisms in the quotient cate-
gory. Namely, we take (X ′)−1 = X−1 ×Z0 X0. Then we take (X ′)−2 = X−2 ×Z−1

(X ′)−1. And so on. Setting additionally (X ′)n = Xn for n ≥ 0 we see that the
map ((X ′)•, (d′)•) → (X•, d•) is an isomorphism of complexes in A/B. Hence we
may assume dn : Xn → Xn+1 is given by a map dn : Xn → Xn+1 in A for all
n ∈ Z.

In this case we know the compositions dn ◦ dn−1 are zero in A/B. If for n > 0 we
replace Xn by

(X ′)n = Xn/
∑

0<k≤n
Im(Im(Xk−2 → Xk)→ Xn)

then the compositions dn ◦ dn−1 are zero for n ≥ 0. (Similarly to the second
paragraph above we obtain an isomorphism of complexes (X•, d•)→ ((X ′)•, (d′)•).)
Finally, for n < 0 we replace Xn by

(X ′)n =
⋂

n≤k<0
(Xn → Xk)−1 Ker(Xk → Xk+2)
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and we argue in the same manner to get a complex in A whose image in A/B is
isomorphic to the given one. □

Lemma 13.17.3.06XM Let A be an abelian category. Let B ⊂ A be a Serre subcategory.
Suppose that the functor v : A → A/B has a left adjoint u : A/B → A such that
vu ∼= id. Then

D(A)/DB(A) = D(A/B)
and similarly for the bounded versions.

Proof. The functor D(v) : D(A) → D(A/B) is essentially surjective by Lemma
13.17.2. For an object X of D(A) the adjunction mapping cX : uvX → X maps
to an isomorphism in D(A/B) because vuv ∼= v by the assumption that vu ∼= id.
Thus in a distinguished triangle (uvX,X,Z, cX , g, h) the object Z is an object of
DB(A) as we see by looking at the long exact cohomology sequence. Hence cX
is an element of the multiplicative system used to define the quotient category
D(A)/DB(A). Thus uvX ∼= X in D(A)/DB(A). For X,Y ∈ Ob(A)) the map

HomD(A)/DB(A)(X,Y ) −→ HomD(A/B)(vX, vY )
is bijective because u gives an inverse (by the remarks above). □

For certain Serre subcategories B ⊂ A we can prove that the functor D(B) →
DB(A) is fully faithful.

Lemma 13.17.4.0FCL Let A be an abelian category. Let B ⊂ A be a Serre subcategory.
Assume that for every surjection X → Y with X ∈ Ob(A) and Y ∈ Ob(B) there
exists X ′ ⊂ X, X ′ ∈ Ob(B) which surjects onto Y . Then the functor D−(B) →
D−

B (A) of (13.17.1.1) is an equivalence.

Proof. Let X• be a bounded above complex of A such that Hi(X•) ∈ Ob(B) for
all i ∈ Z. Moreover, suppose we are given Bi ⊂ Xi, Bi ∈ Ob(B) for all i ∈ Z.
Claim: there exists a subcomplex Y • ⊂ X• such that

(1) Y • → X• is a quasi-isomorphism,
(2) Y i ∈ Ob(B) for all i ∈ Z, and
(3) Bi ⊂ Y i for all i ∈ Z.

To prove the claim, using the assumption of the lemma we first choose Ci ⊂ Ker(di :
Xi → Xi+1), Ci ∈ Ob(B) surjecting onto Hi(X•). Setting Di = Ci+di−1(Bi−1)+
Bi we find a subcomplex D• satisfying (2) and (3) such that Hi(D•) → Hi(X•)
is surjective for all i ∈ Z. For any choice of Ei ⊂ Xi with Ei ∈ Ob(B) and
di(Ei) ⊂ Di+1 +Ei+1 we see that setting Y i = Di +Ei gives a subcomplex whose
terms are in B and whose cohomology surjects onto the cohomology of X•. Clearly,
if di(Ei) = (Di+1 + Ei+1) ∩ Im(di) then we see that the map on cohomology is
also injective. For n ≫ 0 we can take En equal to 0. By descending induction we
can choose Ei for all i with the desired property. Namely, given Ei+1, Ei+2, . . . we
choose Ei ⊂ Xi such that di(Ei) = (Di+1 +Ei+1)∩ Im(di). This is possible by our
assumption in the lemma combined with the fact that (Di+1 +Ei+1)∩ Im(di) is in
B as B is a Serre subcategory of A.
The claim above implies the lemma. Essential surjectivity is immediate from the
claim. Let us prove faithfulness. Namely, suppose we have a morphism f : U• → V •

of bounded above complexes of B whose image in D(A) is zero. Then there exists
a quasi-isomorphism s : V • → X• into a bounded above complex of A such that

https://stacks.math.columbia.edu/tag/06XM
https://stacks.math.columbia.edu/tag/0FCL
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s◦f is homotopic to zero. Choose a homotopy hi : U i → Xi−1 between 0 and s◦f .
Apply the claim with Bi = hi+1(U i+1) + si(V i). The resulting map s′ : V • → Y •

is a quasi-isomorphism as well and s′ ◦ f is homotopic to zero as is clear from the
fact that hi factors through Y i−1. This proves faithfulness. Fully faithfulness is
proved in the exact same manner. □

13.18. Injective resolutions

013G In this section we prove some lemmas regarding the existence of injective resolutions
in abelian categories having enough injectives.

Definition 13.18.1.013I Let A be an abelian category. Let A ∈ Ob(A). An injective
resolution of A is a complex I• together with a map A→ I0 such that:

(1) We have In = 0 for n < 0.
(2) Each In is an injective object of A.
(3) The map A→ I0 is an isomorphism onto Ker(d0).
(4) We have Hi(I•) = 0 for i > 0.

Hence A[0]→ I• is a quasi-isomorphism. In other words the complex
. . .→ 0→ A→ I0 → I1 → . . .

is acyclic. Let K• be a complex in A. An injective resolution of K• is a complex
I• together with a map α : K• → I• of complexes such that

(1) We have In = 0 for n≪ 0, i.e., I• is bounded below.
(2) Each In is an injective object of A.
(3) The map α : K• → I• is a quasi-isomorphism.

In other words an injective resolution K• → I• gives rise to a diagram

. . . // Kn−1

��

// Kn

��

// Kn+1

��

// . . .

. . . // In−1 // In // In+1 // . . .

which induces an isomorphism on cohomology objects in each degree. An injective
resolution of an object A of A is almost the same thing as an injective resolution
of the complex A[0].

Lemma 13.18.2.013J Let A be an abelian category. Let K• be a complex of A.
(1) If K• has an injective resolution then Hn(K•) = 0 for n≪ 0.
(2) If Hn(K•) = 0 for all n≪ 0 then there exists a quasi-isomorphism K• →

L• with L• bounded below.

Proof. Omitted. For the second statement use L• = τ≥nK
• for some n ≪ 0. See

Homology, Section 12.15 for the definition of the truncation τ≥n. □

Lemma 13.18.3.013K Let A be an abelian category. Assume A has enough injectives.
(1) Any object of A has an injective resolution.
(2) If Hn(K•) = 0 for all n≪ 0 then K• has an injective resolution.
(3) If K• is a complex with Kn = 0 for n < a, then there exists an injective

resolution α : K• → I• with In = 0 for n < a such that each αn : Kn →
In is injective.

https://stacks.math.columbia.edu/tag/013I
https://stacks.math.columbia.edu/tag/013J
https://stacks.math.columbia.edu/tag/013K
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Proof. Proof of (1). First choose an injection A→ I0 of A into an injective object
of A. Next, choose an injection I0/A → I1 into an injective object of A. Denote
d0 the induced map I0 → I1. Next, choose an injection I1/ Im(d0) → I2 into
an injective object of A. Denote d1 the induced map I1 → I2. And so on. By
Lemma 13.18.2 part (2) follows from part (3). Part (3) is a special case of Lemma
13.15.5. □

Lemma 13.18.4.013R Let A be an abelian category. Let K• be an acyclic complex. Let
I• be bounded below and consisting of injective objects. Any morphism K• → I•

is homotopic to zero.

Proof. Let α : K• → I• be a morphism of complexes. Assume that αj = 0 for
j < n. We will show that there exists a morphism h : Kn+1 → In such that
αn = h ◦ d. Thus α will be homotopic to the morphism of complexes β defined by

βj =

 0 if j ≤ n
αn+1 − d ◦ h if j = n+ 1

αj if j > n+ 1
This will clearly prove the lemma (by induction). To prove the existence of h note
that αn|dn−1(Kn−1) = 0 since αn−1 = 0. Since K• is acyclic we have dn−1(Kn−1) =
Ker(Kn → Kn+1). Hence we can think of αn as a map into In defined on the
subobject Im(Kn → Kn+1) of Kn+1. By injectivity of the object In we can extend
this to a map h : Kn+1 → In as desired. □

Remark 13.18.5.05TF Let A be an abelian category. Using the fact that K(A) is a
triangulated category we may use Lemma 13.18.4 to obtain proofs of some of the
lemmas below which are usually proved by chasing through diagrams. Namely,
suppose that α : K• → L• is a quasi-isomorphism of complexes. Then

(K•, L•, C(α)•, α, i,−p)
is a distinguished triangle in K(A) (Lemma 13.9.14) and C(α)• is an acyclic com-
plex (Lemma 13.11.2). Next, let I• be a bounded below complex of injective objects.
Then

HomK(A)(C(α)•, I•) // HomK(A)(L•, I•) // HomK(A)(K•, I•)

rr
HomK(A)(C(α)•[−1], I•)

is an exact sequence of abelian groups, see Lemma 13.4.2. At this point Lemma
13.18.4 guarantees that the outer two groups are zero and hence HomK(A)(L•, I•) =
HomK(A)(K•, I•).

Lemma 13.18.6.013P Let A be an abelian category. Consider a solid diagram

K•
α
//

γ

��

L•

β}}
I•

where I• is bounded below and consists of injective objects, and α is a quasi-
isomorphism.

https://stacks.math.columbia.edu/tag/013R
https://stacks.math.columbia.edu/tag/05TF
https://stacks.math.columbia.edu/tag/013P
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(1) There exists a map of complexes β making the diagram commute up to
homotopy.

(2) If α is injective in every degree then we can find a β which makes the
diagram commute.

Proof. The “correct” proof of part (1) is explained in Remark 13.18.5. We also give
a direct proof here.

We first show that (2) implies (1). Namely, let α̃ : K → L̃•, π, s be as in Lemma
13.9.6. Since α̃ is injective by (2) there exists a morphism β̃ : L̃• → I• such that
γ = β̃ ◦ α̃. Set β = β̃ ◦ s. Then we have

β ◦ α = β̃ ◦ s ◦ π ◦ α̃ ∼ β̃ ◦ α̃ = γ

as desired.

Assume that α : K• → L• is injective. Suppose we have already defined β in all
degrees ≤ n − 1 compatible with differentials and such that γj = βj ◦ αj for all
j ≤ n− 1. Consider the commutative solid diagram

Kn−1 //

γ

��

α

��

Kn

γ

��

α

��
Ln−1 //

β
��

Ln

��
In−1 // In

Thus we see that the dotted arrow is prescribed on the subobjects α(Kn) and
dn−1(Ln−1). Moreover, these two arrows agree on α(dn−1(Kn−1)). Hence if

(13.18.6.1)013Q α(dn−1(Kn−1)) = α(Kn) ∩ dn−1(Ln−1)

then these morphisms glue to a morphism α(Kn) + dn−1(Ln−1) → In and, using
the injectivity of In, we can extend this to a morphism from all of Ln into In.
After this by induction we get the morphism β for all n simultaneously (note that
we can set βn = 0 for all n ≪ 0 since I• is bounded below – in this way starting
the induction).

It remains to prove the equality (13.18.6.1). The reader is encouraged to argue this
for themselves with a suitable diagram chase. Nonetheless here is our argument.
Note that the inclusion α(dn−1(Kn−1)) ⊂ α(Kn) ∩ dn−1(Ln−1) is obvious. Take
an object T of A and a morphism x : T → Ln whose image is contained in the
subobject α(Kn)∩ dn−1(Ln−1). Since α is injective we see that x = α ◦x′ for some
x′ : T → Kn. Moreover, since x lies in dn−1(Ln−1) we see that dn ◦ x = 0. Hence
using injectivity of α again we see that dn ◦ x′ = 0. Thus x′ gives a morphism
[x′] : T → Hn(K•). On the other hand the corresponding map [x] : T → Hn(L•)
induced by x is zero by assumption. Since α is a quasi-isomorphism we conclude
that [x′] = 0. This of course means exactly that the image of x′ is contained in
dn−1(Kn−1) and we win. □
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Lemma 13.18.7.013S Let A be an abelian category. Consider a solid diagram

K•
α
//

γ

��

L•

βi}}
I•

where I• is bounded below and consists of injective objects, and α is a quasi-
isomorphism. Any two morphisms β1, β2 making the diagram commute up to ho-
motopy are homotopic.

Proof. This follows from Remark 13.18.5. We also give a direct argument here.

Let α̃ : K → L̃•, π, s be as in Lemma 13.9.6. If we can show that β1◦π is homotopic
to β2 ◦ π, then we deduce that β1 ∼ β2 because π ◦ s is the identity. Hence we may
assume αn : Kn → Ln is the inclusion of a direct summand for all n. Thus we get
a short exact sequence of complexes

0→ K• → L• →M• → 0

which is termwise split and such that M• is acyclic. We choose splittings Ln =
Kn ⊕Mn, so we have βni : Kn ⊕Mn → In and γn : Kn → In. In this case the
condition on βi is that there are morphisms hni : Kn → In−1 such that

γn − βni |Kn = d ◦ hni + hn+1
i ◦ d

Thus we see that

βn1 |Kn − βn2 |Kn = d ◦ (hn1 − hn2 ) + (hn+1
1 − hn+1

2 ) ◦ d

Consider the map hn : Kn⊕Mn → In−1 which equals hn1−hn2 on the first summand
and zero on the second. Then we see that

βn1 − βn2 − (d ◦ hn + hn+1) ◦ d

is a morphism of complexes L• → I• which is identically zero on the subcomplex
K•. Hence it factors as L• →M• → I•. Thus the result of the lemma follows from
Lemma 13.18.4. □

Lemma 13.18.8.05TG Let A be an abelian category. Let I• be bounded below complex
consisting of injective objects. Let L• ∈ K(A). Then

MorK(A)(L•, I•) = MorD(A)(L•, I•).

Proof. Let a be an element of the right hand side. We may represent a = γα−1

where α : K• → L• is a quasi-isomorphism and γ : K• → I• is a map of complexes.
By Lemma 13.18.6 we can find a morphism β : L• → I• such that β◦α is homotopic
to γ. This proves that the map is surjective. Let b be an element of the left hand
side which maps to zero in the right hand side. Then b is the homotopy class of
a morphism β : L• → I• such that there exists a quasi-isomorphism α : K• → L•

with β ◦ α homotopic to zero. Then Lemma 13.18.7 shows that β is homotopic to
zero also, i.e., b = 0. □

Lemma 13.18.9.013T Let A be an abelian category. Assume A has enough injectives.
For any short exact sequence 0 → A• → B• → C• → 0 of Comp+(A) there exists

https://stacks.math.columbia.edu/tag/013S
https://stacks.math.columbia.edu/tag/05TG
https://stacks.math.columbia.edu/tag/013T
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a commutative diagram in Comp+(A)

0 // A• //

��

B• //

��

C• //

��

0

0 // I•
1

// I•
2

// I•
3

// 0

where the vertical arrows are injective resolutions and the rows are short exact
sequences of complexes. In fact, given any injective resolution A• → I• we may
assume I•

1 = I•.

Proof. Step 1. Choose an injective resolution A• → I• (see Lemma 13.18.3) or
use the given one. Recall that Comp+(A) is an abelian category, see Homology,
Lemma 12.13.9. Hence we may form the pushout along the map A• → I• to get

0 // A• //

��

B• //

��

C• //

��

0

0 // I• // E• // C• // 0
Because of the 5-lemma and the last assertion of Homology, Lemma 12.13.12 the
map B• → A• is a quasi-isomorphism. Note that the lower short exact sequence is
termwise split, see Homology, Lemma 12.27.2. Hence it suffices to prove the lemma
when 0→ A• → B• → C• → 0 is termwise split.
Step 2. Choose splittings. In other words, write Bn = An ⊕ Cn. Denote δ : C• →
A•[1] the morphism as in Homology, Lemma 12.14.10. Choose injective resolutions
f1 : A• → I•

1 and f3 : C• → I•
3 . (If A• is a complex of injectives, then use I•

1 = A•.)
We may assume f3 is injective in every degree. By Lemma 13.18.6 we may find a
morphism δ′ : I•

3 → I•
1 [1] such that δ′ ◦ f3 = f1[1] ◦ δ (equality of morphisms of

complexes). Set In2 = In1 ⊕ In3 . Define

dnI2
=
(
dnI1

(δ′)n
0 dnI3

)
and define the maps Bn → In2 to be given as the sum of the maps An → In1 and
Cn → In3 . Everything is clear. □

13.19. Projective resolutions

0643 This section is dual to Section 13.18. We give definitions and state results, but we
do not reprove the lemmas.

Definition 13.19.1.0644 Let A be an abelian category. Let A ∈ Ob(A). An projective
resolution of A is a complex P • together with a map P 0 → A such that:

(1) We have Pn = 0 for n > 0.
(2) Each Pn is an projective object of A.
(3) The map P 0 → A induces an isomorphism Coker(d−1)→ A.
(4) We have Hi(P •) = 0 for i < 0.

Hence P • → A[0] is a quasi-isomorphism. In other words the complex
. . .→ P−1 → P 0 → A→ 0→ . . .

is acyclic. Let K• be a complex in A. An projective resolution of K• is a complex
P • together with a map α : P • → K• of complexes such that

https://stacks.math.columbia.edu/tag/0644
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(1) We have Pn = 0 for n≫ 0, i.e., P • is bounded above.
(2) Each Pn is an projective object of A.
(3) The map α : P • → K• is a quasi-isomorphism.

Lemma 13.19.2.0645 Let A be an abelian category. Let K• be a complex of A.
(1) If K• has a projective resolution then Hn(K•) = 0 for n≫ 0.
(2) If Hn(K•) = 0 for n≫ 0 then there exists a quasi-isomorphism L• → K•

with L• bounded above.

Proof. Dual to Lemma 13.18.2. □

Lemma 13.19.3.0646 Let A be an abelian category. Assume A has enough projectives.
(1) Any object of A has a projective resolution.
(2) If Hn(K•) = 0 for all n≫ 0 then K• has a projective resolution.
(3) If K• is a complex with Kn = 0 for n > a, then there exists a projective

resolution α : P • → K• with Pn = 0 for n > a such that each αn : Pn →
Kn is surjective.

Proof. Dual to Lemma 13.18.3. □

Lemma 13.19.4.0647 Let A be an abelian category. Let K• be an acyclic complex. Let
P • be bounded above and consisting of projective objects. Any morphism P • → K•

is homotopic to zero.

Proof. Dual to Lemma 13.18.4. □

Remark 13.19.5.0648 Let A be an abelian category. Suppose that α : K• → L•

is a quasi-isomorphism of complexes. Let P • be a bounded above complex of
projectives. Then

HomK(A)(P •,K•) −→ HomK(A)(P •, L•)
is an isomorphism. This is dual to Remark 13.18.5.

Lemma 13.19.6.0649 Let A be an abelian category. Consider a solid diagram

K• L•
α
oo

P •

OO

β

==

where P • is bounded above and consists of projective objects, and α is a quasi-
isomorphism.

(1) There exists a map of complexes β making the diagram commute up to
homotopy.

(2) If α is surjective in every degree then we can find a β which makes the
diagram commute.

Proof. Dual to Lemma 13.18.6. □

Lemma 13.19.7.064A Let A be an abelian category. Consider a solid diagram

K• L•
α
oo

P •

OO

βi

==

https://stacks.math.columbia.edu/tag/0645
https://stacks.math.columbia.edu/tag/0646
https://stacks.math.columbia.edu/tag/0647
https://stacks.math.columbia.edu/tag/0648
https://stacks.math.columbia.edu/tag/0649
https://stacks.math.columbia.edu/tag/064A
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where P • is bounded above and consists of projective objects, and α is a quasi-
isomorphism. Any two morphisms β1, β2 making the diagram commute up to ho-
motopy are homotopic.

Proof. Dual to Lemma 13.18.7. □

Lemma 13.19.8.064B Let A be an abelian category. Let P • be bounded above complex
consisting of projective objects. Let L• ∈ K(A). Then

MorK(A)(P •, L•) = MorD(A)(P •, L•).

Proof. Dual to Lemma 13.18.8. □

Lemma 13.19.9.064C Let A be an abelian category. Assume A has enough projectives.
For any short exact sequence 0 → A• → B• → C• → 0 of Comp+(A) there exists
a commutative diagram in Comp+(A)

0 // P •
1

//

��

P •
2

//

��

P •
3

//

��

0

0 // A• // B• // C• // 0
where the vertical arrows are projective resolutions and the rows are short exact
sequences of complexes. In fact, given any projective resolution P • → C• we may
assume P •

3 = P •.

Proof. Dual to Lemma 13.18.9. □

Lemma 13.19.10.064D Let A be an abelian category. Let P •, K• be complexes. Let
n ∈ Z. Assume that

(1) P • is a bounded complex consisting of projective objects,
(2) P i = 0 for i < n, and
(3) Hi(K•) = 0 for i ≥ n.

Then HomK(A)(P •,K•) = HomD(A)(P •,K•) = 0.

Proof. The first equality follows from Lemma 13.19.8. Note that there is a distin-
guished triangle

(τ≤n−1K
•,K•, τ≥nK

•, f, g, h)
by Remark 13.12.4. Hence, by Lemma 13.4.2 it suffices to prove HomK(A)(P •, τ≤n−1K

•) =
0 and HomK(A)(P •, τ≥nK

•) = 0. The first vanishing is trivial and the second is
Lemma 13.19.4. □

Lemma 13.19.11.064E Let A be an abelian category. Let β : P • → L• and α : E• → L•

be maps of complexes. Let n ∈ Z. Assume
(1) P • is a bounded complex of projectives and P i = 0 for i < n,
(2) Hi(α) is an isomorphism for i > n and surjective for i = n.

Then there exists a map of complexes γ : P • → E• such that α ◦ γ and β are
homotopic.

Proof. Consider the cone C• = C(α)• with map i : L• → C•. Note that i ◦ β is
zero by Lemma 13.19.10. Hence we can lift β to E• by Lemma 13.4.2. □

https://stacks.math.columbia.edu/tag/064B
https://stacks.math.columbia.edu/tag/064C
https://stacks.math.columbia.edu/tag/064D
https://stacks.math.columbia.edu/tag/064E
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13.20. Right derived functors and injective resolutions

0156 At this point we can use the material above to define the right derived functors
of an additive functor between an abelian category having enough injectives and a
general abelian category.

Lemma 13.20.1.05TH Let A be an abelian category. Let I ∈ Ob(A) be an injective
object. Let I• be a bounded below complex of injectives in A.

(1) I• computes RF relative to Qis+(A) for any exact functor F : K+(A)→
D into any triangulated category D.

(2) I is right acyclic for any additive functor F : A → B into any abelian
category B.

Proof. Part (2) is a direct consequences of part (1) and Definition 13.15.3. To prove
(1) let α : I• → K• be a quasi-isomorphism into a complex. By Lemma 13.18.6 we
see that α has a left inverse. Hence the category I•/Qis+(A) is essentially constant
with value id : I• → I•. Thus also the ind-object

I•/Qis+(A) −→ D, (I• → K•) 7−→ F (K•)
is essentially constant with value F (I•). This proves (1), see Definitions 13.14.2
and 13.14.10. □

Lemma 13.20.2.05TI Let A be an abelian category with enough injectives.
(1) For any exact functor F : K+(A)→ D into a triangulated category D the

right derived functor
RF : D+(A) −→ D

is everywhere defined.
(2) For any additive functor F : A → B into an abelian category B the right

derived functor
RF : D+(A) −→ D+(B)

is everywhere defined.

Proof. Combine Lemma 13.20.1 and Proposition 13.16.8 for the second assertion.
To see the first assertion combine Lemma 13.18.3, Lemma 13.20.1, Lemma 13.14.14,
and Equation (13.14.9.1). □

Lemma 13.20.3.0159 Let A be an abelian category with enough injectives. Let F :
A → B be an additive functor.

(1) The functor RF is an exact functor D+(A)→ D+(B).
(2) The functor RF induces an exact functor K+(A)→ D+(B).
(3) The functor RF induces a δ-functor Comp+(A)→ D+(B).
(4) The functor RF induces a δ-functor A → D+(B).

Proof. This lemma simply reviews some of the results obtained so far. Note that
by Lemma 13.20.2 RF is everywhere defined. Here are some references:

(1) The derived functor is exact: This boils down to Lemma 13.14.6.
(2) This is true because K+(A)→ D+(A) is exact and compositions of exact

functors are exact.
(3) This is true because Comp+(A) → D+(A) is a δ-functor, see Lemma

13.12.1.

https://stacks.math.columbia.edu/tag/05TH
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(4) This is true because A → Comp+(A) is exact and precomposing a δ-
functor by an exact functor gives a δ-functor.

□

Lemma 13.20.4.015B Let A be an abelian category with enough injectives. Let F :
A → B be a left exact functor.

(1) For any short exact sequence 0 → A• → B• → C• → 0 of complexes in
Comp+(A) there is an associated long exact sequence

. . .→ Hi(RF (A•))→ Hi(RF (B•))→ Hi(RF (C•))→ Hi+1(RF (A•))→ . . .

(2) The functors RiF : A → B are zero for i < 0. Also R0F = F : A → B.
(3) We have RiF (I) = 0 for i > 0 and I injective.
(4) The sequence (RiF, δ) forms a universal δ-functor (see Homology, Defini-

tion 12.12.3) from A to B.
Proof. This lemma simply reviews some of the results obtained so far. Note that
by Lemma 13.20.2 RF is everywhere defined. Here are some references:

(1) This follows from Lemma 13.20.3 part (3) combined with the long exact
cohomology sequence (13.11.1.1) for D+(B).

(2) This is Lemma 13.16.3.
(3) This is the fact that injective objects are acyclic.
(4) This is Lemma 13.16.6.

□

13.21. Cartan-Eilenberg resolutions

015G This section can be expanded. The material can be generalized and applied in
more cases. Resolutions need not use injectives and the method also works in the
unbounded case in some situations.
Definition 13.21.1.015H Let A be an abelian category. Let K• be a bounded below
complex. A Cartan-Eilenberg resolution of K• is given by a double complex I•,•

and a morphism of complexes ϵ : K• → I•,0 with the following properties:
(1) There exists a i≪ 0 such that Ip,q = 0 for all p < i and all q.
(2) We have Ip,q = 0 if q < 0.
(3) The complex Ip,• is an injective resolution of Kp.
(4) The complex Ker(dp,•1 ) is an injective resolution of Ker(dpK).
(5) The complex Im(dp,•1 ) is an injective resolution of Im(dpK).
(6) The complex Hp

I (I•,•) is an injective resolution of Hp(K•).

Lemma 13.21.2.015I Let A be an abelian category with enough injectives. Let K• be
a bounded below complex. There exists a Cartan-Eilenberg resolution of K•.
Proof. Suppose that Kp = 0 for p < n. Decompose K• into short exact sequences
as follows: Set Zp = Ker(dp), Bp = Im(dp−1), Hp = Zp/Bp, and consider

0→ Zn → Kn → Bn+1 → 0
0→ Bn+1 → Zn+1 → Hn+1 → 0
0→ Zn+1 → Kn+1 → Bn+2 → 0
0→ Bn+2 → Zn+2 → Hn+2 → 0

. . .

Set Ip,q = 0 for p < n. Inductively we choose injective resolutions as follows:

https://stacks.math.columbia.edu/tag/015B
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(1) Choose an injective resolution Zn → Jn,•Z .
(2) Using Lemma 13.18.9 choose injective resolutions Kn → In,•, Bn+1 →

Jn+1,•
B , and an exact sequence of complexes 0→ Jn,•Z → In,• → Jn+1,•

B →
0 compatible with the short exact sequence 0→ Zn → Kn → Bn+1 → 0.

(3) Using Lemma 13.18.9 choose injective resolutions Zn+1 → Jn+1,•
Z , Hn+1 →

Jn+1,•
H , and an exact sequence of complexes 0 → Jn+1,•

B → Jn+1,•
Z →

Jn+1,•
H → 0 compatible with the short exact sequence 0 → Bn+1 →
Zn+1 → Hn+1 → 0.

(4) Etc.
Taking as maps d•

1 : Ip,• → Ip+1,• the compositions Ip,• → Jp+1,•
B → Jp+1,•

Z →
Ip+1,• everything is clear. □

Lemma 13.21.3.015J Let F : A → B be a left exact functor of abelian categories. Let
K• be a bounded below complex of A. Let I•,• be a Cartan-Eilenberg resolution
for K•. The spectral sequences (′Er,

′dr)r≥0 and (′′Er,
′′dr)r≥0 associated to the

double complex F (I•,•) satisfy the relations
′Ep,q1 = RqF (Kp) and ′′Ep,q2 = RpF (Hq(K•))

Moreover, these spectral sequences are bounded, converge to H∗(RF (K•)), and the
associated induced filtrations on Hn(RF (K•)) are finite.

Proof. We will use the following remarks without further mention:
(1) As Ip,• is an injective resolution of Kp we see that RF is defined at Kp[0]

with value F (Ip,•).
(2) As Hp

I (I•,•) is an injective resolution of Hp(K•) the derived functor RF
is defined at Hp(K•)[0] with value F (Hp

I (I•,•)).
(3) By Homology, Lemma 12.25.4 the total complex Tot(I•,•) is an injective

resolution of K•. Hence RF is defined at K• with value F (Tot(I•,•)).
Consider the two spectral sequences associated to the double complex L•,• =
F (I•,•), see Homology, Lemma 12.25.1. These are both bounded, converge to
H∗(Tot(L•,•)), and induce finite filtrations onHn(Tot(L•,•)), see Homology, Lemma
12.25.3. Since Tot(L•,•) = Tot(F (I•,•)) = F (Tot(I•,•)) computes Hn(RF (K•)) we
find the final assertion of the lemma holds true.

Computation of the first spectral sequence. We have ′Ep,q1 = Hq(Lp,•) in other
words

′Ep,q1 = Hq(F (Ip,•)) = RqF (Kp)
as desired. Observe for later use that the maps ′dp,q1 : ′Ep,q1 → ′Ep+1,q

1 are the
maps RqF (Kp)→ RqF (Kp+1) induced by Kp → Kp+1 and the fact that RqF is a
functor.

Computation of the second spectral sequence. We have ′′Ep,q1 = Hq(L•,p) =
Hq(F (I•,p)). Note that the complex I•,p is bounded below, consists of injectives,
and moreover each kernel, image, and cohomology group of the differentials is an
injective object of A. Hence we can split the differentials, i.e., each differential is
a split surjection onto a direct summand. It follows that the same is true after
applying F . Hence ′′Ep,q1 = F (Hq(I•,p)) = F (Hq

I (I•,p)). The differentials on this
are (−1)q times F applied to the differential of the complex Hp

I (I•,•) which is an
injective resolution of Hp(K•). Hence the description of the E2 terms. □

https://stacks.math.columbia.edu/tag/015J
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Remark 13.21.4.015K The spectral sequences of Lemma 13.21.3 are functorial in the
complex K•. This follows from functoriality properties of Cartan-Eilenberg res-
olutions. On the other hand, they are both examples of a more general spectral
sequence which may be associated to a filtered complex of A. The functoriality will
follow from its construction. We will return to this in the section on the filtered
derived category, see Remark 13.26.15.

13.22. Composition of right derived functors

015L Sometimes we can compute the right derived functor of a composition. Suppose
that A,B, C be abelian categories. Let F : A → B and G : B → C be left exact
functors. Assume that the right derived functors RF : D+(A) → D+(B), RG :
D+(B) → D+(C), and R(G ◦ F ) : D+(A) → D+(C) are everywhere defined. Then
there exists a canonical transformation

t : R(G ◦ F ) −→ RG ◦RF

of functors from D+(A) to D+(C), see Lemma 13.14.16. This transformation need
not always be an isomorphism.

Lemma 13.22.1.015M Let A,B, C be abelian categories. Let F : A → B and G : B → C
be left exact functors. Assume A, B have enough injectives. The following are
equivalent

(1) F (I) is right acyclic for G for each injective object I of A, and
(2) the canonical map

t : R(G ◦ F ) −→ RG ◦RF.

is isomorphism of functors from D+(A) to D+(C).

Proof. If (2) holds, then (1) follows by evaluating the isomorphism t on RF (I) =
F (I). Conversely, assume (1) holds. Let A• be a bounded below complex of A.
Choose an injective resolution A• → I•. The map t is given (see proof of Lemma
13.14.16) by the maps

R(G ◦ F )(A•) = (G ◦ F )(I•) = G(F (I•)))→ RG(F (I•)) = RG(RF (A•))

where the arrow is an isomorphism by Lemma 13.16.7. □

Lemma 13.22.2 (Grothendieck spectral sequence).015N With assumptions as in Lemma
13.22.1 and assuming the equivalent conditions (1) and (2) hold. Let X be an
object ofD+(A). There exists a spectral sequence (Er, dr)r≥0 consisting of bigraded
objects Er of C with dr of bidegree (r,−r + 1) and with

Ep,q2 = RpG(Hq(RF (X)))

Moreover, this spectral sequence is bounded, converges to H∗(R(G ◦ F )(X)), and
induces a finite filtration on each Hn(R(G ◦ F )(X)).

For an object A of A we get Ep,q2 = RpG(RqF (A)) converging to Rp+q(G ◦ F )(A).

Proof. We may represent X by a bounded below complex A•. Choose an injective
resolution A• → I•. Choose a Cartan-Eilenberg resolution F (I•) → I•,• using
Lemma 13.21.2. Apply the second spectral sequence of Lemma 13.21.3. □
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13.23. Resolution functors

013U Let A be an abelian category with enough injectives. Denote I the full additive
subcategory of A whose objects are the injective objects of A. It turns out that
K+(I) and D+(A) are equivalent in this case (see Proposition 13.23.1). For many
purposes it therefore makes sense to think of D+(A) as the (easier to grok) category
K+(I) in this case.

Proposition 13.23.1.013V Let A be an abelian category. Assume A has enough injec-
tives. Denote I ⊂ A the strictly full additive subcategory whose objects are the
injective objects of A. The functor

K+(I) −→ D+(A)
is exact, fully faithful and essentially surjective, i.e., an equivalence of triangulated
categories.

Proof. It is clear that the functor is exact. It is essentially surjective by Lemma
13.18.3. Fully faithfulness is a consequence of Lemma 13.18.8. □

Proposition 13.23.1 implies that we can find resolution functors. It turns out that
we can prove resolution functors exist even in some cases where the abelian category
A is a “big” category, i.e., has a class of objects.

Definition 13.23.2.013W Let A be an abelian category with enough injectives. A reso-
lution functor7 for A is given by the following data:

(1) for all K• ∈ Ob(K+(A)) a bounded below complex of injectives j(K•),
and

(2) for all K• ∈ Ob(K+(A)) a quasi-isomorphism iK• : K• → j(K•).

Lemma 13.23.3.05TJ Let A be an abelian category with enough injectives. Given a
resolution functor (j, i) there is a unique way to turn j into a functor and i into a
2-isomorphism producing a 2-commutative diagram

K+(A)

$$

j
// K+(I)

zz
D+(A)

where I is the full additive subcategory of A consisting of injective objects.

Proof. For every morphism α : K• → L• of K+(A) there is a unique morphism
j(α) : j(K•)→ j(L•) in K+(I) such that

K•
α

//

iK•

��

L•

iL•

��
j(K•)

j(α) // j(L•)

is commutative in K+(A). To see this either use Lemmas 13.18.6 and 13.18.7 or
the equivalent Lemma 13.18.8. The uniqueness implies that j is a functor, and the
commutativity of the diagram implies that i gives a 2-morphism which witnesses the
2-commutativity of the diagram of categories in the statement of the lemma. □

7This is likely nonstandard terminology.
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Lemma 13.23.4.013X Let A be an abelian category. Assume A has enough injectives.
Then a resolution functor j exists and is unique up to unique isomorphism of
functors.

Proof. Consider the set of all objects K• of K+(A). (Recall that by our conventions
any category has a set of objects unless mentioned otherwise.) By Lemma 13.18.3
every object has an injective resolution. By the axiom of choice we can choose for
each K• an injective resolution iK• : K• → j(K•). □

Lemma 13.23.5.014W Let A be an abelian category with enough injectives. Any reso-
lution functor j : K+(A)→ K+(I) is exact.

Proof. Denote iK• : K• → j(K•) the canonical maps of Definition 13.23.2. First we
discuss the existence of the functorial isomorphism j(K•[1])→ j(K•)[1]. Consider
the diagram

K•[1]

iK•[1]

��

K•[1]

iK• [1]
��

j(K•[1]) ξK• // j(K•)[1]
By Lemmas 13.18.6 and 13.18.7 there exists a unique dotted arrow ξK• in K+(I)
making the diagram commute in K+(A). We omit the verification that this gives
a functorial isomorphism. (Hint: use Lemma 13.18.7 again.)
Let (K•, L•,M•, f, g, h) be a distinguished triangle of K+(A). We have to show
that (j(K•), j(L•), j(M•), j(f), j(g), ξK•◦j(h)) is a distinguished triangle ofK+(I).
Note that we have a commutative diagram

K•
f

//

��

L•
g
//

��

M•
h

//

��

K•[1]

��
j(K•)

j(f) // j(L•)
j(g) // j(M•)

ξK• ◦j(h) // j(K•)[1]

in K+(A) whose vertical arrows are the quasi-isomorphisms iK , iL, iM . Hence we
see that the image of (j(K•), j(L•), j(M•), j(f), j(g), ξK• ◦ j(h)) in D+(A) is iso-
morphic to a distinguished triangle and hence a distinguished triangle by TR1.
Thus we see from Lemma 13.4.18 that (j(K•), j(L•), j(M•), j(f), j(g), ξK• ◦ j(h))
is a distinguished triangle in K+(I). □

Lemma 13.23.6.05TK Let A be an abelian category which has enough injectives. Let j
be a resolution functor. Write Q : K+(A)→ D+(A) for the natural functor. Then
j = j′ ◦Q for a unique functor j′ : D+(A) → K+(I) which is quasi-inverse to the
canonical functor K+(I)→ D+(A).

Proof. By Lemma 13.11.6 Q is a localization functor. To prove the existence of j′

it suffices to show that any element of Qis+(A) is mapped to an isomorphism under
the functor j, see Lemma 13.5.7. This is true by the remarks following Definition
13.23.2. □

Remark 13.23.7.013Y Suppose that A is a “big” abelian category with enough injectives
such as the category of abelian groups. In this case we have to be slightly more
careful in constructing our resolution functor since we cannot use the axiom of
choice with a quantifier ranging over a class. But note that the proof of the lemma
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does show that any two localization functors are canonically isomorphic. Namely,
given quasi-isomorphisms i : K• → I• and i′ : K• → J• of a bounded below
complex K• into bounded below complexes of injectives there exists a unique(!)
morphism a : I• → J• in K+(I) such that i′ = i ◦ a as morphisms in K+(I).
Hence the only issue is existence, and we will see how to deal with this in the next
section.

13.24. Functorial injective embeddings and resolution functors

0140 In this section we redo the construction of a resolution functor K+(A) → K+(I)
in case the category A has functorial injective embeddings. There are two reasons
for this: (1) the proof is easier and (2) the construction also works if A is a “big”
abelian category. See Remark 13.24.3 below.
Let A be an abelian category. As before denote I the additive full subcategory
of A consisting of injective objects. Consider the category InjRes(A) of arrows
α : K• → I• where K• is a bounded below complex of A, I• is a bounded below
complex of injectives of A and α is a quasi-isomorphism. In other words, α is an
injective resolution and K• is bounded below. There is an obvious functor

s : InjRes(A) −→ Comp+(A)
defined by (α : K• → I•) 7→ K•. There is also a functor

t : InjRes(A) −→ K+(I)
defined by (α : K• → I•) 7→ I•.

Lemma 13.24.1.0141 Let A be an abelian category. Assume A has functorial injective
embeddings, see Homology, Definition 12.27.5.

(1) There exists a functor inj : Comp+(A)→ InjRes(A) such that s◦inj = id.
(2) For any functor inj : Comp+(A) → InjRes(A) such that s ◦ inj = id we

obtain a resolution functor, see Definition 13.23.2.

Proof. Let A 7→ (A → J(A)) be a functorial injective embedding, see Homology,
Definition 12.27.5. We first note that we may assume J(0) = 0. Namely, if not
then for any object A we have 0→ A→ 0 which gives a direct sum decomposition
J(A) = J(0) ⊕ Ker(J(A) → J(0)). Note that the functorial morphism A → J(A)
has to map into the second summand. Hence we can replace our functor by J ′(A) =
Ker(J(A)→ J(0)) if needed.
Let K• be a bounded below complex of A. Say Kp = 0 if p < B. We are going to
construct a double complex I•,• of injectives, together with a map α : K• → I•,0

such that α induces a quasi-isomorphism of K• with the associated total complex
of I•,•. First we set Ip,q = 0 whenever q < 0. Next, we set Ip,0 = J(Kp) and
αp : Kp → Ip,0 the functorial embedding. Since J is a functor we see that I•,0 is a
complex and that α is a morphism of complexes. Each αp is injective. And Ip,0 = 0
for p < B because J(0) = 0. Next, we set Ip,1 = J(Coker(Kp → Ip,0)). Again
by functoriality we see that I•,1 is a complex. And again we get that Ip,1 = 0 for
p < B. It is also clear that Kp maps isomorphically onto Ker(Ip,0 → Ip,1). As our
third step we take Ip,2 = J(Coker(Ip,0 → Ip,1)). And so on and so forth.
At this point we can apply Homology, Lemma 12.25.4 to get that the map

α : K• −→ Tot(I•,•)

https://stacks.math.columbia.edu/tag/0141
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is a quasi-isomorphism. To prove we get a functor inj it rests to show that the
construction above is functorial. This verification is omitted.

Suppose we have a functor inj such that s ◦ inj = id. For every object K• of
Comp+(A) we can write

inj(K•) = (iK• : K• → j(K•))

This provides us with a resolution functor as in Definition 13.23.2. □

Remark 13.24.2.05TL Suppose inj is a functor such that s ◦ inj = id as in part (2)
of Lemma 13.24.1. Write inj(K•) = (iK• : K• → j(K•)) as in the proof of that
lemma. Suppose α : K• → L• is a map of bounded below complexes. Consider the
map inj(α) in the category InjRes(A). It induces a commutative diagram

K• α //

iK
��

L•

iL
��

j(K)• inj(α) // j(L)•

of morphisms of complexes. Hence, looking at the proof of Lemma 13.23.3 we see
that the functor j : K+(A)→ K+(I) is given by the rule

j(α up to homotopy) = inj(α) up to homotopy ∈ HomK+(I)(j(K•), j(L•))

Hence we see that j matches t ◦ inj in this case, i.e., the diagram

Comp+(A)
t◦inj

//

&&

K+(I)

K+(A)
j

::

is commutative.

Remark 13.24.3.0142 Let Mod(OX) be the category of OX -modules on a ringed space
(X,OX) (or more generally on a ringed site). We will see later that Mod(OX)
has enough injectives and in fact functorial injective embeddings, see Injectives,
Theorem 19.8.4. Note that the proof of Lemma 13.23.4 does not apply to Mod(OX).
But the proof of Lemma 13.24.1 does apply to Mod(OX). Thus we obtain

j : K+(Mod(OX)) −→ K+(I)

which is a resolution functor where I is the additive category of injective OX -
modules. This argument also works in the following cases:

(1) The category ModR of R-modules over a ring R.
(2) The category PMod(O) of presheaves of O-modules on a site endowed

with a presheaf of rings.
(3) The category Mod(O) of sheaves of O-modules on a ringed site.
(4) Add more here as needed.

13.25. Right derived functors via resolution functors

05TM The content of the following lemma is that we can simply define RF (K•) =
F (j(K•)) if we are given a resolution functor j.
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Lemma 13.25.1.05TN Let A be an abelian category with enough injectives Let F : A →
B be an additive functor into an abelian category. Let (i, j) be a resolution functor,
see Definition 13.23.2. The right derived functor RF of F fits into the following
2-commutative diagram

D+(A)

RF $$

j′
// K+(I)

Fzz
D+(B)

where j′ is the functor from Lemma 13.23.6.

Proof. By Lemma 13.20.1 we have RF (K•) = F (j(K•)). □

Remark 13.25.2.0158 In the situation of Lemma 13.25.1 we see that we have actually
lifted the right derived functor to an exact functor F ◦ j′ : D+(A)→ K+(B). It is
occasionally useful to use such a factorization.

13.26. Filtered derived category and injective resolutions

015O Let A be an abelian category. In this section we will show that if A has enough
injectives, then so does the category Filf (A) in some sense. One can use this
observation to compute in the filtered derived category of A.
The category Filf (A) is an example of an exact category, see Injectives, Remark
19.9.6. A special role is played by the strict morphisms, see Homology, Definition
12.19.3, i.e., the morphisms f such that Coim(f) = Im(f). We will say that a
complex A → B → C in Filf (A) is exact if the sequence gr(A) → gr(B) → gr(C)
is exact in A. This implies that A → B and B → C are strict morphisms, see
Homology, Lemma 12.19.15.

Definition 13.26.1.015P Let A be an abelian category. We say an object I of Filf (A)
is filtered injective if each grp(I) is an injective object of A.

Lemma 13.26.2.05TP Let A be an abelian category. An object I of Filf (A) is filtered
injective if and only if there exist a ≤ b, injective objects In, a ≤ n ≤ b of A and
an isomorphism I ∼=

⊕
a≤n≤b In such that F pI =

⊕
n≥p In.

Proof. Follows from the fact that any injection J → M of A is split if J is an
injective object. Details omitted. □

Lemma 13.26.3.05TQ Let A be an abelian category. Any strict monomorphism u : I →
A of Filf (A) where I is a filtered injective object is a split injection.

Proof. Let p be the largest integer such that F pI ̸= 0. In particular grp(I) =
F pI. Let I ′ be the object of Filf (A) whose underlying object of A is F pI and
with filtration given by FnI ′ = 0 for n > p and FnI ′ = I ′ = F pI for n ≤
p. Note that I ′ → I is a strict monomorphism too. The fact that u is a strict
monomorphism implies that F pI → A/F p+1(A) is injective, see Homology, Lemma
12.19.13. Choose a splitting s : A/F p+1A→ F pI in A. The induced morphism s′ :
A→ I ′ is a strict morphism of filtered objects splitting the composition I ′ → I → A.
Hence we can write A = I ′⊕Ker(s′) and I = I ′⊕Ker(s′|I). Note that Ker(s′|I)→
Ker(s′) is a strict monomorphism and that Ker(s′|I) is a filtered injective object.

https://stacks.math.columbia.edu/tag/05TN
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By induction on the length of the filtration on I the map Ker(s′|I)→ Ker(s′) is a
split injection. Thus we win. □

Lemma 13.26.4.05TR Let A be an abelian category. Let u : A→ B be a strict monomor-
phism of Filf (A) and f : A→ I a morphism from A into a filtered injective object
in Filf (A). Then there exists a morphism g : B → I such that f = g ◦ u.
Proof. The pushout f ′ : I → I ⨿A B of f by u is a strict monomorphism, see
Homology, Lemma 12.19.10. Hence the result follows formally from Lemma 13.26.3.

□

Lemma 13.26.5.05TS Let A be an abelian category with enough injectives. For any
object A of Filf (A) there exists a strict monomorphism A→ I where I is a filtered
injective object.
Proof. Pick a ≤ b such that grp(A) = 0 unless p ∈ {a, a + 1, . . . , b}. For each
n ∈ {a, a + 1, . . . , b} choose an injection un : A/Fn+1A → In with In an injective
object. Set I =

⊕
a≤n≤b In with filtration F pI =

⊕
n≥p In and set u : A→ I equal

to the direct sum of the maps un. □

Lemma 13.26.6.05TT Let A be an abelian category with enough injectives. For any
object A of Filf (A) there exists a filtered quasi-isomorphism A[0] → I• where I•

is a complex of filtered injective objects with In = 0 for n < 0.
Proof. First choose a strict monomorphism u0 : A→ I0 of A into a filtered injective
object, see Lemma 13.26.5. Next, choose a strict monomorphism u1 : Coker(u0)→
I1 into a filtered injective object of A. Denote d0 the induced map I0 → I1. Next,
choose a strict monomorphism u2 : Coker(u1) → I2 into a filtered injective object
of A. Denote d1 the induced map I1 → I2. And so on. This works because each of
the sequences

0→ Coker(un)→ In+1 → Coker(un+1)→ 0
is short exact, i.e., induces a short exact sequence on applying gr. To see this use
Homology, Lemma 12.19.13. □

Lemma 13.26.7.05TU Let A be an abelian category with enough injectives. Let f : A→
B be a morphism of Filf (A). Given filtered quasi-isomorphisms A[0] → I• and
B[0]→ J• where I•, J• are complexes of filtered injective objects with In = Jn = 0
for n < 0, then there exists a commutative diagram

A[0] //

��

B[0]

��
I• // J•

Proof. As A[0] → I• and C[0] → J• are filtered quasi-isomorphisms we conclude
that a : A → I0, b : B → J0 and all the morphisms dnI , dnJ are strict, see Homol-
ogy, Lemma 12.19.15. We will inductively construct the maps fn in the following
commutative diagram

A
a
//

f

��

I0 //

f0

��

I1 //

f1

��

I2 //

f2

��

. . .

B
b // J0 // J1 // J2 // . . .

https://stacks.math.columbia.edu/tag/05TR
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Because A→ I0 is a strict monomorphism and because J0 is filtered injective, we
can find a morphism f0 : I0 → J0 such that f0 ◦a = b◦f , see Lemma 13.26.4. The
composition d0

J ◦ b ◦ f is zero, hence d0
J ◦ f0 ◦ a = 0, hence d0

J ◦ f0 factors through
a unique morphism

Coker(a) = Coim(d0
I) = Im(d0

I) −→ J1.

As Im(d0
I)→ I1 is a strict monomorphism we can extend the displayed arrow to a

morphism f1 : I1 → J1 by Lemma 13.26.4 again. And so on. □

Lemma 13.26.8.05TV Let A be an abelian category with enough injectives. Let 0 →
A → B → C → 0 be a short exact sequence in Filf (A). Given filtered quasi-
isomorphisms A[0] → I• and C[0] → J• where I•, J• are complexes of filtered
injective objects with In = Jn = 0 for n < 0, then there exists a commutative
diagram

0 // A[0] //

��

B[0] //

��

C[0] //

��

0

0 // I• // M• // J• // 0
where the lower row is a termwise split sequence of complexes.

Proof. As A[0] → I• and C[0] → J• are filtered quasi-isomorphisms we conclude
that a : A→ I0, c : C → J0 and all the morphisms dnI , dnJ are strict, see Homology,
Lemma 13.13.4. We are going to step by step construct the south-east and the
south arrows in the following commutative diagram

B
β
//

b

��

C
c
//

b

  

J0

δ0

��

// J1

δ1

��

// . . .

A

α

OO

a // I0 // I1 // I2 // . . .

As A → B is a strict monomorphism, we can find a morphism b : B → I0 such
that b ◦ α = a, see Lemma 13.26.4. As A is the kernel of the strict morphism
I0 → I1 and β = Coker(α) we obtain a unique morphism b : C → I1 fitting into
the diagram. As c is a strict monomorphism and I1 is filtered injective we can find
δ0 : J0 → I1, see Lemma 13.26.4. Because B → C is a strict epimorphism and
because B → I0 → I1 → I2 is zero, we see that C → I1 → I2 is zero. Hence d1

I ◦ δ0

is zero on C ∼= Im(c). Hence d1
I ◦ δ0 factors through a unique morphism

Coker(c) = Coim(d0
J) = Im(d0

J) −→ I2.

As I2 is filtered injective and Im(d0
J)→ J1 is a strict monomorphism we can extend

the displayed morphism to a morphism δ1 : J1 → I2, see Lemma 13.26.4. And so
on. We set M• = I• ⊕ J• with differential

dnM =
(
dnI (−1)n+1δn

0 dnJ

)
Finally, the map B[0]→M• is given by b⊕ c ◦ β : M → I0 ⊕ J0. □

Lemma 13.26.9.05TW Let A be an abelian category with enough injectives. For every
K• ∈ K+(Filf (A)) there exists a filtered quasi-isomorphism K• → I• with I•

bounded below, each In a filtered injective object, and each Kn → In a strict
monomorphism.

https://stacks.math.columbia.edu/tag/05TV
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Proof. After replacing K• by a shift (which is harmless for the proof) we may
assume that Kn = 0 for n < 0. Consider the short exact sequences

0→ Ker(d0
K)→ K0 → Coim(d0

K)→ 0
0→ Ker(d1

K)→ K1 → Coim(d1
K)→ 0

0→ Ker(d2
K)→ K2 → Coim(d2

K)→ 0
. . .

of the exact category Filf (A) and the maps ui : Coim(diK)→ Ker(di+1
K ). For each

i ≥ 0 we may choose filtered quasi-isomorphisms
Ker(diK)[0]→ I•

ker,i

Coim(diK)[0]→ I•
coim,i

with Inker,i, I
n
coim,i filtered injective and zero for n < 0, see Lemma 13.26.6. By

Lemma 13.26.7 we may lift ui to a morphism of complexes u•
i : I•

coim,i → I•
ker,i+1.

Finally, for each i ≥ 0 we may complete the diagrams

0 // Ker(diK)[0] //

��

Ki[0] //

��

Coim(diK)[0] //

��

0

0 // I•
ker,i

αi // I•
i

βi // I•
coim,i

// 0

with the lower sequence a termwise split exact sequence, see Lemma 13.26.8. For
i ≥ 0 set di : I•

i → I•
i+1 equal to di = αi+1 ◦u•

i ◦βi. Note that di ◦di−1 = 0 because
βi ◦ αi = 0. Hence we have constructed a commutative diagram

I•
0

// I•
1

// I•
2

// . . .

K0[0] //

OO

K1[0] //

OO

K2[0] //

OO

. . .

Here the vertical arrows are filtered quasi-isomorphisms. The upper row is a com-
plex of complexes and each complex consists of filtered injective objects with no
nonzero objects in degree< 0. Thus we obtain a double complex by setting Ia,b = Iba
and using

da,b1 : Ia,b = Iba → Iba+1 = Ia+1,b

the map dba and using for

da,b2 : Ia,b = Iba → Ib+1
a = Ia,b+1

the map dbIa . Denote Tot(I•,•) the total complex associated to this double complex,
see Homology, Definition 12.18.3. Observe that the maps Kn[0] → I•

n come from
maps Kn → In,0 which give rise to a map of complexes

K• −→ Tot(I•,•)
We claim this is a filtered quasi-isomorphism. As gr(−) is an additive functor, we
see that gr(Tot(I•,•)) = Tot(gr(I•,•)). Thus we can use Homology, Lemma 12.25.4
to conclude that gr(K•)→ gr(Tot(I•,•)) is a quasi-isomorphism as desired. □

Lemma 13.26.10.05TX Let A be an abelian category. Let K•, I• ∈ K(Filf (A)). Assume
K• is filtered acyclic and I• bounded below and consisting of filtered injective
objects. Any morphism K• → I• is homotopic to zero: HomK(Filf (A))(K•, I•) = 0.

https://stacks.math.columbia.edu/tag/05TX
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Proof. Let α : K• → I• be a morphism of complexes. Assume that αj = 0 for
j < n. We will show that there exists a morphism h : Kn+1 → In such that
αn = h ◦ d. Thus α will be homotopic to the morphism of complexes β defined by

βj =

 0 if j ≤ n
αn+1 − d ◦ h if j = n+ 1

αj if j > n+ 1
This will clearly prove the lemma (by induction). To prove the existence of h note
that αn ◦ dn−1

K = 0 since αn−1 = 0. Since K• is filtered acyclic we see that dn−1
K

and dnK are strict and that

0→ Im(dn−1
K )→ Kn → Im(dnK)→ 0

is an exact sequence of the exact category Filf (A), see Homology, Lemma 12.19.15.
Hence we can think of αn as a map into In defined on Im(dnK). Using that Im(dnK)→
Kn+1 is a strict monomorphism and that In is filtered injective we may lift this
map to a map h : Kn+1 → In as desired, see Lemma 13.26.4. □

Lemma 13.26.11.05TY Let A be an abelian category. Let I• ∈ K(Filf (A)) be a bounded
below complex consisting of filtered injective objects.

(1) Let α : K• → L• in K(Filf (A)) be a filtered quasi-isomorphism. Then
the map

HomK(Filf (A))(L•, I•)→ HomK(Filf (A))(K•, I•)
is bijective.

(2) Let L• ∈ K(Filf (A)). Then
HomK(Filf (A))(L•, I•) = HomDF (A)(L•, I•).

Proof. Proof of (1). Note that
(K•, L•, C(α)•, α, i,−p)

is a distinguished triangle in K(Filf (A)) (Lemma 13.9.14) and C(α)• is a filtered
acyclic complex (Lemma 13.13.4). Then

HomK(Filf (A))(C(α)•, I•) // HomK(Filf (A))(L•, I•) // HomK(Filf (A))(K•, I•)

qq
HomK(Filf (A))(C(α)•[−1], I•)

is an exact sequence of abelian groups, see Lemma 13.4.2. At this point Lemma
13.26.10 guarantees that the outer two groups are zero and hence HomK(A)(L•, I•) =
HomK(A)(K•, I•).
Proof of (2). Let a be an element of the right hand side. We may represent
a = γα−1 where α : K• → L• is a filtered quasi-isomorphism and γ : K• → I•

is a map of complexes. By part (1) we can find a morphism β : L• → I• such
that β ◦ α is homotopic to γ. This proves that the map is surjective. Let b be an
element of the left hand side which maps to zero in the right hand side. Then b
is the homotopy class of a morphism β : L• → I• such that there exists a filtered
quasi-isomorphism α : K• → L• with β ◦α homotopic to zero. Then part (1) shows
that β is homotopic to zero also, i.e., b = 0. □

https://stacks.math.columbia.edu/tag/05TY
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Lemma 13.26.12.015Q Let A be an abelian category with enough injectives. Let If ⊂
Filf (A) denote the strictly full additive subcategory whose objects are the filtered
injective objects. The canonical functor

K+(If ) −→ DF+(A)
is exact, fully faithful and essentially surjective, i.e., an equivalence of triangulated
categories. Furthermore the diagrams

K+(If )

grp

��

// DF+(A)

grp

��
K+(I) // D+(A)

K+(If )

forget F
��

// DF+(A)

forget F
��

K+(I) // D+(A)

are commutative, where I ⊂ A is the strictly full additive subcategory whose
objects are the injective objects.

Proof. The functor K+(If )→ DF+(A) is essentially surjective by Lemma 13.26.9.
It is fully faithful by Lemma 13.26.11. It is an exact functor by our definitions
regarding distinguished triangles. The commutativity of the squares is immediate.

□

Remark 13.26.13.015R We can invert the arrow of the lemma only if A is a category in
our sense, namely if it has a set of objects. However, suppose given a big abelian
category A with enough injectives, such as Mod(OX) for example. Then for any
given set of objects {Ai}i∈I there is an abelian subcategory A′ ⊂ A containing
all of them and having enough injectives, see Sets, Lemma 3.12.1. Thus we may
use the lemma above for A′. This essentially means that if we use a set worth of
diagrams, etc then we will never run into trouble using the lemma.

Let A,B be abelian categories. Let T : A → B be a left exact functor. (We cannot
use the letter F for the functor since this would conflict too much with our use of
the letter F to indicate filtrations.) Note that T induces an additive functor

T : Filf (A)→ Filf (B)
by the rule T (A,F ) = (T (A), F ) where F pT (A) = T (F pA) which makes sense as
T is left exact. (Warning: It may not be the case that gr(T (A)) = T (gr(A)).) This
induces functors of triangulated categories

(13.26.13.1)05TZ T : K+(Filf (A)) −→ K+(Filf (B))
The filtered right derived functor of T is the right derived functor of Definition
13.14.2 for this exact functor composed with the exact functor K+(Filf (B)) →
DF+(B) and the multiplicative set FQis+(A). Assume A has enough injectives.
At this point we can redo the discussion of Section 13.20 to define the filtered right
derived functors
(13.26.13.2)015S RT : DF+(A) −→ DF+(B)
of our functor T .
However, instead we will proceed as in Section 13.25, and it will turn out that we
can define RT even if T is just additive. Namely, we first choose a quasi-inverse
j′ : DF+(A)→ K+(If ) of the equivalence of Lemma 13.26.12. By Lemma 13.4.18

https://stacks.math.columbia.edu/tag/015Q
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we see that j′ is an exact functor of triangulated categories. Next, we note that for
a filtered injective object I we have a (noncanonical) decomposition

(13.26.13.3)015T I ∼=
⊕

p∈Z
Ip, with F pI =

⊕
q≥p

Iq

by Lemma 13.26.2. Hence if T is any additive functor T : A → B then we get an
additive functor

(13.26.13.4)05U0 Text : If → Filf (B)

by setting Text(I) =
⊕
T (Ip) with F pText(I) =

⊕
q≥p T (Iq). Note that we have

the property gr(Text(I)) = T (gr(I)) by construction. Hence we obtain a functor

(13.26.13.5)05U1 Text : K+(If )→ K+(Filf (B))

which commutes with gr. Then we define (13.26.13.2) by the composition

(13.26.13.6)05U2 RT = Text ◦ j′.

Since RT : D+(A) → D+(B) is computed by injective resolutions as well, see
Lemmas 13.20.1, the commutation of T with gr, and the commutative diagrams of
Lemma 13.26.12 imply that

(13.26.13.7)015U grp ◦RT ∼= RT ◦ grp

and

(13.26.13.8)015V (forget F ) ◦RT ∼= RT ◦ (forget F )

as functors DF+(A)→ D+(B).

The filtered derived functor RT (13.26.13.2) induces functors

RT : Filf (A)→ DF+(B),
RT : Comp+(Filf (A))→ DF+(B),

RT : KF+(A)→ DF+(B).

Note that since Filf (A), and Comp+(Filf (A)) are no longer abelian it does not
make sense to say that RT restricts to a δ-functor on them. (This can be repaired
by thinking of these categories as exact categories and formulating the notion of a
δ-functor from an exact category into a triangulated category.) But it does make
sense, and it is true by construction, that RT is an exact functor on the triangulated
category KF+(A).

Lemma 13.26.14.015W Let A,B be abelian categories. Let T : A → B be a left
exact functor. Assume A has enough injectives. Let (K•, F ) be an object of
Comp+(Filf (A)). There exists a spectral sequence (Er, dr)r≥0 consisting of bi-
graded objects Er of B and dr of bidegree (r,−r + 1) and with

Ep,q1 = Rp+qT (grp(K•))

Moreover, this spectral sequence is bounded, converges to R∗T (K•), and induces
a finite filtration on each RnT (K•). The construction of this spectral sequence is
functorial in the object K• of Comp+(Filf (A)) and the terms (Er, dr) for r ≥ 1 do
not depend on any choices.
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Proof. Choose a filtered quasi-isomorphism K• → I• with I• a bounded below
complex of filtered injective objects, see Lemma 13.26.9. Consider the complex
RT (K•) = Text(I•), see (13.26.13.6). Thus we can consider the spectral sequence
(Er, dr)r≥0 associated to this as a filtered complex in B, see Homology, Section
12.24. By Homology, Lemma 12.24.2 we have Ep,q1 = Hp+q(grp(T (I•))). By Equa-
tion (13.26.13.3) we have Ep,q1 = Hp+q(T (grp(I•))), and by definition of a filtered
injective resolution the map grp(K•) → grp(I•) is an injective resolution. Hence
Ep,q1 = Rp+qT (grp(K•)).
On the other hand, each In has a finite filtration and hence each T (In) has a
finite filtration. Thus we may apply Homology, Lemma 12.24.11 to conclude that
the spectral sequence is bounded, converges to Hn(T (I•)) = RnT (K•) moreover
inducing finite filtrations on each of the terms.
Suppose that K• → L• is a morphism of Comp+(Filf (A)). Choose a filtered
quasi-isomorphism L• → J• with J• a bounded below complex of filtered injective
objects, see Lemma 13.26.9. By our results above, for example Lemma 13.26.11,
there exists a diagram

K• //

��

L•

��
I• // J•

which commutes up to homotopy. Hence we get a morphism of filtered complexes
T (I•)→ T (J•) which gives rise to the morphism of spectral sequences, see Homol-
ogy, Lemma 12.24.4. The last statement follows from this. □

Remark 13.26.15.015X As promised in Remark 13.21.4 we discuss the connection of the
lemma above with the constructions using Cartan-Eilenberg resolutions. Namely,
let T : A → B be a left exact functor of abelian categories, assume A has enough
injectives, and let K• be a bounded below complex of A. We give an alternative
construction of the spectral sequences ′E and ′′E of Lemma 13.21.3.
First spectral sequence. Consider the “stupid” filtration on K• obtained by setting
F p(K•) = σ≥p(K•), see Homology, Section 12.15. Note that this stupid in the
sense that d(F p(K•)) ⊂ F p+1(K•), compare Homology, Lemma 12.24.3. Note that
grp(K•) = Kp[−p] with this filtration. According to Lemma 13.26.14 there is a
spectral sequence with E1 term

Ep,q1 = Rp+qT (Kp[−p]) = RqT (Kp)
as in the spectral sequence ′Er. Observe moreover that the differentials Ep,q1 →
Ep+1,q

1 agree with the differentials in ′E1, see Homology, Lemma 12.24.3 part (2)
and the description of ′d1 in the proof of Lemma 13.21.3.
Second spectral sequence. Consider the filtration on the complex K• obtained
by setting F p(K•) = τ≤−p(K•), see Homology, Section 12.15. The minus sign is
necessary to get a decreasing filtration. Note that grp(K•) is quasi-isomorphic to
H−p(K•)[p] with this filtration. According to Lemma 13.26.14 there is a spectral
sequence with E1 term

Ep,q1 = Rp+qT (H−p(K•)[p]) = R2p+qT (H−p(K•)) = ′′Ei,j2

with i = 2p+q and j = −p. (This looks unnatural, but note that we could just have
well developed the whole theory of filtered complexes using increasing filtrations,

https://stacks.math.columbia.edu/tag/015X
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with the end result that this then looks natural, but the other one doesn’t.) We
leave it to the reader to see that the differentials match up.
Actually, given a Cartan-Eilenberg resolution K• → I•,• the induced morphism
K• → Tot(I•,•) into the associated total complex will be a filtered injective reso-
lution for either filtration using suitable filtrations on Tot(I•,•). This can be used
to match up the spectral sequences exactly.

13.27. Ext groups

06XP In this section we start describing the Ext groups of objects of an abelian category.
First we have the following very general definition.

Definition 13.27.1.06XQ Let A be an abelian category. Let i ∈ Z. Let X,Y be objects
of D(A). The ith extension group of X by Y is the group

ExtiA(X,Y ) = HomD(A)(X,Y [i]) = HomD(A)(X[−i], Y ).

If A,B ∈ Ob(A) we set ExtiA(A,B) = ExtiA(A[0], B[0]).

Since HomD(A)(X,−), resp. HomD(A)(−, Y ) is a homological, resp. cohomological
functor, see Lemma 13.4.2, we see that a distinguished triangle (Y, Y ′, Y ′′), resp.
(X,X ′, X ′′) leads to a long exact sequence

. . .→ ExtiA(X,Y )→ ExtiA(X,Y ′)→ ExtiA(X,Y ′′)→ Exti+1
A (X,Y )→ . . .

respectively
. . .→ ExtiA(X ′′, Y )→ ExtiA(X ′, Y )→ ExtiA(X,Y )→ Exti+1

A (X ′′, Y )→ . . .

Note that since D+(A), D−(A), Db(A) are full subcategories we may compute
the Ext groups by Hom groups in these categories provided X, Y are contained in
them.
In case the category A has enough injectives or enough projectives we can compute
the Ext groups using injective or projective resolutions. To avoid confusion, recall
that having an injective (resp. projective) resolution implies vanishing of homology
in all low (resp. high) degrees, see Lemmas 13.18.2 and 13.19.2.

Lemma 13.27.2.06XR Let A be an abelian category. Let X•, Y • ∈ Ob(K(A)).
(1) Let Y • → I• be an injective resolution (Definition 13.18.1). Then

ExtiA(X•, Y •) = HomK(A)(X•, I•[i]).
(2) Let P • → X• be a projective resolution (Definition 13.19.1). Then

ExtiA(X•, Y •) = HomK(A)(P •[−i], Y •).

Proof. Follows immediately from Lemma 13.18.8 and Lemma 13.19.8. □

In the rest of this section we discuss extensions of objects of the abelian category
itself. First we observe the following.

Lemma 13.27.3.06XS Let A be an abelian category.
(1) Let X, Y be objects of D(A). Given a, b ∈ Z such that Hi(X) = 0 for

i > a and Hj(Y ) = 0 for j < b, we have ExtnA(X,Y ) = 0 for n < b − a
and

Extb−aA (X,Y ) = HomA(Ha(X), Hb(Y ))
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(2) Let A,B ∈ Ob(A). For i < 0 we have ExtiA(B,A) = 0. We have
Ext0

A(B,A) = HomA(B,A).

Proof. Choose complexes X• and Y • representing X and Y . Since Y • → τ≥bY
•

is a quasi-isomorphism, we may assume that Y j = 0 for j < b. Let L• → X•

be any quasi-isomorphism. Then τ≤aL
• → X• is a quasi-isomorphism. Hence a

morphism X → Y [n] in D(A) can be represented as fs−1 where s : L• → X• is a
quasi-isomorphism, f : L• → Y •[n] a morphism, and Li = 0 for i < a. Note that
f maps Li to Y i+n. Thus f = 0 if n < b − a because always either Li or Y i+n is
zero. If n = b − a, then f corresponds exactly to a morphism Ha(X) → Hb(Y ).
Part (2) is a special case of (1). □

Let A be an abelian category. Suppose that 0 → A → A′ → A′′ → 0 is a short
exact sequence of objects of A. Then 0 → A[0] → A′[0] → A′′[0] → 0 leads to a
distinguished triangle in D(A) (see Lemma 13.12.1) hence a long exact sequence of
Ext groups

0→ Ext0
A(B,A)→ Ext0

A(B,A′)→ Ext0
A(B,A′′)→ Ext1

A(B,A)→ . . .

Similarly, given a short exact sequence 0 → B → B′ → B′′ → 0 we obtain a long
exact sequence of Ext groups

0→ Ext0
A(B′′, A)→ Ext0

A(B′, A)→ Ext0
A(B,A)→ Ext1

A(B′′, A)→ . . .

We may view these Ext groups as an application of the construction of the derived
category. It shows one can define Ext groups and construct the long exact sequence
of Ext groups without needing the existence of enough injectives or projectives.
There is an alternative construction of the Ext groups due to Yoneda which avoids
the use of the derived category, see [Yon60].

Definition 13.27.4.06XT Let A be an abelian category. Let A,B ∈ Ob(A). A degree i
Yoneda extension of B by A is an exact sequence

E : 0→ A→ Zi−1 → Zi−2 → . . .→ Z0 → B → 0

in A. We say two Yoneda extensions E and E′ of the same degree are equivalent if
there exists a commutative diagram

0 // A // Zi−1 // . . . // Z0 // B // 0

0 // A //

id

OO

id
��

Z ′′
i−1

//

OO

��

. . . // Z ′′
0

//

OO

��

B //

id

OO

id
��

0

0 // A // Z ′
i−1

// . . . // Z ′
0

// B // 0

where the middle row is a Yoneda extension as well.

It is not immediately clear that the equivalence of the definition is an equivalence
relation. Although it is instructive to prove this directly this will also follow from
Lemma 13.27.5 below.

Let A be an abelian category with objects A, B. Given a Yoneda extension E :
0 → A → Zi−1 → Zi−2 → . . . → Z0 → B → 0 we define an associated element

https://stacks.math.columbia.edu/tag/06XT
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δ(E) ∈ Exti(B,A) as the morphism δ(E) = fs−1 : B[0] → A[i] where s is the
quasi-isomorphism

(. . .→ 0→ A→ Zi−1 → . . .→ Z0 → 0→ . . .) −→ B[0]

and f is the morphism of complexes

(. . .→ 0→ A→ Zi−1 → . . .→ Z0 → 0→ . . .) −→ A[i]

We call δ(E) = fs−1 the class of the Yoneda extension. It turns out that this class
characterizes the equivalence class of the Yoneda extension.

Lemma 13.27.5.06XU Let A be an abelian category with objects A, B. Any element
in ExtiA(B,A) is δ(E) for some degree i Yoneda extension of B by A. Given two
Yoneda extensions E, E′ of the same degree then E is equivalent to E′ if and only
if δ(E) = δ(E′).

Proof. Let ξ : B[0] → A[i] be an element of ExtiA(B,A). We may write ξ = fs−1

for some quasi-isomorphism s : L• → B[0] and map f : L• → A[i]. After replacing
L• by τ≤0L

• we may assume that Lj = 0 for j > 0. Picture

L−i−1 // L−i //

��

. . . // L0 // B // 0

A

Then setting Zi−1 = (L−i+1 ⊕ A)/L−i and Zj = L−j for j = i − 2, . . . , 0 we see
that we obtain a degree i extension E of B by A whose class δ(E) equals ξ.

It is immediate from the definitions that equivalent Yoneda extensions have the
same class. Suppose that E : 0 → A → Zi−1 → Zi−2 → . . . → Z0 → B → 0 and
E′ : 0 → A → Z ′

i−1 → Z ′
i−2 → . . . → Z ′

0 → B → 0 are Yoneda extensions with
the same class. By construction of D(A) as the localization of K(A) at the set of
quasi-isomorphisms, this means there exists a complex L• and quasi-isomorphisms

t : L• → (. . .→ 0→ A→ Zi−1 → . . .→ Z0 → 0→ . . .)

and
t′ : L• → (. . .→ 0→ A→ Z ′

i−1 → . . .→ Z ′
0 → 0→ . . .)

such that s ◦ t = s′ ◦ t′ and f ◦ t = f ′ ◦ t′, see Categories, Section 4.27. Let E′′

be the degree i extension of B by A constructed from the pair L• → B[0] and
L• → A[i] in the first paragraph of the proof. Then the reader sees readily that
there exists “morphisms” of degree i Yoneda extensions E′′ → E and E′′ → E′ as
in the definition of equivalent Yoneda extensions (details omitted). This finishes
the proof. □

Lemma 13.27.6.06XV Let A be an abelian category. Let A, B be objects of A. Then
Ext1

A(B,A) is the group ExtA(B,A) constructed in Homology, Definition 12.6.2.

Proof. This is the case i = 1 of Lemma 13.27.5. □

Lemma 13.27.7.0GSM Let A be an abelian category. Let 0 → A → Z → B → 0 and
0 → B → Z ′ → C → 0 be short exact sequences in A. Denote [Z] ∈ Ext1(B,A)

https://stacks.math.columbia.edu/tag/06XU
https://stacks.math.columbia.edu/tag/06XV
https://stacks.math.columbia.edu/tag/0GSM
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and [Z ′] ∈ Ext1(C,B) their classes. Then [Z] ◦ [Z ′] ∈ Ext2
A(C,A) is 0 if and only

if there exists a commutative diagram
0

��

0

��
0 // A //

1
��

Z //

��

B //

��

0

0 // A // W //

��

Z ′ //

��

0

C
1 //

��

C

��
0 0

with exact rows and columns in A.
Proof. Omitted. Hints: You can argue this using the result of Lemma 13.27.5 and
working out what it means for a 2-extension class to be zero. Or you can use that if
[Z] ◦ [Z ′] ∈ Ext2

A(C,A) is zero, then by the long exact cohomology sequence of Ext
the element [Z] ∈ Ext1(B,A) is the image of some element in Ext1(W ′, A). □

Lemma 13.27.8.0EWW Let A be an abelian category and let p ≥ 0. If ExtpA(B,A) = 0
for any pair of objects A, B of A, then ExtiA(B,A) = 0 for i ≥ p and any pair of
objects A, B of A.
Proof. For i > p write any class ξ as δ(E) where E is a Yoneda extension

E : 0→ A→ Zi−1 → Zi−2 → . . .→ Z0 → B → 0
This is possible by Lemma 13.27.5. Set C = Ker(Zp−1 → Zp) = Im(Zp → Zp−1).
Then δ(E) is the composition of δ(E′) and δ(E′′) where

E′ : 0→ C → Zp−1 → . . .→ Z0 → B → 0
and

E′′ : 0→ A→ Zi−1 → Zi−2 → . . .→ Zp → C → 0
Since δ(E′) ∈ ExtpA(B,C) = 0 we conclude. □

Lemma 13.27.9.0GM4 Let A be an abelian category. Let K be an object of Db(A) such
that ExtpA(Hi(K), Hj(K)) = 0 for all p ≥ 2 and i > j. Then K is isomorphic to
the direct sum of its cohomologies: K ∼=

⊕
Hi(K)[−i].

Proof. Choose a, b such that Hi(K) = 0 for i ̸∈ [a, b]. We will prove the lemma by
induction on b− a. If b− a ≤ 0, then the result is clear. If b− a > 0, then we look
at the distinguished triangle of truncations

τ≤b−1K → K → Hb(K)[−b]→ (τ≤b−1K)[1]
see Remark 13.12.4. By Lemma 13.4.11 if the last arrow is zero, then K ∼= τ≤b−1K⊕
Hb(K)[−b] and we win by induction. Again using induction we see that

HomD(A)(Hb(K)[−b], (τ≤b−1K)[1]) =
⊕

i<b
Extb−i+1

A (Hb(K), Hi(K))

By assumption the direct sum is zero and the proof is complete. □

https://stacks.math.columbia.edu/tag/0EWW
https://stacks.math.columbia.edu/tag/0GM4
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Lemma 13.27.10.0EWX Let A be an abelian category. Assume Ext2
A(B,A) = 0 for any

pair of objects A, B of A. Then any object K of Db(A) is isomorphic to the direct
sum of its cohomologies: K ∼=

⊕
Hi(K)[−i].

Proof. The assumption implies that ExtiA(B,A) = 0 for i ≥ 2 and any pair of
objects A,B of A by Lemma 13.27.8. Hence this lemma is a special case of Lemma
13.27.9. □

13.28. K-groups

0FCM A tiny bit about K0 of a triangulated category.

Definition 13.28.1.0FCN Let D be a triangulated category. We denote K0(D) the zeroth
K-group of D. It is the abelian group constructed as follows. Take the free abelian
group on the objects on D and for every distinguished triangle X → Y → Z impose
the relation [Y ]− [X]− [Z] = 0.

Observe that this implies that [X[n]] = (−1)n[X] because we have the distinguished
triangle (X, 0, X[1], 0, 0,−id[1]).

Lemma 13.28.2.0FCP Let A be an abelian category. Then there is a canonical identifi-
cation K0(Db(A)) = K0(A) of zeroth K-groups.

Proof. Given an object A of A denote A[0] the object A viewed as a complex sitting
in degree 0. If 0 → A → A′ → A′′ → 0 is a short exact sequence, then we get a
distinguished triangle A[0]→ A′[0]→ A′′[0]→ A[1], see Section 13.12. This shows
that we obtain a map K0(A)→ K0(Db(A)) by sending [A] to [A[0]] with apologies
for the horrendous notation.

On the other hand, given an object X of Db(A) we can consider the element

c(X) =
∑

(−1)i[Hi(X)] ∈ K0(A)

Given a distinguished triangle X → Y → Z the long exact sequence of cohomology
(13.11.1.1) and the relations in K0(A) show that c(Y ) = c(X) + c(Z). Thus c
factors through a map c : K0(Db(A))→ K0(A).

We want to show that the two maps above are mutually inverse. It is clear that
the composition K0(A) → K0(Db(A)) → K0(A) is the identity. Suppose that X•

is a bounded complex of A. The existence of the distinguished triangles of “stupid
truncations” (see Homology, Section 12.15)

σ≥nX
• → σ≥n−1X

• → Xn−1[−n+ 1]→ (σ≥nX
•)[1]

and induction show that
[X•] =

∑
(−1)i[Xi[0]]

in K0(Db(A)) (with again apologies for the notation). It follows that the composi-
tion K0(A)→ K0(Db(A)) is surjective which finishes the proof. □

Lemma 13.28.3.0FCQ Let F : D → D′ be an exact functor of triangulated categories.
Then F induces a group homomorphism K0(D)→ K0(D′).

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/0EWX
https://stacks.math.columbia.edu/tag/0FCN
https://stacks.math.columbia.edu/tag/0FCP
https://stacks.math.columbia.edu/tag/0FCQ
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Lemma 13.28.4.0FCR Let H : D → A be a homological functor from a triangulated
category to an abelian category. Assume that for any X in D only a finite number
of the objects H(X[i]) are nonzero in A. Then H induces a group homomorphism
K0(D)→ K0(A) sending [X] to

∑
(−1)i[H(X[i])].

Proof. Omitted. □

Lemma 13.28.5.0FCS Let B be a weak Serre subcategory of the abelian category A.
There is a canonical isomorphism

K0(B) −→ K0(Db
B(A)), [B] 7−→ [B[0]]

The inverse sends the class [X] of X to the element
∑

(−1)i[Hi(X)].

Proof. We omit the verification that the rule for the inverse gives a well defined map
K0(Db

B(A))→ K0(B). It is immediate that the compositionK0(B)→ K0(Db
B(A))→

K0(B) is the identity. On the other hand, using the distinguished triangles of Re-
mark 13.12.4 and an induction argument the reader may show that the displayed
arrow in the statement of the lemma is surjective (details omitted). The lemma
follows. □

Lemma 13.28.6.0FCT Let D, D′, D′′ be triangulated categories. Let
⊗ : D ×D′ −→ D′′

be a functor such that for fixed X in D the functor X ⊗ − : D′ → D′′ is an exact
functor and for fixed X ′ in D′ the functor − ⊗ X ′ : D → D′′ is an exact functor.
Then ⊗ induces a bilinear map K0(D)×K0(D′)→ K0(D′′) which sends ([X], [X ′])
to [X ⊗X ′].

Proof. Omitted. □

13.29. Unbounded complexes

06XW A reference for the material in this section is [Spa88]. The following lemma is useful
to find “good” left resolutions of unbounded complexes.

Lemma 13.29.1.06XX Let A be an abelian category. Let P ⊂ Ob(A) be a subset.
Assume P contains 0, is closed under (finite) direct sums, and every object of A is
a quotient of an element of P. Let K• be a complex. There exists a commutative
diagram

P •
1

��

// P •
2

��

// . . .

τ≤1K
• // τ≤2K

• // . . .

in the category of complexes such that
(1) the vertical arrows are quasi-isomorphisms and termwise surjective,
(2) P •

n is a bounded above complex with terms in P,
(3) the arrows P •

n → P •
n+1 are termwise split injections and each cokernel

P in+1/P
i
n is an element of P.

Proof. We are going to use that the homotopy category K(A) is a triangulated
category, see Proposition 13.10.3. By Lemma 13.15.4 we can find a termwise sur-
jective map of complexes P •

1 → τ≤1K
• which is a quasi-isomorphism such that the

https://stacks.math.columbia.edu/tag/0FCR
https://stacks.math.columbia.edu/tag/0FCS
https://stacks.math.columbia.edu/tag/0FCT
https://stacks.math.columbia.edu/tag/06XX
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terms of P •
1 are in P. By induction it suffices, given P •

1 , . . . , P
•
n to construct P •

n+1
and the maps P •

n → P •
n+1 and P •

n+1 → τ≤n+1K
•.

Choose a distinguished triangle P •
n → τ≤n+1K

• → C• → P •
n [1] in K(A). Ap-

plying Lemma 13.15.4 we choose a map of complexes Q• → C• which is a quasi-
isomorphism such that the terms of Q• are in P. By the axioms of triangulated
categories we may fit the composition Q• → C• → P •

n [1] into a distinguished tri-
angle P •

n → P •
n+1 → Q• → P •

n [1] in K(A). By Lemma 13.10.7 we may and do
assume 0 → P •

n → P •
n+1 → Q• → 0 is a termwise split short exact sequence. This

implies that the terms of P •
n+1 are in P and that P •

n → P •
n+1 is a termwise split

injection whose cokernels are in P. By the axioms of triangulated categories we
obtain a map of distinguished triangles

P •
n

//

��

P •
n+1

//

��

Q• //

��

P •
n [1]

��
P •
n

// τ≤n+1K
• // C• // P •

n [1]

in the triangulated category K(A). Choose an actual morphism of complexes f :
P •
n+1 → τ≤n+1K

•. The left square of the diagram above commutes up to homotopy,
but as P •

n → P •
n+1 is a termwise split injection we can lift the homotopy and modify

our choice of f to make it commute. Finally, f is a quasi-isomorphism, because
both P •

n → P •
n and Q• → C• are.

At this point we have all the properties we want, except we don’t know that the
map f : P •

n+1 → τ≤n+1K
• is termwise surjective. Since we have the commutative

diagram
P •
n

��

// P •
n+1

��
τ≤nK

• // τ≤n+1K
•

of complexes, by induction hypothesis we see that f is surjective on terms in all
degrees except possibly n and n + 1. Choose an object P ∈ P and a surjection
q : P → Kn. Consider the map

g : P • = (. . .→ 0→ P
1−→ P → 0→ . . .) −→ τ≤n+1K

•

with first copy of P in degree n and maps given by q in degree n and dK ◦ q in
degree n + 1. This is a surjection in degree n and the cokernel in degree n + 1 is
Hn+1(τ≤n+1K

•); to see this recall that τ≤n+1K
• has Ker(dn+1

K ) in degree n + 1.
However, since f is a quasi-isomorphism we know that Hn+1(f) is surjective. Hence
after replacing f : P •

n+1 → τ≤n+1K
• by f ⊕ g : P •

n+1⊕P • → τ≤n+1K
• we win. □

In some cases we can use the lemma above to show that a left derived functor is
everywhere defined.
Proposition 13.29.2.0794 Let F : A → B be a right exact functor of abelian categories.
Let P ⊂ Ob(A) be a subset. Assume

(1) P contains 0, is closed under (finite) direct sums, and every object of A
is a quotient of an element of P,

(2) for any bounded above acyclic complex P • of A with Pn ∈ P for all n the
complex F (P •) is exact,

https://stacks.math.columbia.edu/tag/0794


13.29. UNBOUNDED COMPLEXES 1070

(3) A and B have colimits of systems over N,
(4) colimits over N are exact in both A and B, and
(5) F commutes with colimits over N.

Then LF is defined on all of D(A).

Proof. By (1) and Lemma 13.15.4 for any bounded above complex K• there exists
a quasi-isomorphism P • → K• with P • bounded above and Pn ∈ P for all n.
Suppose that s : P • → (P ′)• is a quasi-isomorphism of bounded above complexes
consisting of objects of P. Then F (P •)→ F ((P ′)•) is a quasi-isomorphism because
F (C(s)•) is acyclic by assumption (2). This already shows that LF is defined on
D−(A) and that a bounded above complex consisting of objects of P computes LF ,
see Lemma 13.14.15.

Next, let K• be an arbitrary complex of A. Choose a diagram

P •
1

��

// P •
2

��

// . . .

τ≤1K
• // τ≤2K

• // . . .

as in Lemma 13.29.1. Note that the map colimP •
n → K• is a quasi-isomorphism

because colimits over N in A are exact and Hi(P •
n) = Hi(K•) for n > i. We claim

that
F (colimP •

n) = colimF (P •
n)

(termwise colimits) is LF (K•), i.e., that colimP •
n computes LF . To see this, by

Lemma 13.14.15, it suffices to prove the following claim. Suppose that

colimQ•
n = Q• α−−→ P • = colimP •

n

is a quasi-isomorphism of complexes, such that each P •
n , Q•

n is a bounded above
complex whose terms are in P and the maps P •

n → τ≤nP
• and Q•

n → τ≤nQ
• are

quasi-isomorphisms. Claim: F (α) is a quasi-isomorphism.

The problem is that we do not assume that α is given as a colimit of maps between
the complexes P •

n and Q•
n. However, for each n we know that the solid arrows in

the diagram
R•

��
P •
n

��

L•oo // Q•
n

��
τ≤nP

• τ≤nα // τ≤nQ
•

are quasi-isomorphisms. Because quasi-isomorphisms form a multiplicative system
in K(A) (see Lemma 13.11.2) we can find a quasi-isomorphism L• → P •

n and map
of complexes L• → Q•

n such that the diagram above commutes up to homotopy.
Then τ≤nL

• → L• is a quasi-isomorphism. Hence (by the first part of the proof)
we can find a bounded above complex R• whose terms are in P and a quasi-
isomorphism R• → L• (as indicated in the diagram). Using the result of the first
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paragraph of the proof we see that F (R•)→ F (P •
n) and F (R•)→ F (Q•

n) are quasi-
isomorphisms. Thus we obtain a isomorphisms Hi(F (P •

n)) → Hi(F (Q•
n)) fitting

into the commutative diagram

Hi(F (P •
n)) //

��

Hi(F (Q•
n))

��
Hi(F (P •)) // Hi(F (Q•))

The exact same argument shows that these maps are also compatible as n varies.
Since by (4) and (5) we have

Hi(F (P •)) = Hi(F (colimP •
n)) = Hi(colimF (P •

n)) = colimHi(F (P •
n))

and similarly for Q• we conclude that Hi(α) : Hi(F (P •) → Hi(F (Q•) is an iso-
morphism and the claim follows. □

Lemma 13.29.3.070F Let A be an abelian category. Let I ⊂ Ob(A) be a subset.
Assume I contains 0, is closed under (finite) products, and every object of A is a
subobject of an element of I. Let K• be a complex. There exists a commutative
diagram

. . . // τ≥−2K
• //

��

τ≥−1K
•

��
. . . // I•

2
// I•

1

in the category of complexes such that
(1) the vertical arrows are quasi-isomorphisms and termwise injective,
(2) I•

n is a bounded below complex with terms in I,
(3) the arrows I•

n+1 → I•
n are termwise split surjections and Ker(Iin+1 → Iin)

is an element of I.

Proof. This lemma is dual to Lemma 13.29.1. □

13.30. Deriving adjoints

0FNC Let F : D → D′ and G : D′ → D be exact functors of triangulated categories.
Let S, resp. S′ be a multiplicative system for D, resp. D′ compatible with the
triangulated structure. Denote Q : D → S−1D and Q′ : D′ → (S′)−1D′ the
localization functors. In this situation, by abuse of notation, one often denotes RF
the partially defined right derived functor corresponding to Q′ ◦ F : D → (S′)−1D′

and the multiplicative system S. Similarly one denotes LG the partially defined
left derived functor corresponding to Q ◦ G : D′ → S−1D and the multiplicative
system S′. Picture

D
F

//

Q

��

D′

Q′

��
S−1D RF // (S′)−1D′

and

D′
G

//

Q′

��

D

Q

��
(S′)−1D′ LG // S−1D

https://stacks.math.columbia.edu/tag/070F
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Lemma 13.30.1.0FND In the situation above assume F is right adjoint to G. Let K ∈
Ob(D) and M ∈ Ob(D′). If RF is defined at K and LG is defined at M , then there
is a canonical isomorphism

Hom(S′)−1D′(M,RF (K)) = HomS−1D(LG(M),K)

This isomorphism is functorial in both variables on the triangulated subcategories
of S−1D and (S′)−1D′ where RF and LG are defined.

Proof. Since RF is defined at K, we see that the rule which assigns to an s : K → I
in S the object F (I) is essentially constant as an ind-object of (S′)−1D′ with value
RF (K). Similarly, the rule which assigns to a t : P →M in S′ the object G(P ) is
essentially constant as a pro-object of S−1D with value LG(M). Thus we have

Hom(S′)−1D′(M,RF (K)) = colims:K→I Hom(S′)−1D′(M,F (I))
= colims:K→I colimt:P→M HomD′(P, F (I))
= colimt:P→M colims:K→I HomD′(P, F (I))
= colimt:P→M colims:K→I HomD(G(P ), I)
= colimt:P→M HomS−1D(G(P ),K)
= HomS−1D(LG(M),K)

The first equality holds by Categories, Lemma 4.22.9. The second equality holds
by the definition of morphisms in D(B), see Categories, Remark 4.27.15. The third
equality holds by Categories, Lemma 4.14.10. The fourth equality holds because F
and G are adjoint. The fifth equality holds by definition of morphism in D(A), see
Categories, Remark 4.27.7. The sixth equality holds by Categories, Lemma 4.22.10.
We omit the proof of functoriality. □

Lemma 13.30.2.0DVC Let F : A → B and G : B → A be functors of abelian categories
such that F is a right adjoint to G. Let K• be a complex of A and let M• be a
complex of B. If RF is defined at K• and LG is defined at M•, then there is a
canonical isomorphism

HomD(B)(M•, RF (K•)) = HomD(A)(LG(M•),K•)

This isomorphism is functorial in both variables on the triangulated subcategories
of D(A) and D(B) where RF and LG are defined.

Proof. This is a special case of the very general Lemma 13.30.1. □

The following lemma is an example of why it is easier to work with unbounded
derived categories. Namely, without having the unbounded derived functors, the
lemma could not even be stated.

Lemma 13.30.3.09T5 Let F : A → B and G : B → A be functors of abelian categories
such that F is a right adjoint to G. If the derived functors RF : D(A) → D(B)
and LG : D(B)→ D(A) exist, then RF is a right adjoint to LG.

Proof. Immediate from Lemma 13.30.2. □

https://stacks.math.columbia.edu/tag/0FND
https://stacks.math.columbia.edu/tag/0DVC
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13.31. K-injective complexes

070G The following types of complexes can be used to compute right derived functors on
the unbounded derived category.

Definition 13.31.1.070H Let A be an abelian category. A complex I• is K-injective if
for every acyclic complex M• we have HomK(A)(M•, I•) = 0.

In the situation of the definition we have in fact HomK(A)(M•[i], I•) = 0 for all i
as the translate of an acyclic complex is acyclic.

Lemma 13.31.2.070I Let A be an abelian category. Let I• be a complex. The following
are equivalent

(1) I• is K-injective,
(2) for every quasi-isomorphism M• → N• the map

HomK(A)(N•, I•)→ HomK(A)(M•, I•)
is bijective, and

(3) for every complex N• the map
HomK(A)(N•, I•)→ HomD(A)(N•, I•)

is an isomorphism.

Proof. Assume (1). Then (2) holds because the functor HomK(A)(−, I•) is coho-
mological and the cone on a quasi-isomorphism is acyclic.
Assume (2). A morphism N• → I• in D(A) is of the form fs−1 : N• → I• where
s : M• → N• is a quasi-isomorphism and f : M• → I• is a map. By (2) this
corresponds to a unique morphism N• → I• in K(A), i.e., (3) holds.
Assume (3). If M• is acyclic then M• is isomorphic to the zero complex in D(A)
hence HomD(A)(M•, I•) = 0, whence HomK(A)(M•, I•) = 0 by (3), i.e., (1) holds.

□

Lemma 13.31.3.090X Let A be an abelian category. Let (K,L,M, f, g, h) be a distin-
guished triangle of K(A). If two out of K, L, M are K-injective complexes, then
the third is too.

Proof. Follows from the definition, Lemma 13.4.2, and the fact that K(A) is a
triangulated category (Proposition 13.10.3). □

Lemma 13.31.4.070J Let A be an abelian category. A bounded below complex of
injectives is K-injective.

Proof. Follows from Lemmas 13.31.2 and 13.18.8. □

Lemma 13.31.5.0BK6 Let A be an abelian category. Let T be a set and for each t ∈ T let
I•
t be a K-injective complex. If In =

∏
t I
n
t exists for all n, then I• is a K-injective

complex. Moreover, I• represents the product of the objects I•
t in D(A).

Proof. Let K• be an complex. Observe that the complex

C :
∏

b
Hom(K−b, Ib−1)→

∏
b

Hom(K−b, Ib)→
∏

b
Hom(K−b, Ib+1)

has cohomology HomK(A)(K•, I•) in the middle. Similarly, the complex

Ct :
∏

b
Hom(K−b, Ib−1

t )→
∏

b
Hom(K−b, Ibt )→

∏
b

Hom(K−b, Ib+1
t )

https://stacks.math.columbia.edu/tag/070H
https://stacks.math.columbia.edu/tag/070I
https://stacks.math.columbia.edu/tag/090X
https://stacks.math.columbia.edu/tag/070J
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computes HomK(A)(K•, I•
t ). Next, observe that we have

C =
∏

t∈T
Ct

as complexes of abelian groups by our choice of I. Taking products is an exact func-
tor on the category of abelian groups. Hence ifK• is acyclic, then HomK(A)(K•, I•

t ) =
0, hence Ct is acyclic, hence C is acyclic, hence we get HomK(A)(K•, I•) = 0. Thus
we find that I• is K-injective. Having said this, we can use Lemma 13.31.2 to
conclude that

HomD(A)(K•, I•) =
∏

t∈T
HomD(A)(K•, I•

t )

and indeed I• represents the product in the derived category. □

Lemma 13.31.6.070Y Let A be an abelian category. Let F : K(A) → D′ be an exact
functor of triangulated categories. Then RF is defined at every complex in K(A)
which is quasi-isomorphic to a K-injective complex. In fact, every K-injective com-
plex computes RF .

Proof. By Lemma 13.14.4 it suffices to show that RF is defined at a K-injective
complex, i.e., it suffices to show a K-injective complex I• computes RF . Any quasi-
isomorphism I• → N• is a homotopy equivalence as it has an inverse by Lemma
13.31.2. Thus I• → I• is a final object of I•/Qis(A) and we win. □

Lemma 13.31.7.070K Let A be an abelian category. Assume every complex has a quasi-
isomorphism towards a K-injective complex. Then any exact functor F : K(A)→
D′ of triangulated categories has a right derived functor

RF : D(A) −→ D′

and RF (I•) = F (I•) for K-injective complexes I•.

Proof. To see this we apply Lemma 13.14.15 with I the collection of K-injective
complexes. Since (1) holds by assumption, it suffices to prove that if I• → J•

is a quasi-isomorphism of K-injective complexes, then F (I•) → F (J•) is an iso-
morphism. This is clear because I• → J• is a homotopy equivalence, i.e., an
isomorphism in K(A), by Lemma 13.31.2. □

The following lemma can be generalized to limits over bigger ordinals.

Lemma 13.31.8.070L Let A be an abelian category. Let
. . .→ I•

3 → I•
2 → I•

1

be an inverse system of complexes. Assume
(1) each I•

n is K-injective,
(2) each map Imn+1 → Imn is a split surjection,
(3) the limits Im = lim Imn exist.

Then the complex I• is K-injective.

Proof. We urge the reader to skip the proof of this lemma. Let M• be an acyclic
complex. Let us abbreviateHn(a, b) = HomA(Ma, Ibn). With this notation HomK(A)(M•, I•)
is the cohomology of the complex∏
m

lim
n
Hn(m,m−2)→

∏
m

lim
n
Hn(m,m−1)→

∏
m

lim
n
Hn(m,m)→

∏
m

lim
n
Hn(m,m+1)

https://stacks.math.columbia.edu/tag/070Y
https://stacks.math.columbia.edu/tag/070K
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in the third spot from the left. We may exchange the order of
∏

and lim and each
of the complexes∏

m

Hn(m,m− 2)→
∏
m

Hn(m,m− 1)→
∏
m

Hn(m,m)→
∏
m

Hn(m,m+ 1)

is exact by assumption (1). By assumption (2) the maps in the systems

. . .→
∏
m

H3(m,m− 2)→
∏
m

H2(m,m− 2)→
∏
m

H1(m,m− 2)

are surjective. Thus the lemma follows from Homology, Lemma 12.31.4. □

It appears that a combination of Lemmas 13.29.3, 13.31.4, and 13.31.8 produces
“enough K-injectives” for any abelian category with enough injectives and countable
products. Actually, this may not work! See Lemma 13.34.4 for an explanation.

Lemma 13.31.9.08BJ Let A and B be abelian categories. Let u : A → B and v : B → A
be additive functors. Assume

(1) u is right adjoint to v, and
(2) v is exact.

Then u transforms K-injective complexes into K-injective complexes.

Proof. Let I• be a K-injective complex of A. Let M• be a acyclic complex of B.
As v is exact we see that v(M•) is an acyclic complex. By adjointness we get

0 = HomK(A)(v(M•), I•) = HomK(B)(M•, u(I•))

hence the lemma follows. □

13.32. Bounded cohomological dimension

07K5 There is another case where the unbounded derived functor exists. Namely, when
the functor has bounded cohomological dimension.

Lemma 13.32.1.07K6 Let A be an abelian category. Let d : Ob(A) → {0, 1, 2, . . . ,∞}
be a function. Assume that

(1) every object of A is a subobject of an object A with d(A) = 0,
(2) d(A⊕B) ≤ max{d(A), d(B)} for A,B ∈ A, and
(3) if 0→ A→ B → C → 0 is short exact, then d(C) ≤ max{d(A)−1, d(B)}.

Let K• be a complex such that n+ d(Kn) tends to −∞ as n → −∞. Then there
exists a quasi-isomorphism K• → L• with d(Ln) = 0 for all n ∈ Z.

Proof. By Lemma 13.15.5 we can find a quasi-isomorphism σ≥0K
• → M• with

Mn = 0 for n < 0 and d(Mn) = 0 for n ≥ 0. Then K• is quasi-isomorphic to the
complex

. . .→ K−2 → K−1 →M0 →M1 → . . .

Hence we may assume that d(Kn) = 0 for n ≫ 0. Note that the condition n +
d(Kn)→ −∞ as n→ −∞ is not violated by this replacement.

We are going to improve K• by an (infinite) sequence of elementary replacements.
An elementary replacement is the following. Choose an index n such that d(Kn) >

https://stacks.math.columbia.edu/tag/08BJ
https://stacks.math.columbia.edu/tag/07K6
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0. Choose an injection Kn → M where d(M) = 0. Set M ′ = Coker(Kn →
M ⊕Kn+1). Consider the map of complexes

K• :

��

Kn−1

��

// Kn

��

// Kn+1

��

// Kn+2

��
(K ′)• : Kn−1 // M // M ′ // Kn+2

It is clear that K• → (K ′)• is a quasi-isomorphism. Moreover, it is clear that
d((K ′)n) = 0 and

d((K ′)n+1) ≤ max{d(Kn)− 1, d(M ⊕Kn+1)} ≤ max{d(Kn)− 1, d(Kn+1)}
and the other values are unchanged.
To finish the proof we carefuly choose the order in which to do the elementary
replacements so that for every integer m the complex σ≥mK

• is changed only a
finite number of times. To do this set

ξ(K•) = max{n+ d(Kn) | d(Kn) > 0}
and

I = {n ∈ Z | ξ(K•) = n+ d(Kn) and d(Kn) > 0}
Our assumption that n + d(Kn) tends to −∞ as n → −∞ and the fact that
d(Kn) = 0 for n >> 0 implies ξ(K•) < +∞ and that I is a finite set. It is clear
that ξ((K ′)•) ≤ ξ(K•) for an elementary transformation as above. An elementary
transformation changes the complex in degrees ≤ ξ(K•) + 1. Hence if we can find
finite sequence of elementary transformations which decrease ξ(K•), then we win.
However, note that if we do an elementary transformation starting with the smallest
element n ∈ I, then we either decrease the size of I, or we increase min I. Since
every element of I is ≤ ξ(K•) we see that we win after a finite number of steps. □

Lemma 13.32.2.07K7 Let F : A → B be a left exact functor of abelian categories.
Assume

(1) every object of A is a subobject of an object which is right acyclic for F ,
(2) there exists an integer n ≥ 0 such that RnF = 0,

Then
(1) RF : D(A)→ D(B) exists,
(2) any complex consisting of right acyclic objects for F computes RF ,
(3) any complex is the source of a quasi-isomorphism into a complex consisting

of right acyclic objects for F ,
(4) for E ∈ D(A)

(a) Hi(RF (τ≤aE)→ Hi(RF (E)) is an isomorphism for i ≤ a,
(b) Hi(RF (E))→ Hi(RF (τ≥b−n+1E)) is an isomorphism for i ≥ b,
(c) if Hi(E) = 0 for i ̸∈ [a, b] for some −∞ ≤ a ≤ b ≤ ∞, then

Hi(RF (E)) = 0 for i ̸∈ [a, b+ n− 1].

Proof. Note that the first assumption implies that RF : D+(A) → D+(B) exists,
see Proposition 13.16.8. Let A be an object of A. Choose an injection A → A′

with A′ acyclic. Then we see that Rn+1F (A) = RnF (A′/A) = 0 by the long exact
cohomology sequence. Hence we conclude that Rn+1F = 0. Continuing like this
using induction we find that RmF = 0 for all m ≥ n.

https://stacks.math.columbia.edu/tag/07K7
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We are going to use Lemma 13.32.1 with the function d : Ob(A) → {0, 1, 2, . . .}
given by d(A) = max{0} ∪ {i | RiF (A) ̸= 0}. The first assumption of Lemma
13.32.1 is our assumption (1). The second assumption of Lemma 13.32.1 follows
from the fact that RF (A⊕B) = RF (A)⊕RF (B). The third assumption of Lemma
13.32.1 follows from the long exact cohomology sequence. Hence for every complex
K• there exists a quasi-isomorphism K• → L• into a complex of objects right
acyclic for F . This proves statement (3).
We claim that if L• → M• is a quasi-isomorphism of complexes of right acyclic
objects for F , then F (L•)→ F (M•) is a quasi-isomorphism. If we prove this claim
then we get statements (1) and (2) of the lemma by Lemma 13.14.15. To prove the
claim pick an integer i ∈ Z. Consider the distinguished triangle

σ≥i−n−1L
• → σ≥i−n−1M

• → Q•,

i.e., let Q• be the cone of the first map. Note that Q• is bounded below and that
Hj(Q•) is zero except possibly for j = i − n − 1 or j = i − n − 2. We may apply
RF to Q•. Using the second spectral sequence of Lemma 13.21.3 and the assumed
vanishing of cohomology (2) we conclude that Hj(RF (Q•)) is zero except possibly
for j ∈ {i−n−2, . . . , i−1}. Hence we see that RF (σ≥i−n−1L

•)→ RF (σ≥i−n−1M
•)

induces an isomorphism of cohomology objects in degrees ≥ i. By Proposition
13.16.8 we know that RF (σ≥i−n−1L

•) = σ≥i−n−1F (L•) and RF (σ≥i−n−1M
•) =

σ≥i−n−1F (M•). We conclude that F (L•)→ F (M•) is an isomorphism in degree i
as desired.
Part (4)(a) follows from Lemma 13.16.1.
For part (4)(b) let E be represented by the complex L• of objects right acyclic for
F . By part (2) RF (E) is represented by the complex F (L•) and RF (σ≥cL

•) is
represented by σ≥cF (L•). Consider the distinguished triangle

Hb−n(L•)[n− b]→ τ≥b−nL
• → τ≥b−n+1L

•

of Remark 13.12.4. The vanishing established above gives that Hi(RF (τ≥b−nL
•))

agrees with Hi(RF (τ≥b−n+1L
•)) for i ≥ b. Consider the short exact sequence of

complexes
0→ Im(Lb−n−1 → Lb−n)[n− b]→ σ≥b−nL

• → τ≥b−nL
• → 0

Using the distinguished triangle associated to this (see Section 13.12) and the van-
ishing as before we conclude that Hi(RF (τ≥b−nL

•)) agrees with Hi(RF (σ≥b−nL
•))

for i ≥ b. Since the map RF (σ≥b−nL
•)→ RF (L•) is represented by σ≥b−nF (L•)→

F (L•) we conclude that this in turn agrees with Hi(RF (L•)) for i ≥ b as desired.
Proof of (4)(c). Under the assumption on E we have τ≤a−1E = 0 and we get
the vanishing of Hi(RF (E)) for i ≤ a − 1 from part (4)(a). Similarly, we have
τ≥b+1E = 0 and hence we get the vanishing of Hi(RF (E)) for i ≥ b+ n from part
(4)(b). □

Lemma 13.32.3.07K8 Let F : A → B be a right exact functor of abelian categories. If
(1) every object of A is a quotient of an object which is left acyclic for F ,
(2) there exists an integer n ≥ 0 such that LnF = 0,

Then
(1) LF : D(A)→ D(B) exists,
(2) any complex consisting of left acyclic objects for F computes LF ,

https://stacks.math.columbia.edu/tag/07K8
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(3) any complex is the target of a quasi-isomorphism from a complex consist-
ing of left acyclic objects for F ,

(4) for E ∈ D(A)
(a) Hi(LF (τ≤a+n−1E)→ Hi(LF (E)) is an isomorphism for i ≤ a,
(b) Hi(LF (E))→ Hi(LF (τ≥bE)) is an isomorphism for i ≥ b,
(c) if Hi(E) = 0 for i ̸∈ [a, b] for some −∞ ≤ a ≤ b ≤ ∞, then

Hi(LF (E)) = 0 for i ̸∈ [a− n+ 1, b].

Proof. This is dual to Lemma 13.32.2. □

13.33. Derived colimits

0A5K In a triangulated category there is a notion of derived colimit.

Definition 13.33.1.090Z Let D be a triangulated category. Let (Kn, fn) be a system of
objects of D. We say an object K is a derived colimit, or a homotopy colimit of the
system (Kn) if the direct sum

⊕
Kn exists and there is a distinguished triangle⊕

Kn →
⊕

Kn → K →
⊕

Kn[1]

where the map
⊕
Kn →

⊕
Kn is given by 1 − fn in degree n. If this is the case,

then we sometimes indicate this by the notation K = hocolimKn.

By TR3 a derived colimit, if it exists, is unique up to (non-unique) isomorphism.
Moreover, by TR1 a derived colimit of Kn exists as soon as

⊕
Kn exists. The

derived category D(Ab) of the category of abelian groups is an example of a trian-
gulated category where all homotopy colimits exist.
The nonuniqueness makes it hard to pin down the derived colimit. In More on
Algebra, Lemma 15.86.5 the reader finds an exact sequence

0→ R1 lim Hom(Kn, L[−1])→ Hom(hocolimKn, L)→ lim Hom(Kn, L)→ 0
describing the Homs out of a homotopy colimit in terms of the usual Homs.

Remark 13.33.2.0CRH Let D be a triangulated category. Let (Kn, fn) be a system of
objects of D. We may think of a derived colimit as an object K of D endowed with
morphisms in : Kn → K such that in+1 ◦ fn = in and such that there exists a
morphism c : K →

⊕
Kn with the property that⊕
Kn

1−fn−−−→
⊕

Kn
in−→ K

c−→
⊕

Kn[1]

is a distinguished triangle. If (K ′, i′n, c
′) is a second derived colimit, then there

exists an isomorphism φ : K → K ′ such that φ ◦ in = i′n and c′ ◦ φ = c. The
existence of φ is TR3 and the fact that φ is an isomorphism is Lemma 13.4.3.

Remark 13.33.3.0CRI Let D be a triangulated category. Let (an) : (Kn, fn)→ (Ln, gn)
be a morphism of systems of objects of D. Let (K, in, c) be a derived colimit of
the first system and let (L, jn, d) be a derived colimit of the second system with
notation as in Remark 13.33.2. Then there exists a morphism a : K → L such that
a ◦ in = jn and d ◦ a = (an[1]) ◦ c. This follows from TR3 applied to the defining
distinguished triangles.

Lemma 13.33.4.0CRJ Let D be a triangulated category. Let (Kn, fn) be a system of
objects of D. Let n1 < n2 < n3 < . . . be a sequence of integers. Assume

⊕
Kn and

https://stacks.math.columbia.edu/tag/090Z
https://stacks.math.columbia.edu/tag/0CRH
https://stacks.math.columbia.edu/tag/0CRI
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Kni exist. Then there exists an isomorphism hocolimKni → hocolimKn such

that
Kni

//

id
��

hocolimKni

��
Kni

// hocolimKn

commutes for all i.

Proof. Let gi : Kni → Kni+1 be the composition fni+1−1 ◦ . . . ◦ fni . We construct
commutative diagrams⊕

iKni 1−gi
//

b

��

⊕
iKni

a

��⊕
nKn

1−fn //⊕
nKn

and

⊕
nKn 1−fn

//

d

��

⊕
nKn

c

��⊕
iKni

1−gi //⊕
iKni

as follows. Let ai = a|Kni be the inclusion of Kni into the direct sum. In other
words, a is the natural inclusion. Let bi = b|Kni be the map

Kni

1, fni , fni+1◦fni , ..., fni+1−2◦...◦fni−−−−−−−−−−−−−−−−−−−−−−−−−→ Kni ⊕Kni+1 ⊕ . . .⊕Kni+1−1

If ni−1 < j ≤ ni, then we let cj = c|Kj be the map

Kj

fni−1◦...◦fj−−−−−−−−→ Kni

We let dj = d|Kj be zero if j ̸= ni for any i and we let dni be the natural inclusion
of Kni into the direct sum. In other words, d is the natural projection. By TR3
these diagrams define morphisms

φ : hocolimKni → hocolimKn and ψ : hocolimKn → hocolimKni

Since c ◦ a and d ◦ b are the identity maps we see that φ ◦ ψ is an isomorphism by
Lemma 13.4.3. The other way around we get the morphisms a◦c and b◦d. Consider
the morphism h = (hj) :

⊕
Kn →

⊕
Kn given by the rule: for ni−1 < j < ni we

set
hj : Kj

1, fj , fj+1◦fj , ..., fni−1◦...◦fj−−−−−−−−−−−−−−−−−−−−→ Kj ⊕ . . .⊕Kni

Then the reader verifies that (1−f)◦h = id−a◦ c and h◦ (1−f) = id− b◦d. This
means that id−ψ ◦φ has square zero by Lemma 13.4.5 (small argument omitted).
In other words, ψ ◦φ differs from the identity by a nilpotent endomorphism, hence
is an isomorphism. Thus φ and ψ are isomorphisms as desired. □

Lemma 13.33.5.0A5L Let A be an abelian category. If A has exact countable direct
sums, then D(A) has countable direct sums. In fact given a collection of complexes
K•
i indexed by a countable index set I the termwise direct sum

⊕
K•
i is the direct

sum of K•
i in D(A).

Proof. Let L• be a complex. Suppose given maps αi : K•
i → L• in D(A). This

means there exist quasi-isomorphisms si : M•
i → K•

i of complexes and maps of
complexes fi : M•

i → L• such that αi = fis
−1
i . By assumption the map of com-

plexes
s :
⊕

M•
i −→

⊕
K•
i

https://stacks.math.columbia.edu/tag/0A5L
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is a quasi-isomorphism. Hence setting f =
⊕
fi we see that α = fs−1 is a map in

D(A) whose composition with the coprojection K•
i →

⊕
K•
i is αi. We omit the

verification that α is unique. □

Lemma 13.33.6.093W Let A be an abelian category. Assume colimits over N exist and
are exact. Then countable direct sums exists and are exact. Moreover, if (An, fn)
is a system over N, then there is a short exact sequence

0→
⊕

An →
⊕

An → colimAn → 0

where the first map in degree n is given by 1− fn.

Proof. The first statement follows from
⊕
An = colim(A1 ⊕ . . . ⊕ An). For the

second, note that for each n we have the short exact sequence
0→ A1 ⊕ . . .⊕An−1 → A1 ⊕ . . .⊕An → An → 0

where the first map is given by the maps 1− fi and the second map is the sum of
the transition maps. Take the colimit to get the sequence of the lemma. □

Lemma 13.33.7.0949 Let A be an abelian category. Let L•
n be a system of complexes

of A. Assume colimits over N exist and are exact in A. Then the termwise colimit
L• = colimL•

n is a homotopy colimit of the system in D(A).

Proof. We have an exact sequence of complexes

0→
⊕

L•
n →

⊕
L•
n → L• → 0

by Lemma 13.33.6. The direct sums are direct sums in D(A) by Lemma 13.33.5.
Thus the result follows from the definition of derived colimits in Definition 13.33.1
and the fact that a short exact sequence of complexes gives a distinguished triangle
(Lemma 13.12.1). □

Lemma 13.33.8.0CRK Let D be a triangulated category having countable direct sums.
Let A be an abelian category with exact colimits over N. Let H : D → A be a ho-
mological functor commuting with countable direct sums. Then H(hocolimKn) =
colimH(Kn) for any system of objects of D.

Proof. Write K = hocolimKn. Apply H to the defining distinguished triangle to
get ⊕

H(Kn)→
⊕

H(Kn)→ H(K)→
⊕

H(Kn[1])→
⊕

H(Kn[1])

where the first map is given by 1−H(fn) and the last map is given by 1−H(fn[1]).
Apply Lemma 13.33.6 to see that this proves the lemma. □

The following lemma tells us that taking maps out of a compact object (to be
defined later) commutes with derived colimits.

Lemma 13.33.9.094A Let D be a triangulated category with countable direct sums.
Let K ∈ D be an object such that for every countable set of objects En ∈ D the
canonical map ⊕

HomD(K,En) −→ HomD(K,
⊕

En)
is a bijection. Then, given any system Ln of D over N whose derived colimit
L = hocolimLn exists we have that

colim HomD(K,Ln) −→ HomD(K,L)

https://stacks.math.columbia.edu/tag/093W
https://stacks.math.columbia.edu/tag/0949
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is a bijection.

Proof. Consider the defining distinguished triangle⊕
Ln →

⊕
Ln → L→

⊕
Ln[1]

Apply the cohomological functor HomD(K,−) (see Lemma 13.4.2). By elementary
considerations concerning colimits of abelian groups we get the result. □

13.34. Derived limits

08TB In a triangulated category there is a notion of derived limit.

Definition 13.34.1.08TC Let D be a triangulated category. Let (Kn, fn) be an inverse
system of objects of D. We say an object K is a derived limit, or a homotopy limit
of the system (Kn) if the product

∏
Kn exists and there is a distinguished triangle

K →
∏

Kn →
∏

Kn → K[1]

where the map
∏
Kn →

∏
Kn is given by (kn) 7→ (kn − fn+1(kn+1)). If this is the

case, then we sometimes indicate this by the notation K = R limKn.

By TR3 a derived limit, if it exists, is unique up to (non-unique) isomorphism.
Moreover, by TR1 a derived limit R limKn exists as soon as

∏
Kn exists. The

derived category D(Ab) of the category of abelian groups is an example of a trian-
gulated category where all derived limits exist.
The nonuniqueness makes it hard to pin down the derived limit. In More on
Algebra, Lemma 15.86.4 the reader finds an exact sequence

0→ R1 lim Hom(L,Kn[−1])→ Hom(L,R limKn)→ lim Hom(L,Kn)→ 0
describing the Homs into a derived limit in terms of the usual Homs.

Lemma 13.34.2.07KC Let A be an abelian category with exact countable products.
Then

(1) D(A) has countable products,
(2) countable products

∏
Ki in D(A) are obtained by taking termwise prod-

ucts of any complexes representing the Ki, and
(3) Hp(

∏
Ki) =

∏
Hp(Ki).

Proof. Let K•
i be a complex representing Ki in D(A). Let L• be a complex. Sup-

pose given maps αi : L• → K•
i in D(A). This means there exist quasi-isomorphisms

si : K•
i → M•

i of complexes and maps of complexes fi : L• → M•
i such that

αi = s−1
i fi. By assumption the map of complexes

s :
∏

K•
i −→

∏
M•
i

is a quasi-isomorphism. Hence setting f =
∏
fi we see that α = s−1f is a map

in D(A) whose composition with the projection
∏
K•
i → K•

i is αi. We omit the
verification that α is unique. □

The duals of Lemmas 13.33.6, 13.33.7, and 13.33.9 should be stated here and proved.
However, we do not know any applications of these lemmas for now.

Lemma 13.34.3.0BK7 Let A be an abelian category with countable products and enough
injectives. Let (Kn) be an inverse system of D+(A). Then R limKn exists.

https://stacks.math.columbia.edu/tag/08TC
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Proof. It suffices to show that
∏
Kn exists in D(A). For every n we can represent

Kn by a bounded below complex I•
n of injectives (Lemma 13.18.3). Then

∏
Kn is

represented by
∏
I•
n, see Lemma 13.31.5. □

Lemma 13.34.4.070M Let A be an abelian category with countable products and enough
injectives. Let K• be a complex. Let I•

n be the inverse system of bounded below
complexes of injectives produced by Lemma 13.29.3. Then I• = lim I•

n exists, is
K-injective, and the following are equivalent

(1) the map K• → I• is a quasi-isomorphism,
(2) the canonical map K• → R lim τ≥−nK

• is an isomorphism in D(A).

Proof. The statement of the lemma makes sense as R lim τ≥−nK
• exists by Lemma

13.34.3. Each complex I•
n is K-injective by Lemma 13.31.4. Choose direct sum

decompositions Ipn+1 = Cpn+1 ⊕ Ipn for all n ≥ 1. Set Cp1 = Ip1 . The complex
I• = lim I•

n exists because we can take Ip =
∏
n≥1 C

p
n. Fix p ∈ Z. We claim there

is a split short exact sequence

0→ Ip →
∏

Ipn →
∏

Ipn → 0

of objects of A. Here the first map is given by the projection maps Ip → Ipn and the
second map by (xn) 7→ (xn − fpn+1(xn+1)) where fpn : Ipn → Ipn−1 are the transition
maps. The splitting comes from the map

∏
Ipn →

∏
Cpn = Ip. We obtain a termwise

split short exact sequence of complexes

0→ I• →
∏

I•
n →

∏
I•
n → 0

Hence a corresponding distinguished triangle in K(A) and D(A). By Lemma
13.31.5 the products are K-injective and represent the corresponding products in
D(A). It follows that I• represents R lim I•

n (Definition 13.34.1). Moreover, it fol-
lows that I• is K-injective by Lemma 13.31.3. By the commutative diagram of
Lemma 13.29.3 we obtain a corresponding commutative diagram

K• //

��

R lim τ≥−nK
•

��
I• // R lim I•

n

in D(A). Since the right vertical arrow is an isomorphism (as derived limits are
defined on the level of the derived category and since τ≥−nK

• → I•
n is a quasi-

isomorphism), the lemma follows. □

Lemma 13.34.5.090Y Let A be an abelian category having enough injectives and exact
countable products. Then for every complex there is a quasi-isomorphism to a
K-injective complex.

Proof. By Lemma 13.34.4 it suffices to show that K → R lim τ≥−nK is an isomor-
phism for all K in D(A). Consider the defining distinguished triangle

R lim τ≥−nK →
∏

τ≥−nK →
∏

τ≥−nK → (R lim τ≥−nK)[1]

By Lemma 13.34.2 we have

Hp(
∏

τ≥−nK) =
∏

p≥−n
Hp(K)

https://stacks.math.columbia.edu/tag/070M
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It follows in a straightforward manner from the long exact cohomology sequence of
the displayed distinguished triangle that Hp(R lim τ≥−nK) = Hp(K). □

13.35. Operations on full subcategories

0FX0 Let T be a triangulated category. We will identify full subcategories of T with
subsets of Ob(T ). Given full subcategories A,B, . . . we let

(1) A[a, b] for −∞ ≤ a ≤ b ≤ ∞ be the full subcategory of T consisting of all
objects A[−i] with i ∈ [a, b] ∩ Z with A ∈ Ob(A) (note the minus sign!),

(2) smd(A) be the full subcategory of T consisting of all objects which are
isomorphic to direct summands of objects of A,

(3) add(A) be the full subcategory of T consisting of all objects which are
isomorphic to finite direct sums of objects of A,

(4) A ⋆ B be the full subcategory of T consisting of all objects X of T which
fit into a distinguished triangle A → X → B with A ∈ Ob(A) and B ∈
Ob(B),

(5) A⋆n = A ⋆ . . . ⋆A with n ≥ 1 factors (we will see ⋆ is associative below),
(6) smd(add(A)⋆n) = smd(add(A) ⋆ . . . ⋆ add(A)) with n ≥ 1 factors.

If E is an object of T , then we think of E sometimes also as the full subcategory of
T whose single object is E. Then we can consider things like add(E[−1, 2]) and so
on and so forth. We warn the reader that this notation is not universally accepted.

Lemma 13.35.1.0FX1 Let T be a triangulated category. Given full subcategories A, B,
C we have (A ⋆ B) ⋆ C = A ⋆ (B ⋆ C).

Proof. If we have distinguished triangles A → X → B and X → Y → C then by
Axiom TR4 we have distinguished triangles A→ Y → Z and B → Z → C. □

Lemma 13.35.2.0FX2 Let T be a triangulated category. Given full subcategories A, B
we have smd(A)⋆smd(B) ⊂ smd(A⋆B) and smd(smd(A)⋆smd(B)) = smd(A⋆B).

Proof. Suppose we have a distinguished triangle A1 → X → B1 where A1 ⊕ A2 ∈
Ob(A) and B1 ⊕B2 ∈ Ob(B). Then we obtain a distinguished triangle A1 ⊕A2 →
A2 ⊕X ⊕ B2 → B1 ⊕ B2 which proves that X is in smd(A ⋆ B). This proves the
inclusion. The equality follows trivially from this. □

Lemma 13.35.3.0FX3 Let T be a triangulated category. Given full subcategories A, B
the full subcategories add(A) ⋆ add(B) and smd(add(A)) are closed under direct
sums.

Proof. Namely, if A → X → B and A′ → X ′ → B′ are distinguished triangles
and A,A′ ∈ add(A) and B,B′ ∈ add(B) then A ⊕ A′ → X ⊕ X ′ → B ⊕ B′ is a
distinguished triangle with A⊕ A′ ∈ add(A) and B ⊕ B′ ∈ add(B). The result for
smd(add(A)) is trivial. □

Lemma 13.35.4.0FX4 Let T be a triangulated category. Given a full subcategory A for
n ≥ 1 the subcategory

Cn = smd(add(A)⋆n) = smd(add(A) ⋆ . . . ⋆ add(A))
defined above is a strictly full subcategory of T closed under direct sums and direct
summands and Cn+m = smd(Cn ⋆ Cm) for all n,m ≥ 1.

Proof. Immediate from Lemmas 13.35.1, 13.35.2, and 13.35.3. □

https://stacks.math.columbia.edu/tag/0FX1
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Remark 13.35.5.0FX5 Let F : T → T ′ be an exact functor of triangulated categories.
Given a full subcategory A of T we denote F (A) the full subcategory of T ′ whose
objects consists of all objects F (A) with A ∈ Ob(A). We have

F (A[a, b]) = F (A)[a, b]
F (smd(A)) ⊂ smd(F (A)),
F (add(A)) ⊂ add(F (A)),
F (A ⋆ B) ⊂ F (A) ⋆ F (B),

F (A⋆n) ⊂ F (A)⋆n.
We omit the trivial verifications.

Remark 13.35.6.0FX6 Let T be a triangulated category. Given full subcategories A1 ⊂
A2 ⊂ A3 ⊂ . . . and B of T we have(⋃

Ai
)

[a, b] =
⋃
Ai[a, b]

smd
(⋃
Ai
)

=
⋃
smd(Ai),

add
(⋃
Ai
)

=
⋃
add(Ai),(⋃

Ai
)
⋆ B =

⋃
Ai ⋆ B,

B ⋆
(⋃
Ai
)

=
⋃
B ⋆Ai,(⋃

Ai
)⋆n

=
⋃
A⋆ni .

We omit the trivial verifications.

Lemma 13.35.7.0FX7 Let A be an abelian category. Let D = D(A). Let E ⊂ Ob(A) be
a subset which we view as a subset of Ob(D) also. Let K be an object of D.

(1) Let b ≥ a and assume Hi(K) is zero for i ̸∈ [a, b] and Hi(K) ∈ E if
i ∈ [a, b]. Then K is in smd(add(E [a, b])⋆(b−a+1)).

(2) Let b ≥ a and assumeHi(K) is zero for i ̸∈ [a, b] andHi(K) ∈ smd(add(E))
if i ∈ [a, b]. Then K is in smd(add(E [a, b])⋆(b−a+1)).

(3) Let b ≥ a and assume K can be represented by a complex K• with Ki = 0
for i ̸∈ [a, b] andKi ∈ E for i ∈ [a, b]. ThenK is in smd(add(E [a, b])⋆(b−a+1)).

(4) Let b ≥ a and assume K can be represented by a complex K• with
Ki = 0 for i ̸∈ [a, b] and Ki ∈ smd(add(E)) for i ∈ [a, b]. Then K is in
smd(add(E [a, b])⋆(b−a+1)).

Proof. We will use Lemma 13.35.4 without further mention. We will prove (2)
which trivially implies (1). We use induction on b − a. If b − a = 0, then K is
isomorphic to Hi(K)[−a] in D and the result is immediate. If b − a > 0, then we
consider the distinguished triangle

τ≤b−1K
• → K• → Kb[−b]

and we conclude by induction on b− a. We omit the proof of (3) and (4). □

Lemma 13.35.8.0FX8 Let T be a triangulated category. LetH : T → A be a homological
functor to an abelian category A. Let a ≤ b and E ⊂ Ob(T ) be a subset such that
Hi(E) = 0 for E ∈ E and i ̸∈ [a, b]. Then for X ∈ smd(add(E [−m,m])⋆n) we have
Hi(X) = 0 for i ̸∈ [−m+ na,m+ nb].

https://stacks.math.columbia.edu/tag/0FX5
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Proof. Omitted. Pleasant exercise in the definitions. □

13.36. Generators of triangulated categories

09SI In this section we briefly introduce a few of the different notions of a generator for
a triangulated category. Our terminology is taken from [BV03] (except that we use
“saturated” for what they call “épaisse”, see Definition 13.6.1, and our definition
of add(A) is different).
Let D be a triangulated category. Let E be an object of D. Denote ⟨E⟩1 the strictly
full subcategory of D consisting of objects in D isomorphic to direct summands of
finite direct sums ⊕

i=1,...,r
E[ni]

of shifts of E. It is clear that in the notation of Section 13.35 we have
⟨E⟩1 = smd(add(E[−∞,∞]))

For n > 1 let ⟨E⟩n denote the full subcategory of D consisting of objects of D
isomorphic to direct summands of objects X which fit into a distinguished triangle

A→ X → B → A[1]
where A is an object of ⟨E⟩1 and B an object of ⟨E⟩n−1. In the notation of Section
13.35 we have

⟨E⟩n = smd(⟨E⟩1 ⋆ ⟨E⟩n−1)
Each of the categories ⟨E⟩n is a strictly full additive (by Lemma 13.35.3) subcat-
egory of D preserved under shifts and under taking summands. But, ⟨E⟩n is not
necessarily closed under “taking cones” or “extensions”, hence not necessarily a
triangulated subcategory. This will be true for the subcategory

⟨E⟩ =
⋃

n
⟨E⟩n

as will be shown in the lemmas below.

Lemma 13.36.1.0FX9 Let T be a triangulated category. Let E be an object of T . For
n ≥ 1 we have

⟨E⟩n = smd(⟨E⟩1 ⋆ . . . ⋆ ⟨E⟩1) = smd(⟨E⟩1⋆n) =
⋃

m≥1
smd(add(E[−m,m])⋆n)

For n, n′ ≥ 1 we have ⟨E⟩n+n′ = smd(⟨E⟩n ⋆ ⟨E⟩n′).

Proof. The left equality in the displayed formula follows from Lemmas 13.35.1
and 13.35.2 and induction. The middle equality is a matter of notation. Since
⟨E⟩1 = smd(add(E[−∞,∞])]) and since E[−∞,∞] =

⋃
m≥1 E[−m,m] we see from

Remark 13.35.6 and Lemma 13.35.2 that we get the equality on the right. Then
the final statement follows from the remark and the corresponding statement of
Lemma 13.35.4. □

Lemma 13.36.2.0ATG Let D be a triangulated category. Let E be an object of D. The
subcategory

⟨E⟩ =
⋃

n
⟨E⟩n =

⋃
n,m≥1

smd(add(E[−m,m])⋆n)

is a strictly full, saturated, triangulated subcategory of D and it is the smallest
such subcategory of D containing the object E.

https://stacks.math.columbia.edu/tag/0FX9
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Proof. The equality on the right follows from Lemma 13.36.1. It is clear that ⟨E⟩ =⋃
⟨E⟩n contains E, is preserved under shifts, direct sums, direct summands. If

A ∈ ⟨E⟩a and B ∈ ⟨E⟩b and if A→ X → B → A[1] is a distinguished triangle, then
X ∈ ⟨E⟩a+b by Lemma 13.36.1. Hence

⋃
⟨E⟩n is also preserved under extensions

and it follows that it is a triangulated subcategory.
Finally, let D′ ⊂ D be a strictly full, saturated, triangulated subcategory of D
containing E. Then D′[−∞,∞] ⊂ D′, add(D) ⊂ D′, smd(D′) ⊂ D′, and D′ ⋆D′ ⊂
D′. In other words, all the operations we used to construct ⟨E⟩ out of E preserve
D′. Hence ⟨E⟩ ⊂ D′ and this finishes the proof. □

Definition 13.36.3.09SJ Let D be a triangulated category. Let E be an object of D.
(1) We say E is a classical generator of D if the smallest strictly full, saturated,

triangulated subcategory of D containing E is equal to D, in other words,
if ⟨E⟩ = D.

(2) We say E is a strong generator of D if ⟨E⟩n = D for some n ≥ 1.
(3) We say E is a weak generator or a generator of D if for any nonzero object

K of D there exists an integer n and a nonzero map E → K[n].

This definition can be generalized to the case of a family of objects.

Lemma 13.36.4.09SK Let D be a triangulated category. Let E,K be objects of D. The
following are equivalent

(1) Hom(E,K[i]) = 0 for all i ∈ Z,
(2) Hom(E′,K) = 0 for all E′ ∈ ⟨E⟩.

Proof. The implication (2) ⇒ (1) is immediate. Conversely, assume (1). Then
Hom(X,K) = 0 for all X in ⟨E⟩1. Arguing by induction on n and using Lemma
13.4.2 we see that Hom(X,K) = 0 for all X in ⟨E⟩n. □

Lemma 13.36.5.09SL Let D be a triangulated category. Let E be an object of D. If E
is a classical generator of D, then E is a generator.

Proof. Assume E is a classical generator. Let K be an object of D such that
Hom(E,K[i]) = 0 for all i ∈ Z. By Lemma 13.36.4 Hom(E′,K) = 0 for all E′ in
⟨E⟩. However, since D = ⟨E⟩ we conclude that idK = 0, i.e., K = 0. □

Lemma 13.36.6.0FXA Let D be a triangulated category which has a strong generator.
Let E be an object of D. If E is a classical generator of D, then E is a strong
generator.

Proof. Let E′ be an object of D such that D = ⟨E′⟩n. Since D = ⟨E⟩ we see that
E′ ∈ ⟨E⟩m for some m ≥ 1 by Lemma 13.36.2. Then ⟨E′⟩1 ⊂ ⟨E⟩m hence
D = ⟨E′⟩n = smd(⟨E′⟩1 ⋆ . . . ⋆ ⟨E′⟩1) ⊂ smd(⟨E⟩m ⋆ . . . ⋆ ⟨E⟩m) = ⟨E⟩nm

as desired. Here we used Lemma 13.36.1. □

Remark 13.36.7.0ATH Let D be a triangulated category. Let E be an object of D. Let
T be a property of objects of D. Suppose that

(1) if Ki ∈ D(A), i = 1, . . . , r with T (Ki) for i = 1, . . . , r, then T (
⊕
Ki),

(2) if K → L → M → K[1] is a distinguished triangle and T holds for two,
then T holds for the third object,

(3) if T (K ⊕ L) then T (K) and T (L), and

https://stacks.math.columbia.edu/tag/09SJ
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(4) T (E[n]) holds for all n.
Then T holds for all objects of ⟨E⟩.

13.37. Compact objects

09SM Here is the definition.
Definition 13.37.1.07LS Let D be an additive category with arbitrary direct sums. A
compact object of D is an object K such that the map⊕

i∈I
HomD(K,Ei) −→ HomD(K,

⊕
i∈I

Ei)

is bijective for any set I and objects Ei ∈ Ob(D) parametrized by i ∈ I.
This notion turns out to be very useful in algebraic geometry. It is an intrinsic
condition on objects that forces the objects to be, well, compact.
Lemma 13.37.2.09QH Let D be a (pre-)triangulated category with direct sums. Then
the compact objects of D form the objects of a Karoubian, saturated, strictly full,
(pre-)triangulated subcategory Dc of D.
Proof. Let (X,Y, Z, f, g, h) be a distinguished triangle of D with X and Y compact.
Then it follows from Lemma 13.4.2 and the five lemma (Homology, Lemma 12.5.20)
that Z is a compact object too. It is clear that if X ⊕Y is compact, then X, Y are
compact objects too. Hence Dc is a saturated triangulated subcategory. Since D is
Karoubian by Lemma 13.4.14 we conclude that the same is true for Dc. □

Lemma 13.37.3.09SN Let D be a triangulated category with direct sums. Let Ei, i ∈ I
be a family of compact objects of D such that

⊕
Ei generates D. Then every object

X of D can be written as
X = hocolimXn

where X1 is a direct sum of shifts of the Ei and each transition morphism fits into
a distinguished triangle Yn → Xn → Xn+1 → Yn[1] where Yn is a direct sum of
shifts of the Ei.
Proof. Set X1 =

⊕
(i,m,φ) Ei[m] where the direct sum is over all triples (i,m, φ)

such that i ∈ I, m ∈ Z and φ : Ei[m] → X. Then X1 comes equipped with
a canonical morphism X1 → X. Given Xn → X we set Yn =

⊕
(i,m,φ) Ei[m]

where the direct sum is over all triples (i,m, φ) such that i ∈ I, m ∈ Z, and
φ : Ei[m] → Xn is a morphism such that Ei[m] → Xn → X is zero. Choose
a distinguished triangle Yn → Xn → Xn+1 → Yn[1] and let Xn+1 → X be any
morphism such that Xn → Xn+1 → X is the given one; such a morphism exists by
our choice of Yn. We obtain a morphism hocolimXn → X by the construction of
our maps Xn → X. Choose a distinguished triangle

C → hocolimXn → X → C[1]
Let Ei[m] → C be a morphism. Since Ei is compact, the composition Ei[m] →
C → hocolimXn factors through Xn for some n, say by Ei[m] → Xn. Then the
construction of Yn shows that the composition Ei[m] → Xn → Xn+1 is zero. In
other words, the composition Ei[m] → C → hocolimXn is zero. This means that
our morphism Ei[m]→ C comes from a morphism Ei[m]→ X[−1]. The construc-
tion of X1 then shows that such morphism lifts to hocolimXn and we conclude that
our morphism Ei[m]→ C is zero. The assumption that

⊕
Ei generates D implies

that C is zero and the proof is done. □

https://stacks.math.columbia.edu/tag/07LS
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Lemma 13.37.4.09SP With assumptions and notation as in Lemma 13.37.3. If C is a
compact object and C → Xn is a morphism, then there is a factorization C → E →
Xn where E is an object of ⟨Ei1 ⊕ . . .⊕ Eit⟩ for some i1, . . . , it ∈ I.

Proof. We prove this by induction on n. The base case n = 1 is clear. If n > 1
consider the composition C → Xn → Yn−1[1]. This can be factored through some
E′[1] → Yn−1[1] where E′ is a finite direct sum of shifts of the Ei. Let I ′ ⊂ I be
the finite set of indices that occur in this direct sum. Thus we obtain

E′ //

��

C ′ //

��

C //

��

E′[1]

��
Yn−1 // Xn−1 // Xn

// Yn−1[1]

By induction the morphism C ′ → Xn−1 factors through E′′ → Xn−1 with E′′ an
object of ⟨

⊕
i∈I′′ Ei⟩ for some finite subset I ′′ ⊂ I. Choose a distinguished triangle

E′ → E′′ → E → E′[1]

then E is an object of ⟨
⊕

i∈I′∪I′′ Ei⟩. By construction and the axioms of a tri-
angulated category we can choose morphisms C → E and a morphism E → Xn

fitting into morphisms of triangles (E′, C ′, C) → (E′, E′′, E) and (E′, E′′, E) →
(Yn−1, Xn−1, Xn). The composition C → E → Xn may not equal the given mor-
phism C → Xn, but the compositions into Yn−1 are equal. Let C → Xn−1 be
a morphism that lifts the difference. By induction assumption we can factor this
through a morphism E′′′ → Xn−1 with E′′ an object of ⟨

⊕
i∈I′′′ Ei⟩ for some finite

subset I ′ ⊂ I. Thus we see that we get a solution on considering E ⊕ E′′′ → Xn

because E ⊕ E′′′ is an object of ⟨
⊕

i∈I′∪I′′∪I′′′ Ei⟩. □

Definition 13.37.5.09SQ Let D be a triangulated category with arbitrary direct sums.
We say D is compactly generated if there exists a set Ei, i ∈ I of compact objects
such that

⊕
Ei generates D.

The following proposition clarifies the relationship between classical generators and
weak generators.

Proposition 13.37.6.09SR Let D be a triangulated category with direct sums. Let E be
a compact object of D. The following are equivalent

(1) E is a classical generator for Dc and D is compactly generated, and
(2) E is a generator for D.

Proof. If E is a classical generator for Dc, then Dc = ⟨E⟩. It follows formally
from the assumption that D is compactly generated and Lemma 13.36.4 that E is
a generator for D.

The converse is more interesting. Assume that E is a generator for D. Let X be a
compact object of D. Apply Lemma 13.37.3 with I = {1} and E1 = E to write

X = hocolimXn

as in the lemma. Since X is compact we find that X → hocolimXn factors through
Xn for some n (Lemma 13.33.9). Thus X is a direct summand of Xn. By Lemma
13.37.4 we see that X is an object of ⟨E⟩ and the lemma is proven. □

https://stacks.math.columbia.edu/tag/09SP
https://stacks.math.columbia.edu/tag/09SQ
https://stacks.math.columbia.edu/tag/09SR
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13.38. Brown representability

0A8E A reference for the material in this section is [Nee96].

Lemma 13.38.1.0A8F [Nee96, Theorem
3.1].

Let D be a triangulated category with direct sums which is com-
pactly generated. Let H : D → Ab be a contravariant cohomological functor which
transforms direct sums into products. Then H is representable.

Proof. Let Ei, i ∈ I be a set of compact objects such that
⊕

i∈I Ei generates D. We
may and do assume that the set of objects {Ei} is preserved under shifts. Consider
pairs (i, a) where i ∈ I and a ∈ H(Ei) and set

X1 =
⊕

(i,a)
Ei

Since H(X1) =
∏

(i,a) H(Ei) we see that (a)(i,a) defines an element a1 ∈ H(X1). Set
H1 = HomD(−, X1). By Yoneda’s lemma (Categories, Lemma 4.3.5) the element
a1 defines a natural transformation H1 → H.
We are going to inductively construct Xn and transformations an : Hn → H
where Hn = HomD(−, Xn). Namely, we apply the procedure above to the functor
Ker(Hn → H) to get an object

Kn+1 =
⊕

(i,k), k∈Ker(Hn(Ei)→H(Ei))
Ei

and a transformation HomD(−,Kn+1) → Ker(Hn → H). By Yoneda’s lemma the
composition HomD(−,Kn+1) → Hn gives a morphism Kn+1 → Xn. We choose a
distinguished triangle

Kn+1 → Xn → Xn+1 → Kn+1[1]
in D. The element an ∈ H(Xn) maps to zero in H(Kn+1) by construction. Since
H is cohomological we can lift it to an element an+1 ∈ H(Xn+1).
We claim that X = hocolimXn represents H. Applying H to the defining distin-
guished triangle ⊕

Xn →
⊕

Xn → X →
⊕

Xn[1]
we obtain an exact sequence∏

H(Xn)←
∏

H(Xn)← H(X)

Thus there exists an element a ∈ H(X) mapping to (an) in
∏
H(Xn). Hence a

natural transformation HomD(−, X)→ H such that
HomD(−, X1)→ HomD(−, X2)→ HomD(−, X3)→ . . .→ HomD(−, X)→ H

commutes. For each i the map HomD(Ei, X) → H(Ei) is surjective, by construc-
tion of X1. On the other hand, by construction of Xn → Xn+1 the kernel of
HomD(Ei, Xn)→ H(Ei) is killed by the map HomD(Ei, Xn)→ HomD(Ei, Xn+1).
Since

HomD(Ei, X) = colim HomD(Ei, Xn)
by Lemma 13.33.9 we see that HomD(Ei, X)→ H(Ei) is injective.
To finish the proof, consider the subcategory
D′ = {Y ∈ Ob(D) | HomD(Y [n], X)→ H(Y [n]) is an isomorphism for all n}

As HomD(−, X) → H is a transformation between cohomological functors, the
subcategory D′ is a strictly full, saturated, triangulated subcategory of D (details

https://stacks.math.columbia.edu/tag/0A8F
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omitted; see proof of Lemma 13.6.3). Moreover, as both H and HomD(−, X)
transform direct sums into products, we see that direct sums of objects of D′ are in
D′. Thus derived colimits of objects of D′ are in D′. Since {Ei} is preserved under
shifts, we see that Ei is an object of D′ for all i. It follows from Lemma 13.37.3
that D′ = D and the proof is complete. □

Proposition 13.38.2.0A8G [Nee96, Theorem
4.1].

Let D be a triangulated category with direct sums which is
compactly generated. Let F : D → D′ be an exact functor of triangulated categories
which transforms direct sums into direct sums. Then F has an exact right adjoint.

Proof. For an object Y of D′ consider the contravariant functor

D → Ab, W 7→ HomD′(F (W ), Y )

This is a cohomological functor as F is exact and transforms direct sums into
products as F transforms direct sums into direct sums. Thus by Lemma 13.38.1 we
find an objectX of D such that HomD(W,X) = HomD′(F (W ), Y ). The existence of
the adjoint follows from Categories, Lemma 4.24.2. Exactness follows from Lemma
13.7.1. □

13.39. Brown representability, bis

0GYF In this section we explain a version of Brown representability for triangulated cate-
gories which have a suitable set of generators; for other versions, please see [Fra01],
[Nee01], and [Kra02].

Lemma 13.39.1.0GYG Weak version of
[Kra02, Theorem A]

Let D be a triangulated category with direct sums. Suppose given
a set E of objects of D such that

(1) if X is a nonzero object of D, then there exists an E ∈ E and a nonzero
map E → X, and

(2) given objects Xn, n ∈ N of D, E ∈ E , and α : E →
⊕
Xn, there exist

En ∈ E and βn : En → Xn and a morphism γ : E →
⊕
En such that

α = (
⊕
βn) ◦ γ.

Let H : D → Ab be a contravariant cohomological functor which transforms direct
sums into products. Then H is representable.

Proof. This proof is very similar to the proof of Lemma 13.38.1. We may replace E
by
⋃
i∈Z E [i] and assume that E is preserved by shifts. Consider pairs (E, a) where

E ∈ E and a ∈ H(E) and set

X1 =
⊕

(E,a)
E

Since H(X1) =
∏

(E,a) H(E) we see that (a)(E,a) defines an element a1 ∈ H(X1).
Set H1 = HomD(−, X1). By Yoneda’s lemma (Categories, Lemma 4.3.5) the ele-
ment a1 defines a natural transformation H1 → H.

We are going to inductively construct Xn and transformations an : Hn → H
where Hn = HomD(−, Xn). Namely, we apply the procedure above to the functor
Ker(Hn → H) to get an object

Kn+1 =
⊕

(E,k), k∈Ker(Hn(E)→H(E))
E

https://stacks.math.columbia.edu/tag/0A8G
https://stacks.math.columbia.edu/tag/0GYG
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and a transformation HomD(−,Kn+1) → Ker(Hn → H). By Yoneda’s lemma the
composition HomD(−,Kn+1) → Hn gives a morphism Kn+1 → Xn. We choose a
distinguished triangle

Kn+1 → Xn → Xn+1 → Kn+1[1]
in D. The element an ∈ H(Xn) maps to zero in H(Kn+1) by construction. Since
H is cohomological we can lift it to an element an+1 ∈ H(Xn+1).
Set X = hocolimXn. Applying H to the defining distinguished triangle⊕

Xn →
⊕

Xn → X →
⊕

Xn[1]

we obtain an exact sequence∏
H(Xn)←

∏
H(Xn)← H(X)

Thus there exists an element a ∈ H(X) mapping to (an) in
∏
H(Xn). Hence a

natural transformation HomD(−, X)→ H such that
HomD(−, X1)→ HomD(−, X2)→ HomD(−, X3)→ . . .→ HomD(−, X)→ H

commutes. We claim that HomD(−, X)→ H(−) is an isomorphism.
Let E ∈ E . Let us show that

HomD(E,
⊕

Xn)→ HomD(E,
⊕

Xn)

is injective. Namely, let α : E →
⊕
Xn. Then by assumption (2) we obtain a

factorization α = (
⊕
βn) ◦ γ. Since En → Xn → Xn+1 is zero by construction,

we see that the composition
⊕
En →

⊕
Xn →

⊕
Xn is equal to

⊕
βn. Hence

also the composition E →
⊕
Xn →

⊕
Xn is equal to α. This proves the stated

injectivity and hence also

HomD(E,
⊕

Xn[1])→ HomD(E,
⊕

Xn[1])

is injective. It follows that we have an exact sequence

HomD(E,
⊕

Xn)→ HomD(E,
⊕

Xn)→ HomD(E,X)→ 0

for all E ∈ E .
Let E ∈ E and let f : E → X be a morphism. By the previous paragraph, we may
choose α : E →

⊕
Xn lifting f . Then by assumption (2) we obtain a factorization

α = (
⊕
βn) ◦ γ. For each n there is a morphism δn : En → X1 such that δn and

βn map to the same element of H(En). Then the compositions
En → Xn → Xn+1 and En → X1 → Xn+1

are equal by construction of Xn → Xn+1. It follows that⊕
En →

⊕
Xn → X and

⊕
En →

⊕
X1 → X

are the same too. Observing that
⊕
X1 → X factors as

⊕
X1 → X1 → X, we

conclude that
HomD(E,X1)→ HomD(E,X)

is surjective. Since by construction the map HomD(E,X1) → H(E) is surjective
and by construction the kernel of this map is annihilated by HomD(E,X1) →
HomD(E,X) we conclude that HomD(E,X)→ H(E) is a bijection for all E ∈ E .
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To finish the proof, consider the subcategory

D′ = {Y ∈ Ob(D) | HomD(Y [n], X)→ H(Y [n]) is an isomorphism for all n}

As HomD(−, X) → H is a transformation between cohomological functors, the
subcategory D′ is a strictly full, saturated, triangulated subcategory of D (details
omitted; see proof of Lemma 13.6.3). Moreover, as both H and HomD(−, X)
transform direct sums into products, we see that direct sums of objects of D′ are in
D′. Thus derived colimits of objects of D′ are in D′. Since E is preserved by shifts,
we conclude that E ⊂ Ob(D′) by the result of the previous paragraph. To finish
the proof we have to show that D′ = D.

Let Y be an object of D and set H(−) = HomD(−, Y ). Then H is a cohomolog-
ical functor which transforms direct sums into products. By the construction in
the first part of the proof we obtain a morphism colimXn = X → Y such that
HomD(E,X) → HomD(E, Y ) is bijective for all E ∈ E . Then assumption (1) tells
us that X → Y is an isomorphism! On the other hand, by construction X1, X2, . . .
are in D′ and so is X. Thus Y ∈ D′ and the proof is complete. □

Proposition 13.39.2.0GYH Let D be a triangulated category with direct sums. Assume
there exists a set E of objects of D satisfying conditions (1) and (2) of Lemma
13.39.1. Let F : D → D′ be an exact functor of triangulated categories which
transforms direct sums into direct sums. Then F has an exact right adjoint.

Proof. For an object Y of D′ consider the contravariant functor

D → Ab, W 7→ HomD′(F (W ), Y )

This is a cohomological functor as F is exact and transforms direct sums into
products as F transforms direct sums into direct sums. Thus by Lemma 13.39.1 we
find an objectX of D such that HomD(W,X) = HomD′(F (W ), Y ). The existence of
the adjoint follows from Categories, Lemma 4.24.2. Exactness follows from Lemma
13.7.1. □

13.40. Admissible subcategories

0CQP A reference for this section is [BK89, Section 1].

Definition 13.40.1.0FXB Let D be an additive category. Let A ⊂ D be a full subcategory.
The right orthogonal A⊥ of A is the full subcategory consisting of the objects X
of D such that Hom(A,X) = 0 for all A ∈ Ob(A). The left orthogonal ⊥A of A is
the full subcategory consisting of the objects X of D such that Hom(X,A) = 0 for
all A ∈ Ob(A).

Lemma 13.40.2.0CQQ Let D be a triangulated category. Let A ⊂ D be a full subcategory
invariant under all shifts. Consider a distinguished triangle

X → Y → Z → X[1]

of D. The following are equivalent
(1) Z is in A⊥, and
(2) Hom(A,X) = Hom(A, Y ) for all A ∈ Ob(A).

https://stacks.math.columbia.edu/tag/0GYH
https://stacks.math.columbia.edu/tag/0FXB
https://stacks.math.columbia.edu/tag/0CQQ
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Proof. By Lemma 13.4.2 the functor Hom(A,−) is homological and hence we get
a long exact sequence as in (13.3.5.1). Assume (1) and let A ∈ Ob(A). Then we
consider the exact sequence

Hom(A[1], Z)→ Hom(A,X)→ Hom(A, Y )→ Hom(A,Z)
Since A[1] ∈ Ob(A) we see that the first and last groups are zero. Thus we get (2).
Assume (2) and let A ∈ Ob(A). Then we consider the exact sequence

Hom(A,X)→ Hom(A, Y )→ Hom(A,Z)→ Hom(A[−1], X)→ Hom(A[−1], Y )
and we conclude that Hom(A,Z) = 0 as desired. □

Lemma 13.40.3.0H0M Let D be a triangulated category. Let B ⊂ D be a full subcategory
invariant under all shifts. Consider a distinguished triangle

X → Y → Z → X[1]
of D. The following are equivalent

(1) X is in ⊥B, and
(2) Hom(Y,B) = Hom(Z,B) for all B ∈ Ob(B).

Proof. Dual to Lemma 13.40.2. □

Lemma 13.40.4.0FXC Let D be a triangulated category. Let A ⊂ D be a full subcat-
egory invariant under all shifts. Then both the right orthogonal A⊥ and the left
orthogonal ⊥A of A are strictly full, saturated8, triangulated subcagories of D.

Proof. It is immediate from the definitions that the orthogonals are preserved under
taking shifts, direct sums, and direct summands. Consider a distinguished triangle

X → Y → Z → X[1]
of D. By Lemma 13.4.16 it suffices to show that if X and Y are in A⊥, then Z is
in A⊥. This is immediate from Lemma 13.40.2. □

Lemma 13.40.5.0CQR Let D be a triangulated category. Let A be a full triangulated
subcategory of D. For an object X of D consider the property P (X): there exists
a distinguished triangle A→ X → B → A[1] in D with A in A and B in A⊥.

(1) If X1 → X2 → X3 → X1[1] is a distinguished triangle and P holds for
two out of three, then it holds for the third.

(2) If P holds for X1 and X2, then it holds for X1 ⊕X2.

Proof. Let X1 → X2 → X3 → X1[1] be a distinguished triangle and assume P
holds for X1 and X2. Choose distinguished triangles

A1 → X1 → B1 → A1[1] and A2 → X2 → B2 → A2[1]
as in condition P . Since Hom(A1, A2) = Hom(A1, X2) by Lemma 13.40.2 there is
a unique morphism A1 → A2 such that the diagram

A1

��

// X1

��
A2 // X2

8Definition 13.6.1.

https://stacks.math.columbia.edu/tag/0H0M
https://stacks.math.columbia.edu/tag/0FXC
https://stacks.math.columbia.edu/tag/0CQR
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commutes. Choose an extension of this to a diagram

A1 //

��

X1 //

��

Q1 //

��

A1[1]

��
A2 //

��

X2 //

��

Q2 //

��

A2[1]

��
A3 //

��

X3 //

��

Q3 //

��

A3[1]

��
A1[1] // X1[1] // Q1[1] // A1[2]

as in Proposition 13.4.23. By TR3 we see that Q1 ∼= B1 and Q2 ∼= B2 and hence
Q1, Q2 ∈ Ob(A⊥). As Q1 → Q2 → Q3 → Q1[1] is a distinguished triangle we see
that Q3 ∈ Ob(A⊥) by Lemma 13.40.4. Since A is a full triangulated subcategory,
we see that A3 is isomorphic to an object of A. Thus X3 satisfies P . The other
cases of (1) follow from this case by translation. Part (2) is a special case of (1) via
Lemma 13.4.11. □

Lemma 13.40.6.0H0N Let D be a triangulated category. Let B be a full triangulated
subcategory of D. For an object X of D consider the property P (X): there exists
a distinguished triangle A→ X → B → A[1] in D with B in B and A in ⊥B.

(1) If X1 → X2 → X3 → X1[1] is a distinguished triangle and P holds for
two out of three, then it holds for the third.

(2) If P holds for X1 and X2, then it holds for X1 ⊕X2.

Proof. Dual to Lemma 13.40.5. □

Lemma 13.40.7.0CQS Let D be a triangulated category. Let A ⊂ D be a full triangulated
subcategory. The following are equivalent

(1) the inclusion functor A → D has a right adjoint, and
(2) for every X in D there exists a distinguished triangle

A→ X → B → A[1]

in D with A ∈ Ob(A) and B ∈ Ob(A⊥).
If this holds, then A is saturated (Definition 13.6.1) and if A is strictly full in D,
then A = ⊥(A⊥).

Proof. Assume (1) and denote v : D → A the right adjoint. Let X ∈ Ob(D). Set
A = v(X). We may extend the adjunction mapping A → X to a distinguished
triangle A→ X → B → A[1]. Since

HomA(A′, A) = HomA(A′, v(X)) = HomD(A′, X)

for A′ ∈ Ob(A), we conclude that B ∈ Ob(A⊥) by Lemma 13.40.2.

Assume (2). We will contruct the adjoint v explictly. Let X ∈ Ob(D). Choose
A → X → B → A[1] as in (2). Set v(X) = A. Let f : X → Y be a morphism in

https://stacks.math.columbia.edu/tag/0H0N
https://stacks.math.columbia.edu/tag/0CQS
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D. Choose A′ → Y → B′ → A′[1] as in (2). Since Hom(A,A′) = Hom(A, Y ) by
Lemma 13.40.2 there is a unique morphism f ′ : A→ A′ such that the diagram

A

f ′

��

// X

f

��
A′ // Y

commutes. Hence we can set v(f) = f ′ to get a functor. To see that v is adjoint to
the inclusion morphism use Lemma 13.40.2 again.

Proof of the final statement. In order to prove that A is saturated we may replace
A by the strictly full subcategory having the same isomorphism classes as A; details
omitted. Assume A is strictly full. If we show that A = ⊥(A⊥), then A will be
saturated by Lemma 13.40.4. Since the incusion A ⊂ ⊥(A⊥) is clear it suffices to
prove the other inclusion. Let X be an object of ⊥(A⊥). Choose a distinguished
triangle A → X → B → A[1] as in (2). As Hom(X,B) = 0 by assumption we see
that A ∼= X ⊕B[−1] by Lemma 13.4.11. Since Hom(A,B[−1]) = 0 as B ∈ A⊥ this
implies B[−1] = 0 and A ∼= X as desired. □

Lemma 13.40.8.0CQT Let D be a triangulated category. Let B ⊂ D be a full triangulated
subcategory. The following are equivalent

(1) the inclusion functor B → D has a left adjoint, and
(2) for every X in D there exists a distinguished triangle

A→ X → B → A[1]

in D with B ∈ Ob(B) and A ∈ Ob(⊥B).
If this holds, then B is saturated (Definition 13.6.1) and if B is strictly full in D,
then B = (⊥B)⊥.

Proof. Dual to Lemma 13.40.7. □

Definition 13.40.9.0FXD Let D be a triangulated category. A right admissible sub-
category of D is a strictly full triangulated subcategory satisfying the equivalent
conditions of Lemma 13.40.7. A left admissible subcategory of D is a strictly full
triangulated subcategory satisfying the equivalent conditions of Lemma 13.40.8. A
two-sided admissible subcategory is one which is both right and left admissible.

Let A be a right admissible subcategory of the triangulated category D. Then we
observe that for X ∈ D the distinguished triangle

A→ X → B → A[1]

with A ∈ A and B ∈ A⊥ is canonical in the following sense: for any other dis-
tinguished triangle A′ → X → B′ → A′[1] with A′ ∈ A and B′ ∈ A⊥ there is
an isomorphism (α, idX , β) : (A,X,B) → (A′, X,B′) of triangles. The following
proposition summarizes what was said above.

Proposition 13.40.10.0H0P Let D be a triangulated category. Let A ⊂ D and B ⊂ D be
subcategories. The following are equivalent

(1) A is right admissible and B = A⊥,
(2) B is left admissible and A = ⊥B,

https://stacks.math.columbia.edu/tag/0CQT
https://stacks.math.columbia.edu/tag/0FXD
https://stacks.math.columbia.edu/tag/0H0P
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(3) Hom(A,B) = 0 for all A ∈ A and B ∈ B and for every X in D there
exists a distinguished triangle A→ X → B → A[1] in D with A ∈ A and
B ∈ B.

If this is true, then A → D/B and B → D/A are equivalences of triangulated
categories, the right adjoint to the inclusion functor A → D is D → D/B → A, and
the left adjoint to the inclusion functor B → D is D → D/A → B.

Proof. The equivalence between (1), (2), and (3) follows in a straighforward manner
from Lemmas 13.40.7 and 13.40.8 (small detail omitted). Denote v : D → A the
right adjoint of the inclusion functor i : A → D. It is immediate that Ker(v) =
A⊥ = B. Thus v factors over a functor v : D/B → A by the universal property of
the quotient. Since v ◦ i = idA by Categories, Lemma 4.24.4 we see that v is a left
quasi-inverse to i : A → D/B. We claim also the composition i ◦ v is isomorphic to
idD/B. Namely, suppose we have X fitting into a distinguished triangle A→ X →
B → A[1] as in (3). Then v(X) = A as was seen in the proof of Lemma 13.40.7.
Viewing X as an object of D/B we have i(v(X)) = A and there is a functorial
isomorphism i(v(X)) = A→ X in D/B. Thus we find that indeed v : D/B → A is
an equivalence. To show that B → D/A is an equivalence and the left adjoint to
the inclusion functor B → D is D → D/A → B is dual to what we just said. □

13.41. Postnikov systems

0D7Y A reference for this section is [Orl97]. Let D be a triangulated category. Let
Xn → Xn−1 → . . .→ X0

be a complex in D. In this section we consider the problem of constructing a
“totalization” of this complex.

Definition 13.41.1.0D7Z Let D be a triangulated category. Let
Xn → Xn−1 → . . .→ X0

be a complex in D. A Postnikov system is defined inductively as follows.
(1) If n = 0, then it is an isomorphism Y0 → X0.
(2) If n = 1, then it is a choice of an isomorphism Y0 → X0 and a choice of a

distinguished triangle
Y1 → X1 → Y0 → Y1[1]

where X1 → Y0 composed with Y0 → X0 is the given morphism X1 → X0.
(3) If n > 1, then it is a choice of a Postnikov system for Xn−1 → . . . → X0

and a choice of a distinguished triangle
Yn → Xn → Yn−1 → Yn[1]

where the morphism Xn → Yn−1 composed with Yn−1 → Xn−1 is the
given morphism Xn → Xn−1.

Given a morphism

(13.41.1.1)0D80

Xn
//

��

Xn−1 //

��

. . . // X0

��
X ′
n

// X ′
n−1

// . . . // X ′
0

https://stacks.math.columbia.edu/tag/0D7Z
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between complexes of the same length in D there is an obvious notion of a morphism
of Postnikov systems.

Here is a key example.

Example 13.41.2.0D8Z Let A be an abelian category. Let . . . → A2 → A1 → A0 be a
chain complex in A. Then we can consider the objects

Xn = An and Yn = (An → An−1 → . . .→ A0)[−n]

of D(A). With the evident canonical maps Yn → Xn and Y0 → Y1[1]→ Y2[2]→ . . .
the distinguished triangles Yn → Xn → Yn−1 → Yn[1] define a Postnikov system
as in Definition 13.41.1 for . . . → X2 → X1 → X0. Here we are using the obvious
extension of Postnikov systems for an infinite complex of D(A). Finally, if colimits
over N exist and are exact in A then

hocolimYn[n] = (. . .→ A2 → A1 → A0 → 0→ . . .)

in D(A). This follows immediately from Lemma 13.33.7.

Given a complex Xn → Xn−1 → . . .→ X0 and a Postnikov system as in Definition
13.41.1 we can consider the maps

Y0 → Y1[1]→ . . .→ Yn[n]

These maps fit together in certain distinguished triangles and fit with the given
maps between the Xi. Here is a picture for n = 3:

Y0 // Y1[1]

{{

// Y2[2]

{{

// Y3[3]

{{
X1[1]

+1
aa

X2[2]+1oo

+1
cc

X3[3]+1oo

+1
cc

We encourage the reader to think of Yn[n] as obtained from X0, X1[1], . . . , Xn[n]; for
example if the maps Xi → Xi−1 are zero, then we can take Yn[n] =

⊕
i=0,...,nXi[i].

Postnikov systems do not always exist. Here is a simple lemma for low n.

Lemma 13.41.3.0D81 Let D be a triangulated category. Consider Postnikov systems for
complexes of length n.

(1) For n = 0 Postnikov systems always exist and any morphism (13.41.1.1)
of complexes extends to a unique morphism of Postnikov systems.

(2) For n = 1 Postnikov systems always exist and any morphism (13.41.1.1)
of complexes extends to a (nonunique) morphism of Postnikov systems.

(3) For n = 2 Postnikov systems always exist but morphisms (13.41.1.1) of
complexes in general do not extend to morphisms of Postnikov systems.

(4) For n > 2 Postnikov systems do not always exist.

Proof. The case n = 0 is immediate as isomorphisms are invertible. The case
n = 1 follows immediately from TR1 (existence of triangles) and TR3 (extending
morphisms to triangles). For the case n = 2 we argue as follows. Set Y0 = X0. By
the case n = 1 we can choose a Postnikov system

Y1 → X1 → Y0 → Y1[1]

https://stacks.math.columbia.edu/tag/0D8Z
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Since the compositionX2 → X1 → X0 is zero, we can factorX2 → X1 (nonuniquely)
as X2 → Y1 → X1 by Lemma 13.4.2. Then we simply fit the morphism X2 → Y1
into a distinguished triangle

Y2 → X2 → Y1 → Y2[1]
to get the Postnikov system for n = 2. For n > 2 we cannot argue similarly, as we
do not know whether the composition Xn → Xn−1 → Yn−1 is zero in D. □

Lemma 13.41.4.0D82 LetD be a triangulated category. Given a map (13.41.1.1) consider
the condition
(13.41.4.1)0DW1 Hom(Xi[i− j − 1], X ′

j) = 0 for i > j + 1
Then

(1) If we have a Postnikov system for X ′
n → X ′

n−1 → . . .→ X ′
0 then property

(13.41.4.1) implies that
Hom(Xi[i− j − 1], Y ′

j ) = 0 for i > j + 1
(2) If we are given Postnikov systems for both complexes and we have (13.41.4.1),

then the map extends to a (nonunique) map of Postnikov systems.

Proof. We first prove (1) by induction on j. For the base case j = 0 there is nothing
to prove as Y ′

0 → X ′
0 is an isomorphism. Say the result holds for j−1. We consider

the distinguished triangle
Y ′
j → X ′

j → Y ′
j−1 → Y ′

j [1]
The long exact sequence of Lemma 13.4.2 gives an exact sequence
Hom(Xi[i− j − 1], Y ′

j−1[−1])→ Hom(Xi[i− j − 1], Y ′
j )→ Hom(Xi[i− j − 1], X ′

j)
From the induction hypothesis and (13.41.4.1) we conclude the outer groups are
zero and we win.
Proof of (2). For n = 1 the existence of morphisms has been established in Lemma
13.41.3. For n > 1 by induction, we may assume given the map of Postnikov
systems of length n− 1. The problem is that we do not know whether the diagram

Xn
//

��

Yn−1

��
X ′
n

// Y ′
n−1

is commutative. Denote α : Xn → Y ′
n−1 the difference. Then we do know that

the composition of α with Y ′
n−1 → X ′

n−1 is zero (because of what it means to be a
map of Postnikov systems of length n− 1). By the distinguished triangle Y ′

n−1 →
X ′
n−1 → Y ′

n−2 → Y ′
n−1[1], this means that α is the composition of Y ′

n−2[−1]→ Y ′
n−1

with a map α′ : Xn → Y ′
n−2[−1]. Then (13.41.4.1) guarantees α′ is zero by part (1)

of the lemma. Thus α is zero. To finish the proof of existence, the commutativity
guarantees we can choose the dotted arrow fitting into the diagram

Yn−1[−1]

��

// Yn //

��

Xn
//

��

Yn−1

��
Y ′
n−1[−1] // Y ′

n
// X ′

n
// Y ′
n−1

https://stacks.math.columbia.edu/tag/0D82
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by TR3. □

Lemma 13.41.5.0FXE Let D be a triangulated category. Given a map (13.41.1.1) assume
we are given Postnikov systems for both complexes. If

(1) Hom(Xi[i], Y ′
n[n]) = 0 for i = 1, . . . , n, or

(2) Hom(Yn[n], X ′
n−i[n− i]) = 0 for i = 1, . . . , n, or

(3) Hom(Xj−i[−i+ 1], X ′
j) = 0 and Hom(Xj , X

′
j−i[−i]) = 0 for j ≥ i > 0,

then there exists at most one morphism between these Postnikov systems.

Proof. Proof of (1). Look at the following diagram

Y0 //

��

Y1[1] //

{{

Y2[2] //

uu

. . . // Yn[n]

rr
Y ′
n[n]

The arrows are the composition of the morphism Yn[n]→ Y ′
n[n] and the morphism

Yi[i] → Yn[n]. The arrow Y0 → Y ′
n[n] is determined as it is the composition

Y0 = X0 → X ′
0 = Y ′

0 → Y ′
n[n]. Since we have the distinguished triangle Y0 →

Y1[1]→ X1[1] we see that Hom(X1[1], Y ′
n[n]) = 0 guarantees that the second vertical

arrow is unique. Since we have the distinguished triangle Y1[1]→ Y2[2]→ X2[2] we
see that Hom(X2[2], Y ′

n[n]) = 0 guarantees that the third vertical arrow is unique.
And so on.
Proof of (2). The composition Yn[n] → Y ′

n[n] → Xn[n] is the same as the com-
position Yn[n] → Xn[n] → X ′

n[n] and hence is unique. Then using the distin-
guished triangle Y ′

n−1[n − 1] → Y ′
n[n] → X ′

n[n] we see that it suffices to show
Hom(Yn[n], Y ′

n−1[n− 1]) = 0. Using the distinguished triangles

Y ′
n−i−1[n− i− 1]→ Y ′

n−i[n− i]→ X ′
n−i[n− i]

we get this vanishing from our assumption. Small details omitted.
Proof of (3). Looking at the proof of Lemma 13.41.4 and arguing by induction on
n it suffices to show that the dotted arrow in the morphism of triangles

Yn−1[−1]

��

// Yn //

��

Xn
//

��

Yn−1

��
Y ′
n−1[−1] // Y ′

n
// X ′

n
// Y ′
n−1

is unique. By Lemma 13.4.8 part (5) it suffices to show that Hom(Yn−1, X
′
n) = 0

and Hom(Xn, Y
′
n−1[−1]) = 0. To prove the first vanishing we use the distinguished

triangles Yn−i−1[−i]→ Yn−i[−(i− 1)]→ Xn−i[−(i− 1)] for i > 0 and induction on
i to see that the assumed vanishing of Hom(Xn−i[−i + 1], X ′

n) is enough. For the
second we similarly use the distinguished triangles Y ′

n−i−1[−i − 1] → Y ′
n−i[−i] →

X ′
n−i[−i] to see that the assumed vanishing of Hom(Xn, X

′
n−i[−i]) is enough as

well. □

Lemma 13.41.6.0D83 Let D be a triangulated category. Let Xn → Xn−1 → . . . → X0
be a complex in D. If

Hom(Xi[i− j − 2], Xj) = 0 for i > j + 2

https://stacks.math.columbia.edu/tag/0FXE
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then there exists a Postnikov system. If we have

Hom(Xi[i− j − 1], Xj) = 0 for i > j + 1

then any two Postnikov systems are isomorphic.

Proof. We argue by induction on n. The cases n = 0, 1, 2 follow from Lemma
13.41.3. Assume n > 2. Suppose given a Postnikov system for the complex Xn−1 →
Xn−2 → . . .→ X0. The only obstruction to extending this to a Postnikov system of
length n is that we have to find a morphism Xn → Yn−1 such that the composition
Xn → Yn−1 → Xn−1 is equal to the given map Xn → Xn−1. Considering the
distinguished triangle

Yn−1 → Xn−1 → Yn−2 → Yn−1[1]

and the associated long exact sequence coming from this and the functor Hom(Xn,−)
(see Lemma 13.4.2) we find that it suffices to show that the composition Xn →
Xn−1 → Yn−2 is zero. Since we know that Xn → Xn−1 → Xn−2 is zero we can
apply the distinguished triangle

Yn−2 → Xn−2 → Yn−3 → Yn−2[1]

to see that it suffices if Hom(Xn, Yn−3[−1]) = 0. Arguing exactly as in the proof of
Lemma 13.41.4 part (1) the reader easily sees this follows from the condition stated
in the lemma.

The statement on isomorphisms follows from the existence of a map between the
Postnikov systems extending the identity on the complex proven in Lemma 13.41.4
part (2) and Lemma 13.4.3 to show all the maps are isomorphisms. □

13.42. Essentially constant systems

0G38 Some preliminary lemmas on essentially constant systems in triangulated categories.

Lemma 13.42.1.0G39 Let D be a triangulated category. Let (Ai) be an inverse system in
D. Then (Ai) is essentially constant (see Categories, Definition 4.22.1) if and only
if there exists an i and for all j ≥ i a direct sum decomposition Aj = A⊕ Zj such
that (a) the maps Aj′ → Aj are compatible with the direct sum decompositions
and identity on A, (b) for all j ≥ i there exists some j′ ≥ j such that Zj′ → Zj is
zero.

Proof. Assume (Ai) is essentially constant with value A. Then A = limAi and there
exists an i and a morphism Ai → A such that (1) the composition A → Ai → A
is the identity on A and (2) for all j ≥ i there exists a j′ ≥ j such that Aj′ → Aj
factors as Aj′ → Ai → A → Aj . From (1) we conclude that for j ≥ i the maps
A→ Aj and Aj → Ai → A compose to the identity on A. It follows that Aj → A
has a kernel Zj and that the map A ⊕ Zj → Aj is an isomorphism, see Lemmas
13.4.12 and 13.4.11. These direct sum decompositions clearly satisfy (a). From (2)
we conclude that for all j there is a j′ ≥ j such that Zj′ → Zj is zero, so (b) holds.
Proof of the converse is omitted. □

Lemma 13.42.2.0G3A Let D be a triangulated category. Let

An → Bn → Cn → An[1]

https://stacks.math.columbia.edu/tag/0G39
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be an inverse system of distinguished triangles in D. If (An) and (Cn) are essentially
constant, then (Bn) is essentially constant and their values fit into a distinguished
triangle A→ B → C → A[1] such that for some n ≥ 1 there is a map

An

��

// Bn

��

// Cn

��

// An[1]

��
A // B // C // A[1]

of distinguished triangles which induces an isomorphism limn′≥nAn′ → A and
similarly for B and C.

Proof. After renumbering we may assume that An = A⊕A′
n and Cn = C ⊕C ′

n for
inverse systems (A′

n) and (C ′
n) which are essentially zero, see Lemma 13.42.1. In

particular, the morphism
C ⊕ C ′

n → (A⊕A′
n)[1]

maps the summand C into the summand A[1] for all n by a map δ : C → A[1]
which is independent of n. Choose a distinguished triangle

A→ B → C
δ−→ A[1]

Next, choose a morphism of distingished triangles
(A1 → B1 → C1 → A1[1])→ (A→ B → C → A[1])

which is possible by TR3. For any object D of D this induces a commutative
diagram

. . . // HomD(C,D) //

��

HomD(B,D) //

��

HomD(A,D) //

��

. . .

. . . // colim HomD(Cn, D) // colim HomD(Bn, D) // colim HomD(An, D) // . . .

The left and right vertical arrows are isomorphisms and so are the ones to the left
and right of those. Thus by the 5-lemma we conclude that the middle arrow is an
isomorphism. It follows that (Bn) is isomorphic to the constant inverse system with
value B by the discussion in Categories, Remark 4.22.7. Since this is equivalent
to (Bn) being essentially constant with value B by Categories, Remark 4.22.5 the
proof is complete. □

Lemma 13.42.3.0G3B Let A be an abelian category. Let An be an inverse system of
objects of D(A). Assume

(1) there exist integers a ≤ b such that Hi(An) = 0 for i ̸∈ [a, b], and
(2) the inverse systems Hi(An) of A are essentially constant for all i ∈ Z.

Then An is an essentially constant system of D(A) whose value A satisfies that
Hi(A) is the value of the constant system Hi(An) for each i ∈ Z.

Proof. By Remark 13.12.4 we obtain an inverse system of distinguished triangles
τ≤aAn → An → τ≥a+1An → (τ≤aAn)[1]

Of course we have τ≤aAn = Ha(An)[−a] in D(A). Thus by assumption these form
an essentially constant system. By induction on b − a we find that the inverse
system τ≥a+1An is essentially constant, say with value A′. By Lemma 13.42.2 we

https://stacks.math.columbia.edu/tag/0G3B
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find that An is an essentially constant system. We omit the proof of the statement
on cohomologies (hint: use the final part of Lemma 13.42.2). □

Lemma 13.42.4.0G3C Let D be a triangulated category. Let
An → Bn → Cn → An[1]

be an inverse system of distinguished triangles. If the system Cn is pro-zero (essen-
tially constant with value 0), then the maps An → Bn determine a pro-isomorphism
between the pro-object (An) and the pro-object (Bn).

Proof. For any object X of D consider the exact sequence
colim Hom(Cn, X)→ colim Hom(Bn, X)→ colim Hom(An, X)→ colim Hom(Cn[−1], X)→
Exactness follows from Lemma 13.4.2 combined with Algebra, Lemma 10.8.8. By
assumption the first and last term are zero. Hence the map colim Hom(Bn, X) →
colim Hom(An, X) is an isomorphism for all X. The lemma follows from this and
Categories, Remark 4.22.7. □

Lemma 13.42.5.0G3D Let A be an abelian category.
An → Bn

be an inverse system of maps of D(A). Assume
(1) there exist integers a ≤ b such that Hi(An) = 0 and Hi(Bn) = 0 for

i ̸∈ [a, b], and
(2) the inverse system of maps Hi(An)→ Hi(Bn) of A define an isomorphism

of pro-objects of A for all i ∈ Z.
Then the maps An → Bn determine a pro-isomorphism between the pro-object
(An) and the pro-object (Bn).

Proof. We can inductively extend the maps An → Bn to an inverse system of
distinguished triangles An → Bn → Cn → An[1] by axiom TR3. By Lemma
13.42.4 it suffices to prove that Cn is pro-zero. By Lemma 13.42.3 it suffices to
show that Hp(Cn) is pro-zero for each p. This follows from assumption (2) and the
long exact sequences

Hp(An) αn−−→ Hp(Bn) βn−−→ Hp(Cn) δn−→ Hp+1(An) ϵn−→ Hp+1(Bn)
Namely, for every n we can find an m > n such that Im(βm) maps to zero in
Hp(Cn) because we may choose m such that Hp(Bm) → Hp(Bn) factors through
αn : Hp(An) → Hp(Bn). For a similar reason we may then choose k > m such
that Im(δk) maps to zero in Hp+1(Am). Then Hp(Ck) → Hp(Cn) is zero be-
cause Hp(Ck) → Hp(Cm) maps into Ker(δm) and Hp(Cm) → Hp(Cn) annihilates
Ker(δm) = Im(βm). □
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CHAPTER 14

Simplicial Methods

0162 14.1. Introduction

0163 This is a minimal introduction to simplicial methods. We just add here whenever
something is needed later on. A general reference to this material is perhaps [GJ99].
An example of the things you can do is the paper by Quillen on Homotopical
Algebra, see [Qui67] or the paper on Étale Homotopy by Artin and Mazur, see
[AM69].

14.2. The category of finite ordered sets

0164 The category ∆ is the category with

(1) objects [0], [1], [2], . . . with [n] = {0, 1, 2, . . . , n} and
(2) a morphism [n]→ [m] is a nondecreasing map {0, 1, 2, . . . , n} → {0, 1, 2, . . . ,m}

between the corresponding sets.

Here nondecreasing for a map φ : [n] → [m] means by definition that φ(i) ≥ φ(j)
if i ≥ j. In other words, ∆ is a category equivalent to the “big” category of
nonempty finite totally ordered sets and nondecreasing maps. There are exactly
n + 1 morphisms [0] → [n] and there is exactly 1 morphism [n] → [0]. There are
exactly (n+1)(n+2)/2 morphisms [1]→ [n] and there are exactly n+2 morphisms
[n]→ [1]. And so on and so forth.

Definition 14.2.1.0165 For any integer n ≥ 1, and any 0 ≤ j ≤ n we let δnj : [n−1]→ [n]
denote the injective order preserving map skipping j. For any integer n ≥ 0, and
any 0 ≤ j ≤ n we denote σnj : [n + 1] → [n] the surjective order preserving map
with (σnj )−1({j}) = {j, j + 1}.

Lemma 14.2.2.0166 Any morphism in ∆ can be written as a composition of the mor-
phisms δnj and σnj .

Proof. Let φ : [n]→ [m] be a morphism of ∆. If j ̸∈ Im(φ), then we can write φ as
δmj ◦ψ for some morphism ψ : [n]→ [m−1]. If φ(j) = φ(j+1) then we can write φ
as ψ ◦ σn−1

j for some morphism ψ : [n− 1]→ [m]. The result follows because each
replacement as above lowers n+m and hence at some point φ is both injective and
surjective, hence an identity morphism. □

Lemma 14.2.3.0167 The morphisms δnj and σnj satisfy the following relations.

1105
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(1) If 0 ≤ i < j ≤ n + 1, then δn+1
j ◦ δni = δn+1

i ◦ δnj−1. In other words the
diagram

[n]
δn+1
j

""
[n− 1]

δni

<<

δnj−1 ""

[n+ 1]

[n]
δn+1
i

<<

commutes.
(2) If 0 ≤ i < j ≤ n − 1, then σn−1

j ◦ δni = δn−1
i ◦ σn−2

j−1 . In other words the
diagram

[n]
σn−1
j

$$
[n− 1]

δni

::

σn−2
j−1 $$

[n− 1]

[n− 2]
δn−1
i

::

commutes.
(3) If 0 ≤ j ≤ n − 1, then σn−1

j ◦ δnj = id[n−1] and σn−1
j ◦ δnj+1 = id[n−1]. In

other words the diagram

[n]
σn−1
j

""
[n− 1]

δnj

<<

δnj+1 ""

id[n−1] // [n− 1]

[n]
σn−1
j

<<

commutes.
(4) If 0 < j + 1 < i ≤ n, then σn−1

j ◦ δni = δn−1
i−1 ◦ σ

n−2
j . In other words the

diagram

[n]
σn−1
j

$$
[n− 1]

δni

::

σn−2
j $$

[n− 1]

[n− 2]
δn−1
i−1

::

commutes.
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(5) If 0 ≤ i ≤ j ≤ n − 1, then σn−1
j ◦ σni = σn−1

i ◦ σnj+1. In other words the
diagram

[n]
σn−1
j

""
[n+ 1]

σni

<<

σnj+1 ""

[n− 1]

[n]
σn−1
i

<<

commutes.

Proof. Omitted. □

Lemma 14.2.4.0168 The category ∆ is the universal category with objects [n], n ≥ 0
and morphisms δnj and σnj such that (a) every morphism is a composition of these
morphisms, (b) the relations listed in Lemma 14.2.3 are satisfied, and (c) any
relation among the morphisms is a consequence of those relations.

Proof. Omitted. □

14.3. Simplicial objects

0169
Definition 14.3.1.016A Let C be a category.

(1) A simplicial object U of C is a contravariant functor U from ∆ to C, in a
formula:

U : ∆opp −→ C
(2) If C is the category of sets, then we call U a simplicial set.
(3) If C is the category of abelian groups, then we call U a simplicial abelian

group.
(4) A morphism of simplicial objects U → U ′ is a transformation of functors.
(5) The category of simplicial objects of C is denoted Simp(C).

This means there are objects U([0]), U([1]), U([2]), . . . and for φ any nondecreasing
map φ : [m] → [n] a morphism U(φ) : U([n]) → U([m]), satisfying U(φ ◦ ψ) =
U(ψ) ◦ U(φ).
In particular there is a unique morphism U([0])→ U([n]) and there are exactly n+1
morphisms U([n])→ U([0]) corresponding to the n+ 1 maps [0]→ [n]. Obviously
we need some more notation to be able to talk intelligently about these simplicial
objects. We do this by considering the morphisms we singled out in Section 14.2
above.

Lemma 14.3.2.016B Let C be a category.
(1) Given a simplicial object U in C we obtain a sequence of objects Un =

U([n]) endowed with the morphisms dnj = U(δnj ) : Un → Un−1 and
snj = U(σnj ) : Un → Un+1. These morphisms satisfy the opposites of
the relations displayed in Lemma 14.2.3, namely
(a) If 0 ≤ i < j ≤ n+ 1, then dni ◦ d

n+1
j = dnj−1 ◦ d

n+1
i .

(b) If 0 ≤ i < j ≤ n− 1, then dni ◦ s
n−1
j = sn−2

j−1 ◦ d
n−1
i .

https://stacks.math.columbia.edu/tag/0168
https://stacks.math.columbia.edu/tag/016A
https://stacks.math.columbia.edu/tag/016B
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(c) If 0 ≤ j ≤ n− 1, then id = dnj ◦ s
n−1
j = dnj+1 ◦ s

n−1
j .

(d) If 0 < j + 1 < i ≤ n, then dni ◦ s
n−1
j = sn−2

j ◦ dn−1
i−1 .

(e) If 0 ≤ i ≤ j ≤ n− 1, then sni ◦ s
n−1
j = snj+1 ◦ s

n−1
i .

(2) Conversely, given a sequence of objects Un and morphisms dnj , snj satisfying
(1)(a) – (e) there exists a unique simplicial object U in C such that Un =
U([n]), dnj = U(δnj ), and snj = U(σnj ).

(3) A morphism between simplicial objects U and U ′ is given by a family of
morphisms Un → U ′

n commuting with the morphisms dnj and snj .

Proof. This follows from Lemma 14.2.4. □

Remark 14.3.3.016C By abuse of notation we sometimes write di : Un → Un−1 instead
of dni , and similarly for si : Un → Un+1. The relations among the morphisms dni
and sni may be expressed as follows:

(1) If i < j, then di ◦ dj = dj−1 ◦ di.
(2) If i < j, then di ◦ sj = sj−1 ◦ di.
(3) We have id = dj ◦ sj = dj+1 ◦ sj .
(4) If i > j + 1, then di ◦ sj = sj ◦ di−1.
(5) If i ≤ j, then si ◦ sj = sj+1 ◦ si.

This means that whenever the compositions on both the left and the right are
defined then the corresponding equality should hold.

We get a unique morphism s0
0 = U(σ0

0) : U0 → U1 and two morphisms d1
0 = U(δ1

0),
and d1

1 = U(δ1
1) which are morphisms U1 → U0. There are two morphisms s1

0 =
U(σ1

0), s1
1 = U(σ1

1) which are morphisms U1 → U2. Three morphisms d2
0 = U(δ2

0),
d2

1 = U(δ2
1), d2

2 = U(δ2
2) which are morphisms U3 → U2. And so on.

Pictorially we think of U as follows:

U2

//
//
//
U1

//
//oo

oo
U0oo

Here the d-morphisms are the arrows pointing right and the s-morphisms are the
arrows pointing left.

Example 14.3.4.016D The simplest example is the constant simplicial object with value
X ∈ Ob(C). In other words, Un = X and all maps are idX .

Example 14.3.5.016E Suppose that Y → X is a morphism of C such that all the fibred
products Y ×X Y ×X . . . ×X Y exist. Then we set Un equal to the (n + 1)-fold
fibre product, and we let φ : [n] → [m] correspond to the map (on “coordinates”)
(y0, . . . , ym) 7→ (yφ(0), . . . , yφ(n)). In other words, the map U0 = Y → U1 = Y ×X Y
is the diagonal map. The two maps U1 = Y ×X Y → U0 = Y are the projection
maps.

Geometrically Example 14.3.5 above is an important example. It tells us that it is
a good idea to think of the maps dnj : Un → Un−1 as projection maps (forgetting
the jth component), and to think of the maps snj : Un → Un+1 as diagonal maps
(repeating the jth coordinate). We will return to this in the sections below.

Lemma 14.3.6.016F Let C be a category. Let U be a simplicial object of C. Each of the
morphisms sni : Un → Un+1 has a left inverse. In particular sni is a monomorphism.

Proof. This is true because dn+1
i ◦ sni = idUn . □

https://stacks.math.columbia.edu/tag/016C
https://stacks.math.columbia.edu/tag/016D
https://stacks.math.columbia.edu/tag/016E
https://stacks.math.columbia.edu/tag/016F
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14.4. Simplicial objects as presheaves

016G Another observation is that we may think of a simplicial object of C as a presheaf
with values in C over ∆. See Sites, Definition 7.2.2. And in fact, if U , U ′ are
simplicial objects of C, then we have

(14.4.0.1)016H Mor(U,U ′) = MorPSh(∆)(U,U ′).

Some of the material below could be replaced by the more general constructions in
the chapter on sites. However, it seems a clearer picture arises from the arguments
specific to simplicial objects.

14.5. Cosimplicial objects

016I A cosimplicial object of a category C could be defined simply as a simplicial object
of the opposite category Copp. This is not really how the human brain works, so we
introduce them separately here and point out some simple properties.

Definition 14.5.1.016J Let C be a category.
(1) A cosimplicial object U of C is a covariant functor U from ∆ to C, in a

formula:
U : ∆ −→ C

(2) If C is the category of sets, then we call U a cosimplicial set.
(3) If C is the category of abelian groups, then we call U a cosimplicial abelian

group.
(4) A morphism of cosimplicial objects U → U ′ is a transformation of func-

tors.
(5) The category of cosimplicial objects of C is denoted CoSimp(C).

This means there are objects U([0]), U([1]), U([2]), . . . and for φ any nondecreasing
map φ : [m] → [n] a morphism U(φ) : U([m]) → U([n]), satisfying U(φ ◦ ψ) =
U(φ) ◦ U(ψ).

In particular there is a unique morphism U([n])→ U([0]) and there are exactly n+1
morphisms U([0])→ U([n]) corresponding to the n+ 1 maps [0]→ [n]. Obviously
we need some more notation to be able to talk intelligently about these simplicial
objects. We do this by considering the morphisms we singled out in Section 14.2
above.

Lemma 14.5.2.016K Let C be a category.
(1) Given a cosimplicial object U in C we obtain a sequence of objects Un =

U([n]) endowed with the morphisms δnj = U(δnj ) : Un−1 → Un and σnj =
U(σnj ) : Un+1 → Un. These morphisms satisfy the relations displayed in
Lemma 14.2.3.

(2) Conversely, given a sequence of objects Un and morphisms δnj , σnj satis-
fying these relations there exists a unique cosimplicial object U in C such
that Un = U([n]), δnj = U(δnj ), and σnj = U(σnj ).

(3) A morphism between cosimplicial objects U and U ′ is given by a family
of morphisms Un → U ′

n commuting with the morphisms δnj and σnj .

Proof. This follows from Lemma 14.2.4. □

https://stacks.math.columbia.edu/tag/016J
https://stacks.math.columbia.edu/tag/016K
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Remark 14.5.3.016L By abuse of notation we sometimes write δi : Un−1 → Un instead
of δni , and similarly for σi : Un+1 → Un. The relations among the morphisms δni
and σni may be expressed as follows:

(1) If i < j, then δj ◦ δi = δi ◦ δj−1.
(2) If i < j, then σj ◦ δi = δi ◦ σj−1.
(3) We have id = σj ◦ δj = σj ◦ δj+1.
(4) If i > j + 1, then σj ◦ δi = δi−1 ◦ σj .
(5) If i ≤ j, then σj ◦ σi = σi ◦ σj+1.

This means that whenever the compositions on both the left and the right are
defined then the corresponding equality should hold.

We get a unique morphism σ0
0 = U(σ0

0) : U1 → U0 and two morphisms δ1
0 = U(δ1

0),
and δ1

1 = U(δ1
1) which are morphisms U0 → U1. There are two morphisms σ1

0 =
U(σ1

0), σ1
1 = U(σ1

1) which are morphisms U2 → U1. Three morphisms δ2
0 = U(δ2

0),
δ2

1 = U(δ2
1), δ2

2 = U(δ2
2) which are morphisms U2 → U3. And so on.

Pictorially we think of U as follows:

U0
//
// U1oo

//
//
//
U2oo

oo

Here the δ-morphisms are the arrows pointing right and the σ-morphisms are the
arrows pointing left.

Example 14.5.4.016M The simplest example is the constant cosimplicial object with
value X ∈ Ob(C). In other words, Un = X and all maps are idX .

Example 14.5.5.016N Suppose that X → Y is a morphism of C such that all the
pushouts Y ⨿X Y ⨿X . . . ⨿X Y exist. Then we set Un equal to the (n + 1)-fold
pushout, and we let φ : [n]→ [m] correspond to the map

(y in ith component) 7→ (y in φ(i)th component)
on “coordinates”. In other words, the map U1 = Y ⨿X Y → U0 = Y is the
identity on each component. The two maps U0 = Y → U1 = Y ⨿X Y are the two
coprojections.

Example 14.5.6.0B13 For every n ≥ 0 we denote C[n] the cosimplicial set
∆ −→ Sets, [k] 7−→ Mor∆([n], [k])

This example is dual to Example 14.11.2.

Lemma 14.5.7.016O Let C be a category. Let U be a cosimplicial object of C. Each of the
morphisms δni : Un−1 → Un has a left inverse. In particular δni is a monomorphism.

Proof. This is true because σn−1
i ◦ δni = idUn for j < n. □

14.6. Products of simplicial objects

016P Of course we should define the product of simplicial objects as the product in the
category of simplicial objects. This may lead to the potentially confusing situation
where the product exists but is not described as below. To avoid this we define the
product directly as follows.

Definition 14.6.1.016Q Let C be a category. Let U and V be simplicial objects of C.
Assume the products Un × Vn exist in C. The product of U and V is the simplicial
object U × V defined as follows:

https://stacks.math.columbia.edu/tag/016L
https://stacks.math.columbia.edu/tag/016M
https://stacks.math.columbia.edu/tag/016N
https://stacks.math.columbia.edu/tag/0B13
https://stacks.math.columbia.edu/tag/016O
https://stacks.math.columbia.edu/tag/016Q
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(1) (U × V )n = Un × Vn,
(2) dni = (dni , dni ), and
(3) sni = (sni , sni ).

In other words, U × V is the product of the presheaves U and V on ∆.

Lemma 14.6.2.016R If U and V are simplicial objects in the category C, and if U × V
exists, then we have

Mor(W,U × V ) = Mor(W,U)×Mor(W,V )
for any third simplicial object W of C.

Proof. Omitted. □

14.7. Fibre products of simplicial objects

016S Of course we should define the fibre product of simplicial objects as the fibre product
in the category of simplicial objects. This may lead to the potentially confusing
situation where the fibre product exists but is not described as below. To avoid
this we define the fibre product directly as follows.

Definition 14.7.1.016T Let C be a category. Let U, V,W be simplicial objects of C. Let
a : V → U , b : W → U be morphisms. Assume the fibre products Vn ×Un Wn exist
in C. The fibre product of V and W over U is the simplicial object V ×UW defined
as follows:

(1) (V ×U W )n = Vn ×Un Wn,
(2) dni = (dni , dni ), and
(3) sni = (sni , sni ).

In other words, V ×U W is the fibre product of the presheaves V and W over the
presheaf U on ∆.

Lemma 14.7.2.016U If U, V,W are simplicial objects in the category C, and if a : V → U ,
b : W → U are morphisms and if V ×U W exists, then we have

Mor(T, V ×U W ) = Mor(T, V )×Mor(T,U) Mor(T,W )
for any fourth simplicial object T of C.

Proof. Omitted. □

14.8. Pushouts of simplicial objects

016V Of course we should define the pushout of simplicial objects as the pushout in the
category of simplicial objects. This may lead to the potentially confusing situation
where the pushouts exist but are not as described below. To avoid this we define
the pushout directly as follows.

Definition 14.8.1.016W Let C be a category. Let U, V,W be simplicial objects of C. Let
a : U → V , b : U →W be morphisms. Assume the pushouts Vn ⨿Un Wn exist in C.
The pushout of V and W over U is the simplicial object V ⨿UW defined as follows:

(1) (V ⨿U W )n = Vn ⨿Un Wn,
(2) dni = (dni , dni ), and
(3) sni = (sni , sni ).

In other words, V ⨿UW is the pushout of the presheaves V and W over the presheaf
U on ∆.

https://stacks.math.columbia.edu/tag/016R
https://stacks.math.columbia.edu/tag/016T
https://stacks.math.columbia.edu/tag/016U
https://stacks.math.columbia.edu/tag/016W
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Lemma 14.8.2.016X If U, V,W are simplicial objects in the category C, and if a : U → V ,
b : U →W are morphisms and if V ⨿U W exists, then we have

Mor(V ⨿U W,T ) = Mor(V, T )×Mor(U,T ) Mor(W,T )

for any fourth simplicial object T of C.

Proof. Omitted. □

14.9. Products of cosimplicial objects

016Y Of course we should define the product of cosimplicial objects as the product in
the category of cosimplicial objects. This may lead to the potentially confusing
situation where the product exists but is not described as below. To avoid this we
define the product directly as follows.

Definition 14.9.1.016Z Let C be a category. Let U and V be cosimplicial objects of C.
Assume the products Un×Vn exist in C. The product of U and V is the cosimplicial
object U × V defined as follows:

(1) (U × V )n = Un × Vn,
(2) for any φ : [n] → [m] the map (U × V )(φ) : Un × Vn → Um × Vm is the

product U(φ)× V (φ).

Lemma 14.9.2.0170 If U and V are cosimplicial objects in the category C, and if U ×V
exists, then we have

Mor(W,U × V ) = Mor(W,U)×Mor(W,V )

for any third cosimplicial object W of C.

Proof. Omitted. □

14.10. Fibre products of cosimplicial objects

0171 Of course we should define the fibre product of cosimplicial objects as the fibre
product in the category of cosimplicial objects. This may lead to the potentially
confusing situation where the product exists but is not described as below. To
avoid this we define the fibre product directly as follows.

Definition 14.10.1.0172 Let C be a category. Let U, V,W be cosimplicial objects of
C. Let a : V → U and b : W → U be morphisms. Assume the fibre products
Vn ×Un Wn exist in C. The fibre product of V and W over U is the cosimplicial
object V ×U W defined as follows:

(1) (V ×U W )n = Vn ×Un Wn,
(2) for any φ : [n]→ [m] the map (V ×U W )(φ) : Vn ×Un Wn → Vm ×Um Wm

is the product V (φ)×U(φ) W (φ).

Lemma 14.10.2.0173 If U, V,W are cosimplicial objects in the category C, and if a :
V → U , b : W → U are morphisms and if V ×U W exists, then we have

Mor(T, V ×U W ) = Mor(T, V )×Mor(T,U) Mor(T,W )

for any fourth cosimplicial object T of C.

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/016X
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14.11. Simplicial sets

0174 Let U be a simplicial set. It is a good idea to think of U0 as the 0-simplices, the
set U1 as the 1-simplices, the set U2 as the 2-simplices, and so on.
We think of the maps snj : Un → Un+1 as the map that associates to an n-simplex
A the degenerate (n+ 1)-simplex B whose (j, j + 1)-edge is collapsed to the vertex
j of A. We think of the map dnj : Un → Un−1 as the map that associates to an
n-simplex A one of the faces, namely the face that omits the vertex j. In this way it
become possible to visualize the relations among the maps snj and dnj geometrically.

Definition 14.11.1.0175 Let U be a simplicial set. We say x is an n-simplex of U to
signify that x is an element of Un. We say that y is the jthe face of x to signify
that dnj x = y. We say that z is the jth degeneracy of x if z = snj x. A simplex is
called degenerate if it is the degeneracy of another simplex.

Here are a few fundamental examples.

Example 14.11.2.0176 For every n ≥ 0 we denote ∆[n] the simplicial set
∆opp −→ Sets, [k] 7−→ Mor∆([k], [n])

We leave it to the reader to verify the following statements. Every m-simplex of
∆[n] with m > n is degenerate. There is a unique nondegenerate n-simplex of ∆[n],
namely id[n].

Lemma 14.11.3.0177 Let U be a simplicial set. Let n ≥ 0 be an integer. There is a
canonical bijection

Mor(∆[n], U) −→ Un

which maps a morphism φ to the value of φ on the unique nondegenerate n-simplex
of ∆[n].

Proof. Omitted. □

Example 14.11.4.0178 Consider the category ∆/[n] of objects over [n] in ∆, see Cat-
egories, Example 4.2.13. There is a functor p : ∆/[n] → ∆. The fibre category of
p over [k], see Categories, Section 4.35, has as objects the set ∆[n]k of k-simplices
in ∆[n], and as morphisms only identities. For every morphism φ : [k] → [l] of ∆,
and every object ψ : [l]→ [n] in the fibre category over [l] there is a unique object
over [k] with a morphism covering φ, namely ψ ◦φ : [k]→ [n]. Thus ∆/[n] is fibred
in sets over ∆. In other words, we may think of ∆/[n] as a presheaf of sets over
∆. See also, Categories, Example 4.38.7. And this presheaf of sets agrees with
the simplicial set ∆[n]. In particular, from Equation (14.4.0.1) and Lemma 14.11.3
above we get the formula

MorPSh(∆)(∆/[n], U) = Un

for any simplicial set U .

Lemma 14.11.5.0179 Let U , V be simplicial sets. Let a, b ≥ 0 be integers. Assume every
n-simplex of U is degenerate if n > a. Assume every n-simplex of V is degenerate
if n > b. Then every n-simplex of U × V is degenerate if n > a+ b.

Proof. Suppose n > a+ b. Let (u, v) ∈ (U ×V )n = Un×Vn. By assumption, there
exists a α : [n] → [a] and a u′ ∈ Ua and a β : [n] → [b] and a v′ ∈ Vb such that
u = U(α)(u′) and v = V (β)(v′). Because n > a + b, there exists an 0 ≤ i ≤ a + b

https://stacks.math.columbia.edu/tag/0175
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such that α(i) = α(i+ 1) and β(i) = β(i+ 1). It follows immediately that (u, v) is
in the image of sn−1

i . □

14.12. Truncated simplicial objects and skeleton functors

017Z Let ∆≤n denote the full subcategory of ∆ with objects [0], [1], [2], . . . , [n]. Let C be
a category.

Definition 14.12.1.0180 An n-truncated simplicial object of C is a contravariant functor
from ∆≤n to C. A morphism of n-truncated simplicial objects is a transformation
of functors. We denote the category of n-truncated simplicial objects of C by the
symbol Simpn(C).

Given a simplicial object U of C the truncation sknU is the restriction of U to the
subcategory ∆≤n. This defines a skeleton functor

skn : Simp(C) −→ Simpn(C)
from the category of simplicial objects of C to the category of n-truncated simplicial
objects of C. See Remark 14.21.6 to avoid possible confusion with other functors in
the literature.

14.13. Products with simplicial sets

017A Let C be a category. Let U be a simplicial set. Let V be a simplicial object of C.
We can consider the covariant functor which associates to a simplicial object W of
C the set
(14.13.0.1)

017B
{

(fn,u : Vn →Wn)n≥0,u∈Un such that ∀φ : [m]→ [n]
fm,U(φ)(u) ◦ V (φ) = W (φ) ◦ fn,u

}
If this functor is of the form MorSimp(C)(Q,−) then we can think of Q as the
product of U with V . Instead of formalizing this in this way we just directly define
the product as follows.

Definition 14.13.1.017C Let C be a category such that the coproduct of any two objects
of C exists. Let U be a simplicial set. Let V be a simplicial object of C. Assume
that each Un is finite nonempty. In this case we define the product U ×V of U and
V to be the simplicial object of C whose nth term is the object

(U × V )n =
∐

u∈Un
Vn

with maps for φ : [m]→ [n] given by the morphism∐
u∈Un

Vn −→
∐

u′∈Um
Vm

which maps the component Vn corresponding to u to the component Vm correspond-
ing to u′ = U(φ)(u) via the morphism V (φ). More loosely, if all of the coproducts
displayed above exist (without assuming anything about C) we will say that the
product U × V exists.

Lemma 14.13.2.017D Let C be a category such that the coproduct of any two objects of
C exists. Let U be a simplicial set. Let V be a simplicial object of C. Assume that
each Un is finite nonempty. The functor W 7→ MorSimp(C)(U ×V,W ) is canonically
isomorphic to the functor which maps W to the set in Equation (14.13.0.1).

https://stacks.math.columbia.edu/tag/0180
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Proof. Omitted. □

Lemma 14.13.3.017E Let C be a category such that the coproduct of any two objects
of C exists. Let us temporarily denote FSSets the category of simplicial sets all of
whose components are finite nonempty.

(1) The rule (U, V ) 7→ U ×V defines a functor FSSets× Simp(C)→ Simp(C).
(2) For every U , V as above there is a canonical map of simplicial objects

U × V −→ V

defined by taking the identity on each component of (U × V )n =
∐
u Vn.

Proof. Omitted. □

We briefly study a special case of the construction above. Let C be a category. Let
X be an object of C. Let k ≥ 0 be an integer. If all coproducts X ⨿ . . . ⨿X exist
then according to the definition above the product

X ×∆[k]

exists, where we think of X as the corresponding constant simplicial object.

Lemma 14.13.4.017F With X and k as above. For any simplicial object V of C we have
the following canonical bijection

MorSimp(C)(X ×∆[k], V ) −→ MorC(X,Vk).

which maps γ to the restriction of the morphism γk to the component corresponding
to id[k]. Similarly, for any n ≥ k, if W is an n-truncated simplicial object of C, then
we have

MorSimpn(C)(skn(X ×∆[k]),W ) = MorC(X,Wk).

Proof. A morphism γ : X × ∆[k] → V is given by a family of morphisms γα :
X → Vn where α : [n] → [k]. The morphisms have to satisfy the rules that for all
φ : [m]→ [n] the diagrams

X
γα //

idX
��

Vn

V (φ)
��

X
γα◦φ // Vm

commute. Taking α = id[k], we see that for any φ : [m] → [k] we have γφ =
V (φ)◦γid[k] . Thus the morphism γ is determined by the value of γ on the component
corresponding to id[k]. Conversely, given such a morphism f : X → Vk we easily
construct a morphism γ by putting γα = V (α) ◦ f .

The truncated case is similar, and left to the reader. □

A particular example of this is the case k = 0. In this case the formula of the
lemma just says that

MorC(X,V0) = MorSimp(C)(X,V )

where on the right hand side X indicates the constant simplicial object with value
X. We will use this formula without further mention in the following.

https://stacks.math.columbia.edu/tag/017E
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14.14. Hom from simplicial sets into cosimplicial objects

07K9 Let C be a category. Let U be a simplicial object of C, and let V be a cosimplicial
object of C. Then we get a cosimplicial set HomC(U, V ) as follows:

(1) we set HomC(U, V )n = MorC(Un, Vn), and
(2) for φ : [m] → [n] we take the map HomC(U, V )m → HomC(U, V )n given

by f 7→ V (φ) ◦ f ◦ U(φ).
This is our motivation for the following definition.

Definition 14.14.1.019V Let C be a category with finite products. Let V be a cosimplicial
object of C. Let U be a simplicial set such that each Un is finite nonempty. We
define Hom(U, V ) to be the cosimplicial object of C defined as follows:

(1) we set Hom(U, V )n =
∏
u∈Un Vn, in other words the unique object of C

such that its X-valued points satisfy

MorC(X,Hom(U, V )n) = Map(Un,MorC(X,Vn))

and
(2) for φ : [m] → [n] we take the map Hom(U, V )m → Hom(U, V )n given by

f 7→ V (φ) ◦ f ◦ U(φ) on X-valued points as above.

We leave it to the reader to spell out the definition in terms of maps between prod-
ucts. We also point out that the construction is functorial in both U (contravari-
antly) and V (covariantly), exactly as in Lemma 14.13.3 in the case of products of
simplicial sets with simplicial objects.

14.15. Hom from cosimplicial sets into simplicial objects

0B14 Let C be a category. Let U be a cosimplicial object of C, and let V be a simplicial
object of C. Then we get a simplicial set HomC(U, V ) as follows:

(1) we set HomC(U, V )n = MorC(Un, Vn), and
(2) for φ : [m] → [n] we take the map HomC(U, V )n → HomC(U, V )m given

by f 7→ V (φ) ◦ f ◦ U(φ).
This is our motivation for the following definition.

Definition 14.15.1.0B15 Let C be a category with finite products. Let V be a simplicial
object of C. Let U be a cosimplicial set such that each Un is finite nonempty. We
define Hom(U, V ) to be the simplicial object of C defined as follows:

(1) we set Hom(U, V )n =
∏
u∈Un Vn, in other words the unique object of C

such that its X-valued points satisfy

MorC(X,Hom(U, V )n) = Map(Un,MorC(X,Vn))

and
(2) for φ : [m] → [n] we take the map Hom(U, V )n → Hom(U, V )m given by

f 7→ V (φ) ◦ f ◦ U(φ) on X-valued points as above.

We leave it to the reader to spell out the definition in terms of maps between prod-
ucts. We also point out that the construction is functorial in both U (contravari-
antly) and V (covariantly), exactly as in Lemma 14.13.3 in the case of products of
simplicial sets with simplicial objects.

https://stacks.math.columbia.edu/tag/019V
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We spell out the construction above in a special case. Let X be an object of a
category C. Assume that self products X × . . . × X exist. Let k be an integer.
Consider the simplicial object U with terms

Un =
∏

α∈Mor([k],[n])
X

and maps given φ : [m]→ [n]

U(φ) :
∏

α∈Mor([k],[n])
X −→

∏
α′∈Mor([k],[m])

X, (fα)α 7−→ (fφ◦α′)α′

In terms of “coordinates”, the element (xα)α is mapped to the element (xφ◦α′)α′ .
We claim this object is equal to Hom(C[k], X) where we think of X as the constant
simplicial object X and where C[k] is the cosimplicial set from Example 14.5.6.

Lemma 14.15.2.017M With X, k and U as above.
(1) For any simplicial object V of C we have the following canonical bijection

MorSimp(C)(V,U) −→ MorC(Vk, X).

wich maps γ to the morphism γk composed with the projection onto the
factor corresponding to id[k].

(2) Similarly, if W is an k-truncated simplicial object of C, then we have

MorSimpk(C)(W, skkU) = MorC(Wk, X).

(3) The object U constructed above is an incarnation of Hom(C[k], X) where
C[k] is the cosimplicial set from Example 14.5.6.

Proof. We first prove (1). Suppose that γ : V → U is a morphism. This is given
by a family of morphisms γα : Vn → X for α : [k] → [n]. The morphisms have to
satisfy the rules that for all φ : [m]→ [n] the diagrams

X

idX
��

Vn

V (φ)
��

γφ◦α′
oo

X Vm
γα′oo

commute for all α′ : [k]→ [m]. Taking α′ = id[k], we see that for any φ : [k]→ [n]
we have γφ = γid[k] ◦ V (φ). Thus the morphism γ is determined by the component
of γk corresponding to id[k]. Conversely, given such a morphism f : Vk → X we
easily construct a morphism γ by putting γα = f ◦ V (α).

The truncated case is similar, and left to the reader.

Part (3) is immediate from the construction of U and the fact that C[k]n =
Mor([k], [n]) which are the index sets used in the construction of Un. □

14.16. Internal Hom

017G Let C be a category with finite nonempty products. Let U , V be simplicial objects
C. In some cases the functor

Simp(C)opp −→ Sets, W 7−→ MorSimp(C)(W × V,U)

https://stacks.math.columbia.edu/tag/017M
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is representable. In this case we denote Hom(V,U) the resulting simplicial object
of C, and we say that the internal hom of V into U exists. Moreover, in this case,
given X in C, we would have

MorC(X,Hom(V,U)n) = MorSimp(C)(X ×∆[n],Hom(V,U))
= MorSimp(C)(X ×∆[n]× V,U)
= MorSimp(C)(X,Hom(∆[n]× V,U))
= MorC(X,Hom(∆[n]× V,U)0)

provided that Hom(∆[n] × V,U) exists also. The first and last equalities follow
from Lemma 14.13.4.
The lesson we learn from this is that, given U and V , if we want to construct the
internal hom then we should try to construct the objects

Hom(∆[n]× V,U)0

because these should be the nth term of Hom(V,U). In the next section we study
a construction of simplicial objects “Hom(∆[n], U)”.

14.17. Hom from simplicial sets into simplicial objects

017H Motivated by the discussion on internal hom we define what should be the simplicial
object classifying morphisms from a simplicial set into a given simplicial object of
the category C.

Definition 14.17.1.017I Let C be a category such that the coproduct of any two objects
exists. Let U be a simplicial set, with Un finite nonempty for all n ≥ 0. Let V be
a simplicial object of C. We denote Hom(U, V ) any simplicial object of C such that

MorSimp(C)(W,Hom(U, V )) = MorSimp(C)(W × U, V )
functorially in the simplicial object W of C.

Of course Hom(U, V ) need not exist. Also, by the discussion in Section 14.16 we
expect that if it does exist, then Hom(U, V )n = Hom(U ×∆[n], V )0. We do not use
the italic notation for these Hom objects since Hom(U, V ) is not an internal hom.

Lemma 14.17.2.017J Assume the category C has coproducts of any two objects and
countable limits. Let U be a simplicial set, with Un finite nonempty for all n ≥ 0.
Let V be a simplicial object of C. Then the functor

Copp −→ Sets
X 7−→ MorSimp(C)(X × U, V )

is representable.

Proof. A morphism from X × U into V is given by a collection of morphisms
fu : X → Vn with n ≥ 0 and u ∈ Un. And such a collection actually defines a
morphism if and only if for all φ : [m]→ [n] all the diagrams

X
fu //

idX
��

Vn

V (φ)
��

X
fU(φ)(u)// Vm

https://stacks.math.columbia.edu/tag/017I
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commute. Thus it is natural to introduce a category U and a functor V : Uopp → C
as follows:

(1) The set of objects of U is
∐
n≥0 Un,

(2) a morphism from u′ ∈ Um to u ∈ Un is a φ : [m] → [n] such that
U(φ)(u) = u′

(3) for u ∈ Un we set V(u) = Vn, and
(4) for φ : [m]→ [n] such that U(φ)(u) = u′ we set V(φ) = V (φ) : Vn → Vm.

At this point it is clear that our functor is nothing but the functor defining

limUopp V

Thus if C has countable limits then this limit and hence an object representing the
functor of the lemma exist. □

Lemma 14.17.3.017K Assume the category C has coproducts of any two objects and finite
limits. Let U be a simplicial set, with Un finite nonempty for all n ≥ 0. Assume
that all n-simplices of U are degenerate for all n≫ 0. Let V be a simplicial object
of C. Then the functor

Copp −→ Sets
X 7−→ MorSimp(C)(X × U, V )

is representable.

Proof. We have to show that the category U described in the proof of Lemma
14.17.2 has a finite subcategory U ′ such that the limit of V over U ′ is the same
as the limit of V over U . We will use Categories, Lemma 4.17.4. For m > 0 let
U≤m denote the full subcategory with objects

∐
0≤n≤m Um. Let m0 be an integer

such that every n-simplex of the simplicial set U is degenerate if n > m0. For any
m ≥ m0 large enough, the subcategory U≤m satisfies property (1) of Categories,
Definition 4.17.3.

Suppose that u ∈ Un and u′ ∈ Un′ with n, n′ ≤ m0 and suppose that φ : [k] →
[n], φ′ : [k] → [n′] are morphisms such that U(φ)(u) = U(φ′)(u′). A simple
combinatorial argument shows that if k > 2m0, then there exists an index 0 ≤ i ≤
2m0 such that φ(i) = φ(i + 1) and φ′(i) = φ′(i + 1). (The pigeon hole principle
would tell you this works if k > m2

0 which is good enough for the argument below
anyways.) Hence, if k > 2m0, we may write φ = ψ◦σk−1

i and φ′ = ψ′◦σk−1
i for some

ψ : [k − 1]→ [n] and some ψ′ : [k − 1]→ [n′]. Since sk−1
i : Uk−1 → Uk is injective,

see Lemma 14.3.6, we conclude that U(ψ)(u) = U(ψ′)(u′) also. Continuing in this
fashion we conclude that given morphisms u→ z and u′ → z of U with u, u′ ∈ U≤m0 ,
there exists a commutative diagram

u

  ''
a // z

u′

?? 77

with a ∈ U≤2m0 .

https://stacks.math.columbia.edu/tag/017K
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It is easy to deduce from this that the finite subcategory U≤2m0 works. Namely,
suppose given x′ ∈ Un and x′′ ∈ Un′ with n, n′ ≤ 2m0 as well as morphisms x′ → x
and x′′ → x of U with the same target. By our choice of m0 we can find objects
u, u′ of U≤m0 and morphisms u→ x′, u′ → x′′. By the above we can find a ∈ U≤2m0

and morphisms u→ a, u′ → a such that

u

!! ((

// x′

  
a // x

u′

== 66

// x′′

>>

is commutative. Turning this diagram 90 degrees clockwise we get the desired
diagram as in (2) of Categories, Definition 4.17.3. □

Lemma 14.17.4.017L Assume the category C has coproducts of any two objects and finite
limits. Let U be a simplicial set, with Un finite nonempty for all n ≥ 0. Assume
that all n-simplices of U are degenerate for all n≫ 0. Let V be a simplicial object
of C. Then Hom(U, V ) exists, moreover we have the expected equalities

Hom(U, V )n = Hom(U ×∆[n], V )0.

Proof. We construct this simplicial object as follows. For n ≥ 0 let Hom(U, V )n
denote the object of C representing the functor

X 7−→ MorSimp(C)(X × U ×∆[n], V )
This exists by Lemma 14.17.3 because U ×∆[n] is a simplicial set with finite sets of
simplices and no nondegenerate simplices in high enough degree, see Lemma 14.11.5.
For φ : [m] → [n] we obtain an induced map of simplicial sets φ : ∆[m] → ∆[n].
Hence we obtain a morphism X ×U ×∆[m]→ X ×U ×∆[n] functorial in X, and
hence a transformation of functors, which in turn gives

Hom(U, V )(φ) : Hom(U, V )n −→ Hom(U, V )m.
Clearly this defines a contravariant functor Hom(U, V ) from ∆ into the category C.
In other words, we have a simplicial object of C.
We have to show that Hom(U, V ) satisfies the desired universal property

MorSimp(C)(W,Hom(U, V )) = MorSimp(C)(W × U, V )
To see this, let f : W → Hom(U, V ) be given. We want to construct the element f ′ :
W × U → V of the right hand side. By construction, each fn : Wn → Hom(U, V )n
corresponds to a morphism fn : Wn×U ×∆[n]→ V . Further, for every morphism
φ : [m]→ [n] the diagram

Wn × U ×∆[m]
W (φ)×id×id

//

id×id×φ
��

Wm × U ×∆[m]

fm

��
Wn × U ×∆[n] fn // V

is commutative. For ψ : [n]→ [k] in (∆[n])k we denote (fn)k,ψ : Wn×Uk → Vk the
component of (fn)k corresponding to the element ψ. We define f ′

n : Wn×Un → Vn

https://stacks.math.columbia.edu/tag/017L
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as f ′
n = (fn)n,id, in other words, as the restriction of (fn)n : Wn×Un×(∆[n])n → Vn

to Wn×Un× id[n]. To see that the collection (f ′
n) defines a morphism of simplicial

objects, we have to show for any φ : [m]→ [n] that V (φ) ◦ f ′
n = f ′

m ◦W (φ)×U(φ).
The commutative diagram above says that (fn)m,φ : Wn × Um → Vm is equal to
(fm)m,id ◦W (φ) : Wn × Um → Vm. But then the fact that fn is a morphism of
simplicial objects implies that the diagram

Wn × Un × (∆[n])n (fn)n
//

id×U(φ)×φ
��

Vn

V (φ)
��

Wn × Um × (∆[n])m
(fn)m // Vm

is commutative. And this implies that (fn)m,φ ◦ U(φ) is equal to V (φ) ◦ (fn)n,id.
Altogether we obtain V (φ) ◦ (fn)n,id = (fn)m,φ ◦U(φ) = (fm)m,id ◦W (φ) ◦U(φ) =
(fm)m,id ◦W (φ)× U(φ) as desired.
On the other hand, given a morphism f ′ : W × U → V we define a morphism
f : W → Hom(U, V ) as follows. By Lemma 14.13.4 the morphisms id : Wn → Wn

corresponds to a unique morphism cn : Wn × ∆[n] → W . Hence we can consider
the composition

Wn ×∆[n]× U cn−→W × U f ′

−→ V.

By construction this corresponds to a unique morphism fn : Wn → Hom(U, V )n.
We leave it to the reader to see that these define a morphism of simplicial sets as
desired.
We also leave it to the reader to see that f 7→ f ′ and f ′ 7→ f are mutually inverse
operations. □

Lemma 14.17.5.017N Assume the category C has coproducts of any two objects and
finite limits. Let a : U → V , b : U → W be morphisms of simplicial sets. Assume
Un, Vn,Wn finite nonempty for all n ≥ 0. Assume that all n-simplices of U, V,W
are degenerate for all n≫ 0. Let T be a simplicial object of C. Then

Hom(V, T )×Hom(U,T ) Hom(W,T ) = Hom(V ⨿U W,T )
In other words, the fibre product on the left hand side is represented by the Hom
object on the right hand side.

Proof. By Lemma 14.17.4 all the required Hom objects exist and satisfy the correct
functorial properties. Now we can identify the nth term on the left hand side as the
object representing the functor that associates to X the first set of the following
sequence of functorial equalities
Mor(X ×∆[n],Hom(V, T )×Hom(U,T ) Hom(W,T ))
= Mor(X ×∆[n],Hom(V, T ))×Mor(X×∆[n],Hom(U,T )) Mor(X ×∆[n],Hom(W,T ))
= Mor(X ×∆[n]× V, T )×Mor(X×∆[n]×U,T ) Mor(X ×∆[n]×W,T )
= Mor(X ×∆[n]× (V ⨿U W ), T ))

Here we have used the fact that
(X ×∆[n]× V )×X×∆[n]×U (X ×∆[n]×W ) = X ×∆[n]× (V ⨿U W )

which is easy to verify term by term. The result of the lemma follows as the last
term in the displayed sequence of equalities corresponds to Hom(V ⨿U W,T )n. □

https://stacks.math.columbia.edu/tag/017N
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14.18. Splitting simplicial objects

017O A subobject N of an object X of the category C is an object N of C together
with a monomorphism N → X. Of course we say (by abuse of notation) that the
subobjects N , N ′ are equal if there exists an isomorphism N → N ′ compatible
with the morphisms to X. The collection of subobjects forms a partially ordered
set. (Because of our conventions on categories; not true for category of spaces up
to homotopy for example.)

Definition 14.18.1.017P Let C be a category which admits finite nonempty coproducts.
We say a simplicial object U of C is split if there exist subobjects N(Um) of Um,
m ≥ 0 with the property that

(14.18.1.1)017Q
∐

φ:[n]→[m] surjective
N(Um) −→ Un

is an isomorphism for all n ≥ 0. If U is an r-truncated simplicial object of C then we
say U is split if there exist subobjects N(Um) of Um, r ≥ m ≥ 0 with the property
that (14.18.1.1) is an isomorphism for r ≥ n ≥ 0.

If this is the case, then N(U0) = U0. Next, we have U1 = U0 ⨿N(U1). Second we
have

U2 = U0 ⨿N(U1)⨿N(U1)⨿N(U2).

It turns out that in many categories C every simplicial object is split.

Lemma 14.18.2.017R Let U be a simplicial set. Then U has a unique splitting with
N(Um) equal to the set of nondegenerate m-simplices.

Proof. From the definition it follows immediately, that if there is a splitting then
N(Um) has to be the set of nondegenerate simplices. Let x ∈ Un. Suppose that
there are surjections φ : [n] → [k] and ψ : [n] → [l] and nondegenerate simplices
y ∈ Uk, z ∈ Ul such that x = U(φ)(y) and x = U(ψ)(z). Choose a right inverse
ξ : [l] → [n] of ψ, i.e., ψ ◦ ξ = id[l]. Then z = U(ξ)(x). Hence z = U(ξ)(x) =
U(φ◦ ξ)(y). Since z is nondegenerate we conclude that φ◦ ξ : [l]→ [k] is surjective,
and hence l ≥ k. Similarly k ≥ l. Hence we see that φ ◦ ξ : [l] → [k] has to be
the identity map for any choice of right inverse ξ of ψ. This easily implies that
ψ = φ. □

Of course it can happen that a map of simplicial sets maps a nondegenerate n-
simplex to a degenerate n-simplex. Thus the splitting of Lemma 14.18.2 is not
functorial. Here is a case where it is functorial.

Lemma 14.18.3.017S Let f : U → V be a morphism of simplicial sets. Suppose that
(a) the image of every nondegenerate simplex of U is a nondegenerate simplex of
V and (b) the restriction of f to a map from the set of nondegenerate simplices of
U to the set of nondegenerate simplices of V is injective. Then fn is injective for
all n. Same holds with “injective” replaced by “surjective” or “bijective”.
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Proof. Under hypothesis (a) we see that the map f preserves the disjoint union
decompositions of the splitting of Lemma 14.18.2, in other words that we get com-
mutative diagrams ∐

φ:[n]→[m] surjective N(Um) //

��

Un

��∐
φ:[n]→[m] surjective N(Vm) // Vn.

And then (b) clearly shows that the left vertical arrow is injective (resp. surjective,
resp. bijective). □

Lemma 14.18.4.017T Let U be a simplicial set. Let n ≥ 0 be an integer. The rule

U ′
m =

⋃
φ:[m]→[i], i≤n

Im(U(φ))

defines a sub simplicial set U ′ ⊂ U with U ′
i = Ui for i ≤ n. Moreover, all m-

simplices of U ′ are degenerate for all m > n.

Proof. If x ∈ Um and x = U(φ)(y) for some y ∈ Ui, i ≤ n and some φ : [m] → [i]
then any image U(ψ)(x) for any ψ : [m′] → [m] is equal to U(φ ◦ ψ)(y) and
φ ◦ ψ : [m′] → [i]. Hence U ′ is a simplicial set. By construction all simplices in
dimension n+ 1 and higher are degenerate. □

Lemma 14.18.5.017U Let U be a simplicial abelian group. Then U has a splitting
obtained by taking N(U0) = U0 and for m ≥ 1 taking

N(Um) =
⋂m−1

i=0
Ker(dmi ).

Moreover, this splitting is functorial on the category of simplicial abelian groups.

Proof. By induction on n we will show that the choice of N(Um) in the lemma
guarantees that (14.18.1.1) is an isomorphism for m ≤ n. This is clear for n = 0.
In the rest of this proof we are going to drop the superscripts from the maps di and
si in order to improve readability. We will also repeatedly use the relations from
Remark 14.3.3.
First we make a general remark. For 0 ≤ i ≤ m and z ∈ Um we have di(si(z)) = z.
Hence we can write any x ∈ Um+1 uniquely as x = x′ + x′′ with di(x′) = 0 and
x′′ ∈ Im(si) by taking x′ = (x − si(di(x))) and x′′ = si(di(x)). Moreover, the
element z ∈ Um such that x′′ = si(z) is unique because si is injective.
Here is a procedure for decomposing any x ∈ Un+1. First, write x = x0 + s0(z0)
with d0(x0) = 0. Next, write x0 = x1 + s1(z1) with dn(x1) = 0. Continue like this
to get

x = x0 + s0(z0),
x0 = x1 + s1(z1),
x1 = x2 + s2(z2),
. . . . . . . . .

xn−1 = xn + sn(zn)
where di(xi) = 0 for all i = n, . . . , 0. By our general remark above all of the xi and
zi are determined uniquely by x. We claim that xi ∈ Ker(d0)∩Ker(d1)∩. . .∩Ker(di)
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and zi ∈ Ker(d0) ∩ . . . ∩ Ker(di−1) for i = n, . . . , 0. Here and in the following an
empty intersection of kernels indicates the whole space; i.e., the notation z0 ∈
Ker(d0) ∩ . . . ∩Ker(di−1) when i = 0 means z0 ∈ Un with no restriction.
We prove this by ascending induction on i. It is clear for i = 0 by construction of
x0 and z0. Let us prove it for 0 < i ≤ n assuming the result for i−1. First of all we
have di(xi) = 0 by construction. So pick a j with 0 ≤ j < i. We have dj(xi−1) = 0
by induction. Hence

0 = dj(xi−1) = dj(xi) + dj(si(zi)) = dj(xi) + si−1(dj(zi)).
The last equality by the relations of Remark 14.3.3. These relations also imply
that di−1(dj(xi)) = dj(di(xi)) = 0 because di(xi) = 0 by construction. Then the
uniqueness in the general remark above shows the equality 0 = x′ + x′′ = dj(xi) +
si−1(dj(zi)) can only hold if both terms are zero. We conclude that dj(xi) = 0 and
by injectivity of si−1 we also conclude that dj(zi) = 0. This proves the claim.
The claim implies we can uniquely write

x = s0(z0) + s1(z1) + . . .+ sn(zn) + x0

with x0 ∈ N(Un+1) and zi ∈ Ker(d0)∩ . . .∩Ker(di−1). We can reformulate this as
saying that we have found a direct sum decomposition

Un+1 = N(Un+1)⊕
⊕i=n

i=0
si

(
Ker(d0) ∩ . . . ∩Ker(di−1)

)
with the property that

Ker(d0) ∩ . . . ∩Ker(dj) = N(Un+1)⊕
⊕i=n

i=j+1
si

(
Ker(dn) ∩ . . . ∩Ker(di−1)

)
for j = 0, . . . , n. The result follows from this statement as follows. Each of the zi
in the expression for x can be written uniquely as

zi = si(z′
i,i) + . . .+ sn−1(z′

i,n−1) + zi,0

with zi,0 ∈ N(Un) and z′
i,j ∈ Ker(d0) ∩ . . . ∩ Ker(dj−1). The first few steps in the

decomposition of zi are zero because zi already is in the kernel of d0, . . . , di. This
in turn uniquely gives

x = x0 + s0(z0,0) + s1(z1,0) + . . .+ sn(zn,0) +
∑

0≤i≤j≤n−1
si(sj(z′

i,j)).

Continuing in this fashion we see that we in the end obtain a decomposition of x
as a sum of terms of the form

si1si2 . . . sik(z)
with 0 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n − k + 1 and z ∈ N(Un+1−k). This is exactly the
required decomposition, because any surjective map [n + 1] → [n + 1 − k] can be
uniquely expressed in the form

σn−k
ik

. . . σn−1
i2

σni1

with 0 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n− k + 1. □

Lemma 14.18.6.017V Let A be an abelian category. Let U be a simplicial object in A.
Then U has a splitting obtained by taking N(U0) = U0 and for m ≥ 1 taking

N(Um) =
⋂m−1

i=0
Ker(dmi ).

Moreover, this splitting is functorial on the category of simplicial objects of A.

https://stacks.math.columbia.edu/tag/017V
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Proof. For any object A of A we obtain a simplicial abelian group MorA(A,U).
Each of these are canonically split by Lemma 14.18.5. Moreover,

N(MorA(A,Um)) =
⋂m−1

i=0
Ker(dmi ) = MorA(A,N(Um)).

Hence we see that the morphism (14.18.1.1) becomes an isomorphism after applying
the functor MorA(A,−) for any object of A. Hence it is an isomorphism by the
Yoneda lemma. □

Lemma 14.18.7.017W Let A be an abelian category. Let f : U → V be a morphism
of simplicial objects of A. If the induced morphisms N(f)i : N(U)i → N(V )i are
injective for all i, then fi is injective for all i. Same holds with “injective” replaced
with “surjective”, or “isomorphism”.

Proof. This is clear from Lemma 14.18.6 and the definition of a splitting. □

Lemma 14.18.8.017X Let A be an abelian category. Let U be a simplicial object in A.
Let N(Um) as in Lemma 14.18.6 above. Then dmm(N(Um)) ⊂ N(Um−1).

Proof. For j = 0, . . . ,m−2 we have dm−1
j dmm = dm−1

m−1d
m
j by the relations in Remark

14.3.3. The result follows. □

Lemma 14.18.9.017Y Let A be an abelian category. Let U be a simplicial object of A.
Let n ≥ 0 be an integer. The rule

U ′
m =

∑
φ:[m]→[i], i≤n

Im(U(φ))

defines a sub simplicial object U ′ ⊂ U with U ′
i = Ui for i ≤ n. Moreover, N(U ′

m) =
0 for all m > n.

Proof. Pick m, i ≤ n and some φ : [m]→ [i]. The image under U(ψ) of Im(U(φ))
for any ψ : [m′]→ [m] is equal to the image of U(φ◦ψ) and φ◦ψ : [m′]→ [i]. Hence
U ′ is a simplicial object. Pick m > n. We have to show N(U ′

m) = 0. By definition
of N(Um) and N(U ′

m) we have N(U ′
m) = U ′

m ∩N(Um) (intersection of subobjects).
Since U is split by Lemma 14.18.6, it suffices to show that U ′

m is contained in the
sum ∑

φ:[m]→[m′] surjective, m′<m
Im(U(φ)|N(Um′ )).

By the splitting each Um′ is the sum of images of N(Um′′) via U(ψ) for surjective
maps ψ : [m′]→ [m′′]. Hence the displayed sum above is the same as∑

φ:[m]→[m′] surjective, m′<m
Im(U(φ)).

Clearly U ′
m is contained in this by the simple fact that any φ : [m] → [i], i ≤ n

occurring in the definition of U ′
m may be factored as [m]→ [m′]→ [i] with [m]→

[m′] surjective and m′ < m as in the last displayed sum above. □

14.19. Coskeleton functors

0AMA Let C be a category. The coskeleton functor (if it exists) is a functor
coskn : Simpn(C) −→ Simp(C)

which is right adjoint to the skeleton functor. In a formula
(14.19.0.1)0181 MorSimp(C)(U, cosknV ) = MorSimpn(C)(sknU, V )
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Given a n-truncated simplicial object V we say that cosknV exists if there exists a
cosknV ∈ Ob(Simp(C)) and a morphism skncosknV → V such that the displayed
formula holds, in other words if the functor U 7→ MorSimpn(C)(sknU, V ) is repre-
sentable. If it exists it is unique up to unique isomorphism by the Yoneda lemma.
See Categories, Section 4.3.

Example 14.19.1.0182 Suppose the category C has finite nonempty self products. A
0-truncated simplicial object of C is the same as an object X of C. In this case we
claim that cosk0(X) is the simplicial object U with Un = Xn+1 the (n+1)-fold self
product of X, and structure of simplicial object as in Example 14.3.5. Namely, a
morphism V → U where V is a simplicial object is given by morphisms Vn → Xn+1,
such that all the diagrams

Vn //

V ([0]→[n],0 7→i)
��

Xn+1

pri
��

V0 // X

commute. Clearly this means that the map determines and is determined by a
unique morphism V0 → X. This proves that formula (14.19.0.1) holds.

Recall the category ∆/[n], see Example 14.11.4. We let (∆/[n])≤m denote the full
subcategory of ∆/[n] consisting of objects [k]→ [n] of ∆/[n] with k ≤ m. In other
words we have the following commutative diagram of categories and functors

(∆/[n])≤m //

��

∆/[n]

��
∆≤m // ∆

Given a m-truncated simplicial object U of C we define a functor

U(n) : (∆/[n])opp≤m −→ C

by the rules

([k]→ [n]) 7−→ Uk

ψ : ([k′]→ [n])→ ([k]→ [n]) 7−→ U(ψ) : Uk → Uk′

For a given morphism φ : [n]→ [n′] of ∆ we have an associated functor

φ : (∆/[n])≤m −→ (∆/[n′])≤m

which maps α : [k] → [n] to φ ◦ α : [k] → [n′]. The composition U(n′) ◦ φ is equal
to the functor U(n).

Lemma 14.19.2.0183 If the category C has finite limits, then coskm functors exist for all
m. Moreover, for any m-truncated simplicial object U the simplicial object coskmU
is described by the formula

(coskmU)n = lim(∆/[n])opp≤m
U(n)

and for φ : [n]→ [n′] the map coskmU(φ) comes from the identification U(n′)◦φ =
U(n) above via Categories, Lemma 4.14.9.

https://stacks.math.columbia.edu/tag/0182
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Proof. During the proof of this lemma we denote coskmU the simplicial object with
(coskmU)n equal to lim(∆/[n])opp≤m

U(n). We will conclude at the end of the proof
that it does satisfy the required mapping property.

Suppose that V is a simplicial object. A morphism γ : V → coskmU is given by a
sequence of morphisms γn : Vn → (coskmU)n. By definition of a limit, this is given
by a collection of morphisms γ(α) : Vn → Uk where α ranges over all α : [k]→ [n]
with k ≤ m. These morphisms then also satisfy the rules that

Vn
γ(α)

// Uk

Vn′
γ(α′) //

V (φ)

OO

Uk′

U(ψ)

OO

are commutative, given any 0 ≤ k, k′ ≤ m, 0 ≤ n, n′ and any ψ : [k] → [k′],
φ : [n]→ [n′], α : [k]→ [n] and α′ : [k′]→ [n′] in ∆ such that φ◦α = α′ ◦ψ. Taking
n = k = k′, φ = α′, and α = ψ = id[k] we deduce that γ(α′) = γ(id[k]) ◦ V (α′). In
other words, the morphisms γ(id[k]), k ≤ m determine the morphism γ. And it is
easy to see that these morphisms form a morphism skmV → U .

Conversely, given a morphism γ : skmV → U , we obtain a family of morphisms γ(α)
where α ranges over all α : [k]→ [n] with k ≤ m by setting γ(α) = γ(id[k]) ◦ V (α).
These morphisms satisfy all the displayed commutativity restraints pictured above,
and hence give rise to a morphism V → coskmU . □

Lemma 14.19.3.0184 Let C be a category. Let U be an m-truncated simplicial object
of C. For n ≤ m the limit lim(∆/[n])opp≤m

U(n) exists and is canonically isomorphic to
Un.

Proof. This is true because the category (∆/[n])≤m has an final object in this case,
namely the identity map [n]→ [n]. □

Lemma 14.19.4.0185 Let C be a category with finite limits. Let U be an n-truncated
simplicial object of C. The morphism skncosknU → U is an isomorphism.

Proof. Combine Lemmas 14.19.2 and 14.19.3. □

Let us describe a particular instance of the coskeleton functor in more detail. By
abuse of notation we will denote skn also the restriction functor Simpn′(C) →
Simpn(C) for any n′ ≥ n. We are going to describe a right adjoint of the functor skn :
Simpn+1(C)→ Simpn(C). For n ≥ 1, 0 ≤ i < j ≤ n+1 define δn+1

i,j : [n−1]→ [n+1]
to be the increasing map omitting i and j. Note that δn+1

i,j = δn+1
j ◦δni = δn+1

i ◦δnj−1,
see Lemma 14.2.3. This motivates the following lemma.

Lemma 14.19.5.0186 Let n be an integer ≥ 1. Let U be a n-truncated simplicial object
of C. Consider the contravariant functor from C to Sets which associates to an
object T the set

{(f0, . . . , fn+1) ∈ MorC(T,Un) | dnj−1 ◦ fi = dni ◦ fj ∀ 0 ≤ i < j ≤ n+ 1}

If this functor is representable by some object Un+1 of C, then

Un+1 = lim(∆/[n+1])opp≤n
U(n)
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Proof. The limit, if it exists, represents the functor that associates to an object T
the set
{(fα)α:[k]→[n+1],k≤n | fα◦ψ = U(ψ) ◦ fα ∀ ψ : [k′]→ [k], α : [k]→ [n+ 1]}.

In fact we will show this functor is isomorphic to the one displayed in the lemma.
The map in one direction is given by the rule

(fα)α 7−→ (fδn+1
0

, . . . , fδn+1
n+1

).

This satisfies the conditions of the lemma because
dnj−1 ◦ fδn+1

i
= fδn+1

i
◦δn
j−1

= fδn+1
j

◦δn
i

= dni ◦ fδn+1
j

by the relations we recalled above the lemma. To construct a map in the other
direction we have to associate to a system (f0, . . . , fn+1) as in the displayed formula
of the lemma a system of maps fα. Let α : [k]→ [n+ 1] be given. Since k ≤ n the
map α is not surjective. Hence we can write α = δn+1

i ◦ ψ for some 0 ≤ i ≤ n + 1
and some ψ : [k]→ [n]. We have no choice but to define

fα = U(ψ) ◦ fi.
Of course we have to check that this is independent of the choice of the pair (i, ψ).
First, observe that given i there is a unique ψ which works. Second, suppose that
(j, ϕ) is another pair. Then i ̸= j and we may assume i < j. Since both i, j are
not in the image of α we may actually write α = δn+1

i,j ◦ ξ and then we see that
ψ = δnj−1 ◦ ξ and ϕ = δni ◦ ξ. Thus

U(ψ) ◦ fi = U(δnj−1 ◦ ξ) ◦ fi
= U(ξ) ◦ dnj−1 ◦ fi
= U(ξ) ◦ dni ◦ fj
= U(δni ◦ ξ) ◦ fj
= U(ϕ) ◦ fj

as desired. We still have to verify that the maps fα so defined satisfy the rules of
a system of maps (fα)α. To see this suppose that ψ : [k′] → [k], α : [k] → [n + 1]
with k, k′ ≤ n. Set α′ = α ◦ ψ. Choose i not in the image of α. Then clearly i is
not in the image of α′ also. Write α = δn+1

i ◦ ϕ (we cannot use the letter ψ here
because we’ve already used it). Then obviously α′ = δn+1

i ◦ ϕ ◦ ψ. By construction
above we then have

U(ψ) ◦ fα = U(ψ) ◦ U(ϕ) ◦ fi = U(ϕ ◦ ψ) ◦ fi = fα◦ψ = fα′

as desired. We leave to the reader the pleasant task of verifying that our construc-
tions are mutually inverse bijections, and are functorial in T . □

Lemma 14.19.6.0187 Let n be an integer ≥ 1. Let U be a n-truncated simplicial object
of C. Consider the contravariant functor from C to Sets which associates to an
object T the set

{(f0, . . . , fn+1) ∈ MorC(T,Un) | dnj−1 ◦ fi = dni ◦ fj ∀ 0 ≤ i < j ≤ n+ 1}
If this functor is representable by some object Un+1 of C, then there exists an
(n+ 1)-truncated simplicial object Ũ , with sknŨ = U and Ũn+1 = Un+1 such that
the following adjointness holds

MorSimpn+1(C)(V, Ũ) = MorSimpn(C)(sknV,U)

https://stacks.math.columbia.edu/tag/0187
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Proof. By Lemma 14.19.3 there are identifications
Ui = lim(∆/[i])opp≤n

U(i)

for 0 ≤ i ≤ n. By Lemma 14.19.5 we have
Un+1 = lim(∆/[n+1])opp≤n

U(n).

Thus we may define for any φ : [i] → [j] with i, j ≤ n + 1 the corresponding map
Ũ(φ) : Ũj → Ũi exactly as in Lemma 14.19.2. This defines an (n + 1)-truncated
simplicial object Ũ with sknŨ = U .
To see the adjointness we argue as follows. Given any element γ : sknV → U
of the right hand side of the formula consider the morphisms fi = γn ◦ dn+1

i :
Vn+1 → Vn → Un. These clearly satisfy the relations dnj−1 ◦ fi = dni ◦ fj and hence
define a unique morphism Vn+1 → Un+1 by our choice of Un+1. Conversely, given
a morphism γ′ : V → Ũ of the left hand side we can simply restrict to ∆≤n to
get an element of the right hand side. We leave it to the reader to show these are
mutually inverse constructions. □

Remark 14.19.7.0188 Let U , and Un+1 be as in Lemma 14.19.6. On T -valued points
we can easily describe the face and degeneracy maps of Ũ . Explicitly, the maps
dn+1
i : Un+1 → Un are given by

(f0, . . . , fn+1) 7−→ fi.

And the maps snj : Un → Un+1 are given by

f 7−→ (sn−1
j−1 ◦ d

n−1
0 ◦ f,

sn−1
j−1 ◦ d

n−1
1 ◦ f,

. . .

sn−1
j−1 ◦ d

n−1
j−1 ◦ f,

f,

f,

sn−1
j ◦ dn−1

j+1 ◦ f,
sn−1
j ◦ dn−1

j+2 ◦ f,
. . .

sn−1
j ◦ dn−1

n ◦ f)
where we leave it to the reader to verify that the RHS is an element of the displayed
set of Lemma 14.19.6. For n = 0 there is one map, namely f 7→ (f, f). For n = 1
there are two maps, namely f 7→ (f, f, s0d1f) and f 7→ (s0d0f, f, f). For n = 2
there are three maps, namely f 7→ (f, f, s0d1f, s0d2f), f 7→ (s0d0f, f, f, s1d2f),
and f 7→ (s1d0f, s1d1f, f, f). And so on and so forth.

Remark 14.19.8.0189 The construction of Lemma 14.19.6 above in the case of simplicial
sets is the following. Given an n-truncated simplicial set U , we make a canonical
(n + 1)-truncated simplicial set Ũ as follows. We add a set of (n + 1)-simplices
Un+1 by the formula of the lemma. Namely, an element of Un+1 is a numbered
collection of (f0, . . . , fn+1) of n-simplices, with the property that they glue as they
would in a (n + 1)-simplex. In other words, the ith face of fj is the (j − 1)st face
of fi for i < j. Geometrically it is obvious how to define the face and degeneracy
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maps for Ũ . If V is an (n + 1)-truncated simplicial set, then its (n + 1)-simplices
give rise to compatible collections of n-simplices (f0, . . . , fn+1) with fi ∈ Vn. Hence
there is a natural map Mor(sknV,U)→ Mor(V, Ũ) which is inverse to the canonical
restriction mapping the other way.
Also, it is enough to do the combinatorics of the construction in the case of trun-
cated simplicial sets. Namely, for any object T of the category C, and any n-
truncated simplicial object U of C we can consider the n-truncated simplicial set
Mor(T,U). We may apply the construction to this, and take its set of (n + 1)-
simplices, and require this to be representable. This is a good way to think about
the result of Lemma 14.19.6.

Remark 14.19.9.018A Inductive construction of coskeleta. Suppose that C is a category
with finite limits. Suppose that U is an m-truncated simplicial object in C. Then
we can inductively construct n-truncated objects Un as follows:

(1) To start, set Um = U .
(2) Given Un for n ≥ m set Un+1 = Ũn, where Ũn is constructed from Un

as in Lemma 14.19.6.
Since the construction of Lemma 14.19.6 has the property that it leaves the n-
skeleton of Un unchanged, we can then define coskmU to be the simplicial object
with (coskmU)n = Unn = Un+1

n = . . .. And it follows formally from Lemma 14.19.6
that Un satisfies the formula

MorSimpn(C)(V,Un) = MorSimpm(C)(skmV,U)
for all n ≥ m. It also then follows formally from this that

MorSimp(C)(V, coskmU) = MorSimpm(C)(skmV,U)
with coskmU chosen as above.

Lemma 14.19.10.018B Let C be a category which has finite limits.
(1) For every n the functor skn : Simp(C) → Simpn(C) has a right adjoint

coskn.
(2) For every n′ ≥ n the functor skn : Simpn′(C) → Simpn(C) has a right

adjoint, namely skn′coskn.
(3) For every m ≥ n ≥ 0 and every n-truncated simplicial object U of C we

have coskmskmcosknU = cosknU .
(4) If U is a simplicial object of C such that the canonical map U → cosknsknU

is an isomorphism for some n ≥ 0, then the canonical map U → coskmskmU
is an isomorphism for all m ≥ n.

Proof. The existence in (1) follows from Lemma 14.19.2 above. Parts (2) and (3)
follow from the discussion in Remark 14.19.9. After this (4) is obvious. □

Remark 14.19.11.09VS We do not need all finite limits in order to be able to define the
coskeleton functors. Here are some remarks

(1) We have seen in Example 14.19.1 that if C has products of pairs of objects
then cosk0 exists.

(2) For k > 0 the functor coskk exists if C has finite connected limits.
This is clear from the inductive procedure of constructing coskeleta (Remarks
14.19.8 and 14.19.9) but it also follows from the fact that the categories (∆/[n])≤k
for k ≥ 1 and n ≥ k + 1 used in Lemma 14.19.2 are connected. Observe that we
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do not need the categories for n ≤ k by Lemma 14.19.3 or Lemma 14.19.4. (As k
gets higher the categories (∆/[n])≤k for k ≥ 1 and n ≥ k + 1 are more and more
connected in a topological sense.)
Lemma 14.19.12.018C Let U , V be n-truncated simplicial objects of a category C. Then

coskn(U × V ) = cosknU × cosknV
whenever the left and right hand sides exist.
Proof. Let W be a simplicial object. We have

Mor(W, coskn(U × V )) = Mor(sknW,U × V )
= Mor(sknW,U)×Mor(sknW,V )
= Mor(W, cosknU)×Mor(W, cosknV )
= Mor(W, cosknU × cosknV )

The lemma follows. □

Lemma 14.19.13.018D Assume C has fibre products. Let U → V and W → V be
morphisms of n-truncated simplicial objects of the category C. Then

coskn(U ×V W ) = cosknU ×cosknV cosknW
whenever the left and right hand side exist.
Proof. Omitted, but very similar to the proof of Lemma 14.19.12 above. □

Lemma 14.19.14.08NJ Let C be a category with finite limits. Let X ∈ Ob(C). The
functor C/X → C commutes with the coskeleton functors coskk for k ≥ 1.
Proof. The statement means that if U is a simplicial object of C/X which we can
think of as a simplicial object of C with a morphism towards the constant simplicial
object X, then coskkU computed in C/X is the same as computed in C. This follows
for example from Categories, Lemma 4.16.2 because the categories (∆/[n])≤k for
k ≥ 1 and n ≥ k + 1 used in Lemma 14.19.2 are connected. Observe that we do
not need the categories for n ≤ k by Lemma 14.19.3 or Lemma 14.19.4. □

Lemma 14.19.15.018E The canonical map ∆[n]→ cosk1sk1∆[n] is an isomorphism.
Proof. Consider a simplicial set U and a morphism f : U → ∆[n]. This is a rule
that associates to each u ∈ Ui a map fu : [i] → [n] in ∆. Furthermore, these
maps should have the property that fu ◦ φ = fU(φ)(u) for any φ : [j]→ [i]. Denote
ϵij : [0]→ [i] the map which maps 0 to j. Denote F : U0 → [n] the map u 7→ fu(0).
Then we see that

fu(j) = F (ϵij(u))
for all 0 ≤ j ≤ i and u ∈ Ui. In particular, if we know the function F then we know
the maps fu for all u ∈ Ui all i. Conversely, given a map F : U0 → [n], we can set
for any i, and any u ∈ Ui and any 0 ≤ j ≤ i

fu(j) = F (ϵij(u))
This does not in general define a morphism f of simplicial sets as above. Namely,
the condition is that all the maps fu are nondecreasing. This clearly is equivalent
to the condition that F (ϵij(u)) ≤ F (ϵij′(u)) whenever 0 ≤ j ≤ j′ ≤ i and u ∈ Ui.
But in this case the morphisms

ϵij , ϵ
i
j′ : [0]→ [i]

https://stacks.math.columbia.edu/tag/018C
https://stacks.math.columbia.edu/tag/018D
https://stacks.math.columbia.edu/tag/08NJ
https://stacks.math.columbia.edu/tag/018E


14.20. AUGMENTATIONS 1132

both factor through the map ϵij,j′ : [1]→ [i] defined by the rules 0 7→ j, 1 7→ j′. In
other words, it is enough to check the inequalities for i = 1 and u ∈ X1. In other
words, we have

Mor(U,∆[n]) = Mor(sk1U, sk1∆[n])

as desired. □

14.20. Augmentations

018F
Definition 14.20.1.018G Let C be a category. Let U be a simplicial object of C. An
augmentation ϵ : U → X of U towards an object X of C is a morphism from U into
the constant simplicial object X.

Lemma 14.20.2.018H Let C be a category. Let X ∈ Ob(C). Let U be a simplicial object
of C. To give an augmentation of U towards X is the same as giving a morphism
ϵ0 : U0 → X such that ϵ0 ◦ d1

0 = ϵ0 ◦ d1
1.

Proof. Given a morphism ϵ : U → X we certainly obtain an ϵ0 as in the lemma.
Conversely, given ϵ0 as in the lemma, define ϵn : Un → X by choosing any morphism
α : [0] → [n] and taking ϵn = ϵ0 ◦ U(α). Namely, if β : [0] → [n] is another choice,
then there exists a morphism γ : [1] → [n] such that α and β both factor as
[0]→ [1]→ [n]. Hence the condition on ϵ0 shows that ϵn is well defined. Then it is
easy to show that (ϵn) : U → X is a morphism of simplicial objects. □

Lemma 14.20.3.018I Let C be a category with fibred products. Let f : Y → X be a
morphism of C. Let U be the simplicial object of C whose nth term is the (n+1)fold
fibred product Y ×X Y ×X . . .×X Y . See Example 14.3.5. For any simplicial object
V of C we have

MorSimp(C)(V,U) = MorSimp1(C)(sk1V, sk1U)
= {g0 : V0 → Y | f ◦ g0 ◦ d1

0 = f ◦ g0 ◦ d1
1}

In particular we have U = cosk1sk1U .

Proof. Suppose that g : sk1V → sk1U is a morphism of 1-truncated simplicial
objects. Then the diagram

V1

d1
0 //

d1
1

//

g1

��

V0

g0

��
Y ×X Y

pr1 //

pr0
// Y // X

is commutative, which proves that the relation shown in the lemma holds. We have
to show that, conversely, given a morphism g0 satisfying the relation f ◦ g0 ◦ d1

0 =
f ◦ g0 ◦ d1

1 we get a unique morphism of simplicial objects g : V → U . This is done
as follows. For any n ≥ 1 let gn,i = g0 ◦V ([0]→ [n], 0 7→ i) : Vn → Y . The equality
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above implies that f ◦ gn,i = f ◦ gn,i+1 because of the commutative diagram

[0]

0 7→0 ��

0 7→i

++[1] 0 7→i,1 7→i+1 // [n]

[0]

0 7→1
??

0 7→i+1

33

Hence we get (gn,0, . . . , gn,n) : Vn → Y ×X . . .×X Y = Un. We leave it to the reader
to see that this is a morphism of simplicial objects. The last assertion of the lemma
is equivalent to the first equality in the displayed formula of the lemma. □

Remark 14.20.4.018J Let C be a category with fibre products. Let V be a simplicial
object. Let ϵ : V → X be an augmentation. Let U be the simplicial object whose
nth term is the (n+ 1)st fibred product of V0 over X. By a simple combination of
Lemmas 14.20.2 and 14.20.3 we obtain a canonical morphism V → U .

14.21. Left adjoints to the skeleton functors

018K In this section we construct a left adjoint im! of the skeleton functor skm in certain
cases. The adjointness formula is

MorSimpm(C)(U, skmV ) = MorSimp(C)(im!U, V ).
It turns out that this left adjoint exists when the category C has finite colimits.
We use a similar construction as in Section 14.12. Recall the category [n]/∆ of
objects under [n], see Categories, Example 4.2.14. Its objects are morphisms α :
[n] → [k] and its morphisms are commutative triangles. We let ([n]/∆)≤m denote
the full subcategory of [n]/∆ consisting of objects [n] → [k] with k ≤ m. Given a
m-truncated simplicial object U of C we define a functor

U(n) : ([n]/∆)opp≤m −→ C

by the rules
([n]→ [k]) 7−→ Uk

ψ : ([n]→ [k′])→ ([n]→ [k]) 7−→ U(ψ) : Uk → Uk′

For a given morphism φ : [n]→ [n′] of ∆ we have an associated functor
φ : ([n′]/∆)≤m −→ ([n]/∆)≤m

which maps α : [n′] → [k] to φ ◦ α : [n] → [k]. The composition U(n) ◦ φ is equal
to the functor U(n′).

Lemma 14.21.1.018L Let C be a category which has finite colimits. The functors im!
exist for all m. Let U be an m-truncated simplicial object of C. The simplicial
object im!U is described by the formula

(im!U)n = colim([n]/∆)opp≤m
U(n)

and for φ : [n] → [n′] the map im!U(φ) comes from the identification U(n) ◦ φ =
U(n′) above via Categories, Lemma 4.14.8.

https://stacks.math.columbia.edu/tag/018J
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Proof. In this proof we denote im!U the simplicial object whose nth term is given
by the displayed formula of the lemma. We will show it satisfies the adjointness
property.
Let V be a simplicial object of C. Let γ : U → skmV be given. A morphism

colim([n]/∆)opp≤m
U(n)→ T

is given by a compatible system of morphisms fα : Uk → T where α : [n]→ [k] with
k ≤ m. Certainly, we have such a system of morphisms by taking the compositions

Uk
γk−→ Vk

V (α)−−−→ Vn.

Hence we get an induced morphism (im!U)n → Vn. We leave it to the reader to see
that these form a morphism of simplicial objects γ′ : im!U → V .
Conversely, given a morphism γ′ : im!U → V we obtain a morphism γ : U → skmV
by setting γi : Ui → Vi equal to the composition

Ui
id[i]−−→ colim([i]/∆)opp≤m

U(i) γ′
i−→ Vi

for 0 ≤ i ≤ n. We leave it to the reader to see that this is the inverse of the
construction above. □

Lemma 14.21.2.018M Let C be a category. Let U be an m-truncated simplicial object
of C. For any n ≤ m the colimit

colim([n]/∆)opp≤m
U(n)

exists and is equal to Un.

Proof. This is so because the category ([n]/∆)≤m has an initial object, namely
id : [n]→ [n]. □

Lemma 14.21.3.018N Let C be a category which has finite colimits. Let U be an m-
truncated simplicial object of C. The map U → skmim!U is an isomorphism.

Proof. Combine Lemmas 14.21.1 and 14.21.2. □

Lemma 14.21.4.018O If U is an m-truncated simplicial set and n > m then all n-
simplices of im!U are degenerate.

Proof. This can be seen from the construction of im!U in Lemma 14.21.1, but we
can also argue directly as follows. Write V = im!U . Let V ′ ⊂ V be the simplicial
subset with V ′

i = Vi for i ≤ m and all i simplices degenerate for i > m, see Lemma
14.18.4. By the adjunction formula, since skmV ′ = U , there is an inverse to the
injection V ′ → V . Hence V ′ = V . □

Lemma 14.21.5.018P Let U be a simplicial set. Let n ≥ 0 be an integer. The morphism
in!sknU → U identifies in!sknU with the simplicial set U ′ ⊂ U defined in Lemma
14.18.4.

Proof. By Lemma 14.21.4 the only nondegenerate simplices of in!sknU are in de-
grees ≤ n. The map in!sknU → U is an isomorphism in degrees ≤ n. Combined we
conclude that the map in!sknU → U maps nondegenerate simplices to nondegen-
erate simplices and no two nondegenerate simplices have the same image. Hence
Lemma 14.18.3 applies. Thus in!sknU → U is injective. The result follows easily
from this. □

https://stacks.math.columbia.edu/tag/018M
https://stacks.math.columbia.edu/tag/018N
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Remark 14.21.6.018Q In some texts the composite functor

Simp(C) skm−−→ Simpm(C) im!−−→ Simp(C)
is denoted skm. This makes sense for simplicial sets, because then Lemma 14.21.5
says that im!skmV is just the sub simplicial set of V consisting of all i-simplices of
V , i ≤ m and their degeneracies. In those texts it is also customary to denote the
composition

Simp(C) skm−−→ Simpm(C) coskm−−−−→ Simp(C)
by coskm.

Lemma 14.21.7.018R Let U ⊂ V be simplicial sets. Suppose n ≥ 0 and x ∈ Vn, x ̸∈ Un
are such that

(1) Vi = Ui for i < n,
(2) Vn = Un ∪ {x},
(3) any z ∈ Vj , z ̸∈ Uj for j > n is degenerate.

Let ∆[n] → V be the unique morphism mapping the nondegenerate n-simplex of
∆[n] to x. In this case the diagram

∆[n] // V

i(n−1)!skn−1∆[n] //

OO

U

OO

is a pushout diagram.

Proof. Let us denote ∂∆[n] = i(n−1)!skn−1∆[n] for convenience. There is a natural
map U ⨿∂∆[n] ∆[n] → V . We have to show that it is bijective in degree j for
all j. This is clear for j ≤ n. Let j > n. The third condition means that any
z ∈ Vj , z ̸∈ Uj is a degenerate simplex, say z = sj−1

i (z′). Of course z′ ̸∈ Uj−1.
By induction it follows that z′ is a degeneracy of x. Thus we conclude that all
j-simplices of V are either in U or degeneracies of x. This implies that the map
U⨿∂∆[n]∆[n]→ V is surjective. Note that a nondegenerate simplex of U⨿∂∆[n]∆[n]
is either the image of a nondegenerate simplex of U , or the image of the (unique)
nondegenerate n-simplex of ∆[n]. Since clearly x is nondegenerate we deduce that
U⨿∂∆[n]∆[n]→ V maps nondegenerate simplices to nondegenerate simplices and is
injective on nondegenerate simplices. Hence it is injective, by Lemma 14.18.3. □

Lemma 14.21.8.018S Let U ⊂ V be simplicial sets, with Un, Vn finite nonempty for all
n. Assume that U and V have finitely many nondegenerate simplices. Then there
exists a sequence of sub simplicial sets

U = W 0 ⊂W 1 ⊂W 2 ⊂ . . .W r = V

such that Lemma 14.21.7 applies to each of the inclusions W i ⊂W i+1.

Proof. Let n be the smallest integer such that V has a nondegenerate simplex that
does not belong to U . Let x ∈ Vn, x ̸∈ Un be such a nondegenerate simplex. Let
W ⊂ V be the set of elements which are either in U , or are a (repeated) degeneracy
of x (in other words, are of the form V (φ)(x) with φ : [m] → [n] surjective). It is
easy to see that W is a simplicial set. The inclusion U ⊂W satisfies the conditions
of Lemma 14.21.7. Moreover the number of nondegenerate simplices of V which are

https://stacks.math.columbia.edu/tag/018Q
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not contained in W is exactly one less than the number of nondegenerate simplices
of V which are not contained in U . Hence we win by induction on this number. □

Lemma 14.21.9.018T Let A be an abelian category Let U be an m-truncated simplicial
object of A. For n > m we have N(im!U)n = 0.

Proof. Write V = im!U . Let V ′ ⊂ V be the simplicial subobject of V with V ′
i = Vi

for i ≤ m and N(V ′
i ) = 0 for i > m, see Lemma 14.18.9. By the adjunction formula,

since skmV ′ = U , there is an inverse to the injection V ′ → V . Hence V ′ = V . □

Lemma 14.21.10.018U Let A be an abelian category. Let U be a simplicial object of A.
Let n ≥ 0 be an integer. The morphism in!sknU → U identifies in!sknU with the
simplicial subobject U ′ ⊂ U defined in Lemma 14.18.9.

Proof. By Lemma 14.21.9 we have N(in!sknU)i = 0 for i > n. The map in!sknU →
U is an isomorphism in degrees ≤ n, see Lemma 14.21.3. Combined we conclude
that the map in!sknU → U induces injective maps N(in!sknU)i → N(U)i for all i.
Hence Lemma 14.18.7 applies. Thus in!sknU → U is injective. The result follows
easily from this. □

Here is another way to think about the coskeleton functor using the material above.

Lemma 14.21.11.018V Let C be a category with finite coproducts and finite limits. Let
V be a simplicial object of C. In this case

(cosknsknV )n+1 = Hom(in!skn∆[n+ 1], V )0.

Proof. By Lemma 14.13.4 the object on the left represents the functor which assigns
to X the first set of the following equalities

Mor(X ×∆[n+ 1], cosknsknV ) = Mor(X × skn∆[n+ 1], sknV )
= Mor(X × in!skn∆[n+ 1], V ).

The object on the right in the formula of the lemma is represented by the functor
which assigns to X the last set in the sequence of equalities. This proves the result.
In the sequence of equalities we have used that skn(X×∆[n+1]) = X×skn∆[n+1]
and that in!(X×skn∆[n+1]) = X×in!skn∆[n+1]. The first equality is obvious. For
any (possibly truncated) simplicial object W of C and any object X of C denote tem-
porarily MorC(X,W ) the (possibly truncated) simplicial set [n] 7→ MorC(X,Wn).
From the definitions it follows that Mor(U ×X,W ) = Mor(U,MorC(X,W )) for any
(possibly truncated) simplicial set U . Hence

Mor(X × in!skn∆[n+ 1],W ) = Mor(in!skn∆[n+ 1],MorC(X,W ))
= Mor(skn∆[n+ 1], skn MorC(X,W ))
= Mor(X × skn∆[n+ 1], sknW )
= Mor(in!(X × skn∆[n+ 1]),W ).

This proves the second equality used, and ends the proof of the lemma. □

14.22. Simplicial objects in abelian categories

018Y Recall that an abelian category is defined in Homology, Section 12.5.

Lemma 14.22.1.018Z Let A be an abelian category.
(1) The categories Simp(A) and CoSimp(A) are abelian.

https://stacks.math.columbia.edu/tag/018T
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(2) A morphism of (co)simplicial objects f : A→ B is injective if and only if
each fn : An → Bn is injective.

(3) A morphism of (co)simplicial objects f : A → B is surjective if and only
if each fn : An → Bn is surjective.

(4) A sequence of (co)simplicial objects

A
f−→ B

g−→ C

is exact at B if and only if each sequence

Ai
fi−→ Bi

gi−→ Ci

is exact at Bi.

Proof. Pre-additivity is easy. A final object is given by Un = 0 in all degrees.
Existence of direct products we saw in Lemmas 14.6.2 and 14.9.2. Kernels and
cokernels are obtained by taking termwise kernels and cokernels. □

For an object A of A and an integer k consider the k-truncated simplicial object U
with

(1) Ui = 0 for i < k,
(2) Uk = A,
(3) all morphisms U(φ) equal to zero, except U(id[k]) = idA.

Since A has both finite limits and finite colimits we see that both coskkU and ik!U
exist. We will describe both of these and the canonical map ik!U → coskkU .

Lemma 14.22.2.0190 With A, k and U as above, so Ui = 0, i < k and Uk = A.
(1) Given a k-truncated simplicial object V we have

Mor(U, V ) = {f : A→ Vk | dki ◦ f = 0, i = 0, . . . , k}
and

Mor(V,U) = {f : Vk → A | f ◦ sk−1
i = 0, i = 0, . . . , k − 1}.

(2) The object ik!U has nth term equal to
⊕

αA where α runs over all sur-
jective morphisms α : [n]→ [k].

(3) For any φ : [m] → [n] the map ik!U(φ) is described as the mapping⊕
αA→

⊕
α′ A which maps to component corresponding to α : [n]→ [k]

to zero if α ◦ φ is not surjective and by the identity to the component
corresponding to α ◦ φ if it is surjective.

(4) The object coskkU has nth term equal to
⊕

β A, where β runs over all
injective morphisms β : [k]→ [n].

(5) For any φ : [m] → [n] the map coskkU(φ) is described as the mapping⊕
β A→

⊕
β′ A which maps to component corresponding to β : [k]→ [n]

to zero if β does not factor through φ and by the identity to each of the
components corresponding to β′ such that β = φ ◦ β′ if it does.

(6) The canonical map c : ik!U → coskkU in degree n has (α, β) coefficient
A→ A equal to zero if α ◦ β is not the identity and equal to idA if it is.

(7) The canonical map c : ik!U → coskkU is injective.

Proof. The proof of (1) is left to the reader.
Let us take the rules of (2) and (3) as the definition of a simplicial object, call it
Ũ . We will show that it is an incarnation of ik!U . This will prove (2), (3) at the

https://stacks.math.columbia.edu/tag/0190
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same time. We have to show that given a morphism f : U → skkV there exists a
unique morphism f̃ : Ũ → V which recovers f upon taking the k-skeleton. From
(1) we see that f corresponds with a morphism fk : A → Vk which maps into the
kernel of dki for all i. For any surjective α : [n] → [k] we set f̃α : A → Vn equal to
the composition f̃α = V (α) ◦ fk : A → Vn. We define f̃n : Ũn → Vn as the sum of
the f̃α over α : [n] → [k] surjective. Such a collection of f̃α defines a morphism of
simplicial objects if and only if for any φ : [m]→ [n] the diagram⊕

α:[n]→[k] surjective A
f̃n

//

(3)
��

Vn

V (φ)
��⊕

α′:[m]→[k] surjective A
f̃m // Vm

is commutative. Choosing φ = α shows our choice of f̃α is uniquely determined by
fk. The commutativity in general may be checked for each summand of the left
upper corner separately. It is clear for the summands corresponding to α where α◦φ
is surjective, because those get mapped by idA to the summand with α′ = α ◦ φ,
and we have f̃α′ = V (α′) ◦ fk = V (α ◦ φ) ◦ fk = V (φ) ◦ f̃α. For those where α ◦ φ
is not surjective, we have to show that V (φ) ◦ f̃α = 0. By definition this is equal
to V (φ) ◦ V (α) ◦ fk = V (α ◦φ) ◦ fk. Since α ◦φ is not surjective we can write it as
δki ◦ ψ, and we deduce that V (φ) ◦ V (α) ◦ fk = V (ψ) ◦ dki ◦ fk = 0 see above.

Let us take the rules of (4) and (5) as the definition of a simplicial object, call it
Ũ . We will show that it is an incarnation of coskkU . This will prove (4), (5) at the
same time. The argument is completely dual to the proof of (2), (3) above, but we
give it anyway. We have to show that given a morphism f : skkV → U there exists
a unique morphism f̃ : V → Ũ which recovers f upon taking the k-skeleton. From
(1) we see that f corresponds with a morphism fk : Vk → A which is zero on the
image of sk−1

i for all i. For any injective β : [k]→ [n] we set f̃β : Vn → A equal to
the composition f̃β = fk ◦ V (β) : Vn → A. We define f̃n : Vn → Ũn as the sum of
the f̃β over β : [k] → [n] injective. Such a collection of f̃β defines a morphism of
simplicial objects if and only if for any φ : [m]→ [n] the diagram

Vn

V (φ)
��

f̃n

//⊕
β:[k]→[n] injective A

(5)
��

Vm
f̃m //⊕

β′:[k]→[m] injective A

is commutative. Choosing φ = β shows our choice of f̃β is uniquely determined by
fk. The commutativity in general may be checked for each summand of the right
lower corner separately. It is clear for the summands corresponding to β′ where φ◦β′

is injective, because these summands get mapped into by exactly the summand with
β = φ◦β′ and we have in that case f̃β′ ◦V (φ) = fk ◦V (β′)◦V (φ) = fk ◦V (β) = f̃β .
For those where φ ◦ β′ is not injective, we have to show that f̃β′ ◦ V (φ) = 0. By
definition this is equal to fk◦V (β′)◦V (φ) = fk◦V (φ◦β′). Since φ◦β′ is not injective
we can write it as ψ◦σk−1

i , and we deduce that fk◦V (β′)◦V (φ) = fk◦sk−1
i ◦V (ψ) = 0

see above.
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The composition ik!U → coskkU is the unique map of simplicial objects which is
the identity on A = Uk = (ik!U)k = (coskkU)k. Hence it suffices to check that the
proposed rule defines a morphism of simplicial objects. To see this we have to show
that for any φ : [m]→ [n] the diagram⊕

α:[n]→[k] surjective A

(3)
��

(6)
//⊕

β:[k]→[n] injective A

(5)
��⊕

α′:[m]→[k] surjective A
(6) //⊕

β′:[k]→[m] injective A

is commutative. Now we can think of this in terms of matrices filled with only
0’s and 1’s as follows: The matrix of (3) has a nonzero (α′, α) entry if and only
if α′ = α ◦ φ. Likewise the matrix of (5) has a nonzero (β′, β) entry if and only
if β = φ ◦ β′. The upper matrix of (6) has a nonzero (α, β) entry if and only if
α ◦ β = id[k]. Similarly for the lower matrix of (6). The commutativity of the
diagram then comes down to computing the (α, β′) entry for both compositions
and seeing they are equal. This comes down to the following equality

#
{
β | β = φ ◦ β′ and α ◦ β = id[k]

}
= #

{
α′ | α′ = α ◦ φ and α′ ◦ β′ = id[k]

}
whose proof may safely be left to the reader.
Finally, we prove (7). This follows directly from Lemmas 14.18.7, 14.19.4, 14.21.3
and 14.21.9. □

Definition 14.22.3.0191 Let A be an abelian category. Let A be an object of A and let
k be an integer ≥ 0. The Eilenberg-Maclane object K(A, k) is given by the object
K(A, k) = ik!U which is described in Lemma 14.22.2 above.

Lemma 14.22.4.0192 Let A be an abelian category. Let A be an object of A and let k
be an integer ≥ 0. Consider the simplicial object E defined by the following rules

(1) En =
⊕

αA, where the sum is over α : [n]→ [k+ 1] whose image is either
[k] or [k + 1].

(2) Given φ : [m]→ [n] the map En → Em maps the summand corresponding
to α via idA to the summand corresponding to α ◦ φ, provided Im(α ◦ φ)
is equal to [k] or [k + 1].

Then there exists a short exact sequence
0→ K(A, k)→ E → K(A, k + 1)→ 0

which is term by term split exact.

Proof. The maps K(A, k)n → En resp. En → K(A, k + 1)n are given by the
inclusion of direct sums, resp. projection of direct sums which is obvious from the
inclusions of index sets. It is clear that these are maps of simplicial objects. □

Lemma 14.22.5.0193 Let A be an abelian category. For any simplicial object V of A
we have

V = colimn in!sknV
where all the transition maps are injections.

Proof. This is true simply because each Vm is equal to (in!sknV )m as soon as n ≥ m.
See also Lemma 14.21.10 for the transition maps. □
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14.23. Simplicial objects and chain complexes

0194 Let A be an abelian category. See Homology, Section 12.13 for conventions and
notation regarding chain complexes. Let U be a simplicial object of A. The asso-
ciated chain complex s(U) of U , sometimes called the Moore complex, is the chain
complex

. . .→ U2 → U1 → U0 → 0→ 0→ . . .

with boundary maps dn : Un → Un−1 given by the formula

dn =
∑n

i=0
(−1)idni .

This is a complex because, by the relations listed in Remark 14.3.3, we have

dn ◦ dn+1 = (
∑n

i=0
(−1)idni ) ◦ (

∑n+1

j=0
(−1)jdn+1

j )

=
∑

0≤i<j≤n+1
(−1)i+jdnj−1 ◦ dn+1

i +
∑

n≥i≥j≥0
(−1)i+jdni ◦ dn+1

j

= 0.
The signs cancel! We denote the associated chain complex s(U). Clearly, the
construction is functorial and hence defines a functor

s : Simp(A) −→ Ch≥0(A).
Thus we have the confusing but correct formula s(U)n = Un.

Lemma 14.23.1.0195 The functor s is exact.

Proof. Clear from Lemma 14.22.1. □

Lemma 14.23.2.0196 Let A be an abelian category. Let A be an object of A and let k
be an integer. Let E be the object described in Lemma 14.22.4. Then the complex
s(E) is acyclic.

Proof. For a morphism α : [n] → [k + 1] we define α′ : [n + 1] → [k + 1] to be the
map such that α′|[n] = α and α′(n+1) = k+1. Note that if the image of α is [k] or
[k+1], then the image of α′ is [k+1]. Consider the family of maps hn : En → En+1
which maps the summand corresponding to α to the summand corresponding to α′

via the identity on A. Let us compute dn+1 ◦ hn − hn−1 ◦ dn. We will first do this
in case the category A is the category of abelian groups. Let us use the notation
xα to indicate the element x ∈ A in the summand of En corresponding to the map
α occurring in the index set. Let us also adopt the convention that xα designates
the zero element of En whenever Im(α) is not [k] or [k+1]. With these conventions
we see that

dn+1(hn(xα)) =
∑n+1

i=0
(−1)ixα′◦δn+1

i

and
hn−1(dn(xα)) =

∑n

i=0
(−1)ix(α◦δn

i
)′

It is easy to see that α′ ◦ δn+1
i = (α ◦ δni )′ for i = 0, . . . , n. It is also easy to see that

α′ ◦ δn+1
n+1 = α. Thus we see that

(dn+1 ◦ hn − hn−1 ◦ dn)(xα) = (−1)n+1xα

These identities continue to hold if A is any abelian category because they hold
in the simplicial abelian group [n] 7→ Hom(A,En); details left to the reader. We
conclude that the identity map on E is homotopic to zero, with homotopy given by

https://stacks.math.columbia.edu/tag/0195
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the system of maps h′
n = (−1)n+1hn : En → En+1. Hence we see that E is acyclic,

for example by Homology, Lemma 12.13.5. □

Lemma 14.23.3.0197 Let A be an abelian category. Let A be an object of A and let k
be an integer. We have Hi(s(K(A, k))) = A if i = k and 0 else.

Proof. First, let us prove this if k = 0. In this case we have K(A, 0)n = A for
all n. Furthermore, all the maps in this simplicial abelian group are idA, in other
words K(A, 0) is the constant simplicial object with value A. The boundary maps
dn =

∑n
i=0(−1)iidA = 0 if n odd and = idA if n is even. Thus s(K(A, 0)) looks

like this
. . .→ A

0−→ A
1−→ A

0−→ A→ 0
and the result is clear.
Next, we prove the result for all k by induction. Given the result for k consider the
short exact sequence

0→ K(A, k)→ E → K(A, k + 1)→ 0
from Lemma 14.22.4. By Lemma 14.22.1 the associated sequence of chain complexes
is exact. By Lemma 14.23.2 we see that s(E) is acyclic. Hence the result for
k + 1 follows from the long exact sequence of homology, see Homology, Lemma
12.13.6. □

There is a second chain complex we can associate to a simplicial object of A.
Recall that by Lemma 14.18.6 any simplicial object U of A is canonically split with
N(Um) =

⋂m−1
i=0 Ker(dmi ). We define the normalized chain complex N(U) to be the

chain complex
. . .→ N(U2)→ N(U1)→ N(U0)→ 0→ 0→ . . .

with boundary map dn : N(Un) → N(Un−1) given by the restriction of (−1)ndnn
to the direct summand N(Un) of Un. Note that Lemma 14.18.8 implies that
dnn(N(Un)) ⊂ N(Un−1). It is a complex because dnn ◦ dn+1

n+1 = dnn ◦ dn+1
n and dn+1

n is
zero on N(Un+1) by definition. Thus we obtain a second functor

N : Simp(A) −→ Ch≥0(A).
Here is the reason for the sign in the differential.

Lemma 14.23.4.0198 Let A be an abelian category. Let U be a simplicial object
of A. The canonical map N(Un) → Un gives rise to a morphism of complexes
N(U)→ s(U).

Proof. This is clear because the differential on s(U)n = Un is
∑

(−1)idni and the
maps dni , i < n are zero on N(Un), whereas the restriction of (−1)ndnn is the
boundary map of N(U) by definition. □

Lemma 14.23.5.0199 Let A be an abelian category. Let A be an object of A and let k
be an integer. We have N(K(A, k))i = A if i = k and 0 else.

Proof. It is clear that N(K(A, k))i = 0 when i < k because K(A, k)i = 0 in that
case. It is clear that N(K(A, k))k = A since K(A, k)k−1 = 0 and K(A, k)k = A.
For i > k we have N(K(A, k))i = 0 by Lemma 14.21.9 and the definition of K(A, k),
see Definition 14.22.3. □

https://stacks.math.columbia.edu/tag/0197
https://stacks.math.columbia.edu/tag/0198
https://stacks.math.columbia.edu/tag/0199
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Lemma 14.23.6.019A Let A be an abelian category. Let U be a simplicial object of A.
The canonical morphism of chain complexes N(U)→ s(U) is split. In fact,

s(U) = N(U)⊕D(U)
for some complex D(U). The construction U 7→ D(U) is functorial.

Proof. Define D(U)n to be the image of⊕
φ:[n]→[m] surjective, m<n

N(Um)
⊕

U(φ)
−−−−−→ Un

which is a subobject of Un complementary to N(Un) according to Lemma 14.18.6
and Definition 14.18.1. We show that D(U) is a subcomplex. Pick a surjective map
φ : [n]→ [m] with m < n and consider the composition

N(Um) U(φ)−−−→ Un
dn−→ Un−1.

This composition is the sum of the maps

N(Um) U(φ◦δni )−−−−−→ Un−1

with sign (−1)i, i = 0, . . . , n.
First we will prove by ascending induction on m, 0 ≤ m < n− 1 that all the maps
U(φ ◦ δni ) map N(Um) into D(U)n−1. (The case m = n − 1 is treated below.)
Whenever the map φ ◦ δni : [n − 1] → [m] is surjective then the image of N(Um)
under U(φ ◦ δni ) is contained in D(U)n−1 by definition. If φ ◦ δni : [n − 1] → [m]
is not surjective, set j = φ(i) and observe that i is the unique index whose image
under φ is j. We may write φ ◦ δni = δmj ◦ ψ ◦ δni for some ψ : [n − 1] → [m − 1].
Hence U(φ ◦ δni ) = U(ψ ◦ δni ) ◦ dmj which is zero on N(Um) unless j = m. If j = m,
then dmm(N(Um)) ⊂ N(Um−1) and hence U(φ◦δni )(N(Um)) ⊂ U(ψ ◦δni )(N(Um−1))
and we win by induction hypothesis.
To finish proving that D(U) is a subcomplex we still have to deal with the compo-
sition

N(Um) U(φ)−−−→ Un
dn−→ Un−1.

in case m = n− 1. In this case φ = σn−1
j for some 0 ≤ j ≤ n− 1 and U(φ) = sn−1

j .
Thus the composition is given by the sum∑

(−1)idni ◦ sn−1
j

Recall from Remark 14.3.3 that dnj ◦ sn−1
j = dnj+1 ◦ s

n−1
j = id and these drop

out because the corresponding terms have opposite signs. The map dnn ◦ sn−1
j , if

j < n − 1, is equal to sn−2
j ◦ dn−1

n−1. Since dn−1
n−1 maps N(Un−1) into N(Un−2),

we see that the image dnn(sn−1
j (N(Un−1)) is contained in sn−2

j (N(Un−2)) which is
contained in D(Un−1) by definition. For all other combinations of (i, j) we have
either dni ◦sn−1

j = sn−2
j−1 ◦d

n−1
i (if i < j), or dni ◦sn−1

j = sn−2
j ◦dn−1

i−1 (if n > i > j+1)
and in these cases the map is zero because of the definition of N(Un−1). □

Remark 14.23.7.0FKI In the situation of Lemma 14.23.6 the subcomplex D(U) ⊂ s(U)
can also be defined as the subcomplex with terms

D(U)n = Im
(⊕

φ:[n]→[m] surjective, m<n
Um

⊕
U(φ)

−−−−−→ Un

)

https://stacks.math.columbia.edu/tag/019A
https://stacks.math.columbia.edu/tag/0FKI
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Namely, since Um is the direct sum of the subobject N(Um) and the images of
N(Uk) for surjections [m] → [k] with k < m this is clearly the same as the defi-
nition of D(U)n given in the proof of Lemma 14.23.6. Thus we see that if U is a
simplicial abelian group, then elements of D(U)n are exactly the sums of degenerate
n-simplices.

Lemma 14.23.8.019B The functor N is exact.

Proof. By Lemma 14.23.1 and the functorial decomposition of Lemma 14.23.6. □

Lemma 14.23.9.019C Let A be an abelian category. Let V be a simplicial object of A.
The canonical morphism of chain complexes N(V )→ s(V ) is a quasi-isomorphism.
In other words, the complex D(V ) of Lemma 14.23.6 is acyclic.

Proof. Note that the result holds for K(A, k) for any object A and any k ≥ 0, by
Lemmas 14.23.3 and 14.23.5. Consider the hypothesis IHn,m: for all V such that
Vj = 0 for j ≤ m and all i ≤ n the map N(V ) → s(V ) induces an isomorphism
Hi(N(V ))→ Hi(s(V )).
To start of the induction, note that IHn,n is trivially true, because in that case
N(V )n = 0 and s(V )n = 0.
Assume IHn,m, with m ≤ n. Pick a simplicial object V such that Vj = 0 for
j < m. By Lemma 14.22.2 and Definition 14.22.3 we have K(Vm,m) = im!skmV .
By Lemma 14.21.10 the natural morphism

K(Vm,m) = im!skmV → V

is injective. Thus we get a short exact sequence
0→ K(Vm,m)→ V →W → 0

for some W with Wi = 0 for i = 0, . . . ,m. This short exact sequence induces a
morphism of short exact sequence of associated complexes

0 // N(K(Vm,m)) //

��

N(V ) //

��

N(W ) //

��

0

0 // s(K(Vm,m)) // s(V ) // s(W ) // 0

see Lemmas 14.23.1 and 14.23.8. Hence we deduce the result for V from the result
on the ends. □

14.24. Dold-Kan

019D In this section we prove the Dold-Kan theorem relating simplicial objects in an
abelian category with chain complexes.

Lemma 14.24.1.019E Let A be an abelian category. The functor N is faithful, and
reflects isomorphisms, injections and surjections.

Proof. The faithfulness is immediate from the canonical splitting of Lemma 14.18.6.
The statement on reflecting injections, surjections, and isomorphisms follows from
Lemma 14.18.7. □

Lemma 14.24.2.019F LetA and B be abelian categories. Let N : A → B, and S : B → A
be functors. Suppose that

https://stacks.math.columbia.edu/tag/019B
https://stacks.math.columbia.edu/tag/019C
https://stacks.math.columbia.edu/tag/019E
https://stacks.math.columbia.edu/tag/019F


14.24. DOLD-KAN 1144

(1) the functors S and N are exact,
(2) there is an isomorphism g : N ◦ S → idB to the identity functor of B,
(3) N is faithful, and
(4) S is essentially surjective.

Then S and N are quasi-inverse equivalences of categories.

Proof. It suffices to construct a functorial isomorphism S(N(A)) ∼= A. To do this
choose B and an isomorphism f : A→ S(B). Consider the map

f−1 ◦ gS(B) ◦ S(N(f)) : S(N(A))→ S(N(S(B)))→ S(B)→ A.

It is easy to show this does not depend on the choice of f,B and gives the desired
isomorphism S ◦N → idA. □

Theorem 14.24.3.019G Let A be an abelian category. The functor N induces an equiv-
alence of categories

N : Simp(A) −→ Ch≥0(A)

Proof. We will describe a functor in the reverse direction inspired by the construc-
tion of Lemma 14.22.4 (except that we throw in a sign to get the boundaries right).
Let A• be a chain complex with boundary maps dA,n : An → An−1. For each n ≥ 0
denote

In =
{
α : [n]→ {0, 1, 2, . . .} | Im(α) = [k] for some k

}
.

For α ∈ In we denote k(α) the unique integer such that Im(α) = [k]. We define a
simplicial object S(A•) as follows:

(1) S(A•)n =
⊕

α∈In Ak(α), which we will write as
⊕

α∈In Ak(α) ·α to suggest
thinking of “α” as a basis vector for the summand corresponding to it,

(2) given φ : [m] → [n] we define S(A•)(φ) by its restriction to the direct
summand Ak(α) · α of S(A•)n as follows
(a) α ◦ φ ̸∈ Im then we set it equal to zero,
(b) α ◦φ ∈ Im but k(α ◦φ) not equal to either k(α) or k(α)− 1 then we

set it equal to zero as well,
(c) if α ◦ φ ∈ Im and k(α ◦ φ) = k(α) then we use the identity map to

the summand Ak(α◦φ) · (α ◦ φ) of S(A•)m, and
(d) if α ◦φ ∈ Im and k(α ◦φ) = k(α)− 1 then we use (−1)k(α)dA,k(α) to

the summand Ak(α◦φ) · (α ◦ φ) of S(A•)m.
Let us show that S(A•) is a simplicial object of A. To do this, assume we have
maps φ : [m] → [n] and ψ : [n] → [p]. We will show that S(A•)(φ) ◦ S(A•)(ψ) =
S(A•)(ψ ◦ φ). Choose β ∈ Ip and set α = β ◦ ψ and γ = α ◦ φ viewed as maps
α : [n]→ {0, 1, 2, . . .} and γ : [m]→ {0, 1, 2, . . .}. Picture

[m]
φ

//

γ

��

[n]
ψ

//

α

��

[p]

β

��
Im(γ) // Im(α) // [k(β)]

We will show that the restriction of the maps S(A•)(φ)◦S(A•)(ψ) and S(A•)(ψ◦φ).
to the summand Ak(β) · β agree. There are several cases to consider

(1) Say α ̸∈ In so the restriction of S(A•)(ψ) to Ak(β) · β is zero. Then either
γ ̸∈ Im or we have [k(γ)] = Im(γ) ⊂ Im(α) ⊂ [k(β)] and the subset Im(α)

https://stacks.math.columbia.edu/tag/019G
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of [k(β)] has a gap so k(γ) < k(β) − 1. In both cases we see that the
restriction of S(A•)(ψ ◦ φ) to Ak(β) · β is zero as well.

(2) Say α ∈ In and k(α) < k(β)−1 so the restriction of S(A•)(ψ) to Ak(β) ·β
is zero. Then either γ ̸∈ Im or we have [k(γ)] ⊂ [k(α)] ⊂ [k(β)] and it
follows that k(γ) < k(β)− 1. In both cases we see that the restriction of
S(A•)(ψ ◦ φ) to Ak(β) · β is zero as well.

(3) Say α ∈ In and k(α) = k(β) so the restriction of S(A•)(ψ) to Ak(β) · β
is the identity map from Ak(β) · β to Ak(α) · α. In this case because
Im(α) = [k(β)] the rule describing the restriction of S(A•)(ψ ◦ φ) to the
summand Ak(β) ·β is exactly the same as the rule describing the restriction
of S(A•)(φ) to the summand Ak(α) · α and hence agreement holds.

(4) Say α ∈ In and k(α) = k(β)−1 so the restriction of S(A•)(ψ) to Ak(β) ·β
is given by (−1)k(β)dA,k(β) to Ak(α) · α. Subcases
(a) If γ ̸∈ Im, then both the restriction of S(A•)(ψ ◦φ) to the summand

Ak(β) · β and the restriction of S(A•)(φ) to the summand Ak(α) · α
are zero and we get agreement.

(b) If γ ∈ Im but k(γ) < k(α)− 1, then again both restrictions are zero
and we get agreement.

(c) If γ ∈ Im and k(γ) = k(α) then Im(γ) = Im(α). In this case the
restriction of S(A•)(ψ ◦ φ) to the summand Ak(β) · β is given by
(−1)k(β)dA,k(β) to Ak(γ) · γ and the restriction of S(A•)(φ) to the
summand Ak(α) · α is the identity map Ak(α) · α → Ak(γ) · γ. Hence
agreement holds.

(d) Finally, if γ ∈ Im and k(γ) = k(α)−1 then the restriction of S(A•)(φ)
to the summand Ak(α) ·α is given by (−1)k(α)dA,k(α) as a map Ak(α) ·
α → Ak(β) · β. Since A• is a complex we see that the composition
Ak(β) · β → Ak(α) · α→ Ak(γ) · γ is zero which matches what we get
for the restriction of S(A•)(ψ ◦φ) to the summand Ak(β) · β because
k(γ) = k(β)− 2 < k(β)− 1.

Thus S(A•) is a simplicial object of A.

Let us construct an isomorphism A• → N(S(A•)) functorial in A•. Recall that

S(A•) = N(S(A•))⊕D(S(A•))

as chain complexes by Lemma 14.23.6. On the other hand it follows from Remark
14.23.7 and the construction of S(A•) that

D(S(A•))n =
⊕

α∈In, k(α)<n
Ak(α) · α ⊂

⊕
α∈In

Ak(α) · α

However, if α ∈ In then we have k(α) ≥ n ⇔ α = id[n] : [n] → [n]. Thus the
summand An · id[n] of S(A•)n is a complement to the summand D(S(A•))n. All
the maps dni : S(A•)n → S(A•)n restrict to zero on the summand An · id[n] except
for dnn which produces (−1)ndA,n from An · id[n] to An−1 · id[n−1]. We conclude that
An · id[n] must be equal to the summand N(S(A•))n and moreover the restriction
of the differential dn =

∑
(−1)idni : S(A•)n → S(A•)n−1 to the summand An · id[n]

gives what we want!
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Finally, we have to show that S ◦ N is isomorphic to the identity functor. Let U
be a simplicial object of A. Then we can define an obvious map

S(N(U))n =
⊕

α∈In
N(U)k(α) · α −→ Un

by using U(α) : N(U)k(α) → Un on the summand corresponding to α. By Definition
14.18.1 this is an isomorphism. To finish the proof we have to show that this is
compatible with the maps in the simplicial objects. Thus let φ : [m]→ [n] and let
α ∈ In. Set β = α ◦ φ. Picture

[m]
φ

//

β

��

[n]

α

��
Im(β) // [k(α)]

There are several cases to consider
(1) Say β ̸∈ Im. Then there exists an index 0 ≤ j < k(α) with j ̸∈ Im(α ◦ φ)

and hence we can choose a factorization α ◦ φ = δ
k(α)
j ◦ ψ for some ψ :

[m]→ [k(α)−1]. It follows that U(φ) is zero on the image of the summand
N(U)k(α) · α because U(φ) ◦ U(α) = U(α ◦ φ) = U(ψ) ◦ dk(α)

j is zero on
N(U)k(α) by construction of N . This matches our rule for S(N(U)) given
above.

(2) Say β ∈ Im and k(β) < k(α) − 1. Here we argue exactly as in case (1)
with j = k(α)− 1.

(3) Say β ∈ Im and k(β) = k(α). Here the summand N(U)k(α) ·α is mapped
by the identity to the summand N(U)k(β) · β. This is the same as the
effect of U(φ) since in this case U(φ) ◦ U(α) = U(β).

(4) Say β ∈ Im and k(β) = k(α)−1. Here we use the differential (−1)k(α)dN(U),k(α)
to map the summand N(U)k(α) ·α to the summand N(U)k(β) · β. On the
other hand, since Im(β) = [k(β)] in this case we get α ◦ φ = δ

k(α)
k(α) ◦ β.

Thus we see that U(φ) composed with the restriction of U(α) to N(U)k(α)

is equal to U(β) precomposed with d
k(α)
k(α) restricted to N(U)k(α). Since

dN(U),k(α) =
∑

(−1)idk(α)
i and since dk(α)

i restricts to zero on N(U)k(α)
for i < k(α) we see that equality holds.

This finishes the proof of the theorem. □

14.25. Dold-Kan for cosimplicial objects

019H Let A be an abelian category. According to Homology, Lemma 12.5.2 also Aopp is
abelian. It follows formally from the definitions that

CoSimp(A) = Simp(Aopp)opp.
Thus Dold-Kan (Theorem 14.24.3) implies that CoSimp(A) is equivalent to the
category Ch≥0(Aopp)opp. And it follows formally from the definitions that

CoCh≥0(A) = Ch≥0(Aopp)opp.
Putting these arrows together we obtain an equivalence

Q : CoSimp(A) −→ CoCh≥0(A).
In this section we describe Q.
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First we define the cochain complex s(U) associated to a cosimplicial object U .
It is the cochain complex with terms zero in negative degrees, and s(U)n = Un
for n ≥ 0. As differentials we use the maps dn : s(U)n → s(U)n+1 defined by
dn =

∑n+1
i=0 (−1)iδn+1

i . In other words the complex s(U) looks like

0 // U0
δ1

0−δ1
1 // U1

δ2
0−δ2

1+δ2
2 // U2 // . . .

This is sometimes also called the Moore complex associated to U .

On the other hand, given a cosimplicial object U of A set Q(U)0 = U0 and

Q(U)n = Coker(
⊕n−1

i=0 Un−1
δni // Un ).

The differential dn : Q(U)n → Q(U)n+1 is induced by (−1)n+1δn+1
n+1 , i.e., by fitting

the morphism (−1)n+1δn+1
n+1 into a commutative diagram

Un
(−1)n+1δn+1

n+1

//

��

Un+1

��
Q(U)n dn // Q(U)n+1.

We leave it to the reader to show that this diagram makes sense, i.e., that the image
of δni maps into the kernel of the right vertical arrow for i = 0, . . . , n− 1. (This is
dual to Lemma 14.18.8.) Thus our cochain complex Q(U) looks like this

0→ Q(U)0 → Q(U)1 → Q(U)2 → . . .

This is called the normalized cochain complex associated to U . The dual to the
Dold-Kan Theorem 14.24.3 is the following.

Lemma 14.25.1.019I Let A be an abelian category.
(1) The functor s : CoSimp(A)→ CoCh≥0(A) is exact.
(2) The maps s(U)n → Q(U)n define a morphism of cochain complexes.
(3) There exists a functorial direct sum decomposition s(U) = D(U)⊕Q(U)

in CoCh≥0(A).
(4) The functor Q is exact.
(5) The morphism of complexes s(U)→ Q(U) is a quasi-isomorphism.
(6) The functor U 7→ Q(U)• defines an equivalence of categories CoSimp(A)→

CoCh≥0(A).

Proof. Omitted. But the results are the exact dual statements to Lemmas 14.23.1,
14.23.4, 14.23.6, 14.23.8, 14.23.9, and Theorem 14.24.3. □

14.26. Homotopies

019J Consider the simplicial sets ∆[0] and ∆[1]. Recall that there are two morphisms

e0, e1 : ∆[0] −→ ∆[1],

coming from the morphisms [0]→ [1] mapping 0 to an element of [1] = {0, 1}. Recall
also that each set ∆[1]k is finite. Hence, if the category C has finite coproducts,
then we can form the product

U ×∆[1]

https://stacks.math.columbia.edu/tag/019I
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for any simplicial object U of C, see Definition 14.13.1. Note that ∆[0] has the
property that ∆[0]k = {∗} is a singleton for all k ≥ 0. Hence U ×∆[0] = U . Thus
e0, e1 above gives rise to morphisms

e0, e1 : U → U ×∆[1].

Definition 14.26.1.019K Let C be a category having finite coproducts. Suppose that U
and V are two simplicial objects of C. Let a, b : U → V be two morphisms.

(1) We say a morphism
h : U ×∆[1] −→ V

is a homotopy from a to b if a = h ◦ e0 and b = h ◦ e1.
(2) We say the morphisms a and b are homotopic or are in the same homotopy

class if there exists a sequence of morphisms a = a0, a1, . . . , an = b from
U to V such that for each i = 1, . . . , n there either exists a homotopy from
ai−1 to ai or there exists a homotopy from ai to ai−1.

The relation “there is a homotopy from a to b” is in general not transitive or sym-
metric; we will see it is reflexive in Example 14.26.3. Of course, “being homotopic”
is an equivalence relation on the set Mor(U, V ) and it is the equivalence relation
generated by the relation “there is a homotopy from a to b” . It turns out we can
define homotopies between pairs of maps of simplicial objects in any category. We
will do this in Remark 14.26.4 after we work out in some detail what it means to
have a morphism h : U ×∆[1]→ V .
Let C be a category with finite coproducts. Let U , V be simplicial objects of C. Let
a, b : U → V be morphisms. Further, suppose that h : U ×∆[1]→ V is a homotopy
from a to b. For every n ≥ 0 let us write

∆[1]n = {αn0 , . . . , αnn+1}

where αni : [n]→ [1] is the map such that

αni (j) =
{

0 if j < i
1 if j ≥ i

Thus
hn : (U ×∆[1])n =

∐
Un · αni −→ Vn

has a component hn,i : Un → Vn which is the restriction to the summand corre-
sponding to αni for all i = 0, . . . , n+ 1.

Lemma 14.26.2.019L In the situation above, we have the following relations:
(1) We have hn,0 = bn and hn,n+1 = an.
(2) We have dnj ◦ hn,i = hn−1,i−1 ◦ dnj for i > j.
(3) We have dnj ◦ hn,i = hn−1,i ◦ dnj for i ≤ j.
(4) We have snj ◦ hn,i = hn+1,i+1 ◦ snj for i > j.
(5) We have snj ◦ hn,i = hn+1,i ◦ snj for i ≤ j.

Conversely, given a system of maps hn,i satisfying the properties listed above, then
these define a morphism h which is a homotopy from a to b.

Proof. Omitted. You can prove the last statement using the fact, see Lemma 14.2.4
that to give a morphism of simplicial objects is the same as giving a sequence of
morphisms hn commuting with all dnj and snj . □

https://stacks.math.columbia.edu/tag/019K
https://stacks.math.columbia.edu/tag/019L
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Example 14.26.3.07KA Suppose in the situation above a = b. Then there is a trivial
homotopy from a to b, namely the one with hn,i = an = bn.

Remark 14.26.4.019M Let C be any category (no assumptions whatsoever). Let U and
V be simplicial objects of C. Let a, b : U → V be morphisms of simplicial objects
of C. A homotopy from a to b is given by morphisms1 hn,i : Un → Vn, for n ≥ 0,
i = 0, . . . , n+ 1 satisfying the relations of Lemma 14.26.2. As in Definition 14.26.1
we say the morphisms a and b are homotopic if there exists a sequence of morphisms
a = a0, a1, . . . , an = b from U to V such that for each i = 1, . . . , n there either exists
a homotopy from ai−1 to ai or there exists a homotopy from ai to ai−1. Clearly,
if F : C → C′ is any functor and {hn,i} is a homotopy from a to b, then {F (hn,i)}
is a homotopy from F (a) to F (b). Similarly, if a and b are homotopic, then F (a)
and F (b) are homotopic. Since the lemma says that the newer notion is the same
as the old one in case finite coproduct exist, we deduce in particular that functors
preserve the original notion whenever both categories have finite coproducts.

Remark 14.26.5.08RJ Let C be any category. Suppose two morphisms a, a′ : U → V of
simplicial objects are homotopic. Then for any morphism b : V →W the two maps
b◦a, b◦a′ : U →W are homotopic. Similarly, for any morphism c : X → U the two
maps a◦c, a′ ◦c : X → V are homotopic. In fact the maps b◦a◦c, b◦a′ ◦c : X →W
are homotopic. Namely, if the maps hn,i : Un → Vn define a homotopy from a to a′

then the maps b◦hn,i ◦ c define a homotopy from b◦a◦ c to b◦a′ ◦ c. In this way we
see that we obtain a new category hSimp(C) with the same objects as Simp(C) but
whose morphisms are homotopy classes of of morphisms of Simp(C). Thus there is
a canonical functor

Simp(C) −→ hSimp(C)
which is essentially surjective and surjective on sets of morphisms.

Definition 14.26.6.019N Let U and V be two simplicial objects of a category C. We
say a morphism a : U → V is a homotopy equivalence if there exists a morphism
b : V → U such that a ◦ b is homotopic to idV and b ◦ a is homotopic to idU .
We say U and V are homotopy equivalent if there exists a homotopy equivalence
a : U → V .

Example 14.26.7.08Q3 The simplicial set ∆[m] is homotopy equivalent to ∆[0]. Namely,
consider the unique morphism f : ∆[m]→ ∆[0] and the morphism g : ∆[0]→ ∆[m]
given by the inclusion of the last 0-simplex of ∆[m]. We have f ◦ g = id. We will
give a homotopy h : ∆[m]×∆[1]→ ∆[m] from id∆[m] to g ◦ f . Namely h is given
by the maps

Mor∆([n], [m])×Mor∆([n], [1])→ Mor∆([n], [m])
which send (φ, α) to

k 7→
{
φ(k) if α(k) = 0
m if α(k) = 1

Note that this only works because we took g to be the inclusion of the last 0-simplex.
If we took g to be the inclusion of the first 0-simplex we could find a homotopy from
g ◦ f to id∆[m]. This is an illustration of the asymmetry inherent in homotopies in
the category of simplicial sets.

1In the literature, often the maps hn+1,i ◦ si : Un → Vn+1 are used instead of the maps hn,i.
Of course the relations these maps satisfy are different from the ones in Lemma 14.26.2.
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The following lemma says that U ×∆[1] is homotopy equivalent to U .

Lemma 14.26.8.019O Let C be a category with finite coproducts. Let U be a simplicial
object of C. Consider the maps e1, e0 : U → U ×∆[1], and π : U ×∆[1] → U , see
Lemma 14.13.3.

(1) We have π ◦ e1 = π ◦ e0 = idU , and
(2) The morphisms idU×∆[1], and e0 ◦ π are homotopic.
(3) The morphisms idU×∆[1], and e1 ◦ π are homotopic.

Proof. The first assertion is trivial. For the second, consider the map of simplicial
sets ∆[1]×∆[1] −→ ∆[1] which in degree n assigns to a pair (β1, β2), βi : [n]→ [1]
the morphism β : [n]→ [1] defined by the rule

β(i) = max{β1(i), β2(i)}.

It is a morphism of simplicial sets, because the action ∆[1](φ) : ∆[1]n → ∆[1]m of
φ : [m] → [n] is by precomposing. Clearly, using notation from Section 14.26, we
have β = β1 if β2 = αn0 and β = αnn+1 if β2 = αnn+1. This implies easily that the
induced morphism

U ×∆[1]×∆[1] −→ U ×∆[1]
of Lemma 14.13.3 is a homotopy from idU×∆[1] to e0 ◦ π. Similarly for e1 ◦ π (use
minimum instead of maximum). □

Lemma 14.26.9.019P Let f : Y → X be a morphism of a category C with fibre products.
Assume f has a section s. Consider the simplicial object U constructed in Example
14.3.5 starting with f . The morphism U → U which in each degree is the self map
(s◦f)n+1 of Y ×X . . .×X Y given by s◦f on each factor is homotopic to the identity
on U . In particular, U is homotopy equivalent to the constant simplicial object X.

Proof. Set g0 = idY and g1 = s ◦ f . We use the morphisms

Y ×X . . .×X Y ×Mor([n], [1]) → Y ×X . . .×X Y

(y0, . . . , yn)× α 7→ (gα(0)(y0), . . . , gα(n)(yn))

where we use the functor of points point of view to define the maps. Another way to
say this is to say that hn,0 = id, hn,n+1 = (s◦f)n+1 and hn,i = idi+1

Y × (s◦f)n+1−i.
We leave it to the reader to show that these satisfy the relations of Lemma 14.26.2.
Hence they define the desired homotopy. See also Remark 14.26.4 which shows that
we do not need to assume anything else on the category C. □

Lemma 14.26.10.08Q4 Let C be a category. Let T be a set. For t ∈ T let Xt, Yt be
simplicial objects of C. Assume X =

∏
t∈T Xt and Y =

∏
t∈T Yt exist.

(1) If Xt and Yt are homotopy equivalent for all t ∈ T and T is finite, then X
and Y are homotopy equivalent.

For t ∈ T let at, bt : Xt → Yt be morphisms. Set a =
∏
at : X → Y and

b =
∏
bt : X → Y .

(2) If there exists a homotopy from at to bt for all t ∈ T , then there exists a
homotopy from a to b.

(3) If T is finite and at, bt : Xt → Yt for t ∈ T are homotopic, then a and b
are homotopic.

https://stacks.math.columbia.edu/tag/019O
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Proof. If ht = (ht,n,i) is a homotopy from at to bt (see Remark 14.26.4), then
h = (

∏
t ht,n,i) is a homotopy from

∏
at to

∏
bt. This proves (2).

Proof of (3). Choose t ∈ T . There exists an integer n ≥ 0 and a chain at =
at,0, at,1, . . . , at,n = bt such that for every 1 ≤ i ≤ n either there is a homotopy
from at,i−1 to at,i or there is a homotopy from at,i to at,i−1. If n = 0, then we pick
another t. (We’re done if at = bt for all t ∈ T .) So assume n > 0. By Example
14.26.3 there are is a homotopy from bt′ to bt′ for all t′ ∈ T \ {t}. Thus by (2)
there is a homotopy from at,n−1 ×

∏
t′ bt′ to b or there is a homotopy from b to

at,n−1 ×
∏
t′ bt′ . In this way we can decrease n by 1. This proves (3).

Part (1) follows from part (3) and the definitions. □

14.27. Homotopies in abelian categories

019Q Let A be an additive category. Let U , V be simplicial objects of A. Let a, b : U → V
be morphisms. Further, suppose that h : U ×∆[1]→ V is a homotopy from a to b.
Let us prove the two morphisms of chain complexes s(a), s(b) : s(U) −→ s(V ) are
homotopic in the sense of Homology, Section 12.13. Using the notation introduced
in Section 14.26 we define

s(h)n : Un −→ Vn+1

by the formula

(14.27.0.1)019R s(h)n =
∑n

i=0
(−1)i+1hn+1,i+1 ◦ sni .

Let us compute dn+1 ◦ s(h)n + s(h)n−1 ◦ dn. We first compute

dn+1 ◦ s(h)n =
∑n+1

j=0

∑n

i=0
(−1)j+i+1dn+1

j ◦ hn+1,i+1 ◦ sni

=
∑

1≤i+1≤j≤n+1
(−1)j+i+1hn,i+1 ◦ dn+1

j ◦ sni

+
∑

n≥i≥j≥0
(−1)i+j+1hn,i ◦ dn+1

j ◦ sni

=
∑

1≤i+1<j≤n+1
(−1)j+i+1hn,i+1 ◦ sn−1

i ◦ dnj−1

+
∑

1≤i+1=j≤n+1
(−1)j+i+1hn,i+1

+
∑

n≥i=j≥0
(−1)i+j+1hn,i

+
∑

n≥i>j≥0
(−1)i+j+1hn,i ◦ sn−1

i−1 ◦ d
n
j

We leave it to the reader to see that the first and the last of the four sums cancel
exactly against all the terms of

s(h)n−1 ◦ dn =
n−1∑
i=0

n∑
j=0

(−1)i+1+jhn,i+1 ◦ sn−1
i ◦ dnj .

Hence we obtain

dn+1 ◦ s(h)n + s(h)n−1 ◦ dn =
n+1∑
j=1

(−1)2jhn,j +
n∑
i=0

(−1)2i+1hn,i

= hn,n+1 − hn,0
= an − bn
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as desired.

Lemma 14.27.1.019S Let A be an additive category. Let a, b : U → V be morphisms
of simplicial objects of A. If a, b are homotopic, then s(a), s(b) : s(U) → s(V )
are homotopic maps of chain complexes. If A is abelian, then also N(a), N(b) :
N(U)→ N(V ) are homotopic maps of chain complexes.

Proof. We may choose a sequence a = a0, a1, . . . , an = b of morphisms from U to
V such that for each i = 1, . . . , n either there is a homotopy from ai to ai−1 or
there is a homotopy from ai−1 to ai. The calculation above shows that in this
case either s(ai) is homotopic to s(ai−1) as a map of chain complexes or s(ai−1)
is homotopic to s(ai) as a map of chain complexes. Of course, these things are
equivalent and moreover being homotopic is an equivalence relation on the set of
maps of chain complexes, see Homology, Section 12.13. This proves that s(a) and
s(b) are homotopic as maps of chain complexes.
Next, we turn to N(a) and N(b). It follows from Lemma 14.23.6 that N(a), N(b)
are compositions

N(U)→ s(U)→ s(V )→ N(V )
where we use s(a), s(b) in the middle. Hence the assertion follows from Homology,
Lemma 12.13.1. □

Lemma 14.27.2.019T Let A be an additive category. Let a : U → V be a morphism of
simplicial objects of A. If a is a homotopy equivalence, then s(a) : s(U)→ s(V ) is
a homotopy equivalence of chain complexes. If in addition A is abelian, then also
N(a) : N(U)→ N(V ) is a homotopy equivalence of chain complexes.

Proof. Omitted. See Lemma 14.27.1 above. □

14.28. Homotopies and cosimplicial objects

019U Let C be a category with finite products. Let V be a cosimplicial object and consider
Hom(∆[1], V ), see Section 14.14. The morphisms e0, e1 : ∆[0]→ ∆[1] produce two
morphisms e0, e1 : Hom(∆[1], V )→ V .

Definition 14.28.1.019W Let C be a category having finite products. Let U and V be
two cosimplicial objects of C. Let a, b : U → V be two morphisms of cosimplicial
objects of C.

(1) We say a morphism
h : U −→ Hom(∆[1], V )

such that a = e0 ◦ h and b = e1 ◦ h is a homotopy from a to b.
(2) We say a and b are homotopic or are in the same homotopy class if there

exists a sequence a = a0, a1, . . . , an = b of morphisms from U to V such
that for each i = 1, . . . , n there either exists a homotopy from ai to ai−1
or there exists a homotopy from ai−1 to ai.

This is dual to the notion we introduced for simplicial objects in Section 14.26. To
explain this, consider a homotopy h : U → Hom(∆[1], V ) from a to b as in the
definition. Recall that ∆[1]n is a finite set. The degree n component of h is a
morphism

hn = (hn,α) : U −→ Hom(∆[1], V )n =
∏

α∈∆[1]n
Vn

https://stacks.math.columbia.edu/tag/019S
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The morphisms hn,α : Un → Vn of C have the property that for every morphism
f : [n]→ [m] of ∆ we have

(14.28.1.1)07KB hm,α ◦ U(f) = V (f) ◦ hn,α◦f

Moreover, the condition that a = e0 ◦ h means that an = hn,0:[n]→[1] where 0 :
[n]→ [1] is the constant map with value 0. Similarly, the condition that b = e1 ◦ h
means that bn = hn,1:[n]→[1] where 1 : [n] → [1] is the constant map with value
1. Conversly, given a family of morphisms {hn,α} such that (14.28.1.1) holds for
all morphisms f of ∆ and such that an = hn,0:[n]→[1] and bn = hn,1:[n]→[1] for all
n ≥ 0, then we obtain a homotopy h from a to b by setting h =

∏
α∈∆[1]n hn,α.

Remark 14.28.2.0FKJ Let C be any category (no assumptions whatsoever). Let U and
V be cosimplicial objects of C. Let a, b : U → V be morphisms of cosimplicial
objects of C. A homotopy from a to b is given by morphisms hn,α : Un → Vn, for
n ≥ 0, α ∈ ∆[1]n satisfying (14.28.1.1) for all morphisms f of ∆ and such that
an = hn,0:[n]→[1] and bn = hn,1:[n]→[1] for all n ≥ 0. As in Definition 14.28.1 we
say the morphisms a and b are homotopic if there exists a sequence of morphisms
a = a0, a1, . . . , an = b from U to V such that for each i = 1, . . . , n there either exists
a homotopy from ai−1 to ai or there exists a homotopy from ai to ai−1. Clearly,
if F : C → C′ is any functor and {hn,i} is a homotopy from a to b, then {F (hn,i)}
is a homotopy from F (a) to F (b). Similarly, if a and b are homotopic, then F (a)
and F (b) are homotopic. This new notion is the same as the old one in case finite
products exist. We deduce in particular that functors preserve the original notion
whenever both categories have finite products.

Lemma 14.28.3.019X Let C be a category. Suppose that U and V are two cosimplicial
objects of C. Let a, b : U → V be morphisms of cosimplicial objects. Recall that
U , V correspond to simplicial objects U ′, V ′ of Copp. Moreover a, b correspond to
morphisms a′, b′ : V ′ → U ′. The following are equivalent

(1) There exists a homotopy h = {hn,α} from a to b as in Remark 14.28.2.
(2) There exists a homotopy h = {hn,i} from a′ to b′ as in Remark 14.26.4.

Thus a is homotopic to b as in Remark 14.28.2 if and only if a′ is homotopic to b′

as in Remark 14.26.4.

Proof. In case C has finite products, then Copp has finite coproducts and we may use
Definitions 14.28.1 and 14.26.1 instead of Remarks 14.28.2 and 14.26.4. In this case
h : U → Hom(∆[1], V ) is the same as a morphism h′ : Hom(∆[1], V )′ → U ′. Since
products and coproducts get switched too, it is immediate that (Hom(∆[1], V ))′ =
V ′×∆[1]. Moreover, the “primed” version of the morphisms e0, e1 : Hom(∆[1], V )→
V are the morphisms e0, e1 : V ′ → ∆[1] × V . Thus e0 ◦ h = a translates into
h′ ◦ e0 = a′ and similarly e1 ◦ h = b translates into h′ ◦ e1 = b′. This proves the
lemma in this case.

In the general case, one needs to translate the relations given by (14.28.1.1) into
the relations given in Lemma 14.26.2. We omit the details.

The final assertion is formal from the equivalence of (1) and (2). □

Lemma 14.28.4.019Y Let C, C′,D,D′ be categories. With terminology as in Remarks
14.28.2 and 14.26.4.
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(1) Let a, b : U → V be morphisms of simplicial objects of D. Let F : D → D′

be a covariant functor. If a and b are homotopic, then F (a), F (b) are
homotopic morphisms F (U)→ F (V ) of simplicial objects.

(2) Let a, b : U → V be morphisms of cosimplicial objects of C. Let F : C → C′

be a covariant functor. If a and b are homotopic, then F (a), F (b) are
homotopic morphisms F (U)→ F (V ) of cosimplicial objects.

(3) Let a, b : U → V be morphisms of simplicial objects of D. Let F : D → C
be a contravariant functor. If a and b are homotopic, then F (a), F (b) are
homotopic morphisms F (V )→ F (U) of cosimplicial objects.

(4) Let a, b : U → V be morphisms of cosimplicial objects of C. Let F : C → D
be a contravariant functor. If a and b are homotopic, then F (a), F (b) are
homotopic morphisms F (V )→ F (U) of simplicial objects.

Proof. By Lemma 14.28.3 above, we can turn F into a covariant functor between a
pair of categories, and we have to show that the functor preserves homotopic pairs
of maps. This is explained in Remark 14.26.4. □

Lemma 14.28.5.019Z Let f : X → Y be a morphism of a category C with pushouts.
Assume there is a morphism s : Y → X with s◦f = idX . Consider the cosimplicial
object U constructed in Example 14.5.5 starting with f . The morphism U → U
which in each degree is the self map of Y ⨿X . . .⨿X Y given by f ◦ s on each factor
is homotopic to the identity on U . In particular, U is homotopy equivalent to the
constant cosimplicial object X.

Proof. This lemma is dual to Lemma 14.26.9. Hence this lemma follows on applying
Lemma 14.28.3. □

Lemma 14.28.6.01A0 Let A be an additive category. Let a, b : U → V be morphisms of
cosimplicial objects of A. If a, b are homotopic, then s(a), s(b) : s(U) → s(V ) are
homotopic maps of cochain complexes. If in addition A is abelian, then Q(a), Q(b) :
Q(U)→ Q(V ) are homotopic maps of cochain complexes.

Proof. Let (−)′ : A → Aopp be the contravariant functor A 7→ A. By Lemma
14.28.5 the maps a′ and b′ are homotopic. By Lemma 14.27.1 we see that s(a′)
and s(b′) are homotopic maps of chain complexes. Since s(a′) = (s(a))′ and s(b′) =
(s(b))′ we conclude that also s(a) and s(b) are homotopic by applying the additive
contravariant functor (−)′′ : Aopp → A. The result for the Q-complexes follows in
the same manner using that Q(U)′ = N(U ′). □

Lemma 14.28.7.0FKK Let A be an additive category. Let a : U → V be a morphism of
cosimplicial objects of A. If a is a homotopy equivalence, then s(a) : s(U)→ s(V )
is a homotopy equivalence of chain complexes. If in addition A is abelian, then also
Q(a) : Q(U)→ Q(V ) is a homotopy equivalence of chain complexes.

Proof. Omitted. See Lemma 14.28.6 above. □

14.29. More homotopies in abelian categories

01A1 Let A be an abelian category. In this section we show that a homotopy between
morphisms in Ch≥0(A) always comes from a morphism U × ∆[1] → V in the
category of simplicial objects. In some sense this will provide a converse to Lemma
14.27.1. We first develop some material on homotopies between morphisms of chain
complexes.
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Lemma 14.29.1.01A2 Let A be an abelian category. Let A be a chain complex. Consider
the covariant functor

B 7−→ {(a, b, h) | a, b : A→ B and h a homotopy between a, b}
There exists a chain complex ⋄A such that MorCh(A)(⋄A,−) is isomorphic to the
displayed functor. The construction A 7→ ⋄A is functorial.

Proof. We set ⋄An = An ⊕An ⊕An−1, and we define d⋄A,n by the matrix

d⋄A,n =

dA,n 0 idAn−1

0 dA,n −idAn−1

0 0 −dA,n−1

 : An ⊕An ⊕An−1 → An−1 ⊕An−1 ⊕An−2

If A is the category of abelian groups, and (x, y, z) ∈ An ⊕ An ⊕ An−1 then
d⋄A,n(x, y, z) = (dn(x) + z, dn(y) − z,−dn−1(z)). It is easy to verify that d2 = 0.
Clearly, there are two maps ⋄a, ⋄b : A→ ⋄A (first summand and second summand),
and a map ⋄A→ A[−1] which give a short exact sequence

0→ A⊕A→ ⋄A→ A[−1]→ 0
which is termwise split. Moreover, there is a sequence of maps ⋄hn : An → ⋄An+1,
namely the identity from An to the summand An of ⋄An+1, such that ⋄h is a
homotopy between ⋄a and ⋄b.
We conclude that any morphism f : ⋄A→ B gives rise to a triple (a, b, h) by setting
a = f ◦ ⋄a, b = f ◦ ⋄b and hn = fn+1 ◦ ⋄hn. Conversely, given a triple (a, b, h) we
get a morphism f : ⋄A→ B by taking

fn = (an, bn, hn−1).
To see that this is a morphism of chain complexes you have to do a calculation.
We only do this in case A is the category of abelian groups: Say (x, y, z) ∈ ⋄An =
An ⊕An ⊕An−1. Then
fn−1(dn(x, y, z)) = fn−1(dn(x) + z, dn(y)− z,−dn−1(z))

= an(dn(x)) + an(z) + bn(dn(y))− bn(z)− hn−2(dn−1(z))
and

dn(fn(x, y, z) = dn(an(x) + bn(y) + hn−1(z))
= dn(an(x)) + dn(bn(y)) + dn(hn−1(z))

which are the same by definition of a homotopy. □

Note that the extension
0→ A⊕A→ ⋄A→ A[−1]→ 0

comes with sections of the morphisms ⋄An → A[−1]n with the property that the
associated morphism δ : A[−1] → (A ⊕ A)[−1], see Homology, Lemma 12.14.4
equals the morphism (1,−1) : A[−1]→ A[−1]⊕A[−1].

Lemma 14.29.2.01A3 Let A be an abelian category. Let
0→ A⊕A→ B → C → 0

be a short exact sequence of chain complexes of A. Suppose given in addition
morphisms sn : Cn → Bn splitting the associated short exact sequence in degree
n. Let δ(s) : C → (A ⊕ A)[−1] = A[−1] ⊕ A[−1] be the associated morphism of

https://stacks.math.columbia.edu/tag/01A2
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complexes, see Homology, Lemma 12.14.4. If δ(s) factors through the morphism
(1,−1) : A[−1]→ A[−1]⊕A[−1], then there is a unique morphism B → ⋄A fitting
into a commutative diagram

0 // A⊕A

��

// B //

��

C

��

// 0

0 // A⊕A // ⋄A // A[−1] // 0

where the vertical maps are compatible with the splittings sn and the splittings of
⋄An → A[−1]n as well.

Proof. Denote (pn, qn) : Bn → An ⊕ An the morphism πn of Homology, Lemma
12.14.4. Also write (a, b) : A ⊕ A → B, and r : B → C for the maps in the short
exact sequence. Write the factorization of δ(s) as δ(s) = (1,−1) ◦ f . This means
that pn−1 ◦ dB,n ◦ sn = fn, and qn−1 ◦ dB,n ◦ sn = −fn, and Set Bn → ⋄An =
An ⊕An ⊕An−1 equal to (pn, qn, fn ◦ rn).

Now we have to check that this actually defines a morphism of complexes. We will
only do this in the case of abelian groups. Pick x ∈ Bn. Then x = an(x1)+bn(x2)+
sn(x3) and it suffices to show that our definition commutes with differential for each
term separately. For the term an(x1) we have (pn, qn, fn ◦ rn)(an(x1)) = (x1, 0, 0)
and the result is obvious. Similarly for the term bn(x2). For the term sn(x3) we
have

(pn, qn, fn ◦ rn)(dn(sn(x3))) = (pn, qn, fn ◦ rn)(
an(fn(x3))− bn(fn(x3)) + sn(dn(x3)))

= (fn(x3),−fn(x3), fn(dn(x3)))

by definition of fn. And

dn(pn, qn, fn ◦ rn)(sn(x3)) = dn(0, 0, fn(x3))
= (fn(x3),−fn(x3), dA[−1],n(fn(x3)))

The result follows as f is a morphism of complexes. □

Lemma 14.29.3.01A4 Let A be an abelian category. Let U , V be simplicial objects of
A. Let a, b : U → V be a pair of morphisms. Assume the corresponding maps
of chain complexes N(a), N(b) : N(U) → N(V ) are homotopic by a homotopy
{Nn : N(U)n → N(V )n+1}. Then there exists a homotopy from a to b as in
Definition 14.26.1. Moreover, one can choose the homotopy h : U ×∆[1]→ V such
that Nn = N(h)n where N(h) is the homotopy coming from h as in Section 14.27.

Proof. Let (⋄N(U), ⋄a, ⋄b, ⋄h) be as in Lemma 14.29.1 and its proof. By that lemma
there exists a morphism ⋄N(U)→ N(V ) representing the triple (N(a), N(b), {Nn}).
We will show there exists a morphism ψ : N(U ×∆[1]) → ⋄N(U) such that ⋄a =
ψ ◦N(e0), and ⋄b = ψ ◦N(e1). Moreover, we will show that the homotopy between
N(e0), N(e1) : N(U) → N(U ×∆[1]) coming from (14.27.0.1) and Lemma 14.27.1
with h = idU×∆[1] is mapped via ψ to the canonical homotopy ⋄h between the two
maps ⋄a, ⋄b : N(U)→ ⋄N(U). Certainly this will imply the lemma.

Note that N : Simp(A)→ Ch≥0(A) as a functor is a direct summand of the functor
s : Simp(A)→ Ch≥0(A). Also, the functor ⋄ is compatible with direct sums. Thus

https://stacks.math.columbia.edu/tag/01A4
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it suffices instead to construct a morphism Ψ : s(U × ∆[1]) → ⋄s(U) with the
corresponding properties. This is what we do below.

By Definition 14.26.1 the morphisms e0 : U → U ×∆[1] and e1 : U → U ×∆[1] are
homotopic with homotopy idU×∆[1]. By Lemma 14.27.1 we get an explicit homotopy
{hn : s(U)n → s(U ×∆[1])n+1} between the morphisms of chain complexes s(e0) :
s(U)→ s(U ×∆[1]) and s(e1) : s(U)→ s(U ×∆[1]). By Lemma 14.29.2 above we
get a corresponding morphism

Φ : ⋄s(U)→ s(U ×∆[1])

According to the construction, Φn restricted to the summand s(U)[−1]n = s(U)n−1
of ⋄s(U)n is equal to hn−1. And

hn−1 =
∑n−1

i=0
(−1)i+1sni · αni+1 : Un−1 →

⊕
j
Un · αnj .

with obvious notation.

On the other hand, the morphisms ei : U → U ×∆[1] induce a morphism (e0, e1) :
U ⊕ U → U ×∆[1]. Denote W the cokernel. Note that, if we write (U ×∆[1])n =⊕

α:[n]→[1] Un · α, then we may identify Wn =
⊕n

i=1 Un · αni with αni as in Section
14.26. We have a commutative diagram

0 // U ⊕ U

(1,1)
%%

// U ×∆[1]

π

��

// W // 0

U

This implies we have a similar commutative diagram after applying the functor s.
Next, we choose the splittings σn : s(W )n → s(U×∆[1])n by mapping the summand
Un ·αni ⊂Wn via (−1, 1) to the summands Un ·αn0⊕Un ·αni ⊂ (U×∆[1])n. Note that
s(π)n ◦ σn = 0. It follows that (1, 1) ◦ δ(σ)n = 0. Hence δ(σ) factors as in Lemma
14.29.2. By that lemma we obtain a canonical morphism Ψ : s(U ×∆[1])→ ⋄s(U).

To compute Ψ we first compute the morphism δ(σ) : s(W )→ s(U)[−1]⊕ s(U)[−1].
According to Homology, Lemma 12.14.4 and its proof, to do this we have compute

ds(U×δ[1]),n ◦ σn − σn−1 ◦ ds(W ),n

and write it as a morphism into Un−1 ·αn−1
0 ⊕Un−1 ·αn−1

n . We only do this in case
A is the category of abelian groups. We use the short hand notation xα for x ∈ Un
to denote the element x in the summand Un · α of (U ×∆[1])n. Recall that

ds(U×δ[1]),n =
∑n

i=0
(−1)idni

where dni maps the summand Un ·α to the summand Un−1 ·(α◦δni ) via the morphism
dni of the simplicial object U . In terms of the notation above this means

ds(U×δ[1]),n(xα) =
∑n

i=0
(−1)i(dni (x))α◦δn

i

Starting with xα ∈Wn, in other words α = αnj for some j ∈ {1, . . . , n}, we see that
σn(xα) = xα − xαn0 and hence

(ds(U×δ[1]),n ◦ σn)(xα) =
∑n

i=0
(−1)i(dni (x))α◦δn

i
−
∑n

i=0
(−1)i(dni (x))αn0 ◦δn

i
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To compute ds(W ),n(xα), we have to omit all terms where α ◦ δni = αn−1
0 , αn−1

n .
Hence we get

(σn−1 ◦ ds(W ),n)(xα) =∑
i=0,...,n and α◦δn

i
̸=αn−1

0 or αn−1
n

(
(−1)i(dni (x))α◦δn

i
− (−1)i(dni (x))αn−1

0

)
Clearly the difference of the two terms is the sum∑

i=0,...,n and α◦δn
i

=αn−1
0 or αn−1

n

(
(−1)i(dni (x))α◦δn

i
− (−1)i(dni (x))αn−1

0

)
Of course, if α ◦ δni = αn−1

0 then the term drops out. Recall that α = αnj for some
j ∈ {1, . . . , n}. The only way αnj ◦δni = αn−1

n is if j = n and i = n. Thus we actually
get 0 unless j = n and in that case we get (−1)n(dnn(x))αn−1

n
− (−1)n(dnn(x))αn−1

0
.

In other words, we conclude the morphism

δ(σ)n : Wn → (s(U)[−1]⊕ s(U)[−1])n = Un−1 ⊕ Un−1

is zero on all summands except Un · αnn and on that summand it is equal to
((−1)ndnn,−(−1)ndnn). (Namely, the first summand of the two corresponds to the
factor with αn−1

n because that is the map [n − 1] → [1] which maps everybody to
0, and hence corresponds to e0.)

We obtain a canonical diagram

0 // s(U)⊕ s(U) //

��

⋄s(U) //

Φ
��

s(U)[−1] //

��

0

0 // s(U)⊕ s(U) //

��

s(U ×∆[1]) //

Ψ
��

s(W ) //

��

0

0 // s(U)⊕ s(U) // ⋄s(U) // s(U)[−1] // 0

We claim that Φ ◦ Ψ is the identity. To see this it is enough to prove that the
composition of Φ and δ(σ) as a map s(U)[−1]→ s(W )→ s(U)[−1]⊕s(U)[−1] is the
identity in the first factor and minus identity in the second. By the computations
above it is ((−1)ndn0 ,−(−1)ndn0 ) ◦ (−1)nsnn = (1,−1) as desired. □

14.30. Trivial Kan fibrations

08NK Recall that for n ≥ 0 the simplicial set ∆[n] is given by the rule [k] 7→ Mor∆([k], [n]),
see Example 14.11.2. Recall that ∆[n] has a unique nondegenerate n-simplex and
all nondegenerate simplices are faces of this n-simplex. In fact, the nondegenerate
simplices of ∆[n] correspond exactly to injective morphisms [k] → [n], which we
may identify with subsets of [n]. Moreover, recall that Mor(∆[n], X) = Xn for any
simplicial set X (Lemma 14.11.3). We set

∂∆[n] = i(n−1)!skn−1∆[n]

and we call it the boundary of ∆[n]. From Lemma 14.21.5 we see that ∂∆[n] ⊂ ∆[n]
is the simplicial subset having the same nondegenerate simplices in degrees ≤ n−1
but not containing the nondegenerate n-simplex.
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Definition 14.30.1.08NL A map X → Y of simplicial sets is called a trivial Kan fibration
if X0 → Y0 is surjective and for all n ≥ 1 and any commutative solid diagram

∂∆[n] //

��

X

��
∆[n] //

<<

Y

a dotted arrow exists making the diagram commute.

A trivial Kan fibration satisfies a very general lifting property.

Lemma 14.30.2.08NM Let f : X → Y be a trivial Kan fibration of simplicial sets. For
any solid commutative diagram

Z
b
//

��

X

��
W

a //

>>

Y

of simplicial sets with Z → W (termwise) injective a dotted arrow exists making
the diagram commute.

Proof. Suppose that Z ̸= W . Let n be the smallest integer such that Zn ̸= Wn.
Let x ∈Wn, x ̸∈ Zn. Denote Z ′ ⊂W the simplicial subset containing Z, x, and all
degeneracies of x. Let φ : ∆[n]→ Z ′ be the morphism corresponding to x (Lemma
14.11.3). Then φ|∂∆[n] maps into Z as all the nondegenerate simplices of ∂∆[n] end
up in Z. By assumption we can extend b ◦ φ|∂∆[n] to β : ∆[n] → X. By Lemma
14.21.7 the simplicial set Z ′ is the pushout of ∆[n] and Z along ∂∆[n]. Hence b and
β define a morphism b′ : Z ′ → X. In other words, we have extended the morphism
b to a bigger simplicial subset of Z.
The proof is finished by an application of Zorn’s lemma (omitted). □

Lemma 14.30.3.08NN Let f : X → Y be a trivial Kan fibration of simplicial sets. Let
Y ′ → Y be a morphism of simplicial sets. Then X ×Y Y ′ → Y ′ is a trivial Kan
fibration.

Proof. This follows immediately from the functorial properties of the fibre product
(Lemma 14.7.2) and the definitions. □

Lemma 14.30.4.08NP The composition of two trivial Kan fibrations is a trivial Kan
fibration.

Proof. Omitted. □

Lemma 14.30.5.08NQ Let . . .→ U2 → U1 → U0 be a sequence of trivial Kan fibrations.
Let U = limU t defined by taking Un = limU tn. Then U → U0 is a trivial Kan
fibration.

Proof. Omitted. Hint: use that for a countable sequence of surjections of sets the
inverse limit is nonempty. □

Lemma 14.30.6.08NR Let Xi → Yi be a set of trivial Kan fibrations. Then
∏
Xi →

∏
Yi

is a trivial Kan fibration.

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/08NL
https://stacks.math.columbia.edu/tag/08NM
https://stacks.math.columbia.edu/tag/08NN
https://stacks.math.columbia.edu/tag/08NP
https://stacks.math.columbia.edu/tag/08NQ
https://stacks.math.columbia.edu/tag/08NR
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Lemma 14.30.7.08Q5 A filtered colimit of trivial Kan fibrations is a trivial Kan fibration.

Proof. Omitted. Hint: See description of filtered colimits of sets in Categories,
Section 4.19. □

Lemma 14.30.8.08NS Let f : X → Y be a trivial Kan fibration of simplicial sets. Then
f is a homotopy equivalence.

Proof. By Lemma 14.30.2 we can choose an right inverse g : Y → X to f . Consider
the diagram

∂∆[1]×X

��

// X

��
∆[1]×X //

::

Y

Here the top horizontal arrow is given by idX and g ◦ f where we use that (∂∆[1]×
X)n = Xn ⨿Xn for all n ≥ 0. The bottom horizontal arrow is given by the map
∆[1]→ ∆[0] and f : X → Y . The diagram commutes as f ◦ g ◦ f = f . By Lemma
14.30.2 we can fill in the dotted arrow and we win. □

14.31. Kan fibrations

08NT Let n, k be integers with 0 ≤ k ≤ n and 1 ≤ n. Let σ0, . . . , σn be the n + 1 faces
of the unique nondegenerate n-simplex σ of ∆[n], i.e., σi = diσ. We let

Λk[n] ⊂ ∆[n]
be the kth horn of the n-simplex ∆[n]. It is the simplicial subset of ∆[n] generated
by σ0, . . . , σ̂k, . . . , σn. In other words, the image of the displayed inclusion contains
all the nondegenerate simplices of ∆[n] except for σ and σk.

Definition 14.31.1.08NU A map X → Y of simplicial sets is called a Kan fibration if for
all k, n with 1 ≤ n, 0 ≤ k ≤ n and any commutative solid diagram

Λk[n] //

��

X

��
∆[n] //

==

Y

a dotted arrow exists making the diagram commute. A Kan complex is a simplicial
set X such that X → ∗ is a Kan fibration, where ∗ is the constant simplicial set on
a singleton.

Note that Λk[n] is always nonempty. Thus a morphism from the empty simplicial
set to any simplicial set is always a Kan fibration. It follows from Lemma 14.30.2
that a trivial Kan fibration is a Kan fibration.

Lemma 14.31.2.08NV Let f : X → Y be a Kan fibration of simplicial sets. Let Y ′ → Y
be a morphism of simplicial sets. Then X ×Y Y ′ → Y ′ is a Kan fibration.

Proof. This follows immediately from the functorial properties of the fibre product
(Lemma 14.7.2) and the definitions. □

Lemma 14.31.3.08NW The composition of two Kan fibrations is a Kan fibration.

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/08Q5
https://stacks.math.columbia.edu/tag/08NS
https://stacks.math.columbia.edu/tag/08NU
https://stacks.math.columbia.edu/tag/08NV
https://stacks.math.columbia.edu/tag/08NW
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Lemma 14.31.4.08NX Let . . . → U2 → U1 → U0 be a sequence of Kan fibrations. Let
U = limU t defined by taking Un = limU tn. Then U → U0 is a Kan fibration.

Proof. Omitted. Hint: use that for a countable sequence of surjections of sets the
inverse limit is nonempty. □

Lemma 14.31.5.08NY Let Xi → Yi be a set of Kan fibrations. Then
∏
Xi →

∏
Yi is a

Kan fibration.

Proof. Omitted. □

The following lemma is due to J.C. Moore, see [Moo55].

Lemma 14.31.6.08NZ Let X be a simplicial group. Then X is a Kan complex.

Proof. The following proof is basically just a translation into English of the proof
in the reference mentioned above. Using the terminology as explained in the intro-
duction to this section, suppose f : Λk[n] → X is a morphism from a horn. Set
xi = f(σi) ∈ Xn−1 for i = 0, . . . , k̂, . . . , n. This means that for i < j we have
dixj = dj−1xi whenever i, j ̸= k. We have to find an x ∈ Xn such that xi = dix

for i = 0, . . . , k̂, . . . , n.
We first prove there exists a u ∈ Xn such that diu = xi for i < k. This is trivial for
k = 0. If k > 0, one defines by induction an element ur ∈ Xn such that diur = xi
for 0 ≤ i ≤ r. Start with u0 = s0x0. If r < k − 1, we set

yr = sr+1((dr+1u
r)−1xr+1), ur+1 = uryr.

An easy calculation shows that diyr = 1 (unit element of the group Xn−1) for i ≤ r
and dr+1y

r = (dr+1u
r)−1xr+1. It follows that diur+1 = xi for i ≤ r + 1. Finally,

take u = uk−1 to get u as promised.
Next we prove, by induction on the integer r, 0 ≤ r ≤ n−k, there exists a xr ∈ Xn

such that
dix

r = xi for i < k and i > n− r.
Start with x0 = u for r = 0. Having defined xr for r ≤ n− k − 1 we set

zr = sn−r−1((dn−rx
r)−1xn−r), xr+1 = xrzr

A simple calculation, using the given relations, shows that dizr = 1 for i < k and
i > n − r and that dn−r(zr) = (dn−rx

r)−1xn−r. It follows that dixr+1 = xi for
i < k and i > n− r − 1. Finally, we take x = xn−k which finishes the proof. □

Lemma 14.31.7.08P0 Let f : X → Y be a homomorphism of simplicial abelian groups
which is termwise surjective. Then f is a Kan fibration of simplicial sets.

Proof. Consider a commutative solid diagram
Λk[n]

a
//

��

X

��
∆[n] b //

==

Y

as in Definition 14.31.1. The map a corresponds to x0, . . . , x̂k, . . . , xn ∈ Xn−1
satisfying dixj = dj−1xi for i < j, i, j ̸= k. The map b corresponds to an element
y ∈ Yn such that diy = f(xi) for i ̸= k. Our task is to produce an x ∈ Xn such
that dix = xi for i ̸= k and f(x) = y.

https://stacks.math.columbia.edu/tag/08NX
https://stacks.math.columbia.edu/tag/08NY
https://stacks.math.columbia.edu/tag/08NZ
https://stacks.math.columbia.edu/tag/08P0
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Since f is termwise surjective we can find x ∈ Xn with f(x) = y. Replace y by
0 = y− f(x) and xi by xi − dix for i ̸= k. Then we see that we may assume y = 0.
In particular f(xi) = 0. In other words, we can replace X by Ker(f) ⊂ X and Y
by 0. In this case the statement become Lemma 14.31.6. □

Lemma 14.31.8.08P1 Let f : X → Y be a homomorphism of simplicial abelian groups
which is termwise surjective and induces a quasi-isomorphism on associated chain
complexes. Then f is a trivial Kan fibration of simplicial sets.

Proof. Consider a commutative solid diagram

∂∆[n]
a
//

��

X

��
∆[n] b //

<<

Y

as in Definition 14.30.1. The map a corresponds to x0, . . . , xn ∈ Xn−1 satisfying
dixj = dj−1xi for i < j. The map b corresponds to an element y ∈ Yn such that
diy = f(xi). Our task is to produce an x ∈ Xn such that dix = xi and f(x) = y.
Since f is termwise surjective we can find x ∈ Xn with f(x) = y. Replace y by
0 = y−f(x) and xi by xi−dix. Then we see that we may assume y = 0. In particular
f(xi) = 0. In other words, we can replace X by Ker(f) ⊂ X and Y by 0. This
works, because by Homology, Lemma 12.13.6 the homology of the chain complex
associated to Ker(f) is zero and hence Ker(f)→ 0 induces a quasi-isomorphism on
associated chain complexes.
Since X is a Kan complex (Lemma 14.31.6) we can find x ∈ Xn with dix = xi
for i = 0, . . . , n − 1. After replacing xi by xi − dix for i = 0, . . . , n we may
assume that x0 = x1 = . . . = xn−1 = 0. In this case we see that dixn = 0 for
i = 0, . . . , n − 1. Thus xn ∈ N(X)n−1 and lies in the kernel of the differential
N(X)n−1 → N(X)n−2. Here N(X) is the normalized chain complex associated to
X, see Section 14.23. Since N(X) is quasi-isomorphic to s(X) (Lemma 14.23.9)
and thus acyclic we find x ∈ N(Xn) whose differential is xn. This x answers the
question posed by the lemma and we are done. □

Lemma 14.31.9.08P2 Let f : X → Y be a map of simplicial abelian groups. If f is
a homotopy equivalence of simplicial sets, then f induces a quasi-isomorphism of
associated chain complexes.

Proof. In this proof we will write Hn(Z) = Hn(s(Z)) = Hn(N(Z)) when Z is a
simplicial abelian group, with s and N as in Section 14.23. Let Z[X] denote the
free abelian group on X viewed as a simplicial set and similarly for Z[Y ]. Consider
the commutative diagram

Z[X]
g
//

��

Z[Y ]

��
X

f // Y
of simplicial abelian groups. Since taking the free abelian group on a set is a functor,
we see that the horizontal arrow is a homotopy equivalence of simplicial abelian
groups, see Lemma 14.28.4. By Lemma 14.27.2 we see that Hn(g) : Hn(Z[X]) →
Hn(Z[Y ]) is bijective for all n ≥ 0.

https://stacks.math.columbia.edu/tag/08P1
https://stacks.math.columbia.edu/tag/08P2
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Let ξ ∈ Hn(Y ). By definition of N(Y ) we can represent ξ by an element y ∈ N(Yn)
whose boundary is zero. This means y ∈ Yn with dn0 (y) = . . . = dnn−1(y) = 0
because y ∈ N(Yn) and dnn(y) = 0 because the boundary of y is zero. Denote
0n ∈ Yn the zero element. Then we see that

ỹ = [y]− [0n] ∈ (Z[Y ])n
is an element with dn0 (ỹ) = . . . = dnn−1(ỹ) = 0 and dnn(ỹ) = 0. Thus ỹ is in N(Z[Y ])n
has boundary 0, i.e., ỹ determines a class ξ̃ ∈ Hn(Z[Y ]) mapping to ξ. Because
Hn(Z[X])→ Hn(Z[Y ]) is bijective we can lift ξ̃ to a class in Hn(Z[X]). Looking at
the commutative diagram above we see that ξ is in the image of Hn(X)→ Hn(Y ).
Let ξ ∈ Hn(X) be an element mapping to zero in Hn(Y ). Exactly as in the previous
parapgraph we can represent ξ by an element x ∈ N(Xn) whose boundary is zero,
i.e., dn0 (x) = . . . = dnn−1(x) = dnn(x) = 0. In particular, we see that [x]− [0n] is an
element of N(Z[X])n whose boundary is zero, whence defines a lift ξ̃ ∈ Hn(Z[x]) of
ξ. The fact that ξ maps to zero in Hn(Y ) means there exists a y ∈ N(Yn+1) whose
boundary is fn(x). This means dn+1

0 (y) = . . . = dn+1
n (y) = 0 and dn+1

n+1(y) = f(x).
However, this means exactly that z = [y]− [0n+1] is in N(Z[y])n+1 and

g([x]− [0n]) = [f(x)]− [0n] = boundary of z
This proves that ξ̃ maps to zero in Hn(Z[y]). As Hn(Z[X])→ Hn(Z[Y ]) is bijective
we conclude ξ̃ = 0 and hence ξ = 0. □

14.32. A homotopy equivalence

01A5 Suppose that A, B are sets, and that f : A→ B is a map. Consider the associated
map of simplicial sets

cosk0(A)
(
. . . A×A×A

��

//
//
//
A×A

��

//
//oo

oo
A
)
��

oo

cosk0(B)
(
. . . B ×B ×B

//
//
//
B ×B //

//oo
oo

B
)

oo

See Example 14.19.1. The case n = 0 of the following lemma says that this map of
simplicial sets is a trivial Kan fibration if f is surjective.

Lemma 14.32.1.01A6 Let f : V → U be a morphism of simplicial sets. Let n ≥ 0 be an
integer. Assume

(1) The map fi : Vi → Ui is a bijection for i < n.
(2) The map fn : Vn → Un is a surjection.
(3) The canonical morphism U → cosknsknU is an isomorphism.
(4) The canonical morphism V → cosknsknV is an isomorphism.

Then f is a trivial Kan fibration.

Proof. Consider a solid diagram

∂∆[k] //

��

V

��
∆[k] //

==

U

https://stacks.math.columbia.edu/tag/01A6


14.32. A HOMOTOPY EQUIVALENCE 1164

as in Definition 14.30.1. Let x ∈ Uk be the k-simplex corresponding to the lower
horizontal arrow. If k ≤ n then the dotted arrow is the one corresponding to a
lift y ∈ Vk of x; the diagram will commute as the other nondegenerate simplices of
∆[k] are in degrees < k where f is an isomorphism. If k > n, then by conditions
(3) and (4) we have (using adjointness of skeleton and coskeleton functors)

Mor(∆[k], U) = Mor(skn∆[k], sknU) = Mor(skn∂∆[k], sknU) = Mor(∂∆[k], U)

and similarly for V because skn∆[k] = skn∂∆[k] for k > n. Thus we obtain a
unique dotted arrow fitting into the diagram in this case also. □

Let A,B be sets. Let f0, f1 : A → B be maps of sets. Consider the induced
maps f0, f1 : cosk0(A) → cosk0(B) abusively denoted by the same symbols. The
following lemma for n = 0 says that f0 is homotopic to f1. In fact, there is a
homotopy h : cosk0(A)×∆[1]→ cosk0(A) from f0 to f1 with components

hm : A× . . .×A×Mor∆([m], [1]) −→ B × . . .×B,
(a0, . . . , am, α) 7−→ (fα(0)(a0), . . . , fα(m)(am))

To check that this works, note that for a map φ : [k] → [m] the induced maps are
(a0, . . . , am) 7→ (aφ(0), . . . , aφ(k)) and α 7→ α ◦ φ. Thus h = (hm)m≥0 is clearly a
map of simplicial sets as desired.

Lemma 14.32.2.01A9 Let f0, f1 : V → U be maps of simplicial sets. Let n ≥ 0 be an
integer. Assume

(1) The maps f ji : Vi → Ui, j = 0, 1 are equal for i < n.
(2) The canonical morphism U → cosknsknU is an isomorphism.
(3) The canonical morphism V → cosknsknV is an isomorphism.

Then f0 is homotopic to f1.

First proof. Let W be the n-truncated simplicial set with Wi = Ui for i < n and
Wn = Un/ ∼ where ∼ is the equivalence relation generated by f0(y) ∼ f1(y) for
y ∈ Vn. This makes sense as the morphisms U(φ) : Un → Ui corresponding to
φ : [i] → [n] for i < n factor through the quotient map Un → Wn because f0 and
f1 are morphisms of simplicial sets and equal in degrees < n. Next, we upgrade W
to a simplicial set by taking cosknW . By Lemma 14.32.1 the morphism g : U →W
is a trivial Kan fibration. Observe that g ◦ f0 = g ◦ f1 by construction and denote
this morphism f : V →W . Consider the diagram

∂∆[1]× V
f0,f1

//

��

U

��
∆[1]× V f //

66

W

By Lemma 14.30.2 the dotted arrow exists and the proof is done. □

Second proof. We have to construct a morphism of simplicial sets h : V ×∆[1]→ U
which recovers f i on composing with ei. The case n = 0 was dealt with above the
lemma. Thus we may assume that n ≥ 1. The map ∆[1] → cosk1sk1∆[1] is an
isomorphism, see Lemma 14.19.15. Thus we see that ∆[1] → cosknskn∆[1] is an
isomorphism as n ≥ 1, see Lemma 14.19.10. And hence V ×∆[1]→ cosknskn(V ×
∆[1]) is an isomorphism too, see Lemma 14.19.12. In other words, in order to

https://stacks.math.columbia.edu/tag/01A9
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construct the homotopy it suffices to construct a suitable morphism of n-truncated
simplicial sets h : sknV × skn∆[1]→ sknU .

For k = 0, . . . , n−1 we define hk by the formula hk(v, α) = f0(v) = f1(v). The map
hn : Vn ×Mor∆([k], [1])→ Un is defined as follows. Pick v ∈ Vn and α : [n]→ [1]:

(1) If Im(α) = {0}, then we set hn(v, α) = f0(v).
(2) If Im(α) = {0, 1}, then we set hn(v, α) = f0(v).
(3) If Im(α) = {1}, then we set hn(v, α) = f1(v).

Let φ : [k]→ [l] be a morphism of ∆≤n. We will show that the diagram

Vl ×Mor([l], [1]) //

��

Ul

��
Vk ×Mor([k], [1]) // Uk

commutes. Pick v ∈ Vl and α : [l]→ [1]. The commutativity means that

hk(V (φ)(v), α ◦ φ) = U(φ)(hl(v, α)).

In almost every case this holds because hk(V (φ)(v), α ◦ φ) = f0(V (φ)(v)) and
U(φ)(hl(v, α)) = U(φ)(f0(v)), combined with the fact that f0 is a morphism of
simplicial sets. The only cases where this does not hold is when either (A) Im(α) =
{1} and l = n or (B) Im(α◦φ) = {1} and k = n. Observe moreover that necessarily
f0(v) = f1(v) for any degenerate n-simplex of V . Thus we can narrow the cases
above down even further to the cases (A) Im(α) = {1}, l = n and v nondegenerate,
and (B) Im(α ◦ φ) = {1}, k = n and V (φ)(v) nondegenerate.

In case (A), we see that also Im(α◦φ) = {1}. Hence we see that not only hl(v, α) =
f1(v) but also hk(V (φ)(v), α ◦ φ) = f1(V (φ)(v)). Thus we see that the relation
holds because f1 is a morphism of simplicial sets.

In case (B) we conclude that l = k = n and φ is bijective, since otherwise V (φ)(v)
is degenerate. Thus φ = id[n], which is a trivial case. □

Lemma 14.32.3.01AB Let A, B be sets, and that f : A → B is a map. Consider the
simplicial set U with n-simplices

A×B A×B . . .×B A (n+ 1 factors).

see Example 14.3.5. If f is surjective, the morphism U → B where B indicates the
constant simplicial set with value B is a trivial Kan fibration.

Proof. Observe that U fits into a cartesian square

U

��

// cosk0(A)

��
B // cosk0(B)

Since the right vertical arrow is a trivial Kan fibration by Lemma 14.32.1, so is the
left by Lemma 14.30.3. □

https://stacks.math.columbia.edu/tag/01AB
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14.33. Preparation for standard resolutions

0G5L The material in this section can be found in [God73, Appendix 1]

Example 14.33.1.0G5M Let Y : C → C be a functor from a category to itself and suppose
given transformations of functors

d : Y −→ idC and s : Y −→ Y ◦ Y
Using these transformations we can construct something that looks like a simplicial
object. Namely, for n ≥ 0 we define

Xn = Y ◦ . . . ◦ Y (n+ 1 compositions)
Observe that Xn+m+1 = Xn ◦Xm for n,m ≥ 0. Next, for n ≥ 0 and 0 ≤ j ≤ n we
define using notation as in Categories, Section 4.28
dnj = 1Xj−1 ⋆d⋆1Xn−j−1 : Xn → Xn−1 and snj = 1Xj−1 ⋆s⋆1Xn−j−1 : Xn → Xn+1

So dnj , resp. snj is the natural transformation using d, resp. s on the jth Y (counted
from the left) in the composition defining Xn.

Lemma 14.33.2.0G5N In Example 14.33.1 if
1Y = (d ⋆ 1Y ) ◦ s = (1Y ⋆ d) ◦ s and (s ⋆ 1) ◦ s = (1 ⋆ s) ◦ s

then X = (Xn, d
n
j , s

n
j ) is a simplicial object in the category of endofunctors of C

and d : X0 = Y → idC defines an augmentation.

Proof. To see that we obtain a simplicial object we have to check that the relations
(1)(a) – (e) of Lemma 14.3.2 are satisfied. We will use the short hand notation

1a = 1Xa−1 = 1Y ⋆ . . . ⋆ 1Y (a factors)
for a ≥ 0. With this notation we have

dnj = 1j ⋆ d ⋆ 1n−j and snj = 1j ⋆ s ⋆ 1n−j

We are repeatedly going to use the rule that for transformations of funtors a, a′, b, b′

we have (a′ ◦ a) ⋆ (b′ ◦ b) = (a′ ⋆ b′) ◦ (a ⋆ b) provided that the ⋆ and ◦ compositions
in this formula make sense, see Categories, Lemma 4.28.2.
Condition (1)(a) always holds (no conditions needed on d and s). Namely, let
0 ≤ i < j ≤ n+ 1. We have to show that dni ◦ dn+1

j = dnj−1 ◦ d
n+1
i , i.e.,

(1i ⋆ d ⋆ 1n−i) ◦ (1j ⋆ d ⋆ 1n+1−j) = (1j−1 ⋆ d ⋆ 1n+1−j) ◦ (1i ⋆ d ⋆ 1n+1−i)
We can rewrite the left hand side as

(1i ⋆ d ⋆ 1j−i−1 ⋆ 1n+1−j) ◦ (1i ⋆ 11 ⋆ 1j−i−1 ⋆ d ⋆ 1n+1−j)
= 1i ⋆ ((d ⋆ 1j−i−1) ◦ (11 ⋆ 1j−i−1 ⋆ d)) ⋆ 1n+1−j

= 1i ⋆ d ⋆ 1j−i−1 ⋆ d ⋆ 1n+1−j

The second equality is true because d ◦ 11 = d and 1j−i ◦ (1j−i−1 ⋆ d) = 1j−i−1 ⋆ d.
A similar computation gives the same result for the right hand side.
We check condition (1)(b). Let 0 ≤ i < j ≤ n − 1. We have to show that
dni ◦ s

n−1
j = sn−2

j−1 ◦ d
n−1
i , i.e.,

(1i ⋆ d ⋆ 1n−i) ◦ (1j ⋆ s ⋆ 1n−1−j) = (1j−1 ⋆ s ⋆ 1n−1−j) ◦ (1i ⋆ d ⋆ 1n−1−i)
By the same kind of calculus as in case (1)(a) both sides simplify to 1i ⋆d⋆1j−i−1 ⋆
s ⋆ 1n−j−1.

https://stacks.math.columbia.edu/tag/0G5M
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We check condition (1)(c). Let 0 ≤ j ≤ n − 1. We have to show id = dnj ◦ s
n−1
j =

dnj+1 ◦ s
n−1
j , i.e.,

1n = (1j ⋆ d ⋆ 1n−j) ◦ (1j ⋆ s ⋆ 1n−1−j) = (1j+1 ⋆ d ⋆ 1n−j−1) ◦ (1j ⋆ s ⋆ 1n−1−j)
This is easily seen to be implied by the first assumption of the lemma.
We check condition (1)(d). Let 0 < j + 1 < i ≤ n. We have to show dni ◦ s

n−1
j =

sn−2
j ◦ dn−1

i−1 , i.e.,

(1i ⋆ d ⋆ 1n−i) ◦ (1j ⋆ s ⋆ 1n−1−j) = (1j ⋆ s ⋆ 1n−2−j) ◦ (1i−1 ⋆ d ⋆ 1n−i)
By the same kind of calculus as in case (1)(a) both sides simplify to 1j ⋆s⋆1i−j−2 ⋆
d ⋆ 1n−i.
We check condition (1)(e). Let 0 ≤ i ≤ j ≤ n−1. We have to show that sni ◦sn−1

j =
snj+1 ◦ s

n−1
i , i.e.,

(1i ⋆ s ⋆ 1n−i) ◦ (1j ⋆ s ⋆ 1n−1−j) = (1j+1 ⋆ s ⋆ 1n−1−j) ◦ (1i ⋆ s ⋆ 1n−1−i)
By the same kind of calculus as in case (1)(a) this reduces to

(s ⋆ 1j−i+1) ◦ (1j−i ⋆ s) = (1j−i+1 ⋆ s) ◦ (s ⋆ 1j−i)
If j = i this is exactly one of the two assumptions of the lemma. For j > i left and
right hand side both reduce to the equality s ⋆ 1j−i−1 ⋆ s by calculations similar to
those we did in case (1)(a).
Finally, in order to show that d defines an augmentation we have to show that
d ◦ (11 ⋆ d) = d ◦ (d ⋆ 11) which is true because both sides are equal to d ⋆ d. □

Example 14.33.3.0G5P Let C, Y , d, s be as in Example 14.33.1 satisfying the equations
of Lemma 14.33.2. Given functors F : A → C and G : C → B we obtain a simplicial
object G ◦ X ◦ F in the category of functors from A to B which comes with an
augmentation to G ◦ F .

Lemma 14.33.4.0G5Q Let A, B, C, Y , d, s, F , G be as in Example 14.33.3. Given a
transformation of functors h0 : G ◦ F → G ◦ Y ◦ F such that

1G◦F = (1G ⋆ d ⋆ 1F ) ◦ h0

Then there is a morphism h : G ◦ F → G ◦ X ◦ F of simplicial objects such that
ϵ ◦ h = id where ϵ : G ◦X ◦ F → G ◦ F is the augmentation.

Proof. Denote un : Y = X0 → Xn the map of the simplicial object X corresponding
to the unique morphism [n] → [0] in ∆. Set hn : G ◦ F → G ◦ Xn ◦ F equal to
(1G ⋆ un ⋆ 1F ) ◦ h0.
For any simplicial object X = (Xn) in any category u = (un) : X0 → X is a
morphism from the constant simplicial object on X0 to X. Hence h is a morphism
of simplicial objects because it is the composition of 1G ⋆ u ⋆ 1F and h0.
Let us check that ϵ ◦ h = id. We compute

ϵn ◦ (1G ⋆ un ⋆ 1F ) ◦ h0 = ϵ0 ◦ h0 = id
The first equality because ϵ is a morphism of simplicial objects and the second
equality because ϵ0 = (1G⋆d⋆1F ) and we can apply the assumption in the statement
of the lemma. □

https://stacks.math.columbia.edu/tag/0G5P
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Lemma 14.33.5.0G5R Let A, B, C, Y , d, s, F , G be as in Example 14.33.3. Let
F ′ : A → C and G′ : C → B be two functors. Let (an) : G ◦ X → G′ ◦ X be
a morphism of simplicial objects compatible via augmentations with a : G → G′.
Let (bn) : X ◦ F → X ◦ F ′ be a morphism of simplicial objects compatible via
augmentations with b : F → F ′. Then the two maps

a ⋆ (bn), (an) ⋆ b : G ◦X ◦ F → G′ ◦X ◦ F ′

are homotopic.

Proof. To show the morphisms are homotopic we construct morphisms
hn,i : G ◦Xn ◦ F → G′ ◦Xn ◦ F ′

for n ≥ 0 and 0 ≤ i ≤ n + 1 satisfying the relations described in Lemma 14.26.2.
See also Remark 14.26.4. To satisfy condition (1) of Lemma 14.26.2 we are forced
to set hn,0 = a ⋆ bn and hn,n+1 = an ⋆ b. Thus a logical choice is

hn,i = ai−1 ⋆ bn−i

for 1 ≤ i ≤ n. Setting a = a−1 and b = b−1 we see the displayed formular holds for
0 ≤ i ≤ n+ 1.
Recall that

dnj = 1G ⋆ 1j ⋆ d ⋆ 1n−j ⋆ 1F
on G ◦ X ◦ F where we use the notation 1a = 1Y ◦...◦Y introduced in the proof of
Lemma 14.33.2. We are going to use below that we can rewrite this as

dnj = djj ⋆ 1n−j = dj+1
j ⋆ 1n−j = . . . = dn−1

j ⋆ 11

= 1j ⋆ dn−j
0 = 1j−1 ⋆ d

n−j+1
1 = . . . = 11 ⋆ d

n−1
j−1

Of course we have the analogous formulae for dnj on G′ ◦X ◦ F ′.

We check condition (2) of Lemma 14.26.2. Let i > j. We have to show
dnj ◦ (ai−1 ⋆ bn−i) = (ai−2 ⋆ bn−i) ◦ dnj

Since i− 1 ≥ j we can use one of the possible descriptions of dnj to rewrite the left
hand side as

(di−1
j ⋆ 1n−i+1) ◦ (ai−1 ⋆ bn−i) = (di−1

j ◦ ai−1) ⋆ bn−i = (ai−2 ◦ di−1
j ) ⋆ bn−i

Similarly the right hand side becomes
(ai−2 ⋆ bn−i) ◦ (di−1

j ⋆ 1n−i+1) = (ai−2 ◦ di−1
j ) ⋆ bn−i

Thus we obtain the same result and (2) is checked.
We check condition (3) of Lemma 14.26.2. Let i ≤ j. We have to show

dnj ◦ (ai−1 ⋆ bn−i) = (ai−1 ⋆ bn−1−i) ◦ dnj
Since j ≥ i we may rewrite the left hand side as

(1i ⋆ dn−i
j−i ) ◦ (ai−1 ⋆ bn−i) = ai−1 ⋆ (bn−1−i ◦ dn−i

j−i )
A similar manipulation shows this agrees with the right hand side.
Recall that

snj = 1G ⋆ 1j ⋆ s ⋆ 1n−j ⋆ 1F

https://stacks.math.columbia.edu/tag/0G5R
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on G ◦X ◦ F . We are going to use below that we can rewrite this as
snj = sjj ⋆ 1n−j = sj+1

j ⋆ 1n−j−1 = . . . = sn−1
j ⋆ 11

= 1j ⋆ sn−j
0 = 1j−1 ⋆ s

n−j+1
1 = . . . = 11 ⋆ s

n−1
j−1

Of course we have the analogous formulae for snj on G′ ◦X ◦ F ′.

We check condition (4) of Lemma 14.26.2. Let i > j. We have to show
snj ◦ (ai−1 ⋆ bn−i) = (ai ⋆ bn−i) ◦ snj

Since i− 1 ≥ j we can rewrite the left hand side as
(si−1
j ⋆ 1n−i+1) ◦ (ai−1 ⋆ bn−i) = (si−1

j ◦ ai−1) ⋆ bn−i = (ai ◦ si−1
j ) ⋆ bn−i

Similarly the right hand side becomes
(ai ⋆ bn−i) ◦ (si−1

j ⋆ 1n−i+1) = (ai ◦ si−1
j ) ⋆ bn−i

as desired.
We check condition (5) of Lemma 14.26.2. Let i ≤ j. We have to show

snj ◦ (ai−1 ⋆ bn−i) = (ai−1 ⋆ bn+1−i) ◦ snj
This equality holds because both sides evaluate to ai−1 ⋆ (sn−i

j−i ◦ bn−i) = ai−1 ⋆

(bn+1−i ◦ sn−i
j−i ) by exactly the same arguments as above. □

Lemma 14.33.6.0G5S Let C, Y , d, s be as in Example 14.33.1 satisfying the equations
of Lemma 14.33.2. Let f : idC → idC be an endomorphism of the identity functor.
Then f ⋆ 1X , 1X ⋆ f : X → X are maps of simplicial objects compatible with f via
the augmentation ϵ : X → idC . Moreover, f ⋆ 1X and 1X ⋆ f are homotopic.

Proof. The map f ⋆ 1X is the map with components

Xn = idC ◦Xn
f⋆1Xn−−−−→ idC ◦Xn = Xn

For a transformation a : F → G of endofunctors of C we have a ◦ (f ⋆ 1F ) = f ⋆ a =
(f ⋆ 1G) ◦ a. Thus f ⋆ 1X is indeed a morphism of simplicial objects. Similarly for
1X ⋆ f .
To show the morphisms are homotopic we construct morphisms hn,i : Xn → Xn

for n ≥ 0 and 0 ≤ i ≤ n + 1 satisfying the relations described in Lemma 14.26.2.
See also Remark 14.26.4. It turns out we can take

hn,i = 1i ⋆ f ⋆ 1n+1−i

where 1i is the identity transformation on Y ◦ . . . ◦ Y as in the proof of Lemma
14.33.2. We have hn,0 = f ⋆ 1Xn and hn,n+1 = 1Xn ⋆ f which checks the first
condition. In checking the other conditions we use the comments made in the proof
of Lemma 14.33.5 about the maps dnj and snj .

We check condition (2) of Lemma 14.26.2. Let i > j. We have to show
dnj ◦ (1i ⋆ f ⋆ 1n+1−i) = (1i−1 ⋆ f ⋆ 1n+1−i) ◦ dnj

Since i− 1 ≥ j we can use one of the possible descriptions of dnj to rewrite the left
hand side as

(di−1
j ⋆ 1n−i+1) ◦ (1i ⋆ f ⋆ 1n+1−i) = di−1

j ⋆ f ⋆ 1n+1−i
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Similarly the right hand side becomes

(1i−1 ⋆ f ⋆ 1n+1−i) ◦ (di−1
j ⋆ 1n−i+1) = di−1

j ⋆ f ⋆ 1n+1−i

Thus we obtain the same result and (2) is checked.

The conditions (3), (4), and (5) of Lemma 14.26.2 are checked in exactly the same
manner using the strategy of the proof of Lemma 14.33.5. We omit the details2. □

14.34. Standard resolutions

08N8 Some of the material in this section can be found in [God73, Appendix 1] and [Ill72,
I 1.5].

Situation 14.34.1.08N9 Let A, S be categories and let V : A → S be a functor with a
left adjoint U : S → A.

In this very general situation we will construct a simplicial object X in the category
of functors from A to A. We suggest looking at the examples presented later on
before reading the text of this section.

For the construction we will use the horizontal composition as defined in Categories,
Section 4.28. The definition of the adjunction morphisms3

d : U ◦ V → idA (counit) and η : idS → V ◦ U (unit)

in Categories, Section 4.24 shows that the compositions

(14.34.1.1)08NB V
η⋆1V−−−→ V ◦ U ◦ V 1V ⋆d−−−→ V and U

1U⋆η−−−→ U ◦ V ◦ U d⋆1U−−−→ U

are the identity morphisms. Here to define the morphism η ⋆1V we silently identify
V with idS ◦V and 1V stands for idV : V → V . We will use this notation and these
relations repeatedly in what follows. For n ≥ 0 we set

Xn = (U ◦ V )◦(n+1) = U ◦ V ◦ U ◦ . . . ◦ U ◦ V

In other words, Xn is the (n + 1)-fold composition of U ◦ V with itself. We also
set X−1 = idA. We have Xn+m+1 = Xn ◦ Xm for all n,m ≥ −1. We will endow
this sequence of functors with the structure of a simplicial object of Fun(A,A) by
constructing the morphisms of functors

dnj : Xn → Xn−1, snj : Xn → Xn+1

satisfying the relations displayed in Lemma 14.2.3. Namely, we set

dnj = 1Xj−1 ⋆ d ⋆ 1Xn−j−1 and snj = 1Xj−1◦U ⋆ η ⋆ 1V ◦Xn−j−1

Finally, write ϵ0 = d : X0 → X−1.

Lemma 14.34.2.08NC In Situation 14.34.1 the system X = (Xn, d
n
j , s

n
j ) is a simplicial

object of Fun(A,A) and ϵ0 defines an augmentation ϵ from X to the constant
simplicial object with value X−1 = idA.

2When f is invertible it suffices to prove that (an) = 1X and (bn) = f−1 ⋆ 1X ⋆ f are
homotopic. But this follows from Lemma 14.33.5 because in this case a = b = 1idC .

3We can’t use ϵ for the counit of the adjunction because we want to use ϵ for the augmentation
of our simplicial obejct.

https://stacks.math.columbia.edu/tag/08N9
https://stacks.math.columbia.edu/tag/08NC


14.34. STANDARD RESOLUTIONS 1171

Proof. Consider Y = U ◦ V : A → A. We already have the transformation d : Y =
U ◦ V → idA. Let us denote

s = 1U ⋆ η ⋆ 1V : Y = U ◦ idS ◦ V −→ U ◦ V ◦ U ◦ V = Y ◦ Y

This places us in the sitation of Example 14.33.1. It is immediate from the formulas
that the X, dni , sni constructed above and the X, sni , sni constructed from Y, d, s in
Example 14.33.1 agree. Thus, according to Lemma 14.33.2 it suffices to prove that

1Y = (d ⋆ 1Y ) ◦ s = (1Y ⋆ d) ◦ s and (s ⋆ 1) ◦ s = (1 ⋆ s) ◦ s

The first equal sign translates into the equality

1U ⋆ 1V = (d ⋆ 1U ⋆ 1V ) ◦ (1U ⋆ η ⋆ 1V )

which holds if we have 1U = (d ⋆ 1U ) ◦ (1U ⋆ η) which in turn holds by (14.34.1.1).
Similarly for the second equal sign. For the last equation we need to prove

(1U ⋆ η ⋆ 1V ⋆ 1U ⋆ 1V ) ◦ (1U ⋆ η ⋆ 1V ) = (1U ⋆ 1V ⋆ 1U ⋆ η ⋆ 1V ) ◦ (1U ⋆ η ⋆ 1V )

For this it suffices to prove (η ⋆ 1V ⋆ 1U ) ◦ η = (1V ⋆ 1U ⋆ η) ◦ η which is true because
both sides are the same as η ⋆ η. □

Before reading the proof of the following lemma, we advise the reader to look at
the example discussed in Example 14.34.8 in order to understand the purpose of
the lemma.

Lemma 14.34.3.08ND In Situation 14.34.1 the maps

1V ⋆ ϵ : V ◦X → V, and ϵ ⋆ 1U : X ◦ U → U

are homotopy equivalences.

Proof. As in the proof of Lemma 14.34.2 we set Y = U ◦ V so that we are in the
sitation of Example 14.33.1.

Proof of the first homotopy equivalence. By Lemma 14.33.4 to construct a map
h : V → V ◦ X right inverse to 1V ⋆ ϵ it suffices to construct a map h0 : V →
V ◦ Y = V ◦ U ◦ V such that 1V = (1V ⋆ d) ◦ h0. Of course we take h0 = η ⋆ 1V
and the equality holds by (14.34.1.1). To finish the proof we need to show the two
maps

(1V ⋆ ϵ) ◦ h, 1V ⋆ idX : V ◦X −→ V ◦X

are homotopic. This follows immediately from Lemma 14.33.5 (with G = G′ = V
and F = F ′ = idS).

The proof of the second homotopy equivalence. By Lemma 14.33.4 to construct a
map h : U → X ◦ U right inverse to ϵ ⋆ 1U it suffices to construct a map h0 : U →
Y ◦ U = U ◦ V ◦ U such that 1U = (d ⋆ 1U ) ◦ h0. Of course we take h0 = 1U ⋆ η
and the equality holds by (14.34.1.1). To finish the proof we need to show the two
maps

(ϵ ⋆ 1U ) ◦ h, idX ⋆ 1U : X ◦ U −→ X ◦ U

are homotopic. This follows immediately from Lemma 14.33.5 (with G = G′ = idA
and F = F ′ = U). □

https://stacks.math.columbia.edu/tag/08ND
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Example 14.34.4.0G5T Let R be a ring. As an example of the above we can take
i : ModR → Sets to be the forgetful functor and F : Sets → ModR to be the
functor that associates to a set E the free R-module R[E] on E. For an R-module
M the simplicial R-module X(M) will have the following shape

X(M) =
(
. . . R[R[R[M ]]]

//
//
//
R[R[M ]] //

//oo
oo

R[M ]oo
)

which comes with an augmentation towards M . We will also show this augmenta-
tion is a homotopy equivalence of sets. By Lemmas 14.30.8, 14.31.9, and 14.31.8
this is equivalent to asking M to be the only nonzero cohomology group of the
chain complex associated to the simplicial module X(M).

Example 14.34.5.08NA Let A be a ring. Let AlgA be the category of commutative
A-algebras. As an example of the above we can take i : AlgA → Sets to be the
forgetful functor and F : Sets → AlgA to be the functor that associates to a set
E the polynomial algebra A[E] on E over A. (We apologize for the overlap in
notation between this example and Example 14.34.4.) For an A-algebra B the
simplicial A-algebra X(B) will have the following shape

X(B) =
(
. . . A[A[A[B]]]

//
//
//
A[A[B]] //

//oo
oo

A[B]oo
)

which comes with an augmentation towards B. We will also show this augmentation
is a homotopy equivalence of sets. By Lemmas 14.30.8, 14.31.9, and 14.31.8 this
is equivalent to asking B to be the only nonzero cohomology group of the chain
complex of A-modules associated to X(B) viewed as a simplicial A-module.

Example 14.34.6.0G5U In Example 14.34.4 we have Xn(M) = R[R[. . . [M ] . . .]] with
n+ 1 brackets. We describe the maps constructed above using a typical element

ξ =
∑

i
ri

[∑
j
rij [mij ]

]
of X1(M). The maps d0, d1 : R[R[M ]]→ R[M ] are given by

d0(ξ) =
∑

i,j
ririj [mij ] and d1(ξ) =

∑
i
ri

[∑
j
rijmij

]
.

The maps s0, s1 : R[R[M ]]→ R[R[R[M ]]] are given by

s0(ξ) =
∑

i
ri

[[∑
j
rij [mij ]

]]
and s1(ξ) =

∑
i
ri

[∑
j
rij [[mij ]]

]
.

Example 14.34.7.09CB In Example 14.34.5 we have Xn(B) = A[A[. . . [B] . . .]] with n+1
brackets. We describe the maps constructed above using a typical element

ξ =
∑

i
ai[xi,1] . . . [xi,mi ] ∈ A[A[B]] = X1(B)

where for each i, j we can write

xi,j =
∑

ai,j,k[bi,j,k,1] . . . [bi,j,k,ni,j,k ] ∈ A[B]

Obviously this is horrendous! To ease the notation, to see what the A-algebra maps
d0, d1 : A[A[B]] → A[B] are doing it suffices to see what happens to the variables
[x] where

x =
∑

ak[bk,1] . . . [bk,nk ] ∈ A[B]
is a general element. For these we get

d0([x]) = x =
∑

ak[bk,1] . . . [bk,nk ] and d1([x]) =
[∑

akbk,1 . . . bk,nk

]

https://stacks.math.columbia.edu/tag/0G5T
https://stacks.math.columbia.edu/tag/08NA
https://stacks.math.columbia.edu/tag/0G5U
https://stacks.math.columbia.edu/tag/09CB
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The maps s0, s1 : A[A[B]]→ A[A[A[B]]] are given by

s0([x]) =
[[∑

ak[bk,1] . . . [bk,nk ]
]]

and s1([x]) =
[∑

ak[[bk,1]] . . . [[bk,nk ]]
]

Example 14.34.8.08NE Going back to the example discussed in Example 14.34.5 our
Lemma 14.34.3 signifies that for any ring map A→ B the map of simplicial rings

A[A[A[B]]]

��

//
//
//
A[A[B]]

��

//
//oo

oo
A[B]

��

oo

B
//
//
//
B

//
//oo

oo
Boo

is a homotopy equivalence on underlying simplicial sets. Moreover, the inverse map
constructed in Lemma 14.34.3 is in degree n given by

b 7−→ [. . . [b] . . .]
with obvious notation. In the other direction the lemma tells us that for every set
E there is a homotopy equivalence

A[A[A[A[E]]]]

��

//
//
//
A[A[A[E]]]

��

//
//oo

oo
A[A[E]]

��

oo

A[E]
//
//
//
A[E] //

//oo
oo

A[E]oo

of rings. The inverse map constructed in the lemma is in degree n given by the ring
map∑

ae1,...,ep [e1][e2] . . . [ep] 7−→
∑

ae1,...,ep [. . . [e1] . . .][. . . [e2] . . .] . . . [. . . [ep] . . .]

(with obvious notation).
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CHAPTER 15

More on Algebra

05E3 15.1. Introduction

05E4 In this chapter we prove some results in commutative algebra which are less elemen-
tary than those in the first chapter on commutative algebra, see Algebra, Section
10.1. A reference is [Mat70a].

15.2. Advice for the reader

0910 More than in the chapter on commutative algebra, each of the sections in this chap-
ter stands on its own. Starting with Section 15.56 we freely use the (unbounded)
derived category of modules over rings and all the machinery that comes with it.

15.3. Stably free modules

0BC2 Here is what seems to be the generally accepted definition.
Definition 15.3.1.0BC3 Let R be a ring.

(1) Two modules M , N over R are said to be stably isomorphic if there exist
n,m ≥ 0 such that M ⊕R⊕m ∼= N ⊕R⊕n as R-modules.

(2) A module M is stably free if it is stably isomorphic to a free module.
Observe that a stably free module is projective.
Lemma 15.3.2.0BC4 Let R be a ring. Let 0 → P ′ → P → P ′′ → 0 be a short exact
sequence of finite projective R-modules. If 2 out of 3 of these modules are stably
free, then so is the third.
Proof. Since the modules are projective, the sequence is split. Thus we can choose
an isomorphism P = P ′ ⊕ P ′′. If P ′ ⊕ R⊕n and P ′′ ⊕ R⊕m are free, then we see
that P ⊕ R⊕n+m is free. Suppose that P ′ and P are stably free, say P ⊕ R⊕n is
free and P ′ ⊕R⊕m is free. Then

P ′′ ⊕ (P ′ ⊕R⊕m)⊕R⊕n = (P ′′ ⊕ P ′)⊕R⊕m ⊕R⊕n = (P ⊕R⊕n)⊕R⊕m

is free. Thus P ′′ is stably free. By symmetry we get the last of the three cases. □

Lemma 15.3.3.0BC5 Let R be a ring. Let I ⊂ R be an ideal. Assume that every element
of 1 + I is a unit (in other words I is contained in the Jacobson radical of R). For
every finite stably free R/I-module E there exists a finite stably free R-module M
such that M/IM ∼= E.
Proof. Choose a n and m and an isomorphism E ⊕ (R/I)⊕n ∼= (R/I)⊕m. Choose
R-linear maps φ : R⊕m → R⊕n and ψ : R⊕n → R⊕m lifting the projection
(R/I)⊕m → (R/I)⊕n and injection (R/I)⊕n → (R/I)⊕m. Then φ◦ψ : R⊕n → R⊕n

reduces to the identity modulo I. Thus the determinant of this map is invertible
by our assumption on I. Hence P = Ker(φ) is stably free and lifts E. □

1175
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Lemma 15.3.4.0D48 Let R be a ring. Let I ⊂ R be an ideal. Assume that every element
of 1 + I is a unit (in other words I is contained in the Jacobson radical of R). Let
M be a finite flat R-module such that M/IM is a projective R/I-module. Then
M is a finite projective R-module.

Proof. By Algebra, Lemma 10.78.5 we see that Mp is finite free for all prime ideals
p ⊂ R. By Algebra, Lemma 10.78.2 it suffices to show that the function ρM :
p 7→ dimκ(p) M ⊗R κ(p) is locally constant on Spec(R). Because M/IM is finite
projective, this is true on V (I) ⊂ Spec(R). Since every closed point of Spec(R) is in
V (I) and since ρM (p) = ρM (q) whenever p ⊂ q ⊂ R are prime ideals, we conclude
by an elementary argument on topological spaces which we omit. □

The lift of Lemma 15.3.3 is unique up to isomorphism by the following lemma.

Lemma 15.3.5.0BC6 Let R be a ring. Let I ⊂ R be an ideal. Assume that every element
of 1 + I is a unit (in other words I is contained in the Jacobson radical of R). If P
and P ′ are finite projective R-modules, then

(1) if φ : P → P ′ is an R-module map inducing an isomorphism φ : P/IP →
P ′/IP ′, then φ is an isomorphism,

(2) if P/IP ∼= P ′/IP ′, then P ∼= P ′.

Proof. Proof of (1). As P ′ is projective as an R-module we may choose a lift
ψ : P ′ → P of the map P ′ → P ′/IP ′ φ−1

−−→ P/IP . By Nakayama’s lemma (Algebra,
Lemma 10.20.1) ψ ◦φ and φ◦ψ are surjective. Hence these maps are isomorphisms
(Algebra, Lemma 10.16.4). Thus φ is an isomorphism.

Proof of (2). Choose an isomorphism P/IP ∼= P ′/IP ′. Since P is projective we
can choose a lift φ : P → P ′ of the map P → P/IP → P ′/IP ′. Then φ is an
isomorphism by (1). □

15.4. A comment on the Artin-Rees property

07VD Some of this material is taken from [CdJ02]. A general discussion with additional
references can be found in [EH05, Section 1].

Let A be a Noetherian ring and let I ⊂ A be an ideal. Given a homomorphism
f : M → N of finite A-modules there exists a c ≥ 0 such that

f(M) ∩ InN ⊂ f(In−cM)

for all n ≥ c, see Algebra, Lemma 10.51.3. In this situation we will say c works for
f in the Artin-Rees lemma.

Lemma 15.4.1.07VE Let A be a Noetherian ring. Let I ⊂ A be an ideal contained in
the Jacobson radical of A. Let

S : L f−→M
g−→ N and S′ : L f ′

−→M
g′

−→ N

be two complexes of finite A-modules as shown. Assume that
(1) c works in the Artin-Rees lemma for f and g,
(2) the complex S is exact, and
(3) f ′ = f mod Ic+1M and g′ = g mod Ic+1N .

Then c works in the Artin-Rees lemma for g′ and the complex S′ is exact.

https://stacks.math.columbia.edu/tag/0D48
https://stacks.math.columbia.edu/tag/0BC6
https://stacks.math.columbia.edu/tag/07VE
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Proof. We first show that g′(M) ∩ InN ⊂ g′(In−cM) for n ≥ c. Let a be an
element of M such that g′(a) ∈ InN . We want to adjust a by an element of f ′(L),
i.e, without changing g′(a), so that a ∈ In−cM . Assume that a ∈ IrM , where
r < n− c. Then

g(a) = g′(a) + (g − g′)(a) ∈ InN + Ir+c+1N = Ir+c+1N.

By Artin-Rees for g we have g(a) ∈ g(Ir+1M). Say g(a) = g(a1) with a1 ∈ Ir+1M .
Since the sequence S is exact, a− a1 ∈ f(L). Accordingly, we write a = f(b) + a1
for some b ∈ L. Then f(b) = a− a1 ∈ IrM . Artin-Rees for f shows that if r ≥ c,
we may replace b by an element of Ir−cL. Then in all cases, a = f ′(b) + a2, where
a2 = (f − f ′)(b) + a1 ∈ Ir+1M . (Namely, either c ≥ r and (f − f ′)(b) ∈ Ir+1M
by assumption, or c < r and b ∈ Ir−c, whence again (f − f ′)(b) ∈ Ic+1Ir−cM =
Ir+1M .) So we can adjust a by the element f ′(b) ∈ f ′(L) to increase r by 1.
In fact, the argument above shows that (g′)−1(InN) ⊂ f ′(L)+In−cM for all n ≥ c.
Hence S′ is exact because

(g′)−1(0) = (g′)−1(
⋂
InN) ⊂

⋂
f ′(L) + In−cM = f ′(L)

as I is contained in the Jacobson radical of A, see Algebra, Lemma 10.51.5. □

Given an ideal I ⊂ A of a ring A and an A-module M we set

GrI(M) =
⊕

InM/In+1M.

We think of this as a graded GrI(A)-module.

Lemma 15.4.2.07VF Assumptions as in Lemma 15.4.1. Let Q = Coker(g) and Q′ =
Coker(g′). Then GrI(Q) ∼= GrI(Q′) as graded GrI(A)-modules.

Proof. In degree n we have GrI(Q)n = InN/(In+1N + g(M)∩ InN) and similarly
for Q′. We claim that

g(M) ∩ InN ⊂ In+1N + g′(M) ∩ InN.
By symmetry (the proof of the claim will only use that c works for g which also
holds for g′ by the lemma) this will imply that

In+1N + g(M) ∩ InN = In+1N + g′(M) ∩ InN
whence GrI(Q)n and GrI(Q′)n agree as subquotients of N , implying the lemma.
Observe that the claim is clear for n ≤ c as f = f ′ mod Ic+1N . If n > c, then
suppose b ∈ g(M) ∩ InN . Write b = g(a) for a ∈ In−cM . Set b′ = g′(a). We have
b− b′ = (g − g′)(a) ∈ In+1N as desired. □

Lemma 15.4.3.07VG Let A → B be a flat map of Noetherian rings. Let I ⊂ A be an
ideal. Let f : M → N be a homomorphism of finite A-modules. Assume that c
works for f in the Artin-Rees lemma. Then c works for f ⊗ 1 : M ⊗AB → N ⊗AB
in the Artin-Rees lemma for the ideal IB.

Proof. Note that
(f ⊗ 1)(M) ∩ InN ⊗A B = (f ⊗ 1)

(
(f ⊗ 1)−1(InN ⊗A B)

)
On the other hand,

(f ⊗ 1)−1(InN ⊗A B) = Ker(M ⊗A B → N ⊗A B/(InN ⊗A B))
= Ker(M ⊗A B → (N/InN)⊗A B)

https://stacks.math.columbia.edu/tag/07VF
https://stacks.math.columbia.edu/tag/07VG
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As A → B is flat taking kernels and cokernels commutes with tensoring with B,
whence this is equal to f−1(InN)⊗A B. By assumption f−1(InN) is contained in
Ker(f) + In−cM . Thus the lemma holds. □

15.5. Fibre products of rings, I

08KG Fibre products of rings have to do with pushouts of schemes. Some cases of pushouts
of schemes are discussed in More on Morphisms, Section 37.14.

Lemma 15.5.1.00IT Let R be a ring. Let A → B and C → B be R-algebra maps.
Assume

(1) R is Noetherian,
(2) A, B, C are of finite type over R,
(3) A→ B is surjective, and
(4) B is finite over C.

Then A×B C is of finite type over R.

Proof. Set D = A×B C. There is a commutative diagram

0 Boo Aoo Ioo 0oo

0 Coo

OO

Doo

OO

Ioo

OO

0oo

with exact rows. Choose y1, . . . , yn ∈ B which are generators for B as a C-module.
Choose xi ∈ A mapping to yi. Then 1, x1, . . . , xn are generators for A as a D-
module. The map D → A × C is injective, and the ring A × C is finite as a
D-module (because it is the direct sum of the finite D-modules A and C). Hence
the lemma follows from the Artin-Tate lemma (Algebra, Lemma 10.51.7). □

Lemma 15.5.2.08NI Let R be a Noetherian ring. Let I be a finite set. Suppose given
a cartesian diagram ∏

Bi
∏
Ai∏

φi

oo

Q

∏
ψi

OO

P

OO

oo

with ψi and φi surjective, and Q, Ai, Bi of finite type over R. Then P is of finite
type over R.

Proof. Follows from Lemma 15.5.1 and induction on the size of I. Namely, let
I = I ′ ⨿ {i0}. Let P ′ be the ring defined by the diagram of the lemma using I ′.
Then P ′ is of finite type by induction hypothesis. Finally, P sits in a fibre product
diagram

Bi0 Ai0
oo

P ′

OO

P

OO

oo

to which the lemma applies. □

https://stacks.math.columbia.edu/tag/00IT
https://stacks.math.columbia.edu/tag/08NI
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Lemma 15.5.3.01Z8 Suppose given a cartesian diagram of rings

R R′
t

oo

B

s

OO

B′

OO

oo

i.e., B′ = B×RR′. If h ∈ B′ corresponds to g ∈ B and f ∈ R′ such that s(g) = t(f),
then the diagram

Rs(g) = Rt(f) (R′)ft
oo

Bg

s

OO

(B′)h

OO

oo

is cartesian too.

Proof. The equality B′ = B ×R R′ tells us that

0→ B′ → B ⊕R′ s,−t−−−→ R

is an exact sequence of B′-modules. We have Bg = Bh, R′
f = R′

h, and Rs(g) =
Rt(f) = Rh as B′-modules. By exactness of localization (Algebra, Proposition
10.9.12) we find that

0→ B′
h → Bg ⊕R′

f
s,−t−−−→ Rs(g) = Rt(f)

is an exact sequence. This proves the lemma. □

Consider a commutative diagram of rings

R R′oo

B

OO

B′

OO

oo

Consider the functor (where the fibre product of categories is as constructed in
Categories, Example 4.31.3)
(15.5.3.1)0D2E ModB′ −→ ModB ×ModR ModR′ , L′ 7−→ (L′ ⊗B′ B,L′ ⊗B′ R′, can)

where can is the canonical identification L′ ⊗B′ B ⊗B R = L′ ⊗B′ R′ ⊗R′ R. In the
following we will write (N,M ′, φ) for an object of the right hand side, i.e., N is a
B-module, M ′ is an R′-module and φ : N ⊗B R→M ′ ⊗R′ R is an isomorphism.

Lemma 15.5.4.0D2F Given a commutative diagram of rings

R R′oo

B

OO

B′

OO

oo

the functor (15.5.3.1) has a right adjoint, namely the functor
F : (N,M ′, φ) 7−→ N ×φM ′

(see proof for elucidation).

https://stacks.math.columbia.edu/tag/01Z8
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Proof. Given an object (N,M ′, φ) of the category ModB ×ModR ModR′ we set
N ×φM ′ = {(n,m′) ∈ N ×M ′ | φ(n⊗ 1) = m′ ⊗ 1 in M ′ ⊗R′ R}

viewed as a B′-module. The adjointness statement is that for a B′-module L′ and
a triple (N,M ′, φ) we have
HomB′(L′, N×φM ′) = HomB(L′⊗B′B,N)×HomR(L′⊗B′R,M ′⊗R′R)HomR′(L′⊗B′R′,M ′)
By Algebra, Lemma 10.14.3 the right hand side is equal to

HomB′(L′, N)×HomB′ (L′,M ′⊗R′R) HomB′(L′,M ′)
Thus it is clear that for a pair (g, f ′) of elements of this fibre product we get an
B′-linear map L′ → N×φM ′, l′ 7→ (g(l′), f ′(l′)). Conversely, given a B′ linear map
g′ : L′ → N ×φ M ′ we can set g equal to the composition L′ → N ×φ M ′ → N
and f ′ equal to the composition L′ → N ×φ M ′ → M ′. These constructions are
mutually inverse to each other and define the desired isomorphism. □

15.6. Fibre products of rings, II

0D2G In this section we discuss fibre products in the following situation.

Situation 15.6.1.08KH In the following we will consider ring maps

B // A A′oo

where we assume A′ → A is surjective with kernel I. In this situation we set
B′ = B ×A A′ to obtain a cartesian square

A A′oo

B

OO

B′oo

OO

Lemma 15.6.2.0B7J In Situation 15.6.1 we have
Spec(B′) = Spec(B)⨿Spec(A) Spec(A′)

as topological spaces.

Proof. Since B′ = B ×A A′ we obtain a commutative square of spectra, which
induces a continuous map

can : Spec(B)⨿Spec(A) Spec(A′) −→ Spec(B′)
as the source is a pushout in the category of topological spaces (which exists by
Topology, Section 5.29).
To show the map can is surjective, let q′ ⊂ B′ be a prime ideal. If I ⊂ q′ (here
and below we take the liberty of considering I as an ideal of B′ as well as an ideal
of A′), then q′ corresponds to a prime ideal of B and is in the image. If not, then
pick h ∈ I, h ̸∈ q′. In this case Bh = Ah = 0 and the ring map B′

h → A′
h is an

isomorphism, see Lemma 15.5.3. Thus we see that q′ corresponds to a unique prime
ideal p′ ⊂ A′ which does not contain I.
Since B′ → B is surjective, we see that can is injective on the summand Spec(B).
We have seen above that Spec(A′) → Spec(B′) is injective on the complement
of V (I) ⊂ Spec(A′). Since V (I) ⊂ Spec(A′) is exactly the image of Spec(A) →
Spec(A′) a trivial set theoretic argument shows that can is injective.
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To finish the proof we have to show that can is open. To do this, observe that an
open of the pushout is of the form V ⨿ U ′ where V ⊂ Spec(B) and U ′ ⊂ Spec(A′)
are opens whose inverse images in Spec(A) agree. Let v ∈ V . We can find a g ∈ B
such that v ∈ D(g) ⊂ V . Let f ∈ A be the image. Pick f ′ ∈ A′ mapping to f .
Then D(f ′)∩U ′ ∩V (I) = D(f ′)∩V (I). Hence V (I)∩D(f ′) and D(f ′)∩ (U ′)c are
disjoint closed subsets of D(f ′) = Spec(A′

f ′). Write (U ′)c = V (J) for some ideal
J ⊂ A′. Since A′

f ′ → A′
f ′/IA′

f ′ × A′
f ′/JA′

f ′ is surjective by the disjointness just
shown, we can find an a′′ ∈ A′

f ′ mapping to 1 in A′
f ′/IA′

f ′ and mapping to zero in
A′
f ′/JA′

f ′ . Clearing denominators, we find an element a′ ∈ J mapping to fn in A.
Then D(a′f ′) ⊂ U ′. Let h′ = (gn+1, a′f ′) ∈ B′. Since B′

h′ = Bgn+1×Afn+1 A
′
a′f ′ by

a previously cited lemma, we see that D(h′) pulls back to an open neighbourhood
of v in the pushout, i.e., the image of V ⨿ U ′ contains an open neighbourhood of
the image of v. We omit the (easier) proof that the same thing is true for u′ ∈ U ′

with u′ ̸∈ V (I). □

Lemma 15.6.3.0E1S In Situation 15.6.1 if B → A is integral, then B′ → A′ is integral.

Proof. Let a′ ∈ A′ with image a ∈ A. Let xd + b1x
d−1 + . . . + bd be a monical

polynomial with coefficients in B satisfied by a. Choose b′
i ∈ B′ mapping to bi ∈ B

(possible). Then (a′)d + b′
1(a′)d−1 + . . . + b′

d is in the kernel of A′ → A. Since
Ker(B′ → B) = Ker(A′ → A) we can modify our choice of b′

d to get (a′)d +
b′

1(a′)d−1 + . . .+ b′
d = 0 as desired. □

In Situation 15.6.1 we’d like to understand B′-modules in terms of modules over
A′, A, and B. In order to do this we consider the functor (where the fibre product
of categories as constructed in Categories, Example 4.31.3)
(15.6.3.1)08KI ModB′ −→ ModB ×ModA ModA′ , L′ 7−→ (L′ ⊗B′ B,L′ ⊗B′ A′, can)
where can is the canonical identification L′ ⊗B′ B ⊗B A = L′ ⊗B′ A′ ⊗A′ A. In the
following we will write (N,M ′, φ) for an object of the right hand side, i.e., N is a
B-module, M ′ is an A′-module and φ : N ⊗B A → M ′ ⊗A′ A is an isomorphism.
However, it is often more convenient think of φ as a B-linear map φ : N →M ′/IM ′

which induces an isomorphism N ⊗B A→M ′ ⊗A′ A = M ′/IM ′.

Lemma 15.6.4.07RU In Situation 15.6.1 the functor (15.6.3.1) has a right adjoint, namely
the functor

F : (N,M ′, φ) 7−→ N ×φ,M M ′

where M = M ′/IM ′. Moreover, the composition of F with (15.6.3.1) is the identity
functor on ModB ×ModA ModA′ . In other words, setting N ′ = N ×φ,M M ′ we have
N ′ ⊗B′ B = N and N ′ ⊗B′ A′ = M ′.

Proof. The adjointness statement follows from the more general Lemma 15.5.4. To
prove the final assertion, recall that B′ = B×AA′ and N ′ = N×φ,MM ′ and extend
these equalities to

A A′oo Ioo

B

OO

B′oo

OO

Joo

OO

and
M M ′oo Koo

N

φ

OO

N ′oo

OO

Loo

OO

where I, J,K,L are the kernels of the horizontal maps of the original diagrams. We
present the proof as a sequence of observations:
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(1) K = IM ′ (see statement lemma),
(2) B′ → B is surjective with kernel J and J → I is bijective,
(3) N ′ → N is surjective with kernel L and L→ K is bijective,
(4) JN ′ ⊂ L,
(5) Im(N →M) generates M as an A-module (because N ⊗B A = M),
(6) Im(N ′ →M ′) generates M ′ as an A′-module (because it holds modulo K

and L maps isomorphically to K),
(7) JN ′ = L (because L ∼= K = IM ′ is generated by images of elements xn′

with x ∈ I and n′ ∈ N ′ by the previous statement),
(8) N ′ ⊗B′ B = N (because N = N ′/L, B = B′/J , and the previous state-

ment),
(9) there is a map γ : N ′ ⊗B′ A′ →M ′,

(10) γ is surjective (see above),
(11) the kernel of the composition N ′ ⊗B′ A′ → M ′ → M is generated by

elements l⊗1 and n′⊗x with l ∈ K, n′ ∈ N ′, x ∈ I (because M = N⊗BA
by assumption and because N ′ → N and A′ → A are surjective with
kernels L and I),

(12) any element of N ′⊗B′A′ in the submodule generated by the elements l⊗1
and n′ ⊗ x with l ∈ L, n′ ∈ N ′, x ∈ I can be written as l ⊗ 1 for some
l ∈ L (because J maps isomorphically to I we see that n′⊗x = n′x⊗ 1 in
N ′ ⊗B′ A′; similarly xn′ ⊗ a′ = n′ ⊗ xa′ = n′(xa′)⊗ 1 in N ′ ⊗B′ A′ when
n′ ∈ N ′, x ∈ J and a′ ∈ A′; since we have seen that JN ′ = L this proves
the assertion),

(13) the kernel of γ is zero (because by (10) and (11) any element of the kernel
is of the form l ⊗ 1 with l ∈ L which is mapped to l ∈ K ⊂M ′ by γ).

This finishes the proof. □

Lemma 15.6.5.08IG In the situation of Lemma 15.6.4 for a B′-module L′ the adjunction
map

L′ −→ (L′ ⊗B′ B)×(L′⊗B′A) (L′ ⊗B′ A′)
is surjective but in general not injective.

Proof. As in the proof of Lemma 15.6.4 let J ⊂ B′ be the kernel of the map
B′ → B. Then L′ ⊗B′ B = L′/JL′. Hence to prove surjectivity it suffices to
show that elements of the form (0, z) of the fibre product are in the image of the
map of the lemma. The kernel of the map L′ ⊗B′ A′ → L′ ⊗B′ A is the image of
L′⊗B′ I → L′⊗B′ A′. Since the map J → I induced by B′ → A′ is an isomorphism
the composition

L′ ⊗B′ J → L′ → (L′ ⊗B′ B)×(L′⊗B′A) (L′ ⊗B′ A′)
induces a surjection of L′ ⊗B′ J onto the set of elements of the form (0, z). To
see the map is not injective in general we present a simple example. Namely, take
a field k, set B′ = k[x, y]/(xy), A′ = B′/(x), B = B′/(y), A = B′/(x, y) and
L′ = B′/(x− y). In that case the class of x in L′ is nonzero but is mapped to zero
under the displayed arrow. □

Lemma 15.6.6.08KJ In Situation 15.6.1 let (N1,M
′
1, φ1)→ (N2,M

′
2, φ2) be a morphism

of ModB ×ModA ModA′ with N1 → N2 and M ′
1 →M ′

2 surjective. Then
N1 ×φ1,M1 M

′
1 → N2 ×φ2,M2 M

′
2

https://stacks.math.columbia.edu/tag/08IG
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where M1 = M ′
1/IM

′
1 and M2 = M ′

2/IM
′
2 is surjective.

Proof. Pick (x2, y2) ∈ N2 ×φ2,M2 M
′
2. Choose x1 ∈ N1 mapping to x2. Since

M ′
1 →M1 is surjective we can find y1 ∈M ′

1 mapping to φ1(x1). Then (x1, y1) maps
to (x2, y

′
2) in N2 ×φ2,M2 M

′
2. Thus it suffices to show that elements of the form

(0, y2) are in the image of the map. Here we see that y2 ∈ IM ′
2. Write y2 =

∑
tiy2,i

with ti ∈ I. Choose y1,i ∈M ′
1 mapping to y2,i. Then y1 =

∑
tiy1,i ∈ IM ′

1 and the
element (0, y1) does the job. □

Lemma 15.6.7.0D2H Let A,A′, B,B′, I,M,M ′, N, φ be as in Lemma 15.6.4. If N finite
over B and M ′ finite over A′, then N ′ = N ×φ,M M ′ is finite over B′.
Proof. We will use the results of Lemma 15.6.4 without further mention. Choose
generators y1, . . . , yr of N over B and generators x1, . . . , xs of M ′ over A′. Using
that N = N ′ ⊗B′ B and B′ → B is surjective we can find u1, . . . , ur ∈ N ′ mapping
to y1, . . . , yr in N . Using that M ′ = N ′⊗B′A′ we can find v1, . . . , vt ∈ N ′ such that
xi =

∑
vj ⊗ a′

ij for some a′
ij ∈ A′. In particular we see that the images vj ∈ M ′

of the vj generate M ′ over A′. We claim that u1, . . . , ur, v1, . . . , vt generate N ′ as
a B′-module. Namely, pick ξ ∈ N ′. We first choose b′

1, . . . , b
′
r ∈ B′ such that ξ

and
∑
b′
iui map to the same element of N . This is possible because B′ → B is

surjective and y1, . . . , yr generate N over B. The difference ξ −
∑
b′
iui is of the

form (0, θ) for some θ in IM ′. Say θ is
∑
tjvj with tj ∈ I. As J = Ker(B′ → B)

maps isomorphically to I we can choose sj ∈ J ⊂ B′ mapping to tj . Because
N ′ = N ×φ,M M ′ it follows that ξ =

∑
b′
iui +

∑
sjvj as desired. □

Lemma 15.6.8.0D2I With A,A′, B,B′, I as in Situation 15.6.1.
(1) Let (N,M ′, φ) be an object of ModB ×ModA ModA′ . If M ′ is flat over A′

and N is flat over B, then N ′ = N ×φ,M M ′ is flat over B′.
(2) If L′ is a flat B′-module, then L′ = (L⊗B′ B)×(L⊗B′A) (L⊗B′ A′).
(3) The category of flat B′-modules is equivalent to the full subcategory of

ModB ×ModA ModA′ consisting of triples (N,M ′, φ) with N flat over B
and M ′ flat over A′.

Proof. In the proof we will use Lemma 15.6.4 without further mention.
Proof of (1). Set J = Ker(B′ → B). This is an ideal of B′ mapping isomorphically
to I = Ker(A′ → A). Let b′ ⊂ B′ be an ideal. We have to show that b′⊗B′N ′ → N ′

is injective, see Algebra, Lemma 10.39.5. We know that
b′/(b′ ∩ J)⊗B′ N ′ = b′/(b′ ∩ J)⊗B N → N

is injective as N is flat over B. As b′ ∩ J → b′ → b′/(b′ ∩ J) → 0 is exact, we
conclude that it suffices to show that (b′ ∩ J) ⊗B′ N ′ → N ′ is injective. Thus we
may assume that b′ ⊂ J . Next, since J → I is an isomorphism we have

J ⊗B′ N ′ = I ⊗A′ A′ ⊗B′ N ′ = I ⊗A′ M ′

which maps injectively into M ′ as M ′ is a flat A′-module. Hence J ⊗B′ N ′ → N ′ is
injective and we conclude that TorB

′

1 (B′/J,N ′) = 0, see Algebra, Remark 10.75.9.
Thus we may apply Algebra, Lemma 10.99.8 to N ′ over B′ and the ideal J . Going
back to our ideal b′ ⊂ J , let b′ ⊂ b′′ ⊂ J be the smallest ideal whose image in I
is an A′-submodule of I. In other words, we have b′′ = A′b′ if we view J = I as
A′-module. Then b′′/b′ is killed by J and we get a short exact sequence

0→ b′ ⊗B′ N ′ → b′′ ⊗B′ N ′ → b′′/b′ ⊗B′ N ′ → 0
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by the vanishing of TorB
′

1 (b′′/b′, N ′) we get from the application of the lemma.
Thus we may replace b′ by b′′. In particular we may assume b′ is an A′-module
and maps to an ideal of A′. Then

b′ ⊗B′ N ′ = b′ ⊗A′ A′ ⊗B′ N ′ = b′ ⊗A′ M ′

This tensor product maps injectively into M ′ by our assumption that M ′ is flat
over A′. We conclude that b′ ⊗B′ N ′ → N ′ → M ′ is injective and hence the first
map is injective as desired.

Proof of (2). This follows by tensoring the short exact sequence 0→ B′ → B⊕A′ →
A→ 0 with L′ over B′.

Proof of (3). Immediate consequence of (1) and (2). □

Lemma 15.6.9.0D2J Let A,A′, B,B′, I be as in Situation 15.6.1. The category of finite
projective B′-modules is equivalent to the full subcategory of ModB ×ModA ModA′

consisting of triples (N,M ′, φ) with N finite projective over B and M ′ finite pro-
jective over A′.

Proof. Recall that a module is finite projective if and only if it is finitely presented
and flat, see Algebra, Lemma 10.78.2. Using Lemmas 15.6.8 and 15.6.7 we reduce
to showing that N ′ = N ×φ,M M ′ is a B′-module of finite presentation if N finite
projective over B and M ′ finite projective over A′.

By Lemma 15.6.7 the module N ′ is finite over B′. Choose a surjection (B′)⊕n → N ′

with kernel K ′. By base change we obtain maps B⊕n → N , (A′)⊕n → M ′, and
A⊕n →M with kernels KB , KA′ , and KA. There is a canonical map

K ′ −→ KB ×KA KA′

On the other hand, sinceN ′ = N×φ,MM ′ andB′ = B×AA′ there is also a canonical
map KB×KAKA′ → K ′ inverse to the displayed arrow. Hence the displayed map is
an isomorphism. By Algebra, Lemma 10.5.3 the modulesKB andKA′ are finite. We
conclude from Lemma 15.6.7 that K ′ is a finite B′-module provided that KB → KA

and KA′ → KA induce isomorphisms KB ⊗B A = KA = KA′ ⊗A′ A. This is true
because the flatness assumptions implies the sequences

0→ KB → B⊕n → N → 0 and 0→ KA′ → (A′)⊕n →M ′ → 0

stay exact upon tensoring, see Algebra, Lemma 10.39.12. □

15.7. Fibre products of rings, III

0D2K In this section we discuss fibre products in the following situation.

Situation 15.7.1.08KK Let A,A′, B,B′, I be as in Situation 15.6.1. Let B′ → D′ be a
ring map. Set D = D′ ⊗B′ B, C ′ = D′ ⊗B′ A′, and C = D′ ⊗B′ A. This leads to a
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big commutative diagram

C C ′oo

A

__

A′oo

>>

B

OO

��

B′oo

OO

  
D

OO

D′oo

OO

of rings. Observe that we do not assume that the map D′ → D ×C C ′ is an
isomorphism1. In this situation we have the functor
(15.7.1.1)08KL ModD′ −→ ModD ×ModC ModC′ , L′ 7−→ (L′ ⊗D′ D,L′ ⊗D′ C ′, can)
analogous to (15.6.3.1). Note that L′ ⊗D′ D = L ⊗D′ (D′ ⊗B′ B) = L ⊗B′ B and
similarly L′ ⊗D′ C ′ = L⊗D′ (D′ ⊗B′ A′) = L⊗B′ A′ hence the diagram

ModD′ //

��

ModD ×ModC ModC′

��
ModB′ // ModB ×ModA ModA′

is commutative. In the following we will write (N,M ′, φ) for an object of ModD×ModC
ModC′ , i.e., N is a D-module, M ′ is an C ′-module and φ : N ⊗B A → M ′ ⊗A′ A
is an isomorphism of C-modules. However, it is often more convenient think of φ
as a D-linear map φ : N → M ′/IM ′ which induces an isomorphism N ⊗B A →
M ′ ⊗A′ A = M ′/IM ′.

Lemma 15.7.2.08KM In Situation 15.7.1 the functor (15.7.1.1) has a right adjoint, namely
the functor

F : (N,M ′, φ) 7−→ N ×φ,M M ′

where M = M ′/IM ′. Moreover, the composition of F with (15.7.1.1) is the identity
functor on ModD ×ModC ModC′ . In other words, setting N ′ = N ×φ,M M ′ we have
N ′ ⊗D′ D = N and N ′ ⊗D′ C ′ = M ′.

Proof. The adjointness statement follows from the more general Lemma 15.5.4. The
final assertion follows from the corresponding assertion of Lemma 15.6.4 because
N ′ ⊗D′ D = N ′ ⊗D′ D′ ⊗B′ B = N ′ ⊗B′ B and N ′ ⊗D′ C ′ = N ′ ⊗D′ D′ ⊗B′ A′ =
N ′ ⊗B′ A′. □

Lemma 15.7.3.08KN In Situation 15.7.1 the map JD′ → IC ′ is surjective where J =
Ker(B′ → B).

Proof. Since C ′ = D′⊗B′A′ we have that IC ′ is the image of D′⊗B′ I = C ′⊗A′ I →
C ′. As the ring map B′ → A′ induces an isomorphism J → I the lemma follows. □

Lemma 15.7.4.08IH Let A,A′, B,B′, C, C ′, D,D′, I,M ′,M,N, φ be as in Lemma 15.7.2.
If N finite over D and M ′ finite over C ′, then N ′ = N ×φ,M M ′ is finite over D′.

1But D′ → D ×C C′ is surjective by Lemma 15.6.5.
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Proof. Recall that D′ → D ×C C ′ is surjective by Lemma 15.6.5. Observe that
N ′ = N ×φ,M M ′ is a module over D ×C C ′. We can apply Lemma 15.6.7 to
the data C,C ′, D,D′, IC ′,M ′,M,N, φ to see that N ′ = N ×φ,M M ′ is finite over
D ×C C ′. Thus it is finite over D′. □

Lemma 15.7.5.07RW With A,A′, B,B′, C, C ′, D,D′, I as in Situation 15.7.1.
(1) Let (N,M ′, φ) be an object of ModD ×ModC ModC′ . If M ′ is flat over A′

and N is flat over B, then N ′ = N ×φ,M M ′ is flat over B′.
(2) If L′ is a D′-module flat over B′, then L′ = (L⊗D′D)×(L⊗D′C) (L⊗D′C ′).
(3) The category of D′-modules flat over B′ is equivalent to the categories of

objects (N,M ′, φ) of ModD×ModC ModC′ with N flat over B and M ′ flat
over A′.

Proof. Part (1) follows from part (1) of Lemma 15.6.8.

Part (2) follows from part (2) of Lemma 15.6.8 using that L′ ⊗D′ D = L′ ⊗B′ B,
L′⊗D′ C ′ = L′⊗B′ A′, and L′⊗D′ C = L′⊗B′ A, see discussion in Situation 15.7.1.

Part (3) is an immediate consequence of (1) and (2). □

The following lemma is a good deal more interesting than its counter part in the
absolute case (Lemma 15.6.9), although the proof is essentially the same.

Lemma 15.7.6.08KP Let A,A′, B,B′, C, C ′, D,D′, I,M ′,M,N, φ be as in Lemma 15.7.2.
If

(1) N is finitely presented over D and flat over B,
(2) M ′ finitely presented over C ′ and flat over A′, and
(3) the ring map B′ → D′ factors as B′ → D′′ → D′ with B′ → D′′ flat and

D′′ → D′ of finite presentation,
then N ′ = N ×M M ′ is finitely presented over D′.

Proof. Choose a surjection D′′′ = D′′[x1, . . . , xn]→ D′ with finitely generated ker-
nel J . By Algebra, Lemma 10.36.23 it suffices to show that N ′ is finitely presented
as a D′′′-module. Moreover, D′′′ ⊗B′ B → D′ ⊗B′ B = D and D′′′ ⊗B′ A′ →
D′ ⊗B′ A′ = C ′ are surjections whose kernels are generated by the image of J ,
hence N is a finitely presented D′′′ ⊗B′ B-module and M ′ is a finitely presented
D′′′ ⊗B′ A′-module by Algebra, Lemma 10.36.23 again. Thus we may replace D′

by D′′′ and D by D′′′ ⊗B′ B, etc. Since D′′′ is flat over B′, it follows that we may
assume that B′ → D′ is flat.

Assume B′ → D′ is flat. By Lemma 15.7.4 the module N ′ is finite over D′. Choose a
surjection (D′)⊕n → N ′ with kernel K ′. By base change we obtain maps D⊕n → N ,
(C ′)⊕n →M ′, and C⊕n →M with kernels KD, KC′ , and KC . There is a canonical
map

K ′ −→ KD ×KC KC′

On the other hand, since N ′ = N ×M M ′ and D′ = D ×C C ′ (by Lemma 15.6.8;
applied to the flat B′-module D′) there is also a canonical map KD×KC KC′ → K ′

inverse to the displayed arrow. Hence the displayed map is an isomorphism. By
Algebra, Lemma 10.5.3 the modules KD and KC′ are finite. We conclude from
Lemma 15.7.4 that K ′ is a finite D′-module provided that KD → KC and KC′ →
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KC induce isomorphisms KD ⊗B A = KC = KC′ ⊗A′ A. This is true because the
flatness assumptions implies the sequences

0→ KD → D⊕n → N → 0 and 0→ KC′ → (C ′)⊕n →M ′ → 0
stay exact upon tensoring, see Algebra, Lemma 10.39.12. □

Lemma 15.7.7.08KQ Let A,A′, B,B′, I be as in Situation 15.6.1. Let (D,C ′, φ) be a
system consisting of an B-algebraD, a A′-algebra C ′ and an isomorphismD⊗BA→
C ′/IC ′ = C. Set D′ = D ×C C ′ (as in Lemma 15.6.4). Then

(1) B′ → D′ is finite type if and only if B → D and A′ → C ′ are finite type,
(2) B′ → D′ is flat if and only if B → D and A′ → C ′ are flat,
(3) B′ → D′ is flat and of finite presentation if and only if B → D and

A′ → C ′ are flat and of finite presentation,
(4) B′ → D′ is smooth if and only if B → D and A′ → C ′ are smooth,
(5) B′ → D′ is étale if and only if B → D and A′ → C ′ are étale.

Moreover, if D′ is a flat B′-algebra, then D′ → (D′ ⊗B′ B)×(D′⊗B′A) (D′ ⊗B′ A′)
is an isomorphism. In this way the category of flat B′-algebras is equivalent to the
categories of systems (D,C ′, φ) as above with D flat over B and C ′ flat over A′.
Proof. The implication “⇒” follows from Algebra, Lemmas 10.14.2, 10.39.7, 10.137.4,
and 10.143.3 because we have D′⊗B′ B = D and D′⊗B′ A′ = C ′ by Lemma 15.6.4.
Thus it suffices to prove the implications in the other direction.
Ad (1). Assume D of finite type over B and C ′ of finite type over A′. We will use
the results of Lemma 15.6.4 without further mention. Choose generators x1, . . . , xr
of D over B and generators y1, . . . , ys of C ′ over A′. Using that D = D′ ⊗B′ B
and B′ → B is surjective we can find u1, . . . , ur ∈ D′ mapping to x1, . . . , xr in D.
Using that C ′ = D′⊗B′ A′ we can find v1, . . . , vt ∈ D′ such that yi =

∑
vj⊗a′

ij for
some a′

ij ∈ A′. In particular, the images of vj in C ′ generate C ′ as an A′-algebra.
Set N = r + t and consider the cube of rings

A[x1, . . . , xN ] A′[x1, . . . , xN ]oo

A

ee

A′oo

ff

B[x1, . . . , xN ]

OO

B′[x1, . . . , xN ]

OO

oo

B

OO

ee

B′oo

OO

ff

Observe that the back square is cartesian as well. Consider the ring map
B′[x1, . . . , xN ]→ D′, xi 7→ ui and xr+j 7→ vj .

Then we see that the induced maps B[x1, . . . , xN ]→ D and A′[x1, . . . , xN ]→ C ′ are
surjective, in particular finite. We conclude from Lemma 15.7.4 thatB′[x1, . . . , xN ]→
D′ is finite, which implies that D′ is of finite type over B′ for example by Algebra,
Lemma 10.6.2.
Ad (2). The implication “⇐” follows from Lemma 15.7.5. Moreover, the final
statement follows from the final statement of Lemma 15.7.5.

https://stacks.math.columbia.edu/tag/08KQ
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Ad (3). AssumeB → D andA′ → C ′ are flat and of finite presentation. The flatness
of B′ → D′ we’ve seen in (2). We know B′ → D′ is of finite type by (1). Choose a
surjection B′[x1, . . . , xN ] → D′. By Algebra, Lemma 10.6.3 the ring D is of finite
presentation as a B[x1, . . . , xN ]-module and the ring C ′ is of finite presentation as
a A′[x1, . . . , xN ]-module. By Lemma 15.7.6 we see that D′ is of finite presentation
as a B′[x1, . . . , xN ]-module, i.e., B′ → D′ is of finite presentation.
Ad (4). Assume B → D and A′ → C ′ smooth. By (3) we see that B′ → D′ is flat
and of finite presentation. By Algebra, Lemma 10.137.17 it suffices to check that
D′ ⊗B′ k is smooth for any field k over B′. If the composition J → B′ → k is zero,
then B′ → k factors as B′ → B → k and we see that

D′ ⊗B′ k = D′ ⊗B′ B ⊗B k = D ⊗B k
is smooth as B → D is smooth. If the composition J → B′ → k is nonzero, then
there exists an h ∈ J which does not map to zero in k. Then B′ → k factors as
B′ → B′

h → k. Observe that h maps to zero in B, hence Bh = 0. Thus by Lemma
15.5.3 we have B′

h = A′
h and we get

D′ ⊗B′ k = D′ ⊗B′ B′
h ⊗B′

h
k = C ′

h ⊗A′
h
k

is smooth as A′ → C ′ is smooth.
Ad (5). Assume B → D and A′ → C ′ are étale. By (4) we see that B′ → D′

is smooth. As we can read off whether or not a smooth map is étale from the
dimension of fibres we see that (5) holds (argue as in the proof of (4) to identify
fibres – some details omitted). □

Remark 15.7.8.08KR In Situation 15.7.1. Assume B′ → D′ is of finite presentation and
suppose we are given a D′-module L′. We claim there is a bijective correspondence
between

(1) surjections of D′-modules L′ → Q′ with Q′ of finite presentation over D′

and flat over B′, and
(2) pairs of surjections of modules (L′ ⊗D′ D → Q1, L

′ ⊗D′ C ′ → Q2) with
(a) Q1 of finite presentation over D and flat over B,
(b) Q2 of finite presentation over C ′ and flat over A′,
(c) Q1 ⊗D C = Q2 ⊗C′ C as quotients of L′ ⊗D′ C.

The correspondence between these is given by Q 7→ (Q1, Q2) with Q1 = Q ⊗D′ D
and Q2 = Q⊗D′ C ′. And for the converse we use Q = Q1 ×Q12 Q2 where Q12 the
common quotient Q1 ⊗D C = Q2 ⊗C′ C of L′ ⊗D′ C. As quotient map we use

L′ −→ (L′ ⊗D′ D)×(L′⊗D′C) (L′ ⊗D′ C ′) −→ Q1 ×Q12 Q2 = Q

where the first arrow is surjective by Lemma 15.6.5 and the second by Lemma
15.6.6. The claim follows by Lemmas 15.7.5 and 15.7.6.

15.8. Fitting ideals

07Z6 The Fitting ideals of a finite module are the ideals determined by the construction
of Lemma 15.8.2.

Lemma 15.8.1.07Z7 Let R be a ring. Let A be an n×m matrix with coefficients in R.
Let Ir(A) be the ideal generated by the r× r-minors of A with the convention that
I0(A) = R and Ir(A) = 0 if r > min(n,m). Then

(1) I0(A) ⊃ I1(A) ⊃ I2(A) ⊃ . . .,

https://stacks.math.columbia.edu/tag/08KR
https://stacks.math.columbia.edu/tag/07Z7
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(2) if B is an (n + n′) × m matrix, and A is the first n rows of B, then
Ir+n′(B) ⊂ Ir(A),

(3) if C is an n× n matrix then Ir(CA) ⊂ Ir(A).
(4) If A is a block matrix (

A1 0
0 A2

)
then Ir(A) =

∑
r1+r2=r Ir1(A1)Ir2(A2).

(5) Add more here.

Proof. Omitted. (Hint: Use that a determinant can be computed by expanding
along a column or a row.) □

Lemma 15.8.2.07Z8 Let R be a ring. Let M be a finite R-module. Choose a presentation⊕
j∈J

R −→ R⊕n −→M −→ 0.

of M . Let A = (aij)i=1,...,n,j∈J be the matrix of the map
⊕

j∈J R → R⊕n. The
ideal Fitk(M) generated by the (n− k)× (n− k) minors of A is independent of the
choice of the presentation.

Proof. Let K ⊂ R⊕n be the kernel of the surjection R⊕n →M . Pick z1, . . . , zn−k ∈
K and write zj = (z1j , . . . , znj). Another description of the ideal Fitk(M) is that
it is the ideal generated by the (n− k)× (n− k) minors of all the matrices (zij) we
obtain in this way.
Suppose we change the surjection into the surjection R⊕n+n′ →M with kernel K ′

where we use the original map on the first n standard basis elements of R⊕n+n′

and 0 on the last n′ basis vectors. Then the corresponding ideals are the same.
Namely, if z1, . . . , zn−k ∈ K as above, let z′

j = (z1j , . . . , znj , 0, . . . , 0) ∈ K ′ for
j = 1, . . . , n− k and z′

n+j′ = (0, . . . , 0, 1, 0, . . . , 0) ∈ K ′. Then we see that the ideal
of (n−k)× (n−k) minors of (zij) agrees with the ideal of (n+n′−k)× (n+n′−k)
minors of (z′

ij). This gives one of the inclusions. Conversely, given z′
1, . . . , z

′
n+n′−k

in K ′ we can project these to R⊕n to get z1, . . . , zn+n′−k in K. By Lemma 15.8.1
we see that the ideal generated by the (n + n′ − k) × (n + n′ − k) minors of (z′

ij)
is contained in the ideal generated by the (n − k) × (n − k) minors of (zij). This
gives the other inclusion.
Let R⊕m →M be another surjection with kernel L. By Schanuel’s lemma (Algebra,
Lemma 10.109.1) and the results of the previous paragraph, we may assume m = n
and that there is an isomorphism R⊕n → R⊕m commuting with the surjections to
M . Let C = (cli) be the (invertible) matrix of this map (it is a square matrix as
n = m). Then given z′

1, . . . , z
′
n−k ∈ L as above we can find z1, . . . , zn−k ∈ K with

z′
1 = Cz1, . . . , z

′
n−k = Czn−k. By Lemma 15.8.1 we get one of the inclusions. By

symmetry we get the other. □

Definition 15.8.3.07Z9 Let R be a ring. Let M be a finite R-module. Let k ≥ 0.
The kth Fitting ideal of M is the ideal Fitk(M) constructed in Lemma 15.8.2. Set
Fit−1(M) = 0.

Since the Fitting ideals are the ideals of minors of a big matrix (numbered in reverse
ordering from the ordering in Lemma 15.8.1) we see that

0 = Fit−1(M) ⊂ Fit0(M) ⊂ Fit1(M) ⊂ . . . ⊂ Fitt(M) = R

https://stacks.math.columbia.edu/tag/07Z8
https://stacks.math.columbia.edu/tag/07Z9
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for some t≫ 0. Here are some basic properties of Fitting ideals.
Lemma 15.8.4.07ZA Let R be a ring. Let M be a finite R-module.

(1) If M can be generated by n elements, then Fitn(M) = R.
(2) Given a second finite R-module M ′ we have

Fitl(M ⊕M ′) =
∑

k+k′=l
Fitk(M)Fitk′(M ′)

(3) If R→ R′ is a ring map, then Fitk(M ⊗R R′) is the ideal of R′ generated
by the image of Fitk(M).

(4) If M is of finite presentation, then Fitk(M) is a finitely generated ideal.
(5) If M →M ′ is a surjection, then Fitk(M) ⊂ Fitk(M ′).
(6) We have Fit0(M) ⊂ AnnR(M).
(7) We have V (Fit0(M)) = Supp(M).
(8) Add more here.

Proof. Part (1) follows from the fact that I0(A) = R in Lemma 15.8.1.
Part (2) follows form the corresponding statement in Lemma 15.8.1.
Part (3) follows from the fact that ⊗RR′ is right exact, so the base change of a
presentation of M is a presentation of M ⊗R R′.

Proof of (4). Let R⊕m A−→ R⊕n →M → 0 be a presentation. Then Fitk(M) is the
ideal generated by the n− k × n− k minors of the matrix A.
Part (5) is immediate from the definition.
Proof of (6). Choose a presentation of M with matrix A as in Lemma 15.8.2. Let
J ′ ⊂ J be a subset of cardinality n. It suffices to show that f = det(aij)i=1,...,n,j∈J′

annihilates M . This is clear because the cokernel of

R⊕n A′=(aij)i=1,...,n,j∈J′
−−−−−−−−−−−−−−→ R⊕n →M → 0

is killed by f as there is a matrix B with A′B = f1n×n.
Proof of (7). Choose a presentation of M with matrix A as in Lemma 15.8.2. By
Nakayama’s lemma (Algebra, Lemma 10.20.1) we have

Mp ̸= 0⇔M ⊗R κ(p) ̸= 0⇔ rank(image A in κ(p)) < n

Clearly Fit0(M) exactly cuts out the set of primes with this property. □

Example 15.8.5.07ZB Let R be a ring. The Fitting ideals of the finite free module
M = R⊕n are Fitk(M) = 0 for k < n and Fitk(M) = R for k ≥ n.
Lemma 15.8.6.07ZC Let R be a ring. Let M be a finite R-module. Let k ≥ 0. Let
p ⊂ R be a prime ideal. The following are equivalent

(1) Fitk(M) ̸⊂ p,
(2) dimκ(p) M ⊗R κ(p) ≤ k,
(3) Mp can be generated by k elements over Rp, and
(4) Mf can be generated by k elements over Rf for some f ∈ R, f ̸∈ p.

Proof. By Nakayama’s lemma (Algebra, Lemma 10.20.1) we see that Mf can be
generated by k elements over Rf for some f ∈ R, f ̸∈ p if M ⊗R κ(p) can be
generated by k elements. Hence (2), (3), and (4) are equivalent. Using Lemma
15.8.4 part (3) this reduces the problem to the case where R is a field and p = (0).
In this case the result follows from Example 15.8.5. □

https://stacks.math.columbia.edu/tag/07ZA
https://stacks.math.columbia.edu/tag/07ZB
https://stacks.math.columbia.edu/tag/07ZC
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Lemma 15.8.7.07ZD Let R be a ring. Let M be a finite R-module. Let r ≥ 0. The
following are equivalent

(1) M is finite locally free of rank r (Algebra, Definition 10.78.1),
(2) Fitr−1(M) = 0 and Fitr(M) = R, and
(3) Fitk(M) = 0 for k < r and Fitk(M) = R for k ≥ r.

Proof. It is immediate that (2) is equivalent to (3) because the Fitting ideals form an
increasing sequence of ideals. Since the formation of Fitk(M) commutes with base
change (Lemma 15.8.4) we see that (1) implies (2) by Example 15.8.5 and glueing
results (Algebra, Section 10.23). Conversely, assume (2). By Lemma 15.8.6 we may
assume that M is generated by r elements. Thus a presentation

⊕
j∈J R→ R⊕r →

M → 0. But now the assumption that Fitr−1(M) = 0 implies that all entries of
the matrix of the map

⊕
j∈J R→ R⊕r are zero. Thus M is free. □

Lemma 15.8.8.080Z Let R be a local ring. Let M be a finite R-module. Let k ≥ 0.
Assume that Fitk(M) = (f) for some f ∈ R. Let M ′ be the quotient of M by
{x ∈M | fx = 0}. Then M ′ can be generated by k elements.

Proof. Choose generators x1, . . . , xn ∈ M corresponding to the surjection R⊕n →
M . Since R is local if a set of elements E ⊂ (f) generates (f), then some e ∈ E
generates (f), see Algebra, Lemma 10.20.1. Hence we may pick z1, . . . , zn−k in the
kernel of R⊕n →M such that some (n−k)×(n−k) minor of the n×(n−k) matrix
A = (zij) generates (f). After renumbering the xi we may assume the first minor
det(zij)1≤i,j≤n−k generates (f), i.e., det(zij)1≤i,j≤n−k = uf for some unit u ∈ R.
Every other minor is a multiple of f . By Algebra, Lemma 10.15.6 there exists a
n− k × n− k matrix B such that

AB = f

(
u1n−k×n−k

C

)
for some matrix C with coefficients in R. This implies that for every i ≤ n− k the
element yi = uxi +

∑
j cjixj is annihilated by f . Since M/

∑
Ryi is generated by

the images of xn−k+1, . . . , xn we win. □

Lemma 15.8.9.0F7M Let R be a ring. LetM be a finitely presented R-module. Let k ≥ 0.
Assume that Fitk(M) = (f) for some nonzerodivisor f ∈ R and Fitk−1(M) = 0.
Then

(1) M has projective dimension ≤ 1,
(2) M ′ = Ker(f : M →M) is the f -power torsion submodule of M ,
(3) M ′ has projective dimension ≤ 1,
(4) M/M ′ is finite locally free of rank k, and
(5) M ∼= M/M ′ ⊕M ′.

Proof. Choose a presentation

R⊕m A−→ R⊕n →M → 0
for some matrix A with coefficients in R.
We first prove the lemma when R is local. Set M ′ = {x ∈ M | fx = 0} as in
the statement. By Lemma 15.8.8 we can choose x1, . . . , xk ∈ M which generate
M/M ′. Then x1, . . . , xk generate Mf = (M/M ′)f . Hence, if there is a relation∑
aixi = 0 in M , then we see that a1, . . . , ak map to zero in Rf since otherwise

Fitk−1(M)Rf = Fitk−1(Mf ) would be nonzero. Since f is a nonzerodivisor, we

https://stacks.math.columbia.edu/tag/07ZD
https://stacks.math.columbia.edu/tag/080Z
https://stacks.math.columbia.edu/tag/0F7M


15.9. LIFTING 1192

conclude a1 = . . . = ak = 0. Thus M ∼= R⊕k ⊕M ′. After a change of basis in our
presentation above, we may assume the first n − k basis vectors of R⊕n map into
the summand M ′ of M and the last k-basis vectors of R⊕n map to basis elements
of the summand R⊕k of M . Having done so, the last k rows of the matrix A vanish.
In this way we see that, replacing M by M ′, k by 0, n by n − k, and A by the
submatrix where we delete the last k rows, we reduce to the case discussed in the
next paragraph.
Assume R is local, k = 0, and M annihilated by f . Now the 0th Fitting ideal of M
is (f) and is generated by the n×n minors of the matrix A of size n×m. (This in
particular implies m ≥ n.) Since R is local, some n× n minor of A is uf for a unit
u ∈ R. After renumbering we may assume this minor is the first one. Moreover,
we know all other n×n minors of A are divisible by f . Write A = (A1A2) in block
form where A1 is an n × n matrix and A2 is an n × (m − n) matrix. By Algebra,
Lemma 10.15.6 applied to the transpose of A (!) we find there exists an n × n
matrix B such that

BA = B(A1A2) = f
(
u1n×n C

)
for some n × (m − n) matrix C with coefficients in R. Then we first conclude
BA1 = fu1n×n. Thus

BA2 = fC = u−1fuC = u−1BA1C

Since the determinant of B is a nonzerodivisor we conclude that A2 = u−1A1C.
Therefore the image of A is equal to the image of A1 which is isomorphic to R⊕n be-
cause the determinant of A1 is a nonzerodivisor. Hence M has projective dimension
≤ 1.
We return to the case of a general ring R. By the local case we see that M/M ′

is a finite locally free module of rank k, see Algebra, Lemma 10.78.2. Hence the
extension 0 → M ′ → M → M/M ′ → 0 splits. It follows that M ′ is a finitely
presented module. Choose a short exact sequence 0 → K → R⊕a → M ′ → 0.
Then K is a finite R-module, see Algebra, Lemma 10.5.3. By the local case we see
that Kp

∼= R⊕a
p for all primes. Hence by Algebra, Lemma 10.78.2 again we see that

K is finite locally free of rank a. It follows that M ′ has projective dimension ≤ 1
and the lemma is proved. □

15.9. Lifting

07LW In this section we collection some lemmas concerning lifting statements of the fol-
lowing kind: If A is a ring and I ⊂ A is an ideal, and ξ is some kind of structure
over A/I, then we can lift ξ to a similar kind of structure ξ over A or over some
étale extension of A. Here are some types of structure for which we have already
proved some results:

(1) idempotents, see Algebra, Lemmas 10.32.6 and 10.32.7,
(2) projective modules, see Algebra, Lemmas 10.77.5 and 10.77.6,
(3) finite stably free modules, see Lemma 15.3.3,
(4) basis elements, see Algebra, Lemmas 10.101.1 and 10.101.3,
(5) ring maps, i.e., proving certain algebras are formally smooth, see Algebra,

Lemma 10.138.4, Proposition 10.138.13, and Lemma 10.138.17,
(6) syntomic ring maps, see Algebra, Lemma 10.136.18,
(7) smooth ring maps, see Algebra, Lemma 10.137.20,
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(8) étale ring maps, see Algebra, Lemma 10.143.10,
(9) factoring polynomials, see Algebra, Lemma 10.143.13, and

(10) Algebra, Section 10.153 discusses henselian local rings.
The interested reader will find more results of this nature in Smoothing Ring Maps,
Section 16.3 in particular Smoothing Ring Maps, Proposition 16.3.2.

Let A be a ring and let I ⊂ A be an ideal. Let ξ be some kind of structure
over A/I. In the following lemmas we look for étale ring maps A → A′ which
induce isomorphisms A/I → A′/IA′ and objects ξ′ over A′ lifting ξ. A general
remark is that given étale ring maps A → A′ → A′′ such that A/I ∼= A′/IA′

and A′/IA′ ∼= A′′/IA′′ the composition A → A′′ is also étale (Algebra, Lemma
10.143.3) and also satisfies A/I ∼= A′′/IA′′. We will frequently use this in the
following lemmas without further mention. Here is a trivial example of the type of
result we are looking for.

Lemma 15.9.1.07LX Let A be a ring, let I ⊂ A be an ideal, let u ∈ A/I be an invertible
element. There exists an étale ring map A → A′ which induces an isomorphism
A/I → A′/IA′ and an invertible element u′ ∈ A′ lifting u.

Proof. Choose any lift f ∈ A of u and set A′ = Af and u the image of f in A′. □

Lemma 15.9.2.07LY Let A be a ring, let I ⊂ A be an ideal, let e ∈ A/I be an idempotent.
There exists an étale ring map A → A′ which induces an isomorphism A/I →
A′/IA′ and an idempotent e′ ∈ A′ lifting e.

Proof. Choose any lift x ∈ A of e. Set

A′ = A[t]/(t2 − t)
[

1
t− 1 + x

]
.

The ring map A→ A′ is étale because (2t−1)dt = 0 and (2t−1)(2t−1) = 1 which
is invertible. We have A′/IA′ = A/I[t]/(t2− t)[ 1

t−1+e ] ∼= A/I the last map sending
t to e which works as e is a root of t2 − t. This also shows that setting e′ equal to
the class of t in A′ works. □

Lemma 15.9.3.07LZ Let A be a ring, let I ⊂ A be an ideal. Let Spec(A/I) =
∐
j∈J U j

be a finite disjoint open covering. Then there exists an étale ring map A → A′

which induces an isomorphism A/I → A′/IA′ and a finite disjoint open covering
Spec(A′) =

∐
j∈J U

′
j lifting the given covering.

Proof. This follows from Lemma 15.9.2 and the fact that open and closed subsets
of Spectra correspond to idempotents, see Algebra, Lemma 10.21.3. □

Lemma 15.9.4.07M0 Let A→ B be a ring map and J ⊂ B an ideal. If A→ B is étale
at every prime of V (J), then there exists a g ∈ B mapping to an invertible element
of B/J such that A′ = Bg is étale over A.

Proof. The set of points of Spec(B) where A → B is not étale is a closed subset
of Spec(B), see Algebra, Definition 10.143.1. Write this as V (J ′) for some ideal
J ′ ⊂ B. Then V (J ′) ∩ V (J) = ∅ hence J + J ′ = B by Algebra, Lemma 10.17.2.
Write 1 = f + g with f ∈ J and g ∈ J ′. Then g works. □

Next we have three lemmas saying we can lift factorizations of polynomials.

https://stacks.math.columbia.edu/tag/07LX
https://stacks.math.columbia.edu/tag/07LY
https://stacks.math.columbia.edu/tag/07LZ
https://stacks.math.columbia.edu/tag/07M0
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Lemma 15.9.5.0ALH Let A be a ring, let I ⊂ A be an ideal. Let f ∈ A[x] be a monic
polynomial. Let f = gh be a factorization of f in A/I[x] such that g and h are
monic and generate the unit ideal in A/I[x]. Then there exists an étale ring map
A→ A′ which induces an isomorphism A/I → A′/IA′ and a factorization f = g′h′

in A′[x] with g′, h′ monic lifting the given factorization over A/I.
Proof. We will deduce this from results on the universal factorization proved earlier;
however, we encourage the reader to find their own proof not using this trick. Say
deg(g) = n and deg(h) = m so that deg(f) = n+m. Write f = xn+m+

∑
αix

n+m−i

for some α1, . . . , αn+m ∈ A. Consider the ring map
R = Z[a1, . . . , an+m] −→ S = Z[b1, . . . , bn, c1, . . . , cm]

of Algebra, Example 10.143.12. Let R→ A be the ring map which sends ai to αi.
Set

B = A⊗R S
By construction the image fB of f in B[x] factors, say fB = gBhB with gB =
xn +

∑
(1 ⊗ bi)xn−i and similarly for hB . Write g = xn +

∑
βix

n−i and h =
xm +

∑
γix

m−i. The A-algebra map
B −→ A/I, 1⊗ bi 7→ βi, 1⊗ ci 7→ γi

maps gB and hB to g and h in A/I[x]. The displayed map is surjective; denote
J ⊂ B its kernel. From the discussion in Algebra, Example 10.143.12 it is clear
that A → B is etale at all points of V (J) ⊂ Spec(B). Choose g ∈ B as in Lemma
15.9.4 and consider the A-algebra Bg. Since g maps to a unit in B/J = A/I we
obtain also a map Bg/IBg → A/I of A/I-algebras. Since A/I → Bg/IBg is étale,
also Bg/IBg → A/I is étale (Algebra, Lemma 10.143.8). Hence there exists an
idempotent e ∈ Bg/IBg such that A/I = (Bg/IBg)e (Algebra, Lemma 10.143.9).
Choose a lift h ∈ Bg of e. Then A → A′ = (Bg)h with factorization given by the
image of the factorization fB = gBhB in A′ is a solution to the problem posed by
the lemma. □

The assumption on the leading coefficient in the following lemma will be removed
in Lemma 15.9.7.
Lemma 15.9.6.07M1 Let A be a ring, let I ⊂ A be an ideal. Let f ∈ A[x] be a monic
polynomial. Let f = gh be a factorization of f in A/I[x] and assume

(1) the leading coefficient of g is an invertible element of A/I, and
(2) g, h generate the unit ideal in A/I[x].

Then there exists an étale ring map A→ A′ which induces an isomorphism A/I →
A′/IA′ and a factorization f = g′h′ in A′[x] lifting the given factorization over A/I.
Proof. Applying Lemma 15.9.1 we may assume that the leading coefficient of g is
the reduction of an invertible element u ∈ A. Then we may replace g by u−1g and
h by uh. Thus we may assume that g is monic. Since f is monic we conclude that
h is monic too. In this case the result follows from Lemma 15.9.5. □

Lemma 15.9.7.07M2 Let A be a ring, let I ⊂ A be an ideal. Let f ∈ A[x] be a monic
polynomial. Let f = gh be a factorization of f in A/I[x] and assume that g, h
generate the unit ideal in A/I[x]. Then there exists an étale ring map A → A′

which induces an isomorphism A/I → A′/IA′ and a factorization f = g′h′ in A′[x]
lifting the given factorization over A/I.

https://stacks.math.columbia.edu/tag/0ALH
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Proof. Say f = xd + a1x
d−1 + . . . + ad has degree d. Write g =

∑
bjx

j and
h =

∑
cjx

j . Then we see that 1 =
∑
bjcd−j . It follows that Spec(A/I) is covered

by the standard opens D(bjcd−j). However, each point p of Spec(A/I) is contained
in at most one of these as by looking at the induced factorization of f over the field
κ(p) we see that deg(g mod p) + deg(h mod p) = d. Hence our open covering is a
disjoint open covering. Applying Lemma 15.9.3 (and replacing A by A′) we see that
we may assume there is a corresponding disjoint open covering of Spec(A). This
disjoint open covering corresponds to a product decomposition of A, see Algebra,
Lemma 10.24.3. It follows that

A = A0 × . . .×Ad, I = I0 × . . .× Id,
where the image of g, resp. h in Aj/Ij has degree j, resp. d−j with invertible leading
coefficient. Clearly, it suffices to prove the result for each factor Aj separatedly.
Hence the lemma follows from Lemma 15.9.6. □

Lemma 15.9.8.07M3 Let R → S be a ring map. Let I ⊂ R be an ideal of R and let
J ⊂ S be an ideal of S. If the closure of the image of V (J) in Spec(R) is disjoint
from V (I), then there exists an element f ∈ R which maps to 1 in R/I and to an
element of J in S.

Proof. Let I ′ ⊂ R be an ideal such that V (I ′) is the closure of the image of V (J).
Then V (I) ∩ V (I ′) = ∅ by assumption and hence I + I ′ = R by Algebra, Lemma
10.17.2. Write 1 = g + f with g ∈ I and f ∈ I ′. We have V (f ′) ⊃ V (J) where f ′

is the image of f in S. Hence (f ′)n ∈ J for some n, see Algebra, Lemma 10.17.2.
Replacing f by fn we win. □

Lemma 15.9.9.09XG Let I be an ideal of a ring A. Let A→ B be an integral ring map.
Let b ∈ B map to an idempotent in B/IB. Then there exists a monic f ∈ A[x]
with f(b) = 0 and f mod I = xd(x− 1)d for some d ≥ 1.

Proof. Observe that z = b2 − b is an element of IB. By Algebra, Lemma 10.38.4
there exist a monic polynomial g(x) = xd +

∑
ajx

j of degree d with aj ∈ I such
that g(z) = 0 in B. Hence f(x) = g(x2 − x) ∈ A[x] is a monic polynomial such
that f(x) ≡ xd(x− 1)d mod I and such that f(b) = 0 in B. □

Lemma 15.9.10.07M4 Let A be a ring, let I ⊂ A be an ideal. Let A → B be an
integral ring map. Let e ∈ B/IB be an idempotent. Then there exists an étale
ring map A→ A′ which induces an isomorphism A/I → A′/IA′ and an idempotent
e′ ∈ B ⊗A A′ lifting e.

Proof. Choose an element y ∈ B lifting e. Choose f ∈ A[x] as in Lemma 15.9.9
for y. By Lemma 15.9.6 we can find an étale ring map A → A′ which induces an
isomorphism A/I → A′/IA′ and such that f = gh in A[x] with g(x) = xd mod IA′

and h(x) = (x − 1)d mod IA′. After replacing A by A′ we may assume that the
factorization is defined over A. In that case we see that b1 = g(y) ∈ B is a lift
of ed = e and b2 = h(y) ∈ B is a lift of (e − 1)d = (−1)d(1 − e)d = (−1)d(1 − e)
and moreover b1b2 = 0. Thus (b1, b2)B/IB = B/IB and V (b1, b2) ⊂ Spec(B) is
disjoint from V (IB). Since Spec(B) → Spec(A) is closed (see Algebra, Lemmas
10.36.22 and 10.41.6) we can find an a ∈ A which maps to an invertible element of
A/I whose image in B lies in (b1, b2), see Lemma 15.9.8. After replacing A by the
localization Aa we get that (b1, b2) = B. Then Spec(B) = D(b1) ⨿D(b2); disjoint
union because b1b2 = 0 and covers Spec(B) because (b1, b2) = B. Let e ∈ B be
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the idempotent corresponding to the open and closed subset D(b1), see Algebra,
Lemma 10.21.3. Since b1 is a lift of e and b2 is a lift of ±(1− e) we conclude that
e is a lift of e by the uniqueness statement in Algebra, Lemma 10.21.3. □

Lemma 15.9.11.07M5 Let A be a ring, let I ⊂ A be an ideal. Let P be a finite
projective A/I-module. Then there exists an étale ring map A→ A′ which induces
an isomorphism A/I → A′/IA′ and a finite projective A′-module P ′ lifting P .
Proof. We can choose an integer n and a direct sum decomposition (A/I)⊕n =
P ⊕K for some R/I-module K. Choose a lift φ : A⊕n → A⊕n of the projector p
associated to the direct summand P . Let f ∈ A[x] be the characteristic polynomial
of φ. Set B = A[x]/(f). By Cayley-Hamilton (Algebra, Lemma 10.16.1) there is a
map B → EndA(A⊕n) mapping x to φ. For every prime p ⊃ I the image of f in
κ(p) is (x − 1)rxn−r where r is the dimension of P ⊗A/I κ(p). Hence (x − 1)nxn
maps to zero in B ⊗A κ(p) for all p ⊃ I. Thus x(1− x) is contained in every prime
ideal of B/IB. Hence xN (1 − x)N is contained in IB for some N ≥ 1. It follows
that xN + (1− x)N is a unit in B/IB and that

e = image of xN

xN + (1− x)N in B/IB

is an idempotent as both assertions hold in Z[x]/(xN (x− 1)N ). The image of e in
EndA/I((A/I)⊕n) is

pN

pN + (1− p)N
= p

as p is an idempotent. After replacing A by an étale extension A′ as in the lemma,
we may assume there exists an idempotent e ∈ B which maps to e in B/IB, see
Lemma 15.9.10. Then the image of e under the map

B = A[x]/(f) −→ EndA(A⊕n).
is an idempotent element p which lifts p. Setting P = Im(p) we win. □

Lemma 15.9.12.07EV Let A be a ring. Let 0 → K → A⊕m → M → 0 be a sequence
of A-modules. Consider the A-algebra C = Sym∗

A(M) with its presentation α :
A[y1, . . . , ym]→ C coming from the surjection A⊕m →M . Then

NL(α) = (K ⊗A C →
⊕

j=1,...,m
Cdyj)

(see Algebra, Section 10.134) in particular ΩC/A = M ⊗A C.
Proof. Let J = Ker(α). The lemma asserts that J/J2 ∼= K ⊗A C. Note that α
is a homomorphism of graded algebras. We will prove that in degree d we have
(J/J2)d = K ⊗A Cd−1. Note that
Jd = Ker(Symd

A(A⊕m)→ Symd
A(M)) = Im(K ⊗A Symd−1

A (A⊕m)→ Symd
A(A⊕m)),

see Algebra, Lemma 10.13.2. It follows that (J2)d =
∑
a+b=d Ja · Jb is the image of

K ⊗A K ⊗A Symd−2
A (A⊗m)→ Symd

A(A⊕m).
The cokernel of the map K ⊗A Symd−2

A (A⊗m)→ Symd−1
A (A⊕m) is Symd−1

A (M) by
the lemma referenced above. Hence it is clear that (J/J2)d = Jd/(J2)d is equal to
Coker(K ⊗A K ⊗A Symd−2

A (A⊗m)→ K ⊗A Symd−1
A (A⊗m)) = K ⊗A Symd−1

A (M)
= K ⊗A Cd−1

https://stacks.math.columbia.edu/tag/07M5
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as desired. □

Lemma 15.9.13.07M6 Let A be a ring. Let M be an A-module. Then C = Sym∗
A(M) is

smooth over A if and only if M is a finite projective A-module.

Proof. Let σ : C → A be the projection onto the degree 0 part of C. Then
J = Ker(σ) is the part of degree > 0 and we see that J/J2 = M as an A-module.
Hence if A → C is smooth then M is a finite projective A-module by Algebra,
Lemma 10.139.4.

Conversely, assume that M is finite projective and choose a surjection A⊕n → M
with kernel K. Of course the sequence 0 → K → A⊕n → M → 0 is split as M is
projective. In particular we see that K is a finite A-module and hence C is of finite
presentation over A as C is a quotient of A[x1, . . . , xn] by the ideal generated by
K ⊂

⊕
Axi. The computation of Lemma 15.9.12 shows that NLC/A is homotopy

equivalent to (K → M) ⊗A C. Hence NLC/A is quasi-isomorphic to C ⊗A M
placed in degree 0 which means that C is smooth over A by Algebra, Definition
10.137.1. □

Lemma 15.9.14.07M7 Let A be a ring, let I ⊂ A be an ideal. Consider a commutative
diagram

B

!!
A

OO

// A/I

where B is a smooth A-algebra. Then there exists an étale ring map A→ A′ which
induces an isomorphism A/I → A′/IA′ and an A-algebra map B → A′ lifting the
ring map B → A/I.

Proof. Let J ⊂ B be the kernel of B → A/I so that B/J = A/I. By Algebra,
Lemma 10.139.3 the sequence

0→ I/I2 → J/J2 → ΩB/A ⊗B B/J → 0

is split exact. Thus P = J/(J2 + IB) = ΩB/A ⊗B B/J is a finite projective A/I-
module. Choose an integer n and a direct sum decomposition A/I⊕n = P ⊕K. By
Lemma 15.9.11 we can find an étale ring map A→ A′ which induces an isomorphism
A/I → A′/IA′ and a finite projective A-module K which lifts K. We may and do
replace A by A′. Set B′ = B ⊗A Sym∗

A(K). Since A → Sym∗
A(K) is smooth

by Lemma 15.9.13 we see that B → B′ is smooth which in turn implies that
A → B′ is smooth (see Algebra, Lemmas 10.137.4 and 10.137.13). Moreover the
section Sym∗

A(K) → A determines a section B′ → B and we let B′ → A/I be the
composition B′ → B → A/I. Let J ′ ⊂ B′ be the kernel of B′ → A/I. We have
JB′ ⊂ J ′ and B ⊗A K ⊂ J ′. These maps combine to give an isomorphism

(A/I)⊕n ∼= J/J2 ⊕K −→ J ′/((J ′)2 + IB′)

Thus, after replacing B by B′ we may assume that J/(J2 + IB) = ΩB/A ⊗B B/J
is a free A/I-module of rank n.

In this case, choose f1, . . . , fn ∈ J which map to a basis of J/(J2 + IB). Consider
the finitely presented A-algebra C = B/(f1, . . . , fn). Note that we have an exact
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sequence

0→ H1(LC/A)→ (f1, . . . , fn)/(f1, . . . , fn)2 → ΩB/A ⊗B C → ΩC/A → 0

see Algebra, Lemma 10.134.4 (note that H1(LB/A) = 0 and that ΩB/A is finite
projective, in particular flat so the Tor group vanishes). For any prime q ⊃ J of B
the module ΩB/A,q is free of rank n because ΩB/A is finite projective and because
ΩB/A ⊗B B/J is free of rank n (see Algebra, Lemma 10.78.2). By our choice of
f1, . . . , fn the map (

(f1, . . . , fn)/(f1, . . . , fn)2)
q
→ ΩB/A,q

is surjective modulo J . Hence we see that this map of modules over the local ring Cq

has to be an isomorphism (this is because by Nakayama’s Algebra, Lemma 10.20.1
the map is surjective and then for example by Algebra, Lemma 10.16.4 because
((f1, . . . , fn)/(f1, . . . , fn)2)q is generated by n elements the map is injective). Thus
H1(LC/A)q = 0 and ΩC/A,q = 0. By Algebra, Lemma 10.137.12 we see that A→ C
is smooth at the prime q of C corresponding to q. Since ΩC/A,q = 0 it is actually
étale at q. Thus A → C is étale at all primes of C containing JC. By Lemma
15.9.4 we can find an f ∈ C mapping to an invertible element of C/JC such that
A→ Cf is étale. By our choice of f it is still true that Cf/JCf = A/I. The map
Cf/ICf → A/I is surjective and étale by Algebra, Lemma 10.143.8. Hence A/I
is isomorphic to the localization of Cf/ICf at some element g ∈ C, see Algebra,
Lemma 10.143.9. Set A′ = Cfg to conclude the proof. □

15.10. Zariski pairs

0ELX In this section and the next a pair is a pair (A, I) where A is a ring and I ⊂ A
is an ideal. A morphism of pairs (A, I) → (B, J) is a ring map φ : A → B with
φ(I) ⊂ J .

Definition 15.10.1.0ELY A Zariski pair is a pair (A, I) such that I is contained in the
Jacobson radical of A.

Lemma 15.10.2.09XF Let (A, I) be a Zariski pair. Then the map from idempotents of
A to idempotents of A/I is injective.

Proof. An idempotent of a local ring is either 0 or 1. Thus an idempotent is
determined by the set of maximal ideals where it vanishes, by Algebra, Lemma
10.23.1. □

Lemma 15.10.3.0ELZ Let (A, I) be a Zariski pair. Let A→ B be a flat, integral, finitely
presented ring map such that A/I → B/IB is an isomorphism. Then A→ B is an
isomorphism.

Proof. The ring map A → B is finite by Algebra, Lemma 10.36.5. Hence B is
finitely presented as an A-module by Algebra, Lemma 10.36.23. Hence B is a finite
locally free A-module by Algebra, Lemma 10.78.2. Since the module B has rank 1
along V (I) (see rank function described in Algebra, Lemma 10.78.2), and as (A, I)
is a Zariski pair, we conclude that the rank is 1 everywhere. It follows that A→ B
is an isomorphism: it is a pleasant exercise to show that a ring map R → S such
that S is a locally free R-module of rank 1 is an isomorphism (hint: look at local
rings). □
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Lemma 15.10.4.0EM0 Let (A, I) be a Zariski pair. Let A → B be a finite ring map.
Assume

(1) B/IB = B1 ×B2 is a product of A/I-algebras
(2) A/I → B1/IB1 is surjective,
(3) b ∈ B maps to (1, 0) in the product.

Then there exists a monic f ∈ A[x] with f(b) = 0 and f mod I = (x − 1)xd for
some d ≥ 1.

Proof. By Lemma 15.9.10 we can find an étale ring map A → A′ inducing an iso-
morphism A/I → A′/IA′ such that B′ = B⊗AA′ contains an idempotent e′ lifting
the image of b in B′/IB′. Consider the corresponding A′-algebra decomposition

B′ = B′
1 ×B′

2

which is compatible with the one given in the lemma upon reduction modulo I.
The map A′ → B′

1 is surjective modulo IA′. By Nakayama’s lemma (Algebra,
Lemma 10.20.1) we can find i ∈ IA′ such that after replacing A′ by A′

1+i the map
A′ → B′

1 is surjective. Observe that the image b′
1 ∈ B′

1 of b satisfies b′
1 − 1 ∈ IB′

1.
Thus we may pick a′ ∈ IA′ mapping to b′

1 − 1. On the other hand, the image
b′

2 ∈ B′
2 of b is in IB′

2. By Algebra, Lemma 10.38.4 there exist a monic polynomial
g(x) = xd +

∑
a′
jx
j of degree d with a′

j ∈ IA′ such that g(b′
2) = 0 in B′

2. Thus
the image b′ = (b′

1, b
′
2) ∈ B′ of b is a root of the polynomial (x − 1 − a′)g(x). We

conclude that
(b′ − 1)(b′)d ∈

∑
j=0,...,d

IA′ · (b′)j

We claim that this implies

(b− 1)bd ∈
∑

j=0,...,d
I · bj

in B. For this it is enough to see that the ring map A → A′ is faithfully flat,
because the condition is that the image of (b− 1)bd is zero in B/

∑
j=0,...,d Ib

j (use
Algebra, Lemma 10.82.11). The map A → A′ flat because it is étale (Algebra,
Lemma 10.143.3). On the other hand, the induced map on spectra is open (see
Algebra, Proposition 10.41.8 and use previous lemma referenced) and the image
contains V (I). Since I is contained in the Jacobson radical of A we conclude. □

Lemma 15.10.5.0GED Let (A, I) be a Zariski pair with A Noetherian. Let f ∈ I. Then
Af is a Jacobson ring.

Proof. We will use the criterion of Algebra, Lemma 10.61.4. Let p ⊂ A be a
prime ideal such that pf = pAf is prime and not maximal. We have to show that
Af/pf = (A/p)f has infinitely many prime ideals. After replacing A by A/p we
may assume A is a domain, dimAf > 0, and our goal is to show that Spec(Af ) is
infinite. Since dimAf > 0 we can find a nonzero prime ideal q ⊂ A not containing
f . Choose a maximal ideal m ⊂ A containing q. Since (A, I) is a Zariski pair, we
see I ⊂ m. Hence m ̸= q and dim(Am) > 1. Hence Spec((Am)f ) ⊂ Spec(Af ) is
infinite by Algebra, Lemma 10.61.1 and we win. □

15.11. Henselian pairs

09XD Some of the results of Section 15.9 may be viewed as results about henselian pairs.
In this section a pair is a pair (A, I) where A is a ring and I ⊂ A is an ideal. A
morphism of pairs (A, I) → (B, J) is a ring map φ : A → B with φ(I) ⊂ J . As
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in Section 15.9 given an object ξ over A we denote ξ the “base change” of ξ to an
object over A/I (provided this makes sense).

Definition 15.11.1.09XE A henselian pair is a pair (A, I) satisfying
(1) I is contained in the Jacobson radical of A, and
(2) for any monic polynomial f ∈ A[T ] and factorization f = g0h0 with

g0, h0 ∈ A/I[T ] monic generating the unit ideal in A/I[T ], there exists a
factorization f = gh in A[T ] with g, h monic and g0 = g and h0 = h.

Observe that if A is a local ring and I = m is the maximal ideal, then (A, I) is
a henselian pair if and only if A is a henselian local ring, see Algebra, Lemma
10.153.3. In Lemma 15.11.6 we give a number of equivalent characterizations of
henselian pairs (and we will add more as time goes on).

Lemma 15.11.2.0ALI Let (A, I) be a pair with I locally nilpotent. Then the functor
B 7→ B/IB induces an equivalence between the category of étale algebras over A
and the category of étale algebras over A/I. Moreover, the pair is henselian.

Proof. Essential surjectivity holds by Algebra, Lemma 10.143.10. If B, B′ are étale
over A and B/IB → B′/IB′ is a morphism of A/I-algebras, then we can lift this by
Algebra, Lemma 10.138.17. Finally, suppose that f, g : B → B′ are two A-algebra
maps with f mod I = g mod I. Choose an idempotent e ∈ B ⊗A B generating the
kernel of the multiplication map B ⊗A B → B, see Algebra, Lemmas 10.151.4 and
10.151.3 (to see that étale is unramified). Then (f ⊗ g)(e) ∈ IB′. Since IB′ is
locally nilpotent (Algebra, Lemma 10.32.3) this implies (f ⊗ g)(e) = 0 by Algebra,
Lemma 10.32.6. Thus f = g.

It is clear that I is contained in the Jacobson radical of A. Let f ∈ A[T ] be a monic
polynomial and let f = g0h0 be a factorization of f = f mod I with g0, h0 ∈ A/I[T ]
monic generating the unit ideal in A/I[T ]. By Lemma 15.9.5 there exists an étale
ring map A → A′ which induces an isomorphism A/I → A′/IA′ such that the
factorization lifts to a factorization into monic polynomials over A′. By the above
we have A = A′ and the factorization is over A. □

Lemma 15.11.3.0CT7 Let A = limAn where (An) is an inverse system of rings whose
transition maps are surjective and have locally nilpotent kernels. Then (A, In) is a
henselian pair, where In = Ker(A→ An).

Proof. Fix n. Let a ∈ A be an element which maps to 1 in An. By Algebra, Lemma
10.32.4 we see that a maps to a unit in Am for all m ≥ n. Hence a is a unit in A.
Thus by Algebra, Lemma 10.19.1 the ideal In is contained in the Jacobson radical
of A. Let f ∈ A[T ] be a monic polynomial and let f = gnhn be a factorization
of f = f mod In with gn, hn ∈ An[T ] monic generating the unit ideal in An[T ].
By Lemma 15.11.2 we can successively lift this factorization to f mod Im = gmhm
with gm, hm monic in Am[T ] for all m ≥ n. At each step we have to verify that our
lifts gm, hm generate the unit ideal in An[T ]; this follows from the corresponding
fact for gn, hn and the fact that Spec(An[T ]) = Spec(Am[T ]) because the kernel of
Am → An is locally nilpotent. As A = limAm this finishes the proof. □

Lemma 15.11.4.0ALJ Let (A, I) be a pair. If A is I-adically complete, then the pair is
henselian.
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Proof. By Algebra, Lemma 10.96.6 the ideal I is contained in the Jacobson radical
of A. Let f ∈ A[T ] be a monic polynomial and let f = g0h0 be a factorization of
f = f mod I with g0, h0 ∈ A/I[T ] monic generating the unit ideal in A/I[T ]. By
Lemma 15.11.2 we can successively lift this factorization to f mod In = gnhn with
gn, hn monic in A/In[T ] for all n ≥ 1. As A = limA/In this finishes the proof. □

Lemma 15.11.5.09XH Let (A, I) be a pair. Let A → B be a finite type ring map such
that B/IB = C1 × C2 with A/I → C1 finite. Let B′ be the integral closure of A
in B. Then we can write B′/IB′ = C1 × C ′

2 such that the map B′/IB′ → B/IB
preserves product decompositions and there exists a g ∈ B′ mapping to (1, 0) in
C1 × C ′

2 with B′
g → Bg an isomorphism.

Proof. Observe that A → B is quasi-finite at every prime of the closed subset
T = Spec(C1) ⊂ Spec(B) (this follows by looking at fibre rings, see Algebra,
Definition 10.122.3). Consider the diagram of topological spaces

Spec(B)
ϕ

//

ψ %%

Spec(B′)

ψ′
yy

Spec(A)

By Algebra, Theorem 10.123.12 for every p ∈ T there is a hp ∈ B′, hp ̸∈ p such that
B′
h → Bh is an isomorphism. The union U =

⋃
D(hp) gives an open U ⊂ Spec(B′)

such that ϕ−1(U) → U is a homeomorphism and T ⊂ ϕ−1(U). Since T is open in
ψ−1(V (I)) we conclude that ϕ(T ) is open in U ∩ (ψ′)−1(V (I)). Thus ϕ(T ) is open
in (ψ′)−1(V (I)). On the other hand, since C1 is finite over A/I it is finite over
B′. Hence ϕ(T ) is a closed subset of Spec(B′) by Algebra, Lemmas 10.41.6 and
10.36.22. We conclude that Spec(B′/IB′) ⊃ ϕ(T ) is open and closed. By Algebra,
Lemma 10.24.3 we get a corresponding product decomposition B′/IB′ = C ′

1 ×C ′
2.

The map B′/IB′ → B/IB maps C ′
1 into C1 and C ′

2 into C2 as one sees by looking
at what happens on spectra (hint: the inverse image of ϕ(T ) is exactly T ; some
details omitted). Pick a g ∈ B′ mapping to (1, 0) in C ′

1 × C ′
2 such that D(g) ⊂ U ;

this is possible because Spec(C ′
1) and Spec(C ′

2) are disjoint and closed in Spec(B′)
and Spec(C ′

1) is contained in U . Then B′
g → Bg defines a homeomorphism on

spectra and an isomorphism on local rings (by our choice of U above). Hence it is
an isomorphism, as follows for example from Algebra, Lemma 10.23.1. Finally, it
follows that C ′

1 = C1 and the proof is complete. □

Lemma 15.11.6.09XI [Ray70, Chapter XI]
and [Gab92,
Proposition 1]

Let (A, I) be a pair. The following are equivalent
(1) (A, I) is a henselian pair,
(2) given an étale ring map A → A′ and an A-algebra map σ : A′ → A/I,

there exists an A-algebra map A′ → A lifting σ,
(3) for any finite A-algebra B the map B → B/IB induces a bijection on

idempotents,
(4) for any integral A-algebra B the map B → B/IB induces a bijection on

idempotents, and
(5) (Gabber) I is contained in the Jacobson radical of A and every monic

polynomial f(T ) ∈ A[T ] of the form
f(T ) = Tn(T − 1) + anT

n + . . .+ a1T + a0

with an, . . . , a0 ∈ I and n ≥ 1 has a root α ∈ 1 + I.

https://stacks.math.columbia.edu/tag/09XH
https://stacks.math.columbia.edu/tag/09XI
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Moreover, in part (5) the root is unique.

Proof. Assume (2) holds. Then I is contained in the Jacobson radical of A, since
otherwise there would be a nonunit f ∈ A congruent to 1 modulo I and the map
A→ Af would contradict (2). Hence IB ⊂ B is contained in the Jacobson radical of
B for B integral over A because Spec(B)→ Spec(A) is closed by Algebra, Lemmas
10.41.6 and 10.36.22. Thus the map from idempotents of B to idempotents of
B/IB is injective by Lemma 15.10.2. On the other hand, since (2) holds, every
idempotent of B/IB lifts to an idempotent of B by Lemma 15.9.10. In this way
we see that (2) implies (4).
The implication (4) ⇒ (3) is trivial.
Assume (3). Let m be a maximal ideal and consider the finite map A → B =
A/(I ∩ m). The condition that B → B/IB induces a bijection on idempotents
implies that I ⊂ m (if not, then B = A/I × A/m and B/IB = A/I). Thus we see
that I is contained in the Jacobson radical of A. Let f ∈ A[T ] be monic and suppose
given a factorization f = g0h0 with g0, h0 ∈ A/I[T ] monic. Set B = A[T ]/(f). Let
e be the idempotent of B/IB corresponding to the decomposition

B/IB = A/I[T ]/(g0)×A[T ]/(h0)
of A-algebras. Let e ∈ B be an idempotent lifting e which exists as we assumed
(3). This gives a product decomposition

B = eB × (1− e)B
Note that B is free of rank deg(f) as an A-module. Hence eB and (1 − e)B are
finite locally free A-modules. However, since eB and (1− e)B have constant rank
deg(g0) and deg(h0) over A/I we find that the same is true over Spec(A). We
conclude that

f = CharPolA(T : B → B)
= CharPolA(T : eB → eB)CharPolA(T : (1− e)B → (1− e)B)

is a factorization into monic polynomials reducing to the given factorization modulo
I. Here CharPolA denotes the characteristic polynomial of an endomorphism of a
finite locally free module over A. If the module is free the CharPolA is defined as
the characteristic polynomial of the corresponding matrix and in general one uses
Algebra, Lemma 10.24.2 to glue. Details omitted. Thus (3) implies (1).
Assume (1). Let f be as in (5). The factorization of f mod I as Tn times T − 1
lifts to a factorization f = gh with g and h monic by Definition 15.11.1. Then h
has to have degree 1 and we see that f has a root reducing to 1 modulo 1. Finally,
I is contained in the Jacobson radical by the definition of a henselian pair. Thus
(1) implies (5).
Before we give the proof of the last step, let us show that the root α in (5), if it
exists, is unique. Namely, Due to the explicit shape of f(T ), we have f ′(α) ∈ 1 + I
where f ′ is the derivative of f with respect to T . An elementary argument shows
that

f(T ) = f(α+ T − α) = f(α) + f ′(α) · (T − α) mod (T − α)2A[T ]
This shows that any other root α′ ∈ 1 + I of f(T ) satisfies 0 = f(α′) − f(α) =
(α′ − α)(1 + i) for some i ∈ I, so that, since 1 + i is a unit in A, we have α = α′.
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Assume (5). We will show that (2) holds, in other words, that for every étale map
A → A′, every section σ : A′ → A/I modulo I lifts to a section A′ → A. Since
A→ A′ is étale, the section σ determines a decomposition
(15.11.6.1)0EM1 A′/IA′ ∼= A/I × C
of A/I-algebras. Namely, the surjective ring map A′/IA′ → A/I is étale by Alge-
bra, Lemma 10.143.8 and then we get the desired idempotent by Algebra, Lemma
10.143.9. We will show that this decomposition lifts to a decomposition
(15.11.6.2)0EM2 A′ ∼= A′

1 ×A′
2

of A-algebras with A′
1 integral over A. Then A → A′

1 is integral and étale and
A/I → A′

1/IA
′
1 is an isomorphism, thus A → A′

1 is an isomorphism by Lemma
15.10.3 (here we also use that an étale ring map is flat and of finite presentation,
see Algebra, Lemma 10.143.3).
Let B′ be the integral closure of A in A′. By Lemma 15.11.5 we may decompose
(15.11.6.3)0EM3 B′/IB′ ∼= A/I × C ′

as A/I-algebras compatibly with (15.11.6.1) and we may find b ∈ B′ that lifts (1, 0)
such that B′

b → A′
b is an isomorphism. If the decomposition (15.11.6.3) lifts to a

decomposition
(15.11.6.4)0EM4 B′ ∼= B′

1 ×B′
2

of A-algebras, then the induced decomposition A′ = A′
1 × A′

2 will give the desired
(15.11.6.2): indeed, since b is a unit in B′

1 (details omitted), we will have B′
1
∼= A′

1,
so that A′

1 will be integral over A.
Choose a finite A-subalgebra B′′ ⊂ B′ containing b (observe that any finitely gen-
erated A-subalgebra of B′ is finite over A). After enlarging B′′ we may assume b
maps to an idempotent in B′′/IB′′ producing
(15.11.6.5)0EM5 B′′/IB′′ ∼= C ′′

1 × C ′′
2

Since B′
b
∼= A′

b we see that B′
b is of finite type over A. Say B′

b is generated by
b1/b

n, . . . , bt/b
n over A and enlarge B′′ so that b1, . . . , bt ∈ B′′. Then B′′

b → B′
b

is surjective as well as injective, hence an isomorphism. In particular, we see that
C ′′

1 = A/I! Therefore A/I → C ′′
1 is an isomorphism, in particular surjective. By

Lemma 15.10.4 we can find an f(T ) ∈ A[T ] of the form
f(T ) = Tn(T − 1) + anT

n + . . .+ a1T + a0

with an, . . . , a0 ∈ I and n ≥ 1 such that f(b) = 0. In particular, we find that B′ is a
A[T ]/(f)-algebra. By (5) we deduce there is a root a ∈ 1 + I of f . This produces a
product decomposition A[T ]/(f) = A[T ]/(T −a)×D compatible with the splitting
(15.11.6.3) of B′/IB′. The induced splitting of B′ is then a desired (15.11.6.4). □

Lemma 15.11.7.09XJ Let A be a ring. Let I, J ⊂ A be ideals with V (I) = V (J). Then
(A, I) is henselian if and only if (A, J) is henselian.

Proof. For any integral ring map A → B we see that V (IB) = V (JB). Hence
idempotents of B/IB and B/JB are in bijective correspondence (Algebra, Lemma
10.21.3). It follows that B → B/IB induces a bijection on sets of idempotents
if and only if B → B/JB induces a bijection on sets of idempotents. Thus we
conclude by Lemma 15.11.6. □

https://stacks.math.columbia.edu/tag/09XJ
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Lemma 15.11.8.09XK Let (A, I) be a henselian pair and let A→ B be an integral ring
map. Then (B, IB) is a henselian pair.

Proof. Immediate from the fourth characterization of henselian pairs in Lemma
15.11.6 and the fact that the composition of integral ring maps is integral. □

Lemma 15.11.9.0DYD Let I ⊂ J ⊂ A be ideals of a ring A. The following are equivalent
(1) (A, I) and (A/I, J/I) are henselian pairs, and
(2) (A, J) is an henselian pair.

Proof. Assume (1). Let B be an integral A-algebra. Consider the ring maps
B → B/IB → B/JB

By Lemma 15.11.6 we find that both arrows induce bijections on idempotents.
Hence so does the composition. Whence (A, J) is a henselian pair by Lemma
15.11.6.
Conversely, assume (2) holds. Then (A/I, J/I) is a henselian pair by Lemma
15.11.8. Let B be an integral A-algebra. Consider the ring maps

B → B/IB → B/JB

By Lemma 15.11.6 we find that the composition and the second arrow induce
bijections on idempotents. Hence so does the first arrow. It follows that (A, I) is a
henselian pair (by the lemma again). □

Lemma 15.11.10.0G1R Let A be a ring and let (A, I) and (A, I ′) be henselian pairs.
Then (A, I + I ′) is an henselian pair.

Proof. By Lemma 15.11.8 the pair (A/I, (I ′ + I)/I) is henselian. Thus we get the
conclusion from Lemma 15.11.9. □

Lemma 15.11.11.0ATD Let J be a set and let {(Aj , Ij)}j∈J be a collection of pairs. Then
(
∏
j∈J Aj ,

∏
j∈J Ij) is Henselian if and only if so is each (Aj , Ij).

Proof. For every j ∈ J , the projection
∏
j∈J Aj → Aj is an integral ring map,

so Lemma 15.11.8 proves that each (Aj , Ij) is Henselian if (
∏
j∈J Aj ,

∏
j∈J Ij) is

Henselian.
Conversely, suppose that each (Aj , Ij) is a Henselian pair. Then every 1 + x with
x ∈

∏
j∈J Ij is a unit in

∏
j∈J Aj because it is so componentwise by Algebra, Lemma

10.19.1 and Definition 15.11.1. Thus, by Algebra, Lemma 10.19.1 again,
∏
j∈J Ij is

contained in the Jacobson radical of
∏
j∈J Aj . Continuing to work componentwise,

it likewise follows that for every monic f ∈ (
∏
j∈J Aj)[T ] and every factorization

f = g0h0 with monic g0, h0 ∈ (
∏
j∈J Aj/

∏
j∈J Ij)[T ] = (

∏
j∈J Aj/Ij)[T ] that gen-

erate the unit ideal in (
∏
j∈J Aj/

∏
j∈J Ij)[T ], there exists a factorization f = gh

in (
∏
j∈J Aj)[T ] with g, h monic and reducing to g0, h0. In conclusion, according

to Definition 15.11.1 (
∏
j∈J Aj ,

∏
j∈J Ij) is a Henselian pair. □

Lemma 15.11.12.0EM6 The property of being Henselian is preserved under limits of pairs.
More precisely, let J be a preordered set and let (Aj , Ij) be an inverse system of
henselian pairs over J . Then A = limAj equipped with the ideal I = lim Ij is a
henselian pair (A, I).

https://stacks.math.columbia.edu/tag/09XK
https://stacks.math.columbia.edu/tag/0DYD
https://stacks.math.columbia.edu/tag/0G1R
https://stacks.math.columbia.edu/tag/0ATD
https://stacks.math.columbia.edu/tag/0EM6
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Proof. By Categories, Lemma 4.14.11, we only need to consider products and equal-
izers. For products, the claim follows from Lemma 15.11.11. Thus, consider an
equalizer diagram

(A, I) // (A′, I ′)
φ //

ψ
// (A′′, I ′′)

in which the pairs (A′, I ′) and (A′′, I ′′) are henselian. To check that the pair (A, I) is
also henselian, we will use the Gabber’s criterion in Lemma 15.11.6. Every element
of 1 + I is a unit in A because, due to the uniqueness of the inverses of units, this
may be checked in (A′, I ′). Thus I is contained in the Jacobson radical of A, see
Algebra, Lemma 10.19.1. Thus, let

f(T ) = TN−1(T − 1) + aN−1T
N−1 + · · ·+ a1T + a0

be a polynomial in A[T ] with aN−1, . . . , a0 ∈ I and N ≥ 1. The image of f(T ) in
A′[T ] has a unique root α′ ∈ 1 + I ′ and likewise for the further image in A′′[T ].
Thus, due to the uniqueness, φ(α′) = ψ(α′), to the effect that α′ defines a root of
f(T ) in 1 + I, as desired. □

Lemma 15.11.13.0FWT The property of being Henselian is preserved under filtered col-
imits of pairs. More precisely, let J be a directed set and let (Aj , Ij) be a system
of henselian pairs over J . Then A = colimAj equipped with the ideal I = colim Ij
is a henselian pair (A, I).

Proof. If u ∈ 1+I then for some j ∈ J we see that u is the image of some uj ∈ 1+Ij .
Then uj is invertible in Aj by Algebra, Lemma 10.19.1 and the assumption that Ij
is contained in the Jacobson radical of Aj . Hence u is invertible in A. Thus I is
contained in the Jacobson radical of A (by the lemma).

Let f ∈ A[T ] be a monic polynomial and let f = g0h0 be a factorization with
g0, h0 ∈ A/I[T ] monic generating the unit ideal in A/I[T ]. Write 1 = g0g

′
0 + h0h

′
0

for some g′
0, h

′
0 ∈ A/I[T ]. Since A = colimAj and A/I = colimAj/Ij are filterd

colimits we can find a j ∈ J and fj ∈ Aj and a factorization f j = gj,0hj,0 with
gj,0, hj,0 ∈ Aj/Ij [T ] monic and 1 = gj,0g

′
j,0 + hj,0h

′
j,0 for some g′

j,0, h
′
j,0 ∈ Aj/Ij [T ]

with fj , gj,0, hj,0, g
′
j,0, h

′
j,0 mapping to f, g0, h0, g

′
0, h

′
0. Since (Aj , Ij) is a henselian

pair, we can lift f j = gj,0hj,0 to a factorization over Aj and taking the image in A
we obtain a corresponding factorization in A. Hence (A, I) is henselian. □

Example 15.11.14 (Moret-Bailly).0FWU Lemma 15.11.13 is wrong if the colimit isn’t
filtered. For example, if we take the coproduct of the henselian pairs (Zp, (p))
and (Zp, (p)), then we obtain (A, pA) with A = Zp ⊗Z Zp. This isn’t a henselian
pair: A/pA = Fp hence if (A, pA) where henselian, then A would have to be
local. However, Spec(A) is disconnected; for example for odd primes p we have the
nontrivial idempotent

(1/2⊗ 1)
(
1⊗ 1− (1 + p)−1u⊗ u

)
where u ∈ Zp is a square root of 1 + p. Some details omitted.

Lemma 15.11.15.0G1S Let A be a ring. There exists a largest ideal I ⊂ A such that
(A, I) is a henselian pair.

Proof. Combine Lemmas 15.11.9, 15.11.10, and 15.11.13. □

https://stacks.math.columbia.edu/tag/0FWT
https://stacks.math.columbia.edu/tag/0FWU
https://stacks.math.columbia.edu/tag/0G1S
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Lemma 15.11.16.09Y6 Let (A, I) be a henselian pair. Let p ⊂ A be a prime ideal. Then
V (p + I) is connected.

Proof. By Lemma 15.11.8 we see that (A/p, I + p/p) is a henselian pair. Thus it
suffices to prove: If (A, I) is a henselian pair and A is a domain, then Spec(A/I) =
V (I) is connected. If not, then A/I has a nontrivial idempotent by Algebra, Lemma
10.21.4. By Lemma 15.11.6 this would imply A has a nontrivial idempotent. This
is a contradiction. □

15.12. Henselization of pairs

0EM7 We continue the discussion started in Section 15.11.

Lemma 15.12.1.0A02 The inclusion functor

category of henselian pairs −→ category of pairs

has a left adjoint (A, I) 7→ (Ah, Ih).

Proof. Let (A, I) be a pair. Consider the category C consisting of étale ring maps
A→ B such that A/I → B/IB is an isomorphism. We will show that the category
C is directed and that Ah = colimB∈C B with ideal Ih = IAh gives the desired
adjoint.

We first prove that C is directed (Categories, Definition 4.19.1). It is nonempty
because id : A → A is an object. If B and B′ are two objects of C, then B′′ =
B⊗AB′ is an object of C (use Algebra, Lemma 10.143.3) and there are morphisms
B → B′′ and B′ → B′′. Suppose that f, g : B → B′ are two maps between objects
of C. Then a coequalizer is

(B′ ⊗f,B,g B′)⊗(B′⊗AB′) B
′

which is étale over A by Algebra, Lemmas 10.143.3 and 10.143.8. Thus the category
C is directed.

Since B/IB = A/I for all objects B of C we see that Ah/Ih = Ah/IAh =
colimB/IB = colimA/I = A/I.

Next, we show that Ah = colimB∈C B with Ih = IAh is a henselian pair. To do this
we will verify condition (2) of Lemma 15.11.6. Namely, suppose given an étale ring
map Ah → A′ and Ah-algebra map σ : A′ → Ah/Ih. Then there exists a B ∈ C and
an étale ring map B → B′ such that A′ = B′⊗BAh. See Algebra, Lemma 10.143.3.
Since Ah/Ih = A/IB, the map σ induces an A-algebra map s : B′ → A/I. Then
B′/IB′ = A/I×C as A/I-algebra, where C is the kernel of the map B′/IB′ → A/I
induced by s. Let g ∈ B′ map to (1, 0) ∈ A/I × C. Then B → B′

g is étale and
A/I → B′

g/IB
′
g is an isomorphism, i.e., B′

g is an object of C. Thus we obtain a
canonical map B′

g → Ah such that

B′
g

// Ah

B

OO >>

and

B′ //

s

''

B′
g

// Ah

��
A/I

commute. This induces a map A′ = B′⊗B Ah → Ah compatible with σ as desired.

https://stacks.math.columbia.edu/tag/09Y6
https://stacks.math.columbia.edu/tag/0A02
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Let (A, I)→ (A′, I ′) be a morphism of pairs with (A′, I ′) henselian. We will show
there is a unique factorization A → Ah → A′ which will finish the proof. Namely,
for each A → B in C the ring map A′ → B′ = A′ ⊗A B is étale and induces an
isomorphism A′/I ′ → B′/I ′B′. Hence there is a section σB : B′ → A′ by Lemma
15.11.6. Given a morphism B1 → B2 in C we claim the diagram

B′
1

//

σB1   

B′
2

σB2~~
A′

commutes. This follows once we prove that for every B in C the section σB is the
unique A′-algebra map B′ → A′. We have B′ ⊗A′ B′ = B′ × R for some ring R,
see Algebra, Lemma 10.151.4. In our case R/I ′R = 0 as B′/I ′B′ = A′/I ′. Thus
given two A′-algebra maps σB , σ′

B : B′ → A′ then e = (σB ⊗ σ′
B)(0, 1) ∈ A′ is an

idempotent contained in I ′. We conclude that e = 0 by Lemma 15.10.2. Hence
σB = σ′

B as desired. Using the commutativity we obtain

Ah = colimB∈C B → colimB∈C A
′ ⊗A B

colimσB−−−−−→ A′

as desired. The uniqueness of the maps σB also guarantees that this map is unique.
Hence (A, I) 7→ (Ah, Ih) is the desired adjoint. □

Lemma 15.12.2.0AGU Let (A, I) be a pair. Let (Ah, Ih) be as in Lemma 15.12.1. Then
A→ Ah is flat, Ih = IAh and A/In → Ah/InAh is an isomorphism for all n.

Proof. In the proof of Lemma 15.12.1 we have seen that Ah is a filtered colimit of
étale A-algebras B such that A/I → B/IB is an isomorphism and we have seen
that Ih = IAh. As an étale ring map is flat (Algebra, Lemma 10.143.3) we conclude
that A→ Ah is flat by Algebra, Lemma 10.39.3. Since each A→ B is flat we find
that the maps A/In → B/InB are isomorphisms as well (for example by Algebra,
Lemma 10.101.3). Taking the colimit we find that A/In = Ah/InAh as desired. □

Lemma 15.12.3.0A03 The functor of Lemma 15.12.1 associates to a local ring (A,m) its
henselization.

Proof. Let (Ah,mh) be the henselization of the pair (A,m) constructed in Lemma
15.12.1. Then mh = mAh is a maximal ideal by Lemma 15.12.2 and since it is
contained in the Jacobson radical, we conclude Ah is local with maximal ideal mh.
Having said this there are two ways to finish the proof.

First proof: observe that the construction in the proof of Algebra, Lemma 10.155.1
as a colimit is the same as the colimit used to construct Ah in Lemma 15.12.1.
Second proof: Both the henselization A → S and A → Ah of Lemma 15.12.1 are
local ring homomorphisms, both S and Ah are filtered colimits of étale A-algebras,
both S and Ah are henselian local rings, and both S and Ah have residue fields
equal to κ(m) (by Lemma 15.12.2 for the second case). Hence they are canonically
isomorphic by Algebra, Lemma 10.154.7. □

Lemma 15.12.4.0AGV Let (A, I) be a pair with A Noetherian. Let (Ah, Ih) be as in
Lemma 15.12.1. Then the map of I-adic completions

A∧ → (Ah)∧

https://stacks.math.columbia.edu/tag/0AGU
https://stacks.math.columbia.edu/tag/0A03
https://stacks.math.columbia.edu/tag/0AGV
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is an isomorphism. Moreover, Ah is Noetherian, the maps A→ Ah → A∧ are flat,
and Ah → A∧ is faithfully flat.

Proof. The first statement is an immediate consequence of Lemma 15.12.2 and in
fact holds without assuming A is Noetherian. In the proof of Lemma 15.12.1 we
have seen that Ah is a filtered colimit of étale A-algebras B such that A/I → B/IB
is an isomorphism. For each such A → B the induced map A∧ → B∧ is an
isomorphism (see proof of Lemma 15.12.2). By Algebra, Lemma 10.97.2 the ring
map B → A∧ = B∧ = (Ah)∧ is flat for each B. Thus Ah → A∧ = (Ah)∧ is flat by
Algebra, Lemma 10.39.6. Since Ih = IAh is contained in the Jacobson radical of Ah
and since Ah → A∧ induces an isomorphism Ah/Ih → A/I we see that Ah → A∧

is faithfully flat by Algebra, Lemma 10.39.15. By Algebra, Lemma 10.97.6 the ring
A∧ is Noetherian. Hence we conclude that Ah is Noetherian by Algebra, Lemma
10.164.1. □

Lemma 15.12.5.0A04 Let (A, I) = colim(Ai, Ii) be a filtered colimit of pairs. The
functor of Lemma 15.12.1 gives Ah = colimAhi and Ih = colim Ihi .

This lemma is false for non-filtered colimits, see Example 15.11.14.

Proof. By Categories, Lemma 4.24.5 we see that (Ah, Ih) is the colimit of the
system (Ahi , Ihi ) in the category of henselian pairs. Thus for a henselian pair (B, J)
we have

Mor((Ah, Ih), (B, J)) = lim Mor((Ahi , Ihi ), (B, J)) = Mor(colim(Ahi , Ihi ), (B, J))

Here the colimit is in the category of pairs. Since the colimit is filtered we obtain
colim(Ahi , Ihi ) = (colimAhi , colim Ihi ) in the category of pairs; details omitted. Again
using the colimit is filtered, this is a henselian pair (Lemma 15.11.13). Hence by
the Yoneda lemma we find (Ah, Ih) = (colimAhi , colim Ihi ). □

Lemma 15.12.6.0F0L Let A be a ring with ideals I and J . If V (I) = V (J) then the
functor of Lemma 15.12.1 produces the same ring for the pair (A, I) as for the pair
(A, J).

Proof. Let (A′, IA′) be the pair produced by Lemma 15.12.1 starting with the pair
(A, I), see Lemma 15.12.2. Let (A′′, JA′′) be the pair produced by Lemma 15.12.1
starting with the pair (A, J). By Lemma 15.11.7 we see that (A′, JA′) is a henselian
pair and (A′′, IA′′) is a henselian pair. By the universal property of the construction
we obtain unique A-algebra maps A′′ → A′ and A′ → A′′. The uniqueness shows
that these are mutually inverse. □

Lemma 15.12.7.0DYE Let (A, I)→ (B, J) be a map of pairs such that V (J) = V (IB).
Let (Ah, Ih) → (Bh, Jh) be the induced map on henselizations (Lemma 15.12.1).
If A→ B is integral, then the induced map Ah ⊗A B → Bh is an isomorphism.

Proof. By Lemma 15.12.6 we may assume J = IB. By Lemma 15.11.8 the pair
(Ah ⊗A B, Ih(Ah ⊗A B)) is henselian. By the universal property of (Bh, IBh) we
obtain a map Bh → Ah ⊗A B. We omit the proof that this map is the inverse of
the map in the lemma. □

https://stacks.math.columbia.edu/tag/0A04
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15.13. Lifting and henselian pairs

0D49 In this section we mostly combine results from Sections 15.9 and 15.11.

Lemma 15.13.1.0D4A Let (R, I) be a henselian pair. The map
P −→ P/IP

induces a bijection between the sets of isomorphism classes of finite projective R-
modules and finite projective R/I-modules. In particular, any finite projective
R/I-module is isomorphic to P/IP for some finite projective R-module P .

Proof. We first prove the final statement. Let P be a finite projective R/I-module.
We can find a finite projective module P ′ over some R′ étale over R with R/I =
R′/IR′ such that P ′/IP ′ is isomorphic to P , see Lemma 15.9.11. Then, since (R, I)
is a henselian pair, the étale ring map R → R′ has a section τ : R′ → R (Lemma
15.11.6). Setting P = P ′ ⊗R′,τ R we conclude that P/IP is isomorphic to P . Of
course, this tells us that the map in the statement of the lemma is surjective.
Injectivity. Suppose that P1 and P2 are finite projective R-modules such that
P1/IP1 ∼= P2/IP2 as R/I-modules. Since P1 is projective, we can find an R-module
map u : P1 → P2 lifting the given isomorphism. Then u is surjective by Nakayama’s
lemma (Algebra, Lemma 10.20.1). We similarly find a surjection v : P2 → P1. By
Algebra, Lemma 10.16.4 the map v ◦ u is an isomorphism and we conclude u is an
isomorphism. □

Lemma 15.13.2.09ZL Let (A, I) be a henselian pair. The functor B → B/IB determines
an equivalence between finite étale A-algebras and finite étale A/I-algebras.

Proof. Let B,B′ be two A-algebras finite étale over A. Then B′ → B′′ = B ⊗A B′

is finite étale as well (Algebra, Lemmas 10.143.3 and 10.36.13). Now we have 1-to-1
correspondences between

(1) A-algebra maps B → B′,
(2) sections of B′ → B′′, and
(3) idempotents e of B′′ such that B′ → B′′ → eB′′ is an isomorphism.

The bijection between (2) and (3) sends σ : B′′ → B′ to e such that (1 − e) is
the idempotent that generates the kernel of σ which exists by Algebra, Lemmas
10.143.8 and 10.143.9. There is a similar correspondence between A/I-algebra maps
B/IB → B′/IB′ and idempotents e of B′′/IB′′ such that B′/IB′ → B′′/IB′′ →
e(B′′/IB′′) is an isomorphism. However every idempotent e ofB′′/IB′′ lifts uniquely
to an idempotent e of B′′ (Lemma 15.11.6). Moreover, if B′/IB′ → e(B′′/IB′′)
is an isomorphism, then B′ → eB′′ is an isomorphism too by Nakayama’s lemma
(Algebra, Lemma 10.20.1). In this way we see that the functor is fully faithful.
Essential surjectivity. Let A/I → C be a finite étale map. By Algebra, Lemma
10.143.10 there exists an étale map A → B such that B/IB ∼= C. Let B′ be
the integral closure of A in B. By Lemma 15.11.5 we have B′/IB′ = C × C ′ for
some ring C ′ and B′

g
∼= Bg for some g ∈ B′ mapping to (1, 0) ∈ C × C ′. Since

idempotents lift (Lemma 15.11.6) we get B′ = B′
1 × B′

2 with C = B′
1/IB

′
1 and

C ′ = B′
2/IB

′
2. The image of g in B′

1 is invertible. Then Bg = B′
g = B′

1 × (B2)g
and this implies that A → B′

1 is étale. We conclude that B′
1 is finite étale over A

(integral étale implies finite étale by Algebra, Lemma 10.36.5 for example) and the
proof is done. □

https://stacks.math.columbia.edu/tag/0D4A
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Lemma 15.13.3.0D4B Let A = limAn be a limit of an inverse system (An) of rings.
Suppose given An-modules Mn and An+1-module maps Mn+1 →Mn. Assume

(1) the transition maps An+1 → An are surjective with locally nilpotent ker-
nels,

(2) M1 is a finite projective A1-module,
(3) Mn is a finite flat An-module, and
(4) the maps induce isomorphisms Mn+1 ⊗An+1 An →Mn.

Then M = limMn is a finite projective A-module and M ⊗A An → Mn is an
isomorphism for all n.

Proof. By Lemma 15.11.3 the pair (A,Ker(A → A1)) is henselian. By Lemma
15.13.1 we can choose a finite projective A-module P and an isomorphism P ⊗A
A1 →M1. Since P is projective, we can successively lift the A-module map P →M1
to A-module maps P →M2, P →M3, and so on. Thus we obtain a map

P −→M

Since P is finite projective, we can write A⊕m = P ⊕ Q for some m ≥ 0 and A-
module Q. Since A = limAn we conclude that P = limP ⊗A An. Hence, in order
to show that the displayed A-module map is an isomorphism, it suffices to show
that the maps P ⊗A An →Mn are isomorphisms. From Lemma 15.3.4 we see that
Mn is a finite projective module. By Lemma 15.3.5 the maps P ⊗A An → Mn are
isomorphisms. □

15.14. Absolute integral closure

0DCK Here is our definition.

Definition 15.14.1.0DCL A ring A is absolutely integrally closed if every monic f ∈ A[T ]
is a product of linear factors.

Be careful: it may be possible to write f as a product of linear factors in many
different ways.

Lemma 15.14.2.0DCM Let A be a ring. The following are equivalent
(1) A is absolutely integrally closed, and
(2) any monic f ∈ A[T ] has a root in A.

Proof. Omitted. □

Lemma 15.14.3.0DCN Let A be absolutely integrally closed.
(1) Any quotient ring A/I of A is absolutely integrally closed.
(2) Any localization S−1A is absolutely integrally closed.

Proof. Omitted. □

Lemma 15.14.4.0DCP Let A be a ring. Let S ⊂ A be a multiplicative subset consisting of
nonzerodivisors. If S−1A is absolutely integrally closed and A ⊂ S−1A is integrally
closed in S−1A, then A is absolutely integrally closed.

Proof. Omitted. □

Lemma 15.14.5.0DCQ Let A be a normal domain. Then A is absolutely integrally closed
if and only if its fraction field is algebraically closed.

https://stacks.math.columbia.edu/tag/0D4B
https://stacks.math.columbia.edu/tag/0DCL
https://stacks.math.columbia.edu/tag/0DCM
https://stacks.math.columbia.edu/tag/0DCN
https://stacks.math.columbia.edu/tag/0DCP
https://stacks.math.columbia.edu/tag/0DCQ
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Proof. Observe that a field is algebraically closed if and only if it is absolutely
integrally closed as a ring. Hence the lemma follows from Lemmas 15.14.3 and
15.14.4. □

Lemma 15.14.6.0DCR For any ring A there exists an extension A ⊂ B such that
(1) B is a filtered colimit of finite free A-algebras,
(2) B is free as an A-module, and
(3) B is absolutely integrally closed.

Proof. Let I be the set of monic polynomials over A. For i ∈ I denote xi a variable
and Pi the corresponding monic polynomial in the variable xi. Then we set

F (A) = A[xi; i ∈ I]/(Pi; i ∈ I)
As the notation suggests F is a functor from the category of rings to itself. Note
that A ⊂ F (A), that F (A) is free as an A-module, and that F (A) is a filtered
colimit of finite free A-algebras. Then we take

B = colimFn(A)
where the transition maps are the inclusions Fn(A) ⊂ F (Fn(A)) = Fn+1(A). Any
monic polynomial with coefficients in B actually has coefficients in Fn(A) for some
n and hence has a solution in Fn+1(A) by construction. This implies that B is
absolutely integrally closed by Lemma 15.14.2. We omit the proof of the other
properties. □

Lemma 15.14.7.0DCS Let A be absolutely integrally closed. Let p ⊂ A be a prime.
Then the local ring Ap is strictly henselian.

Proof. By Lemma 15.14.3 we may assume A is a local ring and p is its maximal
ideal. The residue field is algebraically closed by Lemma 15.14.3. Every monic
polynomial decomposes completely into linear factors hence Algebra, Definition
10.153.1 applies directly. □

Lemma 15.14.8.0DCT Let A be absolutely integrally closed. Let I ⊂ A be an ideal.
Then (A, I) is a henselian pair if (and only if) the following conditions hold

(1) I is contained in the Jacobson radical of A,
(2) A→ A/I induces a bijection on idempotents.

Proof. Let f ∈ A[T ] be a monic polynomial and let f mod I = g0h0 be a factor-
ization over A/I with g0, h0 monic such that g0 and h0 generate the unit ideal of
A/I[T ]. This means that

A/I[T ]/(f) = A/I[T ]/(g0)×A/I[T ]/(h0)
Denote e ∈ A/I[T ]/(f) the element correspoing to the idempotent (1, 0) in the ring
on the right. Write f = (T − a1) . . . (T − ad) with ai ∈ A. For each i ∈ {1, . . . , d}
we obtain an A-algebra map φi : A[T ]/(f) → A, T 7→ ai which induces a similar
A/I-algebra map φi : A/I[T ]/(f) → A/I. Denote ei = φi(e) ∈ A/I. These are
idempotents. By our assumption (2) we can lift ei to an idempotent in A. This
means we can write A =

∏
Aj as a finite product of rings such that in Aj/IAj each

ei is either 0 or 1. Some details omitted. Observe that Aj is absolutely integrally
closed as a factor ring of A. It suffices to lift the factorization of f over Aj/IAj to
Aj . This reduces us to the situation discussed in the next paragraph.

https://stacks.math.columbia.edu/tag/0DCR
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Assume ei = 1 for i = 1, . . . , r and ei = 0 for i = r + 1, . . . , d. From (g0, h0) =
A/I[T ] we have that there are k0, l0 ∈ A/I[T ] such that g0k0 + h0l0 = 1. We
see that e = h0l0 and ei = h0(ai)l0(ai). We conclude that h0(ai) is a unit for
i = 1, . . . , r. Since f(ai) = 0 we find 0 = h0(ai)g0(ai) and we conclude that
g0(ai) = 0 for i = 1, . . . , r. Thus (T −a1) divides g0 in A/I[T ], say g0 = (T −a1)g′

0.
Set f ′ = (T − a2) . . . (T − ad) and h′

0 = h0. By induction on d we can lift the
factorization f ′ mod I = g′

0h
′
0 to a factorization of f ′ = g′h′ over over A which

gives the factorization f = (T − a1)g′h′ lifting the factorization f mod I = g0h0 as
desired. □

15.15. Auto-associated rings

05GL Some of this material is in [Laz69].

Definition 15.15.1.05GM A ring R is said to be auto-associated if R is local and its
maximal ideal m is weakly associated to R.

Lemma 15.15.2.05GN An auto-associated ring R has the following property: (P) Every
proper finitely generated ideal I ⊂ R has a nonzero annihilator.

Proof. By assumption there exists a nonzero element x ∈ R such that for every
f ∈ m we have fnx = 0. Say I = (f1, . . . , fr). Then x is in the kernel of R→

⊕
Rfi .

Hence we see that there exists a nonzero y ∈ R such that fiy = 0 for all i, see
Algebra, Lemma 10.24.4. As y ∈ AnnR(I) we win. □

Lemma 15.15.3.05GP Let R be a ring having property (P) of Lemma 15.15.2. Let
u : N → M be a homomorphism of projective R-modules. Then u is universally
injective if and only if u is injective.

Proof. Assume u is injective. Our goal is to show u is universally injective. First we
choose a module Q such that N⊕Q is free. On considering the map N⊕Q→M⊕Q
we see that it suffices to prove the lemma in case N is free. In this case N is a
directed colimit of finite free R-modules. Thus we reduce to the case that N is a
finite free R-module, say N = R⊕n. We prove the lemma by induction on n. The
case n = 0 is trivial.

Let u : R⊕n → M be an injective module map with M projective. Choose an
R-module Q such that M ⊕ Q is free. After replacing u by the composition
R⊕n → M → M ⊕ Q we see that we may assume that M is free. Then we
can find a direct summand R⊕m ⊂ M such that u(R⊕n) ⊂ R⊕m. Hence we
may assume that M = R⊕m. In this case u is given by a matrix A = (aij)
so that u(x1, . . . , xn) = (

∑
xiai1, . . . ,

∑
xiaim). As u is injective, in particular

u(x, 0, . . . , 0) = (xa11, xa12, . . . , xa1m) ̸= 0 if x ̸= 0, and as R has property (P) we
see that a11R + a12R + . . . + a1mR = R. Hence see that R(a11, . . . , a1m) ⊂ R⊕m

is a direct summand of R⊕m, in particular R⊕m/R(a11, . . . , a1m) is a projective
R-module. We get a commutative diagram

0 // R //

1
��

R⊕n //

u

��

R⊕n−1 //

��

0

0 // R
(a11,...,a1m) // R⊕m // R⊕m/R(a11, . . . , a1m) // 0

https://stacks.math.columbia.edu/tag/05GM
https://stacks.math.columbia.edu/tag/05GN
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with split exact rows. Thus the right vertical arrow is injective and we may apply
the induction hypothesis to conclude that the right vertical arrow is universally
injective. It follows that the middle vertical arrow is universally injective. □

Lemma 15.15.4.05GQ Let R be a ring. The following are equivalent
(1) R has property (P) of Lemma 15.15.2,
(2) any injective map of projective R-modules is universally injective,
(3) if u : N →M is injective and N , M are finite projective R-modules then

Coker(u) is a finite projective R-module,
(4) if N ⊂M and N , M are finite projective as R-modules, then N is a direct

summand of M , and
(5) any injective map R→ R⊕n is a split injection.

Proof. The implication (1) ⇒ (2) is Lemma 15.15.3. It is clear that (3) and (4)
are equivalent. We have (2) ⇒ (3), (4) by Algebra, Lemma 10.82.4. Part (5) is a
special case of (4). Assume (5). Let I = (a1, . . . , an) be a proper finitely generated
ideal of R. As I ̸= R we see that R → R⊕n, x 7→ (xa1, . . . , xan) is not a split
injection. Hence it has a nonzero kernel and we conclude that AnnR(I) ̸= 0. Thus
(1) holds. □

Example 15.15.5.05GR If the equivalent conditions of Lemma 15.15.4 hold, then it is
not always the case that every injective map of free R-modules is a split injection.
For example suppose that R = k[x1, x2, x3, . . .]/(x2

i ). This is an auto-associated
ring. Consider the map of free R-modules

u :
⊕

i≥1
Rei −→

⊕
i≥1

Rfi, ei 7−→ fi − xifi+1.

For any integer n the restriction of u to
⊕

i=1,...,nRei is injective as the images
u(e1), . . . , u(en) are R-linearly independent. Hence u is injective and hence univer-
sally injective by the lemma. Since u⊗ idk is bijective we see that if u were a split
injection then u would be surjective. But u is not surjective because the inverse
image of f1 would be the element∑

i≥0
x1 . . . xiei+1 = e1 + x1e2 + x1x2e3 + . . .

which is not an element of the direct sum. A side remark is that Coker(u) is a
flat (because u is universally injective), countably generated R-module which is
not projective (as u is not split), hence not Mittag-Leffler (see Algebra, Lemma
10.93.1).

The following lemma is a special case of Algebra, Proposition 10.102.9 in case the
local ring is Noetherian.

Lemma 15.15.6.00MX Let (R,m) be a local ring. Suppose that φ : Rm → Rn is a map
of finite free modules. The following are equivalent

(1) φ is injective,
(2) the rank of φ is m and the annihilator of I(φ) in R is zero.

If R is Noetherian these are also equivalent to
(3) the rank of φ is m and either I(φ) = R or it contains a nonzerodivisor.

Here the rank of φ and I(φ) are defined as in Algebra, Definition 10.102.5.

https://stacks.math.columbia.edu/tag/05GQ
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Proof. If any matrix coefficient of φ is not in m, then we apply Algebra, Lemma
10.102.2 to write φ as the sum of 1 : R → R and a map φ′ : Rm−1 → Rn−1. It is
easy to see that the lemma for φ′ implies the lemma for φ. Thus we may assume
from the outset that all the matrix coefficients of φ are in m.

Suppose φ is injective. We may assume m > 0. Let q ∈ WeakAss(R) so that Rq

is an auto-associated ring. Then φ induces a injective map Rmq → Rnq which is
universally injective by Lemmas 15.15.2 and 15.15.3. Thus φ : κ(q)m → κ(q)n is
injective. Hence the rank of φ mod q is m and I(φ⊗κ(q)) is not the zero ideal. Since
m is the maximum rank φ can have, we conclude that φ has rank m as well (ranks
of matrices can only drop after base change). Hence I(φ) ·κ(q) = I(φ⊗κ(q)) is not
zero. Thus I(φ) is not contained in q. Thus none of the weakly associated primes
of R are weakly associated primes of the R-module AnnRI(φ). Thus AnnRI(φ) has
no weakly associated primes, see Algebra, Lemma 10.66.4. It follows from Algebra,
Lemma 10.66.5 that AnnRI(φ) is zero.

Conversely, assume (2). The rank being m implies n ≥ m. Write I(φ) = (f1, . . . , fr)
which is possible as I(φ) is finitely generated. By Algebra, Lemma 10.15.5 we can
find maps ψi : Rn → Rm such that ψ ◦φ = fiidRm . Thus φ(x) = 0 implies fix = 0
for i = 1, . . . , r. This implies x = 0 and hence φ is injective.

For the equivalence of (1) and (3) in the Noetherian local case we refer to Algebra,
Proposition 10.102.9. If the ring R is Noetherian but not local, then the reader
can deduce it from the local case; details omitted. Another option is to redo
the argument above using associated primes, using that there are finitely many of
these, using prime avoidance, and using the characterization of nonzerodivisors as
elements of a Noetherian ring not contained in any associated prime. □

Lemma 15.15.7.0EWY Let R be a ring. Suppose that φ : Rn → Rn be an injective map
of finite free modules of the same rank. Then HomR(Coker(φ), R) = 0.

Proof. Let φt : Rn → Rn be the transpose of φ. The lemma claims that φt is
injective. With notation as in Lemma 15.15.6 we see that the rank of φt is n and
that I(φ) = I(φt). Thus we conclude by the equivalence of (1) and (2) of the
lemma. □

15.16. Flattening stratification

0521 Let R → S be a ring map and let M be an S-module. For any R-algebra R′ we
can consider the base changes S′ = S ⊗R R′ and M ′ = M ⊗R R′. We say R → R′

flattens M if the module M ′ is flat over R′. We would like to understand the
structure of the collection of ring maps R→ R′ which flatten M . In particular we
would like to know if there exists a universal flattening R→ Runiv of M , i.e., a ring
map R→ Runiv which flattens M and has the property that any ring map R→ R′

which flattens M factors through R → Runiv. It turns out that such a universal
solution usually does not exist.

We will discuss universal flattenings and flattening stratifications in a scheme theo-
retic setting F/X/S in More on Flatness, Section 38.21. If the universal flattening
R → Runiv exists then the morphism of schemes Spec(Runiv) → Spec(R) is the
universal flattening of the quasi-coherent module M̃ on Spec(S).

https://stacks.math.columbia.edu/tag/0EWY
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In this and the next few sections we prove some basic algebra facts related to this.
The most basic result is perhaps the following.

Lemma 15.16.1.0522 Let R be a ring. Let M be an R-module. Let I1, I2 be ideals of
R. If M/I1M is flat over R/I1 and M/I2M is flat over R/I2, then M/(I1 ∩ I2)M
is flat over R/(I1 ∩ I2).

Proof. By replacing R with R/(I1 ∩ I2) and M by M/(I1 ∩ I2)M we may assume
that I1 ∩ I2 = 0. Let J ⊂ R be an ideal. To prove that M is flat over R we have
to show that J ⊗R M → M is injective, see Algebra, Lemma 10.39.5. By flatness
of M/I1M over R/I1 the map

J/(J ∩ I1)⊗RM = (J + I1)/I1 ⊗R/I1 M/I1M −→M/I1M

is injective. As 0→ (J ∩ I1)→ J → J/(J ∩ I1)→ 0 is exact we obtain a diagram

(J ∩ I1)⊗RM //

��

J ⊗RM //

��

J/(J ∩ I1)⊗RM //

��

0

M M // M/I1M

hence it suffices to show that (J ∩ I1) ⊗R M → M is injective. Since I1 ∩ I2 =
0 the ideal J ∩ I1 maps isomorphically to an ideal J ′ ⊂ R/I2 and we see that
(J ∩ I1) ⊗R M = J ′ ⊗R/I2 M/I2M . By flatness of M/I2M over R/I2 the map
J ′⊗R/I2M/I2M →M/I2M is injective, which clearly implies that (J∩I1)⊗RM →
M is injective. □

15.17. Flattening over an Artinian ring

05LJ A universal flattening exists when the base ring is an Artinian local ring. It exists
for an arbitrary module. Hence, as we will see later, a flatting stratification exists
when the base scheme is the spectrum of an Artinian local ring.

Lemma 15.17.1.0524 Let R be an Artinian ring. Let M be an R-module. Then there
exists a smallest ideal I ⊂ R such that M/IM is flat over R/I.

Proof. This follows directly from Lemma 15.16.1 and the Artinian property. □

This ideal has the following universal property.

Lemma 15.17.2.0525 Let R be an Artinian ring. Let M be an R-module. Let I ⊂ R
be the smallest ideal I ⊂ R such that M/IM is flat over R/I. Then I has the
following universal property: For every ring map φ : R→ R′ we have

R′ ⊗RM is flat over R′ ⇔ we have φ(I) = 0.

Proof. Note that I exists by Lemma 15.17.1. The implication ⇒ follows from
Algebra, Lemma 10.39.7. Let φ : R→ R′ be such that M ⊗RR′ is flat over R′. Let
J = Ker(φ). By Algebra, Lemma 10.101.7 and as R′ ⊗R M = R′ ⊗R/J M/JM is
flat over R′ we conclude that M/JM is flat over R/J . Hence I ⊂ J as desired. □
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15.18. Flattening over a closed subset of the base

05LK Let R→ S be a ring map. Let I ⊂ R be an ideal. Let M be an S-module. In the
following we will consider the following condition
(15.18.0.1)052W ∀q ∈ V (IS) ⊂ Spec(S) : Mq is flat over R.
Geometrically, this means that M is flat over R along the inverse image of V (I)
in Spec(S). If R and S are Noetherian rings and M is a finite S-module, then
(15.18.0.1) is equivalent to the condition that M/InM is flat over R/In for all
n ≥ 1, see Algebra, Lemma 10.99.11.

Lemma 15.18.1.052X Let R → S be a ring map. Let I ⊂ R be an ideal. Let M be an
S-module. Let R → R′ be a ring map and IR′ ⊂ I ′ ⊂ R′ an ideal. If (15.18.0.1)
holds for (R→ S, I,M), then (15.18.0.1) holds for (R′ → S ⊗R R′, I ′,M ⊗R R′).

Proof. Assume (15.18.0.1) holds for (R→ S, I ⊂ R,M). Let I ′(S⊗R R′) ⊂ q′ be a
prime of S ⊗R R′. Let q ⊂ S be the corresponding prime of S. Then IS ⊂ q. Note
that (M⊗RR′)q′ is a localization of the base change Mq⊗RR′. Hence (M⊗RR′)q′

is flat over R′ as a localization of a flat module, see Algebra, Lemmas 10.39.7 and
10.39.18. □

Lemma 15.18.2.05LL Let R → S be a ring map. Let I ⊂ R be an ideal. Let M be an
S-module. Let R→ R′ be a ring map and IR′ ⊂ I ′ ⊂ R′ an ideal such that

(1) the map V (I ′)→ V (I) induced by Spec(R′)→ Spec(R) is surjective, and
(2) R′

p′ is flat over R for all primes p′ ∈ V (I ′).
If (15.18.0.1) holds for (R′ → S ⊗R R′, I ′,M ⊗R R′), then (15.18.0.1) holds for
(R→ S, I,M).

Proof. Assume (15.18.0.1) holds for (R′ → S ⊗R R′, IR′,M ⊗R R′). Pick a prime
IS ⊂ q ⊂ S. Let I ⊂ p ⊂ R be the corresponding prime of R. By assumption there
exists a prime p′ ∈ V (I ′) of R′ lying over p and Rp → R′

p′ is flat. Choose a prime
q′ ⊂ κ(q)⊗κ(p) κ(p′) which corresponds to a prime q′ ⊂ S ⊗R R′ which lies over q
and over p′. Note that (S ⊗R R′)q′ is a localization of Sq ⊗Rp

R′
p′ . By assumption

the module (M ⊗R R′)q′ is flat over R′
p′ . Hence Algebra, Lemma 10.100.1 implies

that Mq is flat over Rp which is what we wanted to prove. □

Lemma 15.18.3.05LM Let R → S be a ring map of finite presentation. Let M be an
S-module of finite presentation. Let R′ = colimλ∈Λ Rλ be a directed colimit of
R-algebras. Let Iλ ⊂ Rλ be ideals such that IλRµ ⊂ Iµ for all µ ≥ λ and set
I ′ = colimλ Iλ. If (15.18.0.1) holds for (R′ → S ⊗R R′, I ′,M ⊗R R′), then there
exists a λ ∈ Λ such that (15.18.0.1) holds for (Rλ → S ⊗R Rλ, Iλ,M ⊗R Rλ).

Proof. We are going to write Sλ = S ⊗R Rλ, S′ = S ⊗R R′, Mλ = M ⊗R Rλ, and
M ′ = M ⊗R R′. The base change S′ is of finite presentation over R′ and M ′ is
of finite presentation over S′ and similarly for the versions with subscript λ, see
Algebra, Lemma 10.14.2. By Algebra, Theorem 10.129.4 the set

U ′ = {q′ ∈ Spec(S′) |M ′
q′ is flat over R′}

is open in Spec(S′). Note that V (I ′S′) is a quasi-compact space which is contained
in U ′ by assumption. Hence there exist finitely many g′

j ∈ S′, j = 1, . . . ,m such
that D(g′

j) ⊂ U ′ and such that V (I ′S′) ⊂
⋃
D(g′

j). Note that in particular (M ′)g′
j

is a flat module over R′.
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We are going to pick increasingly large elements λ ∈ Λ. First we pick it large enough
so that we can find gj,λ ∈ Sλ mapping to g′

j . The inclusion V (I ′S′) ⊂
⋃
D(g′

j)
means that I ′S′ +(g′

1, . . . , g
′
m) = S′ which can be expressed as 1 =

∑
zshs+

∑
fjg

′
j

for some zs ∈ I ′, hs, fj ∈ S′. After increasing λ we may assume such an equation
holds in Sλ. Hence we may assume that V (IλSλ) ⊂

⋃
D(gj,λ). By Algebra, Lemma

10.168.1 we see that for some sufficiently large λ the modules (Mλ)gj,λ are flat over
Rλ. In particular the module Mλ is flat over Rλ at all the primes lying over the
ideal Iλ. □

15.19. Flattening over a closed subsets of source and base

05LN In this section we slightly generalize the discussion in Section 15.18. We strongly
suggest the reader first read and understand that section.

Situation 15.19.1.05LP Let R→ S be a ring map. Let J ⊂ S be an ideal. Let M be an
S-module.

In this situation, given an R-algebra R′ and an ideal I ′ ⊂ R′ we set S′ = S ⊗R R′

and M ′ = M ⊗R R′. We will consider the condition
(15.19.1.1)05LQ ∀q′ ∈ V (I ′S′ + JS′) ⊂ Spec(S′) : M ′

q′ is flat over R′.

Geometrically, this means that M ′ is flat over R′ along the intersection of the
inverse image of V (I ′) with the inverse image of V (J). Since (R → S, J,M) are
fixed, condition (15.19.1.1) only depends on the pair (R′, I ′) where R′ is viewed as
an R-algebra.

Lemma 15.19.2.05LR In Situation 15.19.1 let R′ → R′′ be an R-algebra map. Let
I ′ ⊂ R′ and I ′R′′ ⊂ I ′′ ⊂ R′′ be ideals. If (15.19.1.1) holds for (R′, I ′), then
(15.19.1.1) holds for (R′′, I ′′).

Proof. Assume (15.19.1.1) holds for (R′, I ′). Let I ′′S′′ + JS′′ ⊂ q′′ be a prime
of S′′. Let q′ ⊂ S′ be the corresponding prime of S′. Then both I ′S′ ⊂ q′ and
JS′ ⊂ q′ because the corresponding conditions hold for q′′. Note that (M ′′)q′′ is
a localization of the base change M ′

q′ ⊗R R′′. Hence (M ′′)q′′ is flat over R′′ as a
localization of a flat module, see Algebra, Lemmas 10.39.7 and 10.39.18. □

Lemma 15.19.3.05LS In Situation 15.19.1 let R′ → R′′ be an R-algebra map. Let
I ′ ⊂ R′ and I ′R′′ ⊂ I ′′ ⊂ R′′ be ideals. Assume

(1) the map V (I ′′) → V (I ′) induced by Spec(R′′) → Spec(R′) is surjective,
and

(2) R′′
p′′ is flat over R′ for all primes p′′ ∈ V (I ′′).

If (15.19.1.1) holds for (R′′, I ′′), then (15.19.1.1) holds for (R′, I ′).

Proof. Assume (15.19.1.1) holds for (R′′, I ′′). Pick a prime I ′S′ + JS′ ⊂ q′ ⊂ S′.
Let I ′ ⊂ p′ ⊂ R′ be the corresponding prime of R′. By assumption there exists
a prime p′′ ∈ V (I ′′) of R′′ lying over p′ and R′

p′ → R′′
p′′ is flat. Choose a prime

q′′ ⊂ κ(q′)⊗κ(p′)κ(p′′). This corresponds to a prime q′′ ⊂ S′′ = S′⊗R′R′′ which lies
over q′ and over p′′. In particular we see that I ′′S′′ ⊂ q′′ and that JS′′ ⊂ q′′. Note
that (S′ ⊗R′ R′′)q′′ is a localization of S′

q′ ⊗R′
p′
R′′

p′′ . By assumption the module
(M ′ ⊗R′ R′′)q′′ is flat over R′′

p′′ . Hence Algebra, Lemma 10.100.1 implies that M ′
q′

is flat over R′
p′ which is what we wanted to prove. □
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Lemma 15.19.4.05LT In Situation 15.19.1 assume R→ S is essentially of finite presen-
tation and M is an S-module of finite presentation. Let R′ = colimλ∈Λ Rλ be a
directed colimit of R-algebras. Let Iλ ⊂ Rλ be ideals such that IλRµ ⊂ Iµ for all
µ ≥ λ and set I ′ = colimλ Iλ. If (15.19.1.1) holds for (R′, I ′), then there exists a
λ ∈ Λ such that (15.19.1.1) holds for (Rλ, Iλ).

Proof. We first prove the lemma in case R → S is of finite presentation and then
we explain what needs to be changed in the general case. We are going to write
Sλ = S ⊗R Rλ, S′ = S ⊗R R′, Mλ = M ⊗R Rλ, and M ′ = M ⊗R R′. The base
change S′ is of finite presentation over R′ and M ′ is of finite presentation over S′

and similarly for the versions with subscript λ, see Algebra, Lemma 10.14.2. By
Algebra, Theorem 10.129.4 the set

U ′ = {q′ ∈ Spec(S′) |M ′
q′ is flat over R′}

is open in Spec(S′). Note that V (I ′S′ + JS′) is a quasi-compact space which is
contained in U ′ by assumption. Hence there exist finitely many g′

j ∈ S′, j =
1, . . . ,m such that D(g′

j) ⊂ U ′ and such that V (I ′S′ + JS′) ⊂
⋃
D(g′

j). Note that
in particular (M ′)g′

j
is a flat module over R′.

We are going to pick increasingly large elements λ ∈ Λ. First we pick it large enough
so that we can find gj,λ ∈ Sλ mapping to g′

j . The inclusion V (I ′S′+JS′) ⊂
⋃
D(g′

j)
means that I ′S′ + JS′ + (g′

1, . . . , g
′
m) = S′ which can be expressed as

1 =
∑

ytkt +
∑

zshs +
∑

fjg
′
j

for some zs ∈ I ′, yt ∈ J , kt, hs, fj ∈ S′. After increasing λ we may assume such
an equation holds in Sλ. Hence we may assume that V (IλSλ + JSλ) ⊂

⋃
D(gj,λ).

By Algebra, Lemma 10.168.1 we see that for some sufficiently large λ the modules
(Mλ)gj,λ are flat over Rλ. In particular the module Mλ is flat over Rλ at all the
primes corresponding to points of V (IλSλ + JSλ).
In the case that S is essentially of finite presentation, we can write S = Σ−1C where
R → C is of finite presentation and Σ ⊂ C is a multiplicative subset. We can also
write M = Σ−1N for some finitely presented C-module N , see Algebra, Lemma
10.126.3. At this point we introduce Cλ, C ′, Nλ, N ′. Then in the discussion above
we obtain an open U ′ ⊂ Spec(C ′) over which N ′ is flat over R′. The assumption
that (15.19.1.1) is true means that V (I ′S′ +JS′) maps into U ′, because for a prime
q′ ⊂ S′, corresponding to a prime r′ ⊂ C ′ we have M ′

q′ = N ′
r′ . Thus we can find

g′
j ∈ C ′ such that

⋃
D(g′

j) contains the image of V (I ′S′ + JS′). The rest of the
proof is exactly the same as before. □

Lemma 15.19.5.05LU In Situation 15.19.1. Let I ⊂ R be an ideal. Assume
(1) R is a Noetherian ring,
(2) S is a Noetherian ring,
(3) M is a finite S-module, and
(4) for each n ≥ 1 and any prime q ∈ V (J + IS) the module (M/InM)q is

flat over R/In.
Then (15.19.1.1) holds for (R, I), i.e., for every prime q ∈ V (J+IS) the localization
Mq is flat over R.

Proof. Let q ∈ V (J + IS). Then Algebra, Lemma 10.99.11 applied to R→ Sq and
Mq implies that Mq is flat over R. □
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15.20. Flattening over a Noetherian complete local ring

05LV The following three lemmas give a completely algebraic proof of the existence of
the “local” flattening stratification when the base is a complete local Noetherian
ring R and the given module is finite over a finite type R-algebra S.

Lemma 15.20.1.0526 Let R→ S be a ring map. Let M be an S-module. Assume
(1) (R,m) is a complete local Noetherian ring,
(2) S is a Noetherian ring, and
(3) M is finite over S.

Then there exists an ideal I ⊂ m such that
(1) (M/IM)q is flat over R/I for all primes q of S/IS lying over m, and
(2) if J ⊂ R is an ideal such that (M/JM)q is flat over R/J for all primes q

lying over m, then I ⊂ J .
In other words, I is the smallest ideal of R such that (15.18.0.1) holds for (R →
S,m,M) where R = R/I, S = S/IS, m = m/I and M = M/IM .

Proof. Let J ⊂ R be an ideal. Apply Algebra, Lemma 10.99.11 to the module
M/JM over the ring R/J . Then we see that (M/JM)q is flat over R/J for all
primes q of S/JS if and only if M/(J +mn)M is flat over R/(J +mn) for all n ≥ 1.
We will use this remark below.
For every n ≥ 1 the local ring R/mn is Artinian. Hence, by Lemma 15.17.1 there
exists a smallest ideal In ⊃ mn such that M/InM is flat over R/In. It is clear that
In+1 +mn is contains In and applying Lemma 15.16.1 we see that In = In+1 +mn.
Since R = limn R/mn we see that I = limn In/m

n is an ideal in R such that
In = I +mn for all n ≥ 1. By the initial remarks of the proof we see that I verifies
(1) and (2). Some details omitted. □

Lemma 15.20.2.0527 With notation R → S, M , and I and assumptions as in Lemma
15.20.1. Consider a local homomorphism of local rings φ : (R,m) → (R′,m′) such
that R′ is Noetherian. Then the following are equivalent

(1) condition (15.18.0.1) holds for (R′ → S ⊗R R′,m′,M ⊗R R′), and
(2) φ(I) = 0.

Proof. The implication (2) ⇒ (1) follows from Lemma 15.18.1. Let φ : R → R′

be as in the lemma satisfying (1). We have to show that φ(I) = 0. This is
equivalent to the condition that φ(I)R′ = 0. By Artin-Rees in the Noetherian
local ring R′ (see Algebra, Lemma 10.51.4) this is equivalent to the condition that
φ(I)R′ + (m′)n = (m′)n for all n > 0. Hence this is equivalent to the condition that
the composition φn : R→ R′ → R′/(m′)n annihilates I for each n. Now assumption
(1) for φ implies assumption (1) for φn by Lemma 15.18.1. This reduces us to the
case where R′ is Artinian local.
Assume R′ Artinian. Let J = Ker(φ). We have to show that I ⊂ J . By the
construction of I in Lemma 15.20.1 it suffices to show that (M/JM)q is flat over
R/J for every prime q of S/JS lying over m. As R′ is Artinian, condition (1)
signifies that M ⊗R R′ is flat over R′. As R′ is Artinian and R/J → R′ is a
local injective ring map, it follows that R/J is Artinian too. Hence the flatness
of M ⊗R R′ = M/JM ⊗R/J R′ over R′ implies that M/JM is flat over R/J by
Algebra, Lemma 10.101.7. This concludes the proof. □
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Lemma 15.20.3.0528 With notation R → S, M , and I and assumptions as in Lemma
15.20.1. In addition assume that R → S is of finite type. Then for any local
homomorphism of local rings φ : (R,m)→ (R′,m′) the following are equivalent

(1) condition (15.18.0.1) holds for (R′ → S ⊗R R′,m′,M ⊗R R′), and
(2) φ(I) = 0.

Proof. The implication (2) ⇒ (1) follows from Lemma 15.18.1. Let φ : R→ R′ be
as in the lemma satisfying (1). As R is Noetherian we see that R → S is of finite
presentation and M is an S-module of finite presentation. Write R′ = colimλRλ as
a directed colimit of localR-subalgebrasRλ ⊂ R′, with maximal ideals mλ = Rλ∩m′

such that each Rλ is essentially of finite type over R. By Lemma 15.18.3 we see
that condition (15.18.0.1) holds for (Rλ → S ⊗R Rλ,mλ,M ⊗R Rλ) for some λ.
Hence Lemma 15.20.2 applies to the ring map R→ Rλ and we see that I maps to
zero in Rλ, a fortiori it maps to zero in R′. □

15.21. Descent of flatness along integral maps

052Y First a few simple lemmas.

Lemma 15.21.1.052Z Let R be a ring. Let P (T ) be a monic polynomial with coefficients
in R. Let α ∈ R be such that P (α) = 0. Then P (T ) = (T − α)Q(T ) for some
monic polynomial Q(T ) ∈ R[T ].

Proof. By induction on the degree of P . If deg(P ) = 1, then P (T ) = T − α and
the result is true. If deg(P ) > 1, then we can write P (T ) = (T − α)Q(T ) + r for
some polynomial Q ∈ R[T ] of degree < deg(P ) and some r ∈ R by long division.
By assumption 0 = P (α) = (α − α)Q(α) + r = r and we conclude that r = 0 as
desired. □

Lemma 15.21.2.0530 Let R be a ring. Let P (T ) be a monic polynomial with coefficients
in R. There exists a finite free ring map R → R′ such that P (T ) = (T − α)Q(T )
for some α ∈ R′ and some monic polynomial Q(T ) ∈ R′[T ].

Proof. Write P (T ) = T d+a1T
d−1 +. . .+a0. Set R′ = R[x]/(xd+a1x

d−1 +. . .+a0).
Set α equal to the congruence class of x. Then it is clear that P (α) = 0. Thus we
win by Lemma 15.21.1. □

Lemma 15.21.3.0531 Let R → S be a finite ring map. There exists a finite free ring
extension R ⊂ R′ such that S ⊗R R′ is a quotient of a ring of the form

R′[T1, . . . , Tn]/(P1(T1), . . . , Pn(Tn))
with Pi(T ) =

∏
j=1,...,di(T − αij) for some αij ∈ R′.

Proof. Let x1, . . . , xn ∈ S be generators of S over R. For each i we can choose a
monic polynomial Pi(T ) ∈ R[T ] such that Pi(xi) = 0 in S, see Algebra, Lemma
10.36.3. Say deg(Pi) = di. By Lemma 15.21.2 (applied

∑
di times) there exists a

finite free ring extension R ⊂ R′ such that each Pi splits completely:

Pi(T ) =
∏

j=1,...,di
(T − αij)

for certain αik ∈ R′. Let R′[T1, . . . , Tn] → S ⊗R R′ be the R′-algebra map which
maps Ti to xi ⊗ 1. As this maps Pi(Ti) to zero, this induces the desired surjection.

□
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Lemma 15.21.4.0532 Let R be a ring. Let S = R[T1, . . . , Tn]/J . Assume J contains
elements of the form Pi(Ti) with Pi(T ) =

∏
j=1,...,di(T − αij) for some αij ∈ R.

For k = (k1, . . . , kn) with 1 ≤ ki ≤ di consider the ring map
Φk : R[T1, . . . , Tn]→ R, Ti 7−→ αiki

Set Jk = Φk(J). Then the image of Spec(S)→ Spec(R) is equal to V (
⋂
Jk).

Proof. This lemma proves itself. Hint: V (
⋂
Jk) =

⋃
V (Jk). □

The following result is due to Ferrand, see [Fer69].

Lemma 15.21.5.0533 Let R → S be a finite injective homomorphism of Noetherian
rings. Let M be an R-module. If M ⊗R S is a flat S-module, then M is a flat
R-module.

Proof. Let M be an R-module such that M⊗RS is flat over S. By Algebra, Lemma
10.39.8 in order to prove that M is flat we may replace R by any faithfully flat ring
extension. By Lemma 15.21.3 we can find a finite locally free ring extension R ⊂ R′

such that S′ = S⊗RR′ = R′[T1, . . . , Tn]/J for some ideal J ⊂ R′[T1, . . . , Tn] which
contains the elements of the form Pi(Ti) with Pi(T ) =

∏
j=1,...,di(T −αij) for some

αij ∈ R′. Note that R′ is Noetherian and that R′ ⊂ S′ is a finite extension of
rings. Hence we may replace R by R′ and assume that S has a presentation as in
Lemma 15.21.4. Note that Spec(S) → Spec(R) is surjective, see Algebra, Lemma
10.36.17. Thus, using Lemma 15.21.4 we conclude that I =

⋂
Jk is an ideal such

that V (I) = Spec(R). This means that I ⊂
√

(0), and since R is Noetherian that
I is nilpotent. The maps Φk induce commutative diagrams

S // R/Jk

R

^^ ==

from which we conclude that M/JkM is flat over R/Jk. By Lemma 15.16.1 we
see that M/IM is flat over R/I. Finally, applying Algebra, Lemma 10.101.5 we
conclude that M is flat over R. □

Lemma 15.21.6.0534 Let R→ S be an injective integral ring map. Let M be a finitely
presented module over R[x1, . . . , xn]. If M ⊗R S is flat over S, then M is flat over
R.

Proof. Choose a presentation
R[x1, . . . , xn]⊕t → R[x1, . . . , xn]⊕r →M → 0.

Let’s say that the first map is given by the r × t-matrix T = (fij) with fij ∈
R[x1, . . . , xn]. Write fij =

∑
fij,Ix

I with fij,I ∈ R (multi-index notation). Con-
sider diagrams

R // S

Rλ

OO

// Sλ

OO

where Rλ is a finitely generated Z-subalgebra of R containing all fij,I and Sλ is a
finite Rλ-subalgebra of S. Let Mλ be the finite Rλ[x1, . . . , xn]-module defined by
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a presentation as above, using the same matrix T but now viewed as a matrix over
Rλ[x1, . . . , xn]. Note that S is the directed colimit of the Sλ (details omitted). By
Algebra, Lemma 10.168.1 we see that for some λ the module Mλ⊗Rλ Sλ is flat over
Sλ. By Lemma 15.21.5 we conclude that Mλ is flat over Rλ. Since M = Mλ⊗Rλ R
we win by Algebra, Lemma 10.39.7. □

15.22. Torsion free modules

0549 In this section we discuss torsion free modules and the relationship with flatness
(especially over dimension 1 rings).

Definition 15.22.1.0536 Let R be a domain. Let M be an R-module.
(1) We say an element x ∈ M is torsion if there exists a nonzero f ∈ R such

that fx = 0.
(2) We say M is torsion free if the only torsion element of M is 0.

Let R be a domain and let S = R\{0} be the multiplicative set of nonzero elements
of R. Then an R-module M is torsion free if and only if M → S−1M is injective.
In other words, if and only if the map M →M ⊗RK is injective where K = S−1R
is the fraction field of R.

Lemma 15.22.2.0537 Let R be a domain. Let M be an R-module. The set of torsion
elements of M forms a submodule Mtors ⊂ M . The quotient module M/Mtors is
torsion free.

Proof. Omitted. □

Lemma 15.22.3.0AUR Let R be a domain. Let M be a torsion free R-module. For any
multiplicative set S ⊂ R the module S−1M is a torsion free S−1R-module.

Proof. Omitted. □

Lemma 15.22.4.0AXM Let R→ R′ be a flat homomorphism of domains. If M is a torsion
free R-module, then M ⊗R R′ is a torsion free R′-module.

Proof. If M is torsion free, then M ⊂M ⊗RK is injective where K is the fraction
field of R. Since R′ is flat over R we see that M ⊗R R′ → (M ⊗R K) ⊗R R′ is
injective. Since M ⊗RK is isomorphic to a direct sum of copies of K, it suffices to
see that K ⊗R R′ is torsion free. This is true because it is a localization of R′. □

Lemma 15.22.5.0AUS Let R be a domain. Let 0 → M → M ′ → M ′′ → 0 be a short
exact sequence of R-modules. If M and M ′′ are torsion free, then M ′ is torsion
free.

Proof. Omitted. □

Lemma 15.22.6.0AUT Let R be a domain. Let M be an R-module. Then M is torsion
free if and only if Mm is a torsion free Rm-module for all maximal ideals m of R.

Proof. Omitted. Hint: Use Lemma 15.22.3 and Algebra, Lemma 10.23.1. □

Lemma 15.22.7.0AUU Let R be a domain. Let M be a finite R-module. Then M is
torsion free if and only if M is a submodule of a finite free module.
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Proof. If M is a submodule of R⊕n, then M is torsion free. For the converse,
assume M is torsion free. Let K be the fraction field of R. Then M ⊗R K is a
finite dimensional K-vector space. Choose a basis e1, . . . , er for this vector space.
Let x1, . . . , xn be generators of M . Write xi =

∑
(aij/bij)ej for some aij , bij ∈ R

with bij ̸= 0. Set b =
∏
i,j bij . Since M is torsion free the map M → M ⊗R K is

injective and the image is contained in R⊕r = Re1/b⊕ . . .⊕Rer/b. □

Lemma 15.22.8.0AUV Let R be a Noetherian domain. Let M be a nonzero finite R-
module. The following are equivalent

(1) M is torsion free,
(2) M is a submodule of a finite free module,
(3) (0) is the only associated prime of M ,
(4) (0) is in the support of M and M has property (S1), and
(5) (0) is in the support of M and M has no embedded associated prime.

Proof. We have seen the equivalence of (1) and (2) in Lemma 15.22.7. We have
seen the equivalence of (4) and (5) in Algebra, Lemma 10.157.2. The equivalence
between (3) and (5) is immediate from the definition. A localization of a torsion
free module is torsion free (Lemma 15.22.3), hence it is clear that a M has no
associated primes different from (0). Thus (1) implies (5). Conversely, assume (5).
If M has torsion, then there exists an embedding R/I ⊂M for some nonzero ideal
I of R. Hence M has an associated prime different from (0) (see Algebra, Lemmas
10.63.3 and 10.63.7). This is an embedded associated prime which contradicts the
assumption. □

Lemma 15.22.9.0538 Let R be a domain. Any flat R-module is torsion free.

Proof. If x ∈ R is nonzero, then x : R → R is injective, and hence if M is flat
over R, then x : M → M is injective. Thus if M is flat over R, then M is torsion
free. □

Lemma 15.22.10.0539 Let A be a valuation ring. An A-module M is flat over A if and
only if M is torsion free.

Proof. The implication “flat ⇒ torsion free” is Lemma 15.22.9. For the converse,
assume M is torsion free. By the equational criterion of flatness (see Algebra,
Lemma 10.39.11) we have to show that every relation in M is trivial. To do this
assume that

∑
i=1,...,n aixi = 0 with xi ∈ M and ai ∈ A. After renumbering we

may assume that v(a1) ≤ v(ai) for all i. Hence we can write ai = a′
ia1 for some

a′
i ∈ A. Note that a′

1 = 1. As M is torsion free we see that x1 = −
∑
i≥2 a

′
ixi.

Thus, if we choose yi = xi, i = 2, . . . , n then

x1 =
∑

j≥2
−a′

jyj , xi = yi, (i ≥ 2) 0 = a1 · (−a′
j) + aj · 1(j ≥ 2)

shows that the relation was trivial (to be explicit the elements aij are defined by
setting a11 = 0, a1j = −a′

j for j > 1, and aij = δij for i, j ≥ 2). □

Lemma 15.22.11.0AUW Let A be a Dedekind domain (for example a discrete valuation
ring or more generally a PID).

(1) An A-module is flat if and only if it is torsion free.
(2) A finite torsion free A-module is finite locally free.
(3) A finite torsion free A-module is finite free if A is a PID.
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Proof. (For the parenthetical remark in the statement of the lemma, see Algebra,
Lemma 10.120.15.) Proof of (1). By Lemma 15.22.6 and Algebra, Lemma 10.39.18
it suffices to check the statement over Am for m ⊂ A maximal. Since Am is a
discrete valuation ring (Algebra, Lemma 10.120.17) we win by Lemma 15.22.10.
Proof of (2). Follows from Algebra, Lemma 10.78.2 and (1).
Proof of (3). Let A be a PID and let M be a finite torsion free module. By Lemma
15.22.7 we see that M ⊂ A⊕n for some n. We argue that M is free by induction
on n. The case n = 1 expresses exactly the fact that A is a PID. If n > 1 let
M ′ ⊂ R⊕n−1 be the image of the projection onto the last n− 1 summands of R⊕n.
Then we obtain a short exact sequence 0 → I → M → M ′ → 0 where I is the
intersection of M with the first summand R of R⊕n. By induction we see that M
is an extension of finite free R-modules, whence finite free. □

Lemma 15.22.12.0AUX Let R be a domain. Let M , N be R-modules. If N is torsion
free, so is HomR(M,N).

Proof. Choose a surjection
⊕

i∈I R→M . Then HomR(M,N) ⊂
∏
i∈I N . □

15.23. Reflexive modules

0AUY Here is our definition.

Definition 15.23.1.0AUZ Let R be a domain. We say an R-module M is reflexive if the
natural map

j : M −→ HomR(HomR(M,R), R)
which sends m ∈ M to the map sending φ ∈ HomR(M,R) to φ(m) ∈ R is an
isomorphism.

We can make this definition for more general rings, but already the definition
above has drawbacks. It would be wise to restrict to Noetherian domains and finite
torsion free modules and (perhaps) impose some regularity conditions on R (e.g.,
R is normal).

Lemma 15.23.2.0AV0 Let R be a domain and let M be an R-module.
(1) If M is reflexive, then M is torsion free.
(2) If M is finite, then j : M → HomR(HomR(M,R), R) is injective if and

only if M is torsion free

Proof. Follows immediately from Lemmas 15.22.12 and 15.22.7. □

Lemma 15.23.3.0B36 Let R be a discrete valuation ring and let M be a finite R-module.
Then the map j : M → HomR(HomR(M,R), R) is surjective.

Proof. Let Mtors ⊂ M be the torsion submodule. Then we have HomR(M,R) =
HomR(M/Mtors, R) (holds over any domain). Hence we may assume that M is
torsion free. Then M is free by Lemma 15.22.11 and the lemma is clear. □

Lemma 15.23.4.0AV1 Let R be a Noetherian domain. Let M be a finite R-module. The
following are equivalent:

(1) M is reflexive,
(2) Mp is a reflexive Rp-module for all primes p ⊂ R, and
(3) Mm is a reflexive Rm-module for all maximal ideals m of R.
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Proof. The localization of j : M → HomR(HomR(M,R), R) at a prime p is the
corresponding map for the module Mp over the Noetherian local domain Rp. See
Algebra, Lemma 10.10.2. Thus the lemma holds by Algebra, Lemma 10.23.1. □

Lemma 15.23.5.0EB8 Let R be a Noetherian domain. Let 0 → M → M ′ → M ′′ an
exact sequence of finite R-modules. If M ′ is reflexive and M ′′ is torsion free, then
M is reflexive.

Proof. We will use without further mention that HomR(N,N ′) is a finite R-module
for any finite R-modules N and N ′, see Algebra, Lemma 10.71.9. We take duals to
get a sequence

HomR(M,R)← HomR(M ′, R)← HomR(M ′′, R)

Dualizing again we obtain a commutative diagram

HomR(HomR(M,R), R)
j
// HomR(HomR(M ′, R), R) // HomR(HomR(M ′′, R), R)

M

OO

// M ′

OO

// M ′′

OO

We do not know the top row is exact. But, by assumption the middle vertical
arrow is an isomorphism and the right vertical arrow is injective (Lemma 15.23.2).
We claim j is injective. Assuming the claim a diagram chase shows that the left
vertical arrow is an isomorphism, i.e., M is reflexive.

Proof of the claim. Consider the exact sequence HomR(M ′, R)→ HomR(M,R)→
Q→ 0 defining Q. One applies Algebra, Lemma 10.10.2 to obtain

HomK(M ′ ⊗R K,K)→ HomK(M ⊗R K,K)→ Q⊗R K → 0

But M ⊗RK →M ′⊗RK is an injective map of vector spaces, hence split injective,
so Q⊗R K = 0, that is, Q is torsion. Then one gets the exact sequence

0→ HomR(Q,R)→ HomR(HomR(M,R), R)→ HomR(HomR(M ′, R), R)

and HomR(Q,R) = 0 because Q is torsion. □

Lemma 15.23.6.0AV2 Let R be a Noetherian domain. Let M be a finite R-module. The
following are equivalent

(1) M is reflexive,
(2) there exists a short exact sequence 0 → M → F → N → 0 with F finite

free and N torsion free.

Proof. Observe that a finite free module is reflexive. By Lemma 15.23.5 we see that
(2) implies (1). Assume M is reflexive. Choose a presentation R⊕m → R⊕n →
HomR(M,R)→ 0. Dualizing we get an exact sequence

0→ HomR(HomR(M,R), R)→ R⊕n → N → 0

withN = Im(R⊕n → R⊕m) a torsion free module. AsM = HomR(HomR(M,R), R)
we get an exact sequence as in (2). □

Lemma 15.23.7.0EB9 Let R → R′ be a flat homomorphism of Noetherian domains. If
M is a finite reflexive R-module, then M ⊗R R′ is a finite reflexive R′-module.
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Proof. Choose a short exact sequence 0 → M → F → N → 0 with F finite free
and N torsion free, see Lemma 15.23.6. Since R → R′ is flat we obtain a short
exact sequence 0→M ⊗R R′ → F ⊗R R′ → N ⊗R R′ → 0 with F ⊗R R′ finite free
and N ⊗R R′ torsion free (Lemma 15.22.4). Thus M ⊗R R′ is reflexive by Lemma
15.23.6. □

Lemma 15.23.8.0AV3 Let R be a Noetherian domain. Let M be a finite R-module. Let
N be a finite reflexive R-module. Then HomR(M,N) is reflexive.

Proof. Choose a presentation R⊕m → R⊕n →M → 0. Then we obtain
0→ HomR(M,N)→ N⊕n → N ′ → 0

with N ′ = Im(N⊕n → N⊕m) torsion free. We conclude by Lemma 15.23.5. □

Definition 15.23.9.0AV4 Let R be a Noetherian domain. Let M be a finite R-module.
The module M∗∗ = HomR(HomR(M,R), R) is called the reflexive hull of M .

This makes sense because the reflexive hull is reflexive by Lemma 15.23.8. The
assignment M 7→ M∗∗ is a functor. If φ : M → N is an R-module map into a
reflexive R-module N , then φ factors M →M∗∗ → N through the reflexive hull of
M . Another way to say this is that taking the reflexive hull is the left adjoint to
the inclusion functor

finite reflexive modules ⊂ finite modules
over a Noetherian domain R.

Lemma 15.23.10.0AV5 Let R be a Noetherian local ring. Let M , N be finite R-modules.
(1) If N has depth ≥ 1, then HomR(M,N) has depth ≥ 1.
(2) If N has depth ≥ 2, then HomR(M,N) has depth ≥ 2.

Proof. Choose a presentation R⊕m → R⊕n → M → 0. Dualizing we get an exact
sequence

0→ HomR(M,N)→ N⊕n → N ′ → 0
with N ′ = Im(N⊕n → N⊕m). A submodule of a module with depth ≥ 1 has
depth ≥ 1; this follows immediately from the definition. Thus part (1) is clear. For
(2) note that here the assumption and the previous remark implies N ′ has depth
≥ 1. The module N⊕n has depth ≥ 2. From Algebra, Lemma 10.72.6 we conclude
HomR(M,N) has depth ≥ 2. □

Lemma 15.23.11.0AV6 Let R be a Noetherian ring. Let M , N be finite R-modules.
(1) If N has property (S1), then HomR(M,N) has property (S1).
(2) If N has property (S2), then HomR(M,N) has property (S2).
(3) If R is a domain, N is torsion free and (S2), then HomR(M,N) is torsion

free and has property (S2).

Proof. Since localizing at primes commutes with taking HomR for finite R-modules
(Algebra, Lemma 10.71.9) parts (1) and (2) follow immediately from Lemma 15.23.10.
Part (3) follows from (2) and Lemma 15.22.12. □

Lemma 15.23.12.0AV7 Let R be a Noetherian ring. Let φ : M → N be a map of R-
modules. Assume that for every prime p of R at least one of the following happens

(1) Mp → Np is injective, or
(2) p ̸∈ Ass(M).
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Then φ is injective.

Proof. Let p be an associated prime of Ker(φ). Then there exists an element
x ∈ Mp which is in the kernel of Mp → Np and is annihilated by pRp (Algebra,
Lemma 10.63.15). This is impossible in both cases. Hence Ass(Ker(φ)) = ∅ and
we conclude Ker(φ) = 0 by Algebra, Lemma 10.63.7. □

Lemma 15.23.13.0AV8 Let R be a Noetherian ring. Let φ : M → N be a map of R-
modules. Assume M is finite and that for every prime p of R one of the following
happens

(1) Mp → Np is an isomorphism, or
(2) depth(Mp) ≥ 2 and p ̸∈ Ass(N).

Then φ is an isomorphism.

Proof. By Lemma 15.23.12 we see that φ is injective. Let N ′ ⊂ N be an finitely
generated R-module containing the image of M . Then Ass(Np) = ∅ implies
Ass(N ′

p) = ∅. Hence the assumptions of the lemma hold for M → N ′. In or-
der to prove that φ is an isomorphism, it suffices to prove the same thing for
every such N ′ ⊂ N . Thus we may assume N is a finite R-module. In this case,
p ̸∈ Ass(N) ⇒ depth(Np) ≥ 1, see Algebra, Lemma 10.63.18. Consider the short
exact sequence

0→M → N → Q→ 0
defining Q. Looking at the conditions we see that either Qp = 0 in case (1) or
depth(Qp) ≥ 1 in case (2) by Algebra, Lemma 10.72.6. This implies that Q does
not have any associated primes, hence Q = 0 by Algebra, Lemma 10.63.7. □

Lemma 15.23.14.0AV9 Let R be a Noetherian domain. Let φ : M → N be a map of
R-modules. Assume M is finite, N is torsion free, and that for every prime p of R
one of the following happens

(1) Mp → Np is an isomorphism, or
(2) depth(Mp) ≥ 2.

Then φ is an isomorphism.

Proof. This is a special case of Lemma 15.23.13. □

Lemma 15.23.15.0AVA Let R be a Noetherian domain. Let M be a finite R-module.
The following are equivalent

(1) M is reflexive,
(2) for every prime p of R one of the following happens

(a) Mp is a reflexive Rp-module, or
(b) depth(Mp) ≥ 2.

Proof. If (1) is true, then Mp is a reflexive module for all primes of p by Lemma
15.23.4. Thus (1) ⇒ (2). Assume (2). Set N = HomR(HomR(M,R), R) so that

Np = HomRp
(HomRp

(Mp, Rp), Rp)
for every prime p of R. See Algebra, Lemma 10.10.2. We apply Lemma 15.23.14 to
the map j : M → N . This is allowed because M is finite and N is torsion free by
Lemma 15.22.12. In case (2)(a) the map Mp → Np is an isomorphism and in case
(2)(b) we have depth(Mp) ≥ 2. □
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Lemma 15.23.16.0EBA Let R be a Noetherian domain. Let M be a finite reflexive
R-module. Let p ⊂ R be a prime ideal.

(1) If depth(Rp) ≥ 2, then depth(Mp) ≥ 2.
(2) If R is (S2), then M is (S2).

Proof. Since formation of reflexive hull HomR(HomR(M,R), R) commutes with
localization (Algebra, Lemma 10.10.2) part (1) follows from Lemma 15.23.10. Part
(2) is immediate from Lemma 15.23.11. □

Example 15.23.17.0EBB The results above and below suggest reflexivity is related to
the (S2) condition; here is an example to prevent too optimistic conjectures. Let k
be a field. Let R be the k-subalgebra of k[x, y] generated by 1, y, x2, xy, x3. Then
R is not (S2). So R as an R-module is an example of a reflexive R-module which is
not (S2). Let M = k[x, y] viewed as an R-module. Then M is a reflexive R-module
because

HomR(M,R) = m = (y, x2, xy, x3) and HomR(m, R) = M

and M is (S2) as an R-module (computations omitted). Thus R is a Noetherian
domain possessing a reflexive (S2) module but R is not (S2) itself.
Lemma 15.23.18.0AVB Let R be a Noetherian normal domain with fraction field K. Let
M be a finite R-module. The following are equivalent

(1) M is reflexive,
(2) M is torsion free and has property (S2),
(3) M is torsion free and M =

⋂
height(p)=1 Mp where the intersection happens

in MK = M ⊗R K.
Proof. By Algebra, Lemma 10.157.4 we see that R satisfies (R1) and (S2).
Assume (1). Then M is torsion free by Lemma 15.23.2 and satisfies (S2) by Lemma
15.23.16. Thus (2) holds.
Assume (2). By definition M ′ =

⋂
height(p)=1 Mp is the kernel of the map

MK −→
⊕

height(p)=1
MK/Mp ⊂

∏
height(p)=1

MK/Mp

Observe that our map indeed factors through the direct sum as indicated since
given a/b ∈ K there are at most finitely many height 1 primes p with b ∈ p. Let
p0 be a prime of height 1. Then (MK/Mp)p0 = 0 unless p = p0 in which case we
get (MK/Mp)p0 = MK/Mp0 . Thus by exactness of localization and the fact that
localization commutes with direct sums, we see that M ′

p0
= Mp0 . Since M has

depth ≥ 2 at primes of height > 1, we see that M → M ′ is an isomorphism by
Lemma 15.23.14. Hence (3) holds.
Assume (3). Let p be a prime of height 1. Then Rp is a discrete valuation ring
by (R1). By Lemma 15.22.11 we see that Mp is finite free, in particular reflexive.
Hence the map M →M∗∗ induces an isomorphism at all the primes p of height 1.
Thus the condition M =

⋂
height(p)=1 Mp implies that M = M∗∗ and (1) holds. □

Lemma 15.23.19.0AVC Let R be a Noetherian normal domain. Let M be a finite R-
module. Then the reflexive hull of M is the intersection

M∗∗ =
⋂

height(p)=1
Mp/(Mp)tors =

⋂
height(p)=1

(M/Mtors)p

taken in M ⊗R K.
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Proof. Let p be a prime of height 1. The kernel of Mp → M ⊗R K is the torsion
submodule (Mp)tors of Mp. Moreover, we have (M/Mtors)p = Mp/(Mp)tors and
this is a finite free module over the discrete valuation ring Rp (Lemma 15.22.11).
Then Mp/(Mp)tors → (Mp)∗∗ = (M∗∗)p is an isomorphism, hence the lemma is a
consequence of Lemma 15.23.18. □

Lemma 15.23.20.0BM4 Let A be a Noetherian normal domain with fraction field K. Let
L be a finite extension of K. If the integral closure B of A in L is finite over A,
then B is reflexive as an A-module.
Proof. It suffices to show that B =

⋂
Bp where the intersection is over height 1

primes p ⊂ A, see Lemma 15.23.18. Let b ∈
⋂
Bp. Let xd+a1x

d−1 + . . .+ad be the
minimal polynomial of b over K. We want to show ai ∈ A. By Algebra, Lemma
10.38.6 we see that ai ∈ Ap for all i and all height one primes p. Hence we get
what we want from Algebra, Lemma 10.157.6 (or the lemma already cited as A is
a reflexive module over itself). □

15.24. Content ideals

0AS9 The definition may not be what you expect.
Definition 15.24.1.0ASA Let A be a ring. Let M be a flat A-module. Let x ∈M . If the
set of ideals I in A such that x ∈ IM has a smallest element, we call it the content
ideal of x.
Note that since M is flat over A, for a pair of ideals I, I ′ of A we have IM ∩ I ′M =
(I ∩ I ′)M as can be seen by tensoring the exact sequence 0 → I ∩ I ′ → I ⊕ I ′ →
I + I ′ → 0 by M .
Lemma 15.24.2.0ASB Let A be a ring. Let M be a flat A-module. Let x ∈ M . The
content ideal of x, if it exists, is finitely generated.
Proof. Say x ∈ IM . Then we can write x =

∑
i=1,...,n fixi with fi ∈ I and xi ∈M .

Hence x ∈ I ′M with I ′ = (f1, . . . , fn). □

Lemma 15.24.3.0ASC Let (A,m) be a local ring. Let u : M → N be a map of flat
A-modules such that u : M/mM → N/mN is injective. If x ∈M has content ideal
I, then u(x) has content ideal I as well.
Proof. It is clear that u(x) ∈ IN . If u(x) ∈ I ′N , then u(x) ∈ (I ′ ∩ I)N , see
discussion following Definition 15.24.1. Hence it suffices to show: if x ∈ I ′N and
I ′ ⊂ I, I ′ ̸= I, then u(x) ̸∈ I ′N . Since I/I ′ is a nonzero finite A-module (Lemma
15.24.2) there is a nonzero map χ : I/I ′ → A/m of A-modules by Nakayama’s
lemma (Algebra, Lemma 10.20.1). Since I is the content ideal of x we see that
x ̸∈ I ′′M where I ′′ = Ker(χ). Hence x is not in the kernel of the map

IM = I ⊗AM
χ⊗1−−−→ A/m⊗M ∼= M/mM

Applying our hypothesis on u we conclude that u(x) does not map to zero under
the map

IN = I ⊗A N
χ⊗1−−−→ A/m⊗N ∼= N/mN

and we conclude. □

Lemma 15.24.4.0ASD Let A be a ring. Let M be a flat Mittag-Leffler module. Then
every element of M has a content ideal.
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Proof. This is a special case of Algebra, Lemma 10.91.2. □

15.25. Flatness and finiteness conditions

054A In this section we discuss some implications of the type “flat + finite type ⇒ finite
presentation”. We will revisit this result in the chapter on flatness, see More on
Flatness, Section 38.1. A first result of this type was proved in Algebra, Lemma
10.108.6.

Lemma 15.25.1.053A Let R be a ring. Let S = R[x1, . . . , xn] be a polynomial ring over
R. Let M be an S-module. Assume

(1) there exist finitely many primes p1, . . . , pm of R such that the map R →∏
Rpj is injective,

(2) M is a finite S-module,
(3) M flat over R, and
(4) for every prime p of R the module Mp is of finite presentation over Sp.

Then M is of finite presentation over S.

Proof. Choose a presentation

0→ K → S⊕r →M → 0

of M as an S-module. Let q be a prime ideal of S lying over a prime p of R.
By assumption there exist finitely many elements k1, . . . , kt ∈ K such that if we
set K ′ =

∑
Skj ⊂ K then K ′

p = Kp and K ′
pj = Kpj for j = 1, . . . ,m. Setting

M ′ = S⊕r/K ′ we deduce that in particular M ′
q = Mq. By openness of flatness, see

Algebra, Theorem 10.129.4 we conclude that there exists a g ∈ S, g ̸∈ q such that
M ′
g is flat over R. Thus M ′

g →Mg is a surjective map of flat R-modules. Consider
the commutative diagram

M ′
g

//

��

Mg

��∏
(M ′

g)pj // ∏(Mg)pj

The bottom arrow is an isomorphism by choice of k1, . . . , kt. The left vertical arrow
is an injective map as R →

∏
Rpj is injective and M ′

g is flat over R. Hence the
top horizontal arrow is injective, hence an isomorphism. This proves that Mg is of
finite presentation over Sg. We conclude by applying Algebra, Lemma 10.23.2. □

Lemma 15.25.2.053B Let R→ S be a ring homomorphism. Assume
(1) there exist finitely many primes p1, . . . , pm of R such that the map R →∏

Rpj is injective,
(2) R→ S is of finite type,
(3) S flat over R, and
(4) for every prime p of R the ring Sp is of finite presentation over Rp.

Then S is of finite presentation over R.

Proof. By assumption S is a quotient of a polynomial ring over R. Thus the result
follows directly from Lemma 15.25.1. □
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Lemma 15.25.3.053C Let R be a ring. Let S = R[x1, . . . , xn] be a graded polynomial
algebra over R, i.e., deg(xi) > 0 but not necessarily equal to 1. Let M be a graded
S-module. Assume

(1) R is a local ring,
(2) M is a finite S-module, and
(3) M is flat over R.

Then M is finitely presented as an S-module.

Proof. Let M =
⊕
Md be the grading on M . Pick homogeneous generators

m1, . . . ,mr ∈M of M . Say deg(mi) = di ∈ Z. This gives us a presentation

0→ K →
⊕

i=1,...,r
S(−di)→M → 0

which in each degree d leads to the short exact sequence
0→ Kd →

⊕
i=1,...,r

Sd−di →Md → 0.

By assumption each Md is a finite flat R-module. By Algebra, Lemma 10.78.5
this implies each Md is a finite free R-module. Hence we see each Kd is a finite
R-module. Also each Kd is flat over R by Algebra, Lemma 10.39.13. Hence we
conclude that each Kd is finite free by Algebra, Lemma 10.78.5 again.
Let m be the maximal ideal of R. By the flatness of M over R the short exact
sequences above remain short exact after tensoring with κ = κ(m). As the ring
S ⊗R κ is Noetherian we see that there exist homogeneous elements k1, . . . , kt ∈ K
such that the images kj generate K ⊗R κ over S ⊗R κ. Say deg(kj) = ej . Thus for
any d the map ⊕

j=1,...,t
Sd−ej −→ Kd

becomes surjective after tensoring with κ. By Nakayama’s lemma (Algebra, Lemma
10.20.1) this implies the map is surjective overR. HenceK is generated by k1, . . . , kt
over S and we win. □

Lemma 15.25.4.053D Let R be a ring. Let S =
⊕

n≥0 Sn be a graded R-algebra.
Let M =

⊕
d∈Z Md be a graded S-module. Assume S is finitely generated as an

R-algebra, assume S0 is a finite R-algebra, and assume there exist finitely many
primes pj , i = 1, . . . ,m such that R→

∏
Rpj is injective.

(1) If S is flat over R, then S is a finitely presented R-algebra.
(2) If M is flat as an R-module and finite as an S-module, then M is finitely

presented as an S-module.

Proof. As S is finitely generated as an R-algebra, it is finitely generated as an S0
algebra, say by homogeneous elements t1, . . . , tn ∈ S of degrees d1, . . . , dn > 0. Set
P = R[x1, . . . , xn] with deg(xi) = di. The ring map P → S, xi → ti is finite as S0
is a finite R-module. To prove (1) it suffices to prove that S is a finitely presented
P -module. To prove (2) it suffices to prove that M is a finitely presented P -module.
Thus it suffices to prove that if S = P is a graded polynomial ring and M is a finite
S-module flat over R, then M is finitely presented as an S-module. By Lemma
15.25.3 we see Mp is a finitely presented Sp-module for every prime p of R. Thus
the result follows from Lemma 15.25.1. □

Remark 15.25.5.05GS Let R be a ring. When does R satisfy the condition mentioned
in Lemmas 15.25.1, 15.25.2, and 15.25.4? This holds if
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(1) R is local,
(2) R is Noetherian,
(3) R is a domain,
(4) R is a reduced ring with finitely many minimal primes, or
(5) R has finitely many weakly associated primes, see Algebra, Lemma 10.66.17.

Thus these lemmas hold in all cases listed above.
The following lemma will be improved on in More on Flatness, Proposition 38.13.10.
Lemma 15.25.6.053E [Nag66, Theorem 3]Let A be a valuation ring. Let A → B be a ring map of finite
type. Let M be a finite B-module.

(1) If B is flat over A, then B is a finitely presented A-algebra.
(2) If M is flat as an A-module, then M is finitely presented as a B-module.

Proof. We are going to use that an A-module is flat if and only if it is torsion free,
see Lemma 15.22.10. By Algebra, Lemma 10.57.10 we can find a graded A-algebra
S with S0 = A and generated by finitely many elements in degree 1, an element
f ∈ S1 and a finite graded S-module N such that B ∼= S(f) and M ∼= N(f). If M is
torsion free, then we can take N torsion free by replacing it by N/Ntors, see Lemma
15.22.2. Similarly, if B is torsion free, then we can take S torsion free by replacing
it by S/Stors. Hence in case (1), we may apply Lemma 15.25.4 to see that S is
a finitely presented A-algebra, which implies that B = S(f) is a finitely presented
A-algebra. To see (2) we may first replace S by a graded polynomial ring, and then
we may apply Lemma 15.25.3 to conclude. □

Lemma 15.25.7.0GSE Let A be a valuation ring. Let A→ B be a local homomorphism
which is essentially of finite type. Let M be a finite B-module.

(1) If B is flat over A, then B is essentially of finite presentation over A.
(2) If M is flat as an A-module, then M is finitely presented as a B-module.

Proof. By assumption we can write B as a quotient of the localization of a polyno-
mial algebra P = A[x1, . . . , xn] at a prime ideal q. In case (1) we consider M = B
as a finite module over Pq and in case (2) we consider M as a finite module over
Pq. In both cases, we have to show that this is a finitely presented Pq-module, see
Algebra, Lemma 10.6.4 for case (2).
Choose a presentation 0 → K → P⊕r

q → M → 0 which is possible because M is
finite over Pq. Let L = P⊕r ∩ K. Then K = Lq, see Algebra, Lemma 10.9.15.
Then N = P⊕r/L is a submodule of M and hence flat by Lemma 15.22.10. Since
also N is a finite P -module, we see that N is finitely presented as a P -module by
Lemma 15.25.6. Since localization is exact (Algebra, Proposition 10.9.12) we see
that Nq = M and we conclude. □

15.26. Blowing up and flatness

0535 In this section we begin our discussion of results of the form: “After a blowup the
strict transform becomes flat”. More results of this type may be found in Divisors,
Section 31.35 and More on Flatness, Section 38.30.
Definition 15.26.1.053H Let R be a ring. Let I ⊂ R be an ideal and a ∈ I. Let R[ Ia ] be
the affine blowup algebra, see Algebra, Definition 10.70.1. Let M be an R-module.
The strict transform of M along R→ R[ Ia ] is the R[ Ia ]-module

M ′ =
(
M ⊗R R[ Ia ]

)
/a-power torsion
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The following is a very weak version of flattening by blowing up, but it is already
sometimes a useful result.

Lemma 15.26.2.053I Let (R,m) be a local domain with fraction field K. Let S be a
finite type R-algebra. Let M be a finite S-module. For every valuation ring A ⊂ K
dominating R there exists an ideal I ⊂ m and a nonzero element a ∈ I such that

(1) I is finitely generated,
(2) A has center on R[ Ia ],
(3) the fibre ring of R→ R[ Ia ] at m is not zero, and
(4) the strict transform SI,a of S along R→ R[ Ia ] is flat and of finite presen-

tation over R, and the strict transform MI,a of M along R→ R[ Ia ] is flat
over R and finitely presented over SI,a.

Proof. Write S = R[x1, . . . , xn]/J and denote N = S⊕M viewed as a module over
P = R[x1, . . . , xn]. If we can prove the lemma in case S is a polynomial algebra
over R, then we can find I, a satisfying (1), (2), (3) such that the strict transform
NI,a of N along R → R[ Ia ] is flat over R and finitely presented as a module over
the strict transform PI,a] of P . Since PI,a = R[ Ia ][x1, . . . , xn] (small detail omitted)
we find that the summand SI,a ⊂ NI,a is flat over R and finitely presented as a
module over R[ Ia ][x1, . . . , xn]. Hence SI,a is finitely presented as an R[ Ia ]-algebra.
Moreover, the summand MI,a ⊂ NI,a is flat over R and finitely presented as a
module over PI,a hence also finitely presented as a module over SI,a, see Algebra,
Lemma 10.6.4. This reduces us to the case discussed in the next paragraph.
Assume S = R[x1, . . . , xn]. Choose a presentation

0→ K → S⊕r →M → 0.
Let MA be the quotient of M ⊗R A by its torsion submodule, see Lemma 15.22.2.
Then MA is a finite module over SA = A[x1, . . . , xn]. By Lemma 15.22.10 we see
that MA is flat over A. By Lemma 15.25.6 we see that MA is finitely presented.
Hence there exist finitely many elements k1, . . . , kt ∈ S⊕r

A which generate the kernel
of the presentation S⊕r

A → MA as an SA-module. For any choice of a ∈ I ⊂ m
satisfying (1), (2), and (3) we denote MI,a the strict transform of M along R →
R[ Ia ]. It is a finite module over SI,a = R[ Ia ][x1, . . . , xn]. By Algebra, Lemma
10.70.12 we have A = colimI,aR[ Ia ]. This implies that SA = colimSI,a and

colimM ⊗R R[ Ia ] = M ⊗R A

Choose I, a and lifts k1, . . . , kt ∈ S⊕r
I,a. Since MA is the quotient of M ⊗R A by

torsion, we see that the images of k1, . . . , kt in M⊗RA are annihilated by a nonzero
element α ∈ A. After replacing I, a by a different pair (recall that the colimit is
filtered), we may assume α = x/an for some x ∈ In nonzero. Then we find that
xk1, . . . , xkt map to zero in M ⊗R A. Hence after replacing I, a by a different pair
we may assume xk1, . . . , xkt map to zero in M ⊗R R[ Ia ] for some nonzero x ∈ R.
Then finally replacing I, a by xI, xa we find that we may assume k1, . . . , kt map to
a-power torsion elements of M ⊗R R[ Ia ]. For any such pair (I, a) we set

M ′
I,a = S⊕r

I,a/
∑

SI,akj .

Since MA = S⊕r
A /

∑
SAkj we see that MA = colimI,aM

′
I,a. At this point we finally

apply Algebra, Lemma 10.168.1 (3) to conclude that M ′
I,a is flat for some pair (I, a)
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as above. This lemma does not apply a priori to the system of strict transforms
MI,a = (M ⊗R R[ Ia ])/a-power torsion

as the transition maps may not satisfy the assumptions of the lemma. But now,
since flatness implies torsion free (Lemma 15.22.9) and since MI,a is the quotient
of M ′

I,a (because we arranged it so the elements k1, . . . , kt map to zero in MI,a) by
the a-power torsion submodule we also conclude that M ′

I,a = MI,a for such a pair
and we win. □

Lemma 15.26.3.0CZM Let R be a ring. Let M be a finite R-module. Let k ≥ 0 and
I = Fitk(M). For every a ∈ I with R′ = R[ Ia ] the strict transform

M ′ = (M ⊗R R′)/a-power torsion
has Fitk(M ′) = R′.

Proof. First observe that Fitk(M ⊗R R′) = IR′ = aR′. The first equality by
Lemma 15.8.4 part (3) and the second equality by Algebra, Lemma 10.70.2. From
Lemma 15.8.8 and exactness of localization we see that M ′

p′ can be generated by
≤ k elements for every prime p′ of R′. Then Fitk(M ′) = R′ for example by Lemma
15.8.6. □

Lemma 15.26.4.0CZN Let R be a ring. Let M be a finite R-module. Let k ≥ 0 and
I = Fitk(M). Asssume that Mp is free of rank k for every p ̸∈ V (I). Then for
every a ∈ I with R′ = R[ Ia ] the strict transform

M ′ = (M ⊗R R′)/a-power torsion
is locally free of rank k.

Proof. By Lemma 15.26.3 we have Fitk(M ′) = R′. By Lemma 15.8.7 it suffices
to show that Fitk−1(M ′) = 0. Recall that R′ ⊂ R′

a = Ra, see Algebra, Lemma
10.70.2. Hence it suffices to prove that Fitk−1(M ′) maps to zero in R′

a = Ra.
Since clearly (M ′)a = Ma this reduces us to showing that Fitk−1(Ma) = 0 because
formation of Fitting ideals commutes with base change according to Lemma 15.8.4
part (3). This is true by our assumption that Ma is finite locally free of rank k (see
Algebra, Lemma 10.78.2) and the already cited Lemma 15.8.7. □

Lemma 15.26.5.0BBJ Let R be a ring. Let M be a finite R-module. Let f ∈ R be an
element such that Mf is finite locally free of rank r. Then there exists a finitely
generated ideal I ⊂ R with V (f) = V (I) such that for all a ∈ I with R′ = R[ Ia ]
the strict transform

M ′ = (M ⊗R R′)/a-power torsion
is locally free of rank r.

Proof. Choose a surjection R⊕n →M . Choose a finite submoduleK ⊂ Ker(R⊕n →
M) such that R⊕n/K → M becomes an isomorphism after inverting f . This
is possible because Mf is of finite presentation for example by Algebra, Lemma
10.78.2. Set M1 = R⊕n/K and suppose we can prove the lemma for M1. Say
I ⊂ R is the corresponding ideal. Then for a ∈ I the map

M ′
1 = (M1 ⊗R R′)/a-power torsion −→M ′ = (M ⊗R R′)/a-power torsion

is surjective. It is also an isomorphism after inverting a in R′ as R′
a = Rf , see

Algebra, Lemma 10.70.7. But a is a nonzerodivisor on M ′
1, whence the displayed
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map is an isomorphism. Thus it suffices to prove the lemma in case M is a finitely
presented R-module.

Assume M is a finitely presented R-module. Then J = Fitr(M) ⊂ S is a finitely
generated ideal. We claim that I = fJ works.

We first check that V (f) = V (I). The inclusion V (f) ⊂ V (I) is clear. Conversely, if
f ̸∈ p, then p is not an element of V (J) by Lemma 15.8.6. Thus p ̸∈ V (fJ) = V (I).

Let a ∈ I and set R′ = R[ Ia ]. We may write a = fb for some b ∈ J . By Algebra,
Lemmas 10.70.2 and 10.70.8 we see that JR′ = bR′ and b is a nonzerodivisor in
R′. Let p′ ⊂ R′ = R[ Ia ] be a prime ideal. Then JR′

p′ is generated by b. It follows
from Lemma 15.8.8 that M ′

p′ can be generated by r elements. Since M ′ is finite,
there exist m1, . . . ,mr ∈ M ′ and g ∈ R′, g ̸∈ p′ such that the corresponding map
(R′)⊕r →M ′ becomes surjective after inverting g.

Finally, consider the ideal J ′ = Fitk−1(M ′). Note that J ′R′
g is generated by the

coefficients of relations between m1, . . . ,mr (compatibility of Fitting ideal with base
change). Thus it suffices to show that J ′ = 0, see Lemma 15.8.7. Since R′

a = Rf
(Algebra, Lemma 10.70.7) and M ′

a = Mf is free of rank r we see that J ′
a = 0. Since

a is a nonzerodivisor in R′ we conclude that J ′ = 0 and we win. □

15.27. Completion and flatness

06LD In this section we discuss when the completion of a “big” flat module is flat.

Lemma 15.27.1.05BC Let R be a ring. Let I ⊂ R be an ideal. Let A be a set. Assume
R is Noetherian and complete with respect to I. There is a canonical map(⊕

α∈A
R
)∧
−→

∏
α∈A

R

from the I-adic completion of the direct sum into the product which is universally
injective.

Proof. By definition an element x of the left hand side is x = (xn) where xn =
(xn,α) ∈

⊕
α∈AR/I

n such that xn,α = xn+1,α mod In. As R = R∧ we see that
for any α there exists a yα ∈ R such that xn,α = yα mod In. Note that for each n
there are only finitely many α such that the elements xn,α are nonzero. Conversely,
given (yα) ∈

∏
αR such that for each n there are only finitely many α such that

yα mod In is nonzero, then this defines an element of the left hand side. Hence we
can think of an element of the left hand side as infinite “convergent sums”

∑
α yα

with yα ∈ R such that for each n there are only finitely many yα which are nonzero
modulo In. The displayed map maps this element to the element to (yα) in the
product. In particular the map is injective.

Let Q be a finite R-module. We have to show that the map

Q⊗R
(⊕

α∈A
R
)∧
−→ Q⊗R

(∏
α∈A

R
)

is injective, see Algebra, Theorem 10.82.3. Choose a presentation R⊕k → R⊕m →
Q → 0 and denote q1, . . . , qm ∈ Q the corresponding generators for Q. By Artin-
Rees (Algebra, Lemma 10.51.2) there exists a constant c such that Im(R⊕k →
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R⊕m) ∩ (IN )⊕m ⊂ Im((IN−c)⊕k → R⊕m). Let us contemplate the diagram⊕k
l=1
(⊕

α∈AR
)∧ //

��

⊕m
j=1

(⊕
α∈AR

)∧ //

��

Q⊗R
(⊕

α∈AR
)∧ //

��

0

⊕k
l=1
(∏

α∈AR
)

//⊕m
j=1

(∏
α∈AR

)
// Q⊗R

(∏
α∈AR

)
// 0

with exact rows. Pick an element
∑
j

∑
α yj,α of

⊕
j=1,...,m

(⊕
α∈AR

)∧. If this
element maps to zero in the module Q⊗R

(∏
α∈AR

)
, then we see in particular that∑

j qj ⊗ yj,α = 0 in Q for each α. Thus we can find an element (z1,α, . . . , zk,α) ∈⊕
l=1,...,k R which maps to (y1,α, . . . , ym,α) ∈

⊕
j=1,...,mR. Moreover, if yj,α ∈ INα

for j = 1, . . . ,m, then we may assume that zl,α ∈ INα−c for l = 1, . . . , k. Hence
the sum

∑
l

∑
α zl,α is “convergent” and defines an element of

⊕
l=1,...,k

(⊕
α∈AR

)∧

which maps to the element
∑
j

∑
α yj,α we started out with. Thus the right vertical

arrow is injective and we win. □

The following lemma can also be deduced from Lemma 15.27.4 below.

Lemma 15.27.2.06LE Let R be a ring. Let I ⊂ R be an ideal. Let A be a set. Assume
R is Noetherian. The completion (

⊕
α∈AR)∧ is a flat R-module.

Proof. Denote R∧ the completion of R with respect to I. As R → R∧ is flat by
Algebra, Lemma 10.97.2 it suffices to prove that (

⊕
α∈AR)∧ is a flat R∧-module

(use Algebra, Lemma 10.39.4). Since

(
⊕

α∈A
R)∧ = (

⊕
α∈A

R∧)∧

we may replace R by R∧ and assume that R is complete with respect to I (see Alge-
bra, Lemma 10.97.4). In this case Lemma 15.27.1 tells us the map (

⊕
α∈AR)∧ →∏

α∈AR is universally injective. Thus, by Algebra, Lemma 10.82.7 it suffices to
show that

∏
α∈AR is flat. By Algebra, Proposition 10.90.6 (and Algebra, Lemma

10.90.5) we see that
∏
α∈AR is flat. □

Lemma 15.27.3.0911 This is [Qui, Lemma
9.9]; note that the
author forgot the
word “strict” in the
statement although
it was clearly
intended.

Let A be a Noetherian ring. Let I be an ideal of A. Let M be a
finite A-module. For every p > 0 there exists a c > 0 such that TorAp (M,A/In)→
TorAp (M,A/In−c) is zero for all n ≥ c.

Proof. Proof for p = 1. Choose a short exact sequence 0 → K → A⊕t → M → 0.
Then TorA1 (M,A/In) = K∩(In)⊕t/InK. By Artin-Rees (Algebra, Lemma 10.51.2)
there is a constant c ≥ 0 such that K ∩ (In)⊕t ⊂ In−cK for n ≥ c. Thus the result
for p = 1. For p > 1 we have TorAp (M,A/In) = TorAp−1(K,A/In). Thus the lemma
follows by induction. □

Lemma 15.27.4.0912 Let A be a Noetherian ring. Let I be an ideal of A. Let (Mn) be
an inverse system of A-modules such that

(1) Mn is a flat A/In-module,
(2) Mn+1 →Mn is surjective.

Then M = limMn is a flat A-module and Q⊗AM = limQ⊗AMn for every finite
A-module Q.
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Proof. We first show that Q ⊗A M = limQ ⊗A Mn for every finite A-module Q.
Choose a resolution F2 → F1 → F0 → Q→ 0 by finite free A-modules Fi. Then

F2 ⊗AMn → F1 ⊗AMn → F0 ⊗AMn

is a chain complex whose homology in degree 0 is Q ⊗A Mn and whose homology
in degree 1 is

TorA1 (Q,Mn) = TorA1 (Q,A/In)⊗A/In Mn

as Mn is flat over A/In. By Lemma 15.27.3 we see that this system is essentially
constant (with value 0). It follows from Homology, Lemma 12.31.7 that limQ ⊗A
A/In = Coker(limF1 ⊗A Mn → limF0 ⊗A Mn). Since Fi is finite free this equals
Coker(F1 ⊗AM → F0 ⊗AM) = Q⊗AM .
Next, let Q → Q′ be an injective map of finite A-modules. We have to show that
Q⊗AM → Q′ ⊗AM is injective (Algebra, Lemma 10.39.5). By the above we see

Ker(Q⊗AM → Q′ ⊗AM) = Ker(limQ⊗AMn → limQ′ ⊗AMn).
For each n we have an exact sequence

TorA1 (Q′,Mn)→ TorA1 (Q′′,Mn)→ Q⊗AMn → Q′ ⊗AMn

where Q′′ = Coker(Q→ Q′). Above we have seen that the inverse systems of Tor’s
are essentially constant with value 0. It follows from Homology, Lemma 12.31.7
that the inverse limit of the right most maps is injective. □

Lemma 15.27.5.0AGW Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
Assume

(1) I is finitely generated,
(2) R/I is Noetherian,
(3) M/IM is flat over R/I,
(4) TorR1 (M,R/I) = 0.

Then the I-adic completion R∧ is a Noetherian ring and M∧ is flat over R∧.

Proof. By Algebra, Lemma 10.99.8 the modules M/InM are flat over R/In for all
n. By Algebra, Lemma 10.96.3 we have (a) R∧ and M∧ are I-adically complete
and (b) R/In = R∧/InR∧ for all n. By Algebra, Lemma 10.97.5 the ring R∧ is
Noetherian. Applying Lemma 15.27.4 we conclude that M∧ = limM/InM is flat
as an R∧-module. □

15.28. The Koszul complex

0621 We define the Koszul complex as follows.

Definition 15.28.1.0622 Let R be a ring. Let φ : E → R be an R-module map.
The Koszul complex K•(φ) associated to φ is the commutative differential graded
algebra defined as follows:

(1) the underlying graded algebra is the exterior algebra K•(φ) = ∧(E),
(2) the differential d : K•(φ) → K•(φ) is the unique derivation such that

d(e) = φ(e) for all e ∈ E = K1(φ).

Explicitly, if e1 ∧ . . . ∧ en is one of the generators of degree n in K•(φ), then

d(e1 ∧ . . . ∧ en) =
∑

i=1,...,n
(−1)i+1φ(ei)e1 ∧ . . . ∧ êi ∧ . . . ∧ en.

https://stacks.math.columbia.edu/tag/0AGW
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It is straightforward to see that this gives a well defined derivation on the tensor
algebra, which annihilates e⊗ e and hence factors through the exterior algebra.

We often assume that E is a finite free module, say E = R⊕n. In this case the map
φ is given by a sequence of elements f1, . . . , fn ∈ R.

Definition 15.28.2.0623 Let R be a ring and let f1, . . . , fr ∈ R. The Koszul complex
on f1, . . . , fr is the Koszul complex associated to the map (f1, . . . , fr) : R⊕r → R.
Notation K•(f•), K•(f1, . . . , fr), K•(R, f1, . . . , fr), or K•(R, f•).

Of course, if E is finite locally free, then K•(φ) is locally on Spec(R) isomorphic
to a Koszul complex K•(f1, . . . , fr). This complex has many interesting formal
properties.

Lemma 15.28.3.0624 Let φ : E → R and φ′ : E′ → R be R-module maps. Let
ψ : E → E′ be an R-module map such that φ′ ◦ ψ = φ. Then ψ induces a
homomorphism of differential graded algebras K•(φ)→ K•(φ′).

Proof. This is immediate from the definitions. □

Lemma 15.28.4.0625 Let f1, . . . , fr ∈ R be a sequence. Let (xij) be an invertible
r × r-matrix with coefficients in R. Then the complexes K•(f•) and

K•(
∑

x1jfj ,
∑

x2jfj , . . . ,
∑

xrjfj)

are isomorphic.

Proof. Set gi =
∑
xijfj . The matrix (xji) gives an isomorphism x : R⊕r → R⊕r

such that (g1, . . . , gr) = (f1, . . . , fr) ◦ x. Hence this follows from the functoriality
of the Koszul complex described in Lemma 15.28.3. □

Lemma 15.28.5.0626 Let R be a ring. Let φ : E → R be an R-module map. Let e ∈ E
with image f = φ(e) in R. Then

f = de+ ed

as endomorphisms of K•(φ).

Proof. This is true because d(ea) = d(e)a− ed(a) = fa− ed(a). □

Lemma 15.28.6.0663 Let R be a ring. Let f1, . . . , fr ∈ R be a sequence. Multiplication
by fi on K•(f•) is homotopic to zero, and in particular the cohomology modules
Hi(K•(f•)) are annihilated by the ideal (f1, . . . , fr).

Proof. Special case of Lemma 15.28.5. □

In Derived Categories, Section 13.9 we defined the cone of a morphism of cochain
complexes. The cone C(f)• of a morphism of chain complexes f : A• → B• is the
complex C(f)• given by C(f)n = Bn ⊕An−1 and differential

(15.28.6.1)0627 dC(f),n =
(
dB,n fn−1

0 −dA,n−1

)
It comes equipped with canonical morphisms of complexes i : B• → C(f)• and
p : C(f)• → A•[−1] induced by the obvious maps Bn → C(f)n → An−1.
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Lemma 15.28.7.0628 Let R be a ring. Let φ : E → R be an R-module map. Let f ∈ R.
Set E′ = E ⊕ R and define φ′ : E′ → R by φ on E and multiplication by f on R.
The complex K•(φ′) is isomorphic to the cone of the map of complexes

f : K•(φ) −→ K•(φ).

Proof. Denote e0 ∈ E′ the element 1 ∈ R ⊂ R ⊕ E. By our definition of the cone
above we see that

C(f)n = Kn(φ)⊕Kn−1(φ) = ∧n(E)⊕ ∧n−1(E) = ∧n(E′)

where in the last = we map (0, e1 ∧ . . .∧ en−1) to e0 ∧ e1 ∧ . . .∧ en−1 in ∧n(E′). A
computation shows that this isomorphism is compatible with differentials. Namely,
this is clear for elements of the first summand as φ′|E = φ and dC(f) restricted to
the first summand is just dK•(φ). On the other hand, if e1 ∧ . . . ∧ en−1 is in the
second summand, then

dC(f)(0, e1 ∧ . . . ∧ en−1) = fe1 ∧ . . . ∧ en−1 − dK•(φ)(e1 ∧ . . . ∧ en−1)

and on the other hand

dK•(φ′)(0, e0 ∧ e1 ∧ . . . ∧ en−1)

=
∑

i=0,...,n−1
(−1)iφ′(ei)e0 ∧ . . . ∧ êi ∧ . . . ∧ en−1

= fe1 ∧ . . . ∧ en−1 +
∑

i=1,...,n−1
(−1)iφ(ei)e0 ∧ . . . ∧ êi ∧ . . . ∧ en−1

= fe1 ∧ . . . ∧ en−1 − e0

(∑
i=1,...,n−1

(−1)i+1φ(ei)e1 ∧ . . . ∧ êi ∧ . . . ∧ en−1

)
which is the image of the result of the previous computation. □

Lemma 15.28.8.0629 Let R be a ring. Let f1, . . . , fr be a sequence of elements of R.
The complex K•(f1, . . . , fr) is isomorphic to the cone of the map of complexes

fr : K•(f1, . . . , fr−1) −→ K•(f1, . . . , fr−1).

Proof. Special case of Lemma 15.28.7. □

Lemma 15.28.9.062A Let R be a ring. Let A• be a complex of R-modules. Let f, g ∈ R.
Let C(f)• be the cone of f : A• → A•. Define similarly C(g)• and C(fg)•. Then
C(fg)• is homotopy equivalent to the cone of a map

C(f)•[1] −→ C(g)•

Proof. We first prove this if A• is the complex consisting of R placed in degree 0.
In this case the complex C(f)• is the complex

. . .→ 0→ R
f−→ R→ 0→ . . .

with R placed in (homological) degrees 1 and 0. The map of complexes we use is

0 //

��

0 //

��

R
f //

1
��

R //

��

0

��
0 // R

g // R // 0 // 0

https://stacks.math.columbia.edu/tag/0628
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The cone of this is the chain complex consisting of R⊕2 placed in degrees 1 and 0
and differential (15.28.6.1) (

g 1
0 −f

)
: R⊕2 −→ R⊕2

To see this chain complex is homotopic to C(fg)•, i.e., to R
fg−→ R, consider the

maps of complexes

R

(1,−g)
��

fg
// R

(0,1)
��

R⊕2 // R⊕2

R⊕2

(1,0)
��

// R⊕2

(f,1)
��

R
fg // R

with obvious notation. The composition of these two maps in one direction is the
identity on C(fg)•, but in the other direction it isn’t the identity. We omit writing
out the required homotopy.
To see the result holds in general, we use that we have a functor K• 7→ Tot(A• ⊗R
K•) on the category of complexes which is compatible with homotopies and cones.
Then we write C(f)• and C(g)• as the total complex of the double complexes

(R f−→ R)⊗R A• and (R g−→ R)⊗R A•

and in this way we deduce the result from the special case discussed above. Some
details omitted. □

Lemma 15.28.10.062B Let R be a ring. Let φ : E → R be an R-module map. Let
f, g ∈ R. Set E′ = E ⊕ R and define φ′

f , φ
′
g, φ

′
fg : E′ → R by φ on E and

multiplication by f, g, fg on R. The complex K•(φ′
fg) is homotopy equivalent to

the cone of a map of complexes
K•(φ′

f )[1] −→ K•(φ′
g).

Proof. By Lemma 15.28.7 the complex K•(φ′
f ) is isomorphic to the cone of multi-

plication by f on K•(φ) and similarly for the other two cases. Hence the lemma
follows from Lemma 15.28.9. □

Lemma 15.28.11.062C Let R be a ring. Let f1, . . . , fr−1 be a sequence of elements of
R. Let f, g ∈ R. The complex K•(f1, . . . , fr−1, fg) is homotopy equivalent to the
cone of a map of complexes

K•(f1, . . . , fr−1, f)[1] −→ K•(f1, . . . , fr−1, g)

Proof. Special case of Lemma 15.28.10. □

Lemma 15.28.12.0664 Let R be a ring. Let f1, . . . , fr, g1, . . . , gs be elements of R.
Then there is an isomorphism of Koszul complexes

K•(R, f1, . . . , fr, g1, . . . , gs) = Tot(K•(R, f1, . . . , fr)⊗R K•(R, g1, . . . , gs)).

Proof. Omitted. Hint: If K•(R, f1, . . . , fr) is generated as a differential graded
algebra by x1, . . . , xr with d(xi) = fi and K•(R, g1, . . . , gs) is generated as a
differential graded algebra by y1, . . . , ys with d(yj) = gj , then we can think of
K•(R, f1, . . . , fr, g1, . . . , gs) as the differential graded algebra generated by the se-
quence of elements x1, . . . , xr, y1, . . . , ys with d(xi) = fi and d(yj) = gj . □
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https://stacks.math.columbia.edu/tag/062C
https://stacks.math.columbia.edu/tag/0664


15.29. THE EXTENDED ALTERNATING ČECH COMPLEX 1241

15.29. The extended alternating Čech complex

0G6F Let R be a ring. Let f1, . . . , fr ∈ R. The extended alternating Čech complex of R
is the cochain complex

R→
⊕

i0
Rfi0 →

⊕
i0<i1

Rfi0fi1 → . . .→ Rf1...fr

where R is in degree 0, the term
⊕

i0
Rfi0 is in degre 1, and so on. The maps are

defined as follows
(1) The map R→

⊕
i0
Rfi0 is given by the canonical maps R→ Rfi0 .

(2) Given 1 ≤ i0 < . . . < ip+1 ≤ r and 0 ≤ j ≤ p + 1 we have the canonical
localization map

Rfi0 ...f̂ij ...fip+1
→ Rfi0 ...fip+1

(3) The differentials use the canonical maps of (2) with sign (−1)j .
If M is any R-module, the extended alternating Čech complex of M is the similarly
constructed cochain complex

M →
⊕

i0
Mfi0

→
⊕

i0<i1
Mfi0fi1

→ . . .→Mf1...fr

where M is in degree 0 as before.

Lemma 15.29.1.0G6G The extended alternating Čech complexes defined above are com-
plexes of R-modules.

Proof. Omitted. □

Lemma 15.29.2.0G6H Let R be a ring. Let f1, . . . , fr ∈ R. Let M be an R-module. The
extended alternating Čech complex of M is the tensor product over R of M with
the extended alternating Čech complex of R.

Proof. Omitted. □

Lemma 15.29.3.0G6I Let R be a ring. Let f1, . . . , fr ∈ R. Let M be an R-module.
Let R → S be a ring map, denote g1, . . . , gr ∈ S the images of f1, . . . , fr, and
set N = M ⊗R S. The extended alternating Čech complex constructed using S,
g1, . . . , gr, and N is the tensor product of the extended alternating Čech complex
of M with S over R.

Proof. Omitted. □

Lemma 15.29.4.0G6J Let R be a ring. Let f1, . . . , fr ∈ R. Let M be an R-module. If
there exists an i ∈ {1, . . . , r} such that fi is a unit, then the extended alternating
Čech complex of M is homotopy equivalent to 0.

Proof. We will use the following notation: a cochain x of degree p+1 in the extended
alternating Čech complex of M is x = (xi0...ip) where xi0...ip is in Mfi0 ...fip

. With
this notation we have

d(x)i0...ip+1 =
∑

j
(−1)jxi0...̂ij ...ip+1

As homotopy we use the maps

h : cochains of degree p+ 2→ cochains of degree p+ 1

https://stacks.math.columbia.edu/tag/0G6G
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given by the rule
h(x)i0...ip = 0 if i ∈ {i0, . . . , ip} and h(x)i0...ip = (−1)jxi0...ijiij+1...ip if not

Here j is the unique index such that ij < i < ij+1 in the second case; also, since fi
is a unit we have the equality

Mfi0 ...fip
= Mfi0 ...fij fifij+1 ...fip

which we can use to make sense of thinking of (−1)jxi0...ijiij+1...ip as an element of
Mfi0 ...fip

. We will show by a computation that dh+ hd equals the negative of the
identity map which finishes the proof. To do this fix x a cochain of degree p + 1
and let 1 ≤ i0 < . . . < ip ≤ r.
Case I: i ∈ {i0, . . . , ip}. Say i = it. Then we have h(d(x))i0...ip = 0. On the other
hand we have
d(h(x))i0...ip =

∑
(−1)jh(x)i0...̂ij ...ip = (−1)th(x)i0...̂i...ip = (−1)t(−1)t−1xi0...ip

Thus (dh+ hd)(x)i0...ip = −xi0...ip as desired.
Case II: i ̸∈ {i0, . . . , ip}. Let j be such that ij < i < ij+1. Then we see that

h(d(x))i0...ip = (−1)jd(x)i0...ijiij+1...ip

=
∑

j′≤j
(−1)j+j

′
xi0...̂ij′ ...ijiij+1...ip

− xi0...ip

+
∑

j′>j
(−1)j+j

′+1xi0...ijiij+1...̂ij′ ...ip

On the other hand we have
d(h(x))i0...ip =

∑
j′

(−1)j
′
h(x)i0...̂ij′ ...ip

=
∑

j′≤j
(−1)j

′+j−1xi0...̂ij′ ...ijiij+1...ip

+
∑

j′>j
(−1)j

′+jxi0...ijiij+1...̂ij′ ...ip

Adding these up we obtain (dh+ hd)(x)i0...ip = −xi0...ip as desired. □

Lemma 15.29.5.0G6K Let R be a ring. Let f1, . . . , fr ∈ R. Let M be an R-module. Let
Hq be the qth cohomology module of the extended alternation Čech complex of M .
Then

(1) Hq = 0 if q ̸∈ [0, r],
(2) for x ∈ Hi there exists an n ≥ 1 such that fni x = 0 for i = 1, . . . , r,
(3) the support of Hq is contained in V (f1, . . . , fr),
(4) if there is an f ∈ (f1, . . . , fr) which acts invertibly on M , then Hq = 0.

Proof. Part (1) follows from the fact that the extended alternating Čech complex
is zero in degrees < 0 and > r. To prove (2) it suffices to show that for each
i there exists an n ≥ 1 such that fni x = 0. To see this it suffices to show that
(Hq)fi = 0. Since localization is exact, (Hq)fi is the qth cohomology module of the
localization of the extended alternating complex of M at fi. By Lemma 15.29.3
this localization is the extended alternating Čech complex of Mfi over Rfi with
respect to the images of f1, . . . , fr in Rfi . Thus we reduce to showing that Hq is
zero if fi is invertible, which follows from Lemma 15.29.4. Part (3) follows from
the observation that (Hq)fi = 0 for all i that we just proved. To see part (4) note
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that in this case f acts invertibly on Hq and Hq is supported on V (f) by (3). This
forces Hq to be zero (small detail omitted). □

Lemma 15.29.6.0913 Let R be a ring. Let f1, . . . , fr ∈ R. The extended alternating
Čech complex

R→
⊕

i0
Rfi0 →

⊕
i0<i1

Rfi0fi1 → . . .→ Rf1...fr

is a colimit of the Koszul complexes K(R, fn1 , . . . , fnr ); see proof for a precise state-
ment.

Proof. We urge the reader to prove this for themselves. Denote K(R, fn1 , . . . , fnr )
the Koszul complex of Definition 15.28.2 viewed as a cochain complex sitting in
degrees 0, . . . , r. Thus we have

K(R, fn1 , . . . , fnr ) : 0→ ∧r(R⊕r)→ ∧r−1(R⊕r)→ . . .→ R⊕r → R→ 0
with the term ∧r(R⊕r) sitting in degree 0. Let en1 , . . . , enr be the standard basis of
R⊕r. Then the elements enj1

∧ . . . ∧ enjr−p
for 1 ≤ j1 < . . . < jr−p ≤ r form a basis

for the term in degree p of the Koszul complex. Further, observe that

d(enj1
∧ . . . ∧ enjr−p

) =
∑

(−1)a+1fnjae
n
j1
∧ . . . ∧ ênja ∧ . . . ∧ e

n
jr−p

by our construction of the Koszul complex in Section 15.28. The transition maps
of our system

K(R, fn1 , . . . , fnr )→ K(R, fn+1
1 , . . . , fn+1

r )
are given by the rule

enj1
∧ . . . ∧ enjr−p

7−→ fi0 . . . fip−1e
n+1
j1
∧ . . . ∧ en+1

jr−p

where the indices 1 ≤ i0 < . . . < ip−1 ≤ r are such that {1, . . . r} = {i0, . . . , ip−1}⨿
{j1, . . . , jr−p}. We omit the short computation that shows this is compatible with
differentials. Observe that the transition maps are always 1 in degree 0 and equal
to f1 . . . fr in degree r.
Denote Kp(R, fn1 , . . . , fnr ) the term of degree p in the Koszul complex. Observe
that for any f ∈ R we have

Rf = colim(R f−→ R
f−→ R→ . . .)

Hence we see that in degree p we obtain

colimKp(R, fn1 , . . . fnr ) =
⊕

1≤i0<...<ip−1≤r
Rfi0 ...fip−1

Here the element enj1
∧ . . .∧ enjr−p

of the Koszul complex above maps in the colimit
to the element (fi0 . . . fip−1)−n in the summand Rfi0 ...fip−1

where the indices are
chosen such that {1, . . . r} = {i0, . . . , ip−1} ⨿ {j1, . . . , jr−p}. Thus the differential
on this complex is given by

d(1 in Rfi0 ...fip−1
) =

∑
i ̸∈{i0,...,ip−1}

(−1)i−t in Rfi0 ...fitfifit+1 ...fip−1

Thus if we consider the map of complexes given in degree p by the map⊕
1≤i0<...<ip−1≤r

Rfi0 ...fip−1
−→

⊕
1≤i0<...<ip−1≤r

Rfi0 ...fip−1

determined by the rule
1 in Rfi0 ...fip−1

7−→ (−1)i0+...+ip−1+p in Rfi0 ...fip−1
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then we get an isomorphism of complexes from colimK(R, fn1 , . . . , fnr ) to the ex-
tended alternating Čech complex defined in this section. We omit the verification
that the signs work out. □

15.30. Koszul regular sequences

062D Please take a look at Algebra, Sections 10.68, 10.69, and 10.72 before looking at
this one.

Definition 15.30.1.062E Let R be a ring. Let r ≥ 0 and let f1, . . . , fr ∈ R be a sequence
of elements. Let M be an R-module. The sequence f1, . . . , fr is called

(1) M -Koszul-regular if Hi(K•(f1, . . . , fr)⊗RM) = 0 for all i ̸= 0,
(2) M -H1-regular if H1(K•(f1, . . . , fr)⊗RM) = 0,
(3) Koszul-regular if Hi(K•(f1, . . . , fr)) = 0 for all i ̸= 0, and
(4) H1-regular if H1(K•(f1, . . . , fr)) = 0.

We will see in Lemmas 15.30.2, 15.30.3, and 15.30.6 that for elements f1, . . . , fr of
a ring R we have the following implications

f1, . . . , fr is a regular sequence⇒ f1, . . . , fr is a Koszul-regular sequence
⇒ f1, . . . , fr is an H1-regular sequence
⇒ f1, . . . , fr is a quasi-regular sequence.

In general none of these implications can be reversed, but if R is a Noetherian
local ring and f1, . . . , fr ∈ mR, then the four conditions are all equivalent (Lemma
15.30.7). If f = f1 ∈ R is a length 1 sequence and f is not a unit of R then it is
clear that the following are all equivalent

(1) f is a regular sequence of length one,
(2) f is a Koszul-regular sequence of length one, and
(3) f is a H1-regular sequence of length one.

It is also clear that these imply that f is a quasi-regular sequence of length one. But
there do exist quasi-regular sequences of length 1 which are not regular sequences.
Namely, let

R = k[x, y0, y1, . . .]/(xy0, xy1 − y0, xy2 − y1, . . .)
and let f be the image of x in R. Then f is a zerodivisor, but

⊕
n≥0(fn)/(fn+1) ∼=

k[x] is a polynomial ring.

Lemma 15.30.2.062F An M -regular sequence is M -Koszul-regular. A regular sequence
is Koszul-regular.

Proof. Let R be a ring and let M be an R-module. It is immediate that an M -
regular sequence of length 1 is M -Koszul-regular. Let f1, . . . , fr be an M -regular
sequence. Then f1 is a nonzerodivisor on M . Hence

0→ K•(f2, . . . , fr)⊗M
f1−→ K•(f2, . . . , fr)⊗M → K•(f2, . . . , fr)⊗M/f1M → 0

is a short exact sequence of complexes where f i is the image of fi in R/(f1). By
Lemma 15.28.8 the complex K•(R, f1, . . . , fr) is isomorphic to the cone of multi-
plication by f1 on K•(f2, . . . , fr). Thus K•(R, f1, . . . , fr) ⊗ M is isomorphic to
the cone on the first map. Hence K•(f2, . . . , fr)⊗M/f1M is quasi-isomorphic to
K•(f1, . . . , fr) ⊗M . As f2, . . . , fr is an M/f1M -regular sequence in R/(f1) the
result follows from the case r = 1 and induction. □
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Lemma 15.30.3.0CEM A M -Koszul-regular sequence is M -H1-regular. A Koszul-regular
sequence is H1-regular.

Proof. This is immediate from the definition. □

Lemma 15.30.4.062G Let f1, . . . , fr−1 ∈ R be a sequence and f, g ∈ R. Let M be an
R-module.

(1) If f1, . . . , fr−1, f and f1, . . . , fr−1, g areM -H1-regular then f1, . . . , fr−1, fg
is M -H1-regular too.

(2) If f1, . . . , fr−1, f and f1, . . . , fr−1, g areM -Koszul-regular then f1, . . . , fr−1, fg
is M -Koszul-regular too.

Proof. By Lemma 15.28.11 we have exact sequences
Hi(K•(f1, . . . , fr−1, f)⊗M)→ Hi(K•(f1, . . . , fr−1, fg)⊗M)→ Hi(K•(f1, . . . , fr−1, g)⊗M)
for all i. □

Lemma 15.30.5.062H Let φ : R→ S be a flat ring map. Let f1, . . . , fr ∈ R. Let M be
an R-module and set N = M ⊗R S.

(1) If f1, . . . , fr in R is an M -H1-regular sequence, then φ(f1), . . . , φ(fr) is
an N -H1-regular sequence in S.

(2) If f1, . . . , fr is an M -Koszul-regular sequence in R, then φ(f1), . . . , φ(fr)
is an N -Koszul-regular sequence in S.

Proof. This is true because K•(f1, . . . , fr)⊗R S = K•(φ(f1), . . . , φ(fr)) and there-
fore (K•(f1, . . . , fr)⊗RM)⊗R S = K•(φ(f1), . . . , φ(fr))⊗S N . □

Lemma 15.30.6.062I An M -H1-regular sequence is M -quasi-regular.

Proof. Let R be a ring and let M be an R-module. Let f1, . . . , fr be an M -H1-
regular sequence. Denote J = (f1, . . . , fr). The assumption means that we have an
exact sequence

∧2(Rr)⊗M → R⊕r ⊗M → JM → 0
where the first arrow is given by ei ∧ ej ⊗m 7→ (fiej − fjei) ⊗m. Tensoring the
sequence with R/J we see that

JM/J2M = (R/J)⊕r ⊗RM = (M/JM)⊕r

is a finite free module. To finish the proof we have to prove for every n ≥ 2 the
following: if

ξ =
∑

|I|=n,I=(i1,...,ir)
mIf

i1
1 . . . f irr ∈ Jn+1M

then mI ∈ JM for all I. In the next paragraph, we prove mI ∈ JM for I =
(0, . . . , 0, n) and in the last paragraph we deduce the general case from this special
case.
Let I = (0, . . . , 0, n). Let ξ be as above. We can write ξ = m1f1 + . . . +
mr−1fr−1 + mIf

n
r . As we have assumed ξ ∈ Jn+1M , we can also write ξ =∑

1≤i≤j≤r−1 mijfifj +
∑

1≤i≤r−1 m
′
ifif

n
r +m′′fn+1

r . Then we see that

(m1 −m11f1 −m′
1f
n
r )f1+

(m2 −m12f1 −m22f2 −m′
2f
n
r )f2+

. . .+
(mr−1 −m1r−1f1 − . . .−mr−1r−1fr−1 −m′

r−1f
n
r )fr−1+

(mI −m′′fr)fnr = 0
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Since f1, . . . , fr−1, f
n
r is M -H1-regular by Lemma 15.30.4 we see that mI −m′′fr

is in the submodule f1M + . . .+ fr−1M + fnrM . Thus mI ∈ f1M + . . .+ frM .

Let S = R[x1, x2, . . . , xr, 1/xr]. The ring map R → S is faithfully flat, hence
f1, . . . , fr is an M -H1-regular sequence in S, see Lemma 15.30.5. By Lemma 15.28.4
we see that

g1 = f1 −
x1

xr
fr, . . . , gr−1 = fr−1 −

xr−1

xr
fr, gr = 1

xr
fr

is an M -H1-regular sequence in S. Finally, note that our element ξ can be rewritten

ξ =
∑

|I|=n,I=(i1,...,ir)
mI(g1 + xigr)i1 . . . (gr−1 + xigr)ir−1(xrgr)ir

and the coefficient of gnr in this expression is∑
mIx

i1
1 . . . xirr

By the case discussed in the previous paragraph this sum is in J(M ⊗R S). Since
the monomials xi11 . . . xirr form part of an R-basis of S over R we conclude that
mI ∈ J for all I as desired. □

For nonzero finite modules over Noetherian local rings all of the types of regular
sequences introduced so far are equivalent.

Lemma 15.30.7.09CC Let (R,m) be a Noetherian local ring. Let M be a nonzero finite
R-module. Let f1, . . . , fr ∈ m. The following are equivalent

(1) f1, . . . , fr is an M -regular sequence,
(2) f1, . . . , fr is a M -Koszul-regular sequence,
(3) f1, . . . , fr is an M -H1-regular sequence,
(4) f1, . . . , fr is an M -quasi-regular sequence.

In particular the sequence f1, . . . , fr is a regular sequence in R if and only if it is a
Koszul regular sequence, if and only if it is a H1-regular sequence, if and only if it
is a quasi-regular sequence.

Proof. The implication (1) ⇒ (2) is Lemma 15.30.2. The implication (2) ⇒ (3) is
Lemma 15.30.3. The implication (3) ⇒ (4) is Lemma 15.30.6. The implication (4)
⇒ (1) is Algebra, Lemma 10.69.6. □

Lemma 15.30.8.0665 Let A be a ring. Let I ⊂ A be an ideal. Let g1, . . . , gm be
a sequence in A whose image in A/I is H1-regular. Then I ∩ (g1, . . . , gm) =
I(g1, . . . , gm).

Proof. Consider the exact sequence of complexes

0→ I ⊗A K•(A, g1, . . . , gm)→ K•(A, g1, . . . , gm)→ K•(A/I, g1, . . . , gm)→ 0

Since the complex on the right has H1 = 0 by assumption we see that

Coker(I⊕m → I) −→ Coker(A⊕m → A)

is injective. This is equivalent to the assertion of the lemma. □

Lemma 15.30.9.0666 Let A be a ring. Let I ⊂ J ⊂ A be ideals. Assume that J/I ⊂ A/I
is generated by an H1-regular sequence. Then I ∩ J2 = IJ .
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Proof. To prove this choose g1, . . . , gm ∈ J whose images in A/I form a H1-regular
sequence which generates J/I. In particular J = I + (g1, . . . , gm). Suppose that
x ∈ I ∩ J2. Because x ∈ J2 can write

x =
∑

aijgigj +
∑

ajgj + a

with aij ∈ A, aj ∈ I and a ∈ I2. Then
∑
aijgigj ∈ I ∩ (g1, . . . , gm) hence by

Lemma 15.30.8 we see that
∑
aijgigj ∈ I(g1, . . . , gm). Thus x ∈ IJ as desired. □

Lemma 15.30.10.0667 Let A be a ring. Let I be an ideal generated by a quasi-regular
sequence f1, . . . , fn in A. Let g1, . . . , gm ∈ A be elements whose images g1, . . . , gm
form an H1-regular sequence in A/I. Then f1, . . . , fn, g1, . . . , gm is a quasi-regular
sequence in A.

Proof. We claim that g1, . . . , gm forms an H1-regular sequence in A/Id for every d.
By induction assume that this holds in A/Id−1. We have a short exact sequence of
complexes

0→ K•(A, g•)⊗A Id−1/Id → K•(A/Id, g•)→ K•(A/Id−1, g•)→ 0

Since f1, . . . , fn is quasi-regular we see that the first complex is a direct sum of copies
of K•(A/I, g1, . . . , gm) hence acyclic in degree 1. By induction hypothesis the last
complex is acyclic in degree 1. Hence also the middle complex is. In particular,
the sequence g1, . . . , gm forms a quasi-regular sequence in A/Id for every d ≥ 1, see
Lemma 15.30.6. Now we are ready to prove that f1, . . . , fn, g1, . . . , gm is a quasi-
regular sequence in A. Namely, set J = (f1, . . . , fn, g1, . . . , gm) and suppose that
(with multinomial notation)∑

|N |+|M |=d
aN,Mf

NgM ∈ Jd+1

for some aN,M ∈ A. We have to show that aN,M ∈ J for all N,M . Let e ∈
{0, 1, . . . , d}. Then∑

|N |=d−e, |M |=e
aN,Mf

NgM ∈ (g1, . . . , gm)e+1 + Id−e+1

Because g1, . . . , gm is a quasi-regular sequence in A/Id−e+1 we deduce∑
|N |=d−e

aN,Mf
N ∈ (g1, . . . , gm) + Id−e+1

for each M with |M | = e. By Lemma 15.30.8 applied to Id−e/Id−e+1 in the ring
A/Id−e+1 this implies

∑
|N |=d−e aN,Mf

N ∈ Id−e(g1, . . . , gm). Since f1, . . . , fn is
quasi-regular in A this implies that aN,M ∈ J for each N,M with |N | = d− e and
|M | = e. This proves the lemma. □

Lemma 15.30.11.0668 Let A be a ring. Let I be an ideal generated by an H1-regular
sequence f1, . . . , fn in A. Let g1, . . . , gm ∈ A be elements whose images g1, . . . , gm
form an H1-regular sequence in A/I. Then f1, . . . , fn, g1, . . . , gm is an H1-regular
sequence in A.
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Proof. We have to show that H1(A, f1, . . . , fn, g1, . . . , gm) = 0. To do this consider
the commutative diagram

∧2(A⊕n+m) //

��

A⊕n+m //

��

A //

��

0

∧2(A/I⊕m) // A/I⊕m // A/I // 0

Consider an element (a1, . . . , an+m) ∈ A⊕n+m which maps to zero in A. Because
g1, . . . , gm form an H1-regular sequence in A/I we see that (an+1, . . . , an+m) is
the image of some element α of ∧2(A/I⊕m). We can lift α to an element α ∈
∧2(A⊕n+m) and substract the image of it inA⊕n+m from our element (a1, . . . , an+m).
Thus we may assume that an+1, . . . , an+m ∈ I. Since I = (f1, . . . , fn) we can mod-
ify our element (a1, . . . , an+m) by linear combinations of the elements

(0, . . . , gj , 0, . . . , 0, fi, 0, . . . , 0)

in the image of the top left horizontal arrow to reduce to the case that an+1, . . . , an+m
are zero. In this case (a1, . . . , an, 0, . . . , 0) defines an element of H1(A, f1, . . . , fn)
which we assumed to be zero. □

Lemma 15.30.12.068L Let A be a ring. Let f1, . . . , fn, g1, . . . , gm ∈ A be an H1-
regular sequence. Then the images g1, . . . , gm in A/(f1, . . . , fn) form an H1-regular
sequence.

Proof. Set I = (f1, . . . , fn). We have to show that any relation
∑
j=1,...,m ajgj in

A/I is a linear combination of trivial relations. Because I = (f1, . . . , fn) we can
lift this relation to a relation∑

j=1,...,m
ajgj +

∑
i=1,...,n

bifi = 0

in A. By assumption this relation in A is a linear combination of trivial relations.
Taking the image in A/I we obtain what we want. □

Lemma 15.30.13.0669 Let A be a ring. Let I be an ideal generated by a Koszul-
regular sequence f1, . . . , fn in A. Let g1, . . . , gm ∈ A be elements whose images
g1, . . . , gm form a Koszul-regular sequence in A/I. Then f1, . . . , fn, g1, . . . , gm is a
Koszul-regular sequence in A.

Proof. Our assumptions say that K•(A, f1, . . . , fn) is a finite free resolution of A/I
and K•(A/I, g1, . . . , gm) is a finite free resolution of A/(fi, gj) over A/I. Then

K•(A, f1, . . . , fn, g1, . . . , gm) = Tot(K•(A, f1, . . . , fn)⊗A K•(A, g1, . . . , gm))
∼= A/I ⊗A K•(A, g1, . . . , gm)
= K•(A/I, g1, . . . , gm)
∼= A/(fi, gj)

The first equality by Lemma 15.28.12. The first quasi-isomorphism ∼= by (the dual
of) Homology, Lemma 12.25.4 as the qth row of the double complexK•(A, f1, . . . , fn)⊗A
K•(A, g1, . . . , gm) is a resolution of A/I ⊗AKq(A, g1, . . . , gm). The second equality
is clear. The last quasi-isomorphism by assumption. Hence we win. □
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To conclude in the following lemma it is necessary to assume that both f1, . . . , fn
and f1, . . . , fn, g1, . . . , gm are Koszul-regular. A counter example to dropping the
assumption that f1, . . . , fn is Koszul-regular is Examples, Lemma 110.14.1.

Lemma 15.30.14.068M Let A be a ring. Let f1, . . . , fn, g1, . . . , gm ∈ A. If both f1, . . . , fn
and f1, . . . , fn, g1, . . . , gm are Koszul-regular sequences in A, then g1, . . . , gm in
A/(f1, . . . , fn) form a Koszul-regular sequence.

Proof. Set I = (f1, . . . , fn). Our assumptions say that K•(A, f1, . . . , fn) is a finite
free resolution of A/I and K•(A, f1, . . . , fn, g1, . . . , gm) is a finite free resolution of
A/(fi, gj) over A. Then

A/(fi, gj) ∼= K•(A, f1, . . . , fn, g1, . . . , gm)
= Tot(K•(A, f1, . . . , fn)⊗A K•(A, g1, . . . , gm))
∼= A/I ⊗A K•(A, g1, . . . , gm)
= K•(A/I, g1, . . . , gm)

The first quasi-isomorphism∼= by assumption. The first equality by Lemma 15.28.12.
The second quasi-isomorphism by (the dual of) Homology, Lemma 12.25.4 as the
qth row of the double complex K•(A, f1, . . . , fn)⊗AK•(A, g1, . . . , gm) is a resolution
of A/I ⊗A Kq(A, g1, . . . , gm). The second equality is clear. Hence we win. □

Lemma 15.30.15.066A Let R be a ring. Let I be an ideal generated by f1, . . . , fr ∈ R.
(1) If I can be generated by a quasi-regular sequence of length r, then f1, . . . , fr

is a quasi-regular sequence.
(2) If I can be generated by an H1-regular sequence of length r, then f1, . . . , fr

is an H1-regular sequence.
(3) If I can be generated by a Koszul-regular sequence of length r, then

f1, . . . , fr is a Koszul-regular sequence.

Proof. If I can be generated by a quasi-regular sequence of length r, then I/I2

is free of rank r over R/I. Since f1, . . . , fr generate by assumption we see that
the images f i form a basis of I/I2 over R/I. It follows that f1, . . . , fr is a quasi-
regular sequence as all this means, besides the freeness of I/I2, is that the maps
Symn

R/I(I/I2)→ In/In+1 are isomorphisms.
We continue to assume that I can be generated by a quasi-regular sequence, say
g1, . . . , gr. Write gj =

∑
aijfi. As f1, . . . , fr is quasi-regular according to the pre-

vious paragraph, we see that det(aij) is invertible mod I. The matrix aij gives a
map R⊕r → R⊕r which induces a map of Koszul complexes α : K•(R, f1, . . . , fr)→
K•(R, g1, . . . , gr), see Lemma 15.28.3. This map becomes an isomorphism on in-
verting det(aij). Since the cohomology modules of both K•(R, f1, . . . , fr) and
K•(R, g1, . . . , gr) are annihilated by I, see Lemma 15.28.6, we see that α is a quasi-
isomorphism.
Now assume that g1, . . . , gr is a H1-regular sequence generating I. Then g1, . . . , gr is
a quasi-regular sequence by Lemma 15.30.6. By the previous paragraph we conclude
that f1, . . . , fr is a H1-regular sequence. Similarly for Koszul-regular sequences. □

Lemma 15.30.16.068P This is a particular
case of [McC57,
Corollary]

Let R be a ring. Let a1, . . . , an ∈ R be elements such that R→
R⊕n, x 7→ (xa1, . . . , xan) is injective. Then the element

∑
aiti of the polynomial

ring R[t1, . . . , tn] is a nonzerodivisor.
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Proof. If one of the ai is a unit this is just the statement that any element of the
form t1 + a2t2 + . . .+ antn is a nonzerodivisor in the polynomial ring over R.
Case I: R is Noetherian. Let qj , j = 1, . . . ,m be the associated primes of R. We
have to show that each of the maps∑

aiti : Symd(R⊕n) −→ Symd+1(R⊕n)

is injective. As Symd(R⊕n) is a free R-module its associated primes are qj , j =
1, . . . ,m. For each j there exists an i = i(j) such that ai ̸∈ qj because there exists
an x ∈ R with qjx = 0 but aix ̸= 0 for some i by assumption. Hence ai is a unit in
Rqj and the map is injective after localizing at qj . Thus the map is injective, see
Algebra, Lemma 10.63.19.
Case II: R general. We can write R as the union of Noetherian rings Rλ with
a1, . . . , an ∈ Rλ. For each Rλ the result holds, hence the result holds for R. □

Lemma 15.30.17.068Q Let R be a ring. Let f1, . . . , fn be a Koszul-regular sequence in
R such that (f1, . . . , fn) ̸= R. Consider the faithfully flat, smooth ring map

R −→ S = R[{tij}i≤j , t−1
11 , t

−1
22 , . . . , t

−1
nn ]

For 1 ≤ i ≤ n set
gi =

∑
i≤j

tijfj ∈ S.

Then g1, . . . , gn is a regular sequence in S and (f1, . . . , fn)S = (g1, . . . , gn).

Proof. The equality of ideals is obvious as the matrix
t11 t12 t13 . . .
0 t22 t23 . . .
0 0 t33 . . .
. . . . . . . . . . . .


is invertible in S. Because f1, . . . , fn is a Koszul-regular sequence we see that
the kernel of R → R⊕n, x 7→ (xf1, . . . , xfn) is zero (as it computes the nthe
Koszul homology of R w.r.t. f1, . . . , fn). Hence by Lemma 15.30.16 we see that
g1 = f1t11 + . . . + fnt1n is a nonzerodivisor in S′ = R[t11, t12, . . . , t1n, t

−1
11 ]. We

see that g1, f2, . . . , fn is a Koszul-sequence in S′ by Lemma 15.30.5 and 15.30.15.
We conclude that f2, . . . , fn is a Koszul-regular sequence in S′/(g1) by Lemma
15.30.14. Hence by induction on n we see that the images g2, . . . , gn of g2, . . . , gn in
S′/(g1)[{tij}2≤i≤j , t

−1
22 , . . . , t

−1
nn ] form a regular sequence. This in turn means that

g1, . . . , gn forms a regular sequence in S. □

15.31. More on Koszul regular sequences

0CEN We continue the discussion from Section 15.30.

Lemma 15.31.1.0G6L Let R be a ring. Let f1, . . . , fr ∈ R be an Koszul-regular sequence.
Then the extended alternating Čech complex R →

⊕
i0
Rfi0 →

⊕
i0<i1

Rfi0fi1 →
. . .→ Rf1...fr from Section 15.29 only has cohomology in degree r.

Proof. By Lemma 15.30.4 and induction the sequence f1, . . . , fr−1, f
n
r is Koszul

regular for all n ≥ 1. By Lemma 15.28.4 any permutation of a Koszul regular
sequence is a Koszul regular sequence. Hence we see that we may replace any (or all)
fi by its nth power and still have a Koszul regular sequence. ThusK•(R, fn1 , . . . , fnr )
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has nonzero cohomology only in homological degree 0. This implies what we want
by Lemma 15.29.6. □

Lemma 15.31.2.0BIQ Let a, a2, . . . , ar be an H1-regular sequence in a ring R (for ex-
ample a Koszul regular sequence or a regular sequence, see Lemmas 15.30.2 and
15.30.3). With I = (a, a2, . . . , ar) the blowup algebra R′ = R[ Ia ] is isomorphic to
R′′ = R[y2, . . . , yr]/(ayi − ai).

Proof. By Algebra, Lemma 10.70.6 it suffices to show that R′′ is a-torsion free.

We claim a, ay2−a2, . . . , ayn−ar is a H1-regular sequence in R[y2, . . . , yr]. Namely,
the map

(a, ay2 − a2, . . . , ayn − ar) : R[y2, . . . , yr]⊕r −→ R[y2, . . . , yr]

used to define the Koszul complex on a, ay2 − a2, . . . , ayn − ar is isomorphic to the
map

(a, a2, . . . , ar) : R[y2, . . . , yr]⊕r −→ R[y2, . . . , yr]
used to the define the Koszul complex on a, a2, . . . , ar via the isomorphism

R[y2, . . . , yr]⊕r −→ R[y2, . . . , yr]⊕r

sending (b1, . . . , br) to (b1− b2y2 . . .− bryr,−b2, . . . ,−br). By Lemma 15.28.3 these
Koszul complexes are isomorphic. By Lemma 15.30.5 applied to the flat ring map
R → R[y2, . . . , yr] we conclude our claim is true. By Lemma 15.28.8 we see that
the Koszul complex K on a, ay2 − a2, . . . , ayn − ar is the cone on a : L → L
where L is the Koszul complex on ay2 − a2, . . . , ayn − ar. Since H1(K) = 0 by
the claim, we conclude that a : H0(L) → H0(L) is injective, in other words that
R′′ = R[y2, . . . , yr]/(ayi − ai) has no nonzero a-torsion elements as desired. □

Lemma 15.31.3.063Q Let A→ B be a ring map. Let f1, . . . , fr be a sequence in B such
that B/(f1, . . . , fr) is A-flat. Let A→ A′ be a ring map. Then the canonical map

H1(K•(B, f1, . . . , fr))⊗A A′ −→ H1(K•(B′, f ′
1, . . . , f

′
r))

is surjective. Here B′ = B ⊗A A′ and f ′
i ∈ B′ is the image of fi.

Proof. The sequence

∧2(B⊕r)→ B⊕r → B → B/J → 0

is a complex of A-modules with B/J flat over A and cohomology group H1 =
H1(K•(B, f1, . . . , fr)) in the spot B⊕r. If we tensor this with A′ we obtain a
complex

∧2((B′)⊕r)→ (B′)⊕r → B′ → B′/J ′ → 0
which is exact at B′ and B′/J ′. In order to compute its cohomology group H ′

1 =
H1(K•(B′, f ′

1, . . . , f
′
r)) at (B′)⊕r we split the first sequence above into the exact

sequences 0 → J → B → B/J → 0, 0 → K → B⊕r → J → 0, and ∧2(B⊕r) →
K → H1 → 0. Tensoring over A with A′ we obtain the exact sequences

0→ J ⊗A A′ → B ⊗A A′ → (B/J)⊗A A′ → 0
K ⊗A A′ → B⊕r ⊗A A′ → J ⊗A A′ → 0

∧2(B⊕r)⊗A A′ → K ⊗A A′ → H1 ⊗A A′ → 0
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where the first one is exact as B/J is flat over A, see Algebra, Lemma 10.39.12.
We conclude that J ′ = J ⊗A A′ ⊂ B′ and that K ⊗A A′ → Ker((B′)⊕r → B′) is
surjective. Thus

H1 ⊗A A′ = Coker
(
∧2(B⊕r)⊗A A′ → K ⊗A A′)

→ Coker
(
∧2((B′)⊕r)→ Ker((B′)⊕r → B′)

)
= H ′

1

is surjective too. □

Lemma 15.31.4.0CEP Let A → B and A → A′ be ring maps. Set B′ = B ⊗A A′. Let
f1, . . . , fr ∈ B. Assume B/(f1, . . . , fr)B is flat over A

(1) If f1, . . . , fr is a quasi-regular sequence, then the image in B′ is a quasi-
regular sequence.

(2) If f1, . . . , fr is a H1-regular sequence, then the image in B′ is a H1-regular
sequence.

Proof. Assume f1, . . . , fr is quasi-regular. Set J = (f1, . . . , fr). By assump-
tion Jn/Jn+1 is isomorphic to a direct sum of copies of B/J hence flat over A.
By induction and Algebra, Lemma 10.39.13 we conclude that B/Jn is flat over
A. The ideal (J ′)n is equal to Jn ⊗A A′, see Algebra, Lemma 10.39.12. Hence
(J ′)n/(J ′)n+1 = Jn/Jn+1 ⊗A A′ which clearly implies that f1, . . . , fr is a quasi-
regular sequence in B′.
Assume f1, . . . , fr is H1-regular. By Lemma 15.31.3 the vanishing of the Koszul ho-
mology group H1(K•(B, f1, . . . , fr)) implies the vanishing of H1(K•(B′, f ′

1, . . . , f
′
r))

and we win. □

Lemma 15.31.5.0CEQ Let A′ → B′ be a ring map. Let I ⊂ A′ be an ideal. Set A = A′/I
and B = B′/IB′. Let f ′

1, . . . , f
′
r ∈ B′. Assume

(1) A′ → B′ is flat and of finite presentation,
(2) I is locally nilpotent,
(3) the images f1, . . . , fr ∈ B form a quasi-regular sequence,
(4) B/(f1, . . . , fr) is flat over A.

Then B′/(f ′
1, . . . , f

′
r) is flat over A′.

Proof. Set C ′ = B′/(f ′
1, . . . , f

′
r). We have to show A′ → C ′ is flat. Let r′ ⊂ C ′

be a prime ideal lying over p′ ⊂ A′. We let q′ ⊂ B′ be the inverse image of r′.
By Algebra, Lemma 10.39.18 it suffices to show that A′

p′ → C ′
q′ is flat. Algebra,

Lemma 10.128.6 tells us it suffices to show that f ′
1, . . . , f

′
r map to a regular sequence

in
B′

q′/p′B′
q′ = Bq/pBq = (B ⊗A κ(p))q

with obvious notation. What we know is that f1, . . . , fr is a quasi-regular sequence
in B and that B/(f1, . . . , fr) is flat over A. By Lemma 15.31.4 the images f1, . . . , fr
of f ′

1, . . . , f
′
r in B ⊗A κ(p) form a quasi-regular sequence. Since (B ⊗A κ(p))q is a

Noetherian local ring, we conclude by Lemma 15.30.7. □

Lemma 15.31.6.0CER Let A′ → B′ be a ring map. Let I ⊂ A′ be an ideal. Set A = A′/I
and B = B′/IB′. Let f ′

1, . . . , f
′
r ∈ B′. Assume

(1) A′ → B′ is flat and of finite presentation (for example smooth),
(2) I is locally nilpotent,
(3) the images f1, . . . , fr ∈ B form a quasi-regular sequence,
(4) B/(f1, . . . , fr) is smooth over A.

https://stacks.math.columbia.edu/tag/0CEP
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Then B′/(f ′
1, . . . , f

′
r) is smooth over A′.

Proof. Set C ′ = B′/(f ′
1, . . . , f

′
r) and C = B/(f1, . . . , fr). Then A′ → C ′ is of finite

presentation. By Lemma 15.31.5 we see that A′ → C ′ is flat. The fibre rings of
A′ → C ′ are equal to the fibre rings of A → C and hence smooth by assumption
(4). It follows that A′ → C ′ is smooth by Algebra, Lemma 10.137.17. □

15.32. Regular ideals

07CU We will discuss the notion of a regular ideal sheaf in great generality in Divisors,
Section 31.20. Here we define the corresponding notion in the affine case, i.e., in
the case of an ideal in a ring.
Definition 15.32.1.07CV Let R be a ring and let I ⊂ R be an ideal.

(1) We say I is a regular ideal if for every p ∈ V (I) there exists a g ∈ R,
g ̸∈ p and a regular sequence f1, . . . , fr ∈ Rg such that Ig is generated by
f1, . . . , fr.

(2) We say I is a Koszul-regular ideal if for every p ∈ V (I) there exists a
g ∈ R, g ̸∈ p and a Koszul-regular sequence f1, . . . , fr ∈ Rg such that Ig
is generated by f1, . . . , fr.

(3) We say I is a H1-regular ideal if for every p ∈ V (I) there exists a g ∈ R,
g ̸∈ p and an H1-regular sequence f1, . . . , fr ∈ Rg such that Ig is generated
by f1, . . . , fr.

(4) We say I is a quasi-regular ideal if for every p ∈ V (I) there exists a
g ∈ R, g ̸∈ p and a quasi-regular sequence f1, . . . , fr ∈ Rg such that Ig is
generated by f1, . . . , fr.

It is clear that given I ⊂ R we have the implications
I is a regular ideal⇒ I is a Koszul-regular ideal

⇒ I is a H1-regular ideal
⇒ I is a quasi-regular ideal

see Lemmas 15.30.2, 15.30.3, and 15.30.6. Such an ideal is always finitely generated.
Lemma 15.32.2.07CW A quasi-regular ideal is finitely generated.
Proof. Let I ⊂ R be a quasi-regular ideal. Since V (I) is quasi-compact, there
exist g1, . . . , gm ∈ R such that V (I) ⊂ D(g1) ∪ . . . ∪ D(gm) and such that Igj is
generated by a quasi-regular sequence gj1, . . . , gjrj ∈ Rgj . Write gji = g′

ji/g
eij
j

for some g′
ij ∈ I. Write 1 + x =

∑
gjhj for some x ∈ I which is possible as

V (I) ⊂ D(g1) ∪ . . . ∪ D(gm). Note that Spec(R) = D(g1) ∪ . . . ∪ D(gm)
⋃
D(x)

Then I is generated by the elements g′
ij and x as these generate on each of the

pieces of the cover, see Algebra, Lemma 10.23.2. □

Lemma 15.32.3.08RK Let I ⊂ R be a quasi-regular ideal of a ring. Then I/I2 is a finite
projective R/I-module.
Proof. This follows from Algebra, Lemma 10.78.2 and the definitions. □

We prove flat descent for Koszul-regular, H1-regular, quasi-regular ideals.
Lemma 15.32.4.068N Let A→ B be a faithfully flat ring map. Let I ⊂ A be an ideal.
If IB is a Koszul-regular (resp. H1-regular, resp. quasi-regular) ideal in B, then I
is a Koszul-regular (resp. H1-regular, resp. quasi-regular) ideal in A.
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Proof. We fix the prime p ⊃ I throughout the proof. Assume IB is quasi-regular.
By Lemma 15.32.2 IB is a finite module, hence I is a finite A-module by Algebra,
Lemma 10.83.2. As A→ B is flat we see that

I/I2 ⊗A/I B/IB = I/I2 ⊗A B = IB/(IB)2.

As IB is quasi-regular, the B/IB-module IB/(IB)2 is finite locally free. Hence
I/I2 is finite projective, see Algebra, Proposition 10.83.3. In particular, after re-
placing A by Af for some f ∈ A, f ̸∈ p we may assume that I/I2 is free of rank r.
Pick f1, . . . , fr ∈ I which give a basis of I/I2. By Nakayama’s lemma (see Algebra,
Lemma 10.20.1) we see that, after another replacement A ⇝ Af as above, I is
generated by f1, . . . , fr.
Proof of the “quasi-regular” case. Above we have seen that I/I2 is free on the
r-generators f1, . . . , fr. To finish the proof in this case we have to show that the
maps Symd(I/I2)→ Id/Id+1 are isomorphisms for each d ≥ 2. This is clear as the
faithfully flat base changes Symd(IB/(IB)2) → (IB)d/(IB)d+1 are isomorphisms
locally on B by assumption. Details omitted.
Proof of the “H1-regular” and “Koszul-regular” case. Consider the sequence of
elements f1, . . . , fr generating I we constructed above. By Lemma 15.30.15 we
see that f1, . . . , fr map to a H1-regular or Koszul-regular sequence in Bg for any
g ∈ B such that IB is generated by an H1-regular or Koszul-regular sequence.
Hence K•(A, f1, . . . , fr)⊗A Bg has vanishing H1 or Hi, i > 0. Since the homology
of K•(B, f1, . . . , fr) = K•(A, f1, . . . , fr) ⊗A B is annihilated by IB (see Lemma
15.28.6) and since V (IB) ⊂

⋃
g as above D(g) we conclude that K•(A, f1, . . . , fr)⊗A

B has vanishing homology in degree 1 or all positive degrees. Using that A→ B is
faithfully flat we conclude that the same is true for K•(A, f1, . . . , fr). □

Lemma 15.32.5.07CX Let A be a ring. Let I ⊂ J ⊂ A be ideals. Assume that J/I ⊂ A/I
is a H1-regular ideal. Then I ∩ J2 = IJ .

Proof. Follows immediately from Lemma 15.30.9 by localizing. □

15.33. Local complete intersection maps

07CY We can use the material above to define a local complete intersection map between
rings using presentations by (finite) polynomial algebras.

Lemma 15.33.1.07CZ Let A→ B be a finite type ring map. If for some presentation α :
A[x1, . . . , xn]→ B the kernel I is a Koszul-regular ideal then for any presentation
β : A[y1, . . . , ym]→ B the kernel J is a Koszul-regular ideal.

Proof. Choose fj ∈ A[x1, . . . , xn] with α(fj) = β(yj) and gi ∈ A[y1, . . . , ym] with
β(gi) = α(xi). Then we get a commutative diagram

A[x1, . . . , xn, y1, . . . , ym]

xi 7→gi

��

yj 7→fj

// A[x1, . . . , xn]

��
A[y1, . . . , ym] // B

Note that the kernel K of A[xi, yj ]→ B is equal to K = (I, yj−fj) = (J, xi−fi). In
particular, as I is finitely generated by Lemma 15.32.2 we see that J = K/(xi− fi)
is finitely generated too.

https://stacks.math.columbia.edu/tag/07CX
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Pick a prime q ⊂ B. Since I/I2⊕B⊕m = J/J2⊕B⊕n (Algebra, Lemma 10.134.15)
we see that

dim J/J2 ⊗B κ(q) + n = dim I/I2 ⊗B κ(q) +m.

Pick p1, . . . , pt ∈ I which map to a basis of I/I2 ⊗ κ(q) = I ⊗A[xi] κ(q). Pick
q1, . . . , qs ∈ J which map to a basis of J/J2⊗κ(q) = J⊗A[yj ]κ(q). So s+n = t+m.
By Nakayama’s lemma there exist h ∈ A[xi] and h′ ∈ A[yj ] both mapping to
a nonzero element of κ(q) such that Ih = (p1, . . . , pt) in A[xi, 1/h] and Jh′ =
(q1, . . . , qs) in A[yj , 1/h′]. As I is Koszul-regular we may also assume that Ih is
generated by a Koszul regular sequence. This sequence must necessarily have length
t = dim I/I2 ⊗B κ(q), hence we see that p1, . . . , pt is a Koszul-regular sequence by
Lemma 15.30.15. As also y1 − f1, . . . , ym − fm is a regular sequence we conclude

y1 − f1, . . . , ym − fm, p1, . . . , pt

is a Koszul-regular sequence in A[xi, yj , 1/h] (see Lemma 15.30.13). This sequence
generates the ideal Kh. Hence the ideal Khh′ is generated by a Koszul-regular
sequence of length m+ t = n+ s. But it is also generated by the sequence

x1 − g1, . . . , xn − gn, q1, . . . , qs

of the same length which is thus a Koszul-regular sequence by Lemma 15.30.15.
Finally, by Lemma 15.30.14 we conclude that the images of q1, . . . , qs in

A[xi, yj , 1/hh′]/(x1 − g1, . . . , xn − gn) ∼= A[yj , 1/h′′]
form a Koszul-regular sequence generating Jh′′ . Since h′′ is the image of hh′ it
doesn’t map to zero in κ(q) and we win. □

This lemma allows us to make the following definition.

Definition 15.33.2.07D0 A ring map A→ B is called a local complete intersection if it
is of finite type and for some (equivalently any) presentation B = A[x1, . . . , xn]/I
the ideal I is Koszul-regular.

This notion is local.

Lemma 15.33.3.07D1 Let R → S be a ring map. Let g1, . . . , gm ∈ S generate the unit
ideal. If each R→ Sgj is a local complete intersection so is R→ S.

Proof. Let S = R[x1, . . . , xn]/I be a presentation. Pick hj ∈ R[x1, . . . , xn] mapping
to gj in S. Then R[x1, . . . , xn, xn+1]/(I, xn+1hj−1) is a presentation of Sgj . Hence
Ij = (I, xn+1hj − 1) is a Koszul-regular ideal in R[x1, . . . , xn, xn+1]. Pick a prime
I ⊂ q ⊂ R[x1, . . . , xn]. Then hj ̸∈ q for some j and qj = (q, xn+1hj − 1) is
a prime ideal of V (Ij) lying over q. Pick f1, . . . , fr ∈ I which map to a basis of
I/I2⊗κ(q). Then xn+1hj−1, f1, . . . , fr is a sequence of elements of Ij which map to
a basis of Ij⊗κ(qj). By Nakayama’s lemma there exists an h ∈ R[x1, . . . , xn, xn+1]
such that (Ij)h is generated by xn+1hj − 1, f1, . . . , fr. We may also assume that
(Ij)h is generated by a Koszul regular sequence of some length e. Looking at the
dimension of Ij ⊗ κ(qj) we see that e = r + 1. Hence by Lemma 15.30.15 we see
that xn+1hj − 1, f1, . . . , fr is a Koszul-regular sequence generating (Ij)h for some
h ∈ R[x1, . . . , xn, xn+1], h ̸∈ qj . By Lemma 15.30.14 we see that Ih′ is generated
by a Koszul-regular sequence for some h′ ∈ R[x1, . . . , xn], h′ ̸∈ q as desired. □

Lemma 15.33.4.07D2 Let R be a ring. If R[x1, . . . , xn]/(f1, . . . , fc) is a relative global
complete intersection, then f1, . . . , fc is a Koszul regular sequence.
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Proof. Recall that the homology groups Hi(K•(f•)) are annihilated by the ideal
(f1, . . . , fc). Hence it suffices to show that Hi(K•(f•))q is zero for all primes q ⊂
R[x1, . . . , xn] containing (f1, . . . , fc). This follows from Algebra, Lemma 10.136.12
and the fact that a regular sequence is Koszul regular (Lemma 15.30.2). □

Lemma 15.33.5.07D3 Let R→ S be a ring map. The following are equivalent
(1) R→ S is syntomic (Algebra, Definition 10.136.1), and
(2) R→ S is flat and a local complete intersection.

Proof. Assume (1). Then R → S is flat by definition. By Algebra, Lemma
10.136.15 and Lemma 15.33.3 we see that it suffices to show a relative global com-
plete intersection is a local complete intersection homomorphism which is Lemma
15.33.4.
Assume (2). A local complete intersection is of finite presentation because a Koszul-
regular ideal is finitely generated. Let R → k be a map to a field. It suffices
to show that S′ = S ⊗R k is a local complete intersection over k, see Algebra,
Definition 10.135.1. Choose a prime q′ ⊂ S′. Write S = R[x1, . . . , xn]/I. Then S′ =
k[x1, . . . , xn]/I ′ where I ′ ⊂ k[x1, . . . , xn] is the image of I. Let p′ ⊂ k[x1, . . . , xn],
q ⊂ S, and p ⊂ R[x1, . . . , xn] be the corresponding primes. By Definition 15.32.1
exists an g ∈ R[x1, . . . , xn], g ̸∈ p and f1, . . . , fr ∈ R[x1, . . . , xn]g which form a
Koszul-regular sequence generating Ig. Since S and hence Sg is flat over R we see
that the images f ′

1, . . . , f
′
r in k[x1, . . . , xn]g form a H1-regular sequence generating

I ′
g, see Lemma 15.31.4. Thus f ′

1, . . . , f
′
r map to a regular sequence in k[x1, . . . , xn]p′

generating I ′
p′ by Lemma 15.30.7. Applying Algebra, Lemma 10.135.4 we conclude

S′
gg′ for some g′ ∈ S, g′ ̸∈ q′ is a global complete intersection over k as desired. □

For a local complete intersection R → S we have Hn(LS/R) = 0 for n ≥ 2. Since
we haven’t (yet) defined the full cotangent complex we can’t state and prove this,
but we can deduce one of the consequences.
Lemma 15.33.6.07D4 Let A → B → C be ring maps. Assume B → C is a local
complete intersection homomorphism. Choose a presentation α : A[xs, s ∈ S]→ B
with kernel I. Choose a presentation β : B[y1, . . . , ym] → C with kernel J . Let
γ : A[xs, yt] → C be the induced presentation of C with kernel K. Then we get a
canonical commutative diagram

0 // ΩA[xs]/A ⊗ C // ΩA[xs,yt]/A ⊗ C // ΩB[yt]/B ⊗ C // 0

0 // I/I2 ⊗ C //

OO

K/K2 //

OO

J/J2 //

OO

0
with exact rows. In particular, the six term exact sequence of Algebra, Lemma
10.134.4 can be completed with a zero on the left, i.e., the sequence
0→ H1(NLB/A⊗BC)→ H1(LC/A)→ H1(LC/B)→ ΩB/A⊗BC → ΩC/A → ΩC/B → 0
is exact.
Proof. The only thing to prove is the injectivity of the map I/I2 ⊗ C → K/K2.
By assumption the ideal J is Koszul-regular. Hence we have IA[xs, yj ]∩K2 = IK
by Lemma 15.32.5. This means that the kernel of K/K2 → J/J2 is isomorphic
to IA[xs, yj ]/IK. Since I/I2 ⊗A C = IA[xs, yj ]/IK by right exactness of tensor
product, this provides us with the desired injectivity of I/I2 ⊗A C → K/K2. □
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Lemma 15.33.7.07D5 Let A → B → C be ring maps. If B → C is a filtered colimit of
local complete intersection homomorphisms then the conclusion of Lemma 15.33.6
remains valid.
Proof. Follows from Lemma 15.33.6 and Algebra, Lemma 10.134.9. □

Lemma 15.33.8.0D08 Let A→ B be a local homomorphism of local rings. Let Ah → Bh,
resp. Ash → Bsh be the induced map on henselizations, resp. strict henseliza-
tions (Algebra, Lemma 10.155.6, resp. Lemma 10.155.10). Then NLB/A⊗BBh →
NLBh/Ah and NLB/A⊗BBsh → NLBsh/Ash induce isomorphisms on cohomology
groups.
Proof. Since Ah is a filtered colimit of étale algebras over A we see that NLAh/A is
an acyclic complex by Algebra, Lemma 10.134.9 and Algebra, Definition 10.143.1.
The same is true for Bh/B. Using the Jacobi-Zariski sequence (Algebra, Lemma
10.134.4) for A → Ah → Bh we find that NLBh/A → NLBh/Ah induces isomor-
phisms on cohomology groups. Moreover, an étale ring map is a local complete in-
tersection as it is even a global complete intersection, see Algebra, Lemma 10.143.2.
By Lemma 15.33.7 we get a six term exact Jacobi-Zariski sequence associated to
A → B → Bh which proves that NLB/A⊗BBh → NLBh/A induces isomorphisms
on cohomology groups. This finishes the proof in the case of the map on henseliza-
tions. The case of strict henselization is proved in exactly the same manner. □

15.34. Cartier’s equality and geometric regularity

07E0 A reference for this section and the next is [Mat70a, Section 39]. In order to
comfortably read this section the reader should be familiar with the naive cotangent
complex and its properties, see Algebra, Section 10.134.
Lemma 15.34.1 (Cartier equality).07E1 Let K/k be a finitely generated field extension.
Then ΩK/k and H1(LK/k) are finite dimensional and trdegk(K) = dimK ΩK/k −
dimK H1(LK/k).
Proof. We can find a global complete intersection A = k[x1, . . . , xn]/(f1, . . . , fc)
over k such that K is isomorphic to the fraction field of A, see Algebra, Lemma
10.158.11 and its proof. In this case we see that NLK/k is homotopy equivalent to
the complex ⊕

j=1,...,c
K −→

⊕
i=1,...,n

Kdxi
by Algebra, Lemmas 10.134.2 and 10.134.13. The transcendence degree of K over k
is the dimension of A (by Algebra, Lemma 10.116.1) which is n− c and we win. □

Lemma 15.34.2.07E2 Let M/L/K be field extensions. Then the Jacobi-Zariski sequence
0→ H1(LL/K)⊗LM → H1(LM/K)→ H1(LM/L)→ ΩL/K⊗LM → ΩM/K → ΩM/L → 0
is exact.
Proof. Combine Lemma 15.33.7 with Algebra, Lemma 10.158.11. □

Lemma 15.34.3.07E3 Given a commutative diagram of fields

K // K ′

k

OO

// k′

OO
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with k′/k and K ′/K finitely generated field extensions the kernel and cokernel of
the maps

α : ΩK/k ⊗K K ′ → ΩK′/k′ and β : H1(LK/k)⊗K K ′ → H1(LK′/k′)
are finite dimensional and
dim Ker(α)−dim Coker(α)−dim Ker(β)+dim Coker(β) = trdegk(k′)−trdegK(K ′)

Proof. The Jacobi-Zariski sequences for k ⊂ k′ ⊂ K ′ and k ⊂ K ⊂ K ′ are
0→ H1(Lk′/k)⊗K ′ → H1(LK′/k)→ H1(LK′/k′)→ Ωk′/k⊗K ′ → ΩK′/k → ΩK′/k′ → 0
and
0→ H1(LK/k)⊗K ′ → H1(LK′/k)→ H1(LK′/K)→ ΩK/k⊗K ′ → ΩK′/k → ΩK′/K → 0
By Lemma 15.34.1 the vector spaces Ωk′/k, ΩK′/K , H1(LK′/K), and H1(Lk′/k)
are finite dimensional and the alternating sum of their dimensions is trdegk(k′) −
trdegK(K ′). The lemma follows. □

15.35. Geometric regularity

07E4 Let k be a field. Let (A,m,K) be a Noetherian local k-algebra. The Jacobi-Zariski
sequence (Algebra, Lemma 10.134.4) is a canonical exact sequence

H1(LK/k)→ m/m2 → ΩA/k ⊗A K → ΩK/k → 0
because H1(LK/A) = m/m2 by Algebra, Lemma 10.134.6. We will show that exact-
ness on the left of this sequence characterizes whether or not a regular local ring A
is geometrically regular over k. We will link this to the notion of formal smoothness
in Section 15.40.

Proposition 15.35.1.07E5 Let k be a field of characteristic p > 0. Let (A,m,K) be a
Noetherian local k-algebra. The following are equivalent

(1) A is geometrically regular over k,
(2) for all k ⊂ k′ ⊂ k1/p finite over k the ring A⊗k k′ is regular,
(3) A is regular and the canonical map H1(LK/k)→ m/m2 is injective, and
(4) A is regular and the map Ωk/Fp ⊗k K → ΩA/Fp ⊗A K is injective.

Proof. Proof of (3) ⇒ (1). Assume (3). Let k′/k be a finite purely inseparable
extension. Set A′ = A ⊗k k′. This is a local ring with maximal ideal m′. Set
K ′ = A′/m′. We get a commutative diagram

0 // H1(LK/k)⊗K ′ //

β

��

m/m2 ⊗K ′ //

��

ΩA/k ⊗A K ′ //

∼=
��

ΩK/k ⊗K ′ //

α

��

0

H1(LK′/k′) // m′/(m′)2 // ΩA′/k′ ⊗A′ K ′ // ΩK′/k′ // 0

with exact rows. The third vertical arrow is an isomorphism by base change for
modules of differentials (Algebra, Lemma 10.131.12). Thus α is surjective. By
Lemma 15.34.3 we have

dim Ker(α)− dim Ker(β) + dim Coker(β) = 0
(and these dimensions are all finite). A diagram chase shows that dimm′/(m′)2 ≤
dimm/m2. However, since A→ A′ is finite flat we see that dim(A) = dim(A′), see
Algebra, Lemma 10.112.6. Hence A′ is regular by definition.

https://stacks.math.columbia.edu/tag/07E5
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Equivalence of (3) and (4). Consider the Jacobi-Zariski sequences for rows of the
commutative diagram

Fp // A // K

Fp //

OO

k //

OO

K

OO

to get a commutative diagram

0 // m/m2 // ΩA/Fp ⊗A K // ΩK/Fp
// 0

0 // H1(LK/k) //

OO

Ωk/Fp ⊗k K //

OO

ΩK/Fp
//

OO

ΩK/k //

OO

0

with exact rows. We have used that H1(LK/A) = m/m2 and that H1(LK/Fp) = 0
as K/Fp is separable, see Algebra, Proposition 10.158.9. Thus it is clear that the
kernels of H1(LK/k) → m/m2 and Ωk/Fp ⊗k K → ΩA/Fp ⊗A K have the same
dimension.
Proof of (2) ⇒ (4) following Faltings, see [Fal78a]. Let a1, . . . , an ∈ k be ele-
ments such that da1, . . . ,dan are linearly independent in Ωk/Fp . Consider the
field extension k′ = k(a1/p

1 , . . . , a
1/p
n ). By Algebra, Lemma 10.158.3 we see that

k′ = k[x1, . . . , xn]/(xp1−a1, . . . , x
p
n−an). In particular we see that the naive cotan-

gent complex of k′/k is homotopic to the complex
⊕

j=1,...,n k
′ →

⊕
i=1,...,n k

′ with
the zero differential as d(xpj − aj) = 0 in Ωk[x1,...,xn]/k. Set A′ = A ⊗k k′ and
K ′ = A′/m′ as above. By Algebra, Lemma 10.134.8 we see that NLA′/A is homo-
topy equivalent to the complex

⊕
j=1,...,nA

′ →
⊕

i=1,...,nA
′ with the zero differen-

tial, i.e., H1(LA′/A) and ΩA′/A are free of rank n. The Jacobi-Zariski sequence for
Fp → A→ A′ is

H1(LA′/A)→ ΩA/Fp ⊗A A
′ → ΩA′/Fp → ΩA′/A → 0

Using the presentation A[x1, . . . , xn]→ A′ with kernel (xpj − aj) we see, unwinding
the maps in Algebra, Lemma 10.134.4, that the jth basis vector of H1(LA′/A) maps
to daj ⊗ 1 in ΩA/Fp ⊗A′. As ΩA′/A is free (hence flat) we get on tensoring with K ′

an exact sequence

K ′⊕n → ΩA/Fp ⊗A K
′ β−→ ΩA′/Fp ⊗A′ K ′ → K ′⊕n → 0

We conclude that the elements daj ⊗ 1 generate Ker(β) and we have to show that
are linearly independent, i.e., we have to show dim(Ker(β)) = n. Consider the
following big diagram

0 // m′/(m′)2 // ΩA′/Fp ⊗K ′ // ΩK′/Fp
// 0

0 // m/m2 ⊗K ′ //

α

OO

ΩA/Fp ⊗K ′ //

β

OO

ΩK/Fp ⊗K ′ //

γ

OO

0

By Lemma 15.34.1 and the Jacobi-Zariski sequence for Fp → K → K ′ we see that
the kernel and cokernel of γ have the same finite dimension. By assumption A′ is
regular (and of the same dimension as A, see above) hence the kernel and cokernel
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of α have the same dimension. It follows that the kernel and cokernel of β have the
same dimension which is what we wanted to show.
The implication (1) ⇒ (2) is trivial. This finishes the proof of the proposition. □

Lemma 15.35.2.07E6 Let k be a field of characteristic p > 0. Let (A,m,K) be a
Noetherian local k-algebra. Assume A is geometrically regular over k. Let K/F/k
be a finitely generated subextension. Let φ : k[y1, . . . , ym]→ A be a k-algebra map
such that yi maps to an element of F in K and such that dy1, . . . ,dym map to a
basis of ΩF/k. Set p = φ−1(m). Then

k[y1, . . . , ym]p → A

is flat and A/pA is regular.

Proof. Set A0 = k[y1, . . . , ym]p with maximal ideal m0 and residue field K0. Note
that ΩA0/k is free of rank m and ΩA0/k ⊗ K0 → ΩK0/k is an isomorphism. It is
clear that A0 is geometrically regular over k. Hence H1(LK0/k) → m0/m

2
0 is an

isomorphism, see Proposition 15.35.1. Now consider

H1(LK0/k)⊗K

��

// m0/m
2
0 ⊗K

��
H1(LK/k) // m/m2

Since the left vertical arrow is injective by Lemma 15.34.2 and the lower horizontal
by Proposition 15.35.1 we conclude that the right vertical one is too. Hence a
regular system of parameters in A0 maps to part of a regular system of parameters
in A. We win by Algebra, Lemmas 10.128.2 and 10.106.3. □

15.36. Topological rings and modules

07E7 Let’s quickly discuss some properties of topological abelian groups. An abelian
group M is a topological abelian group if M is endowed with a topology such that
addition M×M →M , (x, y) 7→ x+y and inverse M →M , x 7→ −x are continuous.
A homomorphism of topological abelian groups is just a homomorphism of abelian
groups which is continuous. The category of commutative topological groups is
additive and has kernels and cokernels, but is not abelian (as the axiom Im = Coim
doesn’t hold). If N ⊂M is a subgroup, then we think of N and M/N as topological
groups also, namely using the induced topology on N and the quotient topology on
M/N (i.e., such that M → M/N is submersive). Note that if N ⊂ M is an open
subgroup, then the topology on M/N is discrete.
We say the topology on M is linear if there exists a fundamental system of neigh-
bourhoods of 0 consisting of subgroups. If so then these subgroups are also open.
An example is the following. Let I be a directed set and let Gi be an inverse system
of (discrete) abelian groups over I. Then

G = limi∈I Gi

with the inverse limit topology is linearly topologized with a fundamental system
of neighbourhoods of 0 given by Ker(G → Gi). Conversely, let M be a linearly
topologized abelian group. Choose any fundamental system of open subgroups
Ui ⊂M , i ∈ I (i.e., the Ui form a fundamental system of open neighbourhoods and

https://stacks.math.columbia.edu/tag/07E6
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each Ui is a subgroup of M). Setting i ≥ i′ ⇔ Ui ⊂ Ui′ we see that I is a directed
set. We obtain a homomorphism of linearly topologized abelian groups

c : M −→ limi∈IM/Ui.

It is clear that M is separated (as a topological space) if and only if c is injective.
We say that M is complete if c is an isomorphism2. We leave it to the reader to
check that this condition is independent of the choice of fundamental system of
open subgroups {Ui}i∈I chosen above. In fact the topological abelian group M∧ =
limi∈IM/Ui is independent of this choice and is sometimes called the completion
of M . Any G = limGi as above is complete, in particular, the completion M∧ is
always complete.
Definition 15.36.1 (Topological rings).07E8 [GD60, Chapter 0,

Sections 7.1 and 7.2]
Let R be a ring and let M be an R-module.

(1) We say R is a topological ring if R is endowed with a topology such that
both addition and multiplication are continuous as maps R×R→ R where
R × R has the product topology. In this case we say M is a topological
module if M is endowed with a topology such that addition M ×M →M
and scalar multiplication R×M →M are continuous.

(2) A homomorphism of topological modules is just a continuous R-module
map. A homomorphism of topological rings is a ring homomorphism which
is continuous for the given topologies.

(3) We say M is linearly topologized if 0 has a fundamental system of neigh-
bourhoods consisting of submodules. We say R is linearly topologized if
0 has a fundamental system of neighbourhoods consisting of ideals.

(4) If R is linearly topologized, we say that I ⊂ R is an ideal of definition if
I is open and if every neighbourhood of 0 contains In for some n.

(5) If R is linearly topologized, we say that R is pre-admissible if R has an
ideal of definition.

(6) If R is linearly topologized, we say that R is admissible if it is pre-
admissible and complete3.

(7) If R is linearly topologized, we say that R is pre-adic if there exists an
ideal of definition I such that {In}n≥0 forms a fundamental system of
neighbourhoods of 0.

(8) If R is linearly topologized, we say that R is adic if R is pre-adic and
complete.

Note that a (pre)adic topological ring is the same thing as a (pre)admissible topo-
logical ring which has an ideal of definition I such that In is open for all n ≥ 1.
Let R be a ring and let M be an R-module. Let I ⊂ R be an ideal. Then we can
consider the linear topology on R which has {In}n≥0 as a fundamental system of
neighbourhoods of 0. This topology is called the I-adic topology; R is a pre-adic
topological ring in the I-adic topology4. Moreover, the linear topology on M which
has {InM}n≥0 as a fundamental system of open neighbourhoods of 0 turns M into
a topological R-module. This is called the I-adic topology on M . We see that
M is I-adically complete (as defined in Algebra, Definition 10.96.2) if and only if

2We include being separated as part of being complete as we’d like to have a unique limits
in complete groups. There is a definition of completeness for any topological group, agreeing,
modulo the separation issue, with this one in our special case.

3By our conventions this includes separated.
4Thus the I-adic topology is sometimes called the I-pre-adic topology.

https://stacks.math.columbia.edu/tag/07E8
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M is complete in the I-adic topology5. In particular, we see that R is I-adically
complete if and only if R is an adic topological ring in the I-adic topology.
As a special case, note that the discrete topology is the 0-adic topology and that
any ring in the discrete topology is adic.

Lemma 15.36.2.07E9 Let φ : R → S be a ring map. Let I ⊂ R and J ⊂ S be ideals
and endow R with the I-adic topology and S with the J-adic topology. Then φ is
a homomorphism of topological rings if and only if φ(In) ⊂ J for some n ≥ 1.

Proof. Omitted. □

Lemma 15.36.3 (Baire category theorem).0CQU Let M be a topological abelian group.
Assume M is linearly topologized, complete, and has a countable fundamental
system of neighbourhoods of 0. If Un ⊂ M , n ≥ 1 are open dense subsets, then⋂
n≥1 Un is dense.

Proof. Let Un be as in the statement of the lemma. After replacing Un by U1 ∩
. . . ∩ Un, we may assume that U1 ⊃ U2 ⊃ . . .. Let Mn, n ∈ N be a fundamental
system of neighbourhoods of 0. We may assume that Mn+1 ⊂ Mn. Pick x ∈ M .
We will show that for every k ≥ 1 there exists a y ∈

⋂
n≥1 Un with x− y ∈Mk.

To construct y we argue as follows. First, we pick a y1 ∈ U1 with y1 ∈ x + Mk.
This is possible because U1 is dense and x + Mk is open. Then we pick a k1 > k
such that y1 + Mk1 ⊂ U1. This is possible because U1 is open. Next, we pick a
y2 ∈ U2 with y2 ∈ y1 +Mk1 . This is possible because U2 is dense and y2 +Mk1 is
open. Then we pick a k2 > k1 such that y2 + Mk2 ⊂ U2. This is possible because
U2 is open.
Continuing in this fashion we get a converging sequence yi of elements of M with
limit y. By construction x− y ∈Mk. Since

y − yi = (yi+1 − yi) + (yi+2 − yi+1) + . . .

is in Mki we see that y ∈ yi +Mki ⊂ Ui for all i as desired. □

Lemma 15.36.4.0CQV With same assumptions as Lemma 15.36.3 if M =
⋃
n≥1 Nn for

some closed subgroups Nn, then Nn is open for some n.

Proof. If not, then Un = M \Nn is dense for all n and we get a contradiction with
Lemma 15.36.3. □

Lemma 15.36.5 (Open mapping lemma).0CQW Let u : N → M be a continuous map of
linearly topologized abelian groups. Assume that N is complete, M separated, and
N has a countable fundamental system of neighbourhoods of 0. Then exactly one
of the following holds

(1) u is open, or
(2) for some open subgroup N ′ ⊂ N the image u(N ′) is nowhere dense in M .

Proof. Let Nn, n ∈ N be a fundamental system of neighbourhoods of 0. We may
assume that Nn+1 ⊂ Nn. If (2) does not hold, then the closure Mn of u(Nn) is an
open subgroup for n = 1, 2, 3, . . .. Since u is continuous, we see that Mn, n ∈ N

5It may happen that the I-adic completion M∧ is not I-adically complete, even though M∧

is always complete with respect to the limit topology. If I is finitely generated then the I-adic
topology and the limit topology on M∧ agree, see Algebra, Lemma 10.96.3 and its proof.

https://stacks.math.columbia.edu/tag/07E9
https://stacks.math.columbia.edu/tag/0CQU
https://stacks.math.columbia.edu/tag/0CQV
https://stacks.math.columbia.edu/tag/0CQW
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must be a fundamental system of open neighbourhoods of 0 in M . Also, since Mn

is the closure of u(Nn) we see that
u(Nn) +Mn+1 = Mn

for all n ≥ 1. Pick x1 ∈ M1. Then we can inductively choose yi ∈ Ni and
xi+1 ∈Mi+1 such that

u(yi) + xi+1 = xi

The element y = y1 + y2 + y3 + . . . of N exists because N is complete. Whereupon
we see that x = u(y) because M is separated. Thus M1 = u(N1). In exactly the
same way the reader shows that Mi = u(Ni) for all i ≥ 2 and we see that u is
open. □

15.37. Formally smooth maps of topological rings

07EA There is a version of formal smoothness which applies to homomorphisms of topo-
logical rings.

Definition 15.37.1.07EB Let R→ S be a homomorphism of topological rings with R and
S linearly topologized. We say S is formally smooth over R if for every commutative
solid diagram

S //

!!

A/J

R //

OO

A

OO

of homomorphisms of topological rings where A is a discrete ring and J ⊂ A is an
ideal of square zero, a dotted arrow exists which makes the diagram commute.

We will mostly use this notion when given ideals m ⊂ R and n ⊂ S and we endow R
with the m-adic topology and S with the n-adic topology. Continuity of φ : R→ S
holds if and only if φ(mm) ⊂ n for some m ≥ 1, see Lemma 15.36.2. It turns out
that in this case only the topology on S is relevant.

Lemma 15.37.2.07EC Let φ : R→ S be a ring map.
(1) If R→ S is formally smooth in the sense of Algebra, Definition 10.138.1,

then R → S is formally smooth for any linear topology on R and any
pre-adic topology on S such that R→ S is continuous.

(2) Let n ⊂ S and m ⊂ R ideals such that φ is continuous for the m-adic
topology on R and the n-adic topology on S. Then the following are
equivalent
(a) φ is formally smooth for the m-adic topology on R and the n-adic

topology on S, and
(b) φ is formally smooth for the discrete topology on R and the n-adic

topology on S.

Proof. Assume R → S is formally smooth in the sense of Algebra, Definition
10.138.1. If S has a pre-adic topology, then there exists an ideal n ⊂ S such
that S has the n-adic topology. Suppose given a solid commutative diagram as in
Definition 15.37.1. Continuity of S → A/J means that nk maps to zero in A/J
for some k ≥ 1, see Lemma 15.36.2. We obtain a ring map ψ : S → A from the
assumed formal smoothness of S over R. Then ψ(nk) ⊂ J hence ψ(n2k) = 0 as
J2 = 0. Hence ψ is continuous by Lemma 15.36.2. This proves (1).

https://stacks.math.columbia.edu/tag/07EB
https://stacks.math.columbia.edu/tag/07EC
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The proof of (2)(b) ⇒ (2)(a) is the same as the proof of (1). Assume (2)(a).
Suppose given a solid commutative diagram as in Definition 15.37.1 where we use
the discrete topology on R. Since φ is continuous we see that φ(mn) ⊂ n for some
n ≥ 1. As S → A/J is continuous we see that nk maps to zero in A/J for some
k ≥ 1. Hence mnk maps into J under the map R→ A. Thus m2nk maps to zero in
A and we see that R → A is continuous in the m-adic topology. Thus (2)(a) gives
a dotted arrow as desired. □

Definition 15.37.3.07NI Let R → S be a ring map. Let n ⊂ S be an ideal. If the
equivalent conditions (2)(a) and (2)(b) of Lemma 15.37.2 hold, then we say R→ S
is formally smooth for the n-adic topology.
This property is inherited by the completions.
Lemma 15.37.4.07ED Let (R,m) and (S, n) be rings endowed with finitely generated
ideals. Endow R and S with the m-adic and n-adic topologies. Let R → S be a
homomorphism of topological rings. The following are equivalent

(1) R→ S is formally smooth for the n-adic topology,
(2) R→ S∧ is formally smooth for the n∧-adic topology,
(3) R∧ → S∧ is formally smooth for the n∧-adic topology.

Here R∧ and S∧ are the m-adic and n-adic completions of R and S.
Proof. The assumption that m is finitely generated implies that R∧ is mR∧-adically
complete, that mR∧ = m∧ and that R∧/mnR∧ = R/mn, see Algebra, Lemma
10.96.3 and its proof. Similarly for (S, n). Thus it is clear that diagrams as in
Definition 15.37.1 for the cases (1), (2), and (3) are in 1-to-1 correspondence. □

The advantage of working with adic rings is that one gets a stronger lifting property.
Lemma 15.37.5.07NJ Let R → S be a ring map. Let n be an ideal of S. Assume that
R → S is formally smooth in the n-adic topology. Consider a solid commutative
diagram

S
ψ
//

!!

A/J

R //

OO

A

OO

of homomorphisms of topological rings where A is adic and A/J is the quotient (as
topological ring) of A by a closed ideal J ⊂ A such that J t is contained in an ideal
of definition of A for some t ≥ 1. Then there exists a dotted arrow in the category
of topological rings which makes the diagram commute.
Proof. Let I ⊂ A be an ideal of definition so that I ⊃ J t for some n. Then
A = limA/In and A/J = limA/J + In because J is assumed closed. Consider the
following diagram of discrete R algebras An,m = A/Jn + Im:

A/J3 + I3 //

��

A/J2 + I3 //

��

A/J + I3

��
A/J3 + I2 //

��

A/J2 + I2 //

��

A/J + I2

��
A/J3 + I // A/J2 + I // A/J + I

https://stacks.math.columbia.edu/tag/07NI
https://stacks.math.columbia.edu/tag/07ED
https://stacks.math.columbia.edu/tag/07NJ
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Note that each of the commutative squares defines a surjection
An+1,m+1 −→ An+1,m ×An,m An,m+1

of R-algebras whose kernel has square zero. We will inductively construct R-algebra
maps φn,m : S → An,m. Namely, we have the maps φ1,m = ψ mod J + Im.
Note that each of these maps is continuous as ψ is. We can inductively choose
the maps φn,1 by starting with our choice of φ1,1 and lifting up, using the formal
smoothness of S over R, along the right column of the diagram above. We construct
the remaining maps φn,m by induction on n + m. Namely, we choose φn+1,m+1
by lifting the pair (φn+1,m, φn,m+1) along the displayed surjection above (again
using the formal smoothness of S over R). In this way all of the maps φn,m
are compatible with the transition maps of the system. As J t ⊂ I we see that for
example φn = φnt,n mod In induces a map S → A/In. Taking the limit φ = limφn
we obtain a map S → A = limA/In. The composition into A/J agrees with ψ
as we have seen that A/J = limA/J + In. Finally we show that φ is continuous.
Namely, we know that ψ(nr) ⊂ J + I/J for some r ≥ 1 by our assumption that ψ
is a morphism of topological rings, see Lemma 15.36.2. Hence φ(nr) ⊂ J + I hence
φ(nrt) ⊂ I as desired. □

Lemma 15.37.6.07EE Let R → S be a ring map. Let n ⊂ n′ ⊂ S be ideals. If R → S
is formally smooth for the n-adic topology, then R→ S is formally smooth for the
n′-adic topology.

Proof. Omitted. □

Lemma 15.37.7.07EF A composition of formally smooth continuous homomorphisms of
linearly topologized rings is formally smooth.

Proof. Omitted. (Hint: This is completely formal, and follows from considering a
suitable diagram.) □

Lemma 15.37.8.07EG Let R, S be rings. Let n ⊂ S be an ideal. Let R → S be
formally smooth for the n-adic topology. Let R → R′ be any ring map. Then
R′ → S′ = S ⊗R R′ is formally smooth in the n′ = nS′-adic topology.

Proof. Let a solid diagram

S //

((

S′ //

!!

A/J

R

OO

// R′ //

OO

A

OO

as in Definition 15.37.1 be given. Then the composition S → S′ → A/J is contin-
uous. By assumption the longer dotted arrow exists. By the universal property of
tensor product we obtain the shorter dotted arrow. □

We have seen descent for formal smoothness along faithfully flat ring maps in Alge-
bra, Lemma 10.138.16. Something similar holds in the current setting of topological
rings. However, here we just prove the following very simple and easy to prove ver-
sion which is already quite useful.

Lemma 15.37.9.07EH Let R, S be rings. Let n ⊂ S be an ideal. Let R → R′ be a ring
map. Set S′ = S ⊗R R′ and n′ = nS. If

https://stacks.math.columbia.edu/tag/07EE
https://stacks.math.columbia.edu/tag/07EF
https://stacks.math.columbia.edu/tag/07EG
https://stacks.math.columbia.edu/tag/07EH
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(1) the map R → R′ embeds R as a direct summand of R′ as an R-module,
and

(2) R′ → S′ is formally smooth for the n′-adic topology,
then R→ S is formally smooth in the n-adic topology.

Proof. Let a solid diagram
S // A/J

R

OO

// A

OO

as in Definition 15.37.1 be given. Set A′ = A ⊗R R′ and J ′ = Im(J ⊗R R′ → A′).
The base change of the diagram above is the diagram

S′ //

ψ′

""

A′/J ′

R′

OO

// A′

OO

with continuous arrows. By condition (2) we obtain the dotted arrow ψ′ : S′ → A′.
Using condition (1) choose a direct summand decomposition R′ = R ⊕ C as R-
modules. (Warning: C isn’t an ideal in R′.) Then A′ = A⊕A⊗R C. Set

J ′′ = Im(J ⊗R C → A⊗R C) ⊂ J ′ ⊂ A′.

Then J ′ = J ⊕ J ′′ as A-modules. The image of the composition ψ : S → A′ of ψ′

with S → S′ is contained in A+J ′ = A⊕J ′′. However, in the ring A+J ′ = A⊕J ′′

the A-submodule J ′′ is an ideal! (Use that J2 = 0.) Hence the composition
S → A+ J ′ → (A+ J ′)/J ′′ = A is the arrow we were looking for. □

15.38. Formally smooth maps of local rings

0DYF In the case of a local homomorphism of local rings one can limit the diagrams for
which the lifting property has to be checked. Please compare with Algebra, Lemma
10.141.2.

Lemma 15.38.1.0DYG Let (R,m)→ (S, n) be a local homomorphism of local rings. The
following are equivalent

(1) R→ S is formally smooth in the n-adic topology,
(2) for every solid commutative diagram

S //

!!

A/J

R //

OO

A

OO

of local homomorphisms of local rings where J ⊂ A is an ideal of square
zero, mnA = 0 for some n > 0, and S → A/J induces an isomorphism on
residue fields, a dotted arrow exists which makes the diagram commute.

If S is Noetherian these conditions are also equivalent to
(3) same as in (2) but only for diagrams where in addition A → A/J is a

small extension (Algebra, Definition 10.141.1).

https://stacks.math.columbia.edu/tag/0DYG
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Proof. The implication (1) ⇒ (2) follows from the definitions. Consider a diagram

S //

!!

A/J

R //

OO

A

OO

as in Definition 15.37.1 for the m-adic topology on R and the n-adic topology on
S. Pick m > 0 with nm(A/J) = 0 (possible by continuity of maps in diagram).
Consider the subring A′ of A which is the inverse image of the image of S in A/J .
Set J ′ = J viewed as an ideal in A′. Then J ′ is an ideal of square zero in A′ and
A′/J ′ is a quotient of S/nm. Hence A′ is local and m2m

A′ = 0. Thus we get a diagram

S //

""

A′/J ′

R //

OO

A′

OO

as in (2). If we can construct the dotted arrow in this diagram, then we obtain the
dotted arrow in the original one by composing with A′ → A. In this way we see
that (2) implies (1).
Assume S Noetherian. The implication (1) ⇒ (3) is immediate. Assume (3) and
suppose a diagram as in (2) is given. Then mnAJ = 0 for some n > 0. Considering
the maps

A→ A/mn−1
A J → . . .→ A/mJ → A/J

we see that it suffices to produce the lifting if mAJ = 0. Assume mAJ = 0 and
let A′ ⊂ A be the ring constructed above. Then A′/J ′ is Artinian as a quotient of
the Artinian local ring S/nm. Thus it suffices to show that given property (3) we
can find the dotted arrow in diagrams as in (2) with A/J Artinian and mAJ = 0.
Let κ be the common residue field of A, A/J , and S. By (3), if J0 ⊂ J is an ideal
with dimκ(J/J0) = 1, then we can produce a dotted arrow S → A/J0. Taking the
product we obtain

S −→
∏

J0 as above
A/J0

Clearly the image of this arrow is contained in the sub R-algebra A′ of elements
which map into the small diagonal A/J ⊂

∏
J0
A/J . Let J ′ ⊂ A′ be the elements

mapping to zero in A/J . Then J ′ is an ideal of square zero and as κ-vector space
equal to

J ′ =
∏

J0 as above
J/J0

Thus the map J → J ′ is injective. By the theory of vector spaces we can choose a
splitting J ′ = J ⊕M . It follows that

A′ = A⊕M

as an R-algebra. Hence the map S → A′ can be composed with the projection A′ →
A to give the desired dotted arrow thereby finishing the proof of the lemma. □

The following lemma will be improved on in Section 15.40.

Lemma 15.38.2.07EI Let k be a field and let (A,m,K) be a Noetherian local k-algebra.
If k → A is formally smooth for the m-adic topology, then A is a regular local ring.

https://stacks.math.columbia.edu/tag/07EI
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Proof. Let k0 ⊂ k be the prime field. Then k0 is perfect, hence k/k0 is separable,
hence formally smooth by Algebra, Lemma 10.158.7. By Lemmas 15.37.2 and
15.37.7 we see that k0 → A is formally smooth for the m-adic topology on A.
Hence we may assume k = Q or k = Fp.

By Algebra, Lemmas 10.97.3 and 10.110.9 it suffices to prove the completion A∧ is
regular. By Lemma 15.37.4 we may replace A by A∧. Thus we may assume that
A is a Noetherian complete local ring. By the Cohen structure theorem (Algebra,
Theorem 10.160.8) there exist a map K → A. As k is the prime field we see that
K → A is a k-algebra map.

Let x1, . . . , xn ∈ m be elements whose images form a basis of m/m2. Set T =
K[[X1, . . . , Xn]]. Note that

A/m2 ∼= K[x1, . . . , xn]/(xixj)

and
T/m2

T
∼= K[X1, . . . , Xn]/(XiXj).

Let A/m2 → T/m2
T be the local K-algebra isomorphism given by mapping the class

of xi to the class of Xi. Denote f1 : A→ T/m2
T the composition of this isomorphism

with the quotient map A→ A/m2. The assumption that k → A is formally smooth
in the m-adic topology means we can lift f1 to a map f2 : A → T/m3

T , then to
a map f3 : A → T/m4

T , and so on, for all n ≥ 1. Warning: the maps fn are
continuous k-algebra maps and may not be K-algebra maps. We get an induced
map f : A → T = limT/mnT of local k-algebras. By our choice of f1, the map
f induces an isomorphism m/m2 → mT /m

2
T hence each fn is surjective and we

conclude f is surjective as A is complete. This implies dim(A) ≥ dim(T ) = n.
Hence A is regular by definition. (It also follows that f is an isomorphism.) □

Lemma 15.38.3.0C34 Let k be a field. Let (A,m, κ) be a complete local k-algebra. If
κ/k is separable, then there exists a k-algebra map κ→ A such that κ→ A→ κ is
idκ.

Proof. By Algebra, Proposition 10.158.9 the extension κ/k is formally smooth. By
Lemma 15.37.2 k → κ is formally smooth in the sense of Definition 15.37.1. Then
we get κ→ A from Lemma 15.37.5. □

Lemma 15.38.4.0C35 Let k be a field. Let (A,m, κ) be a complete local k-algebra. If κ/k
is separable and A regular, then there exists an isomorphism of A ∼= κ[[t1, . . . , td]]
as k-algebras.

Proof. Choose κ→ A as in Lemma 15.38.3 and apply Algebra, Lemma 10.160.10.
□

The following result will be improved on in Section 15.40

Lemma 15.38.5.07EJ Let k be a field. Let (A,m,K) be a regular local k-algebra such
that K/k is separable. Then k → A is formally smooth in the m-adic topology.

Proof. It suffices to prove that the completion of A is formally smooth over k,
see Lemma 15.37.4. Hence we may assume that A is a complete local regular
k-algebra with residue field K separable over k. By Lemma 15.38.4 we see that
A = K[[x1, . . . , xn]].
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The power series ring K[[x1, . . . , xn]] is formally smooth over k. Namely, K is
formally smooth over k and K[x1, . . . , xn] is formally smooth over K as a polyno-
mial algebra. Hence K[x1, . . . , xn] is formally smooth over k by Algebra, Lemma
10.138.3. It follows that k → K[x1, . . . , xn] is formally smooth for the (x1, . . . , xn)-
adic topology by Lemma 15.37.2. Finally, it follows that k → K[[x1, . . . , xn]] is
formally smooth for the (x1, . . . , xn)-adic topology by Lemma 15.37.4. □

Lemma 15.38.6.07VH Let A → B be a finite type ring map with A Noetherian. Let
q ⊂ B be a prime ideal lying over p ⊂ A. The following are equivalent

(1) A→ B is smooth at q, and
(2) Ap → Bq is formally smooth in the q-adic topology.

Proof. The implication (2) ⇒ (1) follows from Algebra, Lemma 10.141.2. Con-
versely, if A → B is smooth at q, then A → Bg is smooth for some g ∈ B,
g ̸∈ q. Then A→ Bg is formally smooth by Algebra, Proposition 10.138.13. Hence
Ap → Bq is formally smooth as localization preserves formal smoothness (for exam-
ple by the criterion of Algebra, Proposition 10.138.8 and the fact that the cotangent
complex behaves well with respect to localization, see Algebra, Lemmas 10.134.11
and 10.134.13). Finally, Lemma 15.37.2 implies that Ap → Bq is formally smooth
in the q-adic topology. □

15.39. Some results on power series rings

07NK Questions on formally smooth maps between Noetherian local rings can often be
reduced to questions on maps between power series rings. In this section we prove
some helper lemmas to facilitate this kind of argument.

Lemma 15.39.1.07NL Let K be a field of characteristic 0 and A = K[[x1, . . . , xn]]. Let
L be a field of characteristic p > 0 and B = L[[x1, . . . , xn]]. Let Λ be a Cohen ring.
Let C = Λ[[x1, . . . , xn]].

(1) Q→ A is formally smooth in the m-adic topology.
(2) Fp → B is formally smooth in the m-adic topology.
(3) Z→ C is formally smooth in the m-adic topology.

Proof. By the universal property of power series rings it suffices to prove:
(1) Q→ K is formally smooth.
(2) Fp → L is formally smooth.
(3) Z→ Λ is formally smooth in the m-adic topology.

The first two are Algebra, Proposition 10.158.9. The third follows from Algebra,
Lemma 10.160.7 since for any test diagram as in Definition 15.37.1 some power of
p will be zero in A/J and hence some power of p will be zero in A. □

Lemma 15.39.2.07NM Let K be a field and A = K[[x1, . . . , xn]]. Let Λ be a Cohen ring
and let B = Λ[[x1, . . . , xn]].

(1) If y1, . . . , yn ∈ A is a regular system of parameters then K[[y1, . . . , yn]]→
A is an isomorphism.

(2) If z1, . . . , zr ∈ A form part of a regular system of parameters for A, then
r ≤ n and A/(z1, . . . , zr) ∼= K[[y1, . . . , yn−r]].

(3) If p, y1, . . . , yn ∈ B is a regular system of parameters then Λ[[y1, . . . , yn]]→
B is an isomorphism.

https://stacks.math.columbia.edu/tag/07VH
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(4) If p, z1, . . . , zr ∈ B form part of a regular system of parameters for B,
then r ≤ n and B/(z1, . . . , zr) ∼= Λ[[y1, . . . , yn−r]].

Proof. Proof of (1). Set A′ = K[[y1, . . . , yn]]. It is clear that the map A′ → A
induces an isomorphism A′/mnA′ → A/mnA for all n ≥ 1. Since A and A′ are both
complete we deduce that A′ → A is an isomorphism. Proof of (2). Extend z1, . . . , zr
to a regular system of parameters z1, . . . , zr, y1, . . . , yn−r of A. Consider the map
A′ = K[[z1, . . . , zr, y1, . . . , yn−r]] → A. This is an isomorphism by (1). Hence (2)
follows as it is clear that A′/(z1, . . . , zr) ∼= K[[y1, . . . , yn−r]]. The proofs of (3) and
(4) are exactly the same as the proofs of (1) and (2). □

Lemma 15.39.3.07NN Let A → B be a local homomorphism of Noetherian complete
local rings. Then there exists a commutative diagram

S // B

R

OO

// A

OO

with the following properties:
(1) the horizontal arrows are surjective,
(2) if the characteristic of A/mA is zero, then S and R are power series rings

over fields,
(3) if the characteristic of A/mA is p > 0, then S and R are power series rings

over Cohen rings, and
(4) R → S maps a regular system of parameters of R to part of a regular

system of parameters of S.
In particular R→ S is flat (see Algebra, Lemma 10.128.2) with regular fibre S/mRS
(see Algebra, Lemma 10.106.3).

Proof. Use the Cohen structure theorem (Algebra, Theorem 10.160.8) to choose a
surjection S → B as in the statement of the lemma where we choose S to be a
power series over a Cohen ring if the residue characteristic is p > 0 and a power
series over a field else. Let J ⊂ S be the kernel of S → B. Next, choose a
surjection R = Λ[[x1, . . . , xn]] → A where we choose Λ to be a Cohen ring if the
residue characteristic of A is p > 0 and Λ equal to the residue field of A otherwise.
We lift the composition Λ[[x1, . . . , xn]] → A → B to a map φ : R → S. This is
possible because Λ[[x1, . . . , xn]] is formally smooth over Z in the m-adic topology
(see Lemma 15.39.1) by an application of Lemma 15.37.5. Finally, we replace φ
by the map φ′ : R = Λ[[x1, . . . , xn]] → S′ = S[[y1, . . . , yn]] with φ′|Λ = φ|Λ and
φ′(xi) = φ(xi) + yi. We also replace S → B by the map S′ → B which maps yi
to zero. After this replacement it is clear that a regular system of parameters of R
maps to part of a regular sequence in S′ and we win. □

There should be an elementary proof of the following lemma.

Lemma 15.39.4.09Q8 Let S → R and S′ → R be surjective maps of complete Noetherian
local rings. Then S ×R S′ is a complete Noetherian local ring.

Proof. Let k be the residue field of R. If the characteristic of k is p > 0, then we
denote Λ a Cohen ring (Algebra, Definition 10.160.5) with residue field k (Algebra,
Lemma 10.160.6). If the characteristic of k is 0 we set Λ = k. Choose a surjection

https://stacks.math.columbia.edu/tag/07NN
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Λ[[x1, . . . , xn]] → R (as in the Cohen structure theorem, see Algebra, Theorem
10.160.8) and lift this to maps Λ[[x1, . . . , xn]] → S and φ : Λ[[x1, . . . , xn]] → S
and φ′ : Λ[[x1, . . . , xn]] → S′ using Lemmas 15.39.1 and 15.37.5. Next, choose
f1, . . . , fm ∈ S generating the kernel of S → R and f ′

1, . . . , f
′
m′ ∈ S′ generating the

kernel of S′ → R. Then the map

Λ[[x1, . . . , xn, y1, . . . , ym, z1, . . . , zm′ ]] −→ S ×R S,

which sends xi to (φ(xi), φ′(xi)) and yj to (fj , 0) and zj′ to (0, f ′
j) is surjective.

Thus S ×R S′ is a quotient of a complete local ring, whence complete. □

15.40. Geometric regularity and formal smoothness

07EK In this section we combine the results of the previous sections to prove the following
characterization of geometrically regular local rings over fields. We then recycle
some of our arguments to prove a characterization of formally smooth maps in the
m-adic topology between Noetherian local rings.

Theorem 15.40.1.07EL Let k be a field. Let (A,m,K) be a Noetherian local k-algebra.
If the characteristic of k is zero then the following are equivalent

(1) A is a regular local ring, and
(2) k → A is formally smooth in the m-adic topology.

If the characteristic of k is p > 0 then the following are equivalent
(1) A is geometrically regular over k,
(2) k → A is formally smooth in the m-adic topology.
(3) for all k ⊂ k′ ⊂ k1/p finite over k the ring A⊗k k′ is regular,
(4) A is regular and the canonical map H1(LK/k)→ m/m2 is injective, and
(5) A is regular and the map Ωk/Fp ⊗k K → ΩA/Fp ⊗A K is injective.

Proof. If the characteristic of k is zero, then the equivalence of (1) and (2) follows
from Lemmas 15.38.2 and 15.38.5.

If the characteristic of k is p > 0, then it follows from Proposition 15.35.1 that (1),
(3), (4), and (5) are equivalent. Assume (2) holds. By Lemma 15.37.8 we see that
k′ → A′ = A ⊗k k′ is formally smooth for the m′ = mA′-adic topology. Hence if
k ⊂ k′ is finite purely inseparable, then A′ is a regular local ring by Lemma 15.38.2.
Thus we see that (1) holds.

Finally, we will prove that (5) implies (2). Choose a solid diagram

A
ψ̄

//

!!

B/J

k

i

OO

φ // B

π

OO

as in Definition 15.37.1. As J2 = 0 we see that J has a canonical B/J module
structure and via ψ̄ an A-module structure. As ψ̄ is continuous for the m-adic
topology we see that mnJ = 0 for some n. Hence we can filter J by B/J-submodules
0 ⊂ J1 ⊂ J2 ⊂ . . . ⊂ Jn = J such that each quotient Jt+1/Jt is annihilated by m.
Considering the sequence of ring maps B → B/J1 → B/J2 → . . . → B/J we see
that it suffices to prove the existence of the dotted arrow when J is annihilated by
m, i.e., when J is a K-vector space.

https://stacks.math.columbia.edu/tag/07EL
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Assume given a diagram as above such that J is annihilated by m. By Lemma
15.38.5 we see that Fp → A is formally smooth in the m-adic topology. Hence we
can find a ring map ψ : A → B such that π ◦ ψ = ψ̄. Then ψ ◦ i, φ : k → B are
two maps whose compositions with π are equal. Hence D = ψ ◦ i − φ : k → J
is a derivation. By Algebra, Lemma 10.131.3 we can write D = ξ ◦ d for some
k-linear map ξ : Ωk/Fp → J . Using the K-vector space structure on J we extend
ξ to a K-linear map ξ′ : Ωk/Fp ⊗k K → J . Using (5) we can find a K-linear map
ξ′′ : ΩA/Fp ⊗A K whose restriction to Ωk/Fp ⊗k K is ξ′. Write

D′ : A d−→ ΩA/Fp → ΩA/Fp ⊗A K
ξ′′

−→ J.

Finally, set ψ′ = ψ −D′ : A → B. The reader verifies that ψ′ is a ring map such
that π ◦ ψ′ = ψ̄ and such that ψ′ ◦ i = φ as desired. □

Example 15.40.2.07EM Let k be a field of characteristic p > 0. Suppose that a ∈ k is an
element which is not a pth power. A standard example of a geometrically regular
local k-algebra whose residue field is purely inseparable over k is the ring

A = k[x, y](x,yp−a)/(yp − a− x)

Namely, A is a localization of a smooth algebra over k hence k → A is formally
smooth, hence k → A is formally smooth for the m-adic topology. A closely related
example is the following. Let k = Fp(s) and K = Fp(t)perf . We claim the ring
map

k −→ A = K[[x]], s 7−→ t+ x

is formally smooth for the (x)-adic topology on A. Namely, Ωk/Fp is 1-dimensional
with basis ds. It maps to the element dx + dt = dx in ΩA/Fp . We leave it to
the reader to show that ΩA/Fp is free on dx as an A-module. Hence we see that
condition (5) of Theorem 15.40.1 holds and we conclude that k → A is formally
smooth in the (x)-adic topology.

Lemma 15.40.3.07NP Let A → B be a local homomorphism of Noetherian local rings.
Assume A→ B is formally smooth in the mB-adic topology. Then A→ B is flat.

Proof. We may assume that A and B a Noetherian complete local rings by Lemma
15.37.4 and Algebra, Lemma 10.97.6 (this also uses Algebra, Lemma 10.39.9 and
10.97.3 to see that flatness of the map on completions implies flatness of A→ B).
Choose a commutative diagram

S // B

R

OO

// A

OO

as in Lemma 15.39.3 with R→ S flat. Let I ⊂ R be the kernel of R→ A. Because
B is formally smooth over A we see that the A-algebra map

S/IS −→ B

has a section, see Lemma 15.37.5. Hence B is a direct summand of the flat A-
module S/IS (by base change of flatness, see Algebra, Lemma 10.39.7), whence
flat. □
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Lemma 15.40.4.0DYH Let A → B be a local homomorphism of Noetherian local rings.
Assume A→ B is formally smooth in the mB-adic topology. Let K be the residue
field of B. Then the Jacobi-Zariski sequence for A → B → K gives an exact
sequence

0→ H1(NLK/A)→ mB/m
2
B → ΩB/A ⊗B K → ΩK/A → 0

Proof. Observe that mB/m
2
B = H1(NLK/B) by Algebra, Lemma 10.134.6. By

Algebra, Lemma 10.134.4 it remains to show injectivity of H1(NLK/A)→ mB/m
2
B .

With k the residue field of A, the Jacobi-Zariski sequence for A → k → K gives
ΩK/A = ΩK/k and an exact sequence

mA/m
2
A ⊗k K → H1(NLK/A)→ H1(NLK/k)→ 0

Set B = B⊗Ak. Since B is regular the ideal mB is generated by a regular sequence.
Applying Lemmas 15.30.9 and 15.30.7 to mAB ⊂ mB we find mAB/(mAB ∩m2

B) =
mAB/mAmB which is equal to mA/m

2
A ⊗k K as A → B is flat by Lemma 15.40.3.

Thus we obtain a short exact sequence
0→ mA/m

2
A ⊗k K → mB/m

2
B → mB/m

2
B
→ 0

Functoriality of the Jacobi-Zariski sequences shows that we obtain a commutative
diagram

mA/m
2
A ⊗k K

��

// H1(NLK/A)

��

// H1(NLK/k)

��

// 0

0 // mA/m2
A ⊗k K // mB/m2

B
// mB/m

2
B

// 0

The left vertical arrow is injective by Theorem 15.40.1 as k → B is formally smooth
in the mB-adic topology by Lemma 15.37.8. This finishes the proof by the snake
lemma. □

Proposition 15.40.5.07NQ Let A → B be a local homomorphism of Noetherian local
rings. Let k be the residue field of A and B = B ⊗A k the special fibre. The
following are equivalent

(1) A→ B is flat and B is geometrically regular over k,
(2) A → B is flat and k → B is formally smooth in the mB-adic topology,

and
(3) A→ B is formally smooth in the mB-adic topology.

Proof. The equivalence of (1) and (2) follows from Theorem 15.40.1.
Assume (3). By Lemma 15.40.3 we see that A→ B is flat. By Lemma 15.37.8 we
see that k → B is formally smooth in the mB-adic topology. Thus (2) holds.
Assume (2). Lemma 15.37.4 tells us formal smoothness is preserved under com-
pletion. The same is true for flatness by Algebra, Lemma 10.97.3. Hence we may
replace A and B by their respective completions and assume that A and B are
Noetherian complete local rings. In this case choose a diagram

S // B

R

OO

// A

OO
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as in Lemma 15.39.3. We will use all of the properties of this diagram without
further mention. Fix a regular system of parameters t1, . . . , td of R with t1 = p in
case the characteristic of k is p > 0. Set S = S ⊗R k. Consider the short exact
sequence

0→ J → S → B → 0
As B and S are regular, the kernel of S → B is generated by elements x1, . . . , xr
which form part of a regular system of parameters of S, see Algebra, Lemma
10.106.4. Lift these elements to x1, . . . , xr ∈ J . Then t1, . . . , td, x1, . . . , xr is part
of a regular system of parameters for S. Hence S/(x1, . . . , xr) is a power series ring
over a field (if the characteristic of k is zero) or a power series ring over a Cohen
ring (if the characteristic of k is p > 0), see Lemma 15.39.2. Moreover, it is still
the case that R → S/(x1, . . . , xr) maps t1, . . . , td to a part of a regular system of
parameters of S/(x1, . . . , xr). In other words, we may replace S by S/(x1, . . . , xr)
and assume we have a diagram

S // B

R

OO

// A

OO

as in Lemma 15.39.3 with moreover S = B. In this case the map
S ⊗R A −→ B

is an isomorphism as it is surjective, an isomorphism on special fibres, and source
and target are flat over A (for example use Algebra, Lemma 10.99.1 or use that
tensoring the short exact sequence 0 → I → S ⊗R A → B → 0 over A with k we
find I ⊗A k = 0 hence I = 0 by Nakayama). Thus by Lemma 15.37.8 it suffices
to show that R → S is formally smooth in the mS-adic topology. Of course, since
S = B, we have that S is formally smooth over k = R/mR.
Choose elements y1, . . . , ym ∈ S such that t1, . . . , td, y1, . . . , ym is a regular system
of parameters for S. If the characteristic of k is zero, choose a coefficient field K ⊂ S
and if the characteristic of k is p > 0 choose a Cohen ring Λ ⊂ S with residue field
K. At this point the map K[[t1, . . . , td, y1, . . . , ym]] → S (characteristic zero case)
or Λ[[t2, . . . , td, y1, . . . , ym]]→ S (characteristic p > 0 case) is an isomorphism, see
Lemma 15.39.2. From now on we think of S as the above power series ring.
The rest of the proof is analogous to the argument in the proof of Theorem 15.40.1.
Choose a solid diagram

S
ψ̄

//

!!

N/J

R

i

OO

φ // N

π

OO

as in Definition 15.37.1. As J2 = 0 we see that J has a canonical N/J module
structure and via ψ̄ a S-module structure. As ψ̄ is continuous for the mS-adic
topology we see that mnSJ = 0 for some n. Hence we can filter J by N/J-submodules
0 ⊂ J1 ⊂ J2 ⊂ . . . ⊂ Jn = J such that each quotient Jt+1/Jt is annihilated by mS .
Considering the sequence of ring maps N → N/J1 → N/J2 → . . . → N/J we see
that it suffices to prove the existence of the dotted arrow when J is annihilated by
mS , i.e., when J is a K-vector space.
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Assume given a diagram as above such that J is annihilated by mS . As Q → S
(characteristic zero case) or Z → S (characteristic p > 0 case) is formally smooth
in the mS-adic topology (see Lemma 15.39.1), we can find a ring map ψ : S → N
such that π ◦ ψ = ψ̄. Since S is a power series ring in t1, . . . , td (characteristic
zero) or t2, . . . , td (characteristic p > 0) over a subring, it follows from the universal
property of power series rings that we can change our choice of ψ so that ψ(ti)
equals φ(ti) (automatic for t1 = p in the characteristic p case). Then ψ ◦ i and
φ : R → N are two maps whose compositions with π are equal and which agree
on t1, . . . , td. Hence D = ψ ◦ i − φ : R → J is a derivation which annihilates
t1, . . . , td. By Algebra, Lemma 10.131.3 we can write D = ξ ◦ d for some R-linear
map ξ : ΩR/Z → J which annihilates dt1, . . . ,dtd (by construction) and mRΩR/Z
(as J is annihilated by mR). Hence ξ factors as a composition

ΩR/Z → Ωk/Z
ξ′

−→ J

where ξ′ is k-linear. Using the K-vector space structure on J we extend ξ′ to a
K-linear map

ξ′′ : Ωk/Z ⊗k K −→ J.

Using that S/k is formally smooth we see that
Ωk/Z ⊗k K → ΩS/Z ⊗S K

is injective by Theorem 15.40.1 (this is true also in the characteristic zero case as
it is even true that Ωk/Z → ΩK/Z is injective in characteristic zero, see Algebra,
Proposition 10.158.9). Hence we can find a K-linear map ξ′′′ : ΩS/Z ⊗S K → J

whose restriction to Ωk/Z ⊗k K is ξ′′. Write

D′ : S d−→ ΩS/Z → ΩS/Z → ΩS/Z ⊗S K
ξ′′′

−−→ J.

Finally, set ψ′ = ψ −D′ : S → N . The reader verifies that ψ′ is a ring map such
that π ◦ ψ′ = ψ̄ and such that ψ′ ◦ i = φ as desired. □

As an application of the result above we prove that deformations of formally smooth
algebras are unobstructed.

Lemma 15.40.6.07NR Let A be a Noetherian complete local ring with residue field k.
Let B be a Noetherian complete local k-algebra. Assume k → B is formally smooth
in the mB-adic topology. Then there exists a Noetherian complete local ring C and
a local homomorphism A → C which is formally smooth in the mC-adic topology
such that C ⊗A k ∼= B.

Proof. Choose a diagram
S // B

R

OO

// A

OO

as in Lemma 15.39.3. Let t1, . . . , td be a regular system of parameters for R with
t1 = p in case the characteristic of k is p > 0. As B and S = S⊗Rk are regular we see
that Ker(S → B) is generated by elements x1, . . . , xr which form part of a regular
system of parameters of S, see Algebra, Lemma 10.106.4. Lift these elements to
x1, . . . , xr ∈ S. Then t1, . . . , td, x1, . . . , xr is part of a regular system of parameters
for S. Hence S/(x1, . . . , xr) is a power series ring over a field (if the characteristic
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of k is zero) or a power series ring over a Cohen ring (if the characteristic of k is
p > 0), see Lemma 15.39.2. Moreover, it is still the case that R → S/(x1, . . . , xr)
maps t1, . . . , td to a part of a regular system of parameters of S/(x1, . . . , xr). In
other words, we may replace S by S/(x1, . . . , xr) and assume we have a diagram

S // B

R

OO

// A

OO

as in Lemma 15.39.3 with moreover S = B. In this case R→ S is formally smooth
in the mS-adic topology by Proposition 15.40.5. Hence the base change C = S⊗RA
is formally smooth over A in the mC-adic topology by Lemma 15.37.8. □

Remark 15.40.7.07NS The assertion of Lemma 15.40.6 is quite strong. Namely, suppose
that we have a diagram

B

A // A′

OO

of local homomorphisms of Noetherian complete local rings where A→ A′ induces
an isomorphism of residue fields k = A/mA = A′/mA′ and with B ⊗A′ k formally
smooth over k. Then we can extend this to a commutative diagram

C // B

A //

OO

A′

OO

of local homomorphisms of Noetherian complete local rings where A → C is for-
mally smooth in the mC-adic topology and where C ⊗A k ∼= B⊗A′ k. Namely, pick
A→ C as in Lemma 15.40.6 lifting B ⊗A′ k over k. By formal smoothness we can
find the arrow C → B, see Lemma 15.37.5. Denote C ⊗∧

A A
′ the completion of

C ⊗A A′ with respect to the ideal C ⊗A mA′ . Note that C ⊗∧
A A

′ is a Noetherian
complete local ring (see Algebra, Lemma 10.97.5) which is flat over A′ (see Algebra,
Lemma 10.99.11). We have moreover

(1) C ⊗∧
A A

′ → B is surjective,
(2) if A→ A′ is surjective, then C → B is surjective,
(3) if A→ A′ is finite, then C → B is finite, and
(4) if A′ → B is flat, then C ⊗∧

A A
′ ∼= B.

Namely, by Nakayama’s lemma for nilpotent ideals (see Algebra, Lemma 10.20.1)
we see that C ⊗A k ∼= B ⊗A′ k implies that C ⊗A A′/mnA′ → B/mnA′B is surjective
for all n. This proves (1). Parts (2) and (3) follow from part (1). Part (4) follows
from Algebra, Lemma 10.99.1.

15.41. Regular ring maps

07BY Let k be a field. Recall that a Noetherian k-algebra A is said to be geometrically
regular over k if and only if A ⊗k k′ is regular for all finite purely inseparable
extensions k′ of k, see Algebra, Definition 10.166.2. Moreover, if this is the case
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then A⊗k k′ is regular for every finitely generated field extension k′/k, see Algebra,
Lemma 10.166.1. We use this notion in the following definition.

Definition 15.41.1.07BZ A ring map R → Λ is regular if it is flat and for every prime
p ⊂ R the fibre ring

Λ⊗R κ(p) = Λp/pΛp

is Noetherian and geometrically regular over κ(p).

If R → Λ is a ring map with Λ Noetherian, then the fibre rings are always Noe-
therian.

Lemma 15.41.2 (Regular is a local property).07C0 Let R → Λ be a ring map with Λ
Noetherian. The following are equivalent

(1) R→ Λ is regular,
(2) Rp → Λq is regular for all q ⊂ Λ lying over p ⊂ R, and
(3) Rm → Λm′ is regular for all maximal ideals m′ ⊂ Λ lying over m in R.

Proof. This is true because a Noetherian ring is regular if and only if all the local
rings are regular local rings, see Algebra, Definition 10.110.7 and a ring map is
flat if and only if all the induced maps of local rings are flat, see Algebra, Lemma
10.39.18. □

Lemma 15.41.3 (Regular maps and base change).07C1 Let R → Λ be a regular ring
map. For any finite type ring map R→ R′ the base change R′ → Λ⊗RR′ is regular
too.

Proof. Flatness is preserved under any base change, see Algebra, Lemma 10.39.7.
Consider a prime p′ ⊂ R′ lying over p ⊂ R. The residue field extension κ(p′)/κ(p)
is finitely generated as R′ is of finite type over R. Hence the fibre ring

(Λ⊗R R′)⊗R′ κ(p′) = Λ⊗R κ(p)⊗κ(p) κ(p′)
is Noetherian by Algebra, Lemma 10.31.8 and the assumption on the fibre rings
of R → Λ. Geometric regularity of the fibres is preserved by Algebra, Lemma
10.166.1. □

Lemma 15.41.4 (Composition of regular maps).07QI Let A→ B and B → C be regular
ring maps. If the fibre rings of A→ C are Noetherian, then A→ C is regular.

Proof. Let p ⊂ A be a prime. Let κ(p) ⊂ k be a finite purely inseparable extension.
We have to show that C ⊗A k is regular. By Lemma 15.41.3 we may assume that
A = k and we reduce to proving that C is regular. The assumption is that B is
regular and that B → C is flat with regular fibres. Then C is regular by Algebra,
Lemma 10.112.8. Some details omitted. □

Lemma 15.41.5.07EP Let R be a ring. Let (Ai, φii′) be a directed system of smooth
R-algebras. Set Λ = colimAi. If the fibre rings Λ ⊗R κ(p) are Noetherian for all
p ⊂ R, then R→ Λ is regular.

Proof. Note that Λ is flat over R by Algebra, Lemmas 10.39.3 and 10.137.10. Let
κ(p) ⊂ k be a finite purely inseparable extension. Note that

Λ⊗R κ(p)⊗κ(p) k = Λ⊗R k = colimAi ⊗R k
is a colimit of smooth k-algebras, see Algebra, Lemma 10.137.4. Since each local
ring of a smooth k-algebra is regular by Algebra, Lemma 10.140.3 we conclude that
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all local rings of Λ⊗R k are regular by Algebra, Lemma 10.106.8. This proves the
lemma. □

Let’s see when a field extension defines a regular ring map.

Lemma 15.41.6.07EQ Let K/k be a field extension. Then k → K is a regular ring map
if and only if K is a separable field extension of k.

Proof. If k → K is regular, then K is geometrically reduced over k, hence K is
separable over k by Algebra, Proposition 10.158.9. Conversely, if K/k is separable,
then K is a colimit of smooth k-algebras, see Algebra, Lemma 10.158.11 hence is
regular by Lemma 15.41.5. □

Lemma 15.41.7.07NT Let A→ B → C be ring maps. If A→ C is regular and B → C
is flat and surjective on spectra, then A→ B is regular.

Proof. By Algebra, Lemma 10.39.10 we see that A → B is flat. Let p ⊂ A be a
prime. The ring map B ⊗A κ(p) → C ⊗A κ(p) is flat and surjective on spectra.
Hence B ⊗A κ(p) is geometrically regular by Algebra, Lemma 10.166.3. □

15.42. Ascending properties along regular ring maps

07QJ This section is the analogue of Algebra, Section 10.163 but where the ring map
R→ S is regular.

Lemma 15.42.1.07QK Let φ : R→ S be a ring map. Assume
(1) φ is regular,
(2) S is Noetherian, and
(3) R is Noetherian and reduced.

Then S is reduced.

Proof. For Noetherian rings being reduced is the same as having properties (S1)
and (R0), see Algebra, Lemma 10.157.3. Hence we may apply Algebra, Lemmas
10.163.4 and 10.163.5. □

Lemma 15.42.2.0BFK Let φ : R→ S be a ring map. Assume
(1) φ is regular,
(2) S is Noetherian, and
(3) R is Noetherian and normal.

Then S is normal.

Proof. For Noetherian rings being normal is the same as having properties (S2)
and (R1), see Algebra, Lemma 10.157.4. Hence we may apply Algebra, Lemmas
10.163.4 and 10.163.5. □

15.43. Permanence of properties under completion

07NU Given a Noetherian local ring (A,m) we denote A∧ the completion of A with respect
to m. We will use without further mention that A∧ is a Noetherian complete local
ring with maximal ideal m∧ = mA∧ and that A→ A∧ is faithfully flat. See Algebra,
Lemmas 10.97.6, 10.97.4, and 10.97.3.

Lemma 15.43.1.07NV Let A be a Noetherian local ring. Then dim(A) = dim(A∧).
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Proof. By Algebra, Lemma 10.97.4 the mapA→ A∧ induces isomorphismsA/mn =
A∧/(m∧)n for n ≥ 1. By Algebra, Lemma 10.52.12 this implies that

lengthA(A/mn) = lengthA∧(A∧/(m∧)n)
for all n ≥ 1. Thus d(A) = d(A∧) and we conclude by Algebra, Proposition 10.60.9.
An alternative proof is to use Algebra, Lemma 10.112.7. □

Lemma 15.43.2.07NW Let A be a Noetherian local ring. Then depth(A) = depth(A∧).

Proof. See Algebra, Lemma 10.163.2. □

Lemma 15.43.3.07NX Let A be a Noetherian local ring. Then A is Cohen-Macaulay if
and only if A∧ is so.

Proof. A local ring A is Cohen-Macaulay if and only if dim(A) = depth(A). As both
of these invariants are preserved under completion (Lemmas 15.43.1 and 15.43.2)
the claim follows. □

Lemma 15.43.4.07NY Let A be a Noetherian local ring. Then A is regular if and only
if A∧ is so.

Proof. If A∧ is regular, then A is regular by Algebra, Lemma 10.110.9. Assume
A is regular. Let m be the maximal ideal of A. Then dimκ(m) m/m

2 = dim(A) =
dim(A∧) (Lemma 15.43.1). On the other hand, mA∧ is the maximal ideal of A∧

and hence mA∧ is generated by at most dim(A∧) elements. Thus A∧ is regular.
(You can also use Algebra, Lemma 10.112.8.) □

Lemma 15.43.5.0AP1 Let A be a Noetherian local ring. Then A is a discrete valuation
ring if and only if A∧ is so.

Proof. This follows from Lemmas 15.43.1 and 15.43.4 and Algebra, Lemma 10.119.7.
□

Lemma 15.43.6.07NZ Let A be a Noetherian local ring.
(1) If A∧ is reduced, then so is A.
(2) In general A reduced does not imply A∧ is reduced.
(3) If A is Nagata, then A is reduced if and only if A∧ is reduced.

Proof. As A → A∧ is faithfully flat we have (1) by Algebra, Lemma 10.164.2.
For (2) see Algebra, Example 10.119.5 (there are also examples in characteristic
zero, see Algebra, Remark 10.119.6). For (3) see Algebra, Lemmas 10.162.13 and
10.162.10. □

Lemma 15.43.7.0FIZ Let A be a Noetherian local ring. If A∧ is normal, then so is A.

Proof. As A→ A∧ is faithfully flat this follows from Algebra, Lemma 10.164.3. □

Lemma 15.43.8.0C4G Let A → B be a local homomorphism of Noetherian local rings.
Then the induced map of completions A∧ → B∧ is flat if and only if A→ B is flat.

Proof. Consider the commutative diagram

A∧ // B∧

A //

OO

B

OO
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The vertical arrows are faithfully flat. Assume that A∧ → B∧ is flat. Then A→ B∧

is flat. Hence B is flat over A by Algebra, Lemma 10.39.9.
Assume that A → B is flat. Then A → B∧ is flat. Hence B∧/mnAB

∧ is flat over
A/mnA for all n ≥ 1. Note that mnAA

∧ is the nth power of the maximal ideal m∧
A

of A∧ and A/mnA = A∧/(m∧
A)n. Thus we see that B∧ is flat over A∧ by applying

Algebra, Lemma 10.99.11 (with R = A∧, I = m∧
A, S = B∧, M = S). □

Lemma 15.43.9.0AGX Let A→ B be a flat local homomorphism of Noetherian local rings
such that mAB = mB and κ(mA) = κ(mB). Then A→ B induces an isomorphism
A∧ → B∧ of completions.
Proof. By Algebra, Lemma 10.97.7 we see that B∧ is the mA-adic completion of
B and that A∧ → B∧ is finite. Since A → B is flat we have TorA1 (B, κ(mA)) = 0.
Hence we see that B∧ is flat over A∧ by Lemma 15.27.5. Thus B∧ is a free A∧-
module by Algebra, Lemma 10.78.5. Since A∧ → B∧ induces an isomorphism
κ(mA) = A∧/mAA

∧ → B∧/mAB
∧ = B∧/mBB

∧ = κ(mB) by our assumptions
(and Algebra, Lemma 10.96.3), we see that B∧ is free of rank 1. Thus A∧ → B∧

is an isomorphism. □

15.44. Permanence of properties under étale maps

0AGY In this section we consider an étale ring map φ : A → B and we study which
properties of A are inherited by B and which properties of the local ring of B at q
are inherited by the local ring of A at p = φ−1(q). Basically, this section reviews
and collects earlier results and does not add any new material.
We will use without further mention that an étale ring map is flat (Algebra, Lemma
10.143.3) and that a flat local homomorphism of local rings is faithfully flat (Alge-
bra, Lemma 10.39.17).
Lemma 15.44.1.0AGZ If A → B is an étale ring map and q is a prime of B lying over
p ⊂ A, then Ap is Noetherian if and only if Bq is Noetherian.
Proof. Since Ap → Bq is faithfully flat we see that Bq Noetherian implies that Ap

is Noetherian, see Algebra, Lemma 10.164.1. Conversely, if Ap is Noetherian, then
Bq is Noetherian as it is a localization of a finite type Ap-algebra. □

Lemma 15.44.2.07QP If A → B is an étale ring map and q is a prime of B lying over
p ⊂ A, then dim(Ap) = dim(Bq).
Proof. Namely, because Ap → Bq is flat we have going down, and hence the in-
equality dim(Ap) ≤ dim(Bq), see Algebra, Lemma 10.112.1. On the other hand,
suppose that q0 ⊂ q1 ⊂ . . . ⊂ qn is a chain of primes in Bq. Then the corresponding
sequence of primes p0 ⊂ p1 ⊂ . . . ⊂ pn (with pi = qi ∩ Ap) is chain also (i.e., no
equalities in the sequence) as an étale ring map is quasi-finite (see Algebra, Lemma
10.143.6) and a quasi-finite ring map induces a map of spectra with discrete fibres
(by definition). This means that dim(Ap) ≥ dim(Bq) as desired. □

Lemma 15.44.3.0AH0 If A → B is an étale ring map and q is a prime of B lying over
p ⊂ A, then Ap is regular if and only if Bq is regular.
Proof. By Lemma 15.44.1 we may assume both Ap and Bq are Noetherian in order
to prove the equivalence. Let x1, . . . , xt ∈ pAp be a minimal set of generators. As
Ap → Bq is faithfully flat we see that the images y1, . . . , yt in Bq form a minimal
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system of generators for pBq = qBq (Algebra, Lemma 10.143.5). Regularity of Ap

by definition means t = dim(Ap) and similarly for Bq. Hence the lemma follows
from the equality dim(Ap) = dim(Bq) of Lemma 15.44.2. □

Lemma 15.44.4.0AP2 If A→ B is an étale ring map and A is a Dedekind domain, then
B is a finite product of Dedekind domains. In particular, the localizations Bq for
q ⊂ B maximal are discrete valuation rings.

Proof. The statement on the local rings follows from Lemmas 15.44.2 and 15.44.3
and Algebra, Lemma 10.119.7. It follows that B is a Noetherian normal ring of
dimension 1. By Algebra, Lemma 10.37.16 we conclude that B is a finite product of
normal domains of dimension 1. These are Dedekind domains by Algebra, Lemma
10.120.17. □

15.45. Permanence of properties under henselization

07QL Given a local ring R we denote Rh, resp. Rsh the henselization, resp. strict henseliza-
tion of R, see Algebra, Definition 10.155.3. Many of the properties of R are reflected
in Rh and Rsh as we will show in this section.

Lemma 15.45.1.07QM Let (R,m, κ) be a local ring. Then we have the following
(1) R→ Rh → Rsh are faithfully flat ring maps,
(2) mRh = mh and mRsh = mhRsh = msh,
(3) R/mn = Rh/mnRh for all n,
(4) there exist elements xi ∈ Rsh such that Rsh/mnRsh is a free R/mn-module

on xi mod mnRsh.

Proof. By construction Rh is a colimit of étale R-algebras, see Algebra, Lemma
10.155.1. Since étale ring maps are flat (Algebra, Lemma 10.143.3) we see that
Rh is flat over R by Algebra, Lemma 10.39.3. As a flat local ring homomorphism
is faithfully flat (Algebra, Lemma 10.39.17) we see that R → Rh is faithfully flat.
The ring map Rh → Rsh is a colimit of finite étale ring maps, see proof of Algebra,
Lemma 10.155.2. Hence the same arguments as above show that Rh → Rsh is
faithfully flat.
Part (2) follows from Algebra, Lemmas 10.155.1 and 10.155.2. Part (3) follows
from Algebra, Lemma 10.101.1 because R/m → Rh/mRh is an isomorphism and
R/mn → Rh/mnRh is flat as a base change of the flat ring map R→ Rh (Algebra,
Lemma 10.39.7). Let κsep be the residue field of Rsh (it is a separable algebraic
closure of κ). Choose xi ∈ Rsh mapping to a basis of κsep as a κ-vector space. Then
(4) follows from Algebra, Lemma 10.101.1 in exactly the same way as above. □

Lemma 15.45.2.07QN Let (R,m, κ) be a local ring. Then
(1) R→ Rh, Rh → Rsh, and R→ Rsh are formally étale,
(2) R→ Rh, Rh → Rsh, resp. R→ Rsh are formally smooth in the mh, msh,

resp. msh-topology.

Proof. Part (1) follows from the fact that Rh and Rsh are directed colimits of étale
algebras (by construction), that étale algebras are formally étale (Algebra, Lemma
10.150.2), and that colimits of formally étale algebras are formally étale (Algebra,
Lemma 10.150.3). Part (2) follows from the fact that a formally étale ring map is
formally smooth and Lemma 15.37.2. □
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Lemma 15.45.3.06LJ [DG67, IV,
Theorem 18.6.6 and
Proposition 18.8.8]

Let R be a local ring. The following are equivalent
(1) R is Noetherian,
(2) Rh is Noetherian, and
(3) Rsh is Noetherian.

In this case we have
(a) (Rh)∧ and (Rsh)∧ are Noetherian complete local rings,
(b) R∧ → (Rh)∧ is an isomorphism,
(c) Rh → (Rh)∧ and Rsh → (Rsh)∧ are flat,
(d) R∧ → (Rsh)∧ is formally smooth in the m(Rsh)∧-adic topology,
(e) (R∧)sh = R∧ ⊗Rh Rsh, and
(f) ((R∧)sh)∧ = (Rsh)∧.

Proof. Since R→ Rh → Rsh are faithfully flat (Lemma 15.45.1), we see that Rh or
Rsh being Noetherian implies that R is Noetherian, see Algebra, Lemma 10.164.1.
In the rest of the proof we assume R is Noetherian.
As m ⊂ R is finitely generated it follows that mh = mRh and msh = mRsh are
finitely generated, see Lemma 15.45.1. Hence (Rh)∧ and (Rsh)∧ are Noetherian by
Algebra, Lemma 10.160.3. This proves (a).
Note that (b) is immediate from Lemma 15.45.1. In particular we see that (Rh)∧

is flat over R, see Algebra, Lemma 10.97.3.
Next, we show that Rh → (Rh)∧ is flat. Write Rh = colimiRi as a directed colimit
of localizations of étale R-algebras. By Algebra, Lemma 10.39.6 if (Rh)∧ is flat over
each Ri, then Rh → (Rh)∧ is flat. Note that Rh = Rhi (by construction). Hence
R∧
i = (Rh)∧ by part (b) is flat over Ri as desired. To finish the proof of (c) we show

that Rsh → (Rsh)∧ is flat. To do this, by a limit argument as above, it suffices
to show that (Rsh)∧ is flat over R. Note that it follows from Lemma 15.45.1 that
(Rsh)∧ is the completion of a free R-module. By Lemma 15.27.2 we see this is flat
over R as desired. This finishes the proof of (c).
At this point we know (c) is true and that (Rh)∧ and (Rsh)∧ are Noetherian. It
follows from Algebra, Lemma 10.164.1 that Rh and Rsh are Noetherian.
Part (d) follows from Lemma 15.45.2 and Lemma 15.37.4.
Part (e) follows from Algebra, Lemma 10.155.13 and the fact that R∧ is henselian
by Algebra, Lemma 10.153.9.
Proof of (f). Using (e) there is a map Rsh → (R∧)sh which induces a map (Rsh)∧ →
((R∧)sh)∧ upon completion. Using (e) there is a map R∧ → (Rsh)∧. Since (Rsh)∧ is
strictly henselian (see above) this map induces a map (R∧)sh → (Rsh)∧ by Algebra,
Lemma 10.155.10. Completing we obtain a map ((R∧)sh)∧ → (Rsh)∧. We omit
the verification that these two maps are mutually inverse. □

Lemma 15.45.4.06DH Let R be a local ring. The following are equivalent: R is reduced,
the henselization Rh of R is reduced, and the strict henselization Rsh of R is
reduced.

Proof. The ring maps R → Rh → Rsh are faithfully flat. Hence one direction of
the implications follows from Algebra, Lemma 10.164.2. Conversely, assume R is
reduced. Since Rh and Rsh are filtered colimits of étale, hence smooth R-algebras,
the result follows from Algebra, Lemma 10.163.7. □
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Lemma 15.45.5.0ASE Let R be a local ring. Let nil(R) denote the ideal of nilpotent
elements of R. Then nil(R)Rh = nil(Rh) and nil(R)Rsh = nil(Rsh).

Proof. Note that nil(R) is the biggest ideal consisting of nilpotent elements such
that the quotient R/nil(R) is reduced. Note that nil(R)Rh consists of nilpotent
elements by Algebra, Lemma 10.32.3. Also, note that Rh/nil(R)Rh is the henseliza-
tion of R/nil(R) by Algebra, Lemma 10.156.2. Hence Rh/nil(R)Rh is reduced by
Lemma 15.45.4. We conclude that nil(R)Rh = nil(Rh) as desired. Similarly for
the strict henselization but using Algebra, Lemma 10.156.4. □

Lemma 15.45.6.06DI Let R be a local ring. The following are equivalent: R is a normal
domain, the henselization Rh of R is a normal domain, and the strict henselization
Rsh of R is a normal domain.

Proof. A preliminary remark is that a local ring is normal if and only if it is a
normal domain (see Algebra, Definition 10.37.11). The ring maps R→ Rh → Rsh

are faithfully flat. Hence one direction of the implications follows from Algebra,
Lemma 10.164.3. Conversely, assume R is normal. Since Rh and Rsh are filtered
colimits of étale hence smooth R-algebras, the result follows from Algebra, Lemmas
10.163.9 and 10.37.17. □

Lemma 15.45.7.06LK Given any local ring R we have dim(R) = dim(Rh) = dim(Rsh).

Proof. Since R → Rsh is faithfully flat (Lemma 15.45.1) we see that dim(Rsh) ≥
dim(R) by going down, see Algebra, Lemma 10.112.1. For the converse, we write
Rsh = colimRi as a directed colimit of local rings Ri each of which is a localization
of an étale R-algebra. Now if q0 ⊂ q1 ⊂ . . . ⊂ qn is a chain of prime ideals in Rsh,
then for some sufficiently large i the sequence

Ri ∩ q0 ⊂ Ri ∩ q1 ⊂ . . . ⊂ Ri ∩ qn

is a chain of primes in Ri. Thus we see that dim(Rsh) ≤ supi dim(Ri). But by the
result of Lemma 15.44.2 we have dim(Ri) = dim(R) for each i and we win. □

Lemma 15.45.8.06LL Given a Noetherian local ring R we have depth(R) = depth(Rh) =
depth(Rsh).

Proof. By Lemma 15.45.3 we know that Rh and Rsh are Noetherian. Hence the
lemma follows from Algebra, Lemma 10.163.2. □

Lemma 15.45.9.06LM Let R be a Noetherian local ring. The following are equivalent:
R is Cohen-Macaulay, the henselization Rh of R is Cohen-Macaulay, and the strict
henselization Rsh of R is Cohen-Macaulay.

Proof. By Lemma 15.45.3 we know that Rh and Rsh are Noetherian, hence the
lemma makes sense. Since we have depth(R) = depth(Rh) = depth(Rsh) and
dim(R) = dim(Rh) = dim(Rsh) by Lemmas 15.45.8 and 15.45.7 we conclude. □

Lemma 15.45.10.06LN Let R be a Noetherian local ring. The following are equivalent:
R is a regular local ring, the henselization Rh of R is a regular local ring, and the
strict henselization Rsh of R is a regular local ring.

Proof. By Lemma 15.45.3 we know that Rh and Rsh are Noetherian, hence the
lemma makes sense. Let m be the maximal ideal of R. Let x1, . . . , xt ∈ m be
a minimal system of generators of m, i.e., such that the images in m/m2 form a
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basis over κ = R/m. Because R → Rh and R → Rsh are faithfully flat, it follows
that the images xh1 , . . . , xht in Rh, resp. xsh1 , . . . , xsht in Rsh are a minimal system
of generators for mh = mRh, resp. msh = mRsh. Regularity of R by definition
means t = dim(R) and similarly for Rh and Rsh. Hence the lemma follows from
the equality of dimensions dim(R) = dim(Rh) = dim(Rsh) of Lemma 15.45.7 □

Lemma 15.45.11.0AP3 Let R be a Noetherian local ring. Then R is a discrete valuation
ring if and only if Rh is a discrete valuation ring if and only if Rsh is a discrete
valuation ring.

Proof. This follows from Lemmas 15.45.7 and 15.45.10 and Algebra, Lemma 10.119.7.
□

Lemma 15.45.12.0AH1 Let A be a ring. Let B be a filtered colimit of étale A-algebras.
Let p be a prime of A. If B is Noetherian, then there are finitely many primes
q1, . . . , qr lying over p, we have B⊗Aκ(p) =

∏
κ(qi), and each of the field extensions

κ(qi)/κ(p) is separable algebraic.

Proof. Write B as a filtered colimit B = colimBi with A→ Bi étale. Then on the
one hand B ⊗A κ(p) = colimBi ⊗A κ(p) is a filtered colimit of étale κ(p)-algebras,
and on the other hand it is Noetherian. An étale κ(p)-algebra is a finite product
of finite separable field extensions (Algebra, Lemma 10.143.4). Hence there are no
nontrivial specializations between the primes (which are all maximal and minimal
primes) of the algebras Bi⊗A κ(p) and hence there are no nontrivial specializations
between the primes of B⊗A κ(p). Thus B⊗A κ(p) is reduced and has finitely many
primes which all minimal. Thus it is a finite product of fields (use Algebra, Lemma
10.25.4 or Algebra, Proposition 10.60.7). Each of these fields is a colimit of finite
separable extensions and hence the final statement of the lemma follows. □

Lemma 15.45.13.07QQ Let R be a Noetherian local ring. Let p ⊂ R be a prime. Then

Rh ⊗R κ(p) =
∏

i=1,...,t
κ(qi) resp. Rsh ⊗R κ(p) =

∏
i=1,...,s

κ(ri)

where q1, . . . , qt, resp. r1, . . . , rs are the prime of Rh, resp. Rsh lying over p. More-
over, the field extensions κ(qi)/κ(p) resp. κ(ri)/κ(p) are separable algebraic.

Proof. This can be deduced from the more general Lemma 15.45.12 using that the
henselization and strict henselization are Noetherian (as we’ve seen above). But we
also give a direct proof as follows.
We will use without further mention the results of Lemmas 15.45.1 and 15.45.3.
Note that Rh/pRh, resp. Rsh/pRsh is the henselization, resp. strict henselization of
R/p, see Algebra, Lemma 10.156.2 resp. Algebra, Lemma 10.156.4. Hence we may
replace R by R/p and assume that R is a Noetherian local domain and that p = (0).
Since Rh, resp. Rsh is Noetherian, it has finitely many minimal primes q1, . . . , qt,
resp. r1, . . . , rs. Since R → Rh, resp. R → Rsh is flat these are exactly the primes
lying over p = (0) (by going down). Finally, as R is a domain, we see that Rh, resp.
Rsh is reduced, see Lemma 15.45.4. Thus we see that Rh⊗R κ(p) resp. Rsh⊗R κ(p)
is a reduced Noetherian ring with finitely many primes, all of which are minimal
(and hence maximal). Thus these rings are Artinian and are products of their
localizations at maximal ideals, each necessarily a field (see Algebra, Proposition
10.60.7 and Algebra, Lemma 10.25.1).
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The final statement follows from the fact that R→ Rh, resp. R→ Rsh is a colimit
of étale ring maps and hence the induced residue field extensions are colimits of
finite separable extensions, see Algebra, Lemma 10.143.5. □

15.46. Field extensions, revisited

07P0 In this section we study some peculiarities of field extensions in characteristic p > 0.

Definition 15.46.1.07P1 Let p be a prime number. Let k → K be an extension of fields
of characteristic p. Denote kKp the compositum of k and Kp in K.

(1) A subset {xi} ⊂ K is called p-independent over k if the elements xE =∏
xeii where 0 ≤ ei < p are linearly independent over kKp.

(2) A subset {xi} of K is called a p-basis of K over k if the elements xE form
a basis of K over kKp.

This is related to the notion of a p-basis of a Fp-algebra which we will discuss later
(insert future reference here).

Lemma 15.46.2.07P2 Let K/k be a field extension. Assume k has characteristic p > 0.
Let {xi} be a subset of K. The following are equivalent

(1) the elements {xi} are p-independent over k, and
(2) the elements dxi are K-linearly independent in ΩK/k.

Any p-independent collection can be extended to a p-basis of K over k. In partic-
ular, the field K has a p-basis over k. Moreover, the following are equivalent:

(a) {xi} is a p-basis of K over k, and
(b) dxi is a basis of the K-vector space ΩK/k.

Proof. Assume (2) and suppose that
∑
aEx

E = 0 is a linear relation with aE ∈
kKp. Let θi : K → K be a k-derivation such that θi(xj) = δij (Kronecker delta).
Note that any k-derivation of K annihilates kKp. Applying θi to the given relation
we obtain new relations∑

E,ei>0
eiaEx

e1
1 . . . xei−1

i . . . xenn = 0

Hence if we pick
∑
aEx

E as the relation with minimal total degree |E| =
∑
ei for

some aE ̸= 0, then we get a contradiction. Hence (1) holds.
If {xi} is a p-basis for K over k, then K ∼= kKp[Xi]/(Xp

i − x
p
i ). Hence we see that

dxi forms a basis for ΩK/k over K. Thus (a) implies (b).
Let {xi} be a p-independent subset of K over k. An application of Zorn’s lemma
shows that we can enlarge this to a maximal p-independent subset of K over k. We
claim that any maximal p-independent subset {xi} of K is a p-basis of K over k.
The claim will imply that (1) implies (2) and establish the existence of p-bases. To
prove the claim let L be the subfield of K generated by kKp and the xi. We have
to show that L = K. If x ∈ K but x ̸∈ L, then xp ∈ L and L(x) ∼= L[z]/(zp − x).
Hence {xi} ∪ {x} is p-independent over k, a contradiction.
Finally, we have to show that (b) implies (a). By the equivalence of (1) and (2) we
see that {xi} is a maximal p-independent subset of K over k. Hence by the claim
above it is a p-basis. □

Lemma 15.46.3.07P3 Let K/k be a field extension. Let {Kα}α∈A be a collection of
subfields of K with the following properties
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(1) k ⊂ Kα for all α ∈ A,
(2) k =

⋂
α∈AKα,

(3) for α, α′ ∈ A there exists an α′′ ∈ A such that Kα′′ ⊂ Kα ∩Kα′ .
Then for n ≥ 1 and V ⊂ K⊕n a K-vector space we have V ∩ k⊕n ̸= 0 if and only
if V ∩K⊕n

α ̸= 0 for all α ∈ A.

Proof. By induction on n. The case n = 1 follows from the assumptions. Assume
the result proven for subspaces of K⊕n−1. Assume that V ⊂ K⊕n has nonzero
intersection with K⊕n

α for all α ∈ A. If V ∩ 0 ⊕ k⊕n−1 is nonzero then we win.
Hence we may assume this is not the case. By induction hypothesis we can find an
α such that V ∩ 0⊕K⊕n−1

α is zero. Let v = (x1, . . . , xn) ∈ V ∩K⊕n
α be a nonzero

element. By our choice of α we see that x1 is not zero. Replace v by x−1
1 v so that

v = (1, x2, . . . , xn). Note that if v′ = (x′
1, . . . , x

′
n) ∈ V ∩Kα, then v′ − x′

1v = 0 by
our choice of α. Hence we see that V ∩ K⊕n

α = Kαv. If we choose some α′ such
that Kα′ ⊂ Kα, then we see that necessarily v ∈ V ∩K⊕n

α′ (by the same arguments
applied to α′). Hence

x2, . . . , xn ∈
⋂

α′∈A,Kα′ ⊂Kα
Kα′

which equals k by (2) and (3). □

Lemma 15.46.4.07P4 Let K be a field of characteristic p. Let {Kα}α∈A be a collection
of subfields of K with the following properties

(1) Kp ⊂ Kα for all α ∈ A,
(2) Kp =

⋂
α∈AKα,

(3) for α, α′ ∈ A there exists an α′′ ∈ A such that Kα′′ ⊂ Kα ∩Kα′ .
Then

(1) the intersection of the kernels of the maps ΩK/Fp → ΩK/Kα is zero,
(2) for any finite extension L/K we have Lp =

⋂
α∈A L

pKα.

Proof. Proof of (1). Choose a p-basis {xi} for K over Fp. Suppose that η =∑
i∈I′ yidxi maps to zero in ΩK/Kα for every α ∈ A. Here the index set I ′ is finite.

By Lemma 15.46.2 this means that for every α there exists a relation∑
E
aE,αx

E , aE,α ∈ Kα

where E runs over multi-indices E = (ei)i∈I′ with 0 ≤ ei < p. On the other hand,
Lemma 15.46.2 guarantees there is no such relation

∑
aEx

E = 0 with aE ∈ Kp.
This is a contradiction by Lemma 15.46.3.
Proof of (2). Suppose that we have a tower L/M/K of finite extensions of fields.
Set Mα = MpKα and Lα = LpKα = LpMα. Then we can first prove that Mp =⋂
α∈AMα, and after that prove that Lp =

⋂
α∈A Lα. Hence it suffices to prove

(2) for primitive field extensions having no nontrivial subfields. First, assume that
L = K(θ) is separable over K. Then L is generated by θp over K, hence we may
assume that θ ∈ Lp. In this case we see that

Lp = Kp ⊕Kpθ ⊕ . . .Kpθd−1 and LpKα = Kα ⊕Kαθ ⊕ . . .Kαθ
d−1

where d = [L : K]. Thus the conclusion is clear in this case. The other case is
where L = K(θ) with θp = t ∈ K, t ̸∈ Kp. In this case we have

Lp = Kp ⊕Kpt⊕ . . .Kptp−1 and LpKα = Kα ⊕Kαt⊕ . . .Kαt
p−1
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Again the result is clear. □

Lemma 15.46.5.07P5 Let k be a field of characteristic p > 0. Let n,m ≥ 0. Let K be
the fraction field of k[[x1, . . . , xn]][y1, . . . , ym]. As k′ ranges through all subfields
k/k′/kp with [k : k′] <∞ the subfields

fraction field of k′[[xp1, . . . , xpn]][yp1 , . . . , ypm] ⊂ K

form a family of subfields as in Lemma 15.46.4. Moreover, each of the ring exten-
sions k′[[xp1, . . . , xpn]][yp1 , . . . , ypm] ⊂ k[[x1, . . . , xn]][y1, . . . , ym] is finite.

Proof. Write A = k[[x1, . . . , xn]][y1, . . . , ym] and A′ = k′[[xp1, . . . , xpn]][yp1 , . . . , ypm].
We also denote K ′ the fraction field of A′. The ring extension k′[[xp1, . . . , x

p
d]] ⊂

k[[x1, . . . , xd]] is finite by Algebra, Lemma 10.97.7 which implies that A′ → A is
finite. For f ∈ A we see that fp ∈ A′. Hence Kp ⊂ K ′. Any element of K ′ can be
written as a/bp with a ∈ A′ and b ∈ A nonzero. Suppose that f/gp ∈ K, f, g ∈ A,
g ̸= 0 is contained in K ′ for every choice of k′. Fix a choice of k′ for the moment.
By the above we see f/gp = a/bp for some a ∈ A′ and some nonzero b ∈ A. Hence
bpf ∈ A′. For any A′-derivation D : A → A we see that 0 = D(bpf) = bpD(f)
hence D(f) = 0 as A is a domain. Taking D = ∂xi and D = ∂yj we conclude
that f ∈ k[[xp1, . . . , xpn]][yp1 , . . . , y

p
d]. Applying a k′-derivation θ : k → k we similarly

conclude that all coefficients of f are in k′, i.e., f ∈ A′. Since it is clear that
Ap =

⋂
k′ A′ where k′ ranges over all subfields as in the lemma we win. □

15.47. The singular locus

07P6 Let R be a Noetherian ring. The regular locus Reg(X) of X = Spec(R) is the
set of primes p such that Rp is a regular local ring. The singular locus Sing(X)
of X = Spec(R) is the complement X \ Reg(X), i.e., the set of primes p such
that Rp is not a regular local ring. By the discussion preceding Algebra, Definition
10.110.7 we see that Reg(X) is stable under generalization. In this section we study
conditions that guarantee that Reg(X) is open.

Definition 15.47.1.07P7 [Mat70a, (32.B)]Let R be a Noetherian ring. Let X = Spec(R).
(1) We say R is J-0 if Reg(X) contains a nonempty open.
(2) We say R is J-1 if Reg(X) is open.
(3) We say R is J-2 if any finite type R-algebra is J-1.

The ring Q[x]/(x2) does not satisfy J-0, but it does satisfy J-1. On the other
hand, J-1 implies J-0 for Noetherian domains and more generally nonzero reduced
Noetherian rings as such a ring is regular at the minimal primes. Here is a charac-
terization of the J-1 property.

Lemma 15.47.2.07P8 Let R be a Noetherian ring. Let X = Spec(R). The ring R is
J-1 if and only if V (p) ∩ Reg(X) contains a nonempty open subset of V (p) for all
p ∈ Reg(X).

Proof. This follows from Topology, Lemma 5.16.5 and the fact that Reg(X) is
stable under generalization by Algebra, Lemma 10.110.6. □

Lemma 15.47.3.07P9 Let R be a Noetherian ring. Let X = Spec(R). Assume that for
all primes p ⊂ R the ring R/p is J-0. Then R is J-1.
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Proof. We will show that the criterion of Lemma 15.47.2 applies. Let p ∈ Reg(X)
be a prime of height r. Pick f1, . . . , fr ∈ p which map to generators of pRp. Since
p ∈ Reg(X) we see that f1, . . . , fr maps to a regular sequence in Rp, see Algebra,
Lemma 10.106.3. Thus by Algebra, Lemma 10.68.6 we see that after replacing R by
Rg for some g ∈ R, g ̸∈ p the sequence f1, . . . , fr is a regular sequence in R. After
another replacement we may also assume f1, . . . , fr generate p. Next, let p ⊂ q
be a prime ideal such that (R/p)q is a regular local ring. By the assumption of
the lemma there exists a non-empty open subset of V (p) consisting of such primes,
hence it suffices to prove Rq is regular. Note that f1, . . . , fr is a regular sequence in
Rq such that Rq/(f1, . . . , fr)Rq is regular. Hence Rq is regular by Algebra, Lemma
10.106.7. □

Lemma 15.47.4.07PA Let R→ S be a ring map. Assume that
(1) R is a Noetherian domain,
(2) R→ S is injective and of finite type, and
(3) S is a domain and J-0.

Then R is J-0.

Proof. After replacing S by Sg for some nonzero g ∈ S we may assume that S is a
regular ring. By generic flatness we may assume that also R→ S is faithfully flat,
see Algebra, Lemma 10.118.1. Then R is regular by Algebra, Lemma 10.164.4. □

Lemma 15.47.5.07PB Let R→ S be a ring map. Assume that
(1) R is a Noetherian domain and J-0,
(2) R→ S is injective and of finite type, and
(3) S is a domain, and
(4) the induced extension of fraction fields is separable.

Then S is J-0.

Proof. We may replace R by a principal localization and assume R is a regular
ring. By Algebra, Lemma 10.140.9 the ring map R → S is smooth at (0). Hence
after replacing S by a principal localization we may assume that S is smooth over
R. Then S is regular too, see Algebra, Lemma 10.163.10. □

Lemma 15.47.6.07PC Let R be a Noetherian ring. The following are equivalent
(1) R is J-2,
(2) every finite type R-algebra which is a domain is J-0,
(3) every finite R-algebra is J-1,
(4) for every prime p and every finite purely inseparable extension L/κ(p)

there exists a finite R-algebra R′ which is a domain, which is J-0, and
whose field of fractions is L.

Proof. It is clear that we have the implications (1) ⇒ (2) and (2) ⇒ (4). Recall
that a domain which is J-1 is J-0. Hence we also have the implications (1) ⇒ (3)
and (3) ⇒ (4).

Let R → S be a finite type ring map and let’s try to show S is J-1. By Lemma
15.47.3 it suffices to prove that S/q is J-0 for every prime q of S. In this way we
see (2) ⇒ (1).
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Assume (4). We will show that (2) holds which will finish the proof. Let R → S
be a finite type ring map with S a domain. Let p = Ker(R → S). Let K be the
fraction field of S. There exists a diagram of fields

K // K ′

κ(p)

OO

// L

OO

where the horizontal arrows are finite purely inseparable field extensions and where
K ′/L is separable, see Algebra, Lemma 10.42.4. Choose R′ ⊂ L as in (4) and let
S′ be the image of the map S ⊗R R′ → K ′. Then S′ is a domain whose fraction
field is K ′, hence S′ is J-0 by Lemma 15.47.5 and our choice of R′. Then we apply
Lemma 15.47.4 to see that S is J-0 as desired. □

15.48. Regularity and derivations

07PD Let R→ S be a ring map. Let D : R→ R be a derivation. We say that D extends
to S if there exists a derivation D′ : S → S such that

S
D′
// S

R

OO

D // R

OO

is commutative.

Lemma 15.48.1.07PE Let R be a ring. Let D : R→ R be a derivation.
(1) For any ideal I ⊂ R the derivation D extends canonically to a derivation

D∧ : R∧ → R∧ on the I-adic completion.
(2) For any multiplicative subset S ⊂ R the derivation D extends uniquely to

the localization S−1R of R.
If R ⊂ R′ is a finite type extension of rings such that Rg ∼= R′

g for some g ∈ R

which is a nonzerodivisor in R′, then gND extends to R′ for some N ≥ 0.

Proof. Proof of (1). For n ≥ 2 we have D(In) ⊂ In−1 by the Leibniz rule. Hence
D induces maps Dn : R/In → R/In−1. Taking the limit we obtain D∧. We omit
the verification that D∧ is a derivation.
Proof of (2). To extend D to S−1R just set D(r/s) = D(r)/s−rD(s)/s2 and check
the axioms.
Proof of the final statement. Let x1, . . . , xn ∈ R′ be generators of R′ over R. Choose
an N such that gNxi ∈ R. Consider gN+1D. By (2) this extends to Rg. Moreover,
by the Leibniz rule and our construction of the extension above we have

gN+1D(xi) = gN+1D(g−NgNxi) = −NgNxiD(g) + gD(gNxi)
and both terms are in R. This implies that

gN+1D(xe1
1 . . . xenn ) =

∑
eix

e1
1 . . . xei−1

i . . . xenn g
N+1D(xi)

is an element of R′. Hence every element of R′ (which can be written as a sum
of monomials in the xi with coefficients in R) is mapped to an element of R′ by
gN+1D and we win. □
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Lemma 15.48.2.07PF Let R be a regular ring. Let f ∈ R. Assume there exists a
derivation D : R→ R such that D(f) is a unit of R/(f). Then R/(f) is regular.

Proof. It suffices to prove this when R is a local ring with maximal ideal m and
residue field κ. In this case it suffices to prove that f ̸∈ m2, see Algebra, Lemma
10.106.3. However, if f ∈ m2 then D(f) ∈ m by the Leibniz rule, a contradiction.

□

Lemma 15.48.3.0GEE Let (R,m, κ) be a regular local ring. Let m ≥ 1. Let f1, . . . , fm ∈
m. Assume there exist derivationsD1, . . . , Dm : R→ R such that det1≤i,j≤m(Di(fj))
is a unit of R. Then R/(f1, . . . , fm) is regular and f1, . . . , fm is a regular sequence.

Proof. It suffices to prove that f1, . . . , fm are κ-linearly independent in m/m2, see
Algebra, Lemma 10.106.3. However, if there is a nontrivial linear relation the we
get

∑
aifi ∈ m2 for some ai ∈ R but not all ai ∈ m. Observe that Di(m2) ⊂ m and

Di(ajfj) ≡ ajDi(fj) mod m by the Leibniz rule for derivations. Hence this would
imply ∑

ajDi(fj) ∈ m

which would contradict the assumption on the determinant. □

Lemma 15.48.4.07PG Let R be a regular ring. Let f ∈ R. Assume there exists a
derivation D : R→ R such that D(f) is a unit of R. Then R[z]/(zn− f) is regular
for any integer n ≥ 1. More generally, R[z]/(p(z)− f) is regular for any p ∈ Z[z].

Proof. By Algebra, Lemma 10.163.10 we see that R[z] is a regular ring. Apply
Lemma 15.48.2 to the extension of D to R[z] which maps z to zero. This works
because D annihilates any polynomial with integer coefficients and sends f to a
unit. □

Lemma 15.48.5.07PH Let p be a prime number. Let B be a domain with p = 0 in B.
Let f ∈ B be an element which is not a pth power in the fraction field of B. If B is
of finite type over a Noetherian complete local ring, then there exists a derivation
D : B → B such that D(f) is not zero.

Proof. Let R be a Noetherian complete local ring such that there exists a finite type
ring map R → B. Of course we may replace R by its image in B, hence we may
assume R is a domain of characteristic p > 0 (as well as Noetherian complete local).
By Algebra, Lemma 10.160.11 we can write R as a finite extension of k[[x1, . . . , xn]]
for some field k and integer n. Hence we may replace R by k[[x1, . . . , xn]]. Next,
we use Algebra, Lemma 10.115.7 to factor R→ B as

R ⊂ R[y1, . . . , yd] ⊂ B′ ⊂ B
with B′ finite over R[y1, . . . , yd] and B′

g
∼= Bg for some nonzero g ∈ R. Note that

f ′ = gpNf ∈ B′ for some large integer N . It is clear that f ′ is not a pth power in the
fraction field of B′. If we can find a derivation D′ : B′ → B′ with D′(f ′) ̸= 0, then
Lemma 15.48.1 guarantees that D = gMD′ extends to B for some M > 0. Then
D(f) = gND′(f) = gMD′(g−pNf ′) = gM−pND′(f ′) is nonzero. Thus it suffices to
prove the lemma in case B is a finite extension of A = k[[x1, . . . , xn]][y1, . . . , ym].
Assume B is a finite extension of A = k[[x1, . . . , xn]][y1, . . . , ym]. Denote L the
fraction field of B. Note that df is not zero in ΩL/Fp , see Algebra, Lemma 10.158.2.
We apply Lemma 15.46.5 to find a subfield k′ ⊂ k of finite index such that with
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A′ = k′[[xp1, . . . , xpn]][yp1 , . . . , ypm] the element df does not map to zero in ΩL/K′

where K ′ is the fraction field of A′. Thus we can choose a K ′-derivation D′ : L→ L
with D′(f) ̸= 0. Since A′ ⊂ A and A ⊂ B are finite by construction we see that
A′ ⊂ B is finite. Choose b1, . . . , bt ∈ B which generate B as an A′-module. Then
D′(bi) = fi/gi for some fi, gi ∈ B with gi ̸= 0. Setting D = g1 . . . gtD

′ we win. □

Lemma 15.48.6.07PI Let A be a Noetherian complete local domain. Then A is J-0.

Proof. By Algebra, Lemma 10.160.11 we can find a regular subring A0 ⊂ A with A
finite over A0. The induced extension K/K0 of fraction fields is finite. If K/K0 is
separable, then we are done by Lemma 15.47.5. If not, then A0 and A have char-
acteristic p > 0. For any subextension K/M/K0 there exists a finite subextension
A0 ⊂ B ⊂ A whose fraction field is M . Hence, arguing by induction on [K : K0]
we may assume there exists A0 ⊂ B ⊂ A such that B is J-0 and K/M has no
nontrivial subextensions. In this case, if K/M is separable, then we see that A is
J-0 by Lemma 15.47.5. If not, then K = M [z]/(zp−b1/b2) for some b1, b2 ∈ B with
b2 ̸= 0 and b1/b2 not a pth power in M . Choose a ∈ A nonzero such that az ∈ A.
After replacing z by b2a

pz we obtain K = M [z]/(zp− b) with z ∈ A and b ∈ B not
a pth power in M . By Lemma 15.48.5 we can find a derivation D : B → B with
D(b) ̸= 0. Applying Lemma 15.48.4 we see that Ap is regular for any prime p of A
lying over a regular prime of B and not containing D(b). As B is J-0 we conclude
A is too. □

Proposition 15.48.7.07PJ The following types of rings are J-2:
(1) fields,
(2) Noetherian complete local rings,
(3) Z,
(4) Noetherian local rings of dimension 1,
(5) Nagata rings of dimension 1,
(6) Dedekind domains with fraction field of characteristic zero,
(7) finite type ring extensions of any of the above.

Proof. For cases (1), (3), (5), and (6) this is proved by checking condition (4) of
Lemma 15.47.6. We will only do this in case R is a Nagata ring of dimension 1.
Let p ⊂ R be a prime ideal and let L/κ(p) be a finite purely inseparable extension.
If p ⊂ R is a maximal ideal, then R→ L is finite and L is a regular ring and we’ve
checked the condition. If p ⊂ R is a minimal prime, then the Nagata condition
insures that the integral closure R′ ⊂ L of R in L is finite over R. Then R′ is a
normal domain of dimension 1 (Algebra, Lemma 10.112.3) hence regular (Algebra,
Lemma 10.157.4) and we’ve checked the condition in this case as well.

For case (2), we will use condition (3) of Lemma 15.47.6. Let R be a Noetherian
complete local ring. Note that if R→ R′ is finite, then R′ is a product of Noetherian
complete local rings, see Algebra, Lemma 10.160.2. Hence it suffices to prove that
a Noetherian complete local ring which is a domain is J-0, which is Lemma 15.48.6.

For case (4), we also use condition (3) of Lemma 15.47.6. Namely, if R is a local
Noetherian ring of dimension 1 and R→ R′ is finite, then Spec(R′) is finite. Since
the regular locus is stable under generalization, we see that R′ is J-1. □
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15.49. Formal smoothness and regularity

07PK The title of this section refers to Proposition 15.49.2.

Lemma 15.49.1.07PL Let A → B be a local homomorphism of Noetherian local rings.
Let D : A→ A be a derivation. Assume that B is complete and A→ B is formally
smooth in the mB-adic topology. Then there exists an extension D′ : B → B of D.

Proof. Denote B[ϵ] = B[x]/(x2) the ring of dual numbers over B. Consider the
ring map ψ : A→ B[ϵ], a 7→ a+ ϵD(a). Consider the commutative diagram

B
1
// B

A

OO

ψ // B[ϵ]

OO

By Lemma 15.37.5 and the assumption of formal smoothness of B/A we find a map
φ : B → B[ϵ] fitting into the diagram. Write φ(b) = b+ ϵD′(b). Then D′ : B → B
is the desired extension. □

Proposition 15.49.2.07PM Let A→ B be a local homomorphism of Noetherian complete
local rings. Let k be the residue field of A and B = B ⊗A k the special fibre. The
following are equivalent

(1) A→ B is regular,
(2) A→ B is flat and B is geometrically regular over k,
(3) A → B is flat and k → B is formally smooth in the mB-adic topology,

and
(4) A→ B is formally smooth in the mB-adic topology.

Proof. We have seen the equivalence of (2), (3), and (4) in Proposition 15.40.5. It
is clear that (1) implies (2). Thus we assume the equivalent conditions (2), (3), and
(4) hold and we prove (1).

Let p be a prime of A. We will show that B ⊗A κ(p) is geometrically regular over
κ(p). By Lemma 15.37.8 we may replace A by A/p and B by B/pB. Thus we may
assume that A is a domain and that p = (0).

Choose A0 ⊂ A as in Algebra, Lemma 10.160.11. We will use all the properties
stated in that lemma without further mention. As A0 → A induces an isomorphism
on residue fields, and as B/mAB is geometrically regular over A/mA we can find a
diagram

C // B

A0 //

OO

A

OO

with A0 → C formally smooth in the mC-adic topology such that B = C ⊗A0 A,
see Remark 15.40.7. (Completion in the tensor product is not needed as A0 → A
is finite, see Algebra, Lemma 10.97.1.) Hence it suffices to show that C ⊗A0 K0 is
a geometrically regular algebra over the fraction field K0 of A0.

The upshot of the preceding paragraph is that we may assume thatA = k[[x1, . . . , xn]]
where k is a field or A = Λ[[x1, . . . , xn]] where Λ is a Cohen ring. In this case B is
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a regular ring, see Algebra, Lemma 10.112.8. Hence B ⊗A K is a regular ring too
(where K is the fraction field of A) and we win if the characteristic of K is zero.

Thus we are left with the case where A = k[[x1, . . . , xn]] and k is a field of charac-
teristic p > 0. Let L/K be a finite purely inseparable field extension. We will show
by induction on [L : K] that B ⊗A L is regular. The base case is L = K which
we’ve seen above. Let K ⊂M ⊂ L be a subfield such that L is a degree p extension
of M obtained by adjoining a pth root of an element f ∈ M . Let A′ be a finite
A-subalgebra of M with fraction field M . Clearing denominators, we may and do
assume f ∈ A′. Set A′′ = A′[z]/(zp − f) and note that A′ ⊂ A′′ is finite and that
the fraction field of A′′ is L. By induction we know that B ⊗AM ring is regular.
We have

B ⊗A L = B ⊗AM [z]/(zp − f)
By Lemma 15.48.5 we know there exists a derivation D : A′ → A′ such that D(f) ̸=
0. As A′ → B ⊗A A′ is formally smooth in the m-adic topology by Lemma 15.37.9
we can use Lemma 15.49.1 to extend D to a derivation D′ : B ⊗A A′ → B ⊗A A′.
Note that D′(f) = D(f) is a unit in B⊗AM as D(f) is not zero in A′ ⊂M . Hence
B ⊗A L is regular by Lemma 15.48.4 and we win. □

15.50. G-rings

07GG Let A be a Noetherian local ring A. In Section 15.43 we have seen that some but
not all properties of A are reflected in the completion A∧ of A. To study this further
we introduce some terminology. For a prime q of A the fibre ring

A∧ ⊗A κ(q) = (A∧)q/q(A∧)q = (A/q)∧ ⊗A/q κ(q)

is called a formal fibre of A. We think of the formal fibre as an algebra over κ(q).
Thus A → A∧ is a regular ring homomorphism if and only if all the formal fibres
are geometrically regular algebras.

Definition 15.50.1.07GH A ring R is called a G-ring if R is Noetherian and for every
prime p of R the ring map Rp → (Rp)∧ is regular.

By the discussion above we see that R is a G-ring if and only if every local ring
Rp has geometrically regular formal fibres. Note that if Q ⊂ R, then it suffices to
check the formal fibres are regular. Another way to express the G-ring condition is
described in the following lemma.

Lemma 15.50.2.07PN Let R be a Noetherian ring. Then R is a G-ring if and only if for
every pair of primes q ⊂ p ⊂ R the algebra

(R/q)∧
p ⊗R/q κ(q)

is geometrically regular over κ(q).

Proof. This follows from the fact that

R∧
p ⊗R κ(q) = (R/q)∧

p ⊗R/q κ(q)

as algebras over κ(q). □
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Lemma 15.50.3.07PP Let R→ R′ be a finite type map of Noetherian rings and let

q′ // p′ // R′

q // p // R

OO

be primes. Assume R→ R′ is quasi-finite at p′.
(1) If the formal fibre R∧

p ⊗R κ(q) is geometrically regular over κ(q), then the
formal fibre R′

p′ ⊗R′ κ(q′) is geometrically regular over κ(q′).
(2) If the formal fibres of Rp are geometrically regular, then the formal fibres

of R′
p′ are geometrically regular.

(3) If R→ R′ is quasi-finite and R is a G-ring, then R′ is a G-ring.

Proof. It is clear that (1)⇒ (2)⇒ (3). Assume R∧
p ⊗Rκ(q) is geometrically regular

over κ(q). By Algebra, Lemma 10.124.3 we see that
R∧

p ⊗R R′ = (R′
p′)∧ ×B

for some R∧
p -algebra B. Hence R′

p′ → (R′
p′)∧ is a factor of a base change of the

map Rp → R∧
p . It follows that (R′

p′)∧ ⊗R′ κ(q′) is a factor of
R∧

p ⊗R R′ ⊗R′ κ(q′) = R∧
p ⊗R κ(q)⊗κ(q) κ(q′).

Thus the result follows as extension of base field preserves geometric regularity, see
Algebra, Lemma 10.166.1. □

Lemma 15.50.4.07PQ Let R be a Noetherian ring. Then R is a G-ring if and only if for
every finite free ring map R→ S the formal fibres of S are regular rings.

Proof. Assume that for any finite free ring map R→ S the ring S has regular formal
fibres. Let q ⊂ p ⊂ R be primes and let κ(q) ⊂ L be a finite purely inseparable
extension. To show that R is a G-ring it suffices to show that

R∧
p ⊗R κ(q)⊗κ(q) L

is a regular ring. Choose a finite free extension R → R′ such that q′ = qR′ is
a prime and such that κ(q′) is isomorphic to L over κ(q), see Algebra, Lemma
10.159.3. By Algebra, Lemma 10.97.8 we have

R∧
p ⊗R R′ =

∏
(R′

p′
i
)∧

where p′
i are the primes of R′ lying over p. Thus we have

R∧
p ⊗R κ(q)⊗κ(q) L = R∧

p ⊗R R′ ⊗R′ κ(q′) =
∏

(R′
p′
i
)∧ ⊗R′

p′
i

κ(q′)

Our assumption is that the rings on the right are regular, hence the ring on the left
is regular too. Thus R is a G-ring. The converse follows from Lemma 15.50.3. □

Lemma 15.50.5.07PR Let k be a field of characteristic p. LetA = k[[x1, . . . , xn]][y1, . . . , yn]
and denote K the fraction field of A. Let p ⊂ A be a prime. Then A∧

p ⊗A K is
geometrically regular over K.

Proof. Let L/K be a finite purely inseparable field extension. We will show by
induction on [L : K] that A∧

p ⊗ L is regular. The base case is L = K: as A is
regular, A∧

p is regular (Lemma 15.43.4), hence the localization A∧
p ⊗K is regular.

Let K ⊂ M ⊂ L be a subfield such that L is a degree p extension of M obtained
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by adjoining a pth root of an element f ∈M . Let B be a finite A-subalgebra of M
with fraction field M . Clearing denominators, we may and do assume f ∈ B. Set
C = B[z]/(zp − f) and note that B ⊂ C is finite and that the fraction field of C is
L. Since A ⊂ B ⊂ C are finite and L/M/K are purely inseparable we see that for
every element of B or C some power of it lies in A. Hence there is a unique prime
r ⊂ B, resp. q ⊂ C lying over p. Note that

A∧
p ⊗AM = B∧

r ⊗B M

see Algebra, Lemma 10.97.8. By induction we know that this ring is regular. In
the same manner we have

A∧
p ⊗A L = C∧

r ⊗C L = B∧
r ⊗B M [z]/(zp − f)

the last equality because the completion of C = B[z]/(zp−f) equals B∧
r [z]/(zp−f).

By Lemma 15.48.5 we know there exists a derivation D : B → B such that D(f) ̸=
0. In other words, g = D(f) is a unit in M ! By Lemma 15.48.1 D extends to a
derivation of Br, B∧

r and B∧
r ⊗BM (successively extending through a localization, a

completion, and a localization). Since it is an extension we end up with a derivation
of B∧

r ⊗BM which maps f to g and g is a unit of the ring B∧
r ⊗BM . Hence A∧

p ⊗AL
is regular by Lemma 15.48.4 and we win. □

Proposition 15.50.6.07PS A Noetherian complete local ring is a G-ring.

Proof. Let A be a Noetherian complete local ring. By Lemma 15.50.2 it suffices
to check that B = A/q has geometrically regular formal fibres over the minimal
prime (0) of B. Thus we may assume that A is a domain and it suffices to check
the condition for the formal fibres over the minimal prime (0) of A. Let K be the
fraction field of A.

We can choose a subring A0 ⊂ A which is a regular complete local ring such that
A is finite over A0, see Algebra, Lemma 10.160.11. Moreover, we may assume that
A0 is a power series ring over a field or a Cohen ring. By Lemma 15.50.3 we see
that it suffices to prove the result for A0.

Assume that A is a power series ring over a field or a Cohen ring. Since A is
regular the localizations Ap are regular (see Algebra, Definition 10.110.7 and the
discussion preceding it). Hence the completions A∧

p are regular, see Lemma 15.43.4.
Hence the fibre A∧

p ⊗A K is, as a localization of A∧
p , also regular. Thus we are

done if the characteristic of K is 0. The positive characteristic case is the case
A = k[[x1, . . . , xd]] which is a special case of Lemma 15.50.5. □

Lemma 15.50.7.07PT Let R be a Noetherian ring. Then R is a G-ring if and only if Rm

has geometrically regular formal fibres for every maximal ideal m of R.

Proof. Assume Rm → R∧
m is regular for every maximal ideal m of R. Let p be a

prime of R and choose a maximal ideal p ⊂ m. Since Rm → R∧
m is faithfully flat we

can choose a prime p′ if R∧
m lying over pRm. Consider the commutative diagram

R∧
m

// (R∧
m)p′ // (R∧

m)∧
p′

Rm

OO

// Rp

OO

// R∧
p

OO
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By assumption the ring map Rm → R∧
m is regular. By Proposition 15.50.6 (R∧

m)p′ →
(R∧

m)∧
p′ is regular. The localization R∧

m → (R∧
m)p′ is regular. Hence Rm → (R∧

m)∧
p′

is regular by Lemma 15.41.4. Since it factors through the localization Rp, also the
ring map Rp → (R∧

m)∧
p′ is regular. Thus we may apply Lemma 15.41.7 to see that

Rp → R∧
p is regular. □

Lemma 15.50.8.07QR Let R be a Noetherian local ring which is a G-ring. Then the
henselization Rh and the strict henselization Rsh are G-rings.

Proof. We will use the criterion of Lemma 15.50.7. Let q ⊂ Rh be a prime and set
p = R ∩ q. Set q1 = q and let q2, . . . , qt be the other primes of Rh lying over p, so
that Rh ⊗R κ(p) =

∏
i=1,...,t κ(qi), see Lemma 15.45.13. Using that (Rh)∧ = R∧

(Lemma 15.45.3) we see∏
i=1,...,t

(Rh)∧ ⊗Rh κ(qi) = (Rh)∧ ⊗Rh (Rh ⊗R κ(p)) = R∧ ⊗R κ(p)

Hence (Rh)∧ ⊗Rh κ(qi) is geometrically regular over κ(p) by assumption. Since
κ(qi) is separable algebraic over κ(p) it follows from Algebra, Lemma 10.166.6 that
(Rh)∧ ⊗Rh κ(qi) is geometrically regular over κ(qi).
Let r ⊂ Rsh be a prime and set p = R ∩ r. Set r1 = r and let r2, . . . , rs be the
other primes of Rsh lying over p, so that Rsh⊗R κ(p) =

∏
i=1,...,s κ(ri), see Lemma

15.45.13. Then we see that∏
i=1,...,s

(Rsh)∧ ⊗Rsh κ(ri) = (Rsh)∧ ⊗Rsh (Rsh ⊗R κ(p)) = (Rsh)∧ ⊗R κ(p)

Note that R∧ → (Rsh)∧ is formally smooth in the m(Rsh)∧-adic topology, see
Lemma 15.45.3. Hence R∧ → (Rsh)∧ is regular by Proposition 15.49.2. We con-
clude that (Rsh)∧ ⊗Rsh κ(ri) is regular over κ(p) by Lemma 15.41.4 as R∧ ⊗R κ(p)
is regular over κ(p) by assumption. Since κ(ri) is separable algebraic over κ(p)
it follows from Algebra, Lemma 10.166.6 that (Rsh)∧ ⊗Rsh κ(ri) is geometrically
regular over κ(ri). □

Lemma 15.50.9.07PU Let p be a prime number. Let A be a Noetherian complete local
domain with fraction field K of characteristic p. Let q ⊂ A[x] be a maximal ideal
lying over the maximal ideal of A and let (0) ̸= r ⊂ q be a prime lying over (0) ⊂ A.
Then A[x]∧q ⊗A[x] κ(r) is geometrically regular over κ(r).

Proof. Note that K ⊂ κ(r) is finite. Hence, given a finite purely inseparable ex-
tension L/κ(r) there exists a finite extension of Noetherian complete local domains
A ⊂ B such that κ(r) ⊗A B surjects onto L. Namely, you take B ⊂ L a finite
A-subalgebra whose field of fractions is L. Denote r′ ⊂ B[x] the kernel of the map
B[x] = A[x]⊗A B → κ(r)⊗A B → L so that κ(r′) = L. Then

A[x]∧q ⊗A[x] L = A[x]∧q ⊗A[x] B[x]⊗B[x] κ(r′) =
∏

B[x]∧qi ⊗B[x] κ(r′)

where q1, . . . , qt are the primes of B[x] lying over q, see Algebra, Lemma 10.97.8.
Thus we see that it suffices to prove the rings B[x]∧qi ⊗B[x] κ(r′) are regular. This
reduces us to showing that A[x]∧q ⊗A[x] κ(r) is regular in the special case that
K = κ(r).
Assume K = κ(r). In this case we see that rK[x] is generated by x − f for some
f ∈ K and

A[x]∧q ⊗A[x] κ(r) = (A[x]∧q ⊗A K)/(x− f)
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The derivation D = d/dx of A[x] extends to K[x] and maps x − f to a unit of
K[x]. Moreover D extends to A[x]∧q ⊗A K by Lemma 15.48.1. As A → A[x]∧q is
formally smooth (see Lemmas 15.37.2 and 15.37.4) the ring A[x]∧q ⊗A K is regular
by Proposition 15.49.2 (the arguments of the proof of that proposition simplify
significantly in this particular case). We conclude by Lemma 15.48.2. □

Proposition 15.50.10.07PV Let R be a G-ring. If R→ S is essentially of finite type then
S is a G-ring.

Proof. Since being a G-ring is a property of the local rings it is clear that a localiza-
tion of a G-ring is a G-ring. Conversely, if every localization at a prime is a G-ring,
then the ring is a G-ring. Thus it suffices to show that Sq is a G-ring for every finite
type R-algebra S and every prime q of S. Writing S as a quotient of R[x1, . . . , xn]
we see from Lemma 15.50.3 that it suffices to prove that R[x1, . . . , xn] is a G-ring.
By induction on n it suffices to prove that R[x] is a G-ring. Let q ⊂ R[x] be a
maximal ideal. By Lemma 15.50.7 it suffices to show that

R[x]q −→ R[x]∧q
is regular. If q lies over p ⊂ R, then we may replace R by Rp. Hence we may assume
that R is a Noetherian local G-ring with maximal ideal m and that q ⊂ R[x] lies
over m. Note that there is a unique prime q′ ⊂ R∧[x] lying over q. Consider the
diagram

R[x]∧q // (R∧[x]q′)∧

R[x]q //

OO

R∧[x]q′

OO

Since R is a G-ring the lower horizontal arrow is regular (as a localization of a
base change of the regular ring map R → R∧). Suppose we can prove the right
vertical arrow is regular. Then it follows that the composition R[x]q → (R∧[x]q′)∧

is regular, and hence the left vertical arrow is regular by Lemma 15.41.7. Hence we
see that we may assume R is a Noetherian complete local ring and q a prime lying
over the maximal ideal of R.
Let R be a Noetherian complete local ring and let q ⊂ R[x] be a maximal ideal
lying over the maximal ideal of R. Let r ⊂ q be a prime ideal. We want to show
that R[x]∧q ⊗R[x] κ(r) is a geometrically regular algebra over κ(r). Set p = R ∩ r.
Then we can replace R by R/p and q and r by their images in R/p[x], see Lemma
15.50.2. Hence we may assume that R is a domain and that r ∩R = (0).
By Algebra, Lemma 10.160.11 we can find R0 ⊂ R which is regular and such
that R is finite over R0. Applying Lemma 15.50.3 we see that it suffices to prove
R[x]∧q ⊗R[x] κ(r) is geometrically regular over κ(r) when, in addition to the above,
R is a regular complete local ring.
Now R is a regular complete local ring, we have q ⊂ r ⊂ R[x], we have (0) = R ∩ r
and q is a maximal ideal lying over the maximal ideal of R. Since R is regular the
ring R[x] is regular (Algebra, Lemma 10.163.10). Hence the localization R[x]q is
regular. Hence the completions R[x]∧q are regular, see Lemma 15.43.4. Hence the
fibre R[x]∧q ⊗R[x] κ(r) is, as a localization of R[x]∧q , also regular. Thus we are done
if the characteristic of the fraction field of R is 0.

https://stacks.math.columbia.edu/tag/07PV


15.50. G-RINGS 1298

If the characteristic of R is positive, then R = k[[x1, . . . , xn]]. In this case we split
the argument in two subcases:

(1) The case r = (0). The result is a direct consequence of Lemma 15.50.5.
(2) The case r ̸= (0). This is Lemma 15.50.9.

□

Remark 15.50.11.07PW Let R be a G-ring and let I ⊂ R be an ideal. In general it is
not the case that the I-adic completion R∧ is a G-ring. An example was given
by Nishimura in [Nis81]. A generalization and, in some sense, clarification of this
example can be found in the last section of [Dum00].

Proposition 15.50.12.07PX The following types of rings are G-rings:
(1) fields,
(2) Noetherian complete local rings,
(3) Z,
(4) Dedekind domains with fraction field of characteristic zero,
(5) finite type ring extensions of any of the above.

Proof. For fields, Z and Dedekind domains of characteristic zero this follows im-
mediately from the definition and the fact that the completion of a discrete val-
uation ring is a discrete valuation ring. A Noetherian complete local ring is a
G-ring by Proposition 15.50.6. The statement on finite type overrings is Proposi-
tion 15.50.10. □

Lemma 15.50.13.0A41 Let (A,m) be a henselian local ring. Then A is a filtered colimit
of a system of henselian local G-rings with local transition maps.

Proof. Write A = colimAi as a filtered colimit of finite type Z-algebras. Let pi
be the prime ideal of Ai lying under m. We may replace Ai by the localization of
Ai at pi. Then Ai is a Noetherian local G-ring (Proposition 15.50.12). By Lemma
15.12.5 we see that A = colimAhi . By Lemma 15.50.8 the rings Ahi are G-rings. □

Lemma 15.50.14.0AH2 [Mat70a, Theorem
79]

Let A be a G-ring. Let I ⊂ A be an ideal and let A∧ be the
completion of A with respect to I. Then A→ A∧ is regular.

Proof. The ring map A → A∧ is flat by Algebra, Lemma 10.97.2. The ring A∧ is
Noetherian by Algebra, Lemma 10.97.6. Thus it suffices to check the third condition
of Lemma 15.41.2. Let m′ ⊂ A∧ be a maximal ideal lying over m ⊂ A. By Algebra,
Lemma 10.96.6 we have IA∧ ⊂ m′. Since A∧/IA∧ = A/I we see that I ⊂ m,
m/I = m′/IA∧, and A/m = A∧/m′. Since A∧/m′ is a field, we conclude that m
is a maximal ideal as well. Then Am → A∧

m′ is a flat local ring homomorphism of
Noetherian local rings which identifies residue fields and such that mA∧

m′ = m′A∧
m′ .

Thus it induces an isomorphism on complete local rings, see Lemma 15.43.9. Let
(Am)∧ be the completion of Am with respect to its maximal ideal. The ring map

(A∧)m′ → ((A∧)m′)∧ = (Am)∧

is faithfully flat (Algebra, Lemma 10.97.3). Thus we can apply Lemma 15.41.7 to
the ring maps

Am → (A∧)m′ → (Am)∧

to conclude because Am → (Am)∧ is regular as A is a G-ring. □

https://stacks.math.columbia.edu/tag/07PW
https://stacks.math.columbia.edu/tag/07PX
https://stacks.math.columbia.edu/tag/0A41
https://stacks.math.columbia.edu/tag/0AH2
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Lemma 15.50.15.0AH3 [Gre76, Theorem 5.3
i)]

Let A be a G-ring. Let I ⊂ A be an ideal. Let (Ah, Ih) be the
henselization of the pair (A, I), see Lemma 15.12.1. Then Ah is a G-ring.

Proof. Let mh ⊂ Ah be a maximal ideal. We have to show that the map from Ahmh
to its completion has geometrically regular fibres, see Lemma 15.50.7. Let m be
the inverse image of mh in A. Note that Ih ⊂ mh and hence I ⊂ m as (Ah, Ih)
is a henselian pair. Recall that Ah is Noetherian, Ih = IAh, and that A → Ah

induces an isomorphism on I-adic completions, see Lemma 15.12.4. Then the local
homomorphism of Noetherian local rings

Am → Ahmh

induces an isomorphism on completions at maximal ideals by Lemma 15.43.9 (de-
tails omitted). Let qh be a prime of Ahmh lying over q ⊂ Am. Set q1 = qh

and let q2, . . . , qt be the other primes of Ah lying over q, so that Ah ⊗A κ(q) =∏
i=1,...,t κ(qi), see Lemma 15.45.12. Using that (Ah)∧

mh = (Am)∧ as discussed
above we see∏

i=1,...,t
(Ahmh)∧ ⊗Ah

mh
κ(qi) = (Ahmh)∧ ⊗Ah

mh
(Ahmh ⊗Am

κ(q)) = (Am)∧ ⊗Am
κ(q)

Hence, as one of the components, the ring

(Ahmh)∧ ⊗Ah
mh

κ(qh)

is geometrically regular over κ(q) by assumption on A. Since κ(qh) is separable
algebraic over κ(q) it follows from Algebra, Lemma 10.166.6 that

(Ahmh)∧ ⊗Ah
mh

κ(qh)

is geometrically regular over κ(qh) as desired. □

15.51. Properties of formal fibres

0BIR In this section we redo some of the arguments of Section 15.50 for to be able to
talk intelligently about properties of the formal fibres of Noetherian rings.

Let P be a property of ring maps k → R where k is a field and R is Noetherian.
We say P holds for the fibres of a ring homomorphism A→ B with B Noetherian
if P holds for κ(q)→ B ⊗A κ(q) for all primes q of A. In the following we will use
the following assertions

(A) P (k → R)⇒ P (k′ → R⊗k k′) for finitely generated field extensions k′/k,
(B) P (k → Rp), ∀p ∈ Spec(R)⇔ P (k → R),
(C) given flat maps A → B → C of Noetherian rings, if the fibres of A → B

have P and B → C is regular, then the fibres of A→ C have P ,
(D) given flat maps A → B → C of Noetherian rings if the fibres of A → C

have P and B → C is faithfully flat, then the fibres of A→ B have P ,
(E) given k → k′ → R with R Noetherian if k′/k is separable algebraic and

P (k → R), then P (k′ → R), and
(F) add more here.

Given a Noetherian local ring A we say “the formal fibres of A have P” if P holds
for the fibres of A→ A∧. We say that R is a P -ring if R is Noetherian and for all
primes p of R the formal fibres of Rp have P .

https://stacks.math.columbia.edu/tag/0AH3
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Lemma 15.51.1.0BIS Let R be a Noetherian ring. Let P be a property as above. Then
R is a P -ring if and only if for every pair of primes q ⊂ p ⊂ R the κ(q)-algebra

(R/q)∧
p ⊗R/q κ(q)

has property P .

Proof. This follows from the fact that
R∧

p ⊗R κ(q) = (R/q)∧
p ⊗R/q κ(q)

as algebras over κ(q). □

Lemma 15.51.2.0BK8 Let R → Λ be a homomorphism of Noetherian rings. Assume P
has property (B). The following are equivalent

(1) the fibres of R→ Λ have P ,
(2) the fibres of Rp → Λq have P for all q ⊂ Λ lying over p ⊂ R, and
(3) the fibres of Rm → Λm′ have P for all maximal ideals m′ ⊂ Λ lying over

m in R.

Proof. Let p ⊂ R be a prime. Then the fibre over p is the ring Λ ⊗R κ(p) whose
spectrum maps bijectively onto the subset of Spec(Λ) consisting of primes q lying
over p, see Algebra, Remark 10.17.8. For such a prime q choose a maximal ideal
q ⊂ m′ and set m = R ∩m′. Then p ⊂ m and we have

(Λ⊗R κ(p))q ∼= (Λm′ ⊗Rm
κ(p))q

as κ(q)-algebras. Thus (1), (2), and (3) are equivalent because by (B) we can check
property P on local rings. □

Lemma 15.51.3.0BIT Let R→ R′ be a finite type map of Noetherian rings and let

q′ // p′ // R′

q // p // R

OO

be primes. Assume R→ R′ is quasi-finite at p′. Assume P satisfies (A) and (B).
(1) If κ(q)→ R∧

p ⊗R κ(q) has P , then κ(q′)→ R′
p′ ⊗R′ κ(q′) has P .

(2) If the formal fibres of Rp have P , then the formal fibres of R′
p′ have P .

(3) If R→ R′ is quasi-finite and R is a P -ring, then R′ is a P -ring.

Proof. It is clear that (1) ⇒ (2) ⇒ (3). Assume P holds for κ(q) → R∧
p ⊗R κ(q).

By Algebra, Lemma 10.124.3 we see that
R∧

p ⊗R R′ = (R′
p′)∧ ×B

for some R∧
p -algebra B. Hence R′

p′ → (R′
p′)∧ is a factor of a base change of the

map Rp → R∧
p . It follows that (R′

p′)∧ ⊗R′ κ(q′) is a factor of

R∧
p ⊗R R′ ⊗R′ κ(q′) = R∧

p ⊗R κ(q)⊗κ(q) κ(q′).
Thus the result follows from the assumptions on P . □

Lemma 15.51.4.0BIU Let R be a Noetherian ring. Assume P satisfies (C) and (D).
Then R is a P -ring if and only if the formal fibres of Rm have P for every maximal
ideal m of R.

https://stacks.math.columbia.edu/tag/0BIS
https://stacks.math.columbia.edu/tag/0BK8
https://stacks.math.columbia.edu/tag/0BIT
https://stacks.math.columbia.edu/tag/0BIU
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Proof. Assume the formal fibres of Rm have P for all maximal ideals m of R. Let
p be a prime of R and choose a maximal ideal p ⊂ m. Since Rm → R∧

m is faithfully
flat we can choose a prime p′ if R∧

m lying over pRm. Consider the commutative
diagram

R∧
m

// (R∧
m)p′ // (R∧

m)∧
p′

Rm

OO

// Rp

OO

// R∧
p

OO

By assumption the fibres of the ring map Rm → R∧
m have P . By Proposition 15.50.6

(R∧
m)p′ → (R∧

m)∧
p′ is regular. The localization R∧

m → (R∧
m)p′ is regular. Hence

R∧
m → (R∧

m)∧
p′ is regular by Lemma 15.41.4. Hence the fibres of Rm → (R∧

m)∧
p′ have

P by (C). Since Rm → (R∧
m)∧

p′ factors through the localization Rp, also the fibres
of Rp → (R∧

m)∧
p′ have P . Thus we may apply (D) to see that the fibres of Rp → R∧

p

have P . □

Proposition 15.51.5.0BIV Let R be a P -ring where P satisfies (A), (B), (C), and (D).
If R→ S is essentially of finite type then S is a P -ring.

Proof. Since being a P -ring is a property of the local rings it is clear that a localiza-
tion of a P -ring is a P -ring. Conversely, if every localization at a prime is a P -ring,
then the ring is a P -ring. Thus it suffices to show that Sq is a P -ring for every finite
type R-algebra S and every prime q of S. Writing S as a quotient of R[x1, . . . , xn]
we see from Lemma 15.51.3 that it suffices to prove that R[x1, . . . , xn] is a P -ring.
By induction on n it suffices to prove that R[x] is a P -ring. Let q ⊂ R[x] be a
maximal ideal. By Lemma 15.51.4 it suffices to show that the fibres of

R[x]q −→ R[x]∧q
have P . If q lies over p ⊂ R, then we may replace R by Rp. Hence we may assume
that R is a Noetherian local P -ring with maximal ideal m and that q ⊂ R[x] lies
over m. Note that there is a unique prime q′ ⊂ R∧[x] lying over q. Consider the
diagram

R[x]∧q // (R∧[x]q′)∧

R[x]q //

OO

R∧[x]q′

OO

Since R is a P -ring the fibres of R[x]→ R∧[x] have P because they are base changes
of the fibres of R→ R∧ by a finitely generated field extension so (A) applies. Hence
the fibres of the lower horizontal arrow have P for example by Lemma 15.51.2. The
right vertical arrow is regular because R∧ is a G-ring (Propositions 15.50.6 and
15.50.10). It follows that the fibres of the composition R[x]q → (R∧[x]q′)∧ have P
by (C). Hence the fibres of the left vertical arrow have P by (D) and the proof is
complete. □

Lemma 15.51.6.0BK9 Let A be a P -ring where P satisfies (B) and (D). Let I ⊂ A be
an ideal and let A∧ be the completion of A with respect to I. Then the fibres of
A→ A∧ have P .

https://stacks.math.columbia.edu/tag/0BIV
https://stacks.math.columbia.edu/tag/0BK9
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Proof. The ring map A → A∧ is flat by Algebra, Lemma 10.97.2. The ring A∧ is
Noetherian by Algebra, Lemma 10.97.6. Thus it suffices to check the third condition
of Lemma 15.51.2. Let m′ ⊂ A∧ be a maximal ideal lying over m ⊂ A. By Algebra,
Lemma 10.96.6 we have IA∧ ⊂ m′. Since A∧/IA∧ = A/I we see that I ⊂ m,
m/I = m′/IA∧, and A/m = A∧/m′. Since A∧/m′ is a field, we conclude that m
is a maximal ideal as well. Then Am → A∧

m′ is a flat local ring homomorphism of
Noetherian local rings which identifies residue fields and such that mA∧

m′ = m′A∧
m′ .

Thus it induces an isomorphism on complete local rings, see Lemma 15.43.9. Let
(Am)∧ be the completion of Am with respect to its maximal ideal. The ring map

(A∧)m′ → ((A∧)m′)∧ = (Am)∧

is faithfully flat (Algebra, Lemma 10.97.3). Thus we can apply (D) to the ring
maps

Am → (A∧)m′ → (Am)∧

to conclude because the fibres of Am → (Am)∧ have P as A is a P -ring. □

Lemma 15.51.7.0BKA Let A be a P -ring where P satisfies (B), (C), (D), and (E). Let
I ⊂ A be an ideal. Let (Ah, Ih) be the henselization of the pair (A, I), see Lemma
15.12.1. Then Ah is a P -ring.

Proof. Let mh ⊂ Ah be a maximal ideal. We have to show that the fibres of
Ahmh → (Ahmh)∧ have P , see Lemma 15.51.4. Let m be the inverse image of mh in
A. Note that Ih ⊂ mh and hence I ⊂ m as (Ah, Ih) is a henselian pair. Recall
that Ah is Noetherian, Ih = IAh, and that A→ Ah induces an isomorphism on I-
adic completions, see Lemma 15.12.4. Then the local homomorphism of Noetherian
local rings

Am → Ahmh

induces an isomorphism on completions at maximal ideals by Lemma 15.43.9 (de-
tails omitted). Let qh be a prime of Ahmh lying over q ⊂ Am. Set q1 = qh

and let q2, . . . , qt be the other primes of Ah lying over q, so that Ah ⊗A κ(q) =∏
i=1,...,t κ(qi), see Lemma 15.45.12. Using that (Ah)∧

mh = (Am)∧ as discussed
above we see∏

i=1,...,t
(Ahmh)∧ ⊗Ah

mh
κ(qi) = (Ahmh)∧ ⊗Ah

mh
(Ahmh ⊗Am

κ(q)) = (Am)∧ ⊗Am
κ(q)

Hence, looking at local rings and using (B), we see that

κ(q) −→ (Ahmh)∧ ⊗Ah
mh

κ(qh)

has P as κ(q) → (Am)∧ ⊗Am
κ(q) does by assumption on A. Since κ(qh)/κ(q) is

separable algebraic, by (E) we find that κ(qh) → (Ahmh)∧ ⊗Ah
mh

κ(qh) has P as
desired. □

Lemma 15.51.8.0C36 Let R be a Noetherian local ring which is a P -ring where P satisfies
(B), (C), (D), and (E). Then the henselization Rh and the strict henselization Rsh
are P -rings.

Proof. We have seen this for the henselization in Lemma 15.51.7. To prove it for
the strict henselization, it suffices to show that the formal fibres of Rsh have P ,
see Lemma 15.51.4. Let r ⊂ Rsh be a prime and set p = R ∩ r. Set r1 = r

https://stacks.math.columbia.edu/tag/0BKA
https://stacks.math.columbia.edu/tag/0C36
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and let r2, . . . , rs be the other primes of Rsh lying over p, so that Rsh ⊗R κ(p) =∏
i=1,...,s κ(ri), see Lemma 15.45.13. Then we see that∏

i=1,...,t
(Rsh)∧ ⊗Rsh κ(ri) = (Rsh)∧ ⊗Rsh (Rsh ⊗R κ(p)) = (Rsh)∧ ⊗R κ(p)

Note that R∧ → (Rsh)∧ is formally smooth in the m(Rsh)∧-adic topology, see
Lemma 15.45.3. Hence R∧ → (Rsh)∧ is regular by Proposition 15.49.2. We
conclude that property P holds for κ(p) → (Rsh)∧ ⊗R κ(p) by (C) and our as-
sumption on R. Using property (B), using the decomposition above, and looking
at local rings we conclude that property P holds for κ(p) → (Rsh)∧ ⊗Rsh κ(r).
Since κ(r)/κ(p) is separable algebraic, it follows from (E) that P holds for κ(r)→
(Rsh)∧ ⊗Rsh κ(r). □

Lemma 15.51.9.0BIW Properties (A), (B), (C), (D), and (E) hold for P (k → R) =“R is
geometrically reduced over k”.

Proof. Part (A) follows from the definition of geometrically reduced algebras (Al-
gebra, Definition 10.43.1). Part (B) follows too: a ring is reduced if and only if
all local rings are reduced. Part (C). This follows from Lemma 15.42.1. Part (D).
This follows from Algebra, Lemma 10.164.2. Part (E). This follows from Algebra,
Lemma 10.43.9. □

Lemma 15.51.10.0BIX Properties (A), (B), (C), (D), and (E) hold for P (k → R) =“R
is geometrically normal over k”.

Proof. Part (A) follows from the definition of geometrically normal algebras (Alge-
bra, Definition 10.165.2). Part (B) follows too: a ring is normal if and only if all of
its local rings are normal. Part (C). This follows from Lemma 15.42.2. Part (D).
This follows from Algebra, Lemma 10.164.3. Part (E). This follows from Algebra,
Lemma 10.165.6. □

Lemma 15.51.11.0BIY Fix n ≥ 1. Properties (A), (B), (C), (D), and (E) hold for
P (k → R) =“R has (Sn)”.

Proof. Let k → R be a ring map where k is a field and R a Noetherian ring.
Let k′/k be a finitely generated field extension. Then the fibres of the ring map
R → R ⊗k k′ are Cohen-Macaulay by Algebra, Lemma 10.167.1. Hence we may
apply Algebra, Lemma 10.163.4 to the ring map R → R ⊗k k′ to see that if R
has (Sn) so does R ⊗k k′. This proves (A). Part (B) follows too: a Noetherian
rings has (Sn) if and only if all of its local rings have (Sn). Part (C). This follows
from Algebra, Lemma 10.163.4 as the fibres of a regular homomorphism are regular
and in particular Cohen-Macaulay. Part (D). This follows from Algebra, Lemma
10.164.5. Part (E). This is immediate as the condition does not refer to the ground
field. □

Lemma 15.51.12.0BJ9 Properties (A), (B), (C), (D), and (E) hold for P (k → R) =“R
is Cohen-Macaulay”.

Proof. Follows immediately from Lemma 15.51.11 and the fact that a Noetherian
ring is Cohen-Macaulay if and only if it satisfies conditions (Sn) for all n. □

Lemma 15.51.13.0BIZ Fix n ≥ 0. Properties (A), (B), (C), (D), and (E) hold for
P (k → R) =“R⊗k k′ has (Rn) for all finite extensions k′/k”.

https://stacks.math.columbia.edu/tag/0BIW
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Proof. Let k → R be a ring map where k is a field and R a Noetherian ring. Assume
P (k → R) is true. Let K/k be a finitely generated field extension. By Algebra,
Lemma 10.45.3 we can find a diagram

K // K ′

k

OO

// k′

OO

where k′/k, K ′/K are finite purely inseparable field extensions such that K ′/k′ is
separable. By Algebra, Lemma 10.158.10 there exists a smooth k′-algebra B such
that K ′ is the fraction field of B. Now we can argue as follows: Step 1: R ⊗k k′

satisfies (Sn) because we assumed P for k → R. Step 2: R ⊗k k′ → R ⊗k k′ ⊗k′ B
is a smooth ring map (Algebra, Lemma 10.137.4) and we conclude R ⊗k k′ ⊗k′ B
satisfies (Sn) by Algebra, Lemma 10.163.5 (and using Algebra, Lemma 10.140.3 to
see that the hypotheses are satisfied). Step 3. R ⊗k k′ ⊗k′ K ′ = R ⊗k K ′ satisfies
(Rn) as it is a localization of a ring having (Rn). Step 4. Finally R ⊗k K satisfies
(Rn) by descent of (Rn) along the faithfully flat ring map K ⊗k A → K ′ ⊗k A
(Algebra, Lemma 10.164.6). This proves (A). Part (B) follows too: a Noetherian
ring has (Rn) if and only if all of its local rings have (Rn). Part (C). This follows
from Algebra, Lemma 10.163.5 as the fibres of a regular homomorphism are regular
(small detail omitted). Part (D). This follows from Algebra, Lemma 10.164.6 (small
detail omitted).

Part (E). Let l/k be a separable algebraic extension of fields and let l → R be a
ring map with R Noetherian. Assume that k → R has P . We have to show that
l → R has P . Let l′/l be a finite extension. First observe that there exists a finite
subextension l/m/k and a finite extension m′/m such that l′ = l ⊗m m′. Then
R⊗l l′ = R⊗mm′. Hence it suffices to prove that m→ R has property P , i.e., we
may assume that l/k is finite. If l/k is finite, then l′/k is finite and we see that

l′ ⊗l R = (l′ ⊗k R)⊗l⊗kl l

is a localization (by Algebra, Lemma 10.43.8) of the Noetherian ring l′⊗k R which
has property (Rn) by assumption P for k → R. This proves that l′ ⊗l R has
property (Rn) as desired. □

15.52. Excellent rings

07QS In this section we discuss Grothendieck’s notion of excellent rings. For the defi-
nitions of G-rings, J-2 rings, and universally catenary rings we refer to Definition
15.50.1, Definition 15.47.1, and Algebra, Definition 10.105.3.

Definition 15.52.1.07QT Let R be a ring.
(1) We say R is quasi-excellent if R is Noetherian, a G-ring, and J-2.
(2) We say R is excellent if R is quasi-excellent and universally catenary.

Thus a Noetherian ring is quasi-excellent if it has geometrically regular formal fibres
and if any finite type algebra over it has closed singular set. For such a ring to
be excellent we require in addition that there exists (locally) a good dimension
function. We will see later (Section 15.109) that to be universally catenary can be
formulated as a condition on the maps Rm → R∧

m for maximal ideals m of R.

https://stacks.math.columbia.edu/tag/07QT
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Lemma 15.52.2.07QU Any localization of a finite type ring over a (quasi-)excellent ring
is (quasi-)excellent.

Proof. For finite type algebras this follows from the definitions for the properties
J-2 and universally catenary. For G-rings, see Proposition 15.50.10. We omit the
proof that localization preserves (quasi-)excellency. □

Proposition 15.52.3.07QW The following types of rings are excellent:
(1) fields,
(2) Noetherian complete local rings,
(3) Z,
(4) Dedekind domains with fraction field of characteristic zero,
(5) finite type ring extensions of any of the above.

Proof. See Propositions 15.50.12 and 15.48.7 to see that these rings are G-rings and
have J-2. Any Cohen-Macaulay ring is universally catenary, see Algebra, Lemma
10.105.9. In particular fields, Dedekind rings, and more generally regular rings are
universally catenary. Via the Cohen structure theorem we see that complete local
rings are universally catenary, see Algebra, Remark 10.160.9. □

The material developed above has some consequences for Nagata rings.

Lemma 15.52.4.0BJ0 Let (A,m) be a Noetherian local ring. The following are equivalent
(1) A is Nagata, and
(2) the formal fibres of A are geometrically reduced.

Proof. Assume (2). By Algebra, Lemma 10.162.14 we have to show that if A→ B
is finite, B is a domain, and m′ ⊂ B is a maximal ideal, then Bm′ is analytically
unramified. Combining Lemmas 15.51.9 and 15.51.4 and Proposition 15.51.5 we
see that the formal fibres of Bm′ are geometrically reduced. In particular B∧

m′ ⊗B L
is reduced where L is the fraction field of B. It follows that B∧

m′ is reduced, i.e.,
Bm′ is analytically unramified.
Assume (1). Let q ⊂ A be a prime ideal and let K/κ(q) be a finite extension. We
have to show that A∧ ⊗A K is reduced. Let A/q ⊂ B ⊂ K be a local subring
finite over A whose fraction field is K. To construct B choose x1, . . . , xn ∈ K
which generate K over κ(q) and which satisfy monic polynomials Pi(T ) = T di +
ai,1T

di−1 + . . . + ai,di = 0 with ai,j ∈ m. Then let B be the A-subalgebra of
K generated by x1, . . . , xn. (For more details see the proof of Algebra, Lemma
10.162.14.) Then

A∧ ⊗A K = (A∧ ⊗A B)q = B∧
q

Since B∧ is reduced by Algebra, Lemma 10.162.14 the proof is complete. □

Lemma 15.52.5.07QV A quasi-excellent ring is Nagata.

Proof. Let R be quasi-excellent. Using that a finite type algebra over R is quasi-
excellent (Lemma 15.52.2) we see that it suffices to show that any quasi-excellent
domain is N-1, see Algebra, Lemma 10.162.3. Applying Algebra, Lemma 10.161.15
(and using that a quasi-excellent ring is J-2) we reduce to showing that a quasi-
excellent local domain R is N-1. As R → R∧ is regular we see that R∧ is reduced
by Lemma 15.42.1. In other words, R is analytically unramified. Hence R is N-1
by Algebra, Lemma 10.162.10. □

https://stacks.math.columbia.edu/tag/07QU
https://stacks.math.columbia.edu/tag/07QW
https://stacks.math.columbia.edu/tag/0BJ0
https://stacks.math.columbia.edu/tag/07QV
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Lemma 15.52.6.0C23 Let (A,m) be a Noetherian local ring. If A is normal and the
formal fibres of A are normal (for example if A is excellent or quasi-excellent), then
A∧ is normal.

Proof. Follows immediately from Algebra, Lemma 10.163.8. □

15.53. Abelian categories of modules

0AZ5 Let R be a ring. The category ModR of R-modules is an abelian category. Here are
some examples of subcategories of ModR which are abelian (we use the terminology
introduced in Homology, Definition 12.10.1 as well as Homology, Lemmas 12.10.2
and 12.10.3):

(1) The category of coherent R-modules is a weak Serre subcategory of ModR.
This follows from Algebra, Lemma 10.90.3.

(2) Let S ⊂ R be a multiplicative subset. The full subcategory consisting of
R-modules M such that multiplication by s ∈ S is an isomorphism on
M is a Serre subcategory of ModR. This follows from Algebra, Lemma
10.9.5.

(3) Let I ⊂ R be a finitely generated ideal. The full subcategory of I-power
torsion modules is a Serre subcategory of ModR. See Lemma 15.88.5.

(4) In some texts a torsion module is defined as a module M such that for
all x ∈M there exists a nonzerodivisor f ∈ R such that fx = 0. The full
subcategory of torsion modules is a Serre subcategory of ModR.

(5) If R is not Noetherian, then the category ModfgR of finitely generated R-
modules is not abelian. Namely, if I ⊂ R is a non-finitely generated ideal,
then the map R→ R/I does not have a kernel in ModfgR .

(6) If R is Noetherian, then coherent R-modules agree with finitely generated
(i.e., finite) R-modules, see Algebra, Lemmas 10.90.5, 10.90.4, and 10.31.4.
Hence ModfgR is abelian by (1) above, but in fact,in this case the category
ModfgR is a (strong) Serre subcategory of ModR.

15.54. Injective abelian groups

01D6 In this section we show the category of abelian groups has enough injectives. Recall
that an abelian group M is divisible if and only if for every x ∈M and every n ∈ N
there exists a y ∈M such that ny = x.

Lemma 15.54.1.01D7 An abelian group J is an injective object in the category of abelian
groups if and only if J is divisible.

Proof. Suppose that J is not divisible. Then there exists an x ∈ J and n ∈ N such
that there is no y ∈ J with ny = x. Then the morphism Z→ J , m 7→ mx does not
extend to 1

nZ ⊃ Z. Hence J is not injective.
Let A ⊂ B be abelian groups. Assume that J is a divisible abelian group. Let
φ : A → J be a morphism. Consider the set of homomorphisms φ′ : A′ → J with
A ⊂ A′ ⊂ B and φ′|A = φ. Define (A′, φ′) ≥ (A′′, φ′′) if and only if A′ ⊃ A′′

and φ′|A′′ = φ′′. If (Ai, φi)i∈I is a totally ordered collection of such pairs, then we
obtain a map

⋃
i∈I Ai → J defined by a ∈ Ai maps to φi(a). Thus Zorn’s lemma

applies. To conclude we have to show that if the pair (A′, φ′) is maximal then
A′ = B. In other words, it suffices to show, given any subgroup A ⊂ B, A ̸= B and

https://stacks.math.columbia.edu/tag/0C23
https://stacks.math.columbia.edu/tag/01D7
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any φ : A → J , then we can find φ′ : A′ → J with A ⊂ A′ ⊂ B such that (a) the
inclusion A ⊂ A′ is strict, and (b) the morphism φ′ extends φ.
To prove this, pick x ∈ B, x ̸∈ A. If there exists no n ∈ N such that nx ∈ A, then
A ⊕ Z ∼= A + Zx. Hence we can extend φ to A′ = A + Zx by using φ on A and
mapping x to zero for example. If there does exist an n ∈ N such that nx ∈ A, then
let n be the minimal such integer. Let z ∈ J be an element such that nz = φ(nx).
Define a morphism φ̃ : A⊕ Z→ J by (a,m) 7→ φ(a) +mz. By our choice of z the
kernel of φ̃ contains the kernel of the map A⊕Z→ B, (a,m) 7→ a+mx. Hence φ̃
factors through the image A′ = A+ Zx, and this extends the morphism φ. □

We can use this lemma to show that every abelian group can be embedded in a
injective abelian group. But this is a special case of the result of the following
section.

15.55. Injective modules

01D8 Some lemmas on injective modules.

Definition 15.55.1.0AVD Let R be a ring. An R-module J is injective if and only if the
functor HomR(−, J) : ModR → ModR is an exact functor.

The functor HomR(−,M) is left exact for any R-module M , see Algebra, Lemma
10.10.1. Hence the condition for J to be injective really signifies that given an injec-
tion of R-modules M →M ′ the map HomR(M ′, J)→ HomR(M,J) is surjective.
Before we reformulate this in terms of Ext-modules we discuss the relationship
between Ext1

R(M,N) and extensions as in Homology, Section 12.6.

Lemma 15.55.2.0AUL Let R be a ring. Let A be the abelian category of R-modules.
There is a canonical isomorphism ExtA(M,N) = Ext1

R(M,N) compatible with the
long exact sequences of Algebra, Lemmas 10.71.6 and 10.71.7 and the 6-term exact
sequences of Homology, Lemma 12.6.4.

Proof. Omitted. □

Lemma 15.55.3.0AVE Let R be a ring. Let J be an R-module. The following are
equivalent

(1) J is injective,
(2) Ext1

R(M,J) = 0 for every R-module M .

Proof. Let 0 → M ′′ → M ′ → M → 0 be a short exact sequence of R-modules.
Consider the long exact sequence

0→ HomR(M,J)→ HomR(M ′, J)→ HomR(M ′′, J)
→ Ext1

R(M,J)→ Ext1
R(M ′, J)→ Ext1

R(M ′′, J)→ . . .

of Algebra, Lemma 10.71.7. Thus we see that (2) implies (1). Conversely, if J
is injective then the Ext-group is zero by Homology, Lemma 12.27.2 and Lemma
15.55.2. □

Lemma 15.55.4.0AVF Let R be a ring. Let J be an R-module. The following are
equivalent

(1) J is injective,
(2) Ext1

R(R/I, J) = 0 for every ideal I ⊂ R, and

https://stacks.math.columbia.edu/tag/0AVD
https://stacks.math.columbia.edu/tag/0AUL
https://stacks.math.columbia.edu/tag/0AVE
https://stacks.math.columbia.edu/tag/0AVF
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(3) for an ideal I ⊂ R and module map I → J there exists an extension
R→ J .

Proof. If I ⊂ R is an ideal, then the short exact sequence 0→ I → R→ R/I → 0
gives an exact sequence

HomR(R, J)→ HomR(I, J)→ Ext1
R(R/I, J)→ 0

by Algebra, Lemma 10.71.7 and the fact that Ext1
R(R, J) = 0 as R is projective

(Algebra, Lemma 10.77.2). Thus (2) and (3) are equivalent. In this proof we will
show that (1) ⇔ (3) which is known as Baer’s criterion.
Assume (1). Given a module map I → J as in (3) we find the extension R → J
because the map HomR(R, J)→ HomR(I, J) is surjective by definition.
Assume (3). Let M ⊂ N be an inclusion of R-modules. Let φ : M → J be a
homomorphism. We will show that φ extends to N which finishes the proof of the
lemma. Consider the set of homomorphisms φ′ : M ′ → J with M ⊂ M ′ ⊂ N and
φ′|M = φ. Define (M ′, φ′) ≥ (M ′′, φ′′) if and only if M ′ ⊃ M ′′ and φ′|M ′′ = φ′′.
If (Mi, φi)i∈I is a totally ordered collection of such pairs, then we obtain a map⋃
i∈IMi → J defined by a ∈ Mi maps to φi(a). Thus Zorn’s lemma applies. To

conclude we have to show that if the pair (M ′, φ′) is maximal then M ′ = N . In
other words, it suffices to show, given any subgroup M ⊂ N , M ̸= N and any
φ : M → J , then we can find φ′ : M ′ → J with M ⊂ M ′ ⊂ N such that (a) the
inclusion M ⊂M ′ is strict, and (b) the morphism φ′ extends φ.
To prove this, pick x ∈ N , x ̸∈ M . Let I = {f ∈ R | fx ∈ M}. This is an ideal of
R. Define a homomorphism ψ : I → J by f 7→ φ(fx). Extend to a map ψ̃ : R→ J
which is possible by assumption (3). By our choice of I the kernel of M ⊕R→ J ,
(y, f) 7→ y−ψ̃(f) contains the kernel of the mapM⊕R→ N , (y, f) 7→ y+fx. Hence
this homomorphism factors through the image M ′ = M +Rx and this extends the
given homomorphism as desired. □

In the rest of this section we prove that there are enough injective modules over a
ring R. We start with the fact that Q/Z is an injective abelian group. This follows
from Lemma 15.54.1.
Definition 15.55.5.01D9 Let R be a ring.

(1) For any R-module M over R we denote M∨ = Hom(M,Q/Z) with its
natural R-module structure. We think of M 7→ M∨ as a contravariant
functor from the category of R-modules to itself.

(2) For any R-module M we denote

F (M) =
⊕

m∈M
R[m]

the free module with basis given by the elements [m] with m ∈M . We let
F (M)→M ,

∑
fi[mi] 7→

∑
fimi be the natural surjection of R-modules.

We think of M 7→ (F (M) → M) as a functor from the category of R-
modules to the category of arrows in R-modules.

Lemma 15.55.6.01DA Let R be a ring. The functor M 7→M∨ is exact.
Proof. This because Q/Z is an injective abelian group by Lemma 15.54.1. □

There is a canonical map ev : M → (M∨)∨ given by evaluation: given x ∈ M we
let ev(x) ∈ (M∨)∨ = Hom(M∨,Q/Z) be the map φ 7→ φ(x).

https://stacks.math.columbia.edu/tag/01D9
https://stacks.math.columbia.edu/tag/01DA
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Lemma 15.55.7.01DB For any R-module M the evaluation map ev : M → (M∨)∨ is
injective.

Proof. You can check this using that Q/Z is an injective abelian group. Namely, if
x ∈M is not zero, then let M ′ ⊂M be the cyclic group it generates. There exists
a nonzero map M ′ → Q/Z which necessarily does not annihilate x. This extends
to a map φ : M → Q/Z and then ev(x)(φ) = φ(x) ̸= 0. □

The canonical surjection F (M)→M of R-modules turns into a canonical injection,
see above, of R-modules

(M∨)∨ −→ (F (M∨))∨.

Set J(M) = (F (M∨))∨. The composition of ev with this the displayed map gives
M → J(M) functorially in M .

Lemma 15.55.8.01DC Let R be a ring. For every R-module M the R-module J(M) is
injective.

Proof. Note that J(M) ∼=
∏
φ∈M∨ R∨ as an R-module. As the product of injective

modules is injective, it suffices to show that R∨ is injective. For this we use that
HomR(N,R∨) = HomR(N,HomZ(R,Q/Z)) = N∨

and the fact that (−)∨ is an exact functor by Lemma 15.55.6. □

Lemma 15.55.9.01DD Let R be a ring. The construction above defines a covariant
functor M 7→ (M → J(M)) from the category of R-modules to the category of
arrows of R-modules such that for every module M the output M → J(M) is an
injective map of M into an injective R-module J(M).

Proof. Follows from the above. □

In particular, for any map of R-modules M → N there is an associated morphism
J(M)→ J(N) making the following diagram commute:

M

��

// N

��
J(M) // J(N)

This is the kind of construction we would like to have in general. In Homology,
Section 12.27 we introduced terminology to express this. Namely, we say this means
that the category of R-modules has functorial injective embeddings.

15.56. Derived categories of modules

0914 In this section we put some generalities concerning the derived category of modules
over a ring.
Let A be a ring. The category of A-modules is denoted ModA. We will use the
symbol K(A) to denote the homotopy category of complexes of A-modules, i.e.,
we set K(A) = K(ModA) as a category, see Derived Categories, Section 13.8. The
bounded versions are K+(A), K−(A), and Kb(A). We view K(A) as a triangulated
category as in Derived Categories, Section 13.10. The derived category of A, de-
noted D(A), is the category obtained from K(A) by inverting quasi-isomorphisms,

https://stacks.math.columbia.edu/tag/01DB
https://stacks.math.columbia.edu/tag/01DC
https://stacks.math.columbia.edu/tag/01DD
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i.e., we set D(A) = D(ModA), see Derived Categories, Section 13.116. The bounded
versions are D+(A), D−(A), and Db(A).
Let A be a ring. The category of A-modules has products and products are exact.
The category of A-modules has enough injectives by Lemma 15.55.9. Hence every
complex of A-modules is quasi-isomorphic to a K-injective complex (Derived Cate-
gories, Lemma 13.34.5). It follows that D(A) has countable products (Derived Cat-
egories, Lemma 13.34.2) and in fact arbitrary products (Injectives, Lemma 19.13.4).
This implies that every inverse system of objects of D(A) has a derived limit (well
defined up to isomorphism), see Derived Categories, Section 13.34.

Lemma 15.56.1.0915 Let R → S be a flat ring map. If I• is a K-injective complex of
S-modules, then I• is K-injective as a complex of R-modules.

Proof. This is true because HomK(R)(M•, I•) = HomK(S)(M• ⊗R S, I•) by Alge-
bra, Lemma 10.14.3 and the fact that tensoring with S is exact. □

Lemma 15.56.2.0916 Let R → S be an epimorphism of rings. Let I• be a complex of
S-modules. If I• is K-injective as a complex of R-modules, then I• is a K-injective
complex of S-modules.

Proof. This is true because HomK(R)(N•, I•) = HomK(S)(N•, I•) for any complex
of S-modules N•, see Algebra, Lemma 10.107.14. □

Lemma 15.56.3.0917 Let A → B be a ring map. If I• is a K-injective complex of
A-modules, then HomA(B, I•) is a K-injective complex of B-modules.

Proof. This is true because HomK(B)(N•,HomA(B, I•)) = HomK(A)(N•, I•) by
Algebra, Lemma 10.14.4. □

15.57. Computing Tor

064F Let R be a ring. We denote D(R) the derived category of the abelian category
ModR of R-modules. Note that ModR has enough projectives as every free R-
module is projective. Thus we can define the left derived functors of any additive
functor from ModR to any abelian category.
This applies in particular to the functor−⊗RM : ModR → ModR whose left derived
functors are the Tor functors TorRi (−,M), see Algebra, Section 10.75. There is also
a total left derived functor
(15.57.0.1)064G −⊗L

RM : D−(R) −→ D−(R)
which is denoted −⊗L

RM . Its satellites are the Tor modules, i.e., we have
H−p(N ⊗L

RM) = TorRp (N,M).

A special situation occurs when we consider the tensor product with an R-algebra
A. In this case we think of − ⊗R A as a functor from ModR to ModA. Hence the
total right derived functor
(15.57.0.2)064H −⊗L

RA : D−(R) −→ D−(A)
which is denoted −⊗L

R A. Its satellites are the tor groups, i.e., we have
H−p(N ⊗L

R A) = TorRp (N,A).

6See also Injectives, Remark 19.13.3.

https://stacks.math.columbia.edu/tag/0915
https://stacks.math.columbia.edu/tag/0916
https://stacks.math.columbia.edu/tag/0917


15.58. TENSOR PRODUCTS OF COMPLEXES 1311

In particular these Tor groups naturally have the structure of A-modules.

We will generalize the material in this section to unbounded complexes in the next
few sections.

15.58. Tensor products of complexes

0GWN Let R be a ring. The category Comp(R) of complexes of R-modules has a symmetric
monoidal structure. Namely, suppose that we have two complexes of R-modules L•

and M•. Using Homology, Example 12.18.2 and Homology, Definition 12.18.3 we
obtain a third complex of R-modules, namely

Tot(L• ⊗RM•)

Clearly this construction is functorial in both L• and M•. The associativity con-
straint will be the canonical isomorphism of complexes

Tot(Tot(K• ⊗R L•)⊗RM•) −→ Tot(K• ⊗R Tot(L• ⊗RM•))

constructed in Homology, Remark 12.18.4 from the triple complex K•⊗RL•⊗RM•.
The commutativity constraint is the canonical isomorphism

Tot(L• ⊗RM•)→ Tot(M• ⊗R L•)

which uses the sign (−1)pq on the summand Lp ⊗RMq. To see that it is a map of
complexes we compute for x ∈ Lp and y ∈Mq that

d(x⊗ y) = dL(x)⊗ y + (−1)px⊗ dM (y)

Our rule says the right hand side is mapped to

(−1)(p+1)qy ⊗ dL(x) + (−1)p+p(q+1)dM (y)⊗ x

On the other hand, we see that

d((−1)pqy ⊗ x) = (−1)pqdM (y)⊗ x+ (−1)pq+qy ⊗ dL(x)

These two expressions agree by inspection as desired.

Lemma 15.58.1.0FNI Let R be a ring. The category Comp(R) of complexes of R-
modules endowed with the functor (L•,M•) 7→ Tot(L• ⊗R M•) and associativity
and commutativity constraints as above is a symmetric monoidal category.

Proof. Omitted. Hints: as unit 1 we take the complex having R in degree 0
and zero in other degrees with obvious isomorphisms Tot(1 ⊗R M•) = M• and
Tot(K• ⊗R 1) = K•. to prove the lemma you have to check the commutativity of
various diagrams, see Categories, Definitions 4.43.1 and 4.43.9. The verifications
are straightforward in each case. □

Lemma 15.58.2.064I Let R be a ring. Let P • be a complex of R-modules. Let α, β :
L• →M• be homotopic maps of complexes. Then α and β induce homotopic maps

Tot(α⊗ idP ),Tot(β ⊗ idP ) : Tot(L• ⊗R P •) −→ Tot(M• ⊗R P •).

In particular the construction L• 7→ Tot(L• ⊗R P •) defines an endo-functor of the
homotopy category of complexes.

https://stacks.math.columbia.edu/tag/0FNI
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Proof. Say α = β+dh+hd for some homotopy h defined by hn : Ln →Mn−1. Set

Hn =
⊕

a+b=n
ha ⊗ idP b :

⊕
a+b=n

La ⊗R P b −→
⊕

a+b=n
Ma−1 ⊗R P b

Then a straightforward computation shows that
Tot(α⊗ idP ) = Tot(β ⊗ idP ) + dH +Hd

as maps Tot(L• ⊗R P •)→ Tot(M• ⊗R P •). □

Lemma 15.58.3.0GWP Let R be a ring. The homotopy category K(R) of complexes of
R-modules endowed with the functor (L•,M•) 7→ Tot(L•⊗RM•) and associativity
and commutativity constraints as above is a symmetric monoidal category.

Proof. This follows from Lemmas 15.58.1 and 15.58.2. Details omitted. □

Lemma 15.58.4.064J Let R be a ring. Let P • be a complex of R-modules. The functors
K(R) −→ K(R), L• 7−→ Tot(P • ⊗R L•)

and
K(R) −→ K(R), L• 7−→ Tot(L• ⊗R P •)

are exact functors of triangulated categories.

Proof. This follows from Derived Categories, Remark 13.10.9. □

15.59. Derived tensor product

06XY We can construct the derived tensor product in greater generality. In fact, it turns
out that the boundedness assumptions are not necessary, provided we choose K-flat
resolutions.

Definition 15.59.1.06XZ Let R be a ring. A complex K• is called K-flat if for every
acyclic complex M• the total complex Tot(M• ⊗R K•) is acyclic.

Lemma 15.59.2.06Y0 Let R be a ring. Let K• be a K-flat complex. Then the functor
K(R) −→ K(R), L• 7−→ Tot(L• ⊗R K•)

transforms quasi-isomorphisms into quasi-isomorphisms.

Proof. Follows from Lemma 15.58.4 and the fact that quasi-isomorphisms in K(R)
are characterized by having acyclic cones. □

Lemma 15.59.3.06Y1 Let R→ R′ be a ring map. IfK• is a K-flat complex of R-modules,
then K• ⊗R R′ is a K-flat complex of R′-modules.

Proof. Follows from the definitions and the fact that (K•⊗RR′)⊗R′L• = K•⊗RL•

for any complex L• of R′-modules. □

Lemma 15.59.4.0795 Let R be a ring. If K•, L• are K-flat complexes of R-modules,
then Tot(K• ⊗R L•) is a K-flat complex of R-modules.

Proof. Follows from the isomorphism
Tot(M• ⊗R Tot(K• ⊗R L•)) = Tot(Tot(M• ⊗R K•)⊗R L•)

and the definition. □

Lemma 15.59.5.06Y2 Let R be a ring. Let (K•
1 ,K

•
2 ,K

•
3 ) be a distinguished triangle in

K(R). If two out of three of K•
i are K-flat, so is the third.

https://stacks.math.columbia.edu/tag/0GWP
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Proof. Follows from Lemma 15.58.4 and the fact that in a distinguished triangle in
K(R) if two out of three are acyclic, so is the third. □

Lemma 15.59.6.0BYH Let R be a ring. Let 0→ K•
1 → K•

2 → K•
3 → 0 be a short exact

sequence of complexes. If Kn
3 is flat for all n ∈ Z and two out of three of K•

i are
K-flat, so is the third.

Proof. Let L• be a complex of R-modules. Then
0→ Tot(L• ⊗R K•

1 )→ Tot(L• ⊗R K•
2 )→ Tot(L• ⊗R K•

3 )→ 0
is a short exact sequence of complexes. Namely, for each n,m the sequence of
modules 0 → Ln ⊗R Km

1 → Ln ⊗R Km
2 → Ln ⊗R Km

3 → 0 is exact by Algebra,
Lemma 10.39.12 and the sequence of complexes is a direct sum of these. Thus the
lemma follows from this and the fact that in a short exact sequence of complexes
if two out of three are acyclic, so is the third. □

Lemma 15.59.7.064K Let R be a ring. Let P • be a bounded above complex of flat
R-modules. Then P • is K-flat.

Proof. Let L• be an acyclic complex of R-modules. Let ξ ∈ Hn(Tot(L• ⊗R P •)).
We have to show that ξ = 0. Since Totn(L• ⊗R P •) is a direct sum with terms
La⊗RP b we see that ξ comes from an element in Hn(Tot(τ≤mL

•⊗RP •)) for some
m ∈ Z. Since τ≤mL

• is also acyclic we may replace L• by τ≤mL
•. Hence we may

assume that L• is bounded above. In this case the spectral sequence of Homology,
Lemma 12.25.3 has

′Ep,q1 = Hp(L• ⊗R P q)
which is zero as P q is flat and L• acyclic. Hence H∗(Tot(L• ⊗R P •)) = 0. □

In the following lemma by a colimit of a system of complexes we mean the termwise
colimit.

Lemma 15.59.8.06Y3 Let R be a ring. Let K•
1 → K•

2 → . . . be a system of K-flat
complexes. Then colimiK

•
i is K-flat. More generally any filtered colimit of K-flat

complexes is K-flat.

Proof. Because we are taking termwise colimits we have
colimi Tot(M• ⊗R K•

i ) = Tot(M• ⊗R colimiK
•
i )

by Algebra, Lemma 10.12.9. Hence the lemma follows from the fact that filtered
colimits are exact, see Algebra, Lemma 10.8.8. □

Lemma 15.59.9.0E8F Let R be a ring. Let K• be a complex of R-modules. If K•⊗RM
is acyclic for all finitely presented R-modules M , then K• is K-flat.

Proof. We will use repeatedly that tensor product commute with colimits (Algebra,
Lemma 10.12.9). Thus we see that K•⊗RM is acyclic for any R-module M , because
any R-module is a filtered colimit of finitely presented R-modules M , see Algebra,
Lemma 10.11.3. Let M• be an acyclic complex of R-modules. We have to show
that Tot(M• ⊗R K•) is acyclic. Since M• = colim τ≤nM

• (termwise colimit) we
have

Tot(M• ⊗R K•) = colim Tot(τ≤nM
• ⊗R K•)

with truncations as in Homology, Section 12.15. As filtered colimits are exact
(Algebra, Lemma 10.8.8) we may replace M• by τ≤nM

• and assume that M• is

https://stacks.math.columbia.edu/tag/0BYH
https://stacks.math.columbia.edu/tag/064K
https://stacks.math.columbia.edu/tag/06Y3
https://stacks.math.columbia.edu/tag/0E8F
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bounded above. In the bounded above case, we can write M• = colim σ≥−nM
•

where the complexes σ≥−nM
• are bounded but possibly no longer acyclic. Arguing

as above we reduce to the case where M• is a bounded complex. Finally, for a
bounded complex Ma → . . .→M b we can argue by induction on the length b− a
of the complex. The case b− a = 1 we have seen above. For b− a > 1 we consider
the split short exact sequence of complexes

0→ σ≥a+1M
• →M• →Ma[−a]→ 0

and we apply Lemma 15.58.4 to do the induction step. Some details omitted. □

Lemma 15.59.10.06Y4 Let R be a ring. For any complex M• there exists a K-flat
complex K• whose terms are flat R-modules and a quasi-isomorphism K• → M•

which is termwise surjective.

Proof. Let P ⊂ Ob(ModR) be the class of flat R-modules. By Derived Categories,
Lemma 13.29.1 there exists a system K•

1 → K•
2 → . . . and a diagram

K•
1

��

// K•
2

��

// . . .

τ≤1M
• // τ≤2M

• // . . .

with the properties (1), (2), (3) listed in that lemma. These properties imply each
complex K•

i is a bounded above complex of flat modules. Hence K•
i is K-flat by

Lemma 15.59.7. The induced map colimiK
•
i → M• is a quasi-isomorphism and

termwise surjective by construction. The complex colimiK
•
i is K-flat by Lemma

15.59.8. The terms colimKn
i are flat because filtered colimits of flat modules are

flat, see Algebra, Lemma 10.39.3. □

Remark 15.59.11.09PB In fact, we can do better than Lemma 15.59.10. Namely, we can
find a quasi-isomorphism P • →M• where P • is a complex of R-modules endowed
with a filtration

0 = F−1P
• ⊂ F0P

• ⊂ F1P
• ⊂ . . . ⊂ P •

by subcomplexes such that
(1) P • =

⋃
FpP

•,
(2) the inclusions FiP • → Fi+1P

• are termwise split injections,
(3) the quotients Fi+1P

•/FiP
• are isomorphic to direct sums of shifts R[k]

(as complexes, so differentials are zero).
This will be shown in Differential Graded Algebra, Lemma 22.20.4. Moreover, given
such a complex we obtain a distinguished triangle⊕

FiP
• →

⊕
FiP

• →M• →
⊕

FiP
•[1]

in D(R). Using this we can sometimes reduce statements about general complexes
to statements about R[k] (this of course only works if the statement is preserved
under taking direct sums). More precisely, let T be a property of objects of D(R).
Suppose that

(1) if Ki ∈ D(R), i ∈ I is a family of objects with T (Ki) for all i ∈ I, then
T (
⊕
Ki),

(2) if K → L → M → K[1] is a distinguished triangle and T holds for two,
then T holds for the third object,

https://stacks.math.columbia.edu/tag/06Y4
https://stacks.math.columbia.edu/tag/09PB
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(3) T (R[k]) holds for all k.
Then T holds for all objects of D(R).

Lemma 15.59.12.064L Let R be a ring. Let α : P • → Q• be a quasi-isomorphism of
K-flat complexes of R-modules. For every complex L• of R-modules the induced
map

Tot(idL ⊗ α) : Tot(L• ⊗R P •) −→ Tot(L• ⊗R Q•)
is a quasi-isomorphism.

Proof. Choose a quasi-isomorphism K• → L• with K• a K-flat complex, see
Lemma 15.59.10. Consider the commutative diagram

Tot(K• ⊗R P •) //

��

Tot(K• ⊗R Q•)

��
Tot(L• ⊗R P •) // Tot(L• ⊗R Q•)

The result follows as by Lemma 15.59.2 the vertical arrows and the top horizontal
arrow are quasi-isomorphisms. □

Let R be a ring. Let M• be an object of D(R). Choose a K-flat resolution K• →
M•, see Lemma 15.59.10. By Lemmas 15.58.2 and 15.58.4 we obtain an exact
functor of triangulated categories

K(R) −→ K(R), L• 7−→ Tot(L• ⊗R K•)
By Lemma 15.59.2 this functor induces a functor D(R) → D(R) simply because
D(R) is the localization of K(R) at quasi-isomorphism. By Lemma 15.59.12 the
resulting functor (up to isomorphism) does not depend on the choice of the K-flat
resolution.

Definition 15.59.13.064M Let R be a ring. Let M• be an object of D(R). The derived
tensor product

−⊗L
RM

• : D(R) −→ D(R)
is the exact functor of triangulated categories described above.

This functor extends the functor (15.57.0.1). It is clear from our explicit construc-
tions that there is an isomorphism (involving a choice of signs, see below)

M• ⊗L
R L

• ∼= L• ⊗L
RM

•

whenever both L• and M• are in D(R). Hence when we write M• ⊗L
R L

• we will
usually be agnostic about which variable we are using to define the derived tensor
product with.

Lemma 15.59.14.0BYI Let R be a ring. Let K•, L• be complexes of R-modules. There
is a canonical isomorphism

K• ⊗L
R L

• −→ L• ⊗L
R K

•

functorial in both complexes which uses a sign of (−1)pq for the map Kp ⊗R Lq →
Lq ⊗R Kp (see proof for explanation).

Proof. We may and do replace the complexes by K-flat complexes K• and L• and
then we use the commutativity constraint discussed in Section 15.58. □

https://stacks.math.columbia.edu/tag/064L
https://stacks.math.columbia.edu/tag/064M
https://stacks.math.columbia.edu/tag/0BYI
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Lemma 15.59.15.0BYJ Let R be a ring. Let K•, L•,M• be complexes of R-modules.
There is a canonical isomorphism

(K• ⊗L
R L

•)⊗L
RM

• = K• ⊗L
R (L• ⊗L

RM
•)

functorial in all three complexes.

Proof. Replace the complexes by K-flat complexes and use the associativity con-
straint in Section 15.58. □

Lemma 15.59.16.0G6M Let R be a ring. Let a : K• → L• be a map of complexes of
R-modules. If K• is K-flat, then there exist a complex N• and maps of complexes
b : K• → N• and c : N• → L• such that

(1) N• is K-flat,
(2) c is a quasi-isomorphism,
(3) a is homotopic to c ◦ b.

If the terms of K• are flat, then we may choose N•, b, and c such that the same is
true for N•.

Proof. We will use that the homotopy category K(R) is a triangulated category,
see Derived Categories, Proposition 13.10.3. Choose a distinguished triangle K• →
L• → C• → K•[1]. Choose a quasi-isomorphism M• → C• with M• K-flat with
flat terms, see Lemma 15.59.10. By the axioms of triangulated categories, we may
fit the composition M• → C• → K•[1] into a distinguished triangle K• → N• →
M• → K•[1]. By Lemma 15.59.5 we see that N• is K-flat. Again using the axioms
of triangulated categories, we can choose a map N• → L• fitting into the following
morphism of distinghuised triangles

K• //

��

N• //

��

M• //

��

K•[1]

��
K• // L• // C• // K•[1]

Since two out of three of the arrows are quasi-isomorphisms, so is the third arrow
N• → L• by the long exact sequences of cohomology associated to these distin-
guished triangles (or you can look at the image of this diagram in D(R) and use
Derived Categories, Lemma 13.4.3 if you like). This finishes the proof of (1), (2),
and (3). To prove the final assertion, we may choose N• such that Nn ∼= Mn⊕Kn,
see Derived Categories, Lemma 13.10.7. Hence we get the desired flatness if the
terms of K• are flat. □

15.60. Derived change of rings

06Y5 Let R → A be a ring map. Let N• be a complex of A-modules. We can also use
K-flat resolutions to define a functor

−⊗L
R N

• : D(R)→ D(A)

as the left derived functor of the functor K(R) → K(A), M• 7→ Tot(M• ⊗R N•).
In particular, taking N• = A[0] we obtain a derived base change functor

−⊗L
R A : D(R)→ D(A)

https://stacks.math.columbia.edu/tag/0BYJ
https://stacks.math.columbia.edu/tag/0G6M
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extending the functor (15.57.0.2). Namely, for every complex of R-modules M• we
can choose a K-flat resolution K• →M• and set

M• ⊗L
R N

• = Tot(K• ⊗R N•).
You can use Lemmas 15.59.10 and 15.59.12 to see that this is well defined. However,
to cross all the t’s and dot all the i’s it is perhaps more convenient to use some
general theory.

Lemma 15.60.1.06Y6 The construction above is independent of choices and defines an
exact functor of triangulated categories − ⊗L

R N• : D(R) → D(A). There is a
functorial isomorphism

E• ⊗L
R N

• = (E• ⊗L
R A)⊗L

A N
•

for E• in D(R).

Proof. To prove the existence of the derived functor − ⊗L
R N

• we use the general
theory developed in Derived Categories, Section 13.14. Set D = K(R) and D′ =
D(A). Let us write F : D → D′ the exact functor of triangulated categories
defined by the rule F (M•) = Tot(M• ⊗R N•). To prove the stated properties of
F use Lemmas 15.58.2 and 15.58.4. We let S be the set of quasi-isomorphisms in
D = K(R). This gives a situation as in Derived Categories, Situation 13.14.1 so
that Derived Categories, Definition 13.14.2 applies. We claim that LF is everywhere
defined. This follows from Derived Categories, Lemma 13.14.15 with P ⊂ Ob(D)
the collection of K-flat complexes: (1) follows from Lemma 15.59.10 and (2) follows
from Lemma 15.59.12. Thus we obtain a derived functor

LF : D(R) = S−1D −→ D′ = D(A)
see Derived Categories, Equation (13.14.9.1). Finally, Derived Categories, Lemma
13.14.15 guarantees that LF (K•) = F (K•) = Tot(K• ⊗R N•) when K• is K-flat,
i.e., LF is indeed computed in the way described above. Moreover, by Lemma
15.59.3 the complex K• ⊗R A is a K-flat complex of A-modules. Hence

(K• ⊗L
R A)⊗L

A N
• = Tot((K• ⊗R A)⊗A N•) = Tot(K• ⊗A N•) = K• ⊗L

A N
•

which proves the final statement of the lemma. □

Lemma 15.60.2.0BYK Let R → A be a ring map. Let f : L• → N• be a map of
complexes of A-modules. Then f induces a transformation of functors

1⊗ f : −⊗L
A L

• −→ −⊗L
A N

•

If f is a quasi-isomorphism, then 1⊗ f is an isomorphism of functors.

Proof. Since the functors are computing by evaluating on K-flat complexes K• we
can simply use the functoriality

Tot(K• ⊗R L•)→ Tot(K• ⊗R N•)
to define the transformation. The last statement follows from Lemma 15.59.2. □

Lemma 15.60.3.0GMT Let R → A be a ring map. The functor D(R) → D(A), E 7→
E ⊗L

R A of Lemma 15.60.1 is left adjoint to the restriction functor D(A)→ D(R).

Proof. This follows from Derived Categories, Lemma 13.30.1 and the fact that
−⊗R A and restriction are adjoint by Algebra, Lemma 10.14.3. □

https://stacks.math.columbia.edu/tag/06Y6
https://stacks.math.columbia.edu/tag/0BYK
https://stacks.math.columbia.edu/tag/0GMT
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Remark 15.60.4 (Warning).08YT Let R → A be a ring map, and let N and N ′ be
A-modules. Denote NR and N ′

R the restriction of N and N ′ to R-modules, see
Algebra, Section 10.14. In this situation, the objects NR ⊗L

R N
′ and N ⊗L

R N
′
R of

D(A) are in general not isomorphic! In other words, one has to pay careful attention
as to which of the two sides is being used to provide the A-module structure.
For a specific example, set R = k[x, y], A = R/(xy), N = R/(x) and N ′ = A =
R/(xy). The resolution 0→ R

xy−→ R→ N ′
R → 0 shows thatN⊗L

RN
′
R = N [1]⊕N in

D(A). The resolution 0→ R
x−→ R→ NR → 0 shows that NR⊗L

RN
′ is represented

by the complex A
x−→ A. To see these two complexes are not isomorphic, one can

show that the second complex is not isomorphic in D(A) to the direct sum of its
cohomology groups, or one can show that the first complex is not a perfect object
of D(A) whereas the second one is. Some details omitted.

Lemma 15.60.5.08YU Let A→ B → C be ring maps. Let N• be a complex of B-modules
and K• a complex of C-modules. The compositions of the functors

D(A) −⊗L
AN

•

−−−−−→ D(B) −⊗L
BK

•

−−−−−→ D(C)
is the functor −⊗L

A (N•⊗L
B K

•) : D(A)→ D(C). If M , N , K are modules over A,
B, C, then we have

(M ⊗L
A N)⊗L

B K = M ⊗L
A (N ⊗L

B K) = (M ⊗L
A C)⊗L

C (N ⊗L
B K)

in D(C). We also have a canonical isomorphism
(M ⊗L

A N)⊗L
B K −→ (M ⊗L

A K)⊗L
C (N ⊗L

B C)
using signs. Similar results holds for complexes.

Proof. Choose a K-flat complex P • of B-modules and a quasi-isomorphism P • →
N• (Lemma 15.59.10). Let M• be a K-flat complex of A-modules representing an
arbitrary object of D(A). Then we see that

(M• ⊗L
A P

•)⊗L
B K

• −→ (M• ⊗L
A N

•)⊗L
B K

•

is an isomorphism by Lemma 15.60.2 applied to the material inside the brackets.
By Lemmas 15.59.3 and 15.59.4 the complex

Tot(M• ⊗A P •) = Tot((M• ⊗R A)⊗A P •

is K-flat as a complex of B-modules and it represents the derived tensor product
in D(B) by construction. Hence we see that (M• ⊗L

A P
•)⊗L

B K
• is represented by

the complex
Tot(Tot(M• ⊗A P •)⊗B K•) = Tot(M• ⊗A Tot(P • ⊗B K•))

of C-modules. Equality by Homology, Remark 12.18.4. Going back the way we
came we see that this is equal to

M• ⊗L
A (P • ⊗L

B K
•)←−M• ⊗L

A (N• ⊗L
B K

•)
The arrow is an isomorphism by definition of the functor −⊗L

BK
•. All of these con-

structions are functorial in the complex M• and hence we obtain our isomorphism
of functors.
By the above we have the first equality in

(M ⊗L
A N)⊗L

B K = M ⊗L
A (N ⊗L

B K) = (M ⊗L
A C)⊗L

C (N ⊗L
B K)

https://stacks.math.columbia.edu/tag/08YT
https://stacks.math.columbia.edu/tag/08YU
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The second equality follows from the final statement of Lemma 15.60.1. The same
thing allows us to write N ⊗L

B K = (N ⊗L
B C)⊗L

C K and substituting we get
(M ⊗L

A N)⊗L
B K = (M ⊗L

A C)⊗L
C ((N ⊗L

B C)⊗L
C K)

= (M ⊗L
A C)⊗L

C (K ⊗L
C (N ⊗L

B C))
= ((M ⊗L

A C)⊗L
C K)⊗L

C (N ⊗L
B C))

= (M ⊗L
C K)⊗L

C (N ⊗L
B C)

by Lemmas 15.59.14 and 15.59.15 as well as the previously mentioned lemma. □

15.61. Tor independence

065Y Consider a commutative diagram

A // A′

R //

OO

R′

OO

of rings. Given an object K of D(A) we can consider its derived base change
K ⊗L

AA
′ to an object of D(A′). Or we can take the restriction of K to an object of

D(R) and consider the derived base change of this to an object of D(R′), denoted
K ⊗L

R R
′ We claim there is a functorial comparison map

(15.61.0.1)065Z K ⊗L
R R

′ −→ K ⊗L
A A

′

in D(R′). To construct this comparison map choose a K-flat complex K• of A-
modules representing K. Next, choose a quasi-isomorphism E• → K• where E• is
a K-flat complex of R-modules. The map above is the map

K ⊗L
R R

′ = E• ⊗R R′ −→ K• ⊗A A′ = K ⊗L
A A

′

In general there is no chance that this map is an isomorphism.
However, we often encounter the situation where the diagram above is a “base
change” diagram of rings, i.e., A′ = A ⊗R R′. In this situation, for any A-module
M we have M ⊗A A′ = M ⊗R R′. Thus − ⊗R R′ is equal to − ⊗A A′ as a
functor ModA → ModA′ . In general this equality does not extend to derived tensor
products. In other words, the comparison map is not an isomorphism. A simple
example is to take R = k[x], A = R′ = A′ = k[x]/(x) = k and K• = A[0]. Clearly,
a necessary condition is that TorRp (A,R′) = 0 for all p > 0.

Definition 15.61.1.0660 Let R be a ring. Let A, B be R-algebras. We say A and B are
Tor independent over R if TorRp (A,B) = 0 for all p > 0.

Lemma 15.61.2.0661 The comparison map (15.61.0.1) is an isomorphism if A′ = A⊗RR′

and A and R′ are Tor independent over R.

Proof. To prove this we choose a free resolution F • → R′ of R′ as an R-module.
Because A and R′ are Tor independent over R we see that F • ⊗R A is a free A-
module resolution of A′ over A. By our general construction of the derived tensor
product above we see that
K•⊗AA′ ∼= Tot(K•⊗A (F •⊗RA)) = Tot(K•⊗RF •) ∼= Tot(E•⊗RF •) ∼= E•⊗RR′

as desired. □

https://stacks.math.columbia.edu/tag/0660
https://stacks.math.columbia.edu/tag/0661
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Lemma 15.61.3.08HW Consider a commutative diagram of rings

A′ R′ //oo B′

A

OO

Roo

OO

// B

OO

Assume that R′ is flat over R and A′ is flat over A⊗RR′ and B′ is flat over R′⊗RB.
Then

TorRi (A,B)⊗(A⊗RB) (A′ ⊗R′ B′) = TorR
′

i (A′, B′)

Proof. By Algebra, Section 10.76 there are canonical maps

TorRi (A,B) −→ TorR
′

i (A⊗R R′, B ⊗R R′) −→ TorR
′

i (A′, B′)

These induce a map from left to right in the formula of the lemma.

Take a free resolution F• → A of A as an R-module. Then we see that F•⊗RR′ is a
resolution of A⊗RR′. Hence TorR

′

i (A⊗RR′, B⊗RR′) is computed by F•⊗RB⊗RR′.
By our assumption that R′ is flat over R, this computes TorRi (A,B) ⊗R R′. Thus
TorR

′

i (A⊗R R′, B ⊗R R′) = TorRi (A,B)⊗R R′ (uses only flatness of R′ over R).

By Lazard’s theorem (Algebra, Theorem 10.81.4) we can write A′, resp. B′ as a
filtered colimit of finite free A ⊗R R′, resp. B ⊗R R′-modules. Say A′ = colimMi

and B′ = colimNj . The result above gives

TorR
′

i (Mi, Nj) = TorRi (A,B)⊗A⊗RB (Mi ⊗R′ Nj)

as one can see by writing everything out in terms of bases. Taking the colimit we
get the result of the lemma. □

Lemma 15.61.4.0FXF Let R→ A and R→ B be ring maps. Let R→ R′ be a ring map
and set A′ = A⊗R R′ and B′ = B ⊗R R′. If A and B are tor independent over R
and R→ R′ is flat, then A′ and B′ are tor independent over R′.

Proof. Follows immediately from Lemma 15.61.3 and Definition 15.61.1. □

Lemma 15.61.5.0DJD Assumptions as in Lemma 15.61.3. For M ∈ D(A) there are
canonical isomorphisms

Hi((M ⊗L
A A

′)⊗L
R′ B′) = Hi(M ⊗L

R B)⊗(A⊗RB) (A′ ⊗R′ B′)

of A′ ⊗R′ B′-modules.

Proof. Let us elucidate the two sides of the equation. On the left hand side we
have the composition of the functors D(A) → D(A′) → D(R′) → D(B′) with the
functor Hi : D(B′)→ ModB′ . Since there is a map from A′ to the endomorphisms
of the object (M ⊗L

A A
′)⊗L

R′ B′ in D(B′), we see that the left hand side is indeed
an A′ ⊗R′ B′-module. By the same arguments we see that Hi(M ⊗L

R B) has an
A⊗R B-module structure.

We first prove the result in case B′ = R′ ⊗R B. In this case we choose a resolution
F • → B by free R-modules. We also choose a K-flat complex M• of A-modules

https://stacks.math.columbia.edu/tag/08HW
https://stacks.math.columbia.edu/tag/0FXF
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representing M . Then the left hand side is represented by
Hi(Tot((M• ⊗A A′)⊗R′ (R′ ⊗R F •))) = Hi(Tot(M• ⊗A A′ ⊗R F •))

= Hi(Tot(M• ⊗R F •)⊗A A′)
= Hi(M ⊗L

R B)⊗A A′

The final equality because A → A′ is flat. The final module is the desired module
because A′⊗R′ B′ = A′⊗RB since we’ve assumed B′ = R′⊗RB in this paragraph.
General case. Suppose that B′ → B′′ is a flat ring map. Then it is easy to see that

Hi((M ⊗L
A A

′)⊗L
R′ B′′) = Hi((M ⊗L

A A
′)⊗L

R′ B′)⊗B′ B′′

and
Hi(M ⊗L

R B)⊗(A⊗RB) (A′ ⊗R′ B′′) =
(
Hi(M ⊗L

R B)⊗(A⊗RB) (A′ ⊗R′ B′)
)
⊗B′ B′′

Thus the result for B′ implies the result for B′′. Since we’ve proven the result for
R′ ⊗R B in the previous paragraph, this implies the result in general. □

Lemma 15.61.6.08HX Let R be a ring. Let A, B be R-algebras. The following are
equivalent

(1) A and B are Tor independent over R,
(2) for every pair of primes p ⊂ A and q ⊂ B lying over the same prime r ⊂ R

the rings Ap and Bq are Tor independent over Rr, and
(3) For every prime s of A⊗R B the module

TorRi (A,B)s = TorRr
i (Ap, Bq)s

(where p = A ∩ s, q = B ∩ s and r = R ∩ s) is zero.

Proof. Let s be a prime of A⊗R B as in (3). The equality

TorRi (A,B)s = TorRr
i (Ap, Bq)s

where p = A ∩ s, q = B ∩ s and r = R ∩ s follows from Lemma 15.61.3. Hence
(2) implies (3). Since we can test the vanishing of modules by localizing at primes
(Algebra, Lemma 10.23.1) we conclude that (3) implies (1). For (1) ⇒ (2) we use
that

TorRr
i (Ap, Bq) = TorRi (A,B)⊗(A⊗RB) (Ap ⊗Rr

Bq)
again by Lemma 15.61.3. □

15.62. Spectral sequences for Tor

061Y In this section we collect various spectral sequences that come up when considering
the Tor functors.

Example 15.62.1.061Z Let R be a ring. Let K• be a chain complex of R-modules with
Kn = 0 for n ≪ 0. Let M be an R-module. Choose a resolution P• → M of
M by free R-modules. We obtain a double chain complex K• ⊗R P•. Applying
the material in Homology, Section 12.25 (especially Homology, Lemma 12.25.3)
translated into the language of chain complexes we find two spectral sequences
converging to H∗(K• ⊗L

R M). Namely, on the one hand a spectral sequence with
E2-page

(E2)i,j = TorRj (Hi(K•),M)⇒ Hi+j(K• ⊗L
RM)

https://stacks.math.columbia.edu/tag/08HX
https://stacks.math.columbia.edu/tag/061Z
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and differential d2 given by maps TorRj (Hi(K•),M)→ TorRj−2(Hi+1(K•),M). An-
other spectral sequence with E1-page

(E1)i,j = TorRj (Ki,M)⇒ Hi+j(K• ⊗L
RM)

with differential d1 given by maps TorRj (Ki,M) → TorRj (Ki−1,M) induced by
Ki → Ki−1.

Example 15.62.2.068F Let R → S be a ring map. Let M be an R-module and let N
be an S-module. Then there is a spectral sequence

TorSn(TorRm(M,S), N)⇒ TorRn+m(M,N).

To construct it choose a R-free resolution P• of M . Then we have

M ⊗L
R N = P • ⊗R N = (P • ⊗R S)⊗S N

and then apply the first spectral sequence of Example 15.62.1.

Example 15.62.3.0620 Consider a commutative diagram

B // B′ = B ⊗A A′

A //

OO

A′

OO

and B-modules M,N . Set M ′ = M⊗AA′ = M⊗BB′ and N ′ = N⊗AA′ = N⊗BB′.
Assume that A→ B is flat and that M and N are A-flat. Then there is a spectral
sequence

TorAi (TorBj (M,N), A′)⇒ TorB
′

i+j(M ′, N ′)

The reason is as follows. Choose free resolution F• →M as a B-module. As B and
M are A-flat we see that F•⊗A A′ is a free B′-resolution of M ′. Hence we see that
the groups TorB

′

n (M ′, N ′) are computed by the complex

(F• ⊗A A′)⊗B′ N ′ = (F• ⊗B N)⊗A A′ = (F• ⊗B N)⊗L
A A

′

the last equality because F• ⊗B N is a complex of flat A-modules as N is flat over
A. Hence we obtain the spectral sequence by applying the spectral sequence of
Example 15.62.1.

Example 15.62.4.0662 Let K•, L• be objects of D−(R). Then there are spectral se-
quences

Ep,q2 = Hp(K• ⊗L
R H

q(L•))⇒ Hp+q(K• ⊗L
R L

•)

with dp,q2 : Ep,q2 → Ep+2,q−1
2 and

Hq(Hp(K•)⊗L
R L

•)⇒ Hp+q(K• ⊗L
R L

•)

After replacing K• and L• by bounded above complexes of projectives, these spec-
tral sequences are simply the two spectral sequences for computing the cohomology
of Tot(K• ⊗ L•) discussed in Homology, Section 12.25.

https://stacks.math.columbia.edu/tag/068F
https://stacks.math.columbia.edu/tag/0620
https://stacks.math.columbia.edu/tag/0662
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15.63. Products and Tor

068G The simplest example of the product maps comes from the following situation.
Suppose that K•, L• ∈ D(R). Then there are maps

(15.63.0.1)068H Hi(K•)⊗R Hj(L•) −→ Hi+j(K• ⊗L
R L

•)

Namely, to define these maps we may assume that one of K•, L• is a K-flat com-
plex of R-modules (for example a bounded above complex of free or projective R-
modules). In that case K•⊗L

RL
• is represented by the complex Tot(K•⊗RL•), see

Section 15.59 (or Section 15.57). Next, suppose that ξ ∈ Hi(K•) and ζ ∈ Hj(L•).
Choose k ∈ Ker(Ki → Ki+1) and l ∈ Ker(Lj → Lj+1) representing ξ and ζ. Then
we set

ξ ∪ ζ = class of k ⊗ l in Hi+j(Tot(K• ⊗R L•)).

This make sense because the formula (see Homology, Definition 12.18.3) for the
differential d on the total complex shows that k ⊗ l is a cocycle. Moreover, if k′ =
dK(k′′) for some k′′ ∈ Ki−1, then k′⊗ l = d(k′′⊗ l) because l is a cocycle. Similarly,
altering the choice of l representing ζ does not change the class of k⊗ l. It is equally
clear that ∪ is bilinear, and hence to a general element of Hi(K•) ⊗R Hj(L•) we
assign ∑

ξi ⊗ ζi 7−→
∑

ξi ∪ ζi

in Hi+j(Tot(K• ⊗R L•)).

Let R → A be a ring map. Let K•, L• ∈ D(R). Then we have a canonical
identification

(15.63.0.2)068I (K• ⊗L
R A)⊗L

A (L• ⊗L
R A) = (K• ⊗L

R L
•)⊗L

R A

in D(A). It is constructed as follows. First, choose K-flat resolutions P • → K• and
Q• → L• over R. Then the left hand side is represented by the complex Tot((P •⊗R
A) ⊗A (Q• ⊗R A)) and the right hand side by the complex Tot(P • ⊗R Q•) ⊗R A.
These complexes are canonically isomorphic. Thus the construction above induces
products

TorRn (K•, A)⊗A TorRm(L•, A) −→ TorRn+m(K• ⊗L
R L

•, A)

which are occasionally useful.

Let M , N be R-modules. Using the general construction above, the canonical map
M ⊗L

R N →M ⊗R N and functoriality of Tor we obtain canonical maps

(15.63.0.3)068J TorRn (M,A)⊗A TorRm(N,A) −→ TorRn+m(M ⊗R N,A)

Here is a direct construction using projective resolutions. First, choose projective
resolutions

P• →M, Q• → N, T• →M ⊗R N

over R. We haveH0(Tot(P•⊗RQ•)) = M⊗RN by right exactness of⊗R. Hence De-
rived Categories, Lemmas 13.19.6 and 13.19.7 guarantee the existence and unique-
ness of a map of complexes µ : Tot(P• ⊗R Q•) → T• such that H0(µ) = idM⊗RN .
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This induces a canonical map
(M ⊗L

R A)⊗L
A (N ⊗L

R A) = Tot((P• ⊗R A)⊗A (Q• ⊗R A))
= Tot(P• ⊗R Q•)⊗R A
→ T• ⊗R A
= (M ⊗R N)⊗L

R A

in D(A). Hence the products (15.63.0.3) above are constructed using (15.63.0.1)
over A to construct

TorRn (M,A)⊗A TorRm(N,A)→ H−n−m((M ⊗L
R A)⊗L

A (N ⊗L
R A))

and then composing by the displayed map above to end up in TorRn+m(M⊗RN,A).
An interesting special case of the above occurs when M = N = B where B is an
R-algebra. In this case we obtain maps

TorRn (B,A)⊗A TorRm(B,A) −→ TorRn+m(B ⊗R B,A) −→ TorRn+m(B,A)
the second arrow being induced by the multiplication map B ⊗R B → B via func-
toriality for Tor. In other words we obtain an A-algebra structure on TorR⋆ (B,A).
This algebra structure has many intriguing properties (associativity, graded com-
mutative, B-algebra structure, divided powers in some case, etc) which we will
discuss elsewhere (insert future reference here).

Lemma 15.63.1.068K Let R be a ring. Let A,B,C be R-algebras and let B → C be an
R-algebra map. Then the induced map

TorR⋆ (B,A) −→ TorR⋆ (C,A)
is an A-algebra homomorphism.

Proof. Omitted. Hint: You can prove this by working through the definitions,
writing all the complexes explicitly. □

15.64. Pseudo-coherent modules, I

064N Suppose that R is a ring. Recall that an R-module M is of finite type if there
exists a surjection R⊕a →M and of finite presentation if there exists a presentation
R⊕a1 → R⊕a0 → M → 0. Similarly, we can consider those R-modules for which
there exists a length n resolution
(15.64.0.1)064P R⊕an → R⊕an−1 → . . .→ R⊕a0 →M → 0
by finite free R-modules. A module is called pseudo-coherent if we can find such a
resolution for every n. Here is the formal definition.

Definition 15.64.1.064Q Let R be a ring. Denote D(R) its derived category. Let m ∈ Z.
(1) An object K• of D(R) is m-pseudo-coherent if there exists a bounded

complex E• of finite free R-modules and a morphism α : E• → K• such
that Hi(α) is an isomorphism for i > m and Hm(α) is surjective.

(2) An object K• of D(R) is pseudo-coherent if it is quasi-isomorphic to a
bounded above complex of finite free R-modules.

(3) An R-module M is called m-pseudo-coherent if M [0] is an m-pseudo-
coherent object of D(R).

https://stacks.math.columbia.edu/tag/068K
https://stacks.math.columbia.edu/tag/064Q
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(4) An R-module M is called pseudo-coherent7 if M [0] is a pseudo-coherent
object of D(R).

As usual we apply this terminology also to complexes of R-modules. Since any
morphism E• → K• in D(R) is represented by an actual map of complexes, see
Derived Categories, Lemma 13.19.8, there is no ambiguity. It turns out that K• is
pseudo-coherent if and only if K• is m-pseudo-coherent for all m ∈ Z, see Lemma
15.64.5. Also, if the ring is Noetherian the condition can be understood as a finite
generation condition on the cohomology, see Lemma 15.64.17. Let us first relate
this to the informal discussion above.

Lemma 15.64.2.064R Let R be a ring and m ∈ Z. Let (K•, L•,M•, f, g, h) be a
distinguished triangle in D(R).

(1) If K• is (m + 1)-pseudo-coherent and L• is m-pseudo-coherent then M•

is m-pseudo-coherent.
(2) If K•,M• are m-pseudo-coherent, then L• is m-pseudo-coherent.
(3) If L• is (m+ 1)-pseudo-coherent and M• is m-pseudo-coherent, then K•

is (m+ 1)-pseudo-coherent.

Proof. Proof of (1). Choose α : P • → K• with P • a bounded complex of finite
free modules such that Hi(α) is an isomorphism for i > m + 1 and surjective for
i = m+1. We may replace P • by σ≥m+1P

• and hence we may assume that P i = 0
for i < m + 1. Choose β : E• → L• with E• a bounded complex of finite free
modules such that Hi(β) is an isomorphism for i > m and surjective for i = m. By
Derived Categories, Lemma 13.19.11 we can find a map γ : P • → E• such that the
diagram

K• // L•

P •

OO

γ // E•

β

OO

is commutative in D(R). The cone C(γ)• is a bounded complex of finite free
R-modules, and the commutativity of the diagram implies that there exists a mor-
phism of distinguished triangles

(P •, E•, C(γ)•) −→ (K•, L•,M•).

It follows from the induced map on long exact cohomology sequences and Homol-
ogy, Lemmas 12.5.19 and 12.5.20 that C(γ)• → M• induces an isomorphism on
cohomology in degrees > m and a surjection in degree m. Hence M• is m-pseudo-
coherent.

Assertions (2) and (3) follow from (1) by rotating the distinguished triangle. □

Lemma 15.64.3.064S Let R be a ring. Let K• be a complex of R-modules. Let m ∈ Z.
(1) If K• is m-pseudo-coherent and Hi(K•) = 0 for i > m, then Hm(K•) is

a finite type R-module.
(2) IfK• ism-pseudo-coherent andHi(K•) = 0 for i > m+1, thenHm+1(K•)

is a finitely presented R-module.

7This clashes with what is meant by a pseudo-coherent module in [Bou61].

https://stacks.math.columbia.edu/tag/064R
https://stacks.math.columbia.edu/tag/064S
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Proof. Proof of (1). Choose a bounded complex E• of finite projective R-modules
and a map α : E• → K• which induces an isomorphism on cohomology in degrees
> m and a surjection in degree m. It is clear that it suffices to prove the result
for E•. Let n be the largest integer such that En ̸= 0. If n = m, then the result
is clear. If n > m, then En−1 → En is surjective as Hn(E•) = 0. As En is finite
projective we see that En−1 = E′ ⊕ En. Hence it suffices to prove the result for
the complex (E′)• which is the same as E• except has E′ in degree n− 1 and 0 in
degree n. We win by induction on n.

Proof of (2). Choose a bounded complex E• of finite projective R-modules and a
map α : E• → K• which induces an isomorphism on cohomology in degrees > m
and a surjection in degree m. As in the proof of (1) we can reduce to the case that
Ei = 0 for i > m+ 1. Then we see that Hm+1(K•) ∼= Hm+1(E•) = Coker(Em →
Em+1) which is of finite presentation. □

Lemma 15.64.4.064T Let R be a ring. Let M be an R-module. Then
(1) M is 0-pseudo-coherent if and only if M is a finite R-module,
(2) M is (−1)-pseudo-coherent if and only if M is a finitely presented R-

module,
(3) M is (−d)-pseudo-coherent if and only if there exists a resolution

R⊕ad → R⊕ad−1 → . . .→ R⊕a0 →M → 0

of length d, and
(4) M is pseudo-coherent if and only if there exists an infinite resolution

. . .→ R⊕a1 → R⊕a0 →M → 0

by finite free R-modules.

Proof. If M is of finite type (resp. of finite presentation), then M is 0-pseudo-
coherent (resp. (−1)-pseudo-coherent) as follows from the discussion preceding
Definition 15.64.1. Conversely, if M is 0-pseudo-coherent, then M = H0(M [0])
is of finite type by Lemma 15.64.3. If M is (−1)-pseudo-coherent, then it is 0-
pseudo-coherent hence of finite type. Choose a surjection R⊕a → M and denote
K = Ker(R⊕a → M). By Lemma 15.64.2 we see that K is 0-pseudo-coherent,
hence of finite type, whence M is of finite presentation.

To prove the third and fourth statement use induction and an argument similar to
the above (details omitted). □

Lemma 15.64.5.064U Let R be a ring. Let K• be a complex of R-modules. The following
are equivalent

(1) K• is pseudo-coherent,
(2) K• is m-pseudo-coherent for every m ∈ Z, and
(3) K• is quasi-isomorphic to a bounded above complex of finite projective

R-modules.
If (1), (2), and (3) hold and Hi(K•) = 0 for i > b, then we can find a quasi-
isomorphism F • → K• with F i finite free R-modules and F i = 0 for i > b.

Proof. We see that (1)⇒ (3) as a finite free module is a finite projective R-module.
Conversely, suppose P • is a bounded above complex of finite projective R-modules.

https://stacks.math.columbia.edu/tag/064T
https://stacks.math.columbia.edu/tag/064U
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Say P i = 0 for i > n0. We choose a direct sum decompositions Fn0 = Pn0 ⊕ Cn0

with Fn0 a finite free R-module, and inductively

Fn−1 = Pn−1 ⊕ Cn ⊕ Cn−1

for n ≤ n0 with Fn0 a finite free R-module. As a complex F • has maps Fn−1 → Fn

which agree with Pn−1 → Pn, induce the identity Cn → Cn, and are zero on Cn−1.
The map F • → P • is a quasi-isomorphism (even a homotopy equivalence) and hence
(3) implies (1).

Assume (1). Let E• be a bounded above complex of finite free R-modules and let
E• → K• be a quasi-isomorphism. Then the induced maps σ≥mE

• → K• from
the stupid truncation of E• to K• show that K• is m-pseudo-coherent. Hence (1)
implies (2).

Assume (2). Since K• is 0-pseudo-coherent we see in particular that K• is bounded
above. Let b be an integer such that Hi(K•) = 0 for i > b. By descending induction
on n ∈ Z we are going to construct finite free R-modules F i for i ≥ n, differentials
di : F i → F i+1 for i ≥ n, maps α : F i → Ki compatible with differentials, such
that (1) Hi(α) is an isomorphism for i > n and surjective for i = n, and (2) F i = 0
for i > b. Picture

Fn //

α

��

Fn+1

α

��

// . . .

Kn−1 // Kn // Kn+1 // . . .

The base case is n = b+1 where we can take F i = 0 for all i. Induction step. Let C•

be the cone on α (Derived Categories, Definition 13.9.1). The long exact sequence
of cohomology shows that Hi(C•) = 0 for i ≥ n. By Lemma 15.64.2 we see that
C• is (n− 1)-pseudo-coherent. By Lemma 15.64.3 we see that Hn−1(C•) is a finite
R-module. Choose a finite free R-module Fn−1 and a map β : Fn−1 → Cn−1 such
that the composition Fn−1 → Cn−1 → Cn is zero and such that Fn−1 surjects
onto Hn−1(C•). Since Cn−1 = Kn−1 ⊕ Fn we can write β = (αn−1,−dn−1). The
vanishing of the composition Fn−1 → Cn−1 → Cn implies these maps fit into a
morphism of complexes

Fn−1

αn−1

��

dn−1
// Fn //

α

��

Fn+1

α

��

// . . .

. . . // Kn−1 // Kn // Kn+1 // . . .

Moreover, these maps define a morphism of distinguished triangles

(Fn → . . .) //

��

(Fn−1 → . . .) //

��

Fn−1 //

β

��

(Fn → . . .)[1]

��
(Fn → . . .) // K• // C• // (Fn → . . .)[1]

Hence our choice of β implies that the map of complexes (Fn−1 → . . .) → K•

induces an isomorphism on cohomology in degrees ≥ n and a surjection in degree
n− 1. This finishes the proof of the lemma. □
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Lemma 15.64.6.064V Let R be a ring. Let (K•, L•,M•, f, g, h) be a distinguished
triangle in D(R). If two out of three of K•, L•,M• are pseudo-coherent then the
third is also pseudo-coherent.

Proof. Combine Lemmas 15.64.2 and 15.64.5. □

Lemma 15.64.7.064W Let R be a ring. Let K• be a complex of R-modules. Let m ∈ Z.
(1) If Hi(K•) = 0 for all i ≥ m, then K• is m-pseudo-coherent.
(2) If Hi(K•) = 0 for i > m and Hm(K•) is a finite R-module, then K• is

m-pseudo-coherent.
(3) If Hi(K•) = 0 for i > m+ 1, the module Hm+1(K•) is of finite presenta-

tion, and Hm(K•) is of finite type, then K• is m-pseudo-coherent.

Proof. It suffices to prove (3). Set M = Hm+1(K•). Note that τ≥m+1K
• is quasi-

isomorphic to M [−m−1]. By Lemma 15.64.4 we see that M [−m−1] is m-pseudo-
coherent. Since we have the distinguished triangle

(τ≤mK
•,K•, τ≥m+1K

•)
(Derived Categories, Remark 13.12.4) by Lemma 15.64.2 it suffices to prove that
τ≤mK

• is pseudo-coherent. By assumption Hm(τ≤mK
•) is a finite type R-module.

Hence we can find a finite free R-module E and a map E → Ker(dmK) such that the
composition E → Ker(dmK) → Hm(τ≤mK

•) is surjective. Then E[−m] → τ≤mK
•

witnesses the fact that τ≤mK
• is m-pseudo-coherent. □

Lemma 15.64.8.064X Let R be a ring. Let m ∈ Z. If K• ⊕ L• is m-pseudo-coherent
(resp. pseudo-coherent) so are K• and L•.

Proof. In this proof we drop the superscript •. Assume that K ⊕ L is m-pseudo-
coherent. It is clear that K,L ∈ D−(R). Note that there is a distinguished triangle

(K ⊕ L,K ⊕ L,L⊕ L[1]) = (K,K, 0)⊕ (L,L,L⊕ L[1])
see Derived Categories, Lemma 13.4.10. By Lemma 15.64.2 we see that L ⊕ L[1]
is m-pseudo-coherent. Hence also L[1] ⊕ L[2] is m-pseudo-coherent. By induction
L[n] ⊕ L[n + 1] is m-pseudo-coherent. By Lemma 15.64.7 we see that L[n] is m-
pseudo-coherent for large n. Hence working backwards, using the distinguished
triangles

(L[n], L[n]⊕ L[n− 1], L[n− 1])
we conclude that L[n], L[n − 1], . . . , L are m-pseudo-coherent as desired. The
pseudo-coherent case follows from this and Lemma 15.64.5. □

Lemma 15.64.9.064Y Let R be a ring. Let m ∈ Z. Let K• be a bounded above
complex of R-modules such that Ki is (m− i)-pseudo-coherent for all i. Then K•

is m-pseudo-coherent. In particular, if K• is a bounded above complex of pseudo-
coherent R-modules, then K• is pseudo-coherent.

Proof. We may replace K• by σ≥m−1K
• (for example) and hence assume that

K• is bounded. Then the complex K• is m-pseudo-coherent as each Ki[−i] is m-
pseudo-coherent by induction on the length of the complex: use Lemma 15.64.2
and the stupid truncations. For the final statement, it suffices to prove that K• is
m-pseudo-coherent for all m ∈ Z, see Lemma 15.64.5. This follows from the first
part. □

https://stacks.math.columbia.edu/tag/064V
https://stacks.math.columbia.edu/tag/064W
https://stacks.math.columbia.edu/tag/064X
https://stacks.math.columbia.edu/tag/064Y
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Lemma 15.64.10.066B Let R be a ring. Let m ∈ Z. Let K• ∈ D−(R) such that
Hi(K•) is (m − i)-pseudo-coherent (resp. pseudo-coherent) for all i. Then K• is
m-pseudo-coherent (resp. pseudo-coherent).

Proof. Assume K• is an object of D−(R) such that each Hi(K•) is (m− i)-pseudo-
coherent. Let n be the largest integer such that Hn(K•) is nonzero. We will prove
the lemma by induction on n. If n < m, then K• is m-pseudo-coherent by Lemma
15.64.7. If n ≥ m, then we have the distinguished triangle

(τ≤n−1K
•,K•, Hn(K•)[−n])

(Derived Categories, Remark 13.12.4) Since Hn(K•)[−n] is m-pseudo-coherent by
assumption, we can use Lemma 15.64.2 to see that it suffices to prove that τ≤n−1K

•

is m-pseudo-coherent. By induction on n we win. (The pseudo-coherent case follows
from this and Lemma 15.64.5.) □

Lemma 15.64.11.064Z Let A → B be a ring map. Assume that B is pseudo-coherent
as an A-module. Let K• be a complex of B-modules. The following are equivalent

(1) K• is m-pseudo-coherent as a complex of B-modules, and
(2) K• is m-pseudo-coherent as a complex of A-modules.

The same equivalence holds for pseudo-coherence.

Proof. Assume (1). Choose a bounded complex of finite free B-modules E• and a
map α : E• → K• which is an isomorphism on cohomology in degrees > m and
a surjection in degree m. Consider the distinguished triangle (E•,K•, C(α)•). By
Lemma 15.64.7 C(α)• is m-pseudo-coherent as a complex of A-modules. Hence
it suffices to prove that E• is pseudo-coherent as a complex of A-modules, which
follows from Lemma 15.64.9. The pseudo-coherent case of (1) ⇒ (2) follows from
this and Lemma 15.64.5.

Assume (2). Let n be the largest integer such that Hn(K•) ̸= 0. We will prove that
K• is m-pseudo-coherent as a complex of B-modules by induction on n−m. The
case n < m follows from Lemma 15.64.7. Choose a bounded complex of finite free
A-modules E• and a map α : E• → K• which is an isomorphism on cohomology in
degrees > m and a surjection in degree m. Consider the induced map of complexes

α⊗ 1 : E• ⊗A B → K•.

Note that C(α⊗1)• is acyclic in degrees ≥ n as Hn(E)→ Hn(E•⊗AB)→ Hn(K•)
is surjective by construction and since Hi(E• ⊗A B) = 0 for i > n by the spectral
sequence of Example 15.62.4. On the other hand, C(α⊗1)• is m-pseudo-coherent as
a complex of A-modules because both K• and E•⊗AB (see Lemma 15.64.9) are so,
see Lemma 15.64.2. Hence by induction we see that C(α⊗1)• is m-pseudo-coherent
as a complex of B-modules. Finally another application of Lemma 15.64.2 shows
that K• is m-pseudo-coherent as a complex of B-modules (as clearly E• ⊗A B is
pseudo-coherent as a complex of B-modules). The pseudo-coherent case of (2) ⇒
(1) follows from this and Lemma 15.64.5. □

Lemma 15.64.12.0650 Let A → B be a ring map. Let K• be an m-pseudo-coherent
(resp. pseudo-coherent) complex of A-modules. Then K• ⊗L

A B is an m-pseudo-
coherent (resp. pseudo-coherent) complex of B-modules.

https://stacks.math.columbia.edu/tag/066B
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Proof. First we note that the statement of the lemma makes sense as K• is bounded
above and hence K• ⊗L

A B is defined by Equation (15.57.0.2). Having said this,
choose a bounded complex E• of finite free A-modules and α : E• → K• with
Hi(α) an isomorphism for i > m and surjective for i = m. Then the cone C(α)•

is acyclic in degrees ≥ m. Since −⊗L
A B is an exact functor we get a distinguished

triangle
(E• ⊗L

A B,K
• ⊗L

A B,C(α)• ⊗L
A B)

of complexes of B-modules. By the dual to Derived Categories, Lemma 13.16.1
we see that Hi(C(α)• ⊗L

A B) = 0 for i ≥ m. Since E• is a complex of projective
R-modules we see that E• ⊗L

A B = E• ⊗A B and hence

E• ⊗A B −→ K• ⊗L
A B

is a morphism of complexes of B-modules that witnesses the fact that K• ⊗L
A B is

m-pseudo-coherent. The case of pseudo-coherent complexes follows from the case
of m-pseudo-coherent complexes via Lemma 15.64.5. □

Lemma 15.64.13.066C Let A→ B be a flat ring map. Let M be an m-pseudo-coherent
(resp. pseudo-coherent) A-module. Then M ⊗A B is an m-pseudo-coherent (resp.
pseudo-coherent) B-module.

Proof. Immediate consequence of Lemma 15.64.12 and the fact that M ⊗L
A B =

M ⊗A B because B is flat over A. □

The following lemma also follows from the stronger Lemma 15.64.15.

Lemma 15.64.14.066D Let R be a ring. Let f1, . . . , fr ∈ R be elements which generate
the unit ideal. Let m ∈ Z. Let K• be a complex of R-modules. If for each i
the complex K• ⊗R Rfi is m-pseudo-coherent (resp. pseudo-coherent), then K• is
m-pseudo-coherent (resp. pseudo-coherent).

Proof. We will use without further mention that −⊗R Rfi is an exact functor and
that therefore

Hi(K•)fi = Hi(K•)⊗R Rfi = Hi(K• ⊗R Rfi).
Assume K• ⊗R Rfi is m-pseudo-coherent for i = 1, . . . , r. Let n ∈ Z be the largest
integer such that Hn(K• ⊗R Rfi) is nonzero for some i. This implies in particular
that Hi(K•) = 0 for i > n (and that Hn(K•) ̸= 0) see Algebra, Lemma 10.23.2.
We will prove the lemma by induction on n − m. If n < m, then the lemma is
true by Lemma 15.64.7. If n ≥ m, then Hn(K•)fi is a finite Rfi -module for each
i, see Lemma 15.64.3. Hence Hn(K•) is a finite R-module, see Algebra, Lemma
10.23.2. Choose a finite free R-module E and a surjection E → Hn(K•). As E
is projective we can lift this to a map of complexes α : E[−n] → K•. Then the
cone C(α)• has vanishing cohomology in degrees ≥ n. On the other hand, the
complexes C(α)• ⊗R Rfi are m-pseudo-coherent for each i, see Lemma 15.64.2.
Hence by induction we see that C(α)• is m-pseudo-coherent as a complex of R-
modules. Applying Lemma 15.64.2 once more we conclude. □

Lemma 15.64.15.068R Let R be a ring. Let m ∈ Z. Let K• be a complex of R-
modules. Let R → R′ be a faithfully flat ring map. If the complex K• ⊗R R′ is
m-pseudo-coherent (resp. pseudo-coherent), then K• is m-pseudo-coherent (resp.
pseudo-coherent).

https://stacks.math.columbia.edu/tag/066C
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Proof. We will use without further mention that −⊗R R′ is an exact functor and
that therefore

Hi(K•)⊗R R′ = Hi(K• ⊗R R′).
Assume K•⊗RR′ is m-pseudo-coherent. Let n ∈ Z be the largest integer such that
Hn(K•) is nonzero; then n is also the largest integer such that Hn(K• ⊗R R′) is
nonzero. We will prove the lemma by induction on n−m. If n < m, then the lemma
is true by Lemma 15.64.7. If n ≥ m, then Hn(K•)⊗R R′ is a finite R′-module, see
Lemma 15.64.3. Hence Hn(K•) is a finite R-module, see Algebra, Lemma 10.83.2.
Choose a finite free R-module E and a surjection E → Hn(K•). As E is projective
we can lift this to a map of complexes α : E[−n]→ K•. Then the cone C(α)• has
vanishing cohomology in degrees ≥ n. On the other hand, the complex C(α)•⊗RR′

is m-pseudo-coherent, see Lemma 15.64.2. Hence by induction we see that C(α)•

is m-pseudo-coherent as a complex of R-modules. Applying Lemma 15.64.2 once
more we conclude. □

Lemma 15.64.16.0DJE Let R be a ring. Let K,L be objects of D(R).
(1) If K is n-pseudo-coherent and Hi(K) = 0 for i > a and L is m-pseudo-

coherent and Hj(L) = 0 for j > b, then K⊗L
RL is t-pseudo-coherent with

t = max(m+ a, n+ b).
(2) If K and L are pseudo-coherent, then K ⊗L

R L is pseudo-coherent.

Proof. Proof of (1). We may assume there exist bounded complexes K• and L•

of finite free R-modules and maps α : K• → K and β : L• → L with Hi(α) and
isomorphism for i > n and surjective for i = n and with Hi(β) and isomorphism
for i > m and surjective for i = m. Then the map

α⊗L β : Tot(K• ⊗R L•)→ K ⊗L
R L

induces isomorphisms on cohomology in degree i for i > t and a surjection for i = t.
This follows from the spectral sequence of tors (details omitted). Part (2) follows
from part (1) and Lemma 15.64.5. □

Lemma 15.64.17.066E Let R be a Noetherian ring. Then
(1) A complex of R-modules K• is m-pseudo-coherent if and only if K• ∈

D−(R) and Hi(K•) is a finite R-module for i ≥ m.
(2) A complex of R-modules K• is pseudo-coherent if and only if K• ∈ D−(R)

and Hi(K•) is a finite R-module for all i.
(3) An R-module is pseudo-coherent if and only if it is finite.

Proof. In Algebra, Lemma 10.71.1 we have seen that any finite R-module is pseudo-
coherent. On the other hand, a pseudo-coherent module is finite, see Lemma
15.64.4. Hence (3) holds. Suppose that K• is an m-pseudo-coherent complex. Then
there exists a bounded complex of finite free R-modules E• such that Hi(K•) is
isomorphic to Hi(E•) for i > m and such that Hm(K•) is a quotient of Hm(E•).
Thus it is clear that each Hi(K•), i ≥ m is a finite module. The converse impli-
cation in (1) follows from Lemma 15.64.10 and part (3). Part (2) follows from (1)
and Lemma 15.64.5. □

Lemma 15.64.18.0EWZ Let R be a coherent ring (Algebra, Definition 10.90.1). Let
K ∈ D−(R). The following are equivalent

(1) K is m-pseudo-coherent,

https://stacks.math.columbia.edu/tag/0DJE
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(2) Hm(K) is a finite R-module and Hi(K) is coherent for i > m, and
(3) Hm(K) is a finite R-module and Hi(K) is finitely presented for i > m.

Thus K is pseudo-coherent if and only if Hi(K) is a coherent module for all i.

Proof. Recall that an R-module M is coherent if and only if it is of finite presenta-
tion (Algebra, Lemma 10.90.4). This explains the equivalence of (2) and (3). If so
and if we choose an exact sequence 0→ N → R⊕m →M → 0, then N is coherent
by Algebra, Lemma 10.90.3. Thus in this case, repeating this procedure with N we
find a resolution

. . .→ R⊕n → R⊕m →M → 0
by finite free R-modules. In other words, M is pseudo-coherent. The equivalence of
(1) and (2) follows from this and Lemmas 15.64.10 and 15.64.4. The final assertion
follows from the equivalence of (1) and (2) combined with Lemma 15.64.5. □

15.65. Pseudo-coherent modules, II

0G8V We continue the discussion started in Section 15.64.

Lemma 15.65.1.0G8W Let R be a ring. Let M = colimMi be a filtered colimit of
R-modules. Let K ∈ D(R) be m-pseudo-coherent. Then colim ExtnR(K,Mi) =
ExtnR(K,M) for n < −m and colim Ext−m

R (K,Mi)→ Ext−m
R (K,M) is injective.

Proof. By definition we can find a distinguished triangle

E → K → L→ E[1]

in D(R) such that E is represented by a bounded complex of finite free R-modules
and such that Hi(L) = 0 for i ≥ m. Then ExtnR(L,N) = 0 for any R-module N and
n ≤ −m, see Derived Categories, Lemma 13.27.3. By the long exact sequence of
Ext associated to the distinguished triangle we see that ExtnR(K,N)→ ExtnR(E,N)
is an isomorphism for n < −m and injective for n = −m. Thus it suffices to prove
that M 7→ ExtnR(E,M) commutes with filtered colimits when E can be represented
by a bounded complex of finite free R-modules E•. The modules ExtnR(E,M) are
computed by the complex HomR(E•,M), see Derived Categories, Lemma 13.19.8.
The functorM 7→ HomR(Ep,M) commutes with filtered colimits as Ep is finite free.
Thus HomR(E•,M) = colim HomR(E•,Mi) as complexes. Since filtered colimits
are exact (Algebra, Lemma 10.8.8) we conclude. □

Lemma 15.65.2.0G8X Let R be a ring. Let K ∈ D−(R). Let m ∈ Z. Then K is m-
pseudo-coherent if and only if for any filtered colimit M = colimMi of R-modules
we have colim ExtnR(K,Mi) = ExtnR(K,M) for n < −m and colim Ext−m

R (K,Mi)→
Ext−m

R (K,M) is injective.

Proof. One implication was shown in Lemma 15.65.1. Assume for any filtered
colimit M = colimMi of R-modules we have colim ExtnR(K,Mi) = ExtnR(K,M) for
n < −m and colim Ext−m

R (K,Mi)→ Ext−m
R (K,M) is injective. We will show K is

m-pseudo-coherent.

Let t be the maximal integer such that Ht(K) is nonzero. We will use induction on
t. If t < m, then K is m-pseudo-coherent by Lemma 15.64.7. If t ≥ m, then since
HomR(Ht(K),M) = Ext−t

R (K,M) we conclude that colim HomR(Ht(K),Mi) →
HomR(Ht(K),M) is injective for any filtered colimit M = colimMi. This implies

https://stacks.math.columbia.edu/tag/0G8W
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that Ht(K) is a finite R-module by Algebra, Lemma 10.11.1. Choose a finite free R-
module F and a surjection F → Ht(K). We can lift this to a morphism F [−t]→ K
in D(R) and choose a distinguished triangle

F [−t]→ K → L→ F [−t+ 1]
in D(R). Then Hi(L) = 0 for i ≥ t. Moreover, the long exact sequence of Ext
associated to this distinguished triangle shows that L inherts the assumption we
made on K by a small argument we omit. By induction on t we conclude that L is
m-pseudo-coherent. Hence K is m-pseudo-coherent by Lemma 15.64.2. □

Lemma 15.65.3.087Q Let R be a ring. Let L, M , N be R-modules.
(1) IfM is finitely presented and L is flat, then the canonical map HomR(M,N)⊗R

L→ HomR(M,N ⊗R L) is an isomorphism.
(2) If M is (−m)-pseudo-coherent and L is flat, then the canonical map

ExtiR(M,N)⊗R L→ ExtiR(M,N ⊗R L) is an isomorphism for i < m.

Proof. Choose a resolution F• →M whose terms are free R-modules, see Algebra,
Lemma 10.71.1. The complex HomR(F•, N) computes ExtiR(M,N) and the com-
plex HomR(F•, N ⊗R L) computes ExtiR(M,N ⊗R L). There always is a map of
cochain complexes

HomR(F•, N)⊗R L −→ HomR(F•, N ⊗R L)
which induces canonical maps ExtiR(M,N)⊗R L→ ExtiR(M,N ⊗R L) for all i ≥ 0
(canonical for example in the sense that these maps do not depend on the choice
of the resolution F•). If L is flat, then the complex HomR(F•, N) ⊗R L computes
ExtiR(M,N)⊗R L since taking cohomology commutes with tensoring by L.
Having said all of the above, if M is (−m)-pseudo-coherent, then we may choose
F• such that Fi is finite free for i = 0, . . . ,m. Then the map of cochain complexes
displayed above is an isomorphism in degrees ≤ m and hence an isomorphism on
cohomology groups in degrees < m. This proves (2). If M is finitely presented,
then M is (−1)-pseudo-coherent by Lemma 15.64.4 and we get the result because
Hom = Ext0. □

Lemma 15.65.4.087R Let R→ R′ be a flat ring map. Let M , N be R-modules.
(1) IfM is a finitely presentedR-module, then HomR(M,N)⊗RR′ = HomR′(M⊗R

R′, N ⊗R R′).
(2) If M is (−m)-pseudo-coherent, then ExtiR(M,N) ⊗R R′ = ExtiR′(M ⊗R

R′, N ⊗R R′) for i < m.
In particular if R is Noetherian and M is a finite module this holds for all i.

Proof. By Algebra, Lemma 10.73.1 we have ExtiR′(M⊗RR′, N⊗RR′) = ExtiR(M,N⊗R
R′). Combined with Lemma 15.65.3 we conclude (1) and (2) holds. The final state-
ment follows from this and Lemma 15.64.17. □

Lemma 15.65.5.0CYB Let R be a ring. Let K ∈ D−(R). The following are equivalent:
(1) K is pseudo-coherent,
(2) for every family (Qα)α∈A of R-modules, the canonical map

α : K ⊗L
R

(∏
α
Qα

)
−→

∏
α

(K ⊗L
R Qα)

is an isomorphism in D(R),

https://stacks.math.columbia.edu/tag/087Q
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(3) for every R-module Q and every set A, the canonical map
β : K ⊗L

R Q
A −→ (K ⊗L

R Q)A

is an isomorphism in D(R), and
(4) for every set A, the canonical map

γ : K ⊗L
R R

A −→ KA

is an isomorphism in D(R).
Given m ∈ Z the following are equivalent

(a) K is m-pseudo-coherent,
(b) for every family (Qα)α∈A of R-modules, with α as above Hi(α) is an

isomorphism for i > m and surjective for i = m,
(c) for every R-module Q and every set A, with β as above Hi(β) is an

isomorphism for i > m and surjective for i = m,
(d) for every set A, with γ as above Hi(γ) is an isomorphism for i > m and

surjective for i = m.

Proof. If K is pseudo-coherent, then K can be represented by a bounded above
complex of finite free R-modules. Then the derived tensor products are computed
by tensoring with this complex. Also, products in D(R) are given by taking prod-
ucts of any choices of representative complexes. Hence (1) implies (2), (3), (4) by
the corresponding fact for modules, see Algebra, Proposition 10.89.3.
In the same way (using the tensor product is right exact) the reader shows that (a)
implies (b), (c), and (d).
Assume (4) holds. To show that K is pseudo-coherent it suffices to show that K is
m-pseudo-coherent for all m (Lemma 15.64.5). Hence to finish then proof it suffices
to prove that (d) implies (a).
Assume (d). Let i be the largest integer such that Hi(K) is nonzero. If i < m,
then we are done. If not, then from (d) and the description of products in D(R)
given above we find that Hi(K)⊗RRA → Hi(K)A is surjective. Hence Hi(K) is a
finitely generated R-module by Algebra, Proposition 10.89.2. Thus we may choose
a complex L consisting of a single finite free module sitting in degree i and a map of
complexes L→ K such that Hi(L)→ Hi(K) is surjective. In particular L satisfies
(1), (2), (3), and (4). Choose a distinguished triangle

L→ K →M → L[1]
Then we see that Hj(M) = 0 for j ≥ i. On the other hand, M still has property
(d) by a small argument which we omit. By induction on i we find that M is
m-pseudo-coherent. Hence K is m-pseudo-coherent by Lemma 15.64.2. □

Lemma 15.65.6.0G8Y Let R be a ring. Let K ∈ D(R) be pseudo-coherent. Let i ∈ Z.
There exists a finitely presented R-module M and a map K → M [−i] in D(R)
which induces an injection Hi(K)→M .

Proof. By Definition 15.64.1 we may represent K by a complex P • of finite free
R-modules. Set M = Coker(P i−1 → P i). □

Lemma 15.65.7.0A7D Let A be a Noetherian ring. Let K ∈ D(A) be pseudo-coherent,
i.e., K ∈ D−(A) with finite cohomology modules. Let m be a maximal ideal of

https://stacks.math.columbia.edu/tag/0G8Y
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A. If Hi(K)/mHi(K) ̸= 0, then there exists a finite A-module E annihilated by a
power of m and a map K → E[−i] which is nonzero on Hi(K).

Proof. (The equivalent formulation of pseudo-coherence in the statement of the
lemma is Lemma 15.64.17.) Choose K → M [−i] as in Lemma 15.65.6. By Artin-
Rees (Algebra, Lemma 10.51.2) we can find an n such that Hi(K) ∩ mnM ⊂
mHi(K). Take E = M/mnM . □

15.66. Tor dimension

0651 Instead of resolving by projective modules we can look at resolutions by flat mod-
ules. This leads to the following concept.

Definition 15.66.1.0652 Let R be a ring. Denote D(R) its derived category. Let a, b ∈ Z.
(1) An object K• of D(R) has tor-amplitude in [a, b] if Hi(K•⊗L

RM) = 0 for
all R-modules M and all i ̸∈ [a, b].

(2) An object K• of D(R) has finite tor dimension if it has tor-amplitude in
[a, b] for some a, b.

(3) An R-module M has tor dimension ≤ d if M [0] as an object of D(R) has
tor-amplitude in [−d, 0].

(4) An R-module M has finite tor dimension if M [0] as an object of D(R)
has finite tor dimension.

We observe that if K• has finite tor dimension, then K• ∈ Db(R).

Lemma 15.66.2.0653 Let R be a ring. Let K• be a bounded above complex of flat
R-modules with tor-amplitude in [a, b]. Then Coker(da−1

K ) is a flat R-module.

Proof. As K• is a bounded above complex of flat modules we see that K•⊗RM =
K• ⊗L

RM . Hence for every R-module M the sequence
Ka−2 ⊗RM → Ka−1 ⊗RM → Ka ⊗RM

is exact in the middle. Since Ka−2 → Ka−1 → Ka → Coker(da−1
K ) → 0 is a flat

resolution this implies that TorR1 (Coker(da−1
K ),M) = 0 for all R-modules M . This

means that Coker(da−1
K ) is flat, see Algebra, Lemma 10.75.8. □

Lemma 15.66.3.0654 Let R be a ring. Let K• be an object of D(R). Let a, b ∈ Z. The
following are equivalent

(1) K• has tor-amplitude in [a, b].
(2) K• is quasi-isomorphic to a complex E• of flat R-modules with Ei = 0

for i ̸∈ [a, b].

Proof. If (2) holds, then we may compute K•⊗L
RM = E•⊗RM and it is clear that

(1) holds. Assume that (1) holds. We may replace K• by a projective resolution
with Ki = 0 for i > b. See Derived Categories, Lemma 13.19.3. Set E• = τ≥aK

•.
Everything is clear except that Ea is flat which follows immediately from Lemma
15.66.2 and the definitions. □

Lemma 15.66.4.0BYL Let R be a ring. Let a ∈ Z and let K be an object of D(R). The
following are equivalent

(1) K has tor-amplitude in [a,∞], and
(2) K is quasi-isomorphic to a K-flat complex E• whose terms are flat R-

modules with Ei = 0 for i ̸∈ [a,∞].
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Proof. The implication (2)⇒ (1) is immediate. Assume (1) holds. First we choose
a K-flat complex K• with flat terms representing K, see Lemma 15.59.10. For any
R-module M the cohomology of

Kn−1 ⊗RM → Kn ⊗RM → Kn+1 ⊗RM

computes Hn(K ⊗L
R M). This is always zero for n < a. Hence if we apply

Lemma 15.66.2 to the complex . . . → Ka−1 → Ka → Ka+1 we conclude that
N = Coker(Ka−1 → Ka) is a flat R-module. We set

E• = τ≥aK
• = (. . .→ 0→ N → Ka+1 → . . .)

The kernel L• of K• → E• is the complex

L• = (. . .→ Ka−1 → I → 0→ . . .)

where I ⊂ Ka is the image of Ka−1 → Ka. Since we have the short exact sequence
0 → I → Ka → N → 0 we see that I is a flat R-module. Thus L• is a bounded
above complex of flat modules, hence K-flat by Lemma 15.59.7. It follows that E•

is K-flat by Lemma 15.59.6. □

Lemma 15.66.5.0655 Let R be a ring. Let (K•, L•,M•, f, g, h) be a distinguished
triangle in D(R). Let a, b ∈ Z.

(1) If K• has tor-amplitude in [a+ 1, b+ 1] and L• has tor-amplitude in [a, b]
then M• has tor-amplitude in [a, b].

(2) If K•,M• have tor-amplitude in [a, b], then L• has tor-amplitude in [a, b].
(3) If L• has tor-amplitude in [a+1, b+1] and M• has tor-amplitude in [a, b],

then K• has tor-amplitude in [a+ 1, b+ 1].

Proof. Omitted. Hint: This just follows from the long exact cohomology sequence
associated to a distinguished triangle and the fact that − ⊗L

R M preserves distin-
guished triangles. The easiest one to prove is (2) and the others follow from it by
translation. □

Lemma 15.66.6.066F Let R be a ring. Let M be an R-module. Let d ≥ 0. The following
are equivalent

(1) M has tor dimension ≤ d, and
(2) there exists a resolution

0→ Fd → . . .→ F1 → F0 →M → 0

with Fi a flat R-module.
In particular an R-module has tor dimension 0 if and only if it is a flat R-module.

Proof. Assume (2). Then the complex E• with E−i = Fi is quasi-isomorphic to
M . Hence the Tor dimension of M is at most d by Lemma 15.66.3. Conversely,
assume (1). Let P • → M be a projective resolution of M . By Lemma 15.66.2 we
see that τ≥−dP

• is a flat resolution of M of length d, i.e., (2) holds. □

Lemma 15.66.7.066G Let R be a ring. Let a, b ∈ Z. If K• ⊕ L• has tor amplitude in
[a, b] so do K• and L•.

Proof. Clear from the fact that the Tor functors are additive. □
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Lemma 15.66.8.066H Let R be a ring. Let K• be a bounded complex of R-modules
such that Ki has tor amplitude in [a− i, b− i] for all i. Then K• has tor amplitude
in [a, b]. In particular if K• is a finite complex of R-modules of finite tor dimension,
then K• has finite tor dimension.

Proof. Follows by induction on the length of the finite complex: use Lemma 15.66.5
and the stupid truncations. □

Lemma 15.66.9.066I Let R be a ring. Let a, b ∈ Z. Let K• ∈ Db(R) such that Hi(K•)
has tor amplitude in [a− i, b− i] for all i. Then K• has tor amplitude in [a, b]. In
particular if K• ∈ Db(R) and all its cohomology groups have finite tor dimension
then K• has finite tor dimension.

Proof. Follows by induction on the length of the finite complex: use Lemma 15.66.5
and the canonical truncations. □

Lemma 15.66.10.0B66 Let A → B be a ring map. Let K• and L• be complexes of
B-modules. Let a, b, c, d ∈ Z. If

(1) K• as a complex of B-modules has tor amplitude in [a, b],
(2) L• as a complex of A-modules has tor amplitude in [c, d],

then K• ⊗L
B L

• as a complex of A-modules has tor amplitude in [a+ c, b+ d].

Proof. We may assume that K• is a complex of flat B-modules with Ki = 0 for
i ̸∈ [a, b], see Lemma 15.66.3. Let M be an A-module. Choose a free resolution
F • →M . Then

(K• ⊗L
B L

•)⊗L
AM = Tot(Tot(K• ⊗B L•)⊗A F •) = Tot(K• ⊗B Tot(L• ⊗A F •))

see Homology, Remark 12.18.4 for the second equality. By assumption (2) the
complex Tot(L• ⊗A F •) has nonzero cohomology only in degrees [c, d]. Hence the
spectral sequence of Homology, Lemma 12.25.1 for the double complex K• ⊗B
Tot(L• ⊗A F •) proves that (K• ⊗L

B L•) ⊗L
A M has nonzero cohomology only in

degrees [a+ c, b+ d]. □

Lemma 15.66.11.066J Let A→ B be a ring map. Assume that B is flat as an A-module.
Let K• be a complex of B-modules. Let a, b ∈ Z. If K• as a complex of B-modules
has tor amplitude in [a, b], then K• as a complex of A-modules has tor amplitude
in [a, b].

Proof. This is a special case of Lemma 15.66.10, but can also be seen directly as
follows. We have K• ⊗L

AM = K• ⊗L
B (M ⊗A B) since any projective resolution of

K• as a complex of B-modules is a flat resolution of K• as a complex of A-modules
and can be used to compute K• ⊗L

AM . □

Lemma 15.66.12.066K Let A → B be a ring map. Assume that B has tor dimension
≤ d as an A-module. Let K• be a complex of B-modules. Let a, b ∈ Z. If K•

as a complex of B-modules has tor amplitude in [a, b], then K• as a complex of
A-modules has tor amplitude in [a− d, b].

Proof. This is a special case of Lemma 15.66.10, but can also be seen directly as
follows. Let M be an A-module. Choose a free resolution F • →M . Then

K• ⊗L
AM = Tot(K• ⊗A F •) = Tot(K• ⊗B (F • ⊗A B)) = K• ⊗L

B (M ⊗L
A B).

https://stacks.math.columbia.edu/tag/066H
https://stacks.math.columbia.edu/tag/066I
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By our assumption on B as an A-module we see that M ⊗L
AB has cohomology only

in degrees −d,−d + 1, . . . , 0. Because K• has tor amplitude in [a, b] we see from
the spectral sequence in Example 15.62.4 that K• ⊗L

B (M ⊗L
A B) has cohomology

only in degrees [−d+ a, b] as desired. □

Lemma 15.66.13.066L Let A→ B be a ring map. Let a, b ∈ Z. Let K• be a complex of
A-modules with tor amplitude in [a, b]. Then K•⊗L

A B as a complex of B-modules
has tor amplitude in [a, b].

Proof. By Lemma 15.66.3 we can find a quasi-isomorphism E• → K• where E• is
a complex of flat A-modules with Ei = 0 for i ̸∈ [a, b]. Then E• ⊗A B computes
K•⊗L

AB by construction and each Ei⊗AB is a flat B-module by Algebra, Lemma
10.39.7. Hence we conclude by Lemma 15.66.3. □

Lemma 15.66.14.066M Let A→ B be a flat ring map. Let d ≥ 0. Let M be an A-module
of tor dimension ≤ d. Then M ⊗A B is a B-module of tor dimension ≤ d.

Proof. Immediate consequence of Lemma 15.66.13 and the fact that M ⊗L
A B =

M ⊗A B because B is flat over A. □

Lemma 15.66.15.0B67 Let A→ B be a ring map. Let K• be a complex of B-modules.
Let a, b ∈ Z. The following are equivalent

(1) K• has tor amplitude in [a, b] as a complex of A-modules,
(2) K•

q has tor amplitude in [a, b] as a complex of Ap-modules for every prime
q ⊂ B with p = A ∩ q,

(3) K•
m has tor amplitude in [a, b] as a complex of Ap-modules for every max-

imal ideal m ⊂ B with p = A ∩m.

Proof. Assume (3) and let M be an A-module. Then Hi = Hi(K• ⊗L
A M) is a

B-module and (Hi)m = Hi(K•
m ⊗L

Ap
Mp). Hence Hi = 0 for i ̸∈ [a, b] by Algebra,

Lemma 10.23.1. Thus (3) ⇒ (1). We omit the proofs of (1) ⇒ (2) and (2) ⇒
(3). □

Lemma 15.66.16.066N Let R be a ring. Let f1, . . . , fr ∈ R be elements which generate
the unit ideal. Let a, b ∈ Z. Let K• be a complex of R-modules. If for each i the
complex K•⊗R Rfi has tor amplitude in [a, b], then K• has tor amplitude in [a, b].

Proof. This follows immediately from Lemma 15.66.15 but can also be seen directly
as follows. Note that −⊗R Rfi is an exact functor and that therefore

Hi(K•)fi = Hi(K•)⊗R Rfi = Hi(K• ⊗R Rfi).

and similarly for every R-module M we have

Hi(K• ⊗L
RM)fi = Hi(K• ⊗L

RM)⊗R Rfi = Hi(K• ⊗R Rfi ⊗L
Rfi

Mfi).

Hence the result follows from the fact that an R-module N is zero if and only if
Nfi is zero for each i, see Algebra, Lemma 10.23.2. □

Lemma 15.66.17.068S Let R be a ring. Let a, b ∈ Z. Let K• be a complex of R-
modules. Let R → R′ be a faithfully flat ring map. If the complex K• ⊗R R′ has
tor amplitude in [a, b], then K• has tor amplitude in [a, b].

https://stacks.math.columbia.edu/tag/066L
https://stacks.math.columbia.edu/tag/066M
https://stacks.math.columbia.edu/tag/0B67
https://stacks.math.columbia.edu/tag/066N
https://stacks.math.columbia.edu/tag/068S
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Proof. Let M be an R-module. Since R→ R′ is flat we see that

(M ⊗L
R K

•)⊗R R′ = ((M ⊗R R′)⊗L
R′ (K• ⊗R R′)

and taking cohomology commutes with tensoring with R′. Hence TorRi (M,K•)⊗R
R′ = TorR

′

i (M ⊗R R′,K• ⊗R R′). Since R → R′ is faithfully flat, the vanishing of
TorR

′

i (M⊗RR′,K•⊗RR′) for i ̸∈ [a, b] implies the same thing for TorRi (M,K•). □

Lemma 15.66.18.0DJF Given ring maps R → A → B with A → B faithfully flat and
K ∈ D(A) the tor amplitude of K over R is the same as the tor amplitude of
K ⊗L

A B over R.

Proof. This is true because for an R-module M we have Hi(K ⊗L
R M) ⊗A B =

Hi((K⊗L
AB)⊗L

RM) for all i. Namely, represent K by a complex K• of A-modules
and choose a free resolution F • →M . Then we have the equality

Tot(K• ⊗A B ⊗R F •) = Tot(K• ⊗R F •)⊗A B

The cohomology groups of the left hand side are Hi((K ⊗L
A B)⊗L

RM) and on the
right hand side we obtain Hi(K ⊗L

RM)⊗A B. □

Lemma 15.66.19.066P Let R be a ring of finite global dimension d. Then
(1) every module has tor dimension ≤ d,
(2) a complex of R-modules K• with Hi(K•) ̸= 0 only if i ∈ [a, b] has tor

amplitude in [a− d, b], and
(3) a complex of R-modules K• has finite tor dimension if and only if K• ∈

Db(R).

Proof. The assumption on R means that every module has a finite projective res-
olution of length at most d, in particular every module has tor dimension ≤ d.
The second statement follows from Lemma 15.66.9 and the definitions. The third
statement is a rephrasing of the second. □

15.67. Spectral sequences for Ext

0AVG In this section we collect various spectral sequences that come up when considering
the Ext functors. For any pair of objects L, K of the derived category D(R) of a
ring R we denote

ExtnR(L,K) = HomD(R)(L,K[n])
according to our general conventions in Derived Categories, Section 13.27.

For M an R-module and K ∈ D+(R) there is a spectral sequence

(15.67.0.1)0AVH Ei,j2 = ExtiR(M,Hj(K))⇒ Exti+jR (M,K)

and if K is represented by the bounded below complex K• of R-modules there is a
spectral sequence

(15.67.0.2)0AVI Ei,j1 = ExtjR(M,Ki)⇒ Exti+jR (M,K)

These spectral sequences come from applying Derived Categories, Lemma 13.21.3
to the functor HomR(M,−).

https://stacks.math.columbia.edu/tag/0DJF
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15.68. Projective dimension

0A5M We defined the projective dimension of a module in Algebra, Definition 10.109.2.

Definition 15.68.1.0A5N Let R be a ring. Let K be an object of D(R). We say K
has finite projective dimension if K can be represented by a bounded complex of
projective modules. We say K has projective-amplitude in [a, b] if K is quasi-
isomorphic to a complex

. . .→ 0→ P a → P a+1 → . . .→ P b−1 → P b → 0→ . . .

where P i is a projective R-module for all i ∈ Z.

Clearly, K has finite projective dimension if and only if K has projective-amplitude
in [a, b] for some a, b ∈ Z. Furthermore, if K has finite projective dimension, then
K is bounded. Here is a lemma to detect such objects of D(R).

Lemma 15.68.2.0A5P Let R be a ring. Let K be an object of D(R). Let a, b ∈ Z. The
following are equivalent

(1) K has projective-amplitude in [a, b],
(2) ExtiR(K,N) = 0 for all R-modules N and all i ̸∈ [−b,−a],
(3) Hn(K) = 0 for n > b and ExtiR(K,N) = 0 for all R-modules N and all

i > −a, and
(4) Hn(K) = 0 for n ̸∈ [a − 1, b] and Ext−a+1

R (K,N) = 0 for all R-modules
N .

Proof. Assume (1). We may assume K is the complex
. . .→ 0→ P a → P a+1 → . . .→ P b−1 → P b → 0→ . . .

where P i is a projective R-module for all i ∈ Z. In this case we can compute the
ext groups by the complex

. . .→ 0→ HomR(P b, N)→ . . .→ HomR(P a, N)→ 0→ . . .

and we obtain (2).
Assume (2) holds. Choose an injection Hn(K) → I where I is an injective
R-module. Since HomR(−, I) is an exact functor, we see that Ext−n(K, I) =
HomR(Hn(K), I). We conclude in particular that Hn(K) is zero for n > b. Thus
(2) implies (3).
By the same argument as in (2) implies (3) gives that (3) implies (4).
Assume (4). The same argument as in (2) implies (3) shows that Ha−1(K) = 0,
i.e., we have Hi(K) = 0 unless i ∈ [a, b]. In particular, K is bounded above and we
can choose a a complex P • representing K with P i projective (for example free)
for all i ∈ Z and P i = 0 for i > b. See Derived Categories, Lemma 13.15.4. Let
Q = Coker(P a−1 → P a). Then K is quasi-isomorphic to the complex

. . .→ 0→ Q→ P a+1 → . . .→ P b → 0→ . . .

as Hi(K) = 0 for i < a. Denote K ′ = (P a+1 → . . .→ P b) the corresponding object
of D(R). We obtain a distinguished triangle

K ′ → K → Q[−a]→ K ′[1]
in D(R). Thus for every R-module N an exact sequence

Ext−a(K ′, N)→ Ext1(Q,N)→ Ext1−a(K,N)

https://stacks.math.columbia.edu/tag/0A5N
https://stacks.math.columbia.edu/tag/0A5P
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By assumption the term on the right vanishes. By the implication (1) ⇒ (2) the
term on the left vanishes. Thus Q is a projective R-module by Algebra, Lemma
10.77.2. Hence (1) holds and the proof is complete. □

Example 15.68.3.0A5Q Let k be a field and let R be the ring of dual numbers over k,
i.e., R = k[x]/(x2). Denote ϵ ∈ R the class of x. Let M = R/(ϵ). Then M is
quasi-isomorphic to the complex

R
ϵ−→ R

ϵ−→ R→ . . .

but M does not have finite projective dimension as defined in Algebra, Definition
10.109.2. This explains why we consider bounded (in both directions) complexes
of projective modules in our definition of finite projective dimension of objects of
D(R).

15.69. Injective dimension

0A5R This section is the dual of the section on projective dimension.

Definition 15.69.1.0A5S Let R be a ring. Let K be an object of D(R). We say K has
finite injective dimension if K can be represented by a finite complex of injective
R-modules. We say K has injective-amplitude in [a, b] if K is isomorphic to a
complex

. . .→ 0→ Ia → Ia+1 → . . .→ Ib−1 → Ib → 0→ . . .

with Ii an injective R-module for all i ∈ Z.

Clearly, K has bounded injective dimension if and only if K has injective-amplitude
in [a, b] for some a, b ∈ Z. Furthermore, if K has bounded injective dimension, then
K is bounded. Here is the obligatory lemma.

Lemma 15.69.2.0A5T Let R be a ring. Let K be an object of D(R). Let a, b ∈ Z. The
following are equivalent

(1) K has injective-amplitude in [a, b],
(2) ExtiR(N,K) = 0 for all R-modules N and all i ̸∈ [a, b],
(3) Exti(R/I,K) = 0 for all ideals I ⊂ R and all i ̸∈ [a, b].

Proof. Assume (1). We may assume K is the complex
. . .→ 0→ Ia → Ia+1 → . . .→ Ib−1 → Ib → 0→ . . .

where Ii is a injective R-module for all i ∈ Z. In this case we can compute the ext
groups by the complex

. . .→ 0→ HomR(N, Ia)→ . . .→ HomR(N, Ib)→ 0→ . . .

and we obtain (2). It is clear that (2) implies (3).
Assume (3) holds. Choose a nonzero map R → Hn(K). Since HomR(R,−) is
an exact functor, we see that ExtnR(R,K) = HomR(R,Hn(K)) = Hn(K). We
conclude that Hn(K) is zero for n ̸∈ [a, b]. In particular, K is bounded below and
we can choose a quasi-isomorphism

K → I•

with Ii injective for all i ∈ Z and Ii = 0 for i < a. See Derived Categories, Lemma
13.15.5. Let J = Ker(Ib → Ib+1). Then K is quasi-isomorphic to the complex

. . .→ 0→ Ia → . . .→ Ib−1 → J → 0→ . . .

https://stacks.math.columbia.edu/tag/0A5Q
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Denote K ′ = (Ia → . . . → Ib−1) the corresponding object of D(R). We obtain a
distinguished triangle

J [−b]→ K → K ′ → J [1− b]
in D(R). Thus for every ideal I ⊂ R an exact sequence

Extb(R/I,K ′)→ Ext1(R/I, J)→ Ext1+b(R/I,K)

By assumption the term on the right vanishes. By the implication (1) ⇒ (2) the
term on the left vanishes. Thus J is a injective R-module by Lemma 15.55.4. □

Example 15.69.3.0EX0 Let R be a Dedekind domain. Then every nonzero ideal I is a
finite projective module, see Lemma 15.22.11. Thus R/I has projective dimension
1. Hence every R-module M has injective dimension ≤ 1 by Lemma 15.69.2. Thus
ExtiR(M,N) = 0 for i ≥ 2 and any pair of R-modules M,N . It follows that
any object K in Db(R) is isomorphic to the direct sum of its cohomologies: K ∼=⊕
Hi(K)[−i], see Derived Categories, Lemma 13.27.10.

Example 15.69.4.0A5U Let k be a field and let R be the ring of dual numbers over k,
i.e., R = k[x]/(x2). Denote ϵ ∈ R the class of x. Let M = R/(ϵ). Then M is
quasi-isomorphic to the complex

. . .→ R
ϵ−→ R

ϵ−→ R

and R is an injective R-module. However one usually does not consider M to have
finite injective dimension in this situation. This explains why we consider bounded
(in both directions) complexes of injective modules in our definition of bounded
injective dimension of objects of D(R).

Lemma 15.69.5.0A5V Let R be a ring. Let K ∈ D(R).
(1) If K is in Db(R) and Hi(K) has finite injective dimension for all i, then

K has finite injective dimension.
(2) If K• represents K, is a bounded complex of R-modules, and Ki has finite

injective dimension for all i, then K has finite injective dimension.

Proof. Omitted. Hint: Apply the spectral sequences of Derived Categories, Lemma
13.21.3 to the functor F = HomR(N,−) to get a computation of ExtiA(N,K) and
use the criterion of Lemma 15.69.2. □

Lemma 15.69.6.0DW2 Let R be a Noetherian ring. Let I ⊂ R be an ideal contained in
the Jacobson radical of R. Let K ∈ D+(R) have finite cohomology modules. Then
the following are equivalent

(1) K has finite injective dimension, and
(2) there exists a b such that ExtiR(R/J,K) = 0 for i > b and any ideal J ⊃ I.

Proof. The implication (1) ⇒ (2) is immediate. Assume (2). Say Hi(K) = 0 for
i < a. Then Exti(M,K) = 0 for i < a and all R-modules M . Thus it suffices to
show that Exti(M,K) = 0 for i > b any finite R-module M , see Lemma 15.69.2.
By Algebra, Lemma 10.62.1 the module M has a finite filtration whose successive
quotients are of the form R/p where p is a prime ideal. If 0→M1 →M →M2 → 0
is a short exact sequence and Exti(Mj ,K) = 0 for i > b and j = 1, 2, then
Exti(M,K) = 0 for i > b. Thus we may assume M = R/p. If I ⊂ p, then the

https://stacks.math.columbia.edu/tag/0EX0
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vanishing follows from the assumption. If not, then choose f ∈ I, f ̸∈ p. Consider
the short exact sequence

0→ R/p
f−→ R/p→ R/(p, f)→ 0

The R-module R/(p, f) has a filtration whose successive quotients are R/q with
(p, f) ⊂ q. Thus by Noetherian induction and the argument above we may as-
sume the vanishing holds for R/(p, f). On the other hand, the modules Ei =
Exti(R/p,K) are finite by our assumption on K (bounded below with finite coho-
mology modules), the spectral sequence (15.67.0.1), and Algebra, Lemma 10.71.9.
Thus Ei for i > b is a finite R-module such that Ei/fEi = 0. We conclude by
Nakayama’s lemma (Algebra, Lemma 10.20.1) that Ei is zero. □

Lemma 15.69.7.0AVJ Let (R,m, κ) be a local Noetherian ring. Let K ∈ D+(R) have
finite cohomology modules. Then the following are equivalent

(1) K has finite injective dimension, and
(2) ExtiR(κ,K) = 0 for i≫ 0.

Proof. This is a special case of Lemma 15.69.6. □

15.70. Modules which are close to being projective

0G8Z There seem to be many different of definitions in the literature of “almost projective
modules”. In this section we discuss just one of the many possibilities.

Lemma 15.70.1.0G90 Let R be a ring. Let M , N be R-modules.
(1) Given an R-module map φ : M → N the following are equivalent: (a) φ

factors through a projective R-module, and (b) φ factors through a free
R-module.

(2) The set of φ : M → N satisfying the equivalent conditions of (1) is an
R-submodule of HomR(M,N).

(3) Given maps ψ : M ′ → M and ξ : N → N ′, if φ : M → N satisfies the
equivalent conditions of (1), then ξ ◦ φ ◦ ψ : M ′ → N ′ does too.

Proof. The equivalence of (1)(a) and (1)(b) follows from Algebra, Lemma 10.77.2.
If φ : M → N and φ′ : M → N factor through the modules P and P ′ then φ+ φ′

factors through P ⊕P ′ and λφ factors through P for all λ ∈ R. This proves (2). If
φ : M → N factors through the module P and ψ and ξ are as in (3), then ξ ◦φ ◦ψ
factors through P . This proves (3). □

Lemma 15.70.2.0G91 Let R be a ring. Let φ : M → N be an R-module map. If φ
factors through a projective module and M is a finite R-module, then φ factors
through a finite projective module.

Proof. By Lemma 15.70.1 we can factor φ = τ ◦ σ where the target of σ is
⊕

i∈I R
for some set I. Choose generators x1, . . . , xn for M . Write σ(xj) = (aji)i∈I . For
each j only a finite number of aij are nonzero. Hence σ has image contained in a
finite free R-module and we conclude. □

Let R be a ring. Observe that an R-module is projective if and only if the identity
on R factors through a projective module.

Lemma 15.70.3.0G92 Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
The following conditions are equivalent
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https://stacks.math.columbia.edu/tag/0G90
https://stacks.math.columbia.edu/tag/0G91
https://stacks.math.columbia.edu/tag/0G92


15.70. MODULES WHICH ARE CLOSE TO BEING PROJECTIVE 1344

(1) for every a ∈ I the map a : M → M factors through a projective R-
module,

(2) for every a ∈ I the map a : M →M factors through a free R-module, and
(3) Ext1

R(M,N) is annihilated by I for every R-module N .

Proof. The equivalence of (1) and (2) follows from Lemma 15.70.1. If (1) holds, then
(3) holds because Ext1

R(P,N) for any N and any projective module P . Conversely,
assume (3) holds. Choose a short exact sequence 0 → N → P → M → 0 with P
projective (or even free). By assumption the corresponding element of Ext1

R(M,N)
is annihilated by I. Hence for every a ∈ I the map a : M → M can be factored
through the surjection P →M and we conclude (1) holds. □

In order to comfortably talk about modules satisfying the equivalent conditions of
Lemma 15.70.3 we give the property a name.

Definition 15.70.4.0G93 Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
We say M is I-projective8 if the equivalent conditions of Lemma 15.70.3 hold.

Modules annihilated by I are I-projective.

Lemma 15.70.5.0G94 Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
If M is annihilated by I, then M is I-projective.

Proof. Immediate from the definition and the fact that the zero module is projec-
tive. □

Lemma 15.70.6.0G95 Let R be a ring. Let I ⊂ R be an ideal. Let

0→ K → P →M → 0

be a short exact sequence of R-modules. If M is I-projective and P is projective,
then K is I-projective.

Proof. The element idK ∈ HomR(K,K) maps to the class of the given extension
in Ext1

R(M,K). Since by assumption this class is annihilated by any a ∈ I we see
that a : K → K factors through K → P and we conclude. □

Lemma 15.70.7.0G96 Let R be a ring. Let I ⊂ R be an ideal. If M is a finite,
I-projective R-module, then M∨ = HomR(M,R) is I-projective.

Proof. Assume M is finite and I-projective. Choose a short exact sequence 0 →
K → R⊕r → M → 0. This produces an injection M∨ → R⊕r = (R⊕r)∨. Since
the extension class in Ext1

R(M,K) corresponding to the short exact sequence is
annihilated by I, we see that for any a ∈ I we can find a map M → R⊕r such that
the composition with the given map R⊕r → M is equal to a : M → M . Taking
duals we find that a : M∨ →M∨ factors through the map M∨ → R⊕r given above
and we conclude. □

8This is nonstandard notation.
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15.71. Hom complexes

0A8H Let R be a ring. Let L• and M• be two complexes of R-modules. We construct a
complex Hom•(L•,M•). Namely, for each n we set

Homn(L•,M•) =
∏

n=p+q
HomR(L−q,Mp)

It is a good idea to think of Homn as the R-module of all R-linear maps from L•

to M• (viewed as graded modules) which are homogenous of degree n. In this
terminology, we define the differential by the rule

d(f) = dM ◦ f − (−1)nf ◦ dL

for f ∈ Homn(L•,M•). We omit the verification that d2 = 0. See Section 15.72
for sign rules. This construction is a special case of Differential Graded Algebra,
Example 22.26.6. It follows immediately from the construction that we have

(15.71.0.1)0A5X Hn(Hom•(L•,M•)) = HomK(R)(L•,M•[n])

for all n ∈ Z.

Lemma 15.71.1.0A5Y Let R be a ring. Given complexes K•, L•,M• of R-modules there
is a canonical isomorphism

Hom•(K•,Hom•(L•,M•)) = Hom•(Tot(K• ⊗R L•),M•)

of complexes of R-modules.

Proof. Let α be an element of degree n on the left hand side. Thus

α = (αp,q) ∈
∏

p+q=n
HomR(K−q,Homp(L•,M•))

Each αp,q is an element

αp,q = (αr,s,q) ∈
∏

r+s+q=n
HomR(K−q,HomR(L−s,Mr))

If we make the identifications

(15.71.1.1)0A5Z HomR(K−q,HomR(L−s,Mr)) = HomR(K−q ⊗R L−s,Mr)

then by our sign rules we get

d(αr,s,q) = dHom•(L•,M•) ◦ αr,s,q − (−1)nαr,s,q ◦ dK
= dM ◦ αr,s,q − (−1)r+sαr,s,q ◦ dL − (−1)r+s+qαr,s,q ◦ dK

On the other hand, if β is an element of degree n of the right hand side, then

β = (βr,s,q) ∈
∏

r+s+q=n
HomR(K−q ⊗R L−s,Mr)

and by our sign rule (Homology, Definition 12.18.3) we get

d(βr,s,q) = dM ◦ βr,s,q − (−1)nβr,s,q ◦ dTot(K•⊗L•)

= dM ◦ βr,s,q − (−1)r+s+q (βr,s,q ◦ dK + (−1)−qβr,s,q ◦ dL
)

Thus we see that the map induced by the identifications (15.71.1.1) indeed is a
morphism of complexes. □

https://stacks.math.columbia.edu/tag/0A5Y
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Remark 15.71.2.0GWQ Let R be a ring. The category Comp(R) of complexes of R-
modules is a symmetric monoidal category with tensor product given by Tot(−⊗R
−), see Lemma 15.58.1. Given L• andM• in Comp(R) an element f ∈ Hom0(L•,M•)
defines a map of complexes f : L• → M• if and only if d(f) = 0. Hence Lemma
15.71.1 also tells us that

MorComp(R)(K•,Hom•(L•,M•)) = MorComp(R)(Tot(K• ⊗R L•),M•)

functorially in K•, L•,M• in Comp(R). This means that Hom•(−,−) is an internal
hom for the symmetric monoidal category Comp(R) as discussed in Categories,
Remark 4.43.12.

Lemma 15.71.3.0A8I Let R be a ring. Given complexes K•, L•,M• of R-modules there
is a canonical morphism

Tot (Hom•(L•,M•)⊗R Hom•(K•, L•)) −→ Hom•(K•,M•)

of complexes of R-modules.

Proof. Via the discussion in Remark 15.71.2 the existence of such a canonical map
follows from Categories, Remark 4.43.12. We also give a direct construction.

An element α of degree n of the left hand side is

α = (αp,q) ∈
⊕

p+q=n
Homp(L•,M•)⊗R Homq(K•, L•)

The element αp,q is a finite sum αp,q =
∑
βpi ⊗ γ

q
i with

βpi = (βr,si ) ∈
∏

r+s=p
HomR(L−s,Mr)

and
γqi = (γu,vi ) ∈

∏
u+v=q

HomR(K−v, Lu)

The map is given by sending α to δ = (δr,v) with

δr,v =
∑

i,s
βr,si ◦ γ

−s,v
i ∈ HomR(K−v,Mr)

For given r + v = n this sum is finite as there are only finitely many nonzero αp,q,
hence only finitely many nonzero βpi and γqi . By our sign rules we have

d(αp,q) = dHom•(L•,M•)(αp,q) + (−1)pdHom•(K•,L•)(αp,q)

=
∑(

dM ◦ βpi ◦ γ
q
i − (−1)pβpi ◦ dL ◦ γqi

)
+ (−1)p

∑(
βpi ◦ dL ◦ γqi − (−1)qβpi ◦ γ

q
i ◦ dK

)
=
∑(

dM ◦ βpi ◦ γ
q
i − (−1)nβpi ◦ γ

q
i ◦ dK

)
It follows that the rules α 7→ δ is compatible with differentials and the lemma is
proved. □

Lemma 15.71.4.0BYM Let R be a ring. Given complexes K•, L•,M• of R-modules there
is a canonical morphism

Tot(K• ⊗R Hom•(M•, L•)) −→ Hom•(M•,Tot(K• ⊗R L•))

of complexes of R-modules functorial in all three complexes.

https://stacks.math.columbia.edu/tag/0GWQ
https://stacks.math.columbia.edu/tag/0A8I
https://stacks.math.columbia.edu/tag/0BYM
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Proof. Via the discussion in Remark 15.71.2 the existence of such a canonical map
follows from Categories, Remark 4.43.12. We also give a direct construction.
Let α be an element of degree n of the right hand side. Thus

α = (αp,q) ∈
∏

p+q=n
HomR(M−q,Totp(K• ⊗R L•))

Each αp,q is an element
αp,q = (αr,s,q) ∈ HomR(M−q,

⊕
r+s+q=n

Kr ⊗R Ls)

where we think of αr,s,q as a family of maps such that for every x ∈ M−q only a
finite number of αr,s,q(x) are nonzero. By our sign rules we get

d(αr,s,q) = dTot(K•⊗RL•) ◦ αr,s,q − (−1)nαr,s,q ◦ dM
= dK ◦ αr,s,q + (−1)rdL ◦ αr,s,q − (−1)nαr,s,q ◦ dM

On the other hand, if β is an element of degree n of the left hand side, then

β = (βp,q) ∈
⊕

p+q=n
Kp ⊗R Homq(M•, L•)

and we can write βp,q =
∑
γpi ⊗ δ

q
i with γpi ∈ Kp and

δqi = (δr,si ) ∈
∏

r+s=q
HomR(M−s, Lr)

By our sign rules we have
d(βp,q) = dK(βp,q) + (−1)pdHom•(M•,L•)(βp,q)

=
∑

dK(γpi )⊗ δqi + (−1)p
∑

γpi ⊗ (dL ◦ δqi − (−1)qδqi ◦ dM )

We send the element β to α with

αr,s,q = cr,s,q(
∑

γri ⊗ δ
s,q
i )

where cr,s,q : Kr ⊗R HomR(M−q, Ls) → HomR(M−q,Kr ⊗R Ls) is the canonical
map. For a given β and r there are only finitely many nonzero γri hence only finitely
many nonzero αr,s,q are nonzero (for a given r). Thus this family of maps satisfies
the conditions above and the map is well defined. Comparing signs we see that this
is compatible with differentials. □

Lemma 15.71.5.0A62 Let R be a ring. Given complexes K•, L• of R-modules there is
a canonical morphism

K• −→ Hom•(L•,Tot(K• ⊗R L•))
of complexes of R-modules functorial in both complexes.

Proof. Via the discussion in Remark 15.71.2 the existence of such a canonical map
follows from Categories, Remark 4.43.12. We also give a direct construction.
Let α be an element of degree n of the right hand side. Thus

α = (αp,q) ∈
∏

p+q=n
HomR(L−q,Totp(K• ⊗R L•))

Each αp,q is an element
αp,q = (αr,s,q) ∈ HomR(L−q,

⊕
r+s+q=n

Kr ⊗R Ls)

https://stacks.math.columbia.edu/tag/0A62
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where we think of αr,s,q as a family of maps such that for every x ∈ L−q only a
finite number of αr,s,q(x) are nonzero. By our sign rules we get

d(αr,s,q) = dTot(K•⊗RL•) ◦ αr,s,q − (−1)nαr,s,q ◦ dL
= dK ◦ αr,s,q + (−1)rdL ◦ αr,s,q − (−1)nαr,s,q ◦ dL

Now an element β ∈ Kn we send to α with αn,−q,q = β ⊗ idL−q and αr,s,q = 0
if r ̸= n. This is indeed an element as above, as for fixed q there is only one
nonzero αr,s,q. The description of the differential shows this is compatible with
differentials. □

Lemma 15.71.6.0A60 Let R be a ring. Given complexes K•, L•,M• of R-modules there
is a canonical morphism

Tot(Hom•(L•,M•)⊗R K•) −→ Hom•(Hom•(K•, L•),M•)
of complexes of R-modules functorial in all three complexes.

Proof. Via the discussion in Remark 15.71.2 the existence of such a canonical map
follows from Categories, Remark 4.43.12. We also give a direct construction.
Consider an element β of degree n of the right hand side. Then

β = (βp,s) ∈
∏

p+s=n
HomR(Hom−s(K•, L•),Mp)

Our sign rules tell us that
d(βp,s) = dM ◦ βp,s − (−1)nβp,s ◦ dHom•(K•,L•)

We can describe the last term as follows
(βp,s ◦ dHom•(K•,L•))(f) = βp,s(dL ◦ f − (−1)s+1f ◦ dK)

if f ∈ Hom−s−1(K•, L•). We conclude that in some unspecified sense d(βp,s) is a
sum of three terms with signs as follows
(15.71.6.1)0FNE d(βp,s) = dM (βp,s)− (−1)ndL(βp,s) + (−1)p+1dK(βp,s)
Next, we consider an element α of degree n of the left hand side. We can write it
like so

α = (αt,r) ∈
⊕

t+r=n
Homt(L•,M•)⊗Kr

Each αt,r maps to an element

αt,r 7→ (αp,q,r) ∈
∏

p+q=t
HomR(L−q,Mp)⊗R Kr

Our sign rules tell us that
d(αp,q,r) = dHom•(L•,M•)(αp,q,r) + (−1)p+qdK(αp,q,r)

where if we further write αp,q,r =
∑
gp,qi ⊗ kri then we have

dHom•(L•,M•)(αp,q,r) =
∑

(dM ◦ gp,qi )⊗ kri − (−1)p+q
∑

(gp,qi ◦ dL)⊗ kri
We conclude that in some unspecified sense d(αp,q,r) is a sum of three terms with
signs as follows
(15.71.6.2)0FNF d(αp,q,r) = dM (αp,q,r)− (−1)p+qdL(αp,q,r) + (−1)p+qdK(αp,q,r)
To define our map we will use the canonical maps

cp,q,r : HomR(L−q,Mp)⊗R Kr −→ HomR(HomR(Kr, L−q),Mp)

https://stacks.math.columbia.edu/tag/0A60
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which sends φ⊗k to the map ψ 7→ φ(ψ(k)). This is functorial in all three variables.
With s = q + r there is an inclusion

HomR(HomR(Kr, L−q),Mp) ⊂ HomR(Hom−s(K•, L•),Mp)
coming from the projection Hom−s(K•, L•) → HomR(Kr, L−q). Since αp,q,r is
nonzero only for a finite number of r we see that for a given s there is only a finite
number of q, r with q + r = s. Thus we can send α to the element β with

βp,s =
∑

q+r=s
ϵp,q,rcp,q,r(αp,q,r)

where where the sum uses the inclusions given above and where ϵp,q,r ∈ {±1}.
Comparing signs in the equations (15.71.6.1) and (15.71.6.2) we see that

(1) ϵp,q,r = ϵp+1,q,r
(2) −(−1)nϵp,q,r = −(−1)p+qϵp,q−1,r or equivalently ϵp,q,r = (−1)rϵp,q−1,r
(3) (−1)p+1ϵp,q,r = (−1)p+qϵp,q,r+1 or equivalently (−1)q+1ϵp,q,r = ϵp,q,r+1.

A good solution is to take
ϵp,r,s = (−1)r+qr

The choice of this sign is explained in the remark following the proof. □

Remark 15.71.7.0A61 Let us explain why the sign used in the direct construction in
the proof of Lemma 15.71.6 agrees with the sign we get from the construction
using the discussion in Remark 15.71.2 and Categories, Remark 4.43.12. Denote
− ⊗ − = Tot(− ⊗R −) and hom(−,−) = Hom•(−,−). The construction using
monoidal category language tells us to use the arrow

hom(L•,M•)⊗K• −→ hom(hom(K•, L•),M•)
in Comp(R) corresponding to the arrow

hom(L•,M•)⊗K• ⊗ hom(K•, L•) −→M•

gotten by swapping the order of the last two tensor products and then using the
evaluation maps hom(K•, L•)⊗K• → L• and hom(L•,K•)⊗ L• → M•. Only in
swapping does a sign intervene. Namely, in the isomorphism

K• ⊗ hom(K•, L•)→ hom(K•, L•)⊗K•

there is a sign (−1)r(q+r′) on Kr ⊗R HomR(K−r′
, Lq), see Section 15.72 item (9).

The reader can convince themselves that, because of the correspondence we are
using to describe maps into an internal hom, this sign only matters if r = r′ and in
this case we obtain (−1)r(q+r) = (−1)r+qr as in the direct proof.

15.72. Sign rules

0FNG In this section we review the sign rules used so far and we discuss some of their
ramifications. It also seems appropriate to discuss these issues in the setting of
the category of complexes of modules over a ring, as most interesting phenomena
already occur in this case. We sincerely hope the reader will not need to use the
more esoteric aspects of this section.
For the rest of this section, we fix a ring R and we denote M• a complex of R-
modules with differentials dnM : Mn →Mn+1.

(1) The kth shifted complex M•[k] has terms (M•[k])n = Mn+k and differ-
entials dnM [k] = (−1)kdn+k

M , see Homology, Definition 12.14.7.

https://stacks.math.columbia.edu/tag/0A61
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(2) Given a map f : M• → N• of complexes, we define f [k] : M•[k]→ N•[k]
without the intervention of signs, see Homology, Definition 12.14.7.

(3) We identify Hn(M•[k]) with Hn+k(M•) without the intervention of signs,
see Homology, Definition 12.14.8.

(4) The boundary map of a short exact sequence of complexes is defined as in
the snake lemma without the intervention of signs, see Homology, Lemma
12.13.12.

(5) The distinguished triangle associated to a termwise split short exact se-
quence 0→ K• → L• →M• → 0 of complexes is given by

K• → L• →M• → K•[1]
where Mn → Kn+1 is the map πn+1 ◦ dnL ◦ sn if s and π are compatible
termwise splittings. In other words, without the intervention of signs. See
Derived Categories, Definitions 13.10.1 and 13.9.9.

(6) The total complex Tot(M•⊗RN•) has differential d satisfying the Leibniz
rule d(x ⊗ y) = d(x) ⊗ y + (−1)deg(x)x ⊗ d(y). See Homology, Example
12.18.2 and Homology, Definition 12.18.3.

(7)0FNH There is a canonical isomorphism
Tot(M• ⊗R N•)[a+ b]→ Tot(M•[a]⊗R N•[b])

which uses the sign (−1)pb on the summand Mp ⊗R Nq, see Homology,
Remark 12.18.5. It is often more convenient to consider the corresponding
shifted map Tot(M• ⊗R N•)→ Tot(M•[a]⊗R N•[b])[−a− b].

(8) There is a canonical isomorphism of complexes
Tot(Tot(K• ⊗R L•)⊗RM•)→ Tot(K• ⊗R Tot(L• ⊗RM•))

defined without the intervention of signs. See Section 15.58.
(9)0GWR There is a canonical isomorphism

Tot(L• ⊗RM•)→ Tot(M• ⊗R L•)
which uses the sign (−1)pq on the summand Lp⊗RMq. See Section 15.58.

Before we get into a discussion of the sign conventions regarding Hom-complexes,
we construct the dual of a complex with respect to the conventions above.

Lemma 15.72.1.0FNJ Let R be a ring. Let M be an R-module. Let N, η, ϵ be a left
dual of M in the monoidal category of R-modules, see Categories, Definition 4.43.5.
Then

(1) M and N are finite projective R-modules,
(2) the map e : HomR(M,R)→ N , λ 7→ (λ⊗ 1)(η) is an isomorphism,
(3) we have ϵ(n,m) = e−1(n)(m) for n ∈ N and m ∈M .

Proof. The assumptions mean that

M
η⊗1−−→M ⊗R N ⊗RM

1⊗ϵ−−→M and N
1⊗η−−→ N ⊗RM ⊗R N

ϵ⊗1−−→ N

are the identity map. We can choose a finite free module F , an R-module map
F →M , and a lift η̃ : R→ F ⊗R N of η. We obtain a commutative diagram

M
η⊗1

//

η̃⊗1
))

M ⊗R N ⊗RM 1⊗ϵ
// M

F ⊗R N ⊗RM

OO

1⊗ϵ // F

OO

https://stacks.math.columbia.edu/tag/0FNJ
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This shows that the identity on M factors through a finite free module and hence
M is finite projective. By symmetry we see that N is finite projective. This proves
part (1). Part (2) follows from Categories, Lemma 4.43.6 and its proof. Part (3)
follows from the first equality of the proof. □

Lemma 15.72.2.0FNK Let R be a ring. Let M• be a complex of R-modules. Let N•, η, ϵ
be a left dual of M• in the monoidal category of complexes of R-modules. Then

(1) M• and N• are bounded,
(2) Mn and Nn are finite projective R-modules,
(3) writing ϵ =

∑
ϵn with ϵn : N−n ⊗R Mn → R and η =

∑
ηn with ηn :

R→Mn ⊗R N−n then (N−n, ηn, ϵn) is the left dual of Mn as in Lemma
15.72.1,

(4) the differential dnN : Nn → Nn+1 is equal to −(−1)n times the map

Nn = HomR(M−n, R)
d−n−1
M−−−−→ HomR(M−n−1, R) = Nn+1

where the equality signs are the identifications from Lemma 15.72.1 part
(2).

Conversely, given a bounded complex M• of finite projective R-modules, setting
Nn = HomR(M−n, R) with differentials as above, setting ϵ =

∑
ϵn with ϵn :

N−n ⊗R Mn → R given by evaluation, and setting η =
∑
ηn with ηn : R →

Mn ⊗R N−n mapping 1 to idMn we obtain a left dual of M• in the monoidal
category of complexes of R-modules.

Proof. Since (1 ⊗ ϵ) ◦ (η ⊗ 1) = idM• and (ϵ ⊗ 1) ◦ (1 ⊗ η) = idN• by Categories,
Definition 4.43.5 we see immediately that we have (1 ⊗ ϵn) ◦ (ηn ⊗ 1) = idMn and
(ϵn⊗1)◦ (1⊗ηn) = idN−n which proves (3). By Lemma 15.72.1 we have (2). Since
the sum η =

∑
ηn is finite, we get (1). Since η =

∑
ηn is a map of complexes

R→ Tot(M• ⊗R N•) we see that

(d−n−1
M ⊗ 1) ◦ η−n−1 + (−1)n(1⊗ d−n

N ) ◦ η−n = 0

by our choice of signs for the differential on Tot(M•⊗RN•). Unwinding definitions,
this proves (4). To see the final statement of the lemma one reads the above
backwards. □

We will use the description of the left dual of a complex in Lemma 15.72.2 as a
motivation for our sign rule on the Hom-complex. Namelly, we choose the signs
such that (11) holds. We continue with the discussion of various sign rules as above

(10) Given complexes K•, M• we let Hom•(M•,K•) be the complex with
terms

Homn(M•,K•) =
∏

n=p+q
HomR(M−q,Kp)

and differential given by the rule

d(f) = dK ◦ f − (−1)nf ◦ dM
(11)0FNL The choice above is such that if M• has a left dual N• as in Lemma

15.72.2, then we have a canonical isomorphism

Tot(K• ⊗R N•) −→ Hom•(M•,K•)

https://stacks.math.columbia.edu/tag/0FNK
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defined without the intervention of signs sending the summand Kp⊗RNq

to the summand HomR(M−q,Kp) via Nq = HomR(M−q, R) and the
canonical map Kp ⊗R HomR(M−q, R)→ HomR(M−q,Kp).

(12) There is a composition

Tot(Hom•(L•,K•)⊗R Hom•(M•, L•)) −→ Hom•(M•,K•)

defined without the intervention of signs, see Lemma 15.71.3.
(13) There is a canonical isomorphism

Hom•(K•,Hom•(L•,M•)) = Hom•(Tot(K• ⊗R L•),M•)

defined without the intervention of signs, see Lemma 15.71.1.
(14) There is a canonical map

Tot(K• ⊗R Hom•(M•, L•)) −→ Hom•(M•,Tot(K• ⊗R L•))

defined without the intervention of signs, see Lemma 15.71.4.
(15) There is a canonical map

K• −→ Hom•(L•,Tot(K• ⊗R L•))

defined without the intervention of signs, see Lemma 15.71.5.
(16) By Lemma 15.71.6 is a canonical map

Tot(Hom•(L•,M•)⊗R K•) −→ Hom•(Hom•(K•, L•),M•)

which uses a sign (−1)r+qr on the module HomR(L−q,Mp)⊗RKr whose
reason is explained in Remark 15.71.7.

(17)0FNM Taking L• = M• and using R → Hom•(M•,M•) the map from the pre-
vious item becomes the evaluation map

ev : K• −→ Hom•(Hom•(K•,M•),M•)

It sends x ∈ Kn to the map which sends f ∈ Homm(K•,M•) to (−1)nmf(x).
(18)0FNN There is a canonical identification

Hom•(M•,K•)[a− b]→ Hom•(M•[b],K•[a])

which uses signs. It is defined as the map whose corresponding shifted
map

Hom•(M•,K•)→ Hom•(M•[b],K•[a])[b− a]
uses the sign (−1)nb on the module HomR(M−q,Kp) with p + q = n.
Namely, if f ∈ Homn(M•,K•) then

d(f) = dK ◦ f − (−1)nf ◦ dM
on the source, whereas on the target f lies in (Hom•(M•[b],K•[a])[b− a])n =
Homn+b−a(M•[b],K•[a]) and hence we get

d(f) = (−1)b−a
(
dK[a] ◦ f − (−1)n+b−af ◦ dM [b]

)
= (−1)b−a

(
(−1)adK ◦ f − (−1)n+b−af ◦ (−1)bdM

)
= (−1)bdK ◦ f − (−1)n+bf ◦ dM

and one sees that the chosen sign of (−1)nb in degree n produces a map
of complexes for these differentials.
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15.73. Derived hom

0A5W Let R be a ring. The derived hom we will define in this section is a functor
D(R)opp ×D(R) −→ D(R), (K,L) 7−→ RHomR(K,L)

This is an internal hom in the derived category of R-modules in the sense that it
is characterized by the formula
(15.73.0.1)0A63 HomD(R)(K,RHomR(L,M)) = HomD(R)(K ⊗L

R L,M)
for objects K,L,M of D(R). Note that this formula characterizes the objects up to
unique isomorphism by the Yoneda lemma. A construction can be given as follows.
Choose a K-injective complex I• of R-modules representing M , choose a complex
L• representing L, and set

RHomR(L,M) = Hom•(L•, I•)
with notation as in Section 15.71. A generalization of this construction is dis-
cussed in Differential Graded Algebra, Section 22.31. From (15.71.0.1) and Derived
Categories, Lemma 13.31.2 that we have
(15.73.0.2)0A64 Hn(RHomR(L,M)) = HomD(R)(L,M [n])
for all n ∈ Z. In particular, the object RHomR(L,M) of D(R) is well defined, i.e.,
independent of the choice of the K-injective complex I•.

Lemma 15.73.1.0A65 Let R be a ring. Let K,L,M be objects of D(R). There is a
canonical isomorphism

RHomR(K,RHomR(L,M)) = RHomR(K ⊗L
R L,M)

in D(R) functorial in K,L,M which recovers (15.73.0.1) by taking H0.

Proof. Choose a K-injective complex I• representing M and a K-flat complex of
R-modules L• representing L. For any complex of R-modules K• we have

Hom•(K•,Hom•(L•, I•)) = Hom•(Tot(K• ⊗R L•), I•)
by Lemma 15.71.1. The lemma follows by the definition of RHom and because
Tot(K• ⊗R L•) represents the derived tensor product. □

Lemma 15.73.2.0A66 Let R be a ring. Let P • be a bounded above complex of pro-
jective R-modules. Let L• be a complex of R-modules. Then RHomR(P •, L•) is
represented by the complex Hom•(P •, L•).

Proof. By (15.71.0.1) and Derived Categories, Lemma 13.19.8 the cohomology
groups of the complex are “correct”. Hence if we choose a quasi-isomorphism
L• → I• with I• a K-injective complex of R-modules then the induced map

Hom•(P •, L•) −→ Hom•(P •, I•)
is a quasi-isomorphism. As the right hand side is our definition of RHomR(P •, L•)
we win. □

Lemma 15.73.3.0A67 Let R be a ring. Let K,L,M be objects of D(R). There is a
canonical morphism

RHomR(L,M)⊗L
R K −→ RHomR(RHomR(K,L),M)

in D(R) functorial in K,L,M .

https://stacks.math.columbia.edu/tag/0A65
https://stacks.math.columbia.edu/tag/0A66
https://stacks.math.columbia.edu/tag/0A67
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Proof. Choose a K-injective complex I• representing M , a K-injective complex J•

representing L, and a K-flat complex K• representing K. The map is defined using
the map

Tot(Hom•(J•, I•)⊗R K•) −→ Hom•(Hom•(K•, J•), I•)
of Lemma 15.71.6. We omit the proof that this is functorial in all three objects of
D(R). □

Lemma 15.73.4.0A8J Let R be a ring. Given K,L,M in D(R) there is a canonical
morphism

RHomR(L,M)⊗L
R RHomR(K,L) −→ RHomR(K,M)

in D(R) functorial in K,L,M .

Proof. Choose a K-injective complex I• representing M , a K-injective complex J•

representing L, and any complex of R-modules K• representing K. By Lemma
15.71.3 there is a map of complexes

Tot (Hom•(J•, I•)⊗R Hom•(K•, J•)) −→ Hom•(K•, I•)
The complexes of R-modules Hom•(J•, I•), Hom•(K•, J•), and Hom•(K•, I•) rep-
resent RHomR(L,M), RHomR(K,L), and RHomR(K,M). If we choose a K-flat
complex H• and a quasi-isomorphism H• → Hom•(K•, J•), then there is a map

Tot (Hom•(J•, I•)⊗R H•) −→ Tot (Hom•(J•, I•)⊗R Hom•(K•, J•))
whose source represents RHomR(L,M) ⊗L

R RHomR(K,L). Composing the two
displayed arrows gives the desired map. We omit the proof that the construction
is functorial. □

Lemma 15.73.5.0BYN Let R be a ring. Given complexes K,L,M in D(R) there is a
canonical morphism

K ⊗L
R RHomR(M,L) −→ RHomR(M,K ⊗L

R L)
in D(R) functorial in K, L, M .

Proof. Choose a K-flat complex K• representing K, and a K-injective complex
I• representing L, and choose any complex M• representing M . Choose a quasi-
isomorphism Tot(K• ⊗R I•)→ J• where J• is K-injective. Then we use the map

Tot (K• ⊗R Hom•(M•, I•))→ Hom•(M•,Tot(K• ⊗R I•))→ Hom•(M•, J•)
where the first map is the map from Lemma 15.71.4. □

Lemma 15.73.6.0A6B Let R be a ring. Given complexesK,L inD(R) there is a canonical
morphism

K −→ RHomR(L,K ⊗L
R L)

in D(R) functorial in both K and L.

Proof. This is a special case of Lemma 15.73.5 but we will also prove it directly.
Choose a K-flat complex K• representing K and any complex L• representing L.
Choose a quasi-isomorphism Tot(K• ⊗R L•) → J• where J• is K-injective. Then
we use the map

K• → Hom•(L•,Tot(K• ⊗R L•))→ Hom•(L•, J•)
where the first map is the map from Lemma 15.71.5. □

https://stacks.math.columbia.edu/tag/0A8J
https://stacks.math.columbia.edu/tag/0BYN
https://stacks.math.columbia.edu/tag/0A6B
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15.74. Perfect complexes

0656 A perfect complex is a pseudo-coherent complex of finite tor dimension. We will
not use this as the definition, but define perfect complexes over a ring directly as
follows.

Definition 15.74.1.0657 Let R be a ring. Denote D(R) the derived category of the
abelian category of R-modules.

(1) An object K of D(R) is perfect if it is quasi-isomorphic to a bounded
complex of finite projective R-modules.

(2) An R-module M is perfect if M [0] is a perfect object in D(R).

For example, over a Noetherian ring a finite module is perfect if and only if it has
finite projective dimension, see Lemma 15.74.3 and Algebra, Definition 10.109.2.

Lemma 15.74.2.0658 Let K• be an object of D(R). The following are equivalent
(1) K• is perfect, and
(2) K• is pseudo-coherent and has finite tor dimension.

If (1) and (2) hold and K• has tor-amplitude in [a, b], then K• is quasi-isomorphic
to a complex E• of finite projective R-modules with Ei = 0 for i ̸∈ [a, b].

Proof. It is clear that (1) implies (2), see Lemmas 15.64.5 and 15.66.3. Assume
(2) holds and that K• has tor-amplitude in [a, b]. In particular, Hi(K•) = 0 for
i > b. Choose a complex F • of finite free R-modules with F i = 0 for i > b and a
quasi-isomorphism F • → K• (Lemma 15.64.5). Set E• = τ≥aF

•. Note that Ei is
finite free except Ea which is a finitely presented R-module. By Lemma 15.66.2 Ea
is flat. Hence by Algebra, Lemma 10.78.2 we see that Ea is finite projective. □

Lemma 15.74.3.066Q Let M be a module over a ring R. The following are equivalent
(1) M is a perfect module, and
(2) there exists a resolution

0→ Fd → . . .→ F1 → F0 →M → 0
with each Fi a finite projective R-module.

Proof. Assume (2). Then the complex E• with E−i = Fi is quasi-isomorphic to
M [0]. Hence M is perfect. Conversely, assume (1). By Lemmas 15.74.2 and 15.64.4
we can find resolution E• → M with E−i a finite free R-module. By Lemma
15.66.2 we see that Fd = Coker(Ed−1 → Ed) is flat for some d sufficiently large.
By Algebra, Lemma 10.78.2 we see that Fd is finite projective. Hence

0→ Fd → E−d+1 → . . .→ E0 →M → 0
is the desired resolution. □

Lemma 15.74.4.066R Let R be a ring. Let (K•, L•,M•, f, g, h) be a distinguished
triangle in D(R). If two out of three of K•, L•,M• are perfect then the third is
also perfect.

Proof. Combine Lemmas 15.74.2, 15.64.6, and 15.66.5. □

Lemma 15.74.5.066S Let R be a ring. If K• ⊕ L• is perfect, then so are K• and L•.

Proof. Follows from Lemmas 15.74.2, 15.64.8, and 15.66.7. □

https://stacks.math.columbia.edu/tag/0657
https://stacks.math.columbia.edu/tag/0658
https://stacks.math.columbia.edu/tag/066Q
https://stacks.math.columbia.edu/tag/066R
https://stacks.math.columbia.edu/tag/066S
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Lemma 15.74.6.066T Let R be a ring. Let K• be a bounded complex of perfect R-
modules. Then K• is a perfect complex.
Proof. Follows by induction on the length of the finite complex: use Lemma 15.74.4
and the stupid truncations. □

Lemma 15.74.7.066U Let R be a ring. If K• ∈ Db(R) and all its cohomology modules
are perfect, then K• is perfect.
Proof. Follows by induction on the length of the finite complex: use Lemma 15.74.4
and the canonical truncations. □

Lemma 15.74.8.066V Let A → B be a ring map. Assume that B is perfect as an
A-module. Let K• be a perfect complex of B-modules. Then K• is perfect as a
complex of A-modules.
Proof. Using Lemma 15.74.2 this translates into the corresponding results for pseudo-
coherent modules and modules of finite tor dimension. See Lemma 15.66.12 and
Lemma 15.64.11 for those results. □

Lemma 15.74.9.066W Let A → B be a ring map. Let K• be a perfect complex of
A-modules. Then K• ⊗L

A B is a perfect complex of B-modules.
Proof. Using Lemma 15.74.2 this translates into the corresponding results for pseudo-
coherent modules and modules of finite tor dimension. See Lemma 15.66.13 and
Lemma 15.64.12 for those results. □

Lemma 15.74.10.066X Let A → B be a flat ring map. Let M be a perfect A-module.
Then M ⊗A B is a perfect B-module.
Proof. By Lemma 15.74.3 the assumption implies that M has a finite resolution F•
by finite projective R-modules. As A → B is flat the complex F• ⊗A B is a finite
length resolution of M ⊗A B by finite projective modules over B. Hence M ⊗A B
is perfect. □

Lemma 15.74.11.0GM0 Let R be a ring. If K and L are perfect objects of D(R), then
K ⊗L

R L is a perfect object too.
Proof. We can prove this using the definition as follows. We may represent K,
resp. L by a bounded complex K•, resp. L• of finite projective R-modules. Then
K ⊗L

R L is represented by the bounded complex Tot(K• ⊗R L•). The terms of this
complex are direct sums of the modules Ma ⊗R Lb. Since Ma and Lb are direct
summands of finite free R-modules, so is Ma ⊗R Lb. Hence we conclude the terms
of the complex Tot(K• ⊗R L•) are finite projective.
Another proof can be given using the characterization of perfect complexes in
Lemma 15.74.2 and the corresponding lemmas for pseudo-coherent complexes (Lemma
15.64.16) and for tor amplitude (Lemma 15.66.10 used with A = B = R). □

Lemma 15.74.12.066Y Let R be a ring. Let f1, . . . , fr ∈ R be elements which generate
the unit ideal. Let K• be a complex of R-modules. If for each i the complex
K• ⊗R Rfi is perfect, then K• is perfect.
Proof. Using Lemma 15.74.2 this translates into the corresponding results for pseudo-
coherent modules and modules of finite tor dimension. See Lemma 15.66.16 and
Lemma 15.64.14 for those results. □

https://stacks.math.columbia.edu/tag/066T
https://stacks.math.columbia.edu/tag/066U
https://stacks.math.columbia.edu/tag/066V
https://stacks.math.columbia.edu/tag/066W
https://stacks.math.columbia.edu/tag/066X
https://stacks.math.columbia.edu/tag/0GM0
https://stacks.math.columbia.edu/tag/066Y
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Lemma 15.74.13.068T Let R be a ring. Let K• be a complex of R-modules. Let R→ R′

be a faithfully flat ring map. If the complex K•⊗RR′ is perfect, then K• is perfect.

Proof. Using Lemma 15.74.2 this translates into the corresponding results for pseudo-
coherent modules and modules of finite tor dimension. See Lemma 15.66.17 and
Lemma 15.64.15 for those results. □

Lemma 15.74.14.066Z Let R be a regular ring. Then
(1) an R-module is perfect if and only if it is a finite R-module, and
(2) a complex of R-modules K• is perfect if and only if K• ∈ Db(R) and each

Hi(K•) is a finite R-module.

Proof. Any perfect R-module is finite by definition. Conversely, let M be a finite
R-module. Choose a resolution

. . .→ F2
d2−→ F1

d1−→ F0 →M → 0
with Fi finite free R-modules (Algebra, Lemma 10.71.1). Set Mi = Ker(di). Denote
Ui ⊂ Spec(R) the set of primes p such that Mi,p is free; Ui is open by Algebra,
Lemma 10.79.3. We have a exact sequence 0→Mi+1 → Fi+1 →Mi → 0. If p ∈ Ui,
then 0 → Mi+1,p → Fi+1,p → Mi,p → 0 splits. Thus Mi+1,p is finite projective,
hence free (Algebra, Lemma 10.78.2). This shows that Ui ⊂ Ui+1. We claim that
Spec(R) =

⋃
Ui. Namely, for every prime ideal p the regular local ring Rp has

finite global dimension by Algebra, Proposition 10.110.1. It follows that Mi,p is
finite projective (hence free) for i ≫ 0 for example by Algebra, Lemma 10.109.3.
Since the spectrum of R is Noetherian (Algebra, Lemma 10.31.5) we conclude that
Un = Spec(R) for some n. Then Mn is a projective R-module by Algebra, Lemma
10.78.2. Thus

0→Mn → Fn → . . .→ F1 →M → 0
is a bounded resolution by finite projective modules and hence M is perfect. This
proves part (1).
Let K• be a complex of R-modules. If K• is perfect, then it is in Db(R) and it
is quasi-isomorphic to a finite complex of finite projective R-modules so certainly
each Hi(K•) is a finite R-module (as R is Noetherian). Conversely, suppose that
K• is in Db(R) and each Hi(K•) is a finite R-module. Then by (1) each Hi(K•)
is a perfect R-module, whence K• is perfect by Lemma 15.74.7 □

Lemma 15.74.15.07VI Let A be a ring. Let K ∈ D(A) be perfect. Then K∨ =
RHomA(K,A) is a perfect complex and K ∼= (K∨)∨. There are functorial isomor-
phisms

L⊗L
A K

∨ = RHomA(K,L) and H0(L⊗L
A K

∨) = Ext0
A(K,L)

for L ∈ D(A).

Proof. We can represent K by a complex K• of finite projective A-modules. By
Lemma 15.73.2 the object K∨ is represented by the complex E• = Hom•(K•, A).
Note that En = HomA(K−n, A) and the differentials of E• are the transpose of
the differentials of K• up to sign. Observe that E• is the left dual of K• in
the symmetric monoidal category of complexes of R-modules, see Lemma 15.72.2.
There is a canonical map

K• = Tot(Hom•(A,A)⊗A K•) −→ Hom•(Hom•(K•, A), A)

https://stacks.math.columbia.edu/tag/068T
https://stacks.math.columbia.edu/tag/066Z
https://stacks.math.columbia.edu/tag/07VI
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which up to sign uses the evaluation map in each degree, see Lemma 15.71.6.
(For sign rules see Section 15.72.) Thus this map defines a canonical isomorphism
(K∨)∨ ∼= K as the double dual of a finite projective module is itself.

The second equality follows from the first by Lemma 15.73.1 and Derived Cate-
gories, Lemma 13.19.8 as well as the definition of Ext groups, see Derived Cate-
gories, Section 13.27. Let L• be a complex of A-modules representing L. By Section
15.72 item (11) there is a canonical isomorphism

Tot(L• ⊗A E•) −→ Hom•(K•, L•)

of complexes of A-modules. This proves the first displayed equality and the proof
is complete. □

Lemma 15.74.16.0BKB Let A be a ring. Let (Kn)n∈N be a system of perfect objects of
D(A). Let K = hocolimKn be the derived colimit (Derived Categories, Definition
13.33.1). Then for any object E of D(A) we have

RHomA(K,E) = R limE ⊗L
A K

∨
n

where (K∨
n ) is the inverse system of dual perfect complexes.

Proof. By Lemma 15.74.15 we have R limE⊗L
AK

∨
n = R limRHomA(Kn, E) which

fits into the distinguished triangle

R limRHomA(Kn, E)→
∏

RHomA(Kn, E)→
∏

RHomA(Kn, E)

Because K similarly fits into the distinguished triangle
⊕
Kn →

⊕
Kn → K it

suffices to show that
∏
RHomA(Kn, E) = RHomA(

⊕
Kn, E). This is a formal

consequence of (15.73.0.1) and the fact that derived tensor product commutes with
direct sums. □

Lemma 15.74.17.0BC7 Let R = colimi∈I Ri be a filtered colimit of rings.
(1) Given a perfect K in D(R) there exists an i ∈ I and a perfect Ki in D(Ri)

such that K ∼= Ki ⊗L
Ri
R in D(R).

(2) Given 0 ∈ I and K0, L0 ∈ D(R0) with K0 perfect, we have

HomD(R)(K0 ⊗L
R0
R,L0 ⊗L

R0
R) = colimi≥0 HomD(Ri)(K0 ⊗L

R0
Ri, L0 ⊗L

R0
Ri)

In other words, the triangulated category of perfect complexes over R is the colimit
of the triangulated categories of perfect complexes over Ri.

Proof. We will use the results of Algebra, Lemmas 10.127.5 and 10.127.6 without
further mention. These lemmas in particular say that the category of finitely pre-
sented R-modules is the colimit of the categories of finitely presented Ri-modules.
Since finite projective modules can be characterized as summands of finite free
modules (Algebra, Lemma 10.78.2) we see that the same is true for the category
of finite projective modules. This proves (1) by our definition of perfect objects of
D(R).

To prove (2) we may represent K0 by a bounded complex K•
0 of finite projective

R0-modules. We may represent L0 by a K-flat complex L•
0 (Lemma 15.59.10). Then

we have

HomD(R)(K0 ⊗L
R0
R,L0 ⊗L

R0
R) = HomK(R)(K•

0 ⊗R0 R,L
•
0 ⊗R0 R)

https://stacks.math.columbia.edu/tag/0BKB
https://stacks.math.columbia.edu/tag/0BC7


15.75. LIFTING COMPLEXES 1359

by Derived Categories, Lemma 13.19.8. Similarly for the Hom with R replaced by
Ri. Since in the right hand side only a finite number of terms are involved, since

HomR(Kp
0 ⊗R0 R,L

q
0 ⊗R0 R) = colimi≥0 HomRi(K

p
0 ⊗R0 Ri, L

q
0 ⊗R0 Ri)

by the lemmas cited at the beginning of the proof, and since filtered colimits are
exact (Algebra, Lemma 10.8.8) we conclude that (2) holds as well. □

15.75. Lifting complexes

0BC8 Let R be a ring. Let I ⊂ R be an ideal. The lifting problem we will consider is the
following. Suppose given an object K of D(R) and a complex E• of R/I-modules
such that E• represents K ⊗L

R R/I in D(R). Question: Does there exist a complex
of R-modules P • lifting E• representing K in D(R)? In general the answer to this
question is no, but in good cases something can be done. We first discuss lifting
acyclic complexes.

Lemma 15.75.1.0BC9 Let R be a ring. Let I ⊂ R be an ideal. Let P be a class of
R-modules. Assume

(1) each P ∈ P is a projective R-module,
(2) if P1 ∈ P and P1 ⊕ P2 ∈ P, then P2 ∈ P, and
(3) if f : P1 → P2, P1, P2 ∈ P is surjective modulo I, then f is surjective.

Then given any bounded above acyclic complex E• whose terms are of the form
P/IP for P ∈ P there exists a bounded above acyclic complex P • whose terms are
in P lifting E•.

Proof. Say Ei = 0 for i > b. Assume given n and a morphism of complexes

Pn //

��

Pn+1 //

��

. . . // P b //

��

0 //

��

. . .

. . . // En−1 // En // En+1 // . . . // Eb // 0 // . . .

with P i ∈ P, with Pn → Pn+1 → . . . → P b acyclic in degrees ≥ n + 1, and
with vertical maps inducing isomorphisms P i/IP i → Ei. In this situation one can
inductively choose isomorphisms P i = Zi⊕Zi+1 such that the maps P i → P i+1 are
given by Zi⊕Zi+1 → Zi+1 → Zi+1⊕Zi+2. By property (2) and arguing inductively
we see that Zi ∈ P. Choose Pn−1 ∈ P and an isomorphism Pn−1/IPn−1 → En−1.
Since Pn−1 is projective and since Zn/IZn = Im(En−1 → En), we can lift the map
Pn−1 → En−1 → En to a map Pn−1 → Zn. By property (3) the map Pn−1 → Zn

is surjective. Thus we obtain an extension of the diagram by adding Pn−1 and the
maps just constructed to the left of Pn. Since a diagram of the desired form exists
for n > b we conclude by induction on n. □

Lemma 15.75.2.0BCA Let R be a ring. Let I ⊂ R be an ideal. Let P be a class of
R-modules. Let K ∈ D(R) and let E• be a complex of R/I-modules representing
K ⊗L

R R/I. Assume
(1) each P ∈ P is a projective R-module,
(2) P1 ∈ P and P1 ⊕ P2 ∈ P if and only if P1, P2 ∈ P,
(3) if f : P1 → P2, P1, P2 ∈ P is surjective modulo I, then f is surjective,
(4) E• is bounded above and Ei is of the form P/IP for P ∈ P, and
(5) K can be represented by a bounded above complex whose terms are in P.

https://stacks.math.columbia.edu/tag/0BC9
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Then there exists a bounded above complex P • whose terms are in P with P •/IP •

isomorphic to E• and representing K in D(R).

Proof. By assumption (5) we can represent K by a bounded above complex K•

whose terms are in P. Then K ⊗L
R R/I is represented by K•/IK•. Since E• is a

bounded above complex of projective R/I-modules by (4), we can choose a quasi-
isomorphism δ : E• → K•/IK• (Derived Categories, Lemma 13.19.8). Let C• be
cone on δ (Derived Categories, Definition 13.9.1). The module Ci is the direct sum
Ki/IKi⊕Ei+1 hence is of the form P/IP for some P ∈ P as (2) says in particular
that P is preserved under taking sums. Since C• is acyclic, we can apply Lemma
15.75.1 and find a acyclic lift A• of C•. The complex A• is bounded above and has
terms in P. In

K• //

��

A•

��
K•/IK• // C• // E•[1]

we can find the dotted arrow making the diagram commute by Derived Categories,
Lemma 13.19.6. We will show below that it follows from (1), (2), (3) that Ki → Ai

is the inclusion of a direct summand for every i. By property (2) we see that
P i = Coker(Ki → Ai) is in P. Thus we can take P • = Coker(K• → A•)[−1] to
conclude.
To finish the proof we have to show the following: Let f : P1 → P2, P1, P2 ∈ P
and P1/IP1 → P2/IP2 is split injective with cokernel of the form P3/IP3 for some
P3 ∈ P, then f is split injective. Write Ei = Pi/IPi. Then E2 = E1 ⊕ E3. Since
P2 is projective we can choose a map g : P2 → P3 lifting the map E2 → E3. By
condition (3) the map g is surjective, hence split as P3 is projective. Set P ′

1 = Ker(g)
and choose a splitting P2 = P ′

1 ⊕ P3. Then P ′
1 ∈ P by (2). We do not know that

g ◦ f = 0, but we can consider the map

P1
f−→ P2

projection−−−−−−−→ P ′
1

The composition modulo I is an isomorphism. Since P ′
1 is projective we can split

P1 = T ⊕ P ′
1. If T = 0, then we are done, because then P2 → P ′

1 is a splitting of
f . We see that T ∈ P by (2). Calculating modulo I we see that T/IT = 0. Since
0 ∈ P (as the summand of any P in P) we see the map 0→ T is surjective and we
conclude that T = 0 as desired. □

Lemma 15.75.3.09AR Let R be a ring. Let I ⊂ R be an ideal. Let E• be a complex of
R/I-modules. Let K be an object of D(R). Assume that

(1) E• is a bounded above complex of projective R/I-modules,
(2) K ⊗L

R R/I is represented by E• in D(R/I), and
(3) I is a nilpotent ideal.

Then there exists a bounded above complex P • of projective R-modules represent-
ing K in D(R) such that P • ⊗R R/I is isomorphic to E•.

Proof. We apply Lemma 15.75.2 using the class P of all projective R-modules.
Properties (1) and (2) of the lemma are immediate. Property (3) follows from
Nakayama’s lemma (Algebra, Lemma 10.20.1). Property (4) follows from the fact
that we can lift projective R/I-modules to projective R-modules, see Algebra,
Lemma 10.77.5. To see that (5) holds it suffices to show that K is in D−(R).

https://stacks.math.columbia.edu/tag/09AR
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We are given that K ⊗L
R R/I is in D−(R/I) (because E• is bounded above). We

will show by induction on n that K ⊗L
R R/I

n is in D−(R/In). This will finish the
proof because I being nilpotent exactly means that In = 0 for some n. We may
represent K by a K-flat complex K• with flat terms (Lemma 15.59.10). Then de-
rived tensor products are represented by usual tensor products. Thus we consider
the exact sequence

0→ K• ⊗R In/In+1 → K• ⊗R R/In+1 → K• ⊗R R/In → 0
Thus the cohomology of K ⊗L

RR/I
n+1 sits in a long exact sequence with the coho-

mology of K ⊗L
R R/I

n and the cohomology of
K ⊗L

R I
n/In+1 = K ⊗L

R R/I ⊗L
R/I I

n/In+1

The first cohomologies vanish above a certain degree by induction assumption
and the second cohomologies vanish above a certain degree because K• ⊗L

R R/I
is bounded above and In/In+1 is in degree 0. □

Lemma 15.75.4.0BCB Let R be a ring. Let I ⊂ R be an ideal. Let E• be a complex of
R/I-modules. Let K be an object of D(R). Assume that

(1) E• is a bounded above complex of finite stably free R/I-modules,
(2) K ⊗L

R R/I is represented by E• in D(R/I),
(3) K• is pseudo-coherent, and
(4) every element of 1 + I is invertible.

Then there exists a bounded above complex P • of finite stably free R-modules
representing K in D(R) such that P •⊗RR/I is isomorphic to E•. Moreover, if Ei
is free, then P i is free.

Proof. We apply Lemma 15.75.2 using the class P of all finite stably free R-modules.
Property (1) of the lemma is immediate. Property (2) follows from Lemma 15.3.2.
Property (3) follows from Nakayama’s lemma (Algebra, Lemma 10.20.1). Property
(4) follows from the fact that we can lift finite stably free R/I-modules to finite
stably free R-modules, see Lemma 15.3.3. Part (5) holds because a pseudo-coherent
complex can be represented by a bounded above complex of finite free R-modules.
The final assertion of the lemma follows from Lemma 15.3.5. □

Lemma 15.75.5.0BCC Let (R,m, κ) be a local ring. Let K ∈ D(R) be pseudo-coherent.
Set di = dimκH

i(K ⊗L
R κ). Then di < ∞ and for some b ∈ Z we have di = 0 for

i > b. Then there exists a complex
. . .→ R⊕db−2 → R⊕db−1 → R⊕db → 0→ . . .

representing K in D(R). Moreover, this complex is unique up to isomorphism(!).

Proof. Observe that K ⊗L
R κ is pseudo-coherent as an object of D(κ), see Lemma

15.64.12. Hence the cohomology spaces are finite dimensional and vanish above
some cutoff. Every object of D(κ) is isomorphic in D(κ) to a complex E• with zero
differentials. In particular Ei ∼= κ⊕di is finite free. Applying Lemma 15.75.4 we
obtain the existence.
If we have two complexes F • and G• with F i and Gi free of rank di representing
K. Then we may choose a map of complexes β : F • → G• representing the
isomorphism F • ∼= K ∼= G•, see Derived Categories, Lemma 13.19.8. The induced
map of complexes β⊗1 : F •⊗L

Rκ→ G•⊗L
Rκ must be an isomorphism of complexes
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as the differentials in F • ⊗L
R κ and G• ⊗L

R κ are zero. Thus βi : F i → Gi is a map
of finite free R-modules whose reduction modulo m is an isomorphism. Hence βi is
an isomorphism and we win. □

Lemma 15.75.6.0BCD Let R be a ring. Let p ⊂ R be a prime. Let K ∈ D(R) be
perfect. Set di = dimκ(p) H

i(K ⊗L
R κ(p)). Then di < ∞ and only a finite number

are nonzero. Then there exists an f ∈ R, f ̸∈ p and a complex
. . .→ 0→ R⊕da

f → R
⊕da+1
f → . . .→ R

⊕db−1
f → R⊕db

f → 0→ . . .

representing K ⊗L
R Rf in D(Rf ).

Proof. Observe that K ⊗L
R κ(p) is perfect as an object of D(κ(p)), see Lemma

15.74.9. Hence only a finite number of di are nonzero and they are all finite.
Applying Lemma 15.75.5 we get a complex representing K having the desired shape
over the local ring Rp. We have Rp = colimRf for f ∈ R, f ̸∈ p (Algebra, Lemma
10.9.9). We conclude by Lemma 15.74.17. Some details omitted. □

Lemma 15.75.7.0F9V Let R be a ring. Let p ⊂ R be a prime. Let M• and N• be
bounded complexes of finite projective R-modules representing the same object of
D(R). Then there exists an f ∈ R, f ̸∈ p such that there is an isomorphism (!) of
complexes

M•
f ⊕ P • ∼= N•

f ⊕Q•

where P • and Q• are finite direct sums of trivial complexes, i.e., complexes of the
form the form . . .→ 0→ Rf

1−→ Rf → 0→ . . . (placed in arbitrary degrees).

Proof. If we have an isomorphism of the type described over the localization Rp,
then using that Rp = colimRf (Algebra, Lemma 10.9.9) we can descend the iso-
morphism to an isomorphism over Rf for some f . Thus we may assume R is local
and p is the maximal ideal. In this case the result follows from the uniqueness of a
“minimal” complex representing a perfect object, see Lemma 15.75.5, and the fact
that any complex is a direct sum of a trivial complex and a minimal one (Algebra,
Lemma 10.102.2). □

Lemma 15.75.8.0BCE Let R be a ring. Let I ⊂ R be an ideal. Let E• be a complex of
R/I-modules. Let K be an object of D(R). Assume that

(1) E• is a bounded above complex of finite projective R/I-modules,
(2) K ⊗L

R R/I is represented by E• in D(R/I),
(3) K is pseudo-coherent, and
(4) (R, I) is a henselian pair.

Then there exists a bounded above complex P • of finite projective R-modules
representing K in D(R) such that P •⊗RR/I is isomorphic to E•. Moreover, if Ei
is free, then P i is free.

Proof. We apply Lemma 15.75.2 using the class P of all finite projective R-modules.
Properties (1) and (2) of the lemma are immediate. Property (3) follows from
Nakayama’s lemma (Algebra, Lemma 10.20.1). Property (4) follows from the fact
that we can lift finite projective R/I-modules to finite projective R-modules, see
Lemma 15.13.1. Property (5) holds because a pseudo-coherent complex can be
represented by a bounded above complex of finite free R-modules. Thus Lemma
15.75.2 applies and we find P • as desired. The final assertion of the lemma follows
from Lemma 15.3.5. □
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15.76. Splitting complexes

0BCF In this section we discuss conditions which imply an object of the derived category
of a ring is a direct sum of its truncations. Our method is to use the following
lemma (under suitable hypotheses) to split the canonical distinguished triangles

τ≤iK → K → τ≥i+1K → (τ≤iK)[1]
in D(R), see Derived Categories, Remark 13.12.4.

Lemma 15.76.1.0BCG Let R be a ring. Let K and L be objects of D(R). Assume L has
projective-amplitude in [a, b], for example if L is perfect of tor-amplitude in [a, b].

(1) If Hi(K) = 0 for i ≥ a, then HomD(R)(L,K) = 0.
(2) If Hi(K) = 0 for i ≥ a + 1, then given any distinguished triangle K →

M → L→ K[1] there is an isomorphism M ∼= K ⊕L in D(R) compatible
with the maps in the distinguished triangle.

(3) If Hi(K) = 0 for i ≥ a, then the isomorphism in (2) exists and is unique.

Proof. The assumption that L has projective-amplitude in [a, b] means we can rep-
resent L by a complex L• of projective R-modules with Li = 0 for i ̸∈ [a, b], see
Definition 15.68.1. If L is perfect of tor-amplitude in [a, b], then we can represent
L by a complex L• of finite projective R-modules with Li = 0 for i ̸∈ [a, b], see
Lemma 15.74.2. If Hi(K) = 0 for i ≥ a, then K is quasi-isomorphic to τ≤a−1K.
Hence we can represent K by a complex K• of R-modules with Ki = 0 for i ≥ a.
Then we obtain

HomD(R)(L,K) = HomK(R)(L•,K•) = 0
by Derived Categories, Lemma 13.19.8. This proves (1). Under the hypotheses of
(2) we see that HomD(R)(L,K[1]) = 0 by (1), hence the distinguished triangle is
split by Derived Categories, Lemma 13.4.11. The uniqueness of (3) follows from
(1). □

Lemma 15.76.2.0A1U Let R be a ring. Let p ⊂ R be a prime ideal. Let K• be a
pseudo-coherent complex of R-modules. Assume that for some i ∈ Z the map

Hi(K•)⊗R κ(p) −→ Hi(K• ⊗L
R κ(p))

is surjective. Then there exists an f ∈ R, f ̸∈ p such that τ≥i+1(K• ⊗R Rf ) is a
perfect object of D(Rf ) with tor amplitude in [i+1,∞] and a canonical isomorphism

K• ⊗R Rf ∼= τ≤i(K• ⊗R Rf )⊕ τ≥i+1(K• ⊗R Rf )
in D(Rf ).

Proof. In this proof all tensor products are over R and we write κ = κ(p). We
may assume that K• is a bounded above complex of finite free R-modules. Let us
inspect what is happening in degree i:

. . .→ Ki−1 di−1

−−−→ Ki di−→ Ki+1 → . . .

Let 0 ⊂ V ⊂W ⊂ Ki ⊗ κ be defined by the formulas
V = Im

(
Ki−1 ⊗ κ→ Ki ⊗ κ

)
and W = Ker

(
Ki ⊗ κ→ Ki+1 ⊗ κ

)
Set dim(V ) = r, dim(W/V ) = s, and dim(Ki⊗κ/W ) = t. We can pick x1, . . . , xr ∈
Ki−1 which map by di−1 to a basis of V . By our assumption we can pick y1, . . . , ys ∈
Ker(di) mapping to a basis of W/V . Finally, choose z1, . . . , zt ∈ Ki mapping to
a basis of Ki ⊗ κ/W . Then we see that the elements di(z1), . . . , di(zt) ∈ Ki+1
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are linearly independent in Ki+1 ⊗R κ. By Algebra, Lemma 10.79.4 we may after
replacing R by Rf for some f ∈ R, f ̸∈ p assume that

(1) di(xa), yb, zc is an R-basis of Ki,
(2) di(z1), . . . , di(zt) are R-linearly independent in Ki+1, and
(3) the quotient Ei+1 = Ki+1/

∑
Rdi(zc) is finite projective.

Since di annihilates di−1(xa) and yb, we deduce from condition (2) that Ei+1 =
Coker(di : Ki → Ki+1). Thus we see that

τ≥i+1K
• = (. . .→ 0→ Ei+1 → Ki+2 → . . .)

is a bounded complex of finite projective modules sitting in degrees [i+1, b] for some
b. Thus τ≥i+1K

• is perfect of amplitude [i+ 1, b]. Since τ≤iK
• has no cohomology

in degrees > i, we may apply Lemma 15.76.1 to the distinguished triangle
τ≤iK

• → K• → τ≥i+1K
• → (τ≤iK

•)[1]
(Derived Categories, Remark 13.12.4) to conclude. □

Lemma 15.76.3.0A1V Let R be a ring. Let p ⊂ R be a prime ideal. Let K• be a
pseudo-coherent complex of R-modules. Assume that for some i ∈ Z the maps
Hi(K•)⊗Rκ(p) −→ Hi(K•⊗L

Rκ(p)) and Hi−1(K•)⊗Rκ(p) −→ Hi−1(K•⊗L
Rκ(p))

are surjective. Then there exists an f ∈ R, f ̸∈ p such that
(1) τ≥i+1(K• ⊗R Rf ) is a perfect object of D(Rf ) with tor amplitude in

[i+ 1,∞],
(2) Hi(K•)f is a finite free Rf -module, and
(3) there is a canonical direct sum decomposition
K• ⊗R Rf ∼= τ≤i−1(K• ⊗R Rf )⊕Hi(K•)f [−i]⊕ τ≥i+1(K• ⊗R Rf )

in D(Rf ).

Proof. We get (1) from Lemma 15.76.2 as well as a splitting K•⊗RRf = τ≤iK
•⊗R

Rf⊕τ≥i+1K
•⊗RRf in D(Rf ). Applying Lemma 15.76.2 once more to τ≤iK

•⊗RRf
we obtain (after suitably choosing f) a splitting τ≤iK

•⊗RRf = τ≤i−1K
•⊗RRf ⊕

Hi(K•)f in D(Rf ) as well as the conclusion that Hi(K)f is a flat perfect module,
i.e., finite projective. □

Lemma 15.76.4.068U Let R be a ring. Let p ⊂ R be a prime ideal. Let i ∈ Z. Let K•

be a pseudo-coherent complex of R-modules such that Hi(K• ⊗L
R κ(p)) = 0. Then

there exists an f ∈ R, f ̸∈ p and a canonical direct sum decomposition
K• ⊗R Rf = τ≥i+1(K• ⊗R Rf )⊕ τ≤i−1(K• ⊗R Rf )

in D(Rf ) with τ≥i+1(K•⊗RRf ) a perfect complex with tor-amplitude in [i+1,∞].

Proof. This is an often used special case of Lemma 15.76.2. A direct proof is
as follows. We may assume that K• is a bounded above complex of finite free
R-modules. Let us inspect what is happening in degree i:

. . .→ Ki−2 → R⊕l → R⊕m → R⊕n → Ki+2 → . . .

Let A be the m × l matrix corresponding to Ki−1 → Ki and let B be the n ×m
matrix corresponding to Ki → Ki+1. The assumption is that A mod p has rank r
and that B mod p has rank m− r. In other words, there is some r × r minor a of
A which is not in p and there is some (m− r)× (m− r)-minor b of B which is not
in p. Set f = ab. Then after inverting f we can find direct sum decompositions

https://stacks.math.columbia.edu/tag/0A1V
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Ki−1 = R⊕l−r ⊕R⊕r, Ki = R⊕r ⊕R⊕m−r, Ki+1 = R⊕m−r ⊕R⊕n−m+r such that
the module map Ki−1 → Ki kills of R⊕l−r and induces an isomorphism of R⊕r onto
the corresponding summand of Ki and such that the module map Ki → Ki+1 kills
of R⊕r and induces an isomorphism of R⊕m−r onto the corresponding summand of
Ki+1. Thus K• becomes quasi-isomorphic to

. . .→ Ki−2 → R⊕l−r → 0→ R⊕n−m+r → Ki+2 → . . .

and everything is clear. □

Lemma 15.76.5.0G97 Let R be a ring. Let K ∈ D−(R). Let a ∈ Z. Assume that for
any injective R-module map M → M ′ the map Ext−a

R (K,M) → Ext−a
R (K,M ′) is

injective. Then there is a unique direct sum decomposition K ∼= τ≤aK ⊕ τ≥a+1K
and τ≥a+1K has projective-amplitude in [a+ 1, b] for some b.

Proof. Consider the distinguished triangle
τ≤aK → K → τ≥a+1K → (τ≤aK)[1]

in D(R), see Derived Categories, Remark 13.12.4. Observe that Ext−a
R (τ≤aK,M) =

HomR(Ha(K),M) and Ext−a−1
R (τ≤aK,M) = 0, see Derived Categories, Lemma

13.27.3. Thus the long exact sequence of Ext gives an exact sequence
0→ Ext−a

R (τ≥a+1K,M)→ Ext−a
R (K,M)→ HomR(Ha(K),M)

functorial in theR-moduleM . Now if I is an injectiveR-module, then Ext−a
R (τ≥a+1K, I) =

0 for example by Derived Categories, Lemma 13.27.2. Since every module injects
into an injective module, we conclude that Ext−a

R (τ≥a+1K,M) = 0 for every R-
module M . By Lemma 15.68.2 we conclude that τ≥a+1K has projective-amplitude
in [a+ 1, b] for some b (this is where we use that K is bounded above). We obtain
the splitting by Lemma 15.76.1. □

Lemma 15.76.6.0G98 Let R be a ring. Let K ∈ D−(R). Let a ∈ Z. Assume
Ext−a

R (K,M) = 0 for any R-module M . Then there is a unique direct sum decom-
position K ∼= τ≤a−1K ⊕ τ≥a+1K and τ≥a+1K has projective-amplitude in [a+ 1, b]
for some b.

Proof. By Lemma 15.76.5 we have a direct sum decomposition K ∼= τ≤aK⊕τ≥a+1K
and τ≥a+1K has projective-amplitude in [a+1, b] for some b. Clearly, we must have
Ha(K) = 0 and we conclude that τ≤aK = τ≤a−1K in D(R). □

15.77. Recognizing perfect complexes

0G99 Some lemmas that allow us to prove certain complexes are perfect.

Lemma 15.77.1.0BYP Let R be a ring and let p ⊂ R be a prime. Let K be pseudo-
coherent and bounded below. Set di = dimκ(p) H

i(K ⊗L
R κ(p)). If there exists an

a ∈ Z such that di = 0 for i < a, then there exists an f ∈ R, f ̸∈ p and a complex

. . .→ 0→ R⊕da
f → R

⊕da+1
f → . . .→ R

⊕db−1
f → R⊕db

f → 0→ . . .

representing K ⊗L
R Rf in D(Rf ). In particular K ⊗L

R Rf is perfect.

Proof. After decreasing a we may assume that also Hi(K•) = 0 for i < a. By
Lemma 15.76.4 after replacing R by Rf for some f ∈ R, f ̸∈ p we can write
K• = τ≤a−1K

• ⊕ τ≥aK
• in D(R) with τ≥aK

• perfect. Since Hi(K•) = 0 for i < a
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we see that τ≤a−1K
• = 0 in D(R). Hence K• is perfect. Then we can conclude

using Lemma 15.75.6. □

Lemma 15.77.2.068V Let R be a ring. Let a, b ∈ Z. Let K• be a pseudo-coherent
complex of R-modules. The following are equivalent

(1) K• is perfect with tor amplitude in [a, b],
(2) for every prime p we have Hi(K• ⊗L

R κ(p)) = 0 for all i ̸∈ [a, b], and
(3) for every maximal ideal m we have Hi(K• ⊗L

R κ(m)) = 0 for all i ̸∈ [a, b].
Proof. We omit the proof of the implications (1) ⇒ (2) ⇒ (3). Assume (3). Let
i ∈ Z with i ̸∈ [a, b]. By Lemma 15.76.4 we see that the assumption implies that
Hi(K•)m = 0 for all maximal ideals of R. Hence Hi(K•) = 0, see Algebra, Lemma
10.23.1. Moreover, Lemma 15.76.4 now also implies that for every maximal ideal
m there exists an element f ∈ R, f ̸∈ m such that K• ⊗R Rf is perfect with
tor amplitude in [a, b]. Hence we conclude by appealing to Lemmas 15.74.12 and
15.66.16. □

Lemma 15.77.3.068W Let R be a ring. Let K• be a pseudo-coherent complex of R-
modules. Consider the following conditions

(1) K• is perfect,
(2) for every prime ideal p the complex K• ⊗R Rp is perfect,
(3) for every maximal ideal m the complex K• ⊗R Rm is perfect,
(4) for every prime p we have Hi(K• ⊗L

R κ(p)) = 0 for all i≪ 0,
(5) for every maximal ideal m we have Hi(K• ⊗L

R κ(m)) = 0 for all i≪ 0.
We always have the implications

(1)⇒ (2)⇔ (3)⇔ (3)⇔ (4)⇔ (5)
If K• is bounded below, then all conditions are equivalent.
Proof. By Lemma 15.74.9 we see that (1) implies (2). It is immediate that (2) ⇒
(3). Since every prime p is contained in a maximal ideal m, we can apply Lemma
15.74.9 to the map Rm → Rp to see that (3) implies (2). Applying Lemma 15.74.9
to the residue maps Rp → κ(p) and Rm → κ(m) we see that (2) implies (4) and (3)
implies (5).
Assume R is local with maximal ideal m and residue field κ. We will show that if
Hi(K• ⊗L κ) = 0 for i < a for some a, then K is perfect. This will show that (4)
implies (2) and (5) implies (3) whence the first part of the lemma. First we apply
Lemma 15.76.4 with i = a − 1 to see that K• = τ≤a−1K

• ⊕ τ≥aK
• in D(R) with

τ≥aK
• perfect of tor-amplitude contained in [a,∞]. To finish we need to show that

τ≤a−1K is zero, i.e., that its cohomology groups are zero. If not let i be the largest
index such that M = Hi(τ≤a−1K) is not zero. Then M is a finite R-module because
τ≤a−1K

• is pseudo-coherent (Lemmas 15.64.3 and 15.64.8). Thus by Nakayama’s
lemma (Algebra, Lemma 10.20.1) we find that M ⊗R κ is nonzero. This implies
that

Hi((τ≤a−1K
•)⊗L

R κ) = Hi(K• ⊗L
R κ)

is nonzero which is a contradiction.
Assume the equivalent conditions (2) – (5) hold and that K• is bounded below. Say
Hi(K•) = 0 for i < a. Pick a maximal ideal m of R. It suffices to show there exists
an f ∈ R, f ̸∈ m such that K• ⊗L

R Rf is perfect (Lemma 15.74.12 and Algebra,
Lemma 10.17.10). This follows from Lemma 15.77.1. □
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Lemma 15.77.4.0G9A Let R be a ring. Let K be a pseudo-coherent object of D(R). Let
a, b ∈ Z. The following are equivalent

(1) K has projective-amplitude in [a, b],
(2) K is perfect of tor-amplitude in [a, b],
(3) ExtiR(K,N) = 0 for all finitely presented R-modules N and all i ̸∈

[−b,−a],
(4) Hn(K) = 0 for n > b and ExtiR(K,N) = 0 for all finitely presented

R-modules N and all i > −a, and
(5) Hn(K) = 0 for n ̸∈ [a − 1, b] and Ext−a+1

R (K,N) = 0 for all finitely
presented R-modules N .

Proof. From the final statement of Lemma 15.74.2 we see that (2) implies (1).
If (1) holds, then K can be represented by a complex of projective modules P i
with P i = 0 for i ̸∈ [a, b]. Since projective modules are flat (as summands of free
modules), we see that K has tor-amplitude in [a, b], see Lemma 15.66.3. Thus by
Lemma 15.74.2 we see that (2) holds.

In conditions (3), (4), (5) the assumed vanishing of ext groups ExtiR(K,M) for M
of finite presentation is equivalent to the vanishing for all R-modules M by Lemma
15.65.1 and Algebra, Lemma 10.11.3. Thus the equivalence of (1), (3), (4), and (5)
follows from Lemma 15.68.2. □

The following lemma useful in order to find perfect complexes over a polynomial
ring B = A[x1, . . . , xd].

Lemma 15.77.5.068X Let A→ B be a ring map. Let a, b ∈ Z. Let d ≥ 0. Let K• be a
complex of B-modules. Assume

(1) the ring map A→ B is flat,
(2) for every prime p ⊂ A the ring B⊗A κ(p) has finite global dimension ≤ d,
(3) K• is pseudo-coherent as a complex of B-modules, and
(4) K• has tor amplitude in [a, b] as a complex of A-modules.

Then K• is perfect as a complex of B-modules with tor amplitude in [a− d, b].

Proof. We may assume that K• is a bounded above complex of finite free B-
modules. In particular, K• is flat as a complex of A-modules and K• ⊗A M =
K• ⊗L

AM for any A-module M . For every prime p of A the complex

K• ⊗A κ(p)

is a bounded above complex of finite free modules over B ⊗A κ(p) with vanishing
Hi except for i ∈ [a, b]. As B ⊗A κ(p) has global dimension d we see from Lemma
15.66.19 that K•⊗Aκ(p) has tor amplitude in [a−d, b]. Let q be a prime of B lying
over p. Since K• ⊗A κ(p) is a bounded above complex of free B ⊗A κ(p)-modules
we see that

K• ⊗L
B κ(q) = K• ⊗B κ(q)

= (K• ⊗A κ(p))⊗B⊗Aκ(p) κ(q)
= (K• ⊗A κ(p))⊗L

B⊗Aκ(p) κ(q)

Hence the arguments above imply that Hi(K• ⊗L
B κ(q)) = 0 for i ̸∈ [a − d, b]. We

conclude by Lemma 15.77.2. □

https://stacks.math.columbia.edu/tag/0G9A
https://stacks.math.columbia.edu/tag/068X


15.78. CHARACTERIZING PERFECT COMPLEXES 1368

The following lemma is a local version of Lemma 15.77.5. It can be used to find
perfect complexes over regular local rings.
Lemma 15.77.6.09PC Let A → B be a local ring homomorphism. Let a, b ∈ Z. Let
d ≥ 0. Let K• be a complex of B-modules. Assume

(1) the ring map A→ B is flat,
(2) the ring B/mAB is regular of dimension d,
(3) K• is pseudo-coherent as a complex of B-modules, and
(4) K• has tor amplitude in [a, b] as a complex of A-modules, in fact it suffices

if Hi(K• ⊗L
A κ(mA)) is nonzero only for i ∈ [a, b].

Then K• is perfect as a complex of B-modules with tor amplitude in [a− d, b].
Proof. By (3) we may assume that K• is a bounded above complex of finite free
B-modules. We compute

K• ⊗L
B κ(mB) = K• ⊗B κ(mB)

= (K• ⊗A κ(mA))⊗B/mAB κ(mB)
= (K• ⊗A κ(mA))⊗L

B/mAB
κ(mB)

The first equality because K• is a bounded above complex of flat B-modules. The
second equality follows from basic properties of the tensor product. The third
equality holds because K• ⊗A κ(mA) = K•/mAK

• is a bounded above complex of
flat B/mAB-modules. Since K• is a bounded above complex of flat A-modules by
(1), the cohomology modules Hi of the complex K•⊗A κ(mA) are nonzero only for
i ∈ [a, b] by assumption (4). Thus the spectral sequence of Example 15.62.1 and the
fact that B/mAB has finite global dimension d (by (2) and Algebra, Proposition
10.110.1) shows that Hj(K• ⊗L

B κ(mB)) is zero for j ̸∈ [a− d, b]. This finishes the
proof by Lemma 15.77.2. □

15.78. Characterizing perfect complexes

07LQ In this section we prove that the perfect complexes are exactly the compact objects
of the derived category of a ring. First we show the following.
Lemma 15.78.1.0ATI Let R be a ring. The full subcategory Dperf (R) ⊂ D(R) of perfect
objects is the smallest strictly full, saturated, triangulated subcategory containing
R = R[0]. In other words Dperf (R) = ⟨R⟩. In particular, R is a classical generator
for Dperf (R).
Proof. To see what the statement means, please look at Derived Categories, Def-
initions 13.6.1 and 13.36.3. It was shown in Lemmas 15.74.4 and 15.74.5 that
Dperf (R) ⊂ D(R) is a strictly full, saturated, triangulated subcategory of D(R).
Of course R ∈ Dperf (R).
Recall that ⟨R⟩ =

⋃
⟨R⟩n. To finish the proof we will show that if M ∈ Dperf (R)

is represented by
. . .→ 0→Ma →Ma+1 → . . .→M b → 0→ . . .

with M i finite projective, then M ∈ ⟨R⟩b−a+1. The proof is by induction on b− a.
By definition ⟨R⟩1 contains any finite projective R-module placed in any degree;
this deals with the base case b−a = 0 of the induction. In general, we consider the
distinguished triangle

Mb[−b]→M• → σ≤b−1M
• →Mb[−b+ 1]

https://stacks.math.columbia.edu/tag/09PC
https://stacks.math.columbia.edu/tag/0ATI
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By induction the truncated complex σ≤b−1M
• is in ⟨R⟩b−a and Mb[−b] is in ⟨R⟩1.

Hence M• ∈ ⟨R⟩b−a+1 by definition. □

Let R be a ring. Recall that D(R) has direct sums which are given simply by taking
direct sums of complexes, see Derived Categories, Lemma 13.33.5. We will use this
in the lemmas of this section without further mention.

Lemma 15.78.2.07LR Let R be a ring. Let K ∈ D(R) be an object such that for every
countable set of objects En ∈ D(R) the canonical map⊕

HomD(R)(K,En) −→ HomD(R)(K,
⊕

En)

is a bijection. Then, given any system L•
n of complexes over N we have that

colim HomD(R)(K,L•
n) −→ HomD(R)(K,L•)

is a bijection, where L• is the termwise colimit, i.e., Lm = colimLmn for all m ∈ Z.

Proof. Consider the short exact sequence of complexes

0→
⊕

L•
n →

⊕
L•
n → L• → 0

where the first map is given by 1 − tn in degree n where tn : L•
n → L•

n+1 is the
transition map. By Derived Categories, Lemma 13.12.1 this is a distinguished
triangle in D(R). Apply the homological functor HomD(R)(K,−), see Derived
Categories, Lemma 13.4.2. Thus a long exact cohomology sequence

. . . // HomD(R)(K, colimL•
n[−1])

rr
HomD(R)(K,

⊕
L•
n) // HomD(R)(K,

⊕
L•
n) // HomD(R)(K, colimL•

n)

rr
HomD(R)(K,

⊕
L•
n[1]) // . . .

Since we have assumed that HomD(R)(K,
⊕
L•
n) is equal to

⊕
HomD(R)(K,L•

n)
we see that the first map on every row of the diagram is injective (by the explicit
description of this map as the sum of the maps induced by 1 − tn). Hence we
conclude that HomD(R)(K, colimL•

n) is the cokernel of the first map of the middle
row in the diagram above which is what we had to show. □

The following proposition, characterizing perfect complexes as the compact objects
(Derived Categories, Definition 13.37.1) of the derived category, shows up in various
places. See for example [Ric89b, proof of Proposition 6.3] (this treats the bounded
case), [TT90, Theorem 2.4.3] (the statement doesn’t match exactly), and [BN93,
Proposition 6.4] (watch out for horrendous notational conventions).

Proposition 15.78.3.07LT Let R be a ring. For an object K of D(R) the following are
equivalent

(1) K is perfect, and
(2) K is a compact object of D(R).

https://stacks.math.columbia.edu/tag/07LR
https://stacks.math.columbia.edu/tag/07LT
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Proof. Assume K is perfect, i.e., K is quasi-isomorphic to a bounded complex
P • of finite projective modules, see Definition 15.74.1. If Ei is represented by
the complex E•

i , then
⊕
Ei is represented by the complex whose degree n term is⊕

Eni . On the other hand, as Pn is projective for all n we have HomD(R)(P •,K•) =
HomK(R)(P •,K•) for every complex of R-modules K•, see Derived Categories,
Lemma 13.19.8. Thus HomD(R)(P •, E•) is the cohomology of the complex∏

HomR(Pn, En−1)→
∏

HomR(Pn, En)→
∏

HomR(Pn, En+1).

Since P • is bounded we see that we may replace the
∏

signs by
⊕

signs in the com-
plex above. Since each Pn is a finite R-module we see that HomR(Pn,

⊕
iE

m
i ) =⊕

i HomR(Pn, Emi ) for all n,m. Combining these remarks we see that the map of
Derived Categories, Definition 13.37.1 is a bijection.
Conversely, assume K is compact. Represent K by a complex K• and consider the
map

K• −→
⊕

n≥0
τ≥nK

•

where we have used the canonical truncations, see Homology, Section 12.15. This
makes sense as in each degree the direct sum on the right is finite. By assumption
this map factors through a finite direct sum. We conclude that K → τ≥nK is zero
for at least one n, i.e., K is in D−(R).
Since K ∈ D−(R) and since every R-module is a quotient of a free module, we
may represent K by a bounded above complex K• of free R-modules, see Derived
Categories, Lemma 13.15.4. Note that we have

K• =
⋃

n≤0
σ≥nK

•

where we have used the stupid truncations, see Homology, Section 12.15. Hence by
Lemma 15.78.2 we see that 1 : K• → K• factors through σ≥nK

• → K• in D(R).
Thus we see that 1 : K• → K• factors as

K• φ−→ L• ψ−→ K•

inD(R) for some complex L• which is bounded and whose terms are freeR-modules.
Say Li = 0 for i ̸∈ [a, b]. Fix a, b from now on. Let c be the largest integer ≤ b+ 1
such that we can find a factorization of 1K• as above with Li is finite free for i < c.
We will show by induction that c = b + 1. Namely, write Lc =

⊕
λ∈Λ R. Since

Lc−1 is finite free we can find a finite subset Λ′ ⊂ Λ such that Lc−1 → Lc factors
through

⊕
λ∈Λ′ R ⊂ Lc. Consider the map of complexes

π : L• −→ (
⊕

λ∈Λ\Λ′
R)[−c]

given by the projection onto the factors corresponding to Λ \ Λ′ in degree i. By
our assumption on K we see that, after possibly replacing Λ′ by a larger finite
subset, we may assume that π ◦ φ = 0 in D(R). Let (L′)• ⊂ L• be the kernel
of π. Since π is surjective we get a short exact sequence of complexes, which
gives a distinguished triangle in D(R) (see Derived Categories, Lemma 13.12.1).
Since HomD(R)(K,−) is homological (see Derived Categories, Lemma 13.4.2) and
π ◦ φ = 0, we can find a morphism φ′ : K• → (L′)• in D(R) whose composition
with (L′)• → L• gives φ. Setting ψ′ equal to the composition of ψ with (L′)• → L•

we obtain a new factorization. Since (L′)• agrees with L• except in degree c and
since (L′)c =

⊕
λ∈Λ′ R the induction step is proved.
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The conclusion of the discussion of the preceding paragraph is that 1K : K → K
factors as

K
φ−→ L

ψ−→ K

in D(R) where L can be represented by a finite complex of free R-modules. In
particular we see that L is perfect. Note that e = φ ◦ ψ ∈ EndD(R)(L) is an
idempotent. By Derived Categories, Lemma 13.4.14 we see that L = Ker(e) ⊕
Ker(1− e). The map φ : K → L induces an isomorphism with Ker(1− e) in D(R).
Hence we finally conclude that K is perfect by Lemma 15.74.5. □

Lemma 15.78.4.07LU Let R be a ring. Let I ⊂ R be an ideal. Let K be an object of
D(R). Assume that

(1) K ⊗L
R R/I is perfect in D(R/I), and

(2) I is a nilpotent ideal.
Then K is perfect in D(R).

Proof. Choose a finite complex P
• of finite projective R/I-modules representing

K ⊗L
R R/I, see Definition 15.74.1. By Lemma 15.75.3 there exists a complex P •

of projective R-modules representing K such that P • = P •/IP •. It follows from
Nakayama’s lemma (Algebra, Lemma 10.20.1) that P • is a finite complex of finite
projective R-modules. □

Lemma 15.78.5.09AS Let R be a ring. Let I, J ⊂ R be ideals. Let K be an object of
D(R). Assume that

(1) K ⊗L
R R/I is perfect in D(R/I), and

(2) K ⊗L
R R/J is perfect in D(R/J).

Then K ⊗L
R R/IJ is perfect in D(R/IJ).

Proof. It is clear that we may assume replace R by R/IJ and K by K ⊗L
R R/IJ .

Then R→ R/(I∩J) is a surjection whose kernel has square zero. Hence by Lemma
15.78.4 it suffices to prove that K ⊗L

R R/(I ∩ J) is perfect. Thus we may assume
that I ∩ J = 0.

We prove the lemma in case I ∩ J = 0. First, we may represent K by a K-flat
complex K• with all Kn flat, see Lemma 15.59.10. Then we see that we have a
short exact sequence of complexes

0→ K• → K•/IK• ⊕K•/JK• → K•/(I + J)K• → 0

Note that K•/IK• represents K ⊗L
R R/I by construction of the derived tensor

product. Similarly for K•/JK• and K•/(I + J)K•. Note that K•/(I + J)K• is a
perfect complex of R/(I + J)-modules, see Lemma 15.74.9. Hence the complexes
K•/IK•, and K•/JK• and K•/(I+J)K• have finitely many nonzero cohomology
groups (since a perfect complex has finite Tor-amplitude, see Lemma 15.74.2). We
conclude that K ∈ Db(R) by the long exact cohomology sequence associated to
short exact sequence of complexes displayed above. In particular we assume K•

is a bounded above complex of free R-modules (see Derived Categories, Lemma
13.15.4).

We will now show that K is perfect using the criterion of Proposition 15.78.3.
Thus we let Ej ∈ D(R) be a family of objects parametrized by a set J . We choose

https://stacks.math.columbia.edu/tag/07LU
https://stacks.math.columbia.edu/tag/09AS
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complexes E•
j with flat terms representing Ej , see for example Lemma 15.59.10. It

is clear that

0→ E•
j → E•

j /IE
•
j ⊕ E•

j /JE
•
j → E•

j /(I + J)E•
j → 0

is a short exact sequence of complexes. Taking direct sums we obtain a similar
short exact sequence

0→
⊕

E•
j →

⊕
E•
j /IE

•
j ⊕ E•

j /JE
•
j →

⊕
E•
j /(I + J)E•

j → 0

(Note that −⊗R R/I commutes with direct sums.) This short exact sequence de-
termines a distinguished triangle in D(R), see Derived Categories, Lemma 13.12.1.
Apply the homological functor HomD(R)(K,−) (see Derived Categories, Lemma
13.4.2) to get a commutative diagram⊕

HomD(R)(K•, E•
j /(I + J))[−1] //

��

HomD(R)(K•,
⊕
E•
j /(I + J))[−1]

��⊕
HomD(R)(K•, E•

j /I ⊕ E•
j /J)[−1] //

��

HomD(R)(K•,
⊕
E•
j /I ⊕ E•

j /J)[−1]

��⊕
HomD(R)(K•, E•

j ) //

��

HomD(R)(K•,
⊕
E•
j )

��⊕
HomD(R)(K•, E•

j /I ⊕ E•
j /J) //

��

HomD(R)(K•,
⊕
E•
j /I ⊕ E•

j /J)

��⊕
HomD(R)(K•, E•

j /(I + J)) // HomD(R)(K•,
⊕
E•
j /(I + J))

with exact columns. It is clear that, for any complex E• of R-modules we have

HomD(R)(K•, E•/I) = HomK(R)(K•, E•/I)
= HomK(R/I)(K•/IK•, E•/I)
= HomD(R/I)(K•/IK•, E•/I)

and similarly for when dividing by J or I + J , see Derived Categories, Lemma
13.19.8. Derived Categories. Thus all the horizontal arrows, except for possibly the
middle one, are isomorphisms as the complexes K•/IK•, K•/JK•, K•/(I +J)K•

are perfect complexes of R/I, R/J , R/(I + J)-modules, see Proposition 15.78.3. It
follows from the 5-lemma (Homology, Lemma 12.5.20) that the middle map is an
isomorphism and the lemma follows by Proposition 15.78.3. □

15.79. Strong generators and regular rings

0FXG Let R be a ring. Denote D(R)c the saturated full triangulated subcategory of D(R).
We already know that

⟨R⟩ = Dperf (R) = D(R)c
See Lemma 15.78.1 and Proposition 15.78.3. It turns out that if R is regular, then
R is a strong generator (Derived Categories, Definition 13.36.3).
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Lemma 15.79.1.0FXH [Kel65]Let R be a ring. Let n ≥ 1. Let K ∈ ⟨R⟩n with notation as in
Derived Categories, Section 13.36. Consider maps

K
f1−→ K1

f2−→ K2
f3−→ . . .

fn−→ Kn

in D(R). If Hi(fj) = 0 for all i, j, then fn ◦ . . . ◦ f1 = 0.

Proof. If n = 1, then K is a direct summand in D(R) of a bounded complex P •

whose terms are finite free R-modules and whose differentials are zero. Thus it
suffices to show any morphism f : P • → K1 in D(R) with Hi(f) = 0 for all i is
zero. Since P • is a finite direct sum P • =

⊕
R[mj ] it suffices to show any morphism

g : R[m] → K1 with H−m(g) = 0 in D(R) is zero. This follows from the fact that
HomD(R)(R[−m],K) = Hm(K).
For n > 1 we proceed by induction on n. Namely, we know that K is a summand
in D(R) of an object P which sits in a distinguished triangle

P ′ i−→ P
p−→ P ′′ → P ′[1]

with P ′ ∈ ⟨R⟩1 and P ′′ ∈ ⟨R⟩n−1. As above we may replace K by P and assume
that we have

P
f1−→ K1

f2−→ K2
f3−→ . . .

fn−→ Kn

in D(R) with fj zero on cohomology. By the case n = 1 the composition f1◦i is zero.
Hence by Derived Categories, Lemma 13.4.2 we can find a morphism h : P ′′ → K1
such that f1 = h◦p. Observe that f2 ◦h is zero on cohomology. Hence by induction
we find that fn ◦ . . . ◦ f2 ◦ h = 0 which implies fn ◦ . . . ◦ f1 = fn ◦ . . . ◦ f2 ◦ h ◦ p = 0
as desired. □

Lemma 15.79.2.0FXI Let R be a Noetherian ring. If R is a strong generator for
Dperf (R), then R is regular of finite dimension.

Proof. Assume Dperf (R) = ⟨R⟩n for some n ≥ 1. For any finite R-module M we
can choose a complex

P = (P−n−1 d−n−1

−−−−→ P−n d−n

−−→ P−n+1 d1

−→ . . .
d−1

−−→ P 0)
of finite free R-modules with Hi(P ) = 0 for i = −n, . . . ,−1 and M ∼= Coker(d−1).
Note that P is in Dperf (R). For any R-module N we can compute ExtnR(M,N) the
finite free resolution P of M , see Algebra, Section 10.71 and compare with Derived
Categories, Section 13.27. In particular, the sequence above defines an element

ξ ∈ ExtnR(Coker(d−1),Coker(d−n−1)) = ExtnR(M,Coker(d−n−1))
and for any element ξ in ExtnR(M,N) there is a R-module map φ : Coker(d−n−1)→
N such that φ maps ξ to ξ. For j = 1, . . . , n− 1 consider the complexes

Kj = (Coker(d−n−1)→ P−n+1 → . . .→ P−j)
with Coker(d−n−1) in degree−n and P t in degree t. We also setKn = Coker(d−n−1)[n].
Then we have maps

P → K1 → K2 → . . .→ Kn

which induce vanishing maps on cohomology. By Lemma 15.79.1 since P ∈ Dperf (R) =
⟨R⟩n we find that the composition of this maps is zero inD(R). Since HomD(R)(P,Kn) =
HomK(R)(P,Kn) by Derived Categories, Lemma 13.19.8 we conclude ξ = 0. Hence
ExtnR(M,N) = 0 for all R-modules N , see discussion above. It follows that M has
projective dimension ≤ n− 1 by Algebra, Lemma 10.109.8. Since this holds for all

https://stacks.math.columbia.edu/tag/0FXH
https://stacks.math.columbia.edu/tag/0FXI
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finite R-modules M we conclude that R has finite global dimension, see Algebra,
Lemma 10.109.12. We finally conclude by Algebra, Lemma 10.110.8. □

Lemma 15.79.3.0FXJ Let R be a Noetherian regular ring of dimension d < ∞. Let
K,L ∈ D−(R). Assume there exists an k such that Hi(K) = 0 for i ≤ k and
Hi(L) = 0 for i ≥ k − d+ 1. Then HomD(R)(K,L) = 0.

Proof. Let K• be a bounded above complex representing K, say Ki = 0 for i ≥
n+ 1. After replacing K• by τ≥k+1K

• we may assume Ki = 0 for i ≤ k. Then we
may use the distinguished triangle

Kn[−n]→ K• → σ≤n−1K
•

to see it suffices to prove the lemma for Kn[−n] and σ≤n−1K
•. By induction on

n, we conclude that it suffices to prove the lemma in case K is represented by the
complex M [−m] for some R-module M and some m ≥ k + 1. Since R has global
dimension d by Algebra, Lemma 10.110.8 we see that M has a projective resolution
0 → Pd → . . . → P0 → M → 0. Then the complex P • having Pi in degree m − i
is a bounded complex of projectives representing M [−m]. On the other hand, we
can choose a complex L• representing L with Li = 0 for i ≥ k − d+ 1. Hence any
map of complexes P • → L• is zero. This implies the lemma by Derived Categories,
Lemma 13.19.8. □

Lemma 15.79.4.0FXK Let R be a Noetherian regular ring of dimension 1 ≤ d <∞. Let
K ∈ D(R) be perfect and let k ∈ Z such that Hi(K) = 0 for i = k − d + 2, . . . , k
(empty condition if d = 1). Then K = τ≤k−d+1K ⊕ τ≥k+1K.

Proof. The vanishing of cohomology shows that we have a distinguished triangle
τ≤k−d+1K → K → τ≥k+1K → (τ≤k−d+1K)[1]

By Derived Categories, Lemma 13.4.11 it suffices to show that the third arrow is
zero. Thus it suffices to show that HomD(R)(τ≥k+1K, (τ≤k−d+1K)[1]) = 0 which
follows from Lemma 15.79.3. □

Lemma 15.79.5.0FXL Let R be a Noetherian regular ring of finite dimension. Then R
is a strong generator for the full subcategory Dperf (R) ⊂ D(R) of perfect objects.

Proof. We will use that an object K of D(R) is perfect if and only if K is bounded
and has finite cohomology modules, see Lemma 15.74.14. Strong generators of
triangulated categories are defined in Derived Categories, Definition 13.36.3. Let
d = dim(R).
Let K ∈ Dperf (R). We will show K ∈ ⟨R⟩d+1. By Algebra, Lemma 10.110.8
every finite R-module has projective dimension ≤ d. We will show by induction on
0 ≤ i ≤ d that if Hn(K) has projective dimension ≤ i for all n ∈ Z, then K is in
⟨R⟩i+1.
Base case i = 0. In this case Hn(K) is a finite R-module of projective di-
mension 0. In other words, each cohomology is a projective R-module. Thus
ExtiR(Hn(K), Hm(K)) = 0 for all i > 0 and m,n ∈ Z. By Derived Categories,
Lemma 13.27.9 we find that K is isomorphic to the direct sum of the shifts of
its cohomology modules. Since each cohomology module is a finite projective R-
module, it is a direct summand of a direct sum of copies of R. Hence by definition
we see that K is contained in ⟨R⟩1.

https://stacks.math.columbia.edu/tag/0FXJ
https://stacks.math.columbia.edu/tag/0FXK
https://stacks.math.columbia.edu/tag/0FXL
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Induction step. Assume the claim holds for i < d and let K ∈ Dperf (R) have
the property that Hn(K) has projective dimension ≤ i + 1 for all n ∈ Z. Choose
a ≤ b such that Hn(K) is zero for n ̸∈ [a, b]. For each n ∈ [a, b] choose a surjection
Fn → Hn(K) where Fn is a finite free R-module. Since Fn is projective, we can
lift Fn → Hn(K) to a map Fn[−n] → K in D(R) (small detail omitted). Thus
we obtain a morphism

⊕
a≤n≤b F

n[−n] → K which is surjective on cohomology
modules. Choose a distinguished triangle

K ′ →
⊕

a≤n≤b
Fn[−n]→ K → K ′[1]

in D(R). Of course, the object K ′ is bounded and has finite cohomology modules.
The long exact sequence of cohomology breaks into short exact sequences

0→ Hn(K ′)→ Fn → Hn(K)→ 0
by the choices we made. By Algebra, Lemma 10.109.9 we see that the projective
dimension of Hn(K ′) is ≤ max(0, i). Thus K ′ ∈ ⟨R⟩i+1. By definition this means
that K is in ⟨R⟩i+1+1 as desired. □

Proposition 15.79.6.0FXM Let R be a Noetherian ring. The following are equivalent
(1) R is regular of finite dimension,
(2) Dperf (R) has a strong generator, and
(3) R is a strong generator for Dperf (R).

Proof. This is a formal consequence of Lemmas 15.78.1, 15.79.2, and 15.79.5 as well
as Derived Categories, Lemma 13.36.6. □

15.80. Relatively finitely presented modules

0659 Let R be a ring. Let A→ B be a finite map of finite type R-algebras. Let M be a
finite B-module. In this case it is not true that

M of finite presentation over B ⇔M of finite presentation over A
A counter example is R = k[x1, x2, x3, . . .], A = R, B = R/(xi), and M = B. To
“fix” this we introduce a relative notion of finite presentation.
Lemma 15.80.1.05GY Let R→ A be a ring map of finite type. Let M be an A-module.
The following are equivalent

(1) for some presentation α : R[x1, . . . , xn] → A the module M is a finitely
presented R[x1, . . . , xn]-module,

(2) for all presentations α : R[x1, . . . , xn] → A the module M is a finitely
presented R[x1, . . . , xn]-module, and

(3) for any surjection A′ → A where A′ is a finitely presented R-algebra, the
module M is finitely presented as A′-module.

In this case M is a finitely presented A-module.
Proof. If α : R[x1, . . . , xn] → A and β : R[y1, . . . , ym] → A are presentations.
Choose fj ∈ R[x1, . . . , xn] with α(fj) = β(yj) and gi ∈ R[y1, . . . , ym] with β(gi) =
α(xi). Then we get a commutative diagram

R[x1, . . . , xn, y1, . . . , ym]

xi 7→gi

��

yj 7→fj

// R[x1, . . . , xn]

��
R[y1, . . . , ym] // A

https://stacks.math.columbia.edu/tag/0FXM
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Hence the equivalence of (1) and (2) follows by applying Algebra, Lemmas 10.6.4
and 10.36.23. The equivalence of (2) and (3) follows by choosing a presentation
A′ = R[x1, . . . , xn]/(f1, . . . , fm) and using Algebra, Lemma 10.36.23 to show that
M is finitely presented as A′-module if and only if M is finitely presented as a
R[x1, . . . , xn]-module. □

Definition 15.80.2.05GZ Let R→ A be a finite type ring map. Let M be an A-module.
We sayM is an A-module finitely presented relative to R if the equivalent conditions
of Lemma 15.80.1 hold.
Note that if R → A is of finite presentation, then M is an A-module finitely
presented relative to R if and only if M is a finitely presented A-module. It is
equally clear that A as an A-module is finitely presented relative to R if and only
if A is of finite presentation over R. If R is Noetherian the notion is uninteresting.
Now we can formulate the result we were looking for.
Lemma 15.80.3.05H0 Let R be a ring. Let A → B be a finite map of finite type R-
algebras. Let M be a B-module. Then M is an A-module finitely presented relative
to R if and only if M is a B-module finitely presented relative to R.
Proof. Choose a surjection R[x1, . . . , xn] → A. Choose y1, . . . , ym ∈ B which
generate B over A. As A → B is finite each yi satisfies a monic equation with
coefficients in A. Hence we can find monic polynomials Pj(T ) ∈ R[x1, . . . , xn][T ]
such that Pj(yj) = 0 in B. Then we get a commutative diagram

R[x1, . . . , xn]

��

// R[x1, . . . , xn, y1, . . . , ym]/(Pj(yj))

��
A // B

Since the top arrow is a finite and finitely presented ring map we conclude by
Algebra, Lemma 10.36.23 and the definition. □

With this result in hand we see that the relative notion makes sense and behaves
well with regards to finite maps of rings of finite type over R. It is also stable under
localization, stable under base change, and "glues" well.
Lemma 15.80.4.065A Let R be a ring, f ∈ R an element, Rf → A is a finite type ring
map, g ∈ A, and M an A-module. If M of finite presentation relative to Rf , then
Mg is an Ag-module of finite presentation relative to R.
Proof. Choose a presentation Rf [x1, . . . , xn] → A. We write Rf = R[x0]/(fx0 −
1). Consider the presentation R[x0, x1, . . . , xn, xn+1] → Ag which extends the
given map, maps x0 to the image of 1/f , and maps xn+1 to 1/g. Choose g′ ∈
R[x0, x1, . . . , xn] which maps to g (this is possible). Suppose that

Rf [x1, . . . , xn]⊕s → Rf [x1, . . . , xn]⊕t →M → 0
is a presentation of M given by a matrix (hij). Pick h′

ij ∈ R[x0, x1, . . . , xn] which
map to hij . Then

R[x0, x1, . . . , xn, xn+1]⊕s+2t → R[x0, x1, . . . , xn, xn+1]⊕t →Mg → 0
is a presentation of Mf . Here the t × (s + 2t) matrix defining the map has a first
t× s block consisting of the matrix h′

ij , a second t× t block which is (x0f−)It, and
a third block which is (xn+1g

′ − 1)It. □

https://stacks.math.columbia.edu/tag/05GZ
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Lemma 15.80.5.065B Let R → A be a finite type ring map. Let M be an A-module
finitely presented relative to R. For any ring map R→ R′ the A⊗R R′-module

M ⊗A A′ = M ⊗R R′

is finitely presented relative to R′.

Proof. Choose a surjection R[x1, . . . , xn]→ A. Choose a presentation

R[x1, . . . , xn]⊕s → R[x1, . . . , xn]⊕t →M → 0

Then
R′[x1, . . . , xn]⊕s → R′[x1, . . . , xn]⊕t →M ⊗R R′ → 0

is a presentation of the base change and we win. □

Lemma 15.80.6.0670 Let R → A be a finite type ring map. Let M be an A-module
finitely presented relative to R. Let A → A′ be a ring map of finite presentation.
The A′-module M ⊗A A′ is finitely presented relative to R.

Proof. Choose a surjectionR[x1, . . . , xn]→ A. Choose a presentationA′ = A[y1, . . . , ym]/(g1, . . . , gl).
Pick g′

i ∈ R[x1, . . . , xn, y1, . . . , ym] mapping to gi. Say

R[x1, . . . , xn]⊕s → R[x1, . . . , xn]⊕t →M → 0

is a presentation of M given by a matrix (hij). Then

R[x1, . . . , xn, y1, . . . , ym]⊕s+tl → R[x0, x1, . . . , xn, y1, . . . , ym]⊕t →M ⊗A A′ → 0

is a presentation of M ⊗A A′. Here the t× (s+ lt) matrix defining the map has a
first t× s block consisting of the matrix hij , followed by l blocks of size t× t which
are g′

iIt. □

Lemma 15.80.7.065C Let R→ A→ B be finite type ring maps. Let M be a B-module.
If M is finitely presented relative to A and A is of finite presentation over R, then
M is finitely presented relative to R.

Proof. Choose a surjection A[x1, . . . , xn]→ B. Choose a presentation

A[x1, . . . , xn]⊕s → A[x1, . . . , xn]⊕t →M → 0

given by a matrix (hij). Choose a presentation

A = R[y1, . . . , ym]/(g1, . . . , gu).

Choose h′
ij ∈ R[y1, . . . , ym, x1, . . . , xn] mapping to hij . Then we obtain the presen-

tation

R[y1, . . . , ym, x1, . . . , xn]⊕s+tu → R[y1, . . . , ym, x1, . . . , xn]⊕t →M → 0

where the t× (s+ tu)-matrix is given by a first t× s block consisting of h′
ij followed

by u blocks of size t× t given by giIt, i = 1, . . . , u. □

Lemma 15.80.8.065D Let R → A be a finite type ring map. Let M be an A-module.
Let f1, . . . , fr ∈ A generate the unit ideal. The following are equivalent

(1) each Mfi is finitely presented relative to R, and
(2) M is finitely presented relative to R.

https://stacks.math.columbia.edu/tag/065B
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Proof. The implication (2) ⇒ (1) is in Lemma 15.80.4. Assume (1). Write 1 =∑
figi in A. Choose a surjection R[x1, . . . , xn, y1, . . . , yr, z1, . . . , zr] → A. such

that yi maps to fi and zi maps to gi. Then we see that there exists a surjection

P = R[x1, . . . , xn, y1, . . . , yr, z1, . . . , zr]/(
∑

yizi − 1) −→ A.

By Lemma 15.80.1 we see that Mfi is a finitely presented Afi -module, hence by
Algebra, Lemma 10.23.2 we see that M is a finitely presented A-module. Hence M
is a finite P -module (with P as above). Choose a surjection P⊕t →M . We have to
show that the kernel K of this map is a finite P -module. Since Pyi surjects onto Afi
we see by Lemma 15.80.1 and Algebra, Lemma 10.5.3 that the localization Kyi is a
finitely generated Pyi-module. Choose elements ki,j ∈ K, i = 1, . . . , r, j = 1, . . . , si
such that the images of ki,j in Kyi generate. Set K ′ ⊂ K equal to the P -module
generated by the elements ki,j . Then K/K ′ is a module whose localization at yi is
zero for all i. Since (y1, . . . , yr) = P we see that K/K ′ = 0 as desired. □

Lemma 15.80.9.0671 Let R → A be a finite type ring map. Let 0 → M ′ → M →
M ′′ → 0 be a short exact sequence of A-modules.

(1) If M ′,M ′′ are finitely presented relative to R, then so is M .
(2) If M ′ is a finite type A-module and M is finitely presented relative to R,

then M ′′ is finitely presented relative to R.

Proof. Follows immediately from Algebra, Lemma 10.5.3. □

Lemma 15.80.10.0672 Let R→ A be a finite type ring map. Let M,M ′ be A-modules.
If M ⊕M ′ is finitely presented relative to R, then so are M and M ′.

Proof. Omitted. □

15.81. Relatively pseudo-coherent modules

065E This section is the analogue of Section 15.80 for pseudo-coherence.

Lemma 15.81.1.065F Let R be a ring. Let K• be a complex of R-modules. Consider
the R-algebra map R[x]→ R which maps x to zero. Then

K• ⊗L
R[x] R

∼= K• ⊕K•[1]
in D(R).

Proof. Choose a K-flat resolution P • → K• over R such that Pn is a flat R-module
for all n, see Lemma 15.59.10. Then P •⊗RR[x] is a K-flat complex of R[x]-modules
whose terms are flat R[x]-modules, see Lemma 15.59.3 and Algebra, Lemma 10.39.7.
In particular x : Pn⊗RR[x]→ Pn⊗RR[x] is injective with cokernel isomorphic to
Pn. Thus

P • ⊗R R[x] x−→ P • ⊗R R[x]
is a double complex of R[x]-modules whose associated total complex is quasi-
isomorphic to P • and hence K•. Moreover, this associated total complex is a K-
flat complex of R[x]-modules for example by Lemma 15.59.4 or by Lemma 15.59.5.
Hence

K• ⊗L
R[x] R

∼= Tot(P • ⊗R R[x] x−→ P • ⊗R R[x])⊗R[x] R = Tot(P • 0−→ P •)
= P • ⊕ P •[1] ∼= K• ⊕K•[1]

as desired. □

https://stacks.math.columbia.edu/tag/0671
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Lemma 15.81.2.065G Let R be a ring and K• a complex of R-modules. Let m ∈ Z.
Consider the R-algebra map R[x] → R which maps x to zero. Then K• is m-
pseudo-coherent as a complex of R-modules if and only if K• is m-pseudo-coherent
as a complex of R[x]-modules.

Proof. This is a special case of Lemma 15.64.11. We also prove it in another way
as follows.

Note that 0 → R[x] → R[x] → R → 0 is exact. Hence R is pseudo-coherent as an
R[x]-module. Thus one implication of the lemma follows from Lemma 15.64.11. To
prove the other implication, assume that K• is m-pseudo-coherent as a complex of
R[x]-modules. By Lemma 15.64.12 we see that K•⊗L

R[x]R is m-pseudo-coherent as
a complex of R-modules. By Lemma 15.81.1 we see that K• ⊕K•[1] is m-pseudo-
coherent as a complex of R-modules. Finally, we conclude that K• is m-pseudo-
coherent as a complex of R-modules from Lemma 15.64.8. □

Lemma 15.81.3.065H Let R→ A be a ring map of finite type. Let K• be a complex of
A-modules. Let m ∈ Z. The following are equivalent

(1) for some presentation α : R[x1, . . . , xn] → A the complex K• is an m-
pseudo-coherent complex of R[x1, . . . , xn]-modules,

(2) for all presentations α : R[x1, . . . , xn] → A the complex K• is an m-
pseudo-coherent complex of R[x1, . . . , xn]-modules.

In particular the same equivalence holds for pseudo-coherence.

Proof. If α : R[x1, . . . , xn] → A and β : R[y1, . . . , ym] → A are presentations.
Choose fj ∈ R[x1, . . . , xn] with α(fj) = β(yj) and gi ∈ R[y1, . . . , ym] with β(gi) =
α(xi). Then we get a commutative diagram

R[x1, . . . , xn, y1, . . . , ym]

xi 7→gi

��

yj 7→fj

// R[x1, . . . , xn]

��
R[y1, . . . , ym] // A

After a change of coordinates the ring homomorphism R[x1, . . . , xn, y1, . . . , ym] →
R[x1, . . . , xn] is isomorphic to the ring homomorphism which maps each yi to zero.
Similarly for the left vertical map in the diagram. Hence, by induction on the
number of variables this lemma follows from Lemma 15.81.2. The pseudo-coherent
case follows from this and Lemma 15.64.5. □

Definition 15.81.4.065I Let R→ A be a finite type ring map. Let K• be a complex of
A-modules. Let M be an A-module. Let m ∈ Z.

(1) We say K• is m-pseudo-coherent relative to R if the equivalent conditions
of Lemma 15.81.3 hold.

(2) We say K• is pseudo-coherent relative to R if K• is m-pseudo-coherent
relative to R for all m ∈ Z.

(3) We say M is m-pseudo-coherent relative to R if M [0] is m-pseudo-coherent
relative to R.

(4) We say M is pseudo-coherent relative to R if M [0] is pseudo-coherent
relative to R.

https://stacks.math.columbia.edu/tag/065G
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Part (2) means that K• is pseudo-coherent as a complex of R[x1, . . . , xn]-modules
for any surjection R[y1, . . . , ym] → A, see Lemma 15.64.5. This definition has the
following pleasing property.
Lemma 15.81.5.0673 Let R be a ring. Let A → B be a finite map of finite type
R-algebras. Let m ∈ Z. Let K• be a complex of B-modules. Then K• is m-
pseudo-coherent (resp. pseudo-coherent) relative to R if and only if K• seen as a
complex of A-modules is m-pseudo-coherent (pseudo-coherent) relative to R.
Proof. Choose a surjection R[x1, . . . , xn] → A. Choose y1, . . . , ym ∈ B which
generate B over A. As A → B is finite each yi satisfies a monic equation with
coefficients in A. Hence we can find monic polynomials Pj(T ) ∈ R[x1, . . . , xn][T ]
such that Pj(yj) = 0 in B. Then we get a commutative diagram

R[x1, . . . , xn, y1, . . . , ym]

��
R[x1, . . . , xn]

��

// R[x1, . . . , xn, y1, . . . , ym]/(Pj(yj))

��
A // B

The top horizontal arrow and the top right vertical arrow satisfy the assumptions
of Lemma 15.64.11. Hence K• is m-pseudo-coherent (resp. pseudo-coherent) as
a complex of R[x1, . . . , xn]-modules if and only if K• is m-pseudo-coherent (resp.
pseudo-coherent) as a complex of R[x1, . . . , xn, y1, . . . , ym]-modules. □

Lemma 15.81.6.0674 Let R be a ring. Let R→ A be a finite type ring map. Let m ∈ Z.
Let (K•, L•,M•, f, g, h) be a distinguished triangle in D(A).

(1) IfK• is (m+1)-pseudo-coherent relative to R and L• ism-pseudo-coherent
relative to R then M• is m-pseudo-coherent relative to R.

(2) If K•,M• are m-pseudo-coherent relative to R, then L• is m-pseudo-
coherent relative to R.

(3) If L• is (m + 1)-pseudo-coherent relative to R and M• is m-pseudo-
coherent relative to R, then K• is (m + 1)-pseudo-coherent relative to
R.

Moreover, if two out of three of K•, L•,M• are pseudo-coherent relative to R, the
so is the third.
Proof. Follows immediately from Lemma 15.64.2 and the definitions. □

Lemma 15.81.7.0675 Let R → A be a finite type ring map. Let M be an A-module.
Then

(1) M is 0-pseudo-coherent relative to R if and only if M is a finite type
A-module,

(2) M is (−1)-pseudo-coherent relative to R if and only if M is a finitely
presented relative to R,

(3) M is (−d)-pseudo-coherent relative to R if and only if for every surjection
R[x1, . . . , xn]→ A there exists a resolution

R[x1, . . . , xn]⊕ad → R[x1, . . . , xn]⊕ad−1 → . . .→ R[x1, . . . , xn]⊕a0 →M → 0
of length d, and

https://stacks.math.columbia.edu/tag/0673
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(4) M is pseudo-coherent relative to R if and only if for every presentation
R[x1, . . . , xn]→ A there exists an infinite resolution

. . .→ R[x1, . . . , xn]⊕a1 → R[x1, . . . , xn]⊕a0 →M → 0
by finite free R[x1, . . . , xn]-modules.

Proof. Follows immediately from Lemma 15.64.4 and the definitions. □

Lemma 15.81.8.0676 Let R → A be a finite type ring map. Let m ∈ Z. Let K•, L• ∈
D(A). If K• ⊕ L• is m-pseudo-coherent (resp. pseudo-coherent) relative to R so
are K• and L•.

Proof. Immediate from Lemma 15.64.8 and the definitions. □

Lemma 15.81.9.0677 Let R → A be a finite type ring map. Let m ∈ Z. Let K• be
a bounded above complex of A-modules such that Ki is (m − i)-pseudo-coherent
relative to R for all i. Then K• is m-pseudo-coherent relative to R. In particular, if
K• is a bounded above complex of A-modules pseudo-coherent relative to R, then
K• is pseudo-coherent relative to R.

Proof. Immediate from Lemma 15.64.9 and the definitions. □

Lemma 15.81.10.0678 Let R → A be a finite type ring map. Let m ∈ Z. Let K• ∈
D−(A) such thatHi(K•) is (m−i)-pseudo-coherent (resp. pseudo-coherent) relative
to R for all i. Then K• is m-pseudo-coherent (resp. pseudo-coherent) relative to
R.

Proof. Immediate from Lemma 15.64.10 and the definitions. □

Lemma 15.81.11.0679 Let R be a ring, f ∈ R an element, Rf → A is a finite type
ring map, g ∈ A, and K• a complex of A-modules. If K• is m-pseudo-coherent
(resp. pseudo-coherent) relative to Rf , then K•⊗AAg is m-pseudo-coherent (resp.
pseudo-coherent) relative to R.

Proof. First we show that K• is m-pseudo-coherent relative to R. Namely, sup-
pose Rf [x1, . . . , xn] → A is surjective. Write Rf = R[x0]/(fx0 − 1). Then
R[x0, x1, . . . , xn] → A is surjective, and Rf [x1, . . . , xn] is pseudo-coherent as an
R[x0, . . . , xn]-module. Hence by Lemma 15.64.11 we see that K• is m-pseudo-
coherent as a complex of R[x0, x1, . . . , xn]-modules.
Choose an element g′ ∈ R[x0, x1, . . . , xn] which maps to g ∈ A. By Lemma 15.64.12
we see that

K• ⊗L
R[x0,x1,...,xn] R[x0, x1, . . . , xn,

1
g′ ] = K• ⊗R[x0,x1,...,xn] R[x0, x1, . . . , xn,

1
g′ ]

= K• ⊗A Af

is m-pseudo-coherent as a complex of R[x0, x1, . . . , xn,
1
g′ ]-modules. write

R[x0, x1, . . . , xn,
1
g′ ] = R[x0, . . . , xn, xn+1]/(xn+1g

′ − 1).

As R[x0, x1, . . . , xn,
1
g′ ] is pseudo-coherent as a R[x0, . . . , xn, xn+1]-module we con-

clude (see Lemma 15.64.11) that K• ⊗A Ag is m-pseudo-coherent as a complex of
R[x0, . . . , xn, xn+1]-modules as desired. □
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Lemma 15.81.12.067A Let R→ A be a finite type ring map. Let m ∈ Z. Let K• be a
complex of A-modules which is m-pseudo-coherent (resp. pseudo-coherent) relative
to R. Let R→ R′ be a ring map such that A and R′ are Tor independent over R.
Set A′ = A ⊗R R′. Then K• ⊗L

A A
′ is m-pseudo-coherent (resp. pseudo-coherent)

relative to R′.

Proof. Choose a surjection R[x1, . . . , xn]→ A. Note that

K• ⊗L
A A

′ = K• ⊗L
R R

′ = K• ⊗L
R[x1,...,xn] R

′[x1, . . . , xn]

by Lemma 15.61.2 applied twice. Hence we win by Lemma 15.64.12. □

Lemma 15.81.13.067B Let R→ A→ B be finite type ring maps. Let m ∈ Z. Let K• be
a complex of A-modules. Assume B as a B-module is pseudo-coherent relative to
A. If K• is m-pseudo-coherent (resp. pseudo-coherent) relative to R, then K•⊗L

AB
is m-pseudo-coherent (resp. pseudo-coherent) relative to R.

Proof. Choose a surjectionA[y1, . . . , ym]→ B. Choose a surjectionR[x1, . . . , xn]→
A. Combined we get a surjection R[x1, . . . , xn, y1, . . . ym]→ B. Choose a resolution
E• → B of B by a complex of finite free A[y1, . . . , yn]-modules (which is possible
by our assumption on the ring map A→ B). We may assume that K• is a bounded
above complex of flat A-modules. Then

K• ⊗L
A B = Tot(K• ⊗A B[0])

= Tot(K• ⊗A A[y1, . . . , ym]⊗A[y1,...,ym] B[0])
∼= Tot

(
(K• ⊗A A[y1, . . . , ym])⊗A[y1,...,ym] E

•)
= Tot(K• ⊗A E•)

inD(A[y1, . . . , ym]). The quasi-isomorphism∼= comes from an application of Lemma
15.59.7. Thus we have to show that Tot(K•⊗AE•) is m-pseudo-coherent as a com-
plex of R[x1, . . . , xn, y1, . . . ym]-modules. Note that Tot(K• ⊗A E•) has a filtration
by subcomplexes with successive quotients the complexes K•⊗AEi[−i]. Note that
for i ≪ 0 the complexes K• ⊗A Ei[−i] have zero cohomology in degrees ≤ m and
hence are m-pseudo-coherent (over any ring). Hence, applying Lemma 15.81.6 and
induction, it suffices to show that K• ⊗A Ei[−i] is pseudo-coherent relative to R
for all i. Note that Ei = 0 for i > 0. Since also Ei is finite free this reduces to
proving that K•⊗AA[y1, . . . , ym] is m-pseudo-coherent relative to R which follows
from Lemma 15.81.12 for instance. □

Lemma 15.81.14.067C Let R → A → B be finite type ring maps. Let m ∈ Z. Let M
be an A-module. Assume B is flat over A and B as a B-module is pseudo-coherent
relative to A. If M is m-pseudo-coherent (resp. pseudo-coherent) relative to R,
then M ⊗A B is m-pseudo-coherent (resp. pseudo-coherent) relative to R.

Proof. Immediate from Lemma 15.81.13. □

Lemma 15.81.15.067D Let R be a ring. Let A→ B be a map of finite type R-algebras.
Let m ∈ Z. Let K• be a complex of B-modules. Assume A is pseudo-coherent
relative to R. Then the following are equivalent

(1) K• is m-pseudo-coherent (resp. pseudo-coherent) relative to A, and
(2) K• is m-pseudo-coherent (resp. pseudo-coherent) relative to R.
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Proof. Choose a surjectionR[x1, . . . , xn]→ A. Choose a surjectionA[y1, . . . , ym]→
B. Then we get a surjection

R[x1, . . . , xn, y1, . . . , ym]→ A[y1, . . . , ym]
which is a flat base change of R[x1, . . . , xn] → A. By assumption A is a pseudo-
coherent module overR[x1, . . . , xn] hence by Lemma 15.64.13 we see thatA[y1, . . . , ym]
is pseudo-coherent over R[x1, . . . , xn, y1, . . . , ym]. Thus the lemma follows from
Lemma 15.64.11 and the definitions. □

Lemma 15.81.16.067E Let R → A be a finite type ring map. Let K• be a complex of
A-modules. Let m ∈ Z. Let f1, . . . , fr ∈ A generate the unit ideal. The following
are equivalent

(1) each K• ⊗A Afi is m-pseudo-coherent relative to R, and
(2) K• is m-pseudo-coherent relative to R.

The same equivalence holds for pseudo-coherence relative to R.

Proof. The implication (2) ⇒ (1) is in Lemma 15.81.11. Assume (1). Write 1 =∑
figi in A. Choose a surjection R[x1, . . . , xn, y1, . . . , yr, z1, . . . , zr] → A. such

that yi maps to fi and zi maps to gi. Then we see that there exists a surjection

P = R[x1, . . . , xn, y1, . . . , yr, z1, . . . , zr]/(
∑

yizi − 1) −→ A.

Note that P is pseudo-coherent as an R[x1, . . . , xn, y1, . . . , yr, z1, . . . , zr]-module
and that P [1/yi] is pseudo-coherent as an R[x1, . . . , xn, y1, . . . , yr, z1, . . . , zr, 1/yi]-
module. Hence by Lemma 15.64.11 we see that K•⊗AAfi is an m-pseudo-coherent
complex of P [1/yi]-modules for each i. Thus by Lemma 15.64.14 we see that K• is
pseudo-coherent as a complex of P -modules, and Lemma 15.64.11 shows that K•

is pseudo-coherent as a complex of R[x1, . . . , xn, y1, . . . , yr, z1, . . . , zr]-modules. □

Lemma 15.81.17.067F Let R be a Noetherian ring. Let R → A be a finite type ring
map. Then

(1) A complex of A-modules K• is m-pseudo-coherent relative to R if and
only if K• ∈ D−(A) and Hi(K•) is a finite A-module for i ≥ m.

(2) A complex of A-modules K• is pseudo-coherent relative to R if and only
if K• ∈ D−(A) and Hi(K•) is a finite A-module for all i.

(3) An A-module is pseudo-coherent relative to R if and only if it is finite.

Proof. Immediate consequence of Lemma 15.64.17 and the definitions. □

15.82. Pseudo-coherent and perfect ring maps

067G We can define these types of ring maps as follows.

Definition 15.82.1.067H Let A→ B be a ring map.
(1) We say A→ B is a pseudo-coherent ring map if it is of finite type and B,

as a B-module, is pseudo-coherent relative to A.
(2) We say A → B is a perfect ring map if it is a pseudo-coherent ring map

such that B as an A-module has finite tor dimension.

This terminology may be nonstandard. Using Lemma 15.81.7 we see that A → B
is pseudo-coherent if and only if B = A[x1, . . . , xn]/I and B as an A[x1, . . . , xn]-
module has a resolution by finite free A[x1, . . . , xn]-modules. The motivation for

https://stacks.math.columbia.edu/tag/067E
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the definition of a perfect ring map is Lemma 15.74.2. The following lemmas gives
a more useful and intuitive characterization of a perfect ring map.

Lemma 15.82.2.068Y A ring map A → B is perfect if and only if B = A[x1, . . . , xn]/I
andB as anA[x1, . . . , xn]-module has a finite resolution by finite projectiveA[x1, . . . , xn]-
modules.

Proof. If A → B is perfect, then B = A[x1, . . . , xn]/I and B is pseudo-coherent
as an A[x1, . . . , xn]-module and has finite tor dimension as an A-module. Hence
Lemma 15.77.5 implies that B is perfect as a A[x1, . . . , xn]-module, i.e., it has a
finite resolution by finite projective A[x1, . . . , xn]-modules (Lemma 15.74.3). Con-
versely, if B = A[x1, . . . , xn]/I and B as an A[x1, . . . , xn]-module has a finite res-
olution by finite projective A[x1, . . . , xn]-modules then B is pseudo-coherent as an
A[x1, . . . , xn]-module, hence A→ B is pseudo-coherent. Moreover, the given reso-
lution over A[x1, . . . , xn] is a finite resolution by flat A-modules and hence B has
finite tor dimension as an A-module. □

Lots of the results of the preceding sections can be reformulated in terms of this
terminology. We also refer to More on Morphisms, Sections 37.60 and 37.61 for the
corresponding discussion concerning morphisms of schemes.

Lemma 15.82.3.067I A finite type ring map of Noetherian rings is pseudo-coherent.

Proof. See Lemma 15.81.17. □

Lemma 15.82.4.067J A ring map which is flat and of finite presentation is perfect.

Proof. Let A → B be a ring map which is flat and of finite presentation. It is
clear that B has finite tor dimension. By Algebra, Lemma 10.168.1 there exists a
finite type Z-algebra A0 ⊂ A and a flat finite type ring map A0 → B0 such that
B = B0 ⊗A0 A. By Lemma 15.81.17 we see that A0 → B0 is pseudo-coherent. As
A0 → B0 is flat we see that B0 and A are tor independent over A0, hence we may
use Lemma 15.81.12 to conclude that A→ B is pseudo-coherent. □

Lemma 15.82.5.067K Let A → B be a finite type ring map with A a regular ring of
finite dimension. Then A→ B is perfect.

Proof. By Algebra, Lemma 10.110.8 the assumption on A means that A has fi-
nite global dimension. Hence every module has finite tor dimension, see Lemma
15.66.19, in particular B does. By Lemma 15.82.3 the map is pseudo-coherent. □

Lemma 15.82.6.07EN A local complete intersection homomorphism is perfect.

Proof. Let A → B be a local complete intersection homomorphism. By Defini-
tion 15.33.2 this means that B = A[x1, . . . , xn]/I where I is a Koszul ideal in
A[x1, . . . , xn]. By Lemmas 15.82.2 and 15.74.3 it suffices to show that I is a perfect
module over A[x1, . . . , xn]. By Lemma 15.74.12 this is a local question. Hence
we may assume that I is generated by a Koszul-regular sequence (by Definition
15.32.1). Of course this means that I has a finite free resolution and we win. □

Lemma 15.82.7.0DHQ Let R→ A be a pseudo-coherent ring map. Let K ∈ D(A). The
following are equivalent

(1) K is m-pseudo-coherent (resp. pseudo-coherent) relative to R, and
(2) K is m-pseudo-coherent (resp. pseudo-coherent) in D(A).

https://stacks.math.columbia.edu/tag/068Y
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Proof. Reformulation of a special case of Lemma 15.81.15. □

Lemma 15.82.8.0E1T Let R → B → A be ring maps with φ : B → A surjective
and R → B and R → A flat and of finite presentation. For K ∈ D(A) denote
φ∗K ∈ D(B) the restriction. The following are equivalent

(1) K is pseudo-coherent,
(2) K is pseudo-coherent relative to R,
(3) K is pseudo-coherent relative to A,
(4) φ∗K is pseudo-coherent,
(5) φ∗K is pseudo-coherent relative to R.

Similar holds for m-pseudo-coherence.

Proof. Observe that R → A and R → B are perfect ring maps (Lemma 15.82.4)
hence a fortiori pseudo-coherent ring maps. Thus (1) ⇔ (2) and (4) ⇔ (5) by
Lemma 15.82.7.

Using that A is pseudo-coherent relative to R we use Lemma 15.81.15 to see that
(2) ⇔ (3). However, since A → B is surjective, we see directly from Definition
15.81.4 that (3) is equivalent with (4). □

15.83. Relatively perfect modules

0DHR This section is the analogue of Section 15.81 for perfect objects of the derived
category. we only define this notion in a limited generality as we are not sure what
the correct definition is in general. See Derived Categories of Schemes, Remark
36.35.14 for a discussion.

Definition 15.83.1.0DHS Let R→ A be a flat ring map of finite presentation. An object
K of D(A) is R-perfect or perfect relative to R if K is pseudo-coherent (Definition
15.64.1) and has finite tor dimension over R (Definition 15.66.1).

By Lemma 15.82.8 it would have been the same thing to ask K to be pseudo-
coherent relative to R. Here are some obligatory lemmas.

Lemma 15.83.2.0DHT Let R→ A be a flat ring map of finite presentation. The R-perfect
objects of D(A) form a saturated9 triangulated strictly full subcategory.

Proof. This follows from Lemmas 15.64.2, 15.64.8, 15.66.5, and 15.66.7. □

Lemma 15.83.3.0DHU Let R → A be a flat ring map of finite presentation. A perfect
object of D(A) is R-perfect. If K,M ∈ D(A) then K ⊗L

A M is R-perfect if K is
perfect and M is R-perfect.

Proof. The first statement follows from the second by taking M = A. The second
statement follows from Lemmas 15.74.2, 15.66.10, and 15.64.16. □

Lemma 15.83.4.0DHV Let R → A be a flat ring map of finite presentation. Let K ∈
D(A). The following are equivalent

(1) K is R-perfect, and
(2) K is isomorphic to a finite complex of R-flat, finitely presented A-modules.

9Derived Categories, Definition 13.6.1.
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Proof. To prove (2) implies (1) it suffices by Lemma 15.83.2 to show that an R-
flat, finitely presented A-module M defines an R-perfect object of D(A). Since M
has finite tor dimension over R, it suffices to show that M is pseudo-coherent. By
Algebra, Lemma 10.168.1 there exists a finite type Z-algebra R0 ⊂ R and a flat
finite type ring map R0 → A0 and a finite A0-module M0 flat over R0 such that
A = A0⊗R0 R and M = M0⊗R0 R. By Lemma 15.64.17 we see that M0 is pseudo-
coherent A0-module. Choose a resolution P •

0 →M0 by finite free A0-modules Pn0 .
Since A0 is flat over R0, this is a flat resolution. Since M0 is flat over R0 we find
that P • = P •

0 ⊗R0 R still resolves M = M0 ⊗R0 R. (You can use Lemma 15.61.2
to see this.) Hence P • is a finite free resolution of M over A and we conclude that
M is pseudo-coherent.
Assume (1). We can represent K by a bounded above complex P • of finite free A-
modules. Assume that K viewed as an object of D(R) has tor amplitude in [a, b].
By Lemma 15.66.2 we see that τ≥aP

• is a complex of R-flat, finitely presented
A-modules representing K. □

Lemma 15.83.5.0DHW Let R→ A be a flat ring map of finite presentation. Let R→ R′

be a ring map and set A′ = A ⊗R R′. If K ∈ D(A) is R-perfect, then K ⊗L
A A

′ is
R′-perfect.

Proof. By Lemma 15.64.12 we see that K ⊗L
A A

′ is pseudo-coherent. By Lemma
15.61.2 we see that K ⊗L

A A
′ is equal to K ⊗L

R R
′ in D(R′). Then we can apply

Lemma 15.66.13 to see that K ⊗L
R R

′ in D(R′) has finite tor dimension. □

Lemma 15.83.6.0E1U Let R→ A be a flat ring map. Let K,L ∈ D(A) with K pseudo-
coherent and L finite tor dimension over R. We may choose

(1) a bounded above complex P • of finite free A-modules representing K, and
(2) a bounded complex of R-flat A-modules F • representing L.

Given these choices we have
(a) E• = Hom•(P •, F •) is a bounded below complex of R-flat A-modules

representing RHomA(K,L),
(b) for any ring map R → R′ with A′ = A ⊗R R′ the complex E• ⊗R R′

represents RHomA′(K ⊗L
A A

′, L⊗L
A A

′).
If in addition R → A is of finite presentation and L is R-perfect, then we may
choose F p to be finitely presented A-modules and consequently En will be finitely
presented A-modules as well.

Proof. The existence of P • is the definition of a pseudo-coherent complex. We first
represent L by a bounded above complex F • of free A-modules (this is possible
because bounded tor dimension in particular implies bounded). Next, say L viewed
as an object of D(R) has tor amplitude in [a, b]. Then, after replacing F • by τ≥aF

•,
we get a complex as in (2). This follows from Lemma 15.66.2.
Proof of (a). Since F • is bounded an since P • is bounded above, we see that En = 0
for n≪ 0 and that En is a finite (!) direct sum

En =
⊕

p+q=n
HomA(P−q, F p)

and since P−q is finite free, this is indeed an R-flat A-module. The fact that E•

represents RHomA(K,L) follows from Lemma 15.73.2.

https://stacks.math.columbia.edu/tag/0DHW
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Proof of (b). Let R→ R′ be a ring map and A′ = A⊗RR′. By Lemma 15.61.2 the
object L⊗L

A A
′ is represented by F • ⊗R R′ viewed as a complex of A′-modules (by

flatness of F p over R). Similarly for P •⊗RR′. As above RHomA′(K⊗L
AA

′, L⊗L
AA

′)
is represented by

Hom•(P • ⊗R R′, F • ⊗R R′) = E• ⊗R R′

The equality holds by looking at the terms of the complex individually and using
that HomA′(P−q ⊗R R′, F p ⊗R R′) = HomA(P−q, F p)⊗R R′. □

Lemma 15.83.7.0DHX Let R = colimi∈I Ri be a filtered colimit of rings. Let 0 ∈ I and
R0 → A0 be a flat ring map of finite presentation. For i ≥ 0 set Ai = Ri ⊗R0 A0
and set A = R⊗R0 A0.

(1) Given an R-perfect K in D(A) there exists an i ∈ I and an Ri-perfect Ki

in D(Ai) such that K ∼= Ki ⊗L
Ai
A in D(A).

(2) Given K0, L0 ∈ D(A0) with K0 pseudo-coherent and L0 finite tor dimen-
sion over R0, then we have

HomD(A)(K0 ⊗L
A0
A,L0 ⊗L

A0
A) = colimi≥0 HomD(Ai)(K0 ⊗L

A0
Ai, L0 ⊗L

A0
Ai)

In particular, the triangulated category of R-perfect complexes over A is the colimit
of the triangulated categories of Ri-perfect complexes over Ai.

Proof. By Algebra, Lemma 10.127.6 the category of finitely presented A-modules is
the colimit of the categories of finitely presented Ai-modules. Given this, Algebra,
Lemma 10.168.1 tells us that category of R-flat, finitely presented A-modules is
the colimit of the categories of Ri-flat, finitely presented Ai-modules. Thus the
characterization in Lemma 15.83.4 proves that (1) is true.
To prove (2) we choose P •

0 representing K0 and F •
0 representing L0 as in Lemma

15.83.6. Then E•
0 = Hom•(P •

0 , F
•
0 ) satisfies

H0(E•
0 ⊗R0 Ri) = HomD(Ai)(K0 ⊗L

A0
Ai, L0 ⊗L

A0
Ai)

and
H0(E•

0 ⊗R0 R) = HomD(A)(K0 ⊗L
A0
A,L0 ⊗L

A0
A)

by the lemma. Thus the result because tensor product commutes with colimits and
filtered colimits are exact (Algebra, Lemma 10.8.8). □

Lemma 15.83.8.0DJG Let R′ → A′ be a flat ring map of finite presentation. Let R′ → R
be a surjective ring map whose kernel is a nilpotent ideal. Set A = A′ ⊗R′ R.
Let K ′ ∈ D(A′) and set K = K ′ ⊗L

A′ A in D(A). If K is R-perfect, then K ′ is
R′-perfect.

Proof. We can represent K by a bounded above complex of finite free A-modules
E•, see Lemma 15.64.5. By Lemma 15.75.3 we conclude that K ′ is pseudo-coherent
because it can be represented by a bounded above complex P • of finite free A′-
modules with P • ⊗A′ A = E•. Observe that this also means P • ⊗R′ R = E• (since
A = A′ ⊗R′ R).
Let I = Ker(R′ → R). Then In = 0 for some n. Choose [a, b] such that K has tor
amplitude in [a, b] as a complex of R-modules. We will show K ′ has tor amplitude
in [a, b]. To do this, let M ′ be an R′-module. If IM ′ = 0, then

K ′ ⊗L
R′ M ′ = P • ⊗R′ M ′ = E• ⊗RM ′ = K ⊗L

RM
′

https://stacks.math.columbia.edu/tag/0DHX
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(because A′ is flat over R′ and A is flat over R) which has nonzero cohomology
only for degrees in [a, b] by choice of a, b. If It+1M ′ = 0, then we consider the short
exact sequence

0→ IM ′ →M ′ →M ′/IM ′ → 0
with M = M ′/IM ′. By induction on t we have that both K ′ ⊗L

R′ IM ′ and K ′ ⊗L
R′

M ′/IM ′ have nonzero cohomology only for degrees in [a, b]. Then the distinguished
triangle

K ′ ⊗L
R′ IM ′ → K ′ ⊗L

R′ M ′ → K ′ ⊗L
R′ M ′/IM ′ → (K ′ ⊗L

R′ IM ′)[1]
proves the same is true for K ′ ⊗L

R′ M ′. This proves the desired bound for all M ′

and hence the desired bound on the tor amplitude of K ′. □

Lemma 15.83.9.0DJH Let R be a ring. Let A = R[x1, . . . , xd]/I be flat and of finite
presentation over R. Let q ⊂ A be a prime ideal lying over p ⊂ R. Let K ∈ D(A)
be pseudo-coherent. Let a, b ∈ Z. If Hi(Kq ⊗L

Rp
κ(p)) is nonzero only for i ∈ [a, b],

then Kq has tor amplitude in [a− d, b] over R.

Proof. By Lemma 15.82.8 K is pseudo-coherent as a complex of R[x1, . . . , xd]-
modules. Therefore we may assume A = R[x1, . . . , xd]. Applying Lemma 15.77.6
to Rp → Aq and the complex Kq using our assumption, we find that Kq is perfect
in D(Aq) with tor amplitude in [a − d, b]. Since Rp → Aq is flat, we conclude by
Lemma 15.66.11. □

Lemma 15.83.10.0GHJ Let R→ A be a ring map which is flat and of finite presentation.
Let K ∈ D(A) be pseudo-coherent. The following are equivalent

(1) K is R-perfect, and
(2) K is bounded below and for every prime ideal p ⊂ R the object K⊗L

Rκ(p)
is bounded below.

Proof. Observe that (1) implies (2) as an R-perfect complex has bounded tor dimen-
sion as a complex of R-modules by definition. Let us prove the other implication.
Write A = R[x1, . . . , xd]/I. Denote L in D(R[x1, . . . , xd]) the restriction of K.
By Lemma 15.82.8 we see that L is pseudo-coherent. Since L and K have the
same image in D(R) we see that L is R-perfect if and only if K is R-perfect. Also
L⊗L

R κ(p) and K ⊗L
R κ(p) are the same objects of D(κ(p)). This reduces us to the

case A = R[x1, . . . , xd].
Say A = R[x1, . . . , xd] and K satisfies (2). Let q ⊂ A be a prime lying over a prime
p ⊂ R. By Lemma 15.77.6 applied to Rp → Aq and the complex Kq using our
assumption, we find that Kq is perfect in D(Aq). Since K is bounded below, we
see that K is perfect in D(A) by Lemma 15.77.3. This implies that K is R-perfect
by Lemma 15.83.3 and the proof is complete. □

15.84. Two term complexes

0G9B In this section we prove some results on two term complexes of modules which will
help us understand conditions on the naive cotangent complex.

Lemma 15.84.1.0G9C Let R be a ring. Let K ∈ D(R) with Hi(K) = 0 for i ̸∈ {−1, 0}.
The following are equivalent

(1) H−1(K) = 0 and H0(K) is a projective module and
(2) Ext1

R(K,M) = 0 for every R-module M .
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If R is Noetherian and Hi(K) is a finite R-module for i = −1, 0, then these are
also equivalent to

(3) Ext1
R(K,M) = 0 for every finite R-module M .

Proof. The equivalence of (1) and (2) follows from Lemma 15.68.2. If R is Noe-
therian and Hi(K) is a finite R-module for i = −1, 0, then K is pseudo-coherent,
see Lemma 15.64.17. Thus the equivalence of (1) and (3) follows from Lemma
15.77.4. □

Remark 15.84.2.0G9D The following two statements follow from Lemma 15.84.1, Alge-
bra, Definition 10.137.1, and Algebra, Proposition 10.138.8.

(1) A ring map A→ B is smooth if and only if A→ B is of finite presentation
and Ext1

B(NLB/A, N) = 0 for every B-module N .
(2) A ring map A→ B is formally smooth if and only if Ext1

B(NLB/A, N) = 0
for every B-module N .

Lemma 15.84.3.0G9E Let R be a ring. Let K be an object of D(R) with Hi(K) = 0 for
i ̸∈ {−1, 0}. Then

(1) K can be represented by a two term complex K−1 → K0 with K0 a free
module, and

(2) if R is Noetherian and Hi(K) is a finite R-module for i = −1, 0, then K
can be represented by a two term complex K−1 → K0 with K0 a finite
free module and K−1 finite.

Proof. Proof of (1). Suppose K is given by the complex of modules M•. We may
first replace M• by τ≤0M

•. Thus we may assume M i = 0 for i > 0, Next, we may
choose a free resolution P • → M• with P i = 0 for i > 0, see Derived Categories,
Lemma 13.15.4. Finally, we can set K• = τ≥−1P

•.

Proof of (2). Assume R is Noetherian and Hi(K) is a finite R-module for i = −1, 0.
By Lemma 15.64.5 we can choose a quasi-isomorphism F • → M• with F i = 0 for
i > 0 and F i finite free. Then we can set K• = τ≥−1F

•. □

Maps in the derived category out of the naive cotangent complex NLB/A or NL(α)
(see Algebra, Section 10.134) are easy to understand by the result of the following
lemma.

Lemma 15.84.4.0ALN Let R be a ring. Let M• be a complex of modules over R with
M i = 0 for i > 0 and M0 a projective R-module. Let K• be a second complex.

(1) AssumeKi = 0 for i ≤ −2. Then HomD(R)(M•,K•) = HomK(R)(M•,K•).
(2) Assume Ki = 0 for i ̸∈ [−1, 0] and K0 a projective R-module. Then for a

map of complexes a• : M• → K•, the following are equivalent
(a) a• induces the zero map Ext1

R(K•, N) → Ext1
R(M•, N) for all R-

modules N , and
(b) there is a map h0 : M0 → K−1 such that a−1 + h0 ◦ d−1

K = 0.
(3) Assume Ki = 0 for i ≤ −3. Let α ∈ HomD(R)(M•,K•). If the composi-

tion of α with K• → K−2[2] comes from an R-module map a : M−2 →
K−2 with a ◦ d−3

M = 0, then α can be represented by a map of complexes
a• : M• → K• with a−2 = a.
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(4) In (2) for any second map of complexes (a′)• : M• → K• representing α
with a = (a′)−2 there exist hi : M i → Ki−1 for i = 0,−1 such that

h−1 ◦ d−2
M = 0, (a′)−1 = a−1 + d−2

K ◦ h
−1 + h0 ◦ d−1

M , (a′)0 = a0 + d−1
K ◦ h

0

Proof. Set F 0 = M0. Choose a free R-module F−1 and a surjection F−1 →
M−1. Choose a free R-module F−2 and a surjection F−2 → M−2 ×M−1 F−1.
Continuing in this way we obtain a quasi-isomorphism p• : F • → M• which is
termwise surjective and with F i projective for all i.
Proof of (1). By Derived Categories, Lemma 13.19.8 we have

HomD(R)(M•,K•) = HomK(R)(F •,K•)
If Ki = 0 for i ≤ −2, then any morphism of complexes F • → K• factors through
p•. Similarly, any homotopy {hi : F i → Ki−1} factors through p•. Thus (1) holds.
Proof of (2). If (2)(b) holds, then a• is homotopic to a map of complexes (a′)• :
M• → K• which is zero in degree −1. On the other hand, let N → I• be an
injective resolution. We have

Ext1
R(K•, N) = HomD(R)(K•, I•[1]) = HomK(R)(K•, I•[1])

by Derived Categories, Lemma 13.18.8. Let b• : K• → I•[1] be a map of complexes.
Since K1 = 0 the map b0 : K0 → I1 maps into the kernel of I1 → I2 which is the
image of I0 → I1. Since K0 is projective we can lift b0 to a map h : K0 → I0.
Thus we see that b• is homotopic to a map of complexes (b′)• with (b′)0 = 0. Since
Ki = 0 for i ̸∈ [−1, 0] it follows that (b′)• ◦ (a′)• = 0 as a map of complexes. Hence
the map Ext1

R(K•, N) → Ext1
R(M•, N) is zero. In this way we see that (2)(b)

implies (2)(a). Conversely, assume (2)(a). We see that the canonical element in
Ext1

R(K•,K−1) maps to zero in Ext1
R(M•,K−1). Using (1) we see immediately

that we get a map h0 as in (2)(b).
Proof of (3). Choose b• : F • → K• representing α. The composition of α with
K• → K−2[2] is represented by b−2 : F−2 → K−2. As this is homotopic to
a ◦ p−2 : F−2 → M−2 → K−2, there is a map h : F−1 → K−2 such that b−2 =
a ◦ p−2 + h ◦ d−2

F . Adjusting b• by h viewed as a homotopy from F • to K•, we find
that b−2 = a ◦ p−2. Hence b−2 factors through p−2. Since F 0 = M0 the kernel
of p−2 surjects onto the kernel of p−1 (for example because the kernel of p• is an
acyclic complex or by a diagram chase). Hence b−1 necessarily factors through p−1

as well and we see that (3) holds for these factorizations and a0 = b0.
Proof of (4) is omitted. Hint: There is a homotopy between a• ◦ p• and (a′)• ◦ p•

and we argue as before that this homotopy factors through p•. □

Let A→ B be a finitely presented ring map. Given an ideal I ⊂ B we can consider
the condition

(*) Ext1
B(NLB/A, N) is annihilated by I for all B-modules N .

This condition is one possible precise mathematical formulation of the notion “the
singular locus of A→ B is scheme theoretically contained in V (I)”. Please compare
with Remark 15.84.2 and the following lemmas.

Lemma 15.84.5.0G9F Let R be a ring and let I ⊂ R be an ideal. Let K ∈ D(R).
Assume Hi(K) = 0 for i ̸∈ {−1, 0}. The following are equivalent

(1) Ext1
R(K,N) is annihilated by I for all R-modules N ,

https://stacks.math.columbia.edu/tag/0G9F
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(2) K can be represented by a complex K−1 → K0 with K0 free such that
for any a ∈ I the map a : K−1 → K−1 factors through d−1

K : K−1 → K0,
(3) whenever K is represented by a two term complex K−1 → K0 with K0

projective, then for any a ∈ I the map a : K−1 → K−1 factors through
d−1
K : K−1 → K0.

If R is Noetherian and Hi(K) is a finite R-module for i = −1, 0, then these are
also equivalent to

(4) Ext1
R(K,N) is annihilated by I for every finite R-module N ,

(5) K can be represented by a complex K−1 → K0 with K0 finite free and
K−1 finite such that for any a ∈ I the map a : K−1 → K−1 factors
through d−1

K : K−1 → K0.

Proof. Assume (1) and let K−1 → K0 be a two term complex representing K with
K0 projective. We will use the description of maps in D(R) out of K• given in
Lemma 15.84.4 without further mention. Choosing N = K−1 consider the element
ξ of Ext1

R(K,N) given by idK−1 : K−1 → K−1. Since is annihilated by a ∈ I we
see that we get the dotted arrow fitting into the following commutative diagram

K−1

a

��

d−1
K

// K0

h||
K−1

This proves that (3) holds. Part (3) implies (2) in view of Lemma 15.84.3 part
(1). Assume K• is as in (2) and N is an arbitrary R-module. Any element ξ
of Ext1

R(K,N) is given as the class of a map φ : K−1 → N . Then for a ∈ I
by assumption we may choose a map h as in the diagram above and we see that
aφ = φ ◦a = φ ◦h ◦d−1

K which proves that aξ is zero in Ext1
R(K,N). Thus (1), (2),

and (3) are equivalent.

Assume R is Noetherian and Hi(K) is a finite R-module for i = −1, 0. Part (3)
implies (5) in view of Lemma 15.84.3 part (2). It is clear that (5) implies (2).
Trivially (1) implies (4). Thus to finish the proof it suffices to show that (4) implies
any of the other conditions. Let K−1 → K0 be a complex representing K with K0

finite free and K−1 finite as in Lemma 15.84.3 part (2). The argument given in the
proof of (2) ⇒ (1) shows that if Ext1

R(K,K−1) is annihilated by I, then (1) holds.
In this way we see that (4) implies (1) and the proof is complete. □

Lemma 15.84.6.0G9G Let R be a ring. Let K be an object of D(R) with Hi(K) = 0 for
i ̸∈ {−1, 0}. Let K−1 → K0 be a two term complex of R-modules representing K
such that K0 is a flat R-module (for example projective or free). Let R→ R′ be a
ring map. Then the complex K• ⊗R R′ represents τ≥−1(K ⊗L

R R
′).

Proof. We have a distinguished triangle

K0 → K• → K−1[1]→ K0[1]

https://stacks.math.columbia.edu/tag/0G9G
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in D(R). This determines a map of distinguished triangles

K0 ⊗L
R R

′

��

// K• ⊗L
R R

′ //

��

K−1 ⊗L
R R

′[1] //

��

K0 ⊗L
R R

′[1]

��
K0 ⊗R R′ // K• ⊗R R′ // K−1 ⊗R R′[1] // K0 ⊗R R′[1]

The left and right vertical arrows are isomorphisms asK0 is flat. SinceK−1⊗L
RR

′ →
K−1 ⊗R R′ is an isomorphism on cohomology in degree 0 we conclude. □

Lemma 15.84.7.0G9H Let I be an ideal of a ring R. Let K be an object of D(R)
with Hi(K) = 0 for i ̸∈ {−1, 0}. Let R → R′ be a ring map. If K satisfies the
equivalent conditions (1), (2), and (3) of Lemma 15.84.5 with respect to (R, I),
then τ≥−1(K ⊗L

R R
′) satisfies the equivalent conditions (1), (2), and (3) of Lemma

15.84.5 with respect to (R′, IR′)

Proof. We may assume K is represented by a two term complex K−1 → K0 with
K0 free such that for any a ∈ I the map a : K−1 → K−1 is equal to ha ◦ d−1

K

for some map ha : K0 → K−1. By Lemma 15.84.6 we see that τ≥−1(K ⊗L
R R

′)
is represented by K• ⊗R R′. Then of course for every a ∈ I we see that a ⊗ 1 :
K−1 ⊗R R′ → K−1 ⊗R R′ is equal to (ha ⊗ 1) ◦ (d−1

K ⊗ 1). Since the collection of
maps K−1 ⊗R R′ → K−1 ⊗R R′ which factor through d−1

K ⊗ 1 forms an R′-module
we conclude. □

Lemma 15.84.8.0G9I Let R be a ring. Let α : K → K ′ be a morphism of D(R). Assume
(1) Hi(K) = Hi(K ′) = 0 for i ̸∈ {−1, 0}
(2) H0(α) is an isomorphism and H−1(α) is surjective.

For any f ∈ R if f : K → K is 0, then f : K ′ → K ′ is 0.

Proof. Set M = Ker(H−1(α)). Then α fits into a distinguished triangle
M [1]→ K → K ′ →M [2]

Since K → K ′ f−→ K ′ is zero by our assumption, we see that f : K ′ → K ′ factors
over a map M [2] → K ′. However Hom(M [2],K ′) = 0 for example by Derived
Categories, Lemma 13.27.3. □

Lemma 15.84.9.0G9J Let I be an ideal of a ring R. Let α : K → K ′ be a morphism of
D(R). Assume

(1) Hi(K) = Hi(K ′) = 0 for i ̸∈ {−1, 0}
(2) H0(α) is an isomorphism and H−1(α) is surjective.

If K satisfies the equivalent conditions (1), (2), and (3) of Lemma 15.84.5, then K ′

does too.

Proof. Set M = Ker(H−1(α)). Then α fits into a distinguished trangle
M [1]→ K → K ′ →M [2]

For any R-module N this determines an exact sequence
Ext0

R(M [1], N)→ Ext1
R(K ′, N)→ Ext1

R(K,N)
Since Ext0

R(M [1], N) = Ext−1
R (M,N) = 0 we see that Ext1

R(K ′, N) is a submodule
of Ext1

R(K,N). Hence if Ext1
R(K,N) is annihilated by I so is Ext1

R(K ′, N). □

https://stacks.math.columbia.edu/tag/0G9H
https://stacks.math.columbia.edu/tag/0G9I
https://stacks.math.columbia.edu/tag/0G9J
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Lemma 15.84.10.0G9K Let R be ring and let I ⊂ R be an ideal. Let K ∈ D(R) with
Hi(K) = 0 for i ̸∈ {−1, 0}. The following are equivalent

(1) there exists a c ≥ 0 such that the equivalent conditions (1), (2), (3) of
Lemma 15.84.5 hold for K and the ideal Ic,

(2) there exists a c ≥ 0 such that (a) Ic annihilates H−1(K) and (b) H0(K)
is an Ic-projective module (see Section 15.70).

If R is Noetherian and Hi(K) is a finite R-module for i = −1, 0, then these are
also equivalent to

(3) there exists a c ≥ 0 such that the equivalent conditions (4), (5) of Lemma
15.84.5 hold for K and the ideal Ic,

(4) H−1(K) is I-power torsion and there exist f1, . . . , fs ∈ R with V (f1, . . . , fs) ⊂
V (I) such that the localizations H0(K)fi are projective Rfi-modules,

(5) H−1(K) is I-power torsion and there exist f1, . . . , fs ∈ I with V (f1, . . . , fs) =
V (I) such that the localizations H0(K)fi are projective Rfi-modules.

Proof. The distinguished triangle H−1(K)[1] → K → H0(K)[0] → H−1(K)[2]
determines an exact sequence

0→ Ext1
R(H0(K), N)→ Ext1

R(K,N)→ HomR(H−1(K), N)→ Ext2
R(H0(K), N)

Thus (2) implies that I2c annihilates Ext1
R(K,N) for every R-module N . Assuming

(1) we immediately see that H0(K) is Ic-projective. On the other hand, we may
choose an injective map H−1(K) → N for some injective R-module N . Then this
map is the image of an element of Ext1

R(K,N) by the vanishing of the Ext2 in the
sequence and we conclude H−1(K) is annihilated by Ic.

Assume R is Noetherian and Hi(K) is a finite R-module for i = −1, 0. By Lemma
15.84.5 we see that (3) is equivalent to (1) and (2). Also, if (3) holds then for
f ∈ I the multiplication by f on H0(K) factors through a projective module,
which implies that H0(K)f is a summand of a projective Rf -module and hence
itself a projective Rf -module. Choosing f1, . . . , fs to be generators of I we find the
equivalent conditions (1), (2), and (3) imply (5). Of course (5) trivially implies (4).

Assume (4). Since H−1(K) is a finite R-module and I-power torsion we see that
Ic1 annihilates H−1(K) for some c1 ≥ 0. Choose a short exact sequence

0→M → R⊕r → H0(K)→ 0

which determines an element ξ ∈ Ext1
R(H0(K),M). For any f ∈ I we have

Ext1
R(H0(K),M)f = Ext1

Rf
(H0(K)f ,Mf ) by Lemma 15.65.4. Hence if H0(K)f

is projective, then a power of f annihilates ξ. We conclude that ξ is annihi-
lated by (f1, . . . , fs)c2 for some c2 ≥ 0. Since V (f1, . . . , fs) ⊂ V (I) we have√
I ⊂ (f1, . . . , fs) (Algebra, Lemma 10.17.2). Since R is Noetherian we find

Ic3 ⊂ (f1, . . . , fs) for some c3 ≥ 0 (Algebra, Lemma 10.32.5). Hence Ic2c3 an-
nihilates ξ. This in turn says that H0(K) is Ic2c3-projective (as multiplication by
a ∈ I which annihilate ξ factor through R⊕r). Hence taking c = max(c1, c2c3) we
see that (2) holds. □

Lemma 15.84.11.0AJT Let R be a ring. Let Kj ∈ D(R), j = 1, 2, 3 with Hi(Kj) = 0 for
i ̸∈ {−1, 0}. Let φ : K1 → K2 and ψ : K2 → K3 be maps in D(R). If H0(φ) = 0
and H−1(ψ) = 0, then φ ◦ ψ = 0.

https://stacks.math.columbia.edu/tag/0G9K
https://stacks.math.columbia.edu/tag/0AJT
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Proof. Apply Derived Categories, Lemma 13.12.5 to see that φ ◦ψ factors through
τ≤−2K2 = 0. □

Lemma 15.84.12.0G9L Let R be a ring. Let K ∈ D(R) be given by a two term complex
of the form R⊕n → R⊕n. Denote A ∈ Mat(n× n,R) the matrix of the differential.
Then det(a) : K → K is zero in D(R).

Proof. Omitted. Good exercise. □

15.85. The naive cotangent complex

0FUX In this section we continue the discussion started in Algebra, Section 10.134. We
begin with a discussion of base change. The first lemma shows that taking the naive
tensor product of the naive cotangent complex with a ring extension isn’t quite as
naive as one might think.

Lemma 15.85.1.0FUY Let R → S and S → S′ be ring maps. The canonical map
NLS/R⊗L

SS
′ → NLS/R⊗SS′ induces an isomorphism τ≥−1(NLS/R⊗L

SS
′)→ NLS/R⊗SS′

in D(S′). Similarly, given a presentation α of S over R the canonical map NL(α)⊗L
S

S′ → NL(α)⊗S S′ induces an isomorphism τ≥−1(NL(α)⊗L
S S

′)→ NL(α)⊗S S′ in
D(S′).

Proof. Special case of Lemma 15.84.6. □

Lemma 15.85.2.0FUZ Let R → S and R → R′ be ring maps. Let α : P → S be a
presentation of S over R. Then α′ : P ⊗R R′ → S ⊗R R′ is a presentation of
S′ = S ⊗R R′ over R′. The canonical map

NL(α)⊗S S′ → NL(α′)
is an isomorphism on H0 and surjective on H−1. In particular, the canonical map

NLS/R⊗SS′ → NLS′/R′

is an isomorphism on H0 and surjective on H−1.

Proof. Denote I = Ker(P → S). Denote P ′ = P ⊗R R′ and I ′ = Ker(P ′ → S′).
Suppose P is a polynomial algebra on xj for j ∈ J . The map displayed in the
lemma becomes ⊕

j∈J S
′dxj //⊕

j∈J S
′dxj

I/I2 ⊗S S′ //

OO

I ′/(I ′)2

OO

where the left column is NL(α) ⊗S S′ and the right column is NL(α′). By right
exactness of tensor product we see that I ⊗R R′ → I ′ is surjective. Hence the
bottom arrow is a surjection. This proves the first statement of the lemma. The
statement for NLS/R⊗SS′ → NLS′/R′ follows as these complexes are homotopic to
NL(α)⊗S S′ and NL(α′). □

Lemma 15.85.3.0FJU Consider a cocartesian diagram of rings

B // B′

A //

OO

A′

OO

https://stacks.math.columbia.edu/tag/0G9L
https://stacks.math.columbia.edu/tag/0FUY
https://stacks.math.columbia.edu/tag/0FUZ
https://stacks.math.columbia.edu/tag/0FJU


15.85. THE NAIVE COTANGENT COMPLEX 1395

If B is flat over A, then the canonical map NLB/A⊗BB′ → NLB′/A′ is a quasi-
isomorphism. If in additionNLB/A has tor-amplitude in [−1, 0] thenNLB/A⊗L

BB
′ →

NLB′/A′ is a quasi-isomorphism too.

Proof. Choose a presentation α : P → B as in Algebra, Section 10.134. Let
I = Ker(α). Set P ′ = P ⊗A A′ and denote α′ : P ′ → B′ the corresponding
presentation of B′ over A′. As B is flat over A we see that I ′ = Ker(α′) is equal to
I ⊗A A′. Hence

I ′/(I ′)2 = Coker(I2 ⊗A A′ → I ⊗A A′) = I/I2 ⊗A A′ = I/I2 ⊗B B′

We have ΩP ′/A′ = ΩP/A ⊗A A′ because both sides have the same basis. It follows
that ΩP ′/A′ ⊗P ′ B′ = ΩP/A⊗P B⊗B B′. This proves that NL(α)⊗B B′ → NL(α′)
is an isomorphism of complexes and hence the first statement holds.
We have

NL(α) = I/I2 −→ ΩP/A ⊗P B
as a complex of B-modules with I/I2 placed in degree −1. Since the term in degree
0 is free, this complex has tor-amplitude in [−1, 0] if and only if I/I2 is a flat B-
module, see Lemma 15.66.2. If this holds, then NL(α)⊗L

B B
′ = NL(α)⊗B B′ and

we get the second statement. □

Lemma 15.85.4.0FV0 Let A → B be a local complete intersection as in Definition
15.33.2. Then NLB/A is a perfect object of D(B) with tor amplitude in [−1, 0].

Proof. Write B = A[x1, . . . , xn]/I. Then NLB/A is represented by the complex

I/I2 −→
⊕

Bdxi
of B-modules with I/I2 placed in degree −1. Since the term in degree 0 is finite
free, this complex has tor-amplitude in [−1, 0] if and only if I/I2 is a flat B-module,
see Lemma 15.66.2. By definition I is a Koszul regular ideal and hence a quasi-
regular ideal, see Section 15.32. Thus I/I2 is a finite projective B-module (Lemma
15.32.3) and we conclude both that NLB/A is perfect and that it has tor amplitude
in [−1, 0]. □

Lemma 15.85.5.0FV1 Consider a cocartesian diagram of rings

B // B′

A //

OO

A′

OO

If A→ B and A′ → B′ are local complete intersections as in Definition 15.33.2, then
the kernel of H−1(NLB/A⊗BB′)→ H−1(NLB′/A′) is a finite projective B′-module.

Proof. By Lemma 15.85.4 the complexes NLB/A and NLB′/A′ are perfect of tor-
amplitude in [−1, 0]. Combining Lemmas 15.85.1, 15.74.9, and 15.66.13 we have
NLB/A⊗BB′ = NLB/A⊗L

BB
′ and this complex is also perfect of tor-amplitude in

[−1, 0]. Choose a distinguished triangle
C → NLB/A⊗BB′ → NLB′/A′ → C[1]

in D(B′). By Lemmas 15.74.4 and 15.66.5 we conclude that C is perfect with
tor-amplitude in [−1, 1]. By Lemma 15.85.2 the complex C has only one nonzero
cohomology module, namely the module of the lemma sitting in degree −1. This

https://stacks.math.columbia.edu/tag/0FV0
https://stacks.math.columbia.edu/tag/0FV1
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module is of finite presentation (Lemma 15.64.4) and flat (Lemma 15.66.6). Hence
it is finite projective by Algebra, Lemma 10.78.2. □

15.86. Rlim of abelian groups

07KV We briefly discuss R lim on abelian groups. In this section we will denote Ab(N) the
abelian category of inverse systems of abelian groups. The notation is compatible
with the notation for sheaves of abelian groups on a site, as an inverse system of
abelian groups is the same thing as a sheaf of groups on the category N (with a
unique morphism i → j if i ≤ j), see Remark 15.86.6. Many of the arguments in
this section duplicate the arguments used to construct the cohomological machinery
for sheaves of abelian groups on sites.

Lemma 15.86.1.07KW The functor lim : Ab(N)→ Ab has a right derived functor

(15.86.1.1)08U4 R lim : D(Ab(N)) −→ D(Ab)
As usual we set Rp lim(K) = Hp(R lim(K)). Moreover, we have

(1) for any (An) in Ab(N) we have Rp limAn = 0 for p > 1,
(2) the object R limAn of D(Ab) is represented by the complex∏

An →
∏

An, (xn) 7→ (xn − fn+1(xn+1))

sitting in degrees 0 and 1,
(3) if (An) is ML, then R1 limAn = 0, i.e., (An) is right acyclic for lim,
(4) every K• ∈ D(Ab(N)) is quasi-isomorphic to a complex whose terms are

right acyclic for lim, and
(5) if each Kp = (Kp

n) is right acyclic for lim, i.e., of R1 limnK
p
n = 0, then

R limK is represented by the complex whose term in degree p is limnK
p
n.

Proof. Let (An) be an arbitrary inverse system. Let (Bn) be the inverse system
with

Bn = An ⊕An−1 ⊕ . . .⊕A1

and transition maps given by projections. Let An → Bn be given by (1, fn, fn−1 ◦
fn, . . . , f2 ◦ . . . ◦ fn where fi : Ai → Ai−1 are the transition maps. In this way we
see that every inverse system is a subobject of a ML system (Homology, Section
12.31). It follows from Derived Categories, Lemma 13.15.6 using Homology, Lemma
12.31.3 that every ML system is right acyclic for lim, i.e., (3) holds. This already
implies that RF is defined on D+(Ab(N)), see Derived Categories, Proposition
13.16.8. Set Cn = An−1 ⊕ . . . ⊕ A1 for n > 1 and C1 = 0 with transition maps
given by projections as well. Then there is a short exact sequence of inverse systems
0→ (An)→ (Bn)→ (Cn)→ 0 where Bn → Cn is given by (xi) 7→ (xi−fi+1(xi+1)).
Since (Cn) is ML as well, we conclude that (2) holds (by proposition reference above)
which also implies (1). Finally, this implies by Derived Categories, Lemma 13.32.2
that R lim is in fact defined on all of D(Ab(N)). In fact, the proof of Derived
Categories, Lemma 13.32.2 proceeds by proving assertions (4) and (5). □

Lemma 15.86.2.0H31 Let
0→ (Ai)→ (Bi)→ (Ci)→ 0

be a short exact sequence of inverse systems of abelian groups. Then there is an
associated 6 term exact sequence 0 → limAi → limBi → limCi → R1 limAi →
R1 limBi → R1 limCi → 0.

https://stacks.math.columbia.edu/tag/07KW
https://stacks.math.columbia.edu/tag/0H31
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Proof. Follows from the vanishing in Lemma 15.86.1. □

Here is the “correct” formulation of Homology, Lemma 12.31.7.

Lemma 15.86.3.0918 Let
(A−2

n → A−1
n → A0

n → A1
n)

be an inverse system of complexes of abelian groups and denote A−2 → A−1 →
A0 → A1 its limit. Denote (H−1

n ), (H0
n) the inverse systems of cohomologies, and

denote H−1, H0 the cohomologies of A−2 → A−1 → A0 → A1. If
(1) (A−2

n ) and (A−1
n ) have vanishing R1 lim,

(2) (H−1
n ) has vanishing R1 lim,

then H0 = limH0
n.

Proof. Let K ∈ D(Ab(N)) be the object represented by the system of complexes
whose nth constituent is the complex A−2

n → A−1
n → A0

n → A1
n. We will compute

H0(R limK) using both spectral sequences10 of Derived Categories, Lemma 13.21.3.
The first has E1-page

0 0 R1 limA0
n R1 limA1

n

A−2 A−1 A0 A1

with horizontal differentials and all higher differentials are zero. The second has
E2 page

R1 limH−2
n 0 R1 limH0

n R1 limH1
n

limH−2
n limH−1

n limH0
n limH1

n

and degenerates at this point. The result follows. □

Lemma 15.86.4.0919 Let D be a triangulated category. Let (Kn) be an inverse system
of objects of D. Let K be a derived limit of the system (Kn). Then for every L in
D we have a short exact sequence

0→ R1 lim HomD(L,Kn[−1])→ HomD(L,K)→ lim HomD(L,Kn)→ 0

Proof. This follows from Derived Categories, Definition 13.34.1 and Lemma 13.4.2,
and the description of lim and R1 lim in Lemma 15.86.1 above. □

Lemma 15.86.5.0CQX Let D be a triangulated category. Let (Kn) be a system of objects
of D. Let K be a derived colimit of the system (Kn). Then for every L in D we
have a short exact sequence

0→ R1 lim HomD(Kn, L[−1])→ HomD(K,L)→ lim HomD(Kn, L)→ 0

Proof. This follows from Derived Categories, Definition 13.33.1 and Lemma 13.4.2,
and the description of lim and R1 lim in Lemma 15.86.1 above. □

Remark 15.86.6 (Rlim as cohomology).091A Consider the category N whose objects are
natural numbers and whose morphisms are unique arrows i → j if j ≥ i. Endow
N with the chaotic topology (Sites, Example 7.6.6) so that a sheaf F is the same
thing as an inverse system

F1 ← F2 ← F3 ← . . .

10To use these spectral sequences we have to show that Ab(N) has enough injectives. A
inverse system (In) of abelian groups is injective if and only if each In is an injective abelian
group and the transition maps are split surjections. Every system embeds in one of these. Details
omitted.

https://stacks.math.columbia.edu/tag/0918
https://stacks.math.columbia.edu/tag/0919
https://stacks.math.columbia.edu/tag/0CQX
https://stacks.math.columbia.edu/tag/091A
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of sets over N. Note that Γ(N,F) = limFn. For an inverse system of abelian
groups Fn we have

Rp limFn = Hp(N,F)
because both sides are the higher right derived functors of F 7→ limFn = H0(N,F).
Thus the existence of R lim also follows from the general material in Cohomology
on Sites, Sections 21.2 and 21.19.

The products in the following lemma can be seen as termwise products of complexes
or as products in the derived category D(Ab), see Derived Categories, Lemma
13.34.2.

Lemma 15.86.7.07KX Let K = (K•
n) be an object of D(Ab(N)). There exists a canonical

distinguished triangle
R limK →

∏
n
K•
n →

∏
n
K•
n → R limK[1]

in D(Ab). In other words, R limK is a derived limit of the inverse system (K•
n) of

D(Ab), see Derived Categories, Definition 13.34.1.

Proof. Suppose that for each p the inverse system (Kp
n) is right acyclic for lim. By

Lemma 15.86.1 this gives a short exact sequence
0→ limnK

p
n →

∏
n
Kp
n →

∏
n
Kp
n → 0

for each p. Since the complex consisting of limnK
p
n computes R limK by Lemma

15.86.1 we see that the lemma holds in this case.
Next, assume K = (K•

n) is general. By Lemma 15.86.1 there is a quasi-isomorphism
K → L in D(Ab(N)) such that (Lpn) is acyclic for each p. Then

∏
K•
n is quasi-

isomorphic to
∏
L•
n as products are exact in Ab, whence the result for L (proved

above) implies the result for K. □

Lemma 15.86.8.07KY With notation as in Lemma 15.86.7 the long exact cohomology se-
quence associated to the distinguished triangle breaks up into short exact sequences

0→ R1 limnH
p−1(K•

n)→ Hp(R limK)→ limnH
p(K•

n)→ 0

Proof. The long exact sequence of the distinguished triangle is
. . .→ Hp(R limK)→

∏
n
Hp(K•

n)→
∏

n
Hp(K•

n)→ Hp+1(R limK)→ . . .

The map in the middle has kernel limnH
p(K•

n) by its explicit description given in
the lemma. The cokernel of this map is R1 limnH

p(K•
n) by Lemma 15.86.1. □

Warning. An object of D(Ab(N)) is a complex of inverse systems of abelian groups.
You can also think of this as an inverse system (K•

n) of complexes. However, this is
not the same thing as an inverse system of objects of D(Ab); the following lemma
and remark explain the difference.

Lemma 15.86.9.0CQ9 Let (Kn) be an inverse system of objects of D(Ab). Then there
exists an object M = (M•

n) of D(Ab(N)) and isomorphisms M•
n → Kn in D(Ab)

such that the diagrams
M•
n+1

��

// M•
n

��
Kn+1 // Kn

https://stacks.math.columbia.edu/tag/07KX
https://stacks.math.columbia.edu/tag/07KY
https://stacks.math.columbia.edu/tag/0CQ9
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commute in D(Ab).
Proof. Namely, let M•

1 be a complex of abelian groups representing K1. Suppose
we have constructed M•

e → M•
e−1 → . . . → M•

1 and maps ψi : M•
i → Ki such

that the diagrams in the statement of the lemma commute for all n < e. Then we
consider the diagram

M•
n

ψn

��
Kn+1 // Kn

in D(Ab). By the definition of morphisms in D(Ab) we can find a complex M•
n+1

of abelian groups, an isomorphism M•
n+1 → Kn+1 in D(Ab), and a morphism of

complexes M•
n+1 →M•

n representing the composition

Kn+1 → Kn
ψ−1
n−−−→M•

n

in D(Ab). Thus the lemma holds by induction. □

Remark 15.86.10.08U5 Let (Kn) be an inverse system of objects of D(Ab). Let K =
R limKn be a derived limit of this system (see Derived Categories, Section 13.34).
Such a derived limit exists because D(Ab) has countable products (Derived Cate-
gories, Lemma 13.34.2). By Lemma 15.86.9 we can also lift (Kn) to an object M of
D(N). Then K ∼= R limM where R lim is the functor (15.86.1.1) because R limM
is also a derived limit of the system (Kn) by Lemma 15.86.7. Thus, although there
may be many isomorphism classes of lifts M of the system (Kn), the isomorphism
type of R limM is independent of the choice because it is isomorphic to the derived
limit K = R limKn of the system. Thus we may apply results on R lim proved in
this section to derived limits. For example, for every p ∈ Z there is a canonical
short exact sequence

0→ R1 limHp−1(Kn)→ Hp(K)→ limHp(Kn)→ 0
because we may apply Lemma 15.86.7 to M . This can also been seen directly,
without invoking the existence of M , by applying the argument of the proof of
Lemma 15.86.7 to the (defining) distinguished triangle K →

∏
Kn →

∏
Kn →

K[1].
Lemma 15.86.11.091B Let E → D be a morphism of D(Ab(N)). Let (En), resp. (Dn)
be the system of objects of D(Ab) associated to E, resp. D. If (En)→ (Dn) is an
isomorphism of pro-objects, then R limE → R limD is an isomorphism in D(Ab).
Proof. The assumption in particular implies that the pro-objects Hp(En) and
Hp(Dn) are isomorphic. By the short exact sequences of Lemma 15.86.8 it suffices
to show that given a map (An)→ (Bn) of inverse systems of abelian groupsc which
induces an isomorphism of pro-objects, then limAn ∼= limBn and R1 limAn ∼=
R1 limBn.
The assumption implies there are 1 ≤ m1 < m2 < m3 < . . . and maps φn : Bmn →
An such that (φn) : (Bmn)→ (An) is a map of systems which is inverse to the given
map ψ = (ψn) : (An) → (Bn) as a morphism of pro-objects. What this means
is that (after possibly replacing mn by larger integers) we may assume that the
compositions Amn → Bmn → An and Bmn → An → Bn are equal to the transition
maps of the inverse systems. Now, if (bn) ∈ limBn we can set an = φmn(bmn).

https://stacks.math.columbia.edu/tag/08U5
https://stacks.math.columbia.edu/tag/091B
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This defines an inverse limBn → limAn (computation omitted). Let us use the
cokernel of the map ∏

Bn −→
∏

Bn

as an avatar of R1 limBn (Lemma 15.86.1). Any element in this cokernel can be
represented by an element (bi) with bi = 0 if i ̸= mn for some n (computation
omitted). We can define a map R1 limBn → R1 limAn by mapping the class of
such a special element (bn) to the class of (φn(bmn)). We omit the verification this
map is inverse to the map R1 limAn → R1 limBn. □

Lemma 15.86.12 (Emmanouil).0CQA Taken from
[Emm96].

Let (An) be an inverse system of abelian groups.
The following are equivalent

(1) (An) is Mittag-Leffler,
(2) R1 limAn = 0 and the same holds for

⊕
i∈N(An).

Proof. Set B =
⊕

i∈N(An) and hence B = (Bn) with Bn =
⊕

i∈N An. If (An) is
ML, then B is ML and hence R1 limAn = 0 and R1 limBn = 0 by Lemma 15.86.1.
Conversely, assume (An) is not ML. Then we can pick an m and a sequence of
integers m < m1 < m2 < . . . and elements xi ∈ Ami whose image yi ∈ Am is not
in the image of Ami+1 → Am. We will use the elements xi and yi to show that
R1 limBn ̸= 0 in two ways. This will finish the proof of the lemma.
First proof. Set C = (Cn) with Cn =

∏
i∈N An. There is a canonical injective map

Bn → Cn with cokernel Qn. Set Q = (Qn). We may and do think of elements qn of
Qn as sequences of elements qn = (qn,1, qn,2, . . .) with qn,i ∈ An modulo sequences
whose tail is zero (in other words, we identify sequences which differ in finitely
many places). We have a short exact sequence of inverse systems

0→ (Bn)→ (Cn)→ (Qn)→ 0
Consider the element qn ∈ Qn given by

qn,i =
{

image of xi if mi ≥ n
0 else

Then it is clear that qn+1 maps to qn. Hence we obtain q = (qn) ∈ limQn. On
the other hand, we claim that q is not in the image of limCn → limQn. Namely,
say that c = (cn) maps to q. Then we can write cn = (cn,i) and since cn′,i 7→ cn,i
for n′ ≥ n, we see that cn,i ∈ Im(Cn′ → Cn) for all n, i, n′ ≥ n. In particular, the
image of cm,i in Am is in Im(Ami+1 → Am) whence cannot be equal to yi. Thus cm
and qm = (y1, y2, y3, . . .) differ in infinitely many spots, which is a contradiction.
Considering the long exact cohomology sequence

0→ limBn → limCn → limQn → R1 limBn

we conclude that the last group is nonzero as desired.
Second proof. For n′ ≥ n we denote An,n′ = Im(An′ → An). Then we have
yi ∈ Am, yi ̸∈ Am,mi+1. Let ξ = (ξn) ∈

∏
Bn be the element with ξn = 0 unless

n = mi and ξmi = (0, . . . , 0, xi, 0, . . .) with xi placed in the ith summand. We
claim that ξ is not in the image of the map

∏
Bn →

∏
Bn of Lemma 15.86.1.

This shows that R1 limBn is nonzero and finishes the proof. Namely, suppose
that ξ is the image of η = (z1, z2, . . .) with zn =

∑
zn,i ∈

⊕
iAn. Observe that

xi = zmi,i mod Ami,mi+1. Then zmi−1,i is the image of zmi,i under Ami → Ami−1,
and so on, and we conclude that zm,i is the image of zmi,i under Ami → Am. We

https://stacks.math.columbia.edu/tag/0CQA
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conclude that zm,i is congruent to yi modulo Am,mi+1. In particular zm,i ̸= 0.
This is impossible as

∑
zm,i ∈

⊕
iAm hence only a finite number of zm,i can be

nonzero. □

Lemma 15.86.13.0CQB Let
0→ (Ai)→ (Bi)→ (Ci)→ 0

be a short exact sequence of inverse systems of abelian groups. If (Ai) and (Ci) are
ML, then so is (Bi).

Proof. This follows from Lemma 15.86.12, the fact that taking infinite direct sums
is exact, and the long exact sequence of cohomology associated to R lim. □

Lemma 15.86.14.091C Let (An) be an inverse system of abelian groups. The following
are equivalent

(1) (An) is zero as a pro-object,
(2) limAn = 0 and R1 limAn = 0 and the same holds for

⊕
i∈N(An).

Proof. It follows from Lemma 15.86.11 that (1) implies (2). Assume (2). Then
(An) is ML by Lemma 15.86.12. For m ≥ n let An,m = Im(Am → An) so that
An = An,n ⊃ An,n+1 ⊃ . . .. Note that (An) is zero as a pro-object if and only if for
every n there is an m ≥ n such that An,m = 0. Note that (An) is ML if and only if
for every n there is an mn ≥ n such that An,m = An,m+1 = . . .. In the ML case it is
clear that limAn = 0 implies that An,mn = 0 because the maps An+1,mn+1 → An,m
are surjective. This finishes the proof. □

15.87. Rlim of modules

0CQC We briefly discuss R lim on modules. Many of the arguments in this section dupli-
cate the arguments used to construct the cohomological machinery for modules on
ringed sites.
Let (An) be an inverse system of rings. We will denote Mod(N, (An)) the category
of inverse systems (Mn) of abelian groups such that each Mn is given the structure
of a An-module and the transition maps Mn+1 →Mn are An+1-module maps. This
is an abelian category. Set A = limAn. Given an object (Mn) of Mod(N, (An))
the limit limMn is an A-module.

Lemma 15.87.1.091D In the situation above. The functor lim : Mod(N, (An))→ ModA
has a right derived functor

R lim : D(Mod(N, (An))) −→ D(A)
As usual we set Rp lim(K) = Hp(R lim(K)). Moreover, we have

(1) for any (Mn) in Mod(N, (An)) we have Rp limMn = 0 for p > 1,
(2) the object R limMn of D(ModA) is represented by the complex∏

Mn →
∏

Mn, (xn) 7→ (xn − fn+1(xn+1))
sitting in degrees 0 and 1,

(3) if (Mn) is ML, then R1 limMn = 0, i.e., (Mn) is right acyclic for lim,
(4) every K• ∈ D(Mod(N, (An))) is quasi-isomorphic to a complex whose

terms are right acyclic for lim, and
(5) if each Kp = (Kp

n) is right acyclic for lim, i.e., of R1 limnK
p
n = 0, then

R limK is represented by the complex whose term in degree p is limnK
p
n.

https://stacks.math.columbia.edu/tag/0CQB
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Proof. The proof of this is word for word the same as the proof of Lemma 15.86.1.
□

Remark 15.87.2.091E This remark is a continuation of Remark 15.86.6. A sheaf of
rings on N is just an inverse system of rings (An). A sheaf of modules over (An) is
exactly the same thing as an object of the category Mod(N, (An)) defined above.
The derived functor R lim of Lemma 15.87.1 is simply RΓ(N,−) from the derived
category of modules to the derived category of modules over the global sections of
the structure sheaf. It is true in general that cohomology of groups and modules
agree, see Cohomology on Sites, Lemma 21.12.4.

The products in the following lemma can be seen as termwise products of com-
plexes or as products in the derived category D(A), see Derived Categories, Lemma
13.34.2.

Lemma 15.87.3.0CQD Let K = (K•
n) be an object of D(Mod(N, (An))). There exists a

canonical distinguished triangle

R limK →
∏

n
K•
n →

∏
n
K•
n → R limK[1]

in D(A). In other words, R limK is a derived limit of the inverse system (K•
n) of

D(A), see Derived Categories, Definition 13.34.1.

Proof. The proof is exactly the same as the proof of Lemma 15.86.7 using Lemma
15.87.1 in stead of Lemma 15.86.1. □

Lemma 15.87.4.0CQE With notation as in Lemma 15.87.3 the long exact cohomology se-
quence associated to the distinguished triangle breaks up into short exact sequences

0→ R1 limnH
p−1(K•

n)→ Hp(R limK)→ limnH
p(K•

n)→ 0
of A-modules.

Proof. The proof is exactly the same as the proof of Lemma 15.86.8 using Lemma
15.87.1 in stead of Lemma 15.86.1. □

Warning. As in the case of abelian groups an objectM = (M•
n) ofD(Mod(N, (An)))

is an inverse system of complexes of modules, which is not the same thing as an
inverse system of objects in the derived categories. In the following lemma we show
how an inverse system of objects in derived categories always lifts to an object of
D(Mod(N, (An))).

Lemma 15.87.5.091I Let (An) be an inverse system of rings. Suppose that we are given
(1) for every n an object Kn of D(An), and
(2) for every n a map φn : Kn+1 → Kn of D(An+1) where we think of Kn as

an object of D(An+1) by restriction via An+1 → An.
There exists an object M = (M•

n) ∈ D(Mod(N, (An))) and isomorphisms ψn :
M•
n → Kn in D(An) such that the diagrams

M•
n+1

ψn+1

��

// M•
n

ψn

��
Kn+1

φn // Kn

commute in D(An+1).

https://stacks.math.columbia.edu/tag/091E
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https://stacks.math.columbia.edu/tag/0CQE
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Proof. We write out the proof in detail. For an An-module T we write TAn+1 for
the same module viewd as an An+1-module. Suppose that K•

n is a complex of
An-modules representing Kn. Then K•

n,An+1
is the same complex, but viewed as a

complex of An+1-modules. By the construction of the derived category, the map
ψn can be given as

ψn = τn ◦ σ−1
n

where σn : L•
n+1 → K•

n+1 is a quasi-isomorphism of complexes of An+1-modules
and τn : L•

n+1 → K•
n,An+1

is a map of complexes of An+1-modules.
Now we construct the complexes M•

n by induction. As base case we let M•
1 = K•

1 .
Suppose we have already constructed M•

e → M•
e−1 → . . . → M•

1 and maps of
complexes ψi : M•

i → K•
i such that the diagrams

M•
n+1

ψn+1

��

// M•
n,An+1

ψn,An+1

��
K•
n+1 L•

n+1
σnoo τn // K•

n,An+1

above commute in D(An+1) for all n < e. Then we consider the diagram

M•
e,Ae+1

ψe,Ae+1

��
K•
e+1 L•

e+1
τe //σeoo K•

e,Ae+1

in D(Ae+1). Because ψe is a quasi-isomorphism, we see that ψe,Ae+1 is a quasi-
isomorphism too. By the definition of morphisms in D(Ae+1) we can find a quasi-
isomorphism ψe+1 : M•

e+1 → K•
e+1 of complexes of Ae+1-modules such that there

exists a morphism of complexes M•
e+1 →M•

e,Ae+1
of Ae+1-modules representing the

composition ψ−1
e,Ae+1

◦τe ◦σ−1
e in D(Ae+1). Thus the lemma holds by induction. □

Remark 15.87.6.07KZ With assumptions as in Lemma 15.87.5. A priori there are many
isomorphism classes of objects M of D(Mod(N, (An))) which give rise to the system
(Kn, φn) of the lemma. For each such M we can consider the complex R limM ∈
D(A) where A = limAn. By Lemma 15.87.3 we see that R limM is a derived
limit of the inverse system (Kn) of D(A). Hence we see that the isomorphism class
of R limM in D(A) is independent of the choices made in constructing M . In
particular, we may apply results on R lim proved in this section to derived limits
of inverse systems in D(A). For example, for every p ∈ Z there is a canonical short
exact sequence

0→ R1 limHp−1(Kn)→ Hp(R limKn)→ limHp(Kn)→ 0
because we may apply Lemma 15.87.3 to M . This can also been seen directly, with-
out invoking the existence of M , by applying the argument of the proof of Lemma
15.87.3 to the (defining) distinguished triangle R limKn →

∏
Kn →

∏
Kn →

(R limKn)[1] of the derived limit.

Lemma 15.87.7.091F Let (An) be an inverse system of rings. EveryK ∈ D(Mod(N, (An)))
can be represented by a system of complexes (M•

n) such that all the transition maps
M•
n+1 →M•

n are surjective.

https://stacks.math.columbia.edu/tag/07KZ
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Proof. Let K be represented by the system (K•
n). Set M•

1 = K•
1 . Suppose we have

constructed surjective maps of complexes M•
n →M•

n−1 → . . .→M•
1 and homotopy

equivalences ψe : K•
e →M•

e such that the diagrams

K•
e+1

��

// K•
e

��
M•
e+1

// M•
e

commute for all e < n. Then we consider the diagram

K•
n+1

// K•
n

��
M•
n

By Derived Categories, Lemma 13.9.8 we can factor the compositionK•
n+1 →M•

n as
K•
n+1 →M•

n+1 →M•
n such that the first arrow is a homotopy equivalence and the

second a termwise split surjection. The lemma follows from this and induction. □

Lemma 15.87.8.091G Let (An) be an inverse system of rings. EveryK ∈ D(Mod(N, (An)))
can be represented by a system of complexes (K•

n) such that each K•
n is K-flat.

Proof. First use Lemma 15.87.7 to represent K by a system of complexes (M•
n) such

that all the transition maps M•
n+1 → M•

n are surjective. Next, let K•
1 → M•

1 be
a quasi-isomorphism with K•

1 a K-flat complex of A1-modules (Lemma 15.59.10).
Suppose we have constructed K•

n → K•
n−1 → . . . → K•

1 and maps of complexes
ψe : K•

e →M•
e such that

K•
e+1

��

// K•
e

��
M•
e+1

// M•
e

commutes for all e < n. Then we consider the diagram

C•

��

// K•
n

ψn

��
M•
n+1

φn // M•
n

in D(An+1). As M•
n+1 → M•

n is termwise surjective, the complex C• fitting into
the left upper corner with terms

Cp = Mp
n+1 ×Mp

n
Kp
n

is quasi-isomorphic toM•
n+1 (details omitted). Choose a quasi-isomorphismK•

n+1 →
C• with K•

n+1 K-flat. Thus the lemma holds by induction. □

Lemma 15.87.9.091H Let (An) be an inverse system of rings. GivenK,L ∈ D(Mod(N, (An)))
there is a canonical derived tensor product K ⊗L L in D(N, (An)) compatible with
the maps to D(An). The construction is symmetric in K and L and an exact
functor of triangulated categories in each variable.

https://stacks.math.columbia.edu/tag/091G
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Proof. Choose a representative (K•
n) for K such that each K•

n is a K-flat complex
(Lemma 15.87.8). Then you can define K ⊗L L as the object represented by the
system of complexes

(Tot(K•
n ⊗An L•

n))

for any choice of representative (L•
n) for L. This is well defined in both variables

by Lemmas 15.59.2 and 15.59.12. Compatibility with the map to D(An) is clear.
Exactness follows exactly as in Lemma 15.58.4. □

Remark 15.87.10.091J Let A be a ring. Let (En) be an inverse system of objects of
D(A). We’ve seen above that a derived limit R limEn exists. Thus for every object
K of D(A) also the derived limit R lim(K ⊗L

A En) exists. It turns out that we can
construct these derived limits functorially in K and obtain an exact functor

R lim(−⊗L
A En) : D(A) −→ D(A)

of triangulated categories. Namely, we first lift (En) to an object E of D(N, A), see
Lemma 15.87.5. (The functor will depend on the choice of this lift.) Next, observe
that there is a “diagonal” or “constant” functor

∆ : D(A) −→ D(N, A)

mapping the complex K• to the constant inverse system of complexes with value
K•. Then we simply define

R lim(K ⊗L
A En) = R lim(∆(K)⊗L E)

where on the right hand side we use the functor R lim of Lemma 15.87.1 and the
functor −⊗L − of Lemma 15.87.9.

Lemma 15.87.11.091K Let A be a ring. Let E → D → F → E[1] be a distinguished
triangle of D(N, A). Let (En), resp. (Dn), resp. (Fn) be the system of objects
of D(A) associated to E, resp. D, resp. F . Then for every K ∈ D(A) there is a
canonical distinguished triangle

R lim(K ⊗L
A En)→ R lim(K ⊗L

A Dn)→ R lim(K ⊗L
A Fn)→ R lim(K ⊗L

A En)[1]

in D(A) with notation as in Remark 15.87.10.

Proof. This is clear from the construction in Remark 15.87.10 and the fact that ∆ :
D(A)→ D(N, A), −⊗L−, and R lim are exact functors of triangulated categories.

□

Lemma 15.87.12.091L Let A be a ring. Let E → D be a morphism of D(N, A). Let
(En), resp. (Dn) be the system of objects of D(A) associated to E, resp. D. If
(En) → (Dn) is an isomorphism of pro-objects, then for every K ∈ D(A) the
corresponding map

R lim(K ⊗L
A En) −→ R lim(K ⊗L

A Dn)

in D(A) is an isomorphism (notation as in Remark 15.87.10).

Proof. Follows from the definitions and Lemma 15.86.11. □

https://stacks.math.columbia.edu/tag/091J
https://stacks.math.columbia.edu/tag/091K
https://stacks.math.columbia.edu/tag/091L


15.88. TORSION MODULES 1406

15.88. Torsion modules

0ALX In this section “torsion modules” will refer to modules supported on a given closed
subset V (I) of an affine scheme Spec(R). This is different, but analogous to, the
notion of a torsion module over a domain (Definition 15.22.1).

Definition 15.88.1.05E6 Let R be a ring. Let M be an R-module.
(1) Let I ⊂ R be an ideal. We say M is an I-power torsion module if for

every m ∈M there exists an n > 0 such that Inm = 0.
(2) Let f ∈ R. We say M is an f -power torsion module if for each m ∈ M ,

there exists an n > 0 such that fnm = 0.

Thus an f -power torsion module is the same thing as an I-power torsion module
for I = (f). We will use the notation

M [In] = {m ∈M | Inm = 0}
and

M [I∞] =
⋃
M [In]

for an R-module M . Thus M is I-power torsion if and only if M = M [I∞] if and
only if M =

⋃
M [In].

Lemma 15.88.2.05E8 Let R be a ring. Let I be an ideal of R. Let M be an I-power
torsion module. Then M admits a resolution

. . .→ K2 → K1 → K0 →M → 0
with each Ki a direct sum of copies of R/In for n variable.

Proof. There is a canonical surjection
⊕m∈MR/I

nm →M → 0
where nm is the smallest positive integer such that Inm ·m = 0. The kernel of the
preceding surjection is also an I-power torsion module. Proceeding inductively, we
construct the desired resolution of M . □

Lemma 15.88.3.05EA Let R be a ring. Let I be an ideal of R. For any R-module M
set M [In] = {m ∈ M | Inm = 0}. If I is finitely generated then the following are
equivalent

(1) M [I] = 0,
(2) M [In] = 0 for all n ≥ 1, and
(3) if I = (f1, . . . , ft), then the map M →

⊕
Mfi is injective.

Proof. This follows from Algebra, Lemma 10.24.4. □

Lemma 15.88.4.05EB Let R be a ring. Let I be a finitely generated ideal of R.
(1) For any R-module M we have (M/M [I∞])[I] = 0.
(2) An extension of I-power torsion modules is I-power torsion.

Proof. Let m ∈M . If m maps to an element of (M/M [I∞])[I] then Im ⊂M [I∞].
Write I = (f1, . . . , ft). Then we see that fim ∈ M [I∞], i.e., Inifim = 0 for some
ni > 0. Thus we see that INm = 0 with N =

∑
ni + 2. Hence m maps to zero in

(M/M [I∞]) which proves the first statement of the lemma.
For the second, suppose that 0 → M ′ → M → M ′′ → 0 is a short exact sequence
of modules with M ′ and M ′′ both I-power torsion modules. Then M [I∞] ⊃ M ′

https://stacks.math.columbia.edu/tag/05E6
https://stacks.math.columbia.edu/tag/05E8
https://stacks.math.columbia.edu/tag/05EA
https://stacks.math.columbia.edu/tag/05EB
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and hence M/M [I∞] is a quotient of M ′′ and therefore I-power torsion. Combined
with the first statement and Lemma 15.88.3 this implies that it is zero □

Lemma 15.88.5.0A6K Let I be a finitely generated ideal of a ring R. The I-power torsion
modules form a Serre subcategory of the abelian category ModR, see Homology,
Definition 12.10.1.

Proof. It is clear that a submodule and a quotient module of an I-power torsion
module is I-power torsion. Moreover, the extension of two I-power torsion mod-
ules is I-power torsion by Lemma 15.88.4. Hence the statement of the lemma by
Homology, Lemma 12.10.2. □

Lemma 15.88.6.0953 Let R be a ring and let I ⊂ R be a finitely generated ideal. The
subcategory I∞-torsion ⊂ ModR depends only on the closed subset Z = V (I) ⊂
Spec(R). In fact, an R-module M is I-power torsion if and only if its support is
contained in Z.

Proof. Let M be an R-module. Let x ∈ M . If x ∈ M [I∞], then x maps to zero
in Mf for all f ∈ I. Hence x maps to zero in Mp for all p ̸⊃ I. Conversely, if x
maps to zero in Mp for all p ̸⊃ I, then x maps to zero in Mf for all f ∈ I. Hence
if I = (f1, . . . , fr), then fnii x = 0 for some ni ≥ 1. It follows that x ∈ M [I

∑
ni ].

Thus M [I∞] is the kernel of M →
∏

p̸∈ZMp. The second statement of the lemma
follows and it implies the first. □

The next lemma should probably go somewhere else.

Lemma 15.88.7.0G1T Let R be a ring. Let I ⊂ R be an ideal. Let K be an object of
D(R) such hat K ⊗L

R R/I = 0 in D(R). Then
(1) K ⊗L

R R/I
n = 0 for all n ≥ 1,

(2) K ⊗L
R N = 0 for any I-power torsion R-module N ,

(3) K⊗L
RM = 0 for any M ∈ Db(R) whose cohomology modules are I-power

torsion.

Proof. Proof of (2). We can write N =
⋃
N [In]. We have K⊗L

RN = hocolimnK⊗L
R

N [In] as tensor products commute with colimits (details omitted; hint: represent K
by a K-flat complex and compute directly). Hence we may assume N is annihilated
by In. Consider the R-algebra R′ = R/In ⊕N where N is an ideal of square zero.
It suffices to show that K ′ = K⊗L

RR
′ is 0 in D(R′). We have a surjection R′ → R/I

of R-algebras whose kernel J is nilpotent (any product of n elements in the kernel
is zero). We have

0 = K ⊗L
R R/I = (K ⊗L

R R
′)⊗L

R′ R/I = K ′ ⊗L
R′ R/I

by Lemma 15.60.5. Hence by Lemma 15.78.4 we find that K ′ is a perfect complex
of R′-modules. In particular K ′ is bounded above and if Hb(K ′) is the right-most
nonvanishing cohomology module (if it exists), then Hb(K ′) is a finite R′-module
(use Lemmas 15.74.2 and 15.64.3) with Hb(K ′)⊗R′ R′/J = Hb(K ′)/JHb(K ′) = 0
(because K ′ ⊗L

R′ R′/J = 0). By Nakayama’s lemma (Algebra, Lemma 10.20.1) we
find Hb(K ′) = 0, i.e., K ′ = 0 as desired.
Part (1) follows trivially from part (2). Part (3) follows from part (2), induction on
the number of nonzero cohomology modules of M , and the distinguished triangles
of truncation from Derived Categories, Remark 13.12.4. Details omitted. □

https://stacks.math.columbia.edu/tag/0A6K
https://stacks.math.columbia.edu/tag/0953
https://stacks.math.columbia.edu/tag/0G1T
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15.89. Formal glueing of module categories

05E5 Fix a Noetherian scheme X, and a closed subscheme Z with complement U . Our
goal is to explain how coherent sheaves on X can be constructed (uniquely) from
coherent sheaves on the formal completion of X along Z, and those on U with
a suitable compatibility on the overlap. We first do this using only commutative
algebra (this section) and later we explain this in the setting of algebraic spaces
(Pushouts of Spaces, Section 81.10).

Here are some references treating some of the material in this section: [Art70,
Section 2], [FR70, Appendix], [BL95], [MB96], and [dJ95, Section 4.6].

Lemma 15.89.1.05E7 Let φ : R → S be a ring map. Let I ⊂ R be an ideal. The
following are equivalent

(1) φ is flat and R/I → S/IS is faithfully flat,
(2) φ is flat, and the map Spec(S/IS)→ Spec(R/I) is surjective.
(3) φ is flat, and the base change functor M 7→M⊗RS is faithful on modules

annihilated by I, and
(4) φ is flat, and the base change functor M 7→M ⊗RS is faithful on I-power

torsion modules.

Proof. If R → S is flat, then R/In → S/InS is flat for every n, see Algebra,
Lemma 10.39.7. Hence (1) and (2) are equivalent by Algebra, Lemma 10.39.16.
The equivalence of (1) with (3) follows by identifying I-torsion R-modules with
R/I-modules, using that

M ⊗R S = M ⊗R/I S/IS

for R-modules M annihilated by I, and Algebra, Lemma 10.39.14. The implication
(4) ⇒ (3) is immediate. Assume (3). We have seen above that R/In → S/InS
is flat, and by assumption it induces a surjection on spectra, as Spec(R/In) =
Spec(R/I) and similarly for S. Hence the base change functor is faithful on modules
annihilated by In. Since any I-power torsion module M is the union M =

⋃
Mn

where Mn is annihilated by In we see that the base change functor is faithful
on the category of all I-power torsion modules (as tensor product commutes with
colimits). □

Lemma 15.89.2.05E9 Assume (φ : R → S, I) satisfies the equivalent conditions of
Lemma 15.89.1. The following are equivalent

(1) for any I-power torsion module M , the natural map M →M ⊗R S is an
isomorphism, and

(2) R/I → S/IS is an isomorphism.

Proof. The implication (1) ⇒ (2) is immediate. Assume (2). First assume that
M is annihilated by I. In this case, M is an R/I-module. Hence, we have an
isomorphism

M ⊗R S = M ⊗R/I S/IS = M ⊗R/I R/I = M

proving the claim. Next we prove by induction that M →M⊗RS is an isomorphism
for any module M is annihilated by In. Assume the induction hypothesis holds for
n and assume M is annihilated by In+1. Then we have a short exact sequence

0→ InM →M →M/InM → 0

https://stacks.math.columbia.edu/tag/05E7
https://stacks.math.columbia.edu/tag/05E9
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and as R→ S is flat this gives rise to a short exact sequence

0→ InM ⊗R S →M ⊗R S →M/InM ⊗R S → 0

Using that the canonical map is an isomorphism for M ′ = InM and M ′′ = M/InM
(by induction hypothesis) we conclude the same thing is true for M . Finally,
suppose that M is a general I-power torsion module. Then M =

⋃
Mn where Mn

is annihilated by In and we conclude using that tensor products commute with
colimits. □

Lemma 15.89.3.05EC Assume φ : R → S is a flat ring map and I ⊂ R is a finitely
generated ideal such that R/I → S/IS is an isomorphism. Then

(1) for any R-module M the map M → M ⊗R S induces an isomorphism
M [I∞]→ (M ⊗R S)[(IS)∞] of I-power torsion submodules,

(2) the natural map

HomR(M,N) −→ HomS(M ⊗R S,N ⊗R S)

is an isomorphism if either M or N is I-power torsion, and
(3) the base change functor M 7→M⊗RS defines an equivalence of categories

between I-power torsion modules and IS-power torsion modules.

Proof. Note that the equivalent conditions of both Lemma 15.89.1 and Lemma
15.89.2 are satisfied. We will use these without further mention. We first prove (1).
Let M be any R-module. Set M ′ = M/M [I∞] and consider the exact sequence

0→M [I∞]→M →M ′ → 0

As M [I∞] = M [I∞]⊗RS we see that it suffices to show that (M ′⊗RS)[(IS)∞] = 0.
Write I = (f1, . . . , ft). By Lemma 15.88.4 we see that M ′[I∞] = 0. Hence for every
n > 0 the map

M ′ −→
⊕

i=1,...t
M ′, x 7−→ (fn1 x, . . . , fnt x)

is injective. As S is flat overR also the corresponding mapM ′⊗RS →
⊕

i=1,...tM
′⊗R

S is injective. This means that (M ′ ⊗R S)[In] = 0 as desired.

Next we prove (2). If N is I-power torsion, then N ⊗R S = N and the displayed
map of (2) is an isomorphism by Algebra, Lemma 10.14.3. If M is I-power torsion,
then the image of any map M → N factors through M [I∞] and the image of any
map M ⊗R S → N ⊗R S factors through (N ⊗R S)[(IS)∞]. Hence in this case part
(1) guarantees that we may replace N by N [I∞] and the result follows from the
case where N is I-power torsion we just discussed.

Next we prove (3). The functor is fully faithful by (2). For essential surjectivity, we
simply note that for any IS-power torsion S-module N , the natural map N⊗RS →
N is an isomorphism. □

Lemma 15.89.4.091M Assume φ : R → S is a flat ring map and I ⊂ R is a finitely
generated ideal such that R/I → S/IS is an isomorphism. For any f1, . . . , fr ∈ R
such that V (f1, . . . , fr) = V (I)

(1) the map of Koszul complexes K(R, f1, . . . , fr) → K(S, f1, . . . , fr) is a
quasi-isomorphism, and

https://stacks.math.columbia.edu/tag/05EC
https://stacks.math.columbia.edu/tag/091M
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(2) The map of extended alternating Čech complexes

R→
∏
i0
Rfi0 →

∏
i0<i1

Rfi0fi1 → . . .→ Rf1...fr

��
S →

∏
i0
Sfi0 →

∏
i0<i1

Sfi0fi1 → . . .→ Sf1...fr

is a quasi-isomorphism.

Proof. In both cases we have a complex K• of R modules and we want to show
that K• → K•⊗R S is a quasi-isomorphism. By Lemma 15.89.2 and the flatness of
R→ S this will hold as soon as all homology groups of K are I-power torsion. This
is true for the Koszul complex by Lemma 15.28.6 and for the extended alternating
Čech complex by Lemma 15.29.5. □

Lemma 15.89.5.05ED Let R be a ring. Let I = (f1, . . . , fn) be a finitely generated
ideal of R. Let M be the R-module generated by elements e1, . . . , en subject to the
relations fiej − fjei = 0. There exists a short exact sequence

0→ K →M → I → 0
such that K is annihilated by I.

Proof. This is just a truncation of the Koszul complex. The map M → I is de-
termined by the rule ei 7→ fi. If m =

∑
aiei is in the kernel of M → I, i.e.,∑

aifi = 0, then fjm =
∑
fjaiei = (

∑
fiai)ej = 0. □

Lemma 15.89.6.05EE Let R be a ring. Let I = (f1, . . . , fn) be a finitely generated ideal
of R. For any R-module N set

H1(N, f•) = {(x1, . . . , xn) ∈ N⊕n | fixj = fjxi}
{f1x, . . . , fnx) | x ∈ N}

For any R-module N there exists a canonical short exact sequence
0→ ExtR(R/I,N)→ H1(N, f•)→ HomR(K,N)

where K is as in Lemma 15.89.5.

Proof. The notation above indicates the Ext-groups in ModR as defined in Homol-
ogy, Section 12.6. These are denoted ExtR(M,N). Using the long exact sequence
of Homology, Lemma 12.6.4 associated to the short exact sequence 0 → I → R →
R/I → 0 and the fact that ExtR(R,N) = 0 we see that

ExtR(R/I,N) = Coker(N −→ Hom(I,N))
Using the short exact sequence of Lemma 15.89.5 we see that we get a complex

N → Hom(M,N)→ HomR(K,N)
whose homology in the middle is canonically isomorphic to ExtR(R/I,N). The
proof of the lemma is now complete as the cokernel of the first map is canonically
isomorphic to H1(N, f•). □

Lemma 15.89.7.05EF Let R be a ring. Let I = (f1, . . . , fn) be a finitely generated
ideal of R. For any R-module N the Koszul homology group H1(N, f•) defined in
Lemma 15.89.6 is annihilated by I.

https://stacks.math.columbia.edu/tag/05ED
https://stacks.math.columbia.edu/tag/05EE
https://stacks.math.columbia.edu/tag/05EF
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Proof. Let (x1, . . . , xn) ∈ N⊕n with fixj = fjxi. Then we have fi(x1, . . . , xn) =
(fixi, . . . , fixn). In other words fi annihilates H1(N, f•). □

We can improve on the full faithfulness of Lemma 15.89.3 by showing that Ext-
groups whose source is I-power torsion are insensitive to passing to S as well. See
Dualizing Complexes, Lemma 47.9.8 for a derived version of the following lemma.

Lemma 15.89.8.05EG Assume φ : R → S is a flat ring map and I ⊂ R is a finitely
generated ideal such that R/I → S/IS is an isomorphism. Let M , N be R-modules.
Assume M is I-power torsion. Given an short exact sequence

0→ N ⊗R S → Ẽ →M ⊗R S → 0
there exists a commutative diagram

0 // N //

��

E //

��

M //

��

0

0 // N ⊗R S // Ẽ // M ⊗R S // 0
with exact rows.

Proof. As M is I-power torsion we see that M ⊗R S = M , see Lemma 15.89.2.
We will use this identification without further mention. As R→ S is flat, the base
change functor is exact and we obtain a functorial map of Ext-groups

ExtR(M,N) −→ ExtS(M ⊗R S,N ⊗R S),
see Homology, Lemma 12.7.3. The claim of the lemma is that this map is surjective
when M is I-power torsion. In fact we will show that it is an isomorphism. By
Lemma 15.88.2 we can find a surjection M ′ →M with M ′ a direct sum of modules
of the form R/In. Using the long exact sequence of Homology, Lemma 12.6.4 we
see that it suffices to prove the lemma for M ′. Using compatibility of Ext with
direct sums (details omitted) we reduce to the case where M = R/In for some n.
Let f1, . . . , ft be generators for In. By Lemma 15.89.6 we have a commutative
diagram

0 // ExtR(R/In, N) //

��

H1(N, f•) //

��

HomR(K,N)

��
0 // ExtS(S/InS,N ⊗ S) // H1(N ⊗ S, f•) // HomS(K ⊗ S,N ⊗ S)

with exact rows where K is as in Lemma 15.89.5. Hence it suffices to prove that
the two right vertical arrows are isomorphisms. Since K is annihilated by In we
see that HomR(K,N) = HomS(K ⊗R S,N ⊗R S) by Lemma 15.89.3. As R→ S is
flat we have H1(N, f•)⊗R S = H1(N ⊗R S, f•). As H1(N, f•) is annihilated by In,
see Lemma 15.89.7 we have H1(N, f•)⊗R S = H1(N, f•) by Lemma 15.89.2. □

Let R → S be a ring map. Let f1, . . . , ft ∈ R and I = (f1, . . . , ft). Then for any
R-module M we can define a complex

(15.89.8.1)05EJ 0→M
α−→M ⊗R S ×

∏
Mfi

β−→
∏

(M ⊗R S)fi ×
∏

Mfifj

where α(m) = (m⊗ 1,m/1, . . . ,m/1) and
β(m′,m1, . . . ,mt) = ((m′/1−m1⊗1, . . . ,m′/1−mt⊗1), (m1−m2, . . . ,mt−1−mt).

https://stacks.math.columbia.edu/tag/05EG
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We would like to know when this complex is exact.

Lemma 15.89.9.05EK Assume φ : R→ S is a flat ring map and I = (f1, . . . , ft) ⊂ R is
an ideal such that R/I → S/IS is an isomorphism. Let M be an R-module. Then
the complex (15.89.8.1) is exact.

Proof. First proof. Denote ČR → ČS the quasi-isomorphism of extended alternating
Čech complexes of Lemma 15.89.4. Since these complexes are bounded with flat
terms, we see that M ⊗R ČR → M ⊗R ČS is a quasi-isomorphism too (Lemmas
15.59.7 and 15.59.12). Now the complex (15.89.8.1) is a truncation of the cone of
the map M ⊗R ČR →M ⊗R ČS and we win.

Second computational proof. Let m ∈ M . If α(m) = 0, then m ∈ M [I∞], see
Lemma 15.88.3. Pick n such that Inm = 0 and consider the map φ : R/In → M .
If m⊗ 1 = 0, then φ⊗ 1S = 0, hence φ = 0 (see Lemma 15.89.3) hence m = 0. In
this way we see that α is injective.

Let (m′,m′
1, . . . ,m

′
t) ∈ Ker(β). Write m′

i = mi/f
n
i for some n > 0 and mi ∈ M .

We may, after possibly enlarging n assume that fni m′ = mi ⊗ 1 in M ⊗R S and
fnj mi − fni mj = 0 in M . In particular we see that (m1, . . . ,mt) defines an element
ξ of H1(M, (fn1 , . . . , fnt )). Since H1(M, (fn1 , . . . , fnt )) is annihilated by Itn+1 (see
Lemma 15.89.7) and since R→ S is flat we see that

H1(M, (fn1 , . . . , fnt )) = H1(M, (fn1 , . . . , fnt ))⊗R S = H1(M ⊗R S, (fn1 , . . . , fnt ))

by Lemma 15.89.2 The existence of m′ implies that ξ maps to zero in the last group,
i.e., the element ξ is zero. Thus there exists an m ∈M such that mi = fni m. Then
(m′,m′

1, . . . ,m
′
t) − α(m) = (m′′, 0, . . . , 0) for some m′′ ∈ (M ⊗R S)[(IS)∞]. By

Lemma 15.89.3 we conclude that m′′ ∈M [I∞] and we win. □

Remark 15.89.10.05EL In this remark we define a category of glueing data. Let R→ S
be a ring map. Let f1, . . . , ft ∈ R and I = (f1, . . . , ft). Consider the category
Glue(R→ S, f1, . . . , ft) as the category whose

(1) objects are systems (M ′,Mi, αi, αij), where M ′ is an S-module, Mi is
an Rfi-module, αi : (M ′)fi → Mi ⊗R S is an isomorphism, and αij :
(Mi)fj → (Mj)fi are isomorphisms such that
(a) αij ◦ αi = αj as maps (M ′)fifj → (Mj)fi , and
(b) αjk ◦ αij = αik as maps (Mi)fjfk → (Mk)fifj (cocycle condition).

(2) morphisms (M ′,Mi, αi, αij) → (N ′, Ni, βi, βij) are given by maps φ′ :
M ′ → N ′ and φi : Mi → Ni compatible with the given maps αi, βi, αij , βij .

There is a canonical functor

Can : ModR −→ Glue(R→ S, f1, . . . , ft), M 7−→ (M ⊗R S,Mfi , cani, canij)

where cani : (M ⊗R S)fi → Mfi ⊗R S and canij : (Mfi)fj → (Mfj )fi are the
canonical isomorphisms. For any object M = (M ′,Mi, αi, αij) of the category
Glue(R→ S, f1, . . . , ft) we define

H0(M) = {(m′,mi) | αi(m′) = mi ⊗ 1, αij(mi) = mj}

in other words defined by the exact sequence

0→ H0(M)→M ′ ×
∏

Mi →
∏

M ′
fi ×

∏
(Mi)fj

https://stacks.math.columbia.edu/tag/05EK
https://stacks.math.columbia.edu/tag/05EL
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similar to (15.89.8.1). We think of H0(M) as an R-module. Thus we also get a
functor

H0 : Glue(R→ S, f1, . . . , ft) −→ ModR
Our next goal is to show that the functors Can and H0 are sometimes quasi-inverse
to each other.

Lemma 15.89.11.05EM Assume φ : R→ S is a flat ring map and I = (f1, . . . , ft) ⊂ R is
an ideal such that R/I → S/IS is an isomorphism. Then the functor H0 is a left
quasi-inverse to the functor Can of Remark 15.89.10.

Proof. This is a reformulation of Lemma 15.89.9. □

Lemma 15.89.12.05EN Assume φ : R→ S is a flat ring map and let I = (f1, . . . , ft) ⊂ R
be an ideal. Then Glue(R → S, f1, . . . , ft) is an abelian category, and the functor
Can is exact and commutes with arbitrary colimits.

Proof. Given a morphism (φ′, φi) : (M ′,Mi, αi, αij) → (N ′, Ni, βi, βij) of the cat-
egory Glue(R → S, f1, . . . , ft) we see that its kernel exists and is equal to the
object (Ker(φ′),Ker(φi), αi, αij) and its cokernel exists and is equal to the object
(Coker(φ′),Coker(φi), βi, βij). This works because R → S is flat, hence taking
kernels/cokernels commutes with − ⊗R S. Details omitted. The exactness follows
from the R-flatness of Rfi and S, while commuting with colimits follows as tensor
products commute with colimits. □

Lemma 15.89.13.05EP Let φ : R → S be a flat ring map and (f1, . . . , ft) = R. Then
Can and H0 are quasi-inverse equivalences of categories

ModR = Glue(R→ S, f1, . . . , ft)

Proof. Consider an object M = (M ′,Mi, αi, αij) of Glue(R → S, f1, . . . , ft). By
Algebra, Lemma 10.24.5 there exists a unique module M and isomorphisms Mfi →
Mi which recover the glueing data αij . Then both M ′ and M ⊗R S are S-modules
which recover the modules Mi ⊗R S upon localizing at fi. Whence there is a
canonical isomorphism M ⊗RS →M ′. This shows that M is in the essential image
of Can. Combined with Lemma 15.89.11 the lemma follows. □

Lemma 15.89.14.05EQ Let φ : R → S be a flat ring map and I = (f1, . . . , ft) and
ideal. Let R → R′ be a flat ring map, and set S′ = S ⊗R R′. Then we obtain a
commutative diagram of categories and functors

ModR Can
//

−⊗RR′

��

Glue(R→ S, f1, . . . , ft)
H0
//

−⊗RR′

��

ModR

−⊗RR′

��
ModR′

Can // Glue(R′ → S′, f1, . . . , ft) H0
// ModR′

Proof. Omitted. □

Proposition 15.89.15.05ER Assume φ : R→ S is a flat ring map and I = (f1, . . . , ft) ⊂ R
is an ideal such that R/I → S/IS is an isomorphism. Then Can and H0 are quasi-
inverse equivalences of categories

ModR = Glue(R→ S, f1, . . . , ft)

https://stacks.math.columbia.edu/tag/05EM
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Proof. We have already seen that H0 ◦ Can is isomorphic to the identity functor,
see Lemma 15.89.11. Consider an object M = (M ′,Mi, αi, αij) of Glue(R →
S, f1, . . . , ft). We get a natural morphism

Ψ : (H0(M)⊗R S,H0(M)fi , cani, canij) −→ (M ′,Mi, αi, αij).
Namely, by definition H0(M) comes equipped with compatible R-module maps
H0(M) → M ′ and H0(M) → Mi. We have to show that this map is an isomor-
phism.
Pick an index i and set R′ = Rfi . Combining Lemmas 15.89.14 and 15.89.13 we see
that Ψ⊗R R′ is an isomorphism. Hence the kernel, resp. cokernel of Ψ is a system
of the form (K, 0, 0, 0), resp. (Q, 0, 0, 0). Note that H0((K, 0, 0, 0)) = K, that H0

is left exact, and that by construction H0(Ψ) is bijective. Hence we see K = 0, i.e.,
the kernel of Ψ is zero.
The conclusion of the above is that we obtain a short exact sequence

0→ H0(M)⊗R S →M ′ → Q→ 0
and that Mi = H0(M)fi . Note that we may think of Q as an R-module which is
I-power torsion so that Q = Q⊗R S. By Lemma 15.89.8 we see that there exists a
commutative diagram

0 // H0(M) //

��

E //

��

Q //

��

0

0 // H0(M)⊗R S // M ′ // Q // 0

with exact rows. This clearly determines an isomorphism Can(E)→ (M ′,Mi, αi, αij)
in the category Glue(R → S, f1, . . . , ft) and we win. (Of course, a posteriori we
have Q = 0.) □

Lemma 15.89.16.0ALK Let φ : R → S be a flat ring map and let I ⊂ R be a finitely
generated ideal such that R/I → S/IS is an isomorphism.

(1) Given an R-module N , an S-module M ′ and an S-module map φ : M ′ →
N ⊗R S whose kernel and cokernel are I-power torsion, there exists an R-
module map ψ : M → N and an isomorphism M ⊗R S = M ′ compatible
with φ and ψ.

(2) Given an R-module M , an S-module N ′ and an S-module map φ : M ⊗R
S → N ′ whose kernel and cokernel are I-power torsion, there exists an
R-module map ψ : M → N and an isomorphism N⊗RS = N ′ compatible
with φ and ψ.

In both cases we have Ker(φ) ∼= Ker(ψ) and Coker(φ) ∼= Coker(ψ).

Proof. Proof of (1). Say I = (f1, . . . , ft). It is clear that the localization φfi is
an isomorphism. Thus we see that (M ′, Nfi , φfi , canij) is an object of Glue(R →
S, f1, . . . , ft), see Remark 15.89.10. By Proposition 15.89.15 we conclude that there
exists an R-module M such that M ′ = M ⊗R S and Nfi = Mfi compatibly with
the isomorphisms φfi and canij . There is a morphism

(M ⊗R S,Mfi , cani, canij) = (M ′, Nfi , φfi , canij)→ (N ⊗R S,Nfi , cani, canij)
of Glue(R → S, f1, . . . , ft) which uses φ in the first component. This corresponds
to an R-module map ψ : M → N (by the equivalence of categories of Proposition

https://stacks.math.columbia.edu/tag/0ALK
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15.89.15). The composition of the base change of M → N with the isomorphism
M ′ ∼= M ⊗R S is φ, in other words M → N is compatible with φ.

Proof of (2). This is just the dual of the argument above. Namely, the localization
φfi is an isomorphism. Thus we see that (N ′,Mfi , φ

−1
fi
, canij) is an object of

Glue(R→ S, f1, . . . , ft), see Remark 15.89.10. By Proposition 15.89.15 we conclude
that there exists an R-module N such that N ′ = N⊗RS and Nfi = Mfi compatibly
with the isomorphisms φ−1

fi
and canij . There is a morphism

(M ⊗R S,Mfi , cani, canij)→ (N ′,Mfi , φfi , canij) = (N ⊗R S,Nfi , cani, canij)

of Glue(R → S, f1, . . . , ft) which uses φ in the first component. This corresponds
to an R-module map ψ : M → N (by the equivalence of categories of Proposition
15.89.15). The composition of the base change of M → N with the isomorphism
N ′ ∼= N ⊗R S is φ, in other words M → N is compatible with φ.

The final statement follows for example from Lemma 15.89.3. □

Next, we specialize Proposition 15.89.15 to get something more useable. Namely,
if I = (f) is a principal ideal then the objects of Glue(R→ S, f) are simply triples
(M ′,M1, α1) and there is no cocycle condition to check!

Theorem 15.89.17.05ES Let R be a ring, and let f ∈ R. Let φ : R → S be a flat ring
map inducing an isomorphism R/fR→ S/fS. Then the functor

ModR −→ ModS ×ModSf ModRf , M 7−→ (M ⊗R S,Mf , can)

is an equivalence.

Proof. The category appearing on the right side of the arrow is the category of
triples (M ′,M1, α1) where M ′ is an S-module, M1 is a Rf -module, and α1 : M ′

f →
M1⊗R S is a Sf -isomorphism, see Categories, Example 4.31.3. Hence this theorem
is a special case of Proposition 15.89.15. □

A useful special case of Theorem 15.89.17 is when R is Noetherian, and S is a
completion of R at an element f . The completion R → S is flat, and the functor
M 7→ M ⊗R S can be identified with the f -adic completion functor when M is
finitely generated. To state this more precisely, let ModfgR denote the category of
finitely generated R-modules.

Proposition 15.89.18.05ET Let R be a Noetherian ring. Let f ∈ R be an element. Let
R∧ be the f -adic completion of R. Then the functor M 7→ (M∧,Mf , can) defines
an equivalence

ModfgR −→ ModfgR∧ ×Modfg(R∧)f
ModfgRf

Proof. The ring map R → R∧ is flat by Algebra, Lemma 10.97.2. It is clear
that R/fR = R∧/fR∧. By Algebra, Lemma 10.97.1 the completion of a finite
R-module M is equal to M ⊗R R∧. Hence the displayed functor of the proposition
is equal to the functor occurring in Theorem 15.89.17. In particular it is fully
faithful. Let (M1,M2, ψ) be an object of the right hand side. By Theorem 15.89.17
there exists an R-module M such that M1 = M ⊗R R∧ and M2 = Mf . As R →
R∧ × Rf is faithfully flat we conclude from Algebra, Lemma 10.23.2 that M is
finitely generated, i.e., M ∈ ModfgR . This proves the proposition. □
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Remark 15.89.19.05EU The equivalences of Proposition 15.89.15, Theorem 15.89.17, and
Proposition 15.89.18 preserve properties of modules. For example if M corresponds
to M = (M ′,Mi, αi, αij) then M is finite, or finitely presented, or flat, or projective
over R if and only if M ′ and Mi have the corresponding property over S and Rfi .
This follows from the fact that R → S ×

∏
Rfi is faithfully flat and descend and

ascent of these properties along faithfully flat maps, see Algebra, Lemma 10.83.2
and Theorem 10.95.6. These functors also preserve the ⊗-structures on either side.
Thus, it defines equivalences of various categories built out of the pair (ModR,⊗),
such as the category of algebras.

Remark 15.89.20.05EV Given a differential manifold X with a compact closed subman-
ifold Z having complement U , specifying a sheaf on X is the same as specifying a
sheaf on U , a sheaf on an unspecified tubular neighbourhood T of Z in X, and an
isomorphism between the two resulting sheaves along T ∩ U . Tubular neighbour-
hoods do not exist in algebraic geometry as such, but results such as Proposition
15.89.15, Theorem 15.89.17, and Proposition 15.89.18 allow us to work with formal
neighbourhoods instead.

15.90. The Beauville-Laszlo theorem

0BNI Let R be a ring and let f be an element of R. Denote R∧ = limR/fnR the f -adic
completion of R. In this section we discuss and slightly generalize a theorem of
Beauville and Laszlo, see [BL95]. The theorem asserts that under suitable condi-
tions, a module over R can be constructed by “glueing together” modules over R∧

and Rf along an isomorphism between the base extensions to (R∧)f .
In [BL95] it is assumed that f is a nonzerodivisor on both R and M . In fact, one
only needs to assume that

R[f∞] −→ R∧[f∞]
is bijective and that

M [f∞] −→M ⊗R R∧

is injective. This optimization was partly inspired by an alternate approach to
glueing introduced in [KL15, §1.3] for use in the theory of nonarchimedean analytic
spaces.
In fact, we will establish the Beauville-Laszlo theorem in the more general setting
of a ring map

R −→ R′

which induces isomorphisms R/fnR → R′/fnR′ for every n > 0 and an isomor-
phism R[f∞]→ R′[f∞]. This is better suited for globalizing and does not formally
follow from the case when R′ is the completion of R because, for instance, the con-
dition that R[f∞] → R′[f∞] is a bijection does not imply that R[f∞] → R∧[f∞]
is a bijection.
The theorem of Beauville and Laszlo as proved in this section can be viewed as a
non-flat version of Theorem 15.89.17 and in the case where R′ = R∧ can be viewed
as a non-Noetherian version of Proposition 15.89.18. For a comparison with flat
descent, please see Remark 15.90.6.
One can establish even stronger results (without imposing restrictions on M for
example) but for this one must work at the level of derived categories. See [Bha16,
§5] for more details.
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Lemma 15.90.1.0BNJ Let R be a ring and let f ∈ R. For every positive integer n the
map R/fnR→ R∧/fnR∧ is an isomorphism.

Proof. This is a special case of Algebra, Lemma 10.96.3. □

We will use the notation introduced in Section 15.88. Thus for an R-module M ,
we denote M [fn] the submodule of M annihilated by fn and we put

M [f∞] =
⋃∞

n=1
M [fn] = Ker(M →Mf ).

If M = M [f∞], we say that M is an f -power torsion module.

Lemma 15.90.2.0BNK Slight generalization
of [BL95, Lemme 1].

Let R be a ring, let f ∈ R be an element, and let R→ R′ be a ring
map which induces isomorphisms R/fnR → R′/fnR′ for n > 0. For any f -power
torsion R-module M the map M →M ⊗R R′ is an isomorphism. For example, we
have M ∼= M ⊗R R∧.

Proof. If M is annihilated by fn, then
M ⊗R R′ ∼= M ⊗R/fnR R′/fnR′ ∼= M ⊗R/fnR R/fnR ∼= M.

Since M =
⋃
M [fn] and since tensor products commute with direct limits (Algebra,

Lemma 10.12.9), we obtain the desired isomorphism. The last statement is a special
case of the first statement by Lemma 15.90.1. □

Lemma 15.90.3.0BNL Let R be a ring, let f ∈ R, and let R → R′ be a ring map
which induces isomorphisms R/fnR→ R′/fnR′ for n > 0. The R-module R′⊕Rf
is faithful: for every nonzero R-module M , the module M ⊗R (R′ ⊕ Rf ) is also
nonzero. For example, if M is nonzero, then M ⊗R (R∧ ⊕Rf ) is nonzero.

However, the map M → M ⊗R (R′ ⊕ Rf ) need not be injective; see Example
15.90.10.

Proof. If M ̸= 0 but M ⊗RRf = 0, then M is f -power torsion. By Lemma 15.90.2
we find that M ⊗R R′ ∼= M ̸= 0. The last statement is a special case of the first
statement by Lemma 15.90.1. □

Lemma 15.90.4.0BNM Let R be a ring, let f ∈ R, and let R → R′ be a ring map
which induces an isomorphism R/fR→ R′/fR′. The map Spec(R′)⨿Spec(Rf )→
Spec(R) is surjective. For example, the map Spec(R∧) ⨿ Spec(Rf ) → Spec(R) is
surjective.

Proof. Recall that Spec(R) = V (f)⨿D(f) where V (f) = Spec(R/fR) and D(f) =
Spec(Rf ), see Algebra, Section 10.17 and especially Lemmas 10.17.7 and 10.17.6.
Thus the lemma follows as the map R → R/fR factors through R′. The last
statement is a special case of the first statement by Lemma 15.90.1. □

Lemma 15.90.5.0BNN Slight generalization
of [BL95,
Lemme 2(a)].

Let R be a ring, let f ∈ R, and let R→ R′ be a ring map which
induces isomorphisms R/fnR → R′/fnR′ for n > 0. An R-module M is finitely
generated if and only if the (R′⊕Rf )-module M ⊗R (R′⊕Rf ) is finitely generated.
For example, if M ⊗R (R∧ ⊕ Rf ) is finitely generated as a module over R∧ ⊕ Rf ,
then M is a finitely generated R-module.

Proof. The ‘only if’ is clear, so we assume that M⊗R (R′⊕Rf ) is finitely generated.
In this case, by writing each generator as a sum of simple tensors, M ⊗R (R′⊕Rf )
admits a finite generating set consisting of elements of M . That is, there exists a
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morphism from a finite free R-module to M whose cokernel is killed by tensoring
with R′ ⊕ Rf ; we may thus deduce M is finite generated by applying Lemma
15.90.3 to this cokernel. The last statement is a special case of the first statement
by Lemma 15.90.1. □

Remark 15.90.6.0BNP While R→ Rf is always flat, R→ R∧ is typically not flat unless
R is Noetherian (see Algebra, Lemma 10.97.2 and the discussion in Examples,
Section 110.12). Consequently, we cannot in general apply faithfully flat descent as
discussed in Descent, Section 35.3 to the morphism R→ R∧⊕Rf . Moreover, even
in the Noetherian case, the usual definition of a descent datum for this morphism
refers to the ring R∧ ⊗R R∧, which we will avoid considering in this section.

Glueing pairs. Let R → R′ be a ring map that induces isomorphisms R/fnR →
R′/fnR′ for n > 0. Consider the sequence

(15.90.6.1)0F1Q 0→ R→ R′ ⊕Rf → R′
f → 0,

in which the map on the right is the difference between the two canonical homo-
morphisms. If this sequence is exact, then we say that (R → R′, f) is a glueing
pair. We will say that (R, f) is a glueing pair if (R → R∧, f) is a glueing pair;
this makes sense by Lemma 15.90.1. Thus (R, f) is a glueing pair if and only if the
sequence

(15.90.6.2)0BNQ 0→ R→ R∧ ⊕Rf → (R∧)f → 0,

is exact.

Lemma 15.90.7.0BNR Let R be a ring, let f ∈ R, and let R→ R′ be a ring map which
induces isomorphisms R/fnR→ R′/fnR′ for n > 0. The sequence (15.90.6.1) is

(1) exact on the right,
(2) exact on the left if and only if R[f∞]→ R′[f∞] is injective, and
(3) exact in the middle if and only if R[f∞]→ R′[f∞] is surjective.

In particular, (R → R′, f) is a glueing pair if and only if R[f∞] → R′[f∞] is
bijective. For example, (R, f) is a glueing pair if and only if R[f∞] → R∧[f∞] is
bijective.

Proof. Let x ∈ R′
f . Write x = x′/fn with x′ ∈ R′. Write x′ = x′′ + fny with

x′′ ∈ R and y ∈ R′. Then we see that (y,−x′′/fn) maps to x. Thus (1) holds.

Part (2) follows from the fact that Ker(R→ Rf ) = R[f∞].

If the sequence is exact in the middle, then elements of the form (x, 0) with x ∈
R′[f∞] are in the image of the first arrow. This implies that R[f∞] → R′[f∞] is
surjective. Conversely, assume that R[f∞]→ R′[f∞] is surjective. Let (x, y) be an
element in the middle which maps to zero on the right. Write y = y′/fn for some
y′ ∈ R. Then we see that fnx − y′ is annihilated by some power of f in R′. By
assumption we can write fnx− y′ = z for some z ∈ R[f∞]. Then y = y′′/fn where
y′′ = y′ + z is in the kernel of R→ R/fnR. Hence we see that y can be represented
as y′′′/1 for some y′′′ ∈ R. Then x− y′′′ is in R′[f∞]. Thus x− y′′′ = z′ ∈ R[f∞].
Then (x, y′′′/1) = (y′′′ + z′, (y′′′ + z′)/1) as desired.

The last statement of the lemma is a special case of the penultimate statement by
Lemma 15.90.1. □
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Remark 15.90.8.0BNS Suppose that f is a nonzerodivisor. Then Algebra, Lemma 10.96.4
shows that f is a nonzerodivisor in R∧. Hence (R, f) is a glueing pair.

Remark 15.90.9.0BNT If R → R∧ is flat, then for each positive integer n tensoring the
sequence 0 → R[fn] → R → R with R∧ gives the sequence 0 → R[fn] ⊗R R∧ →
R∧ → R∧. Combined with Lemma 15.90.2 we conclude that R[fn] → R∧[fn] is
an isomorphism. Thus (R, f) is a glueing pair. This holds in particular if R is
Noetherian, see Algebra, Lemma 10.97.2.

Example 15.90.10.0BNU Let k be a field and put
R = k[f, T1, T2, . . .]/(fT1, fT2 − T1, fT3 − T2, . . .).

Then (R, f) is not a glueing pair because the map R[f∞]→ R∧[f∞] is not injective
as the image of T1 is f -divisible in R∧. For

R = k[f, T1, T2, . . .]/(fT1, f
2T2, . . .),

the map R[f∞]→ R∧[f∞] is not surjective as the element T1 + fT2 + f2T3 + . . . is
not in the image. In particular, by Remark 15.90.9, these are both examples where
R→ R∧ is not flat.

Glueable modules. Let R → R′ be a ring map which induces isomorphisms
R/fnR → R′/fnR′ for n > 0. For any R-module M , we may tensor (15.90.6.1)
with M to obtain a sequence
(15.90.10.1)0F1R 0→M → (M ⊗R R′)⊕ (M ⊗R Rf )→M ⊗R R′

f → 0
Observe that M ⊗RRf = Mf and that M ⊗RR′

f = (M ⊗RR′)f . If this sequence is
exact, we say that M is glueable for (R→ R′, f). If R is a ring and f ∈ R, then we
say an R-module is glueable if M is glueable for (R→ R∧, f). Thus M is glueable
if and only if the sequence
(15.90.10.2)0BNV 0→M → (M ⊗R R∧)⊕ (M ⊗R Rf )→M ⊗R (R∧)f → 0
is exact.

Lemma 15.90.11.0BNW Let R be a ring, let f ∈ R, and let R→ R′ be a ring map which
induces isomorphisms R/fnR→ R′/fnR′ for n > 0. The sequence (15.90.10.1) is

(1) exact on the right,
(2) exact on the left if and only if M [f∞]→ (M ⊗R R′)[f∞] is injective, and
(3) exact in the middle if and only if M [f∞]→ (M ⊗R R′)[f∞] is surjective.

Thus M is glueable for (R → R′, f) if and only if M [f∞] → (M ⊗R R′)[f∞] is
bijective. If (R→ R′, f) is a glueing pair, then M is glueable for (R→ R′, f) if and
only if M [f∞] → (M ⊗R R′)[f∞] is injective. For example, if (R, f) is a glueing
pair, then M is glueable if and only if M [f∞]→ (M ⊗R R∧)[f∞] is injective.

Proof. We will use the results of Lemma 15.90.7 without further mention. The
functor M ⊗R − is right exact (Algebra, Lemma 10.12.10) hence we get (1).
The kernel of M →M ⊗R Rf = Mf is M [f∞]. Thus (2) follows.
If the sequence is exact in the middle, then elements of the form (x, 0) with x ∈
(M ⊗R R′)[f∞] are in the image of the first arrow. This implies that M [f∞] →
(M ⊗R R′)[f∞] is surjective. Conversely, assume that M [f∞]→ (M ⊗R R′)[f∞] is
surjective. Let (x, y) be an element in the middle which maps to zero on the right.
Write y = y′/fn for some y′ ∈ M . Then we see that fnx − y′ is annihilated by
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some power of f in M ⊗R R′. By assumption we can write fnx− y′ = z for some
z ∈M [f∞]. Then y = y′′/fn where y′′ = y′ + z is in the kernel of M →M/fnM .
Hence we see that y can be represented as y′′′/1 for some y′′′ ∈M . Then x−y′′′ is in
(M⊗RR′)[f∞]. Thus x−y′′′ = z′ ∈M [f∞]. Then (x, y′′′/1) = (y′′′+z′, (y′′′+z′)/1)
as desired.
If (R→ R′, f) is a glueing pair, then (15.90.10.1) is exact in the middle for any M
by Algebra, Lemma 10.12.10. This gives the penultimate statement of the lemma.
The final statement of the lemma follows from this and the fact that (R, f) is a
glueing pair if and only if (R→ R∧, f) is a glueing pair. □

Remark 15.90.12.0BNX Let (R → R′, f) be a glueing pair and let M be an R-module.
Here are some observations which can be used to determine whether M is glueable
for (R→ R′, f).

(1) By Lemma 15.90.11 we see that M is glueable for (R→ R∧, f) if and only
if M [f∞]→M ⊗R R∧ is injective. This holds if M [f ]→M∧ is injective,
i.e., when M [f ] ∩

⋂∞
n=1 f

nM = 0.
(2) If TorR1 (M,R′

f ) = 0, then M is glueable for (R → R′, f) (use Algebra,
Lemma 10.75.2). This is equivalent to saying that TorR1 (M,R′) is f -power
torsion. In particular, any flat R-module is glueable for (R→ R′, f).

(3) If R → R′ is flat, then TorR1 (M,R′) = 0 for every R-module so every
R-module is glueable for (R→ R′, f). This holds in particular when R is
Noetherian and R′ = R∧, see Algebra, Lemma 10.97.2

Example 15.90.13 (Non glueable module).0BNY [BL95, §4,
Remarques]

Let R be the ring of germs at 0 of C∞

functions on R. Let f ∈ R be the function f(x) = x. Then f is a nonzerodivisor
in R, so (R, f) is a glueing pair and R∧ ∼= R[[x]]. Let φ ∈ R be the function
φ(x) = exp(−1/x2). Then φ has zero Taylor series, so φ ∈ Ker(R → R∧). Since
φ(x) ̸= 0 for x ̸= 0, we see that φ is a nonzerodivisor in R. The function φ/f also
has zero Taylor series, so its image in M = R/φR is a nonzero element of M [f ]
which maps to zero in M ⊗R R∧ = R∧/φR∧ = R∧. Hence M is not glueable.

We next make some calculations of Tor groups.

Lemma 15.90.14.0BNZ Let (R→ R′, f) be a glueing pair. Then TorR1 (R′, fnR) = 0 for
each n > 0.

Proof. From the exact sequence 0 → R[fn] → R → fnR → 0 we see that it
suffices to check that R[fn] ⊗R R′ → R′ is injective. By Lemma 15.90.2 we have
R[fn]⊗R R′ = R[fn] and by Lemma 15.90.7 we see that R[fn]→ R′ is injective as
(R→ R′, f) is a glueing pair. □

Lemma 15.90.15.0BP0 Let (R→ R′, f) be a glueing pair. Then TorR1 (R′, R/R[f∞]) = 0.

Proof. We have R/R[f∞] = colimR/R[fn] = colim fnR. As formation of Tor
groups commutes with filtered colimits (Algebra, Lemma 10.76.2) we may apply
Lemma 15.90.14. □

Lemma 15.90.16.0BP1 Slight generalization
of [BL95, Lemme
3(a)]

Let (R → R′, f) be a glueing pair. For every R-module M , we
have TorR1 (R′,Coker(M →Mf )) = 0.

Proof. Set M = M/M [f∞]. Then Coker(M → Mf ) ∼= Coker(M → Mf ) hence
we may and do assume that f is a nonzerodivisor on M . In this case M ⊂ Mf

https://stacks.math.columbia.edu/tag/0BNX
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and Mf/M = colimM/fnM where the transition maps are given by multiplication
by f . Since formation of Tor groups commutes with colimits (Algebra, Lemma
10.76.2) it suffices to show that TorR1 (R′,M/fnM) = 0.
We first treat the case M = R/R[f∞]. By Lemma 15.90.7 we have M ⊗R R′ =
R′/R′[f∞]. From the short exact sequence 0 → M → M → M/fnM → 0 we
obtain the exact sequence

TorR1 (R′, R/R[f∞]) // TorR1 (R′,M/fnM) // R′/R′[f∞]
fn

rr
R′/R′[f∞] // (R′/R′[f∞])/(fn(R′/R′[f∞])) // 0

by Algebra, Lemma 10.75.2. Here the diagonal arrow is injective. Since the first
group TorR1 (R′, R/R[f∞]) is zero by Lemma 15.90.15, we deduce that TorR1 (R′,M/fnM) =
0 as desired.
To treat the general case, choose a surjection F → M with F a free R/R[f∞]-
module, and form an exact sequence

0→ N → F/fnF →M/fnM → 0.
By Lemma 15.90.2 this sequence remains unchanged, and hence exact, upon ten-
soring with R′. Since TorR1 (R′, F/fnF ) = 0 by the previous paragraph, we deduce
that TorR1 (R′,M/fnM) = 0 as desired. □

Let (R → R′, f) be a glueing pair. This means that R/fnR → R′/fnR′ is an
isomorphism for n > 0 and the sequence

0→ R→ R′ ⊕Rf → R′
f → 0

is exact. Consider the category Glue(R → R′, f) introduced in Remark 15.89.10.
We will call an object (M ′,M1, α1) of Glue(R→ R′, f) a glueing datum. It consists
of an R′-module M ′, an Rf -module M1, and an isomorphism α1 : (M ′)f →M1⊗R
R′. There is an obvious functor

Can : ModR −→ Glue(R→ R′, f), M 7−→ (M ⊗R R′,Mf , can),
and there is a functor
H0 : Glue(R→ R′, f) −→ ModR, (M ′,M1, α1) 7−→ Ker(M ′ ⊕M1 → (M ′)f )

in the reverse direction, see Remark 15.89.10 for the precise definition.

Theorem 15.90.17.0BP2 Slight generalization
of the main theorem
of [BL95].

Let (R→ R′, f) be a glueing pair. The functor Can : ModR −→
Glue(R→ R′, f) determines an equivalence of the category of R-modules glueable
for (R→ R′, f) and the category Glue(R→ R′, f) of glueing data.

Proof. The functor is fully faithful due to the exactness of (15.90.10.1) for glueable
modules, which tells us exactly that H0 ◦ Can = id on the full subcategory of
glueable modules. Hence it suffices to check essential surjectivity. That is, we
must show that an arbitrary glueing datum (M ′,M1, α1) arises from some glueable
R-module.
We first check that the map d : M ′ ⊕ M1 → (M ′)f used in the definition of
the functor H0 is surjective. Observe that (x, y) ∈ M ′ ⊕M1 maps to d(x, y) =
x/1−α−1

1 (y⊗ 1) in (M ′)f . If z ∈ (M ′)f , then we can write α1(z) =
∑
yi⊗ gi with

https://stacks.math.columbia.edu/tag/0BP2
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gi ∈ R′ and yi ∈ M1. Write α−1
1 (yi ⊗ 1) = y′

i/f
n for some y′

i ∈ M ′ and n ≥ 0 (we
can pick the same n for all i). Write gi = ai + fnbi with ai ∈ R and bi ∈ R′. Then
with y =

∑
aiyi ∈M1 and x =

∑
biy

′
i ∈M ′ we have d(x,−y) = z as desired.

Put M = H0((M ′,M1, α1)) = Ker(d). We obtain an exact sequence of R-modules
(15.90.17.1)0BP3 0→M →M ′ ⊕M1 → (M ′)f → 0.
We will prove that the maps M → M ′ and M → M1 induce isomorphisms M ⊗R
R′ →M ′ and M ⊗R Rf →M1. This will imply that M is glueable for (R→ R′, f)
and gives rise to the original glueing datum.
Since f is a nonzerodivisor on M1, we have M [f∞] ∼= M ′[f∞]. This yields an exact
sequence
(15.90.17.2)0BP4 0→M/M [f∞]→M1 → (M ′)f/M ′ → 0.
Since R → Rf is flat, we may tensor this exact sequence with Rf to deduce that
M ⊗R Rf = (M/M [f∞])⊗R Rf →M1 is an isomorphism.

By Lemma 15.90.16 we have TorR1 (R′,Coker(M ′ → (M ′)f )) = 0. The sequence
(15.90.17.2) thus remains exact upon tensoring over R with R′. Using α1 and
Lemma 15.90.2 the resulting exact sequence can be written as
(15.90.17.3)0BP5 0→ (M/M [f∞])⊗R R′ → (M ′)f → (M ′)f/M ′ → 0
This yields an isomorphism (M/M [f∞]) ⊗R R′ ∼= M ′/M ′[f∞]. This implies that
in the diagram

M [f∞]⊗R R′ //

��

M ⊗R R′ //

��

(M/M [f∞])⊗R R′ //

��

0

0 // M ′[f∞] // M ′ // M ′/M ′[f∞] // 0,

the third vertical arrow is an isomorphism. Since the rows are exact and the first
vertical arrow is an isomorphism by Lemma 15.90.2 and M [f∞] = M ′[f∞], the
five lemma implies that M ⊗R R′ → M ′ is an isomorphism. This completes the
proof. □

Remark 15.90.18.0BP9 Let (R→ R′, f) be a glueing pair. Let M be an R-module that is
not necessarily glueable for (R→ R′, f). Setting M ′ = M ⊗R R′ and M1 = Mf we
obtain the glueing datum Can(M) = (M ′,M1, can). Then M̃ = H0(M ′,M1, can)
is an R-module that is glueable for (R → R′, f) and the canonical map M → M̃
gives isomorphisms M ⊗R R′ → M̃ ⊗R R′ and Mf → M̃f , see Theorem 15.90.17.
From the exactness of the sequences

M → (M ⊗R R′)⊕Mf →M ⊗R (R′)f → 0
and

0→ M̃ → (M̃ ⊗R R′)⊕ M̃f → M̃ ⊗R (R′)f → 0
we conclude that the map M → M̃ is surjective.

Recall that flat R-modules over a glueing pair (R → R′, f) are glueable (Remark
15.90.12). Hence the following lemma shows that Theorem 15.90.17 determines an
equivalence between the category of flat R-modules and the category of glueing
data (M ′,M1, α1) where M ′ and M1 are flat over R′ and Rf .

https://stacks.math.columbia.edu/tag/0BP9
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Lemma 15.90.19.0BP7 Let (R→ R′, f) be a glueing pair. Let M be an R-module which
is not necessarily glueable for (R → R′, f). Then M is flat over R if and only if
M ⊗R R′ is flat over R′ and Mf is flat over Rf .

Proof. One direction of the lemma follows from Algebra, Lemma 10.39.7. For the
other direction, assume M ⊗R R′ is flat over R′ and Mf is flat over Rf . Let M̃
be as in Remark 15.90.18. If M̃ is flat over R, then applying Algebra, Lemma
10.39.12 to the short exact sequence 0 → Ker(M → M̃) → M → M̃ → 0 we
find that Ker(M → M̃) ⊗R (R′ ⊕ Rf ) is zero. Hence M = M̃ by Lemma 15.90.3
and we conclude. In other words, we may replace M by M̃ and assume M is
glueable for (R → R′, f). Let N be a second R-module. It suffices to prove that
TorR1 (M,N) = 0, see Algebra, Lemma 10.75.8.
The long the exact sequence of Tors associated to the short exact sequence 0 →
R→ R′ ⊕Rf → (R′)f → 0 and N gives an exact sequence

0→ TorR1 (R′, N)→ TorR1 ((R′)f , N)

and isomorphisms TorRi (R′, N) = TorRi ((R′)f , N) for i ≥ 2. Since TorRi ((R′)f , N) =
TorRi (R′, N)f we conclude that f is a nonzerodivisor on TorR1 (R′, N) and invertible
on TorRi (R′, N) for i ≥ 2. Since M ⊗R R′ is flat over R′ we have

TorRi (M ⊗R R′, N) = (M ⊗R R′)⊗R′ TorRi (R′, N)
by the spectral sequence of Example 15.62.2. Writing M ⊗R R′ as a filtered col-
imit of finite free R′-modules (Algebra, Theorem 10.81.4) we conclude that f is a
nonzerodivisor on TorR1 (M ⊗R R′, N) and invertible on TorRi (M ⊗R R′, N). Next,
we consider the exact sequence 0 → M → M ⊗R R′ ⊕Mf → M ⊗R (R′)f → 0
coming from the fact that M is glueable and the associated long exact sequence of
Tor. The relevant part is

TorR1 (M,N) // TorR1 (M ⊗R R′, N) // TorR1 (M ⊗R (R′)f , N)

TorR2 (M ⊗R R′, N) // TorR2 (M ⊗R (R′)f , N)

ll

We conclude that TorR1 (M,N) = 0 by our remarks above on the action on f on
TorRi (M ⊗R R′, N). □

Observe that we have seen the result of the following lemma for “finitely generated”
in Lemma 15.90.5.

Lemma 15.90.20.0BP6 Let (R→ R′, f) be a glueing pair. Let M be an R-module which
is not necessarily glueable for (R→ R′, f). Then M is a finite projective R-module
if and only if M ⊗R R′ is finite projective over R′ and Mf is finite projective over
Rf .

Proof. Assume that M ⊗R R′ is a finite projective module over R′ and that Mf is
a finite projective module over Rf . Our task is to prove that M is finite projective
over R. We will use Algebra, Lemma 10.78.2 without further mention. By Lemma
15.90.19 we see that M is flat. By Lemma 15.90.5 we see that M is finite. Choose
a short exact sequence 0→ K → R⊕n →M → 0. Since a finite projective module
is of finite presentation and since the sequence remains exact after tensoring with
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R′ (by Algebra, Lemma 10.39.12) and Rf , we conclude that K ⊗R R′ and Kf are
finite modules. Using the lemma above we conclude that K is finitely generated.
Hence M is finitely presented and hence finite projective. □

Remark 15.90.21.0BP8 In [BL95] it is assumed that f is a nonzerodivisor in R and R′ =
R∧, which gives a glueing pair by Lemma 15.90.7. Even in this setting Theorem
15.90.17 says something new: the results of [BL95] only apply to modules on which f
is a nonzerodivisor (and hence glueable in our sense, see Lemma 15.90.11). Lemma
15.90.20 also provides a slight extension of the results of [BL95]: not only can we
allow M to have nonzero f -power torsion, we do not even require it to be glueable.

15.91. Derived Completion

091N Some references for the material in this section are [DG02], [GM92], [PSY14a],
[Lur11] (especially Chapter 4). Our exposition follows [BS13]. The analogue (or
“dual”) of this section for torsion modules is Dualizing Complexes, Section 47.9.
The relationship between the derived category of complexes with torsion cohomol-
ogy and derived complete complexes can be found in Dualizing Complexes, Section
47.12.

Let K ∈ D(A). Let f ∈ A. We denote T (K, f) a derived limit of the system

. . .→ K
f−→ K

f−→ K

in D(A).

Lemma 15.91.1.091P Let A be a ring. Let f ∈ A. Let K ∈ D(A). The following are
equivalent

(1) ExtnA(Af ,K) = 0 for all n,
(2) HomD(A)(E,K) = 0 for all E in D(Af ),
(3) T (K, f) = 0,
(4) for every p ∈ Z we have T (Hp(K), f) = 0,
(5) for every p ∈ Z we have HomA(Af , Hp(K)) = 0 and Ext1

A(Af , Hp(K)) =
0,

(6) RHomA(Af ,K) = 0,
(7) the map

∏
n≥0 K →

∏
n≥0 K, (x0, x1, . . .) 7→ (x0 − fx1, x1 − fx2, . . .) is

an isomorphism in D(A), and
(8) add more here.

Proof. It is clear that (2) implies (1) and that (1) is equivalent to (6). Assume
(1). Let I• be a K-injective complex of A-modules representing K. Condition
(1) signifies that HomA(Af , I•) is acyclic. Let M• be a complex of Af -modules
representing E. Then

HomD(A)(E,K) = HomK(A)(M•, I•) = HomK(Af )(M•,HomA(Af , I•))

by Algebra, Lemma 10.14.4. As HomA(Af , I•) is a K-injective complex of Af -
modules by Lemma 15.56.3 the fact that it is acyclic implies that it is homotopy
equivalent to zero (Derived Categories, Lemma 13.31.2). Thus we get (2).

A free resolution of the A-module Af is given by

0→
⊕

n∈N
A→

⊕
n∈N

A→ Af → 0

https://stacks.math.columbia.edu/tag/0BP8
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where the first map sends the (a0, a1, a2, . . .) to (a0, a1− fa0, a2− fa1, . . .) and the
second map sends (a0, a1, a2, . . .) to a0 +a1/f+a2/f

2 + . . .. Applying HomA(−, I•)
we get

0→ HomA(Af , I•)→
∏

I• →
∏

I• → 0
Since

∏
I• represents

∏
n≥0 K this proves the equivalence of (1) and (7). On

the other hand, by construction of derived limits in Derived Categories, Section
13.34 the displayed exact sequence shows the object T (K, f) is a representative of
RHomA(Af ,K) in D(A). Thus the equivalence of (1) and (3).
There is a spectral sequence

Ep,q2 = ExtpA(Af , Hq(K))⇒ Extp+q
A (Af ,K)

See Equation (15.67.0.1). This spectral sequence degenerates at E2 because Af has
a length 1 resolution by projective A-modules (see above) hence the E2-page has
only 2 nonzero columns. Thus we obtain short exact sequences

0→ Ext1
A(Af , Hp−1(K))→ ExtpA(Af ,K)→ HomA(Af , Hp(K))→ 0

This proves (4) and (5) are equivalent to (1). □

Lemma 15.91.2.091Q Let A be a ring. Let K ∈ D(A). The set I of f ∈ A such that
T (K, f) = 0 is a radical ideal of A.

Proof. We will use the results of Lemma 15.91.1 without further mention. If f ∈ I,
and g ∈ A, then Agf is an Af -module hence ExtnA(Agf ,K) = 0 for all n, hence
gf ∈ I. Suppose f, g ∈ I. Then there is a short exact sequence

0→ Af+g → Af(f+g) ⊕Ag(f+g) → Agf(f+g) → 0
because f, g generate the unit ideal in Af+g. This follows from Algebra, Lemma
10.24.2 and the easy fact that the last arrow is surjective. From the long exact
sequence of Ext and the vanishing of ExtnA(Af(f+g),K), ExtnA(Ag(f+g),K), and
ExtnA(Agf(f+g),K) for all n we deduce the vanishing of ExtnA(Af+g,K) for all n.
Finally, if fn ∈ I for some n > 0, then f ∈ I because T (K, f) = T (K, fn) or
because Af ∼= Afn . □

Lemma 15.91.3.091R Let A be a ring. Let I ⊂ A be an ideal. Let M be an A-module.
(1) If M is I-adically complete, then T (M,f) = 0 for all f ∈ I.
(2) Conversely, if T (M,f) = 0 for all f ∈ I and I is finitely generated, then

M → limM/InM is surjective.

Proof. Proof of (1). Assume M is I-adically complete. By Lemma 15.91.1 it suffices
to prove Ext1

A(Af ,M) = 0 and HomA(Af ,M) = 0. Since M = limM/InM and
since HomA(Af ,M/InM) = 0 it follows that HomA(Af ,M) = 0. Suppose we have
an extension

0→M → E → Af → 0
For n ≥ 0 pick en ∈ E mapping to 1/fn. Set δn = fen+1 − en ∈ M for n ≥ 0.
Replace en by

e′
n = en + δn + fδn+1 + f2δn+2 + . . .

The infinite sum exists as M is complete with respect to I and f ∈ I. A simple
calculation shows that fe′

n+1 = e′
n. Thus we get a splitting of the extension by

mapping 1/fn to e′
n.
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Proof of (2). Assume that I = (f1, . . . , fr) and that T (M,fi) = 0 for i = 1, . . . , r.
By Algebra, Lemma 10.96.7 we may assume I = (f) and T (M,f) = 0. Let xn ∈M
for n ≥ 0. Consider the extension

0→M → E → Af → 0
given by

E = M ⊕
⊕

Aen

/
⟨xn − fen+1 + en⟩

mapping en to 1/fn in Af (see above). By assumption and Lemma 15.91.1 this
extension is split, hence we obtain an element x+ e0 which generates a copy of Af
in E. Then

x+ e0 = x− x0 + fe1 = x− x0 − fx1 + f2e2 = . . .

Since M/fnM = E/fnE by the snake lemma, we see that x = x0 + fx1 + . . . +
fn−1xn−1 modulo fnM . In other words, the map M → limM/fnM is surjective
as desired. □

Motivated by the results above we make the following definition.

Definition 15.91.4.091S Let A be a ring. Let K ∈ D(A). Let I ⊂ A be an ideal. We
say K is derived complete with respect to I if for every f ∈ I we have T (K, f) = 0.
If M is an A-module, then we say M is derived complete with respect to I if
M [0] ∈ D(A) is derived complete with respect to I.

The full subcategory Dcomp(A) = Dcomp(A, I) ⊂ D(A) consisting of derived com-
plete objects is a strictly full, saturated triangulated subcategory, see Derived
Categories, Definitions 13.3.4 and 13.6.1. By Lemma 15.91.2 the subcategory
Dcomp(A, I) depends only on the radical

√
I of I, in other words it depends only

on the closed subset Z = V (I) of Spec(A). The subcategory Dcomp(A, I) is pre-
served under products and homotopy limits in D(A). But it is not preserved under
countable direct sums in general. We will often simply say M is a derived complete
module if the choice of the ideal I is clear from the context.

Proposition 15.91.5.091T Let I ⊂ A be a finitely generated ideal of a ring A. Let M
be an A-module. The following are equivalent

(1) M is I-adically complete, and
(2) M is derived complete with respect to I and

⋂
InM = 0.

Proof. This is clear from the results of Lemma 15.91.3. □

The next lemma shows that the category C of derived complete modules is abelian.
It turns out that C is not a Grothendieck abelian category, see Examples, Section
110.11.

Lemma 15.91.6.091U Let I be an ideal of a ring A.
(1) The derived complete A-modules form a weak Serre subcategory C of

ModA.
(2) DC(A) ⊂ D(A) is the full subcategory of derived complete objects.

Proof. Part (2) is immediate from Lemma 15.91.1 and the definitions. For part (1),
suppose thatM → N is a map of derived complete modules. DenoteK = (M → N)
the corresponding object of D(A). Pick f ∈ I. Then ExtnA(Af ,K) is zero for all
n because ExtnA(Af ,M) and ExtnA(Af , N) are zero for all n. Hence K is derived
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complete. By (2) we see that Ker(M → N) and Coker(M → N) are objects of
C. Finally, suppose that 0 → M1 → M2 → M3 → 0 is a short exact sequence of
A-modules and M1, M3 are derived complete. Then it follows from the long exact
sequence of Ext’s that M2 is derived complete. Thus C is a weak Serre subcategory
by Homology, Lemma 12.10.3. □

We will generalize the following lemma in Lemma 15.91.19.

Lemma 15.91.7.09B9 Let I be a finitely generated ideal of a ring A. Let M be a derived
complete A-module. If M/IM = 0, then M = 0.

Proof. Assume that M/IM is zero. Let I = (f1, . . . , fr). Let i < r be the largest
integer such that N = M/(f1, . . . , fi)M is nonzero. If i does not exist, then M = 0
which is what we want to show. Then N is derived complete as a cokernel of a map
between derived complete modules, see Lemma 15.91.6. By our choice of i we have
that fi+1 : N → N is surjective. Hence

lim(. . .→ N
fi+1−−−→ N

fi+1−−−→ N)
is nonzero, contradicting the derived completeness of N . □

If the ring is I-adically complete, then one obtains an ample supply of derived
complete complexes.

Lemma 15.91.8.0A05 Let A be a ring and I ⊂ A an ideal. If A is derived complete (eg.
I-adically complete) then any pseudo-coherent object of D(A) is derived complete.

Proof. (Lemma 15.91.3 explains the parenthetical statement of the lemma.) Let K
be a pseudo-coherent object of D(A). By definition this means K is represented by
a bounded above complex K• of finite free A-modules. Since A is derived complete
it follows that Hn(K) is derived complete for all n, by part (1) of Lemma 15.91.6.
This in turn implies that K is derived complete by part (2) of the same lemma. □

Lemma 15.91.9.0A6C Let A be a ring. Let f, g ∈ A. Then for K ∈ D(A) we have
RHomA(Af , RHomA(Ag,K)) = RHomA(Afg,K).

Proof. This follows from Lemma 15.73.1. □

Lemma 15.91.10.091V Let I be a finitely generated ideal of a ring A. The inclusion
functor Dcomp(A, I) → D(A) has a left adjoint, i.e., given any object K of D(A)
there exists a map K → K∧ of K into a derived complete object of D(A) such that
the map

HomD(A)(K∧, E) −→ HomD(A)(K,E)
is bijective whenever E is a derived complete object of D(A). In fact, if I is
generated by f1, . . . , fr ∈ A, then we have

K∧ = RHom
(

(A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr ),K
)

functorially in K.

Proof. Define K∧ by the last displayed formula of the lemma. There is a map of
complexes

(A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr ) −→ A

https://stacks.math.columbia.edu/tag/09B9
https://stacks.math.columbia.edu/tag/0A05
https://stacks.math.columbia.edu/tag/0A6C
https://stacks.math.columbia.edu/tag/091V


15.91. DERIVED COMPLETION 1428

which induces a map K → K∧. It suffices to prove that K∧ is derived complete
and that K → K∧ is an isomorphism if K is derived complete.
Let f ∈ A. By Lemma 15.91.9 the object RHomA(Af ,K∧) is equal to

RHom
(

(Af →
∏

i0
Affi0 →

∏
i0<i1

Affi0fi1 → . . .→ Aff1...fr ),K
)

If f ∈ I, then f1, . . . , fr generate the unit ideal in Af , hence the extended alternat-
ing Čech complex

Af →
∏

i0
Affi0 →

∏
i0<i1

Affi0fi1 → . . .→ Aff1...fr

is zero in D(A) by Lemma 15.29.5. (In fact, if f = fi for some i, then this complex
is homotopic to zero by Lemma 15.29.4; this is the only case we need.) Hence
RHomA(Af ,K∧) = 0 and we conclude that K∧ is derived complete by Lemma
15.91.1.
Conversely, if K is derived complete, then RHomA(Af ,K) is zero for all f =
fi0 . . . fip , p ≥ 0. Thus K → K∧ is an isomorphism in D(A). □

Remark 15.91.11.0G3E Let A be a ring and let I ⊂ A be a finitely generated ideal. The
left adjoint to the inclusion functor Dcomp(A, I) → D(A) which exists by Lemma
15.91.10 is called the derived completion. To indicate this we will say “let K∧ be
the derived completion of K”. Please keep in mind that the unit of the adjunction
is a functorial map K → K∧.

Lemma 15.91.12.0A6D Let A be a ring and let I ⊂ A be a finitely generated ideal. Let
K• be a complex of A-modules such that f : K• → K• is an isomorphism for some
f ∈ I, i.e., K• is a complex of Af -modules. Then the derived completion of K• is
zero.

Proof. Indeed, in this case the RHomA(K,L) is zero for any derived complete
complex L, see Lemma 15.91.1. Hence K∧ is zero by the universal property in
Lemma 15.91.10. □

Lemma 15.91.13.0A6E Let A be a ring and let I ⊂ A be a finitely generated ideal. Let
K,L ∈ D(A). Then

RHomA(K,L)∧ = RHomA(K,L∧) = RHomA(K∧, L∧)

Proof. By Lemma 15.91.10 we know that derived completion is given byRHomA(C,−)
for some C ∈ D(A). Then

RHomA(C,RHomA(K,L)) = RHomA(C ⊗L
A K,L)

= RHomA(K,RHomA(C,L))
by Lemma 15.73.1. This proves the first equation. The map K → K∧ induces a
map

RHomA(K∧, L∧)→ RHomA(K,L∧)
which is an isomorphism in D(A) by definition of the derived completion as the left
adjoint to the inclusion functor. □

Lemma 15.91.14.091W Let A be a ring and let I ⊂ A be an ideal. Let (Kn) be an inverse
system of objects of D(A) such that for all f ∈ I and n there exists an e = e(n, f)
such that fe is zero on Kn. Then for K ∈ D(A) the object K ′ = R lim(K ⊗L

A Kn)
is derived complete with respect to I.

https://stacks.math.columbia.edu/tag/0G3E
https://stacks.math.columbia.edu/tag/0A6D
https://stacks.math.columbia.edu/tag/0A6E
https://stacks.math.columbia.edu/tag/091W
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Proof. Since the category of derived complete objects is preserved under R lim it
suffices to show that each K ⊗L

A Kn is derived complete. By assumption for all
f ∈ I there is an e such that fe is zero on K ⊗L

A Kn. Of course this implies that
T (K ⊗L

A Kn, f) = 0 and we win. □

Situation 15.91.15.0BKC Let A be a ring. Let I = (f1, . . . , fr) ⊂ A. Let K•
n =

K•(A, fn1 , . . . , fnr ) be the Koszul complex on fn1 , . . . , f
n
r viewed as a cochain com-

plex in degrees −r,−r + 1, . . . , 0. Using the functoriality of Lemma 15.28.3 we
obtain an inverse system

. . .→ K•
3 → K•

2 → K•
1

compatible with the inverse system H0(K•
n) = A/(fn1 , . . . , fnr ) and compatible with

the maps A→ K•
n.

A key feature of the discussion below will use that for m > n the map
K−p
m = ∧p(A⊕r)→ ∧p(A⊕r) = K−p

n

is given by multiplication by fm−n
i1

. . . fm−n
ip

on the basis element ei1 ∧ . . . ∧ eip .

Lemma 15.91.16.091Y In Situation 15.91.15. ForK ∈ D(A) the objectK ′ = R lim(K⊗L
A

K•
n) is derived complete with respect to I.

Proof. This is a special case of Lemma 15.91.14 because fni acts by an endomor-
phism of K•

n which is homotopic to zero by Lemma 15.28.6. □

Lemma 15.91.17.091Z In Situation 15.91.15. Let K ∈ D(A). The following are equiv-
alent

(1) K is derived complete with respect to I, and
(2) the canonical map K → R lim(K ⊗L

A K
•
n) is an isomorphism of D(A).

Proof. If (2) holds, thenK is derived complete with respect to I by Lemma 15.91.16.
Conversely, assume that K is derived complete with respect to I. Consider the
filtrations

K•
n ⊃ σ≥−r+1K

•
n ⊃ σ≥−r+2K

•
n ⊃ . . . ⊃ σ≥−1K

•
n ⊃ σ≥0K

•
n = A

by stupid truncations (Homology, Section 12.15). Because the constructionR lim(K⊗
E) is exact in the second variable (Lemma 15.87.11) we see that it suffices to show

R lim
(
K ⊗L

A (σ≥pK
•
n/σ≥p+1K

•
n)
)

= 0
for p < 0. The explicit description of the Koszul complexes above shows that

R lim
(
K ⊗L

A (σ≥pK
•
n/σ≥p+1K

•
n)
)

=
⊕

i1,...,i−p
T (K, fi1 . . . fi−p)

which is zero for p < 0 by assumption on K. □

Lemma 15.91.18.0920 In Situation 15.91.15. The functor which sends K ∈ D(A) to
the derived limit K ′ = R lim(K ⊗L

A K
•
n) is the left adjoint to the inclusion functor

Dcomp(A)→ D(A) constructed in Lemma 15.91.10.

First proof. The assignment K ⇝ K ′ is a functor and K ′ is derived complete with
respect to I by Lemma 15.91.16. By a formal argument (omitted) we see that it
suffices to show K → K ′ is an isomorphism if K is derived complete with respect
to I. This is Lemma 15.91.17. □

https://stacks.math.columbia.edu/tag/0BKC
https://stacks.math.columbia.edu/tag/091Y
https://stacks.math.columbia.edu/tag/091Z
https://stacks.math.columbia.edu/tag/0920
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Second proof. Denote K 7→ K∧ the adjoint constructed in Lemma 15.91.10. By
that lemma we have

K∧ = RHom
(

(A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr ),K
)

In Lemma 15.29.6 we have seen that the extended alternating Čech complex
A→

∏
i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr

is a colimit of the Koszul complexes Kn = K(A, fn1 , . . . , fnr ) sitting in degrees
0, . . . , r. Note that Kn is a finite chain complex of finite free A-modules with dual
(as in Lemma 15.74.15) RHomA(Kn, A) = Kn where Kn is the Koszul cochain
complex sitting in degrees −r, . . . , 0 (as usual). Thus it suffices to show that

RHomA(hocolimKn,K) = R lim(K ⊗L
A Kn)

This follows from Lemma 15.74.16. □

Lemma 15.91.19.0G1U A related result is
[DG02, Proposition
6.5]. The derived
Nakayama lemma
can for example be
found in Bhatt’s 3rd
lecture on Prismatic
cohomology at
Columbia University
in Fall 2018 as
Section 2 property
(2). Leonid
Positselski proposed
a proof in https:
//mathoverflow.
net/a/331501.
However, we follow
the proof suggested
by Anonymous in
the comments.

Let I be a finitely generated ideal of a ring A. Let K be a derived
complete object of D(A). If K ⊗L

A A/I = 0, then K = 0.
Proof. Choose generators f1, . . . , fr of I. DenoteKn the Koszul complex on fn1 , . . . , fnr
over A. Recall that Kn is bounded and that the cohomology modules of Kn are an-
nihilated by fn1 , . . . , fnr and hence by Inr. By Lemma 15.88.7 we see thatK⊗L

AKn =
0. Since K is derived complete by Lemma 15.91.18 we have K = R limK⊗L

AKn = 0
as desired. □

As an application of the relationship with the Koszul complex we obtain that derived
completion has finite cohomological dimension.
Lemma 15.91.20.0AAJ Let A be a ring and let I ⊂ A be an ideal which can be generated
by r elements. Then derived completion has finite cohomological dimension:

(1) Let K → L be a morphism in D(A) such that Hi(K) → Hi(L) is an
isomorphism for i ≥ 1 and surjective for i = 0. Then Hi(K∧)→ Hi(L∧)
is an isomorphism for i ≥ 1 and surjective for i = 0.

(2) Let K → L be a morphism of D(A) such that Hi(K) → Hi(L) is an
isomorphism for i ≤ −1 and injective for i = 0. Then Hi(K∧)→ Hi(L∧)
is an isomorphism for i ≤ −r − 1 and injective for i = −r.

Proof. Say I is generated by f1, . . . , fr. For any K ∈ D(A) by Lemma 15.91.18
we have K∧ = R limK ⊗L

A Kn where Kn is the Koszul complex on fn1 , . . . , f
n
r and

hence we obtain a short exact sequence
0→ R1 limHi−1(K ⊗L

A Kn)→ Hi(K∧)→ limHi(K ⊗L
A Kn)→ 0

by Lemma 15.87.4.
Proof of (1). Pick a distinguished triangle K → L→ C → K[1]. Then Hi(C) = 0
for i ≥ 0. Since Kn is sitting in degrees ≤ 0 we see that Hi(C⊗L

AKn) = 0 for i ≥ 0
and that H−1(C ⊗L

AKn) = H−1(C)⊗A A/(fn1 , . . . , fnr ) is a system with surjective
transition maps. The displayed equation above shows that Hi(C∧) = 0 for i ≥ 0.
Applying the distinguished triangle K∧ → L∧ → C∧ → K∧[1] we get (1).
Proof of (2). Pick a distinguished triangle K → L→ C → K[1]. Then Hi(C) = 0
for i < 0. Since Kn is sitting in degrees −r, . . . , 0 we see that Hi(C⊗L

AKn) = 0 for
i < −r. The displayed equation above shows that Hi(C∧) = 0 for i < r. Applying
the distinguished triangle K∧ → L∧ → C∧ → K∧[1] we get (2). □

https://stacks.math.columbia.edu/tag/0G1U
https://mathoverflow.net/a/331501
https://mathoverflow.net/a/331501
https://mathoverflow.net/a/331501
https://stacks.math.columbia.edu/tag/0AAJ
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Lemma 15.91.21.0BKD Let A be a ring and let I ⊂ A be a finitely generated ideal. Let
K• be a filtered complex of A-modules. There exists a canonical spectral sequence
(Er,dr)r≥1 of bigraded derived complete A-modules with dr of bidegree (r,−r+ 1)
and with

Ep,q1 = Hp+q((grpK•)∧)
If the filtration on each Kn is finite, then the spectral sequence is bounded and
converges to H∗((K•)∧).

Proof. By Lemma 15.91.10 we know that derived completion is given byRHomA(C,−)
for some C ∈ Db(A). By Lemmas 15.91.20 and 15.68.2 we see that C has finite pro-
jective dimension. Thus we may choose a bounded complex of projective modules
P • representing C. Then

M• = Hom•(P •,K•)
is a complex of A-modules representing (K•)∧. It comes with a filtration given
by F pM• = Hom•(P •, F pK•). We see that F pM• represents (F pK•)∧ and hence
grpM• represents (grK•)∧. Thus we find our spectral sequence by taking the
spectral sequence of the filtered complex M•, see Homology, Section 12.24. If the
filtration on each Kn is finite, then the filtration on each Mn is finite because P •

is a bounded complex. Hence the final statement follows from Homology, Lemma
12.24.11. □

Example 15.91.22.0BKE Let A be a ring and let I ⊂ A be a finitely generated ideal.
Let K• be a complex of A-modules. We can apply Lemma 15.91.21 with F pK• =
τ≤−pK

•. Then we get a bounded spectral sequence

Ep,q1 = Hp+q(H−p(K•)∧[p]) = H2p+q(H−p(K•)∧)

converging to Hp+q((K•)∧). After renumbering p = −j and q = i+2j we find that
for any K ∈ D(A) there is a bounded spectral sequence (E′

r, d
′
r)r≥2 of bigraded

derived complete modules with d′
r of bidegree (r,−r + 1), with

(E′
2)i,j = Hi(Hj(K)∧)

and converging to Hi+j(K∧).

Lemma 15.91.23.0924 Let A → B be a ring map. Let I ⊂ A be an ideal. The inverse
image of Dcomp(A, I) under the restriction functor D(B)→ D(A) is Dcomp(B, IB).

Proof. Using Lemma 15.91.2 we see that L ∈ D(B) is in Dcomp(B, IB) if and only
if T (L, f) is zero for every local section f ∈ I. Observe that the cohomology of
T (L, f) is computed in the category of abelian groups, so it doesn’t matter whether
we think of f as an element of A or take the image of f in B. The lemma follows
immediately from this and the definition of derived complete objects. □

Lemma 15.91.24.0925 Let A → B be a ring map. Let I ⊂ A be a finitely generated
ideal. If A→ B is flat and A/I ∼= B/IB, then the restriction functor D(B)→ D(A)
induces an equivalence Dcomp(B, IB)→ Dcomp(A, I).

Proof. Choose generators f1, . . . , fr of I. Denote Č•
A → Č•

B the quasi-isomorphism
of extended alternating Čech complexes of Lemma 15.89.4. Let K ∈ Dcomp(A, I).
Let I• be a K-injective complex of A-modules representing K. Since ExtnA(Af ,K)

https://stacks.math.columbia.edu/tag/0BKD
https://stacks.math.columbia.edu/tag/0BKE
https://stacks.math.columbia.edu/tag/0924
https://stacks.math.columbia.edu/tag/0925
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and ExtnA(Bf ,K) are zero for all f ∈ I and n ∈ Z (Lemma 15.91.1) we conclude
that Č•

A → A and Č•
B → B induce quasi-isomorphisms
I• = HomA(A, I•) −→ Tot(HomA(Č•

A, I
•))

and
HomA(B, I•) −→ Tot(HomA(Č•

B , I
•))

Some details omitted. Since Č•
A → Č•

B is a quasi-isomorphism and I• is K-injective
we conclude that HomA(B, I•) → I• is a quasi-isomorphism. As the complex
HomA(B, I•) is a complex of B-modules we conclude that K is in the image of the
restriction map, i.e., the functor is essentially surjective
In fact, the argument shows that F : Dcomp(A, I)→ Dcomp(B, IB), K 7→ HomA(B, I•)
is a left inverse to restriction. Finally, suppose that L ∈ Dcomp(B, IB). Represent
L by a K-injective complex J• of B-modules. Then J• is also K-injective as a
complex of A-modules (Lemma 15.56.1) hence F (restriction of L) = HomA(B, J•).
There is a map J• → HomA(B, J•) of complexes of B-modules, whose composition
with HomA(B, J•)→ J• is the identity. We conclude that F is also a right inverse
to restriction and the proof is finished. □

15.92. The category of derived complete modules

0GLN Let A be a ring and let I be an ideal. Denote C the category of derived complete
modules, see Definition 15.91.4. In this section we discuss some properties of this
category. In Examples, Section 110.11 we show that C isn’t a Grothendieck abelian
category in general.
By Lemma 15.91.6 the category C is abelian and the inclusion functor C → ModA
is exact.
Since Dcomp(A) ⊂ D(A) is closed under products (see discussion following Defini-
tion 15.91.4) and since products in D(A) are computed on the level of complexes,
we see that C has products which agree with products in ModA. Thus C in fact
has arbitrary limits and the inclusion functor C → ModA commutes with them, see
Categories, Lemma 4.14.11.
Assume I is finitely generated. Let ∧ : D(A)→ D(A) denote the derived completion
functor of Lemma 15.91.10. Let us show the functor

ModA −→ C, M 7−→ H0(M∧)
is a left adjoint to the inclusion functor C → ModA. Note that Hi(M∧) = 0 for
i > 0 for example by Lemma 15.91.20. Hence, if N is a derived complete A-module,
then we have

HomC(H0(M∧), N) = HomDcomp(A)(M∧, N)
= HomD(A)(M,N)
= HomA(M,N)

as desired.
Let T be a preordered set and let t 7→ Mt be a system of derived complete A-
modules, i.e., a system over T in C, see Categories, Section 4.21. Denote colimt∈T Mt

the colimit of the system in ModA. It follows formally from the above that
H0((colimt∈T Mt)∧)
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is the colimit of the system in C. In this way we see that C has all colimits.
In general the inclusion functor C → ModA will not commute with colimits, see
Examples, Section 110.11.

Lemma 15.92.1.0GLP Let A be a ring and let I ⊂ A be an ideal. The category C of
derived complete modules is abelian, has arbitrary limits, and the inclusion functor
F : C → ModA is exact and commutes with limits. If I is finitely generated, then
C has arbitrary colimits and F has a left adjoint

Proof. This summarizes the discussion above. □

15.93. Derived completion for a principal ideal

0BKF In this section we discuss what happens with derived completion when the ideal is
generated by a single element.

Lemma 15.93.1.091X Let A be a ring. Let f ∈ A. If there exists an integer c ≥ 1 such
that A[f c] = A[f c+1] = A[f c+2] = . . . (for example if A is Noetherian), then for all
n ≥ 1 there exist maps

(A fn−−→ A) −→ A/(fn), and A/(fn+c) −→ (A fn−−→ A)
in D(A) inducing an isomorphism of the pro-objects {A/(fn)} and {(fn : A→ A)}
in D(A).

Proof. The first displayed arrow is obvious. We can define the second arrow of the
lemma by the diagram

A/A[f c]
fn+c

//

fc

��

A

1
��

A
fn // A

Since the top horizontal arrow is injective the complex in the top row is quasi-
isomorphic to A/fn+cA. We omit the calculation of compositions needed to show
the statement on pro objects. □

Lemma 15.93.2.0923 Let A be a ring and f ∈ A. Set I = (f). In this situation we
have the naive derived completion K 7→ K ′ = R lim(K⊗L

AA/f
nA) and the derived

completion
K 7→ K∧ = R lim(K ⊗L

A (A fn−−→ A))
of Lemma 15.91.18. The natural transformation of functors K∧ → K ′ is an iso-
morphism if and only if the f -power torsion of A is bounded.

Proof. If the f -power torsion is bounded, then the pro-objects {(fn : A→ A)} and
{A/fnA} are isomorphic by Lemma 15.93.1. Hence the functors are isomorphic by
Lemma 15.86.11. Conversely, we see from Lemma 15.87.11 that the condition is
exactly that

R lim(K ⊗L
A A[fn])

is zero for all K ∈ D(A). Here the maps of the system (A[fn]) are given by
multiplication by f . Taking K = A and K =

⊕
i∈N A we see from Lemma 15.86.14

this implies (A[fn]) is zero as a pro-object, i.e., fn−1A[fn] = 0 for some n, i.e.,
A[fn−1] = A[fn], i.e., the f -power torsion is bounded. □

https://stacks.math.columbia.edu/tag/0GLP
https://stacks.math.columbia.edu/tag/091X
https://stacks.math.columbia.edu/tag/0923
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Example 15.93.3.09AT Let A be a ring. Let f ∈ A be a nonzerodivisor. An example to
keep in mind is A = Zp and f = p. Let M be an A-module. Claim: M is derived
complete with respect to f if and only if there exists a short exact sequence

0→ K → L→M → 0

where K,L are f -adically complete modules whose f -torsion is zero. Namely, if
there is a such a short exact sequence, then

M ⊗L
A (A fn−−→ A) = (K/fnK → L/fnL)

because f is a nonzerodivisor on K and L and we conclude that R lim(M⊗L
A (A fn−−→

A)) is quasi-isomorphic to K → L, i.e., M . This shows that M is derived complete
by Lemma 15.91.17. Conversely, suppose that M is derived complete. Choose a
surjection F → M where F is a free A-module. Since f is a nonzerodivisor on F
the derived completion of F is L = limF/fnF . Note that L is f -torsion free: if
(xn) with xn ∈ F represents an element ξ of L and fξ = 0, then xn = xn+1 + fnzn
and fxn = fnyn for some zn, yn ∈ F . Then fnyn = fxn = fxn+1 + fn+1zn =
fn+1yn+1 +fn+1zn and since f is a nonzerodivisor on F we see that yn ∈ fF which
implies that xn ∈ fnF , i.e., ξ = 0. Since L is the derived completion, the universal
property gives a map L → M factoring F → M . Let K = Ker(L → M) be the
kernel. Again K is f -torsion free, hence the derived completion of K is limK/fnK.
On the other hand, both M and L are derived complete, hence K is too by Lemma
15.91.6. It follows that K = limK/fnK and the claim is proved.

Example 15.93.4.0G3F Let p be a prime number. Consider the map Zp[x] → Zp[y] of
polynomial algebras sending x to py. Consider the cokernel M = Coker(Zp[x]∧ →
Zp[y]∧) of the induced map on (ordinary) p-adic completions. Then M is a derived
complete Zp-module by Proposition 15.91.5 and Lemma 15.91.6; see also discussion
in Example 15.93.3. However, M is not p-adically complete as 1 + py + p2y2 + . . .
maps to a nonzero element of M which is contained in

⋂
pnM .

Example 15.93.5.0BKG Let A be a ring and let f ∈ A. Denote K 7→ K∧ the derived
completion with respect to (f). Let M be an A-module. Using that

M∧ = R lim(M fn−−→M)

by Lemma 15.91.18 and using Lemma 15.87.4 we obtain

H−1(M∧) = limM [fn] = Tf (M)

the f -adic Tate module of M . Here the maps M [fn] → M [fn−1] are given by
multiplication by f . Then there is a short exact sequence

0→ R1 limM [fn]→ H0(M∧)→ limM/fnM → 0

describing H0(M∧). We have H1(M∧) = R1 limM/fnM = 0 as the transition
maps are surjective (Lemma 15.87.1). All the other cohomologies of M∧ are zero
for trivial reasons. Finally, for K ∈ D(A) and p ∈ Z there is a short exact sequence

0→ H0(Hp(K)∧)→ Hp(K∧)→ Tf (Hp+1(K))→ 0

This follows from the spectral sequence of Example 15.91.22 because it degener-
ates at E2 (as only i = −1, 0 give nonzero terms); the next lemma gives more
information.

https://stacks.math.columbia.edu/tag/09AT
https://stacks.math.columbia.edu/tag/0G3F
https://stacks.math.columbia.edu/tag/0BKG
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Lemma 15.93.6.0H32 Let A be a ring and let f ∈ A. Let K be an object of D(A).
Denote Kn = K ⊗L

A (A fn−−→ A). For all p ∈ Z there is a commutative diagram

0 0

0 // Ĥp(K) //

OO

limHp(Kn) //

OO

Tf (Hp+1(K)) // 0

0 // H0(Hp(K)∧) //

OO

Hp(K∧) //

OO

Tf (Hp+1(K)) // 0

R1 limHp(K)[fn]

OO

∼= // R1 limHp−1(Kn)

OO

0

OO

0

OO

with exact rows and columns where Ĥp(K) = limHp(K)/fnHp(K) is the usual
f -adic completion. The left vertical short exact sequence and the middle horizontal
short exact sequence are taken from Example 15.93.5 The middle vertical short
exact sequence is the one from Lemma 15.87.4.

Proof. To construct the top horizontal short exact sequence, observe that we have
the following inverse system short exact sequences

0→ Hp(K)/fnHp(K)→ Hp(Kn)→ Hp+1(K)[fn]→ 0

coming from the construction of Kn as a shift of the cone on fn : K → K. Taking
the inverse limit of these we obtain the top horizontal short exact sequence, see
Homology, Lemma 12.31.3.

Let us prove that we have a commutative diagram as in the lemma. We consider the
map L = τ≤pK → K. Setting Ln = L⊗L

A (A fn−−→ A) we obtain a map (Ln)→ (Kn)
of inverse systems which induces a map of short exact sequences

0 0

limHp(Ln) //

OO

limHp(Kn)

OO

Hp(L∧) //

OO

Hp(K∧)

OO

R1 limHp−1(Ln) //

OO

R1 limHp−1(Kn)

OO

0

OO

0

OO

https://stacks.math.columbia.edu/tag/0H32
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Since Hi(L) = 0 for i > p and Hp(L) = Hp(K), a computation using the refer-
ences in the statement of the lemma shows that Hp(L∧) = H0(Hp(K)∧) and that
Hp(Ln) = Hp(K)/fnHp(K). On the other hand, we have Hp−1(Ln) = Hp−1(Kn)
and hence we see that we get the isomorphism as indicated in the statement of
the lemma since we already know the kernel of H0(Hp(K)∧)→ Ĥp(K) is equal to
R1 limHp(K)[fn]. We omit the verification that the rightmost square in the dia-
gram commutes if we define the top row by the construction in the first paragraph
of the proof. □

Remark 15.93.7.0H33 With notation as in Lemma 15.93.6 we also see that the inverse
system Hp(Kn) has ML if and only if the inverse system Hp+1(K)[fn] has ML. This
follows from the inverse system of short exact sequences 0→ Hp(K)/fnHp(K)→
Hp(Kn) → Hp+1(K)[fn] → 0 (see proof of the lemma) combined with Homology,
Lemma 12.31.3 and Lemma 15.86.13.

Lemma 15.93.8 (Bhatt).0CQY Let I be a finitely generated ideal in a ring A. Let M be
a derived complete A-module. If M is an I-power torsion module, then InM = 0
for some n.

Proof. Say I = (f1, . . . , fr). It suffices to show that for each i there is an ni such
that fnii M = 0. Hence we may assume that I = (f) is a principal ideal. Let
B = Z[x]→ A be the ring map sending x to f . By Lemma 15.91.23 we see that M
is derived complete as a B-module with respect to the ideal (x). After replacing A
by B, we may assume that f is a nonzerodivisor in A.

Assume I = (f) with f ∈ A a nonzerodivisor. According to Example 15.93.3 there
exists a short exact sequence

0→ K
u−→ L→M → 0

where K and L are I-adically complete A-modules whose f -torsion is zero11. Con-
sider K and L as topological modules with the I-adic topology. Then u is contin-
uous. Let

Ln = {x ∈ L | fnx ∈ u(K)}
Since M is f -power torsion we see that L =

⋃
Ln. Let Nn be the closure of Ln

in L. By Lemma 15.36.4 we see that Nn is open in L for some n. Fix such an n.
Since fn+m : L → L is a continuous open map, and since fn+mLn ⊂ u(fmK) we
conclude that the closure of u(fmK) is open for all m ≥ 1. Thus by Lemma 15.36.5
we conclude that u is open. Hence f tL ⊂ Im(u) for some t and we conclude that
f t annihilates M as desired. □

Lemma 15.93.9.0G3G Let f ∈ A be an element of a ring. Set J =
⋂
fnA. Let M

be an A-module derived complete with respect to f . Then JM ′ = 0 where M ′ =
Ker(M → limM/fnM). In particular, if A is derived complete then J is an ideal
of square zero.

11For the proof it is enough to show that there exists a sequence K u−→ L → M → 0 where
K and L are I-adically complete A-modules. This can be shown by choosing a presentation
F1 → F0 →M → 0 with Fi free and then setting K and L equal to the f -adic completions of F1
and F0. Namely, as f is a nonzerodivisor these completions will be the derived completions and
the sequence will remain exact.

https://stacks.math.columbia.edu/tag/0H33
https://stacks.math.columbia.edu/tag/0CQY
https://stacks.math.columbia.edu/tag/0G3G


15.94. DERIVED COMPLETION FOR NOETHERIAN RINGS 1437

Proof. Take x ∈ M ′ and g ∈ J . For every n ≥ 1 we may write x = fnxn. Since g
is in fnA we see that the element yn = gxn in M ′ is independent of the choice of
xn. In particular, we may take xn = fxn+1 and we find that yn = fyn+1. Thus we
obtain a map Af →M sending 1/fn to yn. This map has to be zero as M is derived
complete (Lemma 15.91.1) and hence yn = 0 for all n. Since gx = gfx1 = fy1 this
completes the proof. □

Lemma 15.93.10.0G3H Let A be a ring derived complete with respect to an ideal I.
Then (A, I) is a henselian pair.
Proof. Let f ∈ I. By Lemma 15.11.15 it suffices to show that (A, fA) is a henselian
pair. Observe that A is derived complete with respect to fA (follows immediately
from Definition 15.91.4). By Lemma 15.91.3 the map from A to the f -adic comple-
tion A′ of A is surjective. By Lemma 15.11.4 the pair (A′, fA′) is henselian. Thus
it suffices to show that (A,

⋂
fnA) is a henselian pair, see Lemma 15.11.9. This

follows from Lemmas 15.93.9 and 15.11.2. □

Lemma 15.93.11.0G3I Let A be a ring derived complete with respect to an ideal I. Set
J =

⋂
In. If I can be generated by r elements then JN = 0 where N = 2r.

Proof. When r = 1 this is Lemma 15.93.9. Say I = (f1, . . . , fr) with r > 1. By
Lemma 15.91.6 the ring At = A/f trA is derived complete with respect to I and
hence a fortiori derived complete with respect to It = (f1, . . . , fr−1)At. Observe
that A → At sends J into Jt =

⋂
Int . By induction J

N/2
t = 0 with N = 2r. The

ideal
⋂

Ker(A→ At) =
⋂
f trA has square zero by the case r = 1. This finishes the

proof. □

Lemma 15.93.12.0G5V Let A be a reduced ring derived complete with respect to a
finitely generated ideal I. Then A is I-adically complete.
Proof. Follows from Lemma 15.93.11 and Proposition 15.91.5. □

15.94. Derived completion for Noetherian rings

0BKH Let A be a ring and let I ⊂ A be an ideal. For any K ∈ D(A) we can consider the
derived limit

K ′ = R lim(K ⊗L
A A/I

n)
This is a functor in K, see Remark 15.87.10. The system of maps A → A/In

induces a map K → K ′ and K ′ is derived complete with respect to I (Lemma
15.91.14). This “naive” derived completion construction does not agree with the
adjoint of Lemma 15.91.10 in general. For example, if A = Zp ⊕ Qp/Zp with
the second summand an ideal of square zero, K = A[0], and I = (p), then the
naive derived completion gives Zp[0], but the construction of Lemma 15.91.10 gives
K∧ ∼= Zp[1]⊕Zp[0] (computation omitted). Lemma 15.93.2 characterizes when the
two functors agree in the case I is generated by a single element.
The main goal of this section is the show that the naive derived completion is equal
to derived completion if A is Noetherian.
Lemma 15.94.1.0921 In Situation 15.91.15. If A is Noetherian, then the pro-objects
{K•

n} and {A/(fn1 , . . . , fnr )} of D(A) are isomorphic12.
12In particular, for every n there exists an m ≥ n such that K•

m → K•
n factors through the

map K•
m → A/(fm1 , . . . , fmr ).

https://stacks.math.columbia.edu/tag/0G3H
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Proof. We have an inverse system of distinguished triangles
τ≤−1K

•
n → K•

n → A/(fm1 , . . . , fmr )→ (τ≤−1K
•
n)[1]

See Derived Categories, Remark 13.12.4. By Derived Categories, Lemma 13.42.4
it suffices to show that the inverse system τ≤−1K

•
n is pro-zero. Recall that K•

n has
nonzero terms only in degrees i with −r ≤ i ≤ 0. Thus by Derived Categories,
Lemma 13.42.3 it suffices to show that Hp(K•

n) is pro-zero for p ≤ −1. In other
words, for every n ∈ N we have to show there exists an m ≥ n such that Hp(K•

m)→
Hp(K•

n) is zero. Since A is Noetherian, we see that

Hp(K•
n) = Ker(Kp

n → Kp+1
n )

Im(Kp−1
n → Kp

n)
is a finite A-module. Moreover, the map Kp

m → Kp
n is given by a diagonal matrix

whose entries are in the ideal (fm−n
1 , . . . , fm−n

r ) as p < 0. Note that Hp(K•
n) is

annihilated by J = (fn1 , . . . , fnr ), see Lemma 15.28.6. Now (fm−n
1 , . . . , fm−n

r ) ⊂ J t
for m−n ≥ tn. Thus by Algebra, Lemma 10.51.2 (Artin-Rees) applied to the ideal
J and the module M = Kp

n with submodule N = Ker(Kp
n → Kp+1

n ) for m large
enough the image of Kp

m → Kp
n intersected with Ker(Kp

n → Kp+1
n ) is contained in

J Ker(Kp
n → Kp+1

n ). For such m we get the zero map. □

Proposition 15.94.2.0922 Let A be a Noetherian ring. Let I ⊂ A be an ideal. The
functor which sends K ∈ D(A) to the derived limit K ′ = R lim(K ⊗L

A A/I
n) is

the left adjoint to the inclusion functor Dcomp(A) → D(A) constructed in Lemma
15.91.10.

Proof. Say (f1, . . . , fr) = I and let K•
n be the Koszul complex with respect to

fn1 , . . . , f
n
r . By Lemma 15.91.18 it suffices to prove that

R lim(K ⊗L
A K

•
n) = R lim(K ⊗L

A A/(fn1 , . . . , fnr )) = R lim(K ⊗L
A A/I

n).
By Lemma 15.94.1 the pro-objects {K•

n} and {A/(fn1 , . . . , fnr )} of D(A) are isomor-
phic. It is clear that the pro-objects {A/(fn1 , . . . , fnr )} and {A/In} are isomorphic.
Thus the map from left to right is an isomorphism by Lemma 15.87.12. □

Lemma 15.94.3.0EET Let I be an ideal of a Noetherian ring A. Let M be an A-module
with derived completion M∧. Then there are short exact sequences

0→ R1 lim TorAi+1(M,A/In)→ H−i(M∧)→ lim TorAi (M,A/In)→ 0
A similar result holds for M ∈ D−(A).

Proof. Immediate consequence of Proposition 15.94.2 and Lemma 15.87.4. □

As an application of the proposition above we identify the derived completion in
the Noetherian case for pseudo-coherent complexes.

Lemma 15.94.4.0A06 Let A be a Noetherian ring and I ⊂ A an ideal. Let K be
an object of D(A) such that Hn(K) a finite A-module for all n ∈ Z. Then the
cohomology modules Hn(K∧) of the derived completion are the I-adic completions
of the cohomology modules Hn(K).

Proof. The complex τ≤mK is pseudo-coherent for all m by Lemma 15.64.17. Thus
τ≤mK is represented by a bounded above complex P • of finite free A-modules.
Then τ≤mK⊗L

AA/I
n = P •/InP •. Hence (τ≤mK)∧ = R limP •/InP • (Proposition

15.94.2) and since the R lim is just given by termwise lim (Lemma 15.87.1) and
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since I-adic completion is an exact functor on finite A-modules (Algebra, Lemma
10.97.2) we conclude the result holds for τ≤mK. Hence the result holds for K as
derived completion has finite cohomological dimension, see Lemma 15.91.20. □

Lemma 15.94.5.09BA Let I be an ideal of a Noetherian ring A. Let M be a derived
complete A-module. If M/IM is a finite A/I-module, then M = limM/InM and
M is a finite A∧-module.

Proof. Assume M/IM is finite. Pick x1, . . . , xt ∈ M which map to generators
of M/IM . We obtain a map A⊕t → M mapping the ith basis vector to xi. By
Proposition 15.94.2 the derived completion of A is A∧ = limA/In. As M is derived
complete, we see that our map factors through a map q : (A∧)⊕t → M . The
module Coker(q) is zero by Lemma 15.91.7. Thus M is a finite A∧-module. Since
A∧ is Noetherian and complete with respect to IA∧, it follows that M is I-adically
complete (use Algebra, Lemmas 10.97.5, 10.96.11, and 10.51.2). □

Lemma 15.94.6.0EEU Let I be an ideal in a Noetherian ring A.
(1) If M is a finite A-module and N is a flat A-module, then the derived

I-adic completion of M ⊗A N is the usual I-adic completion of M ⊗A N .
(2) If M is a finite A-module and f ∈ A, then the derived I-adic completion

of Mf is the usual I-adic completion of Mf .

Proof. For an A-module M denote M∧ the derived completion and limM/InM the
usual completion. Assume M is finite. The system TorAi (M,A/In) is pro-zero for
i > 0, see Lemma 15.27.3. Since TorAi (M ⊗A N,A/In) = TorAi (M,A/In)⊗A N as
N is flat, the same is true for the system TorAi (M ⊗AN,A/In). By Lemma 15.94.3
we conclude R lim(M ⊗A N) ⊗L

A A/I
n only has cohomology in degree 0 given by

the usual completion limM ⊗A N/In(M ⊗A N). This proves (1). Part (2) follows
from (1) and the fact that Mf = M ⊗A Af . □

Lemma 15.94.7.0EEV Let I be an ideal in a Noetherian ring A. Let ∧ denote derived
completion with respect to I. Let K ∈ D−(A).

(1) If M is a finite A-module, then (K ⊗L
AM)∧ = K∧ ⊗L

AM .
(2) If L ∈ D(A) is pseudo-coherent, then (K ⊗L

A L)∧ = K∧ ⊗L
A L.

Proof. Let L be as in (2). We may represent K by a bounded above complex P •

of free A-modules. We may represent L by a bounded above complex F • of finite
free A-modules. Since Tot(P •⊗A F •) represents K ⊗L

A L we see that (K ⊗L
A L)∧ is

represented by
Tot((P •)∧ ⊗A F •)

where (P •)∧ is the complex whose terms are the usual = derived completions (Pn)∧,
see for example Proposition 15.94.2 and Lemma 15.94.6. This proves (2). Part (1)
is a special case of (2). □

15.95. An operator introduced by Berthelot and Ogus

0F7N In this section we discuss a construction introduced in [BO78, Section 8] and gen-
eralized in [BMS18, Section 6]. We urge the reader to look at the original papers
discussing this notion.
Let A be a ring and let f ∈ A be a nonzerodivisor. If M is a A-module then by
Lemma 15.88.3 following are equivalent
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(1) f is a nonzerodivisor on M ,
(2) M [f ] = 0,
(3) M [fn] = 0 for all n ≥ 1, and
(4) the map M →Mf is injective.

If these equivalent conditions hold, then (in this section) we will say M is f -torsion
free. If so, then we denote f iM ⊂Mf the submodule consisting of elements of the
form f ix with x ∈ M . Of course f iM is isomorphic to M as an A-module. Let
M• be a complex of f -torsion free A-modules with differentials di : M i → M i+1.
In this case we define ηfM• to be the complex with terms

(ηfM)i = {x ∈ f iM i | di(x) ∈ f i+1M i+1}

and differential induced by di. Observe that ηfM• is another complex of f -torsion
free A-modules. If a• : M• → N• is a map of complexes of f -torsion free A-modules,
then we obtain a map of complexes

ηfa
• : ηfM• −→ ηfN

•

induced by the maps f iM i → f iN i. The reader checks that we obtain an endo-
functor on the category of complexes of f -torsion free A-modules. If a•, b• : M• →
N• are two maps of complexes of f -torsion free A-modules and h = {hi : M i →
N i−1} is a homotopy between a• and b•, then we define ηfh to be the family of
maps (ηfh)i : (ηfM)i → (ηfN)i−1 which sends x to hi(x); this makes sense as
x ∈ f iM i implies hi(x) ∈ f iN i−1 which is certainly contained in (ηfN)i−1. The
reader checks that ηfh is a homotopy between ηfa• and ηfb•. All in all we see that
we obtain a functor

ηf : K(f -torsion free A-modules) −→ K(f -torsion free A-modules)

on the homotopy category (Derived Categories, Section 13.8) of the additive cate-
gory of f -torsion free A-modules. There is no sense in which ηf is an exact functor
of triangulated categories, see Example 15.95.1.

Example 15.95.1.0GSN Let A be a ring. Let f ∈ A be a nonzerodivisor. Consider
the functor ηf : K(f -torsion free A-modules)→ K(f -torsion free A-modules). Let
M• be a complex of f -torsion free A-modules. Multiplication by f defines an
isomorphism ηf (M•[1])→ (ηfM•)[1], so in this sense ηf is compatible with shifts.
However, consider the diagram

A
f
// A

1
// A // 0

0 //

OO

0 //

OO

A
−1 //

f

OO

A

OO

Think of each column as a complex of f -torsion free A-modules with the module on
top in degree 1 and the module under it in degree 0. Then this diagram provides
us with a distinguished triangle in K(f -torsion free A-modules) with triangulated
structure as given in Derived Categories, Section 13.10. Namely the third complex
is the cone of the map between the first two complexes. However, applying ηf to

https://stacks.math.columbia.edu/tag/0GSN
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each column we obtain
fA

f
// fA

1
// fA // 0

0 //

OO

0 //

OO

A
−1 //

f

OO

A

OO

However, the third complex is acyclic and even homotopic to zero. Hence if this
were a distinguished triangle, then the first arrow would have to be an isomorphism
in the homotopy category, which is not true unless f is a unit.

Lemma 15.95.2.0F7P Let A be a ring and let f ∈ A be a nonzerodivisor. Let M• be a
complex of f -torsion free A-modules. There is a canonical isomorphism

f i : Hi(M•)/Hi(M•)[f ] −→ Hi(ηfM•)
given by multiplication by f i.

Proof. Observe that Ker(di : (ηfM)i → (ηfM)i+1) is equal to Ker(di : f iM i →
f iM i+1) = f i Ker(di : M i → M i+1). This we get a surjection f i : Hi(M•) →
Hi(ηfM•) by sending the class of z ∈ Ker(di : M i →M i+1) to the class of f iz. If
we obtain the zero class in Hi(ηfM•) then we see that f iz = di−1(f i−1y) for some
y ∈ M i−1. Since f is a nonzerodivisor on all the modules involved, this means
fz = di−1(y) which exactly means that the class of z is f -torsion as desired. □

Lemma 15.95.3.0F7Q Let A be a ring and let f ∈ A be a nonzerodivisor. If M• → N•

is a quasi-isomorphism of complexes of f -torsion free A-modules, then the induced
map ηfM

• → ηfN
• is a quasi-isomorphism too.

Proof. This is true because the isomorphisms of Lemma 15.95.2 are compatible
with maps of complexes. □

Lemma 15.95.4.0F7R Let A be a ring and let f ∈ A be a nonzerodivisor. There is an
additive functor13 Lηf : D(A) → D(A) such that if M ∈ D(A) is represented by
a complex M• of f -torsion free A-modules, then LηfM = ηfM

• and similarly for
morphisms.

Proof. Denote T ⊂ ModA the full subcategory of f -torsion free A-modules. We
have a corresponding inclusion

K(T ) ⊂ K(ModA) = K(A)
of K(T ) as a full triangulated subcategory of K(A). Let S ⊂ Arrows(K(T )) be
the quasi-isomorphisms. We will apply Derived Categories, Lemma 13.5.8 to show
that the map

S−1K(T ) −→ D(A)
is an equivalence of triangulated categories. The lemma shows that it suffices
to prove: given a complex M• of A-modules, there exists a quasi-isomorphism
K• →M• with K• a complex of f -torsion free modules. By Lemma 15.59.10 we can
find a quasi-isomorphism K• →M• such that the complex K• is K-flat (we won’t
use this) and consists of flat A-modules Ki. In particular, f is a nonzerodivisor on
Ki for all i as desired.

13Beware that this functor isn’t exact, i.e., does not transform distinguished triangles into
distinguished triangles. See Example 15.95.1.
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With these preliminaries out of the way we can define Lηf . Namely, by the discus-
sion at the start of this section we have already a well defined functor

K(T ) ηf−→ K(T )→ K(A)→ D(A)

which according to Lemma 15.95.3 sends quasi-isomorphisms to quasi-isomorphisms.
Hence this functor factors over S−1K(T ) = D(A) by Categories, Lemma 4.27.8. □

Remark 15.95.5.0F7S Let A be a ring and let f ∈ A be a nonzerodivisor. Let M• be
a complex of f -torsion free A-modules. For every i set M i = M i/fM i. Denote
Bi ⊂ Zi ⊂ M

i the boundaries and cocycles for the differentials on the complex
M

• = M• ⊗A A/fA. We claim that there exists a commutative diagram

0 // Bi+1 // Bi+1 ⊕Bi //

s,s′

��

Bi //

��

0

0 // Bi+1 s // (ηfM)i/f(ηfM)i t // Zi // 0

with exact rows. Here are the constructions of the maps

(1) If x ∈ (ηfM)i then x = f ix′ with di(x′) = 0 in M
i+1. Hence we can

define the map t by sending x to the class of x′.
(2) If y ∈M i+1 has class y in Bi+1 ⊂M i+1 then we can write y = fy′ +di(x)

for y′ ∈ M i+1 and x ∈ M i. Hence we can define the map s sending y to
the class of f i+1x in (ηfM)i/f(ηfM)i; we omit the verification that this
is well defined.

(3) If x ∈ M i has class x in Bi ⊂ M
i then we can write x = fx′ + di−1(z)

for x′ ∈ M i and z ∈ M i−1. We define the map s′ by sending x to the
class of f idi−1(z) in (ηfM)i/f(ηfM)i. This is well defined because if
fx′ + di−1(z) = 0, then f ix′ is in (ηfM)i and consequently f idi−1(z) is
in f(ηfM)i.

We omit the verification that the lower row in the displayed diagram is a short
exact sequence of modules. It is immediately clear from these constructions that
we have commutative diagrams

Bi+1 ⊕Bi

s,s′

��

// Bi+2 ⊕Bi+1

s,s′

��
(ηfM)i/f(ηfM)i // (ηfM)i+1/f(ηfM)i+1

where the upper horizontal arrow is given by the identification of the summands
Bi+1 in source and target. In other words, we have found an acyclic subcomplex
of ηfM•/f(ηfM•) = ηfM

• ⊗A A/fA and the quotient by this subcomplex is a
complex whose terms Zi/Bi are the cohomology modules of the complex M

• =
M• ⊗A A/fA.

To explain the phenomenon observed in Remark 15.95.5 in a more canonical man-
ner, we are going to construct the Bockstein operators. Let A be a ring and let
f ∈ A be a nonzerodivisor. Let M• be a complex of f -torsion free A-modules. For
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every i ∈ Z there is a commutative diagram (with tensor products over A)

0 // M• ⊗ f i+1A //

��

M• ⊗ f iA //

��

M• ⊗ f iA/f i+1A // 0

0 // M• ⊗ f i+1A/f i+2A // M• ⊗ f iA/f i+2A // M• ⊗ f iA/f i+1A // 0

whose rows are short exact sequences of complexes. Of course these short exact
sequences for different i are all isomorphic to each other by suitably multiplying
with powers of f . The long exact sequence of cohomology of the bottom sequence
in particular determines the Bockstein operator

β = βi : Hi(M• ⊗ f iA/f i+1A)→ Hi+1(M• ⊗ f i+1A/f i+2A)

for all i ∈ Z. For later use we record here that by the commutative diagram above
there is a factorization

(15.95.5.1)0GSP

Hi(M• ⊗ f iA/f i+1A)
δ

//

β **

Hi+1(M• ⊗ f i+1A)

��
Hi+1(M• ⊗ f i+1A/f i+2A)

of the Bockstein operator where δ is the boundary operator coming from the top
row in the commutative diagram above. Let us show that we obtain a complex

(15.95.5.2)0GSQ H•(M•/f) =



. . .
↓

Hi−1(M• ⊗ f i−1A/f iA)
↓ β

Hi(M• ⊗ f iA/f i+1A)
↓ β

Hi+1(M• ⊗ f i+1A/f i+2A)
↓
. . .


i.e., that β ◦ β = 014. Namely, using the factorization (15.95.5.1) we see that it
suffices to show that

Hi+1(M•⊗ f i+1A)→ Hi+1(M•⊗ f i+1A/f i+2A) βi+1

−−−→ Hi+2(M•⊗ f i+2A/f i+3A)

is zero. This is true because the kernel of βi+1 consists of the cohomology classes
which can be lifted to Hi+1(M•⊗f i+1A/f i+3A) and those in the image of the first
map certainly can!

14An alternative is to argue that β occurs as the differential for the spectral sequence for
the complex (M•)f filtered by the subcomplexes f iM•. Yet another argument, which proves
something stronger, is to first consider the case M• = A. Here the short exact sequences 0 →
f i+1A/f i+2A→ f iA/f i+2A→ f iA/f i+1A→ 0 define maps βi : f iA/f i+1A→ f i+1A/f i+2A[1]
in D(A). Then one computes (arguing similarly to the text) that the composition f iA/f i+1A→
f i+1A/f i+2A[1]→ f i+2A/f i+3A[2] is zero inD(A). SinceM•⊗f iA/f i+1A = M•⊗Lf iA/f i+1A
by our assumption on M• having f -torsion free terms, we conclude the compostion

(M• ⊗ f iA/f i+1A)→ (M• ⊗ f i+1A/f i+2A)[1]→ (M• ⊗ f i+2A/f i+3A)[2]

in D(A) is zero as well.
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Lemma 15.95.6.0F7T Let A be a ring and let f ∈ A be a nonzerodivisor. Let M• be a
complex of f -torsion free A-modules. There is a canonical map of complexes

ηfM
• ⊗A A/fA −→ H•(M•/f)

which is a quasi-isomorphism where the right hand side is the complex (15.95.5.2).

Proof. Let x ∈ (ηfM)i. Then x = f ix′ ∈ f iM and di(x) = f i+1y ∈ f i+1M i+1.
Thus di maps x′⊗f i to zero in M i+1⊗f iA/f i+1A. All tensor products are over A
in this proof. Hence we may map x to the class of x′⊗ f i in Hi(M•⊗ f iA/f i+1A).
It is clear that this rule defines a map

(ηfM)i ⊗A/fA −→ Hi(M• ⊗ f iA/f i+1A)
of A/fA-modules. Observe that in the situation above, we may view x′ ⊗ f i as
an element of M i ⊗ f iA/f i+2A with differential di(x′ ⊗ f i) = y ⊗ f i+1. By the
construction of β above we find that β(x′ ⊗ f i) = y ⊗ f i+1 and we conclude that
our maps are compatible with differentials, i.e., we have a map of complexes.
To finish the proof, we observe that the construction given in the previous paragraph
agrees with the maps (ηfM)i⊗A/fA→ Zi/Bi discussed in Remark 15.95.5. Since
we have seen that the kernel of these maps is an acyclic subcomplex of ηfM•⊗A/fA,
the lemma is proved. □

Lemma 15.95.7.0F7Y Let A be a ring and let f ∈ A be a nonzerodivisor. Let M• be a
complex of f -torsion free A-modules. For i ∈ Z the following are equivalent

(1) Ker(di mod f2) surjects onto Ker(di mod f),
(2) β : Hi(M• ⊗A f iA/f i+1A)→ Hi+1(M• ⊗A f i+1A/f i+2A) is zero.

These equivalent conditions are implied by the condition Hi+1(M•)[f ] = 0.

Proof. The equivalence of (1) and (2) follows from the definition of β as the bound-
ary map on cohomology of a short exact sequence of complexes isomorphic to the
short exact sequence of complexes 0 → fM•/f2M• → M•/f2M• → M•/fM• →
0. If β ̸= 0, then Hi+1(M•)[f ] ̸= 0 because of the factorization (15.95.5.1). □

Lemma 15.95.8.0F7Z Let A be a ring and let f ∈ A be a nonzerodivisor. Let M• be a
complex of f -torsion free A-modules. If Ker(di mod f2) surjects onto Ker(di mod
f), then the canonical map

(1, di) : (ηfM)i/f(ηfM)i −→ f iM i/f i+1M i ⊕ f i+1M i+1/f i+2M i+1

identifies the left hand side with a direct sum of submodules of the right hand side.

Proof. With notation as in Remark 15.95.5 we define a map t−1 : Zi → (ηfM)i/f(ηfM)i.
Namely, for x ∈ M i with di(x) = f2y we send the class of x in Zi to the class of
f ix in (ηfM)i/f(ηfM)i. We omit the verification that this is well defined; the
assumption of the lemma exactly signifies that the domain of this operation is all of
Zi. Then t ◦ t−1 = idZi . Hence t−1 defines a splitting of the short exact sequence
in Remark 15.95.5 and the resulting direct sum decomposition

(ηfM)i/f(ηfM)i = Zi ⊕Bi+1

is compatible with the map displayed in the lemma. □

Lemma 15.95.9.0F7U Let A be a ring and let f, g ∈ A be nonzerodivisors. Let M•

be a complex of A-modules such that fg is a nonzerodivisor on all M i. Then
ηfηgM

• = ηfgM
•.

https://stacks.math.columbia.edu/tag/0F7T
https://stacks.math.columbia.edu/tag/0F7Y
https://stacks.math.columbia.edu/tag/0F7Z
https://stacks.math.columbia.edu/tag/0F7U
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Proof. The statement means that in degree i we obtain the same submodule of the
localization M i

fg = (M i
g)f . We omit the details. □

Lemma 15.95.10.0GSR Let A be a ring and let f ∈ A be a nonzerodivisor. Let A→ B
be a flat ring map and let g ∈ B the image of f . Let M• be a complex of f -torsion
free A-modules. Then g is a nonzerodivisor, M•⊗AB is a complex of g-torsion free
modules, and ηfM

• ⊗A B = ηg(M• ⊗A B).

Proof. Omitted. □

15.96. Perfect complexes and the eta operator

0F7V In this section we do some algebra to prepare for our version of Macpherson’s graph
construction, see More on Flatness, Section 38.44. We will use the ηf operator
introduced in Section 15.95.
Let A be a ring and let f ∈ A be a nonzerodivisor. Let M• be a bounded complex
of finite free A-modules. For each i let ri be the rank of M i and set
Ii(M•, f) = ideal generated by the ri × ri-minors of (f, di) : M i →M i ⊕M i+1

Observe that fri ∈ Ii(M•, f).

Lemma 15.96.1.0GSS Let A be a ring and let f ∈ A be a nonzerodivisor. Let M•

and N• be two bounded complexes of finite free A-modules representing the same
object of D(A). Then

fmIi(M•, f) = fnIi(N•, f)
as ideals of A for integers n,m ≥ 0 such that

m+
∑

j≥i
(−1)j−irk(M j) = n+

∑
j≥i

(−1)j−irk(N j)

Proof. It suffices to prove the equality after localization at every prime ideal of
A. Thus by Lemma 15.75.7 and an induction argument we omit we may assume
N• = M• ⊕Q• for some trivial complex Q•, i.e.,

Q• = . . .→ 0→ A
1−→ A→ 0→ . . .

where A is placed in degree j and j + 1. If j ̸= i − 1, i, i + 1 then we clearly have
equality Ii(M•, f) = Ii(N•, f) and m = n and we have the desired equality. If
j = i+ 1 then the maps

(f, di) : M i →M i ⊕M i+1 and (f, di, 0) : M i →M i ⊕M i+1 ⊕A
have the same nonzero minors hence in this case we also have Ii(M•, f) = Ii(N•, f)
and m = n. If j = i, then Ii(M•, f) is the ideal generated by the ri × ri-minors of

(f, di) : M i →M i ⊕M i+1

and Ii(N•, f) is the ideal generated by the (ri + 1)× (ri + 1)-minors of
(f ⊕ f, di ⊕ 1) : (M i ⊕A)→ (M i ⊕A)⊕ (M i+1 ⊕A)

With suitable choice of coordinates we see that the matrix of the second map is in
block form

T =
(
T1 0
0 T2

)
, T1 = matrix of first map, T2 =

(
f
1

)
With notation as in Lemma 15.8.1 we have I0(T2) = A, I1(T2) = A, Ip(T2) = 0
for p ≥ 2 and hence Iri+1(T ) = Iri+1(T1) + Iri(T1) = Iri(T1) which means that

https://stacks.math.columbia.edu/tag/0GSR
https://stacks.math.columbia.edu/tag/0GSS
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Ii(M•, f) = Ii(N•, f). We also have m = n so this finishes the case j = i. Finally,
say j = i−1. Then we see that m = n+1, thus we have to show that fIi(M•, f) =
Ii(N•, f). In this case Ii(M•, f) is the ideal generated by the ri × ri-minors of

(f, di) : M i →M i ⊕M i+1

and Ii(N•, f) is the ideal generated by the (ri + 1)× (ri + 1)-minors of

(f ⊕ f, di) : (M i ⊕A)→ (M i ⊕A)⊕M i+1

With suitable choice of coordinates we see that the matrix of the second map is in
block form

T =
(
T1 0
0 T2

)
, T1 = matrix of first map, T2 =

(
f
)

Arguing as above we find that indeed fIi(M•, f) = Ii(N•, f). □

Lemma 15.96.2.0GST Let f ∈ A be a nonzerodivisor of a ring A. Let u ∈ A be a unit. Let
M• be a bounded complex of finite free A-modules. Then Ii(M•, f) = Ii(M•, uf).

Proof. Omitted. □

Lemma 15.96.3.0GSU Let A→ B be a ring map. Let f ∈ A be a nonzerodivisor. Let M•

be a bounded complex of finite free A-modules. Assume f maps to a nonzerodivisor
g in B. Then Ii(M•, f)B = Ii(M• ⊗A B, g).

Proof. The minors of (f, di) : M i →M i ⊕M i+1 map to the corresponding minors
of (g, di) : M i ⊗A B →M i ⊗A B ⊕M i+1 ⊗A B. □

Lemma 15.96.4.0GSV Let A be a ring, let p ⊂ A be a prime ideal, and let f ∈ A
be a nonzerodivisor. Let M• be a bounded complex of finite free A-modules. If
Hi(M•)p is free for all i, then Ii(M•, f)p is a principal ideal and in fact generated
by a power of f for all i.

Proof. We may assume A is local with maximal ideal p by Lemma 15.96.3. We
may also replace M• with a quasi-isomorphic complex by Lemma 15.96.1. By
our assumption on the freeness of cohomology modules we see that M• is quasi-
isomorphic to the complex whose term in degree i is Hi(M•) with vanishing dif-
ferentials, see for example Derived Categories, Lemma 13.27.9. In other words, we
may assume the differentials in the complex M• are all zero. In this case it is clear
that Ii(M•, f) = (fri) is principal. □

Lemma 15.96.5.0F7W Let A be a ring and let f ∈ A be a nonzerodivisor. Let M•

be a bounded complex of finite free A-modules. Assume Ii(M•, f) is a principal
ideal. Then (ηfM)i is locally free of rank ri and the map (1, di) : (ηfM)i →
f iM i ⊕ f i+1M i+1 is the inclusion of a direct summand.

Proof. Choose a generator g for Ii(M•, f). Since fri ∈ Ii(M•, f) we see that
g divides a power of f . In particular g is a nonzerodivisor in A. The ri × ri-
minors of the map (f, di) : M i →M i ⊕M i+1 generate the ideal Ii(M•, f) and the
(ri + 1) × (ri + 1)-minors of (f, di) are zero: we may check this after localizing at
f where the rank of the map is equal to ri. Consider the surjection

M i ⊕M i+1 −→ Q = Coker(f, di)/g-torsion

https://stacks.math.columbia.edu/tag/0GST
https://stacks.math.columbia.edu/tag/0GSU
https://stacks.math.columbia.edu/tag/0GSV
https://stacks.math.columbia.edu/tag/0F7W
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By Lemma 15.8.9 the module Q is finite locally free of rank ri+1. Hence Q is f -
torsion free and we conclude the cokernel of (f, di) modulo f -power torsion is Q as
well.

Consider the complex of finite free A-modules

0→ f i+1M i 1,di−−→ f iM i ⊕ f i+1M i+1 di,−1−−−→ f iM i+1 → 0

which becomes split exact after localizing at f . The map (1, di) : f i+1M i →
f iM i ⊕ f i+1M i+1 is isomorphic to the map (f, di) : M i →M i ⊕M i+1 we studied
above. Hence the image

Q′ = Im(f iM i ⊕ f i+1M i+1 di,−1−−−→ f iM i+1)

is isomorphic to Q in particular projective. On the other hand, by construction of ηf
in Section 15.95 the image of the injective map (1, di) : (ηfM)i → f iM i⊕f i+1M i+1

is the kernel of (di,−1). We conclude that we obtain an isomorphism (ηfM)i⊕Q′ =
f iM i ⊕ f i+1M i+1 and we see that indeed ηfM i is finite locally free of rank ri and
that (1, di) is the inclusion of a direct summand. □

Lemma 15.96.6.0F7X Let A→ B be a ring map. Let f ∈ A be a nonzerodivisor. Let M•

be a bounded complex of finite free A-modules. Assume f maps to a nonzerodivisor
g in B and Ii(M•, f) is a principal ideal for all i ∈ Z. Then there is a canonical
isomorphism ηfM

• ⊗A B = ηg(M• ⊗A B).

Proof. Set N i = M i ⊗A B. Observe that f iM i ⊗A B = giN i as submodules of
(N i)g. The maps

(ηfM)i ⊗A B → giN i ⊗ gi+1N i+1 and (ηgN)i → giN i ⊗ gi+1N i+1

are inclusions of direct summands by Lemma 15.96.5. Since their images agree after
localizing at g we conclude. □

Lemma 15.96.7.0F80 LetA be a ring. LetM , N1, N2 be finite projectiveA-modules. Let
s : M → N1⊕N2 be a split injection. There exists a finitely generated ideal J ⊂ A
with the following property: a ring map A→ B factors through A/J if and only if
s⊗ idB identifies M ⊗AB with a direct sum of submodules of N1⊗AB⊕N2⊗AB.

Proof. Choose a splitting π : N1 ⊕N2 →M of s. Denote qi : N1 ⊕N2 → N1 ⊕N2
the projector onto Ni. Set pi = π ◦ qi ◦ s. Observe that p1 + p2 = idM . We claim
M is a direct sum of submodules of N1⊕N2 if and only if p1 and p2 are orthogonal
projectors. Thus J is the smallest ideal of A such that p1 ◦ p1 − p1, p2 ◦ p2 − p2,
p1 ◦ p2, and p2 ◦ p1 are contained in J ⊗A EndA(M). Some details omitted. □

Let A be a ring and let f ∈ A be a nonzerodivisor. Let M• be a bounded complex
of finite free A-modules. Assume the ideals Ii(M•, f) are principal for all i ∈ Z.
Then the maps

(1, di) : (ηfM)i/f(ηfM)i −→ f iM i/f i+1M i ⊕ f i+1M i+1/f i+2M i+1

are split injections by Lemma 15.96.5. Denote Ji(M•, f) ⊂ A/fA the finitely gen-
erated ideal of Lemma 15.96.7 corresponding to the split injection (1, di) displayed
above.

https://stacks.math.columbia.edu/tag/0F7X
https://stacks.math.columbia.edu/tag/0F80
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Lemma 15.96.8.0GSW Let A be a ring and let f ∈ A be a nonzerodivisor. Let M• and
N• be two bounded complexes of finite free A-modules representing the same object
in D(A). Assume Ii(M•, f) is a principal ideal for all i ∈ Z. Then Ji(M•, f) =
Ji(N•, f) as ideals in A/fA.

Proof. Observe that the fact that Ii(M•, f) is a principal ideal implies that Ii(M•, f)
is a principal ideal by Lemma 15.96.1 and hence the statement makes sense. As
in the proof of Lemma 15.96.1 we may assume N• = M• ⊕ Q• for some trivial
complex Q•, i.e.,

Q• = . . .→ 0→ A
1−→ A→ 0→ . . .

where A is placed in degree j and j + 1. Since ηf is compatible with direct sums,
we see that the map

(1, di) : (ηfN)i/f(ηfN)i −→ f iN i/f i+1N i ⊕ f i+1N i+1/f i+2N i+1

is the direct sum of the corresponding map for M• and for Q•. By the uni-
versal property defining the ideals in question, we conclude that Ji(N•, f) =
Ji(M•, f) + Ji(Q•, f). Hence it suffices to show that Ji(Q•, f) = 0 for all i. This
is a computation that we omit. □

Lemma 15.96.9.0F81 Let A be a ring and let f ∈ A be a nonzerodivisor. Let M• be
a bounded complex of finite free A-modules. Assume Ii(M•, f) is a principal ideal
for all i ∈ Z. Consider the ideal J(M•, f) =

∑
i Ji(M•, f) of A/fA. Consider the

set of prime ideals

E = {f ∈ p ⊂ A | Ker(di mod f2)p surjects onto Ker(di mod f)p for all i ∈ Z}
= {f ∈ p ⊂ A | the localizations βp of the Bockstein operators are zero}

Then we have
(1) J(M•, f) is finitely generated,
(2) A/fA→ C = (A/fA)/J(M•, f) is surjective of finite presentation,
(3) J(M•, f)p = 0 for p ∈ E,
(4) if f ∈ p and Hi(M•)p is free for all i ∈ Z, then p ∈ E, and
(5) the cohomology modules of ηfM• ⊗A C are finite locally free C-modules.

Proof. The equality in the definition of E follows from Lemma 15.95.7 and in
addition the final statement of that lemma implies part (4).

Part (1) is true because the ideals Ji(M•, f) are finitely generated and because
M• is bounded and hence Ji(M•, f) is zero for almost all i. Part (2) is just a
reformulation of part (1).

Proof of (3). By Lemma 15.96.5 we find that (ηfM)i is finite locally free of rank
ri for all i. Consider the map

(1, di) : (ηfM)i/f(ηfM)i −→ f iM i/f i+1M i ⊕ f i+1M i+1/f i+2M i+1

Pick p ∈ E. By Lemma 15.95.8 and the local freeness of the modules (ηfM)i we
may write (

(ηfM)i/f(ηfM)i
)
p

= (A/fA)⊕mi
p ⊕ (A/fA)⊕ni

p

compatible with the arrow (1, di) above. By the universal property of the ideal
Ji(M•, f) we conclude that Ji(M•, f)p = 0. Hence Ip = fAp for p ∈ E.

https://stacks.math.columbia.edu/tag/0GSW
https://stacks.math.columbia.edu/tag/0F81
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Proof of (5). Observe that the differential on ηfM• fits into a commutative diagram

(ηfM)i

��

// f iM i ⊕ f i+1M i+1(
0 1
0 0

)
��

(ηfM)i+1 // f i+1M i ⊕ f i+2M i+2

By construction, after tensoring with C, the modules on the left are direct sums of
direct summands of the summands on the right. Picture

(ηfM)i ⊗A C

��

Ki ⊕ Li //

��

f iM i ⊗A C ⊕ f i+1M i+1 ⊗A C(
0 1
0 0

)
��

(ηfM)i+1 ⊗A C Ki+1 ⊕ Li+1 // f i+1M i ⊗A C ⊕ f i+2M i+2 ⊗A C

where the horizontal arrows are compatible with direct sum decompositions as well
as inclusions of direct summands. It follows that the differential identifies Li with
a direct summand of Ki+1 and we conclude that the cohomology of ηfM•⊗A C in
degree i is the module Ki+1/Li which is finite projective as desired. □

15.97. Taking limits of complexes

09B6 In this section we discuss what happens when we have a “formal deformation” of a
complex and we take its limit. We will consider two cases

(1) we have a limit A = limAn of an inverse system of rings whose transition
maps are surjective with locally nilpotent kernels and objects Kn ∈ D(An)
which fit together in the sense that Kn = Kn+1 ⊗L

An+1
An, or

(2) we have a ring A, an ideal I, and objects Kn ∈ D(A/In) which fit together
in the sense that Kn = Kn+1 ⊗L

A/In+1 A/In.
Under additional hypotheses we can show thatK = R limKn reproduces the system
in the sense that Kn = K ⊗L

A An or Kn = K ⊗L
A A/I

n.

Lemma 15.97.1.0CQF Let A = limAn be a limit of an inverse system (An) of rings.
Suppose given Kn ∈ D(An) and maps Kn+1 → Kn in D(An+1). Assume

(1) the transition maps An+1 → An are surjective with locally nilpotent ker-
nels,

(2) K1 is pseudo-coherent, and
(3) the maps induce isomorphisms Kn+1 ⊗L

An+1
An → Kn.

Then K = R limKn is a pseudo-coherent object of D(A) and K ⊗L
A An → Kn is

an isomorphism for all n.

Proof. By assumption we can find a bounded above complex of finite free A1-
modules P •

1 representing K1, see Definition 15.64.1. By Lemma 15.75.4 we can, by
induction on n > 1, find complexes P •

n of finite free An-modules representing Kn

and maps P •
n → P •

n−1 representing the maps Kn → Kn−1 inducing isomorphisms
(!) of complexes P •

n ⊗An An−1 → P •
n−1. Thus K = R limKn is represented by

P • = limP •
n , see Lemma 15.87.1 and Remark 15.87.6. Since P in is a finite free

An-module for each n and A = limAn we see that P i is finite free of the same
rank as P i1 for each i. This means that K is pseudo-coherent. It also follows that
K ⊗L

A An is represented by P • ⊗A An = P •
n which proves the final assertion. □

https://stacks.math.columbia.edu/tag/0CQF
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Lemma 15.97.2.09AV Let A be a ring and I ⊂ A an ideal. Suppose given Kn ∈ D(A/In)
and maps Kn+1 → Kn in D(A/In+1). Assume

(1) A is I-adically complete,
(2) K1 is pseudo-coherent, and
(3) the maps induce isomorphisms Kn+1 ⊗L

A/In+1 A/In → Kn.
Then K = R limKn is a pseudo-coherent, derived complete object of D(A) and
K ⊗L

A A/I
n → Kn is an isomorphism for all n.

Proof. We already know that K is pseudo-coherent and that K ⊗L
A A/I

n → Kn is
an isomorphism for all n, see Lemma 15.97.1. Finally, K is derived complete by
Lemma 15.91.14. □

Lemma 15.97.3.0CQG [Bha16, Lemma 4.2]Let A = limAn be a limit of an inverse system (An) of rings.
Suppose given Kn ∈ D(An) and maps Kn+1 → Kn in D(An+1). Assume

(1) the transition maps An+1 → An are surjective with locally nilpotent ker-
nels,

(2) K1 is a perfect object, and
(3) the maps induce isomorphisms Kn+1 ⊗L

An+1
An → Kn.

Then K = R limKn is a perfect object of D(A) and K ⊗L
A An → Kn is an isomor-

phism for all n.
Proof. We already know that K is pseudo-coherent and that K ⊗L

AAn → Kn is an
isomorphism for all n by Lemma 15.97.1. Thus it suffices to show thatHi(K⊗L

Aκ) =
0 for i ≪ 0 and every surjective map A → κ whose kernel is a maximal ideal m,
see Lemma 15.77.3. Any element of A which maps to a unit in A1 is a unit in A
by Algebra, Lemma 10.32.4 and hence Ker(A → A1) is contained in the Jacobson
radical of A by Algebra, Lemma 10.19.1. Hence A → κ factors as A → A1 → κ.
Hence

K ⊗L
A κ = K ⊗L

A A1 ⊗L
A1
κ = K1 ⊗L

A1
κ

and we get what we want as K1 has finite tor dimension by Lemma 15.74.2. □

Lemma 15.97.4.09AW Let A be a ring and I ⊂ A an ideal. Suppose given Kn ∈ D(A/In)
and maps Kn+1 → Kn in D(A/In+1). Assume

(1) A is I-adically complete,
(2) K1 is a perfect object, and
(3) the maps induce isomorphisms Kn+1 ⊗L

A/In+1 A/In → Kn.
Then K = R limKn is a perfect, derived complete object of D(A) and K⊗L

AA/I
n →

Kn is an isomorphism for all n.
Proof. Combine Lemmas 15.97.3 and 15.97.2 (to get derived completeness). □

We do not know if the following lemma holds for unbounded complexes.
Lemma 15.97.5.09AU Let A be a ring and I ⊂ A an ideal. Suppose given Kn ∈ D(A/In)
and maps Kn+1 → Kn in D(A/In+1). If

(1) A is Noetherian,
(2) K1 is bounded above, and
(3) the maps induce isomorphisms Kn+1 ⊗L

A/In+1 A/In → Kn,
then K = R limKn is a derived complete object of D−(A) and K ⊗L

A A/I
n → Kn

is an isomorphism for all n.

https://stacks.math.columbia.edu/tag/09AV
https://stacks.math.columbia.edu/tag/0CQG
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https://stacks.math.columbia.edu/tag/09AU
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Proof. The object K of D(A) is derived complete by Lemma 15.91.14.
Suppose that Hi(K1) = 0 for i > b. Then we can find a complex of free A/I-
modules P •

1 representing K1 with P i1 = 0 for i > b. By Lemma 15.75.3 we can, by
induction on n > 1, find complexes P •

n of free A/In-modules representing Kn and
maps P •

n → P •
n−1 representing the maps Kn → Kn−1 inducing isomorphisms (!) of

complexes P •
n/I

n−1P •
n → P •

n−1.
Thus we have arrived at the situation where R limKn is represented by P • =
limP •

n , see Lemma 15.87.1 and Remark 15.87.6. The complexes P •
n are uni-

formly bounded above complexes of flat A/In-modules and the transition maps
are termwise surjective. Then P • is a bounded above complex of flat A-modules
by Lemma 15.27.4. It follows that K ⊗L

A A/I
t is represented by P • ⊗A A/It. We

have P • ⊗A A/It = limP •
n ⊗A A/It termwise by Lemma 15.27.4. The transition

maps P •
n+1 ⊗A A/It → P •

n ⊗A A/It are isomorphisms for n ≥ t by our choice of
P •
n , hence we have limP •

n ⊗A A/It = P •
t ⊗A A/It = P •

t . Since P •
t represents Kt,

we see that K ⊗L
A A/I

t → Kt is an isomorphism. □

Here is a different type of result.
Lemma 15.97.6 (Kollár-Kovács).0EGS Email from Kovacs

of 23/02/2018.
Let I be an ideal of a Noetherian ring A. Let

K ∈ D(A). Set Kn = K ⊗L
A A/I

n. Assume for all i ∈ Z we have
(1) Hi(K) is a finite A-module, and
(2) the system Hi(Kn) satisfies Mittag-Leffler.

Then limHi(K)/InHi(K) is equal to limHi(Kn) for all i ∈ Z.
Proof. Recall that K∧ = R limKn is the derived completion of K, see Proposition
15.94.2. By Lemma 15.94.4 we have Hi(K∧) = limHi(K)/InHi(K). By Lemma
15.87.4 we get short exact sequences

0→ R1 limHi−1(Kn)→ Hi(K∧)→ limHi(Kn)→ 0
The Mittag-Leffler condition guarantees that the left terms are zero (Lemma 15.87.1)
and we conclude the lemma is true. □

15.98. Some evaluation maps

0ATJ In this section we prove that certain canonical maps of RHom’s are isomorphisms
for suitable types of complexes.
Lemma 15.98.1.0A68 Let R be a ring. Let K,L,M be objects of D(R). the map

RHomR(L,M)⊗L
R K −→ RHomR(RHomR(K,L),M)

of Lemma 15.73.3 is an isomorphism in the following two cases
(1) K perfect, or
(2) K is pseudo-coherent, L ∈ D+(R), and M finite injective dimension.

Proof. Choose a K-injective complex I• representing M , a K-injective complex
J• representing L, and a bounded above complex of finite projective modules K•

representing K. Consider the map of complexes
Tot(Hom•(J•, I•)⊗R K•) −→ Hom•(Hom•(K•, J•), I•)

of Lemma 15.71.6. Note that(∏
p+r=t

HomR(J−r, Ip)
)
⊗R Ks =

∏
p+r=t

HomR(J−r, Ip)⊗R Ks

https://stacks.math.columbia.edu/tag/0EGS
https://stacks.math.columbia.edu/tag/0A68


15.98. SOME EVALUATION MAPS 1452

because Ks is finite projective. The map is given by the maps
cp,r,s : HomR(J−r, Ip)⊗R Ks −→ HomR(HomR(Ks, J−r), Ip)

which are isomorphisms as Ks is finite projective. For every element α = (αp,r,s)
of degree n of the left hand side, there are only finitely many values of s such that
αp,r,s is nonzero (for some p, r with n = p+r+s). Hence our map is an isomorphism
if the same vanishing condition is forced on the elements β = (βp,r,s) of the right
hand side. If K• is a bounded complex of finite projective modules, this is clear.
On the other hand, if we can choose I• bounded and J• bounded below, then βp,r,s
is zero for p outside a fixed range, for s≫ 0, and for r ≫ 0. Hence among solutions
of n = p+ r + s with βp,r,s nonzero only a finite number of s values occur. □

Lemma 15.98.2.0A69 Let R be a ring. Let K,L,M be objects of D(R). the map

RHomR(L,M)⊗L
R K −→ RHomR(RHomR(K,L),M)

of Lemma 15.73.3 is an isomorphism if the following three conditions are satisfied
(1) L,M have finite injective dimension,
(2) RHomR(L,M) has finite tor dimension,
(3) for every n ∈ Z the truncation τ≤nK is pseudo-coherent

Proof. Pick an integer n and consider the distinguished triangle
τ≤nK → K → τ≥n+1K → τ≤nK[1]

see Derived Categories, Remark 13.12.4. By assumption (3) and Lemma 15.98.1
the map is an isomorphism for τ≤nK. Hence it suffices to show that both

RHomR(L,M)⊗L
R τ≥n+1K and RHomR(RHomR(τ≥n+1K,L),M)

have vanishing cohomology in degrees ≤ n− c for some c. This follows immediately
from assumptions (2) and (1). □

Lemma 15.98.3.0ATK Let R be a ring. Let K,L,M be objects of D(R). The map

K ⊗L
R RHomR(M,L) −→ RHomR(M,K ⊗L

R L)
of Lemma 15.73.5 is an isomorphism in the following cases

(1) M perfect, or
(2) K is perfect, or
(3) M is pseudo-coherent, L ∈ D+(R), and K has tor amplitude in [a,∞].

Proof. Proof in case M is perfect. Note that both sides of the arrow transform
distinguished triangles in M into distinguished triangles and commute with direct
sums. Hence it suffices to check it holds when M = R[n], see Derived Categories,
Remark 13.36.7 and Lemma 15.78.1. In this case the result is obvious.
Proof in case K is perfect. Same argument as in the previous case.
Proof in case (3). We may represent K and L by bounded below complexes of
R-modules K• and L•. We may assume that K• is a K-flat complex consisting
of flat R-modules, see Lemma 15.66.4. We may represent M by a bounded above
complex M• of finite free R-modules, see Definition 15.64.1. Then the object on
the LHS is represented by

Tot(K• ⊗R Hom•(M•, L•))

https://stacks.math.columbia.edu/tag/0A69
https://stacks.math.columbia.edu/tag/0ATK
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and the object on the RHS by

Hom•(M•,Tot(K• ⊗R L•))

This uses Lemma 15.73.2. Both complexes have in degree n the module⊕
p+q+r=n

Kp ⊗HomR(M−r, Lq) =
⊕

p+q+r=n
HomR(M−r,Kp ⊗R Lq)

because M−r is finite free (as well these are finite direct sums). The map defined in
Lemma 15.73.5 comes from the map of complexes defined in Lemma 15.71.4 which
uses the canonical isomorphisms between these modules. □

Lemma 15.98.4.0BYQ Let R be a ring. Let P • be a bounded above complex of projective
R-modules. Let K• be a K-flat complex of R-modules. If P • is a perfect object of
D(R), then Hom•(P •,K•) is K-flat and represents RHomR(P •,K•).

Proof. The last statement is Lemma 15.73.2. Since P • represents a perfect object,
there exists a finite complex of finite projective R-modules F • such that P • and
F • are isomorphic in D(R), see Definition 15.74.1. Then P • and F • are homo-
topy equivalent, see Derived Categories, Lemma 13.19.8. Then Hom•(P •,K•) and
Hom•(F •,K•) are homotopy equivalent. Hence the first is K-flat if and only if the
second is (follows from Definition 15.59.1 and Lemma 15.58.2). It is clear that

Hom•(F •,K•) = Tot(E• ⊗R K•)

where E• is the dual complex to F • with terms En = HomR(F−n, R), see Lemma
15.74.15 and its proof. Since E• is a bounded complex of projectives we find that
it is K-flat by Lemma 15.59.7. Then we conclude by Lemma 15.59.4. □

15.99. Base change for derived hom

0E1V We have already seen some material discussing this in Lemma 15.65.4 and in Alge-
bra, Section 10.73.

Lemma 15.99.1.0E1W Let R→ R′ be a ring map. For K ∈ D(R) and M ∈ D(R′) there
is a canonical isomorphism

RHomR(K,M) = RHomR′(K ⊗L
R R

′,M)

Proof. Choose a K-injective complex of R′-modules J• representing M . Choose
a quasi-isomorphism J• → I• where I• is a K-injective complex of R-modules.
Choose a K-flat complex K• of R-modules representing K. Consider the map

Hom•(K• ⊗R R′, J•) −→ Hom•(K•, I•)

The map on degree n terms is given by the map∏
n=p+q

HomR′(K−q ⊗R R′, Jp) −→
∏

n=p+q
HomR(K−q, Ip)

coming from precomposing by K−q → K−q ⊗RR′ and postcomposing by Jp → Ip.
To finish the proof it suffices to show that we get isomorphisms on cohomology
groups:

HomD(R)(K,M) = HomD(R′)(K ⊗L
R R

′,M)
which is true because base change − ⊗L

R R
′ : D(R) → D(R′) is left adjoint to the

restriction functor D(R′)→ D(R) by Lemma 15.60.3. □

https://stacks.math.columbia.edu/tag/0BYQ
https://stacks.math.columbia.edu/tag/0E1W
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Let R→ R′ be a ring map. There is a base change map
(15.99.1.1)0E1X RHomR(K,M)⊗L

R R
′ −→ RHomR′(K ⊗L

R R
′,M ⊗L

R R
′)

in D(R′) functorial in K,M ∈ D(R). Namely, by adjointness of −⊗L
RR

′ : D(R)→
D(R′) and the restriction functor D(R′)→ D(R), this is the same thing as a map

RHomR(K,M) −→ RHomR′(K ⊗L
R R

′,M ⊗L
R R

′) = RHomR(K,M ⊗L
R R

′)
(equality by Lemma 15.99.1) for which we can use the canonical map M →M⊗L

RR
′

(unit of the adjunction).

Lemma 15.99.2.0A6A Let R → R′ be a ring map. Let K,M ∈ D(R). The map
(15.99.1.1)

RHomR(K,M)⊗L
R R

′ −→ RHomR′(K ⊗L
R R

′,M ⊗L
R R

′)
is an isomorphism in D(R′) in the following cases

(1) K is perfect,
(2) R′ is perfect as an R-module,
(3) R→ R′ is flat, K is pseudo-coherent, and M ∈ D+(R), or
(4) R′ has finite tor dimension as an R-module, K is pseudo-coherent, and

M ∈ D+(R)

Proof. We may check the map is an isomorphism after applying the restriction
functor D(R′)→ D(R). After applying this functor our map becomes the map

RHomR(K,L)⊗L
R R

′ −→ RHomR(K,L⊗L
R R

′)
of Lemma 15.73.5. See discussion above the lemma to match the left and right
hand sides; in particular, this uses Lemma 15.99.1. Thus we conclude by Lemma
15.98.3. □

15.100. Systems of modules

0EGT Let I be an ideal of a Noetherian ring A. In this section we add to our knowledge of
the relationship between finite modules over A and systems of finite A/In-modules.

Lemma 15.100.1.0EGU Let I be an ideal of a Noetherian ring A. Let K α−→ L
β−→M be

a complex of finite A-modules. Set H = Ker(β)/ Im(α). For n ≥ 0 let

K/InK
αn−−→ L/InL

βn−−→M/InM

be the induced complex. Set Hn = Ker(βn)/ Im(αn). Then there are canonical
A-module maps giving a commutative diagram

H

vv }} ��
. . . // H3 // H2 // H1

Moreover, there exists a c > 0 and canonical A-module maps Hn → H/In−cH for
n ≥ c such that the compositions

H/InH → Hn → H/In−cH and Hn → H/In−cH → Hn−c

are the canonical ones. Moreover, we have
(1) (Hn) and (H/InH) are isomorphic as pro-objects of ModA,

https://stacks.math.columbia.edu/tag/0A6A
https://stacks.math.columbia.edu/tag/0EGU
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(2) limHn = limH/InH,
(3) the inverse system (Hn) is Mittag-Leffler,
(4) the image of Hn+c → Hn is equal to the image of H → Hn,
(5) the composition IcHn → Hn → H/In−cH → Hn/I

n−cHn is the inclusion
IcHn → Hn followed by the quotient map Hn → Hn/I

n−cHn, and
(6) the kernel and cokernel of H/InH → Hn is annihilated by Ic.

Proof. Observe thatHn = β−1(InM)/ Im(α)+InL. For n ≥ 2 we have β−1(InM) ⊂
β−1(In−1M) and Im(α)+InL ⊂ Im(α)+In−1L. Thus we obtain our canonical map
Hn → Hn−1. Similarly, we have Ker(β) ⊂ β−1(InM) and Im(α) ⊂ Im(α) + InL
which produces the canonical map H → Hn. We omit the verification that the
diagram commutes.
By Artin-Rees we may choose c1, c2 ≥ 0 such that β−1(InM) ⊂ Ker(β) + In−c1L
for n ≥ c1 and Ker(β) ∩ InL ⊂ In−c2 Ker(β) for n ≥ c2, see Algebra, Lemmas
10.51.3 and 10.51.2. Set c = c1 + c2.
Let n ≥ c. We define ψn : Hn → H/In−cH as follows. Say x ∈ Hn. Choose
y ∈ β−1(InM) representing x. Write y = z + w with z ∈ Ker(β) and w ∈ In−c1L
(this is possible by our choice of c1). We set ψn(x) equal to the class of z in
H/In−cH. To see this is well defined, suppose we have a second set of choices
y′, z′, w′ as above for x with obvious notation. Then y′ − y ∈ Im(α) + InL, say
y′ − y = α(v) + u with v ∈ K and u ∈ InL. Thus

y′ = z′ + w′ = α(v) + u+ z + w ⇒ z′ = z + α(v) + u+ w − w′

Since β(z′ − z − α(v)) = 0 we find that u + w − w′ ∈ Ker(β) ∩ In−c1L which is
contained in In−c1−c2 Ker(β) = In−c Ker(β) by our choice of c2. Thus z′ and z
have the same image in H/In−cH as desired.
The composition H/InH → Hn → H/In−cH is the canonical map because if
z ∈ Ker(β) represents an element x in H/InH = Ker(β)/ Im(α) + In Ker(β) then
it is clear from the above that x maps to the class of z in H/In−cH under the maps
constructed above.
Let us consider the composition Hn → H/In−cH → Hn−c. Given x, y, z, w as in
the construction of ψn above, we see that x is mapped to the cass of z in Hn−c.
On the other hand, the canonical map Hn → Hn−c from the first paragraph of the
proof sends x to the class of y. Thus we have to show that y − z ∈ Im(α) + In−cL
which is the case because y − z = w ∈ In−c1L ⊂ In−cL.
Statements (1) – (4) are formal consequences of what we just proved. Namely,
(1) follows from the existence of the maps and the definition of morphisms of pro-
objects in Categories, Remark 4.22.5. Part (2) holds because isomorphic pro-objects
have isomorphic limits. Part (3) is immediate from part (4). Part (4) follows from
the factorization Hn+c → H/InH → Hn of the canonical map Hn+c → Hn.
Proof of part (5). Let x ∈ IcHn. Write x =

∑
fixi with xi ∈ Hn and fi ∈ Ic.

Choose yi, zi, wi as in the construction of ψn for xi. Then for the computation of
ψn of x we may choose y =

∑
fiyi, z =

∑
fizi and w =

∑
fiwi and we see that

ψn(x) is given by the class of z. The image of this in Hn/I
n−cHn is equal to the

class of y as w =
∑
fiwi is in InL. This proves (5).

Proof of part (6). Let y ∈ Ker(β) whose class is x in H. If x maps to zero in Hn,
then y ∈ InL + Im(α). Hence y − α(v) ∈ Ker(β) ∩ InL for some v ∈ K. Then
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y − α(v) ∈ In−c2 Ker(β) and hence the class of y in H/InH is annihilated by Ic2 .
Finally, let x ∈ Hn be the class of y ∈ β−1(InM). Then we write y = z + w with
z ∈ Ker(β) and w ∈ In−c1L as above. Clearly, if f ∈ Ic1 then fx is the class of
fy+ fw ≡ fy modulo Im(α) + InL and hence fx is the image of the class of fy in
H as desired. □

Lemma 15.100.2.0EGV Email from Kovacs
of 23/02/2018.

Let I be an ideal of a Noetherian ring A. Let K ∈ D(A) be
pseudo-coherent. Set Kn = K ⊗L

A A/I
n. Then for all i ∈ Z the system Hi(Kn)

satisfies Mittag-Leffler and limHi(K)/InHi(K) is equal to limHi(Kn).

Proof. We may represent K by a bounded above complex P • of finite free A-
modules. Then Kn is represented by P •/InP •. Hence the Mittag-Leffler property
by Lemma 15.100.1. The final statement follows then from Lemma 15.97.6. □

Lemma 15.100.3.0G9M Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let M• be
a bounded complex of finite A-modules. The inverse system of maps

M• ⊗L
A A/I

n −→M•/InM•

defines an isomorphism of pro-objects of D(A).

Proof. Say I = (f1, . . . , fr). Let Kn ∈ D(A) be the object represented by the
Koszul complex on fn1 , . . . , f

n
r . Recall that we have maps Kn → A/In which

induce a pro-isomorphism of inverse systems, see Lemma 15.94.1. Hence it suffices
to show that

M• ⊗L
A Kn −→M•/InM•

defines an isomorphism of pro-objects of D(A). Since Kn is represented by a com-
plex of finite free A-modules sitting in degrees −r, . . . , 0 there exist a, b ∈ Z such
that the source and target of the displayed arrow have vanishing cohomology in
degrees outside [a, b] for all n. Thus we may apply Derived Categories, Lemma
13.42.5 and we find that it suffices to show that the maps

Hi(M• ⊗L
A A/I

n)→ Hi(M•/InM•)
define isomorphisms of pro-systems of A-modules for any i ∈ Z. To see this choose
a quasi-isomorphism P • →M• where P • is a bounded above complex of finite free
A-modules. The arrows above are given by the maps

Hi(P •/InP •)→ Hi(M•/InM•)
These define an isomorphism of pro-systems by Lemma 15.100.1. Namely, the
lemma shows both are isomorphic to the pro-systemHi/InHi withHi = Hi(M•) =
Hi(P •). □

Lemma 15.100.4.09BB Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let M , N
be finite A-modules. Set Mn = M/InM and Nn = N/InN . Then

(1) the systems (HomA(Mn, Nn)) and (IsomA(Mn, Nn)) are Mittag-Leffler,
(2) there exists a c ≥ 0 such that the kernels and cokernels of

HomA(M,N)/In HomA(M,N)→ HomA(Mn, Nn)
are killed by Ic for all n,

(3) we have lim HomA(Mn, Nn) = HomA(M,N)∧ = HomA∧(M∧, N∧)
(4) lim IsomA(Mn, Nn) = IsomA∧(M∧, N∧).

Here ∧ denotes usual I-adic completion.

https://stacks.math.columbia.edu/tag/0EGV
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Proof. Note that HomA(Mn, Nn) = HomA(M,Nn). Choose a presentation

A⊕t → A⊕s →M → 0

Applying the right exact functor HomA(−, N) we obtain a complex

0 α−→ N⊕s β−→ N⊕t

whose cohomology in the middle is HomA(M,N) and such that for n ≥ 0 the
cohomology of

0 αn−−→ N⊕s
n

βn−−→ N⊕t
n

is HomA(Mn, Nn). Let c ≥ 0 be as in Lemma 15.100.1 for this A, I, α, and β. By
part (3) of the lemma we deduce the Mittag-Leffler property for (HomA(Mn, Nn)).
The kernel and cokernel of the maps HomA(M,N)/In HomA(M,N)→ HomA(Mn, Nn)
are killed by Ic by [art part (6) of the lemma. We find that lim HomA(Mn, Nn) =
HomA(M,N)∧ by part (2) of the lemma. The equality

HomA∧(M∧, N∧) = lim HomA(Mn, Nn)

follows formally from the fact that M∧ = limMn and Mn = M∧/InM∧ and the
corresponding facts for N , see Algebra, Lemma 10.97.4.

The result for isomorphisms follows from the case of homomorphisms applied to
both (Hom(Mn, Nn)) and (Hom(Nn,Mn)) and the following fact: for n > m > 0,
if we have maps α : Mn → Nn and β : Nn → Mn which induce an isomorphisms
Mm → Nm and Nm → Mm, then α and β are isomorphisms. Namely, then α ◦ β
is surjective by Nakayama’s lemma (Algebra, Lemma 10.20.1) hence α ◦ β is an
isomorphism by Algebra, Lemma 10.16.4. □

Lemma 15.100.5.09BC Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let M , N
be finite A-modules. Set Mn = M/InM and Nn = N/InN . If Mn

∼= Nn for all n,
then M∧ ∼= N∧ as A∧-modules.

Proof. By Lemma 15.100.4 the system (IsomA(Mn, Nn)) is Mittag-Leffler. By as-
sumption each of the sets IsomA(Mn, Nn) is nonempty. Hence lim IsomA(Mn, Nn)
is nonempty. Since lim IsomA(Mn, Nn) = IsomA∧(M∧, N∧) we obtain an isomor-
phism. □

Remark 15.100.6.0EGW Let I be an ideal of a Noetherian ring A. Set An = A/In for
n ≥ 1. Consider the following category:

(1) An object is a sequence {En}n≥1 where En is a finite An-module.
(2) A morphism {En} → {E′

n} is given by maps

φn : IcEn −→ E′
n/E

′
n[Ic] for n ≥ c

where E′
n[Ic] is the torsion submodule (Section 15.88) up to equivalence:

we say (c, φn) is the same as (c+1, φn) where φn : Ic+1En −→ E′
n/E

′
n[Ic+1]

is the induced map.
Composition of (c, φn) : {En} → {E′

n} and (c′, φ′
n) : {E′

n} → {E′′
n} is defined by

the obvious compositions

Ic+c
′
En → Ic

′
E′
n/E

′
n[Ic]→ E′′

n/E
′′
n[Ic+c

′
]

for n ≥ c+ c′. We omit the verification that this is a category.

https://stacks.math.columbia.edu/tag/09BC
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Lemma 15.100.7.0EGX A morphism (c, φn) of the category of Remark 15.100.6 is an
isomorphism if and only if there exists a c′ ≥ 0 such that Ker(φn) and Coker(φn)
are Ic′ -torsion for all n≫ 0.

Proof. We may and do assume c′ ≥ c and that the Ker(φn) and Coker(φn) are
Ic

′ -torsion for all n. For n ≥ c′ and x ∈ Ic′
E′
n we can choose y ∈ IcEn with x =

φn(y) mod E′
n[Ic] as Coker(φn) is annihilated by Ic′ . Set ψn(x) equal to the class

of y in En/En[Ic′ ]. For a different choice y′ ∈ IcEn with x = φn(y′) mod E′
n[Ic]

the difference y − y′ maps to zero in E′
n/E

′
n[Ic] and hence is annihilated by Ic′ in

IcEn. Thus the maps ψn : Ic′
E′
n → En/En[Ic′ ] are well defined. We omit the

verification that (c′, ψn) is the inverse of (c, φn) in the category. □

Lemma 15.100.8.0EGY Email
correspondence
between Janos
Kollar, Sandor
Kovacs, and Johan
de Jong of
23/02/2018.

Let I be an ideal of the Noetherian ring A. Let M and N be
finite A-modules. Write An = A/In, Mn = M/InM , and Nn = N/InN . For every
i ≥ 0 the objects

{ExtiA(M,N)/In ExtiA(M,N)}n≥1 and {ExtiAn(Mn, Nn)}n≥1

are isomorphic in the category C of Remark 15.100.6.

Proof. Choose a short exact sequence

0→ K → A⊕r →M → 0

and set Kn = K/InK. For n ≥ 1 define K(n) = Ker(A⊕r
n →Mn) so that we have

exact sequences

0→ K(n)→ A⊕r
n →Mn → 0

and surjections Kn → K(n). In fact, by Lemma 15.100.1 there is a c ≥ 0 and
maps K(n) → Kn/I

n−cKn which are “almost inverse”. Since In−cKn ⊂ Kn[Ic]
these maps which witness the fact that the systems {K(n)}n≥1 and {Kn}n≥1 are
isomorphic in C.

We claim the systems

{ExtiAn(K(n), Nn)}n≥1 and {ExtiAn(Kn, Nn)}n≥1

are isomorphic in the category C. Namely, the surjective maps Kn → K(n) have
kernels annihilated by Ic and therefore determine maps

ExtiAn(K(n), Nn)→ ExtiAn(Kn, Nn)

whose kernel and cokernel are annihilated by Ic. Hence the claim by Lemma
15.100.7.

For i ≥ 2 we have isomorphisms

Exti−1
A (K,N) = ExtiA(M,N) and Exti−1

An
(K(n), Nn) = ExtiAn(Mn, Nn)

In this way we see that it suffices to prove the lemma for i = 0, 1.

https://stacks.math.columbia.edu/tag/0EGX
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For i = 0, 1 we consider the commutative diagram

0 // Hom(M,N) //

��

N⊕r
φ
//

��

Hom(K,N) //

��

Ext1(M,N) // 0

Hom(Kn, Nn)

0 // Hom(Mn, Nn) // N⊕r
n

// Hom(K(n), Nn) //

OO

Ext1(Mn, Nn) // 0

By Lemma 15.100.4 we see that the kernel and cokernel of Hom(M,N)/In Hom(M,N)→
Hom(Mn, Nn) and Hom(K,N)/In Hom(K,N)→ Hom(Kn, Nn) and are Ic-torsion
for some c ≥ 0 independent of n. Above we have seen the cokernel of the injec-
tive maps Hom(K(n), Nn) → Hom(Kn, Nn) are annihilated by Ic after possibly
increasing c. For such a c we obtain maps δn : Ic Hom(K,N)/In Hom(K,N) →
Hom(K(n), Nn) fitting into the diagram (precise formulation omitted). The kernel
and cokernel of δn are annihilated by Ic after possibly increasing c since we know
that the same thing is true for Hom(K,N)/In Hom(K,N) → Hom(Kn, Nn) and
Hom(K(n), Nn) → Hom(Kn, Nn). Then we can use commutativity of the solid
diagram

φ−1(Ic Hom(K,N))
φ
//

��

Ic Hom(K,N)/In Hom(K,N) //

δn

��

Ic Ext1(M,N)/In Ext1(M,N) //

��

0

N⊕r
n

// Hom(K(n), Nn) // Ext1(Mn, Nn) // 0

to define the dotted arrow. A straightforward diagram chase (omitted) shows that
the kernel and cokernel of the dotted arrow are annihilated buy Ic after possibly
increasing c one final time. □

Remark 15.100.9.0EGZ The awkwardness in the statement of Lemma 15.100.8 is partly
due to the fact that there are no obvious maps between the modules ExtiAn(Mn, Nn)
for varying n. What we may conclude from the lemma is that there exists a c ≥ 0
such that for m≫ n≫ 0 there are (canonical) maps

Ic ExtiAn(Mm, Nm)/In ExtiAn(Mm, Nm)→ ExtiAn(Mn, Nn)/ExtiAn(Mn, Nn)[Ic]
whose kernel and cokernel are annihilated by Ic. This is the (weak) sense in which
we get a system of modules.

Example 15.100.10.0EH2 Let k be a field. Let A = k[[x, y]]/(xy). By abuse of notation
we denote x and y the images of x and y in A. Let I = (x). Let M = A/(y). There
is a free resolution

. . .→ A
y−→ A

x−→ A
y−→ A→M → 0

We conclude that
Ext2

A(M,N) = N [y]/xN
where N [y] = Ker(y : N → N). We denote An = A/In, Mn = M/InM , and
Nn = N/InN . For each n we have a free resolution

. . .→ A⊕2
n

y,xn−1

−−−−→ An
x−→ An

y−→ An →Mn → 0

https://stacks.math.columbia.edu/tag/0EGZ
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We conclude that
Ext2

An(Mn, Nn) = (Nn[y] ∩Nn[xn−1])/xNn
where Nn[y] = Ker(y : Nn → Nn) and N [xn−1] = Ker(xn−1 : Nn → Nn). Take
N = A/(y). Then we see that

Ext2
A(M,N) = N [y]/xN = N/xN ∼= k

but
Ext2

An(Mn, Nn) = (Nn[y] ∩Nn[xn−1])/xNn = Nn[xn−1]/xNn = 0
for all r because Nn = k[x]/(xn) and the sequence

Nn
x−→ Nn

xn−1

−−−→ Nn

is exact. Thus ignoring some kind of I-power torsion is necessary to get a result as
in Lemma 15.100.8.

Lemma 15.100.11.0EH0 Email
correspondence
between Janos
Kollar, Sandor
Kovacs, and Johan
de Jong of
23/02/2018.

Let A → B be a flat homomorphism of Noetherian rings. Let
I ⊂ A be an ideal. Let M,N be A-modules. Set Bn = B/InB, Mn = M/InM ,
Nn = N/InN . If M is flat over A, then we have

lim ExtiB(M,N)/In ExtiB(M,N) = lim ExtiBn(Mn, Nn)
for all i ∈ Z.

Proof. Choose a resolution
. . .→ P2 → P1 → P0 →M → 0

by finite free B-modues Pi. Set Pi,n = Pi/I
nPi. Since M and B are flat over A,

the sequence
. . .→ P2,n → P1,n → P0,n →Mn → 0

is exact. We see that on the one hand the complex
HomB(P0, N)→ HomB(P1, N)→ HomB(P2, N)→ . . .

computes the modules ExtiB(M,N) and on the other hand the complex
HomBn(P0,n, Nn)→ HomBn(P1,n, Nn)→ HomBn(P2,n, Nn)→ . . .

computes the modules ExtiBn(Mn, Nn). Since
HomBn(Pi,n, Nn) = HomB(Pi, N)/In HomB(Pi, N)

we obtain the result from Lemma 15.100.1 part (2). □

15.101. Systems of modules, bis

0G3J Let I be an ideal of a Noetherian ring A. In Section 15.100 we considered what
happens when considering systems of the form M/InM for finite A-modules M . In
this section we consider the systems InM instead.

Lemma 15.101.1.0G3K Let I be an ideal of a Noetherian ring A. Let K α−→ L
β−→M be

a complex of finite A-modules. Set H = Ker(β)/ Im(α). For n ≥ 0 let

InK
αn−−→ InL

βn−−→ InM

be the induced complex. Set Hn = Ker(βn)/ Im(αn). Then there are canonical
A-module maps

. . .→ H3 → H2 → H1 → H

https://stacks.math.columbia.edu/tag/0EH0
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There exists a c > 0 such that for n ≥ c the image of Hn → H is contained in In−cH
and there is a canonical A-module map InH → Hn−c such that the compositions

InH → Hn−c → In−2cH and Hn → In−cH → Hn−2c

are the canonical ones. In particular, the inverse systems (Hn) and (InH) are
isomorphic as pro-objects of ModA.

Proof. We have Hn = Ker(β)∩InL/α(InK). Since Ker(β)∩InL ⊂ Ker(β)∩In−1L
and α(InK) ⊂ α(In−1K) we get the maps Hn → Hn−1. Similarly for the map
H1 → H.

By Artin-Rees we may choose c1, c2 ≥ 0 such that Im(α) ∩ InL ⊂ α(In−c1K) for
n ≥ c1 and Ker(β) ∩ InL ⊂ In−c2 Ker(β) for n ≥ c2, see Algebra, Lemmas 10.51.3
and 10.51.2. Set c = c1 + c2.

It follows immediately from our choice of c ≥ c2 that for n ≥ c the image of Hn → H
is contained in In−cH.

Let n ≥ c. We define ψn : InH → Hn−c as follows. Say x ∈ InH. Choose
y ∈ In Ker(β) representing x. We set ψn(x) equal to the class of y in Hn−c. To
see this is well defined, suppose we have a second choice y′ as above for x. Then
y′− y ∈ Im(α). By our choice of c ≥ c1 we conclude that y′− y ∈ α(In−cK) which
implies that y and y′ represent the same element of Hn−c. Thus ψn is well defined.

The statements on the compositions InH → Hn−c → In−2cH and Hn → In−cH →
Hn−2c follow immediately from our definitions. □

Lemma 15.101.2.0G3L Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let M , N
be A-modules with M finite. For each p > 0 there exists a c ≥ 0 such that for n ≥ c
the map ExtpA(M,N) → ExtpA(InM,N) factors through ExtpA(InM, In−cN) →
ExtpA(InM,N).

Proof. For p = 0, if φ : M → N is an A-linear map, then φ(
∑
fimi) =

∑
fiφ(mi)

for fi ∈ A and mi ∈ M . Hence φ induces a map InM → InN for all n and the
result is true with c = 0.

Choose a short exact sequence 0 → K → A⊕t → M → 0. For each n we pick
a short exact sequence 0 → Ln → A⊕sn → InM → 0. It is clear that we can
construct a map of short exact sequences

0 // Ln //

��

A⊕sn //

��

InM //

��

0

0 // K // A⊕t // M // 0

such that A⊕sn → A⊕t has image in (In)⊕t. By Artin-Rees (Algebra, Lemma
10.51.2) there exists a c ≥ 0 such that Ln → K factors through In−cK if n ≥ c.

https://stacks.math.columbia.edu/tag/0G3L
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For p = 1 our choices above induce a solid commutative diagram

HomA(A⊕sn , N) // HomA(Ln, N) // Ext1
A(InM,N) // 0

HomA((In)⊕t, In−cN) //

OO

HomA(K ∩ (In)⊕t, In−cN) //

OO

Ext1
A(InM, In−cN)

OO

HomA(A⊕t, N) //

OO

HomA(K,N) //

OO

Ext1
A(M,N)

OO

// 0

whose horizontal arrows are exact. The lower middle vertical arrow arises because
K ∩ (In)⊕t ⊂ In−cK and hence any A-linear map K → N induces an A-linear
map (In)⊕t → In−cN by the argument of the first paragraph. Thus we obtain the
dotted arrow as desired.

For p > 1 we obtain a commutative diagram

Extp−1
A (In−cK,N) // Extp−1

A (Ln, N) // ExtpA(InM,N)

Extp−1
A (K,N) //

OO

ExtpA(M,N)

OO

whose bottom horizontal arrow is an isomorphism. By induction on p the left verti-
cal map factors through Extp−1

A (In−cK, In−c−c′
N) for some c′ ≥ 0 and all n ≥ c+

c′. Using the composition Extp−1
A (In−cK, In−c−c′

N) → Extp−1
A (Ln, In−c−c′

N) →
ExtpA(InM, In−c−c′

N) we obtain the desired factorization (for n ≥ c+ c′ and with
c replaced by c+ c′). □

Lemma 15.101.3.0927 Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let M , N
be A-modules with M finite and N annihilated by a power of I. For each p > 0
there exists an n such that the map ExtpA(M,N)→ ExtpA(InM,N) is zero.

Proof. Immediate consequence of Lemma 15.101.2 and the fact that ImN = 0 for
some m > 0. □

Lemma 15.101.4.0DYI Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let
K ∈ D(A) be pseudo-coherent and let M be a finite A-module. For each p ∈ Z
there exists an c such that the image of ExtpA(K, InM)→ ExtpA(K,M) is contained
in In−c ExtpA(K,M) for n ≥ c.

Proof. Choose a bounded above complex P • of finite free A-modules representing
K. Then ExtpA(K,M) is the cohomology of

HomA(F−p+1,M) a−→ HomA(F−p,M) b−→ HomA(F−p−1,M)

and ExtpA(K, InM) is computed by replacing these finite A-modules by In times
themselves. Thus the result by Lemma 15.101.1 (and much more is true). □

In Situation 15.91.15 we define complexes I•
n such that we have distinguished tri-

angles
I•
n → A→ K•

n → I•
n[1]

https://stacks.math.columbia.edu/tag/0927
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in the triangulated category K(A) of complexes of A-modules up to homotopy.
Namely, we set I•

n = σ≤−1K
•
n[−1]. We have termwise split short exact sequences

of complexes
0→ A→ K•

n → I•
n[1]→ 0

defining distinguished triangles by definition of the triangulated structure on K(A).
Their rotations determine the desired distinguished triangles above. Note that
I0
n = A⊕r → A is given by multiplication by fni on the ith factor. Hence I•

n → A
factors as

I•
n → (fn1 , . . . , fnr )→ A

In fact, there is a short exact sequence
0→ H−1(K•

n)→ H0(I•
n)→ (fn1 , . . . , fnr )→ 0

and for every i < 0 we have Hi(I•
n) = Hi−1(K•

n. The maps K•
n+1 → K•

n induce
maps I•

n+1 → I•
n and we obtain a commutative diagram

. . . // I•
3

��

// I•
2

��

// I•
1

��
. . . // (f3

1 , . . . , f
3
r ) // (f2

1 , . . . , f
2
r ) // (f1, . . . , fr)

in K(A).

Lemma 15.101.5.0G3M In Situation 15.91.15 assume A is Noetherian. With notation
as above, the inverse system (In) is pro-isomorphic in D(A) to the inverse system
(I•
n).

Proof. It is elementary to show that the inverse system In is pro-isomorphic to
the inverse system (fn1 , . . . , fnr ) in the category of A-modules. Consider the inverse
system of distinguished triangles

I•
n → (fn1 , . . . , fnr )→ C•

n → I•
n[1]

where C•
n is the cone of the first arrow. By Derived Categories, Lemma 13.42.4 it

suffices to show that the inverse system C•
n is pro-zero. The complex I•

n has nonzero
terms only in degrees i with −r + 1 ≤ i ≤ 0 hence C•

n is bounded similarly. Thus
by Derived Categories, Lemma 13.42.3 it suffices to show that Hp(C•

n) is pro-zero.
By the discussion above we have Hp(C•

n) = Hp(K•
n) for p ≤ −1 and Hp(C•

n) = 0
for p ≥ 0. The fact that the inverse systems Hp(K•

n) are pro-zero was shown in the
proof of Lemma 15.94.1 (and this is where the assumption that A is Noetherian is
used). □

Lemma 15.101.6.0G3N Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let M• be
a bounded complex of finite A-modules. The inverse system of maps

In ⊗L
AM

• −→ InM•

defines an isomorphism of pro-objects of D(A).

Proof. Choose generators f1, . . . , fr ∈ I of I. The inverse system In is pro-
isomorphic to the inverse system (fn1 , . . . , fnr ) in the category of A-modules. With
notation as in Lemma 15.101.5 we find that it suffices to prove the inverse system
of maps

I•
n ⊗L

AM
• −→ (fn1 , . . . , fnr )M•

https://stacks.math.columbia.edu/tag/0G3M
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defines an isomorphism of pro-objects of D(A). Say we have a ≤ b such that M i = 0
if i ̸∈ [a, b]. Then source and target of the arrows above have cohomology only in
degrees [−r + a, b]. Thus it suffices to show that for any p ∈ Z the inverse system
of maps

Hp(I•
n ⊗L

AM
•) −→ Hp((fn1 , . . . , fnr )M•)

defines an isomorphism of pro-objects of A-modules, see Derived Categories, Lemma
13.42.5. Using the pro-isomorphism between I•

n⊗L
AM

• and In⊗L
AM

• and the pro-
isomorphism between (fn1 , . . . , fnr )M• and InM• this is equivalent to showing that
the inverse system of maps

Hp(In ⊗L
AM

•) −→ Hp(InM•)

defines an isomorphism of pro-objects of A-modules Choose a bounded above com-
plex of finite free A-modules P • and a quasi-isomorphism P • → M•. Then it
suffices to show that the inverse system of maps

Hp(InP •) −→ Hp(InM•)

is a pro-isomorphism. This follows from Lemma 15.101.1 as Hp(P •) = Hp(M•).
□

Lemma 15.101.7.0928 Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let M
be a finite A-module. There exists an integer n > 0 such that InM → M factors
through the map I ⊗L

AM →M in D(A).

Proof. This follows from Lemma 15.101.6. It can also been seen directly as follows.
Consider the distinguished triangle

I ⊗L
AM →M → A/I ⊗L

AM → I ⊗L
AM [1]

By the axioms of a triangulated category it suffices to prove that InM → A/I ⊗L
A

M is zero in D(A) for some n. Choose generators f1, . . . , fr of I and let K =
K•(A, f1, . . . , fr) be the Koszul complex and consider the factorization A→ K →
A/I of the quotient map. Then we see that it suffices to show that InM → K⊗AM
is zero in D(A) for some n > 0. Suppose that we have found an n > 0 such that
InM → K ⊗A M factors through τ≥t(K ⊗A M) in D(A). Then the obstruction
to factoring through τ≥t+1(K ⊗A M) is an element in Extt(InM,Ht(K ⊗A M)).
The finite A-module Ht(K ⊗A M) is annihilated by I. Then by Lemma 15.101.3
we can after increasing n assume this obstruction element is zero. Repeating this
a finite number of times we find n such that InM → K ⊗A M factors through
0 = τ≥r+1(K ⊗AM) in D(A) and we win. □

15.102. Miscellany

0926 Some results which do not fit anywhere else.

Lemma 15.102.1.0DYJ Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let
K ∈ D(A) be pseudo-coherent. Let a ∈ Z. Assume that for every finite A-module
M the modules ExtiA(K,M) are I-power torsion for i ≥ a. Then for i ≥ a and M

finite the system ExtiA(K,M/InM) is essentially constant with value

ExtiA(K,M) = lim ExtiA(K,M/InM)

https://stacks.math.columbia.edu/tag/0928
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Proof. Let M be a finite A-module. Since K is pseudo-coherent we see that
ExtiA(K,M) is a finite A-module. Thus for i ≥ a it is annihilated by It for some
t ≥ 0. By Lemma 15.101.4 we see that the image of ExtiA(K, InM)→ ExtiA(K,M)
is zero for some n > 0. The short exact sequence 0→ InM →M →M/InM → 0
gives a long exact sequence

ExtiA(K, InM)→ ExtiA(K,M)→ ExtiA(K,M/InM)→ Exti+1
A (K, InM)

The systems ExtiA(K, InM) and Exti+1
A (K, InM) are essentially constant with

value 0 by what we just said (applied to the finite A-modules ImM). A diagram
chase shows ExtiA(K,M/InM) is essentially constant with value ExtiA(K,M). □

Lemma 15.102.2.0FXN Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let M be a
finite A-module. Let N be an A-module annihilated by I. There exists an integer
n > 0 such that TorAp (InM,N)→ TorAp (M,N) is zero for all p ≥ 0.

Proof. By Lemma 15.101.7 we can factor InM → M as InM → M ⊗L
A I → M .

We claim the composition
InM ⊗L

A N → (M ⊗L
A I)⊗L

A N →M ⊗L
A N

is zero. Namely, the diagram

(M ⊗L
A I)⊗L

A N
//

''

M ⊗L
A (I ⊗L

A N)

ww
M ⊗L

A N

commutes (details omitted) and the map I ⊗L
A N → N is zero as N is annihilated

by I. □

Lemma 15.102.3.0D2L Let R be a ring. Let K ∈ D(R) be pseudo-coherent. Let (Mn)
be an inverse system of R-modules. Then R limK ⊗L

RMn = K ⊗L
R R limMn.

Proof. Consider the defining distinguished triangle

R limMn →
∏

Mn →
∏

Mn → R limMn[1]

and apply Lemma 15.65.5. □

Lemma 15.102.4.0929 Let R be a Noetherian local ring. Let I ⊂ R be an ideal and let
E be a nonzero module over R/I. If R/I has finite projective dimension and E has
finite projective dimension over R/I, then E has finite projective dimension over R
and

pdR(E) = pdR(R/I) + pdR/I(E)

Proof. We will use that, for a finite module, having finite projective dimension
over R, resp. R/I is the same as being a perfect module, see discussion following
Definition 15.74.1. We see that E has finite projective dimension over R by Lemma
15.74.7. Thus we can apply Auslander-Buchsbaum (Algebra, Proposition 10.111.1)
to see that

pdR(E) + depth(E) = depth(R), pdR/I(E) + depth(E) = depth(R/I),
and

pdR(R/I) + depth(R/I) = depth(R)

https://stacks.math.columbia.edu/tag/0FXN
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Note that in the first equation we take the depth of E as an R-module and in the
second as an R/I-module. However these depths are the same (this is trivial but
also follows from Algebra, Lemma 10.72.11). This concludes the proof. □

Lemma 15.102.5.0GYI Let A→ B be a ring map. There exists a cardinal κ = κ(A→ B)
with the following property: Let M•, resp. N• be a complex of A-modules, resp.
B-modules. Let a : M• → N• be a map of complexes of A-modules which induces
an isomorphism M• ⊗L

A B → N• in D(B). Let M•
1 ⊂ M•, resp. N•

1 ⊂ N• be a
subcomplex of A-modules, resp. B-modules such that a(M•

1 ) ⊂ N•
1 . Then there

exist subcomplexes
M•

1 ⊂M•
2 ⊂M• and N•

1 ⊂ N•
2 ⊂ N•

such that a(M•
2 ) ⊂ N•

2 with the following properties:
(1) Ker(Hi(M•

1 ⊗L
A B)→ Hi(N•

1 )) maps to zero in Hi(M•
2 ⊗L

A B),
(2) Im(Hi(N•

1 )→ Hi(N•
2 )) is contained in Im(Hi(M•

2 ⊗L
A B)→ H2(N•

2 )),
(3) |

⋃
M i

2 ∪
⋃
N i

2| ≤ max(κ, |
⋃
M i

1 ∪
⋃
N i

1|).

Proof. Let κ = max(|A|, |B|,ℵ0). Set |M•| = |
⋃
M i| and similarly for other com-

plexes. With this notation we have

max(κ, |
⋃
M i

1 ∪
⋃
N i

1|) = max(κ, |M•
1 |, |M•

2 |)

for the quantity used in the statement of the lemma. We are going to use this and
other observations coming from arithmetic of cardinals without further mention.
First, let us show that there are plenty of “small” subcomplexes. For every pair of
collections E = {Ei} and F = {F i} of finite subsets Ei ⊂M i, i ∈ Z and F i ⊂ N i,
i ∈ Z we can let

M•
1 ⊂M1(E,F )• ⊂M• and N•

1 ⊂ N1(E,F )• ⊂ N•

be the smallest subcomplexes of A and B-modules such that a(M1(E,F )•) ⊂
N1(E,F )• and such that Ei ⊂M1(E,F )i and F i ⊂M2(E,F )i. Then it is easy to
see that

|M1(E,F )•| ≤ max(κ, |M•
1 |) and |M2(E,F )•| ≤ max(κ, |M•

2 |)
Details omitted. It is clear that we have

M• = colim(E,F ) M1(E,F )• and N• = colim(E,F ) N1(E,F )•

and the colimits are (termwise) filtered colimits.
There exists a resolution . . . → F−1 → F 0 → B by free A-modules Fi with
|Fi| ≤ κ (details omitted). The cohomology modules of M•

1 ⊗L
AB are computed by

Tot(M•
1 ⊗A F •). It follows that |Hi(M•

1 ⊗L
A B)| ≤ max(κ, |M•

1 |).
Let i ∈ Z and let ξ ∈ Hi(M•

1 ⊗L
A B) be an element which maps to zero in Hi(N•

1 ).
Then ξ maps to zero in Hi(N•) and hence ξ maps to zero in Hi(M• ⊗L

A B). Since
derived tensor product commutes with filtered colimits, we can find finite collections
Eξ and Fξ as above such that ξ maps to zero in Hi(M1(Eξ, Fξ)• ⊗L

A B).
Let i ∈ Z and let η ∈ Hi(N•

1 ). Then the image of η in Hi(N•) is in the image of
Hi(M•⊗L

AB)→ Hi(N•). Hence as before, we can find finite collections Eη and Fη
as above such that η maps to an element of Hi(N1(Eη, Fη) which is in the image
of the map Hi(M1(Eη, Fη)• ⊗L

A B)→ Hi(N1(Eη, Fη).

https://stacks.math.columbia.edu/tag/0GYI
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Now we simply define

M•
2 =

∑
ξ
M1(Eξ, Fξ)• +

∑
η
M1(Eη, Fη)•

where the sum is over ξ and η as in the previous two paragraphs and the sum is
taken inside M•. Similiarly we set

N•
2 =

∑
ξ
N1(Eξ, Fξ)• +

∑
η
N1(Eη, Fη)•

where the sum is taken inside N•. By construction we will have properties (1)
and (2) with these choices. The bound (3) also follows as the set of ξ and η has
cardinality at most max(κ, |M•

1 |, |N•
1 |). □

15.103. Tricks with double complexes

0EYW This section continues the discussion in Homology, Section 12.26.

Lemma 15.103.1.0H0Q Let A•
0 → A•

1 → A•
2 → . . . be a complex of complexes of abelian

groups. Assume H−p(A•
p) = 0 for all p ≥ 0. Set Ap,q = Aqp and view A•,• as a

double complex. Then H0(Totπ(A•,•)) = 0.

Proof. Denote fp : A•
p → A•

p+1 the given maps of complexes. Recall that the
differential on Totπ(A•,•) is given by∏

p+q=n
(fqp + (−1)pdqA•

p
)

on elements in degree n. Let ξ ∈ H0(Totπ(A•,•)) be a cohomology class. We will
show ξ is zero. Represent ξ as the class of an cocycle x = (xp) ∈

∏
Ap,−p. Since

d(x) = 0 we find that dA•
0
(x0) = 0. Since H0(A•

0) = 0 there exists a y−1 ∈ A0,−1

with dA•
0
(y−1) = x0. Then we see that dA•

1
(x1 + f0(y−1)) = 0. Since H−1(A•

1) = 0
we can find a y−2 ∈ A1,−2 such that −dA•

1
(y−2) = x1 + f0(y−1). By induction we

can find y−p−1 ∈ Ap,−p−1 such that
(−1)pdA•

p
(y−p−1) = xp + fp−1(y−p)

This implies that d(y) = x where y = (y−p−1). □

Lemma 15.103.2.0EYX Let
(A•

0 → A•
1 → A•

2 → . . .) −→ (B•
0 → B•

1 → B•
2 → . . .)

be a map between two complexes of complexes of abelian groups. Set Ap,q = Aqp,
Bp,q = Bqp to obtain double complexes. Let Totπ(A•,•) and Totπ(B•,•) be the
product total complexes associated to the double complexes. If each A•

p → B•
p is a

quasi-isomorphism, then Totπ(A•,•)→ Totπ(B•,•) is a quasi-isomorphism.

Proof. Recall that Totπ(A•,•) in degree n is given by
∏
p+q=nA

p,q =
∏
p+1=nA

q
p.

Let C•
p be the cone on the map A•

p → B•
p , see Derived Categories, Section 13.9. By

the functoriality of the cone construction we obtain a complex of complexes
C•

0 → C•
1 → C•

2 → . . .

Then we see Totπ(C•,•) in degree n is given by∏
p+q=n

Cp,q =
∏

p+q=n
Cqp =

∏
p+q=n

(Bqp ⊕Aq+1
p ) =

∏
p+q=n

Bqp ⊕
∏

p+q=n
Aq+1
p

https://stacks.math.columbia.edu/tag/0H0Q
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We conclude that Totπ(C•,•) is the cone of the map Totπ(A•,•) → Totπ(B•,•)
(We omit the verification that the differentials agree.) Thus it suffices to show
Totπ(A•,•) is acyclic if each A•

p is acyclic. This follows from Lemma 15.103.1. □

15.104. Weakly étale ring maps

092A Most of the results in this section are from the paper [Oli83] by Olivier. See also
the related paper [Fer67a].

Definition 15.104.1.092B A ring A is called absolutely flat if every A-module is flat
over A. A ring map A → B is weakly étale or absolutely flat if both A → B and
B ⊗A B → B are flat.

Absolutely flat rings are sometimes called von Neumann regular rings (often in the
setting of noncommutative rings). A localization is a weakly étale ring map. An
étale ring map is weakly étale. Here is a simple, yet key property.

Lemma 15.104.2.092C Let A→ B be a ring map such that B⊗AB → B is flat. Let N
be a B-module. If N is flat as an A-module, then N is flat as a B-module.

Proof. Assume N is a flat as an A-module. Then the functor
ModB −→ ModB⊗AB , N ′ 7→ N ⊗A N ′

is exact. As B ⊗A B → B is flat we conclude that the functor
ModB −→ ModB , N ′ 7→ (N ⊗A N ′)⊗B⊗AB B = N ⊗B N ′

is exact, hence N is flat over B. □

Definition 15.104.3.092D Let A be a ring. Let d ≥ 0 be an integer. We say that A has
weak dimension ≤ d if every A-module has tor dimension ≤ d.

Lemma 15.104.4.092E Let A→ B be a weakly étale ring map. If A has weak dimension
at most d, then so does B.

Proof. Let N be a B-module. If d = 0, then N is flat as an A-module, hence flat as
a B-module by Lemma 15.104.2. Assume d > 0. Choose a resolution F• → N by
free B-modules. Our assumption implies that K = Im(Fd → Fd−1) is A-flat, see
Lemma 15.66.2. Hence it is B-flat by Lemma 15.104.2. Thus 0 → K → Fd−1 →
. . . → F0 → N → 0 is a flat resolution of length d and we see that N has tor
dimension at most d. □

Lemma 15.104.5.092F Let A be a ring. The following are equivalent
(1) A has weak dimension ≤ 0,
(2) A is absolutely flat, and
(3) A is reduced and every prime is maximal.

In this case every local ring of A is a field.

Proof. The equivalence of (1) and (2) is immediate. Assume A is absolutely flat.
This implies every ideal of A is pure, see Algebra, Definition 10.108.1. Hence every
finitely generated ideal is generated by an idempotent by Algebra, Lemma 10.108.5.
If f ∈ A, then (f) = (e) for some idempotent e ∈ A and D(f) = D(e) is open and
closed (Algebra, Lemma 10.21.1). This already implies every ideal of A is maximal
for example by Algebra, Lemma 10.26.5. Moreover, if f is nilpotent, then e = 0
hence f = 0. Thus A is reduced.

https://stacks.math.columbia.edu/tag/092B
https://stacks.math.columbia.edu/tag/092C
https://stacks.math.columbia.edu/tag/092D
https://stacks.math.columbia.edu/tag/092E
https://stacks.math.columbia.edu/tag/092F
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Assume A is reduced and every prime of A is maximal. Let M be an A-module.
Our goal is to show that M is flat. We may write M as a filtered colimit of finite
A-modules, hence we may assume M is finite (Algebra, Lemma 10.39.3). There is
a finite filtration of M by modules of the form A/I (Algebra, Lemma 10.5.4), hence
we may assume that M = A/I (Algebra, Lemma 10.39.13). Thus it suffices to show
every ideal of A is pure. Since every local ring of A is a field (by Algebra, Lemma
10.25.1 and the fact that every prime of A is minimal), we see that every ideal I ⊂ A
is radical. Note that every closed subset of Spec(A) is closed under generalization.
Thus every (radical) ideal of A is pure by Algebra, Lemma 10.108.4. □

Lemma 15.104.6.092G A product of fields is an absolutely flat ring.

Proof. Let Ki be a family of fields. If f = (fi) ∈
∏
Ki, then the ideal generated

by f is the same as the ideal generated by the idempotent e = (ei) with ei = 0, 1
according to whether fi is 0 or not. Thus D(f) = D(e) is open and closed and we
conclude by Lemma 15.104.5 and Algebra, Lemma 10.26.5. □

Lemma 15.104.7.092H Let A→ B and A→ A′ be ring maps. Let B′ = B⊗AA′ be the
base change of B.

(1) If B ⊗A B → B is flat, then B′ ⊗A′ B′ → B′ is flat.
(2) If A→ B is weakly étale, then A′ → B′ is weakly étale.

Proof. Assume B ⊗A B → B is flat. The ring map B′ ⊗A′ B′ → B′ is the base
change of B ⊗A B → B by A → A′. Hence it is flat by Algebra, Lemma 10.39.7.
This proves (1). Part (2) follows from (1) and the fact (just used) that the base
change of a flat ring map is flat. □

Lemma 15.104.8.092I Let A→ B be a ring map such that B ⊗A B → B is flat.
(1) If A is an absolutely flat ring, then so is B.
(2) If A is reduced and A→ B is weakly étale, then B is reduced.

Proof. Part (1) follows immediately from Lemma 15.104.2 and the definitions. If A
is reduced, then there exists an injection A → A′ =

∏
p⊂A minimal Ap of A into an

absolutely flat ring (Algebra, Lemma 10.25.2 and Lemma 15.104.6). If A → B is
flat, then the induced map B → B′ = B⊗AA′ is injective too. By Lemma 15.104.7
the ring map A′ → B′ is weakly étale. By part (1) we see that B′ is absolutely flat.
By Lemma 15.104.5 the ring B′ is reduced. Hence B is reduced. □

Lemma 15.104.9.092J Let A→ B and B → C be ring maps.
(1) If B ⊗A B → B and C ⊗B C → C are flat, then C ⊗A C → C is flat.
(2) If A→ B and B → C are weakly étale, then A→ C is weakly étale.

Proof. Part (1) follows from the factorization
C ⊗A C −→ C ⊗B C −→ C

of the multiplication map, the fact that
C ⊗B C = (C ⊗A C)⊗B⊗AB B,

the fact that a base change of a flat map is flat, and the fact that the composition
of flat ring maps is flat. See Algebra, Lemmas 10.39.7 and 10.39.4. Part (2) follows
from (1) and the fact (just used) that the composition of flat ring maps is flat. □

Lemma 15.104.10.092K Let A→ B → C be ring maps.

https://stacks.math.columbia.edu/tag/092G
https://stacks.math.columbia.edu/tag/092H
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(1) If B → C is faithfully flat and C ⊗A C → C is flat, then B ⊗A B → B is
flat.

(2) If B → C is faithfully flat and A → C is weakly étale, then A → B is
weakly étale.

Proof. Assume B → C is faithfully flat and C ⊗A C → C is flat. Consider the
commutative diagram

C ⊗A C // C

B ⊗A B //

OO

B

OO

The vertical arrows are flat, the top horizontal arrow is flat. Hence C is flat as a
B ⊗A B-module. The map B → C is faithfully flat and C = B ⊗B C. Hence B
is flat as a B ⊗A B-module by Algebra, Lemma 10.39.9. This proves (1). Part (2)
follows from (1) and the fact that A → B is flat if A → C is flat and B → C is
faithfully flat (Algebra, Lemma 10.39.9). □

Lemma 15.104.11.092L Let A be a ring. Let B → C be an A-algebra map of weakly
étale A-algebras. Then B → C is weakly étale.

Proof. The ring map B → C is flat by Lemma 15.104.2. The ring map C ⊗A C →
C ⊗B C is surjective, hence an epimorphism. Thus Lemma 15.104.2 implies, that
since C is flat over C ⊗A C also C is flat over C ⊗B C. □

Lemma 15.104.12.092M Let A→ B be a ring map such that B⊗AB → B is flat. Then
ΩB/A = 0, i.e., B is formally unramified over A.

Proof. Let I ⊂ B ⊗A B be the kernel of the flat surjective map B ⊗A B → B.
Then I is a pure ideal (Algebra, Definition 10.108.1), so I2 = I (Algebra, Lemma
10.108.2). Since ΩB/A = I/I2 (Algebra, Lemma 10.131.13) we obtain the vanishing.
This means B is formally unramified over A by Algebra, Lemma 10.148.2. □

Lemma 15.104.13.0CKP Let A→ B be a ring map such that B ⊗A B → B is flat.
(1) If A→ B is of finite type, then A→ B is unramified.
(2) If A→ B is of finite presentation and flat, then A→ B is étale.

In particular a weakly étale ring map of finite presentation is étale.

Proof. Part (1) follows from Lemma 15.104.12 and Algebra, Definition 10.151.1.
Part (2) follows from part (1) and Algebra, Lemma 10.151.8. □

Lemma 15.104.14.092N Let A → B be a ring map. Then A → B is weakly étale in
each of the following cases

(1) B = S−1A is a localization of A,
(2) A→ B is étale,
(3) B is a filtered colimit of weakly étale A-algebras.

Proof. An étale ring map is flat and the map B ⊗A B → B is also étale as a map
between étale A-algebras (Algebra, Lemma 10.143.8). This proves (2).
Let Bi be a directed system of weakly étale A-algebras. Then B = colimBi is flat
over A by Algebra, Lemma 10.39.3. Note that the transition maps Bi → Bi′ are flat
by Lemma 15.104.11. Hence B is flat over Bi for each i, and we see that B is flat over

https://stacks.math.columbia.edu/tag/092L
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Bi⊗ABi by Algebra, Lemma 10.39.4. Thus B is flat over B⊗AB = colimBi⊗ABi
by Algebra, Lemma 10.39.6.
Part (1) can be proved directly, but also follows by combining (2) and (3). □

Lemma 15.104.15.092P Let L/K be an extension of fields. If L⊗K L→ L is flat, then
L is an algebraic separable extension of K.

Proof. By Lemma 15.104.10 we see that any subfield K ⊂ L′ ⊂ L the map L′ ⊗K
L′ → L′ is flat. Thus we may assume L is a finitely generated field extension of K.
In this case the fact that L/K is formally unramified (Lemma 15.104.12) implies
that L/K is finite separable, see Algebra, Lemma 10.158.1. □

Lemma 15.104.16.092Q Let B be an algebra over a field K. The following are equivalent
(1) B ⊗K B → B is flat,
(2) K → B is weakly étale, and
(3) B is a filtered colimit of étale K-algebras.

Moreover, every finitely generated K-subalgebra of B is étale over K.

Proof. Parts (1) and (2) are equivalent because every K-algebra is flat over K.
Part (3) implies (1) and (2) by Lemma 15.104.14
Assume (1) and (2) hold. We will prove (3) and the finite statement of the lemma.
A field is absolutely flat ring, hence B is a absolutely flat ring by Lemma 15.104.8.
Hence B is reduced and every local ring is a field, see Lemma 15.104.5.
Let q ⊂ B be a prime. The ring map B → Bq is weakly étale, hence Bq is weakly
étale over K (Lemma 15.104.9). Thus Bq is a separable algebraic extension of K
by Lemma 15.104.15.
Let K ⊂ A ⊂ B be a finitely generated K-sub algebra. We will show that A is
étale over K which will finish the proof of the lemma. Then every minimal prime
p ⊂ A is the image of a prime q of B, see Algebra, Lemma 10.30.5. Thus κ(p) as
a subfield of Bq = κ(q) is separable algebraic over K. Hence every generic point
of Spec(A) is closed (Algebra, Lemma 10.35.9). Thus dim(A) = 0. Then A is the
product of its local rings, e.g., by Algebra, Proposition 10.60.7. Moreover, since A
is reduced, all local rings are equal to their residue fields wich are finite separable
over K. This means that A is étale over K by Algebra, Lemma 10.143.4 and finishes
the proof. □

Lemma 15.104.17.092R Let A → B be a ring map. If A → B is weakly étale, then
A→ B induces separable algebraic residue field extensions.

Proof. Let p be a prime of A. Then κ(p) → B ⊗A κ(p) is weakly étale by Lemma
15.104.7. Hence B ⊗A κ(p) is a filtered colimit of étale κ(p)-algebras by Lemma
15.104.16. Hence for q ⊂ B lying over p the extension κ(q)/κ(p) is a filtered colimit
of finite separable extensions by Algebra, Lemma 10.143.4. □

Lemma 15.104.18.092S Let A be a ring. The following are equivalent
(1) A has weak dimension ≤ 1,
(2) every ideal of A is flat,
(3) every finitely generated ideal of A is flat,
(4) every submodule of a flat A-module is flat, and
(5) every local ring of A is a valuation ring.

https://stacks.math.columbia.edu/tag/092P
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Proof. If A has weak dimension ≤ 1, then the resolution 0 → I → A → A/I → 0
shows that every ideal I is flat by Lemma 15.66.2. Hence (1) ⇒ (2).
Assume (4). Let M be an A-module. Choose a surjection F → M where F is a
free A-module. Then Ker(F → M) is flat by assumption, and we see that M has
tor dimension ≤ 1 by Lemma 15.66.6. Hence (4) ⇒ (1).
Every ideal is the union of the finitely generated ideals contained in it. Hence (3)
implies (2) by Algebra, Lemma 10.39.3. Thus (3) ⇔ (2).
Assume (2). Suppose that N ⊂M with M a flat A-module. We will prove that N
is flat. We can write M = colimMi with each Mi finite free, see Algebra, Theorem
10.81.4. Setting Ni ⊂ Mi the inverse image of N we see that N = colimNi. By
Algebra, Lemma 10.39.3. it suffices to prove Ni is flat and we reduce to the case
M = R⊕n. In this case the module N has a finite filtration by the submodules
R⊕j ∩N whose subquotients are ideals. By (2) these ideals are flat and hence N is
flat by Algebra, Lemma 10.39.13. Thus (2) ⇒ (4).
Assume A satisfies (1) and let p ⊂ A be a prime ideal. By Lemmas 15.104.14 and
15.104.4 we see that Ap satisfies (1). We will show A is a valuation ring if A is
a local ring satisfying (3). Let f ∈ m be a nonzero element. Then (f) is a flat
nonzero module generated by one element. Hence it is a free A-module by Algebra,
Lemma 10.78.5. It follows that f is a nonzerodivisor and A is a domain. If I ⊂ A
is a finitely generated ideal, then we similarly see that I is a finite free A-module,
hence (by considering the rank) free of rank 1 and I is a principal ideal. Thus A is
a valuation ring by Algebra, Lemma 10.50.15. Thus (1) ⇒ (5).
Assume (5). Let I ⊂ A be a finitely generated ideal. Then Ip ⊂ Ap is a finitely
generated ideal in a valuation ring, hence principal (Algebra, Lemma 10.50.15),
hence flat. Thus I is flat by Algebra, Lemma 10.39.18. Thus (5) ⇒ (3). This
finishes the proof of the lemma. □

Lemma 15.104.19.092T Let J be a set. For each j ∈ J let Aj be a valuation ring with
fraction field Kj . Set A =

∏
Aj and K =

∏
Kj . Then A has weak dimension at

most 1 and A→ K is a localization.

Proof. Let I ⊂ A be a finitely generated ideal. By Lemma 15.104.18 it suffices
to show that I is a flat A-module. Let Ij ⊂ Aj be the image of I. Observe that
Ij = I ⊗A Aj , hence I →

∏
Ij is surjective by Algebra, Proposition 10.89.2. Thus

I =
∏
Ij . Since Aj is a valuation ring, the ideal Ij is generated by a single element

(Algebra, Lemma 10.50.15). Say Ij = (fj). Then I is generated by the element
f = (fj). Let e ∈ A be the idempotent which has a 0 or 1 in Aj depending on
whether fj is 0 or not. Then f = ge for some nonzerodivisor g ∈ A: take g = (gj)
with gj = 1 if fj = 0 and gj = fj else. Thus I ∼= (e) as a module. We conclude I is
flat as (e) is a direct summand of A. The final statement is true because K = S−1A
where S =

∏
(Aj \ {0}). □

Lemma 15.104.20.092U Let A be a normal domain with fraction field K. There exists
a cartesian diagram

A

��

// K

��
V // L

https://stacks.math.columbia.edu/tag/092T
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of rings where V has weak dimension at most 1 and V → L is a flat, injective,
epimorphism of rings.
Proof. For every x ∈ K, x ̸∈ A pick Vx ⊂ K as in Algebra, Lemma 10.50.11. Set
V =

∏
x∈K\A Vx and L =

∏
x∈K\AK. The ring V has weak dimension at most 1

by Lemma 15.104.19 which also shows that V → L is a localization. A localization
is flat and an epimorphism, see Algebra, Lemmas 10.39.18 and 10.107.5. □

Lemma 15.104.21.092V Let A be a ring of weak dimension at most 1. If A → B is a
flat, injective, epimorphism of rings, then A is integrally closed in B.
Proof. Let x ∈ B be integral over A. Let A′ = A[x] ⊂ B. Then A′ is a finite ring
extension of A by Algebra, Lemma 10.36.5. To show A = A′ it suffices to show
A→ A′ is an epimorphism by Algebra, Lemma 10.107.6. Note that A′ is flat over
A by assumption on A and the fact that B is flat over A (Lemma 15.104.18). Hence
the composition

A′ ⊗A A′ → B ⊗A A′ → B ⊗A B → B

is injective, i.e., A′ ⊗A A′ ∼= A′ and the lemma is proved. □

Lemma 15.104.22.092W Let A be a normal domain with fraction field K. Let A → B
be weakly étale. Then B is integrally closed in B ⊗A K.
Proof. Choose a diagram as in Lemma 15.104.20. As A→ B is flat, the base change
gives a cartesian diagram

B

��

// B ⊗A K

��
B ⊗A V // B ⊗A L

of rings. Note that V → B ⊗A V is weakly étale (Lemma 15.104.7), hence B ⊗A V
has weak dimension at most 1 by Lemma 15.104.4. Note that B⊗AV → B⊗AL is a
flat, injective, epimorphism of rings as a flat base change of such (Algebra, Lemmas
10.39.7 and 10.107.3). By Lemma 15.104.21 we see that B⊗A V is integrally closed
in B⊗AL. It follows from the cartesian property of the diagram that B is integrally
closed in B ⊗A K. □

Lemma 15.104.23.092X Let A→ B be a ring homomorphism. Assume
(1) A is a henselian local ring,
(2) A→ B is integral,
(3) B is a domain.

Then B is a henselian local ring and A→ B is a local homomorphism. If A is strictly
henselian, then B is a strictly henselian local ring and the extension κ(mB)/κ(mA)
of residue fields is purely inseparable.
Proof. Write B as a filtered colimit B = colimBi of finite A-sub algebras. If we
prove the results for each Bi, then the result follows for B. See Algebra, Lemma
10.154.8. If A→ B is finite, then B is a product of local henselian rings by Algebra,
Lemma 10.153.4. Since B is a domain we see that B is a local ring. The maximal
ideal of B lies over the maximal ideal of A by going up for A → B (Algebra,
Lemma 10.36.22). If A is strictly henselian, then the field extension κ(mB)/κ(mA)
being algebraic, has to be purely inseparable. Of course, then κ(mB) is separably
algebraically closed and B is strictly henselian. □

https://stacks.math.columbia.edu/tag/092V
https://stacks.math.columbia.edu/tag/092W
https://stacks.math.columbia.edu/tag/092X
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Theorem 15.104.24 (Olivier).092Z Let A→ B be a local homomorphism of local rings.
If A is strictly henselian and A→ B is weakly étale, then A = B.

Proof. We will show that for all p ⊂ A there is a unique prime q ⊂ B lying over
p and κ(p) = κ(q). This implies that B ⊗A B → B is bijective on spectra as well
as surjective and flat. Hence it is an isomorphism for example by the description
of pure ideals in Algebra, Lemma 10.108.4. Hence A → B is a faithfully flat
epimorphism of rings. We get A = B by Algebra, Lemma 10.107.7.

Note that the fibre ring B⊗Aκ(p) is a colimit of étale extensions of κ(p) by Lemmas
15.104.7 and 15.104.16. Hence, if there exists more than one prime lying over p or
if κ(p) ̸= κ(q) for some q, then B ⊗A L has a nontrivial idempotent for some
(separable) algebraic field extension L/κ(p).

Let L/κ(p) be an algebraic field extension. Let A′ ⊂ L be the integral closure of
A/p in L. By Lemma 15.104.23 we see that A′ is a strictly henselian local ring
whose residue field is a purely inseparable extension of the residue field of A. Thus
B⊗AA′ is a local ring by Algebra, Lemma 10.156.5. On the other hand, B⊗AA′ is
integrally closed in B ⊗A L by Lemma 15.104.22. Since B ⊗A A′ is local, it follows
that the ring B⊗AL does not have nontrivial idempotents which is what we wanted
to prove. □

15.105. Weakly étale algebras over fields

0CKQ If K is a field, then an algebra B is weakly étale over K if and only if it is a filtered
colimit of étale K-algebras. This is Lemma 15.104.16.

Lemma 15.105.1.0CKR Let K be a field. If B is weakly étale over K, then
(1) B is reduced,
(2) B is integral over K,
(3) any finitely generated K-subalgebra of B is a finite product of finite sep-

arable extensions of K,
(4) B is a field if and only if B does not have nontrivial idempotents and in

this case it is a separable algebraic extension of K,
(5) any sub or quotient K-algebra of B is weakly étale over K,
(6) if B′ is weakly étale over K, then B ⊗K B′ is weakly étale over K.

Proof. Part (1) follows from Lemma 15.104.8 but of course it follows from part (3)
as well. Part (3) follows from Lemma 15.104.16 and the fact that étale K-algebras
are finite products of finite separable extensions of K, see Algebra, Lemma 10.143.4.
Part (3) implies (2). Part (4) follows from (3) as a product of fields is a field if and
only if it has no nontrivial idempotents.

If S ⊂ B is a subalgebra, then it is the filtered colimit of its finitely generated
subalgebras which are all étale over K by the above and hence S is weakly étale
over K by Lemma 15.104.16. If B → Q is a quotient algebra, then Q is the
filtered colimit of K-algebra quotients of finite products

∏
i∈I Li of finite separable

extensions Li/K. Such a quotient is of the form
∏
i∈J Li for some subset J ⊂ I

and hence the result holds for quotients by the same reasoning.

The statement on tensor products follows in a similar manner or by combining
Lemmas 15.104.7 and 15.104.9. □

https://stacks.math.columbia.edu/tag/092Z
https://stacks.math.columbia.edu/tag/0CKR
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Lemma 15.105.2.0CKS Let K be a field. Let A be a K-algebra. There exists a maximal
weakly étale K-subalgebra Bmax ⊂ A.

Proof. Let B1, B2 ⊂ A be weakly étale K-subalgebras. Then B1 ⊗K B2 is weakly
étale over K and so is the image of B1 ⊗K B2 → A (Lemma 15.105.1). Thus
the collection B of weakly étale K-subalgebras B ⊂ A is directed and the colimit
Bmax = colimB∈B B is a weakly étale K-algebra by Lemma 15.104.14. Hence the
image of Bmax → A is weakly étale over K (previous lemma cited). It follows that
this image is in B and hence B has a maximal element (and the image is the same
as Bmax). □

Lemma 15.105.3.0CKT LetK be a field. For aK-algebra A denote Bmax(A) the maximal
weakly étale K-subalgebra of A as in Lemma 15.105.2. Then

(1) any K-algebra map A′ → A induces a K-algebra map Bmax(A′) →
Bmax(A),

(2) if A′ ⊂ A, then Bmax(A′) = Bmax(A) ∩A′,
(3) if A = colimAi is a filtered colimit, then Bmax(A) = colimBmax(Ai),
(4) the map Bmax(A)→ Bmax(Ared) is an isomorphism,
(5) Bmax(A1 × . . .×An) = Bmax(A1)× . . .×Bmax(An),
(6) if A has no nontrivial idempotents, then Bmax(A) is a field and a separable

algebraic extension of K,
(7) add more here.

Proof. Proof of (1). This is true because the image of Bmax(A′) → A is weakly
étale over K by Lemma 15.105.1.
Proof of (2). By (1) we have Bmax(A′) ⊂ Bmax(A). Conversely, Bmax(A)∩A′ is a
weakly étale K-algebra by Lemma 15.105.1 and hence contained in Bmax(A′).
Proof of (3). By (1) there is a map colimBmax(Ai) → A which is injective be-
cause the system is filtered and Bmax(Ai) ⊂ Ai. The colimit colimBmax(Ai)
is weakly étale over K by Lemma 15.104.14. Hence we get an injective map
colimBmax(Ai) → Bmax(A). Suppose that a ∈ Bmax(A). Then a generates a
finitely presented K-subalgebra B ⊂ Bmax(A). By Algebra, Lemma 10.127.3 there
is an i and a K-algebra map f : B → Ai lifting the given map B → A. Since B is
weakly étale by Lemma 15.105.1, we see that f(B) ⊂ Bmax(Ai) and we conclude
that a is in the image of colimBmax(Ai)→ Bmax(A).
Proof of (4). Write Bmax(Ared) = colimBi as a filtered colimit of étale K-algebras
(Lemma 15.104.16). By Algebra, Lemma 10.138.17 for each i there is a K-algebra
map fi : Bi → A lifting the given map Bi → Ared. It follows that the canonical map
Bmax(Ared)→ Bmax(A) is surjective. The kernel consists of nilpotent elements and
hence is zero as Bmax(Ared) is reduced (Lemma 15.105.1).
Proof of (5). Omitted.
Proof of (6). Follows from Lemma 15.105.1 part (4). □

Lemma 15.105.4.0CKU Let L/K be an extension of fields. Let A be a K-algebra. Let
B ⊂ A be the maximal weakly étale K-subalgebra of A as in Lemma 15.105.2.
Then B ⊗K L is the maximal weakly étale L-subalgebra of A⊗K L.

Proof. For an algebra A over K we write Bmax(A/K) for the maximal weakly
étale K-subalgebra of A. Similarly we write Bmax(A′/L) for the maximal weakly

https://stacks.math.columbia.edu/tag/0CKS
https://stacks.math.columbia.edu/tag/0CKT
https://stacks.math.columbia.edu/tag/0CKU
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étale L-subalgebra of A′ if A′ is an L-algebra. Since Bmax(A/K) ⊗K L is weakly
étale over L (Lemma 15.104.7) and since Bmax(A/K)⊗K L ⊂ A⊗K L we obtain a
canonical injective map

Bmax(A/K)⊗K L→ Bmax((A⊗K L)/L)
The lemma states that this map is an isomorphism.
To prove the lemma for L and our K-algebra A, it suffices to prove the lemma for
any field extension L′ of L. Namely, we have the factorization

Bmax(A/K)⊗K L′ → Bmax((A⊗K L)/L)⊗L L′ → Bmax((A⊗K L′)/L′)
hence the composition cannot be surjective withoutBmax(A/K)⊗KL→ Bmax((A⊗K
L)/L) being surjective. Thus we may assume L is algebraically closed.
Reduction to finite type K-algebra. We may write A is the filtered colimit of its
finite type K-subalgebras. Using Lemma 15.105.3 we see that it suffices to prove
the lemma for finite type K-algebras.
Assume A is a finite type K-algebra. Since the kernel of A → Ared is nilpotent,
the same is true for A⊗K L→ Ared ⊗K L. Then

Bmax((A⊗K L)/L)→ Bmax((Ared ⊗K L)/L)
is injective because the kernel is nilpotent and the weakly étale L-algebraBmax((A⊗K
L)/L) is reduced (Lemma 15.105.1). Since Bmax(A/K) = Bmax(Ared/K) by
Lemma 15.105.3 we conclude that it suffices to prove the lemma for Ared.
Assume A is a reduced finite type K-algebra. Let Q = Q(A) be the total quotient
ring of A. Then A ⊂ Q and A⊗K L ⊂ Q⊗A L and hence

Bmax(A/K) = A ∩Bmax(Q/K)
and

Bmax((A⊗K L)/L) = (A⊗K L) ∩Bmax((Q⊗K L)/L)
by Lemma 15.105.3. Since − ⊗K L is an exact functor, it follows that if we prove
the result for Q, then the result follows for A. Since Q is a finite product of fields
(Algebra, Lemmas 10.25.4, 10.25.1, 10.31.6, and 10.31.1) and since Bmax commutes
with products (Lemma 15.105.3) it suffices to prove the lemma when A is a field.
Assume A is a field. We reduce to A being finitely generated overK by the argument
in the third paragraph of the proof. (In fact the way we reduced to the case of a
field produces a finitely generated field extension of K.)
Assume A is a finitely generated field extension of K. Then K ′ = Bmax(A/K)
is a field separable algebraic over K by Lemma 15.105.3 part (6). Hence K ′ is a
finite separable field extension of K and A is geometrically irreducible over K ′ by
Algebra, Lemma 10.47.13. Since L is algebraically closed and K ′/K finite separable
we see that

K ′ ⊗K L→
∏

σ∈HomK(K′,L)
L, α⊗ β 7→ (σ(α)β)σ

is an isomorphism (Fields, Lemma 9.13.4). We conclude

A⊗K L = A⊗K′ (K ′ ⊗K L) =
∏

σ∈HomK(K′,L)
A⊗K′,σ L

Since A is geometrically irreducible over K ′ we see that A⊗K′,σL has a unique min-
imal prime. Since L is algebraically closed it follows that Bmax((A⊗K′,σL)/L) = L
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because this L-algebra is a field algebraic over L by Lemma 15.105.3 part (6). It
follows that the maximal weakly étale K ′ ⊗K L-subalgebra of A⊗K L is K ′ ⊗K L
because we can decompose these subalgebras into products as above. Hence the
inclusion K ′ ⊗K L ⊂ Bmax((A⊗K L)/L) is an equality: the ring map K ′ ⊗K L→
Bmax((A⊗K L)/L) is weakly étale by Lemma 15.104.11. □

15.106. Local irreducibility

06DT The following definition seems to be the generally accepted one. To parse it, observe
that if A ⊂ B is an integral extension of local domains, then A→ B is a local ring
homomorphism by going up (Algebra, Lemma 10.36.22).

Definition 15.106.1.0BPZ [GD67, Chapter 0
(23.2.1)]

Let A be a local ring. We say A is unibranch if the reduction
Ared is a domain and if the integral closure A′ of Ared in its field of fractions is
local. We say A is geometrically unibranch if A is unibranch and moreover the
residue field of A′ is purely inseparable over the residue field of A.

Let A be a local ring. Here is an equivalent formulation
(1) A is unibranch if A has a unique minimal prime p and the integral closure

of A/p in its fraction field is a local ring, and
(2) A is geometrically unibranch if A has a unique minimal prime p and the

integral closure of A/p in its fraction field is a local ring whose residue
field is purely inseparable over the residue field of A.

A local ring which is normal is geometrically unibranch (follows from Definition
15.106.1 and Algebra, Definition 10.37.11). Lemmas 15.106.3 and 15.106.5 suggest
that being (geometrically) unibranch is a reasonable property to look at.

Lemma 15.106.2.0C24 Let A be a local ring. Assume A has finitely many minimal
prime ideals. Let A′ be the integral closure of A in the total ring of fractions of
Ared. Let Ah be the henselization of A. Consider the maps

Spec(A′)← Spec((A′)h)→ Spec(Ah)
where (A′)h = A′ ⊗A Ah. Then

(1) the left arrow is bijective on maximal ideals,
(2) the right arrow is bijective on minimal primes,
(3) every minimal prime of (A′)h is contained in a unique maximal ideal and

every maximal ideal contains exactly one minimal prime.

Proof. Let I ⊂ A be the ideal of nilpotents. We have (A/I)h = Ah/IAh by
(Algebra, Lemma 10.156.2). The spectra of A, Ah, A′, and (A′)h are the same
as the spectra of A/I, Ah/IAh, A′, and (A′)h = A′ ⊗A/I Ah/IAh. Thus we may
replace A by Ared = A/I and assume A is reduced. Then A ⊂ A′ which we will
use below without further mention.
Proof of (1). As A′ is integral over A we see that (A′)h is integral over Ah. By going
up (Algebra, Lemma 10.36.22) every maximal ideal of A′, resp. (A′)h lies over the
maximal ideal m, resp. mh of A, resp. Ah. Thus (1) follows from the isomorphism

(A′)h ⊗Ah κh = A′ ⊗A Ah ⊗Ah κh = A′ ⊗A κ
because the residue field extension κh/κ induced by A→ Ah is trivial. We will use
below that the displayed ring is integral over a field hence spectrum of this ring is
a profinite space, see Algebra, Lemmas 10.36.19 and 10.26.5.

https://stacks.math.columbia.edu/tag/0BPZ
https://stacks.math.columbia.edu/tag/0C24
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Proof of (3). The ring A′ is a normal ring and in fact a finite product of normal
domains, see Algebra, Lemma 10.37.16. Since Ah is a filtered colimit of étale A-
algebras, (A′)h is filtered colimit of étale A′-algebras hence (A′)h is a normal ring by
Algebra, Lemmas 10.163.9 and 10.37.17. Thus every local ring of (A′)h is a normal
domain and we see that every maximal ideal contains a unique minimal prime. By
Lemma 15.11.8 applied to Ah → (A′)h we see that ((A′)h,m(A′)h) is a henselian
pair. If q ⊂ (A′)h is a minimal prime (or any prime), then the intersection of V (q)
with V (m(A′)h) is connected by Lemma 15.11.16 Since V (m(A′)h) = Spec((A′)h ⊗
κh) is a profinite space by we see there is a unique maximal ideal containing q.

Proof of (2). The minimal primes of A′ are exactly the primes lying over a minimal
prime of A (by construction). Since A′ → (A′)h is flat by going down (Algebra,
Lemma 10.39.19) every minimal prime of (A′)h lies over a minimal prime of A′.
Conversely, any prime of (A′)h lying over a minimal prime of A′ is minimal because
(A′)h is a filtered colimit of étale hence quasi-finite algebras over A′ (small detail
omitted). We conclude that the minimal primes of (A′)h are exactly the primes
which lie over a minimal prime of A. Similarly, the minimal primes of Ah are exactly
the primes lying over minimal primes of A. By construction we have A′⊗AQ(A) =
Q(A) where Q(A) is the total fraction ring of our reduced local ring A. Of course
Q(A) is the finite product of residue fields of the minimal primes of A. It follows
that

(A′)h ⊗A Q(A) = Ah ⊗A A′ ⊗A Q(A) = Ah ⊗A Q(A)
Our discussion above shows the spectrum of the ring on the left is the set of minimal
primes of (A′)h and the spectrum of the ring on the right is the is the set of minimal
primes of Ah. This finishes the proof. □

Lemma 15.106.3.0BQ0 [GD67, Chapter IV
Proposition 18.6.12]

Let A be a local ring. Let Ah be the henselization of A. The
following are equivalent

(1) A is unibranch, and
(2) Ah has a unique minimal prime.

Proof. This follows from Lemma 15.106.2 but we will also give a direct proof.
Denote m the maximal ideal of the ring A. Recall that the residue field κ = A/m
is the same as the residue field of Ah.

Assume (2). Let ph be the unique minimal prime of Ah. The flatness of A → Ah

implies that p = A ∩ ph is the unique minimal prime of A (by going down, see
Algebra, Lemma 10.39.19). Also, since Ah/pAh = (A/p)h (see Algebra, Lemma
10.156.2) is reduced by Lemma 15.45.4 we see that ph = pAh. Let A′ be the
integral closure of A/p in its fraction field. We have to show that A′ is local. Since
A→ A′ is integral, every maximal ideal of A′ lies over m (by going up for integral
ring maps, see Algebra, Lemma 10.36.22). If A′ is not local, then we can find
distinct maximal ideals m1, m2. Choose elements f1, f2 ∈ A′ with fi ∈ mi and
fi ̸∈ m3−i. We find a finite subalgebra B = A[f1, f2] ⊂ A′ with distinct maximal
ideals B ∩mi, i = 1, 2. Note that the inclusions

A/p ⊂ B ⊂ κ(p)

give, on tensoring with the flat ring map A→ Ah the inclusions

Ah/ph ⊂ B ⊗A Ah ⊂ κ(p)⊗A Ah ⊂ κ(ph)

https://stacks.math.columbia.edu/tag/0BQ0
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the last inclusion because κ(p) ⊗A Ah = κ(p) ⊗A/p Ah/ph is a localization of the
domain Ah/ph. Note that B ⊗A κ has at least two maximal ideals because B/mB
has two maximal ideals. Hence, as Ah is henselian we see that B⊗AAh is a product
of ≥ 2 local rings, see Algebra, Lemma 10.153.5. But we’ve just seen that B⊗AAh
is a subring of a domain and we get a contradiction.
Assume (1). Let p ⊂ A be the unique minimal prime and let A′ be the integral
closure of A/p in its fraction field. Let A→ B be a local map of local rings inducing
an isomorphism of residue fields which is a localization of an étale A-algebra. In
particular mB is the unique prime containing mB. Then B′ = A′ ⊗A B is integral
over B and the assumption that A→ A′ is local implies that B′ is local (Algebra,
Lemma 10.156.5). On the other hand, A′ → B′ is the localization of an étale ring
map, hence B′ is normal, see Algebra, Lemma 10.163.9. Thus B′ is a (local) normal
domain. Finally, we have

B/pB ⊂ B ⊗A κ(p) = B′ ⊗A′ (fraction field of A′) ⊂ fraction field of B′

Hence B/pB is a domain, which implies that B has a unique minimal prime (since
by flatness of A → B these all have to lie over p). Since Ah is a filtered colimit
of the local rings B it follows that Ah has a unique minimal prime. Namely, if
fg = 0 in Ah for some non-nilpotent elements f, g, then we can find a B as above
containing both f and g which leads to a contradiction. □

Lemma 15.106.4.0C25 Let (A,m, κ) be a local ring. Assume A has finitely many minimal
prime ideals. Let A′ be the integral closure of A in the total ring of fractions of
Ared. Choose an algebraic closure κ of κ and denote κsep ⊂ κ the separable algebraic
closure of κ. Let Ash be the strict henselization of A with respect to κsep. Consider
the maps

Spec(A′) c←− Spec((A′)sh) e−→ Spec(Ash)
where (A′)sh = A′ ⊗A Ash. Then

(1) for m′ ⊂ A′ maximal the residue field κ′ is algebraic over κ and the fibre
of c over m′ can be canonically identified with Homκ(κ′, κ),

(2) the right arrow is bijective on minimal primes,
(3) every minimal prime of (A′)sh is contained in a unique maximal ideal and

every maximal ideal contains a unique minimal prime.
Proof. The proof is almost exactly the same as for Lemma 15.106.2. Let I ⊂ A
be the ideal of nilpotents. We have (A/I)sh = Ash/IAsh by (Algebra, Lemma
10.156.2). The spectra of A, Ash, A′, and (A′)h are the same as the spectra of
A/I, Ash/IAsh, A′, and (A′)sh = A′ ⊗A/I Ash/IAsh. Thus we may replace A by
Ared = A/I and assume A is reduced. Then A ⊂ A′ which we will use below
without further mention.
Proof of (1). The field extension κ′/κ is algebraic because A′ is integral over A.
Since A′ is integral over A, we see that (A′)sh is integral over Ash. By going up
(Algebra, Lemma 10.36.22) every maximal ideal of A′, resp. (A′)sh lies over the
maximal ideal m, resp. msh of A, resp. Ah. We have

(A′)sh ⊗Ash κsep = A′ ⊗A Ah ⊗Ah κsep = (A′ ⊗A κ)⊗κ κsep

because the residue field of Ash is κsep. Thus the fibre of c over m′ is the spectrum
of κ′ ⊗κ κsep. We conclude (1) is true because there is a bijection

Homκ(κ′, κ)→ Spec(κ′ ⊗κ κsep), σ 7→ Ker(σ ⊗ 1 : κ′ ⊗κ κsep → κ)

https://stacks.math.columbia.edu/tag/0C25
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We will use below that the displayed ring is integral over a field hence spectrum of
this ring is a profinite space, see Algebra, Lemmas 10.36.19 and 10.26.5.
Proof of (3). The ring A′ is a normal ring and in fact a finite product of normal
domains, see Algebra, Lemma 10.37.16. Since Ash is a filtered colimit of étale
A-algebras, (A′)sh is filtered colimit of étale A′-algebras hence (A′)sh is a normal
ring by Algebra, Lemmas 10.163.9 and 10.37.17. Thus every local ring of (A′)sh is
a normal domain and we see that every maximal ideal contains a unique minimal
prime. By Lemma 15.11.8 applied to Ash → (A′)sh to see that ((A′)sh,m(A′)sh) is a
henselian pair. If q ⊂ (A′)sh is a minimal prime (or any prime), then the intersection
of V (q) with V (m(A′)sh) is connected by Lemma 15.11.16 Since V (m(A′)sh) =
Spec((A′)sh ⊗ κsh) is a profinite space by we see there is a unique maximal ideal
containing q.
Proof of (2). The minimal primes of A′ are exactly the primes lying over a minimal
prime of A (by construction). Since A′ → (A′)sh is flat by going down (Algebra,
Lemma 10.39.19) every minimal prime of (A′)sh lies over a minimal prime of A′.
Conversely, any prime of (A′)sh lying over a minimal prime of A′ is minimal because
(A′)sh is a filtered colimit of étale hence quasi-finite algebras over A′ (small detail
omitted). We conclude that the minimal primes of (A′)sh are exactly the primes
which lie over a minimal prime of A. Similarly, the minimal primes of Ash are
exactly the primes lying over minimal primes of A. By construction we have A′⊗A
Q(A) = Q(A) where Q(A) is the total fraction ring of our reduced local ring A. Of
course Q(A) is the finite product of residue fields of the minimal primes of A. It
follows that

(A′)sh ⊗A Q(A) = Ash ⊗A A′ ⊗A Q(A) = Ash ⊗A Q(A)
Our discussion above shows the spectrum of the ring on the left is the set of minimal
primes of (A′)sh and the spectrum of the ring on the right is the is the set of minimal
primes of Ash. This finishes the proof. □

Lemma 15.106.5.06DM [Art66, Lemma 2.2]
and [GD67, Chapter
IV Proposition
18.8.15]

Let A be a local ring. Let Ash be a strict henselization of A.
The following are equivalent

(1) A is geometrically unibranch, and
(2) Ash has a unique minimal prime.

Proof. This follows from Lemma 15.106.4 but we will also give a direct proof; this
direct proof is almost exactly the same as the direct proof of Lemma 15.106.3.
Denote m the maximal ideal of the ring A. Denote κ, κsh the residue field of A,
Ash.
Assume (2). Let psh be the unique minimal prime of Ash. The flatness of A→ Ash

implies that p = A ∩ psh is the unique minimal prime of A (by going down, see
Algebra, Lemma 10.39.19). Also, since Ash/pAsh = (A/p)sh (see Algebra, Lemma
10.156.4) is reduced by Lemma 15.45.4 we see that psh = pAsh. Let A′ be the
integral closure of A/p in its fraction field. We have to show that A′ is local and
that its residue field is purely inseparable over κ. Since A → A′ is integral, every
maximal ideal of A′ lies over m (by going up for integral ring maps, see Algebra,
Lemma 10.36.22). If A′ is not local, then we can find distinct maximal ideals m1, m2.
Choosing elements f1, f2 ∈ A′ with fi ∈ mi, fi ̸∈ m3−i we find a finite subalgebra
B = A[f1, f2] ⊂ A′ with distinct maximal ideals B ∩mi, i = 1, 2. If A′ is local with

https://stacks.math.columbia.edu/tag/06DM
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maximal ideal m′, but A/m ⊂ A′/m′ is not purely inseparable, then we can find
f ∈ A′ whose image in A′/m′ generates a finite, not purely inseparable extension
of A/m and we find a finite local subalgebra B = A[f ] ⊂ A′ whose residue field is
not a purely inseparable extension of A/m. Note that the inclusions

A/p ⊂ B ⊂ κ(p)

give, on tensoring with the flat ring map A→ Ash the inclusions

Ash/psh ⊂ B ⊗A Ash ⊂ κ(p)⊗A Ash ⊂ κ(psh)

the last inclusion because κ(p)⊗A Ash = κ(p)⊗A/p Ash/psh is a localization of the
domain Ash/psh. Note that B⊗Aκsh has at least two maximal ideals because B/mB
either has two maximal ideals or one whose residue field is not purely inseparable
over κ, and because κsh is separably algebraically closed. Hence, as Ash is strictly
henselian we see that B⊗AAsh is a product of ≥ 2 local rings, see Algebra, Lemma
10.153.6. But we’ve just seen that B ⊗A Ash is a subring of a domain and we get
a contradiction.

Assume (1). Let p ⊂ A be the unique minimal prime and let A′ be the integral
closure of A/p in its fraction field. Let A → B be a local map of local rings
which is a localization of an étale A-algebra. In particular mB is the unique prime
containing mAB. Then B′ = A′ ⊗A B is integral over B and the assumption that
A → A′ is local with purely inseparable residue field extension implies that B′ is
local (Algebra, Lemma 10.156.5). On the other hand, A′ → B′ is the localization
of an étale ring map, hence B′ is normal, see Algebra, Lemma 10.163.9. Thus B′

is a (local) normal domain. Finally, we have

B/pB ⊂ B ⊗A κ(p) = B′ ⊗A′ (fraction field of A′) ⊂ fraction field of B′

Hence B/pB is a domain, which implies that B has a unique minimal prime (since
by flatness of A → B these all have to lie over p). Since Ash is a filtered colimit
of the local rings B it follows that Ash has a unique minimal prime. Namely, if
fg = 0 in Ash for some non-nilpotent elements f, g, then we can find a B as above
containing both f and g which leads to a contradiction. □

Definition 15.106.6.0C26 Let A be a local ring with henselization Ah and strict henseliza-
tion Ash. The number of branches of A is the number of minimal primes of Ah if
finite and ∞ otherwise. The number of geometric branches of A is the number of
minimal primes of Ash if finite and ∞ otherwise.

We spell out the relationship with Definition 15.106.1.

Lemma 15.106.7.0C37 Let (A,m, κ) be a local ring.
(1) If A has infinitely many minimal prime ideals, then the number of (geo-

metric) branches of A is ∞.
(2) The number of branches of A is 1 if and only if A is unibranch.
(3) The number of geometric branches of A is 1 if and only if A is geometrically

unibranch.
Assume A has finitely many minimal primes and let A′ be the integral closure of A
in the total ring of fractions of Ared. Then

(4) the number of branches of A is the number of maximal ideals m′ of A′,
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(5) to get the number of geometric branches of A we have to count each
maximal ideal m′ of A′ with multiplicity given by the separable degree of
κ(m′)/κ.

Proof. This lemma follows immediately from the definitions, Lemma 15.106.2,
Lemma 15.106.4, and Fields, Lemma 9.14.8. □

Lemma 15.106.8.0DQ1 Let A→ B be a local homomorphism of local rings which is the
localization of a smooth ring map.

(1) The number of geometric branches ofA is equal to the number of geometric
branches of B.

(2) If A → B induces a purely inseparable extension of residue fields, then
the number of branches of A is the number of branches of B.

Proof. We will use that smooth ring maps are flat (Algebra, Lemma 10.137.10),
that localizations are flat (Algebra, Lemma 10.39.18), that compositions of flat
ring maps are flat (Algebra, Lemma 10.39.4), that base change of a flat ring map
is flat (Algebra, Lemma 10.39.7), that flat local homomorphisms are faithfully flat
(Algebra, Lemma 10.39.17), that (strict) henselization is flat (Lemma 15.45.1), and
Going down for flat ring maps (Algebra, Lemma 10.39.19).
Proof of (2). Let Ah, Bh be the henselizations of A, B. Then Bh is the henselization
ofAh⊗AB at the unique maximal ideal lying over mB , see Algebra, Lemma 10.155.8.
Thus we may and do assume A is henselian. Since A → B → Bh is flat, every
minimal prime of Bh lies over a minimal prime of A and since A→ Bh is faithfully
flat, every minimal prime of A does lie under a minimal prime of Bh; in both
cases use going down for flat ring maps. Therefore it suffices to show that given
a minimal prime p ⊂ A, there is at most one minimal prime of Bh lying over p.
After replacing A by A/p and B by B/pB we may assume that A is a domain; the
A is still henselian by Algebra, Lemma 10.156.2. By Lemma 15.106.3 we see that
the integral closure A′ of A in its field of fractions is a local domain. Of course
A′ is a normal domain. By Algebra, Lemma 10.163.9 we see that A′ ⊗A Bh is a
normal ring (the lemma just gives it for A′ ⊗A B, to go up to A′ ⊗A Bh use that
Bh is a colimit of étale B-algebras and use Algebra, Lemma 10.37.17). By Algebra,
Lemma 10.156.5 we see that A′⊗ABh is local (this is where we use the assumption
on the residue fields of A and B). Hence A′ ⊗A Bh is a local normal ring, hence a
local domain. Since Bh ⊂ A′ ⊗A Bh by flatness of A→ Bh we conclude that Bh is
a domain as desired.
Proof of (1). Let Ash, Bsh be strict henselizations of A, B. Then Bsh is a strict
henselization of Ah ⊗A B at a maximal ideal lying over mB and mAh , see Algebra,
Lemma 10.155.12. Thus we may and do assume A is strictly henselian. Since
A → B → Bsh is flat, every minimal prime of Bsh lies over a minimal prime of
A and since A → Bsh is faithfully flat, every minimal prime of A does lie under a
minimal prime of Bsh; in both cases use going down for flat ring maps. Therefore
it suffices to show that given a minimal prime p ⊂ A, there is at most one minimal
prime of Bsh lying over p. After replacing A by A/p and B by B/pB we may assume
that A is a domain; then A is still strictly henselian by Algebra, Lemma 10.156.4.
By Lemma 15.106.5 we see that the integral closure A′ of A in its field of fractions
is a local domain whose residue field is a purely inseparable extension of the residue
field of A. Of course A′ is a normal domain. By Algebra, Lemma 10.163.9 we see
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that A′ ⊗A Bsh is a normal ring (the lemma just gives it for A′ ⊗A B, to go up to
A′ ⊗A Bsh use that Bsh is a colimit of étale B-algebras and use Algebra, Lemma
10.37.17). By Algebra, Lemma 10.156.5 we see that A′⊗ABsh is local (since A ⊂ A′

induces a purely inseparable residue field extension). Hence A′ ⊗A Bsh is a local
normal ring, hence a local domain. Since Bsh ⊂ A′⊗ABsh by flatness of A→ Bsh

we conclude that Bsh is a domain as desired. □

15.107. Miscellaneous on branches

0GS4 Some results related to branches of local rings as defined in Section 15.106.

Lemma 15.107.1.0GS5 Let A and B be domains and let A→ B be a ring map. Assume
A→ B has additionally at least one of the following properties

(1) it is the localization of an étale ring map,
(2) it is flat and the localization of an unramified ring map,
(3) it is flat and the localization of a quasi-finite ring map,
(4) it is flat and the localization of an integral ring map,
(5) it is flat and there are no nontrivial specializations between points of fibres

of Spec(B)→ Spec(A),
(6) Spec(B)→ Spec(A) maps the generic point to the generic point and there

are no nontrivial specializations between points of fibres, or
(7) exactly one point of Spec(B) is mapped to the generic point of Spec(A).

Then A ∩ J is nonzero for every nonzero ideal J of B.

Proof. Proof in case (7). Let K, resp. L be the fraction field of A, resp. B. By
Algebra, Lemma 10.30.7 we see that the unique point of Spec(B) which maps to the
generic point (0) ∈ Spec(A) is (0) ∈ Spec(B). We conclude that B ⊗A K is a ring
with a unique prime ideal whose residue field is L (in fact it is equal to L but we do
not need this). Choose b ∈ J nonzero. Then b maps to a unit of L. Hence b maps to
a unit of B ⊗AK (Algebra, Lemma 10.19.2). Since B ⊗AK = colimf∈A\{0} Bf we
see that b maps to a unit of Bf for some f ∈ A nonzero. This means that bb′ = fn

for some b′ ∈ B and n ≥ 1. Thus fn ∈ A ∩ J as desired.
In the rest of the proof, we show that each of the other assumptions imply (7).
Under assumptions (1) – (5), the ring map A → B is flat and hence A → B
is injective (since flat local homomorphisms are faithfully flat by Algebra, Lemma
10.39.17). Hence the generic point of Spec(B) maps to the generic point of Spec(A).
Now, if there are no nontrivial specializations between points of fibres of Spec(B)→
Spec(A), then of course this generic point of Spec(B) has to be the unique point
mapping to the generic point of Spec(A). So (6) implies (7). Finally, to finish
we show that in cases (1) – (5) there are no nontrivial specializations between the
points of fibres of Spec(B) → Spec(A). Namely, see Algebra, Lemma 10.36.20 for
the integral case, Algebra, Definition 10.122.3 for the quasi-finite case, and use that
unramified and étale ring maps are quasi-finite (Algebra, Lemmas 10.151.6 and
10.143.6). □

Lemma 15.107.2.0GSC Let A → B be a ring map. Let q ⊂ B be a prime ideal lying
over the prime p ⊂ A. Assume

(1) A is a domain,
(2) Ap is geometrically unibranch,
(3) A→ B is unramified at q, and

https://stacks.math.columbia.edu/tag/0GS5
https://stacks.math.columbia.edu/tag/0GSC


15.107. MISCELLANEOUS ON BRANCHES 1484

(4) Ap → Bq is injective.
Then there exists a g ∈ B, g ̸∈ q such that Bg is étale over A.
Proof. By Algebra, Proposition 10.152.1 after replacing B by a principal localiza-
tion, we can find a standard étale ring map A → B′ and a surjection B′ → B.
Denote q′ ⊂ B′ the inverse image of q. We will show that B′ → B is injective after
possibly replacing B′ by a principal localization.
In this paragraph we reduce to the case that B′ is a domain. Since A is a domain,
the ring B′ is reduced, see Algebra, Lemma 15.42.1. Let K be the fraction field
of A. Then B′ ⊗A K is étale over a field, hence is a finite product of fields, see
Algebra, Lemma 10.143.4. Since A → B′ is étale (hence flat) the minimal primes
of B′ are lie over (0) ⊂ A (by going down for flat ring maps). We conclude that B′

has finitely many minimal primes, say r1, . . . , rr ⊂ B′. Since Ap is geometrically
unibranch and A → B′ étale, the ring B′

q′ is a domain, see Lemmas 15.106.8 and
15.106.7. Hence q′ ⊃ ri for exactly one i = i0. Choose g′ ∈ B′, g′ ̸∈ ri0 but g′ ∈ ri
for i ̸= i0, see Algebra, Lemma 10.15.2. After replacing B′ and B by B′

g′ and Bg′

we obtain that B′ is a domain.
Assume B′ is a domain, in particular B′ ⊂ B′

q′ . If B′ → B is not injective, then
J = Ker(B′

q′ → Bq) is nonzero. By Lemma 15.107.1 applied to Ap → B′
q′ we find a

nonzero element a ∈ Ap mapping to zero in Bq contradicting assumption (4). This
finishes the proof. □

Lemma 15.107.3.0GS6 Generalization of
[Gro71, Expose I,
Theorem 9.5 part
(ii)]

Let (A,m) be a geometrically unibranch local domain. Let
A → B be an injective local homomorphism of local rings, which is essentially
of finite type. If mB is the maximal ideal of B and the induced extension of residue
fields is separable, then A→ B is the localization of an étale ring map.
Proof. We may write B = Cq where A→ C is a finite type ring map and q ⊂ C is
a prime ideal lying over m. By Algebra, Lemma 10.151.7 the ring map A → C is
unramified at q. By Algebra, Proposition 10.152.1 after replacing C by a principal
localization, we can find a standard étale ring map A→ C ′ and a surjection C ′ → C.
Denote q′ ⊂ C ′ the inverse image of q and set B′ = C ′

q′ . Then B′ → B is surjective.
It suffices to show that B′ → B is also injective.
Since A is a domain, the rings C ′ and B′ are reduced, see Algebra, Lemma 15.42.1.
Since A is geometrically unibranch, the ring B′ is a domain, see by Lemmas 15.106.8
and 15.106.7. If B′ → B is not injective, then A ∩ Ker(B′ → B) is nonzero by
Lemma 15.107.1 which contradicts the assumption that A→ B is injective. □

Lemma 15.107.4.06DU Let k be an algebraically closed field. Let A, B be strictly
henselian local k-algebras with residue field equal to k. Let C be the strict henseliza-
tion of A⊗kB at the maximal ideal mA⊗kB+A⊗kmB . Then the minimal primes
of C correspond 1-to-1 to pairs of minimal primes of A and B.
Proof. First note that a minimal prime r of C maps to a minimal prime p in A
and to a minimal prime q of B because the ring maps A → C and B → C are
flat (by going down for flat ring map Algebra, Lemma 10.39.19). Hence it suffices
to show that the strict henselization of (A/p ⊗k B/q)mA⊗kB+A⊗kmB has a unique
minimal prime ideal. By Algebra, Lemma 10.156.4 the rings A/p, B/q are strictly
henselian. Hence we may assume that A and B are strictly henselian local domains
and our goal is to show that C has a unique minimal prime. By Lemma 15.106.5
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the integral closure A′ of A in its fraction field is a normal local domain with residue
field k. Similarly for the integral closure B′ of B into its fraction field. By Algebra,
Lemma 10.165.5 we see that A′ ⊗k B′ is a normal ring. Hence its localization

R = (A′ ⊗k B′)mA′ ⊗kB′+A′⊗kmB′

is a normal local domain. Note that A⊗k B → A′⊗k B′ is integral (hence gong up
holds – Algebra, Lemma 10.36.22) and that mA′ ⊗k B′ + A′ ⊗k mB′ is the unique
maximal ideal of A′ ⊗k B′ lying over mA ⊗k B +A⊗k mB . Hence we see that

R = (A′ ⊗k B′)mA⊗kB+A⊗kmB

by Algebra, Lemma 10.41.11. It follows that

(A⊗k B)mA⊗kB+A⊗kmB −→ R

is integral. We conclude that R is the integral closure of (A ⊗k B)mA⊗kB+A⊗kmB
in its fraction field, and by Lemma 15.106.5 once again we conclude that C has a
unique prime ideal. □

15.108. Branches of the completion

0C27 Let (A,m) be a Noetherian local ring. Consider the maps A→ Ah → A∧. In general
the map Ah → A∧ need not induce a bijection on minimal primes, see Examples,
Section 110.19. In other words, the number of branches ofA (as defined in Definition
15.106.6) may be different from the number of branches of A∧. However, under some
conditions the number of branches is the same, for example if the dimension of A
is 1.

Lemma 15.108.1.0C28 Let (A,m) be a Noetherian local ring.
(1) The map Ah → A∧ defines a surjective map from minimal primes of A∧

to minimal primes of Ah.
(2) The number of branches of A is at most the number of branches of A∧.
(3) The number of geometric branches of A is at most the number of geometric

branches of A∧.

Proof. By Lemma 15.45.3 the map Ah → A∧ is flat and injective. Combining
going down (Algebra, Lemma 10.39.19) and Algebra, Lemma 10.30.5 we see that
part (1) holds. Part (2) follows from this, Definition 15.106.6, and the fact that
A∧ is henselian (Algebra, Lemma 10.153.9). By Lemma 15.45.3 we have (A∧)sh =
Ash⊗Ah A∧. Thus we can repeat the arguments above using the flat injective map
Ash → (A∧)sh to prove (3). □

Lemma 15.108.2.0C29 Let (A,m) be a Noetherian local ring. The number of branches
of A is the same as the number of branches of A∧ if and only if

√
qA∧ is prime for

every minimal prime q ⊂ Ah of the henselization.

Proof. Follows from Lemma 15.108.1 and the fact that there are only a finite num-
ber of branches for both A and A∧ by Algebra, Lemma 10.31.6 and the fact that
Ah and A∧ are Noetherian (Lemma 15.45.3). □

A simple glueing lemma.
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Lemma 15.108.3.0C2A Let A be a ring and let I be a finitely generated ideal. Let
A→ C be a ring map such that for all f ∈ I the ring map Af → Cf is localization
at an idempotent. Then there exists a surjection A→ C ′ such that Af → (C×C ′)f
is an isomorphism for all f ∈ I.

Proof. Choose generators f1, . . . , fr of I. Write
Cfi = (Afi)ei

for some idempotent ei ∈ Afi . Write ei = ai/f
n
i for some ai ∈ A and n ≥ 0; we

may use the same n for all i = 1, . . . , r. After replacing ai by fmi ai and n by n+m
for a suitable m ≫ 0, we may assume a2

i = fni ai for all i. Since ei maps to 1 in
Cfifj = (Afifj )ej = Afifjaj we see that

(fifjaj)N (fnj ai − fni aj) = 0
for some N (we can pick the same N for all pairs i, j). Using a2

j = fnj aj this gives

fN+n
i fN+nN

j aj = fNi f
N+n
j aia

N
j

After increasing n to n+N + nN and replacing ai by fN+nN
i ai we see that fni aj

is in the ideal of ai for all pairs i, j. Let C ′ = A/(a1, . . . , ar). Then
C ′
fi = Afi/(ai) = Afi/(ei)

because aj is in the ideal generated by ai after inverting fi. Since for an idempotent
e of a ring B we have B = Be × B/(e) we see that the conclusion of the lemma
holds for f equal to one of f1, . . . , fr. Using glueing of functions, in the form of
Algebra, Lemma 10.23.2, we conclude that the result holds for all f ∈ I. Namely,
for f ∈ I the elements f1, . . . , fr generate the unit ideal in Af so Af → (C × C ′)f
is an isomorphism if and only if this is the case after localizing at f1, . . . , fr. □

Lemma 15.108.4 can be used to construct finite type extensions from given finite
type extensions of the formal completion. We will generalize this lemma in Alge-
braization of Formal Spaces, Lemma 88.10.3.

Lemma 15.108.4.0ALR Let A be a Noetherian ring and I an ideal. Let B be a finite
type A-algebra. Let B∧ → C be a surjective ring map with kernel J where B∧

is the I-adic completion. If J/J2 is annihilated by Ic for some c ≥ 0, then C is
isomorphic to the completion of a finite type A-algebra.

Proof. Let f ∈ I. Since B∧ is Noetherian (Algebra, Lemma 10.97.6), we see that J
is a finitely generated ideal. Hence we conclude from Algebra, Lemma 10.21.5 that

Cf = ((B∧)f )e
for some idempotent e ∈ (B∧)f . By Lemma 15.108.3 we can find a surjection
B∧ → C ′ such that B∧ → C × C ′ becomes an isomorphism after inverting any
f ∈ I. Observe that C × C ′ is a finite B∧-algebra.
Choose generators f1, . . . , fr ∈ I. Denote αi : (C ×C ′)fi → Bfi ⊗B B∧ the inverse
of the isomorphism of (B∧)fi -algebras we obtained above. Denote αij : (Bfi)fj →
(Bfj )fi the obvious B-algebra isomorphism. Consider the object

(C × C ′, Bfi , αi, αij)
of the category Glue(B → B∧, f1, . . . , fr) introduced in Remark 15.89.10. We
omit the verification of conditions (1)(a) and (1)(b). Since B → B∧ is a flat
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map (Algebra, Lemma 10.97.2) inducing an isomorphism B/IB → B∧/IB∧ we
may apply Proposition 15.89.15 and Remark 15.89.19. We conclude that C ×C ′ is
isomorphic to D⊗BB∧ for some finite B-algebra D. Then D/ID ∼= C/IC×C ′/IC ′.
Let e ∈ D/ID be the idempotent corresponding to the factor C/IC. By Lemma
15.9.10 there exists an étale ring map B → B′ which induces an isomorphism
B/IB → B′/IB′ such that D′ = D⊗BB′ contains an idempotent e lifting e. Since
C × C ′ is I-adically complete the pair (C × C ′, IC × IC ′) is henselian (Lemma
15.11.4). Thus we can factor the map B → C × C ′ through B′. Doing so we may
replace B by B′ andD byD′. Then we find thatD = De×D1−e = D/(1−e)×D/(e)
is a product of finite type A-algebras and the completion of the first part is C and
the completion of the second part is C ′. □

Lemma 15.108.5.0C2B Let (A,m) be a Noetherian local ring with henselization Ah. Let
q ⊂ A∧ be a minimal prime with dim(A∧/q) = 1. Then there exists a minimal
prime qh of Ah such that q =

√
qhA∧.

Proof. Since the completion of A and Ah are the same, we may assume that A
is henselian (Lemma 15.45.3). We will apply Lemma 15.108.4 to A∧ → A∧/J
where J = Ker(A∧ → (A∧)q). Since dim((A∧)q) = 0 we see that qn ⊂ J for some
n. Hence J/J2 is annihilated by qn. On the other hand (J/J2)q = 0 because
Jq = 0. Hence m is the only associated prime of J/J2 and we find that a power
of m annihilates J/J2. Thus the lemma applies and we find that A∧/J = C∧ for
some finite type A-algebra C.
Then C/mC = A/m because A∧/J has the same property. Hence mC = mC is a
maximal ideal and A→ C is unramified at mC (Algebra, Lemma 10.151.7). After
replacing C by a principal localization we may assume that C is a quotient of an
étale A-algebra B, see Algebra, Proposition 10.152.1. However, since the residue
field extension of A → CmC is trivial and A is henselian, we conclude that B = A
again after a localization. Thus C = A/I for some ideal I ⊂ A and it follows that
J = IA∧ (because completion is exact in our situation by Algebra, Lemma 10.97.2)
and I = J ∩ A (by flatness of A → A∧). Since qn ⊂ J ⊂ q we see that p = q ∩ A
satisfies pn ⊂ I ⊂ p. Then

√
pA∧ = q and the proof is complete. □

Lemma 15.108.6.0C2C Let (A,m) be a Noetherian local ring. The punctured spectrum
of A∧ is disconnected if and only if the punctured spectrum of Ah is disconnected.

Proof. Since the completion of A and Ah are the same, we may assume that A is
henselian (Lemma 15.45.3).
Since A→ A∧ is faithfully flat (see reference just given) the map from the punctured
spectrum of A∧ to the punctured spectrum of A is surjective (see Algebra, Lemma
10.39.16). Hence if the punctured spectrum of A is disconnected, then the same is
true for A∧.
Assume the punctured spectrum of A∧ is disconnected. This means that

Spec(A∧) \ {m∧} = Z ⨿ Z ′

with Z and Z ′ closed. Let Z,Z ′ ⊂ Spec(A∧) be the closures. Say Z = V (J), Z ′ =
V (J ′) for some ideals J, J ′ ⊂ A∧. Then V (J+J ′) = {m∧} and V (JJ ′) = Spec(A∧).
The first equality means that m∧ =

√
J + J ′ which implies (m∧)e ⊂ J + J ′ for

some e ≥ 1. The second equality implies every element of JJ ′ is nilpotent hence
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(JJ ′)n = 0 for some n ≥ 1. Combined this means that Jn/J2n is annihilated by
Jn and (J ′)n and hence by (m∧)2en. Thus we may apply Lemma 15.108.4 to see
that there is a finite type A-algebra C and an isomorphism A∧/Jn = C∧.
The rest of the proof is exactly the same as the second part of the proof of Lemma
15.108.5; of course that lemma is a special case of this one! We have C/mC = A/m
because A∧/Jn has the same property. Hence mC = mC is a maximal ideal and
A → C is unramified at mC (Algebra, Lemma 10.151.7). After replacing C by a
principal localization we may assume that C is a quotient of an étale A-algebra
B, see Algebra, Proposition 10.152.1. However, since the residue field extension
of A → CmC is trivial and A is henselian, we conclude that B = A again after a
localization. Thus C = A/I for some ideal I ⊂ A and it follows that Jn = IA∧

(because completion is exact in our situation by Algebra, Lemma 10.97.2) and
I = Jn ∩ A (by flatness of A → A∧). By symmetry I ′ = (J ′)n ∩ A satisfies
(J ′)n = I ′A∧. Then me ⊂ I + I ′ and II ′ = 0 and we conclude that V (I) and V (I ′)
are closed subschemes which give the desired disjoint union decomposition of the
punctured spectrum of A. □

Lemma 15.108.7.0C2D Let (A,m) be a Noetherian local ring of dimension 1. Then the
number of (geometric) branches of A and A∧ is the same.

Proof. To see this for the number of branches, combine Lemmas 15.108.1, 15.108.2,
and 15.108.5 and use that the dimension of A∧ is one, see Lemma 15.43.1. To see
this is true for the number of geometric branches we use the result for branches,
the fact that the dimension does not change under strict henselization (Lemma
15.45.7), and the fact that (Ash)∧ = ((A∧)sh)∧ by Lemma 15.45.3. □

Lemma 15.108.8.0C2E [Bed13, Theorem
2.3]

Let (A,m) be a Noetherian local ring. If the formal fibres of A
are geometrically normal (for example if A is excellent or quasi-excellent), then A
is Nagata and the number of (geometric) branches of A and A∧ is the same.

Proof. Since a normal ring is reduced, we see thatA is Nagata by Lemma 15.52.4. In
the rest of the proof we will use Lemma 15.51.10, Proposition 15.51.5, and Lemma
15.51.4. This tells us that A is a P-ring where P (k → R) =“R is geometrically
normal over k” and the same is true for any (essentially of) finite type A-algebra.
Let q ⊂ A be a minimal prime. Then A∧/qA∧ = (A/q)∧ and Ah/qAh = (A/q)h
(Algebra, Lemma 10.156.2). Hence the number of branches of A is the sum of the
number of branches of the rings A/q and similarly for A∧. In this way we reduce
to the case that A is a domain.
Assume A is a domain. Let A′ be the integral closure of A in the fraction field K
of A. Since A is Nagata, we see that A → A′ is finite. Recall that the number of
branches of A is the number of maximal ideals m′ of A′ (Lemma 15.106.2). Also,
recall that

(A′)∧ = A′ ⊗A A∧ =
∏

m′⊂A′
(A′

m′)∧

by Algebra, Lemma 10.97.8. Because A′
m′ is a local ring whose formal fibres are

geometrically normal, we see that (A′
m′)∧ is normal (Lemma 15.52.6). Hence the

minimal primes of A′ ⊗A A∧ are in 1-to-1 correspondence with the factors in the
decomposition above. By flatness of A→ A∧ we have

A∧ ⊂ A′ ⊗A A∧ ⊂ K ⊗A A∧

https://stacks.math.columbia.edu/tag/0C2D
https://stacks.math.columbia.edu/tag/0C2E


15.109. FORMALLY CATENARY RINGS 1489

Since the left and the right ring have the same set of minimal primes, the same is
true for the ring in the middle (small detail omitted) and this finishes the proof.
To see this is true for the number of geometric branches we use the result for
branches, the fact that the formal fibres of Ash are geometrically normal (Lemmas
15.51.10 and 15.51.8) and the fact that (Ash)∧ = ((A∧)sh)∧ by Lemma 15.45.3. □

15.109. Formally catenary rings

0AW1 In this section we prove a theorem of Ratliff [Rat71] that a Noetherian local ring
is universally catenary if and only if it is formally catenary.

Definition 15.109.1.0AW2 A Noetherian local ring A is formally catenary if for every
minimal prime p ⊂ A the spectrum of A∧/pA∧ is equidimensional.

Let A be a Noetherian local ring which is formally catenary. By Ratliff’s result
(Proposition 15.109.5) we see that any quotient of A is also formally catenary
(because the class of universally catenary rings is stable under quotients). We
conclude that the spectrum of A∧/pA∧ is equidimensional for every prime ideal p
of A.

Lemma 15.109.2.0AW3 Let (A,m) be a Noetherian local ring which is not formally
catenary. Then A is not universally catenary.

Proof. By assumption there exists a minimal prime p ⊂ A such that the spectrum
of A∧/pA∧ is not equidimensional. After replacing A by A/p we may assume that A
is a domain and that the spectrum of A∧ is not equidimensional. Let q be a minimal
prime of A∧ such that d = dim(A∧/q) is minimal and hence 0 < d < dim(A). We
prove the lemma by induction on d.
The case d = 1. In this case dim(A∧

q ) = 0. Hence A∧
q is Artinian local and we see

that for some n > 0 the ideal J = qn maps to zero in A∧
q . It follows that m is the

only associated prime of J/J2, whence mm annihilates J/J2 for some m > 0. Thus
we can use Lemma 15.108.4 to find A→ B of finite type such that B∧ ∼= A∧/J . It
follows that mB =

√
mB is a maximal ideal with the same residue field as m and

B∧ is the mB-adic completion (Algebra, Lemma 10.97.7). Then
dim(BmB ) = dim(B∧) = 1 = d.

Since we have the factorization A→ B → A∧/J the inverse image of q/J is a prime
q′ ⊂ mB lying over (0) in A. Thus, if A were universally catenary, the dimension
formula (Algebra, Lemma 10.113.1) would give

dim(BmB ) ≥ dim((B/q′)mB )
= dim(A) + trdegA(B/q′)− trdegκ(m)(κ(mB))
= dim(A) + trdegA(B/q′)

This contradiction finishes the argument in case d = 1.
Assume d > 1. Let Z ⊂ Spec(A∧) be the union of the irreducible components
distinct from V (q). Let r1, . . . , rm ⊂ A∧ be the prime ideals corresponding to
irreducible components of V (q) ∩ Z of dimension > 0. Choose f ∈ m, f ̸∈ A ∩ rj
using prime avoidance (Algebra, Lemma 10.15.2). Then dim(A/fA) = dim(A)− 1
and there is some irreducible component of V (q, f) of dimension d−1. Thus A/fA
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is not formally catenary and the invariant d has decreased. By induction A/fA is
not universally catenary, hence A is not universally catenary. □

Lemma 15.109.3.0AW4 Let A → B be a flat local ring map of local Noetherian rings.
Assume B is catenary and is Spec(B) equidimensional. Then

(1) Spec(B/pB) is equidimensional for all p ⊂ A and
(2) A is catenary and Spec(A) is equidimensional.

Proof. Let p ⊂ A be a prime ideal. Let q ⊂ B be a prime minimal over pB. Then
q ∩ A = p by going down for A→ B (Algebra, Lemma 10.39.19). Hence Ap → Bq

is a flat local ring map with special fibre of dimension 0 and hence
dim(Ap) = dim(Bq) = dim(B)− dim(B/q)

(Algebra, Lemma 10.112.7). The second equality because Spec(B) is equidimen-
sional and B is catenary. Thus dim(B/q) is independent of the choice of q and we
conclude that Spec(B/pB) is equidimensional of dimension dim(B)−dim(Ap). On
the other hand, we have dim(B/pB) = dim(A/p) + dim(B/mAB) and dim(B) =
dim(A) + dim(B/mAB) by flatness (see lemma cited above) and we get

dim(Ap) = dim(A)− dim(A/p)
for all p in A. Applying this to all minimal primes in A we see that A is equidimen-
sional. If p ⊂ p′ is a strict inclusion with no primes in between, then we may apply
the above to the prime p′/p in A/p because A/p→ B/pB is flat and Spec(B/pB)
is equidimensional, to get

1 = dim((A/p)p′) = dim(A/p)− dim(A/p′)
Thus p 7→ dim(A/p) is a dimension function and we conclude that A is catenary. □

Lemma 15.109.4.0AW5 Let A be a formally catenary Noetherian local ring. Then A is
universally catenary.

Proof. We may replace A by A/p where p is a minimal prime of A, see Algebra,
Lemma 10.105.8. Thus we may assume that the spectrum of A∧ is equidimen-
sional. It suffices to show that every local ring essentially of finite type over A is
catenary (see for example Algebra, Lemma 10.105.6). Hence it suffices to show that
A[x1, . . . , xn]m is catenary where m ⊂ A[x1, . . . , xn] is a maximal ideal lying over
mA, see Algebra, Lemma 10.54.5 (and Algebra, Lemmas 10.105.7 and 10.105.4).
Let m′ ⊂ A∧[x1, . . . , xn] be the unique maximal ideal lying over m. Then

A[x1, . . . , xn]m → A∧[x1, . . . , xn]m′

is local and flat (Algebra, Lemma 10.97.2). Hence it suffices to show that the
ring on the right hand side catenary with equidimensional spectrum, see Lemma
15.109.3. It is catenary because complete local rings are universally catenary (Al-
gebra, Remark 10.160.9). Pick any minimal prime q of A∧[x1, . . . , xn]m′ . Then
q = pA∧[x1, . . . , xn]m′ for some minimal prime p of A∧ (small detail omitted).
Hence

dim(A∧[x1, . . . , xn]m′/q) = dim(A∧/p) + n = dim(A∧) + n

the first equality by Algebra, Lemma 10.112.7 and the second because the spectrum
of A∧ is equidimensional. This finishes the proof. □

Proposition 15.109.5 (Ratliff).0AW6 [Rat71]A Noetherian local ring is universally catenary if
and only if it is formally catenary.
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Proof. Combine Lemmas 15.109.2 and 15.109.4. □

Lemma 15.109.6.0C2F [HRW04, Corollary
2.3]

Let (A,m) be a Noetherian local ring with geometrically normal
formal fibres. Then

(1) Ah is universally catenary, and
(2) if A is unibranch (for example normal), then A is universally catenary.

Proof. By Lemma 15.108.8 the number of branches of A and A∧ are the same,
hence Lemma 15.108.2 applies. Then for any minimal prime q ⊂ Ah we see that
A∧/qA∧ has a unique minimal prime. Thus Ah is formally catenary (by definition)
and hence universally catenary by Proposition 15.109.5. If A is unibranch, then
Ah has a unique minimal prime, hence A∧ has a unique minimal prime, hence A is
formally catenary and we conclude in the same way. □

15.110. Group actions and integral closure

0BRE This section is in some sense a continuation of Algebra, Section 10.38. More material
of a similar kind can be found in Fundamental Groups, Section 58.12

Lemma 15.110.1.0BRF Let φ : A→ B be a surjection of rings. Let G be a finite group
of order n acting on φ : A → B. If b ∈ BG, then there exists a monic polynomial
P ∈ AG[T ] which maps to (T − b)n in BG[T ].

Proof. Choose a ∈ A lifting b and set P =
∏
σ∈G(T − σ(a)). □

Lemma 15.110.2.09EG Let R be a ring. Let G be a finite group acting on R. Let
I ⊂ R be an ideal such that σ(I) ⊂ I for all σ ∈ G. Then RG/IG ⊂ (R/I)G is an
integral extension of rings which induces a homeomorphism on spectra and purely
inseparable extensions of residue fields.

Proof. Since IG = RG ∩ I it is clear that the map is injective. Lemma 15.110.1
shows that Algebra, Lemma 10.46.11 applies. □

Lemma 15.110.3.0H34 Let G be a finite group of order n acting on a ring R. Let J ⊂ RG
be an ideal. For x ∈ JR we have

∏
σ∈G(T − σ(x)) = Tn + a1T

n−1 + . . .+ an with
ai ∈ J .

Proof. Observe that the polynomial is indeed monic and has coefficients in RG.
We can write x = f1b1 + . . . + fmbm with fj ∈ J and bj ∈ R. Thus, arguing by
induction on m, we may assume that x = y − fb with f ∈ J , b ∈ R, and y ∈ JR
such that the result holds for y. Then we see that∏

σ∈G
(T − σ(x)) =

∏
σ∈G

(T − σ(y) + fσ(b)) =
∏

σ∈G
(T − σ(y)) +

∑
i=1,...,n

f iai

where we have
ai =

∑
S⊂G, |S|=i

∏
σ∈S

σ(b)
∏

σ ̸∈S
(T − σ(y))

A computation we omit shows that ai ∈ RG (hint: the given expression is symmet-
ric). Thus the polynomial of the statement of the lemma for x is congruent modulo
J to the polynomial for y and this proves the induction step. □

Lemma 15.110.4.0H35 Let R be a ring. Let G be a finite group of order n acting on R.
Let J ⊂ RG be an ideal. Then RG/J → (R/JR)G is ring map such that
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(1) for b ∈ (R/JR)G there is a monic polynomial P ∈ RG/J [T ] whose image
in (R/JR)G[T ] is (T − b)n,

(2) for a ∈ Ker(RG/J → (R/JR)G) we have (T − a)n = Tn in RG/J [T ].
In particular, RG/J → (R/JR)G is an integral ring map which induces homeomor-
phisms on spectra and purely inseparable extensions of residue fields.

Proof. Part (1) follow from Lemma 15.110.1 with I = JR. If a is as in part (2), then
a is the image of x ∈ RG ∩ JR. Hence (T − x)n =

∏
σ∈G(T − σ(x)) is congruent to

Tn modulo J by Lemma 15.110.3. This proves part (2). To see the final statement
we may apply Algebra, Lemma 10.46.11. □

Remark 15.110.5.0H36 In Lemma 15.110.4 we see that the map RG/J → (R/JR)G is
an isomorphism if n is invertible in R.

Lemma 15.110.6.0BRG Let R be a ring. Let G be a finite group of order n acting on R.
Let A be an RG-algebra.

(1) for b ∈ (A ⊗RG R)G there exists a monic polynomial P ∈ A[T ] whose
image in (A⊗RG R)G[T ] is (T − b)n,

(2) for a ∈ Ker(A→ (A⊗RG R)G) we have (T − a)n = Tn in A[T ].

Proof. Choose a surjection E → A where E is a polynomial algebra over RG. Then
(E ⊗RG R)G = E because E is free as an RG-module. Denote J = Ker(E → A).
Since tensor product is right exact we see that A⊗RG R is the quotient of E⊗RG R
by the ideal generated by J . In this way we see that our lemma is a special case of
Lemma 15.110.4. □

Lemma 15.110.7.0BRH Let R be a ring. Let G be a finite group acting on R. Let
RG → A be a ring map. The map

A→ (A⊗RG R)G

is an isomorphism if RG → A is flat. In general the map is integral, induces a
homeomorphism on spectra, and induces purely inseparable residue field extensions.

Proof. To see the first statement consider the exact sequence 0 → RG → R →⊕
σ∈GR where the second map sends x to (σ(x) − x)σ∈G. Tensoring with A the

sequence remains exact if RG → A is flat. Thus A is the G-invariants in (A⊗RGR)G.

The second statement follows from Lemma 15.110.6 and Algebra, Lemma 10.46.11.
□

Lemma 15.110.8.0BRI Let G be a finite group acting on a ring R. For any two primes
q, q′ ⊂ R lying over the same prime in RG there exists a σ ∈ G with σ(q) = q′.

Proof. The extension RG ⊂ R is integral because every x ∈ R is a root of the monic
polynomial

∏
σ∈G(T −σ(x)) in RG[T ]. Thus there are no inclusion relations among

the primes lying over a given prime p (Algebra, Lemma 10.36.20). If the lemma is
wrong, then we can choose x ∈ q′, x ̸∈ σ(q) for all σ ∈ G. See Algebra, Lemma
10.15.2. Then y =

∏
σ∈G σ(x) is in RG and in p = RG ∩ q′. On the other hand,

x ̸∈ σ(q) for all σ means σ(x) ̸∈ q for all σ. Hence y ̸∈ q as q is a prime ideal. This
is impossible as y ∈ p ⊂ q. □
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Lemma 15.110.9.0BRJ Let G be a finite group acting on a ring R. Let q ⊂ R be a prime
lying over p ⊂ RG. Then κ(q)/κ(p) is an algebraic normal extension and the map

D = {σ ∈ G | σ(q) = q} −→ Aut(κ(q)/κ(p))
is surjective15.

Proof. With A = (RG)p and B = A ⊗RG R we see that A = BG as localization
is flat, see Lemma 15.110.7. Observe that pA and qB are prime ideals, D is the
stabilizer of qB, and κ(p) = κ(pA) and κ(q) = κ(qB). Thus we may replace R by B
and assume that p is a maximal ideal. SinceRG ⊂ R is an integral ring extension, we
find that the maximal ideals of R are exactly the primes lying over p (follows from
Algebra, Lemmas 10.36.20 and 10.36.22). By Lemma 15.110.8 there are finitely
many of them q = q1, q2, . . . , qm and they form a single orbit for G. By the Chinese
remainder theorem (Algebra, Lemma 10.15.4) the map R →

∏
j=1,...,mR/qj is

surjective.
First we prove that the extension is normal. Pick an element α ∈ κ(q). We have to
show that the minimal polynomial P of α over κ(p) splits completely. By the above
we can choose a ∈ q2 ∩ . . . ∩ qm mapping to α in κ(q). Consider the polynomial
Q =

∏
σ∈G(T − σ(a)) in RG[T ]. The image of Q in R[T ] splits completely into

linear factors, hence the same is true for its image in κ(q)[T ]. Since P divides the
image of Q in κ(p)[T ] we conclude that P splits completely into linear factors over
κ(q) as desired.
Since κ(q)/κ(p) is normal we may assume κ(q) = κ1 ⊗κ(p) κ2 with κ1/κ(p) purely
inseparable and κ2/κ(p) Galois, see Fields, Lemma 9.27.3. Pick α ∈ κ2 which
generates κ2 over κ(p) if it is finite and a subfield of degree > |G| if it is infinite (to
get a contradiction). This is possible by Fields, Lemma 9.19.1. Pick a, P , and Q
as in the previous paragraph. If α′ ∈ κ2 is a Galois conjugate of α over κ(p), then
the fact that P divides the image of P in κ(p)[T ] shows there exists a σ ∈ G such
that σ(a) maps to α′. By our choice of a (vanishing at other maximal ideals) this
implies σ ∈ D and that the image of σ in Aut(κ(q)/κ(p)) maps α to α′. Hence the
surjectivity or the desired absurdity in case α has degree > |G| over κ(p). □

Lemma 15.110.10.0BRK Let A be a normal domain with fraction field K. Let L/K be
a (possibly infinite) Galois extension. Let G = Gal(L/K) and let B be the integral
closure of A in L.

(1) For any two primes q, q′ ⊂ B lying over the same prime in A there exists
a σ ∈ G with σ(q) = q′.

(2) Let q ⊂ B be a prime lying over p ⊂ A. Then κ(q)/κ(p) is an algebraic
normal extension and the map

D = {σ ∈ G | σ(q) = q} −→ Aut(κ(q)/κ(p))
is surjective.

Proof. Proof of (1). Consider pairs (M,σ) where K ⊂M ⊂ L is a subfield such that
M/K is Galois, σ ∈ Gal(M/K) with σ(q∩M) = q′ ∩M . We say (M ′, σ′) ≥ (M,σ)
if and only if M ⊂ M ′ and σ′|M = σ. Observe that (K, idK) is such a pair as
A = K ∩ B since A is a normal domain. The collection of these pairs satisfies the
hypotheses of Zorn’s lemma, hence there exists a maximal pair (M,σ). If M ̸= L,

15Recall that we use the notation Gal only in the case of Galois extensions.
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then we can find M ⊂M ′ ⊂ L with M ′/M nontrivial and finite and M ′/K Galois
(Fields, Lemma 9.16.5). Choose σ′ ∈ Gal(M ′/K) whose restriction to M is σ
(Fields, Lemma 9.22.2). Then the primes σ′(q ∩M ′) and q′ ∩M ′ restrict to the
same prime of B∩M . Since B∩M = (B∩M ′)Gal(M ′/M) we can use Lemma 15.110.8
to find τ ∈ Gal(M ′/M) with τ(σ′(q∩M ′)) = q′ ∩M ′. Hence (M ′, τ ◦ σ′) > (M,σ)
contradicting the maximality of (M,σ).
Part (2) is proved in exactly the same manner as part (1). We write out the details.
Pick σ ∈ Aut(κ(q)/κ(p)). Consider pairs (M,σ) where K ⊂ M ⊂ L is a subfield
such that M/K is Galois, σ ∈ Gal(M/K) with σ(q ∩M) = q ∩M and

κ(q ∩M) //

σ

��

κ(q)

σ

��
κ(q ∩M) // κ(q)

commutes. We say (M ′, σ′) ≥ (M,σ) if and only if M ⊂ M ′ and σ′|M = σ. As
above (K, idK) is such a pair. The collection of these pairs satisfies the hypotheses
of Zorn’s lemma, hence there exists a maximal pair (M,σ). If M ̸= L, then we can
find M ⊂ M ′ ⊂ L with M ′/M finite and M ′/K Galois (Fields, Lemma 9.16.5).
Choose σ′ ∈ Gal(M ′/K) whose restriction to M is σ (Fields, Lemma 9.22.2). Then
the primes σ′(q ∩M ′) and q ∩M ′ restrict to the same prime of B ∩M . Adjusting
the choice of σ′ as in the first paragraph, we may assume that σ′(q∩M ′) = q∩M ′.
Then σ′ and σ define maps κ(q ∩M ′) → κ(q) which agree on κ(q ∩M). Since
B ∩M = (B ∩M ′)Gal(M ′/M) we can use Lemma 15.110.9 to find τ ∈ Gal(M ′/M)
with τ(q∩M ′) = q∩M ′ such that τ ◦ σ and σ induce the same map on κ(q∩M ′).
There is a small detail here in that the lemma first guarantees that κ(q∩M ′)/κ(q∩
M) is normal, which then tells us that the difference between the maps is an
automorphism of this extension (Fields, Lemma 9.15.10), to which we can apply
the lemma to get τ . Hence (M ′, τ ◦ σ′) > (M,σ) contradicting the maximality of
(M,σ). □

Lemma 15.110.11.0BSX Let A be a normal domain with fraction field K. Let M/L/K
be a tower of (possibly infinite) Galois extensions of K. Let H = Gal(M/K) and
G = Gal(L/K) and let C and B be the integral closure of A in M and L. Let r ⊂ C
and q = B ∩ r. Set Dr = {τ ∈ H | τ(r) = r} and Ir = {τ ∈ Dr | τ mod r = idκ(r)}
and similarly for Dq and Iq. Under the map H → G the induced maps Dr → Dq

and Ir → Iq are surjective.

Proof. Let σ ∈ Dq. Pick τ ∈ H mapping to σ. This is possible by Fields, Lemma
9.22.2. Then τ(r) and r both lie over q. Hence by Lemma 15.110.10 there exists a
σ′ ∈ Gal(M/L) with σ′(τ(r)) = r. Hence σ′τ ∈ Dr maps to σ. The case of inertia
groups is proved in exactly the same way using surjectivity onto automorphism
groups. □

15.111. Extensions of discrete valuation rings

0EXQ In this section and the next few we use the following definitions.

Definition 15.111.1.09E4 We say that A → B or A ⊂ B is an extension of discrete
valuation rings if A and B are discrete valuation rings and A→ B is injective and
local. In particular, if πA and πB are uniformizers of A and B, then πA = uπeB for
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some e ≥ 1 and unit u of B. The integer e does not depend on the choice of the
uniformizers as it is also the unique integer ≥ 1 such that

mAB = meB

The integer e is called the ramification index of B over A. We say that B is weakly
unramified over A if e = 1. If the extension of residue fields κA = A/mA ⊂ κB =
B/mB is finite, then we set f = [κB : κA] and we call it the residual degree or
residue degree of the extension A ⊂ B.

Note that we do not require the extension of fraction fields to be finite.

Lemma 15.111.2.09E5 Let A ⊂ B be an extension of discrete valuation rings with
fraction fields K ⊂ L. If the extension L/K is finite, then the residue field extension
is finite and we have ef ≤ [L : K].

Proof. Finiteness of the residue field extension is Algebra, Lemma 10.119.10. The
inequality follows from Algebra, Lemmas 10.119.9 and 10.52.12. □

Lemma 15.111.3.0BRL Let A ⊂ B ⊂ C be extensions of discrete valuation rings. Then
the ramification indices of B/A and C/B multiply to give the ramification index
of C/A. In a formula eC/A = eB/AeC/B . Similarly for the residual degrees in case
they are finite.

Proof. This is immediate from the definitions and Fields, Lemma 9.7.7. □

Lemma 15.111.4.09E6 Let A ⊂ B be an extension of discrete valuation rings inducing
the field extension K ⊂ L. If the characteristic of K is p > 0 and L is purely
inseparable over K, then the ramification index e is a power of p.

Proof. Write πA = uπeB for some u ∈ B∗. On the other hand, we have πqB ∈ K for
some p-power q. Write πqB = vπkA for some v ∈ A∗ and k ∈ Z. Then πqA = uqπqeB =
uqveπkeA . Taking valuations in B we conclude that ke = q. □

In the following lemma we discuss what it means for an extension A ⊂ B of discrete
valuation rings to be “unramified”, i.e., have ramification index 1 and separable
(possibly nonalgebraic) extension of residue fields. However, we cannot use the
term “unramified” itself because there already exists a notion of an unramified ring
map, see Algebra, Section 10.151.

Lemma 15.111.5.09E7 Let A ⊂ B be an extension of discrete valuation rings. The
following are equivalent

(1) A→ B is formally smooth in the mB-adic topology, and
(2) A→ B is weakly unramified and κB/κA is a separable field extension.

Proof. This follows from Proposition 15.40.5 and Algebra, Proposition 10.158.9. □

Remark 15.111.6.09E8 Let A be a discrete valuation ring with fraction field K. Let
L/K be a finite separable field extension. Let B ⊂ L be the integral closure of A
in L. Picture:

B // L

A

OO

// K

OO

https://stacks.math.columbia.edu/tag/09E5
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By Algebra, Lemma 10.161.8 the ring extension A ⊂ B is finite, hence B is Noether-
ian. By Algebra, Lemma 10.112.4 the dimension of B is 1, hence B is a Dedekind
domain, see Algebra, Lemma 10.120.17. Let m1, . . . ,mn be the maximal ideals of
B (i.e., the primes lying over mA). We obtain extensions of discrete valuation rings

A ⊂ Bmi

and hence ramification indices ei and residue degrees fi. We have

[L : K] =
∑

i=1,...,n
eifi

by Algebra, Lemma 10.121.8 applied to a uniformizer in A. We observe that n = 1
if A is henselian (by Algebra, Lemma 10.153.4), e.g. if A is complete.

Definition 15.111.7.09E9 Let A be a discrete valuation ring with fraction field K. Let
L/K be a finite separable extension. With B and mi, i = 1, . . . , n as in Remark
15.111.6 we say the extension L/K is

(1) unramified with respect to A if ei = 1 and the extension κ(mi)/κA is
separable for all i,

(2) tamely ramified with respect to A if either the characteristic of κA is 0
or the characteristic of κA is p > 0, the field extensions κ(mi)/κA are
separable, and the ramification indices ei are prime to p, and

(3) totally ramified with respect to A if n = 1 and the residue field extension
κ(m1)/κA is trivial.

If the discrete valuation ring A is clear from context, then we sometimes say L/K
is unramified, totally ramified, or tamely ramified for short.

For unramified extensions we have the following basic lemma.

Lemma 15.111.8.0EXR Let A be a discrete valuation ring with fraction field K.
(1) IfM/L/K are finite separable extensions andM is unramified with respect

to A, then L is unramified with respect to A.
(2) If L/K is a finite separable extension which is unramified with respect

to A, then there exists a Galois extension M/K containing L which is
unramified with respect to A.

(3) If L1/K, L2/K are finite separable extensions which are unramified with
respect to A, then there exists a a finite separable extension L/K which
is unramified with respect to A containing L1 and L2.

Proof. We will use the results of the discussion in Remark 15.111.6 without further
mention.
Proof of (1). Let C/B/A be the integral closures of A in M/L/K. Since C is a
finite ring extension of B, we see that Spec(C)→ Spec(B) is surjective. Hence for
ever maximal ideal m ⊂ B there is a maximal ideal m′ ⊂ C lying over m. By the
multiplicativity of ramification indices (Lemma 15.111.3) and the assumption, we
conclude that the ramification index of Bm over A is 1. Since κ(m′)/κA is finite
separable, the same is true for κ(m)/κA.
Proof of (2). Let M be the normal closure of L over K, see Fields, Definition
9.16.4. Then M/K is Galois by Fields, Lemma 9.21.5. On the other hand, there is
a surjection

L⊗K . . .⊗K L −→M

https://stacks.math.columbia.edu/tag/09E9
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of K-algebras, see Fields, Lemma 9.16.6. Let B be the integral closure of A in
L as in Remark 15.111.6. The condition that L is unramified with respect to A
exactly means that A→ B is an étale ring map, see Algebra, Lemma 10.143.7. By
permanence properties of étale ring maps we see that

B ⊗A . . .⊗A B
is étale over A, see Algebra, Lemma 10.143.3. Hence the displayed ring is a product
of Dedekind domains, see Lemma 15.44.4. We conclude that M is the fraction field
of a Dedekind domain finite étale over A. This means that M is unramified with
respect to A as desired.
Proof of (3). Let Bi ⊂ Li be the integral closure of A. Argue in the same manner
as above to show that B1 ⊗A B2 is finite étale over A. Details omitted. □

Lemma 15.111.9.0EXS Let A be a discrete valuation ring with fraction field K. Let
M/L/K be finite separable extensions. Let B be the integral closure of A in L. If
L/K is unramified with respect to A and M/L is unramified with respect to Bm

for every maximal ideal m of B, then M/K is unramified with respect to A.

Proof. Let C be the integral closure of A in M . Every maximal ideal m′ of C
lies over a maximal ideal m of B. Then the lemma follows from the multiplicativ-
ity of ramification indices (Lemma 15.111.3) and the fact that we have the tower
κ(m′)/κ(m)/κA of finite extensions of fields. □

15.112. Galois extensions and ramification

09E3 In the case of Galois extensions, we can elaborate on the discussion in Section
15.111.

Lemma 15.112.1.09EA Let A be a discrete valuation ring with fraction field K. Let
L/K be a finite Galois extension with Galois group G. Then G acts on the ring B
of Remark 15.111.6 and acts transitively on the set of maximal ideals of B.

Proof. Observe that A = BG as A is integrally closed in K and K = LG. Hence
this lemma is a special case of Lemma 15.110.8. □

Lemma 15.112.2.09EB Let A be a discrete valuation ring with fraction field K. Let
L/K be a finite Galois extension. Then there are e ≥ 1 and f ≥ 1 such that ei = e
and fi = f for all i (notation as in Remark 15.111.6). In particular [L : K] = nef .

Proof. Immediate consequence of Lemma 15.112.1 and the definitions. □

Definition 15.112.3.09EC Let A be a discrete valuation ring with fraction field K. Let
L/K be a finite Galois extension with Galois group G. Let B be the integral closure
of A in L. Let m ⊂ B be a maximal ideal.

(1) The decomposition group of m is the subgroup D = {σ ∈ G | σ(m) = m}.
(2) The inertia group of m is the kernel I of the map D → Aut(κ(m)/κA).

Note that the field κ(m) may be inseparable over κA. In particular the field exten-
sion κ(m)/κA need not be Galois. If κA is perfect, then it is.

Lemma 15.112.4.09ED Let A be a discrete valuation ring with fraction field K and
residue field κ. Let L/K be a finite Galois extension with Galois group G. Let B
be the integral closure of A in L. Let m be a maximal ideal of B. Then

https://stacks.math.columbia.edu/tag/0EXS
https://stacks.math.columbia.edu/tag/09EA
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(1) the field extension κ(m)/κ is normal, and
(2) D → Aut(κ(m)/κ) is surjective.

If for some (equivalently all) maximal ideal(s) m ⊂ B the field extension κ(m)/κ is
separable, then

(3) κ(m)/κ is Galois, and
(4) D → Gal(κ(m)/κ) is surjective.

Here D ⊂ G is the decomposition group of m.
Proof. Observe that A = BG as A is integrally closed in K and K = LG. Thus
parts (1) and (2) follow from Lemma 15.110.9. The “equivalently all” part of the
lemma follows from Lemma 15.112.1. Assume κ(m)/κ is separable. Then parts (3)
and (4) follow immediately from (1) and (2). □

Lemma 15.112.5.09EE Let A be a discrete valuation ring with fraction field K. Let L/K
be a finite Galois extension with Galois group G. Let B be the integral closure of
A in L. Let m ⊂ B be a maximal ideal. The inertia group I of m sits in a canonical
exact sequence

1→ P → I → It → 1
such that

(1) P = {σ ∈ D | σ|B/m2 = idB/m2} where D is the decomposition group,
(2) P is a normal subgroup of D,
(3) P is a p-group if the characteristic of κA is p > 0 and P = {1} if the

characteristic of κA is zero,
(4) It is cyclic of order the prime to p part of the integer e, and
(5) there is a canonical isomorphism θ : It → µe(κ(m)).

Here e is the integer of Lemma 15.112.2.
Proof. Recall that |G| = [L : K] = nef , see Lemma 15.112.2. Since G acts transi-
tively on the set {m1, . . . ,mn} of maximal ideals of B (Lemma 15.112.1) and since
D is the stabilizer of an element we see that |D| = ef . By Lemma 15.112.4 we have

ef = |D| = |I| · |Aut(κ(m)/κ)|
where κ is the residue field of A. As κ(m) is normal over κ the order of Aut(κ(m)/κ)
differs from f by a power of p (see Fields, Lemma 9.15.9 and discussion following
Fields, Definition 9.14.7). Hence the prime to p part of |I| is equal to the prime to
p part of e.
Set C = Bm. Then I acts on C over A and trivially on the residue field of C. Let
πA ∈ A and πC ∈ C be uniformizers. Write πA = uπeC for some unit u in C. For
σ ∈ I write σ(πC) = θσπC for some unit θσ in C. Then we have

πA = σ(πA) = σ(u)(θσπC)e = σ(u)θeσπeC = σ(u)
u

θeσπA

Since σ(u) ≡ u mod mC as σ ∈ I we see that the image θσ of θσ in κC = κ(m) is
an eth root of unity. We obtain a map
(15.112.5.1)0BU3 θ : I −→ µe(κ(m)), σ 7→ θσ

We claim that θ is a homomorphism of groups and independent of the choice of
uniformizer πC . Namely, if τ is a second element of I, then τ(σ(πC)) = τ(θσπC) =
τ(θσ)θτπC , hence θτσ = τ(θσ)θτ and since τ ∈ I we conclude that θτσ = θσθτ . If
π′
C is a second uniformizer, then we see that π′

C = wπC for some unit w of C and

https://stacks.math.columbia.edu/tag/09EE
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σ(π′
C) = w−1σ(w)θσπ′

C , hence θ′
σ = w−1σ(w)θσ, hence θ′

σ and θσ map to the same
element of the residue field as before.
Since κ(m) has characteristic p, the group µe(κ(m)) is cyclic of order at most the
prime to p part of e (see Fields, Section 9.17).
Let P = Ker(θ). The elements of P are exactly the elements of D acting trivially
on C/π2

CC
∼= B/m2. Thus (a) is true. This implies (b) as P is the kernel of the

map D → Aut(B/m2). If we can prove (c), then parts (d) and (e) will follow as It
will be isomorphic to µe(κ(m)) as the arguments above show that |It| ≥ |µe(κ(m))|.
Thus it suffices to prove that the kernel P of θ is a p-group. Let σ be a nontrivial
element of the kernel. Then σ− id sends miC into mi+1

C for all i. Let m be the order
of σ. Pick c ∈ C such that σ(c) ̸= c. Then σ(c)− c ∈ miC , σ(c)− c ̸∈ mi+1

C for some
i and we have

0 = σm(c)− c
= σm(c)− σm−1(c) + . . .+ σ(c)− c

=
∑

j=0,...,m−1
σj(σ(c)− c)

≡ m(σ(c)− c) mod mi+1
C

It follows that p|m (or m = 0 if p = 1). Thus every element of the kernel of θ has
order divisible by p, i.e., Ker(θ) is a p-group. □

Definition 15.112.6.0BU4 With assumptions and notation as in Lemma 15.112.5.
(1) The wild inertia group of m is the subgroup P .
(2) The tame inertia group of m is the quotient I → It.

We denote θ : I → µe(κ(m)) the surjective map (15.112.5.1) whose kernel is P and
which induces the isomorphism It → µe(κ(m)).

Lemma 15.112.7.0BU5 With assumptions and notation as in Lemma 15.112.5. The
inertia character θ : I → µe(κ(m)) satisfies the following property

θ(τστ−1) = τ(θ(σ))
for τ ∈ D and σ ∈ I.

Proof. The formula makes sense as I is a normal subgroup of D and as τ acts
on κ(m) via the map D → Aut(κ(m)) discussed in Lemma 15.112.4 for example.
Recall the construction of θ. Choose a uniformizer π of Bm and for σ ∈ I write
σ(π) = θσπ. Then θ(σ) is the image θσ of θσ in the residue field. For any τ ∈ D
we can write τ(π) = θτπ for some unit θτ . Then θτ−1 = τ−1(θ−1

τ ). We compute
θτστ−1 = τ(σ(τ−1(π)))/π

= τ(σ(τ−1(θ−1
τ )π))/π

= τ(σ(τ−1(θ−1
τ ))θσπ)/π

= τ(σ(τ−1(θ−1
τ )))τ(θσ)θτ

However, since σ acts trivially modulo π we see that the product τ(σ(τ−1(θ−1
τ )))θτ

maps to 1 in the residue field. This proves the lemma. □

We will generalize the following lemma in Fundamental Groups, Lemma 58.12.5.
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Lemma 15.112.8.09EH Let A be a discrete valuation ring with fraction field K. Let
L/K be a finite Galois extension. Let m ⊂ B be a maximal ideal of the integral
closure of A in L. Let I ⊂ G be the inertia group of m. Then BI is the integral
closure of A in LI and A→ (BI)BI∩m is étale.

Proof. Write B′ = BI . It follows from the definitions that B′ = BI is the integral
closure of A in LI . Write m′ = BI ∩ m = B′ ∩ m ⊂ B′. By Lemma 15.110.8
the maximal ideal m is the unique prime ideal of B lying over m′. As I acts
trivially on κ(m) we see from Lemma 15.110.2 that the extension κ(m)/κ(m′) is
purely inseparable (perhaps an easier alternative is to apply the result of Lemma
15.110.9). Since D/I acts faithfully on κ(m′), we conclude that D/I acts faithfully
on κ(m). Of course the elements of the residue field κ of A are fixed by this action.
By Galois theory we see that [κ(m′) : κ] ≥ |D/I|, see Fields, Lemma 9.21.6.
Let π be the uniformizer of A. Since NormL/K(π) = π[L:K] we see from Algebra,
Lemma 10.121.8 that

|G| = [L : K] = [L : K] ordA(π) = |G/D| [κ(m) : κ] ordBm
(π)

as there are n = |G/D| maximal ideals of B which are all conjugate under G, see
Remark 15.111.6 and Lemma 15.112.1. Applying the same reasoning to the finite
extension the finite extension L/LI of degree |I| we find

|I| ordB′
m′

(π) = [κ(m) : κ(m′)] ordBm
(π)

We conclude that
ordB′

m′
(π) = |D/I|

[κ(m′) : κ]
Since the left hand side is a positive integer and since the right hand side is ≤ 1 by
the above, we conclude that we have equality, ordB′

m′
(π) = 1 and κ(m′)/κ has degree

|D/I|. Thus πB′
m′ = m′B′

m and κ(m′) is Galois over κ with Galois group D/I, in
particular separable, see Fields, Lemma 9.21.2. By Algebra, Lemma 10.143.7 we
find that A→ B′

m′ is étale as desired. □

Remark 15.112.9.0BU6 Let A be a discrete valuation ring with fraction field K. Let
L/K be a finite Galois extension. Let m ⊂ B be a maximal ideal of the integral
closure of A in L. Let

P ⊂ I ⊂ D ⊂ G
be the wild inertia, inertia, decomposition group of m. Consider the diagram

m mP mI mD A ∩m

B BPoo BIoo BDoo Aoo

Observe that BP , BI , BD are the integral closures of A in the fields LP , LI , LD.
Thus we also see that BP is the integral closure of BI in LP and so on. Observe
that mP = m ∩ BP , mI = m ∩ BI , and mD = m ∩ BD. Hence the top line of
the diagram corresponds to the images of m ∈ Spec(B) under the induced maps of
spectra. Having said all of this we have the following

(1) the extension LI/LD is Galois with group D/I,
(2) the extension LP /LI is Galois with group It = I/P ,
(3) the extension LP /LD is Galois with group D/P ,

https://stacks.math.columbia.edu/tag/09EH
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(4) mI is the unique prime of BI lying over mD,
(5) mP is the unique prime of BP lying over mI ,
(6) m is the unique prime of B lying over mP ,
(7) mP is the unique prime of BP lying over mD,
(8) m is the unique prime of B lying over mI ,
(9) m is the unique prime of B lying over mD,

(10) A→ BDmD is étale and induces a trivial residue field extension,
(11) BDmD → BImI is étale and induces a Galois extension of residue fields with

Galois group D/I,
(12) A→ BImI is étale,
(13) BImI → BPmP has ramification index |I/P | prime to p and induces a trivial

residue field extension,
(14) BDmD → BPmP has ramification index |I/P | prime to p and induces a sepa-

rable residue field extension,
(15) A→ BPmP has ramification index |I/P | prime to p and induces a separable

residue field extension.
Statements (1), (2), and (3) are immediate from Galois theory (Fields, Section 9.21)
and Lemma 15.112.5. Statements (4) – (9) are clear from Lemma 15.112.1. Part
(12) is Lemma 15.112.8. Since we have the factorization A → BDmD → BImI we
obtain the étaleness in (10) and (11) as a consequence. The residue field extension
in (10) must be trivial because it is separable and D/I maps onto Aut(κ(m)/κA) as
shown in Lemma 15.112.4. The same argument provides the proof of the statement
on residue fields in (11). To see (13), (14), and (15) it suffices to prove (13). By
the above, the extension LP /LI is Galois with a cyclic Galois group of order prime
to p, the prime mP is the unique prime lying over mI and the action of I/P on the
residue field is trivial. Thus we can apply Lemma 15.112.5 to this extension and
the discrete valuation ring BImI to see that (13) holds.

Lemma 15.112.10.0BU7 Let A be a discrete valuation ring with fraction field K. Let
M/L/K be a tower with M/K and L/K finite Galois. Let C, B be the integral
closure of A in M , L. Let m′ ⊂ C be a maximal ideal and set m = m′ ∩B. Let

P ⊂ I ⊂ D ⊂ Gal(L/K) and P ′ ⊂ I ′ ⊂ D′ ⊂ Gal(M/K)
be the wild inertia, inertia, decomposition group of m and m′. Then the canonical
surjection Gal(M/K) → Gal(L/K) induces surjections P ′ → P , I ′ → I, and
D′ → D. Moreover these fit into commutative diagrams

D′ //

��

Aut(κ(m′)/κA)

��
D // Aut(κ(m)/κA)

and

I ′
θ′
//

��

µe′(κ(m′))

(−)e
′/e

��
I

θ // µe(κ(m))

where e′ and e are the ramification indices of A→ Cm′ and A→ Bm.

Proof. The fact that under the map Gal(M/K)→ Gal(L/K) the groups P ′, I ′, D′

map into P, I,D is immediate from the definitions of these groups. The commu-
tativity of the first diagram is clear (observe that since κ(m)/κA is normal every
automorphism of κ(m′) over κA indeed induces an automorphism of κ(m) over
κA and hence we obtain the right vertical arrow in the first diagram, see Lemma
15.112.4 and Fields, Lemma 9.15.7).
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The maps I ′ → I and D′ → D are surjective by Lemma 15.110.11. The surjectivity
of P ′ → P follows as P ′ and P are p-Sylow subgroups of I ′ and I.
To see the commutativity of the second diagram we choose a uniformizer π′ of Cm′

and a uniformizer π of Bm. Then π = c′(π′)e′/e for some unit c′ of Cm′ . For σ′ ∈ I ′

the image σ ∈ I is simply the restriction of σ′ to L. Write σ′(π′) = cπ′ for a unit
c ∈ Cm′ and write σ(π) = bπ for a unit b of Bm. Then σ′(π) = bπ and we obtain

bπ = σ′(π) = σ′(c′(π′)e
′/e) = σ′(c′)ce

′/e(π′)e
′/e = σ′(c′)

c′ ce
′/eπ

As σ′ ∈ I ′ we see that b and ce
′/e have the same image in the residue field which

proves what we want. □

Remark 15.112.11.0BU8 In order to use the inertia character θ : I → µe(κ(m)) for infinite
Galois extensions, it is convenient to scale it. Let A,K,L,B,m, G, P, I,D, e, θ be as
in Lemma 15.112.5 and Definition 15.112.6. Then e = q|It| with q is a power of the
characteristic p of κ(m) if positive or 1 if zero. Note that µe(κ(m)) = µ|It|(κ(m))
because the characteristic of κ(m) is p. Consider the map

θcan = qθ : I −→ µ|It|(κ(m))
This map induces an isomorphism θcan : It → µ|It|(κ(m)). We have θcan(τστ−1) =
τ(θcan(σ)) for τ ∈ D and σ ∈ I by Lemma 15.112.7. Finally, if M/L is an extension
such that M/K is Galois and m′ is a prime of the integral closure of A in M lying
over m, then we get the commutative diagram

I ′
θ′
can

//

��

µ|I′
t|(κ(m′))

(−)|I′
t

|/|It|

��
I

θcan // µ|It|(κ(m))

by Lemma 15.112.10.

15.113. Krasner’s lemma

0BU9 Here is Krasner’s lemma in the case of discretely valued fields.
Lemma 15.113.1 (Krasner’s lemma).09EI Let A be a complete local domain of dimen-
sion 1. Let P (t) ∈ A[t] be a polynomial with coefficients in A. Let α ∈ A be a root
of P but not a root of the derivative P ′ = dP/dt. For every c ≥ 0 there exists an
integer n such that for any Q ∈ A[t] whose coefficients are in mnA the polynomial
P +Q has a root β ∈ A with β − α ∈ mcA.

Proof. Choose a nonzero π ∈ m. Since the dimension of A is 1 we have m =
√

(π).
By assumption we may write P ′(α)−1 = π−ma for some m ≥ 0 and a ∈ A. We
may and do assume that c ≥ m + 1. Pick n such that mnA ⊂ (πc+m). Pick any Q
as in the statement. For later use we observe that we can write

P (x+ y) = P (x) + P ′(x)y +R(x, y)y2

for some R(x, y) ∈ A[x, y]. We will show by induction that we can find a sequence
αm, αm+1, αm+2, . . . such that

(1) αk ≡ α mod πc,
(2) αk+1 − αk ∈ (πk), and
(3) (P +Q)(αk) ∈ (πm+k).
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Setting β = limαk will finish the proof.

Base case. Since the coefficients of Q are in (πc+m) we have (P +Q)(α) ∈ (πc+m).
Hence αm = α works. This choice guarantees that αk ≡ α mod πc for all k ≥ m.

Induction step. Given αk we write αk+1 = αk + δ for some δ ∈ (πk). Then we have

(P +Q)(αk+1) = P (αk + δ) +Q(αk + δ)

Because the coefficients of Q are in (πc+m) we see that Q(αk + δ) ≡ Q(αk) mod
πc+m+k. On the other hand we have

P (αk + δ) = P (αk) + P ′(αk)δ +R(αk, δ)δ2

Note that P ′(αk) ≡ P ′(α) mod (πm+1) as αk ≡ α mod πm+1. Hence we obtain

P (αk + δ) ≡ P (αk) + P ′(α)δ mod πk+m+1

Recombining the two terms we see that

(P +Q)(αk+1) ≡ (P +Q)(αk) + P ′(α)δ mod πk+m+1

Thus a solution is to take δ = −P ′(α)−1(P +Q)(αk) = −π−ma(P +Q)(αk) which
is contained in (πk) by induction assumption. □

Lemma 15.113.2.09EJ Let A be a discrete valuation ring with field of fractions K. Let
A∧ be the completion of A with fraction field K∧. If M/K∧ is a finite separable
extension, then there exists a finite separable extension L/K such that M = K∧⊗K
L.

Proof. Note that A∧ is a discrete valuation ring too (by Lemmas 15.43.4 and
15.43.1). In particular A∧ is a domain. The proof will work more generally for
Noetherian local rings A such that A∧ is a local domain of dimension 1.

Let θ ∈ M be an element that generates M over K∧. (Theorem of the primitive
element.) Let P (t) ∈ K∧[t] be the minimal polynomial of θ over K∧. Let π ∈ mA
be a nonzero element. After replacing θ by πnθ we may assume that the coefficients
of P (t) are in A∧. Let B = A∧[θ] = A∧[t]/(P (t)). Note that B is a complete local
domain of dimension 1 because it is finite over A and contained in M . Since M is
separable over K the element θ is not a root of the derivative of P . For any integer
n we can find a monic polynomial P1 ∈ A[t] such that P − P1 has coefficients in
πnA∧[t]. By Krasner’s lemma (Lemma 15.113.1) we see that P1 has a root β in B
for n sufficiently large. Moreover, we may assume (if n is chosen large enough) that
θ − β ∈ πB. Consider the map Φ : A∧[t]/(P1) → B of A∧-algebras which maps
t to β. Since B = πB +

∑
i<deg(P ) A

∧θi, the map Φ is surjective by Nakayama’s
lemma. As deg(P1) = deg(P ) it follows that Φ is an isomorphism. We conclude
that the ring extension L = K[t]/(P1(t)) satisfies K∧⊗K L ∼= M . This implies that
L is a field and the proof is complete. □

Definition 15.113.3.09EK Let A be a discrete valuation ring. We say A has mixed char-
acteristic if the characteristic of the residue field of A is p > 0 and the characteristic
of the fraction field of A is 0. In this case we obtain an extension of discrete val-
uation rings Z(p) ⊂ A and the absolute ramification index of A is the ramification
index of this extension.

https://stacks.math.columbia.edu/tag/09EJ
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15.114. Abhyankar’s lemma and tame ramification

0EXT In this section we prove what we think is the most general version of Abhyankar’s
lemma for discrete valuation rings. After doing so, we apply this to prove some
results about tamely ramified extensions of the fraction field of a discrete valuation
ring.

Remark 15.114.1.09EM Let A → B be an extension of discrete valuation rings with
fraction fields K ⊂ L. Let K1/K be a finite extension of fields. Let A1 ⊂ K1
be the integral closure of A in K1. On the other hand, let L1 = (L ⊗K K1)red.
Then L1 is a nonempty finite product of finite field extensions of L. Let B1 be the
integral closure of B in L1. We obtain compatible commutative diagrams

L // L1

K

OO

// K1

OO

and

B // B1

A

OO

// A1

OO

In this situation we have the following
(1) By Algebra, Lemma 10.120.18 the ring A1 is a Dedekind domain and B1

is a finite product of Dedekind domains.
(2) Note that L⊗K K1 = (B ⊗A A1)π where π ∈ A is a uniformizer and that

π is a nonzerodivisor on B ⊗A A1. Thus the ring map B ⊗A A1 → B1 is
integral with kernel consisting of nilpotent elements. Hence Spec(B1) →
Spec(B ⊗A A1) is surjective on spectra (Algebra, Lemma 10.36.17). The
map Spec(B⊗AA1)→ Spec(A1) is surjective as A1/mAA1 → B/mAB⊗κA
A1/mAA1 is an injective ring map with A1/mAA1 Artinian. We conclude
that Spec(B1)→ Spec(A1) is surjective.

(3) Let mi, i = 1, . . . n with n ≥ 1 be the maximal ideals of A1. For each
i = 1, . . . , n let mij , j = 1, . . . ,mi with mi ≥ 1 be the maximal ideals of
B1 lying over mi. We obtain diagrams

B // (B1)mij

A

OO

// (A1)mi

OO

of extensions of discrete valuation rings.
(4) If A is henselian (for example complete), then A1 is a discrete valuation

ring, i.e., n = 1. Namely, A1 is a union of finite extensions of A which are
domains, hence local by Algebra, Lemma 10.153.4.

(5) If B is henselian (for example complete), then B1 is a product of discrete
valuation rings, i.e., mi = 1 for i = 1, . . . , n.

(6) If K ⊂ K1 is purely inseparable, then A1 and B1 are both discrete valua-
tion rings, i.e., n = 1 and m1 = 1. This is true because for every b ∈ B1
a p-power power of b is in B, hence B1 can only have one maximal ideal.

(7) If K ⊂ K1 is finite separable, then L1 = L⊗K K1 and is a finite product
of finite separable extensions too. Hence A ⊂ A1 and B ⊂ B1 are finite
by Algebra, Lemma 10.161.8.

(8) If A is Nagata, then A ⊂ A1 is finite.
(9) If B is Nagata, then B ⊂ B1 is finite.

https://stacks.math.columbia.edu/tag/09EM
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Lemma 15.114.2.09EV Let A be a discrete valuation ring with uniformizer π. Let n ≥ 2.
Then K1 = K[π1/n] is a degree n extension of K and the integral closure A1 of A
in K1 is the ring A[π1/n] which is a discrete valuation ring with ramification index
n over A.

Proof. This lemma proves itself. □

Lemma 15.114.3.09EQ Let A → B be an extension of discrete valuation rings with
fraction fields K ⊂ L. Assume that A → B is formally smooth in the mB-adic
topology. Then for any finite extension K1/K we have L1 = L ⊗K K1, B1 =
B ⊗A A1, and each extension (A1)mi ⊂ (B1)mij (see Remark 15.114.1) is formally
smooth in the mij-adic topology.

Proof. We will use the equivalence of Lemma 15.111.5 without further mention.
Let π ∈ A and πi ∈ (A1)mi be uniformizers. As κA ⊂ κB is separable, the ring

(B ⊗A (A1)mi)/πi(B ⊗A (A1)mi) = B/πB ⊗A/πA (A1)mi/πi(A1)mi
is a product of fields each separable over κmi . Hence the element πi in B⊗A (A1)mi
is a nonzerodivisor and the quotient by this element is a product of fields. It follows
that B ⊗A A1 is a Dedekind domain in particular reduced. Thus B ⊗A A1 ⊂ B1 is
an equality. □

The following lemma is our version of Abhyankar’s lemma for discrete valuation
rings. Observe that κB/κA is not assumed to be an algebraic extension of fields.

Lemma 15.114.4 (Abhyankar’s lemma).0BRM Let A ⊂ B be an extension of discrete
valuation rings. Assume that either the residue characteristic of A is 0 or it is p,
the ramification index e is prime to p, and κB/κA is a separable field extension.
Let K1/K be a finite extension. Using the notation of Remark 15.114.1 assume e
divides the ramification index of A ⊂ (A1)mi for some i. Then (A1)mi ⊂ (B1)mij is
formally smooth in the mij-adic topology for all j = 1, . . . ,mi.

Proof. Let π ∈ A be a uniformizer. Let π1 be a uniformizer of (A1)mi . Write
π = uπe1

1 with u a unit of (A1)mi and e1 the ramification index of A ⊂ (A1)mi .
Claim: we may assume that u is an eth power in K1. Namely, let K2 be an extension
of K1 obtained by adjoining a root of xe = u; thus K2 is a factor of K1[x]/(xe−u).
Then K2/K1 is a finite separable extension (by our assumption on e) and hence
A1 ⊂ A2 is finite. Since (A1)mi → (A1)mi [x]/(xe − u) is finite étale (as e is prime
to the residue characteristic and u a unit) we conclude that (A2)mi is a factor of
a finite étale extension of (A1)mi hence finite étale over (A1)mi itself. The same
reasoning shows that B1 ⊂ B2 induces finite étale extensions (B1)mij ⊂ (B2)mij .
Pick a maximal ideal m′

ij ⊂ B2 lying over mij ⊂ B1 (of course there may be more
than one) and consider

(B1)mij // (B2)m′
ij

(A1)mi

OO

// (A2)m′
i

OO

where m′
i ⊂ A2 is the image. Now the horizontal arrows have ramification index

1 and induce finite separable residue field extensions. Thus, using the equivalence
of Lemma 15.111.5, we see that it suffices to show that the right vertical arrow is

https://stacks.math.columbia.edu/tag/09EV
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formally smooth in the m′
ij-adic topology. Since u has a eth root in K2 we obtain

the claim.

Assume u has an eth root in K1. Since e|e1 and since u has a eth root in K1 we see
that π = θe for some θ ∈ K1. Let K ′

1 = K[θ] ⊂ K1 be the subfield generated by θ.
By Lemma 15.114.2 the integral closure A′

1 of A in K[θ] is the discrete valuation
ring A′

1 = A[θ] which has ramification index e over A. If we can prove the lemma for
the extension K ′

1/K, then we conclude by Lemma 15.114.3 applied to the diagram

(B′
1)B′

1∩mij
// (B1)mij

A′
1

OO

// (A1)mi

OO

for all j = 1, . . . ,mi. This reduces us to the case discussed in the next paragraph.

Assume K1 = K[π1/e] and set θ = π1/e. Let πB be a uniformizer for B and write
π = wπeB for some unit w of B. Then we see that L1 = L ⊗K K1 is obtained by
adjoining πB/θ which is an eth root of the unit w. Thus B ⊂ B1 is finite étale.
Thus for any maximal ideal m ⊂ B1 consider the commutative diagram

B
1
// (B1)m

A

e

OO

e // A1

em

OO

Here the numbers along the arrows are the ramification indices. By multiplicativity
of ramification indices (Lemma 15.111.3) we conclude em = 1. Looking at the
residue field extensions we find that κ(m) is a finite separable extension of κB
which is separable over κA. Therefore κ(m) is separable over κA which is equal to
the residue field of A1 and we win by Lemma 15.111.5. □

Lemma 15.114.5.0EXU Let A be a discrete valuation ring with fraction field K. Let
M/L/K be finite separable extensions. Let B be the integral closure of A in L. If
L/K is tamely ramified with respect to A and M/L is tamely ramified with respect
to Bm for every maximal ideal m of B, then M/K is tamely ramified with respect
to A.

Proof. Let C be the integral closure of A in M . Every maximal ideal m′ of C
lies over a maximal ideal m of B. Then the lemma follows from the multiplicativ-
ity of ramification indices (Lemma 15.111.3) and the fact that we have the tower
κ(m′)/κ(m)/κA of finite extensions of fields. □

Lemma 15.114.6.0EXV Let A be a discrete valuation ring with fraction field K. If
M/L/K are finite separable extensions and M is tamely ramified with respect to
A, then L is tamely ramified with respect to A.

Proof. We will use the results of the discussion in Remark 15.111.6 without further
mention. Let C/B/A be the integral closures of A in M/L/K. Since C is a finite
ring extension of B, we see that Spec(C) → Spec(B) is surjective. Hence for
ever maximal ideal m ⊂ B there is a maximal ideal m′ ⊂ C lying over m. By
the multiplicativity of ramification indices (Lemma 15.111.3) and the assumption,

https://stacks.math.columbia.edu/tag/0EXU
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we conclude that the ramification index of Bm over A is prime to the residue
characteristic. Since κ(m′)/κA is finite separable, the same is true for κ(m)/κA. □

Lemma 15.114.7.0EXW Let A be a discrete valuation ring with fraction field K. Let
π ∈ A be a uniformizer. Let L/K be a finite separable extension. The following
are equivalent

(1) L is tamely ramified with respect to A,
(2) there exists an e ≥ 1 invertible in κA and an extension L′/K ′ = K[π1/e]

unramified with respect to A′ = A[π1/e] such that L is contained in L′,
and

(3) there exists an e0 ≥ 1 invertible in κA such that for every d ≥ 1 invertible
in κA (2) holds with e = de0.

Proof. Observe that A′ is a discrete valuation ring with fraction fieldK ′, see Lemma
15.114.2. Of course the ramification index of A′ over A is e. Thus if (2) holds, then
L′ is tamely ramified with respect to A by Lemma 15.114.5. Hence L is tamely
ramified with respect to A by Lemma 15.114.6.

The implication (3) ⇒ (2) is immediate.

Assume that (1) holds. Let B be the integral closure of A in L and let m1, . . . ,mn
be its maximal ideals. Denote ei the ramification index of A→ Bmi . Let e0 be the
least common multiple of e1, . . . , er. This is invertible in κA by our assumption (1).
Let e = de0 as in (3). Set A′ = A[π1/e]. Then A → A′ is an extension of discrete
valuation rings with fraction field K ′ = K[π1/e], see Lemma 15.114.2. Choose a
product decomposition

L⊗K K ′ =
∏

L′
j

where L′
j are fields. Let B′

j be the integral closure of A in L′
j . Let mijk be the

maximal ideals of B′
j lying over mi. Observe that (B′

j)mi is the integral closure
of Bmi in L′

j . By Abhyankar’s lemma (Lemma 15.114.4) applied to A ⊂ Bmi and
the extension K ′/K we see that A′ → (B′

j)mijk is formally smooth in the mijk-adic
topology. This implies that the ramification index is 1 and that the residue field
extension is separable (Lemma 15.111.5). In this way we see that L′

j is unramified
with respect to A′. This finishes the proof: we take L′ = L′

j for some j. □

Lemma 15.114.8.0EXX Let A be a discrete valuation ring with fraction field K.
(1) If L/K is a finite separable extension which is tamely ramified with respect

to A, then there exists a Galois extension M/K containing L which is
tamely ramified with respect to A.

(2) If L1/K, L2/K are finite separable extensions which are tamely ramified
with respect to A, then there exists a a finite separable extension L/K
which is tamely ramified with respect to A containing L1 and L2.

Proof. Proof of (2). Choose a uniformizer π ∈ A. We can choose an integer
e invertible in κA and extensions L′

i/K
′ = K[π1/e] unramified with respect to

A′ = A[π1/e] with L′
i/Li as extensions of K, see Lemma 15.114.7. By Lemma

15.111.8 we can find an extension L′/K ′ which is unramified with respect to A′

such that L′
i/K is isomorphic to a subextension of L′/K ′ for i = 1, 2. This finishes

the proof of (3) as L′/K is tamely ramified (use same lemma as above).

https://stacks.math.columbia.edu/tag/0EXW
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Proof of (1). We may first replace L by a larger extension and assume that L is
an extension of K ′ = K[π1/e] unramified with respect to A′ = A[π1/e] where e is
invertible in κA, see Lemma 15.114.7. Let M be the normal closure of L over K,
see Fields, Definition 9.16.4. Then M/K is Galois by Fields, Lemma 9.21.5. On
the other hand, there is a surjection

L⊗K . . .⊗K L −→M

of K-algebras, see Fields, Lemma 9.16.6. Let B be the integral closure of A in
L as in Remark 15.111.6. The condition that L is unramified with respect to
A′ = A[π1/e] exactly means that A′ → B is an étale ring map, see Algebra, Lemma
10.143.7. Claim:

K ′ ⊗K . . .⊗K K ′ =
∏

K ′
i

is a product of field extensions K ′
i/K tamely ramified with respect to A. Then if

A′
i is the integral closure of A in K ′

i we see that∏
A′
i ⊗(A′⊗A...⊗AA′) (B ⊗A . . .⊗A B)

is finite étale over
∏
A′
i and hence a product of Dedekind domains (Lemma 15.44.4).

We conclude that M is the fraction field of one of these Dedekind domains which is
finite étale over A′

i for some i. It follows that M/K ′
i is unramified with respect to

every maximal ideal of A′
i and hence M/K is tamely ramified by Lemma 15.114.5.

It remains the prove the claim. For this we write A′ = A[x]/(xe − π) and we see
that

A′ ⊗A . . .⊗A A′ = A′[x1, . . . , xr]/(xe1 − π, . . . , xer − π)
The normalization of this ring certainly contains the elements yi = xi/x1 for i =
2, . . . , r subject to the relations yei − 1 = 0 and we obtain
A[x1, y2, . . . , yr]/(xe1 − π, ye2 − 1, . . . , yr − 1) = A′[y2, . . . , yr]/(ye2 − 1, . . . , yer − 1)

This ring is finite étale over A′ because e is invertible in A′. Hence it is a product
of Dedekind domains each unramified over A′ as desired (see references given above
in case of confusion). □

Lemma 15.114.9.0EXY Let A ⊂ B be an extension of discrete valuation rings. Denote
L/K the corresponding extension of fraction fields. Let K ′/K be a finite separable
extension. Then

K ′ ⊗K L =
∏

L′
i

is a finite product of fields and the following is true
(1) If K ′ is unramified with respect to A, then each L′

i is unramified with
respect to B.

(2) If K ′ is tamely ramified with respect to A, then each L′
i is tamely ramified

with respect to B.

Proof. The algebra K ′⊗K L is a finite product of fields as it is a finite étale algebra
over L. Let A′ be the integral closure of A in K ′.
In case (1) the ring map A → A′ is finite étale. Hence B′ = B ⊗A A′ is finite
étale over B and is a finite product of Dedekind domains (Lemma 15.44.4). Hence
B′ is the integral closure of B in K ′ ⊗K L. It follows immediately that each L′

i is
unramified with respect to B.

https://stacks.math.columbia.edu/tag/0EXY
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Choose a uniformizer π ∈ A. To prove (2) we may replace K ′ by a larger extension
tame ramified with respect to A (details omitted; hint: use Lemma 15.114.6). Thus
by Lemma 15.114.7 we may assume there exists some e ≥ 1 invertible in κA such
that K ′ contains K[π1/e] and such that K ′ is unramified with respect to A[π1/e].
Choose a product decomposition

K[π1/e]⊗K L =
∏

Le,j

For every i there exists a ji such that L′
i/Le,ji is a finite separable extension.

Let Be,j be the integral closure of B in Le,j . By (1) applied to K ′/K[π1/e] and
A[π1/e] ⊂ (Be,ji)m we see that L′

i is unramified with respect to (Be,ji)m for every
maximal ideal m ⊂ Be,ji . Hence the proof will be complete if we can show that
Le,j is tamely ramified with respect to B, see Lemma 15.114.5.
Choose a uniformizer θ in B. Write π = uθt where u is a unit of B and t ≥ 1. Then
we have

A[π1/e]⊗A B = B[x]/(xe − uθt) ⊂ B[y, z]/(ye
′
− θ, ze − u)

where e′ = e/ gcd(e, t). The map sends x to zyt/ gcd(e,t). Since the right hand side is
a product of Dedekind domains each tamely ramified over B the proof is complete
(details omitted). □

15.115. Eliminating ramification

09EL In this section we discuss a result of Helmut Epp, see [Epp73]. We strongly en-
courage the reader to read the original. Our approach is slightly different as we try
to handle the mixed and equicharacteristic cases by the same method. For related
results, see also [Pon98], [Pon99], [Kuh03], and [ZK99].
Let A ⊂ B be an extension of discrete valuation rings with fraction fields K ⊂ L.
The goal in this section is to find a finite extension K1/K such that with

L // L1

K

OO

// K1

OO

and

B // B1 // (B1)mij

A

OO

// A1 //

OO

(A1)mi

OO

as in Remark 15.114.1 the extensions (A1)mi ⊂ (B1)mij are all weakly unramified or
even formally smooth in the relevant adic topologies. The simplest (but nontrivial)
example of this is Abhyankar’s lemma, see Lemma 15.114.4.

Definition 15.115.1.09EN Let A → B be an extension of discrete valuation rings with
fraction fields K ⊂ L.

(1) We say a finite field extension K1/K is a weak solution for A ⊂ B if all the
extensions (A1)mi ⊂ (B1)mij of Remark 15.114.1 are weakly unramified.

(2) We say a finite field extension K1/K is a solution for A ⊂ B if each
extension (A1)mi ⊂ (B1)mij of Remark 15.114.1 is formally smooth in the
mij-adic topology.

We say a solution K1/K is a separable solution if K1/K is separable.

In general (weak) solutions do not exist; there is an example in [Epp73]. Under
a mild hypothesis on the residue field extension, we will prove the existence of
weak solutions in Theorem 15.115.18 following [Epp73]. In the next section, we will

https://stacks.math.columbia.edu/tag/09EN
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deduce the existence of solutions and sometimes separable solutions in geometrically
meaningful cases, see Proposition 15.116.8 and Lemma 15.116.9. However, the
following example shows that in general one needs inseparable extensions to get
even a weak solution.

Example 15.115.2.09EP Let k be a perfect field of characteristic p > 0. Let A = k[[x]]
and K = k((x)). Let B = A[x1/p]. Any weak solution K1/K for A → B is
inseparable (and any finite inseparable extension of K is a solution). We omit the
proof.

Solutions are stable under further extensions, see Lemma 15.116.1. This may not
be true for weak solutions. Weak solutions are in some sense stable under totally
ramified extensions, see Lemma 15.115.3.

Lemma 15.115.3.09ER Let A → B be an extension of discrete valuation rings with
fraction fields K ⊂ L. Assume that A → B is weakly unramified. Then for any
finite separable extension K1/K totally ramified with respect to A we have that
L1 = L ⊗K K1 is a field, A1 and B1 = B ⊗A A1 are discrete valuation rings, and
the extension A1 ⊂ B1 (see Remark 15.114.1) is weakly unramified.

Proof. Let π ∈ A and π1 ∈ A1 be uniformizers. As K1/K is totally ramified with
respect to A we have πe1 = u1π for some unit u1 in A1. Hence A1 is generated by
π1 over A and the minimal polynomial P (t) of π1 over K has the form

P (t) = te + ae−1t
e−1 + . . .+ a0

with ai ∈ (π) and a0 = uπ for some unit u of A. Note that e = [K1 : K] as well.
Since A → B is weakly unramified we see that π is a uniformizer of B and hence
B1 = B[t]/(P (t)) is a discrete valuation ring with uniformizer the class of t. Thus
the lemma is clear. □

Lemma 15.115.4.09ES Let A → B → C be extensions of discrete valuation rings with
fraction fields K ⊂ L ⊂M . Let K1/K be a finite extension.

(1) If K1 is a (weak) solution for A → C, then K1 is a (weak) solution for
A→ B.

(2) If K1 is a (weak) solution for A→ B and L1 = (L⊗KK1)red is a product
of fields which are (weak) solutions for B → C, then K1 is a (weak)
solution for A→ C.

Proof. Let L1 = (L ⊗K K1)red and M1 = (M ⊗K K1)red and let B1 ⊂ L1 and
C1 ⊂ M1 be the integral closure of B and C. Note that M1 = (M ⊗L L1)red and
that L1 is a (nonempty) finite product of finite extensions of L. Hence the ring map
B1 → C1 is a finite product of ring maps of the form discussed in Remark 15.114.1.
In particular, the map Spec(C1)→ Spec(B1) is surjective. Choose a maximal ideal
m ⊂ C1 and consider the extensions of discrete valuation rings

(A1)A1∩m → (B1)B1∩m → (C1)m
If the composition is weakly unramified, so is the map (A1)A1∩m → (B1)B1∩m.
If the residue field extension κA1∩m → κm is separable, so is the subextension
κA1∩m → κB1∩m. Taking into account Lemma 15.111.5 this proves (1). A similar
argument works for (2). □

https://stacks.math.columbia.edu/tag/09EP
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Lemma 15.115.5.09ET Let A → B be an extension of discrete valuation rings. There
exists a commutative diagram

B // B′

A //

OO

A′

OO

of extensions of discrete valuation rings such that
(1) the extensions K ′/K and L′/L of fraction fields are separable algebraic,
(2) the residue fields of A′ and B′ are separable algebraic closures of the

residue fields of A and B, and
(3) if a solution, weak solution, or separable solution exists for A′ → B′, then

a solution, weak solution, or separable solution exists for A→ B.

Proof. By Algebra, Lemma 10.159.2 there exists an extension A ⊂ A′ which is
a filtered colimit of finite étale extensions such that the residue field of A′ is a
separable algebraic closure of the residue field of A. Then A ⊂ A′ is an extension
of discrete valuation rings such that the induced extension K ′/K of fraction fields
is separable algebraic.
Let B ⊂ B′ be a strict henselization of B. Then B ⊂ B′ is an extension of discrete
valuation rings whose fraction field extension is separable algebraic. By Algebra,
Lemma 10.155.9 there exists a commutative diagram as in the statement of the
lemma. Parts (1) and (2) of the lemma are clear.
Let K ′

1/K
′ be a (weak) solution for A′ → B′. Since A′ is a colimit, we can find a

finite étale extension A ⊂ A′
1 and a finite extension K1 of the fraction field F of A′

1
such that K ′

1 = K ′ ⊗F K1. As A ⊂ A′
1 is finite étale and B′ strictly henselian, it

follows that B′ ⊗A A′
1 is a finite product of rings isomorphic to B′. Hence

L′ ⊗K K1 = L′ ⊗K F ⊗F K1

is a finite product of rings isomorphic to L′ ⊗K′ K ′
1. Thus we see that K1/K is

a (weak) solution for A → B′. Hence it is also a (weak) solution for A → B by
Lemma 15.115.4. □

Lemma 15.115.6.09EU Let A→ B be an extension of discrete valuation rings with frac-
tion fields K ⊂ L. Let K1/K be a normal extension. Say G = Aut(K1/K). Then
G acts on the rings K1, L1, A1 and B1 of Remark 15.114.1 and acts transitively on
the set of maximal ideals of B1.

Proof. Everything is clear apart from the last assertion. If there are two or more
orbits of the action, then we can find an element b ∈ B1 which vanishes at all the
maximal ideals of one orbit and has residue 1 at all the maximal ideals in another
orbit. Then b′ =

∏
σ∈G σ(b) is a G-invariant element of B1 ⊂ L1 = (L ⊗K K1)red

which is in some maximal ideals of B1 but not in all maximal ideals of B1. Lifting
it to an element of L ⊗K K1 and raising to a high power we obtain a G-invariant
element b′′ of L⊗K K1 mapping to (b′)N for some N > 0; in fact, we only need to
do this in case the characteristic is p > 0 and in this case raising to a suitably large
p-power q defines a canonical map (L ⊗K K1)red → L ⊗K K1. Since K = (K1)G
we conclude that b′′ ∈ L. Since b′′ maps to an element of B1 we see that b′′ ∈ B
(as B is normal). Then on the one hand it must be true that b′′ ∈ mB as b′ is in
some maximal ideal of B1 and on the other hand it must be true that b′′ ̸∈ mB as
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b′ is not in all maximal ideals of B1. This contradiction finishes the proof of the
lemma. □

Lemma 15.115.7.09EW Let A be a discrete valuation ring with uniformizer π. If the
residue characteristic of A is p > 0, then for every n > 1 and p-power q there exists
a degree q separable extension L/K totally ramified with respect to A such that
the integral closure B of A in L has ramification index q and a uniformizer πB such
that πqB = π + πnb and πqB = π + (πB)nqb′ for some b, b′ ∈ B.

Proof. If the characteristic of K is zero, then we can take the extension given by
πqB = π, see Lemma 15.114.2. If the characteristic of K is p > 0, then we can
take the extension of K given by zq − πnz = π1−q. Namely, then we see that
yq − πn+q−1y = π where y = πz. Taking πB = y we obtain the desired result. □

Lemma 15.115.8.09EX Let A be a discrete valuation ring. Assume the reside field κA
has characteristic p > 0 and that a ∈ A is an element whose residue class in κA
is not a pth power. Then a is not a pth power in K and the integral closure of A
in K[a1/p] is the ring A[a1/p] which is a discrete valuation ring weakly unramified
over A.

Proof. This lemma proves itself. □

Lemma 15.115.9.09EY Let A ⊂ B ⊂ C be extensions of discrete valuation rings with
fractions fields K ⊂ L ⊂M . Let π ∈ A be a uniformizer. Assume

(1) B is a Nagata ring,
(2) A ⊂ B is weakly unramified,
(3) M is a degree p purely inseparable extension of L.

Then either
(1) A→ C is weakly unramified, or
(2) C = B[π1/p], or
(3) there exists a degree p separable extension K1/K totally ramified with

respect to A such that L1 = L ⊗K K1 and M1 = M ⊗K K1 are fields
and the maps of integral closures A1 → B1 → C1 are weakly unramified
extensions of discrete valuation rings.

Proof. Let e be the ramification index of C over B. If e = 1, then we are done. If
not, then e = p by Lemmas 15.111.2 and 15.111.4. This in turn implies that the
residue fields of B and C agree. Choose a uniformizer πC of C. Write πpC = uπ for
some unit u of C. Since πpC ∈ L, we see that u ∈ B∗. Also M = L[πC ].

Suppose there exists an integer m ≥ 0 such that

u =
∑

0≤i<m
bpi π

i + bπm

with bi ∈ B and with b ∈ B an element whose image in κB is not a pth power.
Choose an extension K1/K as in Lemma 15.115.7 with n = m + 2 and denote π′

the uniformizer of the integral closure A1 of A in K1 such that π = (π′)p + (π′)npa
for some a ∈ A1. Let B1 be the integral closure of B in L ⊗K K1. Observe that
A1 → B1 is weakly unramified by Lemma 15.115.3. In B1 we have

uπ =
(∑

0≤i<m
bi(π′)i+1

)p
+ b(π′)(m+1)p + (π′)npb1

https://stacks.math.columbia.edu/tag/09EW
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for some b1 ∈ B1 (computation omitted). We conclude that M1 is obtained from
L1 by adjoining a pth root of

b+ (π′)n−m−1b1

Since the residue field of B1 equals the residue field of B we see from Lemma
15.115.8 that M1/L1 has degree p and the integral closure C1 of B1 is weakly
unramified over B1. Thus we conclude in this case.
If there does not exist an integer m as in the preceding paragraph, then u is a pth
power in the π-adic completion of B1. Since B is Nagata, this means that u is a
pth power in B1 by Algebra, Lemma 10.162.18. Whence the second case of the
statement of the lemma holds. □

Lemma 15.115.10.09EZ Let A be a local ring annihilated by a prime p whose maximal
ideal is nilpotent. There exists a ring map σ : κA → A which is a section to the
residue map A → κA. If A → A′ is a local homomorphism of local rings, then we
can choose a similar ring map σ′ : κA′ → A′ compatible with σ provided that the
extension κA′/κA is separable.
Proof. Separable extensions are formally smooth by Algebra, Proposition 10.158.9.
Thus the existence of σ follows from the fact that Fp → κA is separable. Similarly
for the existence of σ′ compatible with σ. □

Lemma 15.115.11.09F0 Let A be a discrete valuation ring with fraction field K of
characteristic p > 0. Let ξ ∈ K. Let L be an extension of K obtained by adjoining
a root of zp − z = ξ. Then L/K is Galois and one of the following happens

(1) L = K,
(2) L/K is unramified with respect to A of degree p,
(3) L/K is totally ramified with respect to A with ramification index p, and
(4) the integral closure B of A in L is a discrete valuation ring, A ⊂ B is

weakly unramified, and A→ B induces a purely inseparable residue field
extension of degree p.

Let π be a uniformizer of A. We have the following implications:
(A) If ξ ∈ A, then we are in case (1) or (2).
(B) If ξ = π−na where n > 0 is not divisible by p and a is a unit in A, then

we are in case (3)
(C) If ξ = π−na where n > 0 is divisible by p and the image of a in κA is not

a pth power, then we are in case (4).
Proof. The extension is Galois of order dividing p by the discussion in Fields,
Section 9.25. It immediately follows from the discussion in Section 15.112 that we
are in one of the cases (1) – (4) listed in the lemma.
Case (A). Here we see that A → A[x]/(xp − x − ξ) is a finite étale ring extension.
Hence we are in cases (1) or (2).
Case (B). Write ξ = π−na where p does not divide n. Let B ⊂ L be the integral
closure of A in L. If C = Bm for some maximal ideal m, then it is clear that
pordC(z) = −nordC(π). In particular A ⊂ C has ramification index divisible by p.
It follows that it is p and that B = C.
Case (C). Set k = n/p. Then we can rewrite the equation as

(πkz)p − πn−k(πkz) = a

https://stacks.math.columbia.edu/tag/09EZ
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Since A[y]/(yp − πn−ky − a) is a discrete valuation ring weakly unramified over A,
the lemma follows. □

Lemma 15.115.12.09F1 Let A ⊂ B ⊂ C be extensions of discrete valuation rings with
fractions fields K ⊂ L ⊂M . Assume

(1) A ⊂ B weakly unramified,
(2) the characteristic of K is p,
(3) M is a degree p Galois extension of L, and
(4) κA =

⋂
n≥1 κ

pn

B .
Then there exists a finite Galois extension K1/K totally ramified with respect to
A which is a weak solution for A→ C.

Proof. Since the characteristic of L is p we know that M is an Artin-Schreier
extension of L (Fields, Lemma 9.25.1). Thus we may pick z ∈M , z ̸∈ L such that
ξ = zp − z ∈ L. Choose n ≥ 0 such that πnξ ∈ B. We pick z such that n is
minimal. If n = 0, then M/L is unramified with respect to B (Lemma 15.115.11)
and we are done. Thus we have n > 0.
Assumption (4) implies that κA is perfect. Thus we may choose compatible ring
maps σ : κA → A/πnA and σ : κB → B/πnB as in Lemma 15.115.10. We lift the
second of these to a map of sets σ : κB → B16. Then we can write

ξ =
∑

i=n,...,1
σ(λi)π−i + b

for some λi ∈ κB and b ∈ B. Let
I = {i ∈ {n, . . . , 1} | λi ∈ κA}

and
J = {j ∈ {n, . . . , 1} | λi ̸∈ κA}

We will argue by induction on the size of the finite set J .
The case J = ∅. Here for all i ∈ {n, . . . , 1} we have σ(λi) = ai + πnbi for some
ai ∈ A and bi ∈ B by our choice of σ. Thus ξ = π−na + b for some a ∈ A and
b ∈ B. If p|n, then we write a = ap0 + πa1 for some a0, a1 ∈ A (as the residue field
of A is perfect). We compute

(z − π−n/pa0)p − (z − π−n/pa0) = π−(n−1)(a1 + πn−1−n/pa0) + b′

for some b′ ∈ B. This would contradict the minimality of n. Thus p does not
divide n. Consider the degree p extension K1 of K given by wp − w = π−na. By
Lemma 15.115.11 this extension is Galois and totally ramified with respect to A.
Thus L1 = L⊗KK1 is a field and A1 ⊂ B1 is weakly unramified (Lemma 15.115.3).
By Lemma 15.115.11 the ring M1 = M ⊗K K1 is either a product of p copies of L1
(in which case we are done) or a field extension of L1 of degree p. Moreover, in the
second case, either C1 is weakly unramified over B1 (in which case we are done)
or M1/L1 is degree p, Galois, and totally ramified with respect to B1. In this last
case the extension M1/L1 is generated by the element z − w and

(z − w)p − (z − w) = zp − z − (wp − w) = b

16If B is complete, then we can choose σ to be a ring map. If A is also complete and σ is a
ring map, then σ maps κA into A.

https://stacks.math.columbia.edu/tag/09F1
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with b ∈ B (see above). Thus by Lemma 15.115.11 once more the extension M1/L1
is unramified with respect to B1 and we conclude that K1 is a weak solution for
A→ C. From now on we assume J ̸= ∅.
Suppose that j′, j ∈ J such that j′ = prj for some r > 0. Then we change our
choice of z into

z′ = z − (σ(λj)π−j + σ(λpj )π−pj + . . .+ σ(λp
r−1

j )π−pr−1j)

Then ξ changes into ξ′ = (z′)p − (z′) as follows

ξ′ = ξ − σ(λj)π−j + σ(λp
r

j )π−j′
+ something in B

Writing ξ′ =
∑
i=n,...,1 σ(λ′

i)π−i + b′ as before we find that λ′
i = λi for i ̸= j, j′ and

λ′
j = 0. Thus the set J has gotten smaller. By induction on the size of J we may

assume no such pair j, j′ exists. (Please observe that in this procedure we may get
thrown back into the case that J = ∅ we treated above.)

For j ∈ J write λj = µp
rj

j for some rj ≥ 0 and µj ∈ κB which is not a pth
power. This is possible by our assumption (4). Let j ∈ J be the unique index
such that jp−rj is maximal. (The index is unique by the result of the preceding
paragraph.) Choose r > max(rj + 1) and such that jpr−rj > n for j ∈ J . Choose
a separable extension K1/K totally ramified with respect to A of degree pr such
that the corresponding discrete valuation ring A1 ⊂ K1 has uniformizer π′ with
(π′)pr = π+πn+1a for some a ∈ A1 (Lemma 15.115.7). Observe that L1 = L⊗KK1
is a field and that L1/L is totally ramified with respect to B (Lemma 15.115.3).
Computing in the integral closure B1 we get

ξ =
∑

i∈I
σ(λi)(π′)−ipr +

∑
j∈J

σ(µj)p
rj (π′)−jpr + b1

for some b1 ∈ B1. Note that σ(λi) for i ∈ I is a qth power modulo πn, i.e., modulo
(π′)npr . Hence we can rewrite the above as

ξ =
∑

i∈I
xp

r

i (π′)−ipr +
∑

j∈J
σ(µj)p

rj (π′)−jpr + b1

As in the previous paragraph we change our choice of z into
z′ = z

−
∑

i∈I

(
xi(π′)−i + . . .+ xp

r−1

i (π′)−ipr−1
)

−
∑

j∈J

(
σ(µj)(π′)−jpr−rj + . . .+ σ(µj)p

rj−1
(π′)−jpr−1

)
to obtain

(z′)p − z′ =
∑

i∈I
xi(π′)−i +

∑
j∈J

σ(µj)(π′)−jpr−rj + b′
1

for some b′
1 ∈ B1. Since there is a unique j such that jpr−rj is maximal and since

jpr−rj is bigger than i ∈ I and divisible by p, we see that M1/L1 falls into case (C)
of Lemma 15.115.11. This finishes the proof. □

Lemma 15.115.13.09F2 Let A be a ring which contains a primitive pth root of unity ζ.
Set w = 1− ζ. Then

P (z) = (1 + wz)p − 1
wp

= zp − z +
∑

0<i<p
aiz

i
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15.115. ELIMINATING RAMIFICATION 1516

is an element of A[z] and in fact ai ∈ (w). Moreover, we have
P (z1 + z2 + wz1z2) = P (z1) + P (z2) + wpP (z1)P (z2)

in the polynomial ring A[z1, z2].

Proof. It suffices to prove this when
A = Z[ζ] = Z[x]/(xp−1 + . . .+ x+ 1)

is the ring of integers of the cyclotomic field. The polynomial identity tp − 1 =
(t− 1)(t− ζ) . . . (t− ζp−1) (which is proved by looking at the roots on both sides)
shows that tp−1 + . . .+ t+ 1 = (t− ζ) . . . (t− ζp−1). Substituting t = 1 we obtain
p = (1 − ζ)(1 − ζ2) . . . (1 − ζp−1). The maximal ideal (p, w) = (w) is the unique
prime ideal of A lying over p (as fields of characteristic p do not have nontrivial pth
roots of 1). It follows that p = uwp−1 for some unit u. This implies that

ai = 1
p

(
p

i

)
uwi−1

for p > i > 1 and −1+a1 = pw/wp = u. Since P (−1) = 0 we see that 0 = (−1)p−u
modulo (w). Hence a1 ∈ (w) and the proof if the first part is done. The second
part follows from a direct computation we omit. □

Lemma 15.115.14.09F3 Let A be a discrete valuation ring of mixed characteristic (0, p)
which contains a primitive pth root of 1. Let P (t) ∈ A[t] be the polynomial of
Lemma 15.115.13. Let ξ ∈ K. Let L be an extension of K obtained by adjoining a
root of P (z) = ξ. Then L/K is Galois and one of the following happens

(1) L = K,
(2) L/K is unramified with respect to A of degree p,
(3) L/K is totally ramified with respect to A with ramification index p, and
(4) the integral closure B of A in L is a discrete valuation ring, A ⊂ B is

weakly unramified, and A→ B induces a purely inseparable residue field
extension of degree p.

Let π be a uniformizer of A. We have the following implications:
(A) If ξ ∈ A, then we are in case (1) or (2).
(B) If ξ = π−na where n > 0 is not divisible by p and a is a unit in A, then

we are in case (3)
(C) If ξ = π−na where n > 0 is divisible by p and the image of a in κA is not

a pth power, then we are in case (4).

Proof. Adjoining a root of P (z) = ξ is the same thing as adjoining a root of
yp = wp(1 + ξ). Since K contains a primitive pth root of 1 the extension is Galois
of order dividing p by the discussion in Fields, Section 9.24. It immediately follows
from the discussion in Section 15.112 that we are in one of the cases (1) – (4) listed
in the lemma.
Case (A). Here we see that A → A[x]/(P (x) − ξ) is a finite étale ring extension.
Hence we are in cases (1) or (2).
Case (B). Write ξ = π−na where p does not divide n. Let B ⊂ L be the integral
closure of A in L. If C = Bm for some maximal ideal m, then it is clear that
pordC(z) = −nordC(π). In particular A ⊂ C has ramification index divisible by p.
It follows that it is p and that B = C.
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Case (C). Set k = n/p. Then we can rewrite the equation as

(πkz)p − πn−k(πkz) +
∑

aiπ
n−ik(πkz)i = a

Since A[y]/(yp − πn−ky −
∑
aiπ

n−ikyi − a) is a discrete valuation ring weakly
unramified over A, the lemma follows. □

Let A be a discrete valuation ring of mixed characteristic (0, p) containing a prim-
itive pth root of 1. Let w ∈ A and P (t) ∈ A[t] be as in Lemma 15.115.13. Let L
be a finite extension of K. We say L/K is a degree p extension of finite level if L
is a degree p extension of K obtained by adjoining a root of the equation P (z) = ξ
where ξ ∈ K is an element with wpξ ∈ mA.

This definition is relevant to the discussion in this section due to the following
straightforward lemma.

Lemma 15.115.15.09F4 Let A ⊂ B ⊂ C be extensions of discrete valuation rings with
fractions fields K ⊂ L ⊂M . Assume that

(1) A has mixed characteristic (0, p),
(2) A ⊂ B is weakly unramified,
(3) B contains a primitive pth root of 1, and
(4) M/L is Galois of degree p.

Then there exists a finite Galois extension K1/K totally ramified with respect to
A which is either a weak solution for A → C or is such that M1/L1 is a degree p
extension of finite level.

Proof. Let π ∈ A be a uniformizer. By Kummer theory (Fields, Lemma 9.24.1) M
is obtained from L by adjoining the root of yp = b for some b ∈ L.

If ordB(b) is prime to p, then we choose a degree p separable extension K1/K
totally ramified with respect to A (for example using Lemma 15.115.7). Let A1 be
the integral closure of A in K1. By Lemma 15.115.3 the integral closure B1 of B in
L1 = L⊗K K1 is a discrete valuation ring weakly unramified over A1. If K1/K is
not a weak solution for A→ C, then the integral closure C1 of C in M1 = M⊗KK1
is a discrete valuation ring and B1 → C1 has ramification index p. In this case, the
field M1 is obtained from L1 by adjoining the pth root of b with ordB1(b) divisible
by p. Replacing A by A1, etc we may assume that b = πnu where u ∈ B is a unit
and n is divisible by p. Of course, in this case the extension M is obtained from L
by adjoining the pth root of a unit.

Suppose M is obtained from L by adjoining the root of yp = u for some unit u of B.
If the residue class of u in κB is not a pth power, then B ⊂ C is weakly unramified
(Lemma 15.115.8) and we are done. Otherwise, we can replace our choice of y by
y/v where vp and u have the same image in κB . After such a replacement we have

yp = 1 + πb

for some b ∈ B. Then we see that P (z) = πb/wp where z = (y − 1)/w. Thus we
see that the extension is a degree p extension of finite level with ξ = πb/wp. □

Let A be a discrete valuation ring of mixed characteristic (0, p) containing a primi-
tive pth root of 1. Let w ∈ A and P (t) ∈ A[t] be as in Lemma 15.115.13. Let L be
a degree p extension of K of finite level. Choose z ∈ L generating L over K with
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ξ = P (z) ∈ K. Choose a uniformizer π for A and write w = uπe1 for some integer
e1 = ordA(w) and unit u ∈ A. Finally, pick n ≥ 0 such that

πnξ ∈ A
The level of L/K is the smallest value of the quantity n/e1 taking over all z gen-
erating L/K with ξ = P (z) ∈ K.
We make a couple of remarks. Since the extension is of finite level we know that
we can choose z such that n < pe1. Thus the level is a rational number contained
in [0, p). If the level is zero then L/K is unramified with respect to A by Lemma
15.115.14. Our next goal is to lower the level.

Lemma 15.115.16.09F5 Let A ⊂ B ⊂ C be extensions of discrete valuation rings with
fractions fields K ⊂ L ⊂M . Assume

(1) A has mixed characteristic (0, p),
(2) A ⊂ B weakly unramified,
(3) B contains a primitive pth root of 1,
(4) M/L is a degree p extension of finite level l > 0,
(5) κA =

⋂
n≥1 κ

pn

B .
Then there exists a finite separable extension K1 of K totally ramified with respect
to A such that either K1 is a weak solution for A→ C, or the extension M1/L1 is
a degree p extension of finite level ≤ max(0, l − 1, 2l − p).

Proof. Let π ∈ A be a uniformizer. Let w ∈ B and P ∈ B[t] be as in Lemma
15.115.13 (for B). Set e1 = ordB(w), so that w and πe1 are associates in B. Pick
z ∈M generating M over L with ξ = P (z) ∈ K and n such that πnξ ∈ B as in the
definition of the level of M over L, i.e., l = n/e1.
The proof of this lemma is completely similar to the proof of Lemma 15.115.12. To
explain what is going on, observe that
(15.115.16.1)09F6 P (z) ≡ zp − z mod π−n+e1B

for any z ∈ L such that π−nP (z) ∈ B (use that z has valuation at worst −n/p and
the shape of the polynomial P ). Moreover, we have
(15.115.16.2)09F7 ξ1 + ξ2 + wpξ1ξ2 ≡ ξ1 + ξ2 mod π−2n+pe1B

for ξ1, ξ2 ∈ π−nB. Finally, observe that n − e1 = (l − 1)/e1 and −2n + pe1 =
−(2l − p)e1. Write m = n − e1 max(0, l − 1, 2l − p). The above shows that doing
calculations in π−nB/π−n+mB the polynomial P behaves exactly as the polynomial
zp − z. This explains why the lemma is true but we also give the details below.
Assumption (4) implies that κA is perfect. Observe that m ≤ e1 and hence A/πm
is annihilated by w and hence p. Thus we may choose compatible ring maps σ :
κA → A/πmA and σ : κB → B/πmB as in Lemma 15.115.10. We lift the second
of these to a map of sets σ : κB → B. Then we can write

ξ =
∑

i=n,...,n−m+1
σ(λi)π−i + π−n+m)b

for some λi ∈ κB and b ∈ B. Let
I = {i ∈ {n, . . . , n−m+ 1} | λi ∈ κA}

and
J = {j ∈ {n, . . . , n−m+ 1} | λi ̸∈ κA}
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We will argue by induction on the size of the finite set J .
The case J = ∅. Here for all i ∈ {n, . . . , n −m + 1} we have σ(λi) = ai + πn−mbi
for some ai ∈ A and bi ∈ B by our choice of σ. Thus ξ = π−na + π−n+mb for
some a ∈ A and b ∈ B. If p|n, then we write a = ap0 + πa1 for some a0, a1 ∈ A
(as the residue field of A is perfect). Set z1 = −π−n/pa0. Note that P (z1) ∈ π−nB
and that z + z1 +wzz1 is an element generating M over L (note that wz1 ̸= −1 as
n < pe1). Moreover, by Lemma 15.115.13 we have

P (z + z1 + wzz1) = P (z) + P (z1) + wpP (z)P (z1) ∈ K
and by equations (15.115.16.1) and (15.115.16.2) we have

P (z) + P (z1) + wpP (z)P (z1) ≡ ξ + zp1 − z1 mod π−n+mB

for some b′ ∈ B. This contradict the minimality of n! Thus p does not divide n.
Consider the degree p extension K1 of K given by P (y) = −π−na. By Lemma
15.115.14 this extension is separable and totally ramified with respect to A. Thus
L1 = L ⊗K K1 is a field and A1 ⊂ B1 is weakly unramified (Lemma 15.115.3).
By Lemma 15.115.14 the ring M1 = M ⊗K K1 is either a product of p copies of
L1 (in which case we are done) or a field extension of L1 of degree p. Moreover,
in the second case, either C1 is weakly unramified over B1 (in which case we are
done) or M1/L1 is degree p, Galois, totally ramified with respect to B1. In this last
case the extension M1/L1 is generated by the element z+ y+wzy and we see that
P (z + y + wzy) ∈ L1 and

P (z + y + wzy) = P (z) + P (y) + wpP (z)P (y)
≡ ξ − π−na mod π−n+mB1

≡ 0 mod π−n+mB1

in exactly the same manner as above. By our choice of m this means exactly that
M1/L1 has level at most max(0, l− 1, 2l− p). From now on we assume that J ̸= ∅.
Suppose that j′, j ∈ J such that j′ = prj for some r > 0. Then we set

z1 = −σ(λj)π−j − σ(λpj )π−pj − . . .− σ(λp
r−1

j )π−pr−1j

and we change z into z′ = z + z1 + wzz1. Observe that z′ ∈ M generates M over
L and that we have ξ′ = P (z′) = P (z) + P (z1) + wP (z)P (z1) ∈ L with

ξ′ ≡ ξ − σ(λj)π−j + σ(λp
r

j )π−j′
mod π−n+mB

by using equations (15.115.16.1) and (15.115.16.2) as above. Writing

ξ′ =
∑

i=n,...,n−m+1
σ(λ′

i)π−i + π−n+mb′

as before we find that λ′
i = λi for i ̸= j, j′ and λ′

j = 0. Thus the set J has gotten
smaller. By induction on the size of J we may assume there is no pair j, j′ of J
such that j′/j is a power of p. (Please observe that in this procedure we may get
thrown back into the case that J = ∅ we treated above.)

For j ∈ J write λj = µp
rj

j for some rj ≥ 0 and µj ∈ κB which is not a pth
power. This is possible by our assumption (4). Let j ∈ J be the unique index
such that jp−rj is maximal. (The index is unique by the result of the preceding
paragraph.) Choose r > max(rj + 1) and such that jpr−rj > n for j ∈ J . Let
K1/K be the extension of degree pr, totally ramified with respect to A, defined
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by (π′)pr = π. Observe that π′ is the uniformizer of the corresponding discrete
valuation ring A1 ⊂ K1. Observe that L1 = L⊗K K1 is a field and L1/L is totally
ramified with respect to B (Lemma 15.115.3). Computing in the integral closure
B1 we get

ξ =
∑

i∈I
σ(λi)(π′)−ipr +

∑
j∈J

σ(µj)p
rj (π′)−jpr + π−n+mb1

for some b1 ∈ B1. Note that σ(λi) for i ∈ I is a qth power modulo πm, i.e., modulo
(π′)mpr . Hence we can rewrite the above as

ξ =
∑

i∈I
xp

r

i (π′)−ipr +
∑

j∈J
σ(µj)p

rj (π′)−jpr + π−n+mb1

Similar to our choice in the previous paragraph we set

z1 −
∑

i∈I

(
xi(π′)−i + . . .+ xp

r−1

i (π′)−ipr−1
)

−
∑

j∈J

(
σ(µj)(π′)−jpr−rj + . . .+ σ(µj)p

rj−1
(π′)−jpr−1

)
and we change our choice of z into z′ = z + z1 + wzz1. Then z′ generates M1 over
L1 and ξ′ = P (z′) = P (z) + P (z1) + wpP (z)P (z1) ∈ L1 and a calculation shows
that

ξ′ ≡
∑

i∈I
xi(π′)−i +

∑
j∈J

σ(µj)(π′)−jpr−rj + (π′)(−n+m)prb′
1

for some b′
1 ∈ B1. There is a unique j such that jpr−rj is maximal and jpr−rj is

bigger than i ∈ I. If jpr−rj ≤ (n −m)pr then the level of the extension M1/L1 is
less than max(0, l− 1, 2l− p). If not, then, as p divides jpr−rj , we see that M1/L1
falls into case (C) of Lemma 15.115.14. This finishes the proof. □

Lemma 15.115.17.09F8 Let A ⊂ B ⊂ C be extensions of discrete valuation rings with
fraction fields K ⊂ L ⊂M . Assume

(1) the residue field k of A is algebraically closed of characteristic p > 0,
(2) A and B are complete,
(3) A→ B is weakly unramified,
(4) M is a finite extension of L,
(5) k =

⋂
n≥1 κ

pn

B

Then there exists a finite extension K1/K which is a weak solution for A→ C.

Proof. Let M ′ be any finite extension of L and consider the integral closure C ′ of
B in M ′. Then C ′ is finite over B as B is Nagata by Algebra, Lemma 10.162.8.
Moreover, C ′ is a discrete valuation ring, see discussion in Remark 15.114.1. More-
over C ′ is complete as a B-module, hence complete as a discrete valuation ring, see
Algebra, Section 10.96. It follows in particular that C is the integral closure of B
in M (by definition of valuation rings as maximal for the relation of domination).
Let M ⊂ M ′ be a finite extension and let C ′ ⊂ M ′ be the integral closure of B as
above. By Lemma 15.115.4 it suffices to prove the result for A→ B → C ′. Hence
we may assume that M/L is normal, see Fields, Lemma 9.16.3.
If M/L is normal, we can find a chain of finite extensions

L = L0 ⊂ L1 ⊂ L2 ⊂ . . . ⊂ Lr = M

such that each extension Lj+1/Lj is either:
(a) purely inseparable of degree p,

https://stacks.math.columbia.edu/tag/09F8
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(b) totally ramified with respect to Bj and Galois of degree p,
(c) totally ramified with respect to Bj and Galois cyclic of order prime to p,
(d) Galois and unramified with respect to Bj .

Here Bj is the integral closure of B in Lj . Namely, since M/L is normal we can
write it as a compositum of a Galois extension and a purely inseparable extension
(Fields, Lemma 9.27.3). For the purely inseparable extension the existence of the
filtration is clear. In the Galois case, note that G is “the” decomposition group
and let I ⊂ G be the inertia group. Then on the one hand I is solvable by Lemma
15.112.5 and on the other hand the extension M I/L is unramified with respect to
B by Lemma 15.112.8. This proves we have a filtration as stated.
We are going to argue by induction on the integer r. Suppose that we can find a
finite extension K1/K which is a weak solution for A→ B1 where B1 is the integral
closure of B in L1. Let K ′

1 be the normal closure of K1/K (Fields, Lemma 9.16.3).
Since A is complete and the residue field of A is algebraically closed we see that
K ′

1/K1 is separable and totally ramified with respect to A1 (some details omitted).
Hence K ′

1/K is a weak solution for A → B1 as well by Lemma 15.115.3. In other
words, we may and do assume that K1 is a normal extension of K. Having done
so we consider the sequence

L0
1 = (L0 ⊗K K1)red ⊂ L1

1 = (L1 ⊗K K1)red ⊂ . . . ⊂ Lr1 = (Lr ⊗K K1)red
and the corresponding integral closures Bi1. Note that C1 = Br1 is a product
of discrete valuation rings which are transitively permuted by G = Aut(K1/K)
by Lemma 15.115.6. In particular all the extensions of discrete valuation rings
A1 → (C1)m are isomorphic and a weak solution for one will be a weak solution for
all of them. We can apply the induction hypothesis to the sequence

A1 → (B1
1)B1

1 ∩m → (B2
1)B2

1 ∩m → . . .→ (Br1)Br1 ∩m = (C1)m
to get a weak solution K2/K1 for A1 → (C1)m. The extension K2/K will then
be a weak solution for A → C by what we said before. Note that the induction
hypothesis applies: the ring map A1 → (B1

1)B1
1 ∩m is weakly unramified by our

choice of K1 and the sequence of fraction field extensions each still have one of the
properties (a), (b), (c), or (d) listed above. Moreover, observe that for any finite
extension κB ⊂ κ we still have k =

⋂
κp

n .
Thus everything boils down to finding a weak solution for A ⊂ C when the field
extension M/L satisfies one of the properties (a), (b), (c), or (d).
Case (d). This case is trivial as here B → C is unramified already.
Case (c). Say M/L is cyclic of order n prime to p. Because M/L is totally ramified
with respect to B we see that the ramification index of B ⊂ C is n and hence
the ramification index of A ⊂ C is n as well. Choose a uniformizer π ∈ A and
set K1 = K[π1/n]. Then K1/K is a solution for A ⊂ C by Abhyankar’s lemma
(Lemma 15.114.4).
Case (b). We divide this case into the mixed characteristic case and the equicharac-
teristic case. In the equicharacteristic case this is Lemma 15.115.12. In the mixed
characteristic case, we first replace K by a finite extension to get to the situation
where M/L is a degree p extension of finite level using Lemma 15.115.15. Then the
level is a rational number l ∈ [0, p), see discussion preceding Lemma 15.115.16. If
the level is 0, then B → C is weakly unramified and we’re done. If not, then we
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can replacing the field K by a finite extension to obtain a new situation with level
l′ ≤ max(0, l−1, 2l−p) by Lemma 15.115.16. If l = p− ϵ for ϵ < 1 then we see that
l′ ≤ p− 2ϵ. Hence after a finite number of replacements we obtain a case with level
≤ p − 1. Then after at most p − 1 more such replacements we reach the situation
where the level is zero.
Case (a) is Lemma 15.115.9. This is the only case where we possibly need a purely
inseparable extension of K, namely, in case (2) of the statement of the lemma we
win by adjoining a pth power of the element π. This finishes the proof of the
lemma. □

At this point we have collected all the lemmas we need to prove the main result of
this section.

Theorem 15.115.18 (Epp).09F9 Let A ⊂ B be an extension of discrete valuation rings
with fraction fields K ⊂ L. If the characteristic of κA is p > 0, assume that every
element of ⋂

n≥1
κp

n

B

is separable algebraic over κA. Then there exists a finite extension K1/K which is
a weak solution for A→ B as defined in Definition 15.115.1.

Proof. If the characteristic of κA is zero or if the residue characteristic is p, the
ramification index is prime to p, and the residue field extension is separable, then
this follows from Abhyankar’s lemma (Lemma 15.114.4). Namely, suppose the
ramification index is e. Choose a uniformizer π ∈ A. Let K1/K be the extension
obtained by adjoining an eth root of π. By Lemma 15.114.2 we see that the integral
closure A1 of A in K1 is a discrete valuation ring with ramification index over A.
Thus A1 → (B1)m is formally smooth in the m-adic topology for all maximal ideals
m of B1 by Lemma 15.114.4 and a fortiori these are weakly unramified extensions
of discrete valuation rings.
From now on we let p be a prime number and we assume that κA has characteristic p.
We first apply Lemma 15.115.5 to reduce to the case that A and B have separably
closed residue fields. Since κA and κB are replaced by their separable algebraic
closures by this procedure we see that we obtain

κA ⊃
⋂

n≥1
κp

n

B

from the condition of the theorem.
Let π ∈ A be a uniformizer. Let A∧ and B∧ be the completions of A and B. We
have a commutative diagram

B // B∧

A

OO

// A∧

OO

of extensions of discrete valuation rings. LetK∧ be the fraction field of A∧. Suppose
that we can find a finite extension M/K∧ which is (a) a weak solution for A∧ →
B∧ and (b) a compositum of a separable extension and an extension obtained
by adjoining a p-power root of π. Then by Lemma 15.113.2 we can find a finite
extension K1/K such that K∧ ⊗K K1 = M . Let A1, resp. A∧

1 be the integral
closure of A, resp. A∧ in K1, resp. M . Since A → A∧ is formally smooth in the

https://stacks.math.columbia.edu/tag/09F9
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m∧-adic topology (Lemma 15.111.5) we see that A1 → A∧
1 is formally smooth in

the m∧
1 -adic topology (Lemma 15.114.3 and A1 and A∧

1 are discrete valuation rings
by discussion in Remark 15.114.1). We conclude from Lemma 15.115.4 part (2)
that K1/K is a weak solution for A→ B∧. Applying Lemma 15.115.4 part (1) we
see that K1/K is a weak solution for A→ B.
Thus we may assume A and B are complete discrete valuation rings with separably
closed residue fields of characteristic p and with κA ⊃

⋂
n≥1 κ

pn

B . We are also given
a uniformizer π ∈ A and we have to find a weak solution for A → B which is a
compositum of a separable extension and a field obtained by taking p-power roots
of π. Note that the second condition is automatic if A has mixed characteristic.
Set k =

⋂
n≥1 κ

pn

B . Observe that k is an algebraically closed field of characteristic p.
If A has mixed characteristic let Λ be a Cohen ring for k and in the equicharacteristic
case set Λ = k[[t]]. We can choose a ring map Λ → A which maps t to π in the
equicharacteristic case. In the equicharacteristic case this follows from the Cohen
structure theorem (Algebra, Theorem 10.160.8) and in the mixed characteristic
case this follows as Zp → Λ is formally smooth in the adic topology (Lemmas
15.111.5 and 15.37.5). Applying Lemma 15.115.4 we see that it suffices to prove
the existence of a weak solution for Λ→ B which in the equicharacteristic p case is
a compositum of a separable extension and a field obtained by taking p-power roots
of t. However, since Λ = k[[t]] in the equicharacteristic case and any extension of
k((t)) is such a compositum, we can now drop this requirement!
Thus we arrive at the situation where A and B are complete, the residue field k

of A is algebraically closed of characteristic p > 0, we have k =
⋂
κp

n

B , and in the
mixed characteristic case p is a uniformizer of A (i.e., A is a Cohen ring for k). If A
has mixed characteristic choose a Cohen ring Λ for κB and in the equicharacteristic
case set Λ = κB [[t]]. Arguing as above we may choose a ring map A → Λ lifting
k → κB and mapping a uniformizer to a uniformizer. Since k ⊂ κB is separable
the ring map A → Λ is formally smooth in the adic topology (Lemma 15.111.5).
Hence we can find a ring map Λ→ B such that the composition A→ Λ→ B is the
given ring map A→ B (see Lemma 15.37.5). Since Λ and B are complete discrete
valuation rings with the same residue field, B is finite over Λ (Algebra, Lemma
10.96.12). This reduces us to the special case discussed in Lemma 15.115.17. □

15.116. Eliminating ramification, II

0GLQ In this section we use the results of Section 15.115 to obtain (separable) solutions
in some cases.

Lemma 15.116.1.0GLR Let A → B be an extension of discrete valuation rings with
fraction fields K ⊂ L. If K1/K is a solution for A ⊂ B, then for any finite
extension K2/K1 the extension K2/K is a solution for A ⊂ B.

Proof. This follows from Lemma 15.114.3. Details omitted. □

Lemma 15.116.2.0GLS Let A ⊂ B be an extension of discrete valuation rings. If B is
Nagata and the extension L/K of fraction fields is separable, then A is Nagata.

Proof. A discrete valuation ring is Nagata if and only if it is N-2. Let K1/K
be a finite purely inseparable field extension. We have to show that the integral
closure A1 of A in K1 is finite over A, see Algebra, Lemma 10.161.12. Since L/K

https://stacks.math.columbia.edu/tag/0GLR
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is separable and K1/K is purely inseparable, the algebra L ⊗K K1 is a field (by
Algebra, Lemmas 10.43.6 and 10.46.10). Let B1 be the integral closure of B in
L ⊗K K1. Since B is Nagata, B1 is finite over B. Since B ⊗A A1 ⊂ B1 and B is
Noetherian, we see that B ⊗A A1 is finite over B. As A→ B is faithfully flat, this
implies A1 is finite over A, see Algebra, Lemma 10.83.2. □

Lemma 15.116.3.0GLT Let A′ ⊂ A be an extension of rings. Let f ∈ A′. Assume that
(a) A is finite over A′, (b) f is a nonzerodivisor on A, and (c) A′

f = Af . Then
there exists an integer n0 > 0 such that for all n ≥ n0 the following is true: given
a ring B′, a nonzerodivisor g ∈ B′, and an isomorphism φ′ : A′/fnA′ → B′/gnB′

with φ′(f) ≡ g, there is a finite extension B′ ⊂ B and an isomorphism φ : A/fA→
B/gB compatible with φ′.

Proof. Since A is finite over A′ and since A′
f = Af we can Cchoose t > 0 such

that f tA ⊂ A′. Set n0 = 2t. Given n,B′, g, φ′ as in the statement of the lemma,
denote N ⊂ B′ the set of elements b ∈ B′ such that b mod gnB′ ∈ φ′(f tA). Set
B = g−tN . As f tA′ ⊂ f tA and φ′ sends f to g we have gtB′ ⊂ N , hence B′ ⊂ B.
Since f tA · f tA ⊂ f t · f tA and φ′ sends f to g, we see that N · N ⊂ gtN . Hence
we obtain a multiplication on B extending the multiplication of B′. We have an
isomorphism of A′/fnA′-modules

A/f tA′ ft−→ f tA/fnA′ φ′

−→ gtB/gnB′ g−t

−−→ B/gtB′

where the module structures on the right are defined using φ′. Since A/f tA′ is a
finite A′-module, we conclude that B/gtB′ is a finite B′-module and hence we see
that B′ → B is finite. Finally, we leave it to the reader to see that the displayed
isomorphism of modules sends fA into gB and induces an isomorphism of rings
φ : A/fA→ B/gB compatible with φ′ (it even induces an isomorphism A/f tA→
B/gtB but we don’t need this). □

Remark 15.116.4.0GLU The construction in Lemma 15.116.3 satisfies the following “func-
toriality”. Suppose we have a commutative diagram

A′
2

// A2

A′
1

//

OO

A1

OO

with injective horizontal arrows. Suppose given an element f ∈ A′
1 such that

(A′
1 ⊂ A1, f) and (A′

2 ⊂ A2, f) satisfy properties (a), (b), (c) of Lemma 15.116.3.
Let n0,1 and n0,2 be the integers found in the lemma for these two situations.
Finally, let B′

1 → B′
2 be a ring map, let g ∈ B′

1 be a nonzerodivisor on B1 and B2,
let n ≥ max(n0,1, n0,2), and let a commutative diagram

A′
2/f

nA′
2

φ′
2

// B′
2/g

nB′
2

A′
1/f

nA′
1

φ′
1 //

OO

B′
2/g

nB′
2

OO

https://stacks.math.columbia.edu/tag/0GLT
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be given whose horizontal arrows are isomorphisms and where φ′
1(f) ≡ g. Then we

obtain commutative diagrams

B′
2

// B2

B′
1

//

OO

B1

OO

and

A2/fA2 φ2
// B2/gB2

A1/fA1
φ1 //

OO

B2/gB2

OO

where (B′
1 ⊂ B1, φ1) and (B′

2 ⊂ B2, φ2) are constructed as in the proof of Lemma
15.116.3. We omit the detailed verification.

Lemma 15.116.5.0GLV Let p be a prime number. Let A ⊂ B be an extension of discrete
valuation rings with fraction field extension L/K. Let K2/K1/K be a tower of
finite field extensions. Assume

(1) K has characteristic p,
(2) L/K is separable,
(3) B is Nagata,
(4) K2 is a solution for A ⊂ B,
(5) K2/K1 is purely inseparable of degree p.

Then there exists a separable extension K3/K1 which is a solution for A ⊂ B.

Proof. Let us use notation as in Remark 15.114.1; we will use all the observations
made there. Since L/K is separable, the algebra L1 = L⊗KK1 is reduced (Algebra,
Lemma 10.43.6). Since B is Nagata, the ring extension B ⊂ B1 is finite where B1
is the integral closure of B in L1 and B1 is a Nagata ring. Similarly, the ring A
is Nagata by Lemma 15.116.2 hence A ⊂ A1 is finite and A1 is a Nagata ring too.
Moreover, the same assertions are true for K2, i.e., L2 = L⊗K K2 is reduced, the
ring extensions A1 ⊂ A2 and B1 ⊂ B2 are finite where A2, resp. B2 is the integral
closure of A, resp. B in K2, resp. L2.

Let π ∈ A be a uniformizer. Observe that π is a nonzerodivisor on K1, K2, A1, A2,
L1, L2, B1, and B2 and we have K1 = (A1)π, K2 = (A2)π, L1 = (B1)π, and L2 =
(B2)π. We may write K2 = K1(α) where αp = a1 ∈ K1, see Fields, Lemma 9.14.5.
After multiplying α by a power of π we may and do assume a1 ∈ A1. For the rest of
the proof it is convenient to write K2 = K1[x]/(xp− a1) and L2 = L1[x]/(xp− a1).
Consider the extensions of rings

A′
2 = A1[x]/(xp − a1) ⊂ A2 and B′

2 = B1[x]/(xp − a1) ⊂ B2

We may apply Lemma 15.116.3 to A′
2 ⊂ A2 and f = π2 and to B′

2 ⊂ B2 and
f = π2. Choose an integer n large enough which works for both of these.

Consider the algebras

K3 = K1[x]/(xp − π2nx− a1) and L3 = L1[x]/(xp − π2nx− a1)

Observe that K3/K1 and L3/L1 are finite étale algebra extensions of degree p.
Consider the subrings

A′
3 = A1[x]/(xp − πnx− a1) and B′

3 = B1[x]/(xp − πnx− a1)

https://stacks.math.columbia.edu/tag/0GLV
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of K3 = (A′
2)π and L3 = (B′

3)π. We are going to construct a commutative diagram

B′
2/π

2nB′
2

ψ′
// B′

3/π
2nB′

3

A′
2/π

2nA′
2

φ′
//

OO

A′
3/π

2nA′
3

OO

Namely, φ′ is the unique A1-algebra isomorphism sending the class of x to the class
of x. Simiarly, ψ′ is the unique B1-algebra isomorphism sending the class of x to
the class of x. By our choice of n we obtain, via Lemma 15.116.3 and Remark
15.116.4 finite ring extensions A′

3 ⊂ A3 and B′
3 ⊂ B3 such that A′

3 → B′
3 extends

to a ring map A3 → B3 and a commutative diagram

B2/π
2B2

ψ
// B3/π

2B3

A2/π
2A2

φ //

OO

A3/π
2A3

OO

with all the properties asserted in the references mentioned above (in particular φ
and ψ are isomorphisms).
With all of this data in hand, we can finish the proof. Namely, we first observe
that A3 and B3 are finite products of Dedekind domains with π contained in all of
the maximal ideals. Namely, if p ⊂ A3 is a maximal ideal, then π ∈ p as A → A3
is finite. Then p/π2A3 corresponds via φ to a maximal ideal in A2/π

2A2 which is
principal as A2 is a finite product of Dedekind domains. We conclude that p/π2A3
is principal and hence by Nakayama we see that p(A3)p is principal. The same
argument works for B3. We conclude that A3 is the integral closure of A in K3 and
that B3 is the integral closure of B in L3. Let q ⊂ B3 be a maximal ideal lying
over p ⊂ A3. To finish the proof we have to show that (A3)p → (B3)q is formally
smooth in the q-adic topology. By the criterion of Lemma 15.111.5 it suffices to
show that p(B3)q = q(B3)q and that the field extension κ(q)/κ(p) is separable.
This is true because we may check both assertions by looking at the ring map
A3/π

2A3 → B3/π
2B3 and this is isomorphic to the ring map A2/π

2A2 → B2/π
2B2

where the corresponding statement holds by our assumption that K2 is a solution
for A ⊂ B. Some details omitted. □

Lemma 15.116.6.0BRN Let A ⊂ B be an extension of discrete valuation rings. Assume
(1) the extension L/K of fraction fields is separable,
(2) B is Nagata, and
(3) there exists a solution for A ⊂ B.

Then there exists a separable solution for A ⊂ B.

Proof. The lemma is trivial if the characteristic of K is zero; thus we may and do
assume that the characteristic of K is p > 0.
Let K2/K be a solution for A→ B. We will use induction on the inseparable degree
[K2 : K]i (Fields, Definition 9.14.7) of K2/K. If [K2 : K]i = 1, then K2 is separable
over K and we are done. If not, then there exists a subfield K2/K1/K such that
K2/K1 is purely inseparable of degree p (Fields, Lemmas 9.14.6 and 9.14.5). By
Lemma 15.116.5 there exists a separable extension K3/K1 which is a solution for

https://stacks.math.columbia.edu/tag/0BRN
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A ⊂ B. Then [K3 : K]i = [K1 : K]i = [K2 : K]i/p (Fields, Lemma 9.14.9) is
smaller and we conclude by induction. □

Lemma 15.116.7.09IH Let A → B be an extension of discrete valuation rings with
fraction fields K ⊂ L. Assume B is essentially of finite type over A. Let K ′/K
be an algebraic extension of fields such that the integral closure A′ of A in K ′ is
Noetherian. Then the integral closure B′ of B in L′ = (L⊗KK ′)red is Noetherian as
well. Moreover, the map Spec(B′)→ Spec(A′) is surjective and the corresponding
residue field extensions are finitely generated field extensions.

Proof. Let A→ C be a finite type ring map such that B is a localization of C at a
prime p. Then C ′ = C ⊗A A′ is a finite type A′-algebra, in particular Noetherian.
Since A → A′ is integral, so is C → C ′. Thus B = Cp ⊂ C ′

p is integral too. It
follows that the dimension of C ′

p is 1 (Algebra, Lemma 10.112.4). Of course C ′
p is

Noetherian. Let q1, . . . , qn be the minimal primes of C ′
p. Let B′

i be the integral
closure of B = Cp, or equivalently by the above of C ′

p in the field of fractions of
C ′

p′/qi. It follows from Krull-Akizuki (Algebra, Lemma 10.119.12 applied to the
finitely many localizations of C ′

p at its maximal ideals) that each B′
i is Noetherian.

Moreover the residue field extensions in C ′
p → B′

i are finite by Algebra, Lemma
10.119.10. Finally, we observe that B′ =

∏
B′
i is the integral closure of B in

L′ = (L⊗K K ′)red. □

Proposition 15.116.8.09II See [dJ96, Lemma
2.13] for a special
case.

Let A→ B be an extension of discrete valuation rings with
fraction fields K ⊂ L. If B is essentially of finite type over A, then there exists
a finite extension K1/K which is a solution for A → B as defined in Definition
15.115.1.

Proof. Observe that a weak solution is a solution if the residue field of A is perfect,
see Lemma 15.111.5. Thus the proposition follows immediately from Theorem
15.115.18 if the residue characteristic of A is 0 (and in fact we do not need the
assumption that A → B is essentially of finite type). If the residue characteristic
of A is p > 0 we will also deduce it from Epp’s theorem.
Let xi ∈ A, i ∈ I be a set of elements mapping to a p-base of the residue field κ of
A. Set

A′ =
⋃

n≥1
A[ti,n]/(tp

n

i,n − xi)

where the transition maps send ti,n+1 to tpi,n. Observe that A′ is a filtered colimit
of weakly unramified finite extensions of discrete valuation rings over A. Thus A′

is a discrete valuation ring and A→ A′ is weakly unramified. By construction the
residue field κ′ = A′/mAA

′ is the perfection of κ.
Let K ′ be the fraction field of A′. We may apply Lemma 15.116.7 to the extension
K ′/K. Thus B′ is a finite product of Dedekind domains. Let m1, . . . ,mn be the
maximal ideals of B′. Using Epp’s theorem (Theorem 15.115.18) we find a weak
solution K ′

i/K
′ for each of the extensions A′ ⊂ B′

mi . Since the residue field of
A′ is perfect, these are actually solutions. Let K ′

1/K
′ be a finite extension which

contains each K ′
i. Then K ′

1/K
′ is still a solution for each A′ ⊂ B′

mi by Lemma
15.116.1.
Let A′

1 be the integral closure of A in K ′
1. Note that A′

1 is a Dedekind domain
by the discussion in Remark 15.114.1 applied to K ′ ⊂ K ′

1. Thus Lemma 15.116.7
applies to K ′

1/K. Therefore the integral closure B′
1 of B in L′

1 = (L⊗K K ′
1)red is a

https://stacks.math.columbia.edu/tag/09IH
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Dedekind domain and because K ′
1/K

′ is a solution for each A′ ⊂ B′
mi we see that

(A′
1)A′

1∩m → (B′
1)m is formally smooth in the m-adic topology for each maximal

ideal m ⊂ B′
1.

By construction, the field K ′
1 is a filtered colimit of finite extensions of K. Say

K ′
1 = colimi∈I Ki. For each i let Ai, resp. Bi be the integral closure of A, resp. B

in Ki, resp. Li = (L⊗K Ki)red. Then it is clear that

A′
1 = colimAi and B′

1 = colimBi

Since the ring maps Ai → A′
1 and Bi → B′

1 are injective integral ring maps and
since A′

1 and B′
1 have finite spectra, we see that for all i large enough the ring

maps Ai → A′
1 and Bi → B′

1 are bijective on spectra. Once this is true, for all i
large enough the maps Ai → A′

1 and Bi → B′
1 will be weakly unramified (once the

uniformizer is in the image). It follows from multiplicativity of ramification indices
that Ai → Bi induces weakly unramified maps on all localizations at maximal ideals
of Bi for such i. Increasing i a bit more we see that

Bi ⊗Ai A′
1 −→ B′

1

induces surjective maps on residue fields (because the residue fields of B′
1 are finitely

generated over those of A′
1 by Lemma 15.116.7). Picture of residue fields at maximal

ideals lying under a chosen maximal ideal of B′
1:

κBi // κBi′
// . . . κB′

1

κAi //

OO

κAi′
//

OO

. . . κA′
1

OO

Thus κBi is a finitely generated extension of κAi such that the compositum of κBi
and κA′

1
in κB′

1
is separable over κA′

1
. Then that happens already at a finite stage:

for example, say κB′
1

is finite separable over κA′
1
(x1, . . . , xn), then just increase

i such that x1, . . . , xn are in κBi and such that all generators satisfy separable
polynomial equations over κAi(x1, . . . , xn). This means that Ai → (Bi)m is formally
smooth in the m-adic topology for all maximal ideals m of Bi and the proof is
complete. □

Lemma 15.116.9.0BRP Let A → B be an extension of discrete valuation rings with
fraction fields K ⊂ L. Assume

(1) B is essentially of finite type over A,
(2) either A or B is a Nagata ring, and
(3) L/K is separable.

Then there exists a separable solution for A→ B (Definition 15.115.1).

Proof. Observe that if A is Nagata, then so is B (Algebra, Lemma 10.162.6 and
Proposition 10.162.15). Thus the lemma follows on combining Proposition 15.116.8
and Lemma 15.116.6. □

15.117. Picard groups of rings

0AFW We first define invertible modules as follows.

https://stacks.math.columbia.edu/tag/0BRP
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Definition 15.117.1.0B8H Let R be a ring. An R-module M is invertible if the functor
ModR −→ ModR, N 7−→M ⊗R N

is an equivalence of categories. An invertible R-module is said to be trivial if it is
isomorphic to R as an R-module.

Lemma 15.117.2.0B8I Let R be a ring. Let M be an R-module. Equivalent are
(1) M is finite locally free module of rank 1,
(2) M is invertible, and
(3) there exists an R-module N such that M ⊗R N ∼= R.

Moreover, in this case the module N in (3) is isomorphic to HomR(M,R).

Proof. Assume (1). Consider the module N = HomR(M,R) and the evaluation
map M ⊗R N = M ⊗R HomR(M,R)→ R. If f ∈ R such that Mf

∼= Rf , then the
evaluation map becomes an isomorphism after localization at f (details omitted).
Thus we see the evaluation map is an isomorphism by Algebra, Lemma 10.23.2.
Thus (1) ⇒ (3).
Assume (3). Then the functor K 7→ K ⊗R N is a quasi-inverse to the functor
K 7→ K ⊗R M . Thus (3) ⇒ (2). Conversely, if (2) holds, then K 7→ K ⊗R M is
essentially surjective and we see that (3) holds.
Assume the equivalent conditions (2) and (3) hold. Denote ψ : M ⊗R N → R the
isomorphism from (3). Choose an element ξ =

∑
i=1,...,n xi⊗yi such that ψ(ξ) = 1.

Consider the isomorphisms
M →M ⊗RM ⊗R N →M

where the first arrow sends x to
∑
xi⊗x⊗yi and the second arrow sends x⊗x′⊗y

to ψ(x′ ⊗ y)x. We conclude that x 7→
∑
ψ(x ⊗ yi)xi is an automorphism of M .

This automorphism factors as
M → R⊕n →M

where the first arrow is given by x 7→ (ψ(x⊗y1), . . . , ψ(x⊗yn)) and the second arrow
by (a1, . . . , an) 7→

∑
aixi. In this way we conclude that M is a direct summand of

a finite free R-module. This means that M is finite locally free (Algebra, Lemma
10.78.2). Since the same is true for N by symmetry and since M ⊗R N ∼= R, we
see that M and N both have to have rank 1. □

The set of isomorphism classes of these modules is often called the class group
or Picard group of R. The group structure is determined by assigning to the
isomorphism classes of the invertible modules L and L′ the isomorphism class of
L⊗R L′. The inverse of an invertible module L is the module

L⊗−1 = HomR(L,R),
because as seen in the proof of Lemma 15.117.2 the evaluation map L⊗RL⊗−1 → R
is an isomorphism. Let us denote the Picard group of R by Pic(R).

Lemma 15.117.3.0BCH Let R be a UFD. Then Pic(R) is trivial.

Proof. Let L be an invertible R-module. By Lemma 15.117.2 we see that L is
a finite locally free R-module. In particular L is torsion free and finite over R.
Pick a nonzero element φ ∈ HomR(L,R) of the dual invertible module. Then

https://stacks.math.columbia.edu/tag/0B8H
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I = φ(L) ⊂ R is an ideal which is an invertible module. Pick a nonzero f ∈ I and
let

f = upe1
1 . . . perr

be the factorization into prime elements with pi pairwise distinct. Since L is finite
locally free there exist ai ∈ R, ai ̸∈ (pi) such that Iai = (gi) for some gi ∈ Rai .
Then pi is still a prime element of the UFD Rai and we can write gi = pcii g

′
i for

some g′
i ∈ Rai not divisible by pi. Since f ∈ Iai we see that ei ≥ ci. We claim that

I is generated by h = pc1
1 . . . pcrr which finishes the proof.

To prove the claim it suffices to show that Ia is generated by h for any a ∈ R
such that Ia is a principal ideal (Algebra, Lemma 10.23.2). Say Ia = (g). Let
J ⊂ {1, . . . , r} be the set of i such that pi is a nonunit (and hence a prime element)
in Ra. Because f ∈ Ia = (g) we find the prime factorization g = v

∏
i∈J p

bj
j with v

a unit and bj ≤ ej . For each j ∈ J we have Iaaj = gRaaj = gjRaaj , in other words
g and gj map to associates in Raaj . By uniqueness of factorization this implies that
bj = cj and the proof is complete. □

15.118. Determinants

0FJ9 Let R be a ring. Let M be a finite projective R-module. There exists a product
decomposition R = R0 × . . . × Rt such that in the corresponding decomposition
M = M0 × . . . ×Mt of M we have that Mi is finite locally free of rank i over Ri.
This follows from Algebra, Lemma 10.78.2 (to see that the rank is locally constant)
and Algebra, Lemmas 10.21.3 and 10.24.3 (to decompose R into a product). In this
situation we define

det(M) = ∧0
R0

(M0)× . . .× ∧tRt(Mt)
as an R-module. This is a finite locally free module of rank 1 as each term is
finite locally free of rank 1. If φ : M → N is an isomorphism of finite projective
R-modules, then we obtain a canonical isomorphism

det(φ) : det(M) −→ det(N)
of locally free modules of rank 1. More generally, if for all primes p of R the ranks
of the free modules Mp and Np are the same, then any R-module homomorphism
φ : M → N induces an R-module map det(φ) : det(M) → det(N). Finally, if
M = N then det(φ) : det(M) → det(M) is an endomorphism of an invertible R-
module. Since R = HomR(L,L) for an invertible R-module we may and do view
det(φ) as an element of R. In this way we obtain the determinant

det : HomR(M,M) −→ R

which is a multiplicative map.
Remark 15.118.1.0FJA Let R be a ring. Let M be a finite projective R-module. Then
we can consider the graded commutative R-algebra exterior algebra ∧∗

R(M) on
M over R. A formula for det(M) is that det(M) ⊂ ∧∗

R(M) is the annihilator of
M ⊂ ∧∗

R(M). This is sometimes useful as it does not refer to the decomposition
of R into a product. Of course, to prove this satisfies the desired properties one
has to either decompose R into a product (as above), or one has to look at the
localizations at primes of R.
Next, we consider what happens to the determinant give a short exact sequence of
finite projective modules.

https://stacks.math.columbia.edu/tag/0FJA
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Lemma 15.118.2.0FJB Let R be a ring. Let

0→M ′ →M →M ′′ → 0

be a short exact sequence of finite projective R-modules. Then there is a canonical
isomorphism

γ : det(M ′)⊗ det(M ′′) −→ det(M)

First proof. First proof. Decompose R into a product of rings Rij such that M ′ =∏
M ′
ij and M ′′ =

∏
M ′′
ij where M ′

ij has rank i and M ′′
ij has rank j. Of course then

M =
∏
Mij and Mij has rank i+ j. This reduces us to the case where M ′ and M ′′

have constant rank say i and j. In this case we have to construct a canonical map

∧i(M ′)⊗ ∧j(M ′′) −→ ∧i+j(M)

To do this choosem′
1, . . . ,m

′
i inM ′ andm′′

1 , . . . ,m
′′
j inM ′′. Denotem1, . . . ,mi ∈M

the images of m′
1, . . . ,m

′
i and denote mi+1, . . . ,mi+j ∈ M elements mapping to

m′′
1 , . . . ,m

′′
j in M ′′. Our rule will be that

m′
1 ∧ . . . ∧m′

i ⊗m′′
1 ∧ . . . ∧m′′

j 7−→ m1 ∧ . . . ∧mi+j

We omit the detailed proof that this is well defined and an isomorphism. □

Second proof. We will use the description of det(M), det(M ′), and det(M ′′) given
in Remark 15.118.1. Consider theR-algebra maps ∧∗

R(M ′)→ ∧∗
R(M) and ∧∗

R(M)→
∧∗
R(M ′′). The first is injective and the second is surjective. Take an element

x′ ∈ det(M ′) ⊂ ∧∗
R(M ′) and an element x′′ ∈ det(M ′′) ⊂ ∧∗

R(M ′′). Choose an
element y′′ ∈ ∧∗(M) mapping to x′′ and set

γ(x′ ⊗ x′′) = x′ ∧ y′′ ∈ det(M) ⊂ ∧∗
R(M)

The reader verifies easily by looking at localizations at primes that this well de-
fined and an isomorphism. Moreover, this construction gives the same map as the
construction given in the first proof. □

Lemma 15.118.3.0FJC Let R be a ring. Let

0 // M ′ //

u

��

M //

v

��

M ′′ //

w

��

0

0 // K ′ // K // K ′′ // 0
be a commutative diagram of finite projective R-modules whose vertical arrows are
isomorphisms. Then we get a commutative diagram of isomorphisms

det(M ′)⊗ det(M ′′)
γ
//

det(u)⊗det(w)
��

det(M)

det(v)
��

det(K ′)⊗ det(K ′′) γ // det(K)

where the horizontal arrows are the ones constructed in Lemma 15.118.2.

Proof. Omitted. Hint: use the second construction of the maps γ in Lemma
15.118.2. □

https://stacks.math.columbia.edu/tag/0FJB
https://stacks.math.columbia.edu/tag/0FJC


15.118. DETERMINANTS 1532

Lemma 15.118.4.0FJD Let R be a ring. Let
K ⊂ L ⊂M

be R-modules such that K, L/K, and M/L are finite projective R-modules. Then
the diagram

det(K)⊗ det(L/K)⊗ det(M/L) //

��

det(L)⊗ det(M/L)

��
det(K)⊗ det(M/K) // det(M)

commutes where the maps are those of Lemma 15.118.2.

Proof. Omitted. Hint: after localizing at a prime of R we can assume K ⊂ L ⊂M
is isomorphic to R⊕a ⊂ R⊕a+b ⊂ R⊕a+b+c and in this case the result is an evident
computation. □

Lemma 15.118.5.0FJE Let R be a ring. Let M ′ and M ′′ be two finite projective R-
modules. Then the diagram

det(M ′)⊗ det(M ′′) //

ϵ·(switch tensors)
��

det(M ′ ⊕M ′′)

det(swith summands)
��

det(M ′′)⊗ det(M ′) // det(M ′′ ⊕M ′)

commutes where ϵ = det(−idM ′⊗M ′′) ∈ R∗ and the horizontal arrows are those of
Lemma 15.118.2.

Proof. Omitted. □

Lemma 15.118.6.0FJF Let R be a ring. Let M , N be finite projective R-modules. Let
a : M → N and b : N →M be R-linear maps. Then

det(id + a ◦ b) = det(id + b ◦ a)
as elements of R.

Proof. It suffices to prove the assertion after replacing R by a localization at a
prime ideal. Thus we may assume R is local and M and N are finite free. In this
case we have to prove the equality

det(In +AB) = det(Im +BA)
of usual determinants of matrices where A has size n ×m and B has size m × n.
This reduces to the case of the ring R = Z[aij , bji; 1 ≤ i ≤ n, 1 ≤ j ≤ m] where aij
and bij are variables and the entries of the matrices A and B. Taking the fraction
field, this reduces to the case of a field of characteristic zero. In characteristic zero
there is a universal polynomial expressing the determinant of a matrix of size ≤ N
in the traces of the powers of said matrix. Hence it suffices to prove

Trace((In +AB)k) = Trace((Im +BA)k)
for all k ≥ 1. Expanding we see that it suffices to prove Trace((AB)k) = Trace((BA)k)
for all k ≥ 0. For k = 1 this is the well known fact that Trace(AB) = Trace(BA).
For k > 1 it follows from this by writing (AB)k = A(BA)k−1B and (BA)k =
(BA)k−1AB. □
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Recall that we have defined in Algebra, Section 10.55 a group K0(R) as the free
group on isomorphism classes of finite projective R-modules modulo the relations
[M ′] + [M ′′] = [M ′ ⊕M ′′].

Lemma 15.118.7.0AFX Let R be a ring. There is a map

det : K0(R) −→ Pic(R)

which maps [M ] to the class of the invertible module ∧n(M) if M is a finite locally
free module of rank n.

Proof. This follows immediately from the constructions above and in particular
Lemma 15.118.2 to see that the relations are mapped to 0. □

15.119. Perfect complexes and K-groups

0FJG We quickly show that the zeroth K-group of the derived category of perfect com-
plexes of a ring R is the same as K0(R) defined in Algebra, Section 10.55.

Lemma 15.119.1.0AFY Let R be a ring. There is a map

c : perfect complexes over R −→ K0(R)

with the following properties
(1) c(K[n]) = (−1)nc(K) for a perfect complex K,
(2) if K → L → M → K[1] is a distinguished triangle of perfect complexes,

then c(L) = c(K) + c(M),
(3) if K is represented by a finite complex M• consisting of finite projective

modules, then c(K) =
∑

(−1)i[Mi].

Proof. Let K be a perfect object of D(R). By definition we can represent K by a
finite complex M• of finite projective R-modules. We define c by setting

c(K) =
∑

(−1)n[Mn]

in K0(R). Of course we have to show that this is well defined, but once it is well
defined, then (1) and (3) are immediate. For the moment we view the map c as
defined on complexes of finite projective R-modules.

Suppose that L• → M• is a surjective map of finite complexes of finite projective
R-modules. Let K• be the kernel. Then we obtain short exact sequences of R-
modules

0→ Kn → Ln →Mn → 0
which are split because Mn is projective. Hence K• is also a finite complex of finite
projective R-modules and c(L•) = c(K•) + c(M•) in K0(R).

Suppose given finite complex M• of finite projective R-modules which is acyclic.
Say Mn = 0 for n ̸∈ [a, b]. Then we can break M• into short exact sequences

0→Ma →Ma+1 → Na+1 → 0,
0→ Na+1 →Ma+2 → Na+3 → 0,

. . .
0→ N b−3 →M b−2 → N b−2 → 0,

0→ N b−2 →M b−1 →M b → 0

https://stacks.math.columbia.edu/tag/0AFX
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Arguing by descending induction we see that N b−2, . . . , Na+1 are finite projective
R-modules, the sequences are split exact, and

c(M•) =
∑

(−1)[Mn] =
∑

(−1)n([Nn−1] + [Nn]) = 0

Thus our construction gives zero on acyclic complexes.

It follows formally from the results of the preceding two paragraphs that c is well
defined and satisfies (2). Namely, suppose the finite complexes M• and L• of finite
projective R-modules represent the same object of D(R). Then we can represent
the isomorphism by a map f : M• → L• of complexes, see Derived Categories,
Lemma 13.19.8. We obtain a short exact sequence of complexes

0→ L• → C(f)• → K•[1]→ 0

see Derived Categories, Definition 13.9.1. Since f is a quasi-isomorphism, the cone
C(f)• is acyclic (this follows for example from the discussion in Derived Categories,
Section 13.12). Hence

0 = c(C(f)•) = c(L•) + c(K•[1]) = c(L•)− c(K•)

as desired. We omit the proof of (2) which is similar. □

The following lemma shows that K0(R) is equal to K0(Dperf (R)).

Lemma 15.119.2.0FCU Let R be a ring. Let Dperf (R) be the derived category of perfect
objects, see Lemma 15.78.1. The map c of Lemma 15.119.1 gives an isomorphism
K0(Dperf (R)) = K0(R).

Proof. It follows from the definition of K0(Dperf (R)) (Derived Categories, Defini-
tion 13.28.1) that c induces a homomorphism K0(Dperf (R))→ K0(R).

Given a finite projective module M over R let us denote M [0] the perfect complex
over R which has M sitting in degree 0 and zero in other degrees. Given a short
exact sequence 0 → M → M ′ → M ′′ → 0 of finite projective modules we obtain
a distinguished triangle M [0] → M ′[0] → M ′′[0] → M [1], see Derived Categories,
Section 13.12. This shows that we obtain a map K0(R)→ K0(Dperf (R)) by sending
[M ] to [M [0]] with apologies for the horrendous notation.

It is clear thatK0(R)→ K0(Dperf (R))→ K0(R) is the identity. On the other hand,
if M• is a bounded complex of finite projective R-modules, then the the existence
of the distinguished triangles of “stupid truncations” (see Homology, Section 12.15)

σ≥nM
• → σ≥n−1M

• →Mn−1[−n+ 1]→ (σ≥nM
•)[1]

and induction show that

[M•] =
∑

(−1)i[M i[0]]

in K0(Dperf (R)) (with again apologies for the notation). Hence the map K0(R)→
K0(Dperf (R)) is surjective which finishes the proof. □

https://stacks.math.columbia.edu/tag/0FCU
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15.120. Determinants of endomorphisms of finite length modules

0GSX Let (R,m, κ) be a local ring. Consider the category of pairs (M,φ) consisting of
a finite length R-module and an endomorphism φ : M → M . This category is
abelian and every object is Artinian as well as Noetherian. See Homology, Section
12.9 for definitions.
If (M,φ) is a simple object of this category, then M is annihilated by m since oth-
erwise (mM,φ|mM ) would be a nontrivial suboject. Also dimκ(M) = lengthR(M)
is finite. Thus we may define the determinant and the trace

detκ(φ), Traceκ(φ)
as elements of κ using linear algebra. Simlarly for the characteristic polynomial of
φ in this case.
By Homology, Lemma 12.9.6 for an arbitrary object (M,φ) of our category we have
a finite filtration

0 ⊂M1 ⊂ . . . ⊂Mn = M

by submodules stable under φ such that (Mi/Mi−1, φi) is a simple object of the
category where φi : Mi/Mi−1 → Mi/Mi−1 is the induced map. We define the
determinant of (M,φ) over κ as

detκ(φ) =
∏

detκ(φi)

with detκ(φi) as defined in the previous paragraph. We define the trace of (M,φ)
over κ as

Traceκ(φ) =
∑

Traceκ(φi)
with Traceκ(φi) as defined in the previous paragraph. We can similarly define the
characteristic polynomial of φ over κ as the product of the characteristic polyno-
mials of φi as defined in the previous paragraph. By Jordan-Hölder (Homology,
Lemma 12.9.7) this is well defined.

Lemma 15.120.1.0GSY Let (R,m, κ) be a local ring. Let 0 → (M,φ) → (M ′, φ′) →
(M ′′, φ′′)→ 0 be a short exact sequence in the category discussed above. Then

detκ(φ′) = detκ(φ) detκ(φ′′), Traceκ(φ′) = Traceκ(φ) + Traceκ(φ′′)
Also, the characteristic polynomial of φ′ over κ is the product of the characteristic
polynomials of φ and φ′′.

Proof. Left as an exercise. □

Lemma 15.120.2.0GSZ Let (R,m, κ) → (R′,m′, κ′) be a local homomorphism of local
rings. Assume that κ′/κ is a finite extension. Let u ∈ R′. Then for any finite
length R′-module M ′ we have

detκ(u : M ′ →M ′) = Normκ′/κ(u mod m′)m

where m = lengthR′(M ′).

Proof. Observe that the statement makes sense as lengthR(M ′) = lengthR′(M ′)[κ′ :
κ]. If M ′ = κ′, then the equality holds by definition of the norm as the determinant
of the linear operator given by multiplication by u. In general one reduces to
this case by chosing a suitable filtration and using the multiplicativity of Lemma
15.120.1. Some details omitted. □
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Lemma 15.120.3.0GT0 Let (R,m, κ) → (R′,m′, κ′) be a flat local homomorphism of
local rings such that m = lengthR′(R′/mR′) < ∞. For any (M,φ) as above, the
element detκ(φ)m maps to detκ′(φ⊗ 1 : M ⊗R R′ →M ⊗R R′) in κ′.

Proof. The flatness of R→ R′ assures us that short exact sequences as in Lemma
15.120.1 base change to short exact sequences over R′. Hence by the multiplicativity
of Lemma 15.120.1 we may assume that (M,φ) is a simple object of our category
(see introduction to this section). In the simple case M is annihilated by m. Choose
a filtration

0 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ Im−1 ⊂ R′/mR′

whose successive quotients are isomorphic to κ′ as R′-modules. Then we obtain the
filtration

0 ⊂M ⊗κ I1 ⊂M ⊗κ I2 ⊂ . . . ⊂M ⊗κ Im−1 ⊂M ⊗κ R′/mR′ = M ⊗R R′

whose successive quotients are isomorphic to M ⊗κ κ′. Also, these submodules are
invariant under φ⊗ 1. By Lemma 15.120.1 we find
detκ′(φ⊗1 : M⊗RR′ →M⊗RR′) = detκ′(φ⊗1 : M⊗κκ′ →M⊗κκ′)m = detκ(φ)m

The last equality holds by the compatibility of determinants of linear maps with
field extensions. This proves the lemma. □

15.121. A regular local ring is a UFD

0FJH We prove the result mentioned in the section title.

Lemma 15.121.1.0AFZ Let R be a regular local ring. Let f ∈ R. Then Pic(Rf ) = 0.

Proof. Let L be an invertible Rf -module. In particular L is a finite Rf -module.
There exists a finite R-module M such that Mf

∼= L, see Algebra, Lemma 10.126.3.
By Algebra, Proposition 10.110.1 we see that M has a finite free resolution F• over
R. It follows that L is quasi-isomorphic to a finite complex of free Rf -modules.
Hence by Lemma 15.119.1 we see that [L] = n[Rf ] in K0(R) for some n ∈ Z.
Applying the map of Lemma 15.118.7 we see that L is trivial. □

Lemma 15.121.2.0AG0 A regular local ring is a UFD.

Proof. Recall that a regular local ring is a domain, see Algebra, Lemma 10.106.2.
We will prove the unique factorization property by induction on the dimension of
the regular local ring R. If dim(R) = 0, then R is a field and in particular a UFD.
Assume dim(R) > 0. Let x ∈ m, x ̸∈ m2. Then R/(x) is regular by Algebra,
Lemma 10.106.3, hence a domain by Algebra, Lemma 10.106.2, hence x is a prime
element. Let p ⊂ R be a height 1 prime. We have to show that p is principal, see
Algebra, Lemma 10.120.6. We may assume x ̸∈ p, since if x ∈ p, then p = (x) and
we are done. For every nonmaximal prime q ⊂ R the local ring Rq is a regular local
ring, see Algebra, Lemma 10.110.6. By induction we see that pRq is principal. In
particular, the Rx-module px = pRx ⊂ Rx is a finitely presented Rx-module whose
localization at any prime is free of rank 1. By Algebra, Lemma 10.78.2 we see that
px is an invertible Rx-module. By Lemma 15.121.1 we see that px = (y) for some
y ∈ Rx. We can write y = xef for some f ∈ p and e ∈ Z. Factor f = a1 . . . ar
into irreducible elements of R (Algebra, Lemma 10.120.3). Since p is prime, we see
that ai ∈ p for some i. Since px = (y) is prime and ai|y in Rx, it follows that px is
generated by ai in Rx, i.e., the image of ai in Rx is prime. As x is a prime element,

https://stacks.math.columbia.edu/tag/0GT0
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we find that ai is prime in R by Algebra, Lemma 10.120.7. Since (ai) ⊂ p and p
has height 1 we conclude that (ai) = p as desired. □

Lemma 15.121.3.0DLQ Let R be a valuation ring with fraction field K and residue field
κ. Let R→ A be a homomorphism of rings such that

(1) A is local and R→ A is local,
(2) A is flat and essentially of finite type over R,
(3) A⊗R κ regular.

Then Pic(A⊗R K) = 0.

Proof. Let L be an invertible A ⊗R K-module. In particular L is a finite module.
There exists a finite A-module M such that M ⊗R K ∼= L, see Algebra, Lemma
10.126.3. We may assume M is torsion free as an R-module. Thus M is flat as
an R-module (Lemma 15.22.10). From Lemma 15.25.6 we deduce that M is of
finite presentation as an A-module and A is essentially of finite presentation as an
R-algebra. By Lemma 15.83.4 we see that M is perfect relative to R, in particular
M is pseudo-coherent as an A-module. By Lemma 15.77.6 we see that M is perfect,
hence M has a finite free resolution F• over A. It follows that L is quasi-isomorphic
to a finite complex of free A⊗RK-modules. Hence by Lemma 15.119.1 we see that
[L] = n[A ⊗R K] in K0(A ⊗R K) for some n ∈ Z. Applying the map of Lemma
15.118.7 we see that L is trivial. □

15.122. Determinants of complexes

0FJI In Section 15.119 we have seen how to a perfect complex K over a ring R there is
associated an isomorphism class of invertible R-modules, i.e., an element of Pic(R).
In fact, analogously to Section 15.118 it turns out there is a functor

det :
{

category of perfect complexes
morphisms are isomorphisms

}
−→

{
category of invertible modules
morphisms are isomorphisms

}
Moreover, given an object (L,F ) of the filtered derived category DF (R) of R whose
filtration is finite and whose graded parts are perfect complexes, there is a canonical
isomorphism det(grL) → det(L). See [KM76] for the original exposition. We will
add this material later (insert future reference).
For the moment we will present an ad hoc construction in the case of perfect
objects L in D(R) of tor-amplitude in [−1, 0]. Such an object may be represented
by a complex

L• = . . .→ 0→ L−1 → L0 → 0→ . . .

with L−1 and L0 finite projective R-modules, see Lemma 15.74.2. In this case we
set

det(L•) = det(L0)⊗R det(L−1)⊗−1 = HomR(det(L−1),det(L0))
Let us say a complex of this form has rank 0 if L−1

p and L0
p have the same rank for

all primes of R. If L• has rank 0, then we have seen in Section 15.118 that there is
a canonical element

δ(L•) ∈ det(L•)
which is simply the determininant of d : L−1 → L0. Note that δ(L•) is a trivializa-
tion of det(L•) if and only if L• is acyclic.
Consider a map of complexes a• : K• → L• such that

(1) a• is a quasi-isomorphism,

https://stacks.math.columbia.edu/tag/0DLQ
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(2) an : Kn → Ln is surjective for all n,
(3) Kn, Ln are finite projective R-modules, nonzero only for n ∈ {−1, 0}.

In this situation we will construct an isomorphism

det(a•) : det(K•) −→ det(L•)

Using the exact sequences 0→ Ker(ai)→ Ki → Li → 0 we obtain isomorphisms

γi : det(Ker(ai))⊗ det(Li)→ det(Ki)

for i = −1, 0 by Lemma 15.118.2. Since a• is a quasi-isomorphism the com-
plex Ker(a•) is acyclic and has rank 0. Hence the canonical element δ(Ker(a•))
is a trivialization of the invertible R-module det(Ker(a•)), see above. We define
det(a•) : det(K•)→ det(L•) as the unique isomorphism such that the diagram

det(K•)
det(a•)

//

δ(Ker(a•)) ))

det(L•)

det(K•)⊗ det(Ker(a•))
γ0⊗(γ−1)⊗−1

66

commutes.

Lemma 15.122.1.0FJJ Let R be a ring. Let a• : K• → L• be a map of complexes of
R-modules satisfying (1), (2), (3) above. If L• has rank 0, then det(a•) maps the
canonical element δ(K•) to δ(L•).

Proof. Write M i = Ker(ai). Thus we have a map of short exact sequences

0 // M−1 //

dM
��

K−1 //

dK
��

L−1 //

dL
��

0

0 // M0 // K0 // L0 // 0

By Lemma 15.118.3 we know that det(dK) corresponds to det(dM ) ⊗ det(dL) as
maps. Unwinding the definitions this gives the required equality. □

Lemma 15.122.2.0FJK Let R be a ring. Let a• : K• → L• be a map of complexes of
R-modules satisfying (1), (2), (3) above. Let h : K0 → L−1 be a map such that
b0 = a0 + d ◦ h and b−1 = a−1 + h ◦ d are surjective. Then det(a•) = det(b•) as
maps det(K•)→ det(L•).

Proof. Suppose there exists a map h̃ : K0 → K−1 such that h = a−1 ◦ h̃ and such
that k0 = id+d◦ h̃ : K0 → K0 and k1 = id+ h̃◦d : K−1 → K−1 are isomorphisms.
Then we obtain a commutative diagram

0 // Ker(b•) //

c•

��

K•
b•
//

k•

��

L• //

id
��

0

0 // Ker(a•) // K• a•
// L• // 0

https://stacks.math.columbia.edu/tag/0FJJ
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of complexes, where c• is the induced isomorphism of kernels. Using Lemma
15.118.3 we see that

det(Ker(bi))⊗ det(Li) //

det(ci)⊗1
��

det(Ki)

det(ki)
��

det(Ker(ai))⊗ det(Li) // det(Ki)

commutes. Since det(c•) maps the canonical trivialization of det(Ker(a•)) to the
canonical trivializatio of Ker(b•) (Lemma 15.122.1) we see that we conclude if (and
only if)

det(k0) = det(k−1)
as elements of R which follows from Lemma 15.118.6.
Suppose there exists a direct summand U ⊂ K−1 such that both a−1|U : U → L−1

and b−1|U : U → L−1 are isomorphisms. Define h̃ as the composition of h with the
inverse of a−1|U . We claim that h̃ is a map as in the first paragraph of the proof.
Namely, we have h = a−1 ◦ h̃ by construction. To show that k−1 : K−1 → K−1 is
an isomorphism it suffices to show that it is surjective (Algebra, Lemma 10.16.4).
Let u ∈ U . We may choose u′ ∈ U such that b−1(u′) = a−1(u). Then u = k−1(u′).
Namely, both u and k−1(u′) are in U and a−1(u) = a−1(k−1(u′)) by a calculation17

Since a−1|U is an isomorphism we get the equality. Thus U ⊂ Im(k−1). On the
other hand, if x ∈ Ker(a−1) then x = k−1(x) mod U . Since K−1 = Ker(a−1) + U
we conclude k−1 is surjective. Finally, we show that k0 : K0 → K0 is surjective.
First, since a0 ◦ k0 = b0 we see that a0 ◦ k0 is surjective. If x ∈ Ker(a0), then
x = d(y) for some y ∈ Ker(a−1). We may write y = k−1(z) for some z ∈ K−1 by
the above. Then x = k0(d(z)) and we conclude.
Final step of the proof. It suffices to find U as in the preceding paragraph, but
this may not always be possible. However, in order to show equality of two maps
of R-modules, it suffices to do so after localization at primes of R. Hence we may
assume R is local. Then we get the following problem: suppose

α, β : R⊕n −→ R⊕m

are two surjective R-linear maps. Find a direct summand U ⊂ R⊕n such that both
α|U and β|U are isomorphisms. If R is a field, this is possible by linear algebra. In
general, one takes a solution over the residue field and lifts this to a solution over
the local ring R. Some details omitted. □

Lemma 15.122.3.0FJL Let R be a ring. Let a• : K• → L• and b• : L• → M• be
maps of complexes of R-modules satisfying (1), (2), (3) above. Then we have
det(b•) ◦ det(a•) = det(b• ◦ a•) as maps det(M•)→ det(K•).

Proof. Omitted. Hints: Straightforward from Lemmas 15.118.2, 15.118.3, and
15.118.4. □

Lemma 15.122.4.0FJM Let R be a ring. The constructions above determine a functor

det :

category of perfect complexes
with tor amplitude in [−1, 0]
morphisms are isomorphisms

 −→
{

category of invertible modules
morphisms are isomorphisms

}
17a−1(k−1(u′)) = a−1(u′) + a−1(h̃(d(u′))) = a−1(u′) + h(d(u′)) = b−1(u′) = a−1(u)

https://stacks.math.columbia.edu/tag/0FJL
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Moreover, given a rank 0 perfect object L of D(R) with tor-amplitude in [−1, 0]
there is a canonical element δ(L) ∈ det(L) such that for any isomorphism a : L→ K
in D(R) we have det(a)(δ(L)) = δ(K).

Proof. By Lemma 15.74.2 every object of the source category may be represented
by a complex

L• = . . .→ 0→ L−1 → L0 → 0→ . . .

with L−1 and L0 finite projective R-modules. Let us temporarily call a complex of
this type good. By Derived Categories, Lemma 13.19.8 morphisms between good
complexes in the derived category are homotopy classes of maps of complexes. Thus
we may work with good complexes and we can use the determinant det(L•) =
det(L0)⊗ det(L−1)⊗−1 we investigated above.

Let a• : L• → K• be a morphism of good complexes which is an isomorphism in
D(R), i.e., a quasi-isomorphism. We say that

L•
a•

// K•

M•
b•

aa

c•

<<

is a good diagram if it commutes up to homotopy and b• and c• satisfy conditions
(1), (2), (3) above. Whenever we have such a diagram it makes sense to define

det(a•) = det(c•) ◦ det(b•)−1

where det(c•) and det(b•) are the isomorphisms constructed in the text above. We
will show that good diagrams always exist and that the resulting map det(a•) is
independent of the choice of good diagram.

Existence of good diagrams for a quasi-isomorphism a• : L• → K• of good com-
plexes. Choose a surjection p : R⊕n → K−1. Then we can consider the new good
complex

M• = . . .→ 0→ L−1 ⊕R⊕n d⊕1−−→ L0 ⊕R⊕n → 0→ . . .

with the projection map b• : M• → L• and the map c• : M• → K• using a−1 ⊕ p
in degree −1 and using a0 ⊕ d ◦ p in degree 0. The maps b• : M• → L• and
c• : M• → K• satisfy conditions (1), (2), (3) above and we get a good diagram.

Suppose that we have a good diagram

L•
id•

// L•

M•
b•

aa

c•

==

Then by Lemma 15.122.2 we see that det(c•) = det(b•). Thus we see that det(id•) =
id is independent of the choice of good diagram.

Before we prove independence in general, we think about composition. Suppose
we have quasi-isomorphisms L•

1 → L•
2 and L•

2 → L•
3 of good complexes and good
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diagrams

L•
1

// L•
2

M•
12

aa ==

and

L•
2

// L•
3

M•
23

aa ==

We can extend this to a diagram

L•
1

// L•
2

// L•
3

M•
12

aa <<

M•
23

bb ==

M•
123

bb <<

where M•
123 → M•

12 and M•
123 → M•

23 have properties (1), (2), (3) and the square
in the diagram commutes: we can just take Mn

123 = Mn
12 ×Ln2 M

n
23. Then Lemma

15.122.3 shows that
det(L•

2) det(M•
23)oo

det(M•
12)

OO

det(M•
123)oo

OO

commutes. A diagram chase shows that the composition det(L•
1) → det(L•

2) →
det(L•

3) of the maps associated to the two good diagrams using M•
12 and M•

23 is
equal to the map associated to the good diagram

L•
1

// L•
3

M•
123

bb <<

Thus if we can show that these maps are independent of choices, then the compo-
sition law is satisfied too and we obtain our functor.

Independence. Let a quasi-isomorphism a• : L• → K• of good complexes be given.
Choose an inverse quasi-isomorphism b• : K• → L•. Setting L•

1 = L, L•
2 = K•

and L•
3 = L• may fix our choice of good diagram for b• and consider varying good

diagrams for a•. Then the result of the previous paragraphs is that no matter what
choices, the composition always equals the identity map on det(L•). This clearly
proves indepence of those choices.

The statement on canonical elements follows immediately from Lemma 15.122.1
and our construction. □

15.123. Extensions of valuation rings

0ASF This section is the analogue of Section 15.111 for general valuation rings.
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Definition 15.123.1.0ASG We say that A → B or A ⊂ B is an extension of valuation
rings if A and B are valuation rings and A → B is injective and local. Such an
extension induces a commutative diagram

A \ {0} //

v

��

B \ {0}

v

��
ΓA // ΓB

where ΓA and ΓB are the value groups. We say that B is weakly unramified over
A if the lower horizontal arrow is a bijection. If the extension of residue fields
κA = A/mA ⊂ κB = B/mB is finite, then we set f = [κB : κA] and we call it the
residual degree or residue degree of the extension A ⊂ B.

Note that ΓA → ΓB is injective, because the units of A are the inverse of the units
of B under the map A → B. Note also, that we do not require the extension of
fraction fields to be finite.

Lemma 15.123.2.0ASH Let A ⊂ B be an extension of valuation rings with fraction fields
K ⊂ L. If the extension L/K is finite, then the residue field extension is finite, the
index of ΓA in ΓB is finite, and

[ΓB : ΓA][κB : κA] ≤ [L : K].

Proof. Let b1, . . . , bn ∈ B be units whose images in κB are linearly independent
over κA. Let c1, . . . , cm ∈ B be nonzero elements whose images in ΓB/ΓA are
pairwise distinct. We claim that bicj are K-linearly independent in L. Namely, we
claim a sum ∑

aijbicj

with aij ∈ K not all zero cannot be zero. Choose (i0, j0) with v(ai0j0bi0cj0) minimal.
Replace aij by aij/ai0j0 , so that ai0j0 = 1. Let

P = {(i, j) | v(aijbicj) = v(ai0j0bi0cj0)}
By our choice of c1, . . . , cm we see that (i, j) ∈ P implies j = j0. Hence if (i, j) ∈ P ,
then v(aij) = v(ai0j0) = 0, i.e., aij is a unit. By our choice of b1, . . . , bn we see that∑

(i,j)∈P
aijbi

is a unit in B. Thus the valuation of
∑

(i,j)∈P aijbicj is v(cj0) = v(ai0j0bi0cj0). Since
the terms with (i, j) ̸∈ P in the first displayed sum have strictly bigger valuation,
we conclude that this sum cannot be zero, thereby proving the lemma. □

Lemma 15.123.3.0H37 Let A be a valuation ring with fraction field K of characteristic
p > 0. Let L/K be a purely inseparable extension. Then the integral closure B
of A in L is a valuation ring with fraction field L and A ⊂ B is an extension of
valuation rings.

Proof. Omitted. Hints: use Algebra, Lemmas 10.50.5 and 10.36.17 for example. □

Lemma 15.123.4.0ASI Let A → B be a flat local homomorphism of Noetherian local
normal domains. Let f ∈ A and h ∈ B such that f = whn for some n > 1 and
some unit w of B. Assume that for every height 1 prime p ⊂ A there is a height 1
prime q ⊂ B lying over p such that the extension Ap ⊂ Bq is weakly unramified.
Then f = ugn for some g ∈ A and unit u of A.

https://stacks.math.columbia.edu/tag/0ASG
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Proof. The local rings of A and B at height 1 primes are discrete valuation rings
(Algebra, Lemma 10.119.7). Thus the assumption makes sense (via Definition
15.111.1). Let p1, . . . , pr be the primes of A minimal over f . These have height 1
by Algebra, Lemma 10.60.11. For each i let qi,j ⊂ B, j = 1, . . . , ri be the height
1 primes of B lying over pi. Say we number them so that Api → Bqi,1 is weakly
unramified. Since f maps to an nth power times a unit in Bqi,1 we see that the
valuation vi of f in Api is divisible by n. Say vi = nwi for some wi ≥ 0. Consider
the exact sequence

0→ I → A→
∏

i=1,...,r
Api/p

wi
i Api

defining the ideal I. Applying the exact functor −⊗AB we obtain an exact sequence

0→ I ⊗A B → B →
∏

i=1,...,r
(Api/p

wi
i Api)⊗A B

Fix i. We claim that the canonical map

(Api/p
wi
i Api)⊗A B →

∏
j=1,...,ri

Bqi,j/q
ei,jwi
i,j Bqi,j

is injective. Here ei,j is the ramification index of Api → Bqi,j . The claim asserts
that pwii Bpi is equal to the set of elements b of Bpi whose valuation at qi,j is≥ ei,jwi.
Choose a generator a ∈ Api of the principal ideal pwii . Then the valuation of a at
qi,j is equal to ei,jwi. Hence, as Bpi is a normal domain whose height one primes
are the primes qi,j , j = 1, . . . , ri, we see that, for b as above, we have b/a ∈ Bpi by
Algebra, Lemma 10.157.6. Thus the claim.
The claim combined with the second exact sequence above determines an exact
sequence

0→ I ⊗A B → B →
∏

i=1,...,r

∏
j=1,...,ri

Bqi,j/q
ei,jwi
i,j Bqi,j

It follows that I⊗AB is the set of elements h′ of B which have valuation ≥ ei,jwi at
qi,j . Since f = whn in B we see that h has valuation ei,jwi at qi,j . Thus h′/h ∈ B
by Algebra, Lemma 10.157.6. It follows that I ⊗A B is a free B-module of rank 1
(generated by h). Therefore I is a free A-module of rank 1, see Algebra, Lemma
10.78.6. Let g ∈ I be a generator. Then we see that g and h differ by a unit in B.
Working backwards we conclude that the valuation of g in Api is wi = vi/n. Hence
gn and f differ by a unit in A (by Algebra, Lemma 10.157.6) as desired. □

Lemma 15.123.5.0ASJ Let A be a valuation ring. Let A → B be an étale ring map
and let m ⊂ B be a prime lying over the maximal ideal of A. Then A ⊂ Bm is an
extension of valuation rings which is weakly unramified.

Proof. The ring A has weak dimension ≤ 1 by Lemma 15.104.18. Then B has weak
dimension ≤ 1 by Lemmas 15.104.4 and 15.104.14. hence the local ring Bm is a
valuation ring by Lemma 15.104.18. Since the extension A ⊂ Bm induces a finite
extension of fraction fields, we see that the ΓA has finite index in the value group
of Bm. Thus for every h ∈ Bm there exists an n > 0, an element f ∈ A, and a
unit w ∈ Bm such that f = whn in Bm. We will show that this implies f = ugn

for some g ∈ A and unit u ∈ A; this will show that the value groups of A and Bm

agree, as claimed in the lemma.
Write A = colimAi as the colimit of its local subrings which are essentially of
finite type over Z. Since A is a normal domain (Algebra, Lemma 10.50.3), we may

https://stacks.math.columbia.edu/tag/0ASJ
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assume that each Ai is normal (here we use that taking normalizations the local
rings remain essentially of finite type over Z by Algebra, Proposition 10.162.16).
For some i we can find an étale extension Ai → Bi such that B = A ⊗Ai Bi, see
Algebra, Lemma 10.143.3. Let mi be the intersection of Bi with m. Then we may
apply Lemma 15.123.4 to the ring map Ai → (Bi)mi to conclude. The hypotheses
of the lemma are satisfied because:

(1) Ai and (Bi)mi are Noetherian as they are essentially of finite type over Z,
(2) Ai → (Bi)mi is flat as Ai → Bi is étale,
(3) Bi is normal as Ai → Bi is étale, see Algebra, Lemma 10.163.9,
(4) for every height 1 prime of Ai there exists a height 1 prime of (Bi)mi lying

over it by Algebra, Lemma 10.113.2 and the fact that Spec((Bi)mi) →
Spec(Ai) is surjective,

(5) the induced extensions (Ai)p → (Bi)q are unramified for every prime q
lying over a prime p as Ai → Bi is étale.

This concludes the proof of the lemma. □

Lemma 15.123.6.0ASK Let A be a valuation ring. Let Ah, resp. Ash be its henselization,
resp. strict henselization. Then

A ⊂ Ah ⊂ Ash

are extensions of valuation rings which induce bijections on value groups, i.e., which
are weakly unramified.

Proof. Write Ah = colim(Bi)qi where A→ Bi is étale and qi ⊂ Bi is a prime ideal
lying over mA, see Algebra, Lemma 10.155.7. Then Lemma 15.123.5 tells us that
(Bi)qi is a valuation ring and that the induced map

(A \ {0})/A∗ −→ ((Bi)qi \ {0})/(Bi)∗
qi

is bijective. By Algebra, Lemma 10.50.6 we conclude that Ah is a valuation ring.
It also follows that (A \ {0})/A∗ → (Ah \ {0})/(Ah)∗ is bijective. This proves the
lemma for the inclusion A ⊂ Ah. To prove it for A ⊂ Ash we can use exactly the
same argument except we replace Algebra, Lemma 10.155.7 by Algebra, Lemma
10.155.11. Since Ash = (Ah)sh we see that this also proves the assertions of the
lemma for the inclusion Ah ⊂ Ash. □

15.124. Structure of modules over a PID

0ASL We work a little bit more generally (following the papers [War69] and [War70] by
Warfield) so that the proofs work over valuation rings.

Lemma 15.124.1.0ASM [War69, Corollary 1]Let P be a module over a ring R. The following are equivalent
(1) P is a direct summand of a direct sum of modules of the form R/fR, for

f ∈ R varying.
(2) for every short exact sequence 0 → A → B → C → 0 of R-modules such

that fA = A ∩ fB for all f ∈ R the map HomR(P,B)→ HomR(P,C) is
surjective.

Proof. Let 0 → A → B → C → 0 be an exact sequence as in (2). To prove that
(1) implies (2) it suffices to prove that HomR(R/fR,B) → HomR(R/fR,C) is
surjective for every f ∈ R. Let ψ : R/fR → C be a map. Say ψ(1) is the image
of b ∈ B. Then fb ∈ A. Hence there exists an a ∈ A such that fa = fb. Then
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f(b − a) = 0 hence we get a morphism φ : R/fR → B mapping 1 to b − a which
lifts ψ.

Conversely, assume that (2) holds. Let I be the set of pairs (f, φ) where f ∈ R and
φ : R/fR→ P . For i ∈ I denote (fi, φi) the corresponding pair. Consider the map

B =
⊕

i∈I
R/fiR −→ P

which sends the element r in the summand R/fiR to φi(r) in P . Let A = Ker(B →
P ). Then we see that (1) is true if the sequence

0→ A→ B → P → 0

is an exact sequence as in (2). To see this suppose f ∈ R and a ∈ A maps to fb in
B. Write b = (ri)i∈I with almost all ri = 0. Then we see that

f
∑

φi(ri) = 0

in P . Hence there is an i0 ∈ I such that fi0 = f and φi0(1) =
∑
φi(ri). Let

xi0 ∈ R/fi0R be the class of 1. Then we see that

a′ = (ri)i∈I − (0, . . . , 0, xi0 , 0, . . .)

is an element of A and fa′ = a as desired. □

Lemma 15.124.2 (Generalized valuation rings).0ASN [War70]Let R be a nonzero ring. The
following are equivalent

(1) For a, b ∈ R either a divides b or b divides a.
(2) Every finitely generated ideal is principal and R is local.
(3) The set of ideals of R is linearly ordered by inclusion.

This holds in particular if R is a valuation ring.

Proof. Assume (2) and let a, b ∈ R. Then (a, b) = (c). If c = 0, then a = b = 0
and a divides b. Assume c ̸= 0. Write c = ua + vb and a = wc and b = zc. Then
c(1 − uw − vz) = 0. Since R is local, this implies that 1 − uw − vz ∈ m. Hence
either w or z is a unit, so either a divides b or b divides a. Thus (2) implies (1).

Assume (1). If R has two maximal ideals mi we can choose a ∈ m1 with a ̸∈ m2
and b ∈ m2 with b ̸∈ m1. Then a does not divide b and b does not divide a. Hence
R has a unique maximal ideal and is local. It follows easily from condition (1) and
induction that every finitely generated ideal is principal. Thus (1) implies (2).

It is straightforward to prove that (1) and (3) are equivalent. The final statement
is Algebra, Lemma 10.50.4. □

Lemma 15.124.3.0ASP [War70, Theorem 1]Let R be a ring satisfying the equivalent conditions of Lemma
15.124.2. Then every finitely presented R-module is isomorphic to a finite direct
sum of modules of the form R/fR.

Proof. Let M be a finitely presented R-module. We will use all the equivalent
properties of R from Lemma 15.124.2 without further mention. Denote m ⊂ R the
maximal ideal and κ = R/m the residue field. Let I ⊂ R be the annihilator of M .
Choose a basis y1, . . . , yn of the finite dimensional κ-vector space M/mM . We will
argue by induction on n.
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By Nakayama’s lemma any collection of elements x1, . . . , xn ∈ M lifting the ele-
ments y1, . . . , yn in M/mM generate M , see Algebra, Lemma 10.20.1. This imme-
diately proves the base case n = 0 of the induction.

We claim there exists an index i such that for any choice of xi ∈ M mapping to
yi the annihilator of xi is I. Namely, if not, then we can choose x1, . . . , xn such
that Ii = Ann(xi) ̸= I for all i. But as I ⊂ Ii for all i, ideals being totally ordered
implies Ii is strictly bigger than I for i = 1, . . . , n, and by total ordering once more
we would see that Ann(M) = I1∩ . . .∩ In is bigger than I which is a contradiction.
After renumbering we may assume that y1 has the property: for any x1 ∈M lifting
y1 the annihilator of x1 is I.

We set A = Rx1 ⊂ M . Consider the exact sequence 0 → A → M → M/A → 0.
Since A is finite, we see that M/A is a finitely presented R-module (Algebra, Lemma
10.5.3) with fewer generators. Hence M/A ∼=

⊕
j=1,...,mR/fjR by induction. On

the other hand, we claim that A → M satisfies the property: if f ∈ R, then
fA = A ∩ fM . The inclusion fA ⊂ A ∩ fM is trivial. Conversely, if x ∈ A ∩ fM ,
then x = gx1 = fy for some g ∈ R and y ∈ M . If f divides g, then x ∈ fA
as desired. If not, then we can write f = hg for some h ∈ m. The element
x′

1 = x1 − hy has annihilator I by the previous paragraph. Thus g ∈ I and we
see that x = 0 as desired. The claim and Lemma 15.124.1 imply the sequence
0 → A → M → M/A → 0 is split and we find M ∼= A ⊕

⊕
j=1,...,mR/fjR.

Then A = R/I is finitely presented (as a summand of M) and hence I is finitely
generated, hence principal. This finishes the proof. □

Lemma 15.124.4.0ASQ [War70, Theorem 3]Let R be a ring such that every local ring of R at a maximal
ideal satisfies the equivalent conditions of Lemma 15.124.2. Then every finitely
presented R-module is a summand of a finite direct sum of modules of the form
R/fR for f in R varying.

Proof. LetM be a finitely presented R-module. We first show thatM is a summand
of a direct sum of modules of the form R/fR and at the end we argue the direct
sum can be taken to be finite. Let

0→ A→ B → C → 0

be a short exact sequence of R-modules such that fA = A ∩ fB for all f ∈ R. By
Lemma 15.124.1 we have to show that HomR(M,B)→ HomR(M,C) is surjective.
It suffices to prove this after localization at maximal ideals m, see Algebra, Lemma
10.23.1. Note that the localized sequences 0 → Am → Bm → Cm → 0 satisfy the
condition that fAm = Am∩fBm for all f ∈ Rm (because we can write f = uf ′ with
u ∈ Rm a unit and f ′ ∈ R and because localization is exact). Since M is finitely
presented, we see that

HomR(M,B)m = HomRm
(Mm, Bm) and HomR(M,C)m = HomRm

(Mm, Cm)

by Algebra, Lemma 10.10.2. The module Mm is a finitely presented Rm-module. By
Lemma 15.124.3 we see that Mm is a direct sum of modules of the form Rm/fRm.
Thus we conclude by Lemma 15.124.1 that the map on localizations is surjective.

At this point we know that M is a summand of
⊕

i∈I R/fiR. Consider the map
M →

⊕
i∈I R/fiR. Since M is a finite R-module, the image is contained in⊕

i∈I′ R/fiR for some finite subset I ′ ⊂ I. This finishes the proof. □
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Definition 15.124.5.0ASR Let R be a domain.
(1) We say R is a Bézout domain if every finitely generated ideal of R is

principal.
(2) We say R is an elementary divisor domain if for all n,m ≥ 1 and every

n×m matrix A, there exist invertible matrices U, V of size n× n,m×m
such that

UAV =


f1 0 0 . . .
0 f2 0 . . .
0 0 f3 . . .
. . . . . . . . . . . .


with f1, . . . , fmin(n,m) ∈ R and f1|f2| . . ..

It is apparently still an open question as to whether every Bézout domain R is an
elementary divisor domain (or not). This is equivalent to the question of whether
every finitely presented module over R is a direct sum of cyclic modules. The
converse implication is true.
Lemma 15.124.6.0ASS An elementary divisor domain is Bézout.
Proof. Let a, b ∈ R be nonzero. Consider the 1 × 2 matrix A = (a b). Then we
see that u(a b)V = (f 0) with u ∈ R invertible and V = (gij) an invertible 2 × 2
matrix. Then f = uag11 + ubg21 and (g11, g21) = R. It follows that (a, b) = (f).
An induction argument (omitted) then shows any finitely generated ideal in R is
generated by one element. □

Lemma 15.124.7.0AST The localization of a Bézout domain is Bézout. Every local ring
of a Bézout domain is a valuation ring. A local domain is Bézout if and only if it
is a valuation ring.
Proof. We omit the proof of the statement on localizations. The final statement is
Algebra, Lemma 10.50.15. The second statement follows from the other two. □

Lemma 15.124.8.0ASU Let R be a Bézout domain.
(1) Every finite submodule of a free module is finite free.
(2) Every finitely presented R-module M is a direct sum of a finite free module

and a torsion module Mtors which is a summand of a module of the form⊕
i=1,...,nR/fiR with f1, . . . , fn ∈ R nonzero.

Proof. Proof of (1). Let M ⊂ F be a finite submodule of a free module F . Since M
is finite, we may assume F is a finite free module (details omitted). Say F = R⊕n.
We argue by induction on n. If n = 1, then M is a finitely generated ideal, hence
principal by our assumption that R is Bézout. If n > 1, then we consider the image
I of M under the projection R⊕n → R onto the last summand. If I = (0), then
M ⊂ R⊕n−1 and we are done by induction. If I ̸= 0, then I = (f) ∼= R. Hence
M ∼= R⊕Ker(M → I) and we are done by induction as well.
Let M be a finitely presented R-module. Since the localizations of R are maximal
ideals are valuation rings (Lemma 15.124.7) we may apply Lemma 15.124.4. Thus
M is a summand of a module of the form R⊕r ⊕

⊕
i=1,...,nR/fiR with fi ̸= 0.

Since taking the torsion submodule is a functor we see that Mtors is a summand of
the module

⊕
i=1,...,nR/fiR and M/Mtors is a summand of R⊕r. By the first part

of the proof we see that M/Mtors is finite free. Hence M ∼= Mtors ⊕M/Mtors as
desired. □
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Lemma 15.124.9.0ASV Let R be a PID. Every finite R-module M is of isomorphic to a
module of the form

R⊕r ⊕
⊕

i=1,...,n
R/fiR

for some r, n ≥ 0 and f1, . . . , fn ∈ R nonzero.

Proof. A PID is a Noetherian Bézout ring. By Lemma 15.124.8 it suffices to prove
the result if M is torsion. Since M is finite, this means that the annihilator of
M is nonzero. Say fM = 0 for some f ∈ R nonzero. Then we can think of M
as a module over R/fR. Since R/fR is Noetherian of dimension 0 (small detail
omitted) we see that R/fR =

∏
Rj is a finite product of Artinian local rings

Ri (Algebra, Proposition 10.60.7). Each Ri, being a local ring and a quotient
of a PID, is a generalized valuation ring in the sense of Lemma 15.124.2 (small
detail omitted). Write M =

∏
Mj with Mj = ejM where ej ∈ R/fR is the

idempotent corresponding to the factor Rj . By Lemma 15.124.3 we see that Mj =⊕
i=1,...,nj Rj/f jiRj for some f ji ∈ Rj . Choose lifts fji ∈ R and choose gji ∈ R

with (gji) = (fj , fji). Then we conclude that

M ∼=
⊕

R/gjiR

as an R-module which finishes the proof. □

One can also prove that a PID is a elementary divisor domain (insert future refer-
ence here), by proving lemmas similar to the following.

Lemma 15.124.10.0ASW Let R be a Bézout domain. Let n ≥ 1 and f1, . . . , fn ∈ R
generate the unit ideal. There exists an invertible n × n matrix in R whose first
row is f1 . . . fn.

Proof. This follows from Lemma 15.124.8 but we can also prove it directly as fol-
lows. By induction on n. The result holds for n = 1. Assume n > 1. We may
assume f1 ̸= 0 after renumbering. Choose f ∈ R such that (f) = (f1, . . . , fn−1).
Let A be an (n− 1)× (n− 1) matrix whose first row is f1/f, . . . , fn−1/f . Choose
a, b ∈ R such that af − bfn = 1 which is possible because 1 ∈ (f1, . . . , fn) = (f, fn).
Then a solution is the matrix

f 0 . . . 0 fn
0 1 . . . 0 0

. . .
0 0 . . . 1 0
b 0 . . . 0 a




0
A

0
0 . . . 0 1


Observe that the left matrix is invertible because it has determinant 1. □

15.125. Principal radical ideals

0BWR In this section we prove that a catenary Noetherian normal local domain there
exists a nontrivial principal radical ideal. This result can be found in [Art86].

Lemma 15.125.1.0BWS Let (R,m) be a Noetherian local ring of dimension one, and let
x ∈ m be an element not contained in any minimal prime of R. Then

(1) the function P : n 7→ lengthR(R/xnR) satisfies P (n) ≤ nP (1) for n ≥ 0,
(2) if x is a nonzerodivisor, then P (n) = nP (1) for n ≥ 0.
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Proof. Since dim(R) = 1, we have dim(R/xnR) = 0 and so lengthR(R/xnR) is
finite for each n (Algebra, Lemma 10.62.3). To show the lemma we will induct on
n. Since x0R = R, we have that P (0) = lengthR(R/x0R) = lengthR0 = 0. The
statement also holds for n = 1. Now let n ≥ 2 and suppose the statement holds for
n− 1. The following sequence is exact

R/xn−1R
x−→ R/xnR→ R/xR→ 0

where x denotes the multiplication by x map. Since length is additive (Algebra,
Lemma 10.52.3), we have that P (n) ≤ P (n− 1) + P (1). By induction P (n− 1) ≤
(n− 1)P (1), whence P (n) ≤ nP (1). This proves the induction step.
If x is a nonzerodivisor, then the displayed exact sequence above is exact on the
left also. Hence we get P (n) = P (n− 1) + P (1) for all n ≥ 1. □

Lemma 15.125.2.0BWT Let (R,m) be a Noetherian local ring of dimension 1. Let x ∈ m
be an element not contained in any minimal prime of R. Let t be the number of
minimal prime ideals of R. Then t ≤ lengthR(R/xR).

Proof. Let p1, . . . , pt be the minimal prime ideals ofR. SetR′ = R/
√

0 = R/(
⋂t
i=1 pi).

We claim it suffices to prove the lemma for R′. Namely, it is clear that R′

has t minimal primes too and lengthR′(R′/xR′) = lengthR(R′/xR′) is less than
lengthR(R/xR) as there is a surjection R/xR → R′/xR′. Thus we may assume R
is reduced.
Assume R is reduced with minimal primes p1, . . . , pt. This means there is an exact
sequence

0→ R→
∏t

i=1
R/pi → Q→ 0

Here Q is the cokernel of the first map. Write M =
∏t
i=1 R/pi. Localizing at pj

we see that
Rpj →Mpj =

(∏t

i=1
R/pi

)
pj

= (R/pj)pj
is surjective. Thus Qpj = 0 for all j. We conclude that Supp(Q) = {m} as m is the
only prime of R different from the pi. It follows that Q has finite length (Algebra,
Lemma 10.62.3). Since Supp(Q) = {m} we can pick an n≫ 0 such that xn acts as
0 on Q (Algebra, Lemma 10.62.4). Now consider the diagram

0 // R //

xn

��

M //

xn

��

Q //

xn

��

0

0 // R // M // Q // 0
where the vertical maps are multiplication by xn. This is injective on R and on M
since x is not contained in any of the pi. By the snake lemma (Algebra, Lemma
10.4.1), the following sequence is exact:

0→ Q→ R/xnR→M/xnM → Q→ 0
Hence we find that lengthR(R/xnR) = lengthR(M/xnM) for large enough n. Writ-
ing Ri = R/pi we see that length(M/xnM) =

∑t
i=1 lengthR(Ri/xnRi). Applying

Lemma 15.125.1 and the fact that x is a nonzerodivisor on R and Ri, we conclude
that

nlengthR(R/xR) =
∑t

i=1
nlengthRi(Ri/xRi)
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Since lengthRi(Ri/xRi) ≥ 1 the lemma is proved. □

Lemma 15.125.3.0BWU Let (R,m) be a Noetherian local ring of dimension d > 1, let
f ∈ m be an element not contained in any minimal prime ideal of R, and let k ∈ N.
Then there exist elements g1, . . . , gd−1 ∈ mk such that f, g1, . . . , gd−1 is a system of
parameters.

Proof. We have dim(R/fR) = d−1 by Algebra, Lemma 10.60.13. Choose a system
of parameters g1, . . . , gd−1 in R/fR (Algebra, Proposition 10.60.9) and take lifts
g1, . . . , gd−1 in R. It is straightforward to see that f, g1, . . . , gd−1 is a system of
parameters in R. Then f, gk1 , . . . , gkd−1 is also a system of parameters and the proof
is complete. □

Lemma 15.125.4.0BWV Let (R,m) be a Noetherian local ring of dimension two, and let
f ∈ m be an element not contained in any minimal prime ideal of R. Then there
exist g ∈ m and N ∈ N such that

(a) f, g form a system of parameters for R.
(b) If h ∈ mN , then f+h, g is a system of parameters and lengthR(R/(f, g)) =

lengthR(R/(f + h, g)).

Proof. By Lemma 15.125.3 there exists a g ∈ m such that f, g is a system of
parameters for R. Then m =

√
(f, g). Thus there exists an n such that mn ⊂ (f, g),

see Algebra, Lemma 10.32.5. We claim that N = n+1 works. Namely, let h ∈ mN .
By our choice of N we can write h = af + bg with a, b ∈ m. Thus

(f + h, g) = (f + af + bg, g) = ((1 + a)f, g) = (f, g)

because 1 + a is a unit in R. This proves the equality of lengths and the fact that
f + h, g is a system of parameters. □

Lemma 15.125.5.0AXH Let R be a Noetherian local normal domain of dimension 2. Let
p1, . . . , pr be pairwise distinct primes of height 1. There exists a nonzero element
f ∈ p1 ∩ . . . ∩ pr such that R/fR is reduced.

Proof. Let f ∈ p1 ∩ . . . ∩ pr be a nonzero element. We will modify f slightly to
obtain an element that generates a radical ideal. The localization Rp of R at each
height one prime ideal p is a discrete valuation ring, see Algebra, Lemma 10.119.7
or Algebra, Lemma 10.157.4. We denote by ordp(f) the corresponding valuation
of f in Rp. Let q1, . . . , qs be the distinct height one prime ideals containing f .
Write ordqj (f) = mj ≥ 1 for each j. Then we define div(f) =

∑s
j=1 mjqj as a

formal linear combination of height one primes with integer coefficients. Note for
later use that each of the primes pi occurs among the primes qj . The ring R/fR is
reduced if and only if mj = 1 for j = 1, . . . , s. Namely, if mj is 1 then (R/fR)qj is
reduced and R/fR ⊂

∏
(R/fR)qj as q1, . . . , qj are the associated primes of R/fR,

see Algebra, Lemmas 10.63.19 and 10.157.6.

Choose and fix g and N as in Lemma 15.125.4. For a nonzero y ∈ R denote t(y)
the number of primes minimal over y. Since R is a normal domain, these primes
are height one and correspond 1-to-1 to the minimal primes of R/yR (Algebra,
Lemmas 10.60.11 and 10.157.6). For example t(f) = s is the number of primes qj
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occurring in div(f). Let h ∈ mN . By Lemma 15.125.2 we have
t(f + h) ≤ lengthR/(f+h)(R/(f + h, g))

= lengthR(R/(f + h, g))
= lengthR(R/(f, g))

see Algebra, Lemma 10.52.5 for the first equality. Therefore we see that t(f + h) is
bounded independent of h ∈ mN .
By the boundedness proved above we may pick h ∈ mN ∩ p1 ∩ . . . ∩ pr such that
t(f + h) is maximal among such h. Set f ′ = f + h. Given h′ ∈ mN ∩ p1 ∩ . . . ∩ pr
we see that the number t(f ′ + h′) ≤ t(f + h). Thus after replacing f by f ′ we may
assume that for every h ∈ mN ∩ p1 ∩ . . . ∩ pr we have t(f + h) ≤ s.
Next, assume that we can find an element h ∈ mN such that for each j we have
ordqj (h) ≥ 1 and ordqj (h) = 1 ⇔ mj > 1. Observe that h ∈ mN ∩ p1 ∩ . . . ∩ pr.
Then ordqj (f + h) = 1 for every j by elementary properties of valuations. Thus

div(f + h) =
∑s

j=1
qj +

∑v

k=1
ekrk

for some pairwise distinct height one prime ideals r1, . . . , rv and ek ≥ 1. However,
since s = t(f) ≥ t(f +h) we see that v = 0 and we have found the desired element.
Now we will pick h that satisfies the above criteria. By prime avoidance (Algebra,
Lemma 10.15.2) for each 1 ≤ j ≤ s we can find an element aj ∈ qj such that
aj ̸∈ qj′ for j′ ̸= j and aj ̸∈ q

(2)
j . Here q

(2)
j = {x ∈ R | ordqj (x) ≥ 2} is the second

symbolic power of qj . Then we take

h =
∏

mj=1
a2
j ×

∏
mj>1

aj

Then h clearly satisfies the conditions on valuations imposed above. If h ̸∈ mN ,
then we multiply by an element of mN which is not contained in qj for all j. □

Lemma 15.125.6.0AXI Let (A,m, κ) be a Noetherian normal local domain of dimension
2. If a ∈ m is nonzero, then there exists an element c ∈ A such that A/cA is reduced
and such that a divides cn for some n.

Proof. Let div(a) =
∑
i=1,...,r nipi with notation as in the proof of Lemma 15.125.5.

Choose c ∈ p1 ∩ . . .∩ pr with A/cA reduced, see Lemma 15.125.5. For n ≥ max(ni)
we see that −div(a) + div(cn) is an effective divisor (all coefficients nonnegative).
Thus cn/a ∈ A by Algebra, Lemma 10.157.6. □

In the rest of this section we prove the result in dimension > 2.

Lemma 15.125.7.0BWW Let (R,m) be a Noetherian local ring of dimension d, let g1, . . . , gd
be a system of parameters, and let I = (g1, . . . , gd). If eI/d! is the leading coefficient
of the numerical polynomial n 7→ lengthR(R/In+1), then eI ≤ lengthR(R/I).

Proof. The function is a numerical polynomial by Algebra, Proposition 10.59.5. It
has degree d by Algebra, Proposition 10.60.9. If d = 0, then the result is trivial.
If d = 1, then the result is Lemma 15.125.1. To prove it in general, observe that
there is a surjection ⊕

i1,...,id≥0,
∑

ij=n
R/I −→ In/In+1
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sending the basis element corresponding to i1, . . . , id to the class of gi11 . . . gidd in
In/In+1. Thus we see that

lengthR(R/In+1)− lengthR(R/In) ≤ lengthR(R/I)
(
n+ d− 1
d− 1

)
Since d ≥ 2 the numerical polynomial on the left has degree d − 1 with leading
coefficient eI/(d−1)!. The polynomial on the right has degree d−1 and its leading
coefficient is lengthR(R/I)/(d− 1)!. This proves the lemma. □

Lemma 15.125.8.0BWX Let (R,m) be a Noetherian local ring of dimension d, let t be
the number of minimal prime ideals of R of dimension d, and let (g1, . . . , gd) be a
system of parameters. Then t ≤ lengthR(R/(g1, . . . , gn)).

Proof. If d = 0 the lemma is trivial. If d = 1 the lemma is Lemma 15.125.2. Thus
we may assume d > 1. Let p1, . . . , ps be the minimal prime ideals of R where the
first t have dimension d, and denote I = (g1, . . . , gn). Arguing in exactly the same
way as in the proof of Lemma 15.125.2 we can assume R is reduced.

Assume R is reduced with minimal primes p1, . . . , pt. This means there is an exact
sequence

0→ R→
∏t

i=1
R/pi → Q→ 0

Here Q is the cokernel of the first map. Write M =
∏t
i=1 R/pi. Localizing at pj

we see that
Rpj →Mpj =

(∏t

i=1
R/pi

)
pj

= (R/pj)pj

is surjective. Thus Qpj = 0 for all j. Therefore no height 0 prime of R is
in the support of Q. It follows that the degree of the numerical polynomial
n 7→ lengthR(Q/InQ) equals dim(Supp(Q)) < d, see Algebra, Lemma 10.62.6.
By Algebra, Lemma 10.59.10 (which applies as R does not have finite length) the
polynomial

n 7−→ lengthR(M/InM)− lengthR(R/In)− lengthR(Q/InQ)

has degree < d. Since M =
∏
R/pi and since n→ lengthR(R/pi+In) is a numerical

polynomial of degree exactly(!) d for i = 1, . . . , t (by Algebra, Lemma 10.62.6) we
see that the leading coefficient of n 7→ lengthR(M/InM) is at least t/d!. Thus we
conclude by Lemma 15.125.7. □

Lemma 15.125.9.0BWY Let (R,m) be a Noetherian local ring of dimension d, and let
f ∈ m be an element not contained in any minimal prime ideal of R. Then there
exist elements g1, . . . , gd−1 ∈ m and N ∈ N such that

(1) f, g1, . . . , gd−1 form a system of parameters for R
(2) If h ∈ mN , then f +h, g1, . . . , gd−1 is a system of parameters and we have

lengthRR/(f, g1, . . . , gd−1) = lengthRR/(f + h, g1, . . . , gd−1).

Proof. By Lemma 15.125.3 there exist g1, . . . , gd−1 ∈ m such that f, g1, . . . , gd−1 is
a system of parameters for R. Then m =

√
(f, g1, . . . , gd−1). Thus there exists an

n such that mn ⊂ (f, g), see Algebra, Lemma 10.32.5. We claim that N = n + 1
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works. Namely, let h ∈ mN . By our choice of N we can write h = af +
∑
bigi with

a, bi ∈ m. Thus

(f + h, g1, . . . , gd−1) = (f + af +
∑

bigi, g1, . . . , gd−1)
= ((1 + a)f, g1, . . . , gd−1)
= (f, g1, . . . , gd−1)

because 1 + a is a unit in R. This proves the equality of lengths and the fact that
f + h, g1, . . . , gd−1 is a system of parameters. □

Proposition 15.125.10.0BWZ [Art86, Lemma
3.14] has this result
without the
assumption that the
ring is catenary

Let R be a catenary Noetherian local normal domain. Let
J ⊂ R be a radical ideal. Then there exists a nonzero element f ∈ J such that
R/fR is reduced.

Proof. The proof is the same as that of Lemma 15.125.5, using Lemma 15.125.8
instead of Lemma 15.125.2 and Lemma 15.125.9 instead of Lemma 15.125.4. We
can use Lemma 15.125.8 because R is a catenary domain, so every height one
prime ideal of R has dimension d − 1, and hence the spectrum of R/(f + h) is
equidimensional. For the convenience of the reader we write out the details.

Let f ∈ J be a nonzero element. We will modify f slightly to obtain an element that
generates a radical ideal. The localization Rp of R at each height one prime ideal p is
a discrete valuation ring, see Algebra, Lemma 10.119.7 or Algebra, Lemma 10.157.4.
We denote by ordp(f) the corresponding valuation of f in Rp. Let q1, . . . , qs be the
distinct height one prime ideals containing f . Write ordqj (f) = mj ≥ 1 for each j.
Then we define div(f) =

∑s
j=1 mjqj as a formal linear combination of height one

primes with integer coefficients. The ring R/fR is reduced if and only if mj = 1 for
j = 1, . . . , s. Namely, if mj is 1 then (R/fR)qj is reduced and R/fR ⊂

∏
(R/fR)qj

as q1, . . . , qj are the associated primes of R/fR, see Algebra, Lemmas 10.63.19 and
10.157.6.

Choose and fix g2, . . . , gd−1 and N as in Lemma 15.125.9. For a nonzero y ∈ R
denote t(y) the number of primes minimal over y. Since R is a normal domain,
these primes are height one and correspond 1-to-1 to the minimal primes of R/yR
(Algebra, Lemmas 10.60.11 and 10.157.6). For example t(f) = s is the number of
primes qj occurring in div(f). Let h ∈ mN . Because R is catenary, for each height
one prime p of R we have dim(R/p) = d. Hence by Lemma 15.125.8 we have

t(f + h) ≤ lengthR/(f+h)(R/(f + h, g1, . . . , gd−1))
= lengthR(R/(f + h, g1, . . . , gd−1))
= lengthR(R/(f, g1, . . . , gd−1))

see Algebra, Lemma 10.52.5 for the first equality. Therefore we see that t(f + h) is
bounded independent of h ∈ mN .

By the boundedness proved above we may pick h ∈ mN ∩ J such that t(f + h) is
maximal among such h. Set f ′ = f +h. Given h′ ∈ mN ∩J we see that the number
t(f ′ + h′) ≤ t(f + h). Thus after replacing f by f ′ we may assume that for every
h ∈ mN ∩ J we have t(f + h) ≤ s.

Next, assume that we can find an element h ∈ mN ∩J such that for each j we have
ordqj (h) ≥ 1 and ordqj (h) = 1 ⇔ mj > 1. Then ordqj (f + h) = 1 for every j by
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elementary properties of valuations. Thus

div(f + h) =
∑s

j=1
qj +

∑v

k=1
ekrk

for some pairwise distinct height one prime ideals r1, . . . , rv and ek ≥ 1. However,
since s = t(f) ≥ t(f +h) we see that v = 0 and we have found the desired element.
Now we will pick h that satisfies the above criteria. By prime avoidance (Algebra,
Lemma 10.15.2) for each 1 ≤ j ≤ s we can find an element aj ∈ qj ∩ J such that
aj ̸∈ qj′ for j′ ̸= j. Next, we can pick bj ∈ J ∩ q1 ∩ . . . ∩ qs with bj ̸∈ q

(2)
j . Here

q
(2)
j = {x ∈ R | ordqj (x) ≥ 2} is the second symbolic power of qj . Prime avoidance

applies because the ideal J ′ = J ∩ q1 ∩ . . . ∩ qs is radical, hence R/J ′ is reduced,
hence (R/J ′)qj is reduced, hence J ′ contains an element x with ordqj (x) = 1, hence
J ′ ̸⊂ q

(2)
j . Then the element

c =
∑

j=1,...,s
bj ×

∏
j′ ̸=j

aj′

is an element of J with ordqj (c) = 1 for all j = 1, . . . , s by elementary properties
of valuations. Finally, we let

h = c×
∏

mj=1
aj × y

where y ∈ mN is an element which is not contained in qj for all j. □

15.126. Invertible objects in the derived category

0FNP We characterize invertible objects in the derived category of a ring.

Lemma 15.126.1.0FNQ Let R be a ring. The derived category D(R) of R is a sym-
metric monoidal category with tensor product given by derived tensor product and
associativity and commutativity constraints as in Section 15.72.

Proof. Omitted. Hints: The associativity constraint is the isomorphism of Lemma
15.59.15 and the commutativity constraint is the isomorphism of Lemma 15.59.14.
Having said this the commutativity of various diagrams follows from the corre-
sponding result for the category of complexes of R-modules, see Section 15.58. □

Thus we know what it means for an object of D(R) to have a (left) dual or to be
invertible. Before we can work out what this amounts to we need a simple lemma.

Lemma 15.126.2.0FNR Let R be a ring. Let F • be a bounded above complex of free
R-modules. Given pairs (ni, fi), i = 1, . . . , N with ni ∈ Z and fi ∈ Fni there exists
a subcomplex G• ⊂ F • containing all fi which is bounded and consists of finite free
R-modules.

Proof. By descending induction on a = min(ni; i = 1, . . . , N). If Fn = 0 for
n ≥ a, then the result is true with G• equal to the zero complex. In general, after
renumbering we may assume there exists an 1 ≤ r ≤ N such that n1 = . . . = nr = a
and ni > a for i > r. Choose a basis bj , j ∈ J for F a. We can choose a finite subset
J ′ ⊂ J such that fi ∈

⊕
j∈J′ Rbj for i = 1, . . . , r. Choose a basis ck, k ∈ K for

F a+1. We can choose a finite subset K ′ ⊂ K such that daF (bj) ∈
⊕

k∈K′ Rck for
j ∈ J ′. Then we can apply the induction hypothesis to find a subcomplex H• ⊂ F •

containing ck ∈ F a+1 for k ∈ K ′ and fi ∈ Fni for i > r. Take G• equal to H• in
degrees > a and equal to

⊕
j∈J′ Rbj in degree a. □
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Lemma 15.126.3.0FNS Let R be a ring. Let M be an object of D(R). The following
are equivalent

(1) M has a left dual in D(R) as in Categories, Definition 4.43.5,
(2) M is a perfect object of D(R).

Moreover, in this case the left dual of M is the object M∨ of Lemma 15.74.15.

Proof. If M is perfect, then we can represent M by a bounded complex M• of finite
projective R-modules. In this case M• has a left dual in the category of complexes
by Lemma 15.72.2 which is a fortiori a left dual in D(R).
Assume (1). Say N , η : R → M ⊗L

R N , and ϵ : M ⊗L
R N → R is a left dual as

in Categories, Definition 4.43.5. Choose a complex M• representing M . Choose a
K-flat complexes N• with flat terms representing N , see Lemma 15.59.10. Then η
is given by a map of complexes

η : R −→ Tot(M• ⊗R N•)
We can write the image of 1 as a finite sum

η(1) =
∑

n

∑
i
mn,i ⊗ n−n,i

with mn,i ∈Mn and n−n,i ∈ N−n. Let K• ⊂M• be the subcomplex generated by
all the elements mn,i and d(mn,i). By our choice of N• we find that Tot(K• ⊗R
N•) ⊂ Tot(M•⊗RN•) and η(1) is in the subcomplex by our choice above. Denote
K the object of D(R) represented by K•. Then we see that η factors over a map
η̃ : R −→ K ⊗L

R N . Since (1⊗ ϵ) ◦ (η ⊗ 1) = idM we conclude that the identity on
M factors through K by the commutative diagram

M
η⊗1

//

η̃⊗1 ((

M ⊗L
R N ⊗L

RM 1⊗ϵ
// M

K ⊗L
R N ⊗L

RM

OO

1⊗ϵ // K

OO

Since K is bounded above it follows that M ∈ D−(R). Thus we can represent
M by a bounded above complex M• of free R-modules, see for example Derived
Categories, Lemma 13.15.4. Write η(1) =

∑
n

∑
imn,i ⊗ n−n,i as before. By

Lemma 15.126.2 we can find a subcomplex K• ⊂ M• containing all the elements
mn,i which is bounded and consists of finite free R-modules. As above we find that
the identity on M factors through K. Since K is perfect we conclude M is perfect
too, see Lemma 15.74.5. □

Lemma 15.126.4.0FNT Let R be a ring. Let M be an object of D(R). The following
are equivalent

(1) M is invertible in D(R), see Categories, Definition 4.43.4, and
(2) for every prime ideal p ⊂ R there exists an f ∈ R, f ̸∈ p such that

Mf
∼= Rf [−n] for some n ∈ Z.

Moreover, in this case
(a) M is a perfect object of D(R),
(b) M =

⊕
Hn(M)[−n] in D(R),

(c) each Hn(M) is a finite projective R-module,
(d) we can write R =

∏
a≤n≤bRn such that Hn(M) corresponds to an invert-

ible Rn-module.
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Proof. Assume (2). Consider the object RHomR(M,R) and the composition map
RHom(M,R)⊗L

RM → R

Checking locally we see that this is an isomorphism; we omit the details. Because
D(R) is symmetric monoidal we see that M is invertible.
Assume (1). Observe that an invertible object of a monoidal category has a left
dual, namely, its inverse. Thus M is perfect by Lemma 15.126.3. Consider a prime
ideal p ⊂ R with residue field κ. Then we see that M ⊗L

R κ is an invertible object
of D(κ). Clearly this implies that dimHi(M ⊗L

R κ) is nonzero exactly for one i and
equal to 1 in that case. By Lemma 15.75.6 this gives (2).
In the proof above we have seen that (a) holds. Let Un ⊂ Spec(R) be the union of
the opens of the form D(f) such that Mf

∼= Rf [−n]. Clearly, Un∩Un′ = ∅ if n ̸= n′.
If M has tor amplitude in [a, b], then Un = ∅ if n ̸∈ [a, b]. Hence we see that we have
a product decomposition R =

∏
a≤n≤bRn as in (d) such that Un corresponds to

Spec(Rn), see Algebra, Lemma 10.24.3. Since D(R) =
∏
a≤n≤bD(Rn) and similary

for the category of modules parts (b), (c), and (d) follow immediately. □

15.127. Splitting off a free module

0GV7 The arguments in this section are due to Serre, see [Ser58].
Situation 15.127.1.0GV8 Here R is a ring and M is a finitely presented R-module.
Denote Ω ⊂ Spec(R) the set of closed points with the induced topology. For x ∈ Ω
denote M(x) = M/xM the fibre of M at x. This is a finite dimensional vector
space over the residue field κ(x) at x. Given s ∈M we denote s(x) the image of s
in M(x).
Lemma 15.127.2.0GV9 In Situation 15.127.1 let x ∈ Ω. There exists a canonical short
exact sequence

0→ B(x)→M(x)→ V (x)→ 0
of κ(x)-vector spaces which the following property: for s1, . . . , sr ∈M the following
are equivalent

(1) there exists an f ∈ R, f ̸∈ x such that the map s1, . . . , sr : R⊕r → M
becomes the inclusion of a direct summand after inverting f , and

(2) s1(x), . . . , sr(x) map to linearly independent elements of V (x).
Proof. Define B(x) ⊂M(x) as the perpendicular of the image of the map

HomR(M,R)→ Homκ(x)(M(x), κ(x))
and set V (x) = M(x)/B(x). Then any R-linear map φ : M → R induces a map
φ : V (x)→ κ(x) and conversely any κ(x)-linear map λ : V (x)→ κ(x) is equal to φ
for some φ. Let s1, . . . , sr ∈M .
Suppose s1, . . . , sr map to linearly independent elements of V (x). Then we can
find φ1, . . . , φr ∈ HomR(M,R) such that φi(sj) maps to δij18 in κ(x). Hence the
matrix of the composition

R⊕r s1,...,sr−−−−−→M
φ1,...,φr−−−−−→ R⊕r

has a determinant f ∈ R which maps to 1 in κ(x) Clearly, this implies that
s1, . . . , sr : R⊕r →M is the inclusion of a direct summand after inverting f .

18Kronecker delta.
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Conversely, suppose that we have an f ∈ R, f ̸∈ x such that s1, . . . , sr : R⊕r →M
is the inclusion of a direct summand after inverting f . Hence we can find Rf -
linear maps φi : Mf → Rf such that φi(sj) = δij ∈ Rf . Since HomR(M,R)f =
HomRf (Mf , Rf ) by Algebra, Lemma 10.10.2 we conclude that we can find n ≥ 0
and φ′

i ∈ HomR(M,R) such that φ′
i(sj) = fnδij ∈ R. It follows that s1, . . . , sr map

to linearly independent elements of V (x) as φ′
i(sj) = fnδij . □

In Situation 15.127.1 given s1, . . . , sr ∈ M we denote Z(s1, . . . , sr) ⊂ Ω the set of
x ∈ Ω such that s1(x), . . . , sr(x) map to linearly dependent elements of V (x). By
the lemma this is a closed subset of Ω.

Lemma 15.127.3.0GVA In Situation 15.127.1 let x1, . . . , xn ∈ Ω be pairwise distinct. Let
vi ∈ V (xi). Then there exists an s ∈M such that s(xi) maps to vi for i = 1, . . . , n.

Proof. Since xi is a maximal ideal of R we may use Algebra, Lemma 10.15.4 to see
that M(x1)⊕ . . .⊕M(xn) is a quotient of M . □

Proposition 15.127.4.0GVB [Ser58, Theorem 2]In Situation 15.127.1 assume Ω is a Noetherian topological
space. Let s1, . . . , sh ∈ M . Let Z(s1, . . . , sh) ⊂ F ⊂ Ω be closed. Let x1, . . . , xn ∈
F be pairwise distinct. Let vi ∈ V (xi). Let k ≥ 0 be an integer such that

(∗) h+ k ≤ dimκ(x) V (x) for all x ∈ Ω

Then there exist s ∈M and F ′ ⊂ Ω closed such that
(a) s(xi) maps to vi,
(b) Z(s1, . . . , sh, s) ⊂ F ∪ F ′, and
(c) every irreducible component of F ′ has codimension ≥ k in Ω.

Proof. We note that codimension was defined in Topology, Section 5.11 and that
we will use some results on Noetherian topological spaces contained in Topology,
Section 5.9.

The proof is by induction on k. If k = 0, then we choose s ∈ M as in Lemma
15.127.3 and we choose F ′ = Ω.

Assume k > 0. By our induction hypothesis we may choose u ∈ M and G ⊂ Ω
closed satisfying (a), (b), (c) for s1, . . . , sh, F , x1, . . . , xn, v1, . . . , vn, and k − 1.

Let G = G1 ∪ . . . ∪Gm be the decomposition of G into its irreducible components.
If Gj ⊂ F , then we can remove it from the list. Thus we may assume Gj is not
contained in F for j = 1, . . . ,m. For j = 1, . . . ,m choose yj ∈ Gj with yj ̸∈ F and
yj ̸∈ Gj′ for j′ ̸= j. This is possible as there are no inclusions among the irreducible
components of G. Choose wj ∈ V (yj) not contained in the span of the images of
s1(yj), . . . , sh(yj); this is possible because h+ k ≤ dimV (yj) and k > 0.

Apply the induction hypothesis to the h + 1 sections s1, . . . , sh, u, the closed set
F ∪ G, the points x1, . . . , xn, y1, . . . , ym ∈ F ∪ G, the elements 0 ∈ V (xi) and
wj ∈ V (yj), and the integer k − 1. Note that we have increased h by 1 and
decreased k by 1 hence the assumption (∗) of the proposition remains valid. This
produces t ∈ M and H ⊂ Ω closed satisfying (a), (b), (c) for s1, . . . , sh, u, F ∪ G,
x1, . . . , xn, y1, . . . , ym, 0, . . . , 0, w1, . . . , wm, and k − 1.

Let H1, . . . ,Hp ⊂ H be the irreducible components of H which are not contained
in F ∪ G. As before pick zl ∈ Hl, zl ̸∈ F ∪ G and zl ̸∈ Hl′ for l′ ̸= l. Using
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Algebra, Lemma 10.15.4 we may choose f ∈ R such that f(yj) = 1, j = 1, . . . ,m
and f(zl) = 0, l = 1, . . . , p. Claim: the element s = u+ ft works.

First, the value s(xi) agrees with u(xi) because t(xi) = 0 and hence we see that
s(xi) maps to vi. This proves (a). To finish the proof it suffices to show that every
irreducible component Z of Z(s1, . . . , sh, s) not contained in F has codimension ≥ k
in Ω. Namely, then we can set F ′ equal to the union of these and we get (b) and
(c). We can see that irreducible components Z of Z(s1, . . . , sh, s) of codimension
≤ k − 1 do not exist as follows:

(1) Observe that Z(s1, . . . , sh, s) ⊂ Z(s1, . . . , sh, u, t) = F ∪H as s = u+ ft.
Hence Z ⊂ H.

(2) The irreducible components of H have codimension ≥ k − 1. Hence Z is
equal to an irreducible component of H as Z has codimension ≤ k − 1.
Hence Z = Hl for some l ∈ {1, . . . , p} or Z = Gj for some j ∈ {1, . . .m}.

(3) But Z = Gj is impossible as s1(yj), . . . , sh(yj) map to linearly indepen-
dent elements of V (yj) and s(yj) = u(yj) + f(yj)t(yj) = u(yj) + t(yj)
maps to an element of the form

linear combination images of si(yj) + wj

which is linearly independent of the images of s1(yj), . . . , sh(yj) in V (yj)
by our choice of wj .

(4) Also Z = Zl is impossible. Namely, again s1(zl), . . . , sh(zl) map to linearly
independent elements of V (zl) and s(zl) = u(zl)+f(zl)t(zl) = u(zl) maps
to an element of V (zl) linearly independent of those as zl ̸∈ F ∪G.

This finishes the proof. □

Theorem 15.127.5.0GVC [Ser58, Theorem 1]Let R be a ring whose max spectrum Ω ⊂ Spec(R) is a Noether-
ian topological space of dimension d <∞. Let M be a finitely presented R-module
such that for all m ∈ Ω the Rm-module Mm has a free direct summand of rank > d.
Then M ∼= R⊕M ′.

Proof. For m ∈ Ω suppose that R⊕r
m is a direct summand of Mm. Then by Algebra,

Lemmas 10.9.9 and 10.127.6 we see that R⊕r
f is a direct summand of Mf for some

f ∈ R, f ̸∈ m. Hence the assumption means that dimV (x) > d for all x ∈ Ω where
V (x) is as in Lemma 15.127.2. By Proposition 15.127.4 applied with F = ∅, h = 0
and no si, n = 0 and no xi, vi, and k = d + 1 we find an s ∈ M and F ′ ⊂ Ω such
that every irreducible component of F ′ has codimension ≥ d + 1 and Z(s) ⊂ F ′.
Since d = dim(Ω) this forces F ′ = ∅. Hence s : R → M is the inclusion of a
direct summand at all maximal ideals. It follows that s is universally injective, see
Algebra, Lemma 10.82.12. Then s is split injective by Algebra, Lemma 10.82.4. □

15.128. Big projective modules are free

0GVE In this section we discuss one of the results of [Bas63]; we suggest the reader look
at the original paper. Our argument will use the slightly simplified proof given in
the papers [Aka70] and [Hin63].

Lemma 15.128.1 (Eilenberg’s lemma).0GVF [Bas63, Eilenberg’s
lemma]

If P⊕Q ∼= F with F a nonfinitely generated
free module, then P ⊕ F ∼= F .

https://stacks.math.columbia.edu/tag/0GVC
https://stacks.math.columbia.edu/tag/0GVF
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Proof.
F ∼= F ⊕ F ⊕ . . . ∼= P ⊕Q⊕ P ⊕Q⊕ . . . ∼= P ⊕ F ⊕ F ⊕ . . . ∼= P ⊕ F

□

Lemma 15.128.2.0GVG Let R be a ring. Let P be a projective module. There exists a
free module F such that P ⊕ F is free.

Proof. Since P is projective we see that F0 = P ⊕ Q is a free module for some
module Q. Set F =

⊕
n≥1 F0. Then P ⊕ F ∼= F by Lemma 15.128.1. □

Lemma 15.128.3.0GVH Let R be a ring. Let P be a projective module. Let s ∈ P .
There exists a finite free module F and a finite free direct summand K ⊂ F ⊕ P
with (0, s) ∈ K.

Proof. By Lemma 15.128.2 we can find a (possibly infinite) free module F such
that F ⊕P is free. Then of course (0, s) is contained in a finite free direct summand
K ⊂ F ⊕ P . In turn K is contained in F ′ ⊕ P where F ′ ⊂ F is a finite free direct
summand. □

Lemma 15.128.4.0GVI Let R be a ring with Jacobson radical J such that R/J is
Noetherian. Let P be a projective R-module such that Pm has infinite rank for
all maximal ideals m of R. Let s ∈ P and M ⊂ P such that Rs + M = P . Then
we can find m ∈M such that R(s+m) is a free direct summand of P .

Proof. The statement makes sense as Pm is free by Algebra, Theorem 10.85.4.
Denote M ′ ⊂ P/JP the image of M and s′ ∈ P/JP the image of s. Observe that
R/Js′ + M ′ = P/JP . Suppose we can find m′ ∈ M ′ such that R/J(s′ + m′) is a
free direct summand of M ′. Choose φ′ : P/JP → R/J which gives a splitting, i.e.,
we have φ′(s′ + m′) = 1 in R/J . Then since P is a projective R-module we can
find a lift φ : P → R of φ′. Choose m ∈M mapping to m′. Then φ(s+m) ∈ R is
congruent to 1 modulo J and hence a unit in R (Algebra, Lemma 10.19.1). Whence
R(s + m) is a free direct summand of P . This reduces us to the case discussed in
the next paragraph.
Assume R is Noetherian. Let m ∈M be an element and let φ1, . . . , φn : P → R be
R-linear maps. Denote

Z(s+m,φ1, . . . , φn) ⊂ Spec(R)
the vanishing locus of φ1(s+m), . . . , φn(s+m) ∈ R.
Suppose m is a maximal ideal of R and m ∈ Z(s, φ1, . . . , φn). Set K = M ∩⋂

Ker(φi). We claim the image of
K/mK → P/mP

has infinite dimension. Namely, the quotient P/K is a finite R-module as it is
isomorphic to a submodule of P/M ⊕ R⊕n. Thus we see that the kernel of the
displayed arrow is a quotient of TorR1 (P/K, κ(m)) which is finite by Algebra, Lemma
10.75.7. Combined with the fact that P/mP has infinite dimension we obtain our
claim. Thus we can find a t ∈ K which maps to a nonzero element t of the vector
space P/mP . By linear algebra, we find an R-linear map φ : P → κ(m) such that
φ(t) = 1. Since P is projective, we can find an R-linear map φ : P → R lifting
φ. Then we see that the vanishing locus Z(s + m + t, φ1, . . . , φn, φ) is contained

https://stacks.math.columbia.edu/tag/0GVG
https://stacks.math.columbia.edu/tag/0GVH
https://stacks.math.columbia.edu/tag/0GVI
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in Z(s + m,φ1, . . . , φn) but does not contain m, i.e., it is strictly smaller than
Z(s+m,φ1, . . . , φn).
Since Spec(R) is a Noetherian topological space, we see from the arguments above
that we may find m ∈ M and φ1, . . . , φn : P → R such that the closed subset
Z(s+m,φ1, . . . , φn) does not contain any closed points of Spec(R). Hence Z(s+
m,φ1, . . . , φn) = ∅. Hence we can find r1, . . . , rn ∈ R such that

∑
riφi(s+m) = 1.

Hence

R
s+m−−−→ P

∑
riφi

−−−−−→ R

is the desired splitting. □

Lemma 15.128.5.0GVJ Let R be a ring with Jacobson radical J such that R/J is
Noetherian. Let P be a projective R-module such that Pm has infinite rank for
all maximal ideals m of R. Let s ∈ P . Then we can find a finite stably free direct
summand M ⊂ P such that s ∈M .

Proof. By Lemma 15.128.3 we can find a finite free module F and a finite free
direct summand K ⊂ F ⊕ P such that (0, s) ∈ K. By induction on the rank of F
we reduce to the case discussed in the next paragraph.
Assume there exists a finite stably free direct summand K ⊂ R ⊕ P such that
(0, s) ∈ K. Choose a complement K ′ of K, i.e., such that R ⊕ P = K ⊕K ′. The
projection π : R⊕ P → K ′ is surjectve, hence by Lemma 15.128.4 we find a p ∈ P
such that π(1, p) ∈ K ′ generates a free direct summand. Accordingly we write
K ′ = Rπ(1, p)⊕K ′′. We see that

R⊕ P = K ⊕K ′ = K ⊕Rπ(1, p)⊕K ′′

The projection π′ : P → K ′′ is surjective19 and hence split (as K ′′ is projective).
Thus Ker(π′) ⊂ P is a direct summand containing s. Finally, by construction we
have an isomorphism

R⊕Ker(π′) ∼= K ⊕Rπ(1, p)
and hence since K is finite and stably free, so is Ker(π′). □

Theorem 15.128.6.0GVK Commutative case
of [Bas63, Theorem
3.1]

Let R be a ring with Jacobson radical J such that R/J is
Noetherian. Let P be a countably generated projective R-module such that Pm has
infinite rank for all maximal ideals m of R. Then P is free.

Proof. We first prove that P is a countable direct sum of finite stably free modules.
Let x1, x2, . . . be a countable set of generators for P . We inductively construct
finite stably free direct summands F1, F2, . . . of P such that for all n we have that
F1 ⊕ . . . ⊕ Fn is a direct summand of P which contains x1, . . . , xn. Namely, given
F1, . . . , Fn with the desired properties, write

P = F1 ⊕ . . .⊕ Fn ⊕ P ′

and let s ∈ P ′ be the image of xn+1. By Lemma 15.128.5 we can find a finite stably
free direct summand Fn+1 ⊂ P ′ containing s. Then P =

⊕∞
i=1 Fi.

19Namely, if k′′ ∈ K′′ then k′′ viewed as an element of K′ can be written as k′′ = λπ(1, 0) +
π(0, q) for some λ ∈ R and q ∈ P . This means k′′ = λπ(1, p) + π(0, q − λp). This in turn means
that q − λp maps to k′′ by the composition P → R⊕ P π−→ K′ → K′′ since K′ → K′′ annihilates
π(1, p).

https://stacks.math.columbia.edu/tag/0GVJ
https://stacks.math.columbia.edu/tag/0GVK
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Assume that P is an infinite direct sum P =
⊕∞

i=1 Fi of nonzero finite stably
free modules. The stable freeness of the modules Fi will be used in the following
manner: the rank of each Fi is constant (and positive). Hence we see that Pm is
free of countably infinite rank for each maximal ideal m of R. By Lemma 15.128.4
applied with s = 0 and M = P , we can find a t1 ∈ P such that Rt1 is a free direct
summand of P . Then t1 is contained in F1 ⊕ . . .⊕ Fn1 for some n1 > n0 = 0. The
same reasoning applied to

⊕
n>n1

Fn produces an n1 < n2 and t2 ∈ Fn1+1⊕. . .⊕Fn2

which generates a free direct summand. Continuing in this fashion we obtain a free
direct summand⊕

i≥1
ti :
⊕

i≥1
R −→

⊕
i≥1

⊕
ni≥n>ni−1

Fn = P

of infinite rank. Thus we see that P ∼= Q⊕F for some free R-module F of countable
rank. Since Q is countably generated it follows that Q⊕Q′ ∼= F for some module
Q′. Then the Eilenberg swindle (Lemma 15.128.1) implies that Q⊕ F ∼= F and P
is free. □
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CHAPTER 16

Smoothing Ring Maps

07BW 16.1. Introduction

07BX The main result of this chapter is the following:

A regular map of Noetherian rings is a filtered colimit of smooth ones.

This theorem is due to Popescu, see [Pop90]. A readable exposition of Popescu’s
proof was given by Richard Swan, see [Swa98] who used notes by André and a
paper of Ogoma, see [Ogo94].

Our exposition follows Swan’s, but we first prove an intermediate result which lets
us work in a slightly simpler situation. Here is an overview. We first solve the
following “lifting problem”: A flat infinitesimal deformation of a filtered colimit of
smooth algebras is a filtered colimit of smooth algebras. This result essentially says
that it suffices to prove the main theorem for maps between reduced Noetherian
rings. Next we prove two very clever lemmas called the “lifting lemma” and the
“desingularization lemma”. We show that these lemmas combined reduce the main
theorem to proving a Noetherian, geometrically regular algebra Λ over a field k is a
filtered colimit of smooth k-algebras. Next, we discuss the necessary local tricks that
go into the Popescu-Ogoma-Swan-André proof. Finally, in the last three sections
we give the proof.

We end this introduction with some pointers to references. Let A be a henselian
Noetherian local ring. We sayA has the approximation property if for any f1, . . . , fm ∈
A[x1, . . . , xn] the system of equations f1 = 0, . . . , fm = 0 has a solution in the com-
pletion of A if and only if it has a solution in A. This definition is due to Artin.
Artin first proved the approximation property for analytic systems of equations,
see [Art68]. In [Art69a] Artin proved the approximation property for local rings
essentially of finite type over an excellent discrete valuation ring. Artin conjec-
tured (page 26 of [Art69a]) that every excellent henselian local ring should have the
approximation property.

At some point in time it became a conjecture that every regular homomorphism of
Noetherian rings is a filtered colimit of smooth algebras (see for example [Ray72],
[Pop81], [Art82], [AD83]). We’re not sure who this conjecture1 is due to. The
relationship with the approximation property is that if A → A∧ is a colimit of
smooth algebras with A as above, then the approximation property holds (insert
future reference here). Moreover, the main theorem applies to the map A → A∧

if A is an excellent local ring, as one of the conditions of an excellent local ring

1The question/conjecture as formulated in [Art82], [AD83], and [Pop81] is stronger and was
shown to be equivalent to the original version in [CP84].

1563
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is that the formal fibres are geometrically regular. Note that excellent local rings
were defined by Grothendieck and their definition appeared in print in 1965.

In [Art82] it was shown that R → R∧ is a filtered colimit of smooth algebras for
any local ring R essentially of finite type over a field. In [AR88] it was shown that
R → R∧ is a filtered colimit of smooth algebras for any local ring R essentially of
finite type over an excellent discrete valuation ring. Finally, the main theorem was
shown in [Pop85], [Pop86], [Pop90], [Ogo94], and [Swa98] as discussed above.

Conversely, using some of the results above, in [Rot90] it was shown that any
Noetherian local ring with the approximation property is excellent.

The paper [Spi99] provides an alternative approach to the main theorem, but it
seems hard to read (for example [Spi99, Lemma 5.2] appears to be an incorrectly
reformulated version of [Elk73, Lemma 3]). There is also a Bourbaki lecture about
this material, see [Tei95].

16.2. Singular ideals

07C4 Let R → A be a ring map. The singular ideal of A over R is the radical ideal in
A cutting out the singular locus of the morphism Spec(A) → Spec(R). Here is a
formal definition.

Definition 16.2.1.07C5 Let R → A be a ring map. The singular ideal of A over R,
denoted HA/R is the unique radical ideal HA/R ⊂ A with

V (HA/R) = {q ∈ Spec(A) | R→ A not smooth at q}

This makes sense because the set of primes where R → A is smooth is open, see
Algebra, Definition 10.137.11. In order to find an explicit set of generators for the
singular ideal we first prove the following lemma.

Lemma 16.2.2.07C6 Let R be a ring. Let A = R[x1, . . . , xn]/(f1, . . . , fm). Let q ⊂ A
be a prime ideal. Assume R → A is smooth at q. Then there exists an a ∈ A,
a ̸∈ q, an integer c, 0 ≤ c ≤ min(n,m), subsets U ⊂ {1, . . . , n}, V ⊂ {1, . . . ,m} of
cardinality c such that

a = a′ det(∂fj/∂xi)j∈V,i∈U
for some a′ ∈ A and

afℓ ∈ (fj , j ∈ V ) + (f1, . . . , fm)2

for all ℓ ∈ {1, . . . ,m}.

Proof. Set I = (f1, . . . , fm) so that the naive cotangent complex of A over R is ho-
motopy equivalent to I/I2 →

⊕
Adxi, see Algebra, Lemma 10.134.2. We will use

the formation of the naive cotangent complex commutes with localization, see Alge-
bra, Section 10.134, especially Algebra, Lemma 10.134.13. By Algebra, Definitions
10.137.1 and 10.137.11 we see that (I/I2)a →

⊕
Aadxi is a split injection for some

a ∈ A, a ̸∈ q. After renumbering x1, . . . , xn and f1, . . . , fm we may assume that
f1, . . . , fc form a basis for the vector space I/I2 ⊗A κ(q) and that dxc+1, . . . ,dxn
map to a basis of ΩA/R ⊗A κ(q). Hence after replacing a by aa′ for some a′ ∈ A,
a′ ̸∈ q we may assume f1, . . . , fc form a basis for (I/I2)a and that dxc+1, . . . ,dxn
map to a basis of (ΩA/R)a. In this situation aN for some large integer N satisfies
the conditions of the lemma (with U = V = {1, . . . , c}). □

https://stacks.math.columbia.edu/tag/07C5
https://stacks.math.columbia.edu/tag/07C6


16.2. SINGULAR IDEALS 1565

We will use the notion of a strictly standard element in A over R. Our notion is
slightly weaker than the one in Swan’s paper [Swa98]. We also define an elementary
standard element to be one of the type we found in the lemma above. We compare
the different types of elements in Lemma 16.3.7.

Definition 16.2.3.07C7 Let R → A be a ring map of finite presentation. We say an
element a ∈ A is elementary standard in A over R if there exists a presentation
A = R[x1, . . . , xn]/(f1, . . . , fm) and 0 ≤ c ≤ min(n,m) such that

(16.2.3.1)07C8 a = a′ det(∂fj/∂xi)i,j=1,...,c

for some a′ ∈ A and

(16.2.3.2)07C9 afc+j ∈ (f1, . . . , fc) + (f1, . . . , fm)2

for j = 1, . . . ,m − c. We say a ∈ A is strictly standard in A over R if there exists
a presentation A = R[x1, . . . , xn]/(f1, . . . , fm) and 0 ≤ c ≤ min(n,m) such that

(16.2.3.3)07ER a =
∑

I⊂{1,...,n}, |I|=c
aI det(∂fj/∂xi)j=1,...,c, i∈I

for some aI ∈ A and

(16.2.3.4)07ES afc+j ∈ (f1, . . . , fc) + (f1, . . . , fm)2

for j = 1, . . . ,m− c.

The following lemma is useful to find implications of (16.2.3.3).

Lemma 16.2.4.07ET Let R be a ring. Let A = R[x1, . . . , xn]/(f1, . . . , fm) and write
I = (f1, . . . , fm). Let a ∈ A. Then (16.2.3.3) implies there exists an A-linear map
ψ :
⊕

i=1,...,nAdxi → A⊕c such that the composition

A⊕c (f1,...,fc)−−−−−−→ I/I2 f 7→df−−−−→
⊕

i=1,...,n
Adxi

ψ−→ A⊕c

is multiplication by a. Conversely, if such a ψ exists, then ac satisfies (16.2.3.3).

Proof. This is a special case of Algebra, Lemma 10.15.5. □

Lemma 16.2.5 (Elkik).07CA Let R → A be a ring map of finite presentation. The sin-
gular ideal HA/R is the radical of the ideal generated by strictly standard elements
in A over R and also the radical of the ideal generated by elementary standard
elements in A over R.

Proof. Assume a is strictly standard in A over R. We claim that Aa is smooth
over R, which proves that a ∈ HA/R. Namely, let A = R[x1, . . . , xn]/(f1, . . . , fm),
c, and a′ ∈ A be as in Definition 16.2.3. Write I = (f1, . . . , fm) so that the naive
cotangent complex of A over R is given by I/I2 →

⊕
Adxi. Assumption (16.2.3.4)

implies that (I/I2)a is generated by the classes of f1, . . . , fc. Assumption (16.2.3.3)
implies that the differential (I/I2)a →

⊕
Aadxi has a left inverse, see Lemma

16.2.4. Hence R→ Aa is smooth by definition and Algebra, Lemma 10.134.13.

Let He, Hs ⊂ A be the radical of the ideal generated by elementary, resp. strictly
standard elements of A over R. By definition and what we just proved we have
He ⊂ Hs ⊂ HA/R. The inclusion HA/R ⊂ He follows from Lemma 16.2.2. □

https://stacks.math.columbia.edu/tag/07C7
https://stacks.math.columbia.edu/tag/07ET
https://stacks.math.columbia.edu/tag/07CA
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Example 16.2.6.07CB The set of points where a finitely presented ring map is smooth
needn’t be a quasi-compact open. For example, let R = k[x, y1, y2, y3, . . .]/(xyi)
and A = R/(x). Then the smooth locus of R → A is

⋃
D(yi) which is not quasi-

compact.

Lemma 16.2.7.07CC Let R→ A be a ring map of finite presentation. Let R→ R′ be a
ring map. If a ∈ A is elementary, resp. strictly standard in A over R, then a⊗ 1 is
elementary, resp. strictly standard in A⊗R R′ over R′.

Proof. If A = R[x1, . . . , xn]/(f1, . . . , fm) is a presentation of A over R, then A⊗R
R′ = R′[x1, . . . , xn]/(f ′

1, . . . , f
′
m) is a presentation of A ⊗R R′ over R′. Here f ′

j is
the image of fj in R′[x1, . . . , xn]. Hence the result follows from the definitions. □

Lemma 16.2.8.07EU Let R → A → Λ be ring maps with A of finite presentation over
R. Assume that HA/RΛ = Λ. Then there exists a factorization A → B → Λ with
B smooth over R.

Proof. Choose f1, . . . , fr ∈ HA/R and λ1, . . . , λr ∈ Λ such that
∑
fiλi = 1 in Λ.

Set B = A[x1, . . . , xr]/(f1x1 + . . .+ frxr − 1) and define B → Λ by mapping xi to
λi. To check that B is smooth over R use that Afi is smooth over R by definition
of HA/R and that Bfi is smooth over Afi . Details omitted. □

16.3. Presentations of algebras

07CD Some of the results in this section are due to Elkik. Note that the algebra C in the
following lemma is a symmetric algebra over A. Moreover, if R is Noetherian, then
C is of finite presentation over R.

Lemma 16.3.1.07CE Let R be a ring and let A be a finitely presented R-algebra. There
exists finite type R-algebra map A→ C which has a retraction with the following
two properties

(1) for each a ∈ A such that R → Aa is a local complete intersection (More
on Algebra, Definition 15.33.2) the ring Ca is smooth over Aa and has a
presentation Ca = R[y1, . . . , ym]/J such that J/J2 is free over Ca, and

(2) for each a ∈ A such that Aa is smooth over R the module ΩCa/R is free
over Ca.

Proof. Choose a presentation A = R[x1, . . . , xn]/I and write I = (f1, . . . , fm).
Define the A-module K by the short exact sequence

0→ K → A⊕m → I/I2 → 0
where the jth basis vector ej in the middle is mapped to the class of fj on the
right. Set

C = Sym∗
A(I/I2).

The retraction is just the projection onto the degree 0 part of C. We have a
surjection R[x1, . . . , xn, y1, . . . , ym] → C which maps yj to the class of fj in I/I2.
The kernel J of this map is generated by the elements f1, . . . , fm and by elements∑
hjyj with hj ∈ R[x1, . . . , xn] such that

∑
hjej defines an element of K. By

Algebra, Lemma 10.134.4 applied to R→ A→ C and the presentations above and
More on Algebra, Lemma 15.9.12 there is a short exact sequence
(16.3.1.1)07EW I/I2 ⊗A C → J/J2 → K ⊗A C → 0

https://stacks.math.columbia.edu/tag/07CB
https://stacks.math.columbia.edu/tag/07CC
https://stacks.math.columbia.edu/tag/07EU
https://stacks.math.columbia.edu/tag/07CE
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of C-modules. Let h ∈ R[x1, . . . , xn] be an element with image a ∈ A. We will use
as presentations for the localized rings

Aa = R[x0, x1, . . . , xn]/I ′ and Ca = R[x0, x1, . . . , xn, y1, . . . , ym]/J ′

where I ′ = (hx0 − 1, I) and J ′ = (hx0 − 1, J). Hence I ′/(I ′)2 = Aa ⊕ (I/I2)a as
Aa-modules and J ′/(J ′)2 = Ca ⊕ (J/J2)a as Ca-modules. Thus we obtain

(16.3.1.2)07EX Ca ⊕ I/I2 ⊗A Ca → Ca ⊕ (J/J2)a → K ⊗A Ca → 0

as the sequence of Algebra, Lemma 10.134.4 corresponding to R → Aa → Ca and
the presentations above.

Next, assume that a ∈ A is such that Aa is a local complete intersection over R.
Then (I/I2)a is finite projective over Aa, see More on Algebra, Lemma 15.32.3.
Hence we see Ka⊕ (I/I2)a ∼= A⊕m

a is free. In particular Ka is finite projective too.
By More on Algebra, Lemma 15.33.6 the sequence (16.3.1.2) is exact on the left.
Hence

J ′/(J ′)2 ∼= Ca ⊕ I/I2 ⊗A Ca ⊕K ⊗A Ca ∼= C⊕m+1
a

This proves (1). Finally, suppose that in addition Aa is smooth over R. Then the
same presentation shows that ΩCa/R is the cokernel of the map

J ′/(J ′)2 −→
⊕

i
Cadxi ⊕

⊕
j
Cadyj

The summand Ca of J ′/(J ′)2 in the decomposition above corresponds to hx0 − 1
and hence maps isomorphically to the summand Cadx0. The summand I/I2⊗ACa
of J ′/(J ′)2 maps injectively to

⊕
i=1,...,n Cadxi with quotient ΩAa/R ⊗Aa Ca. The

summand K ⊗A Ca maps injectively to
⊕

j≥1 Cadyj with quotient isomorphic to
I/I2 ⊗A Ca. Thus the cokernel of the last displayed map is the module I/I2 ⊗A
Ca ⊕ ΩAa/R ⊗Aa Ca. Since (I/I2)a ⊕ ΩAa/R is free (from the definition of smooth
ring maps) we see that (2) holds. □

The following proposition was proved for smooth ring maps over henselian pairs by
Elkik in [Elk73]. For smooth ring maps it can be found in [Ara01], where it is also
proven that ring maps between smooth algebras can be lifted.

Proposition 16.3.2.07M8 Let R→ R0 be a surjective ring map with kernel I.
(1) If R0 → A0 is a syntomic ring map, then there exists a syntomic ring map

R→ A such that A/IA ∼= A0.
(2) If R0 → A0 is a smooth ring map, then there exists a smooth ring map

R→ A such that A/IA ∼= A0.

Proof. Assume R0 → A0 syntomic, in particular a local complete intersection (More
on Algebra, Lemma 15.33.5). Choose a presentation A0 = R0[x1, . . . , xn]/J0. Set
C0 = Sym∗

A0
(J0/J

2
0 ). Note that J0/J

2
0 is a finite projective A0-module (Algebra,

Lemma 10.136.16). By Lemma 16.3.1 the ring map A0 → C0 is smooth and we
can find a presentation C0 = R0[y1, . . . , ym]/K0 with K0/K

2
0 free over C0. By

Algebra, Lemma 10.136.6 we can assume C0 = R0[y1, . . . , ym]/(f1, . . . , f c) where
f1, . . . , f c maps to a basis of K0/K

2
0 over C0. Choose f1, . . . , fc ∈ R[y1, . . . , yc]

lifting f1, . . . , f c and set

C = R[y1, . . . , ym]/(f1, . . . , fc)

https://stacks.math.columbia.edu/tag/07M8
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By construction C0 = C/IC. By Algebra, Lemma 10.136.10 we can after replacing
C by Cg assume that C is a relative global complete intersection over R. We con-
clude that there exists a finite projective A0-module P0 such that C0 = Sym∗

A0
(P0)

is isomorphic to C/IC for some syntomic R-algebra C.
Choose an integer n and a direct sum decomposition A⊕n

0 = P0 ⊕Q0. By More on
Algebra, Lemma 15.9.11 we can find an étale ring map C → C ′ which induces an
isomorphism C/IC → C ′/IC ′ and a finite projective C ′-module Q such that Q/IQ
is isomorphic to Q0 ⊗A0 C/IC. Then D = Sym∗

C′(Q) is a smooth C ′-algebra (see
More on Algebra, Lemma 15.9.13). Picture

R

��

// C //

��

C ′ //

��

D

��
R/I // A0 // C/IC

∼= // C ′/IC ′ // D/ID

Observe that our choice of Q gives
D/ID = Sym∗

C/IC(Q0 ⊗A0 C/IC)
= Sym∗

A0
(Q0)⊗A0 C/IC

= Sym∗
A0

(Q0)⊗A0 Sym∗
A0

(P0)
= Sym∗

A0
(Q0 ⊕ P0)

= Sym∗
A0

(A⊕n
0 )

= A0[x1, . . . , xn]
Choose f1, . . . , fn ∈ D which map to x1, . . . , xn in D/ID = A0[x1, . . . , xn]. Set
A = D/(f1, . . . , fn). Note that A0 = A/IA. We claim that R → A is syntomic in
a neighbourhood of V (IA). If the claim is true, then we can find a f ∈ A mapping
to 1 ∈ A0 such that Af is syntomic over R and the proof of (1) is finished.
Proof of the claim. Observe that R → D is syntomic as a composition of the
syntomic ring map R → C, the étale ring map C → C ′ and the smooth ring map
C ′ → D (Algebra, Lemmas 10.136.17 and 10.137.10). The question is local on
Spec(D), hence we may assume that D is a relative global complete intersection
(Algebra, Lemma 10.136.15). Say D = R[y1, . . . , ym]/(g1, . . . , gs). Let f ′

1, . . . , f
′
n ∈

R[y1, . . . , ym] be lifts of f1, . . . , fn. Then we can apply Algebra, Lemma 10.136.10
to get the claim.
Proof of (2). Since a smooth ring map is syntomic, we can find a syntomic ring
map R→ A such that A0 = A/IA. By assumption the fibres of R→ A are smooth
over primes in V (I) hence R → A is smooth in an open neighbourhood of V (IA)
(Algebra, Lemma 10.137.17). Thus we can replace A by a localization to obtain
the result we want. □

We know that any syntomic ring map R → A is locally a relative global complete
intersection, see Algebra, Lemma 10.136.15. The next lemma says that a vector
bundle over Spec(A) is a relative global complete intersection.
Lemma 16.3.3.07CG Let R → A be a syntomic ring map. Then there exists a smooth
R-algebra map A → C with a retraction such that C is a global relative complete
intersection over R, i.e.,

C ∼= R[x1, . . . , xn]/(f1, . . . , fc)
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flat over R and all fibres of dimension n− c.

Proof. Apply Lemma 16.3.1 to get A → C. By Algebra, Lemma 10.136.6 we can
write C = R[x1, . . . , xn]/(f1, . . . , fc) with fi mapping to a basis of J/J2. The ring
map R → C is syntomic (hence flat) as it is a composition of a syntomic and a
smooth ring map. The dimension of the fibres is n− c by Algebra, Lemma 10.135.4
(the fibres are local complete intersections, so the lemma applies). □

Lemma 16.3.4.07CH Let R → A be a smooth ring map. Then there exists a smooth
R-algebra map A → B with a retraction such that B is standard smooth over R,
i.e.,

B ∼= R[x1, . . . , xn]/(f1, . . . , fc)
and det(∂fj/∂xi)i,j=1,...,c is invertible in B.

Proof. Apply Lemma 16.3.3 to get a smooth R-algebra map A→ C with a retrac-
tion such that C = R[x1, . . . , xn]/(f1, . . . , fc) is a relative global complete intersec-
tion over R. As C is smooth over R we have a short exact sequence

0→
⊕

j=1,...,c
Cfj →

⊕
i=1,...,n

Cdxi → ΩC/R → 0

Since ΩC/R is a projective C-module this sequence is split. Choose a left inverse t
to the first map. Say t(dxi) =

∑
cijfj so that

∑
i
∂fj
∂xi

ciℓ = δjℓ (Kronecker delta).
Let

B′ = C[y1, . . . , yc] = R[x1, . . . , xn, y1, . . . , yc]/(f1, . . . , fc)
The R-algebra map C → B′ has a retraction given by mapping yj to zero. We
claim that the map

R[z1, . . . , zn] −→ B′, zi 7−→ xi −
∑

j
cijyj

is étale at every point in the image of Spec(C) → Spec(B′). In ΩB′/R[z1,...,zn] we
have

0 = dfj −
∑

i

∂fj
∂xi

dzi ≡
∑

i,ℓ

∂fj
∂xi

ciℓdyℓ ≡ dyj mod (y1, . . . , yc)ΩB′/R[z1,...,zn]

Since 0 = dzi = dxi modulo
∑
B′dyj + (y1, . . . , yc)ΩB′/R[z1,...,zn] we conclude that

ΩB′/R[z1,...,zn]/(y1, . . . , yc)ΩB′/R[z1,...,zn] = 0.

As ΩB′/R[z1,...,zn] is a finite B′-module by Nakayama’s lemma there exists a g ∈
1 + (y1, . . . , yc) that (ΩB′/R[z1,...,zn])g = 0. This proves that R[z1, . . . , zn] → B′

g

is unramified, see Algebra, Definition 10.151.1. For any ring map R → k where
k is a field we obtain an unramified ring map k[z1, . . . , zn] → (B′

g) ⊗R k between
smooth k-algebras of dimension n. It follows that k[z1, . . . , zn]→ (B′

g)⊗R k is flat
by Algebra, Lemmas 10.128.1 and 10.140.2. By the critère de platitude par fibre
(Algebra, Lemma 10.128.8) we conclude that R[z1, . . . , zn] → B′

g is flat. Finally,
Algebra, Lemma 10.143.7 implies that R[z1, . . . , zn] → B′

g is étale. Set B = B′
g.

Note that C → B is smooth and has a retraction, so also A→ B is smooth and has
a retraction. Moreover, R[z1, . . . , zn] → B is étale. By Algebra, Lemma 10.143.2
we can write

B = R[z1, . . . , zn, w1, . . . , wc]/(g1, . . . , gc)
with det(∂gj/∂wi) invertible in B. This proves the lemma. □
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Lemma 16.3.5.07CI Let R → Λ be a ring map. If Λ is a filtered colimit of smooth
R-algebras, then Λ is a filtered colimit of standard smooth R-algebras.

Proof. Let A → Λ be an R-algebra map with A of finite presentation over R.
According to Algebra, Lemma 10.127.4 we have to factor this map through a stan-
dard smooth algebra, and we know we can factor it as A→ B → Λ with B smooth
over R. Choose an R-algebra map B → C with a retraction C → B such that C
is standard smooth over R, see Lemma 16.3.4. Then the desired factorization is
A→ B → C → B → Λ. □

Lemma 16.3.6.07EY Let R→ A be a standard smooth ring map. Let E ⊂ A be a finite
subset of order |E| = n. Then there exists a presentationA = R[x1, . . . , xn+m]/(f1, . . . , fc)
with c ≥ n, with det(∂fj/∂xi)i,j=1,...,c invertible in A, and such that E is the set
of congruence classes of x1, . . . , xn.

Proof. Choose a presentation A = R[y1, . . . , ym]/(g1, . . . , gd) such that the image of
det(∂gj/∂yi)i,j=1,...,d is invertible in A. Choose an enumerations E = {a1, . . . , an}
and choose hi ∈ R[y1, . . . , ym] whose image in A is ai. Consider the presentation

A = R[x1, . . . , xn, y1, . . . , ym]/(x1 − h1, . . . , xn − hn, g1, . . . , gd)
and set c = n+ d. □

Lemma 16.3.7.07EZ Let R → A be a ring map of finite presentation. Let a ∈ A.
Consider the following conditions on a:

(1) Aa is smooth over R,
(2) Aa is smooth over R and ΩAa/R is stably free,
(3) Aa is smooth over R and ΩAa/R is free,
(4) Aa is standard smooth over R,
(5) a is strictly standard in A over R,
(6) a is elementary standard in A over R.

Then we have
(a) (4) ⇒ (3) ⇒ (2) ⇒ (1),
(b) (6) ⇒ (5),
(c) (6) ⇒ (4),
(d) (5) ⇒ (2),
(e) (2) ⇒ the elements ae, e ≥ e0 are strictly standard in A over R,
(f) (4) ⇒ the elements ae, e ≥ e0 are elementary standard in A over R.

Proof. Part (a) is clear from the definitions and Algebra, Lemma 10.137.7. Part
(b) is clear from Definition 16.2.3.
Proof of (c). Choose a presentation A = R[x1, . . . , xn]/(f1, . . . , fm) such that
(16.2.3.1) and (16.2.3.2) hold. Choose h ∈ R[x1, . . . , xn] mapping to a. Then

Aa = R[x0, x1, . . . , xn]/(x0h− 1, f1, . . . , fm).
Write J = (x0h− 1, f1, . . . , fm). By (16.2.3.2) we see that the Aa-module J/J2 is
generated by x0h−1, f1, . . . , fc over Aa. Hence, as in the proof of Algebra, Lemma
10.136.6, we can choose a g ∈ 1 + J such that

Aa = R[x0, . . . , xn, xn+1]/(x0h− 1, f1, . . . , fm, gxn+1 − 1).
At this point (16.2.3.1) implies that R → Aa is standard smooth (use the coordi-
nates x0, x1, . . . , xc, xn+1 to take derivatives).
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Proof of (d). Choose a presentation A = R[x1, . . . , xn]/(f1, . . . , fm) such that
(16.2.3.3) and (16.2.3.4) hold. Write I = (f1, . . . , fm). We already know that Aa
is smooth over R, see Lemma 16.2.5. By Lemma 16.2.4 we see that (I/I2)a is free
on f1, . . . , fc and maps isomorphically to a direct summand of

⊕
Aadxi. Since

ΩAa/R = (ΩA/R)a is the cokernel of the map (I/I2)a →
⊕
Aadxi we conclude that

it is stably free.
Proof of (e). Choose a presentation A = R[x1, . . . , xn]/I with I finitely generated.
By assumption we have a short exact sequence

0→ (I/I2)a →
⊕

i=1,...,n
Aadxi → ΩAa/R → 0

which is split exact. Hence we see that (I/I2)a ⊕ ΩAa/R is a free Aa-module.
Since ΩAa/R is stably free we see that (I/I2)a is stably free as well. Thus replac-
ing the presentation chosen above by A = R[x1, . . . , xn, xn+1, . . . , xn+r]/J with
J = (I, xn+1, . . . , xn+r) for some r we get that (J/J2)a is (finite) free. Choose
f1, . . . , fc ∈ J which map to a basis of (J/J2)a. Extend this to a list of genera-
tors f1, . . . , fm ∈ J . Consider the presentation A = R[x1, . . . , xn+r]/(f1, . . . , fm).
Then (16.2.3.4) holds for ae for all sufficiently large e by construction. Moreover,
since (J/J2)a →

⊕
i=1,...,n+r Aadxi is a split injection we can find an Aa-linear

left inverse. Writing this left inverse in terms of the basis f1, . . . , fc and clearing
denominators we find a linear map ψ0 : A⊕n+r → A⊕c such that

A⊕c (f1,...,fc)−−−−−−→ J/J2 f 7→df−−−−→
⊕

i=1,...,n+r
Adxi

ψ0−−→ A⊕c

is multiplication by ae0 for some e0 ≥ 1. By Lemma 16.2.4 we see (16.2.3.3) holds
for all ace0 and hence for ae for all e with e ≥ ce0.
Proof of (f). Choose a presentation Aa = R[x1, . . . , xn]/(f1, . . . , fc) such that
det(∂fj/∂xi)i,j=1,...,c is invertible in Aa. We may assume that for some m < n
the classes of the elements x1, . . . , xm correspond ai/1 where a1, . . . , am ∈ A are
generators of A over R, see Lemma 16.3.6. After replacing xi by aNxi for m < i ≤ n
we may assume the class of xi is ai/1 ∈ Aa for some ai ∈ A. Consider the ring map

Ψ : R[x1, . . . , xn] −→ A, xi 7−→ ai.

This is a surjective ring map. By replacing fj by aNfj we may assume that fj ∈
R[x1, . . . , xn] and that Ψ(fj) = 0 (since after all fj(a1/1, . . . , an/1) = 0 in Aa).
Let J = Ker(Ψ). Then A = R[x1, . . . , xn]/J is a presentation and f1, . . . , fc ∈ J
are elements such that (J/J2)a is freely generated by f1, . . . , fc and such that
det(∂fj/∂xi)i,j=1,...,c maps to an invertible element of Aa. It follows that (16.2.3.1)
and (16.2.3.2) hold for ae and all large enough e as desired. □

16.4. Intermezzo: Néron desingularization

0BJ1 We interrupt the attack on the general case of Popescu’s theorem to an easier but
already very interesting case, namely, when R→ Λ is a homomorphism of discrete
valuation rings. This is discussed in [Art69a, Section 4].
Situation 16.4.1.0BJ2 Here R ⊂ Λ is an extension of discrete valuation rings with
ramification index 1 (More on Algebra, Definition 15.111.1). We assume given a
factorization

R→ A
φ−→ Λ

with R→ A flat and of finite type. Let q = Ker(φ) and p = φ−1(mΛ).

https://stacks.math.columbia.edu/tag/0BJ2
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In Situation 16.4.1 let π ∈ R be a uniformizer. Recall that flatness of A over R
signifies that π is a nonzerodivisor on A (More on Algebra, Lemma 15.22.10). By
our assumption on R ⊂ Λ we see that π maps to a uniformizer of Λ. Since π ∈ p
we can consider Néron’s affine blowup algebra (see Algebra, Section 10.70)

φ′ : A′ = A[ pπ ] −→ Λ
which comes endowed with an induced map to Λ sending a/πn, a ∈ pn to π−nφ(a)
in Λ. We will denote q′ ⊂ p′ ⊂ A′ the corresponding prime ideals of A′. Observe
that the isomorphism class of A′ does not depend on our choice of uniformizer.
Repeating the construction we obtain a sequence

A→ A′ → A′′ → . . .→ Λ

Lemma 16.4.2.0BJ3 In Situation 16.4.1 Néron’s blowup is functorial in the following
sense

(1) if a ∈ A, a ̸∈ p, then Néron’s blowup of Aa is A′
a, and

(2) if B → A is a surjection of flat finite type R-algebras with kernel I, then
A′ is the quotient of B′/IB′ by its π-power torsion.

Proof. Both (1) and (2) are special cases of Algebra, Lemma 10.70.3. In fact,
whenever we have A1 → A2 → Λ such that p1A2 = p2, we have that A′

2 is the
quotient of A′

1 ⊗A1 A2 by its π-power torsion. □

Lemma 16.4.3.0BJ4 In Situation 16.4.1 assume that R → A is smooth at p and that
R/πR ⊂ Λ/πΛ is a separable field extension. Then R → A′ is smooth at p′ and
there is a short exact sequence

0→ ΩA/R ⊗A A′
p′ → ΩA′/R,p′ → (A′/πA′)⊕c

p′ → 0

where c = dim((A/πA)p).

Proof. By Lemma 16.4.2 we may replace A by a localization at an element not in
p; we will use this without further mention. Write κ = R/πR. Since smoothness is
stable under base change (Algebra, Lemma 10.137.4) we see that A/πA is smooth
over κ at p. Hence (A/πA)p is a regular local ring (Algebra, Lemma 10.140.3).
Choose g1, . . . , gc ∈ p which map to a regular system of parameters in (A/πA)p.
Then we see that p = (π, g1, . . . , gc) after possibly replacing A by a localization.
Note that π, g1, . . . , gc is a regular sequence in Ap (first π is a nonzerodivisor and
then Algebra, Lemma 10.106.3 for the rest of the sequence). After replacing A by
a localization we may assume that π, g1, . . . , gc is a regular sequence in A (Algebra,
Lemma 10.68.6). It follows that

A′ = A[y1, . . . , yc]/(πy1 − g1, . . . , πyc − gc) = A[y1, . . . , yc]/I
by More on Algebra, Lemma 15.31.2. In the following we will use the definition of
smoothness using the naive cotangent complex (Algebra, Definition 10.137.1) and
the criterion of Algebra, Lemma 10.137.12 without further mention. The exact
sequence of Algebra, Lemma 10.134.4 for R→ A[y1, . . . , yc]→ A′ looks like this

0→ H1(NLA′/R)→ I/I2 → ΩA/R ⊗A A′ ⊕
⊕

i=1,...,c
A′dyi → ΩA′/R → 0

where the class of πyi−gi in I/I2 is mapped to −dgi+πdyi in the next term. Here
we have used Algebra, Lemma 10.134.6 to compute NLA′/A[y1,...,yc] and we have
used that R→ A[y1, . . . , yc] is smooth, so H1(NLA[y1,...,yc]/R) = 0 and ΩA[y1,...,yc]/R
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is a finite projective (a fortiori flat) A[y1, . . . , yc]-module which is in fact the direct
sum of ΩA/R⊗AA[y1, . . . , yc] and a free module with basis dyi. To finish the proof
it suffices to show that dg1, . . . ,dgc forms part of a basis for the finite free module
ΩA/R,p. Namely, this will show (I/I2)p is free on πyi − gi, the localization at p
of the middle map in the sequence is injective, so H1(NLA′/R)p = 0, and that the
cokernel ΩA′/R,p is finite free. To do this it suffices to show that the images of
dgi are κ(p)-linearly independent in ΩA/R,p/π = Ω(A/πA)/κ,p (equality by Algebra,
Lemma 10.131.12). Since κ ⊂ κ(p) ⊂ Λ/πΛ we see that κ(p) is separable over κ
(Algebra, Definition 10.42.1). The desired linear independence now follows from
Algebra, Lemma 10.140.4. □

Lemma 16.4.4.0BJ5 In Situation 16.4.1 assume that R → A is smooth at q and that
we have a surjection of R-algebras B → A with kernel I. Assume R → B smooth
at pB = (B → A)−1p. If the cokernel of

I/I2 ⊗A Λ→ ΩB/R ⊗B Λ

is a free Λ-module, then R→ A is smooth at p.

Proof. The cokernel of the map I/I2 → ΩB/R ⊗B A is ΩA/R, see Algebra, Lemma
10.131.9. Let d = dimq(A/R) be the relative dimension of R → A at q, i.e., the
dimension of Spec(A[1/π]) at q. See Algebra, Definition 10.125.1. Then ΩA/R,q is
free over Aq of rank d (Algebra, Lemma 10.140.3). Thus if the hypothesis of the
lemma holds, then ΩA/R ⊗A Λ is free of rank d. It follows that ΩA/R ⊗A κ(p) has
dimension d (as it is true upon tensoring with Λ/πΛ). Since R → A is flat and
since p is a specialization of q, we see that dimp(A/R) ≥ d by Algebra, Lemma
10.125.6. Then it follows that R→ A is smooth at p by Algebra, Lemmas 10.137.17
and 10.140.3. □

Lemma 16.4.5.0BJ6 In Situation 16.4.1 assume that R → A is smooth at q and that
R/πR ⊂ Λ/πΛ is a separable extension of fields. Then after a finite number of
affine Néron blowups the algebra A becomes smooth over R at p.

Proof. We choose an R-algebra B and a surjection B → A. Set pB = (B → A)−1(p)
and denote r the relative dimension of R → B at pB . We choose B such that
R→ B is smooth at pB . For example we can take B to be a polynomial algebra in
r variables over R. Consider the complex

I/I2 ⊗A Λ −→ ΩB/R ⊗B Λ

of Lemma 16.4.4. By the structure of finite modules over Λ (More on Algebra,
Lemma 15.124.9) we see that the cokernel looks like

Λ⊕d ⊕
⊕

i=1,...,n
Λ/πeiΛ

for some d ≥ 0, n ≥ 0, and ei ≥ 1. Observe that d is the relative dimension of A/R
at q (Algebra, Lemma 10.140.3). If the defect e =

∑
i=1,...,n ei is zero, then we are

done by Lemma 16.4.4.

Next, we consider what happens when we perform the Néron blowup. Recall that A′

is the quotient of B′/IB′ by its π-power torsion (Lemma 16.4.2) and that R→ B′

is smooth at pB′ (Lemma 16.4.3). Thus after blowup we have exactly the same

https://stacks.math.columbia.edu/tag/0BJ5
https://stacks.math.columbia.edu/tag/0BJ6
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setup. Picture
0 // I ′ // B′ // A′ // 0

0 // I

OO

// B

OO

// A //

OO

0
Since I ⊂ pB , we see that I → I ′ factors through πI ′. Looking at the induced map
of complexes we get

I ′/(I ′)2 ⊗A′ Λ // ΩB′/R ⊗B′ Λ M ′

I/I2 ⊗A Λ //

OO

ΩB/R ⊗B Λ

OO

M

Then M ⊂M ′ are finite free Λ-modules with quotient M ′/M annihilated by π, see
Lemma 16.4.3. Let N ⊂ M and N ′ ⊂ M ′ be the images of the horizontal maps
and denote Q = M/N and Q′ = M ′/N ′. We obtain a commutative diagram

0 // N ′ // M ′ // Q′ // 0

0 // N //

OO

M //

OO

Q //

OO

0

Then N ⊂ N ′ are free Λ-modules of rank r − d. Since I maps into πI ′ we see that
N ⊂ πN ′.
Let K = Λπ be the fraction field of Λ. We have a commutative diagram

0 // N ′ // N ′
K ∩M ′ // Q′

tor
// 0

0 // N //

OO

NK ∩M //

OO

Qtor //

OO

0
whose rows are short exact sequences. This shows that the change in defect is given
by
e− e′ = length(Qtor)− length(Q′

tor) = length(N ′/N)− length(N ′
K ∩M ′/NK ∩M)

Since M ′/M is annihilated by π, so is N ′
K ∩M ′/NK ∩M , and its length is at most

dimK(NK). Since N ⊂ πN ′ we get length(N ′/N) ≥ dimK(NK), with equality if
and only if N = πN ′.
To finish the proof we have to show that N is strictly smaller than πN ′ when A is
not smooth at p; this is the key computation one has to do in Néron’s argument.
To do this, we consider the exact sequence

I/I2 ⊗B κ(pB)→ ΩB/R ⊗B κ(pB)→ ΩA/R ⊗A κ(p)→ 0
(follows from Algebra, Lemma 10.131.9). Since R → A is not smooth at p we see
that the dimension s of ΩA/R⊗A κ(p) is bigger than d. On the other hand the first
arrow factors through the injective map

pBp/p
2Bp → ΩB/R ⊗B κ(pB)

of Algebra, Lemma 10.140.4; note that κ(p) is separable over k by our assumption
on R/πR ⊂ Λ/πΛ. Hence we conclude that we can find generators g1, . . . , gt ∈ I
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such that gj ∈ p2 for j > r−s. Then the images of gj in A′ are in π2I ′ for j > r−s.
Since r−s < r−d we find that at least one of the minimal generators of N becomes
divisible by π2 in N ′. Thus we see that e decreases by at least 1 and we win. □

If R → Λ is an extension of discrete valuation rings, then R → Λ is regular if and
only if (a) the ramification index is 1, (b) the extension of fraction fields is separable,
and (c) R/mR ⊂ Λ/mΛ is separable. Thus the following result is a special case of
general Néron desingularization in Theorem 16.12.1.

Lemma 16.4.6.0BJ7 Let R ⊂ Λ be an extension of discrete valuation rings which has
ramification index 1 and induces a separable extension of residue fields and of
fraction fields. Then Λ is a filtered colimit of smooth R-algebras.

Proof. By Algebra, Lemma 10.127.4 it suffices to show that any R→ A→ Λ as in
Situation 16.4.1 can be factored as A→ B → Λ with B a smooth R-algebra. After
replacing A by its image in Λ we may assume that A is a domain whose fraction
field K is a subfield of the fraction field of Λ. In particular, A is separable over
the fraction field of R by our assumptions. Then R → A is smooth at q = (0) by
Algebra, Lemma 10.140.9. After a finite number of Néron blowups, we may assume
R→ A is smooth at p, see Lemma 16.4.5. Then, after replacing A by a localization
at an element a ∈ A, a ̸∈ p it becomes smooth over R and the lemma is proved. □

16.5. The lifting problem

07CJ The goal in this section is to prove (Proposition 16.5.3) that the collection of alge-
bras which are filtered colimits of smooth algebras is closed under infinitesimal flat
deformations. The proof is elementary and only uses the results on presentations
of smooth algebras from Section 16.3.

Lemma 16.5.1.07CK Let R→ Λ be a ring map. Let I ⊂ R be an ideal. Assume that
(1) I2 = 0, and
(2) Λ/IΛ is a filtered colimit of smooth R/I-algebras.

Let φ : A → Λ be an R-algebra map with A of finite presentation over R. Then
there exists a factorization

A→ B/J → Λ
where B is a smooth R-algebra and J ⊂ IB is a finitely generated ideal.

Proof. Choose a factorization
A/IA→ B̄ → Λ/IΛ

with B̄ standard smooth over R/I; this is possible by assumption and Lemma
16.3.5. Write

B̄ = A/IA[t1, . . . , tr]/(ḡ1, . . . , ḡs)
and say B̄ → Λ/IΛ maps ti to the class of λi modulo IΛ. Choose g1, . . . , gs ∈
A[t1, . . . , tr] lifting ḡ1, . . . , ḡs. Write φ(gi)(λ1, . . . , λr) =

∑
ϵijµij for some ϵij ∈ I

and µij ∈ Λ. Define

A′ = A[t1, . . . , tr, δi,j ]/(gi −
∑

ϵijδij)

and consider the map
A′ −→ Λ, a 7−→ φ(a), ti 7−→ λi, δij 7−→ µij

https://stacks.math.columbia.edu/tag/0BJ7
https://stacks.math.columbia.edu/tag/07CK
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We have
A′/IA′ = A/IA[t1, . . . , tr]/(ḡ1, . . . , ḡs)[δij ] ∼= B̄[δij ]

This is a standard smooth algebra over R/I as B̄ is standard smooth. Choose a
presentation A′/IA′ = R/I[x1, . . . , xn]/(f̄1, . . . , f̄c) with det(∂f̄j/∂xi)i,j=1,...,c in-
vertible in A′/IA′. Choose lifts f1, . . . , fc ∈ R[x1, . . . , xn] of f̄1, . . . , f̄c. Then

B = R[x1, . . . , xn, xn+1]/(f1, . . . , fc, xn+1 det(∂fj/∂xi)i,j=1,...,c − 1)
is smooth over R. Since smooth ring maps are formally smooth (Algebra, Propo-
sition 10.138.13) there exists an R-algebra map B → A′ which is an isomorphism
modulo I. Then B → A′ is surjective by Nakayama’s lemma (Algebra, Lemma
10.20.1). Thus A′ = B/J with J ⊂ IB finitely generated (see Algebra, Lemma
10.6.3). □

Lemma 16.5.2.07CL Let R→ Λ be a ring map. Let I ⊂ R be an ideal. Assume that
(1) I2 = 0,
(2) Λ/IΛ is a filtered colimit of smooth R/I-algebras, and
(3) R→ Λ is flat.

Let φ : B → Λ be an R-algebra map with B smooth over R. Let J ⊂ IB be a
finitely generated ideal such that φ(J) = 0. Then there exists R-algebra maps

B
α−→ B′ β−→ Λ

such that B′ is smooth over R, such that α(J) = 0 and such that β◦α = φ mod IΛ.

Proof. If we can prove the lemma in case J = (h), then we can prove the lemma
by induction on the number of generators of J . Namely, suppose that J can be
generated by n elements h1, . . . , hn and the lemma holds for all cases where J is
generated by n−1 elements. Then we apply the case n = 1 to produce B → B′ → Λ
where the first map kills of hn. Then we let J ′ be the ideal of B′ generated by the
images of h1, . . . , hn−1 and we apply the case for n− 1 to produce B′ → B′′ → Λ.
It is easy to verify that B → B′′ → Λ does the job.
Assume J = (h) and write h =

∑
ϵibi for some ϵi ∈ I and bi ∈ B. Note that

0 = φ(h) =
∑
ϵiφ(bi). As Λ is flat over R, the equational criterion for flatness

(Algebra, Lemma 10.39.11) implies that we can find λj ∈ Λ, j = 1, . . . ,m and
aij ∈ R such that φ(bi) =

∑
j aijλj and

∑
i ϵiaij = 0. Set

C = B[x1, . . . , xm]/(bi −
∑

aijxj)

with C → Λ given by φ and xj 7→ λj . Choose a factorization
C → B′/J ′ → Λ

as in Lemma 16.5.1. Since B is smooth over R we can lift the map B → C → B′/J ′

to a map ψ : B → B′. We claim that ψ(h) = 0. Namely, the fact that ψ agrees
with B → C → B′/J ′ mod I implies that

ψ(bi) =
∑

aijξj + θi

for some ξi ∈ B′ and θi ∈ IB′. Hence we see that

ψ(h) = ψ(
∑

ϵibi) =
∑

ϵiaijξj +
∑

ϵiθi = 0

because of the relations above and the fact that I2 = 0. □

https://stacks.math.columbia.edu/tag/07CL


16.6. THE LIFTING LEMMA 1577

Proposition 16.5.3.07CM Let R → Λ be a ring map. Let I ⊂ R be an ideal. Assume
that

(1) I is nilpotent,
(2) Λ/IΛ is a filtered colimit of smooth R/I-algebras, and
(3) R→ Λ is flat.

Then Λ is a filtered colimit of smooth R-algebras.

Proof. Since In = 0 for some n, it follows by induction on n that it suffices to
consider the case where I2 = 0. Let φ : A → Λ be an R-algebra map with A of
finite presentation over R. We have to find a factorization A → B → Λ with B
smooth over R, see Algebra, Lemma 10.127.4. By Lemma 16.5.1 we may assume
that A = B/J with B smooth over R and J ⊂ IB a finitely generated ideal. By
Lemma 16.5.2 we can find a (possibly noncommutative) diagram

B
α

//

φ
��

B′

β~~
Λ

of R-algebras which commutes modulo I and such that α(J) = 0. The map

D : B −→ IΛ, b 7−→ φ(b)− β(α(b))

is a derivation over R hence we can write it as D = ξ ◦ dB/R for some B-linear
map ξ : ΩB/R → IΛ. Since ΩB/R is a finite projective B-module we can write
ξ =

∑
i=1,...,n ϵiΞi for some ϵi ∈ I and B-linear maps Ξi : ΩB/R → Λ. (Details

omitted. Hint: write ΩB/R as a direct sum of a finite free module to reduce to the
finite free case.) We define

B′′ = Sym∗
B′

(⊕
i=1,...,n

ΩB/R ⊗B,α B′
)

and we define β′ : B′′ → Λ by β on B′ and by

β′|ith summand ΩB/R⊗B,αB′ = Ξi ⊗ β

and α′ : B → B′′ by

α′(b) = α(b)⊕
∑

ϵidB/R(b)⊗ 1⊕ 0⊕ . . .

At this point the diagram
B

α′
//

φ
��

B′′

β′
~~

Λ
does commute. Moreover, it is direct from the definitions that α′(J) = 0 as I2 = 0.
Hence the desired factorization. □

16.6. The lifting lemma

07CN Here is a fiendishly clever lemma.

https://stacks.math.columbia.edu/tag/07CM


16.6. THE LIFTING LEMMA 1578

Lemma 16.6.1.07CP Let R be a Noetherian ring. Let Λ be an R-algebra. Let π ∈ R
and assume that AnnR(π) = AnnR(π2) and AnnΛ(π) = AnnΛ(π2). Suppose we
have R-algebra maps R/π2R → C̄ → Λ/π2Λ with C̄ of finite presentation. Then
there exists an R-algebra homomorphism D → Λ and a commutative diagram

R/π2R //

��

C̄ //

��

Λ/π2Λ

��
R/πR // D/πD // Λ/πΛ

with the following properties
(a) D is of finite presentation,
(b) R→ D is smooth at any prime q with π ̸∈ q,
(c) R→ D is smooth at any prime q with π ∈ q lying over a prime of C̄ where

R/π2R→ C̄ is smooth, and
(d) C̄/πC̄ → D/πD is smooth at any prime lying over a prime of C̄ where

R/π2R→ C̄ is smooth.

Proof. We choose a presentation
C̄ = R[x1, . . . , xn]/(f1, . . . , fm)

We also denote I = (f1, . . . , fm) and Ī the image of I in R/π2R[x1, . . . , xn]. Since
R is Noetherian, so is C̄. Hence the smooth locus of R/π2R→ C̄ is quasi-compact,
see Topology, Lemma 5.9.2. Applying Lemma 16.2.2 we may choose a finite list of
elements a1, . . . , ar ∈ R[x1, . . . , xn] such that

(1) the union of the open subspaces Spec(C̄ak) ⊂ Spec(C̄) cover the smooth
locus of R/π2R→ C̄, and

(2) for each k = 1, . . . , r there exists a finite subset Ek ⊂ {1, . . . ,m} such that
(Ī/Ī2)ak is freely generated by the classes of fj , j ∈ Ek.

Set Ik = (fj , j ∈ Ek) ⊂ I and denote Īk the image of Ik in R/π2R[x1, . . . , xn]. By
(2) and Nakayama’s lemma we see that (Ī/Īk)ak is annihilated by 1 + b′

k for some
b′
k ∈ Īak . Suppose b′

k is the image of bk/(ak)N for some bk ∈ I and some integer N .
After replacing ak by akbk we get

(3) (Īk)ak = (Ī)ak .
Thus, after possibly replacing ak by a high power, we may write

(4) akfℓ =
∑
j∈Ek h

j
k,ℓfj + π2gk,ℓ

for any ℓ ∈ {1, . . . ,m} and some hji,ℓ, gi,ℓ ∈ R[x1, . . . , xn]. If ℓ ∈ Ek we choose
hjk,ℓ = akδℓ,j (Kronecker delta) and gk,ℓ = 0. Set

D = R[x1, . . . , xn, z1, . . . , zm]/(fj − πzj , pk,ℓ).
Here j ∈ {1, . . . ,m}, k ∈ {1, . . . , r}, ℓ ∈ {1, . . . ,m}, and

pk,ℓ = akzℓ −
∑

j∈Ek
hjk,ℓzj − πgk,ℓ.

Note that for ℓ ∈ Ek we have pk,ℓ = 0 by our choices above.

The map R → D is the given one. Say C̄ → Λ/π2Λ maps xi to the class of λi
modulo π2. For an element f ∈ R[x1, . . . , xn] we denote f(λ) ∈ Λ the result of

https://stacks.math.columbia.edu/tag/07CP
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substituting λi for xi. Then we know that fj(λ) = π2µj for some µj ∈ Λ. Define
D → Λ by the rules xi 7→ λi and zj 7→ πµj . This is well defined because

pk,ℓ 7→ ak(λ)πµℓ −
∑

j∈Ek
hjk,ℓ(λ)πµj − πgk,ℓ(λ)

= π
(
ak(λ)µℓ −

∑
j∈Ek

hjk,ℓ(λ)µj − gk,ℓ(λ)
)

Substituting xi = λi in (4) above we see that the expression inside the brackets
is annihilated by π2, hence it is annihilated by π as we have assumed AnnΛ(π) =
AnnΛ(π2). The map C̄ → D/πD is determined by xi 7→ xi (clearly well defined).
Thus we are done if we can prove (b), (c), and (d).

Using (4) we obtain the following key equality

πpk,ℓ = πakzℓ −
∑

j∈Ek
πhjk,ℓzj − π

2gk,ℓ

= −ak(fℓ − πzℓ) + akfℓ +
∑

j∈Ek
hjk,ℓ(fj − πzj)−

∑
j∈Ek

hjk,ℓfj − π
2gk,ℓ

= −ak(fℓ − πzℓ) +
∑

j∈Ek
hjk,ℓ(fj − πzj)

The end result is an element of the ideal generated by fj − πzj . In particular, we
see that D[1/π] is isomorphic to R[1/π][x1, . . . , xn, z1, . . . , zm]/(fj − πzj) which is
isomorphic to R[1/π][x1, . . . , xn] hence smooth over R. This proves (b).

For fixed k ∈ {1, . . . , r} consider the ring

Dk = R[x1, . . . , xn, z1, . . . , zm]/(fj − πzj , j ∈ Ek, pk,ℓ)

The number of equations is m = |Ek| + (m − |Ek|) as pk,ℓ is zero if ℓ ∈ Ek. Also,
note that

(Dk/πDk)ak = R/πR[x1, . . . , xn, 1/ak, z1, . . . , zm]/(fj , j ∈ Ek, pk,ℓ)

= (C̄/πC̄)ak [z1, . . . , zm]/(akzℓ −
∑

j∈Ek
hjk,ℓzj)

∼= (C̄/πC̄)ak [zj , j ∈ Ek]

In particular (Dk/πDk)ak is smooth over (C̄/πC̄)ak . By our choice of ak we have
that (C̄/πC̄)ak is smooth over R/πR of relative dimension n− |Ek|, see (2). Hence
for a prime qk ⊂ Dk containing π and lying over Spec(C̄ak) the fibre ring of R→ Dk

is smooth at qk of dimension n. Thus R → Dk is syntomic at qk by our count of
the number of equations above, see Algebra, Lemma 10.136.10. Hence R → Dk is
smooth at qk, see Algebra, Lemma 10.137.17.

To finish the proof, let q ⊂ D be a prime containing π lying over a prime where
R/π2R → C̄ is smooth. Then ak ̸∈ q for some k by (1). We will show that the
surjection Dk → D induces an isomorphism on local rings at q. Since we know that
the ring maps C̄/πC̄ → Dk/πDk and R → Dk are smooth at the corresponding
prime qk by the preceding paragraph this will prove (c) and (d) and thus finish the
proof.

First, note that for any ℓ the equation πpk,ℓ = −ak(fℓ−πzℓ)+
∑
j∈Ek h

j
k,ℓ(fj−πzj)

proved above shows that fℓ−πzℓ maps to zero in (Dk)ak and in particular in (Dk)qk .
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The relations (4) imply that akfℓ =
∑
j∈Ek h

j
k,ℓfj in I/I2. Since (Īk/Ī2

k)ak is free
on fj , j ∈ Ek we see that

ak′hjk,ℓ −
∑

j′∈Ek′
hj

′

k′,ℓh
j
k,j′

is zero in C̄ak for every k, k′, ℓ and j ∈ Ek. Hence we can find a large integer N
such that

aNk

(
ak′hjk,ℓ −

∑
j′∈Ek′

hj
′

k′,ℓh
j
k,j′

)
is in Ik + π2R[x1, . . . , xn]. Computing modulo π we have

akpk′,ℓ − ak′pk,ℓ +
∑

hj
′

k′,ℓpk,j′

= −ak
∑

hj
′

k′,ℓzj′ + ak′

∑
hjk,ℓzj +

∑
hj

′

k′,ℓakzj′ −
∑∑

hj
′

k′,ℓh
j
k,j′zj

=
∑(

ak′hjk,ℓ −
∑

hj
′

k′,ℓh
j
k,j′

)
zj

with Einstein summation convention. Combining with the above we see aN+1
k pk′,ℓ

is contained in the ideal generated by Ik and π in R[x1, . . . , xn, z1, . . . , zm]. Thus
pk′,ℓ maps into π(Dk)ak . On the other hand, the equation

πpk′,ℓ = −ak′(fℓ − πzℓ) +
∑

j′∈Ek′
hj

′

k′,ℓ(fj′ − πzj′)

shows that πpk′,ℓ is zero in (Dk)ak . Since we have assumed that AnnR(π) =
AnnR(π2) and since (Dk)qk is smooth hence flat over R we see that Ann(Dk)qk (π) =
Ann(Dk)qk (π2). We conclude that pk′,ℓ maps to zero as well, hence Dq = (Dk)qk
and we win. □

16.7. The desingularization lemma

07CQ Here is another fiendishly clever lemma.

Lemma 16.7.1.07CR Let R be a Noetherian ring. Let Λ be an R-algebra. Let π ∈ R
and assume that AnnΛ(π) = AnnΛ(π2). Let A → Λ be an R-algebra map with A
of finite presentation. Assume

(1) the image of π is strictly standard in A over R, and
(2) there exists a section ρ : A/π4A → R/π4R which is compatible with the

map to Λ/π4Λ.
Then we can find R-algebra maps A → B → Λ with B of finite presentation such
that aB ⊂ HB/R where a = AnnR(AnnR(π2)/AnnR(π)).

Proof. Choose a presentation
A = R[x1, . . . , xn]/(f1, . . . , fm)

and 0 ≤ c ≤ min(n,m) such that (16.2.3.3) holds for π and such that
(16.7.1.1)07CS πfc+j ∈ (f1, . . . , fc) + (f1, . . . , fm)2

for j = 1, . . . ,m−c. Say ρ maps xi to the class of ri ∈ R. Then we can replace xi by
xi − ri. Hence we may assume ρ(xi) = 0 in R/π4R. This implies that fj(0) ∈ π4R
and that A→ Λ maps xi to π4λi for some λi ∈ Λ. Write

fj = fj(0) +
∑

i=1,...,n
rjixi + h.o.t.

https://stacks.math.columbia.edu/tag/07CR
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This implies that the constant term of ∂fj/∂xi is rji. Apply ρ to (16.2.3.3) for π
and we see that

π =
∑

I⊂{1,...,n}, |I|=c
rI det(rji)j=1,...,c, i∈I mod π4R

for some rI ∈ R. Thus we have
uπ =

∑
I⊂{1,...,n}, |I|=c

rI det(rji)j=1,...,c, i∈I

for some u ∈ 1 + π3R. By Algebra, Lemma 10.15.5 this implies there exists a n× c
matrix (sik) such that

uπδjk =
∑

i=1,...,n
rjisik for all j, k = 1, . . . , c

(Kronecker delta). We introduce auxiliary variables v1, . . . , vc, w1, . . . , wn and we
set

hi = xi − π2
∑

j=1,...c
sijvj − π3wi

In the following we will use that
R[x1, . . . , xn, v1, . . . , vc, w1, . . . , wn]/(h1, . . . , hn) = R[v1, . . . , vc, w1, . . . , wn]

without further mention. In R[x1, . . . , xn, v1, . . . , vc, w1, . . . , wn]/(h1, . . . , hn) we
have

fj = fj(x1 − h1, . . . , xn − hn)

= π2
∑c

k=1

(∑n

i=1
rjisik

)
vk + π3

∑n

i=1
rjiwi mod π4

= π3vj + π3
∑n

i=1
rjiwi mod π4

for 1 ≤ j ≤ c. Hence we can choose elements gj ∈ R[v1, . . . , vc, w1, . . . , wn]
such that gj = vj +

∑
rjiwi mod π and such that fj = π3gj in the R-algebra

R[x1, . . . , xn, v1, . . . , vc, w1, . . . , wn]/(h1, . . . , hn). We set
B = R[x1, . . . , xn, v1, . . . , vc, w1, . . . , wn]/(f1, . . . , fm, h1, . . . , hn, g1, . . . , gc).

The map A → B is clear. We define B → Λ by mapping xi → π4λi, vi 7→ 0, and
wi 7→ πλi. Then it is clear that the elements fj and hi are mapped to zero in Λ.
Moreover, it is clear that gi is mapped to an element t of πΛ such that π3t = 0
(as fi = π3gi modulo the ideal generated by the h’s). Hence our assumption that
AnnΛ(π) = AnnΛ(π2) implies that t = 0. Thus we are done if we can prove the
statement about smoothness.
Note that Bπ ∼= Aπ[v1, . . . , vc] because the equations gi = 0 are implied by fi = 0.
Hence Bπ is smooth over R as Aπ is smooth over R by the assumption that π is
strictly standard in A over R, see Lemma 16.2.5.
Set B′ = R[v1, . . . , vc, w1, . . . , wn]/(g1, . . . , gc). As gi = vi +

∑
rjiwi mod π we see

that B′/πB′ = R/πR[w1, . . . , wn]. Hence R → B′ is smooth of relative dimension
n at every point of V (π) by Algebra, Lemmas 10.136.10 and 10.137.17 (the first
lemma shows it is syntomic at those primes, in particular flat, whereupon the second
lemma shows it is smooth).
Let q ⊂ B be a prime with π ∈ q and for some r ∈ a, r ̸∈ q. Denote q′ = B′∩q. We
claim the surjection B′ → B induces an isomorphism of local rings (B′)q′ → Bq.
This will conclude the proof of the lemma. Note that Bq is the quotient of (B′)q′

by the ideal generated by fc+j , j = 1, . . . ,m− c. We observe two things: first the
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image of fc+j in (B′)q′ is divisible by π2 and second the image of πfc+j in (B′)q′

can be written as
∑
bj1j2fc+j1fc+j2 by (16.7.1.1). Thus we see that the image of

each πfc+j is contained in the ideal generated by the elements π2fc+j′ . Hence
πfc+j = 0 in (B′)q′ as this is a Noetherian local ring, see Algebra, Lemma 10.51.4.
As R→ (B′)q′ is flat we see that(

AnnR(π2)/AnnR(π)
)
⊗R (B′)q′ = Ann(B′)q′ (π2)/Ann(B′)q′ (π)

Because r ∈ a is invertible in (B′)q′ we see that this module is zero. Hence we see
that the image of fc+j is zero in (B′)q′ as desired. □

Lemma 16.7.2.07CT Let R be a Noetherian ring. Let Λ be an R-algebra. Let π ∈ R
and assume that AnnR(π) = AnnR(π2) and AnnΛ(π) = AnnΛ(π2). Let A→ Λ and
D → Λ be R-algebra maps with A and D of finite presentation. Assume

(1) π is strictly standard in A over R, and
(2) there exists an R-algebra map A/π4A → D/π4D compatible with the

maps to Λ/π4Λ.
Then we can find an R-algebra map B → Λ with B of finite presentation and
R-algebra maps A → B and D → B compatible with the maps to Λ such that
HD/RB ⊂ HB/D and HD/RB ⊂ HB/R.

Proof. We apply Lemma 16.7.1 to
D −→ A⊗R D −→ Λ

and the image of π in D. By Lemma 16.2.7 we see that π is strictly standard in
A ⊗R D over D. As our section ρ : (A ⊗R D)/π4(A ⊗R D) → D/π4D we take
the map induced by the map in (2). Thus Lemma 16.7.1 applies and we obtain
a factorization A ⊗R D → B → Λ with B of finite presentation and aB ⊂ HB/D

where
a = AnnD(AnnD(π2)/AnnD(π)).

For any prime q of D such that Dq is flat over R we have AnnDq
(π2)/AnnDq

(π) = 0
because annihilators of elements commutes with flat base change and we assumed
AnnR(π) = AnnR(π2). Because D is Noetherian we see that AnnD(π2)/AnnD(π)
is a finite D-module, hence formation of its annihilator commutes with localization.
Thus we see that a ̸⊂ q. Hence we see that D → B is smooth at any prime of B
lying over q. Since any prime of D where R→ D is smooth is one where Dq is flat
over R we conclude that HD/RB ⊂ HB/D. The final inclusion HD/RB ⊂ HB/R

follows because compositions of smooth ring maps are smooth (Algebra, Lemma
10.137.14). □

Lemma 16.7.3.07F0 Let R be a Noetherian ring. Let Λ be an R-algebra. Let π ∈ R
and assume that AnnR(π) = AnnR(π2) and AnnΛ(π) = AnnΛ(π2). Let A→ Λ be
an R-algebra map with A of finite presentation and assume π is strictly standard
in A over R. Let

A/π8A→ C̄ → Λ/π8Λ
be a factorization with C̄ of finite presentation. Then we can find a factorization
A→ B → Λ with B of finite presentation such that Rπ → Bπ is smooth and such
that

HC̄/(R/π8R) · Λ/π8Λ ⊂
√
HB/RΛ mod π8Λ.

https://stacks.math.columbia.edu/tag/07CT
https://stacks.math.columbia.edu/tag/07F0
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Proof. Apply Lemma 16.6.1 to get R → D → Λ with a factorization C̄/π4C̄ →
D/π4D → Λ/π4Λ such that R→ D is smooth at any prime not containing π and at
any prime lying over a prime of C̄/π4C̄ where R/π8R→ C̄ is smooth. By Lemma
16.7.2 we can find a finitely presented R-algebra B and factorizations A→ B → Λ
and D → B → Λ such that HD/RB ⊂ HB/R. We omit the verification that this is
a solution to the problem posed by the lemma. □

16.8. Warmup: reduction to a base field

07F1 In this section we apply the lemmas in the previous sections to prove that it suffices
to prove the main result when the base ring is a field, see Lemma 16.8.4.

Situation 16.8.1.07F2 Here R→ Λ is a regular ring map of Noetherian rings.

Let R→ Λ be as in Situation 16.8.1. We say PT holds for R→ Λ if Λ is a filtered
colimit of smooth R-algebras.

Lemma 16.8.2.07F3 Let Ri → Λi, i = 1, 2 be as in Situation 16.8.1. If PT holds for
Ri → Λi, i = 1, 2, then PT holds for R1 ×R2 → Λ1 × Λ2.

Proof. Omitted. Hint: A product of filtered colimits is a filtered colimit. □

Lemma 16.8.3.07F4 Let R → A → Λ be ring maps with A of finite presentation over
R. Let S ⊂ R be a multiplicative set. Let S−1A→ B′ → S−1Λ be a factorization
with B′ smooth over S−1R. Then we can find a factorization A → B → Λ such
that some s ∈ S maps to an elementary standard element (Definition 16.2.3) in B
over R.

Proof. We first apply Lemma 16.3.4 to S−1R → B′. Thus we may assume B′ is
standard smooth over S−1R. Write A = R[x1, . . . , xn]/(g1, . . . , gt) and say xi 7→
λi in Λ. We may write B′ = S−1R[x1, . . . , xn+m]/(f1, . . . , fc) for some c ≥ n
where det(∂fj/∂xi)i,j=1,...,c is invertible in B′ and such that A → B′ is given by
xi 7→ xi, see Lemma 16.3.6. After multiplying xi, i > n by an element of S and
correspondingly modifying the equations fj we may assume B′ → S−1Λ maps xi
to λi/1 for some λi ∈ Λ for i > n. Choose a relation

1 = a0 det(∂fj/∂xi)i,j=1,...,c +
∑

j=1,...,c
ajfj

for some aj ∈ S−1R[x1, . . . , xn+m]. Since each element of S is invertible in B′ we
may (by clearing denominators) assume that fj , aj ∈ R[x1, . . . , xn+m] and that

s0 = a0 det(∂fj/∂xi)i,j=1,...,c +
∑

j=1,...,c
ajfj

for some s0 ∈ S. Since gj maps to zero in S−1R[x1, . . . , xn+m]/(f1, . . . , xc) we can
find elements sj ∈ S such that sjgj = 0 in R[x1, . . . , xn+m]/(f1, . . . , fc). Since fj
maps to zero in S−1Λ we can find s′

j ∈ S such that s′
jfj(λ1, . . . , λn+m) = 0 in Λ.

Consider the ring
B = R[x1, . . . , xn+m]/(s′

1f1, . . . , s
′
cfc, g1, . . . , gt)

and the factorization A → B → Λ with B → Λ given by xi 7→ λi. We claim that
s = s0s1 . . . sts

′
1 . . . s

′
c is elementary standard in B over R which finishes the proof.

Namely, sjgj ∈ (f1, . . . , fc) and hence sgj ∈ (s′
1f1, . . . , s

′
cfc). Finally, we have

a0 det(∂s′
jfj/∂xi)i,j=1,...,c +

∑
j=1,...,c

(s′
1 . . . ŝ

′
j . . . s

′
c)ajs′

jfj = s0s
′
1 . . . s

′
c

https://stacks.math.columbia.edu/tag/07F2
https://stacks.math.columbia.edu/tag/07F3
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which divides s as desired. □

Lemma 16.8.4.07F5 If for every Situation 16.8.1 where R is a field PT holds, then PT
holds in general.

Proof. Assume PT holds for any Situation 16.8.1 where R is a field. Let R → Λ
be as in Situation 16.8.1 arbitrary. Note that R/I → Λ/IΛ is another regular ring
map of Noetherian rings, see More on Algebra, Lemma 15.41.3. Consider the set
of ideals

I = {I ⊂ R | R/I → Λ/IΛ does not have PT}
We have to show that I is empty. If this set is nonempty, then it contains a maximal
element because R is Noetherian. Replacing R by R/I and Λ by Λ/I we obtain a
situation where PT holds for R/I → Λ/IΛ for any nonzero ideal of R. In particular,
we see by applying Proposition 16.5.3 that R is a reduced ring.
Let A→ Λ be an R-algebra homomorphism with A of finite presentation. We have
to find a factorization A → B → Λ with B smooth over R, see Algebra, Lemma
10.127.4.
Let S ⊂ R be the set of nonzerodivisors and consider the total ring of fractions
Q = S−1R of R. We know that Q = K1 × . . . × Kn is a product of fields, see
Algebra, Lemmas 10.25.4 and 10.31.6. By Lemma 16.8.2 and our assumption PT
holds for the ring map S−1R→ S−1Λ. Hence we can find a factorization S−1A→
B′ → S−1Λ with B′ smooth over S−1R.
We apply Lemma 16.8.3 and find a factorization A→ B → Λ such that some π ∈ S
is elementary standard in B over R. After replacing A by B we may assume that π is
elementary standard, hence strictly standard in A. We know that R/π8R→ Λ/π8Λ
satisfies PT. Hence we can find a factorization R/π8R → A/π8A → C̄ → Λ/π8Λ
with R/π8R→ C̄ smooth. By Lemma 16.6.1 we can find an R-algebra map D → Λ
with D smooth over R and a factorization R/π4R→ A/π4A→ D/π4D → Λ/π4Λ.
By Lemma 16.7.2 we can find A → B → Λ with B smooth over R which finishes
the proof. □

16.9. Local tricks

07F6
Situation 16.9.1.07F7 We are given a Noetherian ring R and an R-algebra map A→ Λ
and a prime q ⊂ Λ. We assume A is of finite presentation over R. In this situation
we denote hA =

√
HA/RΛ.

Let R → A → Λ ⊃ q be as in Situation 16.9.1. We say R → A → Λ ⊃ q can be
resolved if there exists a factorization A→ B → Λ with B of finite presentation and
hA ⊂ hB ̸⊂ q. In this case we will call the factorization A→ B → Λ a resolution of
R→ A→ Λ ⊃ q.

Lemma 16.9.2.07F8 Let R → A → Λ ⊃ q be as in Situation 16.9.1. Let r ≥ 1 and
π1, . . . , πr ∈ R map to elements of q. Assume

(1) for i = 1, . . . , r we have
AnnR/(π8

1 ,...,π
8
i−1)R(πi) = AnnR/(π8

1 ,...,π
8
i−1)R(π2

i )

and
AnnΛ/(π8

1 ,...,π
8
i−1)Λ(πi) = AnnΛ/(π8

1 ,...,π
8
i−1)Λ(π2

i )

https://stacks.math.columbia.edu/tag/07F5
https://stacks.math.columbia.edu/tag/07F7
https://stacks.math.columbia.edu/tag/07F8
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(2) for i = 1, . . . , r the element πi maps to a strictly standard element in A
over R.

Then, if

R/(π8
1 , . . . , π

8
r)R→ A/(π8

1 , . . . , π
8
r)A→ Λ/(π8

1 , . . . , π
8
r)Λ ⊃ q/(π8

1 , . . . , π
8
r)Λ

can be resolved, so can R→ A→ Λ ⊃ q.

Proof. We are going to prove this by induction on r.

The case r = 1. Here the assumption is that there exists a factorization A/π8
1 →

C̄ → Λ/π8
1 which resolves the situation modulo π8

1 . Conditions (1) and (2) are the
assumptions needed to apply Lemma 16.7.3. Thus we can “lift” the resolution C̄
to a resolution of R→ A→ Λ ⊃ q.

The case r > 1. In this case we apply the induction hypothesis for r − 1 to the
situation R/π8

1 → A/π8
1 → Λ/π8

1 ⊃ q/π8
1Λ. Note that property (2) is preserved by

Lemma 16.2.7. □

Lemma 16.9.3.07F9 [Swa98, Lemma
12.2] or [Pop85,
Lemma 2]

Let R → A → Λ ⊃ q be as in Situation 16.9.1. Let p = R ∩ q.
Assume that q is minimal over hA and that Rp → Ap → Λq ⊃ qΛq can be resolved.
Then there exists a factorization A → C → Λ with C of finite presentation such
that HC/RΛ ̸⊂ q.

Proof. Let Ap → C → Λq be a resolution of Rp → Ap → Λq ⊃ qΛq. By our
assumption that q is minimal over hA this means that HC/Rp

Λq = Λq. By Lemma
16.2.8 we may assume that C is smooth over Rp. By Lemma 16.3.4 we may assume
that C is standard smooth over Rp. Write A = R[x1, . . . , xn]/(g1, . . . , gt) and say
A → Λ is given by xi 7→ λi. Write C = Rp[x1, . . . , xn+m]/(f1, . . . , fc) for some
c ≥ n such that A→ C maps xi to xi and such that det(∂fj/∂xi)i,j=1,...,c is invert-
ible in C, see Lemma 16.3.6. After clearing denominators we may assume f1, . . . , fc
are elements of R[x1, . . . , xn+m]. Of course det(∂fj/∂xi)i,j=1,...,c is not invertible in
R[x1, . . . , xn+m]/(f1, . . . , fc) but it becomes invertible after inverting some element
s0 ∈ R, s0 ̸∈ p. As gj maps to zero under R[x1, . . . , xn] → A → C we can find
sj ∈ R, sj ̸∈ p such that sjgj is zero in R[x1, . . . , xn+m]/(f1, . . . , fc). Write fj =
Fj(x1, . . . , xn+m, 1) for some polynomial Fj ∈ R[x1, . . . , xn, Xn+1, . . . , Xn+m+1] ho-
mogeneous in Xn+1, . . . , Xn+m+1. Pick λn+i ∈ Λ, i = 1, . . . ,m+1 with λn+m+1 ̸∈ q
such that xn+i maps to λn+i/λn+m+1 in Λq. Then

Fj(λ1, . . . , λn+m+1) = (λn+m+1)deg(Fj)Fj(λ1, . . . , λn,
λn+1

λn+m+1
, . . . ,

λn+m

λn+m+1
, 1)

= (λn+m+1)deg(Fj)fj(λ1, . . . , λn,
λn+1

λn+m+1
, . . . ,

λn+m

λn+m+1
)

= 0

in Λq. Thus we can find λ0 ∈ Λ, λ0 ̸∈ q such that λ0Fj(λ1, . . . , λn+m+1) = 0 in Λ.
Now we set B equal to

R[x0, . . . , xn+m+1]/(g1, . . . , gt, x0F1(x1, . . . , xn+m+1), . . . , x0Fc(x1, . . . , xn+m+1))

which we map to Λ by mapping xi to λi. Let b be the image of x0xn+m+1s0s1 . . . st
in B. Then Bb is isomorphic to

Rs0s1...st [x0, x1, . . . , xn+m+1, 1/x0xn+m+1]/(f1, . . . , fc)

https://stacks.math.columbia.edu/tag/07F9
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which is smooth over R by construction. Since b does not map to an element of q,
we win. □

Lemma 16.9.4.07FA Let R → A → Λ ⊃ q be as in Situation 16.9.1. Let p = R ∩ q.
Assume

(1) q is minimal over hA,
(2) Rp → Ap → Λq ⊃ qΛq can be resolved, and
(3) dim(Λq) = 0.

Then R→ A→ Λ ⊃ q can be resolved.

Proof. By (3) the ring Λq is Artinian local hence qΛq is nilpotent. Thus (hA)NΛq =
0 for some N > 0. Thus there exists a λ ∈ Λ, λ ̸∈ q such that λ(hA)N = 0 in Λ.
Say HA/R = (a1, . . . , ar) so that λaNi = 0 in Λ. By Lemma 16.9.3 we can find a
factorization A → C → Λ with C of finite presentation such that hC ̸⊂ q. Write
C = A[x1, . . . , xn]/(f1, . . . , fm). Set

B = A[x1, . . . , xn, y1, . . . , yr, z, tij ]/(fj −
∑

yitij , zyi)

where tij is a set of rm variables. Note that there is a map B → C[yi, z]/(yiz)
given by setting tij equal to zero. The map B → Λ is the composition B →
C[yi, z]/(yiz)→ Λ where C[yi, z]/(yiz)→ Λ is the given map C → Λ, maps z to λ,
and maps yi to the image of aNi in Λ.
We claim that B is a solution for R → A → Λ ⊃ q. First note that Bz is iso-
morphic to C[y1, . . . , yr, z, z

−1] and hence is smooth. On the other hand, Byℓ ∼=
A[xi, yi, y−1

ℓ , tij , i ̸= ℓ] which is smooth over A. Thus we see that z and aℓyℓ (com-
positions of smooth maps are smooth) are all elements of HB/R. This proves the
lemma. □

16.10. Separable residue fields

07FB In this section we explain how to solve a local problem in the case of a separable
residue field extension.

Lemma 16.10.1 (Ogoma).07FC Let A be a Noetherian ring and let M be a finite A-
module. Let S ⊂ A be a multiplicative set. If π ∈ A and Ker(π : S−1M →
S−1M) = Ker(π2 : S−1M → S−1M) then there exists an s ∈ S such that for any
n > 0 we have Ker(snπ : M →M) = Ker((snπ)2 : M →M).

Proof. Let K = Ker(π : M → M) and K ′ = {m ∈ M | π2m = 0 in S−1M} and
Q = K ′/K. Note that S−1Q = 0 by assumption. Since A is Noetherian we see
that Q is a finite A-module. Hence we can find an s ∈ S such that s annihilates Q.
Then s works. □

Lemma 16.10.2.07FD Let Λ be a Noetherian ring. Let I ⊂ Λ be an ideal. Let I ⊂ q
be a prime. Let n, e be positive integers Assume that qnΛq ⊂ IΛq and that Λq is
a regular local ring of dimension d. Then there exists an n > 0 and π1, . . . , πd ∈ Λ
such that

(1) (π1, . . . , πd)Λq = qΛq,
(2) πn1 , . . . , π

n
d ∈ I, and

(3) for i = 1, . . . , d we have
AnnΛ/(πe1 ,...,πei−1)Λ(πi) = AnnΛ/(πe1 ,...,πei−1)Λ(π2

i ).

https://stacks.math.columbia.edu/tag/07FA
https://stacks.math.columbia.edu/tag/07FC
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Proof. Set S = Λ \ q so that Λq = S−1Λ. First pick π1, . . . , πd with (1) which is
possible as Λq is regular. By assumption πni ∈ IΛq. Thus we can find s1, . . . , sd ∈ S
such that siπni ∈ I. Replacing πi by siπi we get (2). Note that (1) and (2) are
preserved by further multiplying by elements of S. Suppose that (3) holds for
i = 1, . . . , t for some t ∈ {0, . . . , d}. Note that π1, . . . , πd is a regular sequence
in S−1Λ, see Algebra, Lemma 10.106.3. In particular πe1, . . . , πet , πt+1 is a regular
sequence in S−1Λ = Λq by Algebra, Lemma 10.68.9. Hence we see that

AnnS−1Λ/(πe1 ,...,πei−1)(πi) = AnnS−1Λ/(πe1 ,...,πei−1)(π2
i ).

Thus we get (3) for i = t+1 after replacing πt+1 by sπt+1 for some s ∈ S by Lemma
16.10.1. By induction on t this produces a sequence satisfying (1), (2), and (3). □

Lemma 16.10.3.07FE Let k → A→ Λ ⊃ q be as in Situation 16.9.1 where
(1) k is a field,
(2) Λ is Noetherian,
(3) q is minimal over hA,
(4) Λq is a regular local ring, and
(5) the field extension κ(q)/k is separable.

Then k → A→ Λ ⊃ q can be resolved.

Proof. Set d = dim Λq. Set R = k[x1, . . . , xd]. Choose n > 0 such that qnΛq ⊂
hAΛq which is possible as q is minimal over hA. Choose generators a1, . . . , ar of
HA/R. Set

B = A[x1, . . . , xd, zij ]/(xni −
∑

zijaj)
Each Baj is smooth over R it is a polynomial algebra over Aaj [x1, . . . , xd] and Aaj
is smooth over k. Hence Bxi is smooth over R. Let B → C be the R-algebra map
constructed in Lemma 16.3.1 which comes with a R-algebra retraction C → B.
In particular a map C → Λ fitting into the diagram above. By construction Cxi
is a smooth R-algebra with ΩCxi/R free. Hence we can find c > 0 such that xci
is strictly standard in C/R, see Lemma 16.3.7. Now choose π1, . . . , πd ∈ Λ as in
Lemma 16.10.2 where n = n, e = 8c, q = q and I = hA. Write πni =

∑
λijaj

for some πij ∈ Λ. There is a map B → Λ given by xi 7→ πi and zij 7→ λij . Set
R = k[x1, . . . , xd]. Diagram

R // B

��
k

OO

// A

OO

// Λ
Now we apply Lemma 16.9.2 to R → C → Λ ⊃ q and the sequence of elements
xc1, . . . , x

c
d of R. Assumption (2) is clear. Assumption (1) holds for R by inspection

and for Λ by our choice of π1, . . . , πd. (Note that if AnnΛ(π) = AnnΛ(π2), then we
have AnnΛ(π) = AnnΛ(πc) for all c > 0.) Thus it suffices to resolve

R/(xe1, . . . , xed)→ C/(xe1, . . . , xed)→ Λ/(πe1, . . . , πed) ⊃ q/(πe1, . . . , πed)
for e = 8c. By Lemma 16.9.4 it suffices to resolve this after localizing at q. But
since x1, . . . , xd map to a regular sequence in Λq we see that Rp → Λq is flat, see
Algebra, Lemma 10.128.2. Hence

Rp/(xe1, . . . , xed)→ Λq/(πe1, . . . , πed)

https://stacks.math.columbia.edu/tag/07FE
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is a flat ring map of Artinian local rings. Moreover, this map induces a separable
field extension on residue fields by assumption. Thus this map is a filtered colimit
of smooth algebras by Algebra, Lemma 10.158.11 and Proposition 16.5.3. Existence
of the desired solution follows from Algebra, Lemma 10.127.4. □

16.11. Inseparable residue fields

07FF In this section we explain how to solve a local problem in the case of an inseparable
residue field extension.

Lemma 16.11.1.07FG Let k be a field of characteristic p > 0. Let (Λ,m,K) be an
Artinian local k-algebra. Assume that dimH1(LK/k) < ∞. Then Λ is a filtered
colimit of Artinian local k-algebras A with each map A → Λ flat, with mAΛ = m,
and with A essentially of finite type over k.

Proof. Note that the flatness of A → Λ implies that A → Λ is injective, so the
lemma really tells us that Λ is a directed union of these types of subrings A ⊂ Λ.
Let n be the minimal integer such that mn = 0. We will prove this lemma by
induction on n. The case n = 1 is clear as a field extension is a union of finitely
generated field extensions.

Pick λ1, . . . , λd ∈ m which generate m. As K is formally smooth over Fp (see
Algebra, Lemma 10.158.7) we can find a ring map σ : K → Λ which is a section of
the quotient map Λ→ K. In general σ is not a k-algebra map. Given σ we define

Ψσ : K[x1, . . . , xd] −→ Λ

using σ on elements of K and mapping xi to λi. Claim: there exists a σ : K → Λ
and a subfield k ⊂ F ⊂ K finitely generated over k such that the image of k in Λ
is contained in Ψσ(F [x1, . . . , xd]).

We will prove the claim by induction on the least integer n such that mn = 0. It is
clear for n = 1. If n > 1 set I = mn−1 and Λ′ = Λ/I. By induction we may assume
given σ′ : K → Λ′ and k ⊂ F ′ ⊂ K finitely generated such that the image of k →
Λ → Λ′ is contained in A′ = Ψσ′(F ′[x1, . . . , xd]). Denote τ ′ : k → A′ the induced
map. Choose a lift σ : K → Λ of σ′ (this is possible by the formal smoothness
of K/Fp we mentioned above). For later reference we note that we can change σ
to σ + D for some derivation D : K → I. Set A = F [x1, . . . , xd]/(x1, . . . , xd)n.
Then Ψσ induces a ring map Ψσ : A → Λ. The composition with the quotient
map Λ→ Λ′ induces a surjective map A→ A′ with nilpotent kernel. Choose a lift
τ : k → A of τ ′ (possible as k/Fp is formally smooth). Thus we obtain two maps
k → Λ, namely Ψσ ◦ τ : k → Λ and the given map i : k → Λ. These maps agree
modulo I, whence the difference is a derivation θ = i −Ψσ ◦ τ : k → I. Note that
if we change σ into σ +D then we change θ into θ −D|k.

Choose a set of elements {yj}j∈J of k whose differentials dyj form a basis of Ωk/Fp .
The Jacobi-Zariski sequence for Fp ⊂ k ⊂ K is

0→ H1(LK/k)→ Ωk/Fp ⊗K → ΩK/Fp → ΩK/k → 0

As dimH1(LK/k) <∞ we can find a finite subset J0 ⊂ J such that the image of the
first map is contained in

⊕
j∈J0

Kdyj . Hence the elements dyj , j ∈ J \ J0 map to

https://stacks.math.columbia.edu/tag/07FG


16.11. INSEPARABLE RESIDUE FIELDS 1589

K-linearly independent elements of ΩK/Fp . Therefore we can choose a D : K → I
such that θ −D|k = ξ ◦ d where ξ is a composition

Ωk/Fp =
⊕

j∈J
kdyj −→

⊕
j∈J0

kdyj −→ I

Let fj = ξ(dyj) ∈ I for j ∈ J0. Change σ into σ + D as above. Then we see
that θ(a) =

∑
j∈J0

ajfj for a ∈ k where da =
∑
ajdyj in Ωk/Fp . Note that I is

generated by the monomials λE = λe1
1 . . . λedd of total degree |E| =

∑
ei = n − 1

in λ1, . . . , λd. Write fj =
∑
E cj,Eλ

E with cj,E ∈ K. Replace F ′ by F = F ′(cj,E).
Then the claim holds.
Choose σ and F as in the claim. The kernel of Ψσ is generated by finitely many
polynomials g1, . . . , gt ∈ K[x1, . . . , xd] and we may assume their coefficients are in
F after enlarging F by adjoining finitely many elements. In this case it is clear that
the map A = F [x1, . . . , xd]/(g1, . . . , gt)→ K[x1, . . . , xd]/(g1, . . . , gt) = Λ is flat. By
the claim A is a k-subalgebra of Λ. It is clear that Λ is the filtered colimit of these
algebras, as K is the filtered union of the subfields F . Finally, these algebras are
essentially of finite type over k by Algebra, Lemma 10.54.4. □

Lemma 16.11.2.07FH Let k be a field of characteristic p > 0. Let Λ be a Noetherian
geometrically regular k-algebra. Let q ⊂ Λ be a prime ideal. Let n ≥ 1 be an
integer and let E ⊂ Λq/q

nΛq be a finite subset. Then we can find m ≥ 0 and
φ : k[y1, . . . , ym]→ Λ with the following properties

(1) setting p = φ−1(q) we have qΛq = pΛq and k[y1, . . . , ym]p → Λq is flat,
(2) there is a factorization by homomorphisms of local Artinian rings

k[y1, . . . , ym]p/pnk[y1, . . . , ym]p → D → Λq/q
nΛq

where the first arrow is essentially smooth and the second is flat,
(3) E is contained in D modulo qnΛq.

Proof. Set Λ̄ = Λq/q
nΛq. Note that dimH1(Lκ(q)/k) < ∞ by More on Algebra,

Proposition 15.35.1. Pick A ⊂ Λ̄ containing E such that A is local Artinian,
essentially of finite type over k, the map A → Λ̄ is flat, and mA generates the
maximal ideal of Λ̄, see Lemma 16.11.1. Denote F = A/mA the residue field so
that k ⊂ F ⊂ K. Pick λ1, . . . , λt ∈ Λ which map to elements of A in Λ̄ such
that moreover the images of dλ1, . . . ,dλt form a basis of ΩF/k. Consider the map
φ′ : k[y1, . . . , yt] → Λ sending yj to λj . Set p′ = (φ′)−1(q). By More on Algebra,
Lemma 15.35.2 the ring map k[y1, . . . , yt]p′ → Λq is flat and Λq/p

′Λq is regular.
Thus we can choose further elements λt+1, . . . , λm ∈ Λ which map into A ⊂ Λ̄
and which map to a regular system of parameters of Λq/p

′Λq. We obtain φ :
k[y1, . . . , ym]→ Λ having property (1) such that k[y1, . . . , ym]p/pnk[y1, . . . , ym]p →
Λ̄ factors through A. Thus k[y1, . . . , ym]p/pnk[y1, . . . , ym]p → A is flat by Algebra,
Lemma 10.39.9. By construction the residue field extension F/κ(p) is finitely gen-
erated and ΩF/κ(p) = 0. Hence it is finite separable by More on Algebra, Lemma
15.34.1. Thus k[y1, . . . , ym]p/pnk[y1, . . . , ym]p → A is finite by Algebra, Lemma
10.54.4. Finally, we conclude that it is étale by Algebra, Lemma 10.143.7. Since
an étale ring map is certainly essentially smooth we win. □

Lemma 16.11.3.07FI Let φ : k[y1, . . . , ym]→ Λ, n, q, p and
k[y1, . . . , ym]p/pn → D → Λq/q

nΛq

https://stacks.math.columbia.edu/tag/07FH
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be as in Lemma 16.11.2. Then for any λ ∈ Λ \ q there exists an integer q > 0 and
a factorization

k[y1, . . . , ym]p/pn → D → D′ → Λq/q
nΛq

such that D → D′ is an essentially smooth map of local Artinian rings, the last
arrow is flat, and λq is in D′.

Proof. Set Λ̄ = Λq/q
nΛq. Let λ̄ be the image of λ in Λ̄. Let α ∈ κ(q) be the image

of λ in the residue field. Let k ⊂ F ⊂ κ(q) be the residue field of D. If α is in
F then we can find an x ∈ D such that xλ̄ = 1 mod q. Hence (xλ̄)q = 1 mod (q)q
if q is divisible by p. Hence λ̄q is in D. If α is transcendental over F , then we
can take D′ = (D[λ̄])m equal to the subring generated by D and λ̄ localized at
m = D[λ̄] ∩ qΛ̄. This works because D[λ̄] is in fact a polynomial algebra over D
in this case. Finally, if λ mod q is algebraic over F , then we can find a p-power
q such that αq is separable algebraic over F , see Fields, Section 9.28. Note that
D and Λ̄ are henselian local rings, see Algebra, Lemma 10.153.10. Let D → D′

be a finite étale extension whose residue field extension is F (αq)/F , see Algebra,
Lemma 10.153.7. Since Λ̄ is henselian and F (αq) is contained in its residue field
we can find a factorization D′ → Λ̄. By the first part of the argument we see that
λ̄qq

′ ∈ D′ for some q′ > 0. □

Lemma 16.11.4.07FJ Let k → A→ Λ ⊃ q be as in Situation 16.9.1 where
(1) k is a field of characteristic p > 0,
(2) Λ is Noetherian and geometrically regular over k,
(3) q is minimal over hA.

Then k → A→ Λ ⊃ q can be resolved.

Proof. The lemma is proven by the following steps in the given order. We will
justify each of these steps below.

(1)07FK Pick an integer N > 0 such that qNΛq ⊂ HA/kΛq.
(2)07FL Pick generators a1, . . . , at ∈ A of the ideal HA/R.
(3)07FM Set d = dim(Λq).
(4)07FN Set B = A[x1, . . . , xd, zij ]/(x2N

i −
∑
zijaj).

(5)07FP Consider B as a k[x1, . . . , xd]-algebra and let B → C be as in Lemma
16.3.1. We also obtain a section C → B.

(6)07FQ Choose c > 0 such that each xci is strictly standard in C over k[x1, . . . , xd].
(7)07FR Set n = N + dc and e = 8c.
(8)07FS Let E ⊂ Λq/q

nΛq be the images of generators of A as a k-algebra.
(9)07FT Choose an integer m and a k-algebra map φ : k[y1, . . . , ym] → Λ and a

factorization by local Artinian rings

k[y1, . . . , ym]p/pnk[y1, . . . , ym]p → D → Λq/q
nΛq

such that the first arrow is essentially smooth, the second is flat, E is
contained in D, with p = φ−1(q) the map k[y1, . . . , ym]p → Λq is flat, and
pΛq = qΛq.

(10)07FU Choose π1, . . . , πd ∈ p which map to a regular system of parameters of
k[y1, . . . , ym]p.

(11)07FV Let R = k[y1, . . . , ym, t1, . . . , tm] and γi = πiti.

https://stacks.math.columbia.edu/tag/07FJ
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(12)07FW If necessary modify the choice of πi such that for i = 1, . . . , d we have

AnnR/(γe1 ,...,γei−1)R(γi) = AnnR/(γe1 ,...,γei−1)R(γ2
i )

(13)07FX There exist δ1, . . . , δd ∈ Λ, δi ̸∈ q and a factorization D → D′ → Λq/q
nΛq

with D′ local Artinian, D → D′ essentially smooth, the map D′ →
Λq/q

nΛq flat such that, with π′
i = δiπi, we have for i = 1, . . . , d

(a) (π′
i)2N =

∑
ajλij in Λ where λij mod qnΛq is an element of D′,

(b) AnnΛ/(π′e
1,...,π

′e
i−1)(π′

i) = AnnΛ/(π′e
1,...,π

′e
i−1)(π′2

i ),
(c) δi mod qnΛq is an element of D′.

(14)07FY Define B → Λ by sending xi to π′
i and zij to λij found above. Define

C → Λ by composing the map B → Λ with the retraction C → B.
(15)07FZ Map R → Λ by φ on k[y1, . . . , ym] and by sending ti to δi. Further

introduce a map
k[x1, . . . , xd] −→ R = k[y1, . . . , ym, t1, . . . , td]

by sending xi to γi = πiti.
(16)07G0 It suffices to resolve

R→ C ⊗k[x1,...,xd] R→ Λ ⊃ q

(17)07G1 Set I = (γe1 , . . . , γed) ⊂ R.
(18)07G2 It suffices to resolve

R/I → C ⊗k[x1,...,xd] R/I → Λ/IΛ ⊃ q/IΛ

(19)07G3 We denote r ⊂ R = k[y1, . . . , ym, t1, . . . , td] the inverse image of q.
(20)07G4 It suffices to resolve

(R/I)r → C ⊗k[x1,...,xd] (R/I)r → Λq/IΛq ⊃ qΛq/IΛq

(21)07G5 Set J = (πe1, . . . , πed) in k[y1, . . . , ym].
(22)07G6 It suffices to resolve

(R/JR)p → C ⊗k[x1,...,xd] (R/JR)p → Λq/JΛq ⊃ qΛq/JΛq

(23)07G7 It suffices to resolve
(R/pnR)p → C ⊗k[x1,...,xd] (R/pnR)p → Λq/q

nΛq ⊃ qΛq/q
nΛq

(24)07G8 It suffices to resolve
(R/pnR)p → B ⊗k[x1,...,xd] (R/pnR)p → Λq/q

nΛq ⊃ qΛq/q
nΛq

(25)07G9 The ring D′[t1, . . . , td] is given the structure of an Rp/p
nRp-algebra by

the given map k[y1, . . . , ym]p/pnk[y1, . . . , ym]p → D′ and by sending ti to
ti. It suffices to find a factorization

B ⊗k[x1,...,xd] (R/pnR)p → D′[t1, . . . , td]→ Λq/q
nΛq

where the second arrow sends ti to δi and induces the given homomor-
phism D′ → Λq/q

nΛq.
(26)07GA Such a factorization exists by our choice of D′ above.

We now give the justification for each of the steps, except that we skip justifying
the steps which just introduce notation.
Ad (1). This is possible as q is minimal over hA =

√
HA/kΛ.
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Ad (6). Note that Aai is smooth over k. Hence Baj , which is isomorphic to a
polynomial algebra over Aaj [x1, . . . , xd], is smooth over k[x1, . . . , xd]. Thus Bxi
is smooth over k[x1, . . . , xd]. By Lemma 16.3.1 we see that Cxi is smooth over
k[x1, . . . , xd] with finite free module of differentials. Hence some power of xi is
strictly standard in C over k[x1, . . . , xn] by Lemma 16.3.7.

Ad (9). This follows by applying Lemma 16.11.2.

Ad (10). Since k[y1, . . . , ym]p → Λq is flat and pΛq = qΛq by construction we
see that dim(k[y1, . . . , ym]p) = d by Algebra, Lemma 10.112.7. Thus we can find
π1, . . . , πd ∈ Λ which map to a regular system of parameters in Λq.

Ad (12). By Algebra, Lemma 10.106.3 any permutation of the sequence π1, . . . , πd
is a regular sequence in k[y1, . . . , ym]p. Hence γ1 = π1t1, . . . , γd = πdtd is a regular
sequence in Rp = k[y1, . . . , ym]p[t1, . . . , td], see Algebra, Lemma 10.68.10. Let S =
k[y1, . . . , ym] \ p so that Rp = S−1R. Note that π1, . . . , πd and γ1, . . . , γd remain
regular sequences if we multiply our πi by elements of S. Suppose that

AnnR/(γe1 ,...,γei−1)R(γi) = AnnR/(γe1 ,...,γei−1)R(γ2
i )

holds for i = 1, . . . , t for some t ∈ {0, . . . , d}. Note that γe1 , . . . , γet , γt+1 is a regular
sequence in S−1R by Algebra, Lemma 10.68.9. Hence we see that

AnnS−1R/(γe1 ,...,γei−1)(γi) = AnnS−1R/(γe1 ,...,γei−1)(γ2
i ).

Thus we get
AnnR/(γe1 ,...,γet )R(γt+1) = AnnR/(γe1 ,...,γet )R(γ2

t+1)
after replacing πt+1 by sπt+1 for some s ∈ S by Lemma 16.10.1. By induction on
t this produces the desired sequence.

Ad (13). Let S = Λ \ q so that Λq = S−1Λ. Set Λ̄ = Λq/q
nΛq. Suppose that

we have a t ∈ {0, . . . , d} and δ1, . . . , δt ∈ S and a factorization D → D′ → Λ̄ as
in (13) such that (a), (b), (c) hold for i = 1, . . . , t. We have πNt+1 ∈ HA/kΛq as
qNΛq ⊂ HA/kΛq by (1). Hence πNt+1 ∈ HA/kΛ̄. Hence πNt+1 ∈ HA/kD

′ as D′ → Λ̄ is
faithfully flat, see Algebra, Lemma 10.82.11. Recall that HA/k = (a1, . . . , at). Say
πNt+1 =

∑
ajdj in D′ and choose cj ∈ Λq lifting dj ∈ D′. Then πNt+1 =

∑
cjaj + ϵ

with ϵ ∈ qnΛq ⊂ qn−NHA/kΛq. Write ϵ =
∑
ajc

′
j for some c′

j ∈ qn−NΛq. Hence
π2N
t+1 =

∑
(πNt+1cj + πNt+1c

′
j)aj . Note that πNt+1c

′
j maps to zero in Λ̄; this trivial but

key observation will ensure later that (a) holds. Now we choose s ∈ S such that
there exist µt+1j ∈ Λ such that on the one hand πNt+1cj + πNt+1c

′
j = µt+1j/s

2N in
S−1Λ and on the other (sπt+1)2N =

∑
µt+1jaj in Λ (minor detail omitted). We

may further replace s by a power and enlarge D′ such that s maps to an element of
D′. With these choices µt+1j maps to s2Ndj which is an element of D′. Note that
π1, . . . , πd are a regular sequence of parameters in S−1Λ by our choice of φ. Hence
π1, . . . , πd forms a regular sequence in Λq by Algebra, Lemma 10.106.3. It follows
that π′e

1, . . . , π
′e
t , sπt+1 is a regular sequence in S−1Λ by Algebra, Lemma 10.68.9.

Thus we get

AnnS−1Λ/(π′e
1,...,π

′e
t )(sπt+1) = AnnS−1Λ/(π′e

1,...,π
′e
t )((sπt+1)2).

Hence we may apply Lemma 16.10.1 to find an s′ ∈ S such that

AnnΛ/(π′e
1,...,π

′e
t )((s′)qsπt+1) = AnnΛ/(π′e

1,...,π
′e
t )(((s′)qsπt+1)2).
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for any q > 0. By Lemma 16.11.3 we can choose q and enlarge D′ such that (s′)q
maps to an element of D′. Setting δt+1 = (s′)qs and we conclude that (a), (b),
(c) hold for i = 1, . . . , t + 1. For (a) note that λt+1j = (s′)2Nqµt+1j works. By
induction on t we win.
Ad (16). By construction the radical of H(C⊗k[x1,...,xd]R)/RΛ contains hA. Namely,
the elements aj ∈ HA/k map to elements of HB/k[x1,...,xn], hence map to elements
of HC/k[x1,...,xn], hence aj ⊗ 1 map to elements of HC⊗k[x1,...,xd]R/R. Moreover, if
we have a solution C ⊗k[x1,...,xn] R→ T → Λ of

R→ C ⊗k[x1,...,xd] R→ Λ ⊃ q

then HT/R ⊂ HT/k as R is smooth over k. Hence T will also be a solution for the
original situation k → A→ Λ ⊃ q.
Ad (18). Follows on applying Lemma 16.9.2 to R → C ⊗k[x1,...,xd] R → Λ ⊃ q and
the sequence of elements γc1, . . . , γcd. We note that since xci are strictly standard in
C over k[x1, . . . , xd] the elements γci are strictly standard in C ⊗k[x1,...,xd] R over R
by Lemma 16.2.7. The other assumption of Lemma 16.9.2 holds by steps (12) and
(13).
Ad (20). Apply Lemma 16.9.4 to the situation in (18). In the rest of the arguments
the target ring is local Artinian, hence we are looking for a factorization by a smooth
algebra T over the source ring.
Ad (22). Suppose that C ⊗k[x1,...,xd] (R/JR)p → T → Λq/JΛq is a solution to

(R/JR)p → C ⊗k[x1,...,xd] (R/JR)p → Λq/JΛq ⊃ qΛq/JΛq

Then C ⊗k[x1,...,xd] (R/I)r → Tr → Λq/IΛq is a solution to the situation in (20).
Ad (23). Our n = N + dc is large enough so that pnk[y1, . . . , ym]p ⊂ Jp and
qnΛq ⊂ JΛq. Hence if we have a solution C ⊗k[x1,...,xd] (R/pnR)p → T → Λq/q

nΛq

of (22 then we can take T/JT as the solution for (23).
Ad (24). This is true because we have a section C → B in the category of R-
algebras.
Ad (25). This is true because D′ is essentially smooth over the local Artinian ring
k[y1, . . . , ym]p/pnk[y1, . . . , ym]p and

Rp/p
nRp = k[y1, . . . , ym]p/pnk[y1, . . . , ym]p[t1, . . . , td].

HenceD′[t1, . . . , td] is a filtered colimit of smoothRp/p
nRp-algebras andB⊗k[x1,...,xd]

(Rp/p
nRp) factors through one of these.

Ad (26). The final twist of the proof is that we cannot just use the map B → D′

which maps xi to the image of π′
i in D′ and zij to the image of λij in D′ because

we need the diagram

B // D′[t1, . . . , td]

k[x1, . . . , xd] //

OO

Rp/p
nRp

OO

to commute and we need the composition B → D′[t1, . . . , td]→ Λq/q
nΛq to be the

map of (14). This requires us to map xi to the image of πiti in D′[t1, . . . , td]. Hence
we map zij to the image of λijt2Ni /δ2N

i in D′[t1, . . . , td] and everything is clear. □
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16.12. The main theorem

07GB In this section we wrap up the discussion.

Theorem 16.12.1 (Popescu).07GC Any regular homomorphism of Noetherian rings is a
filtered colimit of smooth ring maps.

Proof. By Lemma 16.8.4 it suffices to prove this for k → Λ where Λ is Noetherian
and geometrically regular over k. Let k → A→ Λ be a factorization with A a finite
type k-algebra. It suffices to construct a factorization A→ B → Λ with B of finite
type such that hB = Λ, see Lemma 16.2.8. Hence we may perform Noetherian
induction on the ideal hA. Pick a prime q ⊃ hA such that q is minimal over hA. It
now suffices to resolve k → A → Λ ⊃ q (as defined in the text following Situation
16.9.1). If the characteristic of k is zero, this follows from Lemma 16.10.3. If the
characteristic of k is p > 0, this follows from Lemma 16.11.4. □

16.13. The approximation property for G-rings

07QX Let R be a Noetherian local ring. In this case R is a G-ring if and only if the ring
map R → R∧ is regular, see More on Algebra, Lemma 15.50.7. In this case it is
true that the henselization Rh and the strict henselization Rsh of R are G-rings,
see More on Algebra, Lemma 15.50.8. Moreover, any algebra essentially of finite
type over a field, over a complete local ring, over Z, or over a characteristic zero
Dedekind ring is a G-ring, see More on Algebra, Proposition 15.50.12. This gives
an ample supply of rings to which the result below applies.
Let R be a ring. Let f1, . . . , fm ∈ R[x1, . . . , xn]. Let S be an R-algebra. In this
situation we say a vector (a1, . . . , an) ∈ Sn is a solution in S if and only if

fj(a1, . . . , an) = 0 in S, for j = 1, . . . ,m
Of course an important question in algebraic geometry is to see when systems of
polynomial equations have solutions. The following theorem tells us that having
solutions in the completion of a local Noetherian ring is often enough to show there
exist solutions in the henselization of the ring.

Theorem 16.13.1.07QY Let R be a Noetherian local ring. Let f1, . . . , fm ∈ R[x1, . . . , xn].
Suppose that (a1, . . . , an) ∈ (R∧)n is a solution in R∧. If R is a henselian G-ring,
then for every integer N there exists a solution (b1, . . . , bn) ∈ Rn in R such that
ai − bi ∈ mNR∧.

Proof. Let ci ∈ R be an element such that ai − ci ∈ mN . Choose generators
mN = (d1, . . . , dM ). Write ai = ci +

∑
ai,ldl. Consider the polynomial ring R[xi,l]

and the elements
gj = fj(c1 +

∑
x1,ldl, . . . , cn +

∑
xn,ldn,l) ∈ R[xi,l]

The system of equations gj = 0 has the solution (ai,l). Suppose that we can show
that gj as a solution (bi,l) in R. Then it follows that bi = ci +

∑
bi,ldl is a solution

of fj = 0 which is congruent to ai modulo mN . Thus it suffices to show that
solvability over R∧ implies solvability over R.
Let A ⊂ R∧ be the R-subalgebra generated by a1, . . . , an. Since we’ve assumed R
is a G-ring, i.e., that R→ R∧ is regular, we see that there exists a factorization

A→ B → R∧

https://stacks.math.columbia.edu/tag/07GC
https://stacks.math.columbia.edu/tag/07QY
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with B smooth over R, see Theorem 16.12.1. Denote κ = R/m the residue field. It
is also the residue field of R∧, so we get a commutative diagram

B

  

// R′

��
R //

OO

κ

Since the vertical arrow is smooth, More on Algebra, Lemma 15.9.14 implies that
there exists an étale ring map R → R′ which induces an isomorphism R/m →
R′/mR′ and an R-algebra map B → R′ making the diagram above commute. Since
R is henselian we see that R → R′ has a section, see Algebra, Lemma 10.153.3.
Let bi ∈ R be the image of ai under the ring maps A→ B → R′ → R. Since all of
these maps are R-algebra maps, we see that (b1, . . . , bn) is a solution in R. □

Given a Noetherian local ring (R,m), an étale ring map R → R′, and a maximal
ideal m′ ⊂ R′ lying over m with κ(m) = κ(m′), then we have inclusions

R ⊂ Rm′ ⊂ Rh ⊂ R∧,

by Algebra, Lemma 10.155.5 and More on Algebra, Lemma 15.45.3.

Theorem 16.13.2.07QZ Let R be a Noetherian local ring. Let f1, . . . , fm ∈ R[x1, . . . , xn].
Suppose that (a1, . . . , an) ∈ (R∧)n is a solution. If R is a G-ring, then for every
integer N there exist

(1) an étale ring map R→ R′,
(2) a maximal ideal m′ ⊂ R′ lying over m
(3) a solution (b1, . . . , bn) ∈ (R′)n in R′

such that κ(m) = κ(m′) and ai − bi ∈ (m′)NR∧.

Proof. We could deduce this theorem from Theorem 16.13.1 using that the henseliza-
tion Rh is a G-ring by More on Algebra, Lemma 15.50.8 and writing Rh as a di-
rected colimit of étale extension R′. Instead we prove this by redoing the proof of
the previous theorem in this case.

Let ci ∈ R be an element such that ai − ci ∈ mN . Choose generators mN =
(d1, . . . , dM ). Write ai = ci +

∑
ai,ldl. Consider the polynomial ring R[xi,l] and

the elements

gj = fj(c1 +
∑

x1,ldl, . . . , cn +
∑

xn,ldn,l) ∈ R[xi,l]

The system of equations gj = 0 has the solution (ai,l). Suppose that we can show
that gj as a solution (bi,l) in R′ for some étale ring map R → R′ endowed with a
maximal ideal m′ such that κ(m) = κ(m′). Then it follows that bi = ci +

∑
bi,ldl

is a solution of fj = 0 which is congruent to ai modulo (m′)N . Thus it suffices
to show that solvability over R∧ implies solvability over some étale ring extension
which induces a trivial residue field extension at some prime over m.

Let A ⊂ R∧ be the R-subalgebra generated by a1, . . . , an. Since we’ve assumed R
is a G-ring, i.e., that R→ R∧ is regular, we see that there exists a factorization

A→ B → R∧

https://stacks.math.columbia.edu/tag/07QZ
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with B smooth over R, see Theorem 16.12.1. Denote κ = R/m the residue field. It
is also the residue field of R∧, so we get a commutative diagram

B

  

// R′

��
R //

OO

κ

Since the vertical arrow is smooth, More on Algebra, Lemma 15.9.14 implies that
there exists an étale ring map R → R′ which induces an isomorphism R/m →
R′/mR′ and an R-algebra map B → R′ making the diagram above commute. Let
bi ∈ R′ be the image of ai under the ring maps A → B → R′. Since all of these
maps are R-algebra maps, we see that (b1, . . . , bn) is a solution in R′. □

Example 16.13.3.0A1W Let (R,m) be a Noetherian local ring with henselization Rh. The
map on completions R∧ → (Rh)∧ is an isomorphism, see More on Algebra, Lemma
15.45.3. Since also Rh is Noetherian (ibid.) we may think of Rh as a subring of its
completion (because the completion is faithfully flat). In this way we see that we
may identify Rh with a subring of R∧.
Let us try to understand which elements of R∧ are in Rh. For simplicity we assume
R is a domain with fraction field K. Clearly, every element f of Rh is algebraic over
R, in the sense that there exists an equation of the form anf

n + . . .+ a1f + a0 = 0
for some ai ∈ R with n > 0 and an ̸= 0.
Conversely, assume that f ∈ R∧, n ∈ N, and a0, . . . , an ∈ R with an ̸= 0 such
that anfn + . . . + a1f + a0 = 0. If R is a G-ring, then, for every N > 0 there
exists an element g ∈ Rh with ang

n + . . . + a1g + a0 = 0 and f − g ∈ mNR∧, see
Theorem 16.13.2. We’d like to conclude that f = g when N ≫ 0. If this is not
true, then we find infinitely many roots g of P (T ) in Rh. This is impossible because
(1) Rh ⊂ Rh ⊗R K and (2) Rh ⊗R K is a finite product of field extensions of K.
Namely, R→ K is injective and R→ Rh is flat, hence Rh → Rh ⊗R K is injective
and (2) follows from More on Algebra, Lemma 15.45.13.
Conclusion: If R is a Noetherian local domain with fraction field K and a G-ring,
then Rh ⊂ R∧ is the set of all elements which are algebraic over K.

Here is another variant of the main theorem of this section.

Lemma 16.13.4.0CAR Let R be a Noetherian ring. Let p ⊂ R be a prime ideal. Let
f1, . . . , fm ∈ R[x1, . . . , xn]. Suppose that (a1, . . . , an) ∈ ((Rp)∧)n is a solution. If
Rp is a G-ring, then for every integer N there exist

(1) an étale ring map R→ R′,
(2) a prime ideal p′ ⊂ R′ lying over p
(3) a solution (b1, . . . , bn) ∈ (R′)n in R′

such that κ(p) = κ(p′) and ai − bi ∈ (p′)N (R′
p′)∧.

Proof. By Theorem 16.13.2 we can find a solution (b′
1, . . . , b

′
n) in some ring R′′ étale

over Rp which comes with a prime ideal p′′ lying over p such that κ(p) = κ(p′′)
and ai − b′

i ∈ (p′′)N (R′′
p′′)∧. We can write R′′ = R′ ⊗R Rp for some étale R-algebra

R′ (see Algebra, Lemma 10.143.3). After replacing R′ by a principal localization
if necessary we may assume (b′

1, . . . , b
′
n) come from a solution (b1, . . . , bn) in R′.

Setting p′ = R′ ∩ p′′ we see that R′′
p′′ = R′

p′ which finishes the proof. □

https://stacks.math.columbia.edu/tag/0A1W
https://stacks.math.columbia.edu/tag/0CAR
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16.14. Approximation for henselian pairs

0AH4 We can generalize the discussion of Section 16.13 to the case of henselian pairs.
Henselian pairs where defined in More on Algebra, Section 15.11.

Lemma 16.14.1.0AH5 Let (A, I) be a henselian pair with A Noetherian. Let A∧ be the
I-adic completion of A. Assume at least one of the following conditions holds

(1) A→ A∧ is a regular ring map,
(2) A is a Noetherian G-ring, or
(3) (A, I) is the henselization (More on Algebra, Lemma 15.12.1) of a pair

(B, J) where B is a Noetherian G-ring.
Given f1, . . . , fm ∈ A[x1, . . . , xn] and â1, . . . , ân ∈ A∧ such that fj(â1, . . . , ân) = 0
for j = 1, . . . ,m, for every N ≥ 1 there exist a1, . . . , an ∈ A such that âi − ai ∈ IN
and such that fj(a1, . . . , an) = 0 for j = 1, . . . ,m.

Proof. By More on Algebra, Lemma 15.50.15 we see that (3) implies (2). By More
on Algebra, Lemma 15.50.14 we see that (2) implies (1). Thus it suffices to prove
the lemma in case A→ A∧ is a regular ring map.
Let â1, . . . , ân be as in the statement of the lemma. By Theorem 16.12.1 we can
find a factorization A → B → A∧ with A → P smooth and b1, . . . , bn ∈ B with
fj(b1, . . . , bn) = 0 in B. Denote σ : B → A∧ → A/IN the composition. By More
on Algebra, Lemma 15.9.14 we can find an étale ring map A→ A′ which induces an
isomorphism A/IN → A′/INA′ and an A-algebra map σ̃ : B → A′ lifting σ. Since
(A, I) is henselian, there is an A-algebra map χ : A′ → A, see More on Algebra,
Lemma 15.11.6. Then setting ai = χ(σ̃(bi)) gives a solution. □
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CHAPTER 17

Sheaves of Modules

01AC 17.1. Introduction

01AD In this chapter we work out basic notions of sheaves of modules. This in particular
includes the case of abelian sheaves, since these may be viewed as sheaves of Z-
modules. Basic references are [Ser55b], [DG67] and [AGV71].
We work out what happens for sheaves of modules on ringed topoi in another
chapter (see Modules on Sites, Section 18.1), although there we will mostly just
duplicate the discussion from this chapter.

17.2. Pathology

01AE A ringed space is a pair consisting of a topological space X and a sheaf of rings O.
We allow O = 0 in the definition. In this case the category of modules has a single
object (namely 0). It is still an abelian category etc, but it is a little degenerate.
Similarly the sheaf O may be zero over open subsets of X, etc.
This doesn’t happen when considering locally ringed spaces (as we will do later).

17.3. The abelian category of sheaves of modules

01AF Let (X,OX) be a ringed space, see Sheaves, Definition 6.25.1. Let F , G be sheaves
of OX -modules, see Sheaves, Definition 6.10.1. Let φ,ψ : F → G be morphisms of
sheaves of OX -modules. We define φ + ψ : F → G to be the map which on each
open U ⊂ X is the sum of the maps induced by φ, ψ. This is clearly again a map
of sheaves of OX -modules. It is also clear that composition of maps of OX -modules
is bilinear with respect to this addition. Thus Mod(OX) is a pre-additive category,
see Homology, Definition 12.3.1.
We will denote 0 the sheaf of OX -modules which has constant value {0} for all
open U ⊂ X. Clearly this is both a final and an initial object of Mod(OX). Given
a morphism of OX -modules φ : F → G the following are equivalent: (a) φ is zero,
(b) φ factors through 0, (c) φ is zero on sections over each open U , and (d) φx = 0
for all x ∈ X. See Sheaves, Lemma 6.16.1.
Moreover, given a pair F , G of sheaves of OX -modules we may define the direct
sum as

F ⊕ G = F × G
with obvious maps (i, j, p, q) as in Homology, Definition 12.3.5. Thus Mod(OX) is
an additive category, see Homology, Definition 12.3.8.
Let φ : F → G be a morphism of OX -modules. We may define Ker(φ) to be the
subsheaf of F with sections

Ker(φ)(U) = {s ∈ F(U) | φ(s) = 0 in G(U)}

1599
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for all open U ⊂ X. It is easy to see that this is indeed a kernel in the category
of OX -modules. In other words, a morphism α : H → F factors through Ker(φ) if
and only if φ ◦α = 0. Moreover, on the level of stalks we have Ker(φ)x = Ker(φx).
On the other hand, we define Coker(φ) as the sheaf of OX -modules associated to
the presheaf of OX -modules defined by the rule

U 7−→ Coker(G(U)→ F(U)) = F(U)/φ(G(U)).
Since taking stalks commutes with taking sheafification, see Sheaves, Lemma 6.17.2
we see that Coker(φ)x = Coker(φx). Thus the map G → Coker(φ) is surjective (as
a map of sheaves of sets), see Sheaves, Section 6.16. To show that this is a cokernel,
note that if β : G → H is a morphism of OX -modules such that β ◦ φ is zero,
then you get for every open U ⊂ X a map induced by β from G(U)/φ(F(U)) into
H(U). By the universal property of sheafification (see Sheaves, Lemma 6.20.1) we
obtain a canonical map Coker(φ) → H such that the original β is equal to the
composition G → Coker(φ)→ H. The morphism Coker(φ)→ H is unique because
of the surjectivity mentioned above.

Lemma 17.3.1.01AG Let (X,OX) be a ringed space. The category Mod(OX) is an
abelian category. Moreover a complex

F → G → H

is exact at G if and only if for all x ∈ X the complex
Fx → Gx → Hx

is exact at Gx.

Proof. By Homology, Definition 12.5.1 we have to show that image and coimage
agree. By Sheaves, Lemma 6.16.1 it is enough to show that image and coimage
have the same stalk at every x ∈ X. By the constructions of kernels and cokernels
above these stalks are the coimage and image in the categories of OX,x-modules.
Thus we get the result from the fact that the category of modules over a ring is
abelian. □

Actually the category Mod(OX) has many more properties. Here are two construc-
tions we can do.

(1) Given any set I and for each i ∈ I a OX -module we can form the product∏
i∈I
Fi

which is the sheaf that associates to each open U the product of the
modules Fi(U). This is also the categorical product, as in Categories,
Definition 4.14.6.

(2) Given any set I and for each i ∈ I a OX -module we can form the direct
sum ⊕

i∈I
Fi

which is the sheafification of the presheaf that associates to each open
U the direct sum of the modules Fi(U). This is also the categorical
coproduct, as in Categories, Definition 4.14.7. To see this you use the
universal property of sheafification.

Using these we conclude that all limits and colimits exist in Mod(OX).

https://stacks.math.columbia.edu/tag/01AG
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Lemma 17.3.2.01AH Let (X,OX) be a ringed space.
(1) All limits exist in Mod(OX). Limits are the same as the corresponding

limits of presheaves of OX -modules (i.e., commute with taking sections
over opens).

(2) All colimits exist in Mod(OX). Colimits are the sheafification of the corre-
sponding colimit in the category of presheaves. Taking colimits commutes
with taking stalks.

(3) Filtered colimits are exact.
(4) Finite direct sums are the same as the corresponding finite direct sums of

presheaves of OX -modules.

Proof. As Mod(OX) is abelian (Lemma 17.3.1) it has all finite limits and colimits
(Homology, Lemma 12.5.5). Thus the existence of limits and colimits and their
description follows from the existence of products and coproducts and their de-
scription (see discussion above) and Categories, Lemmas 4.14.11 and 4.14.12. Since
sheafification commutes with taking stalks we see that colimits commute with tak-
ing stalks. Part (3) signifies that given a system 0 → Fi → Gi → Hi → 0 of
exact sequences of OX -modules over a directed set I the sequence 0→ colimFi →
colimGi → colimHi → 0 is exact as well. Since we can check exactness on stalks
(Lemma 17.3.1) this follows from the case of modules which is Algebra, Lemma
10.8.8. We omit the proof of (4). □

The existence of limits and colimits allows us to consider exactness properties of
functors defined on the category of O-modules in terms of limits and colimits,
as in Categories, Section 4.23. See Homology, Lemma 12.7.2 for a description of
exactness properties in terms of short exact sequences.

Lemma 17.3.3.01AJ Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces.
(1) The functor f∗ : Mod(OX)→ Mod(OY ) is left exact. In fact it commutes

with all limits.
(2) The functor f∗ : Mod(OY ) → Mod(OX) is right exact. In fact it com-

mutes with all colimits.
(3) Pullback f−1 : Ab(Y )→ Ab(X) on abelian sheaves is exact.

Proof. Parts (1) and (2) hold because (f∗, f∗) is an adjoint pair of functors, see
Sheaves, Lemma 6.26.2 and Categories, Section 4.24. Part (3) holds because exact-
ness can be checked on stalks (Lemma 17.3.1) and the description of stalks of the
pullback, see Sheaves, Lemma 6.22.1. □

Lemma 17.3.4.01AK Let j : U → X be an open immersion of topological spaces. The
functor j! : Ab(U)→ Ab(X) is exact.

Proof. Follows from the description of stalks given in Sheaves, Lemma 6.31.6. □

Lemma 17.3.5.01AI Let (X,OX) be a ringed space. Let I be a set. For i ∈ I, let Fi be
a sheaf of OX -modules. For U ⊂ X quasi-compact open the map⊕

i∈I
Fi(U) −→

(⊕
i∈I
Fi
)

(U)

is bijective.

Proof. If s is an element of the right hand side, then there exists an open covering
U =

⋃
j∈J Uj such that s|Uj is a finite sum

∑
i∈Ij sji with sji ∈ Fi(Uj). Because

https://stacks.math.columbia.edu/tag/01AH
https://stacks.math.columbia.edu/tag/01AJ
https://stacks.math.columbia.edu/tag/01AK
https://stacks.math.columbia.edu/tag/01AI


17.4. SECTIONS OF SHEAVES OF MODULES 1602

U is quasi-compact we may assume that the covering is finite, i.e., that J is finite.
Then I ′ =

⋃
j∈J Ij is a finite subset of I. Clearly, s is a section of the subsheaf⊕

i∈I′ Fi. The result follows from the fact that for a finite direct sum sheafification
is not needed, see Lemma 17.3.2 above. □

17.4. Sections of sheaves of modules

01AL Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules. Let s ∈ Γ(X,F) =
F(X) be a global section. There is a unique map of OX -modules

OX −→ F , f 7−→ fs

associated to s. The notation above signifies that a local section f of OX , i.e., a
section f over some open U , is mapped to the multiplication of f with the restriction
of s to U . Conversely, any map φ : OX → F gives rise to a section s = φ(1) such
that φ is the morphism associated to s.

Definition 17.4.1.01AM Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
We say that F is generated by global sections if there exist a set I, and global
sections si ∈ Γ(X,F), i ∈ I such that the map⊕

i∈I
OX −→ F

which is the map associated to si on the summand corresponding to i, is surjective.
In this case we say that the sections si generate F .

We often use the abuse of notation introduced in Sheaves, Section 6.11 where, given
a local section s of F defined in an open neighbourhood of a point x ∈ X, we denote
sx, or even s the image of s in the stalk Fx.

Lemma 17.4.2.01AN Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
Let I be a set. Let si ∈ Γ(X,F), i ∈ I be global sections. The sections si generate
F if and only if for all x ∈ X the elements si,x ∈ Fx generate the OX,x-module Fx.

Proof. Omitted. □

Lemma 17.4.3.01AO Let (X,OX) be a ringed space. Let F , G be sheaves of OX -modules.
If F and G are generated by global sections then so is F ⊗OX

G.

Proof. Omitted. □

Lemma 17.4.4.01AP Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
Let I be a set. Let si, i ∈ I be a collection of local sections of F , i.e., si ∈ F(Ui)
for some opens Ui ⊂ X. There exists a unique smallest subsheaf of OX -modules G
such that each si corresponds to a local section of G.

Proof. Consider the subpresheaf of OX -modules defined by the rule

U 7−→ {sums
∑

i∈J
fi(si|U ) where J is finite, U ⊂ Ui for i ∈ J, and fi ∈ OX(U)}

Let G be the sheafification of this subpresheaf. This is a subsheaf of F by Sheaves,
Lemma 6.16.3. Since all the finite sums clearly have to be in G this is the smallest
subsheaf as desired. □

Definition 17.4.5.01AQ Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
Given a set I, and local sections si, i ∈ I of F we say that the subsheaf G of Lemma
17.4.4 above is the subsheaf generated by the si.

https://stacks.math.columbia.edu/tag/01AM
https://stacks.math.columbia.edu/tag/01AN
https://stacks.math.columbia.edu/tag/01AO
https://stacks.math.columbia.edu/tag/01AP
https://stacks.math.columbia.edu/tag/01AQ
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Lemma 17.4.6.01AR Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
Given a set I, and local sections si, i ∈ I of F . Let G be the subsheaf generated
by the si and let x ∈ X. Then Gx is the OX,x-submodule of Fx generated by the
elements si,x for those i such that si is defined at x.

Proof. This is clear from the construction of G in the proof of Lemma 17.4.4. □

17.5. Supports of modules and sections

01AS
Definition 17.5.1.01AT Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.

(1) The support of F is the set of points x ∈ X such that Fx ̸= 0.
(2) We denote Supp(F) the support of F .
(3) Let s ∈ Γ(X,F) be a global section. The support of s is the set of points

x ∈ X such that the image sx ∈ Fx of s is not zero.

Of course the support of a local section is then defined also since a local section is
a global section of the restriction of F .

Lemma 17.5.2.01AU Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
Let U ⊂ X open.

(1) The support of s ∈ F(U) is closed in U .
(2) The support of fs is contained in the intersections of the supports of

f ∈ OX(U) and s ∈ F(U).
(3) The support of s + s′ is contained in the union of the supports of s, s′ ∈
F(U).

(4) The support of F is the union of the supports of all local sections of F .
(5) If φ : F → G is a morphism of OX -modules, then the support of φ(s) is

contained in the support of s ∈ F(U).

Proof. This is true because if sx = 0, then s is zero in an open neighbourhood of x
by definition of stalks. Similarly for f . Details omitted. □

In general the support of a sheaf of modules is not closed. Namely, the sheaf could
be an abelian sheaf on R (with the usual archimedean topology) which is the direct
sum of infinitely many nonzero skyscraper sheaves each supported at a single point
pi of R. Then the support would be the set of points pi which may not be closed.
Another example is to consider the open immersion j : U = (0,∞) → R = X,
and the abelian sheaf j!ZU . By Sheaves, Section 6.31 the support of this sheaf is
exactly U .

Lemma 17.5.3.01AV Let X be a topological space. The support of a sheaf of rings is
closed.

Proof. This is true because (according to our conventions) a ring is 0 if and only
if 1 = 0, and hence the support of a sheaf of rings is the support of the unit
section. □

17.6. Closed immersions and abelian sheaves

01AW Recall that we think of an abelian sheaf on a topological space X as a sheaf of
ZX -modules. Thus we may apply any results, definitions for sheaves of modules to
abelian sheaves.

https://stacks.math.columbia.edu/tag/01AR
https://stacks.math.columbia.edu/tag/01AT
https://stacks.math.columbia.edu/tag/01AU
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Lemma 17.6.1.01AX Let X be a topological space. Let Z ⊂ X be a closed subset.
Denote i : Z → X the inclusion map. The functor

i∗ : Ab(Z) −→ Ab(X)
is exact, fully faithful, with essential image exactly those abelian sheaves whose
support is contained in Z. The functor i−1 is a left inverse to i∗.

Proof. Exactness follows from the description of stalks in Sheaves, Lemma 6.32.1
and Lemma 17.3.1. The rest was shown in Sheaves, Lemma 6.32.3. □

Let F be an abelian sheaf on the topological space X. Given a closed subset Z,
there is a canonical abelian subsheaf of F which consists of exactly those sections
whose support is contained in Z. Here is the exact statement.

Remark 17.6.2.01AY Let X be a topological space. Let Z ⊂ X be a closed subset. Let
F be an abelian sheaf on X. For U ⊂ X open set

HZ(F)(U) = {s ∈ F(U) | the support of s is contained in Z ∩ U}
Then HZ(F) is an abelian subsheaf of F . It is the largest abelian subsheaf of F
whose support is contained in Z. By Lemma 17.6.1 we may (and we do) view
HZ(F) as an abelian sheaf on Z. In this way we obtain a left exact functor

Ab(X) −→ Ab(Z), F 7−→ HZ(F) viewed as abelian sheaf on Z

All of the statements made above follow directly from Lemma 17.5.2.

This seems like a good opportunity to show that the functor i∗ has a right adjoint
on abelian sheaves.

Lemma 17.6.3.01AZ Let i : Z → X be the inclusion of a closed subset into the topological
space X. The functor Ab(X) → Ab(Z), F 7→ HZ(F) of Remark 17.6.2 is a right
adjoint to i∗ : Ab(Z)→ Ab(X). In particular i∗ commutes with arbitrary colimits.

Proof. We have to show that for any abelian sheaf F on X and any abelian sheaf
G on Z we have

HomAb(X)(i∗G,F) = HomAb(Z)(G,HZ(F))
This is clear because after all any section of i∗G has support in Z. Details omitted.

□

Remark 17.6.4.01B0 In Sheaves, Remark 6.32.5 we showed that i∗ as a functor on the
categories of sheaves of sets does not have a right adjoint simply because it is not
exact. However, it is very close to being true, in fact, the functor i∗ is exact on
sheaves of pointed sets, sections with support in Z can be defined for sheaves of
pointed sets, and HZ makes sense and is a right adjoint to i∗.

17.7. A canonical exact sequence

02US We give this exact sequence its own section.

Lemma 17.7.1.02UT Let X be a topological space. Let U ⊂ X be an open subset with
complement Z ⊂ X. Denote j : U → X the open immersion and i : Z → X the
closed immersion. For any sheaf of abelian groups F on X the adjunction mappings
j!j

−1F → F and F → i∗i
−1F give a short exact sequence

0→ j!j
−1F → F → i∗i

−1F → 0

https://stacks.math.columbia.edu/tag/01AX
https://stacks.math.columbia.edu/tag/01AY
https://stacks.math.columbia.edu/tag/01AZ
https://stacks.math.columbia.edu/tag/01B0
https://stacks.math.columbia.edu/tag/02UT
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of sheaves of abelian groups. For any morphism φ : F → G of abelian sheaves on
X we obtain a morphism of short exact sequences

0 // j!j
−1F //

��

F //

��

i∗i
−1F //

��

0

0 // j!j
−1G // G // i∗i−1G // 0

Proof. The functoriality of the short exact sequence is immediate from the nat-
urality of the adjunction mappings. We may check exactness on stalks (Lemma
17.3.1). For a description of the stalks in question see Sheaves, Lemmas 6.31.6 and
6.32.1. □

17.8. Modules locally generated by sections

01B1 Let (X,OX) be a ringed space. In this and the following section we will often
restrict sheaves to open subspaces U ⊂ X, see Sheaves, Section 6.31. In particular,
we will often denote the open subspace by (U,OU ) instead of the more correct
notation (U,OX |U ), see Sheaves, Definition 6.31.2.
Consider the open immersion j : U = (0,∞) → R = X, and the abelian sheaf
j!ZU . By Sheaves, Section 6.31 the stalk of j!ZU at x = 0 is 0. In fact the sections
of this sheaf over any open interval containing 0 are 0. Thus there is no open
neighbourhood of the point 0 over which the sheaf can be generated by sections.

Definition 17.8.1.01B2 Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
We say that F is locally generated by sections if for every x ∈ X there exists an
open neighbourhood U of x such that F|U is globally generated as a sheaf of OU -
modules.

In other words there exists a set I and for each i a section si ∈ F(U) such that the
associated map ⊕

i∈I
OU −→ F|U

is surjective.

Lemma 17.8.2.01B3 Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
pullback f∗G is locally generated by sections if G is locally generated by sections.

Proof. Given an open subspace V of Y we may consider the commutative diagram
of ringed spaces

(f−1V,Of−1V )
j′

//

f ′

��

(X,OX)

f

��
(V,OV ) j // (Y,OY )

We know that f∗G|f−1V
∼= (f ′)∗(G|V ), see Sheaves, Lemma 6.26.3. Thus we may

assume that G is globally generated.
We have seen that f∗ commutes with all colimits, and is right exact, see Lemma
17.3.3. Thus if we have a surjection⊕

i∈I
OY → G → 0

https://stacks.math.columbia.edu/tag/01B2
https://stacks.math.columbia.edu/tag/01B3
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then upon applying f∗ we obtain the surjection⊕
i∈I
OX → f∗G → 0.

This implies the lemma. □

17.9. Modules of finite type

01B4
Definition 17.9.1.01B5 Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
We say that F is of finite type if for every x ∈ X there exists an open neighbourhood
U such that F|U is generated by finitely many sections.

Lemma 17.9.2.01B6 Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
pullback f∗G of a finite type OY -module is a finite type OX -module.

Proof. Arguing as in the proof of Lemma 17.8.2 we may assume G is globally
generated by finitely many sections. We have seen that f∗ commutes with all
colimits, and is right exact, see Lemma 17.3.3. Thus if we have a surjection⊕

i=1,...,n
OY → G → 0

then upon applying f∗ we obtain the surjection⊕
i=1,...,n

OX → f∗G → 0.

This implies the lemma. □

Lemma 17.9.3.01B7 Let X be a ringed space. The image of a morphism of OX -modules
of finite type is of finite type. Let 0 → F1 → F2 → F3 → 0 be a short exact
sequence of OX -modules. If F1 and F3 are of finite type, so is F2.

Proof. The statement on images is trivial. The statement on short exact sequences
comes from the fact that sections of F3 locally lift to sections of F2 and the cor-
responding result in the category of modules over a ring (applied to the stalks for
example). □

Lemma 17.9.4.01B8 Let X be a ringed space. Let φ : G → F be a homomorphism
of OX -modules. Let x ∈ X. Assume F of finite type and the map on stalks
φx : Gx → Fx surjective. Then there exists an open neighbourhood x ∈ U ⊂ X
such that φ|U is surjective.

Proof. Choose an open neighbourhood U ⊂ X of x such that F is generated by
s1, . . . , sn ∈ F(U) over U . By assumption of surjectivity of φx, after shrinking U
we may assume that si = φ(ti) for some ti ∈ G(U). Then U works. □

Lemma 17.9.5.01B9 Let X be a ringed space. Let F be an OX -module. Let x ∈ X.
Assume F of finite type and Fx = 0. Then there exists an open neighbourhood
x ∈ U ⊂ X such that F|U is zero.

Proof. This is a special case of Lemma 17.9.4 applied to the morphism 0→ F . □

Lemma 17.9.6.01BA Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
If F is of finite type then support of F is closed.

Proof. This is a reformulation of Lemma 17.9.5. □

https://stacks.math.columbia.edu/tag/01B5
https://stacks.math.columbia.edu/tag/01B6
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Lemma 17.9.7.01BB Let X be a ringed space. Let I be a preordered set and let (Fi, fii′)
be a system over I consisting of sheaves of OX -modules (see Categories, Section
4.21). Let F = colimFi be the colimit. Assume (a) I is directed, (b) F is a finite
type OX -module, and (c) X is quasi-compact. Then there exists an i such that
Fi → F is surjective. If the transition maps fii′ are injective then we conclude that
F = Fi for some i ∈ I.

Proof. Let x ∈ X. There exists an open neighbourhood U ⊂ X of x and finitely
many sections sj ∈ F(U), j = 1, . . . ,m such that s1, . . . , sm generate F as OU -
module. After possibly shrinking U to a smaller open neighbourhood of x we may
assume that each sj comes from a section of Fi for some i ∈ I. Hence, since X is
quasi-compact we can find a finite open covering X =

⋃
j=1,...,m Uj , and for each

j an index ij and finitely many sections sjl ∈ Fij (Uj) whose images generate the
restriction of F to Uj . Clearly, the lemma holds for any index i ∈ I which is ≥ all
ij . □

Lemma 17.9.8.01BC Let X be a ringed space. There exists a set of OX -modules {Fi}i∈I
of finite type such that each finite type OX -module on X is isomorphic to exactly
one of the Fi.

Proof. For each open covering U : X =
⋃
Uj consider the sheaves of OX -modules

F such that each restriction F|Uj is a quotient of O⊕rj
Uj

for some rj ≥ 0. These are
parametrized by subsheaves Kj ⊂ O⊕rj

Uj
and glueing data

φjj′ : O⊕rj
Uj∩Uj′/(Kj |Uj∩Uj′ ) −→ O

⊕rj′

Uj∩Uj′/(Kj′ |Uj∩Uj′ )

see Sheaves, Section 6.33. Note that the collection of all glueing data forms a set.
The collection of all coverings U : X =

⋃
j∈J Ui where J → P(X), j 7→ Uj is

injective forms a set as well. Hence the collection of all sheaves of OX -modules
gotten from glueing quotients as above forms a set I. By definition every finite
type OX -module is isomorphic to an element of I. Choosing an element out of
each isomorphism class inside I gives the desired set of sheaves (uses axiom of
choice). □

17.10. Quasi-coherent modules

01BD In this section we introduce an abstract notion of quasi-coherent OX -module. This
notion is very useful in algebraic geometry, since quasi-coherent modules on a
scheme have a good description on any affine open. However, we warn the reader
that in the general setting of (locally) ringed spaces this notion is not well behaved
at all. The category of quasi-coherent sheaves is not abelian in general, infinite
direct sums of quasi-coherent sheaves aren’t quasi-coherent, etc, etc.

Definition 17.10.1.01BE Let (X,OX) be a ringed space. Let F be a sheaf ofOX -modules.
We say that F is a quasi-coherent sheaf of OX -modules if for every point x ∈ X
there exists an open neighbourhood x ∈ U ⊂ X such that F|U is isomorphic to the
cokernel of a map ⊕

j∈J
OU −→

⊕
i∈I
OU

The category of quasi-coherent OX -modules is denoted QCoh(OX).

https://stacks.math.columbia.edu/tag/01BB
https://stacks.math.columbia.edu/tag/01BC
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The definition means that X is covered by open sets U such that F|U has a pre-
sentation of the form⊕

j∈J
OU −→

⊕
i∈I
OU −→ F|U −→ 0.

Here presentation signifies that the displayed sequence is exact. In other words
(1) for every point x of X there exists an open neighbourhood such that F|U

is generated by global sections, and
(2) for a suitable choice of these sections the kernel of the associated surjection

is also generated by global sections.

Lemma 17.10.2.01BF Let (X,OX) be a ringed space. The direct sum of two quasi-
coherent OX -modules is a quasi-coherent OX -module.

Proof. Omitted. □

Remark 17.10.3.02CF Warning: It is not true in general that an infinite direct sum
of quasi-coherent OX -modules is quasi-coherent. For more esoteric behaviour of
quasi-coherent modules see Example 17.10.9.

Lemma 17.10.4.01BG Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. The
pullback f∗G of a quasi-coherent OY -module is quasi-coherent.

Proof. Arguing as in the proof of Lemma 17.8.2 we may assume G has a global
presentation by direct sums of copies of OY . We have seen that f∗ commutes with
all colimits, and is right exact, see Lemma 17.3.3. Thus if we have an exact sequence⊕

j∈J
OY −→

⊕
i∈I
OY −→ G −→ 0

then upon applying f∗ we obtain the exact sequence⊕
j∈J
OX −→

⊕
i∈I
OX −→ f∗G −→ 0.

This implies the lemma. □

This gives plenty of examples of quasi-coherent sheaves.

Lemma 17.10.5.01BH Let (X,OX) be ringed space. Let α : R → Γ(X,OX) be a ring
homomorphism from a ring R into the ring of global sections on X. Let M be an
R-module. The following three constructions give canonically isomorphic sheaves
of OX -modules:

(1) Let π : (X,OX) −→ ({∗}, R) be the morphism of ringed spaces with
π : X → {∗} the unique map and with π-map π♯ the given map α : R →
Γ(X,OX). Set F1 = π∗M .

(2) Choose a presentation
⊕

j∈J R→
⊕

i∈I R→M → 0. Set

F2 = Coker
(⊕

j∈J
OX →

⊕
i∈I
OX
)
.

Here the map on the component OX corresponding to j ∈ J given by the
section

∑
i α(rij) where the rij are the matrix coefficients of the map in

the presentation of M .
(3) Set F3 equal to the sheaf associated to the presheaf U 7→ OX(U)⊗RM ,

where the map R → OX(U) is the composition of α and the restriction
map OX(X)→ OX(U).

This construction has the following properties:

https://stacks.math.columbia.edu/tag/01BF
https://stacks.math.columbia.edu/tag/02CF
https://stacks.math.columbia.edu/tag/01BG
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(1) The resulting sheaf ofOX -modules FM = F1 = F2 = F3 is quasi-coherent.
(2) The construction gives a functor from the category of R-modules to the

category of quasi-coherent sheaves on X which commutes with arbitrary
colimits.

(3) For any x ∈ X we have FM,x = OX,x ⊗RM functorial in M .
(4) Given any OX -module G we have

MorOX
(FM ,G) = HomR(M,Γ(X,G))

where the R-module structure on Γ(X,G) comes from the Γ(X,OX)-
module structure via α.

Proof. The isomorphism between F1 and F3 comes from the fact that π∗ is de-
fined as the sheafification of the presheaf in (3), see Sheaves, Section 6.26. The
isomorphism between the constructions in (2) and (1) comes from the fact that the
functor π∗ is right exact, so π∗(

⊕
j∈J R) → π∗(

⊕
i∈I R) → π∗M → 0 is exact, π∗

commutes with arbitrary direct sums, see Lemma 17.3.3, and finally the fact that
π∗(R) = OX .

Assertion (1) is clear from construction (2). Assertion (2) is clear since π∗ has
these properties. Assertion (3) follows from the description of stalks of pullback
sheaves, see Sheaves, Lemma 6.26.4. Assertion (4) follows from adjointness of π∗
and π∗. □

Definition 17.10.6.01BI In the situation of Lemma 17.10.5 we say FM is the sheaf
associated to the module M and the ring map α. If R = Γ(X,OX) and α = idR
we simply say FM is the sheaf associated to the module M .

Lemma 17.10.7.01BJ Let (X,OX) be a ringed space. Set R = Γ(X,OX). Let M be an
R-module. Let FM be the quasi-coherent sheaf of OX -modules associated to M .
If g : (Y,OY ) → (X,OX) is a morphism of ringed spaces, then g∗FM is the sheaf
associated to the Γ(Y,OY )-module Γ(Y,OY )⊗RM .

Proof. The assertion follows from the first description of FM in Lemma 17.10.5 as
π∗M , and the following commutative diagram of ringed spaces

(Y,OY )
π
//

g

��

({∗},Γ(Y,OY ))

induced by g♯

��
(X,OX) π // ({∗},Γ(X,OX))

(Also use Sheaves, Lemma 6.26.3.) □

Lemma 17.10.8.01BK Let (X,OX) be a ringed space. Let x ∈ X be a point. Assume
that x has a fundamental system of quasi-compact neighbourhoods. Consider any
quasi-coherent OX -module F . Then there exists an open neighbourhood U of x
such that F|U is isomorphic to the sheaf of modules FM on (U,OU ) associated to
some Γ(U,OU )-module M .

Proof. First we may replace X by an open neighbourhood of x and assume that F
is isomorphic to the cokernel of a map

Ψ :
⊕

j∈J
OX −→

⊕
i∈I
OX .

https://stacks.math.columbia.edu/tag/01BI
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The problem is that this map may not be given by a “matrix”, because the module
of global sections of a direct sum is in general different from the direct sum of the
modules of global sections.

Let x ∈ E ⊂ X be a quasi-compact neighbourhood of x (note: E may not be open).
Let x ∈ U ⊂ E be an open neighbourhood of x contained in E. Next, we proceed
as in the proof of Lemma 17.3.5. For each j ∈ J denote sj ∈ Γ(X,

⊕
i∈I OX)

the image of the section 1 in the summand OX corresponding to j. There exists
a finite collection of opens Ujk, k ∈ Kj such that E ⊂

⋃
k∈Kj Ujk and such that

each restriction sj |Ujk is a finite sum
∑
i∈Ijk fjki with Ijk ⊂ I, and fjki in the

summand OX corresponding to i ∈ I. Set Ij =
⋃
k∈Kj Ijk. This is a finite set.

Since U ⊂ E ⊂
⋃
k∈Kj Ujk the section sj |U is a section of the finite direct sum⊕

i∈Ij OX . By Lemma 17.3.2 we see that actually sj |U is a sum
∑
i∈Ij fij and

fij ∈ OX(U) = Γ(U,OU ).

At this point we can define a module M as the cokernel of the map⊕
j∈J

Γ(U,OU ) −→
⊕

i∈I
Γ(U,OU )

with matrix given by the (fij). By construction (2) of Lemma 17.10.5 we see that
FM has the same presentation as F|U and therefore FM ∼= F|U . □

Example 17.10.9.01BL Let X be countably many copies L1, L2, L3, . . . of the real line
all glued together at 0; a fundamental system of neighbourhoods of 0 being the
collection {Un}n∈N, with Un∩Li = (−1/n, 1/n). Let OX be the sheaf of continuous
real valued functions. Let f : R → R be a continuous function which is identically
zero on (−1, 1) and identically 1 on (−∞,−2) ∪ (2,∞). Denote fn the continuous
function on X which is equal to x 7→ f(nx) on each Lj = R. Let 1Lj be the
characteristic function of Lj . We consider the map⊕

j∈N
OX −→

⊕
j,i∈N

OX , ej 7−→
∑

i∈N
fj1Lieij

with obvious notation. This makes sense because this sum is locally finite as fj is
zero in a neighbourhood of 0. Over Un the image of ej , for j > 2n is not a finite
linear combination

∑
gijeij with gij continuous. Thus there is no neighbourhood

of 0 ∈ X such that the displayed map is given by a “matrix” as in the proof of
Lemma 17.10.8 above.

Note that
⊕

j∈NOX is the sheaf associated to the free module with basis ej and
similarly for the other direct sum. Thus we see that a morphism of sheaves asso-
ciated to modules in general even locally on X does not come from a morphism of
modules. Similarly there should be an example of a ringed space X and a quasi-
coherent OX -module F such that F is not locally of the form FM . (Please email
if you find one.) Moreover, there should be examples of locally compact spaces X
and maps FM → FN which also do not locally come from maps of modules (the
proof of Lemma 17.10.8 shows this cannot happen if N is free).

17.11. Modules of finite presentation

01BM Here is the definition.

https://stacks.math.columbia.edu/tag/01BL
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Definition 17.11.1.01BN Let (X,OX) be a ringed space. Let F be a sheaf ofOX -modules.
We say that F is of finite presentation if for every point x ∈ X there exists an open
neighbourhood x ∈ U ⊂ X, and n,m ∈ N such that F|U is isomorphic to the
cokernel of a map ⊕

j=1,...,m
OU −→

⊕
i=1,...,n

OU

This means that X is covered by open sets U such that F|U has a presentation of
the form ⊕

j=1,...,m
OU −→

⊕
i=1,...,n

OU → F|U → 0.

Here presentation signifies that the displayed sequence is exact. In other words
(1) for every point x of X there exists an open neighbourhood such that F|U

is generated by finitely many global sections, and
(2) for a suitable choice of these sections the kernel of the associated surjection

is also generated by finitely many global sections.

Lemma 17.11.2.01BO Let (X,OX) be a ringed space. Any OX -module of finite presen-
tation is quasi-coherent.

Proof. Immediate from definitions. □

Lemma 17.11.3.01BP Let (X,OX) be a ringed space. Let F be an OX -module of finite
presentation.

(1) If ψ : O⊕r
X → F is a surjection, then Ker(ψ) is of finite type.

(2) If θ : G → F is surjective with G of finite type, then Ker(θ) is of finite
type.

Proof. Proof of (1). Let x ∈ X. Choose an open neighbourhood U ⊂ X of x such
that there exists a presentation

O⊕m
U

χ−→ O⊕n
U

φ−→ F|U → 0.

Let ek be the section generating the kth factor of O⊕r
X . For every k = 1, . . . , r we

can, after shrinking U to a small neighbourhood of x, lift ψ(ek) to a section ẽk of
O⊕n
U over U . This gives a morphism of sheaves α : O⊕r

U → O
⊕n
U such that φ◦α = ψ.

Similarly, after shrinking U , we can find a morphism β : O⊕n
U → O⊕r

U such that
ψ ◦ β = φ. Then the map

O⊕m
U ⊕O⊕r

U

β◦χ,1−β◦α−−−−−−−→ O⊕r
U

is a surjection onto the kernel of ψ.
To prove (2) we may locally choose a surjection η : O⊕r

X → G. By part (1) we see
Ker(θ ◦ η) is of finite type. Since Ker(θ) = η(Ker(θ ◦ η)) we win. □

Lemma 17.11.4.01BQ Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. The
pullback f∗G of a module of finite presentation is of finite presentation.

Proof. Exactly the same as the proof of Lemma 17.10.4 but with finite index sets.
□

Lemma 17.11.5.01BR Let (X,OX) be a ringed space. Set R = Γ(X,OX). Let M be
an R-module. The OX -module FM associated to M is a directed colimit of finitely
presented OX -modules.

https://stacks.math.columbia.edu/tag/01BN
https://stacks.math.columbia.edu/tag/01BO
https://stacks.math.columbia.edu/tag/01BP
https://stacks.math.columbia.edu/tag/01BQ
https://stacks.math.columbia.edu/tag/01BR
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Proof. This follows immediately from Lemma 17.10.5 and the fact that any module
is a directed colimit of finitely presented modules, see Algebra, Lemma 10.11.3. □

Lemma 17.11.6.0B8J Let (X,OX) be a ringed space. Let F be a finitely presented OX -
module. Let x ∈ X such that Fx ∼= O⊕r

X,x. Then there exists an open neighbourhood
U of x such that F|U ∼= O⊕r

U .

Proof. Choose s1, . . . , sr ∈ Fx mapping to a basis of O⊕r
X,x by the isomorphism.

Choose an open neighbourhood U of x such that si lifts to si ∈ F(U). After
shrinking U we see that the induced map ψ : O⊕r

U → F|U is surjective (Lemma
17.9.4). By Lemma 17.11.3 we see that Ker(ψ) is of finite type. Then Ker(ψ)x = 0
implies that Ker(ψ) becomes zero after shrinking U once more (Lemma 17.9.5). □

17.12. Coherent modules

01BU A reference for this section is [Ser55b].
The category of coherent sheaves on a ringed space X is a more reasonable object
than the category of quasi-coherent sheaves, in the sense that it is at least an abelian
subcategory of Mod(OX) no matter what X is. On the other hand, the pullback
of a coherent module is “almost never” coherent in the general setting of ringed
spaces.
Definition 17.12.1.01BV Let (X,OX) be a ringed space. Let F be a sheaf ofOX -modules.
We say that F is a coherent OX -module if the following two conditions hold:

(1) F is of finite type, and
(2) for every open U ⊂ X and every finite collection si ∈ F(U), i = 1, . . . , n

the kernel of the associated map
⊕

i=1,...,nOU → F|U is of finite type.
The category of coherent OX -modules is denoted Coh(OX).
Lemma 17.12.2.01BW Let (X,OX) be a ringed space. Any coherent OX -module is of
finite presentation and hence quasi-coherent.
Proof. Let F be a coherent sheaf on X. Pick a point x ∈ X. By (1) of the definition
of coherent, we may find an open neighbourhood U and sections si, i = 1, . . . , n of
F over U such that Ψ :

⊕
i=1,...,nOU → F is surjective. By (2) of the definition

of coherent, we may find an open neighbourhood V , x ∈ V ⊂ U and sections
t1, . . . , tm of

⊕
i=1,...,nOV which generate the kernel of Ψ|V . Then over V we get

the presentation ⊕
j=1,...,m

OV −→
⊕

i=1,...,n
OV → F|V → 0

as desired. □

Example 17.12.3.01BX Suppose that X is a point. In this case the definition above gives
a notion for modules over rings. What does the definition of coherent mean? It
is closely related to the notion of Noetherian, but it is not the same: Namely, the
ring R = C[x1, x2, x3, . . .] is coherent as a module over itself but not Noetherian as
a module over itself. See Algebra, Section 10.90 for more discussion.
Lemma 17.12.4.01BY Let (X,OX) be a ringed space.

(1) Any finite type subsheaf of a coherent sheaf is coherent.
(2) Let φ : F → G be a morphism from a finite type sheaf F to a coherent

sheaf G. Then Ker(φ) is of finite type.

https://stacks.math.columbia.edu/tag/0B8J
https://stacks.math.columbia.edu/tag/01BV
https://stacks.math.columbia.edu/tag/01BW
https://stacks.math.columbia.edu/tag/01BX
https://stacks.math.columbia.edu/tag/01BY
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(3) Let φ : F → G be a morphism of coherent OX -modules. Then Ker(φ)
and Coker(φ) are coherent.

(4) Given a short exact sequence of OX -modules 0→ F1 → F2 → F3 → 0 if
two out of three are coherent so is the third.

(5) The category Coh(OX) is a weak Serre subcategory of Mod(OX). In
particular, the category of coherent modules is abelian and the inclusion
functor Coh(OX)→ Mod(OX) is exact.

Proof. Condition (2) of Definition 17.12.1 holds for any subsheaf of a coherent
sheaf. Thus we get (1).
Assume the hypotheses of (2). Let us show that Ker(φ) is of finite type. Pick
x ∈ X. Choose an open neighbourhood U of x in X such that F|U is generated by
s1, . . . , sn. By Definition 17.12.1 the kernel K of the induced map

⊕n
i=1OU → G,

ei 7→ φ(si) is of finite type. Hence Ker(φ) which is the image of the composition
K →

⊕n
i=1OU → F is of finite type.

Assume the hypotheses of (3). By (2) the kernel of φ is of finite type and hence by
(1) it is coherent.
With the same hypotheses let us show that Coker(φ) is coherent. Since G is of finite
type so is Coker(φ). Let U ⊂ X be open and let si ∈ Coker(φ)(U), i = 1, . . . , n
be sections. We have to show that the kernel of the associated morphism Ψ :⊕n

i=1OU → Coker(φ) is of finite type. There exists an open covering of U such that
on each open all the sections si lift to sections si of G. Hence we may assume this is
the case over U . We may in addition assume there are sections tj , j = 1, . . . ,m of
Im(φ) over U which generate Im(φ) over U . Let Φ :

⊕m
j=1OU → Im(φ) be defined

using tj and Ψ :
⊕m

j=1OU ⊕
⊕n

i=1OU → G using tj and si. Consider the following
commutative diagram

0 //⊕m
j=1OU

Φ
��

//⊕m
j=1OU ⊕

⊕n
i=1OU

Ψ
��

//⊕n
i=1OU

Ψ
��

// 0

0 // Im(φ) // G // Coker(φ) // 0

By the snake lemma we get an exact sequence Ker(Ψ) → Ker(Ψ) → 0. Since
Ker(Ψ) is a finite type module, we see that Ker(Ψ) has finite type.
Proof of part (4). Let 0 → F1 → F2 → F3 → 0 be a short exact sequence of OX -
modules. By part (3) it suffices to prove that if F1 and F3 are coherent so is F2.
By Lemma 17.9.3 we see that F2 has finite type. Let s1, . . . , sn be finitely many
local sections of F2 defined over a common open U of X. We have to show that
the module of relations K between them is of finite type. Consider the following
commutative diagram

0 // 0 //

��

⊕n
i=1OU //

��

⊕n
i=1OU //

��

0

0 // F1 // F2 // F3 // 0

with obvious notation. By the snake lemma we get a short exact sequence 0→ K →
K3 → F1 where K3 is the module of relations among the images of the sections si
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in F3. Since F1 is coherent we see that K is the kernel of a map from a finite type
module to a coherent module and hence finite type by (2).
Proof of (5). This follows because (3) and (4) show that Homology, Lemma 12.10.3
applies. □

Lemma 17.12.5.01BZ Let (X,OX) be a ringed space. Let F be an OX -module. Assume
OX is a coherent OX -module. Then F is coherent if and only if it is of finite
presentation.

Proof. Omitted. □

Lemma 17.12.6.01C0 Let X be a ringed space. Let φ : G → F be a homomorphism
of OX -modules. Let x ∈ X. Assume G of finite type, F coherent and the map on
stalks φx : Gx → Fx injective. Then there exists an open neighbourhood x ∈ U ⊂ X
such that φ|U is injective.

Proof. Denote K ⊂ G the kernel of φ. By Lemma 17.12.4 we see that K is a finite
type OX -module. Our assumption is that Kx = 0. By Lemma 17.9.5 there exists
an open neighbourhood U of x such that K|U = 0. Then U works. □

17.13. Closed immersions of ringed spaces

01C1 When do we declare a morphism of ringed spaces i : (Z,OZ) → (X,OX) to be a
closed immersion?
Motivated by the example of a closed immersion of normal topological spaces
(ringed with the sheaf of continuous functors), or differential manifolds (ringed
with the sheaf of differentiable functions), it seems natural to assume at least:

(1) The map i is a closed immersion of topological spaces.
(2) The associated map OX → i∗OZ is surjective. Denote the kernel by I.

Already these conditions imply a number of pleasing results: For example we prove
that the category of OZ-modules is equivalent to the category of OX -modules an-
nihilated by I generalizing the result on abelian sheaves of Section 17.6
However, in the Stacks project we choose the definition that guarantees that if i
is a closed immersion and (X,OX) is a scheme, then also (Z,OZ) is a scheme.
Moreover, in this situation we want i∗ and i∗ to provide an equivalence between
the category of quasi-coherent OZ-modules and the category of quasi-coherent OX -
modules annihilated by I. A minimal condition is that i∗OZ is a quasi-coherent
sheaf of OX -modules. A good way to guarantee that i∗OZ is a quasi-coherent OX -
module is to assume that I is locally generated by sections. We can interpret this
condition as saying “(Z,OZ) is locally on (X,OX) defined by setting some regular
functions fi, i.e., local sections of OX , equal to zero”. This leads to the following
definition.

Definition 17.13.1.01C2 A closed immersion of ringed spaces1 is a morphism i : (Z,OZ)→
(X,OX) with the following properties:

(1) The map i is a closed immersion of topological spaces.
(2) The associated map OX → i∗OZ is surjective. Denote the kernel by I.
(3) The OX -module I is locally generated by sections.

1This is nonstandard notation; see discussion above.

https://stacks.math.columbia.edu/tag/01BZ
https://stacks.math.columbia.edu/tag/01C0
https://stacks.math.columbia.edu/tag/01C2
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Actually, this definition still does not guarantee that i∗ of a quasi-coherent OZ-
module is a quasi-coherent OX -module. The problem is that it is not clear how to
convert a local presentation of a quasi-coherent OZ-module into a local presentation
for the pushforward. However, the following is trivial.

Lemma 17.13.2.01C3 Let i : (Z,OZ)→ (X,OX) be a closed immersion of ringed spaces.
Let F be a quasi-coherent OZ-module. Then i∗F is locally on X the cokernel of a
map of quasi-coherent OX -modules.

Proof. This is true because i∗OZ is quasi-coherent by definition. And locally on Z
the sheaf F is a cokernel of a map between direct sums of copies of OZ . Moreover,
any direct sum of copies of the the same quasi-coherent sheaf is quasi-coherent.
And finally, i∗ commutes with arbitrary colimits, see Lemma 17.6.3. Some details
omitted. □

Lemma 17.13.3.01C4 Let i : (Z,OZ) → (X,OX) be a morphism of ringed spaces.
Assume i is a homeomorphism onto a closed subset of X and that OX → i∗OZ is
surjective. Let F be an OZ-module. Then i∗F is of finite type if and only if F is
of finite type.

Proof. Suppose that F is of finite type. Pick x ∈ X. If x ̸∈ Z, then i∗F is
zero in a neighbourhood of x and hence finitely generated in a neighbourhood of
x. If x = i(z), then choose an open neighbourhood z ∈ V ⊂ Z and sections
s1, . . . , sn ∈ F(V ) which generate F over V . Write V = Z ∩ U for some open
U ⊂ X. Note that U is a neighbourhood of x. Clearly the sections si give sections
si of i∗F over U . The resulting map⊕

i=1,...,n
OU −→ i∗F|U

is surjective by inspection of what it does on stalks (here we use that OX → i∗OZ
is surjective). Hence i∗F is of finite type.
Conversely, suppose that i∗F is of finite type. Choose z ∈ Z. Set x = i(z).
By assumption there exists an open neighbourhood U ⊂ X of x, and sections
s1, . . . , sn ∈ (i∗F)(U) which generate i∗F over U . Set V = Z ∩U . By definition of
i∗ the sections si correspond to sections si of F over V . The resulting map⊕

i=1,...,n
OV −→ F|V

is surjective by inspection of what it does on stalks. Hence F is of finite type. □

Lemma 17.13.4.08KS Let i : (Z,OZ) → (X,OX) be a morphism of ringed spaces.
Assume i is a homeomorphism onto a closed subset of X and i♯ : OX → i∗OZ is
surjective. Denote I ⊂ OX the kernel of i♯. The functor

i∗ : Mod(OZ) −→ Mod(OX)
is exact, fully faithful, with essential image those OX -modules G such that IG = 0.

Proof. We claim that for an OZ-module F the canonical map
i∗i∗F −→ F

is an isomorphism. We check this on stalks. Say z ∈ Z and x = i(z). We have
(i∗i∗F)z = (i∗F)x ⊗OX,x

OZ,z = Fz ⊗OX,x
OZ,z = Fz

https://stacks.math.columbia.edu/tag/01C3
https://stacks.math.columbia.edu/tag/01C4
https://stacks.math.columbia.edu/tag/08KS
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by Sheaves, Lemma 6.26.4, the fact that OZ,z is a quotient of OX,x, and Sheaves,
Lemma 6.32.1. It follows that i∗ is fully faithful.
Let G be a OX -module with IG = 0. We will prove the canonical map

G −→ i∗i
∗G

is an isomorphism. This proves that G = i∗F with F = i∗G which finishes the
proof. We check the displayed map induces an isomorphism on stalks. If x ∈ X,
x ̸∈ i(Z), then Gx = 0 because Ix = OX,x in this case. As above (i∗i∗G)x = 0 by
Sheaves, Lemma 6.32.1. On the other hand, if x ∈ Z, then we obtain the map

Gx −→ Gx ⊗OX,x
OZ,x

by Sheaves, Lemmas 6.26.4 and 6.32.1. This map is an isomorphism because OZ,x =
OX,x/Ix and because Gx is annihilated by Ix by assumption. □

Remark 17.13.5.0G6N Let (X,OX) be a ringed space. Let Z ⊂ X be a closed subset.
For an OX -module F we can consider the submodule of sections with support in
Z, denoted HZ(F), defined by the rule

HZ(F)(U) = {s ∈ F(U) | Supp(s) ⊂ U ∩ Z}
Observe thatHZ(F)(U) is a module over OX(U), i.e., HZ(F) is an OX -module. By
construction HZ(F) is the largest OX -submodule of F whose support is contained
in Z. Applying Lemma 17.13.4 to the morphism of ringed spaces (Z,OX |Z) →
(X,OX) we may (and we do) view HZ(F) as an OX |Z-module on Z. Thus we
obtain a functor

Mod(OX) −→ Mod(OX |Z), F 7−→ HZ(F) viewed as an OX |Z-module on Z

This functor is left exact, but in general not exact. All of the statements made
above follow directly from Lemma 17.5.2. Clearly the construction is compatible
with the construction in Remark 17.6.2.

Lemma 17.13.6.0G6P Let (X,OX) be a ringed space. Let i : Z → X be the inclusion
of a closed subset. The functor HZ : Mod(OX) → Mod(OX |Z) of Remark 17.13.5
is right adjoint to i∗ : Mod(OX |Z)→ Mod(OX).

Proof. We have to show that for any OX -module F and any OX |Z-module G we
have

HomOX |Z (G,HZ(F)) = HomOX
(i∗G,F)

This is clear because after all any section of i∗G has support in Z. Details omitted.
□

17.14. Locally free sheaves

01C5 Let (X,OX) be a ringed space. Our conventions allow (some of) the stalks OX,x to
be the zero ring. This means we have to be a little careful when defining the rank
of a locally free sheaf.

Definition 17.14.1.01C6 Let (X,OX) be a ringed space. Let F be a sheaf ofOX -modules.
(1) We say F is locally free if for every point x ∈ X there exist a set I

and an open neighbourhood x ∈ U ⊂ X such that F|U is isomorphic to⊕
i∈I OX |U as an OX |U -module.

(2) We say F is finite locally free if we may choose the index sets I to be
finite.

https://stacks.math.columbia.edu/tag/0G6N
https://stacks.math.columbia.edu/tag/0G6P
https://stacks.math.columbia.edu/tag/01C6
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(3) We say F is finite locally free of rank r if we may choose the index sets I
to have cardinality r.

A finite direct sum of (finite) locally free sheaves is (finite) locally free. However,
it may not be the case that an infinite direct sum of locally free sheaves is locally
free.

Lemma 17.14.2.01C7 Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
If F is locally free then it is quasi-coherent.

Proof. Omitted. □

Lemma 17.14.3.01C8 Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. If G
is a locally free OY -module, then f∗G is a locally free OX -module.

Proof. Omitted. □

Lemma 17.14.4.01C9 Let (X,OX) be a ringed space. Suppose that the support of
OX is X, i.e., all stalks of OX are nonzero rings. Let F be a locally free sheaf of
OX -modules. There exists a locally constant function

rankF : X −→ {0, 1, 2, . . .} ∪ {∞}

such that for any point x ∈ X the cardinality of any set I such that F is isomorphic
to
⊕

i∈I OX in a neighbourhood of x is rankF (x).

Proof. Under the assumption of the lemma the cardinality of I can be read off from
the rank of the free module Fx over the nonzero ring OX,x, and it is constant in a
neighbourhood of x. □

Lemma 17.14.5.089Q Let (X,OX) be a ringed space. Let r ≥ 0. Let φ : F → G be a
map of finite locally free OX -modules of rank r. Then φ is an isomorphism if and
only if φ is surjective.

Proof. Assume φ is surjective. Pick x ∈ X. There exists an open neighbourhood
U of x such that both F|U and G|U are isomorphic to O⊕r

U . Pick lifts of the free
generators of G|U to obtain a map ψ : G|U → F|U such that φ|U ◦ψ = id. Hence we
conclude that the map Γ(U,F) → Γ(U,G) induced by φ is surjective. Since both
Γ(U,F) and Γ(U,G) are isomorphic to Γ(U,OU )⊕r as an Γ(U,OU )-module we may
apply Algebra, Lemma 10.16.4 to see that Γ(U,F) → Γ(U,G) is injective. This
finishes the proof. □

Lemma 17.14.6.0BCI Let (X,OX) be a ringed space. If all stalks OX,x are local rings,
then any direct summand of a finite locally free OX -module is finite locally free.

Proof. Assume F is a direct summand of the finite locally free OX -module H. Let
x ∈ X be a point. Then Hx is a finite free OX,x-module. Because OX,x is local, we
see that Fx ∼= O⊕r

X,x for some r, see Algebra, Lemma 10.78.2. By Lemma 17.11.6
we see that F is free of rank r in an open neighbourhood of x. (Note that F is of
finite presentation as a summand of H.) □

https://stacks.math.columbia.edu/tag/01C7
https://stacks.math.columbia.edu/tag/01C8
https://stacks.math.columbia.edu/tag/01C9
https://stacks.math.columbia.edu/tag/089Q
https://stacks.math.columbia.edu/tag/0BCI
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17.15. Bilinear maps

0GIG Let (X,OX) be a ringed space. Let F , G, and H be OX -modules. A bilinear map
f : F × G → H of sheaves of OX -modules is a map of sheaves of sets as indicated
such that for every open U ⊂ X the induced map

F(U)× G(U)→ H(U)
is an OX(U)-bilinear map of modules. Equivalently you can ask certain diagrams
of maps of sheaves of sets commute, immitating the usual axioms for bilinear maps
of modules. For example, the axiom f(x + y, z) = f(x, z) + f(y, z) is represented
by the commutativity of the diagram

F × F × G
(f◦pr13,f◦pr23)

//

(+◦pr12,pr3)
��

H×H

+
��

F × G
f // H

Another characterization is this: if f : F ×G → H is a map of sheaves of sets and it
induces a bilinar map of modules on stalks for all points of X, then f is a bilinear
map of sheaves of modules. This is true as you can test whether local sections are
equal by checking on stalks.
Let Mor(−,−) denote morphisms in the category of sheaves of sets on X. Another
characterization of a bilinear map is this: a map of sheaves of sets f : F × G → H
is bilinear if given any sheaf of sets S the rule

Mor(S,F)×Mor(S,G)→ Mor(S,H), (a, b) 7→ f ◦ (a× b)
is a bilinear map of modules over the ring Mor(S,OX). We don’t usually take this
point of view as it is easier to think about sets of local sections and it is clearly
equivalent.
Finally, here is yet another way to say the definition: OX is a ring object in the
category of sheaves of sets and F , G, H are module objects over this ring. Then a
bilinear map can be defined for module objects over a ring object in any category.
To formulate what is a ring object and what is a module object over a ring object,
and what is a bilinear map of such in a category it is pleasant (but not strictly
necessary) to assume the category has finite products; and this is true for the
category of sheaves of sets.

17.16. Tensor product

01CA We have already briefly discussed the tensor product in the setting of change of
rings in Sheaves, Sections 6.6 and 6.20. Let us generalize this to tensor products of
modules.
Let (X,OX) be a ringed space and let F and G be OX -modules. We define first
the tensor product presheaf

F ⊗p,OX
G

as the rule which assigns to U ⊂ X open the OX(U)-module F(U) ⊗OX(U) G(U).
Having defined this we define the tensor product sheaf as the sheafification of the
above:

F ⊗OX
G = (F ⊗p,OX

G)#
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This can be characterized as the sheaf of OX -modules such that for any third sheaf
of OX -modules H we have

HomOX
(F ⊗OX

G,H) = BilinOX
(F × G,H).

Here the right hand side indicates the set of bilinear maps of sheaves of OX -modules
as defined in Section 17.15.
The tensor product of modules M,N over a ring R satisfies symmetry, namely
M ⊗R N = N ⊗R M , hence the same holds for tensor products of sheaves of
modules, i.e., we have

F ⊗OX
G = G ⊗OX

F
functorial in F , G. And since tensor product of modules satisfies associativity we
also get canonical functorial isomorphisms

(F ⊗OX
G)⊗OX

H = F ⊗OX
(G ⊗OX

H)
functorial in F , G, and H.

Lemma 17.16.1.01CB Let (X,OX) be a ringed space. Let F , G be OX -modules. Let
x ∈ X. There is a canonical isomorphism of OX,x-modules

(F ⊗OX
G)x = Fx ⊗OX,x

Gx
functorial in F and G.

Proof. Omitted. □

Lemma 17.16.2.05NA Let (X,OX) be a ringed space. Let F ′, G′ be presheaves of
OX -modules with sheafifications F , G. Then F ⊗OX

G = (F ′ ⊗p,OX
G′)#.

Proof. Omitted. □

Lemma 17.16.3.01CC Let (X,OX) be a ringed space. Let G be an OX -module. If
F1 → F2 → F3 → 0 is an exact sequence of OX -modules then the induced sequence

F1 ⊗OX
G → F2 ⊗OX

G → F3 ⊗OX
G → 0

is exact.

Proof. This follows from the fact that exactness may be checked at stalks (Lemma
17.3.1), the description of stalks (Lemma 17.16.1) and the corresponding result for
tensor products of modules (Algebra, Lemma 10.12.10). □

Lemma 17.16.4.01CD Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let
F , G be OY -modules. Then f∗(F ⊗OY

G) = f∗F ⊗OX
f∗G functorially in F , G.

Proof. Omitted. □

Lemma 17.16.5.05NB Let (X,OX) be a ringed space. For any OX -module F the functor
Mod(OX) −→ Mod(OX), G 7−→ F ⊗OX

G
commutes with arbitrary colimits.

Proof. Let I be a preordered set and let {Gi} be a system over I. Set G = colimi Gi.
Recall that G is the sheaf associated to the presheaf G′ : U 7→ colimi Gi(U), see
Sheaves, Section 6.29. By Lemma 17.16.2 the tensor product F ⊗OX

G is the
sheafification of the presheaf

U 7−→ F(U)⊗OX(U) colimi Gi(U) = colimi F(U)⊗OX(U) Gi(U)

https://stacks.math.columbia.edu/tag/01CB
https://stacks.math.columbia.edu/tag/05NA
https://stacks.math.columbia.edu/tag/01CC
https://stacks.math.columbia.edu/tag/01CD
https://stacks.math.columbia.edu/tag/05NB
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where the equality sign is Algebra, Lemma 10.12.9. Hence the lemma follows from
the description of colimits in Mod(OX), see Lemma 17.3.2. □

Lemma 17.16.6.01CE Let (X,OX) be a ringed space. Let F , G be OX -modules.
(1) If F , G are locally generated by sections, so is F ⊗OX

G.
(2) If F , G are of finite type, so is F ⊗OX

G.
(3) If F , G are quasi-coherent, so is F ⊗OX

G.
(4) If F , G are of finite presentation, so is F ⊗OX

G.
(5) If F is of finite presentation and G is coherent, then F ⊗OX

G is coherent.
(6) If F , G are coherent, so is F ⊗OX

G.
(7) If F , G are locally free, so is F ⊗OX

G.

Proof. We first prove that the tensor product of locally free OX -modules is locally
free. This follows if we show that (

⊕
i∈I OX) ⊗OX

(
⊕

j∈J OX) ∼=
⊕

(i,j)∈I×J OX .
The sheaf

⊕
i∈I OX is the sheaf associated to the presheaf U 7→

⊕
i∈I OX(U).

Hence the tensor product is the sheaf associated to the presheaf

U 7−→ (
⊕

i∈I
OX(U))⊗OX(U) (

⊕
j∈J
OX(U)).

We deduce what we want since for any ring R we have (
⊕

i∈I R) ⊗R (
⊕

j∈J R) =⊕
(i,j)∈I×J R.

If F2 → F1 → F → 0 is exact, then by Lemma 17.16.3 the complex F2 ⊗OX
G →

F1 ⊗OX
G → F ⊗OX

G → 0 is exact. Using this we can prove (5). Namely, in this
case there exists locally such an exact sequence with Fi, i = 1, 2 finite free. Hence
the two terms F2⊗OX

G and F1⊗OX
G are isomorphic to finite direct sums of G (for

example by Lemma 17.16.5). Since finite direct sums are coherent sheaves, these
are coherent and so is the cokernel of the map, see Lemma 17.12.4.

And if also G2 → G1 → G → 0 is exact, then we see that

F2 ⊗OX
G1 ⊕F1 ⊗OX

G2 → F1 ⊗OX
G1 → F ⊗OX

G → 0

is exact. Using this we can for example prove (3). Namely, the assumption means
that we can locally find presentations as above with Fi and Gi free OX -modules.
Hence the displayed presentation is a presentation of the tensor product by free
sheaves as well.

The proof of the other statements is omitted. □

17.17. Flat modules

05NC We can define flat modules exactly as in the case of modules over rings.

Definition 17.17.1.05ND Let (X,OX) be a ringed space. An OX -module F is flat if the
functor

Mod(OX) −→ Mod(OX), G 7→ G ⊗O F
is exact.

We can characterize flatness by looking at the stalks.

Lemma 17.17.2.05NE Let (X,OX) be a ringed space. An OX -module F is flat if and
only if the stalk Fx is a flat OX,x-module for all x ∈ X.

https://stacks.math.columbia.edu/tag/01CE
https://stacks.math.columbia.edu/tag/05ND
https://stacks.math.columbia.edu/tag/05NE
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Proof. Assume Fx is a flat OX,x-module for all x ∈ X. In this case, if G → H → K
is exact, then also G⊗OX

F → H⊗OX
F → K⊗OX

F is exact because we can check
exactness at stalks and because tensor product commutes with taking stalks, see
Lemma 17.16.1. Conversely, suppose that F is flat, and let x ∈ X. Consider the
skyscraper sheaves ix,∗M where M is a OX,x-module. Note that

M ⊗OX,x
Fx = (ix,∗M ⊗OX

F)x
again by Lemma 17.16.1. Since ix,∗ is exact, we see that the fact that F is flat
implies that M 7→M ⊗OX,x

Fx is exact. Hence Fx is a flat OX,x-module. □

Thus the following definition makes sense.

Definition 17.17.3.05NF Let (X,OX) be a ringed space. Let x ∈ X. An OX -module F
is flat at x if Fx is a flat OX,x-module.

Hence we see that F is a flat OX -module if and only if it is flat at every point.

Lemma 17.17.4.05NG Let (X,OX) be a ringed space. A filtered colimit of flat OX -
modules is flat. A direct sum of flat OX -modules is flat.

Proof. This follows from Lemma 17.16.5, Lemma 17.16.1, Algebra, Lemma 10.8.8,
and the fact that we can check exactness at stalks. □

Lemma 17.17.5.05NH Let (X,OX) be a ringed space. Let U ⊂ X be open. The sheaf
jU !OU is a flat sheaf of OX -modules.

Proof. The stalks of jU !OU are either zero or equal to OX,x. Apply Lemma 17.17.2.
□

Lemma 17.17.6.05NI Let (X,OX) be a ringed space.
(1) Any sheaf of OX -modules is a quotient of a direct sum

⊕
jUi!OUi .

(2) Any OX -module is a quotient of a flat OX -module.

Proof. Let F be an OX -module. For every open U ⊂ X and every s ∈ F(U) we get
a morphism jU !OU → F , namely the adjoint to the morphism OU → F|U , 1 7→ s.
Clearly the map ⊕

(U,s)
jU !OU −→ F

is surjective, and the source is flat by combining Lemmas 17.17.4 and 17.17.5. □

Lemma 17.17.7.05NJ Let (X,OX) be a ringed space. Let
0→ F ′′ → F ′ → F → 0

be a short exact sequence of OX -modules. Assume F is flat. Then for any OX -
module G the sequence

0→ F ′′ ⊗O G → F ′ ⊗O G → F ⊗O G → 0
is exact.

Proof. Using that Fx is a flat OX,x-module for every x ∈ X and that exactness can
be checked on stalks, this follows from Algebra, Lemma 10.39.12. □

Lemma 17.17.8.05NK Let (X,OX) be a ringed space. Let
0→ F2 → F1 → F0 → 0

be a short exact sequence of OX -modules.

https://stacks.math.columbia.edu/tag/05NF
https://stacks.math.columbia.edu/tag/05NG
https://stacks.math.columbia.edu/tag/05NH
https://stacks.math.columbia.edu/tag/05NI
https://stacks.math.columbia.edu/tag/05NJ
https://stacks.math.columbia.edu/tag/05NK
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(1) If F2 and F0 are flat so is F1.
(2) If F1 and F0 are flat so is F2.

Proof. Since exactness and flatness may be checked at the level of stalks this follows
from Algebra, Lemma 10.39.13. □

Lemma 17.17.9.05NL Let (X,OX) be a ringed space. Let

. . .→ F2 → F1 → F0 → Q→ 0

be an exact complex of OX -modules. If Q and all Fi are flat OX -modules, then for
any OX -module G the complex

. . .→ F2 ⊗OX
G → F1 ⊗OX

G → F0 ⊗OX
G → Q⊗OX

G → 0

is exact also.

Proof. Follows from Lemma 17.17.7 by splitting the complex into short exact se-
quences and using Lemma 17.17.8 to prove inductively that Im(Fi+1 → Fi) is
flat. □

The following lemma gives one direction of the equational criterion of flatness (Al-
gebra, Lemma 10.39.11).

Lemma 17.17.10.08BK Let (X,OX) be a ringed space. Let F be a flat OX -module. Let
U ⊂ X be open and let

OU
(f1,...,fn)−−−−−−→ O⊕n

U

(s1,...,sn)−−−−−−→ F|U

be a complex of OU -modules. For every x ∈ U there exists an open neighbourhood
V ⊂ U of x and a factorization

O⊕n
V

A−→ O⊕m
V

(t1,...,tm)−−−−−−→ F|V

of (s1, . . . , sn)|V such that A ◦ (f1, . . . , fn)|V = 0.

Proof. Let I ⊂ OU be the sheaf of ideals generated by f1, . . . , fn. Then
∑
fi ⊗ si

is a section of I ⊗OU
F|U which maps to zero in F|U . As F|U is flat the map

I ⊗OU
F|U → F|U is injective. Since I ⊗OU

F|U is the sheaf associated to the
presheaf tensor product, we see there exists an open neighbourhood V ⊂ U of x
such that

∑
fi|V ⊗ si|V is zero in I(V ) ⊗O(V ) F(V ). Unwinding the definitions

using Algebra, Lemma 10.107.10 we find t1, . . . , tm ∈ F(V ) and aij ∈ O(V ) such
that

∑
aijfi|V = 0 and si|V =

∑
aijtj . □

17.18. Duals

0FNU Let (X,OX) be a ringed space. The category of OX -modules endowed with the
tensor product constructed in Section 17.16 is a symmetric monoidal category. For
an OX -module F the following are equivalent

(1) F has a left dual in the monoidal category of OX -modules,
(2) F is locally a direct summand of a finite free OX -module, and
(3) F is of finite presentation and flat as an OX -module.

This is proved in Example 17.18.1 and Lemmas 17.18.2 and 17.18.3 of this section.

https://stacks.math.columbia.edu/tag/05NL
https://stacks.math.columbia.edu/tag/08BK
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Example 17.18.1.0FNV Let (X,OX) be a ringed space. Let F be an OX -module which
is locally a direct summand of a finite free OX -module. Then the map

F ⊗OX
HomOX

(F ,OX) −→ HomOX
(F ,F)

is an isomorphism. Namely, this is a local question, it is true if F is finite free, and
it holds for any summand of a module for which it is true. Denote

η : OX −→ F ⊗OX
HomOX

(F ,OX)
the map sending 1 to the section corresponding to idF under the isomorphism
above. Denote

ϵ : HomOX
(F ,OX)⊗OX

F −→ OX
the evaluation map. Then HomOX

(F ,OX), η, ϵ is a left dual for F as in Categories,
Definition 4.43.5. We omit the verification that (1⊗ ϵ) ◦ (η⊗ 1) = idF and (ϵ⊗ 1) ◦
(1⊗ η) = idHomOX (F,OX).

Lemma 17.18.2.0FNW Let (X,OX) be a ringed space. Let F be an OX -module. Let
G, η, ϵ be a left dual of F in the monoidal category of OX -modules, see Categories,
Definition 4.43.5. Then

(1) F is locally a direct summand of a finite free OX -module,
(2) the map e : HomOX

(F ,OX) → G sending a local section λ to (λ ⊗ 1)(η)
is an isomorphism,

(3) we have ϵ(f, g) = e−1(g)(f) for local sections f and g of F and G.

Proof. The assumptions mean that

F η⊗1−−→ F ⊗OX
G ⊗OX

F 1⊗ϵ−−→ F and G 1⊗η−−→ G ⊗OX
F ⊗OX

G ϵ⊗1−−→ G
are the identity map. Let x ∈ X. We can find an open neighbourhood U of x,
a finite number of sections f1, . . . , fn and g1, . . . , gn of F and G over U such that
η(1) =

∑
figi. Denote

O⊕n
U → F|U

the map sending the ith basis vector to fi. Then we can factor the map η|U over a
map η̃ : OU → O⊕n

U ⊗OU
G|U . We obtain a commutative diagram

F|U
η⊗1

//

η̃⊗1
))

F|U ⊗ G|U ⊗F|U 1⊗ϵ
// F|U

O⊕n
U ⊗ G|U ⊗F|U

OO

1⊗ϵ // O⊕n
U

OO

This shows that the identity on F locally on X factors through a finite free module.
This proves (1). Part (2) follows from Categories, Lemma 4.43.6 and its proof. Part
(3) follows from the first equality of the proof. You can also deduce (2) and (3)
from the uniqueness of left duals (Categories, Remark 4.43.7) and the construction
of the left dual in Example 17.18.1. □

Lemma 17.18.3.08BL Let (X,OX) be a ringed space. Let F be a flat OX -module of
finite presentation. Then F is locally a direct summand of a finite free OX -module.

Proof. After replacing X by the members of an open covering, we may assume
there exists a presentation

O⊕r
X → O

⊕n
X → F → 0

https://stacks.math.columbia.edu/tag/0FNV
https://stacks.math.columbia.edu/tag/0FNW
https://stacks.math.columbia.edu/tag/08BL
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Let x ∈ X. By Lemma 17.17.10 we can, after shrinkingX to an open neighbourhood
of x, assume there exists a factorization

O⊕n
X → O⊕n1

X → F

such that the composition O⊕r
X → O⊕n

X → O⊕n1
X annihilates the first summand of

O⊕r
X . Repeating this argument r − 1 more times we obtain a factorization

O⊕n
X → O⊕nr

X → F

such that the composition O⊕r
X → O⊕n

X → O⊕nr
X is zero. This means that the

surjection O⊕nr
X → F has a section and we win. □

17.19. Constructible sheaves of sets

0CAG Let X be a topological space. Given a set S recall that S or SX denotes the
constant sheaf with value S, see Sheaves, Definition 6.7.4. Let U ⊂ X be an open
of a topological space X. We will denote jU the inclusion morphism and we will
denote jU ! : Sh(U)→ Sh(X) the extension by the empty set described in Sheaves,
Section 6.31.

Lemma 17.19.1.0CAH Let X be a topological space. Let B be a basis for the topology on
X. Let F be a sheaf of sets on X. There exists a set I and for each i ∈ I an element
Ui ∈ B and a finite set Si such that there exists a surjection

∐
i∈I jUi!Si → F .

Proof. Let S be a singleton set. We will prove the result with Si = S. For every
x ∈ X and element s ∈ Fx we can choose a U(x, s) ∈ B and s(x, s) ∈ F(U(x, s))
which maps to s in Fx. By Sheaves, Lemma 6.31.4 the section s(x, s) corresponds
to a map of sheaves jU(x,s)!S → F . Then∐

(x,s)
jU(x,s)!S → F

is surjective on stalks and hence surjective. □

Lemma 17.19.2.0CAI Let X be a topological space. Let B be a basis for the topology
of X and assume that each U ∈ B is quasi-compact. Then every sheaf of sets on X
is a filtered colimit of sheaves of the form

(17.19.2.1)0CAJ Coequalizer
( ∐

b=1,...,m jVb!Sb
//
//
∐
a=1,...,n jUa!Sa

)
with Ua and Vb in B and Sa and Sb finite sets.

Proof. By Lemma 17.19.1 every sheaf of sets F is the target of a surjection whose
source F0 is a coproduct of sheaves the form jU !S with U ∈ B and S finite. Applying
this to F0 ×F F0 we find that F is a coequalizer of a pair of maps∐

b∈B jVb!Sb
//
//
∐
a∈A jUa!Sa

for some index sets A, B and Vb and Ua in B and Sa and Sb finite. For every finite
subset B′ ⊂ B there is a finite subset A′ ⊂ A such that the coproduct over b ∈ B′

maps into the coproduct over a ∈ A′ via both maps. Namely, we can view the
right hand side as a filtered colimit with injective transition maps. Hence taking
sections over the quasi-compact opens Vb, b ∈ B′ commutes with this coproduct,
see Sheaves, Lemma 6.29.1. Thus our sheaf is the colimit of the cokernels of these
maps between finite coproducts. □

https://stacks.math.columbia.edu/tag/0CAH
https://stacks.math.columbia.edu/tag/0CAI
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Lemma 17.19.3.0CAK Let X be a spectral topological space. Let B be the set of quasi-
compact open subsets of X. Let F be a sheaf of sets as in Equation (17.19.2.1).
Then there exists a continuous spectral map f : X → Y to a finite sober topological
space Y and a sheaf of sets G on Y with finite stalks such that f−1G ∼= F .

Proof. We can write X = limXi as a directed limit of finite sober spaces, see
Topology, Lemma 5.23.14. Of course the transition maps Xi′ → Xi are spectral
and hence by Topology, Lemma 5.24.5 the maps pi : X → Xi are spectral. For
some i we can find opens Ua,i and Vb,i of Xi whose inverse images are Ua and Vb,
see Topology, Lemma 5.24.6. The two maps

β, γ :
∐

b∈B
jVb!Sb −→

∐
a∈A

jUa!Sa

whose coequalizer is F correspond by adjunction to two families

βb, γb : Sb −→ Γ(Vb,
∐

a∈A
jUa!Sa), b ∈ B

of maps of sets. Observe that p−1
i (jUa,i!Sa) = jUa!Sa and (Xi′ → Xi)−1(jUa,i!Sa) =

jUa,i′ !Sa. It follows from Sheaves, Lemma 6.29.3 (and using that Sb and B are finite
sets) that after increasing i we find maps

βb,i, γb,i : Sb −→ Γ(Vb,i,
∐

a∈A
jUa,i!Sa), b ∈ B

which give rise to the maps βb and γb after pulling back by pi. These maps corre-
spond in turn to maps of sheaves

βi, γi :
∐

b∈B
jVb,i!Sb −→

∐
a∈A

jUa,i!Sa

on Xi. Then we can take Y = Xi and

G = Coequalizer
( ∐

b=1,...,m jVb,i!Sb
//
//
∐
a=1,...,n jUa,i!Sa

)
We omit some details. □

Lemma 17.19.4.0CAL Let X be a spectral topological space. Let B be the set of quasi-
compact open subsets of X. Let F be a sheaf of sets as in Equation (17.19.2.1).
Then there exist finitely many constructible closed subsets Z1, . . . , Zn ⊂ X and
finite sets Si such that F is isomorphic to a subsheaf of

∏
(Zi → X)∗Si.

Proof. By Lemma 17.19.3 we reduce to the case of a finite sober topological space
and a sheaf with finite stalks. In this case F ⊂

∏
x∈X ix,∗Fx where ix : {x} → X

is the embedding. We omit the proof that ix,∗Fx is a constant sheaf on {x}. □

17.20. Flat morphisms of ringed spaces

02N2 The pointwise definition is motivated by Lemma 17.17.2 and Definition 17.17.3
above.

Definition 17.20.1.02N3 Let f : X → Y be a morphism of ringed spaces. Let x ∈ X.
We say f is flat at x if the map of rings OY,f(x) → OX,x is flat. We say f is flat if
f is flat at every x ∈ X.

Consider the map of sheaves of rings f ♯ : f−1OY → OX . We see that the stalk at x
is the ring map f ♯x : OY,f(x) → OX,x. Hence f is flat at x if and only if OX is flat at
x as an f−1OY -module. And f is flat if and only if OX is flat as an f−1OY -module.
A very special case of a flat morphism is an open immersion.

https://stacks.math.columbia.edu/tag/0CAK
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Lemma 17.20.2.02N4 Let f : X → Y be a flat morphism of ringed spaces. Then the
pullback functor f∗ : Mod(OY )→ Mod(OX) is exact.

Proof. The functor f∗ is the composition of the exact functor f−1 : Mod(OY ) →
Mod(f−1OY ) and the change of rings functor

Mod(f−1OY )→ Mod(OX), F 7−→ F ⊗f−1OY
OX .

Thus the result follows from the discussion following Definition 17.20.1. □

Definition 17.20.3.08KT Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
Let F be a sheaf of OX -modules.

(1) We say that F is flat over Y at a point x ∈ X if the stalk Fx is a flat
OY,f(x)-module.

(2) We say that F is flat over Y if F is flat over Y at every point x of X.

With this definition we see that F is flat over Y at x if and only if F is flat at x as
an f−1OY -module because (f−1OY )x = OY,f(x) by Sheaves, Lemma 6.21.5.

Lemma 17.20.4.0GMU Let f : X → Y be a morphism of ringed spaces. Let F be an
OX -module flat over Y . Then the functor

Mod(OY )→ Mod(OX), G 7−→ f∗G ⊗OX
F

is exact.

Proof. This is true because f∗G⊗OX
F = f−1G⊗f−1OY

F , the functor f−1 is exact,
and F is a flat f−1OY -module. □

17.21. Symmetric and exterior powers

01CF Let (X,OX) be a ringed space. Let F be an OX -module. We define the tensor
algebra of F to be the sheaf of noncommutative OX -algebras

T(F) = TOX
(F) =

⊕
n≥0

Tn(F).

Here T0(F) = OX , T1(F) = F and for n ≥ 2 we have
Tn(F) = F ⊗OX

. . .⊗OX
F (n factors)

We define ∧(F) to be the quotient of T(F) by the two sided ideal generated by
local sections s ⊗ s of T2(F) where s is a local section of F . This is called the
exterior algebra of F . Similarly, we define Sym(F) to be the quotient of T(F) by
the two sided ideal generated by local sections of the form s⊗ t− t⊗ s of T2(F).
Both ∧(F) and Sym(F) are graded OX -algebras, with grading inherited from T(F).
Moreover Sym(F) is commutative, and ∧(F) is graded commutative.

Lemma 17.21.1.01CG In the situation described above. The sheaf ∧nF is the sheafifi-
cation of the presheaf

U 7−→ ∧nOX(U)(F(U)).
See Algebra, Section 10.13. Similarly, the sheaf SymnF is the sheafification of the
presheaf

U 7−→ Symn
OX(U)(F(U)).

Proof. Omitted. It may be more efficient to define Sym(F) and ∧(F) in this way
instead of the method given above. □

https://stacks.math.columbia.edu/tag/02N4
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Lemma 17.21.2.01CH In the situation described above. Let x ∈ X. There are canon-
ical isomorphisms of OX,x-modules T(F)x = T(Fx), Sym(F)x = Sym(Fx), and
∧(F)x = ∧(Fx).

Proof. Clear from Lemma 17.21.1 above, and Algebra, Lemma 10.13.5. □

Lemma 17.21.3.01CI Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let F
be a sheaf of OY -modules. Then f∗T(F) = T(f∗F), and similarly for the exterior
and symmetric algebras associated to F .

Proof. Omitted. □

Lemma 17.21.4.01CJ Let (X,OX) be a ringed space. Let F2 → F1 → F → 0 be an
exact sequence of sheaves of OX -modules. For each n ≥ 1 there is an exact sequence

F2 ⊗OX
Symn−1(F1)→ Symn(F1)→ Symn(F)→ 0

and similarly an exact sequence
F2 ⊗OX

∧n−1(F1)→ ∧n(F1)→ ∧n(F)→ 0

Proof. See Algebra, Lemma 10.13.2. □

Lemma 17.21.5.01CK Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
(1) If F is locally generated by sections, then so is each Tn(F), ∧n(F), and

Symn(F).
(2) If F is of finite type, then so is each Tn(F), ∧n(F), and Symn(F).
(3) If F is of finite presentation, then so is each Tn(F), ∧n(F), and Symn(F).
(4) If F is coherent, then for n > 0 each Tn(F), ∧n(F), and Symn(F) is

coherent.
(5) If F is quasi-coherent, then so is each Tn(F), ∧n(F), and Symn(F).
(6) If F is locally free, then so is each Tn(F), ∧n(F), and Symn(F).

Proof. These statements for Tn(F) follow from Lemma 17.16.6.
Statements (1) and (2) follow from the fact that ∧n(F) and Symn(F) are quotients
of Tn(F).
Statement (6) follows from Algebra, Lemma 10.13.1.
For (3) and (5) we will use Lemma 17.21.4 above. By locally choosing a presentation
F2 → F1 → F → 0 with Fi free, or finite free and applying the lemma we see that
Symn(F), ∧n(F) has a similar presentation; here we use (6) and Lemma 17.16.6.
To prove (4) we will use Algebra, Lemma 10.13.3. We may localize on X and
assume that F is generated by a finite set (si)i∈I of global sections. The lemma
mentioned above combined with Lemma 17.21.1 above implies that for n ≥ 2 there
exists an exact sequence⊕

j∈J
Tn−2(F)→ Tn(F)→ Symn(F)→ 0

where the index set J is finite. Now we know that Tn−2(F) is finitely generated
and hence the image of the first arrow is a coherent subsheaf of Tn(F), see Lemma
17.12.4. By that same lemma we conclude that Symn(F) is coherent. □

Lemma 17.21.6.01CL Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
(1) If F is quasi-coherent, then so is each T(F), ∧(F), and Sym(F).

https://stacks.math.columbia.edu/tag/01CH
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(2) If F is locally free, then so is each T(F), ∧(F), and Sym(F).

Proof. It is not true that an infinite direct sum
⊕
Gi of locally free modules is locally

free, or that an infinite direct sum of quasi-coherent modules is quasi-coherent. The
problem is that given a point x ∈ X the open neighbourhoods Ui of x on which Gi
becomes free (resp. has a suitable presentation) may have an intersection which is
not an open neighbourhood of x. However, in the proof of Lemma 17.21.5 we saw
that once a suitable open neighbourhood for F has been chosen, then this open
neighbourhood works for each of the sheaves Tn(F), ∧n(F) and Symn(F). The
lemma follows. □

17.22. Internal Hom

01CM Let (X,OX) be a ringed space. Let F , G be OX -modules. Consider the rule

U 7−→ HomOX |U (F|U ,G|U ).

It follows from the discussion in Sheaves, Section 6.33 that this is a sheaf of abelian
groups. In addition, given an element φ ∈ HomOX |U (F|U ,G|U ) and a section
f ∈ OX(U) then we can define fφ ∈ HomOX |U (F|U ,G|U ) by either precomposing
with multiplication by f on F|U or postcomposing with multiplication by f on G|U
(it gives the same result). Hence we in fact get a sheaf of OX -modules. We will
denote this sheaf HomOX

(F ,G). There is a canonical “evaluation” morphism

F ⊗OX
HomOX

(F ,G) −→ G.

For every x ∈ X there is also a canonical morphism

HomOX
(F ,G)x → HomOX,x

(Fx,Gx)

which is rarely an isomorphism.

Lemma 17.22.1.01CN Let (X,OX) be a ringed space. Let F , G, H be OX -modules.
There is a canonical isomorphism

HomOX
(F ⊗OX

G,H) −→ HomOX
(F ,HomOX

(G,H))

which is functorial in all three entries (sheaf Hom in all three spots). In par-
ticular, to give a morphism F ⊗OX

G → H is the same as giving a morphism
F → HomOX

(G,H).

Proof. This is the analogue of Algebra, Lemma 10.12.8. The proof is the same, and
is omitted. □

Lemma 17.22.2.01CO Let (X,OX) be a ringed space. Let F , G be OX -modules.
(1) If F2 → F1 → F → 0 is an exact sequence of OX -modules, then

0→ HomOX
(F ,G)→ HomOX

(F1,G)→ HomOX
(F2,G)

is exact.
(2) If 0→ G → G1 → G2 is an exact sequence of OX -modules, then

0→ HomOX
(F ,G)→ HomOX

(F ,G1)→ HomOX
(F ,G2)

is exact.

https://stacks.math.columbia.edu/tag/01CN
https://stacks.math.columbia.edu/tag/01CO
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Proof. Let F2 → F1 → F → 0 be as in (1). For every U ⊂ X open the sequence

0→ HomOU
(F|U ,G|U )→ HomOU

(F1|U ,G|U )→ HomOU
(F2|U ,G|U )

is exact by Homology, Lemma 12.5.8. This means that taking sections over U of
the sequence of sheaves in (1) produces an exact sequence of abelian groups. Hence
the sequence in (1) is exact by definition. The proof of (2) is exactly the same. □

Lemma 17.22.3.0A6F Let X be a topological space. Let O1 → O2 be a homomorphism
of sheaves of rings. Then we have

HomO1(FO1 ,G) = HomO2(F ,HomO1(O2,G))

bifunctorially in F ∈ Mod(O2) and G ∈ Mod(O1).

Proof. Omitted. This is the analogue of Algebra, Lemma 10.14.4 and is proved in
exactly the same way. □

Lemma 17.22.4.01CP Let (X,OX) be a ringed space. Let F , G be OX -modules. If F
is of finite type then the canonical map

HomOX
(F ,G)x → HomOX,x

(Fx,Gx)

is injective. If F is finitely presented, this canonical morphism is an isomorphism.

Proof. The map sends the equivalence class of (U,φ) in HomOX
(F ,G)x, where

x ∈ U ⊂ X is open and φ ∈ HomOU
(F|U ,G|U ), to the the induced map on stalks

at x, namely φx : Fx → Gx.

Suppose F is of finite type. Pick a representative (U,φ) of an element σ in the kernel
of the map, i.e., φx = 0. Shrinking U if necessary, choose sections s1, . . . , sn ∈ F(U)
generating F|U . Since φx(six) = 0 and we are dealing with a finite number of
sections, we can find an open neighborhood V ⊂ U of x such that φV (si|V ) = 0
for all i = 1, . . . , n. Since si|V , i = 1, . . . , n generate F|V this means that φ|V = 0.
Since (U,φ) is equivalent to (V, φ|V ) we conclude σ = 0 and injectivity of the map
follows.

Next, assume F is finitely presented. By localizing on X we may assume that F
has a presentation⊕

j=1,...,m
OX −→

⊕
i=1,...,n

OX → F → 0.

By Lemma 17.22.2 this gives an exact sequence 0→ HomOX
(F ,G)→

⊕
i=1,...,n G −→⊕

j=1,...,m G. Taking stalks we get an exact sequence 0→ HomOX
(F ,G)x →

⊕
i=1,...,n Gx −→⊕

j=1,...,m Gx and the result follows since Fx sits in an exact sequence
⊕

j=1,...,mOX,x −→⊕
i=1,...,nOX,x → Fx → 0 which induces the exact sequence 0→ HomOX,x

(Fx,Gx)→⊕
i=1,...,n Gx −→

⊕
j=1,...,m Gx which is the same as the one above. □

Lemma 17.22.5.0C6I Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let
F , G be OY -modules. If F is finitely presented and f is flat, then the canonical
map

f∗HomOY
(F ,G) −→ HomOX

(f∗F , f∗G)
is an isomorphism.

https://stacks.math.columbia.edu/tag/0A6F
https://stacks.math.columbia.edu/tag/01CP
https://stacks.math.columbia.edu/tag/0C6I
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Proof. Note that f∗F is also finitely presented (Lemma 17.11.4). Let x ∈ X map
to y ∈ Y . Looking at the stalks at x we get an isomorphism by Lemma 17.22.4 and
More on Algebra, Lemma 15.65.4 to see that in this case Hom commutes with base
change by OY,y → OX,x. Second proof: use the exact same argument as given in
the proof of Lemma 17.22.4. □

Lemma 17.22.6.01CQ Let (X,OX) be a ringed space. Let F , G be OX -modules. If F is
finitely presented then the sheaf HomOX

(F ,G) is locally a kernel of a map between
finite direct sums of copies of G. In particular, if G is coherent then HomOX

(F ,G)
is coherent too.

Proof. The first assertion we saw in the proof of Lemma 17.22.4. And the result
for coherent sheaves then follows from Lemma 17.12.4. □

Lemma 17.22.7.0GMV Let X be a ringed space. Let F be an OX -module of finite
presentation. Let G = colimλ∈Λ Gλ be a filtered colimit of OX -modules. Then the
canonical map

colimλHomOX
(F ,Gλ) −→ HomOX

(F ,G)
is an isomorphism.

Proof. Taking colimits of sheaves of modules commutes with restriction to opens,
see Sheaves, Section 6.29. Hence we may assume F has a global presentation⊕

j=1,...,m
OX −→

⊕
i=1,...,n

OX → F → 0

The functor HomOX
(−,−) commutes with finite direct sums in either variable and

HomOX
(OX ,−) is the identity functor. By this and by Lemma 17.22.2 we obtain

an exact sequence

0→ HomOX
(F ,G)→

⊕
i=1,...,n

G →
⊕

j=1,...,m
G

Since filtered colimits are exact in Mod(OX) also the top row in the following
commutative diagram is exact

0 // colimλHomOX
(F ,Gλ) //

��

colimλ

⊕
i=1,...,n Gλ //

��

colimλ

⊕
j=1,...,m Gλ

��
0 // HomOX

(F ,G) //⊕
i=1,...,n G //⊕

j=1,...,m G

Since the right two vertical arrows are isomorphisms we conclude. □

Lemma 17.22.8.01BS Let X be a ringed space. Let I be a preordered set and let
(Fi, φii′) be a system over I consisting of sheaves of OX -modules (see Categories,
Section 4.21). Assume

(1) I is directed,
(2) G is an OX -module of finite presentation, and
(3) X has a cofinal system of open coverings U : X =

⋃
j∈J Uj with J finite

and Uj ∩ Uj′ quasi-compact for all j, j′ ∈ J .
Then we have

colimi HomX(G,Fi) = HomX(G, colimi Fi).

https://stacks.math.columbia.edu/tag/01CQ
https://stacks.math.columbia.edu/tag/0GMV
https://stacks.math.columbia.edu/tag/01BS
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Proof. Set H = HomOX
(G, colimFi) and Hi = HomOX

(G,Fi). Recall that
HomX(G,F) = Γ(X,H) and HomX(G,Fi) = Γ(X,Hi)

by construction. By Lemma 17.22.7 we haveH = colimHi. Thus the lemma follows
from Sheaves, Lemma 6.29.1. □

Remark 17.22.9.01BT In the lemma above some condition beyond the condition that X
is quasi-compact is necessary. See Sheaves, Example 6.29.2.

17.23. The annihilator of a sheaf of modules

0H2G Let (X,OX) be a ringed space. Let F be an OX -module. There is a canonical map
of sheaves of OX -modules

OX −→ HomOX
(F ,F)

which sends a local section f ∈ OX(U) to the map f : F|U → F|U given by
multiplication by f .
Definition 17.23.1.0H2H Let (X,OX) be a ringed space and let F be an OX -module. The
annihilator of F , denoted AnnOX

(F) is the kernel of the map OX → HomOX
(F ,F)

discussed above.
For each x ∈ X, there is an inclusion of ideals of OX,x:
(17.23.1.1)0H2I (AnnOX

(F))x ⊂ AnnOX,x
(Fx)

since after all any section of AnnOX
(F) will annihilate the stalks of F at all points

at which it is defined. Here is a simple situation in which (??) becomes an equality.
Lemma 17.23.2.0H2J Let (X,OX) be a ringed space and let F be a sheaf ofOX -modules.
If F is of finite type, then (AnnOX

(F))x = AnnOX,x
(Fx).

Proof. By Lemma 17.22.4 the map
HomOX

(F ,F)x −→ HomOX,x
(Fx,Fx)

is injective. Thus any section f of OX over an open neighbourhood U of x which
acts as zero on Fx will act as zero on F|V for some U ⊃ V ∋ x open. Hence the
inclusion (17.23.1.1) is an equality. □

Lemma 17.23.3.0H2K Let (X,OX) be a ringed space, let F be an OX -module and let
I ⊂ OX be an ideal sheaf. If I ⊂ AnnOX

(F), then F has a natural OX/I-module
structure which agrees with the usual commutative algebra construction on stalks.
Proof. Applying the universal property of the cokernel of the inclusion I → OX ,
we obtain a commutative diagram

OX //

��

HomOX
(F ,F)

OX/I

88

of OX -modules. By Lemma 17.22.1 the resulting map OX/I → HomOX
(F ,F)

corresponds to a map of OX -modules
OX/I ⊗OX

F −→ F
which means we have an OX/I-module structure on F compatible with the given
OX -module structure. We omit the verification of the statement on stalks. □

https://stacks.math.columbia.edu/tag/01BT
https://stacks.math.columbia.edu/tag/0H2H
https://stacks.math.columbia.edu/tag/0H2J
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Lemma 17.23.4.0H2L Let (X,OX) be a ringed space. If OX and F are coherent, then
so is AnnOX

(F).

Proof. Since AnnOX
(F) is the kernel of OX → HomOX

(F ,F) by Lemma 17.12.4 it
suffices to show that HomOX

(F ,F) is coherent. This follows from Lemma 17.22.6
and the fact that F is coherent and a fortiori finitely presented (Lemma 17.12.2). □

17.24. Koszul complexes

062J We suggest first reading the section on Koszul complexes in More on Algebra,
Section 15.28. We define the Koszul complex in the category of OX -modules as
follows.

Definition 17.24.1.062K Let X be a ringed space. Let φ : E → OX be an OX -module
map. The Koszul complex K•(φ) associated to φ is the sheaf of commutative
differential graded algebras defined as follows:

(1) the underlying graded algebra is the exterior algebra K•(φ) = ∧(E),
(2) the differential d : K•(φ) → K•(φ) is the unique derivation such that

d(e) = φ(e) for all local sections e of E = K1(φ).

Explicitly, if e1 ∧ . . . ∧ en is a wedge product of local sections of E , then

d(e1 ∧ . . . ∧ en) =
∑

i=1,...,n
(−1)i+1φ(ei)e1 ∧ . . . ∧ êi ∧ . . . ∧ en.

It is straightforward to see that this gives a well defined derivation on the tensor
algebra, which annihilates e ∧ e and hence factors through the exterior algebra.

Definition 17.24.2.062L Let X be a ringed space and let f1, . . . , fn ∈ Γ(X,OX).
The Koszul complex on f1, . . . , fr is the Koszul complex associated to the map
(f1, . . . , fn) : O⊕n

X → OX . Notation K•(OX , f1, . . . , fn), or K•(OX , f•).

Of course, given an OX -module map φ : E → OX , if E is finite locally free, then
K•(φ) is locally on X isomorphic to a Koszul complex K•(OX , f1, . . . , fn).

17.25. Invertible modules

01CR Similarly to the case of modules over rings (More on Algebra, Section 15.117) we
have the following definition.

Definition 17.25.1.01CS Let (X,OX) be a ringed space. An invertible OX -module is a
sheaf of OX -modules L such that the functor

Mod(OX) −→ Mod(OX), F 7−→ L⊗OX
F

is an equivalence of categories. We say that L is trivial if it is isomorphic as an
OX -module to OX .

Lemma 17.25.4 below explains the relationship with locally free modules of rank 1.

Lemma 17.25.2.0B8K Let (X,OX) be a ringed space. Let L be an OX -module. Equiv-
alent are

(1) L is invertible, and
(2) there exists an OX -module N such that L ⊗OX

N ∼= OX .
In this case L is locally a direct summand of a finite free OX -module and the
module N in (2) is isomorphic to HomOX

(L,OX).

https://stacks.math.columbia.edu/tag/0H2L
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Proof. Assume (1). Then the functor −⊗OX
L is essentially surjective, hence there

exists an OX -module N as in (2). If (2) holds, then the functor − ⊗OX
N is a

quasi-inverse to the functor −⊗OX
L and we see that (1) holds.

Assume (1) and (2) hold. Denote ψ : L⊗OX
N → OX the given isomorphism. Let

x ∈ X. Choose an open neighbourhood U an integer n ≥ 1 and sections si ∈ L(U),
ti ∈ N (U) such that ψ(

∑
si ⊗ ti) = 1. Consider the isomorphisms

L|U → L|U ⊗OU
L|U ⊗OU

N|U → L|U
where the first arrow sends s to

∑
si ⊗ s⊗ ti and the second arrow sends s⊗ s′ ⊗ t

to ψ(s′⊗ t)s. We conclude that s 7→
∑
ψ(s⊗ ti)si is an automorphism of L|U . This

automorphism factors as
L|U → O⊕n

U → L|U
where the first arrow is given by s 7→ (ψ(s⊗t1), . . . , ψ(s⊗tn)) and the second arrow
by (a1, . . . , an) 7→

∑
aisi. In this way we conclude that L|U is a direct summand

of a finite free OU -module.
Assume (1) and (2) hold. Consider the evaluation map

L ⊗OX
HomOX

(L,OX) −→ OX
To finish the proof of the lemma we will show this is an isomorphism by checking
it induces isomorphisms on stalks. Let x ∈ X. Since we know (by the previous
paragraph) that L is a finitely presented OX -module we can use Lemma 17.22.4 to
see that it suffices to show that

Lx ⊗OX,x
HomOX,x

(Lx,OX,x) −→ OX,x
is an isomorphism. Since Lx ⊗OX,x

Nx = (L ⊗OX
N )x = OX,x (Lemma 17.16.1)

the desired result follows from More on Algebra, Lemma 15.117.2. □

Lemma 17.25.3.0B8L Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. The
pullback f∗L of an invertible OY -module is invertible.

Proof. By Lemma 17.25.2 there exists an OY -module N such that L⊗OY
N ∼= OY .

Pulling back we get f∗L⊗OX
f∗N ∼= OX by Lemma 17.16.4. Thus f∗L is invertible

by Lemma 17.25.2. □

Lemma 17.25.4.0B8M Let (X,OX) be a ringed space. Any locally free OX -module of
rank 1 is invertible. If all stalks OX,x are local rings, then the converse holds as
well (but in general this is not the case).

Proof. The parenthetical statement follows by considering a one point space X with
sheaf of rings OX given by a ring R. Then invertible OX -modules correspond to
invertible R-modules, hence as soon as Pic(R) is not the trivial group, then we get
an example.
Assume L is locally free of rank 1 and consider the evaluation map

L ⊗OX
HomOX

(L,OX) −→ OX
Looking over an open covering trivialization L, we see that this map is an isomor-
phism. Hence L is invertible by Lemma 17.25.2.
Assume all stalks OX,x are local rings and L invertible. In the proof of Lemma
17.25.2 we have seen that Lx is an invertible OX,x-module for all x ∈ X. Since
OX,x is local, we see that Lx ∼= OX,x (More on Algebra, Section 15.117). Since L is

https://stacks.math.columbia.edu/tag/0B8L
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of finite presentation by Lemma 17.25.2 we conclude that L is locally free of rank
1 by Lemma 17.11.6. □

Lemma 17.25.5.01CT Let (X,OX) be a ringed space.
(1) If L, N are invertible OX -modules, then so is L ⊗OX

N .
(2) If L is an invertible OX -module, then so is HomOX

(L,OX) and the eval-
uation map L ⊗OX

HomOX
(L,OX)→ OX is an isomorphism.

Proof. Part (1) is clear from the definition and part (2) follows from Lemma 17.25.2
and its proof. □

Definition 17.25.6.01CU Let (X,OX) be a ringed space. Given an invertible sheaf L on
X and n ∈ Z we define the nth tensor power L⊗n of L as the image of OX under
applying the equivalence F 7→ F ⊗OX

L exactly n times.

This makes sense also for negative n as we’ve defined an invertible OX -module as
one for which tensoring is an equivalence. More explicitly, we have

L⊗n =


OX if n = 0

HomOX
(L,OX) if n = −1

L ⊗OX
. . .⊗OX

L if n > 0
L⊗−1 ⊗OX

. . .⊗OX
L⊗−1 if n < −1

see Lemma 17.25.5. With this definition we have canonical isomorphisms L⊗n⊗OX

L⊗m → L⊗n+m, and these isomorphisms satisfy a commutativity and an associa-
tivity constraint (formulation omitted).
Let (X,OX) be a ringed space. We can define a Z-graded ring structure on⊕

Γ(X,L⊗n) by mapping s ∈ Γ(X,L⊗n) and t ∈ Γ(X,L⊗m) to the section cor-
responding to s ⊗ t in Γ(X,L⊗n+m). We omit the verification that this defines a
commutative and associative ring with 1. However, by our conventions in Algebra,
Section 10.56 a graded ring has no nonzero elements in negative degrees. This leads
to the following definition.

Definition 17.25.7.01CV Let (X,OX) be a ringed space. Given an invertible sheaf L on
X we define the associated graded ring to be

Γ∗(X,L) =
⊕

n≥0
Γ(X,L⊗n)

Given a sheaf of OX -modules F we set

Γ∗(X,L,F) =
⊕

n∈Z
Γ(X,F ⊗OX

L⊗n)

which we think of as a graded Γ∗(X,L)-module.

We often write simply Γ∗(L) and Γ∗(F) (although this is ambiguous if F is in-
vertible). The multiplication of Γ∗(L) on Γ∗(F) is defined using the isomorphisms
above. If γ : F → G is a OX -module map, then we get an Γ∗(L)-module homomor-
phism γ : Γ∗(F)→ Γ∗(G). If α : L → N is an OX -module map between invertible
OX -modules, then we obtain a graded ring homomorphism Γ∗(L) → Γ∗(N ). If
f : (Y,OY ) → (X,OX) is a morphism of ringed spaces and if L is invertible on
X, then we get an invertible sheaf f∗L on Y (Lemma 17.25.3) and an induced
homomorphism of graded rings

f∗ : Γ∗(X,L) −→ Γ∗(Y, f∗L)

https://stacks.math.columbia.edu/tag/01CT
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Furthermore, there are some compatibilities between the constructions above whose
statements we omit.

Lemma 17.25.8.01CW Let (X,OX) be a ringed space. There exists a set of invertible
modules {Li}i∈I such that each invertible module on X is isomorphic to exactly
one of the Li.

Proof. Recall that any invertible OX -module is locally a direct summand of a finite
free OX -module, see Lemma 17.25.2. For each open covering U : X =

⋃
j∈J Uj and

map r : J → N consider the sheaves of OX -modules F such that Fj = F|Uj is a
direct summand of O⊕r(j)

Uj
. The collection of isomorphism classes of Fj is a set,

because HomOU
(O⊕r

U ,O⊕r
U ) is a set. The sheaf F is gotten by glueing Fj , see

Sheaves, Section 6.33. Note that the collection of all glueing data forms a set. The
collection of all coverings U : X =

⋃
j∈J Ui where J → P(X), j 7→ Uj is injective

forms a set as well. For each covering there is a set of maps r : J → N. Hence the
collection of all F forms a set. □

This lemma says roughly speaking that the collection of isomorphism classes of
invertible sheaves forms a set. Lemma 17.25.5 says that tensor product defines the
structure of an abelian group on this set.

Definition 17.25.9.01CX Let (X,OX) be a ringed space. The Picard group Pic(X) of
X is the abelian group whose elements are isomorphism classes of invertible OX -
modules, with addition corresponding to tensor product.

Lemma 17.25.10.01CY Let X be a ringed space. Assume that each stalk OX,x is a local
ring with maximal ideal mx. Let L be an invertible OX -module. For any section
s ∈ Γ(X,L) the set

Xs = {x ∈ X | image s ̸∈ mxLx}

is open in X. The map s : OXs → L|Xs is an isomorphism, and there exists a
section s′ of L⊗−1 over Xs such that s′(s|Xs) = 1.

Proof. Suppose x ∈ Xs. We have an isomorphism

Lx ⊗OX,x
(L⊗−1)x −→ OX,x

by Lemma 17.25.5. Both Lx and (L⊗−1)x are free OX,x-modules of rank 1. We
conclude from Algebra, Nakayama’s Lemma 10.20.1 that sx is a basis for Lx. Hence
there exists a basis element tx ∈ (L⊗−1)x such that sx ⊗ tx maps to 1. Choose an
open neighbourhood U of x such that tx comes from a section t of L⊗−1 over U
and such that s ⊗ t maps to 1 ∈ OX(U). Clearly, for every x′ ∈ U we see that s
generates the module Lx′ . Hence U ⊂ Xs. This proves that Xs is open. Moreover,
the section t constructed over U above is unique, and hence these glue to give the
section s′ of the lemma. □

It is also true that, given a morphism of locally ringed spaces f : Y → X (see
Schemes, Definition 26.2.1) that the inverse image f−1(Xs) is equal to Yf∗s, where
f∗s ∈ Γ(Y, f∗L) is the pullback of s.

https://stacks.math.columbia.edu/tag/01CW
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17.26. Rank and determinant

0B37 Let (X,OX) be a ringed space. Consider the category Vect(X) of finite locally
free OX -modules. This is an exact category (see Injectives, Remark 19.9.6) whose
admissible epimorphisms are surjections and whose admissible monomorphisms are
kernels of surjections. Moreover, there is a set of isomorphism classes of objects
of Vect(X) (proof omitted). Thus we can form the zeroth Grothendieck K-group
K0(Vect(X)). Explicitly, in this case K0(Vect(X)) is the abelian group generated
by [E ] for E a finite locally free OX -module, subject to the relations

[E ′] = [E ] + [E ′′]
whenever there is a short exact sequence 0 → E ′ → E → E ′′ → 0 of finite locally
free OX -modules.
Ranks. Assume all stalks OX,x are nonzero rings. Given a finite locally free OX -
module E , the rank is a locally constant function

rankE : X −→ Z≥0, x 7−→ rankOX,x
Ex

See Lemma 17.14.4. By definition of locally free modules the function rankE is
locally constant. If 0 → E ′ → E → E ′′ → 0 is a short exact sequence of finite
locally free OX -modules, then rankE = rankE′ + rankE′′ , Thus the rank defines a
homomorphism

K0(Vect(X)) −→ Mapcont(X,Z), [E ] 7−→ rankE

Determinants. Given a finite locally free OX -module E we obtain a disjoint union
decomposition

X = X0 ⨿X1 ⨿X2 ⨿ . . .
with Xi open and closed, such that E is finite locally free of rank i on Xi (this is
exactly the same as saying the rankE is locally constant). In this case we define
det(E) as the invertible sheaf on X which is equal to ∧i(E|Xi) on Xi for all i ≥ 0.
Since the decomposition above is disjoint, there are no glueing conditions to check.
By Lemma 17.26.1 below this defines a homomorphism

det : K0(Vect(X)) −→ Pic(X), [E ] 7−→ det(E)
of abelian groups. The elements of Pic(X) we get in this manner are locally free of
rank 1 (see below the lemma for a generalization).

Lemma 17.26.1.0B38 Let X be a ringed space. Let 0 → E ′ → E → E ′′ → 0 be a
short exact sequence of finite locally free OX -modules. Then there is a canonical
isomorphism

det(E ′)⊗OX
det(E ′′) −→ det(E)

of OX -modules.

Proof. We can decompose X into disjoint open and closed subsets such that both
E ′ and E ′′ have constant rank on them. Thus we reduce to the case where E ′ and
E ′′ have constant rank, say r′ and r′′. In this situation we define

∧r
′
(E ′)⊗OX

∧r
′′
(E ′′) −→ ∧r

′+r′′
(E)

as follows. Given local sections s′
1, . . . , s

′
r′ of E ′ and local sections s′′

1 , . . . , s
′′
r′′ of E ′′

we map
s′

1 ∧ . . . ∧ s′
r′ ⊗ s′′

1 ∧ . . . ∧ s′′
r′′ to s′

1 ∧ . . . ∧ s′
r′ ∧ s̃′′

1 ∧ . . . ∧ s̃′′
r′′

https://stacks.math.columbia.edu/tag/0B38
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where s̃′′
i is a local lift of the section s′′

i to a section of E . We omit the details. □

Let (X,OX) be a ringed space. Instead of looking at finite locally free OX -modules
we can look at those OX -modules F which are locally on X a direct summand of a
finite free OX -module. This is the same thing as asking F to be a flat OX -module
of finite presentation, see Lemma 17.18.3. If all the stalks OX,x are local, then
such a module F is finite locally free, see Lemma 17.14.6. In general however this
will not be the case; for example X could be a point and Γ(X,OX) could be the
product A × B of two nonzero rings and F could correspond to A × 0. Thus for
such a module the rank function is undefined. However, it turns out we can still
define det(F) and this will be an invertible OX -module in the sense of Definition
17.25.1 (not necessarily locally free of rank 1). Our construction will agree with the
one above in the case that F is finite locally free. We urge the reader to skip the
rest of this section.

Lemma 17.26.2.0FJN Let (X,OX) be a ringed space. Let F be a flat and finitely
presented OX -module. Denote

det(F) ⊂ ∧∗
OX

(F)
the annihilator of F ⊂ ∧∗

OX
(F). Then det(F) is an invertible OX -module.

Proof. To prove this we may work locally on X. Hence we may assume F is a
direct summand of a finite free module, see Lemma 17.18.3. Say F ⊕ G = O⊕n

X .
Set R = OX(X). Then we see F(X)⊕ G(X) = R⊕n and correspondingly F(U)⊕
G(U) = OX(U)⊕n for all opens U ⊂ X. We conclude that F = FM as in Lemma
17.10.5 with M = F(X) a finite projective R-module. In other words, we have
F(U) = M ⊗R OX(U). This implies that det(M) ⊗R OX(U) = det(F(U)) for all
open U ⊂ X with det as in More on Algebra, Section 15.118. By More on Algebra,
Remark 15.118.1 we see that

det(M)⊗R OX(U) = det(F(U)) ⊂ ∧∗
OX(U)(F(U))

is the annihilator of F(U). We conclude that det(F) as defined in the statement
of the lemma is equal to Fdet(M). Some details omitted; one has to be careful
as annihilators cannot be defined as the sheafification of taking annihilators on
sections over opens. Thus det(F) is the pullback of an invertible module and we
conclude. □

17.27. Localizing sheaves of rings

01CZ Let X be a topological space and let OX be a presheaf of rings. Let S ⊂ OX be
a presheaf of sets contained in OX . Suppose that for every open U ⊂ X the set
S(U) ⊂ OX(U) is a multiplicative subset, see Algebra, Definition 10.9.1. In this
case we can consider the presheaf of rings

S−1OX : U 7−→ S(U)−1OX(U).
The restriction mapping sends the section f/s, f ∈ OX(U), s ∈ S(U) to (f |V )/(s|V )
if V ⊂ U are opens of X.

Lemma 17.27.1.01D0 Let X be a topological space and let OX be a presheaf of rings.
Let S ⊂ OX be a pre-sheaf of sets contained in OX . Suppose that for every open
U ⊂ X the set S(U) ⊂ OX(U) is a multiplicative subset.

https://stacks.math.columbia.edu/tag/0FJN
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(1) There is a map of presheaves of rings OX → S−1OX such that every local
section of S maps to an invertible section of OX .

(2) For any homomorphism of presheaves of rings OX → A such that each
local section of S maps to an invertible section of A there exists a unique
factorization S−1OX → A.

(3) For any x ∈ X we have
(S−1OX)x = S−1

x OX,x.
(4) The sheafification (S−1OX)# is a sheaf of rings with a map of sheaves

of rings (OX)# → (S−1OX)# which is universal for maps of (OX)# into
sheaves of rings such that each local section of S maps to an invertible
section.

(5) For any x ∈ X we have
(S−1OX)#

x = S−1
x OX,x.

Proof. Omitted. □

Let X be a topological space and let OX be a presheaf of rings. Let S ⊂ OX be
a presheaf of sets contained in OX . Suppose that for every open U ⊂ X the set
S(U) ⊂ OX(U) is a multiplicative subset. Let F be a presheaf of OX -modules In
this case we can consider the presheaf of S−1OX -modules

S−1F : U 7−→ S(U)−1F(U).
The restriction mapping sends the section t/s, t ∈ F(U), s ∈ S(U) to (t|V )/(s|V )
if V ⊂ U are opens of X.

Lemma 17.27.2.01D1 Let X be a topological space. Let OX be a presheaf of rings.
Let S ⊂ OX be a pre-sheaf of sets contained in OX . Suppose that for every open
U ⊂ X the set S(U) ⊂ OX(U) is a multiplicative subset. For any presheaf of
OX -modules F we have

S−1F = S−1OX ⊗p,OX
F

(see Sheaves, Section 6.6 for notation) and if F and OX are sheaves then
(S−1F)# = (S−1OX)# ⊗OX

F
(see Sheaves, Section 6.20 for notation).

Proof. Omitted. □

17.28. Modules of differentials

08RL In this section we briefly explain how to define the module of relative differentials for
a morphism of ringed spaces. We suggest the reader take a look at the corresponding
section in the chapter on commutative algebra (Algebra, Section 10.131).

Definition 17.28.1.01UN Let X be a topological space. Let φ : O1 → O2 be a homo-
morphism of sheaves of rings. Let F be an O2-module. An O1-derivation or more
precisely a φ-derivation into F is a map D : O2 → F which is additive, annihilates
the image of O1 → O2, and satisfies the Leibniz rule

D(ab) = aD(b) +D(a)b
for all a, b local sections of O2 (wherever they are both defined). We denote
DerO1(O2,F) the set of φ-derivations into F .

https://stacks.math.columbia.edu/tag/01D1
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This is the sheaf theoretic analogue of Algebra, Definition 10.131.1. Given a deriva-
tion D : O2 → F as in the definition the map on global sections

D : Γ(X,O2) −→ Γ(X,F)
is a Γ(X,O1)-derivation as in the algebra definition. Note that if α : F → G is a
map of O2-modules, then there is an induced map

DerO1(O2,F) −→ DerO1(O2,G)
given by the rule D 7→ α ◦D. In other words we obtain a functor.

Lemma 17.28.2.08RM Let X be a topological space. Let φ : O1 → O2 be a homomor-
phism of sheaves of rings. The functor

Mod(O2) −→ Ab, F 7−→ DerO1(O2,F)
is representable.

Proof. This is proved in exactly the same way as the analogous statement in algebra.
During this proof, for any sheaf of sets F onX, let us denoteO2[F ] the sheafification
of the presheaf U 7→ O2(U)[F(U)] where this denotes the free O2(U)-module on
the set F(U). For s ∈ F(U) we denote [s] the corresponding section of O2[F ] over
U . If F is a sheaf of O2-modules, then there is a canonical map

c : O2[F ] −→ F
which on the presheaf level is given by the rule

∑
fs[s] 7→

∑
fss. We will employ

the short hand [s] 7→ s to describe this map and similarly for other maps below.
Consider the map of O2-modules

(17.28.2.1)08RN

O2[O2 ×O2]⊕O2[O2 ×O2]⊕O2[O1] −→ O2[O2]
[(a, b)]⊕ [(f, g)]⊕ [h] 7−→ [a+ b]− [a]− [b]+

[fg]− g[f ]− f [g]+
[φ(h)]

with short hand notation as above. Set ΩO2/O1 equal to the cokernel of this map.
Then it is clear that there exists a map of sheaves of sets

d : O2 −→ ΩO2/O1

mapping a local section f to the image of [f ] in ΩO2/O1 . By construction d is a
O1-derivation. Next, let F be a sheaf of O2-modules and let D : O2 → F be a
O1-derivation. Then we can consider the O2-linear map O2[O2] → F which sends
[g] to D(g). It follows from the definition of a derivation that this map annihilates
sections in the image of the map (17.28.2.1) and hence defines a map

αD : ΩO2/O1 −→ F

Since it is clear that D = αD ◦ d the lemma is proved. □

Definition 17.28.3.08RP Let X be a topological space. Let φ : O1 → O2 be a homo-
morphism of sheaves of rings on X. The module of differentials of φ is the object
representing the functor F 7→ DerO1(O2,F) which exists by Lemma 17.28.2. It is
denoted ΩO2/O1 , and the universal φ-derivation is denoted d : O2 → ΩO2/O1 .

Note that ΩO2/O1 is the cokernel of the map (17.28.2.1) of O2-modules. Moreover
the map d is described by the rule that df is the image of the local section [f ].

https://stacks.math.columbia.edu/tag/08RM
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Lemma 17.28.4.08TD Let X be a topological space. Let φ : O1 → O2 be a homomor-
phism of sheaves of rings on X. Then ΩO2/O1 is the sheaf associated to the presheaf
U 7→ ΩO2(U)/O1(U).

Proof. Consider the map (17.28.2.1). There is a similar map of presheaves whose
value on the open U is

O2(U)[O2(U)×O2(U)]⊕O2(U)[O2(U)×O2(U)]⊕O2(U)[O1(U)] −→ O2(U)[O2(U)]

The cokernel of this map has value ΩO2(U)/O1(U) over U by the construction of
the module of differentials in Algebra, Definition 10.131.2. On the other hand,
the sheaves in (17.28.2.1) are the sheafifications of the presheaves above. Thus the
result follows as sheafification is exact. □

Lemma 17.28.5.08RQ Let X be a topological space. Let φ : O1 → O2 be a homomor-
phism of sheaves of rings. For U ⊂ X open there is a canonical isomorphism

ΩO2/O1 |U = Ω(O2|U )/(O1|U )

compatible with universal derivations.

Proof. Holds because ΩO2/O1 is the cokernel of the map (17.28.2.1). □

Lemma 17.28.6.08RR Let f : Y → X be a continuous map of topological spaces.
Let φ : O1 → O2 be a homomorphism of sheaves of rings on X. Then there is
a canonical identification f−1ΩO2/O1 = Ωf−1O2/f−1O1 compatible with universal
derivations.

Proof. This holds because the sheaf ΩO2/O1 is the cokernel of the map (17.28.2.1)
and a similar statement holds for Ωf−1O2/f−1O1 , because the functor f−1 is exact,
and because f−1(O2[O2]) = f−1O2[f−1O2], f−1(O2[O2 ×O2]) = f−1O2[f−1O2 ×
f−1O2], and f−1(O2[O1]) = f−1O2[f−1O1]. □

Lemma 17.28.7.08TE Let X be a topological space. Let O1 → O2 be a homomorphism
of sheaves of rings on X. Let x ∈ X. Then we have ΩO2/O1,x = ΩO2,x/O1,x .

Proof. This is a special case of Lemma 17.28.6 for the inclusion map {x} → X. An
alternative proof is to use Lemma 17.28.4, Sheaves, Lemma 6.17.2, and Algebra,
Lemma 10.131.5 □

Lemma 17.28.8.08RS Let X be a topological space. Let

O2 φ
// O′

2

O1 //

OO

O′
1

OO

be a commutative diagram of sheaves of rings on X. The map O2 → O′
2 composed

with the map d : O′
2 → ΩO′

2/O′
1

is a O1-derivation. Hence we obtain a canonical
map of O2-modules ΩO2/O1 → ΩO′

2/O′
1
. It is uniquely characterized by the property

that d(f) 7→ d(φ(f)) for any local section f of O2. In this way Ω−/− becomes a
functor on the category of arrows of sheaves of rings.

Proof. This lemma proves itself. □

https://stacks.math.columbia.edu/tag/08TD
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Lemma 17.28.9.08TF In Lemma 17.28.8 suppose that O2 → O′
2 is surjective with kernel

I ⊂ O2 and assume that O1 = O′
1. Then there is a canonical exact sequence of

O′
2-modules

I/I2 −→ ΩO2/O1 ⊗O2 O′
2 −→ ΩO′

2/O1 −→ 0
The leftmost map is characterized by the rule that a local section f of I maps to
df ⊗ 1.

Proof. For a local section f of I denote f the image of f in I/I2. To show that
the map f 7→ df ⊗ 1 is well defined we just have to check that df1f2 ⊗ 1 = 0 if
f1, f2 are local sections of I. And this is clear from the Leibniz rule df1f2 ⊗ 1 =
(f1df2 +f2df1)⊗1 = df2⊗f1 +df1⊗f2 = 0. A similar computation show this map
is O′

2 = O2/I-linear. The map on the right is the one from Lemma 17.28.8. To
see that the sequence is exact, we can check on stalks (Lemma 17.3.1). By Lemma
17.28.7 this follows from Algebra, Lemma 10.131.9. □

Definition 17.28.10.08RT Let (f, f ♯) : (X,OX) → (S,OS) be a morphism of ringed
spaces.

(1) Let F be an OX -module. An S-derivation into F is a f−1OS-derivation,
or more precisely a f ♯-derivation in the sense of Definition 17.28.1. We
denote DerS(OX ,F) the set of S-derivations into F .

(2) The sheaf of differentials ΩX/S of X over S is the module of differentials
ΩOX/f−1OS

endowed with its universal S-derivation dX/S : OX → ΩX/S .

Here is a particular situation where derivations come up naturally.

Lemma 17.28.11.01UP Let (f, f ♯) : (X,OX)→ (S,OS) be a morphism of ringed spaces.
Consider a short exact sequence

0→ I → A → OX → 0
Here A is a sheaf of f−1OS-algebras, π : A → OX is a surjection of sheaves of
f−1OS-algebras, and I = Ker(π) is its kernel. Assume I an ideal sheaf with square
zero in A. So I has a natural structure of an OX -module. A section s : OX → A
of π is a f−1OS-algebra map such that π ◦ s = id. Given any section s : OX → A
of π and any S-derivation D : OX → I the map

s+D : OX → A
is a section of π and every section s′ is of the form s+D for a unique S-derivation
D.

Proof. Recall that the OX -module structure on I is given by hτ = h̃τ (multiplica-
tion in A) where h is a local section of OX , and h̃ is a local lift of h to a local section
of A, and τ is a local section of I. In particular, given s, we may use h̃ = s(h). To
verify that s+D is a homomorphism of sheaves of rings we compute

(s+D)(ab) = s(ab) +D(ab)
= s(a)s(b) + aD(b) +D(a)b
= s(a)s(b) + s(a)D(b) +D(a)s(b)
= (s(a) +D(a))(s(b) +D(b))

by the Leibniz rule. In the same manner one shows s+D is a f−1OS-algebra map
because D is an S-derivation. Conversely, given s′ we set D = s′ − s. Details
omitted. □

https://stacks.math.columbia.edu/tag/08TF
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Lemma 17.28.12.08RU Let
X ′

h′

��

f
// X

h

��
S′ g // S

be a commutative diagram of ringed spaces.
(1) The canonical map OX → f∗OX′ composed with f∗dX′/S′ : f∗OX′ →

f∗ΩX′/S′ is a S-derivation and we obtain a canonical map of OX -modules
ΩX/S → f∗ΩX′/S′ .

(2) The commutative diagram

f−1OX // OX′

f−1h−1OS

OO

// (h′)−1OS′

OO

induces by Lemmas 17.28.6 and 17.28.8 a canonical map f−1ΩX/S →
ΩX′/S′ .

These two maps correspond (via adjointness of f∗ and f∗ and via f∗ΩX/S =
f−1ΩX/S ⊗f−1OX

OX′ and Sheaves, Lemma 6.20.2) to the same OX′ -module ho-
momorphism

cf : f∗ΩX/S −→ ΩX′/S′

which is uniquely characterized by the property that f∗dX/S(a) maps to dX′/S′(f∗a)
for any local section a of OX .

Proof. Omitted. □

Lemma 17.28.13.01UW Let
X ′′

��

g
// X ′

��

f
// X

��
S′′ // S′ // S

be a commutative diagram of ringed spaces. With notation as in Lemma 17.28.12
we have

cf◦g = cg ◦ g∗cf

as maps (f ◦ g)∗ΩX/S → ΩX′′/S′′ .

Proof. Omitted. □

17.29. Finite order differential operators

0G3P In this section we introduce differential operators of finite order. We suggest the
reader take a look at the corresponding section in the chapter on commutative
algebra (Algebra, Section 10.133).

Definition 17.29.1.0G3Q Let X be a topological space. Let φ : O1 → O2 be a homomor-
phism of sheaves of rings on X. Let k ≥ 0 be an integer. Let F , G be sheaves of
O2-modules. A differential operator D : F → G of order k is an is an O1-linear map
such that for all local sections g of O2 the map s 7→ D(gs)− gD(s) is a differential

https://stacks.math.columbia.edu/tag/08RU
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operator of order k− 1. For the base case k = 0 we define a differential operator of
order 0 to be an O2-linear map.

If D : F → G is a differential operator of order k, then for all local sections g of
O2 the map gD is a differential operator of order k. The sum of two differential
operators of order k is another. Hence the set of all these

Diffk(F ,G) = DiffkO2/O1
(F ,G)

is a Γ(X,O2)-module. We have

Diff0(F ,G) ⊂ Diff1(F ,G) ⊂ Diff2(F ,G) ⊂ . . .
The rule which maps U ⊂ X open to the module of differential operators D :
F|U → G|U of order k is a sheaf of O2-modules on X. Thus we obtain a sheaf of
differential operators (if we ever need this we will add a definition here).

Lemma 17.29.2.0G3R Let X be a topological space. Let O1 → O2 be a map of sheaves
of rings on X. Let E ,F ,G be sheaves of O2-modules. If D : E → F and D′ : F → G
are differential operators of order k and k′, then D′ ◦D is a differential operator of
order k + k′.

Proof. Let g be a local section of O2. Then the map which sends a local section x
of E to
D′(D(gx))− gD′(D(x)) = D′(D(gx))−D′(gD(x)) +D′(gD(x))− gD′(D(x))

is a sum of two compositions of differential operators of lower order. Hence the
lemma follows by induction on k + k′. □

Lemma 17.29.3.0G3S Let X be a topological space. Let O1 → O2 be a map of sheaves
of rings on X. Let F be a sheaf of O2-modules. Let k ≥ 0. There exists a sheaf of
O2-modules PkO2/O1

(F) and a canonical isomorphism

DiffkO2/O1
(F ,G) = HomO2(PkO2/O1

(F),G)

functorial in the O2-module G.

Proof. The existence follows from general category theoretic arguments (insert fu-
ture reference here), but we will also give a direct construction as this construction
will be useful in the future proofs. We will freely use the notation introduced in
the proof of Lemma 17.28.2. Given any differential operator D : F → G we obtain
an O2-linear map LD : O2[F ]→ G sending [m] to D(m). If D has order 0 then LD
annihilates the local sections

[m+m′]− [m]− [m′], g0[m]− [g0m]
where g0 is a local section of O2 and m,m′ are local sections of F . If D has order
1, then LD annihilates the local sections

[m+m′ − [m]− [m′], f [m]− [fm], g0g1[m]− g0[g1m]− g1[g0m] + [g1g0m]
where f is a local section of O1, g0, g1 are local sections of O2, and m,m′ are local
sections of F . If D has order k, then LD annihilates the local sections [m+m′]−
[m]− [m′], f [m]− [fm], and the local sections

g0g1 . . . gk[m]−
∑

g0 . . . ĝi . . . gk[gim] + . . .+ (−1)k+1[g0 . . . gkm]

https://stacks.math.columbia.edu/tag/0G3R
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Conversely, if L : O2[F ]→ G is an O2-linear map annihilating all the local sections
listed in the previous sentence, then m 7→ L([m]) is a differential operator of order
k. Thus we see that PkO2/O1

(F) is the quotient of O2[F ] by the O2-submodule
generated by these local sections. □

Definition 17.29.4.0G3T Let X be a topoological space. Let O1 → O2 be a map of
sheaves of rings on X. Let F be a sheaf of O2-modules. The module PkO2/O1

(F)
constructed in Lemma 17.29.3 is called the module of principal parts of order k of
F .

Note that the inclusions
Diff0(F ,G) ⊂ Diff1(F ,G) ⊂ Diff2(F ,G) ⊂ . . .

correspond via Yoneda’s lemma (Categories, Lemma 4.3.5) to surjections
. . .→ P2

O2/O1
(F)→ P1

O2/O1
(F)→ P0

O2/O1
(F) = F

Lemma 17.29.5.0G3U LetX be a topological space. LetO1 → O2 be a homomorphism of
presheaves of rings on X. Let F be a presheaf of O2-modules. Then Pk

O#
2 /O#

1
(F#)

is the sheaf associated to the presheaf U 7→ P kO2(U)/O1(U)(F(U)).

Proof. This can be proved in exactly the same way as is done for the sheaf of
differentials in Lemma 17.28.4. Perhaps a more pleasing approach is to use the
universal property of Lemma 17.29.3 directly to see the equality. We omit the
details. □

Lemma 17.29.6.0G3V Let X be a topological space. Let O1 → O2 be a homomorphism
of sheaves of rings on X. Let F be a sheaf of O2-modules. There is a canonical
short exact sequence

0→ ΩO2/O1 ⊗O2 F → P1
O2/O1

(F)→ F → 0
functorial in F called the sequence of principal parts.

Proof. Follows from the commutative algebra version (Algebra, Lemma 10.133.6)
and Lemmas 17.28.4 and 17.29.5. □

Remark 17.29.7.0G3W Let X be a topological space. Suppose given a commutative
diagram of sheaves of rings

B // B′

A

OO

// A′

OO

on X, a B-module F , a B′-module F ′, and a B-linear map F → F ′. Then we get
a compatible system of module maps

. . . // P2
B′/A′(F ′) // P1

B′/A′(F ′) // P0
B′/A′(F ′)

. . . // P2
B/A(F) //

OO

P1
B/A(F) //

OO

P0
B/A(F)

OO

These maps are compatible with further composition of maps of this type. The
easiest way to see this is to use the description of the modules PkB/A(M) in terms

https://stacks.math.columbia.edu/tag/0G3T
https://stacks.math.columbia.edu/tag/0G3U
https://stacks.math.columbia.edu/tag/0G3V
https://stacks.math.columbia.edu/tag/0G3W
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of (local) generators and relations in the proof of Lemma 17.29.3 but it can also be
seen directly from the universal property of these modules. Moreover, these maps
are compatible with the short exact sequences of Lemma 17.29.6.

Next, we extend our definition to morphisms of ringed spaces.

Definition 17.29.8.0G3X Let (f, f ♯) : (X,OX) → (S,OS) be a morphism of ringed
spaces. Let F and G be OX -modules. Let k ≥ 0 be an integer. A differential
operator of order k on X/S is a differential operator D : F → G with respect to
f ♯ : f−1OS → OX We denote DiffkX/S(F ,G) the set of these differential operators.

17.30. The de Rham complex

0FKL The section is the analogue of Algebra, Section 10.132 for morphisms of ringed
spaces. We urge the reader to read that section first.

Let X be a topological space. Let A → B be a homomorphism of sheaves of rings.
Denote d : B → ΩB/A the module of differentials with its universal A-derivation
constructed in Section 17.28. Let

ΩiB/A = ∧iB(ΩB/A)

for i ≥ 0 be the ith exterior power as in Section 17.21.

Definition 17.30.1.0FKM In the situation above, the de Rham complex of B over A is
the unique complex

Ω0
B/A → Ω1

B/A → Ω2
B/A → . . .

of sheaves of A-modules whose differential in degree 0 is given by d : B → ΩB/A
and whose differentials in higher degrees have the following property

(17.30.1.1)0FKN d (b0db1 ∧ . . . ∧ dbp) = db0 ∧ db1 ∧ . . . ∧ dbp
where b0, . . . , bp ∈ B(U) are sections over a common open U ⊂ X.

We could construct this complex by repeating the cumbersome arguments given in
Algebra, Section 10.132. Instead we recall that ΩB/A is the sheafification of the
presheaf U 7→ ΩB(U)/A(U), see Lemma 17.28.4. Thus ΩiB/A is the sheafification of
the presheaf U 7→ ΩiB(U)/A(U), see Lemma 17.21.1. Therefore we can define the de
Rham complex as the sheafification of the rule

U 7−→ Ω•
B(U)/A(U)

Lemma 17.30.2.0FKP Let f : Y → X be a continuous map of topological spaces. Let
A → B be a homomorphism of sheaves of rings on X. Then there is a canonical
identification f−1Ω•

B/A = Ω•
f−1B/f−1A of de Rham complexes.

Proof. Omitted. Hint: compare with Lemma 17.28.6. □

Lemma 17.30.3.0G3Y Let X be a topological space. Let A → B be a homomorphism of
sheaves of rings on X. The differentials d : ΩiB/A → Ωi+1

B/A are differential operators
of order 1.

Proof. Via our construction of the de Rham complex above as the sheafification of
the rule U 7→ Ω•

B(U)/A(U) this follows from Algebra, Lemma 10.133.8. □

https://stacks.math.columbia.edu/tag/0G3X
https://stacks.math.columbia.edu/tag/0FKM
https://stacks.math.columbia.edu/tag/0FKP
https://stacks.math.columbia.edu/tag/0G3Y
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Let X be a topological space. Let

B // B′

A //

OO

A′

OO

be a commutative diagram of sheaves of rings on X. There is a natural map of de
Rham complexes

Ω•
B/A −→ Ω•

B′/A′

Namely, in degree 0 this is the map B → B′, in degree 1 this is the map ΩB/A →
ΩB′/A′ constructed in Section 17.28, and for p ≥ 2 it is the induced map ΩpB/A =
∧pB(ΩB/A) → ∧pB′(ΩB′/A′) = ΩpB′/A′ . The compatibility with differentials follows
from the characterization of the differentials by the formula (17.30.1.1).

Definition 17.30.4.0FKQ Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
The de Rham complex of f or of X over Y is the complex

Ω•
X/Y = Ω•

OX/f−1OY

Consider a commutative diagram of ringed spaces

X ′

h′

��

f
// X

h

��
S′ g // S

Then we obtain a canonical map
Ω•
X/S → f∗Ω•

X′/S′

of de Rham complexes. Namely, the commutative diagram of sheaves of rings

f−1OX // OX′

f−1h−1OS

OO

// (h′)−1OS′

OO

on X ′ produces a map of complexes (see above)
f−1Ω•

X/S = Ω•
f−1OX/f−1h−1OS

−→ Ω•
OX′/(h′)−1OS′ = Ω•

X′/S′

(using Lemma 17.30.2 for the first equality) and then we can use adjunction.

Lemma 17.30.5.0G3Z Let f : X → Y be a morphism of ringed spaces. The differentials
d : ΩiX/Y → Ωi+1

X/Y are differential operators of order 1 on X/Y .

Proof. Immediate from Lemma 17.30.3 and the definition. □

17.31. The naive cotangent complex

08TG This section is the analogue of Algebra, Section 10.134 for morphisms of ringed
spaces. We urge the reader to read that section first.
Let X be a topological space. Let A → B be a homomorphism of sheaves of rings.
In this section, for any sheaf of sets E on X we denote A[E ] the sheafification of
the presheaf U 7→ A(U)[E(U)]. Here A(U)[E(U)] denotes the polynomial algebra

https://stacks.math.columbia.edu/tag/0FKQ
https://stacks.math.columbia.edu/tag/0G3Z
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over A(U) whose variables correspond to the elements of E(U). We denote [e] ∈
A(U)[E(U)] the variable corresponding to e ∈ E(U). There is a canonical surjection
of A-algebras
(17.31.0.1)08TH A[B] −→ B, [b] 7−→ b

whose kernel we denote I ⊂ A[B]. It is a simple observation that I is generated by
the local sections [b][b′]− [bb′] and [a]− a. According to Lemma 17.28.9 there is a
canonical map
(17.31.0.2)08TI I/I2 −→ ΩA[B]/A ⊗A[B] B
whose cokernel is canonically isomorphic to ΩB/A.

Definition 17.31.1.08TJ Let X be a topological space. Let A → B be a homomorphism
of sheaves of rings. The naive cotangent complex NLB/A is the chain complex
(17.31.0.2)

NLB/A =
(
I/I2 −→ ΩA[B]/A ⊗A[B] B

)
with I/I2 placed in degree −1 and ΩA[B]/A ⊗A[B] B placed in degree 0.

This construction satisfies a functoriality similar to that discussed in Lemma 17.28.8
for modules of differentials. Namely, given a commutative diagram

(17.31.1.1)08TK
B // B′

A

OO

// A′

OO

of sheaves of rings on X there is a canonical B-linear map of complexes
NLB/A −→ NLB′/A′

Namely, the maps in the commutative diagram give rise to a canonical map A[B]→
A′[B′] which maps I into I ′ = Ker(A′[B′] → B′). Thus a map I/I2 → I ′/(I ′)2

and a map between modules of differentials, which together give the desired map
between the naive cotangent complexes. The map is compatible with compositions
in the following sense: given a commutative diagram

B // B′ // B′′

A

OO

// A′

OO

// A′′

OO

of sheaves of rings then the composition
NLB/A −→ NLB′/A′ −→ NLB′′/A′′

is the map for the outer rectangle.
We can choose a different presentation of B as a quotient of a polynomial algebra
over A and still obtain the same object of D(B). To explain this, suppose that
E is a sheaves of sets on X and α : E → B a map of sheaves of sets. Then we
obtain an A-algebra homomorphism A[E ] → B. If this map is surjective, i.e., if
α(E) generates B as an A-algebra, then we set

NL(α) =
(
J /J 2 −→ ΩA[E]/A ⊗A[E] B

)
where J ⊂ A[E ] is the kernel of the surjection A[E ]→ B. Here is the result.

https://stacks.math.columbia.edu/tag/08TJ
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Lemma 17.31.2.08TL In the situation above there is a canonical isomorphism NL(α) =
NLB/A in D(B).

Proof. Observe that NLB/A = NL(idB). Thus it suffices to show that given two
maps αi : Ei → B as above, there is a canonical quasi-isomorphism NL(α1) =
NL(α2) in D(B). To see this set E = E1 ⨿ E2 and α = α1 ⨿ α2 : E → B. Set
Ji = Ker(A[Ei] → B) and J = Ker(A[E ] → B). We obtain maps A[Ei] → A[E ]
which send Ji into J . Thus we obtain canonical maps of complexes

NL(αi) −→ NL(α)
and it suffices to show these maps are quasi-isomorphism. To see this it suffices to
check on stalks (Lemma 17.3.1). If x ∈ X then the stalk of NL(α) is the complex
NL(αx) of Algebra, Section 10.134 associated to the presentation Ax[Ex] → Bx
coming from the map αx : Ex → Bx. (Some details omitted; use Lemma 17.28.7
to see compatibility of forming differentials and taking stalks.) We conclude the
result holds by Algebra, Lemma 10.134.2. □

Lemma 17.31.3.08TM Let f : X → Y be a continuous map of topological spaces.
Let A → B be a homomorphism of sheaves of rings on Y . Then f−1 NLB/A =
NLf−1B/f−1A.

Proof. Omitted. Hint: Use Lemma 17.28.6. □

Lemma 17.31.4.0D09 Let X be a topological space. Let A → B be a homomorphism of
sheaves of rings on X. Let x ∈ X. Then we have NLB/A,x = NLBx/Ax

.

Proof. This is a special case of Lemma 17.31.3 for the inclusion map {x} → X. □

Lemma 17.31.5.0E1Y Let X be a topological space. Let A → B → C be maps of sheaves
of rings. Let C be the cone (Derived Categories, Definition 13.9.1) of the map of
complexes NLC/A → NLC/B. There is a canonical map

c : NLB/A⊗BC −→ C[−1]
of complexes of C-modules which produces a canonical six term exact sequence

H0(NLB/A⊗BC) // H0(NLC/A) // H0(NLC/B) // 0

H−1(NLB/A⊗BC) // H−1(NLC/A) // H−1(NLC/B)

kk

of cohomology sheaves.

Proof. To give the map c we have to give a map c1 : NLB/A⊗BC → NLC/A and an
explicit homotopy between the composition

NLB/A⊗BC → NLC/A → NLC/B

and the zero map, see Derived Categories, Lemma 13.9.3. For c1 we use the func-
toriality described above for the obvious diagram. For the homotopy we use the
map

NL0
B/A⊗BC −→ NL−1

C/B, d[b]⊗ 1 7−→ [φ(b)]− b[1]
where φ : B → C is the given map. Please compare with Algebra, Remark 10.134.5.
To see the consequence for cohomology sheaves, it suffices to show that H0(c) is an
isomorphism and H−1(c) surjective. To see this we can look at stalks, see Lemma

https://stacks.math.columbia.edu/tag/08TL
https://stacks.math.columbia.edu/tag/08TM
https://stacks.math.columbia.edu/tag/0D09
https://stacks.math.columbia.edu/tag/0E1Y
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17.31.4, and then we can use the corresponding result in commutative algebra, see
Algebra, Lemma 10.134.4. Some details omitted. □

The cotangent complex of a morphism of ringed spaces is defined in terms of the
cotangent complex we defined above.

Definition 17.31.6.08TN The naive cotangent complex NLf = NLX/Y of a morphism of
ringed spaces f : (X,OX)→ (Y,OY ) is NLOX/f−1OY

.

Given a commutative diagram
X ′

g
//

f ′

��

X

f

��
Y ′ h // Y

of ringed spaces, there is a canonical map c : g∗ NLX/Y → NLX′/Y ′ . Namely, it is
the map
g∗ NLX/Y = OX′ ⊗g−1OX

NLg−1OX/g−1f−1OY
−→ NLOX′/(f ′)−1OY ′ = NLX′/Y ′

where the arrow comes from the commutative diagram of sheaves of rings

g−1OX
g♯

// OX′

g−1f−1OY
g−1h♯ //

g−1f♯

OO

(f ′)−1OY ′

(f ′)♯

OO

as in (17.31.1.1) above. Given a second such diagram

X ′′
g′
//

��

X ′

��
Y ′′ // Y ′

the composition of (g′)∗c and the map c′ : (g′)∗ NLX′/Y ′ → NLX′′/Y ′′ is the map
(g ◦ g′)∗ NLX′′/Y ′′ → NLX/Y .

Lemma 17.31.7.0E1Z Let f : X → Y and g : Y → Z be morphisms of ringed spaces.
Let C be the cone of the map NLX/Z → NLX/Y of complexes of OX -modules.
There is a canonical map

f∗ NLY/Z → C[−1]
which produces a canonical six term exact sequence

H0(f∗ NLY/Z) // H0(NLX/Z) // H0(NLX/Y ) // 0

H−1(f∗ NLY/Z) // H−1(NLX/Z) // H−1(NLX/Y )

kk

of cohomology sheaves.

Proof. Consider the maps of sheaves rings
(g ◦ f)−1OZ → f−1OY → OX

and apply Lemma 17.31.5. □

https://stacks.math.columbia.edu/tag/08TN
https://stacks.math.columbia.edu/tag/0E1Z
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CHAPTER 18

Modules on Sites

03A4 18.1. Introduction

03A5 In this document we work out basic notions of sheaves of modules on ringed topoi
or ringed sites. We first work out some basic facts on abelian sheaves. After this we
introduce ringed sites and ringed topoi. We work through some of the very basic
notions on (pre)sheaves of O-modules, analogous to the material on (pre)sheaves
of O-modules in the chapter on sheaves on spaces. Having done this, we duplicate
much of the discussion in the chapter on sheaves of modules (see Modules, Section
17.1). Basic references are [Ser55b], [DG67] and [AGV71].

18.2. Abelian presheaves

03A6 Let C be a category. Abelian presheaves were introduced in Sites, Sections 7.2 and
7.7 and discussed a bit more in Sites, Section 7.44. We will follow the convention
of this last reference, in that we think of an abelian presheaf as a presheaf of sets
endowed with addition rules on all sets of sections compatible with the restriction
mappings. Recall that the category of abelian presheaves on C is denoted PAb(C).
The category PAb(C) is abelian as defined in Homology, Definition 12.5.1. Given
a map of presheaves φ : G1 → G2 the kernel of φ is the abelian presheaf U 7→
Ker(G1(U) → G2(U)) and the cokernel of φ is the presheaf U 7→ Coker(G1(U) →
G2(U)). Since the category of abelian groups is abelian it follows that Coim = Im
because this holds over each U . A sequence of abelian presheaves

G1 −→ G2 −→ G3

is exact if and only if G1(U) → G2(U) → G3(U) is an exact sequence of abelian
groups for all U ∈ Ob(C). We leave the verifications to the reader.

Lemma 18.2.1.03CL Let C be a category.
(1) All limits and colimits exist in PAb(C).
(2) All limits and colimits commute with taking sections over objects of C.

Proof. Let I → PAb(C), i 7→ Fi be a diagram. We can simply define abelian
presheaves L and C by the rules

L : U 7−→ limi Fi(U)
and

C : U 7−→ colimi Fi(U).
It is clear that there are maps of abelian presheaves L→ Fi and Fi → C, by using
the corresponding maps on groups of sections over each U . It is straightforward
to check that L and C endowed with these maps are the limit and colimit of the
diagram in PAb(C). This proves (1) and (2). Details omitted. □

1652
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18.3. Abelian sheaves

03CM Let C be a site. The category of abelian sheaves on C is denoted Ab(C). It is the
full subcategory of PAb(C) consisting of those abelian presheaves whose underlying
presheaves of sets are sheaves. Properties (α) – (ζ) of Sites, Section 7.44 hold, see
Sites, Proposition 7.44.3. In particular the inclusion functor Ab(C)→ PAb(C) has
a left adjoint, namely the sheafification functor G 7→ G#.

We suggest the reader prove the lemma on a piece of scratch paper rather than
reading the proof.

Lemma 18.3.1.03CN Let C be a site. Let φ : F → G be a morphism of abelian sheaves
on C.

(1) The category Ab(C) is an abelian category.
(2) The kernel Ker(φ) of φ is the same as the kernel of φ as a morphism of

presheaves.
(3) The morphism φ is injective (Homology, Definition 12.5.3) if and only if

φ is injective as a map of presheaves (Sites, Definition 7.3.1), if and only
if φ is injective as a map of sheaves (Sites, Definition 7.11.1).

(4) The cokernel Coker(φ) of φ is the sheafification of the cokernel of φ as a
morphism of presheaves.

(5) The morphism φ is surjective (Homology, Definition 12.5.3) if and only if
φ is surjective as a map of sheaves (Sites, Definition 7.11.1).

(6) A complex of abelian sheaves

F → G → H

is exact at G if and only if for all U ∈ Ob(C) and all s ∈ G(U) mapping
to zero in H(U) there exists a covering {Ui → U}i∈I in C such that each
s|Ui is in the image of F(Ui)→ G(Ui).

Proof. We claim that Homology, Lemma 12.7.4 applies to the categories A = Ab(C)
and B = PAb(C), and the functors a : A → B (inclusion), and b : B → A (sheafifica-
tion). Let us check the assumptions of Homology, Lemma 12.7.4. Assumption (1)
is that A, B are additive categories, a, b are additive functors, and a is right adjoint
to b. The first two statements are clear and adjointness is Sites, Section 7.44 (ϵ).
Assumption (2) says that PAb(C) is abelian which we saw in Section 18.2 and that
sheafification is left exact, which is Sites, Section 7.44 (ζ). The final assumption
is that ba ∼= idA which is Sites, Section 7.44 (δ). Hence Homology, Lemma 12.7.4
applies and we conclude that Ab(C) is abelian.

In the proof of Homology, Lemma 12.7.4 it is shown that Ker(φ) and Coker(φ) are
equal to the sheafification of the kernel and cokernel of φ as a morphism of abelian
presheaves. This proves (4). Since the kernel is a equalizer (i.e., a limit) and since
sheafification commutes with finite limits, we conclude that (2) holds.

Statement (2) implies (3). Statement (4) implies (5) by our description of sheafifi-
cation. The characterization of exactness in (6) follows from (2) and (5), and the
fact that the sequence is exact if and only if Im(F → G) = Ker(G → H). □

Another way to say part (6) of the lemma is that a sequence of abelian sheaves

F1 −→ F2 −→ F3

https://stacks.math.columbia.edu/tag/03CN
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is exact if and only if the sheafification of U 7→ Im(F1(U)→ F2(U)) is equal to the
kernel of F2 → F3.
Lemma 18.3.2.03CO Let C be a site.

(1) All limits and colimits exist in Ab(C).
(2) Limits are the same as the corresponding limits of abelian presheaves over
C (i.e., commute with taking sections over objects of C).

(3) Finite direct sums are the same as the corresponding finite direct sums in
the category of abelian pre-sheaves over C.

(4) A colimit is the sheafification of the corresponding colimit in the category
of abelian presheaves.

(5) Filtered colimits are exact.
Proof. By Lemma 18.2.1 limits and colimits of abelian presheaves exist, and are
described by taking limits and colimits on the level of sections over objects.
Let I → Ab(C), i 7→ Fi be a diagram. Let limi Fi be the limit of the diagram as an
abelian presheaf. By Sites, Lemma 7.10.1 this is an abelian sheaf. Then it is quite
easy to see that limi Fi is the limit of the diagram in Ab(C). This proves limits
exist and (2) holds.
By Categories, Lemma 4.24.5, and because sheafification is left adjoint to the in-
clusion functor we see that colimi F exists and is the sheafification of the colimit
in PAb(C). This proves colimits exist and (4) holds.
Finite direct sums are the same thing as finite products in any abelian category.
Hence (3) follows from (2).
Proof of (5). The statement means that given a system 0 → Fi → Gi → Hi →
0 of exact sequences of abelian sheaves over a directed set I the sequence 0 →
colimFi → colimGi → colimHi → 0 is exact as well. A formal argument using
Homology, Lemma 12.5.8 and the definition of colimits shows that the sequence
colimFi → colimGi → colimHi → 0 is exact. Note that colimFi → colimGi is the
sheafification of the map of presheaf colimits which is injective as each of the maps
Fi → Gi is injective. Since sheafification is exact we conclude. □

18.4. Free abelian presheaves

03CP In order to prepare notation for the following definition, let us agree to denote
the free abelian group on a set S as1 Z[S] =

⊕
s∈S Z. It is characterized by the

property
MorAb(Z[S], A) = MorSets(S,A)

In other words the construction S 7→ Z[S] is a left adjoint to the forgetful functor
Ab→ Sets.
Definition 18.4.1.03A7 Let C be a category. Let G be a presheaf of sets. The free abelian
presheaf ZG on G is the abelian presheaf defined by the rule

U 7−→ Z[G(U)].
In the special case G = hX of a representable presheaf associated to an object X of
C we use the notation ZX = ZhX . In other words

ZX(U) = Z[MorC(U,X)].
1In other chapters the notation Z[S] sometimes indicates the polynomial ring over Z on S.

https://stacks.math.columbia.edu/tag/03CO
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This construction is clearly functorial in the presheaf G. In fact it is adjoint to the
forgetful functor PAb(C)→ PSh(C). Here is the precise statement.

Lemma 18.4.2.03A8 Let C be a category. Let G, F be a presheaves of sets. Let A be
an abelian presheaf. Let U be an object of C. Then we have

MorPSh(C)(hU ,F) = F(U),
MorPAb(C)(ZG ,A) = MorPSh(C)(G,A),
MorPAb(C)(ZU ,A) = A(U).

All of these equalities are functorial.

Proof. Omitted. □

Lemma 18.4.3.03A9 Let C be a category. Let I be a set. For each i ∈ I let Gi be a
presheaf of sets. Then

Z∐
i

Gi =
⊕

i∈I
ZGi

in PAb(C).

Proof. Omitted. □

18.5. Free abelian sheaves

03CQ Here is the notion of a free abelian sheaf on a sheaf of sets.

Definition 18.5.1.03AA Let C be a site. Let G be a presheaf of sets. The free abelian
sheaf Z#

G on G is the abelian sheaf Z#
G which is the sheafification of the free abelian

presheaf on G. In the special case G = hX of a representable presheaf associated to
an object X of C we use the notation Z#

X .

This construction is clearly functorial in the presheaf G. In fact it provides an
adjoint to the forgetful functor Ab(C)→ Sh(C). Here is the precise statement.

Lemma 18.5.2.03AB Let C be a site. Let G, F be a sheaves of sets. Let A be an abelian
sheaf. Let U be an object of C. Then we have

MorSh(C)(h#
U ,F) = F(U),

MorAb(C)(Z#
G ,A) = MorSh(C)(G,A),

MorAb(C)(Z#
U ,A) = A(U).

All of these equalities are functorial.

Proof. Omitted. □

Lemma 18.5.3.03AC Let C be a site. Let G be a presheaf of sets. Then Z#
G = (ZG#)#.

Proof. Omitted. □

18.6. Ringed sites

04KQ In this chapter we mainly work with sheaves of modules on a ringed site. Hence we
need to define this notion.

Definition 18.6.1.03AD Ringed sites.
(1) A ringed site is a pair (C,O) where C is a site and O is a sheaf of rings on
C. The sheaf O is called the structure sheaf of the ringed site.

https://stacks.math.columbia.edu/tag/03A8
https://stacks.math.columbia.edu/tag/03A9
https://stacks.math.columbia.edu/tag/03AA
https://stacks.math.columbia.edu/tag/03AB
https://stacks.math.columbia.edu/tag/03AC
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(2) Let (C,O), (C′,O′) be ringed sites. A morphism of ringed sites
(f, f ♯) : (C,O) −→ (C′,O′)

is given by a morphism of sites f : C → C′ (see Sites, Definition 7.14.1)
together with a map of sheaves of rings f ♯ : f−1O′ → O, which by ad-
junction is the same thing as a map of sheaves of rings f ♯ : O′ → f∗O.

(3) Let (f, f ♯) : (C1,O1) → (C2,O2) and (g, g♯) : (C2,O2) → (C3,O3) be
morphisms of ringed sites. Then we define the composition of morphisms
of ringed sites by the rule

(g, g♯) ◦ (f, f ♯) = (g ◦ f, f ♯ ◦ g♯).
Here we use composition of morphisms of sites defined in Sites, Definition
7.14.5 and f ♯ ◦ g♯ indicates the morphism of sheaves of rings

O3
g♯−→ g∗O2

g∗f
♯

−−−→ g∗f∗O1 = (g ◦ f)∗O1

18.7. Ringed topoi

01D2 A ringed topos is just a ringed site, except that the notion of a morphism of ringed
topoi is different from the notion of a morphism of ringed sites.

Definition 18.7.1.01D3 Ringed topoi.
(1) A ringed topos is a pair (Sh(C),O) where C is a site and O is a sheaf of

rings on C. The sheaf O is called the structure sheaf of the ringed topos.
(2) Let (Sh(C),O), (Sh(C′),O′) be ringed topoi. A morphism of ringed topoi

(f, f ♯) : (Sh(C),O) −→ (Sh(C′),O′)
is given by a morphism of topoi f : Sh(C)→ Sh(C′) (see Sites, Definition
7.15.1) together with a map of sheaves of rings f ♯ : f−1O′ → O, which by
adjunction is the same thing as a map of sheaves of rings f ♯ : O′ → f∗O.

(3) Let (f, f ♯) : (Sh(C1),O1) → (Sh(C2),O2) and (g, g♯) : (Sh(C2),O2) →
(Sh(C3),O3) be morphisms of ringed topoi. Then we define the composi-
tion of morphisms of ringed topoi by the rule

(g, g♯) ◦ (f, f ♯) = (g ◦ f, f ♯ ◦ g♯).
Here we use composition of morphisms of topoi defined in Sites, Definition
7.15.1 and f ♯ ◦ g♯ indicates the morphism of sheaves of rings

O3
g♯−→ g∗O2

g∗f
♯

−−−→ g∗f∗O1 = (g ◦ f)∗O1

Every morphism of ringed topoi is the composition of an equivalence of ringed topoi
with a morphism of ringed topoi associated to a morphism of ringed sites. Here is
the precise statement.

Lemma 18.7.2.03CR Let (f, f ♯) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. There exists a factorization

(Sh(C),OC)
(f,f♯)

//

(g,g♯)
��

(Sh(D),OD)

(e,e♯)
��

(Sh(C′),OC′)
(h,h♯) // (Sh(D′),OD′)

where

https://stacks.math.columbia.edu/tag/01D3
https://stacks.math.columbia.edu/tag/03CR
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(1) g : Sh(C)→ Sh(C′) is an equivalence of topoi induced by a special cocon-
tinuous functor C → C′ (see Sites, Definition 7.29.2),

(2) e : Sh(D)→ Sh(D′) is an equivalence of topoi induced by a special cocon-
tinuous functor D → D′ (see Sites, Definition 7.29.2),

(3) OC′ = g∗OC and g♯ is the obvious map,
(4) OD′ = e∗OD and e♯ is the obvious map,
(5) the sites C′ and D′ have final objects and fibre products (i.e., all finite

limits),
(6) h is a morphism of sites induced by a continuous functor u : D′ → C′

which commutes with all finite limits (i.e., it satisfies the assumptions of
Sites, Proposition 7.14.7), and

(7) given any set of sheaves Fi (resp. Gj) on C (resp. D) we may assume each
of these is a representable sheaf on C′ (resp. D′).

Moreover, if (f, f ♯) is an equivalence of ringed topoi, then we can choose the diagram
such that C′ = D′, OC′ = OD′ and (h, h♯) is the identity.

Proof. This follows from Sites, Lemma 7.29.6, and Sites, Remarks 7.29.7 and 7.29.8.
You just have to carry along the sheaves of rings. Some details omitted. □

18.8. 2-morphisms of ringed topoi

04IB This is a brief section concerning the notion of a 2-morphism of ringed topoi.

Definition 18.8.1.04IC Let f, g : (Sh(C),OC) → (Sh(D),OD) be two morphisms of
ringed topoi. A 2-morphism from f to g is given by a transformation of functors
t : f∗ → g∗ such that

OD
f♯

||

g♯

""
f∗OC

t // g∗OC

is commutative.

Pictorially we sometimes represent t as follows:

(Sh(C),OC)
f --

g
11�� t (Sh(D),OD)

As in Sites, Section 7.36 giving a 2-morphism t : f∗ → g∗ is equivalent to giving
t : g−1 → f−1 (usually denoted by the same symbol) such that the diagram

f−1OD

f♯ ##

g−1ODt
oo

g♯{{
OC

is commutative. As in Sites, Section 7.36 the axioms of a strict 2-category hold
with horizontal and vertical compositions defined as explained in loc. cit.

https://stacks.math.columbia.edu/tag/04IC
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18.9. Presheaves of modules

03CS Let C be a category. Let O be a presheaf of rings on C. At this point we have not
yet defined a presheaf of O-modules. Thus we do so right now.

Definition 18.9.1.03CT Let C be a category, and let O be a presheaf of rings on C.
(1) A presheaf of O-modules is given by an abelian presheaf F together with

a map of presheaves of sets

O ×F −→ F

such that for every object U of C the map O(U)×F(U)→ F(U) defines
the structure of an O(U)-module structure on the abelian group F(U).

(2) A morphism φ : F → G of presheaves of O-modules is a morphism of
abelian presheaves φ : F → G such that the diagram

O ×F //

id×φ
��

F

φ

��
O × G // G

commutes.
(3) The set of O-module morphisms as above is denoted HomO(F ,G).
(4) The category of presheaves of O-modules is denoted PMod(O).

Suppose that O1 → O2 is a morphism of presheaves of rings on the category C. In
this case, if F is a presheaf of O2-modules then we can think of F as a presheaf of
O1-modules by using the composition

O1 ×F → O2 ×F → F .

We sometimes denote this by FO1 to indicate the restriction of rings. We call this
the restriction of F . We obtain the restriction functor

PMod(O2) −→ PMod(O1)

On the other hand, given a presheaf of O1-modules G we can construct a presheaf
of O2-modules O2 ⊗p,O1 G by the rule

U 7−→ (O2 ⊗p,O1 G) (U) = O2(U)⊗O1(U) G(U)

where U ∈ Ob(C), with obvious restriction mappings. The index p stands for
“presheaf” and not “point”. This presheaf is called the tensor product presheaf.
We obtain the change of rings functor

PMod(O1) −→ PMod(O2)

Lemma 18.9.2.03CU With C, O1 → O2, F and G as above there exists a canonical
bijection

HomO1(G,FO1) = HomO2(O2 ⊗p,O1 G,F)
In other words, the restriction and change of rings functors defined above are adjoint
to each other.

Proof. This follows from the fact that for a ring map A→ B the restriction functor
and the change of ring functor are adjoint to each other. □

https://stacks.math.columbia.edu/tag/03CT
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18.10. Sheaves of modules

03CV
Definition 18.10.1.03CW Let C be a site. Let O be a sheaf of rings on C.

(1) A sheaf of O-modules is a presheaf of O-modules F , see Definition 18.9.1,
such that the underlying presheaf of abelian groups F is a sheaf.

(2) A morphism of sheaves of O-modules is a morphism of presheaves of O-
modules.

(3) Given sheaves of O-modules F and G we denote HomO(F ,G) the set of
morphism of sheaves of O-modules.

(4) The category of sheaves of O-modules is denoted Mod(O).

This definition kind of makes sense even if O is just a presheaf of rings, although
we do not know any examples where this is useful, and we will avoid using the
terminology “sheaves of O-modules” in case O is not a sheaf of rings.

18.11. Sheafification of presheaves of modules

03CX
Lemma 18.11.1.03CY Let C be a site. Let O be a presheaf of rings on C. Let F be a
presheaf of O-modules. Let O# be the sheafification of O as a presheaf of rings,
see Sites, Section 7.44. Let F# be the sheafification of F as a presheaf of abelian
groups. There exists a unique map of sheaves of sets

O# ×F# −→ F#

which makes the diagram
O ×F //

��

F

��
O# ×F# // F#

commute and which makes F# into a sheaf of O#-modules. In addition, if G is
a sheaf of O#-modules, then any morphism of presheaves of O-modules F → G
(into the restriction of G to a O-module) factors uniquely as F → F# → G where
F# → G is a morphism of O#-modules.

Proof. Omitted. □

This actually means that the functor i : Mod(O#)→ PMod(O) (combining restric-
tion and including sheaves into presheaves) and the sheafification functor of the
lemma # : PMod(O)→ Mod(O#) are adjoint. In a formula

MorPMod(O)(F , iG) = MorMod(O#)(F#,G)
An important case happens when O is already a sheaf of rings. In this case the
formula reads

MorPMod(O)(F , iG) = MorMod(O)(F#,G)
because O = O# in this case.

Lemma 18.11.2.03EI Let C be a site. Let O be a presheaf of rings on C The sheafification
functor

PMod(O) −→ Mod(O#), F 7−→ F#

is exact.

https://stacks.math.columbia.edu/tag/03CW
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Proof. This is true because it holds for sheafification PAb(C) → Ab(C). See the
discussion in Section 18.3. □

Let C be a site. Let O1 → O2 be a morphism of sheaves of rings on C. In Section
18.9 we defined a restriction functor and a change of rings functor on presheaves of
modules associated to this situation.
If F is a sheaf of O2-modules then the restriction FO1 of F is clearly a sheaf of
O1-modules. We obtain the restriction functor

Mod(O2) −→ Mod(O1)

On the other hand, given a sheaf of O1-modules G the presheaf of O2-modules
O2 ⊗p,O1 G is in general not a sheaf. Hence we define the tensor product sheaf
O2 ⊗O1 G by the formula

O2 ⊗O1 G = (O2 ⊗p,O1 G)#

as the sheafification of our construction for presheaves. We obtain the change of
rings functor

Mod(O1) −→ Mod(O2)

Lemma 18.11.3.03CZ With X, O1, O2, F and G as above there exists a canonical
bijection

HomO1(G,FO1) = HomO2(O2 ⊗O1 G,F)
In other words, the restriction and change of rings functors are adjoint to each
other.

Proof. This follows from Lemma 18.9.2 and the fact that HomO2(O2 ⊗O1 G,F) =
HomO2(O2 ⊗p,O1 G,F) because F is a sheaf. □

Lemma 18.11.4.0930 Let C be a site. Let O → O′ be an epimorphism of sheaves of
rings. Let G1,G2 be O′-modules. Then

HomO′(G1,G2) = HomO(G1,G2).
In other words, the restriction functor Mod(O′)→ Mod(O) is fully faithful.

Proof. This is the sheaf version of Algebra, Lemma 10.107.14 and is proved in
exactly the same way. □

18.12. Morphisms of topoi and sheaves of modules

03D0 All of this material is completely straightforward. We formulate everything in
the case of morphisms of topoi, but of course the results also hold in the case of
morphisms of sites.

Lemma 18.12.1.03D1 Let C, D be sites. Let f : Sh(C)→ Sh(D) be a morphism of topoi.
Let O be a sheaf of rings on C. Let F be a sheaf of O-modules. There is a natural
map of sheaves of sets

f∗O × f∗F −→ f∗F
which turns f∗F into a sheaf of f∗O-modules. This construction is functorial in F .

Proof. Denote µ : O × F → F the multiplication map. Recall that f∗ (on sheaves
of sets) is left exact and hence commutes with products. Hence f∗µ is a map as
indicated. This proves the lemma. □

https://stacks.math.columbia.edu/tag/03CZ
https://stacks.math.columbia.edu/tag/0930
https://stacks.math.columbia.edu/tag/03D1


18.12. MORPHISMS OF TOPOI AND SHEAVES OF MODULES 1661

Lemma 18.12.2.03D2 Let C, D be sites. Let f : Sh(C)→ Sh(D) be a morphism of topoi.
Let O be a sheaf of rings on D. Let G be a sheaf of O-modules. There is a natural
map of sheaves of sets

f−1O × f−1G −→ f−1G
which turns f−1G into a sheaf of f−1O-modules. This construction is functorial in
G.

Proof. Denote µ : O×G → G the multiplication map. Recall that f−1 (on sheaves
of sets) is exact and hence commutes with products. Hence f−1µ is a map as
indicated. This proves the lemma. □

Lemma 18.12.3.03D3 Let C, D be sites. Let f : Sh(C)→ Sh(D) be a morphism of topoi.
Let O be a sheaf of rings on D. Let G be a sheaf of O-modules. Let F be a sheaf
of f−1O-modules. Then

MorMod(f−1O)(f−1G,F) = MorMod(O)(G, f∗F).
Here we use Lemmas 18.12.2 and 18.12.1, and we think of f∗F as an O-module by
restriction via O → f∗f

−1O.

Proof. First we note that we have
MorAb(C)(f−1G,F) = MorAb(D)(G, f∗F).

by Sites, Proposition 7.44.3. Suppose that α : f−1G → F and β : G → f∗F are
morphisms of abelian sheaves which correspond via the formula above. We have
to show that α is f−1O-linear if and only if β is O-linear. For example, suppose
α is f−1O-linear, then clearly f∗α is f∗f

−1O-linear, and hence (as restriction is a
functor) is O-linear. Hence it suffices to prove that the adjunction map G → f∗f

−1G
is O-linear. Using that both f∗ and f−1 commute with products (on sheaves of
sets) this comes down to showing that

O × G //

��

f∗f
−1(O × G)

��
G // f∗f

−1G

is commutative. This holds because the adjunction mapping idSh(D) → f∗f
−1 is

a transformation of functors. We omit the proof of the implication β linear ⇒ α
linear. □

Lemma 18.12.4.03D4 Let C, D be sites. Let f : Sh(C)→ Sh(D) be a morphism of topoi.
Let O be a sheaf of rings on C. Let F be a sheaf of O-modules. Let G be a sheaf
of f∗O-modules. Then

MorMod(O)(O ⊗f−1f∗O f−1G,F) = MorMod(f∗O)(G, f∗F).

Here we use Lemmas 18.12.2 and 18.12.1, and we use the canonical map f−1f∗O →
O in the definition of the tensor product.

Proof. Note that we have
MorMod(O)(O ⊗f−1f∗O f−1G,F) = MorMod(f−1f∗O)(f−1G,Ff−1f∗O)

by Lemma 18.11.3. Hence the result follows from Lemma 18.12.3. □

https://stacks.math.columbia.edu/tag/03D2
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18.13. Morphisms of ringed topoi and modules

03D5 We have now introduced enough notation so that we are able to define the pullback
and pushforward of modules along a morphism of ringed topoi.

Definition 18.13.1.03D6 Let (f, f ♯) : (Sh(C),OC) → (Sh(D),OD) be a morphism of
ringed topoi or ringed sites.

(1) Let F be a sheaf of OC-modules. We define the pushforward of F as the
sheaf of OD-modules which as a sheaf of abelian groups equals f∗F and
with module structure given by the restriction via f ♯ : OD → f∗OC of the
module structure

f∗OC × f∗F −→ f∗F

from Lemma 18.12.1.
(2) Let G be a sheaf of OD-modules. We define the pullback f∗G to be the

sheaf of OC-modules defined by the formula

f∗G = OC ⊗f−1OD f−1G

where the ring map f−1OD → OC is f ♯, and where the module structure
is given by Lemma 18.12.2.

Thus we have defined functors

f∗ : Mod(OC) −→ Mod(OD)
f∗ : Mod(OD) −→ Mod(OC)

The final result on these functors is that they are indeed adjoint as expected.

Lemma 18.13.2.03D7 Let (f, f ♯) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed
topoi or ringed sites. Let F be a sheaf of OC-modules. Let G be a sheaf of OD-
modules. There is a canonical bijection

HomOC (f∗G,F) = HomOD (G, f∗F).

In other words: the functor f∗ is the left adjoint to f∗.

Proof. This follows from the work we did before:

HomOC (f∗G,F) = MorMod(OC)(OC ⊗f−1OD f−1G,F)
= MorMod(f−1OD)(f−1G,Ff−1OD )
= HomOD (G, f∗F).

Here we use Lemmas 18.11.3 and 18.12.3. □

Lemma 18.13.3.03D8 (f, f ♯) : (Sh(C1),O1)→ (Sh(C2),O2) and (g, g♯) : (Sh(C2),O2)→
(Sh(C3),O3) be morphisms of ringed topoi. There are canonical isomorphisms of
functors (g ◦ f)∗ ∼= g∗ ◦ f∗ and (g ◦ f)∗ ∼= f∗ ◦ g∗.

Proof. This is clear from the definitions. □

https://stacks.math.columbia.edu/tag/03D6
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18.14. The abelian category of sheaves of modules

03D9 Let (Sh(C),O) be a ringed topos. Let F , G be sheaves of O-modules, see Sheaves,
Definition 6.10.1. Let φ,ψ : F → G be morphisms of sheaves of O-modules. We
define φ + ψ : F → G to be the sum of φ and ψ as morphisms of abelian sheaves.
This is clearly again a map of O-modules. It is also clear that composition of
maps of O-modules is bilinear with respect to this addition. Thus Mod(O) is a
pre-additive category, see Homology, Definition 12.3.1.

We will denote 0 the sheaf of O-modules which has constant value {0} for all
objects U of C. Clearly this is both a final and an initial object of Mod(O). Given
a morphism of O-modules φ : F → G the following are equivalent: (a) φ is zero,
(b) φ factors through 0, (c) φ is zero on sections over each object U .

Moreover, given a pair F , G of sheaves of O-modules we may define the direct sum
as

F ⊕ G = F × G
with obvious maps (i, j, p, q) as in Homology, Definition 12.3.5. Thus Mod(O) is an
additive category, see Homology, Definition 12.3.8.

Let φ : F → G be a morphism of O-modules. We may define Ker(φ) to be the
kernel of φ as a map of abelian sheaves. By Section 18.3 this is the subsheaf of F
with sections

Ker(φ)(U) = {s ∈ F(U) | φ(s) = 0 in G(U)}
for all objects U of C. It is easy to see that this is indeed a kernel in the category
of O-modules. In other words, a morphism α : H → F factors through Ker(φ) if
and only if φ ◦ α = 0.

Similarly, we define Coker(φ) as the cokernel of φ as a map of abelian sheaves.
There is a unique multiplication map

O × Coker(φ) −→ Coker(φ)

such that the map G → Coker(φ) becomes a morphism of O-modules (verification
omitted). The map G → Coker(φ) is surjective (as a map of sheaves of sets,
see Section 18.3). To show that Coker(φ) is a cokernel in Mod(O), note that if
β : G → H is a morphism of O-modules such that β ◦ φ is zero, then you get
for every object U of C a map induced by β from G(U)/φ(F(U)) into H(U). By
the universal property of sheafification (see Sheaves, Lemma 6.20.1) we obtain a
canonical map Coker(φ)→ H such that the original β is equal to the composition
G → Coker(φ) → H. The morphism Coker(φ) → H is unique because of the
surjectivity mentioned above.

Lemma 18.14.1.03DA Let (Sh(C),O) be a ringed topos. The category Mod(O) is an
abelian category. The forgetful functor Mod(O) → Ab(C) is exact, hence kernels,
cokernels and exactness of O-modules, correspond to the corresponding notions for
abelian sheaves.

Proof. Above we have seen that Mod(O) is an additive category, with kernels and
cokernels and that Mod(O) → Ab(C) preserves kernels and cokernels. By Homol-
ogy, Definition 12.5.1 we have to show that image and coimage agree. This is clear
because it is true in Ab(C). The lemma follows. □

https://stacks.math.columbia.edu/tag/03DA
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Lemma 18.14.2.03DB Let (Sh(C),O) be a ringed topos. All limits and colimits ex-
ist in Mod(O) and the forgetful functor Mod(O) → Ab(C) commutes with them.
Moreover, filtered colimits are exact.

Proof. The final statement follows from the first as filtered colimits are exact in
Ab(C) by Lemma 18.3.2. Let I → Mod(C), i 7→ Fi be a diagram. Let limi Fi be
the limit of the diagram in Ab(C). By the description of this limit in Lemma 18.3.2
we see immediately that there exists a multiplication

O × limi Fi −→ limi Fi

which turns limi Fi into a sheaf of O-modules. It is easy to see that this is the limit
of the diagram in Mod(C). Let colimi Fi be the colimit of the diagram in PAb(C).
By the description of this colimit in the proof of Lemma 18.2.1 we see immediately
that there exists a multiplication

O × colimi Fi −→ colimi Fi

which turns colimi Fi into a presheaf of O-modules. Applying sheafification we
get a sheaf of O-modules (colimi Fi)#, see Lemma 18.11.1. It is easy to see that
(colimi Fi)# is the colimit of the diagram in Mod(O), and by Lemma 18.3.2 for-
getting the O-module structure is the colimit in Ab(C). □

The existence of limits and colimits allows us to consider exactness properties of
functors defined on the category of O-modules in terms of limits and colimits,
as in Categories, Section 4.23. See Homology, Lemma 12.7.2 for a description of
exactness properties in terms of short exact sequences.

Lemma 18.14.3.03DC Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi.

(1) The functor f∗ is left exact. In fact it commutes with all limits.
(2) The functor f∗ is right exact. In fact it commutes with all colimits.

Proof. This is true because (f∗, f∗) is an adjoint pair of functors, see Lemma
18.13.2. See Categories, Section 4.24. □

Lemma 18.14.4.05V3 Let C be a site. If {pi}i∈I is a conservative family of points, then
we may check exactness of a sequence of abelian sheaves on the stalks at the points
pi, i ∈ I. If C has enough points, then exactness of a sequence of abelian sheaves
may be checked on stalks.

Proof. This is immediate from Sites, Lemma 7.38.2. □

18.15. Exactness of pushforward

04BC Some technical lemmas concerning exactness properties of pushforward.

Lemma 18.15.1.04DA Let f : Sh(C) → Sh(D) be a morphism of topoi. The following
are equivalent:

(1) f−1f∗F → F is surjective for all F in Ab(C), and
(2) f∗ : Ab(C)→ Ab(D) reflects surjections.

In this case the functor f∗ : Ab(C)→ Ab(D) is faithful.

https://stacks.math.columbia.edu/tag/03DB
https://stacks.math.columbia.edu/tag/03DC
https://stacks.math.columbia.edu/tag/05V3
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Proof. Assume (1). Suppose that a : F → F ′ is a map of abelian sheaves on C
such that f∗a is surjective. As f−1 is exact this implies that f−1f∗a : f−1f∗F →
f−1f∗F ′ is surjective. Combined with (1) this implies that a is surjective. This
means that (2) holds.
Assume (2). Let F be an abelian sheaf on C. We have to show that the map
f−1f∗F → F is surjective. By (2) it suffices to show that f∗f

−1f∗F → f∗F is
surjective. And this is true because there is a canonical map f∗F → f∗f

−1f∗F
which is a one-sided inverse.
We omit the proof of the final assertion. □

Lemma 18.15.2.04DB Let f : Sh(C)→ Sh(D) be a morphism of topoi. Assume at least
one of the following properties holds

(1) f∗ transforms surjections of sheaves of sets into surjections,
(2) f∗ transforms surjections of abelian sheaves into surjections,
(3) f∗ commutes with coequalizers on sheaves of sets,
(4) f∗ commutes with pushouts on sheaves of sets,

Then f∗ : Ab(C)→ Ab(D) is exact.

Proof. Since f∗ : Ab(C)→ Ab(D) is a right adjoint we already know that it trans-
forms a short exact sequence 0→ F1 → F2 → F3 → 0 of abelian sheaves on C into
an exact sequence

0→ f∗F1 → f∗F2 → f∗F3

see Categories, Sections 4.23 and 4.24 and Homology, Section 12.7. Hence it suffices
to prove that the map f∗F2 → f∗F3 is surjective. If (1), (2) holds, then this is clear
from the definitions. By Sites, Lemma 7.41.1 we see that either (3) or (4) formally
implies (1), hence in these cases we are done also. □

Lemma 18.15.3.04BD Let f : D → C be a morphism of sites associated to the continuous
functor u : C → D. Assume u is almost cocontinuous. Then

(1) f∗ : Ab(D)→ Ab(C) is exact.
(2) if f ♯ : f−1OC → OD is given so that f becomes a morphism of ringed

sites, then f∗ : Mod(OD)→ Mod(OC) is exact.

Proof. Part (2) follows from part (1) by Lemma 18.14.2. Part (1) follows from
Sites, Lemmas 7.42.6 and 7.41.1. □

18.16. Exactness of lower shriek

04BE Let u : C → D be a functor between sites. Assume that
(a) u is cocontinuous, and
(b) u is continuous.

Let g : Sh(C) → Sh(D) be the morphism of topoi associated with u, see Sites,
Lemma 7.21.1. Recall that g−1 = up, i.e., g−1 is given by the simple formula
(g−1G)(U) = G(u(U)), see Sites, Lemma 7.21.5. We would like to show that g−1 :
Ab(D) → Ab(C) has a left adjoint g!. By Sites, Lemma 7.21.5 the functor gSh! =
(up )# is a left adjoint on sheaves of sets. Moreover, we know that gSh! F is the
sheaf associated to the presheaf

V 7−→ colimV→u(U) F(U)

https://stacks.math.columbia.edu/tag/04DB
https://stacks.math.columbia.edu/tag/04BD
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where the colimit is over (IuV )opp and is taken in the category of sets. Hence the
following definition is natural.

Definition 18.16.1.04BF With u : C → D satisfying (a), (b) above. For F ∈ PAb(C) we
define gp!F as the presheaf

V 7−→ colimV→u(U) F(U)
with colimits over (IuV )opp taken in Ab. For F ∈ PAb(C) we set g!F = (gp!F)#.

The reason for being so explicit with this is that the functors gSh! and g! are different.
Whenever we use both we have to be careful to make the distinction clear.

Lemma 18.16.2.04BG The functor gp! is a left adjoint to the functor up. The functor g!
is a left adjoint to the functor g−1. In other words the formulas

MorPAb(C)(F , upG) = MorPAb(D)(gp!F ,G),
MorAb(C)(F , g−1G) = MorAb(D)(g!F ,G)

hold bifunctorially in F and G.

Proof. The second formula follows formally from the first, since if F and G are
abelian sheaves then

MorAb(C)(F , g−1G) = MorPAb(D)(gp!F ,G)
= MorAb(D)(g!F ,G)

by the universal property of sheafification.
To prove the first formula, let F , G be abelian presheaves. To prove the lemma we
will construct maps from the group on the left to the group on the right and omit
the verification that these are mutually inverse.
Note that there is a canonical map of abelian presheaves F → upgp!F which on sec-
tions over U is the natural map F(U)→ colimu(U)→u(U ′) F(U ′), see Sites, Lemma
7.5.3. Given a map α : gp!F → G we get upα : upgp!F → upG. which we can
precompose by the map F → upgp!F .
Note that there is a canonical map of abelian presheaves gp!u

pG → G which on
sections over V is the natural map colimV→u(U) G(u(U)) → G(V ). It maps a
section s ∈ u(U) in the summand corresponding to t : V → u(U) to t∗s ∈ G(V ).
Hence, given a map β : F → upG we get a map gp!β : gp!F → gp!u

pG which we can
postcompose with the map gp!u

pG → G above. □

Lemma 18.16.3.04BH Let C and D be sites. Let u : C → D be a functor. Assume that
(a) u is cocontinuous,
(b) u is continuous, and
(c) fibre products and equalizers exist in C and u commutes with them.

In this case the functor g! : Ab(C)→ Ab(D) is exact.

Proof. Compare with Sites, Lemma 7.21.6. Assume (a), (b), and (c). We already
know that g! is right exact as it is a left adjoint, see Categories, Lemma 4.24.6 and
Homology, Section 12.7. We have g! = (gp! )#. We have to show that g! transforms
injective maps of abelian sheaves into injective maps of abelian presheaves. Recall
that sheafification of abelian presheaves is exact, see Lemma 18.3.2. Thus it suffices
to show that gp! transforms injective maps of abelian presheaves into injective maps

https://stacks.math.columbia.edu/tag/04BF
https://stacks.math.columbia.edu/tag/04BG
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of abelian presheaves. To do this it suffices that colimits over the categories (IuV )opp
of Sites, Section 7.5 transform injective maps between diagrams into injections. This
follows from Sites, Lemma 7.5.1 and Algebra, Lemma 10.8.10. □

Lemma 18.16.4.077I Let C and D be sites. Let u : C → D be a functor. Assume that
(a) u is cocontinuous,
(b) u is continuous, and
(c) u is fully faithful.

For g!, g
−1, g∗ as above the canonical maps F → g−1g!F and g−1g∗F → F are

isomorphisms for all abelian sheaves F on C.

Proof. The map g−1g∗F → F is an isomorphism by Sites, Lemma 7.21.7 and the
fact that pullback and pushforward of abelian sheaves agrees with pullback and
pushforward on the underlying sheaves of sets.
Pick U ∈ Ob(C). We will show that g−1g!F(U) = F(U). First, note that
g−1g!F(U) = g!F(u(U)). Hence it suffices to show that g!F(u(U)) = F(U). We
know that g!F is the (abelian) sheaf associated to the presheaf gp!F which is defined
by the rule

V 7−→ colimV→u(U ′) F(U ′)
with colimit taken in Ab. If V = u(U), then, as u is fully faithful this colimit is
over U → U ′. Hence we conclude that gp!F(u(U) = F(U). Since u is cocontinuous
and continuous any covering of u(U) in D can be refined by a covering (!) {u(Ui)→
u(U)} of D where {Ui → U} is a covering in C. This implies that (gp!F)+(u(U)) =
F(U) also, since in the colimit defining the value of (gp!F)+ on u(U) we may restrict
to the cofinal system of coverings {u(Ui) → u(U)} as above. Hence we see that
(gp!F)+(u(U)) = F(U) for all objects U of C as well. Repeating this argument one
more time gives the equality (gp!F)#(u(U)) = F(U) for all objects U of C. This
produces the desired equality g−1g!F = F . □

Remark 18.16.5.04BI In general the functor g! cannot be extended to categories of
modules in case g is (part of) a morphism of ringed topoi. Namely, given any ring
map A→ B the functor M 7→ B ⊗AM has a right adjoint (restriction) but not in
general a left adjoint (because its existence would imply that A → B is flat). We
will see in Section 18.19 below that it is possible to define j! on sheaves of modules
in the case of a localization of sites. We will discuss this in greater generality in
Section 18.41 below.

Lemma 18.16.6.08P3 Let C and D be sites. Let g : Sh(C)→ Sh(D) be the morphism of
topoi associated to a continuous and cocontinuous functor u : C → D.

(1) If u has a left adjoint w, then g! agrees with gSh
! on underlying sheaves of

sets and g! is exact.
(2) If in addition w is cocontinuous, then g! = h−1 and g−1 = h∗ where

h : Sh(D)→ Sh(C) is the morphism of topoi associated to w.

Proof. This Lemma is the analogue of Sites, Lemma 7.23.1. From Sites, Lemma
7.19.3 we see that the categories IuV have an initial object. Thus the underlying
set of a colimit of a system of abelian groups over (IuV )opp is the colimit of the
underlying sets. Whence the agreement of gSh

! and g! by our construction of g! in
Definition 18.16.1. The exactness and (2) follow immediately from the correspond-
ing statements of Sites, Lemma 7.23.1. □

https://stacks.math.columbia.edu/tag/077I
https://stacks.math.columbia.edu/tag/04BI
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18.17. Global types of modules

03DD
Definition 18.17.1.03DE Let (Sh(C),O) be a ringed topos. Let F be a sheaf of O-
modules.

(1) We say F is a free O-module if F is isomorphic as an O-module to a sheaf
of the form

⊕
i∈I O.

(2) We say F is finite free if F is isomorphic as an O-module to a sheaf of the
form

⊕
i∈I O with a finite index set I.

(3) We say F is generated by global sections if there exists a surjection⊕
i∈I
O −→ F

from a free O-module onto F .
(4) Given r ≥ 0 we say F is generated by r global sections if there exists a

surjection O⊕r → F .
(5) We say F is generated by finitely many global sections if it is generated

by r global sections for some r ≥ 0.
(6) We say F has a global presentation if there exists an exact sequence⊕

j∈J
O −→

⊕
i∈I
O −→ F −→ 0

of O-modules.
(7) We say F has a global finite presentation if there exists an exact sequence⊕

j∈J
O −→

⊕
i∈I
O −→ F −→ 0

of O-modules with I and J finite sets.

Note that for any set I the direct sum
⊕

i∈I O exists (Lemma 18.14.2) and is the
sheafification of the presheaf U 7→

⊕
i∈I O(U). This module is called the free

O-module on the set I.

Lemma 18.17.2.03DF Let (f, f ♯) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed
topoi. Let F be an OD-module.

(1) If F is free then f∗F is free.
(2) If F is finite free then f∗F is finite free.
(3) If F is generated by global sections then f∗F is generated by global sec-

tions.
(4) Given r ≥ 0 if F is generated by r global sections, then f∗F is generated

by r global sections.
(5) If F is generated by finitely many global sections then f∗F is generated

by finitely many global sections.
(6) If F has a global presentation then f∗F has a global presentation.
(7) If F has a finite global presentation then f∗F has a finite global presen-

tation.

Proof. This is true because f∗ commutes with arbitrary colimits (Lemma 18.14.3)
and f∗OD = OC . □

https://stacks.math.columbia.edu/tag/03DE
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18.18. Intrinsic properties of modules

03DG Let P be a property of sheaves of modules on ringed topoi. We say P is an intrinsic
property if we have P(F)⇔ P(f∗F) whenever (f, f ♯) : (Sh(C′),O′)→ (Sh(C),O) is
an equivalence of ringed topoi. For example, the property of being free is intrinsic.
Indeed, the free O-module on the set I is characterized by the property that

MorMod(O)(
⊕

i∈I
O,F) =

∏
i∈I

MorSh(C)({∗},F)

for a variable F in Mod(O). Alternatively, we can also use Lemma 18.17.2 to
see that being free is intrinsic. In fact, each of the properties defined in Definition
18.17.1 is intrinsic for the same reason. How will we go about defining other intrinsic
properties of O-modules?

The upshot of Lemma 18.7.2 is the following: Suppose you want to define an
intrinsic property P of an O-module on a topos. Then you can proceed as follows:

(1) Given any site C, any sheaf of rings O on C and any O-module F define
the corresponding property P(C,O,F).

(2) For any pair of sites C, C′, any special cocontinuous functor u : C → C′,
any sheaf of rings O on C any O-module F , show that

P(C,O,F)⇔ P(C′, g∗O, g∗F)

where g : Sh(C)→ Sh(C′) is the equivalence of topoi associated to u.
In this case, given any ringed topos (Sh(C),O) and any sheaf of O-modules F
we simply say that F has property P if P(C,O,F) is true. And Lemma 18.7.2
combined with (2) above guarantees that this is well defined.

Moreover, the same Lemma 18.7.2 also guarantees that if in addition
(3) For any morphism of ringed sites (f, f ♯) : (C,OC) → (D,OD) such that

f is given by a functor u : D → C satisfying the assumptions of Sites,
Proposition 7.14.7, and any OD-module G we have

P(D,OD,F)⇒ P(C,OC , f
∗F)

then it is true that P is preserved under pullback of modules w.r.t. arbitrary mor-
phisms of ringed topoi.

We will use this method in the following sections to see that: locally free, locally
generated by sections, locally generated by r sections, finite type, finite presenta-
tion, quasi-coherent, and coherent are intrinsic properties of modules.

Perhaps a more satisfying method would be to find an intrinsic definition of these
notions, rather than the laborious process sketched here. On the other hand, in
many geometric situations where we want to apply these definitions we are given
a definite ringed site, and a definite sheaf of modules, and it is nice to have a
definition already adapted to this language.

18.19. Localization of ringed sites

03DH Let (C,O) be a ringed site. Let U ∈ Ob(C). We explain the counterparts of the
results in Sites, Section 7.25 in this setting.
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Denote OU = j−1
U O the restriction of O to the site C/U . It is described by the

simple rule OU (V/U) = O(V ). With this notation the localization morphism jU
becomes a morphism of ringed topoi

(jU , j♯U ) : (Sh(C/U),OU ) −→ (Sh(C),O)

namely, we take j♯U : j−1
U O → OU the identity map. Moreover, we obtain the

following descriptions for pushforward and pullback of modules.

Definition 18.19.1.04IX Let (C,O) be a ringed site. Let U ∈ Ob(C).
(1) The ringed site (C/U,OU ) is called the localization of the ringed site (C,O)

at the object U .
(2) The morphism of ringed topoi (jU , j♯U ) : (Sh(C/U),OU ) → (Sh(C),O) is

called the localization morphism.
(3) The functor jU∗ : Mod(OU )→ Mod(O) is called the direct image functor.
(4) For a sheaf of O-modules F on C the sheaf j∗

UF is called the restriction
of F to C/U . We will sometimes denote it by F|C/U or even F|U . It is
described by the simple rule j∗

U (F)(X/U) = F(X).
(5) The left adjoint jU ! : Mod(OU ) → Mod(O) of restriction is called exten-

sion by zero. It exists and is exact by Lemmas 18.19.2 and 18.19.3.

As in the topological case, see Sheaves, Section 6.31, the extension by zero jU !
functor is different from extension by the empty set jU ! defined on sheaves of sets.
Here is the lemma defining extension by zero.

Lemma 18.19.2.03DI Let (C,O) be a ringed site. Let U ∈ Ob(C). The restriction
functor j∗

U : Mod(O)→ Mod(OU ) has a left adjoint jU ! : Mod(OU )→ Mod(O). So
MorMod(OU )(G, j∗

UF) = MorMod(O)(jU !G,F)
for F ∈ Ob(Mod(O)) and G ∈ Ob(Mod(OU )). Moreover, the extension by zero
jU !G of G is the sheaf associated to the presheaf

V 7−→
⊕

φ∈MorC(V,U)
G(V φ−→ U)

with obvious restriction mappings and an obvious O-module structure.

Proof. The O-module structure on the presheaf is defined as follows. If f ∈ O(V )
and s ∈ G(V φ−→ U), then we define f · s = fs where f ∈ OU (φ : V → U) = O(V )
(because OU is the restriction of O to C/U).
Similarly, let α : G → F|U be a morphism of OU -modules. In this case we can
define a map from the presheaf of the lemma into F by mapping⊕

φ∈MorC(V,U)
G(V φ−→ U) −→ F(V )

by the rule that s ∈ G(V φ−→ U) maps to α(s) ∈ F(V ). It is clear that this is O-
linear, and hence induces a morphism of O-modules α′ : jU !G → F by the properties
of sheafification of modules (Lemma 18.11.1).
Conversely, let β : jU !G → F by a map of O-modules. Recall from Sites, Section
7.25 that there exists an extension by the empty set jShU ! : Sh(C/U) → Sh(C) on
sheaves of sets which is left adjoint to j−1

U . Moreover, jShU ! G is the sheaf associated
to the presheaf

V 7−→
∐

φ∈MorC(V,U)
G(V φ−→ U)

https://stacks.math.columbia.edu/tag/04IX
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Hence there is a natural map jShU ! G → jU !G of sheaves of sets. Hence precomposing
β by this map we get a map of sheaves of sets jShU ! G → F which by adjunction
corresponds to a map of sheaves of sets β′ : G → F|U . We claim that β′ isOU -linear.
Namely, suppose that φ : V → U is an object of C/U and that s, s′ ∈ G(φ : V → U),
and f ∈ O(V ) = OU (φ : V → U). Then by the discussion above we see that
β′(s + s′), resp. β′(fs) in F|U (φ : V → U) correspond to β(s + s′), resp. β(fs) in
F(V ). Since β is a homomorphism we conclude.

To conclude the proof of the lemma we have to show that the constructions α 7→ α′

and β 7→ β′ are mutually inverse. We omit the verifications. □

Note that we have in the situation of Definition 18.19.1 we have

(18.19.2.1)0G1V HomO(jU !OU ,F) = HomOU
(OU , j∗

UF) = F(U)

for every O-module F . Namely, the first equality holds by the adjointness of jU ! and
j∗
U and the second because HomOU

(OU , j∗
UF) = j∗

UF(U/U) = F|U (U/U) = F(U).

Lemma 18.19.3.03DJ Let (C,O) be a ringed site. Let U ∈ Ob(C). The functor jU ! :
Mod(OU )→ Mod(O) is exact.

Proof. Since jU ! is a left adjoint to j∗
U we see that it is right exact (see Categories,

Lemma 4.24.6 and Homology, Section 12.7). Hence it suffices to show that if G1 →
G2 is an injective map of OU -modules, then jU !G1 → jU !G2 is injective. The map
on sections of presheaves over an object V (as in Lemma 18.19.2) is the map⊕

φ∈MorC(V,U)
G1(V φ−→ U) −→

⊕
φ∈MorC(V,U)

G2(V φ−→ U)

which is injective by assumption. Since sheafification is exact by Lemma 18.11.2
we conclude jU !G1 → jU !G2 is injective and we win. □

Lemma 18.19.4.0E8G Let (C,O) be a ringed site. Let U ∈ Ob(C). A complex of OU -
modules G1 → G2 → G3 is exact if and only if jU !G1 → jU !G2 → jU !G3 is exact as a
sequence of O-modules.

Proof. We already know that jU ! is exact, see Lemma 18.19.3. Thus it suffices to
show that jU ! : Mod(OU )→ Mod(O) reflects injections and surjections.

For every G in Mod(OU ) we have the unit G → j∗
U jU !G of the adjunction. We claim

this map is an injection of sheaves. Namely, looking at the construction of Lemma
18.19.2 we see that this map is the sheafification of the rule sending the object V/U
of C/U to the injective map

G(V/U) −→
⊕

φ∈MorC(V,U)
G(V φ−→ U)

given by the inclusion of the summand corresponding to the structure morphism
V → U . Since sheafification is exact the claim follows. Some details omitted.

If G → G′ is a map of OU -modules with jU !G → jU !G′ injective, then j∗
U jU !G →

j∗
U jU !G′ is injective (restriction is exact), hence G → j∗

U jU !G′ is injective, hence
G → G′ is injective. We conclude that jU ! reflects injections.

Let a : G → G′ be a map of OU -modules such that jU !G → jU !G′ is surjective. Let
H be the cokernel of a. Then jU !H = 0 as jU ! is exact. By the above the map
H → j∗

U jU !H is injective. Hence H = 0 as desired. □

https://stacks.math.columbia.edu/tag/03DJ
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Lemma 18.19.5.04IY Let (C,O) be a ringed site. Let f : V → U be a morphism of C.
Then there exists a commutative diagram

(Sh(C/V ),OV )

(jV ,j♯V ) ''

(j,j♯)
// (Sh(C/U),OU )

(jU ,j♯U )ww
(Sh(C),O)

of ringed topoi. Here (j, j♯) is the localization morphism associated to the object
V/U of the ringed site (C/V,OV ).

Proof. The only thing to check is that j♯V = j♯ ◦ j−1(j♯U ), since everything else
follows directly from Sites, Lemma 7.25.8 and Sites, Equation (7.25.8.1). We omit
the verification of the equality. □

Remark 18.19.6.08P4 In the situation of Lemma 18.19.2 the diagram

Mod(OU )
jU!

//

forget

��

Mod(OC)

forget

��
Ab(C/U)

jAbU! // Ab(C)

commutes. This is clear from the explicit description of the functor jU ! in the
lemma.

Remark 18.19.7.03EJ Localization and presheaves of modules; see Sites, Remark 7.25.10.
Let C be a category. Let O be a presheaf of rings. Let U be an object of C. Strictly
speaking the functors j∗

U , jU∗ and jU ! have not been defined for presheaves of O-
modules. But of course, we can think of a presheaf as a sheaf for the chaotic
topology on C (see Sites, Examples 7.6.6). Hence we also obtain a functor

j∗
U : PMod(O) −→ PMod(OU )

and functors
jU∗, jU ! : PMod(OU ) −→ PMod(O)

which are right, left adjoint to j∗
U . Inspecting the proof of Lemma 18.19.2 we see

that jU !G is the presheaf

V 7−→
⊕

φ∈MorC(V,U)
G(V φ−→ U)

In addition the functor jU ! is exact (by Lemma 18.19.3 in the case of the discrete
topologies). Moreover, if C is actually a site, and O is actually a sheaf of rings,
then the diagram

Mod(OU )
jU!

//

forget

��

Mod(O)

PMod(OU ) jU! // PMod(O)

( )#

OO

commutes.

Lemma 18.19.8.0F6Z Let C be a site. Let U ∈ Ob(C). Assume that every X in C has at
most one morphism to U . Let F be an abelian sheaf on C/U . The canonical maps
F → j−1

U jU !F and j−1
U jU∗F → F are isomorphisms.

https://stacks.math.columbia.edu/tag/04IY
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Proof. This is a special case of Lemma 18.16.4 because the assumption on U is
equivalent to the fully faithfulness of the localization functor C/U → C. □

18.20. Localization of morphisms of ringed sites

04IZ This section is the analogue of Sites, Section 7.28.

Lemma 18.20.1.04J0 Let (f, f ♯) : (C,O) −→ (D,O′) be a morphism of ringed sites
where f is given by the continuous functor u : D → C. Let V be an object of D
and set U = u(V ). Then there is a canonical map of sheaves of rings (f ′)♯ such
that the diagram of Sites, Lemma 7.28.1 is turned into a commutative diagram of
ringed topoi

(Sh(C/U),OU )
(jU ,j♯U )

//

(f ′,(f ′)♯)
��

(Sh(C),O)

(f,f♯)
��

(Sh(D/V ),O′
V )

(jV ,j♯V )
// (Sh(D),O′).

Moreover, in this situation we have f ′
∗j

−1
U = j−1

V f∗ and f ′
∗j

∗
U = j∗

V f∗.

Proof. Just take (f ′)♯ to be

(f ′)−1O′
V = (f ′)−1j−1

V O
′ = j−1

U f−1O′ j−1
U
f♯

−−−−→ j−1
U O = OU

and everything else follows from Sites, Lemma 7.28.1. (Note that j−1 = j∗ on
sheaves of modules if j is a localization morphism, hence the first equality of functors
implies the second.) □

Lemma 18.20.2.04J1 Let (f, f ♯) : (C,O) −→ (D,O′) be a morphism of ringed sites
where f is given by the continuous functor u : D → C. Let V ∈ Ob(D), U ∈ Ob(C)
and c : U → u(V ) a morphism of C. There exists a commutative diagram of ringed
topoi

(Sh(C/U),OU )
(jU ,j♯U )

//

(fc,f♯c )
��

(Sh(C),O)

(f,f♯)
��

(Sh(D/V ),O′
V )

(jV ,j♯V )
// (Sh(D),O′).

The morphism (fc, f ♯c ) is equal to the composition of the morphism

(f ′, (f ′)♯) : (Sh(C/u(V )),Ou(V )) −→ (Sh(D/V ),O′
V )

of Lemma 18.20.1 and the morphism

(j, j♯) : (Sh(C/U),OU )→ (Sh(C/u(V )),Ou(V ))

of Lemma 18.19.5. Given any morphisms b : V ′ → V , a : U ′ → U and c′ : U ′ →
u(V ′) such that

U ′
c′
//

a

��

u(V ′)

u(b)
��

U
c // u(V )

https://stacks.math.columbia.edu/tag/04J0
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commutes, then the following diagram of ringed topoi

(Sh(C/U ′),OU ′)
(jU′/U ,j

♯

U′/U
)
//

(fc′ ,f
♯

c′ )
��

(Sh(C/U),OU )

(fc,f♯c )
��

(Sh(D/V ′),O′
V ′)

(jV ′/V ,j
♯

V ′/V
)
// (Sh(D/V ),O′

V ′)

commutes.

Proof. On the level of morphisms of topoi this is Sites, Lemma 7.28.3. To check
that the diagrams commute as morphisms of ringed topoi use Lemmas 18.19.5 and
18.20.1 exactly as in the proof of Sites, Lemma 7.28.3. □

18.21. Localization of ringed topoi

04ID This section is the analogue of Sites, Section 7.30 in the setting of ringed topoi.

Lemma 18.21.1.04IE Let (Sh(C),O) be a ringed topos. Let F ∈ Sh(C) be a sheaf. For a
sheaf H on C denote HF the sheaf H×F seen as an object of the category Sh(C)/F .
The pair (Sh(C)/F ,OF ) is a ringed topos and there is a canonical morphism of
ringed topoi

(jF , j
♯
F ) : (Sh(C)/F ,OF ) −→ (Sh(C),O)

which is a localization as in Section 18.19 such that
(1) the functor j−1

F is the functor H 7→ HF ,
(2) the functor j∗

F is the functor H 7→ HF ,
(3) the functor jF ! on sheaves of sets is the forgetful functor G/F 7→ G,
(4) the functor jF ! on sheaves of modules associates to the OF -module φ :
G → F the O-module which is the sheafification of the presheaf

V 7−→
⊕

s∈F(V )
{σ ∈ G(V ) | φ(σ) = s}

for V ∈ Ob(C).

Proof. By Sites, Lemma 7.30.1 we see that Sh(C)/F is a topos and that (1) and
(3) are true. In particular this shows that j−1

F O = OF and shows that OF is a
sheaf of rings. Thus we may choose the map j♯F to be the identity, in particular
we see that (2) is true. Moreover, the proof of Sites, Lemma 7.30.1 shows that we
may assume C is a site with all finite limits and a subcanonical topology and that
F = hU for some object U of C. Then (4) follows from the description of jF ! in
Lemma 18.19.2. Alternatively one could show directly that the functor described
in (4) is a left adjoint to j∗

F . □

Definition 18.21.2.04J2 Let (Sh(C),O) be a ringed topos. Let F ∈ Sh(C).
(1) The ringed topos (Sh(C)/F ,OF ) is called the localization of the ringed

topos (Sh(C),O) at F .
(2) The morphism of ringed topoi (jF , j

♯
F ) : (Sh(C)/F ,OF ) → (Sh(C),O) of

Lemma 18.21.1 is called the localization morphism.

We continue the tradition, established in the chapter on sites, that we check the
localization constructions on topoi are compatible with the constructions of local-
ization on sites, whenever this makes sense.

https://stacks.math.columbia.edu/tag/04IE
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Lemma 18.21.3.04J3 With (Sh(C),O) and F ∈ Sh(C) as in Lemma 18.21.1. If F = h#
U

for some object U of C then via the identification Sh(C/U) = Sh(C)/h#
U of Sites,

Lemma 7.25.4 we have
(1) canonically OU = OF , and
(2) with these identifications we have (jF , j

♯
F ) = (jU , j♯U ).

Proof. The assertion for underlying topoi is Sites, Lemma 7.30.5. Note that OU is
the restriction of O which by Sites, Lemma 7.25.7 corresponds to O×h#

U under the
equivalence of Sites, Lemma 7.25.4. By definition of OF we get (1). What’s left is
to prove that j♯F = j♯U under this identification. We omit the verification. □

Localization is functorial in the following two ways: We can “relocalize” a local-
ization (see Lemma 18.21.4) or we can given a morphism of ringed topoi, localize
upstairs at the inverse image of a sheaf downstairs and get a commutative diagram
of ringed topoi (see Lemma 18.22.1).
Lemma 18.21.4.04J4 Let (Sh(C),O) be a ringed topos. If s : G → F is a morphism
of sheaves on C then there exists a natural commutative diagram of morphisms of
ringed topoi

(Sh(C)/G,OG)

(jG ,j
♯
G) ''

(j,j♯)
// (Sh(C)/F ,OF )

(jF ,j
♯
F )ww

(Sh(C),O)

where (j, j♯) is the localization morphism of the ringed topos (Sh(C)/F ,OF ) at the
object G/F .
Proof. All assertions follow from Sites, Lemma 7.30.6 except the assertion that
j♯G = j♯ ◦ j−1(j♯F ). We omit the verification. □

Lemma 18.21.5.04J5 With (Sh(C),O), s : G → F as in Lemma 18.21.4. If there
exist a morphism f : V → U of C such that G = h#

V and F = h#
U and s is

induced by f , then the diagrams of Lemma 18.19.5 and Lemma 18.21.4 agree via
the identifications (jF , j

♯
F ) = (jU , j♯U ) and (jG , j

♯
G) = (jV , j♯V ) of Lemma 18.21.3.

Proof. All assertions follow from Sites, Lemma 7.30.7 except for the assertion that
the two maps j♯ agree. This holds since in both cases the map j♯ is simply the
identity. Some details omitted. □

18.22. Localization of morphisms of ringed topoi

04J6 This section is the analogue of Sites, Section 7.31.
Lemma 18.22.1.04IF Let

f : (Sh(C),O) −→ (Sh(D),O′)
be a morphism of ringed topoi. Let G be a sheaf on D. Set F = f−1G. Then there
exists a commutative diagram of ringed topoi

(Sh(C)/F ,OF )
(jF ,j

♯
F )

//

(f ′,(f ′)♯)
��

(Sh(C),O)

(f,f♯)
��

(Sh(D)/G,O′
G)

(jG ,j
♯
G)

// (Sh(D),O′)

https://stacks.math.columbia.edu/tag/04J3
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We have f ′
∗j

−1
F = j−1

G f∗ and f ′
∗j

∗
F = j∗

Gf∗. Moreover, the morphism f ′ is charac-
terized by the rule

(f ′)−1(H φ−→ G) = (f−1H f−1φ−−−→ F).

Proof. By Sites, Lemma 7.31.1 we have the diagram of underlying topoi, the equal-
ity f ′

∗j
−1
F = j−1

G f∗, and the description of (f ′)−1. To define (f ′)♯ we use the map

(f ′)♯ : O′
G = j−1

G O
′ j−1

G f♯

−−−−→ j−1
G f∗O = f ′

∗j
−1
F O = f ′

∗OF

or equivalently the map

(f ′)♯ : (f ′)−1O′
G = (f ′)−1j−1

G O
′ = j−1

F f−1O′ j−1
F f♯

−−−−→ j−1
F O = OF .

We omit the verification that these two maps are indeed adjoint to each other. The
second construction of (f ′)♯ shows that the diagram commutes in the 2-category of
ringed topoi (as the maps j♯F and j♯G are identities). Finally, the equality f ′

∗j
∗
F =

j∗
Gf∗ follows from the equality f ′

∗j
−1
F = j−1

G f∗ and the fact that pullbacks of sheaves
of modules and sheaves of sets agree, see Lemma 18.21.1. □

Lemma 18.22.2.04J7 Let
f : (Sh(C),O) −→ (Sh(D),O′)

be a morphism of ringed topoi. Let G be a sheaf on D. Set F = f−1G. If f is given
by a continuous functor u : D → C and G = h#

V , then the commutative diagrams of
Lemma 18.20.1 and Lemma 18.22.1 agree via the identifications of Lemma 18.21.3.

Proof. At the level of morphisms of topoi this is Sites, Lemma 7.31.2. This works
also on the level of morphisms of ringed topoi since the formulas defining (f ′)♯ in
the proofs of Lemma 18.20.1 and Lemma 18.22.1 agree. □

Lemma 18.22.3.04J8 Let (f, f ♯) : (Sh(C),O) → (Sh(D),O′) be a morphism of ringed
topoi. Let G be a sheaf on D, let F be a sheaf on C, and let s : F → f−1G a
morphism of sheaves. There exists a commutative diagram of ringed topoi

(Sh(C)/F ,OF )
(jF ,j

♯
F )

//

(fc,f♯c )
��

(Sh(C),O)

(f,f♯)
��

(Sh(D)/G,O′
G)

(jG ,j
♯
G)

// (Sh(D),O′).

The morphism (fs, f ♯s) is equal to the composition of the morphism

(f ′, (f ′)♯) : (Sh(C)/f−1G,Of−1G) −→ (Sh(D)/G,O′
G)

of Lemma 18.22.1 and the morphism
(j, j♯) : (Sh(C)/F ,OF )→ (Sh(C)/f−1G,Of−1G)

of Lemma 18.21.4. Given any morphisms b : G′ → G, a : F ′ → F , and s′ : F ′ →
f−1G′ such that

F ′
s′
//

a

��

f−1G′

f−1b

��
F s // f−1G

https://stacks.math.columbia.edu/tag/04J7
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commutes, then the following diagram of ringed topoi
(Sh(C)/F ′,OF ′)

(jF′/F ,j
♯

F′/F
)
//

(fs′ ,f
♯

s′ )
��

(Sh(C)/F ,OF )

(fs,f♯s)
��

(Sh(D)/G′,O′
G′)

(jG′/G ,j
♯

G′/G
)
// (Sh(D)/G,O′

G′)

commutes.
Proof. On the level of morphisms of topoi this is Sites, Lemma 7.31.3. To check
that the diagrams commute as morphisms of ringed topoi use the commutative
diagrams of Lemmas 18.21.4 and 18.22.1. □

Lemma 18.22.4.04J9 Let (f, f ♯) : (Sh(C),O) → (Sh(D),O′), s : F → f−1G be as in
Lemma 18.22.3. If f is given by a continuous functor u : D → C and G = h#

V ,
F = h#

U and s comes from a morphism c : U → u(V ), then the commutative
diagrams of Lemma 18.20.2 and Lemma 18.22.3 agree via the identifications of
Lemma 18.21.3.
Proof. This is formal using Lemmas 18.21.5 and 18.22.2. □

18.23. Local types of modules

03DK According to our general strategy explained in Section 18.18 we first define the local
types for sheaves of modules on a ringed site, and then we immediately show that
these types are intrinsic, hence make sense for sheaves of modules on ringed topoi.
Definition 18.23.1.03DL Let (C,O) be a ringed site. Let F be a sheaf of O-modules.
We will freely use the notions defined in Definition 18.17.1.

(1) We say F is locally free if for every object U of C there exists a covering
{Ui → U}i∈I of C such that each restriction F|C/Ui is a free OUi-module.

(2) We say F is finite locally free if for every object U of C there exists a
covering {Ui → U}i∈I of C such that each restriction F|C/Ui is a finite
free OUi-module.

(3) We say F is locally generated by sections if for every object U of C there
exists a covering {Ui → U}i∈I of C such that each restriction F|C/Ui is an
OUi-module generated by global sections.

(4) Given r ≥ 0 we sat F is locally generated by r sections if for every object
U of C there exists a covering {Ui → U}i∈I of C such that each restriction
F|C/Ui is an OUi -module generated by r global sections.

(5) We say F is of finite type if for every object U of C there exists a covering
{Ui → U}i∈I of C such that each restriction F|C/Ui is an OUi-module
generated by finitely many global sections.

(6) We say F is quasi-coherent if for every object U of C there exists a covering
{Ui → U}i∈I of C such that each restriction F|C/Ui is an OUi-module
which has a global presentation.

(7) We say F is of finite presentation if for every object U of C there exists
a covering {Ui → U}i∈I of C such that each restriction F|C/Ui is an OUi -
module which has a finite global presentation.

(8) We say F is coherent if and only if F is of finite type, and for every object U
of C and any s1, . . . , sn ∈ F(U) the kernel of the map

⊕
i=1,...,nOU → F|U

is of finite type on (C/U,OU ).
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Lemma 18.23.2.03DM Any of the properties (1) – (8) of Definition 18.23.1 is intrinsic
(see discussion in Section 18.18).

Proof. Let C, D be sites. Let u : C → D be a special cocontinuous functor. Let O be
a sheaf of rings on C. Let F be a sheaf of O-modules on C. Let g : Sh(C)→ Sh(D)
be the equivalence of topoi associated to u. Set O′ = g∗O, and let g♯ : O′ → g∗O
be the identity. Finally, set F ′ = g∗F . Let Pl be one of the properties (1) – (7)
listed in Definition 18.23.1. (We will discuss the coherent case at the end of the
proof.) Let Pg denote the corresponding property listed in Definition 18.17.1. We
have already seen that Pg is intrinsic. We have to show that Pl(C,O,F) holds if
and only if Pl(D,O′,F ′) holds.
Assume that F has Pl. Let V be an object of D. One of the properties of a special
cocontinuous functor is that there exists a covering {u(Ui)→ V }i∈I in the site D.
By assumption, for each i there exists a covering {Uij → Ui}j∈Ji in C such that each
restriction F|Uij is Pg. By Sites, Lemma 7.29.3 we have commutative diagrams of
ringed topoi

(Sh(C/Uij),OUij ) //

��

(Sh(C),O)

��
(Sh(D/u(Uij)),O′

u(Uij)) // (Sh(D),O′)

where the vertical arrows are equivalences. Hence we conclude that F ′|u(Uij) has
property Pg also. And moreover, {u(Uij)→ V }i∈I,j∈Ji is a covering of the site D.
Hence F ′ has property Pl.
Assume that F ′ has Pl. Let U be an object of C. By assumption, there exists a cov-
ering {Vi → u(U)}i∈I such that F ′|Vi has property Pg. Because u is cocontinuous
we can refine this covering by a family {u(Uj) → u(U)}j∈J where {Uj → U}j∈J
is a covering in C. Say the refinement is given by α : J → I and u(Uj) → Vα(j).
Restricting is transitive, i.e., (F ′|Vα(j))|u(Uj) = F ′|u(Uj). Hence by Lemma 18.17.2
we see that F ′|u(Uj) has property Pg. Hence the diagram

(Sh(C/Uj),OUj ) //

��

(Sh(C),O)

��
(Sh(D/u(Uj)),O′

u(Uj)) // (Sh(D),O′)

where the vertical arrows are equivalences shows that F|Uj has property Pg also.
Thus F has property Pl as desired.
Finally, we prove the lemma in case Pl = coherent2. Assume F is coherent. This
implies that F is of finite type and hence F ′ is of finite type also by the first part
of the proof. Let V be an object of D and let s1, . . . , sn ∈ F ′(V ). We have to show
that the kernel K′ of

⊕
j=1,...,nOV → F ′|V is of finite type on D/V . This means

we have to show that for any V ′/V there exists a covering {V ′
i → V ′} such that

F ′|V ′
i

is generated by finitely many sections. Replacing V by V ′ (and restricting
the sections sj to V ′) we reduce to the case where V ′ = V . Since u is a special

2The mechanics of this are a bit awkward, and we suggest the reader skip this part of the
proof.
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cocontinuous functor, there exists a covering {u(Ui)→ V }i∈I in the site D. Using
the isomorphism of topoi Sh(C/Ui) = Sh(D/u(Ui)) we see that K′|u(Ui) corresponds
to the kernel Ki of a map

⊕
j=1,...,nOUi → F|Ui . Since F is coherent we see that

Ki is of finite type. Hence we conclude (by the first part of the proof again) that
K|u(Ui) is of finite type. Thus there exist coverings {Vil → u(Ui)} such that K|Vil
is generated by finitely many global sections. Since {Vil → V } is a covering of D
we conclude that K is of finite type as desired.

Assume F ′ is coherent. This implies that F ′ is of finite type and hence F is of
finite type also by the first part of the proof. Let U be an object of C, and let
s1, . . . , sn ∈ F(U). We have to show that the kernel K of

⊕
j=1,...,nOU → F|U is

of finite type on C/U . Using the isomorphism of topoi Sh(C/U) = Sh(D/u(U)) we
see that K|U corresponds to the kernel K′ of a map

⊕
j=1,...,nOu(U) → F ′|u(U). As

F ′ is coherent, we see that K′ is of finite type. Hence, by the first part of the proof
again, we conclude that K is of finite type. □

Hence from now on we may refer to the properties of O-modules defined in Defini-
tion 18.23.1 without specifying a site.

Lemma 18.23.3.03DN Let (Sh(C),O) be a ringed topos. Let F be an O-module. Assume
that the site C has a final object X. Then

(1) The following are equivalent
(a) F is locally free,
(b) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is a locally free OXi-module, and

(c) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is a free OXi-module.

(2) The following are equivalent
(a) F is finite locally free,
(b) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is a finite locally free OXi-module, and

(c) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is a finite free OXi-module.

(3) The following are equivalent
(a) F is locally generated by sections,
(b) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is an OXi-module locally generated by sections, and

(c) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is an OXi-module globally generated by sections.

(4) Given r ≥ 0, the following are equivalent
(a) F is locally generated by r sections,
(b) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is an OXi-module locally generated by r sections, and

(c) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is an OXi-module globally generated by r sections.

(5) The following are equivalent
(a) F is of finite type,
(b) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is an OXi-module of finite type, and
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(c) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is an OXi-module globally generated by finitely many sec-
tions.

(6) The following are equivalent
(a) F is quasi-coherent,
(b) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is a quasi-coherent OXi-module, and

(c) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is an OXi-module which has a global presentation.

(7) The following are equivalent
(a) F is of finite presentation,
(b) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is an OXi-module of finite presentation, and

(c) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is an OXi-module has a finite global presentation.

(8) The following are equivalent
(a) F is coherent, and
(b) there exists a covering {Xi → X} in C such that each restriction
F|C/Xi is a coherent OXi-module.

Proof. In each case we have (a) ⇒ (b). In each of the cases (1) - (6) condition
(b) implies condition (c) by axiom (2) of a site (see Sites, Definition 7.6.2) and the
definition of the local types of modules. Suppose {Xi → X} is a covering. Then
for every object U of C we get an induced covering {Xi×X U → U}. Moreover, the
global property for F|C/Xi in part (c) implies the corresponding global property for
F|C/Xi×XU by Lemma 18.17.2, hence the sheaf has property (a) by definition. We
omit the proof of (b) ⇒ (a) in case (7). □

Lemma 18.23.4.03DO Let (f, f ♯) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed
topoi. Let F be an OD-module.

(1) If F is locally free then f∗F is locally free.
(2) If F is finite locally free then f∗F is finite locally free.
(3) If F is locally generated by sections then f∗F is locally generated by

sections.
(4) If F is locally generated by r sections then f∗F is locally generated by r

sections.
(5) If F is of finite type then f∗F is of finite type.
(6) If F is quasi-coherent then f∗F is quasi-coherent.
(7) If F is of finite presentation then f∗F is of finite presentation.

Proof. According to the discussion in Section 18.18 we need only check preservation
under pullback for a morphism of ringed sites (f, f ♯) : (C,OC)→ (D,OD) such that
f is given by a left exact, continuous functor u : D → C between sites which have
all finite limits. Let G be a sheaf of OD-modules which has one of the properties (1)
– (6) of Definition 18.23.1. We know D has a final object Y and X = u(Y ) is a final
object for C. By assumption we have a covering {Yi → Y } such that G|D/Yi has
the corresponding global property. Set Xi = u(Yi) so that {Xi → X} is a covering

https://stacks.math.columbia.edu/tag/03DO
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in C. We get a commutative diagram of morphisms ringed sites

(C/Xi,OC |Xi) //

��

(C,OC)

��
(D/Yi,OD|Yi) // (D,OD)

by Sites, Lemma 7.28.2. Hence by Lemma 18.17.2 that f∗G|Xi has the correspond-
ing global property. Hence we conclude that G has the local property we started
out with by Lemma 18.23.3. □

18.24. Basic results on local types of modules

082S Basic lemmas related to the definitions made above.

Lemma 18.24.1.082T Let (C,O) be a ringed site. Let θ : G → F be a surjective O-
module map with F of finite presentation and G of finite type. Then Ker(θ) is of
finite type.

Proof. Omitted. Hint: See Modules, Lemma 17.11.3. □

Lemma 18.24.2.0GZN Let C be a category viewed as a site with the chaotic topology,
see Sites, Example 7.6.6. Let O be a sheaf of rings on C and let F be a sheaf of
O-modules. Then F is quasi-coherent if and only if for all U → V in C the canonical
map

F(V )⊗O(V ) O(U) −→ F(U)
is an isomorphism.

Proof. Assume F is quasi-coherent and let U → V be a morphism of C. Since every
covering of V is given by an isomorphism we conclude from Definition 18.23.1 that
there exists a presentation⊕

j∈J
OV −→

⊕
i∈I
OV −→ F|C/V −→ 0

Since the topology on C is chaotic, taking sections over any object of C is exact.
We conclude that we obtain a presentation⊕

j∈J
O(V ) −→

⊕
i∈I
O(V ) −→ F(V ) −→ 0

of F(V ) as an O(V )-module and similarly for F(U). This easily shows that the
displayed map in the statement of the lemma is an isomorphism.

Assume the displayed map in the statement of the lemma is an isomorphism for
every morphism U → V in C. Fix V and choose a presentation⊕

j∈J
O(V ) −→

⊕
i∈I
O(V ) −→ F(V ) −→ 0

of F(V ) as an O(V )-module. Then the assumption on F exactly means that the
corresponding sequence⊕

j∈J
OV −→

⊕
i∈I
OV −→ F|C/V −→ 0

is exact and we conclude that F is quasi-coherent. □

https://stacks.math.columbia.edu/tag/082T
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Lemma 18.24.3.0GZP Let C be a category viewed as a site with the chaotic topology,
see Sites, Example 7.6.6. Let O be a sheaf of rings on C. Assume for all U → V
in C the restriction map O(V ) → O(U) is a flat ring map. Then the category of
quasi-coherent O-modules is a weak Serre subcategory of Mod(O).
Proof. We will check the definition of a weak Serre subcategory, see Homology,
Definition 12.10.1. To do this we will use the characterization of quasi-coherent
modules given in Lemma 18.24.2. Consider an exact sequence

F0 → F1 → F2 → F3 → F4

in Mod(O) with F0, F1, F3, and F4 quasi-coherent. Let U → V be a morphism of
C and consider the commutative diagram
F0(V )⊗O(V ) O(U) //

��

F1(V )⊗O(V ) O(U) //

��

F2(V )⊗O(V ) O(U) //

��

F3(V )⊗O(V ) O(U) //

��

F4(V )⊗O(V ) O(U)

��
F0(U) // F1(U) // F2(U) // F3(U) // F4(U)

By assumption the vertical arrows with indices 0, 1, 3, 4 are isomorphisms. Since
the topology on C is chaotic taking sections over an object of C is exact and hence
the lower row is exact. Since O(V )→ O(U) is flat also the upper row is exact. Thus
we conclude that the middle arrow is an isomorphism by the 5 lemma (Homology,
Lemma 12.5.20). □

18.25. Closed immersions of ringed topoi

08M2 When do we declare a morphism of ringed topoi i : (Sh(C),O)→ (Sh(D),O′) to be
a closed immersion? By analogy with the discussion in Modules, Section 17.13 it
seems natural to assume at least:

(1) The functor i is a closed immersion of topoi (Sites, Definition 7.43.7).
(2) The associated map O′ → i∗O is surjective.

These conditions already imply a number of pleasing results which we discuss in
this section. However, it seems prudent to not actually define the notion of a closed
immersion of ringed topoi as there are many different definitions we could use.
Lemma 18.25.1.08M3 Let i : (Sh(C),O) → (Sh(D),O′) be a morphism of ringed topoi.
Assume i is a closed immersion of topoi and i♯ : O′ → i∗O is surjective. Denote
I ⊂ O′ the kernel of i♯. The functor

i∗ : Mod(O) −→ Mod(O′)
is exact, fully faithful, with essential image those O′-modules G such that IG = 0.
Proof. By Lemma 18.15.2 and Sites, Lemma 7.43.8 we see that i∗ is exact. From
the fact that i∗ is fully faithful on sheaves of sets, and the fact that i♯ is surjective it
follows that i∗ is fully faithful as a functor Mod(O)→ Mod(O′). Namely, suppose
that α : i∗F1 → i∗F2 is an O′-module map. By the fully faithfulness of i∗ we obtain
a map β : F1 → F2 of sheaves of sets. To prove β is a map of modules we have to
show that

O ×F1 //

��

F1

��
O ×F2 // F2

https://stacks.math.columbia.edu/tag/0GZP
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commutes. It suffices to prove commutativity after applying i∗. Consider

O′ × i∗F1 //

��

i∗O × i∗F1 //

��

i∗F1

��
O′ × i∗F2 // i∗O × i∗F2 // i∗F2

We know the outer rectangle commutes. Since i♯ is surjective we conclude.
To finish the proof we have to prove the statement on the essential image of i∗. It
is clear that i∗F is annihilated by I for any O-module F . Conversely, let G be a
O′-module with IG = 0. By definition of a closed subtopos there exists a subsheaf
U of the final object of D such that the essential image of i∗ on sheaves of sets is the
class of sheaves of sets H such that H × U → U is an isomorphism. In particular,
i∗O × U = U . This implies that I × U = O × U . Hence our module G satisfies
G × U = {0} × U = U (because the zero module is isomorphic to the final object
of sheaves of sets). Thus there exists a sheaf of sets F on C with i∗F = G. Since
i∗ is fully faithful on sheaves of sets, we see that in order to define the addition
F × F → F and the multiplication O ×F → F it suffices to use the addition

G × G −→ G
(given to us as G is a O′-module) and the multiplication

i∗O × G → G
which is given to us as we have the multiplication by O′ which annihilates I by
assumption and i∗O = O′/I. By construction G is isomorphic to the pushforward
of the O-module F so constructed. □

18.26. Tensor product

03EK In Sections 18.9 and 18.11 we defined the change of rings functor by a tensor product
construction. To be sure this construction makes sense also to define the tensor
product of presheaves of O-modules. To be precise, suppose C is a category, O is
a presheaf of rings, and F , G are presheaves of O-modules. In this case we define
F ⊗p,O G to be the presheaf

U 7−→ (F ⊗p,O G)(U) = F(U)⊗O(U) G(U)
If C is a site, O is a sheaf of rings and F , G are sheaves of O-modules then we define

F ⊗O G = (F ⊗p,O G)#

to be the sheaf of O-modules associated to the presheaf F ⊗p,O G.
Here are some formulas which we will use below without further mention:

(F ⊗p,O G)⊗p,O H = F ⊗p,O (G ⊗p,O H),
and similarly for sheaves. If O1 → O2 is a map of presheaves of rings, then

(F ⊗p,O1 G)⊗p,O1 O2 = (F ⊗p,O1 O2)⊗p,O2 (G ⊗p,O1 O2),
and similarly for sheaves. These follow from their algebraic counterparts and sheafi-
fication.

Lemma 18.26.1.0GMW Let C be a site. Let O be a presheaf of rings. Let F , G be
presheaves of O-modules. Then F# ⊗O# G# is equal to (F ⊗p,O G)#.

https://stacks.math.columbia.edu/tag/0GMW
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Proof. Omitted. Hint: use the characterization of tensor product in terms of bilin-
ear maps below and use the universal property of sheafification. □

Let C be a site, let O be a sheaf of rings and let F , G, H be sheaves of O-modules.
In this case we define

BilinO(F × G,H) = {φ ∈ MorSh(C)(F × G,H) | φ is O-bilinear}.
With this definition we have

HomO(F ⊗O G,H) = BilinO(F × G,H).
In other words F ⊗O G represents the functor which associates to H the set of
bilinear maps F × G → H. In particular, since the notion of a bilinear map makes
sense for a pair of modules on a ringed topos, we see that the tensor product of
sheaves of modules is intrinsic to the topos (compare the discussion in Section
18.18). In fact we have the following.

Lemma 18.26.2.03EL Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. Let F , G be OD-modules. Then f∗(F ⊗OD G) = f∗F ⊗OC f

∗G functorially
in F , G.

Proof. For a sheaf H of OC modules we have
HomOC (f∗(F ⊗O G),H) = HomOD (F ⊗O G, f∗H)

= BilinOD (F × G, f∗H)
= Bilinf−1OD (f−1F × f−1G,H)
= Homf−1OD (f−1F ⊗f−1OD f−1G,H)
= HomOC (f∗F ⊗f∗OD f∗G,H)

The interesting “=” in this sequence of equalities is the third equality. It follows
from the definition and adjointness of f∗ and f−1 (as discussed in previous sections)
in a straightforward manner. □

Lemma 18.26.3.03L6 Let (C,O) be a ringed site. Let F , G be sheaves of O-modules.
(1) If F , G are locally free, so is F ⊗O G.
(2) If F , G are finite locally free, so is F ⊗O G.
(3) If F , G are locally generated by sections, so is F ⊗O G.
(4) If F , G are of finite type, so is F ⊗O G.
(5) If F , G are quasi-coherent, so is F ⊗O G.
(6) If F , G are of finite presentation, so is F ⊗O G.
(7) If F is of finite presentation and G is coherent, then F ⊗O G is coherent.
(8) If F , G are coherent, so is F ⊗O G.

Proof. Omitted. Hint: Compare with Sheaves of Modules, Lemma 17.16.6. □

18.27. Internal Hom

04TT Let C be a category and let O be a presheaf of rings. Let F , G be presheaves of
O-modules. Consider the rule

U 7−→ HomOU
(F|U ,G|U ).

For φ : V → U in C we define a restriction mapping
HomOU

(F|U ,G|U ) −→ HomOV
(F|V ,G|V )

https://stacks.math.columbia.edu/tag/03EL
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by restricting via the relocalization morphism j : C/V → C/U , see Sites, Lemma
7.25.8. Hence this defines a presheaf HomO(F ,G). In addition, given an ele-
ment φ ∈ HomO|U (F|U ,G|U ) and a section f ∈ O(U) then we can define fφ ∈
HomO|U (F|U ,G|U ) by either precomposing with multiplication by f on F|U or
postcomposing with multiplication by f on G|U (it gives the same result). Hence
we in fact get a presheaf of O-modules. There is a canonical “evaluation” morphism

F ⊗p,O HomO(F ,G) −→ G.
Lemma 18.27.1.03EM If C is a site, O is a sheaf of rings, F is a presheaf of O-modules,
and G is a sheaf of O-modules, then HomO(F ,G) is a sheaf of O-modules.
Proof. Omitted. Hints: Note first that HomO(F ,G) = HomO(F#,G), which re-
duces the question to the case where both F and G are sheaves. The result for
sheaves of sets is Sites, Lemma 7.26.1. □

Lemma 18.27.2.0E8H Let (C,O) be a ringed site. Let F ,G be sheaves of O-modules.
Then formation of HomO(F ,G) commutes with restriction to U for U ∈ Ob(C).
Proof. Immediate from the definition. □

Remark 18.27.3.0GMX Let f : (C,OC) → (D,OD) be a morphism of ringed sites. Let
F ,G be sheaves of OD-modules. There is a canonical map

f∗HomOD (F ,G) −→ HomOC (f∗F , f∗G)
Namely, this map is adjoint to the map

HomOD (F ,G) −→ f∗HomOC (f∗F , f∗G)
defined as follows. Say f is given by the continuous functor u : D → C. For sections
over V ∈ Ob(D) we use the map

Γ(V,HomOD (F ,G)) = HomOV
(F|V ,G|V )

−→ HomOu(V )(f∗F|u(V ),G|u(V ))
= Γ(u(V ),HomOC (f∗F , f∗G))
= Γ(V, f∗HomOC (f∗F , f∗G))

where for the arrow we use pullback by the morphism (C/u(V ),Ou(V ))→ (D/V,OV )
induced by f .
In the situation of Lemma 18.27.1 the “evaluation” morphism factors through the
tensor product of sheaves of modules

F ⊗O HomO(F ,G) −→ G.
Lemma 18.27.4.03EN Internal hom and (co)limits. Let C be a category and let O be a
presheaf of rings.

(1) For any presheaf of O-modules F the functor
PMod(O) −→ PMod(O), G 7−→ HomO(F ,G)

commutes with arbitrary limits.
(2) For any presheaf of O-modules G the functor

PMod(O) −→ PMod(O)opp, F 7−→ HomO(F ,G)
commutes with arbitrary colimits, in a formula

HomO(colimi Fi,G) = limiHomO(Fi,G).

https://stacks.math.columbia.edu/tag/03EM
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Suppose that C is a site, and O is a sheaf of rings.
(3) For any sheaf of O-modules F the functor

Mod(O) −→ Mod(O), G 7−→ HomO(F ,G)

commutes with arbitrary limits.
(4) For any sheaf of O-modules G the functor

Mod(O) −→ Mod(O)opp, F 7−→ HomO(F ,G)

commutes with arbitrary colimits, in a formula

HomO(colimi Fi,G) = limiHomO(Fi,G).

Proof. Let I → PMod(O), i 7→ Gi be a diagram. Let U be an object of the category
C. As j∗

U is both a left and a right adjoint we see that limi j
∗
UGi = j∗

U limi Gi. Hence
we have

HomO(F , limi Gi)(U) = HomOU
(F|U , limi Gi|U )

= limi HomOU
(F|U ,Gi|U )

= limiHomO(F ,Gi)(U)

by definition of a limit. This proves (1). Part (2) is proved in exactly the same way.
Part (3) follows from (1) because the limit of a diagram of sheaves is the same as
the limit in the category of presheaves. Finally, (4) follow because, in the formula
we have

MorMod(O)(colimi Fi,G) = MorPMod(O)(colimPSh
i Fi,G)

as the colimit colimi Fi is the sheafification of the colimit colimPSh
i Fi in PMod(O).

Hence (4) follows from (2) (by the remark on limits above again). □

Lemma 18.27.5.0GMY Let (C,O) be a ringed site. Let F , G be O-modules.
(1) If F2 → F1 → F → 0 is an exact sequence of O-modules, then

0→ HomO(F ,G)→ HomO(F1,G)→ HomO(F2,G)

is exact.
(2) If 0→ G → G1 → G2 is an exact sequence of O-modules, then

0→ HomO(F ,G)→ HomO(F ,G1)→ HomO(F ,G2)

is exact.

Proof. Follows from Lemma 18.27.4 and Homology, Lemma 12.7.2. □

Lemma 18.27.6.03EO Let C be a category. Let O be a presheaf of rings.
(1) Let F , G, H be presheaves of O-modules. There is a canonical isomor-

phism

HomO(F ⊗p,O G,H) −→ HomO(F ,HomO(G,H))

which is functorial in all three entries (sheaf Hom in all three spots). In
particular,

MorPMod(O)(F ⊗p,O G,H) = MorPMod(O)(F ,HomO(G,H))

https://stacks.math.columbia.edu/tag/0GMY
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(2) Suppose that C is a site, O is a sheaf of rings, and F , G, H are sheaves of
O-modules. There is a canonical isomorphism

HomO(F ⊗O G,H) −→ HomO(F ,HomO(G,H))

which is functorial in all three entries (sheaf Hom in all three spots). In
particular,

MorMod(O)(F ⊗O G,H) = MorMod(O)(F ,HomO(G,H))

Proof. This is the analogue of Algebra, Lemma 10.12.8. The proof is the same, and
is omitted. □

Lemma 18.27.7.03EP Tensor product and colimits. Let C be a category and let O be a
presheaf of rings.

(1) For any presheaf of O-modules F the functor

PMod(O) −→ PMod(O), G 7−→ F ⊗p,O G

commutes with arbitrary colimits.
(2) Suppose that C is a site, and O is a sheaf of rings. For any sheaf of
O-modules F the functor

Mod(O) −→ Mod(O), G 7−→ F ⊗O G

commutes with arbitrary colimits.

Proof. This is because tensor product is adjoint to internal hom according to
Lemma 18.27.6. See Categories, Lemma 4.24.5. □

Lemma 18.27.8.0932 Let C be a category, resp. a site Let O → O′ be a map of
presheaves, resp. sheaves of rings. Then

HomO(G,F) = HomO′(G,HomO(O′,F))

for any O′-module G and O-module F .

Proof. This is the analogue of Algebra, Lemma 10.14.4. The proof is the same, and
is omitted. □

Lemma 18.27.9.0E8I Let (C,O) be a ringed site. Let U ∈ Ob(C). For G in Mod(OU )
and F in Mod(O) we have jU !G ⊗O F = jU !(G ⊗OU

F|U ).

Proof. Let H be an object of Mod(O). Then

HomO(jU !(G ⊗OU
F|U ),H) = HomOU

(G ⊗OU
F|U ,H|U )

= HomOU
(G,HomOU

(F|U ,H|U ))
= HomOU

(G,HomO(F ,H)|U )
= HomO(jU !G,HomO(F ,H))
= HomO(jU !G ⊗O F ,H)

The first equality because jU ! is a left adjoint to restriction of modules. The second
by Lemma 18.27.6. The third by Lemma 18.27.2. The fourth because jU ! is a left
adjoint to restriction of modules. The fifth by Lemma 18.27.6. The lemma follows
from this and the Yoneda lemma. □

https://stacks.math.columbia.edu/tag/03EP
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Remark 18.27.10.0EYY Let C be a site. Let F be a sheaf of sets on C and consider the
localization morphism j : Sh(C)/F → Sh(C). See Sites, Definition 7.30.4. We claim
that (a) j!Z = Z#

F and (b) j!(j−1H) = j!Z⊗ZH for any abelian sheaf H on C. Let
G be an abelian on C. Part (a) follows from the Yoneda lemma because

Hom(j!Z,G) = Hom(Z, j−1G) = Hom(Z#
F ,G)

where the second equality holds because both sides of the equality evaluate to the
set of maps from F → G viewed as an abelian group. For (b) we use the Yoneda
lemma and

Hom(j!(j−1H),G) = Hom(j−1H, j−1G)
= Hom(Z,Hom(j−1H, j−1G))
= Hom(Z, j−1Hom(H,G))
= Hom(j!Z,Hom(H,G))
= Hom(j!Z⊗Z H,G)

Here we use adjunction, the fact that taking Hom commutes with localization, and
Lemma 18.27.6.

Lemma 18.27.11.0GMZ Let (C,O) be a ringed site. Let F be an O-module of finite
presentation. Let G = colimλ∈Λ Gλ be a filtered colimit of O-modules. Then the
canonical map

colimλHomO(F ,Gλ) −→ HomO(F ,G)
is an isomorphism.

Proof. It suffices to show the arrow is an isomorphism after restriction to U for
all U in C. Both taking colimits of sheaves of modules and taking internal hom
commute with restriction to U . See for example Lemmas 18.14.3 and 18.27.2. Fix
U . Given a covering {Ui → U}i∈I , then it suffices to prove the restriction to each
Ui is an isomorphism. Hence we may assume F has a global presentation⊕

j=1,...,m
O −→

⊕
i=1,...,n

O → F → 0

The functor HomO(−,−) commutes with finite direct sums in either variable and
HomO(O,−) is the identity functor. By this and by Lemma 18.27.5 we obtain an
exact sequence

0→ HomO(F ,G)→
⊕

i=1,...,n
G →

⊕
j=1,...,m

G

Since filtered colimits are exact in Mod(O) by Lemma 18.14.2 also the top row in
the following commutative diagram is exact
0 // colimλHomO(F ,Gλ) //

��

colimλ

⊕
i=1,...,n Gλ //

��

colimλ

⊕
j=1,...,m Gλ

��
0 // HomO(F ,G) //⊕

i=1,...,n G //⊕
j=1,...,m G

Since the right two vertical arrows are isomorphisms we conclude. □

Lemma 18.27.12.0GN0 Let (C,O) be a ringed site. Let G = colimλ∈Λ Gλ be a filtered
colimit of O-modules. Let F be an O-module of finite presentation. Then we have

colimλ HomO(F ,Gλ) = HomO(F ,G).

https://stacks.math.columbia.edu/tag/0EYY
https://stacks.math.columbia.edu/tag/0GMZ
https://stacks.math.columbia.edu/tag/0GN0


18.28. FLAT MODULES 1689

if the hypotheses of Sites, Lemma 7.17.8 part (4) are satisfied for the site C; please
see Sites, Remark 7.17.9.

Proof. Set H = HomO(F , colimGλ) and Hλ = HomO(F ,Gλ). Recall that
HomO(F ,G) = Γ(C,H) and HomO(F ,Gλ) = Γ(C,Hλ)

by construction. By Lemma 18.27.11 we have H = colimHλ. Thus the lemma
follows from Sites, Lemma 7.17.8. □

18.28. Flat modules

03EQ We can define flat modules exactly as in the case of modules over rings.

Definition 18.28.1.03ER Let C be a category. Let O be a presheaf of rings.
(1) A presheaf F of O-modules is called flat if the functor

PMod(O) −→ PMod(O), G 7→ G ⊗p,O F
is exact.

(2) A map O → O′ of presheaves of rings is called flat if O′ is flat as a presheaf
of O-modules.

(3) If C is a site, O is a sheaf of rings and F is a sheaf of O-modules, then we
say F is flat if the functor

Mod(O) −→ Mod(O), G 7→ G ⊗O F
is exact.

(4) A map O → O′ of sheaves of rings on a site is called flat if O′ is flat as a
sheaf of O-modules.

The notion of a flat module or flat ring map is intrinsic (Section 18.18).

Lemma 18.28.2.03ES Let C be a category. Let O be a presheaf of rings. Let F be a
presheaf of O-modules. If each F(U) is a flat O(U)-module, then F is flat.

Proof. This is immediate from the definitions. □

Lemma 18.28.3.03ET Let C be a site. Let O be a presheaf of rings. Let F be a presheaf
of O-modules. If F is a flat O-module, then F# is a flat O#-module.

Proof. Omitted. (Hint: Sheafification is exact.) □

Lemma 18.28.4.0GN1 Let C be a site. Let O be a presheaf of rings. Let F be a presheaf
of O-modules. Assume that every object U of C has a covering {Ui → U}i∈I such
that F(Ui) is a flat O(Ui)-module. Then F# is a flat O#-module.

Proof. Let G ⊂ G′ be an inclusion of O#-modules. We have to show that
G ⊗O# F# −→ G′ ⊗O# F#

is injective. By Lemma 18.26.1 the source of this arrow is the sheafification of the
presheaf G ⊗p,O F and similarly for the target. If U is an object of C such that
F(U) is a flat O(U)-module, then

(G ⊗p,O F)(U) = G(U)⊗O(U) F(U) −→ G′(U)⊗O(U) F(U) = (G′ ⊗p,O F)(U)
is injective. Hence we reduce to showing: given a map of presheaves f : H → H′

on C such that every U in C has a covering {Ui → U}i∈I with H(Ui) → H′(Ui)
injective, then f# is injective. This we leave to the reader as an exercise. □

https://stacks.math.columbia.edu/tag/03ER
https://stacks.math.columbia.edu/tag/03ES
https://stacks.math.columbia.edu/tag/03ET
https://stacks.math.columbia.edu/tag/0GN1
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Lemma 18.28.5.03EU Colimits and tensor product.
(1) A filtered colimit of flat presheaves of modules is flat. A direct sum of flat

presheaves of modules is flat.
(2) A filtered colimit of flat sheaves of modules is flat. A direct sum of flat

sheaves of modules is flat.

Proof. Part (1) follows from Lemma 18.27.7 and Algebra, Lemma 10.8.8 by looking
at sections over objects. To see part (2), use Lemma 18.27.7 and the fact that a
filtered colimit of exact complexes is an exact complex (this uses that sheafification
is exact and commutes with colimits). Some details omitted. □

Lemma 18.28.6.0E8J Let (C,O) be a ringed site. Let U be an object of C. If F is a flat
O-module, then F|U is a flat OU -module.

Proof. Let G1 → G2 → G3 be an exact complex of OU -modules. Since jU ! is exact
(Lemma 18.19.3) and F is flat as an O-modules then we see that the complex made
up of the modules

jU !(Gi ⊗OU
F|U ) = jU !Gi ⊗O F

(Lemma 18.27.9) is exact. We conclude that G1⊗OU
F|U → G2⊗OU

F|U → G3⊗OU

F|U is exact by Lemma 18.19.4. □

Lemma 18.28.7.03EV Let C be a category. Let O be a presheaf of rings. Let U be an
object of C. Consider the functor jU : C/U → C.

(1) The presheaf of O-modules jU !OU (see Remark 18.19.7) is flat.
(2) If C is a site, O is a sheaf of rings, jU !OU is a flat sheaf of O-modules.

Proof. Proof of (1). By the discussion in Remark 18.19.7 we see that

jU !OU (V ) =
⊕

φ∈MorC(V,U)
O(V )

which is a flat O(V )-module. Hence (1) follows from Lemma 18.28.2. Then (2)
follows as jU !OU = (jU !OU )# (the first jU ! on sheaves, the second on presheaves)
and Lemma 18.28.3. □

Lemma 18.28.8.03EW Let C be a category. Let O be a presheaf of rings.
(1) Any presheaf of O-modules is a quotient of a direct sum

⊕
jUi!OUi .

(2) Any presheaf of O-modules is a quotient of a flat presheaf of O-modules.
(3) If C is a site, O is a sheaf of rings, then any sheaf of O-modules is a

quotient of a direct sum
⊕
jUi!OUi .

(4) If C is a site, O is a sheaf of rings, then any sheaf of O-modules is a
quotient of a flat sheaf of O-modules.

Proof. Proof of (1). For every object U of C and every s ∈ F(U) we get a morphism
jU !OU → F , namely the adjoint to the morphism OU → F|U , 1 7→ s. Clearly the
map ⊕

(U,s)
jU !OU −→ F

is surjective. The source is flat by combining Lemmas 18.28.5 and 18.28.7 which
proves (2). The sheaf case follows from this either by sheafifying or repeating the
same argument. □

https://stacks.math.columbia.edu/tag/03EU
https://stacks.math.columbia.edu/tag/0E8J
https://stacks.math.columbia.edu/tag/03EV
https://stacks.math.columbia.edu/tag/03EW
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Lemma 18.28.9.03EX Let C be a category. Let O be a presheaf of rings. Let

0→ F ′′ → F ′ → F → 0

be a short exact sequence of presheaves of O-modules. Let G be a presheaf of
O-modules.

(1) If F is a flat presheaf of modules, then the sequence

0→ F ′′ ⊗p,O G → F ′ ⊗p,O G → F ⊗p,O G → 0

is exact.
(2) If C is a site, O, F , F ′, F ′′, and G are sheaves, and F is flat as a sheaf of

modules, then the sequence

0→ F ′′ ⊗O G → F ′ ⊗O G → F ⊗O G → 0

is exact.

Proof. Choose a flat presheaf of O-modules G′ which surjects onto G. This is
possible by Lemma 18.28.8. Let G′′ = Ker(G′ → G). The lemma follows by applying
the snake lemma to the following diagram

0 0 0
↑ ↑ ↑

F ′′ ⊗p,O G → F ′ ⊗p,O G → F ⊗p,O G → 0
↑ ↑ ↑

0 → F ′′ ⊗p,O G′ → F ′ ⊗p,O G′ → F ⊗p,O G′ → 0
↑ ↑ ↑

F ′′ ⊗p,O G′′ → F ′ ⊗p,O G′′ → F ⊗p,O G′′ → 0
↑
0

with exact rows and columns. The middle row is exact because tensoring with the
flat module G′ is exact. The proof in the case of sheaves is exactly the same. □

Lemma 18.28.10.03EY Let C be a category. Let O be a presheaf of rings. Let

0→ F2 → F1 → F0 → 0

be a short exact sequence of presheaves of O-modules.
(1) If F2 and F0 are flat so is F1.
(2) If F1 and F0 are flat so is F2.

If C is a site and O is a sheaf of rings then the same result holds in Mod(O).

Proof. Let G• be an arbitrary exact complex of presheaves of O-modules. Assume
that F0 is flat. By Lemma 18.28.9 we see that

0→ G• ⊗p,O F2 → G• ⊗p,O F1 → G• ⊗p,O F0 → 0

is a short exact sequence of complexes of presheaves of O-modules. Hence (1) and
(2) follow from the snake lemma. The case of sheaves of modules is proved in the
same way. □

Lemma 18.28.11.03EZ Let C be a category. Let O be a presheaf of rings. Let

. . .→ F2 → F1 → F0 → Q→ 0

https://stacks.math.columbia.edu/tag/03EX
https://stacks.math.columbia.edu/tag/03EY
https://stacks.math.columbia.edu/tag/03EZ
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be an exact complex of presheaves of O-modules. IfQ and all Fi are flat O-modules,
then for any presheaf G of O-modules the complex

. . .→ F2 ⊗p,O G → F1 ⊗p,O G → F0 ⊗p,O G → Q⊗p,O G → 0

is exact also. If C is a site and O is a sheaf of rings then the same result holds
Mod(O).

Proof. Follows from Lemma 18.28.9 by splitting the complex into short exact se-
quences and using Lemma 18.28.10 to prove inductively that Im(Fi+1 → Fi) is
flat. □

Lemma 18.28.12.0G6Q Let (C,O) be a ringed site. If G and F are flat O-modules, then
G ⊗O F is a flat O-module.

Proof. This is true because

(G ⊗O F)⊗O H = G ⊗O (F ⊗O H)

and a composition of exact functors is exact. □

Lemma 18.28.13.05V4 Let O1 → O2 be a map of sheaves of rings on a site C. If G is a
flat O1-module, then G ⊗O1 O2 is a flat O2-module.

Proof. This is true because

(G ⊗O1 O2)⊗O2 H = G ⊗O1 F

(as sheaves of abelian groups for example). □

The following lemma is the analogue of the equational criterion of flatness (Algebra,
Lemma 10.39.11).

Lemma 18.28.14.08FC Let (C,O) be a ringed site. Let F be an O-module. The following
are equivalent

(1) F is a flat O-module.
(2) Let U be an object of C and let

OU
(f1,...,fn)−−−−−−→ O⊕n

U

(s1,...,sn)−−−−−−→ F|U
be a complex of OU -modules. Then there exists a covering {Ui → U} and
for each i a factorization

O⊕n
Ui

Bi−−→ O⊕li
Ui

(ti1,...,tili )
−−−−−−−→ F|Ui

of (s1, . . . , sn)|Ui such that Bi ◦ (f1, . . . , fn)|Ui = 0.
(3) Let U be an object of C and let

O⊕m
U

A−→ O⊕n
U

(s1,...,sn)−−−−−−→ F|U
be a complex of OU -modules. Then there exists a covering {Ui → U} and
for each i a factorization

O⊕n
Ui

Bi−−→ O⊕li
Ui

(ti1,...,tili )
−−−−−−−→ F|Ui

of (s1, . . . , sn)|Ui such that Bi ◦A|Ui = 0.

https://stacks.math.columbia.edu/tag/0G6Q
https://stacks.math.columbia.edu/tag/05V4
https://stacks.math.columbia.edu/tag/08FC
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Proof. Assume (1). Let I ⊂ OU be the sheaf of ideals generated by f1, . . . , fn.
Then

∑
fj ⊗ sj is a section of I ⊗OU

F|U which maps to zero in F|U . As F|U is
flat (Lemma 18.28.6) the map I ⊗OU

F|U → F|U is injective. Since I ⊗OU
F|U is

the sheaf associated to the presheaf tensor product, we see there exists a covering
{Ui → U} such that

∑
fj |Ui ⊗ sj |Ui is zero in I(Ui) ⊗O(Ui) F(Ui). Unwinding

the definitions using Algebra, Lemma 10.107.10 we find ti1, . . . , tili ∈ F(Ui) and
aijk ∈ O(Ui) such that

∑
j aijkfj |Ui = 0 and sj |Ui =

∑
k aijktik. Thus (2) holds.

Assume (2). Let U , n, m, A and s1, . . . , sn as in (3) be given. Observe that A
has m columns. We will prove the assertion of (3) is true by induction on m. For
the base case m = 0 we can use the factorization through the zero sheaf (in other
words li = 0). Let (f1, . . . , fn) be the last column of A and apply (2). This gives
new diagrams

O⊕m
Ui

Bi◦A|Ui−−−−−→ O⊕li
Ui

(ti1,...,tili )
−−−−−−−→ F|Ui

but the first column of Ai = Bi ◦ A|Ui is zero. Hence we can apply the induction
hypothesis to Ui, li, m− 1, the matrix consisting of the first m− 1 columns of Ai,
and ti1, . . . , tili to get coverings {Uij → Uj} and factorizations

O⊕li
Uij

Cij−−→ O⊕kij
Uij

(vij1,...,vijkij )
−−−−−−−−−→ F|Uij

of (ti1, . . . , tili)|Uij such that Ci ◦Bi|Uij ◦A|Uij = 0. Then {Uij → U} is a covering
and we get the desired factorizations using Bij = Ci ◦Bi|Uij and vija. In this way
we see that (2) implies (3).
Assume (3). Let G → H be an injective homomorphism of O-modules. We have
to show that G ⊗O F → H ⊗O F is injective. Let U be an object of C and let
s ∈ (G⊗OF)(U) be a section which maps to zero in H⊗OF . We have to show that
s is zero. Since G⊗OF is a sheaf, it suffices to find a covering {Ui → U}i∈I of C such
that s|Ui is zero for all i ∈ I. Hence we may always replace U by the members of a
covering. In particular, since G⊗OF is the sheafification of G⊗p,OF we may assume
that s is the image of s′ ∈ G(U)⊗O(U)F(U). Arguing similarly for H⊗OF we may
assume that s′ maps to zero in H(U) ⊗O(U) F(U). Write F(U) = colimMα as a
filtered colimit of finitely presented O(U)-modules Mα (Algebra, Lemma 10.11.3).
Since tensor product commutes with filtered colimits (Algebra, Lemma 10.12.9) we
can choose an α such that s′ comes from some s′′ ∈ G(U)⊗O(U) Mα and such that
s′′ maps to zero in H(U)⊗O(U) Mα. Fix α and s′′. Choose a presentation

O(U)⊕m A−→ O(U)⊕n →Mα → 0
We apply (3) to the corresponding complex of OU -modules

O⊕m
U

A−→ O⊕n
U

(s1,...,sn)−−−−−−→ F|U
After replacing U by the members of the covering Ui we find that the map

Mα → F(U)
factors through a free module O(U)⊕l for some l. Since G(U)→ H(U) is injective
we conclude that

G(U)⊗O(U) O(U)⊕l → H(U)⊗O(U) O(U)⊕l

is injective too. Hence as s′′ maps to zero in the module on the right, it also maps
to zero in the module on the left, i.e., s is zero as desired. □
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Lemma 18.28.15.08M4 Let C be a site. Let O′ → O be a surjection of sheaves of
rings whose kernel I is an ideal of square zero. Let F ′ be an O′-module and set
F = F ′/IF ′. The following are equivalent

(1) F ′ is a flat O′-module, and
(2) F is a flat O-module and I ⊗O F → F ′ is injective.

Proof. If (1) holds, then F = F ′ ⊗O′ O is flat over O by Lemma 18.28.13 and we
see the map I ⊗O F → F ′ is injective by applying −⊗O′ F ′ to the exact sequence
0 → I → O′ → O → 0, see Lemma 18.28.9. Assume (2). In the rest of the proof
we will use without further mention that K⊗O′ F ′ = K⊗O F for any O′-module K
annihilated by I. Let α : G′ → H′ be an injective map of O′-modules. Let G ⊂ G′,
resp. H ⊂ H′ be the subsheaf of sections annihilated by I. Consider the diagram

G ⊗O′ F ′ //

��

G′ ⊗O′ F ′ //

��

G′/G ⊗O′ F ′ //

��

0

H⊗O′ F ′ // H′ ⊗O′ F ′ // H′/H⊗O′ F ′ // 0

Note that G′/G and H′/H are annihilated by I and that G′/G → H′/H is injective.
Thus the right vertical arrow is injective as F is flat over O. The same is true
for the left vertical arrow. Hence the middle vertical arrow is injective and F ′ is
flat. □

Lemma 18.28.16.0GLY Let C be a site. Let O → O′ be a flat homomorphism of sheaves
of rings. Let I ⊂ O be a sheaf of ideals such that the induced map O/I → O′/IO′

is an isomorphism. For any O-module F annihilated by In for some n ≥ 0 the map
id⊗ 1 : F → F ⊗O O′ is an isomorphism.

Proof. Omitted. Hint: See More on Algebra, Lemma 15.89.2. □

18.29. Duals

0FNX Let (C,O) be a ringed site. The category of O-modules endowed with the tensor
product constructed in Section 18.26 is a symmetric monoidal category. For an
O-module F the following are equivalent

(1) F has a left dual in the monoidal category of O-modules,
(2) for every object U of C there exists a covering {Ui → U} such that F|Ui

is a direct summand of a finite free O|Ui -module, and
(3) F is of finite presentation and flat as an O-module.

This is proved in Example 18.29.1 and Lemmas 18.29.2 and 18.29.3 of this section.

Example 18.29.1.0FNY Let (C,O) be a ringed site. Let F be an O-module such that
for every object U of C there exists a covering {Ui → U} such that F|Ui is a direct
summand of a finite free O|Ui-module. Then the map

F ⊗O HomO(F ,O) −→ HomO(F ,F)

is an isomorphism. Namely, this is a local question, it is true if F is finite free, and
it holds for any summand of a module for which it is true (details omitted). Denote

η : O −→ F ⊗O HomO(F ,O)

https://stacks.math.columbia.edu/tag/08M4
https://stacks.math.columbia.edu/tag/0GLY
https://stacks.math.columbia.edu/tag/0FNY
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the map sending 1 to the section corresponding to idF under the isomorphism
above. Denote

ϵ : HomO(F ,O)⊗O F −→ O
the evaluation map. Then we see that HomO(F ,O), η, ϵ is a left dual for F as in
Categories, Definition 4.43.5. We omit the verification that (1⊗ ϵ) ◦ (η ⊗ 1) = idF
and (ϵ⊗ 1) ◦ (1⊗ η) = idHomO(F,O).

Lemma 18.29.2.0FNZ Let (C,O) be a ringed site. Let F be a O-module. Let G, η, ϵ be
a left dual of F in the monoidal category of O-modules, see Categories, Definition
4.43.5. Then

(1) for every object U of C there exists a covering {Ui → U} such that F|Ui
is a direct summand of a finite free O|Ui -module,

(2) the map e : HomO(F ,O) → G sending a local section λ to (λ ⊗ 1)(η) is
an isomorphism,

(3) we have ϵ(f, g) = e−1(g)(f) for local sections f and g of F and G.
Proof. The assumptions mean that

F η⊗1−−→ F ⊗O G ⊗O F
1⊗ϵ−−→ F and G 1⊗η−−→ G ⊗O F ⊗O G

ϵ⊗1−−→ G
are the identity map. Let U be an object of C. After replacing U by the members
of a covering of U , we can find a finite number of sections f1, . . . , fn and g1, . . . , gn
of F and G over U such that η(1) =

∑
figi. Denote

O⊕n
U → F|U

the map sending the ith basis vector to fi. Then we can factor the map η|U over a
map η̃ : OU → O⊕n

U ⊗OU
G|U . We obtain a commutative diagram

F|U
η⊗1

//

η̃⊗1
))

F|U ⊗ G|U ⊗F|U 1⊗ϵ
// F|U

O⊕n
U ⊗ G|U ⊗F|U

OO

1⊗ϵ // O⊕n
U

OO

This shows that the identity on F|U factors through a finite free OU -module. This
proves (1). Part (2) follows from Categories, Lemma 4.43.6 and its proof. Part (3)
follows from the first equality of the proof. You can also deduce (2) and (3) from
the uniqueness of left duals (Categories, Remark 4.43.7) and the construction of
the left dual in Example 18.29.1. □

Lemma 18.29.3.08FD Let (C,O) be a ringed site. Let F be locally of finite presentation
and flat. Then given an object U of C there exists a covering {Ui → U} such that
F|Ui is a direct summand of a finite free OUi-module.
Proof. Choose an object U of C. After replacing U by the members of a covering,
we may assume there exists a presentation

O⊕r
U → O

⊕n
U → F|U → 0

By Lemma 18.28.14 we may, after replacing U by the members of a covering, assume
there exists a factorization

O⊕n
U → O⊕n1

U → F|U
such that the composition O⊕r

U → O⊕n
U → O⊕nr

U is zero. This means that the
surjection O⊕nr

U → F|U has a section and we win. □

https://stacks.math.columbia.edu/tag/0FNZ
https://stacks.math.columbia.edu/tag/08FD


18.30. TOWARDS CONSTRUCTIBLE MODULES 1696

18.30. Towards constructible modules

0933 Recall that a quasi-compact object of a site is roughly an object such that every
covering of it can be refined by a finite covering (the actual definition is slightly
more involved, see Sites, Section 7.17). It turns out that if every object of a site has
a covering by quasi-compact objects, then the modules j!OU with U quasi-compact
form a particularly nice set of generators for the category of all modules.

Lemma 18.30.1.0934 Let (C,O) be a ringed site. Let {Ui → U} be a covering of C.
Then the sequence⊕

jUi×UUj !OUi×UUj →
⊕

jUi!OUi → j!OU → 0
is exact.

Proof. For any O-module F the functor HomO(−,F) turns our sequence into the
exact sequence 0 → F(U) →

∏
F(Ui) →

∏
F(Ui ×U Uj), see (18.19.2.1). The

lemma follows from this and Homology, Lemma 12.5.8. □

Lemma 18.30.2.0G1W Let (C,O) be a ringed site. Let U = {Ui → U}i∈I be covering
of C. If U is quasi-compact, then there exist a finite subset I ′ ⊂ I such that the
sequence ⊕

i,i′∈I′
jUi×UUi′ !OUi×UUi′ →

⊕
i∈I′

jUi!OUi → j!OU → 0

is exact.

Proof. This lemma is immediate from Lemma 18.30.1 if U satisfies condition (3)
of Sites, Lemma 7.17.2. We urge the reader to skip the proof in the general case.
By definition there exists a covering V = {Vj → U}j∈J and a morphism V → U
of families of maps with fixed target given by id : U → U , α : J → I, and
fj : Vj → Uα(j) (see Sites, Definition 7.8.1) such that the image I ′ ⊂ I of α is finite.
By Homology, Lemma 12.5.8 it suffices to show that for any sheaf of O-modules F
the functor HomO(−,F) turns the sequence of the lemma into an exact sequence.
By (18.19.2.1) we obtain the usual sequence

0→ F(U)→
∏

i∈I′
F(Ui)→

∏
i,i′∈I′

F(Ui ×U Ui′)

This is an exact sequence by Sites, Lemma 7.8.6 applied to the family of maps
{Ui → U}i∈I′ which is refined by the covering V. □

Lemma 18.30.3.0935 Let C be a site. Let W be a quasi-compact object of C.
(1) The functor Sh(C)→ Sets, F 7→ F(W ) commutes with coproducts.
(2) Let O be a sheaf of rings on C. The functor Mod(O) → Ab, F 7→ F(W )

commutes with direct sums.

Proof. Proof of (1). Taking sections over W commutes with filtered colimits with
injective transition maps by Sites, Lemma 7.17.7. If Fi is a family of sheaves of
sets indexed by a set I. Then

∐
Fi is the filtered colimit over the partially ordered

set of finite subsets E ⊂ I of the coproducts FE =
∐
i∈E Fi. Since the transition

maps are injective we conclude.
Proof of (2). Let Fi be a family of sheaves of O-modules indexed by a set I. Then⊕
Fi is the filtered colimit over the partially ordered set of finite subsets E ⊂ I

of the direct sums FE =
⊕

i∈E Fi. A filtered colimit of abelian sheaves can be

https://stacks.math.columbia.edu/tag/0934
https://stacks.math.columbia.edu/tag/0G1W
https://stacks.math.columbia.edu/tag/0935
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computed in the category of sheaves of sets. Moreover, for E ⊂ E′ the transition
map FE → FE′ is injective (as sheafification is exact and the injectivity is clear on
underlying presheaves). Hence it suffices to show the result for a finite index set by
Sites, Lemma 7.17.7. The finite case is dealt with in Lemma 18.3.2 (it holds over
any object of C). □

Lemma 18.30.4.0936 Let (C,O) be a ringed site. Let U be a quasi-compact object of
C. Then the functor HomO(j!OU ,−) commutes with direct sums.

Proof. This is true because HomO(j!OU ,F) = F(U) by (18.19.2.1) and because
the functor F 7→ F(U) commutes with direct sums by Lemma 18.30.3. □

In order to state the sharpest possible results in the following we introduce some
notation.

Situation 18.30.5.0937 Let C be a site. Let B ⊂ Ob(C) be a set of objects. We consider
the following conditions

(1)0938 Every object of C has a covering by elements of B.
(2)0939 Every U ∈ B is quasi-compact (Sites, Section 7.17).
(3)093A For a covering {Ui → U} with Ui, U ∈ B the fibre products Ui ×U Uj are

quasi-compact.

Lemma 18.30.6.093B In Situation 18.30.5 assume (1) holds.
(1) Every sheaf of sets is the target of a surjective map whose source is a

coproduct
∐
h#
Ui

with Ui in B.
(2) If O is a sheaf of rings, then every O-module is a quotient of a direct sum⊕

jUi!OUi with Ui in B.

Proof. Part (1) follows from Sites, Lemmas 7.12.5 and 7.12.4. Part (2) follows from
Lemmas 18.28.8 and 18.30.1. □

Lemma 18.30.7.093C In Situation 18.30.5 assume (1) and (2) hold.
(1) Every sheaf of sets is a filtered colimit of sheaves of the form

(18.30.7.1)09Y7 Coequalizer
( ∐

j=1,...,m h
#
Vj

//
//
∐
i=1,...,n h

#
Ui

)
with Ui and Vj in B.

(2) If O is a sheaf of rings, then every O-module is a filtered colimit of sheaves
of the form

(18.30.7.2)093D Coker
(⊕

j=1,...,m
jVj !OVj −→

⊕
i=1,...,n

jUi!OUi
)

with Ui and Vj in B.

Proof. Proof of (1). By Lemma 18.30.6 every sheaf of sets F is the target of
a surjection whose source is a coprod F0 of sheaves the form h#

U with U ∈ B.
Applying this to F0 ×F F0 we find that F is a coequalizer of a pair of maps∐

j∈J h
#
Vj

//
//
∐
i∈I h

#
Ui

for some index sets I, J and Vj and Ui in B. For every finite subset J ′ ⊂ J there is
a finite subset I ′ ⊂ I such that the coproduct over j ∈ J ′ maps into the coprod over
i ∈ I ′ via both maps, see Sites, Lemma 7.17.7. (Details omitted; hint: an infinite

https://stacks.math.columbia.edu/tag/0936
https://stacks.math.columbia.edu/tag/0937
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coproduct is the filtered colimit of the finite sub-coproducts.) Thus our sheaf is the
colimit of the cokernels of these maps between finite coproducts.
Proof of (2). By Lemma 18.30.6 every module is a quotient of a direct sum of
modules of the form jU !OU with U ∈ B. Thus every module is a cokernel

Coker
(⊕

j∈J
jVj !OVj −→

⊕
i∈I

jUi!OUi
)

for some index sets I, J and Vj and Ui in B. For every finite subset J ′ ⊂ J there is
a finite subset I ′ ⊂ I such that the direct sum over j ∈ J ′ maps into the direct sum
over i ∈ I ′, see Lemma 18.30.4. Thus our module is the colimit of the cokernels of
these maps between finite direct sums. □

Lemma 18.30.8.093E In Situation 18.30.5 assume (1) and (2) hold. Let O be a sheaf
of rings. Then a cokernel of a map between modules as in (18.30.7.2) is another
module as in (18.30.7.2).
Proof. Let F = Coker(

⊕
jVj !OVj →

⊕
jUi!OUi) as in (18.30.7.2). It suffices to

show that the cokernel of a map φ : jW !OW → F with W ∈ B is another module
of the same type. The map φ corresponds to s ∈ F(W ). Since

⊕
jUi!OUi → F

is surjective, by (1) we may choose a covering {Wk → W}k∈K with Wk ∈ B such
that s|Wk

is the image of some section sk of
⊕
jUi!OUi). By (2) the object W

is quasi-compact. By Lemma 18.30.2 there is a finite subset K ′ ⊂ K such that⊕
k∈K′ jWk!OWk

→ jW !OW is surjective. We conclude that Coker(φ) is equal to

Coker
(⊕

k∈K′
jWk!OWk

⊕
⊕

jVj !OVj −→
⊕

jUi!OUi
)

where the map
⊕

k∈K′ jWk!OWk
→
⊕
jUi!OUi corresponds to

∑
k∈K′ sk. This

finishes the proof. □

Lemma 18.30.9.093F In Situation 18.30.5 assume (1), (2), and (3) hold. Let O be a
sheaf of rings. Assume given a map⊕

j=1,...,m
jVj !OVj −→

⊕
i=1,...,n

jUi!OUi

with Ui and Vj in B, and coverings {Uik → Ui}k∈Ki with Uik ∈ B. Then there exist
finite subsets K ′

i ⊂ Ki and a finite set L of Wl ∈ B and a commutative diagram⊕
l∈L jWl!OWl

��

//⊕
i=1,...,n

⊕
k∈K′

i
jUik!OUik

��⊕
j=1,...,m jVj !OVj //⊕

i=1,...,n jUi!OUi
inducing an isomorphism on cokernels of the horizontal maps.
Proof. Since Ui is quasi-compact, we may choose finite subsets K ′

i ⊂ Ki as in
Lemma 18.30.2. Then since

⊕
i=1,...,n

⊕
k∈K′

i
jUik!OUik →

⊕
i=1,...,n jUi!OUi is sur-

jective, we can find coverings {Vjm → Vj}m∈Mj
with Vjm ∈ B such that we can

find a commutative diagram⊕
j=1,...,m

⊕
m∈Mj

jVjm!OVjm

��

//⊕
i=1,...n

⊕
k∈K′

i
jUik!OUik

��⊕
j=1,...,m jVj !OVj //⊕

i=1,...,n jUi!OUi

https://stacks.math.columbia.edu/tag/093E
https://stacks.math.columbia.edu/tag/093F
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Since Vj is quasi-compact, we can choose finite subsets M ′
j ⊂ Mj as in Lemma

18.30.2. Set
L =

(∐
i=1,...,n

K ′
i ×K ′

i

)∐(∐
j=1,...,m

M ′
j

)
and for l = (k, k′) ∈ K ′

i ×K ′
i ⊂ L set Wl = Uik ×Ui Uik′ and for l = m ∈ M ′

j ⊂ L
set Wl = Vjm. Since we have the exact sequences of Lemma 18.30.2 for the families
{Uik → Ui}k∈K′

i
we conclude that we get a diagram as in the statement of the lemma

(details omitted), except that it is not yet clear that Wl ∈ B. However, since Wl is
quasi-compact for all l ∈ L we do another application of Lemma 18.30.2 and find
finite families of maps {Wlt → Wl}t∈Tl with Wlt ∈ B such that

⊕
jWlt!OWlt

→
jWl!OWl

is surjective. Then we replace L by
∐
l∈L Tl and everything is clear. □

Lemma 18.30.10.093G In Situation 18.30.5 assume (1), (2), and (3) hold. Let O be a
sheaf of rings. Then an extension of modules as in (18.30.7.2) is another module as
in (18.30.7.2).

Proof. Let 0→ F1 → F2 → F3 → 0 be a short exact sequence of O-modules with
F1 and F3 as in (18.30.7.2). Choose presentations⊕

AVj →
⊕

AUi → F1 → 0 and
⊕

ATj →
⊕

AWi → F3 → 0

In this proof the direct sums are always finite, and we write AU = jU !OU for U ∈ B.
Since F2 → F3 is surjective, we can choose coverings {Wik → Wi} with Wik ∈ B
such that AWik

→ F3 lifts to a map AWik
→ F2. By Lemma 18.30.9 we may replace

our collection {Wi} by a finite subcollection of the collection {Wik} and assume
the map

⊕
AWi

→ F3 lifts to a map into F2. Consider the kernel

K2 = Ker(
⊕

AUi ⊕
⊕

AWi
−→ F2)

By the snake lemma this kernel surjects onto K3 = Ker(
⊕
AWi → F3). Thus,

arguing as above, after replacing each Tj by a finite family of elements of B (per-
missible by Lemma 18.30.2) we may assume there is a map

⊕
ATj → K2 lifting the

given map
⊕
ATj → K3. Then

⊕
AVj ⊕

⊕
ATj → K2 is surjective which finishes

the proof. □

Lemma 18.30.11.093H In Situation 18.30.5 assume (1), (2), and (3) hold. Let O be a
sheaf of rings. Let A ⊂ Mod(O) be the full subcategory of modules isomorphic to
a cokernel as in (18.30.7.2). If the kernel of every map of O-modules of the form⊕

j=1,...,m
jVj !OVj −→

⊕
i=1,...,n

jUi!OUi

with Ui and Vj in B, is in A, then A is weak Serre subcategory of Mod(O).

Proof. We will use the criterion of Homology, Lemma 12.10.3. By the results of
Lemmas 18.30.8 and 18.30.10 it suffices to see that the kernel of a map F → G
between objects of A is in A. To prove this choose presentations⊕

AVj →
⊕

AUi → F → 0 and
⊕

ATj →
⊕

AWi
→ G → 0

In this proof the direct sums are always finite, and we write AU = jU !OU for U ∈ B.
Using Lemmas 18.30.1 and 18.30.9 and arguing as in the proof of Lemma 18.30.10

https://stacks.math.columbia.edu/tag/093G
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we may assume that the map F → G lifts to a map of presentations⊕
AVj //

��

⊕
AUi //

��

F //

��

0

⊕
ATj //⊕AWi

// G // 0

Then we see that

Ker(F → G) = Coker
(⊕

AVj → Ker
(⊕

ATj ⊕
⊕

AUi →
⊕

AWi

))
and the lemma follows from the assumption and Lemma 18.30.8. □

18.31. Flat morphisms

04JA
Definition 18.31.1.04JB Let (f, f ♯) : (Sh(C),O) −→ (Sh(C′),O′) be a morphism of
ringed topoi. We say (f, f ♯) is flat if the ring map f ♯ : f−1O′ → O is flat. We say
a morphism of ringed sites is flat if the associated morphism of ringed topoi is flat.

Lemma 18.31.2.04JC Let f : Sh(C)→ Sh(C′) be a morphism of ringed topoi. Then

f−1 : Ab(C′) −→ Ab(C), F 7−→ f−1F

is exact. If (f, f ♯) : (Sh(C),O) → (Sh(C′),O′) is a flat morphism of ringed topoi
then

f∗ : Mod(O′) −→ Mod(O), F 7−→ f∗F

is exact.

Proof. Given an abelian sheaf G on C′ the underlying sheaf of sets of f−1G is the
same as f−1 of the underlying sheaf of sets of G, see Sites, Section 7.44. Hence
the exactness of f−1 for sheaves of sets (required in the definition of a morphism
of topoi, see Sites, Definition 7.15.1) implies the exactness of f−1 as a functor on
abelian sheaves.

To see the statement on modules recall that f∗F is defined as the tensor product
f−1F ⊗f−1O′,f♯ O. Hence f∗ is a composition of functors both of which are exact.

□

Definition 18.31.3.08M5 Let f : (Sh(C),O) → (Sh(D),O′) be a morphism of ringed
topoi. Let F be a sheaf of O-modules. We say that F is flat over (Sh(D),O′) if F
is flat as an f−1O′-module.

This is compatible with the notion as defined for morphisms of ringed spaces, see
Modules, Definition 17.20.3 and the discussion following.

Lemma 18.31.4.0GN2 Let f : (C,OC)→ (D,OD) be a morphism of ringed sites. Let F ,
G be OD-modules. If F is finitely presented and f is flat, then the canonical map

f∗HomOD (F ,G) −→ HomOC (f∗F , f∗G)

of Remark 18.27.3 is an isomorphism.

https://stacks.math.columbia.edu/tag/04JB
https://stacks.math.columbia.edu/tag/04JC
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Proof. Say f is given by the continuous functor u : D → C. We have to show that
the restriction of the map to C/U for any U ∈ Ob(C) is an isomorphism. We may
replace U by the members of a covering of U . Hence by Sites, Lemma 7.14.10 we
may assume there exists a morphism U → u(V ) for some V ∈ Ob(C). Of course,
then we may replace U by u(V ). Then since u is continuous, we may replace V
by a covering and assume there is a presentation O⊕m

V → O⊕n
V → F|V → 0 over

D/V . Since formation ofHom commutes with localization (Lemma 18.27.2) we may
replace f by the morphism (C/u(V ),Ou(V ))→ (D/V,OV ) induced by f . Hence we
reduce to the case where F has a global presentation O⊕m

D → O⊕n
D → F → 0. Since

f is flat and f∗OD = OC we obtain a corresponding presentation O⊕m
C → O⊕n

C →
f∗F → 0, see Lemma 18.31.2. Using that Hom commutes with finite direct sums
in the first variable, using that both HomOC (OC ,−) and HomOD (OD,−) are the
identity functor, and using the functoriality of the construction of Remark 18.27.3
we obtain a commutative diagram

0 // f∗HomOD (F ,G)

��

// f∗G⊕n

��

// f∗G⊕n

��
0 // HomOC (f∗F , f∗G) // f∗G⊕n // f∗G⊕n

where the right two vertical arrows are isomorphisms. By Lemma 18.27.5 the rows
are exact. We conclude by the 5 lemma. □

18.32. Invertible modules

0408 Here is the definition.

Definition 18.32.1.0409 Let (C,O) be a ringed site.
(1) A finite locally free O-module F is said to have rank r if for every object

U of C there exists a covering {Ui → U} of U such that F|Ui is isomorphic
to O⊕r

Ui
as an OUi-module.

(2) An O-module L is invertible if the functor
Mod(O) −→ Mod(O), F 7−→ F ⊗O L

is an equivalence.
(3) The sheaf O∗ is the subsheaf of O defined by the rule

U 7−→ O∗(U) = {f ∈ O(U) | ∃g ∈ O(U) such that fg = 1}
It is a sheaf of abelian groups with multiplication as the group law.

Lemma 18.40.7 below explains the relationship with locally free modules of rank 1.

Lemma 18.32.2.0B8N Let (C,O) be a ringed site. Let L be an O-module. The following
are equivalent:

(1) L is invertible, and
(2) there exists an O-module N such that L ⊗O N ∼= O.

In this case we have
(a) L is a flat O-module of finite presentation,
(b) for every object U of C there exists a covering U{Ui → U} such that L|Ui

is a direct summand of a finite free module, and
(c) the module N in (2) is isomorphic to HomO(L,O).

https://stacks.math.columbia.edu/tag/0409
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Proof. Assume (1). Then the functor −⊗O L is essentially surjective, hence there
exists an O-module N as in (2). If (2) holds, then the functor −⊗O N is a quasi-
inverse to the functor −⊗O L and we see that (1) holds.
Assume (1) and (2) hold. Since − ⊗O L is an equivalence, it is exact, and hence
L is flat. Denote ψ : L ⊗O N → O the given isomorphism. Let U be an object
of C. We will show that the restriction L to the members of a covering of U is
a direct summand of a free module, which will certainly imply that L is of finite
presentation. By construction of ⊗ we may assume (after replacing U by the
members of a covering) that there exists an integer n ≥ 1 and sections xi ∈ L(U),
yi ∈ N (U) such that ψ(

∑
xi ⊗ yi) = 1. Consider the isomorphisms

L|U → L|U ⊗OU
L|U ⊗OU

N|U → L|U
where the first arrow sends x to

∑
xi⊗x⊗yi and the second arrow sends x⊗x′⊗y

to ψ(x′ ⊗ y)x. We conclude that x 7→
∑
ψ(x ⊗ yi)xi is an automorphism of L|U .

This automorphism factors as
L|U → O⊕n

U → L|U
where the first arrow is given by x 7→ (ψ(x ⊗ y1), . . . , ψ(x ⊗ yn)) and the second
arrow by (a1, . . . , an) 7→

∑
aixi. In this way we conclude that L|U is a direct

summand of a finite free OU -module.
Assume (1) and (2) hold. Consider the evaluation map

L ⊗O HomO(L,OX) −→ OX
To finish the proof of the lemma we will show this is an isomorphism. By Lemma
18.27.6 we have

HomO(O,O) = HomO(N ⊗O L,O) −→ HomO(N ,HomO(L,O))
The image of 1 gives a morphism N → HomO(L,O). Tensoring with L we obtain

O = L ⊗O N −→ L⊗O HomO(L,O)
This map is the inverse to the evaluation map; computation omitted. □

Lemma 18.32.3.0B8P Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. The pullback f∗L of an invertible OD-module is invertible.

Proof. By Lemma 18.32.2 there exists an OD-module N such that L⊗ODN ∼= OD.
Pulling back we get f∗L⊗OC f

∗N ∼= OC by Lemma 18.26.2. Thus f∗L is invertible
by Lemma 18.32.2. □

Lemma 18.32.4.040A Let (C,O) be a ringed space.
(1) If L, N are invertible O-modules, then so is L ⊗O N .
(2) If L is an invertible O-module, then so is HomO(L,O) and the evaluation

map L ⊗O HomO(L,O)→ O is an isomorphism.

Proof. Part (1) is clear from the definition and part (2) follows from Lemma 18.32.2
and its proof. □

Lemma 18.32.5.040B Let (C,O) be a ringed space. There exists a set of invertible
modules {Li}i∈I such that each invertible module on (C,O) is isomorphic to exactly
one of the Li.

Proof. Omitted, but see Sheaves of Modules, Lemma 17.25.8. □

https://stacks.math.columbia.edu/tag/0B8P
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Lemma 18.32.5 says that the collection of isomorphism classes of invertible sheaves
forms a set. Lemma 18.32.4 says that tensor product defines the structure of an
abelian group on this set with inverse of L given by HomO(L,O).

In fact, given an invertible O-module L and n ∈ Z we define the nth tensor power
L⊗n of L as the image of O under applying the equivalence F 7→ F ⊗O L exactly n
times. This makes sense also for negative n as we’ve defined an invertible O-module
as one for which tensoring is an equivalence. More explicitly, we have

L⊗n =


O if n = 0

HomO(L,O) if n = −1
L ⊗O . . .⊗O L if n > 0

L⊗−1 ⊗O . . .⊗O L⊗−1 if n < −1

see Lemma 18.32.4. With this definition we have canonical isomorphisms L⊗n ⊗O
L⊗m → L⊗n+m, and these isomorphisms satisfy a commutativity and an associa-
tivity constraint (formulation omitted).

Definition 18.32.6.040C Let (C,O) be a ringed site. The Picard group Pic(O) of the
ringed site is the abelian group whose elements are isomorphism classes of invertible
O-modules, with addition corresponding to tensor product.

18.33. Modules of differentials

04BJ In this section we briefly explain how to define the module of relative differentials for
a morphism of ringed topoi. We suggest the reader take a look at the corresponding
section in the chapter on commutative algebra (Algebra, Section 10.131).

Definition 18.33.1.04BK Let C be a site. Let φ : O1 → O2 be a homomorphism of
sheaves of rings. Let F be an O2-module. A O1-derivation or more precisely a
φ-derivation into F is a map D : O2 → F which is additive, annihilates the image
of O1 → O2, and satisfies the Leibniz rule

D(ab) = aD(b) +D(a)b

for all a, b local sections of O2 (wherever they are both defined). We denote
DerO1(O2,F) the set of φ-derivations into F .

This is the sheaf theoretic analogue of Algebra, Definition 18.33.1. Given a deriva-
tion D : O2 → F as in the definition the map on global sections

D : Γ(O2) −→ Γ(F)

clearly is a Γ(O1)-derivation as in the algebra definition. Note that if α : F → G is
a map of O2-modules, then there is an induced map

DerO1(O2,F) −→ DerO1(O2,G)

given by the rule D 7→ α ◦D. In other words we obtain a functor.

Lemma 18.33.2.04BL Let C be a site. Let φ : O1 → O2 be a homomorphism of sheaves
of rings. The functor

Mod(O2) −→ Ab, F 7−→ DerO1(O2,F)

is representable.

https://stacks.math.columbia.edu/tag/040C
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Proof. This is proved in exactly the same way as the analogous statement in algebra.
During this proof, for any sheaf of sets F on C, let us denote O2[F ] the sheafification
of the presheaf U 7→ O2(U)[F(U)] where this denotes the free O2(U)-module on
the set F(U). For s ∈ F(U) we denote [s] the corresponding section of O2[F ] over
U . If F is a sheaf of O2-modules, then there is a canonical map

c : O2[F ] −→ F
which on the presheaf level is given by the rule

∑
fs[s] 7→

∑
fss. We will employ

the short hand [s] 7→ s to describe this map and similarly for other maps below.
Consider the map of O2-modules

(18.33.2.1)04BM

O2[O2 ×O2]⊕O2[O2 ×O2]⊕O2[O1] −→ O2[O2]
[(a, b)]⊕ [(f, g)]⊕ [h] 7−→ [a+ b]− [a]− [b]+

[fg]− g[f ]− f [g]+
[φ(h)]

with short hand notation as above. Set ΩO2/O1 equal to the cokernel of this map.
Then it is clear that there exists a map of sheaves of sets

d : O2 −→ ΩO2/O1

mapping a local section f to the image of [f ] in ΩO2/O1 . By construction d is a
O1-derivation. Next, let F be a sheaf of O2-modules and let D : O2 → F be a
O1-derivation. Then we can consider the O2-linear map O2[O2] → F which sends
[g] to D(g). It follows from the definition of a derivation that this map annihilates
sections in the image of the map (18.33.2.1) and hence defines a map

αD : ΩO2/O1 −→ F

Since it is clear that D = αD ◦ d the lemma is proved. □

Definition 18.33.3.04BN Let C be a site. Let φ : O1 → O2 be a homomorphism of sheaves
of rings. The module of differentials of the ring map φ is the object representing the
functor F 7→ DerO1(O2,F) which exists by Lemma 18.33.2. It is denoted ΩO2/O1 ,
and the universal φ-derivation is denoted d : O2 → ΩO2/O1 .

Since this module and the derivation form the universal object representing a func-
tor, this notion is clearly intrinsic (i.e., does not depend on the choice of the site
underlying the ringed topos, see Section 18.18). Note that ΩO2/O1 is the cokernel
of the map (18.33.2.1) of O2-modules. Moreover the map d is described by the rule
that df is the image of the local section [f ].

Lemma 18.33.4.08TP Let C be a site. Let φ : O1 → O2 be a homomorphism of
presheaves of rings. Then ΩO#

2 /O#
1

is the sheaf associated to the presheaf U 7→
ΩO2(U)/O1(U).

Proof. Consider the map (18.33.2.1). There is a similar map of presheaves whose
value on U ∈ Ob(C) is
O2(U)[O2(U)×O2(U)]⊕O2(U)[O2(U)×O2(U)]⊕O2(U)[O1(U)] −→ O2(U)[O2(U)]
The cokernel of this map has value ΩO2(U)/O1(U) over U by the construction of
the module of differentials in Algebra, Definition 10.131.2. On the other hand,
the sheaves in (18.33.2.1) are the sheafifications of the presheaves above. Thus the
result follows as sheafification is exact. □

https://stacks.math.columbia.edu/tag/04BN
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Lemma 18.33.5.08TQ Let f : Sh(D)→ Sh(C) be a morphism of topoi. Let φ : O1 → O2
be a homomorphism of sheaves of rings on C. Then there is a canonical identification
f−1ΩO2/O1 = Ωf−1O2/f−1O1 compatible with universal derivations.

Proof. This holds because the sheaf ΩO2/O1 is the cokernel of the map (18.33.2.1)
and a similar statement holds for Ωf−1O2/f−1O1 , because the functor f−1 is exact,
and because f−1(O2[O2]) = f−1O2[f−1O2], f−1(O2[O2 ×O2]) = f−1O2[f−1O2 ×
f−1O2], and f−1(O2[O1]) = f−1O2[f−1O1]. □

Lemma 18.33.6.04BO Let C be a site. Let φ : O1 → O2 be a homomorphism of sheaves
of rings. For any object U of C there is a canonical isomorphism

ΩO2/O1 |U = Ω(O2|U )/(O1|U )

compatible with universal derivations.

Proof. This is a special case of Lemma 18.33.5. □

Lemma 18.33.7.08TR Let C be a site. Let

O2 φ
// O′

2

O1 //

OO

O′
1

OO

be a commutative diagram of sheaves of rings on C. The map O2 → O′
2 composed

with the map d : O′
2 → ΩO′

2/O′
1

is a O1-derivation. Hence we obtain a canonical
map of O2-modules ΩO2/O1 → ΩO′

2/O′
1
. It is uniquely characterized by the property

that d(f) mapsto d(φ(f)) for any local section f of O2. In this way Ω−/− becomes
a functor on the category of arrows of sheaves of rings.

Proof. This lemma proves itself. □

Lemma 18.33.8.08TS In Lemma 18.33.7 suppose that O2 → O′
2 is surjective with kernel

I ⊂ O2 and assume that O1 = O′
1. Then there is a canonical exact sequence of

O′
2-modules

I/I2 −→ ΩO2/O1 ⊗O2 O′
2 −→ ΩO′

2/O1 −→ 0
The leftmost map is characterized by the rule that a local section f of I maps to
df ⊗ 1.

Proof. For a local section f of I denote f the image of f in I/I2. To show that
the map f 7→ df ⊗ 1 is well defined we just have to check that df1f2 ⊗ 1 = 0 if
f1, f2 are local sections of I. And this is clear from the Leibniz rule df1f2 ⊗ 1 =
(f1df2 + f2df1) ⊗ 1 = df2 ⊗ f1 + df2 ⊗ f1 = 0. A similar computation show this
map is O′

2 = O2/I-linear. The map on the right is the one from Lemma 18.33.7.
To see that the sequence is exact, we argue as follows. Let O′′

2 ⊂ O′
2 be the presheaf

of O1-algebras whose value on U is the image of O2(U) → O′
2(U). By Algebra,

Lemma 10.131.9 the sequences
I(U)/I(U)2 −→ ΩO2(U)/O1(U) ⊗O2(U) O′′

2 (U) −→ ΩO′′
2 (U)/O1(U) −→ 0

are exact for all objects U of C. Since sheafification is exact this gives an ex-
act sequence of sheaves of (O′

2)#-modules. By Lemma 18.33.4 and the fact that
(O′′

2 )# = O′
2 we conclude. □

https://stacks.math.columbia.edu/tag/08TQ
https://stacks.math.columbia.edu/tag/04BO
https://stacks.math.columbia.edu/tag/08TR
https://stacks.math.columbia.edu/tag/08TS
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Here is a particular situation where derivations come up naturally.

Lemma 18.33.9.04BP Let C be a site. Let φ : O1 → O2 be a homomorphism of sheaves
of rings. Consider a short exact sequence

0→ F → A→ O2 → 0

Here A is a sheaf of O1-algebras, π : A → O2 is a surjection of sheaves of O1-
algebras, and F = Ker(π) is its kernel. Assume F an ideal sheaf with square zero
in A. So F has a natural structure of an O2-module. A section s : O2 → A of π is
a O1-algebra map such that π ◦ s = id. Given any section s : O2 → F of π and any
φ-derivation D : O1 → F the map

s+D : O1 → A

is a section of π and every section s′ is of the form s+D for a unique φ-derivation
D.

Proof. Recall that the O2-module structure on F is given by hτ = h̃τ (multiplica-
tion in A) where h is a local section of O2, and h̃ is a local lift of h to a local section
of A, and τ is a local section of F . In particular, given s, we may use h̃ = s(h). To
verify that s+D is a homomorphism of sheaves of rings we compute

(s+D)(ab) = s(ab) +D(ab)
= s(a)s(b) + aD(b) +D(a)b
= s(a)s(b) + s(a)D(b) +D(a)s(b)
= (s(a) +D(a))(s(b) +D(b))

by the Leibniz rule. In the same manner one shows s + D is a O1-algebra map
because D is an O1-derivation. Conversely, given s′ we set D = s′ − s. Details
omitted. □

Definition 18.33.10.04BQ Let X = (Sh(C),O) and Y = (Sh(C′),O′) be ringed topoi.
Let (f, f ♯) : X → Y be a morphism of ringed topoi. In this situation

(1) for a sheaf F of O-modules a Y -derivation D : O → F is just a f ♯-
derivation, and

(2) the sheaf of differentials ΩX/Y of X over Y is the module of differentials
of f ♯ : f−1O′ → O, see Definition 18.33.3.

Thus ΩX/Y comes equipped with a universal Y -derivation dX/Y : O −→ ΩX/Y .
We sometimes write ΩX/Y = Ωf .

Recall that f ♯ : f−1O′ → O so that this definition makes sense.

Lemma 18.33.11.04BR LetX = (Sh(CX),OX), Y = (Sh(CY ),OY ), X ′ = (Sh(CX′),OX′),
and Y ′ = (Sh(CY ′),OY ′) be ringed topoi. Let

X ′

��

f
// X

��
Y ′ // Y

be a commutative diagram of morphisms of ringed topoi. The map f ♯ : OX →
f∗OX′ composed with the map f∗dX′/Y ′ : f∗OX′ → f∗ΩX′/Y ′ is a Y -derivation.

https://stacks.math.columbia.edu/tag/04BP
https://stacks.math.columbia.edu/tag/04BQ
https://stacks.math.columbia.edu/tag/04BR
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Hence we obtain a canonical map of OX -modules ΩX/Y → f∗ΩX′/Y ′ , and by ad-
jointness of f∗ and f∗ a canonical OX′ -module homomorphism

cf : f∗ΩX/Y −→ ΩX′/Y ′ .

It is uniquely characterized by the property that f∗dX/Y (t) mapsto dX′/Y ′(f∗t)
for any local section t of OX .

Proof. This is clear except for the last assertion. Let us explain the meaning of
this. Let U ∈ Ob(CX) and let t ∈ OX(U). This is what it means for t to be a local
section of OX . Now, we may think of t as a map of sheaves of sets t : h#

U → OX .
Then f−1t : f−1h#

U → f−1OX . By f∗t we mean the composition

f−1h#
U

f−1t //

f∗t

**
f−1OX

f♯ // OX′

Note that dX/Y (t) ∈ ΩX/Y (U). Hence we may think of dX/Y (t) as a map dX/Y (t) :
h#
U → ΩX/Y . Then f−1dX/Y (t) : f−1h#

U → f−1ΩX/Y . By f∗dX/Y (t) we mean the
composition

f−1h#
U

f−1dX/Y (t)
//

f∗dX/Y (t)

++
f−1ΩX/Y

1⊗id // f∗ΩX/Y

OK, and now the statement of the lemma means that we have
cf ◦ f∗t = f∗dX/Y (t)

as maps from f−1h#
U to ΩX′/Y ′ . We omit the verification that this property holds

for cf as defined in the lemma. (Hint: The first map c′
f : ΩX/Y → f∗ΩX′/Y ′ satisfies

c′
f (dX/Y (t)) = f∗dX′/Y ′(f ♯(t)) as sections of f∗ΩX′/Y ′ over U , and you have to turn

this into the equality above by using adjunction.) The reason that this uniquely
characterizes cf is that the images of f∗dX/Y (t) generate the OX′ -module f∗ΩX/Y
simply because the local sections dX/Y (t) generate the OX -module ΩX/Y . □

18.34. Finite order differential operators

09CQ In this section we introduce differential operators of finite order. We suggest the
reader take a look at the corresponding section in the chapter on commutative
algebra (Algebra, Section 10.133).

Definition 18.34.1.09CR Let C be a site. Let φ : O1 → O2 be a homomorphism of
sheaves of rings. Let k ≥ 0 be an integer. Let F , G be sheaves of O2-modules. A
differential operator D : F → G of order k is an is an O1-linear map such that for
all local sections g of O2 the map s 7→ D(gs) − gD(s) is a differential operator of
order k − 1. For the base case k = 0 we define a differential operator of order 0 to
be an O2-linear map.

If D : F → G is a differential operator of order k, then for all local sections g of
O2 the map gD is a differential operator of order k. The sum of two differential
operators of order k is another. Hence the set of all these

Diffk(F ,G) = DiffkO2/O1
(F ,G)

https://stacks.math.columbia.edu/tag/09CR
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is a Γ(C,O2)-module. We have

Diff0(F ,G) ⊂ Diff1(F ,G) ⊂ Diff2(F ,G) ⊂ . . .

The rule which maps U ∈ Ob(C) to the module of differential operators D : F|U →
G|U of order k is a sheaf of O2-modules on the site C. Thus we obtain a sheaf of
differential operators (if we ever need this we will add a definition here).

Lemma 18.34.2.09CS Let C be a site. Let O1 → O2 be a map of sheaves of rings. Let
E ,F ,G be sheaves of O2-modules. If D : E → F and D′ : F → G are differential
operators of order k and k′, then D′ ◦D is a differential operator of order k + k′.

Proof. Let g be a local section of O2. Then the map which sends a local section x
of E to

D′(D(gx))− gD′(D(x)) = D′(D(gx))−D′(gD(x)) +D′(gD(x))− gD′(D(x))

is a sum of two compositions of differential operators of lower order. Hence the
lemma follows by induction on k + k′. □

Lemma 18.34.3.09CT Let C be a site. Let O1 → O2 be a map of sheaves of rings.
Let F be a sheaf of O2-modules. Let k ≥ 0. There exists a sheaf of O2-modules
PkO2/O1

(F) and a canonical isomorphism

DiffkO2/O1
(F ,G) = HomO2(PkO2/O1

(F),G)

functorial in the O2-module G.

Proof. The existence follows from general category theoretic arguments (insert fu-
ture reference here), but we will also give a direct construction as this construction
will be useful in the future proofs. We will freely use the notation introduced in
the proof of Lemma 18.33.2. Given any differential operator D : F → G we obtain
an O2-linear map LD : O2[F ]→ G sending [m] to D(m). If D has order 0 then LD
annihilates the local sections

[m+m′]− [m]− [m′], g0[m]− [g0m]

where g0 is a local section of O2 and m,m′ are local sections of F . If D has order
1, then LD annihilates the local sections

[m+m′ − [m]− [m′], f [m]− [fm], g0g1[m]− g0[g1m]− g1[g0m] + [g1g0m]

where f is a local section of O1, g0, g1 are local sections of O2, and m,m′ are local
sections of F . If D has order k, then LD annihilates the local sections [m+m′]−
[m]− [m′], f [m]− [fm], and the local sections

g0g1 . . . gk[m]−
∑

g0 . . . ĝi . . . gk[gim] + . . .+ (−1)k+1[g0 . . . gkm]

Conversely, if L : O2[F ]→ G is an O2-linear map annihilating all the local sections
listed in the previous sentence, then m 7→ L([m]) is a differential operator of order
k. Thus we see that PkO2/O1

(F) is the quotient of O2[F ] by the O2-submodule
generated by these local sections. □

Definition 18.34.4.09CU Let C be a site. Let O1 → O2 be a map of sheaves of rings.
Let F be a sheaf of O2-modules. The module PkO2/O1

(F) constructed in Lemma
18.34.3 is called the module of principal parts of order k of F .

https://stacks.math.columbia.edu/tag/09CS
https://stacks.math.columbia.edu/tag/09CT
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Note that the inclusions
Diff0(F ,G) ⊂ Diff1(F ,G) ⊂ Diff2(F ,G) ⊂ . . .

correspond via Yoneda’s lemma (Categories, Lemma 4.3.5) to surjections
. . .→ P2

O2/O1
(F)→ P1

O2/O1
(F)→ P0

O2/O1
(F) = F

Lemma 18.34.5.09CV Let C be a site. Let O1 → O2 be a homomorphism of presheaves
of rings. Let F be a presheaf of O2-modules. Then Pk

O#
2 /O#

1
(F#) is the sheaf

associated to the presheaf U 7→ P kO2(U)/O1(U)(F(U)).

Proof. This can be proved in exactly the same way as is done for the sheaf of
differentials in Lemma 18.33.4. Perhaps a more pleasing approach is to use the
universal property of Lemma 18.34.3 directly to see the equality. We omit the
details. □

Lemma 18.34.6.09CW Let C be a site. Let O1 → O2 be a homomorphism of sheaves of
rings. Let F be a sheaf of O2-modules. There is a canonical short exact sequence

0→ ΩO2/O1 ⊗O2 F → P1
O2/O1

(F)→ F → 0
functorial in F called the sequence of principal parts.

Proof. Follows from the commutative algebra version (Algebra, Lemma 10.133.6)
and Lemmas 18.33.4 and 18.34.5. □

Remark 18.34.7.09CX Let C be a site. Suppose given a commutative diagram of sheaves
of rings

B // B′

A

OO

// A′

OO

a B-module F , a B′-module F ′, and a B-linear map F → F ′. Then we get a
compatible system of module maps

. . . // P2
B′/A′(F ′) // P1

B′/A′(F ′) // P0
B′/A′(F ′)

. . . // P2
B/A(F) //

OO

P1
B/A(F) //

OO

P0
B/A(F)

OO

These maps are compatible with further composition of maps of this type. The
easiest way to see this is to use the description of the modules PkB/A(M) in terms
of (local) generators and relations in the proof of Lemma 18.34.3 but it can also be
seen directly from the universal property of these modules. Moreover, these maps
are compatible with the short exact sequences of Lemma 18.34.6.

18.35. The naive cotangent complex

08TT This section is the analogue of Algebra, Section 10.134 and Modules, Section 17.31.
We advise the reader to read those sections first.
Let C be a site. Let A → B be a homomorphism of sheaves of rings on C. In this
section, for any sheaf of sets E on C we denote A[E ] the sheafification of the presheaf
U 7→ A(U)[E(U)]. Here A(U)[E(U)] denotes the polynomial algebra over A(U)

https://stacks.math.columbia.edu/tag/09CV
https://stacks.math.columbia.edu/tag/09CW
https://stacks.math.columbia.edu/tag/09CX
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whose variables correspond to the elements of E(U). We denote [e] ∈ A(U)[E(U)]
the variable corresponding to e ∈ E(U). There is a canonical surjection of A-
algebras
(18.35.0.1)08TU A[B] −→ B, [b] 7−→ b

whose kernel we denote I ⊂ A[B]. It is a simple observation that I is generated by
the local sections [b][b′]− [bb′] and [a]− a. According to Lemma 18.33.8 there is a
canonical map
(18.35.0.2)08TV I/I2 −→ ΩA[B]/A ⊗A[B] B

whose cokernel is canonically isomorphic to ΩB/A.

Definition 18.35.1.08TW Let C be a site. Let A → B be a homomorphism of sheaves of
rings on C. The naive cotangent complex NLB/A is the chain complex (18.35.0.2)

NLB/A =
(
I/I2 −→ ΩA[B]/A ⊗A[B] B

)
with I/I2 placed in degree −1 and ΩA[B]/A ⊗A[B] B placed in degree 0.

This construction satisfies a functoriality similar to that discussed in Lemma 18.33.7
for modules of differentials. Namely, given a commutative diagram

(18.35.1.1)08TX
B // B′

A

OO

// A′

OO

of sheaves of rings on C there is a canonical B-linear map of complexes
NLB/A −→ NLB′/A′

Namely, the maps in the commutative diagram give rise to a canonical map A[B]→
A′[B′] which maps I into I ′ = Ker(A′[B′] → B′). Thus a map I/I2 → I ′/(I ′)2

and a map between modules of differentials, which together give the desired map
between the naive cotangent complexes.
We can choose a different presentation of B as a quotient of a polynomial algebra
over A and still obtain the same object of D(B). To explain this, suppose that E
is a sheaves of sets on C and α : E → B a map of sheaves of sets. Then we obtain
an A-algebra homomorphism A[E ] → B. Assume this map is surjective, and let
J ⊂ A[E ] be the kernel. Set

NL(α) =
(
J /J 2 −→ ΩA[E]/A ⊗A[E] B

)
Here is the result.

Lemma 18.35.2.08TY In the situation above there is a canonical isomorphism NL(α) =
NLB/A in D(B).

Proof. Observe that NLB/A = NL(idB). Thus it suffices to show that given two
maps αi : Ei → B as above, there is a canonical quasi-isomorphism NL(α1) =
NL(α2) in D(B). To see this set E = E1 ⨿ E2 and α = α1 ⨿ α2 : E → B. Set
Ji = Ker(A[Ei] → B) and J = Ker(A[E ] → B). We obtain maps A[Ei] → A[E ]
which send Ji into J . Thus we obtain canonical maps of complexes

NL(αi) −→ NL(α)

https://stacks.math.columbia.edu/tag/08TW
https://stacks.math.columbia.edu/tag/08TY
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and it suffices to show these maps are quasi-isomorphism. To see this we argue
as follows. First, observe that H0(NL(αi)) = ΩB/A and H0(NL(α)) = ΩB/A by
Lemma 18.33.8 hence the map is an isomorphism on cohomology sheaves in degree 0.
Similarly, we claim that H−1(NL(αi)) and H−1(NL(α)) are the sheaves associated
to the presheaf U 7→ H1(LB(U)/A(U)) where H1(L−/−) is as in Algebra, Definition
10.134.1. If the claim holds, then the proof is finished.
Proof of the claim. Let α : E → B be as above. Let B′ ⊂ B be the subpresheaf
of A-algebras whose value on U is the image of A(U)[E(U)] → B(U). Let I ′ be
the presheaf whose value on U is the kernel of A(U)[E(U)]→ B(U). Then I is the
sheafification of I ′ and B is the sheafification of B′. Similarly, H−1(NL(α)) is the
sheafification of the presheaf

U 7−→ Ker(I ′(U)/I ′(U)2 → ΩA(U)[E(U)]/A(U) ⊗A(U)[E(U)] B′(U))
by Lemma 18.33.4. By Algebra, Lemma 10.134.2 we conclude H−1(NL(α)) is the
sheaf associated to the presheaf U 7→ H1(LB′(U)/A(U)). Thus we have to show that
the maps H1(LB′(U)/A(U))→ H1(LB(U)/A(U)) induce an isomorphism H′

1 → H1 of
sheafifications.
Injectivity of H′

1 → H1. Let f ∈ H1(LB′(U)/A(U)) map to zero in H1(U). To show:
f maps to zero in H′

1(U). The assumption means there is a covering {Ui → U}
such that f maps to zero in H1(LB(Ui)/A(Ui)) for all i. Replace U by Ui to get to
the point where f maps to zero in H1(LB(U)/A(U)). By Algebra, Lemma 10.134.9
we can find a finitely generated subalgebra B′(U) ⊂ B ⊂ B(U) such that f maps to
zero in H1(LB/A(U)). Since B = (B′)# we can find a covering {Ui → U} such that
B → B(Ui) factors through B′(Ui). Hence f maps to zero in H1(LB′(Ui)/A(Ui)) as
desired.
The surjectivity of H′

1 → H1 is proved in exactly the same way. □

Lemma 18.35.3.08TZ Let f : Sh(C) → Sh(D) be morphism of topoi. Let A → B be a
homomorphism of sheaves of rings on D. Then f−1 NLB/A = NLf−1B/f−1A.

Proof. Omitted. Hint: Use Lemma 18.33.5. □

The cotangent complex of a morphism of ringed topoi is defined in terms of the
cotangent complex we defined above.

Definition 18.35.4.08U0 Let X = (Sh(C),O) and Y = (Sh(C′),O′) be ringed topoi.
Let (f, f ♯) : X → Y be a morphism of ringed topoi. The naive cotangent complex
NLf = NLX/Y of the given morphism of ringed topoi is NLO/f−1O′ . We sometimes
write NLX/Y = NLO/O′ .

18.36. Stalks of modules

04EM We have to be a bit careful when taking stalks at points, since the colimit defining
a stalk (see Sites, Equation 7.32.1.1) may not be filtered3. On the other hand, by
definition of a point of a site the stalk functor is exact and commutes with arbitrary
colimits. In other words, it behaves exactly as if the colimit were filtered.

Lemma 18.36.1.04EN Let C be a site. Let p be a point of C.

3Of course in almost any naturally occurring case the colimit is filtered and some of the
discussion in this section may be simplified.

https://stacks.math.columbia.edu/tag/08TZ
https://stacks.math.columbia.edu/tag/08U0
https://stacks.math.columbia.edu/tag/04EN
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(1) We have (F#)p = Fp for any presheaf of sets on C.
(2) The stalk functor Sh(C)→ Sets, F 7→ Fp is exact (see Categories, Defini-

tion 4.23.1) and commutes with arbitrary colimits.
(3) The stalk functor PSh(C) → Sets, F 7→ Fp is exact (see Categories,

Definition 4.23.1) and commutes with arbitrary colimits.

Proof. By Sites, Lemma 7.32.5 we have (1). By Sites, Lemmas 7.32.4 we see that
PSh(C) → Sets, F 7→ Fp is a left adjoint, and by Sites, Lemma 7.32.5 we see the
same thing for Sh(C) → Sets, F 7→ Fp. Hence the stalk functor commutes with
arbitrary colimits (see Categories, Lemma 4.24.5). It follows from the definition of
a point of a site, see Sites, Definition 7.32.2 that Sh(C) → Sets, F 7→ Fp is exact.
Since sheafification is exact (Sites, Lemma 7.10.14) it follows that PSh(C)→ Sets,
F 7→ Fp is exact. □

In particular, since the stalk functor F 7→ Fp on presheaves commutes with all
finite limits and colimits we may apply the reasoning of the proof of Sites, Proposi-
tion 7.44.3. The result of such an argument is that if F is a (pre)sheaf of algebraic
structures listed in Sites, Proposition 7.44.3 then the stalk Fp is naturally an alge-
braic structure of the same kind. Let us explain this in detail when F is an abelian
presheaf. In this case the addition map + : F × F → F induces a map

+ : Fp ×Fp = (F × F)p −→ Fp
where the equal sign uses that stalk functor on presheaves of sets commutes with
finite limits. This defines a group structure on the stalk Fp. In this way we obtain
our stalk functor

PAb(C) −→ Ab, F 7−→ Fp
By construction the underlying set of Fp is the stalk of the underlying presheaf of
sets. This also defines our stalk functor for sheaves of abelian groups by precom-
posing with the inclusion Ab(C) ⊂ PAb(C).

Lemma 18.36.2.04EP Let C be a site. Let p be a point of C.
(1) The functor Ab(C)→ Ab, F 7→ Fp is exact.
(2) The stalk functor PAb(C)→ Ab, F 7→ Fp is exact.
(3) For F ∈ Ob(PAb(C)) we have Fp = F#

p .

Proof. This is formal from the results of Lemma 18.36.1 and the construction of
the stalk functor above. □

Next, we turn to the case of sheaves of modules. Let (C,O) be a ringed site. (It
suffices for the discussion that O be a presheaf of rings.) Let F be a presheaf of
O-modules. Let p be a point of C. In this case we get a map

· : Op ×Op = (O ×O)p −→ Op
which is the stalk of the multiplication map and

· : Op ×Fp = (O ×F)p −→ Fp
which is the stalk of the multiplication map. We omit the verification that this
defines a ring structure on Op and an Op-module structure on Fp. In this way we
obtain a functor

PMod(O) −→ Mod(Op), F 7−→ Fp

https://stacks.math.columbia.edu/tag/04EP
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By construction the underlying set of Fp is the stalk of the underlying presheaf of
sets. This also defines our stalk functor for sheaves of O-modules by precomposing
with the inclusion Mod(O) ⊂ PMod(O).

Lemma 18.36.3.04EQ Let (C,O) be a ringed site. Let p be a point of C.
(1) The functor Mod(O)→ Mod(Op), F 7→ Fp is exact.
(2) The stalk functor PMod(O)→ Mod(Op), F 7→ Fp is exact.
(3) For F ∈ Ob(PMod(O)) we have Fp = F#

p .

Proof. This is formal from the results of Lemma 18.36.2, the construction of the
stalk functor above, and Lemma 18.14.1. □

Lemma 18.36.4.05V5 Let (f, f ♯) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed
topoi or ringed sites. Let p be a point of C or Sh(C) and set q = f ◦ p. Then

(f∗F)p = Fq ⊗OD,q OC,p

for any OD-module F .

Proof. We have
f∗F = f−1F ⊗f−1OD OC

by definition. Since taking stalks at p (i.e., applying p−1) commutes with ⊗ by
Lemma 18.26.2 we win by the relation between the stalk of pullbacks at p and
stalks at q explained in Sites, Lemma 7.34.2 or Sites, Lemma 7.34.3. □

18.37. Skyscraper sheaves

05V6 Let p be a point of a site C or a topos Sh(C). In this section we study the exactness
properties of the functor which associates to an abelian group A the skyscraper
sheaf p∗A. First, recall that p∗ : Sets→ Sh(C) has a lot of exactness properties, see
Sites, Lemmas 7.32.9 and 7.32.10.

Lemma 18.37.1.05V7 Let C be a site. Let p be a point of C or of its associated topos.
(1) The functor p∗ : Ab→ Ab(C), A 7→ p∗A is exact.
(2) There is a functorial direct sum decomposition

p−1p∗A = A⊕ I(A)
for A ∈ Ob(Ab).

Proof. By Sites, Lemma 7.32.9 there are functorial maps A→ p−1p∗A→ A whose
composition equals idA. Hence a functorial direct sum decomposition as in (2) with
I(A) the kernel of the adjunction map p−1p∗A → A. The functor p∗ is left exact
by Lemma 18.14.3. The functor p∗ transforms surjections into surjections by Sites,
Lemma 7.32.10. Hence (1) holds. □

To do the same thing for sheaves of modules, suppose given a point p of a ringed
topos (Sh(C),O). Recall that p−1 is just the stalk functor. Hence we can think of
p as a morphism of ringed topoi

(p, idOp
) : (Sh(pt),Op) −→ (Sh(C),O).

Thus we get a pullback functor p∗ : Mod(O) → Mod(Op) which equals the stalk
functor, and which we discussed in Lemma 18.36.3. In this section we consider the
functor p∗ : Mod(Op)→ Mod(O).
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Lemma 18.37.2.05V8 Let (Sh(C),O) be a ringed topos. Let p be a point of the topos
Sh(C).

(1) The functor p∗ : Mod(Op)→ Mod(O), M 7→ p∗M is exact.
(2) The canonical surjection p−1p∗M →M is Op-linear.
(3) The functorial direct sum decomposition p−1p∗M = M⊕I(M) of Lemma

18.37.1 is not Op-linear in general.

Proof. Part (1) and surjectivity in (2) follow immediately from the corresponding
result for abelian sheaves in Lemma 18.37.1. Since p−1O = Op we have p−1 = p∗

and hence p−1p∗M →M is the same as the counit p∗p∗M →M of the adjunction
for modules, whence linear.

Proof of (3). Suppose that G is a group. Consider the topos G-Sets = Sh(TG)
and the point p : Sets → G-Sets. See Sites, Section 7.9 and Example 7.33.7.
Here p−1 is the functor forgetting about the G-action. And p∗ is the right adjoint
of the forgetful functor, sending M to Map(G,M). The maps in the direct sum
decomposition are the maps

M → Map(G,M)→M

where the first sends m ∈ M to the constant map with value m and where the
second map is evaluation at the identity element 1 of G. Next, suppose that R is a
ring endowed with an action of G. This determines a sheaf of rings O on TG. The
category of O-modules is the category of R-modules M endowed with an action
of G compatible with the action on R. The R-module structure on Map(G,M) is
given by

(rf)(σ) = σ(r)f(σ)
for r ∈ R and f ∈ Map(G,M). This is true because it is the unique G-invariant
R-module strucure compatible with evaluation at 1. The reader observes that in
general the image of M → Map(G,M) is not an R-submodule (for example take
M = R and assume the G-action is nontrivial), which concludes the proof. □

Example 18.37.3.05V9 Let G be a group. Consider the site TG and its point p, see Sites,
Example 7.33.7. Let R be a ring with a G-action which corresponds to a sheaf of
rings O on TG. Then Op = R where we forget the G-action. In this case p−1p∗M =
Map(G,M) and I(M) = {f : G → M | f(1G) = 0} and M → Map(G,M) assigns
to m ∈M the constant function with value m.

18.38. Localization and points

070Z
Lemma 18.38.1.0710 Let (C,O) be a ringed site. Let p be a point of C. Let U be an
object of C. For G in Mod(OU ) we have

(jU !G)p =
⊕

q
Gq

where the coproduct is over the points q of C/U lying over p, see Sites, Lemma
7.35.2.

Proof. We use the description of jU !G as the sheaf associated to the presheaf
V 7→

⊕
φ∈MorC(V,U) G(V/φU) of Lemma 18.19.2. The stalk of jU !G at p is equal

https://stacks.math.columbia.edu/tag/05V8
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to the stalk of this presheaf, see Lemma 18.36.3. Let u : C → Sets be the functor
corresponding to p (see Sites, Section 7.32). Hence we see that

(jU !G)p = colim(V,y)
⊕

φ:V→U
G(V/φU)

where the colimit is taken in the category of abelian groups. To a quadruple
(V, y, φ, s) occurring in this colimit, we can assign x = u(φ)(y) ∈ u(U). Hence
we obtain

(jU !G)p =
⊕

x∈u(U)
colim(φ:V→U,y), u(φ)(y)=x G(V/φU).

This is equal to the expression of the lemma by the description of the points q lying
over x in Sites, Lemma 7.35.2. □

Remark 18.38.2.0711 Warning: The result of Lemma 18.38.1 has no analogue for jU,∗.

18.39. Pullbacks of flat modules

05VA The pullback of a flat module along a morphism of ringed topoi is flat. This is a
bit tricky to prove.

Lemma 18.39.1.05VD [AGV71, Exposé V,
Corollary 1.7.1]

Let (f, f ♯) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed
topoi or ringed sites. Then f∗F is a flat OC-module whenever F is a flat OD-
module.

Proof. Choose a diagram as in Lemma 18.7.2. Recall that being a flat module is
intrinsic (see Section 18.18 and Definition 18.28.1). Hence it suffices to prove the
lemma for the morphism (h, h♯) : (Sh(C′),OC′) → (Sh(D′),OD′). In other words,
we may assume that our sites C and D have all finite limits and that f is a morphism
of sites induced by a continuous functor u : D → C which commutes with finite
limits.
Recall that f∗F = OC ⊗f−1OD f−1F (Definition 18.13.1). By Lemma 18.28.13 it
suffices to prove that f−1F is a flat f−1OD-module. Combined with the previous
paragraph this reduces us to the situation of the next paragraph.
Assume C and D are sites which have all finite limits and that u : D → C is a
continuous functor which commutes with finite limits. Let O be a sheaf of rings on
D and let F be a flat O-module. Then u defines a morphism of sites f : C → D
(Sites, Proposition 7.14.7). To show: f−1F is a flat f−1O-module. Let U be an
object of C and let

f−1O|U
(f1,...,fn)−−−−−−→ f−1O|⊕nU

(s1,...,sn)−−−−−−→ f−1F|U
be a complex of f−1O|U -modules. Our goal is to construct a factorization of
(s1, . . . , sn) on the members of a covering of U as in Lemma 18.28.14 part (2).
Consider the elements sa ∈ f−1F(U) and fa ∈ f−1O(U). Since f−1F , resp. f−1O
is the sheafification of upF we may, after replacing U by the members of a covering,
assume that sa is the image of an element s′

a ∈ upF(U) and fa is the image of an
element f ′

a ∈ upO(U). Then after another replacement of U by the members of a
covering we may assume that

∑
f ′
as

′
a is zero in upF(U). Recall that the category

(IuU )opp is directed (Sites, Lemma 7.5.2) and that upF(U) = colim(Iu
U

)opp F(V ) and
upO(U) = colim(Iu

U
)opp O(V ). Hence we may assume there is a pair (V, ϕ) ∈ Ob(IuU )

where V is an object of D and ϕ is a morphism ϕ : U → u(V ) of D and elements

https://stacks.math.columbia.edu/tag/0711
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s′′
a ∈ F(V ) and f ′′

a ∈ O(V ) whose images in upF(U) and upO(U) are equal to s′
a

and f ′
a and such that

∑
f ′′
a s

′′
a = 0 in F(V ). Then we obtain a complex

O|V
(f ′′

1 ,...,f
′′
n )−−−−−−−→ O|⊕nV

(s′′
1 ,...,s

′′
n)−−−−−−→ F|V

and we can apply the other direction of Lemma 18.28.14 to see there exists a
covering {Vi → V } of D and for each i a factorization

O|⊕nVi
B′′
i−−→ O|⊕liVi

(t′′
i1,...,t

′′
ili

)
−−−−−−−→ F|Vi

of (s′′
1 , . . . , s

′′
n)|Vi such that Bi ◦ (f ′′

1 , . . . , f
′′
n )|Vi = 0. Set Ui = U ×ϕ,u(V ) u(Vi),

denote Bi ∈ Mat(li × n, f−1O(Ui)) the image of B′′
i , and denote tij ∈ f−1F(Ui)

the image of t′′ij . Then we get a factorization

f−1O|⊕nUi
Bi−−→ f−1O|⊕liUi

(ti1,...,tili )
−−−−−−−→ F|Ui

of (s1, . . . , sn)|Ui such that Bi ◦ (f1, . . . , fn)|Ui = 0. This finishes the proof. □

Lemma 18.39.2.05VB Let (C,O) be a ringed site. Let p be a point of C. If F is a flat
O-module, then Fp is a flat Op-module.

Proof. In Section 18.37 we have seen that we can think of p as a morphism of ringed
topoi

(p, idOp
) : (Sh(pt),Op) −→ (Sh(C),O).

such that the pullback functor p∗ : Mod(O) → Mod(Op) equals the stalk functor.
Thus the lemma follows from Lemma 18.39.1. □

Lemma 18.39.3.05VC Let (C,O) be a ringed site. Let F be a sheaf of O-modules. Let
{pi}i∈I be a conservative family of points of C. Then F is flat if and only if Fpi is
a flat Opi-module for all i ∈ I.

Proof. By Lemma 18.39.2 we see one of the implications. For the converse, use
that (F ⊗O G)p = Fp ⊗Op

Gp by Lemma 18.26.2 (as taking stalks at p is given by
p−1) and Lemma 18.14.4. □

Lemma 18.39.4.0G6R Let f : (Sh(C′),O′)→ (Sh(C′),O) be a morphism of ringed topoi.
Let 0 → F → G → H → 0 be a short exact sequence of O-modules with H a flat
O-module. Then the sequence 0→ f∗F → f∗G → f∗H → 0 is exact as well.

Proof. Since f−1 is exact we have the short exact sequence 0→ f−1F → f−1G →
f−1H → 0 of f−1O-modules. By Lemma 18.39.1 the f−1O-module f−1H is flat.
By Lemma 18.28.9 this implies that tensoring the sequence over f−1O with O′ the
sequence remains exact. Since f∗F = f−1F ⊗f−1O O′ and similarly for G and H
we conclude. □

18.40. Locally ringed topoi

04ER A reference for this section is [AGV71, Exposé IV, Exercice 13.9].

Lemma 18.40.1.04ES Let (C,O) be a ringed site. The following are equivalent
(1) For every object U of C and f ∈ O(U) there exists a covering {Uj → U}

such that for each j either f |Uj is invertible or (1− f)|Uj is invertible.
(2) For U ∈ Ob(C), n ≥ 1, and f1, . . . , fn ∈ O(U) which generate the unit

ideal in O(U) there exists a covering {Uj → U} such that for each j there
exists an i such that fi|Uj is invertible.
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(3) The map of sheaves of sets
(O ×O)⨿ (O ×O) −→ O ×O

which maps (f, a) in the first component to (f, af) and (f, b) in the second
component to (f, b(1− f)) is surjective.

Proof. It is clear that (2) implies (1). To show that (1) implies (2) we argue by
induction on n. The first case is n = 2 (since n = 1 is trivial). In this case we have
a1f1 + a2f2 = 1 for some a1, a2 ∈ O(U). By assumption we can find a covering
{Uj → U} such that for each j either a1f1|Uj is invertible or a2f2|Uj is invertible.
Hence either f1|Uj is invertible or f2|Uj is invertible as desired. For n > 2 we have
a1f1 + . . . + anfn = 1 for some a1, . . . , an ∈ O(U). By the case n = 2 we see that
we have some covering {Uj → U}j∈J such that for each j either fn|Uj is invertible
or a1f1 + . . . + an−1fn−1|Uj is invertible. Say the first case happens for j ∈ Jn.
Set J ′ = J \ Jn. By induction hypothesis, for each j ∈ J ′ we can find a covering
{Ujk → Uj}k∈Kj such that for each k ∈ Kj there exists an i ∈ {1, . . . , n − 1}
such that fi|Ujk is invertible. By the axioms of a site the family of morphisms
{Uj → U}j∈Jn ∪ {Ujk → U}j∈J′,k∈Kj is a covering which has the desired property.
Assume (1). To see that the map in (3) is surjective, let (f, c) be a section of O×O
over U . By assumption there exists a covering {Uj → U} such that for each j
either f or 1 − f restricts to an invertible section. In the first case we can take
a = c|Uj (f |Uj )−1, and in the second case we can take b = c|Uj (1− f |Uj )−1. Hence
(f, c) is in the image of the map on each of the members. Conversely, assume (3)
holds. For any U and f ∈ O(U) there exists a covering {Uj → U} of U such that
the section (f, 1)|Uj is in the image of the map in (3) on sections over Uj . This
means precisely that either f or 1− f restricts to an invertible section over Uj , and
we see that (1) holds. □

Lemma 18.40.2.04ET Let (C,O) be a ringed site. Consider the following conditions
(1) For every object U of C and f ∈ O(U) there exists a covering {Uj → U}

such that for each j either f |Uj is invertible or (1− f)|Uj is invertible.
(2) For every point p of C the stalk Op is either the zero ring or a local ring.

We always have (1) ⇒ (2). If C has enough points then (1) and (2) are equivalent.

Proof. Assume (1). Let p be a point of C given by a functor u : C → Sets. Let
fp ∈ Op. Since Op is computed by Sites, Equation (7.32.1.1) we may represent fp
by a triple (U, x, f) where x ∈ U(U) and f ∈ O(U). By assumption there exists a
covering {Ui → U} such that for each i either f or 1−f is invertible on Ui. Because
u defines a point of the site we see that for some i there exists an xi ∈ u(Ui) which
maps to x ∈ u(U). By the discussion surrounding Sites, Equation (7.32.1.1) we see
that (U, x, f) and (Ui, xi, f |Ui) define the same element of Op. Hence we conclude
that either fp or 1− fp is invertible. Thus Op is a ring such that for every element
a either a or 1 − a is invertible. This means that Op is either zero or a local ring,
see Algebra, Lemma 10.18.2.
Assume (2) and assume that C has enough points. Consider the map of sheaves of
sets

O ×O ⨿O ×O −→ O ×O
of Lemma 18.40.1 part (3). For any local ring R the corresponding map (R×R)⨿
(R×R)→ R×R is surjective, see for example Algebra, Lemma 10.18.2. Since each

https://stacks.math.columbia.edu/tag/04ET
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Op is a local ring or zero the map is surjective on stalks. Hence, by our assumption
that C has enough points it is surjective and we win. □

In Modules, Section 17.2 we pointed out how in a ringed space (X,OX) there can
be an open subspace over which the structure sheaf is zero. To prevent this we can
require the sections 1 and 0 to have different values in every stalk of the space X.
In the setting of ringed topoi and ringed sites the condition is that

(18.40.2.1)05D7 ∅# −→ Equalizer(0, 1 : ∗ −→ O)

is an isomorphism of sheaves. Here ∗ is the singleton sheaf, resp. ∅# is the “empty
sheaf”, i.e., the final, resp. initial object in the category of sheaves, see Sites, Ex-
ample 7.10.2, resp. Section 7.42. In other words, the condition is that whenever
U ∈ Ob(C) is not sheaf theoretically empty, then 1, 0 ∈ O(U) are not equal. Let us
state the obligatory lemma.

Lemma 18.40.3.05D8 Let (C,O) be a ringed site. Consider the statements
(1) (18.40.2.1) is an isomorphism, and
(2) for every point p of C the stalk Op is not the zero ring.

We always have (1) ⇒ (2) and if C has enough points then (1) ⇔ (2).

Proof. Omitted. □

Lemmas 18.40.1, 18.40.2, and 18.40.3 motivate the following definition.

Definition 18.40.4.04EU A ringed site (C,O) is said to be locally ringed site if (18.40.2.1)
is an isomorphism, and the equivalent properties of Lemma 18.40.1 are satisfied.

In [AGV71, Exposé IV, Exercice 13.9] the condition that (18.40.2.1) be an isomor-
phism is missing leading to a slightly different notion of a locally ringed site and
locally ringed topos. As we are motivated by the notion of a locally ringed space
we decided to add this condition (see explanation above).

Lemma 18.40.5.04H7 Being a locally ringed site is an intrinsic property. More precisely,
(1) if f : Sh(C′)→ Sh(C) is a morphism of topoi and (C,O) is a locally ringed

site, then (C′, f−1O) is a locally ringed site, and
(2) if (f, f ♯) : (Sh(C′),O′) → (Sh(C),O) is an equivalence of ringed topoi,

then (C,O) is locally ringed if and only if (C′,O′) is locally ringed.

Proof. It is clear that (2) follows from (1). To prove (1) note that as f−1 is exact
we have f−1∗ = ∗, f−1∅# = ∅#, and f−1 commutes with products, equalizers and
transforms isomorphisms and surjections into isomorphisms and surjections. Thus
f−1 transforms the isomorphism (18.40.2.1) into its analogue for f−1O and trans-
forms the surjection of Lemma 18.40.1 part (3) into the corresponding surjection
for f−1O. □

In fact Lemma 18.40.5 part (2) is the analogue of Schemes, Lemma 26.2.2. It
assures us that the following definition makes sense.

Definition 18.40.6.04H8 A ringed topos (Sh(C),O) is said to be locally ringed if the
underlying ringed site (C,O) is locally ringed.

Here is an example of a consequence of being locally ringed.

https://stacks.math.columbia.edu/tag/05D8
https://stacks.math.columbia.edu/tag/04EU
https://stacks.math.columbia.edu/tag/04H7
https://stacks.math.columbia.edu/tag/04H8


18.40. LOCALLY RINGED TOPOI 1719

Lemma 18.40.7.0B8Q Let (Sh(C),O) be a ringed topos. Any locally free O-module of
rank 1 is invertible. If (C,O) is locally ringed, then the converse holds as well (but
in general this is not the case).

Proof. Assume L is locally free of rank 1 and consider the evaluation map
L ⊗O HomO(L,O) −→ O

Given any object U of C and restricting to the members of a covering trivializing
L, we see that this map is an isomorphism (details omitted). Hence L is invertible
by Lemma 18.32.2.
Assume (Sh(C),O) is locally ringed. Let U be an object of C. In the proof of
Lemma 18.32.2 we have seen that there exists a covering {Ui → U} such that
L|C/Ui is a direct summand of a finite free OUi-module. After replacing U by Ui,
let p : O⊕r

U → O⊕r
U be a projector whose image is isomorphic to L|C/U . Then p

corresponds to a matrix
P = (pij) ∈ Mat(r × r,O(U))

which is a projector: P 2 = P . Set A = O(U) so that P ∈ Mat(r × r,A). By
Algebra, Lemma 10.78.2 the image of P is a finite locally free module M over A.
Hence there are f1, . . . , ft ∈ A generating the unit ideal, such that Mfi is finite free.
By Lemma 18.40.1 after replacing U by the members of an open covering, we may
assume that M is free. This means that L|U is free (details omitted). Of course,
since L is invertible, this is only possible if the rank of L|U is 1 and the proof is
complete. □

Next, we want to work out what it means to have a morphism of locally ringed
spaces. In order to do this we have the following lemma.

Lemma 18.40.8.04H9 Let (f, f ♯) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed
topoi. Consider the following conditions

(1) The diagram of sheaves

f−1(O∗
D)

f♯
//

��

O∗
C

��
f−1(OD) f♯ // OC

is cartesian.
(2) For any point p of C, setting q = f ◦ p, the diagram

O∗
D,q

//

��

O∗
C,p

��
OD,q // OC,p

of sets is cartesian.
We always have (1) ⇒ (2). If C has enough points then (1) and (2) are equivalent.
If (Sh(C),OC) and (Sh(D),OD) are locally ringed topoi then (2) is equivalent to

(3) For any point p of C, setting q = f ◦ p, the ring map OD,q → OC,p is a
local ring map.

In fact, properties (2), or (3) for a conservative family of points implies (1).

https://stacks.math.columbia.edu/tag/0B8Q
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Proof. This lemma proves itself, in other words, it follows by unwinding the defi-
nitions. □

Definition 18.40.9.04HA Let (f, f ♯) : (Sh(C),OC) → (Sh(D),OD) be a morphism of
ringed topoi. Assume (Sh(C),OC) and (Sh(D),OD) are locally ringed topoi. We
say that (f, f ♯) is a morphism of locally ringed topoi if and only if the diagram of
sheaves

f−1(O∗
D)

f♯
//

��

O∗
C

��
f−1(OD) f♯ // OC

(see Lemma 18.40.8) is cartesian. If (f, f ♯) is a morphism of ringed sites, then we
say that it is a morphism of locally ringed sites if the associated morphism of ringed
topoi is a morphism of locally ringed topoi.

It is clear that an isomorphism of ringed topoi between locally ringed topoi is
automatically an isomorphism of locally ringed topoi.

Lemma 18.40.10.04IG Let (f, f ♯) : (Sh(C1),O1)→ (Sh(C2),O2) and (g, g♯) : (Sh(C2),O2)→
(Sh(C3),O3) be morphisms of locally ringed topoi. Then the composition (g, g♯) ◦
(f, f ♯) (see Definition 18.7.1) is also a morphism of locally ringed topoi.

Proof. Omitted. □

Lemma 18.40.11.04KR If f : Sh(C′)→ Sh(C) is a morphism of topoi. If O is a sheaf of
rings on C, then

f−1(O∗) = (f−1O)∗.

In particular, if O turns C into a locally ringed site, then setting f ♯ = id the
morphism of ringed topoi

(f, f ♯) : (Sh(C′), f−1O)→ (Sh(C,O)
is a morphism of locally ringed topoi.

Proof. Note that the diagram

O∗ //

u7→(u,u−1)
��

∗

1
��

O ×O
(a,b)7→ab // O

is cartesian. Since f−1 is exact we conclude that

f−1(O∗)

u7→(u,u−1)
��

// ∗

1
��

f−1O × f−1O
(a,b)7→ab // f−1O

is cartesian which implies the first assertion. For the second, note that (C′, f−1O)
is a locally ringed site by Lemma 18.40.5 so that the assertion makes sense. Now
the first part implies that the morphism is a morphism of locally ringed topoi. □

Lemma 18.40.12.04IH Localization of locally ringed sites and topoi.
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(1) Let (C,O) be a locally ringed site. Let U be an object of C. Then the
localization (C/U,OU ) is a locally ringed site, and the localization mor-
phism

(jU , j♯U ) : (Sh(C/U),OU )→ (Sh(C),O)
is a morphism of locally ringed topoi.

(2) Let (C,O) be a locally ringed site. Let f : V → U be a morphism of C.
Then the morphism

(j, j♯) : (Sh(C/V ),OV )→ (Sh(C/U),OU )
of Lemma 18.19.5 is a morphism of locally ringed topoi.

(3) Let (f, f ♯) : (C,O) −→ (D,O′) be a morphism of locally ringed sites where
f is given by the continuous functor u : D → C. Let V be an object of D
and let U = u(V ). Then the morphism

(f ′, (f ′)♯) : (Sh(C/U),OU )→ (Sh(D/V ),O′
V )

of Lemma 18.20.1 is a morphism of locally ringed sites.
(4) Let (f, f ♯) : (C,O) −→ (D,O′) be a morphism of locally ringed sites

where f is given by the continuous functor u : D → C. Let V ∈ Ob(D),
U ∈ Ob(C), and c : U → u(V ). Then the morphism

(fc, (fc)♯) : (Sh(C/U),OU )→ (Sh(D/V ),O′
V )

of Lemma 18.20.2 is a morphism of locally ringed topoi.
(5) Let (Sh(C),O) be a locally ringed topos. Let F be a sheaf on C. Then the

localization (Sh(C)/F ,OF ) is a locally ringed topos and the localization
morphism

(jF , j
♯
F ) : (Sh(C)/F ,OF )→ (Sh(C),O)

is a morphism of locally ringed topoi.
(6) Let (Sh(C),O) be a locally ringed topos. Let s : G → F be a map of

sheaves on C. Then the morphism
(j, j♯) : (Sh(C)/G,OG) −→ (Sh(C)/F ,OF )

of Lemma 18.21.4 is a morphism of locally ringed topoi.
(7) Let f : (Sh(C),O) −→ (Sh(D),O′) be a morphism of locally ringed topoi.

Let G be a sheaf on D. Set F = f−1G. Then the morphism
(f ′, (f ′)♯) : (Sh(C)/F ,OF ) −→ (Sh(D)/G,O′

G)
of Lemma 18.22.1 is a morphism of locally ringed topoi.

(8) Let f : (Sh(C),O) −→ (Sh(D),O′) be a morphism of locally ringed topoi.
Let G be a sheaf on D, let F be a sheaf on C, and let s : F → f−1G be a
morphism of sheaves. Then the morphism

(fs, (fs)♯) : (Sh(C)/F ,OF ) −→ (Sh(D)/G,O′
G)

of Lemma 18.22.3 is a morphism of locally ringed topoi.

Proof. Part (1) is clear since OU is just the restriction of O, so Lemmas 18.40.5 and
18.40.11 apply. Part (2) is clear as the morphism (j, j♯) is actually a localization
of a locally ringed site so (1) applies. Part (3) is clear also since (f ′)♯ is just
the restriction of f ♯ to the topos Sh(C)/F , see proof of Lemma 18.22.1 (hence
the diagram of Definition 18.40.9 for the morphism f ′ is just the restriction of
the corresponding diagram for f , and restriction is an exact functor). Part (4)
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follows formally on combining (2) and (3). Parts (5), (6), (7), and (8) follow
from their counterparts (1), (2), (3), and (4) by enlarging the sites as in Lemma
18.7.2 and translating everything in terms of sites and morphisms of sites using the
comparisons of Lemmas 18.21.3, 18.21.5, 18.22.2, and 18.22.4. (Alternatively one
could use the same arguments as in the proofs of (1), (2), (3), and (4) to prove (5),
(6), (7), and (8) directly.) □

18.41. Lower shriek for modules

0796 In this section we extend the construction of g! discussed in Section 18.16 to the
case of sheaves of modules.

Lemma 18.41.1.0797 Let u : C → D be a continuous and cocontinuous functor between
sites. Denote g : Sh(C) → Sh(D) the associated morphism of topoi. Let OD be
a sheaf of rings on D. Set OC = g−1OD. Hence g becomes a morphism of ringed
topoi with g∗ = g−1. In this case there exists a functor

g! : Mod(OC) −→ Mod(OD)
which is left adjoint to g∗.

Proof. Let U be an object of C. For any OD-module G we have
HomOC (jU !OU , g−1G) = g−1G(U)

= G(u(U))
= HomOD (ju(U)!Ou(U),G)

because g−1 is described by restriction, see Sites, Lemma 7.21.5. Of course a similar
formula holds a direct sum of modules of the form jU !OU . By Homology, Lemma
12.29.6 and Lemma 18.28.8 we see that g! exists. □

Remark 18.41.2.0798 Warning! Let u : C → D, g, OD, and OC be as in Lemma 18.41.1.
In general it is not the case that the diagram

Mod(OC)
g!
//

forget

��

Mod(OD)

forget

��
Ab(C)

gAb! // Ab(D)

commutes (here gAb! is the one from Lemma 18.16.2). There is a transformation of
functors

gAb! ◦ forget −→ forget ◦ g!

From the proof of Lemma 18.41.1 we see that this is an isomorphism if and only
if gAb! jU !OU → g!jU !OU is an isomorphism for all objects U of C. Since we have
g!jU !OU = ju(U)!Ou(U) this holds if and only if

gAb! jU !OU −→ ju(U)!Ou(U)

is an isomorphism for all objects U of C. Note that for such a U we obtain a
commutative diagram

C/U
u′
//

jU

��

D/u(U)

ju(U)

��
C u // D

https://stacks.math.columbia.edu/tag/0797
https://stacks.math.columbia.edu/tag/0798
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of cocontinuous functors of sites, see Sites, Lemma 7.28.4 and therefore gAb! jU ! =
ju(U)!(g′)Ab! where g′ : Sh(C/U) → Sh(D/u(U)) is the morphism of topoi induced
by the cocontinuous functor u′. Hence we see that g! = gAb! if the canonical map
(18.41.2.1)0799 (g′)Ab! OU −→ Ou(U)

is an isomorphism for all objects U of C.

The following two results are of a slightly different nature.

Lemma 18.41.3.0FN3 Assume given a commutative diagram

(Sh(C′),OC′)
(g′,(g′)♯)

//

(f ′,(f ′)♯)
��

(Sh(C),OC)

(f,f♯)
��

(Sh(D′),OD′)
(g,g♯) // (Sh(D),OD)

of ringed topoi. Assume
(1) f , f ′, g, and g′ correspond to cocontinuous functors u, u′, v, and v′ as in

Sites, Lemma 7.21.1,
(2) v ◦ u′ = u ◦ v′,
(3) v and v′ are continuous as well as cocontinuous,
(4) for any object V ′ of D′ the functor u′

V ′I → u
v(V ′)I given by v is cofinal, and

(5) g−1OD = OD′ and (g′)−1OC = OC′ .
Then we have f ′

∗ ◦ (g′)∗ = g∗ ◦ f∗ and g′
! ◦ (f ′)−1 = f−1 ◦ g! on modules.

Proof. We have (g′)∗F = (g′)−1F and g∗G = g−1G because of condition (5). Thus
the first equality follows immediately from the corresponding equality in Sites,
Lemma 7.28.6. Since the left adjoint functors g! and g′

! to g∗ and (g′)∗ exist by
Lemma 18.41.1 we see that the second equality follows by uniqueness of adjoint
functors. □

Lemma 18.41.4.0FN4 Consider a commutative diagram

(Sh(C′),OC′)
(g′,(g′)♯)

//

(f ′,(f ′)♯)
��

(Sh(C),OC)

(f,f♯)
��

(Sh(D′),OD′)
(g,g♯) // (Sh(D),OD)

of ringed topoi and suppose we have functors

C′
v′
// C

D′ v //

u′

OO

D

u

OO

such that (with notation as in Sites, Sections 7.14 and 7.21) we have
(1) u and u′ are continuous and give rise to the morphisms f and f ′,
(2) v and v′ are cocontinuous giving rise to the morphisms g and g′,
(3) u ◦ v = v′ ◦ u′,
(4) v and v′ are continuous as well as cocontinuous, and
(5) g−1OD = OD′ and (g′)−1OC = OC′ .

Then f ′
∗ ◦ (g′)∗ = g∗ ◦ f∗ and g′

! ◦ (f ′)−1 = f−1 ◦ g! on modules.

https://stacks.math.columbia.edu/tag/0FN3
https://stacks.math.columbia.edu/tag/0FN4
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Proof. We have (g′)∗F = (g′)−1F and g∗G = g−1G because of condition (5). Thus
the first equality follows immediately from the corresponding equality in Sites,
Lemma 7.28.7. Since the left adjoint functors g! and g′

! to g∗ and (g′)∗ exist by
Lemma 18.41.1 we see that the second equality follows by uniqueness of adjoint
functors. □

18.42. Constant sheaves

093I Let E be a set and let C be a site. We will denote E the constant sheaf with value
E on C. If E is an abelian group, ring, module, etc, then E is a sheaf of abelian
groups, rings, modules, etc.

Lemma 18.42.1.093J Let C be a site. If 0→ A→ B → C → 0 is a short exact sequence
of abelian groups, then 0 → A → B → C → 0 is an exact sequence of abelian
sheaves and in fact it is even exact as a sequence of abelian presheaves.

Proof. Since sheafification is exact it is clear that 0 → A → B → C → 0 is an
exact sequence of abelian sheaves. Thus 0 → A → B → C is an exact sequence of
abelian presheaves. To see that B → C is surjective, pick a set theoretical section
s : C → B. This induces a section s : C → B of sheaves of sets left inverse to the
surjection B → C. □

Lemma 18.42.2.093K Let C be a site. Let Λ be a ring and let M and Q be Λ-modules.
If Q is a finitely presented Λ-module, then we have M ⊗Λ Q(U) = M(U)⊗Λ Q for
all U ∈ Ob(C).

Proof. Choose a presentation Λ⊕m → Λ⊕n → Q→ 0. This gives an exact sequence
M⊕m →M⊕n →M ⊗Q→ 0. By Lemma 18.42.1 we obtain an exact sequence

M(U)⊕m →M(U)⊕n →M ⊗Q(U)→ 0
which proves the lemma. (Note that taking sections over U always commutes with
finite direct sums, but not arbitrary direct sums.) □

Lemma 18.42.3.093L Let C be a site. Let Λ be a coherent ring. Let M be a flat
Λ-module. For U ∈ Ob(C) the module M(U) is a flat Λ-module.

Proof. Let I ⊂ Λ be a finitely generated ideal. By Algebra, Lemma 10.39.5 it
suffices to show that M(U)⊗Λ I →M(U) is injective. As Λ is coherent I is finitely
presented as a Λ-module. By Lemma 18.42.2 we see that M(U)⊗I = M ⊗ I. Since
M is flat the map M ⊗ I →M is injective, whence M ⊗ I →M is injective. □

Lemma 18.42.4.093M Let C be a site. Let Λ be a Noetherian ring. Let I ⊂ Λ be an
ideal. The sheaf Λ∧ = lim Λ/In is a flat Λ-algebra. Moreover we have canonical
identifications

Λ/IΛ = Λ/I = Λ∧/IΛ∧ = Λ∧/I · Λ∧ = Λ∧/I∧ = Λ/I

where I∧ = lim I/In.

Proof. To prove Λ∧ is flat, it suffices to show that Λ∧(U) is flat as a Λ-module for
each U ∈ Ob(C), see Lemmas 18.28.2 and 18.28.3. By Lemma 18.42.3 we see that

Λ∧(U) = lim Λ/In(U)
is a limit of a system of flat Λ/In-modules. By Lemma 18.42.1 we see that the
transition maps are surjective. We conclude by More on Algebra, Lemma 15.27.4.

https://stacks.math.columbia.edu/tag/093J
https://stacks.math.columbia.edu/tag/093K
https://stacks.math.columbia.edu/tag/093L
https://stacks.math.columbia.edu/tag/093M
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To see the equalities, note that Λ(U)/IΛ(U) = Λ/I(U) by Lemma 18.42.2. It
follows that Λ/IΛ = Λ/I = Λ/I. The system of short exact sequences

0→ I/In(U)→ Λ/In(U)→ Λ/I(U)→ 0

has surjective transition maps, hence gives a short exact sequence

0→ lim I/In(U)→ lim Λ/In(U)→ lim Λ/I(U)→ 0

see Homology, Lemma 12.31.3. Thus we see that Λ∧/I∧ = Λ/I. Since

IΛ∧ ⊂ I · Λ∧ ⊂ I∧

it suffices to show that IΛ∧(U) = I∧(U) for all U . Choose generators I =
(f1, . . . , fr). For every n we obtain a short exact sequence

0→ Kn/(In)⊕r → (Λ/In)⊕r (f1,...,fr)−−−−−−→ I/In+1 → 0

where Kn = {(x1, . . . , xr) ∈ Λ⊕r |
∑
xifi ∈ In+1}. We obtain short exact se-

quences
0→ Kn/(In)⊕r(U)→ (Λ/In)⊕r(U)→ I/In+1(U)→ 0

A calculation showsKn = K+(In)⊕r, hence the transition maps Kn+1/(In+1)⊕r →
Kn/(In)⊕r are surjective. Hence the system of modules on the left hand side has
surjective transition maps and a fortiori has ML. Thus we see that (f1, . . . , fr) :
(Λ∧)⊕r(U) → I∧(U) is surjective by Homology, Lemma 12.31.3 which is what we
wanted to show. □

Lemma 18.42.5.093N Let C be a site. Let Λ be a ring and let M be a Λ-module. Assume
Sh(C) is not the empty topos. Then

(1) M is a finite type sheaf of Λ-modules if and only if M is a finite Λ-module,
and

(2) M is a finitely presented sheaf of Λ-modules if and only if M is a finitely
presented Λ-module.

Proof. Proof of (1). If M is generated by x1, . . . , xr then x1, . . . , xr define global
sections of M which generate it, hence M is of finite type. Conversely, assume M
is of finite type. Let U ∈ C be an object which is not sheaf theoretically empty
(Sites, Definition 7.42.1). Such an object exists as we assumed Sh(C) is not the
empty topos. Then there exists a covering {Ui → U} and finitely many sections
sij ∈ M(Ui) generating M |Ui . After refining the covering we may assume that
sij come from elements xij of M . Then xij define global sections of M whose
restriction to U generate M .

Assume there exist elements x1, . . . , xr of M which define global sections of M
generating M as a sheaf of Λ-modules. We will show that x1, . . . , xr generate M
as a Λ-module. Let x ∈ M . We can find a covering {Ui → U}i∈I and fi,j ∈ Λ(Ui)
such that x|Ui =

∑
fi,jxj |Ui . After refining the covering we may assume fi,j ∈ Λ.

Since U is not sheaf theoretically empty, there is at least one i ∈ I such that Ui
is not sheaf theoretically empty. Then the map M → M(Ui) is injective (details
omitted). We conclude that x =

∑
fi,jxj in M as desired.

Proof of (2). Assume M is a Λ-module of finite presentation. By (1) we see that M
is of finite type. Choose generators x1, . . . , xr of M as a Λ-module. This determines

https://stacks.math.columbia.edu/tag/093N
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a short exact sequence 0 → K → Λ⊕r → M → 0 which turns into a short exact
sequence

0→ K → Λ⊕r →M → 0
by Lemma 18.42.1. By Lemma 18.24.1 we see that K is of finite type. Hence K is
a finite Λ-module by (1). Thus M is a Λ-module of finite presentation. □

18.43. Locally constant sheaves

093P Here is the general definition.

Definition 18.43.1.093Q Let C be a site. Let F be a sheaf of sets, groups, abelian groups,
rings, modules over a fixed ring Λ, etc.

(1) We say F is a constant sheaf of sets, groups, abelian groups, rings, modules
over a fixed ring Λ, etc if it is isomorphic as a sheaf of sets, groups, abelian
groups, rings, modules over a fixed ring Λ, etc to a constant sheaf E as in
Section 18.42.

(2) We say F is locally constant if for every object U of C there exists a
covering {Ui → U} such that F|Ui is a constant sheaf.

(3) If F is a sheaf of sets or groups, then we say F is finite locally constant if
the constant values are finite sets or finite groups.

Lemma 18.43.2.093R Let f : Sh(C) → Sh(D) be a morphism of topoi. If G is a locally
constant sheaf of sets, groups, abelian groups, rings, modules over a fixed ring Λ,
etc on D, the same is true for f−1G on C.

Proof. Omitted. □

Lemma 18.43.3.093S Let C be a site with a final object X.
(1) Let φ : F → G be a map of locally constant sheaves of sets on C. If F is

finite locally constant, there exists a covering {Ui → X} such that φ|Ui is
the map of constant sheaves associated to a map of sets.

(2) Let φ : F → G be a map of locally constant sheaves of abelian groups on
C. If F is finite locally constant, there exists a covering {Ui → X} such
that φ|Ui is the map of constant abelian sheaves associated to a map of
abelian groups.

(3) Let Λ be a ring. Let φ : F → G be a map of locally constant sheaves
of Λ-modules on C. If F is of finite type, then there exists a covering
{Ui → X} such that φ|Ui is the map of constant sheaves of Λ-modules
associated to a map of Λ-modules.

Proof. Proof omitted. □

Lemma 18.43.4.093T Let C be a site. Let Λ be a ring. Let M , N be Λ-modules. Let
F ,G be a locally constant sheaves of Λ-modules.

(1) If M is of finite presentation, then
HomΛ(M,N) = HomΛ(M,N)

(2) If M and N are both of finite presentation, then
IsomΛ(M,N) = IsomΛ(M,N)

(3) If F is of finite presentation, then HomΛ(F ,G) is a locally constant sheaf
of Λ-modules.

https://stacks.math.columbia.edu/tag/093Q
https://stacks.math.columbia.edu/tag/093R
https://stacks.math.columbia.edu/tag/093S
https://stacks.math.columbia.edu/tag/093T
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(4) If F and G are both of finite presentation, then IsomΛ(F ,G) is a locally
constant sheaf of sets.

Proof. Proof of (1). Set E = HomΛ(M,N). We want to show the canonical map

E −→ HomΛ(M,N)

is an isomorphism. The module M has a presentation Λ⊕s → Λ⊕t → M → 0.
Then E sits in an exact sequence

0→ E → HomΛ(Λ⊕t, N)→ HomΛ(Λ⊕s, N)

and we have similarly

0→ HomΛ(M,N)→ HomΛ(Λ⊕t, N)→ HomΛ(Λ⊕s, N)

This reduces the question to the case where M is a finite free module where the
result is clear.

Proof of (3). The question is local on C, hence we may assume F = M and G = N
for some Λ-modules M and N . By Lemma 18.42.5 the module M is of finite
presentation. Thus the result follows from (1).

Parts (2) and (4) follow from parts (1) and (3) and the fact that Isom can be viewed
as the subsheaf of sections ofHomΛ(F ,G) which have an inverse inHomΛ(G,F). □

Lemma 18.43.5.093U Let C be a site.
(1) The category of finite locally constant sheaves of sets is closed under finite

limits and colimits inside Sh(C).
(2) The category of finite locally constant abelian sheaves is a weak Serre

subcategory of Ab(C).
(3) Let Λ be a Noetherian ring. The category of finite type, locally constant

sheaves of Λ-modules on C is a weak Serre subcategory of Mod(C,Λ).

Proof. Proof of (1). We may work locally on C. Hence by Lemma 18.43.3 we
may assume we are given a finite diagram of finite sets such that our diagram of
sheaves is the associated diagram of constant sheaves. Then we just take the limit
or colimit in the category of sets and take the associated constant sheaf. Some
details omitted.

To prove (2) and (3) we use the criterion of Homology, Lemma 12.10.3. Existence
of kernels and cokernels is argued in the same way as above. Of course, the reason
for using a Noetherian ring in (3) is to assure us that the kernel of a map of finite Λ-
modules is a finite Λ-module. To see that the category is closed under extensions (in
the case of sheaves Λ-modules), assume given an extension of sheaves of Λ-modules

0→ F → E → G → 0

on C with F , G finite type and locally constant. Localizing on C we may assume F
and G are constant, i.e., we get

0→M → E → N → 0

for some Λ-modules M,N . Choose generators y1, . . . , ym of N , so that we get a
short exact sequence 0 → K → Λ⊕m → N → 0 of Λ-modules. Localizing further

https://stacks.math.columbia.edu/tag/093U
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we may assume yj lifts to a section sj of E . Thus we see that E is a pushout as in
the following diagram

0 // K

��

// Λ⊕m

��

// N

��

// 0

0 // M // E // N // 0

By Lemma 18.43.3 again (and the fact that K is a finite Λ-module as Λ is Noether-
ian) we see that the map K →M is locally constant, hence we conclude. □

Lemma 18.43.6.093V Let C be a site. Let Λ be a ring. The tensor product of two locally
constant sheaves of Λ-modules on C is a locally constant sheaf of Λ-modules.

Proof. Omitted. □

18.44. Localizing sheaves of rings

0EMB Let (C,O) be a ringed site. Let S ⊂ O be a sub-presheaf of sets such that for all
U ∈ Ob(C) the set S(U) ⊂ O(U) is a multiplicative subset, see Algebra, Definition
10.9.1. In this case we can consider the presheaf of rings

S−1O : U 7−→ S(U)−1O(U).
The restriction mapping sends the section f/s, f ∈ O(U), s ∈ S(U) to (f |V )/(s|V )
for V → U in C.

Lemma 18.44.1.0EMC In the situation above the map to the sheafification

O −→ (S−1O)#

is a homomorphism of sheaves of rings with the following universal property: for any
homomorphism of sheaves of rings O → A such that each local section of S maps
to an invertible section of A there exists a unique factorization (S−1O)# → A.

Proof. Omitted. □

Let (C,O) be a ringed site. Let S ⊂ O be a sub-presheaf of sets such that for
all U ∈ C the set S(U) ⊂ O(U) is a multiplicative subset. Let F be a sheaf of
O-modules. In this case we can consider the presheaf of S−1O-modules

S−1F : U 7−→ S(U)−1F(U).
The restriction mapping sends the section t/s, t ∈ F(U), s ∈ S(U) to (t|V )/(s|V )
if V → U is a morphism of C. Then S−1F is a presheaf of S−1O-modules.

Lemma 18.44.2.0EMD In the situation above the map to the sheafification

F −→ (S−1F)#

has the following universal property: for any homomorphism of O-modules F →
G such that each local section of S acts invertibly on G there exists a unique
factorization (S−1F)# → G. Moreover we have

(S−1F)# = (S−1O)# ⊗O F
as sheaves of (S−1O)#-modules.

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/093V
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18.45. Sheaves of pointed sets

0F4H In this section we collect some facts about sheaves of pointed sets which we’ve
previously mentioned only for abelian sheaves.
A pointed set is a pair (S, 0) where S is a set and 0 ∈ S is an element of S. A
morphism (S, 0)→ (S′, 0′) of pointed sets is simply a map of sets S → S′ sending 0
to 0′. We’ll abuse notation and say “let S be a pointed set” to mean S is endowed
with a marked element 0 ∈ S. A sheaf of pointed sets is the same thing as a sheaf
of sets F endowed with a “marking” 0 : ∗ → F where ∗ is the final sheaf (Sites,
Example 7.10.2).
Given a morphism of sites or of topoi, there are pushforward and pullback functors
on the categories of sheaves of pointed sets, see Sites, Section 7.44. These are
constructed by taking the pushforward, resp. pullback of the underlying sheaf of
sets and suitably marking it (using that the pullback of the final sheaf is the final
sheaf).
Let u : C → D be a continuous and cocontinuous functor between sites. Let
g : Sh(C) → Sh(D) be the morphism of topoi associated with u, see Sites, Lemma
7.21.1. Then g−1 on sheaves of pointed sets has an left adjoint g! as well. The
construction of this functor is entirely analogous to the construction of g! on abelian
sheaves in Section 18.16.
Similarly, if j : C/U → C is as in Section 18.19 then there is a left adjoint j! to the
functor j−1 on sheaves of pointed sets
If we ever need these facts and constructions we will precisely state and prove here
the corresponding lemmas.
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CHAPTER 19

Injectives

01D4 19.1. Introduction

01D5 In future chapters we will use the existence of injectives and K-injective complexes
to do cohomology of sheaves of modules on ringed sites. In this chapter we explain
how to produce injectives and K-injective complexes first for modules on sites and
later more generally for Grothendieck abelian categories.
We observe that we already know that the category of abelian groups and the cat-
egory of modules over a ring have enough injectives, see More on Algebra, Sections
15.54 and 15.55

19.2. Baer’s argument for modules

05NM There is another, more set-theoretic approach to showing that any R-module M can
be imbedded in an injective module. This approach constructs the injective module
by a transfinite colimit of push-outs. While this method is somewhat abstract and
more complicated than the one of More on Algebra, Section 15.55, it is also more
general. Apparently this method originates with Baer, and was revisited by Cartan
and Eilenberg in [CE56] and by Grothendieck in [Gro57]. There Grothendieck uses
it to show that many other abelian categories have enough injectives. We will get
back to the general case later (Section 19.11).
We begin with a few set theoretic remarks. Let {Bβ}β∈α be an inductive system
of objects in some category C, indexed by an ordinal α. Assume that colimβ∈αBβ
exists in C. If A is an object of C, then there is a natural map
(19.2.0.1)05NN colimβ∈α MorC(A,Bβ) −→ MorC(A, colimβ∈αBβ).
because if one is given a map A→ Bβ for some β, one naturally gets a map from A
into the colimit by composing with Bβ → colimβ∈αBα. Note that the left colimit
is one of sets! In general, (19.2.0.1) is neither injective or surjective.

Example 19.2.1.05NP Consider the category of sets. Let A = N and Bn = {1, . . . , n}
be the inductive system indexed by the natural numbers where Bn → Bm for
n ≤ m is the obvious map. Then colimBn = N, so there is a map A → colimBn,
which does not factor as A → Bm for any m. Consequently, colim Mor(A,Bn) →
Mor(A, colimBn) is not surjective.

Example 19.2.2.05NQ Next we give an example where the map fails to be injective.
Let Bn = N/{1, 2, . . . , n}, that is, the quotient set of N with the first n elements
collapsed to one element. There are natural maps Bn → Bm for n ≤ m, so the
{Bn} form a system of sets over N. It is easy to see that colimBn = {∗}: it is the
one-point set. So it follows that Mor(A, colimBn) is a one-element set for every
set A. However, colim Mor(A,Bn) is not a one-element set. Consider the family of

1731
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maps A→ Bn which are just the natural projections N→ N/{1, 2, . . . , n} and the
family of maps A → Bn which map the whole of A to the class of 1. These two
families of maps are distinct at each step and thus are distinct in colim Mor(A,Bn),
but they induce the same map A→ colimBn.
Nonetheless, if we map out of a finite set then (19.2.0.1) is an isomorphism always.
Lemma 19.2.3.05NR Suppose that, in (19.2.0.1), C is the category of sets and A is a
finite set, then the map is a bijection.
Proof. Let f : A → colimBβ . The range of f is finite, containing say elements
c1, . . . , cr ∈ colimBβ . These all come from some elements in Bβ for β ∈ α large
by definition of the colimit. Thus we can define f̃ : A → Bβ lifting f at a finite
stage. This proves that (19.2.0.1) is surjective. Next, suppose two maps f : A →
Bγ , f

′ : A → Bγ′ define the same map A → colimBβ . Then each of the finitely
many elements of A gets sent to the same point in the colimit. By definition of
the colimit for sets, there is β ≥ γ, γ′ such that the finitely many elements of A
get sent to the same points in Bβ under f and f ′. This proves that (19.2.0.1) is
injective. □

The most interesting case of the lemma is when α = ω, i.e., when the system {Bβ}
is a system {Bn}n∈N over the natural numbers as in Examples 19.2.1 and 19.2.2.
The essential idea is that A is “small” relative to the long chain of compositions
B1 → B2 → . . ., so that it has to factor through a finite step. A more general
version of this lemma can be found in Sets, Lemma 3.7.1. Next, we generalize this
to the category of modules.
Definition 19.2.4.05NS Let C be a category, let I ⊂ Arrows(C), and let α be an ordinal.
An object A of C is said to be α-small with respect to I if whenever {Bβ} is a system
over α with transition maps in I, then the map (19.2.0.1) is an isomorphism.
In the rest of this section we shall restrict ourselves to the category of R-modules
for a fixed commutative ring R. We shall also take I to be the collection of injective
maps, i.e., the monomorphisms in the category of modules over R. In this case, for
any system {Bβ} as in the definition each of the maps

Bβ → colimβ∈αBβ

is an injection. It follows that the map (19.2.0.1) is an injection. We can in fact
interpret the Bβ ’s as submodules of the module B = colimβ∈αBβ , and then we
have B =

⋃
β∈αBβ . This is not an abuse of notation if we identify Bα with the

image in the colimit. We now want to show that modules are always small for
“large” ordinals α.
Proposition 19.2.5.05NT Let R be a ring. Let M be an R-module. Let κ the cardinality
of the set of submodules of M . If α is an ordinal whose cofinality is bigger than κ,
then M is α-small with respect to injections.
Proof. The proof is straightforward, but let us first think about a special case. If
M is finite, then the claim is that for any inductive system {Bβ} with injections
between them, parametrized by a limit ordinal, any map M → colimBβ factors
through one of the Bβ . And this we proved in Lemma 19.2.3.
Now we start the proof in the general case. We need only show that the map
(19.2.0.1) is a surjection. Let f : M → colimBβ be a map. Consider the subobjects

https://stacks.math.columbia.edu/tag/05NR
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{f−1(Bβ)} of M , where Bβ is considered as a subobject of the colimit B =
⋃
β Bβ .

If one of these, say f−1(Bβ), fills M , then the map factors through Bβ .

So suppose to the contrary that all of the f−1(Bβ) were proper subobjects of M .
However, we know that ⋃

f−1(Bβ) = f−1
(⋃

Bβ

)
= M.

Now there are at most κ different subobjects of M that occur among the f−1(Bα),
by hypothesis. Thus we can find a subset S ⊂ α of cardinality at most κ such that
as β′ ranges over S, the f−1(Bβ′) range over all the f−1(Bα).

However, S has an upper bound α̃ < α as α has cofinality bigger than κ. In
particular, all the f−1(Bβ′), β′ ∈ S are contained in f−1(B

α̃
). It follows that

f−1(B
α̃

) = M . In particular, the map f factors through B
α̃

. □

From this lemma we will be able to deduce the existence of lots of injectives. Let
us recall Baer’s criterion.

Lemma 19.2.6 (Baer’s criterion).05NU [Bae40, Theorem 1]Let R be a ring. An R-module Q is injective if
and only if in every commutative diagram

a

��

// Q

R

??

for a ⊂ R an ideal, the dotted arrow exists.

Proof. This is the equivalence of (1) and (3) in More on Algebra, Lemma 15.55.4;
please observe that the proof given there is elementary (and does not use Ext groups
or the existence of injectives or projectives in the category of R-modules). □

If M is an R-module, then in general we may have a semi-complete diagram as in
Lemma 19.2.6. In it, we can form the push-out

a

��

// M

��
R // R⊕a M.

Here the vertical map is injective, and the diagram commutes. The point is that
we can extend a→M to R if we extend M to the larger module R⊕a M .

The key point of Baer’s argument is to repeat this procedure transfinitely many
times. To do this we first define, given anR-moduleM the following (huge) pushout

(19.2.6.1)05NV

⊕
a

⊕
φ∈HomR(a,M) a

//

��

M

��⊕
a

⊕
φ∈HomR(a,M) R

//M(M).

Here the top horizontal arrow maps the element a ∈ a in the summand correspond-
ing to φ to the element φ(a) ∈ M . The left vertical arrow maps a ∈ a in the

https://stacks.math.columbia.edu/tag/05NU
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summand corresponding to φ simply to the element a ∈ R in the summand corre-
sponding to φ. The fundamental properties of this construction are formulated in
the following lemma.

Lemma 19.2.7.05NW Let R be a ring.
(1) The construction M 7→ (M →M(M)) is functorial in M .
(2) The map M →M(M) is injective.
(3) For any ideal a and any R-module map φ : a→M there is an R-module

map φ′ : R→M(M) such that

a

��

φ
// M

��
R

φ′
//M(M)

commutes.

Proof. Parts (2) and (3) are immediate from the construction. To see (1), let
χ : M → N be an R-module map. We claim there exists a canonical commutative
diagram⊕

a

⊕
φ∈HomR(a,M) a

//

�� ++

M

χ

++⊕
a

⊕
φ∈HomR(a,M) R

++

⊕
a

⊕
ψ∈HomR(a,N) a

//

��

N

⊕
a

⊕
ψ∈HomR(a,N) R

which induces the desired map M(M)→M(N). The middle east-south-east arrow
maps the summand a corresponding to φ via ida to the summand a corresponding
to ψ = χ ◦ φ. Similarly for the lower east-south-east arrow. Details omitted. □

The idea will now be to apply the functor M a transfinite number of times. We
define for each ordinal α a functor Mα on the category of R-modules, together
with a natural injection N →Mα(N). We do this by transfinite recursion. First,
M1 = M is the functor defined above. Now, suppose given an ordinal α, and
suppose Mα′ is defined for α′ < α. If α has an immediate predecessor α̃, we let

Mα = M ◦M
α̃
.

If not, i.e., if α is a limit ordinal, we let

Mα(N) = colimα′<α Mα′(N).

It is clear (e.g., inductively) that the Mα(N) form an inductive system over ordinals,
so this is reasonable.

Theorem 19.2.8.05NX Let κ be the cardinality of the set of ideals in R, and let α be an
ordinal whose cofinality is greater than κ. Then Mα(N) is an injective R-module,
and N →Mα(N) is a functorial injective embedding.

https://stacks.math.columbia.edu/tag/05NW
https://stacks.math.columbia.edu/tag/05NX
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Proof. By Baer’s criterion Lemma 19.2.6, it suffices to show that if a ⊂ R is an
ideal, then any map f : a →Mα(N) extends to R →Mα(N). However, we know
since α is a limit ordinal that

Mα(N) = colimβ<α Mβ(N),
so by Proposition 19.2.5, we find that

HomR(a,Mα(N)) = colimβ<α HomR(a,Mβ(N)).
This means in particular that there is some β′ < α such that f factors through the
submodule Mβ′(N), as

f : a→Mβ′(N)→Mα(N).
However, by the fundamental property of the functor M, see Lemma 19.2.7 part
(3), we know that the map a→Mβ′(N) can be extended to

R→M(Mβ′(N)) = Mβ′+1(N),
and the last object imbeds in Mα(N) (as β′ + 1 < α since α is a limit ordinal). In
particular, f can be extended to Mα(N). □

19.3. G-modules

04JE We will see later (Differential Graded Algebra, Section 22.17) that the category of
modules over an algebra has functorial injective embeddings. The construction is
exactly the same as the construction in More on Algebra, Section 15.55.

Lemma 19.3.1.04JF Let G be a topological group. Let R be a ring. The category
ModR,G of R-G-modules, see Étale Cohomology, Definition 59.57.1, has functorial
injective hulls. In particular this holds for the category of discrete G-modules.

Proof. By the remark above the lemma the category ModR[G] has functorial in-
jective embeddings. Consider the forgetful functor v : ModR,G → ModR[G]. This
functor is fully faithful, transforms injective maps into injective maps and has a
right adjoint, namely

u : M 7→ u(M) = {x ∈M | stabilizer of x is open}
Since v(M) = 0⇒M = 0 we conclude by Homology, Lemma 12.29.5. □

19.4. Abelian sheaves on a space

01DF
Lemma 19.4.1.01DG Let X be a topological space. The category of abelian sheaves on
X has enough injectives. In fact it has functorial injective embeddings.

Proof. For an abelian group A we denote j : A → J(A) the functorial injective
embedding constructed in More on Algebra, Section 15.55. Let F be an abelian
sheaf on X. By Sheaves, Example 6.7.5 the assignment

I : U 7→ I(U) =
∏

x∈U
J(Fx)

is an abelian sheaf. There is a canonical map F → I given by mapping s ∈ F(U)
to
∏
x∈U j(sx) where sx ∈ Fx denotes the germ of s at x. This map is injective, see

Sheaves, Lemma 6.11.1 for example.

https://stacks.math.columbia.edu/tag/04JF
https://stacks.math.columbia.edu/tag/01DG
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It remains to prove the following: Given a rule x 7→ Ix which assigns to each point
x ∈ X an injective abelian group the sheaf I : U 7→

∏
x∈U Ix is injective. Note that

I =
∏

x∈X
ix,∗Ix

is the product of the skyscraper sheaves ix,∗Ix (see Sheaves, Section 6.27 for nota-
tion.) We have

MorAb(Fx, Ix) = MorAb(X)(F , ix,∗Ix).
see Sheaves, Lemma 6.27.3. Hence it is clear that each ix,∗Ix is injective. Hence
the injectivity of I follows from Homology, Lemma 12.27.3. □

19.5. Sheaves of modules on a ringed space

01DH
Lemma 19.5.1.01DI Let (X,OX) be a ringed space, see Sheaves, Section 6.25. The
category of sheaves of OX -modules on X has enough injectives. In fact it has
functorial injective embeddings.

Proof. For any ring R and any R-module M we denote j : M → JR(M) the
functorial injective embedding constructed in More on Algebra, Section 15.55. Let
F be a sheaf of OX -modules on X. By Sheaves, Examples 6.7.5 and 6.15.6 the
assignment

I : U 7→ I(U) =
∏

x∈U
JOX,x

(Fx)

is an abelian sheaf. There is a canonical map F → I given by mapping s ∈ F(U)
to
∏
x∈U j(sx) where sx ∈ Fx denotes the germ of s at x. This map is injective, see

Sheaves, Lemma 6.11.1 for example.
It remains to prove the following: Given a rule x 7→ Ix which assigns to each point
x ∈ X an injective OX,x-module the sheaf I : U 7→

∏
x∈U Ix is injective. Note that

I =
∏

x∈X
ix,∗Ix

is the product of the skyscraper sheaves ix,∗Ix (see Sheaves, Section 6.27 for nota-
tion.) We have

HomOX,x
(Fx, Ix) = HomOX

(F , ix,∗Ix).
see Sheaves, Lemma 6.27.3. Hence it is clear that each ix,∗Ix is an injective OX -
module (see Homology, Lemma 12.29.1 or argue directly). Hence the injectivity of
I follows from Homology, Lemma 12.27.3. □

19.6. Abelian presheaves on a category

01DJ Let C be a category. Recall that this means that Ob(C) is a set. On the one hand,
consider abelian presheaves on C, see Sites, Section 7.2. On the other hand, consider
families of abelian groups indexed by elements of Ob(C); in other words presheaves
on the discrete category with underlying set of objects Ob(C). Let us denote this
discrete category simply Ob(C). There is a natural functor

i : Ob(C) −→ C
and hence there is a natural restriction or forgetful functor

v = ip : PAb(C) −→ PAb(Ob(C))

https://stacks.math.columbia.edu/tag/01DI
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compare Sites, Section 7.5. We will denote presheaves on C by B and presheaves
on Ob(C) by A.

There are also two functors, namely ip and pi which assign an abelian presheaf on
C to an abelian presheaf on Ob(C), see Sites, Sections 7.5 and 7.19. Here we will
use u = pi which is defined (in the case at hand) as follows:

uA(U) =
∏

U ′→U
A(U ′).

So an element is a family (aϕ)ϕ with ϕ ranging through all morphisms in C with
target U . The restriction map on uA corresponding to g : V → U maps our element
(aϕ)ϕ to the element (ag◦ψ)ψ.

There is a canonical surjective map vuA → A and a canonical injective map B →
uvB. We leave it to the reader to show that

MorPAb(C)(B, uA) = MorPAb(Ob(C))(vB,A).

in this simple case; the general case is in Sites, Section 7.5. Thus the pair (u, v) is
an example of a pair of adjoint functors, see Categories, Section 4.24.

At this point we can list the following facts about the situation above.
(1) The functors u and v are exact. This follows from the explicit description

of these functors given above.
(2) In particular the functor v transforms injective maps into injective maps.
(3) The category PAb(Ob(C)) has enough injectives.
(4) In fact there is a functorial injective embedding A 7→

(
A → J(A)

)
as

in Homology, Definition 12.27.5. Namely, we can take J(A) to be the
presheaf U 7→ J(A(U)), where J(−) is the functor constructed in More
on Algebra, Section 15.55 for the ring Z.

Putting all of this together gives us the following procedure for embedding objects B
of PAb(C)) into an injective object: B → uJ(vB). See Homology, Lemma 12.29.5.

Proposition 19.6.1.01DK For abelian presheaves on a category there is a functorial
injective embedding.

Proof. See discussion above. □

19.7. Abelian Sheaves on a site

01DL Let C be a site. In this section we prove that there are enough injectives for abelian
sheaves on C.

Denote i : Ab(C) −→ PAb(C) the forgetful functor from abelian sheaves to abelian
presheaves. Let # : PAb(C) −→ Ab(C) denote the sheafification functor. Recall
that # is a left adjoint to i, that # is exact, and that iF# = F for any abelian
sheaf F . Finally, let G → J(G) denote the canonical embedding into an injective
presheaf we found in Section 19.6.

For any sheaf F in Ab(C) and any ordinal β we define a sheaf Jβ(F) by transfinite
recursion. We set J0(F) = F . We define J1(F) = J(iF)#. Sheafification of the
canonical map iF → J(iF) gives a functorial map

F −→ J1(F)

https://stacks.math.columbia.edu/tag/01DK
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which is injective as # is exact. We set Jα+1(F) = J1(Jα(F)). So that there are
canonical injective maps Jα(F)→ Jα+1(F). For a limit ordinal β, we define

Jβ(F) = colimα<β Jα(F).
Note that this is a directed colimit. Hence for any ordinals α < β we have an
injective map Jα(F)→ Jβ(F).

Lemma 19.7.1.01DM With notation as above. Suppose that G1 → G2 is an injective map
of abelian sheaves on C. Let α be an ordinal and let G1 → Jα(F) be a morphism of
sheaves. There exists a morphism G2 → Jα+1(F) such that the following diagram
commutes

G1

��

// G2

��
Jα(F) // Jα+1(F)

Proof. This is because the map iG1 → iG2 is injective and hence iG1 → iJα(F)
extends to iG2 → J(iJα(F)) which gives the desired map after applying the sheafi-
fication functor. □

This lemma says that somehow the system {Jα(F)} is an injective embedding of
F . Of course we cannot take the limit over all α because they form a class and
not a set. However, the idea is now that you don’t have to check injectivity on all
injections G1 → G2, plus the following lemma.

Lemma 19.7.2.01DN Suppose that Gi, i ∈ I is set of abelian sheaves on C. There exists
an ordinal β such that for any sheaf F , any i ∈ I, and any map φ : Gi → Jβ(F)
there exists an α < β such that φ factors through Jα(F).

Proof. This reduces to the case of a single sheaf G by taking the direct sum of all
the Gi.
Consider the sets

S =
∐

U∈Ob(C)
G(U).

and
Tβ =

∐
U∈Ob(C)

Jβ(F)(U)

The transition maps between the sets Tβ are injective. If the cofinality of β is large
enough, then Tβ = colimα<β Tα, see Sites, Lemma 7.17.10. A morphism G → Jβ(F)
factors through Jα(F) if and only if the associated map S → Tβ factors through
Tα. By Sets, Lemma 3.7.1 if the cofinality of β is bigger than the cardinality of S,
then the result of the lemma is true. Hence the lemma follows from the fact that
there are ordinals with arbitrarily large cofinality, see Sets, Proposition 3.7.2. □

Recall that for an object X of C we denote ZX the presheaf of abelian groups
Γ(U,ZX) = ⊕U→XZ, see Modules on Sites, Section 18.4. The sheaf associated
to this presheaf is denoted Z#

X , see Modules on Sites, Section 18.5. It can be
characterized by the property
(19.7.2.1)05NY MorAb(C)(Z#

X ,G) = G(X)
where the element φ of the left hand side is mapped to φ(1 · idX) in the right hand
side. We can use these sheaves to characterize injective abelian sheaves.

https://stacks.math.columbia.edu/tag/01DM
https://stacks.math.columbia.edu/tag/01DN
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Lemma 19.7.3.01DO Suppose J is a sheaf of abelian groups with the following property:
For all X ∈ Ob(C), for any abelian subsheaf S ⊂ Z#

X and any morphism φ : S → J ,
there exists a morphism Z#

X → J extending φ. Then J is an injective sheaf of
abelian groups.

Proof. Let F → G be an injective map of abelian sheaves. Suppose φ : F → J
is a morphism. Arguing as in the proof of More on Algebra, Lemma 15.54.1 we
see that it suffices to prove that if F ≠ G, then we can find an abelian sheaf F ′,
F ⊂ F ′ ⊂ G such that (a) the inclusion F ⊂ F ′ is strict, and (b) φ can be extended
to F ′. To find F ′, let X be an object of C such that the inclusion F(X) ⊂ G(X) is
strict. Pick s ∈ G(X), s ̸∈ F(X). Let ψ : Z#

X → G be the morphism corresponding
to the section s via (19.7.2.1). Set S = ψ−1(F). By assumption the morphism

S ψ−→ F φ−→ J

can be extended to a morphism φ′ : Z#
X → J . Note that φ′ annihilates the kernel

of ψ (as this is true for φ). Thus φ′ gives rise to a morphism φ′′ : Im(ψ) → J
which agrees with φ on the intersection F ∩ Im(ψ) by construction. Thus φ and φ′′

glue to give an extension of φ to the strictly bigger subsheaf F ′ = F + Im(ψ). □

Theorem 19.7.4.01DP The category of sheaves of abelian groups on a site has enough
injectives. In fact there exists a functorial injective embedding, see Homology,
Definition 12.27.5.

Proof. Let Gi, i ∈ I be a set of abelian sheaves such that every subsheaf of every
Z#
X occurs as one of the Gi. Apply Lemma 19.7.2 to this collection to get an

ordinal β. We claim that for any sheaf of abelian groups F the map F → Jβ(F)
is an injection of F into an injective. Note that by construction the assignment
F 7→

(
F → Jβ(F)

)
is indeed functorial.

The proof of the claim comes from the fact that by Lemma 19.7.3 it suffices to extend
any morphism γ : G → Jβ(F) from a subsheaf G of some Z#

X to all of Z#
X . Then by

Lemma 19.7.2 the map γ lifts into Jα(F) for some α < β. Finally, we apply Lemma
19.7.1 to get the desired extension of γ to a morphism into Jα+1(F)→ Jβ(F). □

19.8. Modules on a ringed site

01DQ Let C be a site. Let O be a sheaf of rings on C. By analogy with More on Algebra,
Section 15.55 let us try to prove that there are enough injective O-modules. First
of all, we pick an injective embedding⊕

U,I
jU !OU/I −→ J

where J is an injective abelian sheaf (which exists by the previous section). Here
the direct sum is over all objects U of C and over all O-submodules I ⊂ jU !OU .
Please see Modules on Sites, Section 18.19 to read about the functors restriction
and extension by 0 for the localization functor jU : C/U → C.

For any sheaf of O-modules F denote

F∨ = Hom(F ,J )

https://stacks.math.columbia.edu/tag/01DO
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with its natural O-module structure. Insert here future reference to internal hom.
We will also need a canonical flat resolution of a sheaf of O-modules. This we can
do as follows: For any O-module F we denote

F (F) =
⊕

U∈Ob(C),s∈F(U)
jU !OU .

This is a flat sheaf of O-modules which comes equipped with a canonical surjection
F (F) → F , see Modules on Sites, Lemma 18.28.8. Moreover the construction
F 7→ F (F) is functorial in F .

Lemma 19.8.1.01DR The functor F 7→ F∨ is exact.

Proof. This because J is an injective abelian sheaf. □

There is a canonical map ev : F → (F∨)∨ given by evaluation: given x ∈ F(U) we
let ev(x) ∈ (F∨)∨ = Hom(F∨,J ) be the map φ 7→ φ(x).

Lemma 19.8.2.01DS For any O-module F the evaluation map ev : F → (F∨)∨ is
injective.

Proof. You can check this using the definition of J . Namely, if s ∈ F(U) is not zero,
then let jU !OU → F be the map of O-modules it corresponds to via adjunction.
Let I be the kernel of this map. There exists a nonzero map F ⊃ jU !OU/I → J
which does not annihilate s. As J is an injective O-module, this extends to a map
φ : F → J . Then ev(s)(φ) = φ(s) ̸= 0 which is what we had to prove. □

The canonical surjection F (F)→ F of O-modules turns into a canonical injection,
see above, of O-modules

(F∨)∨ −→ (F (F∨))∨.

Set J(F) = (F (F∨))∨. The composition of ev with this the displayed map gives
F → J(F) functorially in F .

Lemma 19.8.3.01DT Let O be a sheaf of rings. For every O-module F the O-module
J(F) is injective.

Proof. We have to show that the functor HomO(G, J(F)) is exact. Note that
HomO(G, J(F)) = HomO(G, (F (F∨))∨)

= HomO(G,Hom(F (F∨),J ))
= Hom(G ⊗O F (F∨),J )

Thus what we want follows from the fact that F (F∨) is flat and J is injective. □

Theorem 19.8.4.01DU Let C be a site. Let O be a sheaf of rings on C. The category
of sheaves of O-modules on a site has enough injectives. In fact there exists a
functorial injective embedding, see Homology, Definition 12.27.5.

Proof. From the discussion in this section. □

Proposition 19.8.5.01DV Let C be a category. Let O be a presheaf of rings on C. The
category PMod(O) of presheaves of O-modules has functorial injective embeddings.

Proof. We could prove this along the lines of the discussion in Section 19.6. But
instead we argue using the theorem above. Endow C with the structure of a site
by letting the set of coverings of an object U consist of all singletons {f : V → U}
where f is an isomorphism. We omit the verification that this defines a site. A
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sheaf for this topology is the same as a presheaf (proof omitted). Hence the theorem
applies. □

19.9. Embedding abelian categories

05PL In this section we show that an abelian category embeds in the category of abelian
sheaves on a site having enough points. The site will be the one described in the
following lemma.

Lemma 19.9.1.05PM Let A be an abelian category. Let

Cov = {{f : V → U} | f is surjective}.

Then (A,Cov) is a site, see Sites, Definition 7.6.2.

Proof. Note that Ob(A) is a set by our conventions about categories. An iso-
morphism is a surjective morphism. The composition of surjective morphisms is
surjective. And the base change of a surjective morphism in A is surjective, see
Homology, Lemma 12.5.14. □

Let A be a pre-additive category. In this case the Yoneda embedding A → PSh(A),
X 7→ hX factors through a functor A → PAb(A).

Lemma 19.9.2.05PN Let A be an abelian category. Let C = (A,Cov) be the site defined
in Lemma 19.9.1. Then X 7→ hX defines a fully faithful, exact functor

A −→ Ab(C).

Moreover, the site C has enough points.

Proof. Suppose that f : V → U is a surjective morphism of A. Let K = Ker(f).
Recall that V ×U V = Ker((f,−f) : V ⊕ V → U), see Homology, Example 12.5.6.
In particular there exists an injection K ⊕K → V ×U V . Let p, q : V ×U V → V
be the two projection morphisms. Note that p − q : V ×U V → V is a morphism
such that f ◦ (p− q) = 0. Hence p− q factors through K → V . Let us denote this
morphism by c : V ×U V → K. And since the composition K⊕K → V ×U V → K
is surjective, we conclude that c is surjective. It follows that

V ×U V
p−q−−→ V → U → 0

is an exact sequence of A. Hence for an object X of A the sequence

0→ HomA(U,X)→ HomA(V,X)→ HomA(V ×U V,X)

is an exact sequence of abelian groups, see Homology, Lemma 12.5.8. This means
that hX satisfies the sheaf condition on C.

The functor is fully faithful by Categories, Lemma 4.3.5. The functor is a left exact
functor between abelian categories by Homology, Lemma 12.5.8. To show that it
is right exact, let X → Y be a surjective morphism of A. Let U be an object of A,
and let s ∈ hY (U) = MorA(U, Y ) be a section of hY over U . By Homology, Lemma
12.5.14 the projection U ×Y X → U is surjective. Hence {V = U ×Y X → U} is a
covering of U such that s|V lifts to a section of hX . This proves that hX → hY is
a surjection of abelian sheaves, see Sites, Lemma 7.11.2.

The site C has enough points by Sites, Proposition 7.39.3. □
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Remark 19.9.3.05PP The Freyd-Mitchell embedding theorem says there exists a fully
faithful exact functor from any abelian category A to the category of modules over
a ring. Lemma 19.9.2 is not quite as strong. But the result is suitable for the
Stacks project as we have to understand sheaves of abelian groups on sites in detail
anyway. Moreover, “diagram chasing” works in the category of abelian sheaves on
C, for example by working with sections over objects, or by working on the level
of stalks using that C has enough points. To see how to deduce the Freyd-Mitchell
embedding theorem from Lemma 19.9.2 see Remark 19.9.5.
Remark 19.9.4.05PQ If A is a “big” abelian category, i.e., if A has a class of objects, then
Lemma 19.9.2 does not work. In this case, given any set of objects E ⊂ Ob(A)
there exists an abelian full subcategory A′ ⊂ A such that Ob(A′) is a set and
E ⊂ Ob(A′). Then one can apply Lemma 19.9.2 to A′. One can use this to prove
that results depending on a diagram chase hold in A.
Remark 19.9.5.05PR Let C be a site. Note that Ab(C) has enough injectives, see Theorem
19.7.4. (In the case that C has enough points this is straightforward because p∗I
is an injective sheaf if I is an injective Z-module and p is a point.) Also, Ab(C)
has a cogenerator (details omitted). Hence Lemma 19.9.2 proves that we have a
fully faithful, exact embedding A → B where B has a cogenerator and enough
injectives. We can apply this to Aopp and we get a fully faithful exact functor
i : A → D = Bopp where D has enough projectives and a generator. Hence D has
a projective generator P . Set R = MorD(P, P ). Then

A −→ ModR, X 7−→ HomD(P,X).
One can check this is a fully faithful, exact functor. In other words, one retrieves
the Freyd-Mitchell theorem mentioned in Remark 19.9.3 above.
Remark 19.9.6.05SF The arguments proving Lemmas 19.9.1 and 19.9.2 work also for
exact categories, see [Büh10, Appendix A] and [BBD82, 1.1.4]. We quickly review
this here and we add more details if we ever need it in the Stacks project.
Let A be an additive category. A kernel-cokernel pair is a pair (i, p) of morphisms
of A with i : A→ B, p : B → C such that i is the kernel of p and p is the cokernel
of i. Given a set E of kernel-cokernel pairs we say i : A → B is an admissible
monomorphism if (i, p) ∈ E for some morphism p. Similarly we say a morphism
p : B → C is an admissible epimorphism if (i, p) ∈ E for some morphism i. The
pair (A, E) is said to be an exact category if the following axioms hold

(1) E is closed under isomorphisms of kernel-cokernel pairs,
(2) for any object A the morphism 1A is both an admissible epimorphism and

an admissible monomorphism,
(3) admissible monomorphisms are stable under composition,
(4) admissible epimorphisms are stable under composition,
(5) the push-out of an admissible monomorphism i : A→ B via any morphism

A → A′ exist and the induced morphism i′ : A′ → B′ is an admissible
monomorphism, and

(6) the base change of an admissible epimorphism p : B → C via any mor-
phism C ′ → C exist and the induced morphism p′ : B′ → C ′ is an
admissible epimorphism.

Given such a structure let C = (A,Cov) where coverings (i.e., elements of Cov)
are given by admissible epimorphisms. The axioms listed above immediately imply
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that this is a site. Consider the functor
F : A −→ Ab(C), X 7−→ hX

exactly as in Lemma 19.9.2. It turns out that this functor is fully faithful, exact,
and reflects exactness. Moreover, any extension of objects in the essential image of
F is in the essential image of F .

19.10. Grothendieck’s AB conditions

079A This and the next few sections are mostly interesting for “big” abelian categories,
i.e., those categories listed in Categories, Remark 4.2.2. A good case to keep in
mind is the category of sheaves of modules on a ringed site.
Grothendieck proved the existence of injectives in great generality in the paper
[Gro57]. He used the following conditions to single out abelian categories with
special properties.

Definition 19.10.1.079B Let A be an abelian category. We name some conditions
AB3 A has direct sums,
AB4 A has AB3 and direct sums are exact,
AB5 A has AB3 and filtered colimits are exact.

Here are the dual notions
AB3* A has products,
AB4* A has AB3* and products are exact,
AB5* A has AB3* and cofiltered limits are exact.

We say an object U of A is a generator if for every N ⊂M , N ̸= M in A there exists
a morphism U →M which does not factor through N . We say A is a Grothendieck
abelian category if it has AB5 and a generator.

Discussion: A direct sum in an abelian category is a coproduct. If an abelian
category has direct sums (i.e., AB3), then it has colimits, see Categories, Lemma
4.14.12. Similarly if A has AB3* then it has limits, see Categories, Lemma 4.14.11.
Exactness of direct sums means the following: given an index set I and short exact
sequences

0→ Ai → Bi → Ci → 0, i ∈ I
in A then the sequence

0→
⊕

i∈I
Ai →

⊕
i∈I

Bi →
⊕

i∈I
Ci → 0

is exact as well. Without assuming AB4 it is only true in general that the sequence
is exact on the right (i.e., taking direct sums is a right exact functor if direct sums
exist). Similarly, exactness of filtered colimits means the following: given a directed
set I and a system of short exact sequences

0→ Ai → Bi → Ci → 0
over I in A then the sequence

0→ colimi∈I Ai → colimi∈I Bi → colimi∈I Ci → 0
is exact as well. Without assuming AB5 it is only true in general that the sequence
is exact on the right (i.e., taking colimits is a right exact functor if colimits exist).
A similar explanation holds for AB4* and AB5*.
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19.11. Injectives in Grothendieck categories

05AB The existence of a generator implies that given an object M of a Grothendieck
abelian category A there is a set of subobjects. (This may not be true for a general
“big” abelian category.)

Lemma 19.11.1.0E8N Let A be an abelian category with a generator U and X and
object of A. If κ is the cardinality of Mor(U,X) then

(1) There does not exist a strictly increasing (or strictly decreasing) chain of
subobjects of X indexed by a cardinal bigger than κ.

(2) If α is an ordinal of cofinality > κ then any increasing (or decreasing)
sequence of subobjects of X indexed by α is eventually constant.

(3) The cardinality of the set of subobjects of X is ≤ 2κ.

Proof. For (1) assume κ′ > κ is a cardinal and assume Xi, i ∈ κ′ is strictly
increasing. Then take for each i a ϕi ∈ Mor(U,X) such that ϕi factors through
Xi+1 but not through Xi. Then the morphisms ϕi are distinct, which contradicts
the definition of κ.
Part (2) follows from the definition of cofinality and (1).
Proof of (3). For any subobject Y ⊂ X define SY ∈ P(Mor(U,X)) (power set)
as SY = {ϕ ∈ Mor(U,X) : ϕ) factors through Y }. Then Y = Y ′ if and only if
SY = SY ′ . Hence the cardinality of the set of subobjects is at most the cardinality
of this power set. □

By Lemma 19.11.1 the following definition makes sense.

Definition 19.11.2.079C Let A be a Grothendieck abelian category. Let M be an object
of A. The size |M | of M is the cardinality of the set of subobjects of M .

Lemma 19.11.3.079D Let A be a Grothendieck abelian category. If 0 → M ′ → M →
M ′′ → 0 is a short exact sequence of A, then |M ′|, |M ′′| ≤ |M |.

Proof. Immediate from the definitions. □

Lemma 19.11.4.079E Let A be a Grothendieck abelian category with generator U .
(1) If |M | ≤ κ, then M is the quotient of a direct sum of at most κ copies of

U .
(2) For every cardinal κ there exists a set of isomorphism classes of objects

M with |M | ≤ κ.

Proof. For (1) choose for every proper subobject M ′ ⊂M a morphism φM ′ : U →
M whose image is not contained in M ′. Then

⊕
M ′⊂M φM ′ :

⊕
M ′⊂M U → M is

surjective. It is clear that (1) implies (2). □

Proposition 19.11.5.079F Let A be a Grothendieck abelian category. Let M be an
object of A. Let κ = |M |. If α is an ordinal whose cofinality is bigger than κ, then
M is α-small with respect to injections.

Proof. Please compare with Proposition 19.2.5. We need only show that the map
(19.2.0.1) is a surjection. Let f : M → colimBβ be a map. Consider the subobjects
{f−1(Bβ)} of M , where Bβ is considered as a subobject of the colimit B =

⋃
β Bβ .

If one of these, say f−1(Bβ), fills M , then the map factors through Bβ .
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So suppose to the contrary that all of the f−1(Bβ) were proper subobjects of M .
However, because A has AB5 we have

colim f−1(Bβ) = f−1 (colimBβ) = M.

Now there are at most κ different subobjects of M that occur among the f−1(Bα),
by hypothesis. Thus we can find a subset S ⊂ α of cardinality at most κ such that
as β′ ranges over S, the f−1(Bβ′) range over all the f−1(Bα).
However, S has an upper bound α̃ < α as α has cofinality bigger than κ. In
particular, all the f−1(Bβ′), β′ ∈ S are contained in f−1(B

α̃
). It follows that

f−1(B
α̃

) = M . In particular, the map f factors through B
α̃

. □

Lemma 19.11.6.079G Let A be a Grothendieck abelian category with generator U . An
object I of A is injective if and only if in every commutative diagram

M

��

// I

U

??

for M ⊂ U a subobject, the dotted arrow exists.

Proof. Please see Lemma 19.2.6 for the case of modules. Choose an injection A ⊂ B
and a morphism φ : A → I. Consider the set S of pairs (A′, φ′) consisting of
subobjects A ⊂ A′ ⊂ B and a morphism φ′ : A′ → I extending φ. Define a partial
ordering on this set in the obvious manner. Choose a totally ordered subset T ⊂ S.
Then

A′ = colimt∈T At
colimt∈T φt−−−−−−−→ I

is an upper bound. Hence by Zorn’s lemma the set S has a maximal element
(A′, φ′). We claim that A′ = B. If not, then choose a morphism ψ : U → B which
does not factor through A′. Set N = A′ ∩ ψ(U). Set M = ψ−1(N). Then the map

M → N → A′ φ′

−→ I

can be extended to a morphism χ : U → I. Since χ|Ker(ψ) = 0 we see that χ factors
as

U → Im(ψ) φ′′

−−→ I

Since φ′ and φ′′ agree on N = A′ ∩ Im(ψ) we see that combined the define a
morphism A′ + Im(ψ)→ I contradicting the assumed maximality of A′. □

Theorem 19.11.7.079H LetA be a Grothendieck abelian category. ThenA has functorial
injective embeddings.

Proof. Please compare with the proof of Theorem 19.2.8. Choose a generator U of
A. For an object M we define M(M) by the following pushout diagram⊕

N⊂U
⊕

φ∈Hom(N,M) N
//

��

M

��⊕
N⊂U

⊕
φ∈Hom(N,M) U

//M(M).

Note that M → M(N) is a functor and that there exist functorial injective maps
M →M(M). By transfinite induction we define functors Mα(M) for every ordinal
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α. Namely, set M0(M) = M . Given Mα(M) set Mα+1(M) = M(Mα(M)). For a
limit ordinal β set

Mβ(M) = colimα<β Mα(M).
Finally, pick any ordinal α whose cofinality is greater than |U |. Such an ordinal
exists by Sets, Proposition 3.7.2. We claim that M → Mα(M) is the desired
functorial injective embedding. Namely, if N ⊂ U is a subobject and φ : N →
Mα(M) is a morphism, then we see that φ factors through Mα′(M) for some
α′ < α by Proposition 19.11.5. By construction of M(−) we see that φ extends to
a morphism from U into Mα′+1(M) and hence into Mα(M). By Lemma 19.11.6
we conclude that Mα(M) is injective. □

19.12. K-injectives in Grothendieck categories

079I The material in this section is taken from the paper [Ser03] authored by Serpé.
This paper generalizes some of the results of [Spa88] by Spaltenstein to general
Grothendieck abelian categories. Our Lemma 19.12.3 is only implicit in the paper
by Serpé. Our approach is to mimic Grothendieck’s proof of Theorem 19.11.7.
Lemma 19.12.1.079J Let A be a Grothendieck abelian category with generator U . Let
c be the function on cardinals defined by c(κ) = |

⊕
α∈κ U |. If π : M → N is

a surjection then there exists a subobject M ′ ⊂ M which surjects onto N with
|M ′| ≤ c(|N |).
Proof. For every proper subobject N ′ ⊂ N choose a morphism φN ′ : U →M such
that U →M → N does not factor through N ′. Set

M ′ = Im
(⊕

N ′⊂N
φN ′ :

⊕
N ′⊂N

U −→M
)

Then M ′ works. □

Lemma 19.12.2.079K Let A be a Grothendieck abelian category. There exists a cardinal
κ such that given any acyclic complex M• we have

(1) if M• is nonzero, there is a nonzero subcomplex N• which is bounded
above, acyclic, and |Nn| ≤ κ,

(2) there exists a surjection of complexes⊕
i∈I

M•
i −→M•

where M•
i is bounded above, acyclic, and |Mn

i | ≤ κ.
Proof. Choose a generator U of A. Denote c the function of Lemma 19.12.1. Set
κ = sup{cn(|U |), n = 1, 2, 3, . . .}. Let n ∈ Z and let ψ : U → Mn be a morphism.
In order to prove (1) and (2) it suffices to prove there exists a subcomplex N• ⊂M•

which is bounded above, acyclic, and |Nm| ≤ κ, such that ψ factors through Nn.
To do this set Nn = Im(ψ), Nn+1 = Im(U → Mn → Mn+1), and Nm = 0 for
m ≥ n+ 2. Suppose we have constructed Nm ⊂Mm for all m ≥ k such that

(1) d(Nm) ⊂ Nm+1, m ≥ k,
(2) Im(Nm−1 → Nm) = Ker(Nm → Nm+1) for all m ≥ k + 1, and
(3) |Nm| ≤ cmax{n−m,0}(|U |).

for some k ≤ n. Because M• is acyclic, we see that the subobject d−1(Ker(Nk →
Nk+1)) ⊂ Mk−1 surjects onto Ker(Nk → Nk+1). Thus we can choose Nk−1 ⊂
Mk−1 surjecting onto Ker(Nk → Nk+1) with |Nk−1| ≤ cn−k+1(|U |) by Lemma
19.12.1. The proof is finished by induction on k. □
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Lemma 19.12.3.079L Let A be a Grothendieck abelian category. Let κ be a cardinal as
in Lemma 19.12.2. Suppose that I• is a complex such that

(1) each Ij is injective, and
(2) for every bounded above acyclic complex M• such that |Mn| ≤ κ we have

HomK(A)(M•, I•) = 0.
Then I• is an K-injective complex.

Proof. Let M• be an acyclic complex. We are going to construct by induction on
the ordinal α an acyclic subcomplex K•

α ⊂M• as follows. For α = 0 we set K•
0 = 0.

For α > 0 we proceed as follows:
(1) If α = β + 1 and K•

β = M• then we choose K•
α = K•

β .
(2) If α = β + 1 and K•

β ̸= M• then M•/K•
β is a nonzero acyclic complex.

We choose a subcomplex N•
α ⊂M•/K•

β as in Lemma 19.12.2. Finally, we
let K•

α ⊂M• be the inverse image of N•
α.

(3) If α is a limit ordinal we set K•
β = colimK•

α.
It is clear that M• = K•

α for a suitably large ordinal α. We will prove that

HomK(A)(K•
α, I

•)

is zero by transfinite induction on α. It holds for α = 0 since K•
0 is zero. Suppose

it holds for β and α = β+ 1. In case (1) of the list above the result is clear. In case
(2) there is a short exact sequence of complexes

0→ K•
β → K•

α → N•
α → 0

Since each component of I• is injective we see that we obtain an exact sequence

HomK(A)(K•
β , I

•)→ HomK(A)(K•
α, I

•)→ HomK(A)(N•
α, I

•)

By induction the term on the left is zero and by assumption on I• the term on the
right is zero. Thus the middle group is zero too. Finally, suppose that α is a limit
ordinal. Then we see that

Hom•(K•
α, I

•) = limβ<α Hom•(K•
β , I

•)

with notation as in More on Algebra, Section 15.71. These complexes compute
morphisms in K(A) by More on Algebra, Equation (15.71.0.1). Note that the
transition maps in the system are surjective because Ij is surjective for each j.
Moreover, for a limit ordinal α we have equality of limit and value (see displayed
formula above). Thus we may apply Homology, Lemma 12.31.8 to conclude. □

Lemma 19.12.4.079M Let A be a Grothendieck abelian category. Let (K•
i )i∈I be a

set of acyclic complexes. There exists a functor M• 7→ M•(M•) and a natural
transformation jM• : M• →M•(M•) such

(1) jM• is a (termwise) injective quasi-isomorphism, and
(2) for every i ∈ I and w : K•

i →M• the morphism jM• ◦ w is homotopic to
zero.

Proof. For every i ∈ I choose a (termwise) injective map of complexes K•
i → L•

i

which is homotopic to zero with L•
i quasi-isomorphic to zero. For example, take L•

i

to be the cone on the identity of K•
i . We define M•(M•) by the following pushout
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diagram ⊕
i∈I
⊕

w:K•
i

→M• K•
i

//

��

M•

��⊕
i∈I
⊕

w:K•
i

→M• L•
i

//M•(M•).

Then M• →M•(M•) is a functor. The right vertical arrow defines the functorial
injective map jM• . The cokernel of jM• is isomorphic to the direct sum of the
cokernels of the maps K•

i → L•
i hence acyclic. Thus jM• is a quasi-isomorphism.

Part (2) holds by construction. □

Lemma 19.12.5.079N Let A be a Grothendieck abelian category. There exists a functor
M• 7→ N•(M•) and a natural transformation jM• : M• → N•(M•) such

(1) jM• is a (termwise) injective quasi-isomorphism, and
(2) for every n ∈ Z the map Mn → Nn(M•) factors through a subobject

In ⊂ Nn(M•) where In is an injective object of A.

Proof. Choose a functorial injective embeddings iM : M → I(M), see Theorem
19.11.7. For every complex M• denote J•(M•) the complex with terms Jn(M•) =
I(Mn)⊕ I(Mn+1) and differential

dJ•(M•) =
(

0 1
0 0

)
There exists a canonical injective map of complexes uM• : M• → J•(M•) by
mapping Mn to I(Mn)⊕I(Mn+1) via the maps iMn : Mn → I(Mn) and iMn+1 ◦d :
Mn →Mn+1 → I(Mn+1). Hence a short exact sequence of complexes

0→M• uM•−−−→ J•(M•) vM•−−−→ Q•(M•)→ 0
functorial in M•. Set

N•(M•) = C(vM•)•[−1].
Note that

Nn(M•) = Qn−1(M•)⊕ Jn(M•)
with differential (

−dn−1
Q•(M•) −vnM•

0 dnJ•(M)

)
Hence we see that there is a map of complexes jM• : M• → N•(M•) induced by u.
It is injective and factors through an injective subobject by construction. The map
jM• is a quasi-isomorphism as one can prove by looking at the long exact sequence
of cohomology associated to the short exact sequences of complexes above. □

Theorem 19.12.6.079P Let A be a Grothendieck abelian category. For every complex
M• there exists a quasi-isomorphism M• → I• such that Mn → In is injective and
In is an injective object of A for all n and I• is a K-injective complex. Moreover,
the construction is functorial in M•.

Proof. Please compare with the proof of Theorem 19.2.8 and Theorem 19.11.7.
Choose a cardinal κ as in Lemmas 19.12.2 and 19.12.3. Choose a set (K•

i )i∈I of
bounded above, acyclic complexes such that every bounded above acyclic complex
K• such that |Kn| ≤ κ is isomorphic to K•

i for some i ∈ I. This is possible by
Lemma 19.11.4. Denote M•(−) the functor constructed in Lemma 19.12.4. Denote

https://stacks.math.columbia.edu/tag/079N
https://stacks.math.columbia.edu/tag/079P
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N•(−) the functor constructed in Lemma 19.12.5. Both of these functors come
with injective transformations id→M and id→ N.
Using transfinite recursion we define a sequence of functors Tα(−) and correspond-
ing transformations id → Tα. Namely we set T0(M•) = M•. If Tα is given then
we set

Tα+1(M•) = N•(M•(Tα(M•)))
If β is a limit ordinal we set

Tβ(M•) = colimα<β Tα(M•)
The transition maps of the system are injective quasi-isomorphisms. By AB5 we
see that the colimit is still quasi-isomorphic to M•. We claim that M• → Tα(M•)
does the job if the cofinality of α is larger than max(κ, |U |) where U is a generator
of A. Namely, it suffices to check conditions (1) and (2) of Lemma 19.12.3.
For (1) we use the criterion of Lemma 19.11.6. Suppose that M ⊂ U and φ : M →
Tn
α(M•) is a morphism for some n ∈ Z. By Proposition 19.11.5 we see that φ

factor through Tn
α′(M•) for some α′ < α. In particular, by the construction of the

functor N•(−) we see that φ factors through an injective object of A which shows
that φ lifts to a morphism on U .
For (2) let w : K• → Tα(M•) be a morphism of complexes where K• is a bounded
above acyclic complex such that |Kn| ≤ κ. Then K• ∼= K•

i for some i ∈ I.
Moreover, by Proposition 19.11.5 once again we see that w factor through Tn

α′(M•)
for some α′ < α. In particular, by the construction of the functor M•(−) we see
that w is homotopic to zero. This finishes the proof. □

19.13. Additional remarks on Grothendieck abelian categories

07D6 In this section we put some results on Grothendieck abelian categories which are
folklore.

Lemma 19.13.1.07D7 Let A be a Grothendieck abelian category. Let F : Aopp → Sets
be a functor. Then F is representable if and only if F commutes with colimits, i.e.,

F (colimiNi) = limF (Ni)
for any diagram I → A, i ∈ I.

Proof. If F is representable, then it commutes with colimits by definition of colimits.
Assume that F commutes with colimits. Then F (M ⊕ N) = F (M) × F (N) and
we can use this to define a group structure on F (M). Hence we get F : A → Ab
which is additive and right exact, i.e., transforms a short exact sequence 0→ K →
L → M → 0 into an exact sequence F (K) ← F (L) ← F (M) ← 0 (compare with
Homology, Section 12.7).
Let U be a generator for A. Set A =

⊕
s∈F (U) U . Let suniv = (s)s∈F (U) ∈ F (A) =∏

s∈F (U) F (U). Let A′ ⊂ A be the largest subobject such that suniv restricts to zero
on A′. This exists because A is a Grothendieck category and because F commutes
with colimits. Because F commutes with colimits there exists a unique element
suniv ∈ F (A/A′) which maps to suniv in F (A). We claim that A/A′ represents F ,
in other words, the Yoneda map

suniv : hA/A′ −→ F

https://stacks.math.columbia.edu/tag/07D7
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is an isomorphism. Let M ∈ Ob(A) and s ∈ F (M). Consider the surjection

cM : AM =
⊕

φ∈HomA(U,M)
U −→M.

This gives F (cM )(s) = (sφ) ∈
∏
φ F (U). Consider the map

ψ : AM =
⊕

φ∈HomA(U,M)
U −→

⊕
s∈F (U)

U = A

which maps the summand corresponding to φ to the summand corresponding to
sφ by the identity map on U . Then suniv maps to (sφ)φ by construction. in other
words the right square in the diagram

A′ // A
suniv

// F

K //

?

OO

AM

ψ

OO

// M

s

OO

commutes. Let K = Ker(AM → M). Since s restricts to zero on K we see
that ψ(K) ⊂ A′ by definition of A′. Hence there is an induced morphism M →
A/A′. This construction gives an inverse to the map hA/A′(M) → F (M) (details
omitted). □

Lemma 19.13.2.07D8 A Grothendieck abelian category has Ab3*.

Proof. Let Mi, i ∈ I be a family of objects of A indexed by a set I. The functor
F =

∏
i∈I hMi commutes with colimits. Hence Lemma 19.13.1 applies. □

Remark 19.13.3.079Q In the chapter on derived categories we consistently work with
“small” abelian categories (as is the convention in the Stacks project). For a “big”
abelian category A it isn’t clear that the derived category D(A) exists because it
isn’t clear that morphisms in the derived category are sets. In general this isn’t
true, see Examples, Lemma 110.61.1. However, if A is a Grothendieck abelian
category, and given K•, L• in K(A), then by Theorem 19.12.6 there exists a quasi-
isomorphism L• → I• to a K-injective complex I• and Derived Categories, Lemma
13.31.2 shows that

HomD(A)(K•, L•) = HomK(A)(K•, I•)

which is a set. Some examples of Grothendieck abelian categories are the category
of modules over a ring, or more generally the category of sheaves of modules on a
ringed site.

Lemma 19.13.4.07D9 Let A be a Grothendieck abelian category. Then
(1) D(A) has both direct sums and products,
(2) direct sums are obtained by taking termwise direct sums of any complexes,
(3) products are obtained by taking termwise products of K-injective com-

plexes.

Proof. Let K•
i , i ∈ I be a family of objects of D(A) indexed by a set I. We claim

that the termwise direct sum
⊕

i∈I K
•
i is a direct sum in D(A). Namely, let I• be

https://stacks.math.columbia.edu/tag/07D8
https://stacks.math.columbia.edu/tag/079Q
https://stacks.math.columbia.edu/tag/07D9
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a K-injective complex. Then we have

HomD(A)(
⊕

i∈I
K•
i , I

•) = HomK(A)(
⊕

i∈I
K•
i , I

•)

=
∏

i∈I
HomK(A)(K•

i , I
•)

=
∏

i∈I
HomD(A)(K•

i , I
•)

as desired. This is sufficient since any complex can be represented by a K-injective
complex by Theorem 19.12.6. To construct the product, choose a K-injective reso-
lution K•

i → I•
i for each i. Then we claim that

∏
i∈I I

•
i is a product in D(A). This

follows from Derived Categories, Lemma 13.31.5. □

Remark 19.13.5.07DA Let R be a ring. Suppose that Mn, n ∈ Z are R-modules. Denote
En = Mn[−n] ∈ D(R). We claim that E =

⊕
Mn[−n] is both the direct sum and

the product of the objects En in D(R). To see that it is the direct sum, take a look
at the proof of Lemma 19.13.4. To see that it is the direct product, take injective
resolutions Mn → I•

n. By the proof of Lemma 19.13.4 we have∏
En =

∏
I•
n[−n]

in D(R). Since products in ModR are exact, we see that
∏
I•
n[−n] is quasi-

isomorphic to E. This works more generally in D(A) where A is a Grothendieck
abelian category with Ab4*.

Lemma 19.13.6.08U1 Let F : A → B be an additive functor of abelian categories.
Assume

(1) A is a Grothendieck abelian category,
(2) B has exact countable products, and
(3) F commutes with countable products.

Then RF : D(A)→ D(B) commutes with derived limits.

Proof. Observe that RF exists as A has enough K-injectives (Theorem 19.12.6 and
Derived Categories, Lemma 13.31.6). The statement means that if K = R limKn,
then RF (K) = R limRF (Kn). See Derived Categories, Definition 13.34.1 for no-
tation. Since RF is an exact functor of triangulated categories it suffices to see
that RF commutes with countable products of objects of D(A). In the proof of
Lemma 19.13.4 we have seen that products in D(A) are computed by taking prod-
ucts of K-injective complexes and moreover that a product of K-injective complexes
is K-injective. Moreover, in Derived Categories, Lemma 13.34.2 we have seen that
products in D(B) are computed by taking termwise products. Since RF is com-
puted by applying F to a K-injective representative and since we’ve assumed F
commutes with countable products, the lemma follows. □

The following lemma is some kind of generalization of the existence of Cartan-
Eilenberg resolutions (Derived Categories, Section 13.21).

Lemma 19.13.7.0BKI Let A be a Grothendieck abelian category. Let K• be a filtered
complex of A, see Homology, Definition 12.24.1. Then there exists a morphism
j : K• → J• of filtered complexes of A such that

(1) Jn, F pJn, Jn/F pJn and F pJn/F p
′
Jn are injective objects of A,

(2) J•, F pJ•, J•/F pJ•, and F pJ•/F p
′
J• are K-injective complexes,

https://stacks.math.columbia.edu/tag/07DA
https://stacks.math.columbia.edu/tag/08U1
https://stacks.math.columbia.edu/tag/0BKI
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(3) j induces quasi-isomorphisms K• → J•, F pK• → F pJ•, K•/F pK• →
J•/F pJ•, and F pK•/F p

′
K• → F pJ•/F p

′
J•.

Proof. By Theorem 19.12.6 we obtain quasi-isomorphisms i : K• → I• and ip :
F pK• → Ip,• as well as commutative diagrams

K•

i
��

F pK•oo

ip

��
I• Ip,•

αpoo

and
F p

′
K•

ip
′

��

F pK•oo

ip

��
Ip

′,• Ip,•
αpp

′
oo

for p′ ≤ p

such that αp ◦ αp′p = αp
′ and αp

′p′′ ◦ αpp′ = αpp
′′ . The problem is that the maps

αp : Ip,• → I• need not be injective. For each p we choose an injection tp : Ip,• →
Jp,• into an acyclic K-injective complex Jp,• whose terms are injective objects of
A (first map to the cone on the identity and then use the theorem). Choose a map
of complexes sp : I• → Jp,• such that the following diagram commutes

K•

i
��

F pK•oo

ip

��
I•

sp ##

Ip,•

tp

��
Jp,•

This is possible: the composition F pK• → Jp,• is homotopic to zero because Jp,•
is acyclic and K-injective (Derived Categories, Lemma 13.31.2). Since the objects
Jp,n−1 are injective and since F pKn → Kn → In are injective morphisms, we can
lift the maps F pKn → Jp,n−1 giving the homotopy to a map hn : In → Jp,n−1.
Then we set sp equal to h ◦ d + d ◦ h. (Warning: It will not be the case that
tp = sp ◦ αp, so we have to be careful not to use this below.)
Consider

J• = I• ×
∏

p
Jp,•

Because products in D(A) are given by taking products of K-injective complexes
(Lemma 19.13.4) and since Jp,• is isomorphic to 0 in D(A) we see that J• → I• is
an isomorphism in D(A). Consider the map

j = i× (sp ◦ i)p∈Z : K• −→ I• ×
∏

p
Jp,• = J•

By our remarks above this is a quasi-isomorphism. It is also injective. For p ∈ Z
we let F pJ• ⊂ J• be

Im
(
αp × (tp

′
◦ αpp

′
)p′≤p : Ip,• → I• ×

∏
p′≤p

Jp
′,•
)
×
∏

p′>p
Jp

′,•

This complex is isomorphic to the complex Ip,• ×
∏
p′>p J

p,• as αpp = id and
tp is injective. Hence F pJ• is quasi-isomorphic to Ip,• (argue as above). We
have j(F pK•) ⊂ F pJ• because of the commutativity of the diagram above. The
corresponding map of complexes F pK• → F pJ• is a quasi-isomorphism by what
we just said. Finally, to see that F p+1J• ⊂ F pJ• use that αp+1p ◦ αpp′ = αp+1p′

and the commutativity of the first displayed diagram in the first paragraph of the
proof.
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We claim that j : K• → J• is a solution to the problem posed by the lemma.
Namely, F pJn is an injective object ofA because it is isomorphic to Ip,n×

∏
p′>p J

p′,n

and products of injectives are injective. Then the injective map F pJn → Jn splits
and hence the quotient Jn/F pJn is injective as well as a direct summand of the
injective object Jn. Similarly for F pJn/F p′

Jn. This in particular means that
0 → F pJ• → J• → J•/F pJ• → 0 is a termwise split short exact sequence of
complexes, hence defines a distinguished triangle in K(A) by fiat. Since J• and
F pJ• are K-injective complexes we see that the same is true for J•/F pJ• by De-
rived Categories, Lemma 13.31.3. A similar argument shows that F pJ•/F p

′
J• is

K-injective. By construction j : K• → J• and the induced maps F pK• → F pJ• are
quasi-isomorphisms. Using the long exact cohomology sequences of the complexes
in play we find that the same holds for K•/F pK• → J•/F pJ• and F pK•/F p

′
K• →

F pJ•/F p
′
J•. □

Remark 19.13.8.0G1X Let A be a Grothendieck abelian category. Let K• be a filtered
complex of A, see Homology, Definition 12.24.1. For ease of notation denote K,
F pK, grpK the object of D(A) represented by K•, F pK•, grpK•. Let M ∈ D(A).
Using Lemma 19.13.7 we can construct a spectral sequence (Er, dr)r≥1 of bigraded
objects of A with dr of bidgree (r,−r + 1) and with

Ep,q1 = Extp+q(M, grpK)
If for every n we have

Extn(M,F pK) = 0 for p≫ 0 and Extn(M,F pK) = Extn(M,K) for p≪ 0
then the spectral sequence is bounded and converges to Extp+q(M,K). Namely,
choose any complex M• representing M , choose j : K• → J• as in the lemma, and
consider the complex

Hom•(M•, I•)
defined exactly as in More on Algebra, Section 15.71. Setting F p Hom•(M•, I•) =
Hom•(M•, F pI•) we obtain a filtered complex. The spectral sequence of Homology,
Section 12.24 has differentials and terms as described above; details omitted. The
boundedness and convergence follows from Homology, Lemma 12.24.13.

Remark 19.13.9.0G1Y Let A be a Grothendieck abelian category. Let M,K be objects
of D(A). For any choice of complex K• representing K we can use the filtration
F pK• = τ≤−pK

• and the discussion in Remark 19.13.8 to get a spectral sequence
with

Ep,q1 = Ext2p+q(M,H−p(K))
This spectral sequence is independent of the choice of complex K• representing K.
After renumbering p = −j and q = i + 2j we find a spectral sequence (E′

r, d
′
r)r≥2

with d′
r of bidegree (r,−r + 1), with

(E′
2)i,j = Exti(M,Hj(K))

If M ∈ D−(A) and K ∈ D+(A) then both Er and E′
r are bounded and converge

to Extp+q(M,K). If we use the filtration F pK• = σ≥pK
• then we get

Ep,q1 = Extq(M,Kp)
If M ∈ D−(A) and K• is bounded below, then this spectral sequence is bounded
and converges to Extp+q(M,K).

https://stacks.math.columbia.edu/tag/0G1X
https://stacks.math.columbia.edu/tag/0G1Y
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Remark 19.13.10.0G1Z Let A be a Grothendieck abelian category. Let K ∈ D(A).
Let M• be a filtered complex of A, see Homology, Definition 12.24.1. For ease
of notation denote M , M/F pM , grpM the object of D(A) represented by M•,
M•/F pM•, grpM•. Dually to Remark 19.13.8 we can construct a spectral sequence
(Er, dr)r≥1 of bigraded objects of A with dr of bidgree (r,−r + 1) and with

Ep,q1 = Extp+q(gr−pM,K)

If for every n we have

Extn(M/F pM,K) = 0 for p≪ 0 and Extn(M/F pM,K) = Extn(M,K) for p≫ 0

then the spectral sequence is bounded and converges to Extp+q(M,K). Namely,
choose a K-injective complex I• with injective terms representing K, see Theorem
19.12.6. Consider the complex

Hom•(M•, I•)

defined exactly as in More on Algebra, Section 15.71. Setting

F p Hom•(M•, I•) = Hom•(M•/F−p+1M•, I•)

we obtain a filtered complex (note sign and shift in filtration). The spectral se-
quence of Homology, Section 12.24 has differentials and terms as described above;
details omitted. The boundedness and convergence follows from Homology, Lemma
12.24.13.

Remark 19.13.11.0G20 Let A be a Grothendieck abelian category. Let M,K be objects
of D(A). For any choice of complex M• representing M we can use the filtration
F pM• = τ≤−pM

• and the discussion in Remark 19.13.8 to get a spectral sequence
with

Ep,q1 = Ext2p+q(Hp(M),K)
This spectral sequence is independent of the choice of complex M• representing M .
After renumbering p = −j and q = i + 2j we find a spectral sequence (E′

r, d
′
r)r≥2

with d′
r of bidegree (r,−r + 1), with

(E′
2)i,j = Exti(H−j(M),K)

If M ∈ D−(A) and K ∈ D+(A) then Er and E′
r are bounded and converge to

Extp+q(M,K). If we use the filtration F pM• = σ≥pM
• then we get

Ep,q1 = Extq(M−p,K)

If K ∈ D+(A) and M• is bounded above, then this spectral sequence is bounded
and converges to Extp+q(M,K).

Lemma 19.13.12.0ESJ Let A be a Grothendieck abelian category. Suppose given an
object E ∈ D(A) and an inverse system {Ei}i∈Z of objects of D(A) over Z together
with a compatible system of maps Ei → E. Picture:

. . .→ Ei+1 → Ei → Ei−1 → . . .→ E

Then there exists a filtered complex K• of A (Homology, Definition 12.24.1) such
that K• represents E and F iK• represents Ei compatibly with the given maps.

https://stacks.math.columbia.edu/tag/0G1Z
https://stacks.math.columbia.edu/tag/0G20
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Proof. By Theorem 19.12.6 we can choose a K-injective complex I• representing E
all of whose terms In are injective objects of A. Choose a complex G0,• representing
E0. Choose a map of complexes φ0 : G0,• → I• representing E0 → E. For i > 0
we inductively represent Ei → Ei−1 by a map of complexes δ : Gi,• → Gi−1,• and
we set φi = δ ◦ φi−1. For i < 0 we inductively represent Ei+1 → Ei by a termwise
injective map of complexes δ : Gi+1,• → Gi,• (for example you can use Derived
Categories, Lemma 13.9.6). Claim: we can find a map of complexes φi : Gi,• → I•

representing the map Ei → E and fitting into the commutative diagram

Gi+1,•
δ
//

φi+1

��

Gi,•

φizz
I•

Namely, we first choose any map of complexes φ : Gi,• → I• representing the map
Ei → E. Then we see that φ ◦ δ and φi+1 are homotopic by some homotopy
hp : Gi+1,p → Ip−1. Since the terms of I• are injective and since δ is termwise
injective, we can lift hp to (h′)p : Gi,p → Ip−1. Then we set φi = φ+ h′ ◦ d+ d ◦ h′

and we get what we claimed.
Next, we choose for every i a termwise injective map of complexes ai : Gi,• → J i,•

with J i,• acyclic, K-injective, with J i,p injective objects of A. To do this first map
Gi,• to the cone on the identity and then apply the theorem cited above. Arguing
as above we can find maps of complexes δ′ : J i,• → J i−1,• such that the diagrams

Gi,•
δ
//

ai

��

Gi−1,•

ai−1

��
J i,•

δ′
// J i−1,•

commute. (You could also use the functoriality of cones plus the functoriality in
the theorem to get this.) Then we consider the maps

Gi+1,• ×
∏
p>i+1 J

p,• //

))

Gi,• ×
∏
p>i J

p,• //

��

Gi−1,• ×
∏
p>i−1 J

p,•

uu
I• ×

∏
p J

p,•

Here the arrows on Jp,• are the obvious ones (identity or zero). On the factor Gi,•
we use δ : Gi,• → Gi−1,•, the map φi : Gi,• → I•, the zero map 0 : Gi,• → Jp,• for
p > i, the map ai : Gi,• → Jp,• for p = i, and (δ′)i−p ◦ ai = ap ◦ δi−p : Gi,• → Jp,•

for p < i. We omit the verification that all the arrows in the diagram are termwise
injective. Thus we obtain a filtered complex. Because products in D(A) are given
by taking products of K-injective complexes (Lemma 19.13.4) and because Jp,• is
zero in D(A) we conclude this diagram represents the given diagram in the derived
category. This finishes the proof. □

Lemma 19.13.13.0ESK In the situation of Lemma 19.13.12 assume we have a second
inverse system {(E′)i}i∈Z and a compatible system of maps (E′)i → E. Then there
exists a bi-filtered complex K• of A such that K• represents E, F iK• represents
Ei, and (F ′)iK• represents (E′)i compatibly with the given maps.

https://stacks.math.columbia.edu/tag/0ESK
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Proof. Using the lemma we can first choose K• and F . Then we can choose (K ′)•

and F ′ which work for {(E′)i}i∈Z and the maps (E′)i → E. Using Lemma 19.13.7
we can assume K• is a K-injective complex. Then we can choose a map of complexes
(K ′)• → K• corresponding to the given identifications (K ′)• ∼= E ∼= K•. We can
additionally choose a termwise injective map (K ′)• → J• with J• acyclic and K-
injective. (To do this first map (K ′)• to the cone on the identity and then apply
Theorem 19.12.6.) Then (K ′)• → K• × J• and K• → K• × J• are both termwise
injective and quasi-isomorphisms (as the product represents E by Lemma 19.13.4).
Then we can simply take the images of the filtrations on K• and (K ′)• under these
maps to conclude. □

19.14. The Gabriel-Popescu theorem

0F5R In this section we discuss the main theorem of [PG64]. The method of proof follows
a write-up by Jacob Lurie and another by Akhil Mathew who in turn follow the
presentation by Kuhn in [Kuh94]. See also [Tak71].
Let A be a Grothendieck abelian category and let U be a generator for A, see
Definition 19.10.1. Let R = HomA(U,U). Consider the functor G : A → ModR
given by

G(A) = HomA(U,A)
endowed with its canonical right R-module structure.

Lemma 19.14.1.0F5S The functor G above has a left adjoint F : ModR → A.

Proof. We will give two proofs of this lemma.
The first proof will use the adjoint functor theorem, see Categories, Theorem
4.25.3. Observe that that G : A → ModR is left exact and sends products to
products. Hence G commutes with limits. To check the set theoretical condi-
tion in the theorem, suppose that M is an object of ModR. Choose a suitably
large cardinal κ and denote E a set of objects of A such that every object A with
|A| ≤ κ is isomorphic to an element of E. This is possible by Lemma 19.11.4.
Set I =

∐
A∈E HomR(M,G(A)). We think of an element i ∈ I as a pair (Ai, fi).

Finally, let A be an arbitrary object of A and f : M → G(A) arbitrary. We are
going to think of elements of Im(f) ⊂ G(A) = HomA(U,A) as maps u : U → A.
Set

A′ = Im(
⊕

u∈Im(f)
U

u−→ A)

Since G is left exact, we see that G(A′) ⊂ G(A) contains Im(f) and we get f ′ :
M → G(A′) factoring f . On the other hand, the object A′ is the quotient of a
direct sum of at most |M | copies of U . Hence if κ = |

⊕
|M | U |, then we see that

(A′, f ′) is isomorphic to an element (Ai, fi) of E and we conclude that f factors as
M

fi−→ G(Ai)→ G(A) as desired.
The second proof will give a construction of F which will show that “F (M) =
M ⊗R U” in some sense. Namely, for any R-module M we can choose a resolution⊕

j∈J
R→

⊕
i∈I

R→M → 0

Then we define F (M) by the corresponding exact sequence⊕
j∈J

U →
⊕

i∈I
U → F (M)→ 0

https://stacks.math.columbia.edu/tag/0F5S
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This construction is independent of the choice of the resolution and is functorial;
we omit the details. For any A in A we obtain an exact sequence

0→ HomA(F (M), A)→
∏

i∈I
G(A)→

∏
j∈J

G(A)

which is isomorphic to the sequence

0→ HomR(M,G(A))→ HomR(
⊕

i∈I
R,G(A))→ HomR(

⊕
j∈J

R,G(A))

which shows that F is the left adjoint to G. □

Lemma 19.14.2.0F5T Let f : M → G(A) be an injective map in ModR. Then the
adjoint map f ′ : F (M)→ A is injective too.

Proof. Choose a map R⊕n → M and consider the corresponding map U⊕n →
F (M). Consider a map v : U → U⊕n such that the composition U → U⊕n →
F (M) → A is 0. Then this arrow v : U → U⊕n is an element v of R⊕n mapping
to zero in G(A). Since f is injective, we conclude that v maps to zero in M which
means that U → U⊕n → F (M) is zero by construction of F (M) in the proof of
Lemma 19.14.1. Since U is a generator we conclude that

Ker(U⊕n → F (M)→ A) = Ker(U⊕n → F (M))
To finish the proof we choose a surjection

⊕
i∈I R → M and we consider the

corresponding surjection
π :
⊕

i∈I
U −→ F (M)

To prove f ′ is injective it suffices to show that Ker(π) = Ker(f ′◦π) as subobjects of⊕
i∈I U . However, now we can write

⊕
i∈I U as the filtered colimit of its subobjects⊕

i∈I′ U where I ′ ⊂ I ranges over the finite subsets. Since filtered colimits are exact
by AB5 for A, we see that

Ker(π) = colimI′⊂I finite

(⊕
i∈I′

U
)⋂

Ker(π)

and
Ker(f ′ ◦ π) = colimI′⊂I finite

(⊕
i∈I′

U
)⋂

Ker(f ′ ◦ π)
and we get equality because the same is true for each I ′ by the first displayed
equality above. □

Theorem 19.14.3.0F5U Let A be a Grothendieck abelian category. Then there exists a
(noncommutative) ring R and functors G : A → ModR and F : ModR → A such
that

(1) F is the left adjoint to G,
(2) G is fully faithful, and
(3) F is exact.

Moreover, the functors are the ones constructed above.

Proof. We first prove G is fully faithful, or equivalently that F ◦ G → id is an
isomorphism, see Categories, Lemma 4.24.4. First, given an object A the map
F (G(A))→ A is surjective, because every map of U → A factors through F (G(A))
by construction. On the other hand, the map F (G(A)) → A is the adjoint of the
map id : G(A)→ G(A) and hence injective by Lemma 19.14.2.
The functor F is right exact as it is a left adjoint. Since ModR has enough pro-
jectives, to show that F is exact, it is enough to show that the first left derived

https://stacks.math.columbia.edu/tag/0F5T
https://stacks.math.columbia.edu/tag/0F5U
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functor L1F is zero. To prove L1F (M) = 0 for some R-module M choose an exact
sequence 0 → K → P → M → 0 of R-modules with P free. It suffices to show
F (K) → F (P ) is injective. Now we can write this sequence as a filtered colimit
of sequences 0 → Ki → Pi → Mi → 0 with Pi a finite free R-module: just write
P in this manner and set Ki = K ∩ Pi and Mi = Im(Pi → M). Because F is
a left adjoint it commutes with colimits and because A is a Grothendieck abelian
category, we find that F (K)→ F (P ) is injective if each F (Ki)→ F (Pi) is injective.
Thus it suffices to check F (K) → F (P ) is injective when K ⊂ P = R⊕n. Thus
F (K)→ U⊕n is injective by an application of Lemma 19.14.2. □

Lemma 19.14.4.0F5V [Ser03, Corollary
4.1]

Let A be a Grothendieck abelian category. Let R, F , G be as in
the Gabriel-Popescu theorem (Theorem 19.14.3). Then we obtain derived functors

RG : D(A)→ D(ModR) and F : D(ModR)→ D(A)

such that F is left adjoint to RG, RG is fully faithful, and F ◦RG = id.

Proof. The existence and adjointness of the functors follows from Theorems 19.14.3
and 19.12.6 and Derived Categories, Lemmas 13.31.6, 13.16.9, and 13.30.3. The
statement F ◦RG = id follows because we can compute RG on an object of D(A)
by applying G to a suitable representative complex I• (for example a K-injective
one) and then F (G(I•)) = I• because F ◦G = id. Fully faithfulness of RG follows
from this by Categories, Lemma 4.24.4. □

19.15. Brown representability and Grothendieck abelian categories

0F5W In this section we quickly prove a representability theorem for derived categories of
Grothendieck abelian categories. The reader should first read the case of compactly
generated triangulated categories in Derived Categories, Section 13.38. After that,
instead of reading this section, it makes sense to consult the literature for more
general results of this nature, for example see [Fra01], [Nee01], [Kra02], or take a
look at Derived Categories, Section 13.39.

Lemma 19.15.1.0F5X Let A be a Grothendieck abelian category. Let H : D(A)→ Ab be
a contravariant cohomological functor which transforms direct sums into products.
Then H is representable.

Proof. Let R,F,G,RG be as in Lemma 19.14.4 and consider the functor H ◦ F :
D(ModR)→ Ab. Observe that since F is a left adjoint it sends direct sums to direct
sums and hence H ◦ F transforms direct sums into products. On the other hand,
the derived category D(ModR) is generated by a single compact object, namely R.
By Derived Categories, Lemma 13.38.1 we see that H ◦ F is representable, say by
L ∈ D(ModR). Choose a distinguished triangle

M → L→ RG(F (L))→M [1]

in D(ModR). Then F (M) = 0 because F ◦ RG = id. Hence H(F (M)) = 0
hence Hom(M,L) = 0. It follows that L → RG(F (L)) is the inclusion of a direct

https://stacks.math.columbia.edu/tag/0F5V
https://stacks.math.columbia.edu/tag/0F5X
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summand, see Derived Categories, Lemma 13.4.11. For A in D(A) we obtain
H(A) = H(F (RG(A))

= Hom(RG(A), L)
→ Hom(RG(A), RG(F (L)))
= Hom(F (RG(A)), F (L))
= Hom(A,F (L))

where the arrow has a left inverse functorial in A. In other words, we find that H is
the direct summand of a representable functor. Since D(A) is Karoubian (Derived
Categories, Lemma 13.4.14) we conclude. □

Proposition 19.15.2.0F5Y Let A be a Grothendieck abelian category. Let D be a trian-
gulated category. Let F : D(A)→ D be an exact functor of triangulated categories
which transforms direct sums into direct sums. Then F has an exact right adjoint.

Proof. For an object Y of D consider the contravariant functor
D(A)→ Ab, W 7→ HomD(F (W ), Y )

This is a cohomological functor as F is exact and transforms direct sums into
products as F transforms direct sums into direct sums. Thus by Lemma 19.15.1
we find an object X of D(A) such that HomD(A)(W,X) = HomD(F (W ), Y ). The
existence of the adjoint follows from Categories, Lemma 4.24.2. Exactness follows
from Derived Categories, Lemma 13.7.1. □
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CHAPTER 20

Cohomology of Sheaves

01DW 20.1. Introduction

01DX In this document we work out some topics on cohomology of sheaves on topological
spaces. We mostly work in the generality of modules over a sheaf of rings and we
work with morphisms of ringed spaces. To see what happens for sheaves on sites
take a look at the chapter Cohomology on Sites, Section 21.1. Basic references are
[God73] and [Ive86].

20.2. Cohomology of sheaves

01DZ Let X be a topological space. Let F be an abelian sheaf. We know that the category
of abelian sheaves on X has enough injectives, see Injectives, Lemma 19.4.1. Hence
we can choose an injective resolution F [0]→ I•. As is customary we define

(20.2.0.1)0712 Hi(X,F) = Hi(Γ(X, I•))

to be the ith cohomology group of the abelian sheaf F . The family of functors
Hi(X,−) forms a universal δ-functor from Ab(X)→ Ab.

Let f : X → Y be a continuous map of topological spaces. With F [0] → I• as
above we define

(20.2.0.2)0713 Rif∗F = Hi(f∗I•)

to be the ith higher direct image of F . The family of functors Rif∗ forms a universal
δ-functor from Ab(X)→ Ab(Y ).

Let (X,OX) be a ringed space. Let F be an OX -module. We know that the
category of OX -modules on X has enough injectives, see Injectives, Lemma 19.5.1.
Hence we can choose an injective resolution F [0]→ I•. As is customary we define

(20.2.0.3)0714 Hi(X,F) = Hi(Γ(X, I•))

to be the ith cohomology group of F . The family of functors Hi(X,−) forms a
universal δ-functor from Mod(OX)→ ModOX(X).

Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. With F [0] → I• as
above we define

(20.2.0.4)0715 Rif∗F = Hi(f∗I•)

to be the ith higher direct image of F . The family of functors Rif∗ forms a universal
δ-functor from Mod(OX)→ Mod(OY ).

1761
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20.3. Derived functors

0716 We briefly explain how to get right derived functors using resolution functors. For
the unbounded derived functors, please see Section 20.28.
Let (X,OX) be a ringed space. The category Mod(OX) is abelian, see Modules,
Lemma 17.3.1. In this chapter we will write

K(OX) = K(Mod(OX)) and D(OX) = D(Mod(OX)).
and similarly for the bounded versions for the triangulated categories introduced
in Derived Categories, Definition 13.8.1 and Definition 13.11.3. By Derived Cate-
gories, Remark 13.24.3 there exists a resolution functor

j = jX : K+(Mod(OX)) −→ K+(I)
where I is the strictly full additive subcategory of Mod(OX) consisting of injective
sheaves. For any left exact functor F : Mod(OX) → B into any abelian category
B we will denote RF the right derived functor described in Derived Categories,
Section 13.20 and constructed using the resolution functor jX just described:
(20.3.0.1)05U3 RF = F ◦ j′

X : D+(X) −→ D+(B)
see Derived Categories, Lemma 13.25.1 for notation. Note that we may think of
RF as defined on Mod(OX), Comp+(Mod(OX)), K+(X), or D+(X) depending on
the situation. According to Derived Categories, Definition 13.16.2 we obtain the
ith right derived functor
(20.3.0.2)05U4 RiF = Hi ◦RF : Mod(OX) −→ B

so that R0F = F and {RiF, δ}i≥0 is universal δ-functor, see Derived Categories,
Lemma 13.20.4.
Here are two special cases of this construction. Given a ring R we write K(R) =
K(ModR) and D(R) = D(ModR) and similarly for bounded versions. For any open
U ⊂ X we have a left exact functor Γ(U,−) : Mod(OX) −→ ModOX(U) which gives
rise to
(20.3.0.3)0717 RΓ(U,−) : D+(X) −→ D+(OX(U))

by the discussion above. We set Hi(U,−) = RiΓ(U,−). If U = X we recover
(20.2.0.3). If f : X → Y is a morphism of ringed spaces, then we have the left exact
functor f∗ : Mod(OX) −→ Mod(OY ) which gives rise to the derived pushforward
(20.3.0.4)0718 Rf∗ : D+(X) −→ D+(Y )

The ith cohomology sheaf of Rf∗F• is denoted Rif∗F• and called the ith higher
direct image in accordance with (20.2.0.4). The two displayed functors above are
exact functors of derived categories.
Abuse of notation: When the functor Rf∗, or any other derived functor, is applied
to a sheaf F on X or a complex of sheaves it is understood that F has been replaced
by a suitable resolution of F . To facilitate this kind of operation we will say, given
an object F• ∈ D(OX), that a bounded below complex I• of injectives of Mod(OX)
represents F• in the derived category if there exists a quasi-isomorphism F• → I•.
In the same vein the phrase “let α : F• → G• be a morphism of D(OX)” does
not mean that α is represented by a morphism of complexes. If we have an actual
morphism of complexes we will say so.
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20.4. First cohomology and torsors

02FN
Definition 20.4.1.02FO Let X be a topological space. Let G be a sheaf of (possibly
non-commutative) groups on X. A torsor, or more precisely a G-torsor, is a sheaf
of sets F on X endowed with an action G × F → F such that

(1) whenever F(U) is nonempty the action G(U) × F(U) → F(U) is simply
transitive, and

(2) for every x ∈ X the stalk Fx is nonempty.
A morphism of G-torsors F → F ′ is simply a morphism of sheaves of sets compatible
with the G-actions. The trivial G-torsor is the sheaf G endowed with the obvious
left G-action.

It is clear that a morphism of torsors is automatically an isomorphism.

Lemma 20.4.2.02FP Let X be a topological space. Let G be a sheaf of (possibly non-
commutative) groups on X. A G-torsor F is trivial if and only if F(X) ̸= ∅.

Proof. Omitted. □

Lemma 20.4.3.02FQ Let X be a topological space. Let H be an abelian sheaf on X.
There is a canonical bijection between the set of isomorphism classes of H-torsors
and H1(X,H).

Proof. Let F be a H-torsor. Consider the free abelian sheaf Z[F ] on F . It is the
sheafification of the rule which associates to U ⊂ X open the collection of finite
formal sums

∑
ni[si] with ni ∈ Z and si ∈ F(U). There is a natural map

σ : Z[F ] −→ Z
which to a local section

∑
ni[si] associates

∑
ni. The kernel of σ is generated by

the local section of the form [s] − [s′]. There is a canonical map a : Ker(σ) → H
which maps [s] − [s′] 7→ h where h is the local section of H such that h · s = s′.
Consider the pushout diagram

0 // Ker(σ) //

a

��

Z[F ] //

��

Z //

��

0

0 // H // E // Z // 0
Here E is the extension obtained by pushout. From the long exact cohomology
sequence associated to the lower short exact sequence we obtain an element ξ =
ξF ∈ H1(X,H) by applying the boundary operator to 1 ∈ H0(X,Z).
Conversely, given ξ ∈ H1(X,H) we can associate to ξ a torsor as follows. Choose
an embedding H → I of H into an injective abelian sheaf I. We set Q = I/H so
that we have a short exact sequence

0 // H // I // Q // 0
The element ξ is the image of a global section q ∈ H0(X,Q) because H1(X, I) = 0
(see Derived Categories, Lemma 13.20.4). Let F ⊂ I be the subsheaf (of sets) of
sections that map to q in the sheaf Q. It is easy to verify that F is a torsor.
We omit the verification that the two constructions given above are mutually in-
verse. □

https://stacks.math.columbia.edu/tag/02FO
https://stacks.math.columbia.edu/tag/02FP
https://stacks.math.columbia.edu/tag/02FQ
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20.5. First cohomology and extensions

0B39
Lemma 20.5.1.0B3A Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
There is a canonical bijection

Ext1
Mod(OX)(OX ,F) −→ H1(X,F)

which associates to the extension
0→ F → E → OX → 0

the image of 1 ∈ Γ(X,OX) in H1(X,F).

Proof. Let us construct the inverse of the map given in the lemma. Let ξ ∈
H1(X,F). Choose an injection F ⊂ I with I injective in Mod(OX). Set Q = I/F .
By the long exact sequence of cohomology, we see that ξ is the image of a section
ξ̃ ∈ Γ(X,Q) = HomOX

(OX ,Q). Now, we just form the pullback
0 // F // E //

��

OX //

ξ̃

��

0

0 // F // I // Q // 0
see Homology, Section 12.6. □

20.6. First cohomology and invertible sheaves

09NT The Picard group of a ringed space is defined in Modules, Section 17.25.

Lemma 20.6.1.09NU Let (X,OX) be a locally ringed space. There is a canonical iso-
morphism

H1(X,O∗
X) = Pic(X).

of abelian groups.

Proof. Let L be an invertible OX -module. Consider the presheaf L∗ defined by the
rule

U 7−→ {s ∈ L(U) such that OU
s·−−−→ LU is an isomorphism}

This presheaf satisfies the sheaf condition. Moreover, if f ∈ O∗
X(U) and s ∈ L∗(U),

then clearly fs ∈ L∗(U). By the same token, if s, s′ ∈ L∗(U) then there exists a
unique f ∈ O∗

X(U) such that fs = s′. Moreover, the sheaf L∗ has sections locally
by Modules, Lemma 17.25.4. In other words we see that L∗ is a O∗

X -torsor. Thus
we get a map

invertible sheaves on (X,OX)
up to isomorphism −→ O∗

X -torsors
up to isomorphism

We omit the verification that this is a homomorphism of abelian groups. By Lemma
20.4.3 the right hand side is canonically bijective to H1(X,O∗

X). Thus we have to
show this map is injective and surjective.
Injective. If the torsor L∗ is trivial, this means by Lemma 20.4.2 that L∗ has a
global section. Hence this means exactly that L ∼= OX is the neutral element in
Pic(X).
Surjective. Let F be an O∗

X -torsor. Consider the presheaf of sets
L1 : U 7−→ (F(U)×OX(U))/O∗

X(U)

https://stacks.math.columbia.edu/tag/0B3A
https://stacks.math.columbia.edu/tag/09NU
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where the action of f ∈ O∗
X(U) on (s, g) is (fs, f−1g). Then L1 is a presheaf of

OX -modules by setting (s, g) + (s′, g′) = (s, g + (s′/s)g′) where s′/s is the local
section f of O∗

X such that fs = s′, and h(s, g) = (s, hg) for h a local section of OX .
We omit the verification that the sheafification L = L#

1 is an invertible OX -module
whose associated O∗

X -torsor L∗ is isomorphic to F . □

20.7. Locality of cohomology

01E0 The following lemma says there is no ambiguity in defining the cohomology of a
sheaf F over an open.

Lemma 20.7.1.01E1 Let X be a ringed space. Let U ⊂ X be an open subspace.
(1) If I is an injective OX -module then I|U is an injective OU -module.
(2) For any sheaf of OX -modules F we have Hp(U,F) = Hp(U,F|U ).

Proof. Denote j : U → X the open immersion. Recall that the functor j−1 of
restriction to U is a right adjoint to the functor j! of extension by 0, see Sheaves,
Lemma 6.31.8. Moreover, j! is exact. Hence (1) follows from Homology, Lemma
12.29.1.
By definition Hp(U,F) = Hp(Γ(U, I•)) where F → I• is an injective resolution
in Mod(OX). By the above we see that F|U → I•|U is an injective resolution in
Mod(OU ). Hence Hp(U,F|U ) is equal to Hp(Γ(U, I•|U )). Of course Γ(U,F) =
Γ(U,F|U ) for any sheaf F on X. Hence the equality in (2). □

Let X be a ringed space. Let F be a sheaf of OX -modules. Let U ⊂ V ⊂ X be
open subsets. Then there is a canonical restriction mapping
(20.7.1.1)01E2 Hn(V,F) −→ Hn(U,F), ξ 7−→ ξ|U
functorial in F . Namely, choose any injective resolution F → I•. The restriction
mappings of the sheaves Ip give a morphism of complexes

Γ(V, I•) −→ Γ(U, I•)
The LHS is a complex representing RΓ(V,F) and the RHS is a complex representing
RΓ(U,F). We get the map on cohomology groups by applying the functor Hn. As
indicated we will use the notation ξ 7→ ξ|U to denote this map. Thus the rule
U 7→ Hn(U,F) is a presheaf of OX -modules. This presheaf is customarily denoted
Hn(F). We will give another interpretation of this presheaf in Lemma 20.11.4.

Lemma 20.7.2.01E3 Let X be a ringed space. Let F be a sheaf of OX -modules. Let
U ⊂ X be an open subspace. Let n > 0 and let ξ ∈ Hn(U,F). Then there exists
an open covering U =

⋃
i∈I Ui such that ξ|Ui = 0 for all i ∈ I.

Proof. Let F → I• be an injective resolution. Then

Hn(U,F) = Ker(In(U)→ In+1(U))
Im(In−1(U)→ In(U)) .

Pick an element ξ̃ ∈ In(U) representing the cohomology class in the presentation
above. Since I• is an injective resolution of F and n > 0 we see that the complex I•

is exact in degree n. Hence Im(In−1 → In) = Ker(In → In+1) as sheaves. Since
ξ̃ is a section of the kernel sheaf over U we conclude there exists an open covering
U =

⋃
i∈I Ui such that ξ̃|Ui is the image under d of a section ξi ∈ In−1(Ui).
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https://stacks.math.columbia.edu/tag/01E3


20.7. LOCALITY OF COHOMOLOGY 1766

By our definition of the restriction ξ|Ui as corresponding to the class of ξ̃|Ui we
conclude. □

Lemma 20.7.3.01E4 Let f : X → Y be a morphism of ringed spaces. Let F be a
OX -module. The sheaves Rif∗F are the sheaves associated to the presheaves

V 7−→ Hi(f−1(V ),F)
with restriction mappings as in Equation (20.7.1.1). There is a similar statement
for Rif∗ applied to a bounded below complex F•.

Proof. Let F → I• be an injective resolution. Then Rif∗F is by definition the ith
cohomology sheaf of the complex

f∗I0 → f∗I1 → f∗I2 → . . .

By definition of the abelian category structure on OY -modules this cohomology
sheaf is the sheaf associated to the presheaf

V 7−→ Ker(f∗Ii(V )→ f∗Ii+1(V ))
Im(f∗Ii−1(V )→ f∗Ii(V ))

and this is obviously equal to
Ker(Ii(f−1(V ))→ Ii+1(f−1(V )))
Im(Ii−1(f−1(V ))→ Ii(f−1(V )))

which is equal to Hi(f−1(V ),F) and we win. □

Lemma 20.7.4.01E5 Let f : X → Y be a morphism of ringed spaces. Let F be an OX -
module. Let V ⊂ Y be an open subspace. Denote g : f−1(V ) → V the restriction
of f . Then we have

Rpg∗(F|f−1(V )) = (Rpf∗F)|V
There is a similar statement for the derived image Rf∗F• where F• is a bounded
below complex of OX -modules.

Proof. First proof. Apply Lemmas 20.7.3 and 20.7.1 to see the displayed equality.
Second proof. Choose an injective resolution F → I• and use that F|f−1(V ) →
I•|f−1(V ) is an injective resolution also. □

Remark 20.7.5.03BA Here is a different approach to the proofs of Lemmas 20.7.2 and
20.7.3 above. Let (X,OX) be a ringed space. Let iX : Mod(OX)→ PMod(OX) be
the inclusion functor and let # be the sheafification functor. Recall that iX is left
exact and # is exact.

(1) First prove Lemma 20.11.4 below which says that the right derived func-
tors of iX are given by RpiXF = Hp(F). Here is another proof: The
equality is clear for p = 0. Both (RpiX)p≥0 and (Hp)p≥0 are delta func-
tors vanishing on injectives, hence both are universal, hence they are iso-
morphic. See Homology, Section 12.12.

(2) A restatement of Lemma 20.7.2 is that (Hp(F))# = 0, p > 0 for any sheaf
of OX -modules F . To see this is true, use that # is exact so

(Hp(F))# = (RpiXF)# = Rp(# ◦ iX)(F) = 0
because # ◦ iX is the identity functor.
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(3) Let f : X → Y be a morphism of ringed spaces. Let F be an OX -module.
The presheaf V 7→ Hp(f−1V,F) is equal to Rp(iY ◦ f∗)F . You can prove
this by noticing that both give universal delta functors as in the argument
of (1) above. Hence Lemma 20.7.3 says that Rpf∗F = (Rp(iY ◦ f∗)F)#.
Again using that # is exact a that # ◦ iY is the identity functor we see
that

Rpf∗F = Rp(# ◦ iY ◦ f∗)F = (Rp(iY ◦ f∗)F)#

as desired.

20.8. Mayer-Vietoris

01E9 Below will construct the Čech-to-cohomology spectral sequence, see Lemma 20.11.5.
A special case of that spectral sequence is the Mayer-Vietoris long exact sequence.
Since it is such a basic, useful and easy to understand variant of the spectral
sequence we treat it here separately.

Lemma 20.8.1.01EA Let X be a ringed space. Let U ′ ⊂ U ⊂ X be open subspaces. For
any injective OX -module I the restriction mapping I(U)→ I(U ′) is surjective.

Proof. Let j : U → X and j′ : U ′ → X be the open immersions. Recall that j!OU
is the extension by zero of OU = OX |U , see Sheaves, Section 6.31. Since j! is a left
adjoint to restriction we see that for any sheaf F of OX -modules

HomOX
(j!OU ,F) = HomOU

(OU ,F|U ) = F(U)
see Sheaves, Lemma 6.31.8. Similarly, the sheaf j′

!OU ′ represents the functor F 7→
F(U ′). Moreover there is an obvious canonical map of OX -modules

j′
!OU ′ −→ j!OU

which corresponds to the restriction mapping F(U)→ F(U ′) via Yoneda’s lemma
(Categories, Lemma 4.3.5). By the description of the stalks of the sheaves j′

!OU ′ ,
j!OU we see that the displayed map above is injective (see lemma cited above).
Hence if I is an injective OX -module, then the map

HomOX
(j!OU , I) −→ HomOX

(j′
!OU ′ , I)

is surjective, see Homology, Lemma 12.27.2. Putting everything together we obtain
the lemma. □

Lemma 20.8.2 (Mayer-Vietoris).01EB Let X be a ringed space. Suppose that X = U∪V
is a union of two open subsets. For every OX -module F there exists a long exact
cohomology sequence

0→ H0(X,F)→ H0(U,F)⊕H0(V,F)→ H0(U ∩ V,F)→ H1(X,F)→ . . .

This long exact sequence is functorial in F .

Proof. The sheaf condition says that the kernel of (1,−1) : F(U)⊕F(V )→ F(U ∩
V ) is equal to the image of F(X) by the first map for any abelian sheaf F . Lemma
20.8.1 above implies that the map (1,−1) : I(U)⊕ I(V )→ I(U ∩ V ) is surjective
whenever I is an injective OX -module. Hence if F → I• is an injective resolution
of F , then we get a short exact sequence of complexes

0→ I•(X)→ I•(U)⊕ I•(V )→ I•(U ∩ V )→ 0.

https://stacks.math.columbia.edu/tag/01EA
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Taking cohomology gives the result (use Homology, Lemma 12.13.12). We omit the
proof of the functoriality of the sequence. □

Lemma 20.8.3 (Relative Mayer-Vietoris).01EC Let f : X → Y be a morphism of ringed
spaces. Suppose that X = U ∪ V is a union of two open subsets. Denote a = f |U :
U → Y , b = f |V : V → Y , and c = f |U∩V : U ∩ V → Y . For every OX -module F
there exists a long exact sequence

0→ f∗F → a∗(F|U )⊕ b∗(F|V )→ c∗(F|U∩V )→ R1f∗F → . . .

This long exact sequence is functorial in F .

Proof. Let F → I• be an injective resolution of F . We claim that we get a short
exact sequence of complexes

0→ f∗I• → a∗I•|U ⊕ b∗I•|V → c∗I•|U∩V → 0.
Namely, for any open W ⊂ Y , and for any n ≥ 0 the corresponding sequence of
groups of sections over W
0→ In(f−1(W ))→ In(U∩f−1(W ))⊕In(V ∩f−1(W ))→ In(U∩V ∩f−1(W ))→ 0
was shown to be short exact in the proof of Lemma 20.8.2. The lemma follows by
taking cohomology sheaves and using the fact that I•|U is an injective resolution
of F|U and similarly for I•|V , I•|U∩V see Lemma 20.7.1. □

20.9. The Čech complex and Čech cohomology

01ED Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open covering, see

Topology, Basic notion (13). As is customary we denote Ui0...ip = Ui0 ∩ . . . ∩ Uip
for the (p+ 1)-fold intersection of members of U . Let F be an abelian presheaf on
X. Set

Čp(U ,F) =
∏

(i0,...,ip)∈Ip+1
F(Ui0...ip).

This is an abelian group. For s ∈ Čp(U ,F) we denote si0...ip its value in F(Ui0...ip).
Note that if s ∈ Č1(U ,F) and i, j ∈ I then sij and sji are both elements of
F(Ui∩Uj) but there is no imposed relation between sij and sji. In other words, we
are not working with alternating cochains (these will be defined in Section 20.23).
We define

d : Čp(U ,F) −→ Čp+1(U ,F)
by the formula

(20.9.0.1)01EE d(s)i0...ip+1 =
∑p+1

j=0
(−1)jsi0...̂ij ...ip+1

|Ui0...ip+1

It is straightforward to see that d ◦ d = 0. In other words Č•(U ,F) is a complex.

Definition 20.9.1.01EF Let X be a topological space. Let U : U =
⋃
i∈I Ui be an

open covering. Let F be an abelian presheaf on X. The complex Č•(U ,F) is the
Čech complex associated to F and the open covering U . Its cohomology groups
Hi(Č•(U ,F)) are called the Čech cohomology groups associated to F and the cov-
ering U . They are denoted Ȟi(U ,F).

Lemma 20.9.2.01EG Let X be a topological space. Let F be an abelian presheaf on X.
The following are equivalent

(1) F is an abelian sheaf and
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(2) for every open covering U : U =
⋃
i∈I Ui the natural map

F(U)→ Ȟ0(U ,F)
is bijective.

Proof. This is true since the sheaf condition is exactly that F(U) → Ȟ0(U ,F) is
bijective for every open covering. □

Lemma 20.9.3.0G6S Let X be a topological space. Let F be an abelian presheaf on
X. Let U : U =

⋃
i∈I Ui be an open covering. If Ui = U for some i ∈ I, then the

extended Čech complex
F(U)→ Č•(U ,F)

obtained by putting F(U) in degree −1 with differential given by the canonical
map of F(U) into Č0(U ,F) is homotopy equivalent to 0.

Proof. Fix an element i ∈ I with U = Ui. Observe that Ui0...ip = Ui0...̂ij ...ip if
ij = i. Let us define a homotopy

h :
∏

i0...ip+1
F(Ui0...ip+1) −→

∏
i0...ip

F(Ui0...ip)

by the rule
h(s)i0...ip = sii0...ip

In other words, h :
∏
i0
F(Ui0)→ F(U) is projection onto the factor F(Ui) = F(U)

and in general the map h equals the projection onto the factors F(Uii1...ip+1) =
F(Ui1...ip+1). We compute

(dh+ hd)(s)i0...ip =
∑p

j=0
(−1)jh(s)i0...̂ij ...ip + d(s)ii0...ip

=
∑p

j=0
(−1)jsii0...̂ij ...ip + si0...ip +

∑p

j=0
(−1)j+1sii0...̂ij ...ip

= si0...ip

This proves the identity map is homotopic to zero as desired. □

20.10. Čech cohomology as a functor on presheaves

01EH Warning: In this section we work almost exclusively with presheaves and categories
of presheaves and the results are completely wrong in the setting of sheaves and
categories of sheaves!
Let X be a ringed space. Let U : U =

⋃
i∈I Ui be an open covering. Let F be a

presheaf of OX -modules. We have the Čech complex Č•(U ,F) of F just by thinking
of F as a presheaf of abelian groups. However, each term Čp(U ,F) has a natural
structure of a OX(U)-module and the differential is given by OX(U)-module maps.
Moreover, it is clear that the construction

F 7−→ Č•(U ,F)
is functorial in F . In fact, it is a functor
(20.10.0.1)01EI Č•(U ,−) : PMod(OX) −→ Comp+(ModOX(U))
see Derived Categories, Definition 13.8.1 for notation. Recall that the category
of bounded below complexes in an abelian category is an abelian category, see
Homology, Lemma 12.13.9.
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Lemma 20.10.1.01EJ The functor given by Equation (20.10.0.1) is an exact functor (see
Homology, Lemma 12.7.2).

Proof. For any open W ⊂ U the functor F 7→ F(W ) is an additive exact functor
from PMod(OX) to ModOX(U). The terms Čp(U ,F) of the complex are products
of these exact functors and hence exact. Moreover a sequence of complexes is exact
if and only if the sequence of terms in a given degree is exact. Hence the lemma
follows. □

Lemma 20.10.2.01EK Let X be a ringed space. Let U : U =
⋃
i∈I Ui be an open

covering. The functors F 7→ Ȟn(U ,F) form a δ-functor from the abelian category
of presheaves of OX -modules to the category of OX(U)-modules (see Homology,
Definition 12.12.1).

Proof. By Lemma 20.10.1 a short exact sequence of presheaves of OX -modules
0 → F1 → F2 → F3 → 0 is turned into a short exact sequence of complexes of
OX(U)-modules. Hence we can use Homology, Lemma 12.13.12 to get the boundary
maps δF1→F2→F3 : Ȟn(U ,F3) → Ȟn+1(U ,F1) and a corresponding long exact
sequence. We omit the verification that these maps are compatible with maps
between short exact sequences of presheaves. □

In the formulation of the following lemma we use the functor jp! of extension by 0
for presheaves of modules relative to an open immersion j : U → X. See Sheaves,
Section 6.31. For any open W ⊂ X and any presheaf G of OX |U -modules we have

(jp!G)(W ) =
{
G(W ) if W ⊂ U

0 else.
Moreover, the functor jp! is a left adjoint to the restriction functor see Sheaves,
Lemma 6.31.8. In particular we have the following formula

HomOX
(jp!OU ,F) = HomOU

(OU ,F|U ) = F(U).
Since the functor F 7→ F(U) is an exact functor on the category of presheaves we
conclude that the presheaf jp!OU is a projective object in the category PMod(OX),
see Homology, Lemma 12.28.2.
Note that if we are given open subsets U ⊂ V ⊂ X with associated open im-
mersions jU , jV , then we have a canonical map (jU )p!OU → (jV )p!OV . It is the
identity on sections over any open W ⊂ U and 0 else. In terms of the identifica-
tion HomOX

((jU )p!OU , (jV )p!OV ) = (jV )p!OV (U) = OV (U) it corresponds to the
element 1 ∈ OV (U).

Lemma 20.10.3.01EL Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering.

Denote ji0...ip : Ui0...ip → X the open immersion. Consider the chain complex
K(U)• of presheaves of OX -modules

. . .→
⊕
i0i1i2

(ji0i1i2)p!OUi0i1i2 →
⊕
i0i1

(ji0i1)p!OUi0i1 →
⊕
i0

(ji0)p!OUi0 → 0→ . . .

where the last nonzero term is placed in degree 0 and where the map
(ji0...ip+1)p!OUi0...ip+1

−→ (ji0...̂ij ...ip+1
)p!OUi0...̂ij ...ip+1

is given by (−1)j times the canonical map. Then there is an isomorphism
HomOX

(K(U)•,F) = Č•(U ,F)
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functorial in F ∈ Ob(PMod(OX)).

Proof. We saw in the discussion just above the lemma that
HomOX

((ji0...ip)p!OUi0...ip ,F) = F(Ui0...ip).
Hence we see that it is indeed the case that the direct sum⊕

i0...ip
(ji0...ip)p!OUi0...ip

represents the functor
F 7−→

∏
i0...ip

F(Ui0...ip).

Hence by Categories, Yoneda Lemma 4.3.5 we see that there is a complex K(U)•
with terms as given. It is a simple matter to see that the maps are as given in the
lemma. □

Lemma 20.10.4.01EM Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. Let

OU ⊂ OX be the image presheaf of the map
⊕
jp!OUi → OX . The chain complex

K(U)• of presheaves of Lemma 20.10.3 above has homology presheaves

Hi(K(U)•) =
{

0 if i ̸= 0
OU if i = 0

Proof. Consider the extended complex Kext
• one gets by putting OU in degree −1

with the obvious map K(U)0 =
⊕

i0
(ji0)p!OUi0 → OU . It suffices to show that

taking sections of this extended complex over any open W ⊂ X leads to an acyclic
complex. In fact, we claim that for every W ⊂ X the complexKext

• (W ) is homotopy
equivalent to the zero complex. Write I = I1 ⨿ I2 where W ⊂ Ui if and only if
i ∈ I1.
If I1 = ∅, then the complex Kext

• (W ) = 0 so there is nothing to prove.
If I1 ̸= ∅, then OU (W ) = OX(W ) and

Kext
p (W ) =

⊕
i0...ip∈I1

OX(W ).

This is true because of the simple description of the presheaves (ji0...ip)p!OUi0...ip .
Moreover, the differential of the complex Kext

• (W ) is given by

d(s)i0...ip =
∑

j=0,...,p+1

∑
i∈I1

(−1)jsi0...ij−1iij ...ip .

The sum is finite as the element s has finite support. Fix an element ifix ∈ I1.
Define a map

h : Kext
p (W ) −→ Kext

p+1(W )
by the rule

h(s)i0...ip+1 =
{

0 if i0 ̸= ifix
si1...ip+1 if i0 = ifix

We will use the shorthand h(s)i0...ip+1 = (i0 = ifix)si1...ip for this. Then we compute
(dh+ hd)(s)i0...ip

=
∑
j

∑
i∈I1

(−1)jh(s)i0...ij−1iij ...ip + (i = i0)d(s)i1...ip

= si0...ip +
∑
j≥1

∑
i∈I1

(−1)j(i0 = ifix)si1...ij−1iij ...ip + (i0 = ifix)d(s)i1...ip
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which is equal to si0...ip as desired. □

Lemma 20.10.5.01EN Let X be a ringed space. Let U : U =
⋃
i∈I Ui be an open covering

of U ⊂ X. The Čech cohomology functors Ȟp(U ,−) are canonically isomorphic as
a δ-functor to the right derived functors of the functor

Ȟ0(U ,−) : PMod(OX) −→ ModOX(U).

Moreover, there is a functorial quasi-isomorphism
Č•(U ,F) −→ RȞ0(U ,F)

where the right hand side indicates the right derived functor
RȞ0(U ,−) : D+(PMod(OX)) −→ D+(OX(U))

of the left exact functor Ȟ0(U ,−).

Proof. Note that the category of presheaves of OX -modules has enough injectives,
see Injectives, Proposition 19.8.5. Note that Ȟ0(U ,−) is a left exact functor from
the category of presheaves of OX -modules to the category of OX(U)-modules.
Hence the derived functor and the right derived functor exist, see Derived Cat-
egories, Section 13.20.
Let I be a injective presheaf of OX -modules. In this case the functor HomOX

(−, I)
is exact on PMod(OX). By Lemma 20.10.3 we have

HomOX
(K(U)•, I) = Č•(U , I).

By Lemma 20.10.4 we have that K(U)• is quasi-isomorphic to OU [0]. Hence by
the exactness of Hom into I mentioned above we see that Ȟi(U , I) = 0 for all
i > 0. Thus the δ-functor (Ȟn, δ) (see Lemma 20.10.2) satisfies the assumptions of
Homology, Lemma 12.12.4, and hence is a universal δ-functor.
By Derived Categories, Lemma 13.20.4 also the sequence RiȞ0(U ,−) forms a uni-
versal δ-functor. By the uniqueness of universal δ-functors, see Homology, Lemma
12.12.5 we conclude that RiȞ0(U ,−) = Ȟi(U ,−). This is enough for most appli-
cations and the reader is suggested to skip the rest of the proof.
Let F be any presheaf of OX -modules. Choose an injective resolution F → I•

in the category PMod(OX). Consider the double complex Č•(U , I•) with terms
Čp(U , Iq). Consider the associated total complex Tot(Č•(U , I•)), see Homology,
Definition 12.18.3. There is a map of complexes

Č•(U ,F) −→ Tot(Č•(U , I•))
coming from the maps Čp(U ,F)→ Čp(U , I0) and there is a map of complexes

Ȟ0(U , I•) −→ Tot(Č•(U , I•))
coming from the maps Ȟ0(U , Iq) → Č0(U , Iq). Both of these maps are quasi-
isomorphisms by an application of Homology, Lemma 12.25.4. Namely, the columns
of the double complex are exact in positive degrees because the Čech complex as
a functor is exact (Lemma 20.10.1) and the rows of the double complex are exact
in positive degrees since as we just saw the higher Čech cohomology groups of the
injective presheaves Iq are zero. Since quasi-isomorphisms become invertible in
D+(OX(U)) this gives the last displayed morphism of the lemma. We omit the
verification that this morphism is functorial. □

https://stacks.math.columbia.edu/tag/01EN


20.11. ČECH COHOMOLOGY AND COHOMOLOGY 1773

20.11. Čech cohomology and cohomology

01EO
Lemma 20.11.1.01EP Let X be a ringed space. Let U : U =

⋃
i∈I Ui be a covering. Let

I be an injective OX -module. Then

Ȟp(U , I) =
{
I(U) if p = 0

0 if p > 0
Proof. An injectiveOX -module is also injective as an object in the category PMod(OX)
(for example since sheafification is an exact left adjoint to the inclusion functor, us-
ing Homology, Lemma 12.29.1). Hence we can apply Lemma 20.10.5 (or its proof)
to see the result. □

Lemma 20.11.2.01EQ Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering.

There is a transformation
Č•(U ,−) −→ RΓ(U,−)

of functors Mod(OX) → D+(OX(U)). In particular this provides canonical maps
Ȟp(U ,F)→ Hp(U,F) for F ranging over Mod(OX).
Proof. Let F be an OX -module. Choose an injective resolution F → I•. Consider
the double complex Č•(U , I•) with terms Čp(U , Iq). There is a map of complexes

α : Γ(U, I•) −→ Tot(Č•(U , I•))
coming from the maps Iq(U)→ Ȟ0(U , Iq) and a map of complexes

β : Č•(U ,F) −→ Tot(Č•(U , I•))
coming from the map F → I0. We can apply Homology, Lemma 12.25.4 to see that
α is a quasi-isomorphism. Namely, Lemma 20.11.1 implies that the qth row of the
double complex Č•(U , I•) is a resolution of Γ(U, Iq). Hence α becomes invertible in
D+(OX(U)) and the transformation of the lemma is the composition of β followed
by the inverse of α. We omit the verification that this is functorial. □

Lemma 20.11.3.0B8R Let X be a topological space. Let H be an abelian sheaf on X.
Let U : X =

⋃
i∈I Ui be an open covering. The map

Ȟ1(U ,H) −→ H1(X,H)
is injective and identifies Ȟ1(U ,H) via the bijection of Lemma 20.4.3 with the set
of isomorphism classes of H-torsors which restrict to trivial torsors over each Ui.
Proof. To see this we construct an inverse map. Namely, let F be a H-torsor
whose restriction to Ui is trivial. By Lemma 20.4.2 this means there exists a
section si ∈ F(Ui). On Ui0 ∩ Ui1 there is a unique section si0i1 of H such that
si0i1 · si0 |Ui0 ∩Ui1 = si1 |Ui0 ∩Ui1 . A computation shows that si0i1 is a Čech cocycle
and that its class is well defined (i.e., does not depend on the choice of the sections
si). The inverse maps the isomorphism class of F to the cohomology class of the
cocycle (si0i1). We omit the verification that this map is indeed an inverse. □

Lemma 20.11.4.01ER Let X be a ringed space. Consider the functor i : Mod(OX) →
PMod(OX). It is a left exact functor with right derived functors given by

Rpi(F) = Hp(F) : U 7−→ Hp(U,F)
see discussion in Section 20.7.
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Proof. It is clear that i is left exact. Choose an injective resolution F → I•. By
definition Rpi is the pth cohomology presheaf of the complex I•. In other words,
the sections of Rpi(F) over an open U are given by

Ker(Ip(U)→ Ip+1(U))
Im(Ip−1(U)→ Ip(U)) .

which is the definition of Hp(U,F). □

Lemma 20.11.5.01ES Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. For

any sheaf of OX -modules F there is a spectral sequence (Er, dr)r≥0 with

Ep,q2 = Ȟp(U , Hq(F))
converging to Hp+q(U,F). This spectral sequence is functorial in F .

Proof. This is a Grothendieck spectral sequence (see Derived Categories, Lemma
13.22.2) for the functors

i : Mod(OX)→ PMod(OX) and Ȟ0(U ,−) : PMod(OX)→ ModOX(U).

Namely, we have Ȟ0(U , i(F)) = F(U) by Lemma 20.9.2. We have that i(I) is
Čech acyclic by Lemma 20.11.1. And we have that Ȟp(U ,−) = RpȞ0(U ,−) as
functors on PMod(OX) by Lemma 20.10.5. Putting everything together gives the
lemma. □

Lemma 20.11.6.01ET Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. Let

F be an OX -module. Assume that Hi(Ui0...ip ,F) = 0 for all i > 0, all p ≥ 0 and
all i0, . . . , ip ∈ I. Then Ȟp(U ,F) = Hp(U,F) as OX(U)-modules.

Proof. We will use the spectral sequence of Lemma 20.11.5. The assumptions mean
that Ep,q2 = 0 for all (p, q) with q ̸= 0. Hence the spectral sequence degenerates at
E2 and the result follows. □

Lemma 20.11.7.01EU Let X be a ringed space. Let
0→ F → G → H → 0

be a short exact sequence of OX -modules. Let U ⊂ X be an open subset. If there
exists a cofinal system of open coverings U of U such that Ȟ1(U ,F) = 0, then the
map G(U)→ H(U) is surjective.

Proof. Take an element s ∈ H(U). Choose an open covering U : U =
⋃
i∈I Ui such

that (a) Ȟ1(U ,F) = 0 and (b) s|Ui is the image of a section si ∈ G(Ui). Since we
can certainly find a covering such that (b) holds it follows from the assumptions of
the lemma that we can find a covering such that (a) and (b) both hold. Consider
the sections

si0i1 = si1 |Ui0i1 − si0 |Ui0i1 .

Since si lifts s we see that si0i1 ∈ F(Ui0i1). By the vanishing of Ȟ1(U ,F) we can
find sections ti ∈ F(Ui) such that

si0i1 = ti1 |Ui0i1 − ti0 |Ui0i1 .

Then clearly the sections si − ti satisfy the sheaf condition and glue to a section of
G over U which maps to s. Hence we win. □
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Lemma 20.11.8.01EV Let X be a ringed space. Let F be an OX -module such that

Ȟp(U ,F) = 0
for all p > 0 and any open covering U : U =

⋃
i∈I Ui of an open of X. Then

Hp(U,F) = 0 for all p > 0 and any open U ⊂ X.
Proof. Let F be a sheaf satisfying the assumption of the lemma. We will indicate
this by saying “F has vanishing higher Čech cohomology for any open covering”.
Choose an embedding F → I into an injective OX -module. By Lemma 20.11.1 I
has vanishing higher Čech cohomology for any open covering. Let Q = I/F so that
we have a short exact sequence

0→ F → I → Q → 0.
By Lemma 20.11.7 and our assumptions this sequence is actually exact as a sequence
of presheaves! In particular we have a long exact sequence of Čech cohomology
groups for any open covering U , see Lemma 20.10.2 for example. This implies
that Q is also an OX -module with vanishing higher Čech cohomology for all open
coverings.
Next, we look at the long exact cohomology sequence

0 // H0(U,F) // H0(U, I) // H0(U,Q)

tt
H1(U,F) // H1(U, I) // H1(U,Q)

ss. . . . . . . . .

for any open U ⊂ X. Since I is injective we have Hn(U, I) = 0 for n > 0
(see Derived Categories, Lemma 13.20.4). By the above we see that H0(U, I) →
H0(U,Q) is surjective and hence H1(U,F) = 0. Since F was an arbitrary OX -
module with vanishing higher Čech cohomology we conclude that also H1(U,Q) = 0
since Q is another of these sheaves (see above). By the long exact sequence this in
turn implies that H2(U,F) = 0. And so on and so forth. □

Lemma 20.11.9.01EW (Variant of Lemma 20.11.8.) Let X be a ringed space. Let B be
a basis for the topology on X. Let F be an OX -module. Assume there exists a set
of open coverings Cov with the following properties:

(1) For every U ∈ Cov with U : U =
⋃
i∈I Ui we have U,Ui ∈ B and every

Ui0...ip ∈ B.
(2) For every U ∈ B the open coverings of U occurring in Cov is a cofinal

system of open coverings of U .
(3) For every U ∈ Cov we have Ȟp(U ,F) = 0 for all p > 0.

Then Hp(U,F) = 0 for all p > 0 and any U ∈ B.
Proof. Let F and Cov be as in the lemma. We will indicate this by saying “F
has vanishing higher Čech cohomology for any U ∈ Cov”. Choose an embedding
F → I into an injective OX -module. By Lemma 20.11.1 I has vanishing higher
Čech cohomology for any U ∈ Cov. Let Q = I/F so that we have a short exact
sequence

0→ F → I → Q → 0.
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By Lemma 20.11.7 and our assumption (2) this sequence gives rise to an exact
sequence

0→ F(U)→ I(U)→ Q(U)→ 0.
for every U ∈ B. Hence for any U ∈ Cov we get a short exact sequence of Čech
complexes

0→ Č•(U ,F)→ Č•(U , I)→ Č•(U ,Q)→ 0
since each term in the Čech complex is made up out of a product of values over
elements of B by assumption (1). In particular we have a long exact sequence of
Čech cohomology groups for any open covering U ∈ Cov. This implies that Q is
also an OX -module with vanishing higher Čech cohomology for all U ∈ Cov.
Next, we look at the long exact cohomology sequence

0 // H0(U,F) // H0(U, I) // H0(U,Q)

tt
H1(U,F) // H1(U, I) // H1(U,Q)

ss. . . . . . . . .

for any U ∈ B. Since I is injective we have Hn(U, I) = 0 for n > 0 (see Derived
Categories, Lemma 13.20.4). By the above we see that H0(U, I) → H0(U,Q) is
surjective and hence H1(U,F) = 0. Since F was an arbitrary OX -module with van-
ishing higher Čech cohomology for all U ∈ Cov we conclude that also H1(U,Q) = 0
since Q is another of these sheaves (see above). By the long exact sequence this in
turn implies that H2(U,F) = 0. And so on and so forth. □

Lemma 20.11.10.01EX Let f : X → Y be a morphism of ringed spaces. Let I be an
injective OX -module. Then

(1) Ȟp(V, f∗I) = 0 for all p > 0 and any open covering V : V =
⋃
j∈J Vj of

Y .
(2) Hp(V, f∗I) = 0 for all p > 0 and every open V ⊂ Y .

In other words, f∗I is right acyclic for Γ(V,−) (see Derived Categories, Definition
13.15.3) for any V ⊂ Y open.

Proof. Set U : f−1(V ) =
⋃
j∈J f

−1(Vj). It is an open covering of X and

Č•(V, f∗I) = Č•(U , I).
This is true because

f∗I(Vj0...jp) = I(f−1(Vj0...jp)) = I(f−1(Vj0) ∩ . . . ∩ f−1(Vjp)) = I(Uj0...jp).
Thus the first statement of the lemma follows from Lemma 20.11.1. The second
statement follows from the first and Lemma 20.11.8. □

The following lemma implies in particular that f∗ : Ab(X) → Ab(Y ) transforms
injective abelian sheaves into injective abelian sheaves.

Lemma 20.11.11.02N5 Let f : X → Y be a morphism of ringed spaces. Assume f is
flat. Then f∗I is an injective OY -module for any injective OX -module I.

https://stacks.math.columbia.edu/tag/01EX
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Proof. In this case the functor f∗ transforms injections into injections (Modules,
Lemma 17.20.2). Hence the result follows from Homology, Lemma 12.29.1. □

Lemma 20.11.12.0D0A Let (X,OX) be a ringed space. Let I be a set. For i ∈ I let Fi
be an OX -module. Let U ⊂ X be open. The canonical map

Hp(U,
∏

i∈I
Fi) −→

∏
i∈I

Hp(U,Fi)

is an isomorphism for p = 0 and injective for p = 1.

Proof. The statement for p = 0 is true because the product of sheaves is equal
to the product of the underlying presheaves, see Sheaves, Section 6.29. Proof for
p = 1. Set F =

∏
Fi. Let ξ ∈ H1(U,F) map to zero in

∏
H1(U,Fi). By locality

of cohomology, see Lemma 20.7.2, there exists an open covering U : U =
⋃
Uj such

that ξ|Uj = 0 for all j. By Lemma 20.11.3 this means ξ comes from an element
ξ̌ ∈ Ȟ1(U ,F). Since the maps Ȟ1(U ,Fi) → H1(U,Fi) are injective for all i (by
Lemma 20.11.3), and since the image of ξ is zero in

∏
H1(U,Fi) we see that the

image ξ̌i = 0 in Ȟ1(U ,Fi). However, since F =
∏
Fi we see that Č•(U ,F) is

the product of the complexes Č•(U ,Fi), hence by Homology, Lemma 12.32.1 we
conclude that ξ̌ = 0 as desired. □

20.12. Flasque sheaves

09SV Here is the definition.

Definition 20.12.1.09SW Let X be a topological space. We say a presheaf of sets F is
flasque or flabby if for every U ⊂ V open in X the restriction map F(V )→ F(U)
is surjective.

We will use this terminology also for abelian sheaves and sheaves of modules if X
is a ringed space. Clearly it suffices to assume the restriction maps F(X)→ F(U)
is surjective for every open U ⊂ X.

Lemma 20.12.2.09SX Let (X,OX) be a ringed space. Then any injective OX -module is
flasque.

Proof. This is a reformulation of Lemma 20.8.1. □

Lemma 20.12.3.09SY Let (X,OX) be a ringed space. Any flasque OX -module is acyclic
for RΓ(X,−) as well as RΓ(U,−) for any open U of X.

Proof. We will prove this using Derived Categories, Lemma 13.15.6. Since every
injective module is flasque we see that we can embed every OX -module into a
flasque module, see Injectives, Lemma 19.4.1. Thus it suffices to show that given a
short exact sequence

0→ F → G → H → 0
with F , G flasque, then H is flasque and the sequence remains short exact after
taking sections on any open of X. In fact, the second statement implies the first.
Thus, let U ⊂ X be an open subspace. Let s ∈ H(U). We will show that we can
lift s to a section of G over U . To do this consider the set T of pairs (V, t) where
V ⊂ U is open and t ∈ G(V ) is a section mapping to s|V in H. We put a partial
ordering on T by setting (V, t) ≤ (V ′, t′) if and only if V ⊂ V ′ and t′|V = t. If
(Vα, tα), α ∈ A is a totally ordered subset of T , then V =

⋃
Vα is open and there

is a unique section t ∈ G(V ) restricting to tα over Vα by the sheaf condition on G.
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Thus by Zorn’s lemma there exists a maximal element (V, t) in T . We will show
that V = U thereby finishing the proof. Namely, pick any x ∈ U . We can find a
small open neighbourhood W ⊂ U of x and t′ ∈ G(W ) mapping to s|W in H. Then
t′|W∩V − t|W∩V maps to zero in H, hence comes from some section r′ ∈ F(W ∩V ).
Using that F is flasque we find a section r ∈ F(W ) restricting to r′ over W ∩ V .
Modifying t′ by the image of r we may assume that t and t′ restrict to the same
section over W ∩ V . By the sheaf condition of G we can find a section t̃ of G over
W ∪ V restricting to t and t′. By maximality of (V, t) we see that V ∪W = V .
Thus x ∈ V and we are done. □

The following lemma does not hold for flasque presheaves.

Lemma 20.12.4.09SZ Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
Let U : U =

⋃
Ui be an open covering. If F is flasque, then Ȟp(U ,F) = 0 for

p > 0.

Proof. The presheaves Hq(F) used in the statement of Lemma 20.11.5 are zero by
Lemma 20.12.3. Hence Ȟp(U,F) = Hp(U,F) = 0 by Lemma 20.12.3 again. □

Lemma 20.12.5.09T0 Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let
F be a sheaf of OX -modules. If F is flasque, then Rpf∗F = 0 for p > 0.

Proof. Immediate from Lemma 20.7.3 and Lemma 20.12.3. □

The following lemma can be proved by an elementary induction argument for finite
coverings, compare with the discussion of Čech cohomology in [Vak].

Lemma 20.12.6.0A36 Let X be a topological space. Let F be an abelian sheaf on
X. Let U : U =

⋃
i∈I Ui be an open covering. Assume the restriction mappings

F(U)→ F(U ′) are surjective for U ′ an arbitrary union of opens of the form Ui0...ip .
Then Ȟp(U ,F) vanishes for p > 0.

Proof. Let Y be the set of nonempty subsets of I. We will use the letters A,B,C, . . .
to denote elements of Y , i.e., nonempty subsets of I. For a finite nonempty subset
J ⊂ I let

VJ = {A ∈ Y | J ⊂ A}
This means that V{i} = {A ∈ Y | i ∈ A} and VJ =

⋂
j∈J V{j}. Then VJ ⊂ VK if

and only if J ⊃ K. There is a unique topology on Y such that the collection of
subsets VJ is a basis for the topology on Y . Any open is of the form

V =
⋃

t∈T
VJt

for some family of finite subsets Jt. If Jt ⊂ Jt′ then we may remove Jt′ from the
family without changing V . Thus we may assume there are no inclusions among
the Jt. In this case the minimal elements of V are the sets A = Jt. Hence we can
read off the family (Jt)t∈T from the open V .

We can completely understand open coverings in Y . First, because the elements
A ∈ Y are nonempty subsets of I we have

Y =
⋃

i∈I
V{i}
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To understand other coverings, let V be as above and let Vs ⊂ Y be an open
corresponding to the family (Js,t)t∈Ts . Then

V =
⋃

s∈S
Vs

if and only if for each t ∈ T there exists an s ∈ S and ts ∈ Ts such that Jt = Js,ts .
Namely, as the family (Jt)t∈T is minimal, the minimal element A = Jt has to be in
Vs for some s, hence A ∈ VJts for some ts ∈ Ts. But since A is also minimal in Vs
we conclude that Jts = Jt.

Next we map the set of opens of Y to opens of X. Namely, we send Y to U , we
use the rule

VJ 7→ UJ =
⋂

i∈J
Ui

on the opens VJ , and we extend it to arbitrary opens V by the rule

V =
⋃

t∈T
VJt 7→

⋃
t∈T

UJt

The classification of open coverings of Y given above shows that this rule transforms
open coverings into open coverings. Thus we obtain an abelian sheaf G on Y by
setting G(Y ) = F(U) and for V =

⋃
t∈T VJt setting

G(V ) = F
(⋃

t∈T
UJt

)
and using the restriction maps of F .

With these preliminaries out of the way we can prove our lemma as follows. We
have an open covering V : Y =

⋃
i∈I V{i} of Y . By construction we have an equality

Č•(V,G) = Č•(U ,F)

of Čech complexes. Since the sheaf G is flasque on Y (by our assumption on F in
the statement of the lemma) the vanishing follows from Lemma 20.12.4. □

20.13. The Leray spectral sequence

01EY
Lemma 20.13.1.01EZ Let f : X → Y be a morphism of ringed spaces. There is a
commutative diagram

D+(X)
RΓ(X,−)

//

Rf∗

��

D+(OX(X))

restriction
��

D+(Y )
RΓ(Y,−) // D+(OY (Y ))

More generally for any V ⊂ Y open and U = f−1(V ) there is a commutative
diagram

D+(X)
RΓ(U,−)

//

Rf∗

��

D+(OX(U))

restriction
��

D+(Y )
RΓ(V,−) // D+(OY (V ))

See also Remark 20.13.2 for more explanation.
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Proof. Let Γres : Mod(OX)→ ModOY (Y ) be the functor which associates to anOX -
module F the global sections of F viewed as an OY (Y )-module via the map f ♯ :
OY (Y ) → OX(X). Let restriction : ModOX(X) → ModOY (Y ) be the restriction
functor induced by f ♯ : OY (Y ) → OX(X). Note that restriction is exact so that
its right derived functor is computed by simply applying the restriction functor, see
Derived Categories, Lemma 13.16.9. It is clear that

Γres = restriction ◦ Γ(X,−) = Γ(Y,−) ◦ f∗

We claim that Derived Categories, Lemma 13.22.1 applies to both compositions.
For the first this is clear by our remarks above. For the second, it follows from
Lemma 20.11.10 which implies that injective OX -modules are mapped to Γ(Y,−)-
acyclic sheaves on Y . □

Remark 20.13.2.01F0 Here is a down-to-earth explanation of the meaning of Lemma
20.13.1. It says that given f : X → Y and F ∈ Mod(OX) and given an injective
resolution F → I• we have

RΓ(X,F) is represented by Γ(X, I•)
Rf∗F is represented by f∗I•

RΓ(Y,Rf∗F) is represented by Γ(Y, f∗I•)

the last fact coming from Leray’s acyclicity lemma (Derived Categories, Lemma
13.16.7) and Lemma 20.11.10. Finally, it combines this with the trivial observation
that

Γ(X, I•) = Γ(Y, f∗I•).
to arrive at the commutativity of the diagram of the lemma.

Lemma 20.13.3.01F1 Let X be a ringed space. Let F be an OX -module.
(1) The cohomology groups Hi(U,F) for U ⊂ X open of F computed as an
OX -module, or computed as an abelian sheaf are identical.

(2) Let f : X → Y be a morphism of ringed spaces. The higher direct images
Rif∗F of F computed as an OX -module, or computed as an abelian sheaf
are identical.

There are similar statements in the case of bounded below complexes of OX -
modules.

Proof. Consider the morphism of ringed spaces (X,OX) → (X,ZX) given by the
identity on the underlying topological space and by the unique map of sheaves of
rings ZX → OX . Let F be an OX -module. Denote Fab the same sheaf seen as
an ZX -module, i.e., seen as a sheaf of abelian groups. Let F → I• be an injective
resolution. By Remark 20.13.2 we see that Γ(X, I•) computes both RΓ(X,F) and
RΓ(X,Fab). This proves (1).

To prove (2) we use (1) and Lemma 20.7.3. The result follows immediately. □

Lemma 20.13.4 (Leray spectral sequence).01F2 Let f : X → Y be a morphism of ringed
spaces. Let F• be a bounded below complex of OX -modules. There is a spectral
sequence

Ep,q2 = Hp(Y,Rqf∗(F•))
converging to Hp+q(X,F•).
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Proof. This is just the Grothendieck spectral sequence Derived Categories, Lemma
13.22.2 coming from the composition of functors Γres = Γ(Y,−)◦f∗ where Γres is as
in the proof of Lemma 20.13.1. To see that the assumptions of Derived Categories,
Lemma 13.22.2 are satisfied, see the proof of Lemma 20.13.1 or Remark 20.13.2. □

Remark 20.13.5.01F3 The Leray spectral sequence, the way we proved it in Lemma
20.13.4 is a spectral sequence of Γ(Y,OY )-modules. However, it is quite easy to
see that it is in fact a spectral sequence of Γ(X,OX)-modules. For example f
gives rise to a morphism of ringed spaces f ′ : (X,OX) → (Y, f∗OX). By Lemma
20.13.3 the terms Ep,qr of the Leray spectral sequence for an OX -module F and f
are identical with those for F and f ′ at least for r ≥ 2. Namely, they both agree
with the terms of the Leray spectral sequence for F as an abelian sheaf. And since
(f∗OX)(Y ) = OX(X) we see the result. It is often the case that the Leray spectral
sequence carries additional structure.

Lemma 20.13.6.01F4 Let f : X → Y be a morphism of ringed spaces. Let F be an
OX -module.

(1) If Rqf∗F = 0 for q > 0, then Hp(X,F) = Hp(Y, f∗F) for all p.
(2) If Hp(Y,Rqf∗F) = 0 for all q and p > 0, then Hq(X,F) = H0(Y,Rqf∗F)

for all q.

Proof. These are two simple conditions that force the Leray spectral sequence to
degenerate at E2. You can also prove these facts directly (without using the spectral
sequence) which is a good exercise in cohomology of sheaves. □

Lemma 20.13.7.01F5 Let f : X → Y and g : Y → Z be morphisms of ringed spaces. In
this case Rg∗ ◦Rf∗ = R(g ◦ f)∗ as functors from D+(X)→ D+(Z).

Proof. We are going to apply Derived Categories, Lemma 13.22.1. It is clear that
g∗ ◦ f∗ = (g ◦ f)∗, see Sheaves, Lemma 6.21.2. It remains to show that f∗I is g∗-
acyclic. This follows from Lemma 20.11.10 and the description of the higher direct
images Rig∗ in Lemma 20.7.3. □

Lemma 20.13.8 (Relative Leray spectral sequence).01F6 Let f : X → Y and g : Y → Z
be morphisms of ringed spaces. Let F be an OX -module. There is a spectral
sequence with

Ep,q2 = Rpg∗(Rqf∗F)
converging to Rp+q(g ◦ f)∗F . This spectral sequence is functorial in F , and there
is a version for bounded below complexes of OX -modules.

Proof. This is a Grothendieck spectral sequence for composition of functors and
follows from Lemma 20.13.7 and Derived Categories, Lemma 13.22.2. □

20.14. Functoriality of cohomology

01F7
Lemma 20.14.1.01F8 Let f : X → Y be a morphism of ringed spaces. Let G•, resp. F•

be a bounded below complex ofOY -modules, resp.OX -modules. Let φ : G• → f∗F•

be a morphism of complexes. There is a canonical morphism
G• −→ Rf∗(F•)

in D+(Y ). Moreover this construction is functorial in the triple (G•,F•, φ).
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Proof. Choose an injective resolution F• → I•. By definition Rf∗(F•) is repre-
sented by f∗I• in K+(OY ). The composition

G• → f∗F• → f∗I•

is a morphism inK+(Y ) which turns into the morphism of the lemma upon applying
the localization functor jY : K+(Y )→ D+(Y ). □

Let f : X → Y be a morphism of ringed spaces. Let G be an OY -module and let F
be an OX -module. Recall that an f -map φ from G to F is a map φ : G → f∗F , or
what is the same thing, a map φ : f∗G → F . See Sheaves, Definition 6.21.7. Such
an f -map gives rise to a morphism of complexes
(20.14.1.1)01F9 φ : RΓ(Y,G) −→ RΓ(X,F)
in D+(OY (Y )). Namely, we use the morphism G → Rf∗F in D+(Y ) of Lemma
20.14.1, and we apply RΓ(Y,−). By Lemma 20.13.1 we see that RΓ(X,F) =
RΓ(Y,Rf∗F) and we get the displayed arrow. We spell this out completely in
Remark 20.14.2 below. In particular it gives rise to maps on cohomology
(20.14.1.2)01FA φ : Hi(Y,G) −→ Hi(X,F).

Remark 20.14.2.01FB Let f : X → Y be a morphism of ringed spaces. Let G be an
OY -module. Let F be an OX -module. Let φ be an f -map from G to F . Choose
a resolution F → I• by a complex of injective OX -modules. Choose resolutions
G → J • and f∗I• → (J ′)• by complexes of injective OY -modules. By Derived
Categories, Lemma 13.18.6 there exists a map of complexes β such that the diagram
(20.14.2.1)01FC G

��

// f∗F // f∗I•

��
J • β // (J ′)•

commutes. Applying global section functors we see that we get a diagram

Γ(Y, f∗I•)

qis

��

Γ(X, I•)

Γ(Y,J •) β // Γ(Y, (J ′)•)

The complex on the bottom left represents RΓ(Y,G) and the complex on the
top right represents RΓ(X,F). The vertical arrow is a quasi-isomorphism by
Lemma 20.13.1 which becomes invertible after applying the localization functor
K+(OY (Y ))→ D+(OY (Y )). The arrow (20.14.1.1) is given by the composition of
the horizontal map by the inverse of the vertical map.

20.15. Refinements and Čech cohomology

09UY Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui and V : X =

⋃
j∈J Vj be open

coverings. Assume that U is a refinement of V. Choose a map c : I → J such that
Ui ⊂ Vc(i) for all i ∈ I. This induces a map of Čech complexes

γ : Č•(V,F) −→ Č•(U ,F), (ξj0...jp) 7−→ (ξc(i0)...c(ip)|Ui0...ip )
functorial in the sheaf of OX -modules F . Suppose that c′ : I → J is a second
map such that Ui ⊂ Vc′(i) for all i ∈ I. Then the corresponding maps γ and γ′ are

https://stacks.math.columbia.edu/tag/01FB
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homotopic. Namely, γ − γ′ = d ◦ h + h ◦ d with h : Čp+1(V,F) → Čp(U ,F) given
by the rule

h(α)i0...ip =
∑p

a=0
(−1)aαc(i0)...c(ia)c′(ia)...c′(ip)

We omit the computation showing this works; please see the discussion following
(20.25.0.2) for the proof in a more general case. In particular, the map on Čech
cohomology groups is independent of the choice of c. Moreover, it is clear that if
W : X =

⋃
k∈KWk is a third open covering and V is a refinement of W, then the

composition of the maps

Č•(W,F) −→ Č•(V,F) −→ Č•(U ,F)

associated to maps I → J and J → K is the map associated to the composition
I → K. In particular, we can define the Čech cohomology groups

Ȟp(X,F) = colimU Ȟ
p(U ,F)

where the colimit is over all open coverings of X preordered by refinement.

It turns out that the maps γ defined above are compatible with the map to coho-
mology, in other words, the composition

Ȟp(V,F)→ Ȟp(U ,F) Lemma 20.11.2−−−−−−−−−→ Hp(X,F)

is the canonical map from the first group to cohomology of Lemma 20.11.2. In the
lemma below we will prove this in a slightly more general setting. A consequence
is that we obtain a well defined map

(20.15.0.1)09UZ Ȟp(X,F) = colimU Ȟ
p(U ,F) −→ Hp(X,F)

from Čech cohomology to cohomology.

Lemma 20.15.1.01FD Let f : X → Y be a morphism of ringed spaces. Let φ : f∗G → F
be an f -map from an OY -module G to an OX -module F . Let U : X =

⋃
i∈I Ui and

V : Y =
⋃
j∈J Vj be open coverings. Assume that U is a refinement of f−1V : X =⋃

j∈J f
−1(Vj). In this case there exists a commutative diagram

Č•(U ,F) // RΓ(X,F)

Č•(V,G) //

γ

OO

RΓ(Y,G)

OO

in D+(OX(X)) with horizontal arrows given by Lemma 20.11.2 and right vertical
arrow by (20.14.1.1). In particular we get commutative diagrams of cohomology
groups

Ȟp(U ,F) // Hp(X,F)

Ȟp(V,G) //

γ

OO

Hp(Y,G)

OO

where the right vertical arrow is (20.14.1.2)

https://stacks.math.columbia.edu/tag/01FD
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Proof. We first define the left vertical arrow. Namely, choose a map c : I → J such
that Ui ⊂ f−1(Vc(i)) for all i ∈ I. In degree p we define the map by the rule

γ(s)i0...ip = φ(s)c(i0)...c(ip)

This makes sense because φ does indeed induce maps G(Vc(i0)...c(ip))→ F(Ui0...ip)
by assumption. It is also clear that this defines a morphism of complexes. Choose
injective resolutions F → I• on X and G → J• on Y . According to the proof of
Lemma 20.11.2 we introduce the double complexes A•,• and B•,• with terms

Bp,q = Čp(V,J q) and Ap,q = Čp(U , Iq).
As in Remark 20.14.2 above we also choose an injective resolution f∗I → (J ′)• on
Y and a morphism of complexes β : J → (J ′)• making (20.14.2.1) commutes. We
introduce some more double complexes, namely (B′)•,• and (B′′)•,• with

(B′)p,q = Čp(V, (J ′)q) and (B′′)p,q = Čp(V, f∗Iq).
Note that there is an f -map of complexes from f∗I• to I•. Hence it is clear that
the same rule as above defines a morphism of double complexes

γ : (B′′)•,• −→ A•,•.

Consider the diagram of complexes

Č•(U ,F) // Tot(A•,•) Γ(X, I•)
qis

oo

Č•(V,G) //

γ

OO

Tot(B•,•) β // Tot((B′)•,•) Tot((B′′)•,•)oo

sγ

kk

Γ(Y,J •)

qis

OO

β // Γ(Y, (J ′)•)

OO

Γ(Y, f∗I•)

OO

qisoo

The two horizontal arrows with targets Tot(A•,•) and Tot(B•,•) are the ones ex-
plained in Lemma 20.11.2. The left upper shape (a pentagon) is commutative
simply because (20.14.2.1) is commutative. The two lower squares are trivially
commutative. It is also immediate from the definitions that the right upper shape
(a square) is commutative. The result of the lemma now follows from the defini-
tions and the fact that going around the diagram on the outer sides from Č•(V,G)
to Γ(X, I•) either on top or on bottom is the same (where you have to invert any
quasi-isomorphisms along the way). □

20.16. Cohomology on Hausdorff quasi-compact spaces

09V0 For such a space Čech cohomology agrees with cohomology.

Lemma 20.16.1.09V1 Let X be a topological space. Let F be an abelian sheaf. Then
the map Ȟ1(X,F)→ H1(X,F) defined in (20.15.0.1) is an isomorphism.

Proof. Let U be an open covering of X. By Lemma 20.11.5 there is an exact
sequence

0→ Ȟ1(U ,F)→ H1(X,F)→ Ȟ0(U , H1(F))
Thus the map is injective. To show surjectivity it suffices to show that any element
of Ȟ0(U , H1(F)) maps to zero after replacing U by a refinement. This is immediate

https://stacks.math.columbia.edu/tag/09V1
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from the definitions and the fact that H1(F) is a presheaf of abelian groups whose
sheafification is zero by locality of cohomology, see Lemma 20.7.2. □

Lemma 20.16.2.09V2 Let X be a Hausdorff and quasi-compact topological space. Let
F be an abelian sheaf on X. Then the map Ȟn(X,F) → Hn(X,F) defined in
(20.15.0.1) is an isomorphism for all n.

Proof. We already know that Ȟn(X,−)→ Hn(X,−) is an isomorphism of functors
for n = 0, 1, see Lemma 20.16.1. The functors Hn(X,−) form a universal δ-functor,
see Derived Categories, Lemma 13.20.4. If we show that Ȟn(X,−) forms a universal
δ-functor and that Ȟn(X,−)→ Hn(X,−) is compatible with boundary maps, then
the map will automatically be an isomorphism by uniqueness of universal δ-functors,
see Homology, Lemma 12.12.5.
Let 0→ F → G → H → 0 be a short exact sequence of abelian sheaves on X. Let
U : X =

⋃
i∈I Ui be an open covering. This gives a complex of complexes

0→ Č•(U ,F)→ Č•(U ,G)→ Č•(U ,H)→ 0
which is in general not exact on the right. The sequence defines the maps

Ȟn(U ,F)→ Ȟn(U ,G)→ Ȟn(U ,H)
but isn’t good enough to define a boundary operator δ : Ȟn(U ,H)→ Ȟn+1(U ,F).
Indeed such a thing will not exist in general. However, given an element h ∈
Ȟn(U ,H) which is the cohomology class of a cocycle h = (hi0...in) we can choose
open coverings

Ui0...in =
⋃
Wi0...in,k

such that hi0...in |Wi0...in,k
lifts to a section of G over Wi0...in,k. By Topology, Lemma

5.13.5 (this is where we use the assumption that X is hausdorff and quasi-compact)
we can choose an open covering V : X =

⋃
j∈J Vj and α : J → I such that

Vj ⊂ Uα(j) (it is a refinement) and such that for all j0, . . . , jn ∈ J there is a k such
that Vj0...jn ⊂Wα(j0)...α(jn),k. We obtain maps of complexes

0 // Č•(U ,F)

��

// Č•(U ,G)

��

// Č•(U ,H)

��

// 0

0 // Č•(V,F) // Č•(V,G) // Č•(V,H) // 0

In fact, the vertical arrows are the maps of complexes used to define the transition
maps between the Čech cohomology groups. Our choice of refinement shows that
we may choose

gj0...jn ∈ G(Vj0...jn), gj0...jn 7−→ hα(j0)...α(jn)|Vj0...jn

The cochain g = (gj0...jn) is not a cocycle in general but we know that its Čech
boundary d(g) maps to zero in Čn+1(V,H) (by the commutative diagram above
and the fact that h is a cocycle). Hence d(g) is a cocycle in Č•(V,F). This allows
us to define

δ(h) = class of d(g) in Ȟn+1(V,F)
Now, given an element ξ ∈ Ȟn(X,G) we choose an open covering U and an element
h ∈ Ȟn(U ,G) mapping to ξ in the colimit defining Čech cohomology. Then we

https://stacks.math.columbia.edu/tag/09V2
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choose V and g as above and set δ(ξ) equal to the image of δ(h) in Ȟn(X,F). At
this point a lot of properties have to be checked, all of which are straightforward.
For example, we need to check that our construction is independent of the choice
of U , h,V, α : J → I, g. The class of d(g) is independent of the choice of the
lifts gi0...in because the difference will be a coboundary. Independence of α holds1

because a different choice of α determines homotopic vertical maps of complexes
in the diagram above, see Section 20.15. For the other choices we use that given a
finite collection of coverings of X we can always find a covering refining all of them.
We also need to check additivity which is shown in the same manner. Finally, we
need to check that the maps Ȟn(X,−)→ Hn(X,−) are compatible with boundary
maps. To do this we choose injective resolutions

0 // F //

��

G //

��

H //

��

0

0 // I•
1

// I•
2

// I•
3

// 0

as in Derived Categories, Lemma 13.18.9. This will give a commutative diagram

0 // Č•(U ,F) //

��

Č•(U ,F) //

��

Č•(U ,F) //

��

0

0 // Tot(Č•(U , I•
1 )) // Tot(Č•(U , I•

2 )) // Tot(Č•(U , I•
3 )) // 0

Here U is an open covering as above and the vertical maps are those used to define
the maps Ȟn(U ,−) → Hn(X,−), see Lemma 20.11.2. The bottom complex is
exact as the sequence of complexes of injectives is termwise split exact. Hence the
boundary map in cohomology is computed by the usual procedure for this lower
exact sequence, see Homology, Lemma 12.13.12. The same will be true after passing
to the refinement V where the boundary map for Čech cohomology was defined.
Hence the boundary maps agree because they use the same construction (whenever
the first one is defined on an element in Čech cohomology on a given covering).
This finishes our discussion of the construction of the structure of a δ-functor on
Čech cohomology and why this structure is compatible with the given δ-functor
structure on usual cohomology.

Finally, we may apply Lemma 20.11.1 to see that higher Čech cohomology is trivial
on injective sheaves. Hence we see that Čech cohomology is a universal δ-functor
by Homology, Lemma 12.12.4. □

Lemma 20.16.3.09V3 [AGV71, Expose V
bis, 4.1.3]

Let X be a topological space. Let Z ⊂ X be a quasi-compact
subset such that any two points of Z have disjoint open neighbourhoods in X. For
every abelian sheaf F on X the canonical map

colimHp(U,F) −→ Hp(Z,F|Z)

where the colimit is over open neighbourhoods U of Z in X is an isomorphism.

1This is an important check because the nonuniqueness of α is the only thing preventing
us from taking the colimit of Čech complexes over all open coverings of X to get a short exact
sequence of complexes computing Čech cohomology.

https://stacks.math.columbia.edu/tag/09V3
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Proof. We first prove this for p = 0. Injectivity follows from the definition of F|Z
and holds in general (for any subset of any topological space X). Next, suppose
that s ∈ H0(Z,F|Z). Then we can find opens Ui ⊂ X such that Z ⊂

⋃
Ui and such

that s|Z∩Ui comes from si ∈ F(Ui). It follows that there exist opens Wij ⊂ Ui ∩Uj
with Wij ∩Z = Ui ∩Uj ∩Z such that si|Wij

= sj |Wij
. Applying Topology, Lemma

5.13.7 we find opens Vi of X such that Vi ⊂ Ui and such that Vi ∩Vj ⊂Wij . Hence
we see that si|Vi glue to a section of F over the open neighbourhood

⋃
Vi of Z.

To finish the proof, it suffices to show that if I is an injective abelian sheaf on
X, then Hp(Z, I|Z) = 0 for p > 0. This follows using short exact sequences and
dimension shifting; details omitted. Thus, suppose ξ is an element of Hp(Z, I|Z)
for some p > 0. By Lemma 20.16.2 the element ξ comes from Ȟp(V, I|Z) for some
open covering V : Z =

⋃
Vi of Z. Say ξ is the image of the class of a cocycle

ξ = (ξi0...ip) in Čp(V, I|Z).

Let I ′ ⊂ I|Z be the subpresheaf defined by the rule

I ′(V ) = {s ∈ I|Z(V ) | ∃(U, t), U ⊂ X open, t ∈ I(U), V = Z ∩ U, s = t|Z∩U}

Then I|Z is the sheafification of I ′. Thus for every (p + 1)-tuple i0 . . . ip we can
find an open covering Vi0...ip =

⋃
Wi0...ip,k such that ξi0...ip |Wi0...ip,k

is a section of
I ′. Applying Topology, Lemma 5.13.5 we may after refining V assume that each
ξi0...ip is a section of the presheaf I ′.

Write Vi = Z ∩ Ui for some opens Ui ⊂ X. Since I is flasque (Lemma 20.12.2)
and since ξi0...ip is a section of I ′ for every (p + 1)-tuple i0 . . . ip we can choose a
section si0...ip ∈ I(Ui0...ip) which restricts to ξi0...ip on Vi0...ip = Z ∩ Ui0...ip . (This
appeal to injectives being flasque can be avoided by an additional application of
Topology, Lemma 5.13.7.) Let s = (si0...ip) be the corresponding cochain for the
open covering U =

⋃
Ui. Since d(ξ) = 0 we see that the sections d(s)i0...ip+1

restrict to zero on Z ∩ Ui0...ip+1 . Hence, by the initial remarks of the proof, there
exists open subsets Wi0...ip+1 ⊂ Ui0...ip+1 with Z ∩Wi0...ip+1 = Z ∩ Ui0...ip+1 such
that d(s)i0...ip+1 |Wi0...ip+1

= 0. By Topology, Lemma 5.13.7 we can find U ′
i ⊂ Ui

such that Z ⊂
⋃
U ′
i and such that U ′

i0...ip+1
⊂ Wi0...ip+1 . Then s′ = (s′

i0...ip
) with

s′
i0...ip

= si0...ip |U ′
i0...ip

is a cocycle for I for the open covering U ′ =
⋃
U ′
i of an open

neighbourhood of Z. Since I has trivial higher Čech cohomology groups (Lemma
20.11.1) we conclude that s′ is a coboundary. It follows that the image of ξ in the
Čech complex for the open covering Z =

⋃
Z ∩ U ′

i is a coboundary and we are
done. □

20.17. The base change map

02N6 We will need to know how to construct the base change map in some cases. Since
we have not yet discussed derived pullback we only discuss this in the case of a
base change by a flat morphism of ringed spaces. Before we state the result, let
us discuss flat pullback on the derived category. Namely, suppose that g : X → Y
is a flat morphism of ringed spaces. By Modules, Lemma 17.20.2 the functor
g∗ : Mod(OY )→ Mod(OX) is exact. Hence it has a derived functor

g∗ : D+(Y )→ D+(X)
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which is computed by simply pulling back an representative of a given object in
D+(Y ), see Derived Categories, Lemma 13.16.9. Hence as indicated we indicate
this functor by g∗ rather than Lg∗.

Lemma 20.17.1.02N7 Let

X ′
g′
//

f ′

��

X

f

��
S′ g // S

be a commutative diagram of ringed spaces. Let F• be a bounded below complex
of OX -modules. Assume both g and g′ are flat. Then there exists a canonical base
change map

g∗Rf∗F• −→ R(f ′)∗(g′)∗F•

in D+(S′).

Proof. Choose injective resolutions F• → I• and (g′)∗F• → J •. By Lemma
20.11.11 we see that (g′)∗J • is a complex of injectives representing R(g′)∗(g′)∗F•.
Hence by Derived Categories, Lemmas 13.18.6 and 13.18.7 the arrow β in the
diagram

(g′)∗(g′)∗F• // (g′)∗J •

F•

adjunction

OO

// I•

β

OO

exists and is unique up to homotopy. Pushing down to S we get

f∗β : f∗I• −→ f∗(g′)∗J • = g∗(f ′)∗J •

By adjunction of g∗ and g∗ we get a map of complexes g∗f∗I• → (f ′)∗J •. Note
that this map is unique up to homotopy since the only choice in the whole process
was the choice of the map β and everything was done on the level of complexes. □

Remark 20.17.2.02N8 The “correct” version of the base change map is the map

Lg∗Rf∗F• −→ R(f ′)∗L(g′)∗F•.

The construction of this map involves unbounded complexes, see Remark 20.28.3.

20.18. Proper base change in topology

09V4 In this section we prove a very general version of the proper base change theorem
in topology. It tells us that the stalks of the higher direct images Rpf∗ can be
computed on the fibre.

Lemma 20.18.1.09V5 Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let
y ∈ Y . Assume that

(1) f is closed,
(2) f is separated, and
(3) f−1(y) is quasi-compact.

Then for E in D+(OX) we have (Rf∗E)y = RΓ(f−1(y), E|f−1(y)) in D+(OY,y).

https://stacks.math.columbia.edu/tag/02N7
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Proof. The base change map of Lemma 20.17.1 gives a canonical map (Rf∗E)y →
RΓ(f−1(y), E|f−1(y)). To prove this map is an isomorphism, we represent E by a
bounded below complex of injectives I•. Set Z = f−1({y}). The assumptions of
Lemma 20.16.3 are satisfied, see Topology, Lemma 5.4.2. Hence the restrictions
In|Z are acyclic for Γ(Z,−). Thus RΓ(Z,E|Z) is represented by the complex
Γ(Z, I•|Z), see Derived Categories, Lemma 13.16.7. In other words, we have to
show the map

colimV I•(f−1(V )) −→ Γ(Z, I•|Z)
is an isomorphism. Using Lemma 20.16.3 we see that it suffices to show that the
collection of open neighbourhoods f−1(V ) of Z = f−1({y}) is cofinal in the system
of all open neighbourhoods. If f−1({y}) ⊂ U is an open neighbourhood, then as f
is closed the set V = Y \f(X \U) is an open neighbourhood of y with f−1(V ) ⊂ U .
This proves the lemma. □

Theorem 20.18.2 (Proper base change).09V6 [AGV71, Expose V
bis, 4.1.1]

Consider a cartesian square of topological
spaces

X ′ = Y ′ ×Y X

f ′

��

g′
// X

f

��
Y ′ g // Y

Assume that f is proper. Let E be an object of D+(X). Then the base change
map

g−1Rf∗E −→ Rf ′
∗(g′)−1E

of Lemma 20.17.1 is an isomorphism in D+(Y ′).

Proof. Let y′ ∈ Y ′ be a point with image y ∈ Y . It suffices to show that the base
change map induces an isomorphism on stalks at y′. As f is proper it follows that
f ′ is proper, the fibres of f and f ′ are quasi-compact and f and f ′ are closed, see
Topology, Theorem 5.17.5 and Lemma 5.4.4. Thus we can apply Lemma 20.18.1
twice to see that

(Rf ′
∗(g′)−1E)y′ = RΓ((f ′)−1(y′), (g′)−1E|(f ′)−1(y′))

and
(Rf∗E)y = RΓ(f−1(y), E|f−1(y))

The induced map of fibres (f ′)−1(y′)→ f−1(y) is a homeomorphism of topological
spaces and the pull back of E|f−1(y) is (g′)−1E|(f ′)−1(y′). The desired result follows.

□

Lemma 20.18.3 (Proper base change for sheaves of sets).0D90 Consider a cartesian
square of topological spaces

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

Assume that f is proper. Then g−1f∗F = f ′
∗(g′)−1F for any sheaf of sets F on X.

https://stacks.math.columbia.edu/tag/09V6
https://stacks.math.columbia.edu/tag/0D90
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Proof. We argue exactly as in the proof of Theorem 20.18.2 and we find it suffices
to show (f∗F)y = Γ(Xy,F|Xy ). Then we argue as in Lemma 20.18.1 to reduce this
to the p = 0 case of Lemma 20.16.3 for sheaves of sets. The first part of the proof
of Lemma 20.16.3 works for sheaves of sets and this finishes the proof. Some details
omitted. □

20.19. Cohomology and colimits

01FE Let X be a ringed space. Let (Fi, φii′) be a system of sheaves of OX -modules over
the directed set I, see Categories, Section 4.21. Since for each i there is a canonical
map Fi → colimi Fi we get a canonical map

colimiH
p(X,Fi) −→ Hp(X, colimi Fi)

for every p ≥ 0. Of course there is a similar map for every open U ⊂ X. These
maps are in general not isomorphisms, even for p = 0. In this section we generalize
the results of Sheaves, Lemma 6.29.1. See also Modules, Lemma 17.22.8 (in the
special case G = OX).

Lemma 20.19.1.01FF Let X be a ringed space. Assume that the underlying topological
space of X has the following properties:

(1) there exists a basis of quasi-compact open subsets, and
(2) the intersection of any two quasi-compact opens is quasi-compact.

Then for any directed system (Fi, φii′) of sheaves of OX -modules and for any quasi-
compact open U ⊂ X the canonical map

colimiH
q(U,Fi) −→ Hq(U, colimi Fi)

is an isomorphism for every q ≥ 0.

Proof. It is important in this proof to argue for all quasi-compact opens U ⊂ X at
the same time. The result is true for q = 0 and any quasi-compact open U ⊂ X
by Sheaves, Lemma 6.29.1 (combined with Topology, Lemma 5.27.1). Assume that
we have proved the result for all q ≤ q0 and let us prove the result for q = q0 + 1.

By our conventions on directed systems the index set I is directed, and any system of
OX -modules (Fi, φii′) over I is directed. By Injectives, Lemma 19.5.1 the category
of OX -modules has functorial injective embeddings. Thus for any system (Fi, φii′)
there exists a system (Ii, φii′) with each Ii an injective OX -module and a morphism
of systems given by injective OX -module maps Fi → Ii. Denote Qi the cokernel
so that we have short exact sequences

0→ Fi → Ii → Qi → 0.

We claim that the sequence

0→ colimi Fi → colimi Ii → colimiQi → 0.

is also a short exact sequence of OX -modules. We may check this on stalks. By
Sheaves, Sections 6.28 and 6.29 taking stalks commutes with colimits. Since a di-
rected colimit of short exact sequences of abelian groups is short exact (see Algebra,
Lemma 10.8.8) we deduce the result. We claim that Hq(U, colimi Ii) = 0 for all

https://stacks.math.columbia.edu/tag/01FF
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quasi-compact open U ⊂ X and all q ≥ 1. Accepting this claim for the moment
consider the diagram

colimiH
q0(U, Ii)

��

// colimiH
q0(U,Qi)

��

// colimiH
q0+1(U,Fi)

��

// 0

��
Hq0(U, colimi Ii) // Hq0(U, colimiQi) // Hq0+1(U, colimi Fi) // 0

The zero at the lower right corner comes from the claim and the zero at the upper
right corner comes from the fact that the sheaves Ii are injective. The top row is
exact by an application of Algebra, Lemma 10.8.8. Hence by the snake lemma we
deduce the result for q = q0 + 1.

It remains to show that the claim is true. We will use Lemma 20.11.9. Let B
be the collection of all quasi-compact open subsets of X. This is a basis for the
topology on X by assumption. Let Cov be the collection of finite open coverings
U : U =

⋃
j=1,...,m Uj with each of U , Uj quasi-compact open in X. By the result

for q = 0 we see that for U ∈ Cov we have

Č•(U , colimi Ii) = colimi Č•(U , Ii)

because all the multiple intersections Uj0...jp are quasi-compact. By Lemma 20.11.1
each of the complexes in the colimit of Čech complexes is acyclic in degree ≥ 1.
Hence by Algebra, Lemma 10.8.8 we see that also the Čech complex Č•(U , colimi Ii)
is acyclic in degrees ≥ 1. In other words we see that Ȟp(U , colimi Ii) = 0 for
all p ≥ 1. Thus the assumptions of Lemma 20.11.9 are satisfied and the claim
follows. □

Next we formulate the analogy of Sheaves, Lemma 6.29.4 for cohomology. Let X
be a spectral space which is written as a cofiltered limit of spectral spaces Xi for a
diagram with spectral transition morphisms as in Topology, Lemma 5.24.5. Assume
given

(1) an abelian sheaf Fi on Xi for all i ∈ Ob(I),
(2) for a : j → i an fa-map φa : Fi → Fj of abelian sheaves (see Sheaves,

Definition 6.21.7)
such that φc = φb ◦ φa whenever c = a ◦ b. Set F = colim p−1

i Fi on X.

Lemma 20.19.2.0A37 In the situation discussed above. Let i ∈ Ob(I) and let Ui ⊂ Xi

be quasi-compact open. Then

colima:j→iH
p(f−1

a (Ui),Fj) = Hp(p−1
i (Ui),F)

for all p ≥ 0. In particular we have Hp(X,F) = colimHp(Xi,Fi).

Proof. The case p = 0 is Sheaves, Lemma 6.29.4.

In this paragraph we show that we can find a map of systems (γi) : (Fi, φa) →
(Gi, ψa) with Gi an injective abelian sheaf and γi injective. For each i we pick an
injection Fi → Ii where Ii is an injective abelian sheaf on Xi. Then we can consider
the family of maps

γi : Fi −→
∏

b:k→i
fb,∗Ik = Gi

https://stacks.math.columbia.edu/tag/0A37
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where the component maps are the maps adjoint to the maps f−1
b Fi → Fk → Ik.

For a : j → i in I there is a canonical map
ψa : f−1

a Gi → Gj
whose components are the canonical maps f−1

b fa◦b,∗Ik → fb,∗Ik for b : k → j.
Thus we find an injection {γi} : {Fi, φa)→ (Gi, ψa) of systems of abelian sheaves.
Note that Gi is an injective sheaf of abelian groups on Xi, see Lemma 20.11.11 and
Homology, Lemma 12.27.3. This finishes the construction.
Arguing exactly as in the proof of Lemma 20.19.1 we see that it suffices to prove
that Hp(X, colim f−1

i Gi) = 0 for p > 0.

Set G = colim f−1
i Gi. To show vanishing of cohomology of G on every quasi-compact

open of X, it suffices to show that the Čech cohomology of G for any covering U
of a quasi-compact open of X by finitely many quasi-compact opens is zero, see
Lemma 20.11.9. Such a covering is the inverse by pi of such a covering Ui on the
space Xi for some i by Topology, Lemma 5.24.6. We have

Č•(U ,G) = colima:j→i Č•(f−1
a (Ui),Gj)

by the case p = 0. The right hand side is a filtered colimit of complexes each
of which is acyclic in positive degrees by Lemma 20.11.1. Thus we conclude by
Algebra, Lemma 10.8.8. □

20.20. Vanishing on Noetherian topological spaces

02UU The aim is to prove a theorem of Grothendieck namely Proposition 20.20.7. See
[Gro57].

Lemma 20.20.1.02UV Let i : Z → X be a closed immersion of topological spaces. For
any abelian sheaf F on Z we have Hp(Z,F) = Hp(X, i∗F).

Proof. This is true because i∗ is exact (see Modules, Lemma 17.6.1), and hence
Rpi∗ = 0 as a functor (Derived Categories, Lemma 13.16.9). Thus we may apply
Lemma 20.13.6. □

Lemma 20.20.2.02UW Let X be an irreducible topological space. Then Hp(X,A) = 0
for all p > 0 and any abelian group A.

Proof. Recall that A is the constant sheaf as defined in Sheaves, Definition 6.7.4.
Since X is irreducible, any nonempty open U is irreducible and a fortiori connected.
Hence for U ⊂ X nonempty open we have A(U) = A. We have A(∅) = 0. Thus A
is a flasque abelian sheaf on X. The vanishing follows from Lemma 20.12.3. □

Lemma 20.20.3.0A38 [Gro57, Page 168].Let X be a topological space such that the intersection of any
two quasi-compact opens is quasi-compact. Let F ⊂ Z be a subsheaf generated by
finitely many sections over quasi-compact opens. Then there exists a finite filtration

(0) = F0 ⊂ F1 ⊂ . . . ⊂ Fn = F
by abelian subsheaves such that for each 0 < i ≤ n there exists a short exact
sequence

0→ j′
!ZV → j!ZU → Fi/Fi−1 → 0

with j : U → X and j′ : V → X the inclusion of quasi-compact opens into X.

https://stacks.math.columbia.edu/tag/02UV
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Proof. Say F is generated by the sections s1, . . . , st over the quasi-compact opens
U1, . . . , Ut. Since Ui is quasi-compact and si a locally constant function to Z we may
assume, after possibly replacing Ui by the parts of a finite decomposition into open
and closed subsets, that si is a constant section. Say si = ni with ni ∈ Z. Of course
we can remove (Ui, ni) from the list if ni = 0. Flipping signs if necessary we may
also assume ni > 0. Next, for any subset I ⊂ {1, . . . , t} we may add

⋂
i∈I Ui and

gcd(ni, i ∈ I) to the list. After doing this we see that our list (U1, n1), . . . , (Ut, nt)
satisfies the following property: For x ∈ X set Ix = {i ∈ {1, . . . , t} | x ∈ Ui}. Then
gcd(ni, i ∈ Ix) is attained by ni for some i ∈ Ix.
As our filtration we take F0 = (0) and Fn generated by the sections ni over Ui for
those i such that ni ≤ n. It is clear that Fn = F for n≫ 0. Moreover, the quotient
Fn/Fn−1 is generated by the section n over U =

⋃
ni≤n Ui and the kernel of the

map j!ZU → Fn/Fn−1 is generated by the section n over V =
⋃
ni≤n−1 Ui. Thus a

short exact sequence as in the statement of the lemma. □

Lemma 20.20.4.02UX This is a special
case of [Gro57,
Proposition 3.6.1].

Let X be a topological space. Let d ≥ 0 be an integer. Assume
(1) X is quasi-compact,
(2) the quasi-compact opens form a basis for X, and
(3) the intersection of two quasi-compact opens is quasi-compact.
(4) Hp(X, j!ZU ) = 0 for all p > d and any quasi-compact open j : U → X.

Then Hp(X,F) = 0 for all p > d and any abelian sheaf F on X.

Proof. Let S =
∐
U⊂X F(U) where U runs over the quasi-compact opens of X. For

any finite subset A = {s1, . . . , sn} ⊂ S, let FA be the subsheaf of F generated by
all si (see Modules, Definition 17.4.5). Note that if A ⊂ A′, then FA ⊂ FA′ . Hence
{FA} forms a system over the directed partially ordered set of finite subsets of S.
By Modules, Lemma 17.4.6 it is clear that

colimA FA = F
by looking at stalks. By Lemma 20.19.1 we have

Hp(X,F) = colimAH
p(X,FA)

Hence it suffices to prove the vanishing for the abelian sheaves FA. In other words,
it suffices to prove the result when F is generated by finitely many local sections
over quasi-compact opens of X.
Suppose that F is generated by the local sections s1, . . . , sn. Let F ′ ⊂ F be the
subsheaf generated by s1, . . . , sn−1. Then we have a short exact sequence

0→ F ′ → F → F/F ′ → 0
From the long exact sequence of cohomology we see that it suffices to prove the
vanishing for the abelian sheaves F ′ and F/F ′ which are generated by fewer than
n local sections. Hence it suffices to prove the vanishing for sheaves generated by
at most one local section. These sheaves are exactly the quotients of the sheaves
j!ZU where U is a quasi-compact open of X.
Assume now that we have a short exact sequence

0→ K → j!ZU → F → 0
with U quasi-compact open in X. It suffices to show that Hq(X,K) is zero for
q ≥ d+1. As above we can write K as the filtered colimit of subsheaves K′ generated

https://stacks.math.columbia.edu/tag/02UX
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by finitely many sections over quasi-compact opens. Then F is the filtered colimit
of the sheaves j!ZU/K′. In this way we reduce to the case that K is generated
by finitely many sections over quasi-compact opens. Note that K is a subsheaf of
ZX . Thus by Lemma 20.20.3 there exists a finite filtration of K whose successive
quotients Q fit into a short exact sequence

0→ j′′
! ZW → j′

!ZV → Q→ 0
with j′′ : W → X and j′ : V → X the inclusions of quasi-compact opens. Hence
the vanishing of Hp(X,Q) for p > d follows from our assumption (in the lemma)
on the vanishing of the cohomology groups of j′′

! ZW and j′
!ZV . Returning to K

this, via an induction argument using the long exact cohomology sequence, implies
the desired vanishing for it as well. □

Example 20.20.5.0BX0 Let X = N endowed with the topology whose opens are ∅, X,
and Un = {i | i ≤ n} for n ≥ 1. An abelian sheaf F on X is the same as an inverse
system of abelian groups An = F(Un) and Γ(X,F) = limAn. Since the inverse
limit functor is not an exact functor on the category of inverse systems, we see
that there is an abelian sheaf with nonzero H1. Finally, the reader can check that
Hp(X, j!ZU ) = 0, p ≥ 1 if j : U = Un → X is the inclusion. Thus we see that X is
an example of a space satisfying conditions (2), (3), and (4) of Lemma 20.20.4 for
d = 0 but not the conclusion.

Lemma 20.20.6.02UY Let X be an irreducible topological space. Let H ⊂ Z be an
abelian subsheaf of the constant sheaf. Then there exists a nonempty open U ⊂ X
such that H|U = dZU for some d ∈ Z.

Proof. Recall that Z(V ) = Z for any nonempty open V of X (see proof of Lemma
20.20.2). If H = 0, then the lemma holds with d = 0. If H ≠ 0, then there exists
a nonempty open U ⊂ X such that H(U) ̸= 0. Say H(U) = nZ for some n ≥ 1.
Hence we see that nZU ⊂ H|U ⊂ ZU . If the first inclusion is strict we can find a
nonempty U ′ ⊂ U and an integer 1 ≤ n′ < n such that n′ZU ′ ⊂ H|U ′ ⊂ ZU ′ . This
process has to stop after a finite number of steps, and hence we get the lemma. □

Proposition 20.20.7 (Grothendieck).02UZ [Gro57, Theorem
3.6.5].

Let X be a Noetherian topological space. If
dim(X) ≤ d, then Hp(X,F) = 0 for all p > d and any abelian sheaf F on X.

Proof. We prove this lemma by induction on d. So fix d and assume the lemma
holds for all Noetherian topological spaces of dimension < d.
Let F be an abelian sheaf on X. Suppose U ⊂ X is an open. Let Z ⊂ X denote
the closed complement. Denote j : U → X and i : Z → X the inclusion maps.
Then there is a short exact sequence

0→ j!j
∗F → F → i∗i

∗F → 0
see Modules, Lemma 17.7.1. Note that j!j

∗F is supported on the topological closure
Z ′ of U , i.e., it is of the form i′∗F ′ for some abelian sheaf F ′ on Z ′, where i′ : Z ′ → X
is the inclusion.
We can use this to reduce to the case where X is irreducible. Namely, according
to Topology, Lemma 5.9.2 X has finitely many irreducible components. If X has
more than one irreducible component, then let Z ⊂ X be an irreducible component
of X and set U = X \Z. By the above, and the long exact sequence of cohomology,
it suffices to prove the vanishing of Hp(X, i∗i∗F) and Hp(X, i′∗F ′) for p > d. By

https://stacks.math.columbia.edu/tag/0BX0
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Lemma 20.20.1 it suffices to prove Hp(Z, i∗F) and Hp(Z ′,F ′) vanish for p > d.
Since Z ′ and Z have fewer irreducible components we indeed reduce to the case of
an irreducible X.
If d = 0 and X is irreducible, then X is the only nonempty open subset of X.
Hence every sheaf is constant and higher cohomology groups vanish (for example
by Lemma 20.20.2).
Suppose X is irreducible of dimension d > 0. By Lemma 20.20.4 we reduce to the
case where F = j!ZU for some open U ⊂ X. In this case we look at the short exact
sequence

0→ j!(ZU )→ ZX → i∗ZZ → 0
where Z = X \ U . By Lemma 20.20.2 we have the vanishing of Hp(X,ZX) for all
p ≥ 1. By induction we have Hp(X, i∗ZZ) = Hp(Z,ZZ) = 0 for p ≥ d. Hence we
win by the long exact cohomology sequence. □

20.21. Cohomology with support in a closed subset

0A39 This section just discusses the bare minimum – the discussion will be continued in
Section 20.34.
Let X be a topological space and let Z ⊂ X be a closed subset. Let F be an abelian
sheaf on X. We let

ΓZ(X,F) = {s ∈ F(X) | Supp(s) ⊂ Z}
be the subset of sections whose support is contained in Z. The support of a sec-
tion is defined in Modules, Definition 17.5.1. Modules, Lemma 17.5.2 implies that
ΓZ(X,F) is a subgroup of Γ(X,F). The same lemma guarantees that the assign-
ment F 7→ ΓZ(X,F) is a functor in F . This functor is left exact but not exact in
general.
Since the category of abelian sheaves has enough injectives (Injectives, Lemma
19.4.1) we we obtain a right derived functor

RΓZ(X,−) : D+(X) −→ D+(Ab)
by Derived Categories, Lemma 13.20.2. The value of RΓZ(X,−) on an object
K is computed by representing K by a bounded below complex I• of injective
abelian sheaves and taking ΓZ(X, I•), see Derived Categories, Lemma 13.20.1. The
cohomology groups of an abelian sheaf F with support in Z defined by Hq

Z(X,F) =
RqΓZ(X,F).
Let I be an injective abelian sheaf on X. Let U = X \Z. Then the restriction map
I(X) → I(U) is surjective (Lemma 20.8.1) with kernel ΓZ(X, I). It immediately
follows that for K ∈ D+(X) there is a distinguished triangle

RΓZ(X,K)→ RΓ(X,K)→ RΓ(U,K)→ RΓZ(X,K)[1]
in D+(Ab). As a consequence we obtain a long exact cohomology sequence

. . .→ Hi
Z(X,K)→ Hi(X,K)→ Hi(U,K)→ Hi+1

Z (X,K)→ . . .

for any K in D+(X).
For an abelian sheaf F on X we can consider the subsheaf of sections with support
in Z, denoted HZ(F), defined by the rule

HZ(F)(U) = {s ∈ F(U) | Supp(s) ⊂ U ∩ Z} = ΓZ∩U (U,F|U )
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Using the equivalence of Modules, Lemma 17.6.1 we may view HZ(F) as an abelian
sheaf on Z, see Modules, Remark 17.6.2. Thus we obtain a functor

Ab(X) −→ Ab(Z), F 7−→ HZ(F) viewed as a sheaf on Z

This functor is left exact, but in general not exact. Exactly as above we obtain a
right derived functor

RHZ : D+(X) −→ D+(Z)
the derived functor. We set HqZ(F) = RqHZ(F) so that H0

Z(F) = HZ(F).
Observe that we have ΓZ(X,F) = Γ(Z,HZ(F)) for any abelian sheaf F . By
Lemma 20.21.1 below the functor HZ transforms injective abelian sheaves into
sheaves right acyclic for Γ(Z,−). Thus by Derived Categories, Lemma 13.22.2 we
obtain a convergent Grothendieck spectral sequence

Ep,q2 = Hp(Z,HqZ(K))⇒ Hp+q
Z (X,K)

functorial in K in D+(X).
Lemma 20.21.1.0A3A Let i : Z → X be the inclusion of a closed subset. Let I be an
injective abelian sheaf on X. Then HZ(I) is an injective abelian sheaf on Z.
Proof. This follows from Homology, Lemma 12.29.1 as HZ(−) is right adjoint to
the exact functor i∗. See Modules, Lemmas 17.6.1 and 17.6.3. □

20.22. Cohomology on spectral spaces

0A3C A key result on the cohomology of spectral spaces is Lemma 20.19.2 which loosely
speaking says that cohomology commutes with cofiltered limits in the category of
spectral spaces as defined in Topology, Definition 5.23.1. This can be applied to
give analogues of Lemmas 20.16.3 and 20.18.1 as follows.
Lemma 20.22.1.0A3D Let X be a spectral space. Let F be an abelian sheaf on X. Let
E ⊂ X be a quasi-compact subset. Let W ⊂ X be the set of points of X which
specialize to a point of E.

(1) Hp(W,F|W ) = colimHp(U,F) where the colimit is over quasi-compact
open neighbourhoods of E,

(2) Hp(W\E,F|W\E) = colimHp(U\E,F|U\E) if E is a constructible subset.
Proof. From Topology, Lemma 5.24.7 we see that W = limU where the limit is over
the quasi-compact opens containing E. Each U is a spectral space by Topology,
Lemma 5.23.5. Thus we may apply Lemma 20.19.2 to conclude that (1) holds. The
same proof works for part (2) except we use Topology, Lemma 5.24.8. □

Lemma 20.22.2.0A3E Let f : X → Y be a spectral map of spectral spaces. Let y ∈ Y .
Let E ⊂ Y be the set of points specializing to y. Let F be an abelian sheaf on X.
Then (Rpf∗F)y = Hp(f−1(E),F|f−1(E)).
Proof. Observe that E =

⋂
V where V runs over the quasi-compact open neigh-

bourhoods of y in Y . Hence f−1(E) =
⋂
f−1(V ). This implies that f−1(E) =

lim f−1(V ) as topological spaces. Since f is spectral, each f−1(V ) is a spectral
space too (Topology, Lemma 5.23.5). We conclude that f−1(E) is a spectral space
and that

Hp(f−1(E),F|f−1(E)) = colimHp(f−1(V ),F)
by Lemma 20.19.2. On the other hand, the stalk of Rpf∗F at y is given by the
colimit on the right. □
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Lemma 20.22.3.0A3F Let X be a profinite topological space. Then Hq(X,F) = 0 for
all q > 0 and all abelian sheaves F .

Proof. Any open covering of X can be refined by a finite disjoint union decomposi-
tion with open parts, see Topology, Lemma 5.22.4. Hence if F → G is a surjection
of abelian sheaves on X, then F(X) → G(X) is surjective. In other words, the
global sections functor is an exact functor. Therefore its higher derived functors
are zero, see Derived Categories, Lemma 13.16.9. □

The following result on cohomological vanishing improves Grothendieck’s result
(Proposition 20.20.7) and can be found in [Sch92].

Proposition 20.22.4.0A3G Part (1) is the main
theorem of [Sch92].

Let X be a spectral space of Krull dimension d. Let F be an
abelian sheaf on X.

(1) Hq(X,F) = 0 for q > d,
(2) Hd(X,F)→ Hd(U,F) is surjective for every quasi-compact open U ⊂ X,
(3) Hq

Z(X,F) = 0 for q > d and any constructible closed subset Z ⊂ X.

Proof. We prove this result by induction on d.

If d = 0, then X is a profinite space, see Topology, Lemma 5.23.8. Thus (1) holds by
Lemma 20.22.3. If U ⊂ X is quasi-compact open, then U is also closed as a quasi-
compact subset of a Hausdorff space. Hence X = U⨿(X \U) as a topological space
and we see that (2) holds. Given Z as in (3) we consider the long exact sequence

Hq−1(X,F)→ Hq−1(X \ Z,F)→ Hq
Z(X,F)→ Hq(X,F)

Since X and U = X \ Z are profinite (namely U is quasi-compact because Z is
constructible) and since we have (2) and (1) we obtain the desired vanishing of the
cohomology groups with support in Z.

Induction step. Assume d ≥ 1 and assume the proposition is valid for all spectral
spaces of dimension < d. We first prove part (2) for X. Let U be a quasi-compact
open. Let ξ ∈ Hd(U,F). Set Z = X \ U . Let W ⊂ X be the set of points
specializing to Z. By Lemma 20.22.1 we have

Hd(W \ Z,F|W\Z) = colimZ⊂V H
d(V \ Z,F)

where the colimit is over the quasi-compact open neighbourhoods V of Z in X.
By Topology, Lemma 5.24.7 we see that W \ Z is a spectral space. Since every
point of W specializes to a point of Z, we see that W \ Z is a spectral space
of Krull dimension < d. By induction hypothesis we see that the image of ξ in
Hd(W \ Z,F|W\Z) is zero. By the displayed formula, there exists a Z ⊂ V ⊂ X
quasi-compact open such that ξ|V \Z = 0. Since V \ Z = V ∩ U we conclude by
the Mayer-Vietoris (Lemma 20.8.2) for the covering X = U ∪ V that there exists a
ξ̃ ∈ Hd(X,F) which restricts to ξ on U and to zero on V . In other words, part (2)
is true.

Proof of part (1) assuming (2). Choose an injective resolution F → I•. Set

G = Im(Id−1 → Id) = Ker(Id → Id+1)

https://stacks.math.columbia.edu/tag/0A3F
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For U ⊂ X quasi-compact open we have a map of exact sequences as follows

Id−1(X) //

��

G(X) //

��

Hd(X,F)

��

// 0

Id−1(U) // G(U) // Hd(U,F) // 0

The sheaf Id−1 is flasque by Lemma 20.12.2 and the fact that d ≥ 1. By part
(2) we see that the right vertical arrow is surjective. We conclude by a diagram
chase that the map G(X) → G(U) is surjective. By Lemma 20.12.6 we conclude
that Ȟq(U ,G) = 0 for q > 0 and any finite covering U : U = U1 ∪ . . . ∪ Un of
a quasi-compact open by quasi-compact opens. Applying Lemma 20.11.9 we find
that Hq(U,G) = 0 for all q > 0 and all quasi-compact opens U of X. By Leray’s
acyclicity lemma (Derived Categories, Lemma 13.16.7) we conclude that

Hq(X,F) = Hq
(
Γ(X, I0)→ . . .→ Γ(X, Id−1)→ Γ(X,G)

)
In particular the cohomology group vanishes if q > d.
Proof of (3). Given Z as in (3) we consider the long exact sequence

Hq−1(X,F)→ Hq−1(X \ Z,F)→ Hq
Z(X,F)→ Hq(X,F)

Since X and U = X \Z are spectral spaces (Topology, Lemma 5.23.5) of dimension
≤ d and since we have (2) and (1) we obtain the desired vanishing. □

20.23. The alternating Čech complex

01FG This section compares the Čech complex with the alternating Čech complex and
some related complexes.
Let X be a topological space. Let U : U =

⋃
i∈I Ui be an open covering. For p ≥ 0

set

Čpalt(U ,F) =
{
s ∈ Čp(U ,F) such that si0...ip = 0 if in = im for some n ̸= m

and si0...in...im...ip = −si0...im...in...ip in any case.

}
We omit the verification that the differential d of Equation (20.9.0.1) maps Čpalt(U ,F)
into Čp+1

alt (U ,F).

Definition 20.23.1.01FH Let X be a topological space. Let U : U =
⋃
i∈I Ui be an

open covering. Let F be an abelian presheaf on X. The complex Č•
alt(U ,F) is the

alternating Čech complex associated to F and the open covering U .

Hence there is a canonical morphism of complexes
Č•
alt(U ,F) −→ Č•(U ,F)

namely the inclusion of the alternating Čech complex into the usual Čech complex.
Suppose our covering U : U =

⋃
i∈I Ui comes equipped with a total ordering < on

I. In this case, set

Čpord(U ,F) =
∏

(i0,...,ip)∈Ip+1,i0<...<ip
F(Ui0...ip).

This is an abelian group. For s ∈ Čpord(U ,F) we denote si0...ip its value in F(Ui0...ip).
We define

d : Čpord(U ,F) −→ Čp+1
ord (U ,F)

https://stacks.math.columbia.edu/tag/01FH
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by the formula

d(s)i0...ip+1 =
∑p+1

j=0
(−1)jsi0...̂ij ...ip+1

|Ui0...ip+1

for any i0 < . . . < ip+1. Note that this formula is identical to Equation (20.9.0.1).
It is straightforward to see that d ◦ d = 0. In other words Č•

ord(U ,F) is a complex.

Definition 20.23.2.01FI Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open

covering. Assume given a total ordering on I. Let F be an abelian presheaf on
X. The complex Č•

ord(U ,F) is the ordered Čech complex associated to F , the open
covering U and the given total ordering on I.

This complex is sometimes called the alternating Čech complex. The reason is that
there is an obvious comparison map between the ordered Čech complex and the
alternating Čech complex. Namely, consider the map

c : Č•
ord(U ,F) −→ Č•(U ,F)

given by the rule

c(s)i0...ip =
{

0 if in = im for some n ̸= m
sgn(σ)siσ(0)...iσ(p) if iσ(0) < iσ(1) < . . . < iσ(p)

Here σ denotes a permutation of {0, . . . , p} and sgn(σ) denotes its sign. The al-
ternating and ordered Čech complexes are often identified in the literature via the
map c. Namely we have the following easy lemma.

Lemma 20.23.3.01FJ Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open

covering. Assume I comes equipped with a total ordering. The map c is a morphism
of complexes. In fact it induces an isomorphism

c : Č•
ord(U ,F)→ Č•

alt(U ,F)

of complexes.

Proof. Omitted. □

There is also a map
π : Č•(U ,F) −→ Č•

ord(U ,F)
which is described by the rule

π(s)i0...ip = si0...ip

whenever i0 < i1 < . . . < ip.

Lemma 20.23.4.01FK Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open

covering. Assume I comes equipped with a total ordering. The map π : Č•(U ,F)→
Č•
ord(U ,F) is a morphism of complexes. It induces an isomorphism

π : Č•
alt(U ,F)→ Č•

ord(U ,F)

of complexes which is a left inverse to the morphism c.

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/01FI
https://stacks.math.columbia.edu/tag/01FJ
https://stacks.math.columbia.edu/tag/01FK
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Remark 20.23.5.01FL This means that if we have two total orderings <1 and <2 on the
index set I, then we get an isomorphism of complexes τ = π2 ◦ c1 : Čord-1(U ,F)→
Čord-2(U ,F). It is clear that

τ(s)i0...ip = sign(σ)siσ(0)...iσ(p)

where i0 <1 i1 <1 . . . <1 ip and iσ(0) <2 iσ(1) <2 . . . <2 iσ(p). This is the sense in
which the ordered Čech complex is independent of the chosen total ordering.

Lemma 20.23.6.01FM Let X be a topological space. Let U : U =
⋃
i∈I Ui be an

open covering. Assume I comes equipped with a total ordering. The map c ◦ π is
homotopic to the identity on Č•(U ,F). In particular the inclusion map Č•

alt(U ,F)→
Č•(U ,F) is a homotopy equivalence.

Proof. For any multi-index (i0, . . . , ip) ∈ Ip+1 there exists a unique permutation
σ : {0, . . . , p} → {0, . . . , p} such that

iσ(0) ≤ iσ(1) ≤ . . . ≤ iσ(p) and σ(j) < σ(j + 1) if iσ(j) = iσ(j+1).

We denote this permutation σ = σi0...ip .
For any permutation σ : {0, . . . , p} → {0, . . . , p} and any a, 0 ≤ a ≤ p we denote
σa the permutation of {0, . . . , p} such that

σa(j) =
{

σ(j) if 0 ≤ j < a,
min{j′ | j′ > σa(j − 1), j′ ̸= σ(k),∀k < a} if a ≤ j

So if p = 3 and σ, τ are given by
id 0 1 2 3
σ 3 2 1 0 and id 0 1 2 3

τ 3 0 2 1
then we have

id 0 1 2 3
σ0 0 1 2 3
σ1 3 0 1 2
σ2 3 2 0 1
σ3 3 2 1 0

and

id 0 1 2 3
τ0 0 1 2 3
τ1 3 0 1 2
τ2 3 0 1 2
τ3 3 0 2 1

It is clear that always σ0 = id and σp = σ.

Having introduced this notation we define for s ∈ Čp+1(U ,F) the element h(s) ∈
Čp(U ,F) to be the element with components

(20.23.6.1)01FN h(s)i0...ip =
∑

0≤a≤p
(−1)asign(σa)siσ(0)...iσ(a)iσa(a)...iσa(p)

where σ = σi0...ip . The index iσ(a) occurs twice in iσ(0) . . . iσ(a)iσa(a) . . . iσa(p) once
in the first group of a+ 1 indices and once in the second group of p− a+ 1 indices
since σa(j) = σ(a) for some j ≥ a by definition of σa. Hence the sum makes sense
since each of the elements siσ(0)...iσ(a)iσa(a)...iσa(p) is defined over the open Ui0...ip .
Note also that for a = 0 we get si0...ip and for a = p we get (−1)psign(σ)siσ(0)...iσ(p) .
We claim that

(dh+ hd)(s)i0...ip = si0...ip − sign(σ)siσ(0)...iσ(p)

where σ = σi0...ip . We omit the verification of this claim. (There is a PARI/gp
script called first-homotopy.gp in the stacks-project subdirectory scripts which can

https://stacks.math.columbia.edu/tag/01FL
https://stacks.math.columbia.edu/tag/01FM
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be used to check finitely many instances of this claim. We wrote this script to make
sure the signs are correct.) Write

κ : Č•(U ,F) −→ Č•(U ,F)
for the operator given by the rule

κ(s)i0...ip = sign(σi0...ip)siσ(0)...iσ(p) .

The claim above implies that κ is a morphism of complexes and that κ is homotopic
to the identity map of the Čech complex. This does not immediately imply the
lemma since the image of the operator κ is not the alternating subcomplex. Namely,
the image of κ is the “semi-alternating” complex Čpsemi-alt(U ,F) where s is a p-
cochain of this complex if and only if

si0...ip = sign(σ)siσ(0)...iσ(p)

for any (i0, . . . , ip) ∈ Ip+1 with σ = σi0...ip . We introduce yet another variant Čech
complex, namely the semi-ordered Čech complex defined by

Čpsemi-ord(U ,F) =
∏

i0≤i1≤...≤ip
F(Ui0...ip)

It is easy to see that Equation (20.9.0.1) also defines a differential and hence that
we get a complex. It is also clear (analogous to Lemma 20.23.4) that the projection
map

Č•
semi-alt(U ,F) −→ Č•

semi-ord(U ,F)
is an isomorphism of complexes.
Hence the Lemma follows if we can show that the obvious inclusion map

Čpord(U ,F) −→ Čpsemi-ord(U ,F)
is a homotopy equivalence. To see this we use the homotopy
(20.23.6.2)

01FO h(s)i0...ip =
{

0 if i0 < i1 < . . . < ip
(−1)asi0...ia−1iaiaia+1...ip if i0 < i1 < . . . < ia−1 < ia = ia+1

We claim that

(dh+ hd)(s)i0...ip =
{

0 if i0 < i1 < . . . < ip
si0...ip else

We omit the verification. (There is a PARI/gp script called second-homotopy.gp
in the stacks-project subdirectory scripts which can be used to check finitely many
instances of this claim. We wrote this script to make sure the signs are correct.)
The claim clearly shows that the composition

Č•
semi-ord(U ,F) −→ Č•

ord(U ,F) −→ Č•
semi-ord(U ,F)

of the projection with the natural inclusion is homotopic to the identity map as
desired. □

Lemma 20.23.7.0G6T Let X be a topological space. Let F be an abelian presheaf on
X. Let U : U =

⋃
i∈I Ui be an open covering. If Ui = U for some i ∈ I, then the

extended alternating Čech complex

F(U)→ Č•
alt(U ,F)

https://stacks.math.columbia.edu/tag/0G6T
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obtained by putting F(U) in degree −1 with differential given by the canonical
map of F(U) into Č0(U ,F) is homotopy equivalent to 0. Similarly, for any total
ordering on I the extended ordered Čech complex

F(U)→ Č•
ord(U ,F)

is homotopy equivalent to 0.

First proof. Combine Lemmas 20.9.3 and 20.23.6. □

Second proof. Since the alternating and ordered Čech complexes are isomorphic it
suffices to prove this for the ordered one. We will use standard notation: a cochain
s of degree p in the extended ordered Čech complex has the form s = (si0...ip) where
si0...ip is in F(Ui0...ip) and i0 < . . . < ip. With this notation we have

d(x)i0...ip+1 =
∑

j
(−1)jxi0...̂ij ...ip

Fix an index i ∈ I with U = Ui. As homotopy we use the maps
h : cochains of degree p+ 1→ cochains of degree p

given by the rule
h(s)i0...ip = 0 if i ∈ {i0, . . . , ip} and h(s)i0...ip = (−1)jsi0...ijiij+1...ip if not

Here j is the unique index such that ij < i < ij+1 in the second case; also, since
U = Ui we have the equality

F(Ui0...ip) = F(Ui0...ijiij+1...ip)

which we can use to make sense of thinking of (−1)jsi0...ijiij+1...ip as an element of
F(Ui0...ip). We will show by a computation that dh+hd equals the negative of the
identity map which finishes the proof. To do this fix s a cochain of degree p and
let i0 < . . . < ip be elements of I.
Case I: i ∈ {i0, . . . , ip}. Say i = it. Then we have h(d(s))i0...ip = 0. On the other
hand we have
d(h(s))i0...ip =

∑
(−1)jh(s)i0...̂ij ...ip = (−1)th(s)i0...̂i...ip = (−1)t(−1)t−1si0...ip

Thus (dh+ hd)(s)i0...ip = −si0...ip as desired.
Case II: i ̸∈ {i0, . . . , ip}. Let j be such that ij < i < ij+1. Then we see that

h(d(s))i0...ip = (−1)jd(s)i0...ijiij+1...ip

=
∑

j′≤j
(−1)j+j

′
si0...̂ij′ ...ijiij+1...ip

− si0...ip

+
∑

j′>j
(−1)j+j

′+1si0...ijiij+1...̂ij′ ...ip

On the other hand we have
d(h(s))i0...ip =

∑
j′

(−1)j
′
h(s)i0...̂ij′ ...ip

=
∑

j′≤j
(−1)j

′+j−1si0...̂ij′ ...ijiij+1...ip

+
∑

j′>j
(−1)j

′+jsi0...ijiij+1...̂ij′ ...ip

Adding these up we obtain (dh+ hd)(s)i0...ip = −si0...ip as desired. □
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20.24. Alternative view of the Čech complex

02FR In this section we discuss an alternative way to establish the relationship between
the Čech complex and cohomology.

Lemma 20.24.1.02FU Let X be a ringed space. Let U : X =
⋃
i∈I Ui be an open covering

of X. Let F be an OX -module. Denote Fi0...ip the restriction of F to Ui0...ip . There
exists a complex C•(U ,F) of OX -modules with

Cp(U ,F) =
∏

i0...ip
(ji0...ip)∗Fi0...ip

and differential d : Cp(U ,F) → Cp+1(U ,F) as in Equation (20.9.0.1). Moreover,
there exists a canonical map

F → C•(U ,F)
which is a quasi-isomorphism, i.e., C•(U ,F) is a resolution of F .

Proof. We check
0→ F → C0(U ,F)→ C1(U ,F)→ . . .

is exact on stalks. Let x ∈ X and choose ifix ∈ I such that x ∈ Uifix . Then define
h : Cp(U ,F)x → Cp−1(U ,F)x

as follows: If s ∈ Cp(U ,F)x, take a representative

s̃ ∈ Cp(U ,F)(V ) =
∏

i0...ip
F(V ∩ Ui0 ∩ . . . ∩ Uip)

defined on some neighborhood V of x, and set
h(s)i0...ip−1 = s̃ifixi0...ip−1,x.

By the same formula (for p = 0) we get a map C0(U ,F)x → Fx. We compute
formally as follows:

(dh+ hd)(s)i0...ip =
∑p

j=0
(−1)jh(s)i0...̂ij ...ip + d(s)ifixi0...ip

=
∑p

j=0
(−1)jsifixi0...̂ij ...ip

+ si0...ip +
∑p

j=0
(−1)j+1sifixi0...̂ij ...ip

= si0...ip

This shows h is a homotopy from the identity map of the extended complex
0→ Fx → C0(U ,F)x → C1(U ,F)x → . . .

to zero and we conclude. □

With this lemma it is easy to reprove the Čech to cohomology spectral sequence of
Lemma 20.11.5. Namely, let X, U , F as in Lemma 20.24.1 and let F → I• be an
injective resolution. Then we may consider the double complex

A•,• = Γ(X,C•(U , I•)).
By construction we have

Ap,q =
∏

i0...ip
Iq(Ui0...ip)

Consider the two spectral sequences of Homology, Section 12.25 associated to this
double complex, see especially Homology, Lemma 12.25.1. For the spectral sequence
(′Er,

′dr)r≥0 we get ′Ep,q2 = Ȟp(U , Hq(F)) because taking products is exact (Ho-
mology, Lemma 12.32.1). For the spectral sequence (′′Er,

′′dr)r≥0 we get ′′Ep,q2 = 0

https://stacks.math.columbia.edu/tag/02FU
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if p > 0 and ′′E0,q
2 = Hq(X,F). Namely, for fixed q the complex of sheaves

C•(U , Iq) is a resolution (Lemma 20.24.1) of the injective sheaf Iq by injective
sheaves (by Lemmas 20.7.1 and 20.11.11 and Homology, Lemma 12.27.3). Hence
the cohomology of Γ(X,C•(U , Iq)) is zero in positive degrees and equal to Γ(X, Iq)
in degree 0. Taking cohomology of the next differential we get our claim about the
spectral sequence (′′Er,

′′dr)r≥0. Whence the result since both spectral sequences
converge to the cohomology of the associated total complex of A•,•.

Definition 20.24.2.02FS Let X be a topological space. An open covering X =
⋃
i∈I Ui

is said to be locally finite if for every x ∈ X there exists an open neighbourhood W
of x such that {i ∈ I |W ∩ Ui ̸= ∅} is finite.

Remark 20.24.3.02FT Let X =
⋃
i∈I Ui be a locally finite open covering. Denote ji :

Ui → X the inclusion map. Suppose that for each i we are given an abelian sheaf
Fi on Ui. Consider the abelian sheaf G =

⊕
i∈I(ji)∗Fi. Then for V ⊂ X open we

actually have
Γ(V,G) =

∏
i∈I
Fi(V ∩ Ui).

In other words we have ⊕
i∈I

(ji)∗Fi =
∏

i∈I
(ji)∗Fi

This seems strange until you realize that the direct sum of a collection of sheaves
is the sheafification of what you think it should be. See discussion in Modules,
Section 17.3. Thus we conclude that in this case the complex of Lemma 20.24.1
has terms

Cp(U ,F) =
⊕

i0...ip
(ji0...ip)∗Fi0...ip

which is sometimes useful.

20.25. Čech cohomology of complexes

01FP In general for sheaves of abelian groups F and G on X there is a cup product map
Hi(X,F)×Hj(X,G) −→ Hi+j(X,F ⊗Z G).

In this section we define it using Čech cocycles by an explicit formula for the cup
product. If you are worried about the fact that cohomology may not equal Čech co-
homology, then you can use hypercoverings and still use the cocycle notation. This
also has the advantage that it works to define the cup product for hypercohomology
on any topos (insert future reference here).
Let F• be a bounded below complex of presheaves of abelian groups on X. We
can often compute Hn(X,F•) using Čech cocycles. Namely, let U : X =

⋃
i∈I Ui

be an open covering of X. Since the Čech complex Č•(U ,F) (Definition 20.9.1) is
functorial in the presheaf F we obtain a double complex Č•(U ,F•). The associated
total complex to Č•(U ,F•) is the complex with degree n term

Totn(Č•(U ,F•)) =
⊕

p+q=n

∏
i0...ip

Fq(Ui0...ip)

see Homology, Definition 12.18.3. A typical element in Totn will be denoted α =
{αi0...ip} where αi0...ip ∈ Fq(Ui0...ip). In other words the F-degree of αi0...ip is
q = n − p. This notation requires us to be aware of the degree α lives in at all
times. We indicate this situation by the formula degF (αi0...ip) = q. According to

https://stacks.math.columbia.edu/tag/02FS
https://stacks.math.columbia.edu/tag/02FT
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our conventions in Homology, Definition 12.18.3 the differential of an element α of
degree n is given by

d(α)i0...ip+1 =
∑p+1

j=0
(−1)jαi0...̂ij ...ip+1

+ (−1)p+1dF (αi0...ip+1)

where dF denotes the differential on the complex F•. The expression αi0...̂ij ...ip+1

means the restriction of αi0...̂ij ...ip+1
∈ F(Ui0...̂ij ...ip+1

) to Ui0...ip+1 .

The construction of Tot(Č•(U ,F•)) is functorial in F•. As well there is a functorial
transformation
(20.25.0.1)07M9 Γ(X,F•) −→ Tot(Č•(U ,F•))
of complexes defined by the following rule: The section s ∈ Γ(X,Fn) is mapped to
the element α = {αi0...ip} with αi0 = s|Ui0 and αi0...ip = 0 for p > 0.
Refinements. Let V = {Vj}j∈J be a refinement of U . This means there is a map
t : J → I such that Vj ⊂ Ut(j) for all j ∈ J . This gives rise to a functorial
transformation
(20.25.0.2)08BM Tt : Tot(Č•(U ,F•)) −→ Tot(Č•(V,F•)).
defined by the rule

Tt(α)j0...jp = αt(j0)...t(jp)|Vj0...jp
.

Given two maps t, t′ : J → I as above the maps Tt and Tt′ constructed above are
homotopic. The homotopy is given by

h(α)j0...jp =
∑p

a=0
(−1)aαt(j0)...t(ja)t′(ja)...t′(jp)

for an element α of degree n. This works because of the following computation,
again with α an element of degree n (so d(α) has degree n+ 1 and h(α) has degree
n− 1):

(d(h(α)) + h(d(α)))j0...jp =
∑p

k=0
(−1)kh(α)j0...ĵk...jp

+
(−1)pdF (h(α)j0...jp)+∑p

a=0
(−1)ad(α)t(j0)...t(ja)t′(ja)...t′(jp)

=
∑p

k=0

∑k−1

a=0
(−1)k+aα

t(j0)...t(ja)t′(ja)... ˆt′(jk)...t′(jp)+∑p

k=0

∑p

a=k+1
(−1)k+a−1α

t(j0)... ˆt(jk)...t(ja)t′(ja)...t′(jp)+∑p

a=0
(−1)p+adF (αt(j0)...t(ja)t′(ja)...t′(jp))+∑p

a=0

∑a

k=0
(−1)a+kα

t(j0)... ˆt(jk)...t(ja)t′(ja)...t′(jp)+∑p

a=0

∑p

k=a
(−1)a+k+1α

t(j0)...t(ja)t′(ja)... ˆt′(jk)...t′(jp)+∑p

a=0
(−1)a+p+1dF (αt(j0)...t(ja)t′(ja)...t′(jp))

=αt′(j0)...t′(jp) + (−1)2p+1αt(j0)...t(jp)

=Tt′(α)j0...jp − Tt(α)j0...jp

We leave it to the reader to verify the cancellations. (Note that the terms having
both k and a in the 1st, 2nd and 4th, 5th summands cancel, except the ones where
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a = k which only occur in the 4th and 5th and these cancel against each other
except for the two desired terms.) It follows that the induced map

Hn(Tt) : Hn(Tot(Č•(U ,F•)))→ Hn(Tot(Č•(V,F•)))

is independent of the choice of t. We define Čech hypercohomology as the limit of
the Čech cohomology groups over all refinements via the maps H•(Tt).

In the limit (over all open coverings of X) the following lemma provides a map
of Čech hypercohomology into cohomology, which is often an isomorphism and is
always an isomorphism if we use hypercoverings.

Lemma 20.25.1.08BN Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui be an open

covering. For a bounded below complex F• of OX -modules there is a canonical
map

Tot(Č•(U ,F•)) −→ RΓ(X,F•)
functorial in F• and compatible with (20.25.0.1) and (20.25.0.2). There is a spectral
sequence (Er, dr)r≥0 with

Ep,q2 = Hp(Tot(Č•(U , Hq(F•)))

converging to Hp+q(X,F•).

Proof. Let I• be a bounded below complex of injectives. The map (20.25.0.1) for
I• is a map Γ(X, I•)→ Tot(Č•(U , I•)). This is a quasi-isomorphism of complexes
of abelian groups as follows from Homology, Lemma 12.25.4 applied to the double
complex Č•(U , I•) using Lemma 20.11.1. Suppose F• → I• is a quasi-isomorphism
of F• into a bounded below complex of injectives. Since RΓ(X,F•) is represented
by the complex Γ(X, I•) we obtain the map of the lemma using

Tot(Č•(U ,F•)) −→ Tot(Č•(U , I•)).

We omit the verification of functoriality and compatibilities. To construct the
spectral sequence of the lemma, choose a Cartan-Eilenberg resolution F• → I•,•,
see Derived Categories, Lemma 13.21.2. In this case F• → Tot(I•,•) is an injective
resolution and hence

Tot(Č•(U ,Tot(I•,•)))
computes RΓ(X,F•) as we’ve seen above. By Homology, Remark 12.18.4 we can
view this as the total complex associated to the triple complex Č•(U , I•,•) hence,
using the same remark we can view it as the total complex associate to the double
complex A•,• with terms

An,m =
⊕

p+q=n
Čp(U , Iq,m)

Since Iq,• is an injective resolution of Fq we can apply the first spectral sequence
associated to A•,• (Homology, Lemma 12.25.1) to get a spectral sequence with

En,m1 =
⊕

p+q=n
Čp(U , Hm(Fq))

which is the nth term of the complex Tot(Č•(U , Hm(F•)). Hence we obtain E2
terms as described in the lemma. Convergence by Homology, Lemma 12.25.3. □

https://stacks.math.columbia.edu/tag/08BN
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Lemma 20.25.2.0FLH Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui be an open

covering. Let F• be a bounded below complex of OX -modules. If Hi(Ui0...ip ,Fq) =
0 for all i > 0 and all p, i0, . . . , ip, q, then the map Tot(Č•(U ,F•))→ RΓ(X,F•) of
Lemma 20.25.1 is an isomorphism.

Proof. Immediate from the spectral sequence of Lemma 20.25.1. □

Remark 20.25.3.0FLI Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui be an open

covering. Let F• be a bounded below complex of OX -modules. Let b be an integer.
We claim there is a commutative diagram

Tot(Č•(U ,F•))[b] //

γ

��

RΓ(X,F•)[b]

��
Tot(Č•(U ,F•[b])) // RΓ(X,F•[b])

in the derived category where the map γ is the map on complexes constructed in Ho-
mology, Remark 12.18.5. This makes sense because the double complex Č•(U ,F•[b])
is clearly the same as the double complex Č•(U ,F•)[0, b] introduced in Homology,
Remark 12.18.5. To check that the diagram commutes, we may choose an injective
resolution F• → I• as in the proof of Lemma 20.25.1. Chasing diagrams, we see
that it suffices to check the diagram commutes when we replace F• by I•. Then
we consider the extended diagram

Γ(X, I•)[b] //

��

Tot(Č•(U , I•))[b] //

γ

��

RΓ(X, I•)[b]

��
Γ(X, I•[b]) // Tot(Č•(U , I•[b])) // RΓ(X, I•[b])

where the left horizontal arrows are (20.25.0.1). Since in this case the horizonal
arrows are isomorphisms in the derived category (see proof of Lemma 20.25.1) it
suffices to show that the left square commutes. This is true because the map γ
uses the sign 1 on the summands Č0(U , Iq+b), see formula in Homology, Remark
12.18.5.

Let X be a topological space, let U : X =
⋃
i∈I Ui be an open covering, and let F•

be a bounded below complex of presheaves of abelian groups. Consider the map
τ : Tot(Č•(U ,F•))→ Tot(Č•(U ,F•)) defined by

τ(α)i0...ip = (−1)p(p+1)/2αip...i0 .

Then we have for an element α of degree n that

d(τ(α))i0...ip+1

=
∑p+1

j=0
(−1)jτ(α)i0...̂ij ...ip+1

+ (−1)p+1dF (τ(α)i0...ip+1)

=
∑p+1

j=0
(−1)j+

p(p+1)
2 αip+1...̂ij ...i0

+ (−1)p+1+ (p+1)(p+2)
2 dF (αip+1...i0)

https://stacks.math.columbia.edu/tag/0FLH
https://stacks.math.columbia.edu/tag/0FLI
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On the other hand we have
τ(d(α))i0...ip+1

= (−1)
(p+1)(p+2)

2 d(α)ip+1...i0

= (−1)
(p+1)(p+2)

2

(∑p+1

j=0
(−1)jαip+1...̂ip+1−j ...i0

+ (−1)p+1dF (αip+1...i0)
)

Thus we conclude that d(τ(α)) = τ(d(α)) because p(p+ 1)/2 ≡ (p+ 1)(p+ 2)/2 +
p+ 1 mod 2. In other words τ is an endomorphism of the complex Tot(Č•(U ,F•)).
Note that the diagram

Γ(X,F•) −→ Tot(Č•(U ,F•))
↓ id ↓ τ

Γ(X,F•) −→ Tot(Č•(U ,F•))
commutes. In addition τ is clearly compatible with refinements. This suggests
that τ acts as the identity on Čech cohomology (i.e., in the limit – provided Čech
hypercohomology agrees with hypercohomology, which is always the case if we use
hypercoverings). We claim that τ actually is homotopic to the identity on the total
Čech complex Tot(Č•(U ,F•)). To prove this, we use as homotopy

h(α)i0...ip =
∑p

a=0
ϵp(a)αi0...iaip...ia with ϵp(a) = (−1)

(p−a)(p−a−1)
2 +p

for α of degree n. As usual we omit writing |Ui0...ip . This works because of the
following computation, again with α an element of degree n:

(d(h(α)) + h(d(α)))i0...ip =
∑p

k=0
(−1)kh(α)i0...̂ik...ip+

(−1)pdF (h(α)i0...ip)+∑p

a=0
ϵp(a)d(α)i0...iaip...ia

=
∑p

k=0

∑k−1

a=0
(−1)kϵp−1(a)αi0...iaip...îk...ia+∑p

k=0

∑p

a=k+1
(−1)kϵp−1(a− 1)αi0...îk...iaip...ia+∑p

a=0
(−1)pϵp(a)dF (αi0...iaip...ia)+∑p

a=0

∑a

k=0
ϵp(a)(−1)kαi0...îk...iaip...ia+∑p

a=0

∑p

k=a
ϵp(a)(−1)p+a+1−kαi0...iaip...îk...ia+∑p

a=0
ϵp(a)(−1)p+1dF (αi0...iaip...ia)

=ϵp(0)αip...i0 + ϵp(p)(−1)p+1αi0...ip

=(−1)
p(p+1)

2 αip...i0 − αi0...ip
The cancellations follow because
(−1)kϵp−1(a) + ϵp(a)(−1)p+a+1−k = 0 and (−1)kϵp−1(a− 1) + ϵp(a)(−1)k = 0
We leave it to the reader to verify the cancellations.
Suppose we have two bounded below complexes of abelian sheaves F• and G•. We
define the complex Tot(F• ⊗Z G•) to be to complex with terms

⊕
p+q=n Fp ⊗ Gq
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and differential according to the rule
(20.25.3.1)07MA d(α⊗ β) = d(α)⊗ β + (−1)deg(α)α⊗ d(β)
when α and β are homogeneous, see Homology, Definition 12.18.3.
Suppose that M• and N• are two bounded below complexes of abelian groups.
Then if m, resp. n is a cocycle for M•, resp. N•, it is immediate that m ⊗ n is a
cocycle for Tot(M• ⊗N•). Hence a cup product

Hi(M•)×Hj(N•) −→ Hi+j(Tot(M• ⊗N•)).
This is discussed also in More on Algebra, Section 15.63.
So the construction of the cup product in hypercohomology of complexes rests on
a construction of a map of complexes
(20.25.3.2)

07MB Tot
(

Tot(Č•(U ,F•))⊗Z Tot(Č•(U ,G•))
)
−→ Tot(Č•(U ,Tot(F• ⊗ G•)))

This map is denoted ∪ and is given by the rule

(α ∪ β)i0...ip =
∑p

r=0
ϵ(n,m, p, r)αi0...ir ⊗ βir...ip .

where α has degree n and β has degree m and with
ϵ(n,m, p, r) = (−1)(p+r)n+rp+r.

Note that ϵ(n,m, p, n) = 1. Hence if F• = F [0] is the complex consisting in a single
abelian sheaf F placed in degree 0, then there no signs in the formula for ∪ (as
in that case αi0...ir = 0 unless r = n). For an explanation of why there has to be
a sign and how to compute it see [AGV71, Exposee XVII] by Deligne. To check
(20.25.3.2) is a map of complexes we have to show that

d(α ∪ β) = d(α) ∪ β + (−1)deg(α)α ∪ d(β)

by the definition of the differential on Tot(Tot(Č•(U ,F•)) ⊗Z Tot(Č•(U ,G•))) as
given in Homology, Definition 12.18.3. We compute first

d(α ∪ β)i0...ip+1 =
∑p+1

j=0
(−1)j(α ∪ β)i0...̂ij ...ip+1

+ (−1)p+1dF⊗G((α ∪ β)i0...ip+1)

=
∑p+1

j=0

∑j−1

r=0
(−1)jϵ(n,m, p, r)αi0...ir ⊗ βir...̂ij ...ip+1

+∑p+1

j=0

∑p+1

r=j+1
(−1)jϵ(n,m, p, r − 1)αi0...̂ij ...ir ⊗ βir...ip+1+∑p+1

r=0
(−1)p+1ϵ(n,m, p+ 1, r)dF⊗G(αi0...ir ⊗ βir...ip+1)

and note that the summands in the last term equal
(−1)p+1ϵ(n,m, p+ 1, r)

(
dF (αi0...ir )⊗ βir...ip+1 + (−1)n−rαi0...ir ⊗ dG(βir...ip+1)

)
.

because degF (αi0...ir ) = n− r. On the other hand

(d(α) ∪ β)i0...ip+1 =
∑p+1

r=0
ϵ(n+ 1,m, p+ 1, r)d(α)i0...ir ⊗ βir...ip+1

=
∑p+1

r=0

∑r

j=0
ϵ(n+ 1,m, p+ 1, r)(−1)jαi0...îj ...ir ⊗ βir...ip+1+∑p+1

r=0
ϵ(n+ 1,m, p+ 1, r)(−1)rdF (αi0...ir )⊗ βir...ip+1
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and

(α ∪ d(β))i0...ip+1 =
∑p+1

r=0
ϵ(n,m+ 1, p+ 1, r)αi0...ir ⊗ d(β)ir...ip+1

=
∑p+1

r=0

∑p+1

j=r
ϵ(n,m+ 1, p+ 1, r)(−1)j−rαi0...ir ⊗ βir...îj ...ip+1

+∑p+1

r=0
ϵ(n,m+ 1, p+ 1, r)(−1)p+1−rαi0...ir ⊗ dG(βir...ip+1)

The desired equality holds if we have
(−1)p+1ϵ(n,m, p+ 1, r) = ϵ(n+ 1,m, p+ 1, r)(−1)r

(−1)p+1ϵ(n,m, p+ 1, r)(−1)n−r = (−1)nϵ(n,m+ 1, p+ 1, r)(−1)p+1−r

ϵ(n+ 1,m, p+ 1, r)(−1)r = (−1)1+nϵ(n,m+ 1, p+ 1, r − 1)
(−1)jϵ(n,m, p, r) = (−1)nϵ(n,m+ 1, p+ 1, r)(−1)j−r

(−1)jϵ(n,m, p, r − 1) = ϵ(n+ 1,m, p+ 1, r)(−1)j

(The third equality is necessary to get the terms with r = j from d(α) ∪ β and
(−1)nα ∪ d(β) to cancel each other.) We leave the verifications to the reader.
(Alternatively, check the script signs.gp in the scripts subdirectory of the Stacks
project.)
Associativity of the cup product. Suppose that F•, G• and H• are bounded below
complexes of abelian groups on X. The obvious map (without the intervention of
signs) is an isomorphism of complexes

Tot(Tot(F• ⊗Z G•)⊗Z H•) −→ Tot(F• ⊗Z Tot(G• ⊗Z H•)).
Another way to say this is that the triple complex F• ⊗Z G• ⊗Z H• gives rise to a
well defined total complex with differential satisfying
d(α⊗β⊗γ) = d(α)⊗β⊗γ+(−1)deg(α)α⊗d(β)⊗γ+(−1)deg(α)+deg(β)α⊗β⊗d(γ)
for homogeneous elements. Using this map it is easy to verify that

(α ∪ β) ∪ γ = α ∪ (β ∪ γ)
namely, if α has degree a, β has degree b and γ has degree c, then

((α ∪ β) ∪ γ)i0...ip =
∑p

r=0
ϵ(a+ b, c, p, r)(α ∪ β)i0...ir ⊗ γir...ip

=
∑p

r=0

∑r

s=0
ϵ(a+ b, c, p, r)ϵ(a, b, r, s)αi0...is ⊗ βis...ir ⊗ γir...ip

and
(α ∪ (β ∪ γ)i0...ip =

∑p

s=0
ϵ(a, b+ c, p, s)αi0...is ⊗ (β ∪ γ)is...ip

=
∑p

s=0

∑p

r=s
ϵ(a, b+ c, p, s)ϵ(b, c, p− s, r − s)αi0...is ⊗ βis...ir ⊗ γir...ip

and a trivial mod 2 calculation shows the signs match up. (Alternatively, check the
script signs.gp in the scripts subdirectory of the Stacks project.)
Finally, we indicate why the cup product preserves a graded commutative structure,
at least on a cohomological level. For this we use the operator τ introduced above.
Let F• be a bounded below complexes of abelian groups, and assume we are given
a graded commutative multiplication

∧• : Tot(F• ⊗F•) −→ F•.
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This means the following: For s a local section of Fa, and t a local section of Fb
we have s ∧ t a local section of Fa+b. Graded commutative means we have s ∧ t =
(−1)abt∧s. Since ∧ is a map of complexes we have d(s∧t) = d(s)∧t+(−1)as∧d(t).
The composition

Tot(Tot(Č•(U ,F•))⊗Tot(Č•(U ,F•)))→ Tot(Č•(U ,Tot(F•⊗ZF•)))→ Tot(Č•(U ,F•))

induces a cup product on cohomology

Hn(Tot(Č•(U ,F•)))×Hm(Tot(Č•(U ,F•))) −→ Hn+m(Tot(Č•(U ,F•)))

and so in the limit also a product on Čech cohomology and therefore (using hy-
percoverings if needed) a product in cohomology of F•. We claim this product
(on cohomology) is graded commutative as well. To prove this we first consider
an element α of degree n in Tot(Č•(U ,F•)) and an element β of degree m in
Tot(Č•(U ,F•)) and we compute

∧•(α ∪ β)i0...ip =
∑p

r=0
ϵ(n,m, p, r)αi0...ir ∧ βir...ip

=
∑p

r=0
ϵ(n,m, p, r)(−1)deg(αi0...ir ) deg(βir...ip )βir...ip ∧ αi0...ir

because ∧ is graded commutative. On the other hand we have

τ(∧•(τ(β) ∪ τ(α)))i0...ip =χ(p)
∑p

r=0
ϵ(m,n, p, r)τ(β)ip...ip−r ∧ τ(α)ip−r...i0

=χ(p)
∑p

r=0
ϵ(m,n, p, r)χ(r)χ(p− r)βip−r...ip ∧ αi0...ip−r

=χ(p)
∑p

r=0
ϵ(m,n, p, p− r)χ(r)χ(p− r)βir...ip ∧ αi0...ir

where χ(t) = (−1)
t(t+1)

2 . Since we proved earlier that τ acts as the identity on
cohomology we have to verify that

ϵ(n,m, p, r)(−1)(n−r)(m−(p−r)) = (−1)nmχ(p)ϵ(m,n, p, p− r)χ(r)χ(p− r)

A trivial mod 2 calculation shows these signs match up. (Alternatively, check the
script signs.gp in the scripts subdirectory of the Stacks project.)

Finally, we study the compatibility of cup product with boundary maps. Suppose
that

0→ F•
1 → F•

2 → F•
3 → 0 and 0← G•

1 ← G•
2 ← G•

3 ← 0
are short exact sequences of bounded below complexes of abelian sheaves on X. Let
H• be another bounded below complex of abelian sheaves, and suppose we have
maps of complexes

γi : Tot(F•
i ⊗Z G•

i ) −→ H•

which are compatible with the maps between the complexes, namely such that the
diagrams

Tot(F•
1 ⊗Z G•

1 )

γ1

��

Tot(F•
1 ⊗Z G•

2 )oo

��
H• Tot(F•

2 ⊗Z G•
2 )γ2oo
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and
Tot(F•

2 ⊗Z G•
2 )

γ2

��

Tot(F•
2 ⊗Z G•

3 )oo

��
H• Tot(F•

3 ⊗Z G•
3 )γ3oo

are commutative.

Lemma 20.25.4.07MC In the situation above, assume Čech cohomology agrees with
cohomology for the sheaves Fpi and Gqj . Let a3 ∈ Hn(X,F•

3 ) and b1 ∈ Hm(X,G•
1 ).

Then we have
γ1(∂a3 ∪ b1) = (−1)n+1γ3(a3 ∪ ∂b1)

in Hn+m(X,H•) where ∂ indicates the boundary map on cohomology associated
to the short exact sequences of complexes above.

Proof. We will use the following conventions and notation. We think of Fp1 as a
subsheaf of Fp2 and we think of Gq3 as a subsheaf of Gq2 . Hence if s is a local section
of Fp1 we use s to denote the corresponding section of Fp2 as well. Similarly for
local sections of Gq3 . Furthermore, if s is a local section of Fp2 then we denote s̄ its
image in Fp3 . Similarly for the map Gq2 → G

q
1 . In particular if s is a local section of

Fp2 and s̄ = 0 then s is a local section of Fp1 . The commutativity of the diagrams
above implies, for local sections s of Fp2 and t of Gq3 that γ2(s ⊗ t) = γ3(s̄ ⊗ t) as
sections of Hp+q.
Let U : X =

⋃
i∈I Ui be an open covering of X. Suppose that α3, resp. β1 is a

degree n, resp. m cocycle of Tot(Č•(U ,F•
3 )), resp. Tot(Č•(U ,G•

1 )) representing a3,
resp. b1. After refining U if necessary, we can find cochains α2, resp. β2 of degree
n, resp. m in Tot(Č•(U ,F•

2 )), resp. Tot(Č•(U ,G•
2 )) mapping to α3, resp. β1. Then

we see that
d(α2) = d(ᾱ2) = 0 and d(β2) = d(β̄2) = 0.

This means that α1 = d(α2) is a degree n+1 cocycle in Tot(Č•(U ,F•
1 )) representing

∂a3. Similarly, β3 = d(β2) is a degree m+ 1 cocycle in Tot(Č•(U ,G•
3 )) representing

∂b1. Thus we may compute
d(γ2(α2 ∪ β2)) = γ2(d(α2 ∪ β2))

= γ2(d(α2) ∪ β2 + (−1)nα2 ∪ d(β2))
= γ2(α1 ∪ β2) + (−1)nγ2(α2 ∪ β3)
= γ1(α1 ∪ β1) + (−1)nγ3(α3 ∪ β3)

So this even tells us that the sign is (−1)n+1 as indicated in the lemma2. □

Lemma 20.25.5.0B8S Let X be a topological space. Let O′ → O be a surjection of
sheaves of rings whose kernel I ⊂ O′ has square zero. Then M = H1(X, I) is a
R = H0(X,O)-module and the boundary map ∂ : R → M associated to the short
exact sequence

0→ I → O′ → O → 0
2The sign depends on the convention for the signs in the long exact sequence in cohomology

associated to a triangle in D(X). The conventions in the Stacks project are (a) distinguished
triangles correspond to termwise split exact sequences and (b) the boundary maps in the long
exact sequence are given by the maps in the snake lemma without the intervention of signs. See
Derived Categories, Section 13.10.

https://stacks.math.columbia.edu/tag/07MC
https://stacks.math.columbia.edu/tag/0B8S
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is a derivation (Algebra, Definition 10.131.1).

Proof. The map O′ → Hom(I, I) factors through O as I · I = 0 by assumption.
Hence I is a sheaf of O-modules and this defines the R-module structure on M .
The boundary map is additive hence it suffices to prove the Leibniz rule. Let
f ∈ R. Choose an open covering U : X =

⋃
Ui such that there exist fi ∈ O′(Ui)

lifting f |Ui ∈ O(Ui). Observe that fi − fj is an element of I(Ui ∩ Uj). Then ∂(f)
corresponds to the Čech cohomology class of the 1-cocycle α with αi0i1 = fi0 − fi1 .
(Observe that by Lemma 20.11.3 the first Čech cohomology group with respect to
U is a submodule of M .) Next, let g ∈ R be a second element and assume (after
possibly refining the open covering) that gi ∈ O′(Ui) lifts g|Ui ∈ O(Ui). Then we
see that ∂(g) is given by the cocycle β with βi0i1 = gi0 − gi1 . Since figi ∈ O′(Ui)
lifts fg|Ui we see that ∂(fg) is given by the cocycle γ with

γi0i1 = fi0gi0 − fi1gi1 = (fi0 − fi1)gi0 + fi1(gi0 − gi1) = αi0i1g + fβi0i1

by our definition of the O-module structure on I. This proves the Leibniz rule and
the proof is complete. □

20.26. Flat resolutions

06Y7 A reference for the material in this section is [Spa88]. Let (X,OX) be a ringed
space. By Modules, Lemma 17.17.6 any OX -module is a quotient of a flat OX -
module. By Derived Categories, Lemma 13.15.4 any bounded above complex of
OX -modules has a left resolution by a bounded above complex of flat OX -modules.
However, for unbounded complexes, it turns out that flat resolutions aren’t good
enough.

Lemma 20.26.1.06Y8 Let (X,OX) be a ringed space. Let G• be a complex of OX -
modules. The functors

K(Mod(OX)) −→ K(Mod(OX)), F• 7−→ Tot(G• ⊗OX
F•)

and
K(Mod(OX)) −→ K(Mod(OX)), F• 7−→ Tot(F• ⊗OX

G•)
are exact functors of triangulated categories.

Proof. This follows from Derived Categories, Remark 13.10.9. □

Definition 20.26.2.06Y9 Let (X,OX) be a ringed space. A complex K• of OX -modules
is called K-flat if for every acyclic complex F• of OX -modules the complex

Tot(F• ⊗OX
K•)

is acyclic.

Lemma 20.26.3.06YA Let (X,OX) be a ringed space. Let K• be a K-flat complex. Then
the functor

K(Mod(OX)) −→ K(Mod(OX)), F• 7−→ Tot(F• ⊗OX
K•)

transforms quasi-isomorphisms into quasi-isomorphisms.

Proof. Follows from Lemma 20.26.1 and the fact that quasi-isomorphisms are char-
acterized by having acyclic cones. □

https://stacks.math.columbia.edu/tag/06Y8
https://stacks.math.columbia.edu/tag/06Y9
https://stacks.math.columbia.edu/tag/06YA
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Lemma 20.26.4.06YB Let (X,OX) be a ringed space. Let K• be a complex of OX -
modules. Then K• is K-flat if and only if for all x ∈ X the complex K•

x of OX,x-
modules is K-flat (More on Algebra, Definition 15.59.1).

Proof. If K•
x is K-flat for all x ∈ X then we see that K• is K-flat because ⊗ and

direct sums commute with taking stalks and because we can check exactness at
stalks, see Modules, Lemma 17.3.1. Conversely, assume K• is K-flat. Pick x ∈ X
M• be an acyclic complex of OX,x-modules. Then ix,∗M• is an acyclic complex of
OX -modules. Thus Tot(ix,∗M• ⊗OX

K•) is acyclic. Taking stalks at x shows that
Tot(M• ⊗OX,x

K•
x) is acyclic. □

Lemma 20.26.5.079R Let (X,OX) be a ringed space. If K•, L• are K-flat complexes of
OX -modules, then Tot(K• ⊗OX

L•) is a K-flat complex of OX -modules.

Proof. Follows from the isomorphism

Tot(M• ⊗OX
Tot(K• ⊗OX

L•)) = Tot(Tot(M• ⊗OX
K•)⊗OX

L•)

and the definition. □

Lemma 20.26.6.079S Let (X,OX) be a ringed space. Let (K•
1,K•

2,K•
3) be a distinguished

triangle in K(Mod(OX)). If two out of three of K•
i are K-flat, so is the third.

Proof. Follows from Lemma 20.26.1 and the fact that in a distinguished triangle in
K(Mod(OX)) if two out of three are acyclic, so is the third. □

Lemma 20.26.7.0G6U Let (X,OX) be a ringed space. Let 0→ K•
1 → K•

2 → K•
3 → 0 be a

short exact sequence of complexes such that the terms of K•
3 are flat OX -modules.

If two out of three of K•
i are K-flat, so is the third.

Proof. By Modules, Lemma 17.17.7 for every complex L• we obtain a short exact
sequence

0→ Tot(L• ⊗OX
K•

1)→ Tot(L• ⊗OX
K•

1)→ Tot(L• ⊗OX
K•

1)→ 0

of complexes. Hence the lemma follows from the long exact sequence of cohomology
sheaves and the definition of K-flat complexes. □

Lemma 20.26.8.06YC Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. The
pullback of a K-flat complex of OY -modules is a K-flat complex of OX -modules.

Proof. We can check this on stalks, see Lemma 20.26.4. Hence this follows from
Sheaves, Lemma 6.26.4 and More on Algebra, Lemma 15.59.3. □

Lemma 20.26.9.06YD Let (X,OX) be a ringed space. A bounded above complex of flat
OX -modules is K-flat.

Proof. We can check this on stalks, see Lemma 20.26.4. Thus this lemma follows
from Modules, Lemma 17.17.2 and More on Algebra, Lemma 15.59.7. □

In the following lemma by a colimit of a system of complexes we mean the termwise
colimit.

Lemma 20.26.10.06YE Let (X,OX) be a ringed space. Let K•
1 → K•

2 → . . . be a system
of K-flat complexes. Then colimiK•

i is K-flat.

https://stacks.math.columbia.edu/tag/06YB
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Proof. Because we are taking termwise colimits it is clear that

colimi Tot(F• ⊗OX
K•
i ) = Tot(F• ⊗OX

colimiK•
i )

Hence the lemma follows from the fact that filtered colimits are exact. □

Lemma 20.26.11.079T Let (X,OX) be a ringed space. For any complex G• of OX -
modules there exists a commutative diagram of complexes of OX -modules

K•
1

��

// K•
2

��

// . . .

τ≤1G• // τ≤2G• // . . .

with the following properties: (1) the vertical arrows are quasi-isomorphisms and
termwise surjective, (2) each K•

n is a bounded above complex whose terms are direct
sums of OX -modules of the form jU !OU , and (3) the maps K•

n → K•
n+1 are termwise

split injections whose cokernels are direct sums of OX -modules of the form jU !OU .
Moreover, the map colimK•

n → G• is a quasi-isomorphism.

Proof. The existence of the diagram and properties (1), (2), (3) follows immedi-
ately from Modules, Lemma 17.17.6 and Derived Categories, Lemma 13.29.1. The
induced map colimK•

n → G• is a quasi-isomorphism because filtered colimits are
exact. □

Lemma 20.26.12.06YF Let (X,OX) be a ringed space. For any complex G• there exists
a K-flat complex K• whose terms are flat OX -modules and a quasi-isomorphism
K• → G• which is termwise surjective.

Proof. Choose a diagram as in Lemma 20.26.11. Each complex K•
n is a bounded

above complex of flat modules, see Modules, Lemma 17.17.5. Hence K•
n is K-flat

by Lemma 20.26.9. Thus colimK•
n is K-flat by Lemma 20.26.10. The induced map

colimK•
n → G• is a quasi-isomorphism and termwise surjective by construction.

Property (3) of Lemma 20.26.11 shows that colimKmn is a direct sum of flat modules
and hence flat which proves the final assertion. □

Lemma 20.26.13.06YG Let (X,OX) be a ringed space. Let α : P• → Q• be a quasi-
isomorphism of K-flat complexes of OX -modules. For every complex F• of OX -
modules the induced map

Tot(idF• ⊗ α) : Tot(F• ⊗OX
P•) −→ Tot(F• ⊗OX

Q•)

is a quasi-isomorphism.

Proof. Choose a quasi-isomorphism K• → F• with K• a K-flat complex, see Lemma
20.26.12. Consider the commutative diagram

Tot(K• ⊗OX
P•) //

��

Tot(K• ⊗OX
Q•)

��
Tot(F• ⊗OX

P•) // Tot(F• ⊗OX
Q•)

The result follows as by Lemma 20.26.3 the vertical arrows and the top horizontal
arrow are quasi-isomorphisms. □

https://stacks.math.columbia.edu/tag/079T
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Let (X,OX) be a ringed space. Let F• be an object of D(OX). Choose a K-flat
resolution K• → F•, see Lemma 20.26.12. By Lemma 20.26.1 we obtain an exact
functor of triangulated categories

K(OX) −→ K(OX), G• 7−→ Tot(G• ⊗OX
K•)

By Lemma 20.26.3 this functor induces a functor D(OX)→ D(OX) simply because
D(OX) is the localization of K(OX) at quasi-isomorphisms. By Lemma 20.26.13
the resulting functor (up to isomorphism) does not depend on the choice of the
K-flat resolution.
Definition 20.26.14.06YH Let (X,OX) be a ringed space. Let F• be an object of D(OX).
The derived tensor product

−⊗L
OX
F• : D(OX) −→ D(OX)

is the exact functor of triangulated categories described above.
It is clear from our explicit constructions that there is a canonical isomorphism

F• ⊗L
OX
G• ∼= G• ⊗L

OX
F•

for G• and F• in D(OX). Here we use sign rules as given in More on Algebra,
Section 15.72. Hence when we write F• ⊗L

OX
G• we will usually be agnostic about

which variable we are using to define the derived tensor product with.
Definition 20.26.15.08BP Let (X,OX) be a ringed space. Let F , G be OX -modules.
The Tor’s of F and G are define by the formula

TorOX
p (F ,G) = H−p(F ⊗L

OX
G)

with derived tensor product as defined above.
This definition implies that for every short exact sequence of OX -modules 0 →
F1 → F2 → F3 → 0 we have a long exact cohomology sequence

F1 ⊗OX
G // F2 ⊗OX

G // F3 ⊗OX
G // 0

TorOX
1 (F1,G) // TorOX

1 (F2,G) // TorOX
1 (F3,G)

kk

for everyOX -module G. This will be called the long exact sequence of Tor associated
to the situation.
Lemma 20.26.16.08BQ Let (X,OX) be a ringed space. Let F be an OX -module. The
following are equivalent

(1) F is a flat OX -module, and
(2) TorOX

1 (F ,G) = 0 for every OX -module G.
Proof. If F is flat, then F ⊗OX

− is an exact functor and the satellites vanish.
Conversely assume (2) holds. Then if G → H is injective with cokernel Q, the long
exact sequence of Tor shows that the kernel of F ⊗OX

G → F ⊗OX
H is a quotient

of TorOX
1 (F ,Q) which is zero by assumption. Hence F is flat. □

Lemma 20.26.17.0G6V Let (X,OX) be a ringed space. Let a : K• → L• be a map of
complexes of OX -modules. If K• is K-flat, then there exist a complex N • and maps
of complexes b : K• → N • and c : N • → L• such that

(1) N • is K-flat,

https://stacks.math.columbia.edu/tag/06YH
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https://stacks.math.columbia.edu/tag/08BQ
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(2) c is a quasi-isomorphism,
(3) a is homotopic to c ◦ b.

If the terms of K• are flat, then we may choose N •, b, and c such that the same is
true for N •.
Proof. We will use that the homotopy category K(Mod(OX)) is a triangulated
category, see Derived Categories, Proposition 13.10.3. Choose a distinguished tri-
angle K• → L• → C• → K•[1]. Choose a quasi-isomorphism M• → C• with M•

K-flat with flat terms, see Lemma 20.26.12. By the axioms of triangulated cate-
gories, we may fit the composition M• → C• → K•[1] into a distinguished triangle
K• → N • → M• → K•[1]. By Lemma 20.26.6 we see that N • is K-flat. Again
using the axioms of triangulated categories, we can choose a map N • → L• fitting
into the following morphism of distinghuised triangles

K• //

��

N • //

��

M• //

��

K•[1]

��
K• // L• // C• // K•[1]

Since two out of three of the arrows are quasi-isomorphisms, so is the third arrow
N • → L• by the long exact sequences of cohomology associated to these distin-
guished triangles (or you can look at the image of this diagram in D(OX) and use
Derived Categories, Lemma 13.4.3 if you like). This finishes the proof of (1), (2),
and (3). To prove the final assertion, we may choose N • such that Nn ∼=Mn⊕Kn,
see Derived Categories, Lemma 13.10.7. Hence we get the desired flatness if the
terms of K• are flat. □

20.27. Derived pullback

06YI Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. We can use K-flat
resolutions to define a derived pullback functor

Lf∗ : D(OY )→ D(OX)
Namely, for every complex of OY -modules G• we can choose a K-flat resolution
K• → G• and set Lf∗G• = f∗K•. You can use Lemmas 20.26.8, 20.26.12, and
20.26.13 to see that this is well defined. However, to cross all the t’s and dot all
the i’s it is perhaps more convenient to use some general theory.
Lemma 20.27.1.06YJ The construction above is independent of choices and defines an
exact functor of triangulated categories Lf∗ : D(OY )→ D(OX).
Proof. To see this we use the general theory developed in Derived Categories, Sec-
tion 13.14. Set D = K(OY ) and D′ = D(OX). Let us write F : D → D′ the exact
functor of triangulated categories defined by the rule F (G•) = f∗G•. We let S be
the set of quasi-isomorphisms in D = K(OY ). This gives a situation as in Derived
Categories, Situation 13.14.1 so that Derived Categories, Definition 13.14.2 applies.
We claim that LF is everywhere defined. This follows from Derived Categories,
Lemma 13.14.15 with P ⊂ Ob(D) the collection of K-flat complexes: (1) follows
from Lemma 20.26.12 and to see (2) we have to show that for a quasi-isomorphism
K•

1 → K•
2 between K-flat complexes of OY -modules the map f∗K•

1 → f∗K•
2 is a

quasi-isomorphism. To see this write this as
f−1K•

1 ⊗f−1OY
OX −→ f−1K•

2 ⊗f−1OY
OX

https://stacks.math.columbia.edu/tag/06YJ


20.27. DERIVED PULLBACK 1818

The functor f−1 is exact, hence the map f−1K•
1 → f−1K•

2 is a quasi-isomorphism.
By Lemma 20.26.8 applied to the morphism (X, f−1OY )→ (Y,OY ) the complexes
f−1K•

1 and f−1K•
2 are K-flat complexes of f−1OY -modules. Hence Lemma 20.26.13

guarantees that the displayed map is a quasi-isomorphism. Thus we obtain a derived
functor

LF : D(OY ) = S−1D −→ D′ = D(OX)

see Derived Categories, Equation (13.14.9.1). Finally, Derived Categories, Lemma
13.14.15 also guarantees that LF (K•) = F (K•) = f∗K• when K• is K-flat, i.e.,
Lf∗ = LF is indeed computed in the way described above. □

Lemma 20.27.2.0D5S Let f : X → Y and g : Y → Z be morphisms of ringed spaces.
Then Lf∗ ◦ Lg∗ = L(g ◦ f)∗ as functors D(OZ)→ D(OX).

Proof. Let E be an object of D(OZ). By construction Lg∗E is computed by choos-
ing a K-flat complex K• representing E on Z and setting Lg∗E = g∗K•. By
Lemma 20.26.8 we see that g∗K• is K-flat on Y . Then Lf∗Lg∗E is given by
f∗g∗K• = (g ◦ f)∗K• which also represents L(g ◦ f)∗E. □

Lemma 20.27.3.079U Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
There is a canonical bifunctorial isomorphism

Lf∗(F• ⊗L
OY
G•) = Lf∗F• ⊗L

OX
Lf∗G•

for F•,G• ∈ Ob(D(OY )).

Proof. We may assume that F• and G• are K-flat complexes. In this case F•⊗L
OY
G•

is just the total complex associated to the double complex F• ⊗OY
G•. By Lemma

20.26.5 Tot(F•⊗OY
G•) is K-flat also. Hence the isomorphism of the lemma comes

from the isomorphism

Tot(f∗F• ⊗OX
f∗G•) −→ f∗Tot(F• ⊗OY

G•)

whose constituents are the isomorphisms f∗Fp ⊗OX
f∗Gq → f∗(Fp ⊗OY

Gq) of
Modules, Lemma 17.16.4. □

Lemma 20.27.4.08DE Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
There is a canonical bifunctorial isomorphism

F• ⊗L
OX

Lf∗G• = F• ⊗L
f−1OY

f−1G•

for F• in D(OX) and G• in D(OY ).

Proof. Let F be an OX -module and let G be an OY -module. Then F ⊗OX
f∗G =

F ⊗f−1OY
f−1G because f∗G = OX ⊗f−1OY

f−1G. The lemma follows from this
and the definitions. □

https://stacks.math.columbia.edu/tag/0D5S
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Lemma 20.27.5.0FP0 Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let
K• and M• be complexes of OY -modules. The diagram

Lf∗(K• ⊗L
OY
M•) //

��

Lf∗Tot(K• ⊗OY
M•)

��
Lf∗K• ⊗L

OX
Lf∗M•

��

f∗Tot(K• ⊗OY
M•)

��
f∗K• ⊗L

OX
f∗M• // Tot(f∗K• ⊗OX

f∗M•)

commutes.

Proof. We will use the existence of K-flat resolutions as in Lemma 20.26.8. If we
choose such resolutions P• → K• and Q• →M•, then we see that

Lf∗Tot(P• ⊗OY
Q•) //

��

Lf∗Tot(K• ⊗OY
M•)

��
f∗Tot(P• ⊗OY

Q•)

��

// f∗Tot(K• ⊗OY
M•)

��
Tot(f∗P• ⊗OX

f∗Q•) // Tot(f∗K• ⊗OX
f∗M•)

commutes. However, now the left hand side of the diagram is the left hand side of
the diagram by our choice of P• and Q• and Lemma 20.26.5. □

20.28. Cohomology of unbounded complexes

079V Let (X,OX) be a ringed space. The category Mod(OX) is a Grothendieck abelian
category: it has all colimits, filtered colimits are exact, and it has a generator,
namely ⊕

U⊂X open
jU !OU ,

see Modules, Section 17.3 and Lemmas 17.17.5 and 17.17.6. By Injectives, Theo-
rem 19.12.6 for every complex F• of OX -modules there exists an injective quasi-
isomorphism F• → I• to a K-injective complex of OX -modules all of whose terms
are injective OX -modules and moreover this embedding can be chosen functorial in
the complex F•. It follows from Derived Categories, Lemma 13.31.7 that

(1) any exact functor F : K(Mod(OX)) → D into a trianguated category D
has a right derived functor RF : D(OX)→ D,

(2) for any additive functor F : Mod(OX) → A into an abelian category A
we consider the exact functor F : K(Mod(OX)) → D(A) induced by F
and we obtain a right derived functor RF : D(OX)→ K(A).

By construction we have RF (F•) = F (I•) where F• → I• is as above.
Here are some examples of the above:

(1) The functor Γ(X,−) : Mod(OX)→ ModΓ(X,OX) gives rise to
RΓ(X,−) : D(OX)→ D(Γ(X,OX))

We shall use the notation Hi(X,K) = Hi(RΓ(X,K)) for cohomology.

https://stacks.math.columbia.edu/tag/0FP0
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(2) For an open U ⊂ X we consider the functor Γ(U,−) : Mod(OX) →
ModΓ(U,OX). This gives rise to

RΓ(U,−) : D(OX)→ D(Γ(U,OX))
We shall use the notation Hi(U,K) = Hi(RΓ(U,K)) for cohomology.

(3) For a morphism of ringed spaces f : (X,OX) → (Y,OY ) we consider the
functor f∗ : Mod(OX) → Mod(OY ) which gives rise to the total direct
image

Rf∗ : D(OX) −→ D(OY )
on unbounded derived categories.

Lemma 20.28.1.079W Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
The functor Rf∗ defined above and the functor Lf∗ defined in Lemma 20.27.1 are
adjoint:

HomD(OX)(Lf∗G•,F•) = HomD(OY )(G•, Rf∗F•)
bifunctorially in F• ∈ Ob(D(OX)) and G• ∈ Ob(D(OY )).

Proof. This follows formally from the fact that Rf∗ and Lf∗ exist, see Derived
Categories, Lemma 13.30.3. □

Lemma 20.28.2.0D5T Let f : X → Y and g : Y → Z be morphisms of ringed spaces.
Then Rg∗ ◦Rf∗ = R(g ◦ f)∗ as functors D(OX)→ D(OZ).

Proof. By Lemma 20.28.1 we see that Rg∗ ◦Rf∗ is adjoint to Lf∗ ◦ Lg∗. We have
Lf∗◦Lg∗ = L(g◦f)∗ by Lemma 20.27.2 and hence by uniqueness of adjoint functors
we have Rg∗ ◦Rf∗ = R(g ◦ f)∗. □

Remark 20.28.3.08HY The construction of unbounded derived functor Lf∗ and Rf∗
allows one to construct the base change map in full generality. Namely, suppose
that

X ′
g′
//

f ′

��

X

f

��
S′ g // S

is a commutative diagram of ringed spaces. Let K be an object of D(OX). Then
there exists a canonical base change map

Lg∗Rf∗K −→ R(f ′)∗L(g′)∗K

in D(OS′). Namely, this map is adjoint to a map L(f ′)∗Lg∗Rf∗K → L(g′)∗K
Since L(f ′)∗Lg∗ = L(g′)∗Lf∗ we see this is the same as a map L(g′)∗Lf∗Rf∗K →
L(g′)∗K which we can take to be L(g′)∗ of the adjunction map Lf∗Rf∗K → K.

Remark 20.28.4.0ATL Consider a commutative diagram

X ′
k
//

f ′

��

X

f

��
Y ′ l //

g′

��

Y

g

��
Z ′ m // Z

https://stacks.math.columbia.edu/tag/079W
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of ringed spaces. Then the base change maps of Remark 20.28.3 for the two squares
compose to give the base change map for the outer rectangle. More precisely, the
composition

Lm∗ ◦R(g ◦ f)∗ = Lm∗ ◦Rg∗ ◦Rf∗

→ Rg′
∗ ◦ Ll∗ ◦Rf∗

→ Rg′
∗ ◦Rf ′

∗ ◦ Lk∗

= R(g′ ◦ f ′)∗ ◦ Lk∗

is the base change map for the rectangle. We omit the verification.
Remark 20.28.5.0ATM Consider a commutative diagram

X ′′
g′
//

f ′′

��

X ′
g
//

f ′

��

X

f

��
Y ′′ h′

// Y ′ h // Y

of ringed spaces. Then the base change maps of Remark 20.28.3 for the two squares
compose to give the base change map for the outer rectangle. More precisely, the
composition

L(h ◦ h′)∗ ◦Rf∗ = L(h′)∗ ◦ Lh∗ ◦Rf∗

→ L(h′)∗ ◦Rf ′
∗ ◦ Lg∗

→ Rf ′′
∗ ◦ L(g′)∗ ◦ Lg∗

= Rf ′′
∗ ◦ L(g ◦ g′)∗

is the base change map for the rectangle. We omit the verification.
Lemma 20.28.6.0FP1 Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let
K• be a complex of OX -modules. The diagram

Lf∗f∗K• //

��

f∗f∗K•

��
Lf∗Rf∗K• // K•

coming from Lf∗ → f∗ on complexes, f∗ → Rf∗ on complexes, and adjunction
Lf∗ ◦Rf∗ → id commutes in D(OX).
Proof. We will use the existence of K-flat resolutions and K-injective resolutions,
see Lemma 20.26.8 and the discussion above. Choose a quasi-isomorphism K• → I•

where I• is K-injective as a complex of OX -modules. Choose a quasi-isomorphism
Q• → f∗I• where Q• is K-flat as a complex of OY -modules. We can choose a
K-flat complex of OY -modules P• and a diagram of morphisms of complexes

P• //

��

f∗K•

��
Q• // f∗I•

commutative up to homotopy where the top horizontal arrow is a quasi-isomorphism.
Namely, we can first choose such a diagram for some complex P• because the quasi-
isomorphisms form a multiplicative system in the homotopy category of complexes

https://stacks.math.columbia.edu/tag/0ATM
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and then we can replace P• by a K-flat complex. Taking pullbacks we obtain a
diagram of morphisms of complexes

f∗P• //

��

f∗f∗K•

��

// K•

��
f∗Q• // f∗f∗I• // I•

commutative up to homotopy. The outer rectangle witnesses the truth of the state-
ment in the lemma. □

Remark 20.28.7.0B68 Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. The
adjointness of Lf∗ and Rf∗ allows us to construct a relative cup product

Rf∗K ⊗L
OY

Rf∗L −→ Rf∗(K ⊗L
OX

L)
inD(OY ) for allK,L inD(OX). Namely, this map is adjoint to a map Lf∗(Rf∗K⊗L

OY

Rf∗L) → K ⊗L
OX

L for which we can take the composition of the isomorphism
Lf∗(Rf∗K⊗L

OY
Rf∗L) = Lf∗Rf∗K⊗L

OX
Lf∗Rf∗L (Lemma 20.27.3) with the map

Lf∗Rf∗K ⊗L
OX

Lf∗Rf∗L→ K ⊗L
OX

L coming from the counit Lf∗ ◦Rf∗ → id.

20.29. Cohomology of filtered complexes

0FLJ Filtered complexes of sheaves frequently come up in a natural fashion when studying
cohomology of algebraic varieties, for example the de Rham complex comes with its
Hodge filtration. In this sectionwe use the very general Injectives, Lemma 19.13.7 to
find construct spectral sequences on cohomology and we relate these to previously
constructed spectral sequences.

Lemma 20.29.1.0BKK Let (X,OX) be a ringed space. Let F• be a filtered complex of
OX -modules. There exists a canonical spectral sequence (Er,dr)r≥1 of bigraded
Γ(X,OX)-modules with dr of bidegree (r,−r + 1) and

Ep,q1 = Hp+q(X, grpF•)
If for every n we have

Hn(X,F pF•) = 0 for p≫ 0 and Hn(X,F pF•) = Hn(X,F•) for p≪ 0
then the spectral sequence is bounded and converges to H∗(X,F•).

Proof. (For a proof in case the complex is a bounded below complex of modules
with finite filtrations, see the remark below.) Choose an map of filtered complexes
j : F• → J • as in Injectives, Lemma 19.13.7. The spectral sequence is the spectral
sequence of Homology, Section 12.24 associated to the filtered complex

Γ(X,J •) with F pΓ(X,J •) = Γ(X,F pJ •)
Since cohomology is computed by evaluating on K-injective representatives we see
that the E1 page is as stated in the lemma. The convergence and boundedness
under the stated conditions follows from Homology, Lemma 12.24.13. □

Remark 20.29.2.0BKL Let (X,OX) be a ringed space. Let F• be a filtered complex
of OX -modules. If F• is bounded from below and for each n the filtration on
Fn is finite, then there is a construction of the spectral sequence in Lemma 20.29.1
avoiding Injectives, Lemma 19.13.7. Namely, by Derived Categories, Lemma 13.26.9
there is a filtered quasi-isomorphism i : F• → I• of filtered complexes with I•
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bounded below, the filtration on In is finite for all n, and with each grpIn an
injective OX -module. Then we take the spectral sequence associated to

Γ(X, I•) with F pΓ(X, I•) = Γ(X,F pI•)

Since cohomology can be computed by evaluating on bounded below complexes of
injectives we see that the E1 page is as stated in the lemma. The convergence and
boundedness under the stated conditions follows from Homology, Lemma 12.24.11.
In fact, this is a special case of the spectral sequence in Derived Categories, Lemma
13.26.14.

Example 20.29.3.0BKM Let (X,OX) be a ringed space. Let F• be a complex of OX -
modules. We can apply Lemma 20.29.1 with F pF• = τ≤−pF•. (If F• is bounded
below we can use Remark 20.29.2.) Then we get a spectral sequence

Ep,q1 = Hp+q(X,H−p(F•)[p]) = H2p+q(X,H−p(F•))

After renumbering p = −j and q = i+ 2j we find that for any K ∈ D(OX) there is
a spectral sequence (E′

r, d
′
r)r≥2 of bigraded modules with d′

r of bidegree (r,−r+1),
with

(E′
2)i,j = Hi(X,Hj(K))

If K is bounded below (for example), then this spectral sequence is bounded and
converges to Hi+j(X,K). In the bounded below case this spectral sequence is
an example of the second spectral sequence of Derived Categories, Lemma 13.21.3
(constructed using Cartan-Eilenberg resolutions).

Example 20.29.4.0FLK Let (X,OX) be a ringed space. Let F• be a complex of OX -
modules. We can apply Lemma 20.29.1 with F pF• = σ≥pF•. Then we get a
spectral sequence

Ep,q1 = Hp+q(X,Fp[−p]) = Hq(X,Fp)

If F• is bounded below, then
(1) we can use Remark 20.29.2 to construct this spectral sequence,
(2) the spectral sequence is bounded and converges to Hi+j(X,F•), and
(3) the spectral sequence is equal to the first spectral sequence of Derived

Categories, Lemma 13.21.3 (constructed using Cartan-Eilenberg resolu-
tions).

Lemma 20.29.5.0FLL Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let
F• be a filtered complex of OX -modules. There exists a canonical spectral sequence
(Er,dr)r≥1 of bigraded OY -modules with dr of bidegree (r,−r + 1) and

Ep,q1 = Rp+qf∗grpF•

If for every n we have

Rnf∗F
pF• = 0 for p≫ 0 and Rnf∗F

pF• = Rnf∗F• for p≪ 0

then the spectral sequence is bounded and converges to Rf∗F•.

Proof. The proof is exactly the same as the proof of Lemma 20.29.1. □

https://stacks.math.columbia.edu/tag/0BKM
https://stacks.math.columbia.edu/tag/0FLK
https://stacks.math.columbia.edu/tag/0FLL
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20.30. Godement resolution

0FKR A reference is [God73].
Let (X,OX) be a ringed space. Denote Xdisc the discrete topological space with
the same points as X. Denote f : Xdisc → X the obvious continuous map. Set
OXdisc = f−1OX . Then f : (Xdisc,OXdisc)→ (X,OX) is a flat morphism of ringed
spaces. We can apply the dual of the material in Simplicial, Section 14.34 to the
adjoint pair of functors f∗, f∗ on sheaves of modules. Thus we obtain an augmented
cosimplicial object

id // f∗f
∗ //

// f∗f
∗f∗f

∗oo
//
//
//
f∗f

∗f∗f
∗f∗f

∗
oo
oo

in the category of functors from Mod(OX) to itself, see Simplicial, Lemma 14.34.2.
Moreover, the augmentation

f∗ // f∗f∗f
∗ //

// f
∗f∗f

∗f∗f
∗oo

//
//
//
f∗f∗f

∗f∗f
∗f∗f

∗
oo
oo

is a homotopy equivalence, see Simplicial, Lemma 14.34.3.

Lemma 20.30.1.0FKS Let (X,OX) be a ringed space. For every sheaf of OX -modules
F there is a resolution

0→ F → f∗f
∗F → f∗f

∗f∗f
∗F → f∗f

∗f∗f
∗f∗f

∗F → . . .

functorial in F such that each term f∗f
∗ . . . f∗f

∗F is a flasque OX -module and
such that for all x ∈ X the map

Fx[0]→
(

(f∗f
∗F)x → (f∗f

∗f∗f
∗F)x → (f∗f

∗f∗f
∗f∗f

∗F)x → . . .
)

is a homotopy equivalence in the category of complexes of OX,x-modules.

Proof. The complex f∗f
∗F → f∗f

∗f∗f
∗F → f∗f

∗f∗f
∗f∗f

∗F → . . . is the complex
associated to the cosimplicial object with terms f∗f

∗F , f∗f
∗f∗f

∗F , f∗f
∗f∗f

∗f∗f
∗F , . . .

described above, see Simplicial, Section 14.25. The augmentation gives rise to the
map F → f∗f

∗F as indicated. For any abelian sheaf H on Xdisc the pushforward
f∗H is flasque because Xdisc is a discrete space and the pushforward of a flasque
sheaf is flasque. Hence the terms of the complex are flasque OX -modules.
If x ∈ Xdisc = X is a point, then (f∗G)x = Gx for any OX -module G. Hence f∗ is
an exact functor and a complex of OX -modules G1 → G2 → G3 is exact if and only if
f∗G1 → f∗G2 → f∗G3 is exact (see Modules, Lemma 17.3.1). The result mentioned
in the introduction to this section proves the pullback by f∗ gives a homotopy
equivalence from the constant cosimplicial object f∗F to the cosimplicial object
with terms f∗f

∗F , f∗f
∗f∗f

∗F , f∗f
∗f∗f

∗f∗f
∗F , . . .. By Simplicial, Lemma 14.28.7

we obtain that

f∗F [0]→
(
f∗f∗f

∗F → f∗f∗f
∗f∗f

∗F → f∗f∗f
∗f∗f

∗f∗f
∗F → . . .

)
is a homotopy equivalence. This immediately implies the two remaining statements
of the lemma. □

Lemma 20.30.2.0FKT Let (X,OX) be a ringed space. Let F• be a bounded below
complex of OX -modules. There exists a quasi-isomorphism F• → G• where G•

be a bounded below complex of flasque OX -modules and for all x ∈ X the map
F•
x → G•

x is a homotopy equivalence in the category of complexes of OX,x-modules.

https://stacks.math.columbia.edu/tag/0FKS
https://stacks.math.columbia.edu/tag/0FKT
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Proof. Let A be the category of complexes of OX -modules and let B be the category
of complexes of OX -modules. Then we can apply the discussion above to the adjoint
functors f∗ and f∗ between A and B. Arguing exactly as in the proof of Lemma
20.30.1 we get a resolution

0→ F• → f∗f
∗F• → f∗f

∗f∗f
∗F• → f∗f

∗f∗f
∗f∗f

∗F• → . . .

in the abelian category A such that each term of each f∗f
∗ . . . f∗f

∗F• is a flasque
OX -module and such that for all x ∈ X the map

F•
x [0]→

(
(f∗f

∗F•)x → (f∗f
∗f∗f

∗F•)x → (f∗f
∗f∗f

∗f∗f
∗F•)x → . . .

)
is a homotopy equivalence in the category of complexes of complexes of OX,x-
modules. Since a complex of complexes is the same thing as a double complex, we
can consider the induced map

F• → G• = Tot(f∗f
∗F• → f∗f

∗f∗f
∗F• → f∗f

∗f∗f
∗f∗f

∗F• → . . .)

Since the complex F• is bounded below, the same is true for G• and in fact each
term of G• is a finite direct sum of terms of the complexes f∗f

∗ . . . f∗f
∗F• and hence

is flasque. The final assertion of the lemma now follows from Homology, Lemma
12.25.5. Since this in particular shows that F• → G• is a quasi-isomorphism, the
proof is complete. □

20.31. Cup product

0FKU Let (X,OX) be a ringed space. Let K,M be objects of D(OX). Set A = Γ(X,OX).
The (global) cup product in this setting is a map

µ : RΓ(X,K)⊗L
A RΓ(X,M) −→ RΓ(X,K ⊗L

OX
M)

in D(A). We define it as the relative cup product for the morphism of ringed spaces
f : (X,OX) → (pt, A) as in Remark 20.28.7 via D(pt, A) = D(A). This map in
particular defines pairings

∪ : Hi(X,K)×Hj(X,M) −→ Hi+j(X,K ⊗L
OX

M)

Namely, given ξ ∈ Hi(X,K) = Hi(RΓ(X,K)) and η ∈ Hj(X,M) = Hj(RΓ(X,M))
we can first “tensor” them to get an element ξ⊗η in Hi+j(RΓ(X,K)⊗L

ARΓ(X,M)),
see More on Algebra, Section 15.63. Then we can apply µ to get the desired element
ξ ∪ η = µ(ξ ⊗ η) of Hi+j(X,K ⊗L

OX
M).

Here is another way to think of the cup product of ξ and η. Namely, we can write

RΓ(X,K) = RHomX(OX ,K) and RΓ(X,M) = RHomX(OX ,M)

because Hom(OX ,−) = Γ(X,−). Thus ξ and η are the “same” thing as maps

ξ̃ : OX [−i]→ K and η̃ : OX [−j]→M

Combining this with the functoriality of the derived tensor product we obtain

OX [−i− j] = OX [−i]⊗L
OX
OX [−j] ξ̃⊗η̃−−→ K ⊗L

OX
M

which by the same token as above is an element of Hi+j(X,K ⊗L
OX

M).

Lemma 20.31.1.0FP2 This construction gives the cup product.

https://stacks.math.columbia.edu/tag/0FP2
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Proof. With f : (X,OX)→ (pt, A) as above we have Rf∗(−) = RΓ(X,−) and our
map µ is adjoint to the map

Lf∗(Rf∗K ⊗L
A Rf∗M) = Lf∗Rf∗K ⊗L

OX
Lf∗Rf∗M

ϵK⊗ϵM−−−−−→ K ⊗L
OX

M

where ϵ is the counit of the adjunction between Lf∗ and Rf∗. If we think of ξ and
η as maps ξ : A[−i]→ RΓ(X,K) and η : A[−j]→ RΓ(X,M), then the tensor ξ⊗η
corresponds to the map3

A[−i− j] = A[−i]⊗L
A A[−j] ξ⊗η−−→ RΓ(X,K)⊗L

A RΓ(X,M)
By definition the cup product ξ∪η is the map A[−i−j]→ RΓ(X,K⊗L

OX
M) which

is adjoint to
(ϵK ⊗ ϵM ) ◦ Lf∗(ξ ⊗ η) = (ϵK ◦ Lf∗ξ)⊗ (ϵM ◦ Lf∗η)

However, it is easy to see that ϵK ◦Lf∗ξ = ξ̃ and ϵM ◦Lf∗η = η̃. We conclude that
ξ̃ ∪ η = ξ̃ ⊗ η̃ which means we have the desired agreement. □

Remark 20.31.2.0G6W Let (X,OX) be a ringed space. Let K,M be objects of D(OX).
Set A = Γ(X,OX). Given ξ ∈ Hi(X,K) we get an associated map

ξ = “ξ ∪ −′′ : RΓ(X,M)[−i]→ RΓ(X,K ⊗L
OX

M)
by representing ξ as a map ξ : A[−i]→ RΓ(X,K) as in the proof of Lemma 20.31.1
and then using the composition

RΓ(X,M)[−i] = A[−i]⊗L
ARΓ(X,M) ξ⊗1−−→ RΓ(X,K)⊗L

ARΓ(X,M)→ RΓ(X,K⊗L
OX

M)
where the second arrow is the global cup product µ above. On cohomology this
recovers the cup product by ξ as is clear from Lemma 20.31.1 and its proof.

Let us formulate and prove a natural compatibility of the relative cup product.
Namely, suppose that we have a morphism f : (X,OX)→ (Y,OY ) of ringed spaces.
Let K• and M• be complexes of OX -modules. There is a naive cup product

Tot(f∗K• ⊗OY
f∗M•) −→ f∗Tot(K• ⊗OX

M•)
We claim that this is related to the relative cup product.

Lemma 20.31.3.0FP3 In the situation above the following diagram commutes

f∗K• ⊗L
OY

f∗M• //

��

Rf∗K• ⊗L
OY

Rf∗M•

Remark 20.28.7
��

Tot(f∗K• ⊗OY
f∗M•)

naive cup product
��

Rf∗(K• ⊗L
OX
M•)

��
f∗Tot(K• ⊗OX

M•) // Rf∗Tot(K• ⊗OX
M•)

3There is a sign hidden here, namely, the equality is defined by the composition

A[−i− j]→ (A⊗L
A A)[−i− j]→ A[−i]⊗L

A A[−j]

where in the second step we use the identification of More on Algebra, Item (7) which uses a sign in
principle. Except, in this case the sign is +1 by our convention and even if it wasn’t +1 it wouldn’t
matter since we used the same sign in the identification OX [−i− j] = OX [−i]⊗L

OX
OX [−j].

https://stacks.math.columbia.edu/tag/0G6W
https://stacks.math.columbia.edu/tag/0FP3
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Proof. By the construction in Remark 20.28.7 we see that going around the diagram
clockwise the map

f∗K• ⊗L
OY

f∗M• −→ Rf∗Tot(K• ⊗OX
M•)

is adjoint to the map

Lf∗(f∗K• ⊗L
OY

f∗M•) = Lf∗f∗K• ⊗L
OY

Lf∗f∗M•

→ Lf∗Rf∗K• ⊗L
OY

Lf∗Rf∗M•

→ K• ⊗L
OY
M•

→ Tot(K• ⊗OX
M•)

By Lemma 20.28.6 this is also equal to

Lf∗(f∗K• ⊗L
OY

f∗M•) = Lf∗f∗K• ⊗L
OY

Lf∗f∗M•

→ f∗f∗K• ⊗L
OY

f∗f∗M•

→ K• ⊗L
OY
M•

→ Tot(K• ⊗OX
M•)

Going around anti-clockwise we obtain the map adjoint to the map

Lf∗(f∗K• ⊗L
OY

f∗M•)→ Lf∗Tot(f∗K• ⊗OY
f∗M•)

→ Lf∗f∗Tot(K• ⊗OX
M•)

→ Lf∗Rf∗Tot(K• ⊗OX
M•)

→ Tot(K• ⊗OX
M•)

By Lemma 20.28.6 this is also equal to

Lf∗(f∗K• ⊗L
OY

f∗M•)→ Lf∗Tot(f∗K• ⊗OY
f∗M•)

→ Lf∗f∗Tot(K• ⊗OX
M•)

→ f∗f∗Tot(K• ⊗OX
M•)

→ Tot(K• ⊗OX
M•)

Now the proof is finished by a contemplation of the diagram

Lf∗(f∗K• ⊗L
OY

f∗M•)

��

// Lf∗f∗K• ⊗L
OX

Lf∗f∗M•

��
Lf∗Tot(f∗K• ⊗OY

f∗M•)

naive

��

// f∗Tot(f∗K• ⊗OY
f∗M•)

naive

xx ��

f∗f∗K• ⊗L
OX

f∗f∗M•

��xx

Lf∗f∗Tot(K• ⊗OX
M•)

��
f∗f∗Tot(K• ⊗OX

M•)

**

Tot(f∗f∗K• ⊗OX
f∗f∗M•)

��

K• ⊗L
OX
M•

tt
Tot(K• ⊗OX

M•)
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All of the polygons in this diagram commute. The top one commutes by Lemma
20.27.5. The square with the two naive cup products commutes because Lf∗ → f∗

is functorial in the complex of modules. Similarly with the square involving the
two maps A• ⊗L B• → Tot(A• ⊗B•). Finally, the commutativity of the remaining
square is true on the level of complexes and may be viewed as the definiton of the
naive cup product (by the adjointness of f∗ and f∗). The proof is finished because
going around the diagram on the outside are the two maps given above. □

Let (X,OX) be a ring space. Let K• and M• be complexes of OX -modules. Then
we have a “naive” cup product

µ′ : Tot(Γ(X,K•)⊗A Γ(X,M•)) −→ Γ(X,Tot(K• ⊗OX
M•))

By Lemma 20.31.3 applied to the morphism (X,OX) → (pt, A) this naive cup
product is related to the cup product µ defined in the first paragraph of this section
by the following commutative diagram

Γ(X,K•)⊗L
A Γ(X,M•)

��

// RΓ(X,K•)⊗L
A RΓ(X,M•)

µ

��
Tot(Γ(X,K•)⊗A Γ(X,M•))

µ′

��

RΓ(X,K• ⊗L
OX
M•)

��
Γ(X,Tot(K• ⊗OX

M•)) // RΓ(X,Tot(K• ⊗OX
M•))

in D(A). On cohomology we obtain the commutative diagram

Hi(Γ(X,K•))×Hj(Γ(X,M•))

��

// Hi+j(X,Tot(K• ⊗OX
M•))

Hi(X,K•)×Hj(X,M•) ∪ // Hi+j(X,K• ⊗L
OX
M•)

OO

relating the naive cup product with the actual cuproduct.

Lemma 20.31.4.0FKV Let (X,OX) be a ringed space. Let K• andM• be bounded below
complexes of OX -modules. Let U : X =

⋃
i∈I Ui be an open covering Then

Tot(Č•(U ,K•))⊗L
A Tot(Č•(U ,M•))

��

// RΓ(X,K•)⊗L
A RΓ(X,M•)

µ

��
Tot(Tot(Č•(U ,K•))⊗A Tot(Č•(U ,M•)))

(20.25.3.2)
��

RΓ(X,K• ⊗L
OX
M•)

��
Tot(Č•(U ,Tot(K• ⊗OX

M•))) // RΓ(X,Tot(K• ⊗OX
M•))

where the horizontal arrows are the ones in Lemma 20.25.1 commutes in D(A).

Proof. Choose quasi-isomorphisms of complexes a : K• → K•
1 and b : M• → M•

1
as in Lemma 20.30.2. Since the maps a and b on stalks are homotopy equivalences
we see that the induced map

Tot(K• ⊗OX
M•)→ Tot(K•

1 ⊗OX
M•

1)

https://stacks.math.columbia.edu/tag/0FKV
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is a homotopy equivalence on stalks too (More on Algebra, Lemma 15.58.2) and
hence a quasi-isomorphism. Thus the targets

RΓ(X,Tot(K• ⊗OX
M•)) = RΓ(X,Tot(K•

1 ⊗OX
M•

1))

of the two diagrams are the same in D(A). It follows that it suffices to prove the
diagram commutes for K and M replaced by K1 and M1. This reduces us to the
case discussed in the next paragraph.

Assume K• and M• are bounded below complexes of flasque OX -modules and
consider the diagram relating the cup product with the cup product (20.25.3.2) on
Čech complexes. Then we can consider the commutative diagram

Γ(X,K•)⊗L
A Γ(X,M•)

��

// Tot(Č•(U ,K•))⊗L
A Tot(Č•(U ,M•))

��
Tot(Γ(X,K•)⊗A Γ(X,M•))

��

// Tot(Tot(Č•(U ,K•))⊗A Tot(Č•(U ,M•)))

(20.25.3.2)
��

Γ(X,Tot(K• ⊗OX
M•)) // Tot(Č•(U ,Tot(K• ⊗OX

M•)))

In this diagram the horizontal arrows are isomorphisms in D(A) because for a
bounded below complex of flasque modules such as K• we have

Γ(X,K•) = Tot(Č•(U ,K•)) = RΓ(X,K•)

in D(A). This follows from Lemma 20.12.3, Derived Categories, Lemma 13.16.7,
and Lemma 20.25.2. Hence the commutativity of the diagram of the lemma involv-
ing (20.25.3.2) follows from the already proven commutativity of Lemma 20.31.3
where f is the morphism to a point (see discussion following Lemma 20.31.3). □

Lemma 20.31.5.0FP4 Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. The
relative cup product of Remark 20.28.7 is associative in the sense that the diagram

Rf∗K ⊗L
OY

Rf∗L⊗L
OY

Rf∗M //

��

Rf∗(K ⊗L
OX

L)⊗L
OY

Rf∗M

��
Rf∗K ⊗L

OY
Rf∗(L⊗L

OX
M) // Rf∗(K ⊗L

OX
L⊗L

OX
M)

is commutative in D(OY ) for all K,L,M in D(OX).

Proof. Going around either side we obtain the map adjoint to the obvious map

Lf∗(Rf∗K ⊗L
OY

Rf∗L⊗L
OY

Rf∗M) = Lf∗(Rf∗K)⊗L
OX

Lf∗(Rf∗L)⊗L
OX

Lf∗(Rf∗M)
→ K ⊗L

OX
L⊗L

OX
M

in D(OX). □

Lemma 20.31.6.0FP5 Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
The relative cup product of Remark 20.28.7 is commutative in the sense that the

https://stacks.math.columbia.edu/tag/0FP4
https://stacks.math.columbia.edu/tag/0FP5
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diagram
Rf∗K ⊗L

OY
Rf∗L //

ψ

��

Rf∗(K ⊗L
OX

L)

Rf∗ψ

��
Rf∗L⊗L

OY
Rf∗K // Rf∗(L⊗L

OX
K)

is commutative in D(OY ) for all K,L in D(OX). Here ψ is the commutativity
constraint on the derived category (Lemma 20.50.6).

Proof. Omitted. □

Lemma 20.31.7.0FP6 Let f : (X,OX) → (Y,OY ) and g : (Y,OY ) → (Z,OZ) be mor-
phisms of ringed spaces. The relative cup product of Remark 20.28.7 is compatible
with compositions in the sense that the diagram

R(g ◦ f)∗K ⊗L
OZ

R(g ◦ f)∗L

��

Rg∗Rf∗K ⊗L
OZ

Rg∗Rf∗L

��
R(g ◦ f)∗(K ⊗L

OX
L) Rg∗Rf∗(K ⊗L

OX
L) Rg∗(Rf∗K ⊗L

OY
Rf∗L)oo

is commutative in D(OZ) for all K,L in D(OX).

Proof. This is true because going around the diagram either way we obtain the
map adjoint to the map

L(g ◦ f)∗ (R(g ◦ f)∗K ⊗L
OZ

R(g ◦ f)∗L
)

= L(g ◦ f)∗R(g ◦ f)∗K ⊗L
OX

L(g ◦ f)∗R(g ◦ f)∗L)
→ K ⊗L

OX
L

in D(OX). To see this one uses that the composition of the counits like so
L(g ◦ f)∗R(g ◦ f)∗ = Lf∗Lg∗Rg∗Rf∗ → Lf∗Rf∗ → id

is the counit for L(g ◦ f)∗ and R(g ◦ f)∗. See Categories, Lemma 4.24.9. □

20.32. Some properties of K-injective complexes

0D5U Let (X,OX) be a ringed space. Let U ⊂ X be an open subset. Denote j : (U,OU )→
(X,OX) the corresponding open immersion. The pullback functor j∗ is exact as it
is just the restriction functor. Thus derived pullback Lj∗ is computed on any com-
plex by simply restricting the complex. We often simply denote the corresponding
functor

D(OX)→ D(OU ), E 7→ j∗E = E|U
Similarly, extension by zero j! : Mod(OU )→ Mod(OX) (see Sheaves, Section 6.31)
is an exact functor (Modules, Lemma 17.3.4). Thus it induces a functor

j! : D(OU )→ D(OX), F 7→ j!F

by simply applying j! to any complex representing the object F .

Lemma 20.32.1.08BS Let X be a ringed space. Let U ⊂ X be an open subspace. The
restriction of a K-injective complex of OX -modules to U is a K-injective complex
of OU -modules.

https://stacks.math.columbia.edu/tag/0FP6
https://stacks.math.columbia.edu/tag/08BS
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Proof. Follows from Derived Categories, Lemma 13.31.9 and the fact that the re-
striction functor has the exact left adjoint j!. For the construction of j! see Sheaves,
Section 6.31 and for exactness see Modules, Lemma 17.3.4. □

Lemma 20.32.2.0D5V Let X be a ringed space. Let U ⊂ X be an open subspace. For
K in D(OX) we have Hp(U,K) = Hp(U,K|U ).

Proof. Let I• be a K-injective complex of OX -modules representing K. Then
Hq(U,K) = Hq(Γ(U, I•)) = Hq(Γ(U, I•|U ))

by construction of cohomology. By Lemma 20.32.1 the complex I•|U is a K-injective
complex representing K|U and the lemma follows. □

Lemma 20.32.3.0BKJ Let (X,OX) be a ringed space. Let K be an object of D(OX).
The sheafification of

U 7→ Hq(U,K) = Hq(U,K|U )
is the qth cohomology sheaf Hq(K) of K.

Proof. The equality Hq(U,K) = Hq(U,K|U ) holds by Lemma 20.32.2. Choose a
K-injective complex I• representing K. Then

Hq(U,K) = Ker(Iq(U)→ Iq+1(U))
Im(Iq−1(U)→ Iq(U)) .

by our construction of cohomology. Since Hq(K) = Ker(Iq → Iq+1)/ Im(Iq−1 →
Iq) the result is clear. □

Lemma 20.32.4.08FE Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
Given an open subspace V ⊂ Y , set U = f−1(V ) and denote g : U → V the
induced morphism. Then (Rf∗E)|V = Rg∗(E|U ) for E in D(OX).

Proof. Represent E by a K-injective complex I• of OX -modules. Then Rf∗(E) =
f∗I• and Rg∗(E|U ) = g∗(I•|U ) by Lemma 20.32.1. Since it is clear that (f∗F)|V =
g∗(F|U ) for any sheaf F on X the result follows. □

Lemma 20.32.5.0D5W Let f : X → Y be a morphism of ringed spaces. Then RΓ(Y,−) ◦
Rf∗ = RΓ(X,−) as functors D(OX) → D(Γ(Y,OY )). More generally for V ⊂ Y
open and U = f−1(V ) we have RΓ(U,−) = RΓ(V,−) ◦Rf∗.

Proof. Let Z be the ringed space consisting of a singleton space with Γ(Z,OZ) =
Γ(Y,OY ). There is a canonical morphism Y → Z of ringed spaces inducing the
identification on global sections of structure sheaves. Then D(OZ) = D(Γ(Y,OY )).
Hence the assertion RΓ(Y,−)◦Rf∗ = RΓ(X,−) follows from Lemma 20.28.2 applied
to X → Y → Z.
The second (more general) statement follows from the first statement after applying
Lemma 20.32.4. □

Lemma 20.32.6.0D5X Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let
K be in D(OX). Then Hi(Rf∗K) is the sheaf associated to the presheaf

V 7→ Hi(f−1(V ),K) = Hi(V,Rf∗K)

Proof. The equality Hi(f−1(V ),K) = Hi(V,Rf∗K) follows upon taking cohomol-
ogy from the second statement in Lemma 20.32.5. Then the statement on sheafifi-
cation follows from Lemma 20.32.3. □
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Lemma 20.32.7.0D5Y Let X be a ringed space. Let K be an object of D(OX) and
denote Kab its image in D(ZX).

(1) For any open U ⊂ X there is a canonical map RΓ(U,K) → RΓ(U,Kab)
which is an isomorphism in D(Ab).

(2) Let f : X → Y be a morphism of ringed spaces. There is a canonical map
Rf∗K → Rf∗(Kab) which is an isomorphism in D(ZY ).

Proof. The map is constructed as follows. Choose a K-injective complex I• repre-
senting K. Choose a quasi-isomorpism I• → J • where J • is a K-injective complex
of abelian groups. Then the map in (1) is given by Γ(U, I•) → Γ(U,J •) and the
map in (2) is given by f∗I• → f∗J •. To show that these maps are isomorphisms, it
suffices to prove they induce isomorphisms on cohomology groups and cohomology
sheaves. By Lemmas 20.32.2 and 20.32.6 it suffices to show that the map

H0(X,K) −→ H0(X,Kab)
is an isomorphism. Observe that

H0(X,K) = HomD(OX)(OX ,K)
and similarly for the other group. Choose any complex K• of OX -modules repre-
senting K. By construction of the derived category as a localization we have

HomD(OX)(OX ,K) = colims:F•→OX
HomK(OX)(F•,K•)

where the colimit is over quasi-isomorphisms s of complexes of OX -modules. Sim-
ilarly, we have

HomD(ZX)(ZX ,K) = colims:G•→Z
X

HomK(ZX)(G•,K•)
Next, we observe that the quasi-isomorphisms s : G• → ZX with G• bounded above
complex of flat ZX -modules is cofinal in the system. (This follows from Modules,
Lemma 17.17.6 and Derived Categories, Lemma 13.15.4; see discussion in Section
20.26.) Hence we can construct an inverse to the map H0(X,K) −→ H0(X,Kab)
by representing an element ξ ∈ H0(X,Kab) by a pair

(s : G• → ZX , a : G• → K•)
with G• a bounded above complex of flat ZX -modules and sending this to

(G• ⊗ZX OX → OX ,G
• ⊗ZX OX → K

•)
The only thing to note here is that the first arrow is a quasi-isomorphism by Lemmas
20.26.13 and 20.26.9. We omit the detailed verification that this construction is
indeed an inverse. □

Lemma 20.32.8.08BT Let (X,OX) be a ringed space. Let U ⊂ X be an open subset.
Denote j : (U,OU )→ (X,OX) the corresponding open immersion. The restriction
functor D(OX) → D(OU ) is a right adjoint to extension by zero j! : D(OU ) →
D(OX).

Proof. This follows formally from the fact that j! and j∗ are adjoint and exact (and
hence Lj! = j! and Rj∗ = j∗ exist), see Derived Categories, Lemma 13.30.3. □

Lemma 20.32.9.0D5Z Let f : X → Y be a flat morphism of ringed spaces. If I• is
a K-injective complex of OX -modules, then f∗I• is K-injective as a complex of
OY -modules.
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Proof. This is true because
HomK(OY )(F•, f∗I•) = HomK(OX)(f∗F•, I•)

by Sheaves, Lemma 6.26.2 and the fact that f∗ is exact as f is assumed to be
flat. □

20.33. Unbounded Mayer-Vietoris

08BR There is a Mayer-Vietoris sequence for unbounded cohomology as well.
Lemma 20.33.1.08BU Let (X,OX) be a ringed space. Let X = U ∪ V be the union of
two open subspaces. For any object E of D(OX) we have a distinguished triangle

jU∩V !E|U∩V → jU !E|U ⊕ jV !E|V → E → jU∩V !E|U∩V [1]
in D(OX).
Proof. We have seen in Section 20.32 that the restriction functors and the extension
by zero functors are computed by just applying the functors to any complex. Let
E• be a complex of OX -modules representing E. The distinguished triangle of
the lemma is the distinguished triangle associated (by Derived Categories, Section
13.12 and especially Lemma 13.12.1) to the short exact sequence of complexes of
OX -modules

0→ jU∩V !E•|U∩V → jU !E•|U ⊕ jV !E•|V → E• → 0
To see this sequence is exact one checks on stalks using Sheaves, Lemma 6.31.8
(computation omitted). □

Lemma 20.33.2.08BV Let (X,OX) be a ringed space. Let X = U ∪ V be the union of
two open subspaces. For any object E of D(OX) we have a distinguished triangle

E → RjU,∗E|U ⊕RjV,∗E|V → RjU∩V,∗E|U∩V → E[1]
in D(OX).
Proof. Choose a K-injective complex I• representing E whose terms In are injec-
tive objects of Mod(OX), see Injectives, Theorem 19.12.6. We have seen that I•|U
is a K-injective complex as well (Lemma 20.32.1). Hence RjU,∗E|U is represented
by jU,∗I•|U . Similarly for V and U ∩ V . Hence the distinguished triangle of the
lemma is the distinguished triangle associated (by Derived Categories, Section 13.12
and especially Lemma 13.12.1) to the short exact sequence of complexes

0→ I• → jU,∗I•|U ⊕ jV,∗I•|V → jU∩V,∗I•|U∩V → 0.
This sequence is exact because for any W ⊂ X open and any n the sequence

0→ In(W )→ In(W ∩ U)⊕ In(W ∩ V )→ In(W ∩ U ∩ V )→ 0
is exact (see proof of Lemma 20.8.2). □

Lemma 20.33.3.08BW Let (X,OX) be a ringed space. Let X = U ∪ V be the union of
two open subspaces of X. For objects E, F of D(OX) we have a Mayer-Vietoris
sequence

. . . // Ext−1(EU∩V , FU∩V )

qqHom(E,F ) // Hom(EU , FU )⊕Hom(EV , FV ) // Hom(EU∩V , FU∩V )
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where the subscripts denote restrictions to the relevant opens and the Hom’s and
Ext’s are taken in the relevant derived categories.

Proof. Use the distinguished triangle of Lemma 20.33.1 to obtain a long exact
sequence of Hom’s (from Derived Categories, Lemma 13.4.2) and use that

HomD(OX)(jU !E|U , F ) = HomD(OU )(E|U , F |U )

by Lemma 20.32.8. □

Lemma 20.33.4.08BX Let (X,OX) be a ringed space. Suppose that X = U ∪ V is a
union of two open subsets. For an object E of D(OX) we have a distinguished
triangle

RΓ(X,E)→ RΓ(U,E)⊕RΓ(V,E)→ RΓ(U ∩ V,E)→ RΓ(X,E)[1]

and in particular a long exact cohomology sequence

. . .→ Hn(X,E)→ Hn(U,E)⊕H0(V,E)→ Hn(U ∩ V,E)→ Hn+1(X,E)→ . . .

The construction of the distinguished triangle and the long exact sequence is func-
torial in E.

Proof. Choose a K-injective complex I• representing E. We may assume In is
an injective object of Mod(OX) for all n, see Injectives, Theorem 19.12.6. Then
RΓ(X,E) is computed by Γ(X, I•). Similarly for U , V , and U ∩ V by Lemma
20.32.1. Hence the distinguished triangle of the lemma is the distinguished triangle
associated (by Derived Categories, Section 13.12 and especially Lemma 13.12.1) to
the short exact sequence of complexes

0→ I•(X)→ I•(U)⊕ I•(V )→ I•(U ∩ V )→ 0.

We have seen this is a short exact sequence in the proof of Lemma 20.8.2. The final
statement follows from the functoriality of the construction in Injectives, Theorem
19.12.6. □

Lemma 20.33.5.08HZ Let f : X → Y be a morphism of ringed spaces. Suppose that
X = U ∪ V is a union of two open subsets. Denote a = f |U : U → Y , b = f |V :
V → Y , and c = f |U∩V : U ∩ V → Y . For every object E of D(OX) there exists a
distinguished triangle

Rf∗E → Ra∗(E|U )⊕Rb∗(E|V )→ Rc∗(E|U∩V )→ Rf∗E[1]

This triangle is functorial in E.

Proof. Choose a K-injective complex I• representing E. We may assume In is an
injective object of Mod(OX) for all n, see Injectives, Theorem 19.12.6. Then Rf∗E
is computed by f∗I•. Similarly for U , V , and U ∩ V by Lemma 20.32.1. Hence
the distinguished triangle of the lemma is the distinguished triangle associated (by
Derived Categories, Section 13.12 and especially Lemma 13.12.1) to the short exact
sequence of complexes

0→ f∗I• → a∗I•|U ⊕ b∗I•|V → c∗I•|U∩V → 0.

This is a short exact sequence of complexes by Lemma 20.8.3 and the fact that
R1f∗I = 0 for an injective object I of Mod(OX). The final statement follows from
the functoriality of the construction in Injectives, Theorem 19.12.6. □
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Lemma 20.33.6.08DF Let (X,OX) be a ringed space. Let j : U → X be an open
subspace. Let T ⊂ X be a closed subset contained in U .

(1) If E is an object of D(OX) whose cohomology sheaves are supported on
T , then E → Rj∗(E|U ) is an isomorphism.

(2) If F is an object of D(OU ) whose cohomology sheaves are supported on
T , then j!F → Rj∗F is an isomorphism.

Proof. Let V = X \ T and W = U ∩ V . Note that X = U ∪ V is an open
covering of X. Denote jW : W → V the open immersion. Let E be an object
of D(OX) whose cohomology sheaves are supported on T . By Lemma 20.32.4 we
have (Rj∗E|U )|V = RjW,∗(E|W ) = 0 because E|W = 0 by our assumption. On
the other hand, Rj∗(E|U )|U = E|U . Thus (1) is clear. Let F be an object of
D(OU ) whose cohomology sheaves are supported on T . By Lemma 20.32.4 we have
(Rj∗F )|V = RjW,∗(F |W ) = 0 because F |W = 0 by our assumption. We also have
(j!F )|V = jW !(F |W ) = 0 (the first equality is immediate from the definition of
extension by zero). Since both (Rj∗F )|U = F and (j!F )|U = F we see that (2)
holds. □

Lemma 20.33.7.0G6X Let (X,OX) be a ringed space. Set A = Γ(X,OX). Suppose that
X = U ∪ V is a union of two open subsets. For objects K and M of D(OX) we
have a map of distinguished triangles

RΓ(X,K)⊗L
A RΓ(X,M) //

��

RΓ(X,K ⊗L
OX

M)

��
RΓ(X,K)⊗L

A (RΓ(U,M)⊕RΓ(V,M)) //

��

RΓ(U,K ⊗L
OX

M)⊕RΓ(V,K ⊗L
OX

M))

��
RΓ(X,K)⊗L

A RΓ(U ∩ V,M) //

��

RΓ(U ∩ V,K ⊗L
OX

M)

��
RΓ(X,K)⊗L

A RΓ(X,M)[1] // RΓ(X,K ⊗L
OX

M)[1]

where
(1) the horizontal arrows are given by cup product,
(2) on the right hand side we have the distinguished triangle of Lemma 20.33.4

for K ⊗L
OX

M , and
(3) on the left hand side we have the exact functor RΓ(X,K) ⊗L

A − applied
to the distinguished triangle of Lemma 20.33.4 for M .

Proof. Choose a K-flat complex T • of flat A-modules representing RΓ(X,K), see
More on Algebra, Lemma 15.59.10. Denote T • ⊗A OX the pullback of T • by the
morphism of ringed spaces (X,OX) → (pt, A). There is a natural adjunction map
ϵ : T • ⊗A OX → K in D(OX). Observe that T • ⊗A OX is a K-flat complex of
OX -modules with flat terms, see Lemma 20.26.8 and Modules, Lemma 17.20.2. By
Lemma 20.26.17 we can find a morphism of complexes

T • ⊗A OX −→ K•
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of OX -modules representing ϵ such that K• is a K-flat complex with flat terms.
Namely, by the construction of D(OX) we can first represent ϵ by some map of
complexes e : T • ⊗A OX → L• of OX -modules representing ϵ and then we can
apply the lemma to e. Choose a K-injective complex I• whose terms are injective
OX -modules representing M . Finally, choose a quasi-isomorphism

Tot(K• ⊗O I•) −→ J •

into a K-injective complex whose terms are injective OX -modules. Observe that
source and target of this arrow represent K ⊗L

OX
M in D(OX). At this point, for

any open W ⊂ X we obtain a map of complexes

Tot(T • ⊗A I•(W ))→ Tot(K•(W )⊗A I•(W ))→ J •(W )

of A-modules whose composition represents the map

RΓ(X,K)⊗L
A RΓ(W,M) −→ RΓ(W,K ⊗L

OX
M)

in D(A). Clearly, these maps are compatible with restriction mappings. OK, so now
we can consider the following commutative(!) diagram of complexes of A-modules

0

��

0

��
Tot(T • ⊗A I•(X))

��

// J •(X)

��
Tot(T • ⊗A (I•(U)⊕ I•(V ))

��

// J •(U)⊕ J •(V )

��
Tot(T • ⊗A I•(U ∩ V )) //

��

J •(U ∩ V )

��
0 0

By the proof of Lemma 20.8.2 the columns are exact sequences of complexes of
A-modules (this also uses that Tot(T • ⊗A −) transforms short exact sequences of
complexes of A-modules into short exact sequences as the terms of T • are flat A-
modules). Since the distinguished triangles of Lemma 20.33.4 are the distinguished
triangles associated to these short exact sequences of complexes, the desired re-
sult follows from the functoriality of “taking the associated distinguished triangle”
discussed in Derived Categories, Section 13.12. □

20.34. Cohomology with support in a closed subset, II

0G6Y We continue the discussion started in Section 20.21.

Let (X,OX) be a ringed space. Let Z ⊂ X be a closed subset. In this situation
we can consider the functor Mod(OX) → Mod(OX(X)) given by F 7→ ΓZ(X,F).
See Modules, Definition 17.5.1 and Modules, Lemma 17.5.2. Using K-injective
resolutions, see Section 20.28, we obtain the right derived functor

RΓZ(X,−) : D(OX)→ D(OX(X))
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Given an object K in D(OX) we denote Hq
Z(X,K) = Hq(RΓZ(X,K)) the coho-

mology module with support in Z. We will see later (Lemma 20.34.8) that this
agrees with the construction in Section 20.21.
For an OX -module F we can consider the subsheaf of sections with support in Z,
denoted HZ(F), defined by the rule

HZ(F)(U) = {s ∈ F(U) | Supp(s) ⊂ U ∩ Z} = ΓZ∩U (U,F|U )
As discussed in Modules, Remark 17.13.5 we may view HZ(F) as an OX |Z-module
on Z and we obtain a functor

Mod(OX) −→ Mod(OX |Z), F 7−→ HZ(F) viewed as an OX |Z-module on Z

This functor is left exact, but in general not exact. Exactly as above we obtain a
right derived functor

RHZ : D(OX) −→ D(OX |Z)
We set HqZ(K) = Hq(RHZ(K)) so that H0

Z(F) = HZ(F) for any sheaf of OX -
modules F .

Lemma 20.34.1.0A3B Let (X,OX) be a ringed space. Let i : Z → X be the inclusion
of a closed subset.

(1) RHZ : D(OX)→ D(OX |Z) is right adjoint to i∗ : D(OX |Z)→ D(OX).
(2) For K in D(OX |Z) we have RHZ(i∗K) = K.
(3) Let G be a sheaf of OX |Z-modules on Z. Then HpZ(i∗G) = 0 for p > 0.

Proof. The functor i∗ is exact, so i∗ = Ri∗ = Li∗. Hence part (1) of the lemma
follows from Modules, Lemma 17.13.6 and Derived Categories, Lemma 13.30.3. Let
K be as in (2). We can represent K by a K-injective complex I• of OX |Z-modules.
By Lemma 20.32.9 the complex i∗I•, which represents i∗K, is a K-injective complex
of OX -modules. Thus RHZ(i∗K) is computed by HZ(i∗I•) = I• which proves (2).
Part (3) is a special case of (2). □

Let (X,OX) be a ringed space and let Z ⊂ X be a closed subset. The category of
OX -modules whose support is contained in Z is a Serre subcategory of the category
of all OX -modules, see Homology, Definition 12.10.1 and Modules, Lemma 17.5.2.
We denote DZ(OX) the strictly full saturated triangulated subcategory of D(OX)
consisting of complexes whose cohomology sheaves are supported on Z, see Derived
Categories, Section 13.17.

Lemma 20.34.2.0AEF Let (X,OX) be a ringed space. Let i : Z → X be the inclusion
of a closed subset.

(1) For K in D(OX |Z) we have i∗K in DZ(OX).
(2) The functor i∗ : D(OX |Z)→ DZ(OX) is an equivalence with quasi-inverse

i−1|DZ(OX) = RHZ |DZ(OX).
(3) The functor i∗◦RHZ : D(OX)→ DZ(OX) is right adjoint to the inclusion

functor DZ(OX)→ D(OX).

Proof. Part (1) is immediate from the definitions. Part (3) is a formal consequence
of part (2) and Lemma 20.34.1. In the rest of the proof we prove part (2).
Let us think of i as the morphism of ringed spaces i : (Z,OX |Z)→ (X,OX). Recall
that i∗ and i∗ is an adjoint pair of functors. Since i is a closed immersion, i∗ is
exact. Since i−1OX = OX |Z is the structure sheaf of (Z,OX |Z) we see that i∗ = i−1

https://stacks.math.columbia.edu/tag/0A3B
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is exact and we see that that i∗i∗ = i−1i∗ is isomorphic to the identify functor. See
Modules, Lemmas 17.3.3 and 17.6.1. Thus i∗ : D(OX |Z)→ DZ(OX) is fully faithful
and i−1 determines a left inverse. On the other hand, suppose that K is an object
of DZ(OX) and consider the adjunction map K → i∗i

−1K. Using exactness of i∗
and i−1 this induces the adjunction maps Hn(K) → i∗i

−1Hn(K) on cohomology
sheaves. Since these cohomology sheaves are supported on Z we see these adjunction
maps are isomorphisms and we conclude that i∗ : D(OX |Z) → DZ(OX) is an
equivalence.
To finish the proof it suffices to show that RHZ(K) = i−1K if K is an object of
DZ(OX). To do this we can use that K = i∗i

−1K as we’ve just proved this is the
case. Then Lemma 20.34.1 tells us what we want. □

Lemma 20.34.3.0G6Z Let (X,OX) be a ringed space. Let i : Z → X be the inclusion
of a closed subset. If I• is a K-injective complex of OX -modules, then HZ(I•) is
K-injective complex of OX |Z-modules.

Proof. Since i∗ : Mod(OX |Z) → Mod(OX) is exact and left adjoint to HZ (Mod-
ules, Lemma 17.13.6) this follows from Derived Categories, Lemma 13.31.9. □

Lemma 20.34.4.0G70 Let (X,OX) be a ringed space. Let i : Z → X be the inclusion
of a closed subset. Then RΓ(Z,−) ◦ RHZ = RΓZ(X,−) as functors D(OX) →
D(OX(X)).

Proof. Follows from the construction of right derived functors using K-injective
resolutions, Lemma 20.34.3, and the fact that ΓZ(X,−) = Γ(Z,−) ◦ HZ . □

Lemma 20.34.5.0G71 Let (X,OX) be a ringed space. Let i : Z → X be the inclusion
of a closed subset. Let U = X \ Z. There is a distinguished triangle

RΓZ(X,K)→ RΓ(X,K)→ RΓ(U,K)→ RΓZ(X,K)[1]
in D(OX(X)) functorial for K in D(OX).

Proof. Choose a K-injective complex I• all of whose terms are injective OX -
modules representing K. See Section 20.28. Recall that I•|U is a K-injective
complex of OU -modules, see Lemma 20.32.1. Hence each of the derived functors
in the distinguished triangle is gotten by applying the underlying functor to I•.
Hence we find that it suffices to prove that for an injective OX -module I we have
a short exact sequence

0→ ΓZ(X, I)→ Γ(X, I)→ Γ(U, I)→ 0
This follows from Lemma 20.8.1 and the definitions. □

Lemma 20.34.6.0G72 Let (X,OX) be a ringed space. Let i : Z → X be the inclusion
of a closed subset. Denote j : U = X \ Z → X the inclusion of the complement.
There is a distinguished triangle

i∗RHZ(K)→ K → Rj∗(K|U )→ i∗RHZ(K)[1]
in D(OX) functorial for K in D(OX).

Proof. Choose a K-injective complex I• all of whose terms are injective OX -
modules representing K. See Section 20.28. Recall that I•|U is a K-injective
complex of OU -modules, see Lemma 20.32.1. Hence each of the derived functors
in the distinguished triangle is gotten by applying the underlying functor to I•.
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Hence it suffices to prove that for an injective OX -module I we have a short exact
sequence

0→ i∗HZ(I)→ I → j∗(I|U )→ 0
This follows from Lemma 20.8.1 and the definitions. □

Lemma 20.34.7.0G73 Let (X,OX) be a ringed space. Let Z ⊂ X be a closed subset. Let
j : U → X be the inclusion of an open subset with U ∩Z = ∅. Then RHZ(Rj∗K) =
0 for all K in D(OU ).

Proof. Choose a K-injective complex I• of OU -modules representing K. Then j∗I•

represents Rj∗K. By Lemma 20.32.9 the complex j∗I• is a K-injective complex of
OX -modules. Hence HZ(j∗I•) represents RHZ(Rj∗K). Thus it suffices to show
that HZ(j∗G) = 0 for any abelian sheaf G on U . Thus we have to show that a
section s of j∗G over some open W which is supported on W∩Z is zero. The support
condition means that s|W\W∩Z = 0. Since j∗G(W ) = G(U ∩W ) = j∗G(W \W ∩Z)
this implies that s is zero as desired. □

Lemma 20.34.8.0G74 Let (X,OX) be a ringed space. Let Z ⊂ X be a closed subset.
Let K be an object of D(OX) and denote Kab its image in D(ZX).

(1) There is a canonical map RΓZ(X,K) → RΓZ(X,Kab) which is an iso-
morphism in D(Ab).

(2) There is a canonical map RHZ(K)→ RHZ(Kab) which is an isomorphism
in D(ZZ).

Proof. Proof of (1). The map is constructed as follows. Choose a K-injective
complex of OX -modules I• representing K. Choose a quasi-isomorpism I• → J •

where J • is a K-injective complex of abelian groups. Then the map in (1) is given
by

ΓZ(X, I•)→ ΓZ(X,J •)
determined by the fact that ΓZ is a functor on abelian sheaves. An easy check
shows that the resulting map combined with the canonical maps of Lemma 20.32.7
fit into a morphism of distinguished triangles

RΓZ(X,K) //

��

RΓ(X,K) //

��

RΓ(U,K)

��
RΓZ(X,Kab) // RΓ(X,Kab) // RΓ(U,Kab)

of Lemma 20.34.5. Since two of the three arrows are isomorphisms by the lemma
cited, we conclude by Derived Categories, Lemma 13.4.3.

The proof of (2) is omitted. Hint: use the same argument with Lemma 20.34.6 for
the distinguished triangle. □

Remark 20.34.9.0G75 Let (X,OX) be a ringed space. Let i : Z → X be the inclusion
of a closed subset. Given K and M in D(OX) there is a canonical map

K|Z ⊗L
OX |Z RHZ(M) −→ RHZ(K ⊗L

OX
M)

in D(OX |Z). Here K|Z = i−1K is the restriction of K to Z viewed as an object of
D(OX |Z). By adjointness of i∗ and RHZ of Lemma 20.34.1 to construct this map
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it suffices to produce a canonical map

i∗

(
K|Z ⊗L

OX |Z RHZ(M)
)
−→ K ⊗L

OX
M

To construct this map, we choose a K-injective complex I• of OX -modules repre-
senting M and a K-flat complex K• of OX -modules representing K. Observe that
K•|Z is a K-flat complex of OX |Z-modules representing K|Z , see Lemma 20.26.8.
Hence we need to produce a map of complexes

i∗Tot
(
K•|Z ⊗OX |Z HZ(I•)

)
−→ Tot(K• ⊗OX

I•)
of OX -modules. For this it suffices to produce maps

i∗(Ka|Z ⊗OX |Z HZ(Ib)) −→ Ka ⊗OX
Ib

Looking at stalks (for example), we see that the left hand side of this formula is
equal to Ka ⊗OX

i∗HZ(Ib) and we can use the inclusion HZ(Ib) → Ib to get our
map.

Remark 20.34.10.0G76 With notation as in Remark 20.34.9 we obtain a canonical cup
product

Ha(X,K)×Hb
Z(X,M) = Ha(X,K)×Hb(Z,RHZ(M))

→ Ha(Z,K|Z)×Hb(Z,RHZ(M))
→ Ha+b(Z,K|Z ⊗L

OX |Z RHZ(M))
→ Ha+b(Z,RHZ(K ⊗L

OX
M))

= Ha+b
Z (X,K ⊗L

OX
M)

Here the equal signs are given by Lemma 20.34.4, the first arrow is restriction to
Z, the second arrow is the cup product (Section 20.31), and the third arrow is the
map from Remark 20.34.9.

Lemma 20.34.11.0G77 With notation as in Remark 20.34.9 the diagram

Hi(X,K)×Hj
Z(X,M) //

��

Hi+j
Z (X,K ⊗L

OX
M)

��
Hi(X,K)×Hj(X,M) // Hi+j(X,K ⊗L

OX
M)

commutes where the top horizontal arrow is the cup product of Remark 20.34.10.

Proof. Omitted. □

Remark 20.34.12.0G78 Let f : (X ′,OX′) → (X,OX) be a morphism of ringed spaces.
Let Z ⊂ X be a closed subset and Z ′ = f−1(Z). Denote f |Z′ : (Z ′,OX′ |Z′) →
(Z,OX |Z) be the induced morphism of ringed spaces. For any K in D(OX) there
is a canonical map

L(f |Z′)∗RHZ(K) −→ RHZ′(Lf∗K)
in D(OX′ |Z′). Denote i : Z → X and i′ : Z ′ → X ′ the inclusion maps. By Lemma
20.34.2 part (2) applied to i′ it is the same thing to give a map

i′∗L(f |Z′)∗RHZ(K) −→ i′∗RHZ′(Lf∗K)

https://stacks.math.columbia.edu/tag/0G76
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in DZ′(OX′). The map of functors Lf∗ ◦ i∗ → i′∗ ◦L(f |Z′)∗ of Remark 20.28.3 is an
isomorphism in this case (follows by checking what happens on stalks using that i∗
and i′∗ are exact and that OZ,z = OX,z and similarly for Z ′). Hence it suffices to
construct a the top horizonal arrow in the following diagram

Lf∗i∗RHZ(K) //

''

i′∗RHZ′(Lf∗K)

ww
Lf∗K

The complex Lf∗i∗RHZ(K) is supported on Z ′. The south-east arrow comes from
the adjunction mapping i∗RHZ(K) → K (Lemma 20.34.1). Since the adjunction
mapping i′∗RHZ′(Lf∗K)→ Lf∗K is universal by Lemma 20.34.2 part (3), we find
that the south-east arrow factors uniquely over the south-west arrow and we obtain
the desired arrow.

Lemma 20.34.13.0G79 With notation and assumptions as in Remark 20.34.12 the dia-
gram

Hp
Z(X,K) //

��

Hp
Z′(X,Lf∗K)

��
Hp(X,K) // Hp(X ′, Lf∗K)

commutes. Here the top horizontal arrow comes from the identificationsHp
Z(X,K) =

Hp(Z,RHZ(K)) andHp
Z′(X ′, Lf∗K) = Hp(Z ′, RHZ′(K ′)), the pullback mapHp(Z,RHZ(K))→

Hp(Z ′, L(f |Z′)∗RHZ(K)), and the map constructed in Remark 20.34.12.

Proof. Omitted. Hints: Using that Hp(Z,RHZ(K)) = Hp(X, i∗RHZ(K)) and
similarly for RHZ′(Lf∗K) this follows from the functoriality of the pullback maps
and the commutative diagram used to define the map of Remark 20.34.12. □

20.35. Inverse systems and cohomology, I

0GYJ Let A be a ring and let I ⊂ A be an ideal. We prove some results on inverse systems
of sheaves of A/In-modules.

Lemma 20.35.1.0GYK Let I be an ideal of a ring A. Let X be a topological space. Let

. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules on X such that Fn = Fn+1/I
nFn+1.

Let p ≥ 0. Assume ⊕
n≥0

Hp+1(X, InFn+1)

satisfies the ascending chain condition as a graded
⊕

n≥0 I
n/In+1-module. Then

the inverse system Mn = Hp(X,Fn) satisfies the Mittag-Leffler condition4.

Proof. Set Nn = Hp+1(X, InFn+1) and let δn : Mn → Nn be the boundary map on
cohomology coming from the short exact sequence 0→ InFn+1 → Fn+1 → Fn → 0.

4In fact, there exists a c ≥ 0 such that Im(Mn →Mn−c) is the stable image for all n ≥ c.

https://stacks.math.columbia.edu/tag/0G79
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Then
⊕

Im(δn) ⊂
⊕
Nn is a graded submodule. Namely, if s ∈ Mn and f ∈ Im,

then we have a commutative diagram

0 // InFn+1

f

��

// Fn+1

f

��

// Fn

f

��

// 0

0 // In+mFn+m+1 // Fn+m+1 // Fn+m // 0

The middle vertical map is given by lifting a local section of Fn+1 to a section of
Fn+m+1 and then multiplying by f ; similarly for the other vertical arrows. We
conclude that δn+m(fs) = fδn(s). By assumption we can find sj ∈ Mnj , j =
1, . . . , N such that δnj (sj) generate

⊕
Im(δn) as a graded module. Let n > c =

max(nj). Let s ∈Mn. Then we can find fj ∈ In−nj such that δn(s) =
∑
fjδnj (sj).

We conclude that δ(s −
∑
fjsj) = 0, i.e., we can find s′ ∈ Mn+1 mapping to

s−
∑
fjsj in Mn. It follows that

Im(Mn+1 →Mn−c) = Im(Mn →Mn−c)

Namely, the elements fjsj map to zero in Mn−c. This proves the lemma. □

Lemma 20.35.2.0GYL Let I be an ideal of a ring A. Let X be a topological space. Let

. . .→ F3 → F2 → F1

be an inverse system of A-modules on X such that Fn = Fn+1/I
nFn+1. Let p ≥ 0.

Given n define

Nn =
⋂

m≥n
Im
(
Hp+1(X, InFm+1)→ Hp+1(X, InFn+1)

)
If
⊕
Nn satisfies the ascending chain condition as a graded

⊕
n≥0 I

n/In+1-module,
then the inverse system Mn = Hp(X,Fn) satisfies the Mittag-Leffler condition5.

Proof. The proof is exactly the same as the proof of Lemma 20.35.1. In fact, the
result will follow from the arguments given there as soon as we show that

⊕
Nn is

a graded
⊕

n≥0 I
n/In+1-submodule of

⊕
Hp+1(X, InFn+1) and that the boundary

maps δn : Mn → Hp+1(X, InFn+1) have image contained in Nn.

Suppose that ξ ∈ Nn and f ∈ Ik. Choosem≫ n+k. Choose ξ′ ∈ Hp+1(X, InFm+1)
lifting ξ. We consider the diagram

0 // InFm+1

f

��

// Fm+1

f

��

// Fn

f

��

// 0

0 // In+kFm+1 // Fm+1 // Fn+k // 0

constructed as in the proof of Lemma 20.35.1. We get an induced map on coho-
mology and we see that fξ′ ∈ Hp+1(X, In+kFm+1) maps to fξ. Since this is true
for all m≫ n+ k we see that fξ is in Nn+k as desired.

5In fact, there exists a c ≥ 0 such that Im(Mn →Mn−c) is the stable image for all n ≥ c.
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To see the boundary maps δn have image contained in Nn we consider the diagrams

0 // InFm+1

��

// Fm+1

��

// Fn

��

// 0

0 // InFn+1 // Fn+1 // Fn // 0

for m ≥ n. Looking at the induced maps on cohomology we conclude. □

Lemma 20.35.3.0GYM Let I be an ideal of a ring A. Let X be a topological space. Let

. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules on X such that Fn = Fn+1/I
nFn+1.

Let p ≥ 0. Assume ⊕
n≥0

Hp(X, InFn+1)

satisfies the ascending chain condition as a graded
⊕

n≥0 I
n/In+1-module. Then

the limit topology on M = limHp(X,Fn) is the I-adic topology.

Proof. Set Fn = Ker(M → Hp(X,Fn)) for n ≥ 1 and F 0 = M . Observe that
IFn ⊂ Fn+1. In particular InM ⊂ Fn. Hence the I-adic topology is finer than the
limit topology. For the converse, we will show that given n there exists an m ≥ n
such that Fm ⊂ InM6. We have injective maps

Fn/Fn+1 −→ Hp(X,Fn+1)

whose image is contained in the image of Hp(X, InFn+1)→ Hp(X,Fn+1). Denote

En ⊂ Hp(X, InFn+1)

the inverse image of Fn/Fn+1. Then
⊕
En is a graded

⊕
In/In+1-submodule

of
⊕
Hp(X, InFn+1) and

⊕
En →

⊕
Fn/Fn+1 is a homomorphism of graded

modules; details omitted. By assumption
⊕
En is generated by finitely many

homogeneous elements over
⊕
In/In+1. Since En → Fn/Fn+1 is surjective, we see

that the same thing is true of
⊕
Fn/Fn+1. Hence we can find r and c1, . . . , cr ≥ 0

and ai ∈ F ci whose images in
⊕
Fn/Fn+1 generate. Set c = max(ci).

For n ≥ c we claim that IFn = Fn+1. The claim shows that Fn+c = InF c ⊂ InM
as desired. To prove the claim suppose a ∈ Fn+1. The image of a in Fn+1/Fn+2 is
a linear combination of our ai. Therefore a−

∑
fiai ∈ Fn+2 for some fi ∈ In+1−ci .

Since In+1−ci = I · In−ci as n ≥ ci we can write fi =
∑
gi,jhi,j with gi,j ∈ I and

hi,jai ∈ Fn. Thus we see that Fn+1 = Fn+2 + IFn. A simple induction argument
gives Fn+1 = Fn+e + IFn for all e > 0. It follows that IFn is dense in Fn+1.
Choose generators k1, . . . , kr of I and consider the continuous map

u : (Fn)⊕r −→ Fn+1, (x1, . . . , xr) 7→
∑

kixi

(in the limit topology). By the above the image of (Fm)⊕r under u is dense in
Fm+1 for all m ≥ n. By the open mapping lemma (More on Algebra, Lemma
15.36.5) we find that u is open. Hence u is surjective. Hence IFn = Fn+1 for
n ≥ c. This concludes the proof. □

6In fact, there exist a c ≥ 0 such that Fn+c ⊂ InM for all n.

https://stacks.math.columbia.edu/tag/0GYM
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Lemma 20.35.4.0GYN Let I be an ideal of a ring A. Let X be a topological space. Let
. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules on X such that Fn = Fn+1/I
nFn+1.

Let p ≥ 0. Given n define

Nn =
⋂

m≥n
Im (Hp(X, InFm+1)→ Hp(X, InFn+1))

If
⊕
Nn satisfies the ascending chain condition as a graded

⊕
n≥0 I

n/In+1-module,
then the limit topology on M = limHp(X,Fn) is the I-adic topology.

Proof. The proof is exactly the same as the proof of Lemma 20.35.3. In fact, the
result will follow from the arguments given there as soon as we show that

⊕
Nn is

a graded
⊕

n≥0 I
n/In+1-submodule of

⊕
Hp+1(X, InFn+1) and that Fn/Fn+1 ⊂

Hp(X,Fn+1) is contained in the image of Nn → Hp(X,Fn+1). In the proof of
Lemma 20.35.2 we have seen the statement on the module structure.
Let t ∈ Fn. Choose an element s ∈ Hp(X, InFn+1) which maps to the image of
t in Hp(X,Fn+1). We have to show that s is in Nn. Now Fn is the kernel of
the map from M → Hp(X,Fn) hence for all m ≥ n we can map t to an element
tm ∈ Hp(X,Fm+1) which maps to zero in Hp(X,Fn). Consider the cohomology
sequence

Hp−1(X,Fn)→ Hp(X, InFm+1)→ Hp(X,Fm+1)→ Hp(X,Fn)
coming from the short exact sequence 0 → InFm+1 → Fm+1 → Fn → 0. We
can choose sm ∈ Hp(X, InFm+1) mapping to tm. Comparing the sequence above
with the one for m = n we see that sm maps to s up to an element in the image
of Hp−1(X,Fn) → Hp(X, InFn+1). However, this map factors through the map
Hp(X, InFm+1)→ Hp(X, InFn+1) and we see that s is in the image as desired. □

20.36. Inverse systems and cohomology, II

0H38 This section continues the discussion in Section 20.35 in the setting where the ideal
is principal.

Lemma 20.36.1.0H39 Let (X,OX) be a ringed space. Let f ∈ Γ(X,OX). Let
. . .→ F3 → F2 → F1

be inverse system of OX -modules. Consider the conditions
(1) for all n ≥ 1 the map f : Fn+1 → Fn+1 factors through Fn+1 → Fn to

give a short exact sequence 0→ Fn → Fn+1 → F1 → 0,
(2) for all n ≥ 1 the map fn : Fn+1 → Fn+1 factors through Fn+1 → F1 to

give a short exact sequence 0→ F1 → Fn+1 → Fn → 0
(3) there exists an OX -module G which is f -divisible such that Fn = G[fn],

and
(4) there exists an OX -module F which is f -torsion free such that Fn =
F/fnF .

Then (4) ⇒ (3) ⇔ (2) ⇔ (1).

Proof. We omit the proof of the equivalence of (1) and (2). We omit the proof that
(3) implies (1). Given Fn as in (1) to prove (3) we set G = colimFn where the
maps F1 → F2 → F3 → . . . are as in (1). The map f : G → G is surjective as
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the image of Fn+1 ⊂ G is Fn ⊂ G by the short exact sequence (1). Thus G is an
f -divisible OX -module with Fn = G[fn].
Assume given F as in (4). The map F/fn+1F → F/fnF is always surjective with
kernel the image of the map F/fF → F/fn+1F induced by multiplication with
fn. To verify (2) it suffices to see that the kernel of fn : F → F/fn+1F is fF . To
see this it suffices to show that given sections s, t of F over an open U ⊂ X with
fns = fn+1t we have s = ft. This is clear because f : F → F is injective as F is
f -torsion free. □

Lemma 20.36.2.0EHA Suppose X, f , (Fn) satisfy condition (1) of Lemma 20.36.1. Let
p ≥ 0 and set Hp = limHp(X,Fn). Then f cHp is the kernel of Hp → Hp(X,Fc)
for all c ≥ 1. Thus the limit topology on Hp is the f -adic topology.

Proof. Let c ≥ 1. It is clear that f cHp maps to zero in Hp(X,Fc). If ξ = (ξn) ∈ Hp

is small in the limit topology, then ξc = 0, and hence ξn maps to zero in Hp(X,Fc)
for n ≥ c. Consider the inverse system of short exact sequences

0→ Fn−c
fc−→ Fn → Fc → 0

and the corresponding inverse system of long exact cohomology sequences
Hp−1(X,Fc)→ Hp(X,Fn−c)→ Hp(X,Fn)→ Hp(X,Fc)

Since the term Hp−1(X,Fc) is independent of n we can choose a compatible se-
quence of elements ξ′

n ∈ Hp(X,Fn−c) lifting ξn. Setting ξ′ = (ξ′
n) we see that

ξ = f cξ′ as desired. □

Lemma 20.36.3.0BLB Let A be a Noetherian ring complete with respect to a principal
ideal (f). Let X be a topological space. Let

. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules. Assume
(1) Γ(X,F1) is a finite A-module,
(2) X, f , (Fn) satisfy condition (1) of Lemma 20.36.1.

Then
M = lim Γ(X,Fn)

is a finite A-module, f is a nonzerodivisor on M , and M/fM is the image of M in
Γ(X,F1).

Proof. By Lemma 20.36.2 we have M/fM ⊂ H0(X,F1). From (1) and the Noe-
therian property of A we get that M/fM is a finite A-module. Observe that⋂
fnM = 0 as fnM maps to zero in H0(X,Fn). By Algebra, Lemma 10.96.12 we

conclude that M is finite over A. Finally, suppose s = (sn) ∈ M = limH0(X,Fn)
satisfies fs = 0. Then sn+1 is in the kernel of Fn+1 → Fn by condition (1) of
Lemma 20.36.1. Hence sn = 0. Since n was arbitrary, we see s = 0. Thus f is a
nonzerodivisor on M . □

Lemma 20.36.4.0BLC Let A be a ring. Let f ∈ A. Let X be a topological space. Let
. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules. Let p ≥ 0. Assume
(1) either Hp+1(X,F1) is an A-module of finite length or A is Noetherian and

Hp+1(X,F1) is a finite A-module,

https://stacks.math.columbia.edu/tag/0EHA
https://stacks.math.columbia.edu/tag/0BLB
https://stacks.math.columbia.edu/tag/0BLC


20.36. INVERSE SYSTEMS AND COHOMOLOGY, II 1846

(2) X, f , (Fn) satisfy condition (1) of Lemma 20.36.1.
Then the inverse system Mn = Hp(X,Fn) satisfies the Mittag-Leffler condition.

Proof. Set I = (f). We will use the criterion of Lemma 20.35.1. Observe that
fn : F1 → InFn+1 is an isomorphism for all n ≥ 0. Thus it suffices to show that⊕

n≥1
Hp+1(X,F1) · fn+1

is a graded S =
⊕

n≥0 A/(f) · fn-module satisfying the ascending chain condition.
If A is not Noetherian, then Hp+1(X,F1) has finite length and the result holds. If
A is Noetherian, then S is a Noetherian ring and the result holds as the module is
finite over S by the assumed finiteness of Hp+1(X,F1). Some details omitted. □

Lemma 20.36.5.0DXG Let A be a ring. Let f ∈ A. Let X be a topological space. Let

. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules. Let p ≥ 0. Assume
(1) either there is anm ≥ 1 such that the image ofHp+1(X,Fm)→ Hp+1(X,F1)

is an A-module of finite length or A is Noetherian and the intersection of
the images of Hp+1(X,Fm)→ Hp+1(X,F1) is a finite A-module,

(2) X, f , (Fn) satisfy condition (1) of Lemma 20.36.1.
Then the inverse system Mn = Hp(X,Fn) satisfies the Mittag-Leffler condition.

Proof. Set I = (f). We will use the criterion of Lemma 20.35.2 involving the
modules Nn. For m ≥ n we have InFm+1 = Fm+1−n. Thus we see that

Nn =
⋂

m≥1
Im
(
Hp+1(X,Fm)→ Hp+1(X,F1)

)
is independent of n and

⊕
Nn =

⊕
N1 · fn+1. Thus we conclude exactly as in the

proof of Lemma 20.36.4. □

Remark 20.36.6.0H3A Let (X,OX) be a ringed space. Let f ∈ Γ(X,OX). Let F be
OX -module. If F is f -torsion free, then for every p ≥ 0 we have a short exact
sequence of inverse systems

0→ {Hp(X,F)/fnHp(X,F)} → {Hp(X,F/fnF)} → {Hp+1(X,F)[fn]} → 0

Since the first inverse system has the Mittag-Leffler condition (ML) we learn three
things from this:

(1) There is a short exact sequence

0→ ̂Hp(X,F)→ limHp(X,F/fnF)→ Tf (Hp+1(X,F))→ 0

wherêdenotes the usual f -adic completion and Tf (−) denotes the f -adic
Tate module from More on Algebra, Example 15.93.5.

(2) We have R1 limHp(X,F/fnF) = R1 limHp+1(X,F)[fn].
(3) The system {Hp+1(X,F)[fn]} is ML if and only if {Hp(X,F/fnF)} is

ML.
See Homology, Lemma 12.31.3 and More on Algebra, Lemmas 15.86.2 and 15.86.13.
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20.37. Derived limits

0BKN Let (X,OX) be a ringed space. Since the triangulated categoryD(OX) has products
(Injectives, Lemma 19.13.4) it follows that D(OX) has derived limits, see Derived
Categories, Definition 13.34.1. If (Kn) is an inverse system in D(OX) then we
denote R limKn the derived limit.
Lemma 20.37.1.0D60 Let (X,OX) be a ringed space. For U ⊂ X open the functor
RΓ(U,−) commutes with R lim. Moreover, there are short exact sequences

0→ R1 limHm−1(U,Kn)→ Hm(U,R limKn)→ limHm(U,Kn)→ 0
for any inverse system (Kn) in D(OX) and any m ∈ Z.
Proof. The first statement follows from Injectives, Lemma 19.13.6. Then we may
apply More on Algebra, Remark 15.86.10 to R limRΓ(U,Kn) = RΓ(U,R limKn)
to get the short exact sequences. □

Lemma 20.37.2.0BKP Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Then
Rf∗ commutes with R lim, i.e., Rf∗ commutes with derived limits.
Proof. Let (Kn) be an inverse system in D(OX). Consider the defining distin-
guished triangle

R limKn →
∏

Kn →
∏

Kn

in D(OX). Applying the exact functor Rf∗ we obtain the distinguished triangle

Rf∗(R limKn)→ Rf∗

(∏
Kn

)
→ Rf∗

(∏
Kn

)
in D(OY ). Thus we see that it suffices to prove that Rf∗ commutes with products
in the derived category (which are not just given by products of complexes, see
Injectives, Lemma 19.13.4). However, since Rf∗ is a right adjoint by Lemma 20.28.1
this follows formally (see Categories, Lemma 4.24.5). Caution: Note that we cannot
apply Categories, Lemma 4.24.5 directly as R limKn is not a limit in D(OX). □

Remark 20.37.3.0BKQ Let (X,OX) be a ringed space. Let (Kn) be an inverse system
in D(OX). Set K = R limKn. For each n and m let Hmn = Hm(Kn) be the mth
cohomology sheaf of Kn and similarly set Hm = Hm(K). Let us denote Hmn the
presheaf

U 7−→ Hmn (U) = Hm(U,Kn)
Similarly we set Hm(U) = Hm(U,K). By Lemma 20.32.3 we see that Hmn is the
sheafification of Hmn and Hm is the sheafification of Hm. Here is a diagram

K Hm

��

// Hm

��
R limKn limHmn // limHmn

In general it may not be the case that limHmn is the sheafification of limHmn . If
U ⊂ X is an open, then we have short exact sequences
(20.37.3.1)0BKR 0→ R1 limHm−1

n (U)→ Hm(U)→ limHmn (U)→ 0
by Lemma 20.37.1.
The following lemma applies to an inverse system of quasi-coherent modules with
surjective transition maps on a scheme.
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Lemma 20.37.4.0BKS Let (X,OX) be a ringed space. Let (Fn) be an inverse system of
OX -modules. Let B be a set of opens of X. Assume

(1) every open of X has a covering whose members are elements of B,
(2) Hp(U,Fn) = 0 for p > 0 and U ∈ B,
(3) the inverse system Fn(U) has vanishing R1 lim for U ∈ B.

Then R limFn = limFn and we have Hp(U, limFn) = 0 for p > 0 and U ∈ B.

Proof. Set Kn = Fn and K = R limFn. Using the notation of Remark 20.37.3
and assumption (2) we see that for U ∈ B we have Hmn (U) = 0 when m ̸= 0
and H0

n(U) = Fn(U). From Equation (20.37.3.1) and assumption (3) we see that
Hm(U) = 0 when m ̸= 0 and equal to limFn(U) when m = 0. Sheafifying using
(1) we find that Hm = 0 when m ̸= 0 and equal to limFn when m = 0. Hence
K = limFn. Since Hm(U,K) = Hm(U) = 0 for m > 0 (see above) we see that the
second assertion holds. □

Lemma 20.37.5.0D61 Let (X,OX) be a ringed space. Let (Kn) be an inverse system
in D(OX). Let x ∈ X and m ∈ Z. Assume there exist an integer n(x) and a
fundamental system Ux of open neighbourhoods of x such that for U ∈ Ux

(1) R1 limHm−1(U,Kn) = 0, and
(2) Hm(U,Kn)→ Hm(U,Kn(x)) is injective for n ≥ n(x).

Then the map on stalks Hm(R limKn)x → Hm(Kn(x))x is injective.

Proof. Let γ be an element of Hm(R limKn)x which maps to zero in Hm(Kn(x))x.
Since Hm(R limKn) is the sheafification of U 7→ Hm(U,R limKn) (by Lemma
20.32.3) we can choose U ∈ Ux and an element γ̃ ∈ Hm(U,R limKn) mapping to γ.
Then γ̃ maps to γ̃n(x) ∈ Hm(U,Kn(x)). Using that Hm(Kn(x)) is the sheafification
of U 7→ Hm(U,Kn(x)) (by Lemma 20.32.3 again) we see that after shrinking U we
may assume that γ̃n(x) = 0. For this U we consider the short exact sequence

0→ R1 limHm−1(U,Kn)→ Hm(U,R limKn)→ limHm(U,Kn)→ 0

of Lemma 20.37.1. By assumption (1) the group on the left is zero and by assump-
tion (2) the group on the right maps injectively into Hm(U,Kn(x)). We conclude
γ̃ = 0 and hence γ = 0 as desired. □

Lemma 20.37.6.0D62 Let (X,OX) be a ringed space. Let E ∈ D(OX). Assume that
for every x ∈ X there exist a function p(x,−) : Z → Z and a fundamental system
Ux of open neighbourhoods of x such that

Hp(U,Hm−p(E)) = 0 for U ∈ Ux and p > p(x,m)

Then the canonical map E → R lim τ≥−nE is an isomorphism in D(OX).

Proof. Set Kn = τ≥−nE and K = R limKn. The canonical map E → K comes
from the canonical maps E → Kn = τ≥−nE. We have to show that E → K induces
an isomorphism Hm(E)→ Hm(K) of cohomology sheaves. In the rest of the proof
we fix m. If n ≥ −m, then the map E → τ≥−nE = Kn induces an isomorphism
Hm(E) → Hm(Kn). To finish the proof it suffices to show that for every x ∈ X
there exists an integer n(x) ≥ −m such that the map Hm(K)x → Hm(Kn(x))x is
injective. Namely, then the composition

Hm(E)x → Hm(K)x → Hm(Kn(x))x

https://stacks.math.columbia.edu/tag/0BKS
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is a bijection and the second arrow is injective, hence the first arrow is bijective.
Set

n(x) = 1 + max{−m, p(x,m− 1)−m,−1 + p(x,m)−m,−2 + p(x,m+ 1)−m}.

so that in any case n(x) ≥ −m. Claim: the maps

Hm−1(U,Kn+1)→ Hm−1(U,Kn) and Hm(U,Kn+1)→ Hm(U,Kn)

are isomorphisms for n ≥ n(x) and U ∈ Ux. The claim implies conditions (1) and
(2) of Lemma 20.37.5 are satisfied and hence implies the desired injectivity. Recall
(Derived Categories, Remark 13.12.4) that we have distinguished triangles

H−n−1(E)[n+ 1]→ Kn+1 → Kn → H−n−1(E)[n+ 2]

Looking at the asssociated long exact cohomology sequence the claim follows if

Hm+n(U,H−n−1(E)), Hm+n+1(U,H−n−1(E)), Hm+n+2(U,H−n−1(E))

are zero for n ≥ n(x) and U ∈ Ux. This follows from our choice of n(x) and the
assumption in the lemma. □

Lemma 20.37.7.0D63 [Spa88, Proposition
3.13]

Let (X,OX) be a ringed space. Let E ∈ D(OX). Assume that
for every x ∈ X there exist an integer dx ≥ 0 and a fundamental system Ux of open
neighbourhoods of x such that

Hp(U,Hq(E)) = 0 for U ∈ Ux, p > dx, and q < 0

Then the canonical map E → R lim τ≥−nE is an isomorphism in D(OX).

Proof. This follows from Lemma 20.37.6 with p(x,m) = dx + max(0,m). □

Lemma 20.37.8.08U2 Let (X,OX) be a ringed space. Let E ∈ D(OX). Assume there
exist a function p(−) : Z→ Z and a set B of opens of X such that

(1) every open in X has a covering whose members are elements of B, and
(2) Hp(U,Hm−p(E)) = 0 for p > p(m) and U ∈ B.

Then the canonical map E → R lim τ≥−nE is an isomorphism in D(OX).

Proof. Apply Lemma 20.37.6 with p(x,m) = p(m) and Ux = {U ∈ B | x ∈ U}. □

Lemma 20.37.9.0D64 Let (X,OX) be a ringed space. Let E ∈ D(OX). Assume there
exist an integer d ≥ 0 and a basis B for the topology of X such that

Hp(U,Hq(E)) = 0 for U ∈ B, p > d, and q < 0

Then the canonical map E → R lim τ≥−nE is an isomorphism in D(OX).

Proof. Apply Lemma 20.37.7 with dx = d and Ux = {U ∈ B | x ∈ U}. □

The lemmas above can be used to compute cohomology in certain situations.

Lemma 20.37.10.0BKT Let (X,OX) be a ringed space. Let K be an object of D(OX).
Let B be a set of opens of X. Assume

(1) every open of X has a covering whose members are elements of B,
(2) Hp(U,Hq(K)) = 0 for all p > 0, q ∈ Z, and U ∈ B.

Then Hq(U,K) = H0(U,Hq(K)) for q ∈ Z and U ∈ B.

https://stacks.math.columbia.edu/tag/0D63
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Proof. Observe that K = R lim τ≥−nK by Lemma 20.37.9 with d = 0. Let U ∈ B.
By Equation (20.37.3.1) we get a short exact sequence

0→ R1 limHq−1(U, τ≥−nK)→ Hq(U,K)→ limHq(U, τ≥−nK)→ 0

Condition (2) implies Hq(U, τ≥−nK) = H0(U,Hq(τ≥−nK)) for all q by using the
spectral sequence of Example 20.29.3. The spectral sequence converges because
τ≥−nK is bounded below. If n > −q then we have Hq(τ≥−nK) = Hq(K). Thus
the systems on the left and the right of the displayed short exact sequence are
eventually constant with values H0(U,Hq−1(K)) and H0(U,Hq(K)). The lemma
follows. □

Here is another case where we can describe the derived limit.

Lemma 20.37.11.0BKU Let (X,OX) be a ringed space. Let (Kn) be an inverse system
of objects of D(OX). Let B be a set of opens of X. Assume

(1) every open of X has a covering whose members are elements of B,
(2) for all U ∈ B and all q ∈ Z we have

(a) Hp(U,Hq(Kn)) = 0 for p > 0,
(b) the inverse system H0(U,Hq(Kn)) has vanishing R1 lim.

Then Hq(R limKn) = limHq(Kn) for q ∈ Z.

Proof. Set K = R limKn. We will use notation as in Remark 20.37.3. Let U ∈ B.
By Lemma 20.37.10 and (2)(a) we have Hq(U,Kn) = H0(U,Hq(Kn)). Using that
the functor RΓ(U,−) commutes with derived limits we have

Hq(U,K) = Hq(R limRΓ(U,Kn)) = limH0(U,Hq(Kn))

where the final equality follows from More on Algebra, Remark 15.86.10 and as-
sumption (2)(b). Thus Hq(U,K) is the inverse limit the sections of the sheaves
Hq(Kn) over U . Since limHq(Kn) is a sheaf we find using assumption (1) that
Hq(K), which is the sheafification of the presheaf U 7→ Hq(U,K), is equal to
limHq(Kn). This proves the lemma. □

20.38. Producing K-injective resolutions

0719 Let (X,OX) be a ringed space. Let F• be a complex of OX -modules. The category
Mod(OX) has enough injectives, hence we can use Derived Categories, Lemma
13.29.3 produce a diagram

. . . // τ≥−2F• //

��

τ≥−1F•

��
. . . // I•

2
// I•

1

in the category of complexes of OX -modules such that
(1) the vertical arrows are quasi-isomorphisms,
(2) I•

n is a bounded below complex of injectives,
(3) the arrows I•

n+1 → I•
n are termwise split surjections.

The category ofOX -modules has limits (they are computed on the level of presheaves),
hence we can form the termwise limit I• = limn I•

n. By Derived Categories, Lem-
mas 13.31.4 and 13.31.8 this is a K-injective complex. In general the canonical

https://stacks.math.columbia.edu/tag/0BKU
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map

(20.38.0.1)071A F• → I•

may not be a quasi-isomorphism. In the following lemma we describe some condi-
tions under which it is.

Lemma 20.38.1.071B In the situation described above. Denote Hm = Hm(F•) the mth
cohomology sheaf. Let B be a set of open subsets of X. Let d ∈ N. Assume

(1) every open in X has a covering whose members are elements of B,
(2) for every U ∈ B we have Hp(U,Hq) = 0 for p > d and q < 07.

Then (20.38.0.1) is a quasi-isomorphism.

Proof. By Derived Categories, Lemma 13.34.4 it suffices to show that the canonical
map F• → R lim τ≥−nF• is an isomorphism. This is Lemma 20.37.9. □

Here is a technical lemma about the cohomology sheaves of the inverse limit of a
system of complexes of sheaves. In some sense this lemma is the wrong thing to
try to prove as one should take derived limits and not actual inverse limits.

Lemma 20.38.2.08BY Let (X,OX) be a ringed space. Let (F•
n) be an inverse system of

complexes of OX -modules. Let m ∈ Z. Assume there exist a set B of open subsets
of X and an integer n0 such that

(1) every open in X has a covering whose members are elements of B,
(2) for every U ∈ B

(a) the systems of abelian groups Fm−2
n (U) and Fm−1

n (U) have vanishing
R1 lim (for example these have the Mittag-Leffler condition),

(b) the system of abelian groups Hm−1(F•
n(U)) has vanishing R1 lim (for

example it has the Mittag-Leffler condition), and
(c) we have Hm(F•

n(U)) = Hm(F•
n0

(U)) for all n ≥ n0.
Then the maps Hm(F•) → limHm(F•

n) → Hm(F•
n0

) are isomorphisms of sheaves
where F• = limF•

n is the termwise inverse limit.

Proof. Let U ∈ B. Note that Hm(F•(U)) is the cohomology of

limn Fm−2
n (U)→ limn Fm−1

n (U)→ limn Fmn (U)→ limn Fm+1
n (U)

in the third spot from the left. By assumptions (2)(a) and (2)(b) we may apply
More on Algebra, Lemma 15.86.3 to conclude that

Hm(F•(U)) = limHm(F•
n(U))

By assumption (2)(c) we conclude

Hm(F•(U)) = Hm(F•
n(U))

for all n ≥ n0. By assumption (1) we conclude that the sheafification of U 7→
Hm(F•(U)) is equal to the sheafification of U 7→ Hm(F•

n(U)) for all n ≥ n0. Thus
the inverse system of sheaves Hm(F•

n) is constant for n ≥ n0 with value Hm(F•)
which proves the lemma. □

7It suffices if ∀m, ∃p(m), Hp(U.Hm−p) = 0 for p > p(m), see Lemma 20.37.8.
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20.39. Inverse systems and cohomology, III

0H3B This section continues the discussion in Section 20.36 using derived limits.

Lemma 20.39.1.0H3C Let (X,OX) be a ringed space. Let A→ Γ(X,OX) be a ring map
and let f ∈ A. Let E be an object of D(OX). Denote

En = E ⊗OX
(OX

fn−−→ OX)
and set E∧ = R limEn. For p ∈ Z is a canonical commutative diagram

0 0

0 // ̂Hp(X,E) //

OO

limHp(X,En) //

OO

Tf (Hp+1(X,E)) // 0

0 // H0(Hp(X,E)∧) //

OO

Hp(X,E∧) //

OO

Tf (Hp+1(X,E)) // 0

R1 limHp(X,E)[fn]

OO

∼= // R1 limHp−1(X,En)

OO

0

OO

0

OO

with exact rows and columns where ̂Hp(X,E) = limHp(X,E)/fnHp(X,E) is
the usual f -adic completion, Hp(X,E)∧ is the derived f -adic completion, and
Tf (Hp+1(X,E)) is the f -adic Tate module, see More on Algebra, Example 15.93.5.
Finally, we have Hp(X,E∧) = Hp(RΓ(X,E)∧).

Proof. Observe that RΓ(X,E∧) = R limRΓ(X,En) by Lemma 20.37.2. On the
other hand, we have

RΓ(X,En) = RΓ(X,E)⊗L
A (A fn−−→ A)

(details omitted). We find thatRΓ(X,E∧) is the derived f -adic completionRΓ(X,E)∧.
Whence the diagram by More on Algebra, Lemma 15.93.6. □

Lemma 20.39.2.0H3D Let A be an abelian category. Let f : M →M be a morphism of
A. If M [fn] = Ker(fn : M →M) stabilizes, then the inverse systems

(M fn−−→M) and Coker(fn : M →M)
are pro-isomorphic in D(A).

Proof. There is clearly a map from the first inverse system to the second. Suppose
that M [f c] = M [f c+1] = M [f c+2] = . . .. Then we can define an arrow of inverse
systems in D(A) in the other direction by the diagrams

M/M [f c]
fn+c

//

fc

��

M

1
��

M
fn // M

https://stacks.math.columbia.edu/tag/0H3C
https://stacks.math.columbia.edu/tag/0H3D


20.40. ČECH COHOMOLOGY OF UNBOUNDED COMPLEXES 1853

Since the top horizontal arrow is injective the complex in the top row is quasi-
isomorphic to Coker(fn+c : M →M). Some details omitted. □

Example 20.39.3.0H3E Let (X,OX) be a ringed space. Let A → Γ(X,OX) be a ring
map and let f ∈ A. Let F be an OX -module. Assume there is a c such that
F [f c] = F [fn] for all n ≥ c. We are going to apply Lemma 20.39.1 with E = F .
By Lemma 20.39.2 we see that the inverse system (En) is pro-isomorphic to the
inverse system (F/fnF). We conclude that for p ∈ Z we obtain a commutative
diagram

0 0

0 // ̂Hp(X,F) //

OO

limHp(X,F/fnF) //

OO

Tf (Hp+1(X,F)) // 0

0 // H0(Hp(X,F)∧) //

OO

Hp(RΓ(X,F)∧) //

OO

Tf (Hp+1(X,F)) // 0

R1 limHp(X,F)[fn]

OO

∼= // R1 limHp−1(X,F/fnF)

OO

0

OO

0

OO

with exact rows and columns where ̂Hp(X,F) = limHp(X,F)/fnHp(X,F) is the
usual f -adic completion and M∧ denotes derived f -adic completion for M in D(A).

20.40. Čech cohomology of unbounded complexes

08BZ The construction of Section 20.25 isn’t the “correct” one for unbounded complexes.
The problem is that in the Stacks project we use direct sums in the totalization of
a double complex and we would have to replace this by a product. Instead of doing
so in this section we assume the covering is finite and we use the alternating Čech
complex.
Let (X,OX) be a ringed space. Let F• be a complex of presheaves of OX -modules.
Let U : X =

⋃
i∈I Ui be a finite open covering of X. Since the alternating Čech

complex Č•
alt(U ,F) (Section 20.23) is functorial in the presheaf F we obtain a double

complex Č•
alt(U ,F•). In this section we work with the associated total complex. The

construction of Tot(Č•
alt(U ,F•)) is functorial in F•. As well there is a functorial

transformation
(20.40.0.1)08C0 Γ(X,F•) −→ Tot(Č•

alt(U ,F•))
of complexes defined by the following rule: The section s ∈ Γ(X,Fn) is mapped to
the element α = {αi0...ip} with αi0 = s|Ui0 and αi0...ip = 0 for p > 0.
Lemma 20.40.1.08C1 Let (X,OX) be a ringed space. Let U : X =

⋃
i∈I Ui be a finite

open covering. For a complex F• of OX -modules there is a canonical map
Tot(Č•

alt(U ,F•)) −→ RΓ(X,F•)
functorial in F• and compatible with (20.40.0.1).

https://stacks.math.columbia.edu/tag/0H3E
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Proof. Let I• be a K-injective complex whose terms are injective OX -modules.
The map (20.40.0.1) for I• is a map Γ(X, I•)→ Tot(Č•

alt(U , I•)). This is a quasi-
isomorphism of complexes of abelian groups as follows from Homology, Lemma
12.25.4 applied to the double complex Č•

alt(U , I•) using Lemmas 20.11.1 and 20.23.6.
Suppose F• → I• is a quasi-isomorphism of F• into a K-injective complex whose
terms are injectives (Injectives, Theorem 19.12.6). Since RΓ(X,F•) is represented
by the complex Γ(X, I•) we obtain the map of the lemma using

Tot(Č•
alt(U ,F•)) −→ Tot(Č•

alt(U , I•)).

We omit the verification of functoriality and compatibilities. □

Lemma 20.40.2.08C2 Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui be a finite

open covering. Let F• be a complex of OX -modules. Let B be a set of open subsets
of X. Assume

(1) every open in X has a covering whose members are elements of B,
(2) we have Ui0...ip ∈ B for all i0, . . . , ip ∈ I,
(3) for every U ∈ B and p > 0 we have

(a) Hp(U,Fq) = 0,
(b) Hp(U,Coker(Fq−1 → Fq)) = 0, and
(c) Hp(U,Hq(F)) = 0.

Then the map
Tot(Č•

alt(U ,F•)) −→ RΓ(X,F•)
of Lemma 20.40.1 is an isomorphism in D(Ab).

Proof. First assume F• is bounded below. In this case the map

Tot(Č•
alt(U ,F•)) −→ Tot(Č•(U ,F•))

is a quasi-isomorphism by Lemma 20.23.6. Namely, the map of double complexes
Č•
alt(U ,F•) → Č•(U ,F•) induces an isomorphism between the first pages of the

second spectral sequences associated to these complexes (by Homology, Lemma
12.25.1) and these spectral sequences converge (Homology, Lemma 12.25.3). Thus
the conclusion in this case by Lemma 20.25.2 and assumption (3)(a).

In general, by assumption (3)(c) we may choose a resolution F• → I• = lim I•
n as

in Lemma 20.38.1. Then the map of the lemma becomes

limn Tot(Č•
alt(U , τ≥−nF•)) −→ Γ(X, I•) = limn Γ(X, I•

n)

Here the arrow is in the derived category, but the equality on the right holds on
the level of complexes. Note that (3)(b) shows that τ≥−nF• is a bounded below
complex satisfying the hypothesis of the lemma. Thus the case of bounded below
complexes shows each of the maps

Tot(Č•
alt(U , τ≥−nF•)) −→ Γ(X, I•

n)

is a quasi-isomorphism. The cohomologies of the complexes on the left hand side
in given degree are eventually constant (as the alternating Čech complex is finite).
Hence the same is true on the right hand side. Thus the cohomology of the limit
on the right hand side is this constant value by Homology, Lemma 12.31.7 (or the
stronger More on Algebra, Lemma 15.86.3) and we win. □
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20.41. Hom complexes

0A8K Let (X,OX) be a ringed space. Let L• andM• be two complexes of OX -modules.
We construct a complex of OX -modules Hom•(L•,M•). Namely, for each n we set

Homn(L•,M•) =
∏

n=p+q
HomOX

(L−q,Mp)

It is a good idea to think of Homn as the sheaf of OX -modules of all OX -linear
maps from L• to M• (viewed as graded OX -modules) which are homogenous of
degree n. In this terminology, we define the differential by the rule

d(f) = dM ◦ f − (−1)nf ◦ dL

for f ∈ Homn
OX

(L•,M•). We omit the verification that d2 = 0. This construc-
tion is a special case of Differential Graded Algebra, Example 22.26.6. It follows
immediately from the construction that we have
(20.41.0.1)0A8L Hn(Γ(U,Hom•(L•,M•))) = HomK(OU )(L•,M•[n])
for all n ∈ Z and every open U ⊂ X.

Lemma 20.41.1.0A8M Let (X,OX) be a ringed space. Given complexes K•,L•,M• of
OX -modules there is an isomorphism

Hom•(K•,Hom•(L•,M•)) = Hom•(Tot(K• ⊗OX
L•),M•)

of complexes of OX -modules functorial in K•,L•,M•.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 15.71.1. □

Lemma 20.41.2.0A8N Let (X,OX) be a ringed space. Given complexes K•,L•,M• of
OX -modules there is a canonical morphism

Tot (Hom•(L•,M•)⊗OX
Hom•(K•,L•)) −→ Hom•(K•,M•)

of complexes of OX -modules.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 15.71.3. □

Lemma 20.41.3.0BYR Let (X,OX) be a ringed space. Given complexes K•,L•,M• of
OX -modules there is a canonical morphism

Tot (K• ⊗OX
Hom•(M•,L•)) −→ Hom•(M•,Tot(K• ⊗OX

L•))
of complexes of OX -modules functorial in all three complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 15.71.4. □

Lemma 20.41.4.0A8Q Let (X,OX) be a ringed space. Given complexes K•,L• of OX -
modules there is a canonical morphism

K• −→ Hom•(L•,Tot(K• ⊗OX
L•))

of complexes of OX -modules functorial in both complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 15.71.5. □
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Lemma 20.41.5.0A8P Let (X,OX) be a ringed space. Given complexes K•,L•,M• of
OX -modules there is a canonical morphism

Tot(Hom•(L•,M•)⊗OX
K•) −→ Hom•(Hom•(K•,L•),M•)

of complexes of OX -modules functorial in all three complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 15.71.6. □

Lemma 20.41.6.0A8R Let (X,OX) be a ringed space. Let I• be a K-injective complex
of OX -modules. Let L• be a complex of OX -modules. Then

H0(Γ(U,Hom•(L•, I•))) = HomD(OU )(L|U ,M |U )
for all U ⊂ X open.

Proof. We have
H0(Γ(U,Hom•(L•, I•))) = HomK(OU )(L|U ,M |U )

= HomD(OU )(L|U ,M |U )

The first equality is (20.41.0.1). The second equality is true because I•|U is K-
injective by Lemma 20.32.1. □

Lemma 20.41.7.0A8S Let (X,OX) be a ringed space. Let (I ′)• → I• be a quasi-
isomorphism of K-injective complexes of OX -modules. Let (L′)• → L• be a quasi-
isomorphism of complexes of OX -modules. Then

Hom•(L•, (I ′)•) −→ Hom•((L′)•, I•)
is a quasi-isomorphism.

Proof. Let M be the object of D(OX) represented by I• and (I ′)•. Let L be the
object of D(OX) represented by L• and (L′)•. By Lemma 20.41.6 we see that the
sheaves

H0(Hom•(L•, (I ′)•)) and H0(Hom•((L′)•, I•))
are both equal to the sheaf associated to the presheaf

U 7−→ HomD(OU )(L|U ,M |U )
Thus the map is a quasi-isomorphism. □

Lemma 20.41.8.0A8T Let (X,OX) be a ringed space. Let I• be a K-injective complex
of OX -modules. Let L• be a K-flat complex of OX -modules. Then Hom•(L•, I•)
is a K-injective complex of OX -modules.

Proof. Namely, if K• is an acyclic complex of OX -modules, then
HomK(OX)(K•,Hom•(L•, I•)) = H0(Γ(X,Hom•(K•,Hom•(L•, I•))))

= H0(Γ(X,Hom•(Tot(K• ⊗OX
L•), I•)))

= HomK(OX)(Tot(K• ⊗OX
L•), I•)

= 0

The first equality by (20.41.0.1). The second equality by Lemma 20.41.1. The
third equality by (20.41.0.1). The final equality because Tot(K•⊗OX

L•) is acyclic
because L• is K-flat (Definition 20.26.2) and because I• is K-injective. □
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20.42. Internal hom in the derived category

08DH Let (X,OX) be a ringed space. Let L,M be objects of D(OX). We would like to
construct an object RHom(L,M) of D(OX) such that for every third object K of
D(OX) there exists a canonical bijection
(20.42.0.1)08DI HomD(OX)(K,RHom(L,M)) = HomD(OX)(K ⊗L

OX
L,M)

Observe that this formula defines RHom(L,M) up to unique isomorphism by the
Yoneda lemma (Categories, Lemma 4.3.5).
To construct such an object, choose a K-injective complex I• representing M and
any complex of OX -modules L• representing L. Then we set

RHom(L,M) = Hom•(L•, I•)
where the right hand side is the complex of OX -modules constructed in Section
20.41. This is well defined by Lemma 20.41.7. We get a functor

D(OX)opp ×D(OX) −→ D(OX), (K,L) 7−→ RHom(K,L)
As a prelude to proving (20.42.0.1) we compute the cohomology groups ofRHom(K,L).

Lemma 20.42.1.08DK Let (X,OX) be a ringed space. Let L,M be objects of D(OX).
For every open U we have

H0(U,RHom(L,M)) = HomD(OU )(L|U ,M |U )
and in particular H0(X,RHom(L,M)) = HomD(OX)(L,M).

Proof. Choose a K-injective complex I• of OX -modules representing M and a
K-flat complex L• representing L. Then Hom•(L•, I•) is K-injective by Lemma
20.41.8. Hence we can compute cohomology over U by simply taking sections over
U and the result follows from Lemma 20.41.6. □

Lemma 20.42.2.08DJ Let (X,OX) be a ringed space. Let K,L,M be objects of D(OX).
With the construction as described above there is a canonical isomorphism

RHom(K,RHom(L,M)) = RHom(K ⊗L
OX

L,M)
in D(OX) functorial in K,L,M which recovers (20.42.0.1) by taking H0(X,−).

Proof. Choose a K-injective complex I• representing M and a K-flat complex of
OX -modules L• representing L. LetK• be any complex ofOX -modules representing
K. Then we have

Hom•(K•,Hom•(L•, I•)) = Hom•(Tot(K• ⊗OX
L•), I•)

by Lemma 20.41.1. Note that the left hand side representsRHom(K,RHom(L,M))
(use Lemma 20.41.8) and that the right hand side represents RHom(K⊗L

OX
L,M).

This proves the displayed formula of the lemma. Taking global sections and using
Lemma 20.42.1 we obtain (20.42.0.1). □

Lemma 20.42.3.08DL Let (X,OX) be a ringed space. Let K,L be objects of D(OX).
The construction of RHom(K,L) commutes with restrictions to opens, i.e., for
every open U we have RHom(K|U , L|U ) = RHom(K,L)|U .

Proof. This is clear from the construction and Lemma 20.32.1. □

Lemma 20.42.4.08I0 Let (X,OX) be a ringed space. The bifunctor RHom(−,−)
transforms distinguished triangles into distinguished triangles in both variables.
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Proof. This follows from the observation that the assignment
(L•,M•) 7−→ Hom•(L•,M•)

transforms a termwise split short exact sequences of complexes in either variable
into a termwise split short exact sequence. Details omitted. □

Lemma 20.42.5.0A8V Let (X,OX) be a ringed space. Given K,L,M in D(OX) there
is a canonical morphism

RHom(L,M)⊗L
OX

RHom(K,L) −→ RHom(K,M)
in D(OX) functorial in K,L,M .

Proof. Choose a K-injective complex I• representing M , a K-injective complex J •

representing L, and any complex of OX -modules K• representing K. By Lemma
20.41.2 there is a map of complexes

Tot (Hom•(J •, I•)⊗OX
Hom•(K•,J •)) −→ Hom•(K•, I•)

The complexes of OX -modules Hom•(J •, I•), Hom•(K•,J •), and Hom•(K•, I•)
represent RHom(L,M), RHom(K,L), and RHom(K,M). If we choose a K-flat
complex H• and a quasi-isomorphism H• → Hom•(K•,J •), then there is a map

Tot (Hom•(J •, I•)⊗OX
H•) −→ Tot (Hom•(J •, I•)⊗OX

Hom•(K•,J •))
whose source represents RHom(L,M)⊗L

OX
RHom(K,L). Composing the two dis-

played arrows gives the desired map. We omit the proof that the construction is
functorial. □

Lemma 20.42.6.0BYS Let (X,OX) be a ringed space. Given K,L,M in D(OX) there
is a canonical morphism

K ⊗L
OX

RHom(M,L) −→ RHom(M,K ⊗L
OX

L)
in D(OX) functorial in K,L,M .

Proof. Choose a K-flat complex K• representing K, and a K-injective complex
I• representing L, and choose any complex of OX -modules M• representing M .
Choose a quasi-isomorphism Tot(K•⊗OX

I•)→ J • where J • is K-injective. Then
we use the map
Tot (K• ⊗OX

Hom•(M•, I•))→ Hom•(M•,Tot(K• ⊗OX
I•))→ Hom•(M•,J •)

where the first map is the map from Lemma 20.41.3. □

Lemma 20.42.7.0A8W Let (X,OX) be a ringed space. Given K,L in D(OX) there is a
canonical morphism

K −→ RHom(L,K ⊗L
OX

L)
in D(OX) functorial in both K and L.

Proof. Choose a K-flat complex K• representingK and any complex ofOX -modules
L• representing L. Choose a K-injective complex J • and a quasi-isomorphism
Tot(K• ⊗OX

L•)→ J •. Then we use
K• → Hom•(L•,Tot(K• ⊗OX

L•))→ Hom•(L•,J •)
where the first map comes from Lemma 20.41.4. □
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Lemma 20.42.8.08I1 Let (X,OX) be a ringed space. Let L be an object of D(OX).
Set L∨ = RHom(L,OX). For M in D(OX) there is a canonical map
(20.42.8.1)08I2 M ⊗L

OX
L∨ −→ RHom(L,M)

which induces a canonical map
H0(X,M ⊗L

OX
L∨) −→ HomD(OX)(L,M)

functorial in M in D(OX).

Proof. The map (20.42.8.1) is a special case of Lemma 20.42.5 using the identifica-
tion M = RHom(OX ,M). □

Lemma 20.42.9.0A8U Let (X,OX) be a ringed space. Let K,L,M be objects of D(OX).
There is a canonical morphism

RHom(L,M)⊗L
OX

K −→ RHom(RHom(K,L),M)
in D(OX) functorial in K,L,M .

Proof. Choose a K-injective complex I• representing M , a K-injective complex J •

representing L, and a K-flat complex K• representing K. The map is defined using
the map

Tot(Hom•(J •, I•)⊗OX
K•) −→ Hom•(Hom•(K•,J •), I•)

of Lemma 20.41.5. By our particular choice of complexes the left hand side repre-
sentsRHom(L,M)⊗L

OX
K and the right hand side representsRHom(RHom(K,L),M).

We omit the proof that this is functorial in all three objects of D(OX). □

Remark 20.42.10.0FXP Let (X,OX) be a ringed space. For K,K ′,M,M ′ in D(OX)
there is a canonical map

RHom(K,K ′)⊗L
OX

RHom(M,M ′) −→ RHom(K ⊗L
OX

M,K ′ ⊗L
OX

M ′)
Namely, by (20.42.0.1) is the same thing as a map

RHom(K,K ′)⊗L
OX

RHom(M,M ′)⊗L
OX

K ⊗L
OX

M −→ K ′ ⊗L
OX

M ′

For this we can first flip the middle two factors (with sign rules as in More on
Algebra, Section 15.72) and use the maps

RHom(K,K ′)⊗L
OX

K → K ′ and RHom(M,M ′)⊗L
OX

M →M ′

from Lemma 20.42.5 when thinking of K = RHom(OX ,K) and similarly for K ′,
M , and M ′.

Remark 20.42.11.0B69 Let f : X → Y be a morphism of ringed spaces. Let K,L be
objects of D(OX). We claim there is a canonical map

Rf∗RHom(L,K) −→ RHom(Rf∗L,Rf∗K)
Namely, by (20.42.0.1) this is the same thing as a map Rf∗RHom(L,K) ⊗L

OY

Rf∗L→ Rf∗K. For this we can use the composition
Rf∗RHom(L,K)⊗L

OY
Rf∗L→ Rf∗(RHom(L,K)⊗L

OX
L)→ Rf∗K

where the first arrow is the relative cup product (Remark 20.28.7) and the second
arrow is Rf∗ applied to the canonical map RHom(L,K)⊗L

OX
L→ K coming from

Lemma 20.42.5 (with OX in one of the spots).
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Remark 20.42.12.0G7A Let h : X → Y be a morphism of ringed spaces. Let K,L,M
be objects of D(OY ). The diagram

Rf∗RHomOX
(K,M)⊗L

OY
Rf∗M //

��

Rf∗
(
RHomOX

(K,M)⊗L
OX

M
)

��
RHomOY

(Rf∗K,Rf∗M)⊗L
OY

Rf∗M // Rf∗M

is commutative. Here the left vertical arrow comes from Remark 20.42.11. The top
horizontal arrow is Remark 20.28.7. The other two arrows are instances of the map
in Lemma 20.42.5 (with one of the entries replaced with OX or OY ).

Remark 20.42.13.08I3 Let h : X → Y be a morphism of ringed spaces. Let K,L be
objects of D(OY ). We claim there is a canonical map

Lh∗RHom(K,L) −→ RHom(Lh∗K,Lh∗L)

in D(OX). Namely, by (20.42.0.1) proved in Lemma 20.42.2 such a map is the same
thing as a map

Lh∗RHom(K,L)⊗L Lh∗K −→ Lh∗L

The source of this arrow is Lh∗(Hom(K,L) ⊗L K) by Lemma 20.27.3 hence it
suffices to construct a canonical map

RHom(K,L)⊗L K −→ L.

For this we take the arrow corresponding to

id : RHom(K,L) −→ RHom(K,L)

via (20.42.0.1).

Remark 20.42.14.08I4 Suppose that

X ′
h
//

f ′

��

X

f

��
S′ g // S

is a commutative diagram of ringed spaces. Let K,L be objects of D(OX). We
claim there exists a canonical base change map

Lg∗Rf∗RHom(K,L) −→ R(f ′)∗RHom(Lh∗K,Lh∗L)

in D(OS′). Namely, we take the map adjoint to the composition

L(f ′)∗Lg∗Rf∗RHom(K,L) = Lh∗Lf∗Rf∗RHom(K,L)
→ Lh∗RHom(K,L)
→ RHom(Lh∗K,Lh∗L)

where the first arrow uses the adjunction mapping Lf∗Rf∗ → id and the second
arrow is the canonical map constructed in Remark 20.42.13.
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20.43. Ext sheaves

0BQP Let (X,OX) be a ringed space. Let K,L ∈ D(OX). Using the construction of
the internal hom in the derived category we obtain a well defined sheaves of OX -
modules

Extn(K,L) = Hn(RHom(K,L))
by taking the nth cohomology sheaf of the object RHom(K,L) of D(OX). We will
sometimes write ExtnOX

(K,L) for this object. By Lemma 20.42.1 we see that this
Extn-sheaf is the sheafification of the rule

U 7−→ ExtnD(OU )(K|U , L|U )

By Example 20.29.3 there is always a spectral sequence

Ep,q2 = Hp(X, Extq(K,L))

converging to Extp+q
D(OX)(K,L) in favorable situations (for example if L is bounded

below and K is bounded above).

20.44. Global derived hom

0B6A Let (X,OX) be a ringed space. Let K,L ∈ D(OX). Using the construction of the
internal hom in the derived category we obtain a well defined object

RHomX(K,L) = RΓ(X,RHom(K,L))

in D(Γ(X,OX)). We will sometimes write RHomOX
(K,L) for this object. By

Lemma 20.42.1 we have

H0(RHomX(K,L)) = HomD(OX)(K,L), Hp(RHomX(K,L)) = ExtpD(OX)(K,L)

If f : Y → X is a morphism of ringed spaces, then there is a canonical map

RHomX(K,L) −→ RHomY (Lf∗K,Lf∗L)

in D(Γ(X,OX)) by taking global sections of the map defined in Remark 20.42.13.

20.45. Glueing complexes

0D65 We can glue complexes! More precisely, in certain circumstances we can glue locally
given objects of the derived category to a global object. We first prove some easy
cases and then we’ll prove the very general [BBD82, Theorem 3.2.4] in the setting
of topological spaces and open coverings.

Lemma 20.45.1.08DG Let (X,OX) be a ringed space. Let X = U ∪ V be the union of
two open subspaces of X. Suppose given

(1) an object A of D(OU ),
(2) an object B of D(OV ), and
(3) an isomorphism c : A|U∩V → B|U∩V .

Then there exists an object F of D(OX) and isomorphisms f : F |U → A, g : F |V →
B such that c = g|U∩V ◦ f−1|U∩V . Moreover, given

(1) an object E of D(OX),
(2) a morphism a : A→ E|U of D(OU ),
(3) a morphism b : B → E|V of D(OV ),
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such that
a|U∩V = b|U∩V ◦ c.

Then there exists a morphism F → E in D(OX) whose restriction to U is a◦f and
whose restriction to V is b ◦ g.

Proof. Denote jU , jV , jU∩V the corresponding open immersions. Choose a distin-
guished triangle

F → RjU,∗A⊕RjV,∗B → RjU∩V,∗(B|U∩V )→ F [1]

where the map RjV,∗B → RjU∩V,∗(B|U∩V ) is the obvious one and where RjU,∗A→
RjU∩V,∗(B|U∩V ) is the composition of RjU,∗A → RjU∩V,∗(A|U∩V ) with RjU∩V,∗c.
Restricting to U we obtain

F |U → A⊕ (RjV,∗B)|U → (RjU∩V,∗(B|U∩V ))|U → F |U [1]

Denote j : U ∩ V → U . Compatibility of restriction to opens and cohomology
shows that both (RjV,∗B)|U and (RjU∩V,∗(B|U∩V ))|U are canonically isomorphic
to Rj∗(B|U∩V ). Hence the second arrow of the last displayed diagram has a section,
and we conclude that the morphism F |U → A is an isomorphism. Similarly, the
morphism F |V → B is an isomorphism. The existence of the morphism F → E
follows from the Mayer-Vietoris sequence for Hom, see Lemma 20.33.3. □

Lemma 20.45.2.0D66 Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let
B be a basis for the topology on Y .

(1) Assume K is in D(OX) such that for V ∈ B we have Hi(f−1(V ),K) = 0
for i < 0. Then Rf∗K has vanishing cohomology sheaves in negative
degrees, Hi(f−1(V ),K) = 0 for i < 0 for all opens V ⊂ Y , and the rule
V 7→ H0(f−1V,K) is a sheaf on Y .

(2) AssumeK,L are inD(OX) such that for V ∈ B we have Exti(K|f−1V , L|f−1V ) =
0 for i < 0. Then Exti(K|f−1V , L|f−1V ) = 0 for i < 0 for all opens V ⊂ Y
and the rule V 7→ Hom(K|f−1V , L|f−1V ) is a sheaf on Y .

Proof. Lemma 20.32.6 tells us Hi(Rf∗K) is the sheaf associated to the presheaf
V 7→ Hi(f−1(V ),K) = Hi(V,Rf∗K). The assumptions in (1) imply that Rf∗K
has vanishing cohomology sheaves in degrees < 0. We conclude that for any open
V ⊂ Y the cohomology group Hi(V,Rf∗K) is zero for i < 0 and is equal to
H0(V,H0(Rf∗K)) for i = 0. This proves (1).

To prove (2) apply (1) to the complex RHom(K,L) using Lemma 20.42.1 to do the
translation. □

Situation 20.45.3.0D67 Let (X,OX) be a ringed space. We are given
(1) a collection of opens B of X,
(2) for U ∈ B an object KU in D(OU ),
(3) for V ⊂ U with V,U ∈ B an isomorphism ρUV : KU |V → KV in D(OV ),

such that whenever we have W ⊂ V ⊂ U with U, V,W in B, then ρUW = ρVW ◦ρUV |W .

We won’t be able to prove anything about this without making more assumptions.
An interesting case is where B is a basis for the topology on X. Another is the case
where we have a morphism f : X → Y of topological spaces and the elements of B
are the inverse images of the elements of a basis for the topology of Y .
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In Situation 20.45.3 a solution will be a pair (K, ρU ) where K is an object of D(OX)
and ρU : K|U → KU , U ∈ B are isomorphisms such that we have ρUV ◦ ρU |V = ρV
for all V ⊂ U , U, V ∈ B. In certain cases solutions are unique.

Lemma 20.45.4.0D68 In Situation 20.45.3 assume
(1) X =

⋃
U∈B U and for U, V ∈ B we have U ∩ V =

⋃
W∈B,W⊂U∩V W ,

(2) for any U ∈ B we have Exti(KU ,KU ) = 0 for i < 0.
If a solution (K, ρU ) exists, then it is unique up to unique isomorphism and moreover
Exti(K,K) = 0 for i < 0.

Proof. Let (K, ρU ) and (K ′, ρ′
U ) be a pair of solutions. Let f : X → Y be the

continuous map constructed in Topology, Lemma 5.5.6. Set OY = f∗OX . Then
K,K ′ and B are as in Lemma 20.45.2 part (2). Hence we obtain the vanishing of
negative exts for K and we see that the rule

V 7−→ Hom(K|f−1V ,K
′|f−1V )

is a sheaf on Y . As both (K, ρU ) and (K ′, ρ′
U ) are solutions the maps

(ρ′
U )−1 ◦ ρU : K|U −→ K ′|U

over U = f−1(f(U)) agree on overlaps. Hence we get a unique global section of
the sheaf above which defines the desired isomorphism K → K ′ compatible with
all structure available. □

Remark 20.45.5.0D69 With notation and assumptions as in Lemma 20.45.4. Suppose
that U, V ∈ B. Let B′ be the set of elements of B contained in U ∩ V . Then

({KU ′}U ′∈B′ , {ρU
′

V ′}V ′⊂U ′ with U ′,V ′∈B′)
is a system on the ringed space U ∩V satisfying the assumptions of Lemma 20.45.4.
Moreover, both (KU |U∩V , ρ

U
U ′) and (KV |U∩V , ρ

V
U ′) are solutions to this system. By

the lemma we find a unique isomorphism
ρU,V : KU |U∩V −→ KV |U∩V

such that for every U ′ ⊂ U ∩ V , U ′ ∈ B the diagram

KU |U ′
ρU,V |U′

//

ρU
U′ ##

KV |U ′

ρV
U′{{

KU ′

commutes. Pick a third elementW ∈ B. We obtain isomorphisms ρU,W : KU |U∩W →
KW |U∩W and ρV,W : KU |V ∩W → KW |V ∩W satisfying similar properties to those
of ρU,V . Finally, we have

ρU,W |U∩V ∩W = ρV,W |U∩V ∩W ◦ ρU,V |U∩V ∩W

This is true by the uniqueness in the lemma because both sides of the equality are
the unique isomorphism compatible with the maps ρUU ′′ and ρWU ′′ for U ′′ ⊂ U∩V ∩W ,
U ′′ ∈ B. Some minor details omitted. The collection (KU , ρU,V ) is a descent datum
in the derived category for the open covering U : X =

⋃
U∈B U of X. In this

language we are looking for “effectiveness of the descent datum” when we look for
the existence of a solution.

Lemma 20.45.6.0D6A In Situation 20.45.3 assume

https://stacks.math.columbia.edu/tag/0D68
https://stacks.math.columbia.edu/tag/0D69
https://stacks.math.columbia.edu/tag/0D6A
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(1) X = U1 ∪ . . . ∪ Un with Ui ∈ B,
(2) for U, V ∈ B we have U ∩ V =

⋃
W∈B,W⊂U∩V W ,

(3) for any U ∈ B we have Exti(KU ,KU ) = 0 for i < 0.
Then a solution exists and is unique up to unique isomorphism.

Proof. Uniqueness was seen in Lemma 20.45.4. We may prove the lemma by in-
duction on n. The case n = 1 is immediate.
The case n = 2. Consider the isomorphism ρU1,U2 : KU1 |U1∩U2 → KU2 |U1∩U2

constructed in Remark 20.45.5. By Lemma 20.45.1 we obtain an object K in
D(OX) and isomorphisms ρU1 : K|U1 → KU1 and ρU2 : K|U2 → KU2 compatible
with ρU1,U2 . Take U ∈ B. We will construct an isomorphism ρU : K|U → KU

and we will leave it to the reader to verify that (K, ρU ) is a solution. Consider the
set B′ of elements of B contained in either U ∩ U1 or contained in U ∩ U2. Then
(KU , ρ

U
U ′) is a solution for the system ({KU ′}U ′∈B′ , {ρU ′

V ′}V ′⊂U ′ with U ′,V ′∈B′) on the
ringed space U . We claim that (K|U , τU ′) is another solution where τU ′ for U ′ ∈ B′

is chosen as follows: if U ′ ⊂ U1 then we take the composition

K|U ′
ρU1 |U′
−−−−→ KU1 |U ′

ρ
U1
U′−−→ KU ′

and if U ′ ⊂ U2 then we take the composition

K|U ′
ρU2 |U′
−−−−→ KU2 |U ′

ρ
U2
U′−−→ KU ′ .

To verify this is a solution use the property of the map ρU1,U2 described in Remark
20.45.5 and the compatibility of ρU1 and ρU2 with ρU1,U2 . Having said this we
apply Lemma 20.45.4 to see that we obtain a unique isomorphism K|U ′ → KU ′

compatible with the maps τU ′ and ρUU ′ for U ′ ∈ B′.
The case n > 2. Consider the open subspace X ′ = U1∪ . . .∪Un−1 and let B′ be the
set of elements of B contained inX ′. Then we find a system ({KU}U∈B′ , {ρUV }U,V ∈B′)
on the ringed space X ′ to which we may apply our induction hypothesis. We find
a solution (KX′ , ρX

′

U ). Then we can consider the collection B∗ = B ∪{X ′} of opens
of X and we see that we obtain a system ({KU}U∈B∗ , {ρUV }V⊂U with U,V ∈B∗). Note
that this new system also satisfies condition (3) by Lemma 20.45.4 applied to the
solution KX′ . For this system we have X = X ′ ∪ Un. This reduces us to the case
n = 2 we worked out above. □

Lemma 20.45.7.0D6B Let X be a ringed space. Let E be a well ordered set and let

X =
⋃

α∈E
Wα

be an open covering with Wα ⊂Wα+1 and Wα =
⋃
β<αWβ if α is not a successor.

Let Kα be an object of D(OWα
) with Exti(Kα,Kα) = 0 for i < 0. Assume given

isomorphisms ραβ : Kα|Wβ
→ Kβ in D(OWβ

) for all β < α with ραγ = ρβγ ◦ ραβ |Wγ

for γ < β < α. Then there exists an object K in D(OX) and isomorphisms
K|Wα → Kα for α ∈ E compatible with the isomorphisms ραβ .

Proof. In this proof α, β, γ, . . . represent elements of E. Choose a K-injective com-
plex I•

α on Wα representing Kα. For β < α denote jβ,α : Wβ → Wα the inclusion
morphism. Using transfinite recursion we will construct for all β < α a map of
complexes

τβ,α : (jβ,α)!I
•
β −→ I•

α

https://stacks.math.columbia.edu/tag/0D6B
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representing the adjoint to the inverse of the isomorphism ραβ : Kα|Wβ
→ Kβ .

Moreover, we will do this in such that for γ < β < α we have
τγ,α = τβ,α ◦ (jβ,α)!τγ,β

as maps of complexes. Namely, suppose already given τγ,β composing correctly for
all γ < β < α. If α = α′ + 1 is a successor, then we choose any map of complexes

(jα′,α)!I
•
α′ → I•

α

which is adjoint to the inverse of the isomorphism ραα′ : Kα|Wα′ → Kα′ (possible
because I•

α is K-injective) and for any β < α′ we set
τβ,α = τα′,α ◦ (jα′,α)!τβ,α′

If α is not a successor, then we can consider the complex on Wα given by
C• = colimβ<α(jβ,α)!I

•
β

(termwise colimit) where the transition maps of the sequence are given by the maps
τβ′,β for β′ < β < α. We claim that C• represents Kα. Namely, for β < α the
restriction of the coprojection (jβ,α)!I

•
β → C• gives a map

σβ : I•
β −→ C•|Wβ

which is a quasi-isomorphism: if x ∈Wβ then looking at stalks we get

(C•)x = colimβ′<α

(
(jβ′,α)!I

•
β′

)
x

= colimβ≤β′<α(I•
β′)x ←− (I•

β)x
which is a quasi-isomorphism. Here we used that taking stalks commutes with
colimits, that filtered colimits are exact, and that the maps (I•

β)x → (I•
β′)x are

quasi-isomorphisms for β ≤ β′ < α. Hence (C•, σ−1
β ) is a solution to the system

({Kβ}β<α, {ρββ′}β′<β<α). Since (Kα, ρ
α
β) is another solution we obtain a unique

isomorphism σ : Kα → C• in D(OWα) compatible with all our maps, see Lemma
20.45.6 (this is where we use the vanishing of negative ext groups). Choose a
morphism τ : C• → I•

α of complexes representing σ. Then we set
τβ,α = τ |Wβ

◦ σβ
to get the desired maps. Finally, we take K to be the object of the derived category
represented by the complex

K• = colimα∈E(Wα → X)!I
•
α

where the transition maps are given by our carefully constructed maps τβ,α for
β < α. Arguing exactly as above we see that for all α the restriction of the
coprojection determines an isomorphism

K|Wα
−→ Kα

compatible with the given maps ραβ . □

Using transfinite induction we can prove the result in the general case.

Theorem 20.45.8 (BBD gluing lemma).0D6C Special case of
[BBD82, Theorem
3.2.4] without
boundedness
assumption.

In Situation 20.45.3 assume
(1) X =

⋃
U∈B U ,

(2) for U, V ∈ B we have U ∩ V =
⋃
W∈B,W⊂U∩V W ,

(3) for any U ∈ B we have Exti(KU ,KU ) = 0 for i < 0.

https://stacks.math.columbia.edu/tag/0D6C
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Then there exists an object K of D(OX) and isomorphisms ρU : K|U → KU in
D(OU ) for U ∈ B such that ρUV ◦ ρU |V = ρV for all V ⊂ U with U, V ∈ B. The pair
(K, ρU ) is unique up to unique isomorphism.

Proof. A pair (K, ρU ) is called a solution in the text above. The uniqueness follows
from Lemma 20.45.4. If X has a finite covering by elements of B (for example if
X is quasi-compact), then the theorem is a consequence of Lemma 20.45.6. In the
general case we argue in exactly the same manner, using transfinite induction and
Lemma 20.45.7.

First we use transfinite recursion to choose opens Wα ⊂ X for any ordinal α.
Namely, we set W0 = ∅. If α = β + 1 is a successor, then either Wβ = X and we
set Wα = X or Wβ ̸= X and we set Wα = Wβ ∪Uα where Uα ∈ B is not contained
in Wβ . If α is a limit ordinal we set Wα =

⋃
β<αWβ . Then for large enough α we

have Wα = X. Observe that for every α the open Wα is a union of elements of B.
Hence if Bα = {U ∈ B, U ⊂Wα}, then

Sα = ({KU}U∈Bα , {ρUV }V⊂U with U,V ∈Bα)

is a system as in Lemma 20.45.4 on the ringed space Wα.

We will show by transfinite induction that for every α the system Sα has a solution.
This will prove the theorem as this system is the system given in the theorem for
large α.

The case where α = β + 1 is a successor ordinal. (This case was already treated
in the proof of the lemma above but for clarity we repeat the argument.) Recall
that Wα = Wβ ∪ Uα for some Uα ∈ B in this case. By induction hypothesis
we have a solution (KWβ

, {ρWβ

U }U∈Bβ ) for the system Sβ . Then we can consider
the collection B∗

α = Bα ∪ {Wβ} of opens of Wα and we see that we obtain a
system ({KU}U∈B∗

α
, {ρUV }V⊂U with U,V ∈B∗

α
). Note that this new system also satisfies

condition (3) by Lemma 20.45.4 applied to the solution KWβ
. For this system we

have Wα = Wβ ∪ Uα. This reduces us to the case handled in Lemma 20.45.6.

The case where α is a limit ordinal. Recall that Wα =
⋃
β<αWβ in this case.

For β < α let (KWβ
, {ρWβ

U }U∈Bβ ) be the solution for Sβ . For γ < β < α the
restriction KWβ

|Wγ
endowed with the maps ρWβ

U , U ∈ Bγ is a solution for Sγ . By
uniqueness we get unique isomorphisms ρWβ

Wγ
: KWβ

|Wγ
→ KWγ

compatible with
the maps ρWβ

U and ρ
Wγ

U for U ∈ Bγ . These maps compose in the correct manner,
i.e., ρWγ

Wδ
◦ ρWβ

Wγ
|Wδ

= ρWδ

Wβ
for δ < γ < β < α. Thus we may apply Lemma 20.45.7

(note that the vanishing of negative exts is true for KWβ
by Lemma 20.45.4 applied

to the solution KWβ
) to obtain KWα

and isomorphisms

ρWα

Wβ
: KWα

|Wβ
−→ KWβ

compatible with the maps ρWβ

Wγ
for γ < β < α.

To show that KWα
is a solution we still need to construct the isomorphisms ρWα

U :
KWα

|U → KU for U ∈ Bα satisfying certain compatibilities. We choose ρWα

U to be
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the unique map such that for any β < α and any V ∈ Bβ with V ⊂ U the diagram

KWα |V
ρWα
U

|V
//

ρWα
Wβ

|V
��

KU |V

ρVU
��

KWβ

ρ
Wβ
V // KV

commutes. This makes sense because

({KV }V⊂U,V ∈Bβ for some β<α, {ρV
′

V }V⊂V ′ with V,V ′⊂U and V,V ′∈Bβ for some β<α)

is a system as in Lemma 20.45.4 on the ringed space U and because (KU , ρ
U
V ) and

(KWα
|U , ρ

Wβ

V ◦ ρWα

Wβ
|V ) are both solutions for this system. This gives existence and

uniqueness. We omit the proof that these maps satisfy the desired compatibilities
(it is just bookkeeping). □

20.46. Strictly perfect complexes

08C3 Strictly perfect complexes of modules are used to define the notions of pseudo-
coherent and perfect complexes later on. They are defined as follows.

Definition 20.46.1.08C4 Let (X,OX) be a ringed space. Let E• be a complex of OX -
modules. We say E• is strictly perfect if E i is zero for all but finitely many i and
E i is a direct summand of a finite free OX -module for all i.

Warning: Since we do not assume that X is a locally ringed space, it may not be
true that a direct summand of a finite free OX -module is finite locally free.

Lemma 20.46.2.08C5 The cone on a morphism of strictly perfect complexes is strictly
perfect.

Proof. This is immediate from the definitions. □

Lemma 20.46.3.09J2 The total complex associated to the tensor product of two strictly
perfect complexes is strictly perfect.

Proof. Omitted. □

Lemma 20.46.4.09U6 Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. If F•

is a strictly perfect complex of OY -modules, then f∗F• is a strictly perfect complex
of OX -modules.

Proof. The pullback of a finite free module is finite free. The functor f∗ is additive
functor hence preserves direct summands. The lemma follows. □

Lemma 20.46.5.08C6 Let (X,OX) be a ringed space. Given a solid diagram of OX -
modules

E

��

// F

G

p

OO

with E a direct summand of a finite free OX -module and p surjective, then a dotted
arrow making the diagram commute exists locally on X.

https://stacks.math.columbia.edu/tag/08C4
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Proof. We may assume E = O⊕n
X for some n. In this case finding the dotted arrow

is equivalent to lifting the images of the basis elements in Γ(X,F). This is locally
possible by the characterization of surjective maps of sheaves (Sheaves, Section
6.16). □

Lemma 20.46.6.08C7 Let (X,OX) be a ringed space.
(1) Let α : E• → F• be a morphism of complexes of OX -modules with E•

strictly perfect and F• acyclic. Then α is locally on X homotopic to zero.
(2) Let α : E• → F• be a morphism of complexes of OX -modules with E•

strictly perfect, E i = 0 for i < a, and Hi(F•) = 0 for i ≥ a. Then α is
locally on X homotopic to zero.

Proof. The first statement follows from the second, hence we only prove (2). We
will prove this by induction on the length of the complex E•. If E• ∼= E [−n] for
some direct summand E of a finite free OX -module and integer n ≥ a, then the
result follows from Lemma 20.46.5 and the fact that Fn−1 → Ker(Fn → Fn+1) is
surjective by the assumed vanishing of Hn(F•). If E i is zero except for i ∈ [a, b],
then we have a split exact sequence of complexes

0→ Eb[−b]→ E• → σ≤b−1E• → 0
which determines a distinguished triangle in K(OX). Hence an exact sequence

HomK(OX)(σ≤b−1E•,F•)→ HomK(OX)(E•,F•)→ HomK(OX)(Eb[−b],F•)
by the axioms of triangulated categories. The composition Eb[−b] → F• is locally
homotopic to zero, whence we may assume our map comes from an element in the
left hand side of the displayed exact sequence above. This element is locally zero
by induction hypothesis. □

Lemma 20.46.7.08C8 Let (X,OX) be a ringed space. Given a solid diagram of complexes
of OX -modules

E•

!!

α
// F•

G•

f

OO

with E• strictly perfect, Ej = 0 for j < a and Hj(f) an isomorphism for j > a
and surjective for j = a, then a dotted arrow making the diagram commute up to
homotopy exists locally on X.
Proof. Our assumptions on f imply the cone C(f)• has vanishing cohomology
sheaves in degrees ≥ a. Hence Lemma 20.46.6 guarantees there is an open covering
X =

⋃
Ui such that the composition E• → F• → C(f)• is homotopic to zero over

Ui. Since
G• → F• → C(f)• → G•[1]

restricts to a distinguished triangle in K(OUi) we see that we can lift α|Ui up to
homotopy to a map αi : E•|Ui → G•|Ui as desired. □

Lemma 20.46.8.08C9 Let (X,OX) be a ringed space. Let E•, F• be complexes of
OX -modules with E• strictly perfect.

(1) For any element α ∈ HomD(OX)(E•,F•) there exists an open covering
X =

⋃
Ui such that α|Ui is given by a morphism of complexes αi : E•|Ui →

F•|Ui .

https://stacks.math.columbia.edu/tag/08C7
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(2) Given a morphism of complexes α : E• → F• whose image in the group
HomD(OX)(E•,F•) is zero, there exists an open covering X =

⋃
Ui such

that α|Ui is homotopic to zero.

Proof. Proof of (1). By the construction of the derived category we can find a
quasi-isomorphism f : F• → G• and a map of complexes β : E• → G• such that
α = f−1β. Thus the result follows from Lemma 20.46.7. We omit the proof of
(2). □

Lemma 20.46.9.08DM Let (X,OX) be a ringed space. Let E•, F• be complexes of
OX -modules with E• strictly perfect. Then the internal hom RHom(E•,F•) is
represented by the complex H• with terms

Hn =
⊕

n=p+q
HomOX

(E−q,Fp)

and differential as described in Section 20.41.

Proof. Choose a quasi-isomorphism F• → I• into a K-injective complex. Let (H′)•

be the complex with terms

(H′)n =
∏

n=p+q
HomOX

(E−q, Ip)

which represents RHom(E•,F•) by the construction in Section 20.42. It suffices to
show that the map

H• −→ (H′)•

is a quasi-isomorphism. Given an open U ⊂ X we have by inspection

H0(H•(U)) = HomK(OU )(E•|U ,K•|U )→ H0((H′)•(U)) = HomD(OU )(E•|U ,K•|U )

By Lemma 20.46.8 the sheafification of U 7→ H0(H•(U)) is equal to the sheafifica-
tion of U 7→ H0((H′)•(U)). A similar argument can be given for the other cohomol-
ogy sheaves. Thus H• is quasi-isomorphic to (H′)• which proves the lemma. □

Lemma 20.46.10.0GM5 In the situation of Lemma 20.46.9 if F• is K-flat, then H• is
K-flat.

Proof. Observe that H• is simply the hom complex Hom•(E•,F•) since the bound-
edness of the strictly prefect complex E• insures that the products in the definition
of the hom complex turn into direct sums. Let K• be an acyclic complex of OX -
modules. Consider the map

γ : Tot(K• ⊗Hom•(E•,F•)) −→ Hom•(E•,Tot(K• ⊗F•))

of Lemma 20.41.3. Since F• is K-flat, the complex Tot(K• ⊗ F•) is acyclic, and
hence by Lemma 20.46.8 (or Lemma 20.46.9 if you like) the target of γ is acyclic
too. Hence to prove the lemma it suffices to show that γ is an isomorphism of
complexes. To see this, we may argue by induction on the length of the complex
E•. If the length is ≤ 1 then the E• is a direct summand of O⊕n

X [k] for some n ≥ 0
and k ∈ Z and in this case the result follows by inspection. If the length is > 1, then
we reduce to smaller length by considering the termwise split short exact sequence
of complexes

0→ σ≥a+1E• → E• → σ≤aE• → 0

https://stacks.math.columbia.edu/tag/08DM
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for a suitable a ∈ Z, see Homology, Section 12.15. Then γ fits into a morphism of
termwise split short exact sequences of complexes. By induction γ is an isomor-
phism for σ≥a+1E• and σ≤aE• and hence the result for E• follows. Some details
omitted. □

Lemma 20.46.11.08I5 Let (X,OX) be a ringed space. Let E•, F• be complexes of
OX -modules with

(1) Fn = 0 for n≪ 0,
(2) En = 0 for n≫ 0, and
(3) En isomorphic to a direct summand of a finite free OX -module.

Then the internal hom RHom(E•,F•) is represented by the complex H• with terms

Hn =
⊕

n=p+q
HomOX

(E−q,Fp)

and differential as described in Section 20.42.

Proof. Choose a quasi-isomorphism F• → I• where I• is a bounded below complex
of injectives. Note that I• is K-injective (Derived Categories, Lemma 13.31.4).
Hence the construction in Section 20.42 shows that RHom(E•,F•) is represented
by the complex (H′)• with terms

(H′)n =
∏

n=p+q
HomOX

(E−q, Ip) =
⊕

n=p+q
HomOX

(E−q, Ip)

(equality because there are only finitely many nonzero terms). Note that H• is the
total complex associated to the double complex with terms HomOX

(E−q,Fp) and
similarly for (H′)•. The natural map (H′)• → H• comes from a map of double
complexes. Thus to show this map is a quasi-isomorphism, we may use the spectral
sequence of a double complex (Homology, Lemma 12.25.3)

′Ep,q1 = Hp(HomOX
(E−q,F•))

converging to Hp+q(H•) and similarly for (H′)•. To finish the proof of the lemma
it suffices to show that F• → I• induces an isomorphism

Hp(HomOX
(E ,F•)) −→ Hp(HomOX

(E , I•))

on cohomology sheaves whenever E is a direct summand of a finite free OX -module.
Since this is clear when E is finite free the result follows. □

20.47. Pseudo-coherent modules

08CA In this section we discuss pseudo-coherent complexes.

Definition 20.47.1.08CB Let (X,OX) be a ringed space. Let E• be a complex of OX -
modules. Let m ∈ Z.

(1) We say E• is m-pseudo-coherent if there exists an open covering X =
⋃
Ui

and for each i a morphism of complexes αi : E•
i → E•|Ui where Ei is strictly

perfect on Ui and Hj(αi) is an isomorphism for j > m and Hm(αi) is
surjective.

(2) We say E• is pseudo-coherent if it is m-pseudo-coherent for all m.
(3) We say an object E ofD(OX) ism-pseudo-coherent (resp. pseudo-coherent)

if and only if it can be represented by a m-pseudo-coherent (resp. pseudo-
coherent) complex of OX -modules.

https://stacks.math.columbia.edu/tag/08I5
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If X is quasi-compact, then an m-pseudo-coherent object of D(OX) is in D−(OX).
But this need not be the case if X is not quasi-compact.

Lemma 20.47.2.08CC Let (X,OX) be a ringed space. Let E be an object of D(OX).
(1) If there exists an open covering X =

⋃
Ui, strictly perfect complexes E•

i

on Ui, and maps αi : E•
i → E|Ui in D(OUi) with Hj(αi) an isomorphism

for j > m and Hm(αi) surjective, then E is m-pseudo-coherent.
(2) If E is m-pseudo-coherent, then any complex representing E is m-pseudo-

coherent.

Proof. Let F• be any complex representing E and let X =
⋃
Ui and αi : E•

i → E|Ui
be as in (1). We will show that F• is m-pseudo-coherent as a complex, which will
prove (1) and (2) simultaneously. By Lemma 20.46.8 we can after refining the open
covering X =

⋃
Ui represent the maps αi by maps of complexes αi : E•

i → F•|Ui .
By assumption Hj(αi) are isomorphisms for j > m, and Hm(αi) is surjective
whence F• is m-pseudo-coherent. □

Lemma 20.47.3.09U7 Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let
E be an object of D(OY ). If E is m-pseudo-coherent, then Lf∗E is m-pseudo-
coherent.

Proof. Represent E by a complex E• of OY -modules and choose an open covering
Y =

⋃
Vi and αi : E•

i → E•|Vi as in Definition 20.47.1. Set Ui = f−1(Vi). By
Lemma 20.47.2 it suffices to show that Lf∗E•|Ui is m-pseudo-coherent. Choose a
distinguished triangle

E•
i → E•|Vi → C → E•

i [1]
The assumption on αi means exactly that the cohomology sheaves Hj(C) are zero
for all j ≥ m. Denote fi : Ui → Vi the restriction of f . Note that Lf∗E•|Ui =
Lf∗

i (E|Vi). Applying Lf∗
i we obtain the distinguished triangle

Lf∗
i E•

i → Lf∗
i E|Vi → Lf∗

i C → Lf∗
i E•

i [1]

By the construction of Lf∗
i as a left derived functor we see that Hj(Lf∗

i C) = 0
for j ≥ m (by the dual of Derived Categories, Lemma 13.16.1). Hence Hj(Lf∗

i αi)
is an isomorphism for j > m and Hm(Lf∗αi) is surjective. On the other hand,
Lf∗

i E•
i = f∗

i E•
i . is strictly perfect by Lemma 20.46.4. Thus we conclude. □

Lemma 20.47.4.08CD Let (X,OX) be a ringed space and m ∈ Z. Let (K,L,M, f, g, h)
be a distinguished triangle in D(OX).

(1) If K is (m + 1)-pseudo-coherent and L is m-pseudo-coherent then M is
m-pseudo-coherent.

(2) If K and M are m-pseudo-coherent, then L is m-pseudo-coherent.
(3) If L is (m + 1)-pseudo-coherent and M is m-pseudo-coherent, then K is

(m+ 1)-pseudo-coherent.

Proof. Proof of (1). Choose an open covering X =
⋃
Ui and maps αi : K•

i → K|Ui
in D(OUi) with K•

i strictly perfect and Hj(αi) isomorphisms for j > m + 1 and
surjective for j = m + 1. We may replace K•

i by σ≥m+1K•
i and hence we may

assume that Kji = 0 for j < m+ 1. After refining the open covering we may choose
maps βi : L•

i → L|Ui in D(OUi) with L•
i strictly perfect such that Hj(β) is an
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isomorphism for j > m and surjective for j = m. By Lemma 20.46.7 we can, after
refining the covering, find maps of complexes γi : K• → L• such that the diagrams

K|Ui // L|Ui

K•
i

αi

OO

γi // L•
i

βi

OO

are commutative in D(OUi) (this requires representing the maps αi, βi and K|Ui →
L|Ui by actual maps of complexes; some details omitted). The cone C(γi)• is strictly
perfect (Lemma 20.46.2). The commutativity of the diagram implies that there
exists a morphism of distinguished triangles

(K•
i ,L•

i , C(γi)•) −→ (K|Ui , L|Ui ,M |Ui).

It follows from the induced map on long exact cohomology sequences and Homol-
ogy, Lemmas 12.5.19 and 12.5.20 that C(γi)• → M |Ui induces an isomorphism on
cohomology in degrees > m and a surjection in degree m. Hence M is m-pseudo-
coherent by Lemma 20.47.2.

Assertions (2) and (3) follow from (1) by rotating the distinguished triangle. □

Lemma 20.47.5.09J3 Let (X,OX) be a ringed space. Let K,L be objects of D(OX).
(1) If K is n-pseudo-coherent and Hi(K) = 0 for i > a and L is m-pseudo-

coherent and Hj(L) = 0 for j > b, then K ⊗L
OX

L is t-pseudo-coherent
with t = max(m+ a, n+ b).

(2) If K and L are pseudo-coherent, then K ⊗L
OX

L is pseudo-coherent.

Proof. Proof of (1). By replacing X by the members of an open covering we may
assume there exist strictly perfect complexes K• and L• and maps α : K• → K and
β : L• → L with Hi(α) and isomorphism for i > n and surjective for i = n and
with Hi(β) and isomorphism for i > m and surjective for i = m. Then the map

α⊗L β : Tot(K• ⊗OX
L•)→ K ⊗L

OX
L

induces isomorphisms on cohomology sheaves in degree i for i > t and a surjection
for i = t. This follows from the spectral sequence of tors (details omitted).

Proof of (2). We may first replace X by the members of an open covering to
reduce to the case that K and L are bounded above. Then the statement follows
immediately from case (1). □

Lemma 20.47.6.08CE Let (X,OX) be a ringed space. Let m ∈ Z. If K⊕L is m-pseudo-
coherent (resp. pseudo-coherent) in D(OX) so are K and L.

Proof. Assume that K⊕L is m-pseudo-coherent. After replacing X by the members
of an open covering we may assume K ⊕ L ∈ D−(OX), hence L ∈ D−(OX). Note
that there is a distinguished triangle

(K ⊕ L,K ⊕ L,L⊕ L[1]) = (K,K, 0)⊕ (L,L,L⊕ L[1])

see Derived Categories, Lemma 13.4.10. By Lemma 20.47.4 we see that L ⊕ L[1]
is m-pseudo-coherent. Hence also L[1] ⊕ L[2] is m-pseudo-coherent. By induction
L[n]⊕L[n+ 1] is m-pseudo-coherent. Since L is bounded above we see that L[n] is
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m-pseudo-coherent for large n. Hence working backwards, using the distinguished
triangles

(L[n], L[n]⊕ L[n− 1], L[n− 1])
we conclude that L[n− 1], L[n− 2], . . . , L are m-pseudo-coherent as desired. □

Lemma 20.47.7.09V7 Let (X,OX) be a ringed space. Let m ∈ Z. Let F• be a (locally)
bounded above complex of OX -modules such that F i is (m − i)-pseudo-coherent
for all i. Then F• is m-pseudo-coherent.

Proof. Omitted. Hint: use Lemma 20.47.4 and truncations as in the proof of More
on Algebra, Lemma 15.64.9. □

Lemma 20.47.8.09V8 Let (X,OX) be a ringed space. Let m ∈ Z. Let E be an object
of D(OX). If E is (locally) bounded above and Hi(E) is (m − i)-pseudo-coherent
for all i, then E is m-pseudo-coherent.

Proof. Omitted. Hint: use Lemma 20.47.4 and truncations as in the proof of More
on Algebra, Lemma 15.64.10. □

Lemma 20.47.9.08DN Let (X,OX) be a ringed space. Let K be an object of D(OX).
Let m ∈ Z.

(1) If K is m-pseudo-coherent and Hi(K) = 0 for i > m, then Hm(K) is a
finite type OX -module.

(2) If K is m-pseudo-coherent and Hi(K) = 0 for i > m+ 1, then Hm+1(K)
is a finitely presented OX -module.

Proof. Proof of (1). We may work locally on X. Hence we may assume there exists
a strictly perfect complex E• and a map α : E• → K which induces an isomorphism
on cohomology in degrees > m and a surjection in degree m. It suffices to prove
the result for E•. Let n be the largest integer such that En ̸= 0. If n = m, then
Hm(E•) is a quotient of En and the result is clear. If n > m, then En−1 → En is
surjective as Hn(E•) = 0. By Lemma 20.46.5 we can locally find a section of this
surjection and write En−1 = E ′ ⊕ En. Hence it suffices to prove the result for the
complex (E ′)• which is the same as E• except has E ′ in degree n−1 and 0 in degree
n. We win by induction on n.

Proof of (2). We may work locally on X. Hence we may assume there exists a
strictly perfect complex E• and a map α : E• → K which induces an isomorphism
on cohomology in degrees > m and a surjection in degree m. As in the proof
of (1) we can reduce to the case that E i = 0 for i > m + 1. Then we see that
Hm+1(K) ∼= Hm+1(E•) = Coker(Em → Em+1) which is of finite presentation. □

Lemma 20.47.10.09V9 Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
(1) F viewed as an object of D(OX) is 0-pseudo-coherent if and only if F is

a finite type OX -module, and
(2) F viewed as an object of D(OX) is (−1)-pseudo-coherent if and only if F

is an OX -module of finite presentation.

Proof. Use Lemma 20.47.9 to prove the implications in one direction and Lemma
20.47.8 for the other. □
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20.48. Tor dimension

08CF In this section we take a closer look at resolutions by flat modules.

Definition 20.48.1.08CG Let (X,OX) be a ringed space. Let E be an object of D(OX).
Let a, b ∈ Z with a ≤ b.

(1) We say E has tor-amplitude in [a, b] if Hi(E ⊗L
OX
F) = 0 for all OX -

modules F and all i ̸∈ [a, b].
(2) We say E has finite tor dimension if it has tor-amplitude in [a, b] for some

a, b.
(3) We say E locally has finite tor dimension if there exists an open covering

X =
⋃
Ui such that E|Ui has finite tor dimension for all i.

An OX -module F has tor dimension ≤ d if F [0] viewed as an object of D(OX) has
tor-amplitude in [−d, 0].

Note that if E as in the definition has finite tor dimension, then E is an object of
Db(OX) as can be seen by taking F = OX in the definition above.

Lemma 20.48.2.08CH Let (X,OX) be a ringed space. Let E• be a bounded above
complex of flat OX -modules with tor-amplitude in [a, b]. Then Coker(da−1

E• ) is a
flat OX -module.

Proof. As E• is a bounded above complex of flat modules we see that E•⊗OX
F =

E• ⊗L
OX
F for any OX -module F . Hence for every OX -module F the sequence

Ea−2 ⊗OX
F → Ea−1 ⊗OX

F → Ea ⊗OX
F

is exact in the middle. Since Ea−2 → Ea−1 → Ea → Coker(da−1) → 0 is a flat
resolution this implies that TorOX

1 (Coker(da−1),F) = 0 for all OX -modules F .
This means that Coker(da−1) is flat, see Lemma 20.26.16. □

Lemma 20.48.3.08CI Let (X,OX) be a ringed space. Let E be an object of D(OX).
Let a, b ∈ Z with a ≤ b. The following are equivalent

(1) E has tor-amplitude in [a, b].
(2) E is represented by a complex E• of flat OX -modules with E i = 0 for

i ̸∈ [a, b].

Proof. If (2) holds, then we may compute E ⊗L
OX
F = E• ⊗OX

F and it is clear
that (1) holds.

Assume that (1) holds. We may represent E by a bounded above complex of flat
OX -modules K•, see Section 20.26. Let n be the largest integer such that Kn ̸= 0.
If n > b, then Kn−1 → Kn is surjective as Hn(K•) = 0. As Kn is flat we see that
Ker(Kn−1 → Kn) is flat (Modules, Lemma 17.17.8). Hence we may replace K• by
τ≤n−1K•. Thus, by induction on n, we reduce to the case that K• is a complex of
flat OX -modules with Ki = 0 for i > b.

Set E• = τ≥aK•. Everything is clear except that Ea is flat which follows immediately
from Lemma 20.48.2 and the definitions. □

Lemma 20.48.4.09U8 Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let
E be an object of D(OY ). If E has tor amplitude in [a, b], then Lf∗E has tor
amplitude in [a, b].
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Proof. Assume E has tor amplitude in [a, b]. By Lemma 20.48.3 we can represent
E by a complex of E• of flat O-modules with E i = 0 for i ̸∈ [a, b]. Then Lf∗E is
represented by f∗E•. By Modules, Lemma 17.20.2 the modules f∗E i are flat. Thus
by Lemma 20.48.3 we conclude that Lf∗E has tor amplitude in [a, b]. □

Lemma 20.48.5.09U9 Let (X,OX) be a ringed space. Let E be an object of D(OX).
Let a, b ∈ Z with a ≤ b. The following are equivalent

(1) E has tor-amplitude in [a, b].
(2) for every x ∈ X the object Ex of D(OX,x) has tor-amplitude in [a, b].

Proof. Taking stalks at x is the same thing as pulling back by the morphism of
ringed spaces (x,OX,x)→ (X,OX). Hence the implication (1) ⇒ (2) follows from
Lemma 20.48.4. For the converse, note that taking stalks commutes with tensor
products (Modules, Lemma 17.16.1). Hence

(E ⊗L
OX
F)x = Ex ⊗L

OX,x
Fx

On the other hand, taking stalks is exact, so

Hi(E ⊗L
OX
F)x = Hi((E ⊗L

OX
F)x) = Hi(Ex ⊗L

OX,x
Fx)

and we can check whether Hi(E⊗L
OX
F) is zero by checking whether all of its stalks

are zero (Modules, Lemma 17.3.1). Thus (2) implies (1). □

Lemma 20.48.6.08CJ Let (X,OX) be a ringed space. Let (K,L,M, f, g, h) be a distin-
guished triangle in D(OX). Let a, b ∈ Z.

(1) If K has tor-amplitude in [a + 1, b + 1] and L has tor-amplitude in [a, b]
then M has tor-amplitude in [a, b].

(2) If K and M have tor-amplitude in [a, b], then L has tor-amplitude in [a, b].
(3) If L has tor-amplitude in [a+ 1, b+ 1] and M has tor-amplitude in [a, b],

then K has tor-amplitude in [a+ 1, b+ 1].

Proof. Omitted. Hint: This just follows from the long exact cohomology sequence
associated to a distinguished triangle and the fact that −⊗L

OX
F preserves distin-

guished triangles. The easiest one to prove is (2) and the others follow from it by
translation. □

Lemma 20.48.7.09J4 Let (X,OX) be a ringed space. Let K,L be objects of D(OX). If
K has tor-amplitude in [a, b] and L has tor-amplitude in [c, d] then K ⊗L

OX
L has

tor amplitude in [a+ c, b+ d].

Proof. Omitted. Hint: use the spectral sequence for tors. □

Lemma 20.48.8.08CK Let (X,OX) be a ringed space. Let a, b ∈ Z. For K, L objects of
D(OX) if K ⊕ L has tor amplitude in [a, b] so do K and L.

Proof. Clear from the fact that the Tor functors are additive. □

20.49. Perfect complexes

08CL In this section we discuss properties of perfect complexes on ringed spaces.
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Definition 20.49.1.08CM Let (X,OX) be a ringed space. Let E• be a complex of OX -
modules. We say E• is perfect if there exists an open covering X =

⋃
Ui such

that for each i there exists a morphism of complexes E•
i → E•|Ui which is a quasi-

isomorphism with E•
i a strictly perfect complex of OUi-modules. An object E of

D(OX) is perfect if it can be represented by a perfect complex of OX -modules.

Lemma 20.49.2.08CN Let (X,OX) be a ringed space. Let E be an object of D(OX).
(1) If there exists an open covering X =

⋃
Ui and strictly perfect complexes

E•
i on Ui such that E•

i represents E|Ui in D(OUi), then E is perfect.
(2) If E is perfect, then any complex representing E is perfect.

Proof. Identical to the proof of Lemma 20.47.2. □

Lemma 20.49.3.0BCJ Let (X,OX) be a ringed space. Let E be an object of D(OX).
Assume that all stalks OX,x are local rings. Then the following are equivalent

(1) E is perfect,
(2) there exists an open covering X =

⋃
Ui such that E|Ui can be represented

by a finite complex of finite locally free OUi-modules, and
(3) there exists an open covering X =

⋃
Ui such that E|Ui can be represented

by a finite complex of finite free OUi -modules.

Proof. This follows from Lemma 20.49.2 and the fact that on X every direct sum-
mand of a finite free module is finite locally free. See Modules, Lemma 17.14.6. □

Lemma 20.49.4.08CP Let (X,OX) be a ringed space. Let E be an object of D(OX). Let
a ≤ b be integers. If E has tor amplitude in [a, b] and is (a − 1)-pseudo-coherent,
then E is perfect.

Proof. After replacing X by the members of an open covering we may assume
there exists a strictly perfect complex E• and a map α : E• → E such that Hi(α)
is an isomorphism for i ≥ a. We may and do replace E• by σ≥a−1E•. Choose a
distinguished triangle

E• → E → C → E•[1]
From the vanishing of cohomology sheaves of E and E• and the assumption on α
we obtain C ∼= K[a − 2] with K = Ker(Ea−1 → Ea). Let F be an OX -module.
Applying − ⊗L

OX
F the assumption that E has tor amplitude in [a, b] implies

K ⊗OX
F → Ea−1 ⊗OX

F has image Ker(Ea−1 ⊗OX
F → Ea ⊗OX

F). It follows
that TorOX

1 (E ′,F) = 0 where E ′ = Coker(Ea−1 → Ea). Hence E ′ is flat (Lemma
20.26.16). Thus E ′ is locally a direct summand of a finite free module by Modules,
Lemma 17.18.3. Thus locally the complex

E ′ → Ea−1 → . . .→ Eb

is quasi-isomorphic to E and E is perfect. □

Lemma 20.49.5.08CQ Let (X,OX) be a ringed space. Let E be an object of D(OX).
The following are equivalent

(1) E is perfect, and
(2) E is pseudo-coherent and locally has finite tor dimension.

Proof. Assume (1). By definition this means there exists an open covering X =⋃
Ui such that E|Ui is represented by a strictly perfect complex. Thus E is pseudo-

coherent (i.e., m-pseudo-coherent for all m) by Lemma 20.47.2. Moreover, a direct
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summand of a finite free module is flat, hence E|Ui has finite Tor dimension by
Lemma 20.48.3. Thus (2) holds.
Assume (2). After replacing X by the members of an open covering we may assume
there exist integers a ≤ b such that E has tor amplitude in [a, b]. Since E is m-
pseudo-coherent for all m we conclude using Lemma 20.49.4. □

Lemma 20.49.6.09UA Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let E
be an object of D(OY ). If E is perfect in D(OY ), then Lf∗E is perfect in D(OX).

Proof. This follows from Lemma 20.49.5, 20.48.4, and 20.47.3. (An alternative
proof is to copy the proof of Lemma 20.47.3.) □

Lemma 20.49.7.08CR Let (X,OX) be a ringed space. Let (K,L,M, f, g, h) be a dis-
tinguished triangle in D(OX). If two out of three of K,L,M are perfect then the
third is also perfect.

Proof. First proof: Combine Lemmas 20.49.5, 20.47.4, and 20.48.6. Second proof
(sketch): Say K and L are perfect. After replacing X by the members of an
open covering we may assume that K and L are represented by strictly perfect
complexes K• and L•. After replacing X by the members of an open covering we
may assume the map K → L is given by a map of complexes α : K• → L•, see
Lemma 20.46.8. Then M is isomorphic to the cone of α which is strictly perfect by
Lemma 20.46.2. □

Lemma 20.49.8.09J5 Let (X,OX) be a ringed space. If K,L are perfect objects of
D(OX), then so is K ⊗L

OX
L.

Proof. Follows from Lemmas 20.49.5, 20.47.5, and 20.48.7. □

Lemma 20.49.9.08CS Let (X,OX) be a ringed space. If K ⊕ L is a perfect object of
D(OX), then so are K and L.

Proof. Follows from Lemmas 20.49.5, 20.47.6, and 20.48.8. □

Lemma 20.49.10.08DP Let (X,OX) be a ringed space. Let j : U → X be an open
subspace. Let E be a perfect object of D(OU ) whose cohomology sheaves are
supported on a closed subset T ⊂ U with j(T ) closed in X. Then Rj∗E is a perfect
object of D(OX).

Proof. Being a perfect complex is local on X. Thus it suffices to check that Rj∗E
is perfect when restricted to U and V = X \ j(T ). We have Rj∗E|U = E which is
perfect. We have Rj∗E|V = 0 because E|U\T = 0. □

Lemma 20.49.11.0GT1 Let (X,OX) be a ringed space. Let E in D(OX) be perfect.
Assume that all stalks OX,x are local rings. Then the set

U = {x ∈ X | Hi(E)x is a finite free OX,x-module for all i ∈ Z}
is open in X and is the maximal open set U ⊂ X such that Hi(E)|U is finite locally
free for all i ∈ Z.

Proof. Note that if V ⊂ X is some open such that Hi(E)|V is finite locally free
for all i ∈ Z then V ⊂ U . Let x ∈ U . We will show that an open neighbourhood
of x is contained in U and that Hi(E) is finite locally free on this neighbourhood
for all i. This will finish the proof. During the proof we may (finitely many times)
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replace X by an open neighbourhood of x. Hence we may assume E is represented
by a strictly perfect complex E•. Say E i = 0 for i ̸∈ [a, b]. We will prove the
result by induction on b − a. The module Hb(E) = Coker(db−1 : Eb−1 → Eb) is
of finite presentation. Since Hb(E)x is finite free, we conclude Hb(E) is finite free
in an open neighbourhood of x by Modules, Lemma 17.11.6. Thus after replacing
X by a (possibly smaller) open neighbourhood we may assume we have a direct
sum decomposition Eb = Im(db−1) ⊕ Hb(E) and Hb(E) is finite free, see Lemma
20.46.5. Doing the same argument again, we see that we may assume Eb−1 =
Ker(db−1) ⊕ Im(db−1). The complex Ea → . . . → Eb−2 → Ker(db−1) is a strictly
perfect complex representing a perfect object E′ with Hi(E) = Hi(E′) for i ̸= b.
Hence we conclude by our induction hypothesis. □

20.50. Duals

0FP7 In this section we characterize the dualizable objects of the category of complexes
and of the derived category. In particular, we will see that an object of D(OX) has
a dual if and only if it is perfect (this follows from Example 20.50.7 and Lemma
20.50.8).

Lemma 20.50.1.0FP8 Let (X,OX) be a ringed space. The category of complexes of OX -
modules with tensor product defined by F•⊗G• = Tot(F•⊗OX

G•) is a symmetric
monoidal category (for sign rules, see More on Algebra, Section 15.72).

Proof. Omitted. Hints: as unit 1 we take the complex having OX in degree 0
and zero in other degrees with obvious isomorphisms Tot(1 ⊗OX

G•) = G• and
Tot(F• ⊗OX

1) = F•. to prove the lemma you have to check the commutativity of
various diagrams, see Categories, Definitions 4.43.1 and 4.43.9. The verifications
are straightforward in each case. □

Example 20.50.2.0FP9 Let (X,OX) be a ringed space. Let F• be a locally bounded
complex of OX -modules such that each Fn is locally a direct summand of a finite
free OX -module. In other words, there is an open covering X =

⋃
Ui such that

F•|Ui is a strictly perfect complex. Consider the complex
G• = Hom•(F•,OX)

as in Section 20.41. Let
η : OX → Tot(F• ⊗OX

G•) and ϵ : Tot(G• ⊗OX
F•)→ OX

be η =
∑
ηn and ϵ =

∑
ϵn where ηn : OX → Fn⊗OX

G−n and ϵn : G−n⊗OX
Fn →

OX are as in Modules, Example 17.18.1. Then G•, η, ϵ is a left dual for F• as in
Categories, Definition 4.43.5. We omit the verification that (1⊗ ϵ) ◦ (η⊗ 1) = idF•

and (ϵ⊗1)◦ (1⊗η) = idG• . Please compare with More on Algebra, Lemma 15.72.2.

Lemma 20.50.3.0FPA Let (X,OX) be a ringed space. Let F• be a complex of OX -
modules. If F• has a left dual in the monoidal category of complexes of OX -
modules (Categories, Definition 4.43.5) then F• is a locally bounded complex whose
terms are locally direct summands of finite free OX -modules and the left dual is as
constructed in Example 20.50.2.

Proof. By uniqueness of left duals (Categories, Remark 4.43.7) we get the final
statement provided we show that F• is as stated. Let G•, η, ϵ be a left dual. Write
η =

∑
ηn and ϵ =

∑
ϵn where ηn : OX → Fn ⊗OX

G−n and ϵn : G−n ⊗OX
Fn →
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OX . Since (1 ⊗ ϵ) ◦ (η ⊗ 1) = idF• and (ϵ ⊗ 1) ◦ (1 ⊗ η) = idG• by Categories,
Definition 4.43.5 we see immediately that we have (1 ⊗ ϵn) ◦ (ηn ⊗ 1) = idFn and
(ϵn ⊗ 1) ◦ (1 ⊗ ηn) = idG−n . Hence we see that Fn is locally a direct summand of
a finite free OX -module by Modules, Lemma 17.18.2. Since the sum η =

∑
ηn is

locally finite, we conclude that F• is locally bounded. □

Lemma 20.50.4.0G40 Let (X,OX) be a ringed space. Let K,L,M ∈ D(OX). If K is
perfect, then the map

RHom(L,M)⊗L
OX

K −→ RHom(RHom(K,L),M)
of Lemma 20.42.9 is an isomorphism.

Proof. Since the map is globally defined and since formation of the right and left
hand side commute with localization (see Lemma 20.42.3), to prove this we may
work locally on X. Thus we may assume K is represented by a strictly perfect
complex E•.
If K1 → K2 → K3 is a distinguished triangle in D(OX), then we get distinguished
triangles

RHom(L,M)⊗L
OX

K1 → RHom(L,M)⊗L
OX

K2 → RHom(L,M)⊗L
OX

K3

and
RHom(RHom(K1, L),M)→ RHom(RHom(K2, L),M)RHom(RHom(K3, L),M)
See Section 20.26 and Lemma 20.42.4. The arrow of Lemma 20.42.9 is functorial
in K hence we get a morphism between these distinguished triangles. Thus, if the
result holds for K1 and K3, then the result holds for K2 by Derived Categories,
Lemma 13.4.3.
Combining the remarks above with the distinguished triangles

σ≥nE• → E• → σ≤n−1E•

of stupid trunctions, we reduce to the case where K consists of a direct summand of
a finite free OX -module placed in some degree. By an obvious compatibility of the
problem with direct sums (similar to what was said above) and shifts this reduces
us to the case where K = O⊕n

X for some integer n. This case is clear. □

Lemma 20.50.5.08DQ Let (X,OX) be a ringed space. Let K be a perfect object of
D(OX). Then K∨ = RHom(K,OX) is a perfect object too and (K∨)∨ ∼= K.
There are functorial isomorphisms

M ⊗L
OX

K∨ = RHom(K,M)
and

H0(X,M ⊗L
OX

K∨) = HomD(OX)(K,M)
for M in D(OX).

Proof. By Lemma 20.42.9 there is a canonical map
K = RHom(OX ,OX)⊗L

OX
K −→ RHom(RHom(K,OX),OX) = (K∨)∨

which is an isomorphism by Lemma 20.50.4. To check the other statements we
will use without further mention that formation of internal hom commutes with
restriction to opens (Lemma 20.42.3). We may check K∨ is perfect locally on X.

https://stacks.math.columbia.edu/tag/0G40
https://stacks.math.columbia.edu/tag/08DQ
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By Lemma 20.42.8 to see the final statement it suffices to check that the map
(20.42.8.1)

M ⊗L
OX

K∨ −→ RHom(K,M)
is an isomorphism. This is local on X as well. Hence it suffices to prove these two
statements K is represented by a strictly perfect complex.
Assume K is represented by the strictly perfect complex E•. Then it follows from
Lemma 20.46.9 that K∨ is represented by the complex whose terms are (E−n)∨ =
HomOX

(E−n,OX) in degree n. Since E−n is a direct summand of a finite free OX -
module, so is (E−n)∨. Hence K∨ is represented by a strictly perfect complex too
and we see that K∨ is perfect. To see that (20.42.8.1) is an isomorphism, represent
M by a complex F•. By Lemma 20.46.9 the complex RHom(K,M) is represented
by the complex with terms ⊕

n=p+q
HomOX

(E−q,Fp)

On the other hand, the object M⊗L
OX

K∨ is represented by the complex with terms⊕
n=p+q

Fp ⊗OX
(E−q)∨

Thus the assertion that (20.42.8.1) is an isomorphism reduces to the assertion that
the canonical map

F ⊗OX
HomOX

(E ,OX) −→ HomOX
(E ,F)

is an isomorphism when E is a direct summand of a finite free OX -module and F is
any OX -module. This follows immediately from the corresponding statement when
E is finite free. □

Lemma 20.50.6.0FPB Let (X,OX) be a ringed space. The derived category D(OX) is a
symmetric monoidal category with tensor product given by derived tensor product
with usual associativity and commutativity constraints (for sign rules, see More on
Algebra, Section 15.72).

Proof. Omitted. Compare with Lemma 20.50.1. □

Example 20.50.7.0FPC Let (X,OX) be a ringed space. Let K be a perfect object of
D(OX). Set K∨ = RHom(K,OX) as in Lemma 20.50.5. Then the map

K ⊗L
OX

K∨ −→ RHom(K,K)
is an isomorphism (by the lemma). Denote

η : OX −→ K ⊗L
OX

K∨

the map sending 1 to the section corresponding to idK under the isomorphism
above. Denote

ϵ : K∨ ⊗L
OX

K −→ OX
the evaluation map (to construct it you can use Lemma 20.42.5 for example). Then
K∨, η, ϵ is a left dual for K as in Categories, Definition 4.43.5. We omit the verifi-
cation that (1⊗ ϵ) ◦ (η ⊗ 1) = idK and (ϵ⊗ 1) ◦ (1⊗ η) = idK∨ .

Lemma 20.50.8.0FPD Let (X,OX) be a ringed space. Let M be an object of D(OX). If
M has a left dual in the monoidal category D(OX) (Categories, Definition 4.43.5)
then M is perfect and the left dual is as constructed in Example 20.50.7.

https://stacks.math.columbia.edu/tag/0FPB
https://stacks.math.columbia.edu/tag/0FPC
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Proof. Let x ∈ X. It suffices to find an open neighbourhood U of x such that M
restricts to a perfect complex over U . Hence during the proof we can (finitely often)
replace X by an open neighbourhood of x. Let N, η, ϵ be a left dual.

We are going to use the following argument several times. Choose any complex
M• of OX -modules representing M . Choose a K-flat complex N • representing N
whose terms are flat OX -modules, see Lemma 20.26.12. Consider the map

η : OX → Tot(M• ⊗OX
N •)

After shrinking X we can find an integer N and for i = 1, . . . , N integers ni ∈ Z
and sections fi and gi of Mni and N−ni such that

η(1) =
∑

i
fi ⊗ gi

Let K• ⊂ M• be any subcomplex of OX -modules containing the sections fi for
i = 1, . . . , N . Since Tot(K• ⊗OX

N •) ⊂ Tot(M• ⊗OX
N •) by flatness of the

modules Nn, we see that η factors through

η̃ : OX → Tot(K• ⊗OX
N •)

Denoting K the object of D(OX) represented by K• we find a commutative diagram

M
η⊗1

//

η̃⊗1 ))

M ⊗L N ⊗L M
1⊗ϵ
// M

K ⊗L N ⊗L M

OO

1⊗ϵ // K

OO

Since the composition of the upper row is the identity on M we conclude that M
is a direct summand of K in D(OX).

As a first use of the argument above, we can choose the subcomplexK• = σ≥aτ≤bM•

with a < ni < b for i = 1, . . . , N . Thus M is a direct summand in D(OX) of a
bounded complex and we conclude we may assume M is in Db(OX). (Recall that
the process above involves shrinking X.)

Since M is in Db(OX) we may choose M• to be a bounded above complex of flat
modules (by Modules, Lemma 17.17.6 and Derived Categories, Lemma 13.15.4).
Then we can choose K• = σ≥aM• with a < ni for i = 1, . . . , N in the argument
above. Thus we find that we may assume M is a direct summand in D(OX) of a
bounded complex of flat modules. In particular, M has finite tor amplitude.

Say M has tor amplitude in [a, b]. Assuming M is m-pseudo-coherent we are going
to show that (after shrinking X) we may assume M is (m − 1)-pseudo-coherent.
This will finish the proof by Lemma 20.49.4 and the fact that M is (b+ 1)-pseudo-
coherent in any case. After shrinking X we may assume there exists a strictly
perfect complex E• and a map α : E• → M in D(OX) such that Hi(α) is an
isomorphism for i > m and surjective for i = m. We may and do assume that
E i = 0 for i < m. Choose a distinguished triangle

E• →M → L→ E•[1]

Observe that Hi(L) = 0 for i ≥ m. Thus we may represent L by a complex L•

with Li = 0 for i ≥ m. The map L → E•[1] is given by a map of complexes
L• → E•[1] which is zero in all degrees except in degree m − 1 where we obtain a



20.50. DUALS 1882

map Lm−1 → Em, see Derived Categories, Lemma 13.27.3. Then M is represented
by the complex

M• : . . .→ Lm−2 → Lm−1 → Em → Em+1 → . . .

Apply the discussion in the second paragraph to this complex to get sections fi of
Mni for i = 1, . . . , N . For n < m let Kn ⊂ Ln be the OX -submodule generated
by the sections fi for ni = n and d(fi) for ni = n − 1. For n ≥ m set Kn = En.
Clearly, we have a morphism of distinguished triangles

E• //M• // L• // E•[1]

E• //

OO

K• //

OO

σ≤m−1K• //

OO

E•[1]

OO

where all the morphisms are as indicated above. Denote K the object of D(OX)
corresponding to the complex K•. By the arguments in the second paragraph of
the proof we obtain a morphism s : M → K in D(OX) such that the composition
M → K →M is the identity on M . We don’t know that the diagram

E• // K• K

E•

id

OO

i //M• M

s

OO

commutes, but we do know it commutes after composing with the map K → M .
By Lemma 20.46.8 after shrinking X we may assume that s ◦ i is given by a map
of complexes σ : E• → K•. By the same lemma we may assume the composition of
σ with the inclusion K• ⊂M• is homotopic to zero by some homotopy {hi : E i →
Mi−1}. Thus, after replacing Km−1 by Km−1 + Im(hm) (note that after doing this
it is still the case that Km−1 is generated by finitely many global sections), we see
that σ itself is homotopic to zero! This means that we have a commutative solid
diagram

E• // M // L• // E•[1]

E• //

OO

K //

OO

σ≤m−1K• //

OO

E•[1]

OO

E• //

OO

M //

s

OO

L• //

OO

E•[1]

OO

By the axioms of triangulated categories we obtain a dotted arrow fitting into the
diagram. Looking at cohomology sheaves in degree m− 1 we see that we obtain

Hm−1(M) // Hm−1(L•) // Hm(E•)

Hm−1(K) //

OO

Hm−1(σ≤m−1K•) //

OO

Hm(E•)

OO

Hm−1(M) //

OO

Hm−1(L•) //

OO

Hm(E•)

OO
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Since the vertical compositions are the identity in both the left and right column, we
conclude the vertical composition Hm−1(L•)→ Hm−1(σ≤m−1K•)→ Hm−1(L•) in
the middle is surjective! In particular Hm−1(σ≤m−1K•)→ Hm−1(L•) is surjective.
Using the induced map of long exact sequences of cohomology sheaves from the
morphism of triangles above, a diagram chase shows this implies Hi(K)→ Hi(M)
is an isomorphism for i ≥ m and surjective for i = m− 1. By construction we can
choose an r ≥ 0 and a surjection O⊕r

X → Km−1. Then the composition
(O⊕r

X → E
m → Em+1 → . . .) −→ K −→M

induces an isomorphism on cohomology sheaves in degrees ≥ m and a surjection in
degree m− 1 and the proof is complete. □

20.51. Miscellany

0GM6 Some results which do not fit anywhere else.
Lemma 20.51.1.0DJI Let (X,OX) be a ringed space. Let (Kn)n∈N be a system of
perfect objects of D(OX). Let K = hocolimKn be the derived colimit (Derived
Categories, Definition 13.33.1). Then for any object E of D(OX) we have

RHom(K,E) = R limE ⊗L
OX

K∨
n

where (K∨
n ) is the inverse system of dual perfect complexes.

Proof. By Lemma 20.50.5 we have R limE ⊗L
OX

K∨
n = R limRHom(Kn, E) which

fits into the distinguished triangle
R limRHom(Kn, E)→

∏
RHom(Kn, E)→

∏
RHom(Kn, E)

Because K similarly fits into the distinguished triangle
⊕
Kn →

⊕
Kn → K

it suffices to show that
∏
RHom(Kn, E) = RHom(

⊕
Kn, E). This is a formal

consequence of (20.42.0.1) and the fact that derived tensor product commutes with
direct sums. □

Lemma 20.51.2.0FVB Let (X,OX) be a ringed space. Let K and E be objects of D(OX)
with E perfect. The diagram

H0(X,K ⊗L
OX

E∨)×H0(X,E) //

��

H0(X,K ⊗L
OX

E∨ ⊗L
OX

E)

��
HomX(E,K)×H0(X,E) // H0(X,K)

commutes where the top horizontal arrow is the cup product, the right vertical
arrow uses ϵ : E∨ ⊗L

OX
E → OX (Example 20.50.7), the left vertical arrow uses

Lemma 20.50.5, and the bottom horizontal arrow is the obvious one.
Proof. We will abbreviate ⊗ = ⊗L

OX
and O = OX . We will identify E and K with

RHom(O, E) and RHom(O,K) and we will identify E∨ with RHom(E,O).
Let ξ ∈ H0(X,K ⊗ E∨) and η ∈ H0(X,E). Denote ξ̃ : O → K ⊗ E∨ and
η̃ : O → E the corresponding maps in D(O). By Lemma 20.31.1 the cup product
ξ ∪ η corresponds to ξ̃ ⊗ η̃ : O → K ⊗ E∨ ⊗ E.
We claim the map ξ′ : E → K corresponding to ξ by Lemma 20.50.5 is the compo-
sition

E = O ⊗ E ξ̃⊗1E−−−→ K ⊗ E∨ ⊗ E 1K⊗ϵ−−−→ K

https://stacks.math.columbia.edu/tag/0DJI
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The construction in Lemma 20.50.5 uses the evaluation map (20.42.8.1) which in
turn is constructed using the identification of E with RHom(O, E) and the com-
position ◦ constructed in Lemma 20.42.5. Hence ξ′ is the composition

E = O ⊗RHom(O, E) ξ̃⊗1−−→ RHom(O,K)⊗RHom(E,O)⊗RHom(O, E)
◦⊗1−−→ RHom(E,K)⊗RHom(O, E)
◦−→ RHom(O,K) = K

The claim follows immediately from this and the fact that the composition ◦ con-
structed in Lemma 20.42.5 is associative (insert future reference here) and the fact
that ϵ is defined as the composition ◦ : E∨ ⊗ E → O in Example 20.50.7.
Using the results from the previous two paragraphs, we find the statement of the
lemma is that (1K ⊗ ϵ) ◦ (ξ̃ ⊗ η̃) is equal to (1K ⊗ ϵ) ◦ (ξ̃ ⊗ 1E) ◦ (1O ⊗ η̃) which is
immediate. □

Lemma 20.51.3.0GM7 Let h : X → Y be a morphism of ringed spaces. Let K,M be
objects of D(OY ). The canonical map

Lh∗RHom(K,M) −→ RHom(Lh∗K,Lh∗M)
of Remark 20.42.13 is an isomorphism in the following cases

(1) K is perfect,
(2) h is flat, K is pseudo-coherent, and M is (locally) bounded below,
(3) OX has finite tor dimension over h−1OY , K is pseudo-coherent, and M

is (locally) bounded below,

Proof. Proof of (1). The question is local on Y , hence we may assume that K is
represented by a strictly perfect complex E•, see Section 20.49. Choose a K-flat com-
plex F• representing M . Apply Lemma 20.46.9 to see that RHom(K,L) is repre-
sented by the complexH• = Hom•(E•,F•) with termsHn =

⊕
n=p+qHomOX

(E−q,Fp).
By the construction of Lh∗ in Section 20.27 we see that Lh∗K is represented by
the strictly perfect complex h∗E• (Lemma 20.46.4). Similarly, the object Lh∗M
is represented by the complex h∗F•. Finally, the object Lh∗RHom(K,M) is rep-
resented by h∗H• as H• is K-flat by Lemma 20.46.10. Thus to finish the proof
it suffices to show that h∗H• = Hom•(h∗E•, h∗F•). For this it suffices to note
that h∗Hom(E ,F) = Hom(h∗E ,F) whenever E is a direct summand of a finite free
OX -module.
Proof of (2). Since h is flat, we can compute Lh∗ by simply using h∗ on any complex
of OY -modules. In particular we have Hi(Lh∗K) = h∗Hi(K) for all i ∈ Z. Say
Hi(M) = 0 for i < a. Let K ′ → K be a morphism of D(OY ) which defines an
isomorphism Hi(K ′)→ Hi(K) for all i ≥ b. Then the corresponding maps

RHom(K,M)→ RHom(K ′,M)
and

RHom(Lh∗K,Lh∗M)→ RHom(Lh∗K ′, Lh∗M)
are isomorphisms on cohomology sheaves in degrees < a − b (details omitted).
Thus to prove the map in the statement of the lemma induces an isomorphism on
cohomology sheaves in degrees < a− b it suffices to prove the result for K ′ in those
degrees. Also, as in the proof of part (1) the question is local on Y . Thus we

https://stacks.math.columbia.edu/tag/0GM7
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may assume K is represented by a strictly perfect complex, see Section 20.47. This
reduces us to case (1).
Proof of (3). The proof is the same as the proof of (2) except one uses that Lh∗

has bounded cohomological dimension to get the desired vanishing. We omit the
details. □

Lemma 20.51.4.0GM8 Let X be a ringed space. Let K,M be objects of D(OX). Let
x ∈ X. The canonical map

RHom(K,M)x −→ RHomOX,x
(Kx,Mx)

is an isomorphism in the following cases
(1) K is perfect,
(2) K is pseudo-coherent and M is (locally) bounded below.

Proof. Let Y = {x} be the singleton ringed space with structure sheaf given by
OX,x. Then apply Lemma 20.51.3 to the flat inclusion morphism Y → X. □

20.52. Invertible objects in the derived category

0FPE We characterize invertible objects in the derived category of a ringed space (both
in the case where the stalks of the structure sheaf are local and where not).

Lemma 20.52.1.0FPF Let (X,OX) be a ringed space. Set R = Γ(X,OX). The category
of OX -modules which are summands of finite free OX -modules is equivalent to the
category of finite projective R-modules.

Proof. Observe that a finite projective R-module is the same thing as a summand
of a finite free R-module. The equivalence is given by the functor E 7→ Γ(X, E).
The inverse functor is given by the construction of Modules, Lemma 17.10.5. □

Lemma 20.52.2.0FPG Let (X,OX) be a ringed space. Let M be an object of D(OX).
The following are equivalent

(1) M is invertible in D(OX), see Categories, Definition 4.43.4, and
(2) there is a locally finite direct product decomposition

OX =
∏

n∈Z
On

and for each n there is an invertible On-module Hn (Modules, Definition
17.25.1) and M =

⊕
Hn[−n] in D(OX).

If (1) and (2) hold, then M is a perfect object of D(OX). If OX,x is a local ring for
all x ∈ X these condition are also equivalent to

(3) there exists an open covering X =
⋃
Ui and for each i an integer ni such

that M |Ui is represented by an invertible OUi-module placed in degree ni.

Proof. Assume (2). Consider the object RHom(M,OX) and the composition map
RHom(M,OX)⊗L

OX
M → OX

To prove this is an isomorphism, we may work locally. Thus we may assume
OX =

∏
a≤n≤bOn and M =

⊕
a≤n≤bHn[−n]. Then it suffices to show that

RHom(Hm,OX)⊗L
OX
Hn

is zero if n ̸= m and equal to On if n = m. The case n ̸= m follows from the
fact that On and Om are flat OX -algebras with On ⊗OX

Om = 0. Using the local

https://stacks.math.columbia.edu/tag/0GM8
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structure of invertible OX -modules (Modules, Lemma 17.25.2) and working locally
the isomorphism in case n = m follows in a straightforward manner; we omit the
details. Because D(OX) is symmetric monoidal, we conclude that M is invertible.

Assume (1). The description in (2) shows that we have a candidate for On,
namely, HomOX

(Hn(M), Hn(M)). If this is a locally finite family of sheaves of
rings and if OX =

∏
On, then we immediately obtain the direct sum decomposi-

tion M =
⊕
Hn(M)[−n] using the idempotents in OX coming from the product

decomposition. This shows that in order to prove (2) we may work locally on X.

Choose an object N of D(OX) and an isomorphism M ⊗L
OX

N ∼= OX . Let x ∈ X.
Then N is a left dual for M in the monoidal category D(OX) and we conclude
that M is perfect by Lemma 20.50.8. By symmetry we see that N is perfect.
After replacing X by an open neighbourhood of x, we may assume M and N
are represented by a strictly perfect complexes E• and F•. Then M ⊗L

OX
N is

represented by Tot(E• ⊗OX
F•). After another shinking of X we may assume the

mutually inverse isomorphisms OX → M ⊗L
OX

N and M ⊗L
OX

N → OX are given
by maps of complexes

α : OX → Tot(E• ⊗OX
F•) and β : Tot(E• ⊗OX

F•)→ OX
See Lemma 20.46.8. Then β ◦ α = 1 as maps of complexes and α ◦ β = 1 as a
morphism in D(OX). After shrinking X we may assume the composition α ◦ β is
homotopic to 1 by some homotopy θ with components

θn : Totn(E• ⊗OX
F•)→ Totn−1(E• ⊗OX

F•)

by the same lemma as before. Set R = Γ(X,OX). By Lemma 20.52.1 we find that
we obtain

(1) M• = Γ(X, E•) is a bounded complex of finite projective R-modules,
(2) N• = Γ(X,F•) is a bounded complex of finite projective R-modules,
(3) α and β correspond to maps of complexes a : R → Tot(M• ⊗R N•) and

b : Tot(M• ⊗R N•)→ R,
(4) θn corresponds to a map hn : Totn(M• ⊗R N•) → Totn−1(M• ⊗R N•),

and
(5) b ◦ a = 1 and b ◦ a− 1 = dh+ hd,

It follows that M• and N• define mutually inverse objects of D(R). By More on
Algebra, Lemma 15.126.4 we find a product decomposition R =

∏
a≤n≤bRn and

invertible Rn-modules Hn such that M• ∼=
⊕

a≤n≤bH
n[−n]. This isomorphism in

D(R) can be lifted to an morphism⊕
Hn[−n] −→M•

of complexes because each Hn is projective as an R-module. Correspondingly, using
Lemma 20.52.1 again, we obtain an morphism⊕

Hn ⊗R OX [−n]→ E•

which is an isomorphism in D(OX). Setting On = Rn ⊗R OX we conclude (2) is
true.

If all stalks of OX are local, then it is straightforward to prove the equivalence of
(2) and (3). We omit the details. □
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20.53. Compact objects

09J6 In this section we study compact objects in the derived category of modules on a
ringed space. We recall that compact objects are defined in Derived Categories,
Definition 13.37.1. On suitable ringed spaces the perfect objects are compact.

Lemma 20.53.1.0F5Z Let X be a ringed space. Let j : U → X be the inclusion of an
open. The OX -module j!OU is a compact object of D(OX) if there exists an integer
d such that

(1) Hp(U,F) = 0 for all p > d, and
(2) the functors F 7→ Hp(U,F) commute with direct sums.

Proof. Assume (1) and (2). Since Hom(j!OU ,F) = F(U) by Sheaves, Lemma
6.31.8 we have Hom(j!OU ,K) = RΓ(U,K) for K in D(OX). Thus we have to show
that RΓ(U,−) commutes with direct sums. The first assumption means that the
functor F = H0(U,−) has finite cohomological dimension. Moreover, the second
assumption implies any direct sum of injective modules is acyclic for F . Let Ki be
a family of objects of D(OX). Choose K-injective representatives I•

i with injective
terms representing Ki, see Injectives, Theorem 19.12.6. Since we may compute
RF by applying F to any complex of acyclics (Derived Categories, Lemma 13.32.2)
and since

⊕
Ki is represented by

⊕
I•
i (Injectives, Lemma 19.13.4) we conclude

that RΓ(U,
⊕
Ki) is represented by

⊕
H0(U, I•

i ). Hence RΓ(U,−) commutes with
direct sums as desired. □

Lemma 20.53.2.09J7 Let X be a ringed space. Assume that the underlying topological
space of X has the following properties:

(1) X is quasi-compact,
(2) there exists a basis of quasi-compact open subsets, and
(3) the intersection of any two quasi-compact opens is quasi-compact.

Let K be a perfect object of D(OX). Then
(a) K is a compact object of D+(OX) in the following sense: if M =

⊕
i∈IMi

is bounded below, then Hom(K,M) =
⊕

i∈I Hom(K,Mi).
(b) If X has finite cohomological dimension, i.e., if there exists a d such that

Hi(X,F) = 0 for i > d, then K is a compact object of D(OX).

Proof. Let K∨ be the dual of K, see Lemma 20.50.5. Then we have
HomD(OX)(K,M) = H0(X,K∨ ⊗L

OX
M)

functorially in M in D(OX). Since K∨⊗L
OX
− commutes with direct sums it suffices

to show that RΓ(X,−) commutes with the relevant direct sums.
Proof of (b). Since RΓ(X,K) = RHom(OX ,K) and since Hp(X,−) commutes
with direct sums by Lemma 20.19.1 this is a special case of Lemma 20.53.1
Proof of (a). Let Ii, i ∈ I be a collection of injective OX -modules. By Lemma
20.19.1 we see that

Hp(X,
⊕

i∈I
Ii) =

⊕
i∈I

Hp(X, Ii) = 0

for all p. Now if M =
⊕
Mi is as in (a), then we see that there exists an a ∈ Z

such that Hn(Mi) = 0 for n < a. Thus we can choose complexes of injective
OX -modules I•

i representing Mi with Ini = 0 for n < a, see Derived Categories,
Lemma 13.18.3. By Injectives, Lemma 19.13.4 we see that the direct sum complex

https://stacks.math.columbia.edu/tag/0F5Z
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I•
i represents M . By Leray acyclicity (Derived Categories, Lemma 13.16.7) we

see that
RΓ(X,M) = Γ(X,

⊕
I•
i ) =

⊕
Γ(X,

⊕
I•
i ) =

⊕
RΓ(X,Mi)

as desired. □

20.54. Projection formula

01E6 In this section we collect variants of the projection formula. The most basic version
is Lemma 20.54.2. After we state and prove it, we discuss a more general version
involving perfect complexes.

Lemma 20.54.1.01E7 Let X be a ringed space. Let I be an injective OX -module. Let
E be an OX -module. Assume E is finite locally free on X, see Modules, Definition
17.14.1. Then E ⊗OX

I is an injective OX -module.

Proof. This is true because under the assumptions of the lemma we have
HomOX

(F , E ⊗OX
I) = HomOX

(F ⊗OX
E∨, I)

where E∨ = HomOX
(E ,OX) is the dual of E which is finite locally free also. Since

tensoring with a finite locally free sheaf is an exact functor we win by Homology,
Lemma 12.27.2. □

Lemma 20.54.2.01E8 Let f : X → Y be a morphism of ringed spaces. Let F be an
OX -module. Let E be an OY -module. Assume E is finite locally free on Y , see
Modules, Definition 17.14.1. Then there exist isomorphisms

E ⊗OY
Rqf∗F −→ Rqf∗(f∗E ⊗OX

F)
for all q ≥ 0. In fact there exists an isomorphism

E ⊗OY
Rf∗F −→ Rf∗(f∗E ⊗OX

F)
in D+(Y ) functorial in F .

Proof. Choose an injective resolution F → I• on X. Note that f∗E is finite locally
free also, hence we get a resolution

f∗E ⊗OX
F −→ f∗E ⊗OX

I•

which is an injective resolution by Lemma 20.54.1. Apply f∗ to see that
Rf∗(f∗E ⊗OX

F) = f∗(f∗E ⊗OX
I•).

Hence the lemma follows if we can show that f∗(f∗E ⊗OX
F) = E ⊗OY

f∗(F)
functorially in the OX -module F . This is clear when E = O⊕n

Y , and follows in
general by working locally on Y . Details omitted. □

Let f : X → Y be a morphism of ringed spaces. Let E ∈ D(OX) and K ∈ D(OY ).
Without any further assumptions there is a map
(20.54.2.1)0B53 Rf∗E ⊗L

OY
K −→ Rf∗(E ⊗L

OX
Lf∗K)

Namely, it is the adjoint to the canonical map
Lf∗(Rf∗E ⊗L

OY
K) = Lf∗Rf∗E ⊗L

OX
Lf∗K −→ E ⊗L

OX
Lf∗K

coming from the map Lf∗Rf∗E → E and Lemmas 20.27.3 and 20.28.1. A reason-
ably general version of the projection formula is the following.

https://stacks.math.columbia.edu/tag/01E7
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Lemma 20.54.3.0B54 Let f : X → Y be a morphism of ringed spaces. Let E ∈ D(OX)
and K ∈ D(OY ). If K is perfect, then

Rf∗E ⊗L
OY

K = Rf∗(E ⊗L
OX

Lf∗K)
in D(OY ).

Proof. To check (20.54.2.1) is an isomorphism we may work locally on Y , i.e., we
have to find a covering {Vj → Y } such that the map restricts to an isomorphism
on Vj . By definition of perfect objects, this means we may assume K is represented
by a strictly perfect complex of OY -modules. Note that, completely generally, the
statement is true for K = K1 ⊕K2, if and only if the statement is true for K1 and
K2. Hence we may assume K is a finite complex of finite free OY -modules. In this
case a simple argument involving stupid truncations reduces the statement to the
case where K is represented by a finite free OY -module. Since the statement is
invariant under finite direct summands in the K variable, we conclude it suffices to
prove it for K = OY [n] in which case it is trivial. □

Here is a case where the projection formula is true in complete generality.

Lemma 20.54.4.0B55 Let f : X → Y be a morphism of ringed spaces such that f is a
homeomorphism onto a closed subset. Then (20.54.2.1) is an isomorphism always.

Proof. Since f is a homeomorphism onto a closed subset, the functor f∗ is exact
(Modules, Lemma 17.6.1). Hence Rf∗ is computed by applying f∗ to any represen-
tative complex. Choose a K-flat complex K• of OY -modules representing K and
choose any complex E• of OX -modules representing E. Then Lf∗K is represented
by f∗K• which is a K-flat complex of OX -modules (Lemma 20.26.8). Thus the
right hand side of (20.54.2.1) is represented by

f∗Tot(E• ⊗OX
f∗K•)

By the same reasoning we see that the left hand side is represented by
Tot(f∗E• ⊗OY

K•)
Since f∗ commutes with direct sums (Modules, Lemma 17.6.3) it suffices to show
that

f∗(E ⊗OX
f∗K) = f∗E ⊗OY

K
for any OX -module E and OY -module K. We will check this by checking on stalks.
Let y ∈ Y . If y ̸∈ f(X), then the stalks of both sides are zero. If y = f(x), then
we see that we have to show

Ex ⊗OX,x
(OX,x ⊗OY,y

Fy) = Ex ⊗OY,y
Fy

(using Sheaves, Lemma 6.32.1 and Lemma 6.26.4). This equality holds and there-
fore the lemma has been proved. □

Remark 20.54.5.0B6B The map (20.54.2.1) is compatible with the base change map of
Remark 20.28.3 in the following sense. Namely, suppose that

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

https://stacks.math.columbia.edu/tag/0B54
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is a commutative diagram of ringed spaces. Let E ∈ D(OX) and K ∈ D(OY ).
Then the diagram

Lg∗(Rf∗E ⊗L
OY

K)
p

//

t

��

Lg∗Rf∗(E ⊗L
OX

Lf∗K)

b

��
Lg∗Rf∗E ⊗L

OY ′ Lg
∗K

b

��

Rf ′
∗L(g′)∗(E ⊗L

OX
Lf∗K)

t

��
Rf ′

∗L(g′)∗E ⊗L
OY ′ Lg

∗K

p
++

Rf ′
∗(L(g′)∗E ⊗L

OY ′ L(g′)∗Lf∗K)

c

��
Rf ′

∗(L(g′)∗E ⊗L
OY ′ L(f ′)∗Lg∗K)

is commutative. Here arrows labeled t are gotten by an application of Lemma
20.27.3, arrows labeled b by an application of Remark 20.28.3, arrows labeled p by
an application of (20.54.2.1), and c comes from L(g′)∗ ◦ Lf∗ = L(f ′)∗ ◦ Lg∗. We
omit the verification.

20.55. An operator introduced by Berthelot and Ogus

0GT2 This section continuous the discussion started in More on Algebra, Section 15.95.
We strongly encourage the reader to read that section first.

Lemma 20.55.1.0GT3 Let (X,OX) be a ringed space. Let I ⊂ OX be a sheaf of ideals.
Consider the following two conditions

(1) for every x ∈ X there exists an open neighbourhood U ⊂ X of x and
f ∈ I(U) such that I|U = OU · f and f : OU → OU is injective, and

(2) I is invertible as an OX -module.
Then (1) implies (2) and the converse is true if all stalks OX,x of the structure sheaf
are local rings.

Proof. Omitted. Hint: Use Modules, Lemma 17.25.4. □

Situation 20.55.2.0GT4 Let (X,OX) be a ringed space. Let I ⊂ OX be a sheaf of ideals
satisfying condition (1) of Lemma 20.55.18.

Lemma 20.55.3.0GT5 In Situation 20.55.2 let F be an OX -module. The following are
equivalent

(1) the subsheaf F [I] ⊂ F of sections annihilated by I is zero,
(2) the subsheaf F [In] is zero for all n ≥ 1,
(3) the multiplication map I ⊗OX

F → F is injective,
(4) for every open U ⊂ X such that I|U = OU · f for some f ∈ I(U) the map

f : F|U → F|U is injective,
(5) for every x ∈ X and generator f of the ideal Ix ⊂ OX,x the element f is

a nonzerodivisor on the stalk Fx.

Proof. Omitted. □

8The discussion in this section can be generalized to the case where all we require is that I
is an invertible OX -module as defined in Modules, Section 17.25.
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In Situation 20.55.2 let F be an OX -module. If the equivalent conditions of Lemma
20.55.3 hold, then we will say that F is I-torsion free. If so, then for any i ∈ Z we
will denote

IiF = I⊗i ⊗OX
F

so that we have inclusions

. . . ⊂ Ii+1F ⊂ IiF ⊂ Ii−1F ⊂ . . .

The modules IiF are locally isomorphic to F as OX -modules, but not globally.

Let F• be a complex of I-torsion freeOX -modules with differentials di : F i → F i+1.
In this case we define ηIF• to be the complex with terms

(ηIF)i = Ker
(
di,−1 : IiF i ⊕ Ii+1F i+1 → IiF i+1)

= Ker
(
di : IiF i → IiF i+1/Ii+1F i+1)

and differential induced by di. In other words, a local section s of (ηIF)i is the
same thing as a local section s of IiF i such that its image di(s) in IiF i+1 is in
the subsheaf Ii+1F i+1. Observe that ηIF• is another complex of I-torsion free
modules.

Let a• : F• → G• be a map of complexes of I-torsion free OX -modules. Then we
obtain a map of complexes

ηIa
• : ηIF• −→ ηIG•

induced by the maps IiF i → IiGi. The reader checks that we obtain an endo-
functor on the category of complexes of I-torsion free OX -modules.

If a•, b• : F• → G• are two maps of complexes of I-torsion free OX -modules and
h = {hi : F i → Gi−1} is a homotopy between a• and b•, then we define ηIh to be
the family of maps (ηIh)i : (ηIF)i → (ηIG)i−1 which sends x to hi(x); this makes
sense as x a local section of IiF i implies hi(x) is a local section of IiGi−1 which is
certainly contained in (ηIG)i−1. The reader checks that ηIh is a homotopy between
ηIa

• and ηIb
•. All in all we see that we obtain a functor

ηf : K(I-torsion free OX -modules) −→ K(I-torsion free OX -modules)

on the homotopy category (Derived Categories, Section 13.8) of the additive cate-
gory of I-torsion free OX -modules. There is no sense in which ηI is an exact functor
of triangulated categories; compare with More on Algebra, Example 15.95.1.

Lemma 20.55.4.0GT6 In Situation 20.55.2 let F• be a complex of I-torsion free OX -
modules. For x ∈ X choose a generator f ∈ Ix. Then the stalk (ηIF•)x is canon-
ically isomorphic to the complex ηfF•

x constructed in More on Algebra, Section
15.95.

Proof. Omitted. □

Lemma 20.55.5.0F8N In Situation 20.55.2 let F• be a complex of I-torsion free OX -
modules. There is a canonical isomorphism

I⊗i ⊗OX

(
Hi(F•)/Hi(F•)[I]

)
−→ Hi(ηIF•)

of cohomology sheaves.

https://stacks.math.columbia.edu/tag/0GT6
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Proof. We define a map

I⊗i ⊗OX
Hi(F•) −→ Hi(ηIF•)

as follows. Let g be a local section of I⊗i and let s be a local section of Hi(F•).
Then s is (locally) the class of a local section s of Ker(di : F i → F i+1). Then
we send g ⊗ s to the local section gs of (ηIF)i ⊂ IiF . Of course gs is in the
kernel of di on ηIF• and hence defines a local section of Hi(ηIF•). Checking that
this is well defined is without problems. We claim that this map factors through
an isomorphism as given in the lemma. This we my check on stalks and hence
via Lemma 20.55.4 this translates into the result of More on Algebra, Lemma
15.95.2. □

Lemma 20.55.6.0F8P In Situation 20.55.2 let F• → G• be a map of complexes of
I-torsion free OX -modules. Then the induced map ηIF• → ηIG• is a quasi-
isomorphism too.

Proof. This is true because the isomorphisms of Lemma 20.55.5 are compatible
with maps of complexes. □

Lemma 20.55.7.0F8Q In Situation 20.55.2 there is an additive functor9 LηI : D(OX)→
D(OX) such that if M in D(OX) is represented by a complex F• of I-torsion free
OX -modules, then LηIM = ηIF•. Similarly for morphisms.

Proof. Denote T ⊂ Mod(OX) the full subcategory of I-torsion free OX -modules.
We have a corresponding inclusion

K(T ) ⊂ K(Mod(OX)) = K(OX)

of K(T ) as a full triangulated subcategory of K(OX). Let S ⊂ Arrows(K(T )) be
the quasi-isomorphisms. We will apply Derived Categories, Lemma 13.5.8 to show
that the map

S−1K(T ) −→ D(OX)
is an equivalence of triangulated categories. The lemma shows that it suffices
to prove: given a complex G• of OX -modules, there exists a quasi-isomorphism
F• → G• with F• a complex of I-torsion free OX -modules. By Lemma 20.26.12
we can find a quasi-isomorphism F• → G• such that the complex F• is K-flat (we
won’t use this) and consists of flat OX -modules F i. By the third characterization
of Lemma 20.55.3 we see that a flat OX -module is an I-torsion free OX -module
and we are done.

With these preliminaries out of the way we can define Lηf . Namely, by the discus-
sion following Lemma 20.55.3 this section we have already a well defined functor

K(T ) ηf−→ K(T )→ K(OX)→ D(OX)

which according to Lemma 20.55.6 sends quasi-isomorphisms to quasi-isomorphisms.
Hence this functor factors over S−1K(T ) = D(OX) by Categories, Lemma 4.27.8.

□

9Beware that this functor isn’t exact, i.e., does not transform distinguished triangles into
distinguished triangles.
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In Situation 20.55.2 let us construct the Bockstein operators. First we observe that
there is a commutative diagram

0 // Ii+1 //

��

Ii //

��

Ii/Ii+1 // 0

0 // Ii+1/Ii+2 // Ii/Ii+2 // Ii/Ii+1 // 0

whose rows are short exact sequences of OX -modules. Let M be an object of
D(OX). Tensoring the above diagram with M gives a morphism

M ⊗L Ii+1 //

��

M ⊗L Ii //

��

M ⊗L Ii/Ii+1

id
��

M ⊗L Ii+1/Ii+2 // M ⊗L Ii/Ii+2 // M ⊗L Ii/Ii+1

of distinguished triangles. The long exact sequence of cohomology sheaves associ-
ated the bottom triangle in particular determines the Bockstein operator

β = βi : Hi(M ⊗L Ii/Ii+1) −→ Hi+1(M ⊗L Ii+1/Ii+2)

for all i ∈ Z. For later use we record here that by the commutative diagram above
there is a factorization

(20.55.7.1)0GT7

Hi(M ⊗L Ii/Ii+1)
δ

//

β **

Hi+1(M ⊗L Ii+1)

��
Hi+1(M ⊗L Ii+1/Ii+2)

of the Bockstein operator where δ is the boundary operator coming from the top
distinguished triangle in the commutative diagram above. We obtain a complex

(20.55.7.2)0GT8 H•(M/I) =



. . .
↓

Hi−1(M ⊗L Ii−1/Ii)
↓ β

Hi(M ⊗L Ii/Ii+1)
↓ β

Hi+1(M ⊗L Ii+1/Ii+2)
↓
. . .


i.e., that β ◦β = 0. Namely, we can check this on stalks and in this case we can de-
duce it from the corresponding result in algebra shown in More on Algebra, Section
15.95. Alternative proof: the short exact sequences 0 → Ii+1/Ii+2 → Ii/Ii+2 →
Ii/Ii+1 → 0 define maps bi : Ii/Ii+1 → (Ii+1/Ii+2)[1] in D(OX) which induce
the maps β above by tensoring with M and taking cohomology sheaves. Then one
shows that the composition bi+1[1]◦bi : Ii/Ii+1 → (Ii+1/Ii+2)[1]→ (Ii+2/Ii+3)[2]
is zero in D(OX) by using the criterion in Derived Categories, Lemma 13.27.7 using
that the module Ii/Ii+3 is an extension of Ii+1/Ii+3 by Ii/Ii+1.
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Lemma 20.55.8.0GT9 In Situation 20.55.2 let M be an object of D(OX). There is a
canonical isomorphism

LηIM ⊗L OX/I −→ H•(M/I)
in D(OX) where the right hand side is the complex (20.55.7.2).

Proof. By the construction of LηI in Lemma 20.55.6 we may assume M is repre-
sented by a complex of I-torsion free OX -modules F•. Then LηIM is represented
by the complex ηIF• which is a complex of I-torsion free OX -modules as well.
Thus LηIM ⊗LOX/I is represented by the complex ηIF• ⊗OX/I. Similarly, the
complex H•(M/I) has terms Hi(F• ⊗ Ii/Ii+1).
Let f be a local generator for I. Let s be a local section of (ηIF)i. Then we can
write s = f is′ for a local section s′ of F i and similarly di(s) = f i+1t for a local
section t of F i+1. Thus di maps f is′ to zero in F i+1 ⊗ Ii/Ii+1. Hence we may
map s to the class of f is′ in Hi(F• ⊗ Ii/Ii+1). This rule defines a map

(ηIF)i ⊗OX/I −→ Hi(F• ⊗ Ii/Ii+1)
of OX -modules. A calculation shows that these maps are compatible with differen-
tials (essentially because β sends the class of f is′ to the class of f i+1t), whence a
map of complexes representing the arrow in the statement of the lemma.
To finish the proof, we observe that the construction given in the previous paragraph
agrees on stalks with the maps constructed in More on Algebra, Lemma 15.95.6
hence we conclude. □

Lemma 20.55.9.0F9W In Situation 20.55.2 let F• be a complex of I-torsion free OX -
modules. Let L be an invertible OX -module. Then ηI(F• ⊗ L) = (ηIF•)⊗ L.

Proof. Immediate from the construction. □

Lemma 20.55.10.0GTA In Situation 20.55.2 let M be an object of D(OX). Let x ∈ X
with OX,x nonzero. If Hi(M)x is finite free over OX,x, then Hi(LηIM)x is finite
free over OX,x of the same rank.

Proof. Namely, say f ∈ OX,x generates the stalk Ix. Then f is a nonzerodivisor in
OX,x and hence Hi(M)x[f ] = 0. Thus by Lemma 20.55.5 we see that Hi(LηIM)x
is isomorphic to Iix ⊗OX,x

Hi(M)x which is free of the same rank as desired. □
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CHAPTER 21

Cohomology on Sites

01FQ 21.1. Introduction

01FR In this document we work out some topics on cohomology of sheaves. We work
out what happens for sheaves on sites, although often we will simply duplicate the
discussion, the constructions, and the proofs from the topological case in the case.
Basic references are [AGV71], [God73] and [Ive86].

21.2. Cohomology of sheaves

01FT Let C be a site, see Sites, Definition 7.6.2. Let F be an abelian sheaf on C. We
know that the category of abelian sheaves on C has enough injectives, see Injectives,
Theorem 19.7.4. Hence we can choose an injective resolution F [0] → I•. For any
object U of the site C we define
(21.2.0.1)071C Hi(U,F) = Hi(Γ(U, I•))
to be the ith cohomology group of the abelian sheaf F over the object U . In other
words, these are the right derived functors of the functor F 7→ F(U). The family
of functors Hi(U,−) forms a universal δ-functor Ab(C)→ Ab.
It sometimes happens that the site C does not have a final object. In this case we
define the global sections of a presheaf of sets F over C to be the set
(21.2.0.2)071D Γ(C,F) = MorPSh(C)(e,F)
where e is a final object in the category of presheaves on C. In this case, given an
abelian sheaf F on C, we define the ith cohomology group of F on C as follows
(21.2.0.3)071E Hi(C,F) = Hi(Γ(C, I•))
in other words, it is the ith right derived functor of the global sections functor. The
family of functors Hi(C,−) forms a universal δ-functor Ab(C)→ Ab.
Let f : Sh(C) → Sh(D) be a morphism of topoi, see Sites, Definition 7.15.1. With
F [0]→ I• as above we define
(21.2.0.4)071F Rif∗F = Hi(f∗I•)
to be the ith higher direct image of F . These are the right derived functors of f∗.
The family of functors Rif∗ forms a universal δ-functor from Ab(C)→ Ab(D).
Let (C,O) be a ringed site, see Modules on Sites, Definition 18.6.1. Let F be an
O-module. We know that the category of O-modules has enough injectives, see
Injectives, Theorem 19.8.4. Hence we can choose an injective resolution F [0]→ I•.
For any object U of the site C we define
(21.2.0.5)071G Hi(U,F) = Hi(Γ(U, I•))

1897
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to be the the ith cohomology group of F over U . The family of functors Hi(U,−)
forms a universal δ-functor Mod(O)→ ModO(U). Similarly

(21.2.0.6)071H Hi(C,F) = Hi(Γ(C, I•))

it the ith cohomology group of F on C. The family of functors Hi(C,−) forms a
universal δ-functor Mod(C)→ ModΓ(C,O).

Let f : (Sh(C),O) → (Sh(D),O′) be a morphism of ringed topoi, see Modules on
Sites, Definition 18.7.1. With F [0]→ I• as above we define

(21.2.0.7)071I Rif∗F = Hi(f∗I•)

to be the ith higher direct image of F . These are the right derived functors of f∗.
The family of functors Rif∗ forms a universal δ-functor from Mod(O)→ Mod(O′).

21.3. Derived functors

071J We briefly explain an approach to right derived functors using resolution functors.
Namely, suppose that (C,O) is a ringed site. In this chapter we will write

K(O) = K(Mod(O)) and D(O) = D(Mod(O))

and similarly for the bounded versions for the triangulated categories introduced
in Derived Categories, Definition 13.8.1 and Definition 13.11.3. By Derived Cate-
gories, Remark 13.24.3 there exists a resolution functor

j = j(C,O) : K+(Mod(O)) −→ K+(I)

where I is the strictly full additive subcategory of Mod(O) which consists of in-
jective O-modules. For any left exact functor F : Mod(O) → B into any abelian
category B we will denote RF the right derived functor of Derived Categories,
Section 13.20 constructed using the resolution functor j just described:

(21.3.0.1)05U5 RF = F ◦ j′ : D+(O) −→ D+(B)

see Derived Categories, Lemma 13.25.1 for notation. Note that we may think of RF
as defined on Mod(O), Comp+(Mod(O)), or K+(O) depending on the situation.
According to Derived Categories, Definition 13.16.2 we obtain the ithe right derived
functor

(21.3.0.2)05U6 RiF = Hi ◦RF : Mod(O) −→ B

so that R0F = F and {RiF, δ}i≥0 is universal δ-functor, see Derived Categories,
Lemma 13.20.4.

Here are two special cases of this construction. Given a ring R we write K(R) =
K(ModR) and D(R) = D(ModR) and similarly for the bounded versions. For any
object U of C have a left exact functor Γ(U,−) : Mod(O) −→ ModO(U) which gives
rise to

RΓ(U,−) : D+(O) −→ D+(O(U))
by the discussion above. Note that Hi(U,−) = RiΓ(U,−) is compatible with
(21.2.0.5) above. We similarly have

RΓ(C,−) : D+(O) −→ D+(Γ(C,O))
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compatible with (21.2.0.6). If f : (Sh(C),O)→ (Sh(D),O′) is a morphism of ringed
topoi then we get a left exact functor f∗ : Mod(O)→ Mod(O′) which gives rise to
derived pushforward

Rf∗ : D+(O)→ D+(O′)
The ith cohomology sheaf of Rf∗F• is denoted Rif∗F• and called the ith higher
direct image in accordance with (21.2.0.7). The displayed functors above are exact
functor of derived categories.

21.4. First cohomology and torsors

03AG
Definition 21.4.1.03AH Let C be a site. Let G be a sheaf of (possibly non-commutative)
groups on C. A pseudo torsor, or more precisely a pseudo G-torsor, is a sheaf of
sets F on C endowed with an action G × F → F such that

(1) whenever F(U) is nonempty the action G(U) × F(U) → F(U) is simply
transitive.

A morphism of pseudo G-torsors F → F ′ is simply a morphism of sheaves of sets
compatible with the G-actions. A torsor, or more precisely a G-torsor, is a pseudo
G-torsor such that in addition

(2) for every U ∈ Ob(C) there exists a covering {Ui → U}i∈I of U such that
F(Ui) is nonempty for all i ∈ I.

A morphism of G-torsors is simply a morphism of pseudo G-torsors. The trivial
G-torsor is the sheaf G endowed with the obvious left G-action.

It is clear that a morphism of torsors is automatically an isomorphism.

Lemma 21.4.2.03AI Let C be a site. Let G be a sheaf of (possibly non-commutative)
groups on C. A G-torsor F is trivial if and only if Γ(C,F) ̸= ∅.

Proof. Omitted. □

Lemma 21.4.3.03AJ Let C be a site. LetH be an abelian sheaf on C. There is a canonical
bijection between the set of isomorphism classes of H-torsors and H1(C,H).

Proof. Let F be a H-torsor. Consider the free abelian sheaf Z[F ] on F . It is
the sheafification of the rule which associates to U ∈ Ob(C) the collection of finite
formal sums

∑
ni[si] with ni ∈ Z and si ∈ F(U). There is a natural map

σ : Z[F ] −→ Z
which to a local section

∑
ni[si] associates

∑
ni. The kernel of σ is generated by

sections of the form [s]− [s′]. There is a canonical map a : Ker(σ)→ H which maps
[s] − [s′] 7→ h where h is the local section of H such that h · s = s′. Consider the
pushout diagram

0 // Ker(σ) //

a

��

Z[F ] //

��

Z //

��

0

0 // H // E // Z // 0
Here E is the extension obtained by pushout. From the long exact cohomology
sequence associated to the lower short exact sequence we obtain an element ξ =
ξF ∈ H1(C,H) by applying the boundary operator to 1 ∈ H0(C,Z).

https://stacks.math.columbia.edu/tag/03AH
https://stacks.math.columbia.edu/tag/03AI
https://stacks.math.columbia.edu/tag/03AJ
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Conversely, given ξ ∈ H1(C,H) we can associate to ξ a torsor as follows. Choose
an embedding H → I of H into an injective abelian sheaf I. We set Q = I/H so
that we have a short exact sequence

0 // H // I // Q // 0

The element ξ is the image of a global section q ∈ H0(C,Q) because H1(C, I) = 0
(see Derived Categories, Lemma 13.20.4). Let F ⊂ I be the subsheaf (of sets) of
sections that map to q in the sheaf Q. It is easy to verify that F is a H-torsor.

We omit the verification that the two constructions given above are mutually in-
verse. □

21.5. First cohomology and extensions

03F0
Lemma 21.5.1.03F1 Let (C,O) be a ringed site. Let F be a sheaf of O-modules on C.
There is a canonical bijection

Ext1
Mod(O)(O,F) −→ H1(C,F)

which associates to the extension

0→ F → E → O → 0

the image of 1 ∈ Γ(C,O) in H1(C,F).

Proof. Let us construct the inverse of the map given in the lemma. Let ξ ∈
H1(C,F). Choose an injection F ⊂ I with I injective in Mod(O). Set Q = I/F .
By the long exact sequence of cohomology, we see that ξ is the image of a section
ξ̃ ∈ Γ(C,Q) = HomO(O,Q). Now, we just form the pullback

0 // F // E //

��

O //

ξ̃

��

0

0 // F // I // Q // 0

see Homology, Section 12.6. □

The following lemma will be superseded by the more general Lemma 21.12.4.

Lemma 21.5.2.03F2 Let (C,O) be a ringed site. Let F be a sheaf of O-modules on C.
Let Fab denote the underlying sheaf of abelian groups. Then there is a functorial
isomorphism

H1(C,Fab) = H1(C,F)
where the left hand side is cohomology computed in Ab(C) and the right hand side
is cohomology computed in Mod(O).

Proof. Let Z denote the constant sheaf Z. As Ab(C) = Mod(Z) we may apply
Lemma 21.5.1 twice, and it follows that we have to show

Ext1
Mod(O)(O,F) = Ext1

Mod(Z)(Z,Fab).

Suppose that 0 → F → E → O → 0 is an extension in Mod(O). Then we can use
the obvious map of abelian sheaves 1 : Z→ O and pullback to obtain an extension

https://stacks.math.columbia.edu/tag/03F1
https://stacks.math.columbia.edu/tag/03F2
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Eab, like so:
0 // Fab // Eab //

��

Z //

1
��

0

0 // F // E // O // 0
The converse is a little more fun. Suppose that 0 → Fab → Eab → Z → 0 is an
extension in Mod(Z). Since Z is a flat Z-module we see that the sequence

0→ Fab ⊗Z O → Eab ⊗Z O → Z⊗Z O → 0
is exact, see Modules on Sites, Lemma 18.28.9. Of course Z⊗Z O = O. Hence we
can form the pushout via the (O-linear) multiplication map µ : F ⊗Z O → F to
get an extension of O by F , like this

0 // Fab ⊗Z O //

µ

��

Eab ⊗Z O //

��

O // 0

0 // F // E // O // 0
which is the desired extension. We omit the verification that these constructions
are mutually inverse. □

21.6. First cohomology and invertible sheaves

040D The Picard group of a ringed site is defined in Modules on Sites, Section 18.32.

Lemma 21.6.1.040E Let (C,O) be a locally ringed site. There is a canonical isomorphism

H1(C,O∗) = Pic(O).
of abelian groups.

Proof. Let L be an invertible O-module. Consider the presheaf L∗ defined by the
rule

U 7−→ {s ∈ L(U) such that OU
s·−−−→ LU is an isomorphism}

This presheaf satisfies the sheaf condition. Moreover, if f ∈ O∗(U) and s ∈ L∗(U),
then clearly fs ∈ L∗(U). By the same token, if s, s′ ∈ L∗(U) then there exists a
unique f ∈ O∗(U) such that fs = s′. Moreover, the sheaf L∗ has sections locally
by Modules on Sites, Lemma 18.40.7. In other words we see that L∗ is a O∗-torsor.
Thus we get a map

set of invertible sheaves on (C,O)
up to isomorphism −→ set of O∗-torsors

up to isomorphism
We omit the verification that this is a homomorphism of abelian groups. By Lemma
21.4.3 the right hand side is canonically bijective to H1(C,O∗). Thus we have to
show this map is injective and surjective.
Injective. If the torsor L∗ is trivial, this means by Lemma 21.4.2 that L∗ has a
global section. Hence this means exactly that L ∼= O is the neutral element in
Pic(O).
Surjective. Let F be an O∗-torsor. Consider the presheaf of sets

L1 : U 7−→ (F(U)×O(U))/O∗(U)

https://stacks.math.columbia.edu/tag/040E
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where the action of f ∈ O∗(U) on (s, g) is (fs, f−1g). Then L1 is a presheaf of
O-modules by setting (s, g)+(s′, g′) = (s, g+(s′/s)g′) where s′/s is the local section
f of O∗ such that fs = s′, and h(s, g) = (s, hg) for h a local section of O. We omit
the verification that the sheafification L = L#

1 is an invertible O-module whose
associated O∗-torsor L∗ is isomorphic to F . □

21.7. Locality of cohomology

01FU The following lemma says there is no ambiguity in defining the cohomology of a
sheaf F over an object of the site.

Lemma 21.7.1.03F3 Let (C,O) be a ringed site. Let U be an object of C.
(1) If I is an injective O-module then I|U is an injective OU -module.
(2) For any sheaf of O-modules F we have Hp(U,F) = Hp(C/U,F|U ).

Proof. Recall that the functor j−1
U of restriction to U is a right adjoint to the functor

jU ! of extension by 0, see Modules on Sites, Section 18.19. Moreover, jU ! is exact.
Hence (1) follows from Homology, Lemma 12.29.1.
By definition Hp(U,F) = Hp(I•(U)) where F → I• is an injective resolution
in Mod(O). By the above we see that F|U → I•|U is an injective resolution in
Mod(OU ). Hence Hp(U,F|U ) is equal to Hp(I•|U (U)). Of course F(U) = F|U (U)
for any sheaf F on C. Hence the equality in (2). □

The following lemma will be use to see what happens if we change a partial universe,
or to compare cohomology of the small and big étale sites.

Lemma 21.7.2.03YU Let C and D be sites. Let u : C → D be a functor. Assume u
satisfies the hypotheses of Sites, Lemma 7.21.8. Let g : Sh(C) → Sh(D) be the
associated morphism of topoi. For any abelian sheaf F on D we have isomorphisms

RΓ(C, g−1F) = RΓ(D,F),
in particular Hp(C, g−1F) = Hp(D,F) and for any U ∈ Ob(C) we have isomor-
phisms

RΓ(U, g−1F) = RΓ(u(U),F),
in particular Hp(U, g−1F) = Hp(u(U),F). All of these isomorphisms are functorial
in F .

Proof. Since it is clear that Γ(C, g−1F) = Γ(D,F) by hypothesis (e), it suffices to
show that g−1 transforms injective abelian sheaves into injective abelian sheaves.
As usual we use Homology, Lemma 12.29.1 to see this. The left adjoint to g−1 is
g! = f−1 with the notation of Sites, Lemma 7.21.8 which is an exact functor. Hence
the lemma does indeed apply. □

Let (C,O) be a ringed site. Let F be a sheaf of O-modules. Let φ : U → V be a
morphism of O. Then there is a canonical restriction mapping
(21.7.2.1)01FV Hn(V,F) −→ Hn(U,F), ξ 7−→ ξ|U
functorial in F . Namely, choose any injective resolution F → I•. The restriction
mappings of the sheaves Ip give a morphism of complexes

Γ(V, I•) −→ Γ(U, I•)

https://stacks.math.columbia.edu/tag/03F3
https://stacks.math.columbia.edu/tag/03YU


21.8. THE ČECH COMPLEX AND ČECH COHOMOLOGY 1903

The LHS is a complex representing RΓ(V,F) and the RHS is a complex representing
RΓ(U,F). We get the map on cohomology groups by applying the functor Hn. As
indicated we will use the notation ξ 7→ ξ|U to denote this map. Thus the rule
U 7→ Hn(U,F) is a presheaf of O-modules. This presheaf is customarily denoted
Hn(F). We will give another interpretation of this presheaf in Lemma 21.10.5.
The following lemma says that it is possible to kill higher cohomology classes by
going to a covering.

Lemma 21.7.3.01FW Let (C,O) be a ringed site. Let F be a sheaf of O-modules. Let
U be an object of C. Let n > 0 and let ξ ∈ Hn(U,F). Then there exists a covering
{Ui → U} of C such that ξ|Ui = 0 for all i ∈ I.

Proof. Let F → I• be an injective resolution. Then

Hn(U,F) = Ker(In(U)→ In+1(U))
Im(In−1(U)→ In(U)) .

Pick an element ξ̃ ∈ In(U) representing the cohomology class in the presentation
above. Since I• is an injective resolution of F and n > 0 we see that the complex
I• is exact in degree n. Hence Im(In−1 → In) = Ker(In → In+1) as sheaves.
Since ξ̃ is a section of the kernel sheaf over U we conclude there exists a covering
{Ui → U} of the site such that ξ̃|Ui is the image under d of a section ξi ∈ In−1(Ui).
By our definition of the restriction ξ|Ui as corresponding to the class of ξ̃|Ui we
conclude. □

Lemma 21.7.4.072W Let f : (C,OC) → (D,OD) be a morphism of ringed sites corre-
sponding to the continuous functor u : D → C. For any F ∈ Ob(Mod(OC)) the
sheaf Rif∗F is the sheaf associated to the presheaf

V 7−→ Hi(u(V ),F)

Proof. Let F → I• be an injective resolution. Then Rif∗F is by definition the ith
cohomology sheaf of the complex

f∗I0 → f∗I1 → f∗I2 → . . .

By definition of the abelian category structure on OD-modules this cohomology
sheaf is the sheaf associated to the presheaf

V 7−→ Ker(f∗Ii(V )→ f∗Ii+1(V ))
Im(f∗Ii−1(V )→ f∗Ii(V ))

and this is obviously equal to
Ker(Ii(u(V ))→ Ii+1(u(V )))
Im(Ii−1(u(V ))→ Ii(u(V )))

which is equal to Hi(u(V ),F) and we win. □

21.8. The Čech complex and Čech cohomology

03AK Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms with fixed
target, see Sites, Definition 7.6.1. Assume that all fibre products Ui0 ×U . . .×U Uip
exist in C. Let F be an abelian presheaf on C. Set

Čp(U ,F) =
∏

(i0,...,ip)∈Ip+1
F(Ui0 ×U . . .×U Uip).

https://stacks.math.columbia.edu/tag/01FW
https://stacks.math.columbia.edu/tag/072W
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This is an abelian group. For s ∈ Čp(U ,F) we denote si0...ip its value in the factor
F(Ui0 ×U . . .×U Uip). We define

d : Čp(U ,F) −→ Čp+1(U ,F)
by the formula

(21.8.0.1)03AL d(s)i0...ip+1 =
∑p+1

j=0
(−1)jsi0...̂ij ...ip+1

|Ui0 ×U ...×UUip+1

where the restriction is via the projection map
Ui0 ×U . . .×U Uip+1 −→ Ui0 ×U . . .×U Ûij ×U . . .×U Uip+1 .

It is straightforward to see that d ◦ d = 0. In other words Č•(U ,F) is a complex.

Definition 21.8.1.03AM Let C be a category. Let U = {Ui → U}i∈I be a family of
morphisms with fixed target such that all fibre products Ui0 ×U . . .×U Uip exist in
C. Let F be an abelian presheaf on C. The complex Č•(U ,F) is the Čech complex
associated to F and the family U . Its cohomology groups Hi(Č•(U ,F)) are called
the Čech cohomology groups of F with respect to U . They are denoted Ȟi(U ,F).

We observe that any covering {Ui → U} of a site C is a family of morphisms with
fixed target to which the definition applies.

Lemma 21.8.2.03AN Let C be a site. Let F be an abelian presheaf on C. The following
are equivalent

(1) F is an abelian sheaf on C and
(2) for every covering U = {Ui → U}i∈I of the site C the natural map

F(U)→ Ȟ0(U ,F)
(see Sites, Section 7.10) is bijective.

Proof. This is true since the sheaf condition is exactly that F(U) → Ȟ0(U ,F) is
bijective for every covering of C. □

Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms of C with fixed
target such that all fibre products Ui0×U . . .×UUip exist in C. Let V = {Vj → V }j∈J
be another. Let f : U → V , α : I → J and fi : Ui → Vα(i) be a morphism of families
of morphisms with fixed target, see Sites, Section 7.8. In this case we get a map of
Čech complexes
(21.8.2.1)03F4 φ : Č•(V,F) −→ Č•(U ,F)
which in degree p is given by

φ(s)i0...ip = (fi0 × . . .× fip)∗sα(i0)...α(ip)

21.9. Čech cohomology as a functor on presheaves

03AO Warning: In this section we work exclusively with abelian presheaves on a category.
The results are completely wrong in the setting of sheaves and categories of sheaves!
Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms with fixed
target such that all fibre products Ui0×U . . .×U Uip exist in C. Let F be an abelian
presheaf on C. The construction

F 7−→ Č•(U ,F)

https://stacks.math.columbia.edu/tag/03AM
https://stacks.math.columbia.edu/tag/03AN
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is functorial in F . In fact, it is a functor
(21.9.0.1)03AP Č•(U ,−) : PAb(C) −→ Comp+(Ab)
see Derived Categories, Definition 13.8.1 for notation. Recall that the category
of bounded below complexes in an abelian category is an abelian category, see
Homology, Lemma 12.13.9.
Lemma 21.9.1.03AQ The functor given by Equation (21.9.0.1) is an exact functor (see
Homology, Lemma 12.7.2).
Proof. For any object W of C the functor F 7→ F(W ) is an additive exact functor
from PAb(C) to Ab. The terms Čp(U ,F) of the complex are products of these exact
functors and hence exact. Moreover a sequence of complexes is exact if and only if
the sequence of terms in a given degree is exact. Hence the lemma follows. □

Lemma 21.9.2.03AR Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms
with fixed target such that all fibre products Ui0 ×U . . . ×U Uip exist in C. The
functors F 7→ Ȟn(U ,F) form a δ-functor from the abelian category PAb(C) to the
category of Z-modules (see Homology, Definition 12.12.1).
Proof. By Lemma 21.9.1 a short exact sequence of abelian presheaves 0 → F1 →
F2 → F3 → 0 is turned into a short exact sequence of complexes of Z-modules.
Hence we can use Homology, Lemma 12.13.12 to get the boundary maps δF1→F2→F3 :
Ȟn(U ,F3)→ Ȟn+1(U ,F1) and a corresponding long exact sequence. We omit the
verification that these maps are compatible with maps between short exact se-
quences of presheaves. □

Lemma 21.9.3.03AS Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms
with fixed target such that all fibre products Ui0 ×U . . .×U Uip exist in C. Consider
the chain complex ZU,• of abelian presheaves

. . .→
⊕
i0i1i2

ZUi0 ×UUi1 ×UUi2 →
⊕
i0i1

ZUi0 ×UUi1 →
⊕
i0

ZUi0 → 0→ . . .

where the last nonzero term is placed in degree 0 and where the map
ZUi0 ×U ...×uUip+1

−→ Z
Ui0 ×U ...Ûij ...×UUip+1

is given by (−1)j times the canonical map. Then there is an isomorphism
HomPAb(C)(ZU,•,F) = Č•(U ,F)

functorial in F ∈ Ob(PAb(C)).
Proof. This is a tautology based on the fact that

HomPAb(C)(
⊕
i0...ip

ZUi0 ×U ...×UUip ,F) =
∏
i0...ip

HomPAb(C)(ZUi0 ×U ...×UUip ,F)

=
∏
i0...ip

F(Ui0 ×U . . .×U Uip)

see Modules on Sites, Lemma 18.4.2. □

Lemma 21.9.4.03AT Let C be a category. Let U = {fi : Ui → U}i∈I be a family of
morphisms with fixed target such that all fibre products Ui0 ×U . . .×U Uip exist in
C. The chain complex ZU,• of presheaves of Lemma 21.9.3 above is exact in positive
degrees, i.e., the homology presheaves Hi(ZU,•) are zero for i > 0.

https://stacks.math.columbia.edu/tag/03AQ
https://stacks.math.columbia.edu/tag/03AR
https://stacks.math.columbia.edu/tag/03AS
https://stacks.math.columbia.edu/tag/03AT
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Proof. Let V be an object of C. We have to show that the chain complex of abelian
groups ZU,•(V ) is exact in degrees > 0. This is the complex

. . .

��⊕
i0i1i2

Z[MorC(V,Ui0 ×U Ui1 ×U Ui2)]

��⊕
i0i1

Z[MorC(V,Ui0 ×U Ui1)]

��⊕
i0

Z[MorC(V,Ui0)]

��
0

For any morphism φ : V → U denote Morφ(V,Ui) = {φi : V → Ui | fi ◦ φi = φ}.
We will use a similar notation for Morφ(V,Ui0×U . . .×U Uip). Note that composing
with the various projection maps between the fibred products Ui0 ×U . . . ×U Uip
preserves these morphism sets. Hence we see that the complex above is the same
as the complex

. . .

��⊕
φ

⊕
i0i1i2

Z[Morφ(V,Ui0 ×U Ui1 ×U Ui2)]

��⊕
φ

⊕
i0i1

Z[Morφ(V,Ui0 ×U Ui1)]

��⊕
φ

⊕
i0

Z[Morφ(V,Ui0)]

��
0

Next, we make the remark that we have

Morφ(V,Ui0 ×U . . .×U Uip) = Morφ(V,Ui0)× . . .×Morφ(V,Uip)
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Using this and the fact that Z[A] ⊕ Z[B] = Z[A ⨿ B] we see that the complex
becomes

. . .

��⊕
φ Z

[∐
i0i1i2

Morφ(V,Ui0)×Morφ(V,Ui1)×Morφ(V,Ui2)
]

��⊕
φ Z

[∐
i0i1

Morφ(V,Ui0)×Morφ(V,Ui1)
]

��⊕
φ Z

[∐
i0

Morφ(V,Ui0)
]

��
0

Finally, on setting Sφ =
∐
i∈I Morφ(V,Ui) we see that we get⊕

φ
(. . .→ Z[Sφ × Sφ × Sφ]→ Z[Sφ × Sφ]→ Z[Sφ]→ 0→ . . .)

Thus we have simplified our task. Namely, it suffices to show that for any nonempty
set S the (extended) complex of free abelian groups

. . .→ Z[S × S × S]→ Z[S × S]→ Z[S] Σ−→ Z→ 0→ . . .

is exact in all degrees. To see this fix an element s ∈ S, and use the homotopy
n(s0,...,sp) 7−→ n(s,s0,...,sp)

with obvious notations. □

Lemma 21.9.5.03F5 Let C be a category. Let U = {fi : Ui → U}i∈I be a family of
morphisms with fixed target such that all fibre products Ui0 ×U . . .×U Uip exist in
C. Let O be a presheaf of rings on C. The chain complex

ZU,• ⊗p,Z O
is exact in positive degrees. Here ZU,• is the chain complex of Lemma 21.9.3, and
the tensor product is over the constant presheaf of rings with value Z.

Proof. Let V be an object of C. In the proof of Lemma 21.9.4 we saw that ZU,•(V )
is isomorphic as a complex to a direct sum of complexes which are homotopic to Z
placed in degree zero. Hence also ZU,•(V )⊗Z O(V ) is isomorphic as a complex to
a direct sum of complexes which are homotopic to O(V ) placed in degree zero. Or
you can use Modules on Sites, Lemma 18.28.11, which applies since the presheaves
ZU,i are flat, and the proof of Lemma 21.9.4 shows that H0(ZU,•) is a flat presheaf
also. □

Lemma 21.9.6.03AU Let C be a category. Let U = {fi : Ui → U}i∈I be a family of
morphisms with fixed target such that all fibre products Ui0×U . . .×UUip exist in C.
The Čech cohomology functors Ȟp(U ,−) are canonically isomorphic as a δ-functor
to the right derived functors of the functor

Ȟ0(U ,−) : PAb(C) −→ Ab.

https://stacks.math.columbia.edu/tag/03F5
https://stacks.math.columbia.edu/tag/03AU
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Moreover, there is a functorial quasi-isomorphism

Č•(U ,F) −→ RȞ0(U ,F)
where the right hand side indicates the derived functor

RȞ0(U ,−) : D+(PAb(C)) −→ D+(Z)

of the left exact functor Ȟ0(U ,−).

Proof. Note that the category of abelian presheaves has enough injectives, see In-
jectives, Proposition 19.6.1. Note that Ȟ0(U ,−) is a left exact functor from the
category of abelian presheaves to the category of Z-modules. Hence the derived
functor and the right derived functor exist, see Derived Categories, Section 13.20.
Let I be a injective abelian presheaf. In this case the functor HomPAb(C)(−, I) is
exact on PAb(C). By Lemma 21.9.3 we have

HomPAb(C)(ZU,•, I) = Č•(U , I).
By Lemma 21.9.4 we have that ZU,• is exact in positive degrees. Hence by the
exactness of Hom into I mentioned above we see that Ȟi(U , I) = 0 for all i >
0. Thus the δ-functor (Ȟn, δ) (see Lemma 21.9.2) satisfies the assumptions of
Homology, Lemma 12.12.4, and hence is a universal δ-functor.

By Derived Categories, Lemma 13.20.4 also the sequence RiȞ0(U ,−) forms a uni-
versal δ-functor. By the uniqueness of universal δ-functors, see Homology, Lemma
12.12.5 we conclude that RiȞ0(U ,−) = Ȟi(U ,−). This is enough for most appli-
cations and the reader is suggested to skip the rest of the proof.
Let F be any abelian presheaf on C. Choose an injective resolution F → I• in the
category PAb(C). Consider the double complex Č•(U , I•) with terms Čp(U , Iq).
Next, consider the total complex Tot(Č•(U , I•)) associated to this double complex,
see Homology, Section 12.18. There is a map of complexes

Č•(U ,F) −→ Tot(Č•(U , I•))

coming from the maps Čp(U ,F)→ Čp(U , I0) and there is a map of complexes

Ȟ0(U , I•) −→ Tot(Č•(U , I•))

coming from the maps Ȟ0(U , Iq) → Č0(U , Iq). Both of these maps are quasi-
isomorphisms by an application of Homology, Lemma 12.25.4. Namely, the columns
of the double complex are exact in positive degrees because the Čech complex as
a functor is exact (Lemma 21.9.1) and the rows of the double complex are exact
in positive degrees since as we just saw the higher Čech cohomology groups of the
injective presheaves Iq are zero. Since quasi-isomorphisms become invertible in
D+(Z) this gives the last displayed morphism of the lemma. We omit the verifica-
tion that this morphism is functorial. □

21.10. Čech cohomology and cohomology

03AV The relationship between cohomology and Čech cohomology comes from the fact
that the Čech cohomology of an injective abelian sheaf is zero. To see this we note
that an injective abelian sheaf is an injective abelian presheaf and then we apply
results in Čech cohomology in the preceding section.
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Lemma 21.10.1.03F6 Let C be a site. An injective abelian sheaf is also injective as an
object in the category PAb(C).

Proof. Apply Homology, Lemma 12.29.1 to the categories A = Ab(C), B = PAb(C),
the inclusion functor and sheafification. (See Modules on Sites, Section 18.3 to see
that all assumptions of the lemma are satisfied.) □

Lemma 21.10.2.03AW Let C be a site. Let U = {Ui → U}i∈I be a covering of C. Let I
be an injective abelian sheaf, i.e., an injective object of Ab(C). Then

Ȟp(U , I) =
{
I(U) if p = 0

0 if p > 0

Proof. By Lemma 21.10.1 we see that I is an injective object in PAb(C). Hence
we can apply Lemma 21.9.6 (or its proof) to see the vanishing of higher Čech
cohomology group. For the zeroth see Lemma 21.8.2. □

Lemma 21.10.3.03AX Let C be a site. Let U = {Ui → U}i∈I be a covering of C. There
is a transformation

Č•(U ,−) −→ RΓ(U,−)
of functors Ab(C) → D+(Z). In particular this gives a transformation of functors
Ȟp(U,F)→ Hp(U,F) for F ranging over Ab(C).

Proof. Let F be an abelian sheaf. Choose an injective resolution F → I•. Consider
the double complex Č•(U , I•) with terms Čp(U , Iq). Next, consider the associated
total complex Tot(Č•(U , I•)), see Homology, Definition 12.18.3. There is a map of
complexes

α : Γ(U, I•) −→ Tot(Č•(U , I•))
coming from the maps Iq(U)→ Ȟ0(U , Iq) and a map of complexes

β : Č•(U ,F) −→ Tot(Č•(U , I•))
coming from the map F → I0. We can apply Homology, Lemma 12.25.4 to see that
α is a quasi-isomorphism. Namely, Lemma 21.10.2 implies that the qth row of the
double complex Č•(U , I•) is a resolution of Γ(U, Iq). Hence α becomes invertible
in D+(Z) and the transformation of the lemma is the composition of β followed by
the inverse of α. We omit the verification that this is functorial. □

Lemma 21.10.4.0A6G Let C be a site. Let G be an abelian sheaf on C. Let U = {Ui →
U}i∈I be a covering of C. The map

Ȟ1(U ,G) −→ H1(U,G)
is injective and identifies Ȟ1(U ,G) via the bijection of Lemma 21.4.3 with the set
of isomorphism classes of G|U -torsors which restrict to trivial torsors over each Ui.

Proof. To see this we construct an inverse map. Namely, let F be a G|U -torsor on
C/U whose restriction to C/Ui is trivial. By Lemma 21.4.2 this means there exists
a section si ∈ F(Ui). On Ui0 ×U Ui1 there is a unique section si0i1 of G such that
si0i1 · si0 |Ui0 ×UUi1 = si1 |Ui0 ×UUi1 . An easy computation shows that si0i1 is a Čech
cocycle and that its class is well defined (i.e., does not depend on the choice of
the sections si). The inverse maps the isomorphism class of F to the cohomology
class of the cocycle (si0i1). We omit the verification that this map is indeed an
inverse. □

https://stacks.math.columbia.edu/tag/03F6
https://stacks.math.columbia.edu/tag/03AW
https://stacks.math.columbia.edu/tag/03AX
https://stacks.math.columbia.edu/tag/0A6G
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Lemma 21.10.5.03AY Let C be a site. Consider the functor i : Ab(C)→ PAb(C). It is a
left exact functor with right derived functors given by

Rpi(F) = Hp(F) : U 7−→ Hp(U,F)
see discussion in Section 21.7.

Proof. It is clear that i is left exact. Choose an injective resolution F → I•. By
definition Rpi is the pth cohomology presheaf of the complex I•. In other words,
the sections of Rpi(F) over an object U of C are given by

Ker(In(U)→ In+1(U))
Im(In−1(U)→ In(U)) .

which is the definition of Hp(U,F). □

Lemma 21.10.6.03AZ Let C be a site. Let U = {Ui → U}i∈I be a covering of C. For
any abelian sheaf F there is a spectral sequence (Er, dr)r≥0 with

Ep,q2 = Ȟp(U , Hq(F))
converging to Hp+q(U,F). This spectral sequence is functorial in F .

Proof. This is a Grothendieck spectral sequence (see Derived Categories, Lemma
13.22.2) for the functors

i : Ab(C)→ PAb(C) and Ȟ0(U ,−) : PAb(C)→ Ab.
Namely, we have Ȟ0(U , i(F)) = F(U) by Lemma 21.8.2. We have that i(I) is Čech
acyclic by Lemma 21.10.2. And we have that Ȟp(U ,−) = RpȞ0(U ,−) as functors
on PAb(C) by Lemma 21.9.6. Putting everything together gives the lemma. □

Lemma 21.10.7.03F7 Let C be a site. Let U = {Ui → U}i∈I be a covering. Let
F ∈ Ob(Ab(C)). Assume that Hi(Ui0 ×U . . .×U Uip ,F) = 0 for all i > 0, all p ≥ 0
and all i0, . . . , ip ∈ I. Then Ȟp(U ,F) = Hp(U,F).

Proof. We will use the spectral sequence of Lemma 21.10.6. The assumptions mean
that Ep,q2 = 0 for all (p, q) with q ̸= 0. Hence the spectral sequence degenerates at
E2 and the result follows. □

Lemma 21.10.8.03F8 Let C be a site. Let
0→ F → G → H → 0

be a short exact sequence of abelian sheaves on C. Let U be an object of C. If there
exists a cofinal system of coverings U of U such that Ȟ1(U ,F) = 0, then the map
G(U)→ H(U) is surjective.

Proof. Take an element s ∈ H(U). Choose a covering U = {Ui → U}i∈I such that
(a) Ȟ1(U ,F) = 0 and (b) s|Ui is the image of a section si ∈ G(Ui). Since we can
certainly find a covering such that (b) holds it follows from the assumptions of the
lemma that we can find a covering such that (a) and (b) both hold. Consider the
sections

si0i1 = si1 |Ui0 ×UUi1 − si0 |Ui0 ×UUi1 .

Since si lifts s we see that si0i1 ∈ F(Ui0 ×U Ui1). By the vanishing of Ȟ1(U ,F) we
can find sections ti ∈ F(Ui) such that

si0i1 = ti1 |Ui0 ×UUi1 − ti0 |Ui0 ×UUi1 .

https://stacks.math.columbia.edu/tag/03AY
https://stacks.math.columbia.edu/tag/03AZ
https://stacks.math.columbia.edu/tag/03F7
https://stacks.math.columbia.edu/tag/03F8
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Then clearly the sections si − ti satisfy the sheaf condition and glue to a section of
G over U which maps to s. Hence we win. □

Lemma 21.10.9.03F9 (Variant of Cohomology, Lemma 20.11.8.) Let C be a site. Let
CovC be the set of coverings of C (see Sites, Definition 7.6.2). Let B ⊂ Ob(C), and
Cov ⊂ CovC be subsets. Let F be an abelian sheaf on C. Assume that

(1) For every U ∈ Cov, U = {Ui → U}i∈I we have U,Ui ∈ B and every
Ui0 ×U . . .×U Uip ∈ B.

(2) For every U ∈ B the coverings of U occurring in Cov is a cofinal system
of coverings of U .

(3) For every U ∈ Cov we have Ȟp(U ,F) = 0 for all p > 0.
Then Hp(U,F) = 0 for all p > 0 and any U ∈ B.

Proof. Let F and Cov be as in the lemma. We will indicate this by saying “F has
vanishing higher Čech cohomology for any U ∈ Cov”. Choose an embedding F → I
into an injective abelian sheaf. By Lemma 21.10.2 I has vanishing higher Čech
cohomology for any U ∈ Cov. Let Q = I/F so that we have a short exact sequence

0→ F → I → Q → 0.

By Lemma 21.10.8 and our assumption (2) this sequence gives rise to an exact
sequence

0→ F(U)→ I(U)→ Q(U)→ 0.

for every U ∈ B. Hence for any U ∈ Cov we get a short exact sequence of Čech
complexes

0→ Č•(U ,F)→ Č•(U , I)→ Č•(U ,Q)→ 0

since each term in the Čech complex is made up out of a product of values over
elements of B by assumption (1). In particular we have a long exact sequence of
Čech cohomology groups for any covering U ∈ Cov. This implies that Q is also an
abelian sheaf with vanishing higher Čech cohomology for all U ∈ Cov.

Next, we look at the long exact cohomology sequence

0 // H0(U,F) // H0(U, I) // H0(U,Q)

tt
H1(U,F) // H1(U, I) // H1(U,Q)

ss. . . . . . . . .

for any U ∈ B. Since I is injective we have Hn(U, I) = 0 for n > 0 (see Derived
Categories, Lemma 13.20.4). By the above we see that H0(U, I) → H0(U,Q)
is surjective and hence H1(U,F) = 0. Since F was an arbitrary abelian sheaf
with vanishing higher Čech cohomology for all U ∈ Cov we conclude that also
H1(U,Q) = 0 since Q is another of these sheaves (see above). By the long exact
sequence this in turn implies that H2(U,F) = 0. And so on and so forth. □

https://stacks.math.columbia.edu/tag/03F9
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21.11. Second cohomology and gerbes

0CJZ Let p : S → C be a gerbe over a site all of whose automorphism groups are com-
mutative. In this situation the first and second cohomology groups of the sheaf of
automorphisms (Stacks, Lemma 8.11.8) controls the existence of objects.
The following lemma will be made obsolete by a more complete discussion of this
relationship we will add in the future.
Lemma 21.11.1.0CK0 Let C be a site. Let p : S → C be a gerbe over a site whose
automorphism sheaves are abelian. Let G be the sheaf of abelian groups constructed
in Stacks, Lemma 8.11.8. Let U be an object of C such that

(1) there exists a cofinal system of coverings {Ui → U} of U in C such that
H1(Ui,G) = 0 and H1(Ui ×U Uj ,G) = 0 for all i, j, and

(2) H2(U,G) = 0.
Then there exists an object of S lying over U .
Proof. By Stacks, Definition 8.11.1 there exists a covering U = {Ui → U} and xi
in S lying over Ui. Write Uij = Ui ×U Uj . By (1) after refining the covering we
may assume that H1(Ui,G) = 0 and H1(Uij ,G) = 0. Consider the sheaf

Fij = Isom(xi|Uij , xj |Uij )
on C/Uij . Since G|Uij = Aut(xi|Uij ) we see that there is an action

G|Uij ×Fij → Fij
by precomposition. It is clear that Fij is a pseudo G|Uij -torsor and in fact a torsor
because any two objects of a gerbe are locally isomorphic. By our choice of the
covering and by Lemma 21.4.3 these torsors are trivial (and hence have global
sections by Lemma 21.4.2). In other words, we can choose isomorphisms

φij : xi|Uij −→ xj |Uij
To find an object x over U we are going to massage our choice of these φij to get a
descent datum (which is necessarily effective as p : S → C is a stack). Namely, the
obstruction to being a descent datum is that the cocycle condition may not hold.
Namely, set Uijk = Ui ×U Uj ×U Uk. Then we can consider

gijk = φ−1
ik |Uijk ◦ φjk|Uijk ◦ φij |Uijk

which is an automorphism of xi over Uijk. Thus we may and do consider gijk
as a section of G over Uijk. A computation (omitted) shows that (gi0i1i2) is a 2-
cocycle in the Čech complex Č•(U ,G) of G with respect to the covering U . By
the spectral sequence of Lemma 21.10.6 and since H1(Ui,G) = 0 for all i we see
that Ȟ2(U ,G) → H2(U,G) is injective. Hence (gi0i1i2) is a coboundary by our
assumption that H2(U,G) = 0. Thus we can find sections gij ∈ G(Uij) such that
g−1
ik |Uijkgjk|Uijkgij |Uijk = gijk for all i, j, k. After replacing φij by φijg−1

ij we see that
φij gives a descent datum on the objects xi over Ui and the proof is complete. □

21.12. Cohomology of modules

03FA Everything that was said for cohomology of abelian sheaves goes for cohomology of
modules, since the two agree.
Lemma 21.12.1.03FB Let (C,O) be a ringed site. An injective sheaf of modules is also
injective as an object in the category PMod(O).

https://stacks.math.columbia.edu/tag/0CK0
https://stacks.math.columbia.edu/tag/03FB
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Proof. Apply Homology, Lemma 12.29.1 to the categories A = Mod(O), B =
PMod(O), the inclusion functor and sheafification. (See Modules on Sites, Sec-
tion 18.11 to see that all assumptions of the lemma are satisfied.) □

Lemma 21.12.2.06YK Let (C,O) be a ringed site. Consider the functor i : Mod(C) →
PMod(C). It is a left exact functor with right derived functors given by

Rpi(F) = Hp(F) : U 7−→ Hp(U,F)

see discussion in Section 21.7.

Proof. It is clear that i is left exact. Choose an injective resolution F → I• in
Mod(O). By definition Rpi is the pth cohomology presheaf of the complex I•. In
other words, the sections of Rpi(F) over an object U of C are given by

Ker(In(U)→ In+1(U))
Im(In−1(U)→ In(U)) .

which is the definition of Hp(U,F). □

Lemma 21.12.3.03FC Let (C,O) be a ringed site. Let U = {Ui → U}i∈I be a covering
of C. Let I be an injective O-module, i.e., an injective object of Mod(O). Then

Ȟp(U , I) =
{
I(U) if p = 0

0 if p > 0

Proof. Lemma 21.9.3 gives the first equality in the following sequence of equalities

Č•(U , I) = MorPAb(C)(ZU,•, I)
= MorPMod(Z)(ZU,•, I)
= MorPMod(O)(ZU,• ⊗p,Z O, I)

The third equality by Modules on Sites, Lemma 18.9.2. By Lemma 21.12.1 we see
that I is an injective object in PMod(O). Hence HomPMod(O)(−, I) is an exact
functor. By Lemma 21.9.5 we see the vanishing of higher Čech cohomology groups.
For the zeroth see Lemma 21.8.2. □

Lemma 21.12.4.03FD Let C be a site. Let O be a sheaf of rings on C. Let F be an
O-module, and denote Fab the underlying sheaf of abelian groups. Then we have

Hi(C,Fab) = Hi(C,F)

and for any object U of C we also have

Hi(U,Fab) = Hi(U,F).

Here the left hand side is cohomology computed in Ab(C) and the right hand side
is cohomology computed in Mod(O).

Proof. By Derived Categories, Lemma 13.20.4 the δ-functor (F 7→ Hp(U,F))p≥0
is universal. The functor Mod(O) → Ab(C), F 7→ Fab is exact. Hence (F 7→
Hp(U,Fab))p≥0 is a δ-functor also. Suppose we show that (F 7→ Hp(U,Fab))p≥0 is
also universal. This will imply the second statement of the lemma by uniqueness
of universal δ-functors, see Homology, Lemma 12.12.5. Since Mod(O) has enough
injectives, it suffices to show that Hi(U, Iab) = 0 for any injective object I in
Mod(O), see Homology, Lemma 12.12.4.

https://stacks.math.columbia.edu/tag/06YK
https://stacks.math.columbia.edu/tag/03FC
https://stacks.math.columbia.edu/tag/03FD
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Let I be an injective object of Mod(O). Apply Lemma 21.10.9 with F = I, B = C
and Cov = CovC . Assumption (3) of that lemma holds by Lemma 21.12.3. Hence
we see that Hi(U, Iab) = 0 for every object U of C.
If C has a final object then this also implies the first equality. If not, then according
to Sites, Lemma 7.29.5 we see that the ringed topos (Sh(C),O) is equivalent to a
ringed topos where the underlying site does have a final object. Hence the lemma
follows. □

Lemma 21.12.5.060L Let C be a site. Let I be a set. For i ∈ I let Fi be an abelian
sheaf on C. Let U ∈ Ob(C). The canonical map

Hp(U,
∏

i∈I
Fi) −→

∏
i∈I

Hp(U,Fi)

is an isomorphism for p = 0 and injective for p = 1.

Proof. The statement for p = 0 is true because the product of sheaves is equal
to the product of the underlying presheaves, see Sites, Lemma 7.10.1. Proof for
p = 1. Set F =

∏
Fi. Let ξ ∈ H1(U,F) map to zero in

∏
H1(U,Fi). By locality

of cohomology, see Lemma 21.7.3, there exists a covering U = {Uj → U} such
that ξ|Uj = 0 for all j. By Lemma 21.10.4 this means ξ comes from an element
ξ̌ ∈ Ȟ1(U ,F). Since the maps Ȟ1(U ,Fi) → H1(U,Fi) are injective for all i (by
Lemma 21.10.4), and since the image of ξ is zero in

∏
H1(U,Fi) we see that the

image ξ̌i = 0 in Ȟ1(U ,Fi). However, since F =
∏
Fi we see that Č•(U ,F) is

the product of the complexes Č•(U ,Fi), hence by Homology, Lemma 12.32.1 we
conclude that ξ̌ = 0 as desired. □

Lemma 21.12.6.093X Let (C,O) be a ringed site. Let a : U ′ → U be a monomorphism
in C. Then for any injective O-module I the restriction mapping I(U)→ I(U ′) is
surjective.

Proof. Let j : C/U → C and j′ : C/U ′ → C be the localization morphisms (Modules
on Sites, Section 18.19). Since j! is a left adjoint to restriction we see that for any
sheaf F of O-modules

HomO(j!OU ,F) = HomOU
(OU ,F|U ) = F(U)

Similarly, the sheaf j′
!OU ′ represents the functor F 7→ F(U ′). Moreover below we

describe a canonical map of O-modules
j′

!OU ′ −→ j!OU
which corresponds to the restriction mapping F(U)→ F(U ′) via Yoneda’s lemma
(Categories, Lemma 4.3.5). It suffices to prove the displayed map of modules is
injective, see Homology, Lemma 12.27.2.
To construct our map it suffices to construct a map between the presheaves which
assign to an object V of C the O(V )-module⊕

φ′∈MorC(V,U ′)
O(V ) and

⊕
φ∈MorC(V,U)

O(V )

see Modules on Sites, Lemma 18.19.2. We take the map which maps the summand
corresponding to φ′ to the summand corresponding to φ = a ◦ φ′ by the identity
map on O(V ). As a is a monomorphism, this map is injective. As sheafification is
exact, the result follows. □

https://stacks.math.columbia.edu/tag/060L
https://stacks.math.columbia.edu/tag/093X
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21.13. Totally acyclic sheaves

079X Let (C,O) be a ringed site. Let K be a presheaf of sets on C (we intentionally
use a roman capital here to distinguish from abelian sheaves). Given a sheaf of
O-modules F we set

F(K) = MorPSh(C)(K,F) = MorSh(C)(K#,F)
The functor F 7→ F(K) is a left exact functor Mod(O) → Ab hence we have its
right derived functors. We will denote these Hp(K,F) so that H0(K,F) = F(K).
Here are some observations:

(1) Since F(K) = F(K#), we have Hp(K,F) = Hp(K#,F). Allowing K to
be a presheaf in the definition above is a purely notational convenience.

(2) Suppose that K = hU or K = h#
U for some object U of C. Then

Hp(K,F) = Hp(U,F), because MorSh(C)(h#
U ,F) = F(U), see Sites, Sec-

tion 7.12.
(3) If O = Z (the constant sheaf), then the cohomology groups are functors

Hp(K,−) : Ab(C)→ Ab since Mod(O) = Ab(C) in this case.
We can translate some of our already proven results using this language.

Lemma 21.13.1.079Y Let (C,O) be a ringed site. Let K be a presheaf of sets on C. Let
F be an O-module and denote Fab the underlying sheaf of abelian groups. Then
Hp(K,F) = Hp(K,Fab).

Proof. We may replace K by its sheafification and assume K is a sheaf. Note that
both Hp(K,F) and Hp(K,Fab) depend only on the topos, not on the underlying
site. Hence by Sites, Lemma 7.29.5 we may replace C by a “larger” site such that
K = hU for some object U of C. In this case the result follows from Lemma
21.12.4. □

Lemma 21.13.2.079Z Let C be a site. Let K ′ → K be a map of presheaves of sets on
C whose sheafification is surjective. Set K ′

p = K ′ ×K . . . ×K K ′ (p + 1-factors).
For every abelian sheaf F there is a spectral sequence with Ep,q1 = Hq(K ′

p,F)
converging to Hp+q(K,F).

Proof. Since sheafification is exact, we see that (K ′
p)# is equal to (K ′)#×K# . . .×K#

(K ′)# (p+ 1-factors). Thus we may replace K and K ′ by their sheafifications and
assume K → K ′ is a surjective map of sheaves. After replacing C by a “larger”
site as in Sites, Lemma 7.29.5 we may assume that K,K ′ are objects of C and that
U = {K ′ → K} is a covering. Then we have the Čech to cohomology spectral
sequence of Lemma 21.10.6 whose E1 page is as indicated in the statement of the
lemma. □

Lemma 21.13.3.07A0 Let C be a site. Let K be a sheaf of sets on C. Consider the
morphism of topoi j : Sh(C/K) → Sh(C), see Sites, Lemma 7.30.3. Then j−1

preserves injectives and Hp(K,F) = Hp(C/K, j−1F) for any abelian sheaf F on C.

Proof. By Sites, Lemmas 7.30.1 and 7.30.3 the morphism of topoi j is equivalent
to a localization. Hence this follows from Lemma 21.7.1. □

Keeping in mind Lemma 21.13.1 we see that the following definition is the “correct
one” also for sheaves of modules on ringed sites.

https://stacks.math.columbia.edu/tag/079Y
https://stacks.math.columbia.edu/tag/079Z
https://stacks.math.columbia.edu/tag/07A0
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Definition 21.13.4.072Y Let C be a site. We say an abelian sheaf F is totally acyclic1 if
for every sheaf of sets K we have Hp(K,F) = 0 for all p ≥ 1.

It is clear that being totally acyclic is an intrinsic property, i.e., preserved under
equivalences of topoi. A totally acyclic sheaf has vanishing higher cohomology on
all objects of the site, but in general the condition of being totally acyclic is strictly
stronger. Here is a characterization of totally acyclic sheaves which is sometimes
useful.

Lemma 21.13.5.07A1 Let C be a site. Let F be an abelian sheaf. If
(1) Hp(U,F) = 0 for p > 0 and U ∈ Ob(C), and
(2) for every surjection K ′ → K of sheaves of sets the extended Čech complex

0→ H0(K,F)→ H0(K ′,F)→ H0(K ′ ×K K ′,F)→ . . .

is exact,
then F is totally acyclic (and the converse holds too).

Proof. By assumption (1) we have Hp(h#
U , g

−1I) = 0 for all p > 0 and all objects
U of C. Note that if K =

∐
Ki is a coproduct of sheaves of sets on C then

Hp(K, g−1I) =
∏
Hp(Ki, g

−1I). For any sheaf of sets K there exists a surjection

K ′ =
∐

h#
Ui
−→ K

see Sites, Lemma 7.12.5. Thus we conclude that: (*) for every sheaf of sets K
there exists a surjection K ′ → K of sheaves of sets such that Hp(K ′,F) = 0 for
p > 0. We claim that (*) and condition (2) imply that F is totally acyclic. Note
that conditions (*) and (2) only depend on F as an object of the topos Sh(C) and
not on the underlying site. (We will not use property (1) in the rest of the proof.)
We are going to prove by induction on n ≥ 0 that (*) and (2) imply the following
induction hypothesis IHn: Hp(K,F) = 0 for all 0 < p ≤ n and all sheaves of sets
K. Note that IH0 holds. Assume IHn. Pick a sheaf of sets K. Pick a surjection
K ′ → K such that Hp(K ′,F) = 0 for all p > 0. We have a spectral sequence with

Ep,q1 = Hq(K ′
p,F)

covering to Hp+q(K,F), see Lemma 21.13.2. By IHn we see that Ep,q1 = 0 for
0 < q ≤ n and by assumption (2) we see that Ep,02 = 0 for p > 0. Finally, we have
E0,q

1 = 0 for q > 0 because Hq(K ′,F) = 0 by choice of K ′. Hence we conclude that
Hn+1(K,F) = 0 because all the terms Ep,q2 with p+ q = n+ 1 are zero. □

21.14. The Leray spectral sequence

072X The key to proving the existence of the Leray spectral sequence is the following
lemma.

Lemma 21.14.1.072Z Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. Then for any injective object I in Mod(OC) the pushforward f∗I is totally
acyclic.

1Although this terminology is is used in [AGV71, Vbis, Proposition 1.3.10] this is probably
nonstandard notation. In [AGV71, V, Definition 4.1] this property is dubbed “flasque”, but we
cannot use this because it would clash with our definition of flasque sheaves on topological spaces.
Please email stacks.project@gmail.com if you have a better suggestion.

https://stacks.math.columbia.edu/tag/072Y
https://stacks.math.columbia.edu/tag/07A1
https://stacks.math.columbia.edu/tag/072Z
mailto:stacks.project@gmail.com
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Proof. Let K be a sheaf of sets on D. By Modules on Sites, Lemma 18.7.2 we may
replace C, D by “larger” sites such that f comes from a morphism of ringed sites
induced by a continuous functor u : D → C such that K = hV for some object V
of D.
Thus we have to show that Hq(V, f∗I) is zero for q > 0 and all objects V of D
when f is given by a morphism of ringed sites. Let V = {Vj → V } be any covering
of D. Since u is continuous we see that U = {u(Vj) → u(V )} is a covering of C.
Then we have an equality of Čech complexes

Č•(V, f∗I) = Č•(U , I)
by the definition of f∗. By Lemma 21.12.3 we see that the cohomology of this
complex is zero in positive degrees. We win by Lemma 21.10.9. □

For flat morphisms the functor f∗ preserves injective modules. In particular the
functor f∗ : Ab(C)→ Ab(D) always transforms injective abelian sheaves into injec-
tive abelian sheaves.
Lemma 21.14.2.0730 Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. If f is flat, then f∗I is an injective OD-module for any injective OC-module
I.
Proof. In this case the functor f∗ is exact, see Modules on Sites, Lemma 18.31.2.
Hence the result follows from Homology, Lemma 12.29.1. □

Lemma 21.14.3.0731 Let (Sh(C),OC) be a ringed topos. A totally acyclic sheaf is right
acyclic for the following functors:

(1) the functor H0(U,−) for any object U of C,
(2) the functor F 7→ F(K) for any presheaf of sets K,
(3) the functor Γ(C,−) of global sections,
(4) the functor f∗ for any morphism f : (Sh(C),OC)→ (Sh(D),OD) of ringed

topoi.
Proof. Part (2) is the definition of a totally acyclic sheaf. Part (1) is a consequence
of (2) as pointed out in the discussion following the definition of totally acyclic
sheaves. Part (3) is a special case of (2) where K = e is the final object of Sh(C).
To prove (4) we may assume, by Modules on Sites, Lemma 18.7.2 that f is given
by a morphism of sites. In this case we see that Rif∗, i > 0 of a totally acyclic
sheaf are zero by the description of higher direct images in Lemma 21.7.4. □

Remark 21.14.4.08J6 As a consequence of the results above we find that Derived Cat-
egories, Lemma 13.22.1 applies to a number of situations. For example, given a
morphism f : (Sh(C),OC)→ (Sh(D),OD) of ringed topoi we have

RΓ(D, Rf∗F) = RΓ(C,F)
for any sheaf of OC-modules F . Namely, for an injective OX -module I the OD-
module f∗I is totally acyclic by Lemma 21.14.1 and a totally acyclic sheaf is acyclic
for Γ(D,−) by Lemma 21.14.3.
Lemma 21.14.5 (Leray spectral sequence).0732 Let f : (Sh(C),OC) → (Sh(D),OD) be
a morphism of ringed topoi. Let F• be a bounded below complex of OC-modules.
There is a spectral sequence

Ep,q2 = Hp(D, Rqf∗(F•))

https://stacks.math.columbia.edu/tag/0730
https://stacks.math.columbia.edu/tag/0731
https://stacks.math.columbia.edu/tag/08J6
https://stacks.math.columbia.edu/tag/0732
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converging to Hp+q(C,F•).

Proof. This is just the Grothendieck spectral sequence Derived Categories, Lemma
13.22.2 coming from the composition of functors Γ(C,−) = Γ(D,−)◦f∗. To see that
the assumptions of Derived Categories, Lemma 13.22.2 are satisfied, see Lemmas
21.14.1 and 21.14.3. □

Lemma 21.14.6.0733 Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. Let F be an OC-module.

(1) If Rqf∗F = 0 for q > 0, then Hp(C,F) = Hp(D, f∗F) for all p.
(2) If Hp(D, Rqf∗F) = 0 for all q and p > 0, then Hq(C,F) = H0(D, Rqf∗F)

for all q.

Proof. These are two simple conditions that force the Leray spectral sequence to
converge. You can also prove these facts directly (without using the spectral se-
quence) which is a good exercise in cohomology of sheaves. □

Lemma 21.14.7 (Relative Leray spectral sequence).0734 Let f : (Sh(C),OC)→ (Sh(D),OD)
and g : (Sh(D),OD) → (Sh(E),OE) be morphisms of ringed topoi. Let F be an
OC-module. There is a spectral sequence with

Ep,q2 = Rpg∗(Rqf∗F)

converging to Rp+q(g ◦ f)∗F . This spectral sequence is functorial in F , and there
is a version for bounded below complexes of OC-modules.

Proof. This is a Grothendieck spectral sequence for composition of functors, see
Derived Categories, Lemma 13.22.2 and Lemmas 21.14.1 and 21.14.3. □

21.15. The base change map

0735 In this section we construct the base change map in some cases; the general case
is treated in Remark 21.19.3. The discussion in this section avoids using derived
pullback by restricting to the case of a base change by a flat morphism of ringed
sites. Before we state the result, let us discuss flat pullback on the derived category.
Suppose g : (Sh(C),OC) → (Sh(D),OD) is a flat morphism of ringed topoi. By
Modules on Sites, Lemma 18.31.2 the functor g∗ : Mod(OD)→ Mod(OC) is exact.
Hence it has a derived functor

g∗ : D(OD)→ D(OC)

which is computed by simply pulling back an representative of a given object in
D(OD), see Derived Categories, Lemma 13.16.9. It preserved the bounded (above,
below) subcategories. Hence as indicated we indicate this functor by g∗ rather than
Lg∗.

Lemma 21.15.1.0736 Let

(Sh(C′),OC′)
g′
//

f ′

��

(Sh(C),OC)

f

��
(Sh(D′),OD′) g // (Sh(D),OD)

https://stacks.math.columbia.edu/tag/0733
https://stacks.math.columbia.edu/tag/0734
https://stacks.math.columbia.edu/tag/0736
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be a commutative diagram of ringed topoi. Let F• be a bounded below complex
of OC-modules. Assume both g and g′ are flat. Then there exists a canonical base
change map

g∗Rf∗F• −→ R(f ′)∗(g′)∗F•

in D+(OD′).
Proof. Choose injective resolutions F• → I• and (g′)∗F• → J •. By Lemma
21.14.2 we see that (g′)∗J • is a complex of injectives representing R(g′)∗(g′)∗F•.
Hence by Derived Categories, Lemmas 13.18.6 and 13.18.7 the arrow β in the
diagram

(g′)∗(g′)∗F• // (g′)∗J •

F•

adjunction

OO

// I•

β

OO

exists and is unique up to homotopy. Pushing down to D we get
f∗β : f∗I• −→ f∗(g′)∗J • = g∗(f ′)∗J •

By adjunction of g∗ and g∗ we get a map of complexes g∗f∗I• → (f ′)∗J •. Note
that this map is unique up to homotopy since the only choice in the whole process
was the choice of the map β and everything was done on the level of complexes. □

21.16. Cohomology and colimits

0737 Let (C,O) be a ringed site. Let I → Mod(O), i 7→ Fi be a diagram over the
index category I, see Categories, Section 4.14. For each i there is a canonical map
Fi → colimi Fi which induces a map on cohomology. Hence we get a canonical map

colimiH
p(U,Fi) −→ Hp(U, colimi Fi)

for every p ≥ 0 and every object U of C. These maps are in general not isomor-
phisms, even for p = 0.
The following lemma is the analogue of Sites, Lemma 7.17.7 for cohomology.
Lemma 21.16.1.0739 Let C be a site. Let CovC be the set of coverings of C (see Sites,
Definition 7.6.2). Let B ⊂ Ob(C), and Cov ⊂ CovC be subsets. Assume that

(1) For every U ∈ Cov we have U = {Ui → U}i∈I with I finite, U,Ui ∈ B and
every Ui0 ×U . . .×U Uip ∈ B.

(2) For every U ∈ B the coverings of U occurring in Cov is a cofinal system
of coverings of U .

Then the map
colimiH

p(U,Fi) −→ Hp(U, colimi Fi)
is an isomorphism for every p ≥ 0, every U ∈ B, and every filtered diagram I →
Ab(C).
Proof. To prove the lemma we will argue by induction on p. Note that we require
in (1) the coverings U ∈ Cov to be finite, so that all the elements of B are quasi-
compact. Hence (2) and (1) imply that any U ∈ B satisfies the hypothesis of Sites,
Lemma 7.17.7 (4). Thus we see that the result holds for p = 0. Now we assume
the lemma holds for p and prove it for p+ 1.
Choose a filtered diagram F : I → Ab(C), i 7→ Fi. Since Ab(C) has functorial
injective embeddings, see Injectives, Theorem 19.7.4, we can find a morphism of

https://stacks.math.columbia.edu/tag/0739
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filtered diagrams F → I such that each Fi → Ii is an injective map of abelian
sheaves into an injective abelian sheaf. Denote Qi the cokernel so that we have
short exact sequences

0→ Fi → Ii → Qi → 0.
Since colimits of sheaves are the sheafification of colimits on the level of presheaves,
since sheafification is exact, and since filtered colimits of abelian groups are exact
(see Algebra, Lemma 10.8.8), we see the sequence

0→ colimi Fi → colimi Ii → colimiQi → 0.
is also a short exact sequence. We claim that Hq(U, colimi Ii) = 0 for all U ∈ B
and all q ≥ 1. Accepting this claim for the moment consider the diagram

colimiH
p(U, Ii)

��

// colimiH
p(U,Qi)

��

// colimiH
p+1(U,Fi)

��

// 0

��
Hp(U, colimi Ii) // Hp(U, colimiQi) // Hp+1(U, colimi Fi) // 0

The zero at the lower right corner comes from the claim and the zero at the upper
right corner comes from the fact that the sheaves Ii are injective. The top row is
exact by an application of Algebra, Lemma 10.8.8. Hence by the snake lemma we
deduce the result for p+ 1.
It remains to show that the claim is true. We will use Lemma 21.10.9. By the
result for p = 0 we see that for U ∈ Cov we have

Č•(U , colimi Ii) = colimi Č•(U , Ii)
because all the Uj0×U . . .×U Ujp are in B. By Lemma 21.10.2 each of the complexes
in the colimit of Čech complexes is acyclic in degree ≥ 1. Hence by Algebra, Lemma
10.8.8 we see that also the Čech complex Č•(U , colimi Ii) is acyclic in degrees ≥ 1.
In other words we see that Ȟp(U , colimi Ii) = 0 for all p ≥ 1. Thus the assumptions
of Lemma 21.10.9. are satisfied and the claim follows. □

Lemma 21.16.2.0GN3 Let C be a site. Let S ⊂ Ob(Sh(C)) be a subset. Denote ∗ the
final object of Sh(C). Assume

(1) for some K ∈ S the map K → ∗ is surjective,
(2) given a surjective map of sheaves F → K with K ∈ S there exists a K ′ ∈ S

and a map K ′ → F such that the composition K ′ → K is surjective,
(3) given K,K ′ ∈ S there is a surjection K ′′ → K ×K ′ with K ′′ ∈ S,
(4) given a, b : K → K ′ with K,K ′ ∈ S there exists a surjection K ′′ →

Equalizer(a, b) with K ′′ ∈ S, and
(5) every K ∈ S is quasi-compact (Sites, Definition 7.17.4).

Then for all p ≥ 0 the map
colimλH

p(C,Fλ) −→ Hp(C, colimλ Fλ)
is an isomorphism for every filtered diagram Λ→ Ab(C), λ 7→ Fλ.

Proof. We will prove this by induction on p. The base case p = 0 follows from
Sites, Lemma 7.17.8 part (4). We check the assumptions hold, but we urge the
reader to skip this part. Suppose F → ∗ is surjective. Choose K ∈ S and K → ∗
surjective as in (1). Then F × K → K is surjective. Choose K ′ → F × K with
K ′ ∈ S and K ′ → K surjective as in (2). Then there is a map K ′ → F and K ′ → ∗

https://stacks.math.columbia.edu/tag/0GN3
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is surjective. Hence Sites, Lemma 7.17.8 assumption (4)(a) is satisfied. By Sites,
Lemma 7.17.5, assumptions (3) and (5) we see that K ×K is quasi-compact for all
K ∈ S. Hence Sites, Lemma 7.17.8 assumption (4)(b) is satisfied. This finishes the
proof of the base case.
Induction step. Assume the result holds for Hp for p ≤ p0 and for all topoi Sh(C)
such that a set S ⊂ Ob(Sh(C)) can be found satisfying (1) – (5). Arguing exactly
as in the proof of Lemma 21.16.1 we see that it suffices to show: given a filtered
colimit I = colim Iλ with Iλ injective abelian sheaves, we have Hp0+1(C, I) = 0.
Choose K → ∗ surjective with K ∈ S as in (1). Denote Kn the n-fold self product
of K. Consider the spectral sequence

Ep,q1 = Hq(Kp+1, I)⇒ Hp+q(∗, I) = Hp+q(C, I)
of Lemma 21.13.2. Recall that Hq(Kp+1,F) = Hq(C/Kp+1, j−1F), for any abelian
sheaf on C, see Lemma 21.13.3. We have j−1I = colim j−1Iλ as j−1 commutes with
colimits. The restrictions j−1Iλ are injective abelian sheaves on C/Kp+1 by Lemma
21.7.1. Below we will show that the induction hypothesis applies to C/Kp+1 and
hence we see that Hq(Kp+1, I) = colimHq(Kp+1, Iλ) = 0 for q < p0 +1 (vanishing
as Iλ is injective). It follows that
Hp0+1(C, I) = Hp0+1 (. . .→ H0(Kp0 , I)→ H0(Kp0+1, I)→ H0(Kp0+2, I)→ . . .

)
Again using the induction hypothesis, the complex depicted on the right hand side
is the colimit over Λ of the complexes

. . .→ H0(Kp0 , Iλ)→ H0(Kp0+1, Iλ)→ H0(Kp0+2, Iλ)→ . . .

These complexes are exact as Iλ is an injective abelian sheaf (follows from the
spectral sequence for example). Since filtered colimits are exact in the category of
abelian groups we obtain the desired vanishing.
We still have to show that the induction hypothesis applies to the site C/Kn for
all n ≥ 1. Recall that Sh(C/Kn) = Sh(C)/Kn, see Sites, Lemma 7.30.3. Thus we
may work in Sh(C)/Kn. Denote Sn ⊂ Ob(Sh(C/Kn) the set of objects of the form
K ′ → Kn. We check each property in turn:

(1) By (3) and induction there exists a surjection K ′ → Kn with K ′ ∈ S.
Then (K ′ → Kn)→ (Kn → Kn) is a surjection in Sh(C)/Kn and Kn →
Kn is the final object of Sh(C)/Kn. Hence (1) holds for Sn,

(2) Property (2) for Sn is an immediate consquence of (2) for S.
(3) Let a : K1 → Kn and b : K2 → Kn be in Sn. Then (K1 → Kn) ×

(K2 → Kn) is the object K1 ×Kn K2 → Kn of Sh(C)/Kn. The subsheaf
K1 ×Kn K2 ⊂ K1 × K2 is the equalizer of a ◦ pr1 and b ◦ pr2. Write
a = (a1, . . . , an) and b = (b1, . . . , bn). Pick K3 → K1×K2 surjective with
K3 ∈ S; this is possibly by assumption (3) for C. Pick

K4 −→ Equalizer(K3 → K1 ×K2
a1,b1−−−→ K)

surjective with K4 ∈ S. This is possible by assumption (4) for C. Pick

K5 −→ Equalizer(K4 → K1 ×K2
a2,b2−−−→ K)

surjective with K5 ∈ S. Again this is possible. Continue in this fashion
until we get

K3+n −→ Equalizer(K2+n → K1 ×K2
an,bn−−−→ K)
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surjective with K3+n ∈ S. By construction K3+n → K1 ×Kn K2 is sur-
jective. Hence (K3+n → Kn) is in Sn and surjects onto the product
(K1 → Kn)× (K2 → Kn). Thus (3) holds for Sn.

(4) Property (4) for Sn is an immediate consequence of property (4) for S.
(5) Property (5) for Sn is a consequence of property (5) for S. Namely, an

object F → Kn of Sh(C)/Kn corresponds to a quasi-compact object of
Sh(C/Kn) if and only if F is a quasi-compact object of Sh(C).

This finishes the proof of the lemma. □

Remark 21.16.3.0GN4 Let C be a site. Let B ⊂ Ob(C) be a subset. Let S ⊂ Ob(Sh(C))
be the set of sheaves K which have the form

K =
∐

i=1,...,n
h#
Ui

with U1, . . . , Un ∈ B. Then we can ask: when does this set satisfy the assumptions
of Lemma 21.16.2? One answer is that it suffices if

(1) for some n ≥ 0, U1, . . . , Un ∈ B the map
∐
i=1,...,n h

#
Ui
→ ∗ is surjective,

(2) every covering of U ∈ B can be refined by a covering of the form {Ui →
U}i=1,...,n with Ui ∈ B,

(3) given U,U ′ ∈ B there exist n ≥ 0, U1, . . . , Un ∈ B, maps Ui → U and
Ui → U ′ such that

∐
i=1,...,n h

#
Ui
→ h#

U × h
#
U ′ is surjective,

(4) given morphisms a, b : U → U ′ in C with U,U ′ ∈ B, there exist U1, . . . , Un ∈
B, maps Ui → U equalizing a, b such that

∐
i=1,...,n h

#
Ui
→ Equalizer(h#

a , h
#
b :

h#
U → h#

U ′) is surjective.
We omit the detailed verification, except to mention that part (2) above insures
that every element of B is quasi-compact and hence every K ∈ S is quasi-compact
as well by Sites, Lemma 7.17.6.

Lemma 21.16.4.0EXZ Let I be a cofiltered index category and let (Ci, fa) be an inverse
system of sites over I as in Sites, Situation 7.18.1. Set C = colim Ci as in Sites,
Lemmas 7.18.2 and 7.18.3. Moreover, assume given

(1) an abelian sheaf Fi on Ci for all i ∈ Ob(I),
(2) for a : j → i a map φa : f−1

a Fi → Fj of abelian sheaves on Cj
such that φc = φb ◦ f−1

b φa whenever c = a ◦ b. Then there exists a map of systems
(Fi, φa) → (Gi, ψa) such that Fi → Gi is injective and Gi is an injective abelian
sheaf.

Proof. For each i we pick an injection Fi → Ai where Ai is an injective abelian
sheaf on Ci. Then we can consider the family of maps

γi : Fi −→
∏

b:k→i
fb,∗Ak = Gi

where the component maps are the maps adjoint to the maps f−1
b Fi → Fk → Ak.

For a : j → i in I there is a canonical map
ψa : f−1

a Gi → Gj
whose components are the canonical maps f−1

b fa◦b,∗Ak → fb,∗Ak for b : k → j.
Thus we find an injection (γi) : (Fi, φa) → (Gi, ψa) of systems of abelian sheaves.
Note that Gi is an injective sheaf of abelian groups on Ci, see Lemma 21.14.2 and
Homology, Lemma 12.27.3. This finishes the construction. □

https://stacks.math.columbia.edu/tag/0GN4
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Lemma 21.16.5.09YP In the situation of Lemma 21.16.4 set F = colim f−1
i Fi. Let

i ∈ Ob(I), Xi ∈ Ob(Ci). Then

colima:j→iH
p(ua(Xi),Fj) = Hp(ui(Xi),F)

for all p ≥ 0.

Proof. The case p = 0 is Sites, Lemma 7.18.4.

Choose (Fi, φa) → (Gi, ψa) as in Lemma 21.16.4. Arguing exactly as in the proof
of Lemma 21.16.1 we see that it suffices to prove that Hp(X, colim f−1

i Gi) = 0 for
p > 0.

Set G = colim f−1
i Gi. To show vanishing of cohomology of G on every object of C

we show that the Čech cohomology of G for any covering U of C is zero (Lemma
21.10.9). The covering U comes from a covering Ui of Ci for some i. We have

Č•(U ,G) = colima:j→i Č•(ua(Ui),Gj)

by the case p = 0. The right hand side is acyclic in positive degrees as a filtered
colimit of acyclic complexes by Lemma 21.10.2. See Algebra, Lemma 10.8.8. □

21.17. Flat resolutions

06YL In this section we redo the arguments of Cohomology, Section 20.26 in the setting
of ringed sites and ringed topoi.

Lemma 21.17.1.06YM Let (C,O) be a ringed site. Let G• be a complex of O-modules.
The functors

K(Mod(O)) −→ K(Mod(O)), F• 7−→ Tot(G• ⊗O F•)

and
K(Mod(O)) −→ K(Mod(O)), F• 7−→ Tot(F• ⊗O G•)

are exact functors of triangulated categories.

Proof. This follows from Derived Categories, Remark 13.10.9. □

Definition 21.17.2.06YN Let (C,O) be a ringed site. A complex K• of O-modules is
called K-flat if for every acyclic complex F• of O-modules the complex

Tot(F• ⊗O K•)

is acyclic.

Lemma 21.17.3.06YP Let (C,O) be a ringed site. Let K• be a K-flat complex. Then
the functor

K(Mod(O)) −→ K(Mod(O)), F• 7−→ Tot(F• ⊗O K•)

transforms quasi-isomorphisms into quasi-isomorphisms.

Proof. Follows from Lemma 21.17.1 and the fact that quasi-isomorphisms are char-
acterized by having acyclic cones. □

Lemma 21.17.4.0E8K Let (C,O) be a ringed site. Let U be an object of C. If K• is a
K-flat complex of O-modules, then K•|U is a K-flat complex of OU -modules.

https://stacks.math.columbia.edu/tag/09YP
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Proof. Let G• be an exact complex of OU -modules. Since jU ! is exact (Modules on
Sites, Lemma 18.19.3) and K• is a K-flat complex of O-modules we see that the
complex

jU !(Tot(G• ⊗OU
K•|U )) = Tot(jU !G• ⊗O K•)

is exact. Here the equality comes from Modules on Sites, Lemma 18.27.9 and the
fact that jU ! commutes with direct sums (as a left adjoint). We conclude because
jU ! reflects exactness by Modules on Sites, Lemma 18.19.4. □

Lemma 21.17.5.07A2 Let (C,O) be a ringed site. If K•, L• are K-flat complexes of
O-modules, then Tot(K• ⊗O L•) is a K-flat complex of O-modules.

Proof. Follows from the isomorphism

Tot(M• ⊗O Tot(K• ⊗O L•)) = Tot(Tot(M• ⊗O K•)⊗O L•)

and the definition. □

Lemma 21.17.6.07A3 Let (C,O) be a ringed site. Let (K•
1,K•

2,K•
3) be a distinguished

triangle in K(Mod(O)). If two out of three of K•
i are K-flat, so is the third.

Proof. Follows from Lemma 21.17.1 and the fact that in a distinguished triangle in
K(Mod(O)) if two out of three are acyclic, so is the third. □

Lemma 21.17.7.0G7B Let (C,O) be a ringed site. Let 0 → K•
1 → K•

2 → K•
3 → 0 be a

short exact sequence of complexes such that the terms of K•
3 are flat O-modules. If

two out of three of K•
i are K-flat, so is the third.

Proof. By Modules on Sites, Lemma 18.28.9 for every complex L• we obtain a short
exact sequence

0→ Tot(L• ⊗O K•
1)→ Tot(L• ⊗O K•

1)→ Tot(L• ⊗O K•
1)→ 0

of complexes. Hence the lemma follows from the long exact sequence of cohomology
sheaves and the definition of K-flat complexes. □

Lemma 21.17.8.06YQ Let (C,O) be a ringed site. A bounded above complex of flat
O-modules is K-flat.

Proof. Let K• be a bounded above complex of flat O-modules. Let L• be an acyclic
complex of O-modules. Note that L• = colimm τ≤mL• where we take termwise
colimits. Hence also

Tot(K• ⊗O L•) = colimm Tot(K• ⊗O τ≤mL•)

termwise. Hence to prove the complex on the left is acyclic it suffices to show
each of the complexes on the right is acyclic. Since τ≤mL• is acyclic this reduces
us to the case where L• is bounded above. In this case the spectral sequence of
Homology, Lemma 12.25.3 has

′Ep,q1 = Hp(L• ⊗R Kq)

which is zero as Kq is flat and L• acyclic. Hence we win. □

Lemma 21.17.9.06YR Let (C,O) be a ringed site. Let K•
1 → K•

2 → . . . be a system of
K-flat complexes. Then colimiK•

i is K-flat.

https://stacks.math.columbia.edu/tag/07A2
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Proof. Because we are taking termwise colimits it is clear that

colimi Tot(F• ⊗O K•
i ) = Tot(F• ⊗O colimiK•

i )

Hence the lemma follows from the fact that filtered colimits are exact. □

Lemma 21.17.10.077J Let (C,O) be a ringed site. For any complex G• of O-modules
there exists a commutative diagram of complexes of O-modules

K•
1

��

// K•
2

��

// . . .

τ≤1G• // τ≤2G• // . . .

with the following properties: (1) the vertical arrows are quasi-isomorphisms and
termwise surjective, (2) each K•

n is a bounded above complex whose terms are direct
sums of O-modules of the form jU !OU , and (3) the maps K•

n → K•
n+1 are termwise

split injections whose cokernels are direct sums of O-modules of the form jU !OU .
Moreover, the map colimK•

n → G• is a quasi-isomorphism.

Proof. The existence of the diagram and properties (1), (2), (3) follows immediately
from Modules on Sites, Lemma 18.28.8 and Derived Categories, Lemma 13.29.1.
The induced map colimK•

n → G• is a quasi-isomorphism because filtered colimits
are exact. □

Lemma 21.17.11.06YS Let (C,O) be a ringed site. For any complex G• there exists a K-
flat complex K• whose terms are flat O-modules and a quasi-isomorphism K• → G•

which is termwise surjective.

Proof. Choose a diagram as in Lemma 21.17.10. Each complex K•
n is a bounded

above complex of flat modules, see Modules on Sites, Lemma 18.28.7. Hence K•
n

is K-flat by Lemma 21.17.8. Thus colimK•
n is K-flat by Lemma 21.17.9. The

induced map colimK•
n → G• is a quasi-isomorphism and termwise surjective by

construction. Property (3) of Lemma 21.17.10 shows that colimKmn is a direct sum
of flat modules and hence flat which proves the final assertion. □

Lemma 21.17.12.06YT Let (C,O) be a ringed site. Let α : P• → Q• be a quasi-
isomorphism of K-flat complexes ofO-modules. For every complex F• ofO-modules
the induced map

Tot(idF• ⊗ α) : Tot(F• ⊗O P•) −→ Tot(F• ⊗O Q•)

is a quasi-isomorphism.

Proof. Choose a quasi-isomorphism K• → F• with K• a K-flat complex, see Lemma
21.17.11. Consider the commutative diagram

Tot(K• ⊗O P•) //

��

Tot(K• ⊗O Q•)

��
Tot(F• ⊗O P•) // Tot(F• ⊗O Q•)

The result follows as by Lemma 21.17.3 the vertical arrows and the top horizontal
arrow are quasi-isomorphisms. □

https://stacks.math.columbia.edu/tag/077J
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Let (C,O) be a ringed site. Let F• be an object of D(O). Choose a K-flat resolution
K• → F•, see Lemma 21.17.11. By Lemma 21.17.1 we obtain an exact functor of
triangulated categories

K(O) −→ K(O), G• 7−→ Tot(G• ⊗O K•)

By Lemma 21.17.3 this functor induces a functor D(O) → D(O) simply because
D(O) is the localization of K(O) at quasi-isomorphisms. By Lemma 21.17.12 the
resulting functor (up to isomorphism) does not depend on the choice of the K-flat
resolution.

Definition 21.17.13.06YU Let (C,O) be a ringed site. Let F• be an object of D(O). The
derived tensor product

−⊗L
O F• : D(O) −→ D(O)

is the exact functor of triangulated categories described above.

It is clear from our explicit constructions that there is a canonical isomorphism

F• ⊗L
O G• ∼= G• ⊗L

O F•

for G• and F• in D(O). Hence when we write F•⊗L
O G• we will usually be agnostic

about which variable we are using to define the derived tensor product with.

Definition 21.17.14.08FF Let (C,O) be a ringed site. Let F , G be O-modules. The
Tor’s of F and G are defined by the formula

TorO
p (F ,G) = H−p(F ⊗L

O G)

with derived tensor product as defined above.

This definition implies that for every short exact sequence of O-modules 0→ F1 →
F2 → F3 → 0 we have a long exact cohomology sequence

F1 ⊗O G // F2 ⊗O G // F3 ⊗O G // 0

TorO
1 (F1,G) // TorO

1 (F2,G) // TorO
1 (F3,G)

kk

for every O-module G. This will be called the long exact sequence of Tor associated
to the situation.

Lemma 21.17.15.08FG Let (C,O) be a ringed site. Let F be an O-module. The following
are equivalent

(1) F is a flat O-module, and
(2) TorO

1 (F ,G) = 0 for every O-module G.

Proof. If F is flat, then F ⊗O − is an exact functor and the satellites vanish.
Conversely assume (2) holds. Then if G → H is injective with cokernel Q, the long
exact sequence of Tor shows that the kernel of F ⊗O G → F ⊗O H is a quotient of
TorO

1 (F ,Q) which is zero by assumption. Hence F is flat. □

Lemma 21.17.16.0G7C Let (C,O) be a ringed site. Let K• be a K-flat, acyclic complex
with flat terms. Then F = Ker(Kn → Kn+1) is a flat O-module.

https://stacks.math.columbia.edu/tag/06YU
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Proof. Observe that
. . .→ Kn−2 → Kn−1 → F → 0

is a flat resolution of our module F . Since a bounded above complex of flat modules
is K-flat (Lemma 21.17.8) we may use this resolution to compute Tori(F ,G) for any
O-module G. On the one hand K• ⊗L

O G is zero in D(O) because K• is acyclic and
on the other hand it is represented by K• ⊗O G. Hence we see that

Kn−3 ⊗O G → Kn−2 ⊗O G → Kn−1 ⊗O G

is exact. Thus Tor1(F ,G) = 0 and we conclude by Lemma 21.17.15. □

Lemma 21.17.17.0G7D Let (C,O) be a ringed space. Let a : K• → L• be a map of
complexes of O-modules. If K• is K-flat, then there exist a complex N • and maps
of complexes b : K• → N • and c : N • → L• such that

(1) N • is K-flat,
(2) c is a quasi-isomorphism,
(3) a is homotopic to c ◦ b.

If the terms of K• are flat, then we may choose N •, b, and c such that the same is
true for N •.

Proof. We will use that the homotopy category K(Mod(O)) is a triangulated cat-
egory, see Derived Categories, Proposition 13.10.3. Choose a distinguished trian-
gle K• → L• → C• → K•[1]. Choose a quasi-isomorphism M• → C• with M•

K-flat with flat terms, see Lemma 21.17.11. By the axioms of triangulated cate-
gories, we may fit the composition M• → C• → K•[1] into a distinguished triangle
K• → N • → M• → K•[1]. By Lemma 21.17.6 we see that N • is K-flat. Again
using the axioms of triangulated categories, we can choose a map N • → L• fitting
into the following morphism of distinghuised triangles

K• //

��

N • //

��

M• //

��

K•[1]

��
K• // L• // C• // K•[1]

Since two out of three of the arrows are quasi-isomorphisms, so is the third arrow
N • → L• by the long exact sequences of cohomology associated to these distin-
guished triangles (or you can look at the image of this diagram in D(O) and use
Derived Categories, Lemma 13.4.3 if you like). This finishes the proof of (1), (2),
and (3). To prove the final assertion, we may choose N • such that Nn ∼=Mn⊕Kn,
see Derived Categories, Lemma 13.10.7. Hence we get the desired flatness if the
terms of K• are flat. □

21.18. Derived pullback

06YV Let f : (Sh(C),O)→ (Sh(C′),O′) be a morphism of ringed topoi. We can use K-flat
resolutions to define a derived pullback functor

Lf∗ : D(O′)→ D(O)

Lemma 21.18.1.0G7E Let f : (Sh(C′),O′)→ (Sh(C),O) be a morphism of ringed topoi.
Let K• be a K-flat complex of O-modules whose terms are flat O-modules. Then
f∗K• is a K-flat complex of O′-modules whose terms are flat O′-modules.

https://stacks.math.columbia.edu/tag/0G7D
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Proof. The terms f∗Kn are flat O′-modules by Modules on Sites, Lemma 18.39.1.
Choose a diagram

K•
1

��

// K•
2

��

// . . .

τ≤1K• // τ≤2K• // . . .

as in Lemma 21.17.10. We will use all of the properties stated in the lemma without
further mention. Each K•

n is a bounded above complex of flat modules, see Modules
on Sites, Lemma 18.28.7. Consider the short exact sequence of complexes

0→M• → colimK•
n → K• → 0

definingM•. By Lemmas 21.17.8 and 21.17.9 the complex colimK•
n is K-flat and by

Modules on Sites, Lemma 18.28.5 it has flat terms. By Modules on Sites, Lemma
18.28.10 M• has flat terms, by Lemma 21.17.7 M• is K-flat, and by the long
exact cohomology sequence M• is acyclic (because the second arrow is a quasi-
isomorphism). The pullback f∗(colimK•

n) = colim f∗K•
n is a colimit of bounded

below complexes of flat O′-modules and hence is K-flat (by the same lemmas as
above). The pullback of our short exact sequence

0→ f∗M• → f∗(colimK•
n)→ f∗K• → 0

is a short exact sequence of complexes by Modules on Sites, Lemma 18.39.4. Hence
by Lemma 21.17.7 it suffices to show that f∗M• is K-flat. This reduces us to the
case discussed in the next paragraph.
Assume K• is acyclic as well as K-flat and with flat terms. Then Lemma 21.17.16
guarantees that all terms of τ≤nK• are flat O-modules. We choose a diagram as
above and we will use all the properties proven above for this diagram. Denote
M•

n the kernel of the map of complexes K•
n → τ≤nK• so that we have short exact

sequences of complexes
0→M•

n → K•
n → τ≤nK• → 0

By Modules on Sites, Lemma 18.28.10 we see that the terms of the complex M•
n

are flat. Hence we see that M = colimM•
n is a filtered colimit of bounded below

complexes of flat modules in this case. Thus f∗M• is K-flat (same argument as
above) and we win. □

Lemma 21.18.2.06YY Let f : (Sh(C),O)→ (Sh(C′),O′) be a morphism of ringed topoi.
There exists an exact functor

Lf∗ : D(O′) −→ D(O)
of triangulated categories so that Lf∗K• = f∗K• for any K-flat complex K• with
flat terms and in particular for any bounded above complex of flat O′-modules.

Proof. To see this we use the general theory developed in Derived Categories, Sec-
tion 13.14. Set D = K(O′) and D′ = D(O). Let us write F : D → D′ the exact
functor of triangulated categories defined by the rule F (G•) = f∗G•. We let S
be the set of quasi-isomorphisms in D = K(O′). This gives a situation as in De-
rived Categories, Situation 13.14.1 so that Derived Categories, Definition 13.14.2
applies. We claim that LF is everywhere defined. This follows from Derived Cat-
egories, Lemma 13.14.15 with P ⊂ Ob(D) the collection of K-flat complexes K•

with flat terms. Namely, (1) follows from Lemma 21.17.11 and to see (2) we have

https://stacks.math.columbia.edu/tag/06YY
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to show that for a quasi-isomorphism K•
1 → K•

2 between elements of P the map
f∗K•

1 → f∗K•
2 is a quasi-isomorphism. To see this write this as

f−1K•
1 ⊗f−1O′ O −→ f−1K•

2 ⊗f−1O′ O

The functor f−1 is exact, hence the map f−1K•
1 → f−1K•

2 is a quasi-isomorphism.
The complexes f−1K•

1 and f−1K•
2 are K-flat complexes of f−1O′-modules by Lemma

21.18.1 because we can consider the morphism of ringed topoi (Sh(C), f−1O′) →
(Sh(C′),O′). Hence Lemma 21.17.12 guarantees that the displayed map is a quasi-
isomorphism. Thus we obtain a derived functor

LF : D(O′) = S−1D −→ D′ = D(O)
see Derived Categories, Equation (13.14.9.1). Finally, Derived Categories, Lemma
13.14.15 also guarantees that LF (K•) = F (K•) = f∗K• when K• is in P. The
proof is finished by observing that bounded above complexes of flat modules are in
P by Lemma 21.17.8. □

Lemma 21.18.3.0D6D Consider morphisms of ringed topoi f : (Sh(C),OC)→ (Sh(D),OD)
and g : (Sh(D),OD) → (Sh(E),OE). Then Lf∗ ◦ Lg∗ = L(g ◦ f)∗ as functors
D(OE)→ D(OC).

Proof. Let E be an object of D(OE). We may represent E by a K-flat complex K•

with flat terms, see Lemma 21.17.11. By construction Lg∗E is computed by g∗K•,
see Lemma 21.18.2. By Lemma 21.18.1 the complex g∗K• is K-flat with flat terms.
Hence Lf∗Lg∗E is represented by f∗g∗K•. Since also L(g ◦ f)∗E is represented by
(g ◦ f)∗K• = f∗g∗K• we conclude. □

Lemma 21.18.4.07A4 Let f : (Sh(C),O)→ (Sh(D),O′) be a morphism of ringed topoi.
There is a canonical bifunctorial isomorphism

Lf∗(F• ⊗L
O′ G•) = Lf∗F• ⊗L

O Lf∗G•

for F•,G• ∈ Ob(D(O′)).

Proof. By our construction of derived pullback in Lemma 21.18.2. and the existence
of resolutions in Lemma 21.17.11 we may replace F• and G• by complexes of O′-
modules which are K-flat and have flat terms. In this case F•⊗L

O′G• is just the total
complex associated to the double complex F•⊗O′ G•. The complex Tot(F•⊗O′ G•)
is K-flat with flat terms by Lemma 21.17.5 and Modules on Sites, Lemma 18.28.12.
Hence the isomorphism of the lemma comes from the isomorphism

Tot(f∗F• ⊗O f∗G•) −→ f∗Tot(F• ⊗O′ G•)
whose constituents are the isomorphisms f∗Fp⊗O f∗Gq → f∗(Fp⊗O′ Gq) of Mod-
ules on Sites, Lemma 18.26.2. □

Lemma 21.18.5.08I6 Let f : (Sh(C),O)→ (Sh(C′),O′) be a morphism of ringed topoi.
There is a canonical bifunctorial isomorphism

F• ⊗L
O Lf∗G• = F• ⊗L

f−1OY
f−1G•

for F• in D(O) and G• in D(O′).

Proof. Let F be an O-module and let G be an O′-module. Then F ⊗O f∗G =
F ⊗f−1O′ f−1G because f∗G = O ⊗f−1O′ f−1G. The lemma follows from this and
the definitions. □
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Lemma 21.18.6.0DEN Let (C,O) be a ringed site. Let K• be a complex of O-modules.
(1) If K• is K-flat, then for every point p of the site C the complex of Op-

modules K•
p is K-flat in the sense of More on Algebra, Definition 15.59.1

(2) If C has enough points, then the converse is true.

Proof. Proof of (2). If C has enough points and K•
p is K-flat for all points p of

C then we see that K• is K-flat because ⊗ and direct sums commute with taking
stalks and because we can check exactness at stalks, see Modules on Sites, Lemma
18.14.4.
Proof of (1). Assume K• is K-flat. Choose a quasi-isomorphism a : L• → K• such
that L• is K-flat with flat terms, see Lemma 21.17.11. Any pullback of L• is K-flat,
see Lemma 21.18.1. In particular the stalk L•

p is a K-flat complex of Op-modules.
Thus the cone C(a) on a is a K-flat (Lemma 21.17.6) acyclic complex of O-modules
and it suffuces to show the stalk of C(a) is K-flat (by More on Algebra, Lemma
15.59.5). Thus we may assume that K• is K-flat and acyclic.
Assume K• is acyclic and K-flat. Before continuing we replace the site C by another
one as in Sites, Lemma 7.29.5 to insure that C has all finite limits. This implies the
category of neighbourhoods of p is filtered (Sites, Lemma 7.33.2) and the colimit
defining the stalk of a sheaf is filtered. Let M be a finitely presented Op-module.
It suffices to show that K•⊗Op

M is acyclic, see More on Algebra, Lemma 15.59.9.
Since Op is the filtered colimit of O(U) where U runs over the neighbourhoods of p,
we can find a neighbourhood (U, x) of p and a finitely presented O(U)-module M ′

whose base change to Op is M , see Algebra, Lemma 10.127.6. By Lemma 21.17.4
we may replace C,O,K• by C/U,OU ,K•|U . We conclude that we may assume there
exists an O-module F such that M ∼= Fp. Since K• is K-flat and acyclic, we see that
K•⊗OF is acyclic (as it computes the derived tensor product by definition). Taking
stalks is an exact functor, hence we get that K• ⊗Op

M is acyclic as desired. □

Lemma 21.18.7.0DEP Let f : (Sh(C),O)→ (Sh(C′),O′) be a morphism of ringed topoi.
If C has enough points, then the pullback of a K-flat complex of O′-modules is a
K-flat complex of O-modules.

Proof. This follows from Lemma 21.18.6, Modules on Sites, Lemma 18.36.4, and
More on Algebra, Lemma 15.59.3. □

Lemma 21.18.8.0FPH Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. Let K• and M• be complexes of OD-modules. The diagram

Lf∗(K• ⊗L
OD
M•) //

��

Lf∗Tot(K• ⊗OD M•)

��
Lf∗K• ⊗L

OC
Lf∗M•

��

f∗Tot(K• ⊗OD M•)

��
f∗K• ⊗L

OC
f∗M• // Tot(f∗K• ⊗OC f

∗M•)

commutes.

Proof. We will use the existence of K-flat resolutions with flat terms (Lemma
21.17.11), we will use that derived pullback is computed by such complexes (Lemma
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21.18.2), and that pullbacks preserve these properties (Lemma 21.18.1). If we
choose such resolutions P• → K• and Q• →M•, then we see that

Lf∗Tot(P• ⊗OD Q•) //

��

Lf∗Tot(K• ⊗OD M•)

��
f∗Tot(P• ⊗OD Q•)

��

// f∗Tot(K• ⊗OD M•)

��
Tot(f∗P• ⊗OC f

∗Q•) // Tot(f∗K• ⊗OC f
∗M•)

commutes. However, now the left hand side of the diagram is the left hand side of
the diagram by our choice of P• and Q• and Lemma 21.17.5. □

21.19. Cohomology of unbounded complexes

07A5 Let (C,O) be a ringed site. The category Mod(O) is a Grothendieck abelian cate-
gory: it has all colimits, filtered colimits are exact, and it has a generator, namely⊕

U∈Ob(C)
jU !OU ,

see Modules on Sites, Section 18.14 and Lemmas 18.28.7 and 18.28.8. By Injectives,
Theorem 19.12.6 for every complex F• of O-modules there exists an injective quasi-
isomorphism F• → I• to a K-injective complex of O-modules and moreover this
embedding can be chosen functorial in F•. It follows from Derived Categories,
Lemma 13.31.7 that

(1) any exact functor F : K(Mod(O)) → D into a trianguated category D
has a right derived functor RF : D(O)→ D,

(2) for any additive functor F : Mod(O)→ A into an abelian category A we
consider the exact functor F : K(Mod(O))→ D(A) induced by F and we
obtain a right derived functor RF : D(O)→ K(A).

By construction we have RF (F•) = F (I•) where F• → I• is as above.

Here are some examples of the above:
(1) The functor Γ(C,−) : Mod(O)→ ModΓ(C,O) gives rise to

RΓ(C,−) : D(O) −→ D(Γ(C,O))

We shall use the notation Hi(C,K) = Hi(RΓ(C,K)) for cohomology.
(2) For an object U of C we consider the functor Γ(U,−) : Mod(O) →

ModΓ(U,O). This gives rise to

RΓ(U,−) : D(O)→ D(Γ(U,O))

We shall use the notation Hi(U,K) = Hi(RΓ(U,K)) for cohomology.
(3) For a morphism of ringed topoi f : (Sh(C),O)→ (Sh(D),O′) we consider

the functor f∗ : Mod(O) → Mod(O′) which gives rise to the total direct
image

Rf∗ : D(O) −→ D(O′)
on unbounded derived categories.
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Lemma 21.19.1.07A6 Let f : (Sh(C),O)→ (Sh(D),O′) be a morphism of ringed topoi.
The functor Rf∗ defined above and the functor Lf∗ defined in Lemma 21.18.2 are
adjoint:

HomD(O)(Lf∗G•,F•) = HomD(O′)(G•, Rf∗F•)
bifunctorially in F• ∈ Ob(D(O)) and G• ∈ Ob(D(O′)).

Proof. This follows formally from the fact that Rf∗ and Lf∗ exist, see Derived
Categories, Lemma 13.30.3. □

Lemma 21.19.2.0D6E Let f : (Sh(C),OC) → (Sh(D),OD) and g : (Sh(D),OD) →
(Sh(E),OE) be morphisms of ringed topoi. Then Rg∗ ◦Rf∗ = R(g ◦ f)∗ as functors
D(OC)→ D(OE).

Proof. By Lemma 21.19.1 we see that Rg∗ ◦Rf∗ is adjoint to Lf∗ ◦ Lg∗. We have
Lf∗◦Lg∗ = L(g◦f)∗ by Lemma 21.18.3 and hence by uniqueness of adjoint functors
we have Rg∗ ◦Rf∗ = R(g ◦ f)∗. □

Remark 21.19.3.07A7 The construction of unbounded derived functor Lf∗ and Rf∗
allows one to construct the base change map in full generality. Namely, suppose
that

(Sh(C′),OC′)
g′
//

f ′

��

(Sh(C),OC)

f

��
(Sh(D′),OD′) g // (Sh(D),OD)

is a commutative diagram of ringed topoi. Let K be an object of D(OC). Then
there exists a canonical base change map

Lg∗Rf∗K −→ R(f ′)∗L(g′)∗K

in D(OD′). Namely, this map is adjoint to a map L(f ′)∗Lg∗Rf∗K → L(g′)∗K.
Since L(f ′)∗◦Lg∗ = L(g′)∗◦Lf∗ we see this is the same as a map L(g′)∗Lf∗Rf∗K →
L(g′)∗K which we can take to be L(g′)∗ of the adjunction map Lf∗Rf∗K → K.

Remark 21.19.4.0E46 Consider a commutative diagram

(Sh(B′),OB′)
k
//

f ′

��

(Sh(B),OB)

f

��
(Sh(C′),OC′) l //

g′

��

(Sh(C),OC)

g

��
(Sh(D′),OD′) m // (Sh(D),OD)

of ringed topoi. Then the base change maps of Remark 21.19.3 for the two squares
compose to give the base change map for the outer rectangle. More precisely, the
composition

Lm∗ ◦R(g ◦ f)∗ = Lm∗ ◦Rg∗ ◦Rf∗

→ Rg′
∗ ◦ Ll∗ ◦Rf∗

→ Rg′
∗ ◦Rf ′

∗ ◦ Lk∗

= R(g′ ◦ f ′)∗ ◦ Lk∗

https://stacks.math.columbia.edu/tag/07A6
https://stacks.math.columbia.edu/tag/0D6E
https://stacks.math.columbia.edu/tag/07A7
https://stacks.math.columbia.edu/tag/0E46
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is the base change map for the rectangle. We omit the verification.

Remark 21.19.5.0E47 Consider a commutative diagram

(Sh(C′′),OC′′)
g′
//

f ′′

��

(Sh(C′),OC′)
g
//

f ′

��

(Sh(C),OC)

f

��
(Sh(D′′),OD′′) h′

// (Sh(D′),OD′) h // (Sh(D),OD)

of ringed topoi. Then the base change maps of Remark 21.19.3 for the two squares
compose to give the base change map for the outer rectangle. More precisely, the
composition

L(h ◦ h′)∗ ◦Rf∗ = L(h′)∗ ◦ Lh∗ ◦Rf∗

→ L(h′)∗ ◦Rf ′
∗ ◦ Lg∗

→ Rf ′′
∗ ◦ L(g′)∗ ◦ Lg∗

= Rf ′′
∗ ◦ L(g ◦ g′)∗

is the base change map for the rectangle. We omit the verification.

Lemma 21.19.6.0FPI Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. Let K• be a complex of OC-modules. The diagram

Lf∗f∗K• //

��

f∗f∗K•

��
Lf∗Rf∗K• // K•

coming from Lf∗ → f∗ on complexes, f∗ → Rf∗ on complexes, and adjunction
Lf∗ ◦Rf∗ → id commutes in D(OC).

Proof. We will use the existence of K-flat resolutions and K-injective resolutions,
see Lemmas 21.17.11, 21.18.2, and 21.18.1 and the discussion above. Choose a
quasi-isomorphism K• → I• where I• is K-injective as a complex of OC-modules.
Choose a quasi-isomorphism Q• → f∗I• where Q• is a K-flat complex of OD-
modules with flat terms. We can choose a K-flat complex of OD-modules P• with
flat terms and a diagram of morphisms of complexes

P• //

��

f∗K•

��
Q• // f∗I•

commutative up to homotopy where the top horizontal arrow is a quasi-isomorphism.
Namely, we can first choose such a diagram for some complex P• because the quasi-
isomorphisms form a multiplicative system in the homotopy category of complexes
and then we can choose a resolution of P• by a K-flat complex with flat terms.
Taking pullbacks we obtain a diagram of morphisms of complexes

f∗P• //

��

f∗f∗K•

��

// K•

��
f∗Q• // f∗f∗I• // I•

https://stacks.math.columbia.edu/tag/0E47
https://stacks.math.columbia.edu/tag/0FPI
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commutative up to homotopy. The outer rectangle witnesses the truth of the state-
ment in the lemma. □

Remark 21.19.7.0B6C Let f : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed topoi.
The adjointness of Lf∗ and Rf∗ allows us to construct a relative cup product

Rf∗K ⊗L
OD

Rf∗L −→ Rf∗(K ⊗L
OC

L)

inD(OD) for allK,L inD(OC). Namely, this map is adjoint to a map Lf∗(Rf∗K⊗L
OD

Rf∗L) → K ⊗L
OC

L for which we can take the composition of the isomorphism
Lf∗(Rf∗K ⊗L

OD
Rf∗L) = Lf∗Rf∗K ⊗L

OC
Lf∗Rf∗L (Lemma 21.18.4) with the map

Lf∗Rf∗K ⊗L
OC

Lf∗Rf∗L→ K ⊗L
OC

L coming from the counit Lf∗ ◦Rf∗ → id.

Lemma 21.19.8.0DD7 Let C be a site. Let A ⊂ Ab(C) denote the Serre subcategory
consisting of torsion abelian sheaves. Then the functor D(A) → DA(C) is an
equivalence.

Proof. A key observation is that an injective abelian sheaf I is divisible. Namely,
if s ∈ I(U) is a local section, then we interpret s as a map s : jU !Z → I and we
apply the defining property of an injective object to the injective map of sheaves
n : jU !Z→ jU !Z to see that there exists an s′ ∈ I(U) with ns′ = s.

For a sheaf F denote Ftor its torsion subsheaf. We claim that if I• is a complex of
injective abelian sheaves whose cohomology sheaves are torsion, then

I•
tor → I•

is a quasi-isomorphism. Namely, by flatness of Q over Z we have

Hp(I•)⊗Z Q = Hp(I• ⊗Z Q)

which is zero because the cohomology sheaves are torsion. By divisibility (shown
above) we see that I• → I• ⊗Z Q is surjective with kernel I•

tor. The claim follows
from the long exact sequence of cohomology sheaves associated to the short exact
sequence you get.

To prove the lemma we will construct right adjoint T : D(C) → D(A). Namely,
given K in D(C) we can represent K by a K-injective complex I• whose cohomology
sheaves are injective, see Injectives, Theorem 19.12.6. Then we set T (K) = I•

tor,
in other words, T is the right derived functor of taking torsion. The functor T is a
right adjoint to i : D(A)→ DA(C). This readily follows from the observation that
if F• is a complex of torsion sheaves, then

HomK(A)(F•, I•
tor) = HomK(Ab(C))(F•, I•)

in particular I•
tor is a K-injective complex of A. Some details omitted; in case of

doubt, it also follows from the more general Derived Categories, Lemma 13.30.3.
Our claim above gives that L = T (i(L)) for L in D(A) and i(T (K)) = K if K is in
DA(C). Using Categories, Lemma 4.24.4 the result follows. □

21.20. Some properties of K-injective complexes

08FH Let (C,O) be a ringed site. Let U be an object of C. Denote j : (Sh(C/U),OU )→
(Sh(C),O) the corresponding localization morphism. The pullback functor j∗ is
exact as it is just the restriction functor. Thus derived pullback Lj∗ is computed

https://stacks.math.columbia.edu/tag/0B6C
https://stacks.math.columbia.edu/tag/0DD7
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on any complex by simply restricting the complex. We often simply denote the
corresponding functor

D(O)→ D(OU ), E 7→ j∗E = E|U
Similarly, extension by zero j! : Mod(OU ) → Mod(O) (see Modules on Sites, Def-
inition 18.19.1) is an exact functor (Modules on Sites, Lemma 18.19.3). Thus it
induces a functor

j! : D(OU )→ D(O), F 7→ j!F

by simply applying j! to any complex representing the object F .

Lemma 21.20.1.08FI Let (C,O) be a ringed site. Let U be an object of C. The
restriction of a K-injective complex of O-modules to C/U is a K-injective complex
of OU -modules.

Proof. Follows immediately from Derived Categories, Lemma 13.31.9 and the fact
that the restriction functor has the exact left adjoint j!. See discussion above. □

Lemma 21.20.2.0D6F Let (C,O) be a ringed site. Let U ∈ Ob(C). For K in D(O) we
have Hp(U,K) = Hp(C/U,K|C/U ).

Proof. Let I• be a K-injective complex of O-modules representing K. Then
Hq(U,K) = Hq(Γ(U, I•)) = Hq(Γ(C/U, I•|C/U ))

by construction of cohomology. By Lemma 21.20.1 the complex I•|C/U is a K-
injective complex representing K|C/U and the lemma follows. □

Lemma 21.20.3.0BKV Let (C,O) be a ringed site. Let K be an object of D(O). The
sheafification of

U 7→ Hq(U,K) = Hq(C/U,K|C/U )
is the qth cohomology sheaf Hq(K) of K.

Proof. The equality Hq(U,K) = Hq(C/U,K|C/U ) holds by Lemma 21.20.2. Choose
a K-injective complex I• representing K. Then

Hq(U,K) = Ker(Iq(U)→ Iq+1(U))
Im(Iq−1(U)→ Iq(U)) .

by our construction of cohomology. Since Hq(K) = Ker(Iq → Iq+1)/ Im(Iq−1 →
Iq) the result is clear. □

Lemma 21.20.4.0D6G Let f : (C,OC) → (D,OD) be a morphism of ringed sites corre-
sponding to the continuous functor u : D → C. Given V ∈ D, set U = u(V ) and
denote g : (C/U,OU )→ (D/V,OV ) the induced morphism of ringed sites (Modules
on Sites, Lemma 18.20.1). Then (Rf∗E)|D/V = Rg∗(E|C/U ) for E in D(OC).

Proof. Represent E by a K-injective complex I• of OC-modules. Then Rf∗(E) =
f∗I• and Rg∗(E|C/U ) = g∗(I•|C/U ) by Lemma 21.20.1. Since it is clear that
(f∗F)|D/V = g∗(F|C/U ) for any sheaf F on C (see Modules on Sites, Lemma 18.20.1
or the more basic Sites, Lemma 7.28.1) the result follows. □

Lemma 21.20.5.0D6H Let f : (C,OC) → (D,OD) be a morphism of ringed sites corre-
sponding to the continuous functor u : D → C. Then RΓ(D,−) ◦ Rf∗ = RΓ(C,−)
as functors D(OC) → D(Γ(OD)). More generally, for V ∈ D with U = u(V ) we
have RΓ(U,−) = RΓ(V,−) ◦Rf∗.

https://stacks.math.columbia.edu/tag/08FI
https://stacks.math.columbia.edu/tag/0D6F
https://stacks.math.columbia.edu/tag/0BKV
https://stacks.math.columbia.edu/tag/0D6G
https://stacks.math.columbia.edu/tag/0D6H
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Proof. Consider the punctual topos pt endowed with Opt given by the ring Γ(OD).
There is a canonical morphism (D,OD) → (pt,Opt) of ringed topoi inducing the
identification on global sections of structure sheaves. Then D(Opt) = D(Γ(OD)).
The assertion RΓ(D,−) ◦Rf∗ = RΓ(C,−) follows from Lemma 21.19.2 applied to

(C,OC)→ (D,OD)→ (pt,Opt)
The second (more general) statement follows from the first statement after applying
Lemma 21.20.4. □

Lemma 21.20.6.0D6I Let f : (C,OC) → (D,OD) be a morphism of ringed sites cor-
responding to the continuous functor u : D → C. Let K be in D(OC). Then
Hi(Rf∗K) is the sheaf associated to the presheaf

V 7→ Hi(u(V ),K) = Hi(V,Rf∗K)

Proof. The equality Hi(u(V ),K) = Hi(V,Rf∗K) follows upon taking cohomology
from the second statement in Lemma 21.20.5. Then the statement on sheafification
follows from Lemma 21.20.3. □

Lemma 21.20.7.0D6J Let (C,OC) be a ringed site. Let K be an object of D(OC) and
denote Kab its image in D(ZC).

(1) There is a canonical map RΓ(C,K) → RΓ(C,Kab) which is an isomor-
phism in D(Ab).

(2) For any U ∈ C there is a canonical map RΓ(U,K)→ RΓ(U,Kab) which is
an isomorphism in D(Ab).

(3) Let f : (C,OC) → (D,OD) be a morphism of ringed sites. There is a
canonical map Rf∗K → Rf∗(Kab) which is an isomorphism in D(ZD).

Proof. The map is constructed as follows. Choose a K-injective complex I• repre-
senting K. Choose a quasi-isomorpism I• → J • where J • is a K-injective complex
of abelian groups. Then the map in (1) is given by Γ(C, I•)→ Γ(C,J •) (2) is given
by Γ(U, I•) → Γ(U,J •) and the map in (3) is given by f∗I• → f∗J •. To show
that these maps are isomorphisms, it suffices to prove they induce isomorphisms
on cohomology groups and cohomology sheaves. By Lemmas 21.20.2 and 21.20.6 it
suffices to show that the map

H0(C,K) −→ H0(C,Kab)
is an isomorphism. Observe that

H0(C,K) = HomD(OC)(OC ,K)
and similarly for the other group. Choose any complex K• of OC-modules repre-
senting K. By construction of the derived category as a localization we have

HomD(OC)(OC ,K) = colims:F•→OC HomK(OC)(F•,K•)
where the colimit is over quasi-isomorphisms s of complexes of OC-modules. Simi-
larly, we have

HomD(ZC)(ZC ,K) = colims:G•→ZC
HomK(ZC)(G•,K•)

Next, we observe that the quasi-isomorphisms s : G• → ZC with G• bounded above
complex of flat ZC-modules is cofinal in the system. (This follows from Modules
on Sites, Lemma 18.28.8 and Derived Categories, Lemma 13.15.4; see discussion

https://stacks.math.columbia.edu/tag/0D6I
https://stacks.math.columbia.edu/tag/0D6J
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in Section 21.17.) Hence we can construct an inverse to the map H0(C,K) −→
H0(C,Kab) by representing an element ξ ∈ H0(C,Kab) by a pair

(s : G• → ZC , a : G• → K•)

with G• a bounded above complex of flat ZC-modules and sending this to

(G• ⊗ZC
OC → OC ,G• ⊗ZC

OC → K•)

The only thing to note here is that the first arrow is a quasi-isomorphism by Lemmas
21.17.12 and 21.17.8. We omit the detailed verification that this construction is
indeed an inverse. □

Lemma 21.20.8.08FJ Let (C,O) be a ringed site. Let U be an object of C. Denote
j : (Sh(C/U),OU ) → (Sh(C),O) the corresponding localization morphism. The
restriction functor D(O) → D(OU ) is a right adjoint to extension by zero j! :
D(OU )→ D(O).

Proof. We have to show that

HomD(O)(j!E,F ) = HomD(OU )(E,F |U )

Choose a complex E• of OU -modules representing E and choose a K-injective com-
plex I• representing F . By Lemma 21.20.1 the complex I•|U is K-injective as well.
Hence we see that the formula above becomes

HomD(O)(j!E•, I•) = HomD(OU )(E•, I•|U )

which holds as |U and j! are adjoint functors (Modules on Sites, Lemma 18.19.2)
and Derived Categories, Lemma 13.31.2. □

Lemma 21.20.9.0GL1 Let (C,O) be a ringed site. Let U ∈ Ob(C). For L in D(OU ) and
K in D(O) we have j!L⊗L

O K = j!(L⊗L
OU

K|U ).

Proof. Represent L by a complex of OU -modules and K by a K-flat complexe of
O-modules and apply Modules on Sites, Lemma 18.27.9. Details omitted. □

Lemma 21.20.10.093Y Let f : (Sh(C),OC)→ (Sh(D),OD) be a flat morphism of ringed
topoi. If I• is a K-injective complex of OC-modules, then f∗I• is K-injective as a
complex of OD-modules.

Proof. This is true because

HomK(OD)(F•, f∗I•) = HomK(OC)(f∗F•, I•)

by Modules on Sites, Lemma 18.13.2 and the fact that f∗ is exact as f is assumed
to be flat. □

Lemma 21.20.11.093Z Let C be a site. Let O → O′ be a map of sheaves of rings. If I•

is a K-injective complex of O-modules, then HomO(O′, I•) is a K-injective complex
of O′-modules.

Proof. This is true because HomK(O′)(G•,HomO(O′, I•)) = HomK(O)(G•, I•) by
Modules on Sites, Lemma 18.27.8. □

https://stacks.math.columbia.edu/tag/08FJ
https://stacks.math.columbia.edu/tag/0GL1
https://stacks.math.columbia.edu/tag/093Y
https://stacks.math.columbia.edu/tag/093Z
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21.21. Localization and cohomology

0EYZ Let C be a site. Let f : X → Y be a morphism of C. Then we obtain a morphism
of topoi

jX/Y : Sh(C/X) −→ Sh(C/Y )
See Sites, Sections 7.25 and 7.27. Some questions about cohomology are easier for
this type of morphisms of topoi. Here is an example where we get a trivial type of
base change theorem.

Lemma 21.21.1.0EZ0 Let C be a site. Let

X ′

��

// X

��
Y ′ // Y

be a cartesian diagram of C. Then we have j−1
Y ′/Y ◦RjX/Y,∗ = RjX′/Y ′,∗ ◦ j−1

X′/X as
functors D(C/X)→ D(C/Y ′).

Proof. Let E ∈ D(C/X). Choose a K-injective complex I• of abelian sheaves on
C/X representing E. By Lemma 21.20.1 we see that j−1

X′/XI
• is K-injective too.

Hence we may compute RjX′/Y ′(j−1
X′/XE) by jX′/Y ′,∗j

−1
X′/XI

•. Thus we see that
the equality holds by Sites, Lemma 7.27.5. □

If we have a ringed site (C,O) and a morphism f : X → Y of C, then jX/Y becomes
a morphism of ringed topoi

jX/Y : (Sh(C/X),OX) −→ (Sh(C/Y ),OY )
See Modules on Sites, Lemma 18.19.5.

Lemma 21.21.2.0FN5 Let (C,O) be a ringed site. Let

X ′

��

// X

��
Y ′ // Y

be a cartesian diagram of C. Then we have j∗
Y ′/Y ◦RjX/Y,∗ = RjX′/Y ′,∗ ◦ j∗

X′/X as
functors D(OX)→ D(OY ′).

Proof. Since j−1
Y ′/YOY = OY ′ we have j∗

Y ′/Y = Lj∗
Y ′/Y = j−1

Y ′/Y . Similarly we have
j∗
X′/X = Lj∗

X′/X = j−1
X′/X . Thus by Lemma 21.20.7 it suffices to prove the result

on derived categories of abelian sheaves which we did in Lemma 21.21.1. □

21.22. Inverse systems and cohomology

0GYP We prove some results on inverse systems of sheaves of modules.

Lemma 21.22.1.0GYQ Let I be an ideal of a ring A. Let C be a site. Let
. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules on C such that Fn = Fn+1/I
nFn+1.

Let p ≥ 0. Assume ⊕
n≥0

Hp+1(C, InFn+1)

https://stacks.math.columbia.edu/tag/0EZ0
https://stacks.math.columbia.edu/tag/0FN5
https://stacks.math.columbia.edu/tag/0GYQ
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satisfies the ascending chain condition as a graded
⊕

n≥0 I
n/In+1-module. Then

the inverse system Mn = Hp(C,Fn) satisfies the Mittag-Leffler condition2.

Proof. Set Nn = Hp+1(C, InFn+1) and let δn : Mn → Nn be the boundary map on
cohomology coming from the short exact sequence 0→ InFn+1 → Fn+1 → Fn → 0.
Then

⊕
Im(δn) ⊂

⊕
Nn is a graded submodule. Namely, if s ∈ Mn and f ∈ Im,

then we have a commutative diagram
0 // InFn+1

f

��

// Fn+1

f

��

// Fn

f

��

// 0

0 // In+mFn+m+1 // Fn+m+1 // Fn+m // 0
The middle vertical map is given by lifting a local section of Fn+1 to a section of
Fn+m+1 and then multiplying by f ; similarly for the other vertical arrows. We
conclude that δn+m(fs) = fδn(s). By assumption we can find sj ∈ Mnj , j =
1, . . . , N such that δnj (sj) generate

⊕
Im(δn) as a graded module. Let n > c =

max(nj). Let s ∈Mn. Then we can find fj ∈ In−nj such that δn(s) =
∑
fjδnj (sj).

We conclude that δ(s −
∑
fjsj) = 0, i.e., we can find s′ ∈ Mn+1 mapping to

s−
∑
fjsj in Mn. It follows that

Im(Mn+1 →Mn−c) = Im(Mn →Mn−c)
Namely, the elements fjsj map to zero in Mn−c. This proves the lemma. □

Lemma 21.22.2.0GYR Let I be an ideal of a ring A. Let C be a site. Let
. . .→ F3 → F2 → F1

be an inverse system of A-modules on C such that Fn = Fn+1/I
nFn+1. Let p ≥ 0.

Given n define
Nn =

⋂
m≥n

Im
(
Hp+1(C, InFm+1)→ Hp+1(C, InFn+1)

)
If
⊕
Nn satisfies the ascending chain condition as a graded

⊕
n≥0 I

n/In+1-module,
then the inverse system Mn = Hp(C,Fn) satisfies the Mittag-Leffler condition3.

Proof. The proof is exactly the same as the proof of Lemma 21.22.1. In fact, the
result will follow from the arguments given there as soon as we show that

⊕
Nn is

a graded
⊕

n≥0 I
n/In+1-submodule of

⊕
Hp+1(C, InFn+1) and that the boundary

maps δn : Mn → Hp+1(C, InFn+1) have image contained in Nn.
Suppose that ξ ∈ Nn and f ∈ Ik. Choosem≫ n+k. Choose ξ′ ∈ Hp+1(C, InFm+1)
lifting ξ. We consider the diagram

0 // InFm+1

f

��

// Fm+1

f

��

// Fn

f

��

// 0

0 // In+kFm+1 // Fm+1 // Fn+k // 0
constructed as in the proof of Lemma 21.22.1. We get an induced map on coho-
mology and we see that fξ′ ∈ Hp+1(C, In+kFm+1) maps to fξ. Since this is true
for all m≫ n+ k we see that fξ is in Nn+k as desired.

2In fact, there exists a c ≥ 0 such that Im(Mn →Mn−c) is the stable image for all n ≥ c.
3In fact, there exists a c ≥ 0 such that Im(Mn →Mn−c) is the stable image for all n ≥ c.
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To see the boundary maps δn have image contained in Nn we consider the diagrams

0 // InFm+1

��

// Fm+1

��

// Fn

��

// 0

0 // InFn+1 // Fn+1 // Fn // 0

for m ≥ n. Looking at the induced maps on cohomology we conclude. □

Lemma 21.22.3.0GYS Let I be an ideal of a ring A. Let C be a site. Let

. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules on C such that Fn = Fn+1/I
nFn+1.

Let p ≥ 0. Assume ⊕
n≥0

Hp(C, InFn+1)

satisfies the ascending chain condition as a graded
⊕

n≥0 I
n/In+1-module. Then

the limit topology on M = limHp(C,Fn) is the I-adic topology.

Proof. Set Fn = Ker(M → Hp(C,Fn)) for n ≥ 1 and F 0 = M . Observe that
IFn ⊂ Fn+1. In particular InM ⊂ Fn. Hence the I-adic topology is finer than the
limit topology. For the converse, we will show that given n there exists an m ≥ n
such that Fm ⊂ InM4. We have injective maps

Fn/Fn+1 −→ Hp(C,Fn+1)

whose image is contained in the image of Hp(C, InFn+1)→ Hp(C,Fn+1). Denote

En ⊂ Hp(C, InFn+1)

the inverse image of Fn/Fn+1. Then
⊕
En is a graded

⊕
In/In+1-submodule of⊕

Hp(C, InFn+1) and
⊕
En →

⊕
Fn/Fn+1 is a homomorphism of graded mod-

ules; details omitted. By assumption
⊕
En is generated by finitely many homoge-

neous elements over
⊕
In/In+1. Since En → Fn/Fn+1 is surjective, we see that

the same thing is true of
⊕
Fn/Fn+1. Hence we can find r and c1, . . . , cr ≥ 0 and

ai ∈ F ci whose images in
⊕
Fn/Fn+1 generate. Set c = max(ci).

For n ≥ c we claim that IFn = Fn+1. The claim shows that Fn+c = InF c ⊂ InM
as desired. To prove the claim suppose a ∈ Fn+1. The image of a in Fn+1/Fn+2 is
a linear combination of our ai. Therefore a−

∑
fiai ∈ Fn+2 for some fi ∈ In+1−ci .

Since In+1−ci = I · In−ci as n ≥ ci we can write fi =
∑
gi,jhi,j with gi,j ∈ I and

hi,jai ∈ Fn. Thus we see that Fn+1 = Fn+2 + IFn. A simple induction argument
gives Fn+1 = Fn+e + IFn for all e > 0. It follows that IFn is dense in Fn+1.
Choose generators k1, . . . , kr of I and consider the continuous map

u : (Fn)⊕r −→ Fn+1, (x1, . . . , xr) 7→
∑

kixi

(in the limit topology). By the above the image of (Fm)⊕r under u is dense in
Fm+1 for all m ≥ n. By the open mapping lemma (More on Algebra, Lemma
15.36.5) we find that u is open. Hence u is surjective. Hence IFn = Fn+1 for
n ≥ c. This concludes the proof. □

4In fact, there exist a c ≥ 0 such that Fn+c ⊂ InM for all n.
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Lemma 21.22.4.0GYT Let I be an ideal of a ring A. Let C be a site. Let
. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules on C such that Fn = Fn+1/I
nFn+1.

Let p ≥ 0. Given n define

Nn =
⋂

m≥n
Im (Hp(C, InFm+1)→ Hp(C, InFn+1))

If
⊕
Nn satisfies the ascending chain condition as a graded

⊕
n≥0 I

n/In+1-module,
then the limit topology on M = limHp(C,Fn) is the I-adic topology.

Proof. The proof is exactly the same as the proof of Lemma 21.22.3. In fact, the
result will follow from the arguments given there as soon as we show that

⊕
Nn is

a graded
⊕

n≥0 I
n/In+1-submodule of

⊕
Hp+1(C, InFn+1) and that Fn/Fn+1 ⊂

Hp(C,Fn+1) is contained in the image of Nn → Hp(C,Fn+1). In the proof of
Lemma 21.22.2 we have seen the statement on the module structure.
Let t ∈ Fn. Choose an element s ∈ Hp(C, InFn+1) which maps to the image of
t in Hp(C,Fn+1). We have to show that s is in Nn. Now Fn is the kernel of
the map from M → Hp(C,Fn) hence for all m ≥ n we can map t to an element
tm ∈ Hp(C,Fm+1) which maps to zero in Hp(C,Fn). Consider the cohomology
sequence

Hp−1(C,Fn)→ Hp(C, InFm+1)→ Hp(C,Fm+1)→ Hp(C,Fn)
coming from the short exact sequence 0 → InFm+1 → Fm+1 → Fn → 0. We
can choose sm ∈ Hp(C, InFm+1) mapping to tm. Comparing the sequence above
with the one for m = n we see that sm maps to s up to an element in the image
of Hp−1(C,Fn) → Hp(C, InFn+1). However, this map factors through the map
Hp(C, InFm+1)→ Hp(C, InFn+1) and we see that s is in the image as desired. □

21.23. Derived and homotopy limits

0940 Let C be a site. Consider the category C ×N with Mor((U, n), (V,m)) = ∅ if n > m
and Mor((U, n), (V,m)) = Mor(U, V ) else. We endow this with the structure of a
site by letting coverings be families {(Ui, n) → (U, n)} such that {Ui → U} is a
covering of C. Then the reader verifies immediately that sheaves on C ×N are the
same thing as inverse systems of sheaves on C. In particular Ab(C ×N) is inverse
systems of abelian sheaves on C. Consider now the functor

lim : Ab(C ×N)→ Ab(C)
which takes an inverse system to its limit. This is nothing but g∗ where g : Sh(C ×
N)→ Sh(C) is the morphism of topoi associated to the continuous and cocontinuous
functor C ×N → C. (Observe that g−1 assigns to a sheaf on C the corresponding
constant inverse system.)
By the general machinery explained above we obtain a derived functor

R lim = Rg∗ : D(C ×N)→ D(C).
As indicated this functor is often denoted R lim.
On the other hand, the continuous and cocontinuous functors C → C ×N, U 7→
(U, n) define morphisms of topoi in : Sh(C)→ Sh(C×N). Of course i−1

n is the func-
tor which picks the nth term of the inverse system. Thus there are transformations
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of functors i−1
n+1 → i−1

n . Hence given K ∈ D(C ×N) we get Kn = i−1
n K ∈ D(C)

and maps Kn+1 → Kn. In Derived Categories, Definition 13.34.1 we have defined
the notion of a homotopy limit

R limKn ∈ D(C)

We claim the two notions agree (as far as it makes sense).

Lemma 21.23.1.0941 Let C be a site. Let K be an object of D(C ×N). Set Kn = i−1
n K

as above. Then
R limK ∼= R limKn

in D(C).

Proof. To calculate R lim on an object K of D(C × N) we choose a K-injective
representative I• whose terms are injective objects of Ab(C × N), see Injectives,
Theorem 19.12.6. We may and do think of I• as an inverse system of complexes
(I•
n) and then we see that

R limK = lim I•
n

where the right hand side is the termwise inverse limit.

Let J = (Jn) be an injective object of Ab(C × N). The morphisms (U, n) →
(U, n+ 1) are monomorphisms of C ×N, hence J (U, n+ 1)→ J (U, n) is surjective
(Lemma 21.12.6). It follows that Jn+1 → Jn is surjective as a map of presheaves.

Note that the functor i−1
n has an exact left adjoint in,!. Namely, in,!F is the inverse

system . . . 0→ 0→ F → . . .→ F . Thus the complexes i−1
n I• = I•

n are K-injective
by Derived Categories, Lemma 13.31.9.

Because we chose our K-injective complex to have injective terms we conclude that

0→ lim I•
n →

∏
I•
n →

∏
I•
n → 0

is a short exact sequence of complexes of abelian sheaves as it is a short exact
sequence of complexes of abelian presheaves. Moreover, the products in the middle
and the right represent the products in D(C), see Injectives, Lemma 19.13.4 and
its proof (this is where we use that I•

n is K-injective). Thus R limK is a homotopy
limit of the inverse system (Kn) by definition of homotopy limits in triangulated
categories. □

Lemma 21.23.2.0D6K Let (C,O) be a ringed site. The functors RΓ(C,−) and RΓ(U,−)
for U ∈ Ob(C) commute with R lim. Moreover, there are short exact sequences

0→ R1 limHm−1(U,Kn)→ Hm(U,R limKn)→ limHm(U,Kn)→ 0

for any inverse system (Kn) in D(O) and m ∈ Z. Similar for Hm(C, R limKn).

Proof. The first statement follows from Injectives, Lemma 19.13.6. Then we may
apply More on Algebra, Remark 15.86.10 to R limRΓ(U,Kn) = RΓ(U,R limKn)
to get the short exact sequences. □

Lemma 21.23.3.0A07 Let f : (Sh(C),O)→ (Sh(C′),O′) be a morphism of ringed topoi.
Then Rf∗ commutes with R lim, i.e., Rf∗ commutes with derived limits.
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Proof. Let (Kn) be an inverse system of objects of D(O). By induction on n we
may choose actual complexes K•

n of O-modules and maps of complexes K•
n+1 → K•

n

representing the maps Kn+1 → Kn in D(O). In other words, there exists an object
K in D(C ×N) whose associated inverse system is the given one. Next, consider
the commutative diagram

Sh(C ×N)
g

//

f×1
��

Sh(C)

f

��
Sh(C′ ×N) g′

// Sh(C′)

of morphisms of topoi. It follows that R limR(f × 1)∗K = Rf∗R limK. Working
through the definitions and using Lemma 21.23.1 we obtain that R lim(Rf∗Kn) =
Rf∗(R limKn).
Alternate proof in case C has enough points. Consider the defining distinguished
triangle

R limKn →
∏

Kn →
∏

Kn

in D(O). Applying the exact functor Rf∗ we obtain the distinguished triangle

Rf∗(R limKn)→ Rf∗

(∏
Kn

)
→ Rf∗

(∏
Kn

)
in D(O′). Thus we see that it suffices to prove that Rf∗ commutes with products
in the derived category (which are not just given by products of complexes, see
Injectives, Lemma 19.13.4). However, since Rf∗ is a right adjoint by Lemma 21.19.1
this follows formally (see Categories, Lemma 4.24.5). Caution: Note that we cannot
apply Categories, Lemma 4.24.5 directly as R limKn is not a limit in D(O). □

Remark 21.23.4.0BKW Let (C,O) be a ringed site. Let (Kn) be an inverse system in
D(O). Set K = R limKn. For each n and m let Hmn = Hm(Kn) be the mth
cohomology sheaf of Kn and similarly set Hm = Hm(K). Let us denote Hmn the
presheaf

U 7−→ Hmn (U) = Hm(U,Kn)
Similarly we set Hm(U) = Hm(U,K). By Lemma 21.20.3 we see that Hmn is the
sheafification of Hmn and Hm is the sheafification of Hm. Here is a diagram

K Hm

��

// Hm

��
R limKn limHmn // limHmn

In general it may not be the case that limHmn is the sheafification of limHmn . If
U ∈ C, then we have short exact sequences
(21.23.4.1)0BKX 0→ R1 limHm−1

n (U)→ Hm(U)→ limHmn (U)→ 0
by Lemma 21.23.2.

The following lemma applies to an inverse system of quasi-coherent modules with
surjective transition maps on an algebraic space or an algebraic stack.

Lemma 21.23.5.0BKY Let (C,O) be a ringed site. Let (Fn) be an inverse system of
O-modules. Let B ⊂ Ob(C) be a subset. Assume

https://stacks.math.columbia.edu/tag/0BKW
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(1) every object of C has a covering whose members are elements of B,
(2) Hp(U,Fn) = 0 for p > 0 and U ∈ B,
(3) the inverse system Fn(U) has vanishing R1 lim for U ∈ B.

Then R limFn = limFn and we have Hp(U, limFn) = 0 for p > 0 and U ∈ B.
Proof. Set Kn = Fn and K = R limFn. Using the notation of Remark 21.23.4
and assumption (2) we see that for U ∈ B we have Hmn (U) = 0 when m ̸= 0
and H0

n(U) = Fn(U). From Equation (21.23.4.1) and assumption (3) we see that
Hm(U) = 0 when m ̸= 0 and equal to limFn(U) when m = 0. Sheafifying using
(1) we find that Hm = 0 when m ̸= 0 and equal to limFn when m = 0. Hence
K = limFn. Since Hm(U,K) = Hm(U) = 0 for m > 0 (see above) we see that the
second assertion holds. □

Lemma 21.23.6.0D6L Let (C,O) be a ringed site. Let (Kn) be an inverse system in
D(O). Let V ∈ Ob(C) and m ∈ Z. Assume there exist an integer n(V ) and a
cofinal system CovV of coverings of V such that for {Vi → V } ∈ CovV

(1) R1 limHm−1(Vi,Kn) = 0, and
(2) Hm(Vi,Kn)→ Hm(Vi,Kn(V )) is injective for n ≥ n(V ).

Then the map on sections Hm(R limKn)(V )→ Hm(Kn(V ))(V ) is injective.
Proof. Let γ ∈ Hm(R limKn)(V ) map to zero inHm(Kn(V ))(V ). SinceHm(R limKn)
is the sheafification of U 7→ Hm(U,R limKn) (by Lemma 21.20.3) we can choose
{Vi → V } ∈ CovV and elements γ̃i ∈ Hm(Vi, R limKn) mapping to γ|Vi . Then γ̃i
maps to γ̃i,n(V ) ∈ Hm(Vi,Kn(V )). Using that Hm(Kn(V )) is the sheafification of
U 7→ Hm(U,Kn(V )) (by Lemma 21.20.3 again) we see that after replacing {Vi → V }
by a refinement we may assume that γ̃i,n(V ) = 0 for all i. For this covering we con-
sider the short exact sequences

0→ R1 limHm−1(Vi,Kn)→ Hm(Vi, R limKn)→ limHm(Vi,Kn)→ 0
of Lemma 21.23.2. By assumption (1) the group on the left is zero and by assump-
tion (2) the group on the right maps injectively into Hm(Vi,Kn(V )). We conclude
γ̃i = 0 and hence γ = 0 as desired. □

Lemma 21.23.7.0D6M Let (C,O) be a ringed site. Let E ∈ D(O). Let B ⊂ Ob(C) be a
subset. Assume

(1) every object of C has a covering whose members are elements of B, and
(2) for every V ∈ B there exist a function p(V,−) : Z → Z and a cofinal

system CovV of coverings of V such that
Hp(Vi, Hm−p(E)) = 0

for all {Vi → V } ∈ CovV and all integers p,m satisfying p > p(V,m).
Then the canonical map E → R lim τ≥−nE is an isomorphism in D(O).
Proof. Set Kn = τ≥−nE and K = R limKn. The canonical map E → K comes
from the canonical maps E → Kn = τ≥−nE. We have to show that E → K
induces an isomorphism Hm(E) → Hm(K) of cohomology sheaves. In the rest
of the proof we fix m. If n ≥ −m, then the map E → τ≥−nE = Kn induces an
isomorphism Hm(E) → Hm(Kn). To finish the proof it suffices to show that for
every V ∈ B there exists an integer n(V ) ≥ −m such that the map Hm(K)(V )→
Hm(Kn(V ))(V ) is injective. Namely, then the composition

Hm(E)(V )→ Hm(K)(V )→ Hm(Kn(V ))(V )

https://stacks.math.columbia.edu/tag/0D6L
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is a bijection and the second arrow is injective, hence the first arrow is bijective.
By property (1) this will imply Hm(E)→ Hm(K) is an isomorphism. Set
n(V ) = 1 + max{−m, p(V,m− 1)−m,−1 + p(V,m)−m,−2 + p(V,m+ 1)−m}.
so that in any case n(V ) ≥ −m. Claim: the maps

Hm−1(Vi,Kn+1)→ Hm−1(Vi,Kn) and Hm(Vi,Kn+1)→ Hm(Vi,Kn)
are isomorphisms for n ≥ n(V ) and {Vi → V } ∈ CovV . The claim implies con-
ditions (1) and (2) of Lemma 21.23.6 are satisfied and hence implies the desired
injectivity. Recall (Derived Categories, Remark 13.12.4) that we have distinguished
triangles

H−n−1(E)[n+ 1]→ Kn+1 → Kn → H−n−1(E)[n+ 2]
Looking at the asssociated long exact cohomology sequence the claim follows if
Hm+n(Vi, H−n−1(E)), Hm+n+1(Vi, H−n−1(E)), Hm+n+2(Vi, H−n−1(E))

are zero for n ≥ n(V ) and {Vi → V } ∈ CovV . This follows from our choice of n(V )
and the assumption in the lemma. □

Lemma 21.23.8.0D6N Let (C,O) be a ringed site. Let E ∈ D(O). Let B ⊂ Ob(C) be a
subset. Assume

(1) every object of C has a covering whose members are elements of B, and
(2) for every V ∈ B there exist an integer dV ≥ 0 and a cofinal system CovV

of coverings of V such that
Hp(Vi, Hq(E)) = 0 for {Vi → V } ∈ CovV , p > dV , and q < 0

Then the canonical map E → R lim τ≥−nE is an isomorphism in D(O).

Proof. This follows from Lemma 21.23.7 with p(V,m) = dV + max(0,m). □

Lemma 21.23.9.08U3 Let (C,O) be a ringed site. Let E ∈ D(O). Assume there exists
a function p(−) : Z→ Z and a subset B ⊂ Ob(C) such that

(1) every object of C has a covering whose members are elements of B,
(2) Hp(V,Hm−p(E)) = 0 for p > p(m) and V ∈ B.

Then the canonical map E → R lim τ≥−nE is an isomorphism in D(O).

Proof. Apply Lemma 21.23.7 with p(V,m) = p(m) and CovV equal to the set of
coverings {Vi → V } with Vi ∈ B for all i. □

Lemma 21.23.10.0D6P Let (C,O) be a ringed site. Let E ∈ D(O). Assume there exists
an integer d ≥ 0 and a subset B ⊂ Ob(C) such that

(1) every object of C has a covering whose members are elements of B,
(2) Hp(V,Hq(E)) = 0 for p > d, q < 0, and V ∈ B.

Then the canonical map E → R lim τ≥−nE is an isomorphism in D(O).

Proof. Apply Lemma 21.23.8 with dV = d and CovV equal to the set of coverings
{Vi → V } with Vi ∈ B for all i. □

The lemmas above can be used to compute cohomology in certain situations.

Lemma 21.23.11.0BKZ Let (C,O) be a ringed site. Let K be an object of D(O). Let
B ⊂ Ob(C) be a subset. Assume

(1) every object of C has a covering whose members are elements of B,
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(2) Hp(U,Hq(K)) = 0 for all p > 0, q ∈ Z, and U ∈ B.
Then Hq(U,K) = H0(U,Hq(K)) for q ∈ Z and U ∈ B.

Proof. Observe that K = R lim τ≥−nK by Lemma 21.23.10 with d = 0. Let U ∈ B.
By Equation (21.23.4.1) we get a short exact sequence

0→ R1 limHq−1(U, τ≥−nK)→ Hq(U,K)→ limHq(U, τ≥−nK)→ 0

Condition (2) implies Hq(U, τ≥−nK) = H0(U,Hq(τ≥−nK)) for all q by using the
spectral sequence of Derived Categories, Lemma 13.21.3. The spectral sequence
converges because τ≥−nK is bounded below. If n > −q then we have Hq(τ≥−nK) =
Hq(K). Thus the systems on the left and the right of the displayed short exact
sequence are eventually constant with values H0(U,Hq−1(K)) and H0(U,Hq(K))
and the lemma follows. □

Here is another case where we can describe the derived limit.

Lemma 21.23.12.0A09 Let (C,O) be a ringed site. Let (Kn) be an inverse system of
objects of D(O). Let B ⊂ Ob(C) be a subset. Assume

(1) every object of C has a covering whose members are elements of B,
(2) for all U ∈ B and all q ∈ Z we have

(a) Hp(U,Hq(Kn)) = 0 for p > 0,
(b) the inverse system H0(U,Hq(Kn)) has vanishing R1 lim.

Then Hq(R limKn) = limHq(Kn) for q ∈ Z.

Proof. Set K = R limKn. We will use notation as in Remark 21.23.4. Let U ∈ B.
By Lemma 21.23.11 and (2)(a) we have Hq(U,Kn) = H0(U,Hq(Kn)). Using that
the functor RΓ(U,−) commutes with derived limits we have

Hq(U,K) = Hq(R limRΓ(U,Kn)) = limH0(U,Hq(Kn))

where the final equality follows from More on Algebra, Remark 15.86.10 and as-
sumption (2)(b). Thus Hq(U,K) is the inverse limit the sections of the sheaves
Hq(Kn) over U . Since limHq(Kn) is a sheaf we find using assumption (1) that
Hq(K), which is the sheafification of the presheaf U 7→ Hq(U,K), is equal to
limHq(Kn). This proves the lemma. □

21.24. Producing K-injective resolutions

070N Let (C,O) be a ringed site. Let F• be a complex of O-modules. The category
Mod(O) has enough injectives, hence we can use Derived Categories, Lemma 13.29.3
produce a diagram

. . . // τ≥−2F• //

��

τ≥−1F•

��
. . . // I•

2
// I•

1

in the category of complexes of O-modules such that
(1) the vertical arrows are quasi-isomorphisms,
(2) I•

n is a bounded below complex of injectives,
(3) the arrows I•

n+1 → I•
n are termwise split surjections.
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The category ofO-modules has limits (they are computed on the level of presheaves),
hence we can form the termwise limit I• = limn I•

n. By Derived Categories, Lem-
mas 13.31.4 and 13.31.8 this is a K-injective complex. In general the canonical
map
(21.24.0.1)070P F• → I•

may not be a quasi-isomorphism. In the following lemma we describe some condi-
tions under which it is.

Lemma 21.24.1.070Q In the situation described above. Denote Hm = Hm(F•) the mth
cohomology sheaf. Let B ⊂ Ob(C) be a subset. Let d ∈ N. Assume

(1) every object of C has a covering whose members are elements of B,
(2) for every U ∈ B we have Hp(U,Hq) = 0 for p > d and q < 05.

Then (21.24.0.1) is a quasi-isomorphism.

Proof. By Derived Categories, Lemma 13.34.4 it suffices to show that the canonical
map F• → R lim τ≥−nF• is an isomorphism. This follows from Lemma 21.23.10.

□

Here is a technical lemma about cohomology sheaves of termwise limits of inverse
systems of complexes of modules. We should avoid using this lemma as much as
possible and instead use arguments with derived inverse limits.

Lemma 21.24.2.08CT Let (C,O) be a ringed site. Let (F•
n) be an inverse system of

complexes of O-modules. Let m ∈ Z. Suppose given B ⊂ Ob(C) and an integer n0
such that

(1) every object of C has a covering whose members are elements of B,
(2) for every U ∈ B

(a) the systems of abelian groups Fm−2
n (U) and Fm−1

n (U) have vanishing
R1 lim (for example these have the Mittag-Leffler property),

(b) the system of abelian groups Hm−1(F•
n(U)) has vanishing R1 lim (for

example it has the Mittag-Leffler property), and
(c) we have Hm(F•

n(U)) = Hm(F•
n0

(U)) for all n ≥ n0.
Then the maps Hm(F•) → limHm(F•

n) → Hm(F•
n0

) are isomorphisms of sheaves
where F• = limF•

n is the termwise inverse limit.

Proof. Let U ∈ B. Note that Hm(F•(U)) is the cohomology of
limn Fm−2

n (U)→ limn Fm−1
n (U)→ limn Fmn (U)→ limn Fm+1

n (U)
in the third spot from the left. By assumptions (2)(a) and (2)(b) we may apply
More on Algebra, Lemma 15.86.3 to conclude that

Hm(F•(U)) = limHm(F•
n(U))

By assumption (2)(c) we conclude
Hm(F•(U)) = Hm(F•

n(U))
for all n ≥ n0. By assumption (1) we conclude that the sheafification of U 7→
Hm(F•(U)) is equal to the sheafification of U 7→ Hm(F•

n(U)) for all n ≥ n0. Thus
the inverse system of sheaves Hm(F•

n) is constant for n ≥ n0 with value Hm(F•)
which proves the lemma. □

5It suffices if ∀m, ∃p(m), Hp(U.Hm−p) = 0 for p > p(m), see Lemma 21.23.9.
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21.25. Bounded cohomological dimension

0D6Q In this section we ask when a functor Rf∗ has bounded cohomological dimension.
This is a rather subtle question when we consider unbounded complexes.

Situation 21.25.1.0D6R Let C be a site. Let O be a sheaf of rings on C. Let A ⊂ Mod(O)
be a weak Serre subcategory. We assume the following is true: there exists a subset
B ⊂ Ob(C) such that

(1) every object of C has a covering whose members are in B, and
(2) for every V ∈ B there exists an integer dV and a cofinal system CovV of

coverings of V such that
Hp(Vi,F) = 0 for {Vi → V } ∈ CovV , p > dV , and F ∈ Ob(A)

Lemma 21.25.2.0D6S This is [LO08a,
Proposition 2.1.4]
with slightly
changed hypotheses;
it is the analogue of
[Spa88, Proposition
3.13] for sites.

In Situation 21.25.1 for any E ∈ DA(O) the canonical map E →
R lim τ≥−nE is an isomorphism in D(O).

Proof. Follows immediately from Lemma 21.23.8. □

Lemma 21.25.3.0D6T In Situation 21.25.1 let (Kn) be an inverse system in D+
A(O).

Assume that for every j the inverse system (Hj(Kn)) in A is eventually constant
with value Hj . Then Hj(R limKn) = Hj for all j.

Proof. Let V ∈ B. Let {Vi → V } be in the set CovV of Situation 21.25.1. Because
Kn is bounded below there is a spectral sequence

Ep,q2 = Hp(Vi, Hq(Kn))
converging to Hp+q(Vi,Kn). See Derived Categories, Lemma 13.21.3. Observe that
Ep,q2 = 0 for p > dV by assumption. Pick n0 such that

Hj+1 = Hj+1(Kn),
Hj = Hj(Kn),
. . . ,

Hj−dV −2 = Hj−dV −2(Kn)
for all n ≥ n0. Comparing the spectral sequences above for Kn and Kn0 , we see that
for n ≥ n0 the cohomology groups Hj−1(Vi,Kn) and Hj(Vi,Kn) are independent of
n. It follows that the map on sections Hj(R limKn)(V )→ Hj(Kn)(V ) is injective
for n large enough (depending on V ), see Lemma 21.23.6. Since every object of C
can be covered by elements of B, we conclude that the map Hj(R limKn)→ Hj is
injective.
Surjectivity is shown in a similar manner. Namely, pick U ∈ Ob(C) and γ ∈ Hj(U).
We want to lift γ to a section of Hj(R limKn) after replacing U by the members of
a covering. Hence we may assume U = V ∈ B by property (1) of Situation 21.25.1.
Pick n0 such that

Hj+1 = Hj+1(Kn),
Hj = Hj(Kn),
. . . ,

Hj−dV −2 = Hj−dV −2(Kn)
for all n ≥ n0. Choose an element {Vi → V } of CovV such that γ|Vi ∈ Hj(Vi) =
Hj(Kn0)(Vi) lifts to an element γn0,i ∈ Hj(Vi,Kn0). This is possible because
Hj(Kn0) is the sheafification of U 7→ Hj(U,Kn0) by Lemma 21.20.3. By the discus-
sion in the first paragraph of the proof we have that Hj−1(Vi,Kn) and Hj(Vi,Kn)
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are independent of n ≥ n0. Hence γn0,i lifts to an element γi ∈ Hj(Vi, R limKn)
by Lemma 21.23.2. This finishes the proof. □

Lemma 21.25.4.0D6U This is a version of
[LO08a, Lemma
2.1.10] with slightly
changed hypotheses.

Let f : (Sh(C),O)→ (Sh(C′),O′) be a morphism of ringed topoi.
Let A ⊂ Mod(O) and A′ ⊂ Mod(O′) be weak Serre subcategories. Assume there
is an integer N such that

(1) C,O,A satisfy the assumption of Situation 21.25.1,
(2) C′,O′,A′ satisfy the assumption of Situation 21.25.1,
(3) Rpf∗F ∈ Ob(A′) for p ≥ 0 and F ∈ Ob(A),
(4) Rpf∗F = 0 for p > N and F ∈ Ob(A),

Then for K in DA(O) we have
(a) Rf∗K is in DA′(O′),
(b) the map Hj(Rf∗K)→ Hj(Rf∗(τ≥−nK)) is an isomorphism for j ≥ N−n.

Proof. By Lemma 21.25.2 we have K = R lim τ≥−nK. By Lemma 21.23.3 we have
Rf∗K = R limRf∗τ≥−nK. The complexes Rf∗τ≥−nK are bounded below. The
spectral sequence

Ep,q2 = Rpf∗H
q(τ≥−nK)

converging to Hp+q(Rf∗τ≥−nK) (Derived Categories, Lemma 13.21.3) and assump-
tion (3) show that Rf∗τ≥−nK lies in D+

A′(O′), see Homology, Lemma 12.24.11.
Observe that for m ≥ n the map

Rf∗(τ≥−mK) −→ Rf∗(τ≥−nK)
induces an isomorphism on cohomology sheaves in degrees j ≥ −n + N by the
spectral sequences above. Hence we may apply Lemma 21.25.3 to conclude. □

It turns out that we sometimes need a variant of the lemma above where the
assumptions are sligthly different.

Situation 21.25.5.0D6V Let f : (C,O) → (C′,O′) be a morphism of ringed sites. Let
u : C′ → C be the corresponding continuous functor of sites. Let A ⊂ Mod(O) be
a weak Serre subcategory. We assume the following is true: there exists a subset
B′ ⊂ Ob(C′) such that

(1) every object of C′ has a covering whose members are in B′, and
(2) for every V ′ ∈ B′ there exists an integer dV ′ and a cofinal system CovV ′

of coverings of V ′ such that
Hp(u(V ′

i ),F) = 0 for {V ′
i → V ′} ∈ CovV ′ , p > dV ′ , and F ∈ Ob(A)

Lemma 21.25.6.0D6W This is a version of
[LO08a, Lemma
2.1.10] with slightly
changed hypotheses.

Let f : (C,O) → (C′,O′) be a morphism of ringed sites. assume
moreover there is an integer N such that

(1) C,O,A satisfy the assumption of Situation 21.25.1,
(2) f : (C,O)→ (C′,O′) and A satisfy the assumption of Situation 21.25.5,
(3) Rpf∗F = 0 for p > N and F ∈ Ob(A),

Then for K in DA(O) the map Hj(Rf∗K)→ Hj(Rf∗(τ≥−nK)) is an isomorphism
for j ≥ N − n.

Proof. Let K be in DA(O). By Lemma 21.25.2 we have K = R lim τ≥−nK. By
Lemma 21.23.3 we have Rf∗K = R limRf∗(τ≥−nK). Let V ′ ∈ B′ and let {V ′

i →
V ′} be an element of CovV ′ . Then we consider
Hj(V ′

i , Rf∗K) = Hj(u(V ′
i ),K) and Hj(V ′

i , Rf∗(τ≥−nK)) = Hj(u(V ′
i ), τ≥−nK)
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The assumption in Situation 21.25.5 implies that the last group is independent of
n for n large enough depending on j and dV ′ . Some details omitted. We apply this
for j and j − 1 and via Lemma 21.23.2 this gives that

Hj(V ′
i , Rf∗K) = limHj(V ′

i , Rf∗(τ≥−nK))
and the system on the right is constant for n larger than a constant depending only
on dV ′ and j. Thus Lemma 21.23.6 implies that

Hj(Rf∗K)(V ′) −→
(
limHj(Rf∗(τ≥−nK))

)
(V ′)

is injective. Since the elements V ′ ∈ B′ cover every object of C′ we conclude that
the map Hj(Rf∗K)→ limHj(Rf∗(τ≥−nK)) is injective. The spectral sequence

Ep,q2 = Rpf∗H
q(τ≥−nK)

converging to Hp+q(Rf∗(τ≥−nK)) (Derived Categories, Lemma 13.21.3) and as-
sumption (3) show that Hj(Rf∗(τ≥−nK)) is constant for n ≥ N − j. Hence
Hj(Rf∗K)→ Hj(Rf∗(τ≥−nK)) is injective for j ≥ N − n.
Thus we proved the lemma with “isomorphism” in the last line of the lemma re-
placed by “injective”. However, now choose j and n with j ≥ N −n. Then consider
the distinguished triangle

τ≤−n−1K → K → τ≥−nK → (τ≤−n−1K)[1]
See Derived Categories, Remark 13.12.4. Since τ≥−nτ≤−n−1K = 0, the injectivity
already proven for τ−n−1K implies
0 = Hj(Rf∗(τ≤−n−1K)) = Hj+1(Rf∗(τ≤−n−1K)) = Hj+2(Rf∗(τ≤−n−1K)) = . . .

By the long exact cohomology sequence associated to the distinguished triangle
Rf∗(τ≤−n−1K)→ Rf∗K → Rf∗(τ≥−nK)→ Rf∗(τ≤−n−1K)[1]

this implies that Hj(Rf∗K)→ Hj(Rf∗(τ≥−nK)) is an isomorphism. □

21.26. Mayer-Vietoris

0EVX For the usual statement and proof of Mayer-Vietoris, please see Cohomology, Sec-
tion 20.8.
Let (C,O) be a ringed site. Consider a commutative diagram

E

��

// Y

��
Z // X

in the category C. In this situation, given an object K of D(O) we get what looks
like the beginning of a distinguished triangle

RΓ(X,K)→ RΓ(Z,K)⊕RΓ(Y,K)→ RΓ(E,K)
In the following lemma we make this more precise.

Lemma 21.26.1.0F16 In the situation above, choose a K-injective complex I• of O-
modules representing K. Using −1 times the canonical map for one of the four
arrows we get maps of complexes

I•(X) α−→ I•(Z)⊕ I•(Y ) β−→ I•(E)
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with β ◦ α = 0. Thus a canonical map
cKX,Z,Y,E : I•(X) −→ C(β)•[−1]

This map is canonical in the sense that a different choice of K-injective complex
representing K determines an isomorphic arrow in the derived category of abelian
groups. If cKX,Z,Y,E is an isomorphism, then using its inverse we obtain a canonical
distinguished triangle

RΓ(X,K)→ RΓ(Z,K)⊕RΓ(Y,K)→ RΓ(E,K)→ RΓ(X,K)[1]
All of these constructions are functorial in K.

Proof. This lemma proves itself. For example, if J • is a second K-injective complex
representingK, then we can choose a quasi-isomorphism I• → J • which determines
quasi-isomorphisms between all the complexes in sight. Details omitted. For the
construction of cones and the relationship with distinguished triangles see Derived
Categories, Sections 13.9 and 13.10. □

Lemma 21.26.2.0EWP In the situation above, let K1 → K2 → K3 → K1[1] be a dis-
tinguished triangle in D(O). If cKiX,Z,Y,E is a quasi-isomorphism for two i out of
{1, 2, 3}, then it is a quasi-isomorphism for the third i.

Proof. By rotating the triangle we may assume cK1
X,Z,Y,E and cK2

X,Z,Y,E are quasi-
isomorphisms. Choose a map f : I•

1 → I•
2 of K-injective complexes of O-modules

representing K1 → K2. Then K3 is represented by the K-injective complex C(f)•,
see Derived Categories, Lemma 13.31.3. Then the morphism cK3

X,Z,Y,E is an isomor-
phism as it is the third leg in a map of distinguished triangles in K(Ab) whose
other two legs are quasi-isomorphisms. Some details omitted; use Derived Cate-
gories, Lemma 13.4.3. □

Let us give a criterion for when this does produce a distinguished triangle.

Lemma 21.26.3.0EVY In the situation above assume
(1) h#

X = h#
Y ⨿h#

E
h#
Z , and

(2) h#
E → h#

Y is injective.
Then the construction of Lemma 21.26.1 produces a distinguished triangle

RΓ(X,K)→ RΓ(Z,K)⊕RΓ(Y,K)→ RΓ(E,K)→ RΓ(X,K)[1]
functorial for K in D(C).

Proof. We can represent K by a K-injective complex whose terms are injective
abelian sheaves, see Section 21.19. Thus it suffices to show: if I is an injective
abelian sheaf, then

0→ I(X)→ I(Z)⊕ I(Y )→ I(E)→ 0
is a short exact sequence. The first arrow is injective because by condition (1)
the map hY ⨿ hZ → hX becomes surjective after sheafification, which means that
{Y → X,Z → X} can be refined by a covering of X. The last arrow is surjective
because I(Y )→ I(E) is surjective. Namely, we have I(E) = Hom(Z#

E , I), I(Y ) =
Hom(Z#

Y , I), the map Z#
E → Z#

Y is injective by (2), and I is an injective abelian
sheaf. Please compare with Modules on Sites, Section 18.5. Finally, suppose we
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have s ∈ I(Y ) and t ∈ F(Z) mapping to the same element of I(E). Then s and t
define a map

s⨿ t : h#
Y ⨿ h

#
Z −→ I

which by assumption factors through h#
Y ⨿h#

E
h#
Z . Thus by assumption (1) we obtain

a unique map h#
X → I which corresponds to an element of I(X) restricting to s on

Y and t on Z. □

Lemma 21.26.4.0EVZ Let C be a site. Consider a commutative diagram

D //

��

F

��
E // G

of presheaves of sets on C and assume that
(1) G# = E# ⨿D# F#, and
(2) D# → F# is injective.

Then there is a canonical distinguished triangle
RΓ(G,K)→ RΓ(E ,K)⊕RΓ(F ,K)→ RΓ(D,K)→ RΓ(G,K)[1]

functorial in K ∈ D(C) where RΓ(G,−) is the cohomology discussed in Section
21.13.

Proof. Since sheafification is exact and since RΓ(G,−) = RΓ(G#,−) we may as-
sume D, E ,F ,G are sheaves of sets. Moreover, the cohomology RΓ(G,−) only de-
pends on the topos, not on the underlying site. Hence by Sites, Lemma 7.29.5 we
may replace C by a “larger” site with a subcanonical topology such that G = hX ,
F = hY , E = hZ , and D = hE for some objects X,Y, Z,E of C. In this case the
result follows from Lemma 21.26.3. □

21.27. Comparing two topologies

0EWK Let C be a category. Let Cov(C) ⊃ Cov′(C) be two ways to endow C with the struc-
ture of a site. Denote τ the topology corresponding to Cov(C) and τ ′ the topology
corresponding to Cov′(C). Then the identity functor on C defines a morphism of
sites

ϵ : Cτ −→ Cτ ′

where ϵ∗ is the identity functor on underlying presheaves and where ϵ−1 is the τ -
sheafification of a τ ′-sheaf. See Sites, Examples 7.14.3 and 7.22.3. In the situation
above we have the following

(1) ϵ∗ : Sh(Cτ )→ Sh(Cτ ′) is fully faithful and ϵ−1 ◦ ϵ∗ = id,
(2) ϵ∗ : Ab(Cτ )→ Ab(Cτ ′) is fully faithful and ϵ−1 ◦ ϵ∗ = id,
(3) Rϵ∗ : D(Cτ )→ D(Cτ ′) is fully faithful and ϵ−1 ◦Rϵ∗ = id,
(4) if O is a sheaf of rings for the τ -topology, then O is also a sheaf for the

τ ′-topology and ϵ becomes a flat morphism of ringed sites
ϵ : (Cτ ,Oτ ) −→ (Cτ ′ ,Oτ ′)

(5) ϵ∗ : Mod(Oτ )→ Mod(Oτ ′) is fully faithful and ϵ∗ ◦ ϵ∗ = id
(6) Rϵ∗ : D(Oτ )→ D(Oτ ′) is fully faithful and ϵ∗ ◦Rϵ∗ = id.
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Here are some explanations.
Ad (1). Let F be a sheaf of sets in the τ -topology. Then ϵ∗F is just F viewed as
a sheaf in the τ ′-topology. Applying ϵ−1 means taking the τ -sheafification of F ,
which doesn’t do anything as F is already a τ -sheaf. Thus ϵ−1(ϵ∗F)) = F . The
fully faithfulness follows by Categories, Lemma 4.24.4.
Ad (2). This is a consequence of (1) since pullback and pushforward of abelian
sheaves is the same as doing those operations on the underlying sheaves of sets.
Ad (3). Let K be an object of D(Cτ ). To compute Rϵ∗K we choose a K-injective
complex I• representing K and we set Rϵ∗K = ϵ∗I•. Since ϵ−1 : D(Cτ ′)→ D(Cτ )
is computed on an object L by applying the exact functor ϵ−1 to any complex of
abelian sheaves representing L, we find that ϵ−1Rϵ∗K is represented by ϵ−1ϵ∗I•.
By Part (1) we have I• = ϵ−1ϵ∗I•. In other words, we have ϵ−1 ◦Rϵ∗ = id and we
conclude as before.
Ad (4). Observe that ϵ−1Oτ ′ = Oτ , see discussion in part (1). Hence ϵ is a flat
morphism of ringed sites, see Modules on Sites, Definition 18.31.1. Not only that,
it is moreover clear that ϵ∗ = ϵ−1 on Oτ ′ -modules (the pullback as a module has
the same underlying abelian sheaf as the pullback of the underlying abelian sheaf).
Ad (5). This is clear from (2) and what we said in (4).
Ad (6). This is analogous to (3). We omit the details.

21.28. Formalities on cohomological descent

0D7N In this section we discuss only to what extent a morphism of ringed topoi deter-
mines an embedding from the derived category downstairs to the derived category
upstairs. Here is a typical result.

Lemma 21.28.1.0D7Q Let f : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed topoi.
Consider the full subcategory D′ ⊂ D(OD) consisting of objects K such that

K −→ Rf∗Lf
∗K

is an isomorphism. Then D′ is a saturated triangulated strictly full subcategory of
D(OD) and the functor Lf∗ : D′ → D(OC) is fully faithful.

Proof. See Derived Categories, Definition 13.6.1 for the definition of saturated in
this setting. See Derived Categories, Lemma 13.4.16 for a discussion of triangulated
subcategories. The canonical map of the lemma is the unit of the adjoint pair of
functors (Lf∗, Rf∗), see Lemma 21.19.1. Having said this the proof that D′ is a
saturated triangulated subcategory is omitted; it follows formally from the fact that
Lf∗ and Rf∗ are exact functors of triangulated categories. The final part follows
formally from fact that Lf∗ and Rf∗ are adjoint; compare with Categories, Lemma
4.24.4. □

Lemma 21.28.2.0D7R Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. Consider the full subcategory D′ ⊂ D(OC) consisting of objects K such that

Lf∗Rf∗K −→ K

is an isomorphism. Then D′ is a saturated triangulated strictly full subcategory of
D(OC) and the functor Rf∗ : D′ → D(OD) is fully faithful.
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Proof. See Derived Categories, Definition 13.6.1 for the definition of saturated in
this setting. See Derived Categories, Lemma 13.4.16 for a discussion of triangulated
subcategories. The canonical map of the lemma is the counit of the adjoint pair
of functors (Lf∗, Rf∗), see Lemma 21.19.1. Having said this the proof that D′ is a
saturated triangulated subcategory is omitted; it follows formally from the fact that
Lf∗ and Rf∗ are exact functors of triangulated categories. The final part follows
formally from fact that Lf∗ and Rf∗ are adjoint; compare with Categories, Lemma
4.24.4. □

Lemma 21.28.3.0D7S Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. Let K be an object of D(OC). Assume

(1) f is flat,
(2) K is bounded below,
(3) f∗Rf∗H

q(K)→ Hq(K) is an isomorphism.
Then f∗Rf∗K → K is an isomorphism.
Proof. Observe that f∗Rf∗K → K is an isomorphism if and only if it is an isomor-
phism on cohomology sheaves Hj . Observe that Hj(f∗Rf∗K) = f∗Hj(Rf∗K) =
f∗Hj(Rf∗τ≤jK) = Hj(f∗Rf∗τ≤jK). Hence we may assume that K is bounded.
Then property (3) tells us the cohomology sheaves are in the triangulated subcat-
egory D′ ⊂ D(OC) of Lemma 21.28.2. Hence K is in it too. □

Lemma 21.28.4.0D7T Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. Let K be an object of D(OD). Assume

(1) f is flat,
(2) K is bounded below,
(3) Hq(K)→ Rf∗f

∗Hq(K) is an isomorphism.
Then K → Rf∗f

∗K is an isomorphism.
Proof. Observe that K → Rf∗f

∗K is an isomorphism if and only if it is an isomor-
phism on cohomology sheavesHj . Observe thatHj(Rf∗f

∗K) = Hj(Rf∗τ≤jf
∗K) =

Hj(Rf∗f
∗τ≤jK). Hence we may assume that K is bounded. Then property (3)

tells us the cohomology sheaves are in the triangulated subcategory D′ ⊂ D(OD)
of Lemma 21.28.1. Hence K is in it too. □

Lemma 21.28.5.0D7U Let f : (Sh(C),O)→ (Sh(C′),O′) be a morphism of ringed topoi.
Let A ⊂ Mod(O) and A′ ⊂ Mod(O′) be weak Serre subcategories. Assume

(1) f is flat,
(2) f∗ induces an equivalence of categories A′ → A,
(3) F ′ → Rf∗f

∗F ′ is an isomorphism for F ′ ∈ Ob(A′).
Then f∗ : D+

A′(O′) → D+
A(O) is an equivalence of categories with quasi-inverse

given by Rf∗ : D+
A(O)→ D+

A′(O′).
Proof. By assumptions (2) and (3) and Lemmas 21.28.4 and 21.28.1 we see that
f∗ : D+

A′(O′) → D+
A(O) is fully faithful. Let F ∈ Ob(A). Then we can write F =

f∗F ′. Then Rf∗F = Rf∗f
∗F ′ = F ′. In particular, we have Rpf∗F = 0 for p > 0

and f∗F ∈ Ob(A′). Thus for any K ∈ D+
A(O) we see, using the spectral sequence

Ep,q2 = Rpf∗H
q(K) converging to Rp+qf∗K, that Rf∗K is in D+

A′(O′). Of course,
it also follows from Lemmas 21.28.3 and 21.28.2 that Rf∗ : D+

A(O) → D+
A′(O′) is

fully faithful. Since f∗ and Rf∗ are adjoint we then get the result of the lemma,
for example by Categories, Lemma 4.24.4. □
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Lemma 21.28.6.0D7V This is analogous to
[LO08a, Theorem
2.2.3].

Let f : (Sh(C),O)→ (Sh(C′),O′) be a morphism of ringed topoi.
Let A ⊂ Mod(O) and A′ ⊂ Mod(O′) be weak Serre subcategories. Assume

(1) f is flat,
(2) f∗ induces an equivalence of categories A′ → A,
(3) F ′ → Rf∗f

∗F ′ is an isomorphism for F ′ ∈ Ob(A′),
(4) C,O,A satisfy the assumption of Situation 21.25.1,
(5) C′,O′,A′ satisfy the assumption of Situation 21.25.1.

Then f∗ : DA′(O′) → DA(O) is an equivalence of categories with quasi-inverse
given by Rf∗ : DA(O)→ DA′(O′).

Proof. Since f∗ is exact, it is clear that f∗ defines a functor f∗ : DA′(O′)→ DA(O)
as in the statement of the lemma and that moreover this functor commutes with
the truncation functors τ≥−n. We already know that f∗ and Rf∗ are quasi-inverse
equivalence on the corresponding bounded below categories, see Lemma 21.28.5.
By Lemma 21.25.4 with N = 0 we see that Rf∗ indeed defines a functor Rf∗ :
DA(O) → DA′(O′) and that moreover this functor commutes with the truncation
functors τ≥−n. Thus for K in DA(O) the map f∗Rf∗K → K is an isomorphism as
this is true on trunctions. Similarly, for K ′ in DA′(O′) the map K ′ → Rf∗f

∗K ′ is
an isomorphism as this is true on trunctions. This finishes the proof. □

Lemma 21.28.7.0D7W This is analogous to
[LO08a, Theorem
2.2.3].

Let f : (C,O) → (C′,O′) be a morphism of ringed sites. Let
A ⊂ Mod(O) and A′ ⊂ Mod(O′) be weak Serre subcategories. Assume

(1) f is flat,
(2) f∗ induces an equivalence of categories A′ → A,
(3) F ′ → Rf∗f

∗F ′ is an isomorphism for F ′ ∈ Ob(A′),
(4) C,O,A satisfy the assumption of Situation 21.25.1,
(5) f : (C,O)→ (C′,O′) and A satisfy the assumption of Situation 21.25.5.

Then f∗ : DA′(O′) → DA(O) is an equivalence of categories with quasi-inverse
given by Rf∗ : DA(O)→ DA′(O′).

Proof. The proof of this lemma is exactly the same as the proof of Lemma 21.28.6
except the reference to Lemma 21.25.4 is replaced by a reference to Lemma 21.25.6.

□

21.29. Comparing two topologies, II

0F17 Let C be a category. Let Cov(C) ⊃ Cov′(C) be two ways to endow C with the struc-
ture of a site. Denote τ the topology corresponding to Cov(C) and τ ′ the topology
corresponding to Cov′(C). Then the identity functor on C defines a morphism of
sites

ϵ : Cτ −→ Cτ ′

where ϵ∗ is the identity functor on underlying presheaves and where ϵ−1 is the τ -
sheafification of a τ ′-sheaf (hence clearly exact). Let O be a sheaf of rings for the
τ -topology. Then O is also a sheaf for the τ ′-topology and ϵ becomes a morphism
of ringed sites

ϵ : (Cτ ,Oτ ) −→ (Cτ ′ ,Oτ ′)
For more discussion, see Section 21.27.

Lemma 21.29.1.07A8 With ϵ : (Cτ ,Oτ ) → (Cτ ′ ,Oτ ′) as above. Let B ⊂ Ob(C) be a
subset. Let A ⊂ PMod(O) be a full subcategory. Assume
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(1) every object of A is a sheaf for the τ -topology,
(2) A is a weak Serre subcategory of Mod(Oτ ),
(3) every object of C has a τ ′-covering whose members are elements of B, and
(4) for every U ∈ B we have Hp

τ (U,F) = 0, p > 0 for all F ∈ A.
Then A is a weak Serre subcategory of Mod(Oτ ′) and there is an equivalence of
triangulated categories DA(Oτ ) = DA(Oτ ′) given by ϵ∗ and Rϵ∗.

Proof. Since ϵ−1Oτ ′ = Oτ we see that ϵ is a flat morphism of ringed sites and that
in fact ϵ−1 = ϵ∗ on sheaves of modules. By property (1) we can think of every object
of A as a sheaf of Oτ -modules and as a sheaf of Oτ ′ -modules. In other words, we
have fully faithful inclusion functors

A → Mod(Oτ )→ Mod(Oτ ′)

To avoid confusion we will denote A′ ⊂ Mod(Oτ ′) the image of A. Then it is clear
that ϵ∗ : A → A′ and ϵ∗ : A′ → A are quasi-inverse equivalences (see discussion
preceding the lemma and use that objects of A′ are sheaves in the τ topology).

Conditions (3) and (4) imply that Rpϵ∗F = 0 for p > 0 and F ∈ Ob(A). This
is true because Rpϵ∗ is the sheaf associated to the presheave U 7→ Hp

τ (U,F), see
Lemma 21.7.4. Thus any exact complex in A (which is the same thing as an exact
complex in Mod(Oτ ) whose terms are in A, see Homology, Lemma 12.10.3) remains
exact upon applying the functor ϵ∗.

Consider an exact sequence

F ′
0 → F ′

1 → F ′
2 → F ′

3 → F ′
4

in Mod(Oτ ′) with F ′
0,F ′

1,F ′
3,F ′

4 in A′. Apply the exact functor ϵ∗ to get an exact
sequence

ϵ∗F ′
0 → ϵ∗F ′

1 → ϵ∗F ′
2 → ϵ∗F ′

3 → ϵ∗F ′
4

in Mod(Oτ ). Since A is a weak Serre subcategory and since ϵ∗F ′
0, ϵ

∗F ′
1, ϵ

∗F ′
3, ϵ

∗F ′
4

are in A, we conclude that ϵ∗F2 is in A by Homology, Definition 12.10.1. Consider
the map of sequences

F ′
0

//

��

F ′
1

//

��

F ′
2

//

��

F ′
3

//

��

F ′
4

��
ϵ∗ϵ

∗F ′
0

// ϵ∗ϵ∗F ′
1

// ϵ∗ϵ∗F ′
2

// ϵ∗ϵ∗F ′
3

// ϵ∗ϵ∗F ′
4

The lower row is exact by the discussion in the preceding paragraph. The vertical
arrows with index 0, 1, 3, 4 are isomorphisms by the discussion in the first para-
graph. By the 5 lemma (Homology, Lemma 12.5.20) we find that F ′

2
∼= ϵ∗ϵ

∗F ′
2

and hence F ′
2 is in A′. In this way we see that A′ is a weak Serre subcategory of

Mod(Oτ ′), see Homology, Definition 12.10.1.

At this point it makes sense to talk about the derived categories DA(Oτ ) and
DA′(Oτ ′), see Derived Categories, Section 13.17. To finish the proof we show that
conditions (1) – (5) of Lemma 21.28.7 apply. We have already seen (1), (2), (3)
above. Note that since every object has a τ ′-covering by objects of B, a fortiori
every object has a τ -covering by objects of B. Hence condition (4) of Lemma 21.28.7
is satisfied. Similarly, condition (5) is satisfied as well. □
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Lemma 21.29.2.0F18 With ϵ : (Cτ ,Oτ ) → (Cτ ′ ,Oτ ′) as above. Let A be a set and for
α ∈ A let

Eα

��

// Yα

��
Zα // Xα

be a commutative diagram in the category C. Assume that
(1) a τ ′-sheaf F ′ is a τ -sheaf if F ′(Xα) = F ′(Zα)×F ′(Eα) F ′(Yα) for all α,
(2) for K ′ in D(Oτ ′) in the essential image of Rϵ∗ the maps cK′

Xα,Zα,Yα,Eα
of

Lemma 21.26.1 are isomorphisms for all α.
Then K ′ ∈ D+(Oτ ′) is in the essential image of Rϵ∗ if and only if the maps
cK

′

Xα,Zα,Yα,Eα
are isomorphisms for all α.

Proof. The “only if” direction is implied by assumption (2). On the other hand,
if K ′ has a unique nonzero cohomology sheaf, then the “if” direction follows from
assumption (1). In general we will use an induction argument to prove the “if”
direction. Let us say an object K ′ of D+(Oτ ′) satisfies (P) if the maps cK′

Xα,Zα,Yα,Eα
are isomorphisms for all α ∈ A.
Namely, let K ′ be an object of D+(Oτ ′) satisfying (P). Choose a distinguished
triangle

K ′ → Rϵ∗ϵ
−1K ′ →M ′ → K ′[1]

in D+(Oτ ′) where the first arrow is the adjuntion map. By (2) and Lemma 21.26.2
we see that M ′ has (P). On the other hand, applying ϵ−1 and using that ϵ−1Rϵ∗ = id
by Section 21.27 we find that ϵ−1M ′ = 0. In the next paragraph we will show
M ′ = 0 which finishes the proof.
Let K ′ be an object of D+(Oτ ′) satisfying (P) with ϵ−1K ′ = 0. We will show
K ′ = 0. Namely, given n ∈ Z such that Hi(K ′) = 0 for i < n we will show that
Hn(K ′) = 0. For α ∈ A we have a distinguished triangle
RΓτ ′(Xα,K

′)→ RΓτ ′(Zα,K ′)⊕RΓτ ′(Yα,K ′)→ RΓτ ′(Eα,K ′)→ RΓτ ′(Xα,K
′)[1]

by Lemma 21.26.1. Taking cohomology in degree n and using the assumed vanishing
of cohomology sheaves of K ′ we obtain an exact sequence

0→ Hn
τ ′(Xα,K

′)→ Hn
τ ′(Zα,K ′)⊕Hn

τ ′(Yα,K ′)→ Hn
τ ′(Eα,K ′)

which is the same as the exact sequence
0→ Γ(Xα, H

n(K ′))→ Γ(Zα, Hn(K ′))⊕ Γ(Yα, Hn(K ′))→ Γ(Eα, Hn(K ′))
We conclude that Hn(K ′) is a a τ -sheaf by assumption (1). However, since the
τ -sheafification ϵ−1Hn(K ′) = Hn(ϵ−1K ′) is 0 as ϵ−1K ′ = 0 we conclude that
Hn(K ′) = 0 as desired. □

Lemma 21.29.3.0F19 With ϵ : (Cτ ,Oτ )→ (Cτ ′ ,Oτ ′) as above. Let

E

��

// Y

��
Z // X

be a commutative diagram in the category C such that

https://stacks.math.columbia.edu/tag/0F18
https://stacks.math.columbia.edu/tag/0F19


21.30. COMPARING COHOMOLOGY 1958

(1) h#
X = h#

Y ⨿h#
E
h#
Z , and

(2) h#
E → h#

Y is injective
where # denotes τ -sheafification. Then for K ′ ∈ D(Oτ ′) in the essential image of
Rϵ∗ the map cK′

X,Z,Y,E of Lemma 21.26.1 (using the τ ′-topology) is an isomorphism.

Proof. This helper lemma is an almost immediate consequence of Lemma 21.26.3
and we strongly urge the reader skip the proof. Say K ′ = Rϵ∗K. Choose a K-
injective complex of Oτ -modules J • representing K. Then ϵ∗J • is a K-injective
complex of Oτ ′-modules representing K ′, see Lemma 21.20.10. Next,

0→ J •(X) α−→ J •(Z)⊕ J •(Y ) β−→ J •(E)→ 0
is a short exact sequence of complexes of abelian groups, see Lemma 21.26.3 and
its proof. Since this is the same as the sequence of complexes of abelian groups
which is used to define cK′

X,Z,Y,E , we conclude. □

21.30. Comparing cohomology

0EZ1 We develop some general theory which will help us compare cohomology in different
topologies. Given C, τ , and τ ′ as in Section 21.27 and a morphism f : X → Y in C
we obtain a commutative diagram of morphisms of topoi

(21.30.0.1)0EZ2

Sh(Cτ/X)
fτ

//

ϵX

��

Sh(Cτ/Y )

ϵY

��
Sh(Cτ ′/X)

fτ′ // Sh(Cτ ′/X)

Here the morphism ϵX , resp. ϵY is the comparison morphism of Section 21.27 for
the category C/X endowed with the two topologies τ and τ ′. The morphisms fτ
and fτ ′ are “relocalization” morphisms (Sites, Lemma 7.25.8). The commutativity
of the diagram is a special case of Sites, Lemma 7.28.1 (applied with C = Cτ/Y ,
D = Cτ ′/Y , u = id, U = X, and V = X). We also get ϵX,∗ ◦f−1

τ = f−1
τ ′ ◦ ϵY,∗ either

from the lemma or because it is obvious.

Situation 21.30.1.0EZ3 With C, τ , and τ ′ as in Section 21.27. Assume we are given
a subset P ⊂ Arrows(C) and for every object X of C we are given a weak Serre
subcategory A′

X ⊂ Ab(Cτ ′/X). We make the following assumption:
(1)0EZ4 given f : X → Y in P and Y ′ → Y general, then X ×Y Y ′ exists and

X ×Y Y ′ → Y ′ is in P,
(2)0EZ5 f−1

τ ′ sends A′
Y into A′

X for any morphism f : X → Y of C,
(3)0EZ6 given X in C and F ′ in A′

X , then F ′ satisfies the sheaf condition for
τ -coverings, i.e., F ′ = ϵX,∗ϵ

−1
X F ′,

(4)0EZ7 if f : X → Y in P and F ′ ∈ Ob(A′
X), then Rifτ ′,∗F ′ ∈ Ob(A′

Y ) for i ≥ 0.
(5)0EZ8 if {Ui → U}i∈I is a τ -covering, then there exist

(a) a τ ′-covering {Vj → U}j∈J ,
(b) a τ -covering {fj : Wj → Vj} consisting of a single fj ∈ P, and
(c) a τ ′-covering {Wjk →Wj}k∈Kj

such that {Wjk → U}j∈J,k∈Kj is a refinement of {Ui → U}i∈I .

Lemma 21.30.2.0EZ9 In Situation 21.30.1 for X in C denoteAX the objects of Ab(Cτ/X)
of the form ϵ−1

X F ′ with F ′ in A′
X . Then

https://stacks.math.columbia.edu/tag/0EZ3
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(1) for F in Ab(Cτ/X) we have F ∈ AX ⇔ ϵX,∗F ∈ A′
X , and

(2) f−1
τ sends AY into AX for any morphism f : X → Y of C.

Proof. Part (1) follows from (3) and part (2) follows from (2) and the commutativity
of (21.30.0.1) which gives ϵ−1

X ◦ f
−1
τ ′ = f−1

τ ◦ ϵ−1
Y . □

Our next goal is to prove Lemmas 21.30.10 and 21.30.9. We will do this by an
induction argument using the following induction hypothesis.
(Vn) For X in C and F in AX we have RiϵX,∗F = 0 for 1 ≤ i ≤ n.

Lemma 21.30.3.0EZA In Situation 21.30.1 assume (Vn) holds. For f : X → Y in P and
F in AX we have Rifτ ′,∗ϵX,∗F = ϵY,∗R

ifτ,∗F for i ≤ n.

Proof. We will use the commutative diagram (21.30.0.1) without further mention.
In particular have

Rfτ ′,∗RϵX,∗F = RϵY,∗Rfτ,∗F
Assumption (Vn) tells us that ϵX,∗F → RϵX,∗F is an isomorphism in degrees ≤
n. Hence Rfτ ′,∗ϵX,∗F → Rfτ ′,∗RϵX,∗F is an isomorphism in degrees ≤ n. We
conclude that

Rifτ ′,∗ϵX,∗F → Hi(RϵY,∗Rfτ,∗F)
is an isomorphism for i ≤ n. We will prove the lemma by looking at the second
page of the spectral sequence of Lemma 21.14.7 for RϵY,∗Rfτ,∗F . Here is a picture:

. . . . . . . . . . . .
ϵY,∗R

2fτ,∗F R1ϵY,∗R
2fτ,∗F R2ϵY,∗R

2fτ,∗F . . .
ϵY,∗R

1fτ,∗F R1ϵY,∗R
1fτ,∗F R2ϵY,∗R

1fτ,∗F . . .
ϵY,∗fτ,∗F R1ϵY,∗fτ,∗F R2ϵY,∗fτ,∗F . . .

Let (Cm) be the hypothesis: Rifτ ′,∗ϵX,∗F = ϵY,∗R
ifτ,∗F for i ≤ m. Observe that

(C0) holds. We will show that (Cm−1) ⇒ (Cm) for m < n. Namely, if (Cm−1)
holds, then for n ≥ p > 0 and q ≤ m− 1 we have

RpϵY,∗R
qfτ,∗F = RpϵY,∗ϵ

−1
Y ϵY,∗R

qfτ,∗F
= RpϵY,∗ϵ

−1
Y Rqfτ ′,∗ϵX,∗F = 0

First equality as ϵ−1
Y ϵY,∗ = id, the second by (Cm−1), and the final by by (Vn)

because ϵ−1
Y Rqfτ ′,∗ϵX,∗F is in AY by (4). Looking at the spectral sequence we see

that E0,m
2 = ϵY,∗R

mfτ,∗F is the only nonzero term Ep,q2 with p + q = m. Recall
that dp,qr : Ep,qr → Ep+r,q−r+1

r . Hence there are no nonzero differentials dp,qr , r ≥ 2
either emanating or entering this spot. We conclude that Hm(RϵY,∗Rfτ,∗F) =
ϵY,∗R

mfτ,∗F which implies (Cm) by the discussion above.

Finally, assume (Cn−1). The same analysis shows that E0,n
2 = ϵY,∗R

nfτ,∗F is the
only nonzero term Ep,q2 with p + q = n. We do still have no nonzero differentials
entering this spot, but there can be a nonzero differential emanating it. Namely,
the map d0,n

n+1 : ϵY,∗Rnfτ,∗F → Rn+1ϵY,∗fτ,∗F . We conclude that there is an exact
sequence

0→ Rnfτ ′,∗ϵX,∗F → ϵY,∗R
nfτ,∗F → Rn+1ϵY,∗fτ,∗F

By (4) and (3) the sheaf Rnfτ ′,∗ϵX,∗F satisfies the sheaf property for τ -coverings
as does ϵY,∗Rnfτ,∗F (use the description of ϵ∗ in Section 21.27). However, the
τ -sheafification of the τ ′-sheaf Rn+1ϵY,∗fτ,∗F is zero (by locality of cohomology;

https://stacks.math.columbia.edu/tag/0EZA
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use Lemmas 21.7.3 and 21.7.4). Thus Rnfτ ′,∗ϵX,∗F → ϵY,∗R
nfτ,∗F has to be an

isomorphism and the proof is complete. □

If E′, resp. E is an object ofD(Cτ ′/X), resp.D(Cτ/X) then we will writeHn
τ ′(U,E′),

resp. Hn
τ (U,E) for the cohomology of E′, resp. E over an object U of C/X.

Lemma 21.30.4.0EZB In Situation 21.30.1 if (Vn) holds, then for X in C and L ∈
D(Cτ ′/X) with Hi(L) = 0 for i < 0 and Hi(L) in A′

X for 0 ≤ i ≤ n we have
Hn
τ ′(X,L) = Hn

τ (X, ϵ−1
X L).

Proof. By Lemma 21.20.5 we have Hn
τ (X, ϵ−1

X L) = Hn
τ ′(X,RϵX,∗ϵ−1

X L). There is a
spectral sequence

Ep,q2 = RpϵX,∗ϵ
−1
X Hq(L)

converging to Hp+q(RϵX,∗ϵ−1
X L). By (Vn) we have the vanishing of Ep,q2 for 0 <

p ≤ n and 0 ≤ q ≤ n. Thus E0,q
2 = ϵX,∗ϵ

−1
X Hq(L) = Hq(L) are the only nonzero

terms Ep,q2 with p+ q ≤ n. It follows that the map
L −→ RϵX,∗ϵ

−1
X L

is an isomorphism in degrees ≤ n (small detail omitted). Hence we find that
Hi
τ ′(X,L) = Hi

τ ′(X,RϵX,∗ϵ−1
X L) for i ≤ n. Thus the lemma is proved. □

Lemma 21.30.5.0EZC In Situation 21.30.1 if (Vn) holds, then for X in C and F in AX the
map Hn+1

τ ′ (X, ϵX,∗F) → Hn+1
τ (X,F) is injective with image those classes which

become trivial on a τ ′-covering of X.

Proof. Recall that ϵ−1
X ϵX,∗F = F hence the map is given by pulling back cohomol-

ogy classes by ϵX . The Leray spectral sequence (Lemma 21.14.5)
Ep,q2 = Hp

τ ′(X,RqϵX,∗F)⇒ Hp+q
τ (X,F)

combined with the assumed vanishing gives an exact sequence
0→ Hn+1

τ ′ (X, ϵX,∗F)→ Hn+1
τ (X,F)→ H0

τ ′(X,Rn+1ϵX,∗F)
This is a restatement of the lemma. □

Lemma 21.30.6.0EZD In Situation 21.30.1 let f : X → Y be in P such that {X → Y }
is a τ -covering. Let F ′ be in A′

Y . If n ≥ 0 and

θ ∈ Equalizer
(
Hn+1
τ ′ (X,F ′) //

// H
n+1
τ ′ (X ×Y X,F ′)

)
then there exists a τ ′-covering {Yi → Y } such that θ restricts to zero in Hn+1

τ ′ (Yi×Y
X,F ′).

Proof. Observe that X×Y X exists by (1). For Z in C/Y denote F ′|Z the restriction
of F ′ to Cτ ′/Z. Recall that Hn+1

τ ′ (X,F ′) = Hn+1(Cτ ′/X,F ′|X), see Lemma 21.7.1.
The lemma asserts that the image θ ∈ H0(Y,Rn+1fτ ′,∗F ′|X) of θ is zero. Consider
the cartesian diagram

X ×Y X
pr1

��

pr2
// X

f

��
X

f // Y

By trivial base change (Lemma 21.21.1) we have
f−1
τ ′ R

n+1fτ ′,∗(F ′|X) = Rn+1pr1,τ ′,∗(F ′|X×YX)

https://stacks.math.columbia.edu/tag/0EZB
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If pr−1
1 θ = pr−1

2 θ, then the section f−1
τ ′ θ of f−1

τ ′ Rn+1fτ ′,∗(F ′|X) is zero, because it
is clear that pr−1

1 θ maps to the zero element in H0(X,Rn+1pr1,τ ′,∗(F ′|X×YX)). By
(2) we have F ′|X in A′

X . Thus G′ = Rn+1fτ ′,∗(F ′|X) is an object of A′
Y by (4).

Thus G′ satisfies the sheaf property for τ -coverings by (3). Since {X → Y } is a
τ -covering we conclude that restriction G′(Y )→ G′(X) is injective. It follows that
θ is zero. □

Lemma 21.30.7.0EZE In Situation 21.30.1 we have (Vn)⇒ (Vn+1).

Proof. Let X in C and F in AX . Let ξ ∈ Hn+1
τ (U,F) for some U/X. We have

to show that ξ restricts to zero on the members of a τ ′-covering of U . See Lemma
21.7.4. It follows from this that we may replace U by the members of a τ ′-covering
of U .
By locality of cohomology (Lemma 21.7.3) we can choose a τ -covering {Ui → U}
such that ξ restricts to zero on Ui. Choose {Vj → V }, {fj : Wj → Vj}, and
{Wjk → Wj} as in (5). After replacing both U by Vj and F by its restriction
to Cτ/Vj , which is allowed by (1), we reduce to the case discussed in the next
paragraph.
Here f : X → Y is an element of P such that {X → Y } is a τ -covering, F
is an object of AY , and ξ ∈ Hn+1

τ (Y,F) is such that there exists a τ ′-covering
{Xi → X}i∈I such that ξ restricts to zero on Xi for all i ∈ I. Problem: show that
ξ restricts to zero on a τ ′-covering of Y .
By Lemma 21.30.5 there exists a unique τ ′-cohomology class θ ∈ Hn+1

τ ′ (X, ϵX,∗F)
whose image is ξ|X . Since ξ|X pulls back to the same class on X ×Y X via the two
projections, we find that the same is true for θ (by uniqueness). By Lemma 21.30.6
we see that after replacing Y by the members of a τ ′-covering, we may assume that
θ = 0. Consequently, we may assume that ξ|X is zero.
Let f : X → Y be an element of P such that {X → Y } is a τ -covering, F is an
object of AY , and ξ ∈ Hn+1

τ (Y,F) maps to zero in Hn+1
τ (X,F). Problem: show

that ξ restricts to zero on a τ ′-covering of Y .
The assumptions tell us ξ maps to zero under the map

F −→ Rfτ,∗f
−1
τ F

Use Lemma 21.20.5. A simple argument using the distinguished triangle of trun-
cations (Derived Categories, Remark 13.12.4) shows that ξ maps to zero under the
map

F −→ τ≤nRfτ,∗f
−1
τ F

We will compare this with the map ϵY,∗F → K where
K = τ≤nRfτ ′,∗f

−1
τ ′ ϵY,∗F = τ≤nRfτ ′,∗ϵX,∗f

−1
τ F

The equality ϵX,∗f−1
τ = f−1

τ ′ ϵY,∗ is a property of (21.30.0.1). Consider the map
Rfτ ′,∗ϵX,∗f

−1
τ F −→ Rfτ ′,∗RϵX,∗f

−1
τ F = RϵY,∗Rfτ,∗f

−1
τ F

used in the proof of Lemma 21.30.3 which induces by adjunction a map
ϵ−1
Y Rfτ ′,∗ϵX,∗f

−1
τ F → Rfτ,∗f

−1
τ F

Taking trunctions we find a map
ϵ−1
Y K −→ τ≤nRfτ,∗f

−1
τ F

https://stacks.math.columbia.edu/tag/0EZE
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which is an isomorphism by Lemma 21.30.3; the lemma applies because f−1
τ F is in

AX by Lemma 21.30.2. Choose a distinguished triangle

ϵY,∗F → K → L→ ϵY,∗F [1]

The map F → fτ,∗f
−1
τ F is injective as {X → Y } is a τ -covering. Thus ϵY,∗F →

ϵY,∗fτ,∗f
−1
τ F = fτ ′,∗f

−1
τ ′ ϵY,∗F is injective too. Hence L only has nonzero coho-

mology sheaves in degrees 0, . . . , n. As fτ ′,∗f
−1
τ ′ ϵY,∗F is in A′

Y by (2) and (4) we
conclude that

H0(L) = Coker(ϵY,∗F → fτ ′,∗f
−1
τ ′ ϵY,∗F)

is in the weak Serre subcategory A′
Y . For 1 ≤ i ≤ n we see that Hi(L) =

Rifτ ′,∗f
−1
τ ′ ϵY,∗F is in A′

Y by (2) and (4). Pulling back the distinguished trian-
gle above by ϵY we get the distinguished triangle

F → τ≤nRfτ,∗f
−1
τ F → ϵ−1

Y L→ F [1]

Since ξ maps to zero in the middle term we find that ξ is the image of an element
ξ′ ∈ Hn

τ (Y, ϵ−1
Y L). By Lemma 21.30.4 we have

Hn
τ ′(Y,L) = Hn

τ (Y, ϵ−1
Y L),

Thus we may lift ξ′ to an element ofHn
τ ′(Y,L) and take the boundary intoHn+1

τ ′ (Y, ϵY,∗F)
to see that ξ is in the image of the canonical map Hn+1

τ ′ (Y, ϵY,∗F)→ Hn+1
τ (Y,F).

By locality of cohomology for Hn+1
τ ′ (Y, ϵY,∗F), see Lemma 21.7.3, we conclude. □

Lemma 21.30.8.0EZF In Situation 21.30.1 we have that (Vn) is true for all n. Moreover:
(1) For X in C and K ′ ∈ D+

A′
X

(Cτ ′/X) the map K ′ → RϵX,∗(ϵ−1
X K ′) is an

isomorphism.
(2) For f : X → Y in P and K ′ ∈ D+

A′
X

(Cτ ′/X) we have Rfτ ′,∗K
′ ∈

D+
A′
X

(Cτ ′/Y ) and ϵ−1
Y (Rfτ ′,∗K

′) = Rfτ,∗(ϵ−1
X K ′).

Proof. Observe that (V0) holds as it is the empty condition. Then we get (Vn) for
all n by Lemma 21.30.7.

Proof of (1). The object K = ϵ−1
X K ′ has cohomology sheaves Hi(K) = ϵ−1

X Hi(K ′)
in AX . Hence the spectral sequence

Ep,q2 = RpϵX,∗H
q(K)⇒ Hp+q(RϵX,∗K)

degenerates by (Vn) for all n and we find

Hn(RϵX,∗K) = ϵX,∗H
n(K) = ϵX,∗ϵ

−1
X Hi(K ′) = Hi(K ′).

again because Hi(K ′) is in A′
X . Thus the canonical map K ′ → RϵX,∗(ϵ−1

X K ′) is an
isomorphism.

Proof of (2). Using the spectral sequence

Ep,q2 = Rpfτ ′,∗H
q(K ′)⇒ Rp+qfτ ′,∗K

′

the fact that Rpfτ ′,∗H
q(K ′) is inA′

Y by (4), the fact thatA′
Y is a weak Serre subcat-

egory of Ab(Cτ ′/Y ), and Homology, Lemma 12.24.11 we conclude that Rfτ ′,∗K
′ ∈

D+
A′
X

(Cτ ′/X). To finish the proof we have to show the base change map

ϵ−1
Y (Rfτ ′,∗K

′) −→ Rfτ,∗(ϵ−1
X K ′)

https://stacks.math.columbia.edu/tag/0EZF
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is an isomorphism. Comparing the spectral sequence above to the spectral sequence

Ep,q2 = Rpfτ,∗H
q(ϵ−1

X K ′)⇒ Rp+qfτ,∗ϵ
−1
X K ′

we reduce this to the case where K ′ has a single nonzero cohomology sheaf F ′ in
A′
X ; details omitted. Then Lemma 21.30.3 gives ϵ−1

Y Rifτ ′,∗F ′ = Rifτ,∗ϵ
−1
X F ′ for

all i and the proof is complete. □

Lemma 21.30.9.0EZG In Situation 21.30.1. For anyX in C the categoryAX ⊂ Ab(Cτ/X)
is a weak Serre subcategory and the functor

RϵX,∗ : D+
AX

(Cτ/X) −→ D+
A′
X

(Cτ ′/X)

is an equivalence with quasi-inverse given by ϵ−1
X .

Proof. We need to check the conditions listed in Homology, Lemma 12.10.3 for AX .
If φ : F → G is a map in AX , then ϵX,∗φ : ϵX,∗F → ϵX,∗G is a map in A′

X . Hence
Ker(ϵX,∗φ) and Coker(ϵX,∗φ) are objects of A′

X as this is a weak Serre subcategory
of Ab(Cτ ′/X). Applying ϵ−1

X we obtain an exact sequence

0→ ϵ−1
X Ker(ϵX,∗φ)→ F → G → ϵ−1

X Coker(ϵX,∗φ)→ 0

and we see that Ker(φ) and Coker(φ) are in AX . Finally, suppose that

0→ F1 → F2 → F3 → 0

is a short exact sequence in Ab(Cτ/X) with F1 and F3 in AX . Then applying ϵX,∗
we obtain an exact sequence

0→ ϵX,∗F1 → ϵX,∗F2 → ϵX,∗F3 → R1ϵX,∗F1 = 0

Vanishing by Lemma 21.30.8. Hence ϵX,∗F2 is in A′
X as this is a weak Serre

subcategory of Ab(Cτ ′/X). Pulling back by ϵX we conclude that F2 is in AX .

Thus AX is a weak Serre subcategory of Ab(Cτ/X) and it makes sense to consider
the category D+

AX
(Cτ/X). Observe that ϵ−1

X : A′
X → AX is an equivalence and

that F ′ → RϵX,∗ϵ
−1
X F ′ is an isomorphism for F ′ in A′

X since we have (Vn) for all
n by Lemma 21.30.8. Thus we conclude by Lemma 21.28.5. □

Lemma 21.30.10.0EZH In Situation 21.30.1. Let X be in C.
(1) for F ′ in A′

X we have Hn
τ ′(X,F ′) = Hn

τ (X, ϵ−1
X F ′),

(2) for K ′ ∈ D+
A′
X

(Cτ ′/X) we have Hn
τ ′(X,K ′) = Hn

τ (X, ϵ−1
X K ′).

Proof. This follows from Lemma 21.30.8 by Remark 21.14.4. □

21.31. Cohomology on Hausdorff and locally quasi-compact spaces

09WY We continue our convention to say “Hausdorff and locally quasi-compact” instead
of saying “locally compact” as is often done in the literature. Let LC denote the
category whose objects are Hausdorff and locally quasi-compact topological spaces
and whose morphisms are continuous maps.

Lemma 21.31.1.09WZ The category LC has fibre products and a final object and hence
has arbitrary finite limits. Given morphisms X → Z and Y → Z in LC with X
and Y quasi-compact, then X ×Z Y is quasi-compact.

https://stacks.math.columbia.edu/tag/0EZG
https://stacks.math.columbia.edu/tag/0EZH
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Proof. The final object is the singleton space. Given morphismsX → Z and Y → Z
of LC the fibre product X×Z Y is a subspace of X×Y . Hence X×Z Y is Hausdorff
as X × Y is Hausdorff by Topology, Section 5.3.
If X and Y are quasi-compact, then X×Y is quasi-compact by Topology, Theorem
5.14.4. Since X ×Z Y is a closed subset of X ×Y (Topology, Lemma 5.3.4) we find
that X ×Z Y is quasi-compact by Topology, Lemma 5.12.3.
Finally, returning to the general case, if x ∈ X and y ∈ Y we can pick quasi-
compact neighbourhoods x ∈ E ⊂ X and y ∈ F ⊂ Y and we find that E ×Z F is
a quasi-compact neighbourhood of (x, y) by the result above. Thus X ×Z Y is an
object of LC by Topology, Lemma 5.13.2. □

We can endow LC with a stronger topology than the usual one.

Definition 21.31.2.09X0 Let {fi : Xi → X} be a family of morphisms with fixed target
in the category LC. We say this family is a qc covering6 if for every x ∈ X there
exist i1, . . . , in ∈ I and quasi-compact subsets Ej ⊂ Xij such that

⋃
fij (Ej) is a

neighbourhood of x.

Observe that an open covering X =
⋃
Ui of an object of LC gives a qc covering

{Ui → X} because X is locally quasi-compact. We start with the obligatory lemma.

Lemma 21.31.3.09X1 Let X be a Hausdorff and locally quasi-compact space, in other
words, an object of LC.

(1) If X ′ → X is an isomorphism in LC then {X ′ → X} is a qc covering.
(2) If {fi : Xi → X}i∈I is a qc covering and for each i we have a qc covering
{gij : Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is a qc covering.

(3) If {Xi → X}i∈I is a qc covering and X ′ → X is a morphism of LC then
{X ′ ×X Xi → X ′}i∈I is a qc covering.

Proof. Part (1) holds by the remark above that open coverings are qc coverings.
Proof of (2). Let x ∈ X. Choose i1, . . . , in ∈ I and Ea ⊂ Xia quasi-compact such
that

⋃
fia(Ea) is a neighbourhood of x. For every e ∈ Ea we can find a finite

subset Je ⊂ Jia and quasi-compact Fe,j ⊂ Xij , j ∈ Je such that
⋃
gij(Fe,j) is a

neighbourhood of e. Since Ea is quasi-compact we find a finite collection e1, . . . , ema
such that

Ea ⊂
⋃

k=1,...,ma

⋃
j∈Jek

gij(Fek,j)

Then we find that ⋃
a=1,...,n

⋃
k=1,...,ma

⋃
j∈Jek

fi(gij(Fek,j))

is a neighbourhood of x.
Proof of (3). Let x′ ∈ X ′ be a point. Let x ∈ X be its image. Choose i1, . . . , in ∈ I
and quasi-compact subsets Ej ⊂ Xij such that

⋃
fij (Ej) is a neighbourhood of

x. Choose a quasi-compact neighbourhood F ⊂ X ′ of x′ which maps into the
quasi-compact neighbourhood

⋃
fij (Ej) of x. Then F ×X Ej ⊂ X ′ ×X Xij is a

quasi-compact subset and F is the image of the map
∐
F ×X Ej → F . Hence the

base change is a qc covering and the proof is finished. □

6This is nonstandard notation. We chose it to remind the reader of fpqc coverings of schemes.

https://stacks.math.columbia.edu/tag/09X0
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Since all objects of LC are Hausdorff any morphism f : X → Y of LC is a separated
continuous map of topological spaces. Hence f is a proper map of topological spaces
if and only if f is universally closed. See discussion in Topology, Section 5.17.

Lemma 21.31.4.09X5 Let f : X → Y be a morphism of LC. If f is proper and surjective,
then {f : X → Y } is a qc covering.

Proof. Let y ∈ Y be a point. For each x ∈ Xy choose a quasi-compact neigh-
bourhood Ex ⊂ X. Choose x ∈ Ux ⊂ Ex open. Since f is proper the fibre Xy is
quasi-compact and we find x1, . . . , xn ∈ Xy such that Xy ⊂ Ux1 ∪ . . . ∪ Uxn . We
claim that f(Ex1) ∪ . . . ∪ f(Exn) is a neighbourhood of y. Namely, as f is closed
(Topology, Theorem 5.17.5) we see that Z = f(X \ Ux1 ∪ . . . ∪ Uxn) is a closed
subset of Y not containing y. As f is surjective we see that Y \ Z is contained in
f(Ex1) ∪ . . . ∪ f(Exn) as desired. □

Besides some set theoretic issues Lemma 21.31.3 shows that LC with the collection
of qc coverings forms a site. We will denote this site (suitably modified to overcome
the set theoretical issues) LCqc.

Remark 21.31.5 (Set theoretic issues).09X2 The category LC is a “big” category as its
objects form a proper class. Similarly, the coverings form a proper class. Let us
define the size of a topological space X to be the cardinality of the set of points
of X. Choose a function Bound on cardinals, for example as in Sets, Equation
(3.9.1.1). Finally, let S0 be an initial set of objects of LC, for example S0 =
{(R, euclidean topology)}. Exactly as in Sets, Lemma 3.9.2 we can choose a limit
ordinal α such that LCα = LC∩Vα contains S0 and is preserved under all countable
limits and colimits which exist in LC. Moreover, if X ∈ LCα and if Y ∈ LC and
size(Y ) ≤ Bound(size(X)), then Y is isomorphic to an object of LCα. Next, we
apply Sets, Lemma 3.11.1 to choose set Cov of qc covering on LCα such that every
qc covering in LCα is combinatorially equivalent to a covering this set. In this way
we obtain a site (LCα,Cov) which we will denote LCqc.

There is a second topology on the site LCqc of Remark 21.31.5. Namely, given an
object X we can consider all coverings {Xi → X} of LCqc such that Xi → X is an
open immersion. We denote this site LCZar. The identity functor LCZar → LCqc
is continuous and defines a morphism of sites

ϵ : LCqc −→ LCZar
See Section 21.27. For a Hausdorff and locally quasi-compact topological space X,
more precisely for X ∈ Ob(LCqc), we denote the induced morphism

ϵX : LCqc/X −→ LCZar/X
(see Sites, Lemma 7.28.1). Let XZar be the site whose objects are opens of X, see
Sites, Example 7.6.4. There is a morphism of sites

πX : LCZar/X −→ XZar

given by the continuous functor XZar → LCZar/X, U 7→ U . Namely, XZar has
fibre products and a final object and the functor above commutes with these and
Sites, Proposition 7.14.7 applies. We often think of π as a morphism of topoi

πX : Sh(LCZar/X) −→ Sh(X)
using the equality Sh(XZar) = Sh(X).

https://stacks.math.columbia.edu/tag/09X5
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Lemma 21.31.6.09X3 Let X be an object of LCqc. Let F be a sheaf on X. The rule

LCqc/X −→ Sets, (f : Y → X) 7−→ Γ(Y, f−1F)
is a sheaf and a fortiori also a sheaf on LCZar/X. This sheaf is equal to π−1

X F on
LCZar/X and ϵ−1

X π−1
X F on LCqc/X.

Proof. Denote G the presheaf given by the formula in the lemma. Of course the
pullback f−1 in the formula denotes usual pullback of sheaves on topological spaces.
It is immediate from the definitions that G is a sheaf for the Zar topology.
Let Y → X be a morphism in LCqc. Let V = {gi : Yi → Y }i∈I be a qc covering. To
prove G is a sheaf for the qc topology it suffices to show that G(Y ) → H0(V,G) is
an isomorphism, see Sites, Section 7.10. We first point out that the map is injective
as a qc covering is surjective and we can detect equality of sections at stalks (use
Sheaves, Lemmas 6.11.1 and 6.21.4). Thus G is a separated presheaf on LCqc hence
it suffices to show that any element (si) ∈ H0(V,G) maps to an element in the
image of G(Y ) after replacing V by a refinement (Sites, Theorem 7.10.10).
Identifying sheaves on Yi,Zar and sheaves on Yi we find that G|Yi,Zar is the pullback
of f−1F under the continuous map gi : Yi → Y . Thus we can choose an open
covering Yi =

⋃
Vij such that for each j there is an open Wij ⊂ Y and a section

tij ∈ G(Wij) such that Vij maps into Wij and such that s|Vij is the pullback of
tij . In other words, after refining the covering {Yi → Y } we may assume there
are opens Wi ⊂ Y such that Yi → Y factors through Wi and sections ti of G over
Wi which restrict to the given sections si. Moreover, if y ∈ Y is in the image of
both Yi → Y and Yj → Y , then the images ti,y and tj,y in the stalk f−1Fy agree
(because si and sj agree over Yi ×Y Yj). Thus for y ∈ Y there is a well defined
element ty of f−1Fy agreeing with ti,y whenever y is in the image of Yi → Y . We
will show that the element (ty) comes from a global section of f−1F over Y which
will finish the proof of the lemma.
It suffices to show that this is true locally on Y , see Sheaves, Section 6.17. Let
y0 ∈ Y . Pick i1, . . . , in ∈ I and quasi-compact subsets Ej ⊂ Yij such that

⋃
gij (Ej)

is a neighbourhood of y0. Let V ⊂ Y be an open neighbourhood of y0 contained
in
⋃
gij (Ej) and contained in Wi1 ∩ . . . ∩Win . Since ti1,y0 = . . . = tin,y0 , after

shrinking V we may assume the sections tij |V , j = 1, . . . , n of f−1F agree. As
V ⊂

⋃
gij (Ej) we see that (ty)y∈V comes from this section.

We still have to show that G is equal to ϵ−1
X π−1

X F on LCqc, resp. π−1
X F on LCZar.

In both cases the pullback is defined by taking the presheaf
(f : Y → X) 7−→ colimf(Y )⊂U⊂X F(U)

and then sheafifying. Sheafifying in the Zar topology exactly produces our sheaf G
and the fact that G is a qc sheaf, shows that it works as well in the qc topology. □

Let X ∈ Ob(LCZar) and let H be an abelian sheaf on LCZar/X. Then we will
write Hn

Zar(U,H) for the cohomology of H over an object U of LCZar/X.

Lemma 21.31.7.0DCU Let X be an object of LCZar. Then
(1) for F ∈ Ab(X) we have Hn

Zar(X,π−1
X F) = Hn(X,F),

(2) πX,∗ : Ab(LCZar/X)→ Ab(X) is exact,
(3) the unit id→ πX,∗ ◦ π−1

X of the adjunction is an isomorphism, and

https://stacks.math.columbia.edu/tag/09X3
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(4) for K ∈ D(X) the canonical map K → RπX,∗π
−1
X K is an isomorphism.

Let f : X → Y be a morphism of LCZar. Then
(5) there is a commutative diagram

Sh(LCZar/X)
fZar

//

πX

��

Sh(LCZar/Y )

πY

��
Sh(XZar)

f // Sh(YZar)

of topoi,
(6) for L ∈ D+(Y ) we have Hn

Zar(X,π−1
Y L) = Hn(X, f−1L),

(7) if f is proper, then we have
(a) π−1

Y ◦ f∗ = fZar,∗ ◦ π−1
X as functors Sh(X)→ Sh(LCZar/Y ),

(b) π−1
Y ◦Rf∗ = RfZar,∗ ◦ π−1

X as functors D+(X)→ D+(LCZar/Y ).

Proof. Proof of (1). The equality Hn
Zar(X,π−1

X F) = Hn(X,F) is a general fact
coming from the trivial observation that coverings of X in LCZar are the same
thing as open coverings of X. The reader who wishes to see a detailed proof should
apply Lemma 21.7.2 to the functor XZar → LCZar.

Proof of (2). This is true because πX,∗ = τ−1
X for some morphism of topoi τX :

Sh(XZar)→ Sh(LCZar) as follows from Sites, Lemma 7.21.8 applied to the functor
XZar → LCZar/X used to define πX .

Proof of (3). This is true because τ−1
X ◦π

−1
X is the identity functor by Sites, Lemma

7.21.8. Or you can deduce it from the explicit description of π−1
X in Lemma 21.31.6.

Proof of (4). Apply (3) to an complex of abelian sheaves representing K.

Proof of (5). The morphism of topoi fZar comes from an application of Sites,
Lemma 7.25.8 and in our case comes from the continuous functor Z/Y 7→ Z×YX/X
by Sites, Lemma 7.27.3. The diagram commutes simply because the corresponding
continuous functors compose correctly (see Sites, Lemma 7.14.4).

Proof of (6). We have Hn
Zar(X,π−1

Y G) = Hn
Zar(X, f−1

Zarπ
−1
Y G) for G in Ab(Y ), see

Lemma 21.7.1. This is equal to Hn
Zar(X,π−1

X f−1G) by the commutativity of the
diagram in (5). Hence we conclude by (1) in the case L consists of a single sheaf in
degree 0. The general case follows by representing L by a bounded below complex
of abelian sheaves.

Proof of (7a). Let F be a sheaf on X. Let g : Z → Y be an object of LCZar/Y .
Consider the fibre product

Z ′
f ′
//

g′

��

Z

g

��
X

f // Y

Then we have

(fZar,∗π−1
X F)(Z/Y ) = (π−1

X F)(Z ′/X) = Γ(Z ′, (g′)−1F) = Γ(Z, f ′
∗(g′)−1F)

the second equality by Lemma 21.31.6. On the other hand

(π−1
Y f∗F)(Z/Y ) = Γ(Z, g−1f∗F)
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again by Lemma 21.31.6. Hence by proper base change for sheaves of sets (Coho-
mology, Lemma 20.18.3) we conclude the two sets are canonically isomorphic. The
isomorphism is compatible with restriction mappings and defines an isomorphism
π−1
Y f∗F = fZar,∗π

−1
X F . Thus an isomorphism of functors π−1

Y ◦ f∗ = fZar,∗ ◦ π−1
X .

Proof of (7b). Let K ∈ D+(X). By Lemma 21.20.6 the nth cohomology sheaf of
RfZar,∗π

−1
X K is the sheaf associated to the presheaf

(g : Z → Y ) 7−→ Hn
Zar(Z ′, π−1

X K)
with notation as above. Observe that

Hn
Zar(Z ′, π−1

X K) = Hn(Z ′, (g′)−1K)
= Hn(Z,Rf ′

∗(g′)−1K)
= Hn(Z, g−1Rf∗K)
= Hn

Zar(Z, π−1
Y Rf∗K)

The first equality is (6) applied to K and g′ : Z ′ → X. The second equality is
Leray for f ′ : Z ′ → Z (Cohomology, Lemma 20.13.1). The third equality is the
proper base change theorem (Cohomology, Theorem 20.18.2). The fourth equality
is (6) applied to g : Z → Y and Rf∗K. Thus RfZar,∗π−1

X K and π−1
Y Rf∗K have the

same cohomology sheaves. We omit the verification that the canonical base change
map π−1

Y Rf∗K → RfZar,∗π
−1
X K induces this isomorphism. □

In the situation of Lemma 21.31.6 the composition of ϵ and π and the equality
Sh(X) = Sh(XZar) determine a morphism of topoi

aX : Sh(LCqc/X) −→ Sh(X)

Lemma 21.31.8.0D92 Let f : X → Y be a morphism of LCqc. Then there are commu-
tative diagrams of topoi

Sh(LCqc/X)
fqc

//

ϵX

��

Sh(LCqc/Y )

ϵY

��
Sh(LCZar/X) fZar // Sh(LCZar/Y )

and

Sh(LCqc/X)
fqc

//

aX

��

Sh(LCqc/Y )

aY

��
Sh(X) f // Sh(Y )

with aX = πX ◦ ϵX , aY = πX ◦ ϵX . If f is proper, then a−1
Y ◦ f∗ = fqc,∗ ◦ a−1

X .

Proof. The morphism of topoi fqc is the one from Sites, Lemma 7.25.8 which in
our case comes from the continuous functor Z/Y 7→ Z ×Y X/X, see Sites, Lemma
7.27.3. The diagram on the left commutes because the corresponding continuous
functors compose correctly (see Sites, Lemma 7.14.4). The diagram on the right
commutes because the one on the left does and because of part (5) of Lemma
21.31.7.
Proof of the final assertion. The reader may repeat the proof of part (7a) of Lemma
21.31.7; we will instead deduce this from it. As ϵY,∗ is the identity functor on
underlying presheaves, it reflects isomorphisms. The description in Lemma 21.31.6
shows that ϵY,∗ ◦ a−1

Y = π−1
Y and similarly for X. To show that the canonical map

a−1
Y f∗F → fqc,∗a

−1
X F is an isomorphism, it suffices to show that

π−1
Y f∗F = ϵY,∗a

−1
Y f∗F → ϵY,∗fqc,∗a

−1
X F = fZar,∗ϵX,∗a

−1
X F = fZar,∗π

−1
X F

is an isomorphism. This is part (7a) of Lemma 21.31.7. □
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Lemma 21.31.9.0EZI Consider the comparison morphism ϵ : LCqc → LCZar. Let P
denote the class of proper maps of topological spaces. For X in LCZar denote
A′
X ⊂ Ab(LCZar/X) the full subcategory consisting of sheaves of the form π−1

X F
with F in Ab(X). Then (1), (2), (3), (4), and (5) of Situation 21.30.1 hold.
Proof. We first show that A′

X ⊂ Ab(LCZar/X) is a weak Serre subcategory by
checking conditions (1), (2), (3), and (4) of Homology, Lemma 12.10.3. Parts (1),
(2), (3) are immediate as π−1

X is exact and fully faithful by Lemma 21.31.7 part
(3). If 0 → π−1

X F → G → π−1
X F ′ → 0 is a short exact sequence in Ab(LCZar/X)

then 0 → F → πX,∗G → F ′ → 0 is exact by Lemma 21.31.7 part (2). Hence
G = π−1

X πX,∗G is in A′
X which checks the final condition.

Property (1) holds by Lemma 21.31.1 and the fact that the base change of a proper
map is a proper map (see Topology, Theorem 5.17.5 and Lemma 5.4.4).
Property (2) follows from the commutative diagram (5) in Lemma 21.31.7.
Property (3) is Lemma 21.31.6.
Property (4) is Lemma 21.31.7 part (7)(b).
Proof of (5). Suppose given a qc covering {Ui → U}. For u ∈ U pick i1, . . . , im ∈ I
and quasi-compact subsets Ej ⊂ Uij such that

⋃
fij (Ej) is a neighbourhood of

u. Observe that Y =
∐
j=1,...,mEj → U is proper as a continuous map between

Hausdorff quasi-compact spaces (Topology, Lemma 5.17.7). Choose an open neigh-
bourhood u ∈ V contained in

⋃
fij (Ej). Then Y ×U V → V is a surjective proper

morphism and hence a qc covering by Lemma 21.31.4. Since we can do this for
every u ∈ U we see that (5) holds. □

Lemma 21.31.10.0DCY With notation as above.
(1) For X ∈ Ob(LCqc) and an abelian sheaf F on X we have ϵX,∗a−1

X F =
π−1
X F and RiϵX,∗(a−1

X F) = 0 for i > 0.
(2) For a proper morphism f : X → Y in LCqc and abelian sheaf F on X we

have a−1
Y (Rif∗F) = Rifqc,∗(a−1

X F) for all i.
(3) For X ∈ Ob(LCqc) and K in D+(X) the map π−1

X K → RϵX,∗(a−1
X K) is

an isomorphism.
(4) For a proper morphism f : X → Y in LCqc and K in D+(X) we have

a−1
Y (Rf∗K) = Rfqc,∗(a−1

X K).
Proof. By Lemma 21.31.9 the lemmas in Section 21.30 all apply to our current
setting. To translate the results observe that the category AX of Lemma 21.30.2 is
the essential image of a−1

X : Ab(X)→ Ab(LCqc/X).
Part (1) is equivalent to (Vn) for all n which holds by Lemma 21.30.8.
Part (2) follows by applying ϵ−1

Y to the conclusion of Lemma 21.30.3.
Part (3) follows from Lemma 21.30.8 part (1) because π−1

X K is in D+
A′
X

(LCZar/X)
and a−1

X = ϵ−1
X ◦ a

−1
X .

Part (4) follows from Lemma 21.30.8 part (2) for the same reason. □

Lemma 21.31.11.0D91 Let X be an object of LCqc. For K ∈ D+(X) the map
K −→ RaX,∗a

−1
X K

is an isomorphism with aX : Sh(LCqc/X)→ Sh(X) as above.
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Proof. We first reduce the statement to the case where K is given by a single
abelian sheaf. Namely, represent K by a bounded below complex F•. By the case
of a sheaf we see that Fn = aX,∗a

−1
X Fn and that the sheaves RqaX,∗a−1

X Fn are
zero for q > 0. By Leray’s acyclicity lemma (Derived Categories, Lemma 13.16.7)
applied to a−1

X F• and the functor aX,∗ we conclude. From now on assume K = F .
By Lemma 21.31.6 we have aX,∗a−1

X F = F . Thus it suffices to show thatRqaX,∗a−1
X F =

0 for q > 0. For this we can use aX = ϵX ◦ πX and the Leray spectral sequence
Lemma 21.14.7. By Lemma 21.31.10 we have RiϵX,∗(a−1

X F) = 0 for i > 0 and
ϵX,∗a

−1
X F = π−1

X F . By Lemma 21.31.7 we have RjπX,∗(π−1
X F) = 0 for j > 0. This

concludes the proof. □

Lemma 21.31.12.09X4 With X ∈ Ob(LCqc) and aX : Sh(LCqc/X)→ Sh(X) as above:
(1) for an abelian sheaf F on X we have Hn(X,F) = Hn

qc(X, a−1
X F),

(2) for K ∈ D+(X) we have Hn(X,K) = Hn
qc(X, a−1

X K).
For example, if A is an abelian group, then we have Hn(X,A) = Hn

qc(X,A).

Proof. This follows from Lemma 21.31.11 by Remark 21.14.4. □

21.32. Spectral sequences for Ext

07A9 In this section we collect various spectral sequences that come up when considering
the Ext functors. For any pair of complexes G•,F• of complexes of modules on a
ringed site (C,O) we denote

ExtnO(G•,F•) = HomD(O)(G•,F•[n])
according to our general conventions in Derived Categories, Section 13.27.

Example 21.32.1.07AA Let (C,O) be a ringed site. Let K• be a bounded above complex
of O-modules. Let F be an O-module. Then there is a spectral sequence with
E2-page

Ei,j2 = ExtiO(H−j(K•),F)⇒ Exti+jO (K•,F)
and another spectral sequence with E1-page

Ei,j1 = ExtjO(K−i,F)⇒ Exti+jO (K•,F).
To construct these spectral sequences choose an injective resolution F → I• and
consider the two spectral sequences coming from the double complex HomO(K•, I•),
see Homology, Section 12.25.

21.33. Cup product

0FPJ Let (C,O) be a ringed site. Let K,M be objects of D(O). Set A = Γ(C,O). The
(global) cup product in this setting is a map

RΓ(C,K)⊗L
A RΓ(C,M) −→ RΓ(C,K ⊗L

O M)
in D(A). We define it as the relative cup product for the morphism of ringed topoi
(Sh(C),O)→ (Sh(pt), A) as in Remark 21.19.7.
Let us formulate and prove a natural compatibility of the relative cup product.
Namely, suppose that we have a morphism f : (Sh(C),OC) → (Sh(D),OD) of
ringed topoi. Let K• and M• be complexes of OC-modules. There is a naive cup
product

Tot(f∗K• ⊗OD f∗M•) −→ f∗Tot(K• ⊗OC M•)

https://stacks.math.columbia.edu/tag/09X4
https://stacks.math.columbia.edu/tag/07AA


21.33. CUP PRODUCT 1971

We claim that this is related to the relative cup product.

Lemma 21.33.1.0FPK In the situation above the following diagram commutes

f∗K• ⊗L
OD

f∗M• //

��

Rf∗K• ⊗L
OD

Rf∗M•

Remark 21.19.7
��

Tot(f∗K• ⊗OD f∗M•)

naive cup product
��

Rf∗(K• ⊗L
OC
M•)

��
f∗Tot(K• ⊗OC M•) // Rf∗Tot(K• ⊗OC M•)

Proof. By the construction in Remark 21.19.7 we see that going around the diagram
clockwise the map

f∗K• ⊗L
OD

f∗M• −→ Rf∗Tot(K• ⊗OC M•)

is adjoint to the map

Lf∗(f∗K• ⊗L
OD

f∗M•) = Lf∗f∗K• ⊗L
OD

Lf∗f∗M•

→ Lf∗Rf∗K• ⊗L
OD

Lf∗Rf∗M•

→ K• ⊗L
OD
M•

→ Tot(K• ⊗OC M•)

By Lemma 21.19.6 this is also equal to

Lf∗(f∗K• ⊗L
OD

f∗M•) = Lf∗f∗K• ⊗L
OD

Lf∗f∗M•

→ f∗f∗K• ⊗L
OD

f∗f∗M•

→ K• ⊗L
OD
M•

→ Tot(K• ⊗OC M•)

Going around anti-clockwise we obtain the map adjoint to the map

Lf∗(f∗K• ⊗L
OD

f∗M•)→ Lf∗Tot(f∗K• ⊗OD f∗M•)
→ Lf∗f∗Tot(K• ⊗OC M•)
→ Lf∗Rf∗Tot(K• ⊗OC M•)
→ Tot(K• ⊗OC M•)

By Lemma 21.19.6 this is also equal to

Lf∗(f∗K• ⊗L
OD

f∗M•)→ Lf∗Tot(f∗K• ⊗OD f∗M•)
→ Lf∗f∗Tot(K• ⊗OC M•)
→ f∗f∗Tot(K• ⊗OC M•)
→ Tot(K• ⊗OC M•)

https://stacks.math.columbia.edu/tag/0FPK
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Now the proof is finished by a contemplation of the diagram

Lf∗(f∗K• ⊗L
OD

f∗M•)

��

// Lf∗f∗K• ⊗L
OC

Lf∗f∗M•

��
Lf∗Tot(f∗K• ⊗OD f∗M•)

naive

��

// f∗Tot(f∗K• ⊗OD f∗M•)

naive

xx ��

f∗f∗K• ⊗L
OC

f∗f∗M•

��xx

Lf∗f∗Tot(K• ⊗OC M•)

��
f∗f∗Tot(K• ⊗OC M•)

**

Tot(f∗f∗K• ⊗OC f
∗f∗M•)

��

K• ⊗L
OC
M•

tt
Tot(K• ⊗OC M•)

All of the polygons in this diagram commute. The top one commutes by Lemma
21.18.8. The square with the two naive cup products commutes because Lf∗ → f∗

is functorial in the complex of modules. Similarly with the square involving the
two maps A• ⊗L B• → Tot(A• ⊗B•). Finally, the commutativity of the remaining
square is true on the level of complexes and may be viewed as the definiton of the
naive cup product (by the adjointness of f∗ and f∗). The proof is finished because
going around the diagram on the outside are the two maps given above. □

Lemma 21.33.2.0FPL Let f : (Sh(C),O)→ (Sh(C′),O′) be a morphism of ringed topoi.
The relative cup product of Remark 21.19.7 is associative in the sense that the
diagram

Rf∗K ⊗L
O′ Rf∗L⊗L

O′ Rf∗M //

��

Rf∗(K ⊗L
O L)⊗L

O′ Rf∗M

��
Rf∗K ⊗L

O′ Rf∗(L⊗L
O M) // Rf∗(K ⊗L

O L⊗L
O M)

is commutative in D(O′) for all K,L,M in D(O).

Proof. Going around either side we obtain the map adjoint to the obvious map
Lf∗(Rf∗K ⊗L

O′ Rf∗L⊗L
O′ Rf∗M) = Lf∗(Rf∗K)⊗L

O Lf∗(Rf∗L)⊗L
O Lf∗(Rf∗M)

→ K ⊗L
O L⊗L

O M

in D(O). □

Lemma 21.33.3.0FPM Let f : (Sh(C),O)→ (Sh(C′),O′) be a morphism of ringed topoi.
The relative cup product of Remark 21.19.7 is commutative in the sense that the
diagram

Rf∗K ⊗L
O′ Rf∗L //

ψ

��

Rf∗(K ⊗L
O L)

Rf∗ψ

��
Rf∗L⊗L

O′ Rf∗K // Rf∗(L⊗L
O K)

https://stacks.math.columbia.edu/tag/0FPL
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is commutative in D(O′) for all K,L in D(O). Here ψ is the commutativity con-
straint on the derived category (Lemma 21.48.5).
Proof. Omitted. □

Lemma 21.33.4.0FPN Let f : (Sh(C),O) → (Sh(C′),O′) and f ′ : (Sh(C′),O′) →
(Sh(C′′),O′′) be morphisms of ringed topoi. The relative cup product of Remark
21.19.7 is compatible with compositions in the sense that the diagram

R(f ′ ◦ f)∗K ⊗L
O′′ R(f ′ ◦ f)∗L

��

Rf ′
∗Rf∗K ⊗L

O′′ Rf ′
∗Rf∗L

��
R(f ′ ◦ f)∗(K ⊗L

O L) Rf ′
∗Rf∗(K ⊗L

O L) Rf ′
∗(Rf∗K ⊗L

O′ Rf∗L)oo

is commutative in D(O′′) for all K,L in D(O).
Proof. This is true because going around the diagram either way we obtain the
map adjoint to the map

L(f ′ ◦ f)∗ (R(f ′ ◦ f)∗K ⊗L
O′′ R(f ′ ◦ f)∗L

)
= L(f ′ ◦ f)∗R(f ′ ◦ f)∗K ⊗L

O L(f ′ ◦ f)∗R(f ′ ◦ f)∗L)
→ K ⊗L

O L

in D(O). To see this one uses that the composition of the counits like so
L(f ′ ◦ f)∗R(f ′ ◦ f)∗ = Lf∗L(f ′)∗Rf ′

∗Rf∗ → Lf∗Rf∗ → id
is the counit for L(f ′ ◦ f)∗ and R(f ′ ◦ f)∗. See Categories, Lemma 4.24.9. □

21.34. Hom complexes

0A8X Let (C,O) be a ringed site. Let L• and M• be two complexes of O-modules. We
construct a complex of O-modules Hom•(L•,M•). Namely, for each n we set

Homn(L•,M•) =
∏

n=p+q
HomO(L−q,Mp)

It is a good idea to think of Homn as the sheaf of O-modules of all O-linear maps
from L• to M• (viewed as graded O-modules) which are homogenous of degree n.
In this terminology, we define the differential by the rule

d(f) = dM ◦ f − (−1)nf ◦ dL

for f ∈ Homn
O(L•,M•). We omit the verification that d2 = 0. This construction is a

special case of Differential Graded Algebra, Example 22.26.6. It follows immediately
from the construction that we have
(21.34.0.1)0A8Y Hn(Γ(U,Hom•(L•,M•))) = HomK(OU )(L•|U ,M•[n]|U )
for all n ∈ Z and every U ∈ Ob(C). Similarly, we have
(21.34.0.2)0A8Z Hn(Γ(C,Hom•(L•,M•))) = HomK(O)(L•,M•[n])
for the complex of global sections.
Lemma 21.34.1.0A90 Let (C,O) be a ringed site. Given complexes K•,L•,M• of O-
modules there is an isomorphism

Hom•(K•,Hom•(L•,M•)) = Hom•(Tot(K• ⊗O L•),M•)
of complexes of O-modules functorial in K•,L•,M•.

https://stacks.math.columbia.edu/tag/0FPN
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Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 15.71.1. □

Lemma 21.34.2.0A91 Let (C,O) be a ringed site. Given complexes K•,L•,M• of O-
modules there is a canonical morphism

Tot (Hom•(L•,M•)⊗O Hom•(K•,L•)) −→ Hom•(K•,M•)
of complexes of O-modules.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 15.71.3. □

Lemma 21.34.3.0BYT Let (C,O) be a ringed site. Given complexes K•,L•,M• of O-
modules there is a canonical morphism

Tot (K• ⊗O Hom•(M•,L•)) −→ Hom•(M•,Tot(K• ⊗O L•))
of complexes of O-modules functorial in all three complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 15.71.4. □

Lemma 21.34.4.0A93 Let (C,O) be a ringed site. Given complexes K•,L•,M• of O-
modules there is a canonical morphism

K• −→ Hom•(L•,Tot(K• ⊗O L•))
of complexes of O-modules functorial in both complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 15.71.5. □

Lemma 21.34.5.0A92 Let (C,O) be a ringed site. Given complexes K•,L•,M• of O-
modules there is a canonical morphism

Tot(Hom•(L•,M•)⊗O K•) −→ Hom•(Hom•(K•,L•),M•)
of complexes of O-modules functorial in all three complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 15.71.6. □

Lemma 21.34.6.0A94 Let (C,O) be a ringed site. Let L and M be objects of D(O). Let
I• be a K-injective complex of O-modules representing M . Let L• be a complex
of O-modules representing L. Then

H0(Γ(U,Hom•(L•, I•))) = HomD(OU )(L|U ,M |U )

for all U ∈ Ob(C). Similarly, H0(Γ(C,Hom•(L•, I•))) = HomD(O)(L,M).

Proof. We have
H0(Γ(U,Hom•(L•, I•))) = HomK(OU )(L|U ,M |U )

= HomD(OU )(L|U ,M |U )

The first equality is (21.34.0.1). The second equality is true because I•|U is K-
injective by Lemma 21.20.1. The proof of the last equation is similar except that
it uses (21.34.0.2). □
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Lemma 21.34.7.0A95 Let (C,O) be a ringed site. Let (I ′)• → I• be a quasi-isomorphism
of K-injective complexes of O-modules. Let (L′)• → L• be a quasi-isomorphism of
complexes of O-modules. Then

Hom•(L•, (I ′)•) −→ Hom•((L′)•, I•)

is a quasi-isomorphism.

Proof. Let M be the object of D(O) represented by I• and (I ′)•. Let L be the
object of D(O) represented by L• and (L′)•. By Lemma 21.34.6 we see that the
sheaves

H0(Hom•(L•, (I ′)•)) and H0(Hom•((L′)•, I•))
are both equal to the sheaf associated to the presheaf

U 7−→ HomD(OU )(L|U ,M |U )

Thus the map is a quasi-isomorphism. □

Lemma 21.34.8.0A96 Let (C,O) be a ringed site. Let I• be a K-injective complex of
O-modules. Let L• be a K-flat complex of O-modules. Then Hom•(L•, I•) is a
K-injective complex of O-modules.

Proof. Namely, if K• is an acyclic complex of O-modules, then

HomK(O)(K•,Hom•(L•, I•)) = H0(Γ(C,Hom•(K•,Hom•(L•, I•))))
= H0(Γ(C,Hom•(Tot(K• ⊗O L•), I•)))
= HomK(O)(Tot(K• ⊗O L•), I•)
= 0

The first equality by (21.34.0.2). The second equality by Lemma 21.34.1. The third
equality by (21.34.0.2). The final equality because Tot(K•⊗OL•) is acyclic because
L• is K-flat (Definition 21.17.2) and because I• is K-injective. □

21.35. Internal hom in the derived category

08J7 Let (C,O) be a ringed site. Let L,M be objects of D(O). We would like to construct
an object RHom(L,M) of D(O) such that for every third object K of D(O) there
exists a canonical bijection

(21.35.0.1)08J8 HomD(O)(K,RHom(L,M)) = HomD(O)(K ⊗L
O L,M)

Observe that this formula defines RHom(L,M) up to unique isomorphism by the
Yoneda lemma (Categories, Lemma 4.3.5).

To construct such an object, choose a K-injective complex of O-modules I• repre-
senting M and any complex of O-modules L• representing L. Then we set Then
we set

RHom(L,M) = Hom•(L•, I•)
where the right hand side is the complex of O-modules constructed in Section 21.34.
This is well defined by Lemma 21.34.7. We get a functor

D(O)opp ×D(O) −→ D(O), (K,L) 7−→ RHom(K,L)

As a prelude to proving (21.35.0.1) we compute the cohomology groups ofRHom(K,L).
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Lemma 21.35.1.08JA Let (C,O) be a ringed site. Let K,L be objects of D(O). For
every object U of C we have

H0(U,RHom(L,M)) = HomD(OU )(L|U ,M |U )
and we have H0(C, RHom(L,M)) = HomD(O)(L,M).

Proof. Choose a K-injective complex I• of O-modules representing M and a K-flat
complex L• representing L. Then Hom•(L•, I•) is K-injective by Lemma 21.34.8.
Hence we can compute cohomology over U by simply taking sections over U and
the result follows from Lemma 21.34.6. □

Lemma 21.35.2.08J9 Let (C,O) be a ringed site. Let K,L,M be objects of D(O). With
the construction as described above there is a canonical isomorphism

RHom(K,RHom(L,M)) = RHom(K ⊗L
O L,M)

in D(O) functorial in K,L,M which recovers (21.35.0.1) on taking H0(C,−).

Proof. Choose a K-injective complex I• representing M and a K-flat complex of
O-modules L• representing L. For any complex of O-modules K• we have

Hom•(K•,Hom•(L•, I•)) = Hom•(Tot(K• ⊗O L•), I•)
by Lemma 21.34.1. Note that the left hand side representsRHom(K,RHom(L,M))
(use Lemma 21.34.8) and that the right hand side represents RHom(K ⊗L

O L,M).
This proves the displayed formula of the lemma. Taking global sections and using
Lemma 21.35.1 we obtain (21.35.0.1). □

Lemma 21.35.3.08JB Let (C,O) be a ringed site. Let K,L be objects of D(O). The
construction of RHom(K,L) commutes with restrictions, i.e., for every object U of
C we have RHom(K|U , L|U ) = RHom(K,L)|U .

Proof. This is clear from the construction and Lemma 21.20.1. □

Lemma 21.35.4.08JC Let (C,O) be a ringed site. The bifunctor RHom(−,−) transforms
distinguished triangles into distinguished triangles in both variables.

Proof. This follows from the observation that the assignment
(L•,M•) 7−→ Hom•(L•,M•)

transforms a termwise split short exact sequences of complexes in either variable
into a termwise split short exact sequence. Details omitted. □

Lemma 21.35.5.0A97 Let (C,O) be a ringed site. Let K,L,M be objects of D(O).
There is a canonical morphism

RHom(L,M)⊗L
O K −→ RHom(RHom(K,L),M)

in D(O) functorial in K,L,M .

Proof. Choose a K-injective complex I• representing M , a K-injective complex J •

representing L, and a K-flat complex K• representing K. The map is defined using
the map

Tot(Hom•(J •, I•)⊗O K•) −→ Hom•(Hom•(K•,J •), I•)
of Lemma 21.34.5. By our particular choice of complexes the left hand side repre-
sentsRHom(L,M)⊗L

OK and the right hand side representsRHom(RHom(K,L),M).
We omit the proof that this is functorial in all three objects of D(O). □

https://stacks.math.columbia.edu/tag/08JA
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Lemma 21.35.6.0A98 Let (C,O) be a ringed site. Given K,L,M in D(O) there is a
canonical morphism

RHom(L,M)⊗L
O RHom(K,L) −→ RHom(K,M)

in D(O).

Proof. Choose a K-injective complex I• representing M , a K-injective complex J •

representing L, and any complex of O-modules K• representing K. By Lemma
21.34.2 there is a map of complexes

Tot (Hom•(J •, I•)⊗O Hom•(K•,J •)) −→ Hom•(K•, I•)
The complexes ofO-modulesHom•(J •, I•),Hom•(K•,J •), andHom•(K•, I•) rep-
resent RHom(L,M), RHom(K,L), and RHom(K,M). If we choose a K-flat com-
plex H• and a quasi-isomorphism H• → Hom•(K•,J •), then there is a map

Tot (Hom•(J •, I•)⊗O H•) −→ Tot (Hom•(J •, I•)⊗O Hom•(K•,J •))
whose source represents RHom(L,M) ⊗L

O RHom(K,L). Composing the two dis-
played arrows gives the desired map. We omit the proof that the construction is
functorial. □

Lemma 21.35.7.0BYU Let (C,O) be a ringed site. Given K,L,M in D(O) there is a
canonical morphism

K ⊗L
O RHom(M,L) −→ RHom(M,K ⊗L

O L)
in D(O) functorial in K,L,M .

Proof. Choose a K-flat complex K• representing K, and a K-injective complex I•

representing L, and choose any complex of O-modulesM• representing M . Choose
a quasi-isomorphism Tot(K• ⊗OX

I•)→ J • where J • is K-injective. Then we use
the map

Tot (K• ⊗O Hom•(M•, I•))→ Hom•(M•,Tot(K• ⊗O I•))→ Hom•(M•,J •)
where the first map is the map from Lemma 21.34.3. □

Lemma 21.35.8.0A99 Let (C,O) be a ringed site. GivenK,L inD(O) there is a canonical
morphism

K −→ RHom(L,K ⊗L
O L)

in D(O) functorial in both K and L.

Proof. Choose a K-flat complex K• representing K and any complex of O-modules
L• representing L. Choose a K-injective complex J • and a quasi-isomorphism
Tot(K• ⊗O L•)→ J •. Then we use

K• → Hom•(L•,Tot(K• ⊗O L•))→ Hom•(L•,J •)
where the first map comes from Lemma 21.34.4. □

Lemma 21.35.9.08JD Let (C,O) be a ringed site. Let L be an object of D(O). Set
L∨ = RHom(L,O). For M in D(O) there is a canonical map
(21.35.9.1)08JE M ⊗L

O L∨ −→ RHom(L,M)
which induces a canonical map

H0(C,M ⊗L
O L∨) −→ HomD(O)(L,M)

functorial in M in D(O).

https://stacks.math.columbia.edu/tag/0A98
https://stacks.math.columbia.edu/tag/0BYU
https://stacks.math.columbia.edu/tag/0A99
https://stacks.math.columbia.edu/tag/08JD


21.35. INTERNAL HOM IN THE DERIVED CATEGORY 1978

Proof. The map (21.35.9.1) is a special case of Lemma 21.35.6 using the identifica-
tion M = RHom(O,M). □

Remark 21.35.10.0B6D Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. Let K,L be objects of D(OC). We claim there is a canonical map

Rf∗RHom(L,K) −→ RHom(Rf∗L,Rf∗K)

Namely, by (21.35.0.1) this is the same thing as a map Rf∗RHom(L,K) ⊗L
OD

Rf∗L→ Rf∗K. For this we can use the composition

Rf∗RHom(L,K)⊗L
OD

Rf∗L→ Rf∗(RHom(L,K)⊗L
OC

L)→ Rf∗K

where the first arrow is the relative cup product (Remark 21.19.7) and the second
arrow is Rf∗ applied to the canonical map RHom(L,K)⊗L

OC
L→ K coming from

Lemma 21.35.6 (with OC in one of the spots).

Remark 21.35.11.08JF Let h : (Sh(C),O)→ (Sh(C′),O′) be a morphism of ringed topoi.
Let K,L be objects of D(O′). We claim there is a canonical map

Lh∗RHom(K,L) −→ RHom(Lh∗K,Lh∗L)

in D(O). Namely, by (21.35.0.1) proved in Lemma 21.35.2 such a map is the same
thing as a map

Lh∗RHom(K,L)⊗L Lh∗K −→ Lh∗L

The source of this arrow is Lh∗(Hom(K,L) ⊗L K) by Lemma 21.18.4 hence it
suffices to construct a canonical map

RHom(K,L)⊗L K −→ L.

For this we take the arrow corresponding to

id : RHom(K,L) −→ RHom(K,L)

via (21.35.0.1).

Remark 21.35.12.08JG Suppose that

(Sh(C′),OC′)
h
//

f ′

��

(Sh(C),OC)

f

��
(Sh(D′),OD′) g // (Sh(D),OD)

is a commutative diagram of ringed topoi. Let K,L be objects of D(OC). We claim
there exists a canonical base change map

Lg∗Rf∗RHom(K,L) −→ R(f ′)∗RHom(Lh∗K,Lh∗L)

in D(OD′). Namely, we take the map adjoint to the composition

L(f ′)∗Lg∗Rf∗RHom(K,L) = Lh∗Lf∗Rf∗RHom(K,L)
→ Lh∗RHom(K,L)
→ RHom(Lh∗K,Lh∗L)

where the first arrow uses the adjunction mapping Lf∗Rf∗ → id and the second
arrow is the canonical map constructed in Remark 21.35.11.

https://stacks.math.columbia.edu/tag/0B6D
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21.36. Global derived hom

0B6E Let (Sh(C),O) be a ringed topos. Let K,L ∈ D(O). Using the construction of the
internal hom in the derived category we obtain a well defined object

RHomO(K,L) = RΓ(C, RHom(K,L))
in D(Γ(C,O)). By Lemma 21.35.1 we have

H0(RHomO(K,L)) = HomD(O)(K,L)
and

Hp(RHomO(K,L)) = ExtpD(O)(K,L)
If f : (C′,O′)→ (C,O) is a morphism of ringed topoi, then there is a canonical map

RHomO(K,L) −→ RHomO′(Lf∗K,Lf∗L)
in D(Γ(O)) by taking global sections of the map defined in Remark 21.35.11.

21.37. Derived lower shriek

07AB In this section we study morphisms g of ringed topoi where besides Lg∗ and Rg∗
there also exists a derived functor Lg!.

Lemma 21.37.1.0D6X Let u : C → D be a continuous and cocontinuous functor of sites.
Let g : Sh(C)→ Sh(D) be the corresponding morphism of topoi. Let OD be a sheaf
of rings and let I be an injective OD-module. Then Hp(U, g−1I) = 0 for all p > 0
and U ∈ Ob(C).

Proof. The vanishing of the lemma follows from Lemma 21.10.9 if we can prove
vanishing of all higher Čech cohomology groups Ȟp(U , g−1I) for any covering U =
{Ui → U} of C. Since u is continuous, u(U) = {u(Ui)→ u(U)} is a covering of D,
and u(Ui0 ×U . . .×U Uin) = u(Ui0)×u(U) . . .×u(U) u(Uin). Thus we have

Ȟp(U , g−1I) = Ȟp(u(U), I)
because g−1 = up by Sites, Lemma 7.21.5. Since I is an injective OD-module these
Čech cohomology groups vanish, see Lemma 21.12.3. □

Lemma 21.37.2.07AC Let u : C → D be a continuous and cocontinuous functor of sites.
Let g : Sh(C) → Sh(D) be the corresponding morphism of topoi. Let OD be a
sheaf of rings and set OC = g−1OD. The functor g! : Mod(OC) → Mod(OD) (see
Modules on Sites, Lemma 18.41.1) has a left derived functor

Lg! : D(OC) −→ D(OD)
which is left adjoint to g∗. Moreover, for U ∈ Ob(C) we have

Lg!(jU !OU ) = g!jU !OU = ju(U)!Ou(U).

where jU ! and ju(U)! are extension by zero associated to the localization morphism
jU : C/U → C and ju(U) : D/u(U)→ D.

Proof. We are going to use Derived Categories, Proposition 13.29.2 to construct
Lg!. To do this we have to verify assumptions (1), (2), (3), (4), and (5) of that
proposition. First, since g! is a left adjoint we see that it is right exact and commutes
with all colimits, so (5) holds. Conditions (3) and (4) hold because the category of
modules on a ringed site is a Grothendieck abelian category. Let P ⊂ Ob(Mod(OC))
be the collection ofOC-modules which are direct sums of modules of the form jU !OU .

https://stacks.math.columbia.edu/tag/0D6X
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Note that g!jU !OU = ju(U)!Ou(U), see proof of Modules on Sites, Lemma 18.41.1.
Every OC-module is a quotient of an object of P, see Modules on Sites, Lemma
18.28.8. Thus (1) holds. Finally, we have to prove (2). Let K• be a bounded above
acyclic complex of OC-modules with Kn ∈ P for all n. We have to show that g!K•

is exact. To do this it suffices to show, for every injective OD-module I that
HomD(OD)(g!K•, I[n]) = 0

for all n ∈ Z. Since I is injective we have
HomD(OD)(g!K•, I[n]) = HomK(OD)(g!K•, I[n])

= Hn(HomOD (g!K•, I))
= Hn(HomOC (K•, g−1I))

the last equality by the adjointness of g! and g−1.
The vanishing of this group would be clear if g−1I were an injective OC-module.
But g−1I isn’t necessarily an injective OC-module as g! isn’t exact in general. We
do know that

ExtpOC
(jU !OU , g−1I) = Hp(U, g−1I) = 0 for p ≥ 1

Here the first equality follows from HomOC (jU !OU ,H) = H(U) and taking derived
functors and the vanishing of Hp(U, g−1I) for p > 0 and U ∈ Ob(C) follows from
Lemma 21.37.1. Since each K−q is a direct sum of modules of the form jU !OU we
see that

ExtpOC
(K−q, g−1I) = 0 for p ≥ 1 and all q

Let us use the spectral sequence (see Example 21.32.1)
Ep,q1 = ExtpOC

(K−q, g−1I)⇒ Extp+q
OC

(K•, g−1I) = 0.
Note that the spectral sequence abuts to zero as K• is acyclic (hence vanishes in
the derived category, hence produces vanishing ext groups). By the vanishing of
higher exts proved above the only nonzero terms on the E1 page are the terms
E0,q

1 = HomOC (K−q, g−1I). We conclude that the complex HomOC (K•, g−1I) is
acyclic as desired.
Thus the left derived functor Lg! exists. It is left adjoint to g−1 = g∗ = Rg∗ = Lg∗,
i.e., we have
(21.37.2.1)07AD HomD(OC)(K, g∗L) = HomD(OD)(Lg!K,L)
by Derived Categories, Lemma 13.30.3. This finishes the proof. □

Remark 21.37.3.07AE Warning! Let u : C → D, g, OD, and OC be as in Lemma 21.37.2.
In general it is not the case that the diagram

D(OC)
Lg!

//

forget

��

D(OD)

forget

��
D(C)

LgAb! // D(D)

commutes where the functor LgAb! is the one constructed in Lemma 21.37.2 but
using the constant sheaf Z as the structure sheaf on both C and D. In general it
isn’t even the case that g! = gAb! (see Modules on Sites, Remark 18.41.2), but this
phenomenon can occur even if g! = gAb! ! Namely, the construction of Lg! in the

https://stacks.math.columbia.edu/tag/07AE
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proof of Lemma 21.37.2 shows that Lg! agrees with LgAb
! if and only if the canonical

maps
LgAb! jU !OU −→ ju(U)!Ou(U)

are isomorphisms in D(D) for all objects U in C. In general all we can say is that
there exists a natural transformation

LgAb! ◦ forget −→ forget ◦ Lg!

Lemma 21.37.4.0D6Y Let u : C → D be a continuous and cocontinuous functor of sites.
Let g : Sh(C)→ Sh(D) be the corresponding morphism of topoi. Let OD be a sheaf
of rings and let I be an injective OD-module. If gSh! : Sh(C) → Sh(D) commutes
with fibre products7, then g−1I is totally acyclic.

Proof. We will use the criterion of Lemma 21.13.5. Condition (1) holds by Lemma
21.37.1. Let K ′ → K be a surjective map of sheaves of sets on C. Since gSh! is a
left adjoint, we see that gSh! K ′ → gSh! K is surjective. Observe that

H0(K ′ ×K . . .×K K ′, g−1I) = H0(gSh! (K ′ ×K . . .×K K ′), I)
= H0(gSh! K ′ ×gSh! K . . .×gSh! K gSh! K ′, I)

by our assumption on gSh! . Since I is an injective module it is totally acyclic by
Lemma 21.14.1 (applied to the identity). Hence we can use the converse of Lemma
21.13.5 to see that the complex

0→ H0(K, g−1I)→ H0(K ′, g−1I)→ H0(K ′ ×K K ′, g−1I)→ . . .

is exact as desired. □

Lemma 21.37.5.0DD8 Let u : C → D be a continuous and cocontinuous functor of sites.
Let g : Sh(C)→ Sh(D) be the corresponding morphism of topoi. Let U ∈ Ob(C).

(1) For M in D(D) we have RΓ(U, g−1M) = RΓ(u(U),M).
(2) If OD is a sheaf of rings and OC = g−1OD, then for M in D(OD) we have

RΓ(U, g∗M) = RΓ(u(U),M).

Proof. In the bounded below case (1) and (2) can be seen by representing K by a
bounded below complex of injectives and using Lemma 21.37.1 as well as Leray’s
acyclicity lemma. In the unbounded case, first note that (1) is a special case of (2).
For (2) we can use
RΓ(U, g∗M) = RHomOC (jU !OU , g∗M) = RHomOD (ju(U)!Ou(U),M) = RΓ(u(U),M)
where the middle equality is a consequence of Lemma 21.37.2. □

Lemma 21.37.6.0FN6 Assume given a commutative diagram

(Sh(C′),OC′)
(g′,(g′)♯)

//

(f ′,(f ′)♯)
��

(Sh(C),OC)

(f,f♯)
��

(Sh(D′),OD′)
(g,g♯) // (Sh(D),OD)

of ringed topoi. Assume
(1) f , f ′, g, and g′ correspond to cocontinuous functors u, u′, v, and v′ as in

Sites, Lemma 7.21.1,

7Holds if C has finite connected limits and u commutes with them, see Sites, Lemma 7.21.6.
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(2) v ◦ u′ = u ◦ v′,
(3) v and v′ are continuous as well as cocontinuous,
(4) for any object V ′ of D′ the functor u′

V ′I → u
v(V ′)I given by v is cofinal,

(5) g−1OD = OD′ and (g′)−1OC = OC′ , and
(6) g′

! : Ab(C′)→ Ab(C) is exact8.
Then we have Rf ′

∗ ◦ (g′)∗ = g∗ ◦Rf∗ as functors D(OC)→ D(OD′).

Proof. We have g∗ = Lg∗ = g−1 and (g′)∗ = L(g′)∗ = (g′)−1 by condition (5).
By Lemma 21.20.7 it suffices to prove the result on the derived category D(C) of
abelian sheaves. Choose an object K ∈ D(C). Let I• be a K-injective complex of
abelian sheaves on C representing K. By Derived Categories, Lemma 13.31.9 and
assumption (6) we find that (g′)−1I• is a K-injective complex of abelian sheaves on
C′. By Modules on Sites, Lemma 18.41.3 we find that f ′

∗(g′)−1I• = g−1f∗I•. Since
f∗I• represents Rf∗K and since f ′

∗(g′)−1I• represents Rf ′
∗(g′)−1K we conclude.

□

Lemma 21.37.7.0FN7 Consider a commutative diagram

(Sh(C′),OC′
(g′,(g′)♯)

//

(f ′,(f ′)♯)
��

(Sh(C),OC)

(f,f♯)
��

(Sh(D′),OD′)
(g,g♯) // (Sh(D),OD)

of ringed topoi and suppose we have functors

C′
v′
// C

D′ v //

u′

OO

D

u

OO

such that (with notation as in Sites, Sections 7.14 and 7.21) we have
(1) u and u′ are continuous and give rise to the morphisms f and f ′,
(2) v and v′ are cocontinuous giving rise to the morphisms g and g′,
(3) u ◦ v = v′ ◦ u′,
(4) v and v′ are continuous as well as cocontinuous, and
(5) g−1OD = OD′ and (g′)−1OC = OC′ .

Then Rf ′
∗ ◦ (g′)∗ = g∗ ◦Rf∗ as functors D+(OC)→ D+(OD′). If in addition

(6) g′
! : Ab(C′)→ Ab(C) is exact9,

then Rf ′
∗ ◦ (g′)∗ = g∗ ◦Rf∗ as functors D(OC)→ D(OD′).

Proof. We have g∗ = Lg∗ = g−1 and (g′)∗ = L(g′)∗ = (g′)−1 by condition (5).
By Lemma 21.20.7 it suffices to prove the result on the derived category D+(C) or
D(C) of abelian sheaves.
Choose an object K ∈ D+(C). Let I• be a bounded below complex of injective
abelian sheaves on C representingK. By Lemma 21.37.1 we see thatHp(U ′, (g′)−1Iq) =
0 for all p > 0 and any q and any U ′ ∈ Ob(C′). Recall that Rpf ′

∗(g′)−1Iq is the sheaf

8Holds if fibre products and equalizers exist in C′ and v′ commutes with them, see Modules
on Sites, Lemma 18.16.3.

9Holds if fibre products and equalizers exist in C′ and v′ commutes with them, see Modules
on Sites, Lemma 18.16.3.
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associated to the presheaf V ′ 7→ Hp(u′(V ′), (g′)−1Iq), see Lemma 21.7.4. Thus we
see that (g′)−1Iq is right acyclic for the functor f ′

∗. By Leray’s acyclicity lemma
(Derived Categories, Lemma 13.16.7) we find that f ′

∗(g′)∗I• represents Rf ′
∗(g′)−1K.

By Modules on Sites, Lemma 18.41.4 we find that f ′
∗(g′)−1I• = g−1f∗I•. Since

g−1f∗I• represents g−1Rf∗K we conclude.
Choose an object K ∈ D(C). Let I• be a K-injective complex of abelian sheaves on
C representing K. By Derived Categories, Lemma 13.31.9 and assumption (6) we
find that (g′)−1I• is a K-injective complex of abelian sheaves on C′. By Modules
on Sites, Lemma 18.41.4 we find that f ′

∗(g′)−1I• = g−1f∗I•. Since f∗I• represents
Rf∗K and since f ′

∗(g′)−1I• represents Rf ′
∗(g′)−1K we conclude. □

21.38. Derived lower shriek for fibred categories

08RV In this section we work out some special cases of the situation discussed in Section
21.37. We make sure that we have equality between lower shriek on modules and
sheaves of abelian groups. We encourage the reader to skip this section on a first
reading.

Situation 21.38.1.08P8 Here (D,OD) be a ringed site and p : C → D is a fibred category.
We endow C with the topology inherited from D (Stacks, Section 8.10). We denote
π : Sh(C)→ Sh(D) the morphism of topoi associated to p (Stacks, Lemma 8.10.3).
We set OC = π−1OD so that we obtain a morphism of ringed topoi

π : (Sh(C),OC) −→ (Sh(D),OD)

Lemma 21.38.2.08P9 Assumptions and notation as in Situation 21.38.1. For U ∈ Ob(C)
consider the induced morphism of topoi

πU : Sh(C/U) −→ Sh(D/p(U))
Then there exists a morphism of topoi

σ : Sh(D/p(U))→ Sh(C/U)
such that πU ◦ σ = id and σ−1 = πU,∗.

Proof. Observe that πU is the restriction of π to the localizations, see Sites, Lemma
7.28.4. For an object V → p(U) of D/p(U) denote V ×p(U) U → U the strongly
cartesian morphism of C over D which exists as p is a fibred category. The functor

v : D/p(U)→ C/U, V/p(U) 7→ V ×p(U) U/U

is continuous by the definition of the topology on C. Moreover, it is a right adjoint
to p by the definition of strongly cartesian morphisms. Hence we are in the situation
discussed in Sites, Section 7.22 and we see that the sheaf πU,∗F is equal to V 7→
F(V ×p(U) U) (see especially Sites, Lemma 7.22.2).
But here we have more. Namely, the functor v is also cocontinuous (as all mor-
phisms in coverings of C are strongly cartesian). Hence v defines a morphism σ
as indicated in the lemma. The equality σ−1 = πU,∗ is immediate from the def-
inition. Since π−1

U G is given by the rule U ′/U 7→ G(p(U ′)/p(U)) it follows that
σ−1 ◦ π−1

U = id which proves the equality πU ◦ σ = id. □

Situation 21.38.3.08PA Let (D,OD) be a ringed site. Let u : C′ → C be a 1-morphism
of fibred categories over D (Categories, Definition 4.33.9). Endow C and C′ with
their inherited topologies (Stacks, Definition 8.10.2) and let π : Sh(C) → Sh(D),

https://stacks.math.columbia.edu/tag/08P8
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π′ : Sh(C′) → Sh(D), and g : Sh(C′) → Sh(C) be the corresponding morphisms of
topoi (Stacks, Lemma 8.10.3). Set OC = π−1OD and OC′ = (π′)−1OD. Observe
that g−1OC = OC′ so that

(Sh(C′),OC′)

π′
''

g
// (Sh(C),OC)

π
ww

(Sh(D),OD)

is a commutative diagram of morphisms of ringed topoi.

Lemma 21.38.4.08PB Assumptions and notation as in Situation 21.38.3. For U ′ ∈
Ob(C′) set U = u(U ′) and V = p′(U ′) and consider the induced morphisms of
ringed topoi

(Sh(C′/U ′),OU ′)

π′
U′ ))

g′
// (Sh(C),OU )

πUvv
(Sh(D/V ),OV )

Then there exists a morphism of topoi
σ′ : Sh(D/V )→ Sh(C′/U ′),

such that setting σ = g′ ◦σ′ we have π′
U ′ ◦σ′ = id, πU ◦σ = id, (σ′)−1 = π′

U ′,∗, and
σ−1 = πU,∗.

Proof. Let v′ : D/V → C′/U ′ be the functor constructed in the proof of Lemma
21.38.2 starting with p′ : C′ → D′ and the object U ′. Since u is a 1-morphism of
fibred categories over D it transforms strongly cartesian morphisms into strongly
cartesian morphisms, hence the functor v = u ◦ v′ is the functor of the proof of
Lemma 21.38.2 relative to p : C → D and U . Thus our lemma follows from that
lemma. □

Lemma 21.38.5.08PC Assumption and notation as in Situation 21.38.3.
(1) There are left adjoints g! : Mod(OC′) → Mod(OC) and gAb

! : Ab(C′) →
Ab(C) to g∗ = g−1 on modules and on abelian sheaves.

(2) The diagram
Mod(OC′)

��

g!
// Mod(OC)

��
Ab(C′)

gAb
! // Ab(C)

commutes.
(3) There are left adjoints Lg! : D(OC′)→ D(OC) and LgAb

! : D(C′)→ D(C)
to g∗ = g−1 on derived categories of modules and abelian sheaves.

(4) The diagram
D(OC′)

��

Lg!

// D(OC)

��
D(C′)

LgAb
! // D(C)

commutes.
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Proof. The functor u is continuous and cocontinuous Stacks, Lemma 8.10.3. Hence
the existence of the functors g!, gAb

! , Lg!, and LgAb
! can be found in Modules on

Sites, Sections 18.16 and 18.41 and Section 21.37.
To prove (2) it suffices to show that the canonical map

gAb
! jU ′!OU ′ → ju(U ′)!Ou(U ′)

is an isomorphism for all objects U ′ of C′, see Modules on Sites, Remark 18.41.2.
Similarly, to prove (4) it suffices to show that the canonical map

LgAb
! jU ′!OU ′ → ju(U ′)!Ou(U ′)

is an isomorphism in D(C) for all objects U ′ of C′, see Remark 21.37.3. This will
also imply the previous formula hence this is what we will show.
We will use that for a localization morphism j the functors j! and jAb

! agree
(see Modules on Sites, Remark 18.19.6) and that j! is exact (Modules on Sites,
Lemma 18.19.3). Let us adopt the notation of Lemma 21.38.4. Since LgAb

! ◦ jU ′! =
jU ! ◦ L(g′)Ab

! (by commutativity of Sites, Lemma 7.28.4 and uniqueness of adjoint
functors) it suffices to prove that L(g′)Ab

! OU ′ = OU . Using the results of Lemma
21.38.4 we have for any object E of D(C/u(U ′)) the following sequence of equalities

HomD(C/U)(L(g′)Ab
! OU ′ , E) = HomD(C′/U ′)(OU ′ , (g′)−1E)

= HomD(C′/U ′)((π′
U ′)−1OV , (g′)−1E)

= HomD(D/V )(OV , Rπ′
U ′,∗(g′)−1E)

= HomD(D/V )(OV , (σ′)−1(g′)−1E)
= HomD(D/V )(OV , σ−1E)
= HomD(D/V )(OV , πU,∗E)
= HomD(C/U)(π−1

U OV , E)
= HomD(C/U)(OU , E)

By Yoneda’s lemma we conclude. □

Remark 21.38.6.09CY Assumptions and notation as in Situation 21.38.1. Note that
setting C′ = D and u equal to the structure functor of C gives a situation as in
Situation 21.38.3. Hence Lemma 21.38.5 tells us we have functors π!, πAb

! , Lπ!, and
LπAb

! such that forget ◦ π! = πAb
! ◦ forget and forget ◦ Lπ! = LπAb

! ◦ forget.

Remark 21.38.7.08PD Assumptions and notation as in Situation 21.38.3. Let F be an
abelian sheaf on C, let F ′ be an abelian sheaf on C′, and let t : F ′ → g−1F be a
map. Then we obtain a canonical map

Lπ′
!(F ′) −→ Lπ!(F)

by using the adjoint g!F ′ → F of t, the map Lg!(F ′) → g!F ′, and the equality
Lπ′

! = Lπ! ◦ Lg!.

Lemma 21.38.8.08PE Assumptions and notation as in Situation 21.38.1. For F in Ab(C)
the sheaf π!F is the sheaf associated to the presheaf

V 7−→ colimCopp
V
F|CV

with restriction maps as indicated in the proof.
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Proof. DenoteH be the rule of the lemma. For a morphism h : V ′ → V of D there is
a pullback functor h∗ : CV → CV ′ of fibre categories (Categories, Definition 4.33.6).
Moreover for U ∈ Ob(CV ) there is a strongly cartesian morphism h∗U → U covering
h. Restriction along these strongly cartesian morphisms defines a transformation
of functors

F|CV −→ F|CV ′ ◦ h∗.

Hence a map H(V )→ H(V ′) between colimits, see Categories, Lemma 4.14.8.
To prove the lemma we show that

MorPSh(D)(H,G) = MorSh(C)(F , π−1G)
for every sheaf G on C. An element of the left hand side is a compatible system of
maps F(U) → G(p(U)) for all U in C. Since π−1G(U) = G(p(U)) by our choice of
topology on C we see the same thing is true for the right hand side and we win. □

21.39. Homology on a category

08RW In the case of a category over a point we will baptize the left derived lower shriek
functors the homology functors.

Example 21.39.1 (Category over point).08PF Let C be a category. Endow C with the
chaotic topology (Sites, Example 7.6.6). Thus presheaves and sheaves agree on
C. The functor p : C → ∗ where ∗ is the category with a single object and a
single morphism is cocontinuous and continuous. Let π : Sh(C) → Sh(∗) be the
corresponding morphism of topoi. Let B be a ring. We endow ∗ with the sheaf of
rings B and C with OC = π−1B which we will denote B. In this way

π : (Sh(C), B)→ (Sh(∗), B)
is an example of Situation 21.38.1. By Remark 21.38.6 we do not need to distinguish
between π! on modules or abelian sheaves. By Lemma 21.38.8 we see that π!F =
colimCopp F . Thus Lnπ! is the nth left derived functor of taking colimits. In the
following, we write

Hn(C,F) = Lnπ!(F)
and we will name this the nth homology group of F on C.

Example 21.39.2 (Computing homology).08PG In Example 21.39.1 we can compute the
functors Hn(C,−) as follows. Let F ∈ Ob(Ab(C)). Consider the chain complex

K•(F) : . . .→
⊕

U2→U1→U0
F(U0)→

⊕
U1→U0

F(U0)→
⊕

U0
F(U0)

where the transition maps are given by
(U2 → U1 → U0, s) 7−→ (U1 → U0, s)− (U2 → U0, s) + (U2 → U1, s|U1)

and similarly in other degrees. By construction
H0(C,F) = colimCopp F = H0(K•(F)),

see Categories, Lemma 4.14.12. The construction of K•(F) is functorial in F and
transforms short exact sequences of Ab(C) into short exact sequences of complexes.
Thus the sequence of functors F 7→ Hn(K•(F)) forms a δ-functor, see Homology,
Definition 12.12.1 and Lemma 12.13.12. For F = jU !ZU the complex K•(F) is the
complex associated to the free Z-module on the simplicial set X• with terms

Xn =
∐

Un→...→U1→U0
MorC(U0, U)

https://stacks.math.columbia.edu/tag/08PF
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This simplicial set is homotopy equivalent to the constant simplicial set on a sin-
gleton {∗}. Namely, the map X• → {∗} is obvious, the map {∗} → Xn is given by
mapping ∗ to (U → . . .→ U, idU ), and the maps

hn,i : Xn −→ Xn

(Simplicial, Lemma 14.26.2) defining the homotopy between the two mapsX• → X•
are given by the rule

hn,i : (Un → . . .→ U0, f) 7−→ (Un → . . .→ Ui → U → . . .→ U, id)
for i > 0 and hn,0 = id. Verifications omitted. This implies that K•(jU !ZU ) has
trivial cohomology in negative degrees (by the functoriality of Simplicial, Remark
14.26.4 and the result of Simplicial, Lemma 14.27.1). Thus K•(F) computes the
left derived functors Hn(C,−) of H0(C,−) for example by (the duals of) Homology,
Lemma 12.12.4 and Derived Categories, Lemma 13.16.6.
Example 21.39.3.08PH Let u : C′ → C be a functor. Endow C′ and C with the chaotic
topology as in Example 21.39.1. The functors u, C′ → ∗, and C → ∗ where ∗
is the category with a single object and a single morphism are cocontinuous and
continuous. Let g : Sh(C′) → Sh(C), π′ : Sh(C′) → Sh(∗), and π : Sh(C) → Sh(∗),
be the corresponding morphisms of topoi. Let B be a ring. We endow ∗ with the
sheaf of rings B and C′, C with the constant sheaf B. In this way

(Sh(C′), B)

π′
''

g
// (Sh(C), B)

π
xx

(Sh(∗), B)
is an example of Situation 21.38.3. Thus Lemma 21.38.5 applies to g so we do not
need to distinguish between g! on modules or abelian sheaves. In particular Remark
21.38.7 produces canonical maps

Hn(C′,F ′) −→ Hn(C,F)
whenever we have F in Ab(C), F ′ in Ab(C′), and a map t : F ′ → g−1F . In terms
of the computation of homology given in Example 21.39.2 we see that these maps
come from a map of complexes

K•(F ′) −→ K•(F)
given by the rule

(U ′
n → . . .→ U ′

0, s
′) 7−→ (u(U ′

n)→ . . .→ u(U ′
0), t(s′))

with obvious notation.
Remark 21.39.4.08Q6 Notation and assumptions as in Example 21.39.1. Let F• be a
bounded complex of abelian sheaves on C. For any object U of C there is a canonical
map

F•(U) −→ Lπ!(F•)
in D(Ab). If F• is a complex of B-modules then this map is in D(B). To prove
this, note that we compute Lπ!(F•) by taking a quasi-isomorphism P• → F• where
P• is a complex of projectives. However, since the topology is chaotic this means
that P•(U) → F•(U) is a quasi-isomorphism hence can be inverted in D(Ab),
resp. D(B). Composing with the canonical map P•(U)→ π!(P•) coming from the
computation of π! as a colimit we obtain the desired arrow.
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Lemma 21.39.5.08Q7 Notation and assumptions as in Example 21.39.1. If C has either
an initial or a final object, then Lπ! ◦ π−1 = id on D(Ab), resp. D(B).

Proof. If C has an initial object, then π! is computed by evaluating on this object
and the statement is clear. If C has a final object, then Rπ∗ is computed by
evaluating on this object, hence Rπ∗ ◦ π−1 ∼= id on D(Ab), resp. D(B). This
implies that π−1 : D(Ab) → D(C), resp. π−1 : D(B) → D(B) is fully faithful, see
Categories, Lemma 4.24.4. Then the same lemma implies that Lπ! ◦ π−1 = id as
desired. □

Lemma 21.39.6.08Q8 Notation and assumptions as in Example 21.39.1. Let B → B′

be a ring map. Consider the commutative diagram of ringed topoi

(Sh(C), B)

π

��

(Sh(C), B′)

π′

��

h
oo

(∗, B) (∗, B′)foo

Then Lπ! ◦ Lh∗ = Lf∗ ◦ Lπ′
! .

Proof. Both functors are right adjoint to the obvious functor D(B′)→ D(B). □

Lemma 21.39.7.08Q9 Notation and assumptions as in Example 21.39.1. Let U• be a
cosimplicial object in C such that for every U ∈ Ob(C) the simplicial set MorC(U•, U)
is homotopy equivalent to the constant simplicial set on a singleton. Then

Lπ!(F) = F(U•)
in D(Ab), resp. D(B) functorially in F in Ab(C), resp. Mod(B).

Proof. As Lπ! agrees for modules and abelian sheaves by Lemma 21.38.5 it suffices
to prove this when F is an abelian sheaf. For U ∈ Ob(C) the abelian sheaf jU !ZU
is a projective object of Ab(C) since Hom(jU !ZU ,F) = F(U) and taking sections is
an exact functor as the topology is chaotic. Every abelian sheaf is a quotient of a
direct sum of jU !ZU by Modules on Sites, Lemma 18.28.8. Thus we can compute
Lπ!(F) by choosing a resolution

. . .→ G−1 → G0 → F → 0
whose terms are direct sums of sheaves of the form above and taking Lπ!(F) =
π!(G•). Consider the double complex A•,• = G•(U•). The map G0 → F gives a
map of complexes A0,• → F(U•). Since π! is computed by taking the colimit over
Copp (Lemma 21.38.8) we see that the two compositions Gm(U1)→ Gm(U0)→ π!Gm
are equal. Thus we obtain a canonical map of complexes

Tot(A•,•) −→ π!(G•) = Lπ!(F)
To prove the lemma it suffices to show that the complexes

. . .→ Gm(U1)→ Gm(U0)→ π!Gm → 0
are exact, see Homology, Lemma 12.25.4. Since the sheaves Gm are direct sums of
the sheaves jU !ZU we reduce to G = jU !ZU . The complex jU !ZU (U•) is the complex
of abelian groups associated to the free Z-module on the simplicial set MorC(U•, U)
which we assumed to be homotopy equivalent to a singleton. We conclude that

jU !ZU (U•)→ Z

https://stacks.math.columbia.edu/tag/08Q7
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is a homotopy equivalence of abelian groups hence a quasi-isomorphism (Simplicial,
Remark 14.26.4 and Lemma 14.27.1). This finishes the proof since π!jU !ZU = Z as
was shown in the proof of Lemma 21.38.5. □

Lemma 21.39.8.08QA Notation and assumptions as in Example 21.39.3. If there exists
a cosimplicial object U ′

• of C′ such that Lemma 21.39.7 applies to both U ′
• in C′

and u(U ′
•) in C, then we have Lπ′

! ◦ g−1 = Lπ! as functors D(C) → D(Ab), resp.
D(C, B)→ D(B).
Proof. Follows immediately from Lemma 21.39.7 and the fact that g−1 is given by
precomposing with u. □

Lemma 21.39.9.08QB Let Ci, i = 1, 2 be categories. Let ui : C1 × C2 → Ci be the
projection functors. Let B be a ring. Let gi : (Sh(C1×C2), B)→ (Sh(Ci), B) be the
corresponding morphisms of ringed topoi, see Example 21.39.3. For Ki ∈ D(Ci, B)
we have

L(π1 × π2)!(g−1
1 K1 ⊗L

B g
−1
2 K2) = Lπ1,!(K1)⊗L

B Lπ2,!(K2)
in D(B) with obvious notation.
Proof. As both sides commute with colimits, it suffices to prove this forK1 = jU !BU
and K2 = jV !BV for U ∈ Ob(C1) and V ∈ Ob(C2). See construction of Lπ! in
Lemma 21.37.2. In this case

g−1
1 K1 ⊗L

B g
−1
2 K2 = g−1

1 K1 ⊗B g−1
2 K2 = j(U,V )!B(U,V )

Verification omitted. Hence the result follows as both the left and the right hand
side of the formula of the lemma evaluate to B, see construction of Lπ! in Lemma
21.37.2. □

Lemma 21.39.10.08QC Notation and assumptions as in Example 21.39.1. If there exists
a cosimplicial object U• of C such that Lemma 21.39.7 applies, then

Lπ!(K1 ⊗L
B K2) = Lπ!(K1)⊗L

B Lπ!(K2)
for all Ki ∈ D(B).
Proof. Consider the diagram of categories and functors

C

C u // C × C
u2

""

u1

<<

C
where u is the diagonal functor and ui are the projection functors. This gives
morphisms of ringed topoi g, g1, g2. For any object (U1, U2) of C we have

MorC×C(u(U•), (U1, U2)) = MorC(U•, U1)×MorC(U•, U2)
which is homotopy equivalent to a point by Simplicial, Lemma 14.26.10. Thus
Lemma 21.39.8 gives Lπ!(g−1K) = L(π × π)!(K) for any K in D(C × C, B). Take
K = g−1

1 K1 ⊗L
B g−1

2 K2. Then g−1K = K1 ⊗L
B K2 because g−1 = g∗ = Lg∗

commutes with derived tensor product (Lemma 21.18.4). To finish we apply Lemma
21.39.9. □
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Remark 21.39.11 (Simplicial modules).08QD Let C = ∆ and let B be any ring. This is
a special case of Example 21.39.1 where the assumptions of Lemma 21.39.7 hold.
Namely, let U• be the cosimplicial object of ∆ given by the identity functor. To
verify the condition we have to show that for [m] ∈ Ob(∆) the simplicial set
∆[m] : n 7→ Mor∆([n], [m]) is homotopy equivalent to a point. This is explained in
Simplicial, Example 14.26.7.
In this situation the category Mod(B) is just the category of simplicial B-modules
and the functor Lπ! sends a simplicial B-moduleM• to its associated complex s(M•)
of B-modules. Thus the results above can be reinterpreted in terms of results on
simplicial modules. For example a special case of Lemma 21.39.10 is: if M•, M ′

•
are flat simplicial B-modules, then the complex s(M• ⊗B M ′

•) is quasi-isomorphic
to the total complex associated to the double complex s(M•)⊗B s(M ′

•). (Hint: use
flatness to convert from derived tensor products to usual tensor products.) This is
a special case of the Eilenberg-Zilber theorem which can be found in [EZ53].

Lemma 21.39.12.08RX Let C be a category (endowed with chaotic topology). Let O →
O′ be a map of sheaves of rings on C. Assume

(1) there exists a cosimplicial object U• in C as in Lemma 21.39.7, and
(2) Lπ!O → Lπ!O′ is an isomorphism.

For K in D(O) we have
Lπ!(K) = Lπ!(K ⊗L

O O′)
in D(Ab).

Proof. Note: in this proof Lπ! denotes the left derived functor of π! on abelian
sheaves. Since Lπ! commutes with colimits, it suffices to prove this for bounded
above complexes of O-modules (compare with argument of Derived Categories,
Proposition 13.29.2 or just stick to bounded above complexes). Every such complex
is quasi-isomorphic to a bounded above complex whose terms are direct sums of
jU !OU with U ∈ Ob(C), see Modules on Sites, Lemma 18.28.8. Thus it suffices to
prove the lemma for jU !OU . By assumption

S• = MorC(U•, U)
is a simplicial set homotopy equivalent to the constant simplicial set on a singleton.
Set Pn = O(Un) and P ′

n = O′(Un). Observe that the complex associated to the
simplicial abelian group

X• : n 7−→
⊕

s∈Sn
Pn

computes Lπ!(jU !OU ) by Lemma 21.39.7. Since jU !OU is a flat O-module we have
jU !OU ⊗L

O O′ = jU !O′
U and Lπ! of this is computed by the complex associated to

the simplicial abelian group

X ′
• : n 7−→

⊕
s∈Sn

P ′
n

As the rule which to a simplicial set T• associated the simplicial abelian group with
terms

⊕
t∈Tn Pn is a functor, we see that X• → P• is a homotopy equivalence of

simplicial abelian groups. Similarly, the rule which to a simplicial set T• associates
the simplicial abelian group with terms

⊕
t∈Tn P

′
n is a functor. Hence X ′

• → P ′
• is

a homotopy equivalence of simplicial abelian groups. By assumption P• → P ′
• is

a quasi-isomorphism (since P•, resp. P ′
• computes Lπ!O, resp. Lπ!O′ by Lemma

21.39.7). We conclude that X• and X ′
• are quasi-isomorphic as desired. □
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Remark 21.39.13.09CZ Let C and B be as in Example 21.39.1. Assume there exists a
cosimplicial object as in Lemma 21.39.7. Let O → B be a map sheaf of rings on
C which induces an isomorphism Lπ!O → Lπ!B. In this case we obtain an exact
functor of triangulated categories

Lπ! : D(O) −→ D(B)
Namely, for any object K of D(O) we have LπAb

! (K) = LπAb
! (K ⊗L

O B) by Lemma
21.39.12. Thus we can define the displayed functor as the composition of −⊗L

O B
with the functor Lπ! : D(B)→ D(B). In other words, we obtain a B-module struc-
ture on Lπ!(K) coming from the (canonical, functorial) identification of Lπ!(K)
with Lπ!(K ⊗L

O B) of the lemma.

21.40. Calculating derived lower shriek

08P7 In this section we apply the results from Section 21.39 to compute Lπ! in Situation
21.38.1 and Lg! in Situation 21.38.3.

Lemma 21.40.1.08PI Assumptions and notation as in Situation 21.38.1. For F in
PAb(C) and n ≥ 0 consider the abelian sheaf Ln(F) on D which is the sheaf
associated to the presheaf

V 7−→ Hn(CV ,F|CV )
with restriction maps as indicated in the proof. Then Ln(F) = Ln(F#).

Proof. For a morphism h : V ′ → V of D there is a pullback functor h∗ : CV → CV ′

of fibre categories (Categories, Definition 4.33.6). Moreover for U ∈ Ob(CV ) there
is a strongly cartesian morphism h∗U → U covering h. Restriction along these
strongly cartesian morphisms defines a transformation of functors

F|CV −→ F|CV ′ ◦ h∗.

By Example 21.39.3 we obtain the desired restriction map
Hn(CV ,F|CV ) −→ Hn(CV ′ ,F|CV ′ )

Let us denote Ln,p(F) this presheaf, so that Ln(F) = Ln,p(F)#. The canonical map
γ : F → F+ (Sites, Theorem 7.10.10) defines a canonical map Ln,p(F)→ Ln,p(F+).
We have to prove this map becomes an isomorphism after sheafification.
Let us use the computation of homology given in Example 21.39.2. DenoteK•(F|CV )
the complex associated to the restriction of F to the fibre category CV . By the re-
marks above we obtain a presheaf K•(F) of complexes

V 7−→ K•(F|CV )
whose cohomology presheaves are the presheaves Ln,p(F). Thus it suffices to show
that

K•(F) −→ K•(F+)
becomes an isomorphism on sheafification.
Injectivity. Let V be an object of D and let ξ ∈ Kn(F)(V ) be an element which
maps to zero in Kn(F+)(V ). We have to show there exists a covering {Vj → V }
such that ξ|Vj is zero in Kn(F)(Vj). We write

ξ =
∑

(Ui,n+1 → . . .→ Ui,0, σi)
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with σi ∈ F(Ui,0). We arrange it so that each sequence of morphisms Un → . . .→
U0 of CV occurs are most once. Since the sums in the definition of the complex K•
are direct sums, the only way this can map to zero in K•(F+)(V ) is if all σi map
to zero in F+(Ui,0). By construction of F+ there exist coverings {Ui,0,j → Ui,0}
such that σi|Ui,0,j is zero. By our construction of the topology on C we can write
Ui,0,j → Ui,0 as the pullback (Categories, Definition 4.33.6) of some morphisms
Vi,j → V and moreover each {Vi,j → V } is a covering. Choose a covering {Vj → V }
dominating each of the coverings {Vi,j → V }. Then it is clear that ξ|Vj = 0.
Surjectivity. Proof omitted. Hint: Argue as in the proof of injectivity. □

Lemma 21.40.2.08PJ Assumptions and notation as in Situation 21.38.1. For F in Ab(C)
and n ≥ 0 the sheaf Lnπ!(F) is equal to the sheaf Ln(F) constructed in Lemma
21.40.1.

Proof. Consider the sequence of functors F 7→ Ln(F) from PAb(C)→ Ab(C). Since
for each V ∈ Ob(D) the sequence of functors Hn(CV ,−) forms a δ-functor so do
the functors F 7→ Ln(F). Our goal is to show these form a universal δ-functor.
In order to do this we construct some abelian presheaves on which these functors
vanish.
For U ′ ∈ Ob(C) consider the abelian presheaf FU ′ = jPAb

U ′! ZU ′ (Modules on Sites,
Remark 18.19.7). Recall that

FU ′(U) =
⊕

MorC(U,U ′)
Z

If U lies over V = p(U) in D) and U ′ lies over V ′ = p(U ′) then any morphism
a : U → U ′ factors uniquely as U → h∗U ′ → U ′ where h = p(a) : V → V ′ (see
Categories, Definition 4.33.6). Hence we see that

FU ′ |CV =
⊕

h∈MorD(V,V ′)
jh∗U ′!Zh∗U ′

where jh∗U ′ : Sh(CV /h∗U ′) → Sh(CV ) is the localization morphism. The sheaves
jh∗U ′!Zh∗U ′ have vanishing higher homology groups (see Example 21.39.2). We
conclude that Ln(FU ′) = 0 for all n > 0 and all U ′. It follows that any abelian
presheaf F is a quotient of an abelian presheaf G with Ln(G) = 0 for all n > 0
(Modules on Sites, Lemma 18.28.8). Since Ln(F) = Ln(F#) we see that the same
thing is true for abelian sheaves. Thus the sequence of functors Ln(−) is a universal
delta functor on Ab(C) (Homology, Lemma 12.12.4). Since we have agreement with
H−n(Lπ!(−)) for n = 0 by Lemma 21.38.8 we conclude by uniqueness of universal δ-
functors (Homology, Lemma 12.12.5) and Derived Categories, Lemma 13.16.6. □

Lemma 21.40.3.08PK Assumptions and notation as in Situation 21.38.3. For an abelian
sheaf F ′ on C′ the sheaf Lng!(F ′) is the sheaf associated to the presheaf

U 7−→ Hn(IU ,F ′
U )

For notation and restriction maps see proof.

Proof. Say p(U) = V . The category IU is the category of pairs (U ′, φ) where
φ : U → u(U ′) is a morphism of C with p(φ) = idV , i.e., φ is a morphism of
the fibre category CV . Morphisms (U ′

1, φ1) → (U ′
2, φ2) are given by morphisms

a : U ′
1 → U ′

2 of the fibre category C′
V such that φ2 = u(a) ◦ φ1. The presheaf F ′

U

sends (U ′, φ) to F ′(U ′). We will construct the restriction mappings below.

https://stacks.math.columbia.edu/tag/08PJ
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Choose a factorization

C′
u′
// C′′ u′′

//
w
oo C

of u as in Categories, Lemma 4.33.14. Then g! = g′′
! ◦ g′

! and similarly for derived
functors. On the other hand, the functor g′

! is exact, see Modules on Sites, Lemma
18.16.6. Thus we get Lg!(F ′) = Lg′′

! (F ′′) where F ′′ = g′
!F ′. Note that F ′′ = h−1F ′

where h : Sh(C′′) → Sh(C′) is the morphism of topoi associated to w, see Sites,
Lemma 7.23.1. The functor u′′ turns C′′ into a fibred category over C, hence Lemma
21.40.2 applies to the computation of Lng′′

! . The result follows as the construction
of C′′ in the proof of Categories, Lemma 4.33.14 shows that the fibre category C′′

U

is equal to IU . Moreover, h−1F ′|C′′
U

is given by the rule described above (as w
is continuous and cocontinuous by Stacks, Lemma 8.10.3 so we may apply Sites,
Lemma 7.21.5). □

21.41. Simplicial modules

09D0 Let A• be a simplicial ring. Recall that we may think of A• as a sheaf on ∆ (endowed
with the chaotic topology), see Simplicial, Section 14.4. Then a simplicial module
M• over A• is just a sheaf of A•-modules on ∆. In other words, for every n ≥ 0 we
have an An-module Mn and for every map φ : [n] → [m] we have a corresponding
map

M•(φ) : Mm −→Mn

which is A•(φ)-linear such that these maps compose in the usual manner.

Let C be a site. A simplicial sheaf of rings A• on C is a simplicial object in the
category of sheaves of rings on C. In this case the assignment U 7→ A•(U) is a sheaf
of simplicial rings and in fact the two notions are equivalent. A similar discussion
holds for simplicial abelian sheaves, simplicial sheaves of Lie algebras, and so on.

However, as in the case of simplicial rings above, there is another way to think
about simplicial sheaves. Namely, consider the projection

p : ∆× C −→ C

This defines a fibred category with strongly cartesian morphisms exactly the mor-
phisms of the form ([n], U) → ([n], V ). We endow the category ∆ × C with the
topology inherited from C (see Stacks, Section 8.10). The simple description of the
coverings in ∆ × C (Stacks, Lemma 8.10.1) immediately implies that a simplicial
sheaf of rings on C is the same thing as a sheaf of rings on ∆× C.

By analogy with the case of simplicial modules over a simplicial ring, we define
simplicial modules over simplicial sheaves of rings as follows.

Definition 21.41.1.09D1 Let C be a site. Let A• be a simplicial sheaf of rings on C. A
simplicial A•-module F• (sometimes called a simplicial sheaf of A•-modules) is a
sheaf of modules over the sheaf of rings on ∆× C associated to A•.

We obtain a category Mod(A•) of simplicial modules and a corresponding derived
category D(A•). Given a map A• → B• of simplicial sheaves of rings we obtain a
functor

−⊗L
A•
B• : D(A•) −→ D(B•)

https://stacks.math.columbia.edu/tag/09D1
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Moreover, the material of the preceding sections determines a functor
Lπ! : D(A•) −→ D(C)

Given a simplicial module F• the object Lπ!(F•) is represented by the associated
chain complex s(F•) (Simplicial, Section 14.23). This follows from Lemmas 21.40.2
and 21.39.7.
Lemma 21.41.2.09D2 Let C be a site. Let A• → B• be a homomorphism of simplicial
sheaves of rings on C. If Lπ!A• → Lπ!B• is an isomorphism in D(C), then we have

Lπ!(K) = Lπ!(K ⊗L
A•
B•)

for all K in D(A•).
Proof. Let ([n], U) be an object of ∆ × C. Since Lπ! commutes with colimits,
it suffices to prove this for bounded above complexes of O-modules (compare with
argument of Derived Categories, Proposition 13.29.2 or just stick to bounded above
complexes). Every such complex is quasi-isomorphic to a bounded above complex
whose terms are flat modules, see Modules on Sites, Lemma 18.28.8. Thus it suffices
to prove the lemma for a flat A•-module F . In this case the derived tensor product
is the usual tensor product and is a sheaf also. Hence by Lemma 21.40.2 we can
compute the cohomology sheaves of both sides of the equation by the procedure
of Lemma 21.40.1. Thus it suffices to prove the result for the restriction of F to
the fibre categories (i.e., to ∆ × U). In this case the result follows from Lemma
21.39.12. □

Remark 21.41.3.09D3 Let C be a site. Let ϵ : A• → O be an augmentation (Simplicial,
Definition 14.20.1) in the category of sheaves of rings. Assume ϵ induces a quasi-
isomorphism s(A•) → O. In this case we obtain an exact functor of triangulated
categories

Lπ! : D(A•) −→ D(O)
Namely, for any object K of D(A•) we have Lπ!(K) = Lπ!(K ⊗L

A•
O) by Lemma

21.41.2. Thus we can define the displayed functor as the composition of − ⊗L
A•
O

with the functor Lπ! : D(∆×C, π−1O)→ D(O) of Remark 21.38.6. In other words,
we obtain a O-module structure on Lπ!(K) coming from the (canonical, functorial)
identification of Lπ!(K) with Lπ!(K ⊗L

A•
O) of the lemma.

21.42. Cohomology on a category

08RY In the situation of Example 21.39.1 in addition to the derived functor Lπ!, we also
have the functor Rπ∗. For an abelian sheaf F on C we have Hn(C,F) = H−n(Lπ!F)
and Hn(C,F) = Hn(Rπ∗F).
Example 21.42.1 (Computing cohomology).08RZ In Example 21.39.1 we can compute
the functors Hn(C,−) as follows. Let F ∈ Ob(Ab(C)). Consider the cochain
complex

K•(F) :
∏

U0
F(U0)→

∏
U0→U1

F(U0)→
∏

U0→U1→U2
F(U0)→ . . .

where the transition maps are given by
(sU0→U1) 7−→ ((U0 → U1 → U2) 7→ sU0→U1 − sU0→U2 + sU1→U2 |U0)

and similarly in other degrees. By construction
H0(C,F) = limCopp F = H0(K•(F)),

https://stacks.math.columbia.edu/tag/09D2
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see Categories, Lemma 4.14.11. The construction of K•(F) is functorial in F and
transforms short exact sequences of Ab(C) into short exact sequences of complexes.
Thus the sequence of functors F 7→ Hn(K•(F)) forms a δ-functor, see Homology,
Definition 12.12.1 and Lemma 12.13.12. For an object U of C denote pU : Sh(∗)→
Sh(C) the corresponding point with p−1

U equal to evaluation at U , see Sites, Example
7.33.8. Let A be an abelian group and set F = pU,∗A. In this case the complex
K•(F) is the complex with terms Map(Xn, A) where

Xn =
∐

U0→...→Un−1→Un
MorC(U,U0)

This simplicial set is homotopy equivalent to the constant simplicial set on a sin-
gleton {∗}. Namely, the map X• → {∗} is obvious, the map {∗} → Xn is given by
mapping ∗ to (U → . . .→ U, idU ), and the maps

hn,i : Xn −→ Xn

(Simplicial, Lemma 14.26.2) defining the homotopy between the two mapsX• → X•
are given by the rule

hn,i : (U0 → . . .→ Un, f) 7−→ (U → . . .→ U → Ui → . . .→ Un, id)

for i > 0 and hn,0 = id. Verifications omitted. Since Map(−, A) is a contravariant
functor, implies that K•(pU,∗A) has trivial cohomology in positive degrees (by
the functoriality of Simplicial, Remark 14.26.4 and the result of Simplicial, Lemma
14.28.6). This implies that K•(F) is acyclic in positive degrees also if F is a product
of sheaves of the form pU,∗A. As every abelian sheaf on C embeds into such a product
we conclude that K•(F) computes the left derived functors Hn(C,−) of H0(C,−)
for example by Homology, Lemma 12.12.4 and Derived Categories, Lemma 13.16.6.

Example 21.42.2 (Computing Exts).08S0 In Example 21.39.1 assume we are moreover
given a sheaf of rings O on C. Let F , G be O-modules. Consider the complex
K•(G,F) with degree n term∏

U0→U1→...→Un
HomO(Un)(G(Un),F(U0))

and transition map given by

(φU0→U1) 7−→ ((U0 → U1 → U2) 7→ φU0→U1 ◦ ρ
U2
U1
− φU0→U2 + ρU1

U0
◦ φU1→U2

and similarly in other degrees. Here the ρ’s indicate restriction maps. By construc-
tion

HomO(G,F) = H0(K•(G,F))
for all pairs of O-modules F ,G. The assignment (G,F) 7→ K•(G,F) is a bifunctor
which transforms direct sums in the first variable into products and commutes with
products in the second variable. We claim that

ExtiO(G,F) = Hi(K•(G,F))

for i ≥ 0 provided either
(1) G(U) is a projective O(U)-module for all U ∈ Ob(C), or
(2) F(U) is an injective O(U)-module for all U ∈ Ob(C).

Namely, case (1) the functor K•(G,−) is an exact functor from the category of O-
modules to the category of cochain complexes of abelian groups. Thus, arguing as

https://stacks.math.columbia.edu/tag/08S0
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in Example 21.42.1, it suffices to show that K•(G,F) is acyclic in positive degrees
when F is pU,∗A for an O(U)-module A. Choose a short exact sequence

(21.42.2.1)08S1 0→ G′ →
⊕

jUi!OUi → G → 0

see Modules on Sites, Lemma 18.28.8. Since (1) holds for the middle and right
sheaves, it also holds for G′ and evaluating (21.42.2.1) on an object of C gives a
split exact sequence of modules. We obtain a short exact sequence of complexes

0→ K•(G,F)→
∏

K•(jUi!OUi ,F)→ K•(G′,F)→ 0

for any F , in particular F = pU,∗A. On H0 we obtain

0→ Hom(G, pU,∗A)→ Hom(
∏

jUi!OUi , pU,∗A)→ Hom(G′, pU,∗A)→ 0

which is exact as Hom(H, pU,∗A) = HomO(U)(H(U), A) and the sequence of sections
of (21.42.2.1) over U is split exact. Thus we can use dimension shifting to see
that it suffices to prove K•(jU ′!OU ′ , pU,∗A) is acyclic in positive degrees for all
U,U ′ ∈ Ob(C). In this case Kn(jU ′!OU ′ , pU,∗A) is equal to∏

U→U0→U1→...→Un→U ′
A

In other words, K•(jU ′!OU ′ , pU,∗A) is the complex with terms Map(X•, A) where

Xn =
∐

U0→...→Un−1→Un
MorC(U,U0)×MorC(Un, U ′)

This simplicial set is homotopy equivalent to the constant simplicial set on a single-
ton {∗} as can be proved in exactly the same way as the corresponding statement
in Example 21.42.1. This finishes the proof of the claim.
The argument in case (2) is similar (but dual).

21.43. Modules on a category

0GYU The material in this section will be used to define a variant of the derived category
of quasi-coherent modules on a stack in groupoids over the category of schemes.
See Sheaves on Stacks, Section 96.26.
Let C be a category. We think of C as a site with the chaotic topology. As in
Example 21.42.2 we let O be a sheaf of rings on C. In other words, O is a presheaf
of rings on the category C, see Categories, Definition 4.3.3.

Definition 21.43.1.0GYV In the situation above, we denote QC (C,O) or simply QC (O)
the full subcategory of D(O) = D(C,O) consisting of objects K such that for all
U → V in C the canonical map

RΓ(V,K)⊗L
O(V ) O(U) −→ RΓ(U,K)

is an isomorphism in D(O(U)).

Lemma 21.43.2.0GYW In the situation above, the subcategory QC (O) is a strictly full,
saturated, triangulated subcategory of D(O) preserved by arbitrary direct sums.

Proof. Let U be an object of C. Since the topology on C is chaotic, the functor
F 7→ F(U) is exact and commutes with direct sums. Hence the exact functor
K 7→ RΓ(U,K) is computed by representing K by any complex F• of O-modules
and taking F•(U). Thus RΓ(U,−) commutes with direct sums, see Injectives,
Lemma 19.13.4. Similarly, given a morphism U → V of C the derived tensor

https://stacks.math.columbia.edu/tag/0GYV
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product functor − ⊗L
O(V ) O(U) : D(O(V )) → D(O(U)) is exact and commutes

with direct sums. The lemma follows from these observations in a straightforward
manner; details omitted. □

Lemma 21.43.3.0GZQ In the situation above, suppose that M is an object of QC (O)
and b ∈ Z such that Hi(M) = 0 for all i > b. Then Hb(M) is a quasi-coherent
module on (C,O) in the sense of Modules on Sites, Definition 18.23.1.

Proof. By Modules on Sites, Lemma 18.24.2 it suffices to show that for every mor-
phism U → V of C the map

Hp(M)(V )⊗O(V ) O(U)→ Hb(M)(U)
is an isomorphism. We are given that the map

RΓ(V,M)⊗L
O(V ) O(U)→ RΓ(U,M)

is an isomorphism. Thus the result by the Tor spectral sequence for example.
Details omitted. □

Lemma 21.43.4.0H0R In the situation above, suppose that C has a final object X. Set
R = O(X) and denote f : (C,O) → (pt,R) the obvious morphism of sites. Then
QC (O) = D(R) given by Lf∗ and Rf∗.

Proof. Omitted. □

Lemma 21.43.5.0H0S In the situation above, suppose that K is an object of QC (O)
and M arbitrary in D(O). For every object U of C we have

HomD(OU )(K|U ,M |U ) = RHomO(U)(RΓ(U,K), RΓ(U,M))

Proof. We may replace C by C/U . Thus we may assume U = X is a final object of
C. By Lemma 21.43.4 we see that K = Lf∗P where P = RΓ(U,K) = RΓ(X,K) =
Rf∗K. Thus the result because Lf∗ is the left adjoint to Rf∗(−) = RΓ(U,−). □

Let (C,O) be as above. For a complex F• of O-modules we define the size |F•| of
F• as

|F•| =
∣∣∣∣∐i∈Z, U∈Ob(C)

F i(U)
∣∣∣∣

For an object K of D(O) we define the size |K| of K to be the cardinal
|K| = min {|F•| where F• represents K}

By properties of cardinals the minimum exists.

Lemma 21.43.6.0GYX In the situation above, there exists a cardinal κ with the following
property: given a complex F• of O-modules and subsets ΩiU ⊂ F i(U) there exists
a subcomplex H• ⊂ F• with ΩiU ⊂ Hi(U) and |H•| ≤ max(κ, |

⋃
ΩiU |).

Proof. Define Hi(U) to be the O(U)-submodule of F i(U) generated by the images
of ΩiV and d(Ωi−1

U ) by restriction along any morphism f : U → V . The cardinality
of Hi(U) is bounded by the maximum of ℵ0, the cardinality of the O(U), the
cardinality of Arrows(C), and |

⋃
ΩiU |. Details omitted. □

Lemma 21.43.7.0GYY In the situation above, there exists a cardinal κ with the following
property: given a complex F• of O-modules representing an object K of D(O)
there exists a subcomplex H• ⊂ F• such that H• represents K and such that
|H•| ≤ max(κ, |K|).
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Proof. First, for every i and U we choose a subset ΩiU ⊂ Ker(d : F i(U)→ F i+1(U))
mapping bijectively onto Hi(K)(U) = Hi(F•(U)). Hence |ΩiU | ≤ |K| as we may
represent K by a complex whose size is |K|. Applying Lemma 21.43.6 we find a
subcomplex S• ⊂ F• of size at most max(κ, |K|) containing ΩiU and hence such
that Hi(S•)→ Hi(F•) is a surjection of sheaves.
We are going to inductively construct subcomplexes

S• = S•
0 ⊂ S•

1 ⊂ S•
2 ⊂ . . . ⊂ F•

of size ≤ max(κ, |K|) such that the kernel of Hi(S•
n)→ Hi(F•) is the same as the

kernel of Hi(S•
n) → Hi(S•

n+1). Once this is done we can take H• =
⋃
S•
n as our

solution.
Construction of S•

n+1 given S•
n. For ever U and i let Ωi−1

U ⊂ F i−1(U) be a subset
such that d : F i−1(U)→ F i(U) maps Ωi−1

U bijectively onto
Sin(U) ∩ Im(d : F i−1(U)→ F i(U))

Observe that |ΩiU | ≤ |K| because Sin(U) is so bounded. Then we get S•
n+1 by an

application of Lemma 21.43.6 to the subsets
Si(U) ∪ ΩiU ⊂ F i(U)

and everything is clear. □

Lemma 21.43.8.0GYZ In the situation above, there exists a cardinal κ with the following
properties:

(1) for every nonzero object K of QC (O) there exists a nonzero morphism
E → K of QC (O) such that |E| ≤ κ,

(2) for every morphism α : E →
⊕

nKn of QC (O) such that |E| ≤ κ, there
exist morphisms En → Kn in QC (O) with |En| ≤ κ such that α factors
through

⊕
En →

⊕
Kn.

Proof. Let κ be an upper bound for the following set of cardinals:
(1) |

∐
V jU !OU (V )| for all U ∈ Ob(C),

(2) the cardinals κ(O(V )→ O(U)) found in More on Algebra, Lemma 15.102.5
for all morphisms U → V in C,

(3) the cardinal found in Lemma 21.43.7.
We claim that for any complex F• representing an object of QC (O) and any sub-
complex S• ⊂ F• with |S•| ≤ κ there exists a subcomplex H• of F• containing S•

such that H• represents an object of QC (O) and such that |H•| ≤ κ. In the next
two paragraphs we show that the claim implies the lemma.
As in (1) let K be a nonzero object of QC (O). Say K is represented by the complex
of O-modules F•. Then Hi(F•) is nonzero for some i. Hence there exists an object
U of C and a section s ∈ F i(U) with d(s) = 0 which determines a nonzero section of
Hi(F•) over U . Then the image of s : jU !OU [−i] → F• is a subcomplex S• ⊂ F•

with |S•| ≤ κ. Applying the claim we get H• → F• in QC (O) nonzero with
|H•| ≤ κ. Thus (1) holds.
Let α : E →

⊕
Kn be as in (2). Choose any complexes K•

n representing Kn.
Then

⊕
K•
n represents

⊕
Kn. By the construction of the derived category we can

represent E by a complex E• such that α is represented by a morphism a : E• →⊕
K•
n of complexes. By Lemma 21.43.7 and our choice of κ above we may assume

https://stacks.math.columbia.edu/tag/0GYZ
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|E•| ≤ κ. By the claim we get subcomplexes E•
n ⊂ K•

n representing objects En of
QC (O) with |En| ≤ κ containing the image of an : E• → K•

n as desired.
Proof of the claim. Let F• be a complex representing an object of QC (O) and
let S• ⊂ F• be a subcomplex of size ≤ κ. We are going to inductively construct
subcomplexes

S• = S•
0 ⊂ S•

1 ⊂ S•
2 ⊂ . . . ⊂ F•

of size ≤ κ such that for every morphism f : U → V of C and every i ∈ Z
(1) the kernel of the arrow Hi(S•

n(V ) ⊗L
O(V ) O(U)) → Hi(S•

n(U)) maps to
zero in Hi(S•

n+1(V )⊗L
O(V ) O(U)),

(2) the image of the arrow Hi(S•
n(U)) → Hi(S•

n+1(U)) is contained in the
image of Hi(S•

n+1(V )⊗L
O(V ) O(U))→ Hi(S•

n+1(U)),
Once this is done we can set H• =

⋃
S•
n. Namely, since derived tensor product

and taking cohomology of complexes of modules over rings commute with filtered
colimits, the conditions (1) and (2) together will guarantee that

H•(V )⊗L
O(V ) O(U) −→ H•(U)

is an isomorphism on cohomology in all degrees and hence an isomorphism in
D(O(U)) for all f : U → V in C. Hence H• represents an object of QC (O) as
desired.
Construction of Sn+1 given Sn. For every morphism f : U → V of C we consider
the commutative diagram

S•
n(V ) //

��

S•
n(U)

��
F•(V ) // F•(U)

This is a diagram as in More on Algebra, Lemma 15.102.5 for the ring map O(V )→
O(U), i.e., the bottom row induces an isomorphism

F•(V )⊗L
O(V ) O(U) −→ F•(U)

in D(O(U)). Thus we may choose subcomplexes
S•
n(V ) ⊂M•

f ⊂ F•(V ) and S•
n(U) ⊂ N•

f ⊂ F•(U)

as in More on Algebra, Lemma 15.102.5 and in particular we see that |N i
f |, |M i

f | ≤ κ.
Next, we apply Lemma 21.43.6 using the subsets

Sin(U)⨿
∐

f :U→V
N i
f ⨿

∐
g:W→U

M i
g ⊂ F i(U)

to find a subcomplex
S•
n ⊂ S•

n+1 ⊂ F•

with containing those subsets and such that |S•
n+1| ≤ κ. Conditions (1) and (2) hold

because the corresponding statements hold for S•
n(V ) ⊂M•

f and S•
n(U) ⊂ N•

f by the
construction in More on Algebra, Lemma 15.102.5. Thus the proof is complete. □

Proposition 21.43.9.0GZ0 Let C be a category viewed as a site with the chaotic topology.
Let O be a sheaf of rings on C. With QC (O) as in Definition 21.43.1 we have

(1) QC (O) is a strictly full, saturated, triangulated subcategory of D(O)
preserved by arbitrary direct sums,

https://stacks.math.columbia.edu/tag/0GZ0
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(2) any contravariant cohomological functor H : QC (O) → Ab which trans-
forms direct sums into products is representable,

(3) any exact functor F : QC (O)→ D of triangulated categories which trans-
forms direct sums into direct sums has an exact right adjoint, and

(4) the inclusion functor QC (O)→ D(O) has an exact right adjoint.

Proof. Part (1) is Lemma 21.43.2. Part (2) follows from Lemma 21.43.8 and Derived
Categories, Lemma 13.39.1. Part (3) follows from Lemma 21.43.8 and Derived
Categories, Proposition 13.39.2. Part (4) is a special case of (3). □

Let u : C′ → C be a functor between categories. If we view C and C′ as sites
with the chaotic topology, then u is a continuous and cocontinuous functor. Hence
we obtain a morphism g : Sh(C′) → Sh(C) of topoi, see Sites, Lemma 7.21.1.
Additionally, suppose given sheaves of rings O on C and O′ on C′ and a map
g♯ : g−1O → O′. We denote the corresponding morphism of ringed topoi simply
g : (Sh(C′),O′)→ (Sh(C),O), see Modules on Sites, Section 18.7.

Lemma 21.43.10.0GZ1 Let g : (Sh(C′),O′)→ (Sh(C),O) be as above. Then the functor
Lg∗ : D(O)→ D(O′) maps QC (O) into QC (O′).

Proof. Let U ′ ∈ Ob(C′) with image U = u(U ′) in C. Let pt denote the category with
a single object and a single morphism. Denote (Sh(pt),O′(U ′)) and (Sh(pt),O(U))
the ringed topoi as indicated. Of course we identify the derived category of modules
on these ringed topoi with D(O′(U ′)) and D(O(U)). Then we have a commutative
diagram of ringed topoi

(Sh(pt),O′(U ′))
U ′

//

��

(Sh(C′),O′)

g

��
(Sh(pt),O(U)) U // (Sh(C),O)

Pullback along the lower horizontal morphism sends K in D(O) to RΓ(U,K). Pull-
back by the left vertical arrow sends M to M ⊗L

O(U) O
′(U ′). Going around the

diagram either direction produces the same result (Lemma 21.18.3) and hence we
conclude

RΓ(U ′, Lg∗K) = RΓ(U,K)⊗L
O(U) O

′(U ′)
Finally, let f ′ : U ′ → V ′ be a morphism in C′ and denote f = u(f ′) : U = u(U ′)→
V = u(V ′) the image in C. If K is in QC (O) then we have

RΓ(V ′, Lg∗K)⊗L
O′(V ′) O

′(U ′) = RΓ(V,K)⊗L
O(V ) O

′(V ′)⊗L
O′(V ′) O

′(U ′)
= RΓ(V,K)⊗L

O(V ) O
′(U ′)

= RΓ(V,K)⊗L
O(V ) O(U)⊗L

O(U) O
′(U ′)

= RΓ(U,K)⊗L
O(U) O

′(U ′)
= RΓ(U ′, Lg∗K)

as desired. Here we have used the observation above both for U ′ and V ′. □

Lemma 21.43.11.0GZR Let C be a category viewed as a site with the chaotic topology.
Let O be a sheaf of rings on C. Assume for all U → V in C the restriction map
O(V ) → O(U) is a flat ring map. Then QC (O) agrees with the subcategory
DQCoh(O) ⊂ D(O) of complexes whose cohomology sheaves are quasi-coherent.

https://stacks.math.columbia.edu/tag/0GZ1
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Proof. Recall that QCoh(O) ⊂ Mod(O) is a weak Serre subcategory under our as-
sumptions, see Modules on Sites, Lemma 18.24.3. Thus taking the full subcategory

DQCoh(O) = DQCoh(O)(Mod(O))
of D(O) makes sense, see Derived Categories, Section 13.17. (Strictly speaking we
don’t need this in the proof of the lemma.)
Let M be an object of QC (O). Since for every morphism U → V in C the restriction
map O(V )→ O(U) is flat, we see that

Hi(M)(U) = Hi(RΓ(U,M))
= Hi(RΓ(V,M)⊗L

O(V ) O(U))
= Hi(RΓ(V,M))⊗O(V ) O(U)
= Hi(M)(V )⊗O(V ) O(U)

and hence Hi(M) is quasi-coherent by Modules on Sites, Lemma 18.24.2. The first
and last equality above follow from the fact that taking sections over an object of
C is an exact functor due to the fact that the topology on C is chaotic.
Conversely, if M is an object of DQCoh(O), then due to Modules on Sites, Lemma
18.24.2 we see that the mapRΓ(V,M)→ RΓ(U,M) induces isomorphismsHi(M)(U)→
Hi(M)(V )⊗O(V )O(U). Whence RΓ(V,K)⊗L

O(V )O(U)→ RΓ(U,K) is an isomor-
phism in D(O(U)) by the flatness of O(V )→ O(U) and we conclude that M is in
QC (O). □

Lemma 21.43.12.0GZS Let ϵ : (Cτ ,Oτ )→ (Cτ ′ ,Oτ ′) be as in Section 21.27. Assume
(1) τ ′ is the chaotic topology on the category C,
(2) for all U ∈ Ob(C) and all K-flat complexes of O(U)-modules M• the map

M• −→ RΓ((C/U)τ , (M• ⊗O(U) OU )#)
is a quasi-isomorphism (see proof for an explanation).

Then ϵ∗ and Rϵ∗ define mutually quasi-inverse equivalences between QC (O) and
the full subcategory of D(Cτ ,Oτ ) consisting of objects K such that Rϵ∗K is in
QC (O)10.
Proof. We will use the observations made in Section 21.27 without further mention.
Since Rϵ∗ is fully faithful and ϵ∗ ◦ Rϵ∗ = id, to prove the lemma it suffices to
show that for M in QC (O) we have Rϵ∗(ϵ∗M) = M . Condition (2) is exactly
the condition needed to see this. Namely, we choose a K-flat complex M• of O-
modules with flat terms representing M . Then we see that ϵ∗M is represented by
the τ -sheafification (M•)# of M•. Let U ∈ Ob(C). By Leray we get

RΓ(U,Rϵ∗(ϵ∗M)) = RΓ((C/U)τ , (M•)#|C/U ) = RΓ((C/U)τ , (M•|C/U )#)
The last equality since sheafification commutes with restriction to C/U . As usual,
denote OU the restriction of O to C/U . Consider the map

M•(U)⊗O(U) OU −→M•|C/U
of complexes of OU -modules (in τ ′-topology). By our choice of M• the complex
M•(U) is a K-flat complex of O(U)-modules; see Lemma 21.18.1 and use that

10This means that RΓ(V,K) ⊗L
O(V ) O(U) → RΓ(U,K) is an isomorphism for all U → V in

C.
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the inclusion of U into C defines a morphism of ringed topoi (Sh(pt),O(U)) →
(Sh(Cτ ′),O). Since M is in QC (O) we conclude that the displayed arrow is a
quasi-isomorphism. Since sheafification is exact, we see that the same remains true
after sheafification. Hence

RΓ(U,Rϵ∗(ϵ∗M)) = RΓ((C/U)τ , (M• ⊗O(U) OU )#)

and assumption (2) tells us this is equal to RΓ(U,M) =M•(U) as desired. □

Lemma 21.43.13.0H0T Notation and assumptions as in Lemma 21.43.12. Suppose that
K is an object of QC (O) and M arbitrary in D(Oτ ). For every object U of C we
have

HomD((OU )τ )(ϵ∗K|U ,M |U ) = RHomO(U)(RΓ(U,K), RΓ(U,M))

Proof. We have

HomD((OU )τ )(ϵ∗K|U ,M |U ) = HomD((OU )τ′ )(K|U , Rϵ∗M |U )

by adjunction. Hence the result by Lemma 21.43.5 and the fact that

RΓ(U,M) = RΓ(U,Rϵ∗M)

by Leray. □

21.44. Strictly perfect complexes

08FK This section is the analogue of Cohomology, Section 20.46.

Definition 21.44.1.08FL Let (C,O) be a ringed site. Let E• be a complex of O-modules.
We say E• is strictly perfect if E i is zero for all but finitely many i and E i is a direct
summand of a finite free O-module for all i.

Let U be an object of C. We will often say “Let E• be a strictly perfect complex
of OU -modules” to mean E• is a strictly perfect complex of modules on the ringed
site (C/U,OU ), see Modules on Sites, Definition 18.19.1.

Lemma 21.44.2.08FM The cone on a morphism of strictly perfect complexes is strictly
perfect.

Proof. This is immediate from the definitions. □

Lemma 21.44.3.09J8 The total complex associated to the tensor product of two strictly
perfect complexes is strictly perfect.

Proof. Omitted. □

Lemma 21.44.4.08H3 Let (f, f ♯) : (C,OC) → (D,OD) be a morphism of ringed topoi.
If F• is a strictly perfect complex of OD-modules, then f∗F• is a strictly perfect
complex of OC-modules.

Proof. We have seen in Modules on Sites, Lemma 18.17.2 that the pullback of a
finite free module is finite free. The functor f∗ is additive functor hence preserves
direct summands. The lemma follows. □

https://stacks.math.columbia.edu/tag/0H0T
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Lemma 21.44.5.08FN Let (C,O) be a ringed site. Let U be an object of C. Given a solid
diagram of OU -modules

E

��

// F

G

p

OO

with E a direct summand of a finite free OU -module and p surjective, then there
exists a covering {Ui → U} such that a dotted arrow making the diagram commute
exists over each Ui.

Proof. We may assume E = O⊕n
U for some n. In this case finding the dotted

arrow is equivalent to lifting the images of the basis elements in Γ(U,F). This is
locally possible by the characterization of surjective maps of sheaves (Sites, Section
7.11). □

Lemma 21.44.6.08FP Let (C,O) be a ringed site. Let U be an object of C.
(1) Let α : E• → F• be a morphism of complexes of OU -modules with E•

strictly perfect and F• acyclic. Then there exists a covering {Ui → U}
such that each α|Ui is homotopic to zero.

(2) Let α : E• → F• be a morphism of complexes of OU -modules with E•

strictly perfect, E i = 0 for i < a, and Hi(F•) = 0 for i ≥ a. Then there
exists a covering {Ui → U} such that each α|Ui is homotopic to zero.

Proof. The first statement follows from the second, hence we only prove (2). We
will prove this by induction on the length of the complex E•. If E• ∼= E [−n] for
some direct summand E of a finite free O-module and integer n ≥ a, then the
result follows from Lemma 21.44.5 and the fact that Fn−1 → Ker(Fn → Fn+1) is
surjective by the assumed vanishing of Hn(F•). If E i is zero except for i ∈ [a, b],
then we have a split exact sequence of complexes

0→ Eb[−b]→ E• → σ≤b−1E• → 0
which determines a distinguished triangle in K(OU ). Hence an exact sequence

HomK(OU )(σ≤b−1E•,F•)→ HomK(OU )(E•,F•)→ HomK(OU )(Eb[−b],F•)

by the axioms of triangulated categories. The composition Eb[−b] → F• is homo-
topic to zero on the members of a covering of U by the above, whence we may
assume our map comes from an element in the left hand side of the displayed ex-
act sequence above. This element is zero on the members of a covering of U by
induction hypothesis. □

Lemma 21.44.7.08FQ Let (C,O) be a ringed site. Let U be an object of C. Given a solid
diagram of complexes of OU -modules

E•

!!

α
// F•

G•

f

OO

with E• strictly perfect, Ej = 0 for j < a and Hj(f) an isomorphism for j > a and
surjective for j = a, then there exists a covering {Ui → U} and for each i a dotted
arrow over Ui making the diagram commute up to homotopy.

https://stacks.math.columbia.edu/tag/08FN
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Proof. Our assumptions on f imply the cone C(f)• has vanishing cohomology
sheaves in degrees ≥ a. Hence Lemma 21.44.6 guarantees there is a covering {Ui →
U} such that the composition E• → F• → C(f)• is homotopic to zero over Ui.
Since

G• → F• → C(f)• → G•[1]
restricts to a distinguished triangle in K(OUi) we see that we can lift α|Ui up to
homotopy to a map αi : E•|Ui → G•|Ui as desired. □

Lemma 21.44.8.08FR Let (C,O) be a ringed site. Let U be an object of C. Let E•, F•

be complexes of OU -modules with E• strictly perfect.
(1) For any element α ∈ HomD(OU )(E•,F•) there exists a covering {Ui → U}

such that α|Ui is given by a morphism of complexes αi : E•|Ui → F•|Ui .
(2) Given a morphism of complexes α : E• → F• whose image in the group

HomD(OU )(E•,F•) is zero, there exists a covering {Ui → U} such that
α|Ui is homotopic to zero.

Proof. Proof of (1). By the construction of the derived category we can find a
quasi-isomorphism f : F• → G• and a map of complexes β : E• → G• such that
α = f−1β. Thus the result follows from Lemma 21.44.7. We omit the proof of
(2). □

Lemma 21.44.9.08JH Let (C,O) be a ringed site. Let E•, F• be complexes of O-modules
with E• strictly perfect. Then the internal hom RHom(E•,F•) is represented by
the complex H• with terms

Hn =
⊕

n=p+q
HomO(E−q,Fp)

and differential as described in Section 21.35.

Proof. Choose a quasi-isomorphism F• → I• into a K-injective complex. Let (H′)•

be the complex with terms

(H′)n =
∏

n=p+q
HomO(L−q, Ip)

which represents RHom(E•,F•) by the construction in Section 21.35. It suffices to
show that the map

H• −→ (H′)•

is a quasi-isomorphism. Given an object U of C we have by inspection

H0(H•(U)) = HomK(OU )(E•|U ,K•|U )→ H0((H′)•(U)) = HomD(OU )(E•|U ,K•|U )

By Lemma 21.44.8 the sheafification of U 7→ H0(H•(U)) is equal to the sheafifica-
tion of U 7→ H0((H′)•(U)). A similar argument can be given for the other cohomol-
ogy sheaves. Thus H• is quasi-isomorphic to (H′)• which proves the lemma. □

Lemma 21.44.10.08JI Let (C,O) be a ringed site. Let E•, F• be complexes of O-
modules with

(1) Fn = 0 for n≪ 0,
(2) En = 0 for n≫ 0, and
(3) En isomorphic to a direct summand of a finite free O-module.

https://stacks.math.columbia.edu/tag/08FR
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Then the internal hom RHom(E•,F•) is represented by the complex H• with terms

Hn =
⊕

n=p+q
HomO(E−q,Fp)

and differential as described in Section 21.35.

Proof. Choose a quasi-isomorphism F• → I• where I• is a bounded below complex
of injectives. Note that I• is K-injective (Derived Categories, Lemma 13.31.4).
Hence the construction in Section 21.35 shows that RHom(E•,F•) is represented
by the complex (H′)• with terms

(H′)n =
∏

n=p+q
HomO(E−q, Ip) =

⊕
n=p+q

HomO(E−q, Ip)

(equality because there are only finitely many nonzero terms). Note that H• is the
total complex associated to the double complex with terms HomO(E−q,Fp) and
similarly for (H′)•. The natural map (H′)• → H• comes from a map of double
complexes. Thus to show this map is a quasi-isomorphism, we may use the spectral
sequence of a double complex (Homology, Lemma 12.25.3)

′Ep,q1 = Hp(HomO(E−q,F•))
converging to Hp+q(H•) and similarly for (H′)•. To finish the proof of the lemma
it suffices to show that F• → I• induces an isomorphism

Hp(HomO(E ,F•)) −→ Hp(HomO(E , I•))
on cohomology sheaves whenever E is a direct summand of a finite free O-module.
Since this is clear when E is finite free the result follows. □

21.45. Pseudo-coherent modules

08FS In this section we discuss pseudo-coherent complexes.

Definition 21.45.1.08FT Let (C,O) be a ringed site. Let E• be a complex of O-modules.
Let m ∈ Z.

(1) We say E• is m-pseudo-coherent if for every object U of C there exists a
covering {Ui → U} and for each i a morphism of complexes αi : E•

i →
E•|Ui where Ei is a strictly perfect complex of OUi-modules and Hj(αi) is
an isomorphism for j > m and Hm(αi) is surjective.

(2) We say E• is pseudo-coherent if it is m-pseudo-coherent for all m.
(3) We say an object E of D(O) is m-pseudo-coherent (resp. pseudo-coherent)

if and only if it can be represented by a m-pseudo-coherent (resp. pseudo-
coherent) complex of O-modules.

If C has a final object X which is quasi-compact (for example if every covering of
X can be refined by a finite covering), then an m-pseudo-coherent object of D(O)
is in D−(O). But this need not be the case in general.

Lemma 21.45.2.08FU Let (C,O) be a ringed site. Let E be an object of D(O).
(1) If C has a final object X and if there exist a covering {Ui → X}, strictly

perfect complexes E•
i of OUi-modules, and maps αi : E•

i → E|Ui in D(OUi)
with Hj(αi) an isomorphism for j > m and Hm(αi) surjective, then E is
m-pseudo-coherent.

(2) If E is m-pseudo-coherent, then any complex of O-modules representing
E is m-pseudo-coherent.

https://stacks.math.columbia.edu/tag/08FT
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(3) If for every object U of C there exists a covering {Ui → U} such that E|Ui
is m-pseudo-coherent, then E is m-pseudo-coherent.

Proof. Let F• be any complex representing E and let X, {Ui → X}, and αi :
Ei → E|Ui be as in (1). We will show that F• is m-pseudo-coherent as a complex,
which will prove (1) and (2) in case C has a final object. By Lemma 21.44.8 we can
after refining the covering {Ui → X} represent the maps αi by maps of complexes
αi : E•

i → F•|Ui . By assumption Hj(αi) are isomorphisms for j > m, and Hm(αi)
is surjective whence F• is m-pseudo-coherent.
Proof of (2). By the above we see that F•|U is m-pseudo-coherent as a complex
of OU -modules for all objects U of C. It is a formal consequence of the definitions
that F• is m-pseudo-coherent.
Proof of (3). Follows from the definitions and Sites, Definition 7.6.2 part (2). □

Lemma 21.45.3.08H4 Let (f, f ♯) : (C,OC) → (D,OD) be a morphism of ringed sites.
Let E be an object of D(OC). If E is m-pseudo-coherent, then Lf∗E is m-pseudo-
coherent.

Proof. Say f is given by the functor u : D → C. Let U be an object of C. By
Sites, Lemma 7.14.10 we can find a covering {Ui → U} and for each i a morphism
Ui → u(Vi) for some object Vi of D. By Lemma 21.45.2 it suffices to show that
Lf∗E|Ui is m-pseudo-coherent. To do this it is enough to show that Lf∗E|u(Vi)
is m-pseudo-coherent, since Lf∗E|Ui is the restriction of Lf∗E|u(Vi) to C/Ui (via
Modules on Sites, Lemma 18.19.5). By the commutative diagram of Modules on
Sites, Lemma 18.20.1 it suffices to prove the lemma for the morphism of ringed
sites (C/u(Vi),Ou(Vi))→ (D/Vi,OVi). Thus we may assume D has a final object Y
such that X = u(Y ) is a final object of C.
Let {Vi → Y } be a covering such that for each i there exists a strictly perfect
complex F•

i of OVi-modules and a morphism αi : F•
i → E|Vi of D(OVi) such

that Hj(αi) is an isomorphism for j > m and Hm(αi) is surjective. Arguing as
above it suffices to prove the result for (C/u(Vi),Ou(Vi))→ (D/Vi,OVi). Hence we
may assume that there exists a strictly perfect complex F• of OD-modules and a
morphism α : F• → E of D(OD) such that Hj(α) is an isomorphism for j > m
and Hm(α) is surjective. In this case, choose a distinguished triangle

F• → E → C → F•[1]
The assumption on α means exactly that the cohomology sheaves Hj(C) are zero
for all j ≥ m. Applying Lf∗ we obtain the distinguished triangle

Lf∗F• → Lf∗E → Lf∗C → Lf∗F•[1]
By the construction of Lf∗ as a left derived functor we see that Hj(Lf∗C) = 0 for
j ≥ m (by the dual of Derived Categories, Lemma 13.16.1). Hence Hj(Lf∗α) is
an isomorphism for j > m and Hm(Lf∗α) is surjective. On the other hand, since
F• is a bounded above complex of flat OD-modules we see that Lf∗F• = f∗F•.
Applying Lemma 21.44.4 we conclude. □

Lemma 21.45.4.08FV Let (C,O) be a ringed site and m ∈ Z. Let (K,L,M, f, g, h) be a
distinguished triangle in D(O).

(1) If K is (m + 1)-pseudo-coherent and L is m-pseudo-coherent then M is
m-pseudo-coherent.

https://stacks.math.columbia.edu/tag/08H4
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(2) If K and M are m-pseudo-coherent, then L is m-pseudo-coherent.
(3) If L is (m + 1)-pseudo-coherent and M is m-pseudo-coherent, then K is

(m+ 1)-pseudo-coherent.

Proof. Proof of (1). Let U be an object of C. Choose a covering {Ui → U} and
maps αi : K•

i → K|Ui in D(OUi) with K•
i strictly perfect and Hj(αi) isomorphisms

for j > m + 1 and surjective for j = m + 1. We may replace K•
i by σ≥m+1K•

i

and hence we may assume that Kji = 0 for j < m + 1. After refining the covering
we may choose maps βi : L•

i → L|Ui in D(OUi) with L•
i strictly perfect such that

Hj(β) is an isomorphism for j > m and surjective for j = m. By Lemma 21.44.7
we can, after refining the covering, find maps of complexes γi : K• → L• such that
the diagrams

K|Ui // L|Ui

K•
i

αi

OO

γi // L•
i

βi

OO

are commutative in D(OUi) (this requires representing the maps αi, βi and K|Ui →
L|Ui by actual maps of complexes; some details omitted). The cone C(γi)• is strictly
perfect (Lemma 21.44.2). The commutativity of the diagram implies that there
exists a morphism of distinguished triangles

(K•
i ,L•

i , C(γi)•) −→ (K|Ui , L|Ui ,M |Ui).
It follows from the induced map on long exact cohomology sequences and Homol-
ogy, Lemmas 12.5.19 and 12.5.20 that C(γi)• → M |Ui induces an isomorphism on
cohomology in degrees > m and a surjection in degree m. Hence M is m-pseudo-
coherent by Lemma 21.45.2.
Assertions (2) and (3) follow from (1) by rotating the distinguished triangle. □

Lemma 21.45.5.09J9 Let (C,O) be a ringed site. Let K,L be objects of D(O).
(1) If K is n-pseudo-coherent and Hi(K) = 0 for i > a and L is m-pseudo-

coherent and Hj(L) = 0 for j > b, then K⊗L
O L is t-pseudo-coherent with

t = max(m+ a, n+ b).
(2) If K and L are pseudo-coherent, then K ⊗L

O L is pseudo-coherent.

Proof. Proof of (1). Let U be an object of C. By replacing U by the members
of a covering and replacing C by the localization C/U we may assume there exist
strictly perfect complexes K• and L• and maps α : K• → K and β : L• → L with
Hi(α) and isomorphism for i > n and surjective for i = n and with Hi(β) and
isomorphism for i > m and surjective for i = m. Then the map

α⊗L β : Tot(K• ⊗O L•)→ K ⊗L
O L

induces isomorphisms on cohomology sheaves in degree i for i > t and a surjection
for i = t. This follows from the spectral sequence of tors (details omitted).
Proof of (2). Let U be an object of C. We may first replace U by the members of
a covering and C by the localization C/U to reduce to the case that K and L are
bounded above. Then the statement follows immediately from case (1). □

Lemma 21.45.6.08FW Let (C,O) be a ringed site. Let m ∈ Z. If K ⊕ L is m-pseudo-
coherent (resp. pseudo-coherent) in D(O) so are K and L.
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Proof. Assume that K ⊕ L is m-pseudo-coherent. Let U be an object of C. After
replacing U by the members of a covering we may assume K⊕L ∈ D−(OU ), hence
L ∈ D−(OU ). Note that there is a distinguished triangle

(K ⊕ L,K ⊕ L,L⊕ L[1]) = (K,K, 0)⊕ (L,L,L⊕ L[1])
see Derived Categories, Lemma 13.4.10. By Lemma 21.45.4 we see that L ⊕ L[1]
is m-pseudo-coherent. Hence also L[1] ⊕ L[2] is m-pseudo-coherent. By induction
L[n]⊕L[n+ 1] is m-pseudo-coherent. Since L is bounded above we see that L[n] is
m-pseudo-coherent for large n. Hence working backwards, using the distinguished
triangles

(L[n], L[n]⊕ L[n− 1], L[n− 1])
we conclude that L[n− 1], L[n− 2], . . . , L are m-pseudo-coherent as desired. □

Lemma 21.45.7.08FX Let (C,O) be a ringed site. Let K be an object of D(O). Let
m ∈ Z.

(1) If K is m-pseudo-coherent and Hi(K) = 0 for i > m, then Hm(K) is a
finite type O-module.

(2) If K is m-pseudo-coherent and Hi(K) = 0 for i > m+ 1, then Hm+1(K)
is a finitely presented O-module.

Proof. Proof of (1). Let U be an object of C. We have to show that Hm(K) is can
be generated by finitely many sections over the members of a covering of U (see
Modules on Sites, Definition 18.23.1). Thus during the proof we may (finitely often)
choose a covering {Ui → U} and replace C by C/Ui and U by Ui. In particular, by
our definitions we may assume there exists a strictly perfect complex E• and a map
α : E• → K which induces an isomorphism on cohomology in degrees > m and a
surjection in degree m. It suffices to prove the result for E•. Let n be the largest
integer such that En ̸= 0. If n = m, then Hm(E•) is a quotient of En and the
result is clear. If n > m, then En−1 → En is surjective as Hn(E•) = 0. By Lemma
21.44.5 we can (after replacing U by the members of a covering) find a section of
this surjection and write En−1 = E ′ ⊕ En. Hence it suffices to prove the result for
the complex (E ′)• which is the same as E• except has E ′ in degree n − 1 and 0 in
degree n. We win by induction on n.
Proof of (2). Pick an object U of C. As in the proof of (1) we may work locally
on U . Hence we may assume there exists a strictly perfect complex E• and a map
α : E• → K which induces an isomorphism on cohomology in degrees > m and a
surjection in degree m. As in the proof of (1) we can reduce to the case that E i = 0
for i > m + 1. Then we see that Hm+1(K) ∼= Hm+1(E•) = Coker(Em → Em+1)
which is of finite presentation. □

21.46. Tor dimension

08FY In this section we take a closer look at resolutions by flat modules.

Definition 21.46.1.08FZ Let (C,O) be a ringed site. Let E be an object of D(O). Let
a, b ∈ Z with a ≤ b.

(1) We say E has tor-amplitude in [a, b] if Hi(E⊗L
O F) = 0 for all O-modules

F and all i ̸∈ [a, b].
(2) We say E has finite tor dimension if it has tor-amplitude in [a, b] for some

a, b.

https://stacks.math.columbia.edu/tag/08FX
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(3) We say E locally has finite tor dimension if for any object U of C there
exists a covering {Ui → U} such that E|Ui has finite tor dimension for all
i.

An O-module F has tor dimension ≤ d if F [0] viewed as an object of D(O) has
tor-amplitude in [−d, 0].

Note that if E as in the definition has finite tor dimension, then E is an object of
Db(O) as can be seen by taking F = O in the definition above.

Lemma 21.46.2.08G0 Let (C,O) be a ringed site. Let E• be a bounded above complex of
flat O-modules with tor-amplitude in [a, b]. Then Coker(da−1

E• ) is a flat O-module.

Proof. As E• is a bounded above complex of flat modules we see that E• ⊗O F =
E• ⊗L

O F for any O-module F . Hence for every O-module F the sequence

Ea−2 ⊗O F → Ea−1 ⊗O F → Ea ⊗O F

is exact in the middle. Since Ea−2 → Ea−1 → Ea → Coker(da−1) → 0 is a flat
resolution this implies that TorO

1 (Coker(da−1),F) = 0 for all O-modules F . This
means that Coker(da−1) is flat, see Lemma 21.17.15. □

Lemma 21.46.3.08G1 Let (C,O) be a ringed site. Let E be an object of D(O). Let
a, b ∈ Z with a ≤ b. The following are equivalent

(1) E has tor-amplitude in [a, b].
(2) E is represented by a complex E• of flat O-modules with E i = 0 for

i ̸∈ [a, b].

Proof. If (2) holds, then we may compute E ⊗L
O F = E• ⊗O F and it is clear that

(1) holds.

Assume that (1) holds. We may represent E by a bounded above complex of flat
O-modules K•, see Section 21.17. Let n be the largest integer such that Kn ̸= 0.
If n > b, then Kn−1 → Kn is surjective as Hn(K•) = 0. As Kn is flat we see
that Ker(Kn−1 → Kn) is flat (Modules on Sites, Lemma 18.28.10). Hence we may
replace K• by τ≤n−1K•. Thus, by induction on n, we reduce to the case that K•

is a complex of flat O-modules with Ki = 0 for i > b.

Set E• = τ≥aK•. Everything is clear except that Ea is flat which follows immediately
from Lemma 21.46.2 and the definitions. □

Lemma 21.46.4.0F1M Let (C,O) be a ringed site. Let E be an object of D(O). Let
a ∈ Z. The following are equivalent

(1) E has tor-amplitude in [a,∞].
(2) E can be represented by a K-flat complex E• of flat O-modules with E i = 0

for i ̸∈ [a,∞].
Moreover, we can choose E• such that any pullback by a morphism of ringed sites
is a K-flat complex with flat terms.

Proof. The implication (2)⇒ (1) is immediate. Assume (1) holds. First we choose
a K-flat complex K• with flat terms representing E, see Lemma 21.17.11. For any
O-module M the cohomology of

Kn−1 ⊗OM→Kn ⊗OM→Kn+1 ⊗OM

https://stacks.math.columbia.edu/tag/08G0
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computes Hn(E ⊗L
O M). This is always zero for n < a. Hence if we apply

Lemma 21.46.2 to the complex . . . → Ka−1 → Ka → Ka+1 we conclude that
N = Coker(Ka−1 → Ka) is a flat O-module. We set

E• = τ≥aK• = (. . .→ 0→ N → Ka+1 → . . .)
The kernel L• of K• → E• is the complex

L• = (. . .→ Ka−1 → I → 0→ . . .)
where I ⊂ Ka is the image of Ka−1 → Ka. Since we have the short exact sequence
0 → I → Ka → N → 0 we see that I is a flat O-module. Thus L• is a bounded
above complex of flat modules, hence K-flat by Lemma 21.17.8. It follows that E•

is K-flat by Lemma 21.17.7.
Proof of the final assertion. Let f : (C′,O′)→ (C,O) be a morphism of ringed sites.
By Lemma 21.18.1 the complex f∗K• is K-flat with flat terms. The complex f∗L•

is K-flat as it is a bounded above complex of flat O′-modules. We have a short
exact sequence of complexes of O′-modules

0→ f∗L• → f∗K• → f∗E• → 0
because the short exact sequence 0→ I → Ka → N → 0 of flat modules pulls back
to a short exact sequence. By Lemma 21.17.7. the complex f∗E• is K-flat and the
proof is complete. □

Lemma 21.46.5.08H5 Let (f, f ♯) : (C,OC) → (D,OD) be a morphism of ringed sites.
Let E be an object of D(OD). If E has tor amplitude in [a, b], then Lf∗E has tor
amplitude in [a, b].

Proof. Assume E has tor amplitude in [a, b]. By Lemma 21.46.3 we can represent
E by a complex of E• of flat O-modules with E i = 0 for i ̸∈ [a, b]. Then Lf∗E is
represented by f∗E•. By Modules on Sites, Lemma 18.39.1 the module f∗E i are
flat. Thus by Lemma 21.46.3 we conclude that Lf∗E has tor amplitude in [a, b]. □

Lemma 21.46.6.08G2 Let (C,O) be a ringed site. Let (K,L,M, f, g, h) be a distinguished
triangle in D(O). Let a, b ∈ Z.

(1) If K has tor-amplitude in [a + 1, b + 1] and L has tor-amplitude in [a, b]
then M has tor-amplitude in [a, b].

(2) If K and M have tor-amplitude in [a, b], then L has tor-amplitude in [a, b].
(3) If L has tor-amplitude in [a+ 1, b+ 1] and M has tor-amplitude in [a, b],

then K has tor-amplitude in [a+ 1, b+ 1].

Proof. Omitted. Hint: This just follows from the long exact cohomology sequence
associated to a distinguished triangle and the fact that − ⊗L

O F preserves distin-
guished triangles. The easiest one to prove is (2) and the others follow from it by
translation. □

Lemma 21.46.7.09JA Let (C,O) be a ringed site. Let K,L be objects of D(O). If K
has tor-amplitude in [a, b] and L has tor-amplitude in [c, d] then K ⊗L

O L has tor
amplitude in [a+ c, b+ d].

Proof. Omitted. Hint: use the spectral sequence for tors. □

Lemma 21.46.8.08G3 Let (C,O) be a ringed site. Let a, b ∈ Z. For K, L objects of
D(O) if K ⊕ L has tor amplitude in [a, b] so do K and L.

https://stacks.math.columbia.edu/tag/08H5
https://stacks.math.columbia.edu/tag/08G2
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Proof. Clear from the fact that the Tor functors are additive. □

Lemma 21.46.9.0942 Let (C,O) be a ringed site. Let I ⊂ O be a sheaf of ideals. Let
K be an object of D(O).

(1) If K ⊗L
O O/I is bounded above, then K ⊗L

O O/In is uniformly bounded
above for all n.

(2) If K ⊗L
O O/I as an object of D(O/I) has tor amplitude in [a, b], then

K ⊗L
O O/In as an object of D(O/In) has tor amplitude in [a, b] for all n.

Proof. Proof of (1). Assume thatK⊗L
OO/I is bounded above, sayHi(K⊗L

OO/I) =
0 for i > b. Note that we have distinguished triangles

K ⊗L
O In/In+1 → K ⊗L

O O/In+1 → K ⊗L
O O/In → K ⊗L

O In/In+1[1]
and that

K ⊗L
O In/In+1 =

(
K ⊗L

O O/I
)
⊗L

O/I I
n/In+1

By induction we conclude that Hi(K ⊗L
O O/In) = 0 for i > b for all n.

Proof of (2). Assume K⊗L
OO/I as an object of D(O/I) has tor amplitude in [a, b].

Let F be a sheaf of O/In-modules. Then we have a finite filtration
0 ⊂ In−1F ⊂ . . . ⊂ IF ⊂ F

whose successive quotients are sheaves of O/I-modules. Thus to prove that K ⊗L
O

O/In has tor amplitude in [a, b] it suffices to show Hi(K⊗L
OO/In⊗L

O/In G) is zero
for i ̸∈ [a, b] for all O/I-modules G. Since(

K ⊗L
O O/In

)
⊗L

O/In G =
(
K ⊗L

O O/I
)
⊗L

O/I G

for every sheaf of O/I-modules G the result follows. □

Lemma 21.46.10.0DJJ Let (C,O) be a ringed site. Let E be an object of D(O). Let
a, b ∈ Z.

(1) If E has tor amplitude in [a, b], then for every point p of the site C the
object Ep of D(Op) has tor amplitude in [a, b].

(2) If C has enough points, then the converse is true.

Proof. Proof of (1). This follows because taking stalks at p is the same as pulling
back by the morphism of ringed sites (p,Op) → (C,O) and hence we can apply
Lemma 21.46.5.
Proof of (2). If C has enough points, then we can check vanishing of Hi(E⊗L

OF) at
stalks, see Modules on Sites, Lemma 18.14.4. Since Hi(E⊗L

OF)p = Hi(Ep⊗L
Op
Fp)

we conclude. □

21.47. Perfect complexes

08G4 In this section we discuss properties of perfect complexes on ringed sites.

Definition 21.47.1.08G5 Let (C,O) be a ringed site. Let E• be a complex of O-modules.
We say E• is perfect if for every object U of C there exists a covering {Ui → U}
such that for each i there exists a morphism of complexes E•

i → E•|Ui which is a
quasi-isomorphism with E•

i strictly perfect. An object E of D(O) is perfect if it
can be represented by a perfect complex of O-modules.

Lemma 21.47.2.08G6 Let (C,O) be a ringed site. Let E be an object of D(O).

https://stacks.math.columbia.edu/tag/0942
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(1) If C has a final object X and there exist a covering {Ui → X}, strictly
perfect complexes E•

i of OUi-modules, and isomorphisms αi : E•
i → E|Ui

in D(OUi), then E is perfect.
(2) If E is perfect, then any complex representing E is perfect.

Proof. Identical to the proof of Lemma 21.45.2. □

Lemma 21.47.3.08G7 Let (C,O) be a ringed site. Let E be an object of D(O). Let
a ≤ b be integers. If E has tor amplitude in [a, b] and is (a − 1)-pseudo-coherent,
then E is perfect.

Proof. Let U be an object of C. After replacing U by the members of a covering and
C by the localization C/U we may assume there exists a strictly perfect complex E•

and a map α : E• → E such that Hi(α) is an isomorphism for i ≥ a. We may and
do replace E• by σ≥a−1E•. Choose a distinguished triangle

E• → E → C → E•[1]

From the vanishing of cohomology sheaves of E and E• and the assumption on α we
obtain C ∼= K[a− 2] with K = Ker(Ea−1 → Ea). Let F be an O-module. Applying
− ⊗L

O F the assumption that E has tor amplitude in [a, b] implies K ⊗O F →
Ea−1⊗OF has image Ker(Ea−1⊗OF → Ea⊗OF). It follows that TorO

1 (E ′,F) = 0
where E ′ = Coker(Ea−1 → Ea). Hence E ′ is flat (Lemma 21.17.15). Thus there
exists a covering {Ui → U} such that E ′|Ui is a direct summand of a finite free
module by Modules on Sites, Lemma 18.29.3. Thus the complex

E ′|Ui → Ea−1|Ui → . . .→ Eb|Ui
is quasi-isomorphic to E|Ui and E is perfect. □

Lemma 21.47.4.08G8 Let (C,O) be a ringed site. Let E be an object of D(O). The
following are equivalent

(1) E is perfect, and
(2) E is pseudo-coherent and locally has finite tor dimension.

Proof. Assume (1). Let U be an object of C. By definition there exists a covering
{Ui → U} such that E|Ui is represented by a strictly perfect complex. Thus E is
pseudo-coherent (i.e., m-pseudo-coherent for all m) by Lemma 21.45.2. Moreover,
a direct summand of a finite free module is flat, hence E|Ui has finite Tor dimension
by Lemma 21.46.3. Thus (2) holds.

Assume (2). Let U be an object of C. After replacing U by the members of a covering
we may assume there exist integers a ≤ b such that E|U has tor amplitude in [a, b].
Since E|U is m-pseudo-coherent for all m we conclude using Lemma 21.47.3. □

Lemma 21.47.5.08H6 Let (f, f ♯) : (C,OC) → (D,OD) be a morphism of ringed sites.
Let E be an object of D(OD). If E is perfect in D(OD), then Lf∗E is perfect in
D(OC).

Proof. This follows from Lemma 21.47.4, 21.46.5, and 21.45.3. □

Lemma 21.47.6.08G9 Let (C,O) be a ringed site. Let (K,L,M, f, g, h) be a distinguished
triangle in D(O). If two out of three of K,L,M are perfect then the third is also
perfect.

https://stacks.math.columbia.edu/tag/08G7
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Proof. First proof: Combine Lemmas 21.47.4, 21.45.4, and 21.46.6. Second proof
(sketch): Say K and L are perfect. Let U be an object of C. After replacing U
by the members of a covering we may assume that K|U and L|U are represented
by strictly perfect complexes K• and L•. After replacing U by the members of
a covering we may assume the map K|U → L|U is given by a map of complexes
α : K• → L•, see Lemma 21.44.8. Then M |U is isomorphic to the cone of α which
is strictly perfect by Lemma 21.44.2. □

Lemma 21.47.7.09JB Let (C,O) be a ringed site. If K,L are perfect objects of D(O),
then so is K ⊗L

O L.

Proof. Follows from Lemmas 21.47.4, 21.45.5, and 21.46.7. □

Lemma 21.47.8.08GA Let (C,O) be a ringed site. If K ⊕L is a perfect object of D(O),
then so are K and L.

Proof. Follows from Lemmas 21.47.4, 21.45.6, and 21.46.8. □

21.48. Duals

0FPP In this section we characterize the dualizable objects of the category of complexes
and of the derived category. In particular, we will see that an object of D(O) has
a dual if and only if it is perfect (this follows from Example 21.48.6 and Lemma
21.48.7).

Lemma 21.48.1.0FPQ Let (C,O) be a ringed space. The category of complexes of O-
modules with tensor product defined by F• ⊗ G• = Tot(F• ⊗O G•) is a symmetric
monoidal category.

Proof. Omitted. Hints: as unit 1 we take the complex havingO in degree 0 and zero
in other degrees with obvious isomorphisms Tot(1⊗OG•) = G• and Tot(F•⊗O 1) =
F•. to prove the lemma you have to check the commutativity of various diagrams,
see Categories, Definitions 4.43.1 and 4.43.9. The verifications are straightforward
in each case. □

Example 21.48.2.0FPR Let (C,O) be a ringed site. Let F• be a complex of O-modules
such that for every U ∈ Ob(C) there exists a covering {Ui → U} such that F•|Ui is
strictly perfect. Consider the complex

G• = Hom•(F•,O)
as in Section 21.34. Let

η : O → Tot(F• ⊗O G•) and ϵ : Tot(G• ⊗O F•)→ O
be η =

∑
ηn and ϵ =

∑
ϵn where ηn : O → Fn ⊗O G−n and ϵn : G−n ⊗O Fn → O

are as in Modules on Sites, Example 18.29.1. Then G•, η, ϵ is a left dual for F• as in
Categories, Definition 4.43.5. We omit the verification that (1⊗ ϵ) ◦ (η⊗ 1) = idF•

and (ϵ⊗1)◦ (1⊗η) = idG• . Please compare with More on Algebra, Lemma 15.72.2.

Lemma 21.48.3.0FPS Let (C,O) be a ringed site. Let F• be a complex of O-modules. If
F• has a left dual in the monoidal category of complexes of O-modules (Categories,
Definition 4.43.5) then for every object U of C there exists a covering {Ui → U}
such that F•|Ui is strictly perfect and the left dual is as constructed in Example
21.48.2.

https://stacks.math.columbia.edu/tag/09JB
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Proof. By uniqueness of left duals (Categories, Remark 4.43.7) we get the final
statement provided we show that F• is as stated. Let G•, η, ϵ be a left dual. Write
η =

∑
ηn and ϵ =

∑
ϵn where ηn : O → Fn⊗OG−n and ϵn : G−n⊗OFn → O. Since

(1⊗ϵ)◦(η⊗1) = idF• and (ϵ⊗1)◦(1⊗η) = idG• by Categories, Definition 4.43.5 we
see immediately that we have (1⊗ϵn)◦(ηn⊗1) = idFn and (ϵn⊗1)◦(1⊗ηn) = idG−n .
In other words, we see that G−n is a left dual of Fn and we see that Modules on
Sites, Lemma 18.29.2 applies to each Fn. Let U be an object of C. There exists a
covering {Ui → U} such that for every i only a finite number of ηn|Ui are nonzero.
Thus after replacing U by Ui we may assume only a finite number of ηn|U are
nonzero and by the lemma cited this implies only a finite number of Fn|U are
nonzero. Using the lemma again we can then find a covering {Ui → U} such
that each Fn|Ui is a direct summand of a finite free O-module and the proof is
complete. □

Lemma 21.48.4.08JJ Let (C,O) be a ringed site. Let K be a perfect object of D(O).
Then K∨ = RHom(K,O) is a perfect object too and (K∨)∨ ∼= K. There are
functorial isomorphisms

M ⊗L
O K∨ = RHomO(K,M)

and
H0(C,M ⊗L

O K∨) = HomD(O)(K,M)
for M in D(O).

Proof. We will us without further mention that formation of internal hom commutes
with restriction (Lemma 21.35.3). Let U be an arbitrary object of C. To check that
K∨ is perfect, it suffices to show that there exists a covering {Ui → U} such that
K∨|Ui is perfect for all i. There is a canonical map

K = RHom(OX ,OX)⊗L
OX

K −→ RHom(RHom(K,OX),OX) = (K∨)∨

see Lemma 21.35.5. It suffices to prove there is a covering {Ui → U} such that the
restriction of this map to C/Ui is an isomorphism for all i. By Lemma 21.35.9 to
see the final statement it suffices to check that the map (21.35.9.1)

M ⊗L
O K∨ −→ RHom(K,M)

is an isomorphism. This is a local question as well (in the sense above). Hence it
suffices to prove the lemma when K is represented by a strictly perfect complex.
Assume K is represented by the strictly perfect complex E•. Then it follows from
Lemma 21.44.9 that K∨ is represented by the complex whose terms are (En)∨ =
HomO(En,O) in degree −n. Since En is a direct summand of a finite free O-module,
so is (En)∨. Hence K∨ is represented by a strictly perfect complex too and we see
that K∨ is perfect. The map K → (K∨)∨ is an isomorphism as it is given up to
sign by the evaluation maps En → ((En)∨)∨ which are isomorphisms. To see that
(21.35.9.1) is an isomorphism, represent M by a K-flat complex F•. By Lemma
21.44.9 the complex RHom(K,M) is represented by the complex with terms⊕

n=p+q
HomO(E−q,Fp)

On the other hand, the object M ⊗L
O K∨ is represented by the complex with terms⊕

n=p+q
Fp ⊗O (E−q)∨

https://stacks.math.columbia.edu/tag/08JJ
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Thus the assertion that (21.35.9.1) is an isomorphism reduces to the assertion that
the canonical map

F ⊗O HomO(E ,O) −→ HomO(E ,F)
is an isomorphism when E is a direct summand of a finite free O-module and F is
any O-module. This follows immediately from the corresponding statement when
E is finite free. □

Lemma 21.48.5.0FPT Let (C,O) be a ringed site. The derived category D(O) is a
symmetric monoidal category with tensor product given by derived tensor product
with usual associativity and commutativity constraints (for sign rules, see More on
Algebra, Section 15.72).

Proof. Omitted. Compare with Lemma 21.48.1. □

Example 21.48.6.0FPU Let (C,O) be a ringed site. Let K be a perfect object of D(O).
Set K∨ = RHom(K,O) as in Lemma 21.48.4. Then the map

K ⊗L
O K∨ −→ RHom(K,K)

is an isomorphism (by the lemma). Denote

η : O −→ K ⊗L
O K∨

the map sending 1 to the section corresponding to idK under the isomorphism
above. Denote

ϵ : K∨ ⊗L
O K −→ O

the evaluation map (to construct it you can use Lemma 21.35.6 for example). Then
K∨, η, ϵ is a left dual for K as in Categories, Definition 4.43.5. We omit the verifi-
cation that (1⊗ ϵ) ◦ (η ⊗ 1) = idK and (ϵ⊗ 1) ◦ (1⊗ η) = idK∨ .

Lemma 21.48.7.0FPV Let (C,O) be a ringed site. Let M be an object of D(O). If M
has a left dual in the monoidal category D(O) (Categories, Definition 4.43.5) then
M is perfect and the left dual is as constructed in Example 21.48.6.

Proof. Let N, η, ϵ be a left dual. Observe that for any object U of C the restriction
N |U , η|U , ϵ|U is a left dual for M |U .

Let U be an object of C. It suffices to find a covering {Ui → U}i∈I fo C such
that M |Ui is a perfect object of D(OUi). Hence we may replace C,O,M,N, η, ϵ by
C/U,OU ,M |U , N |U , η|U , ϵ|U and assume C has a final object X. Moreover, during
the proof we can (finitely often) replace X by the members of a covering {Ui → X}
of X.

We are going to use the following argument several times. Choose any complexM•

of O-modules representing M . Choose a K-flat complex N • representing N whose
terms are flat O-modules, see Lemma 21.17.11. Consider the map

η : O → Tot(M• ⊗O N •)

After replacing X by the members of a covering, we can find an integer N and for
i = 1, . . . , N integers ni ∈ Z and sections fi and gi of Mni and N−ni such that

η(1) =
∑

i
fi ⊗ gi

https://stacks.math.columbia.edu/tag/0FPT
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https://stacks.math.columbia.edu/tag/0FPV
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Let K• ⊂ M• be any subcomplex of O-modules containing the sections fi for
i = 1, . . . , N . Since Tot(K• ⊗O N •) ⊂ Tot(M• ⊗O N •) by flatness of the modules
Nn, we see that η factors through

η̃ : O → Tot(K• ⊗O N •)
Denoting K the object of D(O) represented by K• we find a commutative diagram

M
η⊗1

//

η̃⊗1 ))

M ⊗L N ⊗L M
1⊗ϵ
// M

K ⊗L N ⊗L M

OO

1⊗ϵ // K

OO

Since the composition of the upper row is the identity on M we conclude that M
is a direct summand of K in D(O).
As a first use of the argument above, we can choose the subcomplexK• = σ≥aτ≤bM•

with a < ni < b for i = 1, . . . , N . Thus M is a direct summand in D(O) of a
bounded complex and we conclude we may assume M is in Db(O). (Recall that
the process above involves replacing X by the members of a covering.)
Since M is in Db(O) we may choose M• to be a bounded above complex of flat
modules (by Modules, Lemma 17.17.6 and Derived Categories, Lemma 13.15.4).
Then we can choose K• = σ≥aM• with a < ni for i = 1, . . . , N in the argument
above. Thus we find that we may assume M is a direct summand in D(O) of a
bounded complex of flat modules. In particular, we find M has finite tor amplitude.
Say M has tor amplitude in [a, b]. Assuming M is m-pseudo-coherent we are going
to show that (after replacing X by the members of a covering) we may assume M is
(m− 1)-pseudo-coherent. This will finish the proof by Lemma 21.47.3 and the fact
that M is (b+ 1)-pseudo-coherent in any case. After replacing X by the members
of a covering we may assume there exists a strictly perfect complex E• and a map
α : E• → M in D(O) such that Hi(α) is an isomorphism for i > m and surjective
for i = m. We may and do assume that E i = 0 for i < m. Choose a distinguished
triangle

E• →M → L→ E•[1]
Observe that Hi(L) = 0 for i ≥ m. Thus we may represent L by a complex L•

with Li = 0 for i ≥ m. The map L → E•[1] is given by a map of complexes
L• → E•[1] which is zero in all degrees except in degree m − 1 where we obtain a
map Lm−1 → Em, see Derived Categories, Lemma 13.27.3. Then M is represented
by the complex

M• : . . .→ Lm−2 → Lm−1 → Em → Em+1 → . . .

Apply the discussion in the second paragraph to this complex to get sections fi of
Mni for i = 1, . . . , N . For n < m let Kn ⊂ Ln be the O-submodule generated
by the sections fi for ni = n and d(fi) for ni = n − 1. For n ≥ m set Kn = En.
Clearly, we have a morphism of distinguished triangles

E• //M• // L• // E•[1]

E• //

OO

K• //

OO

σ≤m−1K• //

OO

E•[1]

OO
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where all the morphisms are as indicated above. Denote K the object of D(O)
corresponding to the complex K•. By the arguments in the second paragraph of
the proof we obtain a morphism s : M → K in D(O) such that the composition
M → K →M is the identity on M . We don’t know that the diagram

E• // K• K

E•

id

OO

i //M• M

s

OO

commutes, but we do know it commutes after composing with the map K → M .
By Lemma 21.44.8 after replacing X by the members of a covering, we may assume
that s ◦ i is given by a map of complexes σ : E• → K•. By the same lemma we may
assume the composition of σ with the inclusion K• ⊂M• is homotopic to zero by
some homotopy {hi : E i →Mi−1}. Thus, after replacing Km−1 by Km−1 +Im(hm)
(note that after doing this it is still the case that Km−1 is generated by finitely
many global sections), we see that σ itself is homotopic to zero! This means that
we have a commutative solid diagram

E• // M // L• // E•[1]

E• //

OO

K //

OO

σ≤m−1K• //

OO

E•[1]

OO

E• //

OO

M //

s

OO

L• //

OO

E•[1]

OO

By the axioms of triangulated categories we obtain a dotted arrow fitting into the
diagram. Looking at cohomology sheaves in degree m− 1 we see that we obtain

Hm−1(M) // Hm−1(L•) // Hm(E•)

Hm−1(K) //

OO

Hm−1(σ≤m−1K•) //

OO

Hm(E•)

OO

Hm−1(M) //

OO

Hm−1(L•) //

OO

Hm(E•)

OO

Since the vertical compositions are the identity in both the left and right column, we
conclude the vertical composition Hm−1(L•)→ Hm−1(σ≤m−1K•)→ Hm−1(L•) in
the middle is surjective! In particular Hm−1(σ≤m−1K•)→ Hm−1(L•) is surjective.
Using the induced map of long exact sequences of cohomology sheaves from the
morphism of triangles above, a diagram chase shows this implies Hi(K)→ Hi(M)
is an isomorphism for i ≥ m and surjective for i = m− 1. By construction we can
choose an r ≥ 0 and a surjection O⊕r → Km−1. Then the composition

(O⊕r → Em → Em+1 → . . .) −→ K −→M

induces an isomorphism on cohomology sheaves in degrees ≥ m and a surjection in
degree m− 1 and the proof is complete. □
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Lemma 21.48.8.0A0A Let (C,O) be a ringed site. Let (Kn)n∈N be a system of perfect
objects of D(O). Let K = hocolimKn be the derived colimit (Derived Categories,
Definition 13.33.1). Then for any object E of D(O) we have

RHom(K,E) = R limE ⊗L
O K∨

n

where (K∨
n ) is the inverse system of dual perfect complexes.

Proof. By Lemma 21.48.4 we have R limE ⊗L
O K∨

n = R limRHom(Kn, E) which
fits into the distinguished triangle

R limRHom(Kn, E)→
∏

RHom(Kn, E)→
∏

RHom(Kn, E)

Because K similarly fits into the distinguished triangle
⊕
Kn →

⊕
Kn → K

it suffices to show that
∏
RHom(Kn, E) = RHom(

⊕
Kn, E). This is a formal

consequence of (21.35.0.1) and the fact that derived tensor product commutes with
direct sums. □

21.49. Invertible objects in the derived category

0FPW We characterize invertible objects in the derived category of a ringed space (both
in the case of a locally ringed topos and in the general case).

Lemma 21.49.1.0FPX Let (C,O) be a ringed space. Set R = Γ(C,O). The category
of O-modules which are summands of finite free O-modules is equivalent to the
category of finite projective R-modules.

Proof. Observe that a finite projective R-module is the same thing as a summand
of a finite free R-module. The equivalence is given by the functor E 7→ Γ(C, E).
The inverse functor is given by the following construction. Consider the morphism
of topoi f : Sh(C) → Sh(pt) with f∗ given by taking global sections and f−1 by
sending a set S, i.e., an object of Sh(pt), to the constant sheaf with value S. We
obtain a morphism (f, f ♯) : (Sh(C),O) → (Sh(pt), R) of ringed topoi by using the
identity map R→ f∗O. Then the inverse functor is given by f∗. □

Lemma 21.49.2.0FPY Let (C,O) be a ringed site. Let M be an object of D(O). The
following are equivalent

(1) M is invertible in D(O), see Categories, Definition 4.43.4, and
(2) there is a locally finite11 direct product decomposition

O =
∏

n∈Z
On

and for each n there is an invertible On-module Hn (Modules on Sites,
Definition 18.32.1) and M =

⊕
Hn[−n] in D(O).

If (1) and (2) hold, then M is a perfect object of D(O). If (C,O) is a locally ringed
site these condition are also equivalent to

(3) for every object U of C there exists a covering {Ui → U} and for each i
an integer ni such that M |Ui is represented by an invertible OUi-module
placed in degree ni.

11This means that for every object U of C there is a covering {Ui → U} such that for every
i the sheaf On|Ui is nonzero for only a finite number of n.

https://stacks.math.columbia.edu/tag/0A0A
https://stacks.math.columbia.edu/tag/0FPX
https://stacks.math.columbia.edu/tag/0FPY
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Proof. Assume (2). Consider the object RHom(M,O) and the composition map

RHom(M,O)⊗L
O M → O

To prove this is an isomorphism, we may work locally. Thus we may assume
O =

∏
a≤n≤bOn and M =

⊕
a≤n≤bHn[−n]. Then it suffices to show that

RHom(Hm,O)⊗L
O Hn

is zero if n ̸= m and equal to On if n = m. The case n ̸= m follows from the fact
that On and Om are flat O-algebras with On⊗OOm = 0. Using the local structure
of invertible O-modules (Modules on Sites, Lemma 18.32.2) and working locally
the isomorphism in case n = m follows in a straightforward manner; we omit the
details. Because D(O) is symmetric monoidal, we conclude that M is invertible.

Assume (1). The description in (2) shows that we have a candidate for On, namely,
HomO(Hn(M), Hn(M)). If this is a locally finite family of sheaves of rings and
if O =

∏
On, then we immediately obtain the direct sum decomposition M =⊕

Hn(M)[−n] using the idempotents inO coming from the product decomposition.
This shows that in order to prove (2) we may work locally in the following sense.
Let U be an object of C. We have to show there exists a covering {Ui → U} of U
such that with On as above we have the statements above and those of (2) after
restriction to C/Ui. Thus we may assume C has a final object X and during the
proof of (2) we may finitely many times replace X by the members of a covering of
X.

Choose an object N of D(O) and an isomorphism M ⊗L
O N ∼= O. Then N is a

left dual for M in the monoidal category D(O) and we conclude that M is perfect
by Lemma 21.48.7. By symmetry we see that N is perfect. After replacing X by
the members of a covering, we may assume M and N are represented by a strictly
perfect complexes E• and F•. Then M ⊗L

O N is represented by Tot(E• ⊗O F•).
After replacing X by the members of a covering of X we may assume the mutually
inverse isomorphisms O → M ⊗L

O N and M ⊗L
O N → O are given by maps of

complexes

α : O → Tot(E• ⊗O F•) and β : Tot(E• ⊗O F•)→ O

See Lemma 21.44.8. Then β ◦ α = 1 as maps of complexes and α ◦ β = 1 as
a morphism in D(O). After replacing X by the members of a covering of X we
may assume the composition α ◦ β is homotopic to 1 by some homotopy θ with
components

θn : Totn(E• ⊗O F•)→ Totn−1(E• ⊗O F•)
by the same lemma as before. Set R = Γ(C,O). By Lemma 21.49.1 we find that
we obtain

(1) M• = Γ(X, E•) is a bounded complex of finite projective R-modules,
(2) N• = Γ(X,F•) is a bounded complex of finite projective R-modules,
(3) α and β correspond to maps of complexes a : R → Tot(M• ⊗R N•) and

b : Tot(M• ⊗R N•)→ R,
(4) θn corresponds to a map hn : Totn(M• ⊗R N•) → Totn−1(M• ⊗R N•),

and
(5) b ◦ a = 1 and b ◦ a− 1 = dh+ hd,
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It follows that M• and N• define mutually inverse objects of D(R). By More on
Algebra, Lemma 15.126.4 we find a product decomposition R =

∏
a≤n≤bRn and

invertible Rn-modules Hn such that M• ∼=
⊕

a≤n≤bH
n[−n]. This isomorphism in

D(R) can be lifted to an morphism⊕
Hn[−n] −→M•

of complexes because each Hn is projective as an R-module. Correspondingly, using
Lemma 21.49.1 again, we obtain an morphism⊕

Hn ⊗R O[−n]→ E•

which is an isomorphism in D(O). Here M ⊗R O denotes the functor from finite
projective R-modules to O-modules constructed in the proof of Lemma 21.49.1.
Setting On = Rn ⊗R O we conclude (2) is true.

If (C,O) is a locally ringed site, then given an object U and a finite product de-
composition O|U =

∏
a≤n≤bOn|U we can find a covering {Ui → U} such that for

every i there is at most one n with On|Ui nonzero. This follows readily from part
(2) of Modules on Sites, Lemma 18.40.1 and the definition of locally ringed sites
as given in Modules on Sites, Definition 18.40.4. From this the implication (2) ⇒
(3) is easily seen. The implication (3)⇒ (2) holds without any assumptions on the
ringed site. We omit the details. □

21.50. Projection formula

0943 Let f : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed topoi. Let E ∈ D(OC)
and K ∈ D(OD). Without any further assumptions there is a map

(21.50.0.1)0B56 Rf∗E ⊗L
OD

K −→ Rf∗(E ⊗L
OC

Lf∗K)

Namely, it is the adjoint to the canonical map

Lf∗(Rf∗E ⊗L
OD

K) = Lf∗Rf∗E ⊗L
OC

Lf∗K −→ E ⊗L
OC

Lf∗K

coming from the map Lf∗Rf∗E → E and Lemmas 21.18.4 and 21.19.1. A reason-
ably general version of the projection formula is the following.

Lemma 21.50.1.0944 Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. Let E ∈ D(OC) and K ∈ D(OD). If K is perfect, then

Rf∗E ⊗L
OD

K = Rf∗(E ⊗L
OC

Lf∗K)

in D(OD).

Proof. To check (21.50.0.1) is an isomorphism we may work locally on D, i.e., for
any object V of D we have to find a covering {Vj → V } such that the map restricts
to an isomorphism on Vj . By definition of perfect objects, this means we may
assume K is represented by a strictly perfect complex of OD-modules. Note that,
completely generally, the statement is true for K = K1 ⊕ K2, if and only if the
statement is true for K1 and K2. Hence we may assume K is a finite complex of
finite free OD-modules. In this case a simple argument involving stupid truncations
reduces the statement to the case whereK is represented by a finite freeOD-module.
Since the statement is invariant under finite direct summands in the K variable,
we conclude it suffices to prove it for K = OD[n] in which case it is trivial. □

https://stacks.math.columbia.edu/tag/0944
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Remark 21.50.2.0E48 The map (21.50.0.1) is compatible with the base change map of
Remark 21.19.3 in the following sense. Namely, suppose that

(Sh(C′),OC′)
g′
//

f ′

��

(Sh(C),OC)

f

��
(Sh(D′),OD′) g // (Sh(D),OD)

is a commutative diagram of ringed topoi. Let E ∈ D(OC) and K ∈ D(OD). Then
the diagram

Lg∗(Rf∗E ⊗L
OD

K)
p

//

t

��

Lg∗Rf∗(E ⊗L
OC

Lf∗K)

b

��
Lg∗Rf∗E ⊗L

OD′ Lg
∗K

b

��

Rf ′
∗L(g′)∗(E ⊗L

OC
Lf∗K)

t

��
Rf ′

∗L(g′)∗E ⊗L
OD′ Lg

∗K

p
++

Rf ′
∗(L(g′)∗E ⊗L

OD′ L(g′)∗Lf∗K)

c

��
Rf ′

∗(L(g′)∗E ⊗L
OD′ L(f ′)∗Lg∗K)

is commutative. Here arrows labeled t are gotten by an application of Lemma
21.18.4, arrows labeled b by an application of Remark 21.19.3, arrows labeled p by
an application of (21.50.0.1), and c comes from L(g′)∗ ◦ Lf∗ = L(f ′)∗ ◦ Lg∗. We
omit the verification.

21.51. Weakly contractible objects

0945 An object U of a site is weakly contractible if every surjection F → G of sheaves of
sets gives rise to a surjection F(U)→ G(U), see Sites, Definition 7.40.2.

Lemma 21.51.1.0946 Let C be a site. Let U be a weakly contractible object of C. Then
(1) the functor F 7→ F(U) is an exact functor Ab(C)→ Ab,
(2) Hp(U,F) = 0 for every abelian sheaf F and all p ≥ 1, and
(3) for any sheaf of groups G any G-torsor has a section over U .

Proof. The first statement follows immediately from the definition (see also Ho-
mology, Section 12.7). The higher derived functors vanish by Derived Categories,
Lemma 13.16.9. Let F be a G-torsor. Then F → ∗ is a surjective map of sheaves.
Hence (3) follows from the definition as well. □

It is convenient to list some consequences of having enough weakly contractible
objects here.

Proposition 21.51.2.0947 Let C be a site. Let B ⊂ Ob(C) such that every U ∈ B is
weakly contractible and every object of C has a covering by elements of B. Let O
be a sheaf of rings on C. Then

(1) A complex F1 → F2 → F3 of O-modules is exact, if and only if F1(U)→
F2(U)→ F3(U) is exact for all U ∈ B.

https://stacks.math.columbia.edu/tag/0E48
https://stacks.math.columbia.edu/tag/0946
https://stacks.math.columbia.edu/tag/0947


21.51. WEAKLY CONTRACTIBLE OBJECTS 2022

(2) Every object K of D(O) is a derived limit of its canonical truncations:
K = R lim τ≥−nK.

(3) Given an inverse system . . . → F3 → F2 → F1 with surjective transition
maps, the projection limFn → F1 is surjective.

(4) Products are exact on Mod(O).
(5) Products on D(O) can be computed by taking products of any represen-

tative complexes.
(6) If (Fn) is an inverse system of O-modules, then Rp limFn = 0 for all p > 1

and
R1 limFn = Coker(

∏
Fn →

∏
Fn)

where the map is (xn) 7→ (xn − f(xn+1)).
(7) If (Kn) is an inverse system of objects of D(O), then there are short exact

sequences
0→ R1 limHp−1(Kn)→ Hp(R limKn)→ limHp(Kn)→ 0

Proof. Proof of (1). If the sequence is exact, then evaluating at any weakly con-
tractible element of C gives an exact sequence by Lemma 21.51.1. Conversely,
assume that F1(U) → F2(U) → F3(U) is exact for all U ∈ B. Let V be an object
of C and let s ∈ F2(V ) be an element of the kernel of F2 → F3. By assumption there
exists a covering {Ui → V } with Ui ∈ B. Then s|Ui lifts to a section si ∈ F1(Ui).
Thus s is a section of the image sheaf Im(F1 → F2). In other words, the sequence
F1 → F2 → F3 is exact.
Proof of (2). This holds by Lemma 21.23.10 with d = 0.
Proof of (3). Let (Fn) be a system as in (2) and set F = limFn. If U ∈ B,
then F(U) = limFn(U) surjects onto F1(U) as all the transition maps Fn+1(U)→
Fn(U) are surjective. Thus F → F1 is surjective by Sites, Definition 7.11.1 and the
assumption that every object has a covering by elements of B.
Proof of (4). Let Fi,1 → Fi,2 → Fi,3 be a family of exact sequences of O-modules.
We want to show that

∏
Fi,1 →

∏
Fi,2 →

∏
Fi,3 is exact. We use the criterion of

(1). Let U ∈ B. Then

(
∏
Fi,1)(U)→ (

∏
Fi,2)(U)→ (

∏
Fi,3)(U)

is the same as ∏
Fi,1(U)→

∏
Fi,2(U)→

∏
Fi,3(U)

Each of the sequences Fi,1(U) → Fi,2(U) → Fi,3(U) are exact by (1). Thus the
displayed sequences are exact by Homology, Lemma 12.32.1. We conclude by (1)
again.
Proof of (5). Follows from (4) and (slightly generalized) Derived Categories, Lemma
13.34.2.
Proof of (6) and (7). We refer to Section 21.23 for a discussion of derived and
homotopy limits and their relationship. By Derived Categories, Definition 13.34.1
we have a distinguished triangle

R limKn →
∏

Kn →
∏

Kn → R limKn[1]
Taking the long exact sequence of cohomology sheaves we obtain
Hp−1(

∏
Kn)→ Hp−1(

∏
Kn)→ Hp(R limKn)→ Hp(

∏
Kn)→ Hp(

∏
Kn)
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Since products are exact by (4) this becomes∏
Hp−1(Kn)→

∏
Hp−1(Kn)→ Hp(R limKn)→

∏
Hp(Kn)→

∏
Hp(Kn)

Now we first apply this to the case Kn = Fn[0] where (Fn) is as in (6). We conclude
that (6) holds. Next we apply it to (Kn) as in (7) and we conclude (7) holds. □

21.52. Compact objects

0948 In this section we study compact objects in the derived category of modules on
a ringed site. We recall that compact objects are defined in Derived Categories,
Definition 13.37.1.

Lemma 21.52.1.094B Let A be a Grothendieck abelian category. Let S ⊂ Ob(A) be a
set of objects such that

(1) any object of A is a quotient of a direct sum of elements of S, and
(2) for any E ∈ S the functor HomA(E,−) commutes with direct sums.

Then every compact object of D(A) is a direct summand in D(A) of a finite complex
of finite direct sums of elements of S.

Proof. Assume K ∈ D(A) is a compact object. Represent K by a complex K• and
consider the map

K• −→
⊕

n≥0
τ≥nK

•

where we have used the canonical truncations, see Homology, Section 12.15. This
makes sense as in each degree the direct sum on the right is finite. By assumption
this map factors through a finite direct sum. We conclude that K → τ≥nK is zero
for at least one n, i.e., K is in D−(R).

We may represent K by a bounded above complex K• each of whose terms is a
direct sum of objects from S, see Derived Categories, Lemma 13.15.4. Note that
we have

K• =
⋃

n≤0
σ≥nK

•

where we have used the stupid truncations, see Homology, Section 12.15. Hence by
Derived Categories, Lemmas 13.33.7 and 13.33.9 we see that 1 : K• → K• factors
through σ≥nK

• → K• in D(R). Thus we see that 1 : K• → K• factors as

K• φ−→ L• ψ−→ K•

in D(A) for some complex L• which is bounded and whose terms are direct sums
of elements of S. Say Li is zero for i ̸∈ [a, b]. Let c be the largest integer ≤ b + 1
such that Li a finite direct sum of elements of S for i < c. Claim: if c < b + 1,
then we can modify L• to increase c. By induction this claim will show we have a
factorization of 1K as

K
φ−→ L

ψ−→ K

in D(A) where L can be represented by a finite complex of finite direct sums of
elements of S. Note that e = φ ◦ ψ ∈ EndD(A)(L) is an idempotent. By Derived
Categories, Lemma 13.4.14 we see that L = Ker(e)⊕Ker(1−e). The map φ : K → L
induces an isomorphism with Ker(1− e) in D(R) and we conclude.

https://stacks.math.columbia.edu/tag/094B
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Proof of the claim. Write Lc =
⊕

λ∈Λ Eλ. Since Lc−1 is a finite direct sum of
elements of S we can by assumption (2) find a finite subset Λ′ ⊂ Λ such that
Lc−1 → Lc factors through

⊕
λ∈Λ′ Eλ ⊂ Lc. Consider the map of complexes

π : L• −→ (
⊕

λ∈Λ\Λ′
Eλ)[−i]

given by the projection onto the factors corresponding to Λ \ Λ′ in degree i. By
our assumption on K we see that, after possibly replacing Λ′ by a larger finite
subset, we may assume that π ◦ φ = 0 in D(A). Let (L′)• ⊂ L• be the kernel
of π. Since π is surjective we get a short exact sequence of complexes, which
gives a distinguished triangle in D(A) (see Derived Categories, Lemma 13.12.1).
Since HomD(A)(K,−) is homological (see Derived Categories, Lemma 13.4.2) and
π ◦ φ = 0, we can find a morphism φ′ : K• → (L′)• in D(A) whose composition
with (L′)• → L• gives φ. Setting ψ′ equal to the composition of ψ with (L′)• → L•

we obtain a new factorization. Since (L′)• agrees with L• except in degree c and
since (L′)c =

⊕
λ∈Λ′ Eλ the claim is proved. □

Lemma 21.52.2.094C Let (C,O) be a ringed site. Assume every object of C has a covering
by quasi-compact objects. Then every compact object of D(O) is a direct summand
in D(O) of a finite complex whose terms are finite direct sums of O-modules of the
form j!OU where U is a quasi-compact object of C.

Proof. Apply Lemma 21.52.1 where S ⊂ Ob(Mod(O)) is the set of modules of the
form j!OU with U ∈ Ob(C) quasi-compact. Assumption (1) holds by Modules on
Sites, Lemma 18.28.8 and the assumption that every U can be covered by quasi-
compact objects. Assumption (2) follows as

HomO(j!OU ,F) = F(U)
which commutes with direct sums by Sites, Lemma 7.17.7. □

In the situation of the lemma above it is not always true that the modules j!OU
are compact objects of D(O) (even if U is a quasi-compact object of C). Here are
two lemmas addressing this issue.

Lemma 21.52.3.0G21 Let (C,O) be a ringed site. Let U be an object of C. Assume
the functors F 7→ Hp(U,F) commute with direct sums. Then O-module j!OU is
a compact object of D+(O) in the following sense: if M =

⊕
i∈IMi in D(O) is

bounded below, then Hom(jU !OU ,M) =
⊕

i∈I Hom(jU !OU ,Mi).

Proof. Since Hom(jU !OU ,−) is the same as the functor F 7→ F(U) by Modules on
Sites, Equation (18.19.2.1) it suffices to prove that Hp(U,M) =

⊕
Hp(U,Mi). Let

Ii, i ∈ I be a collection of injective O-modules. By assumption we have

Hp(U,
⊕

i∈I
Ii) =

⊕
i∈I

Hp(U, Ii) = 0

for all p. Since M =
⊕
Mi is bounded below, we see that there exists an a ∈ Z such

that Hn(Mi) = 0 for n < a. Thus we can choose complexes of injective O-modues
I•
i representing Mi with Ini = 0 for n < a, see Derived Categories, Lemma 13.18.3.

By Injectives, Lemma 19.13.4 we see that the direct sum complex
⊕
I•
i represents

M . By Leray acyclicity (Derived Categories, Lemma 13.16.7) we see that

RΓ(U,M) = Γ(U,
⊕
I•
i ) =

⊕
Γ(U,

⊕
I•
i ) =

⊕
RΓ(U,Mi)

as desired. □

https://stacks.math.columbia.edu/tag/094C
https://stacks.math.columbia.edu/tag/0G21
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Lemma 21.52.4.0G22 Let (C,O) be a ringed site with set of coverings CovC . Let B ⊂
Ob(C), and Cov ⊂ CovC be subsets. Assume that

(1) For every U ∈ Cov we have U = {Ui → U}i∈I with I finite, U,Ui ∈ B and
every Ui0 ×U . . .×U Uip ∈ B.

(2) For every U ∈ B the coverings of U occurring in Cov is a cofinal system
of coverings of U .

Then for U ∈ B the object jU !OU is a compact object of D+(O) in the follow-
ing sense: if M =

⊕
i∈IMi in D(O) is bounded below, then Hom(jU !OU ,M) =⊕

i∈I Hom(jU !OU ,Mi).

Proof. This follows from Lemma 21.52.3 and Lemma 21.16.1. □

Lemma 21.52.5.094D Let (C,O) be a ringed site. Let U be an object of C. TheO-module
j!OU is a compact object of D(O) if there exists an integer d such that

(1) Hp(U,F) = 0 for all p > d, and
(2) the functors F 7→ Hp(U,F) commute with direct sums.

Proof. Assume (1) and (2). Recall that Hom(j!OU ,K) = RΓ(U,K) for K in D(O).
Thus we have to show that RΓ(U,−) commutes with direct sums. The first assump-
tion means that the functor F = H0(U,−) has finite cohomological dimension.
Moreover, the second assumption implies any direct sum of injective modules is
acyclic for F . Let Ki be a family of objects of D(O). Choose K-injective repre-
sentatives I•

i with injective terms representing Ki, see Injectives, Theorem 19.12.6.
Since we may compute RF by applying F to any complex of acyclics (Derived
Categories, Lemma 13.32.2) and since

⊕
Ki is represented by

⊕
I•
i (Injectives,

Lemma 19.13.4) we conclude that RΓ(U,
⊕
Ki) is represented by

⊕
H0(U, I•

i ).
Hence RΓ(U,−) commutes with direct sums as desired. □

Lemma 21.52.6.094E Let (C,O) be a ringed site. Let U be an object of C which is
quasi-compact and weakly contractible. Then j!OU is a compact object of D(O).

Proof. Combine Lemmas 21.52.5 and 21.51.1 with Modules on Sites, Lemma 18.30.3.
□

Lemma 21.52.7.09JC Let (C,O) be a ringed site. Assume C has the following properties
(1) C has a quasi-compact final object X,
(2) every quasi-compact object of C has a cofinal system of coverings which

are finite and consist of quasi-compact objects,
(3) for a finite covering {Ui → U}i∈I with U , Ui quasi-compact the fibre

products Ui ×U Uj are quasi-compact.
Let K be a perfect object of D(O). Then

(a) K is a compact object of D+(O) in the following sense: if M =
⊕

i∈IMi

is bounded below, then Hom(K,M) =
⊕

i∈I Hom(K,Mi).
(b) If (C,O) has finite cohomological dimension, i.e., if there exists a d such

that Hi(X,F) = 0 for i > d for any O-module F , then K is a compact
object of D(O).

Proof. Let K∨ be the dual of K, see Lemma 21.48.4. Then we have

HomD(O)(K,M) = H0(X,K∨ ⊗L
O M)

https://stacks.math.columbia.edu/tag/0G22
https://stacks.math.columbia.edu/tag/094D
https://stacks.math.columbia.edu/tag/094E
https://stacks.math.columbia.edu/tag/09JC
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functorially in M in D(O). Since K∨ ⊗L
O − commutes with direct sums it suffices

to show that RΓ(X,−) commutes with the relevant direct sums.
Proof of (a). After reformulation as above this is a special case of Lemma 21.52.4
with U = X.
Proof of (b). Since RΓ(X,K) = RHom(O,K) and since Hp(X,−) commutes with
direct sums by Lemma 21.16.1 this is a special case of Lemma 21.52.5. □

21.53. Complexes with locally constant cohomology sheaves

094F Locally constant sheaves are introduced in Modules on Sites, Section 18.43. Let C
be a site. Let Λ be a ring. We denote D(C,Λ) the derived category of the abelian
category of Λ-modules on C.

Lemma 21.53.1.094G Let C be a site with final object X. Let Λ be a Noetherian ring.
Let K ∈ Db(C,Λ) with Hi(K) locally constant sheaves of Λ-modules of finite type.
Then there exists a covering {Ui → X} such that each K|Ui is represented by a
complex of locally constant sheaves of Λ-modules of finite type.

Proof. Let a ≤ b be such that Hi(K) = 0 for i ̸∈ [a, b]. By induction on b − a we
will prove there exists a covering {Ui → X} such that K|Ui can be represented by a
complex M•

Ui
with Mp a finite type Λ-module and Mp = 0 for p ̸∈ [a, b]. If b = a,

then this is clear. In general, we may replace X by the members of a covering and
assume that Hb(K) is constant, say Hb(K) = M . By Modules on Sites, Lemma
18.42.5 the module M is a finite Λ-module. Choose a surjection Λ⊕r → M given
by generators x1, . . . , xr of M .
By a slight generalization of Lemma 21.7.3 (details omitted) there exists a covering
{Ui → X} such that xi ∈ H0(X,Hb(K)) lifts to an element of Hb(Ui,K). Thus,
after replacing X by the Ui we reach the situation where there is a map Λ⊕r[−b]→
K inducing a surjection on cohomology sheaves in degree b. Choose a distinguished
triangle

Λ⊕r[−b]→ K → L→ Λ⊕r[−b+ 1]
Now the cohomology sheaves of L are nonzero only in the interval [a, b− 1], agree
with the cohomology sheaves of K in the interval [a, b−2] and there is a short exact
sequence

0→ Hb−1(K)→ Hb−1(L)→ Ker(Λ⊕r →M)→ 0
in degree b−1. By Modules on Sites, Lemma 18.43.5 we see that Hb−1(L) is locally
constant of finite type. By induction hypothesis we obtain an isomorphism M• → L
in D(C,Λ) with Mp a finite Λ-module and Mp = 0 for p ̸∈ [a, b − 1]. The map
L→ Λ⊕r[−b+ 1] gives a map M b−1 → Λ⊕r which locally is constant (Modules on
Sites, Lemma 18.43.3). Thus we may assume it is given by a map M b−1 → Λ⊕r.
The distinguished triangle shows that the composition M b−2 → M b−1 → Λ⊕r is
zero and the axioms of triangulated categories produce an isomorphism

Ma → . . .→M b−1 → Λ⊕r −→ K

in D(C,Λ). □

Let C be a site. Let Λ be a ring. Using the morphism Sh(C)→ Sh(pt) we see that
there is a functor D(Λ)→ D(C,Λ), K 7→ K.

Lemma 21.53.2.09BD Let C be a site with final object X. Let Λ be a ring. Let

https://stacks.math.columbia.edu/tag/094G
https://stacks.math.columbia.edu/tag/09BD
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(1) K a perfect object of D(Λ),
(2) a finite complex K• of finite projective Λ-modules representing K,
(3) L• a complex of sheaves of Λ-modules, and
(4) φ : K → L• a map in D(C,Λ).

Then there exists a covering {Ui → X} and maps of complexes αi : K•|Ui → L•|Ui
representing φ|Ui .

Proof. Follows immediately from Lemma 21.44.8. □

Lemma 21.53.3.09BE Let C be a site with final object X. Let Λ be a ring. Let K,L be
objects of D(Λ) with K perfect. Let φ : K → L be map in D(C,Λ). There exists
a covering {Ui → X} such that φ|Ui is equal to αi for some map αi : K → L in
D(Λ).

Proof. Follows from Lemma 21.53.2 and Modules on Sites, Lemma 18.43.3. □

Lemma 21.53.4.094H Let C be a site. Let Λ be a Noetherian ring. Let K,L ∈ D−(C,Λ).
If the cohomology sheaves of K and L are locally constant sheaves of Λ-modules of
finite type, then the cohomology sheaves of K ⊗L

Λ L are locally constant sheaves of
Λ-modules of finite type.

Proof. We’ll prove this as an application of Lemma 21.53.1. Note that Hi(K⊗L
ΛL)

is the same as Hi(τ≥i−1K⊗L
Λ τ≥i−1L). Thus we may assume K and L are bounded.

By Lemma 21.53.1 we may assume that K and L are represented by complexes of
locally constant sheaves of Λ-modules of finite type. Then we can replace these
complexes by bounded above complexes of finite free Λ-modules. In this case the
result is clear. □

Lemma 21.53.5.094I Let C be a site. Let Λ be a Noetherian ring. Let I ⊂ Λ be an ideal.
Let K ∈ D−(C,Λ). If the cohomology sheaves of K ⊗L

Λ Λ/I are locally constant
sheaves of Λ/I-modules of finite type, then the cohomology sheaves of K ⊗L

Λ Λ/In
are locally constant sheaves of Λ/In-modules of finite type for all n ≥ 1.

Proof. Recall that the locally constant sheaves of Λ-modules of finite type form
a weak Serre subcategory of all Λ-modules, see Modules on Sites, Lemma 18.43.5.
Thus the subcategory of D(C,Λ) consisting of complexes whose cohomology sheaves
are locally constant sheaves of Λ-modules of finite type forms a strictly full, satu-
rated triangulated subcategory of D(C,Λ), see Derived Categories, Lemma 13.17.1.
Next, consider the distinguished triangles

K ⊗L
Λ I

n/In+1 → K ⊗L
Λ Λ/In+1 → K ⊗L

Λ Λ/In → K ⊗L
Λ I

n/In+1[1]
and the isomorphisms

K ⊗L
Λ I

n/In+1 =
(
K ⊗L

Λ Λ/I
)
⊗L

Λ/I I
n/In+1

Combined with Lemma 21.53.4 we obtain the result. □
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CHAPTER 22

Differential Graded Algebra

09JD 22.1. Introduction

09JE In this chapter we talk about differential graded algebras, modules, categories, etc.
A basic reference is [Kel94]. A survey paper is [Kel06].

Since we do not worry about length of exposition in the Stacks project we first
develop the material in the setting of categories of differential graded modules.
After that we redo the constructions in the setting of differential graded modules
over differential graded categories.

22.2. Conventions

09JF In this chapter we hold on to the convention that ring means commutative ring
with 1. If R is a ring, then an R-algebra A will be an R-module A endowed with an
R-bilinear map A×A→ A (multiplication) such that multiplication is associative
and has a unit. In other words, these are unital associative R-algebras such that
the structure map R→ A maps into the center of A.

Sign rules. In this chapter we will work with graded algebras and graded modules
often equipped with differentials. The sign rules on underlying complexes will
always be (compatible with) those introduced in More on Algebra, Section 15.72.
This will occasionally cause the multiplicative structure to be twisted in unexpected
ways especially when considering left modules or the relationship between left and
right modules.

22.3. Differential graded algebras

061U Just the definitions.

Definition 22.3.1.061V Let R be a commutative ring. A differential graded algebra over
R is either

(1) a chain complex A• of R-modules endowed with R-bilinear maps An ×
Am → An+m, (a, b) 7→ ab such that

dn+m(ab) = dn(a)b+ (−1)nadm(b)

and such that
⊕
An becomes an associative and unital R-algebra, or

(2) a cochain complex A• of R-modules endowed with R-bilinear maps An ×
Am → An+m, (a, b) 7→ ab such that

dn+m(ab) = dn(a)b+ (−1)nadm(b)

and such that
⊕
An becomes an associative and unital R-algebra.

2030
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We often just write A =
⊕
An or A =

⊕
An and think of this as an associative

unital R-algebra endowed with a Z-grading and an R-linear operator d whose square
is zero and which satisfies the Leibniz rule as explained above. In this case we often
say “Let (A,d) be a differential graded algebra”.
The Leibniz rule relating differentials and multiplication on a differential graded
R-algebra A exactly means that the multiplication map defines a map of cochain
complexes

Tot(A• ⊗R A•)→ A•

Here A• denote the underlying cochain complex of A.

Definition 22.3.2.061X A homomorphism of differential graded algebras f : (A,d) →
(B, d) is an algebra map f : A→ B compatible with the gradings and d.

Definition 22.3.3.061W A differential graded algebra (A,d) is commutative if ab =
(−1)nmba for a in degree n and b in degree m. We say A is strictly commutative if
in addition a2 = 0 for deg(a) odd.

The following definition makes sense in general but is perhaps “correct” only when
tensoring commutative differential graded algebras.

Definition 22.3.4.065W Let R be a ring. Let (A,d), (B, d) be differential graded algebras
over R. The tensor product differential graded algebra of A and B is the algebra
A⊗R B with multiplication defined by

(a⊗ b)(a′ ⊗ b′) = (−1)deg(a′) deg(b)aa′ ⊗ bb′

endowed with differential d defined by the rule d(a⊗ b) = d(a)⊗ b+ (−1)ma⊗d(b)
where m = deg(a).

Lemma 22.3.5.065X Let R be a ring. Let (A,d), (B, d) be differential graded algebras
over R. Denote A•, B• the underlying cochain complexes. As cochain complexes
of R-modules we have

(A⊗R B)• = Tot(A• ⊗R B•).

Proof. Recall that the differential of the total complex is given by dp,q1 + (−1)pdp,q2
on Ap⊗RBq. And this is exactly the same as the rule for the differential on A⊗RB
in Definition 22.3.4. □

22.4. Differential graded modules

09JH Our default in this chapter is right modules; we discuss left modules in Section
22.11.

Definition 22.4.1.09JI Let R be a ring. Let (A,d) be a differential graded algebra over
R. A (right) differential graded module M over A is a right A-module M which
has a grading M =

⊕
Mn and a differential d such that MnAm ⊂ Mn+m, such

that d(Mn) ⊂Mn+1, and such that
d(ma) = d(m)a+ (−1)nmd(a)

for a ∈ A and m ∈Mn. A homomorphism of differential graded modules f : M →
N is an A-module map compatible with gradings and differentials. The category
of (right) differential graded A-modules is denoted Mod(A,d).

https://stacks.math.columbia.edu/tag/061X
https://stacks.math.columbia.edu/tag/061W
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Note that we can think of M as a cochain complex M• of (right) R-modules.
Namely, for r ∈ R we have d(r) = 0 and r maps to a degree 0 element of A, hence
d(mr) = d(m)r.
The Leibniz rule relating differentials and multiplication on a differential graded
R-module M over a differential graded R-algebra A exactly means that the multi-
plication map defines a map of cochain complexes

Tot(M• ⊗R A•)→M•

Here A• and M• denote the underlying cochain complexes of A and M .

Lemma 22.4.2.09JJ Let (A, d) be a differential graded algebra. The category Mod(A,d)
is abelian and has arbitrary limits and colimits.

Proof. Kernels and cokernels commute with taking underlying A-modules. Simi-
larly for direct sums and colimits. In other words, these operations in Mod(A,d)
commute with the forgetful functor to the category of A-modules. This is not the
case for products and limits. Namely, if Ni, i ∈ I is a family of differential graded
A-modules, then the product

∏
Ni in Mod(A,d) is given by setting (

∏
Ni)n =

∏
Nn
i

and
∏
Ni =

⊕
n(
∏
Ni)n. Thus we see that the product does commute with the

forgetful functor to the category of graded A-modules. A category with products
and equalizers has limits, see Categories, Lemma 4.14.11. □

Thus, if (A,d) is a differential graded algebra over R, then there is an exact functor
Mod(A,d) −→ Comp(R)

of abelian categories. For a differential graded module M the cohomology groups
Hn(M) are defined as the cohomology of the corresponding complex of R-modules.
Therefore, a short exact sequence 0 → K → L → M → 0 of differential graded
modules gives rise to a long exact sequence
(22.4.2.1)09JK Hn(K)→ Hn(L)→ Hn(M)→ Hn+1(K)
of cohomology modules, see Homology, Lemma 12.13.12.
Moreover, from now on we borrow all the terminology used for complexes of mod-
ules. For example, we say that a differential graded A-module M is acyclic if
Hk(M) = 0 for all k ∈ Z. We say that a homomorphism M → N of differential
graded A-modules is a quasi-isomorphism if it induces isomorphisms Hk(M) →
Hk(N) for all k ∈ Z. And so on and so forth.

Definition 22.4.3.09JL Let (A,d) be a differential graded algebra. LetM be a differential
graded module whose underlying complex of R-modules is M•. For any k ∈ Z we
define the k-shifted module M [k] as follows

(1) the underlying complex of R-modules of M [k] is M•[k], i.e., we have
M [k]n = Mn+k and dM [k] = (−1)kdM and

(2) as A-module the multiplication
(M [k])n ×Am −→ (M [k])n+m

is equal to the given multiplication Mn+k ×Am →Mn+k+m.
For a morphism f : M → N of differential graded A-modules we let f [k] : M [k]→
N [k] be the map equal to f on underlying A-modules. This defines a functor
[k] : Mod(A,d) → Mod(A,d).

https://stacks.math.columbia.edu/tag/09JJ
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Let us check that with this choice the Leibniz rule is satisfied. Let x ∈ M [k]n =
Mn+k and a ∈ Am and denoting ·M [k] the product in M [k] then we see

dM [k](x ·M [k] a) = (−1)kdM (xa)
= (−1)kdM (x)a+ (−1)k+n+kxd(a)
= dM [k](x)a+ (−1)nxd(a)
= dM [k](x) ·M [k] a+ (−1)nx ·M [k] d(a)

This is what we want as x has degree n as a homogeneous element of M [k]. We
also observe that with these choices we may think of the multiplication map as the
map of complexes

Tot(M•[k]⊗R A•)→ Tot(M• ⊗R A•)[k]→M•[k]

where the first arrow is More on Algebra, Section 15.72 (7) which in this case does
not involve a sign. (In fact, we could have deduced that the Liebniz rule holds from
this observation.)

The remarks in Homology, Section 12.14 apply. In particular, we will identify the
cohomology groups of all shifts M [k] without the intervention of signs.

At this point we have enough structure to talk about triangles, see Derived Cate-
gories, Definition 13.3.1. In fact, our next goal is to develop enough theory to be
able to state and prove that the homotopy category of differential graded modules
is a triangulated category. First we define the homotopy category.

22.5. The homotopy category

09JM Our homotopies take into account the A-module structure and the grading, but not
the differential (of course).

Definition 22.5.1.09JN Let (A,d) be a differential graded algebra. Let f, g : M → N
be homomorphisms of differential graded A-modules. A homotopy between f and
g is an A-module map h : M → N such that

(1) h(Mn) ⊂ Nn−1 for all n, and
(2) f(x)− g(x) = dN (h(x)) + h(dM (x)) for all x ∈M .

If a homotopy exists, then we say f and g are homotopic.

Thus h is compatible with the A-module structure and the grading but not with
the differential. If f = g and h is a homotopy as in the definition, then h defines a
morphism h : M → N [−1] in Mod(A,d).

Lemma 22.5.2.09JP Let (A,d) be a differential graded algebra. Let f, g : L → M be
homomorphisms of differential graded A-modules. Suppose given further homo-
morphisms a : K → L, and c : M → N . If h : L → M is an A-module map which
defines a homotopy between f and g, then c ◦ h ◦ a defines a homotopy between
c ◦ f ◦ a and c ◦ g ◦ a.

Proof. Immediate from Homology, Lemma 12.13.7. □

This lemma allows us to define the homotopy category as follows.
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Definition 22.5.3.09JQ Let (A,d) be a differential graded algebra. The homotopy
category, denoted K(Mod(A,d)), is the category whose objects are the objects of
Mod(A,d) and whose morphisms are homotopy classes of homomorphisms of differ-
ential graded A-modules.

The notation K(Mod(A,d)) is not standard but at least is consistent with the use
of K(−) in other places of the Stacks project.

Lemma 22.5.4.09JR Let (A,d) be a differential graded algebra. The homotopy category
K(Mod(A,d)) has direct sums and products.

Proof. Omitted. Hint: Just use the direct sums and products as in Lemma 22.4.2.
This works because we saw that these functors commute with the forgetful functor
to the category of graded A-modules and because

∏
is an exact functor on the

category of families of abelian groups. □

22.6. Cones

09K9 We introduce cones for the category of differential graded modules.

Definition 22.6.1.09KA Let (A,d) be a differential graded algebra. Let f : K → L be a
homomorphism of differential graded A-modules. The cone of f is the differential
graded A-module C(f) given by C(f) = L⊕K with grading C(f)n = Ln ⊕Kn+1

and differential

dC(f) =
(

dL f
0 −dK

)
It comes equipped with canonical morphisms of complexes i : L → C(f) and
p : C(f)→ K[1] induced by the obvious maps L→ C(f) and C(f)→ K.

The formation of the cone triangle is functorial in the following sense.

Lemma 22.6.2.09KD Let (A,d) be a differential graded algebra. Suppose that

K1
f1

//

a

��

L1

b

��
K2

f2 // L2

is a diagram of homomorphisms of differential graded A-modules which is commu-
tative up to homotopy. Then there exists a morphism c : C(f1) → C(f2) which
gives rise to a morphism of triangles

(a, b, c) : (K1, L1, C(f1), f1, i1, p1)→ (K1, L1, C(f1), f2, i2, p2)

in K(Mod(A,d)).

Proof. Let h : K1 → L2 be a homotopy between f2 ◦ a and b ◦ f1. Define c by the
matrix

c =
(
b h
0 a

)
: L1 ⊕K1 → L2 ⊕K2

A matrix computation show that c is a morphism of differential graded modules.
It is trivial that c ◦ i1 = i2 ◦ b, and it is trivial also to check that p2 ◦ c = a ◦ p1. □
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22.7. Admissible short exact sequences

09JS An admissible short exact sequence is the analogue of termwise split exact sequences
in the setting of differential graded modules.

Definition 22.7.1.09JT Let (A,d) be a differential graded algebra.
(1) A homomorphism K → L of differential graded A-modules is an admissi-

ble monomorphism if there exists a graded A-module map L→ K which
is left inverse to K → L.

(2) A homomorphism L → M of differential graded A-modules is an admis-
sible epimorphism if there exists a graded A-module map M → L which
is right inverse to L→M .

(3) A short exact sequence 0 → K → L → M → 0 of differential graded
A-modules is an admissible short exact sequence if it is split as a sequence
of graded A-modules.

Thus the splittings are compatible with all the data except for the differentials.
Given an admissible short exact sequence we obtain a triangle; this is the reason
that we require our splittings to be compatible with the A-module structure.

Lemma 22.7.2.09JU Let (A,d) be a differential graded algebra. Let 0 → K → L →
M → 0 be an admissible short exact sequence of differential graded A-modules.
Let s : M → L and π : L → K be splittings such that Ker(π) = Im(s). Then we
obtain a morphism

δ = π ◦ dL ◦ s : M → K[1]
of Mod(A,d) which induces the boundary maps in the long exact sequence of coho-
mology (22.4.2.1).

Proof. The map π ◦ dL ◦ s is compatible with the A-module structure and the
gradings by construction. It is compatible with differentials by Homology, Lemmas
12.14.10. Let R be the ring that A is a differential graded algebra over. The equal-
ity of maps is a statement about R-modules. Hence this follows from Homology,
Lemmas 12.14.10 and 12.14.11. □

Lemma 22.7.3.09JV Let (A,d) be a differential graded algebra. Let

K
f
//

a

��

L

b
��

M
g // N

be a diagram of homomorphisms of differential graded A-modules commuting up
to homotopy.

(1) If f is an admissible monomorphism, then b is homotopic to a homomor-
phism which makes the diagram commute.

(2) If g is an admissible epimorphism, then a is homotopic to a morphism
which makes the diagram commute.

Proof. Let h : K → N be a homotopy between bf and ga, i.e., bf − ga = dh+ hd.
Suppose that π : L → K is a graded A-module map left inverse to f . Take
b′ = b − dhπ − hπd. Suppose s : N → M is a graded A-module map right inverse
to g. Take a′ = a+ dsh+ shd. Computations omitted. □
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Lemma 22.7.4.09JW Let (A,d) be a differential graded algebra. Let α : K → L be a
homomorphism of differential graded A-modules. There exists a factorization

K
α̃ //

α

77L̃
π // L

in Mod(A,d) such that
(1) α̃ is an admissible monomorphism (see Definition 22.7.1),
(2) there is a morphism s : L → L̃ such that π ◦ s = idL and such that s ◦ π

is homotopic to idL̃.

Proof. The proof is identical to the proof of Derived Categories, Lemma 13.9.6.
Namely, we set L̃ = L ⊕ C(1K) and we use elementary properties of the cone
construction. □

Lemma 22.7.5.09JX Let (A,d) be a differential graded algebra. Let L1 → L2 → . . .→
Ln be a sequence of composable homomorphisms of differential graded A-modules.
There exists a commutative diagram

L1 // L2 // . . . // Ln

M1 //

OO

M2 //

OO

. . . // Mn

OO

in Mod(A,d) such that each Mi → Mi+1 is an admissible monomorphism and each
Mi → Li is a homotopy equivalence.

Proof. The case n = 1 is without content. Lemma 22.7.4 is the case n = 2. Suppose
we have constructed the diagram except for Mn. Apply Lemma 22.7.4 to the
composition Mn−1 → Ln−1 → Ln. The result is a factorization Mn−1 →Mn → Ln
as desired. □

Lemma 22.7.6.09JY Let (A,d) be a differential graded algebra. Let 0 → Ki → Li →
Mi → 0, i = 1, 2, 3 be admissible short exact sequence of differential graded A-
modules. Let b : L1 → L2 and b′ : L2 → L3 be homomorphisms of differential
graded modules such that

K1

0
��

// L1 //

b

��

M1

0
��

K2 // L2 // M2

and

K2

0
��

// L2 //

b′

��

M2

0
��

K3 // L3 // M3

commute up to homotopy. Then b′ ◦ b is homotopic to 0.

Proof. By Lemma 22.7.3 we can replace b and b′ by homotopic maps such that the
right square of the left diagram commutes and the left square of the right diagram
commutes. In other words, we have Im(b) ⊂ Im(K2 → L2) and Ker((b′)n) ⊃
Im(K2 → L2). Then b ◦ b′ = 0 as a map of modules. □

22.8. Distinguished triangles

09K5 The following lemma produces our distinguished triangles.
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Lemma 22.8.1.09K6 Let (A,d) be a differential graded algebra. Let 0 → K → L →
M → 0 be an admissible short exact sequence of differential graded A-modules.
The triangle

(22.8.1.1)09K7 K → L→M
δ−→ K[1]

with δ as in Lemma 22.7.2 is, up to canonical isomorphism in K(Mod(A,d)), inde-
pendent of the choices made in Lemma 22.7.2.

Proof. Namely, let (s′, π′) be a second choice of splittings as in Lemma 22.7.2.
Then we claim that δ and δ′ are homotopic. Namely, write s′ = s + α ◦ h and
π′ = π + g ◦ β for some unique homomorphisms of A-modules h : M → K and
g : M → K of degree −1. Then g = −h and g is a homotopy between δ and δ′.
The computations are done in the proof of Homology, Lemma 12.14.12. □

Definition 22.8.2.09K8 Let (A,d) be a differential graded algebra.
(1) If 0 → K → L → M → 0 is an admissible short exact sequence of

differential graded A-modules, then the triangle associated to 0 → K →
L→M → 0 is the triangle (22.8.1.1) of K(Mod(A,d)).

(2) A triangle of K(Mod(A,d)) is called a distinguished triangle if it is iso-
morphic to a triangle associated to an admissible short exact sequence of
differential graded A-modules.

22.9. Cones and distinguished triangles

09P1 Let (A,d) be a differential graded algebra. Let f : K → L be a homomorphism of
differential graded A-modules. Then (K,L,C(f), f, i, p) forms a triangle:

K → L→ C(f)→ K[1]

in Mod(A,d) and hence in K(Mod(A,d)). Cones are not distinguished triangles in
general, but the difference is a sign or a rotation (your choice). Here are two precise
statements.

Lemma 22.9.1.09KB Let (A,d) be a differential graded algebra. Let f : K → L be a ho-
momorphism of differential graded modules. The triangle (L,C(f),K[1], i, p, f [1])
is the triangle associated to the admissible short exact sequence

0→ L→ C(f)→ K[1]→ 0

coming from the definition of the cone of f .

Proof. Immediate from the definitions. □

Lemma 22.9.2.09KC Let (A,d) be a differential graded algebra. Let α : K → L and
β : L→M define an admissible short exact sequence

0→ K → L→M → 0

of differential graded A-modules. Let (K,L,M,α, β, δ) be the associated triangle.
Then the triangles

(M [−1],K, L, δ[−1], α, β) and (M [−1],K,C(δ[−1]), δ[−1], i, p)

are isomorphic.
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Proof. Using a choice of splittings we write L = K ⊕M and we identify α and β
with the natural inclusion and projection maps. By construction of δ we have

dB =
(
dK δ
0 dM

)
On the other hand the cone of δ[−1] : M [−1]→ K is given as C(δ[−1]) = K ⊕M
with differential identical with the matrix above! Whence the lemma. □

Lemma 22.9.3.09KE Let (A,d) be a differential graded algebra. Let f1 : K1 → L1 and
f2 : K2 → L2 be homomorphisms of differential graded A-modules. Let

(a, b, c) : (K1, L1, C(f1), f1, i1, p1) −→ (K1, L1, C(f1), f2, i2, p2)

be any morphism of triangles of K(Mod(A,d)). If a and b are homotopy equivalences
then so is c.

Proof. Let a−1 : K2 → K1 be a homomorphism of differential graded A-modules
which is inverse to a in K(Mod(A,d)). Let b−1 : L2 → L1 be a homomorphism
of differential graded A-modules which is inverse to b in K(Mod(A,d)). Let c′ :
C(f2) → C(f1) be the morphism from Lemma 22.6.2 applied to f1 ◦ a−1 = b−1 ◦
f2. If we can show that c ◦ c′ and c′ ◦ c are isomorphisms in K(Mod(A,d)) then
we win. Hence it suffices to prove the following: Given a morphism of triangles
(1, 1, c) : (K,L,C(f), f, i, p) in K(Mod(A,d)) the morphism c is an isomorphism in
K(Mod(A,d)). By assumption the two squares in the diagram

L //

1
��

C(f) //

c

��

K[1]

1
��

L // C(f) // K[1]

commute up to homotopy. By construction of C(f) the rows form admissible short
exact sequences. Thus we see that (c− 1)2 = 0 in K(Mod(A,d)) by Lemma 22.7.6.
Hence c is an isomorphism in K(Mod(A,d)) with inverse 2− c. □

The following lemma shows that the collection of triangles of the homotopy category
given by cones and the distinguished triangles are the same up to isomorphisms, at
least up to sign!

Lemma 22.9.4.09KF Let (A,d) be a differential graded algebra.

(1) Given an admissible short exact sequence 0→ K
α−→ L→M → 0 of differ-

ential graded A-modules there exists a homotopy equivalence C(α)→M
such that the diagram

K //

��

L

��

// C(α)
−p
//

��

K[1]

��
K

α // L
β // M

δ // K[1]

defines an isomorphism of triangles in K(Mod(A,d)).
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(2) Given a morphism of complexes f : K → L there exists an isomorphism
of triangles

K //

��

L̃

��

// M
δ
//

��

K[1]

��
K // L // C(f) −p // K[1]

where the upper triangle is the triangle associated to a admissible short
exact sequence K → L̃→M .

Proof. Proof of (1). We have C(α) = L ⊕ K and we simply define C(α) → M
via the projection onto L followed by β. This defines a morphism of differential
graded modules because the compositions Kn+1 → Ln+1 →Mn+1 are zero. Choose
splittings s : M → L and π : L → K with Ker(π) = Im(s) and set δ = π ◦ dL ◦ s
as usual. To get a homotopy inverse we take M → C(α) given by (s,−δ). This
is compatible with differentials because δn can be characterized as the unique map
Mn → Kn+1 such that d ◦ sn − sn+1 ◦ d = α ◦ δn, see proof of Homology, Lemma
12.14.10. The composition M → C(f) → M is the identity. The composition
C(f)→M → C(f) is equal to the morphism(

s ◦ β 0
−δ ◦ β 0

)
To see that this is homotopic to the identity map use the homotopy h : C(α) →
C(α) given by the matrix(

0 0
π 0

)
: C(α) = L⊕K → L⊕K = C(α)

It is trivial to verify that(
1 0
0 1

)
−
(
s
−δ

)(
β 0

)
=
(

d α
0 −d

)(
0 0
π 0

)
+
(

0 0
π 0

)(
d α
0 −d

)
To finish the proof of (1) we have to show that the morphisms −p : C(α) → K[1]
(see Definition 22.6.1) and C(α)→M → K[1] agree up to homotopy. This is clear
from the above. Namely, we can use the homotopy inverse (s,−δ) : M → C(α) and
check instead that the two maps M → K[1] agree. And note that p ◦ (s,−δ) = −δ
as desired.

Proof of (2). We let f̃ : K → L̃, s : L→ L̃ and π : L→ L be as in Lemma 22.7.4.
By Lemmas 22.6.2 and 22.9.3 the triangles (K,L,C(f), i, p) and (K, L̃, C(f̃), ĩ, p̃)
are isomorphic. Note that we can compose isomorphisms of triangles. Thus we may
replace L by L̃ and f by f̃ . In other words we may assume that f is an admissible
monomorphism. In this case the result follows from part (1). □

22.10. The homotopy category is triangulated

09KG We first prove that it is pre-triangulated.

Lemma 22.10.1.09KH Let (A,d) be a differential graded algebra. The homotopy category
K(Mod(A,d)) with its natural translation functors and distinguished triangles is a
pre-triangulated category.
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Proof. Proof of TR1. By definition every triangle isomorphic to a distinguished
one is distinguished. Also, any triangle (K,K, 0, 1, 0, 0) is distinguished since
0 → K → K → 0 → 0 is an admissible short exact sequence. Finally, given
any homomorphism f : K → L of differential graded A-modules the triangle
(K,L,C(f), f, i,−p) is distinguished by Lemma 22.9.4.

Proof of TR2. Let (X,Y, Z, f, g, h) be a triangle. Assume (Y,Z,X[1], g, h,−f [1])
is distinguished. Then there exists an admissible short exact sequence 0 → K →
L → M → 0 such that the associated triangle (K,L,M,α, β, δ) is isomorphic to
(Y, Z,X[1], g, h,−f [1]). Rotating back we see that (X,Y, Z, f, g, h) is isomorphic
to (M [−1],K, L,−δ[−1], α, β). It follows from Lemma 22.9.2 that the triangle
(M [−1],K, L, δ[−1], α, β) is isomorphic to (M [−1],K,C(δ[−1]), δ[−1], i, p). Pre-
composing the previous isomorphism of triangles with −1 on Y it follows that
(X,Y, Z, f, g, h) is isomorphic to (M [−1],K,C(δ[−1]), δ[−1], i,−p). Hence it is dis-
tinguished by Lemma 22.9.4. On the other hand, suppose that (X,Y, Z, f, g, h) is
distinguished. By Lemma 22.9.4 this means that it is isomorphic to a triangle of the
form (K,L,C(f), f, i,−p) for some morphism f of Mod(A,d). Then the rotated tri-
angle (Y,Z,X[1], g, h,−f [1]) is isomorphic to (L,C(f),K[1], i,−p,−f [1]) which is
isomorphic to the triangle (L,C(f),K[1], i, p, f [1]). By Lemma 22.9.1 this triangle
is distinguished. Hence (Y,Z,X[1], g, h,−f [1]) is distinguished as desired.

Proof of TR3. Let (X,Y, Z, f, g, h) and (X ′, Y ′, Z ′, f ′, g′, h′) be distinguished trian-
gles of K(A) and let a : X → X ′ and b : Y → Y ′ be morphisms such that f ′ ◦ a =
b◦f . By Lemma 22.9.4 we may assume that (X,Y, Z, f, g, h) = (X,Y,C(f), f, i,−p)
and (X ′, Y ′, Z ′, f ′, g′, h′) = (X ′, Y ′, C(f ′), f ′, i′,−p′). At this point we simply ap-
ply Lemma 22.6.2 to the commutative diagram given by f, f ′, a, b. □

Before we prove TR4 in general we prove it in a special case.

Lemma 22.10.2.09KI Let (A,d) be a differential graded algebra. Suppose that α : K →
L and β : L→M are admissible monomorphisms of differential graded A-modules.
Then there exist distinguished triangles (K,L,Q1, α, p1, d1), (K,M,Q2, β◦α, p2, d2)
and (L,M,Q3, β, p3, d3) for which TR4 holds.

Proof. Say π1 : L → K and π3 : M → L are homomorphisms of graded A-
modules which are left inverse to α and β. Then also K → M is an admissible
monomorphism with left inverse π2 = π1 ◦ π3. Let us write Q1, Q2 and Q3 for
the cokernels of K → L, K → M , and L → M . Then we obtain identifications
(as graded A-modules) Q1 = Ker(π1), Q3 = Ker(π3) and Q2 = Ker(π2). Then
L = K⊕Q1 and M = L⊕Q3 as graded A-modules. This implies M = K⊕Q1⊕Q3.
Note that π2 = π1 ◦ π3 is zero on both Q1 and Q3. Hence Q2 = Q1⊕Q3. Consider
the commutative diagram

0 → K → L → Q1 → 0
↓ ↓ ↓

0 → K → M → Q2 → 0
↓ ↓ ↓

0 → L → M → Q3 → 0
The rows of this diagram are admissible short exact sequences, and hence determine
distinguished triangles by definition. Moreover downward arrows in the diagram
above are compatible with the chosen splittings and hence define morphisms of
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triangles
(K → L→ Q1 → K[1]) −→ (K →M → Q2 → K[1])

and
(K →M → Q2 → K[1]) −→ (L→M → Q3 → L[1]).

Note that the splittings Q3 → M of the bottom sequence in the diagram provides
a splitting for the split sequence 0 → Q1 → Q2 → Q3 → 0 upon composing with
M → Q2. It follows easily from this that the morphism δ : Q3 → Q1[1] in the
corresponding distinguished triangle

(Q1 → Q2 → Q3 → Q1[1])

is equal to the composition Q3 → L[1]→ Q1[1]. Hence we get a structure as in the
conclusion of axiom TR4. □

Here is the final result.

Proposition 22.10.3.09KJ Let (A,d) be a differential graded algebra. The homotopy
category K(Mod(A,d)) of differential graded A-modules with its natural translation
functors and distinguished triangles is a triangulated category.

Proof. We know that K(Mod(A,d)) is a pre-triangulated category. Hence it suffices
to prove TR4 and to prove it we can use Derived Categories, Lemma 13.4.15. Let
K → L and L→M be composable morphisms of K(Mod(A,d)). By Lemma 22.7.5
we may assume that K → L and L → M are admissible monomorphisms. In this
case the result follows from Lemma 22.10.2. □

22.11. Left modules

0FPZ Everything we have said sofar has an analogue in the setting of left differential
graded modules, except that one has to take care with some sign rules.

Let (A,d) be a differential graded R-algebra. Exactly analogous to right modules,
we define a left differential graded A-module M as a left A-module M which has
a grading M =

⊕
Mn and a differential d, such that AnMm ⊂ Mn+m, such that

d(Mn) ⊂Mn+1, and such that

d(am) = d(a)m+ (−1)deg(a)ad(m)

for homogeneous elements a ∈ A and m ∈ M . As before this Leibniz rule exactly
signifies that the multiplication defines a map of complexes

Tot(A• ⊗RM•)→M•

Here A• and M• denote the complexes of R-modules underlying A and M .

Definition 22.11.1.09JG Let R be a ring. Let (A,d) be a differential graded algebra
over R. The opposite differential graded algebra is the differential graded algebra
(Aopp,d) over R where Aopp = A as a graded R-module, d = d, and multiplication
is given by

a ·opp b = (−1)deg(a) deg(b)ba

for homogeneous elements a, b ∈ A.

https://stacks.math.columbia.edu/tag/09KJ
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This makes sense because
d(a ·opp b) = (−1)deg(a) deg(b)d(ba)

= (−1)deg(a) deg(b)d(b)a+ (−1)deg(a) deg(b)+deg(b)bd(a)
= (−1)deg(a)a ·opp d(b) + d(a) ·opp b

as desired. In terms of underlying complexes of R-modules this means that the
diagram

Tot(A• ⊗R A•)
multiplication of Aopp

//

commutativity constraint
��

A•

id
��

Tot(A• ⊗R A•) multiplication of A // A•

commutes. Here the commutativity constraint on the symmetric monoidal category
of complexes of R-modules is given in More on Algebra, Section 15.72.
Let (A,d) be a differential graded algebra over R. Let M be a left differential graded
A-module. We will denote Mopp the module M viewed as a right Aopp-module with
multiplication ·opp defined by the rule

m ·opp a = (−1)deg(a) deg(m)am

for a and m homogeneous. This is compatible with differentials because we could
have used the diagram

Tot(M• ⊗R A•)
multiplication on Mopp

//

commutativity constraint
��

M•

id
��

Tot(A• ⊗RM•) multiplication on M // M•

to define the multiplication ·opp on Mopp. To see that it is an associative multipli-
cation we compute for homogeneous elements a, b ∈ A and m ∈M that
m ·opp (a ·opp b) = (−1)deg(a) deg(b)m ·opp (ba)

= (−1)deg(a) deg(b)+deg(ab) deg(m)bam

= (−1)deg(a) deg(b)+deg(ab) deg(m)+deg(b) deg(am)(am) ·opp b
= (−1)deg(a) deg(b)+deg(ab) deg(m)+deg(b) deg(am)+deg(a) deg(m)(m ·opp a) ·opp b
= (m ·opp a) ·opp b

Of course, we could have been shown this using the compatibility between the
associativity and commutativity constraint on the symmetric monoidal category of
complexes of R-modules as well.

Lemma 22.11.2.0FQ0 Let (A,d) be a differential graded R-algebra. The functor M 7→
Mopp from the category of left differential graded A-modules to the category of
right differential graded Aopp-modules is an equivalence.

Proof. Omitted. □

Mext, we come to shifts. Let (A,d) be a differential graded algebra. Let M be a left
differential graded A-module whose underlying complex of R-modules is denoted
M•. For any k ∈ Z we define the k-shifted module M [k] as follows

(1) the underlying complex of R-modules of M [k] is M•[k]
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(2) as A-module the multiplication
An × (M [k])m −→ (M [k])n+m

is equal to (−1)nk times the given multiplication An×Mm+k →Mn+m+k.
Let us check that with this choice the Leibniz rule is satisfied. Let a ∈ An and
x ∈M [k]m = Mm+k and denoting ·M [k] the product in M [k] then we see

dM [k](a ·M [k] x) = (−1)k+nkdM (ax)
= (−1)k+nkd(a)x+ (−1)k+nk+nadM (x)
= d(a) ·M [k] x+ (−1)nk+nadM [k](x)
= d(a) ·M [k] x+ (−1)na ·M [k] dM [k](x)

This is what we want as a has degree n as a homogeneous element of A. We also
observe that with these choices we may think of the multiplication map as the map
of complexes

Tot(A• ⊗RM•[k])→ Tot(A• ⊗RM•)[k]→M•[k]
where the first arrow is More on Algebra, Section 15.72 (7) which in this case
involves exactly the sign we chose above. (In fact, we could have deduced that the
Liebniz rule holds from this observation.)
With the rule above we have canonical identifications

(M [k])opp = Mopp[k]
of right differential graded Aopp-modules defined without the intervention of signs,
in other words, the equivalence of Lemma 22.11.2 is compatible with shift functors.
Our choice above necessitates the following definition.

Definition 22.11.3.0FQ1 Let R be a ring. Let A be a Z-graded R-algebra.
(1) Given a right graded A-module M we define the kth shifted A-module

M [k] as the same as a right A-module but with grading (M [k])n = Mn+k.
(2) Given a left graded A-module M we define the kth shifted A-module M [k]

as the module with grading (M [k])n = Mn+k and multiplication An ×
(M [k])m → (M [k])n+m equal to (−1)nk times the given multiplication
An ×Mm+k →Mn+m+k.

Let (A,d) be a differential graded algebra. Let f, g : M → N be homomorphisms
of left differential graded A-modules. A homotopy between f and g is a graded
A-module map h : M → N [−1] (observe the shift!) such that

f(x)− g(x) = dN (h(x)) + h(dM (x))
for all x ∈ M . If a homotopy exists, then we say f and g are homotopic. Thus
h is compatible with the A-module structure (with the shifted one on N) and the
grading (with shifted grading on N) but not with the differential. If f = g and h is
a homotopy, then h defines a morphism h : M → N [−1] of left differential graded
A-modules.
With the rule above we find that f, g : M → N are homotopic if and only if the
induced morphisms fopp, gopp : Mopp → Nopp are homotopic as right differential
graded Aopp-module homomorphisms (with the same homotopy).

https://stacks.math.columbia.edu/tag/0FQ1
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The homotopy category, cones, admissible short exact sequences, distinguished tri-
angles are all defined in exactly the same manner as for right differential graded
modules (and everything agrees on underlying complexes of R-modules with the
constructions for complexes of R-modules). In this manner we obtain the analogue
of Proposition 22.10.3 for left modules as well, or we can deduce it by working with
right modules over the opposite algebra.

22.12. Tensor product

09LL Let R be a ring. Let A be an R-algebra (see Section 22.2). Given a right A-module
M and a left A-module N there is a tensor product

M ⊗A N
This tensor product is a module over R. As an R-module M ⊗AN is generated by
symbols x⊗ y with x ∈M and y ∈ N subject to the relations

(x1 + x2)⊗ y − x1 ⊗ y − x2 ⊗ y,
x⊗ (y1 + y2)− x⊗ y1 − x⊗ y2,

xa⊗ y − x⊗ ay
for a ∈ A, x, x1, x2 ∈ M and y, y1, y2 ∈ N . We list some properties of the tensor
product
In each variable the tensor product is right exact, in fact commutes with direct
sums and arbitrary colimits.
The tensor product M ⊗A N is the receptacle of the universal A-bilinear map
M ×N →M ⊗A N , (x, y) 7→ x⊗ y. In a formula

BilinearA(M ×N,Q) = HomR(M ⊗A N,Q)
for any R-module Q.
If A is a Z-graded algebra and M , N are graded A-modules then M ⊗A N is a
graded R-module. Then nth graded piece (M ⊗A N)n of M ⊗A N is equal to

Coker
(⊕

r+t+s=n
Mr ⊗R At ⊗R Ns →

⊕
p+q=n

Mp ⊗R Nq
)

where the map sends x⊗ a⊗ y to x⊗ ay − xa⊗ y for x ∈Mr, y ∈ Ns, and a ∈ At
with r + s + t = n. In this case the map M × N → M ⊗A N is A-bilinear and
compatible with gradings and universal in the sense that

GradedBilinearA(M ×N,Q) = Homgraded R-modules(M ⊗A N,Q)
for any graded R-module Q with an obvious notion of graded bilinar map.
If (A,d) is a differential graded algebra and M and N are left and right differential
graded A-modules, then M⊗AN is a differential graded R-module with differential

d(x⊗ y) = d(x)⊗ y + (−1)deg(x)x⊗ d(y)
for x ∈M and y ∈ N homogeneous. In this case the map M ×N →M ⊗AN is A-
bilinear, compatible with gradings, and compatible with differentials and universal
in the sense that

DifferentialGradedBilinearA(M ×N,Q) = HomComp(R)(M ⊗A N,Q)
for any differential graded R-module Q with an obvious notion of differential graded
bilinar map.
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22.13. Hom complexes and differential graded modules

0FQ2 We urge the reader to skip this section.

Let R be a ring and let M• be a complex of R-modules. Consider the complex of
R-modules

E• = Hom•(M•,M•)
introduced in More on Algebra, Section 15.71. By More on Algebra, Lemma 15.71.3
there is a canonical composition law

Tot(E• ⊗R E•)→ E•

which is a map of complexes. Thus we see that E• with this multiplication is a
differential graded R-algebra which we will denote (E,d). Moreover, viewing M•

as Hom•(R,M•) we see that composition defines a multiplication

Tot(E• ⊗RM•)→M•

which turns M• into a left differential graded E-module which we will denote M .

Lemma 22.13.1.0FQ3 In the situation above, let A be a differential graded R-algebra. To
give a left A-module structure on M is the same thing as giving a homomorphism
A→ E of differential graded R-algebras.

Proof. Proof omitted. Observe that no signs intervene in this correspondence. □

We continue with the discussion above and we assume given another complex N•

of R-modules. Consider the complex of R-modules Hom•(M•, N•) introduced in
More on Algebra, Section 15.71. As above we see that composition

Tot(Hom•(M•, N•)⊗R E•)→ Hom•(M•, N•)

defines a multiplication which turns Hom•(M•, N•) into a right differential graded
E-module. Using Lemma 22.13.1 we conclude that given a left differential graded
A-module M and a complex of R-modules N• there is a canonical right differential
graded A-module whose underlying complex of R-modules is Hom•(M•, N•) and
where multiplication

Homn(M•, N•)×Am −→ Homn+m(M•, N•)

sends f = (fp,q)p+q=n with fp,q ∈ Hom(M−q, Np) and a ∈ Am to the element
f · a = (fp,q ◦ a) where fp,q ◦ a is the map

M−q−m a−→M−q fp,q−−→ Np, x 7−→ fp,q(ax)

without the intervention of signs. Let us use the notation Hom(M,N•) to denote
this right differential graded A-module.

Lemma 22.13.2.0FQ4 Let R be a ring. Let (A,d) be a differential graded R-algebra. Let
M ′ be a right differential graded A-module and let M be a left differential graded
A-module. Let N• be a complex of R-modules. Then we have

HomMod(A,d)(M ′,Hom(M,N•)) = HomComp(R)(M ′ ⊗AM,N•)

where M ⊗AM is viewed as a complex of R-modules as in Section 22.12.

https://stacks.math.columbia.edu/tag/0FQ3
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Proof. Let us show that both sides correspond to graded A-bilinear maps

M ′ ×M −→ N•

compatible with differentials. We have seen this is true for the right hand side
in Section 22.12. Given an element g of the left hand side, the equality of More
on Algebra, Lemma 15.71.1 determines a map of complexes of R-modules g′ :
Tot(M ′⊗RM)→ N•. In other words, we obtain a graded R-bilinear map g′′ : M ′×
M → N• compatible with differentials. The A-linearity of g translates immediately
into A-bilinarity of g′′. □

Let R, M•, E•, E, and M be as above. However, now suppose given a differential
graded R-algebra A and a right differential graded A-module structure on M . Then
we can consider the map

Tot(A• ⊗RM•) ψ−→ Tot(A• ⊗RM•)→M•

where the first arrow is the commutativity constraint on the differential graded
category of complexes of R-modules. This corresponds to a map

τ : A• −→ E•

of complexes of R-modules. Recall that En =
∏
p+q=n HomR(M−q,Mp) and write

τ(a) = (τp,q(a))p+q=n for a ∈ An. Then we see

τp,q(a) : M−q −→Mp, x 7−→ (−1)deg(a) deg(x)xa = (−1)−nqxa

This is not compatible with the product on A as the readed should expect from the
discussion in Section 22.11. Namely, we have

τ(aa′) = (−1)deg(a) deg(a′)τ(a′)τ(a)

We conclude the following lemma is true

Lemma 22.13.3.0FQ5 In the situation above, let A be a differential graded R-algebra. To
give a right A-module structure on M is the same thing as giving a homomorphism
τ : A→ Eopp of differential graded R-algebras.

Proof. See discussion above and note that the construction of τ from the multipli-
cation map Mn ×Am →Mn+m uses signs. □

Let R, M•, E•, E, A andM be as above and let a right differential graded A-module
structure on M be given as in the lemma. In this case there is a canonical left differ-
ential graded A-module whose underlying complex of R-modules is Hom•(M•, N•).
Namely, for multiplication we can use

Tot(A• ⊗R Hom•(M•, N•)) ψ−→ Tot(Hom•(M•, N•)⊗R A•)
τ−→ Tot(Hom•(M•, N•)⊗R Hom•(M•,M•))
→ Tot(Hom•(M•, N•)

The first arrow uses the commutativity constraint on the category of complexes
of R-modules, the second arrow is described above, and the third arrow is the
composition law for the Hom complex. Each map is a map of complexes, hence
the result is a map of complexes. In fact, this construction turns Hom•(M•, N•)
into a left differential graded A-module (associativity of the multiplication can be

https://stacks.math.columbia.edu/tag/0FQ5
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shown using the symmetric monoidal structure or by a direct calculation using the
formulae below). Let us explicate the multiplication

An ×Homm(M•, N•) −→ Homn+m(M•, N•)
It sends a ∈ An and f = (fp,q)p+q=m with fp,q ∈ Hom(M−q, Np) to the element
a · f with constituents

(−1)nmfp,q ◦ τ−q,q+n(a) = (−1)nm−n(q+n)fp,q ◦ a = (−1)np+nfp,q ◦ a
in HomR(M−q−n, Np) where fp,q ◦ a is the map

M−q−n a−→M−q fp,q−−→ Np, x 7−→ fp,q(xa)
Here a sign of (−1)np+n does intervene. Let us use the notation Hom(M,N•) to
denote this left differential graded A-module.

Lemma 22.13.4.0FQ6 Let R be a ring. Let (A,d) be a differential graded R-algebra. Let
M be a right differential graded A-module and let M ′ be a left differential graded
A-module. Let N• be a complex of R-modules. Then we have

Homleft diff graded A-modules(M ′,Hom(M,N•)) = HomComp(R)(M ⊗AM ′, N•)
where M ⊗AM ′ is viewed as a complex of R-modules as in Section 22.12.

Proof. Let us show that both sides correspond to graded A-bilinear maps
M ×M ′ −→ N•

compatible with differentials. We have seen this is true for the right hand side in
Section 22.12. Given an element g of the left hand side, the equality of More on
Algebra, Lemma 15.71.1 determines a map of complexes g′ : Tot(M ′⊗RM)→ N•.
We precompose with the commutativity constraint to get

Tot(M ⊗RM ′) ψ−→ Tot(M ′ ⊗RM) g′

−→ N•

which corresponds to a graded R-bilinear map g′′ : M ×M ′ → N• compatible with
differentials. The A-linearity of g translates immediately into A-bilinarity of g′′.
Namely, say x ∈Me and x′ ∈ (M ′)e′ and a ∈ An. Then on the one hand we have

g′′(x, ax′) = (−1)e(n+e′)g′(ax′ ⊗ x)

= (−1)e(n+e′)g(ax′)(x)

= (−1)e(n+e′)(a · g(x′))(x)

= (−1)e(n+e′)+n(n+e+e′)+ng(x′)(xa)
and on the other hand we have

g′′(xa, x′) = (−1)(e+n)e′
g′(x′ ⊗ xa) = (−1)(e+n)e′

g(x′)(xa)
which is the same thing by a trivial mod 2 calculation of the exponents. □

Remark 22.13.5.0FQ7 Let R be a ring. Let A be a differential graded R-algebra. Let
M be a left differential graded A-module. Let N• be a complex of R-modules. The
constructions above produce a right differential graded A-module Hom(M,N•) and
then a leftt differential graded A-module Hom(Hom(M,N•), N•). We claim there
is an evaluation map

ev : M −→ Hom(Hom(M,N•), N•)

https://stacks.math.columbia.edu/tag/0FQ6
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in the category of left differential graded A-modules. To define it, by Lemma 22.13.2
it suffices to construct an A-bilinear pairing

Hom(M,N•)×M −→ N•

compatible with grading and differentials. For this we take
(f, x) 7−→ f(x)

We leave it to the reader to verify this is compatible with grading, differentials, and
A-bilinear. The map ev on underlying complexes of R-modules is More on Algebra,
Item (17).
Remark 22.13.6.0FQ8 Let R be a ring. Let A be a differential graded R-algebra. Let M
be a right differential graded A-module. Let N• be a complex of R-modules. The
constructions above produce a left differential graded A-module Hom(M,N•) and
then a right differential graded A-module Hom(Hom(M,N•), N•). We claim there
is an evaluation map

ev : M −→ Hom(Hom(M,N•), N•)
in the category of right differential graded A-modules. To define it, by Lemma
22.13.2 it suffices to construct an A-bilinear pairing

M ×Hom(M,N•) −→ N•

compatible with grading and differentials. For this we take
(x, f) 7−→ (−1)deg(x) deg(f)f(x)

We leave it to the reader to verify this is compatible with grading, differentials, and
A-bilinear. The map ev on underlying complexes of R-modules is More on Algebra,
Item (17).
Remark 22.13.7.0FQ9 Let R be a ring. Let A be a differential graded R-algebra. Let
M• and N• be complexes of R-modules. Let k ∈ Z and consider the isomorphism

Hom•(M•, N•)[−k] −→ Hom•(M•[k], N•)
of complexes of R-modules defined in More on Algebra, Item (18). If M• has the
structure of a left, resp. right differential graded A-module, then this is a map
of right, resp. left differential graded A-modules (with the module structures as
defined in this section). We omit the verification; we warn the reader that the
A-module structure on the shift of a left graded A-module is defined using a sign,
see Definition 22.11.3.

22.14. Projective modules over algebras

09JZ In this section we discuss projective modules over algebras analogous to Algebra,
Section 10.77. This section should probably be moved somewhere else.
Let R be a ring and let A be an R-algebra, see Section 22.2 for our conventions. It
is clear that A is a projective right A-module since HomA(A,M) = M for any right
A-module M (and thus HomA(A,−) is exact). Conversely, let P be a projective
right A-module. Then we can choose a surjection

⊕
i∈I A → P by choosing a set

{pi}i∈I of generators of P over A. Since P is projective there is a left inverse to the
surjection, and we find that P is isomorphic to a direct summand of a free module,
exactly as in the commutative case (Algebra, Lemma 10.77.2).
We conclude
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(1) the category of A-modules has enough projectives,
(2) A is a projective A-module,
(3) every A-module is a quotient of a direct sum of copies of A,
(4) every projective A-module is a direct summand of a direct sum of copies

of A.

22.15. Projective modules over graded algebras

0FQA In this section we discuss projective graded modules over graded algebras analogous
to Algebra, Section 10.77.
Let R be a ring. Let A be a Z-graded algebra over R. Section 22.2 for our conven-
tions. Let ModA denote the category of graded right A-modules. For an integer k
let A[k] denote the shift of A. For a graded right A-module we have

HomModA(A[k],M) = M−k

As the functor M 7→M−k is exact on ModA we conclude that A[k] is a projective
object of ModA. Conversely, suppose that P is a projective object of ModA. By
choosing a set of homogeneous generators of P as an A-module, we can find a
surjection ⊕

i∈I
A[ki] −→ P

Thus we conclude that a projective object of ModA is a direct summand of a direct
sum of the shifts A[k].
We conclude

(1) the category of graded A-modules has enough projectives,
(2) A[k] is a projective A-module for every k ∈ Z,
(3) every graded A-module is a quotient of a direct sum of copies of the

modules A[k] for varying k,
(4) every projective A-module is a direct summand of a direct sum of copies

of the modules A[k] for varying k.

22.16. Projective modules and differential graded algebras

0FQB If (A,d) is a differential graded algebra and P is an object of Mod(A,d) then we say
P is projective as a graded A-module or sometimes P is graded projective to mean
that P is a projective object of the abelian category ModA of graded A-modules as
in Section 22.15.

Lemma 22.16.1.09K0 Let (A,d) be a differential graded algebra. Let M → P be a
surjective homomorphism of differential graded A-modules. If P is projective as a
graded A-module, then M → P is an admissible epimorphism.

Proof. This is immediate from the definitions. □

Lemma 22.16.2.09K1 Let (A, d) be a differential graded algebra. Then we have

HomMod(A,d)(A[k],M) = Ker(d : M−k →M−k+1)
and

HomK(Mod(A,d))(A[k],M) = H−k(M)
for any differential graded A-module M .

Proof. Immediate from the definitions. □

https://stacks.math.columbia.edu/tag/09K0
https://stacks.math.columbia.edu/tag/09K1


22.18. INJECTIVE MODULES OVER GRADED ALGEBRAS 2050

22.17. Injective modules over algebras

04JD In this section we discuss injective modules over algebras analogous to More on
Algebra, Section 15.55. This section should probably be moved somewhere else.
Let R be a ring and let A be an R-algebra, see Section 22.2 for our conventions.
For a right A-module M we set

M∨ = HomZ(M,Q/Z)
which we think of as a left A-module by the multiplication (af)(x) = f(xa).
Namely, ((ab)f)(x) = f(xab) = (bf)(xa) = (a(bf))(x). Conversely, if M is a
left A-module, then M∨ is a right A-module. Since Q/Z is an injective abelian
group (More on Algebra, Lemma 15.54.1), the functor M 7→M∨ is exact (More on
Algebra, Lemma 15.55.6). Moreover, the evaluation map M → (M∨)∨ is injective
for all modules M (More on Algebra, Lemma 15.55.7).
We claim that A∨ is an injective right A-module. Namely, given a right A-module
N we have

HomA(N,A∨) = HomA(N,HomZ(A,Q/Z)) = N∨

and we conclude because the functor N 7→ N∨ is exact. The second equality holds
because

HomZ(N,HomZ(A,Q/Z)) = HomZ(N ⊗Z A,Q/Z)
by Algebra, Lemma 10.12.8. Inside this module A-linearity exactly picks out the
bilinear maps φ : N × A → Q/Z which have the same value on x ⊗ a and xa ⊗ 1,
i.e., come from elements of N∨.
Finally, for every right A-module M we can choose a surjection

⊕
i∈I A→ M∨ to

get an injection M → (M∨)∨ →
∏
i∈I A

∨.
We conclude

(1) the category of A-modules has enough injectives,
(2) A∨ is an injective A-module, and
(3) every A-module injects into a product of copies of A∨.

22.18. Injective modules over graded algebras

0FQC In this section we discuss injective graded modules over graded algebras analogous
to More on Algebra, Section 15.55.
Let R be a ring. Let A be a Z-graded algebra over R. Section 22.2 for our conven-
tions. If M is a graded R-module we set

M∨ =
⊕

n∈Z
HomZ(M−n,Q/Z) =

⊕
n∈Z

(M−n)∨

as a graded R-module (no signs in the actions of R on the homogeneous parts).
If M has the structure of a left graded A-module, then we define a right graded
A-module structure on M∨ by letting a ∈ Am act by

(M−n)∨ → (M−n−m)∨, f 7→ f ◦ a

as in Section 22.13. If M has the structure of a right graded A-module, then we
define a left graded A-module structure on M∨ by letting a ∈ An act by

(M−m)∨ → (M−m−n)∨, f 7→ (−1)nmf ◦ a
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as in Section 22.13 (the sign is forced on us because we want to use the same
formula for the case when working with differential graded modules — if you only
care about graded modules, then you can omit the sign here). On the category of
(left or right) graded A-modules the functor M 7→ M∨ is exact (check on graded
pieces). Moreover, there is an injective evaluation map

ev : M −→ (M∨)∨, evn = (−1)n the evaluation map Mn → ((Mn)∨)∨

of graded R-modules, see More on Algebra, Item (17). This evaluation map is a
left, resp. right A-module homomorphism if M is a left, resp. right A-module, see
Remarks 22.13.5 and 22.13.6. Finally, given k ∈ Z there is a canonical isomorphism

M∨[−k] −→ (M [k])∨

of graded R-modules which uses a sign and which, if M is a left, resp. right A-
module, is an isomorphism of right, resp. left A-modules. See Remark 22.13.7.

We claim that A∨ is an injective object of the category ModA of graded right
A-modules. Namely, given a graded right A-module N we have

HomModA(N,A∨) = HomComp(Z)(N ⊗A A,Q/Z)) = (N0)∨

by Lemma 22.13.2 (applied to the case where all the differentials are zero). We
conclude because the functor N 7→ (N0)∨ = (N∨)0 is exact.

Finally, for every graded right A-module M we can choose a surjection of graded
left A-modules ⊕

i∈I
A[ki]→M∨

where A[ki] denotes the shift of A by ki ∈ Z. We do this by choosing homogeneous
generators for M∨. In this way we get an injection

M → (M∨)∨ →
∏

A[ki]∨ =
∏

A∨[−ki]

Observe that the products in the formula above are products in the category of
graded modules (in other words, take products in each degree and then take the
direct sum of the pieces).

We conclude that
(1) the category of graded A-modules has enough injectives,
(2) for every k ∈ Z the module A∨[k] is injective, and
(3) every A-module injects into a product in the category of graded modules

of copies of shifts A∨[k].

22.19. Injective modules and differential graded algebras

0FQD If (A,d) is a differential graded algebra and I is an object of Mod(A,d) then we say
I is injective as a graded A-module or sometimes I is graded injective to mean that
I is a injective object of the abelian category ModA of graded A-modules.

Lemma 22.19.1.09K2 Let (A,d) be a differential graded algebra. Let I → M be an
injective homomorphism of differential graded A-modules. If I is graded injective,
then I →M is an admissible monomorphism.

Proof. This is immediate from the definitions. □

https://stacks.math.columbia.edu/tag/09K2
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Let (A,d) be a differential graded algebra. If M is a left, resp. right differential
graded A-module, then

M∨ = Hom•(M•,Q/Z)
with A-module structure constructed in Section 22.18 is a right, resp. left differential
graded A-module by the discussion in Section 22.13. By Remarks 22.13.5 and
22.13.6 there evaluation map of Section 22.18

M −→ (M∨)∨

is a homomorphism of left, resp. right differential graded A-modules

Lemma 22.19.2.09K3 Let (A,d) be a differential graded algebra. If M is a left differential
graded A-module and N is a right differential graded A-module, then

HomMod(A,d)(N,M∨) = HomComp(Z)(N ⊗AM,Q/Z)
= DifferentialGradedBilinearA(N ×M,Q/Z)

Proof. The first equality is Lemma 22.13.2 and the second equality was shown in
Section 22.12. □

Lemma 22.19.3.09K4 Let (A,d) be a differential graded algebra. Then we have

HomMod(A,d)(M,A∨[k]) = Ker(d : (M∨)k → (M∨)k+1)
and

HomK(Mod(A,d))(M,A∨[k]) = Hk(M∨)
as functors in the differential graded A-module M .

Proof. This is clear from the discussion above. □

22.20. P-resolutions

09KK This section is the analogue of Derived Categories, Section 13.29.
Let (A,d) be a differential graded algebra. Let P be a differential graded A-module.
We say P has property (P) if it there exists a filtration

0 = F−1P ⊂ F0P ⊂ F1P ⊂ . . . ⊂ P

by differential graded submodules such that
(1) P =

⋃
FpP ,

(2) the inclusions FiP → Fi+1P are admissible monomorphisms,
(3) the quotients Fi+1P/FiP are isomorphic as differential graded A-modules

to a direct sum of A[k].
In fact, condition (2) is a consequence of condition (3), see Lemma 22.16.1. More-
over, the reader can verify that as a graded A-module P will be isomorphic to a
direct sum of shifts of A.

Lemma 22.20.1.09KL Let (A,d) be a differential graded algebra. Let P be a differen-
tial graded A-module. If F• is a filtration as in property (P), then we obtain an
admissible short exact sequence

0→
⊕

FiP →
⊕

FiP → P → 0

of differential graded A-modules.
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Proof. The second map is the direct sum of the inclusion maps. The first map on the
summand FiP of the source is the sum of the identity FiP → FiP and the negative
of the inclusion map FiP → Fi+1P . Choose homomorphisms si : Fi+1P → FiP of
graded A-modules which are left inverse to the inclusion maps. Composing gives
maps sj,i : FjP → FiP for all j > i. Then a left inverse of the first arrow maps
x ∈ FjP to (sj,0(x), sj,1(x), . . . , sj,j−1(x), 0, . . .) in

⊕
FiP . □

The following lemma shows that differential graded modules with property (P) are
the dual notion to K-injective modules (i.e., they are K-projective in some sense).
See Derived Categories, Definition 13.31.1.

Lemma 22.20.2.09KM Let (A,d) be a differential graded algebra. Let P be a differential
graded A-module with property (P). Then

HomK(Mod(A,d))(P,N) = 0
for all acyclic differential graded A-modules N .

Proof. We will use thatK(Mod(A,d)) is a triangulated category (Proposition 22.10.3).
Let F• be a filtration on P as in property (P). The short exact sequence of Lemma
22.20.1 produces a distinguished triangle. Hence by Derived Categories, Lemma
13.4.2 it suffices to show that

HomK(Mod(A,d))(FiP,N) = 0
for all acyclic differential graded A-modules N and all i. Each of the differential
graded modules FiP has a finite filtration by admissible monomorphisms, whose
graded pieces are direct sums of shifts A[k]. Thus it suffices to prove that

HomK(Mod(A,d))(A[k], N) = 0
for all acyclic differential graded A-modules N and all k. This follows from Lemma
22.16.2. □

Lemma 22.20.3.09KN Let (A,d) be a differential graded algebra. Let M be a differential
graded A-module. There exists a homomorphism P →M of differential graded A-
modules with the following properties

(1) P →M is surjective,
(2) Ker(dP )→ Ker(dM ) is surjective, and
(3) P sits in an admissible short exact sequence 0 → P ′ → P → P ′′ → 0

where P ′, P ′′ are direct sums of shifts of A.

Proof. Let Pk be the free A-module with generators x, y in degrees k and k + 1.
Define the structure of a differential graded A-module on Pk by setting d(x) = y
and d(y) = 0. For every element m ∈ Mk there is a homomorphism Pk → M
sending x to m and y to d(m). Thus we see that there is a surjection from a direct
sum of copies of Pk to M . This clearly produces P →M having properties (1) and
(3). To obtain property (2) note that if m ∈ Ker(dM ) has degree k, then there is a
map A[k]→M mapping 1 to m. Hence we can achieve (2) by adding a direct sum
of copies of shifts of A. □

Lemma 22.20.4.09KP Let (A,d) be a differential graded algebra. Let M be a differential
graded A-module. There exists a homomorphism P →M of differential graded A-
modules such that

(1) P →M is a quasi-isomorphism, and

https://stacks.math.columbia.edu/tag/09KM
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(2) P has property (P).

Proof. Set M = M0. We inductively choose short exact sequences
0→Mi+1 → Pi →Mi → 0

where the maps Pi →Mi are chosen as in Lemma 22.20.3. This gives a “resolution”

. . .→ P2
f2−→ P1

f1−→ P0 →M → 0
Then we set

P =
⊕

i≥0
Pi

as an A-module with grading given by Pn =
⊕

a+b=n P
b
−a and differential (as in

the construction of the total complex associated to a double complex) by
dP (x) = f−a(x) + (−1)adP−a(x)

for x ∈ P b−a. With these conventions P is indeed a differential graded A-module.
Recalling that each Pi has a two step filtration 0→ P ′

i → Pi → P ′′
i → 0 we set

F2iP =
⊕

i≥j≥0
Pj ⊂

⊕
i≥0

Pi = P

and we add P ′
i+1 to F2iP to get F2i+1. These are differential graded submodules

and the successive quotients are direct sums of shifts of A. By Lemma 22.16.1 we
see that the inclusions FiP → Fi+1P are admissible monomorphisms. Finally, we
have to show that the map P → M (given by the augmentation P0 → M) is a
quasi-isomorphism. This follows from Homology, Lemma 12.26.2. □

22.21. I-resolutions

09KQ This section is the dual of the section on P-resolutions.
Let (A,d) be a differential graded algebra. Let I be a differential graded A-module.
We say I has property (I) if it there exists a filtration

I = F0I ⊃ F1I ⊃ F2I ⊃ . . . ⊃ 0
by differential graded submodules such that

(1) I = lim I/FpI,
(2) the maps I/Fi+1I → I/FiI are admissible epimorphisms,
(3) the quotients FiI/Fi+1I are isomorphic as differential graded A-modules

to products of the modules A∨[k] constructed in Section 22.19.
In fact, condition (2) is a consequence of condition (3), see Lemma 22.19.1. The
reader can verify that as a graded module I will be isomorphic to a product of
A∨[k].

Lemma 22.21.1.09KR Let (A,d) be a differential graded algebra. Let I be a differen-
tial graded A-module. If F• is a filtration as in property (I), then we obtain an
admissible short exact sequence

0→ I →
∏

I/FiI →
∏

I/FiI → 0
of differential graded A-modules.

Proof. Omitted. Hint: This is dual to Lemma 22.20.1. □

The following lemma shows that differential graded modules with property (I) are
the analogue of K-injective modules. See Derived Categories, Definition 13.31.1.
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Lemma 22.21.2.09KS Let (A,d) be a differential graded algebra. Let I be a differential
graded A-module with property (I). Then

HomK(Mod(A,d))(N, I) = 0

for all acyclic differential graded A-modules N .

Proof. We will use thatK(Mod(A,d)) is a triangulated category (Proposition 22.10.3).
Let F• be a filtration on I as in property (I). The short exact sequence of Lemma
22.21.1 produces a distinguished triangle. Hence by Derived Categories, Lemma
13.4.2 it suffices to show that

HomK(Mod(A,d))(N, I/FiI) = 0

for all acyclic differential graded A-modules N and all i. Each of the differential
graded modules I/FiI has a finite filtration by admissible monomorphisms, whose
graded pieces are products of A∨[k]. Thus it suffices to prove that

HomK(Mod(A,d))(N,A∨[k]) = 0

for all acyclic differential graded A-modules N and all k. This follows from Lemma
22.19.3 and the fact that (−)∨ is an exact functor. □

Lemma 22.21.3.09KT Let (A,d) be a differential graded algebra. Let M be a differential
graded A-module. There exists a homomorphism M → I of differential graded A-
modules with the following properties

(1) M → I is injective,
(2) Coker(dM )→ Coker(dI) is injective, and
(3) I sits in an admissible short exact sequence 0→ I ′ → I → I ′′ → 0 where

I ′, I ′′ are products of shifts of A∨.

Proof. We will use the functors N 7→ N∨ (from left to right differential graded
modules and from right to left differential graded modules) constructed in Section
22.19 and all of their properties. For every k ∈ Z let Qk be the free left A-module
with generators x, y in degrees k and k+1. Define the structure of a left differential
graded A-module on Qk by setting d(x) = y and d(y) = 0. Arguing exactly as in
the proof of Lemma 22.20.3 we find a surjection⊕

i∈I
Qki −→M∨

of left differential graded A-modules. Then we can consider the injection

M → (M∨)∨ → (
⊕

i∈I
Qki)∨ =

∏
i∈I

Iki

where Ik = Q∨
−k is the “dual” right differential graded A-module. Further, the

short exact sequence 0 → A[−k − 1] → Qk → A[−k] → 0 produces a short exact
sequence 0→ A∨[k]→ Ik → A∨[k + 1]→ 0.

The result of the previous paragraph produces M → I having properties (1) and
(3). To obtain property (2), suppose m ∈ Coker(dM ) is a nonzero element of degree
k. Pick a map λ : Mk → Q/Z which vanishes on Im(Mk−1 →Mk) but not on m.
By Lemma 22.19.3 this corresponds to a homomorphism M → A∨[k] of differential
graded A-modules which does not vanish on m. Hence we can achieve (2) by adding
a product of copies of shifts of A∨. □
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Lemma 22.21.4.09KU Let (A,d) be a differential graded algebra. Let M be a differential
graded A-module. There exists a homomorphism M → I of differential graded A-
modules such that

(1) M → I is a quasi-isomorphism, and
(2) I has property (I).

Proof. Set M = M0. We inductively choose short exact sequences
0→Mi → Ii →Mi+1 → 0

where the maps Mi → Ii are chosen as in Lemma 22.21.3. This gives a “resolution”

0→M → I0
f0−→ I1

f1−→ I1 → . . .

Denote I the differential graded A-module with graded parts

In =
∏

i≥0
In−i
i

and differential defined by
dI(x) = fi(x) + (−1)idIi(x)

for x ∈ In−i
i . With these conventions I is indeed a differential graded A-module.

Recalling that each Ii has a two step filtration 0→ I ′
i → Ii → I ′′

i → 0 we set

F2iI
n =

∏
j≥i

In−j
j ⊂

∏
i≥0

In−i
i = In

and we add a factor I ′
i+1 to F2iI to get F2i+1I. These are differential graded

submodules and the successive quotients are products of shifts of A∨. By Lemma
22.19.1 we see that the inclusions Fi+1I → FiI are admissible monomorphisms.
Finally, we have to show that the map M → I (given by the augmentation M → I0)
is a quasi-isomorphism. This follows from Homology, Lemma 12.26.3. □

22.22. The derived category

09KV Recall that the notions of acyclic differential graded modules and quasi-isomorphism
of differential graded modules make sense (see Section 22.4).

Lemma 22.22.1.09KW Let (A,d) be a differential graded algebra. The full subcategory Ac
of K(Mod(A,d)) consisting of acyclic modules is a strictly full saturated triangulated
subcategory of K(Mod(A,d)). The corresponding saturated multiplicative system
(see Derived Categories, Lemma 13.6.10) of K(Mod(A,d)) is the class Qis of quasi-
isomorphisms. In particular, the kernel of the localization functor

Q : K(Mod(A,d))→ Qis−1K(Mod(A,d))
is Ac. Moreover, the functor H0 factors through Q.

Proof. We know that H0 is a homological functor by the long exact sequence of
homology (22.4.2.1). The kernel of H0 is the subcategory of acyclic objects and the
arrows with induce isomorphisms on all Hi are the quasi-isomorphisms. Thus this
lemma is a special case of Derived Categories, Lemma 13.6.11.
Set theoretical remark. The construction of the localization in Derived Categories,
Proposition 13.5.6 assumes the given triangulated category is “small”, i.e., that the
underlying collection of objects forms a set. Let Vα be a partial universe (as in
Sets, Section 3.5) containing (A,d) and where the cofinality of α is bigger than
ℵ0 (see Sets, Proposition 3.7.2). Then we can consider the category Mod(A,d),α

https://stacks.math.columbia.edu/tag/09KU
https://stacks.math.columbia.edu/tag/09KW


22.22. THE DERIVED CATEGORY 2057

of differential graded A-modules contained in Vα. A straightforward check shows
that all the constructions used in the proof of Proposition 22.10.3 work inside
of Mod(A,d),α (because at worst we take finite direct sums of differential graded
modules). Thus we obtain a triangulated category Qis−1

α K(Mod(A,d),α). We will
see below that if β > α, then the transition functors

Qis−1
α K(Mod(A,d),α) −→ Qis−1

β K(Mod(A,d),β)
are fully faithful as the morphism sets in the quotient categories are computed
by maps in the homotopy categories from P-resolutions (the construction of a P-
resolution in the proof of Lemma 22.20.4 takes countable direct sums as well as
direct sums indexed over subsets of the given module). The reader should therefore
think of the category of the lemma as the union of these subcategories. □

Taking into account the set theoretical remark at the end of the proof of the pre-
ceding lemma we define the derived category as follows.

Definition 22.22.2.09KX Let (A,d) be a differential graded algebra. Let Ac and Qis be
as in Lemma 22.22.1. The derived category of (A,d) is the triangulated category

D(A,d) = K(Mod(A,d))/Ac = Qis−1K(Mod(A,d)).

We denote H0 : D(A,d) → ModR the unique functor whose composition with the
quotient functor gives back the functor H0 defined above.

Here is the promised lemma computing morphism sets in the derived category.

Lemma 22.22.3.09KY Let (A,d) be a differential graded algebra. Let M and N be
differential graded A-modules.

(1) Let P →M be a P-resolution as in Lemma 22.20.4. Then
HomD(A,d)(M,N) = HomK(Mod(A,d))(P,N)

(2) Let N → I be an I-resolution as in Lemma 22.21.4. Then
HomD(A,d)(M,N) = HomK(Mod(A,d))(M, I)

Proof. Let P →M be as in (1). Since P →M is a quasi-isomorphism we see that
HomD(A,d)(P,N) = HomD(A,d)(M,N)

by definition of the derived category. A morphism f : P → N in D(A,d) is equal
to s−1f ′ where f ′ : P → N ′ is a morphism and s : N → N ′ is a quasi-isomorphism.
Choose a distinguished triangle

N → N ′ → Q→ N [1]
As s is a quasi-isomorphism, we see thatQ is acyclic. Thus HomK(Mod(A,d))(P,Q[k]) =
0 for all k by Lemma 22.20.2. Since HomK(Mod(A,d))(P,−) is cohomological, we con-
clude that we can lift f ′ : P → N ′ uniquely to a morphism f : P → N . This finishes
the proof.
The proof of (2) is dual to that of (1) using Lemma 22.21.2 in stead of Lemma
22.20.2. □

Lemma 22.22.4.09QI Let (A,d) be a differential graded algebra. Then
(1) D(A,d) has both direct sums and products,
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(2) direct sums are obtained by taking direct sums of differential graded mod-
ules,

(3) products are obtained by taking products of differential graded modules.

Proof. We will use that Mod(A,d) is an abelian category with arbitrary direct sums
and products, and that these give rise to direct sums and products in K(Mod(A,d)).
See Lemmas 22.4.2 and 22.5.4.
Let Mj be a family of differential graded A-modules. Consider the graded direct
sum M =

⊕
Mj which is a differential graded A-module with the obvious. For a

differential graded A-module N choose a quasi-isomorphism N → I where I is a
differential graded A-module with property (I). See Lemma 22.21.4. Using Lemma
22.22.3 we have

HomD(A,d)(M,N) = HomK(A,d)(M, I)

=
∏

HomK(A,d)(Mj , I)

=
∏

HomD(A,d)(Mj , N)

whence the existence of direct sums in D(A,d) as given in part (2) of the lemma.
Let Mj be a family of differential graded A-modules. Consider the product M =∏
Mj of differential graded A-modules. For a differential graded A-module N

choose a quasi-isomorphism P → N where P is a differential graded A-module
with property (P). See Lemma 22.20.4. Using Lemma 22.22.3 we have

HomD(A,d)(N,M) = HomK(A,d)(P,M)

=
∏

HomK(A,d)(P,Mj)

=
∏

HomD(A,d)(N,Mj)

whence the existence of direct sums in D(A,d) as given in part (3) of the lemma. □

Remark 22.22.5.0FQE Let R be a ring. Let (A,d) be a differential graded R-algebra.
Using P-resolutions we can sometimes reduce statements about general objects of
D(A,d) to statements about A[k]. Namely, let T be a property of objects of D(A,d)
and assume that

(1) if Ki, i ∈ I is a family of objects of D(A,d) and T (Ki) holds for all i ∈ I,
then T (

⊕
Ki),

(2) if K → L→M → K[1] is a distinguished triangle of D(A,d) and T holds
for two, then T holds for the third object, and

(3) T (A[k]) holds for all k ∈ Z.
Then T holds for all objects of D(A,d). This is clear from Lemmas 22.20.1 and
22.20.4.

22.23. The canonical delta-functor

09KZ Let (A,d) be a differential graded algebra. Consider the functor Mod(A,d) →
K(Mod(A,d)). This functor is not a δ-functor in general. However, it turns out
that the functor Mod(A,d) → D(A,d) is a δ-functor. In order to see this we have to
define the morphisms δ associated to a short exact sequence

0→ K
a−→ L

b−→M → 0

https://stacks.math.columbia.edu/tag/0FQE
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in the abelian category Mod(A,d). Consider the cone C(a) of the morphism a. We
have C(a) = L ⊕K and we define q : C(a) → M via the projection to L followed
by b. Hence a homomorphism of differential graded A-modules

q : C(a) −→M.

It is clear that q◦i = b where i is as in Definition 22.6.1. Note that, as a is injective,
the kernel of q is identified with the cone of idK which is acyclic. Hence we see that
q is a quasi-isomorphism. According to Lemma 22.9.4 the triangle

(K,L,C(a), a, i,−p)
is a distinguished triangle inK(Mod(A,d)). As the localization functorK(Mod(A,d))→
D(A,d) is exact we see that (K,L,C(a), a, i,−p) is a distinguished triangle in
D(A,d). Since q is a quasi-isomorphism we see that q is an isomorphism in D(A,d).
Hence we deduce that

(K,L,M, a, b,−p ◦ q−1)
is a distinguished triangle of D(A,d). This suggests the following lemma.

Lemma 22.23.1.09L0 Let (A,d) be a differential graded algebra. The functor Mod(A,d) →
D(A,d) defined has the natural structure of a δ-functor, with

δK→L→M = −p ◦ q−1

with p and q as explained above.

Proof. We have already seen that this choice leads to a distinguished triangle when-
ever given a short exact sequence of complexes. We have to show functoriality of this
construction, see Derived Categories, Definition 13.3.6. This follows from Lemma
22.6.2 with a bit of work. Compare with Derived Categories, Lemma 13.12.1. □

Lemma 22.23.2.0CRL Let (A,d) be a differential graded algebra. Let Mn be a system
of differential graded modules. Then the derived colimit hocolimMn in D(A,d) is
represented by the differential graded module colimMn.

Proof. Set M = colimMn. We have an exact sequence of differential graded mod-
ules

0→
⊕

Mn →
⊕

Mn →M → 0
by Derived Categories, Lemma 13.33.6 (applied the underlying complexes of abelian
groups). The direct sums are direct sums in D(A) by Lemma 22.22.4. Thus the re-
sult follows from the definition of derived colimits in Derived Categories, Definition
13.33.1 and the fact that a short exact sequence of complexes gives a distinguished
triangle (Lemma 22.23.1). □

22.24. Linear categories

09MI Just the definitions.

Definition 22.24.1.09MJ Let R be a ring. An R-linear category A is a category where
every morphism set is given the structure of an R-module and where for x, y, z ∈
Ob(A) composition law

HomA(y, z)×HomA(x, y) −→ HomA(x, z)
is R-bilinear.
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Thus composition determines an R-linear map
HomA(y, z)⊗R HomA(x, y) −→ HomA(x, z)

of R-modules. Note that we do not assume R-linear categories to be additive.
Definition 22.24.2.09MK Let R be a ring. A functor of R-linear categories, or an R-
linear functor is a functor F : A → B where for all objects x, y of A the map
F : HomA(x, y)→ HomB(F (x), F (y)) is a homomorphism of R-modules.

22.25. Graded categories

09L1 Just some definitions.
Definition 22.25.1.09L2 Let R be a ring. A graded category A over R is a category
where every morphism set is given the structure of a graded R-module and where
for x, y, z ∈ Ob(A) composition is R-bilinear and induces a homomorphism

HomA(y, z)⊗R HomA(x, y) −→ HomA(x, z)
of graded R-modules (i.e., preserving degrees).

In this situation we denote Homi
A(x, y) the degree i part of the graded object

HomA(x, y), so that

HomA(x, y) =
⊕

i∈Z
Homi

A(x, y)

is the direct sum decomposition into graded parts.
Definition 22.25.2.09L3 Let R be a ring. A functor of graded categories over R, or a
graded functor is a functor F : A → B where for all objects x, y of A the map
F : HomA(x, y)→ HomA(F (x), F (y)) is a homomorphism of graded R-modules.
Given a graded category we are often interested in the corresponding “usual” cat-
egory of maps of degree 0. Here is a formal definition.
Definition 22.25.3.09ML Let R be a ring. Let A be a graded category over R. We let
A0 be the category with the same objects as A and with

HomA0(x, y) = Hom0
A(x, y)

the degree 0 graded piece of the graded module of morphisms of A.
Definition 22.25.4.09P2 Let R be a ring. Let A be a graded category over R. A direct
sum (x, y, z, i, j, p, q) in A (notation as in Homology, Remark 12.3.6) is a graded
direct sum if i, j, p, q are homogeneous of degree 0.
Example 22.25.5 (Graded category of graded objects).09MM Let B be an additive cat-
egory. Recall that we have defined the category Gr(B) of graded objects of B in
Homology, Definition 12.16.1. In this example, we will construct a graded category
Grgr(B) over R = Z whose associated category Grgr(B)0 recovers Gr(B). As ob-
jects of Grgr(B) we take graded objects of B. Then, given graded objects A = (Ai)
and B = (Bi) of B we set

HomGrgr(B)(A,B) =
⊕

n∈Z
Homn(A,B)

where the graded piece of degree n is the abelian group of homogeneous maps of
degree n from A to B. Explicitly we have

Homn(A,B) =
∏

p+q=n
HomB(A−q, Bp)
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(observe reversal of indices and observe that we have a product here and not a
direct sum). In other words, a degree n morphism f from A to B can be seen as
a system f = (fp,q) where p, q ∈ Z, p + q = n with fp,q : A−q → Bp a morphism
of B. Given graded objects A, B, C of B composition of morphisms in Grgr(B) is
defined via the maps

Homm(B,C)×Homn(A,B) −→ Homn+m(A,C)
by simple composition (g, f) 7→ g ◦ f of homogeneous maps of graded objects. In
terms of components we have

(g ◦ f)p,r = gp,q ◦ f−q,r

where q is such that p+ q = m and −q + r = n.

Example 22.25.6 (Graded category of graded modules).09MN Let A be a Z-graded
algebra over a ring R. We will construct a graded category ModgrA over R whose
associated category (ModgrA )0 is the category of graded A-modules. As objects
of ModgrA we take right graded A-modules (see Section 22.14). Given graded A-
modules L and M we set

HomModgr
A

(L,M) =
⊕

n∈Z
Homn(L,M)

where Homn(L,M) is the set of right A-module maps L → M which are homoge-
neous of degree n, i.e., f(Li) ⊂ M i+n for all i ∈ Z. In terms of components, we
have that

Homn(L,M) ⊂
∏

p+q=n
HomR(L−q,Mp)

(observe reversal of indices) is the subset consisting of those f = (fp,q) such that
fp,q(ma) = fp−i,q+i(m)a

for a ∈ Ai and m ∈ L−q−i. For graded A-modules K, L, M we define composition
in ModgrA via the maps

Homm(L,M)×Homn(K,L) −→ Homn+m(K,M)
by simple composition of right A-module maps: (g, f) 7→ g ◦ f .

Remark 22.25.7.09P3 Let R be a ring. Let D be an R-linear category endowed with a
collection of R-linear functors [n] : D → D, x 7→ x[n] indexed by n ∈ Z such that
[n] ◦ [m] = [n+m] and [0] = idD (equality as functors). This allows us to construct
a graded category Dgr over R with the same objects of D setting

HomDgr (x, y) =
⊕

n∈Z
HomD(x, y[n])

for x, y in D. Observe that (Dgr)0 = D (see Definition 22.25.3). Moreover, the
graded category Dgr inherits R-linear graded functors [n] satisfying [n] ◦ [m] =
[n+m] and [0] = idDgr with the property that

HomDgr (x, y[n]) = HomDgr (x, y)[n]
as graded R-modules compatible with composition of morphisms.
Conversely, suppose given a graded category A over R endowed with a collection
of R-linear graded functors [n] satisfying [n] ◦ [m] = [n + m] and [0] = idA which
are moreover equipped with isomorphisms

HomA(x, y[n]) = HomA(x, y)[n]

https://stacks.math.columbia.edu/tag/09MN
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as graded R-modules compatible with composition of morphisms. Then the reader
easily shows that A = (A0)gr.
Here are two examples of the relationship D ↔ A we established above:

(1) Let B be an additive category. If D = Gr(B), then A = Grgr(B) as in
Example 22.25.5.

(2) If A is a graded ring and D = ModA is the category of graded right
A-modules, then A = ModgrA , see Example 22.25.6.

22.26. Differential graded categories

09L4 Note that if R is a ring, then R is a differential graded algebra over itself (with
R = R0 of course). In this case a differential graded R-module is the same thing as
a complex of R-modules. In particular, given two differential graded R-modules M
and N we denote M ⊗R N the differential graded R-module corresponding to the
total complex associated to the double complex obtained by the tensor product of
the complexes of R-modules associated to M and N .
Definition 22.26.1.09L5 Let R be a ring. A differential graded category A over R is a
category where every morphism set is given the structure of a differential graded
R-module and where for x, y, z ∈ Ob(A) composition is R-bilinear and induces a
homomorphism

HomA(y, z)⊗R HomA(x, y) −→ HomA(x, z)
of differential graded R-modules.
The final condition of the definition signifies the following: if f ∈ Homn

A(x, y) and
g ∈ Homm

A (y, z) are homogeneous of degrees n and m, then
d(g ◦ f) = d(g) ◦ f + (−1)mg ◦ d(f)

in Homn+m+1
A (x, z). This follows from the sign rule for the differential on the total

complex of a double complex, see Homology, Definition 12.18.3.
Definition 22.26.2.09L6 Let R be a ring. A functor of differential graded categories over
R is a functor F : A → B where for all objects x, y of A the map F : HomA(x, y)→
HomA(F (x), F (y)) is a homomorphism of differential graded R-modules.
Given a differential graded category we are often interested in the corresponding
categories of complexes and homotopy category. Here is a formal definition.
Definition 22.26.3.09L7 Let R be a ring. Let A be a differential graded category over
R. Then we let

(1) the category of complexes of A1 be the category Comp(A) whose objects
are the same as the objects of A and with

HomComp(A)(x, y) = Ker(d : Hom0
A(x, y)→ Hom1

A(x, y))
(2) the homotopy category of A be the category K(A) whose objects are the

same as the objects of A and with
HomK(A)(x, y) = H0(HomA(x, y))

Our use of the symbol K(A) is nonstandard, but at least is compatible with the
use of K(−) in other chapters of the Stacks project.

1This may be nonstandard terminology.
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Definition 22.26.4.09P4 Let R be a ring. Let A be a differential graded category over
R. A direct sum (x, y, z, i, j, p, q) in A (notation as in Homology, Remark 12.3.6) is
a differential graded direct sum if i, j, p, q are homogeneous of degree 0 and closed,
i.e., d(i) = 0, etc.

Lemma 22.26.5.09L8 Let R be a ring. A functor F : A → B of differential graded
categories over R induces functors Comp(A)→ Comp(B) and K(A)→ K(B).

Proof. Omitted. □

Example 22.26.6 (Differential graded category of complexes).09L9 Let B be an additive
category. We will construct a differential graded category Compdg(B) over R = Z
whose associated category of complexes is Comp(B) and whose associated homo-
topy category is K(B). As objects of Compdg(B) we take complexes of B. Given
complexes A• and B• of B, we sometimes also denote A• and B• the corresponding
graded objects of B (i.e., forget about the differential). Using this abuse of notation,
we set

HomCompdg(B)(A•, B•) = HomGrgr(B)(A•, B•) =
⊕

n∈Z
Homn(A,B)

as a graded Z-module with notation and definitions as in Example 22.25.5. In
other words, the nth graded piece is the abelian group of homogeneous morphism
of degree n of graded objects

Homn(A•, B•) =
∏

p+q=n
HomB(A−q, Bp)

Observe reversal of indices and observe we have a direct product and not a direct
sum. For an element f ∈ Homn(A•, B•) of degree n we set

d(f) = dB ◦ f − (−1)nf ◦ dA
The sign is exactly as in More on Algebra, Section 15.72. To make sense of this
we think of dB and dA as maps of graded objects of B homogeneous of degree 1
and we use composition in the category Grgr(B) on the right hand side. In terms
of components, if f = (fp,q) with fp,q : A−q → Bp we have

(22.26.6.1)09LA d(fp,q) = dB ◦ fp,q − (−1)p+qfp,q ◦ dA
Note that the first term of this expression is in HomB(A−q, Bp+1) and the second
term is in HomB(A−q−1, Bp). The reader checks that

(1) d has square zero,
(2) an element f in Homn(A•, B•) has d(f) = 0 if and only if the morphism

f : A• → B•[n] of graded objects of B is actually a map of complexes,
(3) in particular, the category of complexes of Compdg(B) is equal to Comp(B),
(4) the morphism of complexes defined by f as in (2) is homotopy equivalent

to zero if and only if f = d(g) for some g ∈ Homn−1(A•, B•).
(5) in particular, we obtain a canonical isomorphism

HomK(B)(A•, B•) −→ H0(HomCompdg(B)(A•, B•))

and the homotopy category of Compdg(B) is equal to K(B).
Given complexes A•, B•, C• we define composition

Homm(B•, C•)×Homn(A•, B•) −→ Homn+m(A•, C•)

https://stacks.math.columbia.edu/tag/09P4
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by composition (g, f) 7→ g ◦f in the graded category Grgr(B), see Example 22.25.5.
This defines a map of differential graded modules

HomCompdg(B)(B•, C•)⊗R HomCompdg(B)(A•, B•) −→ HomCompdg(B)(A•, C•)
as required in Definition 22.26.1 because

d(g ◦ f) = dC ◦ g ◦ f − (−1)n+mg ◦ f ◦ dA
= (dC ◦ g − (−1)mg ◦ dB) ◦ f + (−1)mg ◦ (dB ◦ f − (−1)nf ◦ dA)
= d(g) ◦ f + (−1)mg ◦ d(f)

as desired.

Lemma 22.26.7.09LB Let F : B → B′ be an additive functor between additive categories.
Then F induces a functor of differential graded categories

F : Compdg(B)→ Compdg(B′)
of Example 22.26.6 inducing the usual functors on the category of complexes and
the homotopy categories.

Proof. Omitted. □

Example 22.26.8 (Differential graded category of differential graded modules).09LC Let
(A,d) be a differential graded algebra over a ring R. We will construct a differential
graded category Moddg(A,d) over R whose category of complexes is Mod(A,d) and
whose homotopy category is K(Mod(A,d)). As objects of Moddg(A,d) we take the
differential graded A-modules. Given differential graded A-modules L and M we
set

HomModdg(A,d)
(L,M) = HomModgr

A
(L,M) =

⊕
Homn(L,M)

as a graded R-module where the right hand side is defined as in Example 22.25.6. In
other words, the nth graded piece Homn(L,M) is the R-module of right A-module
maps homogeneous of degree n. For an element f ∈ Homn(L,M) we set

d(f) = dM ◦ f − (−1)nf ◦ dL
To make sense of this we think of dM and dL as graded R-module maps and we
use composition of graded R-module maps. It is clear that d(f) is homogeneous of
degree n+ 1 as a graded R-module map, and it is A-linear because
d(f)(xa) = dM (f(x)a)− (−1)nf(dL(xa))

= dM (f(x))a+ (−1)deg(x)+nf(x)d(a)− (−1)nf(dL(x))a− (−1)n+deg(x)f(x)d(a)
= d(f)(x)a

as desired (observe that this calculation would not work without the sign in the
definition of our differential on Hom). Similar formulae to those of Example 22.26.6
hold for the differential of f in terms of components. The reader checks (in the
same way as in Example 22.26.6) that

(1) d has square zero,
(2) an element f in Homn(L,M) has d(f) = 0 if and only if f : L→M [n] is

a homomorphism of differential graded A-modules,
(3) in particular, the category of complexes of Moddg(A,d) is Mod(A,d),
(4) the homomorphism defined by f as in (2) is homotopy equivalent to zero

if and only if f = d(g) for some g ∈ Homn−1(L,M).
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(5) in particular, we obtain a canonical isomorphism
HomK(Mod(A,d))(L,M) −→ H0(HomModdg(A,d)

(L,M))

and the homotopy category of Moddg(A,d) is K(Mod(A,d)).
Given differential graded A-modules K, L, M we define composition

Homm(L,M)×Homn(K,L) −→ Homn+m(K,M)
by composition of homogeneous right A-module maps (g, f) 7→ g ◦ f . This defines
a map of differential graded modules

HomModdg(A,d)
(L,M)⊗R HomModdg(A,d)

(K,L) −→ HomModdg(A,d)
(K,M)

as required in Definition 22.26.1 because
d(g ◦ f) = dM ◦ g ◦ f − (−1)n+mg ◦ f ◦ dK

= (dM ◦ g − (−1)mg ◦ dL) ◦ f + (−1)mg ◦ (dL ◦ f − (−1)nf ◦ dK)
= d(g) ◦ f + (−1)mg ◦ d(f)

as desired.

Lemma 22.26.9.09LD Let φ : (A,d)→ (E,d) be a homomorphism of differential graded
algebras. Then φ induces a functor of differential graded categories

F : Moddg(E,d) −→ Moddg(A,d)

of Example 22.26.8 inducing obvious restriction functors on the categories of dif-
ferential graded modules and homotopy categories.

Proof. Omitted. □

Lemma 22.26.10.09LE Let R be a ring. Let A be a differential graded category over R.
Let x be an object of A. Let

(E,d) = HomA(x, x)
be the differential graded R-algebra of endomorphisms of x. We obtain a functor

A −→ Moddg(E,d), y 7−→ HomA(x, y)

of differential graded categories by letting E act on HomA(x, y) via composition in
A. This functor induces functors

Comp(A)→ Mod(A,d) and K(A)→ K(Mod(A,d))
by an application of Lemma 22.26.5.

Proof. This lemma proves itself. □

22.27. Obtaining triangulated categories

09P5 In this section we discuss the most general setup to which the arguments proving
Derived Categories, Proposition 13.10.3 and Proposition 22.10.3 apply.
Let R be a ring. Let A be a differential graded category over R. To make our
argument work, we impose some axioms on A:

(A) A has a zero object and differential graded direct sums of two objects (as
in Definition 22.26.4).
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(B) there are functors [n] : A −→ A of differential graded categories such that
[0] = idA and [n+m] = [n] ◦ [m] and given isomorphisms

HomA(x, y[n]) = HomA(x, y)[n]
of differential graded R-modules compatible with composition.

Given our differential graded category A we say
(1) a sequence x → y → z of morphisms of Comp(A) is an admissible short

exact sequence if there exists an isomorphism y ∼= x⊕ z in the underlying
graded category such that x→ z and y → z are (co)projections.

(2) a morphism x → y of Comp(A) is an admissible monomorphism if it
extends to an admissible short exact sequence x→ y → z.

(3) a morphism y → z of Comp(A) is an admissible epimorphism if it extends
to an admissible short exact sequence x→ y → z.

The next lemma tells us an admissible short exact sequence gives a triangle, pro-
vided we have axioms (A) and (B).

Lemma 22.27.1.09P6 Let A be a differential graded category satisfying axioms (A) and
(B). Given an admissible short exact sequence x → y → z we obtain (see proof) a
triangle

x→ y → z → x[1]
in Comp(A) with the property that any two compositions in z[−1] → x → y →
z → x[1] are zero in K(A).

Proof. Choose a diagram
x

1
//

a
��

x

y

π

??

b

��
z

1 //

s

??

z

giving the isomorphism of graded objects y ∼= x ⊕ z as in the definition of an
admissible short exact sequence. Here are some equations that hold in this situation

(1) 1 = πa and hence d(π)a = 0,
(2) 1 = bs and hence bd(s) = 0,
(3) 1 = aπ + sb and hence ad(π) + d(s)b = 0,
(4) πs = 0 and hence d(π)s+ πd(s) = 0,
(5) d(s) = aπd(s) because d(s) = (aπ + sb)d(s) and bd(s) = 0,
(6) d(π) = d(π)sb because d(π) = d(π)(aπ + sb) and d(π)a = 0,
(7) d(πd(s)) = 0 because if we postcompose it with the monomorphism a we

get d(aπd(s)) = d(d(s)) = 0, and
(8) d(d(π)s) = 0 as by (4) it is the negative of d(πd(s)) which is 0 by (7).

We’ve used repeatedly that d(a) = 0, d(b) = 0, and that d(1) = 0. By (7) we see
that

δ = πd(s) = −d(π)s : z → x[1]
is a morphism in Comp(A). By (5) we see that the composition aδ = aπd(s) = d(s)
is homotopic to zero. By (6) we see that the composition δb = −d(π)sb = d(−π) is
homotopic to zero. □
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Besides axioms (A) and (B) we need an axiom concerning the existence of cones.
We formalize everything as follows.

Situation 22.27.2.09QJ Here R is a ring and A is a differential graded category over R
having axioms (A), (B), and

(C) given an arrow f : x → y of degree 0 with d(f) = 0 there exists an
admissible short exact sequence y → c(f) → x[1] in Comp(A) such that
the map x[1]→ y[1] of Lemma 22.27.1 is equal to f [1].

We will call c(f) a cone of the morphism f . If (A), (B), and (C) hold, then cones
are functorial in a weak sense.

Lemma 22.27.3.09P7 In Situation 22.27.2 suppose that
x1

f1

//

a

��

y1

b

��
x2

f2 // y2

is a diagram of Comp(A) commutative up to homotopy. Then there exists a mor-
phism c : c(f1)→ c(f2) which gives rise to a morphism of triangles

(a, b, c) : (x1, y1, c(f1))→ (x1, y1, c(f1))
in K(A).

Proof. The assumption means there exists a morphism h : x1 → y2 of degree −1
such that d(h) = bf1−f2a. Choose isomorphisms c(fi) = yi⊕xi[1] of graded objects
compatible with the morphisms yi → c(fi) → xi[1]. Let’s denote ai : yi → c(fi),
bi : c(fi) → xi[1], si : xi[1] → c(fi), and πi : c(fi) → yi the given morphisms.
Recall that xi[1]→ yi[1] is given by πid(si). By axiom (C) this means that

fi = πid(si) = −d(πi)si
(we identify Hom(xi, yi) with Hom(xi[1], yi[1]) using the shift functor [1]). Set
c = a2bπ1 + s2ab1 + a2hb. Then, using the equalities found in the proof of Lemma
22.27.1 we obtain

d(c) = a2bd(π1) + d(s2)ab1 + a2d(h)b1

= −a2bf1b1 + a2f2ab1 + a2(bf1 − f2a)b1

= 0
(where we have used in particular that d(π1) = d(π1)s1b1 = f1b1 and d(s2) =
a2π2d(s2) = a2f2). Thus c is a degree 0 morphism c : c(f1)→ c(f2) of A compatible
with the given morphisms yi → c(fi)→ xi[1]. □

In Situation 22.27.2 we say that a triangle (x, y, z, f, g, h) in K(A) is a distinguished
triangle if there exists an admissible short exact sequence x′ → y′ → z′ such that
(x, y, z, f, g, h) is isomorphic as a triangle in K(A) to the triangle (x′, y′, z′, x′ →
y′, y′ → z′, δ) constructed in Lemma 22.27.1. We will show below that

K(A) is a triangulated category

This result, although not as general as one might think, applies to a number of
natural generalizations of the cases covered so far in the Stacks project. Here are
some examples:
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(1) Let (X,OX) be a ringed space. Let (A, d) be a sheaf of differential graded
OX -algebras. Let A be the differential graded category of differential
graded A-modules. Then K(A) is a triangulated category.

(2) Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded
O-algebras. LetA be the differential graded category of differential graded
A-modules. ThenK(A) is a triangulated category. See Differential Graded
Sheaves, Proposition 24.22.4.

(3) Two examples with a different flavor may be found in Examples, Section
110.69.

The following simple lemma is a key to the construction.

Lemma 22.27.4.09QK In Situation 22.27.2 given any object x of A, and the cone C(1x)
of the identity morphism 1x : x→ x, the identity morphism on C(1x) is homotopic
to zero.

Proof. Consider the admissible short exact sequence given by axiom (C).

x
a // C(1x)
π

oo
b // x[1]
s
oo

Then by Lemma 22.27.1, identifying hom-sets under shifting, we have 1x = πd(s) =
−d(π)s where s is regarded as a morphism in Hom−1

A (x,C(1x)). Therefore a =
aπd(s) = d(s) using formula (5) of Lemma 22.27.1, and b = −d(π)sb = −d(π) by
formula (6) of Lemma 22.27.1. Hence

1C(1x) = aπ + sb = d(s)π − sd(π) = d(sπ)
since s is of degree −1. □

A more general version of the above lemma will appear in Lemma 22.27.13. The
following lemma is the analogue of Lemma 22.7.3.

Lemma 22.27.5.09QL In Situation 22.27.2 given a diagram

x
f //

a

��

y

b

��
z

g // w

in Comp(A) commuting up to homotopy. Then
(1) If f is an admissible monomorphism, then b is homotopic to a morphism

b′ which makes the diagram commute.
(2) If g is an admissible epimorphism, then a is homotopic to a morphism a′

which makes the diagram commute.

Proof. To prove (1), observe that the hypothesis implies that there is some h ∈
HomA(x,w) of degree −1 such that bf − ga = d(h). Since f is an admissible
monomorphism, there is a morphism π : y → x in the category A of degree 0. Let
b′ = b− d(hπ). Then

b′f = bf − d(hπ)f =bf − d(hπf) (since d(f) = 0)
=bf − d(h)
=ga

as desired. The proof for (2) is omitted. □
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The following lemma is the analogue of Lemma 22.7.4.
Lemma 22.27.6.09QM In Situation 22.27.2 let α : x → y be a morphism in Comp(A).
Then there exists a factorization in Comp(A):

x
α̃ // ỹ

π // y
s

oo

such that
(1) α̃ is an admissible monomorphism, and πα̃ = α.
(2) There exists a morphism s : y → ỹ in Comp(A) such that πs = 1y and sπ

is homotopic to 1ỹ.
Proof. By axiom (A), we may let ỹ be the differential graded direct sum of y and
C(1x), i.e., there exists a diagram

y
s // y ⊕ C(1x)
π

oo
p // C(1x)
t

oo

where all morphisms are of degree zero, and in Comp(A). Let ỹ = y⊕C(1x). Then
1ỹ = sπ + tp. Consider now the diagram

x
α̃ // ỹ

π // y
s

oo

where α̃ is induced by the morphism x
α−→ y and the natural morphism x→ C(1x)

fitting in the admissible short exact sequence
x // C(1x)oo // x[1]oo

So the morphism C(1x) → x of degree 0 in this diagram, together with the zero
morphism y → x, induces a degree-0 morphism β : ỹ → x. Then α̃ is an admissible
monomorphism since it fits into the admissible short exact sequence

x
α̃ // ỹ // x[1]

Furthermore, πα̃ = α by the construction of α̃, and πs = 1y by the first diagram.
It remains to show that sπ is homotopic to 1ỹ. Write 1x as d(h) for some degree
−1 map. Then, our last statement follows from

1ỹ − sπ =tp
=t(dh)p (by Lemma 22.27.4)
=d(thp)

since dt = dp = 0, and t is of degree zero. □

The following lemma is the analogue of Lemma 22.7.5.
Lemma 22.27.7.09QN In Situation 22.27.2 let x1 → x2 → . . . → xn be a sequence of
composable morphisms in Comp(A). Then there exists a commutative diagram in
Comp(A):

x1 // x2 // . . . // xn

y1 //

OO

y2 //

OO

. . . // yn

OO

such that each yi → yi+1 is an admissible monomorphism and each yi → xi is a
homotopy equivalence.
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Proof. The case for n = 1 is trivial: one simply takes y1 = x1 and the identity
morphism on x1 is in particular a homotopy equivalence. The case n = 2 is given
by Lemma 22.27.6. Suppose we have constructed the diagram up to xn−1. We apply
Lemma 22.27.6 to the composition yn−1 → xn−1 → xn to obtain yn. Then yn−1 →
yn will be an admissible monomorphism, and yn → xn a homotopy equivalence. □

The following lemma is the analogue of Lemma 22.7.6.

Lemma 22.27.8.09QP In Situation 22.27.2 let xi → yi → zi be morphisms in A (i =
1, 2, 3) such that x2 → y2 → z2 is an admissible short exact sequence. Let b : y1 →
y2 and b′ : y2 → y3 be morphisms in Comp(A) such that

x1

0
��

// y1 //

b

��

z1

0
��

x2 // y2 // z2

and

x2

0
��

// y2 //

b′

��

z2

0
��

x3 // y3 // z3

commute up to homotopy. Then b′ ◦ b is homotopic to 0.

Proof. By Lemma 22.27.5, we can replace b and b′ by homotopic maps b̃ and b̃′,
such that the right square of the left diagram commutes and the left square of
the right diagram commutes. Say b = b̃ + d(h) and b′ = b̃′ + d(h′) for degree −1
morphisms h and h′ in A. Hence

b′b = b̃′b̃+ d(b̃′h+ h′b̃+ h′d(h))
since d(b̃) = d(b̃′) = 0, i.e. b′b is homotopic to b̃′b̃. We now want to show that
b̃′b̃ = 0. Because x2

f−→ y2
g−→ z2 is an admissible short exact sequence, there exist

degree 0 morphisms π : y2 → x2 and s : z2 → y2 such that idy2 = fπ+sg. Therefore
b̃′b̃ = b̃′(fπ + sg)b̃ = 0

since gb̃ = 0 and b̃′f = 0 as consequences of the two commuting squares. □

The following lemma is the analogue of Lemma 22.8.1.

Lemma 22.27.9.09QQ In Situation 22.27.2 let 0 → x → y → z → 0 be an admissible
short exact sequence in Comp(A). The triangle

x // y // z
δ // x[1]

with δ : z → x[1] as defined in Lemma 22.27.1 is up to canonical isomorphism in
K(A), independent of the choices made in Lemma 22.27.1.

Proof. Suppose δ is defined by the splitting

x
a // y

b //
π
oo z

s
oo

and δ′ is defined by the splitting with π′, s′ in place of π, s. Then
s′ − s = (aπ + sb)(s′ − s) = aπs′

since bs′ = bs = 1z and πs = 0. Similarly,
π′ − π = (π′ − π)(aπ + sb) = π′sb

Since δ = πd(s) and δ′ = π′d(s′) as constructed in Lemma 22.27.1, we may compute
δ′ = π′d(s′) = (π + π′sb)d(s+ aπs′) = δ + d(πs′)

https://stacks.math.columbia.edu/tag/09QP
https://stacks.math.columbia.edu/tag/09QQ
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using πa = 1x, ba = 0, and π′sbd(s′) = π′sbaπd(s′) = 0 by formula (5) in Lemma
22.27.1. □

The following lemma is the analogue of Lemma 22.9.1.

Lemma 22.27.10.09QR In Situation 22.27.2 let f : x → y be a morphism in Comp(A).
The triangle (y, c(f), x[1], i, p, f [1]) is the triangle associated to the admissible short
exact sequence

y // c(f) // x[1]

where the cone c(f) is defined as in Lemma 22.27.1.

Proof. This follows from axiom (C). □

The following lemma is the analogue of Lemma 22.9.2.

Lemma 22.27.11.09QS In Situation 22.27.2 let α : x → y and β : y → z define an
admissible short exact sequence

x // y // z

in Comp(A). Let (x, y, z, α, β, δ) be the associated triangle in K(A). Then, the
triangles

(z[−1], x, y, δ[−1], α, β) and (z[−1], x, c(δ[−1]), δ[−1], i, p)

are isomorphic.

Proof. We have a diagram of the form

z[−1]
δ[−1] //

1
��

x
α //

1

��

y
β //

��

α̃
oo z

1

��

β̃

oo

z[−1]
δ[−1] // x

i // c(δ[−1])
p //

ĩ

oo z
p̃
oo

with splittings to α, β, i, and p given by α̃, β̃, ĩ, and p̃ respectively. Define a mor-
phism y → c(δ[−1]) by iα̃ + p̃β and a morphism c(δ[−1]) → y by αĩ + β̃p. Let us
first check that these define morphisms in Comp(A). We remark that by identi-
ties from Lemma 22.27.1, we have the relation δ[−1] = α̃d(β̃) = −d(α̃)β̃ and the
relation δ[−1] = ĩd(p̃). Then

d(α̃) = d(α̃)β̃β
= −δ[−1]β

where we have used equation (6) of Lemma 22.27.1 for the first equality and the
preceeding remark for the second. Similarly, we obtain d(p̃) = iδ[−1]. Hence

d(iα̃+ p̃β) = d(i)α̃+ id(α̃) + d(p̃)β + p̃d(β)
= id(α̃) + d(p̃)β
= −iδ[−1]β + iδ[−1]β
= 0

https://stacks.math.columbia.edu/tag/09QR
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so iα̃ + p̃β is indeed a morphism of Comp(A). By a similar calculation, αĩ + β̃p
is also a morphism of Comp(A). It is immediate that these morphisms fit in the
commutative diagram. We compute:

(iα̃+ p̃β)(αĩ+ β̃p) = iα̃αĩ+ iα̃β̃p+ p̃βαĩ+ p̃ββ̃p

= ĩi+ p̃p

= 1c(δ[−1])

where we have freely used the identities of Lemma 22.27.1. Similarly, we compute
(αĩ+ β̃p)(iα̃+ p̃β) = 1y, so we conclude y ∼= c(δ[−1]). Hence, the two triangles in
question are isomorphic. □

The following lemma is the analogue of Lemma 22.9.3.

Lemma 22.27.12.09QT In Situation 22.27.2 let f1 : x1 → y1 and f2 : x2 → y2 be
morphisms in Comp(A). Let

(a, b, c) : (x1, y1, c(f1), f1, i1, p1)→ (x2, y2, c(f2), f2, i1, p1)

be any morphism of triangles in K(A). If a and b are homotopy equivalences, then
so is c.

Proof. Since a and b are homotopy equivalences, they are invertible in K(A) so let
a−1 and b−1 denote their inverses in K(A), giving us a commutative diagram

x2

a−1

��

f2 // y2

b−1

��

i2 // c(f2)

c′

��
x1

f1 // y1
i1 // c(f1)

where the map c′ is defined via Lemma 22.27.3 applied to the left commutative
box of the above diagram. Since the diagram commutes in K(A), it suffices by
Lemma 22.27.8 to prove the following: given a morphism of triangle (1, 1, c) :
(x, y, c(f), f, i, p) → (x, y, c(f), f, i, p) in K(A), the map c is an isomorphism in
K(A). We have the commutative diagrams in K(A):

y

1

��

// c(f)

c

��

// x[1]

1
��

y // c(f) // x[1]

⇒

y

0

��

// c(f)

c−1
��

// x[1]

0
��

y // c(f) // x[1]

Since the rows are admissible short exact sequences, we obtain the identity (c−1)2 =
0 by Lemma 22.27.8, from which we conclude that 2− c is inverse to c in K(A) so
that c is an isomorphism. □

The following lemma is the analogue of Lemma 22.9.4.

Lemma 22.27.13.09QU In Situation 22.27.2.

https://stacks.math.columbia.edu/tag/09QT
https://stacks.math.columbia.edu/tag/09QU
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(1) Given an admissible short exact sequence x α−→ y
β−→ z. Then there exists

a homotopy equivalence e : C(α)→ z such that the diagram

(22.27.13.1)09QV

x
α //

��

y
b //

��

C(α) −c //

e

��

x[1]

��
x

α // y
β // z

δ // x[1]

defines an isomorphism of triangles in K(A). Here y b−→ C(α) c−→ x[1] is
the admissible short exact sequence given as in axiom (C).

(2) Given a morphism α : x → y in Comp(A), let x α̃−→ ỹ → y be the factor-
ization given as in Lemma 22.27.6, where the admissible monomorphism
x

α̃−→ y extends to the admissible short exact sequence

x
α̃ // ỹ // z

Then there exists an isomorphism of triangles

x
α̃ //

��

ỹ //

��

z
δ //

e

��

x[1]

��
x

α // y // C(α) −c // x[1]

where the upper triangle is the triangle associated to the sequence x α̃−→
ỹ → z.

Proof. For (1), we consider the more complete diagram, without the sign change
on c:

x
α //

��

y
π
oo

b //

��

C(α)
p

oo
c //

e

��

x[1]
σ
oo

��

α // y[1]
π
oo

x
α // y

β //
π
oo z

δ //
s

oo

f

OO

x[1]

where the admissible short exact sequence x α−→ y
β−→ z is given the splitting π, s,

and the admissible short exact sequence y b−→ C(α) c−→ x[1] is given the splitting p,
σ. Note that (identifying hom-sets under shifting)

α = pd(σ) = −d(p)σ, δ = πd(s) = −d(π)s
by the construction in Lemma 22.27.1.
We define e = βp and f = bs − σδ. We first check that they are morphisms in
Comp(A). To show that d(e) = βd(p) vanishes, it suffices to show that βd(p)b and
βd(p)σ both vanish, whereas

βd(p)b = βd(pb) = βd(1y) = 0, βd(p)σ = −βα = 0
Similarly, to check that d(f) = bd(s) − d(σ)δ vanishes, it suffices to check the
post-compositions by p and c both vanish, whereas

pbd(s)− pd(σ)δ =d(s)− αδ = d(s)− απd(s) = 0
cbd(s)− cd(σ)δ =− cd(σ)δ = −d(cσ)δ = 0
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The commutativity of left two squares of the diagram 22.27.13.1 follows directly
from definition. Before we prove the commutativity of the right square (up to
homotopy), we first check that e is a homotopy equivalence. Clearly,

ef = βp(bs− σδ) = βs = 1z
To check that fe is homotopic to 1C(α), we first observe

bα = bpd(α) = d(σ), αc = −d(p)σc = −d(p), d(π)p = d(π)sβp = −δβp
Using these identities, we compute

1C(α) =bp+ σc (from y
b−→ C(α) c−→ x[1])

=b(απ + sβ)p+ σ(πα)c (from x
α−→ y

β−→ z)
=d(σ)πp+ bsβp− σπd(p) (by the first two identities above)
=d(σ)πp+ bsβp− σδβp+ σδβp− σπd(p)
=(bs− σδ)βp+ d(σ)πp− σd(π)p− σπd(p) (by the third identity above)
=fe+ d(σπp)

since σ ∈ Hom−1(x,C(α)) (cf. proof of Lemma 22.27.4). Hence e and f are
homotopy inverses. Finally, to check that the right square of diagram 22.27.13.1
commutes up to homotopy, it suffices to check that −cf = δ. This follows from

−cf = −c(bs− σδ) = cσδ = δ

since cb = 0.
For (2), consider the factorization x

α̃−→ ỹ → y given as in Lemma 22.27.6, so the
second morphism is a homotopy equivalence. By Lemmas 22.27.3 and 22.27.12,
there exists an isomorphism of triangles between

x
α−→ y → C(α)→ x[1] and x

α̃−→ ỹ → C(α̃)→ x[1]
Since we can compose isomorphisms of triangles, by replacing α by α̃, y by ỹ, and
C(α) by C(α̃), we may assume α is an admissible monomorphism. In this case, the
result follows from (1). □

The following lemma is the analogue of Lemma 22.10.1.

Lemma 22.27.14.09QW In Situation 22.27.2 the homotopy categoryK(A) with its natural
translation functors and distinguished triangles is a pre-triangulated category.

Proof. We will verify each of TR1, TR2, and TR3.
Proof of TR1. By definition every triangle isomorphic to a distinguished one is
distinguished. Since

x
1x // x // 0

is an admissible short exact sequence, (x, x, 0, 1x, 0, 0) is a distinguished trian-
gle. Moreover, given a morphism α : x → y in Comp(A), the triangle given by
(x, y, c(α), α, i,−p) is distinguished by Lemma 22.27.13.
Proof of TR2. Let (x, y, z, α, β, γ) be a triangle and suppose (y, z, x[1], β, γ,−α[1])
is distinguished. Then there exists an admissible short exact sequence 0 → x′ →
y′ → z′ → 0 such that the associated triangle (x′, y′, z′, α′, β′, γ′) is isomorphic to

https://stacks.math.columbia.edu/tag/09QW
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(y, z, x[1], β, γ,−α[1]). After rotating, we conclude that (x, y, z, α, β, γ) is isomor-
phic to (z′[−1], x′, y′, γ′[−1], α′, β′). By Lemma 22.27.11, we deduce that (z′[−1], x′, y′, γ′[−1], α′, β′)
is isomorphic to (z′[−1], x′, c(γ′[−1]), γ′[−1], i, p). Composing the two isomorphisms
with sign changes as indicated in the following diagram:

x
α //

��

y
β //

��

z
γ //

��

x[1]

��
z′[−1]

−γ′[−1] //

−1z′[−1]

��

x
α′

// y′ β′
//

��

z′

−1z′

��
z′[−1]

γ′[−1] // x
α′
// c(γ′[−1]) −p // z′

We conclude that (x, y, z, α, β, γ) is distinguished by Lemma 22.27.13 (2). Con-
versely, suppose that (x, y, z, α, β, γ) is distinguished, so that by Lemma 22.27.13
(1), it is isomorphic to a triangle of the form (x′, y′, c(α′), α′, i,−p) for some mor-
phism α′ : x′ → y′ in Comp(A). The rotated triangle (y, z, x[1], β, γ,−α[1])
is isomorphic to the triangle (y′, c(α′), x′[1], i,−p,−α[1]) which is isomorphic to
(y′, c(α′), x′[1], i, p, α[1]). By Lemma 22.27.10, this triangle is distinguished, from
which it follows that (y, z, x[1], β, γ,−α[1]) is distinguished.

Proof of TR3: Suppose (x, y, z, α, β, γ) and (x′, y′, z′, α′, β′, γ′) are distinguished
triangles of Comp(A) and let f : x → x′ and g : y → y′ be morphisms such
that α′ ◦ f = g ◦ α. By Lemma 22.27.13, we may assume that (x, y, z, α, β, γ) =
(x, y, c(α), α, i,−p) and (x′, y′, z′, α′, β′, γ′) = (x′, y′, c(α′), α′, i′,−p′). Now apply
Lemma 22.27.3 and we are done. □

The following lemma is the analogue of Lemma 22.10.2.

Lemma 22.27.15.09QX In Situation 22.27.2 given admissible monomorphisms x α−→ y,
y
β−→ z inA, there exist distinguished triangles (x, y, q1, α, p1, δ1), (x, z, q2, βα, p2, δ2)

and (y, z, q3, β, p3, δ3) for which TR4 holds.

Proof. Given admissible monomorphisms x α−→ y and y
β−→ z, we can find distin-

guished triangles, via their extensions to admissible short exact sequences,

x
α // y
π1
oo

p1 // q1
δ1 //

s1
oo x[1]

x
βα // z
π1π3
oo

p2 // q2
δ2 //

s2
oo x[1]

y
β // z
π3
oo

p3 // q3
δ3 //

s3
oo x[1]

https://stacks.math.columbia.edu/tag/09QX
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In these diagrams, the maps δi are defined as δi = πid(si) analagous to the maps
defined in Lemma 22.27.1. They fit in the following solid commutative diagram

x
α //

βα

%%

y

β

��

π1
oo

p1 // q1
δ1 //

s1
oo

p2βs1

��

x[1]

z

π3

OO

p3

��

p2

%%

π1π3

ee

q3

s3

OO

δ3

��

q2p3s2
oo

s2

ee

δ2

%%
y[1] x[1]

where we have defined the dashed arrows as indicated. Clearly, their composition
p3s2p2βs1 = 0 since s2p2 = 0. We claim that they both are morphisms of Comp(A).
We can check this using equations in Lemma 22.27.1:

d(p2βs1) = p2βd(s1) = p2βαπ1d(s1) = 0
since p2βα = 0, and

d(p3s2) = p3d(s2) = p3βαπ1π3d(s2) = 0
since p3β = 0. To check that q1 → q2 → q3 is an admissible short exact sequence,
it remains to show that in the underlying graded category, q2 = q1 ⊕ q3 with the
above two morphisms as coprojection and projection. To do this, observe that in
the underlying graded category C, there hold

y = x⊕ q1, z = y ⊕ q3 = x⊕ q1 ⊕ q3

where π1π3 gives the projection morphism onto the first factor: x⊕q1⊕q3 → z. By
axiom (A) on A, C is an additive category, hence we may apply Homology, Lemma
12.3.10 and conclude that

Ker(π1π3) = q1 ⊕ q3

in C. Another application of Homology, Lemma 12.3.10 to z = x ⊕ q2 gives
Ker(π1π3) = q2. Hence q2 ∼= q1 ⊕ q3 in C. It is clear that the dashed morphisms
defined above give coprojection and projection.
Finally, we have to check that the morphism δ : q3 → q1[1] induced by the admissible
short exact sequence q1 → q2 → q3 agrees with p1δ3. By the construction in Lemma
22.27.1, the morphism δ is given by

p1π3s2d(p2s3) =p1π3s2p2d(s3)
=p1π3(1− βαπ1π3)d(s3)
=p1π3d(s3) (since π3β = 0)
=p1δ3

as desired. The proof is complete. □

Putting everything together we finally obtain the analogue of Proposition 22.10.3.
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Proposition 22.27.16.09QY In Situation 22.27.2 the homotopy category K(A) with its
natural translation functors and distinguished triangles is a triangulated category.

Proof. By Lemma 22.27.14 we know that K(A) is pre-triangulated. Combining
Lemmas 22.27.7 and 22.27.15 with Derived Categories, Lemma 13.4.15, we conclude
that K(A) is a triangulated category. □

Lemma 22.27.17.0FQF Let R be a ring. Let F : A → B be a functor between differential
graded categories over R satisfying axioms (A), (B), and (C) such that F (x[1]) =
F (x)[1]. Then F induces an exact functor K(A)→ K(B) of triangulated categories.

Proof. Namely, if x → y → z is an admissible short exact sequence in Comp(A),
then F (x) → F (y) → F (z) is an admissible short exact sequence in Comp(B).
Moreover, the “boundary” morphism δ = πd(s) : z → x[1] constructed in Lemma
22.27.1 produces the morphism F (δ) : F (z)→ F (x[1]) = F (x)[1] which is equal to
the boundary map F (π)d(F (s)) for the admissible short exact sequence F (x) →
F (y)→ F (z). □

22.28. Bimodules

0FQG We continue the discussion started in Section 22.12.

Definition 22.28.1.0FQH Bimodules. Let R be a ring.
(1) Let A and B be R-algebras. An (A,B)-bimodule is an R-module M

equippend with R-bilinear maps
A×M →M, (a, x) 7→ ax and M ×B →M, (x, b) 7→ xb

such that the following hold
(a) a′(ax) = (a′a)x and (xb)b′ = x(bb′),
(b) a(xb) = (ax)b, and
(c) 1x = x = x1.

(2) Let A and B be Z-graded R-algebras. A graded (A,B)-bimodule is an
(A,B)-bimodule M which has a grading M =

⊕
Mn such that AnMm ⊂

Mn+m and MnBm ⊂Mn+m.
(3) Let A and B be differential graded R-algebras. A differential graded

(A,B)-bimodule is a graded (A,B)-bimodule which comes equipped with
a differential d : M → M homogeneous of degree 1 such that d(ax) =
d(a)x+ (−1)deg(a)ad(x) and d(xb) = d(x)b+ (−1)deg(x)xd(b) for homoge-
neous elements a ∈ A, x ∈M , b ∈ B.

Observe that a differential graded (A,B)-bimodule M is the same thing as a right
differential graded B-module which is also a left differential graded A-module such
that the grading and differentials agree and such that the A-module structure com-
mutes with the B-module structure. Here is a precise statement.

Lemma 22.28.2.0FQI Let R be a ring. Let (A,d) and (B, d) be differential graded
algebras over R. Let M be a right differential graded B-module. There is a 1-to-
1 correspondence between (A,B)-bimodule structures on M compatible with the
given differential graded B-module structure and homomorphisms

A −→ HomModdg(B,d)
(M,M)

of differential graded R-algebras.

https://stacks.math.columbia.edu/tag/09QY
https://stacks.math.columbia.edu/tag/0FQF
https://stacks.math.columbia.edu/tag/0FQH
https://stacks.math.columbia.edu/tag/0FQI
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Proof. Let µ : A×M →M define a left differential graded A-module structure on
the underlying complex of R-modules M• of M . By Lemma 22.13.1 the structure
µ corresponds to a map γ : A→ Hom•(M•,M•) of differential graded R-algebras.
The assertion of the lemma is simply that µ commutes with the B-action, if and
only if γ ends up inside

HomModdg(B,d)
(M,M) ⊂ Hom•(M•,M•)

We omit the detailed calculation. □

Let M be a differential graded (A,B)-bimodule. Recall from Section 22.11 that
the left differential graded A-module structure corresponds to a right differential
graded Aopp-module structure. Since the A and B module structures commute this
gives M the structure of a differential graded Aopp ⊗R B-module:

x · (a⊗ b) = (−1)deg(a) deg(x)axb

Conversely, if we have a differential graded Aopp⊗R B-module M , then we can use
the formula above to get a differential graded (A,B)-bimodule.

Lemma 22.28.3.0FQJ Let R be a ring. Let (A,d) and (B, d) be differential graded
algebras over R. The construction above defines an equivalence of categories

differential graded
(A,B)-bimodules ←→

right differential graded
Aopp ⊗R B-modules

Proof. Immediate from discussion the above. □

Let R be a ring. Let (A,d) and (B, d) be differential graded R-algebras. Let P be
a differential graded (A,B)-bimodule. We say P has property (P) if it there exists
a filtration

0 = F−1P ⊂ F0P ⊂ F1P ⊂ . . . ⊂ P
by differential graded (A,B)-bimodules such that

(1) P =
⋃
FpP ,

(2) the inclusions FiP → Fi+1P are split as graded (A,B)-bimodule maps,
(3) the quotients Fi+1P/FiP are isomorphic as differential graded (A,B)-

bimodules to a direct sum of (A⊗R B)[k].

Lemma 22.28.4.0FQK Let R be a ring. Let (A,d) and (B, d) be differential graded R-
algebras. Let M be a differential graded (A,B)-bimodule. There exists a homomor-
phism P →M of differential graded (A,B)-bimodules which is a quasi-isomorphism
such that P has property (P) as defined above.

Proof. Immediate from Lemmas 22.28.3 and 22.20.4. □

Lemma 22.28.5.0FQL Let R be a ring. Let (A,d) and (B, d) be differential graded R-
algebras. Let P be a differential graded (A,B)-bimodule having property (P) with
corresponding filtration F•, then we obtain a short exact sequence

0→
⊕

FiP →
⊕

FiP → P → 0

of differential graded (A,B)-bimodules which is split as a sequence of graded (A,B)-
bimodules.

Proof. Immediate from Lemmas 22.28.3 and 22.20.1. □

https://stacks.math.columbia.edu/tag/0FQJ
https://stacks.math.columbia.edu/tag/0FQK
https://stacks.math.columbia.edu/tag/0FQL
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22.29. Bimodules and tensor product

0FQM Let R be a ring. Let A and B be R-algebras. Let M be a right A-module. Let N
be a (A,B)-bimodule. Then M ⊗A N is a right B-module.
If in the situation of the previous paragraph A and B are Z-graded algebras, M is
a graded A-module, and N is a graded (A,B)-bimodule, then M ⊗A N is a right
graded B-module. The construction is functorial in M and defines a functor

−⊗A N : ModgrA −→ ModgrB
of graded categories as in Example 22.25.6. Namely, if M and M ′ are graded A-
modules and f : M → M ′ is an A-module homomorphism homogeneous of degree
n, then f⊗ idN : M⊗AN →M ′⊗AN is a B-module homomorphism homogeneous
of degree n.
If in the situation of the previous paragraph (A,d) and (B, d) are differential graded
algebras, M is a differential graded A-module, and N is a differential graded (A,B)-
bimodule, then M ⊗A N is a right differential graded B-module.

Lemma 22.29.1.09LM Let R be a ring. Let (A,d) and (B, d) be differential graded
algebras over R. Let N be a differential graded (A,B)-bimodule. Then M 7→
M ⊗A N defines a functor

−⊗A N : Moddg(A,d) −→ Moddg(B,d)

of differential graded categories. This functor induces functors
Mod(A,d) → Mod(B,d) and K(Mod(A,d))→ K(Mod(B,d))

by an application of Lemma 22.26.5.

Proof. Above we have seen how the construction defines a functor of underlying
graded categories. Thus it suffices to show that the construction is compatible with
differentials. Let M and M ′ be differential graded A-modules and let f : M →M ′

be an A-module homomorphism which is homogeneous of degree n. Then we have
d(f) = dM ′ ◦ f − (−1)nf ◦ dM

On the other hand, we have
d(f ⊗ idN ) = dM ′⊗AN ◦ (f ⊗ idN )− (−1)n(f ⊗ idN ) ◦ dM⊗AN

Applying this to an element x⊗ y with x ∈M and y ∈ N homogeneous we get
d(f ⊗ idN )(x⊗ y) =dM ′(f(x))⊗ y + (−1)n+deg(x)f(x)⊗ dN (y)

− (−1)nf(dM (x))⊗ y − (−1)n+deg(x)f(x)⊗ dN (y)
=d(f)(x⊗ y)

Thus we see that d(f)⊗ idN = d(f ⊗ idN ) and the proof is complete. □

Remark 22.29.2.0FQN Let R be a ring. Let (A,d) and (B, d) be differential graded
algebras over R. Let N be a differential graded (A,B)-bimodule. Let M be a right
differential graded A-module. Then for every k ∈ Z there is an isomorphism

(M ⊗A N)[k] −→M [k]⊗A N
of right differential graded B-modules defined without the intervention of signs, see
More on Algebra, Section 15.72.

https://stacks.math.columbia.edu/tag/09LM
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If we have a ring R and R-algebras A, B, and C, a right A-module M , an (A,B)-
bimodule N , and a (B,C)-bimodule N ′, then N ⊗B N ′ is a (A,C)-bimodule and
we have

(M ⊗A N)⊗B N ′ = M ⊗A (N ⊗B N ′)
This equality continuous to hold in the graded and in the differential graded case.
See More on Algebra, Section 15.72 for sign rules.

22.30. Bimodules and internal hom

0FQP Let R be a ring. If A is an R-algebra (see our conventions in Section 22.2) and M ,
M ′ are right A-modules, then we define

HomA(M,M ′) = {f : M →M ′ | f is A-linear}
as usual.
Let R-be a ring. Let A and B be R-algebras. Let N be an (A,B)-bimodule. Let
N ′ be a right B-module. In this situation we will think of

HomB(N,N ′)
as a right A-module using precomposition.
Let R-be a ring. Let A and B be Z-graded R-algebras. Let N be a graded (A,B)-
bimodule. Let N ′ be a right graded B-module. In this situation we will think of
the graded R-module

HomModgr
B

(N,N ′)
defined in Example 22.25.6 as a right graded A-module using precomposition. The
construction is functorial in N ′ and defines a functor

HomModgr
B

(N,−) : ModgrB −→ ModgrA
of graded categories as in Example 22.25.6. Namely, if N1 and N2 are graded B-
modules and f : N1 → N2 is a B-module homomorphism homogeneous of degree
n, then the induced map HomModgr

B
(N,N1) → HomModgr

B
(N,N2) is an A-module

homomorphism homogeneous of degree n.
Let R be a ring. Let A and B be differential Z-graded R-algebras. Let N be a
differential graded (A,B)-bimodule. LetN ′ be a right differential graded B-module.
In this situation we will think of the differential graded R-module

HomModdg(B,d)
(N,N ′)

defined in Example 22.26.8 as a right differential graded A-module using precom-
position as in the graded case. This is compatible with differentials because multi-
plication is the composition
HomModdg

B
(N,N ′)⊗RA→ HomModdg

B
(N,N ′)⊗RHomModdg

B
(N,N)→ HomModdg

B
(N,N ′)

The first arrow uses the map of Lemma 22.28.2 and the second arrow is the com-
position in the differential graded category Moddg(B,d).

Lemma 22.30.1.0FQQ Let R be a ring. Let (A,d) and (B, d) be differential graded
algebras over R. Let N be a differential graded (A,B)-bimodule. The construction
above defines a functor

HomModdg(B,d)
(N,−) : Moddg(B,d) −→ Moddg(A,d)

https://stacks.math.columbia.edu/tag/0FQQ
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of differential graded categories. This functor induces functors

Mod(B,d) → Mod(A,d) and K(Mod(B,d))→ K(Mod(A,d))

by an application of Lemma 22.26.5.

Proof. Above we have seen how the construction defines a functor of underlying
graded categories. Thus it suffices to show that the construction is compatible with
differentials. Let N1 and N2 be differential graded B-modules. Write

H12 = HomModdg(B,d)
(N1, N2), H1 = HomModdg(B,d)

(N,N1), H2 = HomModdg(B,d)
(N,N2)

Consider the composition
c : H12 ⊗R H1 −→ H2

in the differential graded category Moddg(B,d). Let f : N1 → N2 be a B-module
homomorphism which is homogeneous of degree n, in other words, f ∈ Hn

12. The
functor in the lemma sends f to cf : H1 → H2, g 7→ c(f, g). Simlarly for d(f). On
the other hand, the differential on

HomModdg(A,d)
(H1, H2)

sends cf to dH2 ◦cf −(−1)ncf ◦dH1 . As c is a morphism of complexes of R-modules
we have dc(f, g) = c(df, g) + (−1)nc(f, dg). Hence we see that

(dcf )(g) = dc(f, g)− (−1)nc(f, dg)
= c(df, g) + (−1)nc(f, dg)− (−1)nc(f, dg)
= c(df, g) = cdf (g)

and the proof is complete. □

Remark 22.30.2.0FQR Let R be a ring. Let (A,d) and (B, d) be differential graded
algebras over R. Let N be a differential graded (A,B)-bimodule. Let N ′ be a right
differential graded B-module. Then for every k ∈ Z there is an isomorphism

HomModgr
B

(N,N ′)[k] −→ HomModgr
B

(N,N ′[k])

of right differential graded A-modules defined without the intervention of signs, see
More on Algebra, Section 15.72.

Lemma 22.30.3.09LN Let R be a ring. Let A and B be R-algebras. Let M be a right
A-module, N an (A,B)-bimodule, and N ′ a right B-module. Then we have a
canonical isomorphism

HomB(M ⊗A N,N ′) = HomA(M,HomB(N,N ′))

of R-modules. If A, B, M , N , N ′ are compatibly graded, then we have a canonical
isomorphism

HomModgr
B

(M ⊗A N,N ′) = HomModgr
A

(M,HomModgr
B

(N,N ′))

of graded R-modules If A, B, M , N , N ′ are compatibly differential graded, then
we have a canonical isomorphism

HomModdg(B,d)
(M ⊗A N,N ′) = HomModdg(A,d)

(M,HomModdg(B,d)
(N,N ′))

of complexes of R-modules.

https://stacks.math.columbia.edu/tag/0FQR
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Proof. Omitted. Hint: in the ungraded case interpret both sides as A-bilinear maps
ψ : M ×N → N ′ which are B-linear on the right. In the (differential) graded case,
use the isomorphism of More on Algebra, Lemma 15.71.1 and check it is compatible
with the module structures. Alternatively, use the isomorphism of Lemma 22.13.2
and show that it is compatible with the B-module structures. □

22.31. Derived Hom

09LF This section is analogous to More on Algebra, Section 15.73.
Let R be a ring. Let (A,d) and (B, d) be differential graded algebras over R. Let
N be a differential graded (A,B)-bimodule. Consider the functor
(22.31.0.1)09LG HomModdg(B,d)

(N,−) : Mod(B,d) −→ Mod(A,d)

of Section 22.30.

Lemma 22.31.1.09LH The functor (22.31.0.1) defines an exact functor K(Mod(B,d))→
K(Mod(A,d)) of triangulated categories.

Proof. Via Lemma 22.30.1 and Remark 22.30.2 this follows from the general prin-
ciple of Lemma 22.27.17. □

Recall that we have an exact functor of triangulated categories
HomModdg(B,d)

(N,−) : K(Mod(B,d))→ K(Mod(A,d))

see Lemma 22.31.1. Consider the diagram

K(Mod(B,d))

��

see above
//

F
))

K(Mod(A,d))

��
D(B, d) // D(A,d)

We would like to construct a dotted arrow as the right derived functor of the
composition F . (Warning: in most interesting cases the diagram will not commute.)
Namely, in the general setting of Derived Categories, Section 13.14 we want to
compute the right derived functor of F with respect to the multiplicative system
of quasi-isomorphisms in K(Mod(A,d)).

Lemma 22.31.2.09LI In the situation above, the right derived functor of F exists. We
denote it RHom(N,−) : D(B, d)→ D(A,d).

Proof. We will use Derived Categories, Lemma 13.14.15 to prove this. As our
collection I of objects we will use the objects with property (I). Property (1) was
shown in Lemma 22.21.4. Property (2) holds because if s : I → I ′ is a quasi-
isomorphism of modules with property (I), then s is a homotopy equivalence by
Lemma 22.22.3. □

Lemma 22.31.3.0BYV Let R be a ring. Let (A,d) and (B, d) be differential graded
R-algebras. Let f : N → N ′ be a homomorphism of differential graded (A,B)-
bimodules. Then f induces a morphism of functors

− ◦ f : RHom(N ′,−) −→ RHom(N,−)
If f is a quasi-isomorphism, then f ◦ − is an isomorphism of functors.

https://stacks.math.columbia.edu/tag/09LH
https://stacks.math.columbia.edu/tag/09LI
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Proof. Write B = Moddg(B,d) the differential graded category of differential graded
B-modules, see Example 22.26.8. Let I be a differential graded B-module with
property (I). Then f ◦ − : HomB(N ′, I) → HomB(N, I) is a map of differential
graded A-modules. Moreover, this is functorial with respect to I. Since the functors
RHom(N ′,−) and RHom(N,−) are computed by applying HomB into objects with
property (I) (Lemma 22.31.2) we obtain a transformation of functors as indicated.
Assume that f is a quasi-isomorphism. Let F• be the given filtration on I. Since
I = lim I/FpI we see that HomB(N ′, I) = lim HomB(N ′, I/FpI) and HomB(N, I) =
lim HomB(N, I/FpI). Since the transition maps in the system I/FpI are split as
graded modules, we see that the transition maps in the systems HomB(N ′, I/FpI)
and HomB(N, I/FpI) are surjective. Hence HomB(N ′, I), resp. HomB(N, I) viewed
as a complex of abelian groups computesR lim of the system of complexes HomB(N ′, I/FpI),
resp. HomB(N, I/FpI). See More on Algebra, Lemma 15.86.1. Thus it suffices to
prove each

HomB(N ′, I/FpI)→ HomB(N, I/FpI)
is a quasi-isomorphism. Since the surjections I/Fp+1I → I/FpI are split as maps
of graded B-modules we see that

0→ HomB(N ′, FpI/Fp+1I)→ HomB(N ′, I/Fp+1I)→ HomB(N ′, I/FpI)→ 0
is a short exact sequence of differential graded A-modules. There is a similar
sequence for N and f induces a map of short exact sequences. Hence by induction
on p (starting with p = 0 when I/F0I = 0) we conclude that it suffices to show that
the map HomB(N ′, FpI/Fp+1I) → HomB(N,FpI/Fp+1I) is a quasi-isomorphism.
Since FpI/Fp+1I is a product of shifts of A∨ it suffice to prove HomB(N ′, B∨[k])→
HomB(N,B∨[k]) is a quasi-isomorphism. By Lemma 22.19.3 it suffices to show
(N ′)∨ → N∨ is a quasi-isomorphism. This is true because f is a quasi-isomorphism
and ( )∨ is an exact functor. □

Lemma 22.31.4.0CS5 Let (A,d) and (B, d) be differential graded algebras over a ring
R. Let N be a differential graded (A,B)-bimodule. Then for every n ∈ Z there are
isomorphisms

Hn(RHom(N,M)) = ExtnD(B,d)(N,M)
of R-modules functorial inM . It is also functorial inN with respect to the operation
described in Lemma 22.31.3.

Proof. In the proof of Lemma 22.31.2 we have seen
RHom(N,M) = HomModdg(B,d)

(N, I)

as a differential graded A-module where M → I is a quasi-isomorphism of M into a
differential graded B-module with property (I). Hence this complex has the correct
cohomology modules by Lemma 22.22.3. We omit a discussion of the functorial
nature of these identifications. □

Lemma 22.31.5.0BYW Let R be a ring. Let (A,d) and (B, d) be differential graded R-
algebras. Let N be a differential graded (A,B)-bimodule. If HomD(B,d)(N,N ′) =
HomK(Mod(B,d))(N,N ′) for all N ′ ∈ K(B, d), for example if N has property (P) as
a differential graded B-module, then

RHom(N,M) = HomModdg(B,d)
(N,M)

https://stacks.math.columbia.edu/tag/0CS5
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functorially in M in D(B, d).

Proof. By construction (Lemma 22.31.2) to find RHom(N,M) we choose a quasi-
isomorphism M → I where I is a differential graded B-module with property (I)
and we set RHom(N,M) = HomModdg(B,d)

(N, I). By assumption the map

HomModdg(B,d)
(N,M) −→ HomModdg(B,d)

(N, I)

induced by M → I is a quasi-isomorphism, see discussion in Example 22.26.8. This
proves the lemma. If N has property (P) as a B-module, then we see that the
assumption is satisfied by Lemma 22.22.3. □

22.32. Variant of derived Hom

09LJ Let A be an abelian category. Consider the differential graded category Compdg(A)
of complexes of A, see Example 22.26.6. Let K• be a complex of A. Set

(E,d) = HomCompdg(A)(K•,K•)

and consider the functor of differential graded categories

Compdg(A) −→ Moddg(E,d), X• 7−→ HomCompdg(A)(K•, X•)

of Lemma 22.26.10.

Lemma 22.32.1.09LK In the situation above. If the right derived functor RHom(K•,−)
of Hom(K•,−) : K(A)→ D(Ab) is everywhere defined on D(A), then we obtain a
canonical exact functor

RHom(K•,−) : D(A) −→ D(E,d)

of triangulated categories which reduces to the usual one on taking associated com-
plexes of abelian groups.

Proof. Note that we have an associated functor K(A)→ K(Mod(E,d)) by Lemma
22.26.10. We claim this functor is an exact functor of triangulated categories.
Namely, let f : A• → B• be a map of complexes of A. Then a computation shows
that

HomCompdg(A)(K•, C(f)•) = C
(
HomCompdg(A)(K•, A•)→ HomCompdg(A)(K•, B•)

)
where the right hand side is the cone in Mod(E,d) defined earlier in this chapter. This
shows that our functor is compatible with cones, hence with distinguished triangles.
Let X• be an object of K(A). Consider the category of quasi-isomorphisms s :
X• → Y •. We are given that the functor (s : X• → Y •) 7→ HomA(K•, Y •)
is essentially constant when viewed in D(Ab). But since the forgetful functor
D(E,d)→ D(Ab) is compatible with taking cohomology, the same thing is true in
D(E,d). This proves the lemma. □

Warning: Although the lemma holds as stated and may be useful as stated, the
differential algebra E isn’t the “correct” one unless Hn(E) = ExtnD(A)(K•,K•) for
all n ∈ Z.

https://stacks.math.columbia.edu/tag/09LK
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22.33. Derived tensor product

09LP This section is analogous to More on Algebra, Section 15.60.
Let R be a ring. Let (A,d) and (B, d) be differential graded algebras over R. Let
N be a differential graded (A,B)-bimodule. Consider the functor
(22.33.0.1)09LQ Mod(A,d) −→ Mod(B,d), M 7−→M ⊗A N

defined in Section 22.29.

Lemma 22.33.1.09LR The functor (22.33.0.1) defines an exact functor of triangulated
categories K(Mod(A,d))→ K(Mod(B,d)).

Proof. Via Lemma 22.29.1 and Remark 22.29.2 this follows from the general prin-
ciple of Lemma 22.27.17. □

At this point we can consider the diagram

K(Mod(A,d))

��

−⊗AN
//

F
))

K(Mod(B,d))

��
D(A,d) // D(B, d)

The dotted arrow that we will construct below will be the left derived functor of the
composition F . (Warning: the diagram will not commute.) Namely, in the general
setting of Derived Categories, Section 13.14 we want to compute the left derived
functor of F with respect to the multiplicative system of quasi-isomorphisms in
K(Mod(A,d)).

Lemma 22.33.2.09LS In the situation above, the left derived functor of F exists. We
denote it −⊗L

A N : D(A,d)→ D(B, d).

Proof. We will use Derived Categories, Lemma 13.14.15 to prove this. As our
collection P of objects we will use the objects with property (P). Property (1) was
shown in Lemma 22.20.4. Property (2) holds because if s : P → P ′ is a quasi-
isomorphism of modules with property (P), then s is a homotopy equivalence by
Lemma 22.22.3. □

Lemma 22.33.3.09S3 Let R be a ring. Let (A,d) and (B, d) be differential graded
R-algebras. Let f : N → N ′ be a homomorphism of differential graded (A,B)-
bimodules. Then f induces a morphism of functors

1⊗ f : −⊗L
A N −→ −⊗L

A N
′

If f is a quasi-isomorphism, then 1⊗ f is an isomorphism of functors.

Proof. Let M be a differential graded A-module with property (P). Then 1 ⊗ f :
M ⊗A N → M ⊗A N ′ is a map of differential graded B-modules. Moreover, this
is functorial with respect to M . Since the functors − ⊗L

A N and − ⊗L
A N ′ are

computed by tensoring on objects with property (P) (Lemma 22.33.2) we obtain a
transformation of functors as indicated.
Assume that f is a quasi-isomorphism. Let F• be the given filtration on M . Observe
that M ⊗A N = colimFi(M)⊗A N and M ⊗A N ′ = colimFi(M)⊗A N ′. Hence it
suffices to show that Fn(M)⊗AN → Fn(M)⊗AN ′ is a quasi-isomorphism (filtered

https://stacks.math.columbia.edu/tag/09LR
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colimits are exact, see Algebra, Lemma 10.8.8). Since the inclusions Fn(M) →
Fn+1(M) are split as maps of graded A-modules we see that

0→ Fn(M)⊗A N → Fn+1(M)⊗A N → Fn+1(M)/Fn(M)⊗A N → 0
is a short exact sequence of differential graded B-modules. There is a similar
sequence for N ′ and f induces a map of short exact sequences. Hence by induction
on n (starting with n = −1 when F−1(M) = 0) we conclude that it suffices to
show that the map Fn+1(M)/Fn(M)⊗A N → Fn+1(M)/Fn(M)⊗A N ′ is a quasi-
isomorphism. This is true because Fn+1(M)/Fn(M) is a direct sum of shifts of A
and the result is true for A[k] as f : N → N ′ is a quasi-isomorphism. □

Lemma 22.33.4.0GZ2 Let R be a ring. Let (A,d) and (B, d) be differential graded R-
algebras. Let N be a differential graded (A,B)-bimodule which has property (P)
as a left differential graded A-module. Then M ⊗L

AN is computed by M ⊗AN for
all differential graded A-modules M .

Proof. Let f : M →M ′ be a homomorphism of differential graded A-modules which
is a quasi-isomorphism. We claim that f ⊗ id : M ⊗A N → M ′ ⊗A N is a quasi-
isomorphism. If this is true, then by the construction of the derived tensor product
in the proof of Lemma 22.33.2 we obtain the desired result. The construction of
the map f ⊗ id only depends on the left differential graded A-module structure
on N . Moreover, we have M ⊗A N = N ⊗Aopp M = N ⊗L

Aopp M because N has
property (P) as a differential graded Aopp-module. Hence the claim follows from
Lemma 22.33.3. □

Lemma 22.33.5.09LT Let R be a ring. Let (A,d) and (B, d) be differential graded
R-algebras. Let N be a differential graded (A,B)-bimodule. Then the functor

−⊗L
A N : D(A,d) −→ D(B, d)

of Lemma 22.33.2 is a left adjoint to the functor
RHom(N,−) : D(B, d) −→ D(A,d)

of Lemma 22.31.2.

Proof. This follows from Derived Categories, Lemma 13.30.1 and the fact that
−⊗A N and HomModdg(B,d)

(N,−) are adjoint by Lemma 22.30.3. □

Example 22.33.6.0BYX Let R be a ring. Let (A,d) → (B, d) be a homomorphism of
differential graded R-algebras. Then we can view B as a differential graded (A,B)-
bimodule and we get a functor

−⊗A B : D(A,d) −→ D(B, d)
By Lemma 22.33.5 the left adjoint of this is the functor RHom(B,−). For a
differential graded B-module let us denote NA the differential graded A-module
obtained from N by restriction via A → B. Then we clearly have a canonical
isomorphism

HomModdg(B,d)
(B,N) −→ NA, f 7−→ f(1)

functorial in the B-module N . Thus we see that RHom(B,−) is the restriction
functor and we obtain

HomD(A,d)(M,NA) = HomD(B,d)(M ⊗L
A B,N)

https://stacks.math.columbia.edu/tag/0GZ2
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bifunctorially in M and N exactly as in the case of commutative rings. Finally,
observe that restriction is a tensor functor as well, since NA = N ⊗B BBA =
N ⊗L

B BBA where BBA is B viewed as a differential graded (B,A)-bimodule.
Lemma 22.33.7.09R9 With notation and assumptions as in Lemma 22.33.5. Assume

(1) N defines a compact object of D(B, d), and
(2) the map Hk(A)→ HomD(B,d)(N,N [k]) is an isomorphism for all k ∈ Z.

Then the functor −⊗L
A N is fully faithful.

Proof. Our functor has a left adjoint given by RHom(N,−) by Lemma 22.33.5. By
Categories, Lemma 4.24.4 it suffices to show that for a differential graded A-module
M the map

M −→ RHom(N,M ⊗L
A N)

is an isomorphism in D(A,d). For this it suffices to show that
Hn(M) −→ ExtnD(B,d)(N,M ⊗L

A N)
is an isomorphism, see Lemma 22.31.4. Since N is a compact object the right hand
side commutes with direct sums. Thus by Remark 22.22.5 it suffices to prove this
map is an isomorphism for M = A[k]. Since (A[k] ⊗L

A N) = N [k] by Remark
22.29.2, assumption (2) on N is that the result holds for these. □

Lemma 22.33.8.0BYZ Let R → R′ be a ring map. Let (A,d) be a differential graded
R-algebra. Let (A′,d) be the base change, i.e., A′ = A ⊗R R′. If A is K-flat as a
complex of R-modules, then

(1) −⊗L
A A

′ : D(A,d)→ D(A′,d) is equal to the right derived functor of
K(A,d) −→ K(A′,d), M 7−→M ⊗R R′

(2) the diagram

D(A,d)
−⊗L

AA
′
//

restriction

��

D(A′,d)

restriction

��
D(R)

−⊗L
RR

′
// D(R′)

commutes, and
(3) if M is K-flat as a complex of R-modules, then the differential graded

A′-module M ⊗R R′ represents M ⊗L
A A

′.
Proof. For any differential graded A-module M there is a canonical map

cM : M ⊗R R′ −→M ⊗A A′

Let P be a differential graded A-module with property (P). We claim that cP is an
isomorphism and that P is K-flat as a complex of R-modules. This will prove all
the results stated in the lemma by formal arguments using the definition of derived
tensor product in Lemma 22.33.2 and More on Algebra, Section 15.59.
Let F• be the filtration on P showing that P has property (P). Note that cA is an
isomorphism and A is K-flat as a complex of R-modules by assumption. Hence the
same is true for direct sums of shifts of A (you can use More on Algebra, Lemma
15.59.8 to deal with direct sums if you like). Hence this holds for the complexes
Fp+1P/FpP . Since the short exact sequences

0→ FpP → Fp+1P → Fp+1P/FpP → 0

https://stacks.math.columbia.edu/tag/09R9
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are split exact as sequences of graded modules, we can argue by induction that cFpP
is an isomorphism for all p and that FpP is K-flat as a complex of R-modules (use
More on Algebra, Lemma 15.59.5). Finally, using that P = colimFpP we conclude
that cP is an isomorphism and that P is K-flat as a complex of R-modules (use
More on Algebra, Lemma 15.59.8). □

Lemma 22.33.9.0BZ0 Let R be a ring. Let (A,d) and (B, d) be differential graded
R-algebras. Let T be a differential graded (A,B)-bimodule. Assume

(1) T defines a compact object of D(B, d), and
(2) S = HomModdg(B,d)

(T,B) represents RHom(T,B) in D(A,d).

Then S has a structure of a differential graded (B,A)-bimodule and there is an
isomorphism

N ⊗L
B S −→ RHom(T,N)

functorial in N in D(B, d).

Proof. Write B = Moddg(B,d). The right A-module structure on S comes from
the map A → HomB(T, T ) and the composition HomB(T,B) ⊗ HomB(T, T ) →
HomB(T,B) defined in Example 22.26.8. Using this multiplication a second time
there is a map

cN : N ⊗B S = HomB(B,N)⊗B HomB(T,B) −→ HomB(T,N)
functorial in N . Given N we can choose quasi-isomorphisms P → N → I where P ,
resp. I is a differential graded B-module with property (P), resp. (I). Then using cN
we obtain a map P ⊗B S → HomB(T, I) between the objects representing S ⊗L

B N
and RHom(T,N). Clearly this defines a transformation of functors c as in the
lemma.
To prove that c is an isomorphism of functors, we may assume N is a differential
graded B-module which has property (P). Since T defines a compact object in
D(B, d) and since both sides of the arrow define exact functors of triangulated
categories, we reduce using Lemma 22.20.1 to the case where N has a finite filtration
whose graded pieces are direct sums of B[k]. Using again that both sides of the
arrow are exact functors of triangulated categories and compactness of T we reduce
to the case N = B[k]. Assumption (2) is exactly the assumption that c is an
isomorphism in this case. □

22.34. Composition of derived tensor products

0BZ1 We encourage the reader to skip this section.
Let R be a ring. Let (A,d), (B, d), and (C, d) be differential graded R-algebras.
Let N be a differential graded (A,B)-bimodule. Let N ′ be a differential graded
(B,C)-module. We denote NB the bimodule N viewed as a differential graded
B-module (forgetting about the A-structure). There is a canonical map

(22.34.0.1)0BZ2 NB ⊗L
B N

′ −→ (N ⊗B N ′)C
in D(C, d). Here (N ⊗B N ′)C denotes the (A,C)-bimodule N ⊗B N ′ viewed as
a differential graded C-module. Namely, this map comes from the fact that the
derived tensor product always maps to the plain tensor product (as it is a left
derived functor).

https://stacks.math.columbia.edu/tag/0BZ0
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Lemma 22.34.1.0BZ3 Let R be a ring. Let (A,d), (B, d), and (C, d) be differential
graded R-algebras. Let N be a differential graded (A,B)-bimodule. Let N ′ be a
differential graded (B,C)-module. Assume (22.34.0.1) is an isomorphism. Then
the composition

D(A,d)
−⊗L

AN // D(B, d)
−⊗L

BN
′
// D(C,d)

is isomorphic to −⊗L
A N

′′ with N ′′ = N ⊗B N ′ viewed as (A,C)-bimodule.

Proof. Let us define a transformation of functors

(−⊗L
A N)⊗L

B N
′ −→ −⊗L

A N
′′

To do this, let M be a differential graded A-module with property (P). According
to the construction of the functor −⊗L

AN
′′ of the proof of Lemma 22.33.2 the plain

tensor product M ⊗A N ′′ represents M ⊗L
A N

′′ in D(C, d). Then we write

M ⊗A N ′′ = M ⊗A (N ⊗B N ′) = (M ⊗A N)⊗B N ′

The module M ⊗AN represents M ⊗L
AN in D(B, d). Choose a quasi-isomorphism

Q→M ⊗A N where Q is a differential graded B-module with property (P). Then
Q⊗B N ′ represents (M ⊗L

A N)⊗L
B N

′ in D(C, d). Thus we can define our map via

(M ⊗L
A N)⊗L

B N
′ = Q⊗B N ′ →M ⊗A N ⊗B N ′ = M ⊗L

A N
′′

The construction of this map is functorial in M and compatible with distinguished
triangles and direct sums; we omit the details. Consider the property T of objects
M of D(A,d) expressing that this map is an isomorphism. Then

(1) if T holds for Mi then T holds for
⊕
Mi,

(2) if T holds for 2-out-of-3 in a distinguished triangle, then it holds for the
third, and

(3) T holds for A[k] because here we obtain a shift of the map (22.34.0.1)
which we have assumed is an isomorphism.

Thus by Remark 22.22.5 property T always holds and the proof is complete. □

Let R be a ring. Let (A,d), (B, d), and (C,d) be differential graded R-algebras.
We temporarily denote (A⊗R B)B the differential graded algebra A⊗R B viewed
as a (right) differential graded B-module, and B(B ⊗R C)C the differential graded
algebra B ⊗R C viewed as a differential graded (B,C)-bimodule. Then there is a
canonical map

(22.34.1.1)0BZ4 (A⊗R B)B ⊗L
B B(B ⊗R C)C −→ (A⊗R B ⊗R C)C

in D(C,d) where (A⊗R B ⊗R C)C denotes the differential graded R-algebra A⊗R
B⊗R C viewed as a (right) differential graded C-module. Namely, this map comes
from the identification

(A⊗R B)B ⊗B B(B ⊗R C)C = (A⊗R B ⊗R C)C
and the fact that the derived tensor product always maps to the plain tensor product
(as it is a left derived functor).

Lemma 22.34.2.0BZ5 LetR be a ring. Let (A,d), (B, d), and (C, d) be differential graded
R-algebras. Assume that (22.34.1.1) is an isomorphism. Let N be a differential

https://stacks.math.columbia.edu/tag/0BZ3
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22.34. COMPOSITION OF DERIVED TENSOR PRODUCTS 2090

graded (A,B)-bimodule. Let N ′ be a differential graded (B,C)-bimodule. Then
the composition

D(A,d)
−⊗L

AN // D(B, d)
−⊗L

BN
′
// D(C,d)

is isomorphic to − ⊗L
A N

′′ for a differential graded (A,C)-bimodule N ′′ described
in the proof.

Proof. By Lemma 22.33.3 we may replaceN andN ′ by quasi-isomorphic bimodules.
Thus we may assume N , resp. N ′ has property (P) as differential graded (A,B)-
bimodule, resp. (B,C)-bimodule, see Lemma 22.28.4. We claim the lemma holds
with the (A,C)-bimodule N ′′ = N ⊗B N ′. To prove this, it suffices to show that

NB ⊗L
B N

′ −→ (N ⊗B N ′)C
is an isomorphism in D(C,d), see Lemma 22.34.1.
Let F• be the filtration on N as in property (P) for bimodules. By Lemma 22.28.5
there is a short exact sequence

0→
⊕

FiN →
⊕

FiN → N → 0

of differential graded (A,B)-bimodules which is split as a sequence of graded (A,B)-
bimodules. A fortiori this is an admissible short exact sequence of differential graded
B-modules and this produces a distinguished triangle⊕

FiNB →
⊕

FiNB → NB →
⊕

FiNB [1]

in D(B, d). Using that − ⊗L
B N ′ is an exact functor of triangulated categories

and commutes with direct sums and using that − ⊗B N ′ transforms admissible
exact sequences into admissible exact sequences and commutes with direct sums
we reduce to proving that

(FpN)B ⊗L
B N

′ −→ (FpN)B ⊗B N ′

is a quasi-isomorphism for all p. Repeating the argument with the short exact
sequences of (A,B)-bimodules

0→ FpN → Fp+1N → Fp+1N/FpN → 0
which are split as graded (A,B)-bimodules we reduce to showing the same state-
ment for Fp+1N/FpN . Since these modules are direct sums of shifts of (A⊗R B)B
we reduce to showing that

(A⊗R B)B ⊗L
B N

′ −→ (A⊗R B)B ⊗B N ′

is a quasi-isomorphism.
Choose a filtration F• on N ′ as in property (P) for bimodules. Choose a quasi-
isomorphism P → (A ⊗R B)B of differential graded B-modules where P has
property (P). We have to show that P ⊗B N ′ → (A ⊗R B)B ⊗B N ′ is a quasi-
isomorphism because P ⊗B N ′ represents (A ⊗R B)B ⊗L

B N ′ in D(C, d) by the
construction in Lemma 22.33.2. As N ′ = colimFpN

′ we find that it suffices to
show that P ⊗B FpN

′ → (A ⊗R B)B ⊗B FpN
′ is a quasi-isomorphism. Using

the short exact sequences 0 → FpN
′ → Fp+1N

′ → Fp+1N
′/FpN

′ → 0 which are
split as graded (B,C)-bimodules we reduce to showing P ⊗B Fp+1N

′/FpN
′ →

(A ⊗R B)B ⊗B Fp+1N
′/FpN

′ is a quasi-isomorphism for all p. Then finally using
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that Fp+1N
′/FpN

′ is a direct sum of shifts of B(B ⊗R C)C we conclude that it
suffices to show that

P ⊗B B(B ⊗R C)C → (A⊗R B)B ⊗B B(B ⊗R C)C
is a quasi-isomorphism. Since P → (A⊗RB)B is a resolution by a module satisfying
property (P) this map of differential graded C-modules represents the morphism
(22.34.1.1) in D(C,d) and the proof is complete. □

Lemma 22.34.3.09S4 Let R be a ring. Let (A,d), (B, d), and (C, d) be differential
graded R-algebras. If C is K-flat as a complex of R-modules, then (22.34.1.1) is an
isomorphism and the conclusion of Lemma 22.34.2 is valid.

Proof. Choose a quasi-isomorphism P → (A ⊗R B)B of differential graded B-
modules, where P has property (P). Then we have to show that

P ⊗B (B ⊗R C) −→ (A⊗R B)⊗B (B ⊗R C)
is a quasi-isomorphism. Equivalently we are looking at

P ⊗R C −→ A⊗R B ⊗R C
This is a quasi-isomorphism if C is K-flat as a complex of R-modules by More on
Algebra, Lemma 15.59.2. □

22.35. Variant of derived tensor product

09LU Let (C,O) be a ringed site. Then we have the functors
Comp(O)→ K(O)→ D(O)

and as we’ve seen above we have differential graded enhancement Compdg(O).
Namely, this is the differential graded category of Example 22.26.6 associated to
the abelian category Mod(O). Let K• be a complex of O-modules in other words,
an object of Compdg(O). Set

(E,d) = HomCompdg(O)(K•,K•)
This is a differential graded Z-algebra. We claim there is an analogue of the derived
base change in this situation.

Lemma 22.35.1.09LV In the situation above there is a functor

−⊗E K• : Moddg(E,d) −→ Compdg(O)

of differential graded categories. This functor sends E to K• and commutes with
direct sums.

Proof. Let M be a differential graded E-module. For every object U of C the
complex K•(U) is a left differential graded E-module as well as a right O(U)-
module. The actions commute, so we have a bimodule. Thus, by the constructions
in Sections 22.12 and 22.28 we can form the tensor product

M ⊗E K•(U)
which is a differential graded O(U)-module, i.e., a complex of O(U)-modules. This
construction is functorial with respect to U , hence we can sheafify to get a complex
of O-modules which we denote

M ⊗E K•

https://stacks.math.columbia.edu/tag/09S4
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Moreover, for each U the construction determines a functor Moddg(E,d) → Compdg(O(U))
of differential graded categories by Lemma 22.29.1. It is therefore clear that we ob-
tain a functor as stated in the lemma. □

Lemma 22.35.2.09LW The functor of Lemma 22.35.1 defines an exact functor of trian-
gulated categories K(Mod(E,d))→ K(O).

Proof. The functor induces a functor between homotopy categories by Lemma
22.26.5. We have to show that − ⊗E K• transforms distinguished triangles into
distinguished triangles. Suppose that 0 → K → L → M → 0 is an admissible
short exact sequence of differential graded E-modules. Let s : M → L be a graded
E-module homomorphism which is left inverse to L → M . Then s defines a map
M ⊗E K• → L ⊗E K• of graded O-modules (i.e., respecting O-module structure
and grading, but not differentials) which is left inverse to L ⊗E K• → M ⊗E K•.
Thus we see that

0→ K ⊗E K• → L⊗E K• →M ⊗E K• → 0

is a termwise split short exact sequences of complexes, i.e., a defines a distinguished
triangle in K(O). □

Lemma 22.35.3.09LX The functor K(Mod(E,d)) → K(O) of Lemma 22.35.2 has a left
derived version defined on all of D(E,d). We denote it −⊗L

EK
• : D(E,d)→ D(O).

Proof. We will use Derived Categories, Lemma 13.14.15 to prove this. As our
collection P of objects we will use the objects with property (P). Property (1) was
shown in Lemma 22.20.4. Property (2) holds because if s : P → P ′ is a quasi-
isomorphism of modules with property (P), then s is a homotopy equivalence by
Lemma 22.22.3. □

Lemma 22.35.4.0CS6 Let R be a ring. Let C be a site. Let O be a sheaf of commutative
R-algebras. Let K• be a complex of O-modules. The functor of Lemma 22.35.3
has the following property: For every M , N in D(E,d) there is a canonical map

RHom(M,N) −→ RHomO(M ⊗L
E K

•, N ⊗L
E K

•)

in D(R) which on cohomology modules gives the maps

ExtnD(E,d)(M,N)→ ExtnD(O)(M ⊗L
E K

•, N ⊗L
E K

•)

induced by the functor −⊗L
E K

•.

Proof. The right hand side of the arrow is the global derived hom introduced in
Cohomology on Sites, Section 21.36 which has the correct cohomology modules.
For the left hand side we think of M as a (R,A)-bimodule and we have the derived
Hom introduced in Section 22.31 which also has the correct cohomology modules.
To prove the lemma we may assume M and N are differential graded E-modules
with property (P); this does not change the left hand side of the arrow by Lemma
22.31.3. By Lemma 22.31.5 this means that the left hand side of the arrow becomes
HomModdg(B,d)

(M,N). In Lemmas 22.35.1, 22.35.2, and 22.35.3 we have constructed
a functor

−⊗E K• : Moddg(E,d) −→ Compdg(O)

https://stacks.math.columbia.edu/tag/09LW
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of differential graded categories and we have shown that −⊗L
E K

• is computed by
evaluating this functor on differential graded E-modules with property (P). Hence
we obtain a map of complexes of R-modules

HomModdg(B,d)
(M,N) −→ HomCompdg(O)(M ⊗E K•, N ⊗E K•)

For any complexes of O-modules F•, G• there is a canonical map
HomCompdg(O)(F•,G•) = Γ(C,Hom•(F•,G•)) −→ RHomO(F•,G•).

Combining these maps we obtain the desired map of the lemma. □

Lemma 22.35.5.09LY Let (C,O) be a ringed site. Let K• be a complex of O-modules.
Then the functor

−⊗L
E K

• : D(E,d) −→ D(O)
of Lemma 22.35.3 is a left adjoint of the functor

RHom(K•,−) : D(O) −→ D(E,d)
of Lemma 22.32.1.

Proof. The statement means that we have
HomD(E,d)(M,RHom(K•, L•)) = HomD(O)(M ⊗L

E K
•, L•)

bifunctorially in M and L•. To see this we may replace M by a differential graded
E-module P with property (P). We also may replace L• by a K-injective complex
of O-modules I•. The computation of the derived functors given in the lemmas
referenced in the statement combined with Lemma 22.22.3 translates the above
into

HomK(Mod(E,d))(P,HomB(K•, I•)) = HomK(O)(P ⊗E K•, I•)
where B = Compdg(O). There is an evaluation map from right to left functorial
in P and I• (details omitted). Choose a filtration F• on P as in the definition
of property (P). By Lemma 22.20.1 and the fact that both sides of the equation
are homological functors in P on K(Mod(E,d)) we reduce to the case where P is
replaced by the differential graded E-module

⊕
FiP . Since both sides turn direct

sums in the variable P into direct products we reduce to the case where P is one
of the differential graded E-modules FiP . Since each FiP has a finite filtration
(given by admissible monomorphisms) whose graded pieces are graded projective
E-modules we reduce to the case where P is a graded projective E-module. In this
case we clearly have

HomModdg(E,d)
(P,HomB(K•, I•)) = HomCompdg(O)(P ⊗E K•, I•)

as graded Z-modules (because this statement reduces to the case P = E[k] where
it is obvious). As the isomorphism is compatible with differentials we conclude. □

Lemma 22.35.6.09LZ Let (C,O) be a ringed site. Let K• be a complex of O-modules.
Assume

(1) K• represents a compact object of D(O), and
(2) E = HomCompdg(O)(K•,K•) computes the ext groups of K• in D(O).

Then the functor
−⊗L

E K
• : D(E,d) −→ D(O)

of Lemma 22.35.3 is fully faithful.

https://stacks.math.columbia.edu/tag/09LY
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Proof. Because our functor has a left adjoint given by RHom(K•,−) by Lemma
22.35.5 it suffices to show for a differential graded E-module M that the map

H0(M) −→ HomD(O)(K•,M ⊗L
E K

•)
is an isomorphism. We may assume that M = P is a differential graded E-module
which has property (P). Since K• defines a compact object, we reduce using Lemma
22.20.1 to the case where P has a finite filtration whose graded pieces are direct
sums of E[k]. Again using compactness we reduce to the case P = E[k]. The
assumption on K• is that the result holds for these. □

22.36. Characterizing compact objects

09QZ Compact objects of additive categories are defined in Derived Categories, Definition
13.37.1. In this section we characterize compact objects of the derived category of
a differential graded algebra.

Remark 22.36.1.09R0 Let (A,d) be a differential graded algebra. Is there a characteri-
zation of those differential graded A-modules P for which we have

HomK(A,d)(P,M) = HomD(A,d)(P,M)
for all differential graded A-modules M? Let D ⊂ K(A,d) be the full subcate-
gory whose objects are the objects P satisfying the above. Then D is a strictly
full saturated triangulated subcategory of K(A,d). If P is projective as a graded
A-module, then to see where P is an object of D it is enough to check that
HomK(A,d)(P,M) = 0 whenever M is acyclic. However, in general it is not enough
to assume that P is projective as a graded A-module. Example: take A = R = k[ϵ]
where k is a field and k[ϵ] = k[x]/(x2) is the ring of dual numbers. Let P be the
object with Pn = R for all n ∈ Z and differential given by multiplication by ϵ.
Then idP ∈ HomK(A,d)(P, P ) is a nonzero element but P is acyclic.

Remark 22.36.2.09R1 Let (A,d) be a differential graded algebra. Let us say a differential
graded A-moduleM is finite ifM is generated, as a right A-module, by finitely many
elements. If P is a differential graded A-module which is finite graded projective,
then we can ask: Does P give a compact object of D(A,d)? Presumably, this is not
true in general, but we do not know a counter example. However, if P is also an
object of the category D of Remark 22.36.1, then this is the case (this follows from
the fact that direct sums in D(A,d) are given by direct sums of modules; details
omitted).

Lemma 22.36.3.09R2 Let (A,d) be a differential graded algebra. Let E be a compact
object of D(A,d). Let P be a differential graded A-module which has a finite
filtration

0 = F−1P ⊂ F0P ⊂ F1P ⊂ . . . ⊂ FnP = P

by differential graded submodules such that

Fi+1P/FiP ∼=
⊕

j∈Ji
A[ki,j ]

as differential graded A-modules for some sets Ji and integers ki,j . Let E → P be
a morphism of D(A,d). Then there exists a differential graded submodule P ′ ⊂ P
such that Fi+1P ∩ P ′/(FiP ∩ P ′) is equal to

⊕
j∈J′

i
A[ki,j ] for some finite subsets

J ′
i ⊂ Ji and such that E → P factors through P ′.

https://stacks.math.columbia.edu/tag/09R0
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Proof. We will prove by induction on −1 ≤ m ≤ n that there exists a differential
graded submodule P ′ ⊂ P such that

(1) FmP ⊂ P ′,
(2) for i ≥ m the quotient Fi+1P∩P ′/(FiP∩P ′) is isomorphic to

⊕
j∈J′

i
A[ki,j ]

for some finite subsets J ′
i ⊂ Ji, and

(3) E → P factors through P ′.
The base case is m = n where we can take P ′ = P .
Induction step. Assume P ′ works for m. For i ≥ m and j ∈ J ′

i let xi,j ∈ Fi+1P ∩P ′

be a homogeneous element of degree ki,j whose image in Fi+1P ∩ P ′/(FiP ∩ P ′) is
the generator in the summand corresponding to j ∈ Ji. The xi,j generate P ′/FmP
as an A-module. Write

d(xi,j) =
∑

xi′,j′ai
′,j′

i,j + yi,j

with yi,j ∈ FmP and ai
′,j′

i,j ∈ A. There exists a finite subset J ′
m−1 ⊂ Jm−1 such that

each yi,j maps to an element of the submodule
⊕

j∈J′
m−1

A[km−1,j ] of FmP/Fm−1P .
Let P ′′ ⊂ FmP be the inverse image of

⊕
j∈J′

m−1
A[km−1,j ] under the map FmP →

FmP/Fm−1P . Then we see that the A-submodule

P ′′ +
∑

xi,jA

is a differential graded submodule of the type we are looking for. Moreover

P ′/(P ′′ +
∑

xi,jA) =
⊕

j∈Jm−1\J′
m−1

A[km−1,j ]

Since E is compact, the composition of the given map E → P ′ with the quotient
map, factors through a finite direct subsum of the module displayed above. Hence
after enlarging J ′

m−1 we may assume E → P ′ factors through P ′′ +
∑
xi,jA as

desired. □

It is not true that every compact object of D(A,d) comes from a finite graded
projective differential graded A-module, see Examples, Section 110.68.

Proposition 22.36.4.09R3 Let (A,d) be a differential graded algebra. Let E be an object
of D(A,d). Then the following are equivalent

(1) E is a compact object,
(2) E is a direct summand of an object of D(A,d) which is represented by a

differential graded module P which has a finite filtration F• by differential
graded submodules such that FiP/Fi−1P are finite direct sums of shifts
of A.

Proof. Assume E is compact. By Lemma 22.20.4 we may assume that E is repre-
sented by a differential graded A-module P with property (P). Consider the distin-
guished triangle ⊕

FiP →
⊕

FiP → P
δ−→
⊕

FiP [1]
coming from the admissible short exact sequence of Lemma 22.20.1. Since E is
compact we have δ =

∑
i=1,...,n δi for some δi : P → FiP [1]. Since the composition

of δ with the map
⊕
FiP [1] →

⊕
FiP [1] is zero (Derived Categories, Lemma

13.4.1) it follows that δ = 0 (follows as
⊕
FiP →

⊕
FiP maps the summand FiP

via the difference of id and the inclusion map into Fi−1P ). Thus we see that the

https://stacks.math.columbia.edu/tag/09R3
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identity on E factors through
⊕
FiP in D(A,d) (by Derived Categories, Lemma

13.4.11). Next, we use that P is compact again to see that the map E →
⊕
FiP

factors through
⊕

i=1,...,n FiP for some n. In other words, the identity on E factors
through

⊕
i=1,...,n FiP . By Lemma 22.36.3 we see that the identity of E factors as

E → P → E where P is as in part (2) of the statement of the lemma. In other
words, we have proven that (1) implies (2).
Assume (2). By Derived Categories, Lemma 13.37.2 it suffices to show that P gives
a compact object. Observe that P has property (P), hence we have

HomD(A,d)(P,M) = HomK(A,d)(P,M)
for any differential graded module M by Lemma 22.22.3. As direct sums in D(A,d)
are given by direct sums of graded modules (Lemma 22.22.4) we reduce to showing
that HomK(A,d)(P,M) commutes with direct sums. Using that K(A,d) is a trian-
gulated category, that Hom is a cohomological functor in the first variable, and the
filtration on P , we reduce to the case that P is a finite direct sum of shifts of A.
Thus we reduce to the case P = A[k] which is clear. □

Lemma 22.36.5.09RA Let (A,d) be a differential graded algebra. For every compact
object E of D(A,d) there exist integers a ≤ b such that HomD(A,d)(E,M) = 0 if
Hi(M) = 0 for i ∈ [a, b].

Proof. Observe that the collection of objects of D(A,d) for which such a pair of in-
tegers exists is a saturated, strictly full triangulated subcategory of D(A,d). Thus
by Proposition 22.36.4 it suffices to prove this when E is represented by a dif-
ferential graded module P which has a finite filtration F• by differential graded
submodules such that FiP/Fi−1P are finite direct sums of shifts of A. Using the
compatibility with triangles, we see that it suffices to prove it for P = A. In this
case HomD(A,d)(A,M) = H0(M) and the result holds with a = b = 0. □

If (A,d) is just an algebra placed in degree 0 with zero differential or more gener-
ally lives in only a finite number of degrees, then we do obtain the more precise
description of compact objects.

Lemma 22.36.6.09RB Let (A,d) be a differential graded algebra. Assume that An = 0
for |n| ≫ 0. Let E be an object of D(A,d). The following are equivalent

(1) E is a compact object, and
(2) E can be represented by a differential graded A-module P which is fi-

nite projective as a graded A-module and satisfies HomK(A,d)(P,M) =
HomD(A,d)(P,M) for every differential graded A-module M .

Proof. Let D ⊂ K(A,d) be the triangulated subcategory discussed in Remark
22.36.1. Let P be an object of D which is finite projective as a graded A-module.
Then P represents a compact object of D(A,d) by Remark 22.36.2.
To prove the converse, let E be a compact object of D(A,d). Fix a ≤ b as in Lemma
22.36.5. After decreasing a and increasing b if necessary, we may also assume that
Hi(E) = 0 for i ̸∈ [a, b] (this follows from Proposition 22.36.4 and our assumption
on A). Moreover, fix an integer c > 0 such that An = 0 if |n| ≥ c.
By Proposition 22.36.4 we see that E is a direct summand, in D(A,d), of a dif-
ferential graded A-module P which has a finite filtration F• by differential graded

https://stacks.math.columbia.edu/tag/09RA
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submodules such that FiP/Fi−1P are finite direct sums of shifts of A. In particu-
lar, P has property (P) and we have HomD(A,d)(P,M) = HomK(A,d)(P,M) for any
differential graded module M by Lemma 22.22.3. In other words, P is an object of
the triangulated subcategory D ⊂ K(A,d) discussed in Remark 22.36.1. Note that
P is finite free as a graded A-module.

Choose n > 0 such that b + 4c − n < a. Represent the projector onto E by
an endomorphism φ : P → P of differential graded A-modules. Consider the
distinguished triangle

P
1−φ−−−→ P → C → P [1]

in K(A,d) where C is the cone of the first arrow. Then C is an object of D, we have
C ∼= E ⊕E[1] in D(A,d), and C is a finite graded free A-module. Next, consider a
distinguished triangle

C[1]→ C → C ′ → C[2]
in K(A,d) where C ′ is the cone on a morphism C[1]→ C representing the compo-
sition

C[1] ∼= E[1]⊕ E[2]→ E[1]→ E ⊕ E[1] ∼= C

in D(A,d). Then we see that C ′ represents E ⊕ E[2]. Continuing in this manner
we see that we can find a differential graded A-module P which is an object of D,
is a finite free as a graded A-module, and represents E ⊕ E[n].

Choose a basis xi, i ∈ I of homogeneous elements for P as an A-module. Let
di = deg(xi). Let P1 be the A-submodule of P generated by xi and d(xi) for
di ≤ a − c − 1. Let P2 be the A-submodule of P generated by xi and d(xi) for
di ≥ b− n+ c. We observe

(1) P1 and P2 are differential graded submodules of P ,
(2) P t1 = 0 for t ≥ a,
(3) P t1 = P t for t ≤ a− 2c,
(4) P t2 = 0 for t ≤ b− n,
(5) P t2 = P t for t ≥ b− n+ 2c.

As b − n + 2c ≥ a − 2c by our choice of n we obtain a short exact sequence of
differential graded A-modules

0→ P1 ∩ P2 → P1 ⊕ P2
π−→ P → 0

Since P is projective as a graded A-module this is an admissible short exact sequence
(Lemma 22.16.1). Hence we obtain a boundary map δ : P → (P1∩P2)[1] in K(A,d),
see Lemma 22.7.2. Since P = E⊕E[n] and since P1∩P2 lives in degrees (b−n, a) we
find that HomD(A,d)(E⊕E[n], (P1∩P2)[1]) is zero. Therefore δ = 0 as a morphism
in K(A,d) as P is an object of D. By Derived Categories, Lemma 13.4.11 we can
find a map s : P → P1 ⊕P2 such that π ◦ s = idP + dh+ hd for some h : P → P of
degree −1. Since P1⊕P2 → P is surjective and since P is projective as a graded A-
module we can choose a homogeneous lift h̃ : P → P1 ⊕P2 of h. Then we change s
into s+dh̃+h̃d to get π◦s = idP . This means we obtain a direct sum decomposition
P = s−1(P1)⊕ s−1(P2). Since s−1(P2) is equal to P in degrees ≥ b− n+ 2c we see
that s−1(P2) → P → E is a quasi-isomorphism, i.e., an isomorphism in D(A,d).
This finishes the proof. □
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22.37. Equivalences of derived categories

09S5 Let R be a ring. Let (A,d) and (B, d) be differential graded R-algebras. A natural
question that arises in nature is what it means that D(A,d) is equivalent to D(B, d)
as an R-linear triangulated category. This is a rather subtle question and it will
turn out it isn’t always the correct question to ask. Nonetheless, in this section we
collection some conditions that guarantee this is the case.
We strongly urge the reader to take a look at the groundbreaking paper [Ric89b]
on this topic.

Lemma 22.37.1.09S6 Let R be a ring. Let (A,d) → (B, d) be a homomorphism of
differential graded algebras over R, which induces an isomorphism on cohomology
algebras. Then

−⊗L
A B : D(A,d)→ D(B, d)

gives an R-linear equivalence of triangulated categories with quasi-inverse the re-
striction functor N 7→ NA.

Proof. By Lemma 22.33.7 the functor M 7−→M ⊗L
A B is fully faithful. By Lemma

22.33.5 the functor N 7−→ RHom(B,N) = NA is a right adjoint, see Example
22.33.6. It is clear that the kernel of RHom(B,−) is zero. Hence the result follows
from Derived Categories, Lemma 13.7.2. □

When we analyze the proof above we see that we obtain the following generalization
for free.

Lemma 22.37.2.09S7 Let R be a ring. Let (A,d) and (B, d) be differential graded
algebras over R. Let N be a differential graded (A,B)-bimodule. Assume that

(1) N defines a compact object of D(B, d),
(2) if N ′ ∈ D(B, d) and HomD(B,d)(N,N ′[n]) = 0 for n ∈ Z, then N ′ = 0,

and
(3) the map Hk(A)→ HomD(B,d)(N,N [k]) is an isomorphism for all k ∈ Z.

Then
−⊗L

A N : D(A,d)→ D(B, d)
gives an R-linear equivalence of triangulated categories.

Proof. By Lemma 22.33.7 the functor M 7−→M ⊗L
AN is fully faithful. By Lemma

22.33.5 the functor N ′ 7−→ RHom(N,N ′) is a right adjoint. By assumption (3) the
kernel of RHom(N,−) is zero. Hence the result follows from Derived Categories,
Lemma 13.7.2. □

Remark 22.37.3.09SS In Lemma 22.37.2 we can replace condition (2) by the condition
that N is a classical generator for Dcompact(B, d), see Derived Categories, Propo-
sition 13.37.6. Moreover, if we knew that RHom(N,B) is a compact object of
D(A,d), then it suffices to check that N is a weak generator for Dcompact(B, d).
We omit the proof; we will add it here if we ever need it in the Stacks project.

Sometimes the B-module P in the lemma below is called an “(A,B)-tilting com-
plex”.

Lemma 22.37.4.09S8 Let R be a ring. Let (A,d) and (B, d) be differential graded
R-algebras. Assume that A = H0(A). The following are equivalent

https://stacks.math.columbia.edu/tag/09S6
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(1) D(A,d) and D(B, d) are equivalent as R-linear triangulated categories,
and

(2) there exists an object P of D(B, d) such that
(a) P is a compact object of D(B, d),
(b) if N ∈ D(B, d) with HomD(B,d)(P,N [i]) = 0 for i ∈ Z, then N = 0,
(c) HomD(B,d)(P, P [i]) = 0 for i ̸= 0 and equal to A for i = 0.

The equivalence D(A,d)→ D(B, d) constructed in (2) sends A to P .
Proof. Let F : D(A,d) → D(B, d) be an equivalence. Then F maps compact ob-
jects to compact objects. Hence P = F (A) is compact, i.e., (2)(a) holds. Conditions
(2)(b) and (2)(c) are immediate from the fact that F is an equivalence.
Let P be an object as in (2). Represent P by a differential graded module with
property (P). Set

(E,d) = HomModdg(B,d)
(P, P )

Then H0(E) = A and Hk(E) = 0 for k ̸= 0 by Lemma 22.22.3 and assumption
(2)(c). Viewing P as a (E,B)-bimodule and using Lemma 22.37.2 and assumption
(2)(b) we obtain an equivalence

D(E,d)→ D(B, d)
sending E to P . Let E′ ⊂ E be the differential graded R-subalgebra with

(E′)i =

 Ei if i < 0
Ker(E0 → E1) if i = 0

0 if i > 0
Then there are quasi-isomorphisms of differential graded algebras (A,d)← (E′,d)→
(E,d). Thus we obtain equivalences

D(A,d)← D(E′,d)→ D(E,d)→ D(B, d)
by Lemma 22.37.1. □

Remark 22.37.5.09S9 Let R be a ring. Let (A,d) and (B, d) be differential graded
R-algebras. Suppose given an R-linear equivalence

F : D(A,d) −→ D(B, d)
of triangulated categories. Set N = F (A). Then N is a differential graded B-
module. Since F is an equivalence and A is a compact object of D(A,d), we
conclude that N is a compact object of D(B, d). Since A generates D(A,d)
and F is an equivalence, we see that N generates D(B, d). Finally, Hk(A) =
HomD(A,d)(A,A[k]) and as F an equivalence we see that F induces an isomor-
phism Hk(A) = HomD(B,d)(N,N [k]) for all k. In order to conclude that there is
an equivalence D(A,d) −→ D(B, d) which arises from the construction in Lemma
22.37.2 all we need is a left A-module structure on N compatible with derivation
and commuting with the given right B-module structure. In fact, it suffices to do
this after replacing N by a quasi-isomorphic differential graded B-module. The
module structure can be constructed in certain cases. For example, if we assume
that F can be lifted to a differential graded functor

F dg : Moddg(A,d) −→ Moddg(B,d)

(for notation see Example 22.26.8) between the associated differential graded cat-
egories, then this holds. Another case is discussed in the proposition below.

https://stacks.math.columbia.edu/tag/09S9
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Proposition 22.37.6.09SA Let R be a ring. Let (A,d) and (B, d) be differential graded
R-algebras. Let F : D(A,d)→ D(B, d) be an R-linear equivalence of triangulated
categories. Assume that

(1) A = H0(A), and
(2) B is K-flat as a complex of R-modules.

Then there exists an (A,B)-bimodule N as in Lemma 22.37.2.

Proof. As in Remark 22.37.5 above, we set N = F (A) in D(B, d). We may assume
that N is a differential graded B-module with property (P). Set

(E,d) = HomModdg(B,d)
(N,N)

Then H0(E) = A and Hk(E) = 0 for k ̸= 0 by Lemma 22.22.3. Moreover, by the
discussion in Remark 22.37.5 and by Lemma 22.37.2 we see that N as a (E,B)-
bimodule induces an equivalence −⊗L

E N : D(E,d)→ D(B, d). Let E′ ⊂ E be the
differential graded R-subalgebra with

(E′)i =

 Ei if i < 0
Ker(E0 → E1) if i = 0

0 if i > 0

Then there are quasi-isomorphisms of differential graded algebras (A,d)← (E′,d)→
(E,d). Thus we obtain equivalences

D(A,d)← D(E′,d)→ D(E,d)→ D(B, d)

by Lemma 22.37.1. Note that the quasi-inverse D(A,d) → D(E′,d) of the left
vertical arrow is given by M 7→M ⊗L

A A where A is viewed as a (A,E′)-bimodule,
see Example 22.33.6. On the other hand the functor D(E′,d) → D(B, d) is given
by M 7→M ⊗L

E′ N where N is as above. We conclude by Lemma 22.34.3. □

Remark 22.37.7.09SB Let A,B, F,N be as in Proposition 22.37.6. It is not clear that
F and the functor G(−) = − ⊗L

A N are isomorphic. By construction there is an
isomorphism N = G(A)→ F (A) in D(B, d). It is straightforward to extend this to
a functorial isomorphism G(M) → F (M) for M is a differential graded A-module
which is graded projective (e.g., a sum of shifts of A). Then one can conclude that
G(M) ∼= F (M) when M is a cone of a map between such modules. We don’t know
whether more is true in general.

Lemma 22.37.8.09SC Let R be a ring. Let A and B be R-algebras. The following are
equivalent

(1) there is an R-linear equivalence D(A)→ D(B) of triangulated categories,
(2) there exists an object P of D(B) such that

(a) P can be represented by a finite complex of finite projective B-
modules,

(b) if K ∈ D(B) with ExtiB(P,K) = 0 for i ∈ Z, then K = 0, and
(c) ExtiB(P, P ) = 0 for i ̸= 0 and equal to A for i = 0.

Moreover, if B is flat as an R-module, then this is also equivalent to
(3) there exists an (A,B)-bimodule N such that − ⊗L

A N : D(A) → D(B) is
an equivalence.

https://stacks.math.columbia.edu/tag/09SA
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Proof. The equivalence of (1) and (2) is a special case of Lemma 22.37.4 combined
with the result of Lemma 22.36.6 characterizing compact objects of D(B) (small
detail omitted). The equivalence with (3) if B is R-flat follows from Proposition
22.37.6. □

Remark 22.37.9.09SD Let R be a ring. Let A and B be R-algebras. If D(A) and
D(B) are equivalent as R-linear triangulated categories, then the centers of A and
B are isomorphic as R-algebras. In particular, if A and B are commutative, then
A ∼= B. The rather tricky proof can be found in [Ric89b, Proposition 9.2] or [KZ98,
Proposition 6.3.2]. Another approach might be to use Hochschild cohomology (see
remark below).

Remark 22.37.10.09ST Let R be a ring. Let (A,d) and (B, d) be differential graded
R-algebras which are derived equivalent, i.e., such that there exists an R-linear
equivalence D(A,d) → D(B, d) of triangulated categories. We would like to show
that certain invariants of (A,d) and (B, d) coincide. In many situations one has
more control of the situation. For example, it may happen that there is an equiva-
lence of the form

−⊗A Ω : D(A,d) −→ D(B, d)
for some differential graded (A,B)-bimodule Ω (this happens in the situation of
Proposition 22.37.6 and is often true if the equivalence comes from a geometric
construction). If also the quasi-inverse of our functor is given as

−⊗L
B Ω′ : D(B, d) −→ D(A,d)

for a differential graded (B,A)-bimodule Ω′ (and as before such a module Ω′ often
exists in practice). In this case we can consider the functor

D(Aopp ⊗R A,d) −→ D(Bopp ⊗R B, d), M 7−→ Ω′ ⊗L
AM ⊗L

A Ω
on derived categories of bimodules (use Lemma 22.28.3 to turn bimodules into right
modules). Observe that this functor sends the (A,A)-bimodule A to the (B,B)-
bimodule B. Under suitable conditions (e.g., flatness of A, B, Ω over R, etc) this
functor will be an equivalence as well. If this is the case, then it follows that we
have isomorphisms of Hochschild cohomology groups
HHi(A,d) = HomD(Aopp⊗RA,d)(A,A[i]) −→ HomD(Bopp⊗RB,d)(B,B[i]) = HHi(B, d).
For example, if A = H0(A), then HH0(A,d) is equal to the center of A, and this
gives a conceptual proof of the result mentioned in Remark 22.37.9. If we ever need
this remark we will provide a precise statement with a detailed proof here.

22.38. Resolutions of differential graded algebras

0BZ6 Let R be a ring. Under our assumptions the free R-algebra R⟨S⟩ on a set S is the
algebra with R-basis the expressions

s1s2 . . . sn

where n ≥ 0 and s1, . . . , sn ∈ S is a sequence of elements of S. Multiplication is
given by concatenation

(s1s2 . . . sn) · (s′
1s

′
2 . . . s

′
m) = s1 . . . sns

′
1 . . . s

′
m

This algebra is characterized by the property that the map
MorR-alg(R⟨S⟩, A)→ Map(S,A), φ 7−→ (s 7→ φ(s))

https://stacks.math.columbia.edu/tag/09SD
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is a bijection for every R-algebra A.
In the category of graded R-algebras our set S should come with a grading, which
we think of as a map deg : S → Z. Then R⟨S⟩ has a grading such that the
monomials have degree

deg(s1s2 . . . sn) = deg(s1) + . . .+ deg(sn)
In this setting we have

Morgraded R-alg(R⟨S⟩, A)→ Mapgraded sets(S,A), φ 7−→ (s 7→ φ(s))
is a bijection for every graded R-algebra A.
If A is a graded R-algebra and S is a graded set, then we can similarly form A⟨S⟩.
Elements of A⟨S⟩ are sums of elements of the form

a0s1a1s2 . . . an−1snan

with ai ∈ A modulo the relations that these expressions are R-multilinear in
(a0, . . . , an). Thus for every sequence s1, . . . , sn of elements of S there is an in-
clusion

A⊗R . . .⊗R A ⊂ A⟨S⟩
and the algebra is the direct sum of these. With this definition the reader shows
that the map

Morgraded R-alg(A⟨S⟩, B)→ Morgraded R-alg(A,B)×Mapgraded sets(S,B),
sending φ to (φ|A, (s 7→ φ(s))) is a bijection for every graded R-algebra A. We
observe that if A was a free graded R-algebra, then so is A⟨S⟩.
Suppose that A is a differential graded R-algebra and that S is a graded set. Sup-
pose moreover for every s ∈ S we are given a homogeneous element fs ∈ A with
deg(fs) = deg(s) + 1 and dfs = 0. Then there exists a unique structure of differ-
ential graded algebra on A⟨S⟩ with d(s) = fs. For example, given a, b, c ∈ A and
s, t ∈ S we would define
d(asbtc) = d(a)sbtc+ (−1)deg(a)afsbtc+ (−1)deg(a)+deg(s)asd(b)tc

+ (−1)deg(a)+deg(s)+deg(b)asbftc+ (−1)deg(a)+deg(s)+deg(b)+deg(t)asbtd(c)
We omit the details.

Lemma 22.38.1.0BZ7 Let R be a ring. Let (B, d) be a differential graded R-algebra.
There exists a quasi-isomorphism (A,d)→ (B, d) of differential graded R-algebras
with the following properties

(1) A is K-flat as a complex of R-modules,
(2) A is a free graded R-algebra.

Proof. First we claim we can find (A0,d) → (B, d) having (1) and (2) inducing
a surjection on cohomology. Namely, take a graded set S and for each s ∈ S a
homogeneous element bs ∈ Ker(d : B → B) of degree deg(s) such that the classes
bs in H∗(B) generate H∗(B) as an R-module. Then we can set A0 = R⟨S⟩ with
zero differential and A0 → B given by mapping s to bs.
Given A0 → B inducing a surjection on cohomology we construct a sequence

A0 → A1 → A2 → . . . B

https://stacks.math.columbia.edu/tag/0BZ7
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by induction. Given An → B we set Sn be a graded set and for each s ∈ Sn we let
as ∈ Ker(An → An) be a homogeneous element of degree deg(s) + 1 mapping to a
class as in H∗(An) which maps to zero in H∗(B). We choose Sn large enough so
that the elements as generate Ker(H∗(An) → H∗(B)) as an R-module. Then we
set

An+1 = An⟨Sn⟩
with differential given by d(s) = as see discussion above. Then each (An,d) satisfies
(1) and (2), we omit the details. The map H∗(An) → H∗(B) is surjective as this
was true for n = 0.
It is clear that A = colimAn is a free graded R-algebra. It is K-flat by More on
Algebra, Lemma 15.59.8. The map H∗(A) → H∗(B) is an isomorphism as it is
surjective and injective: every element of H∗(A) comes from an element of H∗(An)
for some n and if it dies in H∗(B), then it dies in H∗(An+1) hence in H∗(A). □

As an application we prove the “correct” version of Lemma 22.34.2.

Lemma 22.38.2.0BZ8 LetR be a ring. Let (A,d), (B, d), and (C, d) be differential graded
R-algebras. Assume A ⊗R C represents A ⊗L

R C in D(R). Let N be a differential
graded (A,B)-bimodule. Let N ′ be a differential graded (B,C)-bimodule. Then
the composition

D(A,d)
−⊗L

AN // D(B, d)
−⊗L

BN
′
// D(C,d)

is isomorphic to −⊗L
A N

′′ for some differential graded (A,C)-bimodule N ′′.

Proof. Using Lemma 22.38.1 we choose a quasi-isomorphism (B′,d)→ (B, d) with
B′ K-flat as a complex of R-modules. By Lemma 22.37.1 the functor − ⊗L

B′ B :
D(B′,d)→ D(B, d) is an equivalence with quasi-inverse given by restriction. Note
that restriction is canonically isomorphic to the functor − ⊗L

B B : D(B, d) →
D(B′,d) where B is viewed as a (B,B′)-bimodule. Thus it suffices to prove the
lemma for the compositions
D(A)→ D(B)→ D(B′), D(B′)→ D(B)→ D(C), D(A)→ D(B′)→ D(C).

The first one is Lemma 22.34.3 because B′ is K-flat as a complex of R-modules.
The second one is true because B⊗L

BN
′ = N ′ = B⊗BN ′ and hence Lemma 22.34.1

applies. Thus we reduce to the case where B is K-flat as a complex of R-modules.
Assume B is K-flat as a complex of R-modules. It suffices to show that (22.34.1.1)
is an isomorphism, see Lemma 22.34.2. Choose a quasi-isomorphism L→ A where
L is a differential graded R-module which has property (P). Then it is clear that
P = L ⊗R B has property (P) as a differential graded B-module. Hence we have
to show that P → A⊗R B induces a quasi-isomorphism

P ⊗B (B ⊗R C) −→ (A⊗R B)⊗B (B ⊗R C)
We can rewrite this as

P ⊗R B ⊗R C −→ A⊗R B ⊗R C
Since B is K-flat as a complex of R-modules, it follows from More on Algebra,
Lemma 15.59.2 that it is enough to show that

P ⊗R C → A⊗R C
is a quasi-isomorphism, which is exactly our assumption. □

https://stacks.math.columbia.edu/tag/0BZ8
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The following lemma does not really belong in this section, but there does not seem
to be a good natural spot for it.

Lemma 22.38.3.0CRM Let (A,d) be a differential graded algebra with Hi(A) countable
for each i. Let M be an object of D(A,d). Then the following are equivalent

(1) M = hocolimEn with En compact in D(A,d), and
(2) Hi(M) is countable for each i.

Proof. Assume (1) holds. Then we have Hi(M) = colimHi(En) by Derived Cat-
egories, Lemma 13.33.8. Thus it suffices to prove that Hi(En) is countable for
each n. By Proposition 22.36.4 we see that En is isomorphic in D(A,d) to a di-
rect summand of a differential graded module P which has a finite filtration F•
by differential graded submodules such that FjP/Fj−1P are finite direct sums of
shifts of A. By assumption the groups Hi(FjP/Fj−1P ) are countable. Arguing
by induction on the length of the filtration and using the long exact cohomology
sequence we conclude that (2) is true. The interesting implication is the other one.

We claim there is a countable differential graded subalgebra A′ ⊂ A such that the
inclusion map A′ → A defines an isomorphism on cohomology. To construct A′ we
choose countable differential graded subalgebras

A1 ⊂ A2 ⊂ A3 ⊂ . . .

such that (a) Hi(A1) → Hi(A) is surjective, and (b) for n > 1 the kernel of
the map Hi(An−1) → Hi(An) is the same as the kernel of the map Hi(An−1) →
Hi(A). To construct A1 take any countable collection of cochains S ⊂ A generating
the cohomology of A (as a ring or as a graded abelian group) and let A1 be the
differential graded subalgebra of A generated by S. To construct An given An−1
for each cochain a ∈ Ain−1 which maps to zero in Hi(A) choose sa ∈ Ai−1 with
d(sa) = a and let An be the differential graded subalgebra of A generated by An−1
and the elements sa. Finally, take A′ =

⋃
An.

By Lemma 22.37.1 the restriction map D(A,d) → D(A′,d), M 7→ MA′ is an
equivalence. Since the cohomology groups of M and MA′ are the same, we see that
it suffices to prove the implication (2) ⇒ (1) for (A′,d).

Assume A is countable. By the exact same type of argument as given above we see
that for M in D(A,d) the following are equivalent: Hi(M) is countable for each
i and M can be represented by a countable differential graded module. Hence in
order to prove the implication (2) ⇒ (1) we reduce to the situation described in
the next paragraph.

Assume A is countable and that M is a countable differential graded module over A.
We claim there exists a homomorphism P → M of differential graded A-modules
such that

(1) P →M is a quasi-isomorphism,
(2) P has property (P), and
(3) P is countable.

Looking at the proof of the construction of P-resolutions in Lemma 22.20.4 we see
that it suffices to show that we can prove Lemma 22.20.3 in the setting of countable
differential graded modules. This is immediate from the proof.

https://stacks.math.columbia.edu/tag/0CRM
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Assume that A is countable and that M is a countable differential graded module
with property (P). Choose a filtration

0 = F−1P ⊂ F0P ⊂ F1P ⊂ . . . ⊂ P
by differential graded submodules such that we have

(1) P =
⋃
FpP ,

(2) FiP → Fi+1P is an admissible monomorphism,
(3) isomorphisms of differential graded modules FiP/Fi−1P →

⊕
j∈Ji A[kj ]

for some sets Ji and integers kj .
Of course Ji is countable for each i. For each i and j ∈ Ji choose xi,j ∈ FiP of
degree kj whose image in FiP/Fi−1P generates the summand corresponding to j.
Claim: Given n and finite subsets Si ⊂ Ji, i = 1, . . . , n there exist finite subsets
Si ⊂ Ti ⊂ Ji, i = 1, . . . , n such that P ′ =

⊕
i≤n

⊕
j∈Ti Axi,j is a differential graded

submodule of P . This was shown in the proof of Lemma 22.36.3 but it is also
easily shown directly: the elements xi,j freely generate P as a right A-module. The
structure of P shows that

d(xi,j) =
∑

i′<i
xi′,j′ai′,j′

where of course the sum is finite. Thus given S0, . . . , Sn we can first choose S0 ⊂
S′

0, . . . , Sn−1 ⊂ S′
n−1 with d(xn,j) ∈

⊕
i′<n,j′∈S′

i′
xi′,j′A for all j ∈ Sn. Then

by induction on n we can choose S′
0 ⊂ T0, . . . , S

′
n−1 ⊂ Tn−1 to make sure that⊕

i′<n,j′∈Ti′
xi′,j′A is a differential graded A-submodule. Setting Tn = Sn we find

that P ′ =
⊕

i≤n,j∈Ti xi,jA is as desired.
From the claim it is clear that P =

⋃
P ′
n is a countable rising union of P ′

n as above.
By construction each P ′

n is a differential graded module with property (P) such that
the filtration is finite and the succesive quotients are finite direct sums of shifts of A.
Hence P ′

n defines a compact object of D(A,d), see for example Proposition 22.36.4.
Since P = hocolimP ′

n in D(A,d) by Lemma 22.23.2 the proof of the implication
(2) ⇒ (1) is complete. □
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CHAPTER 23

Divided Power Algebra

09PD 23.1. Introduction

09PE In this chapter we talk about divided power algebras and what you can do with
them. A reference is the book [Ber74].

23.2. Divided powers

07GK In this section we collect some results on divided power rings. We will use the
convention 0! = 1 (as empty products should give 1).

Definition 23.2.1.07GL Let A be a ring. Let I be an ideal of A. A collection of maps
γn : I → I, n > 0 is called a divided power structure on I if for all n ≥ 0, m > 0,
x, y ∈ I, and a ∈ A we have

(1) γ1(x) = x, we also set γ0(x) = 1,
(2) γn(x)γm(x) = (n+m)!

n!m! γn+m(x),
(3) γn(ax) = anγn(x),
(4) γn(x+ y) =

∑
i=0,...,n γi(x)γn−i(y),

(5) γn(γm(x)) = (nm)!
n!(m!)n γnm(x).

Note that the rational numbers (n+m)!
n!m! and (nm)!

n!(m!)n occurring in the definition are
in fact integers; the first is the number of ways to choose n out of n + m and the
second counts the number of ways to divide a group of nm objects into n groups
of m. We make some remarks about the definition which show that γn(x) is a
replacement for xn/n! in I.

Lemma 23.2.2.07GM Let A be a ring. Let I be an ideal of A.
(1) If γ is a divided power structure1 on I, then n!γn(x) = xn for n ≥ 1,

x ∈ I.
Assume A is torsion free as a Z-module.

(2) A divided power structure on I, if it exists, is unique.
(3) If γn : I → I are maps then

γ is a divided power structure⇔ n!γn(x) = xn ∀x ∈ I, n ≥ 1.
(4) The ideal I has a divided power structure if and only if there exists a set

of generators xi of I as an ideal such that for all n ≥ 1 we have xni ∈ (n!)I.

Proof. Proof of (1). If γ is a divided power structure, then condition (2) (applied
to 1 and n− 1 instead of n and m) implies that nγn(x) = γ1(x)γn−1(x). Hence by
induction and condition (1) we get n!γn(x) = xn.

1Here and in the following, γ stands short for a sequence of maps γ1, γ2, γ3, . . . from I to I.

2108
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Assume A is torsion free as a Z-module. Proof of (2). This is clear from (1).
Proof of (3). Assume that n!γn(x) = xn for all x ∈ I and n ≥ 1. Since A ⊂ A⊗Z Q
it suffices to prove the axioms (1) – (5) of Definition 23.2.1 in case A is a Q-algebra.
In this case γn(x) = xn/n! and it is straightforward to verify (1) – (5); for example,
(4) corresponds to the binomial formula

(x+ y)n =
∑

i=0,...,n

n!
i!(n− i)!x

iyn−i

We encourage the reader to do the verifications to make sure that we have the
coefficients correct.
Proof of (4). Assume we have generators xi of I as an ideal such that xni ∈ (n!)I
for all n ≥ 1. We claim that for all x ∈ I we have xn ∈ (n!)I. If the claim holds
then we can set γn(x) = xn/n! which is a divided power structure by (3). To prove
the claim we note that it holds for x = axi. Hence we see that the claim holds
for a set of generators of I as an abelian group. By induction on the length of an
expression in terms of these, it suffices to prove the claim for x+ y if it holds for x
and y. This follows immediately from the binomial theorem. □

Example 23.2.3.07GN Let p be a prime number. Let A be a ring such that every integer
n not divisible by p is invertible, i.e., A is a Z(p)-algebra. Then I = pA has a
canonical divided power structure. Namely, given x = pa ∈ I we set

γn(x) = pn

n! a
n

The reader verifies immediately that pn/n! ∈ pZ(p) for n ≥ 1 (for instance, this
can be derived from the fact that the exponent of p in the prime factorization of
n! is ⌊n/p⌋ +

⌊
n/p2⌋ +

⌊
n/p3⌋ + . . .), so that the definition makes sense and gives

us a sequence of maps γn : I → I. It is a straightforward exercise to verify that
conditions (1) – (5) of Definition 23.2.1 are satisfied. Alternatively, it is clear that
the definition works for A0 = Z(p) and then the result follows from Lemma 23.4.2.

We notice that γn (0) = 0 for any ideal I of A and any divided power structure γ
on I. (This follows from axiom (3) in Definition 23.2.1, applied to a = 0.)

Lemma 23.2.4.07GP Let A be a ring. Let I be an ideal of A. Let γn : I → I, n ≥ 1 be
a sequence of maps. Assume

(a) (1), (3), and (4) of Definition 23.2.1 hold for all x, y ∈ I, and
(b) properties (2) and (5) hold for x in some set of generators of I as an ideal.

Then γ is a divided power structure on I.

Proof. The numbers (1), (2), (3), (4), (5) in this proof refer to the conditions listed
in Definition 23.2.1. Applying (3) we see that if (2) and (5) hold for x then (2)
and (5) hold for ax for all a ∈ A. Hence we see (b) implies (2) and (5) hold for a
set of generators of I as an abelian group. Hence, by induction of the length of an
expression in terms of these it suffices to prove that, given x, y ∈ I such that (2)
and (5) hold for x and y, then (2) and (5) hold for x+ y.
Proof of (2) for x+ y. By (4) we have

γn(x+ y)γm(x+ y) =
∑

i+j=n, k+l=m
γi(x)γk(x)γj(y)γl(y)

https://stacks.math.columbia.edu/tag/07GN
https://stacks.math.columbia.edu/tag/07GP
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Using (2) for x and y this equals∑ (i+ k)!
i!k!

(j + l)!
j!l! γi+k(x)γj+l(y)

Comparing this with the expansion

γn+m(x+ y) =
∑

γa(x)γb(y)

we see that we have to prove that given a+ b = n+m we have∑
i+k=a, j+l=b, i+j=n, k+l=m

(i+ k)!
i!k!

(j + l)!
j!l! = (n+m)!

n!m! .

Instead of arguing this directly, we note that the result is true for the ideal I = (x, y)
in the polynomial ring Q[x, y] because γn(f) = fn/n!, f ∈ I defines a divided power
structure on I. Hence the equality of rational numbers above is true.
Proof of (5) for x+ y given that (1) – (4) hold and that (5) holds for x and y. We
will again reduce the proof to an equality of rational numbers. Namely, using (4) we
can write γn(γm(x+y)) = γn(

∑
γi(x)γj(y)). Using (4) we can write γn(γm(x+y))

as a sum of terms which are products of factors of the form γk(γi(x)γj(y)). If i > 0
then

γk(γi(x)γj(y)) = γj(y)kγk(γi(x))

= (ki)!
k!(i!)k γj(y)kγki(x)

= (ki)!
k!(i!)k

(kj)!
(j!)k γki(x)γkj(y)

using (3) in the first equality, (5) for x in the second, and (2) exactly k times in
the third. Using (5) for y we see the same equality holds when i = 0. Continuing
like this using all axioms but (5) we see that we can write

γn(γm(x+ y)) =
∑

i+j=nm
cijγi(x)γj(y)

for certain universal constants cij ∈ Z. Again the fact that the equality is valid
in the polynomial ring Q[x, y] implies that the coefficients cij are all equal to
(nm)!/n!(m!)n as desired. □

Lemma 23.2.5.07GQ Let A be a ring with two ideals I, J ⊂ A. Let γ be a divided power
structure on I and let δ be a divided power structure on J . Then

(1) γ and δ agree on IJ ,
(2) if γ and δ agree on I ∩ J then they are the restriction of a unique divided

power structure ϵ on I + J .

Proof. Let x ∈ I and y ∈ J . Then
γn(xy) = ynγn(x) = n!δn(y)γn(x) = δn(y)xn = δn(xy).

Hence γ and δ agree on a set of (additive) generators of IJ . By property (4) of
Definition 23.2.1 it follows that they agree on all of IJ .
Assume γ and δ agree on I ∩ J . Let z ∈ I + J . Write z = x + y with x ∈ I and
y ∈ J . Then we set

ϵn(z) =
∑

γi(x)δn−i(y)

https://stacks.math.columbia.edu/tag/07GQ
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for all n ≥ 1. To see that this is well defined, suppose that z = x′ + y′ is another
representation with x′ ∈ I and y′ ∈ J . Then w = x− x′ = y′ − y ∈ I ∩ J . Hence∑

i+j=n
γi(x)δj(y) =

∑
i+j=n

γi(x′ + w)δj(y)

=
∑

i′+l+j=n
γi′(x′)γl(w)δj(y)

=
∑

i′+l+j=n
γi′(x′)δl(w)δj(y)

=
∑

i′+j′=n
γi′(x′)δj′(y + w)

=
∑

i′+j′=n
γi′(x′)δj′(y′)

as desired. Hence, we have defined maps ϵn : I + J → I + J for all n ≥ 1; it is
easy to see that ϵn |I= γn and ϵn |J= δn. Next, we prove conditions (1) – (5) of
Definition 23.2.1 for the collection of maps ϵn. Properties (1) and (3) are clear. To
see (4), suppose that z = x + y and z′ = x′ + y′ with x, x′ ∈ I and y, y′ ∈ J and
compute

ϵn(z + z′) =
∑

a+b=n
γa(x+ x′)δb(y + y′)

=
∑

i+i′+j+j′=n
γi(x)γi′(x′)δj(y)δj′(y′)

=
∑

k=0,...,n

∑
i+j=k

γi(x)δj(y)
∑

i′+j′=n−k
γi′(x′)δj′(y′)

=
∑

k=0,...,n
ϵk(z)ϵn−k(z′)

as desired. Now we see that it suffices to prove (2) and (5) for elements of I or J ,
see Lemma 23.2.4. This is clear because γ and δ are divided power structures.
The existence of a divided power structure ϵ on I + J whose restrictions to I and
J are γ and δ is thus proven; its uniqueness is rather clear. □

Lemma 23.2.6.07GR Let p be a prime number. Let A be a ring, let I ⊂ A be an ideal,
and let γ be a divided power structure on I. Assume p is nilpotent in A/I. Then
I is locally nilpotent if and only if p is nilpotent in A.

Proof. If pN = 0 in A, then for x ∈ I we have xpN = (pN)!γpN (x) = 0 because
(pN)! is divisible by pN . Conversely, assume I is locally nilpotent. We’ve also
assumed that p is nilpotent in A/I, hence pr ∈ I for some r, hence pr nilpotent,
hence p nilpotent. □

23.3. Divided power rings

07GT There is a category of divided power rings. Here is the definition.

Definition 23.3.1.07GU A divided power ring is a triple (A, I, γ) where A is a ring, I ⊂ A
is an ideal, and γ = (γn)n≥1 is a divided power structure on I. A homomorphism
of divided power rings φ : (A, I, γ)→ (B, J, δ) is a ring homomorphism φ : A→ B
such that φ(I) ⊂ J and such that δn(φ(x)) = φ(γn(x)) for all x ∈ I and n ≥ 1.

We sometimes say “let (B, J, δ) be a divided power algebra over (A, I, γ)” to indicate
that (B, J, δ) is a divided power ring which comes equipped with a homomorphism
of divided power rings (A, I, γ)→ (B, J, δ).

https://stacks.math.columbia.edu/tag/07GR
https://stacks.math.columbia.edu/tag/07GU
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Lemma 23.3.2.07GV The category of divided power rings has all limits and they agree
with limits in the category of rings.

Proof. The empty limit is the zero ring (that’s weird but we need it). The product
of a collection of divided power rings (At, It, γt), t ∈ T is given by (

∏
At,
∏
It, γ)

where γn((xt)) = (γt,n(xt)). The equalizer of α, β : (A, I, γ) → (B, J, δ) is just
C = {a ∈ A | α(a) = β(a)} with ideal C ∩ I and induced divided powers. It follows
that all limits exist, see Categories, Lemma 4.14.11. □

The following lemma illustrates a very general category theoretic phenomenon in
the case of divided power algebras.

Lemma 23.3.3.07GW Let C be the category of divided power rings. Let F : C → Sets be
a functor. Assume that

(1) there exists a cardinal κ such that for every f ∈ F (A, I, γ) there exists
a morphism (A′, I ′, γ′) → (A, I, γ) of C such that f is the image of f ′ ∈
F (A′, I ′, γ′) and |A′| ≤ κ, and

(2) F commutes with limits.
Then F is representable, i.e., there exists an object (B, J, δ) of C such that

F (A, I, γ) = HomC((B, J, δ), (A, I, γ))

functorially in (A, I, γ).

Proof. This is a special case of Categories, Lemma 4.25.1. □

Lemma 23.3.4.07GX The category of divided power rings has all colimits.

Proof. The empty colimit is Z with divided power ideal (0). Let’s discuss general
colimits. Let C be a category and let c 7→ (Ac, Ic, γc) be a diagram. Consider the
functor

F (B, J, δ) = limc∈C Hom((Ac, Ic, γc), (B, J, δ))
Note that any f = (fc)c∈C ∈ F (B, J, δ) has the property that all the images fc(Ac)
generate a subring B′ of B of bounded cardinality κ and that all the images fc(Ic)
generate a divided power sub ideal J ′ of B′. And we get a factorization of f as a f ′

in F (B′) followed by the inclusion B′ → B. Also, F commutes with limits. Hence
we may apply Lemma 23.3.3 to see that F is representable and we win. □

Remark 23.3.5.07GY The forgetful functor (A, I, γ) 7→ A does not commute with colim-
its. For example, let

(B, J, δ) // (B′′, J ′′, δ′′)

(A, I, γ) //

OO

(B′, J ′, δ′)

OO

be a pushout in the category of divided power rings. Then in general the map
B⊗AB′ → B′′ isn’t an isomorphism. (It is always surjective.) An explicit example
is given by (A, I, γ) = (Z, (0), ∅), (B, J, δ) = (Z/4Z, 2Z/4Z, δ), and (B′, J ′, δ′) =
(Z/4Z, 2Z/4Z, δ′) where δ2(2) = 2 and δ′

2(2) = 0. More precisely, using Lemma
23.5.3 we let δ, resp. δ′ be the unique divided power structure on J , resp. J ′ such
that δ2 : J → J , resp. δ′

2 : J ′ → J ′ is the map 0 7→ 0, 2 7→ 2, resp. 0 7→ 0, 2 7→

https://stacks.math.columbia.edu/tag/07GV
https://stacks.math.columbia.edu/tag/07GW
https://stacks.math.columbia.edu/tag/07GX
https://stacks.math.columbia.edu/tag/07GY
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0. Then (B′′, J ′′, δ′′) = (F2, (0), ∅) which doesn’t agree with the tensor product.
However, note that it is always true that

B′′/J ′′ = B/J ⊗A/I B′/J ′

as can be seen from the universal property of the pushout by considering maps into
divided power algebras of the form (C, (0), ∅).

23.4. Extending divided powers

07GZ Here is the definition.

Definition 23.4.1.07H0 Given a divided power ring (A, I, γ) and a ring map A → B
we say γ extends to B if there exists a divided power structure γ̄ on IB such that
(A, I, γ)→ (B, IB, γ̄) is a homomorphism of divided power rings.

Lemma 23.4.2.07H1 Let (A, I, γ) be a divided power ring. Let A → B be a ring map.
If γ extends to B then it extends uniquely. Assume (at least) one of the following
conditions holds

(1) IB = 0,
(2) I is principal, or
(3) A→ B is flat.

Then γ extends to B.

Proof. Any element of IB can be written as a finite sum
∑t
i=1 bixi with bi ∈ B

and xi ∈ I. If γ extends to γ̄ on IB then γ̄n(xi) = γn(xi). Thus, conditions (3)
and (4) in Definition 23.2.1 imply that

γ̄n(
∑t

i=1
bixi) =

∑
n1+...+nt=n

∏t

i=1
bnii γni(xi)

Thus we see that γ̄ is unique if it exists.
If IB = 0 then setting γ̄n(0) = 0 works. If I = (x) then we define γ̄n(bx) = bnγn(x).
This is well defined: if b′x = bx, i.e., (b− b′)x = 0 then

bnγn(x)− (b′)nγn(x) = (bn − (b′)n)γn(x)
= (bn−1 + . . .+ (b′)n−1)(b− b′)γn(x) = 0

because γn(x) is divisible by x (since γn(I) ⊂ I) and hence annihilated by b − b′.
Next, we prove conditions (1) – (5) of Definition 23.2.1. Parts (1), (2), (3), (5) are
obvious from the construction. For (4) suppose that y, z ∈ IB, say y = bx and
z = cx. Then y + z = (b+ c)x hence

γ̄n(y + z) = (b+ c)nγn(x)

=
∑ n!

i!(n− i)!b
icn−iγn(x)

=
∑

bicn−iγi(x)γn−i(x)

=
∑

γ̄i(y)γ̄n−i(z)

as desired.
Assume A→ B is flat. Suppose that b1, . . . , br ∈ B and x1, . . . , xr ∈ I. Then

γ̄n(
∑

bixi) =
∑

be1
1 . . . berr γe1(x1) . . . γer (xr)

https://stacks.math.columbia.edu/tag/07H0
https://stacks.math.columbia.edu/tag/07H1
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where the sum is over e1 + . . . + er = n if γ̄n exists. Next suppose that we have
c1, . . . , cs ∈ B and aij ∈ A such that bi =

∑
aijcj . Setting yj =

∑
aijxi we claim

that ∑
be1

1 . . . berr γe1(x1) . . . γer (xr) =
∑

cd1
1 . . . cdss γd1(y1) . . . γds(ys)

in B where on the right hand side we are summing over d1 + . . .+ ds = n. Namely,
using the axioms of a divided power structure we can expand both sides into a sum
with coefficients in Z[aij ] of terms of the form cd1

1 . . . cdss γe1(x1) . . . γer (xr). To see
that the coefficients agree we note that the result is true in Q[x1, . . . , xr, c1, . . . , cs, aij ]
with γ the unique divided power structure on (x1, . . . , xr). By Lazard’s theorem
(Algebra, Theorem 10.81.4) we can write B as a directed colimit of finite free A-
modules. In particular, if z ∈ IB is written as z =

∑
xibi and z =

∑
x′
i′b

′
i′ , then we

can find c1, . . . , cs ∈ B and aij , a
′
i′j ∈ A such that bi =

∑
aijcj and b′

i′ =
∑
a′
i′jcj

such that yj =
∑
xiaij =

∑
x′
i′a

′
i′j holds2. Hence the procedure above gives a well

defined map γ̄n on IB. By construction γ̄ satisfies conditions (1), (3), and (4).
Moreover, for x ∈ I we have γ̄n(x) = γn(x). Hence it follows from Lemma 23.2.4
that γ̄ is a divided power structure on IB. □

Lemma 23.4.3.07H2 Let (A, I, γ) be a divided power ring.
(1) If φ : (A, I, γ)→ (B, J, δ) is a homomorphism of divided power rings, then

Ker(φ) ∩ I is preserved by γn for all n ≥ 1.
(2) Let a ⊂ A be an ideal and set I ′ = I ∩ a. The following are equivalent

(a) I ′ is preserved by γn for all n > 0,
(b) γ extends to A/a, and
(c) there exist a set of generators xi of I ′ as an ideal such that γn(xi) ∈ I ′

for all n > 0.
Proof. Proof of (1). This is clear. Assume (2)(a). Define γ̄n(x mod I ′) = γn(x) mod
I ′ for x ∈ I. This is well defined since γn(x+ y) = γn(x) mod I ′ for y ∈ I ′ by Def-
inition 23.2.1 (4) and the fact that γj(y) ∈ I ′ by assumption. It is clear that γ̄
is a divided power structure as γ is one. Hence (2)(b) holds. Also, (2)(b) implies
(2)(a) by part (1). It is clear that (2)(a) implies (2)(c). Assume (2)(c). Note that
γn(x) = anγn(xi) ∈ I ′ for x = axi. Hence we see that γn(x) ∈ I ′ for a set of
generators of I ′ as an abelian group. By induction on the length of an expression
in terms of these, it suffices to prove ∀n : γn(x + y) ∈ I ′ if ∀n : γn(x), γn(y) ∈ I ′.
This follows immediately from the fourth axiom of a divided power structure. □

Lemma 23.4.4.07H3 Let (A, I, γ) be a divided power ring. Let E ⊂ I be a subset. Then
the smallest ideal J ⊂ I preserved by γ and containing all f ∈ E is the ideal J
generated by γn(f), n ≥ 1, f ∈ E.
Proof. Follows immediately from Lemma 23.4.3. □

Lemma 23.4.5.07KD Let (A, I, γ) be a divided power ring. Let p be a prime. If p is
nilpotent in A/I, then

(1) the p-adic completion A∧ = limeA/p
eA surjects onto A/I,

(2) the kernel of this map is the p-adic completion I∧ of I, and

2This can also be proven without recourse to Algebra, Theorem 10.81.4. Indeed, if z =
∑

xibi
and z =

∑
x′
i′b

′
i′ , then

∑
xibi −

∑
x′
i′b

′
i′ = 0 is a relation in the A-module B. Thus, Algebra,

Lemma 10.39.11 (applied to the xi and x′
i′ taking the place of the fi, and the bi and b′

i′ taking
the role of the xi) yields the existence of the c1, . . . , cs ∈ B and aij , a

′
i′j ∈ A as required.

https://stacks.math.columbia.edu/tag/07H2
https://stacks.math.columbia.edu/tag/07H3
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(3) each γn is continuous for the p-adic topology and extends to γ∧
n : I∧ → I∧

defining a divided power structure on I∧.
If moreover A is a Z(p)-algebra, then

(4) for e large enough the ideal peA ⊂ I is preserved by the divided power
structure γ and

(A∧, I∧, γ∧) = lime(A/peA, I/peA, γ̄)

in the category of divided power rings.

Proof. Let t ≥ 1 be an integer such that ptA/I = 0, i.e., ptA ⊂ I. The map
A∧ → A/I is the composition A∧ → A/ptA→ A/I which is surjective (for example
by Algebra, Lemma 10.96.1). As peI ⊂ peA ∩ I ⊂ pe−tI for e ≥ t we see that the
kernel of the composition A∧ → A/I is the p-adic completion of I. The map γn is
continuous because

γn(x+ pey) =
∑

i+j=n
pjeγi(x)γj(y) = γn(x) mod peI

by the axioms of a divided power structure. It is clear that the axioms for divided
power structures are inherited by the maps γ∧

n from the maps γn. Finally, to see
the last statement say e > t. Then peA ⊂ I and γ1(peA) ⊂ peA and for n > 1 we
have

γn(pea) = pnγn(pe−1a) = pn

n! p
n(e−1)an ∈ peA

as pn/n! ∈ Z(p) and as n ≥ 2 and e ≥ 2 so n(e − 1) ≥ e. This proves that γ
extends to A/peA, see Lemma 23.4.3. The statement on limits is clear from the
construction of limits in the proof of Lemma 23.3.2. □

23.5. Divided power polynomial algebras

07H4 A very useful example is the divided power polynomial algebra. Let A be a ring.
Let t ≥ 1. We will denote A⟨x1, . . . , xt⟩ the following A-algebra: As an A-module
we set

A⟨x1, . . . , xt⟩ =
⊕

n1,...,nt≥0
Ax

[n1]
1 . . . x

[nt]
t

with multiplication given by

x
[n]
i x

[m]
i = (n+m)!

n!m! x
[n+m]
i .

We also set xi = x
[1]
i . Note that 1 = x

[0]
1 . . . x

[0]
t . There is a similar construc-

tion which gives the divided power polynomial algebra in infinitely many variables.
There is an canonical A-algebra map A⟨x1, . . . , xt⟩ → A sending x

[n]
i to zero for

n > 0. The kernel of this map is denoted A⟨x1, . . . , xt⟩+.

Lemma 23.5.1.07H5 Let (A, I, γ) be a divided power ring. There exists a unique divided
power structure δ on

J = IA⟨x1, . . . , xt⟩+A⟨x1, . . . , xt⟩+
such that

(1) δn(xi) = x
[n]
i , and

(2) (A, I, γ)→ (A⟨x1, . . . , xt⟩, J, δ) is a homomorphism of divided power rings.

https://stacks.math.columbia.edu/tag/07H5
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Moreover, (A⟨x1, . . . , xt⟩, J, δ) has the following universal property: A homomor-
phism of divided power rings φ : (A⟨x1, . . . , xt⟩, J, δ)→ (C,K, ϵ) is the same thing
as a homomorphism of divided power rings A→ C and elements k1, . . . , kt ∈ K.

Proof. We will prove the lemma in case of a divided power polynomial algebra in
one variable. The result for the general case can be argued in exactly the same way,
or by noting that A⟨x1, . . . , xt⟩ is isomorphic to the ring obtained by adjoining the
divided power variables x1, . . . , xt one by one.

Let A⟨x⟩+ be the ideal generated by x, x[2], x[3], . . .. Note that J = IA⟨x⟩+A⟨x⟩+
and that

IA⟨x⟩ ∩A⟨x⟩+ = IA⟨x⟩ ·A⟨x⟩+
Hence by Lemma 23.2.5 it suffices to show that there exist divided power structures
on the ideals IA⟨x⟩ and A⟨x⟩+. The existence of the first follows from Lemma 23.4.2
as A → A⟨x⟩ is flat. For the second, note that if A is torsion free, then we can
apply Lemma 23.2.2 (4) to see that δ exists. Namely, choosing as generators the
elements x[m] we see that (x[m])n = (nm)!

(m!)n x
[nm] and n! divides the integer (nm)!

(m!)n . In
general write A = R/a for some torsion free ring R (e.g., a polynomial ring over Z).
The kernel of R⟨x⟩ → A⟨x⟩ is

⊕
ax[m]. Applying criterion (2)(c) of Lemma 23.4.3

we see that the divided power structure on R⟨x⟩+ extends to A⟨x⟩ as desired.

Proof of the universal property. Given a homomorphism φ : A → C of divided
power rings and k1, . . . , kt ∈ K we consider

A⟨x1, . . . , xt⟩ → C, x
[n1]
1 . . . x

[nt]
t 7−→ ϵn1(k1) . . . ϵnt(kt)

using φ on coefficients. The only thing to check is that this is an A-algebra homo-
morphism (details omitted). The inverse construction is clear. □

Remark 23.5.2.07H6 Let (A, I, γ) be a divided power ring. There is a variant of Lemma
23.5.1 for infinitely many variables. First note that if s < t then there is a canonical
map

A⟨x1, . . . , xs⟩ → A⟨x1, . . . , xt⟩
Hence if W is any set, then we set

A⟨xw : w ∈W ⟩ = colimE⊂W A⟨xe : e ∈ E⟩

(colimit over E finite subset of W ) with transition maps as above. By the definition
of a colimit we see that the universal mapping property of A⟨xw : w ∈ W ⟩ is
completely analogous to the mapping property stated in Lemma 23.5.1.

The following lemma can be found in [BO83].

Lemma 23.5.3.07GS Let p be a prime number. Let A be a ring such that every integer
n not divisible by p is invertible, i.e., A is a Z(p)-algebra. Let I ⊂ A be an ideal.
Two divided power structures γ, γ′ on I are equal if and only if γp = γ′

p. Moreover,
given a map δ : I → I such that

(1) p!δ(x) = xp for all x ∈ I,
(2) δ(ax) = apδ(x) for all a ∈ A, x ∈ I, and
(3) δ(x+ y) = δ(x) +

∑
i+j=p,i,j≥1

1
i!j!x

iyj + δ(y) for all x, y ∈ I,
then there exists a unique divided power structure γ on I such that γp = δ.

https://stacks.math.columbia.edu/tag/07H6
https://stacks.math.columbia.edu/tag/07GS
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Proof. If n is not divisible by p, then γn(x) = cxγn−1(x) where c is a unit in Z(p).
Moreover,

γpm(x) = cγm(γp(x))
where c is a unit in Z(p). Thus the first assertion is clear. For the second assertion,
we can, working backwards, use these equalities to define all γn. More precisely, if
n = a0 + a1p+ . . .+ aep

e with ai ∈ {0, . . . , p− 1} then we set
γn(x) = cnx

a0δ(x)a1 . . . δe(x)ae

for cn ∈ Z(p) defined by

cn = (p!)a1+a2(1+p)+...+ae(1+...+pe−1)/n!.
Now we have to show the axioms (1) – (5) of a divided power structure, see Defi-
nition 23.2.1. We observe that (1) and (3) are immediate. Verification of (2) and
(5) is by a direct calculation which we omit. Let x, y ∈ I. We claim there is a ring
map

φ : Z(p)⟨u, v⟩ −→ A

which maps u[n] to γn(x) and v[n] to γn(y). By construction of Z(p)⟨u, v⟩ this means
we have to check that

γn(x)γm(x) = (n+m)!
n!m! γn+m(x)

in A and similarly for y. This is true because (2) holds for γ. Let ϵ denote the
divided power structure on the ideal Z(p)⟨u, v⟩+ of Z(p)⟨u, v⟩. Next, we claim
that φ(ϵn(f)) = γn(φ(f)) for f ∈ Z(p)⟨u, v⟩+ and all n. This is clear for n =
0, 1, . . . , p − 1. For n = p it suffices to prove it for a set of generators of the ideal
Z(p)⟨u, v⟩+ because both ϵp and γp = δ satisfy properties (1) and (3) of the lemma.
Hence it suffices to prove that γp(γn(x)) = (pn)!

p!(n!)p γpn(x) and similarly for y, which
follows as (5) holds for γ. Now, if n = a0 + a1p+ . . .+ aep

e is an arbitrary integer
written in p-adic expansion as above, then

ϵn(f) = cnf
a0γp(f)a1 . . . γep(f)ae

because ϵ is a divided power structure. Hence we see that φ(ϵn(f)) = γn(φ(f))
holds for all n. Applying this for f = u+v we see that axiom (4) for γ follows from
the fact that ϵ is a divided power structure. □

23.6. Tate resolutions

09PF In this section we briefly discuss the resolutions constructed in [Tat57] and [AH86]
which combine divided power structures with differential graded algebras. In this
section we will use homological notation for differential graded algebras. Our dif-
ferential graded algebras will sit in nonnegative homological degrees. Thus our
differential graded algebras (A,d) will be given as chain complexes

. . .→ A2 → A1 → A0 → 0→ . . .

endowed with a multiplication.
Let R be a ring (commutative, as usual). In this section we will often consider
graded R-algebras A =

⊕
d≥0 Ad whose components are zero in negative degrees.

We will set A+ =
⊕

d>0 Ad. We will write Aeven =
⊕

d≥0 A2d and Aodd =⊕
d≥0 A2d+1. Recall that A is graded commutative if xy = (−1)deg(x) deg(y)yx
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for homogeneous elements x, y. Recall that A is strictly graded commutative if in
addition x2 = 0 for homogeneous elements x of odd degree. Finally, to understand
the following definition, keep in mind that γn(x) = xn/n! if A is a Q-algebra.

Definition 23.6.1.09PG Let R be a ring. Let A =
⊕

d≥0 Ad be a graded R-algebra
which is strictly graded commutative. A collection of maps γn : Aeven,+ → Aeven,+
defined for all n > 0 is called a divided power structure on A if we have

(1) γn(x) ∈ A2nd if x ∈ A2d,
(2) γ1(x) = x for any x, we also set γ0(x) = 1,
(3) γn(x)γm(x) = (n+m)!

n!m! γn+m(x),
(4) γn(xy) = xnγn(y) for all x ∈ Aeven and y ∈ Aeven,+,
(5) γn(xy) = 0 if x, y ∈ Aodd homogeneous and n > 1
(6) if x, y ∈ Aeven,+ then γn(x+ y) =

∑
i=0,...,n γi(x)γn−i(y),

(7) γn(γm(x)) = (nm)!
n!(m!)n γnm(x) for x ∈ Aeven,+.

Observe that conditions (2), (3), (4), (6), and (7) imply that γ is a “usual” divided
power structure on the ideal Aeven,+ of the (commutative) ring Aeven, see Sections
23.2, 23.3, 23.4, and 23.5. In particular, we have n!γn(x) = xn for all x ∈ Aeven,+.
Condition (1) states that γ is compatible with grading and condition (5) tells us γn
for n > 1 vanishes on products of homogeneous elements of odd degree. But note
that it may happen that

γ2(z1z2 + z3z4) = z1z2z3z4

is nonzero if z1, z2, z3, z4 are homogeneous elements of odd degree.

Example 23.6.2 (Adjoining odd variable).09PH Let R be a ring. Let (A, γ) be a strictly
graded commutative graded R-algebra endowed with a divided power structure as
in the definition above. Let d > 0 be an odd integer. In this setting we can adjoin
a variable T of degree d to A. Namely, set

A⟨T ⟩ = A⊕AT

with grading given by A⟨T ⟩m = Am ⊕Am−dT . We claim there is a unique divided
power structure on A⟨T ⟩ compatible with the given divided power structure on A.
Namely, we set

γn(x+ yT ) = γn(x) + γn−1(x)yT
for x ∈ Aeven,+ and y ∈ Aodd.

Example 23.6.3 (Adjoining even variable).09PI Let R be a ring. Let (A, γ) be a strictly
graded commutative graded R-algebra endowed with a divided power structure as
in the definition above. Let d > 0 be an even integer. In this setting we can adjoin
a variable T of degree d to A. Namely, set

A⟨T ⟩ = A⊕AT ⊕AT (2) ⊕AT (3) ⊕ . . .

with multiplication given by

T (n)T (m) = (n+m)!
n!m! T (n+m)

and with grading given by

A⟨T ⟩m = Am ⊕Am−dT ⊕Am−2dT
(2) ⊕ . . .

https://stacks.math.columbia.edu/tag/09PG
https://stacks.math.columbia.edu/tag/09PH
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We claim there is a unique divided power structure on A⟨T ⟩ compatible with the
given divided power structure on A such that γn(T (i)) = T (ni). To define the
divided power structure we first set

γn

(∑
i>0

xiT
(i)
)

=
∑∏

n=
∑

ei
xeii T

(iei)

if xi is in Aeven. If x0 ∈ Aeven,+ then we take

γn

(∑
i≥0

xiT
(i)
)

=
∑

a+b=n
γa(x0)γb

(∑
i>0

xiT
(i)
)

where γb is as defined above.

Remark 23.6.4.0F4I We can also adjoin a set (possibly infinite) of exterior or divided
power generators in a given degree d > 0, rather than just one as in Examples
23.6.2 and 23.6.3. Namely, following Remark 23.5.2: for (A, γ) as above and a set
J , let A⟨Tj : j ∈ J⟩ be the directed colimit of the algebras A⟨Tj : j ∈ S⟩ over all
finite subsets S of J . It is immediate that this algebra has a unique divided power
structure, compatible with the given structure on A and on each generator Tj .

At this point we tie in the definition of divided power structures with differentials.
To understand the definition note that d(xn/n!) = d(x)xn−1/(n − 1)! if A is a
Q-algebra and x ∈ Aeven,+.

Definition 23.6.5.09PJ Let R be a ring. Let A =
⊕

d≥0 Ad be a differential graded
R-algebra which is strictly graded commutative. A divided power structure γ on A
is compatible with the differential graded structure if d(γn(x)) = d(x)γn−1(x) for
all x ∈ Aeven,+.

Warning: Let (A,d, γ) be as in Definition 23.6.5. It may not be true that γn(x)
is a boundary, if x is a boundary. Thus γ in general does not induce a divided
power structure on the homology algebra H(A). In some papers the authors put
an additional compatibility condition in order to ensure that this is the case, but
we elect not to do so.

Lemma 23.6.6.09PK Let (A,d, γ) and (B, d, γ) be as in Definition 23.6.5. Let f : A→ B
be a map of differential graded algebras compatible with divided power structures.
Assume

(1) Hk(A) = 0 for k > 0, and
(2) f is surjective.

Then γ induces a divided power structure on the graded R-algebra H(B).

Proof. Suppose that x and x′ are homogeneous of the same degree 2d and define
the same cohomology class in H(B). Say x′ − x = d(w). Choose a lift y ∈ A2d of
x and a lift z ∈ A2d+1 of w. Then y′ = y + d(z) is a lift of x′. Hence

γn(y′) =
∑

γi(y)γn−i(d(z)) = γn(y) +
∑

i<n
γi(y)γn−i(d(z))

Since A is acyclic in positive degrees and since d(γj(d(z))) = 0 for all j we can
write this as

γn(y′) = γn(y) +
∑

i<n
γi(y)d(zi)

for some zi in A. Moreover, for 0 < i < n we have
d(γi(y)zi) = d(γi(y))zi + γi(y)d(zi) = d(y)γi−1(y)zi + γi(y)d(zi)

https://stacks.math.columbia.edu/tag/0F4I
https://stacks.math.columbia.edu/tag/09PJ
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and the first term maps to zero in B as d(y) maps to zero in B. Hence γn(x′)
and γn(x) map to the same element of H(B). Thus we obtain a well defined map
γn : H2d(B)→ H2nd(B) for all d > 0 and n > 0. We omit the verification that this
defines a divided power structure on H(B). □

Lemma 23.6.7.09PL Let (A,d, γ) be as in Definition 23.6.5. Let R→ R′ be a ring map.
Then d and γ induce similar structures on A′ = A⊗R R′ such that (A′,d, γ) is as
in Definition 23.6.5.

Proof. Observe that A′
even = Aeven ⊗R R′ and A′

even,+ = Aeven,+ ⊗R R′. Hence
we are trying to show that the divided powers γ extend to A′

even (terminology as
in Definition 23.4.1). Once we have shown γ extends it follows easily that this
extension has all the desired properties.

Choose a polynomial R-algebra P (on any set of generators) and a surjection of
R-algebras P → R′. The ring map Aeven → Aeven ⊗R P is flat, hence the divided
powers γ extend to Aeven⊗R P uniquely by Lemma 23.4.2. Let J = Ker(P → R′).
To show that γ extends to A⊗RR′ it suffices to show that I ′ = Ker(Aeven,+⊗RP →
Aeven,+ ⊗R R′) is generated by elements z such that γn(z) ∈ I ′ for all n > 0. This
is clear as I ′ is generated by elements of the form x ⊗ f with x ∈ Aeven,+ and
f ∈ Ker(P → R′). □

Lemma 23.6.8.09PM Let (A,d, γ) be as in Definition 23.6.5. Let d ≥ 1 be an integer.
Let A⟨T ⟩ be the graded divided power polynomial algebra on T with deg(T ) = d
constructed in Example 23.6.2 or 23.6.3. Let f ∈ Ad−1 be an element with d(f) = 0.
There exists a unique differential d on A⟨T ⟩ such that d(T ) = f and such that d is
compatible with the divided power structure on A⟨T ⟩.

Proof. This is proved by a direct computation which is omitted. □

In Lemma 23.12.3 we will compute the cohomology of A⟨T ⟩ in some special cases.
Here is Tate’s construction, as extended by Avramov and Halperin.

Lemma 23.6.9.09PN Let R→ S be a homomorphism of commutative rings. There exists
a factorization

R→ A→ S

with the following properties:
(1) (A,d, γ) is as in Definition 23.6.5,
(2) A→ S is a quasi-isomorphism (if we endow S with the zero differential),
(3) A0 = R[xj : j ∈ J ] → S is any surjection of a polynomial ring onto S,

and
(4) A is a graded divided power polynomial algebra over R.

The last condition means that A is constructed out of A0 by successively adjoining
a set of variables T in each degree > 0 as in Example 23.6.2 or 23.6.3. Moreover,
if R is Noetherian and R → S is of finite type, then A can be taken to have only
finitely many generators in each degree.

Proof. We write out the construction for the case that R is Noetherian and R→ S
is of finite type. Without those assumptions, the proof is the same, except that we
have to use some set (possibly infinite) of generators in each degree.
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Start of the construction: Let A(0) = R[x1, . . . , xn] be a (usual) polynomial ring
and let A(0)→ S be a surjection. As grading we take A(0)0 = A(0) and A(0)d = 0
for d ̸= 0. Thus d = 0 and γn, n > 0, is zero as well.
Choose generators f1, . . . , fm ∈ R[x1, . . . , xn] for the kernel of the given map A(0) =
R[x1, . . . , xn]→ S. We apply Example 23.6.2 m times to get

A(1) = A(0)⟨T1, . . . , Tm⟩
with deg(Ti) = 1 as a graded divided power polynomial algebra. We set d(Ti) = fi.
Since A(1) is a divided power polynomial algebra over A(0) and since d(fi) = 0
this extends uniquely to a differential on A(1) by Lemma 23.6.8.
Induction hypothesis: Assume we are given factorizations

R→ A(0)→ A(1)→ . . .→ A(m)→ S

where A(0) and A(1) are as above and each R → A(m′) → S for 2 ≤ m′ ≤ m
satisfies properties (1) and (4) of the statement of the lemma and (2) replaced by
the condition that Hi(A(m′)) → Hi(S) is an isomorphism for m′ > i ≥ 0. The
base case is m = 1.
Induction step: Assume we have R → A(m) → S as in the induction hypothesis.
Consider the group Hm(A(m)). This is a module over H0(A(m)) = S. In fact, it is
a subquotient of A(m)m which is a finite type module over A(m)0 = R[x1, . . . , xn].
Thus we can pick finitely many elements

e1, . . . , et ∈ Ker(d : A(m)m → A(m)m−1)
which map to generators of this module. Applying Example 23.6.2 or 23.6.3 t times
we get

A(m+ 1) = A(m)⟨T1, . . . , Tt⟩
with deg(Ti) = m+ 1 as a graded divided power algebra. We set d(Ti) = ei. Since
A(m+ 1) is a divided power polynomial algebra over A(m) and since d(ei) = 0 this
extends uniquely to a differential on A(m+ 1) compatible with the divided power
structure. Since we’ve added only material in degree m+ 1 and higher we see that
Hi(A(m+ 1)) = Hi(A(m)) for i < m. Moreover, it is clear that Hm(A(m+ 1)) = 0
by construction.
To finish the proof we observe that we have shown there exists a sequence of maps

R→ A(0)→ A(1)→ . . .→ A(m)→ A(m+ 1)→ . . .→ S

and to finish the proof we set A = colimA(m). □

Lemma 23.6.10.0BZ9 Let R → S be a pseudo-coherent ring map (More on Algebra,
Definition 15.82.1). Then Lemma 23.6.9 holds, with the resolution A of S having
finitely many generators in each degree.

Proof. This is proved in exactly the same way as Lemma 23.6.9. The only additional
twist is that, given A(m) → S we have to show that Hm = Hm(A(m)) is a finite
R[x1, . . . , xm]-module (so that in the next step we need only add finitely many
variables). Consider the complex

. . .→ A(m)m−1 → A(m)m → A(m)m−1 → . . .→ A(m)0 → S → 0
Since S is a pseudo-coherent R[x1, . . . , xn]-module and since A(m)i is a finite free
R[x1, . . . , xn]-module we conclude that this is a pseudo-coherent complex, see More
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on Algebra, Lemma 15.64.9. Since the complex is exact in (homological) degrees
> m we conclude that Hm is a finite R-module by More on Algebra, Lemma
15.64.3. □

Lemma 23.6.11.09PP Let R be a commutative ring. Suppose that (A,d, γ) and (B, d, γ)
are as in Definition 23.6.5. Let φ : H0(A)→ H0(B) be an R-algebra map. Assume

(1) A is a graded divided power polynomial algebra over R.
(2) Hk(B) = 0 for k > 0.

Then there exists a map φ : A → B of differential graded R-algebras compatible
with divided powers that lifts φ.

Proof. The assumption means that A is obtained from R by successively adjoining
some set of polynomial generators in degree zero, exterior generators in positive
odd degrees, and divided power generators in positive even degrees. So we have a
filtration R ⊂ A(0) ⊂ A(1) ⊂ . . . of A such that A(m+1) is obtained from A(m) by
adjoining generators of the appropriate type (which we simply call “divided power
generators”) in degree m + 1. In particular, A(0) → H0(A) is a surjection from a
(usual) polynomial algebra over R onto H0(A). Thus we can lift φ to an R-algebra
map φ(0) : A(0)→ B0.

Write A(1) = A(0)⟨Tj : j ∈ J⟩ for some set J of divided power variables Tj of
degree 1. Let fj ∈ B0 be fj = φ(0)(d(Tj)). Observe that fj maps to zero in H0(B)
as dTj maps to zero in H0(A). Thus we can find bj ∈ B1 with d(bj) = fj . By the
universal property of divided power polynomial algebras from Lemma 23.5.1, we
find a lift φ(1) : A(1)→ B of φ(0) mapping Tj to fj .

Having constructed φ(m) for some m ≥ 1 we can construct φ(m+1) : A(m+1)→ B
in exactly the same manner. We omit the details. □

Lemma 23.6.12.09PQ Let R be a commutative ring. Let S and T be commutative
R-algebras. Then there is a canonical structure of a strictly graded commutative
R-algebra with divided powers on

TorR∗ (S, T ).

Proof. Choose a factorization R → A → S as above. Since A → S is a quasi-
isomorphism and since Ad is a free R-module, we see that the differential graded
algebra B = A ⊗R T computes the Tor groups displayed in the lemma. Choose a
surjection R[yj : j ∈ J ] → T . Then we see that B is a quotient of the differential
graded algebra A[yj : j ∈ J ] whose homology sits in degree 0 (it is equal to S[yj :
j ∈ J ]). By Lemma 23.6.7 the differential graded algebras B and A[yj : j ∈ J ]
have divided power structures compatible with the differentials. Hence we obtain
our divided power structure on H(B) by Lemma 23.6.6.

The divided power algebra structure constructed in this way is independent of the
choice of A. Namely, if A′ is a second choice, then Lemma 23.6.11 implies there is
a map A → A′ preserving all structure and the augmentations towards S. Then
the induced map B = A ⊗R T → A′ ⊗R T ′ = B′ also preserves all structure
and is a quasi-isomorphism. The induced isomorphism of Tor algebras is therefore
compatible with products and divided powers. □
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23.7. Application to complete intersections

09PR Let R be a ring. Let (A,d, γ) be as in Definition 23.6.5. A derivation of degree 2 is
an R-linear map θ : A→ A with the following properties

(1) θ(Ad) ⊂ Ad−2,
(2) θ(xy) = θ(x)y + xθ(y),
(3) θ commutes with d,
(4) θ(γn(x)) = θ(x)γn−1(x) for all x ∈ A2d all d.

In the following lemma we construct a derivation.

Lemma 23.7.1.09PS Let R be a ring. Let (A,d, γ) be as in Definition 23.6.5. Let R′ → R
be a surjection of rings whose kernel has square zero and is generated by one element
f . If A is a graded divided power polynomial algebra over R with finitely many
variables in each degree, then we obtain a derivation θ : A/IA→ A/IA where I is
the annihilator of f in R.

Proof. Since A is a divided power polynomial algebra, we can find a divided power
polynomial algebra A′ over R′ such that A = A′ ⊗R R′. Moreover, we can lift d to
an R-linear operator d on A′ such that

(1) d(xy) = d(x)y + (−1)deg(x)xd(y) for x, y ∈ A′ homogeneous, and
(2) d(γn(x)) = d(x)γn−1(x) for x ∈ A′

even,+.
We omit the details (hint: proceed one variable at the time). However, it may not
be the case that d2 is zero on A′. It is clear that d2 maps A′ into fA′ ∼= A/IA.
Hence d2 annihilates fA′ and factors as a map A → A/IA. Since d2 is R-linear
we obtain our map θ : A/IA → A/IA. The verification of the properties of a
derivation is immediate. □

Lemma 23.7.2.09PT Assumption and notation as in Lemma 23.7.1. Suppose S = H0(A)
is isomorphic to R[x1, . . . , xn]/(f1, . . . , fm) for some n, m, and fj ∈ R[x1, . . . , xn].
Moreover, suppose given a relation∑

rjfj = 0

with rj ∈ R[x1, . . . , xn]. Choose r′
j , f

′
j ∈ R′[x1, . . . , xn] lifting rj , fj . Write

∑
r′
jf

′
j =

gf for some g ∈ R/I[x1, . . . , xn]. If H1(A) = 0 and all the coefficients of each rj
are in I, then there exists an element ξ ∈ H2(A/IA) such that θ(ξ) = g in S/IS.

Proof. Let A(0) ⊂ A(1) ⊂ A(2) ⊂ . . . be the filtration of A such that A(m) is
gotten from A(m−1) by adjoining divided power variables of degree m. Then A(0)
is a polynomial algebra over R equipped with an R-algebra surjection A(0) → S.
Thus we can choose a map

φ : R[x1, . . . , xn]→ A(0)
lifting the augmentations to S. Next, A(1) = A(0)⟨T1, . . . , Tt⟩ for some divided
power variables Ti of degree 1. Since H0(A) = S we can pick ξj ∈

∑
A(0)Ti with

d(ξj) = φ(fj). Then

d
(∑

φ(rj)ξj
)

=
∑

φ(rj)φ(fj) =
∑

φ(rjfj) = 0

Since H1(A) = 0 we can pick ξ ∈ A2 with d(ξ) =
∑
φ(rj)ξj . If the coefficients of

rj are in I, then the same is true for φ(rj). In this case d(ξ) dies in A1/IA1 and
hence ξ defines a class in H2(A/IA).
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The construction of θ in the proof of Lemma 23.7.1 proceeds by successively lifting
A(i) to A′(i) and lifting the differential d. We lift φ to φ′ : R′[x1, . . . , xn]→ A′(0).
Next, we have A′(1) = A′(0)⟨T1, . . . , Tt⟩. Moreover, we can lift ξj to ξ′

j ∈
∑
A′(0)Ti.

Then d(ξ′
j) = φ′(f ′

j) + faj for some aj ∈ A′(0). Consider a lift ξ′ ∈ A′
2 of ξ. Then

we know that
d(ξ′) =

∑
φ′(r′

j)ξ′
j +

∑
fbiTi

for some bi ∈ A(0). Applying d again we find

θ(ξ) =
∑

φ′(r′
j)φ′(f ′

j) +
∑

fφ′(r′
j)aj +

∑
fbid(Ti)

The first term gives us what we want. The second term is zero because the coeffi-
cients of rj are in I and hence are annihilated by f . The third term maps to zero
in H0 because d(Ti) maps to zero. □

The method of proof of the following lemma is apparently due to Gulliksen.

Lemma 23.7.3.09PU Let R′ → R be a surjection of Noetherian rings whose kernel has
square zero and is generated by one element f . Let S = R[x1, . . . , xn]/(f1, . . . , fm).
Let

∑
rjfj = 0 be a relation in R[x1, . . . , xn]. Assume that

(1) each rj has coefficients in the annihilator I of f in R,
(2) for some lifts r′

j , f
′
j ∈ R′[x1, . . . , xn] we have

∑
r′
jf

′
j = gf where g is not

nilpotent in S/IS.
Then S does not have finite tor dimension over R (i.e., S is not a perfect R-algebra).

Proof. Choose a Tate resolution R → A → S as in Lemma 23.6.9. Let ξ ∈
H2(A/IA) and θ : A/IA→ A/IA be the element and derivation found in Lemmas
23.7.1 and 23.7.2. Observe that

θn(γn(ξ)) = gn

in H0(A/IA) = S/IS. Hence if g is not nilpotent in S/IS, then ξn is nonzero in
H2n(A/IA) for all n > 0. Since H2n(A/IA) = TorR2n(S,R/I) we conclude. □

The following result can be found in [Rod88].

Lemma 23.7.4.09PV Let (A,m) be a Noetherian local ring. Let I ⊂ J ⊂ A be proper
ideals. If A/J has finite tor dimension over A/I, then I/mI → J/mJ is injective.

Proof. Let f ∈ I be an element mapping to a nonzero element of I/mI which is
mapped to zero in J/mJ . We can choose an ideal I ′ with mI ⊂ I ′ ⊂ I such that I/I ′

is generated by the image of f . Set R = A/I and R′ = A/I ′. Let J = (a1, . . . , am)
for some aj ∈ A. Then f =

∑
bjaj for some bj ∈ m. Let rj , fj ∈ R resp. r′

j , f
′
j ∈ R′

be the image of bj , aj . Then we see we are in the situation of Lemma 23.7.3 (with
the ideal I of that lemma equal to mR) and the lemma is proved. □

Lemma 23.7.5.09PW Let (A,m) be a Noetherian local ring. Let I ⊂ J ⊂ A be proper
ideals. Assume

(1) A/J has finite tor dimension over A/I, and
(2) J is generated by a regular sequence.

Then I is generated by a regular sequence and J/I is generated by a regular se-
quence.
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Proof. By Lemma 23.7.4 we see that I/mI → J/mJ is injective. Thus we can
find s ≤ r and a minimal system of generators f1, . . . , fr of J such that f1, . . . , fs
are in I and form a minimal system of generators of I. The lemma follows as
any minimal system of generators of J is a regular sequence by More on Algebra,
Lemmas 15.30.15 and 15.30.7. □

Lemma 23.7.6.09PX Let R → S be a local ring map of Noetherian local rings. Let
I ⊂ R and J ⊂ S be ideals with IS ⊂ J . If R → S is flat and S/mRS is regular,
then the following are equivalent

(1) J is generated by a regular sequence and S/J has finite tor dimension as
a module over R/I,

(2) J is generated by a regular sequence and TorR/Ip (S/J,R/mR) is nonzero
for only finitely many p,

(3) I is generated by a regular sequence and J/IS is generated by a regular
sequence in S/IS.

Proof. If (3) holds, then J is generated by a regular sequence, see for example More
on Algebra, Lemmas 15.30.13 and 15.30.7. Moreover, if (3) holds, then S/J =
(S/I)/(J/I) has finite projective dimension over S/IS because the Koszul complex
will be a finite free resolution of S/J over S/IS. Since R/I → S/IS is flat, it then
follows that S/J has finite tor dimension over R/I by More on Algebra, Lemma
15.66.11. Thus (3) implies (1).
The implication (1) ⇒ (2) is trivial. Assume (2). By More on Algebra, Lemma
15.77.6 we find that S/J has finite tor dimension over S/IS. Thus we can apply
Lemma 23.7.5 to conclude that IS and J/IS are generated by regular sequences.
Let f1, . . . , fr ∈ I be a minimal system of generators of I. Since R → S is flat,
we see that f1, . . . , fr form a minimal system of generators for IS in S. Thus
f1, . . . , fr ∈ R is a sequence of elements whose images in S form a regular sequence
by More on Algebra, Lemmas 15.30.15 and 15.30.7. Thus f1, . . . , fr is a regular
sequence in R by Algebra, Lemma 10.68.5. □

23.8. Local complete intersection rings

09PY Let (A,m) be a Noetherian complete local ring. By the Cohen structure theo-
rem (see Algebra, Theorem 10.160.8) we can write A as the quotient of a regular
Noetherian complete local ring R. Let us say that A is a complete intersection
if there exists some surjection R → A with R a regular local ring such that the
kernel is generated by a regular sequence. The following lemma shows this notion
is independent of the choice of the surjection.
Lemma 23.8.1.09PZ Let (A,m) be a Noetherian complete local ring. The following are
equivalent

(1) for every surjection of local rings R→ A with R a regular local ring, the
kernel of R→ A is generated by a regular sequence, and

(2) for some surjection of local rings R → A with R a regular local ring, the
kernel of R→ A is generated by a regular sequence.

Proof. Let k be the residue field of A. If the characteristic of k is p > 0, then we
denote Λ a Cohen ring (Algebra, Definition 10.160.5) with residue field k (Alge-
bra, Lemma 10.160.6). If the characteristic of k is 0 we set Λ = k. Recall that
Λ[[x1, . . . , xn]] for any n is formally smooth over Z, resp. Q in the m-adic topology,
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see More on Algebra, Lemma 15.39.1. Fix a surjection Λ[[x1, . . . , xn]] → A as in
the Cohen structure theorem (Algebra, Theorem 10.160.8).
Let R→ A be a surjection from a regular local ring R. Let f1, . . . , fr be a minimal
sequence of generators of Ker(R → A). We will use without further mention that
an ideal in a Noetherian local ring is generated by a regular sequence if and only
if any minimal set of generators is a regular sequence. Observe that f1, . . . , fr is a
regular sequence in R if and only if f1, . . . , fr is a regular sequence in the completion
R∧ by Algebra, Lemmas 10.68.5 and 10.97.2. Moreover, we have

R∧/(f1, . . . , fr)R∧ = (R/(f1, . . . , fn))∧ = A∧ = A

because A is mA-adically complete (first equality by Algebra, Lemma 10.97.1).
Finally, the ring R∧ is regular since R is regular (More on Algebra, Lemma 15.43.4).
Hence we may assume R is complete.
If R is complete we can choose a map Λ[[x1, . . . , xn]] → R lifting the given map
Λ[[x1, . . . , xn]] → A, see More on Algebra, Lemma 15.37.5. By adding some more
variables y1, . . . , ym mapping to generators of the kernel of R→ A we may assume
that Λ[[x1, . . . , xn, y1, . . . , ym]] → R is surjective (some details omitted). Then we
can consider the commutative diagram

Λ[[x1, . . . , xn, y1, . . . , ym]] //

��

R

��
Λ[[x1, . . . , xn]] // A

By Algebra, Lemma 10.135.6 we see that the condition for R→ A is equivalent to
the condition for the fixed chosen map Λ[[x1, . . . , xn]]→ A. This finishes the proof
of the lemma. □

The following two lemmas are sanity checks on the definition given above.

Lemma 23.8.2.09Q0 Let R be a regular ring. Let p ⊂ R be a prime. Let f1, . . . , fr ∈ p
be a regular sequence. Then the completion of

A = (R/(f1, . . . , fr))p = Rp/(f1, . . . , fr)Rp

is a complete intersection in the sense defined above.

Proof. The completion of A is equal to A∧ = R∧
p /(f1, . . . , fr)R∧

p because com-
pletion for finite modules over the Noetherian ring Rp is exact (Algebra, Lemma
10.97.1). The image of the sequence f1, . . . , fr in Rp is a regular sequence by Al-
gebra, Lemmas 10.97.2 and 10.68.5. Moreover, R∧

p is a regular local ring by More
on Algebra, Lemma 15.43.4. Hence the result holds by our definition of complete
intersection for complete local rings. □

The following lemma is the analogue of Algebra, Lemma 10.135.4.

Lemma 23.8.3.09Q1 Let R be a regular ring. Let p ⊂ R be a prime. Let I ⊂ p be an
ideal. Set A = (R/I)p = Rp/Ip. The following are equivalent

(1) the completion of A is a complete intersection in the sense above,
(2) Ip ⊂ Rp is generated by a regular sequence,
(3) the module (I/I2)p can be generated by dim(Rp)− dim(A) elements,
(4) add more here.
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Proof. We may and do replace R by its localization at p. Then p = m is the maximal
ideal of R and A = R/I. Let f1, . . . , fr ∈ I be a minimal sequence of generators.
The completion of A is equal to A∧ = R∧/(f1, . . . , fr)R∧ because completion for
finite modules over the Noetherian ring Rp is exact (Algebra, Lemma 10.97.1).
If (1) holds, then the image of the sequence f1, . . . , fr in R∧ is a regular sequence
by assumption. Hence it is a regular sequence in R by Algebra, Lemmas 10.97.2
and 10.68.5. Thus (1) implies (2).
Assume (3) holds. Set c = dim(R) − dim(A) and let f1, . . . , fc ∈ I map to gen-
erators of I/I2. by Nakayama’s lemma (Algebra, Lemma 10.20.1) we see that
I = (f1, . . . , fc). Since R is regular and hence Cohen-Macaulay (Algebra, Proposi-
tion 10.103.4) we see that f1, . . . , fc is a regular sequence by Algebra, Proposition
10.103.4. Thus (3) implies (2). Finally, (2) implies (1) by Lemma 23.8.2. □

The following result is due to Avramov, see [Avr75].
Proposition 23.8.4.09Q2 Let A→ B be a flat local homomorphism of Noetherian local
rings. Then the following are equivalent

(1) B∧ is a complete intersection,
(2) A∧ and (B/mAB)∧ are complete intersections.

Proof. Consider the diagram
B // B∧

A

OO

// A∧

OO

Since the horizontal maps are faithfully flat (Algebra, Lemma 10.97.3) we conclude
that the right vertical arrow is flat (for example by Algebra, Lemma 10.99.15).
Moreover, we have (B/mAB)∧ = B∧/mA∧B∧ by Algebra, Lemma 10.97.1. Thus
we may assume A and B are complete local Noetherian rings.
Assume A and B are complete local Noetherian rings. Choose a diagram

S // B

R

OO

// A

OO

as in More on Algebra, Lemma 15.39.3. Let I = Ker(R→ A) and J = Ker(S → B).
Note that since R/I = A→ B = S/J is flat the map J/IS⊗RR/mR → J/J ∩mRS
is an isomorphism. Hence a minimal system of generators of J/IS maps to a
minimal system of generators of Ker(S/mRS → B/mAB). Finally, S/mRS is a
regular local ring.
Assume (1) holds, i.e., J is generated by a regular sequence. Since A = R/I →
B = S/J is flat we see Lemma 23.7.6 applies and we deduce that I and J/IS are
generated by regular sequences. We have dim(B) = dim(A) + dim(B/mAB) and
dim(S/IS) = dim(A) + dim(S/mRS) (Algebra, Lemma 10.112.7). Thus J/IS is
generated by

dim(S/IS)− dim(S/J) = dim(S/mRS)− dim(B/mAB)
elements (Algebra, Lemma 10.60.13). It follows that Ker(S/mRS → B/mAB) is
generated by the same number of elements (see above). Hence Ker(S/mRS →
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B/mAB) is generated by a regular sequence, see for example Lemma 23.8.3. In this
way we see that (2) holds.
If (2) holds, then I and J/J∩mRS are generated by regular sequences. Lifting these
generators (see above), using flatness of R/I → S/IS, and using Grothendieck’s
lemma (Algebra, Lemma 10.99.3) we find that J/IS is generated by a regular
sequence in S/IS. Thus Lemma 23.7.6 tells us that J is generated by a regular
sequence, whence (1) holds. □

Definition 23.8.5.09Q3 Let A be a Noetherian ring.
(1) If A is local, then we say A is a complete intersection if its completion is

a complete intersection in the sense above.
(2) In general we say A is a local complete intersection if all of its local rings

are complete intersections.

We will check below that this does not conflict with the terminology introduced in
Algebra, Definitions 10.135.1 and 10.135.5. But first, we show this “makes sense”
by showing that if A is a Noetherian local complete intersection, then A is a local
complete intersection, i.e., all of its local rings are complete intersections.

Lemma 23.8.6.09Q4 Let (A,m) be a Noetherian local ring. Let p ⊂ A be a prime ideal.
If A is a complete intersection, then Ap is a complete intersection too.

Proof. Choose a prime q of A∧ lying over p (this is possible as A→ A∧ is faithfully
flat by Algebra, Lemma 10.97.3). Then Ap → (A∧)q is a flat local ring homomor-
phism. Thus by Proposition 23.8.4 we see that Ap is a complete intersection if and
only if (A∧)q is a complete intersection. Thus it suffices to prove the lemma in case
A is complete (this is the key step of the proof).
Assume A is complete. By definition we may write A = R/(f1, . . . , fr) for some
regular sequence f1, . . . , fr in a regular local ring R. Let q ⊂ R be the prime
corresponding to p. Observe that f1, . . . , fr ∈ q and that Ap = Rq/(f1, . . . , fr)Rq.
Hence Ap is a complete intersection by Lemma 23.8.2. □

Lemma 23.8.7.09Q5 Let A be a Noetherian ring. Then A is a local complete intersection
if and only if Am is a complete intersection for every maximal ideal m of A.

Proof. This follows immediately from Lemma 23.8.6 and the definitions. □

Lemma 23.8.8.09Q6 Let S be a finite type algebra over a field k.
(1) for a prime q ⊂ S the local ring Sq is a complete intersection in the sense

of Algebra, Definition 10.135.5 if and only if Sq is a complete intersection
in the sense of Definition 23.8.5, and

(2) S is a local complete intersection in the sense of Algebra, Definition
10.135.1 if and only if S is a local complete intersection in the sense of
Definition 23.8.5.

Proof. Proof of (1). Let k[x1, . . . , xn] → S be a surjection. Let p ⊂ k[x1, . . . , xn]
be the prime ideal corresponding to q. Let I ⊂ k[x1, . . . , xn] be the kernel of our
surjection. Note that k[x1, . . . , xn]p → Sq is surjective with kernel Ip. Observe
that k[x1, . . . , xn] is a regular ring by Algebra, Proposition 10.114.2. Hence the
equivalence of the two notions in (1) follows by combining Lemma 23.8.3 with
Algebra, Lemma 10.135.7.
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Having proved (1) the equivalence in (2) follows from the definition and Algebra,
Lemma 10.135.9. □

Lemma 23.8.9.09Q7 Let A→ B be a flat local homomorphism of Noetherian local rings.
Then the following are equivalent

(1) B is a complete intersection,
(2) A and B/mAB are complete intersections.

Proof. Now that the definition makes sense this is a trivial reformulation of the
(nontrivial) Proposition 23.8.4. □

23.9. Local complete intersection maps

09Q9 Let A → B be a local homomorphism of Noetherian complete local rings. A
consequence of the Cohen structure theorem is that we can find a commutative
diagram

S // B

A

__ OO

of Noetherian complete local rings with S → B surjective, A→ S flat, and S/mAS
a regular local ring. This follows from More on Algebra, Lemma 15.39.3. Let us
(temporarily) say A→ S → B is a good factorization of A→ B if S is a Noetherian
local ring, A → S → B are local ring maps, S → B surjective, A → S flat, and
S/mAS regular. Let us say that A→ B is a complete intersection homomorphism
if there exists some good factorization A→ S → B such that the kernel of S → B
is generated by a regular sequence. The following lemma shows this notion is
independent of the choice of the diagram.

Lemma 23.9.1.09QA Let A→ B be a local homomorphism of Noetherian complete local
rings. The following are equivalent

(1) for some good factorization A→ S → B the kernel of S → B is generated
by a regular sequence, and

(2) for every good factorization A→ S → B the kernel of S → B is generated
by a regular sequence.

Proof. Let A → S → B be a good factorization. As B is complete we obtain a
factorization A → S∧ → B where S∧ is the completion of S. Note that this is
also a good factorization: The ring map S → S∧ is flat (Algebra, Lemma 10.97.2),
hence A → S∧ is flat. The ring S∧/mAS

∧ = (S/mAS)∧ is regular since S/mAS is
regular (More on Algebra, Lemma 15.43.4). Let f1, . . . , fr be a minimal sequence
of generators of Ker(S → B). We will use without further mention that an ideal
in a Noetherian local ring is generated by a regular sequence if and only if any
minimal set of generators is a regular sequence. Observe that f1, . . . , fr is a regular
sequence in S if and only if f1, . . . , fr is a regular sequence in the completion S∧

by Algebra, Lemma 10.68.5. Moreover, we have
S∧/(f1, . . . , fr)R∧ = (S/(f1, . . . , fn))∧ = B∧ = B

because B is mB-adically complete (first equality by Algebra, Lemma 10.97.1).
Thus the kernel of S → B is generated by a regular sequence if and only if the
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kernel of S∧ → B is generated by a regular sequence. Hence it suffices to consider
good factorizations where S is complete.

Assume we have two factorizations A → S → B and A → S′ → B with S and S′

complete. By More on Algebra, Lemma 15.39.4 the ring S ×B S′ is a Noetherian
complete local ring. Hence, using More on Algebra, Lemma 15.39.3 we can choose
a good factorization A → S′′ → S ×B S′ with S′′ complete. Thus it suffices to
show: If A → S′ → S → B are comparable good factorizations, then Ker(S → B)
is generated by a regular sequence if and only if Ker(S′ → B) is generated by a
regular sequence.

Let A→ S′ → S → B be comparable good factorizations. First, since S′/mRS
′ →

S/mRS is a surjection of regular local rings, the kernel is generated by a regular
sequence x1, . . . , xc ∈ mS′/mRS

′ which can be extended to a regular system of
parameters for the regular local ring S′/mRS

′, see (Algebra, Lemma 10.106.4). Set
I = Ker(S′ → S). By flatness of S over R we have

I/mRI = Ker(S′/mRS
′ → S/mRS) = (x1, . . . , xc).

Choose lifts x1, . . . , xc ∈ I. These lifts form a regular sequence generating I as S′

is flat over R, see Algebra, Lemma 10.99.3.

We conclude that if also Ker(S → B) is generated by a regular sequence, then so
is Ker(S′ → B), see More on Algebra, Lemmas 15.30.13 and 15.30.7.

Conversely, assume that J = Ker(S′ → B) is generated by a regular sequence.
Because the generators x1, . . . , xc of I map to linearly independent elements of
mS′/m2

S′ we see that I/mS′I → J/mS′J is injective. Hence there exists a minimal
system of generators x1, . . . , xc, y1, . . . , yd for J . Then x1, . . . , xc, y1, . . . , yd is a
regular sequence and it follows that the images of y1, . . . , yd in S form a regular
sequence generating Ker(S → B). This finishes the proof of the lemma. □

In the following proposition observe that the condition on vanishing of Tor’s applies
in particular if B has finite tor dimension over A and thus in particular if B is flat
over A.

Proposition 23.9.2.09QB Let A→ B be a local homomorphism of Noetherian local rings.
Then the following are equivalent

(1) B is a complete intersection and TorAp (B,A/mA) is nonzero for only
finitely many p,

(2) A is a complete intersection and A∧ → B∧ is a complete intersection
homomorphism in the sense defined above.

Proof. Let F• → A/mA be a resolution by finite free A-modules. Observe that
TorAp (B,A/mA) is the pth homology of the complex F•⊗A B. Let F∧

• = F•⊗A A∧

be the completion. Then F∧
• is a resolution of A∧/mA∧ by finite free A∧-modules

(as A→ A∧ is flat and completion on finite modules is exact, see Algebra, Lemmas
10.97.1 and 10.97.2). It follows that

F∧
• ⊗A∧ B∧ = F• ⊗A B ⊗B B∧

By flatness of B → B∧ we conclude that

TorA
∧

p (B∧, A∧/mA∧) = TorAp (B,A/mA)⊗B B∧

https://stacks.math.columbia.edu/tag/09QB
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In this way we see that the condition in (1) on the local ring map A → B is
equivalent to the same condition for the local ring map A∧ → B∧. Thus we may
assume A and B are complete local Noetherian rings (since the other conditions
are formulated in terms of the completions in any case).

Assume A and B are complete local Noetherian rings. Choose a diagram

S // B

R

OO

// A

OO

as in More on Algebra, Lemma 15.39.3. Let I = Ker(R→ A) and J = Ker(S → B).
The proposition now follows from Lemma 23.7.6. □

Remark 23.9.3.09QC It appears difficult to define an good notion of “local complete
intersection homomorphisms” for maps between general Noetherian rings. The
reason is that, for a local Noetherian ring A, the fibres of A → A∧ are not local
complete intersection rings. Thus, if A → B is a local homomorphism of local
Noetherian rings, and the map of completions A∧ → B∧ is a complete intersection
homomorphism in the sense defined above, then (Ap)∧ → (Bq)∧ is in general not
a complete intersection homomorphism in the sense defined above. A solution can
be had by working exclusively with excellent Noetherian rings. More generally, one
could work with those Noetherian rings whose formal fibres are complete intersec-
tions, see [Rod87]. We will develop this theory in Dualizing Complexes, Section
47.23.

To finish of this section we compare the notion defined above with the notion
introduced in More on Algebra, Section 23.8.

Lemma 23.9.4.09QD Consider a commutative diagram

S // B

A

__ OO

of Noetherian local rings with S → B surjective, A→ S flat, and S/mAS a regular
local ring. The following are equivalent

(1) Ker(S → B) is generated by a regular sequence, and
(2) A∧ → B∧ is a complete intersection homomorphism as defined above.

Proof. Omitted. Hint: the proof is identical to the argument given in the first
paragraph of the proof of Lemma 23.9.1. □

Lemma 23.9.5.09QE Let A be a Noetherian ring. Let A→ B be a finite type ring map.
The following are equivalent

(1) A → B is a local complete intersection in the sense of More on Algebra,
Definition 15.33.2,

(2) for every prime q ⊂ B and with p = A ∩ q the ring map (Ap)∧ → (Bq)∧

is a complete intersection homomorphism in the sense defined above.
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Proof. Choose a surjection R = A[x1, . . . , xn] → B. Observe that A → R is flat
with regular fibres. Let I be the kernel of R → B. Assume (2). Then we see that
I is locally generated by a regular sequence by Lemma 23.9.4 and Algebra, Lemma
10.68.6. In other words, (1) holds. Conversely, assume (1). Then after localizing
on R and B we can assume that I is generated by a Koszul regular sequence. By
More on Algebra, Lemma 15.30.7 we find that I is locally generated by a regular
sequence. Hence (2) hold by Lemma 23.9.4. Some details omitted. □

Lemma 23.9.6.09QF Let A be a Noetherian ring. Let A→ B be a finite type ring map
such that the image of Spec(B) → Spec(A) contains all closed points of Spec(A).
Then the following are equivalent

(1) B is a complete intersection and A→ B has finite tor dimension,
(2) A is a complete intersection and A → B is a local complete intersection

in the sense of More on Algebra, Definition 15.33.2.

Proof. This is a reformulation of Proposition 23.9.2 via Lemma 23.9.5. We omit
the details. □

23.10. Smooth ring maps and diagonals

0FCV In this section we use the material above to characterize smooth ring maps as those
whose diagonal is perfect.

Lemma 23.10.1.0FCW Let A → B be a local ring homomorphism of Noetherian local
rings such that B is flat and essentially of finite type over A. If

B ⊗A B −→ B

is a perfect ring map, i.e., if B has finite tor dimension over B⊗A B, then B is the
localization of a smooth A-algebra.

Proof. As B is essentially of finite type over A, so is B ⊗A B and in particular
B ⊗A B is Noetherian. Hence the quotient B of B ⊗A B is pseudo-coherent over
B⊗AB (More on Algebra, Lemma 15.64.17) which explains why perfectness of the
ring map (More on Algebra, Definition 15.82.1) agrees with the condition of finite
tor dimension.
We may write B = R/K where R is the localization of A[x1, . . . , xn] at a prime
ideal and K ⊂ R is an ideal. Denote m ⊂ R ⊗A R the maximal ideal which is the
inverse image of the maximal ideal of B via the surjection R⊗AR→ B⊗AB → B.
Then we have surjections

(R⊗A R)m → (B ⊗A B)m → B

and hence ideals I ⊂ J ⊂ (R ⊗A R)m as in Lemma 23.7.4. We conclude that
I/mI → J/mJ is injective.
Let K = (f1, . . . , fr) with r minimal. We may and do assume that fi ∈ R is the
image of an element of A[x1, . . . , xn] which we also denote fi. Observe that I is
generated by f1 ⊗ 1, . . . , fr ⊗ 1 and 1 ⊗ f1, . . . , 1 ⊗ fr. We claim that this is a
minimal set of generators of I. Namely, if κ is the common residue field of R, B,
(R⊗AR)m, and (B⊗AB)m then we have a map R⊗AR→ R⊗A κ⊕κ⊗AR which
factors through (R ⊗A R)m. Since B is flat over A and since we have the short
exact sequence 0→ K → R→ B → 0 we see that K ⊗A κ ⊂ R⊗A κ, see Algebra,
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Lemma 10.39.12. Thus restricting the map (R ⊗A R)m → R ⊗A κ ⊕ κ ⊗A R to I
we obtain a map

I → K ⊗A κ⊕ κ⊗A K → K ⊗B κ⊕ κ⊗B K.
The elements f1 ⊗ 1, . . . , fr ⊗ 1, 1 ⊗ f1, . . . , 1 ⊗ fr map to a basis of the target of
this map, since by Nakayama’s lemma (Algebra, Lemma 10.20.1) f1, . . . , fr map to
a basis of K ⊗B κ. This proves our claim.
The ideal J is generated by f1⊗1, . . . , fr⊗1 and the elements x1⊗1−1⊗x1, . . . , xn⊗
1− 1⊗ xn (for the proof it suffices to see that these elements are contained in the
ideal J). Now we can write

fi ⊗ 1− 1⊗ fi =
∑

gij(xj ⊗ 1− 1⊗ xj)

for some gij in (R ⊗A R)m. This is a general fact about elements of A[x1, . . . , xn]
whose proof we omit. Denote aij ∈ κ the image of gij . Another computation shows
that aij is the image of ∂fi/∂xj in κ. The injectivity of I/mI → J/mJ and the
remarks made above forces the matrix (aij) to have maximal rank r. Set

C = A[x1, . . . , xn]/(f1, . . . , fr)
and consider the naive cotangent complex NLC/A ∼= (C⊕r → C⊕n) where the map
is given by the matrix of partial derivatives. Thus NLC/A⊗AB is isomorphic to a
free B-module of rank n − r placed in degree 0. Hence Cg is smooth over A for
some g ∈ C mapping to a unit in B, see Algebra, Lemma 10.137.12. This finishes
the proof. □

Lemma 23.10.2.0FCX Let A→ B be a flat finite type ring map of Noetherian rings. If
B ⊗A B −→ B

is a perfect ring map, i.e., if B has finite tor dimension over B ⊗A B, then B is a
smooth A-algebra.

Proof. This follows from Lemma 23.10.1 and general facts about smooth ring maps,
see Algebra, Lemmas 10.137.12 and 10.137.13. Alternatively, the reader can slightly
modify the proof of Lemma 23.10.1 to prove this lemma. □

23.11. Freeness of the conormal module

0FJP Tate resolutions and derivations on them can be used to prove (stronger) versions of
the results in this section, see [Iye01]. Two more elementary references are [Vas67]
and [Fer67b].

Lemma 23.11.1.0FJQ [Vas67]Let R be a Noetherian local ring. Let I ⊂ R be an ideal of finite
projective dimension over R. If F ⊂ I/I2 is a direct summand isomorphic to R/I,
then there exists a nonzerodivisor x ∈ I such that the image of x in I/I2 generates
F .

Proof. By assumption we may choose a finite free resolution
0→ R⊕ne → R⊕ne−1 → . . .→ R⊕n1 → R→ R/I → 0

Then φ1 : R⊕n1 → R has rank 1 and we see that I contains a nonzerodivisor y
by Algebra, Proposition 10.102.9. Let p1, . . . , pn be the associated primes of R,
see Algebra, Lemma 10.63.5. Let I2 ⊂ J ⊂ I be an ideal such that J/I2 = F .
Then J ̸⊂ pi for all i as y2 ∈ J and y2 ̸∈ pi, see Algebra, Lemma 10.63.9. By
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Nakayama’s lemma (Algebra, Lemma 10.20.1) we have J ̸⊂ mJ + I2. By Algebra,
Lemma 10.15.2 we can pick x ∈ J , x ̸∈ mJ + I2 and x ̸∈ pi for i = 1, . . . , n. Then x
is a nonzerodivisor and the image of x in I/I2 generates (by Nakayama’s lemma)
the summand J/I2 ∼= R/I. □

Lemma 23.11.2.0FJR Local version of
[Vas67, Theorem
1.1]

Let R be a Noetherian local ring. Let I ⊂ R be an ideal of finite
projective dimension over R. If F ⊂ I/I2 is a direct summand free of rank r, then
there exists a regular sequence x1, . . . , xr ∈ I such that x1 mod I2, . . . , xr mod I2

generate F .

Proof. If r = 0 there is nothing to prove. Assume r > 0. We may pick x ∈ I such
that x is a nonzerodivisor and x mod I2 generates a summand of F isomorphic to
R/I, see Lemma 23.11.1. Consider the ring R′ = R/(x) and the ideal I ′ = I/(x).
Of course R′/I ′ = R/I. The short exact sequence

0→ R/I
x−→ I/xI → I ′ → 0

splits because the map I/xI → I/I2 sends xR/xI to a direct summand. Now
I/xI = I ⊗L

R R′ has finite projective dimension over R′, see More on Algebra,
Lemmas 15.74.3 and 15.74.9. Hence the summand I ′ has finite projective dimension
over R′. On the other hand, we have the short exact sequence 0 → xR/xI →
I/I2 → I ′/(I ′)2 → 0 and we conclude I ′/(I ′)2 has the free direct summand F ′ =
F/(R/I · x) of rank r − 1. By induction on r we may we pick a regular sequence
x′

2, . . . , x
′
r ∈ I ′ such that there congruence classes freely generate F ′. If x1 = x

and x2, . . . , xr are any elements lifting x′
1, . . . , x

′
r in R, then we see that the lemma

holds. □

Proposition 23.11.3.0FJS Variant of [Vas67,
Corollary 1]. See
also [Iye01] and
[Fer67b].

Let R be a Noetherian ring. Let I ⊂ R be an ideal which has
finite projective dimension and such that I/I2 is finite locally free over R/I. Then
I is a regular ideal (More on Algebra, Definition 15.32.1).

Proof. By Algebra, Lemma 10.68.6 it suffices to show that Ip ⊂ Rp is generated
by a regular sequence for every p ⊃ I. Thus we may assume R is local. If I/I2 has
rank r, then by Lemma 23.11.2 we find a regular sequence x1, . . . , xr ∈ I generating
I/I2. By Nakayama (Algebra, Lemma 10.20.1) we conclude that I is generated by
x1, . . . , xr. □

For any local complete intersection homomorphism A→ B of rings, the naive cotan-
gent complex NLB/A is perfect of tor-amplitude in [−1, 0], see More on Algebra,
Lemma 15.85.4. Using the above, we can show that this sometimes characterizes
local complete intersection homomorphisms.

Lemma 23.11.4.0FJT Let A → B be a perfect (More on Algebra, Definition 15.82.1)
ring homomorphism of Noetherian rings. Then the following are equivalent

(1) NLB/A has tor-amplitude in [−1, 0],
(2) NLB/A is a perfect object of D(B) with tor-amplitude in [−1, 0], and
(3) A → B is a local complete intersection (More on Algebra, Definition

15.33.2).

Proof. Write B = A[x1, . . . , xn]/I. Then NLB/A is represented by the complex

I/I2 −→
⊕

Bdxi
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of B-modules with I/I2 placed in degree −1. Since the term in degree 0 is finite
free, this complex has tor-amplitude in [−1, 0] if and only if I/I2 is a flat B-
module, see More on Algebra, Lemma 15.66.2. Since I/I2 is a finite B-module and
B is Noetherian, this is true if and only if I/I2 is a finite locally free B-module
(Algebra, Lemma 10.78.2). Thus the equivalence of (1) and (2) is clear. Moreover,
the equivalence of (1) and (3) also follows if we apply Proposition 23.11.3 (and the
observation that a regular ideal is a Koszul regular ideal as well as a quasi-regular
ideal, see More on Algebra, Section 15.32). □

Lemma 23.11.5.0FJV Let A → B be a flat ring map of finite presentation. Then the
following are equivalent

(1) NLB/A has tor-amplitude in [−1, 0],
(2) NLB/A is a perfect object of D(B) with tor-amplitude in [−1, 0],
(3) A→ B is syntomic (Algebra, Definition 10.136.1), and
(4) A → B is a local complete intersection (More on Algebra, Definition

15.33.2).

Proof. The equivalence of (3) and (4) is More on Algebra, Lemma 15.33.5.
If A→ B is syntomic, then we can find a cocartesian diagram

B0 // B

A0 //

OO

A

OO

such that A0 → B0 is syntomic and A0 is Noetherian, see Algebra, Lemmas
10.127.18 and 10.168.9. By Lemma 23.11.4 we see that NLB0/A0 is perfect of tor-
amplitude in [−1, 0]. By More on Algebra, Lemma 15.85.3 we conclude the same
thing is true for NLB/A = NLB0/A0 ⊗L

B0
B (see also More on Algebra, Lemmas

15.66.13 and 15.74.9). This proves that (3) implies (2).
Assume (1). By More on Algebra, Lemma 15.85.3 for every ring map A → k
where k is a field, we see that NLB⊗Ak/k has tor-amplitude in [−1, 0] (see More on
Algebra, Lemma 15.66.13). Hence by Lemma 23.11.4 we see that k → B ⊗A k is a
local complete intersection homomorphism. Thus A→ B is syntomic by definition.
This proves (1) implies (3) and finishes the proof. □

23.12. Koszul complexes and Tate resolutions

0GZ3 In this section we “lift” the result of More on Algebra, Lemma 15.94.1 to the cate-
gory of differential graded algebras endowed with divided powers compatible with
the differential graded structure (beware that in this section we represent Koszul
complexes as chain complexes whereas in locus citatus we use cochain complexes).
Let R be a ring. Let I ⊂ R be an ideal generated by f1, . . . , fr ∈ R. For n ≥ 1 we
denote

Kn = Kn,• = R⟨ξ1, . . . , ξr⟩
the differential graded Koszul algebra with ξi in degree 1 and d(ξi) = fi. There
exists a unique divided power structure on this (as in Definition 23.6.5), see Example
23.6.2. For m > n the transition map Km → Kn is the differential graded algebra
map compatible with divided powers given by sending ξi to fm−n

i ξi.
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Lemma 23.12.1.0GZ4 In the situation above, if R is Noetherian, then for every n there
exists an N ≥ n and maps

KN → A→ R/(fN1 , . . . , fNr ) and A→ Kn

with the following properties
(1) (A,d, γ) is as in Definition 23.6.5,
(2) A→ R/(fN1 , . . . , fNr ) is a quasi-isomorphism,
(3) the composition KN → A→ R/(fN1 , . . . , fNr ) is the canonical map,
(4) the composition KN → A→ Kn is the transition map,
(5) A0 = R→ R/(fN1 , . . . , fNr ) is the canonical surjection,
(6) A is a graded divided power polynomial algebra over R with finitely many

generators in each degree, and
(7) A→ Kn is a homomorphism of differential graded R-algebras compatible

with divided powers which induces the canonical map R/(fN1 , . . . , fNr )→
R/(fn1 , . . . , fnr ) on homology in degree 0.

Condition (4) means that A is constructed out of A0 by successively adjoining a
finite set of variables T in each degree > 0 as in Example 23.6.2 or 23.6.3.

Proof. Fix n. If r = 0, then we can just pick A = R. Assume r > 0. By More on
Algebra, Lemma 15.94.1 (translated into the language of chain complexes) we can
choose

nr > nr−1 > . . . > n1 > n0 = n

such that the transition maps Kni+1 → Kni on Koszul algebras (see above) induce
the zero map on homology in degrees > 0. We will prove the lemma with N = nr.
We will construct A exactly as in the statement and proof of Lemma 23.6.9. Thus
we will have

A = colimA(m), and A(0)→ A(1)→ A(2)→ . . .→ R/(fN1 , . . . , fNr )
This will immediately give us properties (1), (2), (5), and (6). To finish the proof
we will construct the R-algebra maps KN → A→ Kn. To do this we will construct

(1) an isomorphism A(1)→ KN = Knr ,
(2) a map A(2)→ Knr−1 ,
(3) . . .
(4) a map A(r)→ Kn1 ,
(5) a map A(r + 1)→ Kn0 = Kn, and
(6) a map A→ Kn.

In each of these steps the map constructed will be between differential graded
algebras compatibly endowed with divided powers and each of the maps will be
compatible with the previous one via the transition maps between the Koszul alge-
bras and each of the maps will induce the obvious canonical map on homology in
degree 0.
Recall that A(0) = R. For m = 1, the proof of Lemma 23.6.9 chooses A(1) =
R⟨T1, . . . , Tr⟩ with Ti of degree 1 and with d(Ti) = fNi . Namely, the fNi are
generators of the kernel of A(0) → R/(fN1 , . . . , fNr ). Thus for A(1) → KN = Knr

we use the map
φ1 : A(1) −→ Knr , Ti 7−→ ξi

which is an isomorphism.

https://stacks.math.columbia.edu/tag/0GZ4
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For m = 2, the construction in the proof of Lemma 23.6.9 chooses generators
e1, . . . , et ∈ Ker(d : A(1)1 → A(1)0). The construction proceeds by taking A(2) =
A(1)⟨T1, . . . , Tt⟩ as a divided power polynomial algebra with Ti of degree 2 and
with d(Ti) = ei. Since φ1(ei) is a cocycle in Knr we see that its image in Knr−1

is a coboundary by our choice of nr and nr−1 above. Hence we can construct the
following commutative diagram

A(1)

��

φ1
// Knr

��
A(2) φ2 // Knr−1

by sending Ti to an element in degree 2 whose boundary is the image of φ1(ei).
The map φ2 exists and is compatible with the differential and the divided powers
by the universal of the divided power polynomial algebra.
The algebra A(m) and the map φm : A(m)→ Knr+1−m are constructed in exactly
the same manner for m = 2, . . . , r.
Given the map A(r)→ Kn1 we see that the composition Hr(A(r))→ Hr(Kn1)→
Hr(Kn0) ⊂ (Kn0)r is zero, hence we can extend this to A(r + 1) → Kn0 = Kn by
sending the new polynomial generators of A(r + 1) to zero.
Having constructed A(r+ 1)→ Kn0 = Kn we can simply extend to A(r+ 2), A(r+
3), . . . in the only possible way by sending the new polynomial generators to zero.
This finishes the proof. □

Remark 23.12.2.0GZ5 In the situation above, if R is Noetherian, we can inductively
choose a sequence of integers 1 = n0 < n1 < n2 < . . . such that for i = 1, 2, 3, . . .
we have maps Kni → Ai → R/(fni1 , . . . , fnir ) and Ai → Kni−1 as in Lemma 23.12.1.
Denote Ai+1 → Ai the composition Ai+1 → Kni → Ai. Then the diagram

Kn1

��

Kn2

��

oo Kn3

��

oo . . .oo

A1

��

A2oo

��

A3oo

��

. . .oo

K1 Kn1
oo Kn2

oo . . .oo

commutes. In this way we see that the inverse systems (Kn) and (An) are pro-
isomorphic in the category of differential graded R-algebras with compatible divided
powers.

Lemma 23.12.3.0GZ6 Let (A,d, γ), d ≥ 1, f ∈ Ad−1, and A⟨T ⟩ be as in Lemma 23.6.8.
(1) If d = 1, then there is a long exact sequences

. . .→ H0(A) f−→ H0(A)→ H0(A⟨T ⟩)→ 0
(2) For d = 2 there is a bounded spectral sequence (E1)i,j = Hj−i(A) · T [i]

converging to Hi+j(A⟨T ⟩). The differential (d1)i,j : Hj−i(A) · T [i] →
Hj−i+1(A) · T [i−1] sends ξ · T [i] to the class of fξ · T [i−1].

(3) Add more here for other degrees as needed.

https://stacks.math.columbia.edu/tag/0GZ5
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Proof. For d = 1, we have a short exact sequence of complexes
0→ A→ A⟨T ⟩ → A · T → 0

and the result (1) follows easily from this. For d = 2 we view A⟨T ⟩ as a filtered
chain complex with subcomplexes

F pA⟨T ⟩ =
⊕

i≤p
A · T [i]

Applying the spectral sequence of Homology, Section 12.24 (translated into chain
complexes) we obtain (2). □

The following lemma will be needed later.

Lemma 23.12.4.0GZ7 In the situation above, for all n ≥ t ≥ 1 there exists an N > n
and a map

Kt −→ Kn ⊗R Kt

in the derived category of left differential graded KN -modules whose composition
with the multiplication map is the transition map (in either direction).

Proof. We first prove this for r = 1. Set f = f1. Write Kt = R⟨x⟩, Kn = R⟨y⟩,
and KN = R⟨z⟩ with x, y, z of degree 1 and d(x) = f t, d(y) = fn, and d(z) = fN .
For all N > t we claim there is a quasi-isomorphism

BN,t = R⟨x, z, u⟩ −→ Kt, x 7→ x, z 7→ fN−tx, u 7→ 0
Here the left hand side denotes the divided power polynomial algebra in variables
x and z of degree 1 and u of degree 2 with d(x) = f t, d(z) = fN , and d(u) =
z − fN−tx. To prove the claim, we observe that the following three submodules of
H∗(R⟨x, z⟩) are the same

(1) the kernel of H∗(R⟨x, z⟩)→ H∗(Kt),
(2) the image of z − fN−tx : H∗(R⟨x, z⟩)→ H∗(R⟨x, z⟩), and
(3) the kernel of z − fN−tx : H∗(R⟨x, z⟩)→ H∗(R⟨x, z⟩).

This observation is proved by a direct computation3 which we omit. Then we can
apply Lemma 23.12.3 part (2) to see that the claim is true.
Via the homomorphism KN → BN,t of differential graded R-algebras sending z
to z, we may view BN,t → Kt as a quasi-isomorphism of left differential graded
KN -modules. To define the arrow in the statement of the lemma we use the homo-
morphism
BN,t = R⟨x, z, u⟩ → Kn⊗RKt, x 7→ 1⊗x, z 7→ fN−ny⊗1, u 7→ −fN−n−ty⊗x

This makes sense as long as we assume N ≥ n + t. It is a pleasant computation
to show that the (pre or post) composition with the multiplication map is the
transition map.
For r > 1 we proceed by writing each of the Koszul algebras as a tensor product
of Koszul algebras in 1 variable and we apply the previous construction. In other
words, we write

Kt = R⟨x1, . . . , xr⟩ = R⟨x1⟩ ⊗R . . .⊗R R⟨xr⟩

3Hint: setting z′ = z − fN−tx we see that R⟨x, z⟩ = R⟨x, z′⟩ with d(z′) = 0 and moreover
the map R⟨x, z′⟩ → Kt is the map killing z′.

https://stacks.math.columbia.edu/tag/0GZ7
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where xi is in degree 1 and d(xi) = f ti . In the case r > 1 we then use
BN,t = R⟨x1, z1, u1⟩ ⊗R . . .⊗R R⟨xr, zr, ur⟩

where xi, zi have degree 1 and ui has degree 2 and we have d(xi) = f ti , d(zi) = fNi ,
and d(ui) = zi − fN−t

i xi. The tensor product map BN,t → Kt will be a quasi-
isomorphism as it is a tensor product of quasi-isomorphisms between bounded above
complexes of free R-modules. Finally, we define the map

BN,t → Kn ⊗R Kt = R⟨y1, . . . , yr⟩ ⊗R R⟨x1, . . . , xr⟩
as the tensor product of the maps constructed in the case of r = 1 or simply by the
rules xi 7→ 1⊗ xi, zi 7→ fN−n

i yi ⊗ 1, and ui 7→ −fN−n−t
i yi ⊗ xi which makes sense

as long as N ≥ n+ t. We omit the details. □
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CHAPTER 24

Differential Graded Sheaves

0FQS 24.1. Introduction

0FQT This chapter is a continuation of the discussion started in Differential Graded Al-
gebra, Section 22.1. A survey paper is [Kel06].

24.2. Conventions

0FQU In this chapter we hold on to the convention that ring means commutative ring
with 1. If R is a ring, then an R-algebra A will be an R-module A endowed with an
R-bilinear map A×A→ A (multiplication) such that multiplication is associative
and has an identity. In other words, these are unital associative R-algebras such
that the structure map R→ A maps into the center of A.

24.3. Sheaves of graded algebras

0FQV Please skip this section.

Definition 24.3.1.0FQW Let (C,O) be a ringed site. A sheaf of graded O-algebras or a
sheaf of graded algebras on (C,O) is given by a family An indexed by n ∈ Z of
O-modules endowed with O-bilinear maps

An ×Am → An+m, (a, b) 7−→ ab

called the multiplication maps with the following properties
(1) multiplication is associative, and
(2) there is a global section 1 of A0 which is a two-sided identity for multipli-

cation.
We often denote such a structure A. A homomorphism of graded O-algebras f :
A → B is a family of maps fn : An → Bn of O-modules compatible with the
multiplication maps.

Given a graded O-algebra A and an object U ∈ Ob(C) we use the notation

A(U) = Γ(U,A) =
⊕

n∈Z
An(U)

This is a graded O(U)-algebra.

Remark 24.3.2.0FQX Let (f, f ♯) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed
topoi. We have

(1) Let A be a graded OC-algebra. The multiplication maps of A induce
multiplication maps f∗An × f∗Am → f∗An+m and via f ♯ we may view
these as OD-bilinear maps. We will denote f∗A the graded OD-algebra
we so obtain.

2141
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(2) Let B be a graded OD-algebra. The multiplication maps of B induce
multiplication maps f∗Bn × f∗Bm → f∗Bn+m and using f ♯ we may view
these as OC-bilinear maps. We will denote f∗B the graded OC-algebra we
so obtain.

(3) The set of homomorphisms f∗B → A of graded OC-algebras is in 1-to-
1 correspondence with the set of homomorphisms B → f∗A of graded
OC-algebras.

Part (3) follows immediately from the usual adjunction between f∗ and f∗ on
sheaves of modules.

24.4. Sheaves of graded modules

0FQY Please skip this section.

Definition 24.4.1.0FQZ Let (C,O) be a ringed site. Let A be a sheaf of graded algebras
on (C,O). A (right) graded A-module or (right) graded module over A is given by
a family Mn indexed by n ∈ Z of O-modules endowed with O-bilinear maps

Mn ×Am →Mn+m, (x, a) 7−→ xa

called the multiplication maps with the following properties
(1) multiplication satisfies (xa)a′ = x(aa′),
(2) the identity section 1 of A0 acts as the identity on Mn for all n.

We often say “let M be a graded A-module” to indicate this situation. A homo-
morphism of graded A-modules f : M → N is a family of maps fn : Mn → Nn

of O-modules compatible with the multiplication maps. The category of (right)
graded A-modules is denoted Mod(A).

We can define left graded modules in exactly the same manner but our default in
the chapter will be right modules.
Given a graded A-module M and an object U ∈ Ob(C) we use the notation

M(U) = Γ(U,M) =
⊕

n∈Z
Mn(U)

This is a (right) graded A(U)-module.

Lemma 24.4.2.0FR0 Let (C,O) be a ringed site. Let A be a graded O-algebra. The
category Mod(A) is an abelian category with the following properties

(1) Mod(A) has arbitrary direct sums,
(2) Mod(A) has arbitrary colimits,
(3) filtered colimit in Mod(A) are exact,
(4) Mod(A) has arbitrary products,
(5) Mod(A) has arbitrary limits.

The functor
Mod(A) −→ Mod(O), M 7−→Mn

sending a graded A-module to its nth term commutes with all limits and colimits.

The lemma says that we may take limits and colimits termwise. It also says (or
implies if you like) that the forgetful functor

Mod(A) −→ graded O-modules
commutes with all limits and colimits.

https://stacks.math.columbia.edu/tag/0FQZ
https://stacks.math.columbia.edu/tag/0FR0
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Proof. Let us denote grn : Mod(A) → Mod(O) the functor in the statement of
the lemma. Consider a homomorphism f : M → N of graded A-modules. The
kernel and cokernel of f as maps of graded O-modules are additionally endowed
with multiplication maps as in Definition 24.4.1. Hence these are also the kernel
and cokernel in Mod(A). Thus Mod(A) is an abelian category and taking kernels
and cokernels commutes with grn.

To prove the existence of limits and colimits it is sufficient to prove the existence of
products and direct sums, see Categories, Lemmas 4.14.11 and 4.14.12. The same
lemmas show that proving the commutation of limits and colimits with grn follows
if grn commutes with direct sums and products.

Let Mt, t ∈ T be a set of graded A-modules. Then we can consider the graded A-
module whose degree n term is

⊕
t∈TMn

t (with obvious multiplication maps). The
reader easily verifies that this is a direct sum in Mod(A). Similarly for products.

Observe that grn is an exact functor for all n and that a complexM1 →M2 →M3
of Mod(A) is exact if and only if grnM1 → grnM2 → grnM3 is exact in Mod(O)
for all n. Hence we conclude that (3) holds as filtered colimits are exact in Mod(O);
it is a Grothendieck abelian category, see Cohomology on Sites, Section 21.19. □

24.5. The graded category of sheaves of graded modules

0FR1 Please skip this section. This section is the analogue of Differential Graded Algebra,
Example 22.25.6. For our conventions on graded categories, please see Differential
Graded Algebra, Section 22.25.

Let (C,O) be a ringed site. Let A be a sheaf of graded algebras on (C,O). We will
construct a graded category Modgr(A) over R = Γ(C,O) whose associated category
(Modgr(A))0 is the category of graded A-modules. As objects of Modgr(A) we take
right graded A-modules (see Section 24.4). Given graded A-modules L and M we
set

HomModgr(A)(L,M) =
⊕

n∈Z
Homn(L,M)

where Homn(L,M) is the set of right A-module maps f : L → M which are
homogeneous of degree n. More precisely, f is given by a family of maps f : Li →
Mi+n for i ∈ Z compatible with the multiplication maps. In terms of components,
we have that

Homn(L,M) ⊂
∏

p+q=n
HomO(L−q,Mp)

(observe reversal of indices) is the subset consisting of those f = (fp,q) such that

fp,q(ma) = fp−i,q+i(m)a

for local sections a of Ai and m of L−q−i. For graded A-modules K, L, M we
define composition in Modgr(A) via the maps

Homm(L,M)×Homn(K,L) −→ Homn+m(K,M)

by simple composition of right A-module maps: (g, f) 7→ g ◦ f .
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24.6. Tensor product for sheaves of graded modules

0FR2 Please skip this section. This section is the analogue of part of Differential Graded
Algebra, Section 22.12.
Let (C,O) be a ringed site. Let A be a sheaf of graded algebras on (C,O). Let M
be a right graded A-module and let N be a left graded A-module. Then we define
the tensor product M⊗A N to be the graded O-module whose degree n term is

(M⊗A N )n = Coker
(⊕

r+s+t=n
Mr ⊗O As ⊗O N t −→

⊕
p+q=n

Mp ⊗O N q
)

where the map sends the local section x⊗a⊗y ofMr⊗OAs⊗ON t to xa⊗y−x⊗ay.
With this definition we have that (M⊗A N )n is the sheafification of the presheaf
U 7→ (M(U) ⊗A(U) N (U))n where the tensor product of graded modules is as
defined in Differential Graded Algebra, Section 22.12.
If we fix the left graded A-module N we obtain a functor

−⊗A N : Mod(A) −→ Gr(Mod(O)) = graded O-modules
For the notation Gr(−) please see Homology, Definition 12.16.1. The graded cate-
gory of graded O-modules is denoted Grgr(Mod(O)), see Differential Graded Alge-
bra, Example 22.25.5. The functor above can be upgraded to a functor of graded
categories

−⊗A N : Modgr(A) −→ Grgr(Mod(O))
by sending homomorphisms of degree n from M → M′ to the induced map of
degree n from M⊗A N to M′ ⊗A N .

24.7. Internal hom for sheaves of graded modules

0FR3 We urge the reader to skip this section.
We are going to need the sheafified version of the construction in Section 24.5. Let
(C,O), A, M, L be as in Section 24.5. Then we define

Homgr
A (M,L)

as the graded O-module whose degree n term

Homn
A(M,L) ⊂

∏
p+q=n

HomO(L−q,Mp)

is the subsheaf consisting of those local sections f = (fp,q) such that
fp,q(ma) = fp−i,q+i(m)a

for local sections a of Ai and m of L−q−i. As in Section 24.5 there is a composition
map

Homgr
A (L,M)⊗O Homgr

A (K,L) −→ Homgr
A (K,M)

where the left hand side is the tensor product of graded O-modules defined in
Section 24.6. This map is given by the composition map

Homm
A (L,M)⊗O Homn

A(K,L) −→ Homn+m
A (K,M)

defined by simple composition (locally).
With these definitions we have

HomModgr(A)(L,M) = Γ(C,Homgr
A (L,M))

as graded R-modules compatible with composition.
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24.8. Sheaves of graded bimodules and tensor-hom adjunction

0FR4 Please skip this section.

Definition 24.8.1.0FR5 Let (C,O) be a ringed site. Let A and B be a sheaves of graded
algebras on (C,O). A graded (A,B)-bimodule is given by a family Mn indexed by
n ∈ Z of O-modules endowed with O-bilinear maps

Mn × Bm →Mn+m, (x, b) 7−→ xb

and
An ×Mm →Mn+m, (a, x) 7−→ ax

called the multiplication maps with the following properties
(1) multiplication satisfies a(a′x) = (aa′)x and (xb)b′ = x(bb′),
(2) (ax)b = a(xb),
(3) the identity section 1 of A0 acts as the identity by multiplication, and
(4) the identity section 1 of B0 acts as the identity by multiplication.

We often denote such a structureM. A homomorphism of graded (A,B)-bimodules
f :M→N is a family of maps fn :Mn → Nn of O-modules compatible with the
multiplication maps.

Given a graded (A,B)-bimodule M and an object U ∈ Ob(C) we use the notation

M(U) = Γ(U,M) =
⊕

n∈Z
Mn(U)

This is a graded (A(U),B(U))-bimodule.
Let (C,O) be a ringed site. Let A and B be a sheaves of graded algebras on (C,O).
LetM be a right graded A-module and let N be a graded (A,B)-bimodule. In this
case the graded tensor product defined in Section 24.6

M⊗A N

is a right graded B-module with obvious multiplication maps. This construction
defines a functor and a functor of graded categories

⊗AN : Mod(A) −→ Mod(B) and ⊗A N : Modgr(A) −→ Modgr(B)
by sending homomorphisms of degree n from M → M′ to the induced map of
degree n from M⊗A N to M′ ⊗A N .
Let (C,O) be a ringed site. Let A and B be a sheaves of graded algebras on (C,O).
Let N be a graded (A,B)-bimodule. Let L be a right graded B-module. In this
case the graded internal hom defined in Section 24.7

Homgr
B (N ,L)

is a right graded A-module with multiplication maps1

Homn
B(N ,L)×Am −→ Homn+m

B (N ,L)
sending a section f = (fp,q) of Homn

B(N ,L) over U and a section a of Am over U
to the section fa if Homn+m

B (N ,L) over U defined as the family of maps

N−q−m|U
a·−−−→ N−q|U

fp,q−−→Mp|U

1Our conventions are here that this does not involve any signs.

https://stacks.math.columbia.edu/tag/0FR5
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We omit the verification that this is well defined. This construction defines a functor
and a functor of graded categories
Homgr

B (N ,−) : Mod(B) −→ Mod(A) and Homgr
B (N ,−) : Modgr(B) −→ Modgr(A)

by sending homomorphisms of degree n from L → L′ to the induced map of degree
n from Homgr

B (N ,L) to Homgr
B (N ,L′).

Lemma 24.8.2.0FR6 Let (C,O) be a ringed site. Let A and B be a sheaves of graded
algebras on (C,O). LetM be a right graded A-module. Let N be a graded (A,B)-
bimodule. Let L be a right graded B-module. With conventions as above we have

HomModgr(B)(M⊗A N ,L) = HomModgr(A)(M,Homgr
B (N ,L))

and
Homgr

B (M⊗A N ,L) = Homgr
A (M,Homgr

B (N ,L))
functorially in M, N , L.

Proof. Omitted. Hint: This follows by interpreting both sides as A-bilinear graded
maps ψ :M×N → L which are B-linear on the right. □

Let (C,O) be a ringed site. Let A and B be a sheaves of graded algebras on (C,O).
As a special case of the above, suppose we are given a homomorphism φ : A → B
of graded O-algebras. Then we obtain a functor and a functor of graded categories

⊗A,φB : Mod(A) −→ Mod(B) and ⊗A,φ B : Modgr(A) −→ Modgr(B)
On the other hand, we have the restriction functors

resφ : Mod(B) −→ Mod(A) and resφ : Modgr(B) −→ Modgr(A)
We can use the lemma above to show these functors are adjoint to each other (as
usual with restriction and base change). Namely, let us write ABB for B viewed as
a graded (A,B)-bimodule. Then for any right graded B-module L we have

Homgr
B (ABB,L) = resφ(L)

as right graded A-modules. Thus Lemma 24.8.2 tells us that we have a functorial
isomorphism

HomModgr(B)(M⊗A,φ B,L) = HomModgr(A)(M, resφ(L))
We usually drop the dependence on φ in this formula if it is clear from context. In
the same manner we obtain the equality

Homgr
B (M⊗A B,L) = Homgr

A (M,L)
of graded O-modules.

24.9. Pull and push for sheaves of graded modules

0FR7 We advise the reader to skip this section.
Let (f, f ♯) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi. Let A be
a graded OC-algebra. Let B be a graded OD-algebra. Suppose we are given a map

φ : f−1B → A
of graded f−1OD-algebras. By the adjunction of restriction and extension of scalars,
this is the same thing as a map φ : f∗B → A of graded OC-algebras or equivalently
φ can be viewed as a map

φ : B → f∗A

https://stacks.math.columbia.edu/tag/0FR6
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of graded OD-algebras. See Remark 24.3.2.

Let us define a functor
f∗ : Mod(A) −→ Mod(B)

Given a graded A-module M we define f∗M to be the graded B-module whose
degree n term is f∗Mn. As multiplication we use

f∗Mn × Bm (id,φm)−−−−−→ f∗Mn × f∗Am
f∗µn,m−−−−−→ f∗Mn+m

where µn,m : Mn × Am → Mn+m is the multiplication map for M over A. This
uses that f∗ commutes with products. The construction is clearly functorial in M
and we obtain our functor.

Let us define a functor
f∗ : Mod(B) −→ Mod(A)

We will define this functor as a composite of functors

Mod(B) f−1

−−→ Mod(f−1B)
−⊗f−1BA
−−−−−−−→ Mod(A)

First, given a graded B-module N we define f−1N to be the graded f−1B-module
whose degree n term is f−1Nn. As multiplication we use

f−1νn,m : f−1Nn × f−1Bm −→ f−1Nn+m

where νn,m : Nn × Bm → Nn+m is the multiplication map for N over B. This
uses that f−1 commutes with products. The construction is clearly functorial in
N and we obtain our functor f−1. Having said this, we can use the tensor product
discussion in Section 24.8 to define the functor

−⊗f−1B A : Mod(f−1B) −→ Mod(A)

Finally, we set
f∗N = f−1N ⊗f−1B,φ A

as already foretold above.

The functors f∗ and f∗ are readily enhanced to give functors of graded categories

f∗ : Modgr(A) −→ Modgr(B) and f∗ : Modgr(B) −→ Modgr(A)

which do the same thing on underlying objects and are defined by functoriality of
the constructions on homogenous morphisms of degree n.

Lemma 24.9.1.0FR8 In the situation above we have

HomModgr(B)(N , f∗M) = HomModgr(A)(f∗N ,M)

Proof. Omitted. Hints: First prove that f−1 and f∗ are adjoint as functors between
Mod(B) and Mod(f−1B) using the adjunction between f−1 and f∗ on sheaves of
abelian groups. Next, use the adjunction between base change and restriction given
in Section 24.8. □

https://stacks.math.columbia.edu/tag/0FR8
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24.10. Localization and sheaves of graded modules

0FR9 We advise the reader to skip this section.

Let (C,O) be a ringed site. Let U ∈ Ob(C) and denote

j : (Sh(C/U),OU ) −→ (Sh(C),O)

the corresponding localization morphism (Modules on Sites, Section 18.19). Below
we will use the following fact: for OU -modules Mi, i = 1, 2 and a O-module A
there is a canonical map

j! : HomOU
(M1 ⊗OU

A|U ,M2) −→ HomO(j!M1 ⊗O A, j!M2)

Namely, we have j!(M1 ⊗OU
A|U ) = j!M1 ⊗O A by Modules on Sites, Lemma

18.27.9.

Let A be a graded O-algebra. We will denote AU the restriction of A to C/U , in
other words, we have AU = j∗A = j−1A. In Section 24.9 we have constructed
adjoint functors

j∗ : Modgr(AU ) −→ Modgr(A) and j∗ : Modgr(A) −→ Modgr(AU )

with j∗ left adjoint to j∗. We claim there is in addition an exact functor

j! : Modgr(AU ) −→ Modgr(A)

left adjoint to j∗. Namely, given a graded AU -module M we define j!M to be the
graded A-module whose degree n term is j!Mn. As multiplication map we use

j!µn,m : j!Mn ×Am → j!Mn+m

where µm,n : Mn × Am → Mn+m is the given multiplication map. Given a
homogeneous map f : M → M′ of degree n of graded AU -modules, we obtain a
homogeneous map j!f : j!M→ j!M′ of degree n. Thus we obtain our functor.

Lemma 24.10.1.0FRA In the situation above we have

HomModgr(A)(j!M,N ) = HomModgr(AU )(M, j∗N )

Proof. By the discussion in Modules on Sites, Section 18.19 the functors j! and j∗

on O-modules are adjoint. Thus if we only look at the O-module structures we
know that

HomGrgr(Mod(O))(j!M,N ) = HomGrgr(Mod(OU ))(M, j∗N )

(Recall that Grgr(Mod(O)) denotes the graded category of graded O-modules.)
Then one has to check that these identifications map the A-module maps on the
left hand side to the AU -module maps on the right hand side. To check this, given
OU -linear maps fn :Mn → j∗Nn+d corresponding to O-linear maps gn : j!Mn →
Nn+d it suffices to show that

Mn ⊗OU
AmU fn⊗1

//

��

j∗Nn+d ⊗OU
AmU

��
Mn+m fn+m

// j∗Nn+m+d

https://stacks.math.columbia.edu/tag/0FRA
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commutes if and only if

j!Mn ⊗O Am
gn⊗1

//

��

Nn+d ⊗O AmU

��
j!Mn+m gn+m

// Nn+m+d

commutes. However, we know that

HomOU
(Mn ⊗OU

AmU , j∗Nn+d+m) = HomO(j!(Mn ⊗OU
AmU ),Nn+d+m)

= HomO(j!Mn ⊗O Am,Nn+d+m)

by the already used Modules on Sites, Lemma 18.27.9. We omit the verification
that shows that the obstruction to the commutativity of the first diagram in the
first group maps to the obstruction to the commutativity of the second diagram in
the last group. □

Lemma 24.10.2.0FRB In the situation above, let M be a right graded AU -module and
let N be a left graded A-module. Then

j!M⊗A N = j!(M⊗AU
N|U )

as graded O-modules functorially in M and N .

Proof. Recall that the degree n component of j!M⊗A N is the cokernel of the
canonical map⊕

r+s+t=n
j!Mr ⊗O As ⊗O N t −→

⊕
p+q=n

j!Mp ⊗O N q

See Section 24.6. By Modules on Sites, Lemma 18.27.9 this is the same thing as
the cokernel of⊕

r+s+t=n
j!(Mr ⊗OU

As|U ⊗OU
N t|U ) −→

⊕
p+q=n

j!(Mp ⊗OU
N q|U )

and we win. An alternative proof would be to redo the Yoneda argument given in
the proof of the lemma cited above. □

24.11. Shift functors on sheaves of graded modules

0FRC We urge the reader to skip this section. It turns out that sheaves of graded modules
over a graded algebra are an example of the phenomenon discussed in Differential
Graded Algebra, Remark 22.25.7.

Let (C,O) be a ringed site. Let A be a sheaf of graded algebras on (C,O). Let M
be a graded A-module. Let k ∈ Z. We define the kth shift of M, denoted M[k],
to be the graded A-module whose nth part is given by

(M[k])n =Mn+k

is the (n+ k)th part of M. As multiplication maps

(M[k])n ×Am −→ (M[k])n+m

we simply use the multiplication maps

Mn+k ×Am −→Mn+m+k

https://stacks.math.columbia.edu/tag/0FRB
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of M. It is clear that we have defined a functor [k], that we have [k + l] = [k] ◦ [l],
and that we have

HomModgr(A)(L,M[k]) = HomModgr(A)(L,M)[k]
(without the intervention of signs) functorially in M and L. Thus we see indeed
that the graded category of graded A-modules can be recovered from the ordinary
category of graded A-modules and the shift functors as discussed in Differential
Graded Algebra, Remark 22.25.7.

Lemma 24.11.1.0FRD Let (C,O) be a ringed site. Let A be a graded O-algebra. The
category Mod(A) is a Grothendieck abelian category.

Proof. By Lemma 24.4.2 and the definition of a Grothendieck abelian category
(Injectives, Definition 19.10.1) it suffices to show that Mod(A) has a generator. We
claim that

G =
⊕

k,U
jU !AU [k]

is a generator where the sum is over all objects U of C and k ∈ Z. Indeed, given a
graded A-module M if there are no nonzero maps from G to M, then we see that
for all k and U we have

HomMod(A)(jU !AU [k],M) = HomMod(AU )(AU [k],M|U ) = Γ(U,M−k)
is equal to zero. Hence M is zero. □

24.12. Sheaves of differential graded algebras

0FRE This section is the analogue of Differential Graded Algebra, Section 22.3.

Definition 24.12.1.0FRF Let (C,O) be a ringed site. A sheaf of differential graded O-
algebras or a sheaf of differential graded algebras on (C,O) is a cochain complex
A• of O-modules endowed with O-bilinear maps

An ×Am → An+m, (a, b) 7−→ ab

called the multiplication maps with the following properties
(1) multiplication is associative,
(2) there is a global section 1 of A0 which is a two-sided identity for multipli-

cation,
(3) for U ∈ Ob(C), a ∈ An(U), and b ∈ Am(U) we have

dn+m(ab) = dn(a)b+ (−1)nadm(b)
We often denote such a structure (A,d). A homomorphism of differential graded
O-algebras from (A,d) to (B,d) is a map f : A• → B• of complexes of O-modules
compatible with the multiplication maps.

Given a differential graded O-algebra (A,d) and an object U ∈ Ob(C) we use the
notation

A(U) = Γ(U,A) =
⊕

n∈Z
An(U)

This is a differential graded O(U)-algebra.
As much as possible, we will think of a differential graded O-algebra (A,d) as a
graded O-algebra A endowed with the operator d : A → A of degree 1 (where A is
viewed as a graded O-module) satisfying the Leibniz rule given in the definition.

https://stacks.math.columbia.edu/tag/0FRD
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Remark 24.12.2.0FRG Let (f, f ♯) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed
topoi.

(1) Let (A,d) be a differential graded OC-algebra. The pushforward will be
the differential graded OD-algebra (f∗A,d) where f∗A is as in Remark
24.3.2 and d = f∗d as maps f∗An → f∗An+1. We omit the verification
that the Leibniz rule is satisfied.

(2) Let B be a differential graded OD-algebra. The pullback will be the dif-
ferential graded OC-algebra (f∗B,d) where f∗B is as in Remark 24.3.2
and d = f∗d as maps f∗Bn → f∗Bn+1. We omit the verification that the
Leibniz rule is satisfied.

(3) The set of homomorphisms f∗B → A of differential graded OC-algebras
is in 1-to-1 correspondence with the set of homomorphisms B → f∗A of
differential graded OD-algebras.

Part (3) follows immediately from the usual adjunction between f∗ and f∗ on
sheaves of modules.

24.13. Sheaves of differential graded modules

0FRH This section is the analogue of Differential Graded Algebra, Section 22.4.

Definition 24.13.1.0FRI Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). A (right) differential graded A-module or (right) dif-
ferential graded module over A is a cochain complex M• endowed with O-bilinear
maps

Mn ×Am →Mn+m, (x, a) 7−→ xa

called the multiplication maps with the following properties
(1) multiplication satisfies (xa)a′ = x(aa′),
(2) the identity section 1 of A0 acts as the identity on Mn for all n,
(3) for U ∈ Ob(C), x ∈Mn(U), and a ∈ Am(U) we have

dn+m(xa) = dn(x)a+ (−1)nxdm(a)
We often say “let M be a differential graded A-module” to indicate this situation.
A homomorphism of differential graded A-modules from M to N is a map f :
M• → N • of complexes of O-modules compatible with the multiplication maps.
The category of (right) differential graded A-modules is denoted Mod(A,d).

We can define left differential graded modules in exactly the same manner but our
default in the chapter will be right modules.
Given a differential graded A-module M and an object U ∈ Ob(C) we use the
notation

M(U) = Γ(U,M) =
⊕

n∈Z
Mn(U)

This is a (right) differential graded A(U)-module.

Lemma 24.13.2.0FRJ Let (C,O) be a ringed site. Let (A,d) be a differential graded
O-algebra. The category Mod(A,d) is an abelian category with the following prop-
erties

(1) Mod(A,d) has arbitrary direct sums,
(2) Mod(A,d) has arbitrary colimits,
(3) filtered colimit in Mod(A,d) are exact,

https://stacks.math.columbia.edu/tag/0FRG
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(4) Mod(A,d) has arbitrary products,
(5) Mod(A,d) has arbitrary limits.

The forgetful functor
Mod(A,d) −→ Mod(A)

sending a differential graded A-module to its underlying graded module commutes
with all limits and colimits.

Proof. Let us denote F : Mod(A,d)→ Mod(A) the functor in the statement of the
lemma. Observe that the category Mod(A) has properties (1) – (5), see Lemma
24.4.2.

Consider a homomorphism f :M→N of graded A-modules. The kernel and cok-
ernel of f as maps of graded A-modules are additionally endowed with differentials
as in Definition 24.13.1. Hence these are also the kernel and cokernel in Mod(A,d).
Thus Mod(A,d) is an abelian category and taking kernels and cokernels commutes
with F .

To prove the existence of limits and colimits it is sufficient to prove the existence of
products and direct sums, see Categories, Lemmas 4.14.11 and 4.14.12. The same
lemmas show that proving the commutation of limits and colimits with F follows
if F commutes with direct sums and products.

LetMt, t ∈ T be a set of differential graded A-modules. Then we can consider the
direct sum

⊕
Mt as a graded A-module. Since the direct sum of graded modules

is done termwise, it is clear that
⊕
Mt comes endowed with a differential. The

reader easily verifies that this is a direct sum in Mod(A,d). Similarly for products.

Observe that F is an exact functor and that a complex M1 → M2 → M3 of
Mod(A,d) is exact if and only if F (M1)→ F (M2)→ F (M3) is exact in Mod(A).
Hence we conclude that (3) holds as filtered colimits are exact in Mod(A). □

Combining Lemmas 24.13.2 and 24.4.2 we find that there is an exact and faithful
functor

Mod(A,d) −→ Comp(O)

of abelian categories. For a differential graded A-module M the cohomology O-
modules, denoted Hi(M), are defined as the cohomology of the complex of O-
modules corresponding to M. Therefore, a short exact sequence 0 → K → L →
M→ 0 of differential graded A-modules gives rise to a long exact sequence

(24.13.2.1)0FRK Hn(K)→ Hn(L)→ Hn(M)→ Hn+1(K)

of cohomology modules, see Homology, Lemma 12.13.12.

Moreover, from now on we borrow all the terminology used for complexes of mod-
ules. For example, we say that a differential graded A-module M is acyclic if
Hk(M) = 0 for all k ∈ Z. We say that a homomorphism M → N of differential
graded A-modules is a quasi-isomorphism if it induces isomorphisms Hk(M) →
Hk(N ) for all k ∈ Z. And so on and so forth.
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24.14. The differential graded category of modules

0FRL This section is the analogue of Differential Graded Algebra, Example 22.26.8. For
our conventions on differential graded categories, please see Differential Graded
Algebra, Section 22.26.

Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential graded algebras on
(C,O). We will construct a differential graded category

Moddg(A,d)

over R = Γ(C,O) whose associated category of complexes is the category of differ-
ential graded A-modules:

Mod(A,d) = Comp(Moddg(A,d))

As objects of Moddg(A,d) we take right differential graded A-modules, see Section
24.13. Given differential graded A-modules L and M we set

HomModdg(A,d)(L,M) = HomModgr(A)(L,M) =
⊕

n∈Z
Homn(L,M)

as a graded R-module, see Section 24.5. In other words, the nth graded piece
Homn(L,M) is the R-module of right A-module maps homogeneous of degree n.
For an element f ∈ Homn(L,M) we set

d(f) = dM ◦ f − (−1)nf ◦ dL

To make sense of this we think of dM and dL as graded O-module maps and we
use composition of graded O-module maps. It is clear that d(f) is homogeneous of
degree n+1 as a graded O-module map, and it is A-linear because for homogeneous
local sections x and a of M and A we have

d(f)(xa) = dM(f(x)a)− (−1)nf(dL(xa))
= dM(f(x))a+ (−1)deg(x)+nf(x)d(a)− (−1)nf(dL(x))a− (−1)n+deg(x)f(x)d(a)
= d(f)(x)a

as desired (observe that this calculation would not work without the sign in the
definition of our differential on Hom).

For differential graded A-modules K, L,M we have already defined the composition

Homm(L,M)×Homn(K,L) −→ Homn+m(K,M)

in Section 24.5 by the usual composition of maps of sheaves. This defines a map of
differential graded modules

HomModdg(A,d)(L,M)⊗R HomModdg(A,d)(K,L) −→ HomModdg(A,d)(K,M)

as required in Differential Graded Algebra, Definition 22.26.1 because

d(g ◦ f) = dM ◦ g ◦ f − (−1)n+mg ◦ f ◦ dK

= (dM ◦ g − (−1)mg ◦ dL) ◦ f + (−1)mg ◦ (dL ◦ f − (−1)nf ◦ dK)
= d(g) ◦ f + (−1)mg ◦ d(f)

if f has degree n and g has degree m as desired.
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24.15. Tensor product for sheaves of differential graded modules

0FRM This section is the analogue of part of Differential Graded Algebra, Section 22.12.

Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential graded algebras on
(C,O). LetM be a right differential gradedA-module and letN be a left differential
graded A-module. In this situation we define the tensor productM⊗AN as follows.
As a graded O-module it is given by the construction in Section 24.6. It comes
endowed with a differential

dM⊗AN : (M⊗A N )n −→ (M⊗A N )n+1

defined by the rule that

dM⊗AN (x⊗ y) = dM(x)⊗ y + (−1)deg(x)x⊗ dN (y)

for homogeneous local sections x and y ofM and N . To see that this is well defined
we have to show that dM⊗AN annihilates elements of the form xa⊗ y− x⊗ ay for
homogeneous local sections x, a, y of M, A, N . We compute

dM⊗AN (xa⊗ y − x⊗ ay)
= dM(xa)⊗ y + (−1)deg(x)+deg(a)xa⊗ dN (y)− dM(x)⊗ ay − (−1)deg(x)x⊗ dN (ay)
= dM(x)a⊗ y + (−1)deg(x)xd(a)⊗ y + (−1)deg(x)+deg(a)xa⊗ dN (y)
− dM(x)⊗ ay − (−1)deg(x)x⊗ d(a)y − (−1)deg(x)+deg(a)x⊗ adN (y)

then we observe that the elements

dM(x)a⊗y−dM(x)⊗ay, xd(a)⊗y−x⊗d(a)y, and xa⊗dN (y)−x⊗adN (y)

map to zero inM⊗AN and we conclude. We omit the verification that dM⊗AN ◦
dM⊗AN = 0.

If we fix the left differential graded A-module N we obtain a functor

−⊗A N : Mod(A,d) −→ Comp(O)

where on the right hand side we have the category of complexes of O-modules. This
can be upgraded to a functor of differential graded categories

−⊗A N : Moddg(A,d) −→ Compdg(O)

On underlying graded objects, we send a homomorphism f :M→M′ of degree n
to the degree n map f ⊗ idN :M⊗A N →M′ ⊗A N , because this is what we did
in Section 24.6. To show that this works, we have to verify that the map

HomModdg(A,d)(M,M′) −→ HomCompdg(O)(M⊗A N ,M′ ⊗A N )

is compatible with differentials. To see this for f as above we have to show that

(dM′ ◦ f − (−1)nf ◦ dM)⊗ idN

is equal to
dM′⊗AN ◦ (f ⊗ idN )− (−1)n(f ⊗ idN ) ◦ dM⊗AN

Let us compute the effect of these operators on a local section of the form x ⊗ y
with x and y homogeneous local sections of M and N . For the first we obtain

(dM′(f(x))− (−1)nf(dM(x)))⊗ y
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and for the second we obtain
dM′⊗AN (f(x)⊗ y)− (−1)n(f ⊗ idN )(dM⊗AN (x⊗ y)
= dM′(f(x))⊗ y + (−1)deg(x)+nf(x)⊗ dN (y)
− (−1)nf(dM(x))⊗ y − (−1)n(−1)deg(x)f(x)⊗ dN (y)

which is indeeed the same local section.

24.16. Internal hom for sheaves of differential graded modules

0FRN We are going to need the sheafified version of the construction in Section 24.14.
Let (C,O), A, M, L be as in Section 24.14. Then we define

Homdg
A (M,L) = Homgr

A (M,L) =
⊕

n∈Z
Homn

A(M,L)

as a graded O-module, see Section 24.7. In other words, a section f of the nth
graded piece Homn

A(L,M) over U is a map of right AU -module map L|U →M|U
homogeneous of degree n. For such f we set

d(f) = dM|U ◦ f − (−1)nf ◦ dL|U
To make sense of this we think of dM|U and dL|U as graded OU -module maps and
we use composition of gradedOU -module maps. It is clear that d(f) is homogeneous
of degree n + 1 as a graded OU -module map. Using the exact same computation
as in Section 24.14 we see that d(f) is AU -linear.
As in Section 24.14 there is a composition map

Homdg
A (L,M)⊗O Homdg

A (K,L) −→ Homdg
A (K,M)

where the left hand side is the tensor product of differential graded O-modules
defined in Section 24.15. This map is given by the composition map

Homm(L,M)⊗O Homn(K,L) −→ Homn+m(K,M)
defined by simple composition (locally). Using the exact same computation as in
Section 24.14 on local sections we see that the composition map is a morphism of
differential graded O-modules.
With these definitions we have

HomModdg(A)(L,M) = Γ(C,Homdg
A (L,M))

as graded R-modules compatible with composition.

24.17. Sheaves of differential graded bimodules and tensor-hom adjunction

0FRP This section is the analogue of part of Differential Graded Algebra, Section 22.12.

Definition 24.17.1.0FRQ Let (C,O) be a ringed site. Let A and B be a sheaves of
differential graded algebras on (C,O). A differential graded (A,B)-bimodule is
given by a complex M• of O-modules endowed with O-bilinear maps

Mn × Bm →Mn+m, (x, b) 7−→ xb

and
An ×Mm →Mn+m, (a, x) 7−→ ax

called the multiplication maps with the following properties
(1) multiplication satisfies a(a′x) = (aa′)x and (xb)b′ = x(bb′),
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(2) (ax)b = a(xb),
(3) d(ax) = d(a)x+ (−1)deg(a)ad(x) and d(xb) = d(x)b+ (−1)deg(x)xd(b),
(4) the identity section 1 of A0 acts as the identity by multiplication, and
(5) the identity section 1 of B0 acts as the identity by multiplication.

We often denote such a structure M and sometimes we write AMB. A homomor-
phism of differential graded (A,B)-bimodules f : M → N is a map of complexes
f :M• → N • of O-modules compatible with the multiplication maps.
Given a differential graded (A,B)-bimodule M and an object U ∈ Ob(C) we use
the notation

M(U) = Γ(U,M) =
⊕

n∈Z
Mn(U)

This is a differential graded (A(U),B(U))-bimodule.
Observe that a differential graded (A,B)-bimodule M is the same thing as a right
differential graded B-module which is also a left differential graded A-module such
that the grading and differentials agree and such that the A-module structure
commutes with the B-module structure. Here is a precise statement.
Lemma 24.17.2.0FRR Let (C,O) be a ringed site. Let A and B be a sheaves of differential
graded algebras on (C,O). Let N be a right differential graded B-module. There is
a 1-to-1 correspondence between (A,B)-bimodule structures on N compatible with
the given differential graded B-module structure and homomorphisms

A −→ Homdg
B (N ,N )

of differential graded O-algebras.
Proof. Omitted. □

Let (C,O) be a ringed site. Let A and B be a sheaves of differential graded algebras
on (C,O). LetM be a right differential graded A-module and let N be a differential
graded (A,B)-bimodule. In this case the differential graded tensor product defined
in Section 24.15

M⊗A N
is a right differential graded B-module with multiplication maps as in Section 24.8.
This construction defines a functor and a functor of graded categories
⊗AN : Mod(A,d) −→ Mod(B,d) and ⊗A N : Moddg(A,d) −→ Moddg(B,d)

by sending homomorphisms of degree n from M → M′ to the induced map of
degree n from M⊗A N to M′ ⊗A N .
Let (C,O) be a ringed site. Let A and B be a sheaves of differential graded algebras
on (C,O). Let N be a differential graded (A,B)-bimodule. Let L be a right
differential graded B-module. In this case the differential graded internal hom
defined in Section 24.16

Homdg
B (N ,L)

is a right differential graded A-module where the right graded A-module structure
is the one defined in Section 24.8. Another way to define the multiplication is the
use the composition

Homdg
B (N ,L)⊗O A → Homdg

B (N ,L)⊗O Homdg
B (N ,N )→ Homdg

B (N ,L)
where the first arrow comes from Lemma 24.17.2 and the second arrow is the com-
position of Section 24.16. Since these arrows are both compatible with differentials,
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we conclude that we indeed obtain a differential graded A-module. This construc-
tion defines a functor and a functor of differential graded categories

Homdg
B (N ,−) : Mod(B,d) −→ Mod(A) and Homdg

B (N ,−) : Moddg(B,d) −→ Moddg(A,d)

by sending homomorphisms of degree n from L → L′ to the induced map of degree
n from Homdg

B (N ,L) to Homdg
B (N ,L′).

Lemma 24.17.3.0FRS Let (C,O) be a ringed site. Let A and B be a sheaves of differential
graded algebras on (C,O). Let M be a right differential graded A-module. Let N
be a differential graded (A,B)-bimodule. Let L be a right differential graded B-
module. With conventions as above we have

HomModdg(B,d)(M⊗A N ,L) = HomModdg(A,d)(M,Homdg
B (N ,L))

and
Homdg

B (M⊗A N ,L) = Homdg
A (M,Homdg

B (N ,L))

functorially in M, N , L.

Proof. Omitted. Hint: On the graded level we have seen this is true in Lemma
24.8.2. Thus it suffices to check the isomorphisms are compatible with differentials
which can be done by a computation on the level of local sections. □

Let (C,O) be a ringed site. Let A and B be a sheaves of differential graded algebras
on (C,O). As a special case of the above, suppose we are given a homomorphism
φ : A → B of differential graded O-algebras. Then we obtain a functor and a
functor of differential graded categories

⊗A,φB : Mod(A,d) −→ Mod(B,d) and ⊗A,φ B : Moddg(A,d) −→ Moddg(B,d)

On the other hand, we have the restriction functors

resφ : Mod(B,d) −→ Mod(A,d) and resφ : Moddg(B,d) −→ Moddg(A,d)

We can use the lemma above to show these functors are adjoint to each other (as
usual with restriction and base change). Namely, let us write ABB for B viewed
as a differential graded (A,B)-bimodule. Then for any right differential graded
B-module L we have

Homdg
B (ABB,L) = resφ(L)

as right differential graded A-modules. Thus Lemma 24.8.2 tells us that we have a
functorial isomorphism

HomModdg(B,d)(M⊗A,φ B,L) = HomModdg(A,d)(M, resφ(L))

We usually drop the dependence on φ in this formula if it is clear from context. In
the same manner we obtain the equality

Homdg
B (M⊗A B,L) = Homdg

A (M,L)

of graded O-modules.
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24.18. Pull and push for sheaves of differential graded modules

0FRT Let (f, f ♯) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed topoi. Let A be a
differential graded OC-algebra. Let B be a differential graded OD-algebra. Suppose
we are given a map

φ : f−1B → A

of differential graded f−1OD-algebras. By the adjunction of restriction and exten-
sion of scalars, this is the same thing as a map φ : f∗B → A of differential graded
OC-algebras or equivalently φ can be viewed as a map

φ : B → f∗A

of differential graded OD-algebras. See Remark 24.12.2.

Let us define a functor

f∗ : Mod(A,d) −→ Mod(B,d)

Given a differential graded A-moduleM we define f∗M to be the graded B-module
constructed in Section 24.9 with differential given by the maps f∗d : f∗Mn →
f∗Mn+1. The construction is clearly functorial in M and we obtain our functor.

Let us define a functor

f∗ : Mod(B,d) −→ Mod(A,d)

Given a differential graded B-module N we define f∗N to be the graded A-module
constructed in Section 24.9. Recall that

f∗N = f−1N ⊗f−1B A

Since f−1N comes with the differentials f−1d : f−1Nn → f−1Nn+1 we can view
this tensor product as an example of the tensor product discussed in Section 24.17
which provides us with a differential. The construction is clearly functorial in N
and we obtain our functor f∗.

The functors f∗ and f∗ are readily enhanced to give functors of differential graded
categories

f∗ : Moddg(A,d) −→ Moddg(B,d) and f∗ : Moddg(B,d) −→ Moddg(A,d)

which do the same thing on underlying objects and are defined by functoriality of
the constructions on homogenous morphisms of degree n.

Lemma 24.18.1.0FRU In the situation above we have

HomModdg(B,d)(N , f∗M) = HomModdg(A,d)(f∗N ,M)

Proof. Omitted. Hints: This is true for the underlying graded categories by Lemma
24.9.1. A calculation shows that these isomorphisms are compatible with differen-
tials. □
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24.19. Localization and sheaves of differential graded modules

0FRV Let (C,O) be a ringed site. Let U ∈ Ob(C) and denote
j : (Sh(C/U),OU ) −→ (Sh(C),O)

the corresponding localization morphism (Modules on Sites, Section 18.19). Below
we will use the following fact: for OU -modules Mi, i = 1, 2 and a O-module A
there is a canonical map

j! : HomOU
(M1 ⊗OU

A|U ,M2) −→ HomO(j!M1 ⊗O A, j!M2)
Namely, we have j!(M1 ⊗OU

A|U ) = j!M1 ⊗O A by Modules on Sites, Lemma
18.27.9.
Let A be a differential graded O-algebra. We will denote AU the restriction of A
to C/U , in other words, we have AU = j∗A = j−1A. In Section 24.18 we have
constructed adjoint functors
j∗ : Moddg(AU ,d) −→ Moddg(A,d) and j∗ : Moddg(A,d) −→ Moddg(AU ,d)

with j∗ left adjoint to j∗. We claim there is in addition an exact functor
j! : Moddg(AU ,d) −→ Moddg(A,d)

right adjoint to j∗. Namely, given a differential graded AU -module M we define
j!M to be the graded A-module constructed in Section 24.10 with differentials
j!d : j!Mn → j!Mn+1. Given a homogeneous map f : M → M′ of degree n of
differential gradedAU -modules, we obtain a homogeneous map j!f : j!M→ j!M′ of
degree n of differential graded A-modules. We omit the straightforward verification
that this construction is compatible with differentials. Thus we obtain our functor.

Lemma 24.19.1.0FRW In the situation above we have
HomModdg(A,d)(j!M,N ) = HomModdg(AU ,d)(M, j∗N )

Proof. Omitted. Hint: We have seen in Lemma 24.10.1 that the lemma is true on
graded level. Thus all that needs to be checked is that the resulting isomorphism
is compatible with differentials. □

Lemma 24.19.2.0FRX In the situation above, let M be a right differential graded AU -
module and let N be a left differential graded A-module. Then

j!M⊗A N = j!(M⊗AU
N|U )

as complexes of O-modules functorially in M and N .

Proof. As graded modules, this follows from Lemma 24.10.2. We omit the verifica-
tion that this isomorphism is compatible with differentials. □

24.20. Shift functors on sheaves of differential graded modules

0FRY Let (C,O) be a ringed site. Let A be a sheaf of differential graded algebras on
(C,O). Let M be a differential graded A-module. Let k ∈ Z. We define the kth
shift of M, denoted M[k], as follows

(1) as a graded A-module we let M[k] be as defined in Section 24.11,
(2) the differential dM[k] : (M[k])n → (M[k])n+1 is defined to be (−1)kdM :
Mn+k →Mn+k+1.

https://stacks.math.columbia.edu/tag/0FRW
https://stacks.math.columbia.edu/tag/0FRX


24.21. THE HOMOTOPY CATEGORY 2160

For a homomorphism f : L → M of A-modules homogeneous of degree n, we let
f [k] : L[k] → M[k] be given by the same component maps as f . Then f [k] is a
homogeneous A-module map of degree n. This gives a map

HomModdg(A,d)(L,M) −→ HomModdg(A,d)(L[k],M[k])

compatible with differentials (it follows from the fact that the signs of the differen-
tials of L and M are changed by the same amount). These choices are compatible
with the choice in Differential Graded Algebra, Definition 22.4.3. It is clear that
we have defined a functor

[k] : Moddg(A,d) −→ Moddg(A,d)
of differential graded categories and that we have [k + l] = [k] ◦ [l].
We claim that the isomorphism

HomModdg(A,d)(L,M[k]) = HomModdg(A,d)(L,M)[k]
defined in Section 24.11 on underlying graded modules is compatible with the dif-
ferentials. To see this, suppose we have a right A-module map f : L →M[k] homo-
geneous of degree n; this is an element of degree n of the LHS. Denote f ′ : L →M
the homogeneous A-module map of degree n+k with the same component maps as
f . By our conventions, this is the corresponding element of degree n of the RHS.
By definition of the differential of LHS we obtain

dLHS(f) = dM[k] ◦ f − (−1)nf ◦ dL = (−1)kdM ◦ f − (−1)nf ◦ dL

and for the differential on the RHS we obtain
dRHS(f ′) = (−1)k

(
dM ◦ f ′ − (−1)n+kf ′ ◦ dL

)
= (−1)kdM ◦ f ′ − (−1)nf ′ ◦ dL

These maps have the same component maps and the proof is complete.

24.21. The homotopy category

0FRZ This section is the analogue of Differential Graded Algebra, Section 22.5.

Definition 24.21.1.0FS0 Let (C,O) be a ringed site. Let A be a sheaf of differential
graded algebras on (C,O). Let f, g : M → N be homomorphisms of differential
graded A-modules. A homotopy between f and g is a graded A-module map
h :M→N homogeneous of degree −1 such that

f − g = dN ◦ h+ h ◦ dM

If a homotopy exists, then we say f and g are homotopic.

In the situation of the definition, if we have maps a : K →M and c : N → L then
we see that

h is a homotopy
between f and g

⇒ c ◦ h ◦ a is a homotopy
between c ◦ f ◦ a and c ◦ g ◦ a

Thus we can define composition of homotopy classes of morphisms in Mod(A,d).

Definition 24.21.2.0FS1 Let (C,O) be a ringed site. Let A be a sheaf of differential
graded algebras on (C,O). The homotopy category, denoted K(Mod(A,d)), is the
category whose objects are the objects of Mod(A,d) and whose morphisms are
homotopy classes of homomorphisms of differential graded A-modules.
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The notation K(Mod(A,d)) is not standard but at least is consistent with the use
of K(−) in other places of the Stacks project.
In Differential Graded Algebra, Definition 22.26.3 we have defined what we mean
by the category of complexes Comp(S) and the homotopy category K(S) of a
differential graded category S. Applying this to the differential graded category
Moddg(A,d) we obtain

Mod(A,d) = Comp(Moddg(A,d))
(see discussion in Section 24.14) and we obtain

K(Mod(A,d)) = K(Moddg(A,d))
To see that this last equality is true, note that we have the equality

dHomModdg(A,d)(M,N )(h) = dN ◦ h+ h ◦ dM

when h is as in Definition 24.21.1. We omit the details.

Lemma 24.21.3.0FS2 Let (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). The homotopy category K(Mod(A,d)) has direct sums and
products.

Proof. Omitted. Hint: Just use the direct sums and products as in Lemma 24.13.2.
This works because we saw that these functors commute with the forgetful functor
to the category of graded A-modules and because

∏
and

⊕
are exact functors on

the category of families of abelian groups. □

24.22. Cones and triangles

0FS3 In this section we use the material from Differential Graded Algebra, Section 22.27
to conclude that the homotopy category of the category of differential graded A-
modules is a triangulated category.

Lemma 24.22.1.0FS4 Let (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). The differential graded category Moddg(A,d) satisfies axioms
(A) and (B) of Differential Graded Algebra, Section 22.27.

Proof. Suppose given differential graded A-modulesM and N . Consider the differ-
ential graded A-moduleM⊕N defined in the obvious manner. Then the coprojec-
tions i :M→M⊕N and j : N →M⊕N and the projections p :M⊕N → N and
q : M⊕N → M are morphisms of differential graded A-modules. Hence i, j, p, q
are homogeneous of degree 0 and closed, i.e., d(i) = 0, etc. Thus this direct sum
is a differential graded sum in the sense of Differential Graded Algebra, Definition
22.26.4. This proves axiom (A).
Axiom (B) was shown in Section 24.20. □

Let (C,O) be a ringed site. Let A be a sheaf of differential graded algebras on
(C,O). Recall that a sequence

0→ K → L → N → 0
in Mod(A,d) is called an admissible short exact sequence (in Differential Graded
Algebra, Section 22.27) if it is split in Mod(A). In other words, if it is split as
a sequence of graded A-modules. Denote s : N → L and π : L → K graded
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A-module splittings. Combining Lemma 24.22.1 and Differential Graded Algebra,
Lemma 22.27.1 we obtain a triangle

K → L → N → K[1]
where the arrow N → K[1] in the proof of Differential Graded Algebra, Lemma
22.27.1 is constructed as

δ = π ◦ dHomModdg(A,d)(L,M)(s) = π ◦ dL ◦ s− π ◦ s ◦ dN = π ◦ dL ◦ s

with apologies for the horrendous notation. In any case, we see that in our setting
the boundary map δ as constructed in Differential Graded Algebra, Lemma 22.27.1
agrees on underlying complexes of O-modules with the usual boundary map used
throughout the Stacks project for termwise split short exact sequences of complexes,
see Derived Categories, Definition 13.9.9.

Definition 24.22.2.0FS5 Let (C,O) be a ringed site. Let A be a sheaf of differential
graded algebras on (C,O). Let f : K → L be a homomorphism of differential
graded A-modules. The cone of f is the differential graded A-module C(f) defined
as follows:

(1) the underlying complex ofO-modules is the cone of the corresponding map
f : K• → L• of complexes of A-modules, i.e., we have C(f)n = Ln⊕Kn+1

and differential
dC(f) =

(
dL f
0 −dK

)
(2) the multiplication map

C(f)n ×Am → C(f)n+m

is the direct sum of the multiplication map Ln × Am → Ln+m and the
multiplication map Kn+1 ×Am → Kn+1+m.

It comes equipped with canonical hommorphisms of differential graded A-modules
i : L → C(f) and p : C(f)→ K[1] induced by the obvious maps.

Observe that in the situation of the definition the sequence
0→ L → C(f)→ K[1]→ 0

is an addmissible short exact sequence.

Lemma 24.22.3.0FS6 Let (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). The differential graded category Moddg(A,d) satisfies axiom
(C) formulated in Differential Graded Algebra, Situation 22.27.2.

Proof. Let f : K → L be a homomorphism of differential graded A-modules. By
the above we have an admissible short exact sequence

0→ L → C(f)→ K[1]→ 0
To finish the proof we have to show that the boundary map

δ : K[1]→ L[1]
associated to this (see discussion above) is equal to f [1]. For the section s : K[1]→
C(f) we use in degree n the embeddding Kn+1 → C(f)n. Then in degree n the
map π is given by the projections C(f)n → Ln. Then finally we have to compute

δ = π ◦ dC(f) ◦ s
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(see discussion above). In matrix notation this is equal to(
1 0

)(dL f
0 −dK

)(
0
1

)
= f

as desired. □

At this point we know that all lemmas proved in Differential Graded Algebra, Sec-
tion 22.27 are valid for the differential graded category Moddg(A,d). In particular,
we have the following.

Proposition 24.22.4.0FS7 Let (C,O) be a ringed site. Let A be a sheaf of differential
graded algebras on (C,O). The homotopy category K(Mod(A,d)) is a triangulated
category where

(1) the shift functors are those constructed in Section 24.20,
(2) the distinghuished triangles are those triangles in K(Mod(A,d)) which

are isomorphic as a triangle to a triangle

K → L → N δ−→ K[1], δ = π ◦ dL ◦ s
constructed from an admissible short exact sequence 0→ K → L → N →
0 in Mod(A,d) above.

Proof. Recall that K(Mod(A,d)) = K(Moddg(A,d)), see Section 24.21. Having
said this, the proposition follows from Lemmas 24.22.1 and 24.22.3 and Differential
Graded Algebra, Proposition 22.27.16. □

Remark 24.22.5.0FS8 Let (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). Let C = C(idA) be the cone on the identity map A → A viewed
as a map of differential graded A-modules. Then

HomMod(A,d)(C,M) = {(x, y) ∈ Γ(C,M0)× Γ(C,M−1) | x = d(y)}
where the map from left to right sends f to the pair (x, y) where x is the image of
the global section (0, 1) of C−1 = A−1⊕A0 and where y is the image of the global
section (1, 0) of C0 = A0 ⊕A1.

Lemma 24.22.6.0FS9 Let (C,O) be a ringed site. Let (A,d) be a differential graded
O-algebra. The category Mod(A,d) is a Grothendieck abelian category.

Proof. By Lemma 24.13.2 and the definition of a Grothendieck abelian category
(Injectives, Definition 19.10.1) it suffices to show that Mod(A,d) has a generator.
For every object U of C we denote CU the cone on the identity map AU → AU as
in Remark 24.22.5. We claim that

G =
⊕

k,U
jU !CU [k]

is a generator where the sum is over all objects U of C and k ∈ Z. Indeed, given a
differential graded A-module M if there are no nonzero maps from G to M, then
we see that for all k and U we have

HomMod(A)(jU !CU [k],M)
= HomMod(AU )(CU [k],M|U )
= {(x, y) ∈M−k(U)×M−k−1(U) | x = d(y)}

is equal to zero. Hence M is zero. □
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24.23. Flat resolutions

0FSA This section is the analogue of Differential Graded Algebra, Section 22.20.

Let (C,O) be a ringed site. Let A be a sheaf of differential graded algebras on
(C,O). Let us call a right differential graded A-module P good if

(1) the functor N 7→ P ⊗A N is exact on the category of graded left A-
modules,

(2) ifN is an acyclic differential graded left A-module, then P⊗AN is acyclic,
(3) for any morphism (f, f ♯) : (Sh(C′),O′) → (Sh(C),O) of ringed topoi and

any differential graded O′-algebra A′ and any map φ : f−1A → A′ of
differential graded f−1OD-algebras we have properties (1) and (2) for the
pullback f∗P (Section 24.18) viewed as a differential graded A′-module.

The first condition means that P is flat as a right graded A-module, the second
condition means that P is K-flat in the sense of Spaltenstein (see Cohomology on
Sites, Section 21.17), and the third condition is that this holds after arbitrary base
change.

Perhaps surprisingly, there are many good modules.

Lemma 24.23.1.0FSB Let (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). Let U ∈ Ob(C). Then j!AU is a good differential graded
A-module.

Proof. Let N be a left graded A-module. By Lemma 24.10.2 we have

j!AU ⊗A N = j!(AU ⊗AU
N|U ) = j!(NU )

as graded modules. Since both restriction to U and j! are exact this proves condition
(1). The same argument works for (2) using Lemma 24.19.2.

Consider a morphism (f, f ♯) : (Sh(C′),O′) → (Sh(C),O) of ringed topoi, a dif-
ferential graded O′-algebra A′, and a map φ : f−1A → A′ of differential graded
f−1O-algebras. We have to show that

f∗j!AU = f−1j!AU ⊗f−1A A′

satisfies (1) and (2) for the ringed topos (Sh(C′),O′) endowed with the sheaf of
differential graded O′-algebras A′. To prove this we may replace (Sh(C),O) and
(Sh(C′),O′) by equivalent ringed topoi. Thus by Modules on Sites, Lemma 18.7.2
we may assume that f comes from a morphism of sites f : C → C′ given by
the continuous functor u : C → C′. In this case, set U ′ = u(U) and denote
j′ : Sh(C′/U ′) → Sh(C′) the corresponding localization morphism. We obtain a
commutative square of morphisms of ringed topoi

(Sh(C′/U ′),O′
U ′)

(j′,(j′)♯)
//

(f ′,(f ′)♯)
��

(Sh(C′),O′)

(f,f♯)
��

(Sh(C/U),OU )
(j,j♯) // (Sh(C),O).
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and we have f ′
∗(j′)−1 = j−1f∗. See Modules on Sites, Lemma 18.20.1. By unique-

ness of adjoints we obtain f−1j! = j′
!(f ′)−1. Thus we obtain

f∗j!AU = f−1j!AU ⊗f−1A A′

= j′
!(f ′)−1AU ⊗f−1A A′

= j′
!
(
(f ′)−1AU ⊗f−1A|U′ A′|U ′

)
= j′

!A′
U ′

The first equation is the definition of the pullback of j!AU to a differential graded
module over A′. The second equation because f−1j! = j′

!(f ′)−1. The third equation
by Lemma 24.19.2 applied to the ringed site (C′, f−1O) with sheaf of differential
graded algebras f−1A and with differential graded modules (f ′)−1AU on C′/U ′

and A′ on C′. The fourth equation holds because of course we have (f ′)−1AU =
f−1A|U ′ . Hence we see that the pullback is another module of the same kind and
we’ve proven conditions (1) and (2) for it above. □

Lemma 24.23.2.0FSC et (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). Let 0 → P → P ′ → P ′′ → 0 be an admissible short exact
sequence of differential graded A-modules. If two-out-of-three of these modules are
good, so is the third.

Proof. For condition (1) this is immediate as the sequence is a direct sum at the
graded level. For condition (2) note that for any left differential graded A-module,
the sequence

0→ P ⊗A N → P ′ ⊗A N → P ′′ ⊗A N → 0
is an admissible short exact sequence of differential graded O-modules (since for-
getting the differential the tensor product is just taken in the category of graded
modules). Hence if two out of three are exact as complexes of O-modules, so
is the third. Finally, the same argument shows that given a morphism (f, f ♯) :
(Sh(C′),O′)→ (Sh(C),O) of ringed topoi, a differential graded O′-algebra A′, and
a map φ : f−1A → A′ of differential graded f−1O-algebras we have that

0→ f∗P → f∗P ′ → f∗P ′′ → 0
is an admissible short exact sequence of differential graded A′-modules and the
same argument as above applies here. □

Lemma 24.23.3.0FSD Let (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). An arbitrary direct sum of good differential graded A-modules
is good. A filtered colimit of good differential graded A-modules is good.

Proof. Omitted. Hint: direct sums and filtered colimits commute with tensor prod-
ucts and with pullbacks. □

Lemma 24.23.4.0FSE Let (C,O) be a ringed site. Let A be a sheaf of differential
graded algebras on (C,O). Let M be a differential graded A-module. There exists
a homomorphism P → M of differential graded A-modules with the following
properties

(1) P →M is surjective,
(2) Ker(dP)→ Ker(dM) is surjective, and
(3) P is good.

https://stacks.math.columbia.edu/tag/0FSC
https://stacks.math.columbia.edu/tag/0FSD
https://stacks.math.columbia.edu/tag/0FSE
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Proof. Consider triples (U, k, x) where U is an object of C, k ∈ Z, and x is a section
of Mk over U with dM(x) = 0. Then we obtain a unique morphism of differential
graded AU -modules φx : AU [−k] → M|U mapping 1 to x. This is adjoint to a
morphism ψx : jU !AU [−k]→M. Observe that 1 ∈ AU (U) corresponds to a section
1 ∈ jU !AU [−k](U) of degree k whose differential is zero and which is mapped to x
by ψx. Thus if we consider the map⊕

(U,k,x)
jU !AU [−k] −→M

then we will have conditions (2) and (3). Namely, the objects jU !AU [−k] are good
(Lemma 24.23.1) and any direct sum of good objects is good (Lemma 24.23.3).

Next, consider triples (U, k, x) where U is an object of C, k ∈ Z, and x is a section
of Mk (not necessarily annihilated by the differential). Then we can consider the
cone CU on the identity map AU → AU as in Remark 24.22.5. The element x will
determine a map φx : CU [−k − 1]→ AU , see Remark 24.22.5. Now, since we have
an admissible short exact sequence

0→ AU → CU → AU [1]→ 0

we conclude that jU !CU is a good module by Lemma 24.23.2 and the already used
Lemma 24.23.1. As above we conclude that the direct sum of the maps ψx :
jU !CU →M adjoint to the φx⊕

(U,k,x)
jU !CU −→M

is surjective. Taking the direct sum with the map produced in the first paragraph
we conclude. □

Remark 24.23.5.0FSF Let (C,O) be a ringed site. A sheaf of graded sets on C is a sheaf
of sets S endowed with a map deg : S → Z of sheaves of sets. Let us denote O[S]
the graded O-module which is the free O-module on the graded sheaf of sets S.
More precisely, the nth graded part of O[S] is the sheafification of the rule

U 7−→
⊕

s∈S(U), deg(s)=n
s · O(U)

With zero differential we also may consider this as a differential graded O-module.
Let A be a sheaf of graded O-algebras Then we similarly define A[S] to be the
graded A-module whose nth graded part is the sheafification of the rule

U 7−→
⊕

s∈S(U)
s · An−deg(s)(U)

If A is a differential graded O-algebra, the we turn this into a differential graded
O-module by setting d(s) = 0 for all s ∈ S(U) and sheafifying.

Lemma 24.23.6.0FSG Let (C,O) be a ringed site. Let A be a differential graded A-
algebra. Let S be a sheaf of graded sets on C. Then the free graded module A[S]
on S endowed with differential as in Remark 24.23.5 is a good differential graded
A-module.

Proof. Let N be a left graded A-module. Then we have

A[S]⊗A N = O[S]⊗O N = N [S]

https://stacks.math.columbia.edu/tag/0FSF
https://stacks.math.columbia.edu/tag/0FSG
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where N [S is the graded O-module whose degree n part is the sheaf associated to
the presheaf

U 7−→
⊕

s∈S(U)
s · Nn−deg(s)(U)

It is clear that N → N [S] is an exact functor, hence A[S is flat as a graded A-
module. Next, suppose that N is a differential graded left A-module. Then we
have

H∗(A[S]⊗A N ) = H∗(O[S]⊗O N )
as graded sheaves of O-modules, which by the flatness (over O) is equal to

H∗(N )[S]

as a graded O-module. Hence if N is acyclic, then A[S]⊗A N is acyclic.

Finally, consider a morphism (f, f ♯) : (Sh(C′),O′) → (Sh(C),O) of ringed topoi, a
differential graded O′-algebra A′, and a map φ : f−1A → A′ of differential graded
f−1O-algebras. Then it is straightforward to see that

f∗A[S] = A′[f−1S]

which finishes the proof that our module is good. □

Lemma 24.23.7.0FSH Let (C,O) be a ringed site. Let A be a sheaf of differential
graded algebras on (C,O). Let M be a differential graded A-module. There exists
a homomorphism P → M of differential graded A-modules with the following
properties

(1) P →M is a quasi-isomorphism, and
(2) P is good.

First proof. Let S0 be the sheaf of graded sets (Remark 24.23.5) whose degree n
part is Ker(dnM). Consider the homomorphism of differential graded modules

P0 = A[S0] −→M

where the left hand side is as in Remark 24.23.5 and the map sends a local section
s of S0 to the corresponding local section of Mdeg(s) (which is in the kernel of
the differential, so our map is a map of differential graded modules indeed). By
construction the induced maps on cohomology sheaves Hn(P0) → Hn(M) are
surjective. We are going to inductively construct maps

P0 → P1 → P2 → . . .→M

Observe that of course H∗(Pi)→ H∗(M) will be surjective for all i. Given Pi →M
denote Si+1 the sheaf of graded sets whose degree n part is

Ker(dn+1
Pi )×Mn+1,dMn

Then we set
Pi+1 = Pi ⊕A[Si+1]

as graded A-module with differential and map to M defined as follows
(1) for local sections of Pi use the differential on Pi and the given map toM,
(2) for a local section s = (p,m) of Si+1 we set d(s) equal to p viewed as a

section of Pi of degree deg(s) + 1 and we map s to m in M, and
(3) extend the differential uniquely so that the Leibniz rule holds.

https://stacks.math.columbia.edu/tag/0FSH
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This makes sense because d(m) is the image of p and d(p) = 0. Finally, we set
P = colimPi with the induced map to M.
The map P → M is a quasi-isomorphism: we have Hn(P) = colimHn(Pi) and
for each i the map Hn(Pi) → Hn(M) is surjective with kernel annihilated by the
map Hn(Pi) → Hn(Pi+1) by construction. Each Pi is good because P0 is good
by Lemma 24.23.6 and each Pi+1 is in the middle of the admissible short exact
sequence 0→ Pi → Pi+1 → A[Si+1]→ 0 whose outer terms are good by induction.
Hence Pi+1 is good by Lemma 24.23.2. Finally, we conclude that P is good by
Lemma 24.23.3. □

Second proof. We urge the reader to read the proof of Differential Graded Algebra,
Lemma 22.20.4 before reading this proof. Set M = M0. We inductively choose
short exact sequences

0→Mi+1 → Pi →Mi → 0
where the maps Pi →Mi are chosen as in Lemma 24.23.4. This gives a “resolution”

. . .→ P2
f2−→ P1

f1−→ P0 →M→ 0
Then we let P be the differential graded A-module defined as follows

(1) as a graded A-module we set P =
⊕

a≤0 P−a[−a], i.e., the degree n part
is given by Pn =

⊕
a+b=n Pb−a,

(2) the differential on P is as in the construction of the total complex associ-
ated to a double complex given by

dP(x) = f−a(x) + (−1)adP−a(x)
for x a local section of Pb−a.

With these conventions P is indeed a differential graded A-module; we omit the
details. There is a map P →M of differential graded A-modules which is zero on
the summands P−a[−a] for a < 0 and the given map P0 →M for a = 0. Observe
that we have

P = colimi FiP
where FiP ⊂ P is the differential graded A-submodule whose underlying graded
A-module is

FiP =
⊕

i≥−a≥0
P−a[−a]

It is immediate that the maps
0→ F1P → F2P → F3P → . . .→ P

are all admissible monomorphisms and we have admissible short exact sequences
0→ FiP → Fi+1P → Pi+1[i+ 1]→ 0

By induction and Lemma 24.23.2 we find that FiP is a good differential graded
A-module. Since P = colimFiP we find that P is good by Lemma 24.23.3.
Finally, we have to show that P → M is a quasi-isomorphism. If C has enough
points, then this follows from the elementary Homology, Lemma 12.26.2 by checking
on stalks. In general, we can argue as follows (this proof is far too long — there is an
alternative argument by working with local sections as in the elementary proof but
it is also rather long). Since filtered colimits are exact on the category of abelian
sheaves, we have

Hd(P) = colimHd(FiP)
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We claim that for each i ≥ 0 and d ∈ Z we have (a) a short exact sequence

0→ Hd(Mi+1[i])→ Hd(FiP)→ Hd(M)→ 0

where the second arrow comes from FiP → P →M and (b) the composition

Hd(Mi+1[i])→ Hd(FiP)→ Hd(Fi+1P)

is zero. It is clear that the claim suffices to finish the proof.

Proof of the claim. For any i ≥ 0 there is a map Mi+1[i]→ FiP coming from the
inclusion of Mi+1 into Pi as the kernel of fi. Consider the short exact sequence

0→Mi+1[i]→ FiP → Ci → 0

of complexes of O-modules defining Ci. Observe that C0 = M0 = M. Also,
observe that Ci is the total complex associated to the double complex C•,•

i with
columns

Mi = Pi/Mi+1,Pi−1, . . . ,P0

in degree −i,−i+1, . . . , 0. There is a map of double complexes C•,•
i → C•,•

i−1 which
is 0 on the column in degree −i, is the surjection Pi−1 →Mi−1 in degree −i + 1,
and is the identity on the other columns. Hence there are maps of complexes

Ci −→ Ci−1

These maps are surjective quasi-isomorphisms because the kernel is the total com-
plex on the double complex with columns Mi,Mi in degrees −i,−i + 1 and
the identity map between these two columns. Using the resulting identifications
Hd(Ci) = Hd(Ci−1 = . . . = Hd(M) this already shows we get a long exact se-
quence

Hd(Mi+1[i])→ Hd(FiP)→ Hd(M)→ Hd+1(Mi+1[i])

from the short exact sequence of complexes above. However, we also have the
commutative diagram

Mi+2[i+ 1]
a

// Ti+1 // Fi+1P // Ci+1

��
Mi+1[i] //

b

OO

FiP

OO

// Ci

where Ti+1 is the total complex on the double complex with columns Pi+1,Mi+1
placed in degrees −i− 1 and −i. In other words, Ti+1 is a shift of the cone on the
map Pi+1 →Mi+1 and we find that a is a quasi-isomorphism and the map a−1 ◦ b
is a shift of the third map of the distinguished triangle in D(O) associated to the
short exact sequence

0→Mi+2 → Pi+1 →Mi+1 → 0

The map Hd(Pi+1) → Hd(Mi+1) is surjective because we chose our maps such
that Ker(dPi+1) → Ker(dMi+1) is surjective. Thus we see that a−1 ◦ b is zero on
cohomology sheaves. This proves part (b) of the claim. Since Ti+1 is the kernel
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of the surjective map of complexes Fi+1P → Ci we find a map of long exact
cohomology sequences

Hd(Ti+1) // Hd(Fi+1P) // Hd(M) // Hd+1(Ti+1)

Hd(Mi+1[i]) //

OO

Hd(FiP) //

OO

Hd(M) //

OO

Hd+1(Mi+1[i])

OO

Here we know, by the discussion above, that the vertical maps on the outside are
zero. Hence the maps Hd(Fi+1P) → Hd(M) are surjective and part (a) of the
claim follows. More precisely, the claim follows for i > 0 and we leave the claim for
i = 0 to the reader (actually it suffices to prove the claim for all i≫ 0 in order to
get the lemma). □

Lemma 24.23.8.0FSI Let (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). Let P be a good acyclic right differential graded A-module.

(1) for any differential graded left A-module N the tensor product P ⊗A N
is acyclic,

(2) for any morphism (f, f ♯) : (Sh(C′),O′) → (Sh(C),O) of ringed topoi and
any differential graded O′-algebra A′ and any map φ : f−1A → A′ of
differential graded f−1O-algebras the pullback f∗P is acyclic and good.

Proof. Proof of (1). By Lemma 24.23.7 we can choose a good left differential graded
Q and a quasi-isomorphism Q → N . Then P ⊗A Q is acyclic because Q is good.
Let N ′ be the cone on the map Q → N . Then P ⊗A N ′ is acyclic because P is
good and because N ′ is acyclic (as the cone on a quasi-isomorphism). We have a
distinguished triangle

Q → N → N ′ → Q[1]
in K(Mod(A,d)) by our construction of the triangulated structure. Since P ⊗A −
sends distinguished triangles to distinguished triangles, we obtain a distinguished
triangle

P ⊗A Q → P ⊗A N → P ⊗A N ′ → P ⊗A Q[1]
in K(Mod(O)). Thus we conclude.

Proof of (2). Observe that f∗P is good by our definition of good modules. Recall
that f∗P = f−1P ⊗f−1A A′. Then f−1P is a good acyclic (because f−1 is exact)
differential graded f−1A-module. Hence we see that f∗P is acyclic by part (1). □

24.24. The differential graded hull of a graded module

0FSJ The differential graded hull of a graded module N is the result of applying the
functor G in the following lemma.

Lemma 24.24.1.0FSK Let (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). The forgetful functor F : Mod(A,d) → Mod(A) has a left
adjoint G : Mod(A)→ Mod(A,d).

Proof. To prove the existence of G we can use the adjoint functor theorem, see
Categories, Theorem 4.25.3 (observe that we have switched the roles of F and G).
The exactness conditions on F are satisfied by Lemma 24.13.2. The set theoretic

https://stacks.math.columbia.edu/tag/0FSI
https://stacks.math.columbia.edu/tag/0FSK
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condition can be seen as follows: suppose given a graded A-module N . Then for
any map

φ : N −→ F (M)
we can consider the smallest differential graded A-submodule M′ ⊂ M with
Im(φ) ⊂ F (M′). It is clear that M′ is the image of the map of graded A-modules

N ⊕N [−1]⊗O A −→M
defined by

(n,
∑

ni ⊗ ai) 7−→ φ(n) +
∑

d(φ(ni))ai
because the image of this map is easily seen to be a differential graded submodule
of M. Thus the number of possible isomorphism classes of these M′ is bounded
and we conclude. □

Let (C,O) be a ringed site. Let A be a sheaf of differential graded algebras on
(C,O). Let M be a differential graded A-module and suppose we have a short
exact sequence

0→ N → F (M)→ N ′ → 0
in Mod(A). Then we obtain a canonical graded A-module homomorphism

d : N → N ′[1]
as follows: given a local section x of N denote d(x) the image in N ′ of dM(x) when
x is viewed as a local section of M.

Lemma 24.24.2.0FSL The functors F,G of Lemma 24.24.1 have the following properties.
Given a graded A-module N we have

(1) the counit N → F (G(N )) is injective,
(2) the map d : N → Coker(N → F (G(N )))[1] is an isomorphism, and
(3) G(N ) is an acyclic differential graded A-module.

Proof. We observe that property (3) is a consequence of properties (1) and (2).
Namely, if s is a nonzero local section of F (G(N )) with d(s) = 0, then s cannot
be in the image of N → F (G(N )). Hence we can write the image s of s in the
cokernel as d(s′) for some local section s′ of N . Then we see that s = d(s′) because
the difference s − d(s′) is still in the kernel of d and is contained in the image of
the counit.
Let us write temporarily Agr, respectively Adg the sheaf A viewed as a (right)
graded module over itself, respectively as a (right) differential graded module over
itself. The most important case of the lemma is to understand what is G(Agr). Of
course G(Agr) is the object of Mod(A,d) representing the functor

M 7−→ HomMod(A)(Agr, F (M)) = Γ(C,M)
By Remark 24.22.5 we see that this functor represented by C[−1] where C is the
cone on the identity of Adg. We have a short exact sequence

0→ Adg[−1]→ C[−1]→ Adg → 0
in Mod(A,d) which is split by the counit Agr → F (C[−1]) in Mod(A). Thus
G(Agr) satisfies properties (1) and (2).
Let U be an object of C. Denote jU : C/U → C the localization morphism. Denote
AU the restriction ofA to U . We will use the notationAU,gr to denoteAU viewed as

https://stacks.math.columbia.edu/tag/0FSL
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a graded AU -module. Denote FU : Mod(AU ,d) → Mod(AU ) the forgetful functor
and denote GU its adjoint. Then we have the commutative diagrams

Mod(A,d)

j∗
U

��

F
// Mod(A)

j∗
U

��
Mod(AU ,d) FU // Mod(AU )

and

Mod(AU ,d)
FU

//

jU!

��

Mod(AU )

jU!

��
Mod(A,d) F // Mod(A)

by the construction of j∗
U and jU ! in Sections 24.9, 24.18, 24.10, and 24.19. By

uniqueness of adjoints we obtain jU ! ◦GU = G ◦ jU !. Since jU ! is an exact functor,
we see that the properties (1) and (2) for the counit AU,gr → FU (GU (AU,gr)) which
we’ve seen in the previous part of the proof imply properties (1) and (2) for the
counit jU !AU,gr → F (G(jU !AU,gr)) = jU !FU (GU (AU,gr)).

In the proof of Lemma 24.11.1 we have seen that any object of Mod(A) is a quotient
of a direct sum of copies of jU !AU,gr. Since G is a left adjoint, we see that G
commutes with direct sums. Thus properties (1) and (2) hold for direct sums of
objects for which they hold. Thus we see that every object N of Mod(A) fits into
an exact sequence

N1 → N0 → N → 0
such that (1) and (2) hold for N1 and N0. We leave it to the reader to deduce (1)
and (2) for N using that G is right exact. □

24.25. K-injective differential graded modules

0FSM This section is the analogue of Injectives, Section 19.12 in the setting of sheaves of
differential graded modules over a sheaf of differential graded algebras.

Lemma 24.25.1.0FSN Let (C,O) be a ringed site. Let A be a sheaf of graded algebras
on (C,O). There exists a set T and for each t ∈ T an injective map Nt → N ′

t of
graded A-modules such that an object I of Mod(A) is injective if and only if for
every solid diagram

Nt //

��

I

N ′
t

??

a dotted arrow exists in Mod(A) making the diagram commute.

Proof. This is true in any Grothendieck abelian category, see Injectives, Lemma
19.11.6. By Lemma 24.11.1 the category Mod(A) is a Grothendieck abelian cate-
gory. □

Definition 24.25.2.0FSP Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). A diffential graded A-module I is said to be graded
injective2 if M viewed as a graded A-module is an injective object of the category
Mod(A) of graded A-modules.

2This may be nonstandard terminology.

https://stacks.math.columbia.edu/tag/0FSN
https://stacks.math.columbia.edu/tag/0FSP
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Remark 24.25.3.0FSQ Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). Let I be a graded injective diffential graded A-module.
Let

0→M1 →M2 →M3 → 0
be a short exact sequence of differential graded A-modules. Since I is graded
injective we obtain a short exact sequence of complexes
0→ HomModdg(A,d)(M3, I)→ HomModdg(A,d)(M2, I)→ HomModdg(A,d)(M1, I)→ 0

of Γ(C,O)-modules. Taking cohomology we obtain a long exact sequence

HomK(Mod(A,d))(M3, I)

��

HomK(Mod(A,d))(M3, I)[1]

��
HomK(Mod(A,d))(M2, I)

��

HomK(Mod(A,d))(M2, I)[1]

��
HomK(Mod(A,d))(M1, I)

88

HomK(Mod(A,d))(M1, I)[1]

of groups of homomorphisms in the homotopy category. The point is that we get
this even though we didn’t assume that our short exact sequence is admissible (so
the short exact sequence in general does not define a distinguished triangle in the
homotopy category).

Lemma 24.25.4.0FSR Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). Let T be a set and for each t ∈ T let It be a graded
injective diffential graded A-module. Then

∏
It is a graded injective differential

graded A-module.

Proof. This is true because products of injectives are injectives, see Homology,
Lemma 12.27.3, and because products in Mod(A,d) are compatible with products
in Mod(A) via the forgetful functor. □

Lemma 24.25.5.0FSS Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). There exists a set T and for each t ∈ T an injective
map Mt →M′

t of acyclic differential graded A-modules such that for an object I
of Mod(A,d) the following are equivalent

(1) I is graded injective, and
(2) for every solid diagram

Mt
//

��

I

M′
t

>>

a dotted arrow exists in Mod(A,d) making the diagram commute.

Proof. Let T and Nt → N ′
t be as in Lemma 24.25.1. Denote F : Mod(A,d) →

Mod(A) the forgetful functor. Let G be the left adjoint functor to F as in Lemma
24.24.1. Set

Mt = G(Nt)→ G(N ′
t ) =M′

t

https://stacks.math.columbia.edu/tag/0FSQ
https://stacks.math.columbia.edu/tag/0FSR
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This is an injective map of acyclic differential graded A-modules by Lemma 24.24.2.
Since G is the left adjoint to F we see that there exists a dotted arrow in the diagram

Mt
//

��

I

M′
t

>>

if and only if there exists a dotted arrow in the diagram

Nt //

��

F (I)

N ′
t

==

Hence the result follows from the choice of our collection of arrows Nt → N ′
t . □

Lemma 24.25.6.0FST Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). There exists a set S and for each s an acyclic differential
graded A-module Ms such that for every nonzero acyclic differential graded A-
module M there is an s ∈ S and an injective map Ms →M in Mod(A,d).

Proof. Before we start recall that our conventions guarantee the site C has a set of
objects and morphisms and a set Cov(C) of coverings. If F is a differential graded
A-module, let us define |F| to be the sum of the cardinality of∐

(U,n)
Fn(U)

as U ranges over the objects of C and n ∈ Z. Choose an infinite cardinal κ big-
ger than the cardinals |Ob(C)|, |Arrows(C)|, |Cov(C)|, sup |I| for {Ui → U}i∈I ∈
Cov(C), and |A|.

Let F ⊂M be an inclusion of differential graded A-modules. Suppose given a set
K and for each k ∈ K a triple (Uk, nk, xk) consisting of an object Uk of C, integer
nk, and a section xk ∈ Mnk(Uk). Then we can consider the smallest differential
graded A-submodule F ′ ⊂M containing F and the sections xk for k ∈ K. We can
describe

(F ′)n(U) ⊂Mn(U)
as the set of elements x ∈Mn(U) such that there exists {fi : Ui → U}i∈I ∈ Cov(C)
such that for each i ∈ I there is a finite set Ti and morphisms gt : Ui → Ukt

f∗
i x = yi +

∑
t∈Ti

aitg
∗
t xkt + bitg

∗
t d(xkt)

for some section yi ∈ Fn(U) and sections ait ∈ An−nkt (Ui) and bit ∈ An−nkt−1(Ui).
(Details omitted; hints: these sections are certainly in F ′ and you show conversely
that this rule defines a differential graded A-submodule.) It follows from this de-
scription that |F ′| ≤ max(|F|, |K|, κ).

Let M be a nonzero acyclic differential graded A-module. Then we can find an
integer n and a nonzero section x of Mn over some object U of C. Let

F0 ⊂M
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be the smallest differential graded A-submodule containing x. By the previous
paragraph we have |F0| ≤ κ. By induction, given F0, . . . ,Fn define Fn+1 as follows.
Consider the set

L = {(U, n, x)}{Ui → U}i∈I , (xi)i∈I)}
of triples where U is an object of C, n ∈ Z, and x ∈ Fn(U) with d(x) = 0. SinceM
is acyclic for each triple l = (Ul, nl, xl) ∈ L we can choose {(Ul,i → Ul}i∈Il ∈ Cov(C)
and xl,i ∈Mnl−1(Ul,i) such that d(xl,i) = x|Ul,i . Then we set

K = {(Ul,i, nl − 1, xl,i) | l ∈ L, i ∈ Il}
and we let Fn+1 be the smallest differential graded A-submodule of M containing
Fn and the sections xl,i. Since |K| ≤ max(κ, |Fn|) we conclude that |Fn+1| ≤ κ by
induction.
By construction the inclusion Fn → Fn+1 induces the zero map on cohomology
sheaves. Hence we see that F =

⋃
Fn is a nonzero acyclic submodule with |F| ≤ κ.

Since there is only a set of isomorphism classes of differential graded A-modules F
with |F| bounded, we conclude. □

Definition 24.25.7.0FSU Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). A diffential graded A-module I is K-injective if for every
acyclic differential graded M we have

HomK(Mod(A,d))(M, I) = 0

Please note the similarity with Derived Categories, Definition 13.31.1.

Lemma 24.25.8.0FSV Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). Let T be a set and for each t ∈ T let It be a K-
injective diffential graded A-module. Then

∏
It is a K-injective differential graded

A-module.

Proof. Let K be an acyclic differential graded A-module. Then we have

HomModdg(A,d)(K,
∏

t∈T
It) =

∏
t∈T

HomModdg(A,d)(K, It)

because taking products in Mod(A,d) commutes with the forgetful functor to
graded A-modules. Since taking products is an exact functor on the category of
abelian groups we conclude. □

Lemma 24.25.9.0FSW Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). Let I be a K-injective and graded injective object of
Mod(A,d). For every solid diagram in Mod(A,d)

M
a
//

b
��

I

M′

>>

where b is injective and M is acyclic a dotted arrow exists making the diagram
commute.

Proof. SinceM is acyclic and I is K-injective, there exists a graded A-module map
h : M → I of degree −1 such that a = d(h). Since I is graded injective and b is
injective, there exists a graded A-module map h′ :M′ → I of degree −1 such that
h = h′ ◦ b. Then we can take a′ = d(h′) as the dotted arrow. □
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Lemma 24.25.10.0FSX Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). Let I be a K-injective and graded injective object of
Mod(A,d). For every solid diagram in Mod(A,d)

M
a
//

b
��

I

M′

>>

where b is a quasi-isomorphism a dotted arrow exists making the diagram commute
up to homotopy.
Proof. After replacing M′ by the direct sum of M′ and the cone on the identity
onM (which is acyclic) we may assume b is also injective. Then the cokernel Q of
b is acyclic. Thus we see that

HomK(Mod(A,d))(Q, I) = HomK(Mod(A,d))(Q, I)[1] = 0
as I is K-injective. As I is graded injective by Remark 24.25.3 we see that

HomK(Mod(A,d))(M′, I) −→ HomK(Mod(A,d))(M, I)
is bijective and the proof is complete. □

Lemma 24.25.11.0FSY Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). There exists a set R and for each r ∈ R an injective
map Mr →M′

r of acyclic differential graded A-modules such that for an object I
of Mod(A,d) the following are equivalent

(1) I is K-injective and graded injective, and
(2) for every solid diagram

Mr
//

��

I

M′
r

>>

a dotted arrow exists in Mod(A,d) making the diagram commute.
Proof. Let T and Mt → M′

t be as in Lemma 24.25.5. Let S and Ms be as in
Lemma 24.25.6. Choose an injective map Ms →M′

s of acyclic differential graded
A-modules which is homotopic to zero. This is possible because we may take M′

s

to be the cone on the identity; in that case it is even true that the identity onM′
s is

homotopic to zero, see Differential Graded Algebra, Lemma 22.27.4 which applies
by the discussion in Section 24.22. We claim that R = T

∐
S with the given maps

works.
The implication (1) ⇒ (2) holds by Lemma 24.25.9.
Assume (2). First, by Lemma 24.25.5 we see that I is graded injective. Next, let
M be an acyclic differential graded A-module. We have to show that

HomK(Mod(A,d))(M, I) = 0
The proof will be exactly the same as the proof of Injectives, Lemma 19.12.3.
We are going to construct by induction on the ordinal α an acyclic differential
graded submodule Kα ⊂ M as follows. For α = 0 we set K0 = 0. For α > 0 we
proceed as follows:

https://stacks.math.columbia.edu/tag/0FSX
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(1) If α = β + 1 and Kβ =M then we choose Kα = Kβ .
(2) If α = β + 1 and Kβ ̸= M then M/Kβ is a nonzero acyclic differential

graded A-module. We choose a differential graded A submodule Nα ⊂
M/Kβ isomorphic toMs for some s ∈ S, see Lemma 24.25.6. Finally, we
let Kα ⊂M be the inverse image of Nα.

(3) If α is a limit ordinal we set Kβ = colimKα.
It is clear that M = Kα for a suitably large ordinal α. We will prove that

HomK(Mod(A,d))(Kα, I)
is zero by transfinite induction on α. It holds for α = 0 since K0 is zero. Suppose
it holds for β and α = β+ 1. In case (1) of the list above the result is clear. In case
(2) there is a short exact sequence

0→ Kβ → Kα → Nα → 0
By Remark 24.25.3 and since we’ve seen that I is graded injective, we obtain an
exact sequence

HomK(Mod(A,d))(Kβ , I)→ HomK(Mod(A,d))(Kα, I)→ HomK(Mod(A,d))(Nα, I)
By induction the term on the left is zero. By assumption (2) the term on the right is
zero: any mapMs → I factors throughM′

s and hence is homotopic to zero. Thus
the middle group is zero too. Finally, suppose that α is a limit ordinal. Because
we also have Kα = colimKα as graded A-modules we see that

HomModdg(A,d)(Kα, I) = limβ<α HomModdg(A,d)(Kβ , I)
as complexes of abelian groups. The cohomology groups of these complexes com-
pute morphisms in K(Mod(A,d)) between shifts. The transition maps in the sys-
tem of complexes are surjective by Remark 24.25.3 because I is graded injective.
Moreover, for a limit ordinal β ≤ α we have equality of limit and value. Thus we
may apply Homology, Lemma 12.31.8 to conclude. □

Lemma 24.25.12.0FSZ Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). Let R be a set and for each r ∈ R let an injective
map Mr → M′

r of acyclic differential graded A-modules be given. There exists
a functor M : Mod(A,d) → Mod(A,d) and a natural transformation j : id → M
such that

(1) jM :M→M(M) is injective and a quasi-isomorphism,
(2) for every solid diagram

Mr
//

��

M

jM

��
M′

r
// M(M)

a dotted arrow exists in Mod(A,d) making the diagram commute.

Proof. We define M(M) as the pushout in the following diagram⊕
(r,φ)Mr

//

��

M

��⊕
(r,φ)M′

r
// M(M)
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where the direct sum is over all pairs (r, φ) with r ∈ R and φ ∈ HomMod(A,d)(Mr,M).
Since the pushout of an injective map is injective, we see that M→ M(M) is in-
jective. Since the cokernel of the left vertical arrow is acyclic, we see that the
(isomorphic) cokernel of M → M(M) is acyclic, hence M → M(M) is a quasi-
isomorphism. Property (2) holds by construction. We omit the verification that
this procedure can be turned into a functor. □

Theorem 24.25.13.0FT0 Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). For every differential graded A-moduleM there exists a
quasi-isomorphismM→ I where I is a graded injective and K-injective differential
graded A-module. Moreover, the construction is functorial in M.

Proof. Let R andMr →M′
r be a set of morphisms of Mod(A,d) found in Lemma

24.25.11. Let M with transformation id→M be as constructed in Lemma 24.25.12
using R andMr →M′

r. Using transfinite recursion we define a sequence of functors
Mα and natural transformations Mβ →Mα for α < β by setting

(1) M0 = id,
(2) Mα+1 = M ◦Mα with natural transformation Mβ →Mα+1 for β < α+ 1

coming from the already constructed Mβ → Mα and the maps Mα →
M ◦Mα coming from id→M , and

(3) Mα = colimβ<αMβ if α is a limit ordinal with the coprojections as trans-
formations Mβ →Mα for α < β.

Observe that for every differential graded A-module the maps M → Mβ(M) →
Mα(M) are injective quasi-isomorphisms (as filtered colimits are exact).

Recall that Mod(A,d) is a Grothendieck abelian category. Thus by Injectives,
Proposition 19.11.5 (applied to the direct sum ofMr for all r ∈ R) there is a limit
ordinal α such that Mr is α-small with respect to injections for every r ∈ R. We
claim that M→ Mα(M) is the desired functorial embedding of M into a graded
injective K-injective module.

Namely, any map Mr → Mα(M) factors through Mβ(M) for some β < α. How-
ever, by the construction of M we see that this means that Mr → Mβ+1(M) =
M(Mβ(M)) factors throughM′

r. Since Mβ(M) ⊂Mβ+1(M) ⊂Mα(M) we get the
desired factorizaton into Mα(M). We conclude by our choice of R andMr →M′

r

in Lemma 24.25.11. □

24.26. The derived category

0FT1 This section is the analogue of Differential Graded Algebra, Section 22.22.

Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential graded algebras
on (C,O). We will construct the derived category D(A,d) by inverting the quasi-
isomorphisms in K(Mod(A,d)).

Lemma 24.26.1.0FT2 Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). The functor H0 : Mod(A,d)→ Mod(O) of Section 24.13
factors through a functor

H0 : K(Mod(A,d))→ Mod(O)

which is homological in the sense of Derived Categories, Definition 13.3.5.
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Proof. It follows immediately from the definitions that there is a commutative
diagram

Mod(A,d) //

��

K(Mod(A,d))

��
Comp(O) // K(Mod(O))

Since H0(M) is defined as the zeroth cohomology sheaf of the underlying complex
of O-modules of M the lemma follows from the case of complexes of O-modules
which is a special case of Derived Categories, Lemma 13.11.1. □

Lemma 24.26.2.0FT3 Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). The full subcategory Ac of the homotopy category
K(Mod(A,d)) consisting of acyclic modules is a strictly full saturated triangulated
subcategory of K(Mod(A,d)).

Proof. Of course an object M of K(Mod(A,d)) is in Ac if and only if Hi(M) =
H0(M[i]) is zero for all i. The lemma follows from this, Lemma 24.26.1, and
Derived Categories, Lemma 13.6.3. See also Derived Categories, Definitions 13.6.1
and 13.3.4 and Lemma 13.4.16. □

Lemma 24.26.3.0FT4 Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). Consider the subclass Qis ⊂ Arrows(K(Mod(A,d)))
consisting of quasi-isomorphisms. This is a saturated multiplicative system com-
patible with the triangulated structure on K(Mod(A,d)).

Proof. Observe that if f, g : M → N are morphisms of Mod(A,d) which are ho-
motopic, then f is a quasi-isomorphism if and only if g is a quasi-isomorphism.
Namely, the maps Hi(f) = H0(f [i]) and Hi(g) = H0(g[i]) are the same by Lemma
24.26.1. Thus it is unambiguous to say that a morphism of the homotopy category
K(Mod(A,d)) is a quasi-isomorphism. For definitions of “multiplicative system”,
“saturated”, and “compatible with the triangulated structure” see Derived Cate-
gories, Definition 13.5.1 and Categories, Definitions 4.27.1 and 4.27.20.
To actually prove the lemma consider the composition of exact functors of triangu-
lated categories

K(Mod(A,d)) −→ K(Mod(O)) −→ D(O)
and observe that a morphism f : M → N of K(Mod(A,d)) is in Qis if and only
if it maps to an isomorphism in D(O). Thus the lemma follows from Derived
Categories, Lemma 13.5.4. □

In the situation of Lemma 24.26.3 we can apply Derived Categories, Proposition
13.5.6 to obtain an exact functor of triangulated categories

Q : K(Mod(A,d)) −→ Qis−1K(Mod(A,d))
However, as Mod(A,d) is a “big” category, i.e., its objects form a proper class, it
isn’t immediately clear that givenM andN the construction of Qis−1K(Mod(A,d))
produces a set

MorQis−1K(Mod(A,d))(M,N )
of morphisms. However, this is true thanks to our construction of K-injective
complexes. Namely, by Theorem 24.25.13 we can choose a quasi-isomorphism s0 :
N → I where I is a graded injective and K-injective differential graded A-module.
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Next, recall that elements of the displayed set are equivalence classes of pairs (f :
M → N ′, s : N → N ′) where f is an arbitrary morphism of K(Mod(A,d)) and
s is a quasi-isomorphsm, see the description of the left calculus of fractions in
Categories, Section 4.27. By Lemma 24.25.10 we can choose the dotted arrow

M
f

!!

N
s

}}

s0

��
N ′ s′

// I

making the diagram commute (in the homotopy category). Thus the pair (f, s)
is equivalent to the pair (s′ ◦ f, s0) and we find that the collection of equivalence
classes forms a set.

Definition 24.26.4.0FT5 Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). Let Qis be as in Lemma 24.26.3. The derived category
of (A,d) is the triangulated category

D(A,d) = Qis−1K(Mod(A,d))
discussed in more detail above.

We prove some facts about this construction.

Lemma 24.26.5.0FT6 In Definition 24.26.4 the kernel of the localization functor Q :
K(Mod(A,d))→ D(A,d) is the category Ac of Lemma 24.26.2.

Proof. This is immediate from Derived Categories, Lemma 13.5.9 and the fact that
0→M is a quasi-isomorphism if and only if M is acyclic. □

Lemma 24.26.6.0FT7 In Definition 24.26.4 the functor H0 : K(Mod(A,d))→ Mod(O)
factors through a homological functor H0 : D(A,d)→ Mod(O).

Proof. Follows immediately from Derived Categories, Lemma 13.5.7. □

Here is the promised lemma computing morphism sets in the derived category.

Lemma 24.26.7.0FT8 Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). Let M and N be differential graded A-modules. Let
N → I be a quasi-isomorphism with I a graded injective and K-injective differential
graded A-module. Then

HomD(A,d)(M,N ) = HomK(Mod(A,d))(M, I)

Proof. Since N → I is a quasi-isomorphism we see that
HomD(A,d)(M,N ) = HomD(A,d)(M, I)

In the discussion preceding Definition 24.26.4 we found, using Lemma 24.25.10, that
any morphism M→ I in D(A,d) can be represented by a morphism f : M→ I
in K(Mod(A,d)). Now, if f, f ′ : M → I are two morphism in K(Mod(A,d)),
then they define the same morphism in D(A,d) if and only if there exists a quasi-
isomorphism g : I → K in K(Mod(A,d)) such that g ◦ f = g ◦ f ′, see Categories,
Lemma 4.27.6. However, by Lemma 24.25.10 there exists a map h : K → I such
that h ◦ g = idI in in K(Mod(A,d)). Thus g ◦ f = g ◦ f ′ implies f = f ′ and the
proof is complete. □

https://stacks.math.columbia.edu/tag/0FT5
https://stacks.math.columbia.edu/tag/0FT6
https://stacks.math.columbia.edu/tag/0FT7
https://stacks.math.columbia.edu/tag/0FT8


24.27. THE CANONICAL DELTA-FUNCTOR 2181

Lemma 24.26.8.0FT9 Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). Then

(1) D(A,d) has both direct sums and products,
(2) direct sums are obtained by taking direct sums of differential graded A-

modules,
(3) products are obtained by taking products of K-injective differential graded

modules.

Proof. We will use that Mod(A,d) is an abelian category with arbitrary direct sums
and products, and that these give rise to direct sums and products inK(Mod(A,d)).
See Lemmas 24.13.2 and 24.21.3.
Let Mj be a family of differential graded A-modules. Consider the direct sum
M =

⊕
Mj as a differential graded A-module. For a differential graded A-module

N choose a quasi-isomorphism N → I where I is graded injective and K-injective
as a differential graded A-module. See Theorem 24.25.13. Using Lemma 24.26.7
we have

HomD(A,d)(M,N ) = HomK(A,d)(M, I)

=
∏

HomK(A,d)(Mj , I)

=
∏

HomD(A,d)(Mj , I)

whence the existence of direct sums in D(A,d) as given in part (2) of the lemma.
Let Mj be a family of differential graded A-modules. For each j choose a quasi-
isomorphism M→ Ij where Ij is graded injective and K-injective as a differential
graded A-module. Consider the product I =

∏
Ij of differential graded A-modules.

By Lemmas 24.25.8 and 24.25.4 we see that I is graded injective and K-injective
as a differential graded A-module. For a differential graded A-module N using
Lemma 24.26.7 we have

HomD(A,d)(N , I) = HomK(A,d)(N , I)

=
∏

HomK(A,d)(N , Ij)

=
∏

HomD(A,d)(N ,Mj)

whence the existence of products in D(A,d) as given in part (3) of the lemma. □

24.27. The canonical delta-functor

0FTA Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential graded algebras on
(C,O). Consider the functor Mod(A,d) → K(Mod(A,d)). This functor is not a
δ-functor in general. However, it turns out that the functor Mod(A,d)→ D(A,d)
is a δ-functor. In order to see this we have to define the morphisms δ associated to
a short exact sequence

0→ K a−→ L b−→M→ 0
in the abelian category Mod(A,d). Consider the cone C(a) of the morphism a
together with its canonical morphisms i : L → C(a) and p : C(a) → K[1], see
Definition 24.22.2. There is a homomorphism of differential graded A-modules

q : C(a) −→M
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by Differential Graded Algebra, Lemma 22.27.3 (which we may use by the discussion
in Section 24.22) applied to the diagram

K
a
//

��

L

b
��

0 //M

The map q is a quasi-isomorphism for example because this is true in the category
of morphisms of complexes of O-modules, see discussion in Derived Categories,
Section 13.12. According to Differential Graded Algebra, Lemma 22.27.13 (which
we may use by the discussion in Section 24.22) the triangle

(K,L, C(a), a, i,−p)

is a distinguished triangle inK(Mod(A,d)). As the localization functorK(Mod(A,d))→
D(A,d) is exact we see that (K,L, C(a), a, i,−p) is a distinguished triangle in
D(A,d). Since q is a quasi-isomorphism we see that q is an isomorphism in D(A,d).
Hence we deduce that

(K,L,M, a, b,−p ◦ q−1)

is a distinguished triangle of D(A,d). This suggests the following lemma.

Lemma 24.27.1.0FTB Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). The localization functor Mod(A,d)→ D(A,d) has the
natural structure of a δ-functor, with

δK→L→M = −p ◦ q−1

with p and q as explained above.

Proof. We have already seen that this choice leads to a distinguished triangle when-
ever given a short exact sequence of complexes. We have to show functoriality of
this construction, see Derived Categories, Definition 13.3.6. This follows from Dif-
ferential Graded Algebra, Lemma 22.27.3 (which we may use by the discussion
in Section 24.22) with a bit of work. Compare with Derived Categories, Lemma
13.12.1. □

Lemma 24.27.2.0FTC Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). Let Mn be a system of differential graded A-modules.
Then the derived colimit hocolimMn in D(A,d) is represented by the differential
graded module colimMn.

Proof. Set M = colimMn. We have an exact sequence of differential graded A-
modules

0→
⊕
Mn →

⊕
Mn →M→ 0

by Derived Categories, Lemma 13.33.6 (applied the underlying complexes of O-
modules). The direct sums are direct sums in D(A,d) by Lemma 24.26.8. Thus
the result follows from the definition of derived colimits in Derived Categories,
Definition 13.33.1 and the fact that a short exact sequence of complexes gives a
distinguished triangle (Lemma 24.27.1). □

https://stacks.math.columbia.edu/tag/0FTB
https://stacks.math.columbia.edu/tag/0FTC


24.28. DERIVED PULLBACK 2183

24.28. Derived pullback

0FTD Let (f, f ♯) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed topoi. Let A be a
differential graded OC-algebra. Let B be a differential graded OD-algebra. Suppose
we are given a map

φ : f−1B → A
of differential graded f−1OD-algebras. By the adjunction of restriction and exten-
sion of scalars, this is the same thing as a map φ : f∗B → A of differential graded
OC-algebras or equivalently φ can be viewed as a map

φ : B → f∗A
of differential graded OD-algebras. See Remark 24.12.2.
In addition to the above, let A′ be a second differential graded OC-algebra and let
N be a differential graded (A,A′)-bimodule. In this setting we can consider the
functor

Mod(B,d) −→ Mod(A′,d), M 7−→ f∗M⊗A N
Observe that this extends to a functor

Moddg(B,d) −→ Moddg(A′,d), M 7−→ f∗M⊗A N
of differential graded categories by the discussion in Sections 24.18 and 24.17. It
follows formally that we also obtain an exact functor
(24.28.0.1)0FTE K(Mod(B,d)) −→ K(Mod(A′,d)), M 7−→ f∗M⊗A N
of triangulated categories.

Lemma 24.28.1.0FTF In the situation above, the functor (24.28.0.1) composed with
the localization functor K(Mod(A′,d)) → D(A′,d) has a left derived extension
D(B,d)→ D(A′,d) whose value on a good right differential graded B-module P is
f∗P ⊗A N .

Proof. Recall that for any (right) differential graded B-module M there exists a
quasi-isomorphism P → M with P a good differential graded B-module. See
Lemma 24.23.7. Hence by Derived Categories, Lemma 13.14.15 it suffices to show
that given a quasi-isomorphism P → P ′ of good differential graded B-modules the
induced map

f∗P ⊗A N −→ f∗P ′ ⊗A N
is a quasi-isomorphism. The cone P ′′ on P → P ′ is a good differential graded
A-module by Lemma 24.23.2. Since we have a distinguished triangle

P → P ′ → P ′′ → P[1]
in K(Mod(B,d)) we obtain a distinguished triangle

f∗P ⊗A N → f∗P ′ ⊗A N → f∗P ′′ ⊗A N → f∗P[1]⊗A N
in K(Mod(A′,d)). By Lemma 24.23.8 the differential graded module f∗P ′′ ⊗A N
is acyclic and the proof is complete. □

Definition 24.28.2.0FTG Derived tensor product and derived pullback.
(1) Let (C,O) be a ringed site. Let A, B be differential graded O-algebras.

Let N be a differential graded (A,B)-bimodule. The functor D(A,d) →
D(B,d) constructed in Lemma 24.28.1 is called the derived tensor product
and denoted −⊗L

A N .
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(2) Let (f, f ♯) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Let A be a differential graded OC-algebra. Let B be a differential graded
OD-algebra. Let φ : B → f∗A be a homomorphism of differential graded
OD-algebras. The functor D(B,d) → D(A,d) constructed in Lemma
24.28.1 is called derived pullback and denote Lf∗.

With this language in place we can express some obvious compatibilities.

Lemma 24.28.3.0FTH In Lemma 24.28.1 the functor D(B,d) → D(A′,d) is equal to
M 7→ Lf∗M⊗L

A N .

Proof. Immediate from the fact that we can compute these functors by representing
objects by good differential graded modules and because f∗P is a good differential
graded A-module if P is a good differential graded B-module. □

Lemma 24.28.4.0FTI Let (f, f ♯) : (Sh(C),O)→ (Sh(C′),O′) and (g, g♯) : (Sh(C′),O′)→
(Sh(C′′),O′′) be morphisms of ringed topoi. Let A, A′, and A′′ be a differential
graded O-algebra, O′-algebra, and O′′-algebra. Let φ : A′ → f∗A and φ′ : A′′ →
g∗A′ be a homomorphism of differential graded O′-algebras and O′′-algebras. Then
we have L(g ◦ f)∗ = Lf∗ ◦ Lg∗ : D(A′′,d)→ D(A,d).

Proof. Immediate from the fact that we can compute these functors by representing
objects by good differential graded modules and because f∗P is a good differential
graded A′-module of P is a good differential graded A-module. □

Let (C,O) be a ringed site. Let A, B be differential graded O-algebras. Let N →
N ′ be a homomorphism of differential graded (A,B)-bimodules. Then we obtain
canonical maps

t :M⊗L
A N −→M⊗L

A N ′

functorial in M in D(A,d) which define a natural transformation between exact
functors D(A,d) → D(B,d) of triangulated categories. The value of t on a good
differential graded A-module P is the obvious map

P ⊗L
A N = P ⊗A N −→ P ⊗A N ′ = P ⊗L

A N ′

Lemma 24.28.5.0FTJ In the situation above, if N → N ′ is an isomorphism on coho-
mology sheaves, then t is an isomorphism of functors (−⊗L

A N )→ (−⊗L
A N ′).

Proof. It is enough to show that P ⊗A N → P ⊗A N ′ is an isomorphism on
cohomology sheaves for any good differential graded A-module P. To do this, let
N ′′ be the cone on the map N → N ′ as a left differential graded A-module, see
Definition 24.22.2. (To be sure, N ′′ is a bimodule too but we don’t need this.)
By functoriality of the tensor construction (it is a functor of differential graded
categories) we see that P ⊗A N ′′ is the cone (as a complex of O-modules) on the
map P ⊗AN → P ⊗AN ′. Hence it suffices to show that P ⊗AN ′′ is acyclic. This
follows from the fact that P is good and the fact that N ′′ is acyclic as a cone on a
quasi-isomorphism. □

Lemma 24.28.6.0FTK Let (C,O) be a ringed site. Let A, B be differential graded O-
algebras. Let N be a differential graded (A,B)-bimodule. If N is good as a left
differential graded A-module, then we haveM⊗L

AN =M⊗AN for all differential
graded A-modules M.
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Proof. Let P → M be a quasi-isomorphism where P is a good (right) differential
graded A-module. To prove the lemma we have to show that P ⊗AN →M⊗AN
is a quasi-isomorphism. The cone C on the map P → M is an acyclic right
differential graded A-module. Hence C ⊗A N is acyclic as N is assumed good
as a left differential graded A-module. Since C ⊗A N is the cone on the maps
P ⊗A N →M⊗A N as a complex of O-modules we conclude. □

Lemma 24.28.7.0FTL Let (C,O) be a ringed site. Let A, A′, A′′ be differential graded
O-algebras. Let N and N ′ be a differential graded (A,A′)-bimodule and (A′,A′′)-
bimodule. Assume that the canonical map

N ⊗L
A′ N ′ −→ N ⊗A′ N ′

in D(A′′,d) is a quasi-isomorphism. Then we have
(M⊗L

A N )⊗L
A′ N ′ =M⊗L

A (N ⊗A′ N ′)
as functors D(A,d)→ D(A′′,d).

Proof. Choose a good differential graded A-module P and a quasi-isomorphism
P →M, see Lemma 24.23.7. Then

M⊗L
A (N ⊗A′ N ′) = P ⊗A N ⊗A′ N ′

and we have
(M⊗L

A N )⊗L
A′ N ′ = (P ⊗A N )⊗L

A′ N ′

Thus we have to show the canonical map
(P ⊗A N )⊗L

A′ N ′ −→ P ⊗A N ⊗A′ N ′

is a quasi-isomorphism. Choose a quasi-isomorphism Q → N ′ where Q is a good
left differential graded A′-module (Lemma 24.23.7). By Lemma 24.28.6 the map
above as a map in the derived category of O-modules is the map

P ⊗A N ⊗A′ Q −→ P ⊗A N ⊗A′ N ′

Since N ⊗A′Q → N ⊗A′N ′ is a quasi-isomorphism by assumption and P is a good
differential graded A-module this map is an quasi-isomorphism by Lemma 24.28.5
(the left and right hand side compute P ⊗L

A (N ⊗A′ Q) and P ⊗L
A (N ⊗A′ N ′) or

you can just repeat the argument in the proof of the lemma). □

24.29. Derived pushforward

0FTM The existence of enough K-injective guarantees that we can take the right derived
functor of any exact functor on the homotopy category.

Lemma 24.29.1.0FTN Let (C,O) be a ringed site. Let (A,d) be a sheaf of differential
graded algebras on (C,O). Then any exact functor

T : K(Mod(A,d)) −→ D
of triangulated categories has a right derived extension RT : D(A,d) → D whose
value on a graded injective and K-injective differential graded A-module I is T (I).

Proof. By Theorem 24.25.13 for any (right) differential graded A-moduleM there
exists a quasi-isomorphism M → I where I is a graded injective and K-injective
differential graded A-module. Hence by Derived Categories, Lemma 13.14.15 it
suffices to show that given a quasi-isomorphism I → I ′ of differential graded A-
modules which are both graded injective and K-injective then T (I) → T (I ′) is
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an isomorphism. This is true because the map I → I ′ is an isomorphism in
K(Mod(A,d)) as follows for example from Lemma 24.26.7 (or one can deduce it
from Lemma 24.25.10). □

There are a number of functors we have already seen to which this applies. Here
are two examples.

Definition 24.29.2.0FTP Derived internal hom and derived pushforward.
(1) Let (C,O) be a ringed site. LetA, B be differential graded O-algebras. Let
N be a differential graded (A,B)-bimodule. The right derived extension

RHomB(N ,−) : D(B,d) −→ D(A,d)

of the internal hom functor Homdg
B (N ,−) is called derived internal hom.

(2) Let (f, f ♯) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Let A be a differential graded OC-algebra. Let B be a differential graded
OD-algebra. Let φ : B → f∗A be a homomorphism of differential graded
OD-algebras. The right derived extension

Rf∗ : D(A,d) −→ D(B,d)
of the pushforward f∗ is called derived pushforward.

It turns out that Rf∗ : D(A,d) → D(B,d) agrees with derived pusforward on
underlying complexes of O-modules, see Lemma 24.29.8.
These functors are the adjoints of derived pullback and derived tensor product.

Lemma 24.29.3.0FTQ Let (C,O) be a ringed site. Let A, B be differential graded O-
algebras. Let N be a differential graded (A,B)-bimodule. Then

RHomB(N ,−) : D(B,d) −→ D(A,d)
is right adjoint to

−⊗L
A N : D(A,d) −→ D(B,d)

Proof. This follows from Derived Categories, Lemma 13.30.1 and Lemma 24.17.3.
□

Lemma 24.29.4.0FTR Let (f, f ♯) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed
topoi. Let A be a differential graded OC-algebra. Let B be a differential graded OD-
algebra. Let φ : B → f∗A be a homomorphism of differential graded OD-algebras.
Then

Rf∗ : D(A,d) −→ D(B,d)
is right adjoint to

Lf∗ : D(B,d) −→ D(A,d)

Proof. This follows from Derived Categories, Lemma 13.30.1 and Lemma 24.18.1.
□

Next, we discuss what happens in the situation considered in Section 24.28.
Let (f, f ♯) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed topoi. Let A be a
differential graded OC-algebra. Let B be a differential graded OD-algebra. Suppose
we are given a map

φ : f−1B → A
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of differential graded f−1OD-algebras. By the adjunction of restriction and exten-
sion of scalars, this is the same thing as a map φ : f∗B → A of differential graded
OC-algebras or equivalently φ can be viewed as a map

φ : B → f∗A

of differential graded OD-algebras. See Remark 24.12.2.

In addition to the above, let A′ be a second differential graded OC-algebra and let
N be a differential graded (A,A′)-bimodule. In this setting we can consider the
functor

Mod(A′,d) −→ Mod(B,d), M 7−→ f∗Homdg
A′(N ,M)

Observe that this extends to a functor

Moddg(A′,d) −→ Moddg(B,d), M 7−→ f∗Homdg
A′(N ,M)

of differential graded categories by the discussion in Sections 24.18 and 24.17. It
follows formally that we also obtain an exact functor

(24.29.4.1)0FTS K(Mod(A′,d)) −→ K(Mod(B,d)), M 7−→ f∗Homdg
A′(N ,M)

of triangulated categories.

Lemma 24.29.5.0FTT In the situation above, denote RT : D(A′,d)→ D(B,d) the right
derived extension of (24.29.4.1). Then we have

RT (M) = Rf∗RHom(N ,M)

functorially in M.

Proof. By Lemmas 24.17.3 and 24.18.1 the functor (24.29.4.1) is right adjoint to
the functor (24.28.0.1). By Derived Categories, Lemma 13.30.1 the functor RT is
right adjoint to the functor of Lemma 24.28.1 which is equal to Lf∗(−) ⊗L

A N by
Lemma 24.28.3. By Lemmas 24.29.3 and 24.29.4 the functor Lf∗(−) ⊗L

A N is left
adjoint to Rf∗RHom(N ,−) Thus we conclude by uniqueness of adjoints. □

Lemma 24.29.6.0FTU Let (f, f ♯) : (Sh(C),O)→ (Sh(C′),O′) and (g, g♯) : (Sh(C′),O′)→
(Sh(C′′),O′′) be morphisms of ringed topoi. Let A, A′, and A′′ be a differential
graded O-algebra, O′-algebra, and O′′-algebra. Let φ : A′ → f∗A and φ′ : A′′ →
g∗A′ be a homomorphism of differential graded O′-algebras and O′′-algebras. Then
we have R(g ◦ f)∗ = Rg∗ ◦Rf∗ : D(A,d)→ D(A′′,d).

Proof. Follows from Lemmas 24.28.4 and 24.29.4 and uniqueness of adjoints. □

Lemma 24.29.7.0FTV Let (C,O) be a ringed site. Let A, A′, A′′ be differential graded
O-algebras. Let N and N ′ be a differential graded (A,A′)-bimodule and (A′,A′′)-
bimodule. Assume that the canonical map

N ⊗L
A′ N ′ −→ N ⊗A′ N ′

in D(A′′,d) is a quasi-isomorphism. Then we have

RHomA′′(N ⊗A′ N ′,−) = RHomA′(N , RHomA′′(N ′,−))

as functors D(A′′,d)→ D(A,d).

Proof. Follows from Lemmas 24.28.7 and 24.29.3 and uniqueness of adjoints. □
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Lemma 24.29.8.0FTW Let (f, f ♯) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed
topoi. Let A be a differential graded OC-algebra. Let B be a differential graded OD-
algebra. Let φ : B → f∗A be a homomorphism of differential graded OD-algebras.
The diagram

D(A,d)

Rf∗

��

forget
// D(OC)

Rf∗

��
D(B,d) forget // D(OD)

commutes.

Proof. Besides identifying some categories, this lemma follows immediately from
Lemma 24.29.6.

We may view (OC , 0) as a differential graded OC-algebra by placing OC in degree 0
and endowing it with the zero differential. It is clear that we have

Mod(OC , 0) = Comp(OC) and D(OC , 0) = D(OC)

Via this identification the forgetful functor Mod(A,d) → Comp(OC) is the “push-
forward” idC,∗ defined in Section 24.18 corresponding to the identity morphism
idC : (C,OC)→ (C,OC) of ringed topoi and the map (OC , 0)→ (A,d) of differential
graded OC-algebras. Since idC,∗ is exact, we immediately see that

RidC,∗ = forget : D(A,d) −→ D(OC , 0) = D(OC)

The exact same reasoning shows that

RidD,∗ = forget : D(B,d) −→ D(OD, 0) = D(OD)

Moreover, the construction of Rf∗ : D(OC)→ D(OD) of Cohomology on Sites, Sec-
tion 21.19 agrees with the construction of Rf∗ : D(OC , 0)→ D(OD, 0) in Definition
24.29.2 as both functors are defined as the right derived extension of pushforward on
underlying complexes of modules. By Lemma 24.29.6 we see that both Rf∗ ◦RidC,∗
and RidD,∗ ◦ Rf∗ are the derived functors of f∗ ◦ forget = forget ◦ f∗ and hence
equal by uniqueness of adjoints. □

Lemma 24.29.9.0FTX Let (C,O) be a ringed site. Let A be a differential graded O-
algebra. Let M be a differential graded A-module. Let n ∈ Z. We have

Hn(C,M) = HomD(A,d)(A,M[n])

where on the left hand side we have the cohomology of M viewed as a complex of
O-modules.

Proof. To prove the formula, observe that

RΓ(C,M) = Γ(C, I)

where M → I is a quasi-isomorphism to a graded injective and K-injective dif-
ferential graded A-module I (combine Lemmas 24.29.1 and 24.29.8). By Lemma
24.26.7 we have

HomD(A,d)(A,M[n]) = HomK(Mod(A,d))(M, I[n]) = H0(Γ(C, I[n])) = Hn(Γ(C, I))

Combining these two results we obtain our equality. □
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24.30. Equivalences of derived categories

0FTY This section is the analogue of Differential Graded Algebra, Section 22.37.

Lemma 24.30.1.0FTZ Let (C,O) be a ringed site. If φ : A → B is a homomorphism
of differential graded O-algebras which induces an isomorphism on cohomology
sheaves, then

D(A,d) −→ D(B,d), M 7−→M⊗L
A B

is an equivalence of categories.

Proof. Recall that the restriction functor
Moddg(B,d)→ Moddg(A,d), N 7→ resφN

is a right adjoint to
Moddg(A,d)→ Moddg(B,d), M 7→M⊗A B

See Section 24.17. Since restriction sends quasi-isomorphisms to quasi-isomorphisms,
we see that it trivially has a left derived extension (given by restriction). This func-
tor will be right adjoint to − ⊗L

A B by Derived Categories, Lemma 13.30.1. The
adjunction map

M→ resφ(M⊗L
A B)

is an isomorphism in D(A,d) by our assumption that A → B is a quasi-isomorphism
of (left) differential graded A-modules. In particular, the functor of the lemma is
fully faithful, see Categories, Lemma 4.24.4. It is clear that the kernel of the restric-
tion functor D(B,d) → D(A,d) is zero. Thus we conclude by Derived Categories,
Lemma 13.7.2. □

24.31. Resolutions of differential graded algebras

0FU0 This section is the analogue of Differential Graded Algebra, Section 22.38.
Let (C,O) be a ringed site. As in Remark 24.23.5 consider a sheaf of graded sets S
on C. Let us think of the r-fold self product S × . . . × S as a sheaf of graded sets
with the rule deg(s1 · . . . · sr) =

∑
deg(si). Here given local sections si ∈ S(U),

i = 1, . . . , r we use s1 · . . . · sr to denote the corresponding section of S × . . . × S
over U . Let us denote O⟨S⟩ the free graded O-algebra on S. More precisely, we set

O⟨S⟩ = O ⊕
⊕

r≥1
O[S × . . .× S]

with notation as in Remark 24.23.5. This becomes a sheaf of graded O-algebras by
concatenation

(s1 · . . . · sr)(s′
1 · . . . · s′

r′) = s1 · . . . sr · s′
1 · . . . · s′

r′

We may endow O⟨S⟩ with a differential by setting d(s) = 0 for all local sections s
of S and extending uniquely using the Leibniz rule although it is important to also
consider other differentials.
Indeed, suppose that we are given a system of the following kind

(1) for i = 0, 1, 2, . . . sheaves of graded sets Si,
(2) for i = 0, 1, 2, . . . maps

δi+1 : Si+1 −→ Ai = O⟨S0 ⨿ . . .⨿ Si⟩
of sheaves of graded sets of degree 1 whose image is contained in the kernel
of the inductively defined differential on the target.
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More precisely, we first set A0 = O⟨S0⟩ and we endow it with the unique differential
satisfying the Leibniz rule where d(s) = 0 for any local section s of S. By induction,
assume given a differential d on Ai. Then we extend it to the unique differential
on Ai+1 satisfying the Leibniz rule and with

d(s) = δ(s)
where δ(s) = δj(s) if s is in the summand Sj of S0 ⨿ . . . ⨿ Si+1. This makes sense
exactly because δ(s) is in the kernel of the inductively defined differential.

Lemma 24.31.1.0FU1 In the situation above the differential graded O-algebra
A = colimAi

has the following property: for any morphism (f, f ♯) : (Sh(C′),O′) → (Sh(C),O)
of ringed topoi, the pullback f∗A is flat as a graded O′-module and is K-flat as a
complex of O′-modules.

Proof. Observe that f∗A = colim f∗Ai and that
f∗Ai = O′⟨f−1S0 ⨿ . . .⨿ f−1Si⟩

with differential given by the inductive procedure above using f−1δi+1. Thus it
suffices to prove that A is flat as a graded O-module and is K-flat as a complex of
O-modules. For this it suffices to prove that each Ai is flat as a graded O-module
and is K-flat as a complex of O-modules, compare with Lemma 24.23.3.
For i ≥ 1 write S = S0 ⨿ . . . ⨿ Si so that we have Ai = O⟨S⟩ as a graded O-
algebra. We are going to construct a filtration of this algebra by differential graded
O-submodules.
Set W = Zi+1

≥0 considered with lexicographical ordering. Namely, given w =
(w0, . . . wi) and w′ = (w′

0, . . . , w
′
i) in W we say

w > w′ ⇔ ∃j, 0 ≤ j ≤ i : wi = w′
i, wi−1 = w′

i−1, . . . , wj+1 = w′
j+1, wj > w′

j

and so on. Suppose given a section s = s1 · . . . · sr of S × . . . × S over U . We say
that the weight of s is defined if we have sa ∈ Sja(U) for a unique 0 ≤ ja ≤ i. In
this case we define the weight

w(s) = (w0(s), . . . , wi(s)) ∈W, wj(s) = |{a | ja = j}|
The weight of any section of S × . . .×S is defined locally. The reader checks easily
that we obtain a disjoint union decompostion

S × . . .× S =
∐

w∈W
(S × . . .× S)w

into the subsheaves of sections of a given weight. Of course only w ∈ W with∑
0≤j≤i wj = r show up for a given r. We correspondingly obtain a decomposition

Ai = O ⊕
⊕

r≥1

⊕
w∈W

O[(S × . . .× S)w]

The rest of the proof relies on the following trivial observation: given r, w and local
section s = s1 · . . . · sr of (S × . . .× S)w we have

d(s) is a local section of O ⊕
⊕

r′≥1

⊕
w′∈W, w′<w

O[(S × . . .× S)w′ ]

The reason is that in each of the expressions
(−1)deg(s1)+...+deg(sa−1)s1 · . . . sa−1 · δ(sa) · sa+1 · . . . · sr

https://stacks.math.columbia.edu/tag/0FU1


24.31. RESOLUTIONS OF DIFFERENTIAL GRADED ALGEBRAS 2191

whose sum give the element d(s) the element δ(sa) is locally a O-linear combination
of elements s′

1 · . . . · s′
r′ with s′

a′ in Sj′
a

for some 0 ≤ j′
a′ < ja where ja is such that

sa is section of Sja .
What this means is the following. Suppose for w ∈W we set

FwAi = O ⊕
⊕

r≥1

⊕
w′∈W, w′≤w

O[(S × . . .× S)w′ ]

By the observation above this is a differential graded O-submodule. We get admis-
sible short exact sequences

0→ colimw′<w Fw′Ai → FwAi →
⊕

r≥1
O[(S × . . .× S)w]→ 0

of differential graded A-modules where the differential on the right hand side is
zero.
Now we finish the proof by transfinite induction over the ordered set W . The
differential graded complex F0A0 is the summand O and this is K-flat and graded
flat. For w ∈ W if the result is true for Fw′Ai for w′ < w, then by Lemmas
24.23.3, 24.23.2, and 24.23.6 we obtain the result for w. Finally, we have Ai =
colimw∈W FwAi and we conclude. □

Lemma 24.31.2.0FU2 Let (C,O) be a ringed site. Let (B,d) be a differential graded
O-algebra. There exists a quasi-isomorphism of differential graded O-algebras
(A,d) → (B,d) such that A is graded flat and K-flat as a complex of O-modules
and such that the same is true after pullback by any morphism of ringed topoi.

Proof. The proof is exactly the same as the first proof of Lemma 24.23.7 but now
working with free graded algebras instead of free graded modules.
We will construct A = colimAi as in Lemma 24.31.1 by constructing

A0 → A1 → A2 → . . .→ B

Let S0 be the sheaf of graded sets (Remark 24.23.5) whose degree n part is Ker(dnB).
Consider the homomorphism of differential graded modules

A0 = O⟨S0⟩ −→ B

where map sends a local section s of S0 to the corresponding local section of
Adeg(s) (which is in the kernel of the differential, so our map is a map of differ-
ential graded algebras indeed). By construction the induced maps on cohomology
sheaves Hn(A0) → Hn(B) are surjective and hence the same will remain true for
all i.
Induction step of the construction. Given Ai → B denote Si+1 the sheaf of graded
sets whose degree n part is

Ker(dn+1
Ai

)×Bn+1,d Bn

This comes equipped with a canonical map
δi+1 : Si+1 −→ Ai

whose image is contained in the kernel of dAi by construction. Hence Ai+1 =
O⟨S0 ⨿ . . .Si+1⟩ has a differential exteding the differential on Ai, see discussion at
the start of this section. The map from Ai+1 to B is the unique map of graded
algebras which restricts to the given map on Ai and sends a local section s = (a, b)

https://stacks.math.columbia.edu/tag/0FU2
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of Si+1 to b in B. This is compatible with differentials exactly because d(b) is the
image of a in B.
The map A → B is a quasi-isomorphism: we have Hn(A) = colimHn(Ai) and for
each i the map Hn(Ai)→ Hn(B) is surjective with kernel annihilated by the map
Hn(Ai) → Hn(Ai+1) by construction. Finally, the flatness condition for A where
shown in Lemma 24.31.1. □

24.32. Miscellany

0FU3 Let (f, f ♯) : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi. Let A be a
sheaf of differential graded O-algebras. Using the composition3

A⊗L
O A −→ A⊗O A −→ A

and the relative cup product (see Cohomology on Sites, Remark 21.19.7 and Section
21.33) we obtain a multiplication4

µ : Rf∗A⊗L
O′ Rf∗A −→ Rf∗A

in D(O′). This multiplication is associative in the sense that the diagram

Rf∗A⊗L
O′ Rf∗A⊗L

O′ Rf∗A
µ⊗1

//

1⊗µ
��

Rf∗A⊗L
O′ Rf∗A

µ

��
Rf∗A⊗L

O′ Rf∗A
µ // Rf∗A

commutes in D(O′); this follows from Cohomology on Sites, Lemma 21.33.2. In
exactly the same way, given a right differential graded A-module M we obtain a
multiplication

µM : Rf∗M⊗L
O′ Rf∗A −→ Rf∗M

in D(O′). This multiplication is compatible with µ above in the sense that the
diagram

Rf∗M⊗L
O′ Rf∗A⊗L

O′ Rf∗A
µM⊗1

//

1⊗µ
��

Rf∗M⊗L
O′ Rf∗A

µM

��
Rf∗M⊗L

O′ Rf∗A
µM // Rf∗M

commutes in D(O′); again this follows from Cohomology on Sites, Lemma 21.33.2.
A particular example of the above is when one takes f to be the morphism to the
punctual topos Sh(pt). In that case µ is just the cup product map

RΓ(C,A)⊗L
Γ(C,O) RΓ(C,A) −→ RΓ(C,A), η ⊗ θ 7→ η ∪ θ

and similarly µM is the cup product map
RΓ(C,M)⊗L

Γ(C,O) RΓ(C,A) −→ RΓ(C,M), η ⊗ θ 7→ η ∪ θ

3It would be more precise to write F (A)⊗L
OF (A)→ F (A⊗OA)→ F (A) were F denotes the

forgetful functor to complexes of O-modules. Also, note that A⊗OA indicates the tensor product
of Section 24.15 so that F (A ⊗O A) = Tot(F (A) ⊗O F (A)). The first arrow of the sequence is
the canonical map from the derived tensor product of two complexes of O-modules to the usual
tensor product of complexes of O-modules.

4Here and below Rf∗ : D(O) → D(O′) is the derived functor studied in Cohomology on
Sites, Section 21.19 ff.
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In general, via the identifications
RΓ(C,A) = RΓ(C′, Rf∗A) and RΓ(C,M) = RΓ(C′, Rf∗M)

of Cohomology on Sites, Remark 21.14.4 the map µM induces the cup product on
cohomology. To see this use Cohomology on Sites, Lemma 21.33.4 where the second
morphism of topoi is the morphism from Sh(C′) to the punctual topos as above.
If M1 →M2 is a homomorphism of right differential graded A-modules, then the
diagram

Rf∗M1 ⊗L
O′ Rf∗A µM1

//

��

Rf∗M1

��
Rf∗M2 ⊗L

O′ Rf∗A
µM2 // Rf∗M2

commutes in D(O′); this follows from the fact that the relative cup product is
functorial. Suppose we have a short exact sequence

0→M1
a−→M2 →M3 → 0

of right differential graded A-modules. Then we claim that the diagram

Rf∗M3 ⊗L
O′ Rf∗A µM3

//

Rf∗δ⊗id
��

Rf∗M3

Rf∗δ

��
Rf∗M1[1]⊗L

O′ Rf∗A
µM1[1] // Rf∗M1[1]

commutes in D(O′) where δ :M3 →M1[1] is the morphism of D(O) coming from
the given short exact sequence (see Derived Categories, Section 13.12). This is clear
if our sequence is split as a sequence of graded right A-modules, because in this
case δ can be represented by a map of right A-modules and the discussion above
applies. In general we argue using the cone on a and the diagram

M1 a
//

��

M2
i
//

��

C(a)
−p
//

q

��

M1[1]

��
M1 //M2 //M3

δ //M1[1]

where the right square is commutative in D(O) by the definition of δ in Derived
Categories, Lemma 13.12.1. Now the cone C(a) has the structure of a right differ-
ential graded A-module such that i, p, q are homomorphisms of right differential
graded A-modules, see Definition 24.22.2. Hence by the above we know that the
corresponding diagrams commute for the morphisms q and −p. Since q is an iso-
morphism in D(O) we conclude the same is true for δ as desired.
In the situation above given a right differential graded A-module M let

ξ ∈ Hn(C,M)
In other words, ξ is a degree n cohomology class in the cohomology of M viewed
as a complex of O-modules. By Lemma 24.29.9 we can construct maps

x : A →M′[n] and s :M→M′

of right differential graded A-modules where s is a quasi-isomorphism and such
that ξ is the image of 1 ∈ H0(C,A) via the morphism s[n]−1 ◦ x in the derived
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category D(A,d) and a fortiori in the derived category D(O). It follows that the
corresponding map

ξ′ = (s[n])−1 ◦ x : A −→M[n]
in D(O) is uniquely characterized by the following two properties

(1) ξ′ can be lifted to a morphism in D(A,d), and
(2) ξ = ξ′(1) in H0(C,M[n]) = Hn(C,M).

Using the compatibilities of x and s with the relative cup product discussed above it
follows that for every5 morphism of ringed topoi (f, f ♯) : (Sh(C),O)→ (Sh(C′),O′)
the derived pushforward

Rf∗ξ
′ : Rf∗A −→ Rf∗M[n]

of ξ′ is compatible with the maps µ and µM[n] constructed above in the sense that
the diagram

Rf∗A⊗L
O′ Rf∗A µ

//

Rf∗ξ
′⊗id
��

Rf∗A

Rf∗ξ
′

��
Rf∗M[n]⊗L

O′ Rf∗A
µM[n] // Rf∗M[n]

commutes in D(O′). Using this compatibility for the map to the punctual topos,
we see in particular that

RΓ(C,A)⊗L
Γ(C,O) RΓ(C,A)

ξ′⊗id
��

// RΓ(C,A)

ξ′

��
RΓ(C,M[n])⊗L

Γ(C,O) RΓ(C,A) // RΓ(C,M[n])

commutes. Combined with ξ′(1) = ξ this implies that the induced map on coho-
mology

ξ′ : RΓ(C,A)→ RΓ(C,M[n]), η 7→ ξ ∪ η
is given by left cup product by ξ as indicated.

24.33. Differential graded modules on a category

0GZ8 This section is the continuation of Cohomology on Sites, Section 21.43.
Let C be a category. We think of C as a site with the chaotic topology. Let O be
a sheaf of rings on C. Let (A,d) be a sheaf of differential graded O-algebras. In
other words, O is a presheaf of rings on the category C and (A,d) is a presheaf of
differential graded O-algebras on C, see Categories, Definition 4.3.3.

Definition 24.33.1.0GZ9 In the situation above, we denote QC (A,d) the full subcategory
of D(A,d) consisting of objects M such that for all U → V in C the canonical map

RΓ(V,M)⊗L
A(V ) A(U) −→ RΓ(U,M)

is an isomorphism in D(A(U),d).

Lemma 24.33.2.0GZA In the situation above, the subcategory QC (A,d) is a strictly full,
saturated, triangulated subcategory of D(A,d) preserved by arbitrary direct sums.

5For example the identity morphism.

https://stacks.math.columbia.edu/tag/0GZ9
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Proof. Let U be an object of C. Since the topology on C is chaotic, the functor
F 7→ F(U) is exact and commutes with direct sums. Hence the exact functor
M 7→ RΓ(U,M) is computed by representing K by any differential graded A-
module M and taking M(U). Thus RΓ(U,−) commutes with direct sums, see
Lemma 24.26.8. Similarly, given a morphism U → V of C the derived tensor
product functor − ⊗L

O(A) A(U) : D(A(V )) → D(A(U)) is exact and commutes
with direct sums. The lemma follows from these observations in a straightforward
manner; details omitted. □

Remark 24.33.3.0GZB As above, let C be a category viewed as a site with the chaotic
topology, let O be a sheaf of rings on C, and let (A,d) be a sheaf of differential
graded O-algebras. Then the analogue of Cohomology on Sites, Proposition 21.43.9
holds for QC (A,d) with almost exactly the same proof:

(1) any contravariant cohomological functor H : QC (A,d)→ Ab which trans-
forms direct sums into products is representable,

(2) any exact functor F : QC (A,d) → D of triangulated categories which
transforms direct sums into direct sums has an exact right adjoint, and

(3) the inclusion functor QC (A,d)→ D(A,d) has an exact right adjoint.
If we ever need this we will precisely formulate and prove this here.

Let u : C′ → C be a functor between categories. If we view C and C′ as sites
with the chaotic topology, then u is a continuous and cocontinuous functor. Hence
we obtain a morphism g : Sh(C′) → Sh(C) of topoi, see Sites, Lemma 7.21.1.
Additionally, suppose given sheaves of rings O on C and O′ on C′ and a map
g♯ : g−1O → O′. We denote the corresponding morphism of ringed topoi simply
g : (Sh(C′),O′)→ (Sh(C),O), see Modules on Sites, Section 18.7. Finally, suppose
that (A,d) is a sheaf of differential graded O-algebras and that (A′,d) is a sheaf of
differential graded O′-algebras and moreover that we are given a map φ : g∗A → A′

of differential graded O′-algebras (see Section 24.18).

Lemma 24.33.4.0GZC Let g : (Sh(C′),O′)→ (Sh(C),O) and φ : g∗A → A′ be as above.
Then the functor Lg∗ : D(A,d)→ D(A′,d) maps QC (A,d) into QC (A′,d).

Proof. Let U ′ ∈ Ob(C′) with image U = u(U ′) in C. Let pt denote the category with
a single object and a single morphism. Denote (Sh(pt),O′(U ′)) and (Sh(pt),O(U))
the ringed topoi as indicated endowed with the differential graded algebras A′(U)
and A(U). Of course we identify the derived category of differential graded modules
on these with D(A′(U ′),d) and D(A(U),d). Then we have a commutative diagram
of ringed topoi

(Sh(pt),O′(U ′))
U ′

//

��

(Sh(C′),O′)

g

��
(Sh(pt),O(U)) U // (Sh(C),O)

each endowed with corresponding differential graded algebras. Pullback along the
lower horizontal morphism sends M in D(A,d) to RΓ(U,K) viewed as an object in
D(A(U),d). Pullback by the left vertical arrow sends M to M⊗L

A(U)A
′(U ′). Going

around the diagram either direction produces the same result (Lemma 24.28.4) and
hence we conclude

RΓ(U ′, Lg∗K) = RΓ(U,K)⊗L
A(U) A

′(U ′)

https://stacks.math.columbia.edu/tag/0GZB
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Finally, let f ′ : U ′ → V ′ be a morphism in C′ and denote f = u(f ′) : U = u(U ′)→
V = u(V ′) the image in C. If K is in QC (A,d) then we have

RΓ(V ′, Lg∗K)⊗L
A′(V ′) A

′(U ′) = RΓ(V,K)⊗L
A(V ) A

′(V ′)⊗L
A′(V ′) A

′(U ′)
= RΓ(V,K)⊗L

A(V ) A
′(U ′)

= RΓ(V,K)⊗L
A(V ) A(U)⊗L

A(U) A
′(U ′)

= RΓ(U,K)⊗L
A(U) A

′(U ′)
= RΓ(U ′, Lg∗K)

as desired. Here we have used the observation above both for U ′ and V ′. □

24.34. Differential graded modules on a category, bis

0GZD We develop a few more results on the notion of quasi-coherent modules introduced
in Section 24.33.

Lemma 24.34.1.0GZE Let C,O,A be as in Section 24.33. Let C′ ⊂ C be a full subcategory
with the following property: for every U ∈ Ob(C) the category U/C′ of arrows
U → U ′ is cofiltered. Denote O′,A′ the restrictions of O,A to C′. Then restrictions
induces an equivalence QC (A,d)→ QC (A′,d).

Proof. We will construct a quasi-inverse of the functor. Namely, let M ′ be an object
of QC (A′,d). We may represent M ′ by a good differential graded module M′, see
Lemma 24.23.7. Then for every U ′ ∈ Ob(C′) the differential graded A′(U ′)-module
M′(U) is K-flat and graded flat and for every morphism U ′

1 → U ′
2 of C′ the map

M′(U ′
2)⊗A′(U ′

2) A′(U ′
1) −→M′(U ′

1)

is a quasi-isomorphism (as the source represents the derived tensor product). Con-
sider the differential graded A-module M defined by the rule

M(U) = colimU→U ′∈U/C′M′(U ′)⊗A′(U ′) A(U)
This is a filtered colimit of complexes by our assumption in the lemma. Since
M ′ is in QC (A′,d) all the transition maps in the system are quasi-isomorphisms.
Since filtered colimits are exact, we see that M(U) in D(A(U),d) is isomorphic to
M′(U ′)⊗A′(U ′) A(U) for any morphism U → U ′ with U ′ ∈ Ob(C′).
We claim that M is in QC (A,d): namely, given U → V in C we choose a map
V → V ′ with V ′ ∈ Ob(C′). By the above we see that the map M(V ) →M(U) is
identified with the map

M′(V ′)⊗A′(V ′) A(V ) −→M′(V ′)⊗A′(V ′) A(U)
SinceM′(V ′) is K-flat as differential gradede A′(V ′)-module, we conclude the claim
is true.
The natural mapM|C′ →M′ is an isomorphism in D(A′, d) as follows immediately
from the above.
Conversely, if we have an object E of QC (A,d), then we represent it by a good
differential graded module E . Setting M′ = E|C′ (this is another good differential
graded module) we see that there is a map

E →M

https://stacks.math.columbia.edu/tag/0GZE
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wich over U in C is given by the map

E(U) −→ colimU→U ′∈U/C′ E(U ′)⊗A′(U ′) A(U)

which is a quasi-isomorphism by the same reason. Thus restriction and the con-
struction above are quasi-inverse functors as desired. □

Lemma 24.34.2.0GZF Let C,O be as in Section 24.33. Let φ : A → B be a homomor-
phism of differential graded O-algebras which induces an isomorphism on cohomol-
ogy sheaves, then the equivalence D(A,d)→ D(B,d) of Lemma 24.30.1 induces an
equivalence QC (A,d)→ QC (B,d).

Proof. It suffices to show the following: given a morphism U → V of C and M in
D(A,d) the following are equivalent

(1) RΓ(V,M)⊗L
A(V ) A(U)→ Γ(U,M) is an isomorphism in D(A(U),d), and

(2) RΓ(V,M⊗L
AB)⊗L

B(V )B(U)→ Γ(U,M⊗L
AB) is an isomorphism inD(B(U),d).

Since the topology on C is chaotic, this simply boils down to fact that A(U)→ B(U)
and A(V )→ B(V ) are quasi-isomorphisms. Details omitted. □

24.35. Inverse systems of differential graded algebras

0GZG In this section we consider the following special case of the situation discussed in
Section 24.33:

(1) C is the category N with a unique morphism i→ j if and only if i ≤ j,
(2) O is the constant (pre)sheaf of rings with value a given ring R.

In this setting a sheaf A of differential graded O-algebras is the same thing as an
inverse system (An) of differential graded R-algebras. A sheaf M of differential
graded A-modules is the same thing as an inverse system (Mn) where Mn is a
differential graded An-module and the transition maps Mn+1 → Mn are An+1-
module maps.

Suppose that B = (Bn) is a second inverse system of differential graded R-algebras.
Given a morphism φ : (An)→ (Bn) of pro-objects we will construct an exact functor
from QC (A,d) to QC (B,d). Namely, according to Categories, Example 4.22.6 the
morphism φ is given by a sequence . . . ≥ m(3) ≥ m(2) ≥ m(1) of integers and a
commutative diagram

. . . // Am(3)

φ3

��

// Am(2)

φ2

��

// Am(1)

φ1

��
. . . // B3 // B2 // B1

of differential graded R-algebras. Then given a good sheaf of differential graded
A-modules M = (Mn) representing an object of QC (A,d) we can set

Nn = Mm(n) ⊗Am(n) Bn

This inverse system determines an object of QC (B,d) because the Am(n)-modules
Mm(n) are K-flat; details omitted. We also leave it to the reader to show that the
resulting functor is independent of the choices made in its construction.

https://stacks.math.columbia.edu/tag/0GZF
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Lemma 24.35.1.0GZH In the situation above, suppose that A = (An) and B = (Bn)
are inverse systems of differential graded R-algebras. If φ : (An) → (Bn) is an
isomorphism of pro-objects, then the functor QC (A,d) → QC (B,d) constructed
above is an equivalence.

Proof. Let ψ : (Bn) → (An) be a morphism of pro-objects which is inverse to φ.
According to the discussion in Categories, Example 4.22.6 we may assume that φ
is given by a system of maps as above and ψ is given n(1) < n(2) < . . . and a
commutative diagram

. . . // Bn(3)

ψ3

��

// Bn(2)

ψ2

��

// Bn(1)

ψ1

��
. . . // A3 // A2 // A1

of differential graded R-algebras. Since φ◦ψ = id we may, after possibly increasing
the values of the functions n(·) and m(·) assume that Bn(m(i)) → Am(i) → Bi is
the identity. It follows that the composition of the functors

QC (B,d)→ QC (A,d)→ QC (B,d)
sends a good sheaf of differential graded B-modules N = (Nn) to the inverse system
N ′ = (N ′

i) with values
N ′
i = Nn(m(i)) ⊗Bn(m(i)) Bi

which is canonically quasi-isomorphic to N exactly because N is an object of
QC (B,d) and because Nj is a K-flat differential graded module for all j. Since
the same is true for the composition the other way around we conclude. □

Let C = N and O the constant sheaf with value a ring R and let A be given by
an inverse system (An) of differential graded R-algebras. Suppose given two left
differential graded A-modules N and N ′ given by inverse systems (Nn) and (N ′

n).
Thus each Nn and N ′

n is a left differential graded An-module. Let us temporarily
say that (Nn) and (N ′

n) are pro-isomorphic in the derived category if there exist a
sequence of integers

1 = n0 < n1 < n2 < n3 < . . .

and maps
Nn2i → N ′

n2i−1
in D(Aoppn2i

,d)
and

N ′
n2i+1

→ N ′
n2i

in D(Aoppn2i+1
,d)

such that the compositions Nn2i → Nn2i−2 and N ′
n2i+1

→ N ′
2i−1 are given by the

transition maps of the respective systems.

Lemma 24.35.2.0GZI If (Nn) and (N ′
n) are pro-isomorphic in the derived category as

defined above, then for every object (Mn) of D(N,A) we have
R lim(Mn ⊗L

An Nn) = R lim(Mn ⊗L
An N

′
n)

in D(R).

Proof. The assumption implies that the inverse system (Mn⊗L
An
Nn) of D(R) is pro-

isomorphic (in the usual sense) to the inverse system (Mn⊗L
An
N ′
n) of D(R). Hence

the result follows from the fact that taking R lim is well defined for inverse systems
in the derived category, see discussion in More on Algebra, Section 15.87. □

https://stacks.math.columbia.edu/tag/0GZH
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Lemma 24.35.3.0GZJ This is a variant of
[BS13, Lemma 3.5.4]

Let R be a ring. Let f1, . . . , fr ∈ R. Let Kn be the Koszul
complex on fn1 , . . . , f

n
r viewed as a differential graded R-algebra. Let (Mn) be an

object of D(N, (Kn)). Then for any t ≥ 1 we have
R lim(Mn ⊗L

R Kt) = R lim(Mn ⊗L
Kn Kt)

in D(R).

Proof. We fix t ≥ 1. For n ≥ t let us denote nKt the differential graded R-algebra
Kt viewed as a left differential graded Kn-module. Observe that

Mn ⊗L
R Kt = Mn ⊗L

Kn (Kn ⊗L
R Kt) = Mn ⊗L

Kn (Kn ⊗R Kt)
Hence by Lemma 24.35.2 it suffices to show that (nKt) and (Kn ⊗R Kt) are pro-
isomorphic in the derived category. The multiplication maps

Kn ⊗R Kt −→ nKt

are maps of left differential graded Kn-modules. Thus to finish the proof it suffices
to show that for all n ≥ 1 there exists an N > n and a map

NKt −→ NKn ⊗R Kt

in D(Kopp
N ,d) whose composition with the multiplication map is the transition map

(in either direction). This is done in Divided Power Algebra, Lemma 23.12.4 by an
explicit construction. □

Proposition 24.35.4.0GZK Let R be a Noetherian ring. Let I ⊂ R be an ideal. The
following three categories are canonically equivalent:

(1) Let A be the sheaf of R-algebras on N corresponding to the inverse system
of R-algebras An = R/In. The category QC (A).

(2) Choose generators f1, . . . , fr of I. Let B be the sheaf of differential graded
R-algebras on N corresponding to the inverse system of Koszul algebras
on fn1 , . . . , f

n
r . The category QC (B).

(3) The full subcategory Dcomp(R, I) ⊂ D(R) of derived complete objects,
see More on Algebra, Definition 15.91.4 and text following.

Proof. Consider the obvious morphism f : (Sh(N),A) → (Sh(pt), R) of ringed
topoi and let us consider the adjoint functors Lf∗ and Rf∗. The first restricts to a
functor

F : Dcomp(R, I) −→ QC (A)
which sends an object K of Dcomp(R, I) represented by a K-flat complex K• to the
object (K• ⊗R R/In) of QC (A). The second restricts to a functor

G : QC (A) −→ Dcomp(R, I)
which sends an object (M•

n) of QC (A) to R limM•
n. The output is derived complete

for example by More on Algebra, Lemma 15.91.14. Also, it follows from More on
Algebra, Proposition 15.94.2 that G ◦ F = id. Thus to see that F and G are
quasi-inverse equivalences it suffices to see that the kernel of G is zero (see Derived
Categories, Lemma 13.7.2). However, it does not appear easy to show this directly!
In this paragraph we will show that QC (A) and QC (B) are equivalent. Write
B = (Bn) where Bn is the Koszul complex viewed as a cochain complex in degrees
−r,−r + 1, . . . , 0. By Divided Power Algebra, Remark 23.12.2 (but with chain
complexes turned into cochain complexes) we can find 1 < n1 < n2 < . . . and maps

https://stacks.math.columbia.edu/tag/0GZJ
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of differential graded R-algebras Bni → Ei → R/(fni1 , . . . , fnir ) and Ei → Bni−1

such that
Bn1

��

Bn2

��

oo Bn3

��

oo . . .oo

E1

��

E2oo

��

E3oo

��

. . .oo

B1 Bn1
oo Bn2

oo . . .oo

is a commutative diagram of differential graded R-algebras and such that Ei →
R/(fni1 , . . . , fnir ) is a quasi-isomorphism. We conclude

(1) there is an equivalence between QC (B) and QC ((Ei)),
(2) there is an equivalence between QC ((Ei)) and QC ((R/(fni1 , . . . , fnir ))),
(3) there is an equivalence between QC ((R/(fni1 , . . . , fnir ))) and QC (A).

Namely, for (1) we can apply Lemma 24.35.1 to the diagram above which shows
that (Ei) and (Bn) are pro-isomorphic. For (2) we can apply Lemma 24.34.2 to
the inverse system of quasi-isomorphisms Ei → R/(fni1 , . . . , fnir ). For (3) we can
apply Lemma 24.35.1 and the elementary fact that the inverse systems (R/In) and
(R/(fni1 , . . . , fnir ) are pro-isomorphic.
Exactly as in the first paragraph of the proof we can define adjoint functors6

F ′ : Dcomp(R, I) −→ QC (B) and G′ : QC (B) −→ Dcomp(R, I).
The first sends an object K of Dcomp(R, I) represented by a K-flat complex K• to
the object (K• ⊗R Bn) of QC (B). The second sends an object (Mn) of QC (B) to
R limMn. Arguing as above it suffices to show that the kernel of G′ is zero. So let
M = (Mn) be a good sheaf of differential graded modules over B which represents
an object of QC (B) in the kernel of G′. Then

0 = R limMn ⇒ 0 = (R limMn)⊗L
R Bt = R lim(Mn ⊗L

R Bt)
By Lemma 24.35.3 we have R lim(Mn ⊗L

R Bt) = R lim(Mn ⊗L
Bn

Bt). Since (Mn) is
an object of QC (B) we see that the inverse system Mn⊗L

Bn
Bt is eventually constant

with value Mt. Hence Mt = 0 as desired. □

Remark 24.35.5.0H1E Let R be a ring and let f1, . . . , fr ∈ R be a sequence of elements
generating an ideal I. Let Kn be the Koszul complex on fn1 , . . . , f

n
r viewed as a

differential graded R-algebra. We say f1, . . . , fr is a weakly proregular sequence
if for all n there is an m > n such that Km → Kn induces the zero map on
cohomology except in degree 0. If so, then the arguments in the proof of Proposition
24.35.4 continue to work even when R is not Noetherian. In particular we see that
QC ({R/In}) is equivalent as an R-linear triangulated category to the category
Dcomp(R, I) of derived complete objects, provided I can be generated by a weakly
proregular sequence. If the need arises, we will precisely state and prove this here.

6It can be shown that these functors are, via the equivalences above, compatible with F and
G defined before.

https://stacks.math.columbia.edu/tag/0H1E
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CHAPTER 25

Hypercoverings

01FX 25.1. Introduction

01FY Let C be a site, see Sites, Definition 7.6.2. Let X be an object of C. Given an
abelian sheaf F on C we would like to compute its cohomology groups

Hi(X,F).
According to our general definitions (Cohomology on Sites, Section 21.2) this co-
homology group is computed by choosing an injective resolution 0 → F → I0 →
I1 → . . . and setting

Hi(X,F) = Hi(Γ(X, I0)→ Γ(X, I1)→ Γ(X, I2)→ . . .)
The goal of this chapter is to show that we may also compute these cohomology
groups without choosing an injective resolution (in the case that C has fibre prod-
ucts). To do this we will use hypercoverings.
A hypercovering in a site is a generalization of a covering, see [AGV71, Exposé V,
Sec. 7]. Given a hypercovering K of an object X, there is a Čech to cohomology
spectral sequence expressing the cohomology of an abelian sheaf F over X in terms
of the cohomology of the sheaf over the components Kn of K. It turns out that there
are always enough hypercoverings, so that taking the colimit over all hypercoverings,
the spectral sequence degenerates and the cohomology of F over X is computed by
the colimit of the Čech cohomology groups.
A more general gadget one can consider is a simplicial augmentation where one
has cohomological descent, see [AGV71, Exposé Vbis]. A nice manuscript on coho-
mological descent is the text by Brian Conrad, see https://math.stanford.edu/
~conrad/papers/hypercover.pdf. We will come back to these issue in the chapter
on simplicial spaces where we will show, for example, that proper hypercoverings
of “locally compact” topological spaces are of cohomological descent (Simplicial
Spaces, Section 85.25). Our method of attack will be to reduce this statement to
the Čech to cohomology spectral sequence constructed in this chapter.

25.2. Semi-representable objects

0DBB In order to start we make the following definition. The letters “SR” stand for
Semi-Representable.

Definition 25.2.1.01G0 Let C be a category. We denote SR(C) the category of semi-
representable objects defined as follows

(1) objects are families of objects {Ui}i∈I , and
(2) morphisms {Ui}i∈I → {Vj}j∈J are given by a map α : I → J and for each

i ∈ I a morphism fi : Ui → Vα(i) of C.

2203

https://math.stanford.edu/~conrad/papers/hypercover.pdf
https://math.stanford.edu/~conrad/papers/hypercover.pdf
https://stacks.math.columbia.edu/tag/01G0
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Let X ∈ Ob(C) be an object of C. The category of semi-representable objects over
X is the category SR(C, X) = SR(C/X).
This definition is essentially equivalent to [AGV71, Exposé V, Subsection 7.3.0].
Note that this is a “big” category. We will later “bound” the size of the index sets
I that we need for hypercoverings of X. We can then redefine SR(C, X) to become
a category. Let’s spell out the objects and morphisms SR(C, X):

(1) objects are families of morphisms {Ui → X}i∈I , and
(2) morphisms {Ui → X}i∈I → {Vj → X}j∈J are given by a map α : I → J

and for each i ∈ I a morphism fi : Ui → Vα(i) over X.
There is a forgetful functor SR(C, X)→ SR(C).
Definition 25.2.2.01G1 Let C be a category. We denote F the functor which associates
a presheaf to a semi-representable object. In a formula

F : SR(C) −→ PSh(C)
{Ui}i∈I 7−→ ⨿i∈IhUi

where hU denotes the representable presheaf associated to the object U .
Given a morphism U → X we obtain a morphism hU → hX of representable
presheaves. Thus we often think of F on SR(C, X) as a functor into the category
of presheaves of sets over hX , namely PSh(C)/hX . Here is a picture:

SR(C, X)
F
//

��

PSh(C)/hX

��
SR(C) F // PSh(C)

Next we discuss the existence of limits in the category of semi-representable objects.
Lemma 25.2.3.01G2 Let C be a category.

(1) the category SR(C) has coproducts and F commutes with them,
(2) the functor F : SR(C)→ PSh(C) commutes with limits,
(3) if C has fibre products, then SR(C) has fibre products,
(4) if C has products of pairs, then SR(C) has products of pairs,
(5) if C has equalizers, so does SR(C), and
(6) if C has a final object, so does SR(C).

Let X ∈ Ob(C).
(1) the category SR(C, X) has coproducts and F commutes with them,
(2) if C has fibre products, then SR(C, X) has finite limits and F : SR(C, X)→

PSh(C)/hX commutes with them.
Proof. Proof of the results on SR(C). Proof of (1). The coproduct of {Ui}i∈I and
{Vj}j∈J is {Ui}i∈I ⨿{Vj}j∈J , in other words, the family of objects whose index set
is I⨿J and for an element k ∈ I⨿J gives Ui if k = i ∈ I and gives Vj if k = j ∈ J .
Similarly for coproducts of families of objects. It is clear that F commutes with
these.
Proof of (2). For U in Ob(C) consider the object {U} of SR(C). It is clear that
MorSR(C)({U},K)) = F (K)(U) for K ∈ Ob(SR(C)). Since limits of presheaves are
computed at the level of sections (Sites, Section 7.4) we conclude that F commutes
with limits.

https://stacks.math.columbia.edu/tag/01G1
https://stacks.math.columbia.edu/tag/01G2
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Proof of (3). Suppose given a morphism (α, fi) : {Ui}i∈I → {Vj}j∈J and a mor-
phism (β, gk) : {Wk}k∈K → {Vj}j∈J . The fibred product of these morphisms is
given by

{Ui ×fi,Vj ,gk Wk}(i,j,k)∈I×J×K such that j=α(i)=β(k)

The fibre products exist if C has fibre products.
Proof of (4). The product of {Ui}i∈I and {Vj}j∈J is {Ui×Vj}i∈I,j∈J . The products
exist if C has products.
Proof of (5). The equalizer of two maps (α, fi), (α′, f ′

i) : {Ui}i∈I → {Vj}j∈J is
{Eq(fi, f ′

i : Ui → Vα(i))}i∈I, α(i)=α′(i)

The equalizers exist if C has equalizers.
Proof of (6). If X is a final object of C, then {X} is a final object of SR(C).
Proof of the statements about SR(C, X). These follow from the results above ap-
plied to the category C/X using that SR(C/X) = SR(C, X) and that PSh(C/X) =
PSh(C)/hX (Sites, Lemma 7.25.4 applied to C endowed with the chaotic topol-
ogy). However we also argue directly as follows. It is clear that the coproduct
of {Ui → X}i∈I and {Vj → X}j∈J is {Ui → X}i∈I ⨿ {Vj → X}j∈J and simi-
larly for coproducts of families of families of morphisms with target X. The object
{X → X} is a final object of SR(C, X). Suppose given a morphism (α, fi) : {Ui →
X}i∈I → {Vj → X}j∈J and a morphism (β, gk) : {Wk → X}k∈K → {Vj → X}j∈J .
The fibred product of these morphisms is given by

{Ui ×fi,Vj ,gk Wk → X}(i,j,k)∈I×J×K such that j=α(i)=β(k)

The fibre products exist by the assumption that C has fibre products. Thus
SR(C, X) has finite limits, see Categories, Lemma 4.18.4. We omit verifying the
statements on the functor F in this case. □

25.3. Hypercoverings

01FZ If we assume our category is a site, then we can make the following definition.

Definition 25.3.1.01G3 Let C be a site. Let f = (α, fi) : {Ui}i∈I → {Vj}j∈J be a
morphism in the category SR(C). We say that f is a covering if for every j ∈ J the
family of morphisms {Ui → Vj}i∈I,α(i)=j is a covering for the site C. Let X be an
object of C. A morphism K → L in SR(C, X) is a covering if its image in SR(C) is
a covering.

Lemma 25.3.2.01G4 Let C be a site.
(1) A composition of coverings in SR(C) is a covering.
(2) If K → L is a covering in SR(C) and L′ → L is a morphism, then L′×LK

exists and L′ ×L K → L′ is a covering.
(3) If C has products of pairs, and A→ B and K → L are coverings in SR(C),

then A×K → B × L is a covering.
Let X ∈ Ob(C). Then (1) and (2) holds for SR(C, X) and (3) holds if C has fibre
products.

Proof. Part (1) is immediate from the axioms of a site. Part (2) follows by the
construction of fibre products in SR(C) in the proof of Lemma 25.2.3 and the
requirement that the morphisms in a covering of C are representable. Part (3)

https://stacks.math.columbia.edu/tag/01G3
https://stacks.math.columbia.edu/tag/01G4
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follows by thinking of A×K → B×L as the composition A×K → B×K → B×L
and hence a composition of basechanges of coverings. The final statement follows
because SR(C, X) = SR(C/X). □

By Lemma 25.2.3 and Simplicial, Lemma 14.19.2 the coskeleton of a truncated
simplicial object of SR(C, X) exists if C has fibre products. Hence the following
definition makes sense.

Definition 25.3.3.01G5 Let C be a site. Assume C has fibre products. Let X ∈ Ob(C)
be an object of C. A hypercovering of X is a simplicial object K of SR(C, X) such
that

(1) The object K0 is a covering of X for the site C.
(2) For every n ≥ 0 the canonical morphism

Kn+1 −→ (cosknsknK)n+1

is a covering in the sense defined above.

Condition (1) makes sense since each object of SR(C, X) is after all a family of
morphisms with target X. It could also be formulated as saying that the morphism
of K0 to the final object of SR(C, X) is a covering.

Example 25.3.4 (Čech hypercoverings).01G6 Let C be a site with fibre products. Let
{Ui → X}i∈I be a covering of C. Set K0 = {Ui → X}i∈I . Then K0 is a 0-truncated
simplicial object of SR(C, X). Hence we may form

K = cosk0K0.

Clearly K passes condition (1) of Definition 25.3.3. Since all the morphisms
Kn+1 → (cosknsknK)n+1 are isomorphisms by Simplicial, Lemma 14.19.10 it also
passes condition (2). Note that the terms Kn are the usual

Kn = {Ui0 ×X Ui1 ×X . . .×X Uin → X}(i0,i1,...,in)∈In+1

A hypercovering of X of this form is called a Čech hypercovering of X.

Example 25.3.5 (Hypercovering by a simplicial object of the site).0GM9 Let C be a site
with fibre products. Let X ∈ Ob(C). Let U be a simplicial object of C. As usual
we denote Un = U([n]). Finally, assume given an augmentation

a : U → X

In this situation we can consider the simplicial object K of SR(C, X) with terms
Kn = {Un → X}. Then K is a hypercovering of X in the sense of Definition 25.3.3
if and only if the following three conditions1 hold:

(1) {U0 → X} is a covering of C,
(2) {U1 → U0 ×X U0} is a covering of C,
(3) {Un+1 → (cosknsknU)n+1} is a covering of C for n ≥ 1.

We omit the straightforward verification.

1As C has fibre products, the category C/X has all finite limits. Hence the required coskeleta
exist by Simplicial, Lemma 14.19.2.

https://stacks.math.columbia.edu/tag/01G5
https://stacks.math.columbia.edu/tag/01G6
https://stacks.math.columbia.edu/tag/0GM9
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Example 25.3.6 (Čech hypercovering associated to a cover).0GMA Let C be a site with
fibre products. Let U → X be a morphism of C such that {U → X} is a covering
of C2. Consider the simplical object K of SR(C, X) with terms

Kn = {U ×X U ×X . . .×X U → X} (n+ 1 factors)
Then K is a hypercovering of X. This example is a special case of both Example
25.3.4 and of Example 25.3.5.
Lemma 25.3.7.01G7 Let C be a site with fibre products. Let X ∈ Ob(C) be an object
of C. The collection of all hypercoverings of X forms a set.
Proof. Since C is a site, the set of all coverings of X forms a set. Thus we see
that the collection of possible K0 forms a set. Suppose we have shown that the
collection of all possible K0, . . . ,Kn form a set. Then it is enough to show that given
K0, . . . ,Kn the collection of all possible Kn+1 forms a set. And this is clearly true
since we have to choose Kn+1 among all possible coverings of (cosknsknK)n+1. □

Remark 25.3.8.01G8 The lemma does not just say that there is a cofinal system of
choices of hypercoverings that is a set, but that really the hypercoverings form a
set.
The category of presheaves on C has finite (co)limits. Hence the functors coskn
exists for presheaves of sets.
Lemma 25.3.9.01G9 Let C be a site with fibre products. Let X ∈ Ob(C) be an object of
C. Let K be a hypercovering of X. Consider the simplicial object F (K) of PSh(C),
endowed with its augmentation to the constant simplicial presheaf hX .

(1) The morphism of presheaves F (K)0 → hX becomes a surjection after
sheafification.

(2) The morphism
(d1

0, d
1
1) : F (K)1 −→ F (K)0 ×hX F (K)0

becomes a surjection after sheafification.
(3) For every n ≥ 1 the morphism

F (K)n+1 −→ (cosknsknF (K))n+1

turns into a surjection after sheafification.
Proof. We will use the fact that if {Ui → U}i∈I is a covering of the site C, then the
morphism

⨿i∈IhUi → hU

becomes surjective after sheafification, see Sites, Lemma 7.12.4. Thus the first
assertion follows immediately.
For the second assertion, note that according to Simplicial, Example 14.19.1 the
simplicial object cosk0sk0K has terms K0× . . .×K0. Thus according to the defini-
tion of a hypercovering we see that (d1

0, d
1
1) : K1 → K0×K0 is a covering. Hence (2)

follows from the claim above and the fact that F transforms products into fibred
products over hX .
For the third, we claim that cosknsknF (K) = F (cosknsknK) for n ≥ 1. To prove
this, denote temporarily F ′ the functor SR(C, X)→ PSh(C)/hX . By Lemma 25.2.3

2A morphism of C with this property is sometimes called a “cover”.

https://stacks.math.columbia.edu/tag/0GMA
https://stacks.math.columbia.edu/tag/01G7
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the functor F ′ commutes with finite limits. By our description of the coskn functor
in Simplicial, Section 14.12 we see that cosknsknF ′(K) = F ′(cosknsknK). Recall
that the category used in the description of (cosknU)m in Simplicial, Lemma 14.19.2
is the category (∆/[m])opp≤n . It is an amusing exercise to show that (∆/[m])≤n is
a connected category (see Categories, Definition 4.16.1) as soon as n ≥ 1. Hence,
Categories, Lemma 4.16.2 shows that cosknsknF ′(K) = cosknsknF (K). Whence
the claim. Property (2) follows from this, because now we see that the morphism
in (2) is the result of applying the functor F to a covering as in Definition 25.3.1,
and the result follows from the first fact mentioned in this proof. □

25.4. Acyclicity

01GA Let C be a site. For a presheaf of sets F we denote ZF the presheaf of abelian
groups defined by the rule

ZF (U) = free abelian group on F(U).
We will sometimes call this the free abelian presheaf on F . Of course the con-
struction F 7→ ZF is a functor and it is left adjoint to the forgetful functor
PAb(C) → PSh(C). Of course the sheafification Z#

F is a sheaf of abelian groups,
and the functor F 7→ Z#

F is a left adjoint as well. We sometimes call Z#
F the free

abelian sheaf on F .
For an object X of the site C we denote ZX the free abelian presheaf on hX , and
we denote Z#

X its sheafification.

Definition 25.4.1.01GB Let C be a site. Let K be a simplicial object of PSh(C). By the
above we get a simplicial object Z#

K of Ab(C). We can take its associated complex
of abelian presheaves s(Z#

K), see Simplicial, Section 14.23. The homology of K is
the homology of the complex of abelian sheaves s(Z#

K).

In other words, the ith homology Hi(K) of K is the sheaf of abelian groups
Hi(K) = Hi(s(Z#

K)). In this section we worry about the homology in case K
is a hypercovering of an object X of C.

Lemma 25.4.2.01GC Let C be a site. Let F → G be a morphism of presheaves of sets.
Denote K the simplicial object of PSh(C) whose nth term is the (n + 1)st fibre
product of F over G, see Simplicial, Example 14.3.5. Then, if F → G is surjective
after sheafification, we have

Hi(K) =
{

0 if i > 0
Z#

G if i = 0

The isomorphism in degree 0 is given by the morphism H0(K)→ Z#
G coming from

the map (Z#
K)0 = Z#

F → Z#
G .

Proof. Let G′ ⊂ G be the image of the morphism F → G. Let U ∈ Ob(C). Set
A = F(U) and B = G′(U). Then the simplicial set K(U) is equal to the simplicial
set with n-simplices given by

A×B A×B . . .×B A (n+ 1 factors).
By Simplicial, Lemma 14.32.3 the morphism K(U)→ B is a trivial Kan fibration.
Thus it is a homotopy equivalence (Simplicial, Lemma 14.30.8). Hence applying

https://stacks.math.columbia.edu/tag/01GB
https://stacks.math.columbia.edu/tag/01GC
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the functor “free abelian group on” to this we deduce that
ZK(U) −→ ZB

is a homotopy equivalence. Note that s(ZB) is the complex

. . .→
⊕

b∈B
Z 0−→

⊕
b∈B

Z 1−→
⊕

b∈B
Z 0−→

⊕
b∈B

Z→ 0

see Simplicial, Lemma 14.23.3. Thus we see that Hi(s(ZK(U))) = 0 for i > 0,
and H0(s(ZK(U))) =

⊕
b∈B Z =

⊕
s∈G′(U) Z. These identifications are compatible

with restriction maps.
We conclude that Hi(s(ZK)) = 0 for i > 0 and H0(s(ZK)) = ZG′ , where here we
compute homology groups in PAb(C). Since sheafification is an exact functor we
deduce the result of the lemma. Namely, the exactness implies that H0(s(ZK))# =
H0(s(Z#

K)), and similarly for other indices. □

Lemma 25.4.3.01GD Let C be a site. Let f : L→ K be a morphism of simplicial objects
of PSh(C). Let n ≥ 0 be an integer. Assume that

(1) For i < n the morphism Li → Ki is an isomorphism.
(2) The morphism Ln → Kn is surjective after sheafification.
(3) The canonical map L→ cosknsknL is an isomorphism.
(4) The canonical map K → cosknsknK is an isomorphism.

Then Hi(f) : Hi(L)→ Hi(K) is an isomorphism.

Proof. This proof is exactly the same as the proof of Lemma 25.4.2 above. Namely,
we first let K ′

n ⊂ Kn be the sub presheaf which is the image of the map Ln → Kn.
Assumption (2) means that the sheafification of K ′

n is equal to the sheafification
of Kn. Moreover, since Li = Ki for all i < n we see that get an n-truncated
simplicial presheaf U by taking U0 = L0 = K0, . . . , Un−1 = Ln−1 = Kn−1, Un =
K ′
n. Denote K ′ = cosknU , a simplicial presheaf. Because we can construct K ′

m as
a finite limit, and since sheafification is exact, we see that (K ′

m)# = Km. In other
words, (K ′)# = K#. We conclude, by exactness of sheafification once more, that
Hi(K) = Hi(K ′). Thus it suffices to prove the lemma for the morphism L→ K ′, in
other words, we may assume that Ln → Kn is a surjective morphism of presheaves!
In this case, for any object U of C we see that the morphism of simplicial sets

L(U) −→ K(U)
satisfies all the assumptions of Simplicial, Lemma 14.32.1. Hence it is a trivial Kan
fibration. In particular it is a homotopy equivalence (Simplicial, Lemma 14.30.8).
Thus

ZL(U) −→ ZK(U)
is a homotopy equivalence too. This for all U . The result follows. □

Lemma 25.4.4.01GE Let C be a site. Let K be a simplicial presheaf. Let G be a presheaf.
Let K → G be an augmentation of K towards G. Assume that

(1) The morphism of presheaves K0 → G becomes a surjection after sheafifi-
cation.

(2) The morphism
(d1

0, d
1
1) : K1 −→ K0 ×G K0

becomes a surjection after sheafification.

https://stacks.math.columbia.edu/tag/01GD
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(3) For every n ≥ 1 the morphism

Kn+1 −→ (cosknsknK)n+1

turns into a surjection after sheafification.
Then Hi(K) = 0 for i > 0 and H0(K) = Z#

G .

Proof. Denote Kn = cosknsknK for n ≥ 1. Define K0 as the simplicial object with
terms (K0)n equal to the (n+1)-fold fibred product K0×G . . .×GK0, see Simplicial,
Example 14.3.5. We have morphisms

K −→ . . .→ Kn → Kn−1 → . . .→ K1 → K0.

The morphisms K → Ki, Kj → Ki for j ≥ i ≥ 1 come from the universal prop-
erties of the coskn functors. The morphism K1 → K0 is the canonical morphism
from Simplicial, Remark 14.20.4. We also recall that K0 → cosk1sk1K

0 is an
isomorphism, see Simplicial, Lemma 14.20.3.

By Lemma 25.4.2 we see that Hi(K0) = 0 for i > 0 and H0(K0) = Z#
G .

Pick n ≥ 1. Consider the morphism Kn → Kn−1. It is an isomorphism on terms
of degree < n. Note that Kn → cosknsknKn and Kn−1 → cosknsknKn−1 are
isomorphisms. Note that (Kn)n = Kn and that (Kn−1)n = (coskn−1skn−1K)n.
Hence by assumption, we have that (Kn)n → (Kn−1)n is a morphism of presheaves
which becomes surjective after sheafification. By Lemma 25.4.3 we conclude that
Hi(Kn) = Hi(Kn−1). Combined with the above this proves the lemma. □

Lemma 25.4.5.01GF Let C be a site with fibre products. Let X be an object of C. Let
K be a hypercovering of X. The homology of the simplicial presheaf F (K) is 0 in
degrees > 0 and equal to Z#

X in degree 0.

Proof. Combine Lemmas 25.4.4 and 25.3.9. □

25.5. Čech cohomology and hypercoverings

01GU Let C be a site. Consider a presheaf of abelian groups F on the site C. It defines a
functor

F : SR(C)opp −→ Ab
{Ui}i∈I 7−→

∏
i∈I
F(Ui)

Thus a simplicial object K of SR(C) is turned into a cosimplicial object F(K) of
Ab. The cochain complex s(F(K)) associated to F(K) (Simplicial, Section 14.25)
is called the Čech complex of F with respect to the simplicial object K. We set

Ȟi(K,F) = Hi(s(F(K))).

and we call it the ith Čech cohomology group of F with respect to K. In this
section we prove analogues of some of the results for Čech cohomology of open
coverings proved in Cohomology, Sections 20.9, 20.10 and 20.11.

Lemma 25.5.1.01GV Let C be a site with fibre products. Let X be an object of C.
Let K be a hypercovering of X. Let F be a sheaf of abelian groups on C. Then
Ȟ0(K,F) = F(X).

https://stacks.math.columbia.edu/tag/01GF
https://stacks.math.columbia.edu/tag/01GV
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Proof. We have
Ȟ0(K,F) = Ker(F(K0) −→ F(K1))

Write K0 = {Ui → X}. It is a covering in the site C. As well, we have that K1 →
K0×K0 is a covering in SR(C, X). Hence we may write K1 = ⨿i0,i1∈I{Vi0i1j → X}
so that the morphism K1 → K0 ×K0 is given by coverings {Vi0i1j → Ui0 ×X Ui1}
of the site C. Thus we can further identify

Ȟ0(K,F) = Ker(
∏

i
F(Ui) −→

∏
i0i1j
F(Vi0i1j))

with obvious map. The sheaf property of F implies that Ȟ0(K,F) = H0(X,F). □

In fact this property characterizes the abelian sheaves among all abelian presheaves
on C of course. The analogue of Cohomology, Lemma 25.5.2 in this case is the
following.

Lemma 25.5.2.01GW Let C be a site with fibre products. Let X be an object of C. Let
K be a hypercovering of X. Let I be an injective sheaf of abelian groups on C.
Then

Ȟp(K, I) =
{
I(X) if p = 0

0 if p > 0

Proof. Observe that for any object Z = {Ui → X} of SR(C, X) and any abelian
sheaf F on C we have

F(Z) =
∏
F(Ui)

=
∏

MorPSh(C)(hUi ,F)
= MorPSh(C)(F (Z),F)
= MorPAb(C)(ZF (Z),F)
= MorAb(C)(Z#

F (Z),F)

Thus we see, for any simplicial object K of SR(C, X) that we have

(25.5.2.1)01GX s(F(K)) = HomAb(C)(s(Z#
F (K)),F)

see Definition 25.4.1 for notation. The complex of sheaves s(Z#
F (K)) is quasi-

isomorphic to Z#
X if K is a hypercovering, see Lemma 25.4.5. We conclude that if

I is an injective abelian sheaf, and K a hypercovering, then the complex s(I(K))
is acyclic except possibly in degree 0. In other words, we have

Ȟi(K, I) = 0
for i > 0. Combined with Lemma 25.5.1 the lemma is proved. □

Next we come to the analogue of Cohomology on Sites, Lemma 21.10.6. Let C
be a site. Let F be a sheaf of abelian groups on C. Recall that Hi(F) indicates
the presheaf of abelian groups on C which is defined by the rule Hi(F) : U 7−→
Hi(U,F). We extend this to SR(C) as in the introduction to this section.

Lemma 25.5.3.01GY Let C be a site with fibre products. Let X be an object of C. Let
K be a hypercovering of X. Let F be a sheaf of abelian groups on C. There is a
map

s(F(K)) −→ RΓ(X,F)

https://stacks.math.columbia.edu/tag/01GW
https://stacks.math.columbia.edu/tag/01GY
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in D+(Ab) functorial in F , which induces natural transformations

Ȟi(K,−) −→ Hi(X,−)

as functors Ab(C)→ Ab. Moreover, there is a spectral sequence (Er, dr)r≥0 with

Ep,q2 = Ȟp(K,Hq(F))

converging to Hp+q(X,F). This spectral sequence is functorial in F and in the
hypercovering K.

Proof. We could prove this by the same method as employed in the corresponding
lemma in the chapter on cohomology. Instead let us prove this by a double complex
argument.

Choose an injective resolution F → I• in the category of abelian sheaves on C.
Consider the double complex A•,• with terms

Ap,q = Iq(Kp)

where the differential dp,q1 : Ap,q → Ap+1,q is the one coming from the differential on
the complex s(Iq(K)) associated to the cosimplicial abelian group Ip(K) and the
differential dp,q2 : Ap,q → Ap,q+1 is the one coming from the differential Iq → Iq+1.
Denote Tot(A•,•) the total complex associated to the double complex A•,•, see
Homology, Section 12.18. We will use the two spectral sequences (′Er,

′dr) and
(′′Er,

′′dr) associated to this double complex, see Homology, Section 12.25.

By Lemma 25.5.2 the complexes s(Iq(K)) are acyclic in positive degrees and have
H0 equal to Iq(X). Hence by Homology, Lemma 12.25.4 the natural map

I•(X) −→ Tot(A•,•)

is a quasi-isomorphism of complexes of abelian groups. In particular we conclude
that Hn(Tot(A•,•)) = Hn(X,F).

The map s(F(K)) −→ RΓ(X,F) of the lemma is the composition of the map
s(F(K)) → Tot(A•,•) followed by the inverse of the displayed quasi-isomorphism
above. This works because I•(X) is a representative of RΓ(X,F).

Consider the spectral sequence (′Er,
′dr)r≥0. By Homology, Lemma 12.25.1 we see

that
′Ep,q2 = Hp

I (Hq
II(A•,•))

In other words, we first take cohomology with respect to d2 which gives the groups
′Ep,q1 = Hq(F)(Kp). Hence it is indeed the case (by the description of the differen-
tial ′d1) that ′Ep,q2 = Ȟp(K,Hq(F)). By the above and Homology, Lemma 12.25.3
we see that this converges to Hn(X,F) as desired.

We omit the proof of the statements regarding the functoriality of the above con-
structions in the abelian sheaf F and the hypercovering K. □

25.6. Hypercoverings a la Verdier

09VT The astute reader will have noticed that all we need in order to get the Čech to
cohomology spectral sequence for a hypercovering of an object X, is the conclusion
of Lemma 25.3.9. Therefore the following definition makes sense.
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Definition 25.6.1.09VU Let C be a site. Assume C has equalizers and fibre products.
Let G be a presheaf of sets. A hypercovering of G is a simplicial object K of SR(C)
endowed with an augmentation F (K)→ G such that

(1) F (K0)→ G becomes surjective after sheafification,
(2) F (K1)→ F (K0)×G F (K0) becomes surjective after sheafification, and
(3) F (Kn+1) −→ F ((cosknsknK)n+1) for n ≥ 1 becomes surjective after

sheafification.
We say that a simplicial object K of SR(C) is a hypercovering if K is a hypercovering
of the final object ∗ of PSh(C).

The assumption that C has fibre products and equalizers guarantees that SR(C) has
fibre products and equalizers and F commutes with these (Lemma 25.2.3) which
suffices to define the coskeleton functors used (see Simplicial, Remark 14.19.11 and
Categories, Lemma 4.18.2). If C is general, we can replace the condition (3) by the
condition that F (Kn+1) −→ ((cosknsknF (K))n+1) for n ≥ 1 becomes surjective
after sheafification and the results of this section remain valid.
Let F be an abelian sheaf on C. In the previous section, we defined the Čech complex
of F with respect to a simplicial object K of SR(C). Next, given a presheaf G we
set

H0(G,F) = MorPSh(C)(G,F) = MorSh(C)(G#,F) = H0(G#,F)
with notation as in Cohomology on Sites, Section 21.13. This is a left exact functor
and its higher derived functors (briefly studied in Cohomology on Sites, Section
21.13) are denoted Hi(G,F). We will show that given a hypercovering K of G,
there is a Čech to cohomology spectral sequence converging to the cohomology
Hi(G,F). Note that if G = ∗, then Hi(∗,F) = Hi(C,F) recovers the cohomology
of F on the site C.

Lemma 25.6.2.09VV Let C be a site with equalizers and fibre products. Let G be a
presheaf on C. Let K be a hypercovering of G. Let F be a sheaf of abelian groups
on C. Then Ȟ0(K,F) = H0(G,F).

Proof. This follows from the definition of H0(G,F) and the fact that

F (K1) //
// F (K0) // G

becomes an coequalizer diagram after sheafification. □

Lemma 25.6.3.09VW Let C be a site with equalizers and fibre products. Let G be a
presheaf on C. Let K be a hypercovering of G. Let I be an injective sheaf of
abelian groups on C. Then

Ȟp(K, I) =
{
H0(G, I) if p = 0

0 if p > 0

Proof. By (25.5.2.1) we have

s(F(K)) = HomAb(C)(s(Z#
F (K)),F)

The complex s(Z#
F (K)) is quasi-isomorphic to Z#

G , see Lemma 25.4.4. We conclude
that if I is an injective abelian sheaf, then the complex s(I(K)) is acyclic except
possibly in degree 0. In other words, we have Ȟi(K, I) = 0 for i > 0. Combined
with Lemma 25.6.2 the lemma is proved. □

https://stacks.math.columbia.edu/tag/09VU
https://stacks.math.columbia.edu/tag/09VV
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Lemma 25.6.4.09VX Let C be a site with equalizers and fibre products. Let G be a
presheaf on C. Let K be a hypercovering of G. Let F be a sheaf of abelian groups
on C. There is a map

s(F(K)) −→ RΓ(G,F)
in D+(Ab) functorial in F , which induces a natural transformation

Ȟi(K,−) −→ Hi(G,−)

of functors Ab(C)→ Ab. Moreover, there is a spectral sequence (Er, dr)r≥0 with

Ep,q2 = Ȟp(K,Hq(F))

converging to Hp+q(G,F). This spectral sequence is functorial in F and in the
hypercovering K.

Proof. Choose an injective resolution F → I• in the category of abelian sheaves
on C. Consider the double complex A•,• with terms

Ap,q = Iq(Kp)

where the differential dp,q1 : Ap,q → Ap+1,q is the one coming from the differential
Ip → Ip+1 and the differential dp,q2 : Ap,q → Ap,q+1 is the one coming from the
differential on the complex s(Ip(K)) associated to the cosimplicial abelian group
Ip(K) as explained above. We will use the two spectral sequences (′Er,

′dr) and
(′′Er,

′′dr) associated to this double complex, see Homology, Section 12.25.

By Lemma 25.6.3 the complexes s(Ip(K)) are acyclic in positive degrees and have
H0 equal to H0(G, Ip). Hence by Homology, Lemma 12.25.4 and its proof the
spectral sequence (′Er,

′dr) degenerates, and the natural map

H0(G, I•) −→ Tot(A•,•)

is a quasi-isomorphism of complexes of abelian groups. The map s(F(K)) −→
RΓ(G,F) of the lemma is the composition of the natural map s(F(K))→ Tot(A•,•)
followed by the inverse of the displayed quasi-isomorphism above. This works be-
cause H0(G, I•) is a representative of RΓ(G,F).

Consider the spectral sequence (′′Er,
′′dr)r≥0. By Homology, Lemma 12.25.1 we

see that
′′Ep,q2 = Hp

II(H
q
I (A•,•))

In other words, we first take cohomology with respect to d1 which gives the groups
′′Ep,q1 = Hp(F)(Kq). Hence it is indeed the case (by the description of the differ-
ential ′′d1) that ′′Ep,q2 = Ȟp(K,Hq(F)). Since this spectral sequence converges to
the cohomology of Tot(A•,•) the proof is finished. □

Lemma 25.6.5.09VY Let C be a site with equalizers and fibre products. Let K be a
hypercovering. Let F be an abelian sheaf. There is a spectral sequence (Er, dr)r≥0
with

Ep,q2 = Ȟp(K,Hq(F))
converging to the global cohomology groups Hp+q(F).

Proof. This is a special case of Lemma 25.6.4. □

https://stacks.math.columbia.edu/tag/09VX
https://stacks.math.columbia.edu/tag/09VY
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25.7. Covering hypercoverings

01GG Here are some ways to construct hypercoverings. We note that since the category
SR(C, X) has fibre products the category of simplicial objects of SR(C, X) has fibre
products as well, see Simplicial, Lemma 14.7.2.

Lemma 25.7.1.01GH Let C be a site with fibre products. Let X be an object of C.
Let K,L,M be simplicial objects of SR(C, X). Let a : K → L, b : M → L be
morphisms. Assume

(1) K is a hypercovering of X,
(2) the morphism M0 → L0 is a covering, and
(3) for all n ≥ 0 in the diagram

Mn+1

��

//

γ

**

(cosknsknM)n+1

��

Ln+1 ×(cosknsknL)n+1 (cosknsknM)n+1

tt

33

Ln+1 // (cosknsknL)n+1

the arrow γ is a covering.
Then the fibre product K ×LM is a hypercovering of X.

Proof. The morphism (K×LM)0 = K0×L0M0 → K0 is a base change of a covering
by (2), hence a covering, see Lemma 25.3.2. And K0 → {X → X} is a covering by
(1). Thus (K×LM)0 → {X → X} is a covering by Lemma 25.3.2. Hence K×LM
satisfies the first condition of Definition 25.3.3.
We still have to check that

Kn+1 ×Ln+1 Mn+1 = (K ×LM)n+1 −→ (cosknskn(K ×LM))n+1

is a covering for all n ≥ 0. We abbreviate as follows: A = (cosknsknK)n+1,
B = (cosknsknL)n+1, and C = (cosknsknM)n+1. The functor cosknskn commutes
with fibre products, see Simplicial, Lemma 14.19.13. Thus the right hand side
above is equal to A×B C. Consider the following commutative diagram

Kn+1 ×Ln+1 Mn+1 //

��

Mn+1

��
γ

&& **Kn+1 //

((

Ln+1

**

Ln+1 ×B Coo // C

��
A // B

This diagram shows that
Kn+1 ×Ln+1 Mn+1 = (Kn+1 ×B C)×(Ln+1×BC),γ Mn+1

Now, Kn+1 ×B C → A ×B C is a base change of the covering Kn+1 → A via the
morphism A×B C → A, hence is a covering. By assumption (3) the morphism γ is
a covering. Hence the morphism

(Kn+1 ×B C)×(Ln+1×BC),γ Mn+1 −→ Kn+1 ×B C

https://stacks.math.columbia.edu/tag/01GH
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is a covering as a base change of a covering. The lemma follows as a composition
of coverings is a covering. □

Lemma 25.7.2.01GI Let C be a site with fibre products. Let X be an object of C. If
K,L are hypercoverings of X, then K × L is a hypercovering of X.

Proof. You can either verify this directly, or use Lemma 25.7.1 above and check
that L→ {X → X} has property (3). □

Let C be a site with fibre products. Let X be an object of C. Since the category
SR(C, X) has coproducts and finite limits, it is permissible to speak about the
objects U ×K and Hom(U,K) for certain simplicial sets U (for example those with
finitely many nondegenerate simplices) and any simplicial object K of SR(C, X).
See Simplicial, Sections 14.13 and 14.17.

Lemma 25.7.3.01GJ Let C be a site with fibre products. Let X be an object of C. Let
K be a hypercovering of X. Let k ≥ 0 be an integer. Let u : Z → Kk be a covering
in SR(C, X). Then there exists a morphism of hypercoverings f : L→ K such that
Lk → Kk factors through u.

Proof. Denote Y = Kk. Let C[k] be the cosimplicial set defined in Simplicial, Ex-
ample 14.5.6. We will use the description of Hom(C[k], Y ) and Hom(C[k], Z) given
in Simplicial, Lemma 14.15.2. There is a canonical morphism K → Hom(C[k], Y )
corresponding to id : Kk = Y → Y . Consider the morphism Hom(C[k], Z) →
Hom(C[k], Y ) which on degree n terms is the morphism∏

α:[k]→[n]
Z −→

∏
α:[k]→[n]

Y

using the given morphism Z → Y on each factor. Set

L = K ×Hom(C[k],Y ) Hom(C[k], Z).

The morphism Lk → Kk sits in to a commutative diagram

Lk //

��

∏
α:[k]→[k] Z

prid[k] //

��

Z

��
Kk

// ∏
α:[k]→[k] Y

prid[k] // Y

Since the composition of the two bottom arrows is the identity we conclude that
we have the desired factorization.

We still have to show that L is a hypercovering of X. To see this we will use Lemma
25.7.1. Condition (1) is satisfied by assumption. For (2), the morphism

Hom(C[k], Z)0 → Hom(C[k], Y )0

is a covering because it is isomorphic to Z → Y as there is only one morphism
[k]→ [0].

https://stacks.math.columbia.edu/tag/01GI
https://stacks.math.columbia.edu/tag/01GJ
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Let us consider condition (3) for n = 0. Then, since (cosk0T )1 = T ×T (Simplicial,
Example 14.19.1) and since Hom(C[k], Z)1 =

∏
α:[k]→[1] Z we obtain the diagram∏

α:[k]→[1] Z
//

��

Z × Z

��∏
α:[k]→[1] Y

// Y × Y

with horizontal arrows corresponding to the projection onto the factors correspond-
ing to the two nonsurjective α. Thus the arrow γ is the morphism∏

α:[k]→[1]
Z −→

∏
α:[k]→[1] not onto

Z ×
∏

α:[k]→[1] onto
Y

which is a product of coverings and hence a covering by Lemma 25.3.2.

Let us consider condition (3) for n > 0. We claim there is an injective map τ :
S′ → S of finite sets, such that for any object T of SR(C, X) the morphism

(25.7.3.1)0B16 Hom(C[k], T )n+1 → (cosknskn Hom(C[k], T ))n+1

is isomorphic to the projection
∏
s∈S T →

∏
s′∈S′ T functorially in T . If this is

true, then we see, arguing as in the previous paragraph, that the arrow γ is the
morphism ∏

s∈S
Z −→

∏
s∈S′

Z ×
∏

s̸∈τ(S′)
Y

which is a product of coverings and hence a covering by Lemma 25.3.2. By construc-
tion, we have Hom(C[k], T )n+1 =

∏
α:[k]→[n+1] T (see Simplicial, Lemma 14.15.2).

Correspondingly we take S = Map([k], [n + 1]). On the other hand, Simplicial,
Lemma 14.19.5, provides a description of points of (cosknskn Hom(C[k], T ))n+1
as sequences (f0, . . . , fn+1) of points of Hom(C[k], T )n satisfying dnj−1fi = dni fj
for 0 ≤ i < j ≤ n + 1. We can write fi = (fi,α) with fi,α a point of T and
α ∈ Map([k], [n]). The conditions translate into

fi,δn
j−1◦β = fj,δn

i
◦β

for any 0 ≤ i < j ≤ n+ 1 and β : [k]→ [n− 1]. Thus we see that

S′ = {0, . . . , n+ 1} ×Map([k], [n])/ ∼

where the equivalence relation is generated by the equivalences

(i, δnj−1 ◦ β) ∼ (j, δni ◦ β)

for 0 ≤ i < j ≤ n + 1 and β : [k] → [n − 1]. A computation (omitted) shows
that the morphism (25.7.3.1) corresponds to the map S′ → S which sends (i, α)
to δn+1

i ◦ α ∈ S. (It may be a comfort to the reader to see that this map is well
defined by part (1) of Simplicial, Lemma 14.2.3.) To finish the proof it suffices to
show that if α, α′ : [k]→ [n] and 0 ≤ i < j ≤ n+ 1 are such that

δn+1
i ◦ α = δn+1

j ◦ α′

then we have α = δnj−1 ◦ β and α′ = δni ◦ β for some β : [k]→ [n− 1]. This is easy
to see and omitted. □
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Lemma 25.7.4.01GK Let C be a site with fibre products. Let X be an object of C. Let
K be a hypercovering of X. Let n ≥ 0 be an integer. Let u : F → F (Kn) be
a morphism of presheaves which becomes surjective on sheafification. Then there
exists a morphism of hypercoverings f : L→ K such that F (fn) : F (Ln)→ F (Kn)
factors through u.

Proof. Write Kn = {Ui → X}i∈I . Thus the map u is a morphism of presheaves of
sets u : F → ⨿hui . The assumption on u means that for every i ∈ I there exists a
covering {Uij → Ui}j∈Ii of the site C and a morphism of presheaves tij : hUij → F
such that u ◦ tij is the map hUij → hUi coming from the morphism Uij → Ui. Set
J = ⨿i∈IIi, and let α : J → I be the obvious map. For j ∈ J denote Vj = Uα(j)j .
Set Z = {Vj → X}j∈J . Finally, consider the morphism u′ : Z → Kn given by
α : J → I and the morphisms Vj = Uα(j)j → Uα(j) above. Clearly, this is a
covering in the category SR(C, X), and by construction F (u′) : F (Z) → F (Kn)
factors through u. Thus the result follows from Lemma 25.7.3 above. □

25.8. Adding simplices

01GL In this section we prove some technical lemmas which we will need later. Let C be
a site with fibre products. Let X be an object of C. As we pointed out in Section
25.7 above, the objects U × K and Hom(U,K) for certain simplicial sets U and
any simplicial object K of SR(C, X) are defined. See Simplicial, Sections 14.13 and
14.17.

Lemma 25.8.1.01GM Let C be a site with fibre products. Let X be an object of C. Let K
be a hypercovering of X. Let U ⊂ V be simplicial sets, with Un, Vn finite nonempty
for all n. Assume that U has finitely many nondegenerate simplices. Suppose n ≥ 0
and x ∈ Vn, x ̸∈ Un are such that

(1) Vi = Ui for i < n,
(2) Vn = Un ∪ {x},
(3) any z ∈ Vj , z ̸∈ Uj for j > n is degenerate.

Then the morphism
Hom(V,K)0 −→ Hom(U,K)0

of SR(C, X) is a covering.

Proof. If n = 0, then it follows easily that V = U ⨿ ∆[0] (see below). In this
case Hom(V,K)0 = Hom(U,K)0 ×K0. The result, in this case, then follows from
Lemma 25.3.2.

Let a : ∆[n] → V be the morphism associated to x as in Simplicial, Lemma
14.11.3. Let us write ∂∆[n] = i(n−1)!skn−1∆[n] for the (n−1)-skeleton of ∆[n]. Let
b : ∂∆[n]→ U be the restriction of a to the (n−1) skeleton of ∆[n]. By Simplicial,
Lemma 14.21.7 we have V = U ⨿∂∆[n] ∆[n]. By Simplicial, Lemma 14.17.5 we get
that

Hom(V,K)0 //

��

Hom(U,K)0

��
Hom(∆[n],K)0 // Hom(∂∆[n],K)0

https://stacks.math.columbia.edu/tag/01GK
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is a fibre product square. Thus it suffices to show that the bottom horizontal arrow
is a covering. By Simplicial, Lemma 14.21.11 this arrow is identified with

Kn → (coskn−1skn−1K)n
and hence is a covering by definition of a hypercovering. □

Lemma 25.8.2.01GN Let C be a site with fibre products. Let X be an object of C. Let K
be a hypercovering of X. Let U ⊂ V be simplicial sets, with Un, Vn finite nonempty
for all n. Assume that U and V have finitely many nondegenerate simplices. Then
the morphism

Hom(V,K)0 −→ Hom(U,K)0

of SR(C, X) is a covering.

Proof. By Lemma 25.8.1 above, it suffices to prove a simple lemma about inclusions
of simplicial sets U ⊂ V as in the lemma. And this is exactly the result of Simplicial,
Lemma 14.21.8. □

Lemma 25.8.3.0DEQ Let C be a site with fibre products. Let X be an object of C. Let
K be a hypercovering of X. Then

(1) Kn is a covering of X for each n ≥ 0,
(2) dni : Kn → Kn−1 is a covering for all n ≥ 1 and 0 ≤ i ≤ n.

Proof. Recall that K0 is a covering of X by Definition 25.3.3 and that this is
equivalent to saying that K0 → {X → X} is a covering in the sense of Definition
25.3.1. Hence (1) follows from (2) because it will prove that the composition Kn →
Kn−1 → . . .→ K0 → {X → X} is a covering by Lemma 25.3.2.
Proof of (2). Observe that Mor(∆[n],K)0 = Kn by Simplicial, Lemma 14.17.4.
Therefore (2) follows from Lemma 25.8.2 applied to the n + 1 different inclusions
∆[n− 1]→ ∆[n]. □

Remark 25.8.4.0DER A useful special case of Lemmas 25.8.2 and 25.8.3 is the following.
Suppose we have a category C having fibre products. Let P ⊂ Arrows(C) be
a subset stable under base change, stable under composition, and containing all
isomorphisms. Then one says a P -hypercovering is an augmentation a : U → X
from a simplicial object of C such that

(1) U0 → X is in P ,
(2) U1 → U0 ×X U0 is in P ,
(3) Un+1 → (cosknsknU)n+1 is in P for n ≥ 1.

The category C/X has all finite limits, hence the coskeleta used in the formulation
above exist (see Categories, Lemma 4.18.4). Then we claim that the morphisms
Un → X and dni : Un → Un−1 are in P . This follows from the aforementioned
lemmas by turning C into a site whose coverings are {f : V → U} with f ∈ P and
taking K given by Kn = {Un → X}.

25.9. Homotopies

01GO Let C be a site with fibre products. Let X be an object of C. Let L be a simplicial
object of SR(C, X). According to Simplicial, Lemma 14.17.4 there exists an object
Hom(∆[1], L) in the category Simp(SR(C, X)) which represents the functor

T 7−→ MorSimp(SR(C,X))(∆[1]× T, L)

https://stacks.math.columbia.edu/tag/01GN
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There is a canonical morphism

Hom(∆[1], L)→ L× L

coming from ei : ∆[0]→ ∆[1] and the identification Hom(∆[0], L) = L.

Lemma 25.9.1.01GP Let C be a site with fibre products. Let X be an object of C. Let L
be a simplicial object of SR(C, X). Let n ≥ 0. Consider the commutative diagram

(25.9.1.1)01GQ Hom(∆[1], L)n+1 //

��

(cosknskn Hom(∆[1], L))n+1

��
(L× L)n+1 // (cosknskn(L× L))n+1

coming from the morphism defined above. We can identify the terms in this diagram
as follows, where ∂∆[n+1] = in!skn∆[n+1] is the n-skeleton of the (n+1)-simplex:

Hom(∆[1], L)n+1 = Hom(∆[1]×∆[n+ 1], L)0

(cosknskn Hom(∆[1], L))n+1 = Hom(∆[1]× ∂∆[n+ 1], L)0

(L× L)n+1 = Hom((∆[n+ 1]⨿∆[n+ 1], L)0

(cosknskn(L× L))n+1 = Hom(∂∆[n+ 1]⨿ ∂∆[n+ 1], L)0

and the morphism between these objects of SR(C, X) come from the commutative
diagram of simplicial sets

(25.9.1.2)01GR ∆[1]×∆[n+ 1] ∆[1]× ∂∆[n+ 1]oo

∆[n+ 1]⨿∆[n+ 1]

OO

∂∆[n+ 1]⨿ ∂∆[n+ 1]oo

OO

Moreover the fibre product of the bottom arrow and the right arrow in (25.9.1.1)
is equal to

Hom(U,L)0

where U ⊂ ∆[1]×∆[n+ 1] is the smallest simplicial subset such that both ∆[n+
1]⨿∆[n+ 1] and ∆[1]× ∂∆[n+ 1] map into it.

Proof. The first and third equalities are Simplicial, Lemma 14.17.4. The second
and fourth follow from the cited lemma combined with Simplicial, Lemma 14.21.11.
The last assertion follows from the fact that U is the push-out of the bottom and
right arrow of the diagram (25.9.1.2), via Simplicial, Lemma 14.17.5. To see that U
is equal to this push-out it suffices to see that the intersection of ∆[n+1]⨿∆[n+1]
and ∆[1]× ∂∆[n+ 1] in ∆[1]×∆[n+ 1] is equal to ∂∆[n+ 1]⨿ ∂∆[n+ 1]. This we
leave to the reader. □

Lemma 25.9.2.01GS Let C be a site with fibre products. Let X be an object of C. Let
K,L be hypercoverings of X. Let a, b : K → L be morphisms of hypercoverings.
There exists a morphism of hypercoverings c : K ′ → K such that a◦ c is homotopic
to b ◦ c.

https://stacks.math.columbia.edu/tag/01GP
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Proof. Consider the following commutative diagram

K ′ def

c

((

K ×(L×L) Hom(∆[1], L) //

��

Hom(∆[1], L)

��
K

(a,b) // L× L
By the functorial property of Hom(∆[1], L) the composition of the horizontal mor-
phisms corresponds to a morphism K ′ × ∆[1] → L which defines a homotopy
between c ◦ a and c ◦ b. Thus if we can show that K ′ is a hypercovering of X, then
we obtain the lemma. To see this we will apply Lemma 25.7.1 to the pair of mor-
phisms K → L× L and Hom(∆[1], L)→ L× L. Condition (1) of Lemma 25.7.1 is
satisfied. Condition (2) of Lemma 25.7.1 is true because Hom(∆[1], L)0 = L1, and
the morphism (d1

0, d
1
1) : L1 → L0 ×L0 is a covering of SR(C, X) by our assumption

that L is a hypercovering. To prove condition (3) of Lemma 25.7.1 we use Lemma
25.9.1 above. According to this lemma the morphism γ of condition (3) of Lemma
25.7.1 is the morphism

Hom(∆[1]×∆[n+ 1], L)0 −→ Hom(U,L)0

where U ⊂ ∆[1]×∆[n+1]. According to Lemma 25.8.2 this is a covering and hence
the claim has been proven. □

Remark 25.9.3.01GT Note that the crux of the proof is to use Lemma 25.8.2. This
lemma is completely general and does not care about the exact shape of the sim-
plicial sets (as long as they have only finitely many nondegenerate simplices). It
seems altogether reasonable to expect a result of the following kind: Given any
morphism a : K × ∂∆[k] → L, with K and L hypercoverings, there exists a mor-
phism of hypercoverings c : K ′ → K and a morphism g : K ′ ×∆[k]→ L such that
g|K′×∂∆[k] = a ◦ (c× id∂∆[k]). In other words, the category of hypercoverings is in
a suitable sense contractible.

25.10. Cohomology and hypercoverings

01GZ Let C be a site with fibre products. Let X be an object of C. Let F be a sheaf
of abelian groups on C. Let K,L be hypercoverings of X. If a, b : K → L are
homotopic maps, then F(a),F(b) : F(K) → F(L) are homotopic maps, see Sim-
plicial, Lemma 14.28.4. Hence have the same effect on cohomology groups of the
associated cochain complexes, see Simplicial, Lemma 14.28.6. We are going to use
this to define the colimit over all hypercoverings.
Let us temporarily denote HC(C, X) the category whose objects are hypercoverings
of X and whose morphisms are maps between hypercoverings of X up to homotopy.
We have seen that this is a category and not a “big” category, see Lemma 25.3.7.
The opposite to HC(C, X) will be the index category for our diagram, see Categories,
Section 4.14 for terminology. Consider the diagram

Ȟi(−,F) : HC(C, X)opp −→ Ab.
By Lemmas 25.7.2 and 25.9.2 and the remark on homotopies above, this diagram
is directed, see Categories, Definition 4.19.1. Thus the colimit

Ȟi
HC(X,F) = colimK∈HC(C,X) Ȟ

i(K,F)
has a particularly simple description (see location cited).

https://stacks.math.columbia.edu/tag/01GT
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Theorem 25.10.1.01H0 Let C be a site with fibre products. Let X be an object of C.
Let i ≥ 0. The functors

Ab(C) −→ Ab
F 7−→ Hi(X,F)
F 7−→ Ȟi

HC(X,F)
are canonically isomorphic.

Proof using spectral sequences. Suppose that ξ ∈ Hp(X,F) for some p ≥ 0. Let
us show that ξ is in the image of the map Ȟp(X,F)→ Hp(X,F) of Lemma 25.5.3
for some hypercovering K of X.
This is true if p = 0 by Lemma 25.5.1. If p = 1, choose a Čech hypercovering
K of X as in Example 25.3.4 starting with a covering K0 = {Ui → X} in the
site C such that ξ|Ui = 0, see Cohomology on Sites, Lemma 21.7.3. It follows
immediately from the spectral sequence in Lemma 25.5.3 that ξ comes from an
element of Ȟ1(K,F) in this case. In general, choose any hypercovering K of X
such that ξ maps to zero in Hp(F)(K0) (using Example 25.3.4 and Cohomology
on Sites, Lemma 21.7.3 again). By the spectral sequence of Lemma 25.5.3 the
obstruction for ξ to come from an element of Ȟp(K,F) is a sequence of elements
ξ1, . . . , ξp−1 with ξq ∈ Ȟp−q(K,Hq(F)) (more precisely the images of the ξq in
certain subquotients of these groups).
We can inductively replace the hypercovering K by refinements such that the ob-
structions ξ1, . . . , ξp−1 restrict to zero (and not just the images in the subquotients
– so no subtlety here). Indeed, suppose we have already managed to reach the sit-
uation where ξq+1, . . . , ξp−1 are zero. Note that ξq ∈ Ȟp−q(K,Hq(F)) is the class
of some element

ξ̃q ∈ Hq(F)(Kp−q) =
∏

Hq(Ui,F)

if Kp−q = {Ui → X}i∈I . Let ξq,i be the component of ξ̃q in Hq(Ui,F). As
q ≥ 1 we can use Cohomology on Sites, Lemma 21.7.3 yet again to choose coverings
{Ui,j → Ui} of the site such that each restriction ξq,i|Ui,j = 0. Consider the object
Z = {Ui,j → X} of the category SR(C, X) and its obvious morphism u : Z → Kp−q.
It is clear that u is a covering, see Definition 25.3.1. By Lemma 25.7.3 there exists a
morphism L→ K of hypercoverings of X such that Lp−q → Kp−q factors through
u. Then clearly the image of ξq in Hq(F)(Lp−q). is zero. Since the spectral
sequence of Lemma 25.5.3 is functorial this means that after replacing K by L we
reach the situation where ξq, . . . , ξp−1 are all zero. Continuing like this we end up
with a hypercovering where they are all zero and hence ξ is in the image of the map
Ȟp(X,F)→ Hp(X,F).

Suppose that K is a hypercovering of X, that ξ ∈ Ȟp(K,F) and that the image of ξ
under the map Ȟp(X,F)→ Hp(X,F) of Lemma 25.5.3 is zero. To finish the proof
of the theorem we have to show that there exists a morphism of hypercoverings
L → K such that ξ restricts to zero in Ȟp(L,F). By the spectral sequence of
Lemma 25.5.3 the vanishing of the image of ξ in Hp(X,F) means that there exist
elements ξ1, . . . , ξp−2 with ξq ∈ Ȟp−1−q(K,Hq(F)) (more precisely the images of
these in certain subquotients) such that the images dp−1−q,q

q+1 ξq (in the spectral
sequence) add up to ξ. Hence by exactly the same mechanism as above we can find

https://stacks.math.columbia.edu/tag/01H0
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a morphism of hypercoverings L → K such that the restrictions of the elements
ξq, q = 1, . . . , p − 2 in Ȟp−1−q(L,Hq(F)) are zero. Then it follows that ξ is zero
since the morphism L→ K induces a morphism of spectral sequences according to
Lemma 25.5.3. □

Proof without using spectral sequences. We have seen the result for i = 0, see
Lemma 25.5.1. We know that the functors Hi(X,−) form a universal δ-functor,
see Derived Categories, Lemma 13.20.4. In order to prove the theorem it suffices
to show that the sequence of functors Ȟi

HC(X,−) forms a δ-functor. Namely we
know that Čech cohomology is zero on injective sheaves (Lemma 25.5.2) and then
we can apply Homology, Lemma 12.12.4.

Let
0→ F → G → H → 0

be a short exact sequence of abelian sheaves on C. Let ξ ∈ Ȟp
HC(X,H). Choose

a hypercovering K of X and an element σ ∈ H(Kp) representing ξ in cohomology.
There is a corresponding exact sequence of complexes

0→ s(F(K))→ s(G(K))→ s(H(K))

but we are not assured that there is a zero on the right also and this is the only
thing that prevents us from defining δ(ξ) by a simple application of the snake
lemma. Recall that

H(Kp) =
∏
H(Ui)

if Kp = {Ui → X}. Let σ =
∏
σi with σi ∈ H(Ui). Since G → H is a surjection

of sheaves we see that there exist coverings {Ui,j → Ui} such that σi|Ui,j is the
image of some element τi,j ∈ G(Ui,j). Consider the object Z = {Ui,j → X} of the
category SR(C, X) and its obvious morphism u : Z → Kp. It is clear that u is a
covering, see Definition 25.3.1. By Lemma 25.7.3 there exists a morphism L → K
of hypercoverings of X such that Lp → Kp factors through u. After replacing K
by L we may therefore assume that σ is the image of an element τ ∈ G(Kp). Note
that d(σ) = 0, but not necessarily d(τ) = 0. Thus d(τ) ∈ F(Kp+1) is a cocycle. In
this situation we define δ(ξ) as the class of the cocycle d(τ) in Ȟp+1

HC (X,F).

At this point there are several things to verify: (a) δ(ξ) does not depend on the
choice of τ , (b) δ(ξ) does not depend on the choice of the hypercovering L→ K such
that σ lifts, and (c) δ(ξ) does not depend on the initial hypercovering and σ chosen
to represent ξ. We omit the verification of (a), (b), and (c); the independence of
the choices of the hypercoverings really comes down to Lemmas 25.7.2 and 25.9.2.
We also omit the verification that δ is functorial with respect to morphisms of short
exact sequences of abelian sheaves on C.

Finally, we have to verify that with this definition of δ our short exact sequence of
abelian sheaves above leads to a long exact sequence of Čech cohomology groups.
First we show that if δ(ξ) = 0 (with ξ as above) then ξ is the image of some
element ξ′ ∈ Ȟp

HC(X,G). Namely, if δ(ξ) = 0, then, with notation as above, we
see that the class of d(τ) is zero in Ȟp+1

HC (X,F). Hence there exists a morphism of
hypercoverings L → K such that the restriction of d(τ) to an element of F(Lp+1)
is equal to d(υ) for some υ ∈ F(Lp). This implies that τ |Lp +υ form a cocycle, and
determine a class ξ′ ∈ Ȟp(L,G) which maps to ξ as desired.



25.10. COHOMOLOGY AND HYPERCOVERINGS 2224

We omit the proof that if ξ′ ∈ Ȟp+1
HC (X,F) maps to zero in Ȟp+1

HC (X,G), then it is
equal to δ(ξ) for some ξ ∈ Ȟp

HC(X,H). □

Next, we deduce Verdier’s case of Theorem 25.10.1 by a sleight of hand.

Proposition 25.10.2.09VZ Let C be a site with fibre products and products of pairs. Let
F be an abelian sheaf on C. Let i ≥ 0. Then

(1) for every ξ ∈ Hi(F) there exists a hypercovering K such that ξ is in the
image of the canonical map Ȟi(K,F)→ Hi(F), and

(2) if K,L are hypercoverings and ξK ∈ Ȟi(K,F), ξL ∈ Ȟi(L,F) are ele-
ments mapping to the same element of Hi(F), then there exists a hyper-
covering M and morphisms M → K and M → L such that ξK and ξL
map to the same element of Ȟi(M,F).

In other words, modulo set theoretical issues, the cohomology groups of F on C are
the colimit of the Čech cohomology groups of F over all hypercoverings.

Proof. This result is a trivial consequence of Theorem 25.10.1. Namely, we can
artificially replace C with a slightly bigger site C′ such that (I) C′ has a final object
X and (II) hypercoverings in C are more or less the same thing as hypercoverings
of X in C′. But due to the nature of things, there is quite a bit of bookkeeping to
do.
Let us call a family of morphisms {Ui → U} in C with fixed target a weak covering
if the sheafification of the map

∐
i∈I hUi → hU becomes surjective. We construct a

new site C′ as follows
(1) as a category set Ob(C′) = Ob(C) ⨿ {X} and add a unique morphism to

X from every object of C′,
(2) C′ has fibre products as fibre products and products of pairs exist in C,
(3) coverings of C′ are weak coverings of C together with those {Ui → X}i∈I

such that either Ui = X for some i, or Ui ̸= X for all i and the map∐
hUi → ∗ of presheaves on C becomes surjective after sheafification on

C,
(4) we apply Sets, Lemma 3.11.1 to restrict the coverings to obtain our site
C′.

Then Sh(C′) = Sh(C) because the inclusion functor C → C′ is a special cocontinuous
functor (see Sites, Definition 7.29.2). We omit the straightforward verifications.
Choose a covering {Ui → X} of C′ such that Ui is an object of C for all i (possible
because C → C′ is special cocontinuous). Then K0 = {Ui → X} is a covering in
the site C′ constructed above. We view K0 as an object of SR(C′, X) and we set
Kinit = cosk0(K0). Then Kinit is a hypercovering of X, see Example 25.3.4. Note
that every Kinit,n has the shape {Wj → X} with Wj ∈ Ob(C).
Proof of (1). Choose ξ ∈ Hi(F) = Hi(X,F ′) where F ′ is the abelian sheaf on
C′ corresponding to F on C. By Theorem 25.10.1 there exists a morphism of
hypercoverings K ′ → Kinit of X in C′ such that ξ comes from an element of
Ȟi(K ′,F). Write K ′

n = {Un,j → X}. Now since K ′
n maps to Kinit,n we see that

Un,j is an object of C. Hence we can define a simplicial object K of SR(C) by setting
Kn = {Un,j}. Since coverings in C′ consisting of families of morphisms of C are
weak coverings, we see that K is a hypercovering in the sense of Definition 25.6.1.
Finally, since F ′ is the unique sheaf on C′ whose restriction to C is equal to F we
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see that the Čech complexes s(F(K)) and s(F ′(K ′)) are identical and (1) follows.
(Compatibility with map into cohomology groups omitted.)
Proof of (2). Let K and L be hypercoverings in C. Let K ′ and L′ be the simplicial
objects of SR(C′, X) gotten from K and L by the functor SR(C) → SR(C′, X),
{Ui} 7→ {Ui → X}. As before we have equality of Čech complexes and hence we
obtain ξK′ and ξL′ mapping to the same cohomology class of F ′ over C′. After
possibly enlarging our choice of coverings in C′ (due to a set theoretical issue) we
may assume that K ′ and L′ are hypercoverings of X in C′; this is true by our
definition of hypercoverings in Definition 25.6.1 and the fact that weak coverings
in C give coverings in C′. By Theorem 25.10.1 there exists a hypercovering M ′ of
X in C′ and morphisms M ′ → K ′, M ′ → L′, and M ′ → Kinit such that ξK′ and
ξL′ restrict to the same element of Ȟi(M ′,F). Unwinding this statement as above
we find that (2) is true. □

25.11. Hypercoverings of spaces

01H1 The theory above is mildly interesting even in the case of topological spaces. In
this case we can work out what a hypercovering is and see what the result actually
says.
Let X be a topological space. Consider the site XZar of Sites, Example 7.6.4.
Recall that an object of XZar is simply an open of X and that morphisms of XZar

correspond simply to inclusions. So what is a hypercovering of X for the site XZar?
Let us first unwind Definition 25.2.1. An object of SR(XZar, X) is simply given by
a set I and for each i ∈ I an open Ui ⊂ X. Let us denote this by {Ui}i∈I since there
can be no confusion about the morphism Ui → X. A morphism {Ui}i∈I → {Vj}j∈J
between two such objects is given by a map of sets α : I → J such that Ui ⊂ Vα(i)
for all i ∈ I. When is such a morphism a covering? This is the case if and only if
for every j ∈ J we have Vj =

⋃
i∈I, α(i)=j Ui (and is a covering in the site XZar).

Using the above we get the following description of a hypercovering in the site
XZar. A hypercovering of X in XZar is given by the following data

(1) a simplicial set I (see Simplicial, Section 14.11), and
(2) for each n ≥ 0 and every i ∈ In an open set Ui ⊂ X.

We will denote such a collection of data by the notation (I, {Ui}). In order for this
to be a hypercovering of X we require the following properties

• for i ∈ In and 0 ≤ a ≤ n we have Ui ⊂ Udna (i),
• for i ∈ In and 0 ≤ a ≤ n we have Ui = Usna (i),
• we have

(25.11.0.1)01H2 X =
⋃

i∈I0
Ui,

• for every i0, i1 ∈ I0, we have

(25.11.0.2)01H3 Ui0 ∩ Ui1 =
⋃

i∈I1, d1
0(i)=i0, d1

1(i)=i1
Ui,

• for every n ≥ 1 and every (i0, . . . , in+1) ∈ (In)n+2 such that dnb−1(ia) =
dna(ib) for all 0 ≤ a < b ≤ n+ 1 we have

(25.11.0.3)01H4 Ui0 ∩ . . . ∩ Uin+1 =
⋃

i∈In+1, d
n+1
a (i)=ia, a=0,...,n+1

Ui,
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• each of the open coverings (25.11.0.1), (25.11.0.2), and (25.11.0.3) is an
element of Cov(XZar) (this is a set theoretic condition, bounding the size
of the index sets of the coverings).

Conditions (25.11.0.1) and (25.11.0.2) should be familiar from the chapter on sheaves
on spaces for example, and condition (25.11.0.3) is the natural generalization.

Remark 25.11.1.01H5 One feature of this description is that if one of the multiple
intersections Ui0 ∩ . . . ∩ Uin+1 is empty then the covering on the right hand side
may be the empty covering. Thus it is not automatically the case that the maps
In+1 → (cosknsknI)n+1 are surjective. This means that the geometric realization
of I may be an interesting (non-contractible) space.
In fact, let I ′

n ⊂ In be the subset consisting of those simplices i ∈ In such that
Ui ̸= ∅. It is easy to see that I ′ ⊂ I is a subsimplicial set, and that (I ′, {Ui}) is
a hypercovering. Hence we can always refine a hypercovering to a hypercovering
where none of the opens Ui is empty.

Remark 25.11.2.02N9 Let us repackage this information in yet another way. Namely,
suppose that (I, {Ui}) is a hypercovering of the topological space X. Given this
data we can construct a simplicial topological space U• by setting

Un =
∐

i∈In
Ui,

and where for given φ : [n]→ [m] we let morphisms U(φ) : Un → Um be the mor-
phism coming from the inclusions Ui ⊂ Uφ(i) for i ∈ In. This simplicial topological
space comes with an augmentation ϵ : U• → X. With this morphism the simplicial
space U• becomes a hypercovering of X along which one has cohomological descent
in the sense of [AGV71, Exposé Vbis]. In other words, Hn(U•, ϵ

∗F) = Hn(X,F).
(Insert future reference here to cohomology over simplicial spaces and cohomologi-
cal descent formulated in those terms.) Suppose that F is an abelian sheaf on X.
In this case the spectral sequence of Lemma 25.5.3 becomes the spectral sequence
with E1-term

Ep,q1 = Hq(Up, ϵ∗qF)⇒ Hp+q(U•, ϵ
∗F) = Hp+q(X,F)

comparing the total cohomology of ϵ∗F to the cohomology groups of F over the
pieces of U•. (Insert future reference to this spectral sequence here.)

In topology we often want to find hypercoverings of X which have the property that
all the Ui come from a given basis for the topology of X and that all the coverings
(25.11.0.2) and (25.11.0.3) are from a given cofinal collection of coverings. Here are
two example lemmas.

Lemma 25.11.3.01H6 Let X be a topological space. Let B be a basis for the topology
of X. There exists a hypercovering (I, {Ui}) of X such that each Ui is an element
of B.

Proof. Let n ≥ 0. Let us say that an n-truncated hypercovering of X is given by
an n-truncated simplicial set I and for each i ∈ Ia, 0 ≤ a ≤ n an open Ui of X such
that the conditions defining a hypercovering hold whenever they make sense. In
other words we require the inclusion relations and covering conditions only when
all simplices that occur in them are a-simplices with a ≤ n. The lemma follows if
we can prove that given a n-truncated hypercovering (I, {Ui}) with all Ui ∈ B we
can extend it to an (n+1)-truncated hypercovering without adding any a-simplices
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for a ≤ n. This we do as follows. First we consider the (n+ 1)-truncated simplicial
set I ′ defined by I ′ = skn+1(cosknI). Recall that

I ′
n+1 =

{
(i0, . . . , in+1) ∈ (In)n+2 such that

dnb−1(ia) = dna(ib) for all 0 ≤ a < b ≤ n+ 1

}
If i′ ∈ I ′

n+1 is degenerate, say i′ = sna(i) then we set Ui′ = Ui (this is forced on us
anyway by the second condition). We also set Ji′ = {i′} in this case. If i′ ∈ I ′

n+1
is nondegenerate, say i′ = (i0, . . . , in+1), then we choose a set Ji′ and an open
covering
(25.11.3.1)071K Ui0 ∩ . . . ∩ Uin+1 =

⋃
i∈Ji′

Ui,

with Ui ∈ B for i ∈ Ji′ . Set
In+1 =

∐
i′∈I′

n+1
Ji′

There is a canonical map π : In+1 → I ′
n+1 which is a bijection over the set of

degenerate simplices in I ′
n+1 by construction. For i ∈ In+1 we define dn+1

a (i) =
dn+1
a (π(i)). For i ∈ In we define sna(i) ∈ In+1 as the unique simplex lying over

the degenerate simplex sna(i) ∈ I ′
n+1. We omit the verification that this defines an

(n+ 1)-truncated hypercovering of X. □

Lemma 25.11.4.01H7 Let X be a topological space. Let B be a basis for the topology
of X. Assume that

(1) X is quasi-compact,
(2) each U ∈ B is quasi-compact open, and
(3) the intersection of any two quasi-compact opens in X is quasi-compact.

Then there exists a hypercovering (I, {Ui}) of X with the following properties
(1) each Ui is an element of the basis B,
(2) each of the In is a finite set, and in particular
(3) each of the coverings (25.11.0.1), (25.11.0.2), and (25.11.0.3) is finite.

Proof. This follows directly from the construction in the proof of Lemma 25.11.3
if we choose finite coverings by elements of B in (25.11.3.1). Details omitted. □

25.12. Constructing hypercoverings

094J Let C be a site. In this section we will think of a simplicial object of SR(C) as follows.
As usual, we set Kn = K([n]) and we denote K(φ) : Kn → Km the morphism
associated to φ : [m] → [n]. We may write Kn = {Un,i}i∈In . For φ : [m] → [n]
the morphism K(φ) : Kn → Km is given by a map α(φ) : In → Im and morphisms
fφ,i : Un,i → Um,α(φ)(i) for i ∈ In. The fact that K is a simplicial object of SR(C)
implies that (In, α(φ)) is a simplicial set and that fψ,α(φ)(i) ◦ fφ,i = fφ◦ψ,i when
ψ : [l]→ [m].
Lemma 25.12.1.0DAU Let C be a site. Let K be an r-truncated simplicial object of
SR(C). The following are equivalent

(1) K is split (Simplicial, Definition 14.18.1),
(2) fφ,i : Un,i → Um,α(φ)(i) is an isomorphism for r ≥ n ≥ 0, φ : [m] → [n]

surjective, i ∈ In, and
(3) fσn

j
,i : Un,i → Un+1,α(σn

j
)(i) is an isomorphism for 0 ≤ j ≤ n < r, i ∈ In.

The same holds for simplicial objects if in (2) and (3) we set r =∞.
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Proof. The splitting of a simplicial set is unique and is given by the nondegenerate
indices N(In) in each degree n, see Simplicial, Lemma 14.18.2. The coproduct
of two objects {Ui}i∈I and {Uj}j∈J of SR(C) is given by {Ul}l∈I⨿J with obvious
notation. Hence a splitting of K must be given by N(Kn) = {Ui}i∈N(In). The
equivalence of (1) and (2) now follows by unwinding the definitions. The equivalence
of (2) and (3) follows from the fact that any surjection φ : [m]→ [n] is a composition
of morphisms σkj with k = n, n+ 1, . . . ,m− 1. □

Lemma 25.12.2.0DAV Let C be a site with fibre products. Let B ⊂ Ob(C) be a subset.
Assume

(1) any object U of C has a covering {Uj → U}j∈J with Uj ∈ B, and
(2) if {Uj → U}j∈J is a covering with Uj ∈ B and {U ′ → U} is a morphism

with U ′ ∈ B, then {Uj → U}j∈J ⨿ {U ′ → U} is a covering.
Then for any X in C there is a hypercovering K of X such that Kn = {Un,i}i∈In
with Un,i ∈ B for all i ∈ In.

Proof. A warmup for this proof is the proof of Lemma 25.11.3 and we encourage
the reader to read that proof first.

First we replace C by the site C/X. After doing so we may assume that X is the
final object of C and that C has all finite limits (Categories, Lemma 4.18.4).

Let n ≥ 0. Let us say that an n-truncated B-hypercovering of X is given by an
n-truncated simplicial object K of SR(C) such that for i ∈ Ia, 0 ≤ a ≤ n we have
Ua,i ∈ B and such that K0 is a covering of X and Ka+1 → (coskaskaK)a+1 for
a = 0, . . . , n− 1 is a covering as in Definition 25.3.1.

Since X has a covering {U0,i → X}i∈I0 with Ui ∈ B by assumption, we get a 0-
truncated B-hypercovering of X. Observe that any 0-truncated B-hypercovering of
X is split, see Lemma 25.12.1.

The lemma follows if we can prove for n ≥ 0 that given a split n-truncated B-
hypercovering K of X we can extend it to a split (n+1)-truncated B-hypercovering
of X.

Construction of the extension. Consider the (n + 1)-truncated simplicial object
K ′ = skn+1(cosknK) of SR(C). Write

K ′
n+1 = {U ′

n+1,i}i∈I′
n+1

Since K = sknK ′ we have Ka = K ′
a for 0 ≤ a ≤ n. For every i′ ∈ I ′

n+1 we choose
a covering

(25.12.2.1)0DAW {gn+1,j : Un+1,j → U ′
n+1,i′}j∈Ji′

with Un+1,j ∈ B for j ∈ Ji′ . This is possible by our assumption on B in the lemma.
For 0 ≤ m ≤ n denote Nm ⊂ Im the subset of nondegenerate indices. We set

In+1 =
∐

φ:[n+1]→[m] surjective, 0≤m≤n
Nm ⨿

∐
i′∈I′

n+1
Ji′

For j ∈ In+1 we set

Un+1,j =
{
Um,i if j = (φ, i) where φ : [n+ 1]→ [m], i ∈ Nm
Un+1,j if j ∈ Ji′ where i′ ∈ I ′

n+1
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with obvious notation. We set Kn+1 = {Un+1,j}j∈In+1 . By construction Un+1,j is
an element of B for all j ∈ In+1. Let us define compatible maps

In+1 → I ′
n+1 and Kn+1 → K ′

n+1

Namely, the first map is given by (φ, i) 7→ α′(φ)(i) and (j ∈ Ji′) 7→ i′. For the
second map we use the morphisms

f ′
φ,i : Um,i → U ′

n+1,α′(φ)(i) and gn+1,j : Un+1,j → U ′
n+1,i′

We claim the morphism
Kn+1 → K ′

n+1 = (cosknsknK ′)n+1 = (cosknK)n+1

is a covering as in Definition 25.3.1. Namely, if i′ ∈ I ′
n+1, then either i′ is nonde-

generate and the inverse image of i′ in In+1 is equal to Ji′ and we get a covering
of U ′

n+1,i′ by our choice (25.12.2.1), or i′ is degenerate and the inverse image of i′
in In+1 is Ji′ ⨿ {(φ, i)} for a unique pair (φ, i) and we get a covering by our choice
(25.12.2.1) and assumption (2) of the lemma.
To finish the proof we have to define the morphisms K(φ) : Kn+1 → Km cor-
responding to morphisms φ : [m] → [n + 1], 0 ≤ m ≤ n and the morphisms
K(φ) : Km → Kn+1 corresponding to morphisms φ : [n + 1] → [m], 0 ≤ m ≤ n
satisfying suitable composition relations. For the first kind we use the composition

Kn+1 → K ′
n+1

K′(φ)−−−−→ K ′
m = Km

to define K(φ) : Kn+1 → Km. For the second kind, suppose given φ : [n+1]→ [m],
0 ≤ m ≤ n. We define the corresponding morphism K(φ) : Km → Kn+1 as follows:

(1) for i ∈ Im there is a unique surjective map ψ : [m] → [m0] and a unique
i0 ∈ Im0 nondegenerate such that α(ψ)(i0) = i3,

(2) we set φ0 = ψ0 ◦φ : [n+ 1]→ [m0] and we map i ∈ Im to (φ0, i0) ∈ In+1,
in other words, α(φ)(i) = (φ0, i0), and

(3) the morphism fφ,i : Um,i → Un+1,α(φ)(i) = Um0,i0 is the inverse of the
isomorphism fψ,i0 : Um0,i0 → Um,i (see Lemma 25.12.1).

We omit the straightforward but cumbersome verification that this defines a split
(n + 1)-truncated B-hypercovering of X extending the given n-truncated one. In
fact, everything is clear from the above, except for the verification that the mor-
phisms K(φ) compose correctly for all φ : [a]→ [b] with 0 ≤ a, b ≤ n+ 1. □

Lemma 25.12.3.0DAX Let C be a site with equalizers and fibre products. Let B ⊂ Ob(C)
be a subset. Assume that any object of C has a covering whose members are
elements of B. Then there is a hypercovering K such that Kn = {Ui}i∈In with
Ui ∈ B for all i ∈ In.

Proof. This proof is almost the same as the proof of Lemma 25.12.2. We will only
explain the differences.
Let n ≥ 1. Let us say that an n-truncated B-hypercovering is given by an n-
truncated simplicial object K of SR(C) such that for i ∈ Ia, 0 ≤ a ≤ n we have
Ua,i ∈ B and such that

(1) F (K0)# → ∗ is surjective,
(2) F (K1)# → F (K0)# × F (K0)# is surjective,

3For example, if i is nondegenerate, then m = m0 and ψ = id[m].

https://stacks.math.columbia.edu/tag/0DAX


25.12. CONSTRUCTING HYPERCOVERINGS 2230

(3) F (Ka+1)# → F ((coskaskaK)a+1)# for a = 1, . . . , n− 1 is surjective.
We first explicitly construct a split 1-truncated B-hypercovering.
Take I0 = B and K0 = {U}U∈B. Then (1) holds by our assumption on B. Set

Ω = {(U, V,W, a, b) | U, V,W ∈ B, a : U → V, b : U →W}
Then we set I1 = I0 ⨿ Ω. For i ∈ I1 we set U1,i = U0,i if i ∈ I0 and U1,i =
U if i = (U, V,W, a, b) ∈ Ω. The map K(σ0

0) : K0 → K1 corresponds to the
inclusion α(σ0

0) : I0 → I1 and the identity fσ0
0 ,i

: U0,i → U1,i on objects. The
maps K(δ1

0),K(δ1
1) : K1 → K0 correspond to the two maps I1 → I0 which are

the identity on I0 ⊂ I1 and map (U, V,W, a, b) ∈ Ω ⊂ I1 to V , resp. W . The
corresponding morphisms fδ1

0 ,i
, fδ1

1 ,i
: U1,i → U0,i are the identity if i ∈ I0 and a, b

in case i = (U, V,W, a, b) ∈ Ω. The reason that (2) holds is that any section of
F (K0)#×F (K0)# over an object U of C comes, after replacing U by the members
of a covering, from a map U → F (K0) × F (K0). This in turn means we have
V,W ∈ B and two morphisms U → V and U → W . Further replacing U by the
members of a covering we may assume U ∈ B as desired.
The lemma follows if we can prove that given a split n-truncated B-hypercovering
K for n ≥ 1 we can extend it to a split (n+1)-truncated B-hypercovering. Here the
argument proceeds exactly as in the proof of Lemma 25.12.2. We omit the precise
details, except for the following comments. First, we do not need assumption
(2) in the proof of the current lemma as we do not need the morphism Kn+1 →
(cosknK)n+1 to be covering; we only need it to induce a surjection on associated
sheaves of sets which follows from Sites, Lemma 7.12.4. Second, the assumption
that C has fibre products and equalizers guarantees that SR(C) has fibre products
and equalizers and F commutes with these (Lemma 25.2.3). This suffices assure us
the coskeleton functors used exist (see Simplicial, Remark 14.19.11 and Categories,
Lemma 4.18.2). □

Lemma 25.12.4.0DAY Let f : C → D be a morphism of sites given by the functor
u : D → C. Assume D and C have equalizers and fibre products and u commutes
with them. If a simplicial object K of SR(D) is a hypercovering, then u(K) is a
hypercovering.

Proof. If we write Kn = {Un,i}i∈In as in the introduction to this section, then u(K)
is the object of SR(C) given by u(Kn) = {u(Ui)}i∈In . By Sites, Lemma 7.13.5 we
have f−1h#

U = h#
u(U) for U ∈ Ob(D). This means that f−1F (Kn)# = F (u(Kn))#

for all n. Let us check the conditions (1), (2), (3) for u(K) to be a hypercovering
from Definition 25.6.1. Since f−1 is an exact functor, we find that

F (u(K0))# = f−1F (K0)# → f−1∗ = ∗
is surjective as a pullback of a surjective map and we get (1). Similarly,
F (u(K1))# = f−1F (K1)# → f−1(F (K0)× F (K0))# = F (u(K0))# × F (u(K0))#

is surjective as a pullback and we get (2). For condition (3), in order to conclude
by the same method it suffices if

F ((cosknsknu(K))n+1)# = f−1F ((cosknsknK)n+1)#

The above shows that f−1F (−) = F (u(−)). Thus it suffices to show that u com-
mutes with the limits used in defining (cosknsknK)n+1 for n ≥ 1. By Simplicial,
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Remark 14.19.11 these limits are finite connected limits and u commutes with these
by assumption. □

Lemma 25.12.5.0DAZ Let C, D be sites. Let u : D → C be a continuous functor.
Assume D and C have fibre products and u commutes with them. Let Y ∈ D and
K ∈ SR(D, Y ) a hypercovering of Y . Then u(K) is a hypercovering of u(Y ).

Proof. This is easier than the proof of Lemma 25.12.4 because the notion of being
a hypercovering of an object is stronger, see Definitions 25.3.3 and 25.3.1. Namely,
u sends coverings to coverings by the definition of a morphism of sites. It suffices to
check u commutes with the limits used in defining (cosknsknK)n+1 for n ≥ 1. This
is clear because the induced functor D/Y → C/X commutes with all finite limits
(and source and target have all finite limits by Categories, Lemma 4.18.4). □

Lemma 25.12.6.094K Let C be a site. Let B ⊂ Ob(C) be a subset. Assume
(1) C has fibre products,
(2) for all X ∈ Ob(C) there exists a finite covering {Ui → X}i∈I with Ui ∈ B,
(3) if {Ui → X}i∈I is a finite covering with Ui ∈ B and U → X is a morphism

with U ∈ B, then {Ui → X}i∈I ⨿ {U → X} is a covering.
Then for every X there exists a hypercovering K of X such that each Kn = {Un,i →
X}i∈In with In finite and Un,i ∈ B.

Proof. This lemma is the analogue of Lemma 25.11.4 for sites. To prove the lemma
we follow exactly the proof of Lemma 25.12.2 paying attention to the following two
points

(a) We choose our initial covering {U0,i → X}i∈I0 with U0,i ∈ B such that
the index set I0 is finite, and

(b) in choosing the coverings (25.12.2.1) we choose Ji′ finite.
The reader sees easily that with these modifications we end up with finite index
sets In for all n. □

Remark 25.12.7.0DB0 Let C be a site. Let K and L be objects of SR(C). Write
K = {Ui}i∈I and L = {Vj}j∈J . Assume U =

∐
i∈I Ui and V =

∐
j∈J Vj exist.

Then we get
MorSR(C)(K,L) −→ MorC(U, V )

as follows. Given f : K → L given by α : I → J and fi : Ui → Vα(i) we obtain a
transformation of functors

MorC(V,−) =
∏

j∈J
MorC(Vj ,−)→

∏
i∈I

MorC(Ui,−) = MorC(U,−)

sending (gj)j∈J to (gα(i)◦fi)i∈I . Hence the Yoneda lemma produces the correspond-
ing map U → V . Of course, U → V maps the summand Ui into the summand Vα(i)
via the morphism fi.

Remark 25.12.8.0DB1 Let C be a site. Assume C has fibre products and equalizers and
let K be a hypercovering. Write Kn = {Un,i}i∈In . Suppose that

(a) Un =
∐
i∈In Un,i exists, and

(b)
∐
i∈In hUn,i → hUn induces an isomorphism on sheafifications.

Then we get another simplicial object L of SR(C) with Ln = {Un}, see Remark
25.12.7. Now we claim that L is a hypercovering. To see this we check conditions
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(1), (2), (3) of Definition 25.6.1. Condition (1) follows from (b) and (1) for K.
Condition (2) follows in exactly the same way. Condition (3) follows because

F ((cosknsknL)n+1)# = ((cosknsknF (L)#)n+1)
= ((cosknsknF (K)#)n+1)
= F ((cosknsknK)n+1)#

for n ≥ 1 and hence the condition for K implies the condition for L exactly as in (1)
and (2). Note that F commutes with connected limits and sheafification is exact
proving the first and last equality; the middle equality follows as F (K)# = F (L)#

by (b).

Remark 25.12.9.0DB2 Let C be a site. Let X ∈ Ob(C). Assume C has fibre products
and let K be a hypercovering of X. Write Kn = {Un,i}i∈In . Suppose that

(a) Un =
∐
i∈In Un,i exists,

(b) given morphisms (α, fi) : {Ui}i∈I → {Vj}j∈J and (β, gk) : {Wk}k∈K →
{Vj}j∈J in SR(C) such that U =

∐
Ui, V =

∐
Vj , and W =

∐
Wj exist,

then U ×V W =
∐

(i,j,k),α(i)=j=β(k) Ui ×Vj Wk,
(c) if (α, fi) : {Ui}i∈I → {Vj}j∈J is a covering in the sense of Definition 25.3.1

and U =
∐
Ui and V =

∐
Vj exist, then the corresponding morphism

U → V of Remark 25.12.7 is a covering of C.
Then we get another simplicial object L of SR(C) with Ln = {Un}, see Remark
25.12.7. Now we claim that L is a hypercovering of X. To see this we check
conditions (1), (2) of Definition 25.3.3. Condition (1) follows from (c) and (1) for
K because (1) for K says K0 = {U0,i}i∈I0 is a covering of {X} in the sense of
Definition 25.3.1. Condition (2) follows because C/X has all finite limits hence
SR(C/X) has all finite limits, and condition (b) says the construction of “taking
disjoint unions” commutes with these fimite limits. Thus the morphism

Ln+1 −→ (cosknsknL)n+1

is a covering as it is the consequence of applying our “taking disjoint unions” functor
to the morphism

Kn+1 −→ (cosknsknK)n+1

which is assumed to be a covering in the sense of Definition 25.3.1 by (2) for K.
This makes sense because property (b) in particular assures us that if we start with
a finite diagram of semi-representable objects over X for which we can take disjoint
unions, then the limit of the diagram in SR(C/X) still is a semi-representable object
over X for which we can take disjoint unions.
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CHAPTER 26

Schemes

01H8 26.1. Introduction

01H9 In this document we define schemes. A basic reference is [DG67].

26.2. Locally ringed spaces

01HA Recall that we defined ringed spaces in Sheaves, Section 6.25. Briefly, a ringed
space is a pair (X,OX) consisting of a topological space X and a sheaf of rings OX .
A morphism of ringed spaces f : (X,OX)→ (Y,OY ) is given by a continuous map
f : X → Y and an f -map of sheaves of rings f ♯ : OY → OX . You can think of f ♯
as a map OY → f∗OX , see Sheaves, Definition 6.21.7 and Lemma 6.21.8.

A good geometric example of this to keep in mind is C∞-manifolds and morphisms
of C∞-manifolds. Namely, if M is a C∞-manifold, then the sheaf C∞

M of smooth
functions is a sheaf of rings on M . And any map f : M → N of manifolds is
smooth if and only if for every local section h of C∞

N the composition h◦f is a local
section of C∞

M . Thus a smooth map f gives rise in a natural way to a morphism of
ringed spaces

f : (M, C∞
M ) −→ (N, C∞

N )
see Sheaves, Example 6.25.2. It is instructive to consider what happens to stalks.
Namely, let m ∈ M with image f(m) = n ∈ N . Recall that the stalk C∞

M,m is the
ring of germs of smooth functions at m, see Sheaves, Example 6.11.4. The algebra
of germs of functions on (M,m) is a local ring with maximal ideal the functions
which vanish at m. Similarly for C∞

N,n. The map on stalks f ♯ : C∞
N,n → C∞

M,m maps
the maximal ideal into the maximal ideal, simply because f(m) = n.

In algebraic geometry we study schemes. On a scheme the sheaf of rings is not
determined by an intrinsic property of the space. The spectrum of a ring R (see
Algebra, Section 10.17) endowed with a sheaf of rings constructed out of R (see
below), will be our basic building block. It will turn out that the stalks of O on
Spec(R) are the local rings of R at its primes. There are two reasons to introduce
locally ringed spaces in this setting: (1) There is in general no mechanism that
assigns to a continuous map of spectra a map of the corresponding rings. This is
why we add as an extra datum the map f ♯. (2) If we consider morphisms of these
spectra in the category of ringed spaces, then the maps on stalks may not be local
homomorphisms. Since our geometric intuition says it should we introduce locally
ringed spaces as follows.

Definition 26.2.1.01HB Locally ringed spaces.
(1) A locally ringed space (X,OX) is a pair consisting of a topological space

X and a sheaf of rings OX all of whose stalks are local rings.

2236
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(2) Given a locally ringed space (X,OX) we say that OX,x is the local ring
of X at x. We denote mX,x or simply mx the maximal ideal of OX,x.
Moreover, the residue field of X at x is the residue field κ(x) = OX,x/mx.

(3) A morphism of locally ringed spaces (f, f ♯) : (X,OX) → (Y,OY ) is a
morphism of ringed spaces such that for all x ∈ X the induced ring map
OY,f(x) → OX,x is a local ring map.

We will usually suppress the sheaf of rings OX in the notation when discussing
locally ringed spaces. We will simply refer to “the locally ringed space X”. We will
by abuse of notation think of X also as the underlying topological space. Finally
we will denote the corresponding sheaf of rings OX as the structure sheaf of X.
In addition, it is customary to denote the maximal ideal of the local ring OX,x by
mX,x or simply mx. We will say “let f : X → Y be a morphism of locally ringed
spaces” thereby suppressing the structure sheaves even further. In this case, we will
by abuse of notation think of f : X → Y also as the underlying continuous map of
topological spaces. The f -map corresponding to f will customarily be denoted f ♯.
The condition that f is a morphism of locally ringed spaces can then be expressed
by saying that for every x ∈ X the map on stalks

f ♯x : OY,f(x) −→ OX,x
maps the maximal ideal mY,f(x) into mX,x.
Let us use these notational conventions to show that the collection of locally ringed
spaces and morphisms of locally ringed spaces forms a category. In order to see
this we have to show that the composition of morphisms of locally ringed spaces
is a morphism of locally ringed spaces. OK, so let f : X → Y and g : Y → Z be
morphism of locally ringed spaces. The composition of f and g is defined in Sheaves,
Definition 6.25.3. Let x ∈ X. By Sheaves, Lemma 6.21.10 the composition

OZ,g(f(x))
g♯−→ OY,f(x)

f♯−→ OX,x
is the associated map on stalks for the morphism g ◦ f . The result follows since a
composition of local ring homomorphisms is a local ring homomorphism.
A pleasing feature of the definition is the fact that the functor

Locally ringed spaces −→ Ringed spaces
reflects isomorphisms (plus more). Here is a less abstract statement.

Lemma 26.2.2.01HC Let X, Y be locally ringed spaces. If f : X → Y is an isomorphism
of ringed spaces, then f is an isomorphism of locally ringed spaces.

Proof. This follows trivially from the corresponding fact in algebra: Suppose A, B
are local rings. Any isomorphism of rings A→ B is a local ring homomorphism. □

26.3. Open immersions of locally ringed spaces

01HD
Definition 26.3.1.01HE Let f : X → Y be a morphism of locally ringed spaces. We say
that f is an open immersion if f is a homeomorphism of X onto an open subset of
Y , and the map f−1OY → OX is an isomorphism.

The following construction is parallel to Sheaves, Definition 6.31.2 (3).

https://stacks.math.columbia.edu/tag/01HC
https://stacks.math.columbia.edu/tag/01HE
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Example 26.3.2.01HF Let X be a locally ringed space. Let U ⊂ X be an open subset.
Let OU = OX |U be the restriction of OX to U . For u ∈ U the stalk OU,u is equal
to the stalk OX,u, and hence is a local ring. Thus (U,OU ) is a locally ringed space
and the morphism j : (U,OU )→ (X,OX) is an open immersion.

Definition 26.3.3.01HG Let X be a locally ringed space. Let U ⊂ X be an open subset.
The locally ringed space (U,OU ) of Example 26.3.2 above is the open subspace of
X associated to U .

Lemma 26.3.4.01HH Let f : X → Y be an open immersion of locally ringed spaces. Let
j : V = f(X)→ Y be the open subspace of Y associated to the image of f . There
is a unique isomorphism f ′ : X ∼= V of locally ringed spaces such that f = j ◦ f ′.

Proof. Let f ′ be the homeomorphism between X and V induced by f . Then
f = j ◦ f ′ as maps of topological spaces. Since there is an isomorphism of sheaves
f ♯ : f−1(OY ) → OX , there is an isomorphism of rings f ♯ : Γ(U, f−1(OY )) →
Γ(U,OX) for each open subset U ⊂ X. Since OV = j−1OY and f−1 = f ′−1j−1

(Sheaves, Lemma 6.21.6) we see that f−1OY = f ′−1OV , hence Γ(U, f ′−1(OV )) →
Γ(U, f−1(OY )) is an isomorphism for every U ⊂ X open. By composing these we
get an isomorphism of rings

Γ(U, f ′−1(OV ))→ Γ(U,OX)

for each open subset U ⊂ X, and therefore an isomorphism of sheaves f−1(OV )→
OX . In other words, we have an isomorphism f ′♯ : f ′−1(OV )→ OX and therefore
an isomorphism of locally ringed spaces (f ′, f ′♯) : (X,OX)→ (V,OV ) (use Lemma
26.2.2). Note that f = j ◦f ′ as morphisms of locally ringed spaces by construction.

Suppose we have another morphism f ′′ : (X,OX)→ (V,OV ) such that f = j ◦ f ′′.
At any point x ∈ X, we have j(f ′(x)) = j(f ′′(x)) from which it follows that
f ′(x) = f ′′(x) since j is the inclusion map; therefore f ′ and f ′′ are the same as
morphisms of topological spaces. On structure sheaves, for each open subset U ⊂ X
we have a commutative diagram

Γ(U, f−1(OY ))

∼=

��

∼= // Γ(U,OX)

Γ(U, f ′−1(OV ))

f ′♯

88

f ′′♯

AA

from which we see that f ′♯ and f ′′♯ define the same morphism of sheaves. □

From now on we do not distinguish between open subsets and their associated
subspaces.

Lemma 26.3.5.01HI Let f : X → Y be a morphism of locally ringed spaces. Let
U ⊂ X, and V ⊂ Y be open subsets. Suppose that f(U) ⊂ V . There exists a
unique morphism of locally ringed spaces f |U : U → V such that the following

https://stacks.math.columbia.edu/tag/01HF
https://stacks.math.columbia.edu/tag/01HG
https://stacks.math.columbia.edu/tag/01HH
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diagram is a commutative square of locally ringed spaces
U

f |U
��

// X

f

��
V // Y

Proof. Omitted. □

In the following we will use without further mention the following fact which follows
from the lemma above. Given any morphism f : Y → X of locally ringed spaces,
and any open subset U ⊂ X such that f(Y ) ⊂ U , then there exists a unique
morphism of locally ringed spaces Y → U such that the composition Y → U → X
is equal to f . In fact, we will even by abuse of notation write f : Y → U since this
rarely gives rise to confusion.

26.4. Closed immersions of locally ringed spaces

01HJ We follow our conventions introduced in Modules, Definition 17.13.1.
Definition 26.4.1.01HK Let i : Z → X be a morphism of locally ringed spaces. We say
that i is a closed immersion if:

(1) The map i is a homeomorphism of Z onto a closed subset of X.
(2) The map OX → i∗OZ is surjective; let I denote the kernel.
(3) The OX -module I is locally generated by sections.

Lemma 26.4.2.01HL Let f : Z → X be a morphism of locally ringed spaces. In order for
f to be a closed immersion it suffices that there exists an open covering X =

⋃
Ui

such that each f : f−1Ui → Ui is a closed immersion.
Proof. Omitted. □

Example 26.4.3.01HM Let X be a locally ringed space. Let I ⊂ OX be a sheaf of ideals
which is locally generated by sections as a sheaf of OX -modules. Let Z be the
support of the sheaf of rings OX/I. This is a closed subset of X, by Modules,
Lemma 17.5.3. Denote i : Z → X the inclusion map. By Modules, Lemma 17.6.1
there is a unique sheaf of rings OZ on Z with i∗OZ = OX/I. For any z ∈ Z the
stalk OZ,z is equal to a quotient OX,i(z)/Ii(z) of a local ring and nonzero, hence
a local ring. Thus i : (Z,OZ) → (X,OX) is a closed immersion of locally ringed
spaces.
Definition 26.4.4.01HN Let X be a locally ringed space. Let I be a sheaf of ideals on X
which is locally generated by sections. The locally ringed space (Z,OZ) of Example
26.4.3 above is the closed subspace of X associated to the sheaf of ideals I.
Lemma 26.4.5.01HO Let f : X → Y be a closed immersion of locally ringed spaces. Let
I be the kernel of the map OY → f∗OX . Let i : Z → Y be the closed subspace
of Y associated to I. There is a unique isomorphism f ′ : X ∼= Z of locally ringed
spaces such that f = i ◦ f ′.
Proof. Omitted. □

Lemma 26.4.6.01HP Let X, Y be locally ringed spaces. Let I ⊂ OX be a sheaf of ideals
locally generated by sections. Let i : Z → X be the associated closed subspace. A
morphism f : Y → X factors through Z if and only if the map f∗I → f∗OX = OY
is zero. If this is the case the morphism g : Y → Z such that f = i ◦ g is unique.

https://stacks.math.columbia.edu/tag/01HK
https://stacks.math.columbia.edu/tag/01HL
https://stacks.math.columbia.edu/tag/01HM
https://stacks.math.columbia.edu/tag/01HN
https://stacks.math.columbia.edu/tag/01HO
https://stacks.math.columbia.edu/tag/01HP
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Proof. Clearly if f factors as Y → Z → X then the map f∗I → OY is zero.
Conversely suppose that f∗I → OY is zero. Pick any y ∈ Y , and consider the ring
map f ♯y : OX,f(y) → OY,y. Since the composition If(y) → OX,f(y) → OY,y is zero
by assumption and since f ♯y(1) = 1 we see that 1 ̸∈ If(y), i.e., If(y) ̸= OX,f(y). We
conclude that f(Y ) ⊂ Z = Supp(OX/I). Hence f = i ◦ g where g : Y → Z is
continuous. Consider the map f ♯ : OX → f∗OY . The assumption f∗I → OY is
zero implies that the composition I → OX → f∗OY is zero by adjointness of f∗ and
f∗. In other words, we obtain a morphism of sheaves of rings f ♯ : OX/I → f∗OY .
Note that f∗OY = i∗g∗OY and that OX/I = i∗OZ . By Sheaves, Lemma 6.32.4 we
obtain a unique morphism of sheaves of rings g♯ : OZ → g∗OY whose pushforward
under i is f ♯. We omit the verification that (g, g♯) defines a morphism of locally
ringed spaces and that f = i ◦ g as a morphism of locally ringed spaces. The
uniqueness of (g, g♯) was pointed out above. □

Lemma 26.4.7.01HQ Let f : X → Y be a morphism of locally ringed spaces. Let I ⊂ OY
be a sheaf of ideals which is locally generated by sections. Let i : Z → Y be the
closed subspace associated to the sheaf of ideals I. Let J be the image of the map
f∗I → f∗OY = OX . Then this ideal is locally generated by sections. Moreover,
let i′ : Z ′ → X be the associated closed subspace of X. There exists a unique
morphism of locally ringed spaces f ′ : Z ′ → Z such that the following diagram is a
commutative square of locally ringed spaces

Z ′

f ′

��

i′
// X

f

��
Z

i // Y

Moreover, this diagram is a fibre square in the category of locally ringed spaces.

Proof. The ideal J is locally generated by sections by Modules, Lemma 17.8.2.
The rest of the lemma follows from the characterization, in Lemma 26.4.6 above,
of what it means for a morphism to factor through a closed subspace. □

26.5. Affine schemes

01HR Let R be a ring. Consider the topological space Spec(R) associated to R, see
Algebra, Section 10.17. We will endow this space with a sheaf of rings OSpec(R)
and the resulting pair (Spec(R),OSpec(R)) will be an affine scheme.

Recall that Spec(R) has a basis of open sets D(f), f ∈ R which we call standard
opens, see Algebra, Definition 10.17.3. In addition, the intersection of two standard
opens is another: D(f) ∩D(g) = D(fg), f, g ∈ R.

Lemma 26.5.1.01HS Let R be a ring. Let f ∈ R.
(1) If g ∈ R and D(g) ⊂ D(f), then

(a) f is invertible in Rg,
(b) ge = af for some e ≥ 1 and a ∈ R,
(c) there is a canonical ring map Rf → Rg, and
(d) there is a canonical Rf -module map Mf →Mg for any R-module M .

(2) Any open covering of D(f) can be refined to a finite open covering of the
form D(f) =

⋃n
i=1 D(gi).

https://stacks.math.columbia.edu/tag/01HQ
https://stacks.math.columbia.edu/tag/01HS
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(3) If g1, . . . , gn ∈ R, then D(f) ⊂
⋃
D(gi) if and only if g1, . . . , gn generate

the unit ideal in Rf .

Proof. Recall that D(g) = Spec(Rg) (see Algebra, Lemma 10.17.6). Thus (a) holds
because f maps to an element of Rg which is not contained in any prime ideal,
and hence invertible, see Algebra, Lemma 10.17.2. Write the inverse of f in Rg as
a/gd. This means gd − af is annihilated by a power of g, whence (b). For (c), the
map Rf → Rg exists by (a) from the universal property of localization, or we can
define it by mapping b/fn to anb/gne. The equality Mf = M ⊗R Rf can be used
to obtain the map on modules, or we can define Mf → Mg by mapping x/fn to
anx/gne.
Recall that D(f) is quasi-compact, see Algebra, Lemma 10.29.1. Hence the second
statement follows directly from the fact that the standard opens form a basis for
the topology.
The third statement follows directly from Algebra, Lemma 10.17.2. □

In Sheaves, Section 6.30 we defined the notion of a sheaf on a basis, and we showed
that it is essentially equivalent to the notion of a sheaf on the space, see Sheaves,
Lemmas 6.30.6 and 6.30.9. Moreover, we showed in Sheaves, Lemma 6.30.4 that it
is sufficient to check the sheaf condition on a cofinal system of open coverings for
each standard open. By the lemma above it suffices to check on the finite coverings
by standard opens.

Definition 26.5.2.01HT Let R be a ring.
(1) A standard open covering of Spec(R) is a covering Spec(R) =

⋃n
i=1 D(fi),

where f1, . . . , fn ∈ R.
(2) Suppose that D(f) ⊂ Spec(R) is a standard open. A standard open

covering of D(f) is a covering D(f) =
⋃n
i=1 D(gi), where g1, . . . , gn ∈ R.

Let R be a ring. Let M be an R-module. We will define a presheaf M̃ on the basis
of standard opens. Suppose that U ⊂ Spec(R) is a standard open. If f, g ∈ R
are such that D(f) = D(g), then by Lemma 26.5.1 above there are canonical maps
Mf →Mg and Mg →Mf which are mutually inverse. Hence we may choose any f
such that U = D(f) and define

M̃(U) = Mf .

Note that if D(g) ⊂ D(f), then by Lemma 26.5.1 above we have a canonical map

M̃(D(f)) = Mf −→Mg = M̃(D(g)).
Clearly, this defines a presheaf of abelian groups on the basis of standard opens. If
M = R, then R̃ is a presheaf of rings on the basis of standard opens.

Let us compute the stalk of M̃ at a point x ∈ Spec(R). Suppose that x corresponds
to the prime p ⊂ R. By definition of the stalk we see that

M̃x = colimf∈R,f ̸∈pMf

Here the set {f ∈ R, f ̸∈ p} is preordered by the rule f ≥ f ′ ⇔ D(f) ⊂ D(f ′). If
f1, f2 ∈ R \ p, then we have f1f2 ≥ f1 in this ordering. Hence by Algebra, Lemma
10.9.9 we conclude that

M̃x = Mp.

https://stacks.math.columbia.edu/tag/01HT
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Next, we check the sheaf condition for the standard open coverings. If D(f) =⋃n
i=1 D(gi), then the sheaf condition for this covering is equivalent with the exact-

ness of the sequence

0→Mf →
⊕

Mgi →
⊕

Mgigj .

Note that D(gi) = D(fgi), and hence we can rewrite this sequence as the sequence

0→Mf →
⊕

Mfgi →
⊕

Mfgigj .

In addition, by Lemma 26.5.1 above we see that g1, . . . , gn generate the unit ideal
in Rf . Thus we may apply Algebra, Lemma 10.24.1 to the module Mf over Rf and
the elements g1, . . . , gn. We conclude that the sequence is exact. By the remarks
made above, we see that M̃ is a sheaf on the basis of standard opens.

Thus we conclude from the material in Sheaves, Section 6.30 that there exists a
unique sheaf of rings OSpec(R) which agrees with R̃ on the standard opens. Note
that by our computation of stalks above, the stalks of this sheaf of rings are all
local rings.

Similarly, for any R-module M there exists a unique sheaf of OSpec(R)-modules F
which agrees with M̃ on the standard opens, see Sheaves, Lemma 6.30.12.

Definition 26.5.3.01HU Let R be a ring.
(1) The structure sheaf OSpec(R) of the spectrum of R is the unique sheaf of

rings OSpec(R) which agrees with R̃ on the basis of standard opens.
(2) The locally ringed space (Spec(R),OSpec(R)) is called the spectrum of R

and denoted Spec(R).
(3) The sheaf of OSpec(R)-modules extending M̃ to all opens of Spec(R) is

called the sheaf of OSpec(R)-modules associated to M . This sheaf is de-
noted M̃ as well.

We summarize the results obtained so far.

Lemma 26.5.4.01HV Let R be a ring. Let M be an R-module. Let M̃ be the sheaf of
OSpec(R)-modules associated to M .

(1) We have Γ(Spec(R),OSpec(R)) = R.
(2) We have Γ(Spec(R), M̃) = M as an R-module.
(3) For every f ∈ R we have Γ(D(f),OSpec(R)) = Rf .
(4) For every f ∈ R we have Γ(D(f), M̃) = Mf as an Rf -module.
(5) Whenever D(g) ⊂ D(f) the restriction mappings on OSpec(R) and M̃ are

the maps Rf → Rg and Mf →Mg from Lemma 26.5.1.
(6) Let p be a prime of R, and let x ∈ Spec(R) be the corresponding point.

We have OSpec(R),x = Rp.
(7) Let p be a prime of R, and let x ∈ Spec(R) be the corresponding point.

We have M̃x = Mp as an Rp-module.
Moreover, all these identifications are functorial in the R module M . In particular,
the functor M 7→ M̃ is an exact functor from the category of R-modules to the
category of OSpec(R)-modules.

https://stacks.math.columbia.edu/tag/01HU
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Proof. Assertions (1) - (7) are clear from the discussion above. The exactness of the
functor M 7→ M̃ follows from the fact that the functor M 7→ Mp is exact and the
fact that exactness of short exact sequences may be checked on stalks, see Modules,
Lemma 17.3.1. □

Definition 26.5.5.01HW An affine scheme is a locally ringed space isomorphic as a locally
ringed space to Spec(R) for some ring R. A morphism of affine schemes is a
morphism in the category of locally ringed spaces.

It turns out that affine schemes play a special role among all locally ringed spaces,
which is what the next section is about.

26.6. The category of affine schemes

01HX Note that if Y is an affine scheme, then its points are in canonical 1 − 1 bijection
with prime ideals in Γ(Y,OY ).

Lemma 26.6.1.01HY Let X be a locally ringed space. Let Y be an affine scheme. Let
f ∈ Mor(X,Y ) be a morphism of locally ringed spaces. Given a point x ∈ X
consider the ring maps

Γ(Y,OY ) f♯−→ Γ(X,OX)→ OX,x
Let p ⊂ Γ(Y,OY ) denote the inverse image of mx. Let y ∈ Y be the corresponding
point. Then f(x) = y.

Proof. Consider the commutative diagram

Γ(X,OX) // OX,x

Γ(Y,OY ) //

OO

OY,f(x)

OO

(see the discussion of f -maps below Sheaves, Definition 6.21.7). Since the right
vertical arrow is local we see that mf(x) is the inverse image of mx. The result
follows. □

Lemma 26.6.2.01HZ Let X be a locally ringed space. Let f ∈ Γ(X,OX). The set
D(f) = {x ∈ X | image f ̸∈ mx}

is open. Moreover f |D(f) has an inverse.

Proof. This is a special case of Modules, Lemma 17.25.10, but we also give a direct
proof. Suppose that U ⊂ X and V ⊂ X are two open subsets such that f |U has an
inverse g and f |V has an inverse h. Then clearly g|U∩V = h|U∩V . Thus it suffices to
show that f is invertible in an open neighbourhood of any x ∈ D(f). This is clear
because f ̸∈ mx implies that f ∈ OX,x has an inverse g ∈ OX,x which means there
is some open neighbourhood x ∈ U ⊂ X so that g ∈ OX(U) and g · f |U = 1. □

Lemma 26.6.3.01I0 In Lemma 26.6.2 above, if X is an affine scheme, then the open
D(f) agrees with the standard open D(f) defined previously (in Algebra, Definition
10.17.1).

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/01HW
https://stacks.math.columbia.edu/tag/01HY
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Lemma 26.6.4.01I1 A reference for this
fact is [DG67, II,
Err 1, Prop. 1.8.1]
where it is
attributed to J.
Tate.

Let X be a locally ringed space. Let Y be an affine scheme. The
map

Mor(X,Y ) −→ Hom(Γ(Y,OY ),Γ(X,OX))
which maps f to f ♯ (on global sections) is bijective.

Proof. Since Y is affine we have (Y,OY ) ∼= (Spec(R),OSpec(R)) for some ring R.
During the proof we will use facts about Y and its structure sheaf which are direct
consequences of things we know about the spectrum of a ring, see e.g. Lemma
26.5.4.

Motivated by the lemmas above we construct the inverse map. Let ψY : Γ(Y,OY )→
Γ(X,OX) be a ring map. First, we define the corresponding map of spaces

Ψ : X −→ Y

by the rule of Lemma 26.6.1. In other words, given x ∈ X we define Ψ(x) to be
the point of Y corresponding to the prime in Γ(Y,OY ) which is the inverse image
of mx under the composition Γ(Y,OY ) ψY−−→ Γ(X,OX)→ OX,x.

We claim that the map Ψ : X → Y is continuous. The standard opens D(g), for
g ∈ Γ(Y,OY ) are a basis for the topology of Y . Thus it suffices to prove that
Ψ−1(D(g)) is open. By construction of Ψ the inverse image Ψ−1(D(g)) is exactly
the set D(ψY (g)) ⊂ X which is open by Lemma 26.6.2. Hence Ψ is continuous.

Next we construct a Ψ-map of sheaves from OY to OX . By Sheaves, Lemma 6.30.14
it suffices to define ring maps ψD(g) : Γ(D(g),OY )→ Γ(Ψ−1(D(g)),OX) compatible
with restriction maps. We have a canonical isomorphism Γ(D(g),OY ) = Γ(Y,OY )g,
because Y is an affine scheme. Because ψY (g) is invertible on D(ψY (g)) we see that
there is a canonical map

Γ(Y,OY )g −→ Γ(Ψ−1(D(g)),OX) = Γ(D(ψY (g)),OX)

extending the map ψY by the universal property of localization. Note that there is
no choice but to take the canonical map here! And we take this, combined with the
canonical identification Γ(D(g),OY ) = Γ(Y,OY )g, to be ψD(g). This is compatible
with localization since the restriction mapping on the affine schemes are defined in
terms of the universal properties of localization also, see Lemmas 26.5.4 and 26.5.1.

Thus we have defined a morphism of ringed spaces (Ψ, ψ) : (X,OX) → (Y,OY )
recovering ψY on global sections. To see that it is a morphism of locally ringed
spaces we have to show that the induced maps on local rings

ψx : OY,Ψ(x) −→ OX,x

are local. This follows immediately from the commutative diagram of the proof of
Lemma 26.6.1 and the definition of Ψ.

Finally, we have to show that the constructions (Ψ, ψ) 7→ ψY and the construction
ψY 7→ (Ψ, ψ) are inverse to each other. Clearly, ψY 7→ (Ψ, ψ) 7→ ψY . Hence the
only thing to prove is that given ψY there is at most one pair (Ψ, ψ) giving rise
to it. The uniqueness of Ψ was shown in Lemma 26.6.1 and given the uniqueness
of Ψ the uniqueness of the map ψ was pointed out during the course of the proof
above. □

https://stacks.math.columbia.edu/tag/01I1
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Lemma 26.6.5.01I2 The category of affine schemes is equivalent to the opposite of the
category of rings. The equivalence is given by the functor that associates to an
affine scheme the global sections of its structure sheaf.

Proof. This is now clear from Definition 26.5.5 and Lemma 26.6.4. □

Lemma 26.6.6.01I3 Let Y be an affine scheme. Let f ∈ Γ(Y,OY ). The open subspace
D(f) is an affine scheme.

Proof. We may assume that Y = Spec(R) and f ∈ R. Consider the morphism
of affine schemes ϕ : U = Spec(Rf ) → Spec(R) = Y induced by the ring map
R → Rf . By Algebra, Lemma 10.17.6 we know that it is a homeomorphism onto
D(f). On the other hand, the map ϕ−1OY → OU is an isomorphism on stalks,
hence an isomorphism. Thus we see that ϕ is an open immersion. We conclude
that D(f) is isomorphic to U by Lemma 26.3.4. □

Lemma 26.6.7.01I4 The category of affine schemes has finite products, and fibre prod-
ucts. In other words, it has finite limits. Moreover, the products and fibre products
in the category of affine schemes are the same as in the category of locally ringed
spaces. In a formula, we have (in the category of locally ringed spaces)

Spec(R)× Spec(S) = Spec(R⊗Z S)

and given ring maps R→ A, R→ B we have

Spec(A)×Spec(R) Spec(B) = Spec(A⊗R B).

Proof. This is just an application of Lemma 26.6.4. First of all, by that lemma, the
affine scheme Spec(Z) is the final object in the category of locally ringed spaces.
Thus the first displayed formula follows from the second. To prove the second note
that for any locally ringed space X we have

Mor(X,Spec(A⊗R B)) = Hom(A⊗R B,OX(X))
= Hom(A,OX(X))×Hom(R,OX(X)) Hom(B,OX(X))
= Mor(X,Spec(A))×Mor(X,Spec(R)) Mor(X,Spec(B))

which proves the formula. See Categories, Section 4.6 for the relevant definitions.
□

Lemma 26.6.8.01I5 Let X be a locally ringed space. Assume X = U ⨿ V with U and
V open and such that U , V are affine schemes. Then X is an affine scheme.

Proof. Set R = Γ(X,OX). Note that R = OX(U) × OX(V ) by the sheaf prop-
erty. By Lemma 26.6.4 there is a canonical morphism of locally ringed spaces
X → Spec(R). By Algebra, Lemma 10.21.2 we see that as a topological space
Spec(OX(U)) ⨿ Spec(OX(V )) = Spec(R) with the maps coming from the ring ho-
momorphisms R → OX(U) and R → OX(V ). This of course means that Spec(R)
is the coproduct in the category of locally ringed spaces as well. By assumption
the morphism X → Spec(R) induces an isomorphism of Spec(OX(U)) with U and
similarly for V . Hence X → Spec(R) is an isomorphism. □
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26.7. Quasi-coherent sheaves on affines

01I6 Recall that we have defined the abstract notion of a quasi-coherent sheaf in Modules,
Definition 17.10.1. In this section we show that any quasi-coherent sheaf on an affine
scheme Spec(R) corresponds to the sheaf M̃ associated to an R-module M .

Lemma 26.7.1.01I7 Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. Let M be
an R-module. There exists a canonical isomorphism between the sheaf M̃ associated
to the R-module M (Definition 26.5.3) and the sheaf FM associated to the R-
module M (Modules, Definition 17.10.6). This isomorphism is functorial in M . In
particular, the sheaves M̃ are quasi-coherent. Moreover, they are characterized by
the following mapping property

HomOX
(M̃,F) = HomR(M,Γ(X,F))

for any sheaf of OX -modules F . Here a map α : M̃ → F corresponds to its effect
on global sections.

Proof. By Modules, Lemma 17.10.5 we have a morphism FM → M̃ corresponding
to the map M → Γ(X, M̃) = M . Let x ∈ X correspond to the prime p ⊂ R. The
induced map on stalks are the maps OX,x ⊗R M → Mp which are isomorphisms
because Rp ⊗R M = Mp. Hence the map FM → M̃ is an isomorphism. The
mapping property follows from the mapping property of the sheaves FM . □

Lemma 26.7.2.01I8 Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. There are
canonical isomorphisms

(1) M̃ ⊗R N ∼= M̃ ⊗OX
Ñ , see Modules, Section 17.16.

(2) T̃n(M) ∼= Tn(M̃), ˜Symn(M) ∼= Symn(M̃), and ∧̃n(M) ∼= ∧n(M̃), see
Modules, Section 17.21.

(3) ifM is a finitely presentedR-module, thenHomOX
(M̃, Ñ) ∼= ˜HomR(M,N),

see Modules, Section 17.22.

First proof. Using Lemma 26.7.1 and Modules, Lemma 17.10.5 we see that the
functor M 7→ M̃ can be viewed as π∗ for a morphism π of ringed spaces. And
pulling back modules commutes with tensor constructions by Modules, Lemmas
17.16.4 and 17.21.3. The morphism π : (X,OX) → ({∗}, R) is flat for example
because the stalks of OX are localizations of R (Lemma 26.5.4) and hence flat over
R. Thus pullback by π commutes with internal hom if the first module is finitely
presented by Modules, Lemma 17.22.5. □

Second proof. Proof of (1). By Lemma 26.7.1 to give a map M̃ ⊗R N into M̃⊗OX
Ñ

we have to give a map on global sections M ⊗RN → Γ(X, M̃ ⊗OX
Ñ) which exists

by definition of the tensor product of sheaves of modules. To see that this map
is an isomorphism it suffices to check that it is an isomorphism on stalks. And
this follows from the description of the stalks of M̃ (either in Lemma 26.5.4 or in
Modules, Lemma 17.10.5), the fact that tensor product commutes with localization
(Algebra, Lemma 10.12.16) and Modules, Lemma 17.16.1.

Proof of (2). This is similar to the proof of (1), using Algebra, Lemma 10.13.6 and
Modules, Lemma 17.21.2.
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Proof of (3). Since the construction M 7→ M̃ is functorial there is an R-linear
map HomR(M,N) → HomOX

(M̃, Ñ). The target of this map is the global sec-
tions of HomOX

(M̃, Ñ). Hence by Lemma 26.7.1 we obtain a map of OX -modules
˜HomR(M,N) → HomOX

(M̃, Ñ). We check that this is an isomorphism by com-
paring stalks. If M is finitely presented as an R-module then M̃ has a global finite
presentation as an OX -module. Hence we conclude using Algebra, Lemma 10.10.2
and Modules, Lemma 17.22.4. □

Third proof of part (1). For any OX -module F we have the following isomorphisms
functorial in M , N , and F

HomOX
(M̃ ⊗OX

Ñ ,F) = HomOX
(M̃,HomOX

(Ñ ,F))

= HomR(M,Γ(X,HomOX
(Ñ ,F))

= HomR(M,HomOX
(Ñ ,F))

= HomR(M,HomR(N,Γ(X,F)))
= HomR(M ⊗R N,Γ(X,F))

= HomOX
(M̃ ⊗R N,F)

The first equality is Modules, Lemma 17.22.1. The second equality is the universal
property of M̃ , see Lemma 26.7.1. The third equality holds by definition of Hom.
The fourth equality is the universal property of Ñ . Then fifth equality is Algebra,
Lemma 10.12.8. The final equality is the universal property of M̃ ⊗R N . By the
Yoneda lemma (Categories, Lemma 4.3.5) we obtain (1). □

Lemma 26.7.3.01I9 Let (X,OX) = (Spec(S),OSpec(S)), (Y,OY ) = (Spec(R),OSpec(R))
be affine schemes. Let ψ : (X,OX) → (Y,OY ) be a morphism of affine schemes,
corresponding to the ring map ψ♯ : R→ S (see Lemma 26.6.5).

(1) We have ψ∗M̃ = ˜S ⊗RM functorially in the R-module M .
(2) We have ψ∗Ñ = ÑR functorially in the S-module N .

Proof. The first assertion follows from the identification in Lemma 26.7.1 and the
result of Modules, Lemma 17.10.7. The second assertion follows from the fact that
ψ−1(D(f)) = D(ψ♯(f)) and hence

ψ∗Ñ(D(f)) = Ñ(D(ψ♯(f))) = Nψ♯(f) = (NR)f = ÑR(D(f))
as desired. □

Lemma 26.7.3 above says in particular that if you restrict the sheaf M̃ to a standard
affine open subspace D(f), then you get M̃f . We will use this from now on without
further mention.

Lemma 26.7.4.01IA Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. Let F be
a quasi-coherent OX -module. Then F is isomorphic to the sheaf associated to the
R-module Γ(X,F).

Proof. Let F be a quasi-coherent OX -module. Since every standard open D(f)
is quasi-compact we see that X is a locally quasi-compact, i.e., every point has
a fundamental system of quasi-compact neighbourhoods, see Topology, Definition
5.13.1. Hence by Modules, Lemma 17.10.8 for every prime p ⊂ R corresponding to
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x ∈ X there exists an open neighbourhood x ∈ U ⊂ X such that F|U is isomorphic
to the quasi-coherent sheaf associated to some OX(U)-module M . In other words,
we get an open covering by U ’s with this property. By Lemma 26.5.1 for example
we can refine this covering to a standard open covering. Thus we get a covering
Spec(R) =

⋃
D(fi) and Rfi -modules Mi and isomorphisms φi : F|D(fi) → FMi

for
some Rfi -module Mi. On the overlaps we get isomorphisms

FMi
|D(fifj)

φ−1
i

|D(fifj)
// F|D(fifj)

φj |D(fifj)
// FMj

|D(fifj).

Let us denote these ψij . It is clear that we have the cocycle condition
ψjk|D(fifjfk) ◦ ψij |D(fifjfk) = ψik|D(fifjfk)

on triple overlaps.
Recall that each of the open subspaces D(fi), D(fifj), D(fifjfk) is an affine
scheme. Hence the sheaves FMi are isomorphic to the sheaves M̃i by Lemma 26.7.1
above. In particular we see that FMi

(D(fifj)) = (Mi)fj , etc. Also by Lemma
26.7.1 above we see that ψij corresponds to a unique Rfifj -module isomorphism

ψij : (Mi)fj −→ (Mj)fi
namely, the effect of ψij on sections over D(fifj). Moreover these then satisfy the
cocycle condition that

(Mi)fjfk

ψij %%

ψik // (Mk)fifj

(Mj)fifk
ψjk

99

commutes (for any triple i, j, k).
Now Algebra, Lemma 10.24.5 shows that there exist an R-module M such that
Mi = Mfi compatible with the morphisms ψij . Consider FM = M̃ . At this point
it is a formality to show that M̃ is isomorphic to the quasi-coherent sheaf F we
started out with. Namely, the sheaves F and M̃ give rise to isomorphic sets of
glueing data of sheaves of OX -modules with respect to the covering X =

⋃
D(fi),

see Sheaves, Section 6.33 and in particular Lemma 6.33.4. Explicitly, in the current
situation, this boils down to the following argument: Let us construct an R-module
map

M −→ Γ(X,F).
Namely, given m ∈ M we get mi = m/1 ∈ Mfi = Mi by construction of M . By
construction of Mi this corresponds to a section si ∈ F(Ui). (Namely, φ−1

i (mi).)
We claim that si|D(fifj) = sj |D(fifj). This is true because, by construction of M ,
we have ψij(mi) = mj , and by the construction of the ψij . By the sheaf condition
of F this collection of sections gives rise to a unique section s of F over X. We
leave it to the reader to show that m 7→ s is a R-module map. By Lemma 26.7.1
we obtain an associated OX -module map

M̃ −→ F .
By construction this map reduces to the isomorphisms φ−1

i on each D(fi) and hence
is an isomorphism. □
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Lemma 26.7.5.01IB Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. The
functors M 7→ M̃ and F 7→ Γ(X,F) define quasi-inverse equivalences of categories

QCoh(OX) // ModRoo

between the category of quasi-coherentOX -modules and the category of R-modules.

Proof. See Lemmas 26.7.1 and 26.7.4 above. □

From now on we will not distinguish between quasi-coherent sheaves on affine
schemes and sheaves of the form M̃ .

Lemma 26.7.6.01IC Let X = Spec(R) be an affine scheme. Kernels and cokernels of
maps of quasi-coherent OX -modules are quasi-coherent.

Proof. This follows from the exactness of the functor ˜ since by Lemma 26.7.1 we
know that any map ψ : M̃ → Ñ comes from an R-module map φ : M → N . (So
we have Ker(ψ) = K̃er(φ) and Coker(ψ) = ˜Coker(φ).) □

Lemma 26.7.7.01ID Let X = Spec(R) be an affine scheme. The direct sum of an
arbitrary collection of quasi-coherent sheaves on X is quasi-coherent. The same
holds for colimits.

Proof. Suppose Fi, i ∈ I is a collection of quasi-coherent sheaves on X. By Lemma
26.7.5 above we can write Fi = M̃i for some R-module Mi. Set M =

⊕
Mi.

Consider the sheaf M̃ . For each standard open D(f) we have

M̃(D(f)) = Mf =
(⊕

Mi

)
f

=
⊕

Mi,f .

Hence we see that the quasi-coherent OX -module M̃ is the direct sum of the sheaves
Fi. A similar argument works for general colimits. □

Lemma 26.7.8.01IE Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. Suppose
that

0→ F1 → F2 → F3 → 0
is a short exact sequence of sheaves of OX -modules. If two out of three are quasi-
coherent then so is the third.

Proof. This is clear in case both F1 and F2 are quasi-coherent because the functor
M 7→ M̃ is exact, see Lemma 26.5.4. Similarly in case both F2 and F3 are quasi-
coherent. Now, suppose that F1 = M̃1 and F3 = M̃3 are quasi-coherent. Set
M2 = Γ(X,F2). We claim it suffices to show that the sequence

0→M1 →M2 →M3 → 0
is exact. Namely, if this is the case, then (by using the mapping property of Lemma
26.7.1) we get a commutative diagram

0 // M̃1 //

��

M̃2 //

��

M̃3 //

��

0

0 // F1 // F2 // F3 // 0
and we win by the snake lemma.
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The “correct” argument here would be to show first that H1(X,F) = 0 for any
quasi-coherent sheaf F . This is actually not all that hard, but it is perhaps better
to postpone this till later. Instead we use a small trick.

Pick m ∈M3 = Γ(X,F3). Consider the following set

I = {f ∈ R | the element fm comes from M2}.

Clearly this is an ideal. It suffices to show 1 ∈ I. Hence it suffices to show that for
any prime p there exists an f ∈ I, f ̸∈ p. Let x ∈ X be the point corresponding to p.
Because surjectivity can be checked on stalks there exists an open neighbourhood
U of x such that m|U comes from a local section s ∈ F2(U). In fact we may assume
that U = D(f) is a standard open, i.e., f ∈ R, f ̸∈ p. We will show that for some
N ≫ 0 we have fN ∈ I, which will finish the proof.

Take any point z ∈ V (f), say corresponding to the prime q ⊂ R. We can also find a
g ∈ R, g ̸∈ q such that m|D(g) lifts to some s′ ∈ F2(D(g)). Consider the difference
s|D(fg)− s′|D(fg). This is an element m′ of F1(D(fg)) = (M1)fg. For some integer
n = n(z) the element fnm′ comes from some m′

1 ∈ (M1)g. We see that fns
extends to a section σ of F2 on D(f) ∪D(g) because it agrees with the restriction
of fns′ +m′

1 on D(f)∩D(g) = D(fg). Moreover, σ maps to the restriction of fnm
to D(f) ∪D(g).

Since V (f) is quasi-compact, there exists a finite list of elements g1, . . . , gm ∈ R
such that V (f) ⊂

⋃
D(gj), an integer n > 0 and sections σj ∈ F2(D(f) ∪D(gj))

such that σj |D(f) = fns and σj maps to the section fnm|D(f)∪D(gj) of F3. Consider
the differences

σj |D(f)∪D(gjgk) − σk|D(f)∪D(gjgk).

These correspond to sections of F1 over D(f) ∪ D(gjgk) which are zero on D(f).
In particular their images in F1(D(gjgk)) = (M1)gjgk are zero in (M1)gjgkf . Thus
some high power of f kills each and every one of these. In other words, the elements
fNσj , for some N ≫ 0 satisfy the glueing condition of the sheaf property and give
rise to a section σ of F2 over

⋃
(D(f) ∪D(gj)) = X as desired. □

26.8. Closed subspaces of affine schemes

01IF
Example 26.8.1.01IG Let R be a ring. Let I ⊂ R be an ideal. Consider the morphism
of affine schemes i : Z = Spec(R/I)→ Spec(R) = X. By Algebra, Lemma 10.17.7
this is a homeomorphism of Z onto a closed subset of X. Moreover, if I ⊂ p ⊂ R
is a prime corresponding to a point x = i(z), x ∈ X, z ∈ Z, then on stalks we get
the map

OX,x = Rp −→ Rp/IRp = OZ,z
Thus we see that i is a closed immersion of locally ringed spaces, see Definition
26.4.1. Clearly, this is (isomorphic) to the closed subspace associated to the quasi-
coherent sheaf of ideals Ĩ, as in Example 26.4.3.

Lemma 26.8.2.01IH Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. Let i :
Z → X be any closed immersion of locally ringed spaces. Then there exists a
unique ideal I ⊂ R such that the morphism i : Z → X can be identified with the
closed immersion Spec(R/I)→ Spec(R) constructed in Example 26.8.1 above.
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Proof. This is kind of silly! Namely, by Lemma 26.4.5 we can identify Z → X with
the closed subspace associated to a sheaf of ideals I ⊂ OX as in Definition 26.4.4
and Example 26.4.3. By our conventions this sheaf of ideals is locally generated
by sections as a sheaf of OX -modules. Hence the quotient sheaf OX/I is locally
on X the cokernel of a map

⊕
j∈J OU → OU . Thus by definition, OX/I is quasi-

coherent. By our results in Section 26.7 it is of the form S̃ for some R-module S.
Moreover, since OX = R̃ → S̃ is surjective we see by Lemma 26.7.8 that also I
is quasi-coherent, say I = Ĩ. Of course I ⊂ R and S = R/I and everything is
clear. □

26.9. Schemes

01II
Definition 26.9.1.01IJ A scheme is a locally ringed space with the property that every
point has an open neighbourhood which is an affine scheme. A morphism of schemes
is a morphism of locally ringed spaces. The category of schemes will be denoted
Sch.

Let X be a scheme. We will use the following (very slight) abuse of language. We
will say U ⊂ X is an affine open, or an open affine if the open subspace U is an
affine scheme. We will often write U = Spec(R) to indicate that U is isomorphic
to Spec(R) and moreover that we will identify (temporarily) U and Spec(R).

Lemma 26.9.2.01IK Let X be a scheme. Let j : U → X be an open immersion of
locally ringed spaces. Then U is a scheme. In particular, any open subspace of X
is a scheme.

Proof. Let U ⊂ X. Let u ∈ U . Pick an affine open neighbourhood u ∈ V ⊂ X.
Because standard opens of V form a basis of the topology on V we see that there
exists a f ∈ OV (V ) such that u ∈ D(f) ⊂ U . And D(f) is an affine scheme by
Lemma 26.6.6. This proves that every point of U has an open neighbourhood which
is affine. □

Clearly the lemma (or its proof) shows that any scheme X has a basis (see Topology,
Section 5.5) for the topology consisting of affine opens.

Example 26.9.3.01IL Let k be a field. An example of a scheme which is not affine
is given by the open subspace U = Spec(k[x, y]) \ {(x, y)} of the affine scheme
X = Spec(k[x, y]). It is covered by two affines, namely D(x) = Spec(k[x, y, 1/x])
and D(y) = Spec(k[x, y, 1/y]) whose intersection is D(xy) = Spec(k[x, y, 1/xy]).
By the sheaf property for OU there is an exact sequence

0→ Γ(U,OU )→ k[x, y, 1/x]× k[x, y, 1/y]→ k[x, y, 1/xy]

We conclude that the map k[x, y]→ Γ(U,OU ) (coming from the morphism U → X)
is an isomorphism. Therefore U cannot be affine since if it was then by Lemma
26.6.5 we would have U ∼= X.

26.10. Immersions of schemes

01IM In Lemma 26.9.2 we saw that any open subspace of a scheme is a scheme. Below
we will prove that the same holds for a closed subspace of a scheme.
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Note that the notion of a quasi-coherent sheaf of OX -modules is defined for any
ringed space X in particular when X is a scheme. By our efforts in Section 26.7
we know that such a sheaf is on any affine open U ⊂ X of the form M̃ for some
OX(U)-module M .
Lemma 26.10.1.01IN Let X be a scheme. Let i : Z → X be a closed immersion of
locally ringed spaces.

(1) The locally ringed space Z is a scheme,
(2) the kernel I of the map OX → i∗OZ is a quasi-coherent sheaf of ideals,
(3) for any affine open U = Spec(R) of X the morphism i−1(U)→ U can be

identified with Spec(R/I)→ Spec(R) for some ideal I ⊂ R, and
(4) we have I|U = Ĩ.

In particular, any sheaf of ideals locally generated by sections is a quasi-coherent
sheaf of ideals (and vice versa), and any closed subspace of X is a scheme.
Proof. Let i : Z → X be a closed immersion. Let z ∈ Z be a point. Choose any
affine open neighbourhood i(z) ∈ U ⊂ X. Say U = Spec(R). By Lemma 26.8.2
we know that i−1(U) → U can be identified with the morphism of affine schemes
Spec(R/I) → Spec(R). First of all this implies that z ∈ i−1(U) ⊂ Z is an affine
neighbourhood of z. Thus Z is a scheme. Second this implies that I|U is Ĩ. In
other words for every point x ∈ i(Z) there exists an open neighbourhood such that
I is quasi-coherent in that neighbourhood. Note that I|X\i(Z) ∼= OX\i(Z). Thus
the restriction of the sheaf of ideals is quasi-coherent on X \ i(Z) also. We conclude
that I is quasi-coherent. □

Definition 26.10.2.01IO Let X be a scheme.
(1) A morphism of schemes is called an open immersion if it is an open im-

mersion of locally ringed spaces (see Definition 26.3.1).
(2) An open subscheme of X is an open subspace of X in the sense of Defini-

tion 26.3.3; an open subscheme of X is a scheme by Lemma 26.9.2.
(3) A morphism of schemes is called a closed immersion if it is a closed im-

mersion of locally ringed spaces (see Definition 26.4.1).
(4) A closed subscheme of X is a closed subspace of X in the sense of Defini-

tion 26.4.4; a closed subscheme is a scheme by Lemma 26.10.1.
(5) A morphism of schemes f : X → Y is called an immersion, or a locally

closed immersion if it can be factored as j ◦ i where i is a closed immersion
and j is an open immersion.

It follows from the lemmas in Sections 26.3 and 26.4 that any open (resp. closed)
immersion of schemes is isomorphic to the inclusion of an open (resp. closed) sub-
scheme of the target.
Our definition of a closed immersion is halfway between Hartshorne and EGA.
Hartshorne defines a closed immersion as a morphism f : X → Y of schemes which
induces a homeomorphism of X onto a closed subset of Y such that f# : OY →
f∗OX is surjective, see [Har77, Page 85]. We will show this is equivalent to our no-
tion in Lemma 26.24.2. In [DG67], Grothendieck and Dieudonné first define closed
subschemes via the construction of Example 26.4.3 using quasi-coherent sheaves of
ideals and then define a closed immersion as a morphism f : X → Y which induces
an isomorphism with a closed subscheme. It follows from Lemma 26.10.1 that this
agrees with our notion.

https://stacks.math.columbia.edu/tag/01IN
https://stacks.math.columbia.edu/tag/01IO


26.10. IMMERSIONS OF SCHEMES 2253

Pedagogically speaking the definition above is a disaster/nightmare. In teaching
this material to students, we have found it often convenient to define a closed
immersion as an affine morphism f : X → Y of schemes such that f# : OY →
f∗OX is surjective. Namely, it turns out that the notion of an affine morphism
(Morphisms, Section 29.11) is quite natural and easy to understand.

For more information on closed immersions we suggest the reader visit Morphisms,
Sections 29.2 and 29.4.

We will discuss locally closed subschemes and immersions at the end of this section.

Remark 26.10.3.01IP If f : X → Y is an immersion of schemes, then it is in general
not possible to factor f as an open immersion followed by a closed immersion. See
Morphisms, Example 29.3.4.

Lemma 26.10.4.01IQ Let f : Y → X be an immersion of schemes. Then f is a closed
immersion if and only if f(Y ) ⊂ X is a closed subset.

Proof. If f is a closed immersion then f(Y ) is closed by definition. Conversely,
suppose that f(Y ) is closed. By definition there exists an open subscheme U ⊂ X
such that f is the composition of a closed immersion i : Y → U and the open
immersion j : U → X. Let I ⊂ OU be the quasi-coherent sheaf of ideals associated
to the closed immersion i. Note that I|U\i(Y ) = OU\i(Y ) = OX\i(Y )|U\i(Y ). Thus
we may glue (see Sheaves, Section 6.33) I and OX\i(Y ) to a sheaf of ideals J ⊂ OX .
Since every point of X has a neighbourhood where J is quasi-coherent, we see that
J is quasi-coherent (in particular locally generated by sections). By construction
OX/J is supported on U and equal to OU/I. Thus we see that the closed subspaces
associated to I and J are canonically isomorphic, see Example 26.4.3. In particular
the closed subspace of U associated to I is isomorphic to a closed subspace of X.
Since Y → U is identified with the closed subspace associated to I, see Lemma
26.4.5, we conclude that Y → U → X is a closed immersion. □

Let f : Y → X be an immersion. Let Z = f(Y ) \ f(Y ) which is a closed subset
of X. Let U = X \ Z. The lemma implies that U is the biggest open subspace of
X such that f : Y → X factors through a closed immersion into U . We define a
locally closed subscheme of X as a pair (Z,U) consisting of a closed subscheme Z
of an open subscheme U of X such that in addition Z ∪ U = X. We usually just
say “let Z be a locally closed subscheme of X” since we may recover U from the
morphism Z → X. The above then shows that any immersion f : Y → X factors
uniquely as Y → Z → X where Z is a locally closed subspace of X and Y → Z is
an isomorphism.

The interest of this is that the collection of locally closed subschemes of X forms a
set. We may define a partial ordering on this set, which we call inclusion for obvious
reasons. To be explicit, if Z → X and Z ′ → X are two locally closed subschemes
of X, then we say that Z is contained in Z ′ simply if the morphism Z → X factors
through Z ′. If it does, then of course Z is identified with a unique locally closed
subscheme of Z ′, and so on.

For more information on immersions, we refer the reader to Morphisms, Section
29.3.
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26.11. Zariski topology of schemes

01IR See Topology, Section 5.1 for some basic material in topology adapted to the Zariski
topology of schemes.

Lemma 26.11.1.01IS Let X be a scheme. Any irreducible closed subset of X has a
unique generic point. In other words, X is a sober topological space, see Topology,
Definition 5.8.6.

Proof. Let Z ⊂ X be an irreducible closed subset. For every affine open U ⊂ X,
U = Spec(R) we know that Z ∩ U = V (I) for a unique radical ideal I ⊂ R. Note
that Z ∩ U is either empty or irreducible. In the second case (which occurs for at
least one U) we see that I = p is a prime ideal, which is a generic point ξ of Z ∩U .
It follows that Z = {ξ}, in other words ξ is a generic point of Z. If ξ′ was a second
generic point, then ξ′ ∈ Z ∩ U and it follows immediately that ξ′ = ξ. □

Lemma 26.11.2.01IT Let X be a scheme. The collection of affine opens of X forms a
basis for the topology on X.

Proof. This follows from the discussion on open subschemes in Section 26.9. □

Remark 26.11.3.01IU In general the intersection of two affine opens in X is not affine
open. See Example 26.14.3.

Lemma 26.11.4.01IV The underlying topological space of any scheme is locally quasi-
compact, see Topology, Definition 5.13.1.

Proof. This follows from Lemma 26.11.2 above and the fact that the spectrum of
ring is quasi-compact, see Algebra, Lemma 10.17.10. □

Lemma 26.11.5.01IW Let X be a scheme. Let U, V be affine opens of X, and let
x ∈ U ∩ V . There exists an affine open neighbourhood W of x such that W is a
standard open of both U and V .

Proof. Write U = Spec(A) and V = Spec(B). Say x corresponds to the prime p ⊂
A and the prime q ⊂ B. We may choose an f ∈ A, f ̸∈ p such that D(f) ⊂ U ∩ V .
Note that any standard open of D(f) is a standard open of Spec(A) = U . Hence
we may assume that U ⊂ V . In other words, now we may think of U as an affine
open of V . Next we choose a g ∈ B, g ̸∈ q such that D(g) ⊂ U . In this case we
see that D(g) = D(gA) where gA ∈ A denotes the image of g by the map B → A.
Thus the lemma is proved. □

Lemma 26.11.6.01IX Let X be a scheme. Let X =
⋃
i Ui be an affine open covering. Let

V ⊂ X be an affine open. There exists a standard open covering V =
⋃
j=1,...,m Vj

(see Definition 26.5.2) such that each Vj is a standard open in one of the Ui.

Proof. Pick v ∈ V . Then v ∈ Ui for some i. By Lemma 26.11.5 above there exists
an open v ∈Wv ⊂ V ∩Ui such that Wv is a standard open in both V and Ui. Since
V is quasi-compact the lemma follows. □

Lemma 26.11.7.0F1A Let X be a scheme. Let B be the set of affine opens of X. Let
F be a presheaf of sets on B, see Sheaves, Definition 6.30.1. The following are
equivalent

(1) F is the restriction of a sheaf on X to B,
(2) F is a sheaf on B, and
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(3) F(∅) is a singleton and whenever U = V ∪ W with U, V,W ∈ B and
V,W ⊂ U standard open (Algebra, Definition 10.17.3) the map

F(U) −→ F(V )×F(W )
is injective with image the set of pairs (s, t) such that s|V ∩W = t|V ∩W .

Proof. The equivalence of (1) and (2) is Sheaves, Lemma 6.30.7. It is clear that
(2) implies (3). Hence it suffices to prove that (3) implies (2). By Sheaves, Lemma
6.30.4 and Lemma 26.5.1 it suffices to prove the sheaf condition holds for standard
open coverings (Definition 26.5.2) of elements of B. Let U = U1 ∪ . . . ∪ Un be a
standard open covering with U ⊂ X affine open. We will prove the sheaf condition
for this covering by induction on n. If n = 0, then U is empty and we get the sheaf
condition by assumption. If n = 1, then there is nothing to prove. If n = 2, then this
is assumption (3). If n > 2, then we write Ui = D(fi) for fi ∈ A = OX(U). Suppose
that si ∈ F(Ui) are sections such that si|Ui∩Uj = sj |Ui∩Uj for all 1 ≤ i < j ≤ n.
Since U = U1∪. . .∪Un we have 1 =

∑
i=1,...,n aifi in A for some ai ∈ A, see Algebra,

Lemma 10.17.2. Set g =
∑
i=1,...,n−1 aifi. Then U = D(g) ∪D(fn). Observe that

D(g) = D(gf1)∪ . . .∪D(gfn−1) is a standard open covering. By induction there is
a unique section s′ ∈ F(D(g)) which agrees with si|D(gfi) for i = 1, . . . , n− 1. We
claim that s′ and sn have the same restriction to D(gfn). This is true by induction
and the covering D(gfn) = D(gfnf1) ∪ . . . ∪D(gfnfn−1). Thus there is a unique
section s ∈ F(U) whose restriction to D(g) is s′ and whose restriction to D(fn) is
sn. We omit the verification that s restricts to si on D(fi) for i = 1, . . . , n− 1 and
we omit the verification that s is unique. □

Lemma 26.11.8.02O0 Let X be a scheme whose underlying topological space is a finite
discrete set. Then X is affine.

Proof. Say X = {x1, . . . , xn}. Then Ui = {xi} is an open neighbourhood of xi. By
Lemma 26.11.2 it is affine. Hence X is a finite disjoint union of affine schemes, and
hence is affine by Lemma 26.6.8. □

Example 26.11.9.01IY There exists a scheme without closed points. Namely, let R be
a local domain whose spectrum looks like (0) = p0 ⊂ p1 ⊂ p2 ⊂ . . . ⊂ m. Then
the open subscheme Spec(R) \ {m} does not have a closed point. To see that such
a ring R exists, we use that given any totally ordered group (Γ,≥) there exists a
valuation ring A with valuation group (Γ,≥), see [Kru32]. See Algebra, Section
10.50 for notation. We take Γ = Zx1 ⊕Zx2 ⊕Zx3 ⊕ . . . and we define

∑
i aixi ≥ 0

if and only if the first nonzero ai is > 0, or all ai = 0. So x1 ≥ x2 ≥ x3 ≥ . . . ≥ 0.
The subsets xi+Γ≥0 are prime ideals of (Γ,≥), see Algebra, notation above Lemma
10.50.17. These together with ∅ and Γ≥0 are the only prime ideals. Hence A is
an example of a ring with the given structure of its spectrum, by Algebra, Lemma
10.50.17.

26.12. Reduced schemes

01IZ
Definition 26.12.1.01J0 Let X be a scheme. We say X is reduced if every local ring
OX,x is reduced.

Lemma 26.12.2.01J1 A scheme X is reduced if and only if OX(U) is a reduced ring for
all U ⊂ X open.
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Proof. Assume that X is reduced. Let f ∈ OX(U) be a section such that fn = 0.
Then the image of f in OU,u is zero for all u ∈ U . Hence f is zero, see Sheaves,
Lemma 6.11.1. Conversely, assume that OX(U) is reduced for all opens U . Pick
any nonzero element f ∈ OX,x. Any representative (U, f ∈ O(U)) of f is nonzero
and hence not nilpotent. Hence f is not nilpotent in OX,x. □

Lemma 26.12.3.01J2 An affine scheme Spec(R) is reduced if and only if R is reduced.

Proof. The direct implication follows immediately from Lemma 26.12.2 above. In
the other direction it follows since any localization of a reduced ring is reduced, and
in particular the local rings of a reduced ring are reduced. □

Lemma 26.12.4.01J3 Let X be a scheme. Let T ⊂ X be a closed subset. There exists a
unique closed subscheme Z ⊂ X with the following properties: (a) the underlying
topological space of Z is equal to T , and (b) Z is reduced.

Proof. Let I ⊂ OX be the sub presheaf defined by the rule
I(U) = {f ∈ OX(U) | f(t) = 0 for all t ∈ T ∩ U}

Here we use f(t) to indicate the image of f in the residue field κ(t) of X at t.
Because of the local nature of the condition it is clear that I is a sheaf of ideals.
Moreover, let U = Spec(R) be an affine open. We may write T ∩ U = V (I) for a
unique radical ideal I ⊂ R. Given a prime p ∈ V (I) corresponding to t ∈ T ∩ U
and an element f ∈ R we have f(t) = 0⇔ f ∈ p. Hence I(U) =

⋂
p∈V (I) p = I by

Algebra, Lemma 10.17.2. Moreover, for any standard open D(g) ⊂ Spec(R) = U

we have I(D(g)) = Ig by the same reasoning. Thus Ĩ and I|U agree (as ideals)
on a basis of opens and hence are equal. Therefore I is a quasi-coherent sheaf of
ideals.
At this point we may define Z as the closed subspace associated to the sheaf of
ideals I. For every affine open U = Spec(R) of X we see that Z ∩ U = Spec(R/I)
where I is a radical ideal and hence Z is reduced (by Lemma 26.12.3 above). By
construction the underlying closed subset of Z is T . Hence we have found a closed
subscheme with properties (a) and (b).
Let Z ′ ⊂ X be a second closed subscheme with properties (a) and (b). For every
affine open U = Spec(R) of X we see that Z ′ ∩ U = Spec(R/I ′) for some ideal
I ′ ⊂ R. By Lemma 26.12.3 the ring R/I ′ is reduced and hence I ′ is radical. Since
V (I ′) = T ∩ U = V (I) we deduced that I = I ′ by Algebra, Lemma 10.17.2. Hence
Z ′ and Z are defined by the same sheaf of ideals and hence are equal. □

Definition 26.12.5.01J4 Let X be a scheme. Let Z ⊂ X be a closed subset. A scheme
structure on Z is given by a closed subscheme Z ′ of X whose underlying set is equal
to Z. We often say “let (Z,OZ) be a scheme structure on Z” to indicate this. The
reduced induced scheme structure on Z is the one constructed in Lemma 26.12.4.
The reduction Xred of X is the reduced induced scheme structure on X itself.

Often when we say “let Z ⊂ X be an irreducible component of X” we think of Z
as a reduced closed subscheme of X using the reduced induced scheme structure.

Remark 26.12.6.0F2L Let X be a scheme. Let T ⊂ X be a locally closed subset. In this
situation we sometimes also use the phrase “reduced induced scheme structure on
T”. It refers to the reduced induced scheme structure from Definition 26.12.5 when
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we view T as a closed subset of the open subscheme X \∂T of X. Here ∂T = T \T
is the “boundary” of T in the topological space of X.

Lemma 26.12.7.0356 Let X be a scheme. Let Z ⊂ X be a closed subscheme. Let
Y be a reduced scheme. A morphism f : Y → X factors through Z if and only
if f(Y ) ⊂ Z (set theoretically). In particular, any morphism Y → X factors as
Y → Xred → X.

Proof. Assume f(Y ) ⊂ Z (set theoretically). Let I ⊂ OX be the ideal sheaf of
Z. For any affine opens U ⊂ X, Spec(B) = V ⊂ Y with f(V ) ⊂ U and any
g ∈ I(U) the pullback b = f ♯(g) ∈ Γ(V,OY ) = B maps to zero in the residue field
of any y ∈ V . In other words b ∈

⋂
p⊂B p. This implies b = 0 as B is reduced

(Lemma 26.12.2, and Algebra, Lemma 10.17.2). Hence f factors through Z by
Lemma 26.4.6. □

26.13. Points of schemes

01J5 Given a scheme X we can define a functor
hX : Schopp −→ Sets, T 7−→ Mor(T,X).

See Categories, Example 4.3.4. This is called the functor of points of X. A fun
part of scheme theory is to find descriptions of the internal geometry of X in terms
of this functor hX . In this section we find a simple way to describe points of X.
Let X be a scheme. Let R be a local ring with maximal ideal m ⊂ R. Suppose that
f : Spec(R)→ X is a morphism of schemes. Let x ∈ X be the image of the closed
point m ∈ Spec(R). Then we obtain a local homomorphism of local rings

f ♯ : OX,x −→ OSpec(R),m = R.

Lemma 26.13.1.01J6 Let X be a scheme. Let R be a local ring. The construction above
gives a bijective correspondence between morphisms Spec(R)→ X and pairs (x, φ)
consisting of a point x ∈ X and a local homomorphism of local rings φ : OX,x → R.

Proof. Let A be a ring. For any ring homomorphism ψ : A → R there exists a
unique prime ideal p ⊂ A and a factorization A → Ap → R where the last map is
a local homomorphism of local rings. Namely, p = ψ−1(m). Via Lemma 26.6.4 this
proves that the lemma holds if X is an affine scheme.
Let X be a general scheme. Any x ∈ X is contained in an open affine U ⊂ X. By
the affine case we conclude that every pair (x, φ) occurs as the end product of the
construction above the lemma.
To finish the proof it suffices to show that any morphism f : Spec(R) → X has
image contained in any affine open containing the image x of the closed point of
Spec(R). In fact, let x ∈ V ⊂ X be any open neighbourhood containing x. Then
f−1(V ) ⊂ Spec(R) is an open containing the unique closed point and hence equal
to Spec(R). □

As a special case of the lemma above we obtain for every point x of a scheme X a
canonical morphism
(26.13.1.1)02NA Spec(OX,x) −→ X

corresponding to the identity map on the local ring of X at x. We may reformulate
the lemma above as saying that for any morphism f : Spec(R)→ X there exists a
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unique point x ∈ X such that f factors as Spec(R)→ Spec(OX,x)→ X where the
first map comes from a local homomorphism OX,x → R.

In case we have a morphism of schemes f : X → S, and a point x mapping to a
point s ∈ S we obtain a commutative diagram

Spec(OX,x) //

��

X

��
Spec(OS,s) // S

where the left vertical map corresponds to the local ring map f ♯x : OS,s → OX,x.

Lemma 26.13.2.01J7 Let X be a scheme. Let x, x′ ∈ X be points of X. Then x′ ∈ X
is a generalization of x if and only if x′ is in the image of the canonical morphism
Spec(OX,x)→ X.

Proof. A continuous map preserves the relation of specialization/generalization.
Since every point of Spec(OX,x) is a generalization of the closed point we see every
point in the image of Spec(OX,x)→ X is a generalization of x. Conversely, suppose
that x′ is a generalization of x. Choose an affine open neighbourhood U = Spec(R)
of x. Then x′ ∈ U . Say p ⊂ R and p′ ⊂ R are the primes corresponding to x
and x′. Since x′ is a generalization of x we see that p′ ⊂ p. This means that p′

is in the image of the morphism Spec(OX,x) = Spec(Rp) → Spec(R) = U ⊂ X as
desired. □

Now, let us discuss morphisms from spectra of fields. Let (R,m, κ) be a local ring
with maximal ideal m and residue field κ. Let K be a field. A local homomorphism
R→ K by definition factors as R→ κ→ K, i.e., is the same thing as a morphism
κ→ K. Thus we see that morphisms

Spec(K) −→ X

correspond to pairs (x, κ(x) → K). We may define a preorder on morphisms of
spectra of fields to X by saying that Spec(K) → X dominates Spec(L) → X if
Spec(K) → X factors through Spec(L) → X. This suggests the following notion:
Let us temporarily say that two morphisms p : Spec(K)→ X and q : Spec(L)→ X
are equivalent if there exists a third field Ω and a commutative diagram

Spec(Ω) //

��

Spec(L)

q

��
Spec(K) p // X

Of course this immediately implies that the unique points of all three of the schemes
Spec(K), Spec(L), and Spec(Ω) map to the same x ∈ X. Thus a diagram (by the
remarks above) corresponds to a point x ∈ X and a commutative diagram

Ω Loo

K

OO

κ(x)oo

OO
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of fields. This defines an equivalence relation, because given any set of field exten-
sions Ki/κ there exists some field extension Ω/κ such that all the field extensions
Ki are contained in the extension Ω.

Lemma 26.13.3.01J9 Let X be a scheme. Points of X correspond bijectively to
equivalence classes of morphisms from spectra of fields into X. Moreover, each
equivalence class contains a (unique up to unique isomorphism) smallest element
Spec(κ(x))→ X.

Proof. Follows from the discussion above. □

Of course the morphisms Spec(κ(x))→ X factor through the canonical morphisms
Spec(OX,x) → X. And the content of Lemma 26.13.2 is in this setting that the
morphism Spec(κ(x′)) → X factors as Spec(κ(x′)) → Spec(OX,x) → X whenever
x′ is a generalization of x. In case we have a morphism of schemes f : X → S, and
a point x mapping to a point s ∈ S we obtain a commutative diagram

Spec(κ(x)) //

��

Spec(OX,x) //

��

X

��
Spec(κ(s)) // Spec(OS,s) // S.

26.14. Glueing schemes

01JA Let I be a set. For each i ∈ I let (Xi,Oi) be a locally ringed space. (Actually
the construction that follows works equally well for ringed spaces.) For each pair
i, j ∈ I let Uij ⊂ Xi be an open subspace. For each pair i, j ∈ I, let

φij : Uij → Uji

be an isomorphism of locally ringed spaces. For convenience we assume that Uii =
Xi and φii = idXi . For each triple i, j, k ∈ I assume that

(1) we have φ−1
ij (Uji ∩ Ujk) = Uij ∩ Uik, and

(2) the diagram

Uij ∩ Uik φik
//

φij
&&

Uki ∩ Ukj

Uji ∩ Ujk

φjk

88

is commutative.
Let us call a collection (I, (Xi)i∈I , (Uij)i,j∈I , (φij)i,j∈I) satisfying the conditions
above a glueing data.

Lemma 26.14.1.01JB Given any glueing data of locally ringed spaces there exists a
locally ringed space X and open subspaces Ui ⊂ X together with isomorphisms
φi : Xi → Ui of locally ringed spaces such that

(1) X =
⋃
i∈I Ui,

(2) φi(Uij) = Ui ∩ Uj , and
(3) φij = φ−1

j |Ui∩Uj ◦ φi|Uij .

https://stacks.math.columbia.edu/tag/01J9
https://stacks.math.columbia.edu/tag/01JB


26.14. GLUEING SCHEMES 2260

The locally ringed space X is characterized by the following mapping properties:
Given a locally ringed space Y we have
Mor(X,Y ) = {(fi)i∈I | fi : Xi → Y, fj ◦ φij = fi|Uij}

f 7→ (f |Ui ◦ φi)i∈I

Mor(Y,X) =
{

open covering Y =
⋃
i∈I Vi and (gi : Vi → Xi)i∈I such that

g−1
i (Uij) = Vi ∩ Vj and gj |Vi∩Vj = φij ◦ gi|Vi∩Vj

}
g 7→ Vi = g−1(Ui), gi = φ−1

i ◦ g|Vi
Proof. We construct X in stages. As a set we take

X = (
∐

Xi)/ ∼ .

Here given x ∈ Xi and x′ ∈ Xj we say x ∼ x′ if and only if x ∈ Uij , x′ ∈ Uji and
φij(x) = x′. This is an equivalence relation since if x ∈ Xi, x′ ∈ Xj , x′′ ∈ Xk, and
x ∼ x′ and x′ ∼ x′′, then x′ ∈ Uji ∩ Ujk, hence by condition (1) of a glueing data
also x ∈ Uij ∩Uik and x′′ ∈ Uki∩Ukj and by condition (2) we see that φik(x) = x′′.
(Reflexivity and symmetry follows from our assumptions that Uii = Xi and φii =
idXi .) Denote φi : Xi → X the natural maps. Denote Ui = φi(Xi) ⊂ X. Note that
φi : Xi → Ui is a bijection.
The topology on X is defined by the rule that U ⊂ X is open if and only if φ−1

i (U)
is open for all i. We leave it to the reader to verify that this does indeed define a
topology. Note that in particular Ui is open since φ−1

j (Ui) = Uji which is open in
Xj for all j. Moreover, for any open set W ⊂ Xi the image φi(W ) ⊂ Ui is open
because φ−1

j (φi(W )) = φ−1
ji (W∩Uij). Therefore φi : Xi → Ui is a homeomorphism.

To obtain a locally ringed space we have to construct the sheaf of rings OX . We
do this by glueing the sheaves of rings OUi := φi,∗Oi. Namely, in the commutative
diagram

Uij φij
//

φi|Uij ##

Uji

φj |Uji{{
Ui ∩ Uj

the arrow on top is an isomorphism of ringed spaces, and hence we get unique
isomorphisms of sheaves of rings

OUi |Ui∩Uj −→ OUj |Ui∩Uj .

These satisfy a cocycle condition as in Sheaves, Section 6.33. By the results of
that section we obtain a sheaf of rings OX on X such that OX |Ui is isomorphic
to OUi compatibly with the glueing maps displayed above. In particular (X,OX)
is a locally ringed space since the stalks of OX are equal to the stalks of Oi at
corresponding points.
The proof of the mapping properties is omitted. □

Lemma 26.14.2.01JC In Lemma 26.14.1 above, assume that all Xi are schemes. Then
the resulting locally ringed space X is a scheme.

Proof. This is clear since each of the Ui is a scheme and hence every x ∈ X has an
affine neighbourhood. □
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It is customary to think of Xi as an open subspace of X via the isomorphisms φi.
We will do this in the next two examples.

Example 26.14.3 (Affine space with zero doubled).01JD Let k be a field. Let n ≥ 1. Let
X1 = Spec(k[x1, . . . , xn]), let X2 = Spec(k[y1, . . . , yn]). Let 01 ∈ X1 be the point
corresponding to the maximal ideal (x1, . . . , xn) ⊂ k[x1, . . . , xn]. Let 02 ∈ X2 be the
point corresponding to the maximal ideal (y1, . . . , yn) ⊂ k[y1, . . . , yn]. Let U12 =
X1 \{01} and let U21 = X2 \{02}. Let φ12 : U12 → U21 be the isomorphism coming
from the isomorphism of k-algebras k[y1, . . . , yn]→ k[x1, . . . , xn] mapping yi to xi
(which induces X1 ∼= X2 mapping 01 to 02). Let X be the scheme obtained from the
glueing data (X1, X2, U12, U21, φ12, φ21 = φ−1

12 ). Via the slight abuse of notation
introduced above the example we think of X1, X2 ⊂ X as open subschemes. There
is a morphism f : X → Spec(k[t1, . . . , tn]) which on X1 (resp. X2) corresponds
to k algebra map k[t1, . . . , tn] → k[x1, . . . , xn] (resp. k[t1, . . . , tn] → k[y1, . . . , yn])
mapping ti to xi (resp. ti to yi). It is easy to see that this morphism identifies
k[t1, . . . , tn] with Γ(X,OX). Since f(01) = f(02) we see that X is not affine.
Note that X1 and X2 are affine opens of X. But, if n = 2, then X1 ∩ X2 is
the scheme described in Example 26.9.3 and hence not affine. Thus in general the
intersection of affine opens of a scheme is not affine. (This fact holds more generally
for any n > 1.)
Another curious feature of this example is the following. If n > 1 there are many
irreducible closed subsets T ⊂ X (take the closure of any non closed point in X1
for example). But unless T = {01}, or T = {02} we have 01 ∈ T ⇔ 02 ∈ T . Proof
omitted.

Example 26.14.4 (Projective line).01JE Let k be a field. Let X1 = Spec(k[x]), let
X2 = Spec(k[y]). Let 0 ∈ X1 be the point corresponding to the maximal ideal
(x) ⊂ k[x]. Let ∞ ∈ X2 be the point corresponding to the maximal ideal (y) ⊂
k[y]. Let U12 = X1 \ {0} = D(x) = Spec(k[x, 1/x]) and let U21 = X2 \ {∞} =
D(y) = Spec(k[y, 1/y]). Let φ12 : U12 → U21 be the isomorphism coming from the
isomorphism of k-algebras k[y, 1/y] → k[x, 1/x] mapping y to 1/x. Let P1

k be the
scheme obtained from the glueing data (X1, X2, U12, U21, φ12, φ21 = φ−1

12 ). Via the
slight abuse of notation introduced above the example we think of Xi ⊂ P1

k as open
subschemes. In this case we see that Γ(P1

k,O) = k because the only polynomials
g(x) in x such that g(1/y) is also a polynomial in y are constant polynomials. Since
P1
k is infinite we see that P1

k is not affine.
We claim that there exists an affine open U ⊂ P1

k which contains both 0 and ∞.
Namely, let U = P1

k \{1}, where 1 is the point of X1 corresponding to the maximal
ideal (x− 1) and also the point of X2 corresponding to the maximal ideal (y − 1).
Then it is easy to see that s = 1/(x− 1) = y/(1− y) ∈ Γ(U,OU ). In fact you can
show that Γ(U,OU ) is equal to the polynomial ring k[s] and that the corresponding
morphism U → Spec(k[s]) is an isomorphism of schemes. Details omitted.

26.15. A representability criterion

01JF In this section we reformulate the glueing lemma of Section 26.14 in terms of func-
tors. We recall some of the material from Categories, Section 4.3. Recall that given
a scheme X we can define a functor

hX : Schopp −→ Sets, T 7−→ Mor(T,X).
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This is called the functor of points of X.
Let F be a contravariant functor from the category of schemes to the category of
sets. In a formula

F : Schopp −→ Sets.
We will use the same terminology as in Sites, Section 7.2. Namely, given a scheme
T , an element ξ ∈ F (T ), and a morphism f : T ′ → T we will denote f∗ξ the
element F (f)(ξ), and sometimes we will even use the notation ξ|T ′

Definition 26.15.1.01JG (See Categories, Definition 4.3.6.) Let F be a contravariant
functor from the category of schemes to the category of sets (as above). We say
that F is representable by a scheme or representable if there exists a scheme X
such that hX ∼= F .
Suppose that F is representable by the scheme X and that s : hX → F is an
isomorphism. By Categories, Yoneda Lemma 4.3.5 the pair (X, s : hX → F ) is
unique up to unique isomorphism if it exists. Moreover, the Yoneda lemma says
that given any contravariant functor F as above and any scheme Y , we have a
bijection

MorFun(Schopp,Sets)(hY , F ) −→ F (Y ), s 7−→ s(idY ).
Here is the reverse construction. Given any ξ ∈ F (Y ) the transformation of functors
sξ : hY → F associates to any morphism f : T → Y the element f∗ξ ∈ F (T ).
In particular, in the case that F is representable, there exists a scheme X and an
element ξ ∈ F (X) such that the corresponding morphism hX → F is an isomor-
phism. In this case we also say the pair (X, ξ) represents F . The element ξ ∈ F (X)
is often called the “universal family” for reasons that will become more clear when
we talk about algebraic stacks (insert future reference here). For the moment we
simply observe that the fact that if the pair (X, ξ) represents F , then every element
ξ′ ∈ F (T ) for any T is of the form ξ′ = f∗ξ for a unique morphism f : T → X.
Example 26.15.2.01JH Consider the rule which associates to every scheme T the set
F (T ) = Γ(T,OT ). We can turn this into a contravariant functor by using for a
morphism f : T ′ → T the pullback map f ♯ : Γ(T,OT )→ Γ(T ′,OT ′). Given a ring
R and an element t ∈ R there exists a unique ring homomorphism Z[x]→ R which
maps x to t. Thus, using Lemma 26.6.4, we see that

Mor(T, Spec(Z[x])) = Hom(Z[x],Γ(T,OT )) = Γ(T,OT ).
This does indeed give an isomorphism hSpec(Z[x]) → F . What is the “universal fam-
ily” ξ? To get it we have to apply the identifications above to idSpec(Z[x]). Clearly
under the identifications above this gives that ξ = x ∈ Γ(Spec(Z[x]),OSpec(Z[x])) =
Z[x] as expected.
Definition 26.15.3.01JI Let F be a contravariant functor on the category of schemes
with values in sets.

(1) We say that F satisfies the sheaf property for the Zariski topology if
for every scheme T and every open covering T =

⋃
i∈I Ui, and for any

collection of elements ξi ∈ F (Ui) such that ξi|Ui∩Uj = ξj |Ui∩Uj there
exists a unique element ξ ∈ F (T ) such that ξi = ξ|Ui in F (Ui).

(2) A subfunctor H ⊂ F is a rule that associates to every scheme T a subset
H(T ) ⊂ F (T ) such that the maps F (f) : F (T )→ F (T ′) maps H(T ) into
H(T ′) for all morphisms of schemes f : T ′ → T .
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(3) Let H ⊂ F be a subfunctor. We say that H ⊂ F is representable by open
immersions if for all pairs (T, ξ), where T is a scheme and ξ ∈ F (T ) there
exists an open subscheme Uξ ⊂ T with the following property:
(*) A morphism f : T ′ → T factors through Uξ if and only if f∗ξ ∈

H(T ′).
(4) Let I be a set. For each i ∈ I let Hi ⊂ F be a subfunctor. We say that

the collection (Hi)i∈I covers F if and only if for every ξ ∈ F (T ) there
exists an open covering T =

⋃
Ui such that ξ|Ui ∈ Hi(Ui).

In condition (4), if Hi ⊂ F is representable by open immersions for all i, then to
check (Hi)i∈I covers F , it suffices to check F (T ) =

⋃
Hi(T ) whenever T is the

spectrum of a field.

Lemma 26.15.4.01JJ Let F be a contravariant functor on the category of schemes with
values in the category of sets. Suppose that

(1) F satisfies the sheaf property for the Zariski topology,
(2) there exists a set I and a collection of subfunctors Fi ⊂ F such that

(a) each Fi is representable,
(b) each Fi ⊂ F is representable by open immersions, and
(c) the collection (Fi)i∈I covers F .

Then F is representable.

Proof. Let Xi be a scheme representing Fi and let ξi ∈ Fi(Xi) ⊂ F (Xi) be the
“universal family”. Because Fj ⊂ F is representable by open immersions, there
exists an open Uij ⊂ Xi such that T → Xi factors through Uij if and only if
ξi|T ∈ Fj(T ). In particular ξi|Uij ∈ Fj(Uij) and therefore we obtain a canonical
morphism φij : Uij → Xj such that φ∗

ijξj = ξi|Uij . By definition of Uji this implies
that φij factors through Uji. Since (φij ◦ φji)∗ξj = φ∗

ji(φ∗
ijξj) = φ∗

jiξi = ξj we
conclude that φij ◦φji = idUji because the pair (Xj , ξj) represents Fj . In particular
the maps φij : Uij → Uji are isomorphisms of schemes. Next we have to show that
φ−1
ij (Uji ∩ Ujk) = Uij ∩ Uik. This is true because (a) Uji ∩ Ujk is the largest open

of Uji such that ξj restricts to an element of Fk, (b) Uij ∩ Uik is the largest open
of Uij such that ξi restricts to an element of Fk, and (c) φ∗

ijξj = ξi. Moreover, the
cocycle condition in Section 26.14 follows because both φjk|Uji∩Ujk ◦φij |Uij∩Uik and
φik|Uij∩Uik pullback ξk to the element ξi. Thus we may apply Lemma 26.14.2 to
obtain a scheme X with an open covering X =

⋃
Ui and isomorphisms φi : Xi → Ui

with properties as in Lemma 26.14.1. Let ξ′
i = (φ−1

i )∗ξi. The conditions of Lemma
26.14.1 imply that ξ′

i|Ui∩Uj = ξ′
j |Ui∩Uj . Therefore, by the condition that F satisfies

the sheaf condition in the Zariski topology we see that there exists an element
ξ′ ∈ F (X) such that ξi = φ∗

i ξ
′|Ui for all i. Since φi is an isomorphism we also get

that (Ui, ξ′|Ui) represents the functor Fi.
We claim that the pair (X, ξ′) represents the functor F . To show this, let T be a
scheme and let ξ ∈ F (T ). We will construct a unique morphism g : T → X such
that g∗ξ′ = ξ. Namely, by the condition that the subfunctors Fi cover F there
exists an open covering T =

⋃
Vi such that for each i the restriction ξ|Vi ∈ Fi(Vi).

Moreover, since each of the inclusions Fi ⊂ F are representable by open immersions
we may assume that each Vi ⊂ T is maximal open with this property. Because,
(Ui, ξ′

Ui
) represents the functor Fi we get a unique morphism gi : Vi → Ui such that

g∗
i ξ

′|Ui = ξ|Vi . On the overlaps Vi ∩ Vj the morphisms gi and gj agree, for example
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because they both pull back ξ′|Ui∩Uj ∈ Fi(Ui ∩ Uj) to the same element. Thus the
morphisms gi glue to a unique morphism from T → X as desired. □

Remark 26.15.5.01JK Suppose the functor F is defined on all locally ringed spaces, and
if conditions of Lemma 26.15.4 are replaced by the following:

(1) F satisfies the sheaf property on the category of locally ringed spaces,
(2) there exists a set I and a collection of subfunctors Fi ⊂ F such that

(a) each Fi is representable by a scheme,
(b) each Fi ⊂ F is representable by open immersions on the category of

locally ringed spaces, and
(c) the collection (Fi)i∈I covers F as a functor on the category of locally

ringed spaces.
We leave it to the reader to spell this out further. Then the end result is that
the functor F is representable in the category of locally ringed spaces and that the
representing object is a scheme.

26.16. Existence of fibre products of schemes

01JL A very basic question is whether or not products and fibre products exist on the
category of schemes. We first prove abstractly that products and fibre products
exist, and in the next section we show how we may think in a reasonable way about
fibre products of schemes.

Lemma 26.16.1.01JM The category of schemes has a final object, products and fibre
products. In other words, the category of schemes has finite limits, see Categories,
Lemma 4.18.4.

Proof. Please skip this proof. It is more important to learn how to work with the
fibre product which is explained in the next section.
By Lemma 26.6.4 the scheme Spec(Z) is a final object in the category of locally
ringed spaces. Thus it suffices to prove that fibred products exist.
Let f : X → S and g : Y → S be morphisms of schemes. We have to show that the
functor

F : Schopp −→ Sets
T 7−→ Mor(T,X)×Mor(T,S) Mor(T, Y )

is representable. We claim that Lemma 26.15.4 applies to the functor F . If we
prove this then the lemma is proved.
First we show that F satisfies the sheaf property in the Zariski topology. Namely,
suppose that T is a scheme, T =

⋃
i∈I Ui is an open covering, and ξi ∈ F (Ui)

such that ξi|Ui∩Uj = ξj |Ui∩Uj for all pairs i, j. By definition ξi corresponds to a
pair (ai, bi) where ai : Ui → X and bi : Ui → Y are morphisms of schemes such
that f ◦ ai = g ◦ bi. The glueing condition says that ai|Ui∩Uj = aj |Ui∩Uj and
bi|Ui∩Uj = bj |Ui∩Uj . Thus by glueing the morphisms ai we obtain a morphism
of locally ringed spaces (i.e., a morphism of schemes) a : T → X and similarly
b : T → Y (see for example the mapping property of Lemma 26.14.1). Moreover,
on the members of an open covering the compositions f ◦a and g◦b agree. Therefore
f ◦ a = g ◦ b and the pair (a, b) defines an element of F (T ) which restricts to the
pairs (ai, bi) on each Ui. The sheaf condition is verified.
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Next, we construct the family of subfunctors. Choose an open covering by open
affines S =

⋃
i∈I Ui. For every i ∈ I choose open coverings by open affines

f−1(Ui) =
⋃
j∈Ji Vj and g−1(Ui) =

⋃
k∈KiWk. Note that X =

⋃
i∈I
⋃
j∈Ji Vj

is an open covering and similarly for Y . For any i ∈ I and each pair (j, k) ∈ Ji×Ki

we have a commutative diagram
Wk

��   
Vj

!!

// Ui

  

Y

��
X // S

where all the skew arrows are open immersions. For such a triple we get a functor
Fi,j,k : Schopp −→ Sets

T 7−→ Mor(T, Vj)×Mor(T,Ui) Mor(T,Wk).
There is an obvious transformation of functors Fi,j,k → F (coming from the huge
commutative diagram above) which is injective, so we may think of Fi,j,k as a
subfunctor of F .
We check condition (2)(a) of Lemma 26.15.4. This follows directly from Lemma
26.6.7. (Note that we use here that the fibre products in the category of affine
schemes are also fibre products in the whole category of locally ringed spaces.)
We check condition (2)(b) of Lemma 26.15.4. Let T be a scheme and let ξ ∈ F (T ).
In other words, ξ = (a, b) where a : T → X and b : T → Y are morphisms of schemes
such that f ◦ a = g ◦ b. Set Vi,j,k = a−1(Vj) ∩ b−1(Wk). For any further morphism
h : T ′ → T we have h∗ξ = (a◦h, b◦h). Hence we see that h∗ξ ∈ Fi,j,k(T ′) if and only
if a(h(T ′)) ⊂ Vj and b(h(T ′)) ⊂ Wk. In other words, if and only if h(T ′) ⊂ Vi,j,k.
This proves condition (2)(b).
We check condition (2)(c) of Lemma 26.15.4. Let T be a scheme and let ξ =
(a, b) ∈ F (T ) as above. Set Vi,j,k = a−1(Vj) ∩ b−1(Wk) as above. Condition (2)(c)
just means that T =

⋃
Vi,j,k which is evident. Thus the lemma is proved and fibre

products exist. □

Remark 26.16.2.01JN Using Remark 26.15.5 you can show that the fibre product of
morphisms of schemes exists in the category of locally ringed spaces and is a scheme.

26.17. Fibre products of schemes

01JO Here is a review of the general definition, even though we have already shown that
fibre products of schemes exist.
Definition 26.17.1.01JP Given morphisms of schemes f : X → S and g : Y → S the fibre
product is a scheme X ×S Y together with projection morphisms p : X ×S Y → X
and q : X ×S Y → Y sitting into the following commutative diagram

X ×S Y q
//

p

��

Y

g

��
X

f // S
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which is universal among all diagrams of this sort, see Categories, Definition 4.6.1.

In other words, given any solid commutative diagram of morphisms of schemes

T

**((

  

X ×S Y

��

// Y

��
X // S

there exists a unique dotted arrow making the diagram commute. We will prove
some lemmas which will tell us how to think about fibre products.

Lemma 26.17.2.01JQ Let f : X → S and g : Y → S be morphisms of schemes with the
same target. If X,Y, S are all affine then X ×S Y is affine.

Proof. Suppose that X = Spec(A), Y = Spec(B) and S = Spec(R). By Lemma
26.6.7 the affine scheme Spec(A⊗R B) is the fibre product X ×S Y in the category
of locally ringed spaces. Hence it is a fortiori the fibre product in the category of
schemes. □

Lemma 26.17.3.01JR Let f : X → S and g : Y → S be morphisms of schemes with
the same target. Let X ×S Y , p, q be the fibre product. Suppose that U ⊂ S,
V ⊂ X, W ⊂ Y are open subschemes such that f(V ) ⊂ U and g(W ) ⊂ U . Then
the canonical morphism V ×U W → X ×S Y is an open immersion which identifies
V ×U W with p−1(V ) ∩ q−1(W ).

Proof. Let T be a scheme. Suppose a : T → V and b : T →W are morphisms such
that f ◦ a = g ◦ b as morphisms into U . Then they agree as morphisms into S. By
the universal property of the fibre product we get a unique morphism T → X×S Y .
Of course this morphism has image contained in the open p−1(V )∩ q−1(W ). Thus
p−1(V ) ∩ q−1(W ) is a fibre product of V and W over U . The result follows from
the uniqueness of fibre products, see Categories, Section 4.6. □

In particular this shows that V ×U W = V ×S W in the situation of the lemma.
Moreover, if U, V,W are all affine, then we know that V ×U W is affine. And of
course we may cover X ×S Y by such affine opens V ×U W . We formulate this as
a lemma.

Lemma 26.17.4.01JS Let f : X → S and g : Y → S be morphisms of schemes with
the same target. Let S =

⋃
Ui be any affine open covering of S. For each i ∈ I,

let f−1(Ui) =
⋃
j∈Ji Vj be an affine open covering of f−1(Ui) and let g−1(Ui) =⋃

k∈KiWk be an affine open covering of g−1(Ui). Then

X ×S Y =
⋃

i∈I

⋃
j∈Ji, k∈Ki

Vj ×Ui Wk

is an affine open covering of X ×S Y .

Proof. See discussion above the lemma. □

In other words, we might have used the previous lemma to construct the fibre
product directly by glueing the affine schemes. (Which is of course exactly what
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we did in the proof of Lemma 26.16.1 anyway.) Here is a way to describe the set
of points of a fibre product of schemes.

Lemma 26.17.5.01JT Let f : X → S and g : Y → S be morphisms of schemes with the
same target. Points z of X ×S Y are in bijective correspondence to quadruples

(x, y, s, p)
where x ∈ X, y ∈ Y , s ∈ S are points with f(x) = s, g(y) = s and p is a prime
ideal of the ring κ(x) ⊗κ(s) κ(y). The residue field of z corresponds to the residue
field of the prime p.

Proof. Let z be a point of X×SY and let us construct a quadruple as above. Recall
that we may think of z as a morphism Spec(κ(z))→ X ×S Y , see Lemma 26.13.3.
This morphism corresponds to morphisms a : Spec(κ(z))→ X and b : Spec(κ(z))→
Y such that f ◦ a = g ◦ b. By the same lemma again we get points x ∈ X, y ∈ Y
lying over the same point s ∈ S as well as field maps κ(x) → κ(z), κ(y) → κ(z)
such that the compositions κ(s) → κ(x) → κ(z) and κ(s) → κ(y) → κ(z) are the
same. In other words we get a ring map κ(x) ⊗κ(s) κ(y) → κ(z). We let p be the
kernel of this map.
Conversely, given a quadruple (x, y, s, p) we get a commutative solid diagram

X ×S Y

  

++Spec(κ(x)⊗κ(s) κ(y)/p) //

��

ii

Spec(κ(y))

��

// Y

��

Spec(κ(x)) //

��

Spec(κ(s))

$$
X // S

see the discussion in Section 26.13. Thus we get the dotted arrow. The correspond-
ing point z of X ×S Y is the image of the generic point of Spec(κ(x)⊗κ(s) κ(y)/p).
We omit the verification that the two constructions are inverse to each other. □

Lemma 26.17.6.01JU Let f : X → S and g : Y → S be morphisms of schemes with the
same target.

(1) If f : X → S is a closed immersion, then X ×S Y → Y is a closed
immersion. Moreover, if X → S corresponds to the quasi-coherent sheaf
of ideals I ⊂ OS , then X ×S Y → Y corresponds to the sheaf of ideals
Im(g∗I → OY ).

(2) If f : X → S is an open immersion, then X ×S Y → Y is an open
immersion.

(3) If f : X → S is an immersion, then X ×S Y → Y is an immersion.

Proof. Assume that X → S is a closed immersion corresponding to the quasi-
coherent sheaf of ideals I ⊂ OS . By Lemma 26.4.7 the closed subspace Z ⊂ Y
defined by the sheaf of ideals Im(g∗I → OY ) is the fibre product in the category of
locally ringed spaces. By Lemma 26.10.1 Z is a scheme. Hence Z = X ×S Y and
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the first statement follows. The second follows from Lemma 26.17.3 for example.
The third is a combination of the first two. □

Definition 26.17.7.01JV Let f : X → Y be a morphism of schemes. Let Z ⊂ Y be a
closed subscheme of Y . The inverse image f−1(Z) of the closed subscheme Z is the
closed subscheme Z ×Y X of X. See Lemma 26.17.6 above.

We may occasionally also use this terminology with locally closed and open sub-
schemes.

26.18. Base change in algebraic geometry

01JW One motivation for the introduction of the language of schemes is that it gives
a very precise notion of what it means to define a variety over a particular field.
For example a variety X over Q is synonymous (Varieties, Definition 33.3.1) with
X → Spec(Q) which is of finite type, separated, irreducible and reduced1. In any
case, the idea is more generally to work with schemes over a given base scheme,
often denoted S. We use the language: “let X be a scheme over S” to mean simply
that X comes equipped with a morphism X → S. In diagrams we will try to
picture the structure morphism X → S as a downward arrow from X to S. We are
often more interested in the properties of X relative to S rather than the internal
geometry of X. For example, we would like to know things about the fibres of
X → S, what happens to X after base change, and so on.

We introduce some of the language that is customarily used. Of course this language
is just a special case of thinking about the category of objects over a given object
in a category, see Categories, Example 4.2.13.

Definition 26.18.1.01JX Let S be a scheme.
(1) We say X is a scheme over S to mean that X comes equipped with a

morphism of schemes X → S. The morphism X → S is sometimes called
the structure morphism.

(2) If R is a ring we say X is a scheme over R instead of X is a scheme over
Spec(R).

(3) A morphism f : X → Y of schemes over S is a morphism of schemes such
that the composition X → Y → S of f with the structure morphism of Y
is equal to the structure morphism of X.

(4) We denote MorS(X,Y ) the set of all morphisms from X to Y over S.
(5) Let X be a scheme over S. Let S′ → S be a morphism of schemes. The

base change of X is the scheme XS′ = S′ ×S X over S′.
(6) Let f : X → Y be a morphism of schemes over S. Let S′ → S be a

morphism of schemes. The base change of f is the induced morphism
f ′ : XS′ → YS′ (namely the morphism idS′ ×idS f).

(7) Let R be a ring. Let X be a scheme over R. Let R→ R′ be a ring map.
The base change XR′ is the scheme Spec(R′)×Spec(R) X over R′.

Here is a typical result.

1Of course algebraic geometers still quibble over whether one should require X to be geo-
metrically irreducible over Q.
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Lemma 26.18.2.01JY Let S be a scheme. Let f : X → Y be an immersion (resp. closed
immersion, resp. open immersion) of schemes over S. Then any base change of f
is an immersion (resp. closed immersion, resp. open immersion).

Proof. We can think of the base change of f via the morphism S′ → S as the top
left vertical arrow in the following commutative diagram:

XS′ //

��

X

��

��

YS′ //

��

Y

��
S′ // S

The diagram implies XS′ ∼= YS′×Y X, and the lemma follows from Lemma 26.17.6.
□

In fact this type of result is so typical that there is a piece of language to express
it. Here it is.

Definition 26.18.3.01JZ Properties and base change.
(1) Let P be a property of schemes over a base. We say that P is preserved

under arbitrary base change, or simply that P is preserved under base
change if whenever X/S has P, any base change XS′/S′ has P.

(2) Let P be a property of morphisms of schemes over a base. We say that P
is preserved under arbitrary base change, or simply that preserved under
base change if whenever f : X → Y over S has P, any base change
f ′ : XS′ → YS′ over S′ has P.

At this point we can say that “being a closed immersion” is preserved under arbi-
trary base change.

Definition 26.18.4.01K0 Let f : X → S be a morphism of schemes. Let s ∈ S be a
point. The scheme theoretic fibre Xs of f over s, or simply the fibre of f over s, is
the scheme fitting in the following fibre product diagram

Xs = Spec(κ(s))×S X //

��

X

��
Spec(κ(s)) // S

We think of the fibre Xs always as a scheme over κ(s).

Lemma 26.18.5.01K1 Let f : X → S be a morphism of schemes. Consider the diagrams

Xs
//

��

X

��

Spec(OS,s)×S X //

��

X

��
Spec(κ(s)) // S Spec(OS,s) // S

In both cases the top horizontal arrow is a homeomorphism onto its image.
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Proof. Choose an open affine U ⊂ S that contains s. The bottom horizontal
morphisms factor through U , see Lemma 26.13.1 for example. Thus we may assume
that S is affine. If X is also affine, then the result follows from Algebra, Remark
10.17.8. In the general case the result follows by covering X by open affines. □

26.19. Quasi-compact morphisms

01K2 A scheme is quasi-compact if its underlying topological space is quasi-compact.
There is a relative notion which is defined as follows.
Definition 26.19.1.01K3 A morphism of schemes is called quasi-compact if the underlying
map of topological spaces is quasi-compact, see Topology, Definition 5.12.1.
Lemma 26.19.2.01K4 Let f : X → S be a morphism of schemes. The following are
equivalent

(1) f : X → S is quasi-compact,
(2) the inverse image of every affine open is quasi-compact, and
(3) there exists some affine open covering S =

⋃
i∈I Ui such that f−1(Ui) is

quasi-compact for all i.
Proof. Suppose we are given a covering S =

⋃
i∈I Ui as in (3). First, let U ⊂ S be

any affine open. For any u ∈ U we can find an index i(u) ∈ I such that u ∈ Ui(u).
As standard opens form a basis for the topology on Ui(u) we can find Wu ⊂ U∩Ui(u)
which is standard open in Ui(u). By compactness we can find finitely many points
u1, . . . , un ∈ U such that U =

⋃n
j=1 Wuj . For each j write f−1Ui(uj) =

⋃
k∈Kj Vjk

as a finite union of affine opens. Since Wuj ⊂ Ui(uj) is a standard open we see
that f−1(Wuj )∩Vjk is a standard open of Vjk, see Algebra, Lemma 10.17.4. Hence
f−1(Wuj ) ∩ Vjk is affine, and so f−1(Wuj ) is a finite union of affines. This proves
that the inverse image of any affine open is a finite union of affine opens.
Next, assume that the inverse image of every affine open is a finite union of affine
opens. Let K ⊂ S be any quasi-compact open. Since S has a basis of the topology
consisting of affine opens we see that K is a finite union of affine opens. Hence the
inverse image of K is a finite union of affine opens. Hence f is quasi-compact.
Finally, assume that f is quasi-compact. In this case the argument of the previous
paragraph shows that the inverse image of any affine is a finite union of affine
opens. □

Lemma 26.19.3.01K5 Being quasi-compact is a property of morphisms of schemes over
a base which is preserved under arbitrary base change.
Proof. Omitted. □

Lemma 26.19.4.01K6 The composition of quasi-compact morphisms is quasi-compact.
Proof. This follows from the definitions and Topology, Lemma 5.12.2. □

Lemma 26.19.5.01K7 A closed immersion is quasi-compact.
Proof. Follows from the definitions and Topology, Lemma 5.12.3. □

Example 26.19.6.01K8 An open immersion is in general not quasi-compact. The stan-
dard example of this is the open subspace U ⊂ X, whereX = Spec(k[x1, x2, x3, . . .]),
where U is X \ {0}, and where 0 is the point of X corresponding to the maximal
ideal (x1, x2, x3, . . .).
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Lemma 26.19.7.05JL Let f : X → S be a quasi-compact morphism of schemes. The
following are equivalent

(1) f(X) ⊂ S is closed, and
(2) f(X) ⊂ S is stable under specialization.

Proof. We have (1) ⇒ (2) by Topology, Lemma 5.19.2. Assume (2). Let U ⊂ S be
an affine open. It suffices to prove that f(X)∩U is closed. Since U ∩f(X) is stable
under specializations in U , we have reduced to the case where S is affine. Because
f is quasi-compact we deduce that X = f−1(S) is quasi-compact as S is affine.
Thus we may write X =

⋃n
i=1 Ui with Ui ⊂ X open affine. Say S = Spec(R) and

Ui = Spec(Ai) for some R-algebra Ai. Then f(X) = Im(Spec(A1 × . . . × An) →
Spec(R)). Thus the lemma follows from Algebra, Lemma 10.41.5. □

Lemma 26.19.8.01K9 Let f : X → S be a quasi-compact morphism of schemes. Then f
is closed if and only if specializations lift along f , see Topology, Definition 5.19.4.

Proof. According to Topology, Lemma 5.19.7 if f is closed then specializations lift
along f . Conversely, suppose that specializations lift along f . Let Z ⊂ X be a
closed subset. We may think of Z as a scheme with the reduced induced scheme
structure, see Definition 26.12.5. Since Z ⊂ X is closed the restriction of f to Z is
still quasi-compact. Moreover specializations lift along Z → S as well, see Topology,
Lemma 5.19.5. Hence it suffices to prove f(X) is closed if specializations lift along
f . In particular f(X) is stable under specializations, see Topology, Lemma 5.19.6.
Thus f(X) is closed by Lemma 26.19.7. □

26.20. Valuative criterion for universal closedness

01KA In Topology, Section 5.17 there is a discussion of proper maps as closed maps
of topological spaces all of whose fibres are quasi-compact, or as maps such that
all base changes are closed maps. Here is the corresponding notion in algebraic
geometry.

Definition 26.20.1.01KB A morphism of schemes f : X → S is said to be universally
closed if every base change f ′ : XS′ → S′ is closed.

In fact the adjective “universally” is often used in this way. In other words, given
a property P of morphisms then we say that “X → S is universally P” if and only
if every base change XS′ → S′ has P.

Please take a look at Morphisms, Section 29.41 for a more detailed discussion of the
properties of universally closed morphisms. In this section we restrict the discussion
to the relationship between universal closed morphisms and morphisms satisfying
the existence part of the valuative criterion.

Lemma 26.20.2.01KC Let f : X → S be a morphism of schemes.
(1) If f is universally closed then specializations lift along any base change of

f , see Topology, Definition 5.19.4.
(2) If f is quasi-compact and specializations lift along any base change of f ,

then f is universally closed.

Proof. Part (1) is a direct consequence of Topology, Lemma 5.19.7. Part (2) follows
from Lemmas 26.19.8 and 26.19.3. □

https://stacks.math.columbia.edu/tag/05JL
https://stacks.math.columbia.edu/tag/01K9
https://stacks.math.columbia.edu/tag/01KB
https://stacks.math.columbia.edu/tag/01KC


26.20. VALUATIVE CRITERION FOR UNIVERSAL CLOSEDNESS 2272

Definition 26.20.3.01KD Let f : X → S be a morphism of schemes. We say f satisfies
the existence part of the valuative criterion if given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

S

where A is a valuation ring with field of fractions K, the dotted arrow exists. We
say f satisfies the uniqueness part of the valuative criterion if there is at most one
dotted arrow given any diagram as above (without requiring existence of course).

A valuation ring is a local domain maximal among the relation of domination in its
fraction field, see Algebra, Definition 10.50.1. Hence the spectrum of a valuation
ring has a unique generic point η and a unique closed point 0, and of course we
have the specialization η ⇝ 0. The significance of valuation rings is that any
specialization of points in any scheme is the image of η ⇝ 0 under some morphism
from the spectrum of some valuation ring. Here is the precise result.

Lemma 26.20.4.01J8 Let S be a scheme. Let s′ ⇝ s be a specialization of points of S.
Then

(1) there exists a valuation ring A and a morphism f : Spec(A) → S such
that the generic point η of Spec(A) maps to s′ and the special point maps
to s, and

(2) given a field extension K/κ(s′) we may arrange it so that the extension
κ(η)/κ(s′) induced by f is isomorphic to the given extension.

Proof. Let s′ ⇝ s be a specialization in S, and let K/κ(s′) be an extension of
fields. By Lemma 26.13.2 and the discussion following Lemma 26.13.3 this leads
to ring maps OS,s → κ(s′) → K. Let A ⊂ K be any valuation ring whose field of
fractions is K and which dominates the image of OS,s → K, see Algebra, Lemma
10.50.2. The ring map OS,s → A induces the morphism f : Spec(A) → S, see
Lemma 26.13.1. This morphism has all the desired properties by construction. □

Lemma 26.20.5.01KE Let f : X → S be a morphism of schemes. The following are
equivalent

(1) Specializations lift along any base change of f
(2) The morphism f satisfies the existence part of the valuative criterion.

Proof. Assume (1) holds. Let a solid diagram as in Definition 26.20.3 be given.
In order to find the dotted arrow we may replace X → S by XSpec(A) → Spec(A)
since after all the assumption is stable under base change. Thus we may assume
S = Spec(A). Let x′ ∈ X be the image of Spec(K) → X, so that we have
κ(x′) ⊂ K, see Lemma 26.13.3. By assumption there exists a specialization x′ ⇝ x
in X such that x maps to the closed point of S = Spec(A). We get a local ring map
A → OX,x and a ring map OX,x → κ(x′), see Lemma 26.13.2 and the discussion
following Lemma 26.13.3. The composition A → OX,x → κ(x′) → K is the given
injection A → K. Since A → OX,x is local, the image of OX,x → K dominates A
and hence is equal to A, by Algebra, Definition 10.50.1. Thus we obtain a ring map
OX,x → A and hence a morphism Spec(A)→ X (see Lemma 26.13.1 and discussion
following it). This proves (2).
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Conversely, assume (2) holds. It is immediate that the existence part of the valua-
tive criterion holds for any base change XS′ → S′ of f by considering the following
commutative diagram

Spec(K) //

��

XS′ //

��

X

��
Spec(A) //

:: 55

S′ // S

Namely, the more horizontal dotted arrow will lead to the other one by definition
of the fibre product. OK, so it clearly suffices to show that specializations lift along
f . Let s′ ⇝ s be a specialization in S, and let x′ ∈ X be a point lying over s′.
Apply Lemma 26.20.4 to s′ ⇝ s and the extension of fields K = κ(x′)/κ(s′). We
get a commutative diagram

Spec(K) //

��

X

��
Spec(A) //

44

Spec(OS,s) // S

and by condition (2) we get the dotted arrow. The image x of the closed point of
Spec(A) in X will be a solution to our problem, i.e., x is a specialization of x′ and
maps to s. □

Proposition 26.20.6 (Valuative criterion of universal closedness).01KF Let f be a quasi-
compact morphism of schemes. Then f is universally closed if and only if f satisfies
the existence part of the valuative criterion.

Proof. This is a formal consequence of Lemmas 26.20.2 and 26.20.5 above. □

Example 26.20.7.01KG Let k be a field. Consider the structure morphism p : P1
k →

Spec(k) of the projective line over k, see Example 26.14.4. Let us use the valuative
criterion above to prove that p is universally closed. By construction P1

k is covered
by two affine opens and hence p is quasi-compact. Let a commutative diagram

Spec(K)
ξ

//

��

P1
k

��
Spec(A) φ // Spec(k)

be given, where A is a valuation ring and K is its field of fractions. Recall that P1
k

is gotten by glueing Spec(k[x]) to Spec(k[y]) by glueing D(x) to D(y) via x = y−1

(or more symmetrically xy = 1). To show there is a morphism Spec(A) → P1
k

fitting diagonally into the diagram above we may assume that ξ maps into the
open Spec(k[x]) (by symmetry). This gives the following commutative diagram of
rings

K k[x]
ξ♯

oo

A

OO

k

OO

φ♯oo
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By Algebra, Lemma 10.50.4 we see that either ξ♯(x) ∈ A or ξ♯(x)−1 ∈ A. In the
first case we get a ring map

k[x]→ A, λ 7→ φ♯(λ), x 7→ ξ♯(x)
fitting into the diagram of rings above, and we win. In the second case we see that
we get a ring map

k[y]→ A, λ 7→ φ♯(λ), y 7→ ξ♯(x)−1.

This gives a morphism Spec(A) → Spec(k[y]) → P1
k which fits diagonally into the

initial commutative diagram of this example (check omitted).

26.21. Separation axioms

01KH A topological space X is Hausdorff if and only if the diagonal ∆ ⊂ X × X is a
closed subset. The analogue in algebraic geometry is, given a scheme X over a base
scheme S, to consider the diagonal morphism

∆X/S : X −→ X ×S X.
This is the unique morphism of schemes such that pr1 ◦ ∆X/S = idX and pr2 ◦
∆X/S = idX (it exists in any category with fibre products).
Lemma 26.21.1.01KI The diagonal morphism of a morphism between affines is closed.
Proof. The diagonal morphism associated to the morphism Spec(S)→ Spec(R) is
the morphism on spectra corresponding to the ring map S ⊗R S → S, a⊗ b 7→ ab.
This map is clearly surjective, so S ∼= S ⊗R S/J for some ideal J ⊂ S ⊗R S. Hence
∆ is a closed immersion according to Example 26.8.1 □

Lemma 26.21.2.01KJ Let X be a scheme over S. The diagonal morphism ∆X/S is an
immersion.
Proof. Recall that if V ⊂ X is affine open and maps into U ⊂ S affine open, then
V ×U V is affine open in X ×S X, see Lemmas 26.17.2 and 26.17.3. Consider the
open subscheme W of X×SX which is the union of these affine opens V ×U V . By
Lemma 26.4.2 it is enough to show that each morphism ∆−1

X/S(V ×U V )→ V ×U V
is a closed immersion. Since V = ∆−1

X/S(V ×U V ) we are just checking that ∆V/U

is a closed immersion, which is Lemma 26.21.1. □

Definition 26.21.3.01KK Let f : X → S be a morphism of schemes.
(1) We say f is separated if the diagonal morphism ∆X/S is a closed immer-

sion.
(2) We say f is quasi-separated if the diagonal morphism ∆X/S is a quasi-

compact morphism.
(3) We say a scheme Y is separated if the morphism Y → Spec(Z) is sepa-

rated.
(4) We say a scheme Y is quasi-separated if the morphism Y → Spec(Z) is

quasi-separated.
By Lemmas 26.21.2 and 26.10.4 we see that ∆X/S is a closed immersion if an only if
∆X/S(X) ⊂ X ×S X is a closed subset. Moreover, by Lemma 26.19.5 we see that a
separated morphism is quasi-separated. The reason for introducing quasi-separated
morphisms is that nonseparated morphisms come up naturally in studying algebraic
varieties (especially when doing moduli, algebraic stacks, etc). But most often they
are still quasi-separated.
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Example 26.21.4.01KL Here is an example of a non-quasi-separated morphism. Suppose
X = X1 ∪ X2 → S = Spec(k) with X1 = X2 = Spec(k[t1, t2, t3, . . .]) glued along
the complement of {0} = {(t1, t2, t3, . . .)} (glued as in Example 26.14.3). In this
case the inverse image of the affine scheme X1 ×S X2 under ∆X/S is the scheme
Spec(k[t1, t2, t3, . . .]) \ {0} which is not quasi-compact.

Lemma 26.21.5.01KM Let X, Y be schemes over S. Let a, b : X → Y be morphisms of
schemes over S. There exists a largest locally closed subscheme Z ⊂ X such that
a|Z = b|Z . In fact Z is the equalizer of (a, b). Moreover, if Y is separated over S,
then Z is a closed subscheme.

Proof. The equalizer of (a, b) is for categorical reasons the fibre product Z in the
following diagram

Z = Y ×(Y×SY ) X //

��

X

(a,b)
��

Y
∆Y/S // Y ×S Y

Thus the lemma follows from Lemmas 26.18.2, 26.21.2 and Definition 26.21.3. □

Lemma 26.21.6.01KO Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is quasi-separated.
(2) For every pair of affine opens U, V ⊂ X which map into a common affine

open of S the intersection U ∩ V is a finite union of affine opens of X.
(3) There exists an affine open covering S =

⋃
i∈I Ui and for each i an affine

open covering f−1Ui =
⋃
j∈Ii Vj such that for each i and each pair j, j′ ∈ Ii

the intersection Vj ∩ Vj′ is a finite union of affine opens of X.

Proof. Let us prove that (3) implies (1). By Lemma 26.17.4 the covering X×SX =⋃
i

⋃
j,j′ Vj ×Ui Vj′ is an affine open covering of X ×S X. Moreover, ∆−1

X/S(Vj ×Ui
Vj′) = Vj ∩ Vj′ . Hence the implication follows from Lemma 26.19.2.

The implication (1) ⇒ (2) follows from the fact that under the hypotheses of (2)
the fibre product U ×S V is an affine open of X ×S X. The implication (2) ⇒ (3)
is trivial. □

Lemma 26.21.7.01KP Let f : X → S be a morphism of schemes.
(1) If f is separated then for every pair of affine opens (U, V ) of X which map

into a common affine open of S we have
(a) the intersection U ∩ V is affine.
(b) the ring map OX(U)⊗Z OX(V )→ OX(U ∩ V ) is surjective.

(2) If any pair of points x1, x2 ∈ X lying over a common point s ∈ S are
contained in affine opens x1 ∈ U , x2 ∈ V which map into a common affine
open of S such that (a), (b) hold, then f is separated.

Proof. Assume f separated. Suppose (U, V ) is a pair as in (1). Let W = Spec(R)
be an affine open of S containing both f(U) and f(V ). Write U = Spec(A) and
V = Spec(B) for R-algebras A and B. By Lemma 26.17.3 we see that U ×S V =
U ×W V = Spec(A⊗R B) is an affine open of X ×S X. Hence, by Lemma 26.10.1
we see that ∆−1(U ×S V )→ U ×S V can be identified with Spec((A⊗R B)/J) for
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some ideal J ⊂ A ⊗R B. Thus U ∩ V = ∆−1(U ×S V ) is affine. Assertion (1)(b)
holds because A⊗Z B → (A⊗R B)/J is surjective.
Assume the hypothesis formulated in (2) holds. Clearly the collection of affine
opens U ×S V for pairs (U, V ) as in (2) form an affine open covering of X ×S X
(see e.g. Lemma 26.17.4). Hence it suffices to show that each morphism U ∩ V =
∆−1
X/S(U×S V )→ U×S V is a closed immersion, see Lemma 26.4.2. By assumption

(a) we have U ∩ V = Spec(C) for some ring C. After choosing an affine open
W = Spec(R) of S into which both U and V map and writing U = Spec(A),
V = Spec(B) we see that the assumption (b) means that the composition

A⊗Z B → A⊗R B → C

is surjective. Hence A ⊗R B → C is surjective and we conclude that Spec(C) →
Spec(A⊗R B) is a closed immersion. □

Example 26.21.8.01KQ Let k be a field. Consider the structure morphism p : P1
k →

Spec(k) of the projective line over k, see Example 26.14.4. Let us use the lemma
above to prove that p is separated. By construction P1

k is covered by two affine opens
U = Spec(k[x]) and V = Spec(k[y]) with intersection U∩V = Spec(k[x, y]/(xy−1))
(using obvious notation). Thus it suffices to check that conditions (2)(a) and (2)(b)
of Lemma 26.21.7 hold for the pairs of affine opens (U,U), (U, V ), (V,U) and (V, V ).
For the pairs (U,U) and (V, V ) this is trivial. For the pair (U, V ) this amounts to
proving that U ∩ V is affine, which is true, and that the ring map

k[x]⊗Z k[y] −→ k[x, y]/(xy − 1)
is surjective. This is clear because any element in the right hand side can be written
as a sum of a polynomial in x and a polynomial in y.
Lemma 26.21.9.01KR Let f : X → T and g : Y → T be morphisms of schemes with
the same target. Let h : T → S be a morphism of schemes. Then the induced
morphism i : X ×T Y → X ×S Y is an immersion. If T → S is separated, then
i is a closed immersion. If T → S is quasi-separated, then i is a quasi-compact
morphism.
Proof. By general category theory the following diagram

X ×T Y //

��

X ×S Y

��
T

∆T/S //// T ×S T
is a fibre product diagram. The lemma follows from Lemmas 26.21.2, 26.17.6 and
26.19.3. □

Lemma 26.21.10.01KS Let g : X → Y be a morphism of schemes over S. The morphism
i : X → X ×S Y is an immersion. If Y is separated over S it is a closed immersion.
If Y is quasi-separated over S it is quasi-compact.
Proof. This is a special case of Lemma 26.21.9 applied to the morphism X =
X ×Y Y → X ×S Y . □

Lemma 26.21.11.01KT Let f : X → S be a morphism of schemes. Let s : S → X be a
section of f (in a formula f ◦ s = idS). Then s is an immersion. If f is separated
then s is a closed immersion. If f is quasi-separated, then s is quasi-compact.
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Proof. This is a special case of Lemma 26.21.10 applied to g = s so the morphism
i = s : S → S ×S X. □

Lemma 26.21.12.01KU Permanence properties.
(1) A composition of separated morphisms is separated.
(2) A composition of quasi-separated morphisms is quasi-separated.
(3) The base change of a separated morphism is separated.
(4) The base change of a quasi-separated morphism is quasi-separated.
(5) A (fibre) product of separated morphisms is separated.
(6) A (fibre) product of quasi-separated morphisms is quasi-separated.

Proof. Let X → Y → Z be morphisms. Assume that X → Y and Y → Z are
separated. The composition

X → X ×Y X → X ×Z X
is closed because the first one is by assumption and the second one by Lemma
26.21.9. The same argument works for “quasi-separated” (with the same refer-
ences).
Let f : X → Y be a morphism of schemes over a base S. Let S′ → S be a
morphism of schemes. Let f ′ : XS′ → YS′ be the base change of f . Then the
diagonal morphism of f ′ is a morphism

∆f ′ : XS′ = S′ ×S X −→ XS′ ×YS′ XS′ = S′ ×S (X ×Y X)
which is easily seen to be the base change of ∆f . Thus (3) and (4) follow from
the fact that closed immersions and quasi-compact morphisms are preserved under
arbitrary base change (Lemmas 26.17.6 and 26.19.3).
If f : X → Y and g : U → V are morphisms of schemes over a base S, then f × g is
the composition of X×S U → X×S V (a base change of g) and X×S V → Y ×S V
(a base change of f). Hence (5) and (6) follow from (1) – (4). □

Lemma 26.21.13.01KV Let f : X → Y and g : Y → Z be morphisms of schemes. If g ◦f
is separated then so is f . If g ◦ f is quasi-separated then so is f .

Proof. Assume that g ◦ f is separated. Consider the factorization X → X×Y X →
X ×Z X of the diagonal morphism of g ◦ f . By Lemma 26.21.9 the last morphism
is an immersion. By assumption the image of X in X ×Z X is closed. Hence it is
also closed in X ×Y X. Thus we see that X → X ×Y X is a closed immersion by
Lemma 26.10.4.
Assume that g ◦ f is quasi-separated. Let V ⊂ Y be an affine open which maps
into an affine open of Z. Let U1, U2 ⊂ X be affine opens which map into V . Then
U1 ∩ U2 is a finite union of affine opens because U1, U2 map into a common affine
open of Z. Since we may cover Y by affine opens like V we deduce the lemma from
Lemma 26.21.6. □

Lemma 26.21.14.03GI Let f : X → Y and g : Y → Z be morphisms of schemes. If g ◦f
is quasi-compact and g is quasi-separated then f is quasi-compact.

Proof. This is true because f equals the composition (1, f) : X → X ×Z Y → Y .
The first map is quasi-compact by Lemma 26.21.11 because it is a section of the
quasi-separated morphism X×Z Y → X (a base change of g, see Lemma 26.21.12).
The second map is quasi-compact as it is the base change of g ◦ f , see Lemma
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26.19.3. And compositions of quasi-compact morphisms are quasi-compact, see
Lemma 26.19.4. □

Lemma 26.21.15.01KN An affine scheme is separated. A morphism from an affine scheme
to another scheme is separated.

Proof. Let U = Spec(A) be an affine scheme. Then U → Spec(Z) has closed
diagonal by Lemma 26.21.1. Thus U is separated by Definition 26.21.3. If U → X
is a morphism of schemes, then we can apply Lemma 26.21.13 to the morphisms
U → X → Spec(Z) to conclude that U → X is separated. □

You may have been wondering whether the condition of only considering pairs of
affine opens whose image is contained in an affine open is really necessary to be
able to conclude that their intersection is affine. Often it isn’t!

Lemma 26.21.16.01KW Let f : X → S be a morphism. Assume f is separated and S is
a separated scheme. Suppose U ⊂ X and V ⊂ X are affine. Then U ∩ V is affine
(and a closed subscheme of U × V ).

Proof. In this case X is separated by Lemma 26.21.12. Hence U ∩ V is affine by
applying Lemma 26.21.7 to the morphism X → Spec(Z). □

On the other hand, the following example shows that we cannot expect the image
of an affine to be contained in an affine.

Example 26.21.17.01KX Consider the nonaffine scheme U = Spec(k[x, y]) \ {(x, y)} of
Example 26.9.3. On the other hand, consider the scheme

GL2,k = Spec(k[a, b, c, d, 1/ad− bc]).
There is a morphism GL2,k → U corresponding to the ring map x 7→ a, y 7→ b. It is
easy to see that this is a surjective morphism, and hence the image is not contained
in any affine open of U . In fact, the affine scheme GL2,k also surjects onto P1

k, and
P1
k does not even have an immersion into any affine scheme.

Remark 26.21.18.0816 The category of quasi-compact and quasi-separated schemes C
has the following properties. If X,Y ∈ Ob(C), then any morphism of schemes
f : X → Y is quasi-compact and quasi-separated by Lemmas 26.21.14 and 26.21.13
with Z = Spec(Z). Moreover, if X → Y and Z → Y are morphisms C, then X×Y Z
is an object of C too. Namely, the projection X ×Y Z → Z is quasi-compact and
quasi-separated as a base change of the morphism Z → Y , see Lemmas 26.21.12
and 26.19.3. Hence the composition X×Y Z → Z → Spec(Z) is quasi-compact and
quasi-separated, see Lemmas 26.21.12 and 26.19.4.

26.22. Valuative criterion of separatedness

01KY
Lemma 26.22.1.01KZ Let f : X → S be a morphism of schemes. If f is separated, then
f satisfies the uniqueness part of the valuative criterion.

Proof. Let a diagram as in Definition 26.20.3 be given. Suppose there are two
morphisms a, b : Spec(A) → X fitting into the diagram. Let Z ⊂ Spec(A) be the
equalizer of a and b. By Lemma 26.21.5 this is a closed subscheme of Spec(A).
By assumption it contains the generic point of Spec(A). Since A is a domain this
implies Z = Spec(A). Hence a = b as desired. □
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Lemma 26.22.2 (Valuative criterion separatedness).01L0 [DG67, II
Proposition 7.2.3]

Let f : X → S be a morphism.
Assume

(1) the morphism f is quasi-separated, and
(2) the morphism f satisfies the uniqueness part of the valuative criterion.

Then f is separated.

Proof. By assumption (1), Proposition 26.20.6, and Lemmas 26.21.2 and 26.10.4
we see that it suffices to prove the morphism ∆X/S : X → X ×S X satisfies the
existence part of the valuative criterion. Let a solid commutative diagram

Spec(K) //

��

X

��
Spec(A) //

99

X ×S X

be given. The lower right arrow corresponds to a pair of morphisms a, b : Spec(A)→
X over S. By (2) we see that a = b. Hence using a as the dotted arrow works. □

26.23. Monomorphisms

01L1
Definition 26.23.1.01L2 A morphism of schemes is called a monomorphism if it is a
monomorphism in the category of schemes, see Categories, Definition 4.13.1.

Lemma 26.23.2.01L3 Let j : X → Y be a morphism of schemes. Then j is a monomor-
phism if and only if the diagonal morphism ∆X/Y : X → X×YX is an isomorphism.

Proof. This is true in any category with fibre products. □

Lemma 26.23.3.01L4 A monomorphism of schemes is separated.

Proof. This is true because an isomorphism is a closed immersion, and Lemma
26.23.2 above. □

Lemma 26.23.4.01L5 A composition of monomorphisms is a monomorphism.

Proof. True in any category. □

Lemma 26.23.5.02YC The base change of a monomorphism is a monomorphism.

Proof. True in any category with fibre products. □

Lemma 26.23.6.0DVA Let j : X → Y be a morphism of schemes. If j is injective on
points, then j is separated.

Proof. Let z be a point of X ×Y X. Then x = pr1(z) and pr2(z) are the same
because j maps these points to the same point y of Y . Then we can choose an
affine open neighbourhood V ⊂ Y of y and an affine open neighbourhood U ⊂ X
of x with j(U) ⊂ V . Then z ∈ U ×V U ⊂ X ×Y X. Hence X ×Y X is the union of
the affine opens U ×V U . Since ∆−1

X/Y (U ×V U) = U and since U → U ×V U is a
closed immersion, we conclude that ∆X/Y is a closed immersion (see argument in
the proof of Lemma 26.21.2). □

Lemma 26.23.7.01L6 Let j : X → Y be a morphism of schemes. If
(1) j is injective on points, and
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(2) for any x ∈ X the ring map j♯x : OY,j(x) → OX,x is surjective,
then j is a monomorphism.

Proof. Let a, b : Z → X be two morphisms of schemes such that j ◦a = j ◦ b. Then
(1) implies a = b as underlying maps of topological spaces. For any z ∈ Z we have
a♯z ◦ j

♯
a(z) = b♯z ◦ j

♯
b(z) as maps OY,j(a(z)) → OZ,z. The surjectivity of the maps j♯x

forces a♯z = b♯z, ∀z ∈ Z. This implies that a♯ = b♯. Hence we conclude a = b as
morphisms of schemes as desired. □

Lemma 26.23.8.01L7 An immersion of schemes is a monomorphism. In particular, any
immersion is separated.

Proof. We can see this by checking that the criterion of Lemma 26.23.7 applies.
More elegantly perhaps, we can use that Lemmas 26.3.5 and 26.4.6 imply that open
and closed immersions are monomorphisms and hence any immersion (which is a
composition of such) is a monomorphism. □

Lemma 26.23.9.01L8 Let f : X → S be a separated morphism. Any locally closed
subscheme Z ⊂ X is separated over S.

Proof. Follows from Lemma 26.23.8 and the fact that a composition of separated
morphisms is separated (Lemma 26.21.12). □

Example 26.23.10.01L9 The morphism Spec(Q)→ Spec(Z) is a monomorphism. This
is true because Q⊗Z Q = Q. More generally, for any scheme S and any point s ∈ S
the canonical morphism

Spec(OS,s) −→ S

is a monomorphism.

Lemma 26.23.11.03DP Let k1, . . . , kn be fields. For any monomorphism of schemes X →
Spec(k1×. . .×kn) there exists a subset I ⊂ {1, . . . , n} such that X ∼= Spec(

∏
i∈I ki)

as schemes over Spec(k1 × . . . × kn). More generally, if X =
∐
i∈I Spec(ki) is a

disjoint union of spectra of fields and Y → X is a monomorphism, then there exists
a subset J ⊂ I such that Y =

∐
i∈J Spec(ki).

Proof. First reduce to the case n = 1 (or #I = 1) by taking the inverse images of
the open and closed subschemes Spec(ki). In this case X has only one point hence
is affine. The corresponding algebra problem is this: If k → R is an algebra map
with R ⊗k R ∼= R, then R ∼= k or R = 0. This holds for dimension reasons. See
also Algebra, Lemma 10.107.8 □

26.24. Functoriality for quasi-coherent modules

01LA Let X be a scheme. We denote QCoh(OX) the category of quasi-coherent OX -
modules as defined in Modules, Definition 17.10.1. We have seen in Section 26.7
that the category QCoh(OX) has a lot of good properties when X is affine. Since
the property of being quasi-coherent is local on X, these properties are inherited
by the category of quasi-coherent sheaves on any scheme X. We enumerate them
here.

(1) A sheaf of OX -modules F is quasi-coherent if and only if the restriction of
F to each affine open U = Spec(R) is of the form M̃ for some R-module
M .
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(2) A sheaf of OX -modules F is quasi-coherent if and only if the restriction
of F to each of the members of an affine open covering is quasi-coherent.

(3) Any direct sum of quasi-coherent sheaves is quasi-coherent.
(4) Any colimit of quasi-coherent sheaves is quasi-coherent.
(5)01LB The kernel and cokernel of a morphism of quasi-coherent sheaves is quasi-

coherent.
(6) Given a short exact sequence of OX -modules 0→ F1 → F2 → F3 → 0 if

two out of three are quasi-coherent so is the third.
(7) Given a morphism of schemes f : Y → X the pullback of a quasi-coherent
OX -module is a quasi-coherent OY -module. See Modules, Lemma 17.10.4.

(8) Given two quasi-coherentOX -modules the tensor product is quasi-coherent,
see Modules, Lemma 17.16.6.

(9) Given a quasi-coherent OX -module F the tensor, symmetric and exterior
algebras on F are quasi-coherent, see Modules, Lemma 17.21.6.

(10) Given two quasi-coherent OX -modules F , G such that F is of finite presen-
tation, then the internal hom HomOX

(F ,G) is quasi-coherent, see Mod-
ules, Lemma 17.22.6 and (5) above.

On the other hand, it is in general not the case that the pushforward of a quasi-
coherent module is quasi-coherent. Here is a case where this does hold.

Lemma 26.24.1.01LC Let f : X → S be a morphism of schemes. If f is quasi-compact
and quasi-separated then f∗ transforms quasi-coherent OX -modules into quasi-
coherent OS-modules.

Proof. The question is local on S and hence we may assume that S is affine. Because
X is quasi-compact we may write X =

⋃n
i=1 Ui with each Ui open affine. Because

f is quasi-separated we may write Ui ∩ Uj =
⋃nij
k=1 Uijk for some affine open Uijk,

see Lemma 26.21.6. Denote fi : Ui → S and fijk : Uijk → S the restrictions of f .
For any open V of S and any sheaf F on X we have

f∗F(V ) = F(f−1V )

= Ker
(⊕

i
F(f−1V ∩ Ui)→

⊕
i,j,k
F(f−1V ∩ Uijk)

)
= Ker

(⊕
i
fi,∗(F|Ui)(V )→

⊕
i,j,k

fijk,∗(F|Uijk)(V )
)

= Ker
(⊕

i
fi,∗(F|Ui)→

⊕
i,j,k

fijk,∗(F|Uijk)
)

(V )

In other words there is an exact sequence of sheaves

0→ f∗F →
⊕

fi,∗Fi →
⊕

fijk,∗Fijk
where Fi,Fijk denotes the restriction of F to the corresponding open. If F is a
quasi-coherent OX -module then Fi is a quasi-coherent OUi -module and Fijk is a
quasi-coherent OUijk -module. Hence by Lemma 26.7.3 we see that the second and
third term of the exact sequence are quasi-coherent OS-modules. Thus we conclude
that f∗F is a quasi-coherent OS-module. □

Using this we can characterize (closed) immersions of schemes as follows.

Lemma 26.24.2.01LD Let f : X → Y be a morphism of schemes. Suppose that
(1) f induces a homeomorphism of X with a closed subset of Y , and
(2) f ♯ : OY → f∗OX is surjective.
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Then f is a closed immersion of schemes.

Proof. Assume (1) and (2). By (1) the morphism f is quasi-compact (see Topology,
Lemma 5.12.3). Conditions (1) and (2) imply conditions (1) and (2) of Lemma
26.23.7. Hence f : X → Y is a monomorphism. In particular, f is separated, see
Lemma 26.23.3. Hence Lemma 26.24.1 above applies and we conclude that f∗OX is
a quasi-coherent OY -module. Therefore the kernel of OY → f∗OX is quasi-coherent
by Lemma 26.7.8. Since a quasi-coherent sheaf is locally generated by sections (see
Modules, Definition 17.10.1) this implies that f is a closed immersion, see Definition
26.4.1. □

We can use this lemma to prove the following lemma.

Lemma 26.24.3.02V0 A composition of immersions of schemes is an immersion, a com-
position of closed immersions of schemes is a closed immersion, and a composition
of open immersions of schemes is an open immersion.

Proof. This is clear for the case of open immersions since an open subspace of an
open subspace is also an open subspace.
Suppose a : Z → Y and b : Y → X are closed immersions of schemes. We will verify
that c = b ◦ a is also a closed immersion. The assumption implies that a and b are
homeomorphisms onto closed subsets, and hence also c = b◦a is a homeomorphism
onto a closed subset. Moreover, the map OX → c∗OZ is surjective since it factors
as the composition of the surjective maps OX → b∗OY and b∗OY → b∗a∗OZ
(surjective as b∗ is exact, see Modules, Lemma 17.6.1). Hence by Lemma 26.24.2
above c is a closed immersion.
Finally, we come to the case of immersions. Suppose a : Z → Y and b : Y → X
are immersions of schemes. This means there exist open subschemes V ⊂ Y and
U ⊂ X such that a(Z) ⊂ V , b(Y ) ⊂ U and a : Z → V and b : Y → U are closed
immersions. Since the topology on Y is induced from the topology on U we can find
an open U ′ ⊂ U such that V = b−1(U ′). Then we see that Z → V = b−1(U ′)→ U ′

is a composition of closed immersions and hence a closed immersion. This proves
that Z → X is an immersion and we win. □
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CHAPTER 27

Constructions of Schemes

01LE 27.1. Introduction

01LF In this chapter we introduce ways of constructing schemes out of others. A basic
reference is [DG67].

27.2. Relative glueing

01LG The following lemma is relevant in case we are trying to construct a scheme X over
S, and we already know how to construct the restriction of X to the affine opens
of S. The actual result is completely general and works in the setting of (locally)
ringed spaces, although our proof is written in the language of schemes.

Lemma 27.2.1.01LH Let S be a scheme. Let B be a basis for the topology of S. Suppose
given the following data:

(1) For every U ∈ B a scheme fU : XU → U over U .
(2) For U, V ∈ B with V ⊂ U a morphism ρUV : XV → XU over U .

Assume that
(a) each ρUV induces an isomorphism XV → f−1

U (V ) of schemes over V ,
(b) whenever W,V,U ∈ B, with W ⊂ V ⊂ U we have ρUW = ρUV ◦ ρVW .

Then there exists a morphism f : X → S of schemes and isomorphisms iU :
f−1(U)→ XU over U ∈ B such that for V,U ∈ B with V ⊂ U the composition

XV

i−1
V // f−1(V ) inclusion // f−1(U) iU // XU

is the morphism ρUV . Moreover X is unique up to unique isomorphism over S.

Proof. To prove this we will use Schemes, Lemma 26.15.4. First we define a con-
travariant functor F from the category of schemes to the category of sets. Namely,
for a scheme T we set

F (T ) =
{

(g, {hU}U∈B), g : T → S, hU : g−1(U)→ XU ,
fU ◦ hU = g|g−1(U), hU |g−1(V ) = ρUV ◦ hV ∀ V,U ∈ B, V ⊂ U

}
.

The restriction mapping F (T ) → F (T ′) given a morphism T ′ → T is just gotten
by composition. For any W ∈ B we consider the subfunctor FW ⊂ F consisting of
those systems (g, {hU}) such that g(T ) ⊂W .
First we show F satisfies the sheaf property for the Zariski topology. Suppose that
T is a scheme, T =

⋃
Vi is an open covering, and ξi ∈ F (Vi) is an element such

that ξi|Vi∩Vj = ξj |Vi∩Vj . Say ξi = (gi, {hi,U}). Then we immediately see that the
morphisms gi glue to a unique global morphism g : T → S. Moreover, it is clear
that g−1(U) =

⋃
g−1
i (U). Hence the morphisms hi,U : g−1

i (U) → XU glue to a

2285
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unique morphism hU : g−1(U)→ XU . It is easy to verify that the system (g, {hU})
is an element of F (T ). Hence F satisfies the sheaf property for the Zariski topology.
Next we verify that each FW , W ∈ B is representable. Namely, we claim that the
transformation of functors

FW −→ Mor(−, XW ), (g, {hU}) 7−→ hW

is an isomorphism. To see this suppose that T is a scheme and α : T → XW is
a morphism. Set g = fW ◦ α. For any U ∈ B such that U ⊂ W we can define
hU : g−1(U) → XU be the composition (ρWU )−1 ◦ α|g−1(U). This works because
the image α(g−1(U)) is contained in f−1

W (U) and condition (a) of the lemma. It
is clear that fU ◦ hU = g|g−1(U) for such a U . Moreover, if also V ∈ B and
V ⊂ U ⊂ W , then ρUV ◦ hV = hU |g−1(V ) by property (b) of the lemma. We
still have to define hU for an arbitrary element U ∈ B. Since B is a basis for
the topology on S we can find an open covering U ∩ W =

⋃
Ui with Ui ∈ B.

Since g maps into W we have g−1(U) = g−1(U ∩W ) =
⋃
g−1(Ui). Consider the

morphisms hi = ρUUi ◦ hUi : g−1(Ui) → XU . It is a simple matter to use condition
(b) of the lemma to prove that hi|g−1(Ui)∩g−1(Uj) = hj |g−1(Ui)∩g−1(Uj). Hence these
morphisms glue to give the desired morphism hU : g−1(U) → XU . We omit the
(easy) verification that the system (g, {hU}) is an element of FW (T ) which maps
to α under the displayed arrow above.
Next, we verify each FW ⊂ F is representable by open immersions. This is clear
from the definitions.
Finally we have to verify the collection (FW )W∈B covers F . This is clear by con-
struction and the fact that B is a basis for the topology of S.
Let X be a scheme representing the functor F . Let (f, {iU}) ∈ F (X) be a “universal
family”. Since each FW is representable by XW (via the morphism of functors
displayed above) we see that iW : f−1(W ) → XW is an isomorphism as desired.
The lemma is proved. □

Lemma 27.2.2.01LI Let S be a scheme. Let B be a basis for the topology of S. Suppose
given the following data:

(1) For every U ∈ B a scheme fU : XU → U over U .
(2) For every U ∈ B a quasi-coherent sheaf FU over XU .
(3) For every pair U, V ∈ B such that V ⊂ U a morphism ρUV : XV → XU .
(4) For every pair U, V ∈ B such that V ⊂ U a morphism θUV : (ρUV )∗FU →
FV .

Assume that
(a) each ρUV induces an isomorphism XV → f−1

U (V ) of schemes over V ,
(b) each θUV is an isomorphism,
(c) whenever W,V,U ∈ B, with W ⊂ V ⊂ U we have ρUW = ρUV ◦ ρVW ,
(d) whenever W,V,U ∈ B, with W ⊂ V ⊂ U we have θUW = θVW ◦ (ρVW )∗θUV .

Then there exists a morphism of schemes f : X → S together with a quasi-coherent
sheaf F on X and isomorphisms iU : f−1(U) → XU and θU : i∗UFU → F|f−1(U)
over U ∈ B such that for V,U ∈ B with V ⊂ U the composition

XV

i−1
V // f−1(V ) inclusion // f−1(U) iU // XU

https://stacks.math.columbia.edu/tag/01LI
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is the morphism ρUV , and the composition

(27.2.2.1)01LJ (ρUV )∗FU = (i−1
V )∗((i∗UFU )|f−1(V ))

θU |f−1(V )−−−−−−→ (i−1
V )∗(F|f−1(V ))

θ−1
V−−→ FV

is equal to θUV . Moreover (X,F) is unique up to unique isomorphism over S.

Proof. By Lemma 27.2.1 we get the scheme X over S and the isomorphisms iU .
Set F ′

U = i∗UFU for U ∈ B. This is a quasi-coherent Of−1(U)-module. The maps

F ′
U |f−1(V ) = i∗UFU |f−1(V ) = i∗V (ρUV )∗FU

i∗V θ
U
V−−−→ i∗V FV = F ′

V

define isomorphisms (θ′)UV : F ′
U |f−1(V ) → F ′

V whenever V ⊂ U are elements of
B. Condition (d) says exactly that this is compatible in case we have a triple of
elements W ⊂ V ⊂ U of B. This allows us to get well defined isomorphisms

φ12 : F ′
U1
|f−1(U1∩U2) −→ F ′

U2
|f−1(U1∩U2)

whenever U1, U2 ∈ B by covering the intersection U1 ∩U2 =
⋃
Vj by elements Vj of

B and taking

φ12|Vj =
(

(θ′)U2
Vj

)−1
◦ (θ′)U1

Vj
.

We omit the verification that these maps do indeed glue to a φ12 and we omit the
verification of the cocycle condition of a glueing datum for sheaves (as in Sheaves,
Section 6.33). By Sheaves, Lemma 6.33.2 we get our F on X. We omit the verifi-
cation of (27.2.2.1). □

Remark 27.2.3.01LK There is a functoriality property for the constructions explained
in Lemmas 27.2.1 and 27.2.2. Namely, suppose given two collections of data (fU :
XU → U, ρUV ) and (gU : YU → U, σUV ) as in Lemma 27.2.1. Suppose for every
U ∈ B given a morphism hU : XU → YU over U compatible with the restrictions
ρUV and σUV . Functoriality means that this gives rise to a morphism of schemes
h : X → Y over S restricting back to the morphisms hU , where f : X → S is
obtained from the datum (fU : XU → U, ρUV ) and g : Y → S is obtained from the
datum (gU : YU → U, σUV ).

Similarly, suppose given two collections of data (fU : XU → U,FU , ρUV , θUV ) and
(gU : YU → U,GU , σUV , ηUV ) as in Lemma 27.2.2. Suppose for every U ∈ B given a
morphism hU : XU → YU over U compatible with the restrictions ρUV and σUV , and
a morphism τU : h∗

UGU → FU compatible with the maps θUV and ηUV . Functoriality
means that these give rise to a morphism of schemes h : X → Y over S restricting
back to the morphisms hU , and a morphism h∗G → F restricting back to the maps
hU where (f : X → S,F) is obtained from the datum (fU : XU → U,FU , ρUV , θUV )
and where (g : Y → S,G) is obtained from the datum (gU : YU → U,GU , σUV , ηUV ).

We omit the verifications and we omit a suitable formulation of “equivalence of
categories” between relative glueing data and relative objects.

27.3. Relative spectrum via glueing

01LL
Situation 27.3.1.01LM Here S is a scheme, and A is a quasi-coherent OS-algebra. This
means that A is a sheaf of OS-algebras which is quasi-coherent as an OS-module.

https://stacks.math.columbia.edu/tag/01LK
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In this section we outline how to construct a morphism of schemes

Spec
S

(A) −→ S

by glueing the spectra Spec(Γ(U,A)) where U ranges over the affine opens of S. We
first show that the spectra of the values of A over affines form a suitable collection
of schemes, as in Lemma 27.2.1.

Lemma 27.3.2.01LN In Situation 27.3.1. Suppose U ⊂ U ′ ⊂ S are affine opens. Let
A = A(U) and A′ = A(U ′). The map of rings A′ → A induces a morphism
Spec(A)→ Spec(A′), and the diagram

Spec(A) //

��

Spec(A′)

��
U // U ′

is cartesian.

Proof. Let R = OS(U) and R′ = OS(U ′). Note that the map R ⊗R′ A′ → A is
an isomorphism as A is quasi-coherent (see Schemes, Lemma 26.7.3 for example).
The result follows from the description of the fibre product of affine schemes in
Schemes, Lemma 26.6.7. □

In particular the morphism Spec(A) → Spec(A′) of the lemma is an open immer-
sion.

Lemma 27.3.3.01LO In Situation 27.3.1. Suppose U ⊂ U ′ ⊂ U ′′ ⊂ S are affine opens.
Let A = A(U), A′ = A(U ′) and A′′ = A(U ′′). The composition of the morphisms
Spec(A) → Spec(A′), and Spec(A′) → Spec(A′′) of Lemma 27.3.2 gives the mor-
phism Spec(A)→ Spec(A′′) of Lemma 27.3.2.

Proof. This follows as the map A′′ → A is the composition of A′′ → A′ and A′ → A
(because A is a sheaf). □

Lemma 27.3.4.01LP In Situation 27.3.1. There exists a morphism of schemes

π : Spec
S

(A) −→ S

with the following properties:
(1) for every affine open U ⊂ S there exists an isomorphism iU : π−1(U) →

Spec(A(U)), and
(2) for U ⊂ U ′ ⊂ S affine open the composition

Spec(A(U))
i−1
U // π−1(U) inclusion // π−1(U ′)

iU′ // Spec(A(U ′))

is the open immersion of Lemma 27.3.2 above.

Proof. Follows immediately from Lemmas 27.2.1, 27.3.2, and 27.3.3. □

https://stacks.math.columbia.edu/tag/01LN
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27.4. Relative spectrum as a functor

01LQ We place ourselves in Situation 27.3.1, i.e., S is a scheme and A is a quasi-coherent
sheaf of OS-algebras.
For any f : T → S the pullback f∗A is a quasi-coherent sheaf of OT -algebras. We
are going to consider pairs (f : T → S, φ) where f is a morphism of schemes and
φ : f∗A → OT is a morphism of OT -algebras. Note that this is the same as giving a
f−1OS-algebra homomorphism φ : f−1A → OT , see Sheaves, Lemma 6.20.2. This
is also the same as giving an OS-algebra map φ : A → f∗OT , see Sheaves, Lemma
6.24.7. We will use all three ways of thinking about φ, without further mention.
Given such a pair (f : T → S, φ) and a morphism a : T ′ → T we get a second pair
(f ′ = f ◦ a, φ′ = a∗φ) which we call the pullback of (f, φ). One way to describe
φ′ = a∗φ is as the composition A → f∗OT → f ′

∗OT ′ where the second map is f∗a
♯

with a♯ : OT → a∗OT ′ . In this way we have defined a functor
01LR F : Schopp −→ Sets(27.4.0.1)

T 7−→ F (T ) = {pairs (f, φ) as above}
Lemma 27.4.1.01LS In Situation 27.3.1. Let F be the functor associated to (S,A)
above. Let g : S′ → S be a morphism of schemes. Set A′ = g∗A. Let F ′ be the
functor associated to (S′,A′) above. Then there is a canonical isomorphism

F ′ ∼= hS′ ×hS F
of functors.
Proof. A pair (f ′ : T → S′, φ′ : (f ′)∗A′ → OT ) is the same as a pair (f, φ : f∗A →
OT ) together with a factorization of f as f = g ◦ f ′. Namely with this notation we
have (f ′)∗A′ = (f ′)∗g∗A = f∗A. Hence the lemma. □

Lemma 27.4.2.01LT In Situation 27.3.1. Let F be the functor associated to (S,A)
above. If S is affine, then F is representable by the affine scheme Spec(Γ(S,A)).

Proof. Write S = Spec(R) and A = Γ(S,A). Then A is an R-algebra and A = Ã.
The ring map R→ A gives rise to a canonical map

funiv : Spec(A) −→ S = Spec(R).

We have f∗
univA = Ã⊗R A by Schemes, Lemma 26.7.3. Hence there is a canonical

map
φuniv : f∗

univA = Ã⊗R A −→ Ã = OSpec(A)

coming from the A-module map A ⊗R A → A, a ⊗ a′ 7→ aa′. We claim that the
pair (funiv, φuniv) represents F in this case. In other words we claim that for any
scheme T the map

Mor(T, Spec(A)) −→ {pairs (f, φ)}, a 7−→ (funiv ◦ a, a∗φuniv)
is bijective.
Let us construct the inverse map. For any pair (f : T → S, φ) we get the induced
ring map

A = Γ(S,A) f∗
// Γ(T, f∗A) φ // Γ(T,OT )

This induces a morphism of schemes T → Spec(A) by Schemes, Lemma 26.6.4.
The verification that this map is inverse to the map displayed above is omitted. □

https://stacks.math.columbia.edu/tag/01LS
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Lemma 27.4.3.01LU In Situation 27.3.1. The functor F is representable by a scheme.

Proof. We are going to use Schemes, Lemma 26.15.4.

First we check that F satisfies the sheaf property for the Zariski topology. Namely,
suppose that T is a scheme, that T =

⋃
i∈I Ui is an open covering, and that (fi, φi) ∈

F (Ui) such that (fi, φi)|Ui∩Uj = (fj , φj)|Ui∩Uj . This implies that the morphisms
fi : Ui → S glue to a morphism of schemes f : T → S such that f |Ii = fi, see
Schemes, Section 26.14. Thus f∗

i A = f∗A|Ui and by assumption the morphisms
φi agree on Ui ∩ Uj . Hence by Sheaves, Section 6.33 these glue to a morphism
of OT -algebras f∗A → OT . This proves that F satisfies the sheaf condition with
respect to the Zariski topology.

Let S =
⋃
i∈I Ui be an affine open covering. Let Fi ⊂ F be the subfunctor consisting

of those pairs (f : T → S, φ) such that f(T ) ⊂ Ui.

We have to show each Fi is representable. This is the case because Fi is identified
with the functor associated to Ui equipped with the quasi-coherent OUi-algebra
A|Ui , by Lemma 27.4.1. Thus the result follows from Lemma 27.4.2.

Next we show that Fi ⊂ F is representable by open immersions. Let (f : T →
S, φ) ∈ F (T ). Consider Vi = f−1(Ui). It follows from the definition of Fi that
given a : T ′ → T we gave a∗(f, φ) ∈ Fi(T ′) if and only if a(T ′) ⊂ Vi. This is what
we were required to show.

Finally, we have to show that the collection (Fi)i∈I covers F . Let (f : T → S, φ) ∈
F (T ). Consider Vi = f−1(Ui). Since S =

⋃
i∈I Ui is an open covering of S we

see that T =
⋃
i∈I Vi is an open covering of T . Moreover (f, φ)|Vi ∈ Fi(Vi). This

finishes the proof of the lemma. □

Lemma 27.4.4.01LV In Situation 27.3.1. The scheme π : Spec
S

(A)→ S constructed in
Lemma 27.3.4 and the scheme representing the functor F are canonically isomorphic
as schemes over S.

Proof. Let X → S be the scheme representing the functor F . Consider the sheaf of
OS-algebras R = π∗OSpec

S
(A). By construction of Spec

S
(A) we have isomorphisms

A(U) → R(U) for every affine open U ⊂ S; this follows from Lemma 27.3.4 part
(1). For U ⊂ U ′ ⊂ S open these isomorphisms are compatible with the restriction
mappings; this follows from Lemma 27.3.4 part (2). Hence by Sheaves, Lemma
6.30.13 these isomorphisms result from an isomorphism of OS-algebras φ : A → R.
Hence this gives an element (Spec

S
(A), φ) ∈ F (Spec

S
(A)). Since X represents the

functor F we get a corresponding morphism of schemes can : Spec
S

(A)→ X over
S.

Let U ⊂ S be any affine open. Let FU ⊂ F be the subfunctor of F corresponding
to pairs (f, φ) over schemes T with f(T ) ⊂ U . Clearly the base change XU rep-
resents FU . Moreover, FU is represented by Spec(A(U)) = π−1(U) according to
Lemma 27.4.2. In other words XU

∼= π−1(U). We omit the verification that this
identification is brought about by the base change of the morphism can to U . □

Definition 27.4.5.01LW Let S be a scheme. Let A be a quasi-coherent sheaf of OS-
algebras. The relative spectrum of A over S, or simply the spectrum of A over S is
the scheme constructed in Lemma 27.3.4 which represents the functor F (27.4.0.1),
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see Lemma 27.4.4. We denote it π : Spec
S

(A) → S. The “universal family” is a
morphism of OS-algebras

A −→ π∗OSpec
S

(A)

The following lemma says among other things that forming the relative spectrum
commutes with base change.

Lemma 27.4.6.01LX Let S be a scheme. Let A be a quasi-coherent sheaf of OS-algebras.
Let π : Spec

S
(A)→ S be the relative spectrum of A over S.

(1) For every affine open U ⊂ S the inverse image π−1(U) is affine.
(2) For every morphism g : S′ → S we have S′ ×S Spec

S
(A) = Spec

S′(g∗A).
(3) The universal map

A −→ π∗OSpec
S

(A)

is an isomorphism of OS-algebras.

Proof. Part (1) comes from the description of the relative spectrum by glueing, see
Lemma 27.3.4. Part (2) follows immediately from Lemma 27.4.1. Part (3) follows
because it is local on S and it is clear in case S is affine by Lemma 27.4.2 for
example. □

Lemma 27.4.7.01LY Let f : X → S be a quasi-compact and quasi-separated morphism
of schemes. By Schemes, Lemma 26.24.1 the sheaf f∗OX is a quasi-coherent sheaf
of OS-algebras. There is a canonical morphism

can : X −→ Spec
S

(f∗OX)

of schemes over S. For any affine open U ⊂ S the restriction can|f−1(U) is identified
with the canonical morphism

f−1(U) −→ Spec(Γ(f−1(U),OX))

coming from Schemes, Lemma 26.6.4.

Proof. The morphism comes, via the definition of Spec as the scheme representing
the functor F , from the canonical map φ : f∗f∗OX → OX (which by adjointness
of push and pull corresponds to id : f∗OX → f∗OX). The statement on the
restriction to f−1(U) follows from the description of the relative spectrum over
affines, see Lemma 27.4.2. □

27.5. Affine n-space

01LZ As an application of the relative spectrum we define affine n-space over a base
scheme S as follows. For any integer n ≥ 0 we can consider the quasi-coherent
sheaf of OS-algebras OS [T1, . . . , Tn]. It is quasi-coherent because as a sheaf of
OS-modules it is just the direct sum of copies of OS indexed by multi-indices.

Definition 27.5.1.01M0 Let S be a scheme and n ≥ 0. The scheme

An
S = Spec

S
(OS [T1, . . . , Tn])

over S is called affine n-space over S. If S = Spec(R) is affine then we also call this
affine n-space over R and we denote it An

R.
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Note that An
R = Spec(R[T1, . . . , Tn]). For any morphism g : S′ → S of schemes

we have g∗OS [T1, . . . , Tn] = OS′ [T1, . . . , Tn] and hence An
S′ = S′×S An

S is the base
change. Therefore an alternative definition of affine n-space is the formula

An
S = S ×Spec(Z) An

Z.

Also, a morphism from an S-scheme f : X → S to An
S is given by a homomorphism

of OS-algebras OS [T1, . . . , Tn] → f∗OX . This is clearly the same thing as giving
the images of the Ti. In other words, a morphism from X to An

S over S is the same
as giving n elements h1, . . . , hn ∈ Γ(X,OX).

27.6. Vector bundles

01M1 Let S be a scheme. Let E be a quasi-coherent sheaf of OS-modules. By Modules,
Lemma 17.21.6 the symmetric algebra Sym(E) of E over OS is a quasi-coherent
sheaf of OS-algebras. Hence it makes sense to apply the construction of the previous
section to it.

Definition 27.6.1.01M2 Let S be a scheme. Let E be a quasi-coherent OS-module1. The
vector bundle associated to E is

V(E) = Spec
S

(Sym(E)).

The vector bundle associated to E comes with a bit of extra structure. Namely, we
have a grading

π∗OV(E) =
⊕

n≥0
Symn(E).

which turns π∗OV(E) into a graded OS-algebra. Conversely, we can recover E from
the degree 1 part of this. Thus we define an abstract vector bundle as follows.

Definition 27.6.2.062M Let S be a scheme. A vector bundle π : V → S over S is an
affine morphism of schemes such that π∗OV is endowed with the structure of a
graded OS-algebra π∗OV =

⊕
n≥0 En such that E0 = OS and such that the maps

Symn(E1) −→ En
are isomorphisms for all n ≥ 0. A morphism of vector bundles over S is a morphism
f : V → V ′ such that the induced map

f∗ : π′
∗OV ′ −→ π∗OV

is compatible with the given gradings.

An example of a vector bundle over S is affine n-space An
S over S, see Definition

27.5.1. This is true because OS [T1, . . . , Tn] = Sym(O⊕n
S ).

Lemma 27.6.3.062N The category of vector bundles over a scheme S is anti-equivalent
to the category of quasi-coherent OS-modules.

Proof. Omitted. Hint: In one direction one uses the functor Spec
S

(Sym∗
OS

(−)) and
in the other the functor (π : V → S)⇝ (π∗OV )1 where the subscript indicates we
take the degree 1 part. □

1The reader may expect here the condition that E is finite locally free. We do not do so in
order to be consistent with [DG67, II, Definition 1.7.8].
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27.7. Cones

062P In algebraic geometry cones correspond to graded algebras. By our conventions a
graded ring or algebra A comes with a grading A =

⊕
d≥0 Ad by the nonnegative

integers, see Algebra, Section 10.56.

Definition 27.7.1.062Q Let S be a scheme. LetA be a quasi-coherent gradedOS-algebra.
Assume that OS → A0 is an isomorphism2. The cone associated to A or the affine
cone associated to A is

C(A) = Spec
S

(A).

The cone associated to a graded sheaf of OS-algebras comes with a bit of extra
structure. Namely, we obtain a grading

π∗OC(A) =
⊕

n≥0
An

Thus we can define an abstract cone as follows.

Definition 27.7.2.062R Let S be a scheme. A cone π : C → S over S is an affine
morphism of schemes such that π∗OC is endowed with the structure of a graded
OS-algebra π∗OC =

⊕
n≥0An such that A0 = OS . A morphism of cones from

π : C → S to π′ : C ′ → S is a morphism f : C → C ′ such that the induced map
f∗ : π′

∗OC′ −→ π∗OC
is compatible with the given gradings.

Any vector bundle is an example of a cone. In fact the category of vector bundles
over S is a full subcategory of the category of cones over S.

27.8. Proj of a graded ring

01M3 In this section we construct Proj of a graded ring following [DG67, II, Section 2].
Let S be a graded ring. Consider the topological space Proj(S) associated to S,
see Algebra, Section 10.57. We will endow this space with a sheaf of rings OProj(S)
such that the resulting pair (Proj(S),OProj(S)) will be a scheme.
Recall that Proj(S) has a basis of open sets D+(f), f ∈ Sd, d ≥ 1 which we call
standard opens, see Algebra, Section 10.57. This terminology will always imply that
f is homogeneous of positive degree even if we forget to mention it. In addition,
the intersection of two standard opens is another: D+(f) ∩D+(g) = D+(fg), for
f, g ∈ S homogeneous of positive degree.

Lemma 27.8.1.01M4 Let S be a graded ring. Let f ∈ S homogeneous of positive degree.
(1) If g ∈ S homogeneous of positive degree and D+(g) ⊂ D+(f), then

(a) f is invertible in Sg, and fdeg(g)/gdeg(f) is invertible in S(g),
(b) ge = af for some e ≥ 1 and a ∈ S homogeneous,
(c) there is a canonical S-algebra map Sf → Sg,
(d) there is a canonical S0-algebra map S(f) → S(g) compatible with the

map Sf → Sg,
(e) the map S(f) → S(g) induces an isomorphism

(S(f))gdeg(f)/fdeg(g) ∼= S(g),

2Often one imposes the assumption that A is generated by A1 over OS . We do not assume
this in order to be consistent with [DG67, II, (8.3.1)].
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(f) these maps induce a commutative diagram of topological spaces

D+(g)

��

{Z-graded primes of Sg}oo //

��

Spec(S(g))

��
D+(f) {Z-graded primes of Sf}oo // Spec(S(f))

where the horizontal maps are homeomorphisms and the vertical
maps are open immersions,

(g) there are compatible canonical Sf and S(f)-module maps Mf →Mg

and M(f) →M(g) for any graded S-module M , and
(h) the map M(f) →M(g) induces an isomorphism

(M(f))gdeg(f)/fdeg(g) ∼= M(g).

(2) Any open covering of D+(f) can be refined to a finite open covering of
the form D+(f) =

⋃n
i=1 D+(gi).

(3) Let g1, . . . , gn ∈ S be homogeneous of positive degree. Then D+(f) ⊂⋃
D+(gi) if and only if gdeg(f)

1 /fdeg(g1), . . . , g
deg(f)
n /fdeg(gn) generate the

unit ideal in S(f).

Proof. Recall that D+(g) = Spec(S(g)) with identification given by the ring maps
S → Sg ← S(g), see Algebra, Lemma 10.57.3. Thus fdeg(g)/gdeg(f) is an element of
S(g) which is not contained in any prime ideal, and hence invertible, see Algebra,
Lemma 10.17.2. We conclude that (a) holds. Write the inverse of f in Sg as a/gd.
We may replace a by its homogeneous part of degree ddeg(g)−deg(f). This means
gd−af is annihilated by a power of g, whence ge = af for some a ∈ S homogeneous
of degree edeg(g) − deg(f). This proves (b). For (c), the map Sf → Sg exists by
(a) from the universal property of localization, or we can define it by mapping
b/fn to anb/gne. This clearly induces a map of the subrings S(f) → S(g) of degree
zero elements as well. We can similarly define Mf → Mg and M(f) → M(g) by
mapping x/fn to anx/gne. The statements writing S(g) resp. M(g) as principal
localizations of S(f) resp. M(f) are clear from the formulas above. The maps in
the commutative diagram of topological spaces correspond to the ring maps given
above. The horizontal arrows are homeomorphisms by Algebra, Lemma 10.57.3.
The vertical arrows are open immersions since the left one is the inclusion of an
open subset.

The open D+(f) is quasi-compact because it is homeomorphic to Spec(S(f)), see
Algebra, Lemma 10.17.10. Hence the second statement follows directly from the
fact that the standard opens form a basis for the topology.

The third statement follows directly from Algebra, Lemma 10.17.2. □

In Sheaves, Section 6.30 we defined the notion of a sheaf on a basis, and we showed
that it is essentially equivalent to the notion of a sheaf on the space, see Sheaves,
Lemmas 6.30.6 and 6.30.9. Moreover, we showed in Sheaves, Lemma 6.30.4 that it
is sufficient to check the sheaf condition on a cofinal system of open coverings for
each standard open. By the lemma above it suffices to check on the finite coverings
by standard opens.
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Definition 27.8.2.01M5 Let S be a graded ring. Suppose that D+(f) ⊂ Proj(S) is
a standard open. A standard open covering of D+(f) is a covering D+(f) =⋃n
i=1 D+(gi), where g1, . . . , gn ∈ S are homogeneous of positive degree.

Let S be a graded ring. Let M be a graded S-module. We will define a presheaf
M̃ on the basis of standard opens. Suppose that U ⊂ Proj(S) is a standard open.
If f, g ∈ S are homogeneous of positive degree such that D+(f) = D+(g), then
by Lemma 27.8.1 above there are canonical maps M(f) → M(g) and M(g) → M(f)
which are mutually inverse. Hence we may choose any f such that U = D+(f) and
define

M̃(U) = M(f).

Note that if D+(g) ⊂ D+(f), then by Lemma 27.8.1 above we have a canonical
map

M̃(D+(f)) = M(f) −→M(g) = M̃(D+(g)).
Clearly, this defines a presheaf of abelian groups on the basis of standard opens.
If M = S, then S̃ is a presheaf of rings on the basis of standard opens. And for
general M we see that M̃ is a presheaf of S̃-modules on the basis of standard opens.
Let us compute the stalk of M̃ at a point x ∈ Proj(S). Suppose that x corresponds
to the homogeneous prime ideal p ⊂ S. By definition of the stalk we see that

M̃x = colimf∈Sd,d>0,f ̸∈pM(f)

Here the set {f ∈ Sd, d > 0, f ̸∈ p} is preordered by the rule f ≥ f ′ ⇔ D+(f) ⊂
D+(f ′). If f1, f2 ∈ S \ p are homogeneous of positive degree, then we have f1f2 ≥
f1 in this ordering. In Algebra, Section 10.57 we defined M(p) as the module
whose elements are fractions x/f with x, f homogeneous, deg(x) = deg(f), f ̸∈ p.
Since p ∈ Proj(S) there exists at least one f0 ∈ S homogeneous of positive degree
with f0 ̸∈ p. Hence x/f = f0x/ff0 and we see that we may always assume the
denominator of an element in M(p) has positive degree. From these remarks it
follows easily that

M̃x = M(p).

Next, we check the sheaf condition for the standard open coverings. If D+(f) =⋃n
i=1 D+(gi), then the sheaf condition for this covering is equivalent with the ex-

actness of the sequence

0→M(f) →
⊕

M(gi) →
⊕

M(gigj).

Note that D+(gi) = D+(fgi), and hence we can rewrite this sequence as the se-
quence

0→M(f) →
⊕

M(fgi) →
⊕

M(fgigj).

By Lemma 27.8.1 we see that gdeg(f)
1 /fdeg(g1), . . . , g

deg(f)
n /fdeg(gn) generate the unit

ideal in S(f), and that the modules M(fgi), M(fgigj) are the principal localiza-
tions of the S(f)-module M(f) at these elements and their products. Thus we may
apply Algebra, Lemma 10.24.1 to the module M(f) over S(f) and the elements
g

deg(f)
1 /fdeg(g1), . . . , g

deg(f)
n /fdeg(gn). We conclude that the sequence is exact. By

the remarks made above, we see that M̃ is a sheaf on the basis of standard opens.
Thus we conclude from the material in Sheaves, Section 6.30 that there exists a
unique sheaf of rings OProj(S) which agrees with S̃ on the standard opens. Note

https://stacks.math.columbia.edu/tag/01M5
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that by our computation of stalks above and Algebra, Lemma 10.57.5 the stalks of
this sheaf of rings are all local rings.
Similarly, for any graded S-module M there exists a unique sheaf of OProj(S)-
modules F which agrees with M̃ on the standard opens, see Sheaves, Lemma
6.30.12.
Definition 27.8.3.01M6 Let S be a graded ring.

(1) The structure sheaf OProj(S) of the homogeneous spectrum of S is the
unique sheaf of rings OProj(S) which agrees with S̃ on the basis of standard
opens.

(2) The locally ringed space (Proj(S),OProj(S)) is called the homogeneous
spectrum of S and denoted Proj(S).

(3) The sheaf ofOProj(S)-modules extending M̃ to all opens of Proj(S) is called
the sheaf of OProj(S)-modules associated to M . This sheaf is denoted M̃
as well.

We summarize the results obtained so far.
Lemma 27.8.4.01M7 Let S be a graded ring. Let M be a graded S-module. Let M̃ be
the sheaf of OProj(S)-modules associated to M .

(1) For every f ∈ S homogeneous of positive degree we have
Γ(D+(f),OProj(S)) = S(f).

(2) For every f ∈ S homogeneous of positive degree we have Γ(D+(f), M̃) =
M(f) as an S(f)-module.

(3) Whenever D+(g) ⊂ D+(f) the restriction mappings on OProj(S) and M̃
are the maps S(f) → S(g) and M(f) →M(g) from Lemma 27.8.1.

(4) Let p be a homogeneous prime of S not containing S+, and let x ∈ Proj(S)
be the corresponding point. We have OProj(S),x = S(p).

(5) Let p be a homogeneous prime of S not containing S+, and let x ∈ Proj(S)
be the corresponding point. We have Fx = M(p) as an S(p)-module.

(6)01M8 There is a canonical ring map S0 −→ Γ(Proj(S), S̃) and a canonical S0-
module map M0 −→ Γ(Proj(S), M̃) compatible with the descriptions of
sections over standard opens and stalks above.

Moreover, all these identifications are functorial in the graded S-module M . In
particular, the functor M 7→ M̃ is an exact functor from the category of graded
S-modules to the category of OProj(S)-modules.
Proof. Assertions (1) - (5) are clear from the discussion above. We see (6) since
there are canonical maps M0 → M(f), x 7→ x/1 compatible with the restriction
maps described in (3). The exactness of the functor M 7→ M̃ follows from the fact
that the functor M 7→M(p) is exact (see Algebra, Lemma 10.57.5) and the fact that
exactness of short exact sequences may be checked on stalks, see Modules, Lemma
17.3.1. □

Remark 27.8.5.01M9 The map from M0 to the global sections of M̃ is generally far from
being an isomorphism. A trivial example is to take S = k[x, y, z] with 1 = deg(x) =
deg(y) = deg(z) (or any number of variables) and to take M = S/(x100, y100, z100).
It is easy to see that M̃ = 0, but M0 = k.

https://stacks.math.columbia.edu/tag/01M6
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Lemma 27.8.6.01MA Let S be a graded ring. Let f ∈ S be homogeneous of positive
degree. Suppose that D(g) ⊂ Spec(S(f)) is a standard open. Then there exists
an h ∈ S homogeneous of positive degree such that D(g) corresponds to D+(h) ⊂
D+(f) via the homeomorphism of Algebra, Lemma 10.57.3. In fact we can take h
such that g = h/fn for some n.

Proof. Write g = h/fn for some h homogeneous of positive degree and some n ≥ 1.
If D+(h) is not contained in D+(f) then we replace h by hf and n by n+1. Then h
has the required shape and D+(h) ⊂ D+(f) corresponds to D(g) ⊂ Spec(S(f)). □

Lemma 27.8.7.01MB Let S be a graded ring. The locally ringed space Proj(S) is a
scheme. The standard opens D+(f) are affine opens. For any graded S-module M
the sheaf M̃ is a quasi-coherent sheaf of OProj(S)-modules.

Proof. Consider a standard open D+(f) ⊂ Proj(S). By Lemmas 27.8.1 and 27.8.4
we have Γ(D+(f),OProj(S)) = S(f), and we have a homeomorphism φ : D+(f) →
Spec(S(f)). For any standard open D(g) ⊂ Spec(S(f)) we may pick an h ∈ S+ as
in Lemma 27.8.6. Then φ−1(D(g)) = D+(h), and by Lemmas 27.8.4 and 27.8.1 we
see

Γ(D+(h),OProj(S)) = S(h) = (S(f))hdeg(f)/fdeg(h) = (S(f))g = Γ(D(g),OSpec(S(f))).

Thus the restriction of OProj(S) to D+(f) corresponds via the homeomorphism φ
exactly to the sheaf OSpec(S(f)) as defined in Schemes, Section 26.5. We conclude
that D+(f) is an affine scheme isomorphic to Spec(S(f)) via φ and hence that
Proj(S) is a scheme.

In exactly the same way we show that M̃ is a quasi-coherent sheaf of OProj(S)-
modules. Namely, the argument above will show that

M̃ |D+(f) ∼= φ∗
(
M̃(f)

)
which shows that M̃ is quasi-coherent. □

Lemma 27.8.8.01MC Let S be a graded ring. The scheme Proj(S) is separated.

Proof. We have to show that the canonical morphism Proj(S) → Spec(Z) is sep-
arated. We will use Schemes, Lemma 26.21.7. Thus it suffices to show given any
pair of standard opens D+(f) and D+(g) that D+(f) ∩D+(g) = D+(fg) is affine
(clear) and that the ring map

S(f) ⊗Z S(g) −→ S(fg)

is surjective. Any element s in S(fg) is of the form s = h/(fngm) with h ∈ S
homogeneous of degree n deg(f) + m deg(g). We may multiply h by a suitable
monomial f igj and assume that n = n′ deg(g), and m = m′ deg(f). Then we can
rewrite s as s = h/f (n′+m′) deg(g) · fm′ deg(g)/gm

′ deg(f). So s is indeed in the image
of the displayed arrow. □

Lemma 27.8.9.01MD Let S be a graded ring. The scheme Proj(S) is quasi-compact if
and only if there exist finitely many homogeneous elements f1, . . . , fn ∈ S+ such
that S+ ⊂

√
(f1, . . . , fn). In this case Proj(S) = D+(f1) ∪ . . . ∪D+(fn).

https://stacks.math.columbia.edu/tag/01MA
https://stacks.math.columbia.edu/tag/01MB
https://stacks.math.columbia.edu/tag/01MC
https://stacks.math.columbia.edu/tag/01MD
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Proof. Given such a collection of elements the standard affine opens D+(fi) cover
Proj(S) by Algebra, Lemma 10.57.3. Conversely, if Proj(S) is quasi-compact, then
we may cover it by finitely many standard opens D+(fi), i = 1, . . . , n and we see
that S+ ⊂

√
(f1, . . . , fn) by the lemma referenced above. □

Lemma 27.8.10.01ME Let S be a graded ring. The scheme Proj(S) has a canonical
morphism towards the affine scheme Spec(S0), agreeing with the map on topological
spaces coming from Algebra, Definition 10.57.1.

Proof. We saw above that our construction of S̃, resp. M̃ gives a sheaf of S0-
algebras, resp. S0-modules. Hence we get a morphism by Schemes, Lemma 26.6.4.
This morphism, when restricted to D+(f) comes from the canonical ring map S0 →
S(f). The maps S → Sf , S(f) → Sf are S0-algebra maps, see Lemma 27.8.1. Hence
if the homogeneous prime p ⊂ S corresponds to the Z-graded prime p′ ⊂ Sf and the
(usual) prime p′′ ⊂ S(f), then each of these has the same inverse image in S0. □

Lemma 27.8.11.01MF Let S be a graded ring. If S is finitely generated as an algebra over
S0, then the morphism Proj(S) → Spec(S0) satisfies the existence and uniqueness
parts of the valuative criterion, see Schemes, Definition 26.20.3.

Proof. The uniqueness part follows from the fact that Proj(S) is separated (Lemma
27.8.8 and Schemes, Lemma 26.22.1). Choose xi ∈ S+ homogeneous, i = 1, . . . , n
which generate S over S0. Let di = deg(xi) and set d = lcm{di}. Suppose we are
given a diagram

Spec(K) //

��

Proj(S)

��
Spec(A) // Spec(S0)

as in Schemes, Definition 26.20.3. Denote v : K∗ → Γ the valuation of A, see
Algebra, Definition 10.50.13. We may choose an f ∈ S+ homogeneous such that
Spec(K) maps into D+(f). Then we get a commutative diagram of ring maps

K S(f)φ
oo

A

OO

S0oo

OO

After renumbering we may assume that φ(xdeg(f)
i /fdi) is nonzero for i = 1, . . . , r

and zero for i = r+ 1, . . . , n. Since the open sets D+(xi) cover Proj(S) we see that
r ≥ 1. Let i0 ∈ {1, . . . , r} be an index minimizing γi = (d/di)v(φ(xdeg(f)

i /fdi)) in
Γ. For convenience set x0 = xi0 and d0 = di0 . The ring map φ factors though a
map φ′ : S(fx0) → K which gives a ring map S(x0) → S(fx0) → K. The algebra
S(x0) is generated over S0 by the elements xe1

1 . . . xenn /x
e0
0 , where

∑
eidi = e0d0. If

ei > 0 for some i > r, then φ′(xe1
1 . . . xenn /x

e0
0 ) = 0. If ei = 0 for i > r, then we

https://stacks.math.columbia.edu/tag/01ME
https://stacks.math.columbia.edu/tag/01MF
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have
deg(f)v(φ′(xe1

1 . . . xerr /x
e0
0 )) = v(φ′(xe1 deg(f)

1 . . . xer deg(f)
r /x

e0 deg(f)
0 ))

=
∑

eiv(φ′(xdeg(f)
i /fdi))− e0v(φ′(xdeg(f)

0 /fd0))

=
∑

eidiγi − e0d0γ0

≥
∑

eidiγ0 − e0d0γ0 = 0

because γ0 is minimal among the γi. This implies that S(x0) maps into A via φ′. The
corresponding morphism of schemes Spec(A) → Spec(S(x0)) = D+(x0) ⊂ Proj(S)
provides the morphism fitting into the first commutative diagram of this proof. □

We saw in the proof of Lemma 27.8.11 that, under the hypotheses of that lemma,
the morphism Proj(S) → Spec(S0) is quasi-compact as well. Hence (by Schemes,
Proposition 26.20.6) we see that Proj(S) → Spec(S0) is universally closed in the
situation of the lemma. We give several examples showing these results do not hold
without some assumption on the graded ring S.

Example 27.8.12.01MG Let C[X1, X2, X3, . . .] be the graded C-algebra with each Xi in
degree 1. Consider the ring map

C[X1, X2, X3, . . .] −→ C[tα;α ∈ Q≥0]

which maps Xi to t1/i. The right hand side becomes a valuation ring A upon
localization at the ideal m = (tα;α > 0). Let K be the fraction field of A. The
above gives a morphism Spec(K)→ Proj(C[X1, X2, X3, . . .]) which does not extend
to a morphism defined on all of Spec(A). The reason is that the image of Spec(A)
would be contained in one of the D+(Xi) but then Xi+1/Xi would map to an
element of A which it doesn’t since it maps to t1/(i+1)−1/i.

Example 27.8.13.01MH Let R = C[t] and

S = R[X1, X2, X3, . . .]/(X2
i − tXi+1).

The grading is such that R = S0 and deg(Xi) = 2i−1. Note that if p ∈ Proj(S)
then t ̸∈ p (otherwise p has to contain all of the Xi which is not allowed for an
element of the homogeneous spectrum). Thus we see that D+(Xi) = D+(Xi+1)
for all i. Hence Proj(S) is quasi-compact; in fact it is affine since it is equal to
D+(X1). It is easy to see that the image of Proj(S)→ Spec(R) is D(t). Hence the
morphism Proj(S) → Spec(R) is not closed. Thus the valuative criterion cannot
apply because it would imply that the morphism is closed (see Schemes, Proposition
26.20.6 ).

Example 27.8.14.01MI Let A be a ring. Let S = A[T ] as a graded A algebra with T in
degree 1. Then the canonical morphism Proj(S) → Spec(A) (see Lemma 27.8.10)
is an isomorphism.

Example 27.8.15.0G5W Let X = Spec(A) be an affine scheme, and let U ⊂ X be an
open subscheme. Grade A[T ] by setting deg T = 1. Define S to be the subring
of A[T ] generated by A and all fT i, where i ≥ 0 and where f ∈ A is such that
D(f) ⊂ U . We claim that S is a graded ring with S0 = A such that Proj(S) ∼= U ,
and this isomorphism identifies the canonical morphism Proj(S) → Spec(A) of
Lemma 27.8.10 with the inclusion U ⊂ X.

https://stacks.math.columbia.edu/tag/01MG
https://stacks.math.columbia.edu/tag/01MH
https://stacks.math.columbia.edu/tag/01MI
https://stacks.math.columbia.edu/tag/0G5W
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Suppose p ∈ Proj(S) is such that every fT ∈ S1 is in p. Then every generator fT i
with i ≥ 1 is in p because (fT i)2 = (fT )(fT 2i−1) ∈ p and p is radical. But then
p ⊃ S+, which is impossible. Consequently Proj(S) is covered by the standard open
affine subsets {D+(fT )}fT∈S1 .

Observe that, if fT ∈ S1, then the inclusion S ⊂ A[T ] induces a graded isomorphism
of S[(fT )−1] with A[T, T−1, f−1]. Hence the standard open subset D+(fT ) ∼=
Spec(S(fT )) is isomorphic to Spec(A[T, T−1, f−1]0) = Spec(A[f−1]). It is clear that
this isomorphism is a restriction of the canonical morphism Proj(S) → Spec(A).
If in addition gT ∈ S1, then S[(fT )−1, (gT )−1] ∼= A[T, T−1, f−1, g−1] as graded
rings, so D+(fT )∩D+(gT ) ∼= Spec(A[f−1, g−1]). Therefore Proj(S) is the union of
open subschemes D+(fT ) which are isomorphic to the open subschemes D(f) ⊂ X
under the canonical morphism, and these open subschemes intersect in Proj(S)
in the same way they do in X. We conclude that the canonical morphism is an
isomorphism of Proj(S) with the union of all D(f) ⊂ U , which is U .

27.9. Quasi-coherent sheaves on Proj

01MJ Let S be a graded ring. Let M be a graded S-module. We saw in Lemma 27.8.4
how to construct a quasi-coherent sheaf of modules M̃ on Proj(S) and a map

(27.9.0.1)0AG1 M0 −→ Γ(Proj(S), M̃)

of the degree 0 part of M to the global sections of M̃ . The degree 0 part of the nth
twist M(n) of the graded module M (see Algebra, Section 10.56) is equal to Mn.
Hence we can get maps

(27.9.0.2)0AG2 Mn −→ Γ(Proj(S), M̃(n)).

We would like to be able to perform this operation for any quasi-coherent sheaf F
on Proj(S). We will do this by tensoring with the nth twist of the structure sheaf,
see Definition 27.10.1. In order to relate the two notions we will use the following
lemma.

Lemma 27.9.1.01MK Let S be a graded ring. Let (X,OX) = (Proj(S),OProj(S)) be the
scheme of Lemma 27.8.7. Let f ∈ S+ be homogeneous. Let x ∈ X be a point
corresponding to the homogeneous prime p ⊂ S. Let M , N be graded S-modules.
There is a canonical map of OProj(S)-modules

M̃ ⊗OX
Ñ −→ M̃ ⊗S N

which induces the canonical map M(f) ⊗S(f) N(f) → (M ⊗S N)(f) on sections over
D+(f) and the canonical map M(p) ⊗S(p) N(p) → (M ⊗S N)(p) on stalks at x.
Moreover, the following diagram

M0 ⊗S0 N0 //

��

(M ⊗S N)0

��

Γ(X, M̃ ⊗OX
Ñ) // Γ(X, M̃ ⊗S N)

is commutative where the vertical maps are given by (27.9.0.1).

https://stacks.math.columbia.edu/tag/01MK
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Proof. To construct a morphism as displayed is the same as constructing a OX -
bilinear map

M̃ × Ñ −→ M̃ ⊗S N
see Modules, Section 17.16. It suffices to define this on sections over the opens
D+(f) compatible with restriction mappings. On D+(f) we use the S(f)-bilinear
map M(f)×N(f) → (M ⊗SN)(f), (x/fn, y/fm) 7→ (x⊗y)/fn+m. Details omitted.

□

Remark 27.9.2.01ML In general the map constructed in Lemma 27.9.1 above is not an
isomorphism. Here is an example. Let k be a field. Let S = k[x, y, z] with k in
degree 0 and deg(x) = 1, deg(y) = 2, deg(z) = 3. Let M = S(1) and N = S(2),
see Algebra, Section 10.56 for notation. Then M ⊗S N = S(3). Note that

Sz = k[x, y, z, 1/z]
S(z) = k[x3/z, xy/z, y3/z2] ∼= k[u, v, w]/(uw − v3)
M(z) = S(z) · x+ S(z) · y2/z ⊂ Sz
N(z) = S(z) · y + S(z) · x2 ⊂ Sz

S(3)(z) = S(z) · z ⊂ Sz
Consider the maximal ideal m = (u, v, w) ⊂ S(z). It is not hard to see that both
M(z)/mM(z) and N(z)/mN(z) have dimension 2 over κ(m). But S(3)(z)/mS(3)(z)
has dimension 1. Thus the map M(z) ⊗N(z) → S(3)(z) is not an isomorphism.

27.10. Invertible sheaves on Proj

01MM Recall from Algebra, Section 10.56 the construction of the twisted module M(n)
associated to a graded module over a graded ring.

Definition 27.10.1.01MN Let S be a graded ring. Let X = Proj(S).

(1) We define OX(n) = S̃(n). This is called the nth twist of the structure
sheaf of Proj(S).

(2) For any sheaf of OX -modules F we set F(n) = F ⊗OX
OX(n).

We are going to use Lemma 27.9.1 to construct some canonical maps. Since S(n)⊗S
S(m) = S(n+m) we see that there are canonical maps
(27.10.1.1)01MO OX(n)⊗OX

OX(m) −→ OX(n+m).
These maps are not isomorphisms in general, see the example in Remark 27.9.2.
The same example shows that OX(n) is not an invertible sheaf on X in general.
Tensoring with an arbitrary OX -module F we get maps
(27.10.1.2)03GJ OX(n)⊗OX

F(m) −→ F(n+m).

The maps (27.10.1.1) on global sections give a map of graded rings

(27.10.1.3)01MP S −→
⊕

n≥0
Γ(X,OX(n)).

And for an arbitrary OX -module F the maps (27.10.1.2) give a graded module
structure
(27.10.1.4)03GK

⊕
n≥0

Γ(X,OX(n))×
⊕

m∈Z
Γ(X,F(m)) −→

⊕
m∈Z

Γ(X,F(m))

https://stacks.math.columbia.edu/tag/01ML
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and via (27.10.1.3) also a S-module structure. More generally, given any graded
S-module M we have M(n) = M ⊗S S(n). Hence we get maps

(27.10.1.5)01MQ M̃(n) = M̃ ⊗OX
OX(n) −→ M̃(n).

On global sections (27.9.0.2) defines a map of graded S-modules

(27.10.1.6)01MR M −→
⊕

n∈Z
Γ(X, M̃(n)).

Here is an important fact which follows basically immediately from the definitions.

Lemma 27.10.2.01MS Let S be a graded ring. Set X = Proj(S). Let f ∈ S be
homogeneous of degree d > 0. The sheaves OX(nd)|D+(f) are invertible, and in
fact trivial for all n ∈ Z (see Modules, Definition 17.25.1). The maps (27.10.1.1)
restricted to D+(f)

OX(nd)|D+(f) ⊗OD+(f) OX(m)|D+(f) −→ OX(nd+m)|D+(f),

the maps (27.10.1.2) restricted to D+(f)
OX(nd)|D+(f) ⊗OD+(f) F(m)|D+(f) −→ F(nd+m)|D+(f),

and the maps (27.10.1.5) restricted to D+(f)

M̃(nd)|D+(f) = M̃ |D+(f) ⊗OD+(f) OX(nd)|D+(f) −→ M̃(nd)|D+(f)

are isomorphisms for all n,m ∈ Z.

Proof. The (not graded) S-module maps S → S(nd), and M → M(nd), given by
x 7→ fnx become isomorphisms after inverting f . The first shows that S(f) ∼=
S(nd)(f) which gives an isomorphism OD+(f) ∼= OX(nd)|D+(f). The second shows
that the map S(nd)(f) ⊗S(f) M(f) →M(nd)(f) is an isomorphism. The case of the
map (27.10.1.2) is a consequence of the case of the map (27.10.1.1). □

Lemma 27.10.3.01MT Let S be a graded ring. Let M be a graded S-module. Set
X = Proj(S). Assume X is covered by the standard opens D+(f) with f ∈ S1,
e.g., if S is generated by S1 over S0. Then the sheaves OX(n) are invertible and
the maps (27.10.1.1), (27.10.1.2), and (27.10.1.5) are isomorphisms. In particular,
these maps induce isomorphisms

OX(1)⊗n ∼= OX(n) and M̃ ⊗OX
OX(n) = M̃(n) ∼= M̃(n)

Thus (27.9.0.2) becomes a map

(27.10.3.1)0AG3 Mn −→ Γ(X, M̃(n))
and (27.10.1.6) becomes a map

(27.10.3.2)0AG4 M −→
⊕

n∈Z
Γ(X, M̃(n)).

Proof. Under the assumptions of the lemma X is covered by the open subsets
D+(f) with f ∈ S1 and the lemma is a consequence of Lemma 27.10.2 above. □

Lemma 27.10.4.01MU Let S be a graded ring. Set X = Proj(S). Fix d ≥ 1 an integer.
The following open subsets of X are equal:

(1) The largest open subset W = Wd ⊂ X such that each OX(dn)|W is
invertible and all the multiplication maps OX(nd)|W ⊗OW

OX(md)|W →
OX(nd+md)|W (see 27.10.1.1) are isomorphisms.
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(2) The union of the open subsets D+(fg) with f, g ∈ S homogeneous and
deg(f) = deg(g) + d.

Moreover, all the maps M̃(nd)|W = M̃ |W ⊗OW
OX(nd)|W → M̃(nd)|W (see

27.10.1.5) are isomorphisms.
Proof. If x ∈ D+(fg) with deg(f) = deg(g)+d then on D+(fg) the sheaves OX(dn)
are generated by the element (f/g)n = f2n/(fg)n. This implies x is in the open
subset W defined in (1) by arguing as in the proof of Lemma 27.10.2.
Conversely, suppose that OX(d) is free of rank 1 in an open neighbourhood V of
x ∈ X and all the multiplication mapsOX(nd)|V ⊗OV

OX(md)|V → OX(nd+md)|V
are isomorphisms. We may choose h ∈ S+ homogeneous such that x ∈ D+(h) ⊂ V .
By the definition of the twists of the structure sheaf we conclude there exists an
element s of (Sh)d such that sn is a basis of (Sh)nd as a module over S(h) for all
n ∈ Z. We may write s = f/hm for some m ≥ 1 and f ∈ Sd+m deg(h). Set g = hm

so s = f/g. Note that x ∈ D+(g) by construction. Note that gd ∈ (Sh)−d deg(g).
By assumption we can write this as a multiple of sdeg(g) = fdeg(g)/gdeg(g), say
gd = a/ge ·fdeg(g)/gdeg(g). Then we conclude that gd+e+deg(g) = afdeg(g) and hence
also x ∈ D+(f). So x is an element of the set defined in (2).
The existence of the generating section s = f/g over the affine open D+(fg) whose
powers freely generate the sheaves of modules OX(nd) easily implies that the mul-
tiplication maps M̃(nd)|W = M̃ |W ⊗OW

OX(nd)|W → M̃(nd)|W (see 27.10.1.5) are
isomorphisms. Compare with the proof of Lemma 27.10.2. □

Recall from Modules, Lemma 17.25.10 that given an invertible sheaf L on a locally
ringed space X, and given a global section s of L the set Xs = {x ∈ X | s ̸∈ mxLx}
is open.
Lemma 27.10.5.01MV Let S be a graded ring. Set X = Proj(S). Fix d ≥ 1 an integer.
Let W = Wd ⊂ X be the open subscheme defined in Lemma 27.10.4. Let n ≥ 1
and f ∈ Snd. Denote s ∈ Γ(W,OW (nd)) the section which is the image of f via
(27.10.1.3) restricted to W . Then

Ws = D+(f) ∩W.
Proof. Let D+(ab) ⊂W be a standard affine open with a, b ∈ S homogeneous and
deg(a) = deg(b) + d. Note that D+(ab) ∩ D+(f) = D+(abf). On the other hand
the restriction of s to D+(ab) corresponds to the element f/1 = bnf/an(a/b)n ∈
(Sab)nd. We have seen in the proof of Lemma 27.10.4 that (a/b)n is a generator
for OW (nd) over D+(ab). We conclude that Ws ∩ D+(ab) is the principal open
associated to bnf/an ∈ OX(D+(ab)). Thus the result of the lemma is clear. □

The following lemma states the properties that we will later use to characterize
schemes with an ample invertible sheaf.
Lemma 27.10.6.01MW Let S be a graded ring. Let X = Proj(S). Let Y ⊂ X be a quasi-
compact open subscheme. Denote OY (n) the restriction of OX(n) to Y . There
exists an integer d ≥ 1 such that

(1) the subscheme Y is contained in the open Wd defined in Lemma 27.10.4,
(2) the sheaf OY (dn) is invertible for all n ∈ Z,
(3) all the maps OY (nd)⊗OY

OY (m) −→ OY (nd+m) of Equation (27.10.1.1)
are isomorphisms,
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(4) all the maps M̃(nd)|Y = M̃ |Y ⊗OY
OX(nd)|Y → M̃(nd)|Y (see 27.10.1.5)

are isomorphisms,
(5) given f ∈ Snd denote s ∈ Γ(Y,OY (nd)) the image of f via (27.10.1.3)

restricted to Y , then D+(f) ∩ Y = Ys,
(6) a basis for the topology on Y is given by the collection of opens Ys, where

s ∈ Γ(Y,OY (nd)), n ≥ 1, and
(7) a basis for the topology of Y is given by those opens Ys ⊂ Y , for s ∈

Γ(Y,OY (nd)), n ≥ 1 which are affine.

Proof. Since Y is quasi-compact there exist finitely many homogeneous fi ∈ S+,
i = 1, . . . , n such that the standard opens D+(fi) give an open covering of Y . Let
di = deg(fi) and set d = d1 . . . dn. Note that D+(fi) = D+(fd/dii ) and hence we
see immediately that Y ⊂Wd, by characterization (2) in Lemma 27.10.4 or by (1)
using Lemma 27.10.2. Note that (1) implies (2), (3) and (4) by Lemma 27.10.4.
(Note that (3) is a special case of (4).) Assertion (5) follows from Lemma 27.10.5.
Assertions (6) and (7) follow because the open subsets D+(f) form a basis for the
topology of X and are affine. □

Lemma 27.10.7.0B5I Let S be a graded ring. Set X = Proj(S). Let F be a quasi-
coherent OX -module. Set M =

⊕
n∈Z Γ(X,F(n)) as a graded S-module, using

(27.10.1.4) and (27.10.1.3). Then there is a canonical OX -module map

M̃ −→ F
functorial in F such that the induced map M0 → Γ(X,F) is the identity.

Proof. Let f ∈ S be homogeneous of degree d > 0. Recall that M̃ |D+(f) corresponds
to the S(f)-module M(f) by Lemma 27.8.4. Thus we can define a canonical map

M(f) −→ Γ(D+(f),F), m/fn 7−→ m|D+(f) ⊗ f |−nD+(f)

which makes sense because f |D+(f) is a trivializing section of the invertible sheaf
OX(d)|D+(f), see Lemma 27.10.2 and its proof. Since M̃ is quasi-coherent, this
leads to a canonical map

M̃ |D+(f) −→ F|D+(f)

via Schemes, Lemma 26.7.1. We obtain a global map if we prove that the displayed
maps glue on overlaps. Proof of this is omitted. We also omit the proof of the final
statement. □

27.11. Functoriality of Proj

01MX A graded ring map ψ : A→ B does not always give rise to a morphism of associated
projective homogeneous spectra. The reason is that the inverse image ψ−1(q) of a
homogeneous prime q ⊂ B may contain the irrelevant prime A+ even if q does not
contain B+. The correct result is stated as follows.

Lemma 27.11.1.01MY Let A, B be two graded rings. Set X = Proj(A) and Y = Proj(B).
Let ψ : A→ B be a graded ring map. Set

U(ψ) =
⋃

f∈A+ homogeneous
D+(ψ(f)) ⊂ Y.

Then there is a canonical morphism of schemes
rψ : U(ψ) −→ X
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and a map of Z-graded OU(ψ)-algebras

θ = θψ : r∗
ψ

(⊕
d∈Z
OX(d)

)
−→

⊕
d∈Z
OU(ψ)(d).

The triple (U(ψ), rψ, θ) is characterized by the following properties:
(1) For every d ≥ 0 the diagram

Ad

��

ψ
// Bd

��
Γ(X,OX(d)) θ // Γ(U(ψ),OY (d)) Γ(Y,OY (d))oo

is commutative.
(2) For any f ∈ A+ homogeneous we have r−1

ψ (D+(f)) = D+(ψ(f)) and the
restriction of rψ to D+(ψ(f)) corresponds to the ring map A(f) → B(ψ(f))
induced by ψ.

Proof. Clearly condition (2) uniquely determines the morphism of schemes and the
open subset U(ψ). Pick f ∈ Ad with d ≥ 1. Note that OX(n)|D+(f) corresponds to
the A(f)-module (Af )n and that OY (n)|D+(ψ(f)) corresponds to the B(ψ(f))-module
(Bψ(f))n. In other words θ when restricted to D+(ψ(f)) corresponds to a map of
Z-graded B(ψ(f))-algebras

Af ⊗A(f) B(ψ(f)) −→ Bψ(f)

Condition (1) determines the images of all elements of A. Since f is an invertible
element which is mapped to ψ(f) we see that 1/fm is mapped to 1/ψ(f)m. It easily
follows from this that θ is uniquely determined, namely it is given by the rule

a/fm ⊗ b/ψ(f)e 7−→ ψ(a)b/ψ(f)m+e.

To show existence we remark that the proof of uniqueness above gave a well defined
prescription for the morphism r and the map θ when restricted to every standard
open of the form D+(ψ(f)) ⊂ U(ψ) into D+(f). Call these rf and θf . Hence we
only need to verify that if D+(f) ⊂ D+(g) for some f, g ∈ A+ homogeneous, then
the restriction of rg to D+(ψ(f)) matches rf . This is clear from the formulas given
for r and θ above. □

Lemma 27.11.2.01MZ Let A, B, and C be graded rings. Set X = Proj(A), Y = Proj(B)
and Z = Proj(C). Let φ : A→ B, ψ : B → C be graded ring maps. Then we have

U(ψ ◦ φ) = r−1
φ (U(ψ)) and rψ◦φ = rφ ◦ rψ|U(ψ◦φ).

In addition we have
θψ ◦ r∗

ψθφ = θψ◦φ

with obvious notation.

Proof. Omitted. □

Lemma 27.11.3.01N0 With hypotheses and notation as in Lemma 27.11.1 above. As-
sume Ad → Bd is surjective for all d≫ 0. Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is a closed immersion, and
(3) the maps θ : r∗

ψOX(n) → OY (n) are surjective but not isomorphisms in
general (even if A→ B is surjective).
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Proof. Part (1) follows from the definition of U(ψ) and the fact that D+(f) =
D+(fn) for any n > 0. For f ∈ A+ homogeneous we see that A(f) → B(ψ(f)) is
surjective because any element of B(ψ(f)) can be represented by a fraction b/ψ(f)n
with n arbitrarily large (which forces the degree of b ∈ B to be large). This proves
(2). The same argument shows the map

Af → Bψ(f)

is surjective which proves the surjectivity of θ. For an example where this map
is not an isomorphism consider the graded ring A = k[x, y] where k is a field and
deg(x) = 1, deg(y) = 2. Set I = (x), so that B = k[y]. Note that OY (1) = 0
in this case. But it is easy to see that r∗

ψOX(1) is not zero. (There are less silly
examples.) □

Lemma 27.11.4.07ZE With hypotheses and notation as in Lemma 27.11.1 above. As-
sume Ad → Bd is an isomorphism for all d≫ 0. Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is an isomorphism, and
(3) the maps θ : r∗

ψOX(n)→ OY (n) are isomorphisms.

Proof. We have (1) by Lemma 27.11.3. Let f ∈ A+ be homogeneous. The assump-
tion on ψ implies that Af → Bf is an isomorphism (details omitted). Thus it is
clear that rψ and θ restrict to isomorphisms over D+(f). The lemma follows. □

Lemma 27.11.5.01N1 With hypotheses and notation as in Lemma 27.11.1 above. As-
sume Ad → Bd is surjective for d ≫ 0 and that A is generated by A1 over A0.
Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is a closed immersion, and
(3) the maps θ : r∗

ψOX(n)→ OY (n) are isomorphisms.

Proof. By Lemmas 27.11.4 and 27.11.2 we may replace B by the image of A→ B
without changing X or the sheaves OX(n). Thus we may assume that A → B
is surjective. By Lemma 27.11.3 we get (1) and (2) and surjectivity in (3). By
Lemma 27.10.3 we see that both OX(n) and OY (n) are invertible. Hence θ is an
isomorphism. □

Lemma 27.11.6.01N2 With hypotheses and notation as in Lemma 27.11.1 above. As-
sume there exists a ring map R → A0 and a ring map R → R′ such that B =
R′ ⊗R A. Then

(1) U(ψ) = Y ,
(2) the diagram

Y = Proj(B)
rψ
//

��

Proj(A) = X

��
Spec(R′) // Spec(R)

is a fibre product square, and
(3) the maps θ : r∗

ψOX(n)→ OY (n) are isomorphisms.

Proof. This follows immediately by looking at what happens over the standard
opens D+(f) for f ∈ A+. □
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Lemma 27.11.7.01N3 With hypotheses and notation as in Lemma 27.11.1 above. As-
sume there exists a g ∈ A0 such that ψ induces an isomorphism Ag → B. Then
U(ψ) = Y , rψ : Y → X is an open immersion which induces an isomorphism of Y
with the inverse image of D(g) ⊂ Spec(A0). Moreover the map θ is an isomorphism.

Proof. This is a special case of Lemma 27.11.6 above. □

Lemma 27.11.8.0B5J Let S be a graded ring. Let d ≥ 1. Set S′ = S(d) with notation
as in Algebra, Section 10.56. Set X = Proj(S) and X ′ = Proj(S′). There is a
canonical isomorphism i : X → X ′ of schemes such that

(1) for any graded S-module M setting M ′ = M (d), we have a canonical
isomorphism M̃ → i∗M̃ ′,

(2) we have canonical isomorphisms OX(nd)→ i∗OX′(n)
and these isomorphisms are compatible with the multiplication maps of Lemma
27.9.1 and hence with the maps (27.10.1.1), (27.10.1.2), (27.10.1.3), (27.10.1.4),
(27.10.1.5), and (27.10.1.6) (see proof for precise statements.

Proof. The injective ring map S′ → S (which is not a homomorphism of graded
rings due to our conventions), induces a map j : Spec(S) → Spec(S′). Given a
graded prime ideal p ⊂ S we see that p′ = j(p) = S′ ∩ p is a graded prime ideal
of S′. Moreover, if f ∈ S+ is homogeneous and f ̸∈ p, then fd ∈ S′

+ and fd ̸∈ p′.
Conversely, if p′ ⊂ S′ is a graded prime ideal not containing some homogeneous
element f ∈ S′

+, then p = {g ∈ S | gd ∈ p′} is a graded prime ideal of S not
containing f whose image under j is p′. To see that p is an ideal, note that if
g, h ∈ p, then (g+h)2d ∈ p′ by the binomial formula and hence g+h ∈ p′ as p′ is a
prime. In this way we see that j induces a homeomorphism i : X → X ′. Moreover,
given f ∈ S+ homogeneous, then we have S(f) ∼= S′

(fd). Since these isomorphisms
are compatible with the restrictions mappings of Lemma 27.8.1, we see that there
exists an isomorphism i♯ : i−1OX′ → OX of structure sheaves on X and X ′, hence
i is an isomorphism of schemes.
Let M be a graded S-module. Given f ∈ S+ homogeneous, we have M(f) ∼= M ′

(fd),
hence in exactly the same manner as above we obtain the isomorphism in (1). The
isomorphisms in (2) are a special case of (1) for M = S(nd) which gives M ′ = S′(n).
Let M and N be graded S-modules. Then we have

M ′ ⊗S′ N ′ = (M ⊗S N)(d) = (M ⊗S N)′

as can be verified directly from the definitions. Having said this the compatibility
with the multiplication maps of Lemma 27.9.1 is the commutativity of the diagram

M̃ ⊗OX
Ñ

(1)⊗(1)
��

// M̃ ⊗S N

(1)
��

i∗(M̃ ′ ⊗OX′ Ñ ′) // i∗( ˜M ′ ⊗S′ N ′)

This can be seen by looking at the construction of the maps over the open D+(f) =
D+(fd) where the top horizontal arrow is given by the map M(f)×N(f) → (M ⊗S
N)(f) and the lower horizontal arrow by the map M ′

(fd)×N
′
(fd) → (M ′⊗S′ N ′)(fd).

Since these maps agree via the identifications M(f) = M ′
(fd), etc, we get the desired

compatibility. We omit the proof of the other compatibilities. □
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27.12. Morphisms into Proj

01N4 Let S be a graded ring. Let X = Proj(S) be the homogeneous spectrum of S. Let
d ≥ 1 be an integer. Consider the open subscheme
(27.12.0.1)01N5 Ud =

⋃
f∈Sd

D+(f) ⊂ X = Proj(S)

Note that d|d′ ⇒ Ud ⊂ Ud′ and X =
⋃
d Ud. Neither X nor Ud need be quasi-

compact, see Algebra, Lemma 10.57.3. Let us write OUd(n) = OX(n)|Ud . By
Lemma 27.10.2 we know that OUd(nd), n ∈ Z is an invertible OUd -module and that
all the multiplication maps OUd(nd)⊗OUd

OUd(m)→ OUd(nd+m) of (27.10.1.1) are
isomorphisms. In particular we have OUd(nd) ∼= OUd(d)⊗n. The graded ring map
(27.10.1.3) on global sections combined with restriction to Ud give a homomorphism
of graded rings
(27.12.0.2)01N6 ψd : S(d) −→ Γ∗(Ud,OUd(d)).
For the notation S(d), see Algebra, Section 10.56. For the notation Γ∗ see Modules,
Definition 17.25.7. Moreover, since Ud is covered by the opens D+(f), f ∈ Sd we
see that OUd(d) is globally generated by the sections in the image of ψd1 : S(d)

1 =
Sd → Γ(Ud,OUd(d)), see Modules, Definition 17.4.1.
Let Y be a scheme, and let φ : Y → X be a morphism of schemes. Assume
the image φ(Y ) is contained in the open subscheme Ud of X. By the discussion
following Modules, Definition 17.25.7 we obtain a homomorphism of graded rings

Γ∗(Ud,OUd(d)) −→ Γ∗(Y, φ∗OX(d)).
The composition of this and ψd gives a graded ring homomorphism
(27.12.0.3)01N7 ψdφ : S(d) −→ Γ∗(Y, φ∗OX(d))
which has the property that the invertible sheaf φ∗OX(d) is globally generated by
the sections in the image of (S(d))1 = Sd → Γ(Y, φ∗OX(d)).

Lemma 27.12.1.01N8 Let S be a graded ring, and X = Proj(S). Let d ≥ 1 and
Ud ⊂ X as above. Let Y be a scheme. Let L be an invertible sheaf on Y . Let
ψ : S(d) → Γ∗(Y,L) be a graded ring homomorphism such that L is generated by
the sections in the image of ψ|Sd : Sd → Γ(Y,L). Then there exist a morphism
φ : Y → X such that φ(Y ) ⊂ Ud and an isomorphism α : φ∗OUd(d)→ L such that
ψdφ agrees with ψ via α:

Γ∗(Y,L) Γ∗(Y, φ∗OUd(d))
α
oo Γ∗(Ud,OUd(d))

φ∗
oo

S(d)

ψ

OO

S(d)

ψd

OO

ψdφ

ii

idoo

commutes. Moreover, the pair (φ, α) is unique.

Proof. Pick f ∈ Sd. Denote s = ψ(f) ∈ Γ(Y,L). On the open set Ys where s does
not vanish multiplication by s induces an isomorphism OYs → L|Ys , see Modules,
Lemma 17.25.10. We will denote the inverse of this map x 7→ x/s, and similarly for
powers of L. Using this we define a ring map ψ(f) : S(f) → Γ(Ys,O) by mapping
the fraction a/fn to ψ(a)/sn. By Schemes, Lemma 26.6.4 this corresponds to a
morphism φf : Ys → Spec(S(f)) = D+(f). We also introduce the isomorphism
αf : φ∗

fOD+(f)(d)→ L|Ys which maps the pullback of the trivializing section f over
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D+(f) to the trivializing section s over Ys. With this choice the commutativity of
the diagram in the lemma holds with Y replaced by Ys, φ replaced by φf , and α
replaced by αf ; verification omitted.

Suppose that f ′ ∈ Sd is a second element, and denote s′ = ψ(f ′) ∈ Γ(Y,L). Then
Ys∩Ys′ = Yss′ and similarly D+(f)∩D+(f ′) = D+(ff ′). In Lemma 27.10.6 we saw
that D+(f ′) ∩D+(f) is the same as the set of points of D+(f) where the section
of OX(d) defined by f ′ does not vanish. Hence φ−1

f (D+(f ′)∩D+(f)) = Ys ∩ Ys′ =
φ−1
f ′ (D+(f ′)∩D+(f)). On D+(f)∩D+(f ′) the fraction f/f ′ is an invertible section

of the structure sheaf with inverse f ′/f . Note that ψ(f ′)(f/f ′) = ψ(f)/s′ = s/s′

and ψ(f)(f ′/f) = ψ(f ′)/s = s′/s. We claim there is a unique ring map S(ff ′) →
Γ(Yss′ ,O) making the following diagram commute

Γ(Ys,O) // Γ(Yss′ ,O) Γ(Ys,′O)oo

S(f) //

ψ(f)

OO

S(ff ′)

OO

S(f ′)oo

ψ(f′)

OO

It exists because we may use the rule x/(ff ′)n 7→ ψ(x)/(ss′)n, which “works” by
the formulas above. Uniqueness follows as Proj(S) is separated, see Lemma 27.8.8
and its proof. This shows that the morphisms φf and φf ′ agree over Ys ∩ Ys′ . The
restrictions of αf and αf ′ agree over Ys ∩ Ys′ because the regular functions s/s′

and ψ(f ′)(f) agree. This proves that the morphisms ψf glue to a global morphism
from Y into Ud ⊂ X, and that the maps αf glue to an isomorphism satisfying the
conditions of the lemma.

We still have to show the pair (φ, α) is unique. Suppose (φ′, α′) is a second such
pair. Let f ∈ Sd. By the commutativity of the diagrams in the lemma we have
that the inverse images of D+(f) under both φ and φ′ are equal to Yψ(f). Since the
opens D+(f) are a basis for the topology on X, and since X is a sober topological
space (see Schemes, Lemma 26.11.1) this means the maps φ and φ′ are the same on
underlying topological spaces. Let us use s = ψ(f) to trivialize the invertible sheaf
L over Yψ(f). By the commutativity of the diagrams we have that α⊗n(ψdφ(x)) =
ψ(x) = (α′)⊗n(ψdφ′(x)) for all x ∈ Snd. By construction of ψdφ and ψdφ′ we have
ψdφ(x) = φ♯(x/fn)ψdφ(fn) over Yψ(f), and similarly for ψdφ′ . By the commutativity
of the diagrams of the lemma we deduce that φ♯(x/fn) = (φ′)♯(x/fn). This proves
that φ and φ′ induce the same morphism from Yψ(f) into the affine scheme D+(f) =
Spec(S(f)). Hence φ and φ′ are the same as morphisms. Finally, it remains to show
that the commutativity of the diagram of the lemma singles out, given φ, a unique
α. We omit the verification. □

We continue the discussion from above the lemma. Let S be a graded ring. Let Y
be a scheme. We will consider triples (d,L, ψ) where

(1) d ≥ 1 is an integer,
(2) L is an invertible OY -module, and
(3) ψ : S(d) → Γ∗(Y,L) is a graded ring homomorphism such that L is gener-

ated by the global sections ψ(f), with f ∈ Sd.
Given a morphism h : Y ′ → Y and a triple (d,L, ψ) over Y we can pull it back
to the triple (d, h∗L, h∗ ◦ ψ). Given two triples (d,L, ψ) and (d,L′, ψ′) with the
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same integer d we say they are strictly equivalent if there exists an isomorphism
β : L → L′ such that β ◦ ψ = ψ′ as graded ring maps S(d) → Γ∗(Y,L′).

For each integer d ≥ 1 we define

Fd : Schopp −→ Sets,
Y 7−→ {strict equivalence classes of triples (d,L, ψ) as above}

with pullbacks as defined above.

Lemma 27.12.2.01N9 Let S be a graded ring. Let X = Proj(S). The open subscheme
Ud ⊂ X (27.12.0.1) represents the functor Fd and the triple (d,OUd(d), ψd) defined
above is the universal family (see Schemes, Section 26.15).

Proof. This is a reformulation of Lemma 27.12.1 □

Lemma 27.12.3.01NA Let S be a graded ring generated as an S0-algebra by the elements
of S1. In this case the scheme X = Proj(S) represents the functor which associates
to a scheme Y the set of pairs (L, ψ), where

(1) L is an invertible OY -module, and
(2) ψ : S → Γ∗(Y,L) is a graded ring homomorphism such that L is generated

by the global sections ψ(f), with f ∈ S1

up to strict equivalence as above.

Proof. Under the assumptions of the lemma we have X = U1 and the lemma is a
reformulation of Lemma 27.12.2 above. □

We end this section with a discussion of a functor corresponding to Proj(S) for a
general graded ring S. We advise the reader to skip the rest of this section.

Fix an arbitrary graded ring S. Let T be a scheme. We will say two triples (d,L, ψ)
and (d′,L′, ψ′) over T with possibly different integers d, d′ are equivalent if there
exists an isomorphism β : L⊗d′ → (L′)⊗d of invertible sheaves over T such that
β ◦ ψ|S(dd′) and ψ′|S(dd′) agree as graded ring maps S(dd′) → Γ∗(Y, (L′)⊗dd′).

Lemma 27.12.4.01NB Let S be a graded ring. Set X = Proj(S). Let T be a scheme.
Let (d,L, ψ) and (d′,L′, ψ′) be two triples over T . The following are equivalent:

(1) Let n = lcm(d, d′). Write n = ad = a′d′. There exists an isomorphism
β : L⊗a → (L′)⊗a′ with the property that β ◦ ψ|S(n) and ψ′|S(n) agree as
graded ring maps S(n) → Γ∗(Y, (L′)⊗n).

(2) The triples (d,L, ψ) and (d′,L′, ψ′) are equivalent.
(3) For some positive integer n = ad = a′d′ there exists an isomorphism

β : L⊗a → (L′)⊗a′ with the property that β ◦ ψ|S(n) and ψ′|S(n) agree as
graded ring maps S(n) → Γ∗(Y, (L′)⊗n).

(4) The morphisms φ : T → X and φ′ : T → X associated to (d,L, ψ) and
(d′,L′, ψ′) are equal.

Proof. Clearly (1) implies (2) and (2) implies (3) by restricting to more divisible
degrees and powers of invertible sheaves. Also (3) implies (4) by the uniqueness
statement in Lemma 27.12.1. Thus we have to prove that (4) implies (1). Assume
(4), in other words φ = φ′. Note that this implies that we may write L = φ∗OX(d)

https://stacks.math.columbia.edu/tag/01N9
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and L′ = φ∗OX(d′). Moreover, via these identifications we have that the graded
ring maps ψ and ψ′ correspond to the restriction of the canonical graded ring map

S −→
⊕

n≥0
Γ(X,OX(n))

to S(d) and S(d′) composed with pullback by φ (by Lemma 27.12.1 again). Hence
taking β to be the isomorphism

(φ∗OX(d))⊗a = φ∗OX(n) = (φ∗OX(d′))⊗a′

works. □

Let S be a graded ring. Let X = Proj(S). Over the open subscheme scheme
Ud ⊂ X = Proj(S) (27.12.0.1) we have the triple (d,OUd(d), ψd). Clearly, if d|d′

the triples (d,OUd(d), ψd) and (d′,OUd′ (d′), ψd′) are equivalent when restricted to
the open Ud (which is a subset of Ud′). This, combined with Lemma 27.12.1 shows
that morphisms Y → X correspond roughly to equivalence classes of triples over
Y . This is not quite true since if Y is not quasi-compact, then there may not be
a single triple which works. Thus we have to be slightly careful in defining the
corresponding functor.

Here is one possible way to do this. Suppose d′ = ad. Consider the transforma-
tion of functors Fd → Fd′ which assigns to the triple (d,L, ψ) over T the triple
(d′,L⊗a, ψ|S(d′)). One of the implications of Lemma 27.12.4 is that the transforma-
tion Fd → Fd′ is injective! For a quasi-compact scheme T we define

F (T ) =
⋃

d∈N
Fd(T )

with transition maps as explained above. This clearly defines a contravariant func-
tor on the category of quasi-compact schemes with values in sets. For a general
scheme T we define

F (T ) = limV⊂T quasi-compact open F (V ).

In other words, an element ξ of F (T ) corresponds to a compatible system of choices
of elements ξV ∈ F (V ) where V ranges over the quasi-compact opens of T . We
omit the definition of the pullback map F (T )→ F (T ′) for a morphism T ′ → T of
schemes. Thus we have defined our functor

F : Schopp −→ Sets

Lemma 27.12.5.01NC Let S be a graded ring. Let X = Proj(S). The functor F defined
above is representable by the scheme X.

Proof. We have seen above that the functor Fd corresponds to the open subscheme
Ud ⊂ X. Moreover the transformation of functors Fd → Fd′ (if d|d′) defined above
corresponds to the inclusion morphism Ud → Ud′ (see discussion above). Hence to
show that F is represented by X it suffices to show that T → X for a quasi-compact
scheme T ends up in some Ud, and that for a general scheme T we have

Mor(T,X) = limV⊂T quasi-compact open Mor(V,X).

These verifications are omitted. □

https://stacks.math.columbia.edu/tag/01NC
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27.13. Projective space

01ND Projective space is one of the fundamental objects studied in algebraic geometry.
In this section we just give its construction as Proj of a polynomial ring. Later we
will discover many of its beautiful properties.

Lemma 27.13.1.01NE Let S = Z[T0, . . . , Tn] with deg(Ti) = 1. The scheme
Pn

Z = Proj(S)
represents the functor which associates to a scheme Y the pairs (L, (s0, . . . , sn))
where

(1) L is an invertible OY -module, and
(2) s0, . . . , sn are global sections of L which generate L

up to the following equivalence: (L, (s0, . . . , sn)) ∼ (N , (t0, . . . , tn)) ⇔ there exists
an isomorphism β : L → N with β(si) = ti for i = 0, . . . , n.

Proof. This is a special case of Lemma 27.12.3 above. Namely, for any graded ring
A we have

Morgradedrings(Z[T0, . . . , Tn], A) = A1 × . . .×A1

ψ 7→ (ψ(T0), . . . , ψ(Tn))
and the degree 1 part of Γ∗(Y,L) is just Γ(Y,L). □

Definition 27.13.2.01NF The scheme Pn
Z = Proj(Z[T0, . . . , Tn]) is called projective n-

space over Z. Its base change Pn
S to a scheme S is called projective n-space over

S. If R is a ring the base change to Spec(R) is denoted Pn
R and called projective

n-space over R.

Given a scheme Y over S and a pair (L, (s0, . . . , sn)) as in Lemma 27.13.1 the
induced morphism to Pn

S is denoted
φ(L,(s0,...,sn)) : Y −→ Pn

S

This makes sense since the pair defines a morphism into Pn
Z and we already have

the structure morphism into S so combined we get a morphism into Pn
S = Pn

Z×S.
Note that this is the S-morphism characterized by

L = φ∗
(L,(s0,...,sn))OPn

R
(1) and si = φ∗

(L,(s0,...,sn))Ti

where we think of Ti as a global section of OPn
S
(1) via (27.10.1.3).

Lemma 27.13.3.01NG Projective n-space over Z is covered by n+ 1 standard opens

Pn
Z =

⋃
i=0,...,n

D+(Ti)

where each D+(Ti) is isomorphic to An
Z affine n-space over Z.

Proof. This is true because Z[T0, . . . , Tn]+ = (T0, . . . , Tn) and since

Spec
(

Z
[
T0

Ti
, . . . ,

Tn
Ti

])
∼= An

Z

in an obvious way. □

Lemma 27.13.4.01NH Let S be a scheme. The structure morphism Pn
S → S is

(1) separated,
(2) quasi-compact,

https://stacks.math.columbia.edu/tag/01NE
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(3) satisfies the existence and uniqueness parts of the valuative criterion, and
(4) universally closed.

Proof. All these properties are stable under base change (this is clear for the last
two and for the other two see Schemes, Lemmas 26.21.12 and 26.19.3). Hence it
suffices to prove them for the morphism Pn

Z → Spec(Z). Separatedness is Lemma
27.8.8. Quasi-compactness follows from Lemma 27.13.3. Existence and uniqueness
of the valuative criterion follow from Lemma 27.8.11. Universally closed follows
from the above and Schemes, Proposition 26.20.6. □

Remark 27.13.5.01NI What’s missing in the list of properties above? Well to be sure
the property of being of finite type. The reason we do not list this here is that
we have not yet defined the notion of finite type at this point. (Another property
which is missing is “smoothness”. And I’m sure there are many more you can think
of.)

Lemma 27.13.6 (Segre embedding).01WD Let S be a scheme. There exists a closed
immersion

Pn
S ×S Pm

S −→ Pnm+n+m
S

called the Segre embedding.

Proof. It suffices to prove this when S = Spec(Z). Hence we will drop the index
S and work in the absolute setting. Write Pn = Proj(Z[X0, . . . , Xn]), Pm =
Proj(Z[Y0, . . . , Ym]), and Pnm+n+m = Proj(Z[Z0, . . . , Znm+n+m]). In order to map
into Pnm+n+m we have to write down an invertible sheaf L on the left hand side
and (n+1)(m+1) sections si which generate it. See Lemma 27.13.1. The invertible
sheaf we take is

L = pr∗
1OPn(1)⊗ pr∗

2OPm(1)
The sections we take are
s0 = X0Y0, s1 = X1Y0, . . . , sn = XnY0, sn+1 = X0Y1, . . . , snm+n+m = XnYm.

These generate L since the sections Xi generateOPn(1) and the sections Yj generate
OPm(1). The induced morphism φ has the property that

φ−1(D+(Zi+(n+1)j)) = D+(Xi)×D+(Yj).
Hence it is an affine morphism. The corresponding ring map in case (i, j) = (0, 0)
is the map

Z[Z1/Z0, . . . , Znm+n+m/Z0] −→ Z[X1/X0, . . . , Xn/X0, Y1/Y0, . . . , Yn/Y0]
which maps Zi/Z0 to the element Xi/X0 for i ≤ n and the element Z(n+1)j/Z0 to
the element Yj/Y0. Hence it is surjective. A similar argument works for the other
affine open subsets. Hence the morphism φ is a closed immersion (see Schemes,
Lemma 26.4.2 and Example 26.8.1.) □

The following two lemmas are special cases of more general results later, but perhaps
it makes sense to prove these directly here now.

Lemma 27.13.7.03GL Let R be a ring. Let Z ⊂ Pn
R be a closed subscheme. Let

Id = Ker
(
R[T0, . . . , Tn]d −→ Γ(Z,OPn

R
(d)|Z)

)
Then I =

⊕
Id ⊂ R[T0, . . . , Tn] is a graded ideal and Z = Proj(R[T0, . . . , Tn]/I).

https://stacks.math.columbia.edu/tag/01NI
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Proof. It is clear that I is a graded ideal. Set Z ′ = Proj(R[T0, . . . , Tn]/I). By
Lemma 27.11.5 we see that Z ′ is a closed subscheme of Pn

R. To see the equality
Z = Z ′ it suffices to check on an standard affine open D+(Ti). By renumbering the
homogeneous coordinates we may assume i = 0. Say Z∩D+(T0), resp. Z ′∩D+(T0)
is cut out by the ideal J , resp. J ′ of R[T1/T0, . . . , Tn/T0]. Then J ′ is the ideal
generated by the elements F/T deg(F )

0 where F ∈ I is homogeneous. Suppose the
degree of F ∈ I is d. Since F vanishes as a section of OPn

R
(d) restricted to Z we

see that F/T d0 is an element of J . Thus J ′ ⊂ J .
Conversely, suppose that f ∈ J . If f has total degree d in T1/T0, . . . , Tn/T0, then
we can write f = F/T d0 for some F ∈ R[T0, . . . , Tn]d. Pick i ∈ {1, . . . , n}. Then
Z ∩D+(Ti) is cut out by some ideal Ji ⊂ R[T0/Ti, . . . , Tn/Ti]. Moreover,

J ·R
[
T1

T0
, . . . ,

Tn
T0
,
T0

Ti
, . . . ,

Tn
Ti

]
= Ji ·R

[
T1

T0
, . . . ,

Tn
T0
,
T0

Ti
, . . . ,

Tn
Ti

]
The left hand side is the localization of J with respect to the element Ti/T0 and
the right hand side is the localization of Ji with respect to the element T0/Ti. It
follows that T di0 F/T d+di

i is an element of Ji for some di sufficiently large. This
proves that Tmax(di)

0 F is an element of I, because its restriction to each standard
affine open D+(Ti) vanishes on the closed subscheme Z ∩ D+(Ti). Hence f ∈ J ′

and we conclude J ⊂ J ′ as desired. □

The following lemma is a special case of the more general Properties, Lemmas
28.28.3 or 28.28.5.
Lemma 27.13.8.03GM Let R be a ring. Let F be a quasi-coherent sheaf on Pn

R. For
d ≥ 0 set

Md = Γ(Pn
R,F ⊗OPn

R

OPn
R

(d)) = Γ(Pn
R,F(d))

Then M =
⊕

d≥0 Md is a graded R[T0, . . . , Rn]-module and there is a canonical
isomorphism F = M̃ .
Proof. The multiplication maps

R[T0, . . . , Rn]e ×Md −→Md+e

come from the natural isomorphisms
OPn

R
(e)⊗OPn

R

F(d) −→ F(e+ d)

see Equation (27.10.1.4). Let us construct the map c : M̃ → F . On each of
the standard affines Ui = D+(Ti) we see that Γ(Ui, M̃) = (M [1/Ti])0 where the
subscript 0 means degree 0 part. An element of this can be written as m/T di with
m ∈Md. Since Ti is a generator of O(1) over Ui we can always write m|Ui = mi⊗T di
where mi ∈ Γ(Ui,F) is a unique section. Thus a natural guess is c(m/T di ) = mi.
A small argument, which is omitted here, shows that this gives a well defined map
c : M̃ → F if we can show that

(Ti/Tj)dmi|Ui∩Uj = mj |Ui∩Uj
in M [1/TiTj ]. But this is clear since on the overlap the generators Ti and Tj of
O(1) differ by the invertible function Ti/Tj .
Injectivity of c. We may check for injectivity over the affine opens Ui. Let i ∈
{0, . . . , n} and let s be an element s = m/T di ∈ Γ(Ui, M̃) such that c(m/T di ) = 0.

https://stacks.math.columbia.edu/tag/03GM
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By the description of c above this means that mi = 0, hence m|Ui = 0. Hence
T ei m = 0 in M for some e. Hence s = m/T di = T ei /T

e+d
i = 0 as desired.

Surjectivity of c. We may check for surjectivity over the affine opens Ui. By
renumbering it suffices to check it over U0. Let s ∈ F(U0). Let us write F|Ui =
Ñi for some R[T0/Ti, . . . , T0/Ti]-module Ni, which is possible because F is quasi-
coherent. So s corresponds to an element x ∈ N0. Then we have that

(Ni)Tj/Ti ∼= (Nj)Ti/Tj
(where the subscripts mean “principal localization at”) as modules over the ring

R

[
T0

Ti
, . . . ,

Tn
Ti
,
T0

Tj
, . . . ,

Tn
Tj

]
.

This means that for some large integer d there exist elements si ∈ Ni, i = 1, . . . , n
such that

s = (Ti/T0)dsi
on U0 ∩ Ui. Next, we look at the difference

tij = si − (Tj/Ti)dsj
on Ui ∩ Uj , 0 < i < j. By our choice of si we know that tij |U0∩Ui∩Uj = 0. Hence
there exists a large integer e such that (T0/Ti)etij = 0. Set s′

i = (T0/Ti)esi, and
s′

0 = s. Then we will have
s′
a = (Tb/Ta)e+ds′

b

on Ua ∩ Ub for all a, b. This is exactly the condition that the elements s′
a glue to a

global section m ∈ Γ(Pn
R,F(e+d)). And moreover c(m/T e+d

0 ) = s by construction.
Hence c is surjective and we win. □

Lemma 27.13.9.0B3B Let X be a scheme. Let L be an invertible sheaf and let s0, . . . , sn
be global sections of L which generate it. Let F be the kernel of the induced map
O⊕n+1
X → L. Then F ⊗ L is globally generated.

Proof. In fact the result is true if X is any locally ringed space. The sheaf F is a
finite locally free OX -module of rank n. The elements

sij = (0, . . . , 0, sj , 0, . . . , 0,−si, 0, . . . , 0) ∈ Γ(X,L⊕n+1)

with sj in the ith spot and −si in the jth spot map to zero in L⊗2. Hence sij ∈
Γ(X,F ⊗OX

L). A local computation shows that these sections generate F ⊗ L.

Alternative proof. Consider the morphism φ : X → Pn
Z associated to the pair

(L, (s0, . . . , sn)). Since the pullback of O(1) is L and since the pullback of Ti is si,
it suffices to prove the lemma in the case of Pn

Z. In this case the sheaf F corresponds
to the graded S = Z[T0, . . . , Tn] module M which fits into the short exact sequence

0→M → S⊕n+1 → S(1)→ 0

where the second map is given by T0, . . . , Tn. In this case the statement above
translates into the statement that the elements

Tij = (0, . . . , 0, Tj , 0, . . . , 0,−Ti, 0, . . . , 0) ∈M(1)0

generate the graded module M(1) over S. We omit the details. □

https://stacks.math.columbia.edu/tag/0B3B
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27.14. Invertible sheaves and morphisms into Proj

01NJ Let T be a scheme and let L be an invertible sheaf on T . For a section s ∈ Γ(T,L)
we denote Ts the open subset of points where s does not vanish. See Modules,
Lemma 17.25.10. We can view the following lemma as a slight generalization of
Lemma 27.12.3. It also is a generalization of Lemma 27.11.1.

Lemma 27.14.1.01NK Let A be a graded ring. Set X = Proj(A). Let T be a scheme.
Let L be an invertible OT -module. Let ψ : A → Γ∗(T,L) be a homomorphism of
graded rings. Set

U(ψ) =
⋃

f∈A+ homogeneous
Tψ(f)

The morphism ψ induces a canonical morphism of schemes
rL,ψ : U(ψ) −→ X

together with a map of Z-graded OT -algebras

θ : r∗
L,ψ

(⊕
d∈Z
OX(d)

)
−→

⊕
d∈Z
L⊗d|U(ψ).

The triple (U(ψ), rL,ψ, θ) is characterized by the following properties:
(1) For f ∈ A+ homogeneous we have r−1

L,ψ(D+(f)) = Tψ(f).
(2) For every d ≥ 0 the diagram

Ad

(27.10.1.3)
��

ψ
// Γ(T,L⊗d)

restrict

��
Γ(X,OX(d)) θ // Γ(U(ψ),L⊗d)

is commutative.
Moreover, for any d ≥ 1 and any open subscheme V ⊂ T such that the sections
in ψ(Ad) generate L⊗d|V the morphism rL,ψ|V agrees with the morphism φ : V →
Proj(A) and the map θ|V agrees with the map α : φ∗OX(d)→ L⊗d|V where (φ, α)
is the pair of Lemma 27.12.1 associated to ψ|A(d) : A(d) → Γ∗(V,L⊗d).

Proof. Suppose that we have two triples (U, r : U → X, θ) and (U ′, r′ : U ′ → X, θ′)
satisfying (1) and (2). Property (1) implies that U = U ′ = U(ψ) and that r = r′

as maps of underlying topological spaces, since the opens D+(f) form a basis for
the topology on X, and since X is a sober topological space (see Algebra, Section
10.57 and Schemes, Lemma 26.11.1). Let f ∈ A+ be homogeneous. Note that
Γ(D+(f),

⊕
n∈ZOX(n)) = Af as a Z-graded algebra. Consider the two Z-graded

ring maps
θ, θ′ : Af −→ Γ(Tψ(f),

⊕
L⊗n).

We know that multiplication by f (resp. ψ(f)) is an isomorphism on the left (resp.
right) hand side. We also know that θ(x/1) = θ′(x/1) = ψ(x)|Tψ(f) by (2) for all
x ∈ A. Hence we deduce easily that θ = θ′ as desired. Considering the degree 0
parts we deduce that r♯ = (r′)♯, i.e., that r = r′ as morphisms of schemes. This
proves the uniqueness.
Now we come to existence. By the uniqueness just proved, it is enough to construct
the pair (r, θ) locally on T . Hence we may assume that T = Spec(R) is affine,
that L = OT and that for some f ∈ A+ homogeneous we have ψ(f) generates

https://stacks.math.columbia.edu/tag/01NK
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OT = O⊗ deg(f)
T . In other words, ψ(f) = u ∈ R∗ is a unit. In this case the map ψ

is a graded ring map
A −→ R[x] = Γ∗(T,OT )

which maps f to uxdeg(f). Clearly this extends (uniquely) to a Z-graded ring map
θ : Af → R[x, x−1] by mapping 1/f to u−1x− deg(f). This map in degree zero gives
the ring map A(f) → R which gives the morphism r : T = Spec(R)→ Spec(A(f)) =
D+(f) ⊂ X. Hence we have constructed (r, θ) in this special case.
Let us show the last statement of the lemma. According to Lemma 27.12.1 the
morphism constructed there is the unique one such that the displayed diagram in
its statement commutes. The commutativity of the diagram in the lemma implies
the commutativity when restricted to V and A(d). Whence the result. □

Remark 27.14.2.01NL Assumptions as in Lemma 27.14.1 above. The image of the mor-
phism rL,ψ need not be contained in the locus where the sheaf OX(1) is invertible.
Here is an example. Let k be a field. Let S = k[A,B,C] graded by deg(A) = 1,
deg(B) = 2, deg(C) = 3. Set X = Proj(S). Let T = P2

k = Proj(k[X0, X1, X2]).
Recall that L = OT (1) is invertible and that OT (n) = L⊗n. Consider the compo-
sition ψ of the maps

S → k[X0, X1, X2]→ Γ∗(T,L).
Here the first map is A 7→ X0, B 7→ X2

1 , C 7→ X3
2 and the second map is (27.10.1.3).

By the lemma this corresponds to a morphism rL,ψ : T → X = Proj(S) which is
easily seen to be surjective. On the other hand, in Remark 27.9.2 we showed that
the sheaf OX(1) is not invertible at all points of X.

27.15. Relative Proj via glueing

01NM
Situation 27.15.1.01NN Here S is a scheme, andA is a quasi-coherent gradedOS-algebra.

In this section we outline how to construct a morphism of schemes
Proj

S
(A) −→ S

by glueing the homogeneous spectra Proj(Γ(U,A)) where U ranges over the affine
opens of S. We first show that the homogeneous spectra of the values of A over
affines form a suitable collection of schemes, as in Lemma 27.2.1.

Lemma 27.15.2.01NO In Situation 27.15.1. Suppose U ⊂ U ′ ⊂ S are affine opens. Let
A = A(U) and A′ = A(U ′). The map of graded rings A′ → A induces a morphism
r : Proj(A)→ Proj(A′), and the diagram

Proj(A) //

��

Proj(A′)

��
U // U ′

is cartesian. Moreover there are canonical isomorphisms θ : r∗OProj(A′)(n) →
OProj(A)(n) compatible with multiplication maps.

Proof. Let R = OS(U) and R′ = OS(U ′). Note that the map R ⊗R′ A′ → A is
an isomorphism as A is quasi-coherent (see Schemes, Lemma 26.7.3 for example).
Hence the lemma follows from Lemma 27.11.6. □
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In particular the morphism Proj(A)→ Proj(A′) of the lemma is an open immersion.

Lemma 27.15.3.01NP In Situation 27.15.1. Suppose U ⊂ U ′ ⊂ U ′′ ⊂ S are affine opens.
Let A = A(U), A′ = A(U ′) and A′′ = A(U ′′). The composition of the morphisms
r : Proj(A) → Proj(A′), and r′ : Proj(A′) → Proj(A′′) of Lemma 27.15.2 gives the
morphism r′′ : Proj(A) → Proj(A′′) of Lemma 27.15.2. A similar statement holds
for the isomorphisms θ.

Proof. This follows from Lemma 27.11.2 since the map A′′ → A is the composition
of A′′ → A′ and A′ → A. □

Lemma 27.15.4.01NQ In Situation 27.15.1. There exists a morphism of schemes
π : Proj

S
(A) −→ S

with the following properties:
(1) for every affine open U ⊂ S there exists an isomorphism iU : π−1(U) →

Proj(A) with A = A(U), and
(2) for U ⊂ U ′ ⊂ S affine open the composition

Proj(A)
i−1
U // π−1(U) inclusion // π−1(U ′)

iU′ // Proj(A′)

with A = A(U), A′ = A(U ′) is the open immersion of Lemma 27.15.2
above.

Proof. Follows immediately from Lemmas 27.2.1, 27.15.2, and 27.15.3. □

Lemma 27.15.5.01NR In Situation 27.15.1. The morphism π : Proj
S

(A)→ S of Lemma
27.15.4 comes with the following additional structure. There exists a quasi-coherent
Z-graded sheaf ofOProj

S
(A)-algebras

⊕
n∈ZOProj

S
(A)(n), and a morphism of graded

OS-algebras
ψ : A −→

⊕
n≥0

π∗

(
OProj

S
(A)(n)

)
uniquely determined by the following property: For every affine open U ⊂ S with
A = A(U) there is an isomorphism

θU : i∗U
(⊕

n∈Z
OProj(A)(n)

)
−→

(⊕
n∈Z
OProj

S
(A)(n)

)
|π−1(U)

of Z-graded Oπ−1(U)-algebras such that

An
ψ

//

(27.10.1.3)
''

Γ(π−1(U),OProj
S

(A)(n))

Γ(Proj(A),OProj(A)(n))
θU

44

is commutative.

Proof. We are going to use Lemma 27.2.2 to glue the sheaves of Z-graded algebras⊕
n∈ZOProj(A)(n) for A = A(U), U ⊂ S affine open over the scheme Proj

S
(A). We

have constructed the data necessary for this in Lemma 27.15.2 and we have checked
condition (d) of Lemma 27.2.2 in Lemma 27.15.3. Hence we get the sheaf of Z-
graded OProj

S
(A)-algebras

⊕
n∈ZOProj

S
(A)(n) together with the isomorphisms θU

for all U ⊂ S affine open and all n ∈ Z. For every affine open U ⊂ S with
A = A(U) we have a map A → Γ(Proj(A),

⊕
n≥0OProj(A)(n)). Hence the map
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ψ exists by functoriality of relative glueing, see Remark 27.2.3. The diagram of
the lemma commutes by construction. This characterizes the sheaf of Z-graded
OProj

S
(A)-algebras

⊕
OProj

S
(A)(n) because the proof of Lemma 27.11.1 shows that

having these diagrams commute uniquely determines the maps θU . Some details
omitted. □

27.16. Relative Proj as a functor

01NS We place ourselves in Situation 27.15.1. So S is a scheme and A =
⊕

d≥0Ad is
a quasi-coherent graded OS-algebra. In this section we relativize the construction
of Proj by constructing a functor which the relative homogeneous spectrum will
represent. As a result we will construct a morphism of schemes

Proj
S

(A) −→ S

which above affine opens of S will look like the homogeneous spectrum of a graded
ring. The discussion will be modeled after our discussion of the relative spectrum
in Section 27.4. The easier method using glueing schemes of the form Proj(A),
A = Γ(U,A), U ⊂ S affine open, is explained in Section 27.15, and the result in
this section will be shown to be isomorphic to that one.
Fix for the moment an integer d ≥ 1. We denote A(d) =

⊕
n≥0And similarly to the

notation in Algebra, Section 10.56. Let T be a scheme. Let us consider quadruples
(d, f : T → S,L, ψ) over T where

(1) d is the integer we fixed above,
(2) f : T → S is a morphism of schemes,
(3) L is an invertible OT -module, and
(4) ψ : f∗A(d) →

⊕
n≥0 L⊗n is a homomorphism of graded OT -algebras such

that f∗Ad → L is surjective.
Given a morphism h : T ′ → T and a quadruple (d, f,L, ψ) over T we can pull it
back to the quadruple (d, f ◦h, h∗L, h∗ψ) over T ′. Given two quadruples (d, f,L, ψ)
and (d, f ′,L′, ψ′) over T with the same integer d we say they are strictly equivalent
if f = f ′ and there exists an isomorphism β : L → L′ such that β ◦ ψ = ψ′ as
graded OT -algebra maps f∗A(d) →

⊕
n≥0(L′)⊗n.

For each integer d ≥ 1 we define
Fd : Schopp −→ Sets,

T 7−→ {strict equivalence classes of (d, f : T → S,L, ψ) as above}
with pullbacks as defined above.

Lemma 27.16.1.01NT In Situation 27.15.1. Let d ≥ 1. Let Fd be the functor associated
to (S,A) above. Let g : S′ → S be a morphism of schemes. Set A′ = g∗A. Let F ′

d

be the functor associated to (S′,A′) above. Then there is a canonical isomorphism
F ′
d
∼= hS′ ×hS Fd

of functors.

Proof. A quadruple (d, f ′ : T → S′,L′, ψ′ : (f ′)∗(A′)(d) →
⊕

n≥0(L′)⊗n) is the
same as a quadruple (d, f,L, ψ : f∗A(d) →

⊕
n≥0 L⊗n) together with a factorization

of f as f = g ◦ f ′. Namely, the correspondence is f = g ◦ f ′, L = L′ and ψ = ψ′ via
the identifications (f ′)∗(A′)(d) = (f ′)∗g∗(A(d)) = f∗A(d). Hence the lemma. □
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Lemma 27.16.2.01NU In Situation 27.15.1. Let Fd be the functor associated to (d, S,A)
above. If S is affine, then Fd is representable by the open subscheme Ud (27.12.0.1)
of the scheme Proj(Γ(S,A)).

Proof. Write S = Spec(R) and A = Γ(S,A). Then A is a graded R-algebra and
A = Ã. To prove the lemma we have to identify the functor Fd with the functor
F triplesd of triples defined in Section 27.12.
Let (d, f : T → S,L, ψ) be a quadruple. We may think of ψ as a OS-module
map A(d) →

⊕
n≥0 f∗L⊗n. Since A(d) is quasi-coherent this is the same thing as

an R-linear homomorphism of graded rings A(d) → Γ(S,
⊕

n≥0 f∗L⊗n). Clearly,
Γ(S,

⊕
n≥0 f∗L⊗n) = Γ∗(T,L). Thus we may associate to the quadruple the triple

(d,L, ψ).
Conversely, let (d,L, ψ) be a triple. The composition R → A0 → Γ(T,OT ) de-
termines a morphism f : T → S = Spec(R), see Schemes, Lemma 26.6.4. With
this choice of f the map A(d) → Γ(S,

⊕
n≥0 f∗L⊗n) is R-linear, and hence corre-

sponds to a ψ which we can use for a quadruple (d, f : T → S,L, ψ). We omit the
verification that this establishes an isomorphism of functors Fd = F triplesd . □

Lemma 27.16.3.01NV In Situation 27.15.1. The functor Fd is representable by a scheme.

Proof. We are going to use Schemes, Lemma 26.15.4.
First we check that Fd satisfies the sheaf property for the Zariski topology. Namely,
suppose that T is a scheme, that T =

⋃
i∈I Ui is an open covering, and that

(d, fi,Li, ψi) ∈ Fd(Ui) such that (d, fi,Li, ψi)|Ui∩Uj and (d, fj ,Lj , ψj)|Ui∩Uj are
strictly equivalent. This implies that the morphisms fi : Ui → S glue to a mor-
phism of schemes f : T → S such that f |Ii = fi, see Schemes, Section 26.14. Thus
f∗
i A(d) = f∗A(d)|Ui . It also implies there exist isomorphisms βij : Li|Ui∩Uj →
Lj |Ui∩Uj such that βij ◦ ψi = ψj on Ui ∩ Uj . Note that the isomorphisms βij are
uniquely determined by this requirement because the maps f∗

i Ad → Li are surjec-
tive. In particular we see that βjk ◦ βij = βik on Ui ∩ Uj ∩ Uk. Hence by Sheaves,
Section 6.33 the invertible sheaves Li glue to an invertible OT -module L and the
morphisms ψi glue to morphism of OT -algebras ψ : f∗A(d) →

⊕
n≥0 L⊗n. This

proves that Fd satisfies the sheaf condition with respect to the Zariski topology.
Let S =

⋃
i∈I Ui be an affine open covering. Let Fd,i ⊂ Fd be the subfunctor

consisting of those pairs (f : T → S, φ) such that f(T ) ⊂ Ui.
We have to show each Fd,i is representable. This is the case because Fd,i is identified
with the functor associated to Ui equipped with the quasi-coherent graded OUi -
algebra A|Ui by Lemma 27.16.1. Thus the result follows from Lemma 27.16.2.
Next we show that Fd,i ⊂ Fd is representable by open immersions. Let (f : T →
S, φ) ∈ Fd(T ). Consider Vi = f−1(Ui). It follows from the definition of Fd,i that
given a : T ′ → T we gave a∗(f, φ) ∈ Fd,i(T ′) if and only if a(T ′) ⊂ Vi. This is what
we were required to show.
Finally, we have to show that the collection (Fd,i)i∈I covers Fd. Let (f : T →
S, φ) ∈ Fd(T ). Consider Vi = f−1(Ui). Since S =

⋃
i∈I Ui is an open covering of

S we see that T =
⋃
i∈I Vi is an open covering of T . Moreover (f, φ)|Vi ∈ Fd,i(Vi).

This finishes the proof of the lemma. □
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At this point we can redo the material at the end of Section 27.12 in the current
relative setting and define a functor which is representable by Proj

S
(A). To do this

we introduce the notion of equivalence between two quadruples (d, f : T → S,L, ψ)
and (d′, f ′ : T → S,L′, ψ′) with possibly different values of the integers d, d′.
Namely, we say these are equivalent if f = f ′, and there exists an isomorphism
β : L⊗d′ → (L′)⊗d such that β ◦ ψ|f∗A(dd′) = ψ′|f∗A(dd′) . The following lemma
implies that this defines an equivalence relation. (This is not a complete triviality.)

Lemma 27.16.4.01NW In Situation 27.15.1. Let T be a scheme. Let (d, f,L, ψ), (d′, f ′,L′, ψ′)
be two quadruples over T . The following are equivalent:

(1) Let m = lcm(d, d′). Write m = ad = a′d′. We have f = f ′ and there exists
an isomorphism β : L⊗a → (L′)⊗a′ with the property that β ◦ ψ|f∗A(m)

and ψ′|f∗A(m) agree as graded ring maps f∗A(m) →
⊕

n≥0(L′)⊗mn.
(2) The quadruples (d, f,L, ψ) and (d′, f ′,L′, ψ′) are equivalent.
(3) We have f = f ′ and for some positive integer m = ad = a′d′ there exists

an isomorphism β : L⊗a → (L′)⊗a′ with the property that β ◦ ψ|f∗A(m)

and ψ′|f∗A(m) agree as graded ring maps f∗A(m) →
⊕

n≥0(L′)⊗mn.

Proof. Clearly (1) implies (2) and (2) implies (3) by restricting to more divisible
degrees and powers of invertible sheaves. Assume (3) for some integer m = ad =
a′d′. Let m0 = lcm(d, d′) and write it as m0 = a0d = a′

0d
′. We are given an

isomorphism β : L⊗a → (L′)⊗a′ with the property described in (3). We want to
find an isomorphism β0 : L⊗a0 → (L′)⊗a′

0 having that property as well. Since by
assumption the maps ψ : f∗Ad → L and ψ′ : (f ′)∗Ad′ → L′ are surjective the same
is true for the maps ψ : f∗Am0 → L⊗a0 and ψ′ : (f ′)∗Am0 → (L′)⊗a0 . Hence if
β0 exists it is uniquely determined by the condition that β0 ◦ ψ = ψ′. This means
that we may work locally on T . Hence we may assume that f = f ′ : T → S maps
into an affine open, in other words we may assume that S is affine. In this case
the result follows from the corresponding result for triples (see Lemma 27.12.4) and
the fact that triples and quadruples correspond in the affine base case (see proof of
Lemma 27.16.2). □

Suppose d′ = ad. Consider the transformation of functors Fd → Fd′ which assigns
to the quadruple (d, f,L, ψ) over T the quadruple (d′, f,L⊗a, ψ|f∗A(d′)). One of the
implications of Lemma 27.16.4 is that the transformation Fd → Fd′ is injective! For
a quasi-compact scheme T we define

F (T ) =
⋃

d∈N
Fd(T )

with transition maps as explained above. This clearly defines a contravariant func-
tor on the category of quasi-compact schemes with values in sets. For a general
scheme T we define

F (T ) = limV⊂T quasi-compact open F (V ).

In other words, an element ξ of F (T ) corresponds to a compatible system of choices
of elements ξV ∈ F (V ) where V ranges over the quasi-compact opens of T . We
omit the definition of the pullback map F (T )→ F (T ′) for a morphism T ′ → T of
schemes. Thus we have defined our functor

(27.16.4.1)01NX F : Schopp −→ Sets
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Lemma 27.16.5.01NY In Situation 27.15.1. The functor F above is representable by a
scheme.

Proof. Let Ud → S be the scheme representing the functor Fd defined above. Let
Ld, ψd : π∗

dA(d) →
⊕

n≥0 L
⊗n
d be the universal object. If d|d′, then we may con-

sider the quadruple (d′, πd,L⊗d′/d
d , ψd|A(d′)) which determines a canonical morphism

Ud → Ud′ over S. By construction this morphism corresponds to the transformation
of functors Fd → Fd′ defined above.

For every affine open Spec(R) = V ⊂ S setting A = Γ(V,A) we have a canonical
identification of the base change Ud,V with the corresponding open subscheme of
Proj(A), see Lemma 27.16.2. Moreover, the morphisms Ud,V → Ud′,V constructed
above correspond to the inclusions of opens in Proj(A). Thus we conclude that
Ud → Ud′ is an open immersion.

This allows us to construct X by glueing the schemes Ud along the open immersions
Ud → Ud′ . Technically, it is convenient to choose a sequence d1|d2|d3| . . . such that
every positive integer divides one of the di and to simply take X =

⋃
Udi using the

open immersions above. It is then a simple matter to prove that X represents the
functor F . □

Lemma 27.16.6.01NZ In Situation 27.15.1. The scheme π : Proj
S

(A) → S constructed
in Lemma 27.15.4 and the scheme representing the functor F are canonically iso-
morphic as schemes over S.

Proof. Let X be the scheme representing the functor F . Note that X is a scheme
over S since the functor F comes equipped with a natural transformation F → hS .
Write Y = Proj

S
(A). We have to show that X ∼= Y as S-schemes. We give two

arguments.

The first argument uses the construction of X as the union of the schemes Ud
representing Fd in the proof of Lemma 27.16.5. Over each affine open of S we can
identify X with the homogeneous spectrum of the sections ofA over that open, since
this was true for the opens Ud. Moreover, these identifications are compatible with
further restrictions to smaller affine opens. On the other hand, Y was constructed
by glueing these homogeneous spectra. Hence we can glue these isomorphisms to
an isomorphism between X and Proj

S
(A) as desired. Details omitted.

Here is the second argument. Lemma 27.15.5 shows that there exists a morphism
of graded algebras

ψ : π∗A −→
⊕

n≥0
OY (n)

over Y which on sections over affine opens of S agrees with (27.10.1.3). Hence
for every y ∈ Y there exists an open neighbourhood V ⊂ Y of y and an integer
d ≥ 1 such that for d|n the sheaf OY (n)|V is invertible and the multiplication maps
OY (n)|V ⊗OV

OY (m)|V → OY (n + m)|V are isomorphisms. Thus ψ restricted to
the sheaf π∗A(d)|V gives an element of Fd(V ). Since the opens V cover Y we see
“ψ” gives rise to an element of F (Y ). Hence a canonical morphism Y → X over S.
Because this construction is completely canonical to see that it is an isomorphism
we may work locally on S. Hence we reduce to the case S affine where the result
is clear. □
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Definition 27.16.7.01O0 Let S be a scheme. Let A be a quasi-coherent sheaf of graded
OS-algebras. The relative homogeneous spectrum of A over S, or the homogeneous
spectrum of A over S, or the relative Proj of A over S is the scheme constructed
in Lemma 27.15.4 which represents the functor F (27.16.4.1), see Lemma 27.16.6.
We denote it π : Proj

S
(A)→ S.

The relative Proj comes equipped with a quasi-coherent sheaf of Z-graded algebras⊕
n∈ZOProj

S
(A)(n) (the twists of the structure sheaf) and a “universal” homomor-

phism of graded algebras

ψuniv : A −→ π∗

(⊕
n≥0
OProj

S
(A)(n)

)
see Lemma 27.15.5. We may also think of this as a homomorphism

ψuniv : π∗A −→
⊕

n≥0
OProj

S
(A)(n)

if we like. The following lemma is a formulation of the universality of this object.

Lemma 27.16.8.01O1 In Situation 27.15.1. Let (f : T → S, d,L, ψ) be a quadruple. Let
rd,L,ψ : T → Proj

S
(A) be the associated S-morphism. There exists an isomorphism

of Z-graded OT -algebras

θ : r∗
d,L,ψ

(⊕
n∈Z
OProj

S
(A)(nd)

)
−→

⊕
n∈Z
L⊗n

such that the following diagram commutes

A(d)
ψ

//

ψuniv ''

f∗
(⊕

n∈Z L⊗n)

π∗

(⊕
n≥0OProj

S
(A)(nd)

) θ

55

The commutativity of this diagram uniquely determines θ.

Proof. Note that the quadruple (f : T → S, d,L, ψ) defines an element of Fd(T ).
Let Ud ⊂ Proj

S
(A) be the locus where the sheaf OProj

S
(A)(d) is invertible and

generated by the image of ψuniv : π∗Ad → OProj
S

(A)(d). Recall that Ud represents
the functor Fd, see the proof of Lemma 27.16.5. Hence the result will follow if we
can show the quadruple (Ud → S, d,OUd(d), ψuniv|A(d)) is the universal family, i.e.,
the representing object in Fd(Ud). We may do this after restricting to an affine
open of S because (a) the formation of the functors Fd commutes with base change
(see Lemma 27.16.1), and (b) the pair (

⊕
n∈ZOProj

S
(A)(n), ψuniv) is constructed

by glueing over affine opens in S (see Lemma 27.15.5). Hence we may assume that
S is affine. In this case the functor of quadruples Fd and the functor of triples
Fd agree (see proof of Lemma 27.16.2) and moreover Lemma 27.12.2 shows that
(d,OUd(d), ψd) is the universal triple over Ud. Going backwards through the identi-
fications in the proof of Lemma 27.16.2 shows that (Ud → S, d,OUd(d), ψuniv|A(d))
is the universal quadruple as desired. □

Lemma 27.16.9.01O2 Let S be a scheme and A be a quasi-coherent sheaf of graded
OS-algebras. The morphism π : Proj

S
(A)→ S is separated.
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Proof. To prove a morphism is separated we may work locally on the base, see
Schemes, Section 26.21. By construction Proj

S
(A) is over any affine U ⊂ S iso-

morphic to Proj(A) with A = A(U). By Lemma 27.8.8 we see that Proj(A) is
separated. Hence Proj(A) → U is separated (see Schemes, Lemma 26.21.13) as
desired. □

Lemma 27.16.10.01O3 Let S be a scheme and A be a quasi-coherent sheaf of graded OS-
algebras. Let g : S′ → S be any morphism of schemes. Then there is a canonical
isomorphism

r : Proj
S′(g∗A) −→ S′ ×S Proj

S
(A)

as well as a corresponding isomorphism

θ : r∗pr∗
2

(⊕
d∈Z
OProj

S
(A)(d)

)
−→

⊕
d∈Z
OProj

S′ (g∗A)(d)

of Z-graded OProj
S′ (g∗A)-algebras.

Proof. This follows from Lemma 27.16.1 and the construction of Proj
S

(A) in Lemma
27.16.5 as the union of the schemes Ud representing the functors Fd. In terms of
the construction of relative Proj via glueing this isomorphism is given by the iso-
morphisms constructed in Lemma 27.11.6 which provides us with the isomorphism
θ. Some details omitted. □

Lemma 27.16.11.01O4 Let S be a scheme. LetA be a quasi-coherent sheaf of graded OS-
modules generated as an A0-algebra by A1. In this case the scheme X = Proj

S
(A)

represents the functor F1 which associates to a scheme f : T → S over S the set of
pairs (L, ψ), where

(1) L is an invertible OT -module, and
(2) ψ : f∗A →

⊕
n≥0 L⊗n is a graded OT -algebra homomorphism such that

f∗A1 → L is surjective
up to strict equivalence as above. Moreover, in this case all the quasi-coherent
sheaves OProj(A)(n) are invertible OProj(A)-modules and the multiplication maps
induce isomorphisms OProj(A)(n)⊗OProj(A) OProj(A)(m) = OProj(A)(n+m).

Proof. Under the assumptions of the lemma the sheaves OProj(A)(n) are invertible
and the multiplication maps isomorphisms by Lemma 27.16.5 and Lemma 27.12.3
over affine opens of S. Thus X actually represents the functor F1, see proof of
Lemma 27.16.5. □

27.17. Quasi-coherent sheaves on relative Proj

01O5 We briefly discuss how to deal with graded modules in the relative setting.
We place ourselves in Situation 27.15.1. So S is a scheme, and A is a quasi-coherent
graded OS-algebra. Let M =

⊕
n∈ZMn be a graded A-module, quasi-coherent

as an OS-module. We are going to describe the associated quasi-coherent sheaf
of modules on Proj

S
(A). We first describe the value of this sheaf on schemes T

mapping into the relative Proj.
Let T be a scheme. Let (d, f : T → S,L, ψ) be a quadruple over T , as in Section
27.16. We define a quasi-coherent sheaf M̃T of OT -modules as follows

(27.17.0.1)01O6 M̃T =
(
f∗M(d) ⊗f∗A(d)

(⊕
n∈Z
L⊗n

))
0
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So M̃T is the degree 0 part of the tensor product of the graded f∗A(d)-modulesM(d)

and
⊕

n∈Z L⊗n. Note that the sheaf M̃T depends on the quadruple even though
we suppressed this in the notation. This construction has the pleasing property
that given any morphism g : T ′ → T we have M̃T ′ = g∗M̃T where M̃T ′ denotes
the quasi-coherent sheaf associated to the pullback quadruple (d, f ◦ g, g∗L, g∗ψ).
Since all sheaves in (27.17.0.1) are quasi-coherent we can spell out the construction
over an affine open Spec(C) = V ⊂ T which maps into an affine open Spec(R) =
U ⊂ S. Namely, suppose that A|U corresponds to the graded R-algebra A, that
M|U corresponds to the graded A-module M , and that L|V corresponds to the
invertible C-module L. The map ψ gives rise to a graded R-algebra map γ : A(d) →⊕

n≥0 L
⊗n. (Tensor powers of L over C.) Then (M̃T )|V is the quasi-coherent sheaf

associated to the C-module
NR,C,A,M,γ =

(
M (d) ⊗A(d),γ

(⊕
n∈Z

L⊗n
))

0

By assumption we may even cover T by affine opens V such that there exists some
a ∈ Ad such that γ(a) ∈ L is a C-basis for the module L. In that case any element
of NR,C,A,M,γ is a sum of pure tensors

∑
mi ⊗ γ(a)−ni with m ∈Mnid. In fact we

may multiply each mi with a suitable positive power of a and collect terms to see
that each element of NR,C,A,M,γ can be written as m⊗ γ(a)−n with m ∈Mnd and
n≫ 0. In other words we see that in this case

NR,C,A,M,γ = M(a) ⊗A(a) C

where the map A(a) → C is the map x/an 7→ γ(x)/γ(a)n. In other words, this
is the value of M̃ on D+(a) ⊂ Proj(A) pulled back to Spec(C) via the morphism
Spec(C)→ D+(a) coming from γ.

Lemma 27.17.1.01O7 In Situation 27.15.1. For any quasi-coherent sheaf of graded A-
modules M on S, there exists a canonical associated sheaf of OProj

S
(A)-modules

M̃ with the following properties:
(1) Given a scheme T and a quadruple (T → S, d,L, ψ) over T corresponding

to a morphism h : T → Proj
S

(A) there is a canonical isomorphism M̃T =
h∗M̃ where M̃T is defined by (27.17.0.1).

(2) The isomorphisms of (1) are compatible with pullbacks.
(3) There is a canonical map

π∗M0 −→ M̃.

(4) The construction M 7→ M̃ is functorial in M.
(5) The construction M 7→ M̃ is exact.
(6) There are canonical maps

M̃ ⊗OProj
S

(A) Ñ −→ M̃ ⊗A N

as in Lemma 27.9.1.
(7) There exist canonical maps

π∗M−→
⊕

n∈Z
M̃(n)

generalizing (27.10.1.6).
(8) The formation of M̃ commutes with base change.
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Proof. Omitted. We should split this lemma into parts and prove the parts sepa-
rately. □

27.18. Functoriality of relative Proj

07ZF This section is the analogue of Section 27.11 for the relative Proj. Let S be a
scheme. A graded OS-algebra map ψ : A → B does not always give rise to a
morphism of associated relative Proj. The correct result is stated as follows.

Lemma 27.18.1.07ZG Let S be a scheme. Let A, B be two graded quasi-coherent OS-
algebras. Set p : X = Proj

S
(A) → S and q : Y = Proj

S
(B) → S. Let ψ : A → B

be a homomorphism of graded OS-algebras. There is a canonical open U(ψ) ⊂ Y
and a canonical morphism of schemes

rψ : U(ψ) −→ X

over S and a map of Z-graded OU(ψ)-algebras

θ = θψ : r∗
ψ

(⊕
d∈Z
OX(d)

)
−→

⊕
d∈Z
OU(ψ)(d).

The triple (U(ψ), rψ, θ) is characterized by the property that for any affine open
W ⊂ S the triple

(U(ψ) ∩ p−1W, rψ|U(ψ)∩p−1W : U(ψ) ∩ p−1W → q−1W, θ|U(ψ)∩p−1W )
is equal to the triple associated to ψ : A(W ) → B(W ) in Lemma 27.11.1 via the
identifications p−1W = Proj(A(W )) and q−1W = Proj(B(W )) of Section 27.15.

Proof. This lemma proves itself by glueing the local triples. □

Lemma 27.18.2.07ZH Let S be a scheme. Let A, B, and C be quasi-coherent graded
OS-algebras. Set X = Proj

S
(A), Y = Proj

S
(B) and Z = Proj

S
(C). Let φ : A → B,

ψ : B → C be graded OS-algebra maps. Then we have
U(ψ ◦ φ) = r−1

φ (U(ψ)) and rψ◦φ = rφ ◦ rψ|U(ψ◦φ).

In addition we have
θψ ◦ r∗

ψθφ = θψ◦φ

with obvious notation.

Proof. Omitted. □

Lemma 27.18.3.07ZI With hypotheses and notation as in Lemma 27.18.1 above. As-
sume Ad → Bd is surjective for d≫ 0. Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is a closed immersion, and
(3) the maps θ : r∗

ψOX(n) → OY (n) are surjective but not isomorphisms in
general (even if A → B is surjective).

Proof. Follows on combining Lemma 27.18.1 with Lemma 27.11.3. □

Lemma 27.18.4.07ZJ With hypotheses and notation as in Lemma 27.18.1 above. As-
sume Ad → Bd is an isomorphism for all d≫ 0. Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is an isomorphism, and
(3) the maps θ : r∗

ψOX(n)→ OY (n) are isomorphisms.
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Proof. Follows on combining Lemma 27.18.1 with Lemma 27.11.4. □

Lemma 27.18.5.07ZK With hypotheses and notation as in Lemma 27.18.1 above. As-
sume Ad → Bd is surjective for d ≫ 0 and that A is generated by A1 over A0.
Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is a closed immersion, and
(3) the maps θ : r∗

ψOX(n)→ OY (n) are isomorphisms.

Proof. Follows on combining Lemma 27.18.1 with Lemma 27.11.5. □

27.19. Invertible sheaves and morphisms into relative Proj

01O8 It seems that we may need the following lemma somewhere. The situation is the
following:

(1) Let S be a scheme.
(2) Let A be a quasi-coherent graded OS-algebra.
(3) Denote π : Proj

S
(A)→ S the relative homogeneous spectrum over S.

(4) Let f : X → S be a morphism of schemes.
(5) Let L be an invertible OX -module.
(6) Let ψ : f∗A →

⊕
d≥0 L⊗d be a homomorphism of graded OX -algebras.

Given this data set
U(ψ) =

⋃
(U,V,a)

Uψ(a)

where (U, V, a) satisfies:
(1) V ⊂ S affine open,
(2) U = f−1(V ), and
(3) a ∈ A(V )+ is homogeneous.

Namely, then ψ(a) ∈ Γ(U,L⊗ deg(a)) and Uψ(a) is the corresponding open (see Mod-
ules, Lemma 17.25.10).

Lemma 27.19.1.01O9 With assumptions and notation as above. The morphism ψ in-
duces a canonical morphism of schemes over S

rL,ψ : U(ψ) −→ Proj
S

(A)

together with a map of graded OU(ψ)-algebras

θ : r∗
L,ψ

(⊕
d≥0
OProj

S
(A)(d)

)
−→

⊕
d≥0
L⊗d|U(ψ)

characterized by the following properties:
(1) For every open V ⊂ S and every d ≥ 0 the diagram

Ad(V )

ψ

��

ψ
// Γ(f−1(V ),L⊗d)

restrict

��
Γ(π−1(V ),OProj

S
(A)(d)) θ // Γ(f−1(V ) ∩ U(ψ),L⊗d)

is commutative.

https://stacks.math.columbia.edu/tag/07ZK
https://stacks.math.columbia.edu/tag/01O9


27.20. TWISTING BY INVERTIBLE SHEAVES AND RELATIVE PROJ 2328

(2) For any d ≥ 1 and any open subschemeW ⊂ X such that ψ|W : f∗Ad|W →
L⊗d|W is surjective the restriction of the morphism rL,ψ agrees with the
morphism W → Proj

S
(A) which exists by the construction of the relative

homogeneous spectrum, see Definition 27.16.7.
(3) For any affine open V ⊂ S, the restriction

(U(ψ) ∩ f−1(V ), rL,ψ|U(ψ)∩f−1(V ), θ|U(ψ)∩f−1(V ))
agrees via iV (see Lemma 27.15.4) with the triple (U(ψ′), rL,ψ′ , θ′) of
Lemma 27.14.1 associated to the map ψ′ : A = A(V )→ Γ∗(f−1(V ),L|f−1(V ))
induced by ψ.

Proof. Use characterization (3) to construct the morphism rL,ψ and θ locally over
S. Use the uniqueness of Lemma 27.14.1 to show that the construction glues.
Details omitted. □

27.20. Twisting by invertible sheaves and relative Proj

02NB Let S be a scheme. Let A =
⊕

d≥0Ad be a quasi-coherent graded OS-algebra. Let
L be an invertible sheaf on S. In this situation we obtain another quasi-coherent
graded OS-algebra, namely

B =
⊕

d≥0
Ad ⊗OS

L⊗d

It turns out that A and B have isomorphic relative homogeneous spectra.
Lemma 27.20.1.02NC With notation S, A, L and B as above. There is a canonical
isomorphism

P = Proj
S

(A)
g

//

π

%%

Proj
S

(B) = P ′

π′

yy
S

with the following properties
(1) There are isomorphisms θn : g∗OP ′(n) → OP (n) ⊗ π∗L⊗n which fit to-

gether to give an isomorphism of Z-graded algebras

θ : g∗
(⊕

n∈Z
OP ′(n)

)
−→

⊕
n∈Z
OP (n)⊗ π∗L⊗n

(2) For every open V ⊂ S the diagrams

An(V )⊗ L⊗n(V )
multiply

//

ψ⊗π∗

��

Bn(V )

ψ

��

Γ(π−1V,OP (n))⊗ Γ(π−1V, π∗L⊗n)

multiply

��
Γ(π−1V,OP (n)⊗ π∗L⊗n) Γ(π′−1V,OP ′(n))θnoo

are commutative.
(3) Add more here as necessary.

Proof. This is the identity map when L ∼= OS . In general choose an open covering
of S such that L is trivialized over the pieces and glue the corresponding maps.
Details omitted. □
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27.21. Projective bundles

01OA Let S be a scheme. Let E be a quasi-coherent sheaf of OS-modules. By Modules,
Lemma 17.21.6 the symmetric algebra Sym(E) of E over OS is a quasi-coherent
sheaf of OS-algebras. Note that it is generated in degree 1 over OS . Hence it
makes sense to apply the construction of the previous section to it, specifically
Lemmas 27.16.5 and 27.16.11.
Definition 27.21.1.01OB Let S be a scheme. Let E be a quasi-coherent OS-module3. We
denote

π : P(E) = Proj
S

(Sym(E)) −→ S

and we call it the projective bundle associated to E . The symbol OP(E)(n) indicates
the invertible OP(E)-module of Lemma 27.16.11 and is called the nth twist of the
structure sheaf.
According to Lemma 27.15.5 there are canonical OS-module homomorphisms

Symn(E) −→ π∗OP(E)(n) equivalently π∗Symn(E) −→ OP(E)(n)
for all n ≥ 0. In particular, for n = 1 we have

E −→ π∗OP(E)(1) equivalently π∗E −→ OP(E)(1)
and the map π∗E → OP(E)(1) is a surjection by Lemma 27.16.11. This is a good
way to remember how we have normalized our construction of P(E).
Warning: In some references the scheme P(E) is only defined for E finite locally
free on S. Moreover sometimes P(E) is actually defined as our P(E∨) where E∨ is
the dual of E (and this is done only when E is finite locally free).
Let S, E , P(E)→ S be as in Definition 27.21.1. Let f : T → S be a scheme over S.
Let ψ : f∗E → L be a surjection where L is an invertible OT -module. The induced
graded OT -algebra map

f∗Sym(E) = Sym(f∗E)→ Sym(L) =
⊕

n≥0
L⊗n

corresponds to a morphism
φL,ψ : T −→ P(E)

over S by our construction of the relative Proj as the scheme representing the
functor F in Section 27.16. On the other hand, given a morphism φ : T → P(E)
over S we can set L = φ∗OP(E)(1) and ψ : f∗E → L equal to the pullback by φ of
the canonical surjection π∗E → OP(E)(1). By Lemma 27.16.11 these constructions
are inverse bijections between the set of isomorphism classes of pairs (L, ψ) and
the set of morphisms φ : T → P(E) over S. Thus we see that P(E) represents the
functor which associates to f : T → S the set of OT -module quotients of f∗E which
are locally free of rank 1.
Example 27.21.2 (Projective space of a vector space).0FCY Let k be a field. Let V be
a k-vector space. The corresponding projective space is the k-scheme

P(V ) = Proj(Sym(V ))
where Sym(V ) is the symmetric algebra on V over k. Of course we have P(V ) ∼= Pn

k

if dim(V ) = n + 1 because then the symmetric algebra on V is isomorphic to a

3The reader may expect here the condition that E is finite locally free. We do not do so in
order to be consistent with [DG67, II, Definition 4.1.1].
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polynomial ring in n + 1 variables. If we think of V as a quasi-coherent module
on Spec(k), then P(V ) is the corresponding projective space bundle over Spec(k).
By the discussion above a k-valued point p of P(V ) corresponds to a surjection of
k-vector spaces V → Lp with dim(Lp) = 1. More generally, let X be a scheme over
k, let L be an invertible OX -module, and let ψ : V → Γ(X,L) be a k-linear map
such that L is generated as an OX -module by the sections in the image of ψ. Then
the discussion above gives a canonical morphism

φL,ψ : X −→ P(V )
of schemes over k such that there is an isomorphism θ : φ∗

L,ψOP(V )(1) → L and
such that ψ agrees with the composition

V → Γ(P(V ),OP(V )(1))→ Γ(X,φ∗
L,ψOP(V )(1))→ Γ(X,L)

See Lemma 27.14.1. If V ⊂ Γ(X,L) is a subspace, then we will denote the morphism
constructed above simply as φL,V . If dim(V ) = n + 1 and we choose a basis
v0, . . . , vn of V then the diagram

X
φL,ψ

// P(V )
∼=
��

X
φ(L,(s0,...,sn)) // Pn

k

is commutative, where si = ψ(vi) ∈ Γ(X,L), where φ(L,(s0,...,sn)) is as in Sec-
tion 27.13, and where the right vertical arrow corresponds to the isomorphism
k[T0, . . . , Tn]→ Sym(V ) sending Ti to vi.

Example 27.21.3.01OC The map Symn(E) → π∗(OP(E)(n)) is an isomorphism if E is
locally free, but in general need not be an isomorphism. In fact we will give an
example where this map is not injective for n = 1. Set S = Spec(A) with

A = k[u, v, s1, s2, t1, t2]/I
where k is a field and

I = (−us1 + vt1 + ut2, vs1 + us2 − vt2, vs2, ut1).
Denote u the class of u in A and similarly for the other variables. Let M =
(Ax⊕Ay)/A(ux+ vy) so that

Sym(M) = A[x, y]/(ux+ vy) = k[x, y, u, v, s1, s2, t1, t2]/J
where

J = (−us1 + vt1 + ut2, vs1 + us2 − vt2, vs2, ut1, ux+ vy).
In this case the projective bundle associated to the quasi-coherent sheaf E = M̃ on
S = Spec(A) is the scheme

P = Proj(Sym(M)).
Note that this scheme as an affine open covering P = D+(x) ∪ D+(y). Consider
the element m ∈M which is the image of the element us1x+ vt2y. Note that

x(us1x+ vt2y) = (s1x+ s2y)(ux+ vy) mod I
and

y(us1x+ vt2y) = (t1x+ t2y)(ux+ vy) mod I.
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The first equation implies that m maps to zero as a section of OP (1) on D+(x)
and the second that it maps to zero as a section of OP (1) on D+(y). This shows
that m maps to zero in Γ(P,OP (1)). On the other hand we claim that m ̸= 0,
so that m gives an example of a nonzero global section of E mapping to zero in
Γ(P,OP (1)). Assume m = 0 to get a contradiction. In this case there exists an
element f ∈ k[u, v, s1, s2, t1, t2] such that

us1x+ vt2y = f(ux+ vy) mod I
Since I is generated by homogeneous polynomials of degree 2 we may decompose
f into its homogeneous components and take the degree 1 component. In other
words we may assume that

f = au+ bv + α1s1 + α2s2 + β1t1 + β2t2

for some a, b, α1, α2, β1, β2 ∈ k. The resulting conditions are that
us1 − u(au+ bv + α1s1 + α2s2 + β1t1 + β2t2) ∈ I
vt2 − v(au+ bv + α1s1 + α2s2 + β1t1 + β2t2) ∈ I

There are no terms u2, uv, v2 in the generators of I and hence we see a = b = 0.
Thus we get the relations

us1 − u(α1s1 + α2s2 + β1t1 + β2t2) ∈ I
vt2 − v(α1s1 + α2s2 + β1t1 + β2t2) ∈ I

We may use the first generator of I to replace any occurrence of us1 by vt1 + ut2,
the second generator of I to replace any occurrence of vs1 by −us2 + vt2, the third
generator to remove occurrences of vs2 and the third to remove occurrences of ut1.
Then we get the relations

(1− α1)vt1 + (1− α1)ut2 − α2us2 − β2ut2 = 0
(1− α1)vt2 + α1us2 − β1vt1 − β2vt2 = 0

This implies that α1 should be both 0 and 1 which is a contradiction as desired.

Lemma 27.21.4.01OD Let S be a scheme. The structure morphism P(E) → S of a
projective bundle over S is separated.

Proof. Immediate from Lemma 27.16.9. □

Lemma 27.21.5.01OE Let S be a scheme. Let n ≥ 0. Then Pn
S is a projective bundle

over S.

Proof. Note that

Pn
Z = Proj(Z[T0, . . . , Tn]) = ProjSpec(Z)

(
˜Z[T0, . . . , Tn]

)
where the grading on the ring Z[T0, . . . , Tn] is given by deg(Ti) = 1 and the elements
of Z are in degree 0. Recall that Pn

S is defined as Pn
Z ×Spec(Z) S. Moreover, form-

ing the relative homogeneous spectrum commutes with base change, see Lemma
27.16.10. For any scheme g : S → Spec(Z) we have g∗OSpec(Z)[T0, . . . , Tn] =
OS [T0, . . . , Tn]. Combining the above we see that

Pn
S = Proj

S
(OS [T0, . . . , Tn]).

Finally, note that OS [T0, . . . , Tn] = Sym(O⊕n+1
S ). Hence we see that Pn

S is a
projective bundle over S. □
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27.22. Grassmannians

089R In this section we introduce the standard Grassmannian functors and we show that
they are represented by schemes. Pick integers k, n with 0 < k < n. We will
construct a functor
(27.22.0.1)089S G(k, n) : Sch −→ Sets
which will loosely speaking parametrize k-dimensional subspaces of n-space. How-
ever, for technical reasons it is more convenient to parametrize (n−k)-dimensional
quotients and this is what we will do.
More precisely, G(k, n) associates to a scheme S the set G(k, n)(S) of isomorphism
classes of surjections

q : O⊕n
S −→ Q

where Q is a finite locally free OS-module of rank n − k. Note that this is in-
deed a set, for example by Modules, Lemma 17.9.8 or by the observation that the
isomorphism class of the surjection q is determined by the kernel of q (and given
a sheaf there is a set of subsheaves). Given a morphism of schemes f : T → S
we let G(k, n)(f) : G(k, n)(S) → G(k, n)(T ) which sends the isomorphism class
of q : O⊕n

S −→ Q to the isomorphism class of f∗q : O⊕n
T −→ f∗Q. This makes

sense since (1) f∗OS = OT , (2) f∗ is additive, (3) f∗ preserves locally free modules
(Modules, Lemma 17.14.3), and (4) f∗ is right exact (Modules, Lemma 17.3.3).

Lemma 27.22.1.089T Let 0 < k < n. The functor G(k, n) of (27.22.0.1) is representable
by a scheme.

Proof. Set F = G(k, n). To prove the lemma we will use the criterion of Schemes,
Lemma 26.15.4. The reason F satisfies the sheaf property for the Zariski topology
is that we can glue sheaves, see Sheaves, Section 6.33 (some details omitted).
The family of subfunctors Fi. Let I be the set of subsets of {1, . . . , n} of cardinality
n− k. Given a scheme S and j ∈ {1, . . . , n} we denote ej the global section

ej = (0, . . . , 0, 1, 0, . . . , 0) (1 in jth spot)
of O⊕n

S . Of course these sections freely generate O⊕n
S . Similarly, for j ∈ {1, . . . , n−

k} we denote fj the global section of O⊕n−k
S which is zero in all summands except

the jth where we put a 1. For i ∈ I we let
si : O⊕n−k

S −→ O⊕n
S

which is the direct sum of the coprojections OS → O⊕n
S corresponding to elements

of i. More precisely, if i = {i1, . . . , in−k} with i1 < i2 < . . . < in−k then si maps fj
to eij for j ∈ {1, . . . , n− k}. With this notation we can set

Fi(S) = {q : O⊕n
S → Q ∈ F (S) | q ◦ si is surjective} ⊂ F (S)

Given a morphism f : T → S of schemes the pullback f∗si is the corresponding
map over T . Since f∗ is right exact (Modules, Lemma 17.3.3) we conclude that Fi
is a subfunctor of F .
Representability of Fi. To prove this we may assume (after renumbering) that
i = {1, . . . , n − k}. This means si is the inclusion of the first n − k summands.
Observe that if q ◦ si is surjective, then q ◦ si is an isomorphism as a surjective map
between finite locally free modules of the same rank (Modules, Lemma 17.14.5).
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Thus if q : O⊕n
S → Q is an element of Fi(S), then we can use q ◦ si to identify Q

with O⊕n−k
S . After doing so we obtain

q : O⊕n
S −→ O⊕n−k

S

mapping ej to fj (notation as above) for j = 1, . . . , n−k. To determine q completely
we have to fix the images q(en−k+1), . . . , q(en) in Γ(S,O⊕n−k

S ). It follows that Fi
is isomorphic to the functor

S 7−→
∏

j=n−k+1,...,n
Γ(S,O⊕n−k

S )

This functor is isomorphic to the k(n − k)-fold self product of the functor S 7→
Γ(S,OS). By Schemes, Example 26.15.2 the latter is representable by A1

Z. It
follows Fi is representable by Ak(n−k)

Z since fibred product over Spec(Z) is the
product in the category of schemes.
The inclusion Fi ⊂ F is representable by open immersions. Let S be a scheme
and let q : O⊕n

S → Q be an element of F (S). By Modules, Lemma 17.9.4. the set
Ui = {s ∈ S | (q ◦ si)s surjective} is open in S. Since OS,s is a local ring and Qs a
finite OS,s-module by Nakayama’s lemma (Algebra, Lemma 10.20.1) we have

s ∈ Ui ⇔
(
the map κ(s)⊕n−k → Qs/msQs induced by (q ◦ si)s is surjective

)
Let f : T → S be a morphism of schemes and let t ∈ T be a point mapping to
s ∈ S. We have (f∗Q)t = Qs⊗OS,s

OT,t (Sheaves, Lemma 6.26.4) and so on. Thus
the map

κ(t)⊕n−k → (f∗Q)t/mt(f∗Q)t
induced by (f∗q◦f∗si)t is the base change of the map κ(s)⊕n−k → Qs/msQs above
by the field extension κ(t)/κ(s). It follows that s ∈ Ui if and only if t is in the
corresponding open for f∗q. In particular T → S factors through Ui if and only if
f∗q ∈ Fi(T ) as desired.
The collection Fi, i ∈ I covers F . Let q : O⊕n

S → Q be an element of F (S). We have
to show that for every point s of S there exists an i ∈ I such that si is surjective
in a neighbourhood of s. Thus we have to show that one of the compositions

κ(s)⊕n−k si−→ κ(s)⊕n → Qs/msQs
is surjective (see previous paragraph). As Qs/msQs is a vector space of dimension
n− k this follows from the theory of vector spaces. □

Definition 27.22.2.089U Let 0 < k < n. The scheme G(k, n) representing the functor
G(k, n) is called Grassmannian over Z. Its base change G(k, n)S to a scheme S is
called Grassmannian over S. If R is a ring the base change to Spec(R) is denoted
G(k, n)R and called Grassmannian over R.
The definition makes sense as we’ve shown in Lemma 27.22.1 that these functors
are indeed representable.
Lemma 27.22.3.089V Let n ≥ 1. There is a canonical isomorphism G(n, n+ 1) = Pn

Z.
Proof. According to Lemma 27.13.1 the scheme Pn

Z represents the functor which
assigns to a scheme S the set of isomorphisms classes of pairs (L, (s0, . . . , sn)) con-
sisting of an invertible module L and an (n+ 1)-tuple of global sections generating
L. Given such a pair we obtain a quotient

O⊕n+1
S −→ L, (h0, . . . , hn) 7−→

∑
hisi.

https://stacks.math.columbia.edu/tag/089U
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Conversely, given an element q : O⊕n+1
S → Q of G(n, n + 1)(S) we obtain such a

pair, namely (Q, (q(e1), . . . , q(en+1))). Here ei, i = 1, . . . , n + 1 are the standard
generating sections of the free module O⊕n+1

S . We omit the verification that these
constructions define mutually inverse transformations of functors. □
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CHAPTER 28

Properties of Schemes

01OH 28.1. Introduction

01OI In this chapter we introduce some absolute properties of schemes. A foundational
reference is [DG67].

28.2. Constructible sets

054B Constructible and locally constructible sets are introduced in Topology, Section
5.15. We may characterize locally constructible subsets of schemes as follows.

Lemma 28.2.1.054C Let X be a scheme. A subset E of X is locally constructible in X
if and only if E ∩ U is constructible in U for every affine open U of X.

Proof. Assume E is locally constructible. Then there exists an open covering X =⋃
Ui such that E ∩ Ui is constructible in Ui for each i. Let V ⊂ X be any affine

open. We can find a finite open affine covering V = V1 ∪ . . . ∪ Vm such that for
each j we have Vj ⊂ Ui for some i = i(j). By Topology, Lemma 5.15.4 we see that
each E ∩ Vj is constructible in Vj . Since the inclusions Vj → V are quasi-compact
(see Schemes, Lemma 26.19.2) we conclude that E ∩ V is constructible in V by
Topology, Lemma 5.15.6. The converse implication is immediate. □

Lemma 28.2.2.0AAW Let X be a scheme and let E ⊂ X be a locally constructible subset.
Let ξ ∈ X be a generic point of an irreducible component of X.

(1) If ξ ∈ E, then an open neighbourhood of ξ is contained in E.
(2) If ξ ̸∈ E, then an open neighbourhood of ξ is disjoint from E.

Proof. As the complement of a locally constructible subset is locally constructible it
suffices to show (2). We may assume X is affine and hence E constructible (Lemma
28.2.1). In this case X is a spectral space (Algebra, Lemma 10.26.2). Then ξ ̸∈ E
implies ξ ̸∈ E by Topology, Lemma 5.23.6 and the fact that there are no points of
X different from ξ which specialize to ξ. □

Lemma 28.2.3.054D Let X be a quasi-separated scheme. The intersection of any two
quasi-compact opens of X is a quasi-compact open of X. Every quasi-compact
open of X is retrocompact in X.

Proof. If U and V are quasi-compact open then U ∩ V = ∆−1(U × V ), where
∆ : X → X ×X is the diagonal. As X is quasi-separated we see that ∆ is quasi-
compact. Hence we see that U ∩ V is quasi-compact as U × V is quasi-compact
(details omitted; use Schemes, Lemma 26.17.4 to see U × V is a finite union of
affines). The other assertions follow from the first and Topology, Lemma 5.27.1. □

Lemma 28.2.4.094L Let X be a quasi-compact and quasi-separated scheme. Then the
underlying topological space of X is a spectral space.

2336
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Proof. By Topology, Definition 5.23.1 we have to check that X is sober, quasi-
compact, has a basis of quasi-compact opens, and the intersection of any two quasi-
compact opens is quasi-compact. This follows from Schemes, Lemma 26.11.1 and
26.11.2 and Lemma 28.2.3 above. □

Lemma 28.2.5.054E Let X be a quasi-compact and quasi-separated scheme. Any locally
constructible subset of X is constructible.

Proof. As X is quasi-compact we can choose a finite affine open covering X =
V1 ∪ . . . ∪ Vm. As X is quasi-separated each Vi is retrocompact in X by Lemma
28.2.3. Hence by Topology, Lemma 5.15.6 we see that E ⊂ X is constructible in X
if and only if E ∩ Vj is constructible in Vj . Thus we win by Lemma 28.2.1. □

Lemma 28.2.6.07ZL Let X be a scheme. A subset E of X is retrocompact in X if and
only if E ∩ U is quasi-compact for every affine open U of X.

Proof. Immediate from the fact that every quasi-compact open of X is a finite
union of affine opens. □

Lemma 28.2.7.0F2M A partition X =
∐
i∈I Xi of a scheme X with retrocompact parts

is locally finite if and only if the parts are locally constructible.

Proof. See Topology, Definitions 5.12.1, 5.28.1, and 5.28.4 for the definitions of
retrocompact, partition, and locally finite.
If the partition is locally finite and U ⊂ X is an affine open, then we see that U =∐
i∈I U ∩Xi is a finite partition (more precisely, all but a finite number of its parts

are empty). Hence U ∩Xi is quasi-compact and its complement is retrocompact in
U as a finite union of retrocompact parts. Thus U∩Xi is constructible by Topology,
Lemma 5.15.13. It follows that Xi is locally constructible by Lemma 28.2.1.
Assume the parts are locally constructible. Then for any affine open U ⊂ X we
obtain a covering U =

∐
Xi ∩ U by constructible subsets. Since the constructible

topology is quasi-compact, see Topology, Lemma 5.23.2, this covering has a finite
refinement, i.e., the partition is locally finite. □

28.3. Integral, irreducible, and reduced schemes

01OJ
Definition 28.3.1.01OK Let X be a scheme. We say X is integral if it is nonempty and
for every nonempty affine open Spec(R) = U ⊂ X the ring R is an integral domain.

Lemma 28.3.2.01OL Let X be a scheme. The following are equivalent.
(1) The scheme X is reduced, see Schemes, Definition 26.12.1.
(2) There exists an affine open covering X =

⋃
Ui such that each Γ(Ui,OX)

is reduced.
(3) For every affine open U ⊂ X the ring OX(U) is reduced.
(4) For every open U ⊂ X the ring OX(U) is reduced.

Proof. See Schemes, Lemmas 26.12.2 and 26.12.3. □

Lemma 28.3.3.01OM Let X be a scheme. The following are equivalent.
(1) The scheme X is irreducible.
(2) There exists an affine open covering X =

⋃
i∈I Ui such that I is not empty,

Ui is irreducible for all i ∈ I, and Ui ∩ Uj ̸= ∅ for all i, j ∈ I.

https://stacks.math.columbia.edu/tag/054E
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(3) The scheme X is nonempty and every nonempty affine open U ⊂ X is
irreducible.

Proof. Assume (1). By Schemes, Lemma 26.11.1 we see that X has a unique
generic point η. Then X = {η}. Hence η is an element of every nonempty affine
open U ⊂ X. This implies that η ∈ U is dense hence U is irreducible. It also
implies any two nonempty affines meet. Thus (1) implies both (2) and (3).
Assume (2). Suppose X = Z1 ∪Z2 is a union of two closed subsets. For every i we
see that either Ui ⊂ Z1 or Ui ⊂ Z2. Pick some i ∈ I and assume Ui ⊂ Z1 (possibly
after renumbering Z1, Z2). For any j ∈ I the open subset Ui ∩ Uj is dense in Uj
and contained in the closed subset Z1 ∩ Uj . We conclude that also Uj ⊂ Z1. Thus
X = Z1 as desired.
Assume (3). Choose an affine open covering X =

⋃
i∈I Ui. We may assume that

each Ui is nonempty. Since X is nonempty we see that I is not empty. By assump-
tion each Ui is irreducible. Suppose Ui ∩ Uj = ∅ for some pair i, j ∈ I. Then the
open Ui⨿Uj = Ui∪Uj is affine, see Schemes, Lemma 26.6.8. Hence it is irreducible
by assumption which is absurd. We conclude that (3) implies (2). The lemma is
proved. □

Lemma 28.3.4.01ON A scheme X is integral if and only if it is reduced and irreducible.

Proof. If X is irreducible, then every affine open Spec(R) = U ⊂ X is irreducible.
If X is reduced, then R is reduced, by Lemma 28.3.2 above. Hence R is reduced
and (0) is a prime ideal, i.e., R is an integral domain.
If X is integral, then for every nonempty affine open Spec(R) = U ⊂ X the ring R
is reduced and hence X is reduced by Lemma 28.3.2. Moreover, every nonempty
affine open is irreducible. Hence X is irreducible, see Lemma 28.3.3. □

In Examples, Section 110.6 we construct a connected affine scheme all of whose
local rings are domains, but which is not integral.

28.4. Types of schemes defined by properties of rings

01OO In this section we study what properties of rings allow one to define local properties
of schemes.

Definition 28.4.1.01OP Let P be a property of rings. We say that P is local if the
following hold:

(1) For any ring R, and any f ∈ R we have P (R)⇒ P (Rf ).
(2) For any ring R, and fi ∈ R such that (f1, . . . , fn) = R then ∀i, P (Rfi)⇒

P (R).

Definition 28.4.2.01OQ Let P be a property of rings. Let X be a scheme. We say X is
locally P if for any x ∈ X there exists an affine open neighbourhood U of x in X
such that OX(U) has property P .

This is only a good notion if the property is local. Even if P is a local property we
will not automatically use this definition to say that a scheme is “locally P” unless
we also explicitly state the definition elsewhere.

Lemma 28.4.3.01OR Let X be a scheme. Let P be a local property of rings. The
following are equivalent:

https://stacks.math.columbia.edu/tag/01ON
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(1) The scheme X is locally P .
(2) For every affine open U ⊂ X the property P (OX(U)) holds.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui)

satisfies P .
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is locally P .
Moreover, if X is locally P then every open subscheme is locally P .
Proof. Of course (1) ⇔ (3) and (2) ⇒ (1). If (3) ⇒ (2), then the final statement
of the lemma holds and it follows easily that (4) is also equivalent to (1). Thus we
show (3) ⇒ (2).
Let X =

⋃
Ui be an affine open covering, say Ui = Spec(Ri). Assume P (Ri). Let

Spec(R) = U ⊂ X be an arbitrary affine open. By Schemes, Lemma 26.11.6 there
exists a standard covering of U = Spec(R) by standard opens D(fj) such that each
ring Rfj is a principal localization of one of the rings Ri. By Definition 28.4.1 (1)
we get P (Rfj ). Whereupon P (R) by Definition 28.4.1 (2). □

Here is a sample application.
Lemma 28.4.4.01OS Let X be a scheme. Then X is reduced if and only if X is “locally
reduced” in the sense of Definition 28.4.2.
Proof. This is clear from Lemma 28.3.2. □

Lemma 28.4.5.01OT The following properties of a ring R are local.
(1) (Cohen-Macaulay.) The ring R is Noetherian and CM, see Algebra, Defi-

nition 10.104.6.
(2) (Regular.) The ring R is Noetherian and regular, see Algebra, Definition

10.110.7.
(3) (Absolutely Noetherian.) The ring R is of finite type over Z.
(4) Add more here as needed.1

Proof. Omitted. □

28.5. Noetherian schemes

01OU Recall that a ring R is Noetherian if it satisfies the ascending chain condition of
ideals. Equivalently every ideal of R is finitely generated.
Definition 28.5.1.01OV Let X be a scheme.

(1) We say X is locally Noetherian if every x ∈ X has an affine open neigh-
bourhood Spec(R) = U ⊂ X such that the ring R is Noetherian.

(2) We say X is Noetherian if X is locally Noetherian and quasi-compact.
Here is the standard result characterizing locally Noetherian schemes.
Lemma 28.5.2.01OW Let X be a scheme. The following are equivalent:

(1) The scheme X is locally Noetherian.
(2) For every affine open U ⊂ X the ring OX(U) is Noetherian.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

Noetherian.
1But we only list those properties here which we have not already dealt with separately

somewhere else.
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(4) There exists an open covering X =
⋃
Xj such that each open subscheme

Xj is locally Noetherian.
Moreover, if X is locally Noetherian then every open subscheme is locally Noether-
ian.

Proof. To show this it suffices to show that being Noetherian is a local property of
rings, see Lemma 28.4.3. Any localization of a Noetherian ring is Noetherian, see
Algebra, Lemma 10.31.1. By Algebra, Lemma 10.23.2 we see the second property
to Definition 28.4.1. □

Lemma 28.5.3.01OX Any immersion Z → X withX locally Noetherian is quasi-compact.

Proof. A closed immersion is clearly quasi-compact. A composition of quasi-compact
morphisms is quasi-compact, see Topology, Lemma 5.12.2. Hence it suffices to show
that an open immersion into a locally Noetherian scheme is quasi-compact. Using
Schemes, Lemma 26.19.2 we reduce to the case where X is affine. Any open sub-
set of the spectrum of a Noetherian ring is quasi-compact (for example combine
Algebra, Lemma 10.31.5 and Topology, Lemmas 5.9.2 and 5.12.13). □

Lemma 28.5.4.01OY A locally Noetherian scheme is quasi-separated.

Proof. By Schemes, Lemma 26.21.6 we have to show that the intersection U ∩ V
of two affine opens of X is quasi-compact. This follows from Lemma 28.5.3 above
on considering the open immersion U ∩ V → U for example. (But really it is just
because any open of the spectrum of a Noetherian ring is quasi-compact.) □

Lemma 28.5.5.01OZ A (locally) Noetherian scheme has a (locally) Noetherian underly-
ing topological space, see Topology, Definition 5.9.1.

Proof. This is because a Noetherian scheme is a finite union of spectra of Noetherian
rings and Algebra, Lemma 10.31.5 and Topology, Lemma 5.9.4. □

Lemma 28.5.6.02IK Any locally closed subscheme of a (locally) Noetherian scheme is
(locally) Noetherian.

Proof. Omitted. Hint: Any quotient, and any localization of a Noetherian ring is
Noetherian. For the Noetherian case use again that any subset of a Noetherian
space is a Noetherian space (with induced topology). □

Lemma 28.5.7.0BA8 A Noetherian scheme has a finite number of irreducible components.

Proof. The underlying topological space of a Noetherian scheme is Noetherian
(Lemma 28.5.5) and we conclude because a Noetherian topological space has only
finitely many irreducible components (Topology, Lemma 5.9.2). □

Lemma 28.5.8.01P0 Any morphism of schemes f : X → Y with X Noetherian is
quasi-compact.

Proof. Use Lemma 28.5.5 and use that any subset of a Noetherian topological space
is quasi-compact (see Topology, Lemmas 5.9.2 and 5.12.13). □

Here is a fun lemma. It says that every locally Noetherian scheme has plenty of
closed points (at least one in every closed subset).
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Lemma 28.5.9.02IL Any nonempty locally Noetherian scheme has a closed point. Any
nonempty closed subset of a locally Noetherian scheme has a closed point. Equiv-
alently, any point of a locally Noetherian scheme specializes to a closed point.

Proof. The second assertion follows from the first (using Schemes, Lemma 26.12.4
and Lemma 28.5.6). Consider any nonempty affine open U ⊂ X. Let x ∈ U be a
closed point. If x is a closed point of X then we are done. If not, let X0 ⊂ X be
the reduced induced closed subscheme structure on {x}. Then U0 = U ∩X0 is an
affine open of X0 by Schemes, Lemma 26.10.1 and U0 = {x}. Let y ∈ X0, y ̸= x be
a specialization of x. Consider the local ring R = OX0,y. This is a Noetherian local
ring as X0 is Noetherian by Lemma 28.5.6. Denote V ⊂ Spec(R) the inverse image
of U0 in Spec(R) by the canonical morphism Spec(R)→ X0 (see Schemes, Section
26.13.) By construction V is a singleton with unique point corresponding to x (use
Schemes, Lemma 26.13.2). By Algebra, Lemma 10.61.1 we see that dim(R) = 1.
In other words, we see that y is an immediate specialization of x (see Topology,
Definition 5.20.1). In other words, any point y ̸= x such that x⇝ y is an immediate
specialization of x. Clearly each of these points is a closed point as desired. □

Lemma 28.5.10.054F Let X be a locally Noetherian scheme. Let x′ ⇝ x be a special-
ization of points of X. Then

(1) there exists a discrete valuation ring R and a morphism f : Spec(R)→ X
such that the generic point η of Spec(R) maps to x′ and the special point
maps to x, and

(2) given a finitely generated field extension K/κ(x′) we may arrange it so
that the extension κ(η)/κ(x′) induced by f is isomorphic to the given one.

Proof. Let x′ ⇝ x be a specialization in X, and let K/κ(x′) be a finitely gener-
ated extension of fields. By Schemes, Lemma 26.13.2 and the discussion following
Schemes, Lemma 26.13.3 this leads to ring maps OX,x → κ(x′) → K. Let R ⊂ K
be any discrete valuation ring whose field of fractions is K and which dominates
the image of OX,x → K, see Algebra, Lemma 10.119.13. The ring map OX,x → R
induces the morphism f : Spec(R) → X, see Schemes, Lemma 26.13.1. This mor-
phism has all the desired properties by construction. □

Lemma 28.5.11.0CXG Let S be a Noetherian scheme. Let T ⊂ S be an infinite sub-
set. Then there exists an infinite subset T ′ ⊂ T such that there are no nontrivial
specializations among the points T ′.

Proof. Let T0 ⊂ T be the set of t ∈ T which do not specialize to another point of
T . If T0 is infinite, then T ′ = T0 works. Hence we may and do assume T0 is finite.
Inductively, for i > 0, consider the set Ti ⊂ T of t ∈ T such that

(1) t ̸∈ Ti−1 ∪ Ti−2 ∪ . . . ∪ T0,
(2) there exist a nontrivial specialization t⇝ t′ with t′ ∈ Ti−1, and
(3) for any nontrivial specialization t ⇝ t′ with t′ ∈ T we have t′ ∈ Ti−1 ∪

Ti−2 ∪ . . . ∪ T0.
Again, if Ti is infinite, then T ′ = Ti works. Let d be the maximum of the dimensions
of the local rings OS,t for t ∈ T0; then d is an integer because T0 is finite and the
dimensions of the local rings are finite by Algebra, Proposition 10.60.9. Then Ti = ∅
for i > d. Namely, if t ∈ Ti then we can find a sequence of nontrivial specializations
t = ti ⇝ ti−1 ⇝ . . . ⇝ t0 with t0 ∈ T0. As the points t = ti, ti−1, . . . , t0 are in

https://stacks.math.columbia.edu/tag/02IL
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Spec(OS,t0) (Schemes, Lemma 26.13.2), we see that i ≤ d. Thus
⋃
Ti = Td∪ . . .∪T0

is a finite subset of T .
Suppose t ∈ T is not in

⋃
Ti. Then there must be a specialization t⇝ t′ with t′ ∈ T

and t′ ̸∈
⋃
Ti. (Namely, if every specialization of t is in the finite set Td ∪ . . . ∪ T0,

then there is a maximum i such that there is some specialization t⇝ t′ with t′ ∈ Ti
and then t ∈ Ti+1 by construction.) Hence we get an infinite sequence

t⇝ t′ ⇝ t′′ ⇝ . . .

of nontrivial specializations between points of T \
⋃
Ti. This is impossible because

the underlying topological space of S is Noetherian by Lemma 28.5.4. □

Lemma 28.5.12.0G2R Let S be a Noetherian scheme. Let T ⊂ S be a subset. Let
T0 ⊂ T be the set of t ∈ T such that there is no nontrivial specialization t′ ⇝ t
with t′ ∈ T ′. Then (a) there are no specializations among the points of T0, (b)
every point of T is a specialization of a point of T0, and (c) the closures of T and
T0 are the same.

Proof. Recall that dim(OS,s) <∞ for any s ∈ S, see Algebra, Proposition 10.60.9.
Let t ∈ T . If t′ ⇝ t, then by dimension theory dim(OS,t′) ≤ dim(OS,t) with
equality if and only if t′ = t. Thus if we pick t′ ⇝ t with dim(OT,t′) minimal, then
t′ ∈ T0. In other words, every t ∈ T is the specialization of an element of T0. □

Lemma 28.5.13.0G2F Let S be a Noetherian scheme. Let T ⊂ S be an infinite dense
subset. Then there exist a countable subset E ⊂ T which is dense in S.

Proof. Let T ′ be the set of points s ∈ S such that {s} ∩ T contains a countable
subset whose closure is {s}. Since a finite set is countable we have T ⊂ T ′. For
s ∈ T ′ choose such a countable subset Es ⊂ {s} ∩ T . Let E′ = {s1, s2, s3, . . .} ⊂ T ′

be a countable subset. Then the closure of E′ in S is the closure of the countable
subset

⋃
nEsn of T . It follows that if Z is an irreducible component of the closure

of E′, then the generic point of Z is in T ′.
Denote T ′

0 ⊂ T ′ the subset of t ∈ T ′ such that there is no nontrivial specialization
t′ ⇝ t with t′ ∈ T ′ as in Lemma 28.5.12 whose results we will use without further
mention. If T ′

0 is infinite, then we choose a countable subset E′ ⊂ T ′
0. By the

argument in the first paragraph, the generic points of the irreducible components
of the closure of E′ are in T ′. However, since one of these points specializes to
infinitely many distinct elements of E′ ⊂ T ′

0 this is a contradiction. Thus T ′
0 is

finite, say T ′
0 = {s1, . . . , sm}. Then it follows that S, which is the closure of T , is

contained in the closure of {s1, . . . , sm}, which in turn is contained in the closure
of the countable subset Es1 ∪ . . . ∪ Esm ⊂ T as desired. □

28.6. Jacobson schemes

01P1 Recall that a space is said to be Jacobson if the closed points are dense in every
closed subset, see Topology, Section 5.18.

Definition 28.6.1.01P2 A scheme S is said to be Jacobson if its underlying topological
space is Jacobson.

Recall that a ring R is Jacobson if every radical ideal of R is the intersection of
maximal ideals, see Algebra, Definition 10.35.1.
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Lemma 28.6.2.01P3 An affine scheme Spec(R) is Jacobson if and only if the ring R is
Jacobson.

Proof. This is Algebra, Lemma 10.35.4. □

Here is the standard result characterizing Jacobson schemes. Intuitively it claims
that Jacobson ⇔ locally Jacobson.

Lemma 28.6.3.01P4 Let X be a scheme. The following are equivalent:
(1) The scheme X is Jacobson.
(2) The scheme X is “locally Jacobson” in the sense of Definition 28.4.2.
(3) For every affine open U ⊂ X the ring OX(U) is Jacobson.
(4) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

Jacobson.
(5) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is Jacobson.
Moreover, if X is Jacobson then every open subscheme is Jacobson.

Proof. The final assertion of the lemma holds by Topology, Lemma 5.18.5. The
equivalence of (5) and (1) is Topology, Lemma 5.18.4. Hence, using Lemma 28.6.2,
we see that (1) ⇔ (2). To finish proving the lemma it suffices to show that “Jacob-
son” is a local property of rings, see Lemma 28.4.3. Any localization of a Jacobson
ring at an element is Jacobson, see Algebra, Lemma 10.35.14. Suppose R is a ring,
f1, . . . , fn ∈ R generate the unit ideal and each Rfi is Jacobson. Then we see that
Spec(R) =

⋃
D(fi) is a union of open subsets which are all Jacobson, and hence

Spec(R) is Jacobson by Topology, Lemma 5.18.4 again. This proves the second
property of Definition 28.4.1. □

Many schemes used commonly in algebraic geometry are Jacobson, see Morphisms,
Lemma 29.16.10. We mention here the following interesting case.

Lemma 28.6.4.02IM Examples of Noetherian Jacobson schemes.
(1) If (R,m) is a Noetherian local ring, then the punctured spectrum Spec(R)\
{m} is a Jacobson scheme.

(2) If R is a Noetherian ring with Jacobson radical rad(R) then Spec(R) \
V (rad(R)) is a Jacobson scheme.

(3) If (R, I) is a Zariski pair (More on Algebra, Definition 15.10.1) with R
Noetherian, then Spec(R) \ V (I) is a Jacobson scheme.

Proof. Proof of (3). Observe that Spec(R) − V (I) has a covering by the affine
opens Spec(Rf ) for f ∈ I. The rings Rf are Jacobson by More on Algebra, Lemma
15.10.5. Hence Spec(R) \V (I) is Jacobson by Lemma 28.6.3. Parts (1) and (2) are
special cases of (3).

Direct proof of case (1). Since Spec(R) is a Noetherian scheme, S is a Noetherian
scheme (Lemma 28.5.6). Hence S is a sober, Noetherian topological space (use
Schemes, Lemma 26.11.1). Assume S is not Jacobson to get a contradiction. By
Topology, Lemma 5.18.3 there exists some non-closed point ξ ∈ S such that {ξ}
is locally closed. This corresponds to a prime p ⊂ R such that (1) there exists a
prime q, p ⊂ q ⊂ m with both inclusions strict, and (2) {p} is open in Spec(R/p).
This is impossible by Algebra, Lemma 10.61.1. □
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28.7. Normal schemes

033H Recall that a ring R is said to be normal if all its local rings are normal domains,
see Algebra, Definition 10.37.11. A normal domain is a domain which is integrally
closed in its field of fractions, see Algebra, Definition 10.37.1. Thus it makes sense
to define a normal scheme as follows.

Definition 28.7.1.033I A scheme X is normal if and only if for all x ∈ X the local ring
OX,x is a normal domain.

This seems to be the definition used in EGA, see [DG67, 0, 4.1.4]. Suppose X =
Spec(A), and A is reduced. Then saying that X is normal is not equivalent to
saying that A is integrally closed in its total ring of fractions. However, if A is
Noetherian then this is the case (see Algebra, Lemma 10.37.16).

Lemma 28.7.2.033J Let X be a scheme. The following are equivalent:
(1) The scheme X is normal.
(2) For every affine open U ⊂ X the ring OX(U) is normal.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

normal.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is normal.
Moreover, if X is normal then every open subscheme is normal.

Proof. This is clear from the definitions. □

Lemma 28.7.3.033K A normal scheme is reduced.

Proof. Immediate from the definitions. □

Lemma 28.7.4.033L Let X be an integral scheme. Then X is normal if and only if for
every affine open U ⊂ X the ring OX(U) is a normal domain.

Proof. This follows from Algebra, Lemma 10.37.10. □

Lemma 28.7.5.0357 Let X be a scheme such that any quasi-compact open has a finite
number of irreducible components. The following are equivalent:

(1) X is normal, and
(2) X is a disjoint union of normal integral schemes.

Proof. It is immediate from the definitions that (2) implies (1). Let X be a nor-
mal scheme such that every quasi-compact open has a finite number of irreducible
components. If X is affine then X satisfies (2) by Algebra, Lemma 10.37.16. For
a general X, let X =

⋃
Xi be an affine open covering. Note that also each Xi

has but a finite number of irreducible components, and the lemma holds for each
Xi. Let T ⊂ X be an irreducible component. By the affine case each intersection
T ∩Xi is open in Xi and an integral normal scheme. Hence T ⊂ X is open, and an
integral normal scheme. This proves that X is the disjoint union of its irreducible
components, which are integral normal schemes. □

Lemma 28.7.6.033M Let X be a Noetherian scheme. The following are equivalent:
(1) X is normal, and
(2) X is a finite disjoint union of normal integral schemes.
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Proof. This is a special case of Lemma 28.7.5 because a Noetherian scheme has
a Noetherian underlying topological space (Lemma 28.5.5 and Topology, Lemma
5.9.2). □

Lemma 28.7.7.033N LetX be a locally Noetherian scheme. The following are equivalent:
(1) X is normal, and
(2) X is a disjoint union of integral normal schemes.

Proof. Omitted. Hint: This is purely topological from Lemma 28.7.6. □

Remark 28.7.8.033O Let X be a normal scheme. If X is locally Noetherian then we
see that X is integral if and only if X is connected, see Lemma 28.7.7. But there
exists a connected affine scheme X such that OX,x is a domain for all x ∈ X, but
X is not irreducible, see Examples, Section 110.6. This example is even a normal
scheme (proof omitted), so beware!
Lemma 28.7.9.0358 Let X be an integral normal scheme. Then Γ(X,OX) is a normal
domain.
Proof. Set R = Γ(X,OX). It is clear that R is a domain. Suppose f = a/b
is an element of its fraction field which is integral over R. Say we have fd +∑
i=0,...,d−1 aif

i = 0 with ai ∈ R. Let U ⊂ X be a nonempty affine open. Since
b ∈ R is not zero and since X is integral we see that also b|U ∈ OX(U) is not zero.
Hence a/b is an element of the fraction field of OX(U) which is integral over OX(U)
(because we can use the same polynomial fd+

∑
i=0,...,d−1 ai|Uf i = 0 on U). Since

OX(U) is a normal domain (Lemma 28.7.2), we see that fU = (a|U )/(b|U ) ∈ OX(U).
It is clear that fU |V = fV whenever V ⊂ U ⊂ X are nonempty affine open. Hence
the local sections fU glue to an element g ∈ R = Γ(X,OX). Then bg and a restrict
to the same element of OX(U) for all U as above, hence bg = a, in other words, g
maps to f in the fraction field of R. □

28.8. Cohen-Macaulay schemes

02IN Recall, see Algebra, Definition 10.104.1, that a local Noetherian ring (R,m) is said
to be Cohen-Macaulay if depthm(R) = dim(R). Recall that a Noetherian ring R
is said to be Cohen-Macaulay if every local ring Rp of R is Cohen-Macaulay, see
Algebra, Definition 10.104.6.
Definition 28.8.1.02IO Let X be a scheme. We say X is Cohen-Macaulay if for every
x ∈ X there exists an affine open neighbourhood U ⊂ X of x such that the ring
OX(U) is Noetherian and Cohen-Macaulay.
Lemma 28.8.2.02IP Let X be a scheme. The following are equivalent:

(1) X is Cohen-Macaulay,
(2) X is locally Noetherian and all of its local rings are Cohen-Macaulay, and
(3) X is locally Noetherian and for any closed point x ∈ X the local ring
OX,x is Cohen-Macaulay.

Proof. Algebra, Lemma 10.104.5 says that the localization of a Cohen-Macaulay
local ring is Cohen-Macaulay. The lemma follows by combining this with Lemma
28.5.2, with the existence of closed points on locally Noetherian schemes (Lemma
28.5.9), and the definitions. □

Lemma 28.8.3.02IQ Let X be a scheme. The following are equivalent:
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(1) The scheme X is Cohen-Macaulay.
(2) For every affine open U ⊂ X the ring OX(U) is Noetherian and Cohen-

Macaulay.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

Noetherian and Cohen-Macaulay.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is Cohen-Macaulay.
Moreover, if X is Cohen-Macaulay then every open subscheme is Cohen-Macaulay.

Proof. Combine Lemmas 28.5.2 and 28.8.2. □

More information on Cohen-Macaulay schemes and depth can be found in Coho-
mology of Schemes, Section 30.11.

28.9. Regular schemes

02IR Recall, see Algebra, Definition 10.60.10, that a local Noetherian ring (R,m) is said
to be regular if m can be generated by dim(R) elements. Recall that a Noetherian
ring R is said to be regular if every local ring Rp of R is regular, see Algebra,
Definition 10.110.7.

Definition 28.9.1.02IS Let X be a scheme. We say X is regular, or nonsingular if for
every x ∈ X there exists an affine open neighbourhood U ⊂ X of x such that the
ring OX(U) is Noetherian and regular.

Lemma 28.9.2.02IT Let X be a scheme. The following are equivalent:
(1) X is regular,
(2) X is locally Noetherian and all of its local rings are regular, and
(3) X is locally Noetherian and for any closed point x ∈ X the local ring
OX,x is regular.

Proof. By the discussion in Algebra preceding Algebra, Definition 10.110.7 we know
that the localization of a regular local ring is regular. The lemma follows by combin-
ing this with Lemma 28.5.2, with the existence of closed points on locally Noetherian
schemes (Lemma 28.5.9), and the definitions. □

Lemma 28.9.3.02IU Let X be a scheme. The following are equivalent:
(1) The scheme X is regular.
(2) For every affine open U ⊂ X the ring OX(U) is Noetherian and regular.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

Noetherian and regular.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is regular.
Moreover, if X is regular then every open subscheme is regular.

Proof. Combine Lemmas 28.5.2 and 28.9.2. □

Lemma 28.9.4.0569 A regular scheme is normal.

Proof. See Algebra, Lemma 10.157.5. □
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28.10. Dimension

04MS The dimension of a scheme is just the dimension of its underlying topological space.

Definition 28.10.1.04MT Let X be a scheme.
(1) The dimension of X is just the dimension of X as a topological spaces,

see Topology, Definition 5.10.1.
(2) For x ∈ X we denote dimx(X) the dimension of the underlying topological

space of X at x as in Topology, Definition 5.10.1. We say dimx(X) is the
dimension of X at x.

As a scheme has a sober underlying topological space (Schemes, Lemma 26.11.1)
we may compute the dimension of X as the supremum of the lengths n of chains

T0 ⊂ T1 ⊂ . . . ⊂ Tn
of irreducible closed subsets of X, or as the supremum of the lengths n of chains of
specializations

ξn ⇝ ξn−1 ⇝ . . .⇝ ξ0

of points of X.

Lemma 28.10.2.04MU Let X be a scheme. The following are equal
(1) The dimension of X.
(2) The supremum of the dimensions of the local rings of X.
(3) The supremum of dimx(X) for x ∈ X.

Proof. Note that given a chain of specializations

ξn ⇝ ξn−1 ⇝ . . .⇝ ξ0

of points of X all of the points ξi correspond to prime ideals of the local ring of X
at ξ0 by Schemes, Lemma 26.13.2. Hence we see that the dimension of X is the
supremum of the dimensions of its local rings. In particular dimx(X) ≥ dim(OX,x)
as dimx(X) is the minimum of the dimensions of open neighbourhoods of x. Thus
supx∈X dimx(X) ≥ dim(X). On the other hand, it is clear that supx∈X dimx(X) ≤
dim(X) as dim(U) ≤ dim(X) for any open subset of X. □

Lemma 28.10.3.02IZ Let X be a scheme. Let Y ⊂ X be an irreducible closed subset.
Let ξ ∈ Y be the generic point. Then

codim(Y,X) = dim(OX,ξ)

where the codimension is as defined in Topology, Definition 5.11.1.

Proof. By Topology, Lemma 5.11.2 we may replace X by an affine open neighbour-
hood of ξ. In this case the result follows easily from Algebra, Lemma 10.26.3. □

Lemma 28.10.4.0BA9 Let X be a scheme. Let x ∈ X. Then x is a generic point of an
irreducible component of X if and only if dim(OX,x) = 0.

Proof. This follows from Lemma 28.10.3 for example. □

Lemma 28.10.5.0AAX A locally Noetherian scheme of dimension 0 is a disjoint union of
spectra of Artinian local rings.
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Proof. A Noetherian ring of dimension 0 is a finite product of Artinian local rings,
see Algebra, Proposition 10.60.7. Hence an affine open of a locally Noetherian
scheme X of dimension 0 has discrete underlying topological space. This implies
that the topology on X is discrete. The lemma follows easily from these remarks.

□

Lemma 28.10.6.0CKV Email from Ofer
Gabber dated June
4, 2016

Let X be a scheme of dimension zero. The following are equivalent
(1) X is quasi-separated,
(2) X is separated,
(3) X is Hausdorff,
(4) every affine open is closed.

In this case the connected components of X are points and every quasi-compact
open of X is affine. In particular, if X is quasi-compact, then X is affine.

Proof. As the dimension of X is zero, we see that for any affine open U ⊂ X the
space U is profinite and satisfies a bunch of other properties which we will use freely
below, see Algebra, Lemma 10.26.5. We choose an affine open covering X =

⋃
Ui.

If (4) holds, then Ui ∩Uj is a closed subset of Ui, hence quasi-compact, hence X is
quasi-separated, by Schemes, Lemma 26.21.6, hence (1) holds.

If (1) holds, then Ui ∩ Uj is a quasi-compact open of Ui hence closed in Ui. Then
Ui ∩ Uj → Ui is an open immersion whose image is closed, hence it is a closed
immersion. In particular Ui ∩ Uj is affine and O(Ui)→ OX(Ui ∩ Uj) is surjective.
Thus X is separated by Schemes, Lemma 26.21.7, hence (2) holds.

Assume (2) and let x, y ∈ X. Say x ∈ Ui. If y ∈ Ui too, then we can find disjoint
open neighbourhoods of x and y because Ui is Hausdorff. Say y ̸∈ Ui and y ∈ Uj .
Then y ̸∈ Ui ∩ Uj which is an affine open of Uj and hence closed in Uj . Thus we
can find an open neighbourhood of y not meeting Ui and we conclude that X is
Hausdorff, hence (3) holds.

Assume (3). Let U ⊂ X be affine open. Then U is closed in X by Topology, Lemma
5.12.4. This proves (4) holds.

Assume X satisfies the equivalent conditions (1) – (4). We prove the final state-
ments of the lemma. Say x, y ∈ X with x ̸= y. Since y does not specialize to
x we can choose U ⊂ X affine open with x ∈ U and y ̸∈ U . Then we see that
X = U ⨿ (X \ U) is a decomposistion into open and closed subsets which shows
that x and y do not belong to the same connected component of X. Next, assume
U ⊂ X is a quasi-compact open. Write U = U1∪ . . .∪Un as a union of affine opens.
We will prove by induction on n that U is affine. This immediately reduces us to
the case n = 2. In this case we have U = (U1 \U2)⨿ (U1 ∩U2)⨿ (U2 \U1) and the
arguments above show that each of the pieces is affine. □

28.11. Catenary schemes

02IV Recall that a topological space X is called catenary if for every pair of irreducible
closed subsets T ⊂ T ′ there exist a maximal chain of irreducible closed subsets

T = T0 ⊂ T1 ⊂ . . . ⊂ Te = T ′

and every such chain has the same length. See Topology, Definition 5.11.4.
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Definition 28.11.1.02IW Let S be a scheme. We say S is catenary if the underlying
topological space of S is catenary.

Recall that a ring A is called catenary if for any pair of prime ideals p ⊂ q there
exists a maximal chain of primes

p = p0 ⊂ . . . ⊂ pe = q

and all of these have the same length. See Algebra, Definition 10.105.1.

Lemma 28.11.2.02IX Let S be a scheme. The following are equivalent
(1) S is catenary,
(2) there exists an open covering of S all of whose members are catenary

schemes,
(3) for every affine open Spec(R) = U ⊂ S the ring R is catenary, and
(4) there exists an affine open covering S =

⋃
Ui such that each Ui is the

spectrum of a catenary ring.
Moreover, in this case any locally closed subscheme of S is catenary as well.

Proof. Combine Topology, Lemma 5.11.5, and Algebra, Lemma 10.105.2. □

Lemma 28.11.3.02IY Let S be a locally Noetherian scheme. The following are equiva-
lent:

(1) S is catenary, and
(2) locally in the Zariski topology there exists a dimension function on S (see

Topology, Definition 5.20.1).

Proof. This follows from Topology, Lemmas 5.11.5, 5.20.2, and 5.20.4, Schemes,
Lemma 26.11.1 and finally Lemma 28.5.5. □

It turns out that a scheme is catenary if and only if its local rings are catenary.

Lemma 28.11.4.02J0 Let X be a scheme. The following are equivalent
(1) X is catenary, and
(2) for any x ∈ X the local ring OX,x is catenary.

Proof. Assume X is catenary. Let x ∈ X. By Lemma 28.11.2 we may replace X
by an affine open neighbourhood of x, and then Γ(X,OX) is a catenary ring. By
Algebra, Lemma 10.105.4 any localization of a catenary ring is catenary. Whence
OX,x is catenary.
Conversely assume all local rings of X are catenary. Let Y ⊂ Y ′ be an inclusion of
irreducible closed subsets of X. Let ξ ∈ Y be the generic point. Let p ⊂ OX,ξ be
the prime corresponding to the generic point of Y ′, see Schemes, Lemma 26.13.2.
By that same lemma the irreducible closed subsets of X in between Y and Y ′

correspond to primes q ⊂ OX,ξ with p ⊂ q ⊂ mξ. Hence we see all maximal chains
of these are finite and have the same length as OX,ξ is a catenary ring. □

28.12. Serre’s conditions

033P Here are two technical notions that are often useful. See also Cohomology of
Schemes, Section 30.11.

Definition 28.12.1.033Q Let X be a locally Noetherian scheme. Let k ≥ 0.
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(1) We say X is regular in codimension k, or we say X has property (Rk) if
for every x ∈ X we have

dim(OX,x) ≤ k ⇒ OX,x is regular
(2) We say X has property (Sk) if for every x ∈ X we have depth(OX,x) ≥

min(k,dim(OX,x)).

The phrase “regular in codimension k” makes sense since we have seen in Section
28.11 that if Y ⊂ X is irreducible closed with generic point x, then dim(OX,x) =
codim(Y,X). For example condition (R0) means that for every generic point η ∈ X
of an irreducible component of X the local ring OX,η is a field. But for general
Noetherian schemes it can happen that the regular locus of X is badly behaved, so
care has to be taken.

Lemma 28.12.2.0B3C Let X be a locally Noetherian scheme. Then X is regular if and
only if X has (Rk) for all k ≥ 0.

Proof. Follows from Lemma 28.9.2 and the definitions. □

Lemma 28.12.3.0342 LetX be a locally Noetherian scheme. ThenX is Cohen-Macaulay
if and only if X has (Sk) for all k ≥ 0.

Proof. By Lemma 28.8.2 we reduce to looking at local rings. Hence the lemma is
true because a Noetherian local ring is Cohen-Macaulay if and only if it has depth
equal to its dimension. □

Lemma 28.12.4.0344 Let X be a locally Noetherian scheme. Then X is reduced if and
only if X has properties (S1) and (R0).

Proof. This is Algebra, Lemma 10.157.3. □

Lemma 28.12.5.0345 Let X be a locally Noetherian scheme. Then X is normal if and
only if X has properties (S2) and (R1).

Proof. This is Algebra, Lemma 10.157.4. □

Lemma 28.12.6.0BX2 Let X be a locally Noetherian scheme which is normal and has
dimension ≤ 1. Then X is regular.

Proof. This follows from Lemma 28.12.5 and the definitions. □

Lemma 28.12.7.0B3D Let X be a locally Noetherian scheme which is normal and has
dimension ≤ 2. Then X is Cohen-Macaulay.

Proof. This follows from Lemma 28.12.5 and the definitions. □

28.13. Japanese and Nagata schemes

033R The notions considered in this section are not prominently defined in EGA. A
“universally Japanese scheme” is mentioned and defined in [DG67, IV Corollary
5.11.4]. A “Japanese scheme” is mentioned in [DG67, IV Remark 10.4.14 (ii)] but
no definition is given. A Nagata scheme (as given below) occurs in a few places in
the literature (see for example [Liu02, Definition 8.2.30] and [Gre76, Page 142]).
We briefly recall that a domain R is called Japanese if the integral closure of R in
any finite extension of its fraction field is finite over R. A ring R is called universally
Japanese if for any finite type ring map R→ S with S a domain S is Japanese. A
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ring R is called Nagata if it is Noetherian and R/p is Japanese for every prime p
of R.
Definition 28.13.1.033S Let X be a scheme.

(1) Assume X integral. We say X is Japanese if for every x ∈ X there exists
an affine open neighbourhood x ∈ U ⊂ X such that the ring OX(U) is
Japanese (see Algebra, Definition 10.161.1).

(2) We say X is universally Japanese if for every x ∈ X there exists an affine
open neighbourhood x ∈ U ⊂ X such that the ring OX(U) is universally
Japanese (see Algebra, Definition 10.162.1).

(3) We say X is Nagata if for every x ∈ X there exists an affine open neigh-
bourhood x ∈ U ⊂ X such that the ring OX(U) is Nagata (see Algebra,
Definition 10.162.1).

Being Nagata is the same thing as being locally Noetherian and universally Japan-
ese, see Lemma 28.13.8.
Remark 28.13.2.033T In [Hoo72] a (locally Noetherian) scheme X is called Japanese if
for every x ∈ X and every associated prime p of OX,x the ring OX,x/p is Japanese.
We do not use this definition since there exists a one dimensional Noetherian domain
with excellent (in particular Japanese) local rings whose normalization is not finite.
See [Hoc73, Example 1] or [HL07] or [ILO14, Exposé XIX]. On the other hand, we
could circumvent this problem by calling a scheme X Japanese if for every affine
open Spec(A) ⊂ X the ring A/p is Japanese for every associated prime p of A.
Lemma 28.13.3.033U A Nagata scheme is locally Noetherian.
Proof. This is true because a Nagata ring is Noetherian by definition. □

Lemma 28.13.4.033V Let X be an integral scheme. The following are equivalent:
(1) The scheme X is Japanese.
(2) For every affine open U ⊂ X the domain OX(U) is Japanese.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

Japanese.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is Japanese.
Moreover, if X is Japanese then every open subscheme is Japanese.
Proof. This follows from Lemma 28.4.3 and Algebra, Lemmas 10.161.3 and 10.161.4.

□

Lemma 28.13.5.033W Let X be a scheme. The following are equivalent:
(1) The scheme X is universally Japanese.
(2) For every affine open U ⊂ X the ring OX(U) is universally Japanese.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

universally Japanese.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is universally Japanese.
Moreover, if X is universally Japanese then every open subscheme is universally
Japanese.
Proof. This follows from Lemma 28.4.3 and Algebra, Lemmas 10.162.4 and 10.162.7.

□
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Lemma 28.13.6.033X Let X be a scheme. The following are equivalent:
(1) The scheme X is Nagata.
(2) For every affine open U ⊂ X the ring OX(U) is Nagata.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

Nagata.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is Nagata.
Moreover, if X is Nagata then every open subscheme is Nagata.

Proof. This follows from Lemma 28.4.3 and Algebra, Lemmas 10.162.6 and 10.162.7.
□

Lemma 28.13.7.033Y Let X be a locally Noetherian scheme. Then X is Nagata if and
only if every integral closed subscheme Z ⊂ X is Japanese.

Proof. Assume X is Nagata. Let Z ⊂ X be an integral closed subscheme. Let
z ∈ Z. Let Spec(A) = U ⊂ X be an affine open containing z such that A is Nagata.
Then Z ∩ U ∼= Spec(A/p) for some prime p, see Schemes, Lemma 26.10.1 (and
Definition 28.3.1). By Algebra, Definition 10.162.1 we see that A/p is Japanese.
Hence Z is Japanese by definition.
Assume every integral closed subscheme of X is Japanese. Let Spec(A) = U ⊂ X be
any affine open. As X is locally Noetherian we see that A is Noetherian (Lemma
28.5.2). Let p ⊂ A be a prime ideal. We have to show that A/p is Japanese.
Let T ⊂ U be the closed subset V (p) ⊂ Spec(A). Let T ⊂ X be the closure.
Then T is irreducible as the closure of an irreducible subset. Hence the reduced
closed subscheme defined by T is an integral closed subscheme (called T again),
see Schemes, Lemma 26.12.4. In other words, Spec(A/p) is an affine open of an
integral closed subscheme of X. This subscheme is Japanese by assumption and by
Lemma 28.13.4 we see that A/p is Japanese. □

Lemma 28.13.8.033Z Let X be a scheme. The following are equivalent:
(1) X is Nagata, and
(2) X is locally Noetherian and universally Japanese.

Proof. This is Algebra, Proposition 10.162.15. □

This discussion will be continued in Morphisms, Section 29.18.

28.14. The singular locus

07R0 Here is the definition.

Definition 28.14.1.07R1 Let X be a locally Noetherian scheme. The regular locus
Reg(X) of X is the set of x ∈ X such that OX,x is a regular local ring. The
singular locus Sing(X) is the complement X \Reg(X), i.e., the set of points x ∈ X
such that OX,x is not a regular local ring.

The regular locus of a locally Noetherian scheme is stable under generalizations, see
the discussion preceding Algebra, Definition 10.110.7. However, for general locally
Noetherian schemes the regular locus need not be open. In More on Algebra,
Section 15.47 the reader can find some criteria for when this is the case. We will
discuss this further in Morphisms, Section 29.19.
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28.15. Local irreducibility

0BQ1 Recall that in More on Algebra, Section 15.106 we introduced the notion of a
(geometrically) unibranch local ring.

Definition 28.15.1.0BQ2 [GD67, Chapter IV
(6.15.1)]

Let X be a scheme. Let x ∈ X. We say X is unibranch
at x if the local ring OX,x is unibranch. We say X is geometrically unibranch
at x if the local ring OX,x is geometrically unibranch. We say X is unibranch if
X is unibranch at all of its points. We say X is geometrically unibranch if X is
geometrically unibranch at all of its points.

To be sure, it can happen that a local ring A is geometrically unibranch (in the
sense of More on Algebra, Definition 15.106.1) but the scheme Spec(A) is not
geometrically unibranch in the sense of Definition 28.15.1. For example this happens
if A is the local ring at the vertex of the cone over an irreducible plane curve which
has ordinary double point singularity (a node).

Lemma 28.15.2.0BQ3 A normal scheme is geometrically unibranch.

Proof. This follows from the definitions. Namely, a scheme is normal if the local
rings are normal domains. It is immediate from the More on Algebra, Definition
15.106.1 that a local normal domain is geometrically unibranch. □

Lemma 28.15.3.0BQ4 Compare with
[Art66, Proposition
2.3]

Let X be a Noetherian scheme. The following are equivalent
(1) X is geometrically unibranch (Definition 28.15.1),
(2) for every point x ∈ X which is not the generic point of an irreducible

component of X, the punctured spectrum of the strict henselization OshX,x
is connected.

Proof. More on Algebra, Lemma 15.106.5 shows that (1) implies that the punctured
spectra in (2) are irreducible and in particular connected.

Assume (2). Let x ∈ X. We have to show that OX,x is geometrically unibranch. By
induction on dim(OX,x) we may assume that the result holds for every nontrivial
generalization of x. We may replace X by Spec(OX,x). In other words, we may
assume that X = Spec(A) with A local and that Ap is geometrically unibranch for
each nonmaximal prime p ⊂ A.

Let Ash be the strict henselization of A. If q ⊂ Ash is a prime lying over p ⊂ A, then
Ap → Ashq is a filtered colimit of étale algebras. Hence the strict henselizations of Ap

and Ashq are isomorphic. Thus by More on Algebra, Lemma 15.106.5 we conclude
that Ashq has a unique minimal prime ideal for every nonmaximal prime q of Ash.

Let q1, . . . , qr be the minimal primes of Ash. We have to show that r = 1. By the
above we see that V (q1)∩V (qj) = {msh} for j = 2, . . . , r. Hence V (q1)\{msh} is an
open and closed subset of the punctured spectrum of Ash which is a contradiction
with the assumption that this punctured spectrum is connected unless r = 1. □

Definition 28.15.4.0C38 Let X be a scheme. Let x ∈ X. The number of branches of X
at x is the number of branches of the local ring OX,x as defined in More on Algebra,
Definition 15.106.6. The number of geometric branches of X at x is the number of
geometric branches of the local ring OX,x as defined in More on Algebra, Definition
15.106.6.
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Often we want to compare this with the branches of the complete local ring, but
the comparison is not straightforward in general; some information on this topic
can be found in More on Algebra, Section 15.108.

Lemma 28.15.5.0E20 Let X be a scheme and x ∈ X. Let Xi, i ∈ I be the irreducible
components of X passing through x. Then the number of (geometric) branches of
X at x is the sum over i ∈ I of the number of (geometric) branches of Xi at x.

Proof. We view the Xi as integral closed subschemes of X, see Schemes, Definition
26.12.5 and Lemma 28.3.4. Observe that the number of (geometric) branches of Xi

at x is at least 1 for all i (essentially by definition). Recall that the Xi correspond
1-to-1 with the minimal prime ideals pi ⊂ OX,x, see Algebra, Lemma 10.26.3. Thus,
if I is infinite, then OX,x has infinitely many minimal primes, whence both OhX,x
and OshX,x have infinitely many minimal primes (combine Algebra, Lemmas 10.30.5
and 10.30.7 and the injectivity of the maps OX,x → OhX,x → OshX,x). In this case
the number of (geometric) branches of X at x is defined to be ∞ which is also true
for the sum. Thus we may assume I is finite. Let A′ be the integral closure of
OX,x in the total ring of fractions Q of (OX,x)red. Let A′

i be the integral closure of
OX,x/pi in the total ring of fractions Qi of OX,x/pi. By Algebra, Lemma 10.25.4
we have Q =

∏
i∈I Qi. Thus A′ =

∏
A′
i. Then the equality of the lemma follows

from More on Algebra, Lemma 15.106.7 which expresses the number of (geometric)
branches in terms of the maximal ideals of A′. □

Lemma 28.15.6.0C39 Let X be a scheme. Let x ∈ X.
(1) The number of branches of X at x is 1 if and only if X is unibranch at x.
(2) The number of geometric branches of X at x is 1 if and only if X is

geometrically unibranch at x.

Proof. This lemma follows immediately from the definitions and the corresponding
result for rings, see More on Algebra, Lemma 15.106.7. □

28.16. Characterizing modules of finite type and finite presentation

01PA Let X be a scheme. Let F be a quasi-coherent OX -module. The following lemma
implies that F is of finite type (see Modules, Definition 17.9.1) if and only if F is
on each open affine Spec(A) = U ⊂ X of the form M̃ for some finite type A-module
M . Similarly, F is of finite presentation (see Modules, Definition 17.11.1) if and
only if F is on each open affine Spec(A) = U ⊂ X of the form M̃ for some finitely
presented A-module M .

Lemma 28.16.1.01PB Let X = Spec(R) be an affine scheme. The quasi-coherent sheaf
of OX -modules M̃ is a finite type OX -module if and only if M is a finite R-module.

Proof. Assume M̃ is a finite type OX -module. This means there exists an open
covering of X such that M̃ restricted to the members of this covering is globally
generated by finitely many sections. Thus there also exists a standard open covering
X =

⋃
i=1,...,nD(fi) such that M̃ |D(fi) is generated by finitely many sections.

Thus Mfi is finitely generated for each i. Hence we conclude by Algebra, Lemma
10.23.2. □
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Lemma 28.16.2.01PC Let X = Spec(R) be an affine scheme. The quasi-coherent sheaf
of OX -modules M̃ is an OX -module of finite presentation if and only if M is an
R-module of finite presentation.

Proof. Assume M̃ is an OX -module of finite presentation. By Lemma 28.16.1 we
see that M is a finite R-module. Choose a surjection Rn →M with kernel K. By
Schemes, Lemma 26.5.4 there is a short exact sequence

0→ K̃ →
⊕
O⊕n
X → M̃ → 0

By Modules, Lemma 17.11.3 we see that K̃ is a finite type OX -module. Hence by
Lemma 28.16.1 again we see that K is a finite R-module. Hence M is an R-module
of finite presentation. □

28.17. Sections over principal opens

0B5K Here is a typical result of this kind. We will use a more naive but more direct
method of proof in later lemmas.

Lemma 28.17.1.01P7 Let X be a scheme. Let f ∈ Γ(X,OX). Denote Xf ⊂ X the
open where f is invertible, see Schemes, Lemma 26.6.2. If X is quasi-compact and
quasi-separated, the canonical map

Γ(X,OX)f −→ Γ(Xf ,OX)
is an isomorphism. Moreover, if F is a quasi-coherent sheaf of OX -modules the
map

Γ(X,F)f −→ Γ(Xf ,F)
is an isomorphism.

Proof. Write R = Γ(X,OX). Consider the canonical morphism
φ : X −→ Spec(R)

of schemes, see Schemes, Lemma 26.6.4. Then the inverse image of the standard
open D(f) on the right hand side is Xf on the left hand side. Moreover, since X is
assumed quasi-compact and quasi-separated the morphism φ is quasi-compact and
quasi-separated, see Schemes, Lemma 26.19.2 and 26.21.13. Hence by Schemes,
Lemma 26.24.1 we see that φ∗F is quasi-coherent. Hence we see that φ∗F = M̃
with M = Γ(X,F) as an R-module. Thus we see that

Γ(Xf ,F) = Γ(D(f), φ∗F) = Γ(D(f), M̃) = Mf

which is exactly the content of the lemma. The first displayed isomorphism of the
lemma follows by taking F = OX . □

Recall that given a scheme X, an invertible sheaf L on X, and a sheaf of OX -
modules F we get a graded ring Γ∗(X,L) =

⊕
n≥0 Γ(X,L⊗n) and a graded Γ∗(X,L)-

module Γ∗(X,L,F) =
⊕

n∈Z Γ(X,F ⊗OX
L⊗n) see Modules, Definition 17.25.7. If

we have moreover a section s ∈ Γ(X,L), then we obtain a map
(28.17.1.1)0B5L Γ∗(X,L,F)(s) −→ Γ(Xs,F|Xs)

which sends t/sn where t ∈ Γ(X,F ⊗OX
L⊗n) to t|Xs ⊗ s|−nXs . This makes sense

because Xs ⊂ X is by definition the open over which s has an inverse, see Modules,
Lemma 17.25.10.
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Lemma 28.17.2.01PW Let X be a scheme. Let L be an invertible sheaf on X. Let
s ∈ Γ(X,L). Let F be a quasi-coherent OX -module.

(1) If X is quasi-compact, then (28.17.1.1) is injective, and
(2) if X is quasi-compact and quasi-separated, then (28.17.1.1) is an isomor-

phism.
In particular, the canonical map

Γ∗(X,L)(s) −→ Γ(Xs,OX), a/sn 7−→ a⊗ s−n

is an isomorphism if X is quasi-compact and quasi-separated.

Proof. Assume X is quasi-compact. Choose a finite affine open covering X =
U1 ∪ . . .∪Um with Uj affine and L|Uj ∼= OUj . Via this isomorphism, the image s|Uj
corresponds to some fj ∈ Γ(Uj ,OUj ). Then Xs ∩ Uj = D(fj).
Proof of (1). Let t/sn be an element in the kernel of (28.17.1.1). Then t|Xs = 0.
Hence (t|Uj )|D(fj) = 0. By Lemma 28.17.1 we conclude that fejj t|Uj = 0 for some
ej ≥ 0. Let e = max(ej). Then we see that t⊗ se restricts to zero on Uj for all j,
hence is zero. Since t/sn is equal to t⊗ se/sn+e in Γ∗(X,L,F)(s) we conclude that
t/sn = 0 as desired.
Proof of (2). Assume X is quasi-compact and quasi-separated. Then Uj ∩ Uj′

is quasi-compact for all pairs j, j′, see Schemes, Lemma 26.21.6. By part (1) we
know (28.17.1.1) is injective. Let t′ ∈ Γ(Xs,F|Xs). For every j, there exist an
integer ej ≥ 0 and t′j ∈ Γ(Uj ,F|Uj ) such that t′|D(fj) corresponds to t′j/f

ej
j via the

isomorphism of Lemma 28.17.1. Set e = max(ej) and

tj = f
e−ej
j t′j ⊗ qej ∈ Γ(Uj , (F ⊗OX

L⊗e)|Uj )

where qj ∈ Γ(Uj ,L|Uj ) is the trivializing section coming from the isomorphism
L|Uj ∼= OUj . In particular we have s|Uj = fjqj . Using this a calculation shows
that tj |Uj∩Uj′ and tj′ |Uj∩Uj′ map to the same section of F over Uj ∩ Uj′ ∩Xs. By
quasi-compactness of Uj ∩Uj′ and part (1) there exists an integer e′ ≥ 0 such that

tj |Uj∩Uj′ ⊗ se
′
|Uj∩Uj′ = tj′ |Uj∩Uj′ ⊗ se

′
|Uj∩Uj′

as sections of F ⊗L⊗e+e′ over Uj ∩Uj′ . We may choose the same e′ to work for all
pairs j, j′. Then the sheaf conditions implies there is a section t ∈ Γ(X,F⊗L⊗e+e′)
whose restriction to Uj is tj⊗se

′ |Uj . A simple computation shows that t/se+e′ maps
to t′ as desired. □

Let X be a scheme. Let L be an invertible OX -module. Let F and G be quasi-
coherent OX -modules. Consider the graded Γ∗(X,L)-module

M =
⊕

n∈Z
HomOX

(F ,G ⊗OX
L⊗n)

Next, let s ∈ Γ(X,L) be a section. Then there is a canonical map
(28.17.2.1)0B5M M(s) −→ HomOXs

(F|Xs ,G|Xs)

which sends α/sn to the map α|Xs ⊗ s|−nXs . The following lemma, combined with
Lemma 28.22.4, says roughly that, if X is quasi-compact and quasi-separated, the
category of finitely presented OXs-modules is the category of finitely presented OX -
modules with the multiplicative system of maps sn : F → F ⊗OX

L⊗n inverted.
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Lemma 28.17.3.01XQ Let X be a scheme. Let L be an invertible OX -module. Let
s ∈ Γ(X,L) be a section. Let F , G be quasi-coherent OX -modules.

(1) If X is quasi-compact and F is of finite type, then (28.17.2.1) is injective,
and

(2) if X is quasi-compact and quasi-separated and F is of finite presentation,
then (28.17.2.1) is bijective.

Proof. We first prove the lemma in case X = Spec(A) is affine and L = OX . In
this case s corresponds to an element f ∈ A. Say F = M̃ and G = Ñ for some
A-modules M and N . Then the lemma translates (via Lemmas 28.16.1 and 28.16.2)
into the following algebra statements

(1) If M is a finite A-module and φ : M → N is an A-module map such that
the induced map Mf → Nf is zero, then fnφ = 0 for some n.

(2) IfM is a finitely presentedA-module, then HomA(M,N)f = HomAf (Mf , Nf ).
The second statement is Algebra, Lemma 10.10.2 and we omit the proof of the first
statement.

Next, we prove (1) for general X. Assume X is quasi-compact and hoose a finite
affine open covering X = U1 ∪ . . . ∪ Um with Uj affine and L|Uj ∼= OUj . Via
this isomorphism, the image s|Uj corresponds to some fj ∈ Γ(Uj ,OUj ). Then
Xs ∩ Uj = D(fj). Let α/sn be an element in the kernel of (28.17.2.1). Then
α|Xs = 0. Hence (α|Uj )|D(fj) = 0. By the affine case treated above we conclude
that fejj α|Uj = 0 for some ej ≥ 0. Let e = max(ej). Then we see that α ⊗ se
restricts to zero on Uj for all j, hence is zero. Since α/sn is equal to α ⊗ se/sn+e

in M(s) we conclude that α/sn = 0 as desired.

Proof of (2). Since F is of finite presentation, the sheaf HomOX
(F ,G) is quasi-

coherent, see Schemes, Section 26.24. Moreover, it is clear that

HomOX
(F ,G ⊗OX

L⊗n) = HomOX
(F ,G)⊗OX

L⊗n

for all n. Hence in this case the statement follows from Lemma 28.17.2 applied to
HomOX

(F ,G). □

28.18. Quasi-affine schemes

01P5
Definition 28.18.1.01P6 A scheme X is called quasi-affine if it is quasi-compact and
isomorphic to an open subscheme of an affine scheme.

Lemma 28.18.2.0EHM Let A be a ring and let U ⊂ Spec(A) be a quasi-compact open
subscheme. For F quasi-coherent on U the canonical map

˜H0(U,F)|U → F

is an isomorphism.

Proof. Denote j : U → Spec(A) the inclusion morphism. Then H0(U,F) =
H0(Spec(A), j∗F) and j∗F is quasi-coherent by Schemes, Lemma 26.24.1. Hence
j∗F = ˜H0(U,F) by Schemes, Lemma 26.7.5. Restricting back to U we get the
lemma. □
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Lemma 28.18.3.01P8 Let X be a scheme. Let f ∈ Γ(X,OX). Assume X is quasi-
compact and quasi-separated and assume that Xf is affine. Then the canonical
morphism

j : X −→ Spec(Γ(X,OX))
from Schemes, Lemma 26.6.4 induces an isomorphism of Xf = j−1(D(f)) onto the
standard affine open D(f) ⊂ Spec(Γ(X,OX)).

Proof. This is clear as j induces an isomorphism of rings Γ(X,OX)f → OX(Xf )
by Lemma 28.17.1 above. □

Lemma 28.18.4.01P9 Let X be a scheme. Then X is quasi-affine if and only if the
canonical morphism

X −→ Spec(Γ(X,OX))
from Schemes, Lemma 26.6.4 is a quasi-compact open immersion.

Proof. If the displayed morphism is a quasi-compact open immersion then X is
isomorphic to a quasi-compact open subscheme of Spec(Γ(X,OX)) and clearly X
is quasi-affine.
Assume X is quasi-affine, say X ⊂ Spec(R) is quasi-compact open. This in partic-
ular implies that X is separated, see Schemes, Lemma 26.23.9. Let A = Γ(X,OX).
Consider the ring map R → A coming from R = Γ(Spec(R),OSpec(R)) and the
restriction mapping of the sheaf OSpec(R). By Schemes, Lemma 26.6.4 we obtain a
factorization:

X −→ Spec(A) −→ Spec(R)
of the inclusion morphism. Let x ∈ X. Choose r ∈ R such that x ∈ D(r) and
D(r) ⊂ X. Denote f ∈ A the image of r in A. The open Xf of Lemma 28.17.1
above is equal to D(r) ⊂ X and hence Af ∼= Rr by the conclusion of that lemma.
Hence D(r) → Spec(A) is an isomorphism onto the standard affine open D(f) of
Spec(A). Since X can be covered by such affine opens D(f) we win. □

Lemma 28.18.5.0ARY Let U → V be an open immersion of quasi-affine schemes. Then

U

��

j
// Spec(Γ(U,OU ))

��
U // V

j′
// Spec(Γ(V,OV ))

is cartesian.

Proof. The diagram is commutative by Schemes, Lemma 26.6.4. WriteA = Γ(U,OU )
and B = Γ(V,OV ). Let g ∈ B be such that Vg is affine and contained in U . This
means that if f is the image of g in A, then Uf = Vg. By Lemma 28.18.3 we see
that j′ induces an isomorphism of Vg with the standard open D(g) of Spec(B).
Thus Vg ×Spec(B) Spec(A) → Spec(A) is an isomorphism onto D(f) ⊂ Spec(A).
By Lemma 28.18.3 again j maps Uf isomorphically to D(f). Thus we see that
Uf = Uf ×Spec(B) Spec(A). Since by Lemma 28.18.4 we can cover U by Vg = Uf as
above, we see that U → U ×Spec(B) Spec(A) is an isomorphism. □

Lemma 28.18.6.0F82 Let X be a quasi-affine scheme. There exists an integer n ≥ 0, an
affine scheme T , and a morphism T → X such that for every morphism X ′ → X
with X ′ affine the fibre product X ′ ×X T is isomorphic to An

X′ over X ′.
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Proof. By definition, there exists a ring A such that X is isomorphic to a quasi-
compact open subscheme U ⊂ Spec(A). Recall that the standard opens D(f) ⊂
Spec(A) form a basis for the topology, see Algebra, Section 10.17. Since U is quasi-
compact we can choose f1, . . . , fn ∈ A such that U = D(f1) ∪ . . . ∪ D(fn). Thus
we may assume X = Spec(A) \ V (I) where I = (f1, . . . , fn). We set

T = Spec(A[t, x1, . . . , xn]/(f1x1 + . . .+ fnxn − 1))
The structure morphism T → Spec(A) factors through the open X to give the
morphism T → X. If X ′ = Spec(A′) and the morphism X ′ → X corresponds
to the ring map A → A′, then the images f ′

1, . . . , f
′
n ∈ A′ of f1, . . . , fn generate

the unit ideal in A′. Say 1 = f ′
1a

′
1 + . . . + f ′

na
′
n. The base change X ′ ×X T is

the spectrum of A′[t, x1, . . . , xn]/(f ′
1x1 + . . .+ f ′

nxn − 1). We claim the A′-algebra
homomorphism

φ : A′[y1, . . . , yn] −→ A′[t, x1, . . . , xn, xn+1]/(f ′
1x1 + . . .+ f ′

nxn − 1)
sending yi to a′

it+xi is an isomorphism. The claim finishes the proof of the lemma.
The inverse of φ is given by the A′-algebra homomorphism

ψ : A′[t, x1, . . . , xn, xn+1]/(f ′
1x1 + . . .+ f ′

nxn − 1) −→ A′[y1, . . . , yn]
sending t to −1 + f ′

1y1 + . . . + f ′
nyn and xi to yi + a′

i − a′
i(f ′

1y1 + . . . + f ′
nyn) for

i = 1, . . . , n. This makes sense because
∑
f ′
ixi is mapped to∑

f ′
i(yi + a′

i − a′
i(
∑
f ′
jyj)) = (

∑
f ′
iyi) + 1− (

∑
f ′
jyj) = 1

To see the maps are mutually inverse one computes as follows:
φ(ψ(t) = φ(−1 +

∑
f ′
iyi) = −1 +

∑
f ′
i(a′

it+ xi) = t
φ(ψ(xi)) = φ(yi + a′

i − a′
i(
∑
f ′
jyj)) = a′

it+ xi + a′
i − a′

i(
∑
f ′
ja

′
jt+ f ′

jxj) = xi
ψ(φ(yi)) = ψ(a′

it+ xi) = a′
i(−1 +

∑
f ′
jyj) + yi + a′

i − a′
i(
∑
f ′
jyj) = yi

This finishes the proof. □

28.19. Flat modules

05NZ On any ringed space (X,OX) we know what it means for an OX -module to be
flat (at a point), see Modules, Definition 17.17.1 (Definition 17.17.3). For quasi-
coherent sheaves on an affine scheme this matches the notion defined in the algebra
chapter.

Lemma 28.19.1.05P0 Let X = Spec(R) be an affine scheme. Let F = M̃ for some
R-module M . The quasi-coherent sheaf F is a flat OX -module if and only if M is
a flat R-module.

Proof. Flatness of F may be checked on the stalks, see Modules, Lemma 17.17.2.
The same is true in the case of modules over a ring, see Algebra, Lemma 10.39.18.
And since Fx = Mp if x corresponds to p the lemma is true. □

28.20. Locally free modules

05P1 On any ringed space we know what it means for an OX -module to be (finite) locally
free. On an affine scheme this matches the notion defined in the algebra chapter.

Lemma 28.20.1.05JM Let X = Spec(R) be an affine scheme. Let F = M̃ for some
R-module M . The quasi-coherent sheaf F is a (finite) locally free OX -module of if
and only if M is a (finite) locally free R-module.
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Proof. Follows from the definitions, see Modules, Definition 17.14.1 and Algebra,
Definition 10.78.1. □

We can characterize finite locally free modules in many different ways.

Lemma 28.20.2.05P2 Let X be a scheme. Let F be a quasi-coherent OX -module. The
following are equivalent:

(1) F is a flat OX -module of finite presentation,
(2) F is OX -module of finite presentation and for all x ∈ X the stalk Fx is a

free OX,x-module,
(3) F is a locally free, finite type OX -module,
(4) F is a finite locally free OX -module, and
(5) F is an OX -module of finite type, for every x ∈ X the stalk Fx is a free
OX,x-module, and the function

ρF : X → Z, x 7−→ dimκ(x) Fx ⊗OX,x
κ(x)

is locally constant in the Zariski topology on X.

Proof. This lemma immediately reduces to the affine case. In this case the lemma is
a reformulation of Algebra, Lemma 10.78.2. The translation uses Lemmas 28.16.1,
28.16.2, 28.19.1, and 28.20.1. □

Lemma 28.20.3.0FWH Let X be a reduced scheme. Let F be a quasi-coherent OX -
module. Then the equivalent conditions of Lemma 28.20.2 are also equivalent to

(6) F is an OX -module of finite type and the function
ρF : X → Z, x 7−→ dimκ(x) Fx ⊗OX,x

κ(x)
is locally constant in the Zariski topology on X.

Proof. This lemma immediately reduces to the affine case. In this case the lemma
is a reformulation of Algebra, Lemma 10.78.3. □

28.21. Locally projective modules

05JN A consequence of the work done in the algebra chapter is that it makes sense to
define a locally projective module as follows.

Definition 28.21.1.05JP Let X be a scheme. Let F be a quasi-coherent OX -module.
We say F is locally projective if for every affine open U ⊂ X the OX(U)-module
F(U) is projective.

Lemma 28.21.2.05JQ Let X be a scheme. Let F be a quasi-coherent OX -module. The
following are equivalent

(1) F is locally projective, and
(2) there exists an affine open covering X =

⋃
Ui such that the OX(Ui)-

module F(Ui) is projective for every i.
In particular, if X = Spec(A) and F = M̃ then F is locally projective if and only
if M is a projective A-module.

Proof. First, note that if M is a projective A-module and A → B is a ring map,
then M ⊗A B is a projective B-module, see Algebra, Lemma 10.94.1. Hence if U
is an affine open such that F(U) is a projective OX(U)-module, then the standard
open D(f) is an affine open such that F(D(f)) is a projective OX(D(f))-module for
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all f ∈ OX(U). Assume (2) holds. Let U ⊂ X be an arbitrary affine open. We can
find an open covering U =

⋃
j=1,...,mD(fj) by finitely many standard opens D(fj)

such that for each j the open D(fj) is a standard open of some Ui, see Schemes,
Lemma 26.11.5. Hence, if we set A = OX(U) and if M is an A-module such that
F|U corresponds to M , then we see that Mfj is a projective Afj -module. It follows
that A→ B =

∏
Afj is a faithfully flat ring map such that M ⊗AB is a projective

B-module. Hence M is projective by Algebra, Theorem 10.95.6. □

Lemma 28.21.3.060M Let f : X → Y be a morphism of schemes. Let G be a quasi-
coherent OY -module. If G is locally projective on Y , then f∗G is locally projective
on X.

Proof. See Algebra, Lemma 10.94.1. □

28.22. Extending quasi-coherent sheaves

01PD It is sometimes useful to be able to show that a given quasi-coherent sheaf on an
open subscheme extends to the whole scheme.

Lemma 28.22.1.01PE Let j : U → X be a quasi-compact open immersion of schemes.
(1) Any quasi-coherent sheaf on U extends to a quasi-coherent sheaf on X.
(2) Let F be a quasi-coherent sheaf on X. Let G ⊂ F|U be a quasi-coherent

subsheaf. There exists a quasi-coherent subsheaf H of F such that H|U =
G as subsheaves of F|U .

(3) Let F be a quasi-coherent sheaf on X. Let G be a quasi-coherent sheaf
on U . Let φ : G → F|U be a morphism of OU -modules. There exists a
quasi-coherent sheaf H of OX -modules and a map ψ : H → F such that
H|U = G and that ψ|U = φ.

Proof. An immersion is separated (see Schemes, Lemma 26.23.8) and j is quasi-
compact by assumption. Hence for any quasi-coherent sheaf G on U the sheaf j∗G
is an extension to X. See Schemes, Lemma 26.24.1 and Sheaves, Section 6.31.
Assume F , G are as in (2). Then j∗G is a quasi-coherent sheaf on X (see above).
It is a subsheaf of j∗j

∗F . Hence the kernel
H = Ker(F ⊕ j∗G −→ j∗j

∗F)
is quasi-coherent as well, see Schemes, Section 26.24. It is formal to check that
H ⊂ F and that H|U = G (using the material in Sheaves, Section 6.31 again).
Part (3) is proved in the same manner as (2). Just take H = Ker(F⊕j∗G → j∗j

∗F)
with its obvious map to F and its obvious identification with G over U . □

Lemma 28.22.2.01PF LetX be a quasi-compact and quasi-separated scheme. Let U ⊂ X
be a quasi-compact open. Let F be a quasi-coherent OX -module. Let G ⊂ F|U
be a quasi-coherent OU -submodule which is of finite type. Then there exists a
quasi-coherent submodule G′ ⊂ F which is of finite type such that G′|U = G.

Proof. Let n be the minimal number of affine opens Ui ⊂ X, i = 1, . . . , n such that
X = U ∪

⋃
Ui. (Here we use that X is quasi-compact.) Suppose we can prove the

lemma for the case n = 1. Then we can successively extend G to a G1 over U ∪ U1
to a G2 over U ∪U1 ∪U2 to a G3 over U ∪U1 ∪U2 ∪U3, and so on. Thus we reduce
to the case n = 1.
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Thus we may assume that X = U ∪ V with V affine. Since X is quasi-separated
and U , V are quasi-compact open, we see that U ∩ V is a quasi-compact open. It
suffices to prove the lemma for the system (V,U ∩V,F|V ,G|U∩V ) since we can glue
the resulting sheaf G′ over V to the given sheaf G over U along the common value
over U ∩ V . Thus we reduce to the case where X is affine.
Assume X = Spec(R). Write F = M̃ for some R-module M . By Lemma 28.22.1
above we may find a quasi-coherent subsheaf H ⊂ F which restricts to G over U .
Write H = Ñ for some R-module N . For every u ∈ U there exists an f ∈ R such
that u ∈ D(f) ⊂ U and such that Nf is finitely generated, see Lemma 28.16.1.
Since U is quasi-compact we can cover it by finitely many D(fi) such that Nfi is
generated by finitely many elements, say xi,1/fNi , . . . , xi,ri/fNi . Let N ′ ⊂ N be the
submodule generated by the elements xi,j . Then the subsheaf G′ = Ñ ′ ⊂ H ⊂ F
works. □

Lemma 28.22.3.01PG Let X be a quasi-compact and quasi-separated scheme. Any
quasi-coherent sheaf of OX -modules is the directed colimit of its quasi-coherent
OX -submodules which are of finite type.

Proof. The colimit is directed because if G1, G2 are quasi-coherent subsheaves of
finite type, then the image of G1 ⊕ G2 → F is a quasi-coherent submodule of finite
type. Let U ⊂ X be any affine open, and let s ∈ Γ(U,F) be any section. Let
G ⊂ F|U be the subsheaf generated by s. Then clearly G is quasi-coherent and has
finite type as an OU -module. By Lemma 28.22.2 we see that G is the restriction
of a quasi-coherent subsheaf G′ ⊂ F which has finite type. Since X has a basis for
the topology consisting of affine opens we conclude that every local section of F is
locally contained in a quasi-coherent submodule of finite type. Thus we win. □

Lemma 28.22.4.01PI Let X be a quasi-compact and quasi-separated scheme. Let F
be a quasi-coherent OX -module. Let U ⊂ X be a quasi-compact open. Let G be
an OU -module which is of finite presentation. Let φ : G → F|U be a morphism
of OU -modules. Then there exists an OX -module G′ of finite presentation, and a
morphism of OX -modules φ′ : G′ → F such that G′|U = G and such that φ′|U = φ.

Proof. The beginning of the proof is a repeat of the beginning of the proof of
Lemma 28.22.2. We write it out carefuly anyway.
Let n be the minimal number of affine opens Ui ⊂ X, i = 1, . . . , n such that
X = U ∪

⋃
Ui. (Here we use that X is quasi-compact.) Suppose we can prove the

lemma for the case n = 1. Then we can successively extend the pair (G, φ) to a
pair (G1, φ1) over U ∪U1 to a pair (G2, φ2) over U ∪U1 ∪U2 to a pair (G3, φ3) over
U ∪ U1 ∪ U2 ∪ U3, and so on. Thus we reduce to the case n = 1.
Thus we may assume that X = U ∪ V with V affine. Since X is quasi-separated
and U quasi-compact, we see that U ∩ V ⊂ V is quasi-compact. Suppose we prove
the lemma for the system (V,U ∩V,F|V ,G|U∩V , φ|U∩V ) thereby producing (G′, φ′)
over V . Then we can glue G′ over V to the given sheaf G over U along the common
value over U ∩ V , and similarly we can glue the map φ′ to the map φ along the
common value over U ∩ V . Thus we reduce to the case where X is affine.
Assume X = Spec(R). By Lemma 28.22.1 above we may find a quasi-coherent
sheaf H with a map ψ : H → F over X which restricts to G and φ over U . By
Lemma 28.22.2 we can find a finite type quasi-coherent OX -submodule H′ ⊂ H
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such that H′|U = G. Thus after replacing H by H′ and ψ by the restriction of ψ to
H′ we may assume that H is of finite type. By Lemma 28.16.2 we conclude that
H = Ñ with N a finitely generated R-module. Hence there exists a surjection as
in the following short exact sequence of quasi-coherent OX -modules

0→ K → O⊕n
X → H→ 0

where K is defined as the kernel. Since G is of finite presentation and H|U = G
by Modules, Lemma 17.11.3 the restriction K|U is an OU -module of finite type.
Hence by Lemma 28.22.2 again we see that there exists a finite type quasi-coherent
OX -submodule K′ ⊂ K such that K′|U = K|U . The solution to the problem posed
in the lemma is to set

G′ = O⊕n
X /K′

which is clearly of finite presentation and restricts to give G on U with φ′ equal to
the composition

G′ = O⊕n
X /K′ → O⊕n

X /K = H ψ−→ F .
This finishes the proof of the lemma. □

Lemma 28.22.5.0G41 LetX be a quasi-compact and quasi-separated scheme. Let U ⊂ X
be a quasi-compact open. Let G be an OU -module.

(1) If G is quasi-coherent and of finite type, then there exists a quasi-coherent
OX -module G′ of finite type such that G′|U = G.

(2) If G is of finite presentation, then there exists an OX -module G′ of finite
presentation such that G′|U = G.

Proof. Part (2) is the special case of Lemma 28.22.4 where F = 0. For part (1)
we first write G = F|U for some quasi-coherent OX -module by Lemma 28.22.1 and
then we apply Lemma 28.22.2 with G = F|U . □

The following lemma says that every quasi-coherent sheaf on a quasi-compact and
quasi-separated scheme is a filtered colimit of O-modules of finite presentation.
Actually, we reformulate this in (perhaps more familiar) terms of directed colimits
over directed sets in the next lemma.

Lemma 28.22.6.01PJ Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let F be a quasi-coherent OX -module. There exist

(1) a filtered index category I (see Categories, Definition 4.19.1),
(2) a diagram I → Mod(OX) (see Categories, Section 4.14), i 7→ Fi,
(3) morphisms of OX -modules φi : Fi → F

such that each Fi is of finite presentation and such that the morphisms φi induce
an isomorphism

colimi Fi = F .

Proof. Choose a set I and for each i ∈ I an OX -module of finite presentation and
a homomorphism of OX -modules φi : Fi → F with the following property: For
any ψ : G → F with G of finite presentation there is an i ∈ I such that there exists
an isomorphism α : Fi → G with φi = ψ ◦ α. It is clear from Modules, Lemma
17.9.8 that such a set exists (see also its proof). We denote I the category with
Ob(I) = I and given i, i′ ∈ I we set

MorI(i, i′) = {α : Fi → Fi′ | α ◦ φi′ = φi}.
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We claim that I is a filtered category and that F = colimi Fi.
Let i, i′ ∈ I. Then we can consider the morphism

Fi ⊕Fi′ −→ F

which is the direct sum of φi and φi′ . Since a direct sum of finitely presented
OX -modules is finitely presented we see that there exists some i′′ ∈ I such that
φi′′ : Fi′′ → F is isomorphic to the displayed arrow towards F above. Since there
are commutative diagrams

Fi //

��

F

Fi ⊕Fi′ // F

and Fi′ //

��

F

Fi ⊕Fi′ // F

we see that there are morphisms i → i′′ and i′ → i′′ in I. Next, suppose that
we have i, i′ ∈ I and morphisms α, β : i → i′ (corresponding to OX -module maps
α, β : Fi → Fi′). In this case consider the coequalizer

G = Coker(Fi
α−β−−−→ Fi′)

Note that G is an OX -module of finite presentation. Since by definition of mor-
phisms in the category I we have φi′ ◦ α = φi′ ◦ β we see that we get an induced
map ψ : G → F . Hence again the pair (G, ψ) is isomorphic to the pair (Fi′′ , φi′′) for
some i′′. Hence we see that there exists a morphism i′ → i′′ in I which equalizes α
and β. Thus we have shown that the category I is filtered.
We still have to show that the colimit of the diagram is F . By definition of the
colimit, and by our definition of the category I there is a canonical map

φ : colimi Fi −→ F .

Pick x ∈ X. Let us show that φx is an isomorphism. Recall that
(colimi Fi)x = colimi Fi,x,

see Sheaves, Section 6.29. First we show that the map φx is injective. Suppose
that s ∈ Fi,x is an element such that s maps to zero in Fx. Then there exists a
quasi-compact open U such that s comes from s ∈ Fi(U) and such that φi(s) = 0
in F(U). By Lemma 28.22.2 we can find a finite type quasi-coherent subsheaf
K ⊂ Ker(φi) which restricts to the quasi-coherent OU -submodule of Fi generated
by s: K|U = OU · s ⊂ Fi|U . Clearly, Fi/K is of finite presentation and the map
φi factors through the quotient map Fi → Fi/K. Hence we can find an i′ ∈ I
and a morphism α : Fi → Fi′ in I which can be identified with the quotient
map Fi → Fi/K. Then it follows that the section s maps to zero in Fi′(U) and
in particular in (colimi Fi)x = colimi Fi,x. The injectivity follows. Finally, we
show that the map φx is surjective. Pick s ∈ Fx. Choose a quasi-compact open
neighbourhood U ⊂ X of x such that s corresponds to a section s ∈ F(U). Consider
the map s : OU → F (multiplication by s). By Lemma 28.22.4 there exists an
OX -module G of finite presentation and an OX -module map G → F such that
G|U → F|U is identified with s : OU → F . Again by definition of I there exists an
i ∈ I such that G → F is isomorphic to φi : Fi → F . Clearly there exists a section
s′ ∈ Fi(U) mapping to s ∈ F(U). This proves surjectivity and the proof of the
lemma is complete. □
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Lemma 28.22.7.01PK Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let F be a quasi-coherent OX -module. There exist

(1) a directed set I (see Categories, Definition 4.21.1),
(2) a system (Fi, φii′) over I in Mod(OX) (see Categories, Definition 4.21.2)
(3) morphisms of OX -modules φi : Fi → F

such that each Fi is of finite presentation and such that the morphisms φi induce
an isomorphism

colimi Fi = F .

Proof. This is a direct consequence of Lemma 28.22.6 and Categories, Lemma
4.21.5 (combined with the fact that colimits exist in the category of sheaves of
OX -modules, see Sheaves, Section 6.29). □

Lemma 28.22.8.086M Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let F be a finite type quasi-coherent OX -module. Then we can write
F = colimFi with Fi of finite presentation and all transition maps Fi → Fi′
surjective.

Proof. Write F = colimGi as a filtered colimit of finitely presented OX -modules
(Lemma 28.22.7). We claim that Gi → F is surjective for some i. Namely, choose
a finite affine open covering X = U1 ∪ . . . ∪ Um. Choose sections sjl ∈ F(Uj)
generating F|Uj , see Lemma 28.16.1. By Sheaves, Lemma 6.29.1 we see that sjl is
in the image of Gi → F for i large enough. Hence Gi → F is surjective for i large
enough. Choose such an i and let K ⊂ Gi be the kernel of the map Gi → F . Write
K = colimKa as the filtered colimit of its finite type quasi-coherent submodules
(Lemma 28.22.3). Then F = colimGi/Ka is a solution to the problem posed by the
lemma. □

Lemma 28.22.9.080V Let X be a quasi-compact and quasi-separated scheme. Let F
be a finite type quasi-coherent OX -module. Let U ⊂ X be a quasi-compact open
such that F|U is of finite presentation. Then there exists a map of OX -modules
φ : G → F with (a) G of finite presentation, (b) φ is surjective, and (c) φ|U is an
isomorphism.

Proof. Write F = colimFi as a directed colimit with each Fi of finite presentation,
see Lemma 28.22.7. Choose a finite affine open covering X =

⋃
Vj and choose

finitely many sections sjl ∈ F(Vj) generating F|Vj , see Lemma 28.16.1. By Sheaves,
Lemma 6.29.1 we see that sjl is in the image of Fi → F for i large enough. Hence
Fi → F is surjective for i large enough. Choose such an i and let K ⊂ Fi be the
kernel of the map Fi → F . Since FU is of finite presentation, we see that K|U
is of finite type, see Modules, Lemma 17.11.3. Hence we can find a finite type
quasi-coherent submodule K′ ⊂ K with K′|U = K|U , see Lemma 28.22.2. Then
G = Fi/K′ with the given map G → F is a solution. □

Let X be a scheme. In the following lemma we use the notion of a quasi-coherent
OX -algebraA of finite presentation. This means that for every affine open Spec(R) ⊂
X we have A = Ã where A is a (commutative) R-algebra which is of finite presen-
tation as an R-algebra.

Lemma 28.22.10.05JS Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let A be a quasi-coherent OX -algebra. There exist
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(1) a directed set I (see Categories, Definition 4.21.1),
(2) a system (Ai, φii′) over I in the category of OX -algebras,
(3) morphisms of OX -algebras φi : Ai → A

such that each Ai is a quasi-coherent OX -algebra of finite presentation and such
that the morphisms φi induce an isomorphism

colimiAi = A.

Proof. First we write A = colimi Fi as a directed colimit of finitely presented
quasi-coherent sheaves as in Lemma 28.22.7. For each i let Bi = Sym(Fi) be the
symmetric algebra on Fi over OX . Write Ii = Ker(Bi → A). Write Ii = colimj Fi,j
where Fi,j is a finite type quasi-coherent submodule of Ii, see Lemma 28.22.3. Set
Ii,j ⊂ Ii equal to the Bi-ideal generated by Fi,j . Set Ai,j = Bi/Ii,j . Then Ai,j is
a quasi-coherent finitely presented OX -algebra. Define (i, j) ≤ (i′, j′) if i ≤ i′ and
the map Bi → Bi′ maps the ideal Ii,j into the ideal Ii′,j′ . Then it is clear that
A = colimi,j Ai,j . □

Let X be a scheme. In the following lemma we use the notion of a quasi-coherent
OX -algebra A of finite type. This means that for every affine open Spec(R) ⊂ X

we have A = Ã where A is a (commutative) R-algebra which is of finite type as an
R-algebra.

Lemma 28.22.11.05JT Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let A be a quasi-coherent OX -algebra. Then A is the directed colimit
of its finite type quasi-coherent OX -subalgebras.

Proof. If A1,A2 ⊂ A are quasi-coherent OX -subalgebras of finite type, then the
image of A1 ⊗OX

A2 → A is also a quasi-coherent OX -subalgebra of finite type
(some details omitted) which contains both A1 and A2. In this way we see that the
system is directed. To show that A is the colimit of this system, write A = colimiAi
as a directed colimit of finitely presented quasi-coherent OX -algebras as in Lemma
28.22.10. Then the images A′

i = Im(Ai → A) are quasi-coherent subalgebras of A
of finite type. Since A is the colimit of these the result follows. □

Let X be a scheme. In the following lemma we use the notion of a finite (resp.
integral) quasi-coherent OX -algebra A. This means that for every affine open
Spec(R) ⊂ X we have A = Ã where A is a (commutative) R-algebra which is
finite (resp. integral) as an R-algebra.

Lemma 28.22.12.086N Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let A be a finite quasi-coherent OX -algebra. Then A = colimAi is
a directed colimit of finite and finitely presented quasi-coherent OX -algebras such
that all transition maps Ai′ → Ai are surjective.

Proof. By Lemma 28.22.8 there exists a finitely presented OX -module F and a
surjection F → A. Using the algebra structure we obtain a surjection

Sym∗
OX

(F) −→ A

Denote J the kernel. Write J = colim Ei as a filtered colimit of finite type OX -
submodules Ei (Lemma 28.22.3). Set

Ai = Sym∗
OX

(F)/(Ei)

https://stacks.math.columbia.edu/tag/05JT
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where (Ei) indicates the ideal sheaf generated by the image of Ei → Sym∗
OX

(F).
Then eachAi is a finitely presentedOX -algebra, the transition maps are surjections,
and A = colimAi. To finish the proof we still have to show that Ai is a finite
OX -algebra for i sufficiently large. To do this we choose an affine open covering
X = U1 ∪ . . . ∪ Um. Take generators fj,1, . . . , fj,Nj ∈ Γ(Ui,F). As A(Uj) is
a finite OX(Uj)-algebra we see that for each k there exists a monic polynomial
Pj,k ∈ O(Uj)[T ] such that Pj,k(fj,k) is zero in A(Uj). Since A = colimAi by
construction, we have Pj,k(fj,k) = 0 in Ai(Uj) for all sufficiently large i. For such
i the algebras Ai are finite. □

Lemma 28.22.13.0817 Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let A be an integral quasi-coherent OX -algebra. Then

(1) A is the directed colimit of its finite quasi-coherent OX -subalgebras, and
(2) A is a direct colimit of finite and finitely presented quasi-coherent OX -

algebras.

Proof. By Lemma 28.22.11 we have A = colimAi where Ai ⊂ A runs through
the quasi-coherent OX -algebras of finite type. Any finite type quasi-coherent OX -
subalgebra of A is finite (apply Algebra, Lemma 10.36.5 to Ai(U) ⊂ A(U) for affine
opens U in X). This proves (1).

To prove (2), write A = colimFi as a colimit of finitely presented OX -modules
using Lemma 28.22.7. For each i, let Ji be the kernel of the map

Sym∗
OX

(Fi) −→ A

For i′ ≥ i there is an induced map Ji → Ji′ and we have A = colim Sym∗
OX

(Fi)/Ji.
Moreover, the quasi-coherent OX -algebras Sym∗

OX
(Fi)/Ji are finite (see above).

Write Ji = colim Eik as a colimit of finitely presented OX -modules. Given i′ ≥ i
and k there exists a k′ such that we have a map Eik → Ei′k′ making

Ji // Ji′

Eik

OO

// Ei′k′

OO

commute. This follows from Modules, Lemma 17.22.8. This induces a map

Aik = Sym∗
OX

(Fi)/(Eik) −→ Sym∗
OX

(Fi′)/(Ei′k′) = Ai′k′

where (Eik) denotes the ideal generated by Eik. The quasi-coherent OX -algebras
Aki are of finite presentation and finite for k large enough (see proof of Lemma
28.22.12). Finally, we have

colimAik = colimAi = A

Namely, the first equality was shown in the proof of Lemma 28.22.12 and the second
equality because A is the colimit of the modules Fi. □

28.23. Gabber’s result

077K In this section we prove a result of Gabber which guarantees that on every scheme
there exists a cardinal κ such that every quasi-coherent module F is the union of

https://stacks.math.columbia.edu/tag/0817
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its quasi-coherent κ-generated subsheaves. It follows that the category of quasi-
coherent sheaves on a scheme is a Grothendieck abelian category having limits and
enough injectives2.

Definition 28.23.1.077L Let (X,OX) be a ringed space. Let κ be an infinite cardinal.
We say a sheaf of OX -modules F is κ-generated if there exists an open covering
X =

⋃
Ui such that F|Ui is generated by a subset Ri ⊂ F(Ui) whose cardinality is

at most κ.

Note that a direct sum of at most κ κ-generated modules is again κ-generated
because κ ⊗ κ = κ, see Sets, Section 3.6. In particular this holds for the direct
sum of two κ-generated modules. Moreover, a quotient of a κ-generated sheaf is
κ-generated. (But the same needn’t be true for submodules.)

Lemma 28.23.2.077M Let (X,OX) be a ringed space. Let κ be a cardinal. There exists a
set T and a family (Ft)t∈T of κ-generated OX -modules such that every κ-generated
OX -module is isomorphic to one of the Ft.

Proof. There is a set of coverings of X (provided we disallow repeats). Suppose
X =

⋃
Ui is a covering and suppose Fi is an OUi-module. Then there is a set of

isomorphism classes of OX -modules F with the property that F|Ui ∼= Fi since there
is a set of glueing maps. This reduces us to proving there is a set of (isomorphism
classes of) quotients ⊕k∈κOX → F for any ringed space X. This is clear. □

Here is the result the title of this section refers to.

Lemma 28.23.3.077N Let X be a scheme. There exists a cardinal κ such that every
quasi-coherent module F is the directed colimit of its quasi-coherent κ-generated
submodules.

Proof. Choose an affine open covering X =
⋃
i∈I Ui. For each pair i, j choose

an affine open covering Ui ∩ Uj =
⋃
k∈Iij Uijk. Write Ui = Spec(Ai) and Uijk =

Spec(Aijk). Let κ be any infinite cardinal ≥ than the cardinality of any of the sets
I, Iij .
Let F be a quasi-coherent sheaf. Set Mi = F(Ui) and Mijk = F(Uijk). Note that

Mi ⊗Ai Aijk = Mijk = Mj ⊗Aj Aijk.
see Schemes, Lemma 26.7.3. Using the axiom of choice we choose a map

(i, j, k,m) 7→ S(i, j, k,m)
which associates to every i, j ∈ I, k ∈ Iij and m ∈Mi a finite subset S(i, j, k,m) ⊂
Mj such that we have

m⊗ 1 =
∑

m′∈S(i,j,k,m)
m′ ⊗ am′

in Mijk for some am′ ∈ Aijk. Moreover, let’s agree that S(i, i, k,m) = {m} for all
i, j = i, k,m as above. Fix such a map.
Given a family S = (Si)i∈I of subsets Si ⊂ Mi of cardinality at most κ we set
S ′ = (S′

i) where
S′
j =

⋃
(i,k,m) such that m∈Si

S(i, j, k,m)

2Nicely explained in a blog post by Akhil Mathew.

https://stacks.math.columbia.edu/tag/077L
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Note that Si ⊂ S′
i. Note that S′

i has cardinality at most κ because it is a union
over a set of cardinality at most κ of finite sets. Set S(0) = S, S(1) = S ′ and by
induction S(n+1) = (S(n))′. Then set S(∞) =

⋃
n≥0 S(n). Writing S(∞) = (S(∞)

i )
we see that for any element m ∈ S(∞)

i the image of m in Mijk can be written as a
finite sum

∑
m′ ⊗ am′ with m′ ∈ S(∞)

j . In this way we see that setting

Ni = Ai-submodule of Mi generated by S(∞)
i

we have
Ni ⊗Ai Aijk = Nj ⊗Aj Aijk.

as submodules of Mijk. Thus there exists a quasi-coherent subsheaf G ⊂ F with
G(Ui) = Ni. Moreover, by construction the sheaf G is κ-generated.
Let {Gt}t∈T be the set of κ-generated quasi-coherent subsheaves. If t, t′ ∈ T then
Gt + Gt′ is also a κ-generated quasi-coherent subsheaf as it is the image of the map
Gt⊕Gt′ → F . Hence the system (ordered by inclusion) is directed. The arguments
above show that every section of F over Ui is in one of the Gt (because we can start
with S such that the given section is an element of Si). Hence colimt Gt → F is
both injective and surjective as desired. □

Proposition 28.23.4.077P Let X be a scheme.
(1) The category QCoh(OX) is a Grothendieck abelian category. Conse-

quently, QCoh(OX) has enough injectives and all limits.
(2) The inclusion functor QCoh(OX)→ Mod(OX) has a right adjoint3

Q : Mod(OX) −→ QCoh(OX)
such that for every quasi-coherent sheaf F the adjunction mappingQ(F)→
F is an isomorphism.

Proof. Part (1) means QCoh(OX) (a) has all colimits, (b) filtered colimits are exact,
and (c) has a generator, see Injectives, Section 19.10. By Schemes, Section 26.24
colimits in QCoh(OX) exist and agree with colimits in Mod(OX). By Modules,
Lemma 17.3.2 filtered colimits are exact. Hence (a) and (b) hold. To construct
a generator U , pick a cardinal κ as in Lemma 28.23.3. Pick a collection (Ft)t∈T
of κ-generated quasi-coherent sheaves as in Lemma 28.23.2. Set U =

⊕
t∈T Ft.

Since every object of QCoh(OX) is a filtered colimit of κ-generated quasi-coherent
modules, i.e., of objects isomorphic to Ft, it is clear that U is a generator. The
assertions on limits and injectives hold in any Grothendieck abelian category, see
Injectives, Theorem 19.11.7 and Lemma 19.13.2.
Proof of (2). To construct Q we use the following general procedure. Given an
object F of Mod(OX) we consider the functor

QCoh(OX)opp −→ Sets, G 7−→ HomX(G,F)
This functor transforms colimits into limits, hence is representable, see Injectives,
Lemma 19.13.1. Thus there exists a quasi-coherent sheaf Q(F) and a functorial
isomorphism HomX(G,F) = HomX(G, Q(F)) for G in QCoh(OX). By the Yoneda
lemma (Categories, Lemma 4.3.5) the construction F ⇝ Q(F) is functorial in
F . By construction Q is a right adjoint to the inclusion functor. The fact that

3This functor is sometimes called the coherator.

https://stacks.math.columbia.edu/tag/077P
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Q(F)→ F is an isomorphism when F is quasi-coherent is a formal consequence of
the fact that the inclusion functor QCoh(OX)→ Mod(OX) is fully faithful. □

28.24. Sections with support in a closed subset

07ZM Given any topological space X, a closed subset Z ⊂ X, and an abelian sheaf F
you can take the subsheaf of sections whose support is contained in Z. If X is a
scheme, Z a closed subscheme, and F a quasi-coherent module there is a variant
where you take sections which are scheme theoretically supported on Z. However,
in the scheme setting you have to be careful because the resulting OX -module may
not be quasi-coherent.

Lemma 28.24.1.01PH LetX be a quasi-compact and quasi-separated scheme. Let U ⊂ X
be an open subscheme. The following are equivalent:

(1) U is retrocompact in X,
(2) U is quasi-compact,
(3) U is a finite union of affine opens, and
(4) there exists a finite type quasi-coherent sheaf of ideals I ⊂ OX such that

X \ U = V (I) (set theoretically).

Proof. The equivalence of (1), (2), and (3) follows from Lemma 28.2.3. Assume
(1), (2), (3). Let T = X \ U . By Schemes, Lemma 26.12.4 there exists a unique
quasi-coherent sheaf of ideals J cutting out the reduced induced closed subscheme
structure on T . Note that J |U = OU which is an OU -modules of finite type. By
Lemma 28.22.2 there exists a quasi-coherent subsheaf I ⊂ J which is of finite
type and has the property that I|U = J |U . Then X \ U = V (I) and we obtain
(4). Conversely, if I is as in (4) and W = Spec(R) ⊂ X is an affine open, then
I|W = Ĩ for some finitely generated ideal I ⊂ R, see Lemma 28.16.1. It follows
that U ∩W = Spec(R)\V (I) is quasi-compact, see Algebra, Lemma 10.29.1. Hence
U ⊂ X is retrocompact by Lemma 28.2.6. □

Lemma 28.24.2.01PO Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of
ideals. Let F be a quasi-coherent OX -module. Consider the sheaf of OX -modules
F ′ which associates to every open U ⊂ X

F ′(U) = {s ∈ F(U) | Is = 0}

Assume I is of finite type. Then
(1) F ′ is a quasi-coherent sheaf of OX -modules,
(2) on any affine open U ⊂ X we have F ′(U) = {s ∈ F(U) | I(U)s = 0}, and
(3) F ′

x = {s ∈ Fx | Ixs = 0}.

Proof. It is clear that the rule defining F ′ gives a subsheaf of F (the sheaf condition
is easy to verify). Hence we may work locally on X to verify the other statements.
In other words we may assume that X = Spec(A), F = M̃ and I = Ĩ. It is clear
that in this case F ′(U) = {x ∈ M | Ix = 0} =: M ′ because Ĩ is generated by its
global sections I which proves (2). To show F ′ is quasi-coherent it suffices to show
that for every f ∈ A we have {x ∈Mf | Ifx = 0} = (M ′)f . Write I = (g1, . . . , gt),
which is possible because I is of finite type, see Lemma 28.16.1. If x = y/fn

and Ifx = 0, then that means that for every i there exists an m ≥ 0 such that
fmgix = 0. We may choose one m which works for all i (and this is where we use

https://stacks.math.columbia.edu/tag/01PH
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that I is finitely generated). Then we see that fmx ∈ M ′ and x/fn = fmx/fn+m

in (M ′)f as desired. The proof of (3) is similar and omitted. □

Definition 28.24.3.01PP Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of
ideals of finite type. Let F be a quasi-coherent OX -module. The subsheaf F ′ ⊂ F
defined in Lemma 28.24.2 above is called the subsheaf of sections annihilated by I.

Lemma 28.24.4.07ZN Let f : X → Y be a quasi-compact and quasi-separated morphism
of schemes. Let I ⊂ OY be a quasi-coherent sheaf of ideals of finite type. Let F be
a quasi-coherent OX -module. Let F ′ ⊂ F be the subsheaf of sections annihilated
by f−1IOX . Then f∗F ′ ⊂ f∗F is the subsheaf of sections annihilated by I.

Proof. Omitted. (Hint: The assumption that f is quasi-compact and quasi-separated
implies that f∗F is quasi-coherent so that Lemma 28.24.2 applies to I and f∗F .) □

For an abelian sheaf on a topological space we have discussed the subsheaf of
sections with support in a closed subset in Modules, Remark 17.6.2. For quasi-
coherent modules this submodule isn’t always a quasi-coherent module, but if the
closed subset has a retrocompact complement, then it is.

Lemma 28.24.5.07ZP Let X be a scheme. Let Z ⊂ X be a closed subset. Let F be a
quasi-coherent OX -module. Consider the sheaf of OX -modules F ′ which associates
to every open U ⊂ X

F ′(U) = {s ∈ F(U) | the support of s is contained in Z ∩ U}

If X \ Z is a retrocompact open of X, then
(1) for an affine open U ⊂ X there exist a finitely generated ideal I ⊂ OX(U)

such that Z ∩ U = V (I),
(2) for U and I as in (1) we have F ′(U) = {x ∈ F(U) | Inx = 0 for some n},
(3) F ′ is a quasi-coherent sheaf of OX -modules.

Proof. Part (1) is Algebra, Lemma 10.29.1. Let U = Spec(A) and I be as in (1).
Then F|U is the quasi-coherent sheaf associated to some A-module M . We have

F ′(U) = {x ∈M | x = 0 in Mp for all p ̸∈ Z}.

by Modules, Definition 17.5.1. Thus x ∈ F ′(U) if and only if V (Ann(x)) ⊂ V (I),
see Algebra, Lemma 10.40.7. Since I is finitely generated this is equivalent to
Inx = 0 for some n. This proves (2).

Proof of (3). Observe that given U ⊂ X open there is an exact sequence

0→ F ′(U)→ F(U)→ F(U \ Z)

If we denote j : X \Z → X the inclusion morphism, then we observe that F(U \Z)
is the sections of the module j∗(F|X\Z) over U . Thus we have an exact sequence

0→ F ′ → F → j∗(F|X\Z)

The restriction F|X\Z is quasi-coherent. Hence j∗(F|X\Z) is quasi-coherent by
Schemes, Lemma 26.24.1 and our assumption that j is quasi-compact (any open
immersion is separated). Hence F ′ is quasi-coherent as a kernel of a map of quasi-
coherent modules, see Schemes, Section 26.24. □

https://stacks.math.columbia.edu/tag/01PP
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Definition 28.24.6.084L Let X be a scheme. Let T ⊂ X be a closed subset whose
complement is retrocompact in X. Let F be a quasi-coherent OX -module. The
quasi-coherent subsheaf F ′ ⊂ F defined in Lemma 28.24.5 is called the subsheaf of
sections supported on T .

Lemma 28.24.7.07ZQ Let f : X → Y be a quasi-compact and quasi-separated morphism
of schemes. Let Z ⊂ Y be a closed subset such that Y \ Z is retrocompact in Y .
Let F be a quasi-coherent OX -module. Let F ′ ⊂ F be the subsheaf of sections
supported in f−1Z. Then f∗F ′ ⊂ f∗F is the subsheaf of sections supported in Z.

Proof. Omitted. (Hint: First show that X \ f−1Z is retrocompact in X as Y \Z is
retrocompact in Y . Hence Lemma 28.24.5 applies to f−1Z and F . As f is quasi-
compact and quasi-separated we see that f∗F is quasi-coherent. Hence Lemma
28.24.5 applies to Z and f∗F . Finally, match the sheaves directly.) □

28.25. Sections of quasi-coherent sheaves

01PL Here is a computation of sections of a quasi-coherent sheaf on a quasi-compact open
of an affine spectrum.

Lemma 28.25.1.01PM Let A be a ring. Let I ⊂ A be a finitely generated ideal. Let M
be an A-module. Then there is a canonical map

colimn HomA(In,M) −→ Γ(Spec(A) \ V (I), M̃).
This map is always injective. If for all x ∈ M we have Ix = 0 ⇒ x = 0 then this
map is an isomorphism. In general, set Mn = {x ∈M | Inx = 0}, then there is an
isomorphism

colimn HomA(In,M/Mn) −→ Γ(Spec(A) \ V (I), M̃).

Proof. Since In+1 ⊂ In and Mn ⊂ Mn+1 we can use composition via these maps
to get canonical maps of A-modules

HomA(In,M) −→ HomA(In+1,M)
and

HomA(In,M/Mn) −→ HomA(In+1,M/Mn+1)
which we will use as the transition maps in the systems. Given an A-module map
φ : In → M , then we get a map of sheaves φ̃ : Ĩn → M̃ which we can restrict to
the open Spec(A) \ V (I). Since Ĩn restricted to this open gives the structure sheaf
we get an element of Γ(Spec(A) \ V (I), M̃). We omit the verification that this is
compatible with the transition maps in the system HomA(In,M). This gives the
first arrow. To get the second arrow we note that M̃ and M̃/Mn agree over the
open Spec(A) \ V (I) since the sheaf M̃n is clearly supported on V (I). Hence we
can use the same mechanism as before.
Next, we work out how to define this arrow in terms of algebra. Say I = (f1, . . . , ft).
Then Spec(A) \ V (I) =

⋃
i=1,...,tD(fi). Hence

0→ Γ(Spec(A) \ V (I), M̃)→
⊕

i
Mfi →

⊕
i,j
Mfifj

is exact. Suppose that φ : In → M is an A-module map. Consider the vector
of elements φ(fni )/fni ∈ Mfi . It is easy to see that this vector maps to zero
in the second direct sum of the exact sequence above. Whence an element of

https://stacks.math.columbia.edu/tag/084L
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Γ(Spec(A) \ V (I), M̃). We omit the verification that this description agrees with
the one given above.
Let us show that the first arrow is injective using this description. Namely, if φ
maps to zero, then for each i the element φ(fni )/fni is zero in Mfi . In other words
we see that for each i we have fmi φ(fni ) = 0 for some m ≥ 0. We may choose a
single m which works for all i. Then we see that φ(fn+m

i ) = 0 for all i. It is easy
to see that this means that φ|It(n+m−1)+1 = 0 in other words that φ maps to zero
in the t(n+m− 1) + 1st term of the colimit. Hence injectivity follows.
Note that each Mn = 0 in case we have Ix = 0⇒ x = 0 for x ∈M . Thus to finish
the proof of the lemma it suffices to show that the second arrow is an isomorphism.
Let us attempt to construct an inverse of the second map of the lemma. Let
s ∈ Γ(Spec(A) \ V (I), M̃). This corresponds to a vector xi/fni with xi ∈M of the
first direct sum of the exact sequence above. Hence for each i, j there exists m ≥ 0
such that fmi fmj (fnj xi − fni xj) = 0 in M . We may choose a single m which works
for all pairs i, j. After replacing xi by fmi xi and n by n + m we see that we get
fnj xi = fni xj in M for all i, j. Let us introduce

Kn = {x ∈M | fn1 x = . . . = fnt x = 0}
We claim there is an A-module map

φ : It(n−1)+1 −→M/Kn

which maps the monomial fe1
1 . . . fett with

∑
ei = t(n− 1) + 1 to the class modulo

Kn of the expression fe1
1 . . . fei−ni . . . fett xi where i is chosen such that ei ≥ n (note

that there is at least one such i). To see that this is indeed the case suppose that∑
E=(e1,...,et),|E|=t(n−1)+1

aEf
e1
1 . . . fett = 0

is a relation between the monomials with coefficients aE in A. Then we would map
this to

z =
∑

E=(e1,...,et),|E|=t(n−1)+1
aEf

e1
1 . . . f

ei(E)−n
i(E) . . . fett xi(E)

where for each multiindex E we have chosen a particular i(E) such that ei(E) ≥ n.
Note that if we multiply this by fnj for any j, then we get zero, since by the relations
fnj xi = fni xj above we get

fnj z =
∑

E=(e1,...,et),|E|=t(n−1)+1
aEf

e1
1 . . . f

ej+n
j . . . f

ei(E)−n
i(E) . . . fett xi(E)

=
∑

E=(e1,...,et),|E|=t(n−1)+1
aEf

e1
1 . . . fett xj = 0.

Hence z ∈ Kn and we see that every relation gets mapped to zero in M/Kn. This
proves the claim.
Note that Kn ⊂ Mt(n−1)+1. Hence the map φ in particular gives rise to an A-
module map It(n−1)+1 → M/Mt(n−1)+1. This proves the second arrow of the
lemma is surjective. We omit the proof of injectivity. □

Example 28.25.2.01PN We will give two examples showing that the first displayed map
of Lemma 28.25.1 is not an isomorphism.
Let k be a field. Consider the ring

A = k[x, y, z1, z2, . . .]/(xnzn).

https://stacks.math.columbia.edu/tag/01PN
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Set I = (x) and let M = A. Then the element y/x defines a section of the structure
sheaf of Spec(A) over D(x) = Spec(A)\V (I). We claim that y/x is not in the image
of the canonical map colim HomA(In, A)→ Ax = O(D(x)). Namely, if so it would
come from a homomorphism φ : In → A for some n. Set a = φ(xn). Then we would
have xm(xa − xny) = 0 for some m > 0. This would mean that xm+1a = xm+ny.
This would mean that φ(xn+m+1) = xm+ny. This leads to a contradiction because
it would imply that

0 = φ(0) = φ(zn+m+1x
n+m+1) = xm+nyzn+m+1

which is not true in the ring A.

Let k be a field. Consider the ring

A = k[f, g, x, y, {an, bn}n≥1]/(fy − gx, {anfn + bng
n}n≥1).

Set I = (f, g) and let M = A. Then x/f ∈ Af and y/g ∈ Ag map to the same
element of Afg. Hence these define a section s of the structure sheaf of Spec(A)
over D(f) ∪D(g) = Spec(A) \ V (I). However, there is no n ≥ 0 such that s comes
from an A-module map φ : In → A as in the source of the first displayed arrow of
Lemma 28.25.1. Namely, given such a module map set xn = φ(fn) and yn = φ(gn).
Then fmxn = fn+m−1x and gmyn = gn+m−1y for some m ≥ 0 (see proof of the
lemma). But then we would have 0 = φ(0) = φ(an+mf

n+m + bn+mg
n+m) =

an+mf
n+m−1x+ bn+mg

n+m−1y which is not the case in the ring A.

We will improve on the following lemma in the Noetherian case, see Cohomology
of Schemes, Lemma 30.10.5.

Lemma 28.25.3.01PQ Let X be a quasi-compact scheme. Let I ⊂ OX be a quasi-
coherent sheaf of ideals of finite type. Let Z ⊂ X be the closed subscheme defined
by I and set U = X \ Z. Let F be a quasi-coherent OX -module. The canonical
map

colimn HomOX
(In,F) −→ Γ(U,F)

is injective. Assume further that X is quasi-separated. Let Fn ⊂ F be subsheaf of
sections annihilated by In. The canonical map

colimn HomOX
(In,F/Fn) −→ Γ(U,F)

is an isomorphism.

Proof. Let Spec(A) = W ⊂ X be an affine open. Write F|W = M̃ for some A-
module M and I|W = Ĩ for some finite type ideal I ⊂ A. Restricting the first
displayed map of the lemma to W we obtain the first displayed map of Lemma
28.25.1. Since we can cover X by a finite number of affine opens this proves the
first displayed map of the lemma is injective.

We have Fn|W = M̃n where Mn ⊂ M is defined as in Lemma 28.25.1 (details
omitted). The lemma guarantees that we have a bijection

colimn HomOW
(In|W , (F/Fn)|W ) −→ Γ(U ∩W,F)

for any such affine open W .

To see the second displayed arrow of the lemma is bijective, we choose a finite
affine open covering X =

⋃
j=1,...,mWj . The injectivity follows immediately from

https://stacks.math.columbia.edu/tag/01PQ
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the above and the finiteness of the covering. If X is quasi-separated, then for each
pair j, j′ we choose a finite affine open covering

Wj ∩Wj′ =
⋃

k=1,...,mjj′
Wjj′k.

Let s ∈ Γ(U,F). As seen above for each j there exists an nj and a map φj :
Inj |Wj → (F/Fnj )|Wj which corresponds to s|U∩Wj . By the same token for each
triple (j, j′, k) there exists an integer njj′k such that the restriction of φj and φj′ as
maps Injj′k → F/Fnjj′k agree over Wjj′k. Let n = max{nj , njj′k} and we see that
the φj glue as maps In → F/Fn over X. This proves surjectivity of the map. □

28.26. Ample invertible sheaves

01PR Recall from Modules, Lemma 17.25.10 that given an invertible sheaf L on a locally
ringed space X, and given a global section s of L the set Xs = {x ∈ X | s ̸∈ mxLx}
is open. A general remark is that Xs ∩ Xs′ = Xss′ , where ss′ denote the section
s⊗ s′ ∈ Γ(X,L ⊗ L′).

Definition 28.26.1.01PS [DG67, II Definition
4.5.3]

Let X be a scheme. Let L be an invertible OX -module. We
say L is ample if

(1) X is quasi-compact, and
(2) for every x ∈ X there exists an n ≥ 1 and s ∈ Γ(X,L⊗n) such that x ∈ Xs

and Xs is affine.

Lemma 28.26.2.01PT [DG67, II
Proposition 4.5.6(i)]

Let X be a scheme. Let L be an invertible OX -module. Let
n ≥ 1. Then L is ample if and only if L⊗n is ample.

Proof. This follows from the fact that Xsn = Xs. □

Lemma 28.26.3.01PU Let X be a scheme. Let L be an ample invertible OX -module.
For any closed subscheme Z ⊂ X the restriction of L to Z is ample.

Proof. This is clear since a closed subset of a quasi-compact space is quasi-compact
and a closed subscheme of an affine scheme is affine (see Schemes, Lemma 26.8.2).

□

Lemma 28.26.4.01PV Let X be a scheme. Let L be an invertible OX -module. Let
s ∈ Γ(X,L). For any affine U ⊂ X the intersection U ∩Xs is affine.

Proof. This translates into the following algebra problem. Let R be a ring. Let N
be an invertible R-module (i.e., locally free of rank 1). Let s ∈ N be an element.
Then U = {p | s ̸∈ pN} is an affine open subset of Spec(R).
Let A =

⊕
n≥0 An be the symmetric algebra of N (which is commutative) and

view s as an element of A1. Set B = A/(s − 1)A. This is an R-algebra whose
construction commutes with any base change R → R′. Thus B′ = B ⊗R R′ is the
zero ring if s maps to zero in N ′ = N⊗RR′. It follows that if x ∈ Spec(R)\U , then
B ⊗R κ(x) = 0. We conclude that Spec(B) → Spec(R) factors through U as the
fibres over x ̸∈ U are empty. On the other hand, if Spec(R′) ⊂ U is an affine open,
then s maps to a basis element of N ′ and we see that B′ = R′[s]/(s − 1) ∼= R′. It
follows that Spec(B)→ U is an isomorphism and U is indeed affine. □

Lemma 28.26.5.0890 [DG67, II
Proposition
4.5.6(ii)]

Let X be a scheme. Let L and M be invertible OX -modules. If
(1) L is ample, and

https://stacks.math.columbia.edu/tag/01PS
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(2) the open sets Xt where t ∈ Γ(X,M⊗m) for m > 0 cover X,
then L ⊗M is ample.

Proof. We check the conditions of Definition 28.26.1. As L is ample we see that
X is quasi-compact. Let x ∈ X. Choose n ≥ 1, m ≥ 1, s ∈ Γ(X,L⊗n), and
t ∈ Γ(X,M⊗m) such that x ∈ Xs, x ∈ Xt and Xs is affine. Then smtn ∈ Γ(X, (L⊗
M)⊗nm), x ∈ Xsmtn , and Xsmtn is affine by Lemma 28.26.4. □

Lemma 28.26.6.01PX Let X be a scheme. Let L be an invertible OX -module. Assume
the open sets Xs, where s ∈ Γ(X,L⊗n) and n ≥ 1, form a basis for the topology
on X. Then among those opens, the open sets Xs which are affine form a basis for
the topology on X.

Proof. Let x ∈ X. Choose an affine open neighbourhood Spec(R) = U ⊂ X of x.
By assumption, there exists a n ≥ 1 and a s ∈ Γ(X,L⊗n) such that Xs ⊂ U . By
Lemma 28.26.4 above the intersection Xs = U ∩Xs is affine. Since U can be chosen
arbitrarily small we win. □

Lemma 28.26.7.01PY Let X be a scheme and L be an invertible OX -module. Assume
for every point x of X there exists n ≥ 1 and s ∈ Γ(X,L⊗n) such that x ∈ Xs and
Xs is affine. Then X is separated.

Proof. We show first that X is quasi-separated. By assumption we can find a
covering of X by affine opens of the form Xs. By Lemma 28.26.4, the intersection
of any two such sets is affine, so Schemes, Lemma 26.21.6 implies that X is quasi-
separated.
To show that X is separated, we can use the valuative criterion, Schemes, Lemma
26.22.2. Thus, let A be a valuation ring with fraction field K and consider two mor-
phisms f, g : Spec(A)→ X such that the two compositions Spec(K)→ Spec(A)→
X agree. As A is local, there exists p, q ≥ 1, s ∈ Γ(X,L⊗p), and t ∈ Γ(X,L⊗q) such
that Xs and Xt are affine, f(SpecA) ⊆ Xs, and g(SpecA) ⊆ Xt. We now replace
s by sq, t by tp, and L by L⊗pq. This is harmless as Xs = Xsq and Xt = Xtp , and
now s and t are both sections of the same sheaf L.
The quasi-coherent module f∗L corresponds to an A-module M and g∗L corre-
sponds to an A-module N by our classification of quasi-coherent modules over affine
schemes (Schemes, Lemma 26.7.4). The A-modulesM andN are locally free of rank
1 (Lemma 28.20.1) and as A is local they are free (Algebra, Lemma 10.55.8). There-
fore we may identify M and N with A-submodules of M ⊗A K and N ⊗A K. The
equality f |Spec(K) = g|Spec(K) determines an isomorphism ϕ : M ⊗AK → N ⊗AK.
Let x ∈ M and y ∈ N be the elements corresponding to the pullback of s along f
and g, respectively. These satisfy ϕ(x⊗ 1) = y ⊗ 1. The image of f is contained in
Xs, so x ̸∈ mAM , that is, x generates M . Hence ϕ determines an isomorphism of
M with the submodule of N generated by y. Arguing symmetrically using t, ϕ−1

determines an isomorphism of N with a submodule of M . Consequently ϕ restricts
to an isomorphism of M and N . Since x generates M , its image y generates
N , implying y ̸∈ mAN . Therefore g(Spec(A)) ⊆ Xs. Because Xs is affine, it is
separated by Schemes, Lemma 26.21.15, and we conclude f = g. □

Lemma 28.26.8.09MP Let X be a scheme. If there exists an ample invertible sheaf on
X then X is separated.

https://stacks.math.columbia.edu/tag/01PX
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Proof. Follows immediately from Lemma 28.26.7 and Definition 28.26.1. □

Lemma 28.26.9.01PZ Let X be a scheme. Let L be an invertible OX -module. Set
S = Γ∗(X,L) as a graded ring. If every point of X is contained in one of the open
subschemes Xs, for some s ∈ S+ homogeneous, then there is a canonical morphism
of schemes

f : X −→ Y = Proj(S),
to the homogeneous spectrum of S (see Constructions, Section 27.8). This mor-
phism has the following properties

(1) f−1(D+(s)) = Xs for any s ∈ S+ homogeneous,
(2) there are OX -module maps f∗OY (n)→ L⊗n compatible with multiplica-

tion maps, see Constructions, Equation (27.10.1.1),
(3) the composition Sn → Γ(Y,OY (n))→ Γ(X,L⊗n) is the identity map, and
(4) for every x ∈ X there is an integer d ≥ 1 and an open neighbourhood

U ⊂ X of x such that f∗OY (dn)|U → L⊗dn|U is an isomorphism for all
n ∈ Z.

Proof. Denote ψ : S → Γ∗(X,L) the identity map. We are going to use the
triple (U(ψ), rL,ψ, θ) of Constructions, Lemma 27.14.1. By assumption the open
subscheme U(ψ) of equals X. Hence rL,ψ : U(ψ) → Y is defined on all of X. We
set f = rL,ψ. The maps in part (2) are the components of θ. Part (3) follows from
condition (2) in the lemma cited above. Part (1) follows from (3) combined with
condition (1) in the lemma cited above. Part (4) follows from the last statement in
Constructions, Lemma 27.14.1 since the map α mentioned there is an isomorphism.

□

Lemma 28.26.10.01Q0 Let X be a scheme. Let L be an invertible OX -module. Set
S = Γ∗(X,L). Assume (a) every point of X is contained in one of the open
subschemes Xs, for some s ∈ S+ homogeneous, and (b) X is quasi-compact. Then
the canonical morphism of schemes f : X −→ Proj(S) of Lemma 28.26.9 above is
quasi-compact with dense image.

Proof. To prove f is quasi-compact it suffices to show that f−1(D+(s)) is quasi-
compact for any s ∈ S+ homogeneous. Write X =

⋃
i=1,...,nXi as a finite union

of affine opens. By Lemma 28.26.4 each intersection Xs ∩ Xi is affine. Hence
Xs =

⋃
i=1,...,nXs ∩Xi is quasi-compact. Assume that the image of f is not dense

to get a contradiction. Then, since the opens D+(s) with s ∈ S+ homogeneous
form a basis for the topology on Proj(S), we can find such an s with D+(s) ̸= ∅
and f(X)∩D+(s) = ∅. By Lemma 28.26.9 this means Xs = ∅. By Lemma 28.17.2
this means that a power sn is the zero section of L⊗n deg(s). This in turn means
that D+(s) = ∅ which is the desired contradiction. □

Lemma 28.26.11.01Q1 Let X be a scheme. Let L be an invertible OX -module. Set
S = Γ∗(X,L). Assume L is ample. Then the canonical morphism of schemes
f : X −→ Proj(S) of Lemma 28.26.9 is an open immersion with dense image.

Proof. By Lemma 28.26.7 we see that X is quasi-separated. Choose finitely many
s1, . . . , sn ∈ S+ homogeneous such that Xsi are affine, and X =

⋃
Xsi . Say si has

degree di. The inverse image of D+(si) under f is Xsi , see Lemma 28.26.9. By
Lemma 28.17.2 the ring map

(S(di))(si) = Γ(D+(si),OProj(S)) −→ Γ(Xsi ,OX)

https://stacks.math.columbia.edu/tag/01PZ
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is an isomorphism. Hence f induces an isomorphism Xsi → D+(si). Thus f is
an isomorphism of X onto the open subscheme

⋃
i=1,...,nD+(si) of Proj(S). The

image is dense by Lemma 28.26.10. □

Lemma 28.26.12.01Q2 Let X be a scheme. Let S be a graded ring. Assume X is
quasi-compact, and assume there exists an open immersion

j : X −→ Y = Proj(S).
Then j∗OY (d) is an invertible ample sheaf for some d > 0.
Proof. This is Constructions, Lemma 27.10.6. □

Proposition 28.26.13.01Q3 Let X be a quasi-compact scheme. Let L be an invertible
sheaf on X. Set S = Γ∗(X,L). The following are equivalent:

(1)01Q4 L is ample,
(2)01Q5 the open sets Xs, with s ∈ S+ homogeneous, cover X and the associated

morphism X → Proj(S) is an open immersion,
(3)01Q6 the open sets Xs, with s ∈ S+ homogeneous, form a basis for the topology

of X,
(4)01Q7 the open sets Xs, with s ∈ S+ homogeneous, which are affine form a basis

for the topology of X,
(5)01Q8 for every quasi-coherent sheaf F on X the sum of the images of the canon-

ical maps
Γ(X,F ⊗OX

L⊗n)⊗Z L⊗−n −→ F
with n ≥ 1 equals F ,

(6)01Q9 same property as (5) with F ranging over all quasi-coherent sheaves of
ideals,

(7)01QA X is quasi-separated and for every quasi-coherent sheaf F of finite type
on X there exists an integer n0 such that F⊗OX

L⊗n is globally generated
for all n ≥ n0,

(8)01QB X is quasi-separated and for every quasi-coherent sheaf F of finite type
on X there exist integers n > 0, k ≥ 0 such that F is a quotient of a
direct sum of k copies of L⊗−n, and

(9)01QC same as in (8) with F ranging over all sheaves of ideals of finite type on
X.

Proof. Lemma 28.26.11 is (1)⇒ (2). Lemmas 28.26.2 and 28.26.12 provide the im-
plication (1)⇐ (2). The implications (2)⇒ (4)⇒ (3) are clear from Constructions,
Section 27.8. Lemma 28.26.6 is (3) ⇒ (1). Thus we see that the first 4 conditions
are all equivalent.
Assume the equivalent conditions (1) – (4). Note that in particular X is separated
(as an open subscheme of the separated scheme Proj(S)). Let F be a quasi-coherent
sheaf on X. Choose s ∈ S+ homogeneous such that Xs is affine. We claim that
any section m ∈ Γ(Xs,F) is in the image of one of the maps displayed in (5) above.
This will imply (5) since these affines Xs cover X. Namely, by Lemma 28.17.2 we
may write m as the image of m′ ⊗ s−n for some n ≥ 1, some m′ ∈ Γ(X,F ⊗L⊗n).
This proves the claim.
Clearly (5)⇒ (6). Let us assume (6) and prove L is ample. Pick x ∈ X. Let U ⊂ X
be an affine open which contains x. Set Z = X \U . We may think of Z as a reduced
closed subscheme, see Schemes, Section 26.12. Let I ⊂ OX be the quasi-coherent
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sheaf of ideals corresponding to the closed subscheme Z. By assumption (6), there
exists an n ≥ 1 and a section s ∈ Γ(X, I ⊗ L⊗n) such that s does not vanish at
x (more precisely such that s ̸∈ mxIx ⊗ L⊗n

x ). We may think of s as a section of
L⊗n. Since it clearly vanishes along Z we see that Xs ⊂ U . Hence Xs is affine, see
Lemma 28.26.4. This proves that L is ample. At this point we have proved that
(1) – (6) are equivalent.
Assume the equivalent conditions (1) – (6). In the following we will use the fact
that the tensor product of two sheaves of modules which are globally generated
is globally generated without further mention (see Modules, Lemma 17.4.3). By
(1) we can find elements si ∈ Sdi with di ≥ 1 such that X =

⋃
i=1,...,nXsi . Set

d = d1 . . . dn. It follows that L⊗d is globally generated by

s
d/d1
1 , . . . , sd/dnn .

This means that if L⊗j is globally generated then so is L⊗j+dn for all n ≥ 0. Fix a
j ∈ {0, . . . , d− 1}. For any point x ∈ X there exists an n ≥ 1 and a global section
s of Lj+dn which does not vanish at x, as follows from (5) applied to F = L⊗j and
ample invertible sheaf L⊗d. Since X is quasi-compact there we may find a finite list
of integers ni and global sections si of L⊗j+dni which do not vanish at any point of
X. Since L⊗d is globally generated this means that L⊗j+dn is globally generated
where n = max{ni}. Since we proved this for every congruence class mod d we
conclude that there exists an n0 = n0(L) such that L⊗n is globally generated for
all n ≥ n0. At this point we see that if F is globally generated then so is F ⊗L⊗n

for all n ≥ n0.
We continue to assume the equivalent conditions (1) – (6). Let F be a quasi-
coherent sheaf of OX -modules of finite type. Denote Fn ⊂ F the image of the
canonical map of (5). By construction Fn ⊗ L⊗n is globally generated. By (5) we
see F is the sum of the subsheaves Fn, n ≥ 1. By Modules, Lemma 17.9.7 we
see that F =

∑
n=1,...,N Fn for some N ≥ 1. It follows that F ⊗ L⊗n is globally

generated whenever n ≥ N + n0(L) with n0(L) as above. We conclude that (1) –
(6) implies (7).
Assume (7). Let F be a quasi-coherent sheaf of OX -modules of finite type. By (7)
there exists an integer n ≥ 1 such that the canonical map

Γ(X,F ⊗OX
L⊗n)⊗Z L⊗−n −→ F

is surjective. Let I be the set of finite subsets of Γ(X,F⊗OX
L⊗n) partially ordered

by inclusion. Then I is a directed partially ordered set. For i = {s1, . . . , sr(i)} let
Fi ⊂ F be the image of the map⊕

j=1,...,r(i)
L⊗−n −→ F

which is multiplication by sj on the jth factor. The surjectivity above implies that
F = colimi∈I Fi. Hence Modules, Lemma 17.9.7 applies and we conclude that
F = Fi for some i. Hence we have proved (8). In other words, (7) ⇒ (8).
The implication (8) ⇒ (9) is trivial.
Finally, assume (9). Let I ⊂ OX be a quasi-coherent sheaf of ideals. By Lemma
28.22.3 (this is where we use the condition that X be quasi-separated) we see that
I = colimα Iα with each Iα quasi-coherent of finite type. Since by assumption each
of the Iα is a quotient of negative tensor powers of L we conclude the same for
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I (but of course without the finiteness or boundedness of the powers). Hence we
conclude that (9) implies (6). This ends the proof of the proposition. □

Lemma 28.26.14.0B3E Let X be a scheme. Let L be an ample invertible OX -module.
Let i : X ′ → X be a morphism of schemes. Assume at least one of the following
conditions holds

(1) i is a quasi-compact immersion,
(2) X ′ is quasi-compact and i is an immersion,
(3) i is quasi-compact and induces a homeomorphism between X ′ and i(X ′),
(4) X ′ is quasi-compact and i induces a homeomorphism between X ′ and

i(X ′).
Then i∗L is ample on X ′.
Proof. Observe that in cases (1) and (3) the scheme X ′ is quasi-compact as X is
quasi-compact by Definition 28.26.1. Thus it suffices to prove (2) and (4). Since
(2) is a special case of (4) it suffices to prove (4).
Assume condition (4) holds. For s ∈ Γ(X,L⊗d) denote s′ = i∗s the pullback of s
to X ′. Note that s′ is a section of (i∗L)⊗d. By Proposition 28.26.13 the opens Xs,
for s ∈ Γ(X,L⊗d), form a basis for the topology on X. Since X ′

s′ = i−1(Xs) and
since X ′ → i(X ′) is a homeomorphism, we conclude the opens X ′

s′ form a basis for
the topology of X ′. Hence i∗L is ample by Proposition 28.26.13. □

Lemma 28.26.15.0DNK Let S be a quasi-separated scheme. Let X, Y be schemes over
S. Let L be an ample invertible OX -module and let N be an ample invertible OY -
module. Then M = pr∗

1L ⊗OX×SY
pr∗

2N is an ample invertible sheaf on X ×S Y .
Proof. The morphism i : X ×S Y → X × Y is a quasi-compact immersion, see
Schemes, Lemma 26.21.9. On the other hand, M is the pullback by i of the corre-
sponding invertible module on X × Y . By Lemma 28.26.14 it suffices to prove the
lemma for X × Y . We check (1) and (2) of Definition 28.26.1 for M on X × Y .
Since X and Y are quasi-compact, so is X × Y . Let z ∈ X × Y be a point. Let
x ∈ X and y ∈ Y be the projections. Choose n > 0 and s ∈ Γ(X,L⊗n) such that
Xs is an affine open neighbourhood of x. Choose m > 0 and t ∈ Γ(Y,N⊗m) such
that Yt is an affine open neighbourhood of y. Then r = pr∗

1s⊗ pr∗
2t is a section of

M with (X × Y )r = Xs × Yt. This is an affine open neighbourhood of z and the
proof is complete. □

28.27. Affine and quasi-affine schemes

01QD
Lemma 28.27.1.01QE Let X be a scheme. Then X is quasi-affine if and only if OX is
ample.
Proof. Suppose that X is quasi-affine. Set A = Γ(X,OX). Consider the open
immersion

j : X −→ Spec(A)
from Lemma 28.18.4. Note that Spec(A) = Proj(A[T ]), see Constructions, Example
27.8.14. Hence we can apply Lemma 28.26.12 to deduce that OX is ample.
Suppose thatOX is ample. Note that Γ∗(X,OX) ∼= A[T ] as graded rings. Hence the
result follows from Lemmas 28.26.11 and 28.18.4 taking into account that Spec(A) =
Proj(A[T ]) for any ring A as seen above. □
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Lemma 28.27.2.0BCK Let X be a quasi-affine scheme. For any quasi-compact immersion
i : X ′ → X the scheme X ′ is quasi-affine.
Proof. This can be proved directly without making use of the material on ample
invertible sheaves; we urge the reader to do this on a napkin. Since X is quasi-
affine, we have that OX is ample by Lemma 28.27.1. Then OX′ is ample by Lemma
28.26.14. Then X ′ is quasi-affine by Lemma 28.27.1. □

Lemma 28.27.3.01QF Let X be a scheme. Suppose that there exist finitely many ele-
ments f1, . . . , fn ∈ Γ(X,OX) such that

(1) each Xfi is an affine open of X, and
(2) the ideal generated by f1, . . . , fn in Γ(X,OX) is equal to the unit ideal.

Then X is affine.
Proof. Assume we have f1, . . . , fn as in the lemma. We may write 1 =

∑
gifi for

some gj ∈ Γ(X,OX) and hence it is clear that X =
⋃
Xfi . (The fi’s cannot all

vanish at a point.) Since each Xfi is quasi-compact (being affine) it follows that
X is quasi-compact. Hence we see that X is quasi-affine by Lemma 28.27.1 above.
Consider the open immersion

j : X → Spec(Γ(X,OX)),
see Lemma 28.18.4. The inverse image of the standard open D(fi) on the right
hand side is equal to Xfi on the left hand side and the morphism j induces an
isomorphism Xfi

∼= D(fi), see Lemma 28.18.3. Since the fi generate the unit ideal
we see that Spec(Γ(X,OX)) =

⋃
i=1,...,nD(fi). Thus j is an isomorphism. □

28.28. Quasi-coherent sheaves and ample invertible sheaves

01QG Theme of this section: in the presence of an ample invertible sheaf every quasi-
coherent sheaf comes from a graded module.
Situation 28.28.1.01QH Let X be a scheme. Let L be an ample invertible sheaf on
X. Set S = Γ∗(X,L) as a graded ring. Set Y = Proj(S). Let f : X → Y be
the canonical morphism of Lemma 28.26.9. It comes equipped with a Z-graded
OX -algebra map

⊕
f∗OY (n)→

⊕
L⊗n.

The following lemma is really a special case of the next lemma but it seems like a
good idea to point out its validity first.
Lemma 28.28.2.01QI In Situation 28.28.1. The canonical morphism f : X → Y maps
X into the open subscheme W = W1 ⊂ Y where OY (1) is invertible and where
all multiplication maps OY (n) ⊗OY

OY (m) → OY (n + m) are isomorphisms (see
Constructions, Lemma 27.10.4). Moreover, the maps f∗OY (n) → L⊗n are all
isomorphisms.
Proof. By Proposition 28.26.13 there exists an integer n0 such that L⊗n is globally
generated for all n ≥ n0. Let x ∈ X be a point. By the above we can find a ∈ Sn0

and b ∈ Sn0+1 such that a and b do not vanish at x. Hence f(x) ∈ D+(a)∩D+(b) =
D+(ab). By Constructions, Lemma 27.10.4 we see that f(x) ∈ W1 as desired. By
Constructions, Lemma 27.14.1 which was used in the construction of the map f
the maps f∗OY (n0) → L⊗n0 and f∗OY (n0 + 1) → L⊗n0+1 are isomorphisms in a
neighbourhood of x. By compatibility with the algebra structure and the fact that
f maps into W we conclude all the maps f∗OY (n) → L⊗n are isomorphisms in a
neighbourhood of x. Hence we win. □
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Recall from Modules, Definition 17.25.7 that given a locally ringed space X, an
invertible sheaf L, and a OX -module F we have the graded Γ∗(X,L)-module

Γ∗(X,L,F) =
⊕

n∈Z
Γ(X,F ⊗OX

L⊗n).

The following lemma says that, in Situation 28.28.1, we can recover a quasi-coherent
OX -module F from this graded module. Take a look also at Constructions, Lemma
27.13.8 where we prove this lemma in the special case X = Pn

R.
Lemma 28.28.3.01QJ In Situation 28.28.1. Let F be a quasi-coherent sheaf on X. Set
M = Γ∗(X,L,F) as a graded S-module. There are isomorphisms

f∗M̃ −→ F

functorial in F such that M0 → Γ(Proj(S), M̃)→ Γ(X,F) is the identity map.
Proof. Let s ∈ S+ be homogeneous such that Xs is affine open in X. Recall
that M̃ |D+(s) corresponds to the S(s)-module M(s), see Constructions, Lemma
27.8.4. Recall that f−1(D+(s)) = Xs. As X carries an ample invertible sheaf
it is quasi-compact and quasi-separated, see Section 28.26. By Lemma 28.17.2
there is a canonical isomorphism M(s) = Γ∗(X,L,F)(s) → Γ(Xs,F). Since F is
quasi-coherent this leads to a canonical isomorphism

f∗M̃ |Xs → F|Xs
Since L is ample on X we know that X is covered by the affine opens of the form
Xs. Hence it suffices to prove that the displayed maps glue on overlaps. Proof of
this is omitted. □

Remark 28.28.4.01QK With assumptions and notation of Lemma 28.28.3. Denote the
displayed map of the lemma by θF . Note that the isomorphism f∗OY (n) → L⊗n

of Lemma 28.28.2 is just θL⊗n . Consider the multiplication maps

M̃ ⊗OY
OY (n) −→ M̃(n)

see Constructions, Equation (27.10.1.5). Pull this back to X and consider

f∗M̃ ⊗OX
f∗OY (n) //

θF ⊗θL⊗n

��

f∗M̃(n)

θF⊗L⊗n

��
F ⊗ L⊗n id // F ⊗ L⊗n

Here we have used the obvious identification M(n) = Γ∗(X,L,F ⊗ L⊗n). This
diagram commutes. Proof omitted.
It should be possible to deduce the following lemma from Lemma 28.28.3 (or con-
versely) but it seems simpler to just repeat the proof.
Lemma 28.28.5.0AG5 Let S be a graded ring such that X = Proj(S) is quasi-compact.
Let F be a quasi-coherent OX -module. Set M =

⊕
n∈Z Γ(X,F(n)) as a graded

S-module, see Constructions, Section 27.10. The map
M̃ −→ F

of Constructions, Lemma 27.10.7 is an isomorphism. If X is covered by standard
opens D+(f) where f has degree 1, then the induced maps Mn → Γ(X,F(n)) are
the identity maps.
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Proof. Since X is quasi-compact we can find homogeneous elements f1, . . . , fn ∈ S
of positive degrees such that X = D+(f1) ∪ . . . ∪D+(fn). Let d be the least com-
mon multiple of the degrees of f1, . . . , fn. After replacing fi by a power we may
assume that each fi has degree d. Then we see that L = OX(d) is invertible, the
multiplication maps OX(ad)⊗OX(bd)→ OX((a+b)d) are isomorphisms, and each
fi determines a global section si of L such that Xsi = D+(fi), see Constructions,
Lemmas 27.10.4 and 27.10.5. Thus Γ(X,F(ad)) = Γ(X,F ⊗ L⊗a). Recall that
M̃ |D+(fi) corresponds to the S(fi)-module M(fi), see Constructions, Lemma 27.8.4.
Since the degree of fi is d, the isomorphism class of M(fi) depends only on the
homogeneous summands of M of degree divisible by d. More precisely, the isomor-
phism class of M(fi) depends only on the graded Γ∗(X,L)-module Γ∗(X,L,F) and
the image si of fi in Γ∗(X,L). The scheme X is quasi-compact by assumption and
separated by Constructions, Lemma 27.8.8. By Lemma 28.17.2 there is a canonical
isomorphism

M(fi) = Γ∗(X,L,F)(si) → Γ(Xsi ,F).
The construction of the map in Constructions, Lemma 27.10.7 then shows that it is
an isomorphism over D+(fi) hence an isomorphism as X is covered by these opens.
We omit the proof of the final statement. □

28.29. Finding suitable affine opens

01ZU In this section we collect some results on the existence of affine opens in more and
less general situations.
Lemma 28.29.1.01ZV Let X be a quasi-separated scheme. Let Z1, . . . , Zn be pairwise
distinct irreducible components of X, see Topology, Section 5.8. Let ηi ∈ Zi be
their generic points, see Schemes, Lemma 26.11.1. There exist affine open neigh-
bourhoods ηi ∈ Ui such that Ui∩Uj = ∅ for all i ̸= j. In particular, U = U1∪. . .∪Un
is an affine open containing all of the points η1, . . . , ηn.
Proof. Let Vi be any affine open containing ηi and disjoint from the closed set Z1∪
. . . Ẑi . . . ∪Zn. Since X is quasi-separated for each i the union Wi =

⋃
j,j ̸=i Vi ∩ Vj

is a quasi-compact open of Vi not containing ηi. We can find open neighbourhoods
Ui ⊂ Vi containing ηi and disjoint from Wi by Algebra, Lemma 10.26.4. Finally, U
is affine since it is the spectrum of the ring R1 × . . .×Rn where Ri = OX(Ui), see
Schemes, Lemma 26.6.8. □

Remark 28.29.2.01ZW Lemma 28.29.1 above is false if X is not quasi-separated. Here
is an example. Take R = Q[x, y1, y2, . . .]/((x − i)yi). Consider the minimal prime
ideal p = (y1, y2, . . .) of R. Glue two copies of Spec(R) along the (not quasi-
compact) open Spec(R) \V (p) to get a scheme X (glueing as in Schemes, Example
26.14.3). Then the two maximal points of X corresponding to p are not contained
in a common affine open. The reason is that any open of Spec(R) containing p
contains infinitely many of the “lines” x = i, yj = 0, j ̸= i with parameter yi.
Details omitted.
Notwithstanding the example above, for “most” finite sets of irreducible closed
subsets one can apply Lemma 28.29.1 above, at least if X is quasi-compact. This
is true because X contains a dense open which is separated.
Lemma 28.29.3.03J1 Let X be a quasi-compact scheme. There exists a dense open
V ⊂ X which is separated.
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Proof. Say X =
⋃
i=1,...,n Ui is a union of n affine open subschemes. We will prove

the lemma by induction on n. It is trivial for n = 1. Let V ′ ⊂
⋃
i=1,...,n−1 Ui be a

separated dense open subscheme, which exists by induction hypothesis. Consider
V = V ′ ⨿ (Un \ V ′).

It is clear that V is separated and a dense open subscheme of X. □

It turns out that, even if X is quasi-separated as well as quasi-compact, there does
not exist a separated, quasi-compact dense open, see Examples, Lemma 110.26.2.
Here is a slight refinement of Lemma 28.29.1 above.

Lemma 28.29.4.01ZX Let X be a quasi-separated scheme. Let Z1, . . . , Zn be pairwise
distinct irreducible components of X. Let ηi ∈ Zi be their generic points. Let
x ∈ X be arbitrary. There exists an affine open U ⊂ X containing x and all the ηi.

Proof. Suppose that x ∈ Z1 ∩ . . .∩Zr and x ̸∈ Zr+1, . . . , Zn. Then we may choose
an affine open W ⊂ X such that x ∈W and W ∩ Zi = ∅ for i = r + 1, . . . , n. Note
that clearly ηi ∈W for i = 1, . . . , r. By Lemma 28.29.1 we may choose affine opens
Ui ⊂ X which are pairwise disjoint such that ηi ∈ Ui for i = r + 1, . . . , n. Since X
is quasi-separated the opens W ∩ Ui are quasi-compact and do not contain ηi for
i = r + 1, . . . , n. Hence by Algebra, Lemma 10.26.4 we may shrink Ui such that
W ∩Ui = ∅ for i = r+ 1, . . . , n. Then the union U = W ∪

⋃
i=r+1,...,n Ui is disjoint

and hence (by Schemes, Lemma 26.6.8) a suitable affine open. □

Lemma 28.29.5.01ZY Let X be a scheme. Assume either
(1) The scheme X is quasi-affine.
(2) The scheme X is isomorphic to a locally closed subscheme of an affine

scheme.
(3) There exists an ample invertible sheaf on X.
(4) The scheme X is isomorphic to a locally closed subscheme of Proj(S) for

some graded ring S.
Then for any finite subset E ⊂ X there exists an affine open U ⊂ X with E ⊂ U .

Proof. By Properties, Definition 28.18.1 a quasi-affine scheme is a quasi-compact
open subscheme of an affine scheme. Any affine scheme Spec(R) is isomorphic to
Proj(R[X]) where R[X] is graded by setting deg(X) = 1. By Proposition 28.26.13
if X has an ample invertible sheaf then X is isomorphic to an open subscheme of
Proj(S) for some graded ring S. Hence, it suffices to prove the lemma in case (4).
(We urge the reader to prove case (2) directly for themselves.)
Thus assume X ⊂ Proj(S) is a locally closed subscheme where S is some graded
ring. Let T = X \ X. Recall that the standard opens D+(f) form a basis of the
topology on Proj(S). Since E is finite we may choose finitely many homogeneous
elements fi ∈ S+ such that

E ⊂ D+(f1) ∪ . . . ∪D+(fn) ⊂ Proj(S) \ T
Suppose that E = {p1, . . . , pm} as a subset of Proj(S). Consider the ideal I =
(f1, . . . , fn) ⊂ S. Since I ̸⊂ pj for all j = 1, . . . ,m we see from Algebra, Lemma
10.57.6 that there exists a homogeneous element f ∈ I, f ̸∈ pj for all j = 1, . . . ,m.
Then E ⊂ D+(f) ⊂ D+(f1) ∪ . . . ∪D+(fn). Since D+(f) does not meet T we see
that X∩D+(f) is a closed subscheme of the affine scheme D+(f), hence is an affine
open of X as desired. □
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Lemma 28.29.6.09NV Let X be a scheme. Let L be an ample invertible sheaf on X. Let

E ⊂W ⊂ X

with E finite and W open in X. Then there exists an n > 0 and a section s ∈
Γ(X,L⊗n) such that Xs is affine and E ⊂ Xs ⊂W .

Proof. The reader can modify the proof of Lemma 28.29.5 to prove this lemma;
we will instead deduce the lemma from it. By Lemma 28.29.5 we can choose an
affine open U ⊂ W such that E ⊂ U . Consider the graded ring S = Γ∗(X,L) =⊕

n≥0 Γ(X,L⊗n). For each x ∈ E let px ⊂ S be the graded ideal of sections
vanishing at x. It is clear that px is a prime ideal and since some power of L is
globally generated, it is clear that S+ ̸⊂ px. Let I ⊂ S be the graded ideal of
sections vanishing on all points of X \ U . Since the sets Xs form a basis for the
topology we see that I ̸⊂ px for all x ∈ E. By (graded) prime avoidance (Algebra,
Lemma 10.57.6) we can find s ∈ I homogeneous with s ̸∈ px for all x ∈ E. Then
E ⊂ Xs ⊂ U and Xs is affine by Lemma 28.26.4. □

Lemma 28.29.7.0F20 LetX be a quasi-affine scheme. Let L be an invertibleOX -module.
Let E ⊂W ⊂ X with E finite and W open. Then there exists an s ∈ Γ(X,L) such
that Xs is affine and E ⊂ Xs ⊂W .

Proof. The proof of this lemma has a lot in common with the proof of Algebra,
Lemma 10.15.2. Say E = {x1, . . . , xn}. If E = W = ∅, then s = 0 works. If W ̸= ∅,
then we may assume E ̸= ∅ by adding a point if necessary. Thus we may assume
n ≥ 1. We will prove the lemma by induction on n.

Base case: n = 1. After replacing W by an affine open neighbourhood of x1 in W ,
we may assume W is affine. Combining Lemmas 28.27.1 and Proposition 28.26.13
we see that every quasi-coherent OX -module is globally generated. Hence there
exists a global section s of L which does not vanish at x1. On the other hand,
let Z ⊂ X be the reduced induced closed subscheme on X \W . Applying global
generation to the quasi-coherent ideal sheaf I of Z we find a global section f of I
which does not vanish at x1. Then s′ = fs is a global section of L which does not
vanish at x1 such that Xs′ ⊂W . Then Xs′ is affine by Lemma 28.26.4.

Induction step for n > 1. If there is a specialization xi ⇝ xj for i ̸= j, then it
suffices to prove the lemma for {x1, . . . , xn} \ {xi} and we are done by induction.
Thus we may assume there are no specializations among the xi. By either Lemma
28.29.5 or Lemma 28.29.6 we may assume W is affine. By induction we can find
a global section s of L such that Xs ⊂ W is affine and contains x1, . . . , xn−1. If
xn ∈ Xs then we are done. Assume s is zero at xn. By the case n = 1 we can find
a global section s′ of L with {xn} ⊂ Xs′ ⊂ W \ {x1, . . . , xn−1}. Here we use that
xn is not a specialization of x1, . . . , xn−1. Then s+ s′ is a global section of L which
is nonvanishing at x1, . . . , xn with Xs+s′ ⊂W and we conclude as before. □

Lemma 28.29.8.0BX3 Let X be a scheme and x ∈ X a point. There exists an affine
open neighbourhood U ⊂ X of x such that the canonical map OX(U) → OX,x is
injective in each of the following cases:

(1) X is integral,
(2) X is locally Noetherian,
(3) X is reduced and has a finite number of irreducible components.
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Proof. After translation into algebra, this follows from Algebra, Lemma 10.31.9.
□
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CHAPTER 29

Morphisms of Schemes

01QL 29.1. Introduction

01QM In this chapter we introduce some types of morphisms of schemes. A basic reference
is [DG67].

29.2. Closed immersions

01QN In this section we elucidate some of the results obtained previously on closed im-
mersions of schemes. Recall that a morphism of schemes i : Z → X is defined to
be a closed immersion if (a) i induces a homeomorphism onto a closed subset of
X, (b) i♯ : OX → i∗OZ is surjective, and (c) the kernel of i♯ is locally generated
by sections, see Schemes, Definitions 26.10.2 and 26.4.1. It turns out that, given
that Z and X are schemes, there are many different ways of characterizing a closed
immersion.

Lemma 29.2.1.01QO Let i : Z → X be a morphism of schemes. The following are
equivalent:

(1) The morphism i is a closed immersion.
(2) For every affine open Spec(R) = U ⊂ X, there exists an ideal I ⊂ R such

that i−1(U) = Spec(R/I) as schemes over U = Spec(R).
(3) There exists an affine open covering X =

⋃
j∈J Uj , Uj = Spec(Rj) and for

every j ∈ J there exists an ideal Ij ⊂ Rj such that i−1(Uj) = Spec(Rj/Ij)
as schemes over Uj = Spec(Rj).

(4) The morphism i induces a homeomorphism of Z with a closed subset of
X and i♯ : OX → i∗OZ is surjective.

(5) The morphism i induces a homeomorphism of Z with a closed subset of
X, the map i♯ : OX → i∗OZ is surjective, and the kernel Ker(i♯) ⊂ OX is
a quasi-coherent sheaf of ideals.

(6) The morphism i induces a homeomorphism of Z with a closed subset of
X, the map i♯ : OX → i∗OZ is surjective, and the kernel Ker(i♯) ⊂ OX is
a sheaf of ideals which is locally generated by sections.

Proof. Condition (6) is our definition of a closed immersion, see Schemes, Defini-
tions 26.4.1 and 26.10.2. So (6) ⇔ (1). We have (1) ⇒ (2) by Schemes, Lemma
26.10.1. Trivially (2) ⇒ (3).

Assume (3). Each of the morphisms Spec(Rj/Ij)→ Spec(Rj) is a closed immersion,
see Schemes, Example 26.8.1. Hence i−1(Uj) → Uj is a homeomorphism onto its
image and i♯|Uj is surjective. Hence i is a homeomorphism onto its image and i♯ is
surjective since this may be checked locally. We conclude that (3) ⇒ (4).

2388
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The implication (4) ⇒ (1) is Schemes, Lemma 26.24.2. The implication (5) ⇒ (6)
is trivial. And the implication (6)⇒ (5) follows from Schemes, Lemma 26.10.1. □

Lemma 29.2.2.01QP Let X be a scheme. Let i : Z → X and i′ : Z ′ → X be closed
immersions and consider the ideal sheaves I = Ker(i♯) and I ′ = Ker((i′)♯) of OX .

(1) The morphism i : Z → X factors as Z → Z ′ → X for some a : Z → Z ′ if
and only if I ′ ⊂ I. If this happens, then a is a closed immersion.

(2) We have Z ∼= Z ′ over X if and only if I = I ′.

Proof. This follows from our discussion of closed subspaces in Schemes, Section 26.4
especially Schemes, Lemmas 26.4.5 and 26.4.6. It also follows in a straightforward
way from characterization (3) in Lemma 29.2.1 above. □

Lemma 29.2.3.01QQ Let X be a scheme. Let I ⊂ OX be a sheaf of ideals. The following
are equivalent:

(1) I is locally generated by sections as a sheaf of OX -modules,
(2) I is quasi-coherent as a sheaf of OX -modules, and
(3) there exists a closed immersion i : Z → X of schemes whose corresponding

sheaf of ideals Ker(i♯) is equal to I.

Proof. The equivalence of (1) and (2) is immediate from Schemes, Lemma 26.10.1.
If (1) holds, then there is a closed subspace i : Z → X with I = Ker(i♯) by Schemes,
Definition 26.4.4 and Example 26.4.3. By Schemes, Lemma 26.10.1 this is a closed
immersion of schemes and (3) holds. Conversely, if (3) holds, then (2) holds by
Schemes, Lemma 26.10.1 (which applies because a closed immersion of schemes is
a fortiori a closed immersion of locally ringed spaces). □

Lemma 29.2.4.01QR The base change of a closed immersion is a closed immersion.

Proof. See Schemes, Lemma 26.18.2. □

Lemma 29.2.5.01QS A composition of closed immersions is a closed immersion.

Proof. We have seen this in Schemes, Lemma 26.24.3, but here is another proof.
Namely, it follows from the characterization (3) of closed immersions in Lemma
29.2.1. Since if I ⊂ R is an ideal, and J ⊂ R/I is an ideal, then J = J/I for some
ideal J ⊂ R which contains I and (R/I)/J = R/J . □

Lemma 29.2.6.01QT A closed immersion is quasi-compact.

Proof. This lemma is a duplicate of Schemes, Lemma 26.19.5. □

Lemma 29.2.7.01QU A closed immersion is separated.

Proof. This lemma is a special case of Schemes, Lemma 26.23.8. □

29.3. Immersions

07RJ In this section we collect some facts on immersions.

Lemma 29.3.1.07RK Let Z → Y → X be morphisms of schemes.
(1) If Z → X is an immersion, then Z → Y is an immersion.
(2) If Z → X is a quasi-compact immersion and Y → X is quasi-separated,

then Z → Y is a quasi-compact immersion.

https://stacks.math.columbia.edu/tag/01QP
https://stacks.math.columbia.edu/tag/01QQ
https://stacks.math.columbia.edu/tag/01QR
https://stacks.math.columbia.edu/tag/01QS
https://stacks.math.columbia.edu/tag/01QT
https://stacks.math.columbia.edu/tag/01QU
https://stacks.math.columbia.edu/tag/07RK


29.3. IMMERSIONS 2390

(3) If Z → X is a closed immersion and Y → X is separated, then Z → Y is
a closed immersion.

Proof. In each case the proof is to contemplate the commutative diagram

Z //

##

Y ×X Z //

��

Z

��
Y // X

where the composition of the top horizontal arrows is the identity. Let us prove
(1). The first horizontal arrow is a section of Y ×X Z → Z, whence an immersion
by Schemes, Lemma 26.21.11. The arrow Y ×X Z → Y is a base change of Z → X
hence an immersion (Schemes, Lemma 26.18.2). Finally, a composition of immer-
sions is an immersion (Schemes, Lemma 26.24.3). This proves (1). The other two
results are proved in exactly the same manner. □

Lemma 29.3.2.01QV Let h : Z → X be an immersion. If h is quasi-compact, then we
can factor h = i ◦ j with j : Z → Z an open immersion and i : Z → X a closed
immersion.

Proof. Note that h is quasi-compact and quasi-separated (see Schemes, Lemma
26.23.8). Hence h∗OZ is a quasi-coherent sheaf of OX -modules by Schemes, Lemma
26.24.1. This implies that I = Ker(OX → h∗OZ) is a quasi-coherent sheaf of ideals,
see Schemes, Section 26.24. Let Z ⊂ X be the closed subscheme corresponding to I,
see Lemma 29.2.3. By Schemes, Lemma 26.4.6 the morphism h factors as h = i ◦ j
where i : Z → X is the inclusion morphism. To see that j is an open immersion,
choose an open subscheme U ⊂ X such that h induces a closed immersion of Z
into U . Then it is clear that I|U is the sheaf of ideals corresponding to the closed
immersion Z → U . Hence we see that Z = Z ∩ U . □

Lemma 29.3.3.03DQ Let h : Z → X be an immersion. If Z is reduced, then we can
factor h = i ◦ j with j : Z → Z an open immersion and i : Z → X a closed
immersion.

Proof. Let Z ⊂ X be the closure of h(Z) with the reduced induced closed subscheme
structure, see Schemes, Definition 26.12.5. By Schemes, Lemma 26.12.7 the mor-
phism h factors as h = i ◦ j with i : Z → X the inclusion morphism and j : Z → Z.
From the definition of an immersion we see there exists an open subscheme U ⊂ X
such that h factors through a closed immersion into U . Hence Z ∩U and h(Z) are
reduced closed subschemes of U with the same underlying closed set. Hence by the
uniqueness in Schemes, Lemma 26.12.4 we see that h(Z) ∼= Z ∩U . So j induces an
isomorphism of Z with Z ∩ U . In other words j is an open immersion. □

Example 29.3.4.01QW Here is an example of an immersion which is not a composition
of an open immersion followed by a closed immersion. Let k be a field. Let X =
Spec(k[x1, x2, x3, . . .]). Let U =

⋃∞
n=1 D(xn). Then U → X is an open immersion.

Consider the ideals
In = (xn1 , xn2 , . . . , xnn−1, xn − 1, xn+1, xn+2, . . .) ⊂ k[x1, x2, x3, . . .][1/xn].

Note that Ink[x1, x2, x3, . . .][1/xnxm] = (1) for any m ̸= n. Hence the quasi-
coherent ideals Ĩn on D(xn) agree on D(xnxm), namely Ĩn|D(xnxm) = OD(xnxm) if
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n ̸= m. Hence these ideals glue to a quasi-coherent sheaf of ideals I ⊂ OU . Let
Z ⊂ U be the closed subscheme corresponding to I. Thus Z → X is an immersion.

We claim that we cannot factor Z → X as Z → Z → X, where Z → X is closed and
Z → Z is open. Namely, Z would have to be defined by an ideal I ⊂ k[x1, x2, x3, . . .]
such that In = Ik[x1, x2, x3, . . .][1/xn]. But the only element f ∈ k[x1, x2, x3, . . .]
which ends up in all In is 0! Hence I does not exist.

Lemma 29.3.5.0FCZ Let f : Y → X be a morphism of schemes. If for all y ∈ Y

there is an open subscheme f(y) ∈ U ⊂ X such that f |f−1(U) : f−1(U) → U is an
immersion, then f is an immersion.

Proof. This statement follows readily from the discussion of closed subschemes at
the end of Schemes, Section 26.10 but we will also give a detailed proof. Let Z ⊂ X
be the closure of f(Y ). Since taking closures commutes with restricting to opens,
we see from the assumption that f(Y ) ⊂ Z is open. Hence Z ′ = Z \ f(Y ) is closed.
Hence X ′ = X \Z ′ is an open subscheme of X and f factors as f : Y → X ′ followed
by the inclusion. If y ∈ Y and U ⊂ X is as in the statement of the lemma, then
U ′ = X ′ ∩ U is an open neighbourhood of f ′(y) such that (f ′)−1(U ′) → U ′ is an
immersion (Lemma 29.3.1) with closed image. Hence it is a closed immersion, see
Schemes, Lemma 26.10.4. Since being a closed immersion is local on the target (for
example by Lemma 29.2.1) we conclude that f ′ is a closed immersion as desired. □

29.4. Closed immersions and quasi-coherent sheaves

01QX The following lemma finally does for quasi-coherent sheaves on schemes what Mod-
ules, Lemma 17.6.1 does for abelian sheaves. See also the discussion in Modules,
Section 17.13.

Lemma 29.4.1.01QY Let i : Z → X be a closed immersion of schemes. Let I ⊂ OX be
the quasi-coherent sheaf of ideals cutting out Z. The functor

i∗ : QCoh(OZ) −→ QCoh(OX)

is exact, fully faithful, with essential image those quasi-coherent OX -modules G
such that IG = 0.

Proof. A closed immersion is quasi-compact and separated, see Lemmas 29.2.6 and
29.2.7. Hence Schemes, Lemma 26.24.1 applies and the pushforward of a quasi-
coherent sheaf on Z is indeed a quasi-coherent sheaf on X.

By Modules, Lemma 17.13.4 the functor i∗ is fully faithful.

Now we turn to the description of the essential image of the functor i∗. We have
I(i∗F) = 0 for any quasi-coherent OZ-module, for example by Modules, Lemma
17.13.4. Next, suppose that G is any quasi-coherent OX -module such that IG = 0.
It suffices to show that the canonical map

G −→ i∗i
∗G

is an isomorphism1. In the case of schemes and quasi-coherent modules, working
affine locally on X and using Lemma 29.2.1 and Schemes, Lemma 26.7.3 it suffices

1This was proved in a more general situation in the proof of Modules, Lemma 17.13.4.
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to prove the following algebraic statement: Given a ring R, an ideal I and an
R-module N such that IN = 0 the canonical map

N −→ N ⊗R R/I, n 7−→ n⊗ 1
is an isomorphism of R-modules. Proof of this easy algebra fact is omitted. □

Let i : Z → X be a closed immersion. Because of the lemma above we often, by
abuse of notation, denote F the sheaf i∗F on X.

Lemma 29.4.2.01QZ Let X be a scheme. Let F be a quasi-coherent OX -module. Let
G ⊂ F be a OX -submodule. There exists a unique quasi-coherent OX -submodule
G′ ⊂ G with the following property: For every quasi-coherent OX -module H the
map

HomOX
(H,G′) −→ HomOX

(H,G)
is bijective. In particular G′ is the largest quasi-coherent OX -submodule of F
contained in G.

Proof. Let Ga, a ∈ A be the set of quasi-coherent OX -submodules contained in G.
Then the image G′ of ⊕

a∈A
Ga −→ F

is quasi-coherent as the image of a map of quasi-coherent sheaves on X is quasi-
coherent and since a direct sum of quasi-coherent sheaves is quasi-coherent, see
Schemes, Section 26.24. The module G′ is contained in G. Hence this is the largest
quasi-coherent OX -module contained in G.
To prove the formula, let H be a quasi-coherent OX -module and let α : H → G be
an OX -module map. The image of the composition H → G → F is quasi-coherent
as the image of a map of quasi-coherent sheaves. Hence it is contained in G′. Hence
α factors through G′ as desired. □

Lemma 29.4.3.01R0 Let i : Z → X be a closed immersion of schemes. There is a
functor2 i! : QCoh(OX) → QCoh(OZ) which is a right adjoint to i∗. (Compare
Modules, Lemma 17.6.3.)

Proof. Given quasi-coherent OX -module G we consider the subsheaf HZ(G) of G
of local sections annihilated by I. By Lemma 29.4.2 there is a canonical largest
quasi-coherent OX -submodule HZ(G)′. By construction we have

HomOX
(i∗F ,HZ(G)′) = HomOX

(i∗F ,G)
for any quasi-coherent OZ-module F . Hence we can set i!G = i∗(HZ(G)′). Details
omitted. □

Using the 1-to-1 corresponding between quasi-coherent sheaves of ideals and closed
subschemes (see Lemma 29.2.3) we can define scheme theoretic intersections and
unions of closed subschemes.

Definition 29.4.4.0C4H Let X be a scheme. Let Z, Y ⊂ X be closed subschemes corre-
sponding to quasi-coherent ideal sheaves I,J ⊂ OX . The scheme theoretic inter-
section of Z and Y is the closed subscheme of X cut out by I + J . The scheme
theoretic union of Z and Y is the closed subscheme of X cut out by I ∩ J .

2This is likely nonstandard notation.
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Lemma 29.4.5.0C4I Let X be a scheme. Let Z, Y ⊂ X be closed subschemes. Let Z∩Y
be the scheme theoretic intersection of Z and Y . Then Z ∩Y → Z and Z ∩Y → Y
are closed immersions and

Z ∩ Y //

��

Z

��
Y // X

is a cartesian diagram of schemes, i.e., Z ∩ Y = Z ×X Y .
Proof. The morphisms Z∩Y → Z and Z∩Y → Y are closed immersions by Lemma
29.2.2. Let U = Spec(A) be an affine open of X and let Z∩U and Y ∩U correspond
to the ideals I ⊂ A and J ⊂ A. Then Z ∩ Y ∩ U corresponds to I + J ⊂ A. Since
A/I ⊗A A/J = A/(I + J) we see that the diagram is cartesian by our description
of fibre products of schemes in Schemes, Section 26.17. □

Lemma 29.4.6.0C4J Let S be a scheme. Let X,Y ⊂ S be closed subschemes. Let X∪Y
be the scheme theoretic union of X and Y . Let X ∩ Y be the scheme theoretic
intersection of X and Y . Then X → X ∪Y and Y → X ∪Y are closed immersions,
there is a short exact sequence

0→ OX∪Y → OX ×OY → OX∩Y → 0
of OS-modules, and the diagram

X ∩ Y //

��

X

��
Y // X ∪ Y

is cocartesian in the category of schemes, i.e., X ∪ Y = X ⨿X∩Y Y .
Proof. The morphismsX → X∪Y and Y → X∪Y are closed immersions by Lemma
29.2.2. In the short exact sequence we use the equivalence of Lemma 29.4.1 to think
of quasi-coherent modules on closed subschemes of S as quasi-coherent modules on
S. For the first map in the sequence we use the canonical maps OX∪Y → OX and
OX∪Y → OY and for the second map we use the canonical map OX → OX∩Y and
the negative of the canonical map OY → OX∩Y . Then to check exactness we may
work affine locally. Let U = Spec(A) be an affine open of S and let X ∩ U and
Y ∩ U correspond to the ideals I ⊂ A and J ⊂ A. Then (X ∪ Y ) ∩ U corresponds
to I ∩ J ⊂ A and X ∩ Y ∩ U corresponds to I + J ⊂ A. Thus exactness follows
from the exactness of

0→ A/I ∩ J → A/I ×A/J → A/(I + J)→ 0
To show the diagram is cocartesian, suppose we are given a scheme T and mor-
phisms of schemes f : X → T , g : Y → T agreeing as morphisms X ∩ Y → T .
Goal: Show there exists a unique morphism h : X ∪ Y → T agreeing with f and g.
To construct h we may work affine locally on X ∪ Y , see Schemes, Section 26.14.
If s ∈ X, s ̸∈ Y , then X → X ∪ Y is an isomorphism in a neighbourhood of s and
it is clear how to construct h. Similarly for s ∈ Y , s ̸∈ X. For s ∈ X ∩ Y we can
pick an affine open V = Spec(B) ⊂ T containing f(s) = g(s). Then we can choose
an affine open U = Spec(A) ⊂ S containing s such that f(X ∩U) and g(Y ∩U) are
contained in V . The morphisms f |X∩U and g|Y ∩V into V correspond to ring maps

B → A/I and B → A/J
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which agree as maps into A/(I + J). By the short exact sequence displayed above
there is a unique lift of these ring homomorphism to a ring map B → A/I ∩ J as
desired. □

29.5. Supports of modules

056H In this section we collect some elementary results on supports of quasi-coherent
modules on schemes. Recall that the support of a sheaf of modules has been defined
in Modules, Section 17.5. On the other hand, the support of a module was defined
in Algebra, Section 10.62. These match.

Lemma 29.5.1.056I Let X be a scheme. Let F be a quasi-coherent sheaf on X. Let
Spec(A) = U ⊂ X be an affine open, and set M = Γ(U,F). Let x ∈ U , and let
p ⊂ A be the corresponding prime. The following are equivalent

(1) p is in the support of M , and
(2) x is in the support of F .

Proof. This follows from the equality Fx = Mp, see Schemes, Lemma 26.5.4 and
the definitions. □

Lemma 29.5.2.05AC Let X be a scheme. Let F be a quasi-coherent sheaf on X. The
support of F is closed under specialization.

Proof. If x′ ⇝ x is a specialization and Fx = 0 then Fx′ is zero, as Fx′ is a
localization of the module Fx. Hence the complement of Supp(F) is closed under
generalization. □

For finite type quasi-coherent modules the support is closed, can be checked on
fibres, and commutes with base change.

Lemma 29.5.3.056J Let F be a finite type quasi-coherent module on a scheme X. Then
(1) The support of F is closed.
(2) For x ∈ X we have

x ∈ Supp(F)⇔ Fx ̸= 0⇔ Fx ⊗OX,x
κ(x) ̸= 0.

(3) For any morphism of schemes f : Y → X the pullback f∗F is of finite
type as well and we have Supp(f∗F) = f−1(Supp(F)).

Proof. Part (1) is a reformulation of Modules, Lemma 17.9.6. You can also combine
Lemma 29.5.1, Properties, Lemma 28.16.1, and Algebra, Lemma 10.40.5 to see this.
The first equivalence in (2) is the definition of support, and the second equivalence
follows from Nakayama’s lemma, see Algebra, Lemma 10.20.1. Let f : Y → X be a
morphism of schemes. Note that f∗F is of finite type by Modules, Lemma 17.9.2.
For the final assertion, let y ∈ Y with image x ∈ X. Recall that

(f∗F)y = Fx ⊗OX,x
OY,y,

see Sheaves, Lemma 6.26.4. Hence (f∗F)y⊗κ(y) is nonzero if and only if Fx⊗κ(x)
is nonzero. By (2) this implies x ∈ Supp(F) if and only if y ∈ Supp(f∗F), which is
the content of assertion (3). □

Lemma 29.5.4.05JU Let F be a finite type quasi-coherent module on a scheme X. There
exists a smallest closed subscheme i : Z → X such that there exists a quasi-coherent
OZ-module G with i∗G ∼= F . Moreover:
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(1) If Spec(A) ⊂ X is any affine open, and F|Spec(A) = M̃ then Z∩Spec(A) =
Spec(A/I) where I = AnnA(M).

(2) The quasi-coherent sheaf G is unique up to unique isomorphism.
(3) The quasi-coherent sheaf G is of finite type.
(4) The support of G and of F is Z.

Proof. Suppose that i′ : Z ′ → X is a closed subscheme which satisfies the descrip-
tion on open affines from the lemma. Then by Lemma 29.4.1 we see that F ∼= i′∗G′

for some unique quasi-coherent sheaf G′ on Z ′. Furthermore, it is clear that Z ′ is
the smallest closed subscheme with this property (by the same lemma). Finally,
using Properties, Lemma 28.16.1 and Algebra, Lemma 10.5.5 it follows that G′ is
of finite type. We have Supp(G′) = Z by Algebra, Lemma 10.40.5. Hence, in order
to prove the lemma it suffices to show that the characterization in (1) actually
does define a closed subscheme. And, in order to do this it suffices to prove that
the given rule produces a quasi-coherent sheaf of ideals, see Lemma 29.2.3. This
comes down to the following algebra fact: If A is a ring, f ∈ A, and M is a finite
A-module, then AnnA(M)f = AnnAf (Mf ). We omit the proof. □

Definition 29.5.5.05JV Let X be a scheme. Let F be a quasi-coherent OX -module of
finite type. The scheme theoretic support of F is the closed subscheme Z ⊂ X
constructed in Lemma 29.5.4.

In this situation we often think of F as a quasi-coherent sheaf of finite type on Z
(via the equivalence of categories of Lemma 29.4.1).

29.6. Scheme theoretic image

01R5 Caution: Some of the material in this section is ultra-general and behaves differently
from what you might expect.

Lemma 29.6.1.01R6 Let f : X → Y be a morphism of schemes. There exists a closed
subscheme Z ⊂ Y such that f factors through Z and such that for any other closed
subscheme Z ′ ⊂ Y such that f factors through Z ′ we have Z ⊂ Z ′.

Proof. Let I = Ker(OY → f∗OX). If I is quasi-coherent then we just take Z to be
the closed subscheme determined by I, see Lemma 29.2.3. This works by Schemes,
Lemma 26.4.6. In general the same lemma requires us to show that there exists a
largest quasi-coherent sheaf of ideals I ′ contained in I. This follows from Lemma
29.4.2. □

Definition 29.6.2.01R7 Let f : X → Y be a morphism of schemes. The scheme theoretic
image of f is the smallest closed subscheme Z ⊂ Y through which f factors, see
Lemma 29.6.1 above.

For a morphism f : X → Y of schemes with scheme theoretic image Z we often
denote f : X → Z the factorization of f through its scheme theoretic image. If the
morphism f is not quasi-compact, then (in general)

(1) the set theoretic inclusion f(X) ⊂ Z is not an equality, i.e., f(X) ⊂ Z is
not a dense subset, and

(2) the construction of the scheme theoretic image does not commute with
restriction to open subschemes to Y .
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In Examples, Section 110.23 the reader finds an example for both phenomena.
These phenomena can arise even for immersions, see Examples, Section 110.25.
However, the next lemma shows that both disasters are avoided when the morphism
is quasi-compact.

Lemma 29.6.3.01R8 Let f : X → Y be a morphism of schemes. Let Z ⊂ Y be the
scheme theoretic image of f . If f is quasi-compact then

(1) the sheaf of ideals I = Ker(OY → f∗OX) is quasi-coherent,
(2) the scheme theoretic image Z is the closed subscheme determined by I,
(3) for any open U ⊂ Y the scheme theoretic image of f |f−1(U) : f−1(U)→ U

is equal to Z ∩ U , and
(4) the image f(X) ⊂ Z is a dense subset of Z, in other words the morphism

X → Z is dominant (see Definition 29.8.1).

Proof. Part (4) follows from part (3). To show (3) it suffices to prove (1) since
the formation of I commutes with restriction to open subschemes of Y . And if (1)
holds then in the proof of Lemma 29.6.1 we showed (2). Thus it suffices to prove
that I is quasi-coherent. Since the property of being quasi-coherent is local we may
assume Y is affine. As f is quasi-compact, we can find a finite affine open covering
X =

⋃
i=1,...,n Ui. Denote f ′ the composition

X ′ =
∐

Ui −→ X −→ Y.

Then f∗OX is a subsheaf of f ′
∗OX′ , and hence I = Ker(OY → f ′

∗OX′). By Schemes,
Lemma 26.24.1 the sheaf f ′

∗OX′ is quasi-coherent on Y . Hence we win. □

Example 29.6.4.056A If A→ B is a ring map with kernel I, then the scheme theoretic
image of Spec(B)→ Spec(A) is the closed subscheme Spec(A/I) of Spec(A). This
follows from Lemma 29.6.3.

If the morphism is quasi-compact, then the scheme theoretic image only adds points
which are specializations of points in the image.

Lemma 29.6.5.02JQ Let f : X → Y be a quasi-compact morphism. Let Z be the scheme
theoretic image of f . Let z ∈ Z3. There exists a valuation ring A with fraction
field K and a commutative diagram

Spec(K) //

��

X

����
Spec(A) // Z // Y

such that the closed point of Spec(A) maps to z. In particular any point of Z is
the specialization of a point of f(X).

Proof. Let z ∈ Spec(R) = V ⊂ Y be an affine open neighbourhood of z. By
Lemma 29.6.3 the intersection Z∩V is the scheme theoretic image of f−1(V )→ V .
Hence we may replace Y by V and assume Y = Spec(R) is affine. In this case X
is quasi-compact as f is quasi-compact. Say X = U1 ∪ . . . ∪ Un is a finite affine
open covering. Write Ui = Spec(Ai). Let I = Ker(R→ A1× . . .×An). By Lemma
29.6.3 again we see that Z corresponds to the closed subscheme Spec(R/I) of Y .

3By Lemma 29.6.3 set-theoretically Z agrees with the closure of f(X) in Y .
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If p ⊂ R is the prime corresponding to z, then we see that Ip ⊂ Rp is not an
equality. Hence (as localization is exact, see Algebra, Proposition 10.9.12) we see
that Rp → (A1)p× . . .× (An)p is not zero. Hence one of the rings (Ai)p is not zero.
Hence there exists an i and a prime qi ⊂ Ai lying over a prime pi ⊂ p. By Algebra,
Lemma 10.50.2 we can choose a valuation ring A ⊂ K = κ(qi) dominating the local
ring Rp/piRp ⊂ κ(qi). This gives the desired diagram. Some details omitted. □

Lemma 29.6.6.01R9 Let
X1

��

f1

// Y1

��
X2

f2 // Y2

be a commutative diagram of schemes. Let Zi ⊂ Yi, i = 1, 2 be the scheme
theoretic image of fi. Then the morphism Y1 → Y2 induces a morphism Z1 → Z2
and a commutative diagram

X1 //

��

Z1

��

// Y1

��
X2 // Z2 // Y2

Proof. The scheme theoretic inverse image of Z2 in Y1 is a closed subscheme of Y1
through which f1 factors. Hence Z1 is contained in this. This proves the lemma. □

Lemma 29.6.7.056B Let f : X → Y be a morphism of schemes. If X is reduced, then
the scheme theoretic image of f is the reduced induced scheme structure on f(X).

Proof. This is true because the reduced induced scheme structure on f(X) is clearly
the smallest closed subscheme of Y through which f factors, see Schemes, Lemma
26.12.7. □

Lemma 29.6.8.0CNG Let f : X → Y be a separated morphism of schemes. Let V ⊂ Y
be a retrocompact open. Let s : V → X be a morphism such that f ◦ s = idV . Let
Y ′ be the scheme theoretic image of s. Then Y ′ → Y is an isomorphism over V .

Proof. The assumption that V is retrocompact in Y (Topology, Definition 5.12.1)
means that V → Y is a quasi-compact morphism. By Schemes, Lemma 26.21.14
the morphism s : V → X is quasi-compact. Hence the construction of the scheme
theoretic image Y ′ of s commutes with restriction to opens by Lemma 29.6.3. In
particular, we see that Y ′∩f−1(V ) is the scheme theoretic image of a section of the
separated morphism f−1(V ) → V . Since a section of a separated morphism is a
closed immersion (Schemes, Lemma 26.21.11), we conclude that Y ′ ∩ f−1(V )→ V
is an isomorphism as desired. □

29.7. Scheme theoretic closure and density

01RA We take the following definition from [DG67, IV, Definition 11.10.2].

Definition 29.7.1.01RB Let X be a scheme. Let U ⊂ X be an open subscheme.
(1) The scheme theoretic image of the morphism U → X is called the scheme

theoretic closure of U in X.
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(2) We say U is scheme theoretically dense in X if for every open V ⊂ X the
scheme theoretic closure of U ∩ V in V is equal to V .

With this definition it is not the case that U is scheme theoretically dense in X
if and only if the scheme theoretic closure of U is X, see Example 29.7.2. This is
somewhat inelegant; but see Lemmas 29.7.3 and 29.7.8 below. On the other hand,
with this definition U is scheme theoretically dense in X if and only if for every
V ⊂ X open the ring map OX(V ) → OX(U ∩ V ) is injective, see Lemma 29.7.5
below. In particular we see that scheme theoretically dense implies dense which is
pleasing.
Example 29.7.2.01RC Here is an example where scheme theoretic closure being X does
not imply dense for the underlying topological spaces. Let k be a field. Set A =
k[x, z1, z2, . . .]/(xnzn) Set I = (z1, z2, . . .) ⊂ A. Consider the affine scheme X =
Spec(A) and the open subscheme U = X \ V (I). Since A →

∏
nAzn is injective

we see that the scheme theoretic closure of U is X. Consider the morphism X →
Spec(k[x]). This morphism is surjective (set all zn = 0 to see this). But the
restriction of this morphism to U is not surjective because it maps to the point
x = 0. Hence U cannot be topologically dense in X.
Lemma 29.7.3.01RD Let X be a scheme. Let U ⊂ X be an open subscheme. If the
inclusion morphism U → X is quasi-compact, then U is scheme theoretically dense
in X if and only if the scheme theoretic closure of U in X is X.
Proof. Follows from Lemma 29.6.3 part (3). □

Example 29.7.4.056C Let A be a ring and X = Spec(A). Let f1, . . . , fn ∈ A and let
U = D(f1) ∪ . . . ∪ D(fn). Let I = Ker(A →

∏
Afi). Then the scheme theoretic

closure of U in X is the closed subscheme Spec(A/I) of X. Note that U → X is
quasi-compact. Hence by Lemma 29.7.3 we see U is scheme theoretically dense in
X if and only if I = 0.
Lemma 29.7.5.01RE Let j : U → X be an open immersion of schemes. Then U is
scheme theoretically dense in X if and only if OX → j∗OU is injective.
Proof. If OX → j∗OU is injective, then the same is true when restricted to any
open V of X. Hence the scheme theoretic closure of U ∩ V in V is equal to V , see
proof of Lemma 29.6.1. Conversely, suppose that the scheme theoretic closure of
U ∩ V is equal to V for all opens V . Suppose that OX → j∗OU is not injective.
Then we can find an affine open, say Spec(A) = V ⊂ X and a nonzero element
f ∈ A such that f maps to zero in Γ(V ∩U,OX). In this case the scheme theoretic
closure of V ∩ U in V is clearly contained in Spec(A/(f)) a contradiction. □

Lemma 29.7.6.01RF Let X be a scheme. If U , V are scheme theoretically dense open
subschemes of X, then so is U ∩ V .
Proof. Let W ⊂ X be any open. Consider the map OX(W ) → OX(W ∩ V ) →
OX(W ∩ V ∩ U). By Lemma 29.7.5 both maps are injective. Hence the composite
is injective. Hence by Lemma 29.7.5 U ∩ V is scheme theoretically dense in X. □

Lemma 29.7.7.01RG Let h : Z → X be an immersion. Assume either h is quasi-compact
or Z is reduced. Let Z ⊂ X be the scheme theoretic image of h. Then the morphism
Z → Z is an open immersion which identifies Z with a scheme theoretically dense
open subscheme of Z. Moreover, Z is topologically dense in Z.
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Proof. By Lemma 29.3.2 or Lemma 29.3.3 we can factor Z → X as Z → Z1 → X
with Z → Z1 open and Z1 → X closed. On the other hand, let Z → Z ⊂ X
be the scheme theoretic closure of Z → X. We conclude that Z ⊂ Z1. Since Z
is an open subscheme of Z1 it follows that Z is an open subscheme of Z as well.
In the case that Z is reduced we know that Z ⊂ Z1 is topologically dense by the
construction of Z1 in the proof of Lemma 29.3.3. Hence Z1 and Z have the same
underlying topological spaces. Thus Z ⊂ Z1 is a closed immersion into a reduced
scheme which induces a bijection on underlying topological spaces, and hence it is
an isomorphism. In the case that Z → X is quasi-compact we argue as follows:
The assertion that Z is scheme theoretically dense in Z follows from Lemma 29.6.3
part (3). The last assertion follows from Lemma 29.6.3 part (4). □

Lemma 29.7.8.056D Let X be a reduced scheme and let U ⊂ X be an open subscheme.
Then the following are equivalent

(1) U is topologically dense in X,
(2) the scheme theoretic closure of U in X is X, and
(3) U is scheme theoretically dense in X.

Proof. This follows from Lemma 29.7.7 and the fact that a closed subscheme Z of X
whose underlying topological space equals X must be equal to X as a scheme. □

Lemma 29.7.9.056E Let X be a scheme and let U ⊂ X be a reduced open subscheme.
Then the following are equivalent

(1) the scheme theoretic closure of U in X is X, and
(2) U is scheme theoretically dense in X.

If this holds then X is a reduced scheme.
Proof. This follows from Lemma 29.7.7 and the fact that the scheme theoretic
closure of U in X is reduced by Lemma 29.6.7. □

Lemma 29.7.10.01RH Let S be a scheme. Let X, Y be schemes over S. Let f, g : X → Y
be morphisms of schemes over S. Let U ⊂ X be an open subscheme such that
f |U = g|U . If the scheme theoretic closure of U in X is X and Y → S is separated,
then f = g.
Proof. Follows from the definitions and Schemes, Lemma 26.21.5. □

29.8. Dominant morphisms

01RI The definition of a morphism of schemes being dominant is a little different from
what you might expect if you are used to the notion of a dominant morphism of
varieties.
Definition 29.8.1.01RJ A morphism f : X → S of schemes is called dominant if the
image of f is a dense subset of S.
So for example, if k is an infinite field and λ1, λ2, . . . is a countable collection of
distinct elements of k, then the morphism∐

i=1,2,...
Spec(k) −→ Spec(k[x])

with ith factor mapping to the point x = λi is dominant.
Lemma 29.8.2.01RK Let f : X → S be a morphism of schemes. If every generic point
of every irreducible component of S is in the image of f , then f is dominant.
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Proof. This is a topological fact which follows directly from the fact that the topo-
logical space underlying a scheme is sober, see Schemes, Lemma 26.11.1, and that
every point of S is contained in an irreducible component of S, see Topology, Lemma
5.8.3. □

The expectation that morphisms are dominant only if generic points of the target
are in the image does hold if the morphism is quasi-compact.

Lemma 29.8.3.01RL Let f : X → S be a quasi-compact morphism of schemes. Then f
is dominant if and only if for every irreducible component Z ⊂ S the generic point
of Z is in the image of f .

Proof. Let V ⊂ S be an affine open. Because f is quasi-compact we may choose
finitely many affine opens Ui ⊂ f−1(V ), i = 1, . . . , n covering f−1(V ). Consider
the morphism of affines

f ′ :
∐

i=1,...,n
Ui −→ V.

A disjoint union of affines is affine, see Schemes, Lemma 26.6.8. Generic points
of irreducible components of V are exactly the generic points of the irreducible
components of S that meet V . Also, f is dominant if and only if f ′ is dominant no
matter what choices of V, n, Ui we make above. Thus we have reduced the lemma
to the case of a morphism of affine schemes. The affine case is Algebra, Lemma
10.30.6. □

Lemma 29.8.4.0H3F Let f : X → S be a quasi-compact dominant morphism of schemes.
Let g : S′ → S be a morphism of schemes and denote f ′ : X ′ → S′ the base change
of f by g. If generalizations lift along g, then f ′ is dominant.

Proof. Observe that f ′ is quasi-compact by Schemes, Lemma 26.19.3. Let η′ ∈ S′

be the generic point of an irreducible component of S′. If generalizations lift along
g, then η = g(η′) is the generic point of an irreducible component of S. By Lemma
29.8.3 we see that η is in the image of f . Hence η′ is in the image of f ′ by Schemes,
Lemma 26.17.5. It follows that f ′ is dominant by Lemma 29.8.3. □

Lemma 29.8.5.02NE Let f : X → S be a quasi-compact morphism of schemes. Let
η ∈ S be a generic point of an irreducible component of S. If η ̸∈ f(X) then there
exists an open neighbourhood V ⊂ S of η such that f−1(V ) = ∅.

Proof. Let Z ⊂ S be the scheme theoretic image of f . We have to show that
η ̸∈ Z. This follows from Lemma 29.6.5 but can also be seen as follows. By Lemma
29.6.3 the morphism X → Z is dominant, which by Lemma 29.8.3 means all the
generic points of all irreducible components of Z are in the image of X → Z. By
assumption we see that η ̸∈ Z since η would be the generic point of some irreducible
component of Z if it were in Z. □

There is another case where dominant is the same as having all generic points of
irreducible components in the image.

Lemma 29.8.6.01RM Let f : X → S be a morphism of schemes. Suppose that X has
finitely many irreducible components. Then f is dominant (if and) only if for every
irreducible component Z ⊂ S the generic point of Z is in the image of f . If so,
then S has finitely many irreducible components as well.
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Proof. Assume f is dominant. Say X = Z1 ∪ Z2 ∪ . . . ∪ Zn is the decomposition
of X into irreducible components. Let ξi ∈ Zi be its generic point, so Zi = {ξi}.
Note that f(Zi) is an irreducible subset of S. Hence

S = f(X) =
⋃
f(Zi) =

⋃
{f(ξi)}

is a finite union of irreducible subsets whose generic points are in the image of f .
The lemma follows. □

Lemma 29.8.7.0CC1 Let f : X → Y be a morphism of integral schemes. The following
are equivalent

(1) f is dominant,
(2) f maps the generic point of X to the generic point of Y ,
(3) for some nonempty affine opens U ⊂ X and V ⊂ Y with f(U) ⊂ V the

ring map OY (V )→ OX(U) is injective,
(4) for all nonempty affine opens U ⊂ X and V ⊂ Y with f(U) ⊂ V the ring

map OY (V )→ OX(U) is injective,
(5) for some x ∈ X with image y = f(x) ∈ Y the local ring map OY,y → OX,x

is injective, and
(6) for all x ∈ X with image y = f(x) ∈ Y the local ring map OY,y → OX,x

is injective.

Proof. The equivalence of (1) and (2) follows from Lemma 29.8.6. Let U ⊂ X and
V ⊂ Y be nonempty affine opens with f(U) ⊂ V . Recall that the rings A = OX(U)
and B = OY (V ) are integral domains. The morphism f |U : U → V corresponds to
a ring map φ : B → A. The generic points of X and Y correspond to the prime
ideals (0) ⊂ A and (0) ⊂ B. Thus (2) is equivalent to the condition (0) = φ−1((0)),
i.e., to the condition that φ is injective. In this way we see that (2), (3), and (4)
are equivalent. Similarly, given x and y as in (5) the local rings OX,x and OY,y
are domains and the prime ideals (0) ⊂ OX,x and (0) ⊂ OY,y correspond to the
generic points of X and Y (via the identification of the spectrum of the local ring
at x with the set of points specializing to x, see Schemes, Lemma 26.13.2). Thus
we can argue in the exact same manner as above to see that (2), (5), and (6) are
equivalent. □

29.9. Surjective morphisms

01RY
Definition 29.9.1.01RZ A morphism of schemes is said to be surjective if it is surjective
on underlying topological spaces.

Lemma 29.9.2.01S0 The composition of surjective morphisms is surjective.

Proof. Omitted. □

Lemma 29.9.3.0495 Let X and Y be schemes over a base scheme S. Given points x ∈ X
and y ∈ Y , there is a point of X ×S Y mapping to x and y under the projections
if and only if x and y lie above the same point of S.

Proof. The condition is obviously necessary, and the converse follows from the proof
of Schemes, Lemma 26.17.5. □

Lemma 29.9.4.01S1 The base change of a surjective morphism is surjective.
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Proof. Let f : X → Y be a morphism of schemes over a base scheme S. If S′ → S
is a morphism of schemes, let p : XS′ → X and q : YS′ → Y be the canonical
projections. The commutative square

XS′

fS′

��

p
// X

f

��
YS′

q // Y.

identifies XS′ as a fibre product of X → Y and YS′ → Y . Let Z be a subset of
the underlying topological space of X. Then q−1(f(Z)) = fS′(p−1(Z)), because
y′ ∈ q−1(f(Z)) if and only if q(y′) = f(x) for some x ∈ Z, if and only if, by Lemma
29.9.3, there exists x′ ∈ XS′ such that fS′(x′) = y′ and p(x′) = x. In particular
taking Z = X we see that if f is surjective so is the base change fS′ : XS′ → YS′ . □

Example 29.9.5.0496 Bijectivity is not stable under base change, and so neither is
injectivity. For example consider the bijection Spec(C) → Spec(R). The base
change Spec(C ⊗R C) → Spec(C) is not injective, since there is an isomorphism
C ⊗R C ∼= C × C (the decomposition comes from the idempotent 1⊗1+i⊗i

2 ) and
hence Spec(C⊗R C) has two points.

Lemma 29.9.6.04ZD Let
X

f
//

p
  

Y

q
��

Z

be a commutative diagram of morphisms of schemes. If f is surjective and p is
quasi-compact, then q is quasi-compact.

Proof. Let W ⊂ Z be a quasi-compact open. By assumption p−1(W ) is quasi-
compact. Hence by Topology, Lemma 5.12.7 the inverse image q−1(W ) = f(p−1(W ))
is quasi-compact too. This proves the lemma. □

29.10. Radicial and universally injective morphisms

01S2 In this section we define what it means for a morphism of schemes to be radicial
and what it means for a morphism of schemes to be universally injective. We then
show that these notions agree. The reason for introducing both is that in the case
of algebraic spaces there are corresponding notions which may not always agree.

Definition 29.10.1.01S3 Let f : X → S be a morphism.
(1) We say that f is universally injective if and only if for any morphism of

schemes S′ → S the base change f ′ : XS′ → S′ is injective (on underlying
topological spaces).

(2) We say f is radicial if f is injective as a map of topological spaces, and
for every x ∈ X the field extension κ(x)/κ(f(x)) is purely inseparable.

Lemma 29.10.2.01S4 Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) For every field K the induced map Mor(Spec(K), X)→ Mor(Spec(K), S)
is injective.

(2) The morphism f is universally injective.
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(3) The morphism f is radicial.
(4) The diagonal morphism ∆X/S : X −→ X ×S X is surjective.

Proof. Let K be a field, and let s : Spec(K) → S be a morphism. Giving a
morphism x : Spec(K) → X such that f ◦ x = s is the same as giving a section
of the projection XK = Spec(K) ×S X → Spec(K), which in turn is the same as
giving a point x ∈ XK whose residue field is K. Hence we see that (2) implies (1).

Conversely, suppose that (1) holds. Assume that x, x′ ∈ XS′ map to the same point
s′ ∈ S′. Choose a commutative diagram

K κ(x)oo

κ(x′)

OO

κ(s′)oo

OO

of fields. By Schemes, Lemma 26.13.3 we get two morphisms a, a′ : Spec(K) →
XS′ . One corresponding to the point x and the embedding κ(x) ⊂ K and the
other corresponding to the point x′ and the embedding κ(x′) ⊂ K. Also we have
f ′ ◦ a = f ′ ◦ a′. Condition (1) now implies that the compositions of a and a′ with
XS′ → X are equal. Since XS′ is the fibre product of S′ and X over S we see that
a = a′. Hence x = x′. Thus (1) implies (2).

If there are two different points x, x′ ∈ X mapping to the same point of s then
(2) is violated. If for some s = f(x), x ∈ X the field extension κ(x)/κ(s) is not
purely inseparable, then we may find a field extension K/κ(s) such that κ(x) has
two κ(s)-homomorphisms into K. By Schemes, Lemma 26.13.3 this implies that
the map Mor(Spec(K), X) → Mor(Spec(K), S) is not injective, and hence (1) is
violated. Thus we see that the equivalent conditions (1) and (2) imply f is radicial,
i.e., they imply (3).

Assume (3). By Schemes, Lemma 26.13.3 a morphism Spec(K) → X is given
by a pair (x, κ(x) → K). Property (3) says exactly that associating to the pair
(x, κ(x)→ K) the pair (s, κ(s)→ κ(x)→ K) is injective. In other words (1) holds.
At this point we know that (1), (2) and (3) are all equivalent.

Finally, we prove the equivalence of (4) with (1), (2) and (3). A point of X ×S X
is given by a quadruple (x1, x2, s, p), where x1, x2 ∈ X, f(x1) = f(x2) = s and p ⊂
κ(x1)⊗κ(s) κ(x2) is a prime ideal, see Schemes, Lemma 26.17.5. If f is universally
injective, then by taking S′ = X in the definition of universally injective, ∆X/S

must be surjective since it is a section of the injective morphism X ×S X −→ X.
Conversely, if ∆X/S is surjective, then always x1 = x2 = x and there is exactly one
such prime ideal p, which means that κ(s) ⊂ κ(x) is purely inseparable. Hence f is
radicial. Alternatively, if ∆X/S is surjective, then for any S′ → S the base change
∆XS′/S′ is surjective which implies that f is universally injective. This finishes the
proof of the lemma. □

Lemma 29.10.3.05VE A universally injective morphism is separated.

Proof. Combine Lemma 29.10.2 with the remark that X → S is separated if and
only if the image of ∆X/S is closed in X ×S X, see Schemes, Definition 26.21.3 and
the discussion following it. □
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Lemma 29.10.4.0472 A base change of a universally injective morphism is universally
injective.

Proof. This is formal. □

Lemma 29.10.5.02V1 A composition of radicial morphisms is radicial, and so the same
holds for the equivalent condition of being universally injective.

Proof. Omitted. □

29.11. Affine morphisms

01S5
Definition 29.11.1.01S6 A morphism of schemes f : X → S is called affine if the inverse
image of every affine open of S is an affine open of X.

Lemma 29.11.2.01S7 An affine morphism is separated and quasi-compact.

Proof. Let f : X → S be affine. Quasi-compactness is immediate from Schemes,
Lemma 26.19.2. We will show f is separated using Schemes, Lemma 26.21.7. Let
x1, x2 ∈ X be points of X which map to the same point s ∈ S. Choose any affine
open W ⊂ S containing s. By assumption f−1(W ) is affine. Apply the lemma
cited with U = V = f−1(W ). □

Lemma 29.11.3.01S8 [DG67, II, Corollary
1.3.2]

Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is affine.
(2) There exists an affine open covering S =

⋃
Wj such that each f−1(Wj) is

affine.
(3) There exists a quasi-coherent sheaf of OS-algebras A and an isomorphism

X ∼= Spec
S

(A) of schemes over S. See Constructions, Section 27.4 for
notation.

Moreover, in this case X = Spec
S

(f∗OX).

Proof. It is obvious that (1) implies (2).
Assume S =

⋃
j∈JWj is an affine open covering such that each f−1(Wj) is affine.

By Schemes, Lemma 26.19.2 we see that f is quasi-compact. By Schemes, Lemma
26.21.6 we see the morphism f is quasi-separated. Hence by Schemes, Lemma
26.24.1 the sheaf A = f∗OX is a quasi-coherent sheaf of OS-algebras. Thus we have
the scheme g : Y = Spec

S
(A) → S over S. The identity map id : A = f∗OX →

f∗OX provides, via the definition of the relative spectrum, a morphism can : X → Y
over S, see Constructions, Lemma 27.4.7. By assumption and the lemma just cited
the restriction can|f−1(Wj) : f−1(Wj) → g−1(Wj) is an isomorphism. Thus can is
an isomorphism. We have shown that (2) implies (3).
Assume (3). By Constructions, Lemma 27.4.6 we see that the inverse image of
every affine open is affine, and hence the morphism is affine by definition. □

Remark 29.11.4.01S9 We can also argue directly that (2) implies (1) in Lemma 29.11.3
above as follows. Assume S =

⋃
Wj is an affine open covering such that each

f−1(Wj) is affine. First argue that A = f∗OX is quasi-coherent as in the proof
above. Let Spec(R) = V ⊂ S be affine open. We have to show that f−1(V ) is
affine. Set A = A(V ) = f∗OX(V ) = OX(f−1(V )). By Schemes, Lemma 26.6.4
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there is a canonical morphism ψ : f−1(V ) → Spec(A) over Spec(R) = V . By
Schemes, Lemma 26.11.6 there exists an integer n ≥ 0, a standard open covering
V =

⋃
i=1,...,nD(hi), hi ∈ R, and a map a : {1, . . . , n} → J such that each

D(hi) is also a standard open of the affine scheme Wa(i). The inverse image of a
standard open under a morphism of affine schemes is standard open, see Algebra,
Lemma 10.17.4. Hence we see that f−1(D(hi)) is a standard open of f−1(Wa(i)),
in particular that f−1(D(hi)) is affine. Because A is quasi-coherent we have Ahi =
A(D(hi)) = OX(f−1(D(hi))), so f−1(D(hi)) is the spectrum of Ahi . It follows that
the morphism ψ induces an isomorphism of the open f−1(D(hi)) with the open
Spec(Ahi) of Spec(A). Since f−1(V ) =

⋃
f−1(D(hi)) and Spec(A) =

⋃
Spec(Ahi)

we win.

Lemma 29.11.5.01SA Let S be a scheme. There is an anti-equivalence of categories

Schemes affine
over S ←→ quasi-coherent sheaves

of OS-algebras
which associates to f : X → S the sheaf f∗OX . Moreover, this equivalence is
compatible with arbitrary base change.

Proof. The functor from right to left is given by Spec
S

. The two functors are
mutually inverse by Lemma 29.11.3 and Constructions, Lemma 27.4.6 part (3).
The final statement is Constructions, Lemma 27.4.6 part (2). □

Lemma 29.11.6.01SB Let f : X → S be an affine morphism of schemes. Let A = f∗OX .
The functor F 7→ f∗F induces an equivalence of categories{

category of quasi-coherent
OX -modules

}
−→

{
category of quasi-coherent

A-modules

}
Moreover, an A-module is quasi-coherent as an OS-module if and only if it is quasi-
coherent as an A-module.

Proof. Omitted. □

Lemma 29.11.7.01SC The composition of affine morphisms is affine.

Proof. Let f : X → Y and g : Y → Z be affine morphisms. Let U ⊂ Z be affine
open. Then g−1(U) is affine by assumption on g. Whereupon f−1(g−1(U)) is affine
by assumption on f . Hence (g ◦ f)−1(U) is affine. □

Lemma 29.11.8.01SD The base change of an affine morphism is affine.

Proof. Let f : X → S be an affine morphism. Let S′ → S be any morphism.
Denote f ′ : XS′ = S′ ×S X → S′ the base change of f . For every s′ ∈ S′ there
exists an open affine neighbourhood s′ ∈ V ⊂ S′ which maps into some open affine
U ⊂ S. By assumption f−1(U) is affine. By the material in Schemes, Section 26.17
we see that f−1(U)V = V ×U f−1(U) is affine and equal to (f ′)−1(V ). This proves
that S′ has an open covering by affines whose inverse image under f ′ is affine. We
conclude by Lemma 29.11.3 above. □

Lemma 29.11.9.01SE A closed immersion is affine.

Proof. The first indication of this is Schemes, Lemma 26.8.2. See Schemes, Lemma
26.10.1 for a complete statement. □
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Lemma 29.11.10.01SF Let X be a scheme. Let L be an invertible OX -module. Let
s ∈ Γ(X,L). The inclusion morphism j : Xs → X is affine.

Proof. This follows from Properties, Lemma 28.26.4 and the definition. □

Lemma 29.11.11.01SG Suppose g : X → Y is a morphism of schemes over S.
(1) If X is affine over S and ∆ : Y → Y ×S Y is affine, then g is affine.
(2) If X is affine over S and Y is separated over S, then g is affine.
(3) A morphism from an affine scheme to a scheme with affine diagonal is

affine.
(4) A morphism from an affine scheme to a separated scheme is affine.

Proof. Proof of (1). The base change X×S Y → Y is affine by Lemma 29.11.8. The
morphism (1, g) : X → X×S Y is the base change of Y → Y ×S Y by the morphism
X×S Y → Y ×S Y . Hence it is affine by Lemma 29.11.8. The composition of affine
morphisms is affine (see Lemma 29.11.7) and (1) follows. Part (2) follows from (1)
as a closed immersion is affine (see Lemma 29.11.9) and Y/S separated means ∆ is
a closed immersion. Parts (3) and (4) are special cases of (1) and (2). □

Lemma 29.11.12.01SH A morphism between affine schemes is affine.

Proof. Immediate from Lemma 29.11.11 with S = Spec(Z). It also follows directly
from the equivalence of (1) and (2) in Lemma 29.11.3. □

Lemma 29.11.13.01SI Let S be a scheme. Let A be an Artinian ring. Any morphism
Spec(A)→ S is affine.

Proof. Omitted. □

Lemma 29.11.14.0C3A Let j : Y → X be an immersion of schemes. Assume there exists
an open U ⊂ X with complement Z = X \ U such that

(1) U → X is affine,
(2) j−1(U)→ U is affine, and
(3) j(Y ) ∩ Z is closed.

Then j is affine. In particular, if X is affine, so is Y .

Proof. By Schemes, Definition 26.10.2 there exists an open subscheme W ⊂ X such
that j factors as a closed immersion i : Y →W followed by the inclusion morphism
W → X. Since a closed immersion is affine (Lemma 29.11.9), we see that for every
x ∈W there is an affine open neighbourhood of x in X whose inverse image under
j is affine. If x ∈ U , then the same thing is true by assumption (2). Finally,
assume x ∈ Z and x ̸∈ W . Then x ̸∈ j(Y ) ∩ Z. By assumption (3) we can find
an affine open neighbourhood V ⊂ X of x which does not meet j(Y ) ∩ Z. Then
j−1(V ) = j−1(V ∩ U) which is affine by assumptions (1) and (2). It follows that j
is affine by Lemma 29.11.3. □

29.12. Families of ample invertible modules

0FXQ A short section on the notion of a family of ample invertible modules.

Definition 29.12.1.0FXR [BGI71, II
Definition 2.2.4]

Let X be a scheme. Let {Li}i∈I be a family of invertible
OX -modules. We say {Li}i∈I is an ample family of invertible modules on X if

(1) X is quasi-compact, and
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(2) for every x ∈ X there exists an i ∈ I, an n ≥ 1, and s ∈ Γ(X,L⊗n
i ) such

that x ∈ Xs and Xs is affine.

If {Li}i∈I is an ample family of invertible modules on a scheme X, then there exists
a finite subset I ′ ⊂ I such that {Li}i∈I′ is an ample family of invertible modules
on X (follows immediately from quasi-compactness). A scheme having an ample
family of invertible modules has an affine diagonal by the next lemma and hence is
a fortiori quasi-separated.

Lemma 29.12.2.0FXS Let X be a scheme such that for every point x ∈ X there exists
an invertible OX -module L and a global section s ∈ Γ(X,L) such that x ∈ Xs and
Xs is affine. Then the diagonal of X is an affine morphism.

Proof. Given invertible OX -modules L, M and global sections s ∈ Γ(X,L), t ∈
Γ(X,M) such that Xs and Xt are affine we have to prove Xs∩Xt is affine. Namely,
then Lemma 29.11.3 applied to ∆ : X → X×X and the fact that ∆−1(Xs×Xt) =
Xs ∩ Xt shows that ∆ is affine. The fact that Xs ∩ Xt is affine follows from
Properties, Lemma 28.26.4. □

Remark 29.12.3.0FXT In Properties, Lemma 28.26.7 we see that a scheme which has
an ample invertible module is separated. This is wrong for schemes having an
ample family of invertible modules. Namely, let X be as in Schemes, Example
26.14.3 with n = 1, i.e., the affine line with zero doubled. We use the notation
of that example except that we write x for x1 and y for y1. There is, for every
integer n, an invertible sheaf Ln on X which is trivial on X1 and X2 and whose
transition function U12 → U21 is f(x) 7→ ynf(y). The global sections of Ln are
pairs (f(x), g(y)) ∈ k[x] ⊕ k[y] such that ynf(y) = g(y). The sections s = (1, y)
of L1 and t = (x, 1) of L−1 determine an open affine cover because Xs = X1 and
Xt = X2. Therefore X has an ample family of invertible modules but it is not
separated.

29.13. Quasi-affine morphisms

01SJ Recall that a scheme X is called quasi-affine if it is quasi-compact and isomorphic
to an open subscheme of an affine scheme, see Properties, Definition 28.18.1.

Definition 29.13.1.01SK A morphism of schemes f : X → S is called quasi-affine if the
inverse image of every affine open of S is a quasi-affine scheme.

Lemma 29.13.2.01SL A quasi-affine morphism is separated and quasi-compact.

Proof. Let f : X → S be quasi-affine. Quasi-compactness is immediate from
Schemes, Lemma 26.19.2. Let U ⊂ S be an affine open. If we can show that
f−1(U) is a separated scheme, then f is separated (Schemes, Lemma 26.21.7 shows
that being separated is local on the base). By assumption f−1(U) is isomorphic to
an open subscheme of an affine scheme. An affine scheme is separated and hence
every open subscheme of an affine scheme is separated as desired. □

Lemma 29.13.3.01SM Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is quasi-affine.
(2) There exists an affine open covering S =

⋃
Wj such that each f−1(Wj) is

quasi-affine.
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(3) There exists a quasi-coherent sheaf of OS-algebras A and a quasi-compact
open immersion

X //

��

Spec
S

(A)

{{
S

over S.
(4) Same as in (3) but with A = f∗OX and the horizontal arrow the canonical

morphism of Constructions, Lemma 27.4.7.

Proof. It is obvious that (1) implies (2) and that (4) implies (3).
Assume S =

⋃
j∈JWj is an affine open covering such that each f−1(Wj) is quasi-

affine. By Schemes, Lemma 26.19.2 we see that f is quasi-compact. By Schemes,
Lemma 26.21.6 we see the morphism f is quasi-separated. Hence by Schemes,
Lemma 26.24.1 the sheaf A = f∗OX is a quasi-coherent sheaf of OX -algebras.
Thus we have the scheme g : Y = Spec

S
(A) → S over S. The identity map

id : A = f∗OX → f∗OX provides, via the definition of the relative spectrum, a
morphism can : X → Y over S, see Constructions, Lemma 27.4.7. By assumption,
the lemma just cited, and Properties, Lemma 28.18.4 the restriction can|f−1(Wj) :
f−1(Wj) → g−1(Wj) is a quasi-compact open immersion. Thus can is a quasi-
compact open immersion. We have shown that (2) implies (4).
Assume (3). Choose any affine open U ⊂ S. By Constructions, Lemma 27.4.6 we
see that the inverse image of U in the relative spectrum is affine. Hence we conclude
that f−1(U) is quasi-affine (note that quasi-compactness is encoded in (3) as well).
Thus (3) implies (1). □

Lemma 29.13.4.01SN The composition of quasi-affine morphisms is quasi-affine.

Proof. Let f : X → Y and g : Y → Z be quasi-affine morphisms. Let U ⊂ Z be
affine open. Then g−1(U) is quasi-affine by assumption on g. Let j : g−1(U)→ V
be a quasi-compact open immersion into an affine scheme V . By Lemma 29.13.3
above we see that f−1(g−1(U)) is a quasi-compact open subscheme of the relative
spectrum Spec

g−1(U)(A) for some quasi-coherent sheaf of Og−1(U)-algebras A. By
Schemes, Lemma 26.24.1 the sheaf A′ = j∗A is a quasi-coherent sheaf of OV -
algebras with the property that j∗A′ = A. Hence we get a commutative diagram

f−1(g−1(U)) // Spec
g−1(U)(A) //

��

Spec
V

(A′)

��
g−1(U) j // V

with the square being a fibre square, see Constructions, Lemma 27.4.6. Note that
the upper right corner is an affine scheme. Hence (g ◦ f)−1(U) is quasi-affine. □

Lemma 29.13.5.01SO The base change of a quasi-affine morphism is quasi-affine.

Proof. Let f : X → S be a quasi-affine morphism. By Lemma 29.13.3 above
we can find a quasi-coherent sheaf of OS-algebras A and a quasi-compact open
immersion X → Spec

S
(A) over S. Let g : S′ → S be any morphism. Denote
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f ′ : XS′ = S′ ×S X → S′ the base change of f . Since the base change of a
quasi-compact open immersion is a quasi-compact open immersion we see that
XS′ → Spec

S′(g∗A) is a quasi-compact open immersion (we have used Schemes,
Lemmas 26.19.3 and 26.18.2 and Constructions, Lemma 27.4.6). By Lemma 29.13.3
again we conclude that XS′ → S′ is quasi-affine. □

Lemma 29.13.6.02JR A quasi-compact immersion is quasi-affine.

Proof. Let X → S be a quasi-compact immersion. We have to show the inverse
image of every affine open is quasi-affine. Hence, assuming S is an affine scheme,
we have to show X is quasi-affine. By Lemma 29.7.7 the morphism X → S factors
as X → Z → S where Z is a closed subscheme of S and X ⊂ Z is a quasi-compact
open. Since S is affine Lemma 29.2.1 implies Z is affine. Hence we win. □

Lemma 29.13.7.01SP Let S be a scheme. Let X be an affine scheme. A morphism
f : X → S is quasi-affine if and only if it is quasi-compact. In particular any
morphism from an affine scheme to a quasi-separated scheme is quasi-affine.

Proof. Let V ⊂ S be an affine open. Then f−1(V ) is an open subscheme of the affine
scheme X, hence quasi-affine if and only if it is quasi-compact. This proves the first
assertion. The quasi-compactness of any f : X → S where X is affine and S quasi-
separated follows from Schemes, Lemma 26.21.14 applied toX → S → Spec(Z). □

Lemma 29.13.8.054G Suppose g : X → Y is a morphism of schemes over S. If X
is quasi-affine over S and Y is quasi-separated over S, then g is quasi-affine. In
particular, any morphism from a quasi-affine scheme to a quasi-separated scheme
is quasi-affine.

Proof. The base change X ×S Y → Y is quasi-affine by Lemma 29.13.5. The mor-
phism X → X×S Y is a quasi-compact immersion as Y → S is quasi-separated, see
Schemes, Lemma 26.21.11. A quasi-compact immersion is quasi-affine by Lemma
29.13.6 and the composition of quasi-affine morphisms is quasi-affine (see Lemma
29.13.4). Thus we win. □

29.14. Types of morphisms defined by properties of ring maps

01SQ In this section we study what properties of ring maps allow one to define local
properties of morphisms of schemes.

Definition 29.14.1.01SR Let P be a property of ring maps.
(1) We say that P is local if the following hold:

(a) For any ring map R → A, and any f ∈ R we have P (R → A) ⇒
P (Rf → Af ).

(b) For any rings R, A, any f ∈ R, a ∈ A, and any ring map Rf → A
we have P (Rf → A)⇒ P (R→ Aa).

(c) For any ring map R → A, and ai ∈ A such that (a1, . . . , an) = A
then ∀i, P (R→ Aai)⇒ P (R→ A).

(2) We say that P is stable under base change if for any ring maps R → A,
R→ R′ we have P (R→ A)⇒ P (R′ → R′ ⊗R A).

(3) We say that P is stable under composition if for any ring maps A → B,
B → C we have P (A→ B) ∧ P (B → C)⇒ P (A→ C).
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Definition 29.14.2.01SS Let P be a property of ring maps. Let f : X → S be a
morphism of schemes. We say f is locally of type P if for any x ∈ X there exists
an affine open neighbourhood U of x in X which maps into an affine open V ⊂ S
such that the induced ring map OS(V )→ OX(U) has property P .

This is not a “good” definition unless the property P is a local property. Even if P is
a local property we will not automatically use this definition to say that a morphism
is “locally of type P” unless we also explicitly state the definition elsewhere.

Lemma 29.14.3.01ST Let f : X → S be a morphism of schemes. Let P be a property
of ring maps. Let U be an affine open of X, and V an affine open of S such that
f(U) ⊂ V . If f is locally of type P and P is local, then P (OS(V )→ OX(U)) holds.

Proof. As f is locally of type P for every u ∈ U there exists an affine open Uu ⊂ X
mapping into an affine open Vu ⊂ S such that P (OS(Vu)→ OX(Uu)) holds. Choose
an open neighbourhood U ′

u ⊂ U ∩ Uu of u which is standard affine open in both
U and Uu, see Schemes, Lemma 26.11.5. By Definition 29.14.1 (1)(b) we see that
P (OS(Vu) → OX(U ′

u)) holds. Hence we may assume that Uu ⊂ U is a standard
affine open. Choose an open neighbourhood V ′

u ⊂ V ∩Vu of f(u) which is standard
affine open in both V and Vu, see Schemes, Lemma 26.11.5. Then U ′

u = f−1(V ′
u)∩Uu

is a standard affine open of Uu (hence of U) and we have P (OS(V ′
u) → OX(U ′

u))
by Definition 29.14.1 (1)(a). Hence we may assume both Uu ⊂ U and Vu ⊂ V are
standard affine open. Applying Definition 29.14.1 (1)(b) one more time we conclude
that P (OS(V ) → OX(Uu)) holds. Because U is quasi-compact we may choose a
finite number of points u1, . . . , un ∈ U such that

U = Uu1 ∪ . . . ∪ Uun .
By Definition 29.14.1 (1)(c) we conclude that P (OS(V )→ OX(U)) holds. □

Lemma 29.14.4.01SU Let P be a local property of ring maps. Let f : X → S be a
morphism of schemes. The following are equivalent

(1) The morphism f is locally of type P .
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V we have P (OS(V )→
OX(U)).

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj , j ∈ J, i ∈ Ij is locally
of type P .

(4) There exists an affine open covering S =
⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that P (OS(Vj) → OX(Ui)) holds, for all j ∈

J, i ∈ Ij .
Moreover, if f is locally of type P then for any open subschemes U ⊂ X, V ⊂ S
with f(U) ⊂ V the restriction f |U : U → V is locally of type P .

Proof. This follows from Lemma 29.14.3 above. □

Lemma 29.14.5.01SV Let P be a property of ring maps. Assume P is local and stable
under composition. The composition of morphisms locally of type P is locally of
type P .

Proof. Let f : X → Y and g : Y → Z be morphisms locally of type P . Let
x ∈ X. Choose an affine open neighbourhood W ⊂ Z of g(f(x)). Choose an affine
open neighbourhood V ⊂ g−1(W ) of f(x). Choose an affine open neighbourhood
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U ⊂ f−1(V ) of x. By Lemma 29.14.4 the ring maps OZ(W ) → OY (V ) and
OY (V )→ OX(U) satisfy P . Hence OZ(W )→ OX(U) satisfies P as P is assumed
stable under composition. □

Lemma 29.14.6.01SW Let P be a property of ring maps. Assume P is local and stable
under base change. The base change of a morphism locally of type P is locally of
type P .

Proof. Let f : X → S be a morphism locally of type P . Let S′ → S be any
morphism. Denote f ′ : XS′ = S′ ×S X → S′ the base change of f . For every
s′ ∈ S′ there exists an open affine neighbourhood s′ ∈ V ′ ⊂ S′ which maps into
some open affine V ⊂ S. By Lemma 29.14.4 the open f−1(V ) is a union of affines
Ui such that the ring maps OS(V ) → OX(Ui) all satisfy P . By the material in
Schemes, Section 26.17 we see that f−1(U)V ′ = V ′ ×V f−1(V ) is the union of the
affine opens V ′ ×V Ui. Since OXS′ (V ′ ×V Ui) = OS′(V ′) ⊗OS(V ) OX(Ui) we see
that the ring maps OS′(V ′) → OXS′ (V ′ ×V Ui) satisfy P as P is assumed stable
under base change. □

Lemma 29.14.7.01SX The following properties of a ring map R→ A are local.
(1) (Isomorphism on local rings.) For every prime q of A lying over p ⊂ R

the ring map R→ A induces an isomorphism Rp → Aq.
(2) (Open immersion.) For every prime q of A there exists an f ∈ R, φ(f) ̸∈ q

such that the ring map φ : R→ A induces an isomorphism Rf → Af .
(3) (Reduced fibres.) For every prime p of R the fibre ring A ⊗R κ(p) is

reduced.
(4) (Fibres of dimension at most n.) For every prime p of R the fibre ring

A⊗R κ(p) has Krull dimension at most n.
(5) (Locally Noetherian on the target.) The ring map R→ A has the property

that A is Noetherian.
(6) Add more here as needed4.

Proof. Omitted. □

Lemma 29.14.8.01SY The following properties of ring maps are stable under base change.
(1) (Isomorphism on local rings.) For every prime q of A lying over p ⊂ R

the ring map R→ A induces an isomorphism Rp → Aq.
(2) (Open immersion.) For every prime q of A there exists an f ∈ R, φ(f) ̸∈ q

such that the ring map φ : R→ A induces an isomorphism Rf → Af .
(3) Add more here as needed5.

Proof. Omitted. □

Lemma 29.14.9.01SZ The following properties of ring maps are stable under composi-
tion.

(1) (Isomorphism on local rings.) For every prime q of A lying over p ⊂ R
the ring map R→ A induces an isomorphism Rp → Aq.

(2) (Open immersion.) For every prime q of A there exists an f ∈ R, φ(f) ̸∈ q
such that the ring map φ : R→ A induces an isomorphism Rf → Af .

4But only those properties that are not already dealt with separately elsewhere.
5But only those properties that are not already dealt with separately elsewhere.
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(3) (Locally Noetherian on the target.) The ring map R→ A has the property
that A is Noetherian.

(4) Add more here as needed6.

Proof. Omitted. □

29.15. Morphisms of finite type

01T0 Recall that a ring map R → A is said to be of finite type if A is isomorphic to a
quotient of R[x1, . . . , xn] as an R-algebra, see Algebra, Definition 10.6.1.

Definition 29.15.1.01T1 Let f : X → S be a morphism of schemes.
(1) We say that f is of finite type at x ∈ X if there exists an affine open

neighbourhood Spec(A) = U ⊂ X of x and an affine open Spec(R) = V ⊂
S with f(U) ⊂ V such that the induced ring map R→ A is of finite type.

(2) We say that f is locally of finite type if it is of finite type at every point
of X.

(3) We say that f is of finite type if it is locally of finite type and quasi-
compact.

Lemma 29.15.2.01T2 Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is locally of finite type.
(2) For all affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map OS(V )→
OX(U) is of finite type.

(3) There exist an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj , j ∈ J, i ∈ Ij is locally
of finite type.

(4) There exist an affine open covering S =
⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj)→ OX(Ui) is of finite

type, for all j ∈ J, i ∈ Ij .
Moreover, if f is locally of finite type then for any open subschemes U ⊂ X, V ⊂ S
with f(U) ⊂ V the restriction f |U : U → V is locally of finite type.

Proof. This follows from Lemma 29.14.3 if we show that the property “R→ A is of
finite type” is local. We check conditions (a), (b) and (c) of Definition 29.14.1. By
Algebra, Lemma 10.14.2 being of finite type is stable under base change and hence
we conclude (a) holds. By Algebra, Lemma 10.6.2 being of finite type is stable
under composition and trivially for any ring R the ring map R → Rf is of finite
type. We conclude (b) holds. Finally, property (c) is true according to Algebra,
Lemma 10.23.3. □

Lemma 29.15.3.01T3 The composition of two morphisms which are locally of finite type
is locally of finite type. The same is true for morphisms of finite type.

Proof. In the proof of Lemma 29.15.2 we saw that being of finite type is a local
property of ring maps. Hence the first statement of the lemma follows from Lemma
29.14.5 combined with the fact that being of finite type is a property of ring maps
that is stable under composition, see Algebra, Lemma 10.6.2. By the above and
the fact that compositions of quasi-compact morphisms are quasi-compact, see

6But only those properties that are not already dealt with separately elsewhere.
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Schemes, Lemma 26.19.4 we see that the composition of morphisms of finite type
is of finite type. □

Lemma 29.15.4.01T4 The base change of a morphism which is locally of finite type is
locally of finite type. The same is true for morphisms of finite type.

Proof. In the proof of Lemma 29.15.2 we saw that being of finite type is a local
property of ring maps. Hence the first statement of the lemma follows from Lemma
29.14.6 combined with the fact that being of finite type is a property of ring maps
that is stable under base change, see Algebra, Lemma 10.14.2. By the above and
the fact that a base change of a quasi-compact morphism is quasi-compact, see
Schemes, Lemma 26.19.3 we see that the base change of a morphism of finite type
is a morphism of finite type. □

Lemma 29.15.5.01T5 A closed immersion is of finite type. An immersion is locally of
finite type.

Proof. This is true because an open immersion is a local isomorphism, and a closed
immersion is obviously of finite type. □

Lemma 29.15.6.01T6 Let f : X → S be a morphism. If S is (locally) Noetherian and
f (locally) of finite type then X is (locally) Noetherian.

Proof. This follows immediately from the fact that a ring of finite type over a
Noetherian ring is Noetherian, see Algebra, Lemma 10.31.1. (Also: use the fact
that the source of a quasi-compact morphism with quasi-compact target is quasi-
compact.) □

Lemma 29.15.7.01T7 Let f : X → S be locally of finite type with S locally Noetherian.
Then f is quasi-separated.

Proof. In fact, it is true that X is quasi-separated, see Properties, Lemma 28.5.4
and Lemma 29.15.6 above. Then apply Schemes, Lemma 26.21.13 to conclude that
f is quasi-separated. □

Lemma 29.15.8.01T8 Let X → Y be a morphism of schemes over a base scheme S. If
X is locally of finite type over S, then X → Y is locally of finite type.

Proof. Via Lemma 29.15.2 this translates into the following algebra fact: Given
ring maps A→ B → C such that A→ C is of finite type, then B → C is of finite
type. (See Algebra, Lemma 10.6.2). □

29.16. Points of finite type and Jacobson schemes

01T9 Let S be a scheme. A finite type point s of S is a point such that the morphism
Spec(κ(s)) → S is of finite type. The reason for studying this is that finite type
points can replace closed points in a certain sense and in certain situations. There
are always enough of them for example. Moreover, a scheme is Jacobson if and only
if all finite type points are closed points.

Lemma 29.16.1.01TA Let S be a scheme. Let k be a field. Let f : Spec(k) → S be a
morphism. The following are equivalent:

(1) The morphism f is of finite type.
(2) The morphism f is locally of finite type.
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(3) There exists an affine open U = Spec(R) of S such that f corresponds to
a finite ring map R→ k.

(4) There exists an affine open U = Spec(R) of S such that the image of f
consists of a closed point u in U and the field extension k/κ(u) is finite.

Proof. The equivalence of (1) and (2) is obvious as Spec(k) is a singleton and hence
any morphism from it is quasi-compact.
Suppose f is locally of finite type. Choose any affine open Spec(R) = U ⊂ S such
that the image of f is contained in U , and the ring map R→ k is of finite type. Let
p ⊂ R be the kernel. Then R/p ⊂ k is of finite type. By Algebra, Lemma 10.34.2
there exist a f ∈ R/p such that (R/p)f is a field and (R/p)f → k is a finite field
extension. If f ∈ R is a lift of f , then we see that k is a finite Rf -module. Thus
(2) ⇒ (3).
Suppose that Spec(R) = U ⊂ S is an affine open such that f corresponds to a finite
ring map R → k. Then f is locally of finite type by Lemma 29.15.2. Thus (3) ⇒
(2).
Suppose R → k is finite. The image of R → k is a field over which k is finite by
Algebra, Lemma 10.36.18. Hence the kernel of R→ k is a maximal ideal. Thus (3)
⇒ (4).
The implication (4) ⇒ (3) is immediate. □

Lemma 29.16.2.02HV Let S be a scheme. Let A be an Artinian local ring with residue
field κ. Let f : Spec(A)→ S be a morphism of schemes. Then f is of finite type if
and only if the composition Spec(κ)→ Spec(A)→ S is of finite type.

Proof. Since the morphism Spec(κ) → Spec(A) is of finite type it is clear that if
f is of finite type so is the composition Spec(κ) → S (see Lemma 29.15.3). For
the converse, note that Spec(A) → S maps into some affine open U = Spec(B)
of S as Spec(A) has only one point. To finish apply Algebra, Lemma 10.54.4 to
B → A. □

Recall that given a point s of a scheme S there is a canonical morphism Spec(κ(s))→
S, see Schemes, Section 26.13.

Definition 29.16.3.02J1 Let S be a scheme. Let us say that a point s of S is a finite
type point if the canonical morphism Spec(κ(s)) → S is of finite type. We denote
Sft-pts the set of finite type points of S.

We can describe the set of finite type points as follows.

Lemma 29.16.4.02J2 Let S be a scheme. We have

Sft-pts =
⋃

U⊂S open
U0

where U0 is the set of closed points of U . Here we may let U range over all opens
or over all affine opens of S.

Proof. Immediate from Lemma 29.16.1. □

Lemma 29.16.5.02J3 Let f : T → S be a morphism of schemes. If f is locally of finite
type, then f(Tft-pts) ⊂ Sft-pts.
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Proof. If T is the spectrum of a field this is Lemma 29.16.1. In general it follows
since the composition of morphisms locally of finite type is locally of finite type
(Lemma 29.15.3). □

Lemma 29.16.6.06EB Let f : T → S be a morphism of schemes. If f is locally of finite
type and surjective, then f(Tft-pts) = Sft-pts.
Proof. We have f(Tft-pts) ⊂ Sft-pts by Lemma 29.16.5. Let s ∈ S be a finite type
point. As f is surjective the scheme Ts = Spec(κ(s)) ×S T is nonempty, therefore
has a finite type point t ∈ Ts by Lemma 29.16.4. Now Ts → T is a morphism of
finite type as a base change of s→ S (Lemma 29.15.4). Hence the image of t in T
is a finite type point by Lemma 29.16.5 which maps to s by construction. □

Lemma 29.16.7.02J4 Let S be a scheme. For any locally closed subset T ⊂ S we have
T ̸= ∅ ⇒ T ∩ Sft-pts ̸= ∅.

In particular, for any closed subset T ⊂ S we see that T ∩ Sft-pts is dense in T .
Proof. Note that T carries a scheme structure (see Schemes, Lemma 26.12.4) such
that T → S is a locally closed immersion. Any locally closed immersion is locally
of finite type, see Lemma 29.15.5. Hence by Lemma 29.16.5 we see Tft-pts ⊂ Sft-pts.
Finally, any nonempty affine open of T has at least one closed point which is a
finite type point of T by Lemma 29.16.4. □

It follows that most of the material from Topology, Section 5.18 goes through with
the set of closed points replaced by the set of points of finite type. In fact, if S is
Jacobson then we recover the closed points as the finite type points.
Lemma 29.16.8.01TB Let S be a scheme. The following are equivalent:

(1) the scheme S is Jacobson,
(2) Sft-pts is the set of closed points of S,
(3) for all T → S locally of finite type closed points map to closed points, and
(4) for all T → S locally of finite type closed points t ∈ T map to closed

points s ∈ S with κ(s) ⊂ κ(t) finite.
Proof. We have trivially (4) ⇒ (3) ⇒ (2). Lemma 29.16.7 shows that (2) implies
(1). Hence it suffices to show that (1) implies (4). Suppose that T → S is locally
of finite type. Choose t ∈ T closed and let s ∈ S be the image. Choose affine open
neighbourhoods Spec(R) = U ⊂ S of s and Spec(A) = V ⊂ T of t with V mapping
into U . The induced ring map R → A is of finite type (see Lemma 29.15.2) and
R is Jacobson by Properties, Lemma 28.6.3. Thus the result follows from Algebra,
Proposition 10.35.19. □

Lemma 29.16.9.02J5 Let S be a Jacobson scheme. Any scheme locally of finite type
over S is Jacobson.
Proof. This is clear from Algebra, Proposition 10.35.19 (and Properties, Lemma
28.6.3 and Lemma 29.15.2). □

Lemma 29.16.10.02J6 The following types of schemes are Jacobson.
(1) Any scheme locally of finite type over a field.
(2) Any scheme locally of finite type over Z.
(3) Any scheme locally of finite type over a 1-dimensional Noetherian domain

with infinitely many primes.
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(4) A scheme of the form Spec(R) \ {m} where (R,m) is a Noetherian local
ring. Also any scheme locally of finite type over it.

Proof. We will use Lemma 29.16.9 without mention. The spectrum of a field is
clearly Jacobson. The spectrum of Z is Jacobson, see Algebra, Lemma 10.35.6. For
(3) see Algebra, Lemma 10.61.4. For (4) see Properties, Lemma 28.6.4. □

29.17. Universally catenary schemes

02J7 Recall that a topological space X is called catenary if for every pair of irreducible
closed subsets T ⊂ T ′ there exist a maximal chain of irreducible closed subsets

T = T0 ⊂ T1 ⊂ . . . ⊂ Te = T ′

and every such chain has the same length. See Topology, Definition 5.11.4. Re-
call that a scheme is catenary if its underlying topological space is catenary. See
Properties, Definition 28.11.1.

Definition 29.17.1.02J8 Let S be a scheme. Assume S is locally Noetherian. We say
S is universally catenary if for every morphism X → S locally of finite type the
scheme X is catenary.

This is a “better” notion than catenary as there exist Noetherian schemes which
are catenary but not universally catenary. See Examples, Section 110.18. Many
schemes are universally catenary, see Lemma 29.17.5 below.
Recall that a ring A is called catenary if for any pair of prime ideals p ⊂ q there
exists a maximal chain of primes

p = p0 ⊂ . . . ⊂ pe = q

and all of these have the same length. See Algebra, Definition 10.105.1. We have
seen the relationship between catenary schemes and catenary rings in Properties,
Section 28.11. Recall that a ring A is called universally catenary if A is Noetherian
and for every finite type ring map A → B the ring B is catenary. See Algebra,
Definition 10.105.3. Many interesting rings which come up in algebraic geometry
satisfy this property.

Lemma 29.17.2.02J9 Let S be a locally Noetherian scheme. The following are equivalent
(1) S is universally catenary,
(2) there exists an open covering of S all of whose members are universally

catenary schemes,
(3) for every affine open Spec(R) = U ⊂ S the ring R is universally catenary,

and
(4) there exists an affine open covering S =

⋃
Ui such that each Ui is the

spectrum of a universally catenary ring.
Moreover, in this case any scheme locally of finite type over S is universally catenary
as well.

Proof. By Lemma 29.15.5 an open immersion is locally of finite type. A composition
of morphisms locally of finite type is locally of finite type (Lemma 29.15.3). Thus
it is clear that if S is universally catenary then any open and any scheme locally of
finite type over S is universally catenary as well. This proves the final statement
of the lemma and that (1) implies (2).

https://stacks.math.columbia.edu/tag/02J8
https://stacks.math.columbia.edu/tag/02J9


29.18. NAGATA SCHEMES, REPRISE 2417

If Spec(R) is a universally catenary scheme, then every scheme Spec(A) with A a
finite type R-algebra is catenary. Hence all these rings A are catenary by Algebra,
Lemma 10.105.2. Thus R is universally catenary. Combined with the remarks
above we conclude that (1) implies (3), and (2) implies (4). Of course (3) implies
(4) trivially.
To finish the proof we show that (4) implies (1). Assume (4) and let X → S be
a morphism locally of finite type. We can find an affine open covering X =

⋃
Vj

such that each Vj → S maps into one of the Ui. By Lemma 29.15.2 the induced
ring map O(Ui) → O(Vj) is of finite type. Hence O(Vj) is catenary. Hence X is
catenary by Properties, Lemma 28.11.2. □

Lemma 29.17.3.02JA Let S be a locally Noetherian scheme. The following are equiva-
lent:

(1) S is universally catenary, and
(2) all local rings OS,s of S are universally catenary.

Proof. Assume that all local rings of S are universally catenary. Let f : X → S be
locally of finite type. We know that X is catenary if and only if OX,x is catenary
for all x ∈ X. If f(x) = s, then OX,x is essentially of finite type over OS,s. Hence
OX,x is catenary by the assumption that OS,s is universally catenary.
Conversely, assume that S is universally catenary. Let s ∈ S. We may replace S
by an affine open neighbourhood of s by Lemma 29.17.2. Say S = Spec(R) and s
corresponds to the prime ideal p. Any finite type Rp-algebra A′ is of the form Ap

for some finite type R-algebra A. By assumption (and Lemma 29.17.2 if you like)
the ring A is catenary, and hence A′ (a localization of A) is catenary. Thus Rp is
universally catenary. □

Lemma 29.17.4.0G42 Let S be a locally Noetherian scheme. Then S is universally
catenary if and only if the irreducible components of S are universally catenary.

Proof. Omitted. For the affine case, please see Algebra, Lemma 10.105.8. □

Lemma 29.17.5.02JB The following types of schemes are universally catenary.
(1) Any scheme locally of finite type over a field.
(2) Any scheme locally of finite type over a Cohen-Macaulay scheme.
(3) Any scheme locally of finite type over Z.
(4) Any scheme locally of finite type over a 1-dimensional Noetherian domain.
(5) And so on.

Proof. All of these follow from the fact that a Cohen-Macaulay ring is universally
catenary, see Algebra, Lemma 10.105.9. Also, use the last assertion of Lemma
29.17.2. Some details omitted. □

29.18. Nagata schemes, reprise

0359 See Properties, Section 28.13 for the definitions and basic properties of Nagata and
universally Japanese schemes.

Lemma 29.18.1.035A Let f : X → S be a morphism. If S is Nagata and f locally of
finite type then X is Nagata. If S is universally Japanese and f locally of finite
type then X is universally Japanese.
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Proof. For “universally Japanese” this follows from Algebra, Lemma 10.162.4. For
“Nagata” this follows from Algebra, Proposition 10.162.15. □

Lemma 29.18.2.035B The following types of schemes are Nagata.
(1) Any scheme locally of finite type over a field.
(2) Any scheme locally of finite type over a Noetherian complete local ring.
(3) Any scheme locally of finite type over Z.
(4) Any scheme locally of finite type over a Dedekind ring of characteristic

zero.
(5) And so on.

Proof. By Lemma 29.18.1 we only need to show that the rings mentioned above
are Nagata rings. For this see Algebra, Proposition 10.162.16. □

29.19. The singular locus, reprise

07R2 We look for a criterion that implies openness of the regular locus for any scheme
locally of finite type over the base. Here is the definition.

Definition 29.19.1.07R3 Let X be a locally Noetherian scheme. We say X is J-2 if for
every morphism Y → X which is locally of finite type the regular locus Reg(Y ) is
open in Y .

This is the analogue of the corresponding notion for Noetherian rings, see More on
Algebra, Definition 15.47.1.

Lemma 29.19.2.07R4 Let X be a locally Noetherian scheme. The following are equiva-
lent

(1) X is J-2,
(2) there exists an open covering of X all of whose members are J-2 schemes,
(3) for every affine open Spec(R) = U ⊂ X the ring R is J-2, and
(4) there exists an affine open covering S =

⋃
Ui such that each O(Ui) is J-2

for all i.
Moreover, in this case any scheme locally of finite type over X is J-2 as well.

Proof. By Lemma 29.15.5 an open immersion is locally of finite type. A composition
of morphisms locally of finite type is locally of finite type (Lemma 29.15.3). Thus
it is clear that if X is J-2 then any open and any scheme locally of finite type over
X is J-2 as well. This proves the final statement of the lemma.
If Spec(R) is J-2, then for every finite type R-algebra A the regular locus of the
scheme Spec(A) is open. Hence R is J-2, by definition (see More on Algebra,
Definition 15.47.1). Combined with the remarks above we conclude that (1) implies
(3), and (2) implies (4). Of course (1) ⇒ (2) and (3) ⇒ (4) trivially.
To finish the proof we show that (4) implies (1). Assume (4) and let Y → X be a
morphism locally of finite type. We can find an affine open covering Y =

⋃
Vj such

that each Vj → X maps into one of the Ui. By Lemma 29.15.2 the induced ring map
O(Ui) → O(Vj) is of finite type. Hence the regular locus of Vj = Spec(O(Vj)) is
open. Since Reg(Y )∩Vj = Reg(Vj) we conclude that Reg(Y ) is open as desired. □

Lemma 29.19.3.07R5 The following types of schemes are J-2.
(1) Any scheme locally of finite type over a field.
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(2) Any scheme locally of finite type over a Noetherian complete local ring.
(3) Any scheme locally of finite type over Z.
(4) Any scheme locally of finite type over a Noetherian local ring of dimension

1.
(5) Any scheme locally of finite type over a Nagata ring of dimension 1.
(6) Any scheme locally of finite type over a Dedekind ring of characteristic

zero.
(7) And so on.

Proof. By Lemma 29.19.2 we only need to show that the rings mentioned above
are J-2. For this see More on Algebra, Proposition 15.48.7. □

29.20. Quasi-finite morphisms

01TC A solid treatment of quasi-finite morphisms is the basis of many developments
further down the road. It will lead to various versions of Zariski’s Main Theorem,
behaviour of dimensions of fibres, descent for étale morphisms, etc, etc. Before
reading this section it may be a good idea to take a look at the algebra results in
Algebra, Section 10.122.
Recall that a finite type ring map R→ A is quasi-finite at a prime q if q defines an
isolated point of its fibre, see Algebra, Definition 10.122.3.

Definition 29.20.1.01TD [DG67, II Definition
6.2.3]

Let f : X → S be a morphism of schemes.
(1) We say that f is quasi-finite at a point x ∈ X if there exist an affine

neighbourhood Spec(A) = U ⊂ X of x and an affine open Spec(R) = V ⊂
S such that f(U) ⊂ V , the ring map R→ A is of finite type, and R→ A
is quasi-finite at the prime of A corresponding to x (see above).

(2) We say f is locally quasi-finite if f is quasi-finite at every point x of X.
(3) We say that f is quasi-finite if f is of finite type and every point x is an

isolated point of its fibre.

Trivially, a locally quasi-finite morphism is locally of finite type. We will see below
that a morphism f which is locally of finite type is quasi-finite at x if and only if x is
isolated in its fibre. Moreover, the set of points at which a morphism is quasi-finite
is open; we will see this in Section 29.56 on Zariski’s Main Theorem.

Lemma 29.20.2.01TE Let f : X → S be a morphism of schemes. Let x ∈ X be a point.
Set s = f(x). If κ(x)/κ(s) is an algebraic field extension, then

(1) x is a closed point of its fibre, and
(2) if in addition s is a closed point of S, then x is a closed point of X.

Proof. The second statement follows from the first by elementary topology. Ac-
cording to Schemes, Lemma 26.18.5 to prove the first statement we may replace X
by Xs and S by Spec(κ(s)). Thus we may assume that S = Spec(k) is the spec-
trum of a field. In this case, let Spec(A) = U ⊂ X be any affine open containing x.
The point x corresponds to a prime ideal q ⊂ A such that κ(q)/k is an algebraic
field extension. By Algebra, Lemma 10.35.9 we see that q is a maximal ideal, i.e.,
x ∈ U is a closed point. Since the affine opens form a basis of the topology of X
we conclude that {x} is closed. □

The following lemma is a version of the Hilbert Nullstellensatz.
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Lemma 29.20.3.01TF Let f : X → S be a morphism of schemes. Let x ∈ X be a point.
Set s = f(x). Assume f is locally of finite type. Then x is a closed point of its
fibre if and only if κ(x)/κ(s) is a finite field extension.

Proof. If the extension is finite, then x is a closed point of the fibre by Lemma
29.20.2 above. For the converse, assume that x is a closed point of its fibre. Choose
affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ S such that f(U) ⊂ V . By
Lemma 29.15.2 the ring map R → A is of finite type. Let q ⊂ A, resp. p ⊂ R be
the prime ideal corresponding to x, resp. s. Consider the fibre ring A = A⊗R κ(p).
Let q be the prime of A corresponding to q. The assumption that x is a closed
point of its fibre implies that q is a maximal ideal of A. Since A is an algebra of
finite type over the field κ(p) we see by the Hilbert Nullstellensatz, see Algebra,
Theorem 10.34.1, that κ(q) is a finite extension of κ(p). Since κ(s) = κ(p) and
κ(x) = κ(q) = κ(q) we win. □

Lemma 29.20.4.053M Let f : X → S be a morphism of schemes which is locally of finite
type. Let g : S′ → S be any morphism. Denote f ′ : X ′ → S′ the base change. If
x′ ∈ X ′ maps to a point x ∈ X which is closed in Xf(x) then x′ is closed in X ′

f ′(x′).

Proof. The residue field κ(x′) is a quotient of κ(f ′(x′))⊗κ(f(x)) κ(x), see Schemes,
Lemma 26.17.5. Hence it is a finite extension of κ(f ′(x′)) as κ(x) is a finite extension
of κ(f(x)) by Lemma 29.20.3. Thus we see that x′ is closed in its fibre by applying
that lemma one more time. □

Lemma 29.20.5.01TG Let f : X → S be a morphism of schemes. Let x ∈ X be a point.
Set s = f(x). If f is quasi-finite at x, then the residue field extension κ(x)/κ(s) is
finite.

Proof. This is clear from Algebra, Definition 10.122.3. □

Lemma 29.20.6.01TH Let f : X → S be a morphism of schemes. Let x ∈ X be a point.
Set s = f(x). Let Xs be the fibre of f at s. Assume f is locally of finite type. The
following are equivalent:

(1) The morphism f is quasi-finite at x.
(2) The point x is isolated in Xs.
(3) The point x is closed in Xs and there is no point x′ ∈ Xs, x′ ̸= x which

specializes to x.
(4) For any pair of affine opens Spec(A) = U ⊂ X, Spec(R) = V ⊂ S with

f(U) ⊂ V and x ∈ U corresponding to q ⊂ A the ring map R → A is
quasi-finite at q.

Proof. Assume f is quasi-finite at x. By assumption there exist opens U ⊂ X,
V ⊂ S such that f(U) ⊂ V , x ∈ U and x an isolated point of Us. Hence {x} ⊂ Us
is an open subset. Since Us = U ∩Xs ⊂ Xs is also open we conclude that {x} ⊂ Xs

is an open subset also. Thus we conclude that x is an isolated point of Xs.
Note that Xs is a Jacobson scheme by Lemma 29.16.10 (and Lemma 29.15.4). If
x is isolated in Xs, i.e., {x} ⊂ Xs is open, then {x} contains a closed point (by
the Jacobson property), hence x is closed in Xs. It is clear that there is no point
x′ ∈ Xs, distinct from x, specializing to x.
Assume that x is closed in Xs and that there is no point x′ ∈ Xs, distinct from x,
specializing to x. Consider a pair of affine opens Spec(A) = U ⊂ X, Spec(R) =
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V ⊂ S with f(U) ⊂ V and x ∈ U . Let q ⊂ A correspond to x and p ⊂ R correspond
to s. By Lemma 29.15.2 the ring map R → A is of finite type. Consider the fibre
ring A = A ⊗R κ(p). Let q be the prime of A corresponding to q. Since Spec(A)
is an open subscheme of the fibre Xs we see that q is a maximal ideal of A and
that there is no point of Spec(A) specializing to q. This implies that dim(Aq) = 0.
Hence by Algebra, Definition 10.122.3 we see that R → A is quasi-finite at q, i.e.,
X → S is quasi-finite at x by definition.
At this point we have shown conditions (1) – (3) are all equivalent. It is clear that
(4) implies (1). And it is also clear that (2) implies (4) since if x is an isolated point
of Xs then it is also an isolated point of Us for any open U which contains it. □

Lemma 29.20.7.02NG Let f : X → S be a morphism of schemes. Let s ∈ S. Assume
that

(1) f is locally of finite type, and
(2) f−1({s}) is a finite set.

Then Xs is a finite discrete topological space, and f is quasi-finite at each point of
X lying over s.
Proof. Suppose T is a scheme which (a) is locally of finite type over a field k,
and (b) has finitely many points. Then Lemma 29.16.10 shows T is a Jacobson
scheme. A finite Jacobson space is discrete, see Topology, Lemma 5.18.6. Apply
this remark to the fibre Xs which is locally of finite type over Spec(κ(s)) to see the
first statement. Finally, apply Lemma 29.20.6 to see the second. □

Lemma 29.20.8.06RT Let f : X → S be a morphism of schemes. Assume f is locally of
finite type. Then the following are equivalent

(1) f is locally quasi-finite,
(2) for every s ∈ S the fibre Xs is a discrete topological space, and
(3) for every morphism Spec(k) → S where k is a field the base change Xk

has an underlying discrete topological space.
Proof. It is immediate that (3) implies (2). Lemma 29.20.6 shows that (2) is equiva-
lent to (1). Assume (2) and let Spec(k)→ S be as in (3). Denote s ∈ S the image of
Spec(k)→ S. Then Xk is the base change of Xs via Spec(k)→ Spec(κ(s)). Hence
every point of Xk is closed by Lemma 29.20.4. As Xk → Spec(k) is locally of finite
type (by Lemma 29.15.4), we may apply Lemma 29.20.6 to conclude that every
point of Xk is isolated, i.e., Xk has a discrete underlying topological space. □

Lemma 29.20.9.01TJ Let f : X → S be a morphism of schemes. Then f is quasi-finite
if and only if f is locally quasi-finite and quasi-compact.
Proof. Assume f is quasi-finite. It is quasi-compact by Definition 29.15.1. Let
x ∈ X. We see that f is quasi-finite at x by Lemma 29.20.6. Hence f is quasi-
compact and locally quasi-finite.
Assume f is quasi-compact and locally quasi-finite. Then f is of finite type. Let
x ∈ X be a point. By Lemma 29.20.6 we see that x is an isolated point of its fibre.
The lemma is proved. □

Lemma 29.20.10.02NH Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) f is quasi-finite, and
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(2) f is locally of finite type, quasi-compact, and has finite fibres.

Proof. Assume f is quasi-finite. In particular f is locally of finite type and quasi-
compact (since it is of finite type). Let s ∈ S. Since every x ∈ Xs is isolated in Xs

we see that Xs =
⋃
x∈Xs{x} is an open covering. As f is quasi-compact, the fibre

Xs is quasi-compact. Hence we see that Xs is finite.
Conversely, assume f is locally of finite type, quasi-compact and has finite fibres.
Then it is locally quasi-finite by Lemma 29.20.7. Hence it is quasi-finite by Lemma
29.20.9. □

Recall that a ring map R → A is quasi-finite if it is of finite type and quasi-finite
at all primes of A, see Algebra, Definition 10.122.3.

Lemma 29.20.11.01TK Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is locally quasi-finite.
(2) For every pair of affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is quasi-finite.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj , j ∈ J, i ∈ Ij is locally
quasi-finite.

(4) There exists an affine open covering S =
⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is quasi-

finite, for all j ∈ J, i ∈ Ij .
Moreover, if f is locally quasi-finite then for any open subschemes U ⊂ X, V ⊂ S
with f(U) ⊂ V the restriction f |U : U → V is locally quasi-finite.

Proof. For a ring map R → A let us define P (R → A) to mean “R → A is quasi-
finite” (see remark above lemma). We claim that P is a local property of ring maps.
We check conditions (a), (b) and (c) of Definition 29.14.1. In the proof of Lemma
29.15.2 we have seen that (a), (b) and (c) hold for the property of being “of finite
type”. Note that, for a finite type ring map R → A, the property R → A is quasi-
finite at q depends only on the local ring Aq as an algebra over Rp where p = R∩ q
(usual abuse of notation). Using these remarks (a), (b) and (c) of Definition 29.14.1
follow immediately. For example, suppose R→ A is a ring map such that all of the
ring maps R → Aai are quasi-finite for a1, . . . , an ∈ A generating the unit ideal.
We conclude that R → A is of finite type. Also, for any prime q ⊂ A the local
ring Aq is isomorphic as an R-algebra to the local ring (Aai)qi for some i and some
qi ⊂ Aai . Hence we conclude that R→ A is quasi-finite at q.
We conclude that Lemma 29.14.3 applies with P as in the previous paragraph.
Hence it suffices to prove that f is locally quasi-finite is equivalent to f is locally
of type P . Since P (R → A) is “R → A is quasi-finite” which means R → A is
quasi-finite at every prime of A, this follows from Lemma 29.20.6. □

Lemma 29.20.12.01TL The composition of two morphisms which are locally quasi-finite
is locally quasi-finite. The same is true for quasi-finite morphisms.

Proof. In the proof of Lemma 29.20.11 we saw that P =“quasi-finite” is a local
property of ring maps, and that a morphism of schemes is locally quasi-finite if and
only if it is locally of type P as in Definition 29.14.2. Hence the first statement of
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the lemma follows from Lemma 29.14.5 combined with the fact that being quasi-
finite is a property of ring maps that is stable under composition, see Algebra,
Lemma 10.122.7. By the above, Lemma 29.20.9 and the fact that compositions of
quasi-compact morphisms are quasi-compact, see Schemes, Lemma 26.19.4 we see
that the composition of quasi-finite morphisms is quasi-finite. □

We will see later (Lemma 29.56.2) that the set U of the following lemma is open.
Lemma 29.20.13.01TM Let f : X → S be a morphism of schemes. Let g : S′ → S be a
morphism of schemes. Denote f ′ : X ′ → S′ the base change of f by g and denote
g′ : X ′ → X the projection. Assume X is locally of finite type over S.

(1) Let U ⊂ X (resp. U ′ ⊂ X ′) be the set of points where f (resp. f ′) is
quasi-finite. Then U ′ = U ×S S′ = (g′)−1(U).

(2) The base change of a locally quasi-finite morphism is locally quasi-finite.
(3) The base change of a quasi-finite morphism is quasi-finite.

Proof. The first and second assertion follow from the corresponding algebra result,
see Algebra, Lemma 10.122.8 (combined with the fact that f ′ is also locally of
finite type by Lemma 29.15.4). By the above, Lemma 29.20.9 and the fact that a
base change of a quasi-compact morphism is quasi-compact, see Schemes, Lemma
26.19.3 we see that the base change of a quasi-finite morphism is quasi-finite. □

Lemma 29.20.14.0AAY Let f : X → S be a morphism of schemes of finite type. Let
s ∈ S. There are at most finitely many points of X lying over s at which f is
quasi-finite.
Proof. The fibre Xs is a scheme of finite type over a field, hence Noetherian (Lemma
29.15.6). Hence the topology on Xs is Noetherian (Properties, Lemma 28.5.5) and
can have at most a finite number of isolated points (by elementary topology). Thus
our lemma follows from Lemma 29.20.6. □

Lemma 29.20.15.0CT8 Let f : X → Y be a morphism of schemes. If f is locally of finite
type and a monomorphism, then f is separated and locally quasi-finite.
Proof. A monomorphism is separated by Schemes, Lemma 26.23.3. A monomor-
phism is injective, hence we get f is quasi-finite at every x ∈ X for example by
Lemma 29.20.6. □

Lemma 29.20.16.01TN Any immersion is locally quasi-finite.
Proof. This is true because an open immersion is a local isomorphism and a closed
immersion is clearly quasi-finite. □

Lemma 29.20.17.03WR Let X → Y be a morphism of schemes over a base scheme S.
Let x ∈ X. If X → S is quasi-finite at x, then X → Y is quasi-finite at x. If X is
locally quasi-finite over S, then X → Y is locally quasi-finite.
Proof. Via Lemma 29.20.11 this translates into the following algebra fact: Given
ring maps A → B → C such that A → C is quasi-finite, then B → C is quasi-
finite. This follows from Algebra, Lemma 10.122.6 with R = A, S = S′ = C and
R′ = B. □

Lemma 29.20.18.0GWS Let f : X → Y and g : Y → S be morphisms of schemes. If f is
surjective, g ◦ f locally quasi-finite, and g locally of finite type, then g : Y → S is
locally quasi-finite.
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Proof. Let x ∈ X with images y ∈ Y and s ∈ S. Since g◦f is locally quasi-finite by
Lemma 29.20.5 the extension κ(x)/κ(s) is finite. Hence κ(y)/κ(s) is finite. Hence
y is a closed point of Ys by Lemma 29.20.2. Since f is surjective, we see that every
point of Y is closed in its fibre over S. Thus by Lemma 29.20.6 we conclude that
g is quasi-finite at every point. □

29.21. Morphisms of finite presentation

01TO Recall that a ring map R → A is of finite presentation if A is isomorphic to
R[x1, . . . , xn]/(f1, . . . , fm) as an R-algebra for some n,m and some polynomials
fj , see Algebra, Definition 10.6.1.

Definition 29.21.1.01TP Let f : X → S be a morphism of schemes.
(1) We say that f is of finite presentation at x ∈ X if there exists an affine

open neighbourhood Spec(A) = U ⊂ X of x and affine open Spec(R) =
V ⊂ S with f(U) ⊂ V such that the induced ring map R→ A is of finite
presentation.

(2) We say that f is locally of finite presentation if it is of finite presentation
at every point of X.

(3) We say that f is of finite presentation if it is locally of finite presentation,
quasi-compact and quasi-separated.

Note that a morphism of finite presentation is not just a quasi-compact morphism
which is locally of finite presentation. Later we will characterize morphisms which
are locally of finite presentation as those morphisms such that

colim MorS(Ti, X) = MorS(limTi, X)
for any directed system of affine schemes Ti over S. See Limits, Proposition 32.6.1.
In Limits, Section 32.10 we show that, if S = limi Si is a limit of affine schemes,
any scheme X of finite presentation over S descends to a scheme Xi over Si for
some i.

Lemma 29.21.2.01TQ Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is locally of finite presentation.
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is of finite presentation.

(3) There exist an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj , j ∈ J, i ∈ Ij is locally
of finite presentation.

(4) There exist an affine open covering S =
⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj)→ OX(Ui) is of finite

presentation, for all j ∈ J, i ∈ Ij .
Moreover, if f is locally of finite presentation then for any open subschemes U ⊂ X,
V ⊂ S with f(U) ⊂ V the restriction f |U : U → V is locally of finite presentation.

Proof. This follows from Lemma 29.14.4 if we show that the property “R → A is
of finite presentation” is local. We check conditions (a), (b) and (c) of Definition
29.14.1. By Algebra, Lemma 10.14.2 being of finite presentation is stable under
base change and hence we conclude (a) holds. By Algebra, Lemma 10.6.2 being of
finite presentation is stable under composition and trivially for any ring R the ring
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map R→ Rf is of finite presentation. We conclude (b) holds. Finally, property (c)
is true according to Algebra, Lemma 10.23.3. □

Lemma 29.21.3.01TR The composition of two morphisms which are locally of finite
presentation is locally of finite presentation. The same is true for morphisms of
finite presentation.

Proof. In the proof of Lemma 29.21.2 we saw that being of finite presentation is
a local property of ring maps. Hence the first statement of the lemma follows
from Lemma 29.14.5 combined with the fact that being of finite presentation is a
property of ring maps that is stable under composition, see Algebra, Lemma 10.6.2.
By the above and the fact that compositions of quasi-compact, quasi-separated
morphisms are quasi-compact and quasi-separated, see Schemes, Lemmas 26.19.4
and 26.21.12 we see that the composition of morphisms of finite presentation is of
finite presentation. □

Lemma 29.21.4.01TS The base change of a morphism which is locally of finite presen-
tation is locally of finite presentation. The same is true for morphisms of finite
presentation.

Proof. In the proof of Lemma 29.21.2 we saw that being of finite presentation is
a local property of ring maps. Hence the first statement of the lemma follows
from Lemma 29.14.5 combined with the fact that being of finite presentation is a
property of ring maps that is stable under base change, see Algebra, Lemma 10.14.2.
By the above and the fact that a base change of a quasi-compact, quasi-separated
morphism is quasi-compact and quasi-separated, see Schemes, Lemmas 26.19.3 and
26.21.12 we see that the base change of a morphism of finite presentation is a
morphism of finite presentation. □

Lemma 29.21.5.01TT Any open immersion is locally of finite presentation.

Proof. This is true because an open immersion is a local isomorphism. □

Lemma 29.21.6.01TU Any open immersion is of finite presentation if and only if it is
quasi-compact.

Proof. We have seen (Lemma 29.21.5) that an open immersion is locally of finite
presentation. We have seen (Schemes, Lemma 26.23.8) that an immersion is sep-
arated and hence quasi-separated. From this and Definition 29.21.1 the lemma
follows. □

Lemma 29.21.7.01TV A closed immersion i : Z → X is of finite presentation if and only
if the associated quasi-coherent sheaf of ideals I = Ker(OX → i∗OZ) is of finite
type (as an OX -module).

Proof. On any affine open Spec(R) ⊂ X we have i−1(Spec(R)) = Spec(R/I) and
I = Ĩ. Moreover, I is of finite type if and only if I is a finite R-module for every
such affine open (see Properties, Lemma 28.16.1). And R/I is of finite presentation
over R if and only if I is a finite R-module. Hence we win. □

Lemma 29.21.8.01TW A morphism which is locally of finite presentation is locally of
finite type. A morphism of finite presentation is of finite type.

Proof. Omitted. □
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Lemma 29.21.9.01TX Let f : X → S be a morphism.
(1) If S is locally Noetherian and f locally of finite type then f is locally of

finite presentation.
(2) If S is locally Noetherian and f of finite type then f is of finite presenta-

tion.

Proof. The first statement follows from the fact that a ring of finite type over a
Noetherian ring is of finite presentation, see Algebra, Lemma 10.31.4. Suppose that
f is of finite type and S is locally Noetherian. Then f is quasi-compact and locally
of finite presentation by (1). Hence it suffices to prove that f is quasi-separated.
This follows from Lemma 29.15.7 (and Lemma 29.21.8). □

Lemma 29.21.10.01TY Let S be a scheme which is quasi-compact and quasi-separated.
If X is of finite presentation over S, then X is quasi-compact and quasi-separated.

Proof. Omitted. □

Lemma 29.21.11.02FV Let f : X → Y be a morphism of schemes over S.
(1) If X is locally of finite presentation over S and Y is locally of finite type

over S, then f is locally of finite presentation.
(2) If X is of finite presentation over S and Y is quasi-separated and locally

of finite type over S, then f is of finite presentation.

Proof. Proof of (1). Via Lemma 29.21.2 this translates into the following algebra
fact: Given ring maps A → B → C such that A → C is of finite presentation and
A→ B is of finite type, then B → C is of finite presentation. See Algebra, Lemma
10.6.2.

Part (2) follows from (1) and Schemes, Lemmas 26.21.13 and 26.21.14. □

Lemma 29.21.12.0818 Let f : X → Y be a morphism of schemes with diagonal ∆ :
X → X ×Y X. If f is locally of finite type then ∆ is locally of finite presentation.
If f is quasi-separated and locally of finite type, then ∆ is of finite presentation.

Proof. Note that ∆ is a morphism of schemes over X (via the second projection
X ×Y X → X). Assume f is locally of finite type. Note that X is of finite
presentation over X and X ×Y X is locally of finite type over X (by Lemma
29.15.4). Thus the first statement holds by Lemma 29.21.11. The second statement
follows from the first, the definitions, and the fact that a diagonal morphism is a
monomorphism, hence separated (Schemes, Lemma 26.23.3). □

29.22. Constructible sets

054H Constructible and locally constructible sets of schemes have been discussed in Prop-
erties, Section 28.2. In this section we prove some results concerning images and
inverse images of (locally) constructible sets. The main result is Chevalley’s theo-
rem which states that the image of a locally constructible set under a morphism of
finite presentation is locally constructible.

Lemma 29.22.1.054I Let f : X → Y be a morphism of schemes. Let E ⊂ Y be a
subset. If E is (locally) constructible in Y , then f−1(E) is (locally) constructible
in X.
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Proof. To show that the inverse image of every constructible subset is constructible
it suffices to show that the inverse image of every retrocompact open V of Y is
retrocompact in X, see Topology, Lemma 5.15.3. The significance of V being
retrocompact in Y is just that the open immersion V → Y is quasi-compact.
Hence the base change f−1(V ) = X ×Y V → X is quasi-compact too, see Schemes,
Lemma 26.19.3. Hence we see f−1(V ) is retrocompact in X. Suppose E is locally
constructible in Y . Choose x ∈ X. Choose an affine neighbourhood V of f(x)
and an affine neighbourhood U ⊂ X of x such that f(U) ⊂ V . Thus we think of
f |U : U → V as a morphism into V . By Properties, Lemma 28.2.1 we see that
E ∩ V is constructible in V . By the constructible case we see that (f |U )−1(E ∩ V )
is constructible in U . Since (f |U )−1(E ∩ V ) = f−1(E) ∩ U we win. □

Lemma 29.22.2.054J Let f : X → Y be a morphism of schemes. Assume
(1) f is quasi-compact and locally of finite presentation, and
(2) Y is quasi-compact and quasi-separated.

Then the image of every constructible subset of X is constructible in Y .

Proof. By Properties, Lemma 28.2.5 it suffices to prove this lemma in case Y is
affine. In this case X is quasi-compact. Hence we can write X = U1 ∪ . . . ∪ Un
with each Ui affine open in X. If E ⊂ X is constructible, then each E ∩ Ui is
constructible too, see Topology, Lemma 5.15.4. Hence, since f(E) =

⋃
f(E ∩ Ui)

and since finite unions of constructible sets are constructible, this reduces us to the
case where X is affine. In this case the result is Algebra, Theorem 10.29.10. □

Theorem 29.22.3 (Chevalley’s Theorem).054K [DG67, IV,
Theorem 1.8.4]

Let f : X → Y be a morphism of
schemes. Assume f is quasi-compact and locally of finite presentation. Then the
image of every locally constructible subset is locally constructible.

Proof. Let E ⊂ X be locally constructible. We have to show that f(E) is locally
constructible too. We will show that f(E) ∩ V is constructible for any affine open
V ⊂ Y . Thus we reduce to the case where Y is affine. In this case X is quasi-
compact. Hence we can writeX = U1∪. . .∪Un with each Ui affine open inX. If E ⊂
X is locally constructible, then each E∩Ui is constructible, see Properties, Lemma
28.2.1. Hence, since f(E) =

⋃
f(E ∩ Ui) and since finite unions of constructible

sets are constructible, this reduces us to the case where X is affine. In this case the
result is Algebra, Theorem 10.29.10. □

Lemma 29.22.4.05LW Let X be a scheme. Let x ∈ X. Let E ⊂ X be a locally
constructible subset. If {x′ | x′ ⇝ x} ⊂ E, then E contains an open neighbourhood
of x.

Proof. Assume {x′ | x′ ⇝ x} ⊂ E. We may assume X is affine. In this case E
is constructible, see Properties, Lemma 28.2.1. In particular, also the complement
Ec is constructible. By Algebra, Lemma 10.29.4 we can find a morphism of affine
schemes f : Y → X such that Ec = f(Y ). Let Z ⊂ X be the scheme theoretic
image of f . By Lemma 29.6.5 and the assumption {x′ | x′ ⇝ x} ⊂ E we see that
x ̸∈ Z. Hence X \ Z ⊂ E is an open neighbourhood of x contained in E. □

29.23. Open morphisms

01TZ
Definition 29.23.1.01U0 Let f : X → S be a morphism.
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(1) We say f is open if the map on underlying topological spaces is open.
(2) We say f is universally open if for any morphism of schemes S′ → S the

base change f ′ : XS′ → S′ is open.

According to Topology, Lemma 5.19.7 generalizations lift along certain types of open
maps of topological spaces. In fact generalizations lift along any open morphism of
schemes (see Lemma 29.23.5). Also, we will see that generalizations lift along flat
morphisms of schemes (Lemma 29.25.9). This sometimes in turn implies that the
morphism is open.

Lemma 29.23.2.01U1 Let f : X → S be a morphism.
(1) If f is locally of finite presentation and generalizations lift along f , then

f is open.
(2) If f is locally of finite presentation and generalizations lift along every

base change of f , then f is universally open.

Proof. It suffices to prove the first assertion. This reduces to the case where both
X and S are affine. In this case the result follows from Algebra, Lemma 10.41.3
and Proposition 10.41.8. □

See also Lemma 29.25.10 for the case of a morphism flat of finite presentation.

Lemma 29.23.3.02V2 A composition of (universally) open morphisms is (universally)
open.

Proof. Omitted. □

Lemma 29.23.4.0383 Let k be a field. Let X be a scheme over k. The structure
morphism X → Spec(k) is universally open.

Proof. Let S → Spec(k) be a morphism. We have to show that the base change
XS → S is open. The question is local on S and X, hence we may assume that S
and X are affine. In this case the result is Algebra, Lemma 10.41.10. □

Lemma 29.23.5.040F Follows from the
implication (a) ⇒
(b) in [DG67, IV,
Corollary 1.10.4]

Let φ : X → Y be a morphism of schemes. If φ is open, then φ
is generizing (i.e., generalizations lift along φ). If φ is universally open, then φ is
universally generizing.

Proof. Assume φ is open. Let y′ ⇝ y be a specialization of points of Y . Let x ∈ X
with φ(x) = y. Choose affine opens U ⊂ X and V ⊂ Y such that φ(U) ⊂ V and
x ∈ U . Then also y′ ∈ V . Hence we may replace X by U and Y by V and assume
X, Y affine. The affine case is Algebra, Lemma 10.41.2 (combined with Algebra,
Lemma 10.41.3). □

Lemma 29.23.6.04ZE Let f : X → Y be a morphism of schemes. Let g : Y ′ → Y be
open and surjective such that the base change f ′ : X ′ → Y ′ is quasi-compact. Then
f is quasi-compact.

Proof. Let V ⊂ Y be a quasi-compact open. As g is open and surjective we can find
a quasi-compact open W ′ ⊂ W such that g(W ′) = V . By assumption (f ′)−1(W ′)
is quasi-compact. The image of (f ′)−1(W ′) in X is equal to f−1(V ), see Lemma
29.9.3. Hence f−1(V ) is quasi-compact as the image of a quasi-compact space, see
Topology, Lemma 5.12.7. Thus f is quasi-compact. □
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29.24. Submersive morphisms

040G
Definition 29.24.1.040H Let f : X → Y be a morphism of schemes.

(1) We say f is submersive7 if the continuous map of underlying topological
spaces is submersive, see Topology, Definition 5.6.3.

(2) We say f is universally submersive if for every morphism of schemes Y ′ →
Y the base change Y ′ ×Y X → Y ′ is submersive.

We note that a submersive morphism is in particular surjective.

Lemma 29.24.2.0CES The base change of a universally submersive morphism of schemes
by any morphism of schemes is universally submersive.

Proof. This is immediate from the definition. □

Lemma 29.24.3.0CET The composition of a pair of (universally) submersive morphisms
of schemes is (universally) submersive.

Proof. Omitted. □

29.25. Flat morphisms

01U2 Flatness is one of the most important technical tools in algebraic geometry. In
this section we introduce this notion. We intentionally limit the discussion to
straightforward observations, apart from Lemma 29.25.10. A very important class
of results, namely criteria for flatness, are discussed in Algebra, Sections 10.99,
10.101, 10.128, and More on Morphisms, Section 37.16. There is a chapter dedicated
to advanced material on flat morphisms of schemes, namely More on Flatness,
Section 38.1.
Recall that a module M over a ring R is flat if the functor −⊗RM : ModR → ModR
is exact. A ring map R → A is said to be flat if A is flat as an R-module. See
Algebra, Definition 10.39.1.

Definition 29.25.1.01U3 Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf of OX -modules.

(1) We say f is flat at a point x ∈ X if the local ring OX,x is flat over the
local ring OS,f(x).

(2) We say that F is flat over S at a point x ∈ X if the stalk Fx is a flat
OS,f(x)-module.

(3) We say f is flat if f is flat at every point of X.
(4) We say that F is flat over S if F is flat over S at every point x of X.

Thus we see that f is flat if and only if the structure sheaf OX is flat over S.

Lemma 29.25.2.01U4 Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf of OX -modules. The following are equivalent

(1) The sheaf F is flat over S.
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the OS(V )-module
F(U) is flat.

7This is very different from the notion of a submersion of differential manifolds.
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(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the modules F|Ui is flat over Vj , for all j ∈
J, i ∈ Ij .

(4) There exists an affine open covering S =
⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that F(Ui) is a flat OS(Vj)-module, for all j ∈

J, i ∈ Ij .
Moreover, if F is flat over S then for any open subschemes U ⊂ X, V ⊂ S with
f(U) ⊂ V the restriction F|U is flat over V .

Proof. Let R → A be a ring map. Let M be an A-module. If M is R-flat, then
for all primes q the module Mq is flat over Rp with p the prime of R lying under
q. Conversely, if Mq is flat over Rp for all primes q of A, then M is flat over R.
See Algebra, Lemma 10.39.18. This equivalence easily implies the statements of
the lemma. □

Lemma 29.25.3.01U5 Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is flat.
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is flat.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj , j ∈ J, i ∈ Ij is flat.
(4) There exists an affine open covering S =

⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that OS(Vj) → OX(Ui) is flat, for all j ∈ J, i ∈

Ij .
Moreover, if f is flat then for any open subschemes U ⊂ X, V ⊂ S with f(U) ⊂ V
the restriction f |U : U → V is flat.

Proof. This is a special case of Lemma 29.25.2 above. □

Lemma 29.25.4.0FLM Let f : X → Y be an affine morphism of schemes over a base
scheme S. Let F be a quasi-coherent OX -module. Then F is flat over S if and
only if f∗F is flat over S.

Proof. By Lemma 29.25.2 and the fact that f is an affine morphism, this reduces
us to the affine case. Say X → Y → S corresponds to the ring maps C ← B ← A.
Let N be the C-module corresponding to F . Recall that f∗F corresponds to N
viewed as a B-module, see Schemes, Lemma 26.7.3. Thus the result is clear. □

Lemma 29.25.5.01U6 Let X → Y → Z be morphisms of schemes. Let F be a quasi-
coherent OX -module. Let x ∈ X with image y in Y . If F is flat over Y at x, and
Y is flat over Z at y, then F is flat over Z at x.

Proof. See Algebra, Lemma 10.39.4. □

Lemma 29.25.6.01U7 The composition of flat morphisms is flat.

Proof. This is a special case of Lemma 29.25.5. □

Lemma 29.25.7.01U8 Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf of OX -modules. Let g : S′ → S be a morphism of schemes. Denote
g′ : X ′ = XS′ → X the projection. Let x′ ∈ X ′ be a point with image x = g′(x′) ∈
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X. If F is flat over S at x, then (g′)∗F is flat over S′ at x′. In particular, if F is
flat over S, then (g′)∗F is flat over S′.

Proof. See Algebra, Lemma 10.39.7. □

Lemma 29.25.8.01U9 The base change of a flat morphism is flat.

Proof. This is a special case of Lemma 29.25.7. □

Lemma 29.25.9.03HV Let f : X → S be a flat morphism of schemes. Then generaliza-
tions lift along f , see Topology, Definition 5.19.4.

Proof. See Algebra, Section 10.41. □

Lemma 29.25.10.01UA A flat morphism locally of finite presentation is universally open.

Proof. This follows from Lemmas 29.25.9 and Lemma 29.23.2 above. We can also
argue directly as follows.
Let f : X → S be flat and locally of finite presentation. By Lemmas 29.25.8 and
29.21.4 any base change of f is flat and locally of finite presentation. Hence it
suffices to show f is open. To show f is open it suffices to show that we may cover
X by open affines X =

⋃
Ui such that Ui → S is open. We may cover X by affine

opens Ui ⊂ X such that each Ui maps into an affine open Vi ⊂ S and such that
the induced ring map OS(Vi)→ OX(Ui) is flat and of finite presentation (Lemmas
29.25.3 and 29.21.2). Then Ui → Vi is open by Algebra, Proposition 10.41.8 and
the proof is complete. □

Lemma 29.25.11.0CVT Let f : X → Y be a morphism of schemes. Let F be a quasi-
coherent OX -module. Assume f locally finite presentation, F of finite type, X =
Supp(F), and F flat over Y . Then f is universally open.

Proof. By Lemmas 29.25.7, 29.21.4, and 29.5.3 the assumptions are preserved under
base change. By Lemma 29.23.2 it suffices to show that generalizations lift along
f . This follows from Algebra, Lemma 10.41.12. □

Lemma 29.25.12.02JY [Gro71, Expose
VIII, Corollaire 4.3]
and [DG67, IV,
Corollaire 2.3.12]

Let f : X → Y be a quasi-compact, surjective, flat morphism.
A subset T ⊂ Y is open (resp. closed) if and only f−1(T ) is open (resp. closed). In
other words, f is a submersive morphism.

Proof. The question is local on Y , hence we may assume that Y is affine. In this
case X is quasi-compact as f is quasi-compact. Write X = X1 ∪ . . . ∪ Xn as a
finite union of affine opens. Then f ′ : X ′ = X1 ⨿ . . . ⨿Xn → Y is a surjective flat
morphism of affine schemes. Note that for T ⊂ Y we have (f ′)−1(T ) = f−1(T ) ∩
X1 ⨿ . . . ⨿ f−1(T ) ∩ Xn. Hence, f−1(T ) is open if and only if (f ′)−1(T ) is open.
Thus we may assume both X and Y are affine.
Let f : Spec(B)→ Spec(A) be a surjective morphism of affine schemes correspond-
ing to a flat ring map A→ B. Suppose that f−1(T ) is closed, say f−1(T ) = V (J)
for J ⊂ B an ideal. Then T = f(f−1(T )) = f(V (J)) is the image of Spec(B/J)→
Spec(A) (here we use that f is surjective). On the other hand, generalizations
lift along f (Lemma 29.25.9). Hence by Topology, Lemma 5.19.6 we see that
Y \ T = f(X \ f−1(T )) is stable under generalization. Hence T is stable under
specialization (Topology, Lemma 5.19.2). Thus T is closed by Algebra, Lemma
10.41.5. □
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Lemma 29.25.13.02JZ Let h : X → Y be a morphism of schemes over S. Let G be a
quasi-coherent sheaf on Y . Let x ∈ X with y = h(x) ∈ Y . If h is flat at x, then

G flat over S at y ⇔ h∗G flat over S at x.

In particular: If h is surjective and flat, then G is flat over S, if and only if h∗G is
flat over S. If h is surjective and flat, and X is flat over S, then Y is flat over S.

Proof. You can prove this by applying Algebra, Lemma 10.39.9. Here is a direct
proof. Let s ∈ S be the image of y. Consider the local ring maps OS,s → OY,y →
OX,x. By assumption the ring map OY,y → OX,x is faithfully flat, see Algebra,
Lemma 10.39.17. Let N = Gy. Note that h∗Gx = N ⊗OY,y

OX,x, see Sheaves,
Lemma 6.26.4. Let M ′ → M be an injection of OS,s-modules. By the faithful
flatness mentioned above we have

Ker(M ′ ⊗OS,s
N →M ⊗OS,s

N)⊗OY,y
OX,x

= Ker(M ′ ⊗OS,s
N ⊗OY,y

OX,x →M ⊗OS,s
N ⊗OY,y

OX,x)

Hence the equivalence of the lemma follows from the second characterization of
flatness in Algebra, Lemma 10.39.5. □

Lemma 29.25.14.07T9 Let f : Y → X be a morphism of schemes. Let F be a finite
type quasi-coherent OX -module with scheme theoretic support Z ⊂ X. If f is flat,
then f−1(Z) is the scheme theoretic support of f∗F .

Proof. Using the characterization of scheme theoretic support on affines as given
in Lemma 29.5.4 we reduce to Algebra, Lemma 10.40.4. □

Lemma 29.25.15.081H Let f : X → Y be a flat morphism of schemes. Let V ⊂ Y be
a retrocompact open which is scheme theoretically dense. Then f−1V is scheme
theoretically dense in X.

Proof. We will use the characterization of Lemma 29.7.5. We have to show that
for any open U ⊂ X the map OX(U) → OX(U ∩ f−1V ) is injective. It suffices to
prove this when U is an affine open which maps into an affine open W ⊂ Y . Say
W = Spec(A) and U = Spec(B). Then V ∩W = D(f1)∪. . .∪D(fn) for some fi ∈ A,
see Algebra, Lemma 10.29.1. Thus we have to show that B → Bf1 × . . . × Bfn is
injective. We are given that A → Af1 × . . . × Afn is injective and that A → B is
flat. Since Bfi = Afi ⊗A B we win. □

Lemma 29.25.16.081I Let f : X → Y be a flat morphism of schemes. Let g : V → Y be
a quasi-compact morphism of schemes. Let Z ⊂ Y be the scheme theoretic image
of g and let Z ′ ⊂ X be the scheme theoretic image of the base change V ×Y X → X.
Then Z ′ = f−1Z.

Proof. Recall that Z is cut out by I = Ker(OY → g∗OV ) and Z ′ is cut out by
I ′ = Ker(OX → (V ×Y X → X)∗OV×YX), see Lemma 29.6.3. Hence the question
is local on X and Y and we may assume X and Y affine. Note that we may replace
V by

∐
Vi where V = V1 ∪ . . . ∪ Vn is a finite affine open covering. Hence we may

assume g is affine. In this case (V ×Y X → X)∗OV×YX is the pullback of g∗OV by
f . Since f is flat we conclude that f∗I = I ′ and the lemma holds. □
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29.26. Flat closed immersions

04PV Connected components of schemes are not always open. But they do always have
a canonical scheme structure. We explain this in this section.
Lemma 29.26.1.04PW Let X be a scheme. The rule which associates to a closed sub-
scheme of X its underlying closed subset defines a bijection{

closed subschemes Z ⊂ X
such that Z → X is flat

}
↔
{

closed subsets Z ⊂ X
closed under generalizations

}
If Z ⊂ X is such a closed subscheme, every morphism of schemes g : Y → X with
g(Y ) ⊂ Z set theoretically factors (scheme theoretically) through Z.
Proof. The affine case of the bijection is Algebra, Lemma 10.108.4. For general
schemes X the bijection follows by covering X by affines and glueing. Details
omitted. For the final assertion, observe that the projection Z ×X,g Y → Y is a
flat (Lemma 29.25.8) closed immersion which is bijective on underlying topological
spaces and hence must be an isomorphism by the bijection esthablished in the first
part of the proof. □

Lemma 29.26.2.0819 A flat closed immersion of finite presentation is the open immer-
sion of an open and closed subscheme.
Proof. The affine case is Algebra, Lemma 10.108.5. In general the lemma follows
by covering X by affines. Details omitted. □

Note that a connected component T of a scheme X is a closed subset stable under
generalization. Hence the following definition makes sense.
Definition 29.26.3.04PX Let X be a scheme. Let T ⊂ X be a connected component.
The canonical scheme structure on T is the unique scheme structure on T such that
the closed immersion T → X is flat, see Lemma 29.26.1.
It turns out that we can determine when every finite flat OX -module is finite locally
free using the previous lemma.
Lemma 29.26.4.053N Let X be a scheme. The following are equivalent

(1) every finite flat quasi-coherent OX -module is finite locally free, and
(2) every closed subset Z ⊂ X which is closed under generalizations is open.

Proof. In the affine case this is Algebra, Lemma 10.108.6. The scheme case does
not follow directly from the affine case, so we simply repeat the arguments.
Assume (1). Consider a closed immersion i : Z → X such that i is flat. Then i∗OZ
is quasi-coherent and flat, hence finite locally free by (1). Thus Z = Supp(i∗OZ) is
also open and we see that (2) holds. Hence the implication (1) ⇒ (2) follows from
the characterization of flat closed immersions in Lemma 29.26.1.
For the converse assume that X satisfies (2). Let F be a finite flat quasi-coherent
OX -module. The support Z = Supp(F) of F is closed, see Modules, Lemma 17.9.6.
On the other hand, if x ⇝ x′ is a specialization, then by Algebra, Lemma 10.78.5
the module Fx′ is free over OX,x′ , and

Fx = Fx′ ⊗OX,x′ OX,x.
Hence x′ ∈ Supp(F) ⇒ x ∈ Supp(F), in other words, the support is closed under
generalization. As X satisfies (2) we see that the support of F is open and closed.

https://stacks.math.columbia.edu/tag/04PW
https://stacks.math.columbia.edu/tag/0819
https://stacks.math.columbia.edu/tag/04PX
https://stacks.math.columbia.edu/tag/053N


29.27. GENERIC FLATNESS 2434

The modules ∧i(F), i = 1, 2, 3, . . . are finite flat quasi-coherent OX -modules also,
see Modules, Section 17.21. Note that Supp(∧i+1(F)) ⊂ Supp(∧i(F)). Thus we
see that there exists a decomposition

X = U0 ⨿ U1 ⨿ U2 ⨿ . . .
by open and closed subsets such that the support of ∧i(F) is Ui ∪ Ui+1 ∪ . . . for
all i. Let x be a point of X, and say x ∈ Ur. Note that ∧i(F)x ⊗ κ(x) = ∧i(Fx ⊗
κ(x)). Hence, x ∈ Ur implies that Fx ⊗ κ(x) is a vector space of dimension r.
By Nakayama’s lemma, see Algebra, Lemma 10.20.1 we can choose an affine open
neighbourhood U ⊂ Ur ⊂ X of x and sections s1, . . . , sr ∈ F(U) such that the
induced map

O⊕r
U −→ F|U , (f1, . . . , fr) 7−→

∑
fisi

is surjective. This means that ∧r(F|U ) is a finite flat quasi-coherent OU -module
whose support is all of U . By the above it is generated by a single element, namely
s1 ∧ . . . ∧ sr. Hence ∧r(F|U ) ∼= OU/I for some quasi-coherent sheaf of ideals I
such that OU/I is flat over OU and such that V (I) = U . It follows that I = 0 by
applying Lemma 29.26.1. Thus s1 ∧ . . . ∧ sr is a basis for ∧r(F|U ) and it follows
that the displayed map is injective as well as surjective. This proves that F is finite
locally free as desired. □

29.27. Generic flatness

0529 A scheme of finite type over an integral base is flat over a dense open of the base. In
Algebra, Section 10.118 we proved a Noetherian version, a version for morphisms
of finite presentation, and a general version. We only state and prove the general
version here. However, it turns out that this will be superseded by Proposition
29.27.2 which shows the result holds if we only assume the base is reduced.
Proposition 29.27.1 (Generic flatness).052A Let f : X → S be a morphism of schemes.
Let F be a quasi-coherent sheaf of OX -modules. Assume

(1) S is integral,
(2) f is of finite type, and
(3) F is a finite type OX -module.

Then there exists an open dense subscheme U ⊂ S such that XU → U is flat and
of finite presentation and such that F|XU is flat over U and of finite presentation
over OXU .
Proof. As S is integral it is irreducible (see Properties, Lemma 28.3.4) and any
nonempty open is dense. Hence we may replace S by an affine open of S and
assume that S = Spec(A) is affine. As S is integral we see that A is a domain. As
f is of finite type, it is quasi-compact, so X is quasi-compact. Hence we can find a
finite affine open cover X =

⋃
i=1,...,nXi. Write Xi = Spec(Bi). Then Bi is a finite

type A-algebra, see Lemma 29.15.2. Moreover there are finite type Bi-modules
Mi such that F|Xi is the quasi-coherent sheaf associated to the Bi-module Mi,
see Properties, Lemma 28.16.1. Next, for each pair of indices i, j choose an ideal
Iij ⊂ Bi such that Xi \Xi ∩Xj = V (Iij) inside Xi = Spec(Bi). Set Mij = Bi/Iij
and think of it as a Bi-module. Then V (Iij) = Supp(Mij) and Mij is a finite
Bi-module.
At this point we apply Algebra, Lemma 10.118.3 the pairs (A → Bi,Mij) and
to the pairs (A → Bi,Mi). Thus we obtain nonzero fij , fi ∈ A such that (a)
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Afij → Bi,fij is flat and of finite presentation and Mij,fij is flat over Afij and of
finite presentation over Bi,fij , and (b) Bi,fi is flat and of finite presentation over
Af and Mi,fi is flat and of finite presentation over Bi,fi . Set f = (

∏
fi)(

∏
fij).

We claim that taking U = D(f) works.
To prove our claim we may replace A by Af , i.e., perform the base change by
U = Spec(Af )→ S. After this base change we see that each of A→ Bi is flat and
of finite presentation and that Mi, Mij are flat over A and of finite presentation over
Bi. This already proves that X → S is quasi-compact, locally of finite presentation,
flat, and that F is flat over S and of finite presentation over OX , see Lemma 29.21.2
and Properties, Lemma 28.16.2. Since Mij is of finite presentation over Bi we see
that Xi∩Xj = Xi \Supp(Mij) is a quasi-compact open of Xi, see Algebra, Lemma
10.40.8. Hence we see that X → S is quasi-separated by Schemes, Lemma 26.21.6.
This proves the proposition. □

It actually turns out that there is also a version of generic flatness over an arbitrary
reduced base. Here it is.

Proposition 29.27.2 (Generic flatness, reduced case).052B Let f : X → S be a morphism
of schemes. Let F be a quasi-coherent sheaf of OX -modules. Assume

(1) S is reduced,
(2) f is of finite type, and
(3) F is a finite type OX -module.

Then there exists an open dense subscheme U ⊂ S such that XU → U is flat and
of finite presentation and such that F|XU is flat over U and of finite presentation
over OXU .

Proof. For the impatient reader: This proof is a repeat of the proof of Proposition
29.27.1 using Algebra, Lemma 10.118.7 instead of Algebra, Lemma 10.118.3.
Since being flat and being of finite presentation is local on the base, see Lemmas
29.25.2 and 29.21.2, we may work affine locally on S. Thus we may assume that
S = Spec(A), where A is a reduced ring (see Properties, Lemma 28.3.2). As f
is of finite type, it is quasi-compact, so X is quasi-compact. Hence we can find a
finite affine open cover X =

⋃
i=1,...,nXi. Write Xi = Spec(Bi). Then Bi is a finite

type A-algebra, see Lemma 29.15.2. Moreover there are finite type Bi-modules
Mi such that F|Xi is the quasi-coherent sheaf associated to the Bi-module Mi,
see Properties, Lemma 28.16.1. Next, for each pair of indices i, j choose an ideal
Iij ⊂ Bi such that Xi \Xi ∩Xj = V (Iij) inside Xi = Spec(Bi). Set Mij = Bi/Iij
and think of it as a Bi-module. Then V (Iij) = Supp(Mij) and Mij is a finite
Bi-module.
At this point we apply Algebra, Lemma 10.118.7 the pairs (A→ Bi,Mij) and to the
pairs (A → Bi,Mi). Thus we obtain dense opens U(A → Bi,Mij) ⊂ S and dense
opens U(A → Bi,Mi) ⊂ S with notation as in Algebra, Equation (10.118.3.2).
Since a finite intersection of dense opens is dense open, we see that

U =
⋂

i,j
U(A→ Bi,Mij) ∩

⋂
i
U(A→ Bi,Mi)

is open and dense in S. We claim that U is the desired open.
Pick u ∈ U . By definition of the loci U(A → Bi,Mij) and U(A → B,Mi) there
exist fij , fi ∈ A such that (a) u ∈ D(fi) and u ∈ D(fij), (b) Afij → Bi,fij is flat
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and of finite presentation and Mij,fij is flat over Afij and of finite presentation over
Bi,fij , and (c) Bi,fi is flat and of finite presentation over Af and Mi,fi is flat and of
finite presentation over Bi,fi . Set f = (

∏
fi)(

∏
fij). Now it suffices to prove that

X → S is flat and of finite presentation over D(f) and that F restricted to XD(f)
is flat over D(f) and of finite presentation over the structure sheaf of XD(f).
Hence we may replace A by Af , i.e., perform the base change by Spec(Af ) → S.
After this base change we see that each of A→ Bi is flat and of finite presentation
and that Mi, Mij are flat over A and of finite presentation over Bi. This already
proves that X → S is quasi-compact, locally of finite presentation, flat, and that F
is flat over S and of finite presentation over OX , see Lemma 29.21.2 and Properties,
Lemma 28.16.2. Since Mij is of finite presentation over Bi we see that Xi ∩Xj =
Xi \Supp(Mij) is a quasi-compact open of Xi, see Algebra, Lemma 10.40.8. Hence
we see that X → S is quasi-separated by Schemes, Lemma 26.21.6. This proves
the proposition. □

Remark 29.27.3.052C The results above are a first step towards more refined flattening
techniques for morphisms of schemes. The article [GR71] by Raynaud and Gruson
contains many wonderful results in this direction.

29.28. Morphisms and dimensions of fibres

02FW Let X be a topological space, and x ∈ X. Recall that we have defined dimx(X)
as the minimum of the dimensions of the open neighbourhoods of x in X. See
Topology, Definition 5.10.1.

Lemma 29.28.1.02FX Let f : X → S be a morphism of schemes. Let x ∈ X and set
s = f(x). Assume f is locally of finite type. Then

dimx(Xs) = dim(OXs,x) + trdegκ(s)(κ(x)).

Proof. This immediately reduces to the case S = s, and X affine. In this case the
result follows from Algebra, Lemma 10.116.3. □

Lemma 29.28.2.02JS Let f : X → Y and g : Y → S be morphisms of schemes. Let
x ∈ X and set y = f(x), s = g(y). Assume f and g locally of finite type. Then

dimx(Xs) ≤ dimx(Xy) + dimy(Ys).
Moreover, equality holds if OXs,x is flat over OYs,y, which holds for example if OX,x
is flat over OY,y.

Proof. Note that trdegκ(s)(κ(x)) = trdegκ(y)(κ(x)) + trdegκ(s)(κ(y)). Thus by
Lemma 29.28.1 the statement is equivalent to

dim(OXs,x) ≤ dim(OXy,x) + dim(OYs,y).
For this see Algebra, Lemma 10.112.6. For the flat case see Algebra, Lemma
10.112.7. □

Lemma 29.28.3.02FY Let
X ′

g′
//

f ′

��

X

f

��
S′ g // S
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be a fibre product diagram of schemes. Assume f locally of finite type. Suppose
that x′ ∈ X ′, x = g′(x′), s′ = f ′(x′) and s = g(s′) = f(x). Then

(1) dimx(Xs) = dimx′(X ′
s′),

(2) if F is the fibre of the morphism X ′
s′ → Xs over x, then

dim(OF,x′) = dim(OX′
s′ ,x

′)− dim(OXs,x) = trdegκ(s)(κ(x))− trdegκ(s′)(κ(x′))

In particular dim(OX′
s′ ,x

′) ≥ dim(OXs,x) and trdegκ(s)(κ(x)) ≥ trdegκ(s′)(κ(x′)).
(3) given s′, s, x there exists a choice of x′ such that dim(OX′

s′ ,x
′) = dim(OXs,x)

and trdegκ(s)(κ(x)) = trdegκ(s′)(κ(x′)).

Proof. Part (1) follows immediately from Algebra, Lemma 10.116.6. Parts (2) and
(3) from Algebra, Lemma 10.116.7. □

The following lemma follows from a nontrivial algebraic result. Namely, the alge-
braic version of Zariski’s main theorem.

Lemma 29.28.4.02FZ [DG67, IV Theorem
13.1.3]

Let f : X → S be a morphism of schemes. Let n ≥ 0. Assume f
is locally of finite type. The set

Un = {x ∈ X | dimxXf(x) ≤ n}

is open in X.

Proof. This is immediate from Algebra, Lemma 10.125.6 □

Lemma 29.28.5.0A3V Let f : X → Y be a morphism of finite type with Y quasi-compact.
Then the dimension of the fibres of f is bounded.

Proof. By Lemma 29.28.4 the set Un ⊂ X of points where the dimension of the
fibre is ≤ n is open. Since f is of finite type, every point is contained in some
Un (because the dimension of a finite type algebra over a field is finite). Since Y
is quasi-compact and f is of finite type, we see that X is quasi-compact. Hence
X = Un for some n. □

Lemma 29.28.6.02G0 Let f : X → S be a morphism of schemes. Let n ≥ 0. Assume f
is locally of finite presentation. The open

Un = {x ∈ X | dimxXf(x) ≤ n}

of Lemma 29.28.4 is retrocompact in X. (See Topology, Definition 5.12.1.)

Proof. The topological space X has a basis for its topology consisting of affine
opens U ⊂ X such that the induced morphism f |U : U → S factors through an
affine open V ⊂ S. Hence it is enough to show that U ∩ Un is quasi-compact for
such a U . Note that Un∩U is the same as the open {x ∈ U | dimx Uf(x) ≤ n}. This
reduces us to the case where X and S are affine. In this case the lemma follows
from Algebra, Lemma 10.125.8 (and Lemma 29.21.2). □

Lemma 29.28.7.06RU Let f : X → S be a morphism of schemes. Let x ⇝ x′ be a
nontrivial specialization of points in X lying over the same point s ∈ S. Assume f
is locally of finite type. Then

(1) dimx(Xs) ≤ dimx′(Xs),
(2) dim(OXs,x) < dim(OXs,x′), and
(3) trdegκ(s)(κ(x)) > trdegκ(s)(κ(x′)).
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Proof. Part (1) follows from the fact that any open of Xs containing x′ also contains
x. Part (2) follows since OXs,x is a localization of OXs,x′ at a prime ideal, hence
any chain of prime ideals in OXs,x is part of a strictly longer chain of primes in
OXs,x′ . The last inequality follows from Algebra, Lemma 10.116.2. □

29.29. Morphisms of given relative dimension

02NI In order to be able to speak comfortably about morphisms of a given relative
dimension we introduce the following notion.

Definition 29.29.1.02NJ Let f : X → S be a morphism of schemes. Assume f is locally
of finite type.

(1) We say f is of relative dimension ≤ d at x if dimx(Xf(x)) ≤ d.
(2) We say f is of relative dimension ≤ d if dimx(Xf(x)) ≤ d for all x ∈ X.
(3) We say f is of relative dimension d if all nonempty fibres Xs are equidi-

mensional of dimension d.

This is not a particularly well behaved notion, but it works well in a number of
situations.

Lemma 29.29.2.02NK Let f : X → S be a morphism of schemes which is locally of finite
type. If f has relative dimension d, then so does any base change of f . Same for
relative dimension ≤ d.

Proof. This is immediate from Lemma 29.28.3. □

Lemma 29.29.3.02NL Let f : X → Y , g : Y → Z be locally of finite type. If f has
relative dimension ≤ d and g has relative dimension ≤ e then g ◦ f has relative
dimension ≤ d+ e. If

(1) f has relative dimension d,
(2) g has relative dimension e, and
(3) f is flat,

then g ◦ f has relative dimension d+ e.

Proof. This is immediate from Lemma 29.28.2. □

In general it is not possible to decompose a morphism into its pieces where the
relative dimension is a given one. However, it is possible if the morphism has
Cohen-Macaulay fibres and is flat of finite presentation.

Lemma 29.29.4.02NM Let f : X → S be a morphism of schemes. Assume that
(1) f is flat,
(2) f is locally of finite presentation, and
(3) for all s ∈ S the fibreXs is Cohen-Macaulay (Properties, Definition 28.8.1)

Then there exist open and closed subschemes Xd ⊂ X such that X =
∐
d≥0 Xd and

f |Xd : Xd → S has relative dimension d.

Proof. This is immediate from Algebra, Lemma 10.130.8. □

Lemma 29.29.5.0397 Let f : X → S be a morphism of schemes. Assume f is locally
of finite type. Let x ∈ X with s = f(x). Then f is quasi-finite at x if and only if
dimx(Xs) = 0. In particular, f is locally quasi-finite if and only if f has relative
dimension 0.
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Proof. If f is quasi-finite at x then κ(x) is a finite extension of κ(s) (by Lemma
29.20.5) and x is isolated in Xs (by Lemma 29.20.6), hence dimx(Xs) = 0 by Lemma
29.28.1. Conversely, if dimx(Xs) = 0 then by Lemma 29.28.1 we see κ(s) ⊂ κ(x) is
algebraic and there are no other points of Xs specializing to x. Hence x is closed
in its fibre by Lemma 29.20.2 and by Lemma 29.20.6 (3) we conclude that f is
quasi-finite at x. □

Lemma 29.29.6.0AFE Let f : X → Y be a morphism of locally Noetherian schemes
which is flat, locally of finite type and of relative dimension d. For every point x in
X with image y in Y we have dimx(X) = dimy(Y ) + d.

Proof. After shrinking X and Y to open neighborhoods of x and y, we can assume
that dim(X) = dimx(X) and dim(Y ) = dimy(Y ), by definition of the dimension
of a scheme at a point (Properties, Definition 28.10.1). The morphism f is open
by Lemmas 29.21.9 and 29.25.10. Hence we can shrink Y to arrange that f is
surjective. It remains to show that dim(X) = dim(Y ) + d.

Let a be a point in X with image b in Y . By Algebra, Lemma 10.112.7,

dim(OX,a) = dim(OY,b) + dim(OXb,a).

Taking the supremum over all points a in X, it follows that dim(X) = dim(Y ) + d,
as we want, see Properties, Lemma 28.10.2. □

29.30. Syntomic morphisms

01UB An algebra A over a field k is called a global complete intersection over k if A ∼=
k[x1, . . . , xn]/(f1, . . . , fc) and dim(A) = n− c. An algebra A over a field k is called
a local complete intersection if Spec(A) can be covered by standard opens each of
which are global complete intersections over k. See Algebra, Section 10.135. Recall
that a ring map R → A is syntomic if it is of finite presentation, flat with local
complete intersection rings as fibres, see Algebra, Definition 10.136.1.

Definition 29.30.1.01UC Let f : X → S be a morphism of schemes.
(1) We say that f is syntomic at x ∈ X if there exists an affine open neigh-

bourhood Spec(A) = U ⊂ X of x and affine open Spec(R) = V ⊂ S with
f(U) ⊂ V such that the induced ring map R→ A is syntomic.

(2) We say that f is syntomic if it is syntomic at every point of X.
(3) If S = Spec(k) and f is syntomic, then we say that X is a local complete

intersection over k.
(4) A morphism of affine schemes f : X → S is called standard syntomic if

there exists a global relative complete intersectionR→ R[x1, . . . , xn]/(f1, . . . , fc)
(see Algebra, Definition 10.136.5) such that X → S is isomorphic to

Spec(R[x1, . . . , xn]/(f1, . . . , fc))→ Spec(R).

In the literature a syntomic morphism is sometimes referred to as a flat local com-
plete intersection morphism. It turns out this is a convenient class of morphisms.
For example one can define a syntomic topology using these, which is finer than
the smooth and étale topologies, but has many of the same formal properties.

A global relative complete intersection (which we used to define standard syntomic
ring maps) is in particular flat. In More on Morphisms, Section 37.62 we will
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consider morphisms X → S which locally are of the form
Spec(R[x1, . . . , xn]/(f1, . . . , fc))→ Spec(R).

for some Koszul-regular sequence f1, . . . , fr in R[x1, . . . , xn]. Such a morphism will
be called a local complete intersection morphism. Once we have this definition in
place it will be the case that a morphism is syntomic if and only if it is a flat, local
complete intersection morphism.
Note that there is no separation or quasi-compactness hypotheses in the definition
of a syntomic morphism. Hence the question of being syntomic is local in nature
on the source. Here is the precise result.

Lemma 29.30.2.01UD Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is syntomic.
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is syntomic.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj , j ∈ J, i ∈ Ij is
syntomic.

(4) There exists an affine open covering S =
⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring mapOS(Vj)→ OX(Ui) is syntomic,

for all j ∈ J, i ∈ Ij .
Moreover, if f is syntomic then for any open subschemes U ⊂ X, V ⊂ S with
f(U) ⊂ V the restriction f |U : U → V is syntomic.

Proof. This follows from Lemma 29.14.3 if we show that the property “R → A is
syntomic” is local. We check conditions (a), (b) and (c) of Definition 29.14.1. By
Algebra, Lemma 10.136.3 being syntomic is stable under base change and hence
we conclude (a) holds. By Algebra, Lemma 10.136.17 being syntomic is stable
under composition and trivially for any ring R the ring map R → Rf is syntomic.
We conclude (b) holds. Finally, property (c) is true according to Algebra, Lemma
10.136.4. □

Lemma 29.30.3.01UH The composition of two morphisms which are syntomic is syn-
tomic.

Proof. In the proof of Lemma 29.30.2 we saw that being syntomic is a local property
of ring maps. Hence the first statement of the lemma follows from Lemma 29.14.5
combined with the fact that being syntomic is a property of ring maps that is stable
under composition, see Algebra, Lemma 10.136.17. □

Lemma 29.30.4.01UI The base change of a morphism which is syntomic is syntomic.

Proof. In the proof of Lemma 29.30.2 we saw that being syntomic is a local property
of ring maps. Hence the lemma follows from Lemma 29.14.5 combined with the fact
that being syntomic is a property of ring maps that is stable under base change,
see Algebra, Lemma 10.136.3. □

Lemma 29.30.5.01UJ Any open immersion is syntomic.

Proof. This is true because an open immersion is a local isomorphism. □
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Lemma 29.30.6.01UK A syntomic morphism is locally of finite presentation.

Proof. True because a syntomic ring map is of finite presentation by definition. □

Lemma 29.30.7.01UL A syntomic morphism is flat.

Proof. True because a syntomic ring map is flat by definition. □

Lemma 29.30.8.056F A syntomic morphism is universally open.

Proof. Combine Lemmas 29.30.6, 29.30.7, and 29.25.10. □

Let k be a field. Let A be a local k-algebra essentially of finite type over k. Recall
that A is called a complete intersection over k if we can write A ∼= R/(f1, . . . , fc)
where R is a regular local ring essentially of finite type over k, and f1, . . . , fc is a
regular sequence in R, see Algebra, Definition 10.135.5.

Lemma 29.30.9.01UG Let k be a field. Let X be a scheme locally of finite type over k.
The following are equivalent:

(1) X is a local complete intersection over k,
(2) for every x ∈ X there exists an affine open U = Spec(R) ⊂ X neighbour-

hood of x such that R ∼= k[x1, . . . , xn]/(f1, . . . , fc) is a global complete
intersection over k, and

(3) for every x ∈ X the local ring OX,x is a complete intersection over k.

Proof. The corresponding algebra results can be found in Algebra, Lemmas 10.135.8
and 10.135.9. □

The following lemma says locally any syntomic morphism is standard syntomic.
Hence we can use standard syntomic morphisms as a local model for a syntomic
morphism. Moreover, it says that a flat morphism of finite presentation is syntomic
if and only if the fibres are local complete intersection schemes.

Lemma 29.30.10.01UE Let f : X → S be a morphism of schemes. Let x ∈ X be a
point with image s = f(x). Let V ⊂ S be an affine open neighbourhood of s. The
following are equivalent

(1) The morphism f is syntomic at x.
(2) There exist an affine open U ⊂ X with x ∈ U and f(U) ⊂ V such that

f |U : U → V is standard syntomic.
(3) The morphism f is of finite presentation at x, the local ring map OS,s →
OX,x is flat and OX,x/msOX,x is a complete intersection over κ(s) (see
Algebra, Definition 10.135.5).

Proof. Follows from the definitions and Algebra, Lemma 10.136.15. □

Lemma 29.30.11.01UF Let f : X → S be a morphism of schemes. If f is flat, locally
of finite presentation, and all fibres Xs are local complete intersections, then f is
syntomic.

Proof. Clear from Lemmas 29.30.9 and 29.30.10 and the isomorphisms of local rings
OX,x/msOX,x ∼= OXs,x. □

Lemma 29.30.12.02V3 Let f : X → S be a morphism of schemes. Assume f locally of
finite type. Formation of the set

T = {x ∈ X | OXf(x),x is a complete intersection over κ(f(x))}
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commutes with arbitrary base change: For any morphism g : S′ → S, consider
the base change f ′ : X ′ → S′ of f and the projection g′ : X ′ → X. Then the
corresponding set T ′ for the morphism f ′ is equal to T ′ = (g′)−1(T ). In particular,
if f is assumed flat, and locally of finite presentation then the same holds for the
open set of points where f is syntomic.

Proof. Let s′ ∈ S′ be a point, and let s = g(s′). Then we have
X ′
s′ = Spec(κ(s′))×Spec(κ(s)) Xs

In other words the fibres of the base change are the base changes of the fibres.
Hence the first part is equivalent to Algebra, Lemma 10.135.10. The second part
follows from the first because in that case T is the set of points where f is syntomic
according to Lemma 29.30.10. □

Lemma 29.30.13.02K0 Let R be a ring. Let R → A = R[x1, . . . , xn]/(f1, . . . , fc) be a
relative global complete intersection. Set S = Spec(R) and X = Spec(A). Consider
the morphism f : X → S associated to the ring map R → A. The function
x 7→ dimx(Xf(x)) is constant with value n− c.

Proof. By Algebra, Definition 10.136.5 R → A being a relative global complete
intersection means all nonzero fibre rings have dimension n− c. Thus for a prime p
of R the fibre ring κ(p)[x1, . . . , xn]/(f1, . . . , f c) is either zero or a global complete
intersection ring of dimension n−c. By the discussion following Algebra, Definition
10.135.1 this implies it is equidimensional of dimension n− c. Whence the lemma.

□

Lemma 29.30.14.02K1 Let f : X → S be a syntomic morphism. The function x 7→
dimx(Xf(x)) is locally constant on X.

Proof. By Lemma 29.30.10 the morphism f locally looks like a standard syntomic
morphism of affines. Hence the result follows from Lemma 29.30.13. □

Lemma 29.30.14 says that the following definition makes sense.

Definition 29.30.15.02K2 Let d ≥ 0 be an integer. We say a morphism of schemes
f : X → S is syntomic of relative dimension d if f is syntomic and the function
dimx(Xf(x)) = d for all x ∈ X.

In other words, f is syntomic and the nonempty fibres are equidimensional of
dimension d.

Lemma 29.30.16.02K3 Let
X

f
//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that
(1) f is surjective and syntomic,
(2) p is syntomic, and
(3) q is locally of finite presentation8.

8In fact, if f is surjective, flat, and locally of finite presentation and p is syntomic, then both
q and f are syntomic, see Descent, Lemma 35.14.7.
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Then q is syntomic.

Proof. By Lemma 29.25.13 we see that q is flat. Hence it suffices to show that
the fibres of Y → S are local complete intersections, see Lemma 29.30.11. Let
s ∈ S. Consider the morphism Xs → Ys. This is a base change of the morphism
X → Y and hence surjective, and syntomic (Lemma 29.30.4). For the same reason
Xs is syntomic over κ(s). Moreover, Ys is locally of finite type over κ(s) (Lemma
29.15.4). In this way we reduce to the case where S is the spectrum of a field.

Assume S = Spec(k). Let y ∈ Y . Choose an affine open Spec(A) ⊂ Y neighbour-
hood of y. Let Spec(B) ⊂ X be an affine open such that f(Spec(B)) ⊂ Spec(A),
containing a point x ∈ X such that f(x) = y. Choose a surjection k[x1, . . . , xn]→ A
with kernel I. Choose a surjection A[y1, . . . , ym]→ B, which gives rise in turn to a
surjection k[xi, yj ]→ B with kernel J . Let q ⊂ k[xi, yj ] be the prime corresponding
to y ∈ Spec(B) and let p ⊂ k[xi] the prime corresponding to x ∈ Spec(A). Since x
maps to y we have p = q ∩ k[xi]. Consider the following commutative diagram of
local rings:

OX,x Bq k[x1, . . . , xn, y1, . . . , ym]qoo

OY,y

OO

Ap

OO

k[x1, . . . , xn]poo

OO

We claim that the hypotheses of Algebra, Lemma 10.135.12 are satisfied. Condi-
tions (1) and (2) are trivial. Condition (4) follows as X → Y is flat. Condition
(3) follows as the rings OY,y and OXy,x = OX,x/myOX,x are complete intersection
rings by our assumptions that f and p are syntomic, see Lemma 29.30.10. The
output of Algebra, Lemma 10.135.12 is exactly that OY,y is a complete intersection
ring! Hence by Lemma 29.30.10 again we see that Y is syntomic over k at y as
desired. □

29.31. Conormal sheaf of an immersion

01R1 Let i : Z → X be a closed immersion. Let I ⊂ OX be the corresponding quasi-
coherent sheaf of ideals. Consider the short exact sequence

0→ I2 → I → I/I2 → 0

of quasi-coherent sheaves on X. Since the sheaf I/I2 is annihilated by I it corre-
sponds to a sheaf on Z by Lemma 29.4.1. This quasi-coherent OZ-module is called
the conormal sheaf of Z in X and is often simply denoted I/I2 by the abuse of
notation mentioned in Section 29.4.

In case i : Z → X is a (locally closed) immersion we define the conormal sheaf of i
as the conormal sheaf of the closed immersion i : Z → X \ ∂Z, where ∂Z = Z \ Z.
It is often denoted I/I2 where I is the ideal sheaf of the closed immersion i : Z →
X \ ∂Z.

Definition 29.31.1.01R2 Let i : Z → X be an immersion. The conormal sheaf CZ/X of
Z in X or the conormal sheaf of i is the quasi-coherent OZ-module I/I2 described
above.
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In [DG67, IV Definition 16.1.2] this sheaf is denoted NZ/X . We will not follow this
convention since we would like to reserve the notation NZ/X for the normal sheaf
of the immersion. It is defined as

NZ/X = HomOZ
(CZ/X ,OZ) = HomOZ

(I/I2,OZ)
provided the conormal sheaf is of finite presentation (otherwise the normal sheaf
may not even be quasi-coherent). We will come back to the normal sheaf later
(insert future reference here).

Lemma 29.31.2.01R3 Let i : Z → X be an immersion. The conormal sheaf of i has the
following properties:

(1) Let U ⊂ X be any open subscheme such that i factors as Z i′−→ U → X
where i′ is a closed immersion. Let I = Ker((i′)♯) ⊂ OU . Then

CZ/X = (i′)∗I and i′∗CZ/X = I/I2

(2) For any affine open Spec(R) = U ⊂ X such that Z∩U = Spec(R/I) there
is a canonical isomorphism Γ(Z ∩ U, CZ/X) = I/I2.

Proof. Mostly clear from the definitions. Note that given a ring R and an ideal I
of R we have I/I2 = I ⊗R R/I. Details omitted. □

Lemma 29.31.3.01R4 Let
Z

i
//

f

��

X

g

��
Z ′ i′ // X ′

be a commutative diagram in the category of schemes. Assume i, i′ immersions.
There is a canonical map of OZ-modules

f∗CZ′/X′ −→ CZ/X
characterized by the following property: For every pair of affine opens (Spec(R) =
U ⊂ X,Spec(R′) = U ′ ⊂ X ′) with f(U) ⊂ U ′ such that Z ∩ U = Spec(R/I) and
Z ′ ∩ U ′ = Spec(R′/I ′) the induced map

Γ(Z ′ ∩ U ′, CZ′/X′) = I ′/I ′2 −→ I/I2 = Γ(Z ∩ U, CZ/X)

is the one induced by the ring map f ♯ : R′ → R which has the property f ♯(I ′) ⊂ I.

Proof. Let ∂Z ′ = Z ′ \ Z ′ and ∂Z = Z \ Z. These are closed subsets of X ′ and of
X. Replacing X ′ by X ′ \ ∂Z ′ and X by X \

(
g−1(∂Z ′) ∪ ∂Z

)
we see that we may

assume that i and i′ are closed immersions.
The fact that g ◦ i factors through i′ implies that g∗I ′ maps into I under the
canonical map g∗I ′ → OX , see Schemes, Lemmas 26.4.6 and 26.4.7. Hence we get
an induced map of quasi-coherent sheaves g∗(I ′/(I ′)2)→ I/I2. Pulling back by i
gives i∗g∗(I ′/(I ′)2) → i∗(I/I2). Note that i∗(I/I2) = CZ/X . On the other hand,
i∗g∗(I ′/(I ′)2) = f∗(i′)∗(I ′/(I ′)2) = f∗CZ′/X′ . This gives the desired map.

Checking that the map is locally described as the given map I ′/(I ′)2 → I/I2 is a
matter of unwinding the definitions and is omitted. Another observation is that
given any x ∈ i(Z) there do exist affine open neighbourhoods U , U ′ with f(U) ⊂ U ′

and Z ∩ U as well as U ′ ∩ Z ′ closed such that x ∈ U . Proof omitted. Hence the
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requirement of the lemma indeed characterizes the map (and could have been used
to define it). □

Lemma 29.31.4.0473 Let
Z

i
//

f

��

X

g

��
Z ′ i′ // X ′

be a fibre product diagram in the category of schemes with i, i′ immersions. Then
the canonical map f∗CZ′/X′ → CZ/X of Lemma 29.31.3 is surjective. If g is flat,
then it is an isomorphism.

Proof. Let R′ → R be a ring map, and I ′ ⊂ R′ an ideal. Set I = I ′R. Then
I ′/(I ′)2 ⊗R′ R → I/I2 is surjective. If R′ → R is flat, then I = I ′ ⊗R′ R and
I2 = (I ′)2 ⊗R′ R and we see the map is an isomorphism. □

Lemma 29.31.5.062S Let Z → Y → X be immersions of schemes. Then there is a
canonical exact sequence

i∗CY/X → CZ/X → CZ/Y → 0
where the maps come from Lemma 29.31.3 and i : Z → Y is the first morphism.

Proof. Via Lemma 29.31.3 this translates into the following algebra fact. Suppose
that C → B → A are surjective ring maps. Let I = Ker(B → A), J = Ker(C → A)
and K = Ker(C → B). Then there is an exact sequence

K/K2 ⊗B A→ J/J2 → I/I2 → 0.
This follows immediately from the observation that I = J/K. □

29.32. Sheaf of differentials of a morphism

01UM We suggest the reader take a look at the corresponding section in the chapter on
commutative algebra (Algebra, Section 10.131) and the corresponding section in
the chapter on sheaves of modules (Modules, Section 17.28).

Definition 29.32.1.01UQ Let f : X → S be a morphism of schemes. The sheaf of
differentials ΩX/S of X over S is the sheaf of differentials of f viewed as a mor-
phism of ringed spaces (Modules, Definition 17.28.10) equipped with its universal
S-derivation

dX/S : OX −→ ΩX/S .

It turns out that ΩX/S is a quasi-coherent OX -module for example as it is isomor-
phic to the conormal sheaf of the diagonal morphism ∆ : X → X ×S X (Lemma
29.32.7). We have defined the module of differentials of X over S using a universal
property, namely as the receptacle of the universal derivation. If you have any
other construction of the sheaf of relative differentials which satisfies this universal
property then, by the Yoneda lemma, it will be canonically isomorphic to the one
defined above. For convenience we restate the universal property here.

Lemma 29.32.2.01UR Let f : X → S be a morphism of schemes. The map
HomOX

(ΩX/S ,F) −→ DerS(OX ,F), α 7−→ α ◦ dX/S
is an isomorphism of functors Mod(OX)→ Sets.
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Proof. This is just a restatement of the definition. □

Lemma 29.32.3.01US Let f : X → S be a morphism of schemes. Let U ⊂ X, V ⊂ S
be open subschemes such that f(U) ⊂ V . Then there is a unique isomorphism
ΩX/S |U = ΩU/V of OU -modules such that dX/S |U = dU/V .

Proof. This is a special case of Modules, Lemma 17.28.5 if we use the canonical
identification f−1OS |U = (f |U )−1OV . □

From now on we will use these canonical identifications and simply write ΩU/S or
ΩU/V for the restriction of ΩX/S to U .

Lemma 29.32.4.01UO Let R → A be a ring map. Let F be a sheaf of OX -modules on
X = Spec(A). Set S = Spec(R). The rule which associates to an S-derivation on
F its action on global sections defines a bijection between the set of S-derivations
of F and the set of R-derivations on M = Γ(X,F).

Proof. Let D : A→M be an R-derivation. We have to show there exists a unique
S-derivation on F which gives rise to D on global sections. Let U = D(f) ⊂ X
be a standard affine open. Any element of Γ(U,OX) is of the form a/fn for some
a ∈ A and n ≥ 0. By the Leibniz rule we have

D(a)|U = a/fnD(fn)|U + fnD(a/fn)
in Γ(U,F). Since f acts invertibly on Γ(U,F) this completely determines the value
ofD(a/fn) ∈ Γ(U,F). This proves uniqueness. Existence follows by simply defining

D(a/fn) := (1/fn)D(a)|U − a/f2nD(fn)|U
and proving this has all the desired properties (on the basis of standard opens of
X). Details omitted. □

Lemma 29.32.5.01UT Let f : X → S be a morphism of schemes. For any pair of affine
opens Spec(A) = U ⊂ X, Spec(R) = V ⊂ S with f(U) ⊂ V there is a unique
isomorphism

Γ(U,ΩX/S) = ΩA/R.
compatible with dX/S and d : A→ ΩA/R.

Proof. By Lemma 29.32.3 we may replace X and S by U and V . Thus we may
assume X = Spec(A) and S = Spec(R) and we have to show the lemma with
U = X and V = S. Consider the A-module M = Γ(X,ΩX/S) together with the
R-derivation dX/S : A→M . Let N be another A-module and denote Ñ the quasi-
coherent OX -module associated to N , see Schemes, Section 26.7. Precomposing by
dX/S : A→M we get an arrow

α : HomA(M,N) −→ DerR(A,N)
Using Lemmas 29.32.2 and 29.32.4 we get identifications

HomOX
(ΩX/S , Ñ) = DerS(OX , Ñ) = DerR(A,N)

Taking global sections determines an arrow HomOX
(ΩX/S , Ñ) → HomR(M,N).

Combining this arrow and the identifications above we get an arrow
β : DerR(A,N) −→ HomR(M,N)

Checking what happens on global sections, we find that α and β are each others
inverse. Hence we see that dX/S : A→ M satisfies the same universal property as
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d : A→ ΩA/R, see Algebra, Lemma 10.131.3. Thus the Yoneda lemma (Categories,
Lemma 4.3.5) implies there is a unique isomorphism of A-modules M ∼= ΩA/R
compatible with derivations. □

Remark 29.32.6.01UU The lemma above gives a second way of constructing the module
of differentials. Namely, let f : X → S be a morphism of schemes. Consider the
collection of all affine opens U ⊂ X which map into an affine open of S. These
form a basis for the topology on X. Thus it suffices to define Γ(U,ΩX/S) for such
U . We simply set Γ(U,ΩX/S) = ΩA/R if A, R are as in Lemma 29.32.5 above.
This works, but it takes somewhat more algebraic preliminaries to construct the
restriction mappings and to verify the sheaf condition with this ansatz.

The following lemma gives yet another way to define the sheaf of differentials and
it in particular shows that ΩX/S is quasi-coherent if X and S are schemes.

Lemma 29.32.7.08S2 Let f : X → S be a morphism of schemes. There is a canoni-
cal isomorphism between ΩX/S and the conormal sheaf of the diagonal morphism
∆X/S : X −→ X ×S X.

Proof. We first establish the existence of a couple of “global” sheaves and global
maps of sheaves, and further down we describe the constructions over some affine
opens.

Recall that ∆ = ∆X/S : X → X ×S X is an immersion, see Schemes, Lemma
26.21.2. Let J be the ideal sheaf of the immersion which lives over some open
subscheme W of X ×S X such that ∆(X) ⊂ W is closed. Let us take the one
that was found in the proof of Schemes, Lemma 26.21.2. Note that the sheaf of
rings OW /J 2 is supported on ∆(X). Moreover it sits in a short exact sequence of
sheaves

0→ J /J 2 → OW /J 2 → ∆∗OX → 0.
Using ∆−1 we can think of this as a surjection of sheaves of f−1OS-algebras with
kernel the conormal sheaf of ∆ (see Definition 29.31.1 and Lemma 29.31.2).

0→ CX/X×SX → ∆−1(OW /J 2)→ OX → 0

This places us in the situation of Modules, Lemma 17.28.11. The projection mor-
phisms pi : X ×S X → X, i = 1, 2 induce maps of sheaves of rings (pi)♯ :
(pi)−1OX → OX×SX . We may restrict toW and quotient by J 2 to get (pi)−1OX →
OW /J 2. Since ∆−1p−1

i OX = OX we get maps

si : OX → ∆−1(OW /J 2).

Both s1 and s2 are sections to the map ∆−1(OW /J 2) → OX , as in Modules,
Lemma 17.28.11. Thus we get an S-derivation d = s2 − s1 : OX → CX/X×SX . By
the universal property of the module of differentials we find a unique OX -linear
map

ΩX/S −→ CX/X×SX , fdg 7−→ fs2(g)− fs1(g)
To see the map is an isomorphism, let us work this out over suitable affine opens.
We can cover X by affine opens Spec(A) = U ⊂ X whose image is contained in
an affine open Spec(R) = V ⊂ S. According to the proof of Schemes, Lemma
26.21.2 U ×V U ⊂ X ×S X is an affine open contained in the open W mentioned
above. Also U ×V U = Spec(A ⊗R A). The sheaf J corresponds to the ideal

https://stacks.math.columbia.edu/tag/01UU
https://stacks.math.columbia.edu/tag/08S2


29.32. SHEAF OF DIFFERENTIALS OF A MORPHISM 2448

J = Ker(A ⊗R A → A). The short exact sequence to the short exact sequence of
A⊗R A-modules

0→ J/J2 → (A⊗R A)/J2 → A→ 0
The sections si correspond to the ring maps

A −→ (A⊗R A)/J2, s1 : a 7→ a⊗ 1, s2 : a 7→ 1⊗ a.
By Lemma 29.31.2 we have Γ(U, CX/X×SX) = J/J2 and by Lemma 29.32.5 we have
Γ(U,ΩX/S) = ΩA/R. The map above is the map adb 7→ a ⊗ b − ab ⊗ 1 which is
shown to be an isomorphism in Algebra, Lemma 10.131.13. □

Lemma 29.32.8.01UV Let
X ′

��

f
// X

��
S′ // S

be a commutative diagram of schemes. The canonical map OX → f∗OX′ composed
with the map f∗dX′/S′ : f∗OX′ → f∗ΩX′/S′ is a S-derivation. Hence we obtain a
canonical map of OX -modules ΩX/S → f∗ΩX′/S′ , and by adjointness of f∗ and f∗

a canonical OX′-module homomorphism
cf : f∗ΩX/S −→ ΩX′/S′ .

It is uniquely characterized by the property that f∗dX/S(h) maps to dX′/S′(f∗h)
for any local section h of OX .

Proof. This is a special case of Modules, Lemma 17.28.12. In the case of schemes
we can also use the functoriality of the conormal sheaves (see Lemma 29.31.3)
and Lemma 29.32.7 to define cf . Or we can use the characterization in the last
line of the lemma to glue maps defined on affine patches (see Algebra, Equation
(10.131.4.1)). □

Lemma 29.32.9.01UX Let f : X → Y , g : Y → S be morphisms of schemes. Then there
is a canonical exact sequence

f∗ΩY/S → ΩX/S → ΩX/Y → 0
where the maps come from applications of Lemma 29.32.8.

Proof. This is the sheafified version of Algebra, Lemma 10.131.7. □

Lemma 29.32.10.01V0 Let X → S be a morphism of schemes. Let g : S′ → S be a
morphism of schemes. Let X ′ = XS′ be the base change of X. Denote g′ : X ′ → X
the projection. Then the map

(g′)∗ΩX/S → ΩX′/S′

of Lemma 29.32.8 is an isomorphism.

Proof. This is the sheafified version of Algebra, Lemma 10.131.12. □

Lemma 29.32.11.01V1 Let f : X → S and g : Y → S be morphisms of schemes with
the same target. Let p : X ×S Y → X and q : X ×S Y → Y be the projection
morphisms. The maps from Lemma 29.32.8

p∗ΩX/S ⊕ q∗ΩY/S −→ ΩX×SY/S

give an isomorphism.
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Proof. By Lemma 29.32.10 the composition p∗ΩX/S → ΩX×SY/S → ΩX×SY/Y is
an isomorphism, and similarly for q. Moreover, the cokernel of p∗ΩX/S → ΩX×SY/S
is ΩX×SY/X by Lemma 29.32.9. The result follows. □

Lemma 29.32.12.01V2 Let f : X → S be a morphism of schemes. If f is locally of finite
type, then ΩX/S is a finite type OX -module.

Proof. Immediate from Algebra, Lemma 10.131.16, Lemma 29.32.5, Lemma 29.15.2,
and Properties, Lemma 28.16.1. □

Lemma 29.32.13.01V3 Let f : X → S be a morphism of schemes. If f is locally of finite
presentation, then ΩX/S is an OX -module of finite presentation.

Proof. Immediate from Algebra, Lemma 10.131.15, Lemma 29.32.5, Lemma 29.21.2,
and Properties, Lemma 28.16.2. □

Lemma 29.32.14.01UY If X → S is an immersion, or more generally a monomorphism,
then ΩX/S is zero.

Proof. This is true because ∆X/S is an isomorphism in this case and hence has
trivial conormal sheaf. Hence ΩX/S = 0 by Lemma 29.32.7. The algebraic version
is Algebra, Lemma 10.131.4. □

Lemma 29.32.15.01UZ Let i : Z → X be an immersion of schemes over S. There is a
canonical exact sequence

CZ/X → i∗ΩX/S → ΩZ/S → 0
where the first arrow is induced by dX/S and the second arrow comes from Lemma
29.32.8.

Proof. This is the sheafified version of Algebra, Lemma 10.131.9. However we
should make sure we can define the first arrow globally. Hence we explain the
meaning of “induced by dX/S” here. Namely, we may assume that i is a closed
immersion by shrinking X. Let I ⊂ OX be the sheaf of ideals corresponding to
Z ⊂ X. Then dX/S : I → ΩX/S maps the subsheaf I2 ⊂ I to IΩX/S . Hence it
induces a map I/I2 → ΩX/S/IΩX/S which is OX/I-linear. By Lemma 29.4.1 this
corresponds to a map CZ/X → i∗ΩX/S as desired. □

Lemma 29.32.16.0474 Let i : Z → X be an immersion of schemes over S, and assume
i (locally) has a left inverse. Then the canonical sequence

0→ CZ/X → i∗ΩX/S → ΩZ/S → 0
of Lemma 29.32.15 is (locally) split exact. In particular, if s : S → X is a section
of the structure morphism X → S then the map CS/X → s∗ΩX/S induced by dX/S
is an isomorphism.

Proof. Follows from Algebra, Lemma 10.131.10. Clarification: if g : X → Z is a
left inverse of i, then i∗cg is a right inverse of the map i∗ΩX/S → ΩZ/S . Also, if s
is a section, then it is an immersion s : Z = S → X over S (see Schemes, Lemma
26.21.11) and in that case ΩZ/S = 0. □

Remark 29.32.17.060N Let X → S be a morphism of schemes. According to Lemma
29.32.11 we have

ΩX×SX/S = pr∗
1ΩX/S ⊕ pr∗

2ΩX/S
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On the other hand, the diagonal morphism ∆ : X → X ×S X is an immersion,
which locally has a left inverse. Hence by Lemma 29.32.16 we obtain a canonical
short exact sequence

0→ CX/X×SX → ΩX/S ⊕ ΩX/S → ΩX/S → 0
Note that the right arrow is (1, 1) which is indeed a split surjection. On the other
hand, by Lemma 29.32.7 we have an identification ΩX/S = CX/X×SX . Because we
chose dX/S(f) = s2(f)− s1(f) in this identification it turns out that the left arrow
is the map (−1, 1)9.
Lemma 29.32.18.067L Let

Z
i
//

j   

X

��
Y

be a commutative diagram of schemes where i and j are immersions. Then there
is a canonical exact sequence

CZ/Y → CZ/X → i∗ΩX/Y → 0
where the first arrow comes from Lemma 29.31.3 and the second from Lemma
29.32.15.
Proof. The algebraic version of this is Algebra, Lemma 10.134.7. □

29.33. Finite order differential operators

0G43 We suggest the reader take a look at the corresponding section in the chapter on
commutative algebra (Algebra, Section 10.133) and the corresponding section in
the chapter on sheaves of modules (Modules, Section 17.29).
Lemma 29.33.1.0G44 Let R→ A be a ring map. Denote f : X → S the corresponding
morphism of affine schemes. Let F and G be OX -modules. If F is quasi-coherent
then the map

DiffkX/S(F ,G)→ DiffkA/R(Γ(X,F),Γ(X,G))
sending a differential operator to its action on global sections is bijective.

Proof. Write F = M̃ for some A-module M . Set N = Γ(X,G). Let D : M →
N be a differential operator of order k. We have to show there exists a unique
differential operator F → G of order k which gives rise to D on global sections. Let
U = D(f) ⊂ X be a standard affine open. Then F(U) = Mf is the localization.
By Algebra, Lemma 10.133.10 the differential operator D extends to a unique
differential operator

Df : F(U) = M̃(U) = Mf → Nf = Ñ(U)

The uniqueness shows that these maps Df glue to give a map of sheaves M̃ → Ñ
on the basis of all standard opens of X. Hence we get a unique map of sheaves
D̃ : M̃ → Ñ agreeing with these maps by the material in Sheaves, Section 6.30.
Since D̃ is given by differential operators of order k on the standard opens, we find
that D̃ is a differential operator of order k (small detail omitted). Finally, we can

9Namely, the local section dX/S(f) = 1⊗f−f⊗1 of the ideal sheaf of ∆ maps via dX×SX/X
to the local section 1⊗1⊗1⊗f−1⊗f⊗1⊗1−1⊗1⊗f⊗1+f⊗1⊗1⊗1 = pr∗

2dX/S(f)−pr∗
1dX/S(f).
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post-compose with the canonical OX -module map c : Ñ → G (Schemes, Lemma
26.7.1) to get c ◦ D̃ : F → G which is a differential operator of order k by Modules,
Lemma 17.29.2. This proves existence. We omit the proof of uniqueness. □

Lemma 29.33.2.0G45 Let a : X → S and b : Y → S be morphisms of schemes. Let F
and F ′ be quasi-coherent OX -modules. Let D : F → F ′ be a differential operator
of order k on X/S. Let G be a quasi-coherent OY -module. Then there is a unique
differential operator

D′ : pr∗
1F ⊗OX×SY

pr∗
2G −→ pr∗

1F ′ ⊗OX×SY
pr∗

2G
of order k on X ×S Y/Y such that D′(s ⊗ t) = D(s) ⊗ t for local sections s of F
and t of G.

Proof. In case X, Y , and S are affine, this follows, via Lemma 29.33.1, from the
corresponding algebra result, see Algebra, Lemma 10.133.11. In general, one uses
coverings by affines (for example as in Schemes, Lemma 26.17.4) to construct D′

globally. Details omitted. □

Remark 29.33.3.0G46 Let a : X → S and b : Y → S be morphisms of schemes. Denote
p : X ×S Y → X and q : X ×S Y → Y the projections. In this remark, given an
OX -module F and an OY -module G let us set

F ⊠ G = p∗F ⊗OX×SY
q∗G

Denote AX/S the additive category whose objects are quasi-coherent OX -modules
and whose morphisms are differential operators of finite order on X/S. Similarly
for AY/S and AX×SY/S . The construction of Lemma 29.33.2 determines a functor

⊠ : AX/S ×AY/S −→ AX×SY/S , (F ,G) 7−→ F ⊠ G
which is bilinear on morphisms. If X = Spec(A), Y = Spec(B), and S = Spec(R),
then via the identification of quasi-coherent sheaves with modules this functor is
given by (M,N) 7→M⊗RN on objects and sends the morphism (D,D′) : (M,N)→
(M ′, N ′) to D ⊗D′ : M ⊗R N →M ′ ⊗R N ′.

29.34. Smooth morphisms

01V4 Let f : X → Y be a continuous map of topological spaces. Consider the following
condition: For every x ∈ X there exist open neighbourhoods x ∈ U ⊂ X and
f(x) ∈ V ⊂ Y , and an integer d such that f(U) ⊂ V and such that we obtain a
commutative diagram

X

��

Uoo

��

π
// V ×Rd

{{
Y Voo

where π is a homeomorphism onto an open subset. Smooth morphisms of schemes
are the analogue of these maps in the category of schemes. See Lemma 29.34.11
and Lemma 29.36.20.
Contrary to expectations (perhaps) the notion of a smooth ring map is not defined
solely in terms of the module of differentials. Namely, recall that R → A is a
smooth ring map if A is of finite presentation over R and if the naive cotangent
complex of A over R is quasi-isomorphic to a projective module placed in degree 0,
see Algebra, Definition 10.137.1.
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Definition 29.34.1.01V5 Let f : X → S be a morphism of schemes.
(1) We say that f is smooth at x ∈ X if there exist an affine open neigh-

bourhood Spec(A) = U ⊂ X of x and affine open Spec(R) = V ⊂ S with
f(U) ⊂ V such that the induced ring map R→ A is smooth.

(2) We say that f is smooth if it is smooth at every point of X.
(3) A morphism of affine schemes f : X → S is called standard smooth if

there exists a standard smooth ring map R → R[x1, . . . , xn]/(f1, . . . , fc)
(see Algebra, Definition 10.137.6) such that X → S is isomorphic to

Spec(R[x1, . . . , xn]/(f1, . . . , fc))→ Spec(R).
A pleasing feature of this definition is that the set of points where a morphism is
smooth is automatically open.
Note that there is no separation or quasi-compactness hypotheses in the definition.
Hence the question of being smooth is local in nature on the source. Here is the
precise result.
Lemma 29.34.2.01V6 Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is smooth.
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is smooth.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj , j ∈ J, i ∈ Ij is smooth.
(4) There exists an affine open covering S =

⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj)→ OX(Ui) is smooth,

for all j ∈ J, i ∈ Ij .
Moreover, if f is smooth then for any open subschemes U ⊂ X, V ⊂ S with
f(U) ⊂ V the restriction f |U : U → V is smooth.
Proof. This follows from Lemma 29.14.3 if we show that the property “R → A is
smooth” is local. We check conditions (a), (b) and (c) of Definition 29.14.1. By
Algebra, Lemma 10.137.4 being smooth is stable under base change and hence we
conclude (a) holds. By Algebra, Lemma 10.137.14 being smooth is stable under
composition and for any ring R the ring map R → Rf is (standard) smooth. We
conclude (b) holds. Finally, property (c) is true according to Algebra, Lemma
10.137.13. □

The following lemma characterizes a smooth morphism as a flat, finitely presented
morphism with smooth fibres. Note that schemes smooth over a field are discussed
in more detail in Varieties, Section 33.25.
Lemma 29.34.3.01V8 Let f : X → S be a morphism of schemes. If f is flat, locally of
finite presentation, and all fibres Xs are smooth, then f is smooth.
Proof. Follows from Algebra, Lemma 10.137.17. □

Lemma 29.34.4.01VA The composition of two morphisms which are smooth is smooth.
Proof. In the proof of Lemma 29.34.2 we saw that being smooth is a local property
of ring maps. Hence the first statement of the lemma follows from Lemma 29.14.5
combined with the fact that being smooth is a property of ring maps that is stable
under composition, see Algebra, Lemma 10.137.14. □
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Lemma 29.34.5.01VB The base change of a morphism which is smooth is smooth.

Proof. In the proof of Lemma 29.34.2 we saw that being smooth is a local property
of ring maps. Hence the lemma follows from Lemma 29.14.5 combined with the
fact that being smooth is a property of ring maps that is stable under base change,
see Algebra, Lemma 10.137.4. □

Lemma 29.34.6.01VC Any open immersion is smooth.

Proof. This is true because an open immersion is a local isomorphism. □

Lemma 29.34.7.01VD A smooth morphism is syntomic.

Proof. See Algebra, Lemma 10.137.10. □

Lemma 29.34.8.01VE A smooth morphism is locally of finite presentation.

Proof. True because a smooth ring map is of finite presentation by definition. □

Lemma 29.34.9.01VF A smooth morphism is flat.

Proof. Combine Lemmas 29.30.7 and 29.34.7. □

Lemma 29.34.10.056G A smooth morphism is universally open.

Proof. Combine Lemmas 29.34.9, 29.34.8, and 29.25.10. Or alternatively, combine
Lemmas 29.34.7, 29.30.8. □

The following lemma says locally any smooth morphism is standard smooth. Hence
we can use standard smooth morphisms as a local model for a smooth morphism.

Lemma 29.34.11.01V7 Let f : X → S be a morphism of schemes. Let x ∈ X be a point.
Let V ⊂ S be an affine open neighbourhood of f(x). The following are equivalent

(1) The morphism f is smooth at x.
(2) There exists an affine open U ⊂ X, with x ∈ U and f(U) ⊂ V such that

the induced morphism f |U : U → V is standard smooth.

Proof. Follows from the definitions and Algebra, Lemmas 10.137.7 and 10.137.10.
□

Lemma 29.34.12.02G1 Let f : X → S be a morphism of schemes. Assume f is smooth.
Then the module of differentials ΩX/S of X over S is finite locally free and

rankx(ΩX/S) = dimx(Xf(x))
for every x ∈ X.

Proof. The statement is local on X and S. By Lemma 29.34.11 above we may
assume that f is a standard smooth morphism of affines. In this case the result fol-
lows from Algebra, Lemma 10.137.7 (and the definition of a relative global complete
intersection, see Algebra, Definition 10.136.5). □

Lemma 29.34.12 says that the following definition makes sense.

Definition 29.34.13.02G2 Let d ≥ 0 be an integer. We say a morphism of schemes
f : X → S is smooth of relative dimension d if f is smooth and ΩX/S is finite
locally free of constant rank d.
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In other words, f is smooth and the nonempty fibres are equidimensional of di-
mension d. By Lemma 29.34.14 below this is also the same as requiring: (a) f is
locally of finite presentation, (b) f is flat, (c) all nonempty fibres equidimensional
of dimension d, and (d) ΩX/S finite locally free of rank d. It is not enough to simply
assume that f is flat, of finite presentation, and ΩX/S is finite locally free of rank
d. A counter example is given by Spec(Fp[t])→ Spec(Fp[tp]).

Here is a differential criterion of smoothness at a point. There are many variants
of this result all of which may be useful at some point. We will just add them here
as needed.

Lemma 29.34.14.01V9 Let f : X → S be a morphism of schemes. Let x ∈ X. Set
s = f(x). Assume f is locally of finite presentation. The following are equivalent:

(1) The morphism f is smooth at x.
(2) The local ring map OS,s → OX,x is flat and Xs → Spec(κ(s)) is smooth

at x.
(3) The local ring map OS,s → OX,x is flat and the OX,x-module ΩX/S,x can

be generated by at most dimx(Xf(x)) elements.
(4) The local ring map OS,s → OX,x is flat and the κ(x)-vector space

ΩXs/s,x ⊗OXs,x
κ(x) = ΩX/S,x ⊗OX,x

κ(x)

can be generated by at most dimx(Xf(x)) elements.
(5) There exist affine opens U ⊂ X, and V ⊂ S such that x ∈ U , f(U) ⊂ V

and the induced morphism f |U : U → V is standard smooth.
(6) There exist affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ S with

x ∈ U corresponding to q ⊂ A, and f(U) ⊂ V such that there exists a
presentation

A = R[x1, . . . , xn]/(f1, . . . , fc)
with

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fc/∂x1
∂f1/∂x2 ∂f2/∂x2 . . . ∂fc/∂x2
. . . . . . . . . . . .

∂f1/∂xc ∂f2/∂xc . . . ∂fc/∂xc


mapping to an element of A not in q.

Proof. Note that if f is smooth at x, then we see from Lemma 29.34.11 that (5)
holds, and (6) is a slightly weakened version of (5). Moreover, f smooth implies
that the ring map OS,s → OX,x is flat (see Lemma 29.34.9) and that ΩX/S is finite
locally free of rank equal to dimx(Xs) (see Lemma 29.34.12). Thus (1) implies (3)
and (4). By Lemma 29.34.5 we also see that (1) implies (2).

By Lemma 29.32.10 the module of differentials ΩXs/s of the fibre Xs over κ(s) is
the pullback of the module of differentials ΩX/S of X over S. Hence the displayed
equality in part (4) of the lemma. By Lemma 29.32.12 these modules are of finite
type. Hence the minimal number of generators of the modules ΩX/S,x and ΩXs/s,x
is the same and equal to the dimension of this κ(x)-vector space by Nakayama’s
Lemma (Algebra, Lemma 10.20.1). This in particular shows that (3) and (4) are
equivalent.

https://stacks.math.columbia.edu/tag/01V9
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Algebra, Lemma 10.137.17 shows that (2) implies (1). Algebra, Lemma 10.140.3
shows that (3) and (4) imply (2). Finally, (6) implies (5) see for example Algebra,
Example 10.137.8 and (5) implies (1) by Algebra, Lemma 10.137.7. □

Lemma 29.34.15.02V4 Let
X ′

g′
//

f ′

��

X

f

��
S′ g // S

be a cartesian diagram of schemes. Let W ⊂ X, resp. W ′ ⊂ X ′ be the open
subscheme of points where f , resp. f ′ is smooth. Then W ′ = (g′)−1(W ) if

(1) f is flat and locally of finite presentation, or
(2) f is locally of finite presentation and g is flat.

Proof. Assume first that f locally of finite type. Consider the set
T = {x ∈ X | Xf(x) is smooth over κ(f(x)) at x}

and the corresponding set T ′ ⊂ X ′ for f ′. Then we claim T ′ = (g′)−1(T ). Namely,
let s′ ∈ S′ be a point, and let s = g(s′). Then we have

X ′
s′ = Spec(κ(s′))×Spec(κ(s)) Xs

In other words the fibres of the base change are the base changes of the fibres.
Hence the claim is equivalent to Algebra, Lemma 10.137.19.
Thus case (1) follows because in case (1) T is the (open) set of points where f is
smooth by Lemma 29.34.14.
In case (2) let x′ ∈W ′. Then g′ is flat at x′ (Lemma 29.25.7) and g ◦ f is flat at x′

(Lemma 29.25.5). It follows that f is flat at x = g′(x′) by Lemma 29.25.13. On the
other hand, since x′ ∈ T ′ (Lemma 29.34.5) we see that x ∈ T . Hence f is smooth
at x by Lemma 29.34.14. □

Here is a lemma that actually uses the vanishing of H−1 of the naive cotangent
complex for a smooth ring map.

Lemma 29.34.16.02K4 Let f : X → Y , g : Y → S be morphisms of schemes. Assume f
is smooth. Then

0→ f∗ΩY/S → ΩX/S → ΩX/Y → 0
(see Lemma 29.32.9) is short exact.

Proof. The algebraic version of this lemma is the following: Given ring maps A→
B → C with B → C smooth, then the sequence

0→ C ⊗B ΩB/A → ΩC/A → ΩC/B → 0
of Algebra, Lemma 10.131.7 is exact. This is Algebra, Lemma 10.139.1. □

Lemma 29.34.17.06AA Let i : Z → X be an immersion of schemes over S. Assume that
Z is smooth over S. Then the canonical exact sequence

0→ CZ/X → i∗ΩX/S → ΩZ/S → 0
of Lemma 29.32.15 is short exact.

https://stacks.math.columbia.edu/tag/02V4
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Proof. The algebraic version of this lemma is the following: Given ring maps A→
B → C with A→ C smooth and B → C surjective with kernel J , then the sequence

0→ J/J2 → C ⊗B ΩB/A → ΩC/A → 0

of Algebra, Lemma 10.131.9 is exact. This is Algebra, Lemma 10.139.2. □

Lemma 29.34.18.06AB Let
Z

i
//

j   

X

��
Y

be a commutative diagram of schemes where i and j are immersions and X → Y
is smooth. Then the canonical exact sequence

0→ CZ/Y → CZ/X → i∗ΩX/Y → 0

of Lemma 29.32.18 is exact.

Proof. The algebraic version of this lemma is the following: Given ring maps A→
B → C with A→ C surjective and A→ B smooth, then the sequence

0→ I/I2 → J/J2 → C ⊗B ΩB/A → 0

of Algebra, Lemma 10.134.7 is exact. This is Algebra, Lemma 10.139.3. □

Lemma 29.34.19.02K5 Let
X

f
//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that
(1) f is surjective, and smooth,
(2) p is smooth, and
(3) q is locally of finite presentation10.

Then q is smooth.

Proof. By Lemma 29.25.13 we see that q is flat. Pick a point y ∈ Y . Pick a point
x ∈ X mapping to y. Suppose f has relative dimension a at x and p has relative
dimension b at x. By Lemma 29.34.12 this means that ΩX/S,x is free of rank b
and ΩX/Y,x is free of rank a. By the short exact sequence of Lemma 29.34.16 this
means that (f∗ΩY/S)x is free of rank b − a. By Nakayama’s Lemma this implies
that ΩY/S,y can be generated by b − a elements. Also, by Lemma 29.28.2 we see
that dimy(Ys) = b− a. Hence we conclude that Y → S is smooth at y by Lemma
29.34.14 part (2). □

In the situation of the following lemma the image of σ is locally on X cut out by a
regular sequence, see Divisors, Lemma 31.22.8.

10In fact this is implied by (1) and (2), see Descent, Lemma 35.14.3. Moreover, it suffices to
assume f is surjective, flat and locally of finite presentation, see Descent, Lemma 35.14.5.

https://stacks.math.columbia.edu/tag/06AB
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Lemma 29.34.20.05D9 Let f : X → S be a morphism of schemes. Let σ : S → X be a
section of f . Let s ∈ S be a point such that f is smooth at x = σ(s). Then there
exist affine open neighbourhoods Spec(A) = U ⊂ S of s and Spec(B) = V ⊂ X of
x such that

(1) f(V ) ⊂ U and σ(U) ⊂ V ,
(2) with I = Ker(σ# : B → A) the module I/I2 is a free A-module, and
(3) B∧ ∼= A[[x1, . . . , xd]] as A-algebras where B∧ denotes the completion of

B with respect to I.

Proof. Pick an affine open U ⊂ S containing s Pick an affine open V ⊂ f−1(U)
containing x. Pick an affine open U ′ ⊂ σ−1(V ) containing s. Note that V ′ =
f−1(U ′) ∩ V is affine as it is equal to the fibre product V ′ = U ′ ×U V . Then
U ′ and V ′ satisfy (1). Write U ′ = Spec(A′) and V ′ = Spec(B′). By Algebra,
Lemma 10.139.4 the module I ′/(I ′)2 is finite locally free as a A′-module. Hence
after replacing U ′ by a smaller affine open U ′′ ⊂ U ′ and V ′ by V ′′ = V ′ ∩ f−1(U ′′)
we obtain the situation where I ′′/(I ′′)2 is free, i.e., (2) holds. In this case (3) holds
also by Algebra, Lemma 10.139.4. □

The dimension of a scheme X at a point x (Properties, Definition 28.10.1) is just
the dimension of X at x as a topological space, see Topology, Definition 5.10.1.
This is not the dimension of the local ring OX,x, in general.

Lemma 29.34.21.0AFF Let f : X → Y be a smooth morphism of locally Noetherian
schemes. For every point x in X with image y in Y ,

dimx(X) = dimy(Y ) + dimx(Xy),

where Xy denotes the fiber over y.

Proof. After replacing X by an open neighborhood of x, there is a natural number
d such that all fibers of X → Y have dimension d at every point, see Lemma
29.34.12. Then f is flat (Lemma 29.34.9), locally of finite type (Lemma 29.34.8),
and of relative dimension d. Hence the result follows from Lemma 29.29.6. □

29.35. Unramified morphisms

02G3 We briefly discuss unramified morphisms before the (perhaps) more interesting class
of étale morphisms. Recall that a ring map R → A is unramified if it is of finite
type and ΩA/R = 0 (this is the definition of [Ray70]). A ring map R→ A is called
G-unramified if it is of finite presentation and ΩA/R = 0 (this is the definition of
[DG67]). See Algebra, Definition 10.151.1.

Definition 29.35.1.02G4 Let f : X → S be a morphism of schemes.
(1) We say that f is unramified at x ∈ X if there exists an affine open neigh-

bourhood Spec(A) = U ⊂ X of x and affine open Spec(R) = V ⊂ S with
f(U) ⊂ V such that the induced ring map R→ A is unramified.

(2) We say that f is G-unramified at x ∈ X if there exists an affine open
neighbourhood Spec(A) = U ⊂ X of x and affine open Spec(R) = V ⊂ S
with f(U) ⊂ V such that the induced ring map R→ A is G-unramified.

(3) We say that f is unramified if it is unramified at every point of X.
(4) We say that f is G-unramified if it is G-unramified at every point of X.

https://stacks.math.columbia.edu/tag/05D9
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Note that a G-unramified morphism is unramified. Hence any result for unramified
morphisms implies the corresponding result for G-unramified morphisms. More-
over, if S is locally Noetherian then there is no difference between G-unramified
and unramified morphisms, see Lemma 29.35.6. A pleasing feature of this definition
is that the set of points where a morphism is unramified (resp. G-unramified) is
automatically open.

Lemma 29.35.2.02G5 Let f : X → S be a morphism of schemes. Then
(1) f is unramified if and only if f is locally of finite type and ΩX/S = 0, and
(2) f is G-unramified if and only if f is locally of finite presentation and

ΩX/S = 0.

Proof. By definition a ring map R → A is unramified (resp. G-unramified) if and
only if it is of finite type (resp. finite presentation) and ΩA/R = 0. Hence the lemma
follows directly from the definitions and Lemma 29.32.5. □

Note that there is no separation or quasi-compactness hypotheses in the definition.
Hence the question of being unramified is local in nature on the source. Here is the
precise result.

Lemma 29.35.3.02G6 Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is unramified (resp. G-unramified).
(2) For every affine open U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is unramified (resp. G-unramified).

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj , j ∈ J, i ∈ Ij is
unramified (resp. G-unramified).

(4) There exists an affine open covering S =
⋃
j∈J Vj and affine open cov-

erings f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is

unramified (resp. G-unramified), for all j ∈ J, i ∈ Ij .
Moreover, if f is unramified (resp. G-unramified) then for any open subschemes
U ⊂ X, V ⊂ S with f(U) ⊂ V the restriction f |U : U → V is unramified (resp.
G-unramified).

Proof. This follows from Lemma 29.14.3 if we show that the property “R → A is
unramified” is local. We check conditions (a), (b) and (c) of Definition 29.14.1.
These properties are proved in Algebra, Lemma 10.151.3. □

Lemma 29.35.4.02G9 The composition of two morphisms which are unramified is un-
ramified. The same holds for G-unramified morphisms.

Proof. The proof of Lemma 29.35.3 shows that being unramified (resp. G-unramified)
is a local property of ring maps. Hence the first statement of the lemma follows from
Lemma 29.14.5 combined with the fact that being unramified (resp. G-unramified)
is a property of ring maps that is stable under composition, see Algebra, Lemma
10.151.3. □

Lemma 29.35.5.02GA The base change of a morphism which is unramified is unramified.
The same holds for G-unramified morphisms.

https://stacks.math.columbia.edu/tag/02G5
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Proof. The proof of Lemma 29.35.3 shows that being unramified (resp. G-unramified)
is a local property of ring maps. Hence the lemma follows from Lemma 29.14.6 com-
bined with the fact that being unramified (resp. G-unramified) is a property of ring
maps that is stable under base change, see Algebra, Lemma 10.151.3. □

Lemma 29.35.6.04EV Let f : X → S be a morphism of schemes. Assume S is locally
Noetherian. Then f is unramified if and only if f is G-unramified.

Proof. Follows from the definitions and Lemma 29.21.9. □

Lemma 29.35.7.02GB Any open immersion is G-unramified.

Proof. This is true because an open immersion is a local isomorphism. □

Lemma 29.35.8.02GC A closed immersion i : Z → X is unramified. It is G-unramified
if and only if the associated quasi-coherent sheaf of ideals I = Ker(OX → i∗OZ) is
of finite type (as an OX -module).

Proof. Follows from Lemma 29.21.7 and Algebra, Lemma 10.151.3. □

Lemma 29.35.9.02GD An unramified morphism is locally of finite type. A G-unramified
morphism is locally of finite presentation.

Proof. An unramified ring map is of finite type by definition. A G-unramified ring
map is of finite presentation by definition. □

Lemma 29.35.10.02V5 Let f : X → S be a morphism of schemes. If f is unramified
at x then f is quasi-finite at x. In particular, an unramified morphism is locally
quasi-finite.

Proof. See Algebra, Lemma 10.151.6. □

Lemma 29.35.11.02G7 Fibres of unramified morphisms.
(1) Let X be a scheme over a field k. The structure morphism X → Spec(k) is

unramified if and only if X is a disjoint union of spectra of finite separable
field extensions of k.

(2) If f : X → S is an unramified morphism then for every s ∈ S the fibre Xs

is a disjoint union of spectra of finite separable field extensions of κ(s).

Proof. Part (2) follows from part (1) and Lemma 29.35.5. Let us prove part (1). We
first use Algebra, Lemma 10.151.7. This lemma implies that if X is a disjoint union
of spectra of finite separable field extensions of k then X → Spec(k) is unramified.
Conversely, suppose that X → Spec(k) is unramified. By Algebra, Lemma 10.151.5
for every x ∈ X the residue field extension κ(x)/k is finite separable. Since X →
Spec(k) is locally quasi-finite (Lemma 29.35.10) we see that all points of X are
isolated closed points, see Lemma 29.20.6. Thus X is a discrete space, in particular
the disjoint union of the spectra of its local rings. By Algebra, Lemma 10.151.5
again these local rings are fields, and we win. □

The following lemma characterizes an unramified morphisms as morphisms locally
of finite type with unramified fibres.

Lemma 29.35.12.02G8 Let f : X → S be a morphism of schemes.
(1) If f is unramified then for any x ∈ X the field extension κ(x)/κ(f(x)) is

finite separable.

https://stacks.math.columbia.edu/tag/04EV
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(2) If f is locally of finite type, and for every s ∈ S the fibre Xs is a dis-
joint union of spectra of finite separable field extensions of κ(s) then f is
unramified.

(3) If f is locally of finite presentation, and for every s ∈ S the fibre Xs is a
disjoint union of spectra of finite separable field extensions of κ(s) then f
is G-unramified.

Proof. Follows from Algebra, Lemmas 10.151.5 and 10.151.7. □

Here is a characterization of unramified morphisms in terms of the diagonal mor-
phism.
Lemma 29.35.13.02GE Let f : X → S be a morphism.

(1) If f is unramified, then the diagonal morphism ∆ : X → X ×S X is an
open immersion.

(2) If f is locally of finite type and ∆ is an open immersion, then f is unram-
ified.

(3) If f is locally of finite presentation and ∆ is an open immersion, then f
is G-unramified.

Proof. The first statement follows from Algebra, Lemma 10.151.4. The second
statement from the fact that ΩX/S is the conormal sheaf of the diagonal morphism
(Lemma 29.32.7) and hence clearly zero if ∆ is an open immersion. □

Lemma 29.35.14.02GF Let f : X → S be a morphism of schemes. Let x ∈ X. Set
s = f(x). Assume f is locally of finite type (resp. locally of finite presentation).
The following are equivalent:

(1) The morphism f is unramified (resp. G-unramified) at x.
(2) The fibre Xs is unramified over κ(s) at x.
(3) The OX,x-module ΩX/S,x is zero.
(4) The OXs,x-module ΩXs/s,x is zero.
(5) The κ(x)-vector space

ΩXs/s,x ⊗OXs,x
κ(x) = ΩX/S,x ⊗OX,x

κ(x)
is zero.

(6) We have msOX,x = mx and the field extension κ(x)/κ(s) is finite separa-
ble.

Proof. Note that if f is unramified at x, then we see that ΩX/S = 0 in a neighbour-
hood of x by the definitions and the results on modules of differentials in Section
29.32. Hence (1) implies (3) and the vanishing of the right hand vector space in (5).
It also implies (2) because by Lemma 29.32.10 the module of differentials ΩXs/s
of the fibre Xs over κ(s) is the pullback of the module of differentials ΩX/S of X
over S. This fact on modules of differentials also implies the displayed equality of
vector spaces in part (4). By Lemma 29.32.12 the modules ΩX/S,x and ΩXs/s,x
are of finite type. Hence the modules ΩX/S,x and ΩXs/s,x are zero if and only if
the corresponding κ(x)-vector space in (4) is zero by Nakayama’s Lemma (Alge-
bra, Lemma 10.20.1). This in particular shows that (3), (4) and (5) are equivalent.
The support of ΩX/S is closed in X, see Modules, Lemma 17.9.6. Assumption (3)
implies that x is not in the support. Hence ΩX/S is zero in a neighbourhood of x,
which implies (1). The equivalence of (1) and (3) applied to Xs → s implies the
equivalence of (2) and (4). At this point we have seen that (1) – (5) are equivalent.
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Alternatively you can use Algebra, Lemma 10.151.3 to see the equivalence of (1) –
(5) more directly.

The equivalence of (1) and (6) follows from Lemma 29.35.12. It also follows more
directly from Algebra, Lemmas 10.151.5 and 10.151.7. □

Lemma 29.35.15.0475 Let f : X → S be a morphism of schemes. Assume f locally of
finite type. Formation of the open set

T = {x ∈ X | Xf(x) is unramified over κ(f(x)) at x}
= {x ∈ X | X is unramified over S at x}

commutes with arbitrary base change: For any morphism g : S′ → S, consider
the base change f ′ : X ′ → S′ of f and the projection g′ : X ′ → X. Then the
corresponding set T ′ for the morphism f ′ is equal to T ′ = (g′)−1(T ). If f is
assumed locally of finite presentation then the same holds for the open set of points
where f is G-unramified.

Proof. Let s′ ∈ S′ be a point, and let s = g(s′). Then we have

X ′
s′ = Spec(κ(s′))×Spec(κ(s)) Xs

In other words the fibres of the base change are the base changes of the fibres. In
particular

ΩXs/s,x ⊗OXs,x
κ(x′) = ΩX′

s′/s
′,x′ ⊗OX′

s′ ,x
′ κ(x′)

see Lemma 29.32.10. Whence x′ ∈ T ′ if and only if x ∈ T by Lemma 29.35.14. The
second part follows from the first because in that case T is the (open) set of points
where f is G-unramified according to Lemma 29.35.14. □

Lemma 29.35.16.02GG Let f : X → Y be a morphism of schemes over S.
(1) If X is unramified over S, then f is unramified.
(2) If X is G-unramified over S and Y is locally of finite type over S, then f

is G-unramified.

Proof. Assume that X is unramified over S. By Lemma 29.15.8 we see that f is
locally of finite type. By assumption we have ΩX/S = 0. Hence ΩX/Y = 0 by
Lemma 29.32.9. Thus f is unramified. If X is G-unramified over S and Y is locally
of finite type over S, then by Lemma 29.21.11 we see that f is locally of finite
presentation and we conclude that f is G-unramified. □

Lemma 29.35.17.04HB Let S be a scheme. LetX, Y be schemes over S. Let f, g : X → Y
be morphisms over S. Let x ∈ X. Assume that

(1) the structure morphism Y → S is unramified,
(2) f(x) = g(x) in Y , say y = f(x) = g(x), and
(3) the induced maps f ♯, g♯ : κ(y)→ κ(x) are equal.

Then there exists an open neighbourhood of x in X on which f and g are equal.

Proof. Consider the morphism (f, g) : X → Y ×S Y . By assumption (1) and
Lemma 29.35.13 the inverse image of ∆Y/S(Y ) is open in X. And assumptions (2)
and (3) imply that x is in this open subset. □
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29.36. Étale morphisms

02GH The Zariski topology of a scheme is a very coarse topology. This is particularly clear
when looking at varieties over C. It turns out that declaring an étale morphism
to be the analogue of a local isomorphism in topology introduces a much finer
topology. On varieties over C this topology gives rise to the “correct” Betti numbers
when computing cohomology with finite coefficients. Another observable is that if
f : X → Y is an étale morphism of varieties over C, and if x is a closed point of
X, then f induces an isomorphism O∧

Y,f(x) → O
∧
X,x of complete local rings.

In this section we start our study of these matters. In fact we deliberately restrict
our discussion to a minimum since we will discuss more interesting results elsewhere.
Recall that a ring map R→ A is said to be étale if it is smooth and ΩA/R = 0, see
Algebra, Definition 10.143.1.

Definition 29.36.1.02GI Let f : X → S be a morphism of schemes.
(1) We say that f is étale at x ∈ X if there exists an affine open neighbourhood

Spec(A) = U ⊂ X of x and affine open Spec(R) = V ⊂ S with f(U) ⊂ V
such that the induced ring map R→ A is étale.

(2) We say that f is étale if it is étale at every point of X.
(3) A morphism of affine schemes f : X → S is called standard étale if X → S

is isomorphic to
Spec(R[x]h/(g))→ Spec(R)

where R→ R[x]h/(g) is a standard étale ring map, see Algebra, Definition
10.144.1, i.e., g is monic and g′ invertible in R[x]h/(g).

A morphism is étale if and only if it is smooth of relative dimension 0 (see Definition
29.34.13). A pleasing feature of the definition is that the set of points where a
morphism is étale is automatically open.
Note that there is no separation or quasi-compactness hypotheses in the definition.
Hence the question of being étale is local in nature on the source. Here is the precise
result.

Lemma 29.36.2.02GJ Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is étale.
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is étale.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj , j ∈ J, i ∈ Ij is étale.
(4) There exists an affine open covering S =

⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is étale,

for all j ∈ J, i ∈ Ij .
Moreover, if f is étale then for any open subschemes U ⊂ X, V ⊂ S with f(U) ⊂ V
the restriction f |U : U → V is étale.

Proof. This follows from Lemma 29.14.3 if we show that the property “R → A is
étale” is local. We check conditions (a), (b) and (c) of Definition 29.14.1. These all
follow from Algebra, Lemma 10.143.3. □
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Lemma 29.36.3.02GN The composition of two morphisms which are étale is étale.

Proof. In the proof of Lemma 29.36.2 we saw that being étale is a local property
of ring maps. Hence the first statement of the lemma follows from Lemma 29.14.5
combined with the fact that being étale is a property of ring maps that is stable
under composition, see Algebra, Lemma 10.143.3. □

Lemma 29.36.4.02GO The base change of a morphism which is étale is étale.

Proof. In the proof of Lemma 29.36.2 we saw that being étale is a local property of
ring maps. Hence the lemma follows from Lemma 29.14.5 combined with the fact
that being étale is a property of ring maps that is stable under base change, see
Algebra, Lemma 10.143.3. □

Lemma 29.36.5.02GK Let f : X → S be a morphism of schemes. Let x ∈ X. Then f is
étale at x if and only if f is smooth and unramified at x.

Proof. This follows immediately from the definitions. □

Lemma 29.36.6.03WS An étale morphism is locally quasi-finite.

Proof. By Lemma 29.36.5 an étale morphism is unramified. By Lemma 29.35.10
an unramified morphism is locally quasi-finite. □

Lemma 29.36.7.02GL Fibres of étale morphisms.
(1) Let X be a scheme over a field k. The structure morphism X → Spec(k)

is étale if and only if X is a disjoint union of spectra of finite separable
field extensions of k.

(2) If f : X → S is an étale morphism, then for every s ∈ S the fibre Xs is a
disjoint union of spectra of finite separable field extensions of κ(s).

Proof. You can deduce this from Lemma 29.35.11 via Lemma 29.36.5 above. Here
is a direct proof.
We will use Algebra, Lemma 10.143.4. Hence it is clear that if X is a disjoint
union of spectra of finite separable field extensions of k then X → Spec(k) is étale.
Conversely, suppose that X → Spec(k) is étale. Then for any affine open U ⊂ X
we see that U is a finite disjoint union of spectra of finite separable field extensions
of k. Hence all points of X are closed points (see Lemma 29.20.2 for example).
Thus X is a discrete space and we win. □

The following lemma characterizes an étale morphism as a flat, finitely presented
morphism with “étale fibres”.

Lemma 29.36.8.02GM Let f : X → S be a morphism of schemes. If f is flat, locally of
finite presentation, and for every s ∈ S the fibre Xs is a disjoint union of spectra
of finite separable field extensions of κ(s), then f is étale.

Proof. You can deduce this from Algebra, Lemma 10.143.7. Here is another proof.
By Lemma 29.36.7 a fibre Xs is étale and hence smooth over s. By Lemma 29.34.3
we see that X → S is smooth. By Lemma 29.35.12 we see that f is unramified.
We conclude by Lemma 29.36.5. □

Lemma 29.36.9.02GP Any open immersion is étale.

Proof. This is true because an open immersion is a local isomorphism. □
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Lemma 29.36.10.02GQ An étale morphism is syntomic.

Proof. See Algebra, Lemma 10.137.10 and use that an étale morphism is the same
as a smooth morphism of relative dimension 0. □

Lemma 29.36.11.02GR An étale morphism is locally of finite presentation.

Proof. True because an étale ring map is of finite presentation by definition. □

Lemma 29.36.12.02GS An étale morphism is flat.

Proof. Combine Lemmas 29.30.7 and 29.36.10. □

Lemma 29.36.13.03WT An étale morphism is open.

Proof. Combine Lemmas 29.36.12, 29.36.11, and 29.25.10. □

The following lemma says locally any étale morphism is standard étale. This is
actually kind of a tricky result to prove in complete generality. The tricky parts are
hidden in the chapter on commutative algebra. Hence a standard étale morphism
is a local model for a general étale morphism.

Lemma 29.36.14.02GT Let f : X → S be a morphism of schemes. Let x ∈ X be a point.
Let V ⊂ S be an affine open neighbourhood of f(x). The following are equivalent

(1) The morphism f is étale at x.
(2) There exist an affine open U ⊂ X with x ∈ U and f(U) ⊂ V such that the

induced morphism f |U : U → V is standard étale (see Definition 29.36.1).

Proof. Follows from the definitions and Algebra, Proposition 10.144.4. □

Here is a differential criterion of étaleness at a point. There are many variants of
this result all of which may be useful at some point. We will just add them here as
needed.

Lemma 29.36.15.02GU Let f : X → S be a morphism of schemes. Let x ∈ X. Set
s = f(x). Assume f is locally of finite presentation. The following are equivalent:

(1) The morphism f is étale at x.
(2) The local ring map OS,s → OX,x is flat and Xs → Spec(κ(s)) is étale at

x.
(3) The local ring mapOS,s → OX,x is flat and Xs → Spec(κ(s)) is unramified

at x.
(4) The local ring map OS,s → OX,x is flat and the OX,x-module ΩX/S,x is

zero.
(5) The local ring map OS,s → OX,x is flat and the κ(x)-vector space

ΩXs/s,x ⊗OXs,x
κ(x) = ΩX/S,x ⊗OX,x

κ(x)

is zero.
(6) The local ring map OS,s → OX,x is flat, we have msOX,x = mx and the

field extension κ(x)/κ(s) is finite separable.
(7) There exist affine opens U ⊂ X, and V ⊂ S such that x ∈ U , f(U) ⊂ V

and the induced morphism f |U : U → V is standard smooth of relative
dimension 0.
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(8) There exist affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ S with
x ∈ U corresponding to q ⊂ A, and f(U) ⊂ V such that there exists a
presentation

A = R[x1, . . . , xn]/(f1, . . . , fn)
with

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fn/∂x1
∂f1/∂x2 ∂f2/∂x2 . . . ∂fn/∂x2
. . . . . . . . . . . .

∂f1/∂xn ∂f2/∂xn . . . ∂fn/∂xn


mapping to an element of A not in q.

(9) There exist affine opens U ⊂ X, and V ⊂ S such that x ∈ U , f(U) ⊂ V
and the induced morphism f |U : U → V is standard étale.

(10) There exist affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ S with
x ∈ U corresponding to q ⊂ A, and f(U) ⊂ V such that there exists a
presentation

A = R[x]Q/(P ) = R[x, 1/Q]/(P )
with P,Q ∈ R[x], P monic and P ′ = dP/dx mapping to an element of A
not in q.

Proof. Use Lemma 29.36.14 and the definitions to see that (1) implies all of the
other conditions. For each of the conditions (2) – (10) combine Lemmas 29.34.14
and 29.35.14 to see that (1) holds by showing f is both smooth and unramified at
x and applying Lemma 29.36.5. Some details omitted. □

Lemma 29.36.16.02GV A morphism is étale at a point if and only if it is flat and
G-unramified at that point. A morphism is étale if and only if it is flat and G-
unramified.

Proof. This is clear from Lemmas 29.36.15 and 29.35.14. □

Lemma 29.36.17.0476 Let
X ′

g′
//

f ′

��

X

f

��
S′ g // S

be a cartesian diagram of schemes. Let W ⊂ X, resp. W ′ ⊂ X ′ be the open
subscheme of points where f , resp. f ′ is étale. Then W ′ = (g′)−1(W ) if

(1) f is flat and locally of finite presentation, or
(2) f is locally of finite presentation and g is flat.

Proof. Assume first that f locally of finite type. Consider the set
T = {x ∈ X | f is unramified at x}

and the corresponding set T ′ ⊂ X ′ for f ′. Then T ′ = (g′)−1(T ) by Lemma 29.35.15.
Thus case (1) follows because in case (1) T is the (open) set of points where f is
étale by Lemma 29.36.16.
In case (2) let x′ ∈ W ′. Then g′ is flat at x′ (Lemma 29.25.7) and g ◦ f ′ is flat at
x′ (Lemma 29.25.5). It follows that f is flat at x = g′(x′) by Lemma 29.25.13. On
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the other hand, since x′ ∈ T ′ (Lemma 29.34.5) we see that x ∈ T . Hence f is étale
at x by Lemma 29.36.15. □

Our proof of the following lemma is somewhat complicated. It uses the “Critère
de platitude par fibres” to see that a morphism X → Y over S between schemes
étale over S is automatically flat. The details are in the chapter on commutative
algebra.

Lemma 29.36.18.02GW Let f : X → Y be a morphism of schemes over S. If X and Y
are étale over S, then f is étale.

Proof. See Algebra, Lemma 10.143.8. □

Lemma 29.36.19.02K6 Let
X

f
//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that
(1) f is surjective, and étale,
(2) p is étale, and
(3) q is locally of finite presentation11.

Then q is étale.

Proof. By Lemma 29.34.19 we see that q is smooth. Thus we only need to see that
q has relative dimension 0. This follows from Lemma 29.28.2 and the fact that f
and p have relative dimension 0. □

A final characterization of smooth morphisms is that a smooth morphism f : X → S
is locally the composition of an étale morphism by a projection Ad

S → S.

Lemma 29.36.20.054L Let φ : X → Y be a morphism of schemes. Let x ∈ X. Let
V ⊂ Y be an affine open neighbourhood of φ(x). If φ is smooth at x, then there
exists an integer d ≥ 0 and an affine open U ⊂ X with x ∈ U and φ(U) ⊂ V such
that there exists a commutative diagram

X

��

Uoo

��

π
// Ad

V

~~
Y Voo

where π is étale.

Proof. By Lemma 29.34.11 we can find an affine open U as in the lemma such that
φ|U : U → V is standard smooth. Write U = Spec(A) and V = Spec(R) so that
we can write

A = R[x1, . . . , xn]/(f1, . . . , fc)

11In fact this is implied by (1) and (2), see Descent, Lemma 35.14.3. Moreover, it suffices to
assume that f is surjective, flat and locally of finite presentation, see Descent, Lemma 35.14.5.
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with

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fc/∂x1
∂f1/∂x2 ∂f2/∂x2 . . . ∂fc/∂x2
. . . . . . . . . . . .

∂f1/∂xc ∂f2/∂xc . . . ∂fc/∂xc


mapping to an invertible element of A. Then it is clear that R[xc+1, . . . , xn] → A
is standard smooth of relative dimension 0. Hence it is smooth of relative dimen-
sion 0. In other words the ring map R[xc+1, . . . , xn] → A is étale. As An−c

V =
Spec(R[xc+1, . . . , xn]) the lemma with d = n− c. □

29.37. Relatively ample sheaves

01VG Let X be a scheme and L an invertible sheaf on X. Then L is ample on X if X is
quasi-compact and every point of X is contained in an affine open of the form Xs,
where s ∈ Γ(X,L⊗n) and n ≥ 1, see Properties, Definition 28.26.1. We turn this
into a relative notion as follows.
Definition 29.37.1.01VH [DG67, II Definition

4.6.1]
Let f : X → S be a morphism of schemes. Let L be an invertible

OX -module. We say L is relatively ample, or f -relatively ample, or ample on X/S,
or f -ample if f : X → S is quasi-compact, and if for every affine open V ⊂ S the
restriction of L to the open subscheme f−1(V ) of X is ample.
We note that the existence of a relatively ample sheaf on X does not force the
morphism X → S to be of finite type.
Lemma 29.37.2.02NN Let X → S be a morphism of schemes. Let L be an invertible
OX -module. Let n ≥ 1. Then L is f -ample if and only if L⊗n is f -ample.
Proof. This follows from Properties, Lemma 28.26.2. □

Lemma 29.37.3.01VI Let f : X → S be a morphism of schemes. If there exists an
f -ample invertible sheaf, then f is separated.
Proof. Being separated is local on the base (see Schemes, Lemma 26.21.7 for exam-
ple; it also follows easily from the definition). Hence we may assume S is affine and
X has an ample invertible sheaf. In this case the result follows from Properties,
Lemma 28.26.8. □

There are many ways to characterize relatively ample invertible sheaves, analogous
to the equivalent conditions in Properties, Proposition 28.26.13. We will add these
here as needed.
Lemma 29.37.4.01VJ [DG67, II,

Proposition 4.6.3]
Let f : X → S be a quasi-compact morphism of schemes. Let L

be an invertible sheaf on X. The following are equivalent:
(1) The invertible sheaf L is f -ample.
(2) There exists an open covering S =

⋃
Vi such that each L|f−1(Vi) is ample

relative to f−1(Vi)→ Vi.
(3) There exists an affine open covering S =

⋃
Vi such that each L|f−1(Vi) is

ample.
(4) There exists a quasi-coherent graded OS-algebra A and a map of graded
OX -algebras ψ : f∗A →

⊕
d≥0 L⊗d such that U(ψ) = X and

rL,ψ : X −→ Proj
S

(A)
is an open immersion (see Constructions, Lemma 27.19.1 for notation).

https://stacks.math.columbia.edu/tag/01VH
https://stacks.math.columbia.edu/tag/02NN
https://stacks.math.columbia.edu/tag/01VI
https://stacks.math.columbia.edu/tag/01VJ


29.37. RELATIVELY AMPLE SHEAVES 2468

(5) The morphism f is quasi-separated and part (4) above holds with A =
f∗(
⊕

d≥0 L⊗d) and ψ the adjunction mapping.
(6) Same as (4) but just requiring rL,ψ to be an immersion.

Proof. It is immediate from the definition that (1) implies (2) and (2) implies (3).
It is clear that (5) implies (4).

Assume (3) holds for the affine open covering S =
⋃
Vi. We are going to show

(5) holds. Since each f−1(Vi) has an ample invertible sheaf we see that f−1(Vi)
is separated (Properties, Lemma 28.26.8). Hence f is separated. By Schemes,
Lemma 26.24.1 we see that A = f∗(

⊕
d≥0 L⊗d) is a quasi-coherent graded OS-

algebra. Denote ψ : f∗A →
⊕

d≥0 L⊗d the adjunction mapping. The description
of the open U(ψ) in Constructions, Section 27.19 and the definition of ampleness
of L|f−1(Vi) show that U(ψ) = X. Moreover, Constructions, Lemma 27.19.1 part
(3) shows that the restriction of rL,ψ to f−1(Vi) is the same as the morphism from
Properties, Lemma 28.26.9 which is an open immersion according to Properties,
Lemma 28.26.11. Hence (5) holds.

Let us show that (4) implies (1). Assume (4). Denote π : Proj
S

(A) → S the
structure morphism. Choose V ⊂ S affine open. By Constructions, Definition
27.16.7 we see that π−1(V ) ⊂ Proj

S
(A) is equal to Proj(A) where A = A(V ) as a

graded ring. Hence rL,ψ maps f−1(V ) isomorphically onto a quasi-compact open
of Proj(A). Moreover, L⊗d is isomorphic to the pullback of OProj(A)(d) for some
d ≥ 1. (See part (3) of Constructions, Lemma 27.19.1 and the final statement of
Constructions, Lemma 27.14.1.) This implies that L|f−1(V ) is ample by Properties,
Lemmas 28.26.12 and 28.26.2.

Assume (6). By the equivalence of (1) - (5) above we see that the property of being
relatively ample on X/S is local on S. Hence we may assume that S is affine,
and we have to show that L is ample on X. In this case the morphism rL,ψ is
identified with the morphism, also denoted rL,ψ : X → Proj(A) associated to the
map ψ : A = A(V )→ Γ∗(X,L). (See references above.) As above we also see that
L⊗d is the pullback of the sheaf OProj(A)(d) for some d ≥ 1. Moreover, since X is
quasi-compact we see that X gets identified with a closed subscheme of a quasi-
compact open subscheme Y ⊂ Proj(A). By Constructions, Lemma 27.10.6 (see also
Properties, Lemma 28.26.12) we see that OY (d′) is an ample invertible sheaf on Y
for some d′ ≥ 1. Since the restriction of an ample sheaf to a closed subscheme is
ample, see Properties, Lemma 28.26.3 we conclude that the pullback of OY (d′) is
ample. Combining these results with Properties, Lemma 28.26.2 we conclude that
L is ample as desired. □

Lemma 29.37.5.01VK [DG67, II Corollary
4.6.6]

Let f : X → S be a morphism of schemes. Let L be an invertible
OX -module. Assume S affine. Then L is f -relatively ample if and only if L is
ample on X.

Proof. Immediate from Lemma 29.37.4 and the definitions. □

Lemma 29.37.6.0891 [DG67, II
Proposition 5.1.6]

Let f : X → S be a morphism of schemes. Then f is quasi-affine
if and only if OX is f -relatively ample.

Proof. Follows from Properties, Lemma 28.27.1 and the definitions. □
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Lemma 29.37.7.0892 Let f : X → Y be a morphism of schemes, M an invertible
OY -module, and L an invertible OX -module.

(1) If L is f -ample and M is ample, then L ⊗ f∗M⊗a is ample for a≫ 0.
(2) If M is ample and f quasi-affine, then f∗M is ample.

Proof. Assume L is f -ample and M ample. By assumption Y and f are quasi-
compact (see Definition 29.37.1 and Properties, Definition 28.26.1). Hence X is
quasi-compact. By Properties, Lemma 28.26.8 the scheme Y is separated and by
Lemma 29.37.3 the morphism f is separated. Hence X is separated by Schemes,
Lemma 26.21.12. Pick x ∈ X. We can choose m ≥ 1 and t ∈ Γ(Y,M⊗m) such
that Yt is affine and f(x) ∈ Yt. Since L restricts to an ample invertible sheaf on
f−1(Yt) = Xf∗t we can choose n ≥ 1 and s ∈ Γ(Xf∗t,L⊗n) with x ∈ (Xf∗t)s
with (Xf∗t)s affine. By Properties, Lemma 28.17.2 part (2) whose assumptions are
satisfied by the above, there exists an integer e ≥ 1 and a section s′ ∈ Γ(X,L⊗n ⊗
f∗M⊗em) which restricts to s(f∗t)e on Xf∗t. For any b > 0 consider the section
s′′ = s′(f∗t)b of L⊗n ⊗ f∗M⊗(e+b)m. Then Xs′′ = (Xf∗t)s is an affine open of
X containing x. Picking b such that n divides e + b we see L⊗n ⊗ f∗M⊗(e+b)m

is the nth power of L ⊗ f∗M⊗a for some a and we can get any a divisible by m
and big enough. Since X is quasi-compact a finite number of these affine opens
cover X. We conclude that for some a sufficiently divisible and large enough the
invertible sheaf L⊗f∗M⊗a is ample on X. On the other hand, we know thatM⊗c

(and hence its pullback to X) is globally generated for all c ≫ 0 by Properties,
Proposition 28.26.13. Thus L ⊗ f∗M⊗a+c is ample (Properties, Lemma 28.26.5)
for c≫ 0 and (1) is proved.
Part (2) follows from Lemma 29.37.6, Properties, Lemma 28.26.2, and part (1). □

Lemma 29.37.8.0C4K Let g : Y → S and f : X → Y be morphisms of schemes. Let
M be an invertible OY -module. Let L be an invertible OX -module. If S is quasi-
compact, M is g-ample, and L is f -ample, then L ⊗ f∗M⊗a is g ◦ f -ample for
a≫ 0.

Proof. Let S =
⋃
i=1,...,n Vi be a finite affine open covering. By Lemma 29.37.4 it

suffices to prove that L ⊗ f∗M⊗a is ample on (g ◦ f)−1(Vi) for i = 1, . . . , n. Thus
the lemma follows from Lemma 29.37.7. □

Lemma 29.37.9.0893 Let f : X → S be a morphism of schemes. Let L be an invertible
OX -module. Let S′ → S be a morphism of schemes. Let f ′ : X ′ → S′ be the base
change of f and denote L′ the pullback of L to X ′. If L is f -ample, then L′ is
f ′-ample.

Proof. By Lemma 29.37.4 it suffices to find an affine open covering S′ =
⋃
U ′
i

such that L′ restricts to an ample invertible sheaf on (f ′)−1(U ′
i) for all i. We

may choose U ′
i mapping into an affine open Ui ⊂ S. In this case the morphism

(f ′)−1(U ′
i) → f−1(Ui) is affine as a base change of the affine morphism U ′

i → Ui
(Lemma 29.11.8). Thus L′|(f ′)−1(U ′

i
) is ample by Lemma 29.37.7. □

Lemma 29.37.10.0C4L Let g : Y → S and f : X → Y be morphisms of schemes. Let L
be an invertible OX -module. If L is g ◦ f -ample and f is quasi-compact12 then L
is f -ample.

12This follows if g is quasi-separated by Schemes, Lemma 26.21.14.
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Proof. Assume f is quasi-compact and L is g ◦ f -ample. Let U ⊂ S be an affine
open and let V ⊂ Y be an affine open with g(V ) ⊂ U . Then L|(g◦f)−1(U) is ample
on (g◦f)−1(U) by assumption. Since f−1(V ) ⊂ (g◦f)−1(U) we see that L|f−1(V ) is
ample on f−1(V ) by Properties, Lemma 28.26.14. Namely, f−1(V )→ (g ◦ f)−1(U)
is a quasi-compact open immersion by Schemes, Lemma 26.21.14 as (g ◦ f)−1(U)
is separated (Properties, Lemma 28.26.8) and f−1(V ) is quasi-compact (as f is
quasi-compact). Thus we conclude that L is f -ample by Lemma 29.37.4. □

29.38. Very ample sheaves

01VL Recall that given a quasi-coherent sheaf E on a scheme S the projective bundle
associated to E is the morphism P(E) → S, where P(E) = Proj

S
(Sym(E)), see

Constructions, Definition 27.21.1.

Definition 29.38.1.01VM Let f : X → S be a morphism of schemes. Let L be an invertible
OX -module. We say L is relatively very ample or more precisely f -relatively very
ample, or very ample on X/S, or f -very ample if there exist a quasi-coherent OS-
module E and an immersion i : X → P(E) over S such that L ∼= i∗OP(E)(1).

Since there is no assumption of quasi-compactness in this definition it is not true in
general that a relatively very ample invertible sheaf is a relatively ample invertible
sheaf.

Lemma 29.38.2.01VN [DG67, II,
Proposition 4.6.2]

Let f : X → S be a morphism of schemes. Let L be an invertible
OX -module. If f is quasi-compact and L is a relatively very ample invertible sheaf,
then L is a relatively ample invertible sheaf.

Proof. By definition there exists quasi-coherent OS-module E and an immersion i :
X → P(E) over S such that L ∼= i∗OP(E)(1). Set A = Sym(E), so P(E) = Proj

S
(A)

by definition. The graded OS-algebra A comes equipped with a map

ψ : A →
⊕

n≥0
π∗OP(E)(n)→

⊕
n≥0

f∗L⊗n

where the second arrow uses the identification L ∼= i∗OP(E)(1). By adjointness of
f∗ and f∗ we get a morphism ψ : f∗A →

⊕
n≥0 L⊗n. We omit the verification that

the morphism rL,ψ associated to this map is exactly the immersion i. Hence the
result follows from part (6) of Lemma 29.37.4. □

To arrive at the correct converse of this lemma we ask whether given a relatively
ample invertible sheaf L there exists an integer n ≥ 1 such that L⊗n is relatively
very ample? In general this is false. There are several things that prevent this from
being true:

(1) Even if S is affine, it can happen that no finite integer n works because
X → S is not of finite type, see Example 29.38.4.

(2) The base not being quasi-compact means the result can be prevented from
being true even with f finite type. Namely, given a field k there exists
a scheme Xd of finite type over k with an ample invertible sheaf OXd(1)
so that the smallest tensor power of OXd(1) which is very ample is the
dth power. See Example 29.38.5. Taking f to be the disjoint union of the
schemes Xd mapping to the disjoint union of copies of Spec(k) gives an
example.
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To see our version of the converse take a look at Lemma 29.39.5 below. We will do
some preliminary work before proving it.

Example 29.38.3.07ZR Let S be a scheme. Let A be a quasi-coherent graded OS-algebra
generated by A1 over A0. Set X = Proj

S
(A). In this case OX(1) is a very ample

invertible sheaf on X. Namely, the morphism associated to the graded OS-algebra
map

Sym∗
OX

(A1) −→ A
is a closed immersion X → P(A1) which pulls back OP(A1)(1) to OX(1), see Con-
structions, Lemma 27.18.5.

Example 29.38.4.01VO Let k be a field. Consider the graded k-algebra
A = k[U, V, Z1, Z2, Z3, . . .]/I with I = (U2 − Z2

1 , U
4 − Z2

2 , U
6 − Z2

3 , . . .)
with grading given by deg(U) = deg(V ) = deg(Z1) = 1 and deg(Zd) = d. Note
that X = Proj(A) is covered by D+(U) and D+(V ). Hence the sheaves OX(n)
are all invertible and isomorphic to OX(1)⊗n. In particular OX(1) is ample and
f -ample for the morphism f : X → Spec(k). We claim that no power of OX(1) is
f -relatively very ample. Namely, it is easy to see that Γ(X,OX(n)) is the degree n
summand of the algebra A. Hence if OX(n) were very ample, then X would be a
closed subscheme of a projective space over k and hence of finite type over k. On
the other hand D+(V ) is the spectrum of k[t, t1, t2, . . .]/(t2 − t21, t4 − t22, t6 − t23, . . .)
which is not of finite type over k.

Example 29.38.5.01VP Let k be an infinite field. Let λ1, λ2, λ3, . . . be pairwise distinct
elements of k∗. (This is not strictly necessary, and in fact the example works
perfectly well even if all λi are equal to 1.) Consider the graded k-algebra

Ad = k[U, V, Z]/Id with Id = (Z2 −
∏2d

i=1
(U − λiV )).

with grading given by deg(U) = deg(V ) = 1 and deg(Z) = d. Then Xd = Proj(Ad)
has ample invertible sheaf OXd(1). We claim that if OXd(n) is very ample, then
n ≥ d. The reason for this is that Z has degree d, and hence Γ(Xd,OXd(n)) =
k[U, V ]n for n < d. Details omitted.

Lemma 29.38.6.01VQ Let f : X → S be a morphism of schemes. Let L be an invertible
sheaf on X. If L is relatively very ample on X/S then f is separated.

Proof. Being separated is local on the base (see Schemes, Section 26.21). An im-
mersion is separated (see Schemes, Lemma 26.23.8). Hence the lemma follows since
locally X has an immersion into the homogeneous spectrum of a graded ring which
is separated, see Constructions, Lemma 27.8.8. □

Lemma 29.38.7.01VR Let f : X → S be a morphism of schemes. Let L be an invertible
sheaf on X. Assume f is quasi-compact. The following are equivalent

(1) L is relatively very ample on X/S,
(2) there exists an open covering S =

⋃
Vj such that L|f−1(Vj) is relatively

very ample on f−1(Vj)/Vj for all j,
(3) there exists a quasi-coherent sheaf of graded OS-algebras A generated in

degree 1 over OS and a map of graded OX -algebras ψ : f∗A →
⊕

n≥0 L⊗n

such that f∗A1 → L is surjective and the associated morphism rL,ψ : X →
Proj

S
(A) is an immersion, and
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(4) f is quasi-separated, the canonical map ψ : f∗f∗L → L is surjective, and
the associated map rL,ψ : X → P(f∗L) is an immersion.

Proof. It is clear that (1) implies (2). It is also clear that (4) implies (1); the
hypothesis of quasi-separation in (4) is used to guarantee that f∗L is quasi-coherent
via Schemes, Lemma 26.24.1.

Assume (2). We will prove (4). Let S =
⋃
Vj be an open covering as in (2). Set

Xj = f−1(Vj) and fj : Xj → Vj the restriction of f . We see that f is separated
by Lemma 29.38.6 (as being separated is local on the base). By assumption there
exists a quasi-coherent OVj -module Ej and an immersion ij : Xj → P(Ej) with
L|Xj ∼= i∗jOP(Ej)(1). The morphism ij corresponds to a surjection f∗

j Ej → L|Xj ,
see Constructions, Section 27.21. This map is adjoint to a map Ej → f∗L|Vj such
that the composition

f∗
j Ej → (f∗f∗L)|Xj → L|Xj

is surjective. We conclude that ψ : f∗f∗L → L is surjective. Let rL,ψ : X → P(f∗L)
be the associated morphism. We still have to show that rL,ψ is an immersion; we
urge the reader to prove this for themselves. The OVj -module map Ej → f∗L|Vj
determines a homomorphism on symmetric algebras, which in turn defines a mor-
phism

P(f∗L|Vj ) ⊃ Uj −→ P(Ej)

where Uj is the open subscheme of Constructions, Lemma 27.18.1. The compatibil-
ity of ψ with Ej → f∗L|Vj shows that rL,ψ(Xj) ⊂ Uj and that there is a factorization

Xj

rL,ψ // Uj // P(Ej)

We omit the verification. This shows that rL,ψ is an immersion.

At this point we see that (1), (2) and (4) are equivalent. Clearly (4) implies (3).
Assume (3). We will prove (1). Let A be a quasi-coherent sheaf of graded OS-
algebras generated in degree 1 over OS . Consider the map of graded OS-algebras
Sym(A1)→ A. This is surjective by hypothesis and hence induces a closed immer-
sion

Proj
S

(A) −→ P(A1)

which pulls back O(1) to O(1), see Constructions, Lemma 27.18.5. Hence it is clear
that (3) implies (1). □

Lemma 29.38.8.0B3F Let f : X → S be a morphism of schemes. Let L be an invertible
OX -module. Let S′ → S be a morphism of schemes. Let f ′ : X ′ → S′ be the base
change of f and denote L′ the pullback of L to X ′. If L is f -very ample, then L′

is f ′-very ample.

Proof. By Definition 29.38.1 there exists there exist a quasi-coherent OS-module E
and an immersion i : X → P(E) over S such that L ∼= i∗OP(E)(1). The base change
of P(E) to S′ is the projective bundle associated to the pullback E ′ of E and the
pullback of OP(E)(1) is OP(E′)(1), see Constructions, Lemma 27.16.10. Finally, the
base change of an immersion is an immersion (Schemes, Lemma 26.18.2). □
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29.39. Ample and very ample sheaves relative to finite type morphisms

02NO In fact most of the material in this section is about the notion of a (quasi-)projective
morphism which we have not defined yet.

Lemma 29.39.1.02NP Let f : X → S be a morphism of schemes. Let L be an invertible
sheaf on X. Assume that

(1) the invertible sheaf L is very ample on X/S,
(2) the morphism X → S is of finite type, and
(3) S is affine.

Then there exist an n ≥ 0 and an immersion i : X → Pn
S over S such that

L ∼= i∗OPn
S
(1).

Proof. Assume (1), (2) and (3). Condition (3) means S = Spec(R) for some ring
R. Condition (1) means by definition there exists a quasi-coherent OS-module E
and an immersion α : X → P(E) such that L = α∗OP(E)(1). Write E = M̃ for
some R-module M . Thus we have

P(E) = Proj(SymR(M)).
Since α is an immersion, and since the topology of Proj(SymR(M)) is generated by
the standard opens D+(f), f ∈ Symd

R(M), d ≥ 1, we can find for each x ∈ X an
f ∈ Symd

R(M), d ≥ 1, with α(x) ∈ D+(f) such that
α|α−1(D+(f)) : α−1(D+(f))→ D+(f)

is a closed immersion. Condition (2) implies X is quasi-compact. Hence we can
find a finite collection of elements fj ∈ Symdj

R (M), dj ≥ 1 such that for each f = fj
the displayed map above is a closed immersion and such that α(X) ⊂

⋃
D+(fj).

Write Uj = α−1(D+(fj)). Note that Uj is affine as a closed subscheme of the
affine scheme D+(fj). Write Uj = Spec(Aj). Condition (2) also implies that Aj
is of finite type over R, see Lemma 29.15.2. Choose finitely many xj,k ∈ Aj which
generate Aj as a R-algebra. Since α|Uj is a closed immersion we see that xj,k is the
image of an element

fj,k/f
ej,k
j ∈ SymR(M)(fj) = Γ(D+(fj),OProj(SymR(M))).

Finally, choose n ≥ 1 and elements y0, . . . , yn ∈ M such that each of the polyno-
mials fj , fj,k ∈ SymR(M) is a polynomial in the elements yt with coefficients in R.
Consider the graded ring map

ψ : R[Y0, . . . , Yn] −→ SymR(M), Yi 7−→ yi.

Denote Fj , Fj,k the elements of R[Y0, . . . , Yn] such that ψ(Fj) = fj and ψ(Fj,k) =
fj,k. By Constructions, Lemma 27.11.1 we obtain an open subscheme

U(ψ) ⊂ Proj(SymR(M))
and a morphism rψ : U(ψ)→ Pn

R. This morphism satisfies r−1
ψ (D+(Fj)) = D+(fj),

and hence we see that α(X) ⊂ U(ψ). Moreover, it is clear that
i = rψ ◦ α : X −→ Pn

R

is still an immersion since i♯(Fj,k/F ej,kj ) = xj,k ∈ Aj = Γ(Uj ,OX) by construc-
tion. Moreover, the morphism rψ comes equipped with a map θ : r∗

ψOPn
R

(1) →
OProj(SymR(M))(1)|U(ψ) which is an isomorphism in this case (for construction θ see
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lemma cited above; some details omitted). Since the original map α was assumed
to have the property that L = α∗OProj(SymR(M))(1) we win. □

Lemma 29.39.2.04II Let π : X → S be a morphism of schemes. Assume that X is
quasi-affine and that π is locally of finite type. Then there exist n ≥ 0 and an
immersion i : X → An

S over S.

Proof. Let A = Γ(X,OX). By assumption X is quasi-compact and is identified
with an open subscheme of Spec(A), see Properties, Lemma 28.18.4. Moreover,
the set of opens Xf , for those f ∈ A such that Xf is affine, forms a basis for
the topology of X, see the proof of Properties, Lemma 28.18.4. Hence we can
find a finite number of fj ∈ A, j = 1, . . . ,m such that X =

⋃
Xfj , and such

that π(Xfj ) ⊂ Vj for some affine open Vj ⊂ S. By Lemma 29.15.2 the ring maps
O(Vj) → O(Xfj ) = Afj are of finite type. Thus we may choose a1, . . . , aN ∈ A
such that the elements a1, . . . , aN , 1/fj generate Afj over O(Vj) for each j. Take
n = m+N and let

i : X −→ An
S

be the morphism given by the global sections f1, . . . , fm, a1, . . . , aN of the struc-
ture sheaf of X. Let D(xj) ⊂ An

S be the open subscheme where the jth coordinate
function is nonzero. Then for 1 ≤ j ≤ m we have i−1(D(xj)) = Xfj and the induced
morphismXfj → D(xj) factors through the affine open Spec(O(Vj)[x1, . . . , xn, 1/xj ])
of D(xj). Since the ring map O(Vj)[x1, . . . , xn, 1/xj ] → Afj is surjective by con-
struction we conclude that i−1(D(xj))→ D(xj) is an immersion as desired. □

Lemma 29.39.3.01VS Let f : X → S be a morphism of schemes. Let L be an invertible
sheaf on X. Assume that

(1) the invertible sheaf L is ample on X, and
(2) the morphism X → S is locally of finite type.

Then there exists a d0 ≥ 1 such that for every d ≥ d0 there exist an n ≥ 0 and an
immersion i : X → Pn

S over S such that L⊗d ∼= i∗OPn
S
(1).

Proof. Let A = Γ∗(X,L) =
⊕

d≥0 Γ(X,L⊗d). By Properties, Proposition 28.26.13
the set of affine opens Xa with a ∈ A+ homogeneous forms a basis for the topology
of X. Hence we can find finitely many such elements a0, . . . , an ∈ A+ such that

(1) we have X =
⋃
i=0,...,nXai ,

(2) each Xai is affine, and
(3) each Xai maps into an affine open Vi ⊂ S.

By Lemma 29.15.2 we see that the ring maps OS(Vi) → OX(Xai) are of finite
type. Hence we can find finitely many elements fij ∈ OX(Xai), j = 1, . . . , ni
which generate OX(Xai) as an OS(Vi)-algebra. By Properties, Lemma 28.17.2
we may write each fij as aij/aeiji for some aij ∈ A+ homogeneous. Let N be a
positive integer which is a common multiple of all the degrees of the elements ai,
aij . Consider the elements

a
N/ deg(ai)
i , aija

(N/ deg(ai))−eij
i ∈ AN .

By construction these generate the invertible sheaf L⊗N over X. Hence they give
rise to a morphism

j : X −→ Pm
S with m = n+

∑
ni
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over S, see Constructions, Lemma 27.13.1 and Definition 27.13.2. Moreover, j∗OPS (1) =
L⊗N . We name the homogeneous coordinates T0, . . . , Tn, Tij instead of T0, . . . , Tm.
For i = 0, . . . , n we have i−1(D+(Ti)) = Xai . Moreover, pulling back the element
Tij/Ti via j♯ we get the element fij ∈ OX(Xai). Hence the morphism j restricted
to Xai gives a closed immersion of Xai into the affine open D+(Ti) ∩ Pm

Vi
of PN

S .
Hence we conclude that the morphism j is an immersion. This implies the lemma
holds for some d and n which is enough in virtually all applications.
This proves that for one d2 ≥ 1 (namely d2 = N above), some m ≥ 0 there exists
some immersion j : X → Pm

S given by global sections s′
0, . . . , s

′
m ∈ Γ(X,L⊗d2).

By Properties, Proposition 28.26.13 we know there exists an integer d1 such that
L⊗d is globally generated for all d ≥ d1. Set d0 = d1 + d2. We claim that the
lemma holds with this value of d0. Namely, given an integer d ≥ d0 we may choose
s′′

1 , . . . , s
′′
t ∈ Γ(X,L⊗d−d2) which generate L⊗d−d2 over X. Set k = (m + 1)t and

denote s0, . . . , sk the collection of sections s′
αs

′′
β , α = 0, . . . ,m, β = 1, . . . , t. These

generate L⊗d over X and therefore define a morphism
i : X −→ Pk−1

S

such that i∗OPn
S
(1) ∼= L⊗d. To see that i is an immersion, observe that i is the

composition
X −→ Pm

S ×S Pt−1
S −→ Pk−1

S

where the first morphism is (j, j′) with j′ given by s′′
1 , . . . , s

′′
t and the second mor-

phism is the Segre embedding (Constructions, Lemma 27.13.6). Since j is an im-
mersion, so is (j, j′) (apply Lemma 29.3.1 to X → Pm

S ×S Pt−1
S → Pm

S ). Thus i is a
composition of immersions and hence an immersion (Schemes, Lemma 26.24.3). □

Lemma 29.39.4.01VT Let f : X → S be a morphism of schemes. Let L be an invertible
OX -module. Assume S affine and f of finite type. The following are equivalent

(1) L is ample on X,
(2) L is f -ample,
(3) L⊗d is f -very ample for some d ≥ 1,
(4) L⊗d is f -very ample for all d≫ 1,
(5) for some d ≥ 1 there exist n ≥ 1 and an immersion i : X → Pn

S such that
L⊗d ∼= i∗OPn

S
(1), and

(6) for all d ≫ 1 there exist n ≥ 1 and an immersion i : X → Pn
S such that

L⊗d ∼= i∗OPn
S
(1).

Proof. The equivalence of (1) and (2) is Lemma 29.37.5. The implication (2) ⇒
(6) is Lemma 29.39.3. Trivially (6) implies (5). As Pn

S is a projective bundle over
S (see Constructions, Lemma 27.21.5) we see that (5) implies (3) and (6) implies
(4) from the definition of a relatively very ample sheaf. Trivially (4) implies (3).
To finish we have to show that (3) implies (2) which follows from Lemma 29.38.2
and Lemma 29.37.2. □

Lemma 29.39.5.01VU Let f : X → S be a morphism of schemes. Let L be an invertible
OX -module. Assume S quasi-compact and f of finite type. The following are
equivalent

(1) L is f -ample,
(2) L⊗d is f -very ample for some d ≥ 1,
(3) L⊗d is f -very ample for all d≫ 1.
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Proof. Trivially (3) implies (2). Lemma 29.38.2 guarantees that (2) implies (1)
since a morphism of finite type is quasi-compact by definition. Assume that L is f -
ample. Choose a finite affine open covering S = V1∪ . . .∪Vm. Write Xi = f−1(Vi).
By Lemma 29.39.4 above we see there exists a d0 such that L⊗d is relatively very
ample on Xi/Vi for all d ≥ d0. Hence we conclude (1) implies (3) by Lemma
29.38.7. □

The following two lemmas provide the most used and most useful characterizations
of relatively very ample and relatively ample invertible sheaves when the morphism
is of finite type.
Lemma 29.39.6.02NQ Let f : X → S be a morphism of schemes. Let L be an invertible
sheaf on X. Assume f is of finite type. The following are equivalent:

(1) L is f -relatively very ample, and
(2) there exist an open covering S =

⋃
Vj , for each j an integer nj , and

immersions
ij : Xj = f−1(Vj) = Vj ×S X −→ Pnj

Vj

over Vj such that L|Xj ∼= i∗jOP
nj
Vj

(1).

Proof. We see that (1) implies (2) by taking an affine open covering of S and
applying Lemma 29.39.1 to each of the restrictions of f and L. We see that (2)
implies (1) by Lemma 29.38.7. □

Lemma 29.39.7.02NR Let f : X → S be a morphism of schemes. Let L be an invertible
sheaf on X. Assume f is of finite type. The following are equivalent:

(1) L is f -relatively ample, and
(2) there exist an open covering S =

⋃
Vj , for each j an integers dj ≥ 1,

nj ≥ 0, and immersions
ij : Xj = f−1(Vj) = Vj ×S X −→ Pnj

Vj

over Vj such that L⊗dj |Xj ∼= i∗jOP
nj
Vj

(1).

Proof. We see that (1) implies (2) by taking an affine open covering of S and
applying Lemma 29.39.4 to each of the restrictions of f and L. We see that (2)
implies (1) by Lemma 29.37.4. □

Lemma 29.39.8.0FVC Let f : X → S be a morphism of schemes. Let N , L be invertible
OX -modules. Assume S is quasi-compact, f is of finite type, and L is f -ample.
Then N ⊗OX

L⊗d is f -very ample for all d≫ 1.
Proof. By Lemma 29.39.6 we reduce to the case S is affine. Combining Lemma
29.39.4 and Properties, Proposition 28.26.13 we can find an integer d0 such that
N ⊗ L⊗d0 is globally generated. Choose global sections s0, . . . , sn of N ⊗ L⊗d0

which generate it. This determines a morphism j : X → Pn
S over S. By Lemma

29.39.4 we can also pick an integer d1 such that for all d ≥ d1 there exist sections
td,0, . . . , td,n(d) of L⊗d which generate it and define an immersion

jd = φL⊗d,td,0,...,td,n(d) : X −→ Pn(d)
S

over S. Then for d ≥ d0 + d1 we can consider the morphism
φN ⊗L⊗d,sj⊗td−d0,i

: X −→ P(n+1)(n(d−d0)+1)−1
S
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This morphism is an immersion as it is the composition

X → Pn
S ×S Pn(d−d0)

S → P(n+1)(n(d−d0)+1)−1
S

where the first morphism is (j, jd−d0) and the second is the Segre embedding (Con-
structions, Lemma 27.13.6). Since j is an immersion, so is (j, jd−d0) (apply Lemma
29.3.1). We have a composition of immersions and hence an immersion (Schemes,
Lemma 26.24.3). □

29.40. Quasi-projective morphisms

01VV The discussion in the previous section suggests the following definitions. We take
our definition of quasi-projective from [DG67]. The version with the letter “H” is
the definition in [Har77].

Definition 29.40.1.01VW [DG67, II,
Definition 5.3.1] and
[Har77, page 103]

Let f : X → S be a morphism of schemes.
(1) We say f is quasi-projective if f is of finite type and there exists an f -

relatively ample invertible OX -module.
(2) We say f is H-quasi-projective if there exists a quasi-compact immersion

X → Pn
S over S for some n.13

(3) We say f is locally quasi-projective if there exists an open covering S =⋃
Vj such that each f−1(Vj)→ Vj is quasi-projective.

As this definition suggests the property of being quasi-projective is not local on S.
At a later stage we will be able to say more about the category of quasi-projective
schemes, see More on Morphisms, Section 37.49.

Lemma 29.40.2.0B3G A base change of a quasi-projective morphism is quasi-projective.

Proof. This follows from Lemmas 29.15.4 and 29.37.9. □

Lemma 29.40.3.0C4M Let f : X → Y and g : Y → S be morphisms of schemes. If S is
quasi-compact and f and g are quasi-projective, then g ◦ f is quasi-projective.

Proof. This follows from Lemmas 29.15.3 and 29.37.8. □

Lemma 29.40.4.01VX Let f : X → S be a morphism of schemes. If f is quasi-projective,
or H-quasi-projective or locally quasi-projective, then f is separated of finite type.

Proof. Omitted. □

Lemma 29.40.5.01VY A H-quasi-projective morphism is quasi-projective.

Proof. Omitted. □

Lemma 29.40.6.01VZ Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is locally quasi-projective.
(2) There exists an open covering S =

⋃
Vj such that each f−1(Vj) → Vj is

H-quasi-projective.

13This is not exactly the same as the definition in Hartshorne. Namely, the definition in
Hartshorne (8th corrected printing, 1997) is that f should be the composition of an open immersion
followed by a H-projective morphism (see Definition 29.43.1), which does not imply f is quasi-
compact. See Lemma 29.43.11 for the implication in the other direction.
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Proof. By Lemma 29.40.5 we see that (2) implies (1). Assume (1). The question
is local on S and hence we may assume S is affine, X of finite type over S and L
is a relatively ample invertible sheaf on X/S. By Lemma 29.39.4 we may assume
L is ample on X. By Lemma 29.39.3 we see that there exists an immersion of X
into a projective space over S, i.e., X is H-quasi-projective over S as desired. □

Lemma 29.40.7.0B3H [DG67, II,
Proposition 5.3.4
(i)]

A quasi-affine morphism of finite type is quasi-projective.

Proof. This follows from Lemma 29.37.6. □

Lemma 29.40.8.0C4N Let g : Y → S and f : X → Y be morphisms of schemes. If g ◦ f
is quasi-projective and f is quasi-compact14, then f is quasi-projective.

Proof. Observe that f is of finite type by Lemma 29.15.8. Thus the lemma follows
from Lemma 29.37.10 and the definitions. □

29.41. Proper morphisms

01W0 The notion of a proper morphism plays an important role in algebraic geometry. An
important example of a proper morphism will be the structure morphism Pn

S → S
of projective n-space, and this is in fact the motivating example leading to the
definition.

Definition 29.41.1.01W1 Let f : X → S be a morphism of schemes. We say f is proper
if f is separated, finite type, and universally closed.

The morphism from the affine line with zero doubled to the affine line is of finite
type and universally closed, so the separation condition is necessary in the definition
above. In the rest of this section we prove some of the basic properties of proper
morphisms and of universally closed morphisms.

Lemma 29.41.2.02K7 Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is universally closed.
(2) There exists an open covering S =

⋃
Vj such that f−1(Vj) → Vj is uni-

versally closed for all indices j.

Proof. This is clear from the definition. □

Lemma 29.41.3.01W2 Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is proper.
(2) There exists an open covering S =

⋃
Vj such that f−1(Vj)→ Vj is proper

for all indices j.

Proof. Omitted. □

Lemma 29.41.4.01W3 The composition of proper morphisms is proper. The same is true
for universally closed morphisms.

14This follows if g is quasi-separated by Schemes, Lemma 26.21.14.
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Proof. A composition of closed morphisms is closed. If X → Y → Z are universally
closed morphisms and Z ′ → Z is any morphism, then we see that Z ′ ×Z X =
(Z ′×Z Y )×Y X → Z ′×Z Y is closed and Z ′×Z Y → Z ′ is closed. Hence the result
for universally closed morphisms. We have seen that “separated” and “finite type”
are preserved under compositions (Schemes, Lemma 26.21.12 and Lemma 29.15.3).
Hence the result for proper morphisms. □

Lemma 29.41.5.01W4 The base change of a proper morphism is proper. The same is
true for universally closed morphisms.

Proof. This is true by definition for universally closed morphisms. It is true for
separated morphisms (Schemes, Lemma 26.21.12). It is true for morphisms of
finite type (Lemma 29.15.4). Hence it is true for proper morphisms. □

Lemma 29.41.6.01W5 A closed immersion is proper, hence a fortiori universally closed.

Proof. The base change of a closed immersion is a closed immersion (Schemes,
Lemma 26.18.2). Hence it is universally closed. A closed immersion is separated
(Schemes, Lemma 26.23.8). A closed immersion is of finite type (Lemma 29.15.5).
Hence a closed immersion is proper. □

Lemma 29.41.7.01W6 Suppose given a commutative diagram of schemes

X //

��

Y

��
S

with Y separated over S.
(1) If X → S is universally closed, then the morphism X → Y is universally

closed.
(2) If X is proper over S, then the morphism X → Y is proper.

In particular, in both cases the image of X in Y is closed.

Proof. Assume that X → S is universally closed (resp. proper). We factor the
morphism as X → X ×S Y → Y . The first morphism is a closed immersion, see
Schemes, Lemma 26.21.10. Hence the first morphism is proper (Lemma 29.41.6).
The projection X×SY → Y is the base change of a universally closed (resp. proper)
morphism and hence universally closed (resp. proper), see Lemma 29.41.5. Thus
X → Y is universally closed (resp. proper) as the composition of universally closed
(resp. proper) morphisms (Lemma 29.41.4). □

The proof of the following lemma is due to Bjorn Poonen, see this location.

Lemma 29.41.8.04XU Due to Bjorn
Poonen.

A universally closed morphism of schemes is quasi-compact.

Proof. Let f : X → S be a morphism. Assume that f is not quasi-compact. Our
goal is to show that f is not universally closed. By Schemes, Lemma 26.19.2 there
exists an affine open V ⊂ S such that f−1(V ) is not quasi-compact. To achieve our
goal it suffices to show that f−1(V ) → V is not universally closed, hence we may
assume that S = Spec(A) for some ring A.
Write X =

⋃
i∈I Xi where the Xi are affine open subschemes of X. Let T =

Spec(A[yi; i ∈ I]). Let Ti = D(yi) ⊂ T . Let Z be the closed set (X ×S T ) −
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i∈I(Xi×STi). It suffices to prove that the image fT (Z) of Z under fT : X×ST →

T is not closed.

There exists a point s ∈ S such that there is no neighborhood U of s in S such that
XU is quasi-compact. Otherwise we could cover S with finitely many such U and
Schemes, Lemma 26.19.2 would imply f quasi-compact. Fix such an s ∈ S.

First we check that fT (Zs) ̸= Ts. Let t ∈ T be the point lying over s with κ(t) =
κ(s) such that yi = 1 in κ(t) for all i. Then t ∈ Ti for all i, and the fiber of Zs → Ts
above t is isomorphic to (X −

⋃
i∈I Xi)s, which is empty. Thus t ∈ Ts − fT (Zs).

Assume fT (Z) is closed in T . Then there exists an element g ∈ A[yi; i ∈ I] with
fT (Z) ⊂ V (g) but t ̸∈ V (g). Hence the image of g in κ(t) is nonzero. In particular
some coefficient of g has nonzero image in κ(s). Hence this coefficient is invertible
on some neighborhood U of s. Let J be the finite set of j ∈ I such that yj appears
in g. Since XU is not quasi-compact, we may choose a point x ∈ X−

⋃
j∈J Xj lying

above some u ∈ U . Since g has a coefficient that is invertible on U , we can find a
point t′ ∈ T lying above u such that t′ ̸∈ V (g) and t′ ∈ V (yi) for all i /∈ J . This
is true because V (yi; i ∈ I, i ̸∈ J) = Spec(A[tj ; j ∈ J ]) and the set of points of this
scheme lying over u is bijective with Spec(κ(u)[tj ; j ∈ J ]). In other words t′ /∈ Ti for
each i /∈ J . By Schemes, Lemma 26.17.5 we can find a point z of X ×S T mapping
to x ∈ X and to t′ ∈ T . Since x ̸∈ Xj for j ∈ J and t′ ̸∈ Ti for i ∈ I \ J we see
that z ∈ Z. On the other hand fT (z) = t′ ̸∈ V (g) which contradicts fT (Z) ⊂ V (g).
Thus the assumption “fT (Z) closed” is wrong and we conclude indeed that fT is
not closed, as desired. □

The following lemma says that the image of a proper scheme (in a separated scheme
of finite type over the base) is proper.

Lemma 29.41.9.03GN Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. If X is universally closed over S and f is surjective then Y is universally
closed over S. In particular, if also Y is separated and locally of finite type over S,
then Y is proper over S.

Proof. Assume X is universally closed and f surjective. Denote p : X → S, q :
Y → S the structure morphisms. Let S′ → S be a morphism of schemes. The
base change f ′ : XS′ → YS′ is surjective (Lemma 29.9.4), and the base change
p′ : XS′ → S′ is closed. If T ⊂ YS′ is closed, then (f ′)−1(T ) ⊂ XS′ is closed, hence
p′((f ′)−1(T )) = q′(T ) is closed. So q′ is closed. This proves the first statement.
Thus Y → S is quasi-compact by Lemma 29.41.8 and hence Y → S is proper by
definition if in addition Y → S is locally of finite type and separated. □

Lemma 29.41.10.0AH6 Suppose given a commutative diagram of schemes

X
h

//

f ��

Y

g
��

S

Assume
(1) X → S is a universally closed (for example proper) morphism, and
(2) Y → S is separated and locally of finite type.

https://stacks.math.columbia.edu/tag/03GN
https://stacks.math.columbia.edu/tag/0AH6


29.42. VALUATIVE CRITERIA 2481

Then the scheme theoretic image Z ⊂ Y of h is proper over S and X → Z is
surjective.

Proof. The scheme theoretic image of h is constructed in Section 29.6. Since f is
quasi-compact (Lemma 29.41.8) we find that h is quasi-compact (Schemes, Lemma
26.21.14). Hence h(X) ⊂ Z is dense (Lemma 29.6.3). On the other hand h(X) is
closed in Y (Lemma 29.41.7) hence X → Z is surjective. Thus Z → S is a proper
(Lemma 29.41.9). □

The target of a separated scheme under a surjective universally closed morphism is
separated.

Lemma 29.41.11.09MQ Let S be a scheme. Let f : X → Y be a surjective universally
closed morphism of schemes over S.

(1) If X is quasi-separated, then Y is quasi-separated.
(2) If X is separated, then Y is separated.
(3) If X is quasi-separated over S, then Y is quasi-separated over S.
(4) If X is separated over S, then Y is separated over S.

Proof. Parts (1) and (2) are a consequence of (3) and (4) for S = Spec(Z) (see
Schemes, Definition 26.21.3). Consider the commutative diagram

X

��

∆X/S

// X ×S X

��
Y

∆Y/S // Y ×S Y

The left vertical arrow is surjective (i.e., universally surjective). The right vertical
arrow is universally closed as a composition of the universally closed morphisms
X×SX → X×S Y → Y ×S Y . Hence it is also quasi-compact, see Lemma 29.41.8.
Assume X is quasi-separated over S, i.e., ∆X/S is quasi-compact. If V ⊂ Y ×S Y is
a quasi-compact open, then V ×Y×SY X → ∆−1

Y/S(V ) is surjective and V ×Y×SY X

is quasi-compact by our remarks above. We conclude that ∆Y/S is quasi-compact,
i.e., Y is quasi-separated over S.
Assume X is separated over S, i.e., ∆X/S is a closed immersion. Then X → Y ×S Y
is closed as a composition of closed morphisms. Since X → Y is surjective, it follows
that ∆Y/S(Y ) is closed in Y ×S Y . Hence Y is separated over S by the discussion
following Schemes, Definition 26.21.3. □

29.42. Valuative criteria

0BX4 We have already discussed the valuative criterion for universal closedness and for
separatedness in Schemes, Sections 26.20 and 26.22. In this section we will discuss
some consequences and variants. In Limits, Section 32.15 we will show that it
suffices to consider discrete valuation rings when working with locally Noetherian
schemes and morphisms of finite type.

Lemma 29.42.1 (Valuative criterion for properness).0BX5 [DG67, II Theorem
7.3.8]

Let S be a scheme. Let
f : X → Y be a morphism of schemes over S. Assume f is of finite type and
quasi-separated. Then the following are equivalent

(1) f is proper,
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(2) f satisfies the valuative criterion (Schemes, Definition 26.20.3),
(3) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K, there exists a unique
dotted arrow making the diagram commute.

Proof. Part (3) is a reformulation of (2). Thus the lemma is a formal consequence
of Schemes, Proposition 26.20.6 and Lemma 26.22.2 and the definitions. □

One usually does not have to consider all possible diagrams when testing the val-
uative criterion. We will call a valuative criterion as in the next lemma a “refined
valuative criterion”.

Lemma 29.42.2.0894 Let f : X → S and h : U → X be morphisms of schemes.
Assume that f and h are quasi-compact and that h(U) is dense in X. If given any
commutative solid diagram

Spec(K) //

��

U
h // X

f

��
Spec(A) //

66

S

where A is a valuation ring with field of fractions K, there exists a unique dotted
arrow making the diagram commute, then f is universally closed. If moreover f is
quasi-separated, then f is separated.

Proof. To prove f is universally closed we will verify the existence part of the
valuative criterion for f which suffices by Schemes, Proposition 26.20.6. To do this,
consider a commutative diagram

Spec(K) //

��

X

��
Spec(A) // S

where A is a valuation ring andK is the fraction field of A. Note that since valuation
rings and fields are reduced, we may replace U , X, and S by their respective
reductions by Schemes, Lemma 26.12.7. In this case the assumption that h(U) is
dense means that the scheme theoretic image of h : U → X is X, see Lemma 29.6.7.
We may also replace S by an affine open through which the morphism Spec(A)→ S
factors. Thus we may assume that S = Spec(R).

Let Spec(B) ⊂ X be an affine open through which the morphism Spec(K) → X
factors. Choose a polynomial algebra P over B and a B-algebra surjection P → K.
Then Spec(P ) → X is flat. Hence the scheme theoretic image of the morphism
U ×X Spec(P ) → Spec(P ) is Spec(P ) by Lemma 29.25.16. By Lemma 29.6.5 we
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can find a commutative diagram

Spec(K ′) //

��

U ×X Spec(P )

��
Spec(A′) // Spec(P )

where A′ is a valuation ring and K ′ is the fraction field of A′ such that the closed
point of Spec(A′) maps to Spec(K) ⊂ Spec(P ). In other words, there is a B-algebra
map φ : K → A′/mA′ . Choose a valuation ring A′′ ⊂ A′/mA′ dominating φ(A)
with field of fractions K ′′ = A′/mA′ (Algebra, Lemma 10.50.2). We set

C = {λ ∈ A′ | λ mod mA′ ∈ A′′}.

which is a valuation ring by Algebra, Lemma 10.50.10. As C is an R-algebra with
fraction field K ′, we obtain a commutative diagram

Spec(K ′) //

��

U // X

��
Spec(C) //

66

S

as in the statement of the lemma. Thus a dotted arrow fitting into the diagram as
indicated. By the uniqueness assumption of the lemma the composition Spec(A′)→
Spec(C)→ X agrees with the given morphism Spec(A′)→ Spec(P )→ Spec(B) ⊂
X. Hence the restriction of the morphism to the spectrum of C/mA′ = A′′ induces
the given morphism Spec(K ′′) = Spec(A′/mA′) → Spec(K) → X. Let x ∈ X be
the image of the closed point of Spec(A′′)→ X. The image of the induced ring map
OX,x → A′′ is a local subring which is contained in K ⊂ K ′′. Since A is maximal
for the relation of domination in K and since A ⊂ A′′, we have A = K ∩ A′′. We
conclude that OX,x → A′′ factors through A ⊂ A′′. In this way we obtain our
desired arrow Spec(A)→ X.
Finally, assume f is quasi-separated. Then ∆ : X → X ×S X is quasi-compact.
Given a solid diagram

Spec(K) //

��

U
h // X

∆
��

Spec(A) //

55

X ×S X

where A is a valuation ring with field of fractions K, there exists a unique dotted
arrow making the diagram commute. Namely, the lower horizontal arrow is the
same thing as a pair of morphisms Spec(A) → X which can serve as the dotted
arrow in the diagram of the lemma. Thus the required uniqueness shows that the
lower horizontal arrow factors through ∆. Hence we can apply the result we just
proved to ∆ : X → X ×S X and h : U → X and conclude that ∆ is universally
closed. Clearly this means that f is separated. □

Remark 29.42.3.0895 The assumption on uniqueness of the dotted arrows in Lemma
29.42.2 is necessary (details omitted). Of course, uniqueness is guaranteed if f is
separated (Schemes, Lemma 26.22.1).
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Lemma 29.42.4.0BX6 Let S be a scheme. Let X, Y be schemes over S. Let s ∈ S and
x ∈ X, y ∈ Y points over s.

(1) Let f, g : X → Y be morphisms over S such that f(x) = g(x) = y and
f ♯x = g♯x : OY,y → OX,x. Then there is an open neighbourhood U ⊂ X
with f |U = g|U in the following cases
(a) Y is locally of finite type over S,
(b) X is integral,
(c) X is locally Noetherian, or
(d) X is reduced with finitely many irreducible components.

(2) Let φ : OY,y → OX,x be a local OS,s-algebra map. Then there exists an
open neighbourhood U ⊂ X of x and a morphism f : U → Y mapping x
to y with f ♯x = φ in the following cases
(a) Y is locally of finite presentation over S,
(b) Y is locally of finite type and X is integral,
(c) Y is locally of finite type and X is locally Noetherian, or
(d) Y is locally of finite type and X is reduced with finitely many irre-

ducible components.

Proof. Proof of (1). We may replace X, Y , S by suitable affine open neighbour-
hoods of x, y, s and reduce to the following algebra problem: given a ring R, two
R-algebra maps φ,ψ : B → A such that

(1) R → B is of finite type, or A is a domain, or A is Noetherian, or A is
reduced and has finitely many minimal primes,

(2) the two maps B → Ap are the same for some prime p ⊂ A,
show that φ,ψ define the same map B → Ag for a suitable g ∈ A, g ̸∈ p. If R→ B
is of finite type, let t1, . . . , tm ∈ B be generators of B as an R-algebra. For each j
we can find gj ∈ A, gj ̸∈ p such that φ(tj) and ψ(tj) have the same image in Agj .
Then we set g =

∏
gj . In the other cases (if A is a domain, Noetherian, or reduced

with finitely many minimal primes), we can find a g ∈ A, g ̸∈ p such that Ag ⊂ Ap.
See Algebra, Lemma 10.31.9. Thus the maps B → Ag are equal as desired.

Proof of (2). To do this we may replace X, Y , and S by suitable affine opens. Say
X = Spec(A), Y = Spec(B), and S = Spec(R). Let p ⊂ A be the prime ideal
corresponding to x. Let q ⊂ B be the prime corresponding to y. Then φ is a local
R-algebra map φ : Bq → Ap. If R → B is a ring map of finite presentation, then
there exists a g ∈ A \ p and an R-algebra map B → Ag such that

Bq φ
// Ap

B

OO

// Ag

OO

commutes, see Algebra, Lemmas 10.127.3 and 10.9.9. The induced morphism
Spec(Ag) → Spec(B) works. If B is of finite type over R, let t1, . . . , tm ∈ B
be generators of B as an R-algebra. Then we can choose gj ∈ A, gj ̸∈ p such that
φ(tj) ∈ Im(Agj → Ap). Thus after replacing A by A[1/

∏
gj ] we may assume that

B maps into the image of A→ Ap. If we can find a g ∈ A, g ̸∈ p such that Ag → Ap

is injective, then we’ll get the desired R-algebra map B → Ag. Thus the proof is
finished by another application of See Algebra, Lemma 10.31.9. □
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Lemma 29.42.5.0BX7 Let S be a scheme. Let X, Y be schemes over S. Let x ∈ X. Let
U ⊂ X be an open and let f : U → Y be a morphism over S. Assume

(1) x is in the closure of U ,
(2) X is reduced with finitely many irreducible components or X is Noether-

ian,
(3) OX,x is a valuation ring,
(4) Y → S is proper

Then there exists an open U ⊂ U ′ ⊂ X containing x and an S-morphism f ′ : U ′ →
Y extending f .

Proof. It is harmless to replace X by an open neighbourhood of x in X (small
detail omitted). By Properties, Lemma 28.29.8 we may assume X is affine with
Γ(X,OX) ⊂ OX,x. In particular X is integral with a unique generic point ξ whose
residue field is the fraction field K of the valuation ring OX,x. Since x is in the
closure of U we see that U is not empty, hence U contains ξ. Thus by the valuative
criterion of properness (Lemma 29.42.1) there is a morphism t : Spec(OX,x) → Y
fitting into a commutative diagram

Spec(K)

ξ

��

// Spec(OX,x)

t

��
U

f // Y

of morphisms of schemes over S. Applying Lemma 29.42.4 with y = t(x) and φ = t♯x
we obtain an open neighbourhood V ⊂ X of x and a morphism g : V → Y over S
which sends x to y and such that g♯x = t♯x. As Y → S is separated, the equalizer E
of f |U∩V and g|U∩V is a closed subscheme of U ∩ V , see Schemes, Lemma 26.21.5.
Since f and g determine the same morphism Spec(K)→ Y by construction we see
that E contains the generic point of the integral scheme U ∩ V . Hence E = U ∩ V
and we conclude that f and g glue to a morphism U ′ = U ∪V → Y as desired. □

29.43. Projective morphisms

01W7 We will use the definition of a projective morphism from [DG67]. The version of
the definition with the “H” is the one from [Har77]. The resulting definitions are
different. Both are useful.

Definition 29.43.1.01W8 Let f : X → S be a morphism of schemes.
(1) We say f is projective if X is isomorphic as an S-scheme to a closed

subscheme of a projective bundle P(E) for some quasi-coherent, finite
type OS-module E .

(2) We say f is H-projective if there exists an integer n and a closed immersion
X → Pn

S over S.
(3) We say f is locally projective if there exists an open covering S =

⋃
Ui

such that each f−1(Ui)→ Ui is projective.

As expected, a projective morphism is quasi-projective, see Lemma 29.43.10. Con-
versely, quasi-projective morphisms are often compositions of open immersions and
projective morphisms, see Lemma 29.43.12. For an overview of properties of pro-
jective morphisms over a quasi-projective base, see More on Morphisms, Section
37.50.
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Example 29.43.2.07ZS Let S be a scheme. Let A be a quasi-coherent graded OS-algebra
generated by A1 over A0. Assume furthermore that A1 is of finite type over OS .
Set X = Proj

S
(A). In this case X → S is projective. Namely, the morphism

associated to the graded OS-algebra map
Sym∗

OX
(A1) −→ A

is a closed immersion, see Constructions, Lemma 27.18.5.

Lemma 29.43.3.01W9 An H-projective morphism is H-quasi-projective. An H-projective
morphism is projective.

Proof. The first statement is immediate from the definitions. The second holds as
Pn
S is a projective bundle over S, see Constructions, Lemma 27.21.5. □

Lemma 29.43.4.01WB Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is locally projective.
(2) There exists an open covering S =

⋃
Ui such that each f−1(Ui) → Ui is

H-projective.

Proof. By Lemma 29.43.3 we see that (2) implies (1). Assume (1). For every point
s ∈ S we can find Spec(R) = U ⊂ S an affine open neighbourhood of s such
that XU is isomorphic to a closed subscheme of P(E) for some finite type, quasi-
coherent sheaf of OU -modules E . Write E = M̃ for some finite type R-module M
(see Properties, Lemma 28.16.1). Choose generators x0, . . . , xn ∈ M of M as an
R-module. Consider the surjective graded R-algebra map

R[X0, . . . , Xn] −→ SymR(M).
According to Constructions, Lemma 27.11.3 the corresponding morphism

P(E)→ Pn
R

is a closed immersion. Hence we conclude that f−1(U) is isomorphic to a closed
subscheme of Pn

U (as a scheme over U). In other words: (2) holds. □

Lemma 29.43.5.01WC A locally projective morphism is proper.

Proof. Let f : X → S be locally projective. In order to show that f is proper we
may work locally on the base, see Lemma 29.41.3. Hence, by Lemma 29.43.4 above
we may assume there exists a closed immersion X → Pn

S . By Lemmas 29.41.4
and 29.41.6 it suffices to prove that Pn

S → S is proper. Since Pn
S → S is the

base change of Pn
Z → Spec(Z) it suffices to show that Pn

Z → Spec(Z) is proper,
see Lemma 29.41.5. By Constructions, Lemma 27.8.8 the scheme Pn

Z is separated.
By Constructions, Lemma 27.8.9 the scheme Pn

Z is quasi-compact. It is clear that
Pn

Z → Spec(Z) is locally of finite type since Pn
Z is covered by the affine opens

D+(Xi) each of which is the spectrum of the finite type Z-algebra
Z[X0/Xi, . . . , Xn/Xi].

Finally, we have to show that Pn
Z → Spec(Z) is universally closed. This follows from

Constructions, Lemma 27.8.11 and the valuative criterion (see Schemes, Proposition
26.20.6). □

Lemma 29.43.6.0B5N Let f : X → S be a proper morphism of schemes. If there exists
an f -ample invertible sheaf on X, then f is locally projective.
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Proof. If there exists an f -ample invertible sheaf, then we can locally on S find an
immersion i : X → Pn

S , see Lemma 29.39.4. Since X → S is proper the morphism
i is a closed immersion, see Lemma 29.41.7. □

Lemma 29.43.7.01WE A composition of H-projective morphisms is H-projective.

Proof. Suppose X → Y and Y → Z are H-projective. Then there exist closed
immersions X → Pn

Y over Y , and Y → Pm
Z over Z. Consider the following diagram

X //

��

Pn
Y

//

��

Pn
Pm
Z

}}

Pn
Z ×Z Pm

Z
// Pnm+n+m

Z

uu

Y //

��

Pm
Z

}}
Z

Here the rightmost top horizontal arrow is the Segre embedding, see Constructions,
Lemma 27.13.6. The diagram identifies X as a closed subscheme of Pnm+n+m

Z as
desired. □

Lemma 29.43.8.01WF A base change of a H-projective morphism is H-projective.

Proof. This is true because the base change of projective space over a scheme is
projective space, and the fact that the base change of a closed immersion is a closed
immersion, see Schemes, Lemma 26.18.2. □

Lemma 29.43.9.02V6 A base change of a (locally) projective morphism is (locally)
projective.

Proof. This is true because the base change of a projective bundle over a scheme is a
projective bundle, the pullback of a finite type O-module is of finite type (Modules,
Lemma 17.9.2) and the fact that the base change of a closed immersion is a closed
immersion, see Schemes, Lemma 26.18.2. Some details omitted. □

Lemma 29.43.10.07RL A projective morphism is quasi-projective.

Proof. Let f : X → S be a projective morphism. Choose a closed immersion
i : X → P(E) where E is a quasi-coherent, finite type OS-module. Then L =
i∗OP(E)(1) is f -very ample. Since f is proper (Lemma 29.43.5) it is quasi-compact.
Hence Lemma 29.38.2 implies that L is f -ample. Since f is proper it is of finite
type. Thus we’ve checked all the defining properties of quasi-projective holds and
we win. □

Lemma 29.43.11.01WA Let f : X → S be a H-quasi-projective morphism. Then f
factors as X → X ′ → S where X → X ′ is an open immersion and X ′ → S is
H-projective.

Proof. By definition we can factor f as a quasi-compact immersion i : X → Pn
S

followed by the projection Pn
S → S. By Lemma 29.7.7 there exists a closed sub-

scheme X ′ ⊂ Pn
S such that i factors through an open immersion X → X ′. The

lemma follows. □
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Lemma 29.43.12.07RM Let f : X → S be a quasi-projective morphism with S quasi-
compact and quasi-separated. Then f factors as X → X ′ → S where X → X ′ is
an open immersion and X ′ → S is projective.

Proof. Let L be f -ample. Since f is of finite type and S is quasi-compact L⊗n is f -
very ample for some n > 0, see Lemma 29.39.5. Replace L by L⊗n. Write F = f∗L.
This is a quasi-coherent OS-module by Schemes, Lemma 26.24.1 (quasi-projective
morphisms are quasi-compact and separated, see Lemma 29.40.4). By Properties,
Lemma 28.22.7 we can find a directed set I and a system of finite type quasi-
coherent OS-modules Ei over I such that F = colim Ei. Consider the compositions
ψi : f∗Ei → f∗F → L. Choose a finite affine open covering S =

⋃
j=1,...,m Vj . For

each j we can choose sections
sj,0, . . . , sj,nj ∈ Γ(f−1(Vj),L) = f∗L(Vj) = F(Vj)

which generate L over f−1Vj and define an immersion

f−1Vj −→ Pnj
Vj
,

see Lemma 29.39.1. Choose i such that there exist sections ej,t ∈ Ei(Vj) mapping
to sj,t in F for all j = 1, . . . ,m and t = 1, . . . , nj . Then the map ψi is surjective as
the sections f∗ej,t have the same image as the sections sj,t which generate L|f−1Vj .
Whence we obtain a morphism

rL,ψi : X −→ P(Ei)
over S such that over Vj we have a factorization

f−1Vj → P(Ei)|Vj → Pnj
Vj

of the immersion given above. It follows that rL,ψi |Vj is an immersion, see Lemma
29.3.1. Since S =

⋃
Vj we conclude that rL,ψi is an immersion. Note that rL,ψi

is quasi-compact as X → S is quasi-compact and P(Ei) → S is separated (see
Schemes, Lemma 26.21.14). By Lemma 29.7.7 there exists a closed subscheme
X ′ ⊂ P(Ei) such that i factors through an open immersion X → X ′. Then X ′ → S
is projective by definition and we win. □

Lemma 29.43.13.0BCL Let S be a quasi-compact and quasi-separated scheme. Let
f : X → S be a morphism of schemes. Then

(1) f is projective if and only if f is quasi-projective and proper, and
(2) f is H-projective if and only if f is H-quasi-projective and proper.

Proof. If f is projective, then f is quasi-projective by Lemma 29.43.10 and proper
by Lemma 29.43.5. Conversely, if X → S is quasi-projective and proper, then
we can choose an open immersion X → X ′ with X ′ → S projective by Lemma
29.43.12. Since X → S is proper, we see that X is closed in X ′ (Lemma 29.41.7),
i.e., X → X ′ is a (open and) closed immersion. Since X ′ is isomorphic to a closed
subscheme of a projective bundle over S (Definition 29.43.1) we see that the same
thing is true for X, i.e., X → S is a projective morphism. This proves (1). The
proof of (2) is the same, except it uses Lemmas 29.43.3 and 29.43.11. □

Lemma 29.43.14.0C4P Let f : X → Y and g : Y → S be morphisms of schemes. If
S is quasi-compact and quasi-separated and f and g are projective, then g ◦ f is
projective.
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Proof. By Lemmas 29.43.10 and 29.43.5 we see that f and g are quasi-projective
and proper. By Lemmas 29.41.4 and 29.40.3 we see that g ◦ f is proper and quasi-
projective. Thus g ◦ f is projective by Lemma 29.43.13. □

Lemma 29.43.15.0C4Q Let g : Y → S and f : X → Y be morphisms of schemes. If g ◦ f
is projective and g is separated, then f is projective.

Proof. Choose a closed immersion X → P(E) where E is a quasi-coherent, finite
type OS-module. Then we get a morphism X → P(E) ×S Y . This morphism is a
closed immersion because it is the composition

X → X ×S Y → P(E)×S Y
where the first morphism is a closed immersion by Schemes, Lemma 26.21.10 (and
the fact that g is separated) and the second as the base change of a closed immersion.
Finally, the fibre product P(E)×SY is isomorphic to P(g∗E) and pullback preserves
quasi-coherent, finite type modules. □

Lemma 29.43.16.087S Let S be a scheme which admits an ample invertible sheaf. Then
(1) any projective morphism X → S is H-projective, and
(2) any quasi-projective morphism X → S is H-quasi-projective.

Proof. The assumptions on S imply that S is quasi-compact and separated, see
Properties, Definition 28.26.1 and Lemma 28.26.11 and Constructions, Lemma
27.8.8. Hence Lemma 29.43.12 applies and we see that (1) implies (2). Let E
be a finite type quasi-coherent OS-module. By our definition of projective mor-
phisms it suffices to show that P(E) → S is H-projective. If E is generated by
finitely many global sections, then the corresponding surjection O⊕n

S → E induces
a closed immersion

P(E) −→ P(O⊕n
S ) = Pn

S

as desired. In general, let L be an invertible sheaf on S. By Properties, Proposition
28.26.13 there exists an integer n such that E ⊗OS

L⊗n is globally generated by
finitely many sections. Since P(E) = P(E ⊗OS

L⊗n) by Constructions, Lemma
27.20.1 this finishes the proof. □

Lemma 29.43.17.0C6J Let f : X → S be a universally closed morphism. Let L be an
f -ample invertible OX -module. Then the canonical morphism

r : X −→ Proj
S

(⊕
d≥0

f∗L⊗d
)

of Lemma 29.37.4 is an isomorphism.

Proof. Observe that f is quasi-compact because the existence of an f -ample invert-
ible module forces f to be quasi-compact. By the lemma cited the morphism r is
an open immersion. On the other hand, the image of r is closed by Lemma 29.41.7
(the target of r is separated over S by Constructions, Lemma 27.16.9). Finally, the
image of r is dense by Properties, Lemma 28.26.11 (here we also use that it was
shown in the proof of Lemma 29.37.4 that the morphism r over affine opens of S is
given by the canonical morphism of Properties, Lemma 28.26.9). Thus we conclude
that r is a surjective open immersion, i.e., an isomorphism. □

Lemma 29.43.18.0EKE Let f : X → S be a universally closed morphism. Let L be
an f -ample invertible OX -module. Let s ∈ Γ(X,L). Then Xs → S is an affine
morphism.
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Proof. The question is local on S (Lemma 29.11.3) hence we may assume S is
affine. By Lemma 29.43.17 we can write X = Proj(A) where A is a graded ring
and s corresponds to f ∈ A1 and Xs = D+(f) (Properties, Lemma 28.26.9) which
proves the lemma by construction of Proj(A), see Constructions, Section 27.8. □

29.44. Integral and finite morphisms

01WG Recall that a ring map R → A is said to be integral if every element of A satisfies
a monic equation with coefficients in R. Recall that a ring map R → A is said to
be finite if A is finite as an R-module. See Algebra, Definition 10.36.1.

Definition 29.44.1.01WH Let f : X → S be a morphism of schemes.
(1) We say that f is integral if f is affine and if for every affine open Spec(R) =

V ⊂ S with inverse image Spec(A) = f−1(V ) ⊂ X the associated ring
map R→ A is integral.

(2) We say that f is finite if f is affine and if for every affine open Spec(R) =
V ⊂ S with inverse image Spec(A) = f−1(V ) ⊂ X the associated ring
map R→ A is finite.

It is clear that integral/finite morphisms are separated and quasi-compact. It is
also clear that a finite morphism is a morphism of finite type. Most of the lemmas
in this section are completely standard. But note the fun Lemma 29.44.7 at the
end of the section.

Lemma 29.44.2.02K8 Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is integral.
(2) There exists an affine open covering S =

⋃
Ui such that each f−1(Ui) is

affine and OS(Ui)→ OX(f−1(Ui)) is integral.
(3) There exists an open covering S =

⋃
Ui such that each f−1(Ui) → Ui is

integral.
Moreover, if f is integral then for every open subscheme U ⊂ S the morphism
f : f−1(U)→ U is integral.

Proof. See Algebra, Lemma 10.36.14. Some details omitted. □

Lemma 29.44.3.01WI Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is finite.
(2) There exists an affine open covering S =

⋃
Ui such that each f−1(Ui) is

affine and OS(Ui)→ OX(f−1(Ui)) is finite.
(3) There exists an open covering S =

⋃
Ui such that each f−1(Ui) → Ui is

finite.
Moreover, if f is finite then for every open subscheme U ⊂ S the morphism f :
f−1(U)→ U is finite.

Proof. See Algebra, Lemma 10.36.14. Some details omitted. □

Lemma 29.44.4.01WJ A finite morphism is integral. An integral morphism which is
locally of finite type is finite.

Proof. See Algebra, Lemma 10.36.3 and Lemma 10.36.5. □
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Lemma 29.44.5.01WK A composition of finite morphisms is finite. Same is true for
integral morphisms.

Proof. See Algebra, Lemmas 10.7.3 and 10.36.6. □

Lemma 29.44.6.01WL A base change of a finite morphism is finite. Same is true for
integral morphisms.

Proof. See Algebra, Lemma 10.36.13. □

Lemma 29.44.7.01WM Let f : X → S be a morphism of schemes. The following are
equivalent

(1) f is integral, and
(2) f is affine and universally closed.

Proof. Assume (1). An integral morphism is affine by definition. A base change
of an integral morphism is integral so in order to prove (2) it suffices to show that
an integral morphism is closed. This follows from Algebra, Lemmas 10.36.22 and
10.41.6.

Assume (2). We may assume f is the morphism f : Spec(A) → Spec(R) coming
from a ring map R → A. Let a be an element of A. We have to show that a is
integral over R, i.e. that in the kernel I of the map R[x]→ A sending x to a there
is a monic polynomial. Consider the ring B = A[x]/(ax−1) and let J be the kernel
of the composition R[x] → A[x] → B. If f ∈ J there exists q ∈ A[x] such that
f = (ax − 1)q in A[x] so if f =

∑
i fix

i and q =
∑
i qix

i, for all i ≥ 0 we have
fi = aqi−1 − qi. For n ≥ deg q + 1 the polynomial∑

i≥0
fix

n−i =
∑

i≥0
(aqi−1 − qi)xn−i = (a− x)

∑
i≥0

qix
n−i−1

is clearly in I; if f0 = 1 this polynomial is also monic, so we are reduced to
prove that J contains a polynomial with constant term 1. We do it by proving
Spec(R[x]/(J + (x)) is empty.

Since f is universally closed the base change Spec(A[x]) → Spec(R[x]) is closed.
Hence the image of the closed subset Spec(B) ⊂ Spec(A[x]) is the closed subset
Spec(R[x]/J) ⊂ Spec(R[x]), see Example 29.6.4 and Lemma 29.6.3. In particular
Spec(B)→ Spec(R[x]/J) is surjective. Consider the following diagram where every
square is a pullback:

Spec(B) g // // Spec(R[x]/J) // Spec(R[x])

∅

OO

// Spec(R[x]/(J + (x)))

OO

// Spec(R)

0

OO

The bottom left corner is empty because it is the spectrum of R⊗R[x] B where the
map R[x]→ B sends x to an invertible element and R[x]→ R sends x to 0. Since g
is surjective this implies Spec(R[x]/(J + (x))) is empty, as we wanted to show. □

Lemma 29.44.8.02NT Let f : X → S be an integral morphism. Then every point of X
is closed in its fibre.

Proof. See Algebra, Lemma 10.36.20. □
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Lemma 29.44.9.0ECG Let f : X → Y be an integral morphism. Then dim(X) ≤ dim(Y ).
If f is surjective then dim(X) = dim(Y ).

Proof. Since the dimension of X and Y is the supremum of the dimensions of the
members of an affine open covering, we may assume Y and X are affine. The
inequality follows from Algebra, Lemma 10.112.3. The equality then follows from
Algebra, Lemmas 10.112.1 and 10.36.22. □

Lemma 29.44.10.02NU A finite morphism is quasi-finite.

Proof. This is implied by Algebra, Lemma 10.122.4 and Lemma 29.20.9. Alterna-
tively, all points in fibres are closed points by Lemma 29.44.8 (and the fact that a
finite morphism is integral) and use Lemma 29.20.6 (3) to see that f is quasi-finite
at x for all x ∈ X. □

Lemma 29.44.11.01WN Let f : X → S be a morphism of schemes. The following are
equivalent

(1) f is finite, and
(2) f is affine and proper.

Proof. This follows formally from Lemma 29.44.7, the fact that a finite morphism
is integral and separated, the fact that a proper morphism is the same thing as a
finite type, separated, universally closed morphism, and the fact that an integral
morphism of finite type is finite (Lemma 29.44.4). □

Lemma 29.44.12.035C A closed immersion is finite (and a fortiori integral).

Proof. True because a closed immersion is affine (Lemma 29.11.9) and a surjective
ring map is finite and integral. □

Lemma 29.44.13.0CYI Let Xi → Y , i = 1, . . . , n be finite morphisms of schemes. Then
X1 ⨿ . . .⨿Xn → Y is finite too.

Proof. Follows from the algebra fact that if R → Ai, i = 1, . . . , n are finite ring
maps, then R→ A1 × . . .×An is finite too. □

Lemma 29.44.14.035D Let f : X → Y and g : Y → Z be morphisms.
(1) If g ◦ f is finite and g separated then f is finite.
(2) If g ◦ f is integral and g separated then f is integral.

Proof. Assume g ◦ f is finite (resp. integral) and g separated. The base change
X ×Z Y → Y is finite (resp. integral) by Lemma 29.44.6. The morphism X →
X×ZY is a closed immersion as Y → Z is separated, see Schemes, Lemma 26.21.11.
A closed immersion is finite (resp. integral), see Lemma 29.44.12. The composition
of finite (resp. integral) morphisms is finite (resp. integral), see Lemma 29.44.5.
Thus we win. □

Lemma 29.44.15.03BB Let f : X → Y be a morphism of schemes. If f is finite and a
monomorphism, then f is a closed immersion.

Proof. This reduces to Algebra, Lemma 10.107.6. □

Lemma 29.44.16.0B3I A finite morphism is projective.
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Proof. Let f : X → S be a finite morphism. Then f∗OX is a quasi-coherent OS-
module (Lemma 29.11.5) of finite type (by our definition of finite morphisms and
Properties, Lemma 28.16.1). We claim there is a closed immersion

σ : X −→ P(f∗OX) = Proj
S

(Sym∗
OS

(f∗OX))

over S, which finishes the proof. Namely, we let σ be the morphism which corre-
sponds (via Constructions, Lemma 27.16.11) to the surjection

f∗f∗OX −→ OX
coming from the adjunction map f∗f∗ → id. Then σ is a closed immersion by
Schemes, Lemma 26.21.11 and Constructions, Lemma 27.21.4. □

29.45. Universal homeomorphisms

04DC The following definition is really superfluous since a universal homeomorphism is
really just an integral, universally injective and surjective morphism, see Lemma
29.45.5.

Definition 29.45.1.04DD A morphism f : X → Y of schemes is called a universal
homeomorphism if the base change f ′ : Y ′ ×Y X → Y ′ is a homeomorphism for
every morphism Y ′ → Y .

First we state the obligatory lemmas.

Lemma 29.45.2.0CEU The base change of a universal homeomorphism of schemes by
any morphism of schemes is a universal homeomorphism.

Proof. This is immediate from the definition. □

Lemma 29.45.3.0CEV The composition of a pair of universal homeomorphisms of schemes
is a universal homeomorphism.

Proof. Omitted. □

The following simple lemma is the key to characterizing universal homeomorphisms.

Lemma 29.45.4.04DE Let f : X → Y be a morphism of schemes. If f is a homeomor-
phism onto a closed subset of Y then f is affine.

Proof. Let y ∈ Y be a point. If y ̸∈ f(X), then there exists an affine neighbourhood
of y which is disjoint from f(X). If y ∈ f(X), let x ∈ X be the unique point of X
mapping to y. Let y ∈ V be an affine open neighbourhood. Let U ⊂ X be an affine
open neighbourhood of x which maps into V . Since f(U) ⊂ V ∩ f(X) is open in
the induced topology by our assumption on f we may choose a h ∈ Γ(V,OY ) such
that y ∈ D(h) and D(h) ∩ f(X) ⊂ f(U). Denote h′ ∈ Γ(U,OX) the restriction of
f ♯(h) to U . Then we see that D(h′) ⊂ U is equal to f−1(D(h)). In other words,
every point of Y has an open neighbourhood whose inverse image is affine. Thus f
is affine, see Lemma 29.11.3. □

Lemma 29.45.5.04DF Let f : X → Y be a morphism of schemes. The following are
equivalent:

(1) f is a universal homeomorphism, and
(2) f is integral, universally injective and surjective.

https://stacks.math.columbia.edu/tag/04DD
https://stacks.math.columbia.edu/tag/0CEU
https://stacks.math.columbia.edu/tag/0CEV
https://stacks.math.columbia.edu/tag/04DE
https://stacks.math.columbia.edu/tag/04DF


29.45. UNIVERSAL HOMEOMORPHISMS 2494

Proof. Assume f is a universal homeomorphism. By Lemma 29.45.4 we see that f
is affine. Since f is clearly universally closed we see that f is integral by Lemma
29.44.7. It is also clear that f is universally injective and surjective.
Assume f is integral, universally injective and surjective. By Lemma 29.44.7 f is
universally closed. Since it is also universally bijective (see Lemma 29.9.4) we see
that it is a universal homeomorphism. □

Lemma 29.45.6.054M Let X be a scheme. The canonical closed immersion Xred → X
(see Schemes, Definition 26.12.5) is a universal homeomorphism.

Proof. Omitted. □

Lemma 29.45.7.0896 Let f : X → S and S′ → S be morphisms of schemes. Assume
(1) S′ → S is a closed immersion,
(2) S′ → S is bijective on points,
(3) X ×S S′ → S′ is a closed immersion, and
(4) X → S is of finite type or S′ → S is of finite presentation.

Then f : X → S is a closed immersion.

Proof. Assumptions (1) and (2) imply that S′ → S is a universal homeomorphism
(for example because Sred = S′

red and using Lemma 29.45.6). Hence (3) implies
that X → S is homeomorphism onto a closed subset of S. Then X → S is affine
by Lemma 29.45.4. Let U ⊂ S be an affine open, say U = Spec(A). Then S′ =
Spec(A/I) by (1) for a locally nilpotent ideal I by (2). As f is affine we see that
f−1(U) = Spec(B). Assumption (4) tells us B is a finite type A-algebra (Lemma
29.15.2) or that I is finitely generated (Lemma 29.21.7). Assumption (3) is that
A/I → B/IB is surjective. From Algebra, Lemma 10.126.9 if A → B is of finite
type or Algebra, Lemma 10.20.1 if I is finitely generated and hence nilpotent we
deduce that A → B is surjective. This means that f is a closed immersion, see
Lemma 29.2.1. □

Lemma 29.45.8.0H2M Let f : X → Z be the composition of two morphisms g : X → Y
and h : Y → Z. If two of the morphisms {f, g, h} are universal homeomorphisms,
so is the third morphism.

Proof. If both of g and h are universal homeomorphisms, so is f by Lemma 29.45.3.
Suppose both of f and g are universal homeomorphisms. We want to show that h
is also. Now base change the diagram along an arbitrary morphism α : Z ′ → Z of
schemes, we get the following diagram with all squares Cartesian:

X ′ g′
//

��

Y ′ h′
//

��

Z ′

��
X

g // Y
h // Z.

Our assumption implies that the composition f ′ = h′ ◦ g′ : X ′ → Z ′ and g′ : X ′ →
Y ′ are homeomorphisms, therefore so is h′. This finishes the proof of h being a
universal homeomorphism.
Finally, assume f and h are universal homeomorphisms. We want to show that g is
a universal homeomorphism. Let β : Y ′ → Y be an arbitrary morphism of schemes.
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We get the following diagram with all squares Cartesian:

X ′ g′
//

��

Y ′

γ

��
X ′′ g′′

//

��

Y ′′ h′′
//

��

Y ′

h◦β
��

X
g // Y

h // Z.

Here the morphism γ : Y ′ → Y ′′ is defined by the universal property of fiber
products and the two morphisms idY ′ : Y ′ → Y ′ and β : Y ′ → Y . We shall
prove that g′ is a homeomorphism. Since the property of being a homeomorphism
has 2-out-of-3 property, we see that g′′ is a homeomorphism. Staring at the top
square, it suffices to prove that γ is a universal homeomorphism. Since h′′ is a
homeomorphism, we see that it is an affine morphism by Lemma 29.45.4 and a
fortiori separated (Lemma 29.11.2). Since h′′ ◦ γ is the identity, we see that γ is
a closed immersion by Schemes, Lemma 26.21.11. Since h′′ is bijective, it follows
that γ is a bijective closed immersion and hence a universal homeomorphism (for
example by the characterization in Lemma 29.45.5) as desired. □

29.46. Universal homeomorphisms of affine schemes

0CN6 In this section we characterize universal homeomorphisms of affine schemes.

Lemma 29.46.1.0CN7 Let A → B be a ring map such that the induced morphism of
schemes f : Spec(B) → Spec(A) is a universal homeomorphism, resp. a universal
homeomorphism inducing isomorphisms on residue fields, resp. universally closed,
resp. universally closed and universally injective. Then for any A-subalgebra B′ ⊂
B the same thing is true for f ′ : Spec(B′)→ Spec(A).

Proof. If f is universally closed, then B is integral over A by Lemma 29.44.7. Hence
B′ is integral over A and f ′ is universally closed (by the same lemma). This proves
the case where f is universally closed.
Continuing, we see that B is integral over B′ (Algebra, Lemma 10.36.15) which
implies Spec(B) → Spec(B′) is surjective (Algebra, Lemma 10.36.17). Thus if
A → B induces purely inseparable extensions of residue fields, then the same is
true for A→ B′. This proves the case where f is universally closed and universally
injective, see Lemma 29.10.2.
The case where f is a universal homeomorphism follows from the remarks above,
Lemma 29.45.5, and the obvious observation that if f is surjective, then so is f ′.
If A → B induces isomorphisms on residue fields, then so does A → B′ (see
argument in second paragraph). In this way we see that the lemma holds in the
remaining case. □

Lemma 29.46.2.0CN8 Let A be a ring. Let B = colimBλ be a filtered colimit of A-
algebras. If each fλ : Spec(Bλ) → Spec(A) is a universal homeomorphism, resp. a
universal homeomorphism inducing isomorphisms on residue fields, resp. universally
closed, resp. universally closed and universally injective, then the same thing is true
for f : Spec(B)→ Spec(A).
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Proof. If fλ is universally closed, then Bλ is integral over A by Lemma 29.44.7.
Hence B is integral over A and f is universally closed (by the same lemma). This
proves the case where each fλ is universally closed.
For a prime q ⊂ B lying over p ⊂ A denote qλ ⊂ Bλ the inverse image. Then
κ(q) = colim κ(qλ). Thus if A → Bλ induces purely inseparable extensions of
residue fields, then the same is true for A → B. This proves the case where fλ is
universally closed and universally injective, see Lemma 29.10.2.
The case where f is a universal homeomorphism follows from the remarks above
and Lemma 29.45.5 combined with the fact that prime ideals in B are the same
thing as compatible sequences of prime ideals in all of the Bλ.
If A → Bλ induces isomorphisms on residue fields, then so does A → B (see
argument in second paragraph). In this way we see that the lemma holds in the
remaining case. □

Lemma 29.46.3.0CN9 Let A ⊂ B be a ring extension. Let S ⊂ A be a multiplicative
subset. Let n ≥ 1 and bi ∈ B for 1 ≤ i ≤ n. Any x ∈ S−1B such that

x ̸∈ S−1A and bix
i ∈ S−1A for i = 1, . . . , n

is equal to s−1y with s ∈ S and y ∈ B such that
y ̸∈ A and biy

i ∈ A for i = 1, . . . , n

Proof. Omitted. Hint: clear denominators. □

Lemma 29.46.4.0CNA Let A ⊂ B be a ring extension. If there exists b ∈ B, b ̸∈ A and
an integer n ≥ 2 with bn ∈ A and bn+1 ∈ A, then there exists a b′ ∈ B, b′ ̸∈ A with
(b′)2 ∈ A and (b′)3 ∈ A.

Proof. Let b and n be as in the lemma. Then all sufficiently large powers of b are
in A. Namely, (bn)k(bn+1)i = b(k+i)n+i which implies any power bm with m ≥ n2

is in A. Hence if i ≥ 1 is the largest integer such that bi ̸∈ A, then (bi)2 ∈ A and
(bi)3 ∈ A. □

Lemma 29.46.5.0CNB Let A ⊂ B be a ring extension such that Spec(B)→ Spec(A) is a
universal homeomorphism inducing isomorphisms on residue fields. If A ̸= B, then
there exists a b ∈ B, b ̸∈ A with b2 ∈ A and b3 ∈ A.

Proof. Recall that A ⊂ B is integral (Lemma 29.44.7). By Lemma 29.46.1 we may
assume that B is generated by a single element over A. Hence B is finite over A
(Algebra, Lemma 10.36.5). Hence the support of B/A as an A-module is closed
and not empty (Algebra, Lemmas 10.40.5 and 10.40.2). Let p ⊂ A be a minimal
prime of the support. After replacing A ⊂ B by Ap ⊂ Bp (permissible by Lemma
29.46.3) we may assume that (A,m) is a local ring, that B is finite over A, and that
B/A has support {m} as an A-module. Since B/A is a finite module, we see that
I = AnnA(B/A) satisfies m =

√
I (Algebra, Lemma 10.40.5). Let m′ ⊂ B be the

unique prime ideal lying over m. Because Spec(B)→ Spec(A) is a homeomorphism,
we find that m′ =

√
IB. For f ∈ m′ pick n ≥ 1 such that fn ∈ IB. Then also

fn+1 ∈ IB. Since IB ⊂ A by our choice of I we conclude that fn, fn+1 ∈ A. Using
Lemma 29.46.4 we conclude our lemma is true if m′ ̸⊂ A. However, if m′ ⊂ A, then
m′ = m and we conclude that A = B as the residue fields are isomorphic as well by
assumption. This contradiction finishes the proof. □
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Lemma 29.46.6.0CNC Let A ⊂ B be a ring extension such that Spec(B) → Spec(A) is
a universal homeomorphism. If A ̸= B, then either there exists a b ∈ B, b ̸∈ A
with b2 ∈ A and b3 ∈ A or there exists a prime number p and a b ∈ B, b ̸∈ A with
pb ∈ A and bp ∈ A.

Proof. The argument is almost exactly the same as in the proof of Lemma 29.46.5
but we write everything out to make sure it works.

Recall that A ⊂ B is integral (Lemma 29.44.7). By Lemma 29.46.1 we may assume
that B is generated by a single element over A. Hence B is finite over A (Algebra,
Lemma 10.36.5). Hence the support of B/A as an A-module is closed and not
empty (Algebra, Lemmas 10.40.5 and 10.40.2). Let p ⊂ A be a minimal prime of
the support. After replacing A ⊂ B by Ap ⊂ Bp (permissible by Lemma 29.46.3)
we may assume that (A,m) is a local ring, that B is finite over A, and that B/A
has support {m} as an A-module. Since B/A is a finite module, we see that I =
AnnA(B/A) satisfies m =

√
I (Algebra, Lemma 10.40.5). Let m′ ⊂ B be the unique

prime ideal lying over m. Because Spec(B) → Spec(A) is a homeomorphism, we
find that m′ =

√
IB. For f ∈ m′ pick n ≥ 1 such that fn ∈ IB. Then also

fn+1 ∈ IB. Since IB ⊂ A by our choice of I we conclude that fn, fn+1 ∈ A. Using
Lemma 29.46.4 we conclude our lemma is true if m′ ̸⊂ A. If m′ ⊂ A, then m′ = m.
Since A ̸= B we conclude the map κ = A/m→ B/m′ = κ′ of residue fields cannot
be an isomorphism. By Lemma 29.10.2 we conclude that the characteristic of κ is
a prime number p and that the extension κ′/κ is purely inseparable. Pick b ∈ B
whose image in κ′ is an element not contained in κ but whose pth power is in κ.
Then b ̸∈ A, bp ∈ A, and pb ∈ A (because pb ∈ m′ = m ⊂ A) as desired. □

Proposition 29.46.7.0CND Let A ⊂ B be a ring extension. The following are equivalent
(1) Spec(B)→ Spec(A) is a universal homeomorphism inducing isomorphisms

on residue fields, and
(2) every finite subset E ⊂ B is contained in an extension

A[b1, . . . , bn] ⊂ B

such that b2
i , b

3
i ∈ A[b1, . . . , bi−1] for i = 1, . . . , n.

Proof. Assume (1). Using transfinite recursion we construct for each ordinal α an
A-subalgebra Bα ⊂ B as follows. Set B0 = A. If α is a limit ordinal, then we set
Bα = colimβ<αBβ . If α = β+1, then either Bβ = B in which case we set Bα = Bβ
or Bβ ̸= B, in which case we apply Lemma 29.46.5 to choose a bα ∈ B, bα ̸∈ Bβ
with b2

α, b
3
α ∈ Bβ and we set Bα = Bβ [bα] ⊂ B. Clearly, B = colimBα (in fact

B = Bα for some ordinal α as one sees by looking at cardinalities). We will prove,
by transfinite induction, that (2) holds for A→ Bα for every ordinal α. It is clear
for α = 0. Assume the statement holds for every β < α and let E ⊂ Bα be a finite
subset. If α is a limit ordinal, then Bα =

⋃
β<αBβ and we see that E ⊂ Bβ for

some β < α which proves the result in this case. If α = β + 1, then Bα = Bβ [bα].
Thus any e ∈ E can be written as a polynomial e =

∑
de,ib

i
α with de,i ∈ Bβ . Let

D ⊂ Bβ be the set D = {de,i} ∪ {b2
α, b

3
α}. By induction assumption there exists an

A-subalgebra A[b1, . . . , bn] ⊂ Bβ as in the statement of the lemma containing D.
Then A[b1, . . . , bn, bα] ⊂ Bα is an A-subalgebra of Bα as in the statement of the
lemma containing E.
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Assume (2). Write B = colimBλ as the colimit of its finite A-subalgebras. By
Lemma 29.46.2 it suffices to show that Spec(Bλ) → Spec(A) is a universal home-
omorphism inducing isomorphisms on residue fields. Compositions of universally
closed morphisms are universally closed and the same thing for morphisms which
induce isomorphisms on residue fields. Thus it suffices to show that if A ⊂ B
and B is generated by a single element b with b2, b3 ∈ A, then (1) holds. Such
an extension is integral and hence Spec(B) → Spec(A) is universally closed and
surjective (Lemma 29.44.7 and Algebra, Lemma 10.36.17). Note that (b2)3 = (b3)2

in A. For any ring map φ : A → K to a field K we see that there exists a λ ∈ K
with φ(b2) = λ2 and φ(b3) = λ3. Namely, λ = 0 if φ(b2) = 0 and λ = φ(b3)/φ(b2)
if not. Thus B⊗AK is a quotient of K[x]/(x2−λ2, x3−λ3). This ring has exactly
one prime with residue field K. This implies that Spec(B) → Spec(A) is bijective
and induces isomorphisms on residue fields. Combined with universal closedness
this shows (1) is true, see Lemmas 29.45.5 and 29.10.2. □

Proposition 29.46.8.0CNE Let A ⊂ B be a ring extension. The following are equivalent
(1) Spec(B)→ Spec(A) is a universal homeomorphism, and
(2) every finite subset E ⊂ B is contained in an extension

A[b1, . . . , bn] ⊂ B
such that for i = 1, . . . , n we have
(a) b2

i , b
3
i ∈ A[b1, . . . , bi−1], or

(b) there exists a prime number p with pbi, b
p
i ∈ A[b1, . . . , bi−1].

Proof. The proof is exactly the same as the proof of Proposition 29.46.7 except for
the following changes:

(1) Use Lemma 29.46.6 instead of Lemma 29.46.5 which means that for each
successor ordinal α = β+1 we either have b2

α, b
3
α ∈ Bβ or we have a prime

p and pbα, b
p
α ∈ Bβ .

(2) If α is a successor ordinal, then take D = {de,i} ∪ {b2
α, b

3
α} or take D =

{de,i} ∪ {pbα, bpα} depending on which case α falls into.
(3) In the proof of (2) ⇒ (1) we also need to consider the case where B is

generated over A by a single element b with pb, bp ∈ B for some prime
number p. Here A ⊂ B induces a universal homeomorphism on spectra
for example by Algebra, Lemma 10.46.7.

This finishes the proof. □

Lemma 29.46.9.0CNF Let p be a prime number. Let A → B be a ring map which
induces an isomorphism A[1/p]→ B[1/p] (for example if p is nilpotent in A). The
following are equivalent

(1) Spec(B)→ Spec(A) is a universal homeomorphism, and
(2) the kernel of A→ B is a locally nilpotent ideal and for every b ∈ B there

exists a p-power q with qb and bq in the image of A→ B.

Proof. If (2) holds, then (1) holds by Algebra, Lemma 10.46.7. Assume (1). Then
the kernel of A → B consists of nilpotent elements by Algebra, Lemma 10.30.6.
Thus we may replace A by the image of A → B and assume that A ⊂ B. By
Algebra, Lemma 10.46.5 the set

B′ = {b ∈ B | pnb, bp
n

∈ A for some n ≥ 0}
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is an A-subalgebra of B (being closed under products is trivial). We have to show
B′ = B. If not, then according to Lemma 29.46.6 there exists a b ∈ B, b ̸∈ B′ with
either b2, b3 ∈ B′ or there exists a prime number ℓ with ℓb, bℓ ∈ B′. We will show
both cases lead to a contradiction, thereby proving the lemma.
Since A[1/p] = B[1/p] we can choose a p-power q such that qb ∈ A.
If b2, b3 ∈ B′ then also bq ∈ B′. By definition of B′ we find that (bq)q′ ∈ A for some
p-power q′. Then qq′b, bqq

′ ∈ A whence b ∈ B′ which is a contradiction.
Assume now there exists a prime number ℓ with ℓb, bℓ ∈ B′. If ℓ ̸= p then ℓb ∈ B′

and qb ∈ A ⊂ B′ imply b ∈ B′ a contradiction. Thus ℓ = p and bp ∈ B′ and we get
a contradiction exactly as before. □

Lemma 29.46.10.0EUI Let A be a ring. Let x, y ∈ A.
(1) If x3 = y2 in A, then A→ B = A[t]/(t2 − x, t3 − y) induces bijections on

residue fields and a universal homeomorphism on spectra.
(2) If there is a prime number p such that ppx = yp in A, then A → B =

A[t]/(tp − x, pt− y) induces a universal homeomorphism on spectra.

Proof. We will use the criterion of Lemma 29.45.5 to check this. In both cases the
ring map is integral. Thus it suffices to show that given a field k and a ring map
φ : A → k the k-algebra B ⊗A k has a unique prime ideal whose residue field is
equal to k in case (1) and purely inseparable over k in case (2). See Lemma 29.10.2.
In case (1) set λ = 0 if φ(x) = 0 and set λ = φ(y)/φ(x) if not. Then B =
k[t]/(t2 − λ2, t3 − λ2). Thus the result is clear.
In case (2) if the characteristic of k is p, then we obtain φ(y) = 0 and B =
k[t]/(tp − φ(x)) which is a local Artinian k-algebra whose residue field is either k
or a degree p purely inseparable extension of k. If the characteristic of k is not p,
then setting λ = φ(y)/p we see B = k[t]/(t− λ) = k and we conclude as well. □

Lemma 29.46.11.0EUJ Let A→ B be a ring map.
(1) If A → B induces a universal homeomorphism on spectra, then B =

colimBi is a filtered colimit of finitely presented A-algebras Bi such that
A→ Bi induces a universal homeomorphism on spectra.

(2) If A→ B induces isomorphisms on residue fields and a universal homeo-
morphism on spectra, then B = colimBi is a filtered colimit of finitely pre-
sented A-algebras Bi such that A→ Bi induces isomorphisms on residue
fields and a universal homeomorphism on spectra.

Proof. Proof of (1). We will use the criterion of Algebra, Lemma 10.127.4. Let
A → C be of finite presentation and let φ : C → B be an A-algebra map. Let
B′ = φ(C) ⊂ B be the image. Then A → B′ induces a universal homeomorphism
on spectra by Lemma 29.46.1. By Algebra, Lemma 10.127.2 we can write B′ =
colimi∈I Bi with A → Bi of finite presentation and surjective transition maps.
By Algebra, Lemma 10.127.3 we can choose an index 0 ∈ I and a factorization
C → B0 → B′ of the map C → B′. We claim that Spec(Bi) → Spec(A) is a
universal homeomorphism for i sufficiently large. The claim finishes the proof of
(1).
Proof of the claim. By Lemma 29.45.6 the ring map Ared → B′

red induces a
universal homeomorphism on spectra. Thus Ared ⊂ B′

red by Algebra, Lemma
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10.30.6. Setting A′ = Im(A → B′) we have surjections A → A′ → Ared inducing
bijections Spec(Ared) = Spec(A′) = Spec(A). Thus A′ ⊂ B′ induces a universal
homeomorphism on spectra. By Proposition 29.46.8 and the fact that B′ is finite
type over A′ we can find n and b′

1, . . . , b
′
n ∈ B′ such that B′ = A′[b′

1, . . . , b
′
n] and

such that for j = 1, . . . , n we have
(1) (b′

j)2, (b′
j)3 ∈ A′[b′

1, . . . , b
′
j−1], or

(2) there exists a prime number p with pb′
j , (b′

j)p ∈ A′[b′
1, . . . , b

′
j−1].

Choose b1, . . . , bn ∈ B0 lifting b′
1, . . . , b

′
n. For i ≥ 0 denote bj,i the image of bj in

Bi. For large enough i we will have for j = 1, . . . , n
(1) b2

j,i, b
3
j,i ∈ Ai[b1,i, . . . , bj−1,i], or

(2) there exists a prime number p with pbj,i, b
p
j,i ∈ Ai[b1,i, . . . , bj−1,i].

Here Ai ⊂ Bi is the image of A→ Bi. Observe that A→ Ai is a surjective ring map
whose kernel is a locally nilpotent ideal. After increasing i more if necessary, we may
assume Bi is generated by b1, . . . , bn over Ai, in other words Bi = Ai[b1, . . . , bn]. By
Algebra, Lemmas 10.46.7 and 10.46.4 we conclude that A→ Ai → Ai[b1]→ . . .→
Ai[b1, . . . , bn] = Bi induce universal homeomorphisms on spectra. This finishes the
proof of the claim.
The proof of (2) is exactly the same. □

29.47. Absolute weak normalization and seminormalization

0EUK Motivated by the results proved in the previous section we give the following defi-
nition.

Definition 29.47.1.0EUL Let A be a ring.
(1) We say A is seminormal if for all x, y ∈ A with x3 = y2 there is a unique

a ∈ A with x = a2 and y = a3.
(2) We say A is absolutely weakly normal if (a) A is seminormal and (b) for

any prime number p and x, y ∈ A with ppx = yp there is a unique a ∈ A
with x = ap and y = pa.

An amusing observation, see [Cos82], is that in the definition of seminormal rings
it suffices15 to assume the existence of a. Absolutely weakly normal schemes were
defined in [Ryd07b, Appendix B].

Lemma 29.47.2.0EUM Being seminormal or being absolutely weakly normal is a local
property of rings, see Properties, Definition 28.4.1.

Proof. Suppose that A is seminormal and f ∈ A. Let x′, y′ ∈ Af with (x′)3 = (y′)2.
Write x′ = x/f2n and y′ = y/f3n for some n ≥ 0 and x, y ∈ A. After replacing
x, y by f2mx, f3my and n by n + m, we see that x3 = y2 in A. Then we find a
unique a ∈ A with x = a2 and y = a3. Setting a′ = a/fn we get x′ = (a′)2 and
y′ = (a′)3 as desired. Uniqueness of a′ follows from uniqueness of a. In exactly the
same manner the reader shows that if A is absolutely weakly normal, then Af is
absolutely weakly normal.

15Let A be a ring such that for all x, y ∈ A with x3 = y2 there is an a ∈ A with x = a2 and
y = a3. Then A is reduced: if x2 = 0, then x2 = x3 and hence there exists an a such that x = a3

and x = a2. Then x = a3 = ax = a4 = x2 = 0. Finally, if a2
1 = a2

2 and a3
1 = a3

2 for a1, a2 in
a reduced ring, then (a1 − a2)3 = a3

1 − 3a2
1a2 + 3a1a2

2 − a
3
2 = (1 − 3 + 3 − 1)a3

1 = 0 and hence
a1 = a2.
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Assume A is a ring and f1, . . . , fn ∈ A generate the unit ideal. Assume Afi is
seminormal for each i. Let x, y ∈ A with x3 = y2. For each i we find a unique
ai ∈ Afi with x = a2

i and y = a3
i in Afi . By the uniqueness and the result of

the first paragraph (which tells us that Afifj is seminormal) we see that ai and aj
map to the same element of Afifj . By Algebra, Lemma 10.24.2 we find a unique
a ∈ A mapping to ai in Afi for all i. Then x = a2 and y = a3 by the same token.
Clearly this a is unique. Thus A is seminormal. If we assume Afi is absolutely
weakly normal, then the exact same argument shows that A is absolutely weakly
normal. □

Next we define seminormal schemes and absolutely weakly normal schemes.

Definition 29.47.3.0EUN Let X be a scheme.
(1) We say X is seminormal if every x ∈ X has an affine open neighbourhood

Spec(R) = U ⊂ X such that the ring R is seminormal.
(2) We say X is absolutely weakly normal if every x ∈ X has an affine open

neighbourhood Spec(R) = U ⊂ X such that the ring R is absolutely
weakly normal.

Here is the obligatory lemma.

Lemma 29.47.4.0EUP Let X be a scheme. The following are equivalent:
(1) The scheme X is seminormal.
(2) For every affine open U ⊂ X the ring OX(U) is seminormal.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

seminormal.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is seminormal.
Moreover, if X is seminormal then every open subscheme is seminormal. The same
statements are true with “seminormal” replaced by “absolutely weakly normal”.

Proof. Combine Properties, Lemma 28.4.3 and Lemma 29.47.2. □

Lemma 29.47.5.0EUQ A seminormal scheme or ring is reduced. A fortiori the same is
true for absolutely weakly normal schemes or rings.

Proof. Let A be a ring. If a ∈ A is nonzero but a2 = 0, then a2 = 02 and a3 = 03

and hence A is not seminormal. □

Lemma 29.47.6.0EUR Let A be a ring.
(1) The category of ring maps A → B inducing a universal homeomorphism

on spectra has a final object A→ Aawn.
(2) Given A → B in the category of (1) the resulting map B → Aawn is an

isomorphism if and only if B is absolutely weakly normal.
(3) The category of ring maps A→ B inducing isomorphisms on residue fields

and a universal homeomorphism on spectra has a final object A→ Asn.
(4) Given A → B in the category of (3) the resulting map B → Asn is an

isomorphism if and only if B is seminormal.
For any ring map φ : A → A′ there are unique maps φawn : Aawn → (A′)awn and
φsn : Asn → (A′)sn compatible with φ.
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Proof. We prove (1) and (2) and we omit the proof of (3) and (4) and the final
statement. Consider the category of A-algebras of the form

B = A[x1, . . . , xn]/J
where J is a finitely generated ideal such that A → B defines a universal home-
omorphism on spectra. We claim this category is directed (Categories, Definition
4.19.1). Namely, given

B = A[x1, . . . , xn]/J and B′ = A[x1, . . . , xn′ ]/J ′

then we can consider
B′′ = A[x1, . . . , xn+n′ ]/J ′′

where J ′′ is generated by the elements of J and the elements f(xn+1, . . . , xn+n′)
where f ∈ J ′. Then we have A-algebra homomorphisms B → B′′ and B′ → B′′

which induce an isomorphism B ⊗A B′ → B′′. It follows from Lemmas 29.45.2
and 29.45.3 that Spec(B′′) → Spec(A) is a universal homeomorphism and hence
A → B′′ is in our category. Finally, given φ,φ′ : B → B′ in our category with B
as displayed above, then we consider the quotient B′′ of B′ by the ideal generated
by φ(xi)−φ′(xi), i = 1, . . . , n. Since Spec(B′) = Spec(B) we see that Spec(B′′)→
Spec(B′) is a bijective closed immersion hence a universal homeomorphism. Thus
B′′ is in our category and φ,φ′ are equalized by B′ → B′′. This completes the
proof of our claim. We set

Aawn = colimB

where the colimit is over the category just described. Observe that A → Aawn

induces a universal homeomorphism on spectra by Lemma 29.46.2 (this is where
we use the category is directed).
Given a ring map A→ B of finite presentation inducing a universal homeomorphism
on spectra, we get a canonical map B → Aawn by the very construction of Aawn.
Since every A → B as in (1) is a filtered colimit of A → B as in (1) of finite
presentation (Lemma 29.46.11), we see that A→ Aawn is final in the category (1).
Let x, y ∈ Aawn be elements such that x3 = y2. Then Aawn → Aawn[t]/(t2 −
x, t3−y) induces a universal homeomorphism on spectra by Lemma 29.46.10. Thus
A→ Aawn[t]/(t2−x, t3−y) is in the category (1) and we obtain a unique A-algebra
map Aawn[t]/(t2 − x, t3 − y) → Aawn. The image a ∈ Aawn of t is therefore the
unique element such that a2 = x and a3 = y in Aawn. In exactly the same manner,
given a prime p and x, y ∈ Aawn with ppx = yp we find a unique a ∈ Aawn with
ap = x and pq = y. Thus Aawn is absolutely weakly normal by definition.
Finally, let A→ B be in the category (1) with B absolutely weakly normal. Since
Aawn → Bawn induces a universal homeomorphism on spectra and since Aawn is
reduced (Lemma 29.47.5) we find Aawn ⊂ Bawn (see Algebra, Lemma 10.30.6). If
this inclusion is not an equality, then Lemma 29.46.6 implies there is an element
b ∈ Bawn, b ̸∈ Aawn such that either b2, b3 ∈ Aawn or pb, bp ∈ Aawn for some prime
number p. However, by the existence and uniqueness in Definition 29.47.1 this
forces b ∈ Aawn and hence we obtain the contradiction that finishes the proof. □

Lemma 29.47.7.0EUS Let X be a scheme.
(1) The category of universal homeomorphisms Y → X has an initial object

Xawn → X.

https://stacks.math.columbia.edu/tag/0EUS


29.47. ABSOLUTE WEAK NORMALIZATION AND SEMINORMALIZATION 2503

(2) Given Y → X in the category of (1) the resulting morphism Xawn → Y
is an isomorphism if and only if Y is absolutely weakly normal.

(3) The category of universal homeomorphisms Y → X which induce ismo-
morphisms on residue fields has an initial object Xsn → X.

(4) Given Y → X in the category of (3) the resulting morphism Xsn → Y is
an isomorphism if and only if Y is seminormal.

For any morphism h : X ′ → X of schemes there are unique morphisms hawn :
(X ′)awn → Xawn and hsn : (X ′)sn → Xsn compatible with h.
Proof. We will prove (1) and (2) and omit the proof of (3) and (4). Let h : X ′ → X
be a morphism of schemes. If (1) holds for X and X ′, then X ′ ×X Xawn → X ′

is a universal homeomorphism and hence we get a unique morphism (X ′)awn →
X ′ ×X Xawn over X ′ by the universal property of (X ′)awn → X ′. Composed with
the projection X ′×XXawn → Xawn we obtain hawn. If in addition (2) holds for X
and X ′ and h is an open immersion, then X ′×X Xawn is absolutely weakly normal
(Lemma 29.47.4) and we deduce that (X ′)awn → X ′ ×X Xawn is an isomorphism.
Recall that any universal homeomorphism is affine, see Lemma 29.45.4. Thus if
X is affine then (1) and (2) follow immediately from Lemma 29.47.6. Let X be
a scheme and let B be the set of affine opens of X. For each U ∈ B we obtain
Uawn → U and for V ⊂ U , V,U ∈ B we obtain a canonical isomorphism ρV,U :
V awn → V ×U Uawn by the discussion in the previous paragraph. Thus by relative
glueing (Constructions, Lemma 27.2.1) we obtain a morphism Xawn → X which
restricts to Uawn over U compatibly with the ρV,U . Next, let Y → X be a universal
homeomorphism. Then U ×X Y → U is a universal homeomorphism for U ∈ B
and we obtain a unique morphism gU : Uawn → U ×X Y over U . These gU are
compatible with the morphisms ρV,U ; details omitted. Hence there is a unique
morphism g : Xawn → Y over X agreeing with gU over U , see Constructions,
Remark 27.2.3. This proves (1) for X. Part (2) follows because it holds affine
locally. □

Definition 29.47.8.0EUT Let X be a scheme.
(1) The morphism Xsn → X constructed in Lemma 29.47.7 is the seminor-

malization of X.
(2) The morphism Xawn → X constructed in Lemma 29.47.7 is the absolute

weak normalization of X.
To be sure, the seminormalization Xsn of X is a seminormal scheme and the abso-
lute weak normalization Xawn is an absolutely weakly normal scheme. Moreover,
for any morphism h : Y → X of schemes we obtain a canonical commutative
diagram

Y awn

hawn

��

// Y sn

hsn

��

// Y

h
��

Xawn // Xsn // X
of schemes; the arrows hsn and hawn are the unique ones compatible with h.
Lemma 29.47.9.0H3G Let X be a scheme. The following are equivalent

(1) X is seminormal,
(2) X is equal to its own seminormalization, i.e., the morphism Xsn → X is

an isomorphism,

https://stacks.math.columbia.edu/tag/0EUT
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(3) if π : Y → X is a universal homomorphism inducing isomorphisms on
residue fields with Y reduced, then π is an isomorphism.

Proof. The equivalence of (1) and (2) is clear from Lemma 29.47.7. If (3) holds,
then Xsn → X is an isomorphism and we see that (2) holds.
Assume (2) holds and let π : Y → X be a universal homomorphism inducing
isomorphisms on residue fields with Y reduced. Then there exists a factorization
X → Y → X of idX by Lemma 29.47.7. Then X → Y is a closed immersion (by
Schemes, Lemma 26.21.11 and the fact that π is separated for example by Lemma
29.10.3). Since X → Y is also a bijection on points, the reducedness of Y shows
that it has to be an isomorphism. This finishes the proof. □

Lemma 29.47.10.0H3H Let X be a scheme. The following are equivalent
(1) X is absolutely weakly normal,
(2) X is equal to its own absolute weak normalization, i.e., the morphism

Xawn → X is an isomorphism,
(3) if π : Y → X is a universal homomorphism with Y reduced, then π is an

isomorphism.

Proof. This is proved in exactly the same manner as Lemma 29.47.9. □

29.48. Finite locally free morphisms

02K9 In many papers the authors use finite flat morphisms when they really mean finite
locally free morphisms. The reason is that if the base is locally Noetherian then
this is the same thing. But in general it is not, see Exercises, Exercise 111.5.3.

Definition 29.48.1.02KA Let f : X → S be a morphism of schemes. We say f is finite
locally free if f is affine and f∗OX is a finite locally free OS-module. In this case
we say f is has rank or degree d if the sheaf f∗OX is finite locally free of degree d.

Note that if f : X → S is finite locally free then S is the disjoint union of open and
closed subschemes Sd such that f−1(Sd)→ Sd is finite locally free of degree d.

Lemma 29.48.2.02KB Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) f is finite locally free,
(2) f is finite, flat, and locally of finite presentation.

If S is locally Noetherian these are also equivalent to
(3) f is finite and flat.

Proof. Let V ⊂ S be affine open. In all three cases the morphism is affine hence
f−1(V ) is affine. Thus we may write V = Spec(R) and f−1(V ) = Spec(A) for some
R-algebra A. Assume (1). This means we can cover S by affine opens V = Spec(R)
such that A is finite free as an R-module. Then R→ A is of finite presentation by
Algebra, Lemma 10.7.4. Thus (2) holds. Conversely, assume (2). For every affine
open V = Spec(R) of S the ring map R → A is finite and of finite presentation
and A is flat as an R-module. By Algebra, Lemma 10.36.23 we see that A is
finitely presented as an R-module. Thus Algebra, Lemma 10.78.2 implies A is finite
locally free. Thus (1) holds. The Noetherian case follows as a finite module over a
Noetherian ring is a finitely presented module, see Algebra, Lemma 10.31.4. □

https://stacks.math.columbia.edu/tag/0H3H
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Lemma 29.48.3.02KC A composition of finite locally free morphisms is finite locally free.

Proof. Omitted. □

Lemma 29.48.4.02KD A base change of a finite locally free morphism is finite locally
free.

Proof. Omitted. □

Lemma 29.48.5.04MH Let f : X → S be a finite locally free morphism of schemes.
There exists a disjoint union decomposition S =

∐
d≥0 Sd by open and closed

subschemes such that setting Xd = f−1(Sd) the restrictions f |Xd are finite locally
free morphisms Xd → Sd of degree d.

Proof. This is true because a finite locally free sheaf locally has a well defined rank.
Details omitted. □

Lemma 29.48.6.03HW Let f : Y → X be a finite morphism with X affine. There exists
a diagram

Z ′

  

Y ′
i

oo

��

// Y

��
X ′ // X

where
(1) Y ′ → Y and X ′ → X are surjective finite locally free,
(2) Y ′ = X ′ ×X Y ,
(3) i : Y ′ → Z ′ is a closed immersion,
(4) Z ′ → X ′ is finite locally free, and
(5) Z ′ =

⋃
j=1,...,m Z

′
j is a (set theoretic) finite union of closed subschemes,

each of which maps isomorphically to X ′.

Proof. Write X = Spec(A) and Y = Spec(B). See also More on Algebra, Section
15.21. Let x1, . . . , xn ∈ B be generators of B over A. For each i we can choose a
monic polynomial Pi(T ) ∈ A[T ] such that P (xi) = 0 in B. By Algebra, Lemma
10.136.14 (applied n times) there exists a finite locally free ring extension A ⊂ A′

such that each Pi splits completely:

Pi(T ) =
∏

k=1,...,di
(T − αik)

for certain αik ∈ A′. Set

C = A′[T1, . . . , Tn]/(P1(T1), . . . , Pn(Tn))

and B′ = A′ ⊗A B. The map C → B′, Ti 7→ 1 ⊗ xi is an A′-algebra surjection.
Setting X ′ = Spec(A′), Y ′ = Spec(B′) and Z ′ = Spec(C) we see that (1) – (4)
hold. Part (5) holds because set theoretically Spec(C) is the union of the closed
subschemes cut out by the ideals

(T1 − α1k1 , T2 − α2k2 , . . . , Tn − αnkn)

for any 1 ≤ ki ≤ di. □

The following lemma is stated in the correct generality in Lemma 29.56.4 below.

https://stacks.math.columbia.edu/tag/02KC
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Lemma 29.48.7.03HX Let f : Y → X be a finite morphism of schemes. Let T ⊂ Y be
a closed nowhere dense subset of Y . Then f(T ) ⊂ X is a closed nowhere dense
subset of X.

Proof. By Lemma 29.44.11 we know that f(T ) ⊂ X is closed. Let X =
⋃
Xi be

an affine covering. Since T is nowhere dense in Y , we see that also T ∩ f−1(Xi) is
nowhere dense in f−1(Xi). Hence if we can prove the theorem in the affine case,
then we see that f(T ) ∩Xi is nowhere dense. This then implies that T is nowhere
dense in X by Topology, Lemma 5.21.4.
Assume X is affine. Choose a diagram

Z ′

  

Y ′
i

oo

f ′

��

a
// Y

f

��
X ′ b // X

as in Lemma 29.48.6. The morphisms a, b are open since they are finite locally
free (Lemmas 29.48.2 and 29.25.10). Hence T ′ = a−1(T ) is nowhere dense, see
Topology, Lemma 5.21.6. The morphism b is surjective and open. Hence, if we
can prove f ′(T ′) = b−1(f(T )) is nowhere dense, then f(T ) is nowhere dense, see
Topology, Lemma 5.21.6. As i is a closed immersion, by Topology, Lemma 5.21.5
we see that i(T ′) ⊂ Z ′ is closed and nowhere dense. Thus we have reduced the
problem to the case discussed in the following paragraph.
Assume that Y =

⋃
i=1,...,n Yi is a finite union of closed subsets, each mapping

isomorphically to X. Consider Ti = Yi ∩ T . If each of the Ti is nowhere dense in
Yi, then each f(Ti) is nowhere dense in X as Yi → X is an isomorphism. Hence
f(T ) = f(Ti) is a finite union of nowhere dense closed subsets of X and we win, see
Topology, Lemma 5.21.2. Suppose not, say T1 contains a nonempty open V ⊂ Y1.
We are going to show this leads to a contradiction. Consider Y2 ∩ V ⊂ V . This
is either a proper closed subset, or equal to V . In the first case we replace V by
V \ V ∩ Y2, so V ⊂ T1 is open in Y1 and does not meet Y2. In the second case we
have V ⊂ Y1 ∩Y2 is open in both Y1 and Y2. Repeat sequentially with i = 3, . . . , n.
The result is a disjoint union decomposition

{1, . . . , n} = I1 ⨿ I2, 1 ∈ I1

and an open V of Y1 contained in T1 such that V ⊂ Yi for i ∈ I1 and V ∩Yi = ∅ for
i ∈ I2. Set U = f(V ). This is an open of X since f |Y1 : Y1 → X is an isomorphism.
Then

f−1(U) = V ⨿
⋃

i∈I2
(Yi ∩ f−1(U))

As
⋃
i∈I2

Yi is closed, this implies that V ⊂ f−1(U) is open, hence V ⊂ Y is open.
This contradicts the assumption that T is nowhere dense in Y , as desired. □

29.49. Rational maps

01RR Let X be a scheme. Note that if U , V are dense open in X, then so is U ∩ V .

Definition 29.49.1.01RS Let X, Y be schemes.
(1) Let f : U → Y , g : V → Y be morphisms of schemes defined on dense

open subsets U , V of X. We say that f is equivalent to g if f |W = g|W
for some W ⊂ U ∩ V dense open in X.

https://stacks.math.columbia.edu/tag/03HX
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(2) A rational map from X to Y is an equivalence class for the equivalence
relation defined in (1).

(3) If X, Y are schemes over a base scheme S we say that a rational map from
X to Y is an S-rational map from X to Y if there exists a representative
f : U → Y of the equivalence class which is an S-morphism.

We say that two morphisms f , g as in (1) of the definition define the same rational
map instead of saying that they are equivalent. In some cases rational maps are
determined by maps on local rings at generic points.

Lemma 29.49.2.0BX8 Let S be a scheme. Let X and Y be schemes over S. Assume X
has finitely many irreducible components with generic points x1, . . . , xn. Let si ∈ S
be the image of xi. Consider the map{

S-rational maps
from X to Y

}
−→

{
(y1, φ1, . . . , yn, φn) where yi ∈ Y lies over si and
φi : OY,yi → OX,xi is a local OS,si-algebra map

}
which sends f : U → Y to the 2n-tuple with yi = f(xi) and φi = f ♯xi . Then

(1) If Y → S is locally of finite type, then the map is injective.
(2) If Y → S is locally of finite presentation, then the map is bijective.
(3) If Y → S is locally of finite type and X reduced, then the map is bijective.

Proof. Observe that any dense open of X contains the points xi so the construction
makes sense. To prove (1) or (2) we may replace X by any dense open. Thus if
Z1, . . . , Zn are the irreducible components of X, then we may replace X by X \⋃
i̸=j Zi ∩Zj . After doing this X is the disjoint union of its irreducible components

(viewed as open and closed subschemes). Then both the right hand side and the
left hand side of the arrow are products over the irreducible components and we
reduce to the case where X is irreducible.
Assume X is irreducible with generic point x lying over s ∈ S. Part (1) follows
from part (1) of Lemma 29.42.4. Parts (2) and (3) follow from part (2) of the same
lemma. □

Definition 29.49.3.01RT Let X be a scheme. A rational function on X is a rational map
from X to A1

Z.

See Constructions, Definition 27.5.1 for the definition of the affine line A1. Let
X be a scheme over S. For any open U ⊂ X a morphism U → A1

Z is the same
as a morphism U → A1

S over S. Hence a rational function is also the same as a
S-rational map from X into A1

S .
Recall that we have the canonical identification Mor(T,A1

Z) = Γ(T,OT ) for any
scheme T , see Schemes, Example 26.15.2. Hence A1

Z is a ring-object in the category
of schemes. More precisely, the morphisms

+ : A1
Z ×A1

Z −→ A1
Z

(f, g) 7−→ f + g

∗ : A1
Z ×A1

Z −→ A1
Z

(f, g) 7−→ fg

satisfy all the axioms of the addition and multiplication in a ring (commutative
with 1 as always). Hence also the set of rational maps into A1

Z has a natural ring
structure.

https://stacks.math.columbia.edu/tag/0BX8
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Definition 29.49.4.01RU Let X be a scheme. The ring of rational functions on X is the
ring R(X) whose elements are rational functions with addition and multiplication
as just described.

For schemes with finitely many irreducible components we can compute this.

Lemma 29.49.5.01RV Let X be a scheme with finitely many irreducible components
X1, . . . , Xn. If ηi ∈ Xi is the generic point, then

R(X) = OX,η1 × . . .×OX,ηn
If X is reduced this is equal to

∏
κ(ηi). If X is integral then R(X) = OX,η = κ(η)

is a field.

Proof. Let U ⊂ X be an open dense subset. Then Ui = (U ∩ Xi) \ (
⋃
j ̸=iXj) is

nonempty open as it contained ηi, contained in Xi, and
⋃
Ui ⊂ U ⊂ X is dense.

Thus the identification in the lemma comes from the string of equalities

R(X) = colimU⊂X open dense Mor(U,A1
Z)

= colimU⊂X open denseOX(U)

= colimηi∈Ui⊂X open
∏
OX(Ui)

=
∏

colimηi∈Ui⊂X openOX(Ui)

=
∏
OX,ηi

where the second equality is Schemes, Example 26.15.2. The final statement follows
from Algebra, Lemma 10.25.1. □

Definition 29.49.6.01RW Let X be an integral scheme. The function field, or the field of
rational functions of X is the field R(X).

We may occasionally indicate this field k(X) instead of R(X). We can use the
notion of the function field to elucidate the separation condition on an integral
scheme. Note that by Lemma 29.49.5 on an integral scheme every local ring OX,x
may be viewed as a local subring of R(X).

Lemma 29.49.7.02NF Let X be an integral separated scheme. Let Z1, Z2 be distinct
irreducible closed subsets of X. Let ηi be the generic point of Zi. If Z1 ̸⊂ Z2,
then OX,η1 ̸⊂ OX,η2 as subrings of R(X). In particular, if Z1 = {x} consists of one
closed point x, there exists a function regular in a neighborhood of x which is not
in OX,η2 .

Proof. First observe that under the assumption of X being separated, there is a
unique map of schemes Spec(OX,η2)→ X over X such that the composition

Spec(R(X)) −→ Spec(OX,η2) −→ X

is the canonical map Spec(R(X)) → X. Namely, there is the canonical map can :
Spec(OX,η2) → X, see Schemes, Equation (26.13.1.1). Given a second morphism
a to X, we have that a agrees with can on the generic point of Spec(OX,η2) by
assumption. Now X being separated guarantees that the subset in Spec(OX,η2)
where these two maps agree is closed, see Schemes, Lemma 26.21.5. Hence a = can
on all of Spec(OX,η2).

https://stacks.math.columbia.edu/tag/01RU
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Assume Z1 ̸⊂ Z2 and assume on the contrary that OX,η1 ⊂ OX,η2 as subrings of
R(X). Then we would obtain a second morphism

Spec(OX,η2) −→ Spec(OX,η1) −→ X.

By the above this composition would have to be equal to can. This implies that η2
specializes to η1 (see Schemes, Lemma 26.13.2). But this contradicts our assump-
tion Z1 ̸⊂ Z2. □

Definition 29.49.8.0A1X Let φ be a rational map between two schemes X and Y . We
say φ is defined in a point x ∈ X if there exists a representative (U, f) of φ with
x ∈ U . The domain of definition of φ is the set of all points where φ is defined.

With this definition it isn’t true in general that φ has a representative which is
defined on all of the domain of definition.

Lemma 29.49.9.0A1Y Let X and Y be schemes. Assume X reduced and Y separated.
Let φ be a rational map from X to Y with domain of definition U ⊂ X. Then there
exists a unique morphism f : U → Y representing φ. If X and Y are schemes over
a separated scheme S and if φ is an S-rational map, then f is a morphism over S.

Proof. Let (V, g) and (V ′, g′) be representatives of φ. Then g, g′ agree on a dense
open subscheme W ⊂ V ∩ V ′. On the other hand, the equalizer E of g|V ∩V ′ and
g′|V ∩V ′ is a closed subscheme of V ∩ V ′ (Schemes, Lemma 26.21.5). Now W ⊂ E
implies that E = V ∩ V ′ set theoretically. As V ∩ V ′ is reduced we conclude
E = V ∩ V ′ scheme theoretically, i.e., g|V ∩V ′ = g′|V ∩V ′ . It follows that we can
glue the representatives g : V → Y of φ to a morphism f : U → Y , see Schemes,
Lemma 26.14.1. We omit the proof of the final statement. □

In general it does not make sense to compose rational maps. The reason is that the
image of a representative of the first rational map may have empty intersection with
the domain of definition of the second. However, if we assume that our schemes are
irreducible and we look at dominant rational maps, then we can compose rational
maps.

Definition 29.49.10.0A1Z Let X and Y be irreducible schemes. A rational map from X
to Y is called dominant if any representative f : U → Y is a dominant morphism
of schemes.

By Lemma 29.8.6 it is equivalent to require that the generic point η ∈ X maps
to the generic point ξ of Y , i.e., f(η) = ξ for any representative f : U → Y . We
can compose a dominant rational map φ between irreducible schemes X and Y
with an arbitrary rational map ψ from Y to Z. Namely, choose representatives
f : U → Y with U ⊂ X open dense and g : V → Z with V ⊂ Y open dense.
Then W = f−1(V ) ⊂ X is open nonempty (because it contains the generic point
of X) and we let ψ ◦ φ be the equivalence class of g ◦ f |W : W → Z. We omit the
verification that this is well defined.
In this way we obtain a category whose objects are irreducible schemes and whose
morphisms are dominant rational maps. Given a base scheme S we can similarly
define a category whose objects are irreducible schemes over S and whose morphisms
are dominant S-rational maps.

Definition 29.49.11.0A20 Let X and Y be irreducible schemes.

https://stacks.math.columbia.edu/tag/0A1X
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(1) We say X and Y are birational if X and Y are isomorphic in the category
of irreducible schemes and dominant rational maps.

(2) Assume X and Y are schemes over a base scheme S. We say X and Y
are S-birational if X and Y are isomorphic in the category of irreducible
schemes over S and dominant S-rational maps.

If X and Y are birational irreducible schemes, then the set of rational maps from
X to Z is bijective with the set of rational map from Y to Z for all schemes
Z (functorially in Z). For “general” irreducible schemes this is just one possible
definition. Another would be to require X and Y have isomorphic rings of rational
functions. For varieties these conditions are equivalent, see Lemma 29.50.6.

Lemma 29.49.12.0BAA Let X and Y be irreducible schemes.
(1) The schemes X and Y are birational if and only if they have isomorphic

nonempty opens.
(2) Assume X and Y are schemes over a base scheme S. Then X and Y are

S-birational if and only if there are nonempty opens U ⊂ X and V ⊂ Y
which are S-isomorphic.

Proof. Assume X and Y are birational. Let f : U → Y and g : V → X define
inverse dominant rational maps from X to Y and from Y to X. We may assume
V affine. We may replace U by an affine open of f−1(V ). As g ◦ f is the identity
as a dominant rational map, we see that the composition U → V → X is the
identity on a dense open of U . Thus after replacing U by a smaller affine open
we may assume that U → V → X is the inclusion of U into X. It follows that
U → V is an immersion (apply Schemes, Lemma 26.21.11 to U → g−1(U) → U).
However, switching the roles of U and V and redoing the argument above, we see
that there exists a nonempty affine open V ′ ⊂ V such that the inclusion factors
as V ′ → U → V . Then V ′ → U is necessarily an open immersion. Namely,
V ′ → f−1(V ′)→ V ′ are monomorphisms (Schemes, Lemma 26.23.8) composing to
the identity, hence isomorphisms. Thus V ′ is isomorphic to an open of both X and
Y . In the S-rational maps case, the exact same argument works. □

Remark 29.49.13.0BX9 Here is a generalization of the category of irreducible schemes
and dominant rational maps. For a scheme X denote X0 the set of points x ∈ X
with dim(OX,x) = 0, in other words, X0 is the set of generic points of irreducible
components of X. Then we can consider the category with

(1) objects are schemes X such that every quasi-compact open has finitely
many irreducible components, and

(2) morphisms from X to Y are rational maps f : U → Y from X to Y such
that f(U0) = Y 0.

If U ⊂ X is a dense open of a scheme, then U0 ⊂ X0 need not be an equality, but
if X is an object of our category, then this is the case. Thus given two morphisms
in our category, the composition is well defined and a morphism in our category.

Remark 29.49.14.01RX There is a variant of Definition 29.49.1 where we consider only
those morphism U → Y defined on scheme theoretically dense open subschemes
U ⊂ X. We use Lemma 29.7.6 to see that we obtain an equivalence relation. An
equivalence class of these is called a pseudo-morphism from X to Y . If X is reduced
the two notions coincide.
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29.50. Birational morphisms

01RN You may be used to the notion of a birational map of varieties having the property
that it is an isomorphism over an open subset of the target. However, in general
a birational morphism may not be an isomorphism over any nonempty open, see
Example 29.50.4. Here is the formal definition.

Definition 29.50.1.01RO [GD60, (2.2.9)]Let X, Y be schemes. Assume X and Y have finitely many
irreducible components. We say a morphism f : X → Y is birational if

(1) f induces a bijection between the set of generic points of irreducible com-
ponents of X and the set of generic points of the irreducible components
of Y , and

(2) for every generic point η ∈ X of an irreducible component of X the local
ring map OY,f(η) → OX,η is an isomorphism.

We will see below that the fibres of a birational morphism over generic points are
singletons. Moreover, we will see that in most cases one encounters in practice the
existence a birational morphism between irreducible schemes X and Y implies X
and Y are birational schemes.

Lemma 29.50.2.01RP Let f : X → Y be a morphism of schemes having finitely many
irreducible components. If f is birational then f is dominant.

Proof. Follows from Lemma 29.8.2 and the definition. □

Lemma 29.50.3.0BAB Let f : X → Y be a birational morphism of schemes having
finitely many irreducible components. If y ∈ Y is the generic point of an irre-
ducible component, then the base change X ×Y Spec(OY,y) → Spec(OY,y) is an
isomorphism.

Proof. We may assume Y = Spec(B) is affine and irreducible. ThenX is irreducible
too. If we prove the result for any nonempty affine open U ⊂ X, then the result
holds for X (small argument omitted). Hence we may assume X is affine too, say
X = Spec(A). Let y ∈ Y correspond to the minimal prime q ⊂ B. By assumption
A has a unique minimal prime p lying over q and Bq → Ap is an isomorphism. It
follows that Aq → κ(p) is surjective, hence pAq is a maximal ideal. On the other
hand pAq is the unique minimal prime of Aq. We conclude that pAq is the unique
prime of Aq and that Aq = Ap. Since Aq = A⊗B Bq the lemma follows. □

Example 29.50.4.01RQ Here are two examples of birational morphisms which are not
isomorphisms over any open of the target.
First example. Let k be an infinite field. Let A = k[x]. Let B = k[x, {yα}α∈k]/((x−
α)yα, yαyβ). There is an inclusion A ⊂ B and a retraction B → A setting all
yα equal to zero. Both the morphism Spec(A) → Spec(B) and the morphism
Spec(B)→ Spec(A) are birational but not an isomorphism over any open.
Second example. Let A be a domain. Let S ⊂ A be a multiplicative subset not
containing 0. With B = S−1A the morphism f : Spec(B)→ Spec(A) is birational.
If there exists an open U of Spec(A) such that f−1(U) → U is an isomorphism,
then there exists an a ∈ A such that each every element of S becomes invertible in
the principal localization Aa. Taking A = Z and S the set of odd integers give a
counter example.
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Lemma 29.50.5.0BAC Let f : X → Y be a birational morphism of schemes having
finitely many irreducible components over a base scheme S. Assume one of the
following conditions is satisfied

(1) f is locally of finite type and Y reduced,
(2) f is locally of finite presentation.

Then there exist dense opens U ⊂ X and V ⊂ Y such that f(U) ⊂ V and f |U :
U → V is an isomorphism. In particular if X and Y are irreducible, then X and Y
are S-birational.
Proof. There is an immediate reduction to the case where X and Y are irreducible
which we omit. Moreover, after shrinking further and we may assume X and Y
are affine, say X = Spec(A) and Y = Spec(B). By assumption A, resp. B has a
unique minimal prime p, resp. q, the prime p lies over q, and Bq = Ap. By Lemma
29.50.3 we have Bq = Aq = Ap.
Suppose B → A is of finite type, say A = B[x1, . . . , xn]. There exist a bi ∈ B and
gi ∈ B \ q such that bi/gi maps to the image of xi in Aq. Hence bi − gixi maps
to zero in Ag′

i
for some g′

i ∈ B \ q. Setting g =
∏
gig

′
i we see that Bg → Ag is

surjective. If moreover Y is reduced, then the map Bg → Bq is injective and hence
Bg → Ag is injective as well. This proves case (1).
Proof of (2). By the argument given in the previous paragraph we may assume that
B → A is surjective. As f is locally of finite presentation the kernel J ⊂ B is a
finitely generated ideal. Say J = (b1, . . . , br). Since Bq = Aq there exist gi ∈ B \ q
such that gibi = 0. Setting g =

∏
gi we see that Bg → Ag is an isomorphism. □

Lemma 29.50.6.0BAD Let S be a scheme. Let X and Y be irreducible schemes locally
of finite presentation over S. Let x ∈ X and y ∈ Y be the generic points. The
following are equivalent

(1) X and Y are S-birational,
(2) there exist nonempty opens of X and Y which are S-isomorphic, and
(3) x and y map to the same point s of S and OX,x and OY,y are isomorphic

as OS,s-algebras.
Proof. We have seen the equivalence of (1) and (2) in Lemma 29.49.12. It is im-
mediate that (2) implies (3). To finish we assume (3) holds and we prove (1). By
Lemma 29.49.2 there is a rational map f : U → Y which sends x ∈ U to y and
induces the given isomorphism OY,y ∼= OX,x. Thus f is a birational morphism and
hence induces an isomorphism on nonempty opens by Lemma 29.50.5. This finishes
the proof. □

Lemma 29.50.7.0552 Let S be a scheme. Let X and Y be integral schemes locally of
finite type over S. Let x ∈ X and y ∈ Y be the generic points. The following are
equivalent

(1) X and Y are S-birational,
(2) there exist nonempty opens of X and Y which are S-isomorphic, and
(3) x and y map to the same point s ∈ S and κ(x) ∼= κ(y) as κ(s)-extensions.

Proof. We have seen the equivalence of (1) and (2) in Lemma 29.49.12. It is imme-
diate that (2) implies (3). To finish we assume (3) holds and we prove (1). Observe
that OX,x = κ(x) and OY,y = κ(y) by Algebra, Lemma 10.25.1. By Lemma 29.49.2
there is a rational map f : U → Y which sends x ∈ U to y and induces the given
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isomorphism OY,y ∼= OX,x. Thus f is a birational morphism and hence induces an
isomorphism on nonempty opens by Lemma 29.50.5. This finishes the proof. □

29.51. Generically finite morphisms

02NV In this section we characterize maps between schemes which are locally of finite
type and which are “generically finite” in some sense.

Lemma 29.51.1.02NW Let X, Y be schemes. Let f : X → Y be locally of finite type.
Let η ∈ Y be a generic point of an irreducible component of Y . The following are
equivalent:

(1) the set f−1({η}) is finite,
(2) there exist affine opens Ui ⊂ X, i = 1, . . . , n and V ⊂ Y with f(Ui) ⊂ V ,

η ∈ V and f−1({η}) ⊂
⋃
Ui such that each f |Ui : Ui → V is finite.

If f is quasi-separated, then these are also equivalent to
(3) there exist affine opens V ⊂ Y , and U ⊂ X with f(U) ⊂ V , η ∈ V and

f−1({η}) ⊂ U such that f |U : U → V is finite.
If f is quasi-compact and quasi-separated, then these are also equivalent to

(4) there exists an affine open V ⊂ Y , η ∈ V such that f−1(V )→ V is finite.

Proof. The question is local on the base. Hence we may replace Y by an affine
neighbourhood of η, and we may and do assume throughout the proof below that
Y is affine, say Y = Spec(R).
It is clear that (2) implies (1). Assume that f−1({η}) = {ξ1, . . . , ξn} is finite.
Choose affine opens Ui ⊂ X with ξi ∈ Ui. By Algebra, Lemma 10.122.10 we see
that after replacing Y by a standard open in Y each of the morphisms Ui → Y is
finite. In other words (2) holds.
It is clear that (3) implies (1). Assume f is quasi-separated and (1). Write
f−1({η}) = {ξ1, . . . , ξn}. There are no specializations among the ξi by Lemma
29.20.7. Since each ξi maps to the generic point η of an irreducible component
of Y , there cannot be a nontrivial specialization ξ ⇝ ξi in X (since ξ would map
to η as well). We conclude each ξi is a generic point of an irreducible component
of X. Since Y is affine and f quasi-separated we see X is quasi-separated. By
Properties, Lemma 28.29.1 we can find an affine open U ⊂ X containing each ξi.
By Algebra, Lemma 10.122.10 we see that after replacing Y by a standard open in
Y the morphisms U → Y is finite. In other words (3) holds.
It is clear that (4) implies all of (1) – (3) with no further assumptions on f . Suppose
that f is quasi-compact and quasi-separated. We have to show that the equivalent
conditions (1) – (3) imply (4). Let U , V be as in (3). Replace Y by V . Since
f is quasi-compact and Y is quasi-compact (being affine) we see that X is quasi-
compact. Hence Z = X \ U is quasi-compact, hence the morphism f |Z : Z → Y
is quasi-compact. By construction of Z we see that η ̸∈ f(Z). Hence by Lemma
29.8.5 we see that there exists an affine open neighbourhood V ′ of η in Y such that
f−1(V ′) ∩ Z = ∅. Then we have f−1(V ′) ⊂ U and this means that f−1(V ′) → V ′

is finite. □

Example 29.51.2.03HY Let A =
∏
n∈N F2. Every element of A is an idempotent.

Hence every prime ideal is maximal with residue field F2. Thus the topology on
X = Spec(A) is totally disconnected and quasi-compact. The projection maps
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A→ F2 define open points of Spec(A). It cannot be the case that all the points of
X are open since X is quasi-compact. Let x ∈ X be a closed point which is not
open. Then we can form a scheme Y which is two copies of X glued along X \ {x}.
In other words, this is X with x doubled, compare Schemes, Example 26.14.3. The
morphism f : Y → X is quasi-compact, finite type and has finite fibres but is not
quasi-separated. The point x ∈ X is a generic point of an irreducible component of
X (since X is totally disconnected). But properties (3) and (4) of Lemma 29.51.1
do not hold. The reason is that for any open neighbourhood x ∈ U ⊂ X the inverse
image f−1(U) is not affine because functions on f−1(U) cannot separate the two
points lying over x (proof omitted; this is a nice exercise). Hence the condition that
f is quasi-separated is necessary in parts (3) and (4) of the lemma.

Remark 29.51.3.03HZ An alternative to Lemma 29.51.1 is the statement that a quasi-
finite morphism is finite over a dense open of the target. This will be shown in
More on Morphisms, Lemma 37.45.2.

Lemma 29.51.4.0BAH Let X, Y be schemes. Let f : X → Y be locally of finite type.
Let X0, resp. Y 0 denote the set of generic points of irreducible components of X,
resp. Y . Let η ∈ Y 0. The following are equivalent

(1) f−1({η}) ⊂ X0,
(2) f is quasi-finite at all points lying over η,
(3) f is quasi-finite at all ξ ∈ X0 lying over η.

Proof. Condition (1) implies there are no specializations among the points of the
fibre Xη. Hence (2) holds by Lemma 29.20.6. The implication (2) ⇒ (3) is imme-
diate. Since η is a generic point of Y , the generic points of Xη are generic points of
X. Hence (3) and Lemma 29.20.6 imply the generic points of Xη are also closed.
Thus all points of Xη are generic and we see that (1) holds. □

Lemma 29.51.5.0BAI Let X, Y be schemes. Let f : X → Y be locally of finite type.
Let X0, resp. Y 0 denote the set of generic points of irreducible components of X,
resp. Y . Assume

(1) X0 and Y 0 are finite and f−1(Y 0) = X0,
(2) either f is quasi-compact or f is separated.

Then there exists a dense open V ⊂ Y such that f−1(V )→ V is finite.

Proof. Since Y has finitely many irreducible components, we can find a dense open
which is a disjoint union of its irreducible components. Thus we may assume Y is
irreducible affine with generic point η. Then the fibre over η is finite as X0 is finite.

Assume f is separated and Y irreducible affine. Choose V ⊂ Y and U ⊂ X as in
Lemma 29.51.1 part (3). Since f |U : U → V is finite, we see that U ⊂ f−1(V ) is
closed as well as open (Lemmas 29.41.7 and 29.44.11). Thus f−1(V ) = U ⨿W for
some open subscheme W of X. However, since U contains all the generic points of
X we conclude that W = ∅ as desired.

Assume f is quasi-compact and Y irreducible affine. Then X is quasi-compact,
hence there exists a dense open subscheme U ⊂ X which is separated (Properties,
Lemma 28.29.3). Since the set of generic points X0 is finite, we see that X0 ⊂ U .
Thus η ̸∈ f(X \U). Since X \U → Y is quasi-compact, we conclude that there is a
nonempty open V ⊂ Y such that f−1(V ) ⊂ U , see Lemma 29.8.3. After replacing
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X by f−1(V ) and Y by V we reduce to the separated case which we dealt with in
the preceding paragraph. □

Lemma 29.51.6.0BAJ Let X, Y be schemes. Let f : X → Y be a birational morphism
between schemes which have finitely many irreducible components. Assume

(1) either f is quasi-compact or f is separated, and
(2) either f is locally of finite type and Y is reduced or f is locally of finite

presentation.
Then there exists a dense open V ⊂ Y such that f−1(V )→ V is an isomorphism.

Proof. By Lemma 29.51.5 we may assume that f is finite. Since Y has finitely many
irreducible components, we can find a dense open which is a disjoint union of its
irreducible components. Thus we may assume Y is irreducible. By Lemma 29.50.5
we find a nonempty open U ⊂ X such that f |U : U → Y is an open immersion.
After removing the closed (as f finite) subset f(X \U) from Y we see that f is an
isomorphism. □

Lemma 29.51.7.02NX Let X, Y be integral schemes. Let f : X → Y be locally of finite
type. Assume f is dominant. The following are equivalent:

(1) the extension R(Y ) ⊂ R(X) has transcendence degree 0,
(2) the extension R(Y ) ⊂ R(X) is finite,
(3) there exist nonempty affine opens U ⊂ X and V ⊂ Y such that f(U) ⊂ V

and f |U : U → V is finite, and
(4) the generic point of X is the only point of X mapping to the generic point

of Y .
If f is separated or if f is quasi-compact, then these are also equivalent to

(5) there exists a nonempty affine open V ⊂ Y such that f−1(V ) → V is
finite.

Proof. Choose any affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ Y such
that f(U) ⊂ V . Then R and A are domains by definition. The ring map R → A
is of finite type (Lemma 29.15.2). By Lemma 29.8.6 the generic point of X maps
to the generic point of Y hence R→ A is injective. Let K = R(Y ) be the fraction
field of R and L = R(X) the fraction field of A. Then L/K is a finitely generated
field extension. Hence we see that (1) is equivalent to (2).

Suppose (2) holds. Let x1, . . . , xn ∈ A be generators of A over R. By assumption
there exist nonzero polynomials Pi(X) ∈ R[X] such that Pi(xi) = 0. Let fi ∈ R
be the leading coefficient of Pi. Then we conclude that Rf1...fn → Af1...fn is finite,
i.e., (3) holds. Note that (3) implies (2). So now we see that (1), (2) and (3) are
all equivalent.

Let η be the generic point of X, and let η′ ∈ Y be the generic point of Y . Assume
(4). Then dimη(Xη′) = 0 and we see that R(X) = κ(η) has transcendence degree
0 over R(Y ) = κ(η′) by Lemma 29.28.1. In other words (1) holds. Assume the
equivalent conditions (1), (2) and (3). Suppose that x ∈ X is a point mapping to
η′. As x is a specialization of η, this gives inclusions R(Y ) ⊂ OX,x ⊂ R(X), which
implies OX,x is a field, see Algebra, Lemma 10.36.19. Hence x = η. Thus we see
that (1) – (4) are all equivalent.
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It is clear that (5) implies (3) with no additional assumptions on f . What remains
is to prove that if f is either separated or quasi-compact, then the equivalent
conditions (1) – (4) imply (5). This follows from Lemma 29.51.5. □

Definition 29.51.8.02NY Let X and Y be integral schemes. Let f : X → Y be locally
of finite type and dominant. Assume [R(X) : R(Y )] < ∞, or any other of the
equivalent conditions (1) – (4) of Lemma 29.51.7. Then the positive integer

deg(X/Y ) = [R(X) : R(Y )]
is called the degree of X over Y .
It is possible to extend this notion to a morphism f : X → Y if (a) Y is integral
with generic point η, (b) f is locally of finite type, and (c) f−1({η}) is finite. In
this case we can define

deg(X/Y ) =
∑

ξ∈X, f(ξ)=η
dimR(Y )(OX,ξ).

Namely, given that R(Y ) = κ(η) = OY,η (Lemma 29.49.5) the dimensions above
are finite by Lemma 29.51.1 above. However, for most applications the definition
given above is the right one.
Lemma 29.51.9.02NZ Let X, Y , Z be integral schemes. Let f : X → Y and g : Y → Z
be dominant morphisms locally of finite type. Assume that [R(X) : R(Y )] < ∞
and [R(Y ) : R(Z)] <∞. Then

deg(X/Z) = deg(X/Y ) deg(Y/Z).
Proof. This comes from the multiplicativity of degrees in towers of finite extensions
of fields, see Fields, Lemma 9.7.7. □

Remark 29.51.10.073A Let f : X → Y be a morphism of schemes which is locally
of finite type. There are (at least) two properties that we could use to define
generically finite morphisms. These correspond to whether you want the property
to be local on the source or local on the target:

(1) (Local on the target; suggested by Ravi Vakil.) Assume every quasi-
compact open of Y has finitely many irreducible components (for example
if Y is locally Noetherian). The requirement is that the inverse image of
each generic point is finite, see Lemma 29.51.1.

(2) (Local on the source.) The requirement is that there exists a dense open
U ⊂ X such that U → Y is locally quasi-finite.

In case (1) the requirement can be formulated without the auxiliary condition on
Y , but probably doesn’t give the right notion for general schemes. Property (2) as
formulated doesn’t imply that the fibres over generic points are finite; however, if
f is quasi-compact and Y is as in (1) then it does.
Definition 29.51.11.0AAZ Let X be an integral scheme. A modification of X is a bira-
tional proper morphism f : X ′ → X with X ′ integral.
Let f : X ′ → X be a modification as in the definition. By Lemma 29.51.7 there
exists a nonempty U ⊂ X such that f−1(U) → U is finite. By generic flatness
(Proposition 29.27.1) we may assume f−1(U)→ U is flat and of finite presentation.
So f−1(U) → U is finite locally free (Lemma 29.48.2). Since f is birational, the
degree of X ′ over X is 1. Hence f−1(U) → U is finite locally free of degree 1,
in other words it is an isomorphism. Thus we can redefine a modification to be
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a proper morphism f : X ′ → X of integral schemes such that f−1(U) → U is an
isomorphism for some nonempty open U ⊂ X.

Definition 29.51.12.0AB0 [dJ96, Definition
2.20]

Let X be an integral scheme. An alteration of X is a proper
dominant morphism f : Y → X with Y integral such that f−1(U)→ U is finite for
some nonempty open U ⊂ X.

This is the definition as given in [dJ96], except that here we do not require X
and Y to be Noetherian. Arguing as above we see that an alteration is a proper
dominant morphism f : Y → X of integral schemes which induces a finite extension
of function fields, i.e., such that the equivalent conditions of Lemma 29.51.7 hold.

29.52. The dimension formula

02JT For morphisms between Noetherian schemes we can say a little more about dimen-
sions of local rings. Here is an important (and not so hard to prove) result. Recall
that R(X) denotes the function field of an integral scheme X.

Lemma 29.52.1.02JU Let S be a scheme. Let f : X → S be a morphism of schemes.
Let x ∈ X, and set s = f(x). Assume

(1) S is locally Noetherian,
(2) f is locally of finite type,
(3) X and S integral, and
(4) f dominant.

We have
(29.52.1.1)02JV dim(OX,x) ≤ dim(OS,s) + trdegR(S)R(X)− trdegκ(s)κ(x).
Moreover, equality holds if S is universally catenary.

Proof. The corresponding algebra statement is Algebra, Lemma 10.113.1. □

Lemma 29.52.2.0BAE Let S be a scheme. Let f : X → S be a morphism of schemes.
Let x ∈ X, and set s = f(x). Assume S is locally Noetherian and f is locally of
finite type, We have
(29.52.2.1)0BAF dim(OX,x) ≤ dim(OS,s) + E − trdegκ(s)κ(x).
where E is the maximum of trdegκ(f(ξ))(κ(ξ)) where ξ runs over the generic points
of irreducible components of X containing x.

Proof. Let X1, . . . , Xn be the irreducible components of X containing x endowed
with their reduced induced scheme structure. These correspond to the minimal
primes qi of OX,x and hence there are finitely many of them (Schemes, Lemma
26.13.2 and Algebra, Lemma 10.31.6). Then dim(OX,x) = max dim(OX,x/qi) =
max dim(OXi,x). The ξ’s occurring in the definition of E are exactly the generic
points ξi ∈ Xi. Let Zi = {f(ξi)} ⊂ S endowed with the reduced induced scheme
structure. The composition Xi → X → S factors through Zi (Schemes, Lemma
26.12.7). Thus we may apply the dimension formula (Lemma 29.52.1) to see that
dim(OXi,x) ≤ dim(OZi,x) + trdegκ(f(ξ))(κ(ξ)) − trdegκ(s)κ(x). Putting everything
together we obtain the lemma. □

An application is the construction of a dimension function on any scheme of finite
type over a universally catenary scheme endowed with a dimension function. For
the definition of dimension functions, see Topology, Definition 5.20.1.

https://stacks.math.columbia.edu/tag/0AB0
https://stacks.math.columbia.edu/tag/02JU
https://stacks.math.columbia.edu/tag/0BAE


29.52. THE DIMENSION FORMULA 2518

Lemma 29.52.3.02JW Let S be a locally Noetherian and universally catenary scheme.
Let δ : S → Z be a dimension function. Let f : X → S be a morphism of schemes.
Assume f locally of finite type. Then the map

δ = δX/S : X −→ Z
x 7−→ δ(f(x)) + trdegκ(f(x))κ(x)

is a dimension function on X.

Proof. Let f : X → S be locally of finite type. Let x⇝ y, x ̸= y be a specialization
in X. We have to show that δX/S(x) > δX/S(y) and that δX/S(x) = δX/S(y) + 1 if
y is an immediate specialization of x.
Choose an affine open V ⊂ S containing the image of y and choose an affine open
U ⊂ X mapping into V and containing y. We may clearly replace X by U and S
by V . Thus we may assume that X = Spec(A) and S = Spec(R) and that f is
given by a ring map R → A. The ring R is universally catenary (Lemma 29.17.2)
and the map R→ A is of finite type (Lemma 29.15.2).
Let q ⊂ A be the prime ideal corresponding to the point x and let p ⊂ R be the
prime ideal corresponding to f(x). The restriction δ′ of δ to S′ = Spec(R/p) ⊂ S
is a dimension function. The ring R/p is universally catenary. The restriction of
δX/S to X ′ = Spec(A/q) is clearly equal to the function δX′/S′ constructed using
the dimension function δ′. Hence we may assume in addition to the above that
R ⊂ A are domains, in other words that X and S are integral schemes, and that x
is the generic point of X and f(x) is the generic point of S.
Note that OX,x = R(X) and that since x ⇝ y, x ̸= y, the spectrum of OX,y has
at least two points (Schemes, Lemma 26.13.2) hence dim(OX,y) > 0 . If y is an
immediate specialization of x, then Spec(OX,y) = {x, y} and dim(OX,y) = 1.
Write s = f(x) and t = f(y). We compute

δX/S(x)− δX/S(y) = δ(s) + trdegκ(s)κ(x)− δ(t)− trdegκ(t)κ(y)
= δ(s)− δ(t) + trdegR(S)R(X)− trdegκ(t)κ(y)
= δ(s)− δ(t) + dim(OX,y)− dim(OS,t)

where we use equality in (29.52.1.1) in the last step. Since δ is a dimension function
on the scheme S and s ∈ S is the generic point, the difference δ(s)− δ(t) is equal to
codim({t}, S) by Topology, Lemma 5.20.2. This is equal to dim(OS,t) by Properties,
Lemma 28.10.3. Hence we conclude that

δX/S(x)− δX/S(y) = dim(OX,y)
and the lemma follows from what we said above about dim(OX,y). □

Another application of the dimension formula is that the dimension does not change
under “alterations” (to be defined later).

Lemma 29.52.4.02JX Let f : X → Y be a morphism of schemes. Assume that
(1) Y is locally Noetherian,
(2) X and Y are integral schemes,
(3) f is dominant, and
(4) f is locally of finite type.
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Then we have
dim(X) ≤ dim(Y ) + trdegR(Y )R(X).

If f is closed16 then equality holds.
Proof. Let f : X → Y be as in the lemma. Let ξ0 ⇝ ξ1 ⇝ . . .⇝ ξe be a sequence
of specializations in X. Set x = ξe and y = f(x). Observe that e ≤ dim(OX,x)
as the given specializations occur in the spectrum of OX,x, see Schemes, Lemma
26.13.2. By the dimension formula, Lemma 29.52.1, we see that

e ≤ dim(OX,x)
≤ dim(OY,y) + trdegR(Y )R(X)− trdegκ(y)κ(x)
≤ dim(OY,y) + trdegR(Y )R(X)

Hence we conclude that e ≤ dim(Y ) + trdegR(Y )R(X) as desired.

Next, assume f is also closed. Say ξ0 ⇝ ξ1 ⇝ . . .⇝ ξd is a sequence of specializa-
tions in Y . We want to show that dim(X) ≥ d+ r. We may assume that ξ0 = η is
the generic point of Y . The generic fibre Xη is a scheme locally of finite type over
κ(η) = R(Y ). It is nonempty as f is dominant. Hence by Lemma 29.16.10 it is a
Jacobson scheme. Thus by Lemma 29.16.8 we can find a closed point ξ0 ∈ Xη and
the extension κ(η) ⊂ κ(ξ0) is a finite extension. Note that OX,ξ0 = OXη,ξ0 because
η is the generic point of Y . Hence we see that dim(OX,ξ0) = r by Lemma 29.52.1 ap-
plied to the scheme Xη over the universally catenary scheme Spec(κ(η)) (see Lemma
29.17.5) and the point ξ0. This means that we can find ξ−r ⇝ . . .⇝ ξ−1 ⇝ ξ0 in X.
On the other hand, as f is closed specializations lift along f , see Topology, Lemma
5.19.7. Thus, as ξ0 lies over η = ξ0 we can find specializations ξ0 ⇝ ξ1 ⇝ . . .⇝ ξd
lying over ξ0 ⇝ ξ1 ⇝ . . .⇝ ξd. In other words we have

ξ−r ⇝ . . .⇝ ξ−1 ⇝ ξ0 ⇝ ξ1 ⇝ . . .⇝ ξd

which means that dim(X) ≥ d+ r as desired. □

Lemma 29.52.5.0BAG Let f : X → Y be a morphism of schemes. Assume that Y is
locally Noetherian and f is locally of finite type. Then

dim(X) ≤ dim(Y ) + E

where E is the supremum of trdegκ(f(ξ))(κ(ξ)) where ξ runs through the generic
points of the irreducible components of X.
Proof. Immediate consequence of Lemma 29.52.2 and Properties, Lemma 28.10.2.

□

29.53. Relative normalization

0BAK In this section we construct the normalization of one scheme in another.
Lemma 29.53.1.035F Let X be a scheme. Let A be a quasi-coherent sheaf of OX -
algebras. The subsheaf A′ ⊂ A defined by the rule

U 7−→ {f ∈ A(U) | fx ∈ Ax integral over OX,x for all x ∈ U}
is a quasi-coherent OX -algebra, the stalk A′

x is the integral closure of OX,x in Ax,
and for any affine open U ⊂ X the ring A′(U) ⊂ A(U) is the integral closure of
OX(U) in A(U).

16For example if f is proper, see Definition 29.41.1.
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Proof. This is a subsheaf by the local nature of the conditions. It is an OX -algebra
by Algebra, Lemma 10.36.7. Let U ⊂ X be an affine open. Say U = Spec(R) and
say A is the quasi-coherent sheaf associated to the R-algebra A. Then according
to Algebra, Lemma 10.36.12 the value of A′ over U is given by the integral closure
A′ of R in A. This proves the last assertion of the lemma. To prove that A′ is
quasi-coherent, it suffices to show that A′(D(f)) = A′

f . This follows from the fact
that integral closure and localization commute, see Algebra, Lemma 10.36.11. The
same fact shows that the stalks are as advertised. □

Definition 29.53.2.035G Let X be a scheme. Let A be a quasi-coherent sheaf of OX -
algebras. The integral closure of OX in A is the quasi-coherent OX -subalgebra
A′ ⊂ A constructed in Lemma 29.53.1 above.

In the setting of the definition above we can consider the morphism of relative
spectra

Y = Spec
X

(A) //

&&

X ′ = Spec
X

(A′)

xx
X

see Lemma 29.11.5. The scheme X ′ → X will be the normalization of X in the
scheme Y . Here is a slightly more general setting. Suppose we have a quasi-compact
and quasi-separated morphism f : Y → X of schemes. In this case the sheaf of OX -
algebras f∗OY is quasi-coherent, see Schemes, Lemma 26.24.1. Taking the integral
closure O′ ⊂ f∗OY we obtain a quasi-coherent sheaf of OX -algebras whose relative
spectrum is the normalization of X in Y . Here is the formal definition.

Definition 29.53.3.035H Let f : Y → X be a quasi-compact and quasi-separated mor-
phism of schemes. Let O′ be the integral closure of OX in f∗OY . The normalization
of X in Y is the scheme17

ν : X ′ = Spec
X

(O′)→ X

over X. It comes equipped with a natural factorization

Y
f ′

−→ X ′ ν−→ X

of the initial morphism f .

The factorization is the composition of the canonical morphism Y → Spec(f∗OY )
(see Constructions, Lemma 27.4.7) and the morphism of relative spectra coming
from the inclusion map O′ → f∗OY . We can characterize the normalization as
follows.

Lemma 29.53.4.035I Let f : Y → X be a quasi-compact and quasi-separated morphism
of schemes. The factorization f = ν ◦ f ′, where ν : X ′ → X is the normalization of
X in Y is characterized by the following two properties:

(1) the morphism ν is integral, and

17The scheme X′ need not be normal, for example if Y = X and f = idX , then X′ = X.
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(2) for any factorization f = π ◦ g, with π : Z → X integral, there exists a
commutative diagram

Y

f ′

��

g
// Z

π

��
X ′

h

>>

ν // X

for some unique morphism h : X ′ → Z.

Moreover, the morphism f ′ : Y → X ′ is dominant and in (2) the morphism h :
X ′ → Z is the normalization of Z in Y .

Proof. Let O′ ⊂ f∗OY be the integral closure of OX as in Definition 29.53.3.
The morphism ν is integral by construction, which proves (1). Assume given a
factorization f = π ◦ g with π : Z → X integral as in (2). By Definition 29.44.1
π is affine, and hence Z is the relative spectrum of a quasi-coherent sheaf of OX -
algebras B. The morphism g : Y → Z corresponds to a map of OX -algebras
χ : B → f∗OY . Since B(U) is integral over OX(U) for every affine open U ⊂ X (by
Definition 29.44.1) we see from Lemma 29.53.1 that χ(B) ⊂ O′. By the functoriality
of the relative spectrum Lemma 29.11.5 this provides us with a unique morphism
h : X ′ → Z. We omit the verification that the diagram commutes.

It is clear that (1) and (2) characterize the factorization f = ν ◦ f ′ since it charac-
terizes it as an initial object in a category.

From the universal property in (2) we see that f ′ does not factor through a proper
closed subscheme of X ′. Hence the scheme theoretic image of f ′ is X ′. Since f ′ is
quasi-compact (by Schemes, Lemma 26.21.14 and the fact that ν is separated as an
affine morphism) we see that f ′(Y ) is dense in X ′. Hence f ′ is dominant.

The morphism h in (2) is integral by Lemma 29.44.14. Given a factorization g =
π′ ◦ g′ with π′ : Z ′ → Z integral, we get a factorization f = (π ◦ π′) ◦ g′ and we
get a morphism h′ : X ′ → Z ′. Uniqueness implies that π′ ◦ h′ = h. Hence the
characterization (1), (2) applies to the morphism h : X ′ → Z which gives the last
statement of the lemma. □

Lemma 29.53.5.035J Let

Y2

f2

��

// Y1

f1

��
X2 // X1

be a commutative diagram of morphisms of schemes. Assume f1, f2 quasi-compact
and quasi-separated. Let fi = νi ◦f ′

i , i = 1, 2 be the canonical factorizations, where
νi : X ′

i → Xi is the normalization of Xi in Yi. Then there exists a unique arrow
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X ′
2 → X ′

1 fitting into a commutative diagram
Y2

f ′
2
��

// Y1

f ′
1
��

X ′
2

ν2

��

// X ′
1

ν1

��
X2 // X1

Proof. By Lemmas 29.53.4 (1) and 29.44.6 the base change X2 ×X1 X
′
1 → X2

is integral. Note that f2 factors through this morphism. Hence we get a unique
morphismX ′

2 → X2×X1X
′
1 from Lemma 29.53.4 (2). This gives the arrowX ′

2 → X ′
1

fitting into the commutative diagram and uniqueness follows as well. □

Lemma 29.53.6.035K Let f : Y → X be a quasi-compact and quasi-separated morphism
of schemes. Let U ⊂ X be an open subscheme and set V = f−1(U). Then the
normalization of U in V is the inverse image of U in the normalization of X in Y .

Proof. Clear from the construction. □

Lemma 29.53.7.0BXA Let f : Y → X be a quasi-compact and quasi-separated morphism
of schemes. Let X ′ be the normalization of X in Y . Then the normalization of X ′

in Y is X ′.

Proof. If Y → X ′′ → X ′ is the normalization of X ′ in Y , then we can apply Lemma
29.53.4 to the composition X ′′ → X to get a canonical morphism h : X ′ → X ′′

over X. We omit the verification that the morphisms h and X ′′ → X ′ are mutually
inverse (using uniqueness of the factorization in the lemma). □

Lemma 29.53.8.0AXN Let f : Y → X be a quasi-compact and quasi-separated morphism
of schemes. Let X ′ → X be the normalization of X in Y . If Y is reduced, so is X ′.

Proof. This follows from the fact that a subring of a reduced ring is reduced. Some
details omitted. □

Lemma 29.53.9.0AXP Let f : Y → X be a quasi-compact and quasi-separated morphism
of schemes. Let X ′ → X be the normalization of X in Y . Every generic point of
an irreducible component of X ′ is the image of a generic point of an irreducible
component of Y .

Proof. By Lemma 29.53.6 we may assume X = Spec(A) is affine. Choose a finite
affine open covering Y =

⋃
Spec(Bi). Then X ′ = Spec(A′) and the morphisms

Spec(Bi) → Y → X ′ jointly define an injective A-algebra map A′ →
∏
Bi. Thus

the lemma follows from Algebra, Lemma 10.30.5. □

Lemma 29.53.10.03GO Let f : Y → X be a quasi-compact and quasi-separated mor-
phism of schemes. Suppose that Y = Y1 ⨿ Y2 is a disjoint union of two schemes.
Write fi = f |Yi . Let X ′

i be the normalization of X in Yi. Then X ′
1 ⨿ X ′

2 is the
normalization of X in Y .

Proof. In terms of integral closures this corresponds to the following fact: Let
A→ B be a ring map. Suppose that B = B1 ×B2. Let A′

i be the integral closure
of A in Bi. Then A′

1×A′
2 is the integral closure of A in B. The reason this works is
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that the elements (1, 0) and (0, 1) of B are idempotents and hence integral over A.
Thus the integral closure A′ of A in B is a product and it is not hard to see that the
factors are the integral closures A′

i as described above (some details omitted). □

Lemma 29.53.11.03GQ Let f : X → S be a quasi-compact, quasi-separated and uni-
versally closed morphisms of schemes. Then f∗OX is integral over OS . In other
words, the normalization of S in X is equal to the factorization

X −→ Spec
S

(f∗OX) −→ S

of Constructions, Lemma 27.4.7.

Proof. The question is local on S, hence we may assume S = Spec(R) is affine. Let
h ∈ Γ(X,OX). We have to show that h satisfies a monic equation over R. Think
of h as a morphism as in the following commutative diagram

X
h

//

f ��

A1
S

~~
S

Let Z ⊂ A1
S be the scheme theoretic image of h, see Definition 29.6.2. The mor-

phism h is quasi-compact as f is quasi-compact and A1
S → S is separated, see

Schemes, Lemma 26.21.14. By Lemma 29.6.3 the morphism X → Z is dominant.
By Lemma 29.41.7 the morphism X → Z is closed. Hence h(X) = Z (set theo-
retically). Thus we can use Lemma 29.41.9 to conclude that Z → S is universally
closed (and even proper). Since Z ⊂ A1

S , we see that Z → S is affine and proper,
hence integral by Lemma 29.44.7. Writing A1

S = Spec(R[T ]) we conclude that the
ideal I ⊂ R[T ] of Z contains a monic polynomial P (T ) ∈ R[T ]. Hence P (h) = 0
and we win. □

Lemma 29.53.12.03GP Let f : Y → X be an integral morphism. Then the normalization
of X in Y is equal to Y .

Proof. By Lemma 29.44.7 this is a special case of Lemma 29.53.11. □

Lemma 29.53.13.035L Let f : Y → X be a quasi-compact and quasi-separated mor-
phism of schemes. Let X ′ be the normalization of X in Y . Assume

(1) Y is a normal scheme,
(2) quasi-compact opens of Y have finitely many irreducible components.

Then X ′ is a disjoint union of integral normal schemes. Moreover, the morphism
Y → X ′ is dominant and induces a bijection of irreducible components.

Proof. Let U ⊂ X be an affine open. Consider the inverse image U ′ of U in X ′.
Set V = f−1(U). By Lemma 29.53.6 we V → U ′ → U is the normalization of
U in V . Say U = Spec(A). Then V is quasi-compact, and hence has a finite
number of irreducible components by assumption. Hence V =

∐
i=1,...n Vi is a

finite disjoint union of normal integral schemes by Properties, Lemma 28.7.5. By
Lemma 29.53.10 we see that U ′ =

∐
i=1,...,n U

′
i , where U ′

i is the normalization of
U in Vi. By Properties, Lemma 28.7.9 we see that Bi = Γ(Vi,OVi) is a normal
domain. Note that U ′

i = Spec(A′
i), where A′

i ⊂ Bi is the integral closure of A in Bi,
see Lemma 29.53.1. By Algebra, Lemma 10.37.2 we see that A′

i ⊂ Bi is a normal
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domain. Hence U ′ =
∐
U ′
i is a finite union of normal integral schemes and hence

is normal.

As X ′ has an open covering by the schemes U ′ we conclude from Properties, Lemma
28.7.2 that X ′ is normal. On the other hand, each U ′ is a finite disjoint union
of irreducible schemes, hence every quasi-compact open of X ′ has finitely many
irreducible components (by a topological argument which we omit). Thus X ′ is a
disjoint union of normal integral schemes by Properties, Lemma 28.7.5. It is clear
from the description of X ′ above that Y → X ′ is dominant and induces a bijection
on irreducible components V → U ′ for every affine open U ⊂ X. The bijection of
irreducible components for the morphism Y → X ′ follows from this by a topological
argument (omitted). □

Lemma 29.53.14.0AVK Let f : X → S be a morphism. Assume that
(1) S is a Nagata scheme,
(2) f is quasi-compact and quasi-separated,
(3) quasi-compact opens of X have finitely many irreducible components,
(4) if x ∈ X is a generic point of an irreducible component, then the field

extension κ(x)/κ(f(x)) is finitely generated, and
(5) X is reduced.

Then the normalization ν : S′ → S of S in X is finite.

Proof. There is an immediate reduction to the case S = Spec(R) where R is a
Nagata ring by assumption (1). We have to show that the integral closure A of
R in Γ(X,OX) is finite over R. Since f is quasi-compact by assumption (2) we
can write X =

⋃
i=1,...,n Ui with each Ui affine. Say Ui = Spec(Bi). Each Bi is

reduced by assumption (5) and has finitely many minimal primes qi1, . . . , qimi by
assumption (3) and Algebra, Lemma 10.26.1. We have

Γ(X,OX) ⊂ B1 × . . .×Bn ⊂
∏

i=1,...,n

∏
j=1,...,mi

(Bi)qij

the second inclusion by Algebra, Lemma 10.25.2. We have κ(qij) = (Bi)qij by
Algebra, Lemma 10.25.1. Hence the integral closureA ofR in Γ(X,OX) is contained
in the product of the integral closures Aij of R in κ(qij). Since R is Noetherian
it suffices to show that Aij is a finite R-module for each i, j. Let pij ⊂ R be the
image of qij . As κ(qij)/κ(pij) is a finitely generated field extension by assumption
(4), we see that R → κ(qij) is essentially of finite type. Thus R → Aij is finite by
Algebra, Lemma 10.162.2. □

Lemma 29.53.15.03GR Let f : X → S be a morphism. Assume that
(1) S is a Nagata scheme,
(2) f is of finite type,
(3) X is reduced.

Then the normalization ν : S′ → S of S in X is finite.

Proof. This is a special case of Lemma 29.53.14. Namely, (2) holds as the finite type
morphism f is quasi-compact by definition and quasi-separated by Lemma 29.15.7.
Condition (3) holds because X is locally Noetherian by Lemma 29.15.6. Finally,
condition (4) holds because a finite type morphism induces finitely generated residue
field extensions. □
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Lemma 29.53.16.0BXB Let f : Y → X be a finite type morphism of schemes with Y
reduced and X Nagata. Let X ′ be the normalization of X in Y . Let x′ ∈ X ′ be a
point such that

(1) dim(OX′,x′) = 1, and
(2) the fibre of Y → X ′ over x′ is empty.

Then OX′,x′ is a discrete valuation ring.

Proof. We can replace X by an affine neighbourhood of the image of x′. Hence
we may assume X = Spec(A) with A Nagata. By Lemma 29.53.15 the morphism
X ′ → X is finite. Hence we can write X ′ = Spec(A′) for a finite A-algebra A′. By
Lemma 29.53.7 after replacing X by X ′ we reduce to the case described in the next
paragraph.
The case X = X ′ = Spec(A) with A Noetherian. Let p ⊂ A be the prime ideal
corresponding to our point x′. Choose g ∈ p not contained in any minimal prime
of A (use prime avoidance and the fact that A has finitely many minimal primes,
see Algebra, Lemmas 10.15.2 and 10.31.6). Set Z = f−1V (g) ⊂ Y ; it is a closed
subscheme of Y . Then f(Z) does not contain any generic point by choice of g and
does not contain x′ because x′ is not in the image of f . The closure of f(Z) is the
set of specializations of points of f(Z) by Lemma 29.6.5. Thus the closure of f(Z)
does not contain x′ because the condition dim(OX′,x′) = 1 implies only the generic
points of X = X ′ specialize to x′. In other words, after replacing X by an affine
open neighbourhood of x′ we may assume that f−1V (g) = ∅. Thus g maps to an
invertible global function on Y and we obtain a factorization

A→ Ag → Γ(Y,OY )
Since X = X ′ this implies that A is equal to the integral closure of A in Ag.
By Algebra, Lemma 10.36.11 we conclude that Ap is the integral closure of Ap in
Ap[1/g]. By our choice of g, since dim(Ap) = 1 and since A is reduced we see that
Ap[1/g] is a finite product of fields (the product of the residue fields of the minimal
primes contained in p). Hence Ap is normal (Algebra, Lemma 10.37.16) and the
proof is complete. Some details omitted. □

29.54. Normalization

035E Next, we come to the normalization of a scheme X. We only define/construct
it when X has locally finitely many irreducible components. Let X be a scheme
such that every quasi-compact open has finitely many irreducible components. Let
X(0) ⊂ X be the set of generic points of irreducible components of X. Let
(29.54.0.1)035M f : Y =

∐
η∈X(0)

Spec(κ(η)) −→ X

be the inclusion of the generic points into X using the canonical maps of Schemes,
Section 26.13. Note that this morphism is quasi-compact by assumption and quasi-
separated as Y is separated (see Schemes, Section 26.21).

Definition 29.54.1.035N Let X be a scheme such that every quasi-compact open has
finitely many irreducible components. We define the normalization of X as the
morphism

ν : Xν −→ X

which is the normalization of X in the morphism f : Y → X (29.54.0.1) constructed
above.
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Any locally Noetherian scheme has a locally finite set of irreducible components and
the definition applies to it. Usually the normalization is defined only for reduced
schemes. With the definition above the normalization of X is the same as the
normalization of the reduction Xred of X.
Lemma 29.54.2.035O Let X be a scheme such that every quasi-compact open has finitely
many irreducible components. The normalization morphism ν factors through the
reduction Xred and Xν → Xred is the normalization of Xred.
Proof. Let f : Y → X be the morphism (29.54.0.1). We get a factorization Y →
Xred → X of f from Schemes, Lemma 26.12.7. By Lemma 29.53.4 we obtain a
canonical morphism Xν → Xred and that Xν is the normalization of Xred in Y .
The lemma follows as Y → Xred is identical to the morphism (29.54.0.1) constructed
for Xred. □

If X is reduced, then the normalization of X is the same as the relative spectrum of
the integral closure of OX in the sheaf of meromorphic functions KX (see Divisors,
Section 31.23). Namely, KX = f∗OY in this case, see Divisors, Lemma 31.25.1 and
its proof. We describe this here explicitly.
Lemma 29.54.3.035P Let X be a reduced scheme such that every quasi-compact open
has finitely many irreducible components. Let Spec(A) = U ⊂ X be an affine open.
Then

(1) A has finitely many minimal primes q1, . . . , qt,
(2) the total ring of fractions Q(A) of A is Q(A/q1)× . . .×Q(A/qt),
(3) the integral closure A′ of A in Q(A) is the product of the integral closures

of the domains A/qi in the fields Q(A/qi), and
(4) ν−1(U) is identified with the spectrum of A′ where ν : Xν → X is the

normalization morphism.
Proof. Minimal primes correspond to irreducible components (Algebra, Lemma
10.26.1), hence we have (1) by assumption. Then (0) = q1 ∩ . . . ∩ qt because A
is reduced (Algebra, Lemma 10.17.2). Then we have Q(A) =

∏
Aqi =

∏
κ(qi)

by Algebra, Lemmas 10.25.4 and 10.25.1. This proves (2). Part (3) follows from
Algebra, Lemma 10.37.16, or Lemma 29.53.10. Part (4) holds because it is clear
that f−1(U)→ U is the morphism

Spec
(∏

κ(qi)
)
−→ Spec(A)

where f : Y → X is the morphism (29.54.0.1). □

Lemma 29.54.4.0C3B Let X be a scheme such that every quasi-compact open has a
finite number of irreducible components. Let ν : Xν → X be the normalization of
X. Let x ∈ X. Then the following are canonically isomorphic as OX,x-algebras

(1) the stalk (ν∗OXν )x,
(2) the integral closure of OX,x in the total ring of fractions of (OX,x)red,
(3) the integral closure of OX,x in the product of the residue fields of the

minimal primes of OX,x (and there are finitely many of these).
Proof. After replacing X by an affine open neighbourhood of x we may assume that
X has finitely many irreducible components and that x is contained in each of them.
Then the stalk (ν∗OXν )x is the integral closure of A = OX,x in the product L of the
residue fields of the minimal primes of A. This follows from the construction of the
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normalization and Lemma 29.53.1. Alternatively, you can use Lemma 29.54.3 and
the fact that normalization commutes with localization (Algebra, Lemma 10.36.11).
Since Ared has finitely many minimal primes (because these correspond exactly to
the generic points of the irreducible components of X passing through x) we see
that L is the total ring of fractions of Ared (Algebra, Lemma 10.25.4). Thus our
ring is also the integral closure of A in the total ring of fractions of Ared. □

Lemma 29.54.5.035Q Let X be a scheme such that every quasi-compact open has finitely
many irreducible components.

(1) The normalization Xν is a disjoint union of integral normal schemes.
(2) The morphism ν : Xν → X is integral, surjective, and induces a bijection

on irreducible components.
(3) For any integral morphism α : X ′ → X such that for U ⊂ X quasi-

compact open the inverse image α−1(U) has finitely many irreducible
components and α|α−1(U) : α−1(U) → U is birational18 there exists a
factorization Xν → X ′ → X and Xν → X ′ is the normalization of X ′.

(4) For any morphism Z → X with Z a normal scheme such that each irre-
ducible component of Z dominates an irreducible component of X there
exists a unique factorization Z → Xν → X.

Proof. Let f : Y → X be as in (29.54.0.1). The scheme Xν is a disjoint union of
normal integral schemes because Y is normal and every affine open of Y has finitely
many irreducible components, see Lemma 29.53.13. This proves (1). Alternatively
one can deduce (1) from Lemmas 29.54.2 and 29.54.3.
The morphism ν is integral by Lemma 29.53.4. By Lemma 29.53.13 the morphism
Y → Xν induces a bijection on irreducible components, and by construction of
Y this implies that Xν → X induces a bijection on irreducible components. By
construction f : Y → X is dominant, hence also ν is dominant. Since an integral
morphism is closed (Lemma 29.44.7) this implies that ν is surjective. This proves
(2).
Suppose that α : X ′ → X is as in (3). It is clear that X ′ satisfies the assumptions
under which the normalization is defined. Let f ′ : Y ′ → X ′ be the morphism
(29.54.0.1) constructed starting with X ′. As α is locally birational it is clear that
Y ′ = Y and f = α◦f ′. Hence the factorization Xν → X ′ → X exists and Xν → X ′

is the normalization of X ′ by Lemma 29.53.4. This proves (3).
Let g : Z → X be a morphism whose domain is a normal scheme and such that
every irreducible component dominates an irreducible component of X. By Lemma
29.54.2 we haveXν = Xν

red and by Schemes, Lemma 26.12.7 Z → X factors through
Xred. Hence we may replace X by Xred and assume X is reduced. Moreover, as
the factorization is unique it suffices to construct it locally on Z. Let W ⊂ Z and
U ⊂ X be affine opens such that g(W ) ⊂ U . Write U = Spec(A) and W = Spec(B),
with g|W given by φ : A→ B. We will use the results of Lemma 29.54.3 freely. Let
p1, . . . , pt be the minimal primes of A. As Z is normal, we see that B is a normal
ring, in particular reduced. Moreover, by assumption any minimal prime q ⊂ B
we have that φ−1(q) is a minimal prime of A. Hence if x ∈ A is a nonzerodivisor,

18This awkward formulation is necessary as we’ve only defined what it means for a morphism
to be birational if the source and target have finitely many irreducible components. It suffices if
X′
red → Xred satisfies the condition.
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i.e., x ̸∈
⋃
pi, then φ(x) is a nonzerodivisor in B. Thus we obtain a canonical ring

map Q(A)→ Q(B). As B is normal it is equal to its integral closure in Q(B) (see
Algebra, Lemma 10.37.12). Hence we see that the integral closure A′ ⊂ Q(A) of
A maps into B via the canonical map Q(A) → Q(B). Since ν−1(U) = Spec(A′)
this gives the canonical factorization W → ν−1(U) → U of ν|W . We omit the
verification that it is unique. □

Lemma 29.54.6.0CDV Let X be a scheme such that every quasi-compact open has finitely
many irreducible components. Let Zi ⊂ X, i ∈ I be the irreducible components of
X endowed with the reduced induced structure. Let Zνi → Zi be the normalization.
Then

∐
i∈I Z

ν
i → X is the normalization of X.

Proof. We may assume X is reduced, see Lemma 29.54.2. Then the lemma follows
either from the local description in Lemma 29.54.3 or from Lemma 29.54.5 part
(3) because

∐
Zi → X is integral and locally birational (as X is reduced and has

locally finitely many irreducible components). □

Lemma 29.54.7.0BXC Let X be a reduced scheme with finitely many irreducible com-
ponents. Then the normalization morphism Xν → X is birational.
Proof. The normalization induces a bijection of irreducible components by Lemma
29.54.5. Let η ∈ X be a generic point of an irreducible component of X and let
ην ∈ Xν be the generic point of the corresponding irreducible component of Xν .
Then ην 7→ η and to finish the proof we have to show that OX,η → OXν ,ην is an
isomorphism, see Definition 29.50.1. Because X and Xν are reduced, we see that
both local rings are equal to their residue fields (Algebra, Lemma 10.25.1). On
the other hand, by the construction of the normalization as the normalization of
X in Y =

∐
Spec(κ(η)) we see that we have κ(η) ⊂ κ(ην) ⊂ κ(η) and the proof is

complete. □

Lemma 29.54.8.0AB1 A finite (or even integral) birational morphism f : X → Y of
integral schemes with Y normal is an isomorphism.
Proof. Let V ⊂ Y be an affine open with inverse image U ⊂ X which is an affine
open too. Since f is a birational morphism of integral schemes, the homomorphism
OY (V )→ OX(U) is an injective map of domains which induces an isomorphism of
fraction fields. As Y is normal, the ring OY (V ) is integrally closed in the fraction
field. Since f is finite (or integral) every element of OX(U) is integral over OY (V ).
We conclude that OY (V ) = OX(U). This proves that f is an isomorphism as
desired. □

Lemma 29.54.9.035R Let X be an integral, Japanese scheme. The normalization ν :
Xν → X is a finite morphism.
Proof. Follows from the definition (Properties, Definition 28.13.1) and Lemma
29.54.3. Namely, in this case the lemma says that ν−1(Spec(A)) is the spectrum of
the integral closure of A in its field of fractions. □

Lemma 29.54.10.035S Let X be a Nagata scheme. The normalization ν : Xν → X is a
finite morphism.
Proof. Note that a Nagata scheme is locally Noetherian, thus Definition 29.54.1
does apply. The lemma is now a special case of Lemma 29.53.14 but we can also
prove it directly as follows. Write Xν → X as the composition Xν → Xred → X.
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As Xred → X is a closed immersion it is finite. Hence it suffices to prove the lemma
for a reduced Nagata scheme (by Lemma 29.44.5). Let Spec(A) = U ⊂ X be an
affine open. By Lemma 29.54.3 we have ν−1(U) = Spec(

∏
A′
i) where A′

i is the
integral closure of A/qi in its fraction field. As A is a Nagata ring (see Properties,
Lemma 28.13.6) each of the ring extensions A/qi ⊂ A′

i are finite. Hence A→
∏
A′
i

is a finite ring map and we win. □

Lemma 29.54.11.0GIQ Let X be an irreducible, geometrically unibranch scheme. The
normalization morphism ν : Xν → X is a universal homeomorphism.

Proof. We have to show that ν is integral, universally injective, and surjective, see
Lemma 29.45.5. By Lemma 29.54.5 the morphism ν is integral. Let x ∈ X and
set A = OX,x. Since X is irreducible we see that A has a single minimal prime
p and Ared = A/p. By Lemma 29.54.4 the stalk A′ = (ν∗OXν )x is the integral
closure of A in the fraction field of Ared. By More on Algebra, Definition 15.106.1
we see that A′ has a single prime m′ lying over mx ⊂ A and κ(m′)/κ(x) is purely
inseparable. Hence ν is bijective (hence surjective) and universally injective by
Lemma 29.10.2. □

29.55. Weak normalization

0H3I We will only define the weak normalization of a scheme when it locally has finitely
many irreducible components; similar to the case of normalization.

Lemma 29.55.1.0H3J Let A → B be a ring map inducing a dominant morphism
Spec(B)→ Spec(A) of spectra. There exists an A-subalgebra B′ ⊂ B such that

(1) Spec(B′)→ Spec(A) is a universal homeomorphism,
(2) given a factorization A → C → B such that Spec(C) → Spec(A) is a

universal homeomorphism, the image of C → B is contained in B′.

Proof. We will use Lemma 29.45.6 without further mention. Consider the commu-
tative diagram

B // Bred

A

OO

// Ared

OO

For any factorization A→ C → B of A→ B as in (2), we see that Ared → Cred →
Bred is a factorization of Ared → Bred as in (2). It follows that if the lemma
holds for Ared → Bred and produces the Ared-subalgebra B′

red ⊂ Bred, then setting
B′ ⊂ B equal to the inverse image of B′

red solves the lemma for A → B. This
reduces us to the case discussed in the next paragraph.
Assume A and B are reduced. In this case A ⊂ B by Algebra, Lemma 10.30.6. Let
A→ C → B be a factorization as in (2). Then we may apply Proposition 29.46.8 to
A ⊂ C to see that every element of C is contained in an extension A[c1, . . . , cn] ⊂ C
such that for i = 1, . . . , n we have

(1) c2
i , c

3
i ∈ A[c1, . . . , ci−1], or

(2) there exists a prime number p with pci, c
p
i ∈ A[c1, . . . , ci−1].

Thus property (2) holds if we define B′ ⊂ B to be the subset of elements b ∈ B
which are contained in an extension A[b1, . . . , bn] ⊂ B such that (*) holds: for
i = 1, . . . , n we have
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(1) b2
i , b

3
i ∈ A[b1, . . . , bi−1], or

(2) there exists a prime number p with pbi, b
p
i ∈ A[b1, . . . , bi−1].

There are only two things to check: (a) B′ is an A-subalgebra, and (b) Spec(B′)→
Spec(A) is a universal homeomorphism. Part (a) follows because given n ≥ 0 and
b1, . . . , bn ∈ B satisfying (*) and m ≥ 0 and b′

1, . . . , b
′
m ∈ B satisfying (*), the

integer n + m and b1, . . . , bn, b
′
1, . . . , b

′
m ∈ B also satisfies (*). Finally, part (b)

holds by Proposition 29.46.8 and our construction of B′. □

Lemma 29.55.2.0H3K Let A → B be a ring map inducing a dominant morphism
Spec(B)→ Spec(A) of spectra. Formation of the A-subalgebra B′ ⊂ B in Lemma
29.55.1 commutes with localization (see proof for explanation).

Proof. Let S ⊂ A be a multiplicative subset. Then S−1A → S−1B is a ring
map which induces a dominant morphism Spec(S−1B)→ Spec(S−1A) as well (see
Lemmas 29.8.4 and 29.25.9). Hence Lemma 29.55.1 produces an S−1A-subalgebra
(S−1B)′ ⊂ S−1B. The statement means that S−1B′ = (S−1B)′ as S−1A-subalgebras
of S−1B.
To see this is true, we will use the construction of B′ and (S−1B)′ in the proof of
Lemma 29.55.1. In the first step, we see that B′ is the inverse image of the Ared-
subalgebra B′

red ⊂ Bred constructed for the ring map Ared → Bred and similarly for
(S−1B)′. Noting that S−1Bred = (S−1B)red this reduces us to the case discussed
in the next paragraph.
If A and B are reduced, we have constructed B′ as the union of the subalgebras
A[b1, . . . , bn] such that for i = 1, . . . , n we have

(1) b2
i , b

3
i ∈ A[b1, . . . , bi−1], or

(2) there exists a prime number p with pbi, b
p
i ∈ A[b1, . . . , bi−1].

Similarly for (S−1B)′ ⊂ S−1B. Thus it is clear that the image of B′ → B → S−1B
is contained in (S−1B)′. To show that the corresponding map S−1B′ → (S−1B)′

is surjective, one uses Lemma 29.46.3 to clear denominators successively; we omit
the details. □

Lemma 29.55.3.0H3L Let A → B be a ring map inducing a dominant morphism
Spec(B)→ Spec(A) of spectra. There exists an A-subalgebra B′ ⊂ B such that

(1) Spec(B′) → Spec(A) is a universal homeomorphism inducing isomor-
phisms on residue fields,

(2) given a factorization A → C → B such that Spec(C) → Spec(A) is a
universal homeomorphism inducing isomorphisms on residue fields, the
image of C → B is contained in B′.

Proof. This proof is exactly the same as the proof of Lemma 29.55.1 except we use
Proposition 29.46.7 in stead of Proposition 29.46.8 □

Lemma 29.55.4.0H3M Let A → B be a ring map inducing a dominant morphism
Spec(B)→ Spec(A) of spectra. Formation of the A-subalgebra B′ ⊂ B in Lemma
29.55.3 commutes with localization (see proof for explanation).

Proof. The proof is the same as the proof of Lemma 29.55.2. □

Lemma 29.55.5.0H3N Let f : Y → X be a quasi-compact, quasi-separated, and domi-
nant morphism of schemes.
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(1) The category of factorizations Y → X ′ → X where X ′ → X is a universal
homeomorphism has an initial object Y → XY/wn → X.

(2) The category of factorizations Y → X ′ → X where X ′ → X is a universal
homeomorphism inducing isomorphisms on residue fields has an initial
object Y → XY/sn → X.

Moreover, formation of the factorization Y → XY/wn → X and Y → XY/sn → X
commutes with base change to open subschemes of X.

Proof. We will prove (1) and omit the proof of (2); also the final assertion will follow
from the construction of the factorization. We will use Lemma 29.45.5 without
further mention. First, let Y → XY/n → X be the normalization of X in Y , see
Definition 29.53.3. For Y → X ′ → X as in (1), we obtain a unique morphism
XY/n → X ′ compatible with the given morphisms, see Lemma 29.53.4. Thus it
suffices to prove the lemma with f replaced by XY/n → X. This reduces us to the
case studied in the next paragraph.

Assume f is integral (the rest of the proof works more generally if f is affine). Let
U = Spec(A) be an affine open of X and let V = f−1(U) = Spec(B) be the inverse
image in Y . Then A → B is a ring map which induces a dominant morphism on
spectra. By Lemma 29.55.1 we obtain an A-subalgebra B′ ⊂ B such that setting
UV/wn = Spec(B′) the factorization V → UV/wn → U is initial in the category of
factorizations V → U ′ → U where U ′ → U is a universal homeomorphism.

If U1 ⊂ U2 ⊂ X are affine opens, then setting Vi = f−1(Ui) we obtain a canonical
morphism

ρU2
U1

: UV1/wn
1 → U1 ×U2 U

V2/wn
2

over U1 by the universal property of UV1/wn
1 . These morphisms satisfy a natural

functoriality which we leave to the reader to formulate and prove. Furthermore,
the morphism ρU2

U1
is an isomorphism; this follows from Lemma 29.55.2 provided

that U1 ⊂ U2 is a standard open and in the general case can be reduced to this
case by the functorial nature of these maps and Schemes, Lemma 26.11.5 (details
omitted). Thus by relative glueing (Constructions, Lemma 27.2.1) we obtain a
morphism XY/wn → X which restricts to UV/wn → U over U compatibly with
the ρU2

U1
. Of course, the morphisms V → UV/wn glue to a morphism Y → XY/wn

(see Constructions, Remark 27.2.3) and we get our factorization Y → XY/wn → X
where the second morphism is a universal homeomorphism.

Finally, let Y → X ′ → X be a factorization as in (1). With V → UV/wn → U ⊂ X
as above, we obtain a factorization V → U ×XX ′ → U where the second arrow is a
universal homeomorphism and we obtain a unique morphism gU : UV/wn → U ×X
X ′ over U by the universal property of UV/wn. These gU are compatible with the
morphisms ρU2

U1
; details omitted. Hence there is a unique morphism g : XY/wn → X ′

over X agreeing with gU over U , see Constructions, Remark 27.2.3. This proves
that Y → XY/wn → X is initial in our category and the proof is complete. □

Definition 29.55.6.0H3P Let f : Y → X be a quasi-compact, quasi-separated, and
dominant morphism of schemes.

(1) The factorization Y → XY/sn → X constructed in Lemma 29.55.5 part
(2) is the seminormalization of X in Y .
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(2) The factorization Y → XY/wn → X constructed in Lemma 29.55.5 part
(1) is the weak normalization of X in Y .

Here is a way to reinterpret the seminormalization of a scheme which locally has
finitely many irreducible components.

Lemma 29.55.7.0H3Q Let X be a scheme such that every quasi-compact open has finitely
many irreducible components. Let ν : Xν → X be the normalization of X. Then
the seminormalization of X in Xν is is the seminormalization of X. In a formula:
Xsn = XXν/sn.

Proof. Let f : Y → X be as in (29.54.0.1) so that Xν is the normalization of X in
Y . The seminormalization Xsn → X of X is the initial object in the category of
universal homeomorphisms X ′ → X inducing isomorphisms on residue fields. Since
Y is the disjoint union of the spectra of the residue fields at the generic points of
irreducible components of X, we see that for any X ′ → X in this category we obtain
a canonical lift f ′ : Y → X ′ of f . Then by Lemma 29.53.4 we obtain a canonical
morphism Xν → X ′. Whence in turn a canonical morphism XXν/sn → X ′ by the
universal property of XXν/sn. In this way we see that XXν/sn satisfies the same
universal property that Xsn has and we conclude. □

Lemma 29.55.7 motivates the following definition. Since we have only constructed
the normalization in case X locally has finitely many irreducible components, we
will also restrict ourselves to that case for the weak normalization.

Definition 29.55.8.0H3R Let X be a scheme such that every quasi-compact open has
finitely many irreducible components. We define the weak normalization of X as
the weak normalization

Xν −→ Xwn −→ X

of X in the normalization Xν of X (Definition 29.54.1). In a formula: Xwn =
XXν/wn.

Combined with Lemma 29.55.7 we see that for a scheme X which locally has finitely
many irreducible components there are canonical morphisms

Xν → Xwn → Xsn → X

Having made this definition, we can say what it means for a scheme to be weakly
normal (provided it has locally finitely many irreducible components).

Definition 29.55.9.0H3S Let X be a scheme such that every quasi-compact open has
finitely many irreducible components. We say X is weakly normal if the weak
normalization Xwn → X is an isomorphism (Definition 29.55.8).

It follows immediately from the definitions that for a scheme X such that every
quasi-compact open has finitely many irreducible components we have

X normal⇒ X weakly normal⇒ X seminormal
We can work out the meaning of weak normality in the affine case as follows.

Lemma 29.55.10.0H3T Let X = Spec(A) be an affine scheme which has finitely many
irreducible components. Then X is weakly normal if and only if

(1) A is seminormal (Definition 29.47.1),
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(2) for a prime number p and z, w ∈ A such that (a) z is a nonzerodivisor,
(b) wp is divisible by zp, and (c) pw is divisible by z, then w is divisible
by z.

Proof. Assume X is weakly normal. Since a weakly normal scheme is seminormal,
we see that (1) holds (by our definition of weakly normal schemes). In particular
A is reduced. Let p, z, w be as in (2). Choose x, y ∈ A such that zpx = wp

and zy = pw. Then ppx = yp. The ring map A → C = A[t]/(tp − x, pt − y)
induces a universal homeomorphism on spectra. The normalization Xν of X is
the spectrum of the integral closure A′ of A in the total ring of fractions of A,
see Lemma 29.54.3. Note that a = w/z ∈ A′ because ap = x. Hence we have an
A-algebra homomorphism A → C → A′ sending t to a. At this point the defining
property X = Xwn = XXν/wn of being weakly normal tells us that C → A′ maps
into A. Thus we find a ∈ A as desired.
Conversely, assume (1) and (2). Let A′ be as in the previous paragraph. We have
to show that XXν/wn = X. By construction in the proof of Lemma 29.55.1, the
scheme XXν/wn is the spectrum of the subring of A′ which is the union of the
subrings A[a1, . . . , an] ⊂ A′ such that for i = 1, . . . , n we have

(a) a2
i , a

3
i ∈ A[a1, . . . , ai−1], or

(b) there exists a prime number p with pai, a
p
i ∈ A[a1, . . . , ai−1].

Then we can use (1) and (2) to inductively see that a1, . . . , an ∈ A; we omit the
details. Consequently, we have X = XXν/wn and hence X is weakly normal. □

Here is the obligatory lemma.

Lemma 29.55.11.0H3U Let X be a scheme such that every quasi-compact open has
finitely many irreducible components. The following are equivalent:

(1) The scheme X is weakly normal.
(2) For every affine open U ⊂ X the ring OX(U) satisfies conditions (1) and

(2) of Lemma 29.55.10.
(3) There exists an affine open covering X =

⋃
Ui such that each ring OX(Ui)

satisfies conditions (1) and (2) of Lemma 29.55.10.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme

Xj is weakly normal.
Moreover, if X is weakly normal then every open subscheme is weakly normal.

Proof. The condition toX be weakly normal is that the morphismXwn = XXν/wn →
X is an isomorphism. Since the construction of Xν → X commutes with base
change to open subschemes and since the construction of XXν/wn commutes with
base change to open subschemes of X (Lemma 29.55.5) the lemma is clear. □

29.56. Zariski’s Main Theorem (algebraic version)

03GS This is the version you can prove using purely algebraic methods. Before we can
prove more powerful versions (for non-affine morphisms) we need to develop more
tools. See Cohomology of Schemes, Section 30.21 and More on Morphisms, Section
37.43.

Theorem 29.56.1 (Algebraic version of Zariski’s Main Theorem).03GT Let f : Y → X
be an affine morphism of schemes. Assume f is of finite type. Let X ′ be the
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normalization of X in Y . Picture:

Y

f   

f ′
// X ′

ν
~~

X

Then there exists an open subscheme U ′ ⊂ X ′ such that
(1) (f ′)−1(U ′)→ U ′ is an isomorphism, and
(2) (f ′)−1(U ′) ⊂ Y is the set of points at which f is quasi-finite.

Proof. There is an immediate reduction to the case where X and hence Y are
affine. Say X = Spec(R) and Y = Spec(A). Then X ′ = Spec(A′), where A′ is
the integral closure of R in A, see Definitions 29.53.2 and 29.53.3. By Algebra,
Theorem 10.123.12 for every y ∈ Y at which f is quasi-finite, there exists an open
U ′
y ⊂ X ′ such that (f ′)−1(U ′

y) → U ′
y is an isomorphism. Set U ′ =

⋃
U ′
y where

y ∈ Y ranges over all points where f is quasi-finite. It remains to show that f is
quasi-finite at all points of (f ′)−1(U ′). If y ∈ (f ′)−1(U ′) with image x ∈ X, then
we see that Yx → X ′

x is an isomorphism in a neighbourhood of y. Hence there is
no point of Yx which specializes to y, since this is true for f ′(y) in X ′

x, see Lemma
29.44.8. By Lemma 29.20.6 part (3) this implies f is quasi-finite at y. □

We can use the algebraic version of Zariski’s Main Theorem to show that the set
of points where a morphism is quasi-finite is open.

Lemma 29.56.2.01TI Let f : X → S be a morphism of schemes. The set of points of X
where f is quasi-finite is an open U ⊂ X. The induced morphism U → S is locally
quasi-finite.

Proof. Suppose f is quasi-finite at x. Let x ∈ U = Spec(A) ⊂ X, V = Spec(R) ⊂
S be affine opens as in Definition 29.20.1. By either Theorem 29.56.1 above or
Algebra, Lemma 10.123.13, the set of primes q at which R → A is quasi-finite is
open in Spec(A). Since these all correspond to points of X where f is quasi-finite
we get the first statement. The second statement is obvious. □

We will improve the following lemma to general quasi-finite separated morphisms
later, see More on Morphisms, Lemma 37.43.3.

Lemma 29.56.3.03GU Let f : Y → X be a morphism of schemes. Assume
(1) X and Y are affine, and
(2) f is quasi-finite.

Then there exists a diagram

Y

f   

j
// Z

π~~
X

with Z affine, π finite and j an open immersion.

Proof. This is Algebra, Lemma 10.123.14 reformulated in the language of schemes.
□

https://stacks.math.columbia.edu/tag/01TI
https://stacks.math.columbia.edu/tag/03GU


29.57. UNIVERSALLY BOUNDED FIBRES 2535

Lemma 29.56.4.03J2 Let f : Y → X be a quasi-finite morphism of schemes. Let T ⊂ Y
be a closed nowhere dense subset of Y . Then f(T ) ⊂ X is a nowhere dense subset
of X.

Proof. As in the proof of Lemma 29.48.7 this reduces immediately to the case where
the base X is affine. In this case Y =

⋃
i=1,...,n Yi is a finite union of affine opens

(as f is quasi-compact). Since each T ∩Yi is nowhere dense, and since a finite union
of nowhere dense sets is nowhere dense (see Topology, Lemma 5.21.2), it suffices to
prove that the image f(T ∩ Yi) is nowhere dense in X. This reduces us to the case
where both X and Y are affine. At this point we apply Lemma 29.56.3 above to
get a diagram

Y

f   

j
// Z

π~~
X

with Z affine, π finite and j an open immersion. Set T = j(T ) ⊂ Z. By Topology,
Lemma 5.21.3 we see T is nowhere dense in Z. Since f(T ) ⊂ π(T ) the lemma
follows from the corresponding result in the finite case, see Lemma 29.48.7. □

29.57. Universally bounded fibres

03J3 Let X be a scheme over a field k. If X is finite over k, then X = Spec(A) where
A is a finite k-algebra. Another way to say this is that X is finite locally free
over Spec(k), see Definition 29.48.1. Hence X → Spec(k) has a degree which is an
integer d ≥ 0, namely d = dimk(A). We sometime call this the degree of the (finite)
scheme X over k.

Definition 29.57.1.03J4 Let f : X → Y be a morphism of schemes.
(1) We say the integer n bounds the degrees of the fibres of f if for all y ∈ Y

the fibre Xy is a finite scheme over κ(y) whose degree over κ(y) is ≤ n.
(2) We say the fibres of f are universally bounded19 if there exists an integer

n which bounds the degrees of the fibres of f .

Note that in particular the number of points in a fibre is bounded by n as well.
(The converse does not hold, even if all fibres are finite reduced schemes.)

Lemma 29.57.2.03J5 Let f : X → Y be a morphism of schemes. Let n ≥ 0. The
following are equivalent:

(1) the integer n bounds the degrees of the fibres of f , and
(2) for every morphism Spec(k) → Y , where k is a field, the fibre product

Xk = Spec(k)×Y X is finite over k of degree ≤ n.
In this case the fibres of f are universally bounded and the schemes Xk have at
most n points. More precisely, if Xk = {x1, . . . , xt}, then we have

n ≥
∑

i=1,...,t
[κ(xi) : k]

Proof. The implication (2) ⇒ (1) is trivial. The other implication holds because if
the image of Spec(k)→ Y is y, then Xk = Spec(k)×Spec(κ(y))Xy. By definition the
fibres of f being universally bounded means that some n exists. Finally, suppose

19This is probably nonstandard notation.

https://stacks.math.columbia.edu/tag/03J2
https://stacks.math.columbia.edu/tag/03J4
https://stacks.math.columbia.edu/tag/03J5


29.57. UNIVERSALLY BOUNDED FIBRES 2536

that Xk = Spec(A). Then dimk A = n. Hence A is Artinian, all prime ideals
are maximal ideals mi, and A is the product of the localizations at these maximal
ideals. See Algebra, Lemmas 10.53.2 and 10.53.6. Then mi corresponds to xi, we
have Ami = OXk,xi and hence there is a surjection A→

⊕
κ(mi) =

⊕
κ(xi) which

implies the inequality in the statement of the lemma by linear algebra. □

Lemma 29.57.3.0CC2 If f is a finite locally free morphism of degree d, then d bounds
the degree of the fibres of f .

Proof. This is true because any base change of f is finite locally free of degree d
(Lemma 29.48.4) and hence the fibres of f all have degree d. □

Lemma 29.57.4.03J6 A composition of morphisms with universally bounded fibres is a
morphism with universally bounded fibres. More precisely, assume that n bounds
the degrees of the fibres of f : X → Y and m bounds the degrees of g : Y → Z.
Then nm bounds the degrees of the fibres of g ◦ f : X → Z.

Proof. Let f : X → Y and g : Y → Z have universally bounded fibres. Say that
deg(Xy/κ(y)) ≤ n for all y ∈ Y , and that deg(Yz/κ(z)) ≤ m for all z ∈ Z. Let
z ∈ Z be a point. By assumption the scheme Yz is finite over Spec(κ(z)). In
particular, the underlying topological space of Yz is a finite discrete set. The fibres
of the morphism fz : Xz → Yz are the fibres of f at the corresponding points of Y ,
which are finite discrete sets by the reasoning above. Hence we conclude that the
underlying topological space ofXz is a finite discrete set as well. ThusXz is an affine
scheme (this is a nice exercise; it also follows for example from Properties, Lemma
28.29.1 applied to the set of all points of Xz). Write Xz = Spec(A), Yz = Spec(B),
and k = κ(z). Then k → B → A and we know that (a) dimk(B) ≤ m, and
(b) for every maximal ideal m ⊂ B we have dimκ(m)(A/mA) ≤ n. We claim this
implies that dimk(A) ≤ nm. Note that B is the product of its localizations Bm, for
example because Yz is a disjoint union of 1-point schemes, or by Algebra, Lemmas
10.53.2 and 10.53.6. So we see that dimk(B) =

∑
m dimk(Bm) and dimk(A) =∑

m dimk(Am) where in both cases m runs over the maximal ideals of B (not of
A). By the above, and Nakayama’s Lemma (Algebra, Lemma 10.20.1) we see that
each Am is a quotient of B⊕n

m as a Bm-module. Hence dimk(Am) ≤ ndimk(Bm).
Putting everything together we see that

dimk(A) =
∑

m
dimt a(Am) ≤

∑
m
n dimk(Bm) = ndimk(B) ≤ nm

as desired. □

Lemma 29.57.5.03J7 A base change of a morphism with universally bounded fibres is a
morphism with universally bounded fibres. More precisely, if n bounds the degrees
of the fibres of f : X → Y and Y ′ → Y is any morphism, then the degrees of the
fibres of the base change f ′ : Y ′ ×Y X → Y ′ is also bounded by n.

Proof. This is clear from the result of Lemma 29.57.2. □

Lemma 29.57.6.03J8 Let f : X → Y be a morphism of schemes. Let Y ′ → Y be a
morphism of schemes, and let f ′ : X ′ = XY ′ → Y ′ be the base change of f . If
Y ′ → Y is surjective and f ′ has universally bounded fibres, then f has universally
bounded fibres. More precisely, if n bounds the degree of the fibres of f ′, then also
n bounds the degrees of the fibres of f .
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Proof. Let n ≥ 0 be an integer bounding the degrees of the fibres of f ′. We claim
that n works for f also. Namely, if y ∈ Y is a point, then choose a point y′ ∈ Y ′

lying over y and observe that
X ′
y′ = Spec(κ(y′))×Spec(κ(y)) Xy.

Since X ′
y′ is assumed finite of degree ≤ n over κ(y′) it follows that also Xy is finite

of degree ≤ n over κ(y). (Some details omitted.) □

Lemma 29.57.7.03J9 An immersion has universally bounded fibres.

Proof. The integer n = 1 works in the definition. □

Lemma 29.57.8.03WU Let f : X → Y be an étale morphism of schemes. Let n ≥ 0. The
following are equivalent

(1) the integer n bounds the degrees of the fibres,
(2) for every field k and morphism Spec(k) → Y the base change Xk =

Spec(k)×Y X has at most n points, and
(3) for every y ∈ Y and every separable algebraic closure κ(y) ⊂ κ(y)sep the

scheme Xκ(y)sep has at most n points.

Proof. This follows from Lemma 29.57.2 and the fact that the fibres Xy are disjoint
unions of spectra of finite separable field extensions of κ(y), see Lemma 29.36.7. □

Having universally bounded fibres is an absolute notion and not a relative notion.
This is why the condition in the following lemma is that X is quasi-compact, and
not that f is quasi-compact.

Lemma 29.57.9.03JA Let f : X → Y be a morphism of schemes. Assume that
(1) f is locally quasi-finite, and
(2) X is quasi-compact.

Then f has universally bounded fibres.

Proof. Since X is quasi-compact, there exists a finite affine open covering X =⋃
i=1,...,n Ui and affine opens Vi ⊂ Y , i = 1, . . . , n such that f(Ui) ⊂ Vi. Because of

the local nature of “local quasi-finiteness” (see Lemma 29.20.6 part (4)) we see that
the morphisms f |Ui : Ui → Vi are locally quasi-finite morphisms of affines, hence
quasi-finite, see Lemma 29.20.9. For y ∈ Y it is clear that Xy =

⋃
y∈Vi(Ui)y is an

open covering. Hence it suffices to prove the lemma for a quasi-finite morphism of
affines (namely, if ni works for the morphism f |Ui : Ui → Vi, then

∑
ni works for

f).
Assume f : X → Y is a quasi-finite morphism of affines. By Lemma 29.56.3 we can
find a diagram

X

f   

j
// Z

π
��

Y

with Z affine, π finite and j an open immersion. Since j has universally bounded
fibres (Lemma 29.57.7) this reduces us to showing that π has universally bounded
fibres (Lemma 29.57.4).
This reduces us to a morphism of the form Spec(B) → Spec(A) where A → B is
finite. Say B is generated by x1, . . . , xn over A and say Pi(T ) ∈ A[T ] is a monic
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polynomial of degree di such that Pi(xi) = 0 in B (a finite ring extension is integral,
see Algebra, Lemma 10.36.3). With these notations it is clear that⊕

0≤ei<di,i=1,...n
A −→ B, (a(e1,...,en)) 7−→

∑
a(e1,...,en)x

e1
1 . . . xenn

is a surjective A-module map. Thus for any prime p ⊂ A this induces a surjective
map κ(p)-vector spaces

κ(p)⊕d1...dn −→ B ⊗A κ(p)
In other words, the integer d1 . . . dn works in the definition of a morphism with
universally bounded fibres. □

Lemma 29.57.10.03JB Consider a commutative diagram of morphisms of schemes

X

g
  

f
// Y

h��
Z

If g has universally bounded fibres, and f is surjective and flat, then also h has
universally bounded fibres. More precisely, if n bounds the degree of the fibres of
g, then also n bounds the degree of the fibres of h.

Proof. Assume g has universally bounded fibres, and f is surjective and flat. Say
the degree of the fibres of g is bounded by n ∈ N. We claim n also works for h.
Let z ∈ Z. Consider the morphism of schemes Xz → Yz. It is flat and surjective.
By assumption Xz is a finite scheme over κ(z), in particular it is the spectrum of
an Artinian ring (by Algebra, Lemma 10.53.2). By Lemma 29.11.13 the morphism
Xz → Yz is affine in particular quasi-compact. It follows from Lemma 29.25.12 that
Yz is a finite discrete as this holds for Xz. Hence Yz is an affine scheme (this is a
nice exercise; it also follows for example from Properties, Lemma 28.29.1 applied
to the set of all points of Yz). Write Yz = Spec(B) and Xz = Spec(A). Then A is
faithfully flat over B, so B ⊂ A. Hence dimk(B) ≤ dimk(A) ≤ n as desired. □

29.58. Miscellany

0H1L Results which do not fit elsewhere.

Lemma 29.58.1.0H1M Let f : Y → X be a morphism of schemes. Let x ∈ X be a point.
Assume that Y is reduced and f(Y ) is set-theoretically contained in {x}. Then f
factors through the canonical morphism x = Spec(κ(x))→ X.

Proof. Omitted. Hints: working affine locally one reduces to a commutative algebra
lemma. Given a ring map A → B with B reduced such that there exists a unique
prime ideal p ⊂ A in the image of Spec(B)→ Spec(A), then A→ B factors through
κ(p). This is a nice exercise. □

Lemma 29.58.2.0H1N Let f : Y → X be a morphism of schemes. Let E ⊂ X. Assume
X is locally Noetherian, there are no nontrivial specializations among the elements
of E, Y is reduced, and f(Y ) ⊂ E. Then f factors through

∐
x∈E x→ X.

Proof. When E is a singleton this follows from Lemma 29.58.1. If E is finite, then
E (with the induced topology of X) is a finite discrete space by our assumption
on specializations. Hence this case reduces to the singleton case. In general, there
is a reduction to the case where X and Y are affine schemes. Say f : Y → X
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corresponds to the ring map φ : A → B. Denote A′ ⊂ B the image of φ. Let
E′ ⊂ Spec(A′) ⊂ Spec(A) be the set of minimal primes of A′. By Algebra, Lemma
10.30.5 the set E′ is contained in the image of Spec(B) → Spec(A′) ⊂ Spec(A).
We conclude that E′ ⊂ E. Since A′ is Noetherian we have E′ is finite by Algebra,
Lemma 10.31.6. Since any other point in the image of Spec(B) → Spec(A) is a
specialization of an element of E′ and in E, we conclude that the image is contained
in E′ (by our assumption on specializations between points of E). Thus we reduce
to the case where E is finite which we dealt with above. □
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CHAPTER 30

Cohomology of Schemes

01X6 30.1. Introduction

01X7 In this chapter we first prove a number of results on the cohomology of quasi-
coherent sheaves. A fundamental reference is [DG67]. Having done this we will elab-
orate on cohomology of coherent sheaves in the Noetherian setting. See [Ser55b].

30.2. Čech cohomology of quasi-coherent sheaves

01X8 Let X be a scheme. Let U ⊂ X be an affine open. Recall that a standard open
covering of U is a covering of the form U : U =

⋃n
i=1 D(fi) where f1, . . . , fn ∈

Γ(U,OX) generate the unit ideal, see Schemes, Definition 26.5.2.

Lemma 30.2.1.01X9 Let X be a scheme. Let F be a quasi-coherent OX -module. Let
U : U =

⋃n
i=1 D(fi) be a standard open covering of an affine open of X. Then

Ȟp(U ,F) = 0 for all p > 0.

Proof. Write U = Spec(A) for some ring A. In other words, f1, . . . , fn are elements
of A which generate the unit ideal of A. Write F|U = M̃ for some A-module M .
Clearly the Čech complex Č•(U ,F) is identified with the complex∏

i0
Mfi0

→
∏

i0i1
Mfi0fi1

→
∏

i0i1i2
Mfi0fi1fi2

→ . . .

We are asked to show that the extended complex

(30.2.1.1)01XA 0→M →
∏

i0
Mfi0

→
∏

i0i1
Mfi0fi1

→
∏

i0i1i2
Mfi0fi1fi2

→ . . .

(whose truncation we have studied in Algebra, Lemma 10.24.1) is exact. It suffices
to show that (30.2.1.1) is exact after localizing at a prime p, see Algebra, Lemma
10.23.1. In fact we will show that the extended complex localized at p is homotopic
to zero.

There exists an index i such that fi ̸∈ p. Choose and fix such an element ifix. Note
that Mfifix ,p

= Mp. Similarly for a localization at a product fi0 . . . fip and p we
can drop any fij for which ij = ifix. Let us define a homotopy

h :
∏

i0...ip+1
Mfi0 ...fip+1 ,p

−→
∏

i0...ip
Mfi0 ...fip ,p

by the rule
h(s)i0...ip = sifixi0...ip

(This is “dual” to the homotopy in the proof of Cohomology, Lemma 20.10.4.) In
other words, h :

∏
i0
Mfi0 ,p

→Mp is projection onto the factor Mfifix ,p
= Mp and in

2541
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general the map h equal projection onto the factorsMfifixfi1 ...fip+1 ,p
= Mfi1 ...fip+1 ,p

.
We compute

(dh+ hd)(s)i0...ip =
∑p

j=0
(−1)jh(s)i0...̂ij ...ip + d(s)ifixi0...ip

=
∑p

j=0
(−1)jsifixi0...̂ij ...ip

+ si0...ip +
∑p

j=0
(−1)j+1sifixi0...̂ij ...ip

= si0...ip

This proves the identity map is homotopic to zero as desired. □

The following lemma says in particular that for any affine scheme X and any quasi-
coherent sheaf F on X we have

Hp(X,F) = 0
for all p > 0.

Lemma 30.2.2.01XB Let X be a scheme. Let F be a quasi-coherent OX -module. For
any affine open U ⊂ X we have Hp(U,F) = 0 for all p > 0.

Proof. We are going to apply Cohomology, Lemma 20.11.9. As our basis B for
the topology of X we are going to use the affine opens of X. As our set Cov of
open coverings we are going to use the standard open coverings of affine opens of X.
Next we check that conditions (1), (2) and (3) of Cohomology, Lemma 20.11.9 hold.
Note that the intersection of standard opens in an affine is another standard open.
Hence property (1) holds. The coverings form a cofinal system of open coverings of
any element of B, see Schemes, Lemma 26.5.1. Hence (2) holds. Finally, condition
(3) of the lemma follows from Lemma 30.2.1. □

Here is a relative version of the vanishing of cohomology of quasi-coherent sheaves
on affines.

Lemma 30.2.3.01XC Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. If f is affine then Rif∗F = 0 for all i > 0.

Proof. According to Cohomology, Lemma 20.7.3 the sheaf Rif∗F is the sheaf asso-
ciated to the presheaf V 7→ Hi(f−1(V ),F|f−1(V )). By assumption, whenever V is
affine we have that f−1(V ) is affine, see Morphisms, Definition 29.11.1. By Lemma
30.2.2 we conclude that Hi(f−1(V ),F|f−1(V )) = 0 whenever V is affine. Since S
has a basis consisting of affine opens we win. □

Lemma 30.2.4.089W Let f : X → S be an affine morphism of schemes. Let F be a
quasi-coherent OX -module. Then Hi(X,F) = Hi(S, f∗F) for all i ≥ 0.

Proof. Follows from Lemma 30.2.3 and the Leray spectral sequence. See Cohomol-
ogy, Lemma 20.13.6. □

The following two lemmas explain when Čech cohomology can be used to compute
cohomology of quasi-coherent modules.

Lemma 30.2.5.0BDX Let X be a scheme. The following are equivalent
(1) X has affine diagonal ∆ : X → X ×X,
(2) for U, V ⊂ X affine open, the intersection U ∩ V is affine, and
(3) there exists an open covering U : X =

⋃
i∈I Ui such that Ui0...ip is affine

open for all p ≥ 0 and all i0, . . . , ip ∈ I.
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In particular this holds if X is separated.

Proof. Assume X has affine diagonal. Let U, V ⊂ X be affine opens. Then U ∩
V = ∆−1(U × V ) is affine. Thus (2) holds. It is immediate that (2) implies (3).
Conversely, if there is a covering of X as in (3), then X × X =

⋃
Ui × Ui′ is an

affine open covering, and we see that ∆−1(Ui × Ui′) = Ui ∩ Ui′ is affine. Then ∆
is an affine morphism by Morphisms, Lemma 29.11.3. The final assertion follows
from Schemes, Lemma 26.21.7. □

Lemma 30.2.6.01XD Let X be a scheme. Let U : X =
⋃
i∈I Ui be an open covering such

that Ui0...ip is affine open for all p ≥ 0 and all i0, . . . , ip ∈ I. In this case for any
quasi-coherent sheaf F we have

Ȟp(U ,F) = Hp(X,F)
as Γ(X,OX)-modules for all p.

Proof. In view of Lemma 30.2.2 this is a special case of Cohomology, Lemma
20.11.6. □

30.3. Vanishing of cohomology

01XE We have seen that on an affine scheme the higher cohomology groups of any quasi-
coherent sheaf vanish (Lemma 30.2.2). It turns out that this also characterizes
affine schemes. We give two versions.

Lemma 30.3.1.01XF [Ser57], [DG67, II,
Theorem 5.2.1 (d’)
and IV (1.7.17)]

Let X be a scheme. Assume that
(1) X is quasi-compact,
(2) for every quasi-coherent sheaf of ideals I ⊂ OX we have H1(X, I) = 0.

Then X is affine.

Proof. Let x ∈ X be a closed point. Let U ⊂ X be an affine open neighbourhood of
x. Write U = Spec(A) and let m ⊂ A be the maximal ideal corresponding to x. Set
Z = X \U and Z ′ = Z∪{x}. By Schemes, Lemma 26.12.4 there are quasi-coherent
sheaves of ideals I, resp. I ′ cutting out the reduced closed subschemes Z, resp. Z ′.
Consider the short exact sequence

0→ I ′ → I → I/I ′ → 0.
Since x is a closed point of X and x ̸∈ Z we see that I/I ′ is supported at x. In
fact, the restriction of I/I ′ to U corresponds to the A-module A/m. Hence we see
that Γ(X, I/I ′) = A/m. Since by assumption H1(X, I ′) = 0 we see there exists
a global section f ∈ Γ(X, I) which maps to the element 1 ∈ A/m as a section of
I/I ′. Clearly we have x ∈ Xf ⊂ U . This implies that Xf = D(fA) where fA is the
image of f in A = Γ(U,OX). In particular Xf is affine.
Consider the union W =

⋃
Xf over all f ∈ Γ(X,OX) such that Xf is affine.

Obviously W is open in X. By the arguments above every closed point of X is
contained in W . The closed subset X \W of X is also quasi-compact (see Topology,
Lemma 5.12.3). Hence it has a closed point if it is nonempty (see Topology, Lemma
5.12.8). This would contradict the fact that all closed points are in W . Hence we
conclude X = W .
Choose finitely many f1, . . . , fn ∈ Γ(X,OX) such that X = Xf1 ∪ . . . ∪ Xfn and
such that each Xfi is affine. This is possible as we’ve seen above. By Properties,
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Lemma 28.27.3 to finish the proof it suffices to show that f1, . . . , fn generate the
unit ideal in Γ(X,OX). Consider the short exact sequence

0 // F // O⊕n
X

f1,...,fn // OX // 0

The arrow defined by f1, . . . , fn is surjective since the opens Xfi cover X. We let
F be the kernel of this surjective map. Observe that F has a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fn = F
so that each subquotient Fi/Fi−1 is isomorphic to a quasi-coherent sheaf of ideals.
Namely we can take Fi to be the intersection of F with the first i direct summands
of O⊕n

X . The assumption of the lemma implies that H1(X,Fi/Fi−1) = 0 for all i.
This implies that H1(X,F2) = 0 because it is sandwiched between H1(X,F1) and
H1(X,F2/F1). Continuing like this we deduce that H1(X,F) = 0. Therefore we
conclude that the map⊕

i=1,...,n Γ(X,OX) f1,...,fn // Γ(X,OX)

is surjective as desired. □

Note that if X is a Noetherian scheme then every quasi-coherent sheaf of ideals is
automatically a coherent sheaf of ideals and a finite type quasi-coherent sheaf of
ideals. Hence the preceding lemma and the next lemma both apply in this case.

Lemma 30.3.2.01XG [Ser57], [DG67, II,
Theorem 5.2.1]

Let X be a scheme. Assume that
(1) X is quasi-compact,
(2) X is quasi-separated, and
(3) H1(X, I) = 0 for every quasi-coherent sheaf of ideals I of finite type.

Then X is affine.

Proof. By Properties, Lemma 28.22.3 every quasi-coherent sheaf of ideals is a di-
rected colimit of quasi-coherent sheaves of ideals of finite type. By Cohomology,
Lemma 20.19.1 taking cohomology on X commutes with directed colimits. Hence
we see that H1(X, I) = 0 for every quasi-coherent sheaf of ideals on X. In other
words we see that Lemma 30.3.1 applies. □

We can use the arguments given above to find a sufficient condition to see when an
invertible sheaf is ample. However, we warn the reader that this condition is not
necessary.

Lemma 30.3.3.0B5P Let X be a scheme. Let L be an invertible OX -module. Assume
that

(1) X is quasi-compact,
(2) for every quasi-coherent sheaf of ideals I ⊂ OX there exists an n ≥ 1 such

that H1(X, I ⊗OX
L⊗n) = 0.

Then L is ample.

Proof. This is proved in exactly the same way as Lemma 30.3.1. Let x ∈ X be a
closed point. Let U ⊂ X be an affine open neighbourhood of x such that L|U ∼= OU .
Write U = Spec(A) and let m ⊂ A be the maximal ideal corresponding to x. Set
Z = X \U and Z ′ = Z∪{x}. By Schemes, Lemma 26.12.4 there are quasi-coherent
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sheaves of ideals I, resp. I ′ cutting out the reduced closed subschemes Z, resp. Z ′.
Consider the short exact sequence

0→ I ′ → I → I/I ′ → 0.
For every n ≥ 1 we obtain a short exact sequence

0→ I ′ ⊗OX
L⊗n → I ⊗OX

L⊗n → I/I ′ ⊗OX
L⊗n → 0.

By our assumption we may pick n such that H1(X, I ′ ⊗OX
L⊗n) = 0. Since x

is a closed point of X and x ̸∈ Z we see that I/I ′ is supported at x. In fact,
the restriction of I/I ′ to U corresponds to the A-module A/m. Since L is trivial
on U we see that the restriction of I/I ′ ⊗OX

L⊗n to U also corresponds to the
A-module A/m. Hence we see that Γ(X, I/I ′ ⊗OX

L⊗n) = A/m. By our choice
of n we see there exists a global section s ∈ Γ(X, I ⊗OX

L⊗n) which maps to the
element 1 ∈ A/m. Clearly we have x ∈ Xs ⊂ U because s vanishes at points of Z.
This implies that Xs = D(f) where f ∈ A is the image of s in A ∼= Γ(U,L⊗n). In
particular Xs is affine.
Consider the union W =

⋃
Xs over all s ∈ Γ(X,L⊗n) for n ≥ 1 such that Xs is

affine. Obviously W is open in X. By the arguments above every closed point
of X is contained in W . The closed subset X \ W of X is also quasi-compact
(see Topology, Lemma 5.12.3). Hence it has a closed point if it is nonempty (see
Topology, Lemma 5.12.8). This would contradict the fact that all closed points are
in W . Hence we conclude X = W . This means that L is ample by Properties,
Definition 28.26.1. □

There is a variant of Lemma 30.3.3 with finite type ideal sheaves which we will
formulate and prove here if we ever need it.
Lemma 30.3.4.0F83 Let f : X → Y be a quasi-compact morphism with X and Y

quasi-separated. If R1f∗I = 0 for every quasi-coherent sheaf of ideals I on X, then
f is affine.
Proof. Let V ⊂ Y be an affine open subscheme. We have to show that U = f−1(V )
is affine. The inclusion morphism V → Y is quasi-compact by Schemes, Lemma
26.21.14. Hence the base change U → X is quasi-compact, see Schemes, Lemma
26.19.3. Thus any quasi-coherent sheaf of ideals I on U extends to a quasi-coherent
sheaf of ideals on X, see Properties, Lemma 28.22.1. Since the formation of R1f∗
is local on Y (Cohomology, Section 20.7) we conclude that R1(U → V )∗I = 0 by
the assumption in the lemma. Hence by the Leray Spectral sequence (Cohomology,
Lemma 20.13.4) we conclude that H1(U, I) = H1(V, (U → V )∗I). Since (U →
V )∗I is quasi-coherent by Schemes, Lemma 26.24.1, we haveH1(V, (U → V )∗I) = 0
by Lemma 30.2.2. Thus we find that U is affine by Lemma 30.3.1. □

30.4. Quasi-coherence of higher direct images

01XH We have seen that the higher cohomology groups of a quasi-coherent module on
an affine are zero. For (quasi-)separated quasi-compact schemes X this implies
vanishing of cohomology groups of quasi-coherent sheaves beyond a certain degree.
However, it may not be the case that X has finite cohomological dimension, because
that is defined in terms of vanishing of cohomology of all OX -modules.
Lemma 30.4.1 (Induction Principle).08DR [BV03, Proposition

3.3.1]
LetX be a quasi-compact and quasi-separated

scheme. Let P be a property of the quasi-compact opens of X. Assume that
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(1) P holds for every affine open of X,
(2) if U is quasi-compact open, V affine open, P holds for U , V , and U ∩ V ,

then P holds for U ∪ V .
Then P holds for every quasi-compact open of X and in particular for X.
Proof. First we argue by induction that P holds for separated quasi-compact opens
W ⊂ X. Namely, such an open can be written as W = U1 ∪ . . . ∪ Un and we can
do induction on n using property (2) with U = U1 ∪ . . . ∪ Un−1 and V = Un. This
is allowed because U ∩ V = (U1 ∩ Un) ∪ . . . ∪ (Un−1 ∩ Un) is also a union of n− 1
affine open subschemes by Schemes, Lemma 26.21.7 applied to the affine opens Ui
and Un of W . Having said this, for any quasi-compact open W ⊂ X we can do
induction on the number of affine opens needed to cover W using the same trick
as before and using that the quasi-compact open Ui ∩ Un is separated as an open
subscheme of the affine scheme Un. □

Lemma 30.4.2.01XI Let X be a quasi-compact scheme with affine diagonal (for example
if X is separated). Let t = t(X) be the minimal number of affine opens needed to
cover X. Then Hn(X,F) = 0 for all n ≥ t and all quasi-coherent sheaves F .
Proof. First proof. By induction on t. If t = 1 the result follows from Lemma
30.2.2. If t > 1 write X = U ∪ V with V affine open and U = U1 ∪ . . . ∪ Ut−1 a
union of t−1 open affines. Note that in this case U ∩V = (U1∩V )∪ . . . (Ut−1∩V )
is also a union of t−1 affine open subschemes. Namely, since the diagonal is affine,
the intersection of two affine opens is affine, see Lemma 30.2.5. We apply the
Mayer-Vietoris long exact sequence

0→ H0(X,F)→ H0(U,F)⊕H0(V,F)→ H0(U ∩ V,F)→ H1(X,F)→ . . .

see Cohomology, Lemma 20.8.2. By induction we see that the groups Hi(U,F),
Hi(V,F), Hi(U ∩V,F) are zero for i ≥ t−1. It follows immediately that Hi(X,F)
is zero for i ≥ t.
Second proof. Let U : X =

⋃t
i=1 Ui be a finite affine open covering. Since X

is has affine diagonal the multiple intersections Ui0...ip are all affine, see Lemma
30.2.5. By Lemma 30.2.6 the Čech cohomology groups Ȟp(U ,F) agree with the
cohomology groups. By Cohomology, Lemma 20.23.6 the Čech cohomology groups
may be computed using the alternating Čech complex Č•

alt(U ,F). As the covering
consists of t elements we see immediately that Čpalt(U ,F) = 0 for all p ≥ t. Hence
the result follows. □

Lemma 30.4.3.0BDY Let X be a quasi-compact scheme with affine diagonal (for example
if X is separated). Then

(1) given a quasi-coherent OX -module F there exists an embedding F → F ′

of quasi-coherent OX -modules such that Hp(X,F ′) = 0 for all p ≥ 1, and
(2) {Hn(X,−)}n≥0 is a universal δ-functor from QCoh(OX) to Ab.

Proof. Let X =
⋃
Ui be a finite affine open covering. Set U =

∐
Ui and denote

j : U → X the morphism inducing the given open immersions Ui → X. Since U is
an affine scheme and X has affine diagonal, the morphism j is affine, see Morphisms,
Lemma 29.11.11. For every OX -module F there is a canonical map F → j∗j

∗F .
This map is injective as can be seen by checking on stalks: if x ∈ Ui, then we have
a factorization

Fx → (j∗j
∗F)x → (j∗F)x′ = Fx
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where x′ ∈ U is the point x viewed as a point of Ui ⊂ U . Now if F is quasi-
coherent, then j∗F is quasi-coherent on the affine scheme U hence has vanishing
higher cohomology by Lemma 30.2.2. Then Hp(X, j∗j

∗F) = 0 for p > 0 by Lemma
30.2.4 as j is affine. This proves (1). Finally, we see that the map Hp(X,F) →
Hp(X, j∗j

∗F) is zero and part (2) follows from Homology, Lemma 12.12.4. □

Lemma 30.4.4.071L Let X be a quasi-compact quasi-separated scheme. Let X =
U1 ∪ . . . ∪ Ut be an open covering with each Ui quasi-compact and separated (for
example affine). Set

d = maxI⊂{1,...,t}

(
|I|+ t(

⋂
i∈I

Ui)− 1
)

where t(U) is the minimal number of affines needed to cover the scheme U . Then
Hn(X,F) = 0 for all n ≥ d and all quasi-coherent sheaves F .

Proof. Note that since X is quasi-separated and Ui quasi-compact the numbers
t(
⋂
i∈I Ui) are finite. Proof using induction on t. If t = 1 then the result follows

from Lemma 30.4.2. If t > 1, write X = U ∪ V with U = U1 ∪ . . . ∪ Ut−1 and
V = Ut. We apply the Mayer-Vietoris long exact sequence

0→ H0(X,F)→ H0(U,F)⊕H0(V,F)→ H0(U ∩ V,F)→ H1(X,F)→ . . .

see Cohomology, Lemma 20.8.2. Since V is affine, we have Hi(V,F) = 0 for i ≥ 0.
By induction hypothesis we have Hi(U,F) = 0 for

i ≥ maxI⊂{1,...,t−1}

(
|I|+ t(

⋂
i∈I

Ui)− 1
)

and the bound on the right is less than the bound in the statement of the lemma.
Finally we may use our induction hypothesis for the open U ∩V = (U1 ∩Ut)∪ . . .∪
(Ut−1 ∩ Ut) to get the vanishing of Hi(U ∩ V,F) = 0 for

i ≥ maxI⊂{1,...,t−1}

(
|I|+ t(Ut ∩

⋂
i∈I

Ui)− 1
)

Since the bound on the right is at least 1 less than the bound in the statement of
the lemma, the lemma follows. □

Lemma 30.4.5.01XJ Let f : X → S be a morphism of schemes. Assume that f is
quasi-separated and quasi-compact.

(1) For any quasi-coherent OX -module F the higher direct images Rpf∗F are
quasi-coherent on S.

(2) If S is quasi-compact, there exists an integer n = n(X,S, f) such that
Rpf∗F = 0 for all p ≥ n and any quasi-coherent sheaf F on X.

(3) In fact, if S is quasi-compact we can find n = n(X,S, f) such that for
every morphism of schemes S′ → S we have Rp(f ′)∗F ′ = 0 for p ≥ n and
any quasi-coherent sheaf F ′ on X ′. Here f ′ : X ′ = S′ ×S X → S′ is the
base change of f .

Proof. We first prove (1). Note that under the hypotheses of the lemma the sheaf
R0f∗F = f∗F is quasi-coherent by Schemes, Lemma 26.24.1. Using Cohomology,
Lemma 20.7.4 we see that forming higher direct images commutes with restriction
to open subschemes. Since being quasi-coherent is local on S we reduce to the case
discussed in the next paragraph.
Proof of (1) in case S is affine. We will use the induction principle. Since f quasi-
compact and quasi-separated we see that X is quasi-compact and quasi-separated.
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For U ⊂ X quasi-compact open and a = f |U we let P (U) be the property that
Rpa∗F is quasi-coherent on S for all quasi-coherent modules F on U and all p ≥ 0.
Since P (X) is (1), it suffices the prove conditions (1) and (2) of Lemma 30.4.1 hold.
If U is affine, then P (U) holds because Rpa∗F = 0 for p ≥ 1 (by Lemma 30.2.3
and Morphisms, Lemma 29.11.12) and we’ve already observed the result holds for
p = 0 in the first paragraph. Next, let U ⊂ X be a quasi-compact open, V ⊂ X
an affine open, and assume P (U), P (V ), P (U ∩ V ) hold. Let a = f |U , b = f |V ,
c = f |U∩V , and g = f |U∪V . Then for any quasi-coherent OU∪V -module F we have
the relative Mayer-Vietoris sequence

0→ g∗F → a∗(F|U )⊕ b∗(F|V )→ c∗(F|U∩V )→ R1g∗F → . . .

see Cohomology, Lemma 20.8.3. By P (U), P (V ), P (U ∩V ) we see that Rpa∗(F|U ),
Rpb∗(F|V ) and Rpc∗(F|U∩V ) are all quasi-coherent. Using the results on quasi-
coherent sheaves in Schemes, Section 26.24 this implies that each of the sheaves
Rpg∗F is quasi-coherent since it sits in the middle of a short exact sequence with a
cokernel of a map between quasi-coherent sheaves on the left and a kernel of a map
between quasi-coherent sheaves on the right. Whence P (U ∪ V ) and the proof of
(1) is complete.
Next, we prove (3) and a fortiori (2). Choose a finite affine open covering S =⋃
j=1,...m Sj . For each j choose a finite affine open covering f−1(Sj) =

⋃
i=1,...tj Uji.

Let
dj = maxI⊂{1,...,tj}

(
|I|+ t(

⋂
i∈I

Uji)
)

be the integer found in Lemma 30.4.4. We claim that n(X,S, f) = max dj works.
Namely, let S′ → S be a morphism of schemes and let F ′ be a quasi-coherent sheaf
on X ′ = S′×S X. We want to show that Rpf ′

∗F ′ = 0 for p ≥ n(X,S, f). Since this
question is local on S′ we may assume that S′ is affine and maps into Sj for some
j. Then X ′ = S′ ×Sj f−1(Sj) is covered by the open affines S′ ×Sj Uji, i = 1, . . . tj
and the intersections ⋂

i∈I
S′ ×Sj Uji = S′ ×Sj

⋂
i∈I

Uji

are covered by the same number of affines as before the base change. Applying
Lemma 30.4.4 we get Hp(X ′,F ′) = 0. By the first part of the proof we already
know that each Rqf ′

∗F ′ is quasi-coherent hence has vanishing higher cohomology
groups on our affine scheme S′, thus we see that H0(S′, Rpf ′

∗F ′) = Hp(X ′,F ′) = 0
by Cohomology, Lemma 20.13.6. Since Rpf ′

∗F ′ is quasi-coherent we conclude that
Rpf ′

∗F ′ = 0. □

Lemma 30.4.6.01XK Let f : X → S be a morphism of schemes. Assume that f is
quasi-separated and quasi-compact. Assume S is affine. For any quasi-coherent
OX -module F we have

Hq(X,F) = H0(S,Rqf∗F)
for all q ∈ Z.

Proof. Consider the Leray spectral sequence Ep,q2 = Hp(S,Rqf∗F) converging to
Hp+q(X,F), see Cohomology, Lemma 20.13.4. By Lemma 30.4.5 we see that the
sheaves Rqf∗F are quasi-coherent. By Lemma 30.2.2 we see that Ep,q2 = 0 when
p > 0. Hence the spectral sequence degenerates at E2 and we win. See also
Cohomology, Lemma 20.13.6 (2) for the general principle. □
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30.5. Cohomology and base change, I

02KE Let f : X → S be a morphism of schemes. Let F be a quasi-coherent sheaf
on X. Suppose further that g : S′ → S is any morphism of schemes. Denote
X ′ = XS′ = S′ ×S X the base change of X and denote f ′ : X ′ → S′ the base
change of f . Also write g′ : X ′ → X the projection, and set F ′ = (g′)∗F . Here is
a diagram representing the situation:

(30.5.0.1)02KF

F ′ = (g′)∗F X ′
g′
//

f ′

��

X

f

��

F

Rf ′
∗F ′ S′ g // S Rf∗F

Here is the simplest case of the base change property we have in mind.

Lemma 30.5.1.02KG Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. Assume f is affine. In this case f∗F ∼= Rf∗F is a quasi-
coherent sheaf, and for every base change diagram (30.5.0.1) we have

g∗f∗F = f ′
∗(g′)∗F .

Proof. The vanishing of higher direct images is Lemma 30.2.3. The statement is
local on S and S′. Hence we may assume X = Spec(A), S = Spec(R), S′ =
Spec(R′) and F = M̃ for some A-module M . We use Schemes, Lemma 26.7.3 to
describe pullbacks and pushforwards of F . Namely, X ′ = Spec(R′ ⊗R A) and F ′

is the quasi-coherent sheaf associated to (R′ ⊗R A) ⊗A M . Thus we see that the
lemma boils down to the equality

(R′ ⊗R A)⊗AM = R′ ⊗RM
as R′-modules. □

In many situations it is sufficient to know about the following special case of coho-
mology and base change. It follows immediately from the stronger results in Section
30.7, but since it is so important it deserves its own proof.

Lemma 30.5.2 (Flat base change).02KH Consider a cartesian diagram of schemes

X ′

f ′

��

g′
// X

f

��
S′ g // S

Let F be a quasi-coherent OX -module with pullback F ′ = (g′)∗F . Assume that g
is flat and that f is quasi-compact and quasi-separated. For any i ≥ 0

(1) the base change map of Cohomology, Lemma 20.17.1 is an isomorphism
g∗Rif∗F −→ Rif ′

∗F ′,

(2) if S = Spec(A) and S′ = Spec(B), then Hi(X,F)⊗A B = Hi(X ′,F ′).

Proof. Using Cohomology, Lemma 20.17.1 in (1) is allowed since g′ is flat by Mor-
phisms, Lemma 29.25.8. Having said this, part (1) follows from part (2). Namely,
part (1) is local on S′ and hence we may assume S and S′ are affine. In other
words, we have S = Spec(A) and S′ = Spec(B) as in (2). Then since Rif∗F is
quasi-coherent (Lemma 30.4.5), it is the quasi-coherent OS-module associated to
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the A-module H0(S,Rif∗F) = Hi(X,F) (equality by Lemma 30.4.6). Similarly,
Rif ′

∗F ′ is the quasi-coherent OS′ -module associated to the B-module Hi(X ′,F ′).
Since pullback by g corresponds to −⊗A B on modules (Schemes, Lemma 26.7.3)
we see that it suffices to prove (2).

Let A → B be a flat ring homomorphism. Let X be a quasi-compact and quasi-
separated scheme over A. Let F be a quasi-coherent OX -module. Set XB =
X ×Spec(A) Spec(B) and denote FB the pullback of F . We are trying to show that
the map

Hi(X,F)⊗A B −→ Hi(XB ,FB)
(given by the reference in the statement of the lemma) is an isomorphism.

In case X is separated, choose an affine open covering U : X = U1 ∪ . . . ∪ Ut and
recall that

Ȟp(U ,F) = Hp(X,F),
see Lemma 30.2.6. If UB : XB = (U1)B ∪ . . . ∪ (Ut)B we obtain by base change,
then it is still the case that each (Ui)B is affine and that XB is separated. Thus we
obtain

Ȟp(UB ,FB) = Hp(XB ,FB).
We have the following relation between the Čech complexes

Č•(UB ,FB) = Č•(U ,F)⊗A B

as follows from Lemma 30.5.1. Since A → B is flat, the same thing remains true
on taking cohomology.

In case X is quasi-separated, choose an affine open covering U : X = U1 ∪ . . . ∪Ut.
We will use the Čech-to-cohomology spectral sequence Cohomology, Lemma 20.11.5.
The reader who wishes to avoid this spectral sequence can use Mayer-Vietoris and
induction on t as in the proof of Lemma 30.4.5. The spectral sequence has E2-page
Ep,q2 = Ȟp(U , Hq(F)) and converges to Hp+q(X,F). Similarly, we have a spectral
sequence with E2-page Ep,q2 = Ȟp(UB , Hq(FB)) which converges to Hp+q(XB ,FB).
Since the intersections Ui0...ip are quasi-compact and separated, the result of the
second paragraph of the proof gives Ȟp(UB , Hq(FB)) = Ȟp(U , Hq(F))⊗A B. Us-
ing that A → B is flat we conclude that Hi(X,F) ⊗A B → Hi(XB ,FB) is an
isomorphism for all i and we win. □

Lemma 30.5.3 (Finite locally free base change).0CKW Consider a cartesian diagram of
schemes

Y

g

��

h
// X

f

��
Spec(B) // Spec(A)

Let F be a quasi-coherent OX -module with pullback G = h∗F . If B is a finite
locally free A-module, then Hi(X,F)⊗A B = Hi(Y,G).

Warning: Do not use this lemma unless you understand the difference between this
and Lemma 30.5.2.
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Proof. In case X is separated, choose an affine open covering U : X =
⋃
i∈I Ui and

recall that
Ȟp(U ,F) = Hp(X,F),

see Lemma 30.2.6. Let V : Y =
⋃
i∈I g

−1(Ui) be the corresponding affine open
covering of Y . The opens Vi = g−1(Ui) = Ui ×Spec(A) Spec(B) are affine and Y is
separated. Thus we obtain

Ȟp(V,G) = Hp(Y,G).
We claim the map of Čech complexes

Č•(U ,F)⊗A B −→ Č•(V,G)
is an isomorphism. Namely, as B is finitely presented as an A-module we see
that tensoring with B over A commutes with products, see Algebra, Proposition
10.89.3. Thus it suffices to show that the maps Γ(Ui0...ip ,F)⊗A B → Γ(Vi0...ip ,G)
are isomorphisms which follows from Lemma 30.5.1. Since A→ B is flat, the same
thing remains true on taking cohomology.
In the general case we argue in exactly the same way using affine open covering
U : X =

⋃
i∈I Ui and the corresponding covering V : Y =

⋃
i∈I Vi with Vi = g−1(Ui)

as above. We will use the Čech-to-cohomology spectral sequence Cohomology,
Lemma 20.11.5. The spectral sequence has E2-page Ep,q2 = Ȟp(U , Hq(F)) and
converges to Hp+q(X,F). Similarly, we have a spectral sequence with E2-page
Ep,q2 = Ȟp(V, Hq(G)) which converges to Hp+q(Y,G). Since the intersections
Ui0...ip are separated, the result of the previous paragraph gives isomorphisms
Γ(Ui0...ip , Hq(F)) ⊗A B → Γ(Vi0...ip , Hq(G)). Using that − ⊗A B commutes with
products and is exact, we conclude that Ȟp(U , Hq(F))⊗AB → Ȟp(V, Hq(G)) is an
isomorphism. Using that A→ B is flat we conclude thatHi(X,F)⊗AB → Hi(Y,G)
is an isomorphism for all i and we win. □

30.6. Colimits and higher direct images

07TA General results of this nature can be found in Cohomology, Section 20.19, Sheaves,
Lemma 6.29.1, and Modules, Lemma 17.22.8.

Lemma 30.6.1.07TB Let f : X → S be a quasi-compact and quasi-separated morphism
of schemes. Let F = colimFi be a filtered colimit of quasi-coherent sheaves on X.
Then for any p ≥ 0 we have

Rpf∗F = colimRpf∗Fi.

Proof. Recall that Rpf∗F is the sheaf associated to U 7→ Hp(f−1U,F), see Co-
homology, Lemma 20.7.3. Recall that the colimit is the sheaf associated to the
presheaf colimit (taking colimits over opens). Hence we can apply Cohomology,
Lemma 20.19.1 to Hp(f−1U,−) where U is affine to conclude. (Because the basis
of affine opens in f−1U satisfies the assumptions of that lemma.) □

30.7. Cohomology and base change, II

071M Let f : X → S be a morphism of schemes and let F be a quasi-coherent OX -
module. If f is quasi-compact and quasi-separated we would like to represent
Rf∗F by a complex of quasi-coherent sheaves on S. This follows from the fact that
the sheaves Rif∗F are quasi-coherent if S is quasi-compact and has affine diagonal,

https://stacks.math.columbia.edu/tag/07TB
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using that DQCoh(S) is equivalent to D(QCoh(OS)), see Derived Categories of
Schemes, Proposition 36.7.5.

In this section we will use a different approach which produces an explicit complex
having a good base change property. The construction is particularly easy if f and
S are separated, or more generally have affine diagonal. Since this is the case which
by far the most often used we treat it separately.

Lemma 30.7.1.01XL Let f : X → S be a morphism of schemes. Let F be a quasi-
coherentOX -module. AssumeX is quasi-compact andX and S have affine diagonal
(e.g., if X and S are separated). In this case we can compute Rf∗F as follows:

(1) Choose a finite affine open covering U : X =
⋃
i=1,...,n Ui.

(2) For i0, . . . , ip ∈ {1, . . . , n} denote fi0...ip : Ui0...ip → S the restriction of f
to the intersection Ui0...ip = Ui0 ∩ . . . ∩ Uip .

(3) Set Fi0...ip equal to the restriction of F to Ui0...ip .
(4) Set

Čp(U , f,F) =
⊕

i0...ip
fi0...ip∗Fi0...ip

and define differentials d : Čp(U , f,F)→ Čp+1(U , f,F) as in Cohomology,
Equation (20.9.0.1).

Then the complex Č•(U , f,F) is a complex of quasi-coherent sheaves on S which
comes equipped with an isomorphism

Č•(U , f,F) −→ Rf∗F

in D+(S). This isomorphism is functorial in the quasi-coherent sheaf F .

Proof. Consider the resolution F → C•(U ,F) of Cohomology, Lemma 20.24.1.
We have an equality of complexes Č•(U , f,F) = f∗C

•(U ,F) of quasi-coherent
OS-modules. The morphisms ji0...ip : Ui0...ip → X and the morphisms fi0...ip :
Ui0...ip → S are affine by Morphisms, Lemma 29.11.11 and Lemma 30.2.5. Hence
Rqji0...ip∗Fi0...ip as well as Rqfi0...ip∗Fi0...ip are zero for q > 0 (Lemma 30.2.3).
Using f ◦ ji0...ip = fi0...ip and the spectral sequence of Cohomology, Lemma 20.13.8
we conclude that Rqf∗(ji0...ip∗Fi0...ip) = 0 for q > 0. Since the terms of the com-
plex C•(U ,F) are finite direct sums of the sheaves ji0...ip∗Fi0...ip we conclude using
Leray’s acyclicity lemma (Derived Categories, Lemma 13.16.7) that

Rf∗F = f∗C
•(U ,F) = Č•(U , f,F)

as desired. □

Next, we are going to consider what happens if we do a base change.

Lemma 30.7.2.01XM With notation as in diagram (30.5.0.1). Assume f : X → S and
F satisfy the hypotheses of Lemma 30.7.1. Choose a finite affine open covering
U : X =

⋃
Ui of X. There is a canonical isomorphism

g∗Č•(U , f,F) −→ Rf ′
∗F ′

in D+(S′). Moreover, if S′ → S is affine, then in fact

g∗Č•(U , f,F) = Č•(U ′, f ′,F ′)

with U ′ : X ′ =
⋃
U ′
i where U ′

i = (g′)−1(Ui) = Ui,S′ is also affine.

https://stacks.math.columbia.edu/tag/01XL
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Proof. In fact we may define U ′
i = (g′)−1(Ui) = Ui,S′ no matter whether S′ is affine

over S or not. Let U ′ : X ′ =
⋃
U ′
i be the induced covering of X ′. In this case we

claim that
g∗Č•(U , f,F) = Č•(U ′, f ′,F ′)

with Č•(U ′, f ′,F ′) defined in exactly the same manner as in Lemma 30.7.1. This
is clear from the case of affine morphisms (Lemma 30.5.1) by working locally on
S′. Moreover, exactly as in the proof of Lemma 30.7.1 one sees that there is an
isomorphism

Č•(U ′, f ′,F ′) −→ Rf ′
∗F ′

in D+(S′) since the morphisms U ′
i → X ′ and U ′

i → S′ are still affine (being base
changes of affine morphisms). Details omitted. □

The lemma above says that the complex
K• = Č•(U , f,F)

is a bounded below complex of quasi-coherent sheaves on S which universally com-
putes the higher direct images of f : X → S. This is something about this particular
complex and it is not preserved by replacing Č•(U , f,F) by a quasi-isomorphic com-
plex in general! In other words, this is not a statement that makes sense in the
derived category. The reason is that the pullback g∗K• is not equal to the derived
pullback Lg∗K• of K• in general!
Here is a more general case where we can prove this statement. We remark that
the condition of S being separated is harmless in most applications, since this is
usually used to prove some local property of the total derived image. The proof
is significantly more involved and uses hypercoverings; it is a nice example of how
you can use them sometimes.

Lemma 30.7.3.01XN Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Assume that f is quasi-compact and quasi-separated and
that S is quasi-compact and separated. There exists a bounded below complex
K• of quasi-coherent OS-modules with the following property: For every morphism
g : S′ → S the complex g∗K• is a representative for Rf ′

∗F ′ with notation as in
diagram (30.5.0.1).

Proof. (If f is separated as well, please see Lemma 30.7.2.) The assumptions imply
in particular that X is quasi-compact and quasi-separated as a scheme. Let B be
the set of affine opens of X. By Hypercoverings, Lemma 25.11.4 we can find a
hypercovering K = (I, {Ui}) such that each In is finite and each Ui is an affine
open of X. By Hypercoverings, Lemma 25.5.3 there is a spectral sequence with
E2-page

Ep,q2 = Ȟp(K,Hq(F))
converging to Hp+q(X,F). Note that Ȟp(K,Hq(F)) is the pth cohomology group
of the complex∏

i∈I0
Hq(Ui,F)→

∏
i∈I1

Hq(Ui,F)→
∏

i∈I2
Hq(Ui,F)→ . . .

Since each Ui is affine we see that this is zero unless q = 0 in which case we obtain∏
i∈I0
F(Ui)→

∏
i∈I1
F(Ui)→

∏
i∈I2
F(Ui)→ . . .

Thus we conclude that RΓ(X,F) is computed by this complex.

https://stacks.math.columbia.edu/tag/01XN
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For any n and i ∈ In denote fi : Ui → S the restriction of f to Ui. As S is separated
and Ui is affine this morphism is affine. Consider the complex of quasi-coherent
sheaves

K• = (
∏

i∈I0
fi,∗F|Ui →

∏
i∈I1

fi,∗F|Ui →
∏

i∈I2
fi,∗F|Ui → . . .)

on S. As in Hypercoverings, Lemma 25.5.3 we obtain a map K• → Rf∗F in
D(OS) by choosing an injective resolution of F (details omitted). Consider any
affine scheme V and a morphism g : V → S. Then the base change XV has
a hypercovering KV = (I, {Ui,V }) obtained by base change. Moreover, g∗fi,∗F =
fi,V,∗(g′)∗F|Ui,V . Thus the arguments above prove that Γ(V, g∗K•) computesRΓ(XV , (g′)∗F).
This finishes the proof of the lemma as it suffices to prove the equality of complexes
Zariski locally on S′. □

The following lemma is a variant to flat base change.

Lemma 30.7.4.0GN5 Consider a cartesian diagram of schemes

X ′

f ′

��

g′
// X

f

��
S′ g // S

Let F be a quasi-coherent OX -module. Let G be a quasi-coherent OS′ -module flat
over S. Assume f is quasi-compact and quasi-separated. For any i ≥ 0 there is an
identification

G ⊗OS′ g
∗Rif∗F = Rif ′

∗
(
(f ′)∗G ⊗OX′ (g′)∗F

)
Proof. Let us construct a map from left to right. First, we have the base change
map Lg∗Rf∗F → Rf ′

∗L(g′)∗F . There is also the adjunction map G → Rf ′
∗L(f ′)∗G.

Using the relative cup product We obtain
G ⊗L

OS′ Lg
∗Rf∗F → Rf ′

∗L(f ′)∗G ⊗L
OS′ Rf

′
∗L(g′)∗F

→ Rf ′
∗

(
L(f ′)∗G ⊗L

OX′ L(g′)∗F
)

→ Rf ′
∗
(
(f ′)∗G ⊗OX′ (g′)∗F

)
where for the middle arrow we used the relative cup product, see Cohomology,
Remark 20.28.7. The source of the composition is

G ⊗L
OS′ Lg

∗Rf∗F = G ⊗L
g−1OS

g−1Rf∗F

by Cohomology, Lemma 20.27.4. Since G is flat as a sheaf of g−1OS-modules and
since g−1 is an exact functor, this is a complex whose ith cohomology sheaf is
G ⊗g−1OS

g−1Rif∗F = G ⊗OS′ g
∗Rif∗F . In this way we obtain global maps from

left to right in the equality of the lemma. To show this map is an isomorphism
we may work locally on S′. Thus we may and do assume that S and S′ are affine
schemes.
Proof in case S and S′ are affine. Say S = Spec(A) and S′ = Spec(B) and say G
corresponds to the B-module N which is assumed to be A-flat. Since S is affine,
X is quasi-compact and quasi-separated. We will use a hypercovering argument to
finish the proof; if X is separated or has affine diagonal, then you can use a Čech
covering. Let B be the set of affine opens of X. By Hypercoverings, Lemma 25.11.4
we can find a hypercovering K = (I, {Ui}) of X such that each In is finite and each

https://stacks.math.columbia.edu/tag/0GN5
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Ui is an affine open of X. By Hypercoverings, Lemma 25.5.3 there is a spectral
sequence with E2-page

Ep,q2 = Ȟp(K,Hq(F))
converging to Hp+q(X,F). Since each Ui is affine and F is quasi-coherent the value
of Hq(F) is zero on Ui for q > 0. Thus the spectral sequence degenerates and we
conclude that the cohomology modules Hq(X,F) are computed by∏

i∈I0
F(Ui)→

∏
i∈I1
F(Ui)→

∏
i∈I2
F(Ui)→ . . .

Next, note that the base change of our hypercovering to S′ is a hypercovering of
X ′ = S′ ×S X. The schemes S′ ×S Ui are affine too and we have(

(f ′)∗G ⊗OS′ (g′)∗F
)

(S′ ×S Ui) = N ⊗A F(Ui)

In this way we conclude that the cohomology modules Hq(X ′, (f ′)∗G ⊗OS′ (g′)∗F)
are computed by

N ⊗A
(∏

i∈I0
F(Ui)→

∏
i∈I1
F(Ui)→

∏
i∈I2
F(Ui)→ . . .

)
Since N is flat over A, we conclude that

Hq(X ′, (f ′)∗G ⊗OS′ (g′)∗F) = N ⊗A Hq(X,F)

Since this is the translation into algebra of the statement we had to show the proof
is complete. □

30.8. Cohomology of projective space

01XS In this section we compute the cohomology of the twists of the structure sheaf
on Pn

S over a scheme S. Recall that Pn
S was defined as the fibre product Pn

S =
S ×Spec(Z) Pn

Z in Constructions, Definition 27.13.2. It was shown to be equal to

Pn
S = Proj

S
(OS [T0, . . . , Tn])

in Constructions, Lemma 27.21.5. In particular, projective space is a particular
case of a projective bundle. If S = Spec(R) is affine then we have

Pn
S = Pn

R = Proj(R[T0, . . . , Tn]).

All these identifications are compatible and compatible with the constructions of
the twisted structure sheaves OPn

S
(d).

Before we state the result we need some notation. Let R be a ring. Recall that
R[T0, . . . , Tn] is a graded R-algebra where each Ti is homogeneous of degree 1.
Denote (R[T0, . . . , Tn])d the degree d summand. It is a finite free R-module of rank(
n+d
d

)
when d ≥ 0 and zero else. It has a basis consisting of monomials T e0

0 . . . T enn
with

∑
ei = d. We will also use the following notation: R[ 1

T0
, . . . , 1

Tn
] denotes

the Z-graded ring with 1
Ti

in degree −1. In particular the Z-graded R[ 1
T0
, . . . , 1

Tn
]

module
1

T0 . . . Tn
R[ 1
T0
, . . . ,

1
Tn

]

which shows up in the statement below is zero in degrees ≥ −n, is free on the
generator 1

T0...Tn
in degree −n− 1 and is free of rank (−1)n

(
n+d
d

)
for d ≤ −n− 1.
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Lemma 30.8.1.01XT [DG67, III
Proposition 2.1.12]

Let R be a ring. Let n ≥ 0 be an integer. We have

Hq(Pn,OPn
R

(d)) =


(R[T0, . . . , Tn])d if q = 0

0 if q ̸= 0, n(
1

T0...Tn
R[ 1

T0
, . . . , 1

Tn
]
)
d

if q = n

as R-modules.

Proof. We will use the standard affine open covering

U : Pn
R =

⋃n

i=0
D+(Ti)

to compute the cohomology using the Čech complex. This is permissible by Lemma
30.2.6 since any intersection of finitely many affine D+(Ti) is also a standard affine
open (see Constructions, Section 27.8). In fact, we can use the alternating or
ordered Čech complex according to Cohomology, Lemmas 20.23.3 and 20.23.6.

The ordering we will use on {0, . . . , n} is the usual one. Hence the complex we are
looking at has terms

Čpord(U ,OPR(d)) =
⊕

i0<...<ip
(R[T0, . . . , Tn,

1
Ti0 . . . Tip

])d

Moreover, the maps are given by the usual formula

d(s)i0...ip+1 =
∑p+1

j=0
(−1)jsi0...̂ij ...ip+1

see Cohomology, Section 20.23. Note that each term of this complex has a natural
Zn+1-grading. Namely, we get this by declaring a monomial T e0

0 . . . T enn to be
homogeneous with weight (e0, . . . , en) ∈ Zn+1. It is clear that the differential given
above respects the grading. In a formula we have

Č•
ord(U ,OPR(d)) =

⊕
e⃗∈Zn+1

Č•(e⃗)

where not all summands on the right hand side occur (see below). Hence in order
to compute the cohomology modules of the complex it suffices to compute the
cohomology of the graded pieces and take the direct sum at the end.

Fix e⃗ = (e0, . . . , en) ∈ Zn+1. In order for this weight to occur in the complex above
we need to assume e0 + . . . + en = d (if not then it occurs for a different twist of
the structure sheaf of course). Assuming this, set

NEG(e⃗) = {i ∈ {0, . . . , n} | ei < 0}.

With this notation the weight e⃗ summand Č•(e⃗) of the Čech complex above has the
following terms

Čp(e⃗) =
⊕

i0<...<ip, NEG(e⃗)⊂{i0,...,ip}
R · T e0

0 . . . T enn

In other words, the terms corresponding to i0 < . . . < ip such that NEG(e⃗) is not
contained in {i0 . . . ip} are zero. The differential of the complex Č•(e⃗) is still given
by the exact same formula as above.

Suppose that NEG(e⃗) = {0, . . . , n}, i.e., that all exponents ei are negative. In this
case the complex Č•(e⃗) has only one term, namely Čn(e⃗) = R · 1

T
−e0
0 ...T−en

n

. Hence

https://stacks.math.columbia.edu/tag/01XT
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in this case

Hq(Č•(e⃗)) =
{
R · 1

T
−e0
0 ...T−en

n

if q = n

0 if else
The direct sum of all of these terms clearly gives the value(

1
T0 . . . Tn

R[ 1
T0
, . . . ,

1
Tn

]
)
d

in degree n as stated in the lemma. Moreover these terms do not contribute to
cohomology in other degrees (also in accordance with the statement of the lemma).

Assume NEG(e⃗) = ∅. In this case the complex Č•(e⃗) has a summand R correspond-
ing to all i0 < . . . < ip. Let us compare the complex Č•(e⃗) to another complex.
Namely, consider the affine open covering

V : Spec(R) =
⋃

i∈{0,...,n}
Vi

where Vi = Spec(R) for all i. Consider the alternating Čech complex

Č•
ord(V,OSpec(R))

By the same reasoning as above this computes the cohomology of the structure
sheaf on Spec(R). Hence we see that Hp(Č•

ord(V,OSpec(R))) = R if p = 0 and is 0
whenever p > 0. For these facts, see Lemma 30.2.1 and its proof. Note that also
Č•
ord(V,OSpec(R)) has a summand R for every i0 < . . . < ip and has exactly the same

differential as Č•(e⃗). In other words these complexes are isomorphic complexes and
hence have the same cohomology. We conclude that

Hq(Č•(e⃗)) =
{
R · T e0

0 . . . T enn if q = 0
0 if else

in the case that NEG(e⃗) = ∅. The direct sum of all of these terms clearly gives the
value

(R[T0, . . . , Tn])d
in degree 0 as stated in the lemma. Moreover these terms do not contribute to
cohomology in other degrees (also in accordance with the statement of the lemma).

To finish the proof of the lemma we have to show that the complexes Č•(e⃗) are
acyclic when NEG(e⃗) is neither empty nor equal to {0, . . . , n}. Pick an index
ifix ̸∈ NEG(e⃗) (such an index exists). Consider the map

h : Čp+1(e⃗)→ Čp(e⃗)

given by the rule that for i0 < . . . < ip we have

h(s)i0...ip =


0 if p ̸∈ {0, . . . , n− 1}
0 if ifix ∈ {i0, . . . , ip}

sifixi0...ip if ifix < i0
(−1)asi0...ia−1ifixia...ip if ia−1 < ifix < ia

(−1)psi0...ip if ip < ifix

Please compare with the proof of Lemma 30.2.1. This makes sense because we have

NEG(e⃗) ⊂ {i0, . . . , ip} ⇔ NEG(e⃗) ⊂ {ifix, i0, . . . , ip}
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The exact same (combinatorial) computation1 as in the proof of Lemma 30.2.1
shows that

(hd+ dh)(s)i0...ip = si0...ip

Hence we see that the identity map of the complex Č•(e⃗) is homotopic to zero which
implies that it is acyclic. □

In the following lemma we are going to use the pairing of free R-modules

R[T0, . . . , Tn]× 1
T0 . . . Tn

R[ 1
T0
, . . . ,

1
Tn

] −→ R

which is defined by the rule

(f, g) 7−→ coefficient of 1
T0 . . . Tn

in fg.

In other words, the basis element T e0
0 . . . T enn pairs with the basis element T d0

0 . . . T dnn
to give 1 if and only if ei + di = −1 for all i, and pairs to zero in all other cases.
Using this pairing we get an identification(

1
T0 . . . Tn

R[ 1
T0
, . . . ,

1
Tn

]
)
d

= HomR((R[T0, . . . , Tn])−n−1−d, R)

Thus we can reformulate the result of Lemma 30.8.1 as saying that

(30.8.1.1)01XU Hq(Pn,OPn
R

(d)) =

 (R[T0, . . . , Tn])d if q = 0
0 if q ̸= 0, n

HomR((R[T0, . . . , Tn])−n−1−d, R) if q = n

Lemma 30.8.2.01XV The identifications of Equation (30.8.1.1) are compatible with base
change w.r.t. ring maps R→ R′. Moreover, for any f ∈ R[T0, . . . , Tn] homogeneous
of degree m the map multiplication by f

OPn
R

(d) −→ OPn
R

(d+m)

induces the map on the cohomology group via the identifications of Equation
(30.8.1.1) which is multiplication by f for H0 and the contragredient of multi-
plication by f

(R[T0, . . . , Tn])−n−1−(d+m) −→ (R[T0, . . . , Tn])−n−1−d

on Hn.

1For example, suppose that i0 < . . . < ip is such that ifix ̸∈ {i0, . . . , ip} and that ia−1 <

ifix < ia for some 1 ≤ a ≤ p. Then we have

(dh+ hd)(s)i0...ip

=
∑p

j=0
(−1)jh(s)i0...̂ij ...ip + (−1)ad(s)i0...ia−1ifixia...ip

=
∑a−1

j=0
(−1)j+a−1si0...̂ij ...ia−1ifixia...ip

+
∑p

j=a
(−1)j+asi0...ia−1ifixia...̂ij ...ip

+∑a−1

j=0
(−1)a+jsi0...̂ij ...ia−1ifixia...ip

+ (−1)2asi0...ip +
∑p

j=a
(−1)a+j+1si0...ia−1ifixia...̂ij ...ip

= si0...ip

as desired. The other cases are similar.

https://stacks.math.columbia.edu/tag/01XV
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Proof. Suppose that R → R′ is a ring map. Let U be the standard affine open
covering of Pn

R, and let U ′ be the standard affine open covering of Pn
R′ . Note that

U ′ is the pullback of the covering U under the canonical morphism Pn
R′ → Pn

R.
Hence there is a map of Čech complexes

γ : Č•
ord(U ,OPR(d)) −→ Č•

ord(U ′,OPR′ (d))
which is compatible with the map on cohomology by Cohomology, Lemma 20.15.1.
It is clear from the computations in the proof of Lemma 30.8.1 that this map of
Čech complexes is compatible with the identifications of the cohomology groups in
question. (Namely the basis elements for the Čech complex over R simply map to
the corresponding basis elements for the Čech complex over R′.) Whence the first
statement of the lemma.
Now fix the ring R and consider two homogeneous polynomials f, g ∈ R[T0, . . . , Tn]
both of the same degree m. Since cohomology is an additive functor, it is clear
that the map induced by multiplication by f + g is the same as the sum of the
maps induced by multiplication by f and the map induced by multiplication by g.
Moreover, since cohomology is a functor, a similar result holds for multiplication
by a product fg where f, g are both homogeneous (but not necessarily of the same
degree). Hence to verify the second statement of the lemma it suffices to prove
this when f = x ∈ R or when f = Ti. In the case of multiplication by an element
x ∈ R the result follows since every cohomology groups or complex in sight has the
structure of an R-module or complex of R-modules. Finally, we consider the case
of multiplication by Ti as a OPn

R
-linear map

OPn
R

(d) −→ OPn
R

(d+ 1)
The statement on H0 is clear. For the statement on Hn consider multiplication by
Ti as a map on Čech complexes

Č•
ord(U ,OPR(d)) −→ Č•

ord(U ,OPR(d+ 1))
We are going to use the notation introduced in the proof of Lemma 30.8.1. We
consider the effect of multiplication by Ti in terms of the decompositions

Č•
ord(U ,OPR(d)) =

⊕
e⃗∈Zn+1,

∑
ei=d
Č•(e⃗)

and
Č•
ord(U ,OPR(d+ 1)) =

⊕
e⃗∈Zn+1,

∑
ei=d+1

Č•(e⃗)

It is clear that it maps the subcomplex Č•(e⃗) to the subcomplex Č•(e⃗+b⃗i) where b⃗i =
(0, . . . , 0, 1, 0, . . . , 0)) the ith basis vector. In other words, it maps the summand
of Hn corresponding to e⃗ with ei < 0 and

∑
ei = d to the summand of Hn

corresponding to e⃗ + b⃗i (which is zero if ei + bi ≥ 0). It is easy to see that this
corresponds exactly to the action of the contragredient of multiplication by Ti as a
map

(R[T0, . . . , Tn])−n−1−(d+1) −→ (R[T0, . . . , Tn])−n−1−d

This proves the lemma. □

Before we state the relative version we need some notation. Namely, recall that
OS [T0, . . . , Tn] is a graded OS-module where each Ti is homogeneous of degree 1.
Denote (OS [T0, . . . , Tn])d the degree d summand. It is a finite locally free sheaf of
rank

(
n+d
d

)
on S.
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Lemma 30.8.3.01XW Let S be a scheme. Let n ≥ 0 be an integer. Consider the structure
morphism

f : Pn
S −→ S.

We have

Rqf∗(OPn
S
(d)) =

 (OS [T0, . . . , Tn])d if q = 0
0 if q ̸= 0, n

HomOS
((OS [T0, . . . , Tn])−n−1−d,OS) if q = n

Proof. Omitted. Hint: This follows since the identifications in (30.8.1.1) are com-
patible with affine base change by Lemma 30.8.2. □

Next we state the version for projective bundles associated to finite locally free
sheaves. Let S be a scheme. Let E be a finite locally free OS-module of constant
rank n+1, see Modules, Section 17.14. In this case we think of Sym(E) as a graded
OS-module where E is the graded part of degree 1. And Symd(E) is the degree
d summand. It is a finite locally free sheaf of rank

(
n+d
d

)
on S. Recall that our

normalization is that

π : P(E) = Proj
S

(Sym(E)) −→ S

and that there are natural maps Symd(E)→ π∗OP(E)(d).

Lemma 30.8.4.01XX Let S be a scheme. Let n ≥ 1. Let E be a finite locally free
OS-module of constant rank n+ 1. Consider the structure morphism

π : P(E) −→ S.

We have

Rqπ∗(OP(E)(d)) =

 Symd(E) if q = 0
0 if q ̸= 0, n

HomOS
(Sym−n−1−d(E)⊗OS

∧n+1E ,OS) if q = n

These identifications are compatible with base change and isomorphism between
locally free sheaves.

Proof. Consider the canonical map

π∗E −→ OP(E)(1)

and twist down by 1 to get

π∗(E)(−1) −→ OP(E)

This is a surjective map from a locally free rank n + 1 sheaf onto the structure
sheaf. Hence the corresponding Koszul complex is exact (More on Algebra, Lemma
15.28.5). In other words there is an exact complex

0→ π∗(∧n+1E)(−n− 1)→ . . .→ π∗(∧iE)(−i)→ . . .→ π∗E(−1)→ OP(E) → 0

We will think of the term π∗(∧iE)(−i) as being in degree −i. We are going to
compute the higher direct images of this acyclic complex using the first spectral
sequence of Derived Categories, Lemma 13.21.3. Namely, we see that there is a
spectral sequence with terms

Ep,q1 = Rqπ∗
(
π∗(∧−pE)(p)

)

https://stacks.math.columbia.edu/tag/01XW
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30.9. COHERENT SHEAVES ON LOCALLY NOETHERIAN SCHEMES 2561

converging to zero! By the projection formula (Cohomology, Lemma 20.54.2) we
have

Ep,q1 = ∧−pE ⊗OS
Rqπ∗

(
OP(E)(p)

)
.

Note that locally on S the sheaf E is trivial, i.e., isomorphic to O⊕n+1
S , hence locally

on S the morphism P(E)→ S can be identified with Pn
S → S. Hence locally on S

we can use the result of Lemmas 30.8.1, 30.8.2, or 30.8.3. It follows that Ep,q1 = 0
unless (p, q) is (0, 0) or (−n− 1, n). The nonzero terms are

E0,0
1 = π∗OP(E) = OS

E−n−1,n
1 = Rnπ∗

(
π∗(∧n+1E)(−n− 1)

)
= ∧n+1E ⊗OS

Rnπ∗
(
OP(E)(−n− 1)

)
Hence there can only be one nonzero differential in the spectral sequence namely
the map d−n−1,n

n+1 : E−n−1,n
n+1 → E0,0

n+1 which has to be an isomorphism (because the
spectral sequence converges to the 0 sheaf). Thus Ep,q1 = Ep,qn+1 and we obtain a
canonical isomorphism

∧n+1E ⊗OS
Rnπ∗

(
OP(E)(−n− 1)

)
= Rnπ∗

(
π∗(∧n+1E)(−n− 1)

) d−n−1,n
n+1−−−−−→ OS

Since ∧n+1E is an invertible sheaf, this implies that Rnπ∗OP(E)(−n−1) is invertible
as well and canonically isomorphic to the inverse of ∧n+1E . In other words we have
proved the case d = −n− 1 of the lemma.
Working locally on S we see immediately from the computation of cohomology in
Lemmas 30.8.1, 30.8.2, or 30.8.3 the statements on vanishing of the lemma. More-
over the result on R0π∗ is clear as well, since there are canonical maps Symd(E)→
π∗OP(E)(d) for all d. It remains to show that the description of Rnπ∗OP(E)(d) is
correct for d < −n− 1. In order to do this we consider the map

π∗(Sym−d−n−1(E))⊗OP(E) OP(E)(d) −→ OP(E)(−n− 1)
Applying Rnπ∗ and the projection formula (see above) we get a map

Sym−d−n−1(E)⊗OS
Rnπ∗(OP(E)(d)) −→ Rnπ∗OP(E)(−n− 1) = (∧n+1E)⊗−1

(the last equality we have shown above). Again by the local calculations of Lemmas
30.8.1, 30.8.2, or 30.8.3 it follows that this map induces a perfect pairing between
Rnπ∗(OP(E)(d)) and Sym−d−n−1(E)⊗ ∧n+1(E) as desired. □

30.9. Coherent sheaves on locally Noetherian schemes

01XY We have defined the notion of a coherent module on any ringed space in Mod-
ules, Section 17.12. Although it is possible to consider coherent sheaves on non-
Noetherian schemes we will always assume the base scheme is locally Noetherian
when we consider coherent sheaves. Here is a characterization of coherent sheaves
on locally Noetherian schemes.

Lemma 30.9.1.01XZ Let X be a locally Noetherian scheme. Let F be an OX -module.
The following are equivalent

(1) F is coherent,
(2) F is a quasi-coherent, finite type OX -module,
(3) F is a finitely presented OX -module,
(4) for any affine open Spec(A) = U ⊂ X we have F|U = M̃ with M a finite

A-module, and

https://stacks.math.columbia.edu/tag/01XZ
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(5) there exists an affine open covering X =
⋃
Ui, Ui = Spec(Ai) such that

each F|Ui = M̃i with Mi a finite Ai-module.
In particular OX is coherent, any invertible OX -module is coherent, and more
generally any finite locally free OX -module is coherent.

Proof. The implications (1) ⇒ (2) and (1) ⇒ (3) hold in general, see Modules,
Lemma 17.12.2. If F is finitely presented then F is quasi-coherent, see Modules,
Lemma 17.11.2. Hence also (3) ⇒ (2).
Assume F is a quasi-coherent, finite type OX -module. By Properties, Lemma
28.16.1 we see that on any affine open Spec(A) = U ⊂ X we have F|U = M̃ with
M a finite A-module. Since A is Noetherian we see that M has a finite resolution

A⊕m → A⊕n →M → 0.
Hence F is of finite presentation by Properties, Lemma 28.16.2. In other words (2)
⇒ (3).
By Modules, Lemma 17.12.5 it suffices to show that OX is coherent in order to
show that (3) implies (1). Thus we have to show: given any open U ⊂ X and
any finite collection of sections fi ∈ OX(U), i = 1, . . . , n the kernel of the map⊕

i=1,...,nOU → OU is of finite type. Since being of finite type is a local property
it suffices to check this in a neighbourhood of any x ∈ U . Thus we may assume
U = Spec(A) is affine. In this case f1, . . . , fn ∈ A are elements of A. Since A is
Noetherian, see Properties, Lemma 28.5.2 the kernel K of the map

⊕
i=1,...,nA→ A

is a finite A-module. See for example Algebra, Lemma 10.51.1. As the functor˜is
exact, see Schemes, Lemma 26.5.4 we get an exact sequence

K̃ →
⊕

i=1,...,n
OU → OU

and by Properties, Lemma 28.16.1 again we see that K̃ is of finite type. We conclude
that (1), (2) and (3) are all equivalent.
It follows from Properties, Lemma 28.16.1 that (2) implies (4). It is trivial that (4)
implies (5). The discussion in Schemes, Section 26.24 show that (5) implies that F
is quasi-coherent and it is clear that (5) implies that F is of finite type. Hence (5)
implies (2) and we win. □

Lemma 30.9.2.01Y0 Let X be a locally Noetherian scheme. The category of coherent
OX -modules is abelian. More precisely, the kernel and cokernel of a map of coherent
OX -modules are coherent. Any extension of coherent sheaves is coherent.

Proof. This is a restatement of Modules, Lemma 17.12.4 in a particular case. □

The following lemma does not always hold for the category of coherent OX -modules
on a general ringed space X.

Lemma 30.9.3.01Y1 Let X be a locally Noetherian scheme. Let F be a coherent
OX -module. Any quasi-coherent submodule of F is coherent. Any quasi-coherent
quotient module of F is coherent.

Proof. We may assume that X is affine, say X = Spec(A). Properties, Lemma
28.5.2 implies that A is Noetherian. Lemma 30.9.1 turns this into algebra. The
algebraic counter part of the lemma is that a quotient, or a submodule of a finite
A-module is a finite A-module, see for example Algebra, Lemma 10.51.1. □

https://stacks.math.columbia.edu/tag/01Y0
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Lemma 30.9.4.01Y2 Let X be a locally Noetherian scheme. Let F , G be coherent
OX -modules. The OX -modules F ⊗OX

G and HomOX
(F ,G) are coherent.

Proof. It is shown in Modules, Lemma 17.22.6 that HomOX
(F ,G) is coherent. The

result for tensor products is Modules, Lemma 17.16.6 □

Lemma 30.9.5.01Y3 Let X be a locally Noetherian scheme. Let F , G be coherent
OX -modules. Let φ : G → F be a homomorphism of OX -modules. Let x ∈ X.

(1) If Fx = 0 then there exists an open neighbourhood U ⊂ X of x such that
F|U = 0.

(2) If φx : Gx → Fx is injective, then there exists an open neighbourhood
U ⊂ X of x such that φ|U is injective.

(3) If φx : Gx → Fx is surjective, then there exists an open neighbourhood
U ⊂ X of x such that φ|U is surjective.

(4) If φx : Gx → Fx is bijective, then there exists an open neighbourhood
U ⊂ X of x such that φ|U is an isomorphism.

Proof. See Modules, Lemmas 17.9.4, 17.9.5, and 17.12.6. □

Lemma 30.9.6.01Y4 Let X be a locally Noetherian scheme. Let F , G be coherent OX -
modules. Let x ∈ X. Suppose ψ : Gx → Fx is a map of OX,x-modules. Then there
exists an open neighbourhood U ⊂ X of x and a map φ : G|U → F|U such that
φx = ψ.

Proof. In view of Lemma 30.9.1 this is a reformulation of Modules, Lemma 17.22.4.
□

Lemma 30.9.7.01Y5 Let X be a locally Noetherian scheme. Let F be a coherent OX -
module. Then Supp(F) is closed, and F comes from a coherent sheaf on the scheme
theoretic support of F , see Morphisms, Definition 29.5.5.

Proof. Let i : Z → X be the scheme theoretic support of F and let G be the finite
type quasi-coherent sheaf on Z such that i∗G ∼= F . Since Z = Supp(F) we see that
the support is closed. The scheme Z is locally Noetherian by Morphisms, Lemmas
29.15.5 and 29.15.6. Finally, G is a coherent OZ-module by Lemma 30.9.1 □

Lemma 30.9.8.087T Let i : Z → X be a closed immersion of locally Noetherian schemes.
Let I ⊂ OX be the quasi-coherent sheaf of ideals cutting out Z. The functor i∗
induces an equivalence between the category of coherent OX -modules annihilated
by I and the category of coherent OZ-modules.

Proof. The functor is fully faithful by Morphisms, Lemma 29.4.1. Let F be a
coherent OX -module annihilated by I. By Morphisms, Lemma 29.4.1 we can write
F = i∗G for some quasi-coherent sheaf G on Z. By Modules, Lemma 17.13.3 we see
that G is of finite type. Hence G is coherent by Lemma 30.9.1. Thus the functor is
also essentially surjective as desired. □

Lemma 30.9.9.01Y6 Let f : X → Y be a morphism of schemes. Let F be a quasi-
coherent OX -module. Assume f is finite and Y locally Noetherian. Then Rpf∗F =
0 for p > 0 and f∗F is coherent if F is coherent.

Proof. The higher direct images vanish by Lemma 30.2.3 and because a finite mor-
phism is affine (by definition). Note that the assumptions imply that also X is lo-
cally Noetherian (see Morphisms, Lemma 29.15.6) and hence the statement makes

https://stacks.math.columbia.edu/tag/01Y2
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sense. Let Spec(A) = V ⊂ Y be an affine open subset. By Morphisms, Definition
29.44.1 we see that f−1(V ) = Spec(B) with A→ B finite. Lemma 30.9.1 turns the
statement of the lemma into the following algebra fact: If M is a finite B-module,
then M is also finite viewed as a A-module, see Algebra, Lemma 10.7.2. □

In the situation of the lemma also the higher direct images are coherent since they
vanish. We will show that this is always the case for a proper morphism between
locally Noetherian schemes (Proposition 30.19.1).
Lemma 30.9.10.0B3J Let X be a locally Noetherian scheme. Let F be a coherent sheaf
with dim(Supp(F)) ≤ 0. Then F is generated by global sections and Hi(X,F) = 0
for i > 0.
Proof. By Lemma 30.9.7 we see that F = i∗G where i : Z → X is the inclusion
of the scheme theoretic support of F and where G is a coherent OZ-module. Since
the dimension of Z is 0, we see Z is a disjoint union of affines (Properties, Lemma
28.10.5). Hence G is globally generated and the higher cohomology groups of G are
zero (Lemma 30.2.2). Hence F = i∗G is globally generated. Since the cohomologies
of F and G agree (Lemma 30.2.4 applies as a closed immersion is affine) we conclude
that the higher cohomology groups of F are zero. □

Lemma 30.9.11.0CYJ Let X be a scheme. Let j : U → X be the inclusion of an open.
Let T ⊂ X be a closed subset contained in U . If F is a coherent OU -module with
Supp(F) ⊂ T , then j∗F is a coherent OX -module.
Proof. Consider the open covering X = U ∪ (X \ T ). Then j∗F|U = F is coherent
and j∗F|X\T = 0 is also coherent. Hence j∗F is coherent. □

30.10. Coherent sheaves on Noetherian schemes

01Y7 In this section we mention some properties of coherent sheaves on Noetherian
schemes.
Lemma 30.10.1.01Y8 Let X be a Noetherian scheme. Let F be a coherent OX -module.
The ascending chain condition holds for quasi-coherent submodules of F . In other
words, given any sequence

F1 ⊂ F2 ⊂ . . . ⊂ F
of quasi-coherent submodules, then Fn = Fn+1 = . . . for some n ≥ 0.
Proof. Choose a finite affine open covering. On each member of the covering we
get stabilization by Algebra, Lemma 10.51.1. Hence the lemma follows. □

Lemma 30.10.2.01Y9 Let X be a Noetherian scheme. Let F be a coherent sheaf on X.
Let I ⊂ OX be a quasi-coherent sheaf of ideals corresponding to a closed subscheme
Z ⊂ X. Then there is some n ≥ 0 such that InF = 0 if and only if Supp(F) ⊂ Z
(set theoretically).
Proof. This follows immediately from Algebra, Lemma 10.62.4 because X has a
finite covering by spectra of Noetherian rings. □

Lemma 30.10.3 (Artin-Rees).01YA Let X be a Noetherian scheme. Let F be a coherent
sheaf on X. Let G ⊂ F be a quasi-coherent subsheaf. Let I ⊂ OX be a quasi-
coherent sheaf of ideals. Then there exists a c ≥ 0 such that for all n ≥ c we
have

In−c(IcF ∩ G) = InF ∩ G

https://stacks.math.columbia.edu/tag/0B3J
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Proof. This follows immediately from Algebra, Lemma 10.51.2 because X has a
finite covering by spectra of Noetherian rings. □

Lemma 30.10.4.0GN6 Let X be a Noetherian scheme. Every quasi-coherent OX -module
is the filtered colimit of its coherent submodules.

Proof. This is a reformulation of Properties, Lemma 28.22.3 in view of the fact that
a finite type quasi-coherent OX -module is coherent by Lemma 30.9.1. □

Lemma 30.10.5.01YB Let X be a Noetherian scheme. Let F be a quasi-coherent OX -
module. Let G be a coherent OX -module. Let I ⊂ OX be a quasi-coherent sheaf
of ideals. Denote Z ⊂ X the corresponding closed subscheme and set U = X \ Z.
There is a canonical isomorphism

colimn HomOX
(InG,F) −→ HomOU

(G|U ,F|U ).

In particular we have an isomorphism

colimn HomOX
(In,F) −→ Γ(U,F).

Proof. We first prove the second map is an isomorphism. It is injective by Proper-
ties, Lemma 28.25.3. Since F is the union of its coherent submodules, see Proper-
ties, Lemma 28.22.3 (and Lemma 30.9.1) we may and do assume that F is coherent
to prove surjectivity. Let Fn denote the quasi-coherent subsheaf of F consisting of
sections annihilated by In, see Properties, Lemma 28.25.3. Since F1 ⊂ F2 ⊂ . . . we
see that Fn = Fn+1 = . . . for some n ≥ 0 by Lemma 30.10.1. Set H = Fn for this n.
By Artin-Rees (Lemma 30.10.3) there exists an c ≥ 0 such that ImF∩H ⊂ Im−cH.
Picking m = n+ c we get ImF ∩H ⊂ InH = 0. Thus if we set F ′ = ImF then we
see that F ′ ∩ Fn = 0 and F ′|U = F|U . Note in particular that the subsheaf (F ′)N
of sections annihilated by IN is zero for all N ≥ 0. Hence by Properties, Lemma
28.25.3 we deduce that the top horizontal arrow in the following commutative dia-
gram is a bijection:

colimn HomOX
(In,F ′) //

��

Γ(U,F ′)

��
colimn HomOX

(In,F) // Γ(U,F)

Since also the right vertical arrow is a bijection we conclude that the bottom hori-
zontal arrow is surjective as desired.

Next, we prove the first arrow of the lemma is a bijection. By Lemma 30.9.1 the
sheaf G is of finite presentation and hence the sheaf H = HomOX

(G,F) is quasi-
coherent, see Schemes, Section 26.24. By definition we have

H(U) = HomOU
(G|U ,F|U )

Pick a ψ in the right hand side of the first arrow of the lemma, i.e., ψ ∈ H(U). The
result just proved applies to H and hence there exists an n ≥ 0 and an φ : In → H
which recovers ψ on restriction to U . By Modules, Lemma 17.22.1 φ corresponds
to a map

φ : In ⊗OX
G −→ F .

https://stacks.math.columbia.edu/tag/0GN6
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This is almost what we want except that the source of the arrow is the tensor
product of In and G and not the product. We will show that, at the cost of
increasing n, the difference is irrelevant. Consider the short exact sequence

0→ K → In ⊗OX
G → InG → 0

where K is defined as the kernel. Note that InK = 0 (proof omitted). By Artin-
Rees again we see that

K ∩ Im(In ⊗OX
G) = 0

for some m large enough. In other words we see that

Im(In ⊗OX
G) −→ In+mG

is an isomorphism. Let φ′ be the restriction of φ to this submodule thought of as
a map Im+nG → F . Then φ′ gives an element of the left hand side of the first
arrow of the lemma which maps to ψ via the arrow. In other words we have proved
surjectivity of the arrow. We omit the proof of injectivity. □

Lemma 30.10.6.0FD0 Let X be a locally Noetherian scheme. Let F , G be coherent
OX -modules. Let U ⊂ X be open and let φ : F|U → G|U be an OU -module map.
Then there exists a coherent submodule F ′ ⊂ F agreeing with F over U such that
φ extends to φ′ : F ′ → G.

Proof. Let I ⊂ OX be the coherent sheaf of ideals cutting out the reduced induced
scheme structure on X \ U . If X is Noetherian, then Lemma 30.10.5 tells us that
we can take F ′ = InF for some n. The general case will follow from this using
Zorn’s lemma.

Consider the set of triples (U ′,F ′, φ′) where U ⊂ U ′ ⊂ X is open, F ′ ⊂ F|U ′ is
a coherent subsheaf agreeing with F over U , and φ′ : F ′ → G|U ′ restricts to φ
over U . We say (U ′′,F ′′, φ′′) ≥ (U ′,F ′, φ′) if and only if U ′′ ⊃ U ′, F ′′|U ′ = F ′,
and φ′′|U ′ = φ′. It is clear that if we have a totally ordered collection of triples
(Ui,Fi, φi), then we can glue the Fi to a subsheaf F ′ of F over U ′ =

⋃
Ui and

extend φ to a map φ′ : F ′ → G|U ′ . Hence any totally ordered subset of triples has
an upper bound. Finally, suppose that (U ′,F ′, φ′) is any triple but U ′ ̸= X. Then
we can choose an affine open W ⊂ X which is not contained in U ′. By the result of
the first paragraph we can extend the subsheaf F ′|W∩U ′ and the restriction φ′|W∩U ′

to some subsheaf F ′′ ⊂ F|W and map φ′′ : F ′′ → G|W . Of course the agreement
between (F ′, φ′) and (F ′′, φ′′) over W ∩ U ′ exactly means that we can extend this
to a triple (U ′∪W,F ′′′, φ′′′). Hence any maximal triple (U ′,F ′, φ′) (which exist by
Zorn’s lemma) must have U ′ = X and the proof is complete. □

30.11. Depth

0340 In this section we talk a little bit about depth and property (Sk) for coherent
modules on locally Noetherian schemes. Note that we have already discussed this
notion for locally Noetherian schemes in Properties, Section 28.12.

Definition 30.11.1.0341 Let X be a locally Noetherian scheme. Let F be a coherent
OX -module. Let k ≥ 0 be an integer.

(1) We say F has depth k at a point x of X if depthOX,x
(Fx) = k.

(2) We say X has depth k at a point x of X if depth(OX,x) = k.
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(3) We say F has property (Sk) if
depthOX,x

(Fx) ≥ min(k, dim(Supp(Fx)))
for all x ∈ X.

(4) We say X has property (Sk) if OX has property (Sk).

Any coherent sheaf satisfies condition (S0). Condition (S1) is equivalent to having
no embedded associated points, see Divisors, Lemma 31.4.3.

Lemma 30.11.2.0EBC Let X be a locally Noetherian scheme. Let F , G be coherent
OX -modules and x ∈ X.

(1) If Gx has depth ≥ 1, then HomOX
(F ,G)x has depth ≥ 1.

(2) If Gx has depth ≥ 2, then HomOX
(F ,G)x has depth ≥ 2.

Proof. Observe that HomOX
(F ,G) is a coherent OX -module by Lemma 30.9.4.

Coherent modules are of finite presentation (Lemma 30.9.1) hence taking stalks
commutes with taking Hom and Hom, see Modules, Lemma 17.22.4. Thus we
reduce to the case of finite modules over local rings which is More on Algebra,
Lemma 15.23.10. □

Lemma 30.11.3.0AXQ Let X be a locally Noetherian scheme. Let F , G be coherent
OX -modules.

(1) If G has property (S1), then HomOX
(F ,G) has property (S1).

(2) If G has property (S2), then HomOX
(F ,G) has property (S2).

Proof. Follows immediately from Lemma 30.11.2 and the definitions. □

We have seen in Properties, Lemma 28.12.3 that a locally Noetherian scheme is
Cohen-Macaulay if and only if (Sk) holds for all k. Thus it makes sense to introduce
the following definition, which is equivalent to the condition that all stalks are
Cohen-Macaulay modules.

Definition 30.11.4.0343 Let X be a locally Noetherian scheme. Let F be a coherent
OX -module. We say F is Cohen-Macaulay if and only if (Sk) holds for all k ≥ 0.

Lemma 30.11.5.0B3K Let X be a regular scheme. Let F be a coherent OX -module.
The following are equivalent

(1) F is Cohen-Macaulay and Supp(F) = X,
(2) F is finite locally free of rank > 0.

Proof. Let x ∈ X. If (2) holds, then Fx is a free OX,x-module of rank > 0. Hence
depth(Fx) = dim(OX,x) because a regular local ring is Cohen-Macaulay (Algebra,
Lemma 10.106.3). Conversely, if (1) holds, then Fx is a maximal Cohen-Macaulay
module over OX,x (Algebra, Definition 10.103.8). Hence Fx is free by Algebra,
Lemma 10.106.6. □

30.12. Devissage of coherent sheaves

01YC Let X be a Noetherian scheme. Consider an integral closed subscheme i : Z → X.
It is often convenient to consider coherent sheaves of the form i∗G where G is a
coherent sheaf on Z. In particular we are interested in these sheaves when G is a
torsion free rank 1 sheaf. For example G could be a nonzero sheaf of ideals on Z,
or even more specifically G = OZ .
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Throughout this section we will use that a coherent sheaf is the same thing as a
finite type quasi-coherent sheaf and that a quasi-coherent subquotient of a coherent
sheaf is coherent, see Section 30.9. The support of a coherent sheaf is closed, see
Modules, Lemma 17.9.6.

Lemma 30.12.1.01YD Let X be a Noetherian scheme. Let F be a coherent sheaf on X.
Suppose that Supp(F) = Z ∪Z ′ with Z, Z ′ closed. Then there exists a short exact
sequence of coherent sheaves

0→ G′ → F → G → 0

with Supp(G′) ⊂ Z ′ and Supp(G) ⊂ Z.

Proof. Let I ⊂ OX be the sheaf of ideals defining the reduced induced closed
subscheme structure on Z, see Schemes, Lemma 26.12.4. Consider the subsheaves
G′
n = InF and the quotients Gn = F/InF . For each n we have a short exact

sequence
0→ G′

n → F → Gn → 0
For every point x of Z ′ \ Z we have Ix = OX,x and hence Gn,x = 0. Thus we see
that Supp(Gn) ⊂ Z. Note that X \ Z ′ is a Noetherian scheme. Hence by Lemma
30.10.2 there exists an n such that G′

n|X\Z′ = InF|X\Z′ = 0. For such an n we see
that Supp(G′

n) ⊂ Z ′. Thus setting G′ = G′
n and G = Gn works. □

Lemma 30.12.2.01YE Let X be a Noetherian scheme. Let i : Z → X be an integral
closed subscheme. Let ξ ∈ Z be the generic point. Let F be a coherent sheaf on
X. Assume that Fξ is annihilated by mξ. Then there exist an integer r ≥ 0 and a
coherent sheaf of ideals I ⊂ OZ and an injective map of coherent sheaves

i∗
(
I⊕r)→ F

which is an isomorphism in a neighbourhood of ξ.

Proof. Let J ⊂ OX be the ideal sheaf of Z. Let F ′ ⊂ F be the subsheaf of local
sections of F which are annihilated by J . It is a quasi-coherent sheaf by Properties,
Lemma 28.24.2. Moreover, F ′

ξ = Fξ because Jξ = mξ and part (3) of Properties,
Lemma 28.24.2. By Lemma 30.9.5 we see that F ′ → F induces an isomorphism
in a neighbourhood of ξ. Hence we may replace F by F ′ and assume that F is
annihilated by J .

Assume JF = 0. By Lemma 30.9.8 we can write F = i∗G for some coherent sheaf
G on Z. Suppose we can find a morphism I⊕r → G which is an isomorphism in a
neighbourhood of the generic point ξ of Z. Then applying i∗ (which is left exact)
we get the result of the lemma. Hence we have reduced to the case X = Z.

Suppose Z = X is an integral Noetherian scheme with generic point ξ. Note that
OX,ξ = κ(ξ) is the function field of X in this case. Since Fξ is a finite Oξ-module
we see that r = dimκ(ξ) Fξ is finite. Hence the sheaves O⊕r

X and F have isomorphic
stalks at ξ. By Lemma 30.9.6 there exists a nonempty open U ⊂ X and a morphism
ψ : O⊕r

X |U → F|U which is an isomorphism at ξ, and hence an isomorphism in a
neighbourhood of ξ by Lemma 30.9.5. By Schemes, Lemma 26.12.4 there exists a
quasi-coherent sheaf of ideals I ⊂ OX whose associated closed subscheme Z ⊂ X
is the complement of U . By Lemma 30.10.5 there exists an n ≥ 0 and a morphism
In(O⊕r

X ) → F which recovers our ψ over U . Since In(O⊕r
X ) = (In)⊕r we get a
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map as in the lemma. It is injective because X is integral and it is injective at the
generic point of X (easy proof omitted). □

Lemma 30.12.3.01YF Let X be a Noetherian scheme. Let F be a coherent sheaf on X.
There exists a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F

by coherent subsheaves such that for each j = 1, . . . ,m there exist an integral closed
subscheme Zj ⊂ X and a nonzero coherent sheaf of ideals Ij ⊂ OZj such that

Fj/Fj−1 ∼= (Zj → X)∗Ij

Proof. Consider the collection

T =
{
Z ⊂ X closed such that there exists a coherent sheaf F

with Supp(F) = Z for which the lemma is wrong

}
We are trying to show that T is empty. If not, then because X is Noetherian we
can choose a minimal element Z ∈ T . This means that there exists a coherent
sheaf F on X whose support is Z and for which the lemma does not hold. Clearly
Z ̸= ∅ since the only sheaf whose support is empty is the zero sheaf for which the
lemma does hold (with m = 0).

If Z is not irreducible, then we can write Z = Z1∪Z2 with Z1, Z2 closed and strictly
smaller than Z. Then we can apply Lemma 30.12.1 to get a short exact sequence
of coherent sheaves

0→ G1 → F → G2 → 0
with Supp(Gi) ⊂ Zi. By minimality of Z each of Gi has a filtration as in the
statement of the lemma. By considering the induced filtration on F we arrive at a
contradiction. Hence we conclude that Z is irreducible.

Suppose Z is irreducible. Let J be the sheaf of ideals cutting out the reduced
induced closed subscheme structure of Z, see Schemes, Lemma 26.12.4. By Lemma
30.10.2 we see there exists an n ≥ 0 such that J nF = 0. Hence we obtain a
filtration

0 = J nF ⊂ J n−1F ⊂ . . . ⊂ JF ⊂ F
each of whose successive subquotients is annihilated by J . Hence if each of these
subquotients has a filtration as in the statement of the lemma then also F does. In
other words we may assume that J does annihilate F .

In the case where Z is irreducible and JF = 0 we can apply Lemma 30.12.2. This
gives a short exact sequence

0→ i∗(I⊕r)→ F → Q→ 0

where Q is defined as the quotient. Since Q is zero in a neighbourhood of ξ by the
lemma just cited we see that the support of Q is strictly smaller than Z. Hence we
see that Q has a filtration of the desired type by minimality of Z. But then clearly
F does too, which is our final contradiction. □

Lemma 30.12.4.01YG Let X be a Noetherian scheme. Let P be a property of coherent
sheaves on X. Assume
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(1) For any short exact sequence of coherent sheaves
0→ F1 → F → F2 → 0

if Fi, i = 1, 2 have property P then so does F .
(2) For every integral closed subscheme Z ⊂ X and every quasi-coherent sheaf

of ideals I ⊂ OZ we have P for i∗I.
Then property P holds for every coherent sheaf on X.

Proof. First note that if F is a coherent sheaf with a filtration
0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F

by coherent subsheaves such that each of Fi/Fi−1 has property P, then so does F .
This follows from the property (1) for P. On the other hand, by Lemma 30.12.3 we
can filter any F with successive subquotients as in (2). Hence the lemma follows. □

Lemma 30.12.5.01YH Let X be a Noetherian scheme. Let Z0 ⊂ X be an irreducible
closed subset with generic point ξ. Let P be a property of coherent sheaves on X
with support contained in Z0 such that

(1) For any short exact sequence of coherent sheaves if two out of three of
them have property P then so does the third.

(2) For every integral closed subscheme Z ⊂ Z0 ⊂ X, Z ̸= Z0 and every
quasi-coherent sheaf of ideals I ⊂ OZ we have P for (Z → X)∗I.

(3) There exists some coherent sheaf G on X such that
(a) Supp(G) = Z0,
(b) Gξ is annihilated by mξ,
(c) dimκ(ξ) Gξ = 1, and
(d) property P holds for G.

Then property P holds for every coherent sheaf F on X whose support is contained
in Z0.

Proof. First note that if F is a coherent sheaf with support contained in Z0 with a
filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F
by coherent subsheaves such that each of Fi/Fi−1 has property P, then so does F .
Or, if F has property P and all but one of the Fi/Fi−1 has property P then so
does the last one. This follows from assumption (1).
As a first application we conclude that any coherent sheaf whose support is strictly
contained in Z0 has property P. Namely, such a sheaf has a filtration (see Lemma
30.12.3) whose subquotients have property P according to (2).
Let G be as in (3). By Lemma 30.12.2 there exist a sheaf of ideals I on Z0, an
integer r ≥ 1, and a short exact sequence

0→ ((Z0 → X)∗I)⊕r → G → Q→ 0
where the support of Q is strictly contained in Z0. By (3)(c) we see that r = 1.
Since Q has property P too we conclude that (Z0 → X)∗I has property P.
Next, suppose that I ′ ̸= 0 is another quasi-coherent sheaf of ideals on Z0. Then we
can consider the intersection I ′′ = I ′ ∩ I and we get two short exact sequences

0→ (Z0 → X)∗I ′′ → (Z0 → X)∗I → Q → 0
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and
0→ (Z0 → X)∗I ′′ → (Z0 → X)∗I ′ → Q′ → 0.

Note that the support of the coherent sheaves Q and Q′ are strictly contained in
Z0. Hence Q and Q′ have property P (see above). Hence we conclude using (1)
that (Z0 → X)∗I ′′ and (Z0 → X)∗I ′ both have P as well.

The final step of the proof is to note that any coherent sheaf F on X whose support
is contained in Z0 has a filtration (see Lemma 30.12.3 again) whose subquotients
all have property P by what we just said. □

Lemma 30.12.6.01YI Let X be a Noetherian scheme. Let P be a property of coherent
sheaves on X such that

(1) For any short exact sequence of coherent sheaves if two out of three of
them have property P then so does the third.

(2) For every integral closed subscheme Z ⊂ X with generic point ξ there
exists some coherent sheaf G such that
(a) Supp(G) = Z,
(b) Gξ is annihilated by mξ,
(c) dimκ(ξ) Gξ = 1, and
(d) property P holds for G.

Then property P holds for every coherent sheaf on X.

Proof. According to Lemma 30.12.4 it suffices to show that for all integral closed
subschemes Z ⊂ X and all quasi-coherent ideal sheaves I ⊂ OZ we have P for
(Z → X)∗I. If this fails, then since X is Noetherian there is a minimal integral
closed subscheme Z0 ⊂ X such that P fails for (Z0 → X)∗I0 for some quasi-
coherent sheaf of ideals I0 ⊂ OZ0 , but P does hold for (Z → X)∗I for all integral
closed subschemes Z ⊂ Z0, Z ̸= Z0 and quasi-coherent ideal sheaves I ⊂ OZ .
Since we have the existence of G for Z0 by part (2), according to Lemma 30.12.5
this cannot happen. □

Lemma 30.12.7.01YL Let X be a Noetherian scheme. Let Z0 ⊂ X be an irreducible
closed subset with generic point ξ. Let P be a property of coherent sheaves on X
such that

(1) For any short exact sequence of coherent sheaves

0→ F1 → F → F2 → 0

if Fi, i = 1, 2 have property P then so does F .
(2) If P holds for F⊕r for some r ≥ 1, then it holds for F .
(3) For every integral closed subscheme Z ⊂ Z0 ⊂ X, Z ̸= Z0 and every

quasi-coherent sheaf of ideals I ⊂ OZ we have P for (Z → X)∗I.
(4) There exists some coherent sheaf G such that

(a) Supp(G) = Z0,
(b) Gξ is annihilated by mξ, and
(c) for every quasi-coherent sheaf of ideals J ⊂ OX such that Jξ = OX,ξ

there exists a quasi-coherent subsheaf G′ ⊂ JG with G′
ξ = Gξ and

such that P holds for G′.
Then property P holds for every coherent sheaf F on X whose support is contained
in Z0.
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Proof. Note that if F is a coherent sheaf with a filtration
0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F

by coherent subsheaves such that each of Fi/Fi−1 has property P, then so does F .
This follows from assumption (1).
As a first application we conclude that any coherent sheaf whose support is strictly
contained in Z0 has property P. Namely, such a sheaf has a filtration (see Lemma
30.12.3) whose subquotients have property P according to (3).
Let us denote i : Z0 → X the closed immersion. Consider a coherent sheaf G as
in (4). By Lemma 30.12.2 there exists a sheaf of ideals I on Z0 and a short exact
sequence

0→ i∗I⊕r → G → Q→ 0
where the support of Q is strictly contained in Z0. In particular r > 0 and I
is nonzero because the support of G is equal to Z0. Let I ′ ⊂ I be any nonzero
quasi-coherent sheaf of ideals on Z0 contained in I. Then we also get a short exact
sequence

0→ i∗(I ′)⊕r → G → Q′ → 0
where Q′ has support properly contained in Z0. Let J ⊂ OX be a quasi-coherent
sheaf of ideals cutting out the support of Q′ (for example the ideal corresponding
to the reduced induced closed subscheme structure on the support of Q′). Then
Jξ = OX,ξ. By Lemma 30.10.2 we see that J nQ′ = 0 for some n. Hence J nG ⊂
i∗(I ′)⊕r. By assumption (4)(c) of the lemma we see there exists a quasi-coherent
subsheaf G′ ⊂ J nG with G′

ξ = Gξ for which property P holds. Hence we get a short
exact sequence

0→ G′ → i∗(I ′)⊕r → Q′′ → 0
where Q′′ has support properly contained in Z0. Thus by our initial remarks and
property (1) of the lemma we conclude that i∗(I ′)⊕r satisfies P. Hence we see
that i∗I ′ satisfies P by (2). Finally, for an arbitrary quasi-coherent sheaf of ideals
I ′′ ⊂ OZ0 we can set I ′ = I ′′ ∩ I and we get a short exact sequence

0→ i∗(I ′)→ i∗(I ′′)→ Q′′′ → 0
where Q′′′ has support properly contained in Z0. Hence we conclude that property
P holds for i∗I ′′ as well.
The final step of the proof is to note that any coherent sheaf F on X whose support
is contained in Z0 has a filtration (see Lemma 30.12.3 again) whose subquotients
all have property P by what we just said. □

Lemma 30.12.8.01YM Let X be a Noetherian scheme. Let P be a property of coherent
sheaves on X such that

(1) For any short exact sequence of coherent sheaves
0→ F1 → F → F2 → 0

if Fi, i = 1, 2 have property P then so does F .
(2) If P holds for F⊕r for some r ≥ 1, then it holds for F .
(3) For every integral closed subscheme Z ⊂ X with generic point ξ there

exists some coherent sheaf G such that
(a) Supp(G) = Z,
(b) Gξ is annihilated by mξ, and
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(c) for every quasi-coherent sheaf of ideals J ⊂ OX such that Jξ = OX,ξ
there exists a quasi-coherent subsheaf G′ ⊂ JG with G′

ξ = Gξ and
such that P holds for G′.

Then property P holds for every coherent sheaf on X.

Proof. Follows from Lemma 30.12.7 in exactly the same way that Lemma 30.12.6
follows from Lemma 30.12.5. □

30.13. Finite morphisms and affines

01YN In this section we use the results of the preceding sections to show that the image
of a Noetherian affine scheme under a finite morphism is affine. We will see later
that this result holds more generally (see Limits, Lemma 32.11.1 and Proposition
32.11.2).

Lemma 30.13.1.01YO Let f : Y → X be a morphism of schemes. Assume f is finite,
surjective and X locally Noetherian. Let Z ⊂ X be an integral closed subscheme
with generic point ξ. Then there exists a coherent sheaf F on Y such that the
support of f∗F is equal to Z and (f∗F)ξ is annihilated by mξ.

Proof. Note that Y is locally Noetherian by Morphisms, Lemma 29.15.6. Because
f is surjective the fibre Yξ is not empty. Pick ξ′ ∈ Y mapping to ξ. Let Z ′ = {ξ′}.
We may think of Z ′ ⊂ Y as a reduced closed subscheme, see Schemes, Lemma
26.12.4. Hence the sheaf F = (Z ′ → Y )∗OZ′ is a coherent sheaf on Y (see Lemma
30.9.9). Look at the commutative diagram

Z ′
i′
//

f ′

��

Y

f

��
Z

i // X

We see that f∗F = i∗f
′
∗OZ′ . Hence the stalk of f∗F at ξ is the stalk of f ′

∗OZ′ at ξ.
Note that since Z ′ is integral with generic point ξ′ we have that ξ′ is the only point
of Z ′ lying over ξ, see Algebra, Lemmas 10.36.3 and 10.36.20. Hence the stalk of
f ′

∗OZ′ at ξ equal OZ′,ξ′ = κ(ξ′). In particular the stalk of f∗F at ξ is not zero.
This combined with the fact that f∗F is of the form i∗f

′
∗(something) implies the

lemma. □

Lemma 30.13.2.01YP Let f : Y → X be a morphism of schemes. Let F be a quasi-
coherent sheaf on Y . Let I be a quasi-coherent sheaf of ideals onX. If the morphism
f is affine then If∗F = f∗(f−1IF).

Proof. The notation means the following. Since f−1 is an exact functor we see that
f−1I is a sheaf of ideals of f−1OX . Via the map f ♯ : f−1OX → OY this acts on
F . Then f−1IF is the subsheaf generated by sums of local sections of the form as
where a is a local section of f−1I and s is a local section of F . It is a quasi-coherent
OY -submodule of F because it is also the image of a natural map f∗I ⊗OY

F → F .
Having said this the proof is straightforward. Namely, the question is local and
hence we may assume X is affine. Since f is affine we see that Y is affine too. Thus
we may write Y = Spec(B), X = Spec(A), F = M̃ , and I = Ĩ. The assertion of
the lemma in this case boils down to the statement that

I(MA) = ((IB)M)A
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where MA indicates the A-module associated to the B-module M . □

Lemma 30.13.3.01YQ Let f : Y → X be a morphism of schemes. Assume
(1) f finite,
(2) f surjective,
(3) Y affine, and
(4) X Noetherian.

Then X is affine.

Proof. We will prove that under the assumptions of the lemma for any coherentOX -
module F we have H1(X,F) = 0. This will in particular imply that H1(X, I) = 0
for every quasi-coherent sheaf of ideals of OX . Then it follows that X is affine from
either Lemma 30.3.1 or Lemma 30.3.2.

Let P be the property of coherent sheaves F on X defined by the rule

P(F)⇔ H1(X,F) = 0.

We are going to apply Lemma 30.12.8. Thus we have to verify (1), (2) and (3) of
that lemma for P. Property (1) follows from the long exact cohomology sequence
associated to a short exact sequence of sheaves. Property (2) follows since H1(X,−)
is an additive functor. To see (3) let Z ⊂ X be an integral closed subscheme with
generic point ξ. Let F be a coherent sheaf on Y such that the support of f∗F is
equal to Z and (f∗F)ξ is annihilated by mξ, see Lemma 30.13.1. We claim that
taking G = f∗F works. We only have to verify part (3)(c) of Lemma 30.12.8. Hence
assume that J ⊂ OX is a quasi-coherent sheaf of ideals such that Jξ = OX,ξ. A
finite morphism is affine hence by Lemma 30.13.2 we see that JG = f∗(f−1JF).
Also, as pointed out in the proof of Lemma 30.13.2 the sheaf f−1JF is a quasi-
coherent OY -module. Since Y is affine we see that H1(Y, f−1JF) = 0, see Lemma
30.2.2. Since f is finite, hence affine, we see that

H1(X,JG) = H1(X, f∗(f−1JF)) = H1(Y, f−1JF) = 0

by Lemma 30.2.4. Hence the quasi-coherent subsheaf G′ = JG satisfies P. This
verifies property (3)(c) of Lemma 30.12.8 as desired. □

30.14. Coherent sheaves on Proj, I

01YR In this section we discuss coherent sheaves on Proj(A) where A is a Noetherian
graded ring generated by A1 over A0. In the next section we discuss what happens
if A is not generated by degree 1 elements. First, we formulate an all-in-one result
for projective space over a Noetherian ring.

Lemma 30.14.1.01YS Let R be a Noetherian ring. Let n ≥ 0 be an integer. For every
coherent sheaf F on Pn

R we have the following:
(1) There exists an r ≥ 0 and d1, . . . , dr ∈ Z and a surjection⊕

j=1,...,r
OPn

R
(dj) −→ F .

(2) We have Hi(Pn
R,F) = 0 unless 0 ≤ i ≤ n.

(3) For any i the cohomology group Hi(Pn
R,F) is a finite R-module.

(4) If i > 0, then Hi(Pn
R,F(d)) = 0 for all d large enough.
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(5) For any k ∈ Z the graded R[T0, . . . , Tn]-module⊕
d≥k

H0(Pn
R,F(d))

is a finite R[T0, . . . , Tn]-module.

Proof. We will use thatOPn
R

(1) is an ample invertible sheaf on the scheme Pn
R. This

follows directly from the definition since Pn
R covered by the standard affine opens

D+(Ti). Hence by Properties, Proposition 28.26.13 every finite type quasi-coherent
OPn

R
-module is a quotient of a finite direct sum of tensor powers of OPn

R
(1). On the

other hand coherent sheaves and finite type quasi-coherent sheaves are the same
thing on projective space over R by Lemma 30.9.1. Thus we see (1).
Projective n-space Pn

R is covered by n + 1 affines, namely the standard opens
D+(Ti), i = 0, . . . , n, see Constructions, Lemma 27.13.3. Hence we see that for any
quasi-coherent sheaf F on Pn

R we have Hi(Pn
R,F) = 0 for i ≥ n + 1, see Lemma

30.4.2. Hence (2) holds.
Let us prove (3) and (4) simultaneously for all coherent sheaves on Pn

R by descending
induction on i. Clearly the result holds for i ≥ n + 1 by (2). Suppose we know
the result for i + 1 and we want to show the result for i. (If i = 0, then part (4)
is vacuous.) Let F be a coherent sheaf on Pn

R. Choose a surjection as in (1) and
denote G the kernel so that we have a short exact sequence

0→ G →
⊕

j=1,...,r
OPn

R
(dj)→ F → 0

By Lemma 30.9.2 we see that G is coherent. The long exact cohomology sequence
gives an exact sequence

Hi(Pn
R,
⊕

j=1,...,r
OPn

R
(dj))→ Hi(Pn

R,F)→ Hi+1(Pn
R,G).

By induction assumption the right R-module is finite and by Lemma 30.8.1 the left
R-module is finite. Since R is Noetherian it follows immediately that Hi(Pn

R,F) is
a finite R-module. This proves the induction step for assertion (3). Since OPn

R
(d)

is invertible we see that twisting on Pn
R is an exact functor (since you get it by

tensoring with an invertible sheaf, see Constructions, Definition 27.10.1). This
means that for all d ∈ Z the sequence

0→ G(d)→
⊕

j=1,...,r
OPn

R
(dj + d)→ F(d)→ 0

is short exact. The resulting cohomology sequence is

Hi(Pn
R,
⊕

j=1,...,r
OPn

R
(dj + d))→ Hi(Pn

R,F(d))→ Hi+1(Pn
R,G(d)).

By induction assumption we see the module on the right is zero for d ≫ 0 and
by the computation in Lemma 30.8.1 the module on the left is zero as soon as
d ≥ −min{dj} and i ≥ 1. Hence the induction step for assertion (4). This concludes
the proof of (3) and (4).
In order to prove (5) note that for all sufficiently large d the map

H0(Pn
R,
⊕

j=1,...,r
OPn

R
(dj + d))→ H0(Pn

R,F(d))

is surjective by the vanishing of H1(Pn
R,G(d)) we just proved. In other words, the

module
Mk =

⊕
d≥k

H0(Pn
R,F(d))
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is for k large enough a quotient of the corresponding module

Nk =
⊕

d≥k
H0(Pn

R,
⊕

j=1,...,r
OPn

R
(dj + d))

When k is sufficiently small (e.g. k < −dj for all j) then

Nk =
⊕

j=1,...,r
R[T0, . . . , Tn](dj)

by our computations in Section 30.8. In particular it is finitely generated. Suppose
k ∈ Z is arbitrary. Choose k− ≪ k ≪ k+. Consider the diagram

Nk− Nk+

��

oo

Mk Mk+
oo

where the vertical arrow is the surjective map above and the horizontal arrows are
the obvious inclusion maps. By what was said above we see that Nk− is a finitely
generated R[T0, . . . , Tn]-module. Hence Nk+ is a finitely generated R[T0, . . . , Tn]-
module because it is a submodule of a finitely generated module and the ring
R[T0, . . . , Tn] is Noetherian. Since the vertical arrow is surjective we conclude that
Mk+ is a finitely generated R[T0, . . . , Tn]-module. The quotient Mk/Mk+ is finite
as an R-module since it is a finite direct sum of the finite R-modules H0(Pn

R,F(d))
for k ≤ d < k+. Note that we use part (3) for i = 0 here. Hence Mk/Mk+ is
a fortiori a finite R[T0, . . . , Tn]-module. In other words, we have sandwiched Mk

between two finite R[T0, . . . , Tn]-modules and we win. □

Lemma 30.14.2.0AG6 Let A be a graded ring such that A0 is Noetherian and A is
generated by finitely many elements of A1 over A0. Set X = Proj(A). Then X is
a Noetherian scheme. Let F be a coherent OX -module.

(1) There exists an r ≥ 0 and d1, . . . , dr ∈ Z and a surjection⊕
j=1,...,r

OX(dj) −→ F .

(2) For any p the cohomology group Hp(X,F) is a finite A0-module.
(3) If p > 0, then Hp(X,F(d)) = 0 for all d large enough.
(4) For any k ∈ Z the graded A-module⊕

d≥k
H0(X,F(d))

is a finite A-module.

Proof. By assumption there exists a surjection of graded A0-algebras
A0[T0, . . . , Tn] −→ A

where deg(Tj) = 1 for j = 0, . . . , n. By Constructions, Lemma 27.11.5 this defines
a closed immersion i : X → Pn

A0
such that i∗OPn

A0
(1) = OX(1). In particular, X

is Noetherian as a closed subscheme of the Noetherian scheme Pn
A0

. We claim that
the results of the lemma for F follow from the corresponding results of Lemma
30.14.1 for the coherent sheaf i∗F (Lemma 30.9.8) on Pn

A0
. For example, by this

lemma there exists a surjection⊕
j=1,...,r

OPn
A0

(dj) −→ i∗F .

https://stacks.math.columbia.edu/tag/0AG6
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By adjunction this corresponds to a map
⊕

j=1,...,rOX(dj) −→ F which is surjec-
tive as well. The statements on cohomology follow from the fact thatHp(X,F(d)) =
Hp(Pn

A0
, i∗F(d)) by Lemma 30.2.4. □

Lemma 30.14.3.0AG7 Let A be a graded ring such that A0 is Noetherian and A is
generated by finitely many elements of A1 over A0. Let M be a finite graded
A-module. Set X = Proj(A) and let M̃ be the quasi-coherent OX -module on X
associated to M . The maps

Mn −→ Γ(X, M̃(n))
from Constructions, Lemma 27.10.3 are isomorphisms for all sufficiently large n.

Proof. Because M is a finite A-module we see that M̃ is a finite type OX -module,
i.e., a coherent OX -module. Set N =

⊕
n∈Z Γ(X, M̃(n)). We have to show that

the map M → N of graded A-modules is an isomorphism in all sufficiently large
degrees. By Properties, Lemma 28.28.5 we have a canonical isomorphism Ñ → M̃

such that the induced maps Nn → Nn = Γ(X, M̃(n)) are the identity maps. Thus
we have maps M̃ → Ñ → M̃ such that for all n the diagram

Mn

��

// Nn

��
Γ(X, M̃(n)) // Γ(X, Ñ(n))

∼= // Γ(X, M̃(n))

is commutative. This means that the composition

Mn → Γ(X, M̃(n))→ Γ(X, Ñ(n))→ Γ(X, M̃(n))

is equal to the canonical map Mn → Γ(X, M̃(n)). Clearly this implies that the
composition M̃ → Ñ → M̃ is the identity. Hence M̃ → Ñ is an isomorphism. Let
K = Ker(M → N) and Q = Coker(M → N). Recall that the functor M 7→ M̃

is exact, see Constructions, Lemma 27.8.4. Hence we see that K̃ = 0 and Q̃ = 0.
Recall that A is a Noetherian ring, M is a finitely generated A-module, and N is a
graded A-module such that N ′ =

⊕
n≥0 Nn is finitely generated by the last part of

Lemma 30.14.2. Hence K ′ =
⊕

n≥0 Kn and Q′ =
⊕

n≥0 Qn are finite A-modules.
Observe that Q̃ = Q̃′ and K̃ = K̃ ′. Thus to finish the proof it suffices to show
that a finite A-module K with K̃ = 0 has only finitely many nonzero homogeneous
parts Kd with d ≥ 0. To do this, let x1, . . . , xr ∈ K be homogeneous generators
say sitting in degrees d1, . . . , dr. Let f1, . . . , fn ∈ A1 be elements generating A over
A0. For each i and j there exists an nij ≥ 0 such that fniji xj = 0 in Kdj+nij : if
not then xi/fdii ∈ K(fi) would not be zero, i.e., K̃ would not be zero. Then we see
that Kd is zero for d > maxj(dj +

∑
i nij) as every element of Kd is a sum of terms

where each term is a monomials in the fi times one of the xj of total degree d. □

Let A be a graded ring such that A0 is Noetherian and A is generated by finitely
many elements of A1 over A0. Recall that A+ =

⊕
n>0 An is the irrelevant ideal.

Let M be a graded A-module. Recall that M is an A+-power torsion module if
for all x ∈ M there is an n ≥ 1 such that (A+)nx = 0, see More on Algebra,
Definition 15.88.1. If M is finitely generated, then we see that this is equivalent
to Mn = 0 for n ≫ 0. Sometimes A+-power torsion modules are called torsion

https://stacks.math.columbia.edu/tag/0AG7


30.15. COHERENT SHEAVES ON PROJ, II 2578

modules. Sometimes a graded A-module M is called torsion free if x ∈ M with
(A+)nx = 0, n > 0 implies x = 0. Denote ModA the category of graded A-
modules, ModfgA the full subcategory of finitely generated ones, and ModfgA,torsion
the full subcategory of modules M such that Mn = 0 for n≫ 0.

Proposition 30.14.4.0BXD Let A be a graded ring such that A0 is Noetherian and A is
generated by finitely many elements of A1 over A0. Set X = Proj(A). The functor
M 7→ M̃ induces an equivalence

ModfgA /ModfgA,torsion −→ Coh(OX)
whose quasi-inverse is given by F 7−→

⊕
n≥0 Γ(X,F(n)).

Proof. The subcategory ModfgA,torsion is a Serre subcategory of ModfgA , see Homol-
ogy, Definition 12.10.1. This is clear from the description of objects given above but
it also follows from More on Algebra, Lemma 15.88.5. Hence the quotient category
on the left of the arrow is defined in Homology, Lemma 12.10.6. To define the func-
tor of the proposition, it suffices to show that the functor M 7→ M̃ sends torsion
modules to 0. This is clear because for any f ∈ A+ homogeneous the module Mf

is zero and hence the value M(f) of M̃ on D+(f) is zero too.
By Lemma 30.14.2 the proposed quasi-inverse makes sense. Namely, the lemma
shows that F 7−→

⊕
n≥0 Γ(X,F(n)) is a functor Coh(OX)→ ModfgA which we can

compose with the quotient functor ModfgA → ModfgA /ModfgA,torsion.
By Lemma 30.14.3 the composite left to right to left is isomorphic to the identity
functor.
Finally, let F be a coherent OX -module. Set M =

⊕
n∈Z Γ(X,F(n)) viewed as a

graded A-module, so that our functor sends F to M≥0 =
⊕

n≥0 Mn. By Properties,
Lemma 28.28.5 the canonical map M̃ → F is an isomorphism. Since the inclusion
map M≥0 →M defines an isomorphism M̃≥0 → M̃ we conclude that the composite
right to left to right is isomorphic to the identity functor as well. □

30.15. Coherent sheaves on Proj, II

0BXE In this section we discuss coherent sheaves on Proj(A) where A is a Noetherian
graded ring. Most of the results will be deduced by sleight of hand from the
corresponding result in the previous section where we discussed what happens if A
is generated by degree 1 elements.

Lemma 30.15.1.0B5Q Let A be a Noetherian graded ring. Set X = Proj(A). Then X is
a Noetherian scheme. Let F be a coherent OX -module.

(1) There exists an r ≥ 0 and d1, . . . , dr ∈ Z and a surjection⊕
j=1,...,r

OX(dj) −→ F .

(2) For any p the cohomology group Hp(X,F) is a finite A0-module.
(3) If p > 0, then Hp(X,F(d)) = 0 for all d large enough.
(4) For any k ∈ Z the graded A-module⊕

d≥k
H0(X,F(d))

is a finite A-module.

https://stacks.math.columbia.edu/tag/0BXD
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Proof. We will prove this by reducing the statement to Lemma 30.14.2. By Algebra,
Lemmas 10.58.2 and 10.58.1 the ring A0 is Noetherian and A is generated over A0
by finitely many elements f1, . . . , fr homogeneous of positive degree. Let d be a
sufficiently divisible integer. Set A′ = A(d) with notation as in Algebra, Section
10.56. Then A′ is generated over A′

0 = A0 by elements of degree 1, see Algebra,
Lemma 10.56.2. Thus Lemma 30.14.2 applies to X ′ = Proj(A′).
By Constructions, Lemma 27.11.8 there exist an isomorphism of schemes i : X →
X ′ and isomorphisms OX(nd) → i∗OX′(n) compatible with the map A′ → A and
the maps An → H0(X,OX(n)) and A′

n → H0(X ′,OX′(n)). Thus Lemma 30.14.2
implies X is Noetherian and that (1) and (2) hold. To see (3) and (4) we can use
that for any fixed k, p, and q we have⊕

dn+q≥k
Hp(X,F(dn+ q)) =

⊕
dn+q≥k

Hp(X ′, (i∗F(q))(n)

by the compatibilities above. If p > 0, we have the vanishing of the right hand
side for k depending on q large enough by Lemma 30.14.2. Since there are only
a finite number of congruence classes of integers modulo d, we see that (3) holds
for F on X. If p = 0, then we have that the right hand side is a finite A′-module
by Lemma 30.14.2. Using the finiteness of congruence classes once more, we find
that

⊕
n≥kH

0(X,F(n)) is a finite A′-module too. Since the A′-module structure
comes from the A-module structure (by the compatibilities mentioned above), we
conclude it is finite as an A-module as well. □

Lemma 30.15.2.0B5R Let A be a Noetherian graded ring and let d be the lcm of gener-
ators of A over A0. Let M be a finite graded A-module. Set X = Proj(A) and let
M̃ be the quasi-coherent OX -module on X associated to M . Let k ∈ Z.

(1) N ′ =
⊕

n≥kH
0(X, M̃(n)) is a finite A-module,

(2) N =
⊕

n≥kH
0(X, M̃(n)) is a finite A-module,

(3) there is a canonical map N → N ′,
(4) if k is small enough there is a canonical map M → N ′,
(5) the map Mn → N ′

n is an isomorphism for n≫ 0,
(6) Nn → N ′

n is an isomorphism for d|n.

Proof. The map N → N ′ in (3) comes from Constructions, Equation (27.10.1.5)
by taking global sections.
By Constructions, Equation (27.10.1.6) there is a map of graded A-modules M →⊕

n∈Z H
0(X, M̃(n)). If the generators of M sit in degrees ≥ k, then the image is

contained in the submodule N ′ ⊂
⊕

n∈Z H
0(X, M̃(n)) and we get the map in (4).

By Algebra, Lemmas 10.58.2 and 10.58.1 the ring A0 is Noetherian and A is gener-
ated over A0 by finitely many elements f1, . . . , fr homogeneous of positive degree.
Let d = lcm(deg(fi)). Then we see that (6) holds for example by Constructions,
Lemma 27.10.4.
Because M is a finite A-module we see that M̃ is a finite type OX -module, i.e., a
coherent OX -module. Thus part (2) follows from Lemma 30.15.1.
We will deduce (1) from (2) using a trick. For q ∈ {0, . . . , d− 1} write

qN =
⊕

n+q≥k
H0(X, M̃(q)(n))

https://stacks.math.columbia.edu/tag/0B5R
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By part (2) these are finite A-modules. The Noetherian ring A is finite over A(d) =⊕
n≥0 Adn, because it is generated by fi over A(d) and fdi ∈ A(d). Hence qN is

a finite A(d)-module. Moreover, A(d) is Noetherian (follows from Algebra, Lemma
10.57.9). It follows that the A(d)-submodule qN (d) =

⊕
n∈Z

qNdn is a finite module
over A(d). Using the isomorphisms ˜M(dn+ q) = M̃(q)(dn) we can write

N ′ =
⊕

q∈{0,...,d−1}

⊕
dn+q≥k

H0(X, M̃(q)(dn)) =
⊕

q∈{0,...,d−1}
qN (d)

Thus N ′ is finite over A(d) and a fortiori finite over A. Thus (1) is true.

Let K be a finite A-module such that K̃ = 0. We claim that Kn = 0 for d|n
and n ≫ 0. Arguing as above we see that K(d) is a finite A(d)-module. Let
x1, . . . , xm ∈ K be homogeneous generators of K(d) over A(d), say sitting in degrees
d1, . . . , dm with d|dj . For each i and j there exists an nij ≥ 0 such that fniji xj = 0
in Kdj+nij : if not then xj/f

di/ deg(fi)
i ∈ K(fi) would not be zero, i.e., K̃ would not

be zero. Here we use that deg(fi)|d|dj for all i, j. We conclude that Kn is zero for
n with d|n and n > maxj(dj +

∑
i nij deg(fi)) as every element of Kn is a sum of

terms where each term is a monomials in the fi times one of the xj of total degree
n.
To finish the proof, we have to show that M → N ′ is an isomorphism in all suffi-
ciently large degrees. The map N → N ′ induces an isomorphism Ñ → Ñ ′ because
on the affine opens D+(fi) = D+(fdi ) the corresponding modules are isomorphic:
N(fi)

∼= N(fd
i

)
∼= N ′

(fd
i

)
∼= N ′

(fi) by property (6). By Properties, Lemma 28.28.5 we
have a canonical isomorphism Ñ → M̃ . The composition Ñ → M̃ → Ñ ′ is the iso-
morphism above (proof omitted; hint: look on standard affine opens to check this).
Thus the map M → N ′ induces an isomorphism M̃ → Ñ ′. Let K = Ker(M → N ′)
and Q = Coker(M → N ′). Recall that the functor M 7→ M̃ is exact, see Con-
structions, Lemma 27.8.4. Hence we see that K̃ = 0 and Q̃ = 0. By the result of
the previous paragraph we see that Kn = 0 and Qn = 0 for d|n and n ≫ 0. At
this point we finally see the advantage of using N ′ over N : the functor M ⇝ N ′

is compatible with shifts (immediate from the construction). Thus, repeating the
whole argument with M replaced by M(q) we find that Kn = 0 and Qn = 0 for
n ≡ q mod d and n ≫ 0. Since there are only finitely many congruence classes
modulo n the proof is finished. □

Let A be a Noetherian graded ring. Recall that A+ =
⊕

n>0 An is the irrelevant
ideal. By Algebra, Lemmas 10.58.2 and 10.58.1 the ring A0 is Noetherian and A
is generated over A0 by finitely many elements f1, . . . , fr homogeneous of positive
degree. Let d = lcm(deg(fi)). Let M be a graded A-module. In this situation we
say a homogeneous element x ∈M is irrelevant2 if

(A+x)nd = 0 for all n≫ 0
If x ∈ M is homogeneous and irrelevant and f ∈ A is homogeneous, then fx is
irrelevant too. Hence the set of irrelevant elements generate a graded submodule
Mirrelevant ⊂ M . We will say M is irrelevant if every homogeneous element of M
is irrelevant, i.e., if Mirrelevant = M . If M is finitely generated, then we see that

2This is nonstandard notation.
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this is equivalent to Mnd = 0 for n ≫ 0. Denote ModA the category of graded A-
modules, ModfgA the full subcategory of finitely generated ones, and ModfgA,irrelevant
the full subcategory of irrelevant modules.

Proposition 30.15.3.0BXF Let A be a Noetherian graded ring. Set X = Proj(A). The
functor M 7→ M̃ induces an equivalence

ModfgA /ModfgA,irrelevant −→ Coh(OX)

whose quasi-inverse is given by F 7−→
⊕

n≥0 Γ(X,F(n)).

Proof. We urge the reader to read the proof in the case where A is generated in
degree 1 first, see Proposition 30.14.4. Let f1, . . . , fr ∈ A be homogeneous elements
of positive degree which generate A over A0. Let d be the lcm of the degrees di of
fi. Let M be a finite A-module. Let us show that M̃ is zero if and only if M is
an irrelevant graded A-module (as defined above the statement of the proposition).
Namely, let x ∈M be a homogeneous element. Choose k ∈ Z sufficiently small and
let N → N ′ and M → N ′ be as in Lemma 30.15.2. We may also pick l sufficiently
large such that Mn → Nn is an isomorphism for n ≥ l. If M̃ is zero, then N = 0.
Thus for any f ∈ A+ homogeneous with deg(f) + deg(x) = nd and nd > l we see
that fx is zero because Nnd → N ′

nd and Mnd → N ′
nd are isomorphisms. Hence x

is irrelevant. Conversely, assume M is irrelevant. Then Mnd is zero for n≫ 0 (see
discussion above proposition). Clearly this implies that M(fi) = M(fd/ deg(fi)

i
) = 0,

whence M̃ = 0 by construction.

It follows that the subcategory ModfgA,irrelevant is a Serre subcategory of ModfgA
as the kernel of the exact functor M 7→ M̃ , see Homology, Lemma 12.10.4 and
Constructions, Lemma 27.8.4. Hence the quotient category on the left of the arrow
is defined in Homology, Lemma 12.10.6. To define the functor of the proposition,
it suffices to show that the functor M 7→ M̃ sends irrelevant modules to 0 which
we have shown above.

By Lemma 30.15.1 the proposed quasi-inverse makes sense. Namely, the lemma
shows that F 7−→

⊕
n≥0 Γ(X,F(n)) is a functor Coh(OX)→ ModfgA which we can

compose with the quotient functor ModfgA → ModfgA /ModfgA,irrelevant.

By Lemma 30.15.2 the composite left to right to left is isomorphic to the identity
functor. Namely, let M be a finite graded A-module and let k ∈ Z sufficiently
small and let N → N ′ and M → N ′ be as in Lemma 30.15.2. Then the kernel and
cokernel of M → N ′ are nonzero in only finitely many degrees, hence are irrelevant.
Moreover, the kernel and cokernel of the map N → N ′ are zero in all sufficiently
large degrees divisible by d, hence these are irrelevant modules too. Thus M → N ′

and N → N ′ are both isomorphisms in the quotient category, as desired.

Finally, let F be a coherent OX -module. Set M =
⊕

n∈Z Γ(X,F(n)) viewed as a
graded A-module, so that our functor sends F to M≥0 =

⊕
n≥0 Mn. By Properties,

Lemma 28.28.5 the canonical map M̃ → F is an isomorphism. Since the inclusion
map M≥0 →M defines an isomorphism M̃≥0 → M̃ we conclude that the composite
right to left to right is isomorphic to the identity functor as well. □

https://stacks.math.columbia.edu/tag/0BXF
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30.16. Higher direct images along projective morphisms

0B5S We first state and prove a result for when the base is affine and then we deduce
some results for projective morphisms.

Lemma 30.16.1.0B5T Let R be a Noetherian ring. Let X → Spec(R) be a proper
morphism. Let L be an ample invertible sheaf on X. Let F be a coherent OX -
module.

(1) The graded ring A =
⊕

d≥0 H
0(X,L⊗d) is a finitely generated R-algebra.

(2) There exists an r ≥ 0 and d1, . . . , dr ∈ Z and a surjection⊕
j=1,...,r

L⊗dj −→ F .

(3) For any p the cohomology group Hp(X,F) is a finite R-module.
(4) If p > 0, then Hp(X,F ⊗OX

L⊗d) = 0 for all d large enough.
(5) For any k ∈ Z the graded A-module⊕

d≥k
H0(X,F ⊗OX

L⊗d)

is a finite A-module.

Proof. By Morphisms, Lemma 29.39.4 there exists a d > 0 and an immersion
i : X → Pn

R such that L⊗d ∼= i∗OPn
R

(1). Since X is proper over R the morphism
i is a closed immersion (Morphisms, Lemma 29.41.7). Thus we have Hi(X,G) =
Hi(Pn

R, i∗G) for any quasi-coherent sheaf G on X (by Lemma 30.2.4 and the fact
that closed immersions are affine, see Morphisms, Lemma 29.11.9). Moreover, if G
is coherent, then i∗G is coherent as well (Lemma 30.9.8). We will use these facts
without further mention.
Proof of (1). Set S = R[T0, . . . , Tn] so that Pn

R = Proj(S). Observe that A is an
S-algebra (but the ring map S → A is not a homomorphism of graded rings because
Sn maps into Adn). By the projection formula (Cohomology, Lemma 20.54.2) we
have

i∗(L⊗nd+q) = i∗(L⊗q)⊗OPn
R

OPn
R

(n)
for all n ∈ Z. We conclude that

⊕
n≥0 And+q is a finite graded S-module by

Lemma 30.14.1. Since A =
⊕

q∈{0,...,d−1
⊕

n≥0 And+q we see that A is finite as an
S-algebra, hence (1) is true.
Proof of (2). This follows from Properties, Proposition 28.26.13.
Proof of (3). Apply Lemma 30.14.1 and use Hp(X,F) = Hp(Pn

R, i∗F).
Proof of (4). Fix p > 0. By the projection formula we have

i∗(F ⊗OX
L⊗nd+q) = i∗(F ⊗OX

L⊗q)⊗OPn
R

OPn
R

(n)

for all n ∈ Z. By Lemma 30.14.1 we conclude that Hp(X,F ⊗ Lnd+q) = 0 for
n≫ 0. Since there are only finitely many congruence classes of integers modulo d
this proves (4).
Proof of (5). Fix an integer k. Set M =

⊕
n≥kH

0(X,F ⊗ L⊗n). Arguing as
above we conclude that

⊕
nd+q≥kMnd+q is a finite graded S-module. Since M =⊕

q∈{0,...,d−1}
⊕

nd+q≥kMnd+q we see that M is finite as an S-module. Since the
S-module structure factors through the ring map S → A, we conclude that M is
finite as an A-module. □

https://stacks.math.columbia.edu/tag/0B5T
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Lemma 30.16.2.02O1 Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. Let L be an invertible sheaf on X. Assume that

(1) S is Noetherian,
(2) f is proper,
(3) F is coherent, and
(4) L is relatively ample on X/S.

Then there exists an n0 such that for all n ≥ n0 we have

Rpf∗
(
F ⊗OX

L⊗n) = 0

for all p > 0.

Proof. Choose a finite affine open covering S =
⋃
Vj and setXj = f−1(Vj). Clearly,

if we solve the question for each of the finitely many systems (Xj → Vj ,L|Xj ,F|Vj )
then the result follows. Thus we may assume S is affine. In this case the vanishing
of Rpf∗(F ⊗ L⊗n) is equivalent to the vanishing of Hp(X,F ⊗ L⊗n), see Lemma
30.4.6. Thus the required vanishing follows from Lemma 30.16.1 (which applies
because L is ample on X by Morphisms, Lemma 29.39.4). □

Lemma 30.16.3.02O4 Let S be a locally Noetherian scheme. Let f : X → S be a locally
projective morphism. Let F be a coherent OX -module. Then Rif∗F is a coherent
OS-module for all i ≥ 0.

Proof. We first remark that a locally projective morphism is proper (Morphisms,
Lemma 29.43.5) and hence of finite type. In particular X is locally Noetherian
(Morphisms, Lemma 29.15.6) and hence the statement makes sense. Moreover, by
Lemma 30.4.5 the sheaves Rpf∗F are quasi-coherent.

Having said this the statement is local on S (for example by Cohomology, Lemma
20.7.4). Hence we may assume S = Spec(R) is the spectrum of a Noetherian ring,
and X is a closed subscheme of Pn

R for some n, see Morphisms, Lemma 29.43.4.
In this case, the sheaves Rpf∗F are the quasi-coherent sheaves associated to the
R-modules Hp(X,F), see Lemma 30.4.6. Hence it suffices to show that R-modules
Hp(X,F) are finite R-modules (Lemma 30.9.1). This follows from Lemma 30.16.1
(because the restriction of OPn

R
(1) to X is ample on X). □

30.17. Ample invertible sheaves and cohomology

01XO Here is a criterion for ampleness on proper schemes over affine bases in terms of
vanishing of cohomology after twisting.

Lemma 30.17.1.0B5U [DG67, III
Proposition 2.6.1]

Let R be a Noetherian ring. Let f : X → Spec(R) be a proper
morphism. Let L be an invertible OX -module. The following are equivalent

(1) L is ample on X (this is equivalent to many other things, see Properties,
Proposition 28.26.13 and Morphisms, Lemma 29.39.4),

(2) for every coherentOX -module F there exists an n0 ≥ 0 such thatHp(X,F⊗
L⊗n) = 0 for all n ≥ n0 and p > 0, and

(3) for every quasi-coherent sheaf of ideals I ⊂ OX , there exists an n ≥ 1
such that H1(X, I ⊗ L⊗n) = 0.

Proof. The implication (1)⇒ (2) follows from Lemma 30.16.1. The implication (2)
⇒ (3) is trivial. The implication (3) ⇒ (1) is Lemma 30.3.3. □

https://stacks.math.columbia.edu/tag/02O1
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Lemma 30.17.2.0B5V Let R be a Noetherian ring. Let f : Y → X be a morphism of
schemes proper over R. Let L be an invertible OX -module. Assume f is finite and
surjective. Then L is ample if and only if f∗L is ample.

Proof. The pullback of an ample invertible sheaf by a quasi-affine morphism is
ample, see Morphisms, Lemma 29.37.7. This proves one of the implications as a
finite morphism is affine by definition.

Assume that f∗L is ample. Let P be the following property on coherent OX -
modules F : there exists an n0 such that Hp(X,F ⊗ L⊗n) = 0 for all n ≥ n0 and
p > 0. We will prove that P holds for any coherent OX -module F , which implies
L is ample by Lemma 30.17.1. We are going to apply Lemma 30.12.8. Thus we
have to verify (1), (2) and (3) of that lemma for P . Property (1) follows from the
long exact cohomology sequence associated to a short exact sequence of sheaves
and the fact that tensoring with an invertible sheaf is an exact functor. Property
(2) follows since Hp(X,−) is an additive functor. To see (3) let Z ⊂ X be an
integral closed subscheme with generic point ξ. Let F be a coherent sheaf on Y
such that the support of f∗F is equal to Z and (f∗F)ξ is annihilated by mξ, see
Lemma 30.13.1. We claim that taking G = f∗F works. We only have to verify part
(3)(c) of Lemma 30.12.8. Hence assume that J ⊂ OX is a quasi-coherent sheaf of
ideals such that Jξ = OX,ξ. A finite morphism is affine hence by Lemma 30.13.2
we see that JG = f∗(f−1JF). Also, as pointed out in the proof of Lemma 30.13.2
the sheaf f−1JF is a coherent OY -module. As L is ample we see from Lemma
30.17.1 that there exists an n0 such that

Hp(Y, f−1JF ⊗OY
f∗L⊗n) = 0,

for n ≥ n0 and p > 0. Since f is finite, hence affine, we see that

Hp(X,JG ⊗OX
L⊗n) = Hp(X, f∗(f−1JF)⊗OX

L⊗n)
= Hp(X, f∗(f−1JF ⊗OY

f∗L⊗n))
= Hp(Y, f−1JF ⊗OY

f∗L⊗n) = 0

Here we have used the projection formula (Cohomology, Lemma 20.54.2) and Lemma
30.2.4. Hence the quasi-coherent subsheaf G′ = JG satisfies P . This verifies prop-
erty (3)(c) of Lemma 30.12.8 as desired. □

Cohomology is functorial. In particular, given a ringed space X, an invertible
OX -module L, a section s ∈ Γ(X,L) we get maps

Hp(X,F) −→ Hp(X,F ⊗OX
L), ξ 7−→ sξ

induced by the map F → F⊗OX
L which is multiplication by s. We set Γ∗(X,L) =⊕

n≥0 Γ(X,L⊗n) as a graded ring, see Modules, Definition 17.25.7. Given a sheaf
of OX -modules F and an integer p ≥ 0 we set

Hp
∗ (X,L,F) =

⊕
n∈Z

Hp(X,F ⊗OX
L⊗n)

This is a graded Γ∗(X,L)-module by the multiplication defined above. Warning:
the notation Hp

∗ (X,L,F) is nonstandard.

Lemma 30.17.3.09MR Let X be a scheme. Let L be an invertible sheaf on X. Let
s ∈ Γ(X,L). Let F be a quasi-coherent OX -module. If X is quasi-compact and
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quasi-separated, the canonical map
Hp

∗ (X,L,F)(s) −→ Hp(Xs,F)
which maps ξ/sn to s−nξ is an isomorphism.
Proof. Note that for p = 0 this is Properties, Lemma 28.17.2. We will prove the
statement using the induction principle (Lemma 30.4.1) where for U ⊂ X quasi-
compact open we let P (U) be the property: for all p ≥ 0 the map

Hp
∗ (U,L,F)(s) −→ Hp(Us,F)

is an isomorphism.
If U is affine, then both sides of the arrow displayed above are zero for p > 0 by
Lemma 30.2.2 and Properties, Lemma 28.26.4 and the statement is true. If P is true
for U , V , and U ∩ V , then we can use the Mayer-Vietoris sequences (Cohomology,
Lemma 20.8.2) to obtain a map of long exact sequences

Hp−1
∗ (U ∩ V,L,F)(s) //

��

Hp
∗ (U ∪ V,L,F)(s) //

��

Hp
∗ (U,L,F)(s) ⊕Hp

∗ (V,L,F)(s)

��
Hp−1(Us ∩ Vs,F) // Hp(Us ∪ Vs,F) // Hp(Us,F)⊕Hp(Vs,F)

(only a snippet shown). Observe that Us∩Vs = (U∩V )s and that Us∪Vs = (U∪V )s.
Thus the left and right vertical maps are isomorphisms (as well as one more to the
right and one more to the left which are not shown in the diagram). We conclude
that P (U ∪ V ) holds by the 5-lemma (Homology, Lemma 12.5.20). This finishes
the proof. □

Lemma 30.17.4.01XR Let X be a scheme. Let L be an invertible OX -module. Let
s ∈ Γ(X,L) be a section. Assume that

(1) X is quasi-compact and quasi-separated, and
(2) Xs is affine.

Then for every quasi-coherent OX -module F and every p > 0 and all ξ ∈ Hp(X,F)
there exists an n ≥ 0 such that snξ = 0 in Hp(X,F ⊗OX

L⊗n).
Proof. Recall that Hp(Xs,G) is zero for every quasi-coherent module G by Lemma
30.2.2. Hence the lemma follows from Lemma 30.17.3. □

For a more general version of the following lemma see Limits, Lemma 32.11.4.
Lemma 30.17.5.09MS Let i : Z → X be a closed immersion of Noetherian schemes
inducing a homeomorphism of underlying topological spaces. Let L be an invertible
sheaf on X. Then i∗L is ample on Z, if and only if L is ample on X.
Proof. If L is ample, then i∗L is ample for example by Morphisms, Lemma 29.37.7.
Assume i∗L is ample. We have to show that L is ample on X. Let I ⊂ OX be
the coherent sheaf of ideals cutting out the closed subscheme Z. Since i(Z) = X
set theoretically we see that In = 0 for some n by Lemma 30.10.2. Consider the
sequence

X = Zn ⊃ Zn−1 ⊃ Zn−2 ⊃ . . . ⊃ Z1 = Z

of closed subschemes cut out by 0 = In ⊂ In−1 ⊂ . . . ⊂ I. Then each of the closed
immersions Zi → Zi−1 is defined by a coherent sheaf of ideals of square zero. In
this way we reduce to the case that I2 = 0.
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Consider the short exact sequence

0→ I → OX → i∗OZ → 0

of quasi-coherent OX -modules. Tensoring with L⊗n we obtain short exact se-
quences

(30.17.5.1)0B8T 0→ I ⊗OX
L⊗n → L⊗n → i∗i

∗L⊗n → 0

As I2 = 0, we can use Morphisms, Lemma 29.4.1 to think of I as a quasi-coherent
OZ-module and then I ⊗OX

L⊗n = I ⊗OZ
i∗L⊗n with obvious abuse of nota-

tion. Moreover, the cohomology of this sheaf over Z is canonically the same as the
cohomology of this sheaf over X (as i is a homeomorphism).

Let x ∈ X be a point and denote z ∈ Z the corresponding point. Because i∗L is
ample there exists an n and a section s ∈ Γ(Z, i∗L⊗n) with z ∈ Zs and with Zs
affine. The obstruction to lifting s to a section of L⊗n over X is the boundary

ξ = ∂s ∈ H1(X, I ⊗OX
L⊗n) = H1(Z, I ⊗OZ

i∗L⊗n)

coming from the short exact sequence of sheaves (30.17.5.1). If we replace s by se+1

then ξ is replaced by ∂(se+1) = (e+ 1)seξ in H1(Z, I ⊗OZ
i∗L⊗(e+1)n) because the

boundary map for

0→
⊕

m≥0
I ⊗OX

L⊗m →
⊕

m≥0
L⊗m →

⊕
m≥0

i∗i
∗L⊗m → 0

is a derivation by Cohomology, Lemma 20.25.5. By Lemma 30.17.4 we see that
seξ is zero for e large enough. Hence, after replacing s by a power, we can assume
s is the image of a section s′ ∈ Γ(X,L⊗n). Then Xs′ is an open subscheme and
Zs → Xs′ is a surjective closed immersion of Noetherian schemes with Zs affine.
Hence Xs is affine by Lemma 30.13.3 and we conclude that L is ample. □

For a more general version of the following lemma see Limits, Lemma 32.11.5.

Lemma 30.17.6.0B7K Let i : Z → X be a closed immersion of Noetherian schemes
inducing a homeomorphism of underlying topological spaces. Then X is quasi-
affine if and only if Z is quasi-affine.

Proof. Recall that a scheme is quasi-affine if and only if the structure sheaf is ample,
see Properties, Lemma 28.27.1. Hence if Z is quasi-affine, then OZ is ample, hence
OX is ample by Lemma 30.17.5, hence X is quasi-affine. A proof of the converse,
which can also be seen in an elementary way, is gotten by reading the argument
just given backwards. □

Lemma 30.17.7.0EBD Let X be a scheme. Let L be an ample invertible OX -module.
Let n0 be an integer. If Hp(X,L⊗−n) = 0 for n ≥ n0 and p > 0, then X is affine.

Proof. We claim Hp(X,F) = 0 for every quasi-coherent OX -module and p > 0.
Since X is quasi-compact by Properties, Definition 28.26.1 the claim finishes the
proof by Lemma 30.3.1. The scheme X is separated by Properties, Lemma 28.26.8.
Say X is covered by e+ 1 affine opens. Then Hp(X,F) = 0 for p > e, see Lemma
30.4.2. Thus we may use descending induction on p to prove the claim. Writing F as
a filtered colimit of finite type quasi-coherent modules (Properties, Lemma 28.22.3)
and using Cohomology, Lemma 20.19.1 we may assume F is of finite type. Then
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we can choose n > n0 such that F ⊗OX
L⊗n is globally generated, see Properties,

Proposition 28.26.13. This means there is a short exact sequence

0→ F ′ →
⊕

i∈I
L⊗−n → F → 0

for some set I (in fact we can choose I finite). By induction hypothesis we have
Hp+1(X,F ′) = 0 and by assumption (combined with the already used commutation
of cohomology with colimits) we have Hp(X,

⊕
i∈I L⊗−n) = 0. From the long exact

cohomology sequence we conclude that Hp(X,F) = 0 as desired. □

Lemma 30.17.8.0EBE Let X be a quasi-affine scheme. If Hp(X,OX) = 0 for p > 0, then
X is affine.

Proof. Since OX is ample by Properties, Lemma 28.27.1 this follows from Lemma
30.17.7. □

30.18. Chow’s Lemma

02O2 In this section we prove Chow’s lemma in the Noetherian case (Lemma 30.18.1).
In Limits, Section 32.12 we prove some variants for the non-Noetherian case.

Lemma 30.18.1.0200 [DG67, II Theorem
5.6.1(a)]

Let S be a Noetherian scheme. Let f : X → S be a separated
morphism of finite type. Then there exist an n ≥ 0 and a diagram

X

  

X ′

��

π
oo // Pn

S

}}
S

where X ′ → Pn
S is an immersion, and π : X ′ → X is proper and surjective.

Moreover, we may arrange it such that there exists a dense open subscheme U ⊂ X
such that π−1(U)→ U is an isomorphism.

Proof. All of the schemes we will encounter during the rest of the proof are go-
ing to be of finite type over the Noetherian scheme S and hence Noetherian (see
Morphisms, Lemma 29.15.6). All morphisms between them will automatically be
quasi-compact, locally of finite type and quasi-separated, see Morphisms, Lemma
29.15.8 and Properties, Lemmas 28.5.4 and 28.5.8.
The scheme X has only finitely many irreducible components (Properties, Lemma
28.5.7). Say X = X1 ∪ . . . ∪Xr is the decomposition of X into irreducible compo-
nents. Let ηi ∈ Xi be the generic point. For every point x ∈ X there exists an affine
open Ux ⊂ X which contains x and each of the generic points ηi. See Properties,
Lemma 28.29.4. Since X is quasi-compact, we can find a finite affine open covering
X = U1 ∪ . . .∪Um such that each Ui contains η1, . . . , ηr. In particular we conclude
that the open U = U1 ∩ . . . ∩ Um ⊂ X is a dense open. This and the fact that the
Ui are affine opens covering X are all that we will use below.
Let X∗ ⊂ X be the scheme theoretic closure of U → X, see Morphisms, Definition
29.6.2. Let U∗

i = X∗ ∩ Ui. Note that U∗
i is a closed subscheme of Ui. Hence

U∗
i is affine. Since U is dense in X the morphism X∗ → X is a surjective closed

immersion. It is an isomorphism over U . Hence we may replace X by X∗ and
Ui by U∗

i and assume that U is scheme theoretically dense in X, see Morphisms,
Definition 29.7.1.
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By Morphisms, Lemma 29.39.3 we can find an immersion ji : Ui → Pni
S for each i.

By Morphisms, Lemma 29.7.7 we can find closed subschemes Zi ⊂ Pni
S such that

ji : Ui → Zi is a scheme theoretically dense open immersion. Note that Zi → S is
proper, see Morphisms, Lemma 29.43.5. Consider the morphism

j = (j1|U , . . . , jm|U ) : U −→ Pn1
S ×S . . .×S Pnm

S .

By the lemma cited above we can find a closed subscheme Z of Pn1
S ×S . . .×S Pnm

S

such that j : U → Z is an open immersion and such that U is scheme theoretically
dense in Z. The morphism Z → S is proper. Consider the ith projection

pri|Z : Z −→ Pni
S .

This morphism factors through Zi (see Morphisms, Lemma 29.6.6). Denote pi :
Z → Zi the induced morphism. This is a proper morphism, see Morphisms, Lemma
29.41.7 for example. At this point we have that U ⊂ Ui ⊂ Zi are scheme theoreti-
cally dense open immersions. Moreover, we can think of Z as the scheme theoretic
image of the “diagonal” morphism U → Z1 ×S . . .×S Zm.

Set Vi = p−1
i (Ui). Note that pi|Vi : Vi → Ui is proper. Set X ′ = V1 ∪ . . . ∪ Vm.

By construction X ′ has an immersion into the scheme Pn1
S ×S . . . ×S Pnm

S . Thus
by the Segre embedding (see Constructions, Lemma 27.13.6) we see that X ′ has an
immersion into a projective space over S.

We claim that the morphisms pi|Vi : Vi → Ui glue to a morphism X ′ → X.
Namely, it is clear that pi|U is the identity map from U to U . Since U ⊂ X ′ is
scheme theoretically dense by construction, it is also scheme theoretically dense in
the open subscheme Vi ∩ Vj . Thus we see that pi|Vi∩Vj = pj |Vi∩Vj as morphisms
into the separated S-scheme X, see Morphisms, Lemma 29.7.10. We denote the
resulting morphism π : X ′ → X.

We claim that π−1(Ui) = Vi. Since π|Vi = pi|Vi it follows that Vi ⊂ π−1(Ui).
Consider the diagram

Vi //

pi|Vi ##

π−1(Ui)

��
Ui

Since Vi → Ui is proper we see that the image of the horizontal arrow is closed, see
Morphisms, Lemma 29.41.7. Since Vi ⊂ π−1(Ui) is scheme theoretically dense (as
it contains U) we conclude that Vi = π−1(Ui) as claimed.

This shows that π−1(Ui)→ Ui is identified with the proper morphism pi|Vi : Vi →
Ui. Hence we see that X has a finite affine covering X =

⋃
Ui such that the

restriction of π is proper on each member of the covering. Thus by Morphisms,
Lemma 29.41.3 we see that π is proper.

Finally we have to show that π−1(U) = U . To see this we argue in the same way
as above using the diagram

U //

##

π−1(U)

��
U
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and using that idU : U → U is proper and that U is scheme theoretically dense in
π−1(U). □

Remark 30.18.2.0201 In the situation of Chow’s Lemma 30.18.1:
(1) The morphism π is actually H-projective (hence projective, see Mor-

phisms, Lemma 29.43.3) since the morphism X ′ → Pn
S ×S X = Pn

X is
a closed immersion (use the fact that π is proper, see Morphisms, Lemma
29.41.7).

(2) We may assume that π−1(U) is scheme theoretically dense in X ′. Namely,
we can simply replace X ′ by the scheme theoretic closure of π−1(U). In
this case we can think of U as a scheme theoretically dense open subscheme
of X ′. See Morphisms, Section 29.6.

(3) If X is reduced then we may choose X ′ reduced. This is clear from (2).

30.19. Higher direct images of coherent sheaves

02O3 In this section we prove the fundamental fact that the higher direct images of a
coherent sheaf under a proper morphism are coherent.

Proposition 30.19.1.02O5 [DG67, III Theorem
3.2.1]

Let S be a locally Noetherian scheme. Let f : X → S be
a proper morphism. Let F be a coherent OX -module. Then Rif∗F is a coherent
OS-module for all i ≥ 0.

Proof. Since the problem is local on S we may assume that S is a Noetherian
scheme. Since a proper morphism is of finite type we see that in this case X is a
Noetherian scheme also. Consider the property P of coherent sheaves on X defined
by the rule

P(F)⇔ Rpf∗F is coherent for all p ≥ 0
We are going to use the result of Lemma 30.12.6 to prove that P holds for every
coherent sheaf on X.
Let

0→ F1 → F2 → F3 → 0
be a short exact sequence of coherent sheaves on X. Consider the long exact
sequence of higher direct images

Rp−1f∗F3 → Rpf∗F1 → Rpf∗F2 → Rpf∗F3 → Rp+1f∗F1

Then it is clear that if 2-out-of-3 of the sheaves Fi have property P, then the
higher direct images of the third are sandwiched in this exact complex between two
coherent sheaves. Hence these higher direct images are also coherent by Lemma
30.9.2 and 30.9.3. Hence property P holds for the third as well.
Let Z ⊂ X be an integral closed subscheme. We have to find a coherent sheaf
F on X whose support is contained in Z, whose stalk at the generic point ξ of
Z is a 1-dimensional vector space over κ(ξ) such that P holds for F . Denote
g = f |Z : Z → S the restriction of f . Suppose we can find a coherent sheaf G
on Z such that (a) Gξ is a 1-dimensional vector space over κ(ξ), (b) Rpg∗G = 0
for p > 0, and (c) g∗G is coherent. Then we can consider F = (Z → X)∗G.
As Z → X is a closed immersion we see that (Z → X)∗G is coherent on X and
Rp(Z → X)∗G = 0 for p > 0 (Lemma 30.9.9). Hence by the relative Leray spectral
sequence (Cohomology, Lemma 20.13.8) we will have Rpf∗F = Rpg∗G = 0 for p > 0
and f∗F = g∗G is coherent. Finally Fξ = ((Z → X)∗G)ξ = Gξ which verifies the
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condition on the stalk at ξ. Hence everything depends on finding a coherent sheaf
G on Z which has properties (a), (b), and (c).
We can apply Chow’s Lemma 30.18.1 to the morphism Z → S. Thus we get a
diagram

Z

g
��

Z ′

g′

��

π
oo

i
// Pm

S

}}
S

as in the statement of Chow’s lemma. Also, let U ⊂ Z be the dense open subscheme
such that π−1(U)→ U is an isomorphism. By the discussion in Remark 30.18.2 we
see that i′ = (i, π) : Z ′ → Pm

Z is a closed immersion. Hence
L = i∗OPm

S
(1) ∼= (i′)∗OPm

Z
(1)

is g′-relatively ample and π-relatively ample (for example by Morphisms, Lemma
29.39.7). Hence by Lemma 30.16.2 there exists an n ≥ 0 such that both Rpπ∗L⊗n =
0 for all p > 0 and Rp(g′)∗L⊗n = 0 for all p > 0. Set G = π∗L⊗n. Property (a)
holds because π∗L⊗n|U is an invertible sheaf (as π−1(U)→ U is an isomorphism).
Properties (b) and (c) hold because by the relative Leray spectral sequence (Coho-
mology, Lemma 20.13.8) we have

Ep,q2 = Rpg∗R
qπ∗L⊗n ⇒ Rp+q(g′)∗L⊗n

and by choice of n the only nonzero terms in Ep,q2 are those with q = 0 and the
only nonzero terms of Rp+q(g′)∗L⊗n are those with p = q = 0. This implies that
Rpg∗G = 0 for p > 0 and that g∗G = (g′)∗L⊗n. Finally, applying the previous
Lemma 30.16.3 we see that g∗G = (g′)∗L⊗n is coherent as desired. □

Lemma 30.19.2.02O6 Let S = Spec(A) with A a Noetherian ring. Let f : X → S be
a proper morphism. Let F be a coherent OX -module. Then Hi(X,F) is a finite
A-module for all i ≥ 0.
Proof. This is just the affine case of Proposition 30.19.1. Namely, by Lemmas
30.4.5 and 30.4.6 we know that Rif∗F is the quasi-coherent sheaf associated to the
A-module Hi(X,F) and by Lemma 30.9.1 this is a coherent sheaf if and only if
Hi(X,F) is an A-module of finite type. □

Lemma 30.19.3.0897 Let A be a Noetherian ring. Let B be a finitely generated graded
A-algebra. Let f : X → Spec(A) be a proper morphism. Set B = f∗B̃. Let F be a
quasi-coherent graded B-module of finite type.

(1) For every p ≥ 0 the graded B-module Hp(X,F) is a finite B-module.
(2) If L is an ample invertible OX -module, then there exists an integer d0

such that Hp(X,F ⊗ L⊗d) = 0 for all p > 0 and d ≥ d0.
Proof. To prove this we consider the fibre product diagram

X ′ = Spec(B)×Spec(A) X π
//

f ′

��

X

f

��
Spec(B) // Spec(A)

Note that f ′ is a proper morphism, see Morphisms, Lemma 29.41.5. Also, B is a
finitely generated A-algebra, and hence Noetherian (Algebra, Lemma 10.31.1). This
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implies that X ′ is a Noetherian scheme (Morphisms, Lemma 29.15.6). Note that
X ′ is the relative spectrum of the quasi-coherent OX -algebra B by Constructions,
Lemma 27.4.6. Since F is a quasi-coherent B-module we see that there is a unique
quasi-coherent OX′ -module F ′ such that π∗F ′ = F , see Morphisms, Lemma 29.11.6
Since F is finite type as a B-module we conclude that F ′ is a finite type OX′ -module
(details omitted). In other words, F ′ is a coherent OX′-module (Lemma 30.9.1).
Since the morphism π : X ′ → X is affine we have

Hp(X,F) = Hp(X ′,F ′)
by Lemma 30.2.4. Thus (1) follows from Lemma 30.19.2. Given L as in (2) we set
L′ = π∗L. Note that L′ is ample on X ′ by Morphisms, Lemma 29.37.7. By the
projection formula (Cohomology, Lemma 20.54.2) we have π∗(F ′ ⊗ L′) = F ⊗ L.
Thus part (2) follows by the same reasoning as above from Lemma 30.16.2. □

30.20. The theorem on formal functions

02O7 In this section we study the behaviour of cohomology of sequences of sheaves either
of the form {InF}n≥0 or of the form {F/InF}n≥0 as n varies.
Here and below we use the following notation. Given a morphism of schemes
f : X → Y , a quasi-coherent sheaf F on X, and a quasi-coherent sheaf of ideals
I ⊂ OY we denote InF the quasi-coherent subsheaf generated by products of local
sections of f−1(In) and F . In a formula

InF = Im (f∗(In)⊗OX
F −→ F) .

Note that there are natural maps
f−1(In)⊗f−1OY

ImF −→ f∗(In)⊗OX
ImF −→ In+mF

Hence a section of In will give rise to a map Rpf∗(ImF) → Rpf∗(In+mF) by
functoriality of higher direct images. Localizing and then sheafifying we see that
there are OY -module maps

In ⊗OY
Rpf∗(ImF) −→ Rpf∗(In+mF).

In other words we see that
⊕

n≥0 R
pf∗(InF) is a graded

⊕
n≥0 In-module.

If Y = Spec(A) and I = Ĩ we denote InF simply InF . The maps introduced
above give M =

⊕
Hp(X, InF) the structure of a graded S =

⊕
In-module. If f

is proper, A is Noetherian and F is coherent, then this turns out to be a module
of finite type.

Lemma 30.20.1.02O8 [DG67, III Cor
3.3.2]

Let A be a Noetherian ring. Let I ⊂ A be an ideal. Set B =⊕
n≥0 I

n. Let f : X → Spec(A) be a proper morphism. Let F be a coherent sheaf
on X. Then for every p ≥ 0 the graded B-module

⊕
n≥0 H

p(X, InF) is a finite
B-module.

Proof. Let B =
⊕
InOX = f∗B̃. Then

⊕
InF is a finite type graded B-module.

Hence the result follows from Lemma 30.19.3 part (1). □

Lemma 30.20.2.02O9 Given a morphism of schemes f : X → Y , a quasi-coherent sheaf
F on X, and a quasi-coherent sheaf of ideals I ⊂ OY . Assume Y locally Noetherian,
f proper, and F coherent. Then

M =
⊕

n≥0
Rpf∗(InF)
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is a graded A =
⊕

n≥0 In-module which is quasi-coherent and of finite type.

Proof. The statement is local on Y , hence this reduces to the case where Y is affine.
In the affine case the result follows from Lemma 30.20.1. Details omitted. □

Lemma 30.20.3.02OA Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let f : X →
Spec(A) be a proper morphism. Let F be a coherent sheaf on X. Then for every
p ≥ 0 there exists an integer c ≥ 0 such that

(1) the multiplication map In−c ⊗ Hp(X, IcF) → Hp(X, InF) is surjective
for all n ≥ c,

(2) the image ofHp(X, In+mF)→ Hp(X, InF) is contained in the submodule
Im−eHp(X, InF) where e = max(0, c− n) for n+m ≥ c, n,m ≥ 0,

(3) we have
Ker(Hp(X, InF)→ Hp(X,F)) = Ker(Hp(X, InF)→ Hp(X, In−cF))

for n ≥ c,
(4) there are maps InHp(X,F) → Hp(X, In−cF) for n ≥ c such that the

compositions
Hp(X, InF)→ In−cHp(X,F)→ Hp(X, In−2cF)

and
InHp(X,F)→ Hp(X, In−cF)→ In−2cHp(X,F)

for n ≥ 2c are the canonical ones, and
(5) the inverse systems (Hp(X, InF)) and (InHp(X,F)) are pro-isomorphic.

Proof. Write Mn = Hp(X, InF) for n ≥ 1 and M0 = Hp(X,F) so that we have
maps . . . → M3 → M2 → M1 → M0. Setting B =

⊕
n≥0 I

n, then M =
⊕

n≥0 Mn

is a finite graded B-module, see Lemma 30.20.1. Observe that the products Bn ⊗
Mm →Mm+n, a⊗m 7→ a ·m are compatible with the maps in our inverse system
in the sense that the diagrams

Bn ⊗AMm
//

��

Mn+m

��
Bn ⊗AMm′ // Mn+m′

commute for n,m′ ≥ 0 and m ≥ m′.
Proof of (1). Choose d1, . . . , dt ≥ 0 and xi ∈ Mdi such that M is generated by
x1, . . . , xt over B. For any c ≥ max{di} we conclude that Bn−c ·Mc = Mn for
n ≥ c and we conclude (1) is true.
Proof of (2). Let c be as in the proof of (1). Let n + m ≥ c. We have Mn+m =
Bn+m−c ·Mc. If c > n then we use Mc →Mn and the compatibility of products with
transition maps pointed out above to conclude that the image of Mn+m → Mn is
contained in In+m−cMn. If c ≤ n, then we write Mn+m = Bm ·Bn−c ·Mc = Bm ·Mn

to see that the image is contained in ImMn. This proves (2).
Let Kn ⊂ Mn be the kernel of the map Mn → M0. The compatibility of products
with transition maps pointed out above shows that K =

⊕
Kn ⊂ M is a graded

B-submodule. As B is Noetherian and M is a finitely generated graded B-module,
this shows that K is a finitely generated graded B-module. Choose d′

1, . . . , d
′
t′ ≥ 0

https://stacks.math.columbia.edu/tag/02OA
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and yi ∈ Kd′
i

such that K is generated by y1, . . . , yt′ over B. Set c = max(d′
i, d

′
j).

Since yi ∈ Ker(Md′
i
→ M0) we see that Bn · yi ⊂ Ker(Mn+d′

i
→ Mn). In this way

we see that Kn = Ker(Mn →Mn−c) for n ≥ c. This proves (3).
Consider the following commutative solid diagram

In ⊗AM0 //

��

InM0 //

��

M0

��
Mn

// Mn−c // M0

Since the kernel of the surjective arrow In ⊗A M0 → InM0 maps into Kn by the
above we obtain the dotted arrow and the composition InM0 → Mn−c → M0 is
the canonical map. Then clearly the composition InM0 → Mn−c → In−2cM0 is
the canonical map for n ≥ 2c. Consider the composition Mn → In−cM0 →Mn−2c.
The first map sends an element of the form a ·m with a ∈ In−c and m ∈ Mc to
am′ where m′ is the image of m in M0. Then the second map sends this to a ·m′

in Mn−2c and we see (4) is true.
Part (5) is an immediate consequence of (4) and the definition of morphisms of
pro-objects. □

In the situation of Lemmas 30.20.1 and 30.20.3 consider the inverse system
F/IF ← F/I2F ← F/I3F ← . . .

We would like to know what happens to the cohomology groups. Here is a first
result.

Lemma 30.20.4.02OB Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let f : X →
Spec(A) be a proper morphism. Let F be a coherent sheaf on X. Fix p ≥ 0. There
exists a c ≥ 0 such that

(1) for all n ≥ c we have
Ker(Hp(X,F)→ Hp(X,F/InF)) ⊂ In−cHp(X,F).

(2) the inverse system
(Hp(X,F/InF))n∈N

satisfies the Mittag-Leffler condition (see Homology, Definition 12.31.2),
and

(3) we have

Im(Hp(X,F/IkF)→ Hp(X,F/InF)) = Im(Hp(X,F)→ Hp(X,F/InF))
for all k ≥ n+ c.

Proof. Let c = max{cp, cp+1}, where cp, cp+1 are the integers found in Lemma
30.20.3 for Hp and Hp+1.
Let us prove part (1). Consider the short exact sequence

0→ InF → F → F/InF → 0
From the long exact cohomology sequence we see that

Ker(Hp(X,F)→ Hp(X,F/InF)) = Im(Hp(X, InF)→ Hp(X,F))
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Hence by Lemma 30.20.3 part (2) we see that this is contained in In−cHp(X,F)
for n ≥ c.

Note that part (3) implies part (2) by definition of the Mittag-Leffler systems.

Let us prove part (3). Fix an n. Consider the commutative diagram

0 // InF // F // F/InF // 0

0 // In+mF //

OO

F //

OO

F/In+mF //

OO

0

This gives rise to the following commutative diagram

Hp(X,F) // Hp(X,F/InF)
δ

// Hp+1(X, InF) // Hp+1(X,F)

Hp(X,F) //

1

OO

Hp(X,F/In+mF) //

γ

OO

Hp+1(X, In+mF)

α

OO

β // Hp+1(X,F)

1

OO

with exact rows. By Lemma 30.20.3 part (4) the kernel of β is equal to the kernel
of α for m ≥ c. By a diagram chase this shows that the image of γ is contained in
the kernel of δ which shows that part (3) is true (set k = n+m to get it). □

Theorem 30.20.5 (Theorem on formal functions).02OC Let A be a Noetherian ring. Let
I ⊂ A be an ideal. Let f : X → Spec(A) be a proper morphism. Let F be a
coherent sheaf on X. Fix p ≥ 0. The system of maps

Hp(X,F)/InHp(X,F) −→ Hp(X,F/InF)

define an isomorphism of limits

Hp(X,F)∧ −→ limnH
p(X,F/InF)

where the left hand side is the completion of the A-module Hp(X,F) with respect to
the ideal I, see Algebra, Section 10.96. Moreover, this is in fact a homeomorphism
for the limit topologies.

Proof. This follows from Lemma 30.20.4 as follows. Set M = Hp(X,F), Mn =
Hp(X,F/InF), and denote Nn = Im(M → Mn). By Lemma 30.20.4 parts (2)
and (3) we see that (Mn) is a Mittag-Leffler system with Nn ⊂ Mn equal to the
image of Mk for all k ≫ n. It follows that limMn = limNn as topological modules
(with limit topologies). On the other hand, the Nn form an inverse system of
quotients of the module M and hence limNn is the completion of M with respect
to the topology given by the kernels Kn = Ker(M → Nn). By Lemma 30.20.4
part (1) we have Kn ⊂ In−cM and since Nn ⊂ Mn is annihilated by In we have
InM ⊂ Kn. Thus the topology defined using the submodules Kn as a fundamental
system of open neighbourhoods of 0 is the same as the I-adic topology and we find
that the induced map M∧ = limM/InM → limNn = limMn is an isomorphism
of topological modules3. □

3To be sure, the limit topology on M∧ is the same as its I-adic topology as follows from
Algebra, Lemma 10.96.3. See More on Algebra, Section 15.36.
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Lemma 30.20.6.087U Let A be a ring. Let I ⊂ A be an ideal. Assume A is Noetherian
and complete with respect to I. Let f : X → Spec(A) be a proper morphism. Let
F be a coherent sheaf on X. Then

Hp(X,F) = limnH
p(X,F/InF)

for all p ≥ 0.

Proof. This is a reformulation of the theorem on formal functions (Theorem 30.20.5)
in the case of a complete Noetherian base ring. Namely, in this case the A-module
Hp(X,F) is finite (Lemma 30.19.2) hence I-adically complete (Algebra, Lemma
10.97.1) and we see that completion on the left hand side is not necessary. □

Lemma 30.20.7.02OD Given a morphism of schemes f : X → Y and a quasi-coherent
sheaf F on X. Assume

(1) Y locally Noetherian,
(2) f proper, and
(3) F coherent.

Let y ∈ Y be a point. Consider the infinitesimal neighbourhoods

Xn = Spec(OY,y/mny )×Y X
in
//

fn

��

X

f

��
Spec(OY,y/mny ) cn // Y

of the fibre X1 = Xy and set Fn = i∗nF . Then we have

(Rpf∗F)∧
y
∼= limnH

p(Xn,Fn)

as O∧
Y,y-modules.

Proof. This is just a reformulation of a special case of the theorem on formal func-
tions, Theorem 30.20.5. Let us spell it out. Note that OY,y is a Noetherian local
ring. Consider the canonical morphism c : Spec(OY,y)→ Y , see Schemes, Equation
(26.13.1.1). This is a flat morphism as it identifies local rings. Denote momen-
tarily f ′ : X ′ → Spec(OY,y) the base change of f to this local ring. We see that
c∗Rpf∗F = Rpf ′

∗F ′ by Lemma 30.5.2. Moreover, the infinitesimal neighbourhoods
of the fibre Xy and X ′

y are identified (verification omitted; hint: the morphisms cn
factor through c).
Hence we may assume that Y = Spec(A) is the spectrum of a Noetherian local ring
A with maximal ideal m and that y ∈ Y corresponds to the closed point (i.e., to
m). In particular it follows that

(Rpf∗F)y = Γ(Y,Rpf∗F) = Hp(X,F).

In this case also, the morphisms cn are each closed immersions. Hence their base
changes in are closed immersions as well. Note that in,∗Fn = in,∗i

∗
nF = F/mnF .

By the Leray spectral sequence for in, and Lemma 30.9.9 we see that
Hp(Xn,Fn) = Hp(X, in,∗Fn) = Hp(X,F/mnF)

Hence we may indeed apply the theorem on formal functions to compute the limit
in the statement of the lemma and we win. □
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Here is a lemma which we will generalize later to fibres of dimension > 0, namely
the next lemma.

Lemma 30.20.8.02OE Let f : X → Y be a morphism of schemes. Let y ∈ Y . Assume
(1) Y locally Noetherian,
(2) f is proper, and
(3) f−1({y}) is finite.

Then for any coherent sheaf F on X we have (Rpf∗F)y = 0 for all p > 0.

Proof. The fibre Xy is finite, and by Morphisms, Lemma 29.20.7 it is a finite
discrete space. Moreover, the underlying topological space of each infinitesimal
neighbourhood Xn is the same. Hence each of the schemes Xn is affine according
to Schemes, Lemma 26.11.8. Hence it follows that Hp(Xn,Fn) = 0 for all p > 0.
Hence we see that (Rpf∗F)∧

y = 0 by Lemma 30.20.7. Note that Rpf∗F is coherent
by Proposition 30.19.1 and hence Rpf∗Fy is a finite OY,y-module. By Nakayama’s
lemma (Algebra, Lemma 10.20.1) if the completion of a finite module over a local
ring is zero, then the module is zero. Whence (Rpf∗F)y = 0. □

Lemma 30.20.9.02V7 Let f : X → Y be a morphism of schemes. Let y ∈ Y . Assume
(1) Y locally Noetherian,
(2) f is proper, and
(3) dim(Xy) = d.

Then for any coherent sheaf F on X we have (Rpf∗F)y = 0 for all p > d.

Proof. The fibre Xy is of finite type over Spec(κ(y)). Hence Xy is a Noetherian
scheme by Morphisms, Lemma 29.15.6. Hence the underlying topological space of
Xy is Noetherian, see Properties, Lemma 28.5.5. Moreover, the underlying topolog-
ical space of each infinitesimal neighbourhood Xn is the same as that of Xy. Hence
Hp(Xn,Fn) = 0 for all p > d by Cohomology, Proposition 20.20.7. Hence we see
that (Rpf∗F)∧

y = 0 by Lemma 30.20.7 for p > d. Note that Rpf∗F is coherent
by Proposition 30.19.1 and hence Rpf∗Fy is a finite OY,y-module. By Nakayama’s
lemma (Algebra, Lemma 10.20.1) if the completion of a finite module over a local
ring is zero, then the module is zero. Whence (Rpf∗F)y = 0. □

30.21. Applications of the theorem on formal functions

02OF We will add more here as needed. For the moment we need the following charac-
terization of finite morphisms in the Noetherian case.

Lemma 30.21.1.02OG (For a more general version see More on Morphisms, Lemma
37.44.1.) Let f : X → S be a morphism of schemes. Assume S is locally Noetherian.
The following are equivalent

(1) f is finite, and
(2) f is proper with finite fibres.

Proof. A finite morphism is proper according to Morphisms, Lemma 29.44.11. A
finite morphism is quasi-finite according to Morphisms, Lemma 29.44.10. A quasi-
finite morphism has finite fibres, see Morphisms, Lemma 29.20.10. Hence a finite
morphism is proper and has finite fibres.
Assume f is proper with finite fibres. We want to show f is finite. In fact it suffices
to prove f is affine. Namely, if f is affine, then it follows that f is integral by
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https://stacks.math.columbia.edu/tag/02V7
https://stacks.math.columbia.edu/tag/02OG


30.21. APPLICATIONS OF THE THEOREM ON FORMAL FUNCTIONS 2597

Morphisms, Lemma 29.44.7 whereupon it follows from Morphisms, Lemma 29.44.4
that f is finite.
To show that f is affine we may assume that S is affine, and our goal is to show that
X is affine too. Since f is proper we see that X is separated and quasi-compact.
Hence we may use the criterion of Lemma 30.3.2 to prove that X is affine. To
see this let I ⊂ OX be a finite type ideal sheaf. In particular I is a coherent
sheaf on X. By Lemma 30.20.8 we conclude that R1f∗Is = 0 for all s ∈ S. In
other words, R1f∗I = 0. Hence we see from the Leray Spectral Sequence for f
that H1(X, I) = H1(S, f∗I). Since S is affine, and f∗I is quasi-coherent (Schemes,
Lemma 26.24.1) we conclude H1(S, f∗I) = 0 from Lemma 30.2.2 as desired. Hence
H1(X, I) = 0 as desired. □

As a consequence we have the following useful result.

Lemma 30.21.2.02OH (For a more general version see More on Morphisms, Lemma
37.44.2.) Let f : X → S be a morphism of schemes. Let s ∈ S. Assume

(1) S is locally Noetherian,
(2) f is proper, and
(3) f−1({s}) is a finite set.

Then there exists an open neighbourhood V ⊂ S of s such that f |f−1(V ) : f−1(V )→
V is finite.

Proof. The morphism f is quasi-finite at all the points of f−1({s}) by Morphisms,
Lemma 29.20.7. By Morphisms, Lemma 29.56.2 the set of points at which f is
quasi-finite is an open U ⊂ X. Let Z = X \ U . Then s ̸∈ f(Z). Since f is
proper the set f(Z) ⊂ S is closed. Choose any open neighbourhood V ⊂ S of
s with Z ∩ V = ∅. Then f−1(V ) → V is locally quasi-finite and proper. Hence
it is quasi-finite (Morphisms, Lemma 29.20.9), hence has finite fibres (Morphisms,
Lemma 29.20.10), hence is finite by Lemma 30.21.1. □

Lemma 30.21.3.0D2M Let f : X → Y be a proper morphism of schemes with Y Noe-
therian. Let L be an invertible OX -module. Let F be a coherent OX -module. Let
y ∈ Y be a point such that Ly is ample on Xy. Then there exists a d0 such that
for all d ≥ d0 we have

Rpf∗(F ⊗OX
L⊗d)y = 0 for p > 0

and the map
f∗(F ⊗OX

L⊗d)y −→ H0(Xy,Fy ⊗OXy
L⊗d
y )

is surjective.

Proof. Note that OY,y is a Noetherian local ring. Consider the canonical morphism
c : Spec(OY,y)→ Y , see Schemes, Equation (26.13.1.1). This is a flat morphism as
it identifies local rings. Denote momentarily f ′ : X ′ → Spec(OY,y) the base change
of f to this local ring. We see that c∗Rpf∗F = Rpf ′

∗F ′ by Lemma 30.5.2. Moreover,
the fibres Xy and X ′

y are identified. Hence we may assume that Y = Spec(A) is
the spectrum of a Noetherian local ring (A,m, κ) and y ∈ Y corresponds to m.
In this case Rpf∗(F ⊗OX

L⊗d)y = Hp(X,F ⊗OX
L⊗d) for all p ≥ 0. Denote

fy : Xy → Spec(κ) the projection.

Let B = Grm(A) =
⊕

n≥0 m
n/mn+1. Consider the sheaf B = f∗

y B̃ of quasi-
coherent graded OXy -algebras. We will use notation as in Section 30.20 with
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I replaced by m. Since Xy is the closed subscheme of X cut out by mOX we
may think of mnF/mn+1F as a coherent OXy -module, see Lemma 30.9.8. Then⊕

n≥0 m
nF/mn+1F is a quasi-coherent graded B-module of finite type because it

is generated in degree zero over B and because the degree zero part is Fy = F/mF
which is a coherent OXy -module. Hence by Lemma 30.19.3 part (2) we see that

Hp(Xy,m
nF/mn+1F ⊗OXy

L⊗d
y ) = 0

for all p > 0, d ≥ d0, and n ≥ 0. By Lemma 30.2.4 this is the same as the statement
that Hp(X,mnF/mn+1F ⊗OX

L⊗d) = 0 for all p > 0, d ≥ d0, and n ≥ 0.
Consider the short exact sequences

0→ mnF/mn+1F → F/mn+1F → F/mnF → 0
of coherent OX -modules. Tensoring with L⊗d is an exact functor and we obtain
short exact sequences

0→ mnF/mn+1F ⊗OX
L⊗d → F/mn+1F ⊗OX

L⊗d → F/mnF ⊗OX
L⊗d → 0

Using the long exact cohomology sequence and the vanishing above we conclude
(using induction) that

(1) Hp(X,F/mnF ⊗OX
L⊗d) = 0 for all p > 0, d ≥ d0, and n ≥ 0, and

(2) H0(X,F/mnF ⊗OX
L⊗d) → H0(Xy,Fy ⊗OXy

L⊗d
y ) is surjective for all

d ≥ d0 and n ≥ 1.
By the theorem on formal functions (Theorem 30.20.5) we find that the m-adic com-
pletion of Hp(X,F ⊗OX

L⊗d) is zero for all d ≥ d0 and p > 0. Since Hp(X,F ⊗OX

L⊗d) is a finite A-module by Lemma 30.19.2 it follows from Nakayama’s lemma
(Algebra, Lemma 10.20.1) that Hp(X,F ⊗OX

L⊗d) is zero for all d ≥ d0 and
p > 0. For p = 0 we deduce from Lemma 30.20.4 part (3) that H0(X,F ⊗OX

L⊗d)→ H0(Xy,Fy ⊗OXy
L⊗d
y ) is surjective, which gives the final statement of the

lemma. □

Lemma 30.21.4.0D2N (For a more general version see More on Morphisms, Lemma
37.50.3.) Let f : X → Y be a proper morphism of schemes with Y Noetherian. Let
L be an invertible OX -module. Let y ∈ Y be a point such that Ly is ample on Xy.
Then there is an open neighbourhood V ⊂ Y of y such that L|f−1(V ) is ample on
f−1(V )/V .

Proof. Pick d0 as in Lemma 30.21.3 for F = OX . Pick d ≥ d0 so that we can find
r ≥ 0 and sections sy,0, . . . , sy,r ∈ H0(Xy,L⊗d

y ) which define a closed immersion
φy = φL⊗d

y ,(sy,0,...,sy,r) : Xy → Pr
κ(y).

This is possible by Morphisms, Lemma 29.39.4 but we also use Morphisms, Lemma
29.41.7 to see that φy is a closed immersion and Constructions, Section 27.13 for
the description of morphisms into projective space in terms of invertible sheaves
and sections. By our choice of d0, after replacing Y by an open neighbourhood of
y, we can choose s0, . . . , sr ∈ H0(X,L⊗d) mapping to sy,0, . . . , sy,r. Let Xsi ⊂ X
be the open subset where si is a generator of L⊗d. Since the sy,i generate L⊗d

y we
see that Xy ⊂ U =

⋃
Xsi . Since X → Y is closed, we see that there is an open

neighbourhood y ∈ V ⊂ Y such that f−1(V ) ⊂ U . After replacing Y by V we may
assume that the si generate L⊗d. Thus we obtain a morphism

φ = φL⊗d,(s0,...,sr) : X −→ Pr
Y
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with L⊗d ∼= φ∗OPr
Y

(1) whose base change to y gives φy.

We will finish the proof by a sleight of hand; the “correct” proof proceeds by directly
showing that φ is a closed immersion after base changing to an open neighbourhood
of y. Namely, by Lemma 30.21.2 we see that φ is a finite over an open neighbour-
hood of the fibre Pr

κ(y) of Pr
Y → Y above y. Using that Pr

Y → Y is closed, after
shrinking Y we may assume that φ is finite. Then L⊗d ∼= φ∗OPr

Y
(1) is ample by

the very general Morphisms, Lemma 29.37.7. □

30.22. Cohomology and base change, III

07VJ In this section we prove the simplest case of a very general phenomenon that will
be discussed in Derived Categories of Schemes, Section 36.22. Please see Remark
30.22.2 for a translation of the following lemma into algebra.

Lemma 30.22.1.07VK Let A be a Noetherian ring and set S = Spec(A). Let f : X → S
be a proper morphism of schemes. Let F be a coherent OX -module flat over S.
Then

(1) RΓ(X,F) is a perfect object of D(A), and
(2) for any ring map A→ A′ the base change map

RΓ(X,F)⊗L
A A

′ −→ RΓ(XA′ ,FA′)

is an isomorphism.

Proof. Choose a finite affine open covering X =
⋃
i=1,...,n Ui. By Lemmas 30.7.1

and 30.7.2 the Čech complex K• = Č•(U ,F) satisfies

K• ⊗A A′ = RΓ(XA′ ,FA′)

for all ring maps A→ A′. Let K•
alt = Č•

alt(U ,F) be the alternating Čech complex.
By Cohomology, Lemma 20.23.6 there is a homotopy equivalence K•

alt → K• of
A-modules. In particular, we have

K•
alt ⊗A A′ = RΓ(XA′ ,FA′)

as well. Since F is flat over A we see that each Kn
alt is flat over A (see Morphisms,

Lemma 29.25.2). Since moreover K•
alt is bounded above (this is why we switched to

the alternating Čech complex) K•
alt⊗AA′ = K•

alt⊗L
AA

′ by the definition of derived
tensor products (see More on Algebra, Section 15.59). By Lemma 30.19.2 the
cohomology groups Hi(K•

alt) are finite A-modules. As K•
alt is bounded, we conclude

that K•
alt is pseudo-coherent, see More on Algebra, Lemma 15.64.17. Given any

A-module M set A′ = A⊕M where M is a square zero ideal, i.e., (a,m) · (a′,m′) =
(aa′, am′ + a′m). By the above we see that K•

alt ⊗L
A A

′ has cohomology in degrees
0, . . . , n. Hence K•

alt ⊗L
A M has cohomology in degrees 0, . . . , n. Hence K•

alt has
finite Tor dimension, see More on Algebra, Definition 15.66.1. We win by More on
Algebra, Lemma 15.74.2. □

Remark 30.22.2.07VL A consequence of Lemma 30.22.1 is that there exists a finite
complex of finite projective A-modules M• such that we have

Hi(XA′ ,FA′) = Hi(M• ⊗A A′)

functorially in A′. The condition that F is flat over A is essential, see [Har98].

https://stacks.math.columbia.edu/tag/07VK
https://stacks.math.columbia.edu/tag/07VL


30.23. COHERENT FORMAL MODULES 2600

30.23. Coherent formal modules

0EHN As we do not yet have the theory of formal schemes to our disposal, we develop
a bit of language that replaces the notion of a “coherent module on a Noetherian
adic formal scheme”.
Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent sheaf of ideals.
We will consider inverse systems (Fn) of coherent OX -modules such that

(1) Fn is annihilated by In, and
(2) the transition maps induce isomorphisms Fn+1/InFn+1 → Fn.

A morphism of such inverse systems is defined as usual. Let us denote the category
of these inverse systems with Coh(X, I). We are going to proceed by proving a
bunch of lemmas about objects in this category. In fact, most of the lemmas that
follow are straightforward consequences of the following description of the category
in the affine case.

Lemma 30.23.1.087W If X = Spec(A) is the spectrum of a Noetherian ring and I is
the quasi-coherent sheaf of ideals associated to the ideal I ⊂ A, then Coh(X, I) is
equivalent to the category of finite A∧-modules where A∧ is the completion of A
with respect to I.

Proof. Let ModfgA,I be the category of inverse systems (Mn) of finite A-modules
satisfying: (1) Mn is annihilated by In and (2) Mn+1/I

nMn+1 = Mn. By the cor-
respondence between coherent sheaves on X and finite A-modules (Lemma 30.9.1)
it suffices to show ModfgA,I is equivalent to the category of finite A∧-modules. To
see this it suffices to prove that given an object (Mn) of ModfgA,I the module

M = limMn

is a finite A∧-module and that M/InM = Mn. As the transition maps are sur-
jective, we see that M → M1 is surjective. Pick x1, . . . , xt ∈ M which map to
generators of M1. This induces a map of systems (A/In)⊕t →Mn. By Nakayama’s
lemma (Algebra, Lemma 10.20.1) these maps are surjective. Let Kn ⊂ (A/In)⊕t

be the kernel. Property (2) implies that Kn+1 → Kn is surjective, in particular the
system (Kn) satisfies the Mittag-Leffler condition. By Homology, Lemma 12.31.3
we obtain an exact sequence 0→ K → (A∧)⊕t →M → 0 with K = limKn. Hence
M is a finite A∧-module. As K → Kn is surjective it follows that

M/InM = Coker(K → (A/In)⊕t) = (A/In)⊕t/Kn = Mn

as desired. □

Lemma 30.23.2.087X Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent
sheaf of ideals.

(1) The category Coh(X, I) is abelian.
(2) For U ⊂ X open the restriction functor Coh(X, I) → Coh(U, I|U ) is

exact.
(3) Exactness in Coh(X, I) may be checked by restricting to the members of

an open covering of X.

Proof. Let α = (αn) : (Fn) → (Gn) be a morphism of Coh(X, I). The cokernel of
α is the inverse system (Coker(αn)) (details omitted). To describe the kernel let

K′
l,m = Im(Ker(αl)→ Fm)
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for l ≥ m. We claim:
(a) the inverse system (K′

l,m)l≥m is eventually constant, say with value K′
m,

(b) the system (K′
m/InK′

m)m≥n is eventually constant, say with value Kn,
(c) the system (Kn) forms an object of Coh(X, I), and
(d) this object is the kernel of α.

To see (a), (b), and (c) we may work affine locally, say X = Spec(A) and I corre-
sponds to the ideal I ⊂ A. By Lemma 30.23.1 α corresponds to a map f : M → N
of finite A∧-modules. Denote K = Ker(f). Note that A∧ is a Noetherian ring
(Algebra, Lemma 10.97.6). Choose an integer c ≥ 0 such that K ∩ InM ⊂ In−cK
for n ≥ c (Algebra, Lemma 10.51.2) and which satisfies Algebra, Lemma 10.51.3
for the map f and the ideal I∧ = IA∧. Then K′

l,m corresponds to the A-module

K ′
l,m = a−1(I lN) + ImM

ImM
= K + I l−cf−1(IcN) + ImM

ImM
= K + ImM

ImM

where the last equality holds if l ≥ m + c. So K′
m corresponds to the A-module

K/K ∩ ImM and K′
m/InK′

m corresponds to
K

K ∩ ImM + InK
= K

InK

for m ≥ n+ c by our choice of c above. Hence Kn corresponds to K/InK.
We prove (d). It is clear from the description on affines above that the composition
(Kn)→ (Fn)→ (Gn) is zero. Let β : (Hn)→ (Fn) be a morphism such that α◦β =
0. Then Hl → Fl maps into Ker(αl). Since Hm = Hl/ImHl for l ≥ m we obtain a
system of maps Hm → K′

l,m. Thus a map Hm → K′
m. Since Hn = Hm/InHm we

obtain a system of maps Hn → K′
m/InK′

m and hence a map Hn → Kn as desired.
To finish the proof of (1) we still have to show that Coim = Im in Coh(X, I). We
have seen above that taking kernels and cokernels commutes, over affines, with the
description of Coh(X, I) as a category of modules. Since Im = Coim holds in the
category of modules this gives Coim = Im in Coh(X, I). Parts (2) and (3) of the
lemma are immediate from our construction of kernels and cokernels. □

Lemma 30.23.3.087Y Let X be a Noetherian scheme and let I ⊂ OX be a quasi-
coherent sheaf of ideals. A map (Fn)→ (Gn) is surjective in Coh(X, I) if and only
if F1 → G1 is surjective.

Proof. Omitted. Hint: Look on affine opens, use Lemma 30.23.1, and use Algebra,
Lemma 10.20.1. □

Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent sheaf of ideals.
There is a functor
(30.23.3.1)0880 Coh(OX) −→ Coh(X, I), F 7−→ F∧

which associates to the coherent OX -module F the object F∧ = (F/InF) of
Coh(X, I).

Lemma 30.23.4.0881 The functor (30.23.3.1) is exact.

Proof. It suffices to check this locally on X. Hence we may assume X is affine,
i.e., we have a situation as in Lemma 30.23.1. The functor is the functor ModfgA →
ModfgA∧ which associates to a finite A-module M the completion M∧. Thus the
result follows from Algebra, Lemma 10.97.2. □
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Lemma 30.23.5.0882 Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent
sheaf of ideals. Let F , G be coherent OX -modules. Set H = HomOX

(G,F). Then
limH0(X,H/InH) = MorCoh(X,I)(G∧,F∧).

Proof. To prove this we may work affine locally on X. Hence we may assume
X = Spec(A) and F , G given by finite A-module M and N . Then H corresponds
to the finite A-module H = HomA(M,N). The statement of the lemma becomes
the statement

H∧ = HomA∧(M∧, N∧)
via the equivalence of Lemma 30.23.1. By Algebra, Lemma 10.97.2 (used 3 times)
we have
H∧ = HomA(M,N)⊗A A∧ = HomA∧(M ⊗A A∧, N ⊗A A∧) = HomA∧(M∧, N∧)

where the second equality uses that A∧ is flat over A (see More on Algebra, Lemma
15.65.4). The lemma follows. □

Let X be a Noetherian scheme. Let I ⊂ OX be a quasi-coherent sheaf of ideals.
We say an object (Fn) of Coh(X, I) is I-power torsion or is annihilated by a power
of I if there exists a c ≥ 1 such that Fn = Fc for all n ≥ c. If this is the case
we will say that (Fn) is annihilated by Ic. If X = Spec(A) is affine, then, via
the equivalence of Lemma 30.23.1, these objects corresponds exactly to the finite
A-modules annihilated by a power of I or by Ic.

Lemma 30.23.6.0889 Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent
sheaf of ideals. Let G be a coherent OX -module. Let (Fn) an object of Coh(X, I).

(1) If α : (Fn)→ G∧ is a map whose kernel and cokernel are annihilated by a
power of I, then there exists a unique (up to unique isomorphism) triple
(F , a, β) where
(a) F is a coherent OX -module,
(b) a : F → G is an OX -module map whose kernel and cokernel are

annihilated by a power of I,
(c) β : (Fn)→ F∧ is an isomorphism, and
(d) α = a∧ ◦ β.

(2) If α : G∧ → (Fn) is a map whose kernel and cokernel are annihilated by a
power of I, then there exists a unique (up to unique isomorphism) triple
(F , a, β) where
(a) F is a coherent OX -module,
(b) a : G → F is an OX -module map whose kernel and cokernel are

annihilated by a power of I,
(c) β : F∧ → (Fn) is an isomorphism, and
(d) α = β ◦ a∧.

Proof. Proof of (1). The uniqueness implies it suffices to construct (F , a, β) Zariski
locally on X. Thus we may assume X = Spec(A) and I corresponds to the ideal
I ⊂ A. In this situation Lemma 30.23.1 applies. Let M ′ be the finite A∧-module
corresponding to (Fn). Let N be the finite A-module corresponding to G. Then α
corresponds to a map

φ : M ′ −→ N∧

whose kernel and cokernel are annihilated by It for some t. Recall that N∧ =
N ⊗A A∧ (Algebra, Lemma 10.97.1). By More on Algebra, Lemma 15.89.16 there
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is an A-module map ψ : M → N whose kernel and cokernel are I-power torsion
and an isomorphism M ⊗A A∧ = M ′ compatible with φ. As N and M ′ are finite
modules, we conclude that M is a finite A-module, see More on Algebra, Remark
15.89.19. Hence M⊗AA∧ = M∧. We omit the verification that the triple (M,N →
M,M∧ →M ′) so obtained is unique up to unique isomorphism.
The proof of (2) is exactly the same and we omit it. □

Lemma 30.23.7.0EHP Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent
sheaf of ideals. Any object of Coh(X, I) which is annihilated by a power of I is in
the essential image of (30.23.3.1). Moreover, if F , G are in Coh(OX) and either F
or G is annihilated by a power of I, then the maps

HomX(F ,G)

��

ExtX(F ,G)

��
HomCoh(X,I)(F∧,G∧) ExtCoh(X,I)(F∧,G∧)

are isomorphisms.

Proof. Suppose (Fn) is an object of Coh(X, I) which is annihilated by Ic for some
c ≥ 1. Then Fn → Fc is an isomorphism for n ≥ c. Hence if we set F = Fc, then
we see that F∧ ∼= (Fn). This proves the first assertion.
Let F , G be objects of Coh(OX) such that either F or G is annihilated by Ic for
some c ≥ 1. Then H = HomOX

(G,F) is a coherent OX -module annihilated by Ic.
Hence we see that

HomX(G,F) = H0(X,H) = limH0(X,H/InH) = MorCoh(X,I)(G∧,F∧).
see Lemma 30.23.5. This proves the statement on homomorphisms.
The notation Ext refers to extensions as defined in Homology, Section 12.6. The
injectivity of the map on Ext’s follows immediately from the bijectivity of the map
on Hom’s. For surjectivity, assume F is annihilated by a power of I. Then part (1)
of Lemma 30.23.6 shows that given an extension

0→ G∧ → (En)→ F∧ → 0
in Coh(U, IOU ) the morphism G∧ → (En) is isomorphic to G → E∧ for some G → E
in Coh(OU ). Similarly in the other case. □

Lemma 30.23.8.087Z Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent
sheaf of ideals. If (Fn) is an object of Coh(X, I) then

⊕
Ker(Fn+1 → Fn) is a finite

type, graded, quasi-coherent
⊕
In/In+1-module.

Proof. The question is local on X hence we may assume X is affine, i.e., we have
a situation as in Lemma 30.23.1. In this case, if (Fn) corresponds to the finite
A∧ module M , then

⊕
Ker(Fn+1 → Fn) corresponds to

⊕
InM/In+1M which is

clearly a finite module over
⊕
In/In+1. □

Lemma 30.23.9.0887 Let f : X → Y be a morphism of Noetherian schemes. Let
J ⊂ OY be a quasi-coherent sheaf of ideals and set I = f−1JOX . Then there is a
right exact functor

f∗ : Coh(Y,J ) −→ Coh(X, I)
which sends (Gn) to (f∗Gn). If f is flat, then f∗ is an exact functor.
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Proof. Since f∗ : Coh(OY )→ Coh(OX) is right exact we have
f∗Gn = f∗(Gn+1/InGn+1) = f∗Gn+1/f

−1Inf∗Gn+1 = f∗Gn+1/J nf∗Gn+1

hence the pullback of a system is a system. The construction of cokernels in the
proof of Lemma 30.23.2 shows that f∗ : Coh(Y,J ) → Coh(X, I) is always right
exact. If f is flat, then f∗ : Coh(OY ) → Coh(OX) is an exact functor. It follows
from the construction of kernels in the proof of Lemma 30.23.2 that in this case
f∗ : Coh(Y,J )→ Coh(X, I) also transforms kernels into kernels. □

Lemma 30.23.10.0EHQ Let f : X ′ → X be a morphism of Noetherian schemes. Let
Z ⊂ X be a closed subscheme and denote Z ′ = f−1Z the scheme theoretic inverse
image. Let I ⊂ OX , I ′ ⊂ OX′ be the corresponding quasi-coherent sheaves of
ideals. If f is flat and the induced morphism Z ′ → Z is an isomorphism, then the
pullback functor f∗ : Coh(X, I)→ Coh(X ′, I ′) (Lemma 30.23.9) is an equivalence.

Proof. If X and X ′ are affine, then this follows immediately from More on Algebra,
Lemma 15.89.3. To prove it in general we let Zn ⊂ X, Z ′

n ⊂ X ′ be the nth
infinitesimal neighbourhoods of Z, Z ′. The induced morphism Zn → Z ′

n is a
homeomorphism on underlying topological spaces. On the other hand, if z′ ∈ Z ′

maps to z ∈ Z, then the ring map OX,z → OX′,z′ is flat and induces an isomorphism
OX,z/Iz → OX′,z′/I ′

z′ . Hence it induces an isomorphism OX,z/Inz → OX′,z′/(I ′
z′)n

for all n ≥ 1 for example by More on Algebra, Lemma 15.89.2. Thus Z ′
n → Zn is an

isomorphism of schemes. Thus f∗ induces an equivalence between the category of
coherent OX -modules annihilated by In and the category of coherent OX′-modules
annihilated by (I ′)n, see Lemma 30.9.8. This clearly implies the lemma. □

Lemma 30.23.11.0EHR Let X be a Noetherian scheme. Let I,J ⊂ OX be quasi-coherent
sheaves of ideals. If V (I) = V (J ) is the same closed subset of X, then Coh(X, I)
and Coh(X,J ) are equivalent.

Proof. First, assume X = Spec(A) is affine. Let I, J ⊂ A be the ideals correspond-
ing to I,J . Then V (I) = V (J) implies we have Ic ⊂ J and Jd ⊂ I for some c, d ≥ 1
by elementary properties of the Zariski topology (see Algebra, Section 10.17 and
Lemma 10.32.5). Hence the I-adic and J-adic completions of A agree, see Algebra,
Lemma 10.96.9. Thus the equivalence follows from Lemma 30.23.1 in this case.
In general, using what we said above and the fact that X is quasi-compact, to
choose c, d ≥ 1 such that Ic ⊂ J and J d ⊂ I. Then given an object (Fn) in
Coh(X, I) we claim that the inverse system

(Fcn/J nFcn)
is in Coh(X,J ). This may be checked on the members of an affine covering; we omit
the details. In the same manner we can construct an object of Coh(X, I) starting
with an object of Coh(X,J ). We omit the verification that these constructions
define mutually quasi-inverse functors. □

30.24. Grothendieck’s existence theorem, I

087V In this section we discuss Grothendieck’s existence theorem for the projective case.
We will use the notion of coherent formal modules developed in Section 30.23. The
reader who is familiar with formal schemes is encouraged to read the statement and
proof of the theorem in [DG67].

https://stacks.math.columbia.edu/tag/0EHQ
https://stacks.math.columbia.edu/tag/0EHR


30.24. GROTHENDIECK’S EXISTENCE THEOREM, I 2605

Lemma 30.24.1.0883 Let A be Noetherian ring complete with respect to an ideal I.
Let f : X → Spec(A) be a proper morphism. Let I = IOX . Then the functor
(30.23.3.1) is fully faithful.

Proof. Let F , G be coherent OX -modules. Then H = HomOX
(G,F) is a coherent

OX -module, see Modules, Lemma 17.22.6. By Lemma 30.23.5 the map

limnH
0(X,H/InH)→ MorCoh(X,I)(G∧,F∧)

is bijective. Hence fully faithfulness of (30.23.3.1) follows from the theorem on
formal functions (Lemma 30.20.6) for the coherent sheaf H. □

Lemma 30.24.2.0884 Let A be Noetherian ring and I ⊂ A an ideal. Let f : X →
Spec(A) be a proper morphism and let L be an f -ample invertible sheaf. Let
I = IOX . Let (Fn) be an object of Coh(X, I). Then there exists an integer d0
such that

H1(X,Ker(Fn+1 → Fn)⊗ L⊗d) = 0
for all n ≥ 0 and all d ≥ d0.

Proof. Set B =
⊕
In/In+1 and B =

⊕
In/In+1 = f∗B̃. By Lemma 30.23.8 the

graded quasi-coherent B-module G =
⊕

Ker(Fn+1 → Fn) is of finite type. Hence
the lemma follows from Lemma 30.19.3 part (2). □

Lemma 30.24.3.0885 Let A be Noetherian ring complete with respect to an ideal I.
Let f : X → Spec(A) be a projective morphism. Let I = IOX . Then the functor
(30.23.3.1) is an equivalence.

Proof. We have already seen that (30.23.3.1) is fully faithful in Lemma 30.24.1.
Thus it suffices to show that the functor is essentially surjective.

We first show that every object (Fn) of Coh(X, I) is the quotient of an object in
the image of (30.23.3.1). Let L be an f -ample invertible sheaf on X. Choose d0 as
in Lemma 30.24.2. Choose a d ≥ d0 such that F1 ⊗ L⊗d is globally generated by
some sections s1,1, . . . , st,1. Since the transition maps of the system

H0(X,Fn+1 ⊗ L⊗d) −→ H0(X,Fn ⊗ L⊗d)

are surjective by the vanishing of H1 we can lift s1,1, . . . , st,1 to a compatible system
of global sections s1,n, . . . , st,n of Fn ⊗L⊗d. These determine a compatible system
of maps

(s1,n, . . . , st,n) : (L⊗−d)⊕t −→ Fn
Using Lemma 30.23.3 we deduce that we have a surjective map(

(L⊗−d)⊕t)∧ −→ (Fn)

as desired.

The result of the previous paragraph and the fact that Coh(X, I) is abelian (Lemma
30.23.2) implies that every object of Coh(X, I) is a cokernel of a map between
objects coming from Coh(OX). As (30.23.3.1) is fully faithful and exact by Lemmas
30.24.1 and 30.23.4 we conclude. □
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30.25. Grothendieck’s existence theorem, II

0886 In this section we discuss Grothendieck’s existence theorem in the proper case.
Before we give the statement and proof, we need to develop a bit more theory re-
garding the categories Coh(X, I) of coherent formal modules introduced in Section
30.23.

Remark 30.25.1.0888 Let X be a Noetherian scheme and let I,K ⊂ OX be quasi-
coherent sheaves of ideals. Let α : (Fn) → (Gn) be a morphism of Coh(X, I).
Given an affine open Spec(A) = U ⊂ X with I|U ,K|U corresponding to ideals
I,K ⊂ A denote αU : M → N of finite A∧-modules which corresponds to α|U via
Lemma 30.23.1. We claim the following are equivalent

(1) there exists an integer t ≥ 1 such that Ker(αn) and Coker(αn) are anni-
hilated by Kt for all n ≥ 1,

(2) for any affine open Spec(A) = U ⊂ X as above the modules Ker(αU ) and
Coker(αU ) are annihilated by Kt for some integer t ≥ 1, and

(3) there exists a finite affine open covering X =
⋃
Ui such that the conclusion

of (2) holds for αUi .
If these equivalent conditions hold we will say that α is a map whose kernel and
cokernel are annihilated by a power of K. To see the equivalence we use the following
commutative algebra fact: suppose given an exact sequence

0→ T →M → N → Q→ 0

of A-modules with T and Q annihilated by Kt for some ideal K ⊂ A. Then for every
f, g ∈ Kt there exists a canonical map ”fg” : N → M such that M → N → M is
equal to multiplication by fg. Namely, for y ∈ N we can pick x ∈M mapping to fy
in N and then we can set ”fg”(y) = gx. Thus it is clear that Ker(M/JM → N/JN)
and Coker(M/JM → N/JN) are annihilated by K2t for any ideal J ⊂ A.

Applying the commutative algebra fact to αUi and J = In we see that (3) implies
(1). Conversely, suppose (1) holds and M → N is equal to αU . Then there is
a t ≥ 1 such that Ker(M/InM → N/InN) and Coker(M/InM → N/InN) are
annihilated by Kt for all n. We obtain maps ”fg” : N/InN → M/InM which
in the limit induce a map N → M as N and M are I-adically complete. Since
the composition with N → M → N is multiplication by fg we conclude that fg
annihilates T and Q. In other words T and Q are annihilated by K2t as desired.

Lemma 30.25.2.088A Let X be a Noetherian scheme. Let I,K ⊂ OX be quasi-coherent
sheaves of ideals. Let Xe ⊂ X be the closed subscheme cut out by Ke. Let
Ie = IOXe . Let (Fn) be an object of Coh(X, I). Assume

(1) the functor Coh(OXe)→ Coh(Xe, Ie) is an equivalence for all e ≥ 1, and
(2) there exists a coherent sheaf H on X and a map α : (Fn) → H∧ whose

kernel and cokernel are annihilated by a power of K.
Then (Fn) is in the essential image of (30.23.3.1).

Proof. During this proof we will use without further mention that for a closed
immersion i : Z → X the functor i∗ gives an equivalence between the category of
coherent modules on Z and coherent modules on X annihilated by the ideal sheaf of
Z, see Lemma 30.9.8. In particular we may identify Coh(OXe) with the category of
coherent OX -modules annihilated by Ke and Coh(Xe, Ie) as the full subcategory of
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Coh(X, I) of objects annihilated by Ke. Moreover (1) tells us these two categories
are equivalent under the completion functor (30.23.3.1).
Applying this equivalence we get a coherent OX -module Ge annihilated by Ke cor-
responding to the system (Fn/KeFn) of Coh(X, I). The maps Fn/Ke+1Fn →
Fn/KeFn correspond to canonical maps Ge+1 → Ge which induce isomorphisms
Ge+1/KeGe+1 → Ge. Hence (Ge) is an object of Coh(X,K). The map α induces a
system of maps

Fn/KeFn −→ H/(In +Ke)H
whence maps Ge → H/KeH (by the equivalence of categories again). Let t ≥ 1
be an integer, which exists by assumption (2), such that Kt annihilates the kernel
and cokernel of all the maps Fn → H/InH. Then K2t annihilates the kernel and
cokernel of the maps Fn/KeFn → H/(In+Ke)H, see Remark 30.25.1. Whereupon
we conclude that K4t annihilates the kernel and the cokernel of the maps

Ge −→ H/KeH,
see Remark 30.25.1. We apply Lemma 30.23.6 to obtain a coherent OX -module F , a
map a : F → H and an isomorphism β : (Ge)→ (F/KeF) in Coh(X,K). Working
backwards, for a given n the triple (F/InF , a mod In, β mod In) is a triple as
in the lemma for the morphism αn mod Ke : (Fn/KeFn) → (H/(In + Ke)H) of
Coh(X,K). Thus the uniqueness in Lemma 30.23.6 gives a canonical isomorphism
F/InF → Fn compatible with all the morphisms in sight. This finishes the proof
of the lemma. □

Lemma 30.25.3.088B Let Y be a Noetherian scheme. Let J ,K ⊂ OY be quasi-coherent
sheaves of ideals. Let f : X → Y be a proper morphism which is an isomorphism
over V = Y \V (K). Set I = f−1JOX . Let (Gn) be an object of Coh(Y,J ), let F be
a coherent OX -module, and let β : (f∗Gn)→ F∧ be an isomorphism in Coh(X, I).
Then there exists a map

α : (Gn) −→ (f∗F)∧

in Coh(Y,J ) whose kernel and cokernel are annihilated by a power of K.

Proof. Since f is a proper morphism we see that f∗F is a coherent OY -module
(Proposition 30.19.1). Thus the statement of the lemma makes sense. Consider the
compositions

γn : Gn → f∗f
∗Gn → f∗(F/InF).

Here the first map is the adjunction map and the second is f∗βn. We claim that
there exists a unique α as in the lemma such that the compositions

Gn
αn−−→ f∗F/J nf∗F → f∗(F/InF)

equal γn for all n. Because of the uniqueness we may assume that Y = Spec(B) is
affine. Let J ⊂ B corresponds to the ideal J . Set

Mn = H0(X,F/InF) and M = H0(X,F)
By Lemma 30.20.4 and Theorem 30.20.5 the inverse limit of the modules Mn equals
the completion M∧ = limM/JnM . Set Nn = H0(Y,Gn) and N = limNn. Via
the equivalence of categories of Lemma 30.23.1 the finite B∧ modules N and M∧

correspond to (Gn) and f∗F∧. It follows from this that α has to be the morphism
of Coh(Y,J ) corresponding to the homomorphism

lim γn : N = limnNn −→ limMn = M∧

https://stacks.math.columbia.edu/tag/088B
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of finite B∧-modules.

We still have to show that the kernel and cokernel of α are annihilated by a power
of K. Set Y ′ = Spec(B∧) and X ′ = Y ′ ×Y X. Let K′, J ′, G′

n and I ′, F ′ be
the pullback of K, J , Gn and I, F , to Y ′ and X ′. The projection morphism
f ′ : X ′ → Y ′ is the base change of f by Y ′ → Y . Note that Y ′ → Y is a flat
morphism of schemes as B → B∧ is flat by Algebra, Lemma 10.97.2. Hence f ′

∗F ′,
resp. f ′

∗(f ′)∗G′
n is the pullback of f∗F , resp. f∗f

∗Gn to Y ′ by Lemma 30.5.2. The
uniqueness of our construction shows the pullback of α to Y ′ is the corresponding
map α′ constructed for the situation on Y ′. Moreover, to check that the kernel
and cokernel of α are annihilated by Kt it suffices to check that the kernel and
cokernel of α′ are annihilated by (K′)t. Namely, to see this we need to check this
for kernels and cokernels of the maps αn and α′

n (see Remark 30.25.1) and the ring
map B → B∧ induces an equivalence of categories between modules annihilated by
Jn and (J ′)n, see More on Algebra, Lemma 15.89.3. Thus we may assume B is
complete with respect to J .

Assume Y = Spec(B) is affine, J corresponds to the ideal J ⊂ B, and B is
complete with respect to J . In this case (Gn) is in the essential image of the functor
Coh(OY ) → Coh(Y,J ). Say G is a coherent OY -module such that (Gn) = G∧.
Note that f∗(G∧) = (f∗G)∧. Hence Lemma 30.24.1 tells us that β comes from an
isomorphism b : f∗G → F and α is the completion functor applied to

G → f∗f
∗G ∼= f∗F

Hence we are trying to verify that the kernel and cokernel of the adjunction map
c : G → f∗f

∗G are annihilated by a power of K. However, since the restriction
f |f−1(V ) : f−1(V ) → V is an isomorphism we see that c|V is an isomorphism.
Thus the coherent sheaves Ker(c) and Coker(c) are supported on V (K) hence are
annihilated by a power of K (Lemma 30.10.2) as desired. □

The following proposition is the form of Grothendieck’s existence theorem which is
most often used in practice.

Proposition 30.25.4.088C Let A be a Noetherian ring complete with respect to an ideal
I. Let f : X → Spec(A) be a proper morphism of schemes. Set I = IOX . Then
the functor (30.23.3.1) is an equivalence.

Proof. We have already seen that (30.23.3.1) is fully faithful in Lemma 30.24.1.
Thus it suffices to show that the functor is essentially surjective.

Consider the collection Ξ of quasi-coherent sheaves of ideals K ⊂ OX such that
every object (Fn) annihilated by K is in the essential image. We want to show (0)
is in Ξ. If not, then since X is Noetherian there exists a maximal quasi-coherent
sheaf of ideals K not in Ξ, see Lemma 30.10.1. After replacing X by the closed
subscheme of X corresponding to K we may assume that every nonzero K is in Ξ.
(This uses the correspondence by coherent modules annihilated by K and coherent
modules on the closed subscheme corresponding to K, see Lemma 30.9.8.) Let (Fn)
be an object of Coh(X, I). We will show that this object is in the essential image
of the functor (30.23.3.1), thereby completion the proof of the proposition.
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Apply Chow’s lemma (Lemma 30.18.1) to find a proper surjective morphism f :
X ′ → X which is an isomorphism over a dense open U ⊂ X such that X ′ is projec-
tive over A. Let K be the quasi-coherent sheaf of ideals cutting out the reduced com-
plement X \U . By the projective case of Grothendieck’s existence theorem (Lemma
30.24.3) there exists a coherent module F ′ on X ′ such that (F ′)∧ ∼= (f∗Fn). By
Proposition 30.19.1 the OX -module H = f∗F ′ is coherent and by Lemma 30.25.3
there exists a morphism (Fn) → H∧ of Coh(X, I) whose kernel and cokernel are
annihilated by a power of K. The powers Ke are all in Ξ so that (30.23.3.1) is
an equivalence for the closed subschemes Xe = V (Ke). We conclude by Lemma
30.25.2. □

30.26. Being proper over a base

0CYK This is just a short section to point out some useful features of closed subsets proper
over a base and finite type, quasi-coherent modules with support proper over a base.

Lemma 30.26.1.0CYL Let f : X → S be a morphism of schemes which is locally of finite
type. Let Z ⊂ X be a closed subset. The following are equivalent

(1) the morphism Z → S is proper if Z is endowed with the reduced induced
closed subscheme structure (Schemes, Definition 26.12.5),

(2) for some closed subscheme structure on Z the morphism Z → S is proper,
(3) for any closed subscheme structure on Z the morphism Z → S is proper.

Proof. The implications (3)⇒ (1) and (1)⇒ (2) are immediate. Thus it suffices to
prove that (2) implies (3). We urge the reader to find their own proof of this fact.
Let Z ′ and Z ′′ be closed subscheme structures on Z such that Z ′ → S is proper. We
have to show that Z ′′ → S is proper. Let Z ′′′ = Z ′ ∪ Z ′′ be the scheme theoretic
union, see Morphisms, Definition 29.4.4. Then Z ′′′ is another closed subscheme
structure on Z. This follows for example from the description of scheme theoretic
unions in Morphisms, Lemma 29.4.6. Since Z ′′ → Z ′′′ is a closed immersion it
suffices to prove that Z ′′′ → S is proper (see Morphisms, Lemmas 29.41.6 and
29.41.4). The morphism Z ′ → Z ′′′ is a bijective closed immersion and in particular
surjective and universally closed. Then the fact that Z ′ → S is separated implies
that Z ′′′ → S is separated, see Morphisms, Lemma 29.41.11. Moreover Z ′′′ → S is
locally of finite type as X → S is locally of finite type (Morphisms, Lemmas 29.15.5
and 29.15.3). Since Z ′ → S is quasi-compact and Z ′ → Z ′′′ is a homeomorphism
we see that Z ′′′ → S is quasi-compact. Finally, since Z ′ → S is universally closed,
we see that the same thing is true for Z ′′′ → S by Morphisms, Lemma 29.41.9.
This finishes the proof. □

Definition 30.26.2.0CYM Let f : X → S be a morphism of schemes which is locally
of finite type. Let Z ⊂ X be a closed subset. We say Z is proper over S if the
equivalent conditions of Lemma 30.26.1 are satisfied.

The lemma used in the definition above is false if the morphism f : X → S is not
locally of finite type. Therefore we urge the reader not to use this terminology if f
is not locally of finite type.

Lemma 30.26.3.0CYN Let f : X → S be a morphism of schemes which is locally of finite
type. Let Y ⊂ Z ⊂ X be closed subsets. If Z is proper over S, then the same is
true for Y .
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Proof. Omitted. □

Lemma 30.26.4.0CYP Consider a cartesian diagram of schemes

X ′

f ′

��

g′
// X

f

��
S′ g // S

with f locally of finite type. If Z is a closed subset of X proper over S, then
(g′)−1(Z) is a closed subset of X ′ proper over S′.

Proof. Observe that the statement makes sense as f ′ is locally of finite type by
Morphisms, Lemma 29.15.4. Endow Z with the reduced induced closed subscheme
structure. Denote Z ′ = (g′)−1(Z) the scheme theoretic inverse image (Schemes,
Definition 26.17.7). Then Z ′ = X ′ ×X Z = (S′ ×S X) ×X Z = S′ ×S Z is proper
over S′ as a base change of Z over S (Morphisms, Lemma 29.41.5). □

Lemma 30.26.5.0CYQ Let S be a scheme. Let f : X → Y be a morphism of schemes
which are locally of finite type over S.

(1) If Y is separated over S and Z ⊂ X is a closed subset proper over S, then
f(Z) is a closed subset of Y proper over S.

(2) If f is universally closed and Z ⊂ X is a closed subset proper over S, then
f(Z) is a closed subset of Y proper over S.

(3) If f is proper and Z ⊂ Y is a closed subset proper over S, then f−1(Z) is
a closed subset of X proper over S.

Proof. Proof of (1). Assume Y is separated over S and Z ⊂ X is a closed subset
proper over S. Endow Z with the reduced induced closed subscheme structure and
apply Morphisms, Lemma 29.41.10 to Z → Y over S to conclude.

Proof of (2). Assume f is universally closed and Z ⊂ X is a closed subset proper
over S. Endow Z and Z ′ = f(Z) with their reduced induced closed subscheme
structures. We obtain an induced morphism Z → Z ′. Denote Z ′′ = f−1(Z ′)
the scheme theoretic inverse image (Schemes, Definition 26.17.7). Then Z ′′ → Z ′

is universally closed as a base change of f (Morphisms, Lemma 29.41.5). Hence
Z → Z ′ is universally closed as a composition of the closed immersion Z → Z ′′ and
Z ′′ → Z ′ (Morphisms, Lemmas 29.41.6 and 29.41.4). We conclude that Z ′ → S
is separated by Morphisms, Lemma 29.41.11. Since Z → S is quasi-compact and
Z → Z ′ is surjective we see that Z ′ → S is quasi-compact. Since Z ′ → S is the
composition of Z ′ → Y and Y → S we see that Z ′ → S is locally of finite type
(Morphisms, Lemmas 29.15.5 and 29.15.3). Finally, since Z → S is universally
closed, we see that the same thing is true for Z ′ → S by Morphisms, Lemma
29.41.9. This finishes the proof.

Proof of (3). Assume f is proper and Z ⊂ Y is a closed subset proper over S. Endow
Z with the reduced induced closed subscheme structure. Denote Z ′ = f−1(Z) the
scheme theoretic inverse image (Schemes, Definition 26.17.7). Then Z ′ → Z is
proper as a base change of f (Morphisms, Lemma 29.41.5). Whence Z ′ → S is
proper as the composition of Z ′ → Z and Z → S (Morphisms, Lemma 29.41.4).
This finishes the proof. □
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Lemma 30.26.6.0CYR Let f : X → S be a morphism of schemes which is locally of finite
type. Let Zi ⊂ X, i = 1, . . . , n be closed subsets. If Zi, i = 1, . . . , n are proper over
S, then the same is true for Z1 ∪ . . . ∪ Zn.

Proof. Endow Zi with their reduced induced closed subscheme structures. The
morphism

Z1 ⨿ . . .⨿ Zn −→ X

is finite by Morphisms, Lemmas 29.44.12 and 29.44.13. As finite morphisms are
universally closed (Morphisms, Lemma 29.44.11) and since Z1 ⨿ . . .⨿Zn is proper
over S we conclude by Lemma 30.26.5 part (2) that the image Z1 ∪ . . . ∪ Zn is
proper over S. □

Let f : X → S be a morphism of schemes which is locally of finite type. Let F
be a finite type, quasi-coherent OX -module. Then the support Supp(F) of F is
a closed subset of X, see Morphisms, Lemma 29.5.3. Hence it makes sense to say
“the support of F is proper over S”.

Lemma 30.26.7.0CYS Let f : X → S be a morphism of schemes which is locally of
finite type. Let F be a finite type, quasi-coherent OX -module. The following are
equivalent

(1) the support of F is proper over S,
(2) the scheme theoretic support of F (Morphisms, Definition 29.5.5) is proper

over S, and
(3) there exists a closed subscheme Z ⊂ X and a finite type, quasi-coherent
OZ-module G such that (a) Z → S is proper, and (b) (Z → X)∗G = F .

Proof. The support Supp(F) of F is a closed subset of X, see Morphisms, Lemma
29.5.3. Hence we can apply Definition 30.26.2. Since the scheme theoretic support
of F is a closed subscheme whose underlying closed subset is Supp(F) we see that
(1) and (2) are equivalent by Definition 30.26.2. It is clear that (2) implies (3).
Conversely, if (3) is true, then Supp(F) ⊂ Z (an inclusion of closed subsets of X)
and hence Supp(F) is proper over S for example by Lemma 30.26.3. □

Lemma 30.26.8.0CYT Consider a cartesian diagram of schemes

X ′

f ′

��

g′
// X

f

��
S′ g // S

with f locally of finite type. Let F be a finite type, quasi-coherent OX -module. If
the support of F is proper over S, then the support of (g′)∗F is proper over S′.

Proof. Observe that the statement makes sense because (g′) ∗F is of finite type by
Modules, Lemma 17.9.2. We have Supp((g′)∗F) = (g′)−1(Supp(F)) by Morphisms,
Lemma 29.5.3. Thus the lemma follows from Lemma 30.26.4. □

Lemma 30.26.9.0CYU Let f : X → S be a morphism of schemes which is locally of finite
type. Let F , G be finite type, quasi-coherent OX -module.

(1) If the supports of F , G are proper over S, then the same is true for F ⊕G,
for any extension of G by F , for Im(u) and Coker(u) given any OX -module
map u : F → G, and for any quasi-coherent quotient of F or G.
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(2) If S is locally Noetherian, then the category of coherent OX -modules
with support proper over S is a Serre subcategory (Homology, Definition
12.10.1) of the abelian category of coherent OX -modules.

Proof. Proof of (1). Let Z, Z ′ be the support of F and G. Then all the sheaves
mentioned in (1) have support contained in Z ∪ Z ′. Thus the assertion itself is
clear from Lemmas 30.26.3 and 30.26.6 provided we check that these sheaves are
finite type and quasi-coherent. For quasi-coherence we refer the reader to Schemes,
Section 26.24. For “finite type” we suggest the reader take a look at Modules,
Section 17.9.
Proof of (2). The proof is the same as the proof of (1). Note that the assertions
make sense as X is locally Noetherian by Morphisms, Lemma 29.15.6 and by the
description of the category of coherent modules in Section 30.9. □

Lemma 30.26.10.08DS Let S be a locally Noetherian scheme. Let f : X → S be a
morphism of schemes which is locally of finite type. Let F be a coherent OX -
module with support proper over S. Then Rpf∗F is a coherent OS-module for all
p ≥ 0.

Proof. By Lemma 30.26.7 there exists a closed immersion i : Z → X and a finite
type, quasi-coherent OZ-module G such that (a) g = f ◦ i : Z → S is proper, and
(b) i∗G = F . We see that Rpg∗G is coherent on S by Proposition 30.19.1. On the
other hand, Rqi∗G = 0 for q > 0 (Lemma 30.9.9). By Cohomology, Lemma 20.13.8
we get Rpf∗F = Rpg∗G which concludes the proof. □

Lemma 30.26.11.0CYV Let S be a Noetherian scheme. Let f : X → S be a finite type
morphism. Let I ⊂ OX be a quasi-coherent sheaf of ideals. The following are Serre
subcategories of Coh(X, I)

(1) the full subcategory of Coh(X, I) consisting of those objects (Fn) such
that the support of F1 is proper over S,

(2) the full subcategory of Coh(X, I) consisting of those objects (Fn) such
that there exists a closed subscheme Z ⊂ X proper over S with IZFn = 0
for all n ≥ 1.

Proof. We will use the criterion of Homology, Lemma 12.10.2. Moreover, we will
use that if 0 → (Gn) → (Fn) → (Hn) → 0 is a short exact sequence of Coh(X, I),
then (a) Gn → Fn → Hn → 0 is exact for all n ≥ 1 and (b) Gn is a quotient of
Ker(Fm → Hm) for some m ≥ n. See proof of Lemma 30.23.2.
Proof of (1). Let (Fn) be an object of Coh(X, I). Then Supp(Fn) = Supp(F1)
for all n ≥ 1. Hence by remarks (a) and (b) above we see that for any short
exact sequence 0 → (Gn) → (Fn) → (Hn) → 0 of Coh(X, I) we have Supp(G1) ∪
Supp(H1) = Supp(F1). This proves that the category defined in (1) is a Serre
subcategory of Coh(X, I).
Proof of (2). Here we argue the same way. Let 0 → (Gn) → (Fn) → (Hn) → 0
be a short exact sequence of Coh(X, I). If Z ⊂ X is a closed subscheme and IZ
annihilates Fn for all n, then IZ annihilates Gn and Hn for all n by (a) and (b)
above. Hence if Z → S is proper, then we conclude that the category defined in
(2) is closed under taking sub and quotient objects inside of Coh(X, I). Finally,
suppose that Z ⊂ X and Y ⊂ X are closed subschemes proper over S such that
IZGn = 0 and IYHn = 0 for all n ≥ 1. Then it follows from (a) above that
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IZ∪Y = IZ · IY annihilates Fn for all n. By Lemma 30.26.6 (and via Definition
30.26.2 which tells us we may choose an arbitrary scheme structure used on the
union) we see that Z ∪ Y → S is proper and the proof is complete. □

30.27. Grothendieck’s existence theorem, III

0CYW To state the general version of Grothendieck’s existence theorem we introduce a bit
more notation. Let A be a Noetherian ring complete with respect to an ideal I. Let
f : X → Spec(A) be a separated finite type morphism of schemes. Set I = IOX .
In this situation we let

Cohsupport proper over A(OX)
be the full subcategory of Coh(OX) consisting of those coherent OX -modules whose
support is proper over Spec(A). This is a Serre subcategory of Coh(OX), see Lemma
30.26.9. Similarly, we let

Cohsupport proper over A(X, I)
be the full subcategory of Coh(X, I) consisting of those objects (Fn) such that the
support of F1 is proper over Spec(A). This is a Serre subcategory of Coh(X, I) by
Lemma 30.26.11 part (1). Since the support of a quotient module is contained in
the support of the module, it follows that (30.23.3.1) induces a functor
(30.27.0.1)088D Cohsupport proper over A(OX) −→ Cohsupport proper over A(X, I)
We are now ready to state the main theorem of this section.

Theorem 30.27.1 (Grothendieck’s existence theorem).088E [DG67, III Theorem
5.1.5]

Let A be a Noetherian ring
complete with respect to an ideal I. Let X be a separated, finite type scheme over
A. Then the functor (30.27.0.1)

Cohsupport proper over A(OX) −→ Cohsupport proper over A(X, I)
is an equivalence.

Proof. We will use the equivalence of categories of Lemma 30.9.8 without further
mention. For a closed subscheme Z ⊂ X proper over A in this proof we will
say a coherent module on X is “supported on Z” if it is annihilated by the ideal
sheaf of Z or equivalently if it is the pushforward of a coherent module on Z.
By Proposition 30.25.4 we know that the result is true for the functor between
coherent modules and systems of coherent modules supported on Z. Hence it
suffices to show that every object of Cohsupport proper over A(OX) and every object
of Cohsupport proper over A(X, I) is supported on a closed subscheme Z ⊂ X proper
over A. This holds by definition for objects of Cohsupport proper over A(OX). We will
prove this statement for objects of Cohsupport proper over A(X, I) using the method
of proof of Proposition 30.25.4. We urge the reader to read that proof first.
Consider the collection Ξ of quasi-coherent sheaves of ideals K ⊂ OX such that the
statement holds for every object (Fn) of Cohsupport proper over A(X, I) annihilated
by K. We want to show (0) is in Ξ. If not, then since X is Noetherian there exists
a maximal quasi-coherent sheaf of ideals K not in Ξ, see Lemma 30.10.1. After
replacing X by the closed subscheme of X corresponding to K we may assume that
every nonzero K is in Ξ. Let (Fn) be an object of Cohsupport proper over A(X, I). We
will show that this object is supported on a closed subscheme Z ⊂ X proper over
A, thereby completing the proof of the theorem.

https://stacks.math.columbia.edu/tag/088E
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Apply Chow’s lemma (Lemma 30.18.1) to find a proper surjective morphism f :
Y → X which is an isomorphism over a dense open U ⊂ X such that Y is H-quasi-
projective over A. Choose an open immersion j : Y → Y ′ with Y ′ projective over
A, see Morphisms, Lemma 29.43.11. Observe that

Supp(f∗Fn) = f−1Supp(Fn) = f−1Supp(F1)
The first equality by Morphisms, Lemma 29.5.3. By assumption and Lemma
30.26.5 part (3) we see that f−1Supp(F1) is proper over A. Hence the image
of f−1Supp(F1) under j is closed in Y ′ by Lemma 30.26.5 part (1). Thus F ′

n =
j∗f

∗Fn is coherent on Y ′ by Lemma 30.9.11. It follows that (F ′
n) is an object of

Coh(Y ′, IOY ′). By the projective case of Grothendieck’s existence theorem (Lemma
30.24.3) there exists a coherent OY ′ -module F ′ and an isomorphism (F ′)∧ ∼= (F ′

n)
in Coh(Y ′, IOY ′). Since F ′/IF ′ = F ′

1 we see that
Supp(F ′) ∩ V (IOY ′) = Supp(F ′

1) = j(f−1Supp(F1))
The structure morphism p′ : Y ′ → Spec(A) is proper, hence p′(Supp(F ′) \ j(Y )) is
closed in Spec(A). A nonempty closed subset of Spec(A) contains a point of V (I)
as I is contained in the Jacobson radical of A by Algebra, Lemma 10.96.6. The
displayed equation shows that Supp(F ′) ∩ (p′)−1V (I) ⊂ j(Y ) hence we conclude
that Supp(F ′) ⊂ j(Y ). Thus F ′|Y = j∗F ′ is supported on a closed subscheme Z ′

of Y proper over A and (F ′|Y )∧ = (f∗Fn).
Let K be the quasi-coherent sheaf of ideals cutting out the reduced complement
X \ U . By Proposition 30.19.1 the OX -module H = f∗(F ′|Y ) is coherent and by
Lemma 30.25.3 there exists a morphism α : (Fn)→ H∧ of Coh(X, I) whose kernel
and cokernel are annihilated by a power Kt of K. We obtain an exact sequence

0→ Ker(α)→ (Fn)→ H∧ → Coker(α)→ 0
in Coh(X, I). If Z0 ⊂ X is the scheme theoretic support of H, then it is clear
that Z0 ⊂ f(Z ′) set-theoretically. Hence Z0 is proper over A by Lemma 30.26.3
and Lemma 30.26.5 part (2). Hence H∧ is in the subcategory defined in Lemma
30.26.11 part (2) and a fortiori in Cohsupport proper over A(X, I). We conclude that
Ker(α) and Coker(α) are in Cohsupport proper over A(X, I) by Lemma 30.26.11 part
(1). By induction hypothesis, more precisely because Kt is in Ξ, we see that Ker(α)
and Coker(α) are in the subcategory defined in Lemma 30.26.11 part (2). Since
this is a Serre subcategory by the lemma, we conclude that the same is true for
(Fn) which is what we wanted to show. □

Remark 30.27.2 (Unwinding Grothendieck’s existence theorem).088F Let A be a Noe-
therian ring complete with respect to an ideal I. Write S = Spec(A) and Sn =
Spec(A/In). Let X → S be a separated morphism of finite type. For n ≥ 1 we set
Xn = X ×S Sn. Picture:

X1
i1
//

��

X2
i2
//

��

X3 //

��

. . . X

��
S1 // S2 // S3 // . . . S

In this situation we consider systems (Fn, φn) where
(1) Fn is a coherent OXn -module,
(2) φn : i∗nFn+1 → Fn is an isomorphism, and
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(3) Supp(F1) is proper over S1.
Theorem 30.27.1 says that the completion functor

coherent OX -modules F
with support proper over A −→ systems (Fn)

as above

is an equivalence of categories. In the special case that X is proper over A we can
omit the conditions on the supports.

30.28. Grothendieck’s algebraization theorem

0898 Our first result is a translation of Grothendieck’s existence theorem in terms of
closed subschemes and finite morphisms.

Lemma 30.28.1.0899 Let A be a Noetherian ring complete with respect to an ideal I.
Write S = Spec(A) and Sn = Spec(A/In). Let X → S be a separated morphism
of finite type. For n ≥ 1 we set Xn = X ×S Sn. Suppose given a commutative
diagram

Z1 //

��

Z2 //

��

Z3 //

��

. . .

X1
i1 // X2

i2 // X3 // . . .

of schemes with cartesian squares. Assume that
(1) Z1 → X1 is a closed immersion, and
(2) Z1 → S1 is proper.

Then there exists a closed immersion of schemes Z → X such that Zn = Z ×S Sn.
Moreover, Z is proper over S.

Proof. Let’s write jn : Zn → Xn for the vertical morphisms. As the squares in
the statement are cartesian we see that the base change of jn to X1 is j1. Thus
Morphisms, Lemma 29.45.7 shows that jn is a closed immersion. Set Fn = jn,∗OZn ,
so that j♯n is a surjection OXn → Fn. Again using that the squares are cartesian we
see that the pullback of Fn+1 to Xn is Fn. Hence Grothendieck’s existence theorem,
as reformulated in Remark 30.27.2, tells us there exists a map OX → F of coherent
OX -modules whose restriction to Xn recovers OXn → Fn. Moreover, the support
of F is proper over S. As the completion functor is exact (Lemma 30.23.4) we see
that the cokernel Q of OX → F has vanishing completion. Since F has support
proper over S and so does Q this implies that Q = 0 for example because the
functor (30.27.0.1) is an equivalence by Grothendieck’s existence theorem. Thus
F = OX/J for some quasi-coherent sheaf of ideals J . Setting Z = V (J ) finishes
the proof. □

In the following lemma it is actually enough to assume that Y1 → X1 is finite as it
will imply that Yn → Xn is finite too (see More on Morphisms, Lemma 37.3.3).

Lemma 30.28.2.09ZT Let A be a Noetherian ring complete with respect to an ideal I.
Write S = Spec(A) and Sn = Spec(A/In). Let X → S be a separated morphism
of finite type. For n ≥ 1 we set Xn = X ×S Sn. Suppose given a commutative

https://stacks.math.columbia.edu/tag/0899
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diagram
Y1 //

��

Y2 //

��

Y3 //

��

. . .

X1
i1 // X2

i2 // X3 // . . .

of schemes with cartesian squares. Assume that
(1) Yn → Xn is a finite morphism, and
(2) Y1 → S1 is proper.

Then there exists a finite morphism of schemes Y → X such that Yn = Y ×S Sn.
Moreover, Y is proper over S.
Proof. Let’s write fn : Yn → Xn for the vertical morphisms. Set Fn = fn,∗OYn .
This is a coherent OXn -module as fn is finite (Lemma 30.9.9). Using that the
squares are cartesian we see that the pullback of Fn+1 to Xn is Fn. Hence
Grothendieck’s existence theorem, as reformulated in Remark 30.27.2, tells us there
exists a coherent OX -module F whose restriction to Xn recovers Fn. Moreover, the
support of F is proper over S. As the completion functor is fully faithful (Theorem
30.27.1) we see that the multiplication maps Fn⊗OXn

Fn → Fn fit together to give
an algebra structure on F . Setting Y = Spec

X
(F) finishes the proof. □

Lemma 30.28.3.0A42 Let A be a Noetherian ring complete with respect to an ideal I.
Write S = Spec(A) and Sn = Spec(A/In). Let X, Y be schemes over S. For n ≥ 1
we set Xn = X ×S Sn and Yn = Y ×S Sn. Suppose given a compatible system of
commutative diagrams

Xn+1

##

gn+1
// Yn+1

{{
Xn

66

  

gn
// Yn

55

||

Sn+1

Sn

55

Assume that
(1) X → S is proper, and
(2) Y → S is separated of finite type.

Then there exists a unique morphism of schemes g : X → Y over S such that gn is
the base change of g to Sn.
Proof. The morphisms (1, gn) : Xn → Xn ×S Yn are closed immersions because
Yn → Sn is separated (Schemes, Lemma 26.21.11). Thus by Lemma 30.28.1 there
exists a closed subscheme Z ⊂ X ×S Y proper over S whose base change to Sn
recovers Xn ⊂ Xn×S Yn. The first projection p : Z → X is a proper morphism (as
Z is proper over S, see Morphisms, Lemma 29.41.7) whose base change to Sn is an
isomorphism for all n. In particular, p : Z → X is finite over an open neighbourhood
of X0 by Lemma 30.21.2. As X is proper over S this open neighbourhood is all of
X and we conclude p : Z → X is finite. Applying the equivalence of Proposition
30.25.4 we see that p∗OZ = OX as this is true modulo In for all n. Hence p is an
isomorphism and we obtain the morphism g as the composition X ∼= Z → Y . We
omit the proof of uniqueness. □

https://stacks.math.columbia.edu/tag/0A42
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In order to prove an “abstract” algebraization theorem we need to assume we have
an ample invertible sheaf, as the result is false without such an assumption.

Theorem 30.28.4 (Grothendieck’s algebraization theorem).089A Let A be a Noetherian
ring complete with respect to an ideal I. Set S = Spec(A) and Sn = Spec(A/In).
Consider a commutative diagram

X1
i1
//

��

X2
i2
//

��

X3 //

��

. . .

S1 // S2 // S3 // . . .

of schemes with cartesian squares. Suppose given (Ln, φn) where each Ln is an
invertible sheaf on Xn and φn : i∗nLn+1 → Ln is an isomorphism. If

(1) X1 → S1 is proper, and
(2) L1 is ample on X1

then there exists a proper morphism of schemes X → S and an ample invertible
OX -module L and isomorphisms Xn

∼= X ×S Sn and Ln ∼= L|Xn compatible with
the morphisms in and φn.

Proof. Since the squares in the diagram are cartesian and since the morphisms
Sn → Sn+1 are closed immersions, we see that the morphisms in are closed immer-
sions too. In particular we may think of Xm as a closed subscheme of Xn for m < n.
In fact Xm is the closed subscheme cut out by the quasi-coherent sheaf of ideals
ImOXn . Moreover, the underlying topological spaces of the schemes X1, X2, X3, . . .
are all identified, hence we may (and do) think of sheaves OXn as living on the same
underlying topological space; similarly for coherent OXn -modules. Set

Fn = Ker(OXn+1 → OXn)
so that we obtain short exact sequences

0→ Fn → OXn+1 → OXn → 0
By the above we have Fn = InOXn+1 . It follows Fn is a coherent sheaf on Xn+1
annihilated by I, hence we may (and do) think of it as a coherent module OX1-
module. Observe that for m > n the sheaf

InOXm/In+1OXm
maps isomorphically to Fn under the map OXm → OXn+1 . Hence given n1, n2 ≥ 0
we can pick an m > n1 + n2 and consider the multiplication map

In1OXm × In2OXm −→ In1+n2OXm → Fn1+n2

This induces an OX1-bilinear map
Fn1 ×Fn2 −→ Fn1+n2

which in turn defines the structure of a graded OX1-algebra on F =
⊕

n≥0 Fn.

Set B =
⊕
In/In+1; this is a finitely generated graded A/I-algebra. Set B =

(X1 → S1)∗B̃. The discussion above provides us with a canonical surjection
B −→ F

of graded OX1-algebras. In particular we see that F is a finite type quasi-coherent
graded B-module. By Lemma 30.19.3 we can find an integer d0 such thatH1(X1,F⊗

https://stacks.math.columbia.edu/tag/089A
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L⊗d) = 0 for all d ≥ d0. Pick a d ≥ d0 such that there exist sections s0,1, . . . , sN,1 ∈
Γ(X1,L⊗d

1 ) which induce an immersion
ψ1 : X1 → PN

S1

over S1, see Morphisms, Lemma 29.39.4. As X1 is proper over S1 we see that ψ1 is
a closed immersion, see Morphisms, Lemma 29.41.7 and Schemes, Lemma 26.10.4.
We are going to “lift” ψ1 to a compatible system of closed immersions of Xn into
PN .
Upon tensoring the short exact sequences of the first paragraph of the proof by
L⊗d
n+1 we obtain short exact sequences

0→ Fn ⊗ L⊗d
n+1 → L

⊗d
n+1 → L

⊗d
n+1 → 0

Using the isomorphisms φn we obtain isomorphisms Ln+1 ⊗ OXl = Ll for l ≤ n.
Whence the sequence above becomes

0→ Fn ⊗ L⊗d
1 → L⊗d

n+1 → L⊗d
n → 0

The vanishing of H1(X,Fn ⊗ L⊗d
1 ) implies we can inductively lift s0,1, . . . , sN,1 ∈

Γ(X1,L⊗d
1 ) to sections s0,n, . . . , sN,n ∈ Γ(Xn,L⊗d

n ). Thus we obtain a commutative
diagram

X1
i1
//

ψ1
��

X2
i2
//

ψ2
��

X3 //

ψ3
��

. . .

PN
S1

// PN
S2

// PN
S3

// . . .

where ψn = φ(Ln,(s0,n,...,sN,n)) in the notation of Constructions, Section 27.13. As
the squares in the statement of the theorem are cartesian we see that the squares
in the above diagram are cartesian. We win by applying Lemma 30.28.1. □
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CHAPTER 31

Divisors

01WO 31.1. Introduction

01WP In this chapter we study some very basic questions related to defining divisors, etc.
A basic reference is [DG67].

31.2. Associated points

02OI Let R be a ring and let M be an R-module. Recall that a prime p ⊂ R is associated
to M if there exists an element of M whose annihilator is p. See Algebra, Definition
10.63.1. Here is the definition of associated points for quasi-coherent sheaves on
schemes as given in [DG67, IV Definition 3.1.1].

Definition 31.2.1.02OJ Let X be a scheme. Let F be a quasi-coherent sheaf on X.
(1) We say x ∈ X is associated to F if the maximal ideal mx is associated to

the OX,x-module Fx.
(2) We denote Ass(F) or AssX(F) the set of associated points of F .
(3) The associated points of X are the associated points of OX .

These definitions are most useful when X is locally Noetherian and F of finite type.
For example it may happen that a generic point of an irreducible component of X
is not associated to X, see Example 31.2.7. In the non-Noetherian case it may be
more convenient to use weakly associated points, see Section 31.5. Let us link the
scheme theoretic notion with the algebraic notion on affine opens; note that this
correspondence works perfectly only for locally Noetherian schemes.

Lemma 31.2.2.02OK Let X be a scheme. Let F be a quasi-coherent sheaf on X. Let
Spec(A) = U ⊂ X be an affine open, and set M = Γ(U,F). Let x ∈ U , and let
p ⊂ A be the corresponding prime.

(1) If p is associated to M , then x is associated to F .
(2) If p is finitely generated, then the converse holds as well.

In particular, if X is locally Noetherian, then the equivalence
p ∈ Ass(M)⇔ x ∈ Ass(F)

holds for all pairs (p, x) as above.

Proof. This follows from Algebra, Lemma 10.63.15. But we can also argue directly
as follows. Suppose p is associated to M . Then there exists an m ∈ M whose
annihilator is p. Since localization is exact we see that pAp is the annihilator
of m/1 ∈ Mp. Since Mp = Fx (Schemes, Lemma 26.5.4) we conclude that x is
associated to F .
Conversely, assume that x is associated to F , and p is finitely generated. As x is
associated to F there exists an element m′ ∈ Mp whose annihilator is pAp. Write

2620

https://stacks.math.columbia.edu/tag/02OJ
https://stacks.math.columbia.edu/tag/02OK


31.2. ASSOCIATED POINTS 2621

m′ = m/f for some f ∈ A, f ̸∈ p. The annihilator I of m is an ideal of A such that
IAp = pAp. Hence I ⊂ p, and (p/I)p = 0. Since p is finitely generated, there exists
a g ∈ A, g ̸∈ p such that g(p/I) = 0. Hence the annihilator of gm is p and we win.
If X is locally Noetherian, then A is Noetherian (Properties, Lemma 28.5.2) and p
is always finitely generated. □

Lemma 31.2.3.05AD Let X be a scheme. Let F be a quasi-coherent OX -module. Then
Ass(F) ⊂ Supp(F).
Proof. This is immediate from the definitions. □

Lemma 31.2.4.05AE Let X be a scheme. Let 0→ F1 → F2 → F3 → 0 be a short exact
sequence of quasi-coherent sheaves on X. Then Ass(F2) ⊂ Ass(F1) ∪ Ass(F3) and
Ass(F1) ⊂ Ass(F2).
Proof. For every point x ∈ X the sequence of stalks 0→ F1,x → F2,x → F3,x → 0
is a short exact sequence of OX,x-modules. Hence the lemma follows from Algebra,
Lemma 10.63.3. □

Lemma 31.2.5.05AF Let X be a locally Noetherian scheme. Let F be a coherent OX -
module. Then Ass(F) ∩ U is finite for every quasi-compact open U ⊂ X.
Proof. This is true because the set of associated primes of a finite module over a
Noetherian ring is finite, see Algebra, Lemma 10.63.5. To translate from schemes
to algebra use that U is a finite union of affine opens, each of these opens is the
spectrum of a Noetherian ring (Properties, Lemma 28.5.2), F corresponds to a
finite module over this ring (Cohomology of Schemes, Lemma 30.9.1), and finally
use Lemma 31.2.2. □

Lemma 31.2.6.05AG Let X be a locally Noetherian scheme. Let F be a quasi-coherent
OX -module. Then

F = 0⇔ Ass(F) = ∅.
Proof. If F = 0, then Ass(F) = ∅ by definition. Conversely, if Ass(F) = ∅, then
F = 0 by Algebra, Lemma 10.63.7. To translate from schemes to algebra, restrict
to any affine and use Lemma 31.2.2. □

Example 31.2.7.05AI Let k be a field. The ring R = k[x1, x2, x3, . . .]/(x2
i ) is local

with locally nilpotent maximal ideal m. There exists no element of R which has
annihilator m. Hence Ass(R) = ∅, and X = Spec(R) is an example of a scheme
which has no associated points.
Lemma 31.2.8.0B3L Let X be a locally Noetherian scheme. Let F be a quasi-coherent
OX -module. If U ⊂ X is open and Ass(F) ⊂ U , then Γ(X,F) → Γ(U,F) is
injective.
Proof. Let s ∈ Γ(X,F) be a section which restricts to zero on U . Let F ′ ⊂ F be
the image of the map OX → F defined by s. Then Supp(F ′) ∩ U = ∅. On the
other hand, Ass(F ′) ⊂ Ass(F) by Lemma 31.2.4. Since also Ass(F ′) ⊂ Supp(F ′)
(Lemma 31.2.3) we conclude Ass(F ′) = ∅. Hence F ′ = 0 by Lemma 31.2.6. □

Lemma 31.2.9.05AH Let X be a locally Noetherian scheme. Let F be a quasi-coherent
OX -module. Let x ∈ Supp(F) be a point in the support of F which is not a
specialization of another point of Supp(F). Then x ∈ Ass(F). In particular, any
generic point of an irreducible component of X is an associated point of X.

https://stacks.math.columbia.edu/tag/05AD
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Proof. Since x ∈ Supp(F) the module Fx is not zero. Hence Ass(Fx) ⊂ Spec(OX,x)
is nonempty by Algebra, Lemma 10.63.7. On the other hand, by assumption
Supp(Fx) = {mx}. Since Ass(Fx) ⊂ Supp(Fx) (Algebra, Lemma 10.63.2) we see
that mx is associated to Fx and we win. □

The following lemma is the analogue of More on Algebra, Lemma 15.23.12.

Lemma 31.2.10.0AVL Let X be a locally Noetherian scheme. Let φ : F → G be a map
of quasi-coherent OX -modules. Assume that for every x ∈ X at least one of the
following happens

(1) Fx → Gx is injective, or
(2) x ̸∈ Ass(F).

Then φ is injective.

Proof. The assumptions imply that Ass(Ker(φ)) = ∅ and hence Ker(φ) = 0 by
Lemma 31.2.6. □

Lemma 31.2.11.0AVM Let X be a locally Noetherian scheme. Let φ : F → G be a map
of quasi-coherent OX -modules. Assume F is coherent and that for every x ∈ X
one of the following happens

(1) Fx → Gx is an isomorphism, or
(2) depth(Fx) ≥ 2 and x ̸∈ Ass(G).

Then φ is an isomorphism.

Proof. This is a translation of More on Algebra, Lemma 15.23.13 into the language
of schemes. □

31.3. Morphisms and associated points

05DA Let f : X → S be a morphism of schemes. Let F be a sheaf of OX -modules. If
s ∈ S is a point, then it is often convenient to denote Fs the OXs -module one gets
by pulling back F by the morphism is : Xs → X. Here Xs is the scheme theoretic
fibre of f over s. In a formula

Fs = i∗sF
Of course, this notation clashes with the already existing notation for the stalk of
F at a point x ∈ X if f = idX . However, the notation is often convenient, as in
the formulation of the following lemma.

Lemma 31.3.1.05DB Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X which is flat over S. Let G be a quasi-coherent sheaf on S.
Then we have

AssX(F ⊗OX
f∗G) ⊃

⋃
s∈AssS(G)

AssXs(Fs)

and equality holds if S is locally Noetherian (for the notation Fs see above).

Proof. Let x ∈ X and let s = f(x) ∈ S. Set B = OX,x, A = OS,s, N = Fx,
and M = Gs. Note that the stalk of F ⊗OX

f∗G at x is equal to the B-module
M ⊗A N . Hence x ∈ AssX(F ⊗OX

f∗G) if and only if mB is in AssB(M ⊗A
N). Similarly s ∈ AssS(G) and x ∈ AssXs(Fs) if and only if mA ∈ AssA(M)
and mB/mAB ∈ AssB⊗κ(mA)(N ⊗ κ(mA)). Thus the lemma follows from Algebra,
Lemma 10.65.5. □

https://stacks.math.columbia.edu/tag/0AVL
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31.4. Embedded points

05AJ Let R be a ring and let M be an R-module. Recall that a prime p ⊂ R is an
embedded associated prime of M if it is an associated prime of M which is not
minimal among the associated primes of M . See Algebra, Definition 10.67.1. Here is
the definition of embedded associated points for quasi-coherent sheaves on schemes
as given in [DG67, IV Definition 3.1.1].

Definition 31.4.1.05AK Let X be a scheme. Let F be a quasi-coherent sheaf on X.
(1) An embedded associated point of F is an associated point which is not

maximal among the associated points of F , i.e., it is the specialization of
another associated point of F .

(2) A point x of X is called an embedded point if x is an embedded associated
point of OX .

(3) An embedded component of X is an irreducible closed subset Z = {x}
where x is an embedded point of X.

In the Noetherian case when F is coherent we have the following.

Lemma 31.4.2.05AL Let X be a locally Noetherian scheme. Let F be a coherent OX -
module. Then

(1) the generic points of irreducible components of Supp(F) are associated
points of F , and

(2) an associated point of F is embedded if and only if it is not a generic
point of an irreducible component of Supp(F).

In particular an embedded point of X is an associated point of X which is not a
generic point of an irreducible component of X.

Proof. Recall that in this case Z = Supp(F) is closed, see Morphisms, Lemma
29.5.3 and that the generic points of irreducible components of Z are associated
points of F , see Lemma 31.2.9. Finally, we have Ass(F) ⊂ Z, by Lemma 31.2.3.
These results, combined with the fact that Z is a sober topological space and hence
every point of Z is a specialization of a generic point of Z, imply (1) and (2). □

Lemma 31.4.3.0346 Let X be a locally Noetherian scheme. Let F be a coherent sheaf
on X. Then the following are equivalent:

(1) F has no embedded associated points, and
(2) F has property (S1).

Proof. This is Algebra, Lemma 10.157.2, combined with Lemma 31.2.2 above. □

Lemma 31.4.4.0BXG Let X be a locally Noetherian scheme of dimension ≤ 1. The
following are equivalent

(1) X is Cohen-Macaulay, and
(2) X has no embedded points.

Proof. Follows from Lemma 31.4.3 and the definitions. □

Lemma 31.4.5.083P Let X be a locally Noetherian scheme. Let U ⊂ X be an open
subscheme. The following are equivalent

(1) U is scheme theoretically dense in X (Morphisms, Definition 29.7.1),
(2) U is dense in X and U contains all embedded points of X.

https://stacks.math.columbia.edu/tag/05AK
https://stacks.math.columbia.edu/tag/05AL
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Proof. The question is local on X, hence we may assume that X = Spec(A) where
A is a Noetherian ring. Then U is quasi-compact (Properties, Lemma 28.5.3)
hence U = D(f1) ∪ . . . ∪ D(fn) (Algebra, Lemma 10.29.1). In this situation U is
scheme theoretically dense in X if and only if A→ Af1 × . . .×Afn is injective, see
Morphisms, Example 29.7.4. Condition (2) translated into algebra means that for
every associated prime p of A there exists an i with fi ̸∈ p.
Assume (1), i.e., A→ Af1 × . . .×Afn is injective. If x ∈ A has annihilator a prime
p, then x maps to a nonzero element of Afi for some i and hence fi ̸∈ p. Thus (2)
holds. Assume (2), i.e., every associated prime p of A corresponds to a prime of
Afi for some i. Then A→ Af1 × . . .× Afn is injective because A→

∏
p∈Ass(A) Ap

is injective by Algebra, Lemma 10.63.19. □

Lemma 31.4.6.02OL Let X be a locally Noetherian scheme. Let F be a coherent sheaf
on X. The set of coherent subsheaves

{K ⊂ F | Supp(K) is nowhere dense in Supp(F)}
has a maximal element K. Setting F ′ = F/K we have the following

(1) Supp(F ′) = Supp(F),
(2) F ′ has no embedded associated points, and
(3) there exists a dense open U ⊂ X such that U ∩ Supp(F) is dense in

Supp(F) and F ′|U ∼= F|U .

Proof. This follows from Algebra, Lemmas 10.67.2 and 10.67.3. Note that U can
be taken as the complement of the closure of the set of embedded associated points
of F . □

Lemma 31.4.7.02OM Let X be a locally Noetherian scheme. Let F be a coherent OX -
module without embedded associated points. Set

I = Ker(OX −→ HomOX
(F ,F)).

This is a coherent sheaf of ideals which defines a closed subscheme Z ⊂ X without
embedded points. Moreover there exists a coherent sheaf G on Z such that (a)
F = (Z → X)∗G, (b) G has no associated embedded points, and (c) Supp(G) = Z
(as sets).

Proof. Some of the statements we have seen in the proof of Cohomology of Schemes,
Lemma 30.9.7. The others follow from Algebra, Lemma 10.67.4. □

31.5. Weakly associated points

056K Let R be a ring and let M be an R-module. Recall that a prime p ⊂ R is weakly
associated to M if there exists an element m of M such that p is minimal among
the primes containing the annihilator of m. See Algebra, Definition 10.66.1. If R
is a local ring with maximal ideal m, then m is weakly associated to M if and only
if there exists an element m ∈ M whose annihilator has radical m, see Algebra,
Lemma 10.66.2.

Definition 31.5.1.056L Let X be a scheme. Let F be a quasi-coherent sheaf on X.
(1) We say x ∈ X is weakly associated to F if the maximal ideal mx is weakly

associated to the OX,x-module Fx.
(2) We denote WeakAss(F) the set of weakly associated points of F .
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(3) The weakly associated points of X are the weakly associated points of
OX .

In this case, on any affine open, this corresponds exactly to the weakly associated
primes as defined above. Here is the precise statement.
Lemma 31.5.2.056M Let X be a scheme. Let F be a quasi-coherent sheaf on X. Let
Spec(A) = U ⊂ X be an affine open, and set M = Γ(U,F). Let x ∈ U , and let
p ⊂ A be the corresponding prime. The following are equivalent

(1) p is weakly associated to M , and
(2) x is weakly associated to F .

Proof. This follows from Algebra, Lemma 10.66.2. □

Lemma 31.5.3.05AM Let X be a scheme. Let F be a quasi-coherent OX -module. Then
Ass(F) ⊂WeakAss(F) ⊂ Supp(F).

Proof. This is immediate from the definitions. □

Lemma 31.5.4.05AN Let X be a scheme. Let 0→ F1 → F2 → F3 → 0 be a short exact
sequence of quasi-coherent sheaves on X. Then WeakAss(F2) ⊂ WeakAss(F1) ∪
WeakAss(F3) and WeakAss(F1) ⊂WeakAss(F2).
Proof. For every point x ∈ X the sequence of stalks 0→ F1,x → F2,x → F3,x → 0
is a short exact sequence of OX,x-modules. Hence the lemma follows from Algebra,
Lemma 10.66.4. □

Lemma 31.5.5.05AP Let X be a scheme. Let F be a quasi-coherent OX -module. Then
F = (0)⇔WeakAss(F) = ∅

Proof. Follows from Lemma 31.5.2 and Algebra, Lemma 10.66.5 □

Lemma 31.5.6.0B3M Let X be a scheme. Let F be a quasi-coherent OX -module. If
U ⊂ X is open and WeakAss(F) ⊂ U , then Γ(X,F)→ Γ(U,F) is injective.
Proof. Let s ∈ Γ(X,F) be a section which restricts to zero on U . Let F ′ ⊂ F be
the image of the map OX → F defined by s. Then Supp(F ′)∩U = ∅. On the other
hand, WeakAss(F ′) ⊂ WeakAss(F) by Lemma 31.5.4. Since also WeakAss(F ′) ⊂
Supp(F ′) (Lemma 31.5.3) we conclude WeakAss(F ′) = ∅. Hence F ′ = 0 by Lemma
31.5.5. □

Lemma 31.5.7.05AQ Let X be a scheme. Let F be a quasi-coherent OX -module. Let
x ∈ Supp(F) be a point in the support of F which is not a specialization of another
point of Supp(F). Then x ∈ WeakAss(F). In particular, any generic point of an
irreducible component of X is weakly associated to OX .
Proof. Since x ∈ Supp(F) the module Fx is not zero. Hence WeakAss(Fx) ⊂
Spec(OX,x) is nonempty by Algebra, Lemma 10.66.5. On the other hand, by as-
sumption Supp(Fx) = {mx}. Since WeakAss(Fx) ⊂ Supp(Fx) (Algebra, Lemma
10.66.6) we see that mx is weakly associated to Fx and we win. □

Lemma 31.5.8.05AR Let X be a scheme. Let F be a quasi-coherent OX -module. If mx
is a finitely generated ideal of OX,x, then

x ∈ Ass(F)⇔ x ∈WeakAss(F).
In particular, if X is locally Noetherian, then Ass(F) = WeakAss(F).
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Proof. See Algebra, Lemma 10.66.9. □

Lemma 31.5.9.0AVN Let f : X → S be a quasi-compact and quasi-separated morphism
of schemes. Let F be a quasi-coherent OX -module. Let s ∈ S be a point which is
not in the image of f . Then s is not weakly associated to f∗F .

Proof. Consider the base change f ′ : X ′ → Spec(OS,s) of f by the morphism
g : Spec(OS,s)→ S and denote g′ : X ′ → X the other projection. Then

(f∗F)s = (g∗f∗F)s = (f ′
∗(g′)∗F)s

The first equality because g induces an isomorphism on local rings at s and the
second by flat base change (Cohomology of Schemes, Lemma 30.5.2). Of course
s ∈ Spec(OS,s) is not in the image of f ′. Thus we may assume S is the spectrum of
a local ring (A,m) and s corresponds to m. By Schemes, Lemma 26.24.1 the sheaf
f∗F is quasi-coherent, say corresponding to the A-module M . As s is not in the
image of f we see that X =

⋃
a∈m f

−1D(a) is an open covering. Since X is quasi-
compact we can find a1, . . . , an ∈ m such that X = f−1D(a1) ∪ . . . ∪ f−1D(an). It
follows that

M →Ma1 ⊕ . . .⊕Mar

is injective. Hence for any nonzero element m of the stalk Mp there exists an i such
that anim is nonzero for all n ≥ 0. Thus m is not weakly associated to M . □

Lemma 31.5.10.0AVP Let X be a scheme. Let φ : F → G be a map of quasi-coherent
OX -modules. Assume that for every x ∈ X at least one of the following happens

(1) Fx → Gx is injective, or
(2) x ̸∈WeakAss(F).

Then φ is injective.

Proof. The assumptions imply that WeakAss(Ker(φ)) = ∅ and hence Ker(φ) = 0
by Lemma 31.5.5. □

Lemma 31.5.11.0E9I Let X be a locally Noetherian scheme. Let F be a coherent OX -
module. Let j : U → X be an open subscheme such that for x ∈ X \ U we have
depth(Fx) ≥ 2. Then

F −→ j∗(F|U )

is an isomorphism and consequently Γ(X,F)→ Γ(U,F) is an isomorphism too.

Proof. We claim Lemma 31.2.11 applies to the map displayed in the lemma. Let
x ∈ X. If x ∈ U , then the map is an isomorphism on stalks as j∗(F|U )|U = F|U .
If x ∈ X \ U , then x ̸∈ Ass(j∗(F|U )) (Lemmas 31.5.9 and 31.5.3). Since we’ve
assumed depth(Fx) ≥ 2 this finishes the proof. □

Lemma 31.5.12.0EME Let X be a reduced scheme. Then the weakly associated points
of X are exactly the generic points of the irreducible components of X.

Proof. Follows from Algebra, Lemma 10.66.3. □
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31.6. Morphisms and weakly associated points

05EW
Lemma 31.6.1.05EX Let f : X → S be an affine morphism of schemes. Let F be a
quasi-coherent OX -module. Then we have

WeakAssS(f∗F) ⊂ f(WeakAssX(F))
Proof. We may assume X and S affine, so X → S comes from a ring map A→ B.
Then F = M̃ for some B-module M . By Lemma 31.5.2 the weakly associated
points of F correspond exactly to the weakly associated primes of M . Similarly,
the weakly associated points of f∗F correspond exactly to the weakly associated
primes of M as an A-module. Hence the lemma follows from Algebra, Lemma
10.66.11. □

Lemma 31.6.2.05EY Let f : X → S be an affine morphism of schemes. Let F be a
quasi-coherent OX -module. If X is locally Noetherian, then we have

f(AssX(F)) = AssS(f∗F) = WeakAssS(f∗F) = f(WeakAssX(F))
Proof. We may assume X and S affine, so X → S comes from a ring map A→ B.
As X is locally Noetherian the ring B is Noetherian, see Properties, Lemma 28.5.2.
Write F = M̃ for some B-module M . By Lemma 31.2.2 the associated points of F
correspond exactly to the associated primes of M , and any associated prime of M
as an A-module is an associated points of f∗F . Hence the inclusion

f(AssX(F)) ⊂ AssS(f∗F)
follows from Algebra, Lemma 10.63.13. We have the inclusion

AssS(f∗F) ⊂WeakAssS(f∗F)
by Lemma 31.5.3. We have the inclusion

WeakAssS(f∗F) ⊂ f(WeakAssX(F))
by Lemma 31.6.1. The outer sets are equal by Lemma 31.5.8 hence we have equality
everywhere. □

Lemma 31.6.3.05EZ Let f : X → S be a finite morphism of schemes. Let F be a
quasi-coherent OX -module. Then WeakAss(f∗F) = f(WeakAss(F)).
Proof. We may assume X and S affine, so X → S comes from a finite ring map
A → B. Write F = M̃ for some B-module M . By Lemma 31.5.2 the weakly
associated points of F correspond exactly to the weakly associated primes of M .
Similarly, the weakly associated points of f∗F correspond exactly to the weakly
associated primes of M as an A-module. Hence the lemma follows from Algebra,
Lemma 10.66.13. □

Lemma 31.6.4.05F0 Let f : X → S be a morphism of schemes. Let G be a quasi-
coherent OS-module. Let x ∈ X with s = f(x). If f is flat at x, the point x is a
generic point of the fibre Xs, and s ∈WeakAssS(G), then x ∈WeakAss(f∗G).
Proof. Let A = OS,s, B = OX,x, and M = Gs. Let m ∈ M be an element whose
annihilator I = {a ∈ A | am = 0} has radical mA. Then m⊗ 1 has annihilator IB
as A → B is faithfully flat. Thus it suffices to see that

√
IB = mB . This follows

from the fact that the maximal ideal of B/mAB is locally nilpotent (see Algebra,
Lemma 10.25.1) and the assumption that

√
I = mA. Some details omitted. □
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Lemma 31.6.5.0CUC Let K/k be a field extension. Let X be a scheme over k. Let F
be a quasi-coherent OX -module. Let y ∈ XK with image x ∈ X. If y is a weakly
associated point of the pullback FK , then x is a weakly associated point of F .

Proof. This is the translation of Algebra, Lemma 10.66.19 into the language of
schemes. □

Here is a simple lemma where we find that pushforwards often have depth at least
2.

Lemma 31.6.6.0EY0 Let f : X → S be a quasi-compact and quasi-separated morphism
of schemes. Let F be a quasi-coherent OX -module. Let s ∈ S.

(1) If s ̸∈ f(X), then s is not weakly associated to f∗F .
(2) If s ̸∈ f(X) and OS,s is Noetherian, then s is not associated to f∗F .
(3) If s ̸∈ f(X), (f∗F)s is a finite OS,s-module, and OS,s is Noetherian, then

depth((f∗F)s) ≥ 2.
(4) If F is flat over S and a ∈ ms is a nonzerodivisor, then a is a nonzerodivisor

on (f∗F)s.
(5) If F is flat over S and a, b ∈ ms is a regular sequence, then a is a nonze-

rodivisor on (f∗F)s and b is a nonzerodivisor on (f∗F)s/a(f∗F)s.
(6) If F is flat over S and (f∗F)s is a finiteOS,s-module, then depth((f∗F)s) ≥

min(2,depth(OS,s)).

Proof. Part (1) is Lemma 31.5.9. Part (2) follows from (1) and Lemma 31.5.8.

Proof of part (3). To show the depth is≥ 2 it suffices to show that HomOS,s
(κ(s), (f∗F)s) =

0 and Ext1
OS,s

(κ(s), (f∗F)s) = 0, see Algebra, Lemma 10.72.5. Using the exact se-
quence 0→ ms → OS,s → κ(s)→ 0 it suffices to prove that the map

HomOS,s
(OS,s, (f∗F)s)→ HomOS,s

(ms, (f∗F)s)

is an isomorphism. By flat base change (Cohomology of Schemes, Lemma 30.5.2)
we may replace S by Spec(OS,s) and X by Spec(OS,s)×S X. Denote m ⊂ OS the
ideal sheaf of s. Then we see that

HomOS,s
(ms, (f∗F)s) = HomOS

(m, f∗F) = HomOX
(f∗m,F)

the first equality because S is local with closed point s and the second equality by
adjunction for f∗, f∗ on quasi-coherent modules. However, since s ̸∈ f(X) we see
that f∗m = OX . Working backwards through the arguments we get the desired
equality.

For the proof of (4), (5), and (6) we use flat base change (Cohomology of Schemes,
Lemma 30.5.2) to reduce to the case where S is the spectrum of OS,s. Then a
nonzerodivisor a ∈ OS,s deterimines a short exact sequence

0→ OS
a−→ OS → OS/aOS → 0

Since F is flat over S, we obtain an exact sequence

0→ F a−→ F → F/aF → 0

Pushing forward we obtain an exact sequence

0→ f∗F
a−→ f∗F → f∗(F/aF)

https://stacks.math.columbia.edu/tag/0CUC
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This proves (4) and it shows that f∗F/af∗F ⊂ f∗(F/aF). If b is a nonzerodivisor
on OS,s/aOS,s, then the exact same argument shows b : F/aF → F/aF is injective.
Pushing forward we conclude

b : f∗(F/aF)→ f∗(F/aF)
is injective and hence also b : f∗F/af∗F → f∗F/af∗F is injective. This proves (5).
Part (6) follows from (4) and (5) and the definitions. □

31.7. Relative assassin

05AS Let A → B be a ring map. Let N be a B-module. Recall that a prime q ⊂ B
is said to be in the relative assassin of N over B/A if q is an associated prime of
N ⊗A κ(p). Here p = A ∩ q. See Algebra, Definition 10.65.2. Here is the definition
of the relative assassin for quasi-coherent sheaves over a morphism of schemes.
Definition 31.7.1.05AT Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. The relative assassin of F in X over S is the set

AssX/S(F) =
⋃

s∈S
AssXs(Fs)

where Fs = (Xs → X)∗F is the restriction of F to the fibre of f at s.
Again there is a caveat that this is best used when the fibres of f are locally
Noetherian and F is of finite type. In the general case we should probably use the
relative weak assassin (defined in the next section). Let us link the scheme theoretic
notion with the algebraic notion on affine opens; note that this correspondence
works perfectly only for morphisms of schemes whose fibres are locally Noetherian.
Lemma 31.7.2.0CU5 Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let U ⊂ X and V ⊂ S be affine opens with f(U) ⊂ V . Write
U = Spec(A), V = Spec(R), and set M = Γ(U,F). Let x ∈ U , and let p ⊂ A be
the corresponding prime. Then

p ∈ AssA/R(M)⇒ x ∈ AssX/S(F)
If all fibres Xs of f are locally Noetherian, then p ∈ AssA/R(M)⇔ x ∈ AssX/S(F)
for all pairs (p, x) as above.
Proof. The set AssA/R(M) is defined in Algebra, Definition 10.65.2. Choose a
pair (p, x). Let s = f(x). Let r ⊂ R be the prime lying under p, i.e., the prime
corresponding to s. Let p′ ⊂ A ⊗R κ(r) be the prime whose inverse image is
p, i.e., the prime corresponding to x viewed as a point of its fibre Xs. Then
p ∈ AssA/R(M) if and only if p′ is an associated prime of M ⊗R κ(r), see Algebra,
Lemma 10.65.1. Note that the ring A ⊗R κ(r) corresponds to Us and the module
M ⊗R κ(r) corresponds to the quasi-coherent sheaf Fs|Us . Hence x is an associated
point of Fs by Lemma 31.2.2. The reverse implication holds if p′ is finitely generated
which is how the last sentence is seen to be true. □

Lemma 31.7.3.05DC Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. Let g : S′ → S be a morphism of schemes. Consider the base
change diagram

X ′

��

g′
// X

��
S′ g // S
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and set F ′ = (g′)∗F . Let x′ ∈ X ′ be a point with images x ∈ X, s′ ∈ S′ and
s ∈ S. Assume f locally of finite type. Then x′ ∈ AssX′/S′(F ′) if and only if
x ∈ AssX/S(F) and x′ corresponds to a generic point of an irreducible component
of Spec(κ(s′)⊗κ(s) κ(x)).

Proof. Consider the morphism X ′
s′ → Xs of fibres. As Xs′ = Xs ×Spec(κ(s))

Spec(κ(s′)) this is a flat morphism. Moreover F ′
s′ is the pullback of Fs via this

morphism. As Xs is locally of finite type over the Noetherian scheme Spec(κ(s))
we have that Xs is locally Noetherian, see Morphisms, Lemma 29.15.6. Thus we
may apply Lemma 31.3.1 and we see that

AssX′
s′

(F ′
s′) =

⋃
x∈Ass(Fs)

Ass((X ′
s′)x).

Thus to prove the lemma it suffices to show that the associated points of the
fibre (X ′

s′)x of the morphism X ′
s′ → Xs over x are its generic points. Note that

(X ′
s′)x = Spec(κ(s′) ⊗κ(s) κ(x)) as schemes. By Algebra, Lemma 10.167.1 the

ring κ(s′) ⊗κ(s) κ(x) is a Noetherian Cohen-Macaulay ring. Hence its associated
primes are its minimal primes, see Algebra, Proposition 10.63.6 (minimal primes
are associated) and Algebra, Lemma 10.157.2 (no embedded primes). □

Remark 31.7.4.05KL With notation and assumptions as in Lemma 31.7.3 we see that it
is always the case that (g′)−1(AssX/S(F)) ⊃ AssX′/S′(F ′). If the morphism S′ → S
is locally quasi-finite, then we actually have

(g′)−1(AssX/S(F)) = AssX′/S′(F ′)
because in this case the field extensions κ(s′)/κ(s) are always finite. In fact, this
holds more generally for any morphism g : S′ → S such that all the field extensions
κ(s′)/κ(s) are algebraic, because in this case all prime ideals of κ(s′)⊗κ(s) κ(x) are
maximal (and minimal) primes, see Algebra, Lemma 10.36.19.

31.8. Relative weak assassin

05AU
Definition 31.8.1.05AV Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. The relative weak assassin of F in X over S is the set

WeakAssX/S(F) =
⋃

s∈S
WeakAss(Fs)

where Fs = (Xs → X)∗F is the restriction of F to the fibre of f at s.

Lemma 31.8.2.05F2 Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent OX -module. Then WeakAssX/S(F) = AssX/S(F).

Proof. This is true because the fibres of f are locally Noetherian schemes, and
associated and weakly associated points agree on locally Noetherian schemes, see
Lemma 31.5.8. □

Lemma 31.8.3.0CUD Let f : X → S be a morphism of schemes. Let i : Z → X be a
finite morphism. Let F be a quasi-coherent OZ-module. Then WeakAssX/S(i∗F) =
i(WeakAssZ/S(F)).

Proof. Let is : Zs → Xs be the induced morphism between fibres. Then (i∗F)s =
is,∗(Fs) by Cohomology of Schemes, Lemma 30.5.1 and the fact that i is affine.
Hence we may apply Lemma 31.6.3 to conclude. □
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31.9. Fitting ideals

0C3C This section is the continuation of the discussion in More on Algebra, Section 15.8.
Let S be a scheme. Let F be a finite type quasi-coherent OS-module. In this
situation we can construct the Fitting ideals

0 = Fit−1(F) ⊂ Fit0(F) ⊂ Fit1(F) ⊂ . . . ⊂ OS
as the sequence of quasi-coherent ideals characterized by the following property:
for every affine open U = Spec(A) of S if F|U corresponds to the A-module M ,
then Fiti(F)|U corresponds to the ideal Fiti(M) ⊂ A. This is well defined and a
quasi-coherent sheaf of ideals because if f ∈ A, then the ith Fitting ideal of Mf

over Af is equal to Fiti(M)Af by More on Algebra, Lemma 15.8.4.
Alternatively, we can construct the Fitting ideals in terms of local presentations of
F . Namely, if U ⊂ X is open, and⊕

i∈I
OU → O⊕n

U → F|U → 0

is a presentation of F over U , then Fitr(F)|U is generated by the (n− r)× (n− r)-
minors of the matrix defining the first arrow of the presentation. This is compatible
with the construction above because this is how the Fitting ideal of a module over
a ring is actually defined. Some details omitted.

Lemma 31.9.1.0C3D Let f : T → S be a morphism of schemes. Let F be a finite type
quasi-coherent OS-module. Then f−1Fiti(F) · OT = Fiti(f∗F).

Proof. Follows immediately from More on Algebra, Lemma 15.8.4 part (3). □

Lemma 31.9.2.0C3E Let S be a scheme. Let F be a finitely presented OS-module. Then
Fitr(F) is a quasi-coherent ideal of finite type.

Proof. Follows immediately from More on Algebra, Lemma 15.8.4 part (4). □

Lemma 31.9.3.0CYX Let S be a scheme. Let F be a finite type, quasi-coherent OS-
module. Let Z0 ⊂ S be the closed subscheme cut out by Fit0(F). Let Z ⊂ S be
the scheme theoretic support of F . Then

(1) Z ⊂ Z0 ⊂ S as closed subschemes,
(2) Z = Z0 = Supp(F) as closed subsets,
(3) there exists a finite type, quasi-coherent OZ0 -module G0 with

(Z0 → X)∗G0 = F .

Proof. Recall that Z is locally cut out by the annihilator of F , see Morphisms,
Definition 29.5.5 (which uses Morphisms, Lemma 29.5.4 to define Z). Hence we
see that Z ⊂ Z0 scheme theoretically by More on Algebra, Lemma 15.8.4 part (6).
On the other hand we have Z = Supp(F) set theoretically by Morphisms, Lemma
29.5.4 and we have Z0 = Z set theoretically by More on Algebra, Lemma 15.8.4
part (7). Finally, to get G0 as in part (3) we can either use that we have G on Z as
in Morphisms, Lemma 29.5.4 and set G0 = (Z → Z0)∗G or we can use Morphisms,
Lemma 29.4.1 and the fact that Fit0(F) annihilates F by More on Algebra, Lemma
15.8.4 part (6). □

Lemma 31.9.4.0C3F Let S be a scheme. Let F be a finite type, quasi-coherent OS-
module. Let s ∈ S. Then F can be generated by r elements in a neighbourhood of
s if and only if Fitr(F)s = OS,s.
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Proof. Follows immediately from More on Algebra, Lemma 15.8.6. □

Lemma 31.9.5.0C3G Let S be a scheme. Let F be a finite type, quasi-coherent OS-
module. Let r ≥ 0. The following are equivalent

(1) F is finite locally free of rank r
(2) Fitr−1(F) = 0 and Fitr(F) = OS , and
(3) Fitk(F) = 0 for k < r and Fitk(F) = OS for k ≥ r.

Proof. Follows immediately from More on Algebra, Lemma 15.8.7. □

Lemma 31.9.6.05P8 Let S be a scheme. Let F be a finite type, quasi-coherent OS-
module. The closed subschemes

S = Z−1 ⊃ Z0 ⊃ Z1 ⊃ Z2 . . .

defined by the Fitting ideals of F have the following properties
(1) The intersection

⋂
Zr is empty.

(2) The functor (Sch/S)opp → Sets defined by the rule

T 7−→
{
{∗} if FT is locally generated by ≤ r sections
∅ otherwise

is representable by the open subscheme S \ Zr.
(3) The functor Fr : (Sch/S)opp → Sets defined by the rule

T 7−→
{
{∗} if FT locally free rank r
∅ otherwise

is representable by the locally closed subscheme Zr−1 \ Zr of S.
If F is of finite presentation, then Zr → S, S \ Zr → S, and Zr−1 \ Zr → S are of
finite presentation.
Proof. Part (1) is true because over every affine open U there is an integer n such
that Fitn(F)|U = OU . Namely, we can take n to be the number of generators of F
over U , see More on Algebra, Section 15.8.
For any morphism g : T → S we see from Lemmas 31.9.1 and 31.9.4 that FT is
locally generated by ≤ r sections if and only if Fitr(F) ·OT = OT . This proves (2).
For any morphism g : T → S we see from Lemmas 31.9.1 and 31.9.5 that FT is free
of rank r if and only if Fitr(F) ·OT = OT and Fitr−1(F) ·OT = 0. This proves (3).
Assume F is of finite presentation. Then each of the morphisms Zr → S is of finite
presentation as Fitr(F) is of finite type (Lemma 31.9.2 and Morphisms, Lemma
29.21.7). This implies that Zr−1 \ Zr is a retrocompact open in Zr (Properties,
Lemma 28.24.1) and hence the morphism Zr−1 \ Zr → Zr is of finite presentation
as well. □

Lemma 31.9.6 notwithstanding the following lemma does not hold if F is a finite
type quasi-coherent module. Namely, the stratification still exists but it isn’t true
that it represents the functor Fflat in general.
Lemma 31.9.7.05P9 Let S be a scheme. Let F be an OS-module of finite presentation.
Let S = Z−1 ⊃ Z0 ⊃ Z1 ⊃ . . . be as in Lemma 31.9.6. Set Sr = Zr−1 \ Zr. Then
S′ =

∐
r≥0 Sr represents the functor

Fflat : Sch/S −→ Sets, T 7−→
{
{∗} if FT flat over T
∅ otherwise

https://stacks.math.columbia.edu/tag/0C3G
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Moreover, F|Sr is locally free of rank r and the morphisms Sr → S and S′ → S are
of finite presentation.
Proof. Suppose that g : T → S is a morphism of schemes such that the pullback
FT = g∗F is flat. Then FT is a flat OT -module of finite presentation. Hence FT is
finite locally free, see Properties, Lemma 28.20.2. Thus T =

∐
r≥0 Tr, where FT |Tr

is locally free of rank r. This implies that
Fflat =

∐
r≥0

Fr

in the category of Zariski sheaves on Sch/S where Fr is as in Lemma 31.9.6. It
follows that Fflat is represented by

∐
r≥0(Zr−1 \ Zr) where Zr is as in Lemma

31.9.6. The other statements also follow from the lemma. □

Example 31.9.8.0FJ0 Let R =
∏
n∈N F2. Let I ⊂ R be the ideal of elements a =

(an)n∈N almost all of whose components are zero. Let m be a maximal ideal
containing I. Then M = R/m is a finite flat R-module, because R is absolutely flat
(More on Algebra, Lemma 15.104.6). Set S = Spec(R) and F = M̃ . The closed
subschemes of Lemma 31.9.6 are S = Z−1, Z0 = Spec(R/m), and Zi = ∅ for i > 0.
But id : S → S does not factor through (S \ Z0) ⨿ Z0 because m is a nonisolated
point of S. Thus Lemma 31.9.7 does not hold for finite type modules.

31.10. The singular locus of a morphism

0C3H Let f : X → S be a finite type morphism of schemes. The set U of points where f
is smooth is an open of X (by Morphisms, Definition 29.34.1). In many situations
it is useful to have a canonical closed subscheme Sing(f) ⊂ X whose complement
is U and whose formation commutes with arbitrary change of base.
If f is of finite presentation, then one choice would be to consider the closed sub-
scheme Z cut out by functions which are affine locally “strictly standard” in the
sense of Smoothing Ring Maps, Definition 16.2.3. It follows from Smoothing Ring
Maps, Lemma 16.2.7 that if f ′ : X ′ → S′ is the base change of f by a morphism
S′ → S, then Z ′ ⊂ S′ ×S Z where Z ′ is the closed subscheme of X ′ cut out by
functions which are affine locally strictly standard. However, equality isn’t clear.
The notion of a strictly standard element was useful in the chapter on Popescu’s
theorem. The closed subscheme defined by these elements is (as far as we know)
not used in the literature1.
If f is flat, of finite presentation, and the fibres of f all are equidimensional of
dimension d, then the dth fitting ideal of ΩX/S is used to get a good closed sub-
scheme. For any morphism of finite type the closed subschemes of X defined by
the fitting ideals of ΩX/S define a stratification of X in terms of the rank of ΩX/S
whose formation commutes with base change. This can be helpful; it is related to
embedding dimensions of fibres, see Varieties, Section 33.46.
Lemma 31.10.1.0C3I Let f : X → S be a morphism of schemes which is locally of
finite type. Let X = Z−1 ⊃ Z0 ⊃ Z1 ⊃ . . . be the closed subschemes defined by
the fitting ideals of ΩX/S . Then the formation of Zi commutes with arbitrary base
change.

1If f is a local complete intersection morphism (More on Morphisms, Definition 37.62.2) then
the closed subscheme cut out by the locally strictly standard elements is the correct thing to look
at.

https://stacks.math.columbia.edu/tag/0FJ0
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Proof. Observe that ΩX/S is a finite type quasi-coherent OX -module (Morphisms,
Lemma 29.32.12) hence the fitting ideals are defined. If f ′ : X ′ → S′ is the base
change of f by g : S′ → S, then ΩX′/S′ = (g′)∗ΩX/S where g′ : X ′ → X is
the projection (Morphisms, Lemma 29.32.10). Hence (g′)−1Fiti(ΩX/S) · OX′ =
Fiti(ΩX′/S′). This means that

Z ′
i = (g′)−1(Zi) = Zi ×X X ′

scheme theoretically and this is the meaning of the statement of the lemma. □

The 0th fitting ideal of Ω cuts out the “ramified locus” of the morphism.

Lemma 31.10.2.0C3J Let f : X → S be a morphism of schemes which is locally of
finite type. The closed subscheme Z ⊂ X cut out by the 0th fitting ideal of ΩX/S
is exactly the set of points where f is not unramified.

Proof. By Lemma 31.9.3 the complement of Z is exactly the locus where ΩX/S is
zero. This is exactly the set of points where f is unramified by Morphisms, Lemma
29.35.2. □

Lemma 31.10.3.0C3K Let f : X → S be a morphism of schemes. Let d ≥ 0 be an
integer. Assume

(1) f is flat,
(2) f is locally of finite presentation, and
(3) every nonempty fibre of f is equidimensional of dimension d.

Let Z ⊂ X be the closed subscheme cut out by the dth fitting ideal of ΩX/S . Then
Z is exactly the set of points where f is not smooth.

Proof. By Lemma 31.9.6 the complement of Z is exactly the locus where ΩX/S can
be generated by at most d elements. Hence the lemma follows from Morphisms,
Lemma 29.34.14. □

31.11. Torsion free modules

0AVQ This section is the analogue of More on Algebra, Section 15.22 for quasi-coherent
modules.

Lemma 31.11.1.0AXR Let X be an integral scheme with generic point η. Let F be a
quasi-coherent OX -module. Let U ⊂ X be nonempty open and s ∈ F(U). The
following are equivalent

(1) for some x ∈ U the image of s in Fx is torsion,
(2) for all x ∈ U the image of s in Fx is torsion,
(3) the image of s in Fη is zero,
(4) the image of s in j∗Fη is zero, where j : η → X is the inclusion morphism.

Proof. Omitted. □

Definition 31.11.2.0AVR Let X be an integral scheme. Let F be a quasi-coherent OX -
module.

(1) We say a local section of F is torsion if it satisfies the equivalent conditions
of Lemma 31.11.1.

(2) We say F is torsion free if every torsion section of F is 0.

Here is the obligatory lemma comparing this to the usual algebraic notion.

https://stacks.math.columbia.edu/tag/0C3J
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Lemma 31.11.3.0AXS Let X be an integral scheme. Let F be a quasi-coherent OX -
module. The following are equivalent

(1) F is torsion free,
(2) for U ⊂ X affine open F(U) is a torsion free O(U)-module.

Proof. Omitted. □

Lemma 31.11.4.0AXT Let X be an integral scheme. Let F be a quasi-coherent OX -
module. The torsion sections of F form a quasi-coherent OX -submodule Ftors ⊂ F .
The quotient module F/Ftors is torsion free.

Proof. Omitted. See More on Algebra, Lemma 15.22.2 for the algebraic analogue.
□

Lemma 31.11.5.0AXU Let X be an integral scheme. Any flat quasi-coherent OX -module
is torsion free.

Proof. Omitted. See More on Algebra, Lemma 15.22.9. □

Lemma 31.11.6.0AXV Let f : X → Y be a flat morphism of integral schemes. Let G be
a torsion free quasi-coherent OY -module. Then f∗G is a torsion free OX -module.

Proof. Omitted. See More on Algebra, Lemma 15.23.7 for the algebraic analogue.
□

Lemma 31.11.7.0BCM Let f : X → Y be a flat morphism of schemes. If Y is integral
and the generic fibre of f is integral, then X is integral.

Proof. The algebraic analogue is this: let A be a domain with fraction field K and
let B be a flat A-algebra such that B⊗AK is a domain. Then B is a domain. This
is true because B is torsion free by More on Algebra, Lemma 15.22.9 and hence
B ⊂ B ⊗A K. □

Lemma 31.11.8.0AXW Let X be an integral scheme. Let F be a quasi-coherent OX -
module. Then F is torsion free if and only if Fx is a torsion free OX,x-module for
all x ∈ X.

Proof. Omitted. See More on Algebra, Lemma 15.22.6. □

Lemma 31.11.9.0AXX Let X be an integral scheme. Let 0 → F → F ′ → F ′′ → 0 be a
short exact sequence of quasi-coherent OX -modules. If F and F ′′ are torsion free,
then F ′ is torsion free.

Proof. Omitted. See More on Algebra, Lemma 15.22.5 for the algebraic analogue.
□

Lemma 31.11.10.0AXY Let X be a locally Noetherian integral scheme with generic point
η. Let F be a nonzero coherent OX -module. The following are equivalent

(1) F is torsion free,
(2) η is the only associated prime of F ,
(3) η is in the support of F and F has property (S1), and
(4) η is in the support of F and F has no embedded associated prime.

Proof. This is a translation of More on Algebra, Lemma 15.22.8 into the language
of schemes. We omit the translation. □
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Lemma 31.11.11.0CC4 Let X be an integral regular scheme of dimension ≤ 1. Let F
be a coherent OX -module. The following are equivalent

(1) F is torsion free,
(2) F is finite locally free.

Proof. It is clear that a finite locally free module is torsion free. For the converse,
we will show that if F is torsion free, then Fx is a free OX,x-module for all x ∈ X.
This is enough by Algebra, Lemma 10.78.2 and the fact that F is coherent. If
dim(OX,x) = 0, then OX,x is a field and the statement is clear. If dim(OX,x) = 1,
then OX,x is a discrete valuation ring (Algebra, Lemma 10.119.7) and Fx is torsion
free. Hence Fx is free by More on Algebra, Lemma 15.22.11. □

Lemma 31.11.12.0AXZ Let X be an integral scheme. Let F , G be quasi-coherent OX -
modules. If G is torsion free and F is of finite presentation, then HomOX

(F ,G) is
torsion free.
Proof. The statement makes sense becauseHomOX

(F ,G) is quasi-coherent by Schemes,
Section 26.24. To see the statement is true, see More on Algebra, Lemma 15.22.12.
Some details omitted. □

Lemma 31.11.13.0AVS Let X be an integral locally Noetherian scheme. Let φ : F → G
be a map of quasi-coherent OX -modules. Assume F is coherent, G is torsion free,
and that for every x ∈ X one of the following happens

(1) Fx → Gx is an isomorphism, or
(2) depth(Fx) ≥ 2.

Then φ is an isomorphism.
Proof. This is a translation of More on Algebra, Lemma 15.23.14 into the language
of schemes. □

31.12. Reflexive modules

0AVT This section is the analogue of More on Algebra, Section 15.23 for coherent modules
on locally Noetherian schemes. The reason for working with coherent modules is
that HomOX

(F ,G) is coherent for every pair of coherent OX -modules F ,G, see
Modules, Lemma 17.22.6.
Definition 31.12.1.0AVU Let X be an integral locally Noetherian scheme. Let F be a
coherent OX -module. The reflexive hull of F is the OX -module

F∗∗ = HomOX
(HomOX

(F ,OX),OX)
We say F is reflexive if the natural map j : F −→ F∗∗ is an isomorphism.
It follows from Lemma 31.12.8 that the reflexive hull is a reflexive OX -module. You
can use the same definition to define reflexive modules in more general situations,
but this does not seem to be very useful. Here is the obligatory lemma comparing
this to the usual algebraic notion.
Lemma 31.12.2.0AY0 Let X be an integral locally Noetherian scheme. Let F be a
coherent OX -module. The following are equivalent

(1) F is reflexive,
(2) for U ⊂ X affine open F(U) is a reflexive O(U)-module.

Proof. Omitted. □
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Remark 31.12.3.0AY1 If X is a scheme of finite type over a field, then sometimes a
different notion of reflexive modules is used (see for example [HL97, bottom of page
5 and Definition 1.1.9]). This other notion uses RHom into a dualizing complex
ω•
X instead of into OX and should probably have a different name because it can

be different when X is not Gorenstein. For example, if X = Spec(k[t3, t4, t5]), then
a computation shows the dualizing sheaf ωX is not reflexive in our sense, but it is
reflexive in the other sense as ωX → Hom(Hom(ωX , ωX), ωX) is an isomorphism.

Lemma 31.12.4.0AY2 Let X be an integral locally Noetherian scheme. Let F be a
coherent OX -module.

(1) If F is reflexive, then F is torsion free.
(2) The map j : F −→ F∗∗ is injective if and only if F is torsion free.

Proof. Omitted. See More on Algebra, Lemma 15.23.2. □

Lemma 31.12.5.0AY3 Let X be an integral locally Noetherian scheme. Let F be a
coherent OX -module. The following are equivalent

(1) F is reflexive,
(2) Fx is a reflexive OX,x-module for all x ∈ X,
(3) Fx is a reflexive OX,x-module for all closed points x ∈ X.

Proof. By Modules, Lemma 17.22.4 we see that (1) and (2) are equivalent. Since
every point of X specializes to a closed point (Properties, Lemma 28.5.9) we see
that (2) and (3) are equivalent. □

Lemma 31.12.6.0EBF Let f : X → Y be a flat morphism of integral locally Noetherian
schemes. Let G be a coherent reflexive OY -module. Then f∗G is a coherent reflexive
OX -module.

Proof. Omitted. See More on Algebra, Lemma 15.22.4 for the algebraic analogue.
□

Lemma 31.12.7.0EBG Let X be an integral locally Noetherian scheme. Let 0 → F →
F ′ → F ′′ be an exact sequence of coherent OX -modules. If F ′ is reflexive and F ′′

is torsion free, then F is reflexive.

Proof. Omitted. See More on Algebra, Lemma 15.23.5. □

Lemma 31.12.8.0AY4 Let X be an integral locally Noetherian scheme. Let F , G be
coherent OX -modules. If G is reflexive, then HomOX

(F ,G) is reflexive.

Proof. The statement makes sense because HomOX
(F ,G) is coherent by Cohomol-

ogy of Schemes, Lemma 30.9.4. To see the statement is true, see More on Algebra,
Lemma 15.23.8. Some details omitted. □

Remark 31.12.9.0EBH Let X be an integral locally Noetherian scheme. Thanks to
Lemma 31.12.8 we know that the reflexive hull F∗∗ of a coherent OX -module is co-
herent reflexive. Consider the category C of coherent reflexive OX -modules. Taking
reflexive hulls gives a left adjoint to the inclusion functor C → Coh(OX). Observe
that C is an additive category with kernels and cokernels. Namely, given φ : F → G
in C, the usual kernel Ker(φ) is reflexive (Lemma 31.12.7) and the reflexive hull
Coker(φ)∗∗ of the usual cokernel is the cokernel in C. Moreover C inherits a tensor
product

F ⊗C G = (F ⊗OX
G)∗∗
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which is associative and symmetric. There is an internal Hom in the sense that for
any three objects F ,G,H of C we have the identity

HomC(F ⊗C G,H) = HomC(F ,HomOX
(G,H))

see Modules, Lemma 17.22.1. In C every object F has a dual objectHomOX
(F ,OX).

Without further conditions on X it can happen that
HomOX

(F ,G) ̸∼= HomOX
(F ,OX)⊗C G and F ⊗C HomOX

(F ,OX) ̸∼= OX
for F ,G of rank 1 in C. To make an example let X = Spec(R) where R is as in
More on Algebra, Example 15.23.17 and let F ,G be the modules corresponding to
M . Computation omitted.

Lemma 31.12.10.0AY5 Let X be an integral locally Noetherian scheme. Let F be a
coherent OX -module. The following are equivalent

(1) F is reflexive,
(2) for each x ∈ X one of the following happens

(a) Fx is a reflexive OX,x-module, or
(b) depth(Fx) ≥ 2.

Proof. Omitted. See More on Algebra, Lemma 15.23.15. □

Lemma 31.12.11.0EBI Let X be an integral locally Noetherian scheme. Let F be a
coherent reflexive OX -module. Let x ∈ X.

(1) If depth(OX,x) ≥ 2, then depth(Fx) ≥ 2.
(2) If X is (S2), then F is (S2).

Proof. Omitted. See More on Algebra, Lemma 15.23.16. □

Lemma 31.12.12.0EBJ Let X be an integral locally Noetherian scheme. Let j : U → X
be an open subscheme with complement Z. Assume OX,z has depth ≥ 2 for all
z ∈ Z. Then j∗ and j∗ define an equivalence of categories between the category of
coherent reflexive OX -modules and the category of coherent reflexive OU -modules.

Proof. Let F be a coherent reflexive OX -module. For z ∈ Z the stalk Fz has
depth ≥ 2 by Lemma 31.12.11. Thus F → j∗j

∗F is an isomorphism by Lemma
31.5.11. Conversely, let G be a coherent reflexive OU -module. It suffices to show
that j∗G is a coherent reflexive OX -module. To prove this we may assume X is
affine. By Properties, Lemma 28.22.5 there exists a coherent OX -module F with
G = j∗F . After replacing F by its reflexive hull, we may assume F is reflexive (see
discussion above and in particular Lemma 31.12.8). By the above j∗G = j∗j

∗F = F
as desired. □

If the scheme is normal, then reflexive is the same thing as torsion free and (S2).

Lemma 31.12.13.0AY6 Let X be an integral locally Noetherian normal scheme. Let F
be a coherent OX -module. The following are equivalent

(1) F is reflexive,
(2) F is torsion free and has property (S2), and
(3) there exists an open subscheme j : U → X such that

(a) every irreducible component of X \ U has codimension ≥ 2 in X,
(b) j∗F is finite locally free, and
(c) F = j∗j

∗F .
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Proof. Using Lemma 31.12.2 the equivalence of (1) and (2) follows from More on
Algebra, Lemma 15.23.18. Let U ⊂ X be as in (3). By Properties, Lemma 28.12.5
we see that depth(OX,x) ≥ 2 for x ̸∈ U . Since a finite locally free module is
reflexive, we conclude (3) implies (1) by Lemma 31.12.12.
Assume (1). Let U ⊂ X be the maximal open subscheme such that j∗F = F|U is
finite locally free. So (3)(b) holds. Let x ∈ X be a point. If Fx is a free OX,x-
module, then x ∈ U , see Modules, Lemma 17.11.6. If dim(OX,x) ≤ 1, then OX,x is
either a field or a discrete valuation ring (Properties, Lemma 28.12.5) and hence Fx
is free (More on Algebra, Lemma 15.22.11). Thus x ̸∈ U ⇒ dim(OX,x) ≥ 2. Then
Properties, Lemma 28.10.3 shows (3)(a) holds. By the already used Properties,
Lemma 28.12.5 we also see that depth(OX,x) ≥ 2 for x ̸∈ U and hence (3)(c)
follows from Lemma 31.12.12. □

Lemma 31.12.14.0AY7 Let X be an integral locally Noetherian normal scheme with
generic point η. Let F , G be coherent OX -modules. Let T : Gη → Fη be a linear
map. Then T extends to a map G → F∗∗ of OX -modules if and only if

(*) for every x ∈ X with dim(OX,x) = 1 we have
T (Im(Gx → Gη)) ⊂ Im(Fx → Fη).

Proof. Because F∗∗ is torsion free and Fη = F∗∗
η an extension, if it exists, is unique.

Thus it suffices to prove the lemma over the members of an open covering of X,
i.e., we may assume X is affine. In this case we are asking the following algebra
question: Let R be a Noetherian normal domain with fraction field K, let M , N
be finite R-modules, let T : M ⊗RK → N ⊗RK be a K-linear map. When does T
extend to a map N → M∗∗? By More on Algebra, Lemma 15.23.19 this happens
if and only if Np maps into (M/Mtors)p for every height 1 prime p of R. This is
exactly condition (∗) of the lemma. □

Lemma 31.12.15.0B3N Let X be a regular scheme of dimension ≤ 2. Let F be a coherent
OX -module. The following are equivalent

(1) F is reflexive,
(2) F is finite locally free.

Proof. It is clear that a finite locally free module is reflexive. For the converse,
we will show that if F is reflexive, then Fx is a free OX,x-module for all x ∈ X.
This is enough by Algebra, Lemma 10.78.2 and the fact that F is coherent. If
dim(OX,x) = 0, then OX,x is a field and the statement is clear. If dim(OX,x) = 1,
then OX,x is a discrete valuation ring (Algebra, Lemma 10.119.7) and Fx is torsion
free. Hence Fx is free by More on Algebra, Lemma 15.22.11. If dim(OX,x) = 2, then
OX,x is a regular local ring of dimension 2. By More on Algebra, Lemma 15.23.18
we see that Fx has depth ≥ 2. Hence F is free by Algebra, Lemma 10.106.6. □

31.13. Effective Cartier divisors

01WQ We define the notion of an effective Cartier divisor before any other type of divisor.
Definition 31.13.1.01WR Let S be a scheme.

(1) A locally principal closed subscheme of S is a closed subscheme whose
sheaf of ideals is locally generated by a single element.

(2) An effective Cartier divisor on S is a closed subscheme D ⊂ S whose ideal
sheaf ID ⊂ OS is an invertible OS-module.
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Thus an effective Cartier divisor is a locally principal closed subscheme, but the
converse is not always true. Effective Cartier divisors are closed subschemes of pure
codimension 1 in the strongest possible sense. Namely they are locally cut out by
a single element which is a nonzerodivisor. In particular they are nowhere dense.
Lemma 31.13.2.01WS Let S be a scheme. Let D ⊂ S be a closed subscheme. The
following are equivalent:

(1) The subscheme D is an effective Cartier divisor on S.
(2) For every x ∈ D there exists an affine open neighbourhood Spec(A) =

U ⊂ S of x such that U ∩D = Spec(A/(f)) with f ∈ A a nonzerodivisor.
Proof. Assume (1). For every x ∈ D there exists an affine open neighbourhood
Spec(A) = U ⊂ S of x such that ID|U ∼= OU . In other words, there exists a section
f ∈ Γ(U, ID) which freely generates the restriction ID|U . Hence f ∈ A, and the
multiplication map f : A→ A is injective. Also, since ID is quasi-coherent we see
that D ∩ U = Spec(A/(f)).
Assume (2). Let x ∈ D. By assumption there exists an affine open neighbourhood
Spec(A) = U ⊂ S of x such that U∩D = Spec(A/(f)) with f ∈ A a nonzerodivisor.
Then ID|U ∼= OU since it is equal to (̃f) ∼= Ã ∼= OU . Of course ID restricted to
the open subscheme S \D is isomorphic to OS\D. Hence ID is an invertible OS-
module. □

Lemma 31.13.3.07ZT Let S be a scheme. Let Z ⊂ S be a locally principal closed
subscheme. Let U = S \ Z. Then U → S is an affine morphism.
Proof. The question is local on S, see Morphisms, Lemmas 29.11.3. Thus we may
assume S = Spec(A) and Z = V (f) for some f ∈ A. In this case U = D(f) =
Spec(Af ) is affine hence U → S is affine. □

Lemma 31.13.4.07ZU Let S be a scheme. Let D ⊂ S be an effective Cartier divisor.
Let U = S \D. Then U → S is an affine morphism and U is scheme theoretically
dense in S.
Proof. Affineness is Lemma 31.13.3. The density question is local on S, see Mor-
phisms, Lemma 29.7.5. Thus we may assume S = Spec(A) and D corresponding
to the nonzerodivisor f ∈ A, see Lemma 31.13.2. Thus A ⊂ Af which implies that
U ⊂ S is scheme theoretically dense, see Morphisms, Example 29.7.4. □

Lemma 31.13.5.056N Let S be a scheme. Let D ⊂ S be an effective Cartier divisor.
Let s ∈ D. If dims(S) <∞, then dims(D) < dims(S).
Proof. Assume dims(S) < ∞. Let U = Spec(A) ⊂ S be an affine open neigh-
bourhood of s such that dim(U) = dims(S) and such that D = V (f) for some
nonzerodivisor f ∈ A (see Lemma 31.13.2). Recall that dim(U) is the Krull dimen-
sion of the ring A and that dim(U ∩D) is the Krull dimension of the ring A/(f).
Then f is not contained in any minimal prime of A. Hence any maximal chain of
primes in A/(f), viewed as a chain of primes in A, can be extended by adding a
minimal prime. □

Definition 31.13.6.01WT Let S be a scheme. Given effective Cartier divisors D1, D2 on
S we set D = D1 + D2 equal to the closed subscheme of S corresponding to the
quasi-coherent sheaf of ideals ID1ID2 ⊂ OS . We call this the sum of the effective
Cartier divisors D1 and D2.
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It is clear that we may define the sum
∑
niDi given finitely many effective Cartier

divisors Di on X and nonnegative integers ni.

Lemma 31.13.7.01WU The sum of two effective Cartier divisors is an effective Cartier
divisor.

Proof. Omitted. Locally f1, f2 ∈ A are nonzerodivisors, then also f1f2 ∈ A is a
nonzerodivisor. □

Lemma 31.13.8.02ON Let X be a scheme. Let D,D′ be two effective Cartier divisors on
X. If D ⊂ D′ (as closed subschemes of X), then there exists an effective Cartier
divisor D′′ such that D′ = D +D′′.

Proof. Omitted. □

Lemma 31.13.9.07ZV Let X be a scheme. Let Z, Y be two closed subschemes of X with
ideal sheaves I and J . If IJ defines an effective Cartier divisor D ⊂ X, then Z
and Y are effective Cartier divisors and D = Z + Y .

Proof. Applying Lemma 31.13.2 we obtain the following algebra situation: A is a
ring, I, J ⊂ A ideals and f ∈ A a nonzerodivisor such that IJ = (f). Thus the
result follows from Algebra, Lemma 10.120.16. □

Lemma 31.13.10.0C4R Let X be a scheme. Let D,D′ ⊂ X be effective Cartier divisors
such that the scheme theoretic intersection D∩D′ is an effective Cartier divisor on
D′. Then D +D′ is the scheme theoretic union of D and D′.

Proof. See Morphisms, Definition 29.4.4 for the definition of scheme theoretic inter-
section and union. To prove the lemma working locally (using Lemma 31.13.2) we
obtain the following algebra problem: Given a ring A and nonzerodivisors f1, f2 ∈ A
such that f1 maps to a nonzerodivisor in A/f2A, show that f1A ∩ f2A = f1f2A.
We omit the straightforward argument. □

Recall that we have defined the inverse image of a closed subscheme under any
morphism of schemes in Schemes, Definition 26.17.7.

Lemma 31.13.11.053P Let f : S′ → S be a morphism of schemes. Let Z ⊂ S be
a locally principal closed subscheme. Then the inverse image f−1(Z) is a locally
principal closed subscheme of S′.

Proof. Omitted. □

Definition 31.13.12.01WV Let f : S′ → S be a morphism of schemes. Let D ⊂ S be
an effective Cartier divisor. We say the pullback of D by f is defined if the closed
subscheme f−1(D) ⊂ S′ is an effective Cartier divisor. In this case we denote it
either f∗D or f−1(D) and we call it the pullback of the effective Cartier divisor.

The condition that f−1(D) is an effective Cartier divisor is often satisfied in prac-
tice. Here is an example lemma.

Lemma 31.13.13.02OO Let f : X → Y be a morphism of schemes. Let D ⊂ Y be an
effective Cartier divisor. The pullback of D by f is defined in each of the following
cases:

(1) f(x) ̸∈ D for any weakly associated point x of X,
(2) X, Y integral and f dominant,
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(3) X reduced and f(ξ) ̸∈ D for any generic point ξ of any irreducible com-
ponent of X,

(4) X is locally Noetherian and f(x) ̸∈ D for any associated point x of X,
(5) X is locally Noetherian, has no embedded points, and f(ξ) ̸∈ D for any

generic point ξ of an irreducible component of X,
(6) f is flat, and
(7) add more here as needed.

Proof. The question is local on X, and hence we reduce to the case where X =
Spec(A), Y = Spec(R), f is given by φ : R → A and D = Spec(R/(t)) where
t ∈ R is a nonzerodivisor. The goal in each case is to show that φ(t) ∈ A is a
nonzerodivisor.
In case (1) this follows from Algebra, Lemma 10.66.7. Case (4) is a special case of
(1) by Lemma 31.5.8. Case (5) follows from (4) and the definitions. Case (3) is a
special case of (1) by Lemma 31.5.12. Case (2) is a special case of (3). If R→ A is
flat, then t : R → R being injective shows that t : A→ A is injective. This proves
(6). □

Lemma 31.13.14.01WW Let f : S′ → S be a morphism of schemes. Let D1, D2 be
effective Cartier divisors on S. If the pullbacks of D1 and D2 are defined then the
pullback of D = D1 +D2 is defined and f∗D = f∗D1 + f∗D2.

Proof. Omitted. □

31.14. Effective Cartier divisors and invertible sheaves

0C4S Since an effective Cartier divisor has an invertible ideal sheaf (Definition 31.13.1)
the following definition makes sense.

Definition 31.14.1.01WX Let S be a scheme. Let D ⊂ S be an effective Cartier divisor
with ideal sheaf ID.

(1) The invertible sheaf OS(D) associated to D is defined by
OS(D) = HomOS

(ID,OS) = I⊗−1
D .

(2) The canonical section, usually denoted 1 or 1D, is the global section of
OS(D) corresponding to the inclusion mapping ID → OS .

(3) We write OS(−D) = OS(D)⊗−1 = ID.
(4) Given a second effective Cartier divisor D′ ⊂ S we define OS(D −D′) =
OS(D)⊗OS

OS(−D′).

Some comments. We will see below that the assignment D 7→ OS(D) turns addition
of effective Cartier divisors (Definition 31.13.6) into addition in the Picard group of
S (Lemma 31.14.4). However, the expression D −D′ in the definition above does
not have any geometric meaning. More precisely, we can think of the set of effective
Cartier divisors on S as a commutative monoid EffCart(S) whose zero element is
the empty effective Cartier divisor. Then the assignment (D,D′) 7→ OS(D − D′)
defines a group homomorphism

EffCart(S)gp −→ Pic(S)
where the left hand side is the group completion of EffCart(S). In other words,
when we write OS(D−D′) we may think of D−D′ as an element of EffCart(S)gp.
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Lemma 31.14.2.0B3P Let S be a scheme and let D ⊂ S be an effective Cartier divisor.
Then the conormal sheaf is CD/S = ID|D = OS(−D)|D and the normal sheaf is
ND/S = OS(D)|D.

Proof. This follows from Morphisms, Lemma 29.31.2. □

Lemma 31.14.3.0C4T Let X be a scheme. Let D,C ⊂ X be effective Cartier divisors
with C ⊂ D and let D′ = D + C. Then there is a short exact sequence

0→ OX(−D)|C → OD′ → OD → 0
of OX -modules.

Proof. In the statement of the lemma and in the proof we use the equivalence of
Morphisms, Lemma 29.4.1 to think of quasi-coherent modules on closed subschemes
of X as quasi-coherent modules on X. Let I be the ideal sheaf of D in D′. Then
there is a short exact sequence

0→ I → OD′ → OD → 0
because D → D′ is a closed immersion. There is a canonical surjection I → I/I2 =
CD/D′ . We have CD/X = OX(−D)|D by Lemma 31.14.2 and there is a canonical
surjective map

CD/X −→ CD/D′

see Morphisms, Lemmas 29.31.3 and 29.31.4. Thus it suffices to show: (a) I2 = 0
and (b) I is an invertible OC-module. Both (a) and (b) can be checked locally,
hence we may assume X = Spec(A), D = Spec(A/fA) and C = Spec(A/gA)
where f, g ∈ A are nonzerodivisors (Lemma 31.13.2). Since C ⊂ D we see that
f ∈ gA. Then I = fA/fgA has square zero and is invertible as an A/gA-module
as desired. □

Lemma 31.14.4.02OP Let S be a scheme. Let D1, D2 be effective Cartier divisors on S.
Let D = D1 +D2. Then there is a unique isomorphism

OS(D1)⊗OS
OS(D2) −→ OS(D)

which maps 1D1 ⊗ 1D2 to 1D.

Proof. Omitted. □

Lemma 31.14.5.0C4U Let f : S′ → S be a morphism of schemes. Let D be a effective
Cartier divisors on S. If the pullback of D is defined then f∗OS(D) = OS′(f∗D)
and the canonical section 1D pulls back to the canonical section 1f∗D.

Proof. Omitted. □

Definition 31.14.6.01WY Let (X,OX) be a locally ringed space. Let L be an invertible
sheaf on X. A global section s ∈ Γ(X,L) is called a regular section if the map
OX → L, f 7→ fs is injective.

Lemma 31.14.7.01WZ Let X be a locally ringed space. Let f ∈ Γ(X,OX). The following
are equivalent:

(1) f is a regular section, and
(2) for any x ∈ X the image f ∈ OX,x is a nonzerodivisor.

If X is a scheme these are also equivalent to
(3) for any affine open Spec(A) = U ⊂ X the image f ∈ A is a nonzerodivisor,
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(4) there exists an affine open covering X =
⋃

Spec(Ai) such that the image
of f in Ai is a nonzerodivisor for all i.

Proof. Omitted. □

Note that a global section s of an invertible OX -module L may be seen as an OX -
module map s : OX → L. Its dual is therefore a map s : L⊗−1 → OX . (See
Modules, Definition 17.25.6 for the definition of the dual invertible sheaf.)

Definition 31.14.8.02OQ Let X be a scheme. Let L be an invertible sheaf. Let s ∈
Γ(X,L) be a global section. The zero scheme of s is the closed subscheme Z(s) ⊂ X
defined by the quasi-coherent sheaf of ideals I ⊂ OX which is the image of the map
s : L⊗−1 → OX .

Lemma 31.14.9.02OR Let X be a scheme. Let L be an invertible sheaf. Let s ∈ Γ(X,L).
(1) Consider closed immersions i : Z → X such that i∗s ∈ Γ(Z, i∗L) is zero

ordered by inclusion. The zero scheme Z(s) is the maximal element of
this ordered set.

(2) For any morphism of schemes f : Y → X we have f∗s = 0 in Γ(Y, f∗L) if
and only if f factors through Z(s).

(3) The zero scheme Z(s) is a locally principal closed subscheme.
(4) The zero scheme Z(s) is an effective Cartier divisor if and only if s is a

regular section of L.

Proof. Omitted. □

Lemma 31.14.10.01X0 Let X be a scheme.
(1) If D ⊂ X is an effective Cartier divisor, then the canonical section 1D of
OX(D) is regular.

(2) Conversely, if s is a regular section of the invertible sheaf L, then there
exists a unique effective Cartier divisor D = Z(s) ⊂ X and a unique
isomorphism OX(D)→ L which maps 1D to s.

The constructions D 7→ (OX(D), 1D) and (L, s) 7→ Z(s) give mutually inverse maps

{
effective Cartier divisors on X

}
↔

 isomorphism classes of pairs (L, s)
consisting of an invertible OX -module
L and a regular global section s


Proof. Omitted. □

Remark 31.14.11.0C6K Let X be a scheme, L an invertible OX -module, and s a regular
section of L. Then the zero scheme D = Z(s) is an effective Cartier divisor on X
and there are short exact sequences

0→ OX → L → i∗(L|D)→ 0 and 0→ L⊗−1 → OX → i∗OD → 0.

Given an effective Cartier divisor D ⊂ X using Lemmas 31.14.10 and 31.14.2 we
get

0→ OX → OX(D)→ i∗(ND/X)→ 0 and 0→ OX(−D)→ OX → i∗(OD)→ 0
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31.15. Effective Cartier divisors on Noetherian schemes

0B3Q In the locally Noetherian setting most of the discussion of effective Cartier divisors
and regular sections simplifies somewhat.

Lemma 31.15.1.0AYL Let X be a locally Noetherian scheme. Let L be an invertible
OX -module. Let s ∈ Γ(X,L). Then s is a regular section if and only if s does not
vanish in the associated points of X.

Proof. Omitted. Hint: reduce to the affine case and L trivial and then use Lemma
31.14.7 and Algebra, Lemma 10.63.9. □

Lemma 31.15.2.0AG8 Let X be a locally Noetherian scheme. Let D ⊂ X be a closed
subscheme corresponding to the quasi-coherent ideal sheaf I ⊂ OX .

(1) If for every x ∈ D the ideal Ix ⊂ OX,x can be generated by one element,
then D is locally principal.

(2) If for every x ∈ D the ideal Ix ⊂ OX,x can be generated by a single
nonzerodivisor, then D is an effective Cartier divisor.

Proof. Let Spec(A) be an affine neighbourhood of a point x ∈ D. Let p ⊂ A be
the prime corresponding to x. Let I ⊂ A be the ideal defining the trace of D on
Spec(A). Since A is Noetherian (as X is locally Noetherian) the ideal I is generated
by finitely many elements, say I = (f1, . . . , fr). Under the assumption of (1) we
have Ip = (f) for some f ∈ Ap. Then fi = gif for some gi ∈ Ap. Write gi = ai/hi
and f = f ′/h for some ai, hi, f ′, h ∈ A, hi, h ̸∈ p. Then Ih1...hrh ⊂ Ah1...hrh is
principal, because it is generated by f ′. This proves (1). For (2) we may assume
I = (f). The assumption implies that the image of f in Ap is a nonzerodivisor.
Then f is a nonzerodivisor on a neighbourhood of x by Algebra, Lemma 10.68.6.
This proves (2). □

Lemma 31.15.3.0BCN Let X be a locally Noetherian scheme.
(1) Let D ⊂ X be a locally principal closed subscheme. Let ξ ∈ D be a

generic point of an irreducible component of D. Then dim(OX,ξ) ≤ 1.
(2) Let D ⊂ X be an effective Cartier divisor. Let ξ ∈ D be a generic point

of an irreducible component of D. Then dim(OX,ξ) = 1.

Proof. Proof of (1). By assumption we may assume X = Spec(A) and D =
Spec(A/(f)) where A is a Noetherian ring and f ∈ A. Let ξ correspond to the
prime ideal p ⊂ A. The assumption that ξ is a generic point of an irreducible
component of D signifies p is minimal over (f). Thus dim(Ap) ≤ 1 by Algebra,
Lemma 10.60.11.
Proof of (2). By part (1) we see that dim(OX,ξ) ≤ 1. On the other hand, the
local equation f is a nonzerodivisor in Ap by Lemma 31.13.2 which implies the
dimension is at least 1 (because there must be a prime in Ap not containing f by
the elementary Algebra, Lemma 10.17.2). □

Lemma 31.15.4.0AG9 Let X be a Noetherian scheme. Let D ⊂ X be an integral closed
subscheme which is also an effective Cartier divisor. Then the local ring of X at
the generic point of D is a discrete valuation ring.

Proof. By Lemma 31.13.2 we may assume X = Spec(A) and D = Spec(A/(f))
where A is a Noetherian ring and f ∈ A is a nonzerodivisor. The assumption that
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D is integral signifies that (f) is prime. Hence the local ring of X at the generic
point is A(f) which is a Noetherian local ring whose maximal ideal is generated by
a nonzerodivisor. Thus it is a discrete valuation ring by Algebra, Lemma 10.119.7.

□

Lemma 31.15.5.0B3R Let X be a locally Noetherian scheme. Let D ⊂ X be an effective
Cartier divisor. If X is (Sk), then D is (Sk−1).
Proof. Let x ∈ D. Then OD,x = OX,x/(f) where f ∈ OX,x is a nonzerodivisor.
By assumption we have depth(OX,x) ≥ min(dim(OX,x), k). By Algebra, Lemma
10.72.7 we have depth(OD,x) = depth(OX,x)− 1 and by Algebra, Lemma 10.60.13
dim(OD,x) = dim(OX,x)− 1. It follows that depth(OD,x) ≥ min(dim(OD,x), k− 1)
as desired. □

Lemma 31.15.6.0B3S Let X be a locally Noetherian normal scheme. Let D ⊂ X be an
effective Cartier divisor. Then D is (S1).
Proof. By Properties, Lemma 28.12.5 we see that X is (S2). Thus we conclude by
Lemma 31.15.5. □

Lemma 31.15.7.0AGA Let X be a Noetherian scheme. Let D ⊂ X be an integral closed
subscheme. Assume that

(1) D has codimension 1 in X, and
(2) OX,x is a UFD for all x ∈ D.

Then D is an effective Cartier divisor.
Proof. Let x ∈ D and set A = OX,x. Let p ⊂ A correspond to the generic point of
D. Then Ap has dimension 1 by assumption (1). Thus p is a prime ideal of height
1. Since A is a UFD this implies that p = (f) for some f ∈ A. Of course f is a
nonzerodivisor and we conclude by Lemma 31.15.2. □

Lemma 31.15.8.0AGB Let X be a Noetherian scheme. Let Z ⊂ X be a closed subscheme.
Assume there exist integral effective Cartier divisors Di ⊂ X and a closed subset
Z ′ ⊂ X of codimension ≥ 2 such that Z ⊂ Z ′ ∪

⋃
Di set-theoretically. Then there

exists an effective Cartier divisor of the form
D =

∑
aiDi ⊂ Z

such that D → Z is an isomorphism away from codimension 2 in X. The existence
of the Di is guaranteed if OX,x is a UFD for all x ∈ Z or if X is regular.
Proof. Let ξi ∈ Di be the generic point and let Oi = OX,ξi be the local ring which
is a discrete valuation ring by Lemma 31.15.4. Let ai ≥ 0 be the minimal valuation
of an element of IZ,ξi ⊂ Oi. We claim that the effective Cartier divisor D =

∑
aiDi

works.
Namely, suppose that x ∈ X. Let A = OX,x. Let D1, . . . , Dn be the pairwise
distinct divisors Di such that x ∈ Di. For 1 ≤ i ≤ n let fi ∈ A be a local equation
for Di. Then fi is a prime element of A and Oi = A(fi). Let I = IZ,x ⊂ A be the
stalk of the ideal sheaf of Z. By our choice of ai we have IA(fi) = faii A(fi). We
claim that I ⊂ (

∏
i=1,...,n f

ai
i ).

Proof of the claim. The localization map φ : A/(fi)→ A(fi)/fiA(fi) is injective as
the prime ideal (fi) is the inverse image of the maximal ideal fiA(fi). By induction
on n we deduce that φn : A/(fni )→ A(fi)/f

n
i A(fi) is also injective. Since φai(I) =
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0, we have I ⊂ (faii ). Thus, for any x ∈ I, we may write x = fa1
1 x1 for some

x1 ∈ A. Since D1, . . . , Dn are pairwise distinct, fi is a unit in A(fj) for i ̸= j.
Comparing x and x1 at A(fi) for n ≥ i > 1, we still have x1 ∈ (faii ). Repeating
the previous process, we inductively write xi = f

ai+1
i+1 xi+1 for any n > i ≥ 1. In

conclusion, x ∈ (
∏
i=1,...n f

ai
i ) for any x ∈ I as desired.

The claim shows that IZ ⊂ ID, i.e., that D ⊂ Z. Moreover, we also see that D
and Z agree at the ξi, which proves that D → Z is an isomorphism away from
codimension 2 on X.
To see the final statements we argue as follows. A regular local ring is a UFD (More
on Algebra, Lemma 15.121.2) hence it suffices to argue in the UFD case. In that
case, let Di be the irreducible components of Z which have codimension 1 in X.
By Lemma 31.15.7 each Di is an effective Cartier divisor. □

Lemma 31.15.9.0BXH Let Z ⊂ X be a closed subscheme of a Noetherian scheme. Assume
(1) Z has no embedded points,
(2) every irreducible component of Z has codimension 1 in X,
(3) every local ring OX,x, x ∈ Z is a UFD or X is regular.

Then Z is an effective Cartier divisor.

Proof. Let D =
∑
aiDi be as in Lemma 31.15.8 where Di ⊂ Z are the irreducible

components of Z. If D → Z is not an isomorphism, then OZ → OD has a nonzero
kernel sitting in codimension ≥ 2. This would mean that Z has embedded points,
which is forbidden by assumption (1). Hence D ∼= Z as desired. □

Lemma 31.15.10.0BXI Let R be a Noetherian UFD. Let I ⊂ R be an ideal such that
R/I has no embedded primes and such that every minimal prime over I has height
1. Then I = (f) for some f ∈ R.

Proof. By Lemma 31.15.9 the ideal sheaf Ĩ is invertible on Spec(R). By More on
Algebra, Lemma 15.117.3 it is generated by a single element. □

Lemma 31.15.11.0BCP Let X be a Noetherian scheme. Let D ⊂ X be an effective
Cartier divisor. Assume that there exist integral effective Cartier divisors Di ⊂ X
such that D ⊂

⋃
Di set theoretically. Then D =

∑
aiDi for some ai ≥ 0. The

existence of the Di is guaranteed if OX,x is a UFD for all x ∈ D or if X is regular.

Proof. Choose ai as in Lemma 31.15.8 and set D′ =
∑
aiDi. Then D′ → D

is an inclusion of effective Cartier divisors which is an isomorphism away from
codimension 2 on X. Pick x ∈ X. Set A = OX,x and let f, f ′ ∈ A be the
nonzerodivisor generating the ideal of D,D′ in A. Then f = gf ′ for some g ∈ A.
Moreover, for every prime p of height ≤ 1 of A we see that g maps to a unit of
Ap. This implies that g is a unit because the minimal primes over (g) have height
1 (Algebra, Lemma 10.60.11). □

Lemma 31.15.12.0AYM Let X be a Noetherian scheme which has an ample invertible
sheaf. Then every invertible OX -module is isomorphic to

OX(D −D′) = OX(D)⊗OX
OX(D′)⊗−1

for some effective Cartier divisors D,D′ in X. Moreover, given a finite subset
E ⊂ X we may choose D,D′ such that E ∩ D = ∅ and E ∩ D′ = ∅. If X is
quasi-affine, then we may choose D′ = ∅.
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Proof. Let x1, . . . , xn be the associated points of X (Lemma 31.2.5).

If X is quasi-affine and N is any invertible OX -module, then we can pick a section t
of N which does not vanish at any of the points of E∪{x1, . . . , xn}, see Properties,
Lemma 28.29.7. Then t is a regular section of N by Lemma 31.15.1. Hence N ∼=
OX(D) where D = Z(t) is the effective Cartier divisor corresponding to t, see
Lemma 31.14.10. Since E ∩D = ∅ by construction we are done in this case.

Returning to the general case, let L be an ample invertible sheaf on X. There
exists an n > 0 and a section s ∈ Γ(X,L⊗n) such that Xs is affine and such that
E ∪ {x1, . . . , xn} ⊂ Xs (Properties, Lemma 28.29.6).

Let N be an arbitrary invertible OX -module. By the quasi-affine case, we can find
a section t ∈ N (Xs) which does not vanish at any point of E ∪ {x1, . . . , xn}. By
Properties, Lemma 28.17.2 we see that for some e ≥ 0 the section se|Xst extends to
a global section τ of L⊗e ⊗N . Thus both L⊗e ⊗N and L⊗e are invertible sheaves
which have global sections which do not vanish at any point of E ∪ {x1, . . . , xn}.
Thus these are regular sections by Lemma 31.15.1. Hence L⊗e ⊗N ∼= OX(D) and
L⊗e ∼= OX(D′) for some effective Cartier divisors D and D′, see Lemma 31.14.10.
By construction E ∩D = ∅ and E ∩D′ = ∅ and the proof is complete. □

Lemma 31.15.13.0B3T Let X be an integral regular scheme of dimension 2. Let i : D →
X be the immersion of an effective Cartier divisor. Let F → F ′ → i∗G → 0 be an
exact sequence of coherent OX -modules. Assume

(1) F ,F ′ are locally free of rank r on a nonempty open of X,
(2) D is an integral scheme,
(3) G is a finite locally free OD-module of rank s.

Then L = (∧rF)∗∗ and L′ = (∧rF ′)∗∗ are invertible OX -modules and L′ ∼= L(kD)
for some k ∈ {0, . . . ,min(s, r)}.

Proof. The first statement follows from Lemma 31.12.15 as assumption (1) implies
that L and L′ have rank 1. Taking ∧r and double duals are functors, hence we
obtain a canonical map σ : L → L′ which is an isomorphism over the nonempty
open of (1), hence nonzero. To finish the proof, it suffices to see that σ viewed as a
global section of L′⊗L⊗−1 does not vanish at any codimension point of X, except
at the generic point of D and there with vanishing order at most min(s, r).

Translated into algebra, we arrive at the following problem: Let (A,m, κ) be a
discrete valuation ring with fraction field K. Let M → M ′ → N → 0 be an exact
sequence of finite A-modules with dimK(M ⊗K) = dimK(M ′ ⊗K) = r and with
N ∼= κ⊕s. Show that the induced map L = ∧r(M)∗∗ → L′ = ∧r(M ′)∗∗ vanishes
to order at most min(s, r). We will use the structure theorem for modules over A,
see More on Algebra, Lemma 15.124.3 or 15.124.9. Dividing out a finite A-module
by a torsion submodule does not change the double dual. Thus we may replace M
by M/Mtors and M ′ by M ′/ Im(Mtors → M ′) and assume that M is torsion free.
Then M →M ′ is injective and M ′

tors → N is injective. Hence we may replace M ′

by M ′/M ′
tors and N by N/M ′

tors. Thus we reduce to the case where M and M ′

are free of rank r and N ∼= κ⊕s. In this case σ is the determinant of M →M ′ and
vanishes to order s for example by Algebra, Lemma 10.121.7. □
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31.16. Complements of affine opens

0BCQ In this section we discuss the result that the complement of an affine open in a
variety has pure codimension 1.

Lemma 31.16.1.0BCR Let (A,m) be a Noetherian local ring. The punctured spectrum
U = Spec(A) \ {m} of A is affine if and only if dim(A) ≤ 1.

Proof. If dim(A) = 0, then U is empty hence affine (equal to the spectrum of the 0
ring). If dim(A) = 1, then we can choose an element f ∈ m not contained in any of
the finite number of minimal primes of A (Algebra, Lemmas 10.31.6 and 10.15.2).
Then U = Spec(Af ) is affine.
The converse is more interesting. We will give a somewhat nonstandard proof and
discuss the standard argument in a remark below. Assume U = Spec(B) is affine.
Since affineness and dimension are not affecting by going to the reduction we may
replace A by the quotient by its ideal of nilpotent elements and assume A is reduced.
Set Q = B/A viewed as an A-module. The support of Q is {m} as Ap = Bp for all
nonmaximal primes p of A. We may assume dim(A) ≥ 1, hence as above we can
pick f ∈ m not contained in any of the minimal ideals of A. Since A is reduced
this implies that f is a nonzerodivisor. In particular dim(A/fA) = dim(A)− 1, see
Algebra, Lemma 10.60.13. Applying the snake lemma to multiplication by f on the
short exact sequence 0→ A→ B → Q→ 0 we obtain

0→ Q[f ]→ A/fA→ B/fB → Q/fQ→ 0
where Q[f ] = Ker(f : Q → Q). This implies that Q[f ] is a finite A-module.
Since the support of Q[f ] is {m} we see l = lengthA(Q[f ]) < ∞ (Algebra, Lemma
10.62.3). Set ln = lengthA(Q[fn]). The exact sequence

0→ Q[fn]→ Q[fn+1] fn−−→ Q[f ]
shows inductively that ln <∞ and that ln ≤ ln+1. Considering the exact sequence

0→ Q[f ]→ Q[fn+1] f−→ Q[fn]→ Q/fQ

and we see that the image of Q[fn] in Q/fQ has length ln − ln+1 + l ≤ l. Since
Q =

⋃
Q[fn] we find that the length of Q/fQ is at most l, i.e., bounded. Thus

Q/fQ is a finite A-module. Hence A/fA→ B/fB is a finite ring map, in particular
induces a closed map on spectra (Algebra, Lemmas 10.36.22 and 10.41.6). On
the other hand Spec(B/fB) is the punctured spectrum of Spec(A/fA). This is
a contradiction unless Spec(B/fB) = ∅ which means that dim(A/fA) = 0 as
desired. □

Remark 31.16.2.0BCS If (A,m) is a Noetherian local normal domain of dimension ≥ 2
and U is the punctured spectrum of A, then Γ(U,OU ) = A. This algebraic version
of Hartogs’s theorem follows from the fact that A =

⋂
height(p)=1 Ap we’ve seen in

Algebra, Lemma 10.157.6. Thus in this case U cannot be affine (since it would
force m to be a point of U). This is often used as the starting point of the proof
of Lemma 31.16.1. To reduce the case of a general Noetherian local ring to this
case, we first complete (to get a Nagata local ring), then replace A by A/q for a
suitable minimal prime, and then normalize. Each of these steps does not change
the dimension and we obtain a contradiction. You can skip the completion step,
but then the normalization in general is not a Noetherian domain. However, it is
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still a Krull domain of the same dimension (this is proved using Krull-Akizuki) and
one can apply the same argument.

Remark 31.16.3.0BCT It is not clear how to characterize the non-Noetherian local rings
(A,m) whose punctured spectrum is affine. Such a ring has a finitely generated
ideal I with m =

√
I. Of course if we can take I generated by 1 element, then

A has an affine puncture spectrum; this gives lots of non-Noetherian examples.
Conversely, it follows from the argument in the proof of Lemma 31.16.1 that such a
ring cannot possess a nonzerodivisor f ∈ m with H0

I (A/fA) = 0 (so A cannot have
a regular sequence of length 2). Moreover, the same holds for any ring A′ which is
the target of a local homomorphism of local rings A→ A′ such that mA′ =

√
mA′.

Lemma 31.16.4.0BCU [GD67, EGA IV,
Corollaire 21.12.7]

Let X be a locally Noetherian scheme. Let U ⊂ X be an open
subscheme such that the inclusion morphism U → X is affine. For every generic
point ξ of an irreducible component of X \ U the local ring OX,ξ has dimension
≤ 1. If U is dense or if ξ is in the closure of U , then dim(OX,ξ) = 1.

Proof. Since ξ is a generic point of X \ U , we see that

Uξ = U ×X Spec(OX,ξ) ⊂ Spec(OX,ξ)

is the punctured spectrum of OX,ξ (hint: use Schemes, Lemma 26.13.2). As U → X
is affine, we see that Uξ → Spec(OX,ξ) is affine (Morphisms, Lemma 29.11.8) and
we conclude that Uξ is affine. Hence dim(OX,ξ) ≤ 1 by Lemma 31.16.1. If ξ ∈ U ,
then there is a specialization η → ξ where η ∈ U (just take η a generic point of
an irreducible component of U which contains ξ; since U is locally Noetherian,
hence locally has finitely many irreducible components, we see that η ∈ U). Then
η ∈ Spec(OX,ξ) and we see that the dimension cannot be 0. □

Lemma 31.16.5.0BCV Let X be a separated locally Noetherian scheme. Let U ⊂ X be
an affine open. For every generic point ξ of an irreducible component of X \U the
local ring OX,ξ has dimension ≤ 1. If U is dense or if ξ is in the closure of U , then
dim(OX,ξ) = 1.

Proof. This follows from Lemma 31.16.4 because the morphism U → X is affine by
Morphisms, Lemma 29.11.11. □

The following lemma can sometimes be used to produce effective Cartier divisors.

Lemma 31.16.6.0BCW Let X be a Noetherian separated scheme. Let U ⊂ X be a dense
affine open. If OX,x is a UFD for all x ∈ X \ U , then there exists an effective
Cartier divisor D ⊂ X with U = X \D.

Proof. Since X is Noetherian, the complement X \U has finitely many irreducible
components D1, . . . , Dr (Properties, Lemma 28.5.7 applied to the reduced induced
subscheme structure on X \U). Each Di ⊂ X has codimension 1 by Lemma 31.16.5
(and Properties, Lemma 28.10.3). Thus Di is an effective Cartier divisor by Lemma
31.15.7. Hence we can take D = D1 + . . .+Dr. □

Lemma 31.16.7.0EGJ Let X be a Noetherian scheme with affine diagonal. Let U ⊂ X
be a dense affine open. If OX,x is a UFD for all x ∈ X \ U , then there exists an
effective Cartier divisor D ⊂ X with U = X \D.
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Proof. Since X is Noetherian, the complement X \U has finitely many irreducible
components D1, . . . , Dr (Properties, Lemma 28.5.7 applied to the reduced induced
subscheme structure on X \ U). We view Di as a reduced closed subscheme of X.
Let X =

⋃
j∈J Xj be an affine open covering of X. For all j in J , set Uj = U ∩Xj .

Since X has affine diagonal, the scheme
Uj = X ×(X×X) (U ×Xj)

is affine. Therefore, as Xj is separated, it follows from Lemma 31.16.6 and its proof
that for all j ∈ J and 1 ≤ i ≤ r the intersection Di ∩ Xj is either empty or an
effective Cartier divisor in Xj . Thus Di ⊂ X is an effective Cartier divisor (as this
is a local property). Hence we can take D = D1 + . . .+Dr. □

Lemma 31.16.8.0GML Let X be a quasi-compact, regular scheme with affine diagonal.
Then X has an ample family of invertible modules (Morphisms, Definition 29.12.1.
Proof. Observe that X is a finite disjoint union of integral schemes (Properties,
Lemmas 28.9.4 and 28.7.6). Thus we may assume that X is integral as well as
Noetherian, regular, and having affine diagonal. Let x ∈ X. Choose an affine open
neighbourhood U ⊂ X of x. Since X is integral, U is dense in X. By More on
Algebra, Lemma 15.121.2 the local rings of X are UFDs. Hence by Lemma 31.16.7
we can find an effective Cartier divisor D ⊂ X whose complement is U . Then the
canonical section s = 1D of L = OX(D), see Definition 31.14.1, vanishes exactly
along D hence U = Xs. Thus both conditions in Morphisms, Definition 29.12.1
hold and we are done. □

31.17. Norms

0BCX Let π : X → Y be a finite morphism of schemes and let d ≥ 1 be an integer. Let
us say there exists a norm of degree d for π2 if there exists a multiplicative map

Normπ : π∗OX → OY
of sheaves such that

(1) the composition OY
π♯−→ π∗OX

Normπ−−−−→ OY equals g 7→ gd, and
(2) for V ⊂ Y open if f ∈ OX(π−1V ) is zero at x ∈ π−1(V ), then Normπ(f)

is zero at π(x).
We observe that condition (1) forces π to be surjective. Since Normπ is multiplica-
tive it sends units to units hence, given y ∈ Y , if f is a regular function on X defined
at but nonvanishing at any x ∈ X with π(x) = y, then Normπ(f) is defined and
does not vanish at y. This holds without requiring (2); in fact, the constructions
in this section will only require condition (1) and only certain vanishing properties
(which are used in particular in the proof of Lemma 31.17.4) will require property
(2).
Lemma 31.17.1.0BUT Let π : X → Y be a finite morphism of schemes. Let L be an
invertible OX -module. Let y ∈ Y . There exists an open neighbourhood V ⊂ Y of
y such that L|π−1(V ) is trivial.
Proof. Clearly we may assume Y and hence X affine. Since π is finite the fibre
π−1({y}) over y is finite. Since X is affine, we can pick s ∈ Γ(X,L) not vanishing
in any point of π−1({y}). This follows from Properties, Lemma 28.29.7 but we also

2This is nonstandard notation.
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give a direct argument. Namely, we can pick a finite set E ⊂ X of closed points
such that every x ∈ π−1({y}) specializes to some point of E. For x ∈ E denote
ix : x → X the closed immersion. Then L →

⊕
x∈E ix,∗i

∗
xL is a surjective map of

quasi-coherent OX -modules, and hence the map

Γ(X,L)→
⊕

x∈E
Lx/mxLx

is surjective (as taking global sections is an exact functor on the category of quasi-
coherent OX -modules, see Schemes, Lemma 26.7.5). Thus we can find an s ∈
Γ(X,L) not vanishing at any point specializing to a point of E. Then Xs ⊂ X is
an open neighbourhood of π−1({y}). Since π is finite, hence closed, we conclude
that there is an open neighbourhood V ⊂ Y of y whose inverse image is contained
in Xs as desired. □

Lemma 31.17.2.0BCY Let π : X → Y be a finite morphism of schemes. If there exists a
norm of degree d for π, then there exists a homomorphism of abelian groups

Normπ : Pic(X)→ Pic(Y )
such that Normπ(π∗N ) ∼= N⊗d for all invertible OY -modules N .

Proof. We will use the correspondence between isomorphism classes of invertible
OX -modules and elements of H1(X,O∗

X) given in Cohomology, Lemma 20.6.1 with-
out further mention. We explain how to take the norm of an invertible OX -module
L. Namely, by Lemma 31.17.1 there exists an open covering Y =

⋃
Vj such that

L|π−1Vj is trivial. Choose a generating section sj ∈ L(π−1Vj) for each j. On the
overlaps π−1Vj ∩ π−1Vj′ we can write

sj = ujj′sj′

for a unique ujj′ ∈ O∗
X(π−1Vj ∩ π−1Vj′). Thus we can consider the elements
vjj′ = Normπ(ujj′) ∈ O∗

Y (Vj ∩ Vj′)
These elements satisfy the cocycle condition (because the ujj′ do and Normπ is
multiplicative) and therefore define an invertible OY -module. We omit the verifica-
tion that: this is well defined, additive on Picard groups, and satisfies the property
Normπ(π∗N ) ∼= N⊗d for all invertible OY -modules N . □

Lemma 31.17.3.0BCZ Let π : X → Y be a finite morphism of schemes. Assume there
exists a norm of degree d for π. For any OX -linear map φ : L → L′ of invertible
OX -modules there is an OY -linear map

Normπ(φ) : Normπ(L) −→ Normπ(L′)
with Normπ(L), Normπ(L′) as in Lemma 31.17.2. Moreover, for y ∈ Y the following
are equivalent

(1) φ is zero at a point of x ∈ X with π(x) = y, and
(2) Normπ(φ) is zero at y.

Proof. We choose an open covering Y =
⋃
Vj such that L and L′ are trivial over the

opens π−1Vj . This is possible by Lemma 31.17.1. Choose generating sections sj and
s′
j of L and L′ over the opens π−1Vj . Then φ(sj) = fjs

′
j for some fj ∈ OX(π−1Vj).

Define Normπ(φ) to be multiplication by Normπ(fj) on Vj . An simple calculation
involving the cocycles used to construct Normπ(L), Normπ(L′) in the proof of
Lemma 31.17.2 shows that this defines a map as stated in the lemma. The final
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statement follows from condition (2) in the definition of a norm map of degree d.
Some details omitted. □

Lemma 31.17.4.0BD0 Let π : X → Y be a finite morphism of schemes. Assume X has
an ample invertible sheaf and there exists a norm of degree d for π. Then Y has
an ample invertible sheaf.

Proof. Let L be the ample invertible sheaf on X given to us by assumption. We
will prove that N = Normπ(L) is ample on Y .
Since X is quasi-compact (Properties, Definition 28.26.1) and X → Y surjective
(by the existence of Normπ) we see that Y is quasi-compact. Let y ∈ Y be a point.
To finish the proof we will show that there exists a section t of some positive tensor
power of N which does not vanish at y such that Yt is affine. To do this, choose an
affine open neighbourhood V ⊂ Y of y. Choose n≫ 0 and a section s ∈ Γ(X,L⊗n)
such that

π−1({y}) ⊂ Xs ⊂ π−1V

by Properties, Lemma 28.29.6. Then t = Normπ(s) is a section of N⊗n which
does not vanish at x and with Yt ⊂ V , see Lemma 31.17.3. Then Yt is affine by
Properties, Lemma 28.26.4. □

Lemma 31.17.5.0BD1 Let π : X → Y be a finite morphism of schemes. Assume X is
quasi-affine and there exists a norm of degree d for π. Then Y is quasi-affine.

Proof. By Properties, Lemma 28.27.1 we see that OX is an ample invertible sheaf
on X. The proof of Lemma 31.17.4 shows that Normπ(OX) = OY is an ample
invertible OY -module. Hence Properties, Lemma 28.27.1 shows that Y is quasi-
affine. □

Lemma 31.17.6.0BD2 Let π : X → Y be a finite locally free morphism of degree d ≥ 1.
Then there exists a canonical norm of degree d whose formation commutes with
arbitrary base change.

Proof. Let V ⊂ Y be an affine open such that (π∗OX)|V is finite free of rank d.
Choosing a basis we obtain an isomorphism

O⊕d
V
∼= (π∗OX)|V

For every f ∈ π∗OX(V ) = OX(π−1(V )) multiplication by f defines a OV -linear
endomorphism mf of the displayed free vector bundle. Thus we get a d× d matrix
Mf ∈ Mat(d× d,OY (V )) and we can set

Normπ(f) = det(Mf )
Since the determinant of a matrix is independent of the choice of the basis chosen
we see that this is well defined which also means that this construction will glue to
a global map as desired. Compatibility with base change is straightforward from
the construction.
Property (1) follows from the fact that the determinant of a d× d diagonal matrix
with entries g, g, . . . , g is gd. To see property (2) we may base change and assume
that Y is the spectrum of a field k. Then X = Spec(A) with A a k-algebra with
dimk(A) = d. If there exists an x ∈ X such that f ∈ A vanishes at x, then there
exists a map A → κ into a field such that f maps to zero in κ. Then f : A → A
cannot be surjective, hence det(f : A→ A) = 0 as desired. □
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Lemma 31.17.7.0BD3 Let π : X → Y be a finite surjective morphism with X and Y
integral and Y normal. Then there exists a norm of degree [R(X) : R(Y )] for π.

Proof. Let Spec(B) ⊂ Y be an affine open subset and let Spec(A) ⊂ X be its
inverse image. Then A and B are domains. Let K be the fraction field of A and L
the fraction field of B. Picture:

L // K

B

OO

// A

OO

Since K/L is a finite extension, there is a norm map NormK/L : K∗ → L∗ of degree
d = [K : L]; this is given by mapping f ∈ K to detL(f : K → K) as in the proof
of Lemma 31.17.6. Observe that the characteristic polynomial of f : K → K is
a power of the minimal polynomial of f over L; in particular NormK/L(f) is a
power of the constant coefficient of the minimal polynomial of f over L. Hence by
Algebra, Lemma 10.38.6 NormK/L maps A into B. This determines a compatible
system of maps on sections over affines and hence a global norm map Normπ of
degree d.
Property (1) is immediate from the construction. To see property (2) let f ∈ A be
contained in the prime ideal p ⊂ A. Let fm + b1f

m−1 + . . . + bm be the minimal
polynomial of f over L. By Algebra, Lemma 10.38.6 we have bi ∈ B. Hence
b0 ∈ B ∩ p. Since NormK/L(f) = b

d/m
0 (see above) we conclude that the norm

vanishes in the image point of p. □

Lemma 31.17.8.0BDZ Let X be a Noetherian scheme. Let p be a prime number such
that pOX = 0. Then for some e > 0 there exists a norm of degree pe for Xred → X
where Xred is the reduction of X.

Proof. Let A be a Noetherian ring with pA = 0. Let I ⊂ A be the ideal of nilpotent
elements. Then In = 0 for some n (Algebra, Lemma 10.32.5). Pick e such that
pe ≥ n. Then

A/I −→ A, f mod I 7−→ fp
e

is well defined. This produces a norm of degree pe for Spec(A/I)→ Spec(A). Now
if X is obtained by glueing some affine schemes Spec(Ai) then for some e≫ 0 these
maps glue to a norm map for Xred → X. Details omitted. □

Proposition 31.17.9.0BD4 Let π : X → Y be a finite surjective morphism of schemes.
Assume that X has an ample invertible OX -module. If

(1) π is finite locally free, or
(2) Y is an integral normal scheme, or
(3) Y is Noetherian, pOY = 0, and X = Yred,

then Y has an ample invertible OY -module.

Proof. Case (1) follows from a combination of Lemmas 31.17.6 and 31.17.4. Case
(3) follows from a combination of Lemmas 31.17.8 and 31.17.4. In case (2) we
first replace X by an irreducible component of X which dominates Y (viewed as a
reduced closed subscheme of X). Then we can apply Lemma 31.17.7. □

Lemma 31.17.10.0BD5 Let π : X → Y be a finite surjective morphism of schemes.
Assume that X is quasi-affine. If either
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(1) π is finite locally free, or
(2) Y is an integral normal scheme

then Y is quasi-affine.

Proof. Case (1) follows from a combination of Lemmas 31.17.6 and 31.17.5. In case
(2) we first replace X by an irreducible component of X which dominates Y (viewed
as a reduced closed subscheme of X). Then we can apply Lemma 31.17.7. □

31.18. Relative effective Cartier divisors

056P The following lemma shows that an effective Cartier divisor which is flat over the
base is really a “family of effective Cartier divisors” over the base. For example the
restriction to any fibre is an effective Cartier divisor.

Lemma 31.18.1.056Q Let f : X → S be a morphism of schemes. Let D ⊂ X be a closed
subscheme. Assume

(1) D is an effective Cartier divisor, and
(2) D → S is a flat morphism.

Then for every morphism of schemes g : S′ → S the pullback (g′)−1D is an effective
Cartier divisor on X ′ = S′ ×S X where g′ : X ′ → X is the projection.

Proof. Using Lemma 31.13.2 we translate this as follows into algebra. Let A→ B
be a ring map and h ∈ B. Assume h is a nonzerodivisor and that B/hB is flat over
A. Then

0→ B
h−→ B → B/hB → 0

is a short exact sequence of A-modules with B/hB flat over A. By Algebra, Lemma
10.39.12 this sequence remains exact on tensoring over A with any module, in
particular with any A-algebra A′. □

This lemma is the motivation for the following definition.

Definition 31.18.2.062T Let f : X → S be a morphism of schemes. A relative effective
Cartier divisor on X/S is an effective Cartier divisor D ⊂ X such that D → S is a
flat morphism of schemes.

We warn the reader that this may be nonstandard notation. In particular, in [DG67,
IV, Section 21.15] the notion of a relative divisor is discussed only when X → S is
flat and locally of finite presentation. Our definition is a bit more general. However,
it turns out that if x ∈ D then X → S is flat at x in many cases (but not always).

Lemma 31.18.3.0B8U Let f : X → S be a morphism of schemes. If D1, D2 ⊂ X are
relative effective Cartier divisor on X/S then so is D1 +D2 (Definition 31.13.6).

Proof. This translates into the following algebra fact: Let A → B be a ring map
and h1, h2 ∈ B. Assume the hi are nonzerodivisors and that B/hiB is flat over A.
Then h1h2 is a nonzerodivisor and B/h1h2B is flat over A. The reason is that we
have a short exact sequence

0→ B/h1B → B/h1h2B → B/h2B → 0

where the first arrow is given by multiplication by h2. Since the outer two are flat
modules over A, so is the middle one, see Algebra, Lemma 10.39.13. □
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Lemma 31.18.4.0B8V Let f : X → S be a morphism of schemes. If D1, D2 ⊂ X are
relative effective Cartier divisor on X/S and D1 ⊂ D2 as closed subschemes, then
the effective Cartier divisor D such that D2 = D1 +D (Lemma 31.13.8) is a relative
effective Cartier divisor on X/S.

Proof. This translates into the following algebra fact: Let A → B be a ring map
and h1, h2 ∈ B. Assume the hi are nonzerodivisors, that B/hiB is flat over A, and
that (h2) ⊂ (h1). Then we can write h2 = hh1 where h ∈ B is a nonzerodivisor.
We get a short exact sequence

0→ B/hB → B/h2B → B/h1B → 0
where the first arrow is given by multiplication by h1. Since the right two are flat
modules over A, so is the middle one, see Algebra, Lemma 10.39.13. □

Lemma 31.18.5.062U Let f : X → S be a morphism of schemes. Let D ⊂ X be a
relative effective Cartier divisor on X/S. If x ∈ D and OX,x is Noetherian, then f
is flat at x.

Proof. Set A = OS,f(x) and B = OX,x. Let h ∈ B be an element which generates
the ideal of D. Then h is a nonzerodivisor in B such that B/hB is a flat local
A-algebra. Let I ⊂ A be a finitely generated ideal. Consider the commutative
diagram

0 // B
h

// B // B/hB // 0

0 // B ⊗A I
h //

OO

B ⊗A I //

OO

B/hB ⊗A I //

OO

0

The lower sequence is short exact as B/hB is flat over A, see Algebra, Lemma
10.39.12. The right vertical arrow is injective as B/hB is flat over A, see Algebra,
Lemma 10.39.5. Hence multiplication by h is surjective on the kernel K of the
middle vertical arrow. By Nakayama’s lemma, see Algebra, Lemma 10.20.1 we
conclude that K = 0. Hence B is flat over A, see Algebra, Lemma 10.39.5. □

The following lemma relies on the algebraic version of openness of the flat locus.
The scheme theoretic version can be found in More on Morphisms, Section 37.15.

Lemma 31.18.6.062V Let f : X → S be a morphism of schemes. Let D ⊂ X be a
relative effective Cartier divisor. If f is locally of finite presentation, then there
exists an open subscheme U ⊂ X such that D ⊂ U and such that f |U : U → S is
flat.

Proof. Pick x ∈ D. It suffices to find an open neighbourhood U ⊂ X of x such
that f |U is flat. Hence the lemma reduces to the case that X = Spec(B) and
S = Spec(A) are affine and that D is given by a nonzerodivisor h ∈ B. By
assumption B is a finitely presented A-algebra and B/hB is a flat A-algebra. We
are going to use absolute Noetherian approximation.
Write B = A[x1, . . . , xn]/(g1, . . . , gm). Assume h is the image of h′ ∈ A[x1, . . . , xn].
Choose a finite type Z-subalgebra A0 ⊂ A such that all the coefficients of the poly-
nomials h′, g1, . . . , gm are in A0. Then we can set B0 = A0[x1, . . . , xn]/(g1, . . . , gm)
and h0 the image of h′ in B0. Then B = B0 ⊗A0 A and B/hB = B0/h0B0 ⊗A0 A.
By Algebra, Lemma 10.168.1 we may, after enlarging A0, assume that B0/h0B0 is

https://stacks.math.columbia.edu/tag/0B8V
https://stacks.math.columbia.edu/tag/062U
https://stacks.math.columbia.edu/tag/062V
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flat over A0. Let K0 = Ker(h0 : B0 → B0). As B0 is of finite type over Z we see
that K0 is a finitely generated ideal. Let A1 ⊂ A be a finite type Z-subalgebra
containing A0 and denote B1, h1, K1 the corresponding objects over A1. By More
on Algebra, Lemma 15.31.3 the map K0 ⊗A0 A1 → K1 is surjective. On the other
hand, the kernel of h : B → B is zero by assumption. Hence every element of
K0 maps to zero in K1 for sufficiently large subrings A1 ⊂ A. Since K0 is finitely
generated, we conclude that K1 = 0 for a suitable choice of A1.
Set f1 : X1 → S1 equal to Spec of the ring mapA1 → B1. SetD1 = Spec(B1/h1B1).
Since B = B1 ⊗A1 A, i.e., X = X1 ×S1 S, it now suffices to prove the lemma for
X1 → S1 and the relative effective Cartier divisor D1, see Morphisms, Lemma
29.25.7. Hence we have reduced to the case where A is a Noetherian ring. In this
case we know that the ring map A→ B is flat at every prime q of V (h) by Lemma
31.18.5. Combined with the fact that the flat locus is open in this case, see Algebra,
Theorem 10.129.4 we win. □

There is also the following lemma (whose idea is apparently due to Michael Artin,
see [Nob77]) which needs no finiteness assumptions at all.

Lemma 31.18.7.062W Let f : X → S be a morphism of schemes. Let D ⊂ X be a
relative effective Cartier divisor on X/S. If f is flat at all points of X \D, then f
is flat.

Proof. This translates into the following algebra fact: Let A → B be a ring map
and h ∈ B. Assume h is a nonzerodivisor, that B/hB is flat over A, and that the
localization Bh is flat over A. Then B is flat over A. The reason is that we have a
short exact sequence

0→ B → Bh → colimn(1/hn)B/B → 0
and that the second and third terms are flat over A, which implies that B is
flat over A (see Algebra, Lemma 10.39.13). Note that a filtered colimit of flat
modules is flat (see Algebra, Lemma 10.39.3) and that by induction on n each
(1/hn)B/B ∼= B/hnB is flat over A since it fits into the short exact sequence

0→ B/hn−1B
h−→ B/hnB → B/hB → 0

Some details omitted. □

Example 31.18.8.062X Here is an example of a relative effective Cartier divisor D where
the ambient scheme is not flat in a neighbourhood of D. Namely, let A = k[t] and

B = k[t, x, y, x−1y, x−2y, . . .]/(ty, tx−1y, tx−2y, . . .)
Then B is not flat over A but B/xB ∼= A is flat over A. Moreover x is a nonzerodi-
visor and hence defines a relative effective Cartier divisor in Spec(B) over Spec(A).

If the ambient scheme is flat and locally of finite presentation over the base, then
we can characterize a relative effective Cartier divisor in terms of its fibres. See also
More on Morphisms, Lemma 37.23.1 for a slightly different take on this lemma.

Lemma 31.18.9.062Y Let φ : X → S be a flat morphism which is locally of finite
presentation. Let Z ⊂ X be a closed subscheme. Let x ∈ Z with image s ∈ S.

(1) If Zs ⊂ Xs is a Cartier divisor in a neighbourhood of x, then there exists
an open U ⊂ X and a relative effective Cartier divisor D ⊂ U such that
Z ∩ U ⊂ D and Zs ∩ U = Ds.

https://stacks.math.columbia.edu/tag/062W
https://stacks.math.columbia.edu/tag/062X
https://stacks.math.columbia.edu/tag/062Y
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(2) If Zs ⊂ Xs is a Cartier divisor in a neighbourhood of x, the morphism
Z → X is of finite presentation, and Z → S is flat at x, then we can
choose U and D such that Z ∩ U = D.

(3) If Zs ⊂ Xs is a Cartier divisor in a neighbourhood of x and Z is a locally
principal closed subscheme of X in a neighbourhood of x, then we can
choose U and D such that Z ∩ U = D.

In particular, if Z → S is locally of finite presentation and flat and all fibres Zs ⊂ Xs

are effective Cartier divisors, then Z is a relative effective Cartier divisor. Similarly,
if Z is a locally principal closed subscheme of X such that all fibres Zs ⊂ Xs are
effective Cartier divisors, then Z is a relative effective Cartier divisor.

Proof. Choose affine open neighbourhoods Spec(A) of s and Spec(B) of x such
that φ(Spec(B)) ⊂ Spec(A). Let p ⊂ A be the prime ideal corresponding to s. Let
q ⊂ B be the prime ideal corresponding to x. Let I ⊂ B be the ideal corresponding
to Z. By the initial assumption of the lemma we know that A → B is flat and of
finite presentation. The assumption in (1) means that, after shrinking Spec(B), we
may assume I(B⊗Aκ(p)) is generated by a single element which is a nonzerodivisor
in B ⊗A κ(p). Say f ∈ I maps to this generator. We claim that after inverting
an element g ∈ B, g ̸∈ q the closed subscheme D = V (f) ⊂ Spec(Bg) is a relative
effective Cartier divisor.

By Algebra, Lemma 10.168.1 we can find a flat finite type ring map A0 → B0 of
Noetherian rings, an element f0 ∈ B0, a ring map A0 → A and an isomorphism
A⊗A0 B0 ∼= B. If p0 = A0 ∩ p then we see that

B ⊗A κ(p) = (B0 ⊗A0 κ(p0))⊗κ(p0)) κ(p)

hence f0 is a nonzerodivisor in B0 ⊗A0 κ(p0). By Algebra, Lemma 10.99.2 we see
that f0 is a nonzerodivisor in (B0)q0 where q0 = B0 ∩ q and that (B0/f0B0)q0 is
flat over A0. Hence by Algebra, Lemma 10.68.6 and Algebra, Theorem 10.129.4
there exists a g0 ∈ B0, g0 ̸∈ q0 such that f0 is a nonzerodivisor in (B0)g0 and such
that (B0/f0B0)g0 is flat over A0. Hence we see that D0 = V (f0) ⊂ Spec((B0)g0) is
a relative effective Cartier divisor. Since we know that this property is preserved
under base change, see Lemma 31.18.1, we obtain the claim mentioned above with
g equal to the image of g0 in B.

At this point we have proved (1). To see (2) consider the closed immersion Z → D.
The surjective ring map u : OD,x → OZ,x is a map of flat local OS,s-algebras
which are essentially of finite presentation, and which becomes an isomorphisms
after dividing by ms. Hence it is an isomorphism, see Algebra, Lemma 10.128.4.
It follows that Z → D is an isomorphism in a neighbourhood of x, see Algebra,
Lemma 10.126.6. To see (3), after possibly shrinking U we may assume that the
ideal of D is generated by a single nonzerodivisor f and the ideal of Z is generated
by an element g. Then f = gh. But g|Us and f |Us cut out the same effective Cartier
divisor in a neighbourhood of x. Hence h|Xs is a unit in OXs,x, hence h is a unit
in OX,x hence h is a unit in an open neighbourhood of x. I.e., Z ∩ U = D after
shrinking U .

The final statements of the lemma follow immediately from parts (2) and (3),
combined with the fact that Z → S is locally of finite presentation if and only if
Z → X is of finite presentation, see Morphisms, Lemmas 29.21.3 and 29.21.11. □
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31.19. The normal cone of an immersion

062Z Let i : Z → X be a closed immersion. Let I ⊂ OX be the corresponding quasi-
coherent sheaf of ideals. Consider the quasi-coherent sheaf of graded OX -algebras⊕

n≥0 In/In+1. Since the sheaves In/In+1 are each annihilated by I this graded
algebra corresponds to a quasi-coherent sheaf of graded OZ-algebras by Morphisms,
Lemma 29.4.1. This quasi-coherent graded OZ-algebra is called the conormal alge-
bra of Z in X and is often simply denoted

⊕
n≥0 In/In+1 by the abuse of notation

mentioned in Morphisms, Section 29.4.

Let f : Z → X be an immersion. We define the conormal algebra of f as the
conormal sheaf of the closed immersion i : Z → X \ ∂Z, where ∂Z = Z \ Z. It is
often denoted

⊕
n≥0 In/In+1 where I is the ideal sheaf of the closed immersion

i : Z → X \ ∂Z.

Definition 31.19.1.0630 Let f : Z → X be an immersion. The conormal algebra CZ/X,∗
of Z in X or the conormal algebra of f is the quasi-coherent sheaf of graded OZ-
algebras

⊕
n≥0 In/In+1 described above.

Thus CZ/X,1 = CZ/X is the conormal sheaf of the immersion. Also CZ/X,0 = OZ
and CZ/X,n is a quasi-coherent OZ-module characterized by the property

(31.19.1.1)0631 i∗CZ/X,n = In/In+1

where i : Z → X \ ∂Z and I is the ideal sheaf of i as above. Finally, note that
there is a canonical surjective map

(31.19.1.2)0632 Sym∗(CZ/X) −→ CZ/X,∗
of quasi-coherent graded OZ-algebras which is an isomorphism in degrees 0 and 1.

Lemma 31.19.2.0633 Let i : Z → X be an immersion. The conormal algebra of i has
the following properties:

(1) Let U ⊂ X be any open such that i(Z) is a closed subset of U . Let I ⊂ OU
be the sheaf of ideals corresponding to the closed subscheme i(Z) ⊂ U .
Then

CZ/X,∗ = i∗
(⊕

n≥0
In
)

= i−1
(⊕

n≥0
In/In+1

)
(2) For any affine open Spec(R) = U ⊂ X such that Z∩U = Spec(R/I) there

is a canonical isomorphism Γ(Z ∩ U, CZ/X,∗) =
⊕

n≥0 I
n/In+1.

Proof. Mostly clear from the definitions. Note that given a ring R and an ideal I
of R we have In/In+1 = In ⊗R R/I. Details omitted. □

Lemma 31.19.3.0634 Let
Z

i
//

f

��

X

g

��
Z ′ i′ // X ′

be a commutative diagram in the category of schemes. Assume i, i′ immersions.
There is a canonical map of graded OZ-algebras

f∗CZ′/X′,∗ −→ CZ/X,∗

https://stacks.math.columbia.edu/tag/0630
https://stacks.math.columbia.edu/tag/0633
https://stacks.math.columbia.edu/tag/0634
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characterized by the following property: For every pair of affine opens (Spec(R) =
U ⊂ X,Spec(R′) = U ′ ⊂ X ′) with f(U) ⊂ U ′ such that Z ∩ U = Spec(R/I) and
Z ′ ∩ U ′ = Spec(R′/I ′) the induced map

Γ(Z ′ ∩ U ′, CZ′/X′,∗) =
⊕

(I ′)n/(I ′)n+1 −→
⊕

n≥0
In/In+1 = Γ(Z ∩ U, CZ/X,∗)

is the one induced by the ring map f ♯ : R′ → R which has the property f ♯(I ′) ⊂ I.

Proof. Let ∂Z ′ = Z ′ \ Z ′ and ∂Z = Z \ Z. These are closed subsets of X ′ and of
X. Replacing X ′ by X ′ \ ∂Z ′ and X by X \

(
g−1(∂Z ′) ∪ ∂Z

)
we see that we may

assume that i and i′ are closed immersions.
The fact that g◦i factors through i′ implies that g∗I ′ maps into I under the canon-
ical map g∗I ′ → OX , see Schemes, Lemmas 26.4.6 and 26.4.7. Hence we get an
induced map of quasi-coherent sheaves g∗((I ′)n/(I ′)n+1)→ In/In+1. Pulling back
by i gives i∗g∗((I ′)n/(I ′)n+1) → i∗(In/In+1). Note that i∗(In/In+1) = CZ/X,n.
On the other hand, i∗g∗((I ′)n/(I ′)n+1) = f∗(i′)∗((I ′)n/(I ′)n+1) = f∗CZ′/X′,n.
This gives the desired map.
Checking that the map is locally described as the given map (I ′)n/(I ′)n+1 →
In/In+1 is a matter of unwinding the definitions and is omitted. Another ob-
servation is that given any x ∈ i(Z) there do exist affine open neighbourhoods U ,
U ′ with f(U) ⊂ U ′ and Z ∩ U as well as U ′ ∩ Z ′ closed such that x ∈ U . Proof
omitted. Hence the requirement of the lemma indeed characterizes the map (and
could have been used to define it). □

Lemma 31.19.4.0635 Let
Z

i
//

f

��

X

g

��
Z ′ i′ // X ′

be a fibre product diagram in the category of schemes with i, i′ immersions. Then
the canonical map f∗CZ′/X′,∗ → CZ/X,∗ of Lemma 31.19.3 is surjective. If g is flat,
then it is an isomorphism.

Proof. Let R′ → R be a ring map, and I ′ ⊂ R′ an ideal. Set I = I ′R. Then
(I ′)n/(I ′)n+1⊗R′R→ In/In+1 is surjective. If R′ → R is flat, then In = (I ′)n⊗R′R
and we see the map is an isomorphism. □

Definition 31.19.5.0636 Let i : Z → X be an immersion of schemes. The normal cone
CZX of Z in X is

CZX = Spec
Z

(CZ/X,∗)
see Constructions, Definitions 27.7.1 and 27.7.2. The normal bundle of Z in X is
the vector bundle

NZX = Spec
Z

(Sym(CZ/X))
see Constructions, Definitions 27.6.1 and 27.6.2.

Thus CZX → Z is a cone over Z and NZX → Z is a vector bundle over Z (recall
that in our terminology this does not imply that the conormal sheaf is a finite locally
free sheaf). Moreover, the canonical surjection (31.19.1.2) of graded algebras defines
a canonical closed immersion
(31.19.5.1)0637 CZX −→ NZX

https://stacks.math.columbia.edu/tag/0635
https://stacks.math.columbia.edu/tag/0636
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of cones over Z.

31.20. Regular ideal sheaves

067M In this section we generalize the notion of an effective Cartier divisor to higher codi-
mension. Recall that a sequence of elements f1, . . . , fr of a ring R is a regular se-
quence if for each i = 1, . . . , r the element fi is a nonzerodivisor on R/(f1, . . . , fi−1)
and R/(f1, . . . , fr) ̸= 0, see Algebra, Definition 10.68.1. There are three closely re-
lated weaker conditions that we can impose. The first is to assume that f1, . . . , fr
is a Koszul-regular sequence, i.e., that Hi(K•(f1, . . . , fr)) = 0 for i > 0, see
More on Algebra, Definition 15.30.1. The sequence is called an H1-regular se-
quence if H1(K•(f1, . . . , fr)) = 0. Another condition we can impose is that with
J = (f1, . . . , fr), the map

R/J [T1, . . . , Tr] −→
⊕

n≥0
Jn/Jn+1

which maps Ti to fi mod J2 is an isomorphism. In this case we say that f1, . . . , fr
is a quasi-regular sequence, see Algebra, Definition 10.69.1. Given an R-module M
there is also a notion of M -regular and M -quasi-regular sequence.
We can generalize this to the case of ringed spaces as follows. Let X be a ringed
space and let f1, . . . , fr ∈ Γ(X,OX). We say that f1, . . . , fr is a regular sequence
if for each i = 1, . . . , r the map
(31.20.0.1)0639 fi : OX/(f1, . . . , fi−1) −→ OX/(f1, . . . , fi−1)
is an injective map of sheaves. We say that f1, . . . , fr is a Koszul-regular sequence
if the Koszul complex
(31.20.0.2)063A K•(OX , f•),
see Modules, Definition 17.24.2, is acyclic in degrees > 0. We say that f1, . . . , fr
is a H1-regular sequence if the Koszul complex K•(OX , f•) is exact in degree 1.
Finally, we say that f1, . . . , fr is a quasi-regular sequence if the map

(31.20.0.3)063B OX/J [T1, . . . , Tr] −→
⊕

d≥0
J d/J d+1

is an isomorphism of sheaves where J ⊂ OX is the sheaf of ideals generated by
f1, . . . , fr. (There is also a notion of F-regular and F-quasi-regular sequence for a
given OX -module F which we will introduce here if we ever need it.)

Lemma 31.20.1.063C Let X be a ringed space. Let f1, . . . , fr ∈ Γ(X,OX). We have
the following implications f1, . . . , fr is a regular sequence ⇒ f1, . . . , fr is a Koszul-
regular sequence ⇒ f1, . . . , fr is an H1-regular sequence ⇒ f1, . . . , fr is a quasi-
regular sequence.

Proof. Since we may check exactness at stalks, a sequence f1, . . . , fr is a regular
sequence if and only if the maps

fi : OX,x/(f1, . . . , fi−1) −→ OX,x/(f1, . . . , fi−1)
are injective for all x ∈ X. In other words, the image of the sequence f1, . . . , fr in
the ring OX,x is a regular sequence for all x ∈ X. The other types of regularity can
be checked stalkwise as well (details omitted). Hence the implications follow from
More on Algebra, Lemmas 15.30.2, 15.30.3, and 15.30.6. □

Definition 31.20.2.063D The concept of a
Koszul-regular ideal
sheaf was
introduced in
[BGI71, Expose VII,
Definition 1.4]
where it was called
a regular ideal sheaf.

Let X be a ringed space. Let J ⊂ OX be a sheaf of ideals.

https://stacks.math.columbia.edu/tag/063C
https://stacks.math.columbia.edu/tag/063D
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(1) We say J is regular if for every x ∈ Supp(OX/J ) there exists an open
neighbourhood x ∈ U ⊂ X and a regular sequence f1, . . . , fr ∈ OX(U)
such that J |U is generated by f1, . . . , fr.

(2) We say J is Koszul-regular if for every x ∈ Supp(OX/J ) there ex-
ists an open neighbourhood x ∈ U ⊂ X and a Koszul-regular sequence
f1, . . . , fr ∈ OX(U) such that J |U is generated by f1, . . . , fr.

(3) We say J is H1-regular if for every x ∈ Supp(OX/J ) there exists an open
neighbourhood x ∈ U ⊂ X and a H1-regular sequence f1, . . . , fr ∈ OX(U)
such that J |U is generated by f1, . . . , fr.

(4) We say J is quasi-regular if for every x ∈ Supp(OX/J ) there exists an
open neighbourhood x ∈ U ⊂ X and a quasi-regular sequence f1, . . . , fr ∈
OX(U) such that J |U is generated by f1, . . . , fr.

Many properties of this notion immediately follow from the corresponding notions
for regular and quasi-regular sequences in rings.

Lemma 31.20.3.063E Let X be a ringed space. Let J be a sheaf of ideals. We have the
following implications: J is regular ⇒ J is Koszul-regular ⇒ J is H1-regular ⇒
J is quasi-regular.

Proof. The lemma immediately reduces to Lemma 31.20.1. □

Lemma 31.20.4.063H Let X be a locally ringed space. Let J ⊂ OX be a sheaf of ideals.
Then J is quasi-regular if and only if the following conditions are satisfied:

(1) J is an OX -module of finite type,
(2) J /J 2 is a finite locally free OX/J -module, and
(3) the canonical maps

Symn
OX/J (J /J 2) −→ J n/J n+1

are isomorphisms for all n ≥ 0.

Proof. It is clear that if U ⊂ X is an open such that J |U is generated by a
quasi-regular sequence f1, . . . , fr ∈ OX(U) then J |U is of finite type, J |U/J 2|U is
free with basis f1, . . . , fr, and the maps in (3) are isomorphisms because they are
coordinate free formulation of the degree n part of (31.20.0.3). Hence it is clear
that being quasi-regular implies conditions (1), (2), and (3).

Conversely, suppose that (1), (2), and (3) hold. Pick a point x ∈ Supp(OX/J ).
Then there exists a neighbourhood U ⊂ X of x such that J |U/J 2|U is free of rank
r over OU/J |U . After possibly shrinking U we may assume there exist f1, . . . , fr ∈
J (U) which map to a basis of J |U/J 2|U as an OU/J |U -module. In particular
we see that the images of f1, . . . , fr in Jx/J 2

x generate. Hence by Nakayama’s
lemma (Algebra, Lemma 10.20.1) we see that f1, . . . , fr generate the stalk Jx.
Hence, since J is of finite type, by Modules, Lemma 17.9.4 after shrinking U we
may assume that f1, . . . , fr generate J . Finally, from (3) and the isomorphism
J |U/J 2|U =

⊕
OU/J |Ufi it is clear that f1, . . . , fr ∈ OX(U) is a quasi-regular

sequence. □

Lemma 31.20.5.067N Let (X,OX) be a locally ringed space. Let J ⊂ OX be a sheaf of
ideals. Let x ∈ X and f1, . . . , fr ∈ Jx whose images give a basis for the κ(x)-vector
space Jx/mxJx.

https://stacks.math.columbia.edu/tag/063E
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(1) If J is quasi-regular, then there exists an open neighbourhood such that
f1, . . . , fr ∈ OX(U) form a quasi-regular sequence generating J |U .

(2) If J is H1-regular, then there exists an open neighbourhood such that
f1, . . . , fr ∈ OX(U) form an H1-regular sequence generating J |U .

(3) If J is Koszul-regular, then there exists an open neighbourhood such that
f1, . . . , fr ∈ OX(U) form an Koszul-regular sequence generating J |U .

Proof. First assume that J is quasi-regular. We may choose an open neighbour-
hood U ⊂ X of x and a quasi-regular sequence g1, . . . , gs ∈ OX(U) which gener-
ates J |U . Note that this implies that J /J 2 is free of rank s over OU/J |U (see
Lemma 31.20.4 and its proof) and hence r = s. We may shrink U and assume
f1, . . . , fr ∈ J (U). Thus we may write

fi =
∑

aijgj

for some aij ∈ OX(U). By assumption the matrix A = (aij) maps to an invertible
matrix over κ(x). Hence, after shrinking U once more, we may assume that (aij)
is invertible. Thus we see that f1, . . . , fr give a basis for (J /J 2)|U which proves
that f1, . . . , fr is a quasi-regular sequence over U .
Note that in order to prove (2) and (3) we may, because the assumptions of (2) and
(3) are stronger than the assumption in (1), already assume that f1, . . . , fr ∈ J (U)
and fi =

∑
aijgj with (aij) invertible as above, where now g1, . . . , gr is a H1-regular

or Koszul-regular sequence. Since the Koszul complex on f1, . . . , fr is isomorphic to
the Koszul complex on g1, . . . , gr via the matrix (aij) (see More on Algebra, Lemma
15.28.4) we conclude that f1, . . . , fr is H1-regular or Koszul-regular as desired. □

Lemma 31.20.6.063F Any regular, Koszul-regular, H1-regular, or quasi-regular sheaf of
ideals on a scheme is a finite type quasi-coherent sheaf of ideals.

Proof. This follows as such a sheaf of ideals is locally generated by finitely many
sections. And any sheaf of ideals locally generated by sections on a scheme is
quasi-coherent, see Schemes, Lemma 26.10.1. □

Lemma 31.20.7.063G Let X be a scheme. Let J be a sheaf of ideals. Then J is
regular (resp. Koszul-regular, H1-regular, quasi-regular) if and only if for every x ∈
Supp(OX/J ) there exists an affine open neighbourhood x ∈ U ⊂ X, U = Spec(A)
such that J |U = Ĩ and such that I is generated by a regular (resp. Koszul-regular,
H1-regular, quasi-regular) sequence f1, . . . , fr ∈ A.

Proof. By assumption we can find an open neighbourhood U of x over which J is
generated by a regular (resp. Koszul-regular, H1-regular, quasi-regular) sequence
f1, . . . , fr ∈ OX(U). After shrinking U we may assume that U is affine, say U =
Spec(A). Since J is quasi-coherent by Lemma 31.20.6 we see that J |U = Ĩ for
some ideal I ⊂ A. Now we can use the fact that˜ : ModA −→ QCoh(OU )
is an equivalence of categories which preserves exactness. For example the fact that
the functions fi generate J means that the fi, seen as elements of A generate I.
The fact that (31.20.0.1) is injective (resp. (31.20.0.2) is exact, (31.20.0.2) is exact
in degree 1, (31.20.0.3) is an isomorphism) implies the corresponding property of
the map A/(f1, . . . , fi−1)→ A/(f1, . . . , fi−1) (resp. the complex K•(A, f1, . . . , fr),
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the map A/I[T1, . . . , Tr] →
⊕
In/In+1). Thus f1, . . . , fr ∈ A is a regular (resp.

Koszul-regular, H1-regular, quasi-regular) sequence of the ring A. □

Lemma 31.20.8.063I Let X be a locally Noetherian scheme. Let J ⊂ OX be a quasi-
coherent sheaf of ideals. Let x be a point of the support of OX/J . The following
are equivalent

(1) Jx is generated by a regular sequence in OX,x,
(2) Jx is generated by a Koszul-regular sequence in OX,x,
(3) Jx is generated by an H1-regular sequence in OX,x,
(4) Jx is generated by a quasi-regular sequence in OX,x,
(5) there exists an affine neighbourhood U = Spec(A) of x such that J |U = Ĩ

and I is generated by a regular sequence in A, and
(6) there exists an affine neighbourhood U = Spec(A) of x such that J |U = Ĩ

and I is generated by a Koszul-regular sequence in A, and
(7) there exists an affine neighbourhood U = Spec(A) of x such that J |U = Ĩ

and I is generated by an H1-regular sequence in A, and
(8) there exists an affine neighbourhood U = Spec(A) of x such that J |U = Ĩ

and I is generated by a quasi-regular sequence in A,
(9) there exists a neighbourhood U of x such that J |U is regular, and

(10) there exists a neighbourhood U of x such that J |U is Koszul-regular, and
(11) there exists a neighbourhood U of x such that J |U is H1-regular, and
(12) there exists a neighbourhood U of x such that J |U is quasi-regular.

In particular, on a locally Noetherian scheme the notions of regular, Koszul-regular,
H1-regular, or quasi-regular ideal sheaf all agree.

Proof. It follows from Lemma 31.20.7 that (5) ⇔ (9), (6) ⇔ (10), (7) ⇔ (11), and
(8) ⇔ (12). It is clear that (5) ⇒ (1), (6) ⇒ (2), (7) ⇒ (3), and (8) ⇒ (4). We
have (1) ⇒ (5) by Algebra, Lemma 10.68.6. We have (9) ⇒ (10) ⇒ (11) ⇒ (12)
by Lemma 31.20.3. Finally, (4) ⇒ (1) by Algebra, Lemma 10.69.6. Now all 12
statements are equivalent. □

31.21. Regular immersions

0638 Let i : Z → X be an immersion of schemes. By definition this means there exists
an open subscheme U ⊂ X such that Z is identified with a closed subscheme of U .
Let I ⊂ OU be the corresponding quasi-coherent sheaf of ideals. Suppose U ′ ⊂ X
is a second such open subscheme, and denote I ′ ⊂ OU ′ the corresponding quasi-
coherent sheaf of ideals. Then I|U∩U ′ = I ′|U∩U ′ . Moreover, the support of OU/I
is Z which is contained in U ∩U ′ and is also the support of OU ′/I ′. Hence it follows
from Definition 31.20.2 that I is a regular ideal if and only if I ′ is a regular ideal.
Similarly for being Koszul-regular, H1-regular, or quasi-regular.

Definition 31.21.1.063J The concept of a
Koszul-regular
immersion was
introduced in
[BGI71, Expose VII,
Definition 1.4]
where it was called
a regular immersion.

Let i : Z → X be an immersion of schemes. Choose an open
subscheme U ⊂ X such that i identifies Z with a closed subscheme of U and denote
I ⊂ OU the corresponding quasi-coherent sheaf of ideals.

(1) We say i is a regular immersion if I is regular.
(2) We say i is a Koszul-regular immersion if I is Koszul-regular.
(3) We say i is a H1-regular immersion if I is H1-regular.
(4) We say i is a quasi-regular immersion if I is quasi-regular.
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The discussion above shows that this is independent of the choice of U . The condi-
tions are listed in decreasing order of strength, see Lemma 31.21.2. A Koszul-regular
closed immersion is smooth locally a regular immersion, see Lemma 31.21.11. In
the locally Noetherian case all four notions agree, see Lemma 31.20.8.

Lemma 31.21.2.063K Let i : Z → X be an immersion of schemes. We have the following
implications: i is regular ⇒ i is Koszul-regular ⇒ i is H1-regular ⇒ i is quasi-
regular.

Proof. The lemma immediately reduces to Lemma 31.20.3. □

Lemma 31.21.3.063L Let i : Z → X be an immersion of schemes. Assume X is locally
Noetherian. Then i is regular ⇔ i is Koszul-regular ⇔ i is H1-regular ⇔ i is
quasi-regular.

Proof. Follows immediately from Lemma 31.21.2 and Lemma 31.20.8. □

Lemma 31.21.4.067P Let i : Z → X be a regular (resp. Koszul-regular, H1-regular,
quasi-regular) immersion. Let X ′ → X be a flat morphism. Then the base change
i′ : Z ×X X ′ → X ′ is a regular (resp. Koszul-regular, H1-regular, quasi-regular)
immersion.

Proof. Via Lemma 31.20.7 this translates into the algebraic statements in Algebra,
Lemmas 10.68.5 and 10.69.3 and More on Algebra, Lemma 15.30.5. □

Lemma 31.21.5.063M Let i : Z → X be an immersion of schemes. Then i is a quasi-
regular immersion if and only if the following conditions are satisfied

(1) i is locally of finite presentation,
(2) the conormal sheaf CZ/X is finite locally free, and
(3) the map (31.19.1.2) is an isomorphism.

Proof. An open immersion is locally of finite presentation. Hence we may replace X
by an open subscheme U ⊂ X such that i identifies Z with a closed subscheme of U ,
i.e., we may assume that i is a closed immersion. Let I ⊂ OX be the corresponding
quasi-coherent sheaf of ideals. Recall, see Morphisms, Lemma 29.21.7 that I is of
finite type if and only if i is locally of finite presentation. Hence the equivalence
follows from Lemma 31.20.4 and unwinding the definitions. □

Lemma 31.21.6.063N Let Z → Y → X be immersions of schemes. Assume that Z → Y
is H1-regular. Then the canonical sequence of Morphisms, Lemma 29.31.5

0→ i∗CY/X → CZ/X → CZ/Y → 0

is exact and locally split.

Proof. Since CZ/Y is finite locally free (see Lemma 31.21.5 and Lemma 31.20.3) it
suffices to prove that the sequence is exact. By what was proven in Morphisms,
Lemma 29.31.5 it suffices to show that the first map is injective. Working affine
locally this reduces to the following question: Suppose that we have a ring A
and ideals I ⊂ J ⊂ A. Assume that J/I ⊂ A/I is generated by an H1-regular
sequence. Does this imply that I/I2 ⊗A A/J → J/J2 is injective? Note that
I/I2 ⊗A A/J = I/IJ . Hence we are trying to prove that I ∩ J2 = IJ . This is the
result of More on Algebra, Lemma 15.30.9. □
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A composition of quasi-regular immersions may not be quasi-regular, see Algebra,
Remark 10.69.8. The other types of regular immersions are preserved under com-
position.

Lemma 31.21.7.067Q Let i : Z → Y and j : Y → X be immersions of schemes.
(1) If i and j are regular immersions, so is j ◦ i.
(2) If i and j are Koszul-regular immersions, so is j ◦ i.
(3) If i and j are H1-regular immersions, so is j ◦ i.
(4) If i is an H1-regular immersion and j is a quasi-regular immersion, then

j ◦ i is a quasi-regular immersion.

Proof. The algebraic version of (1) is Algebra, Lemma 10.68.7. The algebraic ver-
sion of (2) is More on Algebra, Lemma 15.30.13. The algebraic version of (3) is
More on Algebra, Lemma 15.30.11. The algebraic version of (4) is More on Algebra,
Lemma 15.30.10. □

Lemma 31.21.8.068Z Let i : Z → Y and j : Y → X be immersions of schemes. Assume
that the sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0
of Morphisms, Lemma 29.31.5 is exact and locally split.

(1) If j ◦ i is a quasi-regular immersion, so is i.
(2) If j ◦ i is a H1-regular immersion, so is i.
(3) If both j and j ◦ i are Koszul-regular immersions, so is i.

Proof. After shrinking Y and X we may assume that i and j are closed immersions.
Denote I ⊂ OX the ideal sheaf of Y and J ⊂ OX the ideal sheaf of Z. The conormal
sequence is 0 → I/IJ → J /J 2 → J /(I + J 2) → 0. Let z ∈ Z and set y = i(z),
x = j(y) = j(i(z)). Choose f1, . . . , fn ∈ Ix which map to a basis of Ix/mzIx.
Extend this to f1, . . . , fn, g1, . . . , gm ∈ Jx which map to a basis of Jx/mzJx. This
is possible as we have assumed that the sequence of conormal sheaves is split in a
neighbourhood of z, hence Ix/mxIx → Jx/mxJx is injective.
Proof of (1). By Lemma 31.20.5 we can find an affine open neighbourhood U of x
such that f1, . . . , fn, g1, . . . , gm forms a quasi-regular sequence generating J . Hence
by Algebra, Lemma 10.69.5 we see that g1, . . . , gm induces a quasi-regular sequence
on Y ∩ U cutting out Z.
Proof of (2). Exactly the same as the proof of (1) except using More on Algebra,
Lemma 15.30.12.
Proof of (3). By Lemma 31.20.5 (applied twice) we can find an affine open neigh-
bourhood U of x such that f1, . . . , fn forms a Koszul-regular sequence generating I
and f1, . . . , fn, g1, . . . , gm forms a Koszul-regular sequence generating J . Hence by
More on Algebra, Lemma 15.30.14 we see that g1, . . . , gm induces a Koszul-regular
sequence on Y ∩ U cutting out Z. □

Lemma 31.21.9.0690 Let i : Z → Y and j : Y → X be immersions of schemes. Pick
z ∈ Z and denote y ∈ Y , x ∈ X the corresponding points. Assume X is locally
Noetherian. The following are equivalent

(1) i is a regular immersion in a neighbourhood of z and j is a regular im-
mersion in a neighbourhood of y,

(2) i and j ◦ i are regular immersions in a neighbourhood of z,
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(3) j ◦ i is a regular immersion in a neighbourhood of z and the conormal
sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0
is split exact in a neighbourhood of z.

Proof. SinceX (and hence Y ) is locally Noetherian all 4 types of regular immersions
agree, and moreover we may check whether a morphism is a regular immersion on
the level of local rings, see Lemma 31.20.8. The implication (1) ⇒ (2) is Lemma
31.21.7. The implication (2)⇒ (3) is Lemma 31.21.6. Thus it suffices to prove that
(3) implies (1).
Assume (3). Set A = OX,x. Denote I ⊂ A the kernel of the surjective map
OX,x → OY,y and denote J ⊂ A the kernel of the surjective map OX,x → OZ,z.
Note that any minimal sequence of elements generating J in A is a quasi-regular
hence regular sequence, see Lemma 31.20.5. By assumption the conormal sequence

0→ I/IJ → J/J2 → J/(I + J2)→ 0
is split exact as a sequence of A/J-modules. Hence we can pick a minimal system
of generators f1, . . . , fn, g1, . . . , gm of J with f1, . . . , fn ∈ I a minimal system of
generators of I. As pointed out above f1, . . . , fn, g1, . . . , gm is a regular sequence
in A. It follows directly from the definition of a regular sequence that f1, . . . , fn is
a regular sequence in A and g1, . . . , gm is a regular sequence in A/I. Thus j is a
regular immersion at y and i is a regular immersion at z. □

Remark 31.21.10.0691 In the situation of Lemma 31.21.9 parts (1), (2), (3) are not
equivalent to “j ◦ i and j are regular immersions at z and y”. An example is
X = A1

k = Spec(k[x]), Y = Spec(k[x]/(x2)) and Z = Spec(k[x]/(x)).

Lemma 31.21.11.0692 Let i : Z → X be a Koszul regular closed immersion. Then
there exists a surjective smooth morphism X ′ → X such that the base change
i′ : Z ×X X ′ → X ′ of i is a regular immersion.

Proof. We may assume that X is affine and the ideal of Z generated by a Koszul-
regular sequence by replacing X by the members of a suitable affine open covering
(affine opens as in Lemma 31.20.7). The affine case is More on Algebra, Lemma
15.30.17. □

Lemma 31.21.12.0E9J Let i : Z → X be an immersion. If Z and X are regular schemes,
then i is a regular immersion.

Proof. Let z ∈ Z. By Lemma 31.20.8 it suffices to show that the kernel of
OX,z → OZ,z is generated by a regular sequence. This follows from Algebra, Lem-
mas 10.106.4 and 10.106.3. □

31.22. Relative regular immersions

063P In this section we consider the base change property for regular immersions. The
following lemma does not hold for regular immersions or for Koszul immersions, see
Examples, Lemma 110.14.2.

Lemma 31.22.1.063R Let f : X → S be a morphism of schemes. Let i : Z ⊂ X be an
immersion. Assume

(1) i is an H1-regular (resp. quasi-regular) immersion, and
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(2) Z → S is a flat morphism.
Then for every morphism of schemes g : S′ → S the base change Z ′ = S′ ×S Z →
X ′ = S′ ×S X is an H1-regular (resp. quasi-regular) immersion.

Proof. Unwinding the definitions and using Lemma 31.20.7 this translates into
More on Algebra, Lemma 15.31.4. □

This lemma is the motivation for the following definition.

Definition 31.22.2.063S Let f : X → S be a morphism of schemes. Let i : Z → X be
an immersion.

(1) We say i is a relative quasi-regular immersion if Z → S is flat and i is a
quasi-regular immersion.

(2) We say i is a relative H1-regular immersion if Z → S is flat and i is an
H1-regular immersion.

We warn the reader that this may be nonstandard notation. Lemma 31.22.1 guar-
antees that relative quasi-regular (resp. H1-regular) immersions are preserved under
any base change. A relative H1-regular immersion is a relative quasi-regular immer-
sion, see Lemma 31.21.2. Please take a look at Lemma 31.22.6 (or Lemma 31.22.4)
which shows that if Z → X is a relative H1-regular (or quasi-regular) immersion
and the ambient scheme is (flat and) locally of finite presentation over S, then
Z → X is actually a regular immersion and the same remains true after any base
change.

Lemma 31.22.3.063T Let f : X → S be a morphism of schemes. Let Z → X be a
relative quasi-regular immersion. If x ∈ Z and OX,x is Noetherian, then f is flat
at x.

Proof. Let f1, . . . , fr ∈ OX,x be a quasi-regular sequence cutting out the ideal of
Z at x. By Algebra, Lemma 10.69.6 we know that f1, . . . , fr is a regular sequence.
Hence fr is a nonzerodivisor on OX,x/(f1, . . . , fr−1) such that the quotient is a
flat OS,f(x)-module. By Lemma 31.18.5 we conclude that OX,x/(f1, . . . , fr−1) is
a flat OS,f(x)-module. Continuing by induction we find that OX,x is a flat OS,s-
module. □

Lemma 31.22.4.063U Let X → S be a morphism of schemes. Let Z → X be an
immersion. Assume

(1) X → S is flat and locally of finite presentation,
(2) Z → X is a relative quasi-regular immersion.

Then Z → X is a regular immersion and the same remains true after any base
change.

Proof. Pick x ∈ Z with image s ∈ S. To prove this it suffices to find an affine neigh-
bourhood of x contained in U such that the result holds on that affine open. Hence
we may assume that X is affine and there exist a quasi-regular sequence f1, . . . , fr ∈
Γ(X,OX) such that Z = V (f1, . . . , fr). By More on Algebra, Lemma 15.31.4 the
sequence f1|Xs , . . . , fr|Xs is a quasi-regular sequence in Γ(Xs,OXs). Since Xs is
Noetherian, this implies, possibly after shrinking X a bit, that f1|Xs , . . . , fr|Xs is
a regular sequence, see Algebra, Lemmas 10.69.6 and 10.68.6. By Lemma 31.18.9
it follows that Z1 = V (f1) ⊂ X is a relative effective Cartier divisor, again af-
ter possibly shrinking X a bit. Applying the same lemma again, but now to
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Z2 = V (f1, f2) ⊂ Z1 we see that Z2 ⊂ Z1 is a relative effective Cartier divisor.
And so on until on reaches Z = Zn = V (f1, . . . , fn). Since being a relative effective
Cartier divisor is preserved under arbitrary base change, see Lemma 31.18.1, we
also see that the final statement of the lemma holds. □

Remark 31.22.5.0FUD The codimension of a relative quasi-regular immersion, if it is
constant, does not change after a base change. In fact, if we have a ring map A→ B
and a quasi-regular sequence f1, . . . , fr ∈ B such that B/(f1, . . . , fr) is flat over A,
then for any ring map A→ A′ we have a quasi-regular sequence f1 ⊗ 1, . . . , fr ⊗ 1
in B′ = B⊗AA′ by More on Algebra, Lemma 15.31.4 (which was used in the proof
of Lemma 31.22.1 above). Now the proof of Lemma 31.22.4 shows that if A → B
is flat and locally of finite presentation, then for every prime ideal q′ ⊂ B′ the
sequence f1 ⊗ 1, . . . , fr ⊗ 1 is even a regular sequence in the local ring B′

q′ .

Lemma 31.22.6.063V Let X → S be a morphism of schemes. Let Z → X be a relative
H1-regular immersion. Assume X → S is locally of finite presentation. Then

(1) there exists an open subscheme U ⊂ X such that Z ⊂ U and such that
U → S is flat, and

(2) Z → X is a regular immersion and the same remains true after any base
change.

Proof. Pick x ∈ Z. To prove (1) suffices to find an open neighbourhood U ⊂ X of x
such that U → S is flat. Hence the lemma reduces to the case thatX = Spec(B) and
S = Spec(A) are affine and that Z is given by an H1-regular sequence f1, . . . , fr ∈
B. By assumption B is a finitely presented A-algebra and B/(f1, . . . , fr)B is a flat
A-algebra. We are going to use absolute Noetherian approximation.
Write B = A[x1, . . . , xn]/(g1, . . . , gm). Assume fi is the image of f ′

i ∈ A[x1, . . . , xn].
Choose a finite type Z-subalgebra A0 ⊂ A such that all the coefficients of the poly-
nomials f ′

1, . . . , f
′
r, g1, . . . , gm are in A0. We set B0 = A0[x1, . . . , xn]/(g1, . . . , gm)

and we denote fi,0 the image of f ′
i in B0. Then B = B0 ⊗A0 A and

B/(f1, . . . , fr) = B0/(f0,1, . . . , f0,r)⊗A0 A.

By Algebra, Lemma 10.168.1 we may, after enlargingA0, assume thatB0/(f0,1, . . . , f0,r)
is flat over A0. It may not be the case at this point that the Koszul cohomology
group H1(K•(B0, f0,1, . . . , f0,r)) is zero. On the other hand, as B0 is Noetherian,
it is a finitely generated B0-module. Let ξ1, . . . , ξn ∈ H1(K•(B0, f0,1, . . . , f0,r)) be
generators. Let A0 ⊂ A1 ⊂ A be a larger finite type Z-subalgebra of A. Denote
f1,i the image of f0,i in B1 = B0⊗A0 A1. By More on Algebra, Lemma 15.31.3 the
map

H1(K•(B0, f0,1, . . . , f0,r))⊗A0 A1 −→ H1(K•(B1, f1,1, . . . , f1,r))
is surjective. Furthermore, it is clear that the colimit (over all choices of A1
as above) of the complexes K•(B1, f1,1, . . . , f1,r) is the complex K•(B, f1, . . . , fr)
which is acyclic in degree 1. Hence

colimA0⊂A1⊂AH1(K•(B1, f1,1, . . . , f1,r)) = 0
by Algebra, Lemma 10.8.8. Thus we can find a choice of A1 such that ξ1, . . . , ξn all
map to zero in H1(K•(B1, f1,1, . . . , f1,r)). In other words, the Koszul cohomology
group H1(K•(B1, f1,1, . . . , f1,r)) is zero.
Consider the morphism of affine schemes X1 → S1 equal to Spec of the ring map
A1 → B1 and Z1 = Spec(B1/(f1,1, . . . , f1,r)). Since B = B1 ⊗A1 A, i.e., X =
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X1 ×S1 S, and similarly Z = Z1 ×S S1, it now suffices to prove (1) for X1 → S1
and the relative H1-regular immersion Z1 → X1, see Morphisms, Lemma 29.25.7.
Hence we have reduced to the case where X → S is a finite type morphism of
Noetherian schemes. In this case we know that X → S is flat at every point of Z
by Lemma 31.22.3. Combined with the fact that the flat locus is open in this case,
see Algebra, Theorem 10.129.4 we see that (1) holds. Part (2) then follows from an
application of Lemma 31.22.4. □

If the ambient scheme is flat and locally of finite presentation over the base, then
we can characterize a relative quasi-regular immersion in terms of its fibres.

Lemma 31.22.7.063W Let φ : X → S be a flat morphism which is locally of finite
presentation. Let T ⊂ X be a closed subscheme. Let x ∈ T with image s ∈ S.

(1) If Ts ⊂ Xs is a quasi-regular immersion in a neighbourhood of x, then
there exists an open U ⊂ X and a relative quasi-regular immersion Z ⊂ U
such that Zs = Ts ∩ Us and T ∩ U ⊂ Z.

(2) If Ts ⊂ Xs is a quasi-regular immersion in a neighbourhood of x, the
morphism T → X is of finite presentation, and T → S is flat at x, then
we can choose U and Z as in (1) such that T ∩ U = Z.

(3) If Ts ⊂ Xs is a quasi-regular immersion in a neighbourhood of x, and T
is cut out by c equations in a neighbourhood of x, where c = dimx(Xs)−
dimx(Ts), then we can choose U and Z as in (1) such that T ∩ U = Z.

In each case Z → U is a regular immersion by Lemma 31.22.4. In particular, if
T → S is locally of finite presentation and flat and all fibres Ts ⊂ Xs are quasi-
regular immersions, then T → X is a relative quasi-regular immersion.

Proof. Choose affine open neighbourhoods Spec(A) of s and Spec(B) of x such
that φ(Spec(B)) ⊂ Spec(A). Let p ⊂ A be the prime ideal corresponding to
s. Let q ⊂ B be the prime ideal corresponding to x. Let I ⊂ B be the ideal
corresponding to T . By the initial assumption of the lemma we know that A→ B
is flat and of finite presentation. The assumption in (1) means that, after shrinking
Spec(B), we may assume I(B ⊗A κ(p)) is generated by a quasi-regular sequence of
elements. After possibly localizing B at some g ∈ B, g ̸∈ q we may assume there
exist f1, . . . , fr ∈ I which map to a quasi-regular sequence in B ⊗A κ(p) which
generates I(B ⊗A κ(p)). By Algebra, Lemmas 10.69.6 and 10.68.6 we may assume
after another localization that f1, . . . , fr ∈ I form a regular sequence in B⊗A κ(p).
By Lemma 31.18.9 it follows that Z1 = V (f1) ⊂ Spec(B) is a relative effective
Cartier divisor, again after possibly localizing B. Applying the same lemma again,
but now to Z2 = V (f1, f2) ⊂ Z1 we see that Z2 ⊂ Z1 is a relative effective Cartier
divisor. And so on until one reaches Z = Zn = V (f1, . . . , fn). Then Z → Spec(B)
is a regular immersion and Z is flat over S, in particular Z → Spec(B) is a relative
quasi-regular immersion over Spec(A). This proves (1).
To see (2) consider the closed immersion Z → D. The surjective ring map u :
OD,x → OZ,x is a map of flat local OS,s-algebras which are essentially of finite
presentation, and which becomes an isomorphisms after dividing by ms. Hence it
is an isomorphism, see Algebra, Lemma 10.128.4. It follows that Z → D is an
isomorphism in a neighbourhood of x, see Algebra, Lemma 10.126.6.
To see (3), after possibly shrinking U we may assume that the ideal of Z is generated
by a regular sequence f1, . . . , fr (see our construction of Z above) and the ideal of
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T is generated by g1, . . . , gc. We claim that c = r. Namely,
dimx(Xs) = dim(OXs,x) + trdegκ(s)(κ(x)),
dimx(Ts) = dim(OTs,x) + trdegκ(s)(κ(x)),

dim(OXs,x) = dim(OTs,x) + r

the first two equalities by Algebra, Lemma 10.116.3 and the second by r times
applying Algebra, Lemma 10.60.13. As T ⊂ Z we see that fi =

∑
bijgj . But

the ideals of Z and T cut out the same quasi-regular closed subscheme of Xs in
a neighbourhood of x. Hence the matrix (bij) mod mx is invertible (some details
omitted). Hence (bij) is invertible in an open neighbourhood of x. In other words,
T ∩ U = Z after shrinking U .
The final statements of the lemma follow immediately from part (2), combined with
the fact that Z → S is locally of finite presentation if and only if Z → X is of finite
presentation, see Morphisms, Lemmas 29.21.3 and 29.21.11. □

The following lemma is an enhancement of Morphisms, Lemma 29.34.20.

Lemma 31.22.8.067R Let f : X → S be a smooth morphism of schemes. Let σ : S → X
be a section of f . Then σ is a regular immersion.

Proof. By Schemes, Lemma 26.21.10 the morphism σ is an immersion. After re-
placing X by an open neighbourhood of σ(S) we may assume that σ is a closed
immersion. Let T = σ(S) be the corresponding closed subscheme of X. Since
T → S is an isomorphism it is flat and of finite presentation. Also a smooth mor-
phism is flat and locally of finite presentation, see Morphisms, Lemmas 29.34.9 and
29.34.8. Thus, according to Lemma 31.22.7, it suffices to show that Ts ⊂ Xs is a
quasi-regular closed subscheme. This follows immediately from Morphisms, Lemma
29.34.20 but we can also see it directly as follows. Let k be a field and let A be a
smooth k-algebra. Let m ⊂ A be a maximal ideal whose residue field is k. Then
m is generated by a quasi-regular sequence, possibly after replacing A by Ag for
some g ∈ A, g ̸∈ m. In Algebra, Lemma 10.140.3 we proved that Am is a regular
local ring, hence mAm is generated by a regular sequence. This does indeed imply
that m is generated by a regular sequence (after replacing A by Ag for some g ∈ A,
g ̸∈ m), see Algebra, Lemma 10.68.6. □

The following lemma has a kind of converse, see Lemma 31.22.12.

Lemma 31.22.9.067S Let
Y

j ��

i
// X

��
S

be a commutative diagram of morphisms of schemes. Assume X → S smooth, and
i, j immersions. If j is a regular (resp. Koszul-regular, H1-regular, quasi-regular)
immersion, then so is i.

Proof. We can write i as the composition
Y → Y ×S X → X

By Lemma 31.22.8 the first arrow is a regular immersion. The second arrow is a
flat base change of Y → S, hence is a regular (resp. Koszul-regular, H1-regular,
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quasi-regular) immersion, see Lemma 31.21.4. We conclude by an application of
Lemma 31.21.7. □

Lemma 31.22.10.067T Let
Y

��

i
// X

��
S

be a commutative diagram of morphisms of schemes. Assume that Y → S is
syntomic, X → S smooth, and i an immersion. Then i is a regular immersion.

Proof. After replacing X by an open neighbourhood of i(Y ) we may assume that i
is a closed immersion. Let T = i(Y ) be the corresponding closed subscheme of X.
Since T ∼= Y the morphism T → S is flat and of finite presentation (Morphisms,
Lemmas 29.30.6 and 29.30.7). Also a smooth morphism is flat and locally of finite
presentation (Morphisms, Lemmas 29.34.9 and 29.34.8). Thus, according to Lemma
31.22.7, it suffices to show that Ts ⊂ Xs is a quasi-regular closed subscheme. As Xs

is locally of finite type over a field, it is Noetherian (Morphisms, Lemma 29.15.6).
Thus we can check that Ts ⊂ Xs is a quasi-regular immersion at points, see Lemma
31.20.8. Take t ∈ Ts. By Morphisms, Lemma 29.30.9 the local ring OTs,t is a local
complete intersection over κ(s). The local ringOXs,t is regular, see Algebra, Lemma
10.140.3. By Algebra, Lemma 10.135.7 we see that the kernel of the surjection
OXs,t → OTs,t is generated by a regular sequence, which is what we had to show. □

Lemma 31.22.11.067U Let
Y

��

i
// X

��
S

be a commutative diagram of morphisms of schemes. Assume that Y → S is
smooth, X → S smooth, and i an immersion. Then i is a regular immersion.

Proof. This is a special case of Lemma 31.22.10 because a smooth morphism is
syntomic, see Morphisms, Lemma 29.34.7. □

Lemma 31.22.12.0693 Let
Y

j ��

i
// X

��
S

be a commutative diagram of morphisms of schemes. Assume X → S smooth
and i and j immersions. If i is a Koszul-regular (resp. H1-regular, quasi-regular)
immersion, then so is j.

Proof. We will use Lemma 31.21.2 without further mention. Let y ∈ Y be any
point. Set x = i(y) and set s = j(y). It suffices to prove the result after replacing X
and S by open neighbourhoods U and V of x and s and Y by an open neighbourhood
of y in i−1(U) ∩ j−1(V ).
We first prove the result for X = An

S . After replacing S by an affine open
V and replacing Y by j−1(V ) we may assume that j is a closed immersions

https://stacks.math.columbia.edu/tag/067T
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and S is affine. Write S = Spec(A). Then j : Y → S defines an isomor-
phism of Y to the closed subscheme Spec(A/I) for some ideal I ⊂ A. The map
i : Y = Spec(A/I) → An

S = Spec(A[x1, . . . , xn]) corresponds to an A-algebra ho-
momorphism i♯ : A[x1, . . . , xn]→ A/I. Choose ai ∈ A which map to i♯(xi) in A/I.
Observe that the ideal of the closed immersion i is

J = (x1 − a1, . . . , xn − an) + IA[x1, . . . , xn].
Set K = (x1 − a1, . . . , xn − an). We claim the sequence

0→ K/KJ → J/J2 → J/(K + J2)→ 0
is split exact. To see this note that K/K2 is free with basis xi − ai over the ring
A[x1, . . . , xn]/K ∼= A. Hence K/KJ is free with the same basis over the ring
A[x1, . . . , xn]/J ∼= A/I. On the other hand, taking derivatives gives a map

dA[x1,...,xn]/A : J/J2 −→ ΩA[x1,...,xn]/A ⊗A[x1,...,xn] A[x1, . . . , xn]/J
which maps the generators xi − ai to the basis elements dxi of the free module on
the right. The claim follows. Moreover, note that x1 − a1, . . . , xn − an is a regular
sequence in A[x1, . . . , xn] with quotient ring A[x1, . . . , xn]/(x1−a1, . . . , xn−an) ∼=
A. Thus we have a factorization

Y → V (x1 − a1, . . . , xn − an)→ An
S

of our closed immersion i where the composition is Koszul-regular (resp. H1-regular,
quasi-regular), the second arrow is a regular immersion, and the associated conor-
mal sequence is split. Now the result follows from Lemma 31.21.8.
Next, we prove the result holds if i is H1-regular or quasi-regular. Namely, shrinking
as in the first paragraph of the proof, we may assume that Y , X, and S are affine.
In this case we can choose a closed immersion h : X → An

S over S for some n. Note
that h is a regular immersion by Lemma 31.22.11. Hence h ◦ i is a H1-regular or
quasi-regular immersion, see Lemma 31.21.7 (note that this step does not work in
the “quasi-regular case”). Thus we reduce to the case X = An

S and S affine we
proved above.
Finally, assume i is quasi-regular. After shrinking as in the first paragraph of the
proof, we may use Morphisms, Lemma 29.36.20 to factor f as X → An

S → S where
the first morphism X → An

S is étale. This reduces the problem to the the two cases
(a) X = An

S and (b) f is étale. Case (a) was handled in the second paragraph of
the proof. Case (b) is handled by the next paragraph.
Assume f is étale. After shrinking we may assume X, Y , and S affine i and j
closed immersions (small detail omitted). Say S = Spec(A), X = Spec(B) and
Y = Spec(B/J) = Spec(A/I). Shrinking further we may assume J is generated
by a quasi-regular sequence. The ring map A → B is étale, hence formally étale
(Algebra, Lemma 10.150.2). Thus

⊕
In/In+1 ∼=

⊕
Jn/Jn+1 by Algebra, Lemma

10.150.5. Since J is generated by a quasi-regular sequence, so is I. This finishes
the proof. □

31.23. Meromorphic functions and sections

01X1 This section contains only the general definitions and some elementary results. See
[Kle79] for some possible pitfalls3.

3Danger, Will Robinson!
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Let (X,OX) be a locally ringed space. For any open U ⊂ X we have defined the
set S(U) ⊂ OX(U) of regular sections of OX over U , see Definition 31.14.6. The
restriction of a regular section to a smaller open is regular. Hence S : U 7→ S(U)
is a subsheaf (of sets) of OX . We sometimes denote S = SX if we want to indicate
the dependence on X. Moreover, S(U) is a multiplicative subset of the ring OX(U)
for each U . Hence we may consider the presheaf of rings

U 7−→ S(U)−1OX(U),

see Modules, Lemma 17.27.1.

Definition 31.23.1.01X2 Let (X,OX) be a locally ringed space. The sheaf of meromor-
phic functions on X is the sheaf KX associated to the presheaf displayed above. A
meromorphic function on X is a global section of KX .

Since each element of each S(U) is a nonzerodivisor on OX(U) we see that the
natural map of sheaves of rings OX → KX is injective.

Example 31.23.2.01X3 Let A = C[x, {yα}α∈C]/((x − α)yα, yαyβ). Any element of A
can be written uniquely as f(x) +

∑
λαyα with f(x) ∈ C[x] and λα ∈ C. Let

X = Spec(A). In this case OX = KX , since on any affine open D(f) the ring Af
any nonzerodivisor is a unit (proof omitted).

Let (X,OX) be a locally ringed space. Let F be a sheaf of OX -modules. Consider
the presheaf U 7→ S(U)−1F(U). Its sheafification is the sheaf F ⊗OX

KX , see
Modules, Lemma 17.27.2.

Definition 31.23.3.01X4 Let X be a locally ringed space. Let F be a sheaf of OX -
modules.

(1) We denote KX(F) the sheaf of KX -modules which is the sheafification of
the presheaf U 7→ S(U)−1F(U). Equivalently KX(F) = F ⊗OX

KX (see
above).

(2) A meromorphic section of F is a global section of KX(F).

In particular we have

KX(F)x = Fx ⊗OX,x
KX,x = S−1

x Fx

for any point x ∈ X. However, one has to be careful since it may not be the case
that Sx is the set of nonzerodivisors in the local ring OX,x. Namely, there is always
an injective map

KX,x −→ Q(OX,x)

to the total quotient ring. It is also surjective if and only if Sx is the set of nonzero-
divisors in OX,x. The sheaves of meromorphic sections aren’t quasi-coherent mod-
ules in general, but they do have some properties in common with quasi-coherent
modules.

Definition 31.23.4.02OT Let f : (X,OX) → (Y,OY ) be a morphism of locally ringed
spaces. We say that pullbacks of meromorphic functions are defined for f if for every
pair of open U ⊂ X, V ⊂ Y such that f(U) ⊂ V , and any section s ∈ Γ(V,SY ) the
pullback f ♯(s) ∈ Γ(U,OX) is an element of Γ(U,SX).
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In this case there is an induced map f ♯ : f−1KY → KX , in other words we obtain
a commutative diagram of morphisms of ringed spaces

(X,KX) //

f

��

(X,OX)

f

��
(Y,KY ) // (Y,OY )

We sometimes denote f∗(s) = f ♯(s) for a section s ∈ Γ(Y,KY ).

Lemma 31.23.5.02OU Let f : X → Y be a morphism of schemes. In each of the following
cases pullbacks of meromorphic functions are defined.

(1) every weakly associated point of X maps to a generic point of an irre-
ducible component of Y ,

(2) X, Y are integral and f is dominant,
(3) X is integral and the generic point of X maps to a generic point of an

irreducible component of Y ,
(4) X is reduced and every generic point of every irreducible component of X

maps to the generic point of an irreducible component of Y ,
(5) X is locally Noetherian, and any associated point of X maps to a generic

point of an irreducible component of Y ,
(6) X is locally Noetherian, has no embedded points and any generic point of

an irreducible component of X maps to the generic point of an irreducible
component of Y , and

(7) f is flat.

Proof. The question is local on X and Y . Hence we reduce to the case where
X = Spec(A), Y = Spec(R) and f is given by a ring map φ : R → A. By the
characterization of regular sections of the structure sheaf in Lemma 31.14.7 we
have to show that R → A maps nonzerodivisors to nonzerodivisors. Let t ∈ R be
a nonzerodivisor.
If R → A is flat, then t : R → R being injective shows that t : A → A is injective.
This proves (7).
In the other cases we note that t is not contained in any of the minimal primes
of R (because every element of a minimal prime in a ring is a zerodivisor). Hence
in case (1) we see that φ(t) is not contained in any weakly associated prime of A.
Thus this case follows from Algebra, Lemma 10.66.7. Case (5) is a special case of
(1) by Lemma 31.5.8. Case (6) follows from (5) and the definitions. Case (4) is a
special case of (1) by Lemma 31.5.12. Cases (2) and (3) are special cases of (4). □

Lemma 31.23.6.0EMF Let X be a scheme such that
(a) every weakly associated point of X is a generic point of an irreducible

component of X, and
(b) any quasi-compact open has a finite number of irreducible components.

Let X0 be the set of generic points of irreducible components of X. Then we have

KX =
⊕

η∈X0
jη,∗OX,η =

∏
η∈X0

jη,∗OX,η

where jη : Spec(OX,η)→ X is the canonical map of Schemes, Section 26.13. More-
over

https://stacks.math.columbia.edu/tag/02OU
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(1) KX is a quasi-coherent sheaf of OX -algebras,
(2) for every quasi-coherent OX -module F the sheaf

KX(F) =
⊕

η∈X0
jη,∗Fη =

∏
η∈X0

jη,∗Fη

of meromorphic sections of F is quasi-coherent,
(3) Sx ⊂ OX,x is the set of nonzerodivisors for any x ∈ X,
(4) KX,x is the total quotient ring of OX,x for any x ∈ X,
(5) KX(U) equals the total quotient ring of OX(U) for any affine open U ⊂ X,
(6) the ring of rational functions of X (Morphisms, Definition 29.49.3) is the

ring of meromorphic functions on X, in a formula: R(X) = Γ(X,KX).

Proof. Observe that a locally finite direct sum of sheaves of modules is equal to
the product since you can check this on stalks for example. Then since KX(F) =
F⊗OX

KX we see that (2) follows from the other statements. Also, observe that part
(6) follows from the initial statement of the lemma and Morphisms, Lemma 29.49.5
when X0 is finite; the general case of (6) follows from this by glueing (argument
omitted).

Let j : Y =
∐
η∈X0 Spec(OX,η) → X be the product of the morphisms jη. We

have to show that KX = j∗OY . First note that KY = OY as Y is a disjoint
union of spectra of local rings of dimension 0: in a local ring of dimension zero any
nonzerodivisor is a unit. Next, note that pullbacks of meromorphic functions are
defined for j by Lemma 31.23.5. This gives a map

KX −→ j∗OY .

Let Spec(A) = U ⊂ X be an affine open. Then A is a ring with finitely many
minimal primes q1, . . . , qt and every weakly associated prime of A is one of the qi.
We obtain Q(A) =

∏
Aqi by Algebra, Lemmas 10.25.4 and 10.66.7. In other words,

already the value of the presheaf U 7→ S(U)−1OX(U) agrees with j∗OY (U) on our
affine open U . Hence the displayed map is an isomorphism which proves the first
displayed equality in the statement of the lemma.

Finally, we prove (1), (3), (4), and (5). Part (5) we saw during the course of the
proof that KX = j∗OY . The morphism j is quasi-compact by our assumption
that the set of irreducible components of X is locally finite. Hence j is quasi-
compact and quasi-separated (as Y is separated). By Schemes, Lemma 26.24.1
j∗OY is quasi-coherent. This proves (1). Let x ∈ X. We may choose an affine
open neighbourhood U = Spec(A) of x all of whose irreducible components pass
through x. Then A ⊂ Ap because every weakly associated prime of A is contained
in p hence elements of A \ p are nonzerodivisors by Algebra, Lemma 10.66.7. It
follows easily that any nonzerodivisor of Ap is the image of a nonzerodivisor on a
(possibly smaller) affine open neighbourhood of x. This proves (3). Part (4) follows
from part (3) by computing stalks. □

Definition 31.23.7.02OX Let X be a locally ringed space. Let L be an invertible OX -
module. A meromorphic section s of L is said to be regular if the induced map
KX → KX(L) is injective. In other words, s is a regular section of the invertible
KX -module KX(L), see Definition 31.14.6.

Let us spell out when (regular) meromorphic sections can be pulled back.

https://stacks.math.columbia.edu/tag/02OX
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Lemma 31.23.8.02OY Let f : X → Y be a morphism of locally ringed spaces. Assume
that pullbacks of meromorphic functions are defined for f (see Definition 31.23.4).

(1) Let F be a sheaf of OY -modules. There is a canonical pullback map
f∗ : Γ(Y,KY (F))→ Γ(X,KX(f∗F)) for meromorphic sections of F .

(2) Let L be an invertible OX -module. A regular meromorphic section s of L
pulls back to a regular meromorphic section f∗s of f∗L.

Proof. Omitted. □

Lemma 31.23.9.02P0 Let X be a scheme. Let L be an invertible OX -module. Let s
be a regular meromorphic section of L. Let us denote I ⊂ OX the sheaf of ideals
defined by the rule

I(V ) = {f ∈ OX(V ) | fs ∈ L(V )}.
The formula makes sense since L(V ) ⊂ KX(L)(V ). Then I is a quasi-coherent
sheaf of ideals and we have injective maps

1 : I −→ OX , s : I −→ L
whose cokernels are supported on closed nowhere dense subsets of X.

Proof. The question is local on X. Hence we may assume that X = Spec(A), and
L = OX . After shrinking further we may assume that s = a/b with a, b ∈ A both
nonzerodivisors in A. Set I = {x ∈ A | x(a/b) ∈ A}.
To show that I is quasi-coherent we have to show that If = {x ∈ Af | x(a/b) ∈ Af}
for every f ∈ A. If c/fn ∈ Af , (c/fn)(a/b) ∈ Af , then we see that fmc(a/b) ∈ A
for some m, hence c/fn ∈ If . Conversely it is easy to see that If is contained in
{x ∈ Af | x(a/b) ∈ Af}. This proves quasi-coherence.
Let us prove the final statement. It is clear that (b) ⊂ I. Hence V (I) ⊂ V (b) is a
nowhere dense subset as b is a nonzerodivisor. Thus the cokernel of 1 is supported
in a nowhere dense closed set. The same argument works for the cokernel of s since
s(b) = (a) ⊂ sI ⊂ A. □

Definition 31.23.10.02P1 Let X be a scheme. Let L be an invertible OX -module. Let s
be a regular meromorphic section of L. The sheaf of ideals I constructed in Lemma
31.23.9 is called the ideal sheaf of denominators of s.

31.24. Meromorphic functions and sections; Noetherian case

0EMG For locally Noetherian schemes we can prove some results about the sheaf of mero-
morphic functions. However, there is an example in [Kle79] showing that KX need
not be quasi-coherent for a Noetherian scheme X.

Lemma 31.24.1.08I7 Let X be a quasi-compact scheme. Let h ∈ Γ(X,OX) and f ∈
Γ(X,KX) such that f restricts to zero on Xh. Then hnf = 0 for some n≫ 0.

Proof. We can find a covering of X by affine opens U such that f |U = s−1a with
a ∈ OX(U) and s ∈ S(U). SinceX is quasi-compact we can cover it by finitely many
affine opens of this form. Thus it suffices to prove the lemma when X = Spec(A)
and f = s−1a. Note that s ∈ A is a nonzerodivisor hence it suffices to prove
the result when f = a. The condition f |Xh = 0 implies that a maps to zero in
Ah = OX(Xh) as OX ⊂ KX . Thus hna = 0 for some n > 0 as desired. □

Lemma 31.24.2.02OV Let X be a locally Noetherian scheme.
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(1) For any x ∈ X we have Sx ⊂ OX,x is the set of nonzerodivisors, and hence
KX,x is the total quotient ring of OX,x.

(2) For any affine open U ⊂ X the ring KX(U) equals the total quotient ring
of OX(U).

Proof. To prove this lemma we may assume X is the spectrum of a Noetherian ring
A. Say x ∈ X corresponds to p ⊂ A.
Proof of (1). It is clear that Sx is contained in the set of nonzerodivisors of OX,x =
Ap. For the converse, let f, g ∈ A, g ̸∈ p and assume f/g is a nonzerodivisor in Ap.
Let I = {a ∈ A | af = 0}. Then we see that Ip = 0 by exactness of localization.
Since A is Noetherian we see that I is finitely generated and hence that g′I = 0
for some g′ ∈ A, g′ ̸∈ p. Hence f is a nonzerodivisor in Ag′ , i.e., in a Zariski open
neighbourhood of p. Thus f/g is an element of Sx.
Proof of (2). Let f ∈ Γ(X,KX) be a meromorphic function. Set I = {a ∈ A | af ∈
A}. Fix a prime p ⊂ A corresponding to the point x ∈ X. By (1) we can write
the image of f in the stalk at p as a/b, a, b ∈ Ap with b ∈ Ap not a zerodivisor.
Write b = c/d with c, d ∈ A, d ̸∈ p. Then ad− cf is a section of KX which vanishes
in an open neighbourhood of x. Say it vanishes on D(e) with e ∈ A, e ̸∈ p. Then
en(ad− cf) = 0 for some n≫ 0 by Lemma 31.24.1. Thus enc ∈ I and enc maps to
a nonzerodivisor in Ap. Let Ass(A) = {q1, . . . , qt} be the associated primes of A.
By looking at IAqi and using Algebra, Lemma 10.63.15 the above says that I ̸⊂ qi
for each i. By Algebra, Lemma 10.15.2 there exists an element x ∈ I, x ̸∈

⋃
qi. By

Algebra, Lemma 10.63.9 we see that x is not a zerodivisor on A. Hence f = (xf)/x
is an element of the total ring of fractions of A. This proves (2). □

Lemma 31.24.3.0EMH Let X be a locally Noetherian scheme having no embedded points.
Let X0 be the set of generic points of irreducible components of X. Then we have

KX =
⊕

η∈X0
jη,∗OX,η =

∏
η∈X0

jη,∗OX,η

where jη : Spec(OX,η)→ X is the canonical map of Schemes, Section 26.13. More-
over

(1) KX is a quasi-coherent sheaf of OX -algebras,
(2) for every quasi-coherent OX -module F the sheaf

KX(F) =
⊕

η∈X0
jη,∗Fη =

∏
η∈X0

jη,∗Fη

of meromorphic sections of F is quasi-coherent, and
(3) the ring of rational functions of X is the ring of meromorphic functions

on X, in a formula: R(X) = Γ(X,KX).

Proof. This lemma is a special case of Lemma 31.23.6 because in the locally Noe-
therian case weakly associated points are the same thing as associated points by
Lemma 31.5.8. □

Lemma 31.24.4.0EMI Let X be a locally Noetherian scheme having no embedded points.
Let L be an invertible OX -module. Then L has a regular meromorphic section.

Proof. For each generic point η of X pick a generator sη of the free rank 1 module
Lη over the artinian local ring OX,η. It follows immediately from the description of
KX and KX(L) in Lemma 31.24.3 that s =

∏
sη is a regular meromorphic section

of L. □

https://stacks.math.columbia.edu/tag/0EMH
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Lemma 31.24.5.02P2 Suppose given
(1) X a locally Noetherian scheme,
(2) L an invertible OX -module,
(3) s a regular meromorphic section of L, and
(4) F coherent on X without embedded associated points and Supp(F) = X.

Let I ⊂ OX be the ideal of denominators of s. Let T ⊂ X be the union of the
supports of OX/I and L/s(I) which is a nowhere dense closed subset T ⊂ X
according to Lemma 31.23.9. Then there are canonical injective maps

1 : IF → F , s : IF → F ⊗OX
L

whose cokernels are supported on T .

Proof. Reduce to the affine case with L ∼= OX , and s = a/b with a, b ∈ A both
nonzerodivisors. Proof of reduction step omitted. Write F = M̃ . Let I = {x ∈
A | x(a/b) ∈ A} so that I = Ĩ (see proof of Lemma 31.23.9). Note that T =
V (I) ∪ V ((a/b)I). For any A-module M consider the map 1 : IM → M ; this is
the map that gives rise to the map 1 of the lemma. Consider on the other hand
the map σ : IM → Mb, x 7→ ax/b. Since b is not a zerodivisor in A, and since M
has support Spec(A) and no embedded primes we see that b is a nonzerodivisor on
M also. Hence M ⊂ Mb. By definition of I we have σ(IM) ⊂ M as submodules
of Mb. Hence we get an A-module map s : IM → M (namely the unique map
such that s(z)/1 = σ(z) in Mb for all z ∈ IM). It is injective because a is a
nonzerodivisor also (on both A and M). It is clear that M/IM is annihilated by I
and that M/s(IM) is annihilated by (a/b)I. Thus the lemma follows. □

31.25. Meromorphic functions and sections; reduced case

0EMJ For a scheme which is reduced and which locally has finitely many irreducible
components, the sheaf of meromorphic functions is quasi-coherent.

Lemma 31.25.1.02OW Let X be a reduced scheme such that any quasi-compact open
has a finite number of irreducible components. Let X0 be the set of generic points
of irreducible components of X. Then we have

KX =
⊕

η∈X0
jη,∗κ(η) =

∏
η∈X0

jη,∗κ(η)

where jη : Spec(κ(η))→ X is the canonical map of Schemes, Section 26.13. More-
over

(1) KX is a quasi-coherent sheaf of OX -algebras,
(2) for every quasi-coherent OX -module F the sheaf

KX(F) =
⊕

η∈X0
jη,∗Fη =

∏
η∈X0

jη,∗Fη

of meromorphic sections of F is quasi-coherent,
(3) Sx ⊂ OX,x is the set of nonzerodivisors for any x ∈ X,
(4) KX,x is the total quotient ring of OX,x for any x ∈ X,
(5) KX(U) equals the total quotient ring of OX(U) for any affine open U ⊂ X,
(6) the ring of rational functions of X is the ring of meromorphic functions

on X, in a formula: R(X) = Γ(X,KX).

Proof. This lemma is a special case of Lemma 31.23.6 because on a reduced scheme
the weakly associated points are the generic points by Lemma 31.5.12. □

https://stacks.math.columbia.edu/tag/02P2
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Lemma 31.25.2.035T Let X be a scheme. Assume X is reduced and any quasi-compact
open U ⊂ X has a finite number of irreducible components. Then the normalization
morphism ν : Xν → X is the morphism

Spec
X

(O′) −→ X

where O′ ⊂ KX is the integral closure of OX in the sheaf of meromorphic functions.

Proof. Compare the definition of the normalization morphism ν : Xν → X (see
Morphisms, Definition 29.54.1) with the description of KX in Lemma 31.25.1 above.

□

Lemma 31.25.3.01X5 Let X be an integral scheme with generic point η. We have
(1) the sheaf of meromorphic functions is isomorphic to the constant sheaf

with value the function field (see Morphisms, Definition 29.49.6) of X.
(2) for any quasi-coherent sheaf F on X the sheaf KX(F) is isomorphic to

the constant sheaf with value Fη.

Proof. Omitted. □

In some cases we can show regular meromorphic sections exist.

Lemma 31.25.4.02OZ Let X be a scheme. Let L be an invertible OX -module. In each
of the following cases L has a regular meromorphic section:

(1) X is integral,
(2) X is reduced and any quasi-compact open has a finite number of irre-

ducible components,
(3) X is locally Noetherian and has no embedded points.

Proof. In case (1) let η ∈ X be the generic point. We have seen in Lemma 31.25.3
that KX , resp. KX(L) is the constant sheaf with value κ(η), resp. Lη. Since
dimκ(η) Lη = 1 we can pick a nonzero element s ∈ Lη. Clearly s is a regular
meromorphic section of L. In case (2) pick sη ∈ Lη nonzero for all generic points η
of X; this is possible as Lη is a 1-dimensional vector space over κ(η). It follows im-
mediately from the description of KX and KX(L) in Lemma 31.25.1 that s =

∏
sη

is a regular meromorphic section of L. Case (3) is Lemma 31.24.4. □

31.26. Weil divisors

0BE0 We will introduce Weil divisors and rational equivalence of Weil divisors for locally
Noetherian integral schemes. Since we are not assuming our schemes are quasi-
compact we have to be a little careful when defining Weil divisors. We have to
allow infinite sums of prime divisors because a rational function may have infinitely
many poles for example. For quasi-compact schemes our Weil divisors are finite
sums as usual. Here is a basic lemma we will often use to prove collections of closed
subschemes are locally finite.

Lemma 31.26.1.0BE1 Let X be a locally Noetherian scheme. Let Z ⊂ X be a closed
subscheme. The collection of irreducible components of Z is locally finite in X.

Proof. Let U ⊂ X be a quasi-compact open subscheme. Then U is a Noether-
ian scheme, and hence has a Noetherian underlying topological space (Properties,
Lemma 28.5.5). Hence every subspace is Noetherian and has finitely many irre-
ducible components (see Topology, Lemma 5.9.2). □
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Recall that if Z is an irreducible closed subset of a scheme X, then the codimension
of Z in X is equal to the dimension of the local ring OX,ξ, where ξ ∈ Z is the
generic point. See Properties, Lemma 28.10.3.

Definition 31.26.2.0BE2 Let X be a locally Noetherian integral scheme.
(1) A prime divisor is an integral closed subscheme Z ⊂ X of codimension 1.
(2) A Weil divisor is a formal sum D =

∑
nZZ where the sum is over prime

divisors of X and the collection {Z | nZ ̸= 0} is locally finite (Topology,
Definition 5.28.4).

The group of all Weil divisors on X is denoted Div(X).

Our next task is to define the Weil divisor associated to a rational function. In
order to do this we use the order of vanishing of a rational function along a prime
divisor which is defined as follows.

Definition 31.26.3.02RJ Let X be a locally Noetherian integral scheme. Let f ∈ R(X)∗.
For every prime divisor Z ⊂ X we define the order of vanishing of f along Z as the
integer

ordZ(f) = ordOX,ξ
(f)

where the right hand side is the notion of Algebra, Definition 10.121.2 and ξ is the
generic point of Z.

Note that for f, g ∈ R(X)∗ we have
ordZ(fg) = ordZ(f) + ordZ(g).

Of course it can happen that ordZ(f) < 0. In this case we say that f has a pole
along Z and that −ordZ(f) > 0 is the order of pole of f along Z. It is important
to note that the condition ordZ(f) ≥ 0 is not equivalent to the condition f ∈ OX,ξ
unless the local ring OX,ξ is a discrete valuation ring.

Lemma 31.26.4.02RL Let X be a locally Noetherian integral scheme. Let f ∈ R(X)∗.
Then the collections

{Z ⊂ X | Z a prime divisor with generic point ξ and f not in OX,ξ}
and

{Z ⊂ X | Z a prime divisor and ordZ(f) ̸= 0}
are locally finite in X.

Proof. There exists a nonempty open subscheme U ⊂ X such that f corresponds
to a section of Γ(U,O∗

X). Hence the prime divisors which can occur in the sets of
the lemma are all irreducible components of X \ U . Hence Lemma 31.26.1 gives
the desired result. □

This lemma allows us to make the following definition.

Definition 31.26.5.0BE3 Let X be a locally Noetherian integral scheme. Let f ∈ R(X)∗.
The principal Weil divisor associated to f is the Weil divisor

div(f) = divX(f) =
∑

ordZ(f)[Z]

where the sum is over prime divisors and ordZ(f) is as in Definition 31.26.3. This
makes sense by Lemma 31.26.4.

https://stacks.math.columbia.edu/tag/0BE2
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Lemma 31.26.6.02RP Let X be a locally Noetherian integral scheme. Let f, g ∈ R(X)∗.
Then

divX(fg) = divX(f) + divX(g)
as Weil divisors on X.
Proof. This is clear from the additivity of the ord functions. □

We see from the lemma above that the collection of principal Weil divisors form a
subgroup of the group of all Weil divisors. This leads to the following definition.
Definition 31.26.7.0BE4 Let X be a locally Noetherian integral scheme. The Weil divisor
class group of X is the quotient of the group of Weil divisors by the subgroup of
principal Weil divisors. Notation: Cl(X).
By construction we obtain an exact complex

(31.26.7.1)0BE5 R(X)∗ div−−→ Div(X)→ Cl(X)→ 0
which we can think of as a presentation of Cl(X). Our next task is to relate the
Weil divisor class group to the Picard group.

31.27. The Weil divisor class associated to an invertible module

02SE In this section we go through exactly the same progression as in Section 31.26 to
define a canonical map Pic(X)→ Cl(X) on a locally Noetherian integral scheme.
Let X be a scheme. Let L be an invertible OX -module. Let ξ ∈ X be a point. If
sξ, s

′
ξ ∈ Lξ generate Lξ as OX,ξ-module, then there exists a unit u ∈ O∗

X,ξ such
that sξ = us′

ξ. The stalk of the sheaf of meromorphic sections KX(L) of L at x
is equal to KX,x ⊗OX,x

Lx. Thus the image of any meromorphic section s of L in
the stalk at x can be written as s = fsξ with f ∈ KX,x. Below we will abbreviate
this by saying f = s/sξ. Also, if X is integral we have KX,x = R(X) is equal to
the function field of X, so s/sξ ∈ R(X). If s is a regular meromorphic section,
then actually s/sξ ∈ R(X)∗. On an integral scheme a regular meromorphic section
is the same thing as a nonzero meromorphic section. Finally, we see that s/sξ is
independent of the choice of sξ up to multiplication by a unit of the local ring OX,x.
Putting everything together we see the following definition makes sense.
Definition 31.27.1.02SF Let X be a locally Noetherian integral scheme. Let L be an
invertible OX -module. Let s ∈ Γ(X,KX(L)) be a regular meromorphic section of
L. For every prime divisor Z ⊂ X we define the order of vanishing of s along Z as
the integer

ordZ,L(s) = ordOX,ξ
(s/sξ)

where the right hand side is the notion of Algebra, Definition 10.121.2, ξ ∈ Z is the
generic point, and sξ ∈ Lξ is a generator.
As in the case of principal divisors we have the following lemma.
Lemma 31.27.2.02SG Let X be a locally Noetherian integral scheme. Let L be an
invertible OX -module. Let s ∈ KX(L) be a regular (i.e., nonzero) meromorphic
section of L. Then the sets

{Z ⊂ X | Z a prime divisor with generic point ξ and s not in Lξ}
and

{Z ⊂ X | Z is a prime divisor and ordZ,L(s) ̸= 0}
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are locally finite in X.

Proof. There exists a nonempty open subscheme U ⊂ X such that s corresponds
to a section of Γ(U,L) which generates L over U . Hence the prime divisors which
can occur in the sets of the lemma are all irreducible components of X \ U . Hence
Lemma 31.26.1. gives the desired result. □

Lemma 31.27.3.02SH Let X be a locally Noetherian integral scheme. Let L be an
invertible OX -module. Let s, s′ ∈ KX(L) be nonzero meromorphic sections of L.
Then f = s/s′ is an element of R(X)∗ and we have∑

ordZ,L(s)[Z] =
∑

ordZ,L(s′)[Z] + div(f)

as Weil divisors.

Proof. This is clear from the definitions. Note that Lemma 31.27.2 guarantees that
the sums are indeed Weil divisors. □

Definition 31.27.4.0BE6 Let X be a locally Noetherian integral scheme. Let L be an
invertible OX -module.

(1) For any nonzero meromorphic section s of L we define the Weil divisor
associated to s as

divL(s) =
∑

ordZ,L(s)[Z] ∈ Div(X)

where the sum is over prime divisors.
(2) We define Weil divisor class associated to L as the image of divL(s) in

Cl(X) where s is any nonzero meromorphic section of L over X. This is
well defined by Lemma 31.27.3.

As expected this construction is additive in the invertible module.

Lemma 31.27.5.02SL Let X be a locally Noetherian integral scheme. Let L, N be
invertible OX -modules. Let s, resp. t be a nonzero meromorphic section of L, resp.
N . Then st is a nonzero meromorphic section of L ⊗N , and

divL⊗N (st) = divL(s) + divN (t)
in Div(X). In particular, the Weil divisor class of L⊗OX

N is the sum of the Weil
divisor classes of L and N .

Proof. Let s, resp. t be a nonzero meromorphic section of L, resp. N . Then st
is a nonzero meromorphic section of L ⊗ N . Let Z ⊂ X be a prime divisor. Let
ξ ∈ Z be its generic point. Choose generators sξ ∈ Lξ, and tξ ∈ Nξ. Then sξtξ is
a generator for (L ⊗N )ξ. So st/(sξtξ) = (s/sξ)(t/tξ). Hence we see that

divL⊗N ,Z(st) = divL,Z(s) + divN ,Z(t)
by the additivity of the ordZ function. □

In this way we obtain a homomorphism of abelian groups
(31.27.5.1)0BE7 Pic(X) −→ Cl(X)
which assigns to an invertible module its Weil divisor class.

Lemma 31.27.6.0BE8 Let X be a locally Noetherian integral scheme. If X is normal,
then the map (31.27.5.1) Pic(X)→ Cl(X) is injective.
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Proof. Let L be an invertible OX -module whose associated Weil divisor class is
trivial. Let s be a regular meromorphic section of L. The assumption means that
divL(s) = div(f) for some f ∈ R(X)∗. Then we see that t = f−1s is a regular
meromorphic section of L with divL(t) = 0, see Lemma 31.27.3. We will show that
t defines a trivialization of L which finishes the proof of the lemma. In order to
prove this we may work locally on X. Hence we may assume that X = Spec(A)
is affine and that L is trivial. Then A is a Noetherian normal domain and t is an
element of its fraction field such that ordAp

(t) = 0 for all height 1 primes p of A.
Our goal is to show that t is a unit of A. Since Ap is a discrete valuation ring
for height one primes of A (Algebra, Lemma 10.157.4), the condition signifies that
t ∈ A∗

p for all primes p of height 1. This implies t ∈ A and t−1 ∈ A by Algebra,
Lemma 10.157.6 and the proof is complete. □

Lemma 31.27.7.0BE9 Let X be a locally Noetherian integral scheme. Consider the map
(31.27.5.1) Pic(X)→ Cl(X). The following are equivalent

(1) the local rings of X are UFDs, and
(2) X is normal and Pic(X)→ Cl(X) is surjective.

In this case Pic(X)→ Cl(X) is an isomorphism.

Proof. If (1) holds, then X is normal by Algebra, Lemma 10.120.11. Hence the map
(31.27.5.1) is injective by Lemma 31.27.6. Moreover, every prime divisor D ⊂ X is
an effective Cartier divisor by Lemma 31.15.7. In this case the canonical section 1D
of OX(D) (Definition 31.14.1) vanishes exactly along D and we see that the class
of D is the image of OX(D) under the map (31.27.5.1). Thus the map is surjective
as well.
Assume (2) holds. Pick a prime divisor D ⊂ X. Since (31.27.5.1) is surjective
there exists an invertible sheaf L, a regular meromorphic section s, and f ∈ R(X)∗

such that divL(s) + div(f) = [D]. In other words, divL(fs) = [D]. Let x ∈ X
and let A = OX,x. Thus A is a Noetherian local normal domain with fraction field
K = R(X). Every height 1 prime of A corresponds to a prime divisor on X and
every invertible OX -module restricts to the trivial invertible module on Spec(A).
It follows that for every height 1 prime p ⊂ A there exists an element f ∈ K such
that ordAp

(f) = 1 and ordAp′ (f) = 0 for every other height one prime p′. Then
f ∈ A by Algebra, Lemma 10.157.6. Arguing in the same fashion we see that every
element g ∈ p is of the form g = af for some a ∈ A. Thus we see that every height
one prime ideal of A is principal and A is a UFD by Algebra, Lemma 10.120.6. □

31.28. More on invertible modules

0BD6 In this section we discuss some properties of invertible modules.

Lemma 31.28.1.0BD7 Let φ : X → Y be a morphism of schemes. Let L be an invertible
OX -module. Assume that

(1) X is locally Noetherian,
(2) Y is locally Noetherian, integral, and normal,
(3) φ is flat with integral (hence nonempty) fibres,
(4) φ is either quasi-compact or locally of finite type,
(5) L is trivial when restricted to the generic fibre of φ.

Then L ∼= φ∗N for some invertible OY -module N .
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Proof. Let ξ ∈ Y be the generic point. Let Xξ be the scheme theoretic fibre of φ
over ξ. Denote Lξ the pullback of L to Xξ. Assumption (5) means that Lξ is trivial.
Choose a trivializing section s ∈ Γ(Xξ,Lξ). Observe that X is integral by Lemma
31.11.7. Hence we can think of s as a regular meromorphic section of L. Pullbacks
of meromorphic functions are defined for φ by Lemma 31.23.5. Let N ⊂ KY be the
OY -module whose sections over an open V ⊂ Y are those meromorphic functions
g ∈ KY (V ) such that φ∗(g)s ∈ L(φ−1V ). A priori φ∗(g)s is a section of KX(L)
over φ−1V . We claim that N is an invertible OY -module and that the map

φ∗N −→ L, g 7−→ gs

is an isomorphism.
We first prove the claim in the following situation: X and Y are affine and L
trivial. Say Y = Spec(R), X = Spec(A) and s given by the element s ∈ A ⊗R K
where K is the fraction field of R. We can write s = a/r for some nonzero r ∈ R
and a ∈ A. Since s generates L on the generic fibre we see that there exists an
s′ ∈ A⊗RK such that ss′ = 1. Thus we see that s = r′/a′ for some nonzero r′ ∈ R
and a′ ∈ A. Let p1, . . . , pn ⊂ R be the minimal primes over rr′. Each Rpi is a
discrete valuation ring (Algebra, Lemmas 10.60.11 and 10.157.4). By assumption
qi = piA is a prime. Hence qiAqi is generated by a single element and we find
that Aqi is a discrete valuation ring as well (Algebra, Lemma 10.119.7). Of course
Rpi → Aqi has ramification index 1. Let ei, e′

i ≥ 0 be the valuation of a, a′ in Aqi .
Then ei + e′

i is the valuation of rr′ in Rpi . Note that

p
(e1+e′

1)
1 ∩ . . . ∩ p

(en+e′
n)

i = (rr′)
in R by Algebra, Lemma 10.157.6. Set

I = p
(e1)
1 ∩ . . . ∩ p

(en)
i and I ′ = p

(e′
1)

1 ∩ . . . ∩ p
(e′
n)

i

so that II ′ ⊂ (rr′). Observe that

IA = (p(e1)
1 ∩ . . . ∩ p

(en)
i )A = (p1A)(e1) ∩ . . . ∩ (piA)(en)

by Algebra, Lemmas 10.64.3 and 10.39.2. Similarly for I ′A. Hence a ∈ IA and
a′ ∈ I ′A. We conclude that IA⊗A I ′A→ rr′A is surjective. By faithful flatness of
R→ A we find that I ⊗R I ′ → (rr′) is surjective as well. It follows that II ′ = (rr′)
and I and I ′ are finite locally free of rank 1, see Algebra, Lemma 10.120.16. Thus
Zariski locally on R we can write I = (g) and I ′ = (g′) with gg′ = rr′. Then a = ug
and a′ = u′g′ for some u, u′ ∈ A. We conclude that u, u′ are units. Thus Zariski
locally on R we have s = ug/r and the claim follows in this case.
Let y ∈ Y be a point. Pick x ∈ X mapping to y. We may apply the result of
the previous paragraph to Spec(OX,x)→ Spec(OY,y). We conclude there exists an
element g ∈ R(Y )∗ well defined up to multiplication by an element of O∗

Y,y such
that φ∗(g)s generates Lx. Hence φ∗(g)s generates L in a neighbourhood U of x.
Suppose x′ is a second point lying over y and g′ ∈ R(Y )∗ is such that φ∗(g′)s
generates L in an open neighbourhood U ′ of x′. Then we can choose a point x′′ in
U ∩ U ′ ∩ φ−1({y}) because the fibre is irreducible. By the uniqueness for the ring
map OY,y → OX,x′′ we find that g and g′ differ (multiplicatively) by an element in
O∗
Y,y. Hence we see that φ∗(g)s is a generator for L on an open neighbourhood of

φ−1(y). Let Z ⊂ X be the set of points z ∈ X such that φ∗(g)s does not generate
Lz. The arguments above show that Z is closed and that Z = φ−1(T ) for some



31.28. MORE ON INVERTIBLE MODULES 2686

subset T ⊂ Y with y ̸∈ T . If we can show that T is closed, then g will be a generator
for N as an OY -module in the open neighbourhood Y \T of y thereby finishing the
proof (some details omitted).
If φ is quasi-compact, then T is closed by Morphisms, Lemma 29.25.12. If φ is
locally of finite type, then φ is open by Morphisms, Lemma 29.25.10. Then Y \ T
is open as the image of the open X \ Z. □

Lemma 31.28.2.0BD8 Let X be a locally Noetherian scheme. Let U ⊂ X be an open
and let D ⊂ U be an effective Cartier divisor. If OX,x is a UFD for all x ∈ X \ U ,
then there exists an effective Cartier divisor D′ ⊂ X with D = U ∩D′.

Proof. Let D′ ⊂ X be the scheme theoretic image of the morphism D → X. Since
X is locally Noetherian the morphism D → X is quasi-compact, see Properties,
Lemma 28.5.3. Hence the formation of D′ commutes with passing to opens in X by
Morphisms, Lemma 29.6.3. Thus we may assume X = Spec(A) is affine. Let I ⊂ A
be the ideal corresponding to D′. Let p ⊂ A be a prime ideal corresponding to a
point of X \U . To finish the proof it is enough to show that Ip is generated by one
element, see Lemma 31.15.2. Thus we may replace X by Spec(Ap), see Morphisms,
Lemma 29.25.16. In other words, we may assume that X is the spectrum of a
local UFD A. Then all local rings of A are UFD’s. It follows that D =

∑
aiDi

with Di ⊂ U an integral effective Cartier divisor, see Lemma 31.15.11. The generic
points ξi of Di correspond to prime ideals pi ⊂ A of height 1, see Lemma 31.15.3.
Then pi = (fi) for some prime element fi ∈ A and we conclude that D′ is cut out
by
∏
faii as desired. □

Lemma 31.28.3.0BD9 Let X be a locally Noetherian scheme. Let U ⊂ X be an open
and let L be an invertible OU -module. If OX,x is a UFD for all x ∈ X \ U , then
there exists an invertible OX -module L′ with L ∼= L′|U .

Proof. Choose x ∈ X, x ̸∈ U . We will show there exists an affine open neighbour-
hood W ⊂ X, such that L|W∩U extends to an invertible sheaf on W . This implies
by glueing of sheaves (Sheaves, Section 6.33) that we can extend L to the strictly
bigger open U ∪W . Let W = Spec(A) be an affine open neighbourhood. Since
U ∩W is quasi-affine, we see that we can write L|W∩U as O(D1)⊗O(D2)⊗−1 for
some effective Cartier divisors D1, D2 ⊂ W ∩ U , see Lemma 31.15.12. Then D1
and D2 extend to effective Cartier divisors of W by Lemma 31.28.2 which gives us
the extension of the invertible sheaf.
If X is Noetherian (which is the case most used in practice), the above combined
with Noetherian induction finishes the proof. In the general case we argue as
follows. First, because every local ring of a point outside of U is a domain and
X is locally Noetherian, we see that the closure of U in X is open. Thus we may
assume that U ⊂ X is dense and schematically dense. Now we consider the set T
of triples (U ′,L′, α) where U ⊂ U ′ ⊂ X is an open subscheme, L′ is an invertible
OU ′-module, and α : L′|U → L is an isomorphism. We endow T with a partial
ordering ≤ defined by the rule (U ′,L′, α) ≤ (U ′′,L′′, α′) if and only if U ′ ⊂ U ′′ and
there exists an isomorphism β : L′′|U ′ → L′ compatible with α and α′. Observe
that β is unique (if it exists) because U ⊂ X is dense. The first part of the proof
shows that for any element t = (U ′,L′, α) of T with U ′ ̸= X there exists a t′ ∈ T
with t′ > t. Hence to finish the proof it suffices to show that Zorn’s lemma applies.
Thus consider a totally ordered subset I ⊂ T . If i ∈ I corresponds to the triple
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(Ui,Li, αi), then we can construct an invertible module L′ on U ′ =
⋃
Ui as follows.

For W ⊂ U ′ open and quasi-compact we see that W ⊂ Ui for some i and we set
L′(W ) = Li(W )

For the transition maps we use the β’s (which are unique and hence compose
correctly). This defines an invertible O-module L′ on the basis of quasi-compact
opens of U ′ which is sufficient to define an invertible module (Sheaves, Section
6.30). We omit the details. □

Lemma 31.28.4.0BDA Let R be a UFD. The Picard groups of the following are trivial.
(1) Spec(R) and any open subscheme of it.
(2) An

R = Spec(R[x1, . . . , xn]) and any open subscheme of it.
In particular, the Picard group of any open subscheme of affine n-space An

k over a
field k is trivial.

Proof. Since R is a UFD so is any localization of it and any polynomial ring over it
(Algebra, Lemma 10.120.10). Thus if U ⊂ An

R is open, then the map Pic(An
R) →

Pic(U) is surjective by Lemma 31.28.3. The vanishing of Pic(An
R) is equivalent to

the vanishing of the picard group of the UFD R[x1, . . . , xn] which is proved in More
on Algebra, Lemma 15.117.3. □

Lemma 31.28.5.0BXJ Let R be a UFD. The Picard group of Pn
R is Z. More precisely,

there is an isomorphism
Z −→ Pic(Pn

R), m 7−→ OPn
R

(m)
In particular, the Picard group of Pn

k of projective space over a field k is Z.

Proof. Observe that the local rings of X = Pn
R are UFDs because X is covered

by affine pieces isomorphic to An
R and R[x1, . . . , xn] is a UFD (Algebra, Lemma

10.120.10). Hence X is an integral Noetherian scheme all of whose local rings are
UFDs and we see that Pic(X) = Cl(X) by Lemma 31.27.7.
The displayed map is a group homomorphism by Constructions, Lemma 27.10.3.
The map is injective because H0 of OX and OX(m) are non-isomorphic R-modules
if m > 0, see Cohomology of Schemes, Lemma 30.8.1. Let L be an invertible
module on X. Consider the open U = D+(T0) ∼= An

R. The complement H = X \U
is a prime divisor because it is isomorphic to Proj(R[T1, . . . , Tn]) which is integral
by the discussion in the previous paragraph. In fact H is the zero scheme of the
regular global section T0 of OX(1) hence OX(1) maps to the class of H in Cl(X).
By Lemma 31.28.4 we see that L|U ∼= OU . Let s ∈ L(U) be a trivializing section.
Then we can think of s as a regular meromorphic section of L and we see that
necessarily divL(s) = m[H] for some m ∈ Z as H is the only prime divisor of X not
meeting U . In other words, we see that L and OX(m) map to the same element of
Cl(X) and hence L ∼= OX(m) as desired. □

31.29. Weil divisors on normal schemes

0EBK First we discuss properties of reflexive modules.

Lemma 31.29.1.0EBL Let X be an integral locally Noetherian normal scheme. For F
and G coherent reflexive OX -modules the map

(HomOX
(F ,OX)⊗OX

G)∗∗ → HomOX
(F ,G)
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is an isomorphism. The rule F ,G 7→ (F ⊗OX
G)∗∗ defines an abelian group law on

the set of isomorphism classes of rank 1 coherent reflexive OX -modules.

Proof. Although not strictly necessary, we recommend reading Remark 31.12.9 be-
fore proceeding with the proof. Choose an open subscheme j : U → X such that
every irreducible component of X \U has codimension ≥ 2 in X and such that j∗F
and j∗G are finite locally free, see Lemma 31.12.13. The map

HomOU
(j∗F ,OU )⊗OU

j∗G → HomOU
(j∗F , j∗G)

is an isomorphism, because we may check it locally and it is clear when the modules
are finite free. Observe that j∗ applied to the displayed arrow of the lemma gives the
arrow we’ve just shown is an isomorphism (small detail omitted). Since j∗ defines an
equivalence between coherent reflexive modules on U and coherent reflexive modules
on X (by Lemma 31.12.12 and Serre’s criterion Properties, Lemma 28.12.5), we
conclude that the arrow of the lemma is an isomorphism too. If F has rank 1,
then j∗F is an invertible OU -module and the reflexive module F∨ = Hom(F ,OX)
restricts to its inverse. It follows in the same manner as before that (F⊗OX

F∨)∗∗ =
OX . In this way we see that we have inverses for the group law given in the
statement of the lemma. □

Lemma 31.29.2.0EBM Let X be an integral locally Noetherian normal scheme. The
group of rank 1 coherent reflexive OX -modules is isomorphic to the Weil divisor
class group Cl(X) of X.

Proof. Let F be a rank 1 coherent reflexive OX -module. Choose an open U ⊂ X
such that every irreducible component of X \U has codimension ≥ 2 in X and such
that F|U is invertible, see Lemma 31.12.13. Observe that Cl(U) = Cl(X) as the
Weil divisor class group of X only depends on its field of rational functions and the
points of codimension 1 and their local rings. Thus we can define the Weil divisor
class of F to be the Weil divisor class of F|U in Cl(U). We omit the verification
that this is independent of the choice of U .
Denote Cl′(X) the set of isomorphism classes of rank 1 coherent reflexive OX -
modules. The construction above gives a group homorphism

Cl′(X) −→ Cl(X)
because for any pair F ,G of elements of Cl′(X) we can choose a U which works
for both and the assignment (31.27.5.1) sending an invertible module to its Weil
divisor class is a homorphism. If F is in the kernel of this map, then we find that
F|U is trivial (Lemma 31.27.6) and hence F is trivial too by Lemma 31.12.12 and
Serre’s criterion Properties, Lemma 28.12.5. To finish the proof it suffices to check
the map is surjective.
Let D =

∑
nZZ be a Weil divisor on X. We claim that there is an open U ⊂ X

such that every irreducible component of X \ U has codimension ≥ 2 in X and
such that Z|U is an effective Cartier divisor for nZ ̸= 0. To prove the claim we
may assume X is affine. Then we may assume D = n1Z1 + . . . + nrZr is a finite
sum with Z1, . . . , Zr pairwise distinct. After throwing out Zi ∩ Zj for i ̸= j we
may assume Z1, . . . , Zr are pairwise disjoint. This reduces us to the case of a single
prime divisor Z on X. As X is (R1) by Properties, Lemma 28.12.5 the local ring
OX,ξ at the generic point ξ of Z is a discrete valuation ring. Let f ∈ OX,ξ be a
uniformizer. Let V ⊂ X be an open neighbourhood of ξ such that f is the image
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of an element f ∈ OX(V ). After shrinking V we may assume that Z ∩ V = V (f)
scheme theoretically, since this is true in the local ring at ξ. In this case taking

U = X \ (Z \ V ) = (X \ Z) ∪ V
gives the desired open, thereby proving the claim.
In order to show that the divisor class of D is in the image, we may write D =∑
nZ<0 nZZ −

∑
nZ>0(−nZ)Z. By additivity of the map constructed above, we

may and do assume nZ ≤ 0 for all prime divisors Z (this step may be avoided if
the reader so desires). Let U ⊂ X be as in the claim above. If U is quasi-compact,
then we write D|U = −n1Z1 − . . . − nrZr for pairwise distinct prime divisors Zi
and ni > 0 and we consider the invertible OU -module

L = In1
1 . . . Inrr ⊂ OU

where Ii is the ideal sheaf of Zi. This is invertible by our choice of U and Lemma
31.13.7. Also divL(1) = D|U . Since L = F|U for some rank 1 coherent reflexive
OX -module F by Lemma 31.12.12 we find that D is in the image of our map.
If U is not quasi-compact, then we define L ⊂ OU locally by the displayed formula
above. The reader shows that the construction glues and finishes the proof exactly
as before. Details omitted. □

Lemma 31.29.3.0EBN Let X be an integral locally Noetherian normal scheme. Let F
be a rank 1 coherent reflexive OX -module. Let s ∈ Γ(X,F). Let

U = {x ∈ X | s : OX,x → Fx is an isomorphism}
Then j : U → X is an open subscheme of X and

j∗OU = colim(OX
s−→ F s−→ F [2] s−→ F [3] s−→ . . .)

where F [1] = F and inductively F [n+1] = (F ⊗OX
F [n])∗∗.

Proof. The set U is open by Modules, Lemmas 17.9.4 and 17.12.6. Observe that
j is quasi-compact by Properties, Lemma 28.5.3. To prove the final statement it
suffices to show for every quasi-compact open W ⊂ X there is an isomorphism

colim Γ(W,F [n]) −→ Γ(U ∩W,OU )
of OX(W )-modules compatible with restriction maps. We will omit the verification
of compatibilities. After replacing X by W and rewriting the above in terms of
homs, we see that it suffices to construct an isomorphism

colim HomOX
(OX ,F [n]) −→ HomOU

(OU ,OU )
Choose an open V ⊂ X such that every irreducible component of X \ V has codi-
mension ≥ 2 in X and such that F|V is invertible, see Lemma 31.12.13. Then
restriction defines an equivalence of categories between rank 1 coherent reflexive
modules on X and V and between rank 1 coherent reflexive modules on U and
V ∩U . See Lemma 31.12.12 and Serre’s criterion Properties, Lemma 28.12.5. Thus
it suffices to construct an isomorphism

colim Γ(V, (F|V )⊗n) −→ Γ(V ∩ U,OU )
Since F|V is invertible and since U ∩ V is equal to the set of points where s|V
generates this invertible module, this is a special case of Properties, Lemma 28.17.2
(there is an explicit formula for the map as well). □
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Lemma 31.29.4.0EBP Assumptions and notation as in Lemma 31.29.3. If s is nonzero,
then every irreducible component of X \ U has codimension 1 in X.

Proof. Let ξ ∈ X be a generic point of an irreducible component Z of X \U . After
replacing X by an open neighbourhood of ξ we may assume that Z = X \ U is
irreducible. Since s : OU → F|U is an isomorphism, if the codimension of Z in X is
≥ 2, then s : OX → F is an isomorphism by Lemma 31.12.12 and Serre’s criterion
Properties, Lemma 28.12.5. This would mean that Z = ∅, a contradiction. □

Remark 31.29.5.0EBQ Let A be a Noetherian normal domain. Let M be a rank 1 finite
reflexive A-module. Let s ∈ M be nonzero. Let p1, . . . , pr be the height 1 primes
of A in the support of M/As. Then the open U of Lemma 31.29.3 is

U = Spec(A) \ (V (p1) ∪ . . . ∪ V (pr))
by Lemma 31.29.4. Moreover, if M [n] denotes the reflexive hull of M ⊗A . . .⊗AM
(n-factors), then

Γ(U,OU ) = colimM [n]

according to Lemma 31.29.3.

Lemma 31.29.6.0EBR Assumptions and notation as in Lemma 31.29.3. The following
are equivalent

(1) the inclusion morphism j : U → X is affine, and
(2) for every x ∈ X \ U there is an n > 0 such that sn ∈ mxF [n]

x .

Proof. Assume (1). Then for x ∈ X \ U the inverse image Ux of U under the
canonical morphism fx : Spec(OX,x) → X is affine and does not contain x. Thus
mxΓ(Ux,OUx) is the unit ideal. In particular, we see that we can write

1 =
∑

figi

with fi ∈ mx and gi ∈ Γ(Ux,OUx). By Lemma 31.29.3 we have Γ(Ux,OUx) =
colimF [n]

x with transition maps given by multiplication by s. Hence for some n > 0
we have

sn =
∑

fiti

for some ti = sngi ∈ F [n]
x . Thus (2) holds.

Conversely, assume that (2) holds. To prove j is affine is local on X, see Morphisms,
Lemma 29.11.3. Thus we may and do assume that X is affine. Our goal is to show
that U is affine. By Cohomology of Schemes, Lemma 30.17.8 it suffices to show
that Hp(U,OU ) = 0 for p > 0. Since Hp(U,OU ) = H0(X,Rpj∗OU ) (Cohomology
of Schemes, Lemma 30.4.6) and since Rpj∗OU is quasi-coherent (Cohomology of
Schemes, Lemma 30.4.5) it is enough to show the stalk (Rpj∗OU )x at a point
x ∈ X is zero. Consider the base change diagram

Ux

jx

��

// U

j

��
Spec(OX,x) // X

By Cohomology of Schemes, Lemma 30.5.2 we have (Rpj∗OU )x = Rpjx,∗OUx .
Hence we may assume X is local with closed point x and we have to show U
is affine (because this is equivalent to the desired vanishing by the reference given
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above). In particular d = dim(X) is finite (Algebra, Proposition 10.60.9). If x ∈ U ,
then U = X and the result is clear. If d = 0 and x ̸∈ U , then U = ∅ and the result
is clear. Now assume d > 0 and x ̸∈ U . Since j∗OU = colimF [n] our assumption
means that we can write

1 =
∑

figi

for some n > 0, fi ∈ mx, and gi ∈ O(U). By induction on d we know that D(fi)∩U
is affine for all i: going through the whole argument just given with X replaced by
D(fi) we end up with Noetherian local rings whose dimension is strictly smaller
than d. Hence U is affine by Properties, Lemma 28.27.3 as desired. □

31.30. Relative Proj

07ZW Some results on relative Proj. First some very basic results. Recall that a relative
Proj is always separated over the base, see Constructions, Lemma 27.16.9.

Lemma 31.30.1.07ZX Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A)→ S be the relative Proj of A. If one of the following holds

(1) A is of finite type as a sheaf of A0-algebras,
(2) A is generated by A1 as an A0-algebra and A1 is a finite type A0-module,
(3) there exists a finite type quasi-coherent A0-submodule F ⊂ A+ such that
A+/FA is a locally nilpotent sheaf of ideals of A/FA,

then p is quasi-compact.

Proof. The question is local on the base, see Schemes, Lemma 26.19.2. Thus we
may assume S is affine. Say S = Spec(R) and A corresponds to the graded R-
algebra A. Then X = Proj(A), see Constructions, Section 27.15. In case (1) we
may after possibly localizing more assume that A is generated by homogeneous
elements f1, . . . , fn ∈ A+ over A0. Then A+ = (f1, . . . , fn) by Algebra, Lemma
10.58.1. In case (3) we see that F = M̃ for some finite type A0-module M ⊂ A+.
Say M =

∑
A0fi. Say fi =

∑
fi,j is the decomposition into homogeneous pieces.

The condition in (3) signifies that A+ ⊂
√

(fi,j). Thus in both cases we conclude
that Proj(A) is quasi-compact by Constructions, Lemma 27.8.9. Finally, (2) follows
from (1). □

Lemma 31.30.2.07ZY Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A) → S be the relative Proj of A. If A is of finite type as a

sheaf of OS-algebras, then p is of finite type and OX(d) is a finite type OX -module.

Proof. The assumption implies that p is quasi-compact, see Lemma 31.30.1. Hence
it suffices to show that p is locally of finite type. Thus the question is local on
the base and target, see Morphisms, Lemma 29.15.2. Say S = Spec(R) and A
corresponds to the graded R-algebra A. After further localizing on S we may
assume that A is a finite type R-algebra. The scheme X is constructed out of
glueing the spectra of the rings A(f) for f ∈ A+ homogeneous. Each of these is of
finite type over R by Algebra, Lemma 10.57.9 part (1). Thus Proj(A) is of finite
type over R. To see the statement on OX(d) use part (2) of Algebra, Lemma
10.57.9. □
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Lemma 31.30.3.07ZZ Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A) → S be the relative Proj of A. If OS → A0 is an integral

algebra map4 and A is of finite type as an A0-algebra, then p is universally closed.

Proof. The question is local on the base. Thus we may assume that X = Spec(R) is
affine. Let A be the quasi-coherent OX -algebra associated to the graded R-algebra
A. The assumption is that R → A0 is integral and A is of finite type over A0.
Write X → Spec(R) as the composition X → Spec(A0)→ Spec(R). Since R→ A0
is an integral ring map, we see that Spec(A0) → Spec(R) is universally closed,
see Morphisms, Lemma 29.44.7. The quasi-compact (see Constructions, Lemma
27.8.9) morphism

X = Proj(A)→ Spec(A0)
satisfies the existence part of the valuative criterion by Constructions, Lemma
27.8.11 and hence it is universally closed by Schemes, Proposition 26.20.6. Thus
X → Spec(R) is universally closed as a composition of universally closed mor-
phisms. □

Lemma 31.30.4.0800 Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A)→ S be the relative Proj of A. The following conditions are

equivalent
(1) A0 is a finite type OS-module and A is of finite type as an A0-algebra,
(2) A0 is a finite type OS-module and A is of finite type as an OS-algebra

If these conditions hold, then p is locally projective and in particular proper.

Proof. Assume that A0 is a finite type OS-module. Choose an affine open U =
Spec(R) ⊂ X such that A corresponds to a graded R-algebra A with A0 a finite
R-module. Condition (1) means that (after possibly localizing further on S) that
A is a finite type A0-algebra and condition (2) means that (after possibly localizing
further on S) that A is a finite type R-algebra. Thus these conditions imply each
other by Algebra, Lemma 10.6.2.
A locally projective morphism is proper, see Morphisms, Lemma 29.43.5. Thus
we may now assume that S = Spec(R) and X = Proj(A) and that A0 is finite
over R and A of finite type over R. We will show that X = Proj(A)→ Spec(R) is
projective. We urge the reader to prove this for themselves, by directly constructing
a closed immersion of X into a projective space over R, instead of reading the
argument we give below.
By Lemma 31.30.2 we see that X is of finite type over Spec(R). Constructions,
Lemma 27.10.6 tells us that OX(d) is ample on X for some d ≥ 1 (see Properties,
Section 28.26). Hence X → Spec(R) is quasi-projective (by Morphisms, Definition
29.40.1). By Morphisms, Lemma 29.43.12 we conclude that X is isomorphic to an
open subscheme of a scheme projective over Spec(R). Therefore, to finish the proof,
it suffices to show that X → Spec(R) is universally closed (use Morphisms, Lemma
29.41.7). This follows from Lemma 31.30.3. □

Lemma 31.30.5.0B3U Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A)→ S be the relative Proj of A. If A is generated by A1 over

A0 and A1 is a finite type OS-module, then p is projective.
4In other words, the integral closure of OS in A0, see Morphisms, Definition 29.53.2, equals

A0.
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Proof. Namely, the morphism associated to the graded OS-algebra map
Sym∗

OX
(A1) −→ A

is a closed immersion X → P(A1), see Constructions, Lemma 27.18.5. □

Lemma 31.30.6.0D4C Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A)→ S be the relative Proj of A. If Ad is a flat OS-module for

d≫ 0, then p is flat and OX(d) is flat over S.

Proof. Affine locally flatness of X over S reduces to the following statement: Let R
be a ring, let A be a graded R-algebra with Ad flat over R for d≫ 0, let f ∈ Ad for
some d > 0, then A(f) is flat over R. Since A(f) = colimAnd where the transition
maps are given by multiplication by f , this follows from Algebra, Lemma 10.39.3.
Argue similarly to get flatness of OX(d) over S. □

Lemma 31.30.7.0D4D Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A) → S be the relative Proj of A. If A is a finitely presented

OS-algebra, then p is of finite presentation and OX(d) is an OX -module of finite
presentation.

Proof. Affine locally this reduces to the following statement: Let R be a ring and
let A be a finitely presented graded R-algebra. Then Proj(A)→ Spec(R) is of finite
presentation and OProj(A)(d) is a OProj(A)-module of finite presentation. The finite
presentation condition implies we can choose a presentation

A = R[X1, . . . , Xn]/(F1, . . . , Fm)
where R[X1, . . . , Xn] is a polynomial ring graded by giving weights di to Xi and
F1, . . . , Fm are homogeneous polynomials of degree ej . Let R0 ⊂ R be the sub-
ring generated by the coefficients of the polynomials F1, . . . , Fm. Then we set
A0 = R0[X1, . . . , Xn]/(F1, . . . , Fm). By construction A = A0 ⊗R0 R. Thus by
Constructions, Lemma 27.11.6 it suffices to prove the result for X0 = Proj(A0)
over R0. By Lemma 31.30.2 we know X0 is of finite type over R0 and OX0(d) is
a quasi-coherent OX0-module of finite type. Since R0 is Noetherian (as a finitely
generated Z-algebra) we see that X0 is of finite presentation over R0 (Morphisms,
Lemma 29.21.9) and OX0(d) is of finite presentation by Cohomology of Schemes,
Lemma 30.9.1. This finishes the proof. □

31.31. Closed subschemes of relative proj

084M Some auxiliary lemmas about closed subschemes of relative proj.

Lemma 31.31.1.0801 Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A) → S be the relative Proj of A. Let i : Z → X be a closed

subscheme. Denote I ⊂ A the kernel of the canonical map

A −→
⊕

d≥0
p∗ ((i∗OZ)(d)) .

If p is quasi-compact, then there is an isomorphism Z = Proj
S

(A/I).

Proof. The morphism p is separated by Constructions, Lemma 27.16.9. As p is
quasi-compact, p∗ transforms quasi-coherent modules into quasi-coherent modules,
see Schemes, Lemma 26.24.1. Hence I is a quasi-coherent OS-module. In particu-
lar, B = A/I is a quasi-coherent graded OS-algebra. The functoriality morphism
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Z ′ = Proj
S

(B)→ Proj
S

(A) is everywhere defined and a closed immersion, see Con-
structions, Lemma 27.18.3. Hence it suffices to prove Z = Z ′ as closed subschemes
of X.

Having said this, the question is local on the base and we may assume that S =
Spec(R) and that X = Proj(A) for some graded R-algebra A. Assume I = Ĩ for
I ⊂ A a graded ideal. By Constructions, Lemma 27.8.9 there exist f0, . . . , fn ∈ A+
such that A+ ⊂

√
(f0, . . . , fn) in other words X =

⋃
D+(fi). Therefore, it suffices

to check that Z∩D+(fi) = Z ′∩D+(fi) for each i. By renumbering we may assume
i = 0. Say Z∩D+(f0), resp. Z ′∩D+(f0) is cut out by the ideal J , resp. J ′ of A(f0).

The inclusion J ′ ⊂ J . Let d be the least common multiple of deg(f0), . . . ,deg(fn).
Note that each of the twists OX(nd) is invertible, trivialized by f

nd/ deg(fi)
i over

D+(fi), and that for any quasi-coherent module F on X the multiplication maps
OX(nd) ⊗OX

F(m) → F(nd + m) are isomorphisms, see Constructions, Lemma
27.10.2. Observe that J ′ is the ideal generated by the elements g/fe0 where g ∈ I is
homogeneous of degree edeg(f0) (see proof of Constructions, Lemma 27.11.3). Of
course, by replacing g by f l0g for suitable l we may always assume that d|e. Then,
since g vanishes as a section of OX(edeg(f0)) restricted to Z we see that g/fd0 is
an element of J . Thus J ′ ⊂ J .

Conversely, suppose that g/fe0 ∈ J . Again we may assume d|e. Pick i ∈ {1, . . . , n}.
Then Z ∩D+(fi) is cut out by some ideal Ji ⊂ A(fi). Moreover,

J ·A(f0fi) = Ji ·A(f0fi).

The right hand side is the localization of Ji with respect to f
deg(fi)
0 /f

deg(f0)
i . It

follows that
fei0 g/f

(ei+e) deg(f0)/ deg(fi)
i ∈ Ji

for some ei ≫ 0 sufficiently divisible. This proves that fmax(ei)
0 g is an element of I,

because its restriction to each affine open D+(fi) vanishes on the closed subscheme
Z ∩D+(fi). Hence g/fe0 ∈ J ′ and we conclude J ⊂ J ′ as desired. □

Example 31.31.2.0BXK Let A be a graded ring. Let X = Proj(A) and S = Spec(A0).
Given a graded ideal I ⊂ A we obtain a closed subscheme V+(I) = Proj(A/I)→ X
by Constructions, Lemma 27.11.3. Translating the result of Lemma 31.31.1 we see
that if X is quasi-compact, then any closed subscheme Z is of the form V+(I(Z))
where the graded ideal I(Z) ⊂ A is given by the rule

I(Z) = Ker(A −→
⊕

n≥0
Γ(Z,OZ(n)))

Then we can ask the following two natural questions:
(1) Which ideals I are of the form I(Z)?
(2) Can we describe the operation I 7→ I(V+(I))?

We will answer this when A is Noetherian.

First, assume that A is generated by A1 over A0. In this case, for any ideal I ⊂ A
the kernel of the map A/I →

⊕
Γ(Proj(A/I),O) is the set of torsion elements of

A/I, see Cohomology of Schemes, Proposition 30.14.4. Hence we conclude that

I(V+(I)) = {x ∈ A | Anx ⊂ I for some n ≥ 0}
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The ideal on the right is sometimes called the saturation of I. This answers (2) and
the answer to (1) is that an ideal is of the form I(Z) if and only if it is saturated,
i.e., equal to its own saturation.

If A is a general Noetherian graded ring, then we use Cohomology of Schemes,
Proposition 30.15.3. Thus we see that for d equal to the lcm of the degrees of
generators of A over A0 we get

I(V+(I)) = {x ∈ A | (Ax)nd ⊂ I for all n≫ 0}

This can be different from the saturation of I if d ̸= 1. For example, suppose that
A = Q[x, y] with deg(x) = 2 and deg(y) = 3. Then d = 6. Let I = (y2). Then
we see y ∈ I(V+(I)) because for any homogeneous f ∈ A such that 6|deg(fy) we
have y|f , hence fy ∈ I. It follows that I(V+(I)) = (y) but xny ̸∈ I for all n hence
I(V+(I)) is not equal to the saturation.

Lemma 31.31.3.0BXL Let R be a UFD. Let Z ⊂ Pn
R be a closed subscheme which has

no embedded points such that every irreducible component of Z has codimension
1 in Pn

R. Then the ideal I(Z) ⊂ R[T0, . . . , Tn] corresponding to Z is principal.

Proof. Observe that the local rings of X = Pn
R are UFDs because X is covered

by affine pieces isomorphic to An
R and R[x1, . . . , xn] is a UFD (Algebra, Lemma

10.120.10). Thus Z is an effective Cartier divisor by Lemma 31.15.9. Let I ⊂ OX
be the quasi-coherent sheaf of ideals corresponding to Z. Choose an isomorphism
O(m)→ I for some m ∈ Z, see Lemma 31.28.5. Then the composition

OX(m)→ I → OX
is nonzero. We conclude that m ≤ 0 and that the corresponding section of
OX(m)⊗−1 = OX(−m) is given by some F ∈ R[T0, . . . , Tn] of degree −m, see Co-
homology of Schemes, Lemma 30.8.1. Thus on the ith standard open Ui = D+(Ti)
the closed subscheme Z ∩ Ui is cut out by the ideal

(F (T0/Ti, . . . , Tn/Ti)) ⊂ R[T0/Ti, . . . , Tn/Ti]

Thus the homogeneous elements of the graded ideal I(Z) = Ker(R[T0, . . . , Tn] →⊕
Γ(OZ(m))) is the set of homogeneous polynomials G such that

G(T0/Ti, . . . , Tn/Ti) ∈ (F (T0/Ti, . . . , Tn/Ti))

for i = 0, . . . , n. Clearing denominators, we see there exist ei ≥ 0 such that

T eii G ∈ (F )

for i = 0, . . . , n. As R is a UFD, so is R[T0, . . . , Tn]. Then F |T e0
0 G and F |T e1

1 G
implies F |G as T e0

0 and T e1
1 have no factor in common. Thus I(Z) = (F ). □

In case the closed subscheme is locally cut out by finitely many equations we can
define it by a finite type ideal sheaf of A.

Lemma 31.31.4.0802 Let S be a quasi-compact and quasi-separated scheme. Let A be
a quasi-coherent graded OS-algebra. Let p : X = Proj

S
(A) → S be the relative

Proj of A. Let i : Z → X be a closed subscheme. If p is quasi-compact and i
of finite presentation, then there exists a d > 0 and a quasi-coherent finite type
OS-submodule F ⊂ Ad such that Z = Proj

S
(A/FA).
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Proof. By Lemma 31.31.1 we know there exists a quasi-coherent graded sheaf of
ideals I ⊂ A such that Z = Proj(A/I). Since S is quasi-compact we can choose
a finite affine open covering S = U1 ∪ . . . ∪ Un. Say Ui = Spec(Ri). Let A|Ui
correspond to the graded Ri-algebra Ai and I|Ui to the graded ideal Ii ⊂ Ai. Note
that p−1(Ui) = Proj(Ai) as schemes over Ri. Since p is quasi-compact we can choose
finitely many homogeneous elements fi,j ∈ Ai,+ such that p−1(Ui) = D+(fi,j). The
condition on Z → X means that the ideal sheaf of Z in OX is of finite type, see
Morphisms, Lemma 29.21.7. Hence we can find finitely many homogeneous elements
hi,j,k ∈ Ii ∩ Ai,+ such that the ideal of Z ∩D+(fi,j) is generated by the elements
hi,j,k/f

ei,j,k
i,j . Choose d > 0 to be a common multiple of all the integers deg(fi,j) and

deg(hi,j,k). By Properties, Lemma 28.22.3 there exists a finite type quasi-coherent
F ⊂ Id such that all the local sections

hi,j,kf
(d−deg(hi,j,k))/ deg(fi,j)
i,j

are sections of F . By construction F is a solution. □

The following version of Lemma 31.31.4 will be used in the proof of Lemma 31.34.2.

Lemma 31.31.5.0803 Let S be a quasi-compact and quasi-separated scheme. Let A be
a quasi-coherent graded OS-algebra. Let p : X = Proj

S
(A) → S be the relative

Proj of A. Let i : Z → X be a closed subscheme. Let U ⊂ X be an open. Assume
that

(1) p is quasi-compact,
(2) i of finite presentation,
(3) U ∩ p(i(Z)) = ∅,
(4) U is quasi-compact,
(5) An is a finite type OS-module for all n.

Then there exists a d > 0 and a quasi-coherent finite type OS-submodule F ⊂ Ad
with (a) Z = Proj

S
(A/FA) and (b) the support of Ad/F is disjoint from U .

Proof. Let I ⊂ A be the sheaf of quasi-coherent graded ideals constructed in
Lemma 31.31.1. Let Ui, Ri, Ai, Ii, fi,j , hi,j,k, and d be as constructed in the
proof of Lemma 31.31.4. Since U ∩ p(i(Z)) = ∅ we see that Id|U = Ad|U (by our
construction of I as a kernel). Since U is quasi-compact we can choose a finite affine
open covering U = W1 ∪ . . . ∪Wm. Since Ad is of finite type we can find finitely
many sections gt,s ∈ Ad(Wt) which generate Ad|Wt = Id|Wt as an OWt-module. To
finish the proof, note that by Properties, Lemma 28.22.3 there exists a finite type
F ⊂ Id such that all the local sections

hi,j,kf
(d−deg(hi,j,k))/ deg(fi,j)
i,j and gt,s

are sections of F . By construction F is a solution. □

Lemma 31.31.6.0B3V Let X be a scheme. Let E be a quasi-coherent OX -module. There
is a bijection{

sections σ of the
morphism P(E)→ X

}
↔
{

surjections E → L where
L is an invertible OX -module

}
In this case σ is a closed immersion and there is a canonical isomorphism

Ker(E → L)⊗OX
L⊗−1 −→ Cσ(X)/P(E)

Both the bijection and isomorphism are compatible with base change.
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Proof. Recall that π : P(E)→ X is the relative proj of the symmetric algebra on E ,
see Constructions, Definition 27.21.1. Hence the descriptions of sections σ follows
immediately from the description of the functor of points of P(E) in Constructions,
Lemma 27.16.11. Since π is separated, any section is a closed immersion (Con-
structions, Lemma 27.16.9 and Schemes, Lemma 26.21.11). Let U ⊂ X be an affine
open and k ∈ E(U) and s ∈ E(U) be local sections such that k maps to zero in L
and s maps to a generator s of L. Then f = k/s is a section of OP(E) defined in an
open neighbourhood D+(s) of s(U) in π−1(U). Moreover, since k maps to zero in
L we see that f is a section of the ideal sheaf of s(U) in π−1(U). Thus we can take
the image f of f in Cσ(X)/P(E)(U). We claim (1) that the image f depends only on
the sections k and s and not on the choice of s and (2) that we get an isomorphism
over U in this manner (see below). However, once (1) and (2) are established, we
see that the construction is compatible with base change by U ′ → U where U ′ is
affine, which proves that these local maps glue and are compatible with arbitrary
base change.
To prove (1) and (2) we make explicit what is going on. Namely, say U = Spec(A)
and say E → L corresponds to the map of A-modules M → N . Then k ∈ K =
Ker(M → N) and s ∈M maps to a generator s of N . Hence M = K ⊕As. Thus

Sym(M) = Sym(K)[s]
Consider the identification Sym(K) → Sym(M)(s) via the rule g 7→ g/sn for
g ∈ Symn(K). This gives an isomorphism D+(s) = Spec(Sym(K)) such that σ
corresponds to the ring map Sym(K) → A mapping K to zero. Via this isomor-
phism we see that the quasi-coherent module corresponding to K is identified with
Cσ(U)/D+(s) proving (2). Finally, suppose that s′ = k′ + s for some k′ ∈ K. Then

k/s′ = (k/s)(s/s′) = (k/s)(s′/s)−1 = (k/s)(1 + k′/s)−1

in an open neighbourhood of σ(U) in D+(s). Thus we see that s′/s restricts to 1
on σ(U) and we see that k/s′ maps to the same element of the conormal sheaf as
does k/s thereby proving (1). □

31.32. Blowing up

01OF Blowing up is an important tool in algebraic geometry.

Definition 31.32.1.01OG Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of
ideals, and let Z ⊂ X be the closed subscheme corresponding to I, see Schemes,
Definition 26.10.2. The blowing up of X along Z, or the blowing up of X in the
ideal sheaf I is the morphism

b : Proj
X

(⊕
n≥0
In
)
−→ X

The exceptional divisor of the blowup is the inverse image b−1(Z). Sometimes Z is
called the center of the blowup.

We will see later that the exceptional divisor is an effective Cartier divisor. More-
over, the blowing up is characterized as the “smallest” scheme over X such that
the inverse image of Z is an effective Cartier divisor.
If b : X ′ → X is the blowup of X in Z, then we often denote OX′(n) the twists of
the structure sheaf. Note that these are invertible OX′ -modules and that OX′(n) =
OX′(1)⊗n because X ′ is the relative Proj of a quasi-coherent graded OX -algebra
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which is generated in degree 1, see Constructions, Lemma 27.16.11. Note that
OX′(1) is b-relatively very ample, even though b need not be of finite type or even
quasi-compact, because X ′ comes equipped with a closed immersion into P(I), see
Morphisms, Example 29.38.3.

Lemma 31.32.2.0804 Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of
ideals. Let U = Spec(A) be an affine open subscheme of X and let I ⊂ A be the
ideal corresponding to I|U . If b : X ′ → X is the blowup of X in I, then there is a
canonical isomorphism

b−1(U) = Proj(
⊕

d≥0
Id)

of b−1(U) with the homogeneous spectrum of the Rees algebra of I in A. Moreover,
b−1(U) has an affine open covering by spectra of the affine blowup algebras A[ Ia ].

Proof. The first statement is clear from the construction of the relative Proj via
glueing, see Constructions, Section 27.15. For a ∈ I denote a(1) the element a
seen as an element of degree 1 in the Rees algebra

⊕
n≥0 I

n. Since these elements
generate the Rees algebra over A we see that Proj(

⊕
d≥0 I

d) is covered by the affine
opens D+(a(1)). The affine scheme D+(a(1)) is the spectrum of the affine blowup
algebra A′ = A[ Ia ], see Algebra, Definition 10.70.1. This finishes the proof. □

Lemma 31.32.3.0805 Let X1 → X2 be a flat morphism of schemes. Let Z2 ⊂ X2 be a
closed subscheme. Let Z1 be the inverse image of Z2 in X1. Let X ′

i be the blowup
of Zi in Xi. Then there exists a cartesian diagram

X ′
1

//

��

X ′
2

��
X1 // X2

of schemes.

Proof. Let I2 be the ideal sheaf of Z2 in X2. Denote g : X1 → X2 the given
morphism. Then the ideal sheaf I1 of Z1 is the image of g∗I2 → OX1 (by definition
of the inverse image, see Schemes, Definition 26.17.7). By Constructions, Lemma
27.16.10 we see that X1×X2 X

′
2 is the relative Proj of

⊕
n≥0 g

∗In2 . Because g is flat
the map g∗In2 → OX1 is injective with image In1 . Thus we see that X1 ×X2 X

′
2 =

X ′
1. □

Lemma 31.32.4.02OS Let X be a scheme. Let Z ⊂ X be a closed subscheme. The
blowing up b : X ′ → X of Z in X has the following properties:

(1) b|b−1(X\Z) : b−1(X \ Z)→ X \ Z is an isomorphism,
(2) the exceptional divisor E = b−1(Z) is an effective Cartier divisor on X ′,
(3) there is a canonical isomorphism OX′(−1) = OX′(E)

Proof. As blowing up commutes with restrictions to open subschemes (Lemma
31.32.3) the first statement just means that X ′ = X if Z = ∅. In this case we are
blowing up in the ideal sheaf I = OX and the result follows from Constructions,
Example 27.8.14.
The second statement is local on X, hence we may assume X affine. Say X =
Spec(A) and Z = Spec(A/I). By Lemma 31.32.2 we see that X ′ is covered by the
spectra of the affine blowup algebras A′ = A[ Ia ]. Then IA′ = aA′ and a maps to a
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nonzerodivisor in A′ according to Algebra, Lemma 10.70.2. This proves the lemma
as the inverse image of Z in Spec(A′) corresponds to Spec(A′/IA′) ⊂ Spec(A′).
Consider the canonical map ψuniv,1 : b∗I → OX′(1), see discussion following Con-
structions, Definition 27.16.7. We claim that this factors through an isomorphism
IE → OX′(1) (which proves the final assertion). Namely, on the affine open corre-
sponding to the blowup algebra A′ = A[ Ia ] mentioned above ψuniv,1 corresponds to
the A′-module map

I ⊗A A′ −→
((⊕

d≥0
Id
)
a(1)

)
1

where a(1) is as in Algebra, Definition 10.70.1. We omit the verification that this
is the map I ⊗A A′ → IA′ = aA′. □

Lemma 31.32.5 (Universal property blowing up).0806 Let X be a scheme. Let Z ⊂ X
be a closed subscheme. Let C be the full subcategory of (Sch/X) consisting of
Y → X such that the inverse image of Z is an effective Cartier divisor on Y . Then
the blowing up b : X ′ → X of Z in X is a final object of C.

Proof. We see that b : X ′ → X is an object of C according to Lemma 31.32.4. Let
f : Y → X be an object of C. We have to show there exists a unique morphism
Y → X ′ over X. Let D = f−1(Z). Let I ⊂ OX be the ideal sheaf of Z and
let ID be the ideal sheaf of D. Then f∗I → ID is a surjection to an invertible
OY -module. This extends to a map ψ :

⊕
f∗Id →

⊕
IdD of graded OY -algebras.

(We observe that IdD = I⊗d
D as D is an effective Cartier divisor.) By the material

in Constructions, Section 27.16 the triple (1, f : Y → X,ψ) defines a morphism
Y → X ′ over X. The restriction

Y \D −→ X ′ \ b−1(Z) = X \ Z
is unique. The open Y \D is scheme theoretically dense in Y according to Lemma
31.13.4. Thus the morphism Y → X ′ is unique by Morphisms, Lemma 29.7.10 (also
b is separated by Constructions, Lemma 27.16.9). □

Lemma 31.32.6.0BFL Let b : X ′ → X be the blowing up of the scheme X along a closed
subscheme Z. Let U = Spec(A) be an affine open of X and let I ⊂ A be the ideal
corresponding to Z ∩ U . Let a ∈ I and let x′ ∈ X ′ be a point mapping to a point
of U . Then x′ is a point of the affine open U ′ = Spec(A[ Ia ]) if and only if the image
of a in OX′,x′ cuts out the exceptional divisor.

Proof. Since the exceptional divisor over U ′ is cut out by the image of a in A′ = A[ Ia ]
one direction is clear. Conversely, assume that the image of a in OX′,x′ cuts out E.
Since every element of I maps to an element of the ideal defining E over b−1(U)
we see that elements of I become divisible by a in OX′,x′ . Thus for f ∈ In we
can write f = ψ(f)an for some ψ(f) ∈ OX′,x′ . Observe that since a maps to a
nonzerodivisor of OX′,x′ the element ψ(f) is uniquely characterized by this. Then
we define

A′ −→ OX′,x′ , f/an 7−→ ψ(f)
Here we use the description of blowup algebras given following Algebra, Defini-
tion 31.32.1. The uniqueness mentioned above shows that this is an A-algebra
homomorphism. This gives a morphism Spec(OX′,x”) → Spec(A′) = U ′. By the
universal property of blowing up (Lemma 31.32.5) this is a morphism over X ′,
which of course implies that x′ ∈ U ′. □
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Lemma 31.32.7.0807 Let X be a scheme. Let Z ⊂ X be an effective Cartier divisor.
The blowup of X in Z is the identity morphism of X.

Proof. Immediate from the universal property of blowups (Lemma 31.32.5). □

Lemma 31.32.8.0808 Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of
ideals. If X is reduced, then the blowup X ′ of X in I is reduced.

Proof. Combine Lemma 31.32.2 with Algebra, Lemma 10.70.9. □

Lemma 31.32.9.02ND Let X be a scheme. Let I ⊂ OX be a nonzero quasi-coherent
sheaf of ideals. If X is integral, then the blowup X ′ of X in I is integral.

Proof. Combine Lemma 31.32.2 with Algebra, Lemma 10.70.10. □

Lemma 31.32.10.0BFM Let X be a scheme. Let Z ⊂ X be a closed subscheme. Let
b : X ′ → X be the blowing up of X along Z. Then b induces an bijective map
from the set of generic points of irreducible components of X ′ to the set of generic
points of irreducible components of X which are not in Z.

Proof. The exceptional divisor E ⊂ X ′ is an effective Cartier divisor and X ′ \E →
X \Z is an isomorphism, see Lemma 31.32.4. Thus it suffices to show the following:
given an effective Cartier divisor D ⊂ S of a scheme S none of the generic points of
irreducible components of S are contained in D. To see this, we may replace S by
the members of an affine open covering. Hence by Lemma 31.13.2 we may assume
S = Spec(A) and D = V (f) where f ∈ A is a nonzerodivisor. Then we have to
show f is not contained in any minimal prime ideal p ⊂ A. If so, then f would map
to a nonzerodivisor contained in the maximal ideal of Rp which is a contradiction
with Algebra, Lemma 10.25.1. □

Lemma 31.32.11.0809 Let X be a scheme. Let b : X ′ → X be a blowup of X in a closed
subscheme. The pullback b−1D is defined for all effective Cartier divisors D ⊂ X
and pullbacks of meromorphic functions are defined for b (Definitions 31.13.12 and
31.23.4).

Proof. By Lemmas 31.32.2 and 31.13.2 this reduces to the following algebra fact:
Let A be a ring, I ⊂ A an ideal, a ∈ I, and x ∈ A a nonzerodivisor. Then the
image of x in A[ Ia ] is a nonzerodivisor. Namely, suppose that x(y/an) = 0 in A[ Ia ].
Then amxy = 0 in A for some m. Hence amy = 0 as x is a nonzerodivisor. Whence
y/an is zero in A[ Ia ] as desired. □

Lemma 31.32.12.080A Let X be a scheme. Let I,J ⊂ OX be quasi-coherent sheaves
of ideals. Let b : X ′ → X be the blowing up of X in I. Let b′ : X ′′ → X ′ be the
blowing up of X ′ in b−1JOX′ . Then X ′′ → X is canonically isomorphic to the
blowing up of X in IJ .

Proof. Let E ⊂ X ′ be the exceptional divisor of b which is an effective Cartier
divisor by Lemma 31.32.4. Then (b′)−1E is an effective Cartier divisor on X ′′ by
Lemma 31.32.11. Let E′ ⊂ X ′′ be the exceptional divisor of b′ (also an effective
Cartier divisor). Consider the effective Cartier divisor E′′ = E′ + (b′)−1E. By
construction the ideal of E′′ is (b◦b′)−1I(b◦b′)−1JOX′′ . Hence according to Lemma
31.32.5 there is a canonical morphism fromX ′′ to the blowup c : Y → X ofX in IJ .
Conversely, as IJ pulls back to an invertible ideal we see that c−1IOY defines an
effective Cartier divisor, see Lemma 31.13.9. Thus a morphism c′ : Y → X ′ over X
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by Lemma 31.32.5. Then (c′)−1b−1JOY = c−1JOY which also defines an effective
Cartier divisor. Thus a morphism c′′ : Y → X ′′ over X ′. We omit the verification
that this morphism is inverse to the morphism X ′′ → Y constructed earlier. □

Lemma 31.32.13.02NS Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of
ideals. Let b : X ′ → X be the blowing up of X in the ideal sheaf I. If I is of finite
type, then

(1) b : X ′ → X is a projective morphism, and
(2) OX′(1) is a b-relatively ample invertible sheaf.

Proof. The surjection of graded OX -algebras

Sym∗
OX

(I) −→
⊕

d≥0
Id

defines via Constructions, Lemma 27.18.5 a closed immersion

X ′ = Proj
X

(
⊕

d≥0
Id) −→ P(I).

Hence b is projective, see Morphisms, Definition 29.43.1. The second statement
follows for example from the characterization of relatively ample invertible sheaves
in Morphisms, Lemma 29.37.4. Some details omitted. □

Lemma 31.32.14.080B Let X be a quasi-compact and quasi-separated scheme. Let
Z ⊂ X be a closed subscheme of finite presentation. Let b : X ′ → X be the blowing
up with center Z. Let Z ′ ⊂ X ′ be a closed subscheme of finite presentation. Let
X ′′ → X ′ be the blowing up with center Z ′. There exists a closed subscheme
Y ⊂ X of finite presentation, such that

(1) Y = Z ∪ b(Z ′) set theoretically, and
(2) the composition X ′′ → X is isomorphic to the blowing up of X in Y .

Proof. The condition that Z → X is of finite presentation means that Z is cut out
by a finite type quasi-coherent sheaf of ideals I ⊂ OX , see Morphisms, Lemma
29.21.7. Write A =

⊕
n≥0 In so that X ′ = Proj(A). Note that X \ Z is a quasi-

compact open of X by Properties, Lemma 28.24.1. Since b−1(X \ Z) → X \ Z is
an isomorphism (Lemma 31.32.4) the same result shows that b−1(X \ Z) \ Z ′ is
quasi-compact open in X ′. Hence U = X \ (Z ∪ b(Z ′)) is quasi-compact open in
X. By Lemma 31.31.5 there exist a d > 0 and a finite type OX -submodule F ⊂ Id
such that Z ′ = Proj(A/FA) and such that the support of Id/F is contained in
X \ U .

Since F ⊂ Id is an OX -submodule we may think of F ⊂ Id ⊂ OX as a finite type
quasi-coherent sheaf of ideals on X. Let’s denote this J ⊂ OX to prevent confusion.
Since Id/J and O/Id are supported on X \ U we see that V (J ) is contained in
X \ U . Conversely, as J ⊂ Id we see that Z ⊂ V (J ). Over X \ Z ∼= X ′ \ b−1(Z)
the sheaf of ideals J cuts out Z ′ (see displayed formula below). Hence V (J ) equals
Z ∪ b(Z ′). It follows that also V (IJ ) = Z ∪ b(Z ′) set theoretically. Moreover,
IJ is an ideal of finite type as a product of two such. We claim that X ′′ → X is
isomorphic to the blowing up of X in IJ which finishes the proof of the lemma by
setting Y = V (IJ ).

First, recall that the blowup of X in IJ is the same as the blowup of X ′ in
b−1JOX′ , see Lemma 31.32.12. Hence it suffices to show that the blowup of X ′ in
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b−1JOX′ agrees with the blowup of X ′ in Z ′. We will show that
b−1JOX′ = IdEIZ′

as ideal sheaves on X ′′. This will prove what we want as IdE cuts out the effective
Cartier divisor dE and we can use Lemmas 31.32.7 and 31.32.12.
To see the displayed equality of the ideals we may work locally. With notation A, I,
a ∈ I as in Lemma 31.32.2 we see that F corresponds to an R-submodule M ⊂ Id
mapping isomorphically to an ideal J ⊂ R. The condition Z ′ = Proj(A/FA)
means that Z ′∩Spec(A[ Ia ]) is cut out by the ideal generated by the elements m/ad,
m ∈ M . Say the element m ∈ M corresponds to the function f ∈ J . Then in the
affine blowup algebra A′ = A[ Ia ] we see that f = (adm)/ad = ad(m/ad). Thus the
equality holds. □

31.33. Strict transform

080C In this section we briefly discuss strict transform under blowing up. Let S be a
scheme and let Z ⊂ S be a closed subscheme. Let b : S′ → S be the blowing up of
S in Z and denote E ⊂ S′ the exceptional divisor E = b−1Z. In the following we
will often consider a scheme X over S and form the cartesian diagram

pr−1
S′ E //

��

X ×S S′
prX
//

prS′

��

X

f

��
E // S′ // S

Since E is an effective Cartier divisor (Lemma 31.32.4) we see that pr−1
S′ E ⊂ X×SS′

is locally principal (Lemma 31.13.11). Thus the complement of pr−1
S′ E in X×S S′ is

retrocompact (Lemma 31.13.3). Consequently, for a quasi-coherentOX×SS′ -module
G the subsheaf of sections supported on pr−1

S′ E is a quasi-coherent submodule,
see Properties, Lemma 28.24.5. If G is a quasi-coherent sheaf of algebras, e.g.,
G = OX×SS′ , then this subsheaf is an ideal of G.

Definition 31.33.1.080D With Z ⊂ S and f : X → S as above.
(1) Given a quasi-coherent OX -module F the strict transform of F with re-

spect to the blowup of S in Z is the quotient F ′ of pr∗
XF by the submodule

of sections supported on pr−1
S′ E.

(2) The strict transform of X is the closed subscheme X ′ ⊂ X ×S S′ cut out
by the quasi-coherent ideal of sections of OX×SS′ supported on pr−1

S′ E.

Note that taking the strict transform along a blowup depends on the closed sub-
scheme used for the blowup (and not just on the morphism S′ → S). This notion
is often used for closed subschemes of S. It turns out that the strict transform of
X is a blowup of X.

Lemma 31.33.2.080E In the situation of Definition 31.33.1.
(1) The strict transform X ′ of X is the blowup of X in the closed subscheme

f−1Z of X.
(2) For a quasi-coherent OX -module F the strict transform F ′ is canonically

isomorphic to the pushforward along X ′ → X×SS′ of the strict transform
of F relative to the blowing up X ′ → X.
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Proof. Let X ′′ → X be the blowup of X in f−1Z. By the universal property of
blowing up (Lemma 31.32.5) there exists a commutative diagram

X ′′ //

��

X

��
S′ // S

whence a morphism X ′′ → X ×S S′. Thus the first assertion is that this morphism
is a closed immersion with image X ′. The question is local on X. Thus we may
assume X and S are affine. Say that S = Spec(A), X = Spec(B), and Z is cut out
by the ideal I ⊂ A. Set J = IB. The map B ⊗A

⊕
n≥0 I

n →
⊕

n≥0 J
n defines a

closed immersion X ′′ → X ×S S′, see Constructions, Lemmas 27.11.6 and 27.11.5.
We omit the verification that this morphism is the same as the one constructed
above from the universal property. Pick a ∈ I corresponding to the affine open
Spec(A[ Ia ]) ⊂ S′, see Lemma 31.32.2. The inverse image of Spec(A[ Ia ]) in the strict
transform X ′ of X is the spectrum of

B′ = (B ⊗A A[ Ia ])/a-power-torsion

see Properties, Lemma 28.24.5. On the other hand, letting b ∈ J be the image of
a we see that Spec(B[Jb ]) is the inverse image of Spec(A[ Ia ]) in X ′′. By Algebra,
Lemma 10.70.3 the open Spec(B[Jb ]) maps isomorphically to the open subscheme
pr−1
S′ (Spec(A[ Ia ])) of X ′. Thus X ′′ → X ′ is an isomorphism.

In the notation above, let F correspond to the B-module N . The strict transform
of F corresponds to the B ⊗A A[ Ia ]-module

N ′ = (N ⊗A A[ Ia ])/a-power-torsion

see Properties, Lemma 28.24.5. The strict transform of F relative to the blowup of
X in f−1Z corresponds to the B[Jb ]-module N⊗BB[Jb ]/b-power-torsion. In exactly
the same way as above one proves that these two modules are isomorphic. Details
omitted. □

Lemma 31.33.3.080F In the situation of Definition 31.33.1.
(1) If X is flat over S at all points lying over Z, then the strict transform of

X is equal to the base change X ×S S′.
(2) Let F be a quasi-coherent OX -module. If F is flat over S at all points

lying over Z, then the strict transform F ′ of F is equal to the pullback
pr∗
XF .

Proof. We will prove part (2) as it implies part (1) by the definition of the strict
transform of a scheme over S. The question is local on X. Thus we may assume
that S = Spec(A), X = Spec(B), and that F corresponds to the B-module N .
Then F ′ over the open Spec(B ⊗A A[ Ia ]) of X ×S S′ corresponds to the module

N ′ = (N ⊗A A[ Ia ])/a-power-torsion

see Properties, Lemma 28.24.5. Thus we have to show that the a-power-torsion of
N ⊗AA[ Ia ] is zero. Let y ∈ N ⊗AA[ Ia ] with any = 0. If q ⊂ B is a prime and a ̸∈ q,
then y maps to zero in (N ⊗A A[ Ia ])q. on the other hand, if a ∈ q, then Nq is a flat
A-module and we see that Nq ⊗A A[ Ia ] = (N ⊗A A[ Ia ])q has no a-power torsion (as
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A[ Ia ] doesn’t). Hence y maps to zero in this localization as well. We conclude that
y is zero by Algebra, Lemma 10.23.1. □

Lemma 31.33.4.080G Let S be a scheme. Let Z ⊂ S be a closed subscheme. Let
b : S′ → S be the blowing up of Z in S. Let g : X → Y be an affine morphism of
schemes over S. Let F be a quasi-coherent sheaf on X. Let g′ : X×S S′ → Y ×S S′

be the base change of g. Let F ′ be the strict transform of F relative to b. Then
g′

∗F ′ is the strict transform of g∗F .

Proof. Observe that g′
∗pr∗

XF = pr∗
Y g∗F by Cohomology of Schemes, Lemma 30.5.1.

Let K ⊂ pr∗
XF be the subsheaf of sections supported in the inverse image of Z in

X ×S S′. By Properties, Lemma 28.24.7 the pushforward g′
∗K is the subsheaf of

sections of pr∗
Y g∗F supported in the inverse image of Z in Y ×S S′. As g′ is affine

(Morphisms, Lemma 29.11.8) we see that g′
∗ is exact, hence we conclude. □

Lemma 31.33.5.080H Let S be a scheme. Let Z ⊂ S be a closed subscheme. Let D ⊂ S
be an effective Cartier divisor. Let Z ′ ⊂ S be the closed subscheme cut out by the
product of the ideal sheaves of Z and D. Let S′ → S be the blowup of S in Z.

(1) The blowup of S in Z ′ is isomorphic to S′ → S.
(2) Let f : X → S be a morphism of schemes and let F be a quasi-coherent
OX -module. If F has no nonzero local sections supported in f−1D, then
the strict transform of F relative to the blowing up in Z agrees with the
strict transform of F relative to the blowing up of S in Z ′.

Proof. The first statement follows on combining Lemmas 31.32.12 and 31.32.7.
Using Lemma 31.32.2 the second statement translates into the following algebra
problem. Let A be a ring, I ⊂ A an ideal, x ∈ A a nonzerodivisor, and a ∈ I.
Let M be an A-module whose x-torsion is zero. To show: the a-power torsion in
M ⊗A A[ Ia ] is equal to the xa-power torsion. The reason for this is that the kernel
and cokernel of the map A → A[ Ia ] is a-power torsion, so this map becomes an
isomorphism after inverting a. Hence the kernel and cokernel of M → M ⊗A A[ Ia ]
are a-power torsion too. This implies the result. □

Lemma 31.33.6.080I Let S be a scheme. Let Z ⊂ S be a closed subscheme. Let
b : S′ → S be the blowing up with center Z. Let Z ′ ⊂ S′ be a closed subscheme.
Let S′′ → S′ be the blowing up with center Z ′. Let Y ⊂ S be a closed subscheme
such that Y = Z∪b(Z ′) set theoretically and the composition S′′ → S is isomorphic
to the blowing up of S in Y . In this situation, given any scheme X over S and
F ∈ QCoh(OX) we have

(1) the strict transform of F with respect to the blowing up of S in Y is equal
to the strict transform with respect to the blowup S′′ → S′ in Z ′ of the
strict transform of F with respect to the blowup S′ → S of S in Z, and

(2) the strict transform of X with respect to the blowing up of S in Y is equal
to the strict transform with respect to the blowup S′′ → S′ in Z ′ of the
strict transform of X with respect to the blowup S′ → S of S in Z.

Proof. Let F ′ be the strict transform of F with respect to the blowup S′ → S of
S in Z. Let F ′′ be the strict transform of F ′ with respect to the blowup S′′ → S′

of S′ in Z ′. Let G be the strict transform of F with respect to the blowup S′′ → S
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of S in Y . We also label the morphisms

X ×S S′′
q
//

f ′′

��

X ×S S′
p

//

f ′

��

X

f

��
S′′ // S′ // S

By definition there is a surjection p∗F → F ′ and a surjection q∗F ′ → F ′′ which
combine by right exactness of q∗ to a surjection (p ◦ q)∗F → F ′′. Also we have the
surjection (p ◦ q)∗F → G. Thus it suffices to prove that these two surjections have
the same kernel.
The kernel of the surjection p∗F → F ′ is supported on (f ◦ p)−1Z, so this map
is an isomorphism at points in the complement. Hence the kernel of q∗p∗F →
q∗F ′ is supported on (f ◦ p ◦ q)−1Z. The kernel of q∗F ′ → F ′′ is supported on
(f ′ ◦ q)−1Z ′. Combined we see that the kernel of (p ◦ q)∗F → F ′′ is supported
on (f ◦ p ◦ q)−1Z ∪ (f ′ ◦ q)−1Z ′ = (f ◦ p ◦ q)−1Y . By construction of G we see
that we obtain a factorization (p ◦ q)∗F → F ′′ → G. To finish the proof it suffices
to show that F ′′ has no nonzero (local) sections supported on (f ◦ p ◦ q)−1(Y ) =
(f ◦ p ◦ q)−1Z ∪ (f ′ ◦ q)−1Z ′. This follows from Lemma 31.33.5 applied to F ′ on
X×SS′ over S′, the closed subscheme Z ′ and the effective Cartier divisor b−1Z. □

Lemma 31.33.7.080W In the situation of Definition 31.33.1. Suppose that
0→ F1 → F2 → F3 → 0

is an exact sequence of quasi-coherent sheaves on X which remains exact after any
base change T → S. Then the strict transforms of F ′

i relative to any blowup S′ → S
form a short exact sequence 0→ F ′

1 → F ′
2 → F ′

3 → 0 too.

Proof. We may localize on S and X and assume both are affine. Then we may push
Fi to S, see Lemma 31.33.4. We may assume that our blowup is the morphism 1 :
S → S associated to an effective Cartier divisor D ⊂ S. Then the translation into
algebra is the following: Suppose that A is a ring and 0 → M1 → M2 → M3 → 0
is a universally exact sequence of A-modules. Let a ∈ A. Then the sequence

0→M1/a-power torsion→M2/a-power torsion→M3/a-power torsion→ 0
is exact too. Namely, surjectivity of the last map and injectivity of the first map are
immediate. The problem is exactness in the middle. Suppose that x ∈ M2 maps
to zero in M3/a-power torsion. Then y = anx ∈ M1 for some n. Then y maps to
zero in M2/a

nM2. Since M1 → M2 is universally injective we see that y maps to
zero in M1/a

nM1. Thus y = anz for some z ∈ M1. Thus an(x − y) = 0. Hence y
maps to the class of x in M2/a-power torsion as desired. □

31.34. Admissible blowups

080J To have a bit more control over our blowups we introduce the following standard
terminology.

Definition 31.34.1.080K Let X be a scheme. Let U ⊂ X be an open subscheme.
A morphism X ′ → X is called a U -admissible blowup if there exists a closed
immersion Z → X of finite presentation with Z disjoint from U such that X ′ is
isomorphic to the blowup of X in Z.
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We recall that Z → X is of finite presentation if and only if the ideal sheaf IZ ⊂ OX
is of finite type, see Morphisms, Lemma 29.21.7. In particular, a U -admissible
blowup is a projective morphism, see Lemma 31.32.13. Note that there can be
multiple centers which give rise to the same morphism. Hence the requirement is
just the existence of some center disjoint from U which produces X ′. Finally, as
the morphism b : X ′ → X is an isomorphism over U (see Lemma 31.32.4) we will
often abuse notation and think of U as an open subscheme of X ′ as well.

Lemma 31.34.2.080L LetX be a quasi-compact and quasi-separated scheme. Let U ⊂ X
be a quasi-compact open subscheme. Let b : X ′ → X be a U -admissible blowup.
Let X ′′ → X ′ be a U -admissible blowup. Then the composition X ′′ → X is a
U -admissible blowup.

Proof. Immediate from the more precise Lemma 31.32.14. □

Lemma 31.34.3.080M LetX be a quasi-compact and quasi-separated scheme. Let U, V ⊂
X be quasi-compact open subschemes. Let b : V ′ → V be a U ∩ V -admissible
blowup. Then there exists a U -admissible blowup X ′ → X whose restriction to V
is V ′.

Proof. Let I ⊂ OV be the finite type quasi-coherent sheaf of ideals such that V (I)
is disjoint from U ∩ V and such that V ′ is isomorphic to the blowup of V in I.
Let I ′ ⊂ OU∪V be the quasi-coherent sheaf of ideals whose restriction to U is OU
and whose restriction to V is I (see Sheaves, Section 6.33). By Properties, Lemma
28.22.2 there exists a finite type quasi-coherent sheaf of ideals J ⊂ OX whose
restriction to U ∪ V is I ′. The lemma follows. □

Lemma 31.34.4.080N LetX be a quasi-compact and quasi-separated scheme. Let U ⊂ X
be a quasi-compact open subscheme. Let bi : Xi → X, i = 1, . . . , n be U -admissible
blowups. There exists a U -admissible blowup b : X ′ → X such that (a) b factors
as X ′ → Xi → X for i = 1, . . . , n and (b) each of the morphisms X ′ → Xi is a
U -admissible blowup.

Proof. Let Ii ⊂ OX be the finite type quasi-coherent sheaf of ideals such that V (Ii)
is disjoint from U and such that Xi is isomorphic to the blowup of X in Ii. Set
I = I1 · . . . · In and let X ′ be the blowup of X in I. Then X ′ → X factors through
bi by Lemma 31.32.12. □

Lemma 31.34.5.080P Let X be a quasi-compact and quasi-separated scheme. Let
U, V be quasi-compact disjoint open subschemes of X. Then there exist a U ∪ V -
admissible blowup b : X ′ → X such that X ′ is a disjoint union of open subschemes
X ′ = X ′

1 ⨿X ′
2 with b−1(U) ⊂ X ′

1 and b−1(V ) ⊂ X ′
2.

Proof. Choose a finite type quasi-coherent sheaf of ideals I, resp. J such that
X \U = V (I), resp. X \V = V (J ), see Properties, Lemma 28.24.1. Then V (IJ ) =
X set theoretically, hence IJ is a locally nilpotent sheaf of ideals. Since I and J
are of finite type and X is quasi-compact there exists an n > 0 such that InJ n = 0.
We may and do replace I by In and J by J n. Whence IJ = 0. Let b : X ′ → X
be the blowing up in I + J . This is U ∪ V -admissible as V (I + J ) = X \ U ∪ V .
We will show that X ′ is a disjoint union of open subschemes X ′ = X ′

1 ⨿X ′
2 such

that b−1I|X′
2

= 0 and b−1J |X′
1

= 0 which will prove the lemma.
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We will use the description of the blowing up in Lemma 31.32.2. Suppose that
U = Spec(A) ⊂ X is an affine open such that I|U , resp. J |U corresponds to the
finitely generated ideal I ⊂ A, resp. J ⊂ A. Then

b−1(U) = Proj(A⊕ (I + J)⊕ (I + J)2 ⊕ . . .)

This is covered by the affine open subsets A[ I+J
x ] and A[ I+J

y ] with x ∈ I and y ∈ J .
Since x ∈ I is a nonzerodivisor in A[ I+J

x ] and IJ = 0 we see that JA[ I+J
x ] = 0.

Since y ∈ J is a nonzerodivisor in A[ I+J
y ] and IJ = 0 we see that IA[ I+J

y ] = 0.
Moreover,

Spec(A[ I+J
x ]) ∩ Spec(A[ I+J

y ]) = Spec(A[ I+J
xy ]) = ∅

because xy is both a nonzerodivisor and zero. Thus b−1(U) is the disjoint union of
the open subscheme U1 defined as the union of the standard opens Spec(A[ I+J

x ])
for x ∈ I and the open subscheme U2 which is the union of the affine opens
Spec(A[ I+J

y ]) for y ∈ J . We have seen that b−1IOX′ restricts to zero on U2

and b−1IOX′ restricts to zero on U1. We omit the verification that these open
subschemes glue to global open subschemes X ′

1 and X ′
2. □

Lemma 31.34.6.0ESL Let X be a locally Noetherian scheme. Let L be an invertible
OX -module. Let s be a regular meromorphic section of L. Let U ⊂ X be the
maximal open subscheme such that s corresponds to a section of L over U . The
blowup b : X ′ → X in the ideal of denominators of s is U -admissible. There exists
an effective Cartier divisor D ⊂ X ′ and an isomorphism

b∗L = OX′(D − E),

where E ⊂ X ′ is the exceptional divisor such that the meromorphic section b∗s
corresponds, via the isomorphism, to the meromorphic section 1D ⊗ (1E)−1.

Proof. From the definition of the ideal of denominators in Definition 31.23.10 we
immediately see that b is a U -admissible blowup. For the notation 1D, 1E , and
OX′(D −E) please see Definition 31.14.1. The pullback b∗s is defined by Lemmas
31.32.11 and 31.23.8. Thus the statement of the lemma makes sense. We can
reinterpret the final assertion as saying that b∗s is a global regular section of b∗L(E)
whose zero scheme is D. This uniquely defines D hence to prove the lemma we may
work affine locally on X and X ′. Assume X = Spec(A) is affine and L = OX . Then
s is a regular meromorphic function and shrinking further we may assume s = a′/a
with a′, a ∈ A nonzerodivisors. Then the ideal of denominators of s corresponds to
the ideal I = {x ∈ A | xa′ ∈ aA}. Recall that X ′ is covered by spectra of affine
blowup algebras A′ = A[ Ix ] with x ∈ I (Lemma 31.32.2). Fix x ∈ I and write
xa′ = aa′′ for some a′′ ∈ A. The divisor E ⊂ X ′ is cut out by x ∈ A′ over the
spectrum of A′ and hence 1/x is a generator of OX′(E) over Spec(A′). Finally, in
the total quotient ring of A′ we have a′/a = a′′/x. Hence b∗s = a′/a restricts to a
regular section of OX′(E) which is over Spec(A′) given by a′′/x. This finishes the
proof. (The divisor D ∩ Spec(A′) is cut out by the image of a′′ in A′.) □

31.35. Blowing up and flatness

0F84 We continue the discussion started in More on Algebra, Section 15.26. We will
prove further results in More on Flatness, Section 38.30.

https://stacks.math.columbia.edu/tag/0ESL


31.36. MODIFICATIONS 2708

Lemma 31.35.1.0CZP Let S be a scheme. Let F be a finite type quasi-coherent OS-
module. Let Zk ⊂ S be the closed subscheme cut out by Fitk(F), see Section 31.9.
Let S′ → S be the blowup of S in Zk and let F ′ be the strict transform of F . Then
F ′ can locally be generated by ≤ k sections.

Proof. Recall that F ′ can locally be generated by ≤ k sections if and only if
Fitk(F ′) = OS′ , see Lemma 31.9.4. Hence this lemma is a translation of More
on Algebra, Lemma 15.26.3. □

Lemma 31.35.2.0CZQ Let S be a scheme. Let F be a finite type quasi-coherent OS-
module. Let Zk ⊂ S be the closed subscheme cut out by Fitk(F), see Section 31.9.
Assume that F is locally free of rank k on S \ Zk. Let S′ → S be the blowup of S
in Zk and let F ′ be the strict transform of F . Then F ′ is locally free of rank k.

Proof. Translation of More on Algebra, Lemma 15.26.4. □

Lemma 31.35.3.0ESN Let X be a scheme. Let F be a finitely presented OX -module.
Let U ⊂ X be a scheme theoretically dense open such that F|U is finite locally free
of constant rank r. Then

(1) the blowup b : X ′ → X of X in the rth Fitting ideal of F is U -admissible,
(2) the strict transform F ′ of F with respect to b is locally free of rank r,
(3) the kernel K of the surjection b∗F → F ′ is finitely presented and K|U = 0,
(4) b∗F and K are perfect OX′ -modules of tor dimension ≤ 1.

Proof. The ideal Fitr(F) is of finite type by Lemma 31.9.2 and its restriction to U
is equal to OU by Lemma 31.9.5. Hence b : X ′ → X is U -admissible, see Definition
31.34.1.
By Lemma 31.9.5 the restriction of Fitr−1(F) to U is zero, and since U is scheme
theoretically dense we conclude that Fitr−1(F) = 0 on all of X. Thus it follows
from Lemma 31.9.5 that F is locally free of rank r on the complement of subscheme
cut out by the rth Fitting ideal of F (this complement may be bigger than U which
is why we had to do this step in the argument). Hence by Lemma 31.35.2 the strict
transform

b∗F −→ F ′

is locally free of rank r. The kernel K of this map is supported on the exceptional
divisor of the blowup b and hence K|U = 0. Finally, since F ′ is finite locally free
and since the displayed arrow is surjective, we can locally on X ′ write b∗F as the
direct sum of K and F ′. Since b∗F ′ is finitely presented (Modules, Lemma 17.11.4)
the same is true for K.
The statement on tor dimension follows from More on Algebra, Lemma 15.8.9. □

31.36. Modifications

0AYN In this section we will collect results of the type: after a modification such and
such are true. We will later see that a modification can be dominated by a blowup
(More on Flatness, Lemma 38.31.4).

Lemma 31.36.1.0AYP Let X be an integral scheme. Let E be a finite locally free OX -
module. There exists a modification f : X ′ → X such that f∗E has a filtration
whose successive quotients are invertible OX′ -modules.
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Proof. We prove this by induction on the rank r of E . If r = 1 or r = 0 the lemma
is obvious. Assume r > 1. Let P = P(E) with structure morphism π : P → X,
see Constructions, Section 27.21. Then π is proper (Lemma 31.30.4). There is a
canonical surjection

π∗E → OP (1)
whose kernel is finite locally free of rank r−1. Choose a nonempty open subscheme
U ⊂ X such that E|U ∼= O⊕r

U . Then PU = π−1(U) is isomorphic to Pr−1
U . In

particular, there exists a section s : U → PU of π. Let X ′ ⊂ P be the scheme
theoretic image of the morphism U → PU → P . Then X ′ is integral (Morphisms,
Lemma 29.6.7), the morphism f = π|X′ : X ′ → X is proper (Morphisms, Lemmas
29.41.6 and 29.41.4), and f−1(U)→ U is an isomorphism. Hence f is a modification
(Morphisms, Definition 29.51.11). By construction the pullback f∗E has a two
step filtration whose quotient is invertible because it is equal to OP (1)|X′ and
whose sub E ′ is locally free of rank r − 1. By induction we can find a modification
g : X ′′ → X ′ such that g∗E ′ has a filtration as in the statement of the lemma. Thus
f ◦ g : X ′′ → X is the required modification. □

Lemma 31.36.2.0C4V Let S be a scheme. Let X, Y be schemes over S. Assume X is
Noetherian and Y is proper over S. Given an S-rational map f : U → Y from X
to Y there exists a morphism p : X ′ → X and an S-morphism f ′ : X ′ → Y such
that

(1) p is proper and p−1(U)→ U is an isomorphism,
(2) f ′|p−1(U) is equal to f ◦ p|p−1(U).

Proof. Denote j : U → X the inclusion morphism. Let X ′ ⊂ Y ×S X be the
scheme theoretic image of (f, j) : U → Y ×S X (Morphisms, Definition 29.6.2).
The projection g : Y ×S X → X is proper (Morphisms, Lemma 29.41.5). The
composition p : X ′ → X of X ′ → Y ×S X and g is proper (Morphisms, Lemmas
29.41.6 and 29.41.4). Since g is separated and U ⊂ X is retrocompact (as X
is Noetherian) we conclude that p−1(U) → U is an isomorphism by Morphisms,
Lemma 29.6.8. On the other hand, the composition f ′ : X ′ → Y of X ′ → Y ×S X
and the projection Y ×S X → Y agrees with f on p−1(U). □
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CHAPTER 32

Limits of Schemes

01YT 32.1. Introduction

01YU In this chapter we put material related to limits of schemes. We mostly study
limits of inverse systems over directed sets (Categories, Definition 4.21.1) with affine
transition maps. We discuss absolute Noetherian approximation. We characterize
schemes locally of finite presentation over a base as those whose associated functor of
points is limit preserving. As an application of absolute Noetherian approximation
we prove that the image of an affine under an integral morphism is affine. Moreover,
we prove some very general variants of Chow’s lemma. A basic reference is [DG67].

32.2. Directed limits of schemes with affine transition maps

01YV In this section we construct the limit.

Lemma 32.2.1.01YW Let I be a directed set. Let (Si, fii′) be an inverse system of
schemes over I. If all the schemes Si are affine, then the limit S = limi Si exists
in the category of schemes. In fact S is affine and S = Spec(colimiRi) with
Ri = Γ(Si,O).

Proof. Just define S = Spec(colimiRi). It follows from Schemes, Lemma 26.6.4
that S is the limit even in the category of locally ringed spaces. □

Lemma 32.2.2.01YX Let I be a directed set. Let (Si, fii′) be an inverse system of schemes
over I. If all the morphisms fii′ : Si → Si′ are affine, then the limit S = limi Si
exists in the category of schemes. Moreover,

(1) each of the morphisms fi : S → Si is affine,
(2) for an element 0 ∈ I and any open subscheme U0 ⊂ S0 we have

f−1
0 (U0) = limi≥0 f

−1
i0 (U0)

in the category of schemes.

Proof. Choose an element 0 ∈ I. Note that I is nonempty as the limit is directed.
For every i ≥ 0 consider the quasi-coherent sheaf of OS0-algebras Ai = fi0,∗OSi .
Recall that Si = Spec

S0
(Ai), see Morphisms, Lemma 29.11.3. Set A = colimi≥0Ai.

This is a quasi-coherent sheaf of OS0 -algebras, see Schemes, Section 26.24. Set
S = Spec

S0
(A). By Morphisms, Lemma 29.11.5 we get for i ≥ 0 morphisms

fi : S → Si compatible with the transition morphisms. Note that the morphisms
fi are affine by Morphisms, Lemma 29.11.11 for example. By Lemma 32.2.1 above
we see that for any affine open U0 ⊂ S0 the inverse image U = f−1

0 (U0) ⊂ S is the
limit of the system of opens Ui = f−1

i0 (U0), i ≥ 0 in the category of schemes.
Let T be a scheme. Let gi : T → Si be a compatible system of morphisms. To
show that S = limi Si we have to prove there is a unique morphism g : T → S

2712
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with gi = fi ◦ g for all i ∈ I. For every t ∈ T there exists an affine open U0 ⊂ S0
containing g0(t). Let V ⊂ g−1

0 (U0) be an affine open neighbourhood containing t.
By the remarks above we obtain a unique morphism gV : V → U = f−1

0 (U0) such
that fi ◦ gV = gi|Ui for all i. The open sets V ⊂ T so constructed form a basis for
the topology of T . The morphisms gV glue to a morphism g : T → S because of
the uniqueness property. This gives the desired morphism g : T → S.
The final statement is clear from the construction of the limit above. □

Lemma 32.2.3.01YZ Let I be a directed set. Let (Si, fii′) be an inverse system of schemes
over I. Assume all the morphisms fii′ : Si → Si′ are affine, Let S = limi Si. Let
0 ∈ I. Suppose that T is a scheme over S0. Then

T ×S0 S = limi≥0 T ×S0 Si

Proof. The right hand side is a scheme by Lemma 32.2.2. The equality is formal,
see Categories, Lemma 4.14.10. □

32.3. Infinite products

0CNH Infinite products of schemes usually do not exist. For example in Examples, Section
110.55 it is shown that an infinite product of copies of P1 is not even an algebraic
space.
On the other hand, infinite products of affine schemes do exist and are affine. Using
Schemes, Lemma 26.6.4 this corresponds to the fact that in the category of rings
we have infinite coproducts: if I is a set and Ri is a ring for each i, then we can
consider the ring

R = ⊗Ri = colim{i1,...,in}⊂I Ri1 ⊗Z . . .⊗Z Rin

Given another ring A a map R→ A is the same thing as a collection of ring maps
Ri → A for all i ∈ I as follows from the corresponding property of finite tensor
products.
Lemma 32.3.1.0CNI Let S be a scheme. Let I be a set and for each i ∈ I let fi : Ti → S
be an affine morphism. Then the product T =

∏
Ti exists in the category of

schemes over S. In fact, we have
T = lim{i1,...,in}⊂I Ti1 ×S . . .×S Tin

and the projection morphisms T → Ti1 ×S . . .×S Tin are affine.
Proof. Omitted. Hint: Argue as in the discussion preceding the lemma and use
Lemma 32.2.2 for existence of the limit. □

Lemma 32.3.2.0CNJ Let S be a scheme. Let I be a set and for each i ∈ I let fi : Ti → S
be a surjective affine morphism. Then the product T =

∏
Ti in the category of

schemes over S (Lemma 32.3.1) maps surjectively to S.
Proof. Let s ∈ S. Choose ti ∈ Ti mapping to s. Choose a huge field exten-
sion K/κ(s) such that κ(si) embeds into K for each i. Then we get morphisms
Spec(K) → Ti with image si agreeing as morphisms to S. Whence a morphism
Spec(K)→ T which proves there is a point of T mapping to s. □

Lemma 32.3.3.0CNK Let S be a scheme. Let I be a set and for each i ∈ I let fi : Ti → S
be an integral morphism. Then the product T =

∏
Ti in the category of schemes

over S (Lemma 32.3.1) is integral over S.

https://stacks.math.columbia.edu/tag/01YZ
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Proof. Omitted. Hint: On affine pieces this reduces to the following algebra fact:
if A→ Bi is integral for all i, then A→ ⊗ABi is integral. □

32.4. Descending properties

081A First some basic lemmas describing the topology of a limit.

Lemma 32.4.1.0CUE Let S = limSi be the limit of a directed inverse system of schemes
with affine transition morphisms (Lemma 32.2.2). Then Sset = limi Si,set where
Sset indicates the underlying set of the scheme S.

Proof. Pick i ∈ I. Take Ui ⊂ Si an affine open. Denote Ui′ = f−1
i′i (Ui) and

U = f−1
i (Ui). Here fi′i : Si′ → Si is the transition morphism and fi : S → Si is

the projection. By Lemma 32.2.2 we have U = limi′≥i Ui. Suppose we can show
that Uset = limi′≥i Ui′,set. Then the lemma follows by a simple argument using an
affine covering of Si. Hence we may assume all Si and S affine. This reduces us to
the algebra question considered in the next paragraph.

Suppose given a system of rings (Ai, φii′) over I. Set A = colimiAi with canonical
maps φi : Ai → A. Then

Spec(A) = limi Spec(Ai)

Namely, suppose that we are given primes pi ⊂ Ai such that pi = φ−1
ii′ (pi′) for all

i′ ≥ i. Then we simply set

p = {x ∈ A | ∃i, xi ∈ pi with φi(xi) = x}

It is clear that this is an ideal and has the property that φ−1
i (p) = pi. Then it

follows easily that it is a prime ideal as well. □

Lemma 32.4.2.0CUF [DG67, IV,
Proposition 8.2.9]

Let S = limSi be the limit of a directed inverse system of schemes
with affine transition morphisms (Lemma 32.2.2). Then Stop = limi Si,top where
Stop indicates the underlying topological space of the scheme S.

Proof. We will use the criterion of Topology, Lemma 5.14.3. We have seen that
Sset = limi Si,set in Lemma 32.4.1. The maps fi : S → Si are morphisms of schemes
hence continuous. Thus f−1

i (Ui) is open for each open Ui ⊂ Si. Finally, let s ∈ S
and let s ∈ V ⊂ S be an open neighbourhood. Choose 0 ∈ I and choose an affine
open neighbourhood U0 ⊂ S0 of the image of s. Then f−1

0 (U0) = limi≥0 f
−1
i0 (U0),

see Lemma 32.2.2. Then f−1
0 (U0) and f−1

i0 (U0) are affine and

OS(f−1
0 (U0)) = colimi≥0OSi(f−1

i0 (U0))

either by the proof of Lemma 32.2.2 or by Lemma 32.2.1. Choose a ∈ OS(f−1
0 (U0))

such that s ∈ D(a) ⊂ V . This is possible because the principal opens form a basis
for the topology on the affine scheme f−1

0 (U0). Then we can pick an i ≥ 0 and
ai ∈ OSi(f−1

i0 (U0)) mapping to a. It follows that D(ai) ⊂ f−1
i0 (U0) ⊂ Si is an open

subset whose inverse image in S is D(a). This finishes the proof. □

Lemma 32.4.3.01Z2 Let S = limSi be the limit of a directed inverse system of schemes
with affine transition morphisms (Lemma 32.2.2). If all the schemes Si are nonempty
and quasi-compact, then the limit S = limi Si is nonempty.
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Proof. Choose 0 ∈ I. Note that I is nonempty as the limit is directed. Choose
an affine open covering S0 =

⋃
j=1,...,m Uj . Since I is directed there exists a j ∈

{1, . . . ,m} such that f−1
i0 (Uj) ̸= ∅ for all i ≥ 0. Hence limi≥0 f

−1
i0 (Uj) is not

empty since a directed colimit of nonzero rings is nonzero (because 1 ̸= 0). As
limi≥0 f

−1
i0 (Uj) is an open subscheme of the limit we win. □

Lemma 32.4.4.0CUG Let S = limSi be the limit of a directed inverse system of schemes
with affine transition morphisms (Lemma 32.2.2). Let s ∈ S with images si ∈ Si.
Then

(1) s = lim si as schemes, i.e., κ(s) = colim κ(si),
(2) {s} = lim {si} as sets, and
(3) {s} = lim {si} as schemes where {s} and {si} are endowed with the

reduced induced scheme structure.

Proof. Choose 0 ∈ I and an affine open covering S0 =
⋃
j∈J U0,j . For i ≥ 0 let

Ui,j = f−1
i,0 (U0,j) and set Uj = f−1

0 (U0,j). Here fi′i : Si′ → Si is the transition
morphism and fi : S → Si is the projection. For j ∈ J the following are equivalent:
(a) s ∈ Uj , (b) s0 ∈ U0,j , (c) si ∈ Ui,j for all i ≥ 0. Let J ′ ⊂ J be the set of indices
for which (a), (b), (c) are true. Then {s} =

⋃
j∈J′({s} ∩ Uj) and similarly for {si}

for i ≥ 0. Note that {s} ∩ Uj is the closure of the set {s} in the topological space
Uj . Similarly for {si} ∩ Ui,j for i ≥ 0. Hence it suffices to prove the lemma in the
case S and Si affine for all i. This reduces us to the algebra question considered in
the next paragraph.
Suppose given a system of rings (Ai, φii′) over I. Set A = colimiAi with canonical
maps φi : Ai → A. Let p ⊂ A be a prime and set pi = φ−1

i (p). Then
V (p) = limi V (pi)

This follows from Lemma 32.4.1 because A/p = colimAi/pi. This equality of rings
also shows the final statement about reduced induced scheme structures holds true.
The equality κ(p) = colim κ(pi) follows from the statement as well. □

In the rest of this section we work in the following situation.

Situation 32.4.5.086P Let S = limi∈I Si be the limit of a directed system of schemes
with affine transition morphisms fi′i : Si′ → Si (Lemma 32.2.2). We assume that
Si is quasi-compact and quasi-separated for all i ∈ I. We denote fi : S → Si the
projection. We also choose an element 0 ∈ I.

In this situation the morphism S → S0 is affine. It follows that S is quasi-compact
and quasi-separated1. The type of result we are looking for is the following: If we
have an object over S, then for some i there is a similar object over Si.

Lemma 32.4.6.01YY In Situation 32.4.5.
(1) We have Sset = limi Si,set where Sset indicates the underlying set of the

scheme S.
(2) We have Stop = limi Si,top where Stop indicates the underlying topological

space of the scheme S.

1Follows from Morphisms, Lemma 29.11.2, Topology, Definition 5.12.1, and Schemes, Lemma
26.21.12.
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(3) If s, s′ ∈ S and s′ is not a specialization of s then for some i ∈ I the image
s′
i ∈ Si of s′ is not a specialization of the image si ∈ Si of s.

(4) Add more easy facts on topology of S here. (Requirement: whatever is
added should be easy in the affine case.)

Proof. Part (1) is a special case of Lemma 32.4.1.
Part (2) is a special case of Lemma 32.4.2.
Part (3) is a special case of Lemma 32.4.4. □

Lemma 32.4.7.01Z0 In Situation 32.4.5. Suppose that F0 is a quasi-coherent sheaf on
S0. Set Fi = f∗

i0F0 for i ≥ 0 and set F = f∗
0F0. Then

Γ(S,F) = colimi≥0 Γ(Si,Fi)

Proof. Write Aj = fi0,∗OSi . This is a quasi-coherent sheaf of OS0 -algebras (see
Morphisms, Lemma 29.11.5) and Si is the relative spectrum of Ai over S0. In the
proof of Lemma 32.2.2 we constructed S as the relative spectrum ofA = colimi≥0Ai
over S0. Set

Mi = F0 ⊗OS0
Ai

and
M = F0 ⊗OS0

A.
Then we have fi0,∗Fi =Mi and f0,∗F =M. Since A is the colimit of the sheaves
Ai and since tensor product commutes with directed colimits, we conclude that
M = colimi≥0Mi. Since S0 is quasi-compact and quasi-separated we see that

Γ(S,F) = Γ(S0,M)
= Γ(S0, colimi≥0Mi)
= colimi≥0 Γ(S0,Mi)
= colimi≥0 Γ(Si,Fi)

see Sheaves, Lemma 6.29.1 and Topology, Lemma 5.27.1 for the middle equality. □

Lemma 32.4.8.01Z3 In Situation 32.4.5. Suppose for each i we are given a nonempty
closed subset Zi ⊂ Si with fi′i(Zi′) ⊂ Zi for all i′ ≥ i. Then there exists a point
s ∈ S with fi(s) ∈ Zi for all i.

Proof. Let Zi ⊂ Si also denote the reduced closed subscheme associated to Zi, see
Schemes, Definition 26.12.5. A closed immersion is affine, and a composition of
affine morphisms is affine (see Morphisms, Lemmas 29.11.9 and 29.11.7), and hence
Zi′ → Si is affine when i′ ≥ i. We conclude that the morphism fi′i : Zi′ → Zi is
affine by Morphisms, Lemma 29.11.11. Each of the schemes Zi is quasi-compact as
a closed subscheme of a quasi-compact scheme. Hence we may apply Lemma 32.4.3
to see that Z = limi Zi is nonempty. Since there is a canonical morphism Z → S
we win. □

Lemma 32.4.9.05F3 In Situation 32.4.5. Suppose we are given an i and a morphism
T → Si such that

(1) T ×Si S = ∅, and
(2) T is quasi-compact.

Then T ×Si Si′ = ∅ for all sufficiently large i′.
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Proof. By Lemma 32.2.3 we see that T ×Si S = limi′≥i T ×Si Si′ . Hence the result
follows from Lemma 32.4.3. □

Lemma 32.4.10.05F4 In Situation 32.4.5. Suppose we are given an i and a locally
constructible subset E ⊂ Si such that fi(S) ⊂ E. Then fi′i(Si′) ⊂ E for all
sufficiently large i′.

Proof. Writing Si as a finite union of open affine subschemes reduces the question to
the case that Si is affine and E is constructible, see Lemma 32.2.2 and Properties,
Lemma 28.2.1. In this case the complement Si \ E is constructible too. Hence
there exists an affine scheme T and a morphism T → Si whose image is Si \E, see
Algebra, Lemma 10.29.4. By Lemma 32.4.9 we see that T ×Si Si′ is empty for all
sufficiently large i′, and hence fi′i(Si′) ⊂ E for all sufficiently large i′. □

Lemma 32.4.11.01Z4 In Situation 32.4.5 we have the following:
(1) Given any quasi-compact open V ⊂ S = limi Si there exists an i ∈ I and

a quasi-compact open Vi ⊂ Si such that f−1
i (Vi) = V .

(2) Given Vi ⊂ Si and Vi′ ⊂ Si′ quasi-compact opens such that f−1
i (Vi) =

f−1
i′ (Vi′) there exists an index i′′ ≥ i, i′ such that f−1

i′′i (Vi) = f−1
i′′i′(Vi′).

(3) If V1,i, . . . , Vn,i ⊂ Si are quasi-compact opens and S = f−1
i (V1,i) ∪ . . . ∪

f−1
i (Vn,i) then Si′ = f−1

i′i (V1,i) ∪ . . . ∪ f−1
i′i (Vn,i) for some i′ ≥ i.

Proof. Choose i0 ∈ I. Note that I is nonempty as the limit is directed. For
convenience we write S0 = Si0 and i0 = 0. Choose an affine open covering S0 =
U1,0 ∪ . . . ∪ Um,0. Denote Uj,i ⊂ Si the inverse image of Uj,0 under the transition
morphism for i ≥ 0. Denote Uj the inverse image of Uj,0 in S. Note that Uj =
limi Uj,i is a limit of affine schemes.

We first prove the uniqueness statement: Let Vi ⊂ Si and Vi′ ⊂ Si′ quasi-compact
opens such that f−1

i (Vi) = f−1
i′ (Vi′). It suffices to show that f−1

i′′i (Vi ∩ Uj,i′′) and
f−1
i′′i′(Vi′ ∩ Uj,i′′) become equal for i′′ large enough. Hence we reduce to the case

of a limit of affine schemes. In this case write S = Spec(R) and Si = Spec(Ri)
for all i ∈ I. We may write Vi = Si \ V (h1, . . . , hm) and Vi′ = Si′ \ V (g1, . . . , gn).
The assumption means that the ideals

∑
gjR and

∑
hjR have the same radical in

R. This means that gNj =
∑
ajj′hj′ and hNj =

∑
bjj′gj′ for some N ≫ 0 and ajj′

and bjj′ in R. Since R = colimiRi we can chose an index i′′ ≥ i such that the
equations gNj =

∑
ajj′hj′ and hNj =

∑
bjj′gj′ hold in Ri′′ for some ajj′ and bjj′ in

Ri′′ . This implies that the ideals
∑
gjRi′′ and

∑
hjRi′′ have the same radical in

Ri′′ as desired.

We prove existence: If S0 is affine, then Si = Spec(Ri) for all i ≥ 0 and S = Spec(R)
with R = colimRi. Then V = S \ V (g1, . . . , gn) for some g1, . . . , gn ∈ R. Choose
any i large enough so that each of the gj comes from an element gj,i ∈ Ri and
take Vi = Si \ V (g1,i, . . . , gn,i). If S0 is general, then the opens V ∩ Uj are quasi-
compact because S is quasi-separated. Hence by the affine case we see that for each
j = 1, . . . ,m there exists an ij ∈ I and a quasi-compact open Vij ⊂ Uj,ij whose
inverse image in Uj is V ∩ Uj . Set i = max(i1, . . . , im) and let Vi =

⋃
f−1
iij

(Vij ).

The statement on coverings follows from the uniqueness statement for the opens
V1,i ∪ . . . ∪ Vn,i and Si of Si. □
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Lemma 32.4.12.01Z5 In Situation 32.4.5 if S is quasi-affine, then for some i0 ∈ I the
schemes Si for i ≥ i0 are quasi-affine.

Proof. Choose i0 ∈ I. Note that I is nonempty as the limit is directed. For
convenience we write S0 = Si0 and i0 = 0. Let s ∈ S. We may choose an affine
open U0 ⊂ S0 containing f0(s). Since S is quasi-affine we may choose an element
a ∈ Γ(S,OS) such that s ∈ D(a) ⊂ f−1

0 (U0), and such that D(a) is affine. By
Lemma 32.4.7 there exists an i ≥ 0 such that a comes from an element ai ∈
Γ(Si,OSi). For any index j ≥ i we denote aj the image of ai in the global sections
of the structure sheaf of Sj . Consider the opens D(aj) ⊂ Sj and Uj = f−1

j0 (U0).
Note that Uj is affine and D(aj) is a quasi-compact open of Sj , see Properties,
Lemma 28.26.4 for example. Hence we may apply Lemma 32.4.11 to the opens Uj
and Uj ∪D(aj) to conclude that D(aj) ⊂ Uj for some j ≥ i. For such an index j
we see that D(aj) ⊂ Sj is an affine open (because D(aj) is a standard affine open
of the affine open Uj) containing the image fj(s).
We conclude that for every s ∈ S there exist an index i ∈ I, and a global section
a ∈ Γ(Si,OSi) such that D(a) ⊂ Si is an affine open containing fi(s). Because S is
quasi-compact we may choose a single index i ∈ I and global sections a1, . . . , am ∈
Γ(Si,OSi) such that each D(aj) ⊂ Si is affine open and such that fi : S → Si
has image contained in the union Wi =

⋃
j=1,...,mD(aj). For i′ ≥ i set Wi′ =

f−1
i′i (Wi). Since f−1

i (Wi) is all of S we see (by Lemma 32.4.11 again) that for a
suitable i′ ≥ i we have Si′ = Wi′ . Thus we may replace i by i′ and assume that
Si =

⋃
j=1,...,mD(aj). This implies that OSi is an ample invertible sheaf on Si (see

Properties, Definition 28.26.1) and hence that Si is quasi-affine, see Properties,
Lemma 28.27.1. Hence we win. □

Lemma 32.4.13.01Z6 In Situation 32.4.5 if S is affine, then for some i0 ∈ I the schemes
Si for i ≥ i0 are affine.

Proof. By Lemma 32.4.12 we may assume that S0 is quasi-affine for some 0 ∈ I.
Set R0 = Γ(S0,OS0). Then S0 is a quasi-compact open of T0 = Spec(R0). Denote
j0 : S0 → T0 the corresponding quasi-compact open immersion. For i ≥ 0 set Ai =
fi0,∗OSi . Since fi0 is affine we see that Si = Spec

S0
(Ai). Set Ti = Spec

T0
(j0,∗Ai).

Then Ti → T0 is affine, hence Ti is affine. Thus Ti is the spectrum of
Ri = Γ(T0, j0,∗Ai) = Γ(S0,Ai) = Γ(Si,OSi).

Write S = Spec(R). We have R = colimiRi by Lemma 32.4.7. Hence also S =
limi Ti. As formation of the relative spectrum commutes with base change, the
inverse image of the open S0 ⊂ T0 in Ti is Si. Let Z0 = T0 \ S0 and let Zi ⊂ Ti be
the inverse image of Z0. As Si = Ti \ Zi, it suffices to show that Zi is empty for
some i. Assume Zi is nonempty for all i to get a contradiction. By Lemma 32.4.8
there exists a point s of S = limTi which maps to a point of Zi for every i. But
S = limi Si, and hence we arrive at a contradiction by Lemma 32.4.6. □

Lemma 32.4.14.086Q In Situation 32.4.5 if S is separated, then for some i0 ∈ I the
schemes Si for i ≥ i0 are separated.

Proof. Choose a finite affine open covering S0 = U0,1∪ . . .∪U0,m. Set Ui,j ⊂ Si and
Uj ⊂ S equal to the inverse image of U0,j . Note that Ui,j and Uj are affine. As S is
separated the intersections Uj1 ∩Uj2 are affine. Since Uj1 ∩Uj2 = limi≥0 Ui,j1 ∩Ui,j2
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we see that Ui,j1 ∩ Ui,j2 is affine for large i by Lemma 32.4.13. To show that Si is
separated for large i it now suffices to show that

OSi(Ui,j1)⊗OS(S) OSi(Ui,j2) −→ OSi(Ui,j1 ∩ Ui,j2)
is surjective for large i (Schemes, Lemma 26.21.7).
To get rid of the annoying indices, assume we have affine opens U, V ⊂ S0 such
that U ∩ V is affine too. Let Ui, Vi ⊂ Si, resp. U, V ⊂ S be the inverse images. We
have to show that O(Ui)⊗O(Vi)→ O(Ui ∩ Vi) is surjective for i large enough and
we know that O(U)⊗O(V )→ O(U ∩V ) is surjective. Note that O(U0)⊗O(V0)→
O(U0∩V0) is of finite type, as the diagonal morphism Si → Si×Si is an immersion
(Schemes, Lemma 26.21.2) hence locally of finite type (Morphisms, Lemmas 29.15.2
and 29.15.5). Thus we can choose elements f0,1, . . . , f0,n ∈ O(U0 ∩ V0) which
generate O(U0 ∩ V0) over O(U0) ⊗ O(V0). Observe that for i ≥ 0 the diagram of
schemes

Ui ∩ Vi //

��

Ui

��
U0 ∩ V0 // U0

is cartesian. Thus we see that the images fi,1, . . . , fi,n ∈ O(Ui ∩ Vi) generate
O(Ui∩Vi) over O(Ui)⊗O(V0) and a fortiori over O(Ui)⊗O(Vi). By assumption the
images f1, . . . , fn ∈ O(U⊗V ) are in the image of the mapO(U)⊗O(V )→ O(U∩V ).
Since O(U)⊗O(V ) = colimO(Ui)⊗O(Vi) we see that they are in the image of the
map at some finite level and the lemma is proved. □

Lemma 32.4.15.09MT In Situation 32.4.5 let L0 be an invertible sheaf of modules on S0.
If the pullback L to S is ample, then for some i ∈ I the pullback Li to Si is ample.

Proof. The assumption means there are finitely many sections s1, . . . , sm ∈ Γ(S,L)
such that Ssj is affine and such that S =

⋃
Ssj , see Properties, Definition 28.26.1.

By Lemma 32.4.7 we can find an i ∈ I and sections si,j ∈ Γ(Si,Li) mapping to
sj . By Lemma 32.4.13 we may, after increasing i, assume that (Si)si,j is affine for
j = 1, . . . ,m. By Lemma 32.4.11 we may, after increasing i a last time, assume
that Si =

⋃
(Si)si,j . Then Li is ample by definition. □

Lemma 32.4.16.081B Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Let Y → X be a morphism of schemes
over S.

(1) If Y → X is a closed immersion, Xi quasi-compact, and Y locally of finite
type over S, then Y → Xi is a closed immersion for i large enough.

(2) If Y → X is an immersion, Xi quasi-separated, Y → S locally of finite
type, and Y quasi-compact, then Y → Xi is an immersion for i large
enough.

(3) If Y → X is an isomorphism, Xi quasi-compact, Xi → S locally of finite
type, the transition morphisms Xi′ → Xi are closed immersions, and
Y → S is locally of finite presentation, then Y → Xi is an isomorphism
for i large enough.

Proof. Proof of (1). Choose 0 ∈ I and a finite affine open covering X0 = U0,1 ∪
. . . ∪ U0,m with the property that U0,j maps into an affine open Wj ⊂ S. Let
Vj ⊂ Y , resp. Ui,j ⊂ Xi, i ≥ 0, resp. Uj ⊂ X be the inverse image of U0,j . It
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suffices to prove that Vj → Ui,j is a closed immersion for i sufficiently large and we
know that Vj → Uj is a closed immersion. Thus we reduce to the following algebra
fact: If A = colimAi is a directed colimit of R-algebras, A → B is a surjection of
R-algebras, and B is a finitely generated R-algebra, then Ai → B is surjective for
i sufficiently large.
Proof of (2). Choose 0 ∈ I. Choose a quasi-compact open X ′

0 ⊂ X0 such that
Y → X0 factors through X ′

0. After replacing Xi by the inverse image of X ′
0 for

i ≥ 0 we may assume all X ′
i are quasi-compact and quasi-separated. Let U ⊂ X

be a quasi-compact open such that Y → X factors through a closed immersion
Y → U (U exists as Y is quasi-compact). By Lemma 32.4.11 we may assume that
U = limUi with Ui ⊂ Xi quasi-compact open. By part (1) we see that Y → Ui is
a closed immersion for some i. Thus (2) holds.
Proof of (3). Working affine locally on X0 for some 0 ∈ I as in the proof of (1)
we reduce to the following algebra fact: If A = limAi is a directed colimit of R-
algebras with surjective transition maps and A of finite presentation over A0, then
A = Ai for some i. Namely, write A = A0/(f1, . . . , fn). Pick i such that f1, . . . , fn
map to zero under the surjective map A0 → Ai. □

Lemma 32.4.17.01ZH Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Assume

(1) S quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) X → S separated.

Then Xi → S is separated for all i large enough.

Proof. Let 0 ∈ I. Note that I is nonempty as the limit is directed. As X0 is
quasi-compact we can find finitely many affine opens U1, . . . , Un ⊂ S such that
X0 → S maps into U1 ∪ . . . ∪ Un. Denote hi : Xi → S the structure morphism. It
suffices to check that for some i ≥ 0 the morphisms h−1

i (Uj)→ Uj are separated for
j = 1, . . . , n. Since S is quasi-separated the morphisms Uj → S are quasi-compact.
Hence h−1

i (Uj) is quasi-compact and quasi-separated. In this way we reduce to the
case S affine. In this case we have to show that Xi is separated and we know that
X is separated. Thus the lemma follows from Lemma 32.4.14. □

Lemma 32.4.18.09ZM Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Assume

(1) S quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) X → S affine.

Then Xi → S is affine for i large enough.

Proof. Choose a finite affine open covering S =
⋃
j=1,...,n Vj . Denote f : X → S

and fi : Xi → S the structure morphisms. For each j the scheme f−1(Vj) =
limi f

−1
i (Vj) is affine (as a finite morphism is affine by definition). Hence by Lemma

32.4.13 there exists an i ∈ I such that each f−1
i (Vj) is affine. In other words,

fi : Xi → S is affine for i large enough, see Morphisms, Lemma 29.11.3. □

Lemma 32.4.19.09ZN Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Assume
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(1) S quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) the transition morphisms Xi′ → Xi are finite,
(4) Xi → S locally of finite type
(5) X → S integral.

Then Xi → S is finite for i large enough.

Proof. By Lemma 32.4.18 we may assume Xi → S is affine for all i. Choose a finite
affine open covering S =

⋃
j=1,...,n Vj . Denote f : X → S and fi : Xi → S the

structure morphisms. It suffices to show that there exists an i such that f−1
i (Vj)

is finite over Vj for j = 1, . . . ,m (Morphisms, Lemma 29.44.3). Namely, for i′ ≥ i
the composition Xi′ → Xi → S will be finite as a composition of finite morphisms
(Morphisms, Lemma 29.44.5). This reduces us to the affine case: Let R be a ring
and A = colimAi with R→ A integral and Ai → Ai′ finite for all i ≤ i′. Moreover
R → Ai is of finite type for all i. Goal: Show that Ai is finite over R for some
i. To prove this choose an i ∈ I and pick generators x1, . . . , xm ∈ Ai of Ai as an
R-algebra. Since A is integral over R we can find monic polynomials Pj ∈ R[T ]
such that Pj(xj) = 0 in A. Thus there exists an i′ ≥ i such that Pj(xj) = 0 in
Ai′ for j = 1, . . . ,m. Then the image A′

i of Ai in Ai′ is finite over R by Algebra,
Lemma 10.36.5. Since A′

i ⊂ Ai′ is finite too we conclude that Ai′ is finite over R
by Algebra, Lemma 10.7.3. □

Lemma 32.4.20.0A0N Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Assume

(1) S quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) the transition morphisms Xi′ → Xi are closed immersions,
(4) Xi → S locally of finite type
(5) X → S a closed immersion.

Then Xi → S is a closed immersion for i large enough.

Proof. By Lemma 32.4.18 we may assume Xi → S is affine for all i. Choose a finite
affine open covering S =

⋃
j=1,...,n Vj . Denote f : X → S and fi : Xi → S the

structure morphisms. It suffices to show that there exists an i such that f−1
i (Vj)

is a closed subscheme of Vj for j = 1, . . . ,m (Morphisms, Lemma 29.2.1). This
reduces us to the affine case: Let R be a ring and A = colimAi with R → A
surjective and Ai → Ai′ surjective for all i ≤ i′. Moreover R→ Ai is of finite type
for all i. Goal: Show that R→ Ai is surjective for some i. To prove this choose an
i ∈ I and pick generators x1, . . . , xm ∈ Ai of Ai as an R-algebra. Since R → A is
surjective we can find rj ∈ R such that rj maps to xj in A. Thus there exists an
i′ ≥ i such that rj maps to the image of xj in Ai′ for j = 1, . . . ,m. Since Ai → Ai′

is surjective this implies that R→ Ai′ is surjective. □

Lemma 32.4.21.0GIH Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Assume

(1) S quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) the transition morphisms Xi′ → Xi are closed immersions,
(4) Xi → S locally of finite type, and
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(5) X → S an immersion.
Then Xi → S is an immersion for i large enough.

Proof. Choose an open subscheme U ⊂ S such that X → S factors as a closed
immersion X → U composed with the inclusion morphism U → S. Since X is
quasi-compact, we may shrink U and assume U is quasi-compact. Denote Vi ⊂ Xi

the inverse image of U . Since Vi pulls back to X we see that Vi = Xi for all i large
enough by Lemma 32.4.11. Thus we may assume X = limXi in the category of
schemes over U . Then we see that Xi → U is a closed immersion for i large enough
by Lemma 32.4.20. This proves the lemma. □

32.5. Absolute Noetherian Approximation

01Z1 A nice reference for this section is Appendix C of the article by Thomason and
Trobaugh [TT90]. See Categories, Section 4.21 for our conventions regarding di-
rected systems. We will use the existence result and properties of the limit from
Section 32.2 without further mention.

Lemma 32.5.1.01Z7 Let W be a quasi-affine scheme of finite type over Z. Suppose
W → Spec(R) is an open immersion into an affine scheme. There exists a finite
type Z-algebra A ⊂ R which induces an open immersion W → Spec(A). Moreover,
R is the directed colimit of such subalgebras.

Proof. Choose an affine open covering W =
⋃
i=1,...,nWi such that each Wi is a

standard affine open in Spec(R). In other words, if we write Wi = Spec(Ri) then
Ri = Rfi for some fi ∈ R. Choose finitely many xij ∈ Ri which generate Ri over Z.
Pick an N ≫ 0 such that each fNi xij comes from an element of R, say yij ∈ R. Set
A equal to the Z-algebra generated by the fi and the yij and (optionally) finitely
many additional elements of R. Then A works. Details omitted. □

Lemma 32.5.2.01Z9 Suppose given a cartesian diagram of rings

B
s
// R

B′

OO

// R′

t

OO

Let W ′ ⊂ Spec(R′) be an open of the form W ′ = D(f1) ∪ . . . ∪ D(fn) such that
t(fi) = s(gi) for some gi ∈ B and Bgi

∼= Rs(gi). Then B′ → R′ induces an open
immersion of W ′ into Spec(B′).

Proof. Set hi = (gi, fi) ∈ B′. More on Algebra, Lemma 15.5.3 shows that (B′)hi ∼=
(R′)fi as desired. □

The following lemma is a precise statement of Noetherian approximation.

Lemma 32.5.3.07RN Let S be a quasi-compact and quasi-separated scheme. Let V ⊂ S
be a quasi-compact open. Let I be a directed set and let (Vi, fii′) be an inverse
system of schemes over I with affine transition maps, with each Vi of finite type
over Z, and with V = limVi. Then there exist

(1) a directed set J ,
(2) an inverse system of schemes (Sj , gjj′) over J ,
(3) an order preserving map α : J → I,
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(4) open subschemes V ′
j ⊂ Sj , and

(5) isomorphisms V ′
j → Vα(j)

such that
(1) the transition morphisms gjj′ : Sj → Sj′ are affine,
(2) each Sj is of finite type over Z,
(3) g−1

jj′ (V ′
j′) = V ′

j ,
(4) S = limSj and V = limV ′

j , and
(5) the diagrams

V

�� !!
V ′
j

// Vα(j)

and

V ′
j

//

��

Vα(j)

��
V ′
j′ // Vα(j′)

are commutative.
Proof. Set Z = S \ V . Choose affine opens U1, . . . , Um ⊂ S such that Z ⊂⋃
l=1,...,m Ul. Consider the opens

V ⊂ V ∪ U1 ⊂ V ∪ U1 ∪ U2 ⊂ . . . ⊂ V ∪
⋃

l=1,...,m
Ul = S

If we can prove the lemma successively for each of the cases
V ∪ U1 ∪ . . . ∪ Ul ⊂ V ∪ U1 ∪ . . . ∪ Ul+1

then the lemma will follow for V ⊂ S. In each case we are adding one affine open.
Thus we may assume

(1) S = U ∪ V ,
(2) U affine open in S,
(3) V quasi-compact open in S, and
(4) V = limi Vi with (Vi, fii′) an inverse system over a directed set I, each

fii′ affine and each Vi of finite type over Z.
Denote fi : V → Vi the projections. Set W = U ∩ V . As S is quasi-separated, this
is a quasi-compact open of V . By Lemma 32.4.11 (and after shrinking I) we may
assume that there exist opens Wi ⊂ Vi such that f−1

ii′ (Wi′) = Wi and such that
f−1
i (Wi) = W . Since W is a quasi-compact open of U it is quasi-affine. Hence we

may assume (after shrinking I again) that Wi is quasi-affine for all i, see Lemma
32.4.12.
Write U = Spec(B). Set R = Γ(W,OW ), and Ri = Γ(Wi,OWi

). By Lemma 32.4.7
we have R = colimiRi. Now we have the maps of rings

B
s
// R

Ri

ti

OO

We set Bi = {(b, r) ∈ B ×Ri | s(b) = ti(t)} so that we have a cartesian diagram
B

s
// R

Bi

OO

// Ri

ti

OO
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for each i. The transition maps Ri → Ri′ induce maps Bi → Bi′ . It is clear that
B = colimiBi. In the next paragraph we show that for all sufficiently large i the
composition Wi → Spec(Ri)→ Spec(Bi) is an open immersion.

As W is a quasi-compact open of U = Spec(B) we can find a finitely many elements
gl ∈ B, l = 1, . . . ,m such that D(gl) ⊂ W and such that W =

⋃
l=1,...,mD(gl).

Note that this implies D(gl) = Ws(gl) as open subsets of U , where Ws(gl) denotes
the largest open subset of W on which s(gl) is invertible. Hence

Bgl = Γ(D(gl),OU ) = Γ(Ws(gl),OW ) = Rs(gl),

where the last equality is Properties, Lemma 28.17.1. Since Ws(gl) is affine this also
implies that D(s(gl)) = Ws(gl) as open subsets of Spec(R). Since R = colimiRi we
can (after shrinking I) assume there exist gl,i ∈ Ri for all i ∈ I such that s(gl) =
ti(gl,i). Of course we choose the gl,i such that gl,i maps to gl,i′ under the transition
maps Ri → Ri′ . Then, by Lemma 32.4.11 we can (after shrinking I again) assume
the corresponding opens D(gl,i) ⊂ Spec(Ri) are contained in Wi for l = 1, . . . ,m
and cover Wi. We conclude that the morphism Wi → Spec(Ri) → Spec(Bi) is an
open immersion, see Lemma 32.5.2.

By Lemma 32.5.1 we can write Bi as a directed colimit of subalgebras Ai,p ⊂ Bi, p ∈
Pi each of finite type over Z and such that Wi is identified with an open subscheme
of Spec(Ai,p). Let Si,p be the scheme obtained by glueing Vi and Spec(Ai,p) along
the openWi, see Schemes, Section 26.14. Here is the resulting commutative diagram
of schemes:

V

tt ��

Woo

uu ��
Vi

��

Wi
oo

��

S

tt

U

vv

oo

Si,p Spec(Ai,p)oo

The morphism S → Si,p arises because the upper right square is a pushout in
the category of schemes. Note that Si,p is of finite type over Z since it has a
finite affine open covering whose members are spectra of finite type Z-algebras.
We define a preorder on J =

∐
i∈I Pi by the rule (i′, p′) ≥ (i, p) if and only if

i′ ≥ i and the map Bi → Bi′ maps Ai,p into Ai′,p′ . This is exactly the condition
needed to define a morphism Si′,p′ → Si,p: namely make a commutative diagram as
above using the transition morphisms Vi′ → Vi and Wi′ → Wi and the morphism
Spec(Ai′,p′) → Spec(Ai,p) induced by the ring map Ai,p → Ai′,p′ . The relevant
commutativities have been built into the constructions. We claim that S is the
directed limit of the schemes Si,p. Since by construction the schemes Vi have limit
V this boils down to the fact that B is the limit of the rings Ai,p which is true
by construction. The map α : J → I is given by the rule j = (i, p) 7→ i. The
open subscheme V ′

j is just the image of Vi → Si,p above. The commutativity of
the diagrams in (5) is clear from the construction. This finishes the proof of the
lemma. □

Proposition 32.5.4.01ZA Let S be a quasi-compact and quasi-separated scheme. There
exist a directed set I and an inverse system of schemes (Si, fii′) over I such that
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(1) the transition morphisms fii′ are affine
(2) each Si is of finite type over Z, and
(3) S = limi Si.

Proof. This is a special case of Lemma 32.5.3 with V = ∅. □

32.6. Limits and morphisms of finite presentation

01ZB The following is a generalization of Algebra, Lemma 10.127.3.

Proposition 32.6.1.01ZC [DG67, IV,
Proposition 8.14.2]

Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is locally of finite presentation.
(2) For any directed set I, and any inverse system (Ti, fii′) of S-schemes over

I with each Ti affine, we have
MorS(limi Ti, X) = colimi MorS(Ti, X)

(3) For any directed set I, and any inverse system (Ti, fii′) of S-schemes over
I with each fii′ affine and every Ti quasi-compact and quasi-separated as
a scheme, we have

MorS(limi Ti, X) = colimi MorS(Ti, X)

Proof. It is clear that (3) implies (2).
Let us prove that (2) implies (1). Assume (2). Choose any affine opens U ⊂ X
and V ⊂ S such that f(U) ⊂ V . We have to show that OS(V ) → OX(U) is
of finite presentation. Let (Ai, φii′) be a directed system of OS(V )-algebras. Set
A = colimiAi. According to Algebra, Lemma 10.127.3 we have to show that

HomOS(V )(OX(U), A) = colimi HomOS(V )(OX(U), Ai)
Consider the schemes Ti = Spec(Ai). They form an inverse system of V -schemes
over I with transition morphisms fii′ : Ti → Ti′ induced by the OS(V )-algebra
maps φi′i. Set T := Spec(A) = limi Ti. The formula above becomes in terms of
morphism sets of schemes

MorV (limi Ti, U) = colimi MorV (Ti, U).
We first observe that MorV (Ti, U) = MorS(Ti, U) and MorV (T,U) = MorS(T,U).
Hence we have to show that

MorS(limi Ti, U) = colimi MorS(Ti, U)
and we are given that

MorS(limi Ti, X) = colimi MorS(Ti, X).
Hence it suffices to prove that given a morphism gi : Ti → X over S such that
the composition T → Ti → X ends up in U there exists some i′ ≥ i such that the
composition gi′ : Ti′ → Ti → X ends up in U . Denote Zi′ = g−1

i′ (X \ U). Assume
each Zi′ is nonempty to get a contradiction. By Lemma 32.4.8 there exists a point
t of T which is mapped into Zi′ for all i′ ≥ i. Such a point is not mapped into U .
A contradiction.
Finally, let us prove that (1) implies (3). Assume (1). Let an inverse directed
system (Ti, fii′) of S-schemes be given. Assume the morphisms fii′ are affine and
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each Ti is quasi-compact and quasi-separated as a scheme. Let T = limi Ti. Denote
fi : T → Ti the projection morphisms. We have to show:

(a) Given morphisms gi, g′
i : Ti → X over S such that gi ◦ fi = g′

i ◦ fi, then
there exists an i′ ≥ i such that gi ◦ fi′i = g′

i ◦ fi′i.
(b) Given any morphism g : T → X over S there exists an i ∈ I and a

morphism gi : Ti → X such that g = fi ◦ gi.
First let us prove the uniqueness part (a). Let gi, g′

i : Ti → X be morphisms such
that gi ◦ fi = g′

i ◦ fi. For any i′ ≥ i we set gi′ = gi ◦ fi′i and g′
i′ = g′

i ◦ fi′i. We also
set g = gi ◦ fi = g′

i ◦ fi. Consider the morphism (gi, g′
i) : Ti → X ×S X. Set

W =
⋃

U⊂X affine open,V⊂S affine open,f(U)⊂V
U ×V U.

This is an open in X ×S X, with the property that the morphism ∆X/S factors
through a closed immersion into W , see the proof of Schemes, Lemma 26.21.2. Note
that the composition (gi, g′

i) ◦ fi : T → X ×S X is a morphism into W because it
factors through the diagonal by assumption. Set Zi′ = (gi′ , g′

i′)−1(X ×S X \W ).
If each Zi′ is nonempty, then by Lemma 32.4.8 there exists a point t ∈ T which
maps to Zi′ for all i′ ≥ i. This is a contradiction with the fact that T maps into W .
Hence we may increase i and assume that (gi, g′

i) : Ti → X×SX is a morphism into
W . By construction of W , and since Ti is quasi-compact we can find a finite affine
open covering Ti = T1,i ∪ . . .∪Tn,i such that (gi, g′

i)|Tj,i is a morphism into U ×V U
for some pair (U, V ) as in the definition of W above. Since it suffices to prove that
gi′ and g′

i′ agree on each of the f−1
i′i (Tj,i) this reduces us to the affine case. The

affine case follows from Algebra, Lemma 10.127.3 and the fact that the ring map
OS(V )→ OX(U) is of finite presentation (see Morphisms, Lemma 29.21.2).

Finally, we prove the existence part (b). Let g : T → X be a morphism of schemes
over S. We can find a finite affine open covering T = W1 ∪ . . . ∪Wn such that for
each j ∈ {1, . . . , n} there exist affine opens Uj ⊂ X and Vj ⊂ S with f(Uj) ⊂ Vj
and g(Wj) ⊂ Uj . By Lemmas 32.4.11 and 32.4.13 (after possibly shrinking I) we
may assume that there exist affine open coverings Ti = W1,i∪ . . .∪Wn,i compatible
with transition maps such that Wj = limiWj,i. We apply Algebra, Lemma 10.127.3
to the rings corresponding to the affine schemes Uj , Vj , Wj,i and Wj using that
OS(Vj)→ OX(Uj) is of finite presentation (see Morphisms, Lemma 29.21.2). Thus
we can find for each j an index ij ∈ I and a morphism gj,ij : Wj,ij → X such that
gj,ij ◦ fi|Wj

: Wj → Wj,i → X equals g|Wj
. By part (a) proved above, using the

quasi-compactness of Wj1,i ∩Wj2,i which follows as Ti is quasi-separated, we can
find an index i′ ∈ I larger than all ij such that

gj1,ij1
◦ fi′ij1

|Wj1,i′ ∩Wj2,i′
= gj2,ij2

◦ fi′ij2
|Wj1,i′ ∩Wj2,i′

for all j1, j2 ∈ {1, . . . , n}. Hence the morphisms gj,ij ◦ fi′ij |Wj,i′ glue to given the
desired morphism Ti′ → X. □

Remark 32.6.2.05LX Let S be a scheme. Let us say that a functor F : (Sch/S)opp → Sets
is limit preserving if for every directed inverse system {Ti}i∈I of affine schemes
with limit T we have F (T ) = colimi F (Ti). Let X be a scheme over S, and let
hX : (Sch/S)opp → Sets be its functor of points, see Schemes, Section 26.15. In this
terminology Proposition 32.6.1 says that a scheme X is locally of finite presentation
over S if and only if hX is limit preserving.

https://stacks.math.columbia.edu/tag/05LX


32.6. LIMITS AND MORPHISMS OF FINITE PRESENTATION 2727

Lemma 32.6.3.0CM0 Let f : X → S be a morphism of schemes. If for every directed
limit T = limi∈I Ti of affine schemes over S the map

colim MorS(Ti, X) −→ MorS(T,X)
is surjective, then f is locally of finite presentation. In other words, in Proposition
32.6.1 parts (2) and (3) it suffices to check surjectivity of the map.

Proof. The proof is exactly the same as the proof of the implication “(2) implies
(1)” in Proposition 32.6.1. Choose any affine opens U ⊂ X and V ⊂ S such that
f(U) ⊂ V . We have to show that OS(V ) → OX(U) is of finite presentation. Let
(Ai, φii′) be a directed system of OS(V )-algebras. Set A = colimiAi. According to
Algebra, Lemma 10.127.3 it suffices to show that

colimi HomOS(V )(OX(U), Ai)→ HomOS(V )(OX(U), A)
is surjective. Consider the schemes Ti = Spec(Ai). They form an inverse system of
V -schemes over I with transition morphisms fii′ : Ti → Ti′ induced by the OS(V )-
algebra maps φi′i. Set T := Spec(A) = limi Ti. The formula above becomes in
terms of morphism sets of schemes

colimi MorV (Ti, U)→ MorV (limi Ti, U)
We first observe that MorV (Ti, U) = MorS(Ti, U) and MorV (T,U) = MorS(T,U).
Hence we have to show that

colimi MorS(Ti, U)→ MorS(limi Ti, U)
is surjective and we are given that

colimi MorS(Ti, X)→ MorS(limi Ti, X)
is surjective. Hence it suffices to prove that given a morphism gi : Ti → X over S
such that the composition T → Ti → X ends up in U there exists some i′ ≥ i such
that the composition gi′ : Ti′ → Ti → X ends up in U . Denote Zi′ = g−1

i′ (X \ U).
Assume each Zi′ is nonempty to get a contradiction. By Lemma 32.4.8 there exists
a point t of T which is mapped into Zi′ for all i′ ≥ i. Such a point is not mapped
into U . A contradiction. □

The following is an example application of Proposition 32.6.1.

Lemma 32.6.4.0GWT Let S be a scheme. Let X and Y be schemes over S. Assume
Y is locally of finite presentation over S. Let x ∈ X be a closed point such that
U = X \{x} → X is quasi-compact. With V = Spec(OX,x)\{x} there is a bijection{

morphisms X → Y over S
}
−→

{
(a, b) where a : U → Y and b : Spec(OX,x)→ Y

are morphisms over S which agree over V

}
Proof. Let W ⊂ X be an open neighbourhood of x. By glueing of schemes, see
Schemes, Section 26.14 the result holds if we consider pairs of morphisms a : U → Y
and c : W → Y which agree over U ∩W . We have OX,x = colimOW (W ) where W
runs over the affine open neighbourhoods of x in X. Hence Spec(OX,x) = limW
where W runs over the affine open neighbourhoods of s. Thus by Proposition 32.6.1
any morphism b : Spec(OX,x)→ Y over S comes from a morphism c : W → Y for
some W as above (and c is unique up to further shrinking W ). For every affine open
x ∈ W we see that U ∩W is quasi-compact as U → X is quasi-compact. Hence
V = limW ∩ U = limW \ {x} is a limit of quasi-compact and quasi-separated
schemes (see Lemma 32.2.2). Thus if a and b agree over V , then after shrinking
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W we see that a and c agree over U ∩W (by the same proposition). The lemma
follows. □

32.7. Relative approximation

09MU We discuss variants of Proposition 32.5.4 over a base.
Lemma 32.7.1.0GS1 Let f : X → S be a morphism of quasi-compact and quasi-
separated schemes. Then there exists a direct set I and an inverse system (fi : Xi →
Si) of morphisms schemes over I, such that the transition morphisms Xi → Xi′

and Si → Si′ are affine, such that Xi and Si are of finite type over Z, and such
that (X → S) = lim(Xi → Si).
Proof. Write X = lima∈AXa and S = limb∈B Sb as in Proposition 32.5.4, i.e., with
Xa and Sb of finite type over Z and with affine transition morphisms.
Fix b ∈ B. By Proposition 32.6.1 applied to Sb and X = limXa over Z we find
there exists an a ∈ A and a morphism fa,b : Xa → Sb making the diagram

X

��

// S

��
Xa

// Sb

commute. Let I be the set of triples (a, b, fa,b) we obtain in this manner.
Let (a, b, fa,b) and (a′, b′, fa′,b′) be in I. Let b′′ ≤ min(b, b′). By Proposition 32.6.1
again, there exists an a′′ ≥ max(a, a′) such that the compositions Xa′′ → Xa →
Sb → Sb′′ and Xa′′ → Xa′ → Sb′ → Sb′′ are equal. We endow I with the preorder

(a, b, fa,b) ≥ (a′, b′, fa′,b′)⇔ a ≥ a′, b ≥ b′, and gb,b′ ◦ fa,b = fa′,b′ ◦ ha,a′

where ha,a′ : Xa → Xa′ and gb,b′ : Sb → Sb′ are the transition morphisms. The
remarks above show that I is directed and that the maps I → A, (a, b, fa,b) 7→ a
and I → B, (a, b, fa,b) are cofinal. If for i = (a, b, fa,b) we set Xi = Xa, Si = Sb,
and fi = fa,b, then we get an inverse system of morphisms over I and we have

limi∈I Xi = lima∈AXa = X and limi∈I Si = limb∈B Sb = S

by Categories, Lemma 4.17.4 (recall that limits over I are really limits over the
opposite category associated to I and hence cofinal turns into initial). This finishes
the proof. □

Lemma 32.7.2.09MV Let f : X → S be a morphism of schemes. Assume that
(1) X is quasi-compact and quasi-separated, and
(2) S is quasi-separated.

Then X = limXi is a limit of a directed system of schemes Xi of finite presentation
over S with affine transition morphisms over S.
Proof. Since f(X) is quasi-compact we may replace S by a quasi-compact open
containing f(X). Hence we may assume S is quasi-compact. By Lemma 32.7.1 we
can write (X → S) = lim(Xi → Si) for some directed inverse system of morphisms
of finite type schemes over Z with affine transition morphisms. Since limits com-
mute with limits (Categories, Lemma 4.14.10) we have X = limXi×Si S. Let i ≥ i′
in I. The morphism Xi ×Si S → Xi′ ×Si′ S is affine as the composition

Xi ×Si S → Xi ×Si′ S → Xi′ ×Si′ S
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where the first morphism is a closed immersion (by Schemes, Lemma 26.21.9) and
the second is a base change of an affine morphism (Morphisms, Lemma 29.11.8) and
the composition of affine morphisms is affine (Morphisms, Lemma 29.11.7). The
morphisms fi are of finite presentation (Morphisms, Lemmas 29.21.9 and 29.21.11)
and hence the base changes Xi×fi,Si S → S are of finite presentation (Morphisms,
Lemma 29.21.4). □

Lemma 32.7.3.09YZ Let X → S be an integral morphism with S quasi-compact and
quasi-separated. Then X = limXi with Xi → S finite and of finite presentation.

Proof. Consider the sheafA = f∗OX . This is a quasi-coherent sheaf ofOS-algebras,
see Schemes, Lemma 26.24.1. Combining Properties, Lemma 28.22.13 we can write
A = colimiAi as a filtered colimit of finite and finitely presented OS-algebras.
Then

Xi = Spec
S

(Ai) −→ S

is a finite and finitely presented morphism of schemes. By construction X = limiXi

which proves the lemma. □

32.8. Descending properties of morphisms

081C This section is the analogue of Section 32.4 for properties of morphisms over S. We
will work in the following situation.

Situation 32.8.1.081D Let S = limSi be a limit of a directed system of schemes with
affine transition morphisms (Lemma 32.2.2). Let 0 ∈ I and let f0 : X0 → Y0 be
a morphism of schemes over S0. Assume S0, X0, Y0 are quasi-compact and quasi-
separated. Let fi : Xi → Yi be the base change of f0 to Si and let f : X → Y be
the base change of f0 to S.

Lemma 32.8.2.01ZN Notation and assumptions as in Situation 32.8.1. If f is affine,
then there exists an index i ≥ 0 such that fi is affine.

Proof. Let Y0 =
⋃
j=1,...,m Vj,0 be a finite affine open covering. Set Uj,0 = f−1

0 (Vj,0).
For i ≥ 0 we denote Vj,i the inverse image of Vj,0 in Yi and Uj,i = f−1

i (Vj,i).
Similarly we have Uj = f−1(Vj). Then Uj = limi≥0 Uj,i (see Lemma 32.2.2). Since
Uj is affine by assumption we see that each Uj,i is affine for i large enough, see
Lemma 32.4.13. As there are finitely many j we can pick an i which works for all
j. Thus fi is affine for i large enough, see Morphisms, Lemma 29.11.3. □

Lemma 32.8.3.01ZO Notation and assumptions as in Situation 32.8.1. If
(1) f is a finite morphism, and
(2) f0 is locally of finite type,

then there exists an i ≥ 0 such that fi is finite.

Proof. A finite morphism is affine, see Morphisms, Definition 29.44.1. Hence by
Lemma 32.8.2 above after increasing 0 we may assume that f0 is affine. By writing
Y0 as a finite union of affines we reduce to proving the result when X0 and Y0 are
affine and map into a common affine W ⊂ S0. The corresponding algebra statement
follows from Algebra, Lemma 10.168.3. □

Lemma 32.8.4.0C4W Notation and assumptions as in Situation 32.8.1. If
(1) f is unramified, and
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(2) f0 is locally of finite type,
then there exists an i ≥ 0 such that fi is unramified.

Proof. Choose a finite affine open covering Y0 =
⋃
j=1,...,m Yj,0 such that each Yj,0

maps into an affine open Sj,0 ⊂ S0. For each j let f−1
0 Yj,0 =

⋃
k=1,...,nj Xk,0 be a

finite affine open covering. Since the property of being unramified is local we see
that it suffices to prove the lemma for the morphisms of affines Xk,i → Yj,i → Sj,i
which are the base changes of Xk,0 → Yj,0 → Sj,0 to Si. Thus we reduce to the
case that X0, Y0, S0 are affine
In the affine case we reduce to the following algebra result. Suppose that R =
colimi∈I Ri. For some 0 ∈ I suppose given an R0-algebra map Ai → Bi of finite
type. If R⊗R0 A0 → R⊗R0 B0 is unramified, then for some i ≥ 0 the map Ri ⊗R0

A0 → Ri ⊗R0 B0 is unramified. This follows from Algebra, Lemma 10.168.5. □

Lemma 32.8.5.01ZP Notation and assumptions as in Situation 32.8.1. If
(1) f is a closed immersion, and
(2) f0 is locally of finite type,

then there exists an i ≥ 0 such that fi is a closed immersion.

Proof. A closed immersion is affine, see Morphisms, Lemma 29.11.9. Hence by
Lemma 32.8.2 above after increasing 0 we may assume that f0 is affine. By writing
Y0 as a finite union of affines we reduce to proving the result when X0 and Y0 are
affine and map into a common affine W ⊂ S0. The corresponding algebra statement
is a consequence of Algebra, Lemma 10.168.4. □

Lemma 32.8.6.01ZQ Notation and assumptions as in Situation 32.8.1. If f is separated,
then fi is separated for some i ≥ 0.

Proof. Apply Lemma 32.8.5 to the diagonal morphism ∆X0/S0 : X0 → X0 ×S0 X0.
(This is permissible as diagonal morphisms are locally of finite type and the fibre
product X0 ×S0 X0 is quasi-compact and quasi-separated, see Schemes, Lemma
26.21.2, Morphisms, Lemma 29.15.5, and Schemes, Remark 26.21.18. □

Lemma 32.8.7.04AI Notation and assumptions as in Situation 32.8.1. If
(1) f is flat,
(2) f0 is locally of finite presentation,

then fi is flat for some i ≥ 0.

Proof. Choose a finite affine open covering Y0 =
⋃
j=1,...,m Yj,0 such that each Yj,0

maps into an affine open Sj,0 ⊂ S0. For each j let f−1
0 Yj,0 =

⋃
k=1,...,nj Xk,0 be a

finite affine open covering. Since the property of being flat is local we see that it
suffices to prove the lemma for the morphisms of affines Xk,i → Yj,i → Sj,i which
are the base changes of Xk,0 → Yj,0 → Sj,0 to Si. Thus we reduce to the case that
X0, Y0, S0 are affine
In the affine case we reduce to the following algebra result. Suppose that R =
colimi∈I Ri. For some 0 ∈ I suppose given an R0-algebra map Ai → Bi of finite
presentation. If R ⊗R0 A0 → R ⊗R0 B0 is flat, then for some i ≥ 0 the map
Ri ⊗R0 A0 → Ri ⊗R0 B0 is flat. This follows from Algebra, Lemma 10.168.1 part
(3). □
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Lemma 32.8.8.06AC Notation and assumptions as in Situation 32.8.1. If
(1) f is finite locally free (of degree d),
(2) f0 is locally of finite presentation,

then fi is finite locally free (of degree d) for some i ≥ 0.

Proof. By Lemmas 32.8.7 and 32.8.3 we find an i such that fi is flat and finite. On
the other hand, fi is locally of finite presentation. Hence fi is finite locally free by
Morphisms, Lemma 29.48.2. If moreover f is finite locally free of degree d, then the
image of Y → Yi is contained in the open and closed locus Wd ⊂ Yi over which fi
has degree d. By Lemma 32.4.10 we see that for some i′ ≥ i the image of Yi′ → Yi
is contained in Wd. Then fi′ will be finite locally free of degree d. □

Lemma 32.8.9.0C0C Notation and assumptions as in Situation 32.8.1. If
(1) f is smooth,
(2) f0 is locally of finite presentation,

then fi is smooth for some i ≥ 0.

Proof. Being smooth is local on the source and the target (Morphisms, Lemma
29.34.2) hence we may assume S0, X0, Y0 affine (details omitted). The correspond-
ing algebra fact is Algebra, Lemma 10.168.8. □

Lemma 32.8.10.07RP Notation and assumptions as in Situation 32.8.1. If
(1) f is étale,
(2) f0 is locally of finite presentation,

then fi is étale for some i ≥ 0.

Proof. Being étale is local on the source and the target (Morphisms, Lemma 29.36.2)
hence we may assume S0, X0, Y0 affine (details omitted). The corresponding algebra
fact is Algebra, Lemma 10.168.7. □

Lemma 32.8.11.081E Notation and assumptions as in Situation 32.8.1. If
(1) f is an isomorphism, and
(2) f0 is locally of finite presentation,

then fi is an isomorphism for some i ≥ 0.

Proof. By Lemmas 32.8.10 and 32.8.5 we can find an i such that fi is flat and a
closed immersion. Then fi identifies Xi with an open and closed subscheme of Yi,
see Morphisms, Lemma 29.26.2. By assumption the image of Y → Yi maps into
fi(Xi). Thus by Lemma 32.4.10 we find that Yi′ maps into fi(Xi) for some i′ ≥ i.
It follows that Xi′ → Yi′ is surjective and we win. □

Lemma 32.8.12.0EUU Notation and assumptions as in Situation 32.8.1. If
(1) f is an open immersion, and
(2) f0 is locally of finite presentation,

then fi is an open immersion for some i ≥ 0.

Proof. By Lemma 32.8.10 we can find an i such that fi is étale. Then Vi = fi(Xi)
is a quasi-compact open subscheme of Yi (Morphisms, Lemma 29.36.13). let V and
Vi′ for i′ ≥ i be the inverse image of Vi in Y and Yi′ . Then f : X → V is an
isomorphism (namely it is a surjective open immersion). Hence by Lemma 32.8.11
we see that Xi′ → Vi′ is an isomorphism for some i′ ≥ i as desired. □
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Lemma 32.8.13.0GTB Notation and assumptions as in Situation 32.8.1. If
(1) f is an immersion, and
(2) f0 is locally of finite type,

then fi is an immersion for some i ≥ 0.

Proof. There exists an open V ⊂ Y such that the morphism f factors as X → V →
Y and such that X → V is a closed immersion, see discussion in Schemes, Section
26.10. Since X is quasi-compact, we may and do assume V is a quasi-compact
open of Y . By Lemma 32.4.11 after increasing 0 we can find a quasi-compact open
V0 ⊂ Y0 such that V is the inverse image of V0. Then the inverse image of V0 in
X0 is a quasi-compact open whose inverse image in X is X. Hence by the same
lemma applied to X = limXi we may assume after increasing 0 that we have the
factorization X0 → V0 → Y0. Then for large enough i ≥ 0 the morphism Xi → Vi
where Vi = Yi ×Y0 V0 is a closed immersion by Lemma 32.8.5 and the proof is
complete. □

Lemma 32.8.14.07RQ Notation and assumptions as in Situation 32.8.1. If
(1) f is a monomorphism, and
(2) f0 is locally of finite type,

then fi is a monomorphism for some i ≥ 0.

Proof. Recall that a morphism of schemes V → W is a monomorphism if and
only if the diagonal V → V ×W V is an isomorphism (Schemes, Lemma 26.23.2).
The morphism X0 → X0 ×Y0 X0 is locally of finite presentation by Morphisms,
Lemma 29.21.12. Since X0×Y0 X0 is quasi-compact and quasi-separated (Schemes,
Remark 26.21.18) we conclude from Lemma 32.8.11 that ∆i : Xi → Xi×YiXi is an
isomorphism for some i ≥ 0. For this i the morphism fi is a monomorphism. □

Lemma 32.8.15.07RR Notation and assumptions as in Situation 32.8.1. If
(1) f is surjective, and
(2) f0 is locally of finite presentation,

then there exists an i ≥ 0 such that fi is surjective.

Proof. The morphism f0 is of finite presentation. Hence E = f0(X0) is a con-
structible subset of Y0, see Morphisms, Lemma 29.22.2. Since fi is the base change
of f0 by Yi → Y0 we see that the image of fi is the inverse image of E in Yi. More-
over, we know that Y → Y0 maps into E. Hence we win by Lemma 32.4.10. □

Lemma 32.8.16.0C3L Notation and assumptions as in Situation 32.8.1. If
(1) f is syntomic, and
(2) f0 is locally of finite presentation,

then there exists an i ≥ 0 such that fi is syntomic.

Proof. Choose a finite affine open covering Y0 =
⋃
j=1,...,m Yj,0 such that each Yj,0

maps into an affine open Sj,0 ⊂ S0. For each j let f−1
0 Yj,0 =

⋃
k=1,...,nj Xk,0 be

a finite affine open covering. Since the property of being syntomic is local we see
that it suffices to prove the lemma for the morphisms of affines Xk,i → Yj,i → Sj,i
which are the base changes of Xk,0 → Yj,0 → Sj,0 to Si. Thus we reduce to the
case that X0, Y0, S0 are affine
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In the affine case we reduce to the following algebra result. Suppose that R =
colimi∈I Ri. For some 0 ∈ I suppose given an R0-algebra map Ai → Bi of finite
presentation. If R ⊗R0 A0 → R ⊗R0 B0 is syntomic, then for some i ≥ 0 the
map Ri ⊗R0 A0 → Ri ⊗R0 B0 is syntomic. This follows from Algebra, Lemma
10.168.9. □

32.9. Finite type closed in finite presentation

01ZD A result of this type is [Kie72, Satz 2.10]. Another reference is [Con07b].

Lemma 32.9.1.01ZE Let f : X → S be a morphism of schemes. Assume:
(1) The morphism f is locally of finite type.
(2) The scheme X is quasi-compact and quasi-separated.

Then there exists a morphism of finite presentation f ′ : X ′ → S and an immersion
X → X ′ of schemes over S.

Proof. By Proposition 32.5.4 we can write X = limiXi with each Xi of finite
type over Z and with transition morphisms fii′ : Xi → Xi′ affine. Consider the
commutative diagram

X //

!!

Xi,S
//

��

Xi

��
S // Spec(Z)

Note that Xi is of finite presentation over Spec(Z), see Morphisms, Lemma 29.21.9.
Hence the base change Xi,S → S is of finite presentation by Morphisms, Lemma
29.21.4. Thus it suffices to show that the arrow X → Xi,S is an immersion for i
sufficiently large.
To do this we choose a finite affine open covering X = V1∪. . .∪Vn such that f maps
each Vj into an affine open Uj ⊂ S. Let hj,a ∈ OX(Vj) be a finite set of elements
which generate OX(Vj) as an OS(Uj)-algebra, see Morphisms, Lemma 29.15.2. By
Lemmas 32.4.11 and 32.4.13 (after possibly shrinking I) we may assume that there
exist affine open coverings Xi = V1,i ∪ . . . ∪ Vn,i compatible with transition maps
such that Vj = limi Vj,i. By Lemma 32.4.7 we can choose i so large that each hj,a
comes from an element hj,a,i ∈ OXi(Vj,i). Thus the arrow in

Vj −→ Uj ×Spec(Z) Vj,i = (Vj,i)Uj ⊂ (Vj,i)S ⊂ Xi,S

is a closed immersion. Since
⋃

(Vj,i)Uj forms an open of Xi,S and since the inverse
image of (Vj,i)Uj in X is Vj it follows that X → Xi,S is an immersion. □

Remark 32.9.2.01ZF We cannot do better than this if we do not assume more on S and
the morphism f : X → S. For example, in general it will not be possible to find a
closed immersion X → X ′ as in the lemma. The reason is that this would imply
that f is quasi-compact which may not be the case. An example is to take S to be
infinite dimensional affine space with 0 doubled and X to be one of the two infinite
dimensional affine spaces.

Lemma 32.9.3.01ZG Let f : X → S be a morphism of schemes. Assume:
(1) The morphism f is of locally of finite type.
(2) The scheme X is quasi-compact and quasi-separated, and
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(3) The scheme S is quasi-separated.
Then there exists a morphism of finite presentation f ′ : X ′ → S and a closed
immersion X → X ′ of schemes over S.

Proof. By Lemma 32.9.1 above there exists a morphism Y → S of finite presen-
tation and an immersion i : X → Y of schemes over S. For every point x ∈ X,
there exists an affine open Vx ⊂ Y such that i−1(Vx) → Vx is a closed immersion.
Since X is quasi-compact we can find finitely may affine opens V1, . . . , Vn ⊂ Y
such that i(X) ⊂ V1 ∪ . . . ∪ Vn and i−1(Vj) → Vj is a closed immersion. In other
words such that i : X → X ′ = V1 ∪ . . . ∪ Vn is a closed immersion of schemes
over S. Since S is quasi-separated and Y is quasi-separated over S we deduce that
Y is quasi-separated, see Schemes, Lemma 26.21.12. Hence the open immersion
X ′ = V1∪ . . .∪Vn → Y is quasi-compact. This implies that X ′ → Y is of finite pre-
sentation, see Morphisms, Lemma 29.21.6. We conclude since then X ′ → Y → S is
a composition of morphisms of finite presentation, and hence of finite presentation
(see Morphisms, Lemma 29.21.3). □

Lemma 32.9.4.09ZP Let X → Y be a closed immersion of schemes. Assume Y quasi-
compact and quasi-separated. ThenX can be written as a directed limitX = limXi

of schemes over Y where Xi → Y is a closed immersion of finite presentation.

Proof. Let I ⊂ OY be the quasi-coherent sheaf of ideals defining X as a closed
subscheme of Y . By Properties, Lemma 28.22.3 we can write I as a directed colimit
I = colimi∈I Ii of its quasi-coherent sheaves of ideals of finite type. Let Xi ⊂ Y
be the closed subscheme defined by Ii. These form an inverse system of schemes
indexed by I. The transition morphisms Xi → Xi′ are affine because they are
closed immersions. Each Xi is quasi-compact and quasi-separated since it is a closed
subscheme of Y and Y is quasi-compact and quasi-separated by our assumptions.
We have X = limiXi as follows directly from the fact that I = colimi∈I Ia. Each of
the morphismsXi → Y is of finite presentation, see Morphisms, Lemma 29.21.7. □

Lemma 32.9.5.09ZQ Let f : X → S be a morphism of schemes. Assume
(1) The morphism f is of locally of finite type.
(2) The scheme X is quasi-compact and quasi-separated, and
(3) The scheme S is quasi-separated.

Then X = limXi where the Xi → S are of finite presentation, the Xi are quasi-
compact and quasi-separated, and the transition morphisms Xi′ → Xi are closed
immersions (which implies that X → Xi are closed immersions for all i).

Proof. By Lemma 32.9.3 there is a closed immersion X → Y with Y → S of finite
presentation. Then Y is quasi-separated by Schemes, Lemma 26.21.12. Since X is
quasi-compact, we may assume Y is quasi-compact by replacing Y with a quasi-
compact open containing X. We see that X = limXi with Xi → Y a closed
immersion of finite presentation by Lemma 32.9.4. The morphisms Xi → S are of
finite presentation by Morphisms, Lemma 29.21.3. □

Proposition 32.9.6.01ZJ Let f : X → S be a morphism of schemes. Assume
(1) f is of finite type and separated, and
(2) S is quasi-compact and quasi-separated.

Then there exists a separated morphism of finite presentation f ′ : X ′ → S and a
closed immersion X → X ′ of schemes over S.
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Proof. Apply Lemma 32.9.5 and note that Xi → S is separated for large i by
Lemma 32.4.17 as we have assumed that X → S is separated. □

Lemma 32.9.7.01ZK Let f : X → S be a morphism of schemes. Assume
(1) f is finite, and
(2) S is quasi-compact and quasi-separated.

Then there exists a morphism which is finite and of finite presentation f ′ : X ′ → S
and a closed immersion X → X ′ of schemes over S.
Proof. We may write X = limXi as in Lemma 32.9.5. Applying Lemma 32.4.19
we see that Xi → S is finite for large enough i. □

Lemma 32.9.8.09YY Let f : X → S be a morphism of schemes. Assume
(1) f is finite, and
(2) S quasi-compact and quasi-separated.

Then X is a directed limit X = limXi where the transition maps are closed im-
mersions and the objects Xi are finite and of finite presentation over S.
Proof. We may write X = limXi as in Lemma 32.9.5. Applying Lemma 32.4.19
we see that Xi → S is finite for large enough i. □

32.10. Descending relative objects

01ZL The following lemma is typical of the type of results in this section. We write out
the “standard” proof completely. It may be faster to convince yourself that the
result is true than to read this proof.
Lemma 32.10.1.01ZM Let I be a directed set. Let (Si, fii′) be an inverse system of
schemes over I. Assume

(1) the morphisms fii′ : Si → Si′ are affine,
(2) the schemes Si are quasi-compact and quasi-separated.

Let S = limi Si. Then we have the following:
(1) For any morphism of finite presentation X → S there exists an index i ∈ I

and a morphism of finite presentation Xi → Si such that X ∼= Xi,S as
schemes over S.

(2) Given an index i ∈ I, schemes Xi, Yi of finite presentation over Si, and
a morphism φ : Xi,S → Yi,S over S, there exists an index i′ ≥ i and a
morphism φi′ : Xi,Si′ → Yi,Si′ whose base change to S is φ.

(3) Given an index i ∈ I, schemes Xi, Yi of finite presentation over Si and a
pair of morphisms φi, ψi : Xi → Yi whose base changes φi,S = ψi,S are
equal, there exists an index i′ ≥ i such that φi,Si′ = ψi,Si′ .

In other words, the category of schemes of finite presentation over S is the colimit
over I of the categories of schemes of finite presentation over Si.
Proof. In case each of the schemes Si is affine, and we consider only affine schemes
of finite presentation over Si, resp. S this lemma is equivalent to Algebra, Lemma
10.127.8. We claim that the affine case implies the lemma in general.
Let us prove (3). Suppose given an index i ∈ I, schemes Xi, Yi of finite presentation
over Si and a pair of morphisms φi, ψi : Xi → Yi. Assume that the base changes
are equal: φi,S = ψi,S . We will use the notation Xi′ = Xi,Si′ and Yi′ = Yi,Si′
for i′ ≥ i. We also set X = Xi,S and Y = Yi,S . Note that according to Lemma
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32.2.3 we have X = limi′≥iXi′ and similarly for Y . Additionally we denote φi′
and ψi′ (resp. φ and ψ) the base change of φi and ψi to Si′ (resp. S). So our
assumption means that φ = ψ. Since Yi and Xi are of finite presentation over
Si, and since Si is quasi-compact and quasi-separated, also Xi and Yi are quasi-
compact and quasi-separated (see Morphisms, Lemma 29.21.10). Hence we may
choose a finite affine open covering Yi =

⋃
Vj,i such that each Vj,i maps into an

affine open of S. As above, denote Vj,i′ the inverse image of Vj,i in Yi′ and Vj
the inverse image in Y . The immersions Vj,i′ → Yi′ are quasi-compact, and the
inverse images Uj,i′ = φ−1

i (Vj,i′) and U ′
j,i′ = ψ−1

i (Vj,i′) are quasi-compact opens
of Xi′ . By assumption the inverse images of Vj under φ and ψ in X are equal.
Hence by Lemma 32.4.11 there exists an index i′ ≥ i such that of Uj,i′ = U ′

j,i′ in
Xi′ . Choose an finite affine open covering Uj,i′ = U ′

j,i′ =
⋃
Wj,k,i′ which induce

coverings Uj,i′′ = U ′
j,i′′ =

⋃
Wj,k,i′′ for all i′′ ≥ i′. By the affine case there exists

an index i′′ such that φi′′ |Wj,k,i′′ = ψi′′ |Wj,k,i′′ for all j, k. Then i′′ is an index such
that φi′′ = ψi′′ and (3) is proved.
Let us prove (2). Suppose given an index i ∈ I, schemes Xi, Yi of finite presentation
over Si and a morphism φ : Xi,S → Yi,S . We will use the notation Xi′ = Xi,Si′

and Yi′ = Yi,Si′ for i′ ≥ i. We also set X = Xi,S and Y = Yi,S . Note that
according to Lemma 32.2.3 we have X = limi′≥iXi′ and similarly for Y . Since Yi
and Xi are of finite presentation over Si, and since Si is quasi-compact and quasi-
separated, also Xi and Yi are quasi-compact and quasi-separated (see Morphisms,
Lemma 29.21.10). Hence we may choose a finite affine open covering Yi =

⋃
Vj,i

such that each Vj,i maps into an affine open of S. As above, denote Vj,i′ the inverse
image of Vj,i in Yi′ and Vj the inverse image in Y . The immersions Vj → Y are
quasi-compact, and the inverse images Uj = φ−1(Vj) are quasi-compact opens of
X. Hence by Lemma 32.4.11 there exists an index i′ ≥ i and quasi-compact opens
Uj,i′ of Xi′ whose inverse image in X is Uj . Choose an finite affine open covering
Uj,i′ =

⋃
Wj,k,i′ which induce affine open coverings Uj,i′′ =

⋃
Wj,k,i′′ for all i′′ ≥ i′

and an affine open covering Uj =
⋃
Wj,k. By the affine case there exists an index

i′′ and morphisms φj,k,i′′ : Wj,k,i′′ → Vj,i′′ such that φ|Wj,k
= φj,k,i′′,S for all j, k.

By part (3) proved above, there is a further index i′′′ ≥ i′′ such that
φj1,k1,i′′,Si′′′ |Wj1,k1,i′′′ ∩Wj2,k2,i′′′ = φj2,k2,i′′,Si′′′ |Wj1,k1,i′′′ ∩Wj2,k2,i′′′

for all j1, j2, k1, k2. Then i′′′ is an index such that there exists a morphism φi′′′ :
Xi′′′ → Yi′′′ whose base change to S gives φ. Hence (2) holds.
Let us prove (1). Suppose given a scheme X of finite presentation over S. Since X
is of finite presentation over S, and since S is quasi-compact and quasi-separated,
also X is quasi-compact and quasi-separated (see Morphisms, Lemma 29.21.10).
Choose a finite affine open covering X =

⋃
Uj such that each Uj maps into an

affine open Vj ⊂ S. Denote Uj1j2 = Uj1 ∩ Uj2 and Uj1j2j3 = Uj1 ∩ Uj2 ∩ Uj3 . By
Lemmas 32.4.11 and 32.4.13 we can find an index i1 and affine opens Vj,i1 ⊂ Si1
such that each Vj is the inverse of this in S. Let Vj,i be the inverse image of
Vj,i1 in Si for i ≥ i1. By the affine case we may find an index i2 ≥ i1 and affine
schemes Uj,i2 → Vj,i2 such that Uj = S ×Si2 Uj,i2 is the base change. Denote
Uj,i = Si ×Si2 Uj,i2 for i ≥ i2. By Lemma 32.4.11 there exists an index i3 ≥ i2
and open subschemes Wj1,j2,i3 ⊂ Uj1,i3 whose base change to S is equal to Uj1j2 .
Denote Wj1,j2,i = Si ×Si3 Wj1,j2,i3 for i ≥ i3. By part (2) shown above there
exists an index i4 ≥ i3 and morphisms φj1,j2,i4 : Wj1,j2,i4 → Wj2,j1,i4 whose base
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change to S gives the identity morphism Uj1j2 = Uj2j1 for all j1, j2. For all i ≥ i4
denote φj1,j2,i = idS × φj1,j2,i4 the base change. We claim that for some i5 ≥
i4 the system ((Uj,i5)j , (Wj1,j2,i5)j1,j2 , (φj1,j2,i5)j1,j2) forms a glueing datum as in
Schemes, Section 26.14. In order to see this we have to verify that for i large enough
we have

φ−1
j1,j2,i

(Wj1,j2,i ∩Wj1,j3,i) = Wj1,j2,i ∩Wj1,j3,i

and that for large enough i the cocycle condition holds. The first condition follows
from Lemma 32.4.11 and the fact that Uj2j1j3 = Uj1j2j3 . The second from part (1)
of the lemma proved above and the fact that the cocycle condition holds for the
maps id : Uj1j2 → Uj2j1 . Ok, so now we can use Schemes, Lemma 26.14.2 to glue
the system ((Uj,i5)j , (Wj1,j2,i5)j1,j2 , (φj1,j2,i5)j1,j2) to get a scheme Xi5 → Si5 . By
construction the base change of Xi5 to S is formed by glueing the open affines Uj
along the opens Uj1 ← Uj1j2 → Uj2 . Hence S ×Si5 Xi5

∼= X as desired. □

Lemma 32.10.2.01ZR Let I be a directed set. Let (Si, fii′) be an inverse system of
schemes over I. Assume

(1) all the morphisms fii′ : Si → Si′ are affine,
(2) all the schemes Si are quasi-compact and quasi-separated.

Let S = limi Si. Then we have the following:
(1) For any sheaf of OS-modules F of finite presentation there exists an index

i ∈ I and a sheaf of OSi -modules of finite presentation Fi such that
F ∼= f∗

i Fi.
(2) Suppose given an index i ∈ I, sheaves of OSi-modules Fi, Gi of finite

presentation and a morphism φ : f∗
i Fi → f∗

i Gi over S. Then there exists
an index i′ ≥ i and a morphism φi′ : f∗

i′iFi → f∗
i′iGi whose base change

to S is φ.
(3) Suppose given an index i ∈ I, sheaves of OSi -modules Fi, Gi of finite

presentation and a pair of morphisms φi, ψi : Fi → Gi. Assume that the
base changes are equal: f∗

i φi = f∗
i ψi. Then there exists an index i′ ≥ i

such that f∗
i′iφi = f∗

i′iψi.
In other words, the category of modules of finite presentation over S is the colimit
over I of the categories modules of finite presentation over Si.

Proof. We sketch two proofs, but we omit the details.
First proof. If S and Si are affine schemes, then this lemma is equivalent to Algebra,
Lemma 10.127.6. In the general case, use Zariski glueing to deduce it from the affine
case.
Second proof. We use

(1) there is an equivalence of categories between quasi-coherent OS-modules
and vector bundles over S, see Constructions, Section 27.6, and

(2) a vector bundle V(F) → S is of finite presentation over S if and only if
F is an OS-module of finite presentation.

Having said this, we can use Lemma 32.10.1 to show that the category of vector
bundles of finite presentation over S is the colimit over I of the categories of vector
bundles over Si. □

Lemma 32.10.3.0B8W Let S = limSi be the limit of a directed system of quasi-compact
and quasi-separated schemes Si with affine transition morphisms. Then
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(1) any finite locally free OS-module is the pullback of a finite locally free
OSi-module for some i,

(2) any invertible OS-module is the pullback of an invertible OSi -module for
some i, and

(3) any finite type quasi-coherent ideal I ⊂ OS is of the form Ii ·OS for some
i and some finite type quasi-coherent ideal Ii ⊂ OSi .

Proof. Let E be a finite locally free OS-module. Since finite locally free modules are
of finite presentation we can find an i and an OSi-module Ei of finite presentation
such that f∗

i Ei ∼= E , see Lemma 32.10.2. After increasing i we may assume Ei is a
flat OSi-module, see Algebra, Lemma 10.168.1. (Using this lemma is not necessary,
but it is convenient.) Then Ei is finite locally free by Algebra, Lemma 10.78.2.

If L is an invertible OS-module, then by the above we can find an i and finite locally
free OSi-modules Li and Ni pulling back to L and L⊗−1. After possible increasing
i we see that the map L ⊗OX

L⊗−1 → OX descends to a map Li ⊗OSi
Ni → OSi .

And after increasing i further, we may assume it is an isomorphism. It follows
that Li is an invertible module (Modules, Lemma 17.25.2) and the proof of (2) is
complete.

Given I as in (3) we see that OS → OS/I is a map of finitely presented OS-
modules. Hence by Lemma 32.10.2 this is the pullback of some map OSi → Fi
of finitely presented OSi-modules. After increasing i we may assume this map
is surjective (details omitted; hint: use Algebra, Lemma 10.127.5 on affine open
cover). Then the kernel of OSi → Fi is a finite type quasi-coherent ideal in OSi
whose pullback gives I. □

Lemma 32.10.4.05LY With notation and assumptions as in Lemma 32.10.1. Let i ∈ I.
Suppose that φi : Xi → Yi is a morphism of schemes of finite presentation over Si
and that Fi is a quasi-coherent OXi-module of finite presentation. If the pullback
of Fi to Xi ×Si S is flat over Yi ×Si S, then there exists an index i′ ≥ i such that
the pullback of Fi to Xi ×Si Si′ is flat over Yi ×Si Si′ .

Proof. (This lemma is the analogue of Lemma 32.8.7 for modules.) For i′ ≥ i
denote Xi′ = Si′ ×Si Xi, Fi′ = (Xi′ → Xi)∗Fi and similarly for Yi′ . Denote φi′ the
base change of φi to Si′ . Also set X = S×Si Xi, Y = S×Si Xi, F = (X → Xi)∗Fi
and φ the base change of φi to S. Let Yi =

⋃
j=1,...,m Vj,i be a finite affine open

covering such that each Vj,i maps into some affine open of Si. For each j = 1, . . .m
let φ−1

i (Vj,i) =
⋃
k=1,...,m(j) Uk,j,i be a finite affine open covering. For i′ ≥ i we

denote Vj,i′ the inverse image of Vj,i in Yi′ and Uk,j,i′ the inverse image of Uk,j,i
in Xi′ . Similarly we have Uk,j ⊂ X and Vj ⊂ Y . Then Uk,j = limi′≥i Uk,j,i′ and
Vj = limi′≥i Vj (see Lemma 32.2.2). Since Xi′ =

⋃
k,j Uk,j,i′ is a finite open covering

it suffices to prove the lemma for each of the morphisms Uk,j,i → Vj,i and the sheaf
Fi|Uk,j,i . Hence we see that the lemma reduces to the case that Xi and Yi are affine
and map into an affine open of Si, i.e., we may also assume that S is affine.

In the affine case we reduce to the following algebra result. Suppose that R =
colimi∈I Ri. For some i ∈ I suppose given a map Ai → Bi of finitely presented
Ri-algebras. Let Ni be a finitely presented Bi-module. Then, if R ⊗Ri Ni is flat
over R ⊗Ri Ai, then for some i′ ≥ i the module Ri′ ⊗Ri Ni is flat over Ri′ ⊗Ri A.
This is exactly the result proved in Algebra, Lemma 10.168.1 part (3). □
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Lemma 32.10.5.0EY1 For a scheme T denote CT the full subcategory of schemes W over
T such that W is quasi-compact and quasi-separated and such that the structure
morphism W → T is locally of finite presentation. Let S = limSi be a directed
limit of schemes with affine transition morphisms. Then there is an equivalence of
categories

colim CSi −→ CS
given by the base change functors.
Warning: do not use this lemma if you do not understand the difference between
this lemma and Lemma 32.10.1.

Proof. Fully faithfulness. Suppose we have i ∈ I and objects Xi, Yi of CSi . Denote
X = Xi×Si S and Y = Yi×Si S. Suppose given a morphism f : X → Y over S. We
can choose a finite affine open covering Yi = Vi,1∪. . .∪Vi,m such that Vi,j → Yi → Si
maps into an affine open Wi,j of Si. Denote Y = V1∪. . .∪Vm the induced affine open
covering of Y . Since f : X → Y is quasi-compact (Schemes, Lemma 26.21.14) after
increasing i we may assume that there is a finite open covering Xi = Ui,1∪. . .∪Ui,m
by quasi-compact opens such that the inverse image of Ui,j in Y is f−1(Vj), see
Lemma 32.4.11. By Lemma 32.10.1 applied to f |f−1(Vj) over Wj we may assume,
after increasing i, that there is a morphism fi,j : Vi,j → Ui,j over S whose base
change to S is f |f−1(Vj). Increasing i more we may assume fi,j and fi,j′ agree
on the quasi-compact open Ui,j ∩ Ui,j′ . Then we can glue these morphisms to get
the desired morphism fi : Xi → Yi. This morphism is unique (up to increasing i)
because this is true for the morphisms fi,j .
To show that the functor is essentially surjective we argue in exactly the same way.
Namely, suppose that X is an object of CS . Pick i ∈ I. We can choose a finite affine
open covering X = U1 ∪ . . . ∪ Um such that Uj → X → S → Si factors through
an affine open Wi,j ⊂ Si. Set Wj = Wi,j ×Si S. This is an affine open of S. By
Lemma 32.10.1, after increasing i, we may assume there exist Ui,j →Wi,j of finite
presentation whose base change to Wj is Uj . After increasing i we may assume
there exist quasi-compact opens Ui,j,j′ ⊂ Ui,j whose base changes to S are equal
to Uj ∩ Uj′ . Claim: after increasing i we may assume the image of the morphism
Ui,j,j′ → Ui,j → Wi,j ends up in Wi,j ∩Wi,j′ . Namely, because the complement of
Wi,j∩Wi,j′ is closed in the affine scheme Wi,j it is affine. Since Uj∩Uj′ = limUi,j,j′

does map into Wi,j ∩Wi,j′ we can apply Lemma 32.4.9 to get the claim. Thus we
can view both

Ui,j,j′ and Ui,j′,j

as schemes over Wi,j′ whose base changes to Wj′ recover Uj ∩ Uj′ . Hence after
increasing i, using Lemma 32.10.1, we may assume there are isomorphisms Ui,j,j′ →
Ui,j′,j over Wi,j′ and hence over Si. Increasing i further (details omitted) we may
assume these isomorphisms satisfy the cocycle condition mentioned in Schemes,
Section 26.14. Applying Schemes, Lemma 26.14.1 we obtain an object Xi of CSi
whose base change to S is isomorphic to X; we omit some of the verifications. □

32.11. Characterizing affine schemes

01ZS If f : X → S is a surjective integral morphism of schemes such that X is an affine
scheme then S is affine too. See [Con07b, A.2]. Our proof relies on the Noetherian
case which we stated and proved in Cohomology of Schemes, Lemma 30.13.3. See
also [DG67, II 6.7.1].
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Lemma 32.11.1.01ZT Let f : X → S be a morphism of schemes. Assume that f is
surjective and finite, and assume that X is affine. Then S is affine.

Proof. Since f is surjective and X is quasi-compact we see that S is quasi-compact.
Since X is separated and f is surjective and universally closed (Morphisms, Lemma
29.44.7), we see that S is separated (Morphisms, Lemma 29.41.11).
By Lemma 32.9.8 we can write X = limaXa with Xa → S finite and of finite
presentation. By Lemma 32.4.13 we see that Xa is affine for some a ∈ A. Replacing
X by Xa we may assume that X → S is surjective, finite, of finite presentation and
that X is affine.
By Proposition 32.5.4 we may write S = limi∈I Si as a directed limits of schemes of
finite type over Z. By Lemma 32.10.1 we can after shrinking I assume there exist
schemes Xi → Si of finite presentation such that Xi′ = Xi ×S Si′ for i′ ≥ i and
such that X = limiXi. By Lemma 32.8.3 we may assume that Xi → Si is finite
for all i ∈ I as well. By Lemma 32.4.13 once again we may assume that Xi is affine
for all i ∈ I. Hence the result follows from the Noetherian case, see Cohomology of
Schemes, Lemma 30.13.3. □

Proposition 32.11.2.05YU Let f : X → S be a morphism of schemes. Assume X is affine
and that f is surjective and universally closed2. Then S is affine.

Proof. By Morphisms, Lemma 29.41.11 the scheme S is separated. Then by Mor-
phisms, Lemma 29.11.11 we find that f is affine. Whereupon by Morphisms, Lemma
29.44.7 we see that f is integral.
By the preceding paragraph, we may assume f : X → S is surjective and integral,
X is affine, and S is separated. Since f is surjective and X is quasi-compact we
also deduce that S is quasi-compact.
By Lemma 32.7.3 we can write X = limiXi with Xi → S finite. By Lemma 32.4.13
we see that for i sufficiently large the scheme Xi is affine. Moreover, since X → S
factors through each Xi we see that Xi → S is surjective. Hence we conclude that
S is affine by Lemma 32.11.1. □

Lemma 32.11.3.09NL Let X be a scheme which is set theoretically the union of finitely
many affine closed subschemes. Then X is affine.

Proof. Let Zi ⊂ X, i = 1, . . . , n be affine closed subschemes such that X =
⋃
Zi set

theoretically. Then
∐
Zi → X is surjective and integral with affine source. Hence

X is affine by Proposition 32.11.2. □

Lemma 32.11.4.09MW Let i : Z → X be a closed immersion of schemes inducing a
homeomorphism of underlying topological spaces. Let L be an invertible sheaf on
X. Then i∗L is ample on Z, if and only if L is ample on X.

Proof. If L is ample, then i∗L is ample for example by Morphisms, Lemma 29.37.7.
Assume i∗L is ample. Then Z is quasi-compact (Properties, Definition 28.26.1)
and separated (Properties, Lemma 28.26.8). Since i is surjective, we see that X
is quasi-compact. Since i is universally closed and surjective, we see that X is
separated (Morphisms, Lemma 29.41.11).

2An integral morphism is universally closed, see Morphisms, Lemma 29.44.7.
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By Proposition 32.5.4 we can write X = limXi as a directed limit of finite type
schemes over Z with affine transition morphisms. We can find an i and an invertible
sheaf Li on Xi whose pullback to X is isomorphic to L, see Lemma 32.10.2.

For each i let Zi ⊂ Xi be the scheme theoretic image of the morphism Z → Xi. If
Spec(Ai) ⊂ Xi is an affine open subscheme with inverse image of Spec(A) in X and
if Z ∩ Spec(A) is defined by the ideal I ⊂ A, then Zi ∩ Spec(Ai) is defined by the
ideal Ii ⊂ Ai which is the inverse image of I in Ai under the ring map Ai → A, see
Morphisms, Example 29.6.4. Since colimAi/Ii = A/I it follows that limZi = Z.
By Lemma 32.4.15 we see that Li|Zi is ample for some i. Since Z and hence X
maps into Zi set theoretically, we see that Xi′ → Xi maps into Zi set theoretically
for some i′ ≥ i, see Lemma 32.4.10. (Observe that since Xi is Noetherian, every
closed subset of Xi is constructible.) Let T ⊂ Xi′ be the scheme theoretic inverse
image of Zi in Xi′ . Observe that Li′ |T is the pullback of Li|Zi and hence ample
by Morphisms, Lemma 29.37.7 and the fact that T → Zi is an affine morphism.
Thus we see that Li′ is ample on Xi′ by Cohomology of Schemes, Lemma 30.17.5.
Pulling back to X (using the same lemma as above) we find that L is ample. □

Lemma 32.11.5.0B7L Let i : Z → X be a closed immersion of schemes inducing a
homeomorphism of underlying topological spaces. Then X is quasi-affine if and
only if Z is quasi-affine.

Proof. Recall that a scheme is quasi-affine if and only if the structure sheaf is ample,
see Properties, Lemma 28.27.1. Hence if Z is quasi-affine, then OZ is ample, hence
OX is ample by Lemma 32.11.4, hence X is quasi-affine. A proof of the converse,
which can also be seen in an elementary way, is gotten by reading the argument
just given backwards. □

The following lemma does not really belong in this section.

Lemma 32.11.6.0E21 Let X be a scheme. Let L be an ample invertible sheaf on X.
Assume we have morphisms of schemes

Spec(k)← Spec(A)→W ⊂ X

where k is a field, A is an integral k-algebra, W is open in X. Then there exists
an n > 0 and a section s ∈ Γ(X,L⊗n) such that Xs is affine, Xs ⊂ W , and
Spec(A)→W factors through Xs

Proof. Since Spec(A) is quasi-compact, we may replace W by a quasi-compact open
still containing the image of Spec(A) → X. Recall that X is quasi-separated and
quasi-compact by dint of having an ample invertible sheaf, see Properties, Definition
28.26.1 and Lemma 28.26.7. By Proposition 32.5.4 we can write X = limXi as a
limit of a directed system of schemes of finite type over Z with affine transition
morphisms. For some i the ample invertible sheaf L on X descends to an ample
invertible sheaf Li on Xi and the open W is the inverse image of a quasi-compact
open Wi ⊂ Xi, see Lemmas 32.4.15, 32.10.3, and 32.4.11. We may replace X,W,L
by Xi,Wi,Li and assume X is of finite presentation over Z. Write A = colimAj as
the colimit of its finite k-subalgebras. Then for some j the morphism Spec(A)→ X
factors through a morphism Spec(Aj)→ X, see Proposition 32.6.1. Since Spec(Aj)
is finite this reduces the lemma to Properties, Lemma 28.29.6. □

https://stacks.math.columbia.edu/tag/0B7L
https://stacks.math.columbia.edu/tag/0E21


32.12. VARIANTS OF CHOW’S LEMMA 2742

32.12. Variants of Chow’s Lemma

01ZZ In this section we prove a number of variants of Chow’s lemma. The most inter-
esting version is probably just the Noetherian case, which we stated and proved in
Cohomology of Schemes, Section 30.18.

Lemma 32.12.1.0202 Let S be a quasi-compact and quasi-separated scheme. Let f :
X → S be a separated morphism of finite type. Then there exists an n ≥ 0 and a
diagram

X

  

X ′

��

π
oo // Pn

S

}}
S

where X ′ → Pn
S is an immersion, and π : X ′ → X is proper and surjective.

Proof. By Proposition 32.9.6 we can find a closed immersion X → Y where Y is
separated and of finite presentation over S. Clearly, if we prove the assertion for Y ,
then the result follows for X. Hence we may assume that X is of finite presentation
over S.

Write S = limi Si as a directed limit of Noetherian schemes, see Proposition 32.5.4.
By Lemma 32.10.1 we can find an index i ∈ I and a scheme Xi → Si of finite
presentation so that X = S×SiXi. By Lemma 32.8.6 we may assume that Xi → Si
is separated. Clearly, if we prove the assertion for Xi over Si, then the assertion
holds for X. The case Xi → Si is treated by Cohomology of Schemes, Lemma
30.18.1. □

Remark 32.12.2.0GII In the situation of Chow’s Lemma 32.12.1:
(1) The morphism π is actually H-projective (hence projective, see Mor-

phisms, Lemma 29.43.3) since the morphism X ′ → Pn
S ×S X = Pn

X is
a closed immersion (use the fact that π is proper, see Morphisms, Lemma
29.41.7).

(2) We may assume that X ′ is reduced as we can replace X ′ by its reduction
without changing the other assertions of the lemma.

(3) We may assume that X ′ → X is of finite presentation without changing
the other assertions of the lemma. This can be deduced from the proof
of Lemma 32.12.1 but we can also prove this directly as follows. By (1)
we have a closed immersion X ′ → Pn

X . By Lemma 32.9.4 we can write
X ′ = limX ′

i where X ′
i → Pn

X is a closed immersion of finite presentation.
In particular X ′

i → X is of finite presentation, proper, and surjective.
For large enough i the morphism X ′

i → Pn
S is an immersion by Lemma

32.4.16. Replacing X ′ by X ′
i we get what we want.

Of course in general we can’t simultaneously achieve both (2) and (3).

Here is a variant of Chow’s lemma where we assume the scheme on top has finitely
many irreducible components.

Lemma 32.12.3.0203 Let S be a quasi-compact and quasi-separated scheme. Let f :
X → S be a separated morphism of finite type. Assume that X has finitely many
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irreducible components. Then there exists an n ≥ 0 and a diagram

X

  

X ′

��

π
oo // Pn

S

}}
S

where X ′ → Pn
S is an immersion, and π : X ′ → X is proper and surjective.

Moreover, there exists an open dense subscheme U ⊂ X such that π−1(U)→ U is
an isomorphism of schemes.

Proof. LetX = Z1∪. . .∪Zn be the decomposition ofX into irreducible components.
Let ηj ∈ Zj be the generic point.

There are (at least) two ways to proceed with the proof. The first is to redo
the proof of Cohomology of Schemes, Lemma 30.18.1 using the general Properties,
Lemma 28.29.4 to find suitable affine opens in X. (This is the “standard” proof.)
The second is to use absolute Noetherian approximation as in the proof of Lemma
32.12.1 above. This is what we will do here.

By Proposition 32.9.6 we can find a closed immersion X → Y where Y is separated
and of finite presentation over S. Write S = limi Si as a directed limit of Noetherian
schemes, see Proposition 32.5.4. By Lemma 32.10.1 we can find an index i ∈ I and
a scheme Yi → Si of finite presentation so that Y = S×Si Yi. By Lemma 32.8.6 we
may assume that Yi → Si is separated. We have the following diagram

ηj ∈ Zj // X //

��

Y //

��

Yi

��
S // Si

Denote h : X → Yi the composition.

For i′ ≥ i write Yi′ = Si′ ×Si Yi. Then Y = limi′≥i Yi′ , see Lemma 32.2.3. Choose
j, j′ ∈ {1, . . . , n}, j ̸= j′. Note that ηj is not a specialization of ηj′ . By Lemma
32.4.6 we can replace i by a bigger index and assume that h(ηj) is not a special-
ization of h(ηj′) for all pairs (j, j′) as above. For such an index, let Y ′ ⊂ Yi be
the scheme theoretic image of h : X → Yi, see Morphisms, Definition 29.6.2. The
morphism h is quasi-compact as the composition of the quasi-compact morphisms
X → Y and Y → Yi (which is affine). Hence by Morphisms, Lemma 29.6.3 the
morphism X → Y ′ is dominant. Thus the generic points of Y ′ are all contained in
the set {h(η1), . . . , h(ηn)}, see Morphisms, Lemma 29.8.3. Since none of the h(ηj)
is the specialization of another we see that the points h(η1), . . . , h(ηn) are pairwise
distinct and are each a generic point of Y ′.

We apply Cohomology of Schemes, Lemma 30.18.1 above to the morphism Y ′ → Si.
This gives a diagram

Y ′

  

Y ∗

��

π
oo // Pn

Si

}}
Si
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such that π is proper and surjective and an isomorphism over a dense open sub-
scheme V ⊂ Y ′. By our choice of i above we know that h(η1), . . . , h(ηn) ∈ V .
Consider the commutative diagram

X ′ X ×Y ′ Y ∗ //

��

Y ∗ //

��

Pn
Si

��

X //

��

Y ′

��
S // Si

Note that X ′ → X is an isomorphism over the open subscheme U = h−1(V ) which
contains each of the ηj and hence is dense in X. We conclude X ← X ′ → Pn

S is a
solution to the problem posed in the lemma. □

32.13. Applications of Chow’s lemma

0204 Here is a first application of Chow’s lemma.

Lemma 32.13.1.081F Assumptions and notation as in Situation 32.8.1. If
(1) f is proper, and
(2) f0 is locally of finite type,

then there exists an i such that fi is proper.

Proof. By Lemma 32.8.6 we see that fi is separated for some i ≥ 0. Replacing 0
by i we may assume that f0 is separated. Observe that f0 is quasi-compact, see
Schemes, Lemma 26.21.14. By Lemma 32.12.1 we can choose a diagram

X0

  

X ′
0

��

π
oo // Pn

Y0

}}
Y0

where X ′
0 → Pn

Y0
is an immersion, and π : X ′

0 → X0 is proper and surjective.
Introduce X ′ = X ′

0 ×Y0 Y and X ′
i = X ′

0 ×Y0 Yi. By Morphisms, Lemmas 29.41.4
and 29.41.5 we see that X ′ → Y is proper. Hence X ′ → Pn

Y is a closed immersion
(Morphisms, Lemma 29.41.7). By Morphisms, Lemma 29.41.9 it suffices to prove
that X ′

i → Yi is proper for some i. By Lemma 32.8.5 we find that X ′
i → Pn

Yi
is a

closed immersion for i large enough. Then X ′
i → Yi is proper and we win. □

Lemma 32.13.2.09ZR Let f : X → S be a proper morphism with S quasi-compact and
quasi-separated. Then X = limXi is a directed limit of schemes Xi proper and of
finite presentation over S such that all transition morphisms and the morphisms
X → Xi are closed immersions.

Proof. By Proposition 32.9.6 we can find a closed immersion X → Y with Y
separated and of finite presentation over S. By Lemma 32.12.1 we can find a
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diagram
Y

��

Y ′

��

π
oo // Pn

S

~~
S

where Y ′ → Pn
S is an immersion, and π : Y ′ → Y is proper and surjective. By

Lemma 32.9.4 we can write X = limXi with Xi → Y a closed immersion of finite
presentation. Denote X ′

i ⊂ Y ′, resp. X ′ ⊂ Y ′ the scheme theoretic inverse image
of Xi ⊂ Y , resp. X ⊂ Y . Then limX ′

i = X ′. Since X ′ → S is proper (Morphisms,
Lemmas 29.41.4), we see that X ′ → Pn

S is a closed immersion (Morphisms, Lemma
29.41.7). Hence for i large enough we find that X ′

i → Pn
S is a closed immersion by

Lemma 32.4.20. Thus X ′
i is proper over S. For such i the morphism Xi → S is

proper by Morphisms, Lemma 29.41.9. □

Lemma 32.13.3.0A0P Let f : X → S be a proper morphism with S quasi-compact and
quasi-separated. Then there exists a directed set I, an inverse system (fi : Xi → Si)
of morphisms of schemes over I, such that the transition morphisms Xi → Xi′ and
Si → Si′ are affine, such that fi is proper, such that Si is of finite type over Z, and
such that (X → S) = lim(Xi → Si).

Proof. By Lemma 32.13.2 we can write X = limk∈K Xk with Xk → S proper and
of finite presentation. Next, by absolute Noetherian approximation (Proposition
32.5.4) we can write S = limj∈J Sj with Sj of finite type over Z. For each k there
exists a j and a morphism Xk,j → Sj of finite presentation with Xk

∼= S×SjXk,j as
schemes over S, see Lemma 32.10.1. After increasing j we may assume Xk,j → Sj
is proper, see Lemma 32.13.1. The set I will be consist of these pairs (k, j) and
the corresponding morphism is Xk,j → Sj . For every k′ ≥ k we can find a j′ ≥ j
and a morphism Xj′,k′ → Xj,k over Sj′ → Sj whose base change to S gives the
morphism Xk′ → Xk (follows again from Lemma 32.10.1). These morphisms form
the transition morphisms of the system. Some details omitted. □

Lemma 32.13.4.0EX1 Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Let Y → X be a morphism of schemes
over S. If Y → X is proper, Xi quasi-compact and quasi-separated, and Y locally
of finite type over S, then Y → Xi is proper for i large enough.

Proof. Choose a closed immersion Y → Y ′ with Y ′ proper and of finite presentation
over X, see Lemma 32.13.2. Then choose an i and a proper morphism Y ′

i → Xi

such that Y ′ = X ×Xi Y ′
i . This is possible by Lemmas 32.10.1 and 32.13.1. Then

after replacing i by a larger index we have that Y → Y ′
i is a closed immersion, see

Lemma 32.4.16. □

Recall the scheme theoretic support of a finite type quasi-coherent module, see
Morphisms, Definition 29.5.5.

Lemma 32.13.5.081G Assumptions and notation as in Situation 32.8.1. Let F0 be a
quasi-coherent OX0 -module. Denote F and Fi the pullbacks of F0 to X and Xi.
Assume

(1) f0 is locally of finite type,
(2) F0 is of finite type,
(3) the scheme theoretic support of F is proper over Y .
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Then the scheme theoretic support of Fi is proper over Yi for some i.

Proof. We may replace X0 by the scheme theoretic support of F0. By Morphisms,
Lemma 29.5.3 this guarantees that Xi is the support of Fi and X is the support of
F . Then, if Z ⊂ X denotes the scheme theoretic support of F , we see that Z → X
is a universal homeomorphism. We conclude that X → Y is proper as this is true
for Z → Y by assumption, see Morphisms, Lemma 29.41.9. By Lemma 32.13.1 we
see that Xi → Y is proper for some i. Then it follows that the scheme theoretic
support Zi of Fi is proper over Y by Morphisms, Lemmas 29.41.6 and 29.41.4. □

32.14. Universally closed morphisms

05JW In this section we discuss when a quasi-compact (but not necessarily separated)
morphism is universally closed. We first prove a lemma which will allow us to check
universal closedness after a base change which is locally of finite presentation.

Lemma 32.14.1.05BD Let f : X → S be a quasi-compact morphism of schemes. Let
g : T → S be a morphism of schemes. Let t ∈ T be a point and Z ⊂ XT be a
closed subscheme such that Z ∩Xt = ∅. Then there exists an open neighbourhood
V ⊂ T of t, a commutative diagram

V

��

a
// T ′

b

��
T

g // S,

and a closed subscheme Z ′ ⊂ XT ′ such that
(1) the morphism b : T ′ → S is locally of finite presentation,
(2) with t′ = a(t) we have Z ′ ∩Xt′ = ∅, and
(3) Z ∩XV maps into Z ′ via the morphism XV → XT ′ .

Moreover, we may assume V and T ′ are affine.

Proof. Let s = g(t). During the proof we may always replace T by an open neigh-
bourhood of t. Hence we may also replace S by an open neighbourhood of s. Thus
we may and do assume that T and S are affine. Say S = Spec(A), T = Spec(B), g
is given by the ring map A→ B, and t correspond to the prime ideal q ⊂ B.
As X → S is quasi-compact and S is affine we may write X =

⋃
i=1,...,n Ui

as a finite union of affine opens. Write Ui = Spec(Ci). In particular we have
XT =

⋃
i=1,...,n Ui,T =

⋃
i=1,...n Spec(Ci ⊗A B). Let Ii ⊂ Ci ⊗A B be the ideal

corresponding to the closed subscheme Z ∩ Ui,T . The condition that Z ∩ Xt = ∅
signifies that Ii generates the unit ideal in the ring

Ci ⊗A κ(q) = (B \ q)−1 (Ci ⊗A B/qCi ⊗A B)
Since Ii(B \q)−1(Ci⊗AB) = (B \q)−1Ii this means that 1 = xi/gi for some xi ∈ Ii
and gi ∈ B, gi ̸∈ q. Thus, clearing denominators we can find a relation of the form

xi +
∑

j
fi,jci,j = gi

with xi ∈ Ii, fi,j ∈ q, ci,j ∈ Ci ⊗A B, and gi ∈ B, gi ̸∈ q. After replacing B
by Bg1...gn , i.e., after replacing T by a smaller affine neighbourhood of t, we may
assume the equations read

xi +
∑

j
fi,jci,j = 1
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with xi ∈ Ii, fi,j ∈ q, ci,j ∈ Ci ⊗A B.
To finish the argument write B as a colimit of finitely presented A-algebras Bλ over
a directed set Λ. For each λ set qλ = (Bλ → B)−1(q). For sufficiently large λ ∈ Λ
we can find

(1) an element xi,λ ∈ Ci ⊗A Bλ which maps to xi,
(2) elements fi,j,λ ∈ qi,λ mapping to fi,j , and
(3) elements ci,j,λ ∈ Ci ⊗A Bλ mapping to ci,j .

After increasing λ a bit more the equation
xi,λ +

∑
j
fi,j,λci,j,λ = 1

will hold. Fix such a λ and set T ′ = Spec(Bλ). Then t′ ∈ T ′ is the point corre-
sponding to the prime qλ. Finally, let Z ′ ⊂ XT ′ be the scheme theoretic image of
Z → XT → XT ′ . As XT → XT ′ is affine, we can compute Z ′ on the affine open
pieces Ui,T ′ as the closed subscheme associated to Ker(Ci ⊗A Bλ → Ci ⊗A B/Ii),
see Morphisms, Example 29.6.4. Hence xi,λ is in the ideal defining Z ′. Thus the
last displayed equation shows that Z ′ ∩Xt′ is empty. □

Lemma 32.14.2.05JX Let f : X → S be a quasi-compact morphism of schemes. The
following are equivalent

(1) f is universally closed,
(2) for every morphism S′ → S which is locally of finite presentation the base

change XS′ → S′ is closed, and
(3) for every n the morphism An ×X → An × S is closed.

Proof. It is clear that (1) implies (2). Let us prove that (2) implies (1). Suppose
that the base change XT → T is not closed for some scheme T over S. By Schemes,
Lemma 26.19.8 this means that there exists some specialization t1 ⇝ t in T and a
point ξ ∈ XT mapping to t1 such that ξ does not specialize to a point in the fibre
over t. Set Z = {ξ} ⊂ XT . Then Z ∩Xt = ∅. Apply Lemma 32.14.1. We find an
open neighbourhood V ⊂ T of t, a commutative diagram

V

��

a
// T ′

b

��
T

g // S,

and a closed subscheme Z ′ ⊂ XT ′ such that
(1) the morphism b : T ′ → S is locally of finite presentation,
(2) with t′ = a(t) we have Z ′ ∩Xt′ = ∅, and
(3) Z ∩XV maps into Z ′ via the morphism XV → XT ′ .

Clearly this means that XT ′ → T ′ maps the closed subset Z ′ to a subset of T ′

which contains a(t1) but not t′ = a(t). Since a(t1) ⇝ a(t) = t′ we conclude that
XT ′ → T ′ is not closed. Hence we have shown that X → S not universally closed
implies that XT ′ → T ′ is not closed for some T ′ → S which is locally of finite
presentation. In order words (2) implies (1).
Assume that An×X → An×S is closed for every integer n. We want to prove that
XT → T is closed for every scheme T which is locally of finite presentation over S.
We may of course assume that T is affine and maps into an affine open V of S (since
XT → T being a closed is local on T ). In this case there exists a closed immersion

https://stacks.math.columbia.edu/tag/05JX


32.14. UNIVERSALLY CLOSED MORPHISMS 2748

T → An×V because OT (T ) is a finitely presented OS(V )-algebra, see Morphisms,
Lemma 29.21.2. Then T → An × S is a locally closed immersion. Hence we get a
cartesian diagram

XT

fT

��

// An ×X

fn

��
T // An × S

of schemes where the horizontal arrows are locally closed immersions. Hence any
closed subset Z ⊂ XT can be written as XT∩Z ′ for some closed subset Z ′ ⊂ An×X.
Then fT (Z) = T ∩fn(Z ′) and we see that if fn is closed, then also fT is closed. □

Lemma 32.14.3.0205 Let S be a scheme. Let f : X → S be a separated morphism of
finite type. The following are equivalent:

(1) The morphism f is proper.
(2) For any morphism S′ → S which is locally of finite type the base change

XS′ → S′ is closed.
(3) For every n ≥ 0 the morphism An ×X → An × S is closed.

First proof. In view of the fact that a proper morphism is the same thing as a
separated, finite type, and universally closed morphism, this lemma is a special
case of Lemma 32.14.2. □

Second proof. Clearly (1) implies (2), and (2) implies (3), so we just need to show
(3) implies (1). First we reduce to the case when S is affine. Assume that (3)
implies (1) when the base is affine. Now let f : X → S be a separated morphism
of finite type. Being proper is local on the base (see Morphisms, Lemma 29.41.3),
so if S =

⋃
α Sα is an open affine cover, and if we denote Xα := f−1(Sα), then it is

enough to show that f |Xα : Xα → Sα is proper for all α. Since Sα is affine, if the
map f |Xα satisfies (3), then it will satisfy (1) by assumption, and will be proper.
To finish the reduction to the case S is affine, we must show that if f : X → S is
separated of finite type satisfying (3), then f |Xα : Xα → Sα is separated of finite
type satisfying (3). Separatedness and finite type are clear. To see (3), notice that
An ×Xα is the open preimage of An × Sα under the map 1× f . Fix a closed set
Z ⊂ An × Xα. Let Z̄ denote the closure of Z in An × X. Then for topological
reasons,

1× f(Z̄) ∩An × Sα = 1× f(Z).
Hence 1× f(Z) is closed, and we have reduced the proof of (3) ⇒ (1) to the affine
case.
Assume S affine, and f : X → S separated of finite type. We can apply Chow’s
Lemma 32.12.1 to get π : X ′ → X proper surjective and X ′ → Pn

S an immersion.
If X is proper over S, then X ′ → S is proper (Morphisms, Lemma 29.41.4). Since
Pn
S → S is separated, we conclude that X ′ → Pn

S is proper (Morphisms, Lemma
29.41.7) and hence a closed immersion (Schemes, Lemma 26.10.4). Conversely,
assume X ′ → Pn

S is a closed immersion. Consider the diagram:

(32.14.3.1)05LZ X ′ //

π
����

Pn
S

��
X

f // S
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All maps are a priori proper except for X → S. Hence we conclude that X → S is
proper by Morphisms, Lemma 29.41.9. Therefore, we have shown that X → S is
proper if and only if X ′ → Pn

S is a closed immersion.

Assume S is affine and (3) holds, and let n,X ′, π be as above. Since being a closed
morphism is local on the base, the map X × Pn → S × Pn is closed since by (3)
X×An → S×An is closed and since projective space is covered by copies of affine
n-space, see Constructions, Lemma 27.13.3. By Morphisms, Lemma 29.41.5 the
morphism

X ′ ×S Pn
S → X ×S Pn

S = X ×Pn

is proper. Since Pn is separated, the projection

X ′ ×S Pn
S = Pn

X′ → X ′

will be separated as it is just a base change of a separated morphism. Therefore,
the map X ′ → X ′ ×S Pn

S is proper, since it is a section to a separated map (see
Schemes, Lemma 26.21.11). Composing these morphisms

X ′ → X ′ ×S Pn
S → X ×S Pn

S = X ×Pn → S ×Pn = Pn
S

we find that the immersion X ′ → Pn
S is closed, and hence a closed immersion. □

32.15. Noetherian valuative criterion

0CM1 If the base is Noetherian we can show that the valuative criterion holds using only
discrete valuation rings.

Many of the results in this section can (and perhaps should) be proved by appealing
to the following lemma, although we have not always done so.

Lemma 32.15.1.0CM2 Let f : X → Y be a morphism of schemes. Assume f finite type
and Y locally Noetherian. Let y ∈ Y be a point in the closure of the image of f .
Then there exists a commutative diagram

Spec(K) //

��

X

f

��
Spec(A) // Y

where A is a discrete valuation ring and K is its field of fractions mapping the
closed point of Spec(A) to y. Moreover, we can assume that the image point of
Spec(K) → X is a generic point η of an irreducible component of X and that
K = κ(η).

Proof. By the non-Noetherian version of this lemma (Morphisms, Lemma 29.6.5)
there exists a point x ∈ X such that f(x) specializes to y. We may replace x by
any point specializing to x, hence we may assume that x is a generic point of an
irreducible component of X. This produces a ring map OY,y → κ(x) (see Schemes,
Section 26.13). Let R ⊂ κ(x) be the image. Then R is Noetherian as a quotient of
the Noetherian local ring OY,y. On the other hand, the extension κ(x) is a finitely
generated extension of the fraction field of R as f is of finite type. Thus there

https://stacks.math.columbia.edu/tag/0CM2


32.15. NOETHERIAN VALUATIVE CRITERION 2750

exists a discrete valuation ring A ⊂ κ(x) with fraction field κ(x) dominating R by
Algebra, Lemma 10.119.13. Then

Spec(κ(x))

��

// X

��
Spec(A) // Spec(R) // Spec(OY,y) // Y

gives the desired diagram. □

First we state the result concerning separation. We will often use solid commutative
diagrams of morphisms of schemes having the following shape

(32.15.1.1)0206

Spec(K) //

��

X

��
Spec(A) //

;;

S

with A a valuation ring and K its field of fractions.
Lemma 32.15.2.0207 Let S be a locally Noetherian scheme. Let f : X → S be a mor-
phism of schemes. Assume f is locally of finite type. The following are equivalent:

(1) The morphism f is separated.
(2) For any diagram (32.15.1.1) there is at most one dotted arrow.
(3) For all diagrams (32.15.1.1) with A a discrete valuation ring there is at

most one dotted arrow.
(4) For any irreducible component X0 of X with generic point η ∈ X0, for

any discrete valuation ring A ⊂ K = κ(η) with fraction field K and
any diagram (32.15.1.1) such that the morphism Spec(K) → X is the
canonical one (see Schemes, Section 26.13) there is at most one dotted
arrow.

Proof. Clearly (1) implies (2), (2) implies (3), and (3) implies (4). It remains
to show (4) implies (1). Assume (4). We begin by reducing to S affine. Being
separated is a local on the base (see Schemes, Lemma 26.21.7). Hence, if we can
show that whenever X → S has (4) that the restriction Xα → Sα has (4) where
Sα ⊂ S is an (affine) open subset and Xα := f−1(Sα), then we will be done. The
generic points of the irreducible components of Xα will be the generic points of
irreducible components of X, since Xα is open in X. Therefore, any two distinct
dotted arrows in the diagram
(32.15.2.1)05M0 Spec(K) //

��

Xα

��
Spec(A) //

;;

Sα

would then give two distinct arrows in diagram (32.15.1.1) via the maps Xα → X
and Sα → S, which is a contradiction. Thus we have reduced to the case S is affine.
We remark that in the course of this reduction, we prove that if X → S has (4)
then the restriction U → V has (4) for opens U ⊂ X and V ⊂ S with f(U) ⊂ V .
We next wish to reduce to the case X → S is finite type. Assume that we know (4)
implies (1) when X is finite type. Since S is Noetherian and X is locally of finite

https://stacks.math.columbia.edu/tag/0207
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type over S we see X is locally Noetherian as well (see Morphisms, Lemma 29.15.6).
Thus, X → S is quasi-separated (see Properties, Lemma 28.5.4), and therefore we
may apply the valuative criterion to check whether X is separated (see Schemes,
Lemma 26.22.2). Let X =

⋃
αXα be an affine open cover of X. Given any two

dotted arrows, in a diagram (32.15.1.1), the image of the closed points of SpecA
will fall in two sets Xα and Xβ . Since Xα ∪Xβ is open, for topological reasons it
must contain the image of Spec(A) under both maps. Therefore, the two dotted
arrows factor through Xα∪Xβ → X, which is a scheme of finite type over S. Since
Xα ∪ Xβ is an open subset of X, by our previous remark, Xα ∪ Xβ satisfies (4),
so by assumption, is separated. This implies the two given dotted arrows are the
same. Therefore, we have reduced to X → S is finite type.

Assume X → S of finite type and assume (4). Since X → S is finite type, and
S is an affine Noetherian scheme, X is also Noetherian (see Morphisms, Lemma
29.15.6). Therefore, X → X×SX will be a quasi-compact immersion of Noetherian
schemes. We proceed by contradiction. Assume that X → X ×S X is not closed.
Then, there is some y ∈ X ×S X in the closure of the image that is not in the
image. As X is Noetherian it has finitely many irreducible components. Therefore,
y is in the closure of the image of one of the irreducible components X0 ⊂ X. Give
X0 the reduced induced structure. The composition X0 → X → X ×S X factors
through the closed subscheme X0 ×S X0 ⊂ X ×S X. Denote the closure of ∆(X0)
in X0 ×S X0 by X̄0 (again as a reduced closed subscheme). Thus y ∈ X̄0. Since
X0 → X0 ×S X0 is an immersion, the image of X0 will be open in X̄0. Hence X0
and X̄0 are birational. Since X̄0 is a closed subscheme of a Noetherian scheme,
it is Noetherian. Thus, the local ring OX̄0,y

is a local Noetherian domain with
fraction field K equal to the function field of X0. By the Krull-Akizuki theorem
(see Algebra, Lemma 10.119.13), there exists a discrete valuation ring A dominating
OX̄0,y

with fraction field K. This allows to construct a diagram:

(32.15.2.2)05M1 Spec(K) //

��

X0

∆
��

Spec(A) //

88

X0 ×S X0

which sends SpecK to the generic point of ∆(X0) and the closed point of A to
y ∈ X0×SX0 (use the material in Schemes, Section 26.13 to construct the arrows).
There cannot even exist a set theoretic dotted arrow, since y is not in the image
of ∆ by our choice of y. By categorical means, the existence of the dotted arrow
in the above diagram is equivalent to the uniqueness of the dotted arrow in the
following diagram:

(32.15.2.3)05M2 Spec(K) //

��

X0

��
Spec(A) //

;;

S

Therefore, we have non-uniqueness in this latter diagram by the nonexistence in
the first. Therefore, X0 does not satisfy uniqueness for discrete valuation rings, and
since X0 is an irreducible component of X, we have that X → S does not satisfy
(4). Therefore, we have shown (4) implies (1). □
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Lemma 32.15.3.0208 Let S be a locally Noetherian scheme. Let f : X → S be a
morphism of finite type. The following are equivalent:

(1) The morphism f is proper.
(2) For any diagram (32.15.1.1) there exists exactly one dotted arrow.
(3) For all diagrams (32.15.1.1) with A a discrete valuation ring there exists

exactly one dotted arrow.
(4) For any irreducible component X0 of X with generic point η ∈ X0, for

any discrete valuation ring A ⊂ K = κ(η) with fraction field K and
any diagram (32.15.1.1) such that the morphism Spec(K) → X is the
canonical one (see Schemes, Section 26.13) there exists exactly one dotted
arrow.

Proof. (1) implies (2) implies (3) implies (4). We will now show (4) implies (1).
As in the proof of Lemma 32.15.2, we can reduce to the case S is affine, since
properness is local on the base, and if X → S satisfies (4), then Xα → Sα does as
well for open Sα ⊂ S and Xα = f−1(Sα).
Now S is a Noetherian scheme, and so X is as well, since X → S is of finite type.
Now we may use Chow’s lemma (Cohomology of Schemes, Lemma 30.18.1) to get
a surjective, proper, birational X ′ → X and an immersion X ′ → Pn

S . We wish to
show X → S is universally closed. As in the proof of Lemma 32.14.3, it is enough
to check that X ′ → Pn

S is a closed immersion. For the sake of contradiction, assume
that X ′ → Pn

S is not a closed immersion. Then there is some y ∈ Pn
S that is in the

closure of the image of X ′, but is not in the image. So y is in the closure of the
image of an irreducible component X ′

0 of X ′, but not in the image. Let X̄ ′
0 ⊂ Pn

S

be the closure of the image of X ′
0. As X ′ → Pn

S is an immersion of Noetherian
schemes, the morphism X ′

0 → X̄ ′
0 is open and dense. By Algebra, Lemma 10.119.13

or Properties, Lemma 28.5.10 we can find a discrete valuation ring A dominating
OX̄′

0,y
and with identical field of fractions K. It is clear that K is the residue field

at the generic point of X ′
0. Thus the solid commutative diagram

(32.15.3.1)05M3 SpecK //

��

X ′ //

��

Pn
S

��
SpecA //

;; 66

X // S

Note that the closed point of A maps to y ∈ Pn
S . By construction, there does not

exist a set theoretic lift to X ′. As X ′ → X is birational, the image of X ′
0 in X is

an irreducible component X0 of X and K is also identified with the function field
of X0. Hence, as X → S is assumed to satisfy (4), the dotted arrow Spec(A) →
X exists. Since X ′ → X is proper, the dotted arrow lifts to the dotted arrow
Spec(A) → X ′ (use Schemes, Proposition 26.20.6). We can compose this with the
immersion X ′ → Pn

S to obtain another morphism (not depicted in the diagram)
from Spec(A) → Pn

S . Since Pn
S is proper over S, it satisfies (2), and so these two

morphisms agree. This is a contradiction, for we have constructed the forbidden
lift of our original map Spec(A)→ Pn

S to X ′. □

Lemma 32.15.4.05JY Let f : X → S be a finite type morphism of schemes. Assume S
is locally Noetherian. Then the following are equivalent

(1) f is universally closed,

https://stacks.math.columbia.edu/tag/0208
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(2) for every n the morphism An ×X → An × S is closed,
(3) for any diagram (32.15.1.1) there exists some dotted arrow,
(4) for all diagrams (32.15.1.1) with A a discrete valuation ring there exists

some dotted arrow.

Proof. The equivalence of (1) and (2) is a special case of Lemma 32.14.2. The
equivalence of (1) and (3) is a special case of Schemes, Proposition 26.20.6. Trivially
(3) implies (4). Thus all we have to do is prove that (4) implies (2). We will prove
that An×X → An×S is closed by the criterion of Schemes, Lemma 26.19.8. Pick
n and a specialization z ⇝ z′ of points in An×S and a point y ∈ An×X lying over
z. Note that κ(y) is a finitely generated field extension of κ(z) as An×X → An×S
is of finite type. Hence by Properties, Lemma 28.5.10 or Algebra, Lemma 10.119.13
implies that there exists a discrete valuation ring A ⊂ κ(y) with fraction field κ(z)
dominating the image of OAn×S,z′ in κ(z). This gives a commutative diagram

Spec(κ(y)) //

��

An ×X

��

// X

��
Spec(A) // An × S // S

Now property (4) implies that there exists a morphism Spec(A) → X which fits
into this diagram. Since we already have the morphism Spec(A) → An from the
left lower horizontal arrow we also get a morphism Spec(A)→ An ×X fitting into
the left square. Thus the image y′ ∈ An ×X of the closed point is a specialization
of y lying over z′. This proves that specializations lift along An × X → An × S
and we win. □

32.16. Refined Noetherian valuative criteria

0H1P One usually does not have to consider all possible diagrams with valuation rings
when checking valuative criteria. An example is given by Morphisms, Lemma
29.42.2. In the Noetherian setting, we have also seen this in Lemmas 32.15.2 and
32.15.3. Here is another variant.

Lemma 32.16.1.0CM3 Let f : X → S and h : U → X be morphisms of schemes. Assume
that S is locally Noetherian, that f and h are of finite type, that f is separated,
and that h(U) is dense in X. If given any commutative solid diagram

Spec(K) //

��

U
h // X

f

��
Spec(A) //

66

S

where A is a discrete valuation ring with field of fractions K, there exists a dotted
arrow making the diagram commute, then f is proper.

Proof. There is an immediate reduction to the case where S is affine. Then U is
quasi-compact. Let U = U1 ∪ . . . ∪ Un be an affine open covering. We may replace
U by U1 ⨿ . . .⨿ Un without changing the assumptions, hence we may assume U is
affine. Thus we can find an open immersion U → Y over X with Y proper over X.
(First put U inside An

X using Morphisms, Lemma 29.39.2 and then take the closure
inside Pn

X , or you can directly use Morphisms, Lemma 29.43.12.) We can assume

https://stacks.math.columbia.edu/tag/0CM3
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U is dense in Y (replace Y by the scheme theoretic closure of U if necessary, see
Morphisms, Section 29.7). Note that g : Y → X is surjective as the image is closed
and contains the dense subset h(U). We will show that Y → S is proper. This will
imply that X → S is proper by Morphisms, Lemma 29.41.9 thereby finishing the
proof. To show that Y → S is proper we will use part (4) of Lemma 32.15.3. To
do this consider a diagram

Spec(K)
y

//

��

Y

f◦g
��

Spec(A) //

;;

S

where A is a discrete valuation ring with fraction field K and where y : Spec(K)→
Y is the inclusion of a generic point. We have to show there exists a unique dotted
arrow. Uniqueness holds by the converse to the valuative criterion for separatedness
(Schemes, Lemma 26.22.1) since Y → S is separated as the composition of the
separated morphisms Y → X and X → S (Schemes, Lemma 26.21.12). Existence
can be seen as follows. As y is a generic point of Y , it is contained in U . By
assumption of the lemma there exists a morphism a : Spec(A)→ X such that

Spec(K)
y

//

��

U // X

f

��
Spec(A) //

a

66

S

is commutative. Then since Y → X is proper, we can apply the valuative criterion
for properness (Morphisms, Lemma 29.42.1) to find a morphism b : Spec(A) → Y
such that

Spec(K)
y

//

��

Y

g

��
Spec(A) a //

b

;;

X

is commutative. This finishes the proof since b can serve as the dotted arrow
above. □

Lemma 32.16.2.0CM4 Let f : X → S and h : U → X be morphisms of schemes. Assume
that S is locally Noetherian, that f is locally of finite type, that h is of finite type,
and that h(U) is dense in X. If given any commutative solid diagram

Spec(K) //

��

U
h // X

f

��
Spec(A) //

66

S

where A is a discrete valuation ring with field of fractions K, there exists at most
one dotted arrow making the diagram commute, then f is separated.

Proof. We will apply Lemma 32.16.1 to the morphisms U → X and ∆ : X →
X×SX. We check the conditions. Observe that ∆ is quasi-compact by Properties,
Lemma 28.5.4 (and Schemes, Lemma 26.21.13). Of course ∆ is locally of finite

https://stacks.math.columbia.edu/tag/0CM4


32.17. VALUATIVE CRITERIA OVER A NAGATA BASE 2755

type and separated (true for any diagonal morphism). Finally, suppose given a
commutative solid diagram

Spec(K) //

��

U
h // X

∆
��

Spec(A)
(a,b) //

55

X ×S X

where A is a discrete valuation ring with field of fractions K. Then a and b give
two dotted arrows in the diagram of the lemma and have to be equal. Hence as
dotted arrow we can use a = b which gives existence. This finishes the proof. □

Lemma 32.16.3.0CM5 Let f : X → S and h : U → X be morphisms of schemes. Assume
that S is locally Noetherian, that f and h are of finite type, and that h(U) is dense
in X. If given any commutative solid diagram

Spec(K) //

��

U
h // X

f

��
Spec(A) //

66

S

where A is a discrete valuation ring with field of fractions K, there exists a unique
dotted arrow making the diagram commute, then f is proper.

Proof. Combine Lemmas 32.16.2 and 32.16.1. □

32.17. Valuative criteria over a Nagata base

0GWU When working with schemes locally of finite type over a Nagata base we can reduce
to discrete valuation rings which are essentially of finite type over the base. The
following are just some example results one can get.

Lemma 32.17.1.0GWV Let S be a Nagata scheme (and in particular locally Noetherian).
Let f : X → Y be a quasi-compact morphism of schemes locally of finite type over
S. The following are equivalent

(1) f is universally closed,
(2) for every n the morphism An ×X → An × Y is closed,
(3) for any commutative diagram

U //

��

X

f

��
C //

>>

Y

of schemes over S such that
(a) C is a normal integral scheme of finite type over S,
(b) U = C \ {c} for some closed point c ∈ C,
(c) A = OC,c has dimension 13

3It follows that A is a discrete valuation ring, see Algebra, Lemma 10.119.7. Moreover, c
maps to a finite type point s ∈ S and A is essentially of finite type over OS,s.

https://stacks.math.columbia.edu/tag/0CM5
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then in the commutative diagram

Spec(K) //

��

X

f

��
Spec(A) //

;;

Y

where K = Frac(A) some dotted arrow exists4 making the diagram com-
mute.

Proof. We have seen the equivalence of (1) and (2) and the fact that these imply
(3) in Lemma 32.15.4. Thus it suffices to prove that (3) implies (2). Observe that
if condition (3) holds for f : X → Y , then condition (3) holds for 1×f : An×X →
An × Y (see argument in the proof of Lemma 32.15.4). Hence it suffices to show
that (3) implies that f is closed.
Reduction to the case where Y and S are affine; we suggest skipping this paragraph.
Let S′ ⊂ S be an affine open and let Y ′ ⊂ Y be an affine open mapping into S′.
Set X ′ = f−1(Y ′). Then we claim that the restriction f ′ : X ′ → Y ′ of f viewed as
a morphism of schemes over S′ has property (3) also. We omit the details. Now if
we can prove that f ′ is closed for all choices of S′ and Y ′, then it follows that f is
closed. This reduces us to the case discussed in the next paragraph.
Assume S and Y affine. Let Z ⊂ X be a closed subset. We may and do view Z
as a reduced closed subscheme of X. We have to show that E = f(Z) is closed.
Pick y ∈ Y a closed point contained in the closure of f(Z). It suffices to show
y ∈ E. We assume y ̸∈ E to get a contradiction. The image s ∈ S of y is a finite
type point of S, see Morphisms, Lemma 29.16.5. Recall that E is constructible
(Morphisms, Lemma 29.22.2). Consider the intersection Spec(OY,y) ∩ E. This is
a constructible subset of the spectrum (Morphisms, Lemma 29.22.1) which doesn’t
contain the closed point. Since the punctured spectrum Spec(OY,y)\{y} is Jacobson
(Morphisms, Lemma 29.16.10), we find a closed point t ∈ Spec(OY,y) \ {y} with
t ∈ E (see Topology, Lemma 5.18.5). In other words, t ∈ E is a point of Y which
has an immediate specialization t ⇝ y. As t ∈ E the scheme theoretic fibre Zt is
nonempty. Choose a closed point x ∈ Zt. In particular we have [κ(x) : κ(t)] < ∞
by the Hilbert Nullstellensatz (Morphisms, Lemma 29.20.3).
Denote T = {t} ⊂ Y the integral closed subscheme whose underlying topological
space is as indicated (Schemes, Definition 26.12.5). Then t ∈ T is the generic point.
Denote C → T the normalization of T in κ(x), see Morphisms, Section 29.53 (more
precisely, C → T is the normalization of T in x where we view x = Spec(κ(x))→ T
as a scheme over T ). Since S is a Nagata scheme, so is T (Morphisms, Lemma
29.18.1). Hence we see that C → T is finite (Morphisms, Lemma 29.53.14). As t is
in the image we see that C → T is surjective (because the image is closed and T is
the closure of t in Y ). Choose a point c ∈ C mapping to y ∈ T . Since y is a closed
point of T we see that c is a closed point of C. Since dim(OT,y) = 1 we see that
dim(OC,c) = 1 (the dimension is at least 1 as c is not the generic point of C and
at most 1 as C → T is finite). As the function field of C is κ(x) and as x is a point
of X, we have a Y -rational map from C to X (see for example Morphisms, Lemma

4By Lemma 32.6.4 this is equivalent to asking for the existence of dotted arrow making the
first commutative diagram commute.
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29.49.2). Let C ⊃ U → X be a representative (in particular U is nonempty). We
may assume c ̸∈ U (replace U by U \ {c}). Since c is a closed point of codimension
1 in the integral scheme C we have C = U ⨿{c}⨿Σ for some proper closed subset
Σ ⊂ C. After replacing C by C \ Σ we have constructed a commutative diagram
as in part (3). By the 2nd footnote in the statement of the lemma, the existence of
the dotted arrow produces an extension of the rational map to all of C and we get
the contradiction because the image of c will be a point of Z mapping to y. □

Lemma 32.17.2.0GWW Let S be a Nagata scheme (and in particular locally Noetherian).
Let f : X → Y be a morphism of schemes locally of finite type over S. The
following are equivalent

(1) f separated,
(2) for any commutative diagram

U //

��

X

f

��
C //

>>

Y

of schemes over S such that
(a) C is a normal integral scheme of finite type over S,
(b) U = C \ {c} for some closed point c ∈ C,
(c) A = OC,c has dimension 15

then in the commutative diagram

Spec(K) //

��

X

f

��
Spec(A) //

;;

Y

where K = Frac(A) there exists at most one dotted arrow6 making the
diagram commute.

Proof. By Lemma 32.15.2 we see that (1) implies (2). Assume (2). In order to
show that f is separated, we have to show that ∆ : X → X ×Y X is closed. By
Morphisms, Lemma 29.15.7 the morphism ∆ is quasi-compact. By Lemma 32.17.1
it suffices to show: for any commutative diagram

U //

��

X

∆
��

C
(a1,a2) //

66

X ×Y X

of schemes over S such that
(1) C is a normal integral scheme of finite type over S,
(2) U = C \ {c} for some closed point c ∈ C,
(3) A = OC,c has dimension 1.

5It follows that A is a discrete valuation ring, see Algebra, Lemma 10.119.7. Moreover, c
maps to a finite type point s ∈ S and A is essentially of finite type over OS,s.

6By Lemma 32.6.4 this is equivalent to asking there to be at most one dotted arrow making
the first commutative diagram commute.

https://stacks.math.columbia.edu/tag/0GWW
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then in the commutative diagram

Spec(K) //

��

X

∆
��

Spec(A) //

99

X ×Y X

where K = Frac(A) there exists some dotted arrow making the diagram commute.
By Lemma 32.6.4 the existence of the dotted arrow in the second diagram is equiv-
alent to the existence of the dotted arrow in the first diagram. Moreover, the
existence there is the same as asking a1 = a2. However a1|U = a2|U , so by the
uniqueness assumption (2) we see that this is true and the proof is complete. □

Lemma 32.17.3.0GWX Let S be a Nagata scheme (and in particular locally Noetherian).
Let f : X → Y be a quasi-compact morphism of schemes locally of finite type over
S. The following are equivalent

(1) f proper,
(2) for any commutative diagram

U //

��

X

f

��
C //

>>

Y

of schemes over S such that
(a) C is a normal integral scheme of finite type over S,
(b) U = C \ {c} for some closed point c ∈ C,
(c) A = OC,c has dimension 17

then in the commutative diagram

Spec(K) //

��

X

f

��
Spec(A) //

;;

Y

where K = Frac(A) there exists exactly one dotted arrow8 making the
diagram commute.

Proof. This is formal from Lemmas 32.17.1 and 32.17.2 and the definition of proper
morphisms as being finite type, separated, and universally closed. □

32.18. Limits and dimensions of fibres

05M4 The following lemma is most often used in the situation of Lemma 32.10.1 to assure
that if the fibres of the limit have dimension ≤ d, then the fibres at some finite stage
have dimension ≤ d.

Lemma 32.18.1.05M5 Let I be a directed set. Let (fi : Xi → Si) be an inverse system
of morphisms of schemes over I. Assume

7It follows that A is a discrete valuation ring, see Algebra, Lemma 10.119.7. Moreover, c
maps to a finite type point s ∈ S and A is essentially of finite type over OS,s.

8By Lemma 32.6.4 this is equivalent to asking for the existence and uniqueness of the dotted
arrow making the first commutative diagram commute.

https://stacks.math.columbia.edu/tag/0GWX
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(1) all the morphisms Si′ → Si are affine,
(2) all the schemes Si are quasi-compact and quasi-separated,
(3) the morphisms fi are of finite type, and
(4) the morphisms Xi′ → Xi ×Si Si′ are closed immersions.

Let f : X = limiXi → S = limi Si be the limit. Let d ≥ 0. If every fibre of f has
dimension ≤ d, then for some i every fibre of fi has dimension ≤ d.

Proof. For each i let Ui = {x ∈ Xi | dimx((Xi)fi(x)) ≤ d}. This is an open subset of
Xi, see Morphisms, Lemma 29.28.4. Set Zi = Xi\Ui (with reduced induced scheme
structure). We have to show that Zi = ∅ for some i. If not, then Z = limZi ̸= ∅,
see Lemma 32.4.3. Say z ∈ Z is a point. Note that Z ⊂ X is a closed subscheme.
Set s = f(z). For each i let si ∈ Si be the image of s. We remark that Zs is
the limit of the schemes (Zi)si and Zs is also the limit of the schemes (Zi)si base
changed to κ(s). Moreover, all the morphisms

Zs −→ (Zi′)si′ ×Spec(κ(si′ )) Spec(κ(s)) −→ (Zi)si ×Spec(κ(si)) Spec(κ(s)) −→ Xs

are closed immersions by assumption (4). Hence Zs is the scheme theoretic inter-
section of the closed subschemes (Zi)si ×Spec(κ(si)) Spec(κ(s)) in Xs. Since all the
irreducible components of the schemes (Zi)si ×Spec(κ(si)) Spec(κ(s)) have dimen-
sion > d and contain z we conclude that Zs contains an irreducible component of
dimension > d passing through z which contradicts the fact that Zs ⊂ Xs and
dim(Xs) ≤ d. □

Lemma 32.18.2.094M Notation and assumptions as in Situation 32.8.1. If
(1) f is a quasi-finite morphism, and
(2) f0 is locally of finite type,

then there exists an i ≥ 0 such that fi is quasi-finite.

Proof. Follows immediately from Lemma 32.18.1. □

Lemma 32.18.3.0H3V Assumptions and notation as in Situation 32.8.1. Let d ≥ 0. If
(1) f has relative dimension ≤ d (Morphisms, Definition 29.29.1), and
(2) f0 is locally of finite type,

then there exists an i such that fi has relative dimension ≤ d.

Proof. Follows immediately from Lemma 32.18.1. □

Lemma 32.18.4.0EY2 Notation and assumptions as in Situation 32.8.1. If
(1) f has relative dimension d, and
(2) f0 is locally of finite presentation,

then there exists an i ≥ 0 such that fi has relative dimension d.

Proof. By Lemma 32.18.1 we may assume all fibres of f0 have dimension ≤ d.
By Morphisms, Lemma 29.28.6 the set U0 ⊂ X0 of points x ∈ X0 such that the
dimension of the fibre of X0 → Y0 at x is ≤ d − 1 is open and retrocompact in
X0. Hence the complement E = X0 \ U0 is constructible. Moreover the image of
X → X0 is contained in E by Morphisms, Lemma 29.28.3. Thus for i≫ 0 we have
that the image of Xi → X0 is contained in E (Lemma 32.4.10). Then all fibres of
Xi → Yi have dimension d by the aforementioned Morphisms, Lemma 29.28.3. □

https://stacks.math.columbia.edu/tag/094M
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Lemma 32.18.5.05M6 Let S be a quasi-compact and quasi-separated scheme. Let f :
X → S be a morphism of finite presentation. Let d ≥ 0 be an integer. If Z ⊂ X be
a closed subscheme such that dim(Zs) ≤ d for all s ∈ S, then there exists a closed
subscheme Z ′ ⊂ X such that

(1) Z ⊂ Z ′,
(2) Z ′ → X is of finite presentation, and
(3) dim(Z ′

s) ≤ d for all s ∈ S.

Proof. By Proposition 32.5.4 we can write S = limSi as the limit of a directed
inverse system of Noetherian schemes with affine transition maps. By Lemma
32.10.1 we may assume that there exist a system of morphisms fi : Xi → Si of finite
presentation such that Xi′ = Xi ×Si Si′ for all i′ ≥ i and such that X = Xi ×Si S.
Let Zi ⊂ Xi be the scheme theoretic image of Z → X → Xi. Then for i′ ≥ i the
morphism Xi′ → Xi maps Zi′ into Zi and the induced morphism Zi′ → Zi ×Si Si′
is a closed immersion. By Lemma 32.18.1 we see that the dimension of the fibres
of Zi → Si all have dimension ≤ d for a suitable i ∈ I. Fix such an i and set
Z ′ = Zi ×Si S ⊂ X. Since Si is Noetherian, we see that Xi is Noetherian, and
hence the morphism Zi → Xi is of finite presentation. Therefore also the base
change Z ′ → X is of finite presentation. Moreover, the fibres of Z ′ → S are base
changes of the fibres of Zi → Si and hence have dimension ≤ d. □

32.19. Base change in top degree

0EX2 For a proper morphism and a finite type quasi-coherent module the base change
map is an isomorphism in top degree.

Lemma 32.19.1.0EX3 Let f : X → Y be a morphism of schemes. Let d ≥ 0. Assume
(1) X and Y are quasi-compact and quasi-separated, and
(2) Rif∗F = 0 for i > d and every quasi-coherent OX -module F .

Then we have
(a) for any base change diagram

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

we have Rif ′
∗F ′ = 0 for i > d and any quasi-coherent OX′ -module F ′,

(b) Rdf ′
∗(F ′ ⊗OX′ (f ′)∗G′) = Rdf ′

∗F ′ ⊗OY ′ G′ for any quasi-coherent OY ′ -
module G′,

(c) formation of Rdf ′
∗F ′ commutes with arbitrary further base change (see

proof for explanation).

Proof. Before giving the proofs, we explain the meaning of (c). Suppose we have
an additional cartesian square

X ′′

f ′′

��

h′
// X ′

f ′

��

g′
// X

f

��
Y ′′ h // Y ′ g // Y

https://stacks.math.columbia.edu/tag/05M6
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tacked onto our given diagram. If (a) holds, then there is a canonical map γ :
h∗Rdf ′

∗F ′ → Rdf ′′
∗ (h′)∗F ′. Namely, γ is the map on degree d cohomology sheaves

induced by the composition

Lh∗Rf ′
∗F ′ −→ Rf ′′

∗ L(h′)∗F ′ −→ Rf ′′
∗ (h′)∗F ′

Here the first arrow is the base change map (Cohomology, Remark 20.28.3) and
the second arrow complex from the canonical map L(g′)∗F → (g′)∗F . Similarly,
since Rf ′

∗F has no nonzero cohomology sheaves in degrees > d by (a) we have
Hd(Lh∗Rf∗F ′) = h∗Rdf∗F . The content of (c) is that γ is an isomorphism.

Having said this, we can check (a), (b), and (c) locally on Y ′ and Y ′′. Suppose
that V ⊂ Y is a quasi-compact open subscheme. Then we claim (1) and (2) hold
for f |f−1(V ) : f−1(V )→ V . Namely, (1) is immediate and (2) follows because any
quasi-coherent module on f−1(V ) is the restriction of a quasi-coherent module on
X (Properties, Lemma 28.22.1) and formation of higher direct images commutes
with restriction to opens. Thus we may also work locally on Y . In other words, we
may assume Y ′′, Y ′, and Y are affine schemes.

Proof of (a) when Y ′ and Y are affine. In this case the morphisms g and g′ are
affine. Thus g∗ = Rg∗ and g′

∗ = Rg′
∗ (Cohomology of Schemes, Lemma 30.2.3) and

g∗ is identified with the restriction functor on modules (Schemes, Lemma 26.7.3).
Then

g∗(Rif ′
∗F ′) = Hi(Rg∗Rf

′
∗F ′) = Hi(Rf∗Rg

′
∗F ′) = Hi(Rf∗g

′
∗F ′) = Rf i∗g

′
∗F ′

which is zero by assumption (2). Hence (a) by our description of g∗.

Proof of (b) when Y ′ is affine, say Y ′ = Spec(R′). By part (a) we haveHd+1(X ′,F ′) =
0 for any quasi-coherent OX′ -module F ′, see Cohomology of Schemes, Lemma
30.4.6. Consider the functor F on R′-modules defined by the rule

F (M) = Hd(X ′,F ′ ⊗OX′ (f ′)∗M̃)

By Cohomology, Lemma 20.19.1 this functor commutes with direct sums (this is
where we use that X and hence X ′ is quasi-compact and quasi-separated). On the
other hand, if M1 →M2 →M3 → 0 is an exact sequence, then

F ′ ⊗OX′ (f ′)∗M̃1 → F ′ ⊗OX′ (f ′)∗M̃2 → F ′ ⊗OX′ (f ′)∗M̃3 → 0

is an exact sequence of quasi-coherent modules on X ′ and by the vanishing of higher
cohomology given above we get an exact sequence

F (M1)→ F (M2)→ F (M3)→ 0

In other words, F is right exact. Any right exact R′-linear functor F : ModR′ →
ModR′ which commutes with direct sums is given by tensoring with an R′-module
(omitted; left as exercise for the reader). Thus we obtain F (M) = Hd(X ′,F ′)⊗R′

M . Since Rd(f ′)∗F ′ and Rd(f ′)∗(F ′⊗OX′ (f ′)∗M̃) are quasi-coherent (Cohomology
of Schemes, Lemma 30.4.5), the fact that F (M) = Hd(X ′,F ′) ⊗R′ M translates
into the statement given in (b).

Proof of (c) when Y ′′ → Y ′ → Y are morphisms of affine schemes. Say Y ′′ =
Spec(R′′) and Y ′ = Spec(R′). Then we see that Rdf ′′

∗ (h′)∗F ′ is the quasi-coherent
module on Y ′ associated to the R′′-module Hd(X ′′, (h′)∗F ′). Now h′ : X ′′ → X ′ is



32.19. BASE CHANGE IN TOP DEGREE 2762

affine hence Hd(X ′′, (h′)∗F ′) = Hd(X,h′
∗(h′)∗F ′) by the already used Cohomology

of Schemes, Lemma 30.2.4. We have

h′
∗(h′)∗F ′ = F ′ ⊗OX′ (f ′)∗R̃′′

as the reader sees by checking on an affine open covering. Thus Hd(X ′′, (h′)∗F ′) =
Hd(X ′,F ′)⊗R′ R′′ by part (b) applied to f ′ and the proof is complete. □

Lemma 32.19.2.0E7D Let f : X → Y be a morphism of schemes. Let y ∈ Y . Assume f
is proper and dim(Xy) = d. Then

(1) for F ∈ QCoh(OX) we have (Rif∗F)y = 0 for all i > d,
(2) there is an affine open neighbourhood V ⊂ Y of y such that f−1(V )→ V

and d satisfy the assumptions and conclusions of Lemma 32.19.1.

Proof. By Morphisms, Lemma 29.28.4 and the fact that f is closed, we can find
an affine open neighbourhood V of y such that the fibres over points of V all have
dimension ≤ d. Thus we may assume X → Y is a proper morphism all of whose
fibres have dimension ≤ d with Y affine. We will show that (2) holds, which will
immediately imply (1) for all y ∈ Y .
By Lemma 32.13.2 we can write X = limXi as a cofiltered limit with Xi →
Y proper and of finite presentation and such that both X → Xi and transition
morphisms are closed immersions. For some i we have that Xi → Y has fibres of
dimension ≤ d, see Lemma 32.18.1. For a quasi-coherent OX -module F we have
Rpf∗F = Rpfi,∗(X → Xi)∗F by Cohomology of Schemes, Lemma 30.2.3 and Leray
(Cohomology, Lemma 20.13.8). Thus we may replace X by Xi and reduce to the
case discussed in the next paragraph.
Assume Y is affine and f : X → Y is proper and of finite presentation and all fibres
have dimension ≤ d. It suffices to show that Hp(X,F) = 0 for p > d. Namely, by
Cohomology of Schemes, Lemma 30.4.6 we have Hp(X,F) = H0(Y,Rpf∗F). On
the other hand, Rpf∗F is quasi-coherent on Y by Cohomology of Schemes, Lemma
30.4.5, hence vanishing of global sections implies vanishing. Write Y = limi∈I Yi
as a cofiltered limit of affine schemes with Yi the spectrum of a Noetherian ring
(for example a finite type Z-algebra). We can choose an element 0 ∈ I and a
finite type morphism X0 → Y0 such that X ∼= Y ×Y0 X0, see Lemma 32.10.1.
After increasing 0 we may assume X0 → Y0 is proper (Lemma 32.13.1) and that
the fibres of X0 → Y0 have dimension ≤ d (Lemma 32.18.1). Since X → X0 is
affine, we find that Hp(X,F) = Hp(X0, (X → X0)∗F) by Cohomology of Schemes,
Lemma 30.2.4. This reduces us to the case discussed in the next paragraph.
Assume Y is affine Noetherian and f : X → Y is proper and all fibres have dimen-
sion ≤ d. In this case we can write F = colimFi as a filtered colimit of coherent
OX -modules, see Properties, Lemma 28.22.7. Then Hp(X,F) = colimHp(X,Fi)
by Cohomology, Lemma 20.19.1. Thus we may assume F is coherent. In this case
we see that (Rpf∗F)y = 0 for all y ∈ Y by Cohomology of Schemes, Lemma 30.20.9.
Thus Rpf∗F = 0 and therefore Hp(X,F) = 0 (see above) and we win. □

Lemma 32.19.3.0EX4 Let f : X → Y be a morphism of schemes. Let d ≥ 0. Let F be
an OX -module. Assume

(1) f is a proper morphism all of whose fibres have dimension ≤ d,
(2) F is a quasi-coherent OX -module of finite type.

https://stacks.math.columbia.edu/tag/0E7D
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Then Rdf∗F is a quasi-coherent OX -module of finite type.

Proof. The module Rdf∗F is quasi-coherent by Cohomology of Schemes, Lemma
30.4.5. The question is local on Y hence we may assume Y is affine. Say Y =
Spec(R). Then it suffices to prove that Hd(X,F) is a finite R-module.

By Lemma 32.13.2 we can write X = limXi as a cofiltered limit with Xi → Y
proper and of finite presentation and such that both X → Xi and transition mor-
phisms are closed immersions. For some i we have that Xi → Y has fibres of
dimension ≤ d, see Lemma 32.18.1. We have Rpf∗F = Rpfi,∗(X → Xi)∗F by
Cohomology of Schemes, Lemma 30.2.3 and Leray (Cohomology, Lemma 20.13.8).
Thus we may replace X by Xi and reduce to the case discussed in the next para-
graph.

Assume Y is affine and f : X → Y is proper and of finite presentation and all
fibres have dimension ≤ d. We can write F as a quotient of a finitely presented
OX -module F ′, see Properties, Lemma 28.22.8. The map Hd(X,F ′)→ Hd(X,F)
is surjective, as we have Hd+1(X,Ker(F ′ → F)) = 0 by the vanishing of higher
cohomology seen in Lemma 32.19.2 (or its proof). Thus we reduce to the case
discussed in the next paragraph.

Assume Y = Spec(R) is affine and f : X → Y is proper and of finite presentation
and all fibres have dimension ≤ d and F is an OX -module of finite presentation.
Write Y = limi∈I Yi as a cofiltered limit of affine schemes with Yi = Spec(Ri) the
spectrum of a Noetherian ring (for example a finite type Z-algebra). We can choose
an element 0 ∈ I and a finite type morphism X0 → Y0 such that X ∼= Y ×Y0 X0,
see Lemma 32.10.1. After increasing 0 we may assume X0 → Y0 is proper (Lemma
32.13.1) and that the fibres of X0 → Y0 have dimension ≤ d (Lemma 32.18.1).
After increasing 0 we can assume there is a coherent OX0-module F0 which pulls
back to F , see Lemma 32.10.2. By Lemma 32.19.1 we have

Hd(X,F) = Hd(X0,F0)⊗R0 R

This finishes the proof because the cohomology module Hd(X0,F0) is finite by
Cohomology of Schemes, Lemma 30.19.2. □

Lemma 32.19.4.0EX5 Let f : X → Y be a morphism of schemes. Let d ≥ 0. Let F be
an OX -module. Assume

(1) f is a proper morphism of finite presentation all of whose fibres have
dimension ≤ d,

(2) F is an OX -module of finite presentation.
Then Rdf∗F is an OX -module of finite presentation.

Proof. The proof is exactly the same as the proof of Lemma 32.19.3 except that
the third paragraph can be skipped. We omit the details. □

32.20. Glueing in closed fibres

0E8P Applying our theory above to the spectrum of a local ring we obtain the following
pleasing glueing result for relative schemes.

https://stacks.math.columbia.edu/tag/0EX5
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Lemma 32.20.1.0BPA Let S be a scheme. Let s ∈ S be a closed point such that
U = S \ {s} → S is quasi-compact. With V = Spec(OS,s) \ {s} there is an
equivalence of categories

{
X → S of finite presentation

}
−→


X ′

��

Y ′

��

oo // Y

��
U Voo // Spec(OS,s)


where on the right hand side we consider commutative diagrams whose squares are
cartesian and whose vertical arrows are of finite presentation.

Proof. Let W ⊂ S be an open neighbourhood of s. By glueing of relative schemes,
see Constructions, Section 27.2, the functor

{
X → S of finite presentation

}
−→


X ′

��

Y ′

��

oo // Y

��
U W \ {s}oo // W


is an equivalence of categories. We have OS,s = colimOW (W ) where W runs
over the affine open neighbourhoods of s. Hence Spec(OS,s) = limW where W
runs over the affine open neighbourhoods of s. Thus the category of schemes of
finite presentation over Spec(OS,s) is the limit of the category of schemes of finite
presentation over W where W runs over the affine open neighbourhoods of s, see
Lemma 32.10.1. For every affine open s ∈ W we see that U ∩W is quasi-compact
as U → S is quasi-compact. Hence V = limW ∩U = limW \{s} is a limit of quasi-
compact and quasi-separated schemes (see Lemma 32.2.2). Thus also the category
of schemes of finite presentation over V is the limit of the categories of schemes of
finite presentation over W ∩ U where W runs over the affine open neighbourhoods
of s. The lemma follows formally from a combination of these results. □

Lemma 32.20.2.0F21 Let S be a scheme. Let s ∈ S be a closed point such that
U = S \ {s} → S is quasi-compact. With V = Spec(OS,s) \ {s} there is an
equivalence of categories

{OS-modules F of finite presentation} −→ {(G,H, α)}

where on the right hand side we consider triples consisting of aOU -module G of finite
presentation, a OSpec(OS,s)-module H of finite presentation, and an isomorphism
α : G|V → H|V of OV -modules.

Proof. You can either prove this by redoing the proof of Lemma 32.20.1 using
Lemma 32.10.2 or you can deduce it from Lemma 32.20.1 using the equivalence
between quasi-coherent modules and “vector bundles” from Constructions, Section
27.6. We omit the details. □

Lemma 32.20.3.0BQ5 Let S be a scheme. Let U ⊂ S be a retrocompact open. Let
s ∈ S be a point in the complement of U . With V = Spec(OS,s) ∩ U there is an

https://stacks.math.columbia.edu/tag/0BPA
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equivalence of categories

colims∈U ′⊃U open


X

��
U ′

 −→

X ′

��

Y ′

��

oo // Y

��
U Voo // Spec(OS,s)


where on the left hand side the vertical arrow is of finite presentation and on the
right hand side we consider commutative diagrams whose squares are cartesian and
whose vertical arrows are of finite presentation.

Proof. Let W ⊂ S be an open neighbourhood of s. By glueing of relative schemes,
see Constructions, Section 27.2, the functor

{
X → U ′ = U ∪W of finite presentation

}
−→


X ′

��

Y ′

��

oo // Y

��
U W ∩ Uoo // W


is an equivalence of categories. We have OS,s = colimOW (W ) where W runs over
the affine open neighbourhoods of s. Hence Spec(OS,s) = limW where W runs
over the affine open neighbourhoods of s. Thus the category of schemes of finite
presentation over Spec(OS,s) is the limit of the category of schemes of finite presen-
tation over W where W runs over the affine open neighbourhoods of s, see Lemma
32.10.1. For every affine open s ∈W we see that U ∩W is quasi-compact as U → S
is quasi-compact. Hence V = limW ∩ U is a limit of quasi-compact and quasi-
separated schemes (see Lemma 32.2.2). Thus also the category of schemes of finite
presentation over V is the limit of the categories of schemes of finite presentation
over W ∩ U where W runs over the affine open neighbourhoods of s. The lemma
follows formally from a combination of these results. □

Lemma 32.20.4.0EY3 Notation and assumptions as in Lemma 32.20.3. Let U ⊂ U ′ ⊂ X
be an open containing s.

(1) Let f ′ : X → U ′ correspond to f : X ′ → U and g : Y → Spec(OS,s) via
the equivalence. If f and g are separated, proper, finite, étale, then after
possibly shrinking U ′ the morphism f ′ has the same property.

(2) Let a : X1 → X2 be a morphism of schemes of finite presentation over U ′

with base change a′ : X ′
1 → X ′

2 over U and b : Y1 → Y2 over Spec(OS,s). If
a′ and b are separated, proper, finite, étale, then after possibly shrinking
U ′ the morphism a has the same property.

Proof. Proof of (1). Recall that Spec(OS,s) is the limit of the affine open neigh-
bourhoods of s in S. Since g has the property in question, then the restriction of f ′

to one of these affine open neighbourhoods does too, see Lemmas 32.8.6, 32.13.1,
32.8.3, and 32.8.10. Since f ′ has the given property over U as f does, we conclude
as one can check the property locally on the base.

Proof of (2). If we write Spec(OS,s) = limW where W runs over the affine open
neighbourhoods of s in S, then we have Yi = limW ×SXi. Thus we can use exactly
the same arguments as in the proof of (1). □

https://stacks.math.columbia.edu/tag/0EY3
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Lemma 32.20.5.0E8Q Let S be a scheme. Let s1, . . . , sn ∈ S be pairwise distinct closed
points such that U = S\{s1, . . . , sn} → S is quasi-compact. With Si = Spec(OS,si)
and Ui = Si \ {si} there is an equivalence of categories

FPS −→ FPU ×(FPU1 ×...×FPUn ) (FPS1 × . . .× FPSn)
where FPT is the category of schemes of finite presentation over the scheme T .

Proof. For n = 1 this is Lemma 32.20.1. For n > 1 the lemma can be proved in
exactly the same way or it can be deduced from it. For example, suppose that
fi : Xi → Si are objects of FPSi and f : X → U is an object of FPU and
we’re given isomorphisms Xi ×Si Ui = X ×U Ui. By Lemma 32.20.1 we can find
a morphism f ′ : X ′ → U ′ = S \ {s1, . . . , sn−1} which is of finite presentation,
which is isomorphic to Xi over Si, which is isomorphic to X over U , and these
isomorphisms are compatible with the given isomorphism Xi ×Sn Un = X ×U Un.
Then we can apply induction to fi : Xi → Si, i ≤ n − 1, f ′ : X ′ → U ′, and the
induced isomorphisms Xi ×Si Ui = X ′ ×U ′ Ui, i ≤ n − 1. This shows essential
surjectivity. We omit the proof of fully faithfulness. □

32.21. Application to modifications

0B3W Using the results from Section 32.20 we can describe the category of modifications
of a scheme over a closed point in terms of the local ring.

Lemma 32.21.1.0B3X Let S be a scheme. Let s ∈ S be a closed point such that
U = S \ {s} → S is quasi-compact. With V = Spec(OS,s) \ {s} the base change
functor{
f : X → S of finite presentation
f−1(U)→ U is an isomorphism

}
−→

{
g : Y → Spec(OS,s) of finite presentation

g−1(V )→ V is an isomorphism

}
is an equivalence of categories.

Proof. This is a special case of Lemma 32.20.1. □

Lemma 32.21.2.0BFN Notation and assumptions as in Lemma 32.21.1. Let f : X → S
correspond to g : Y → Spec(OS,s) via the equivalence. Then f is separated, proper,
finite, étale and add more here if and only if g is so.

Proof. The property of being separated, proper, integral, finite, etc is stable under
base change. See Schemes, Lemma 26.21.12 and Morphisms, Lemmas 29.41.5 and
29.44.6. Hence if f has the property, then so does g. The converse follows from
Lemma 32.20.4 but we also give a direct proof here. Namely, if g has to property,
then f does in a neighbourhood of s by Lemmas 32.8.6, 32.13.1, 32.8.3, and 32.8.10.
Since f clearly has the given property over S \ {s} we conclude as one can check
the property locally on the base. □

Remark 32.21.3.0B3Y The lemma above can be generalized as follows. Let S be a
scheme and let T ⊂ S be a closed subset. Assume there exists a cofinal system
of open neighbourhoods T ⊂ Wi such that (1) Wi \ T is quasi-compact and (2)
Wi ⊂Wj is an affine morphism. Then W = limWi is a scheme which contains T as
a closed subscheme. Set U = X \T and V = W \T . Then the base change functor{

f : X → S of finite presentation
f−1(U)→ U is an isomorphism

}
−→

{
g : Y →W of finite presentation
g−1(V )→ V is an isomorphism

}

https://stacks.math.columbia.edu/tag/0E8Q
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https://stacks.math.columbia.edu/tag/0BFN
https://stacks.math.columbia.edu/tag/0B3Y
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is an equivalence of categories. If we ever need this we will change this remark into
a lemma and provide a detailed proof.

32.22. Descending finite type schemes

0CNL This section continues the theme of Section 32.9 in the spirit of the results discussed
in Section 32.10.

Situation 32.22.1.0CNM Let S = limi∈I Si be the limit of a directed system of Noetherian
schemes with affine transition morphisms Si′ → Si for i′ ≥ i.

Lemma 32.22.2.0CNN In Situation 32.22.1. Let X → S be quasi-separated and of finite
type. Then there exists an i ∈ I and a diagram

(32.22.2.1)0CNP

X //

��

W

��
S // Si

such that W → Si is of finite type and such that the induced morphism X →
S ×Si W is a closed immersion.

Proof. By Lemma 32.9.3 we can find a closed immersion X → X ′ over S where X ′

is a scheme of finite presentation over S. By Lemma 32.10.1 we can find an i and a
morphism of finite presentation X ′

i → Si whose pull back is X ′. Set W = X ′
i. □

Lemma 32.22.3.0CNQ In Situation 32.22.1. Let X → S be quasi-separated and of finite
type. Given i ∈ I and a diagram

X //

��

W

��
S // Si

as in (32.22.2.1) for i′ ≥ i let Xi′ be the scheme theoretic image of X → Si′ ×SiW .
Then X = limi′≥iXi′ .

Proof. Since X is quasi-compact and quasi-separated formation of the scheme the-
oretic image of X → Si′ ×Si W commutes with restriction to open subschemes
(Morphisms, Lemma 29.6.3). Hence we may and do assume W is affine and maps
into an affine open Ui of Si. Let U ⊂ S, Ui′ ⊂ Si′ be the inverse image of Ui. Then
U , Ui′ , Si′ ×SiW = Ui′ ×UiW , and S×SiW = U ×UiW are all affine. This implies
X is affine because X → S ×Si W is a closed immersion. This also shows the ring
map

O(U)⊗O(Ui) O(W )→ O(X)
is surjective. Let I be the kernel. Then we see that Xi′ is the spectrum of the ring

O(Xi′) = O(Ui′)⊗O(Ui) O(W )/Ii′

where Ii′ is the inverse image of the ideal I (see Morphisms, Example 29.6.4). Since
O(U) = colimO(Ui′) we see that I = colim Ii′ and we conclude that colimO(Xi′) =
O(X). □

https://stacks.math.columbia.edu/tag/0CNM
https://stacks.math.columbia.edu/tag/0CNN
https://stacks.math.columbia.edu/tag/0CNQ
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Lemma 32.22.4.0CNR In Situation 32.22.1. Let f : X → Y be a morphism of schemes
quasi-separated and of finite type over S. Let

X //

��

W

��
S // Si1

and

Y //

��

V

��
S // Si2

be diagrams as in (32.22.2.1). Let X = limi≥i1 Xi and Y = limi≥i2 Yi be the
corresponding limit descriptions as in Lemma 32.22.3. Then there exists an i0 ≥
max(i1, i2) and a morphism

(fi)i≥i0 : (Xi)i≥i0 → (Yi)i≥i0
of inverse systems over (Si)i≥i0 such that such that f = limi≥i0 fi. If (gi)i≥i0 :
(Xi)i≥i0 → (Yi)i≥i0 is a second morphism of inverse systems over (Si)i≥i0 such that
such that f = limi≥i0 gi then fi = gi for all i≫ i0.
Proof. Since V → Si2 is of finite presentation and X = limi≥i1 Xi we can appeal to
Proposition 32.6.1 to find an i0 ≥ max(i1, i2) and a morphism h : Xi0 → V over Si2
such that X → Xi0 → V is equal to X → Y → V . For i ≥ i0 we get a commutative
solid diagram

X

��

// Xi
//

��

��

Xi0

h

��
Y //

��

Yi //

��

V

��
S // Si // Si0

Since X → Xi has scheme theoretically dense image and since Yi is the scheme
theoretic image of Y → Si ×Si2 V we find that the morphism Xi → Si ×Si2 V
induced by the diagram factors through Yi (Morphisms, Lemma 29.6.6). This
proves existence.
Uniqueness. Let Ei ⊂ Xi be the equalizer of fi and gi for i ≥ i0. By Schemes,
Lemma 26.21.5 Ei is a locally closed subscheme of Xi. Since Xi is a closed sub-
scheme of Si ×Si0 Xi0 and similarly for Yi we see that

Ei = Xi ×(Si×Si0Xi0 ) (Si ×Si0 Ei0)

Thus to finish the proof it suffices to show that Xi → Xi0 factors through Ei0 for
some i ≥ i0. To do this we will use that X → Xi0 factors through Ei0 as both fi0
and gi0 are compatible with f . Since Xi is Noetherian, we see that the underlying
topological space |Ei0 | is a constructible subset of |Xi0 | (Topology, Lemma 5.16.1).
Hence Xi → Xi0 factors through Ei0 set theoretically for large enough i by Lemma
32.4.10. For such an i the scheme theoretic inverse image (Xi → Xi0)−1(Ei0) is
a closed subscheme of Xi through which X factors and hence equal to Xi since
X → Xi has scheme theoretically dense image by construction. This concludes the
proof. □

Remark 32.22.5.0CNS In Situation 32.22.1 Lemmas 32.22.2, 32.22.3, and 32.22.4 tell us
that the category of schemes quasi-separated and of finite type over S is equiva-
lent to certain types of inverse systems of schemes over (Si)i∈I , namely the ones

https://stacks.math.columbia.edu/tag/0CNR
https://stacks.math.columbia.edu/tag/0CNS
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produced by applying Lemma 32.22.3 to a diagram of the form (32.22.2.1). For
example, given X → S finite type and quasi-separated if we choose two different
diagrams X → V1 → Si1 and X → V2 → Si2 as in (32.22.2.1), then applying
Lemma 32.22.4 to idX (in two directions) we see that the corresponding limit de-
scriptions of X are canonically isomorphic (up to shrinking the directed set I). And
so on and so forth.

Lemma 32.22.6.0CNT Notation and assumptions as in Lemma 32.22.4. If f is flat and
of finite presentation, then there exists an i3 ≥ i0 such that for i ≥ i3 we have fi is
flat, Xi = Yi ×Yi3 Xi3 , and X = Y ×Yi3 Xi3 .

Proof. By Lemma 32.10.1 we can choose an i ≥ i2 and a morphism U → Yi of
finite presentation such that X = Y ×Yi U (this is where we use that f is of finite
presentation). After increasing i we may assume that U → Yi is flat, see Lemma
32.8.7. As discussed in Remark 32.22.5 we may and do replace the initial diagram
used to define the system (Xi)i≥i1 by the system corresponding to X → U → Si.
Thus Xi′ for i′ ≥ i is defined as the scheme theoretic image of X → Si′ ×Si U .

Because U → Yi is flat (this is where we use that f is flat), because X = Y ×Yi U ,
and because the scheme theoretic image of Y → Yi is Yi, we see that the scheme
theoretic image of X → U is U (Morphisms, Lemma 29.25.16). Observe that
Yi′ → Si′ ×Si Yi is a closed immersion for i′ ≥ i by construction of the system
of Yj . Then the same argument as above shows that the scheme theoretic image
of X → Si′ ×Si U is equal to the closed subscheme Yi′ ×Yi U . Thus we see that
Xi′ = Yi′ ×Yi U for all i′ ≥ i and hence the lemma holds with i3 = i. □

Lemma 32.22.7.0CNU Notation and assumptions as in Lemma 32.22.4. If f is smooth,
then there exists an i3 ≥ i0 such that for i ≥ i3 we have fi is smooth.

Proof. Combine Lemmas 32.22.6 and 32.8.9. □

Lemma 32.22.8.0CNV Notation and assumptions as in Lemma 32.22.4. If f is proper,
then there exists an i3 ≥ i0 such that for i ≥ i3 we have fi is proper.

Proof. By the discussion in Remark 32.22.5 the choice of i1 and W fitting into
a diagram as in (32.22.2.1) is immaterial for the truth of the lemma. Thus we
choose W as follows. First we choose a closed immersion X → X ′ with X ′ → S
proper and of finite presentation, see Lemma 32.13.2. Then we choose an i3 ≥ i2
and a proper morphism W → Yi3 such that X ′ = Y ×Yi3 W . This is possible
because Y = limi≥i2 Yi and Lemmas 32.10.1 and 32.13.1. With this choice of W
it is immediate from the construction that for i ≥ i3 the scheme Xi is a closed
subscheme of Yi ×Yi3 W ⊂ Si ×Si3 W and hence proper over Yi. □

Lemma 32.22.9.0CNW In Situation 32.22.1 suppose that we have a cartesian diagram

X1
p
//

q

��

X3

a

��
X2 b // X4

https://stacks.math.columbia.edu/tag/0CNT
https://stacks.math.columbia.edu/tag/0CNU
https://stacks.math.columbia.edu/tag/0CNV
https://stacks.math.columbia.edu/tag/0CNW
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of schemes quasi-separated and of finite type over S. For each j = 1, 2, 3, 4 choose
ij ∈ I and a diagram

Xj //

��

W j

��
S // Sij

as in (32.22.2.1). Let Xj = limi≥ij X
j
i be the corresponding limit descriptions as

in Lemma 32.22.4. Let (ai)i≥i5 , (bi)i≥i6 , (pi)i≥i7 , and (qi)i≥i8 be the corresponding
morphisms of systems contructed in Lemma 32.22.4. Then there exists an i9 ≥
max(i5, i6, i7, i8) such that for i ≥ i9 we have ai ◦ pi = bi ◦ qi and such that

(qi, pi) : X1
i −→ X2

i ×bi,X4
i
,ai X

3
i

is a closed immersion. If a and b are flat and of finite presentation, then there exists
an i10 ≥ max(i5, i6, i7, i8, i9) such that for i ≥ i10 the last displayed morphism is
an isomorphism.

Proof. According to the discussion in Remark 32.22.5 the choice of W 1 fitting into
a diagram as in (32.22.2.1) is immaterial for the truth of the lemma. Thus we may
choose W 1 = W 2×W 4 W 3. Then it is immediate from the construction of X1

i that
ai ◦ pi = bi ◦ qi and that

(qi, pi) : X1
i −→ X2

i ×bi,X4
i
,ai X

3
i

is a closed immersion.
If a and b are flat and of finite presentation, then so are p and q as base changes of
a and b. Thus we can apply Lemma 32.22.6 to each of a, b, p, q, and a ◦ p = b ◦ q.
It follows that there exists an i9 ∈ I such that

(qi, pi) : X1
i → X2

i ×X4
i
X3
i

is the base change of (qi9 , pi9) by the morphism by the morphism X4
i → X4

i9
for

all i ≥ i9. We conclude that (qi, pi) is an isomorphism for all sufficiently large i by
Lemma 32.8.11. □
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CHAPTER 33

Varieties

0209 33.1. Introduction

020A In this chapter we start studying varieties and more generally schemes over a field.
A fundamental reference is [DG67].

33.2. Notation

020B Throughout this chapter we use the letter k to denote the ground field.

33.3. Varieties

020C In the Stacks project we will use the following as our definition of a variety.

Definition 33.3.1.020D Let k be a field. A variety is a scheme X over k such that X is
integral and the structure morphism X → Spec(k) is separated and of finite type.

This definition has the following drawback. Suppose that k′/k is an extension
of fields. Suppose that X is a variety over k. Then the base change Xk′ =
X×Spec(k)Spec(k′) is not necessarily a variety over k′. This phenomenon (in greater
generality) will be discussed in detail in the following sections. The product of two
varieties need not be a variety (this is really the same phenomenon). Here is an
example.

Example 33.3.2.020G Let k = Q. Let X = Spec(Q(i)) and Y = Spec(Q(i)). Then the
product X×Spec(k) Y of the varieties X and Y is not a variety, since it is reducible.
(It is isomorphic to the disjoint union of two copies of X.)

If the ground field is algebraically closed however, then the product of varieties is
a variety. This follows from the results in the algebra chapter, but there we treat
much more general situations. There is also a simple direct proof of it which we
present here.

Lemma 33.3.3.05P3 Let k be an algebraically closed field. Let X, Y be varieties over
k. Then X ×Spec(k) Y is a variety over k.

Proof. The morphism X ×Spec(k) Y → Spec(k) is of finite type and separated
because it is the composition of the morphisms X×Spec(k)Y → Y → Spec(k) which
are separated and of finite type, see Morphisms, Lemmas 29.15.4 and 29.15.3 and
Schemes, Lemma 26.21.12. To finish the proof it suffices to show that X×Spec(k) Y
is integral. Let X =

⋃
i=1,...,n Ui, Y =

⋃
j=1,...,m Vj be finite affine open coverings.

If we can show that each Ui×Spec(k) Vj is integral, then we are done by Properties,
Lemmas 28.3.2, 28.3.3, and 28.3.4. This reduces us to the affine case.

2773
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The affine case translates into the following algebra statement: Suppose that A, B
are integral domains and finitely generated k-algebras. Then A⊗k B is an integral
domain. To get a contradiction suppose that

(
∑

i=1,...,n
ai ⊗ bi)(

∑
j=1,...,m

cj ⊗ dj) = 0

in A ⊗k B with both factors nonzero in A ⊗k B. We may assume that b1, . . . , bn
are k-linearly independent in B, and that d1, . . . , dm are k-linearly independent
in B. Of course we may also assume that a1 and c1 are nonzero in A. Hence
D(a1c1) ⊂ Spec(A) is nonempty. By the Hilbert Nullstellensatz (Algebra, Theorem
10.34.1) we can find a maximal ideal m ⊂ A contained in D(a1c1) and A/m = k as
k is algebraically closed. Denote ai, cj the residue classes of ai, cj in A/m = k. The
equation above becomes

(
∑

i=1,...,n
aibi)(

∑
j=1,...,m

cjdj) = 0

which is a contradiction with m ∈ D(a1c1), the linear independence of b1, . . . , bn
and d1, . . . , dm, and the fact that B is a domain. □

33.4. Varieties and rational maps

0BXM Let k be a field. Let X and Y be varieties over k. We will use the phrase rational
map of varieties from X to Y to mean a Spec(k)-rational map from the scheme X
to the scheme Y as defined in Morphisms, Definition 29.49.1. As is customary, the
phrase “rational map of varieties” does not refer to the (common) base field of the
varieties, even though for general schemes we make the distinction between rational
maps and rational maps over a given base.
The title of this section refers to the following fundamental theorem.

Theorem 33.4.1.0BXN Let k be a field. The category of varieties and dominant rational
maps is equivalent to the category of finitely generated field extensions K/k.

Proof. Let X and Y be varieties with generic points x ∈ X and y ∈ Y . Recall
that dominant rational maps from X to Y are exactly those rational maps which
map x to y (Morphisms, Definition 29.49.10 and discussion following). Thus given
a dominant rational map X ⊃ U → Y we obtain a map of function fields

k(Y ) = κ(y) = OY,y −→ OX,x = κ(x) = k(X)
Conversely, such a k-algebra map (which is automatically local as the source and
target are fields) determines (uniquely) a dominant rational map by Morphisms,
Lemma 29.49.2. In this way we obtain a fully faithful functor. To finish the proof it
suffices to show that every finitely generated field extension K/k is in the essential
image. Since K/k is finitely generated, there exists a finite type k-algebra A ⊂ K
such that K is the fraction field of A. Then X = Spec(A) is a variety whose
function field is K. □

Let k be a field. Let X and Y be varieties over k. We will use the phrase X and
Y are birational varieties to mean X and Y are Spec(k)-birational as defined in
Morphisms, Definition 29.50.1. As is customary, the phrase “birational varieties”
does not refer to the (common) base field of the varieties, even though for general
irreducible schemes we make the distinction between being birational and being
birational over a given base.

https://stacks.math.columbia.edu/tag/0BXN
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Lemma 33.4.2.0BXP Let X and Y be varieties over a field k. The following are equivalent
(1) X and Y are birational varieties,
(2) the function fields k(X) and k(Y ) are isomorphic,
(3) there exist nonempty opens of X and Y which are isomorphic as varieties,
(4) there exists an open U ⊂ X and a birational morphism U → Y of varieties.

Proof. This is a special case of Morphisms, Lemma 29.50.6. □

33.5. Change of fields and local rings

0C4X Some preliminary results on what happens to local rings under an extension of
ground fields.

Lemma 33.5.1.0C4Y Let K/k be an extension of fields. Let X be scheme over k and set
Y = XK . If y ∈ Y with image x ∈ X, then

(1) OX,x → OY,y is a faithfully flat local ring homomorphism,
(2) with p0 = Ker(κ(x)⊗k K → κ(y)) we have κ(y) = κ(p0),
(3) OY,y = (OX,x ⊗k K)p where p ⊂ OX,x ⊗k K is the inverse image of p0.
(4) we have OY,y/mxOY,y = (κ(x)⊗k K)p0

Proof. We may assume X = Spec(A) is affine. Then Y = Spec(A⊗kK). Since K is
flat over k, we see that A→ A⊗kK is flat. Hence Y → X is flat and we get the first
statement if we also use Algebra, Lemma 10.39.17. The second statement follows
from Schemes, Lemma 26.17.5. Now y corresponds to a prime ideal q ⊂ A ⊗k K
and x to r = A ∩ q. Then p0 is the kernel of the induced map κ(r) ⊗k K → κ(q).
The map on local rings is

Ar −→ (A⊗k K)q
We can factor this map through Ar ⊗k K = (A⊗k K)r to get

Ar −→ Ar ⊗k K −→ (A⊗k K)q

and then the second arrow is a localization at some prime. This prime ideal is the
inverse image of p0 (details omitted) and this proves (3). To see (4) use (3) and
that localization and −⊗k K are exact functors. □

Lemma 33.5.2.0C4Z Notation as in Lemma 33.5.1. Assume X is locally of finite type
over k. Then

dim(OY,y/mxOY,y) = trdegk(κ(x))− trdegK(κ(y)) = dim(OY,y)− dim(OX,x)

Proof. This is a restatement of Algebra, Lemma 10.116.7. □

Lemma 33.5.3.0C50 Notation as in Lemma 33.5.1. Assume X is locally of finite type
over k, that dim(OX,x) = dim(OY,y) and that κ(x) ⊗k K is reduced (for example
if κ(x)/k is separable or K/k is separable). Then mxOY,y = my.

Proof. (The parenthetical statement follows from Algebra, Lemma 10.43.6.) Com-
bining Lemmas 33.5.1 and 33.5.2 we see that OY,y/mxOY,y has dimension 0 and is
reduced. Hence it is a field. □

https://stacks.math.columbia.edu/tag/0BXP
https://stacks.math.columbia.edu/tag/0C4Y
https://stacks.math.columbia.edu/tag/0C4Z
https://stacks.math.columbia.edu/tag/0C50
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33.6. Geometrically reduced schemes

035U IfX is a reduced scheme over a field, then it can happen thatX becomes nonreduced
after extending the ground field. This does not happen for geometrically reduced
schemes.

Definition 33.6.1.035V Let k be a field. Let X be a scheme over k.
(1) Let x ∈ X be a point. We say X is geometrically reduced at x if for any

field extension k′/k and any point x′ ∈ Xk′ lying over x the local ring
OXk′ ,x′ is reduced.

(2) We say X is geometrically reduced over k if X is geometrically reduced
at every point of X.

This may seem a little mysterious at first, but it is really the same thing as the
notion discussed in the algebra chapter. Here are some basic results explaining the
connection.

Lemma 33.6.2.035W Let k be a field. Let X be a scheme over k. Let x ∈ X. The
following are equivalent

(1) X is geometrically reduced at x, and
(2) the ring OX,x is geometrically reduced over k (see Algebra, Definition

10.43.1).

Proof. Assume (1). This in particular implies that OX,x is reduced. Let k′/k be a
finite purely inseparable field extension. Consider the ring OX,x⊗k k′. By Algebra,
Lemma 10.46.7 its spectrum is the same as the spectrum of OX,x. Hence it is a local
ring also (Algebra, Lemma 10.18.2). Therefore there is a unique point x′ ∈ Xk′

lying over x and OXk′ ,x′ ∼= OX,x⊗k k′. By assumption this is a reduced ring. Hence
we deduce (2) by Algebra, Lemma 10.44.3.
Assume (2). Let k′/k be a field extension. Since Spec(k′)→ Spec(k) is surjective,
also Xk′ → X is surjective (Morphisms, Lemma 29.9.4). Let x′ ∈ Xk′ be any point
lying over x. The local ring OXk′ ,x′ is a localization of the ring OX,x ⊗k k′. Hence
it is reduced by assumption and (1) is proved. □

The notion isn’t interesting in characteristic zero.

Lemma 33.6.3.020I Let X be a scheme over a perfect field k (e.g. k has characteristic
zero). Let x ∈ X. If OX,x is reduced, then X is geometrically reduced at x. If X
is reduced, then X is geometrically reduced over k.

Proof. The first statement follows from Lemma 33.6.2 and Algebra, Lemma 10.43.6
and the definition of a perfect field (Algebra, Definition 10.45.1). The second state-
ment follows from the first. □

Lemma 33.6.4.035X Let k be a field of characteristic p > 0. Let X be a scheme over k.
The following are equivalent

(1) X is geometrically reduced,
(2) Xk′ is reduced for every field extension k′/k,
(3) Xk′ is reduced for every finite purely inseparable field extension k′/k,
(4) Xk1/p is reduced,
(5) Xkperf is reduced,
(6) Xk̄ is reduced,

https://stacks.math.columbia.edu/tag/035V
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(7) for every affine open U ⊂ X the ring OX(U) is geometrically reduced (see
Algebra, Definition 10.43.1).

Proof. Assume (1). Then for every field extension k′/k and every point x′ ∈ Xk′

the local ring of Xk′ at x′ is reduced. In other words Xk′ is reduced. Hence (2).
Assume (2). Let U ⊂ X be an affine open. Then for every field extension k′/k the
scheme Xk′ is reduced, hence Uk′ = Spec(O(U)⊗k k′) is reduced, hence O(U)⊗k k′

is reduced (see Properties, Section 28.3). In other words O(U) is geometrically
reduced, so (7) holds.
Assume (7). For any field extension k′/k the base change Xk′ is gotten by gluing
the spectra of the rings OX(U) ⊗k k′ where U is affine open in X (see Schemes,
Section 26.17). Hence Xk′ is reduced. So (1) holds.
This proves that (1), (2), and (7) are equivalent. These are equivalent to (3), (4),
(5), and (6) because we can apply Algebra, Lemma 10.44.3 to OX(U) for U ⊂ X
affine open. □

Lemma 33.6.5.035Y Let k be a field of characteristic p > 0. Let X be a scheme over k.
Let x ∈ X. The following are equivalent

(1) X is geometrically reduced at x,
(2) OXk′ ,x′ is reduced for every finite purely inseparable field extension k′ of

k and x′ ∈ Xk′ the unique point lying over x,
(3) OX

k1/p ,x′ is reduced for x′ ∈ Xk1/p the unique point lying over x, and
(4) OX

kperf
,x′ is reduced for x′ ∈ Xkperf the unique point lying over x.

Proof. Note that if k′/k is purely inseparable, then Xk′ → X induces a homeo-
morphism on underlying topological spaces, see Algebra, Lemma 10.46.7. Whence
the uniqueness of x′ lying over x mentioned in the statement. Moreover, in this
case OXk′ ,x′ = OX,x⊗k k′. Hence the lemma follows from Lemma 33.6.2 above and
Algebra, Lemma 10.44.3. □

Lemma 33.6.6.0384 Let k be a field. Let X be a scheme over k. Let k′/k be a field
extension. Let x ∈ X be a point, and let x′ ∈ Xk′ be a point lying over x. The
following are equivalent

(1) X is geometrically reduced at x,
(2) Xk′ is geometrically reduced at x′.

In particular, X is geometrically reduced over k if and only if Xk′ is geometrically
reduced over k′.

Proof. It is clear that (1) implies (2). Assume (2). Let k′′/k be a finite purely
inseparable field extension and let x′′ ∈ Xk′′ be a point lying over x (actually it is
unique). We can find a common field extension k′′′/k (i.e. with both k′ ⊂ k′′′ and
k′′ ⊂ k′′′) and a point x′′′ ∈ Xk′′′ lying over both x′ and x′′. Consider the map of
local rings

OXk′′ ,x′′ −→ OXk′′′ ,x′′′′ .

This is a flat local ring homomorphism and hence faithfully flat. By (2) we see
that the local ring on the right is reduced. Thus by Algebra, Lemma 10.164.2 we
conclude that OXk′′ ,x′′ is reduced. Thus by Lemma 33.6.5 we conclude that X is
geometrically reduced at x. □

Lemma 33.6.7.035Z Let k be a field. Let X, Y be schemes over k.
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(1) If X is geometrically reduced at x, and Y reduced, then X×kY is reduced
at every point lying over x.

(2) If X geometrically reduced over k and Y reduced. Then X×kY is reduced.

Proof. Combine, Lemmas 33.6.2 and 33.6.4 and Algebra, Lemma 10.43.5. □

Lemma 33.6.8.04KS Let k be a field. Let X be a scheme over k.
(1) If x′ ⇝ x is a specialization and X is geometrically reduced at x, then X

is geometrically reduced at x′.
(2) If x ∈ X such that (a) OX,x is reduced, and (b) for each specialization

x′ ⇝ x where x′ is a generic point of an irreducible component of X the
scheme X is geometrically reduced at x′, then X is geometrically reduced
at x.

(3) If X is reduced and geometrically reduced at all generic points of irre-
ducible components of X, then X is geometrically reduced.

Proof. Part (1) follows from Lemma 33.6.2 and the fact that if A is a geometri-
cally reduced k-algebra, then S−1A is a geometrically reduced k-algebra for any
multiplicative subset S of A, see Algebra, Lemma 10.43.3.
Let A = OX,x. The assumptions (a) and (b) of (2) imply that A is reduced, and
that Aq is geometrically reduced over k for every minimal prime q of A. Hence A is
geometrically reduced over k, see Algebra, Lemma 10.43.7. Thus X is geometrically
reduced at x, see Lemma 33.6.2.
Part (3) follows trivially from part (2). □

Lemma 33.6.9.0360 Let k be a field. Let X be a scheme over k. Let x ∈ X. Assume
X locally Noetherian and geometrically reduced at x. Then there exists an open
neighbourhood U ⊂ X of x which is geometrically reduced over k.

Proof. Assume X locally Noetherian and geometrically reduced at x. By Proper-
ties, Lemma 28.29.8 we can find an affine open neighbourhood U ⊂ X of x such
that R = OX(U)→ OX,x is injective. By Lemma 33.6.2 the assumption means that
OX,x is geometrically reduced over k. By Algebra, Lemma 10.43.2 this implies that
R is geometrically reduced over k, which in turn implies that U is geometrically
reduced. □

Example 33.6.10.020F Let k = Fp(s, t), i.e., a purely transcendental extension of the
prime field. Consider the variety X = Spec(k[x, y]/(1 + sxp + typ)). Let k′/k be
any extension such that both s and t have a pth root in k′. Then the base change
Xk′ is not reduced. Namely, the ring k′[x, y]/(1 + sxp + typ) contains the element
1 + s1/px + t1/py whose pth power is zero but which is not zero (since the ideal
(1 + sxp + typ) certainly does not contain any nonzero element of degree < p).

Lemma 33.6.11.04KT Let k be a field. Let X → Spec(k) be locally of finite type.
Assume X has finitely many irreducible components. Then there exists a finite
purely inseparable extension k′/k such that (Xk′)red is geometrically reduced over
k′.

Proof. To prove this lemma we may replace X by its reduction Xred. Hence we
may assume that X is reduced and locally of finite type over k. Let x1, . . . , xn ∈ X
be the generic points of the irreducible components of X. Note that for every
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purely inseparable algebraic extension k′/k the morphism (Xk′)red → X is a home-
omorphism, see Algebra, Lemma 10.46.7. Hence the points x′

1, . . . , x
′
n lying over

x1, . . . , xn are the generic points of the irreducible components of (Xk′)red. As X
is reduced the local rings Ki = OX,xi are fields, see Algebra, Lemma 10.25.1. As X
is locally of finite type over k the field extensions Ki/k are finitely generated field
extensions. Finally, the local rings O(Xk′ )red,x′

i
are the fields (Ki⊗kk′)red. By Alge-

bra, Lemma 10.45.3 we can find a finite purely inseparable extension k′/k such that
(Ki ⊗k k′)red are separable field extensions of k′. In particular each (Ki ⊗k k′)red
is geometrically reduced over k′ by Algebra, Lemma 10.44.1. At this point Lemma
33.6.8 part (3) implies that (Xk′)red is geometrically reduced. □

33.7. Geometrically connected schemes

0361 If X is a connected scheme over a field, then it can happen that X becomes dis-
connected after extending the ground field. This does not happen for geometrically
connected schemes.

Definition 33.7.1.0362 Let X be a scheme over the field k. We say X is geometrically
connected over k if the scheme Xk′ is connected for every field extension k′ of k.

By convention a connected topological space is nonempty; hence a fortiori geomet-
rically connected schemes are nonempty. Here is an example of a variety which is
not geometrically connected.

Example 33.7.2.020E Let k = Q. The scheme X = Spec(Q(i)) is a variety over
Spec(Q). But the base change XC is the spectrum of C ⊗Q Q(i) ∼= C ×C which
is the disjoint union of two copies of Spec(C). So in fact, this is an example of a
non-geometrically connected variety.

Lemma 33.7.3.054N Let X be a scheme over the field k. Let k′/k be a field exten-
sion. Then X is geometrically connected over k if and only if Xk′ is geometrically
connected over k′.

Proof. If X is geometrically connected over k, then it is clear that Xk′ is geo-
metrically connected over k′. For the converse, note that for any field extension
k′′/k there exists a common field extension k′′′/k′ and k′′′/k′′. As the morphism
Xk′′′ → Xk′′ is surjective (as a base change of a surjective morphism between
spectra of fields) we see that the connectedness of Xk′′′ implies the connectedness
of Xk′′ . Thus if Xk′ is geometrically connected over k′ then X is geometrically
connected over k. □

Lemma 33.7.4.0385 Let k be a field. Let X, Y be schemes over k. Assume X is
geometrically connected over k. Then the projection morphism

p : X ×k Y −→ Y

induces a bijection between connected components.

Proof. The scheme theoretic fibres of p are connected, since they are base changes
of the geometrically connected scheme X by field extensions. Moreover the scheme
theoretic fibres are homeomorphic to the set theoretic fibres, see Schemes, Lemma
26.18.5. By Morphisms, Lemma 29.23.4 the map p is open. Thus we may apply
Topology, Lemma 5.7.6 to conclude. □
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Lemma 33.7.5.0386 Let k be a field. Let A be a k-algebra. Then X = Spec(A) is
geometrically connected over k if and only if A is geometrically connected over k
(see Algebra, Definition 10.48.3).

Proof. Immediate from the definitions. □

Lemma 33.7.6.0363 Let k′/k be an extension of fields. Let X be a scheme over k.
Assume k separably algebraically closed. Then the morphism Xk′ → X induces
a bijection of connected components. In particular, X is geometrically connected
over k if and only if X is connected.

Proof. Since k is separably algebraically closed we see that k′ is geometrically con-
nected over k, see Algebra, Lemma 10.48.4. Hence Z = Spec(k′) is geometrically
connected over k by Lemma 33.7.5 above. Since Xk′ = Z ×k X the result is a
special case of Lemma 33.7.4. □

Lemma 33.7.7.0387 Let k be a field. Let X be a scheme over k. Let k be a separable
algebraic closure of k. Then X is geometrically connected if and only if the base
change Xk is connected.

Proof. Assume Xk is connected. Let k′/k be a field extension. There exists a field
extension k′

/k such that k′ embeds into k′ as an extension of k. By Lemma 33.7.6
we see that X

k
′ is connected. Since X

k
′ → Xk′ is surjective we conclude that Xk′

is connected as desired. □

Lemma 33.7.8.0388 Let k be a field. Let X be a scheme over k. Let A be a k-algebra.
Let V ⊂ XA be a quasi-compact open. Then there exists a finitely generated
k-subalgebra A′ ⊂ A and a quasi-compact open V ′ ⊂ XA′ such that V = V ′

A.

Proof. We remark that if X is also quasi-separated this follows from Limits, Lemma
32.4.11. Let U1, . . . , Un be finitely many affine opens of X such that V ⊂

⋃
Ui,A.

Say Ui = Spec(Ri). Since V is quasi-compact we can find finitely many fij ∈
Ri ⊗k A, j = 1, . . . , ni such that V =

⋃
i

⋃
j=1,...,ni D(fij) where D(fij) ⊂ Ui,A is

the corresponding standard open. (We do not claim that V ∩Ui,A is the union of the
D(fij), j = 1, . . . , ni.) It is clear that we can find a finitely generated k-subalgebra
A′ ⊂ A such that fij is the image of some f ′

ij ∈ Ri⊗k A′. Set V ′ =
⋃
D(f ′

ij) which
is a quasi-compact open of XA′ . Denote π : XA → XA′ the canonical morphism.
We have π(V ) ⊂ V ′ as π(D(fij)) ⊂ D(f ′

ij). If x ∈ XA with π(x) ∈ V ′, then
π(x) ∈ D(f ′

ij) for some i, j and we see that x ∈ D(fij) as f ′
ij maps to fij . Thus we

see that V = π−1(V ′) as desired. □

Let k be a field. Let k/k be a (possibly infinite) Galois extension. For example
k could be the separable algebraic closure of k. For any σ ∈ Gal(k/k) we get a
corresponding automorphism Spec(σ) : Spec(k) −→ Spec(k). Note that Spec(σ) ◦
Spec(τ) = Spec(τ ◦ σ). Hence we get an action

Gal(k/k)opp × Spec(k) −→ Spec(k)

of the opposite group on the scheme Spec(k). Let X be a scheme over k. Since
Xk = Spec(k) ×Spec(k) X by definition we see that the action above induces a
canonical action
(33.7.8.1)038A Gal(k/k)opp ×Xk −→ Xk.
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Lemma 33.7.9.04KU Let k be a field. Let X be a scheme over k. Let k be a (possibly
infinite) Galois extension of k. Let V ⊂ Xk be a quasi-compact open. Then

(1) there exists a finite subextension k/k′/k and a quasi-compact open V ′ ⊂
Xk′ such that V = (V ′)k,

(2) there exists an open subgroup H ⊂ Gal(k/k) such that σ(V ) = V for all
σ ∈ H.

Proof. By Lemma 33.7.8 there exists a finite subextension k′/k ⊂ k and an open
V ′ ⊂ Xk′ which pulls back to V . This proves (1). Since Gal(k/k′) is open in
Gal(k/k) part (2) is clear as well. □

Lemma 33.7.10.038B Let k be a field. Let k/k be a (possibly infinite) Galois extension.
Let X be a scheme over k. Let T ⊂ Xk have the following properties

(1) T is a closed subset of Xk,
(2) for every σ ∈ Gal(k/k) we have σ(T ) = T .

Then there exists a closed subset T ⊂ X whose inverse image in Xk is T .

Proof. This lemma immediately reduces to the case where X = Spec(A) is affine.
In this case, let I ⊂ A ⊗k k be the radical ideal corresponding to T . Assumption
(2) implies that σ(I) = I for all σ ∈ Gal(k/k). Pick x ∈ I. There exists a finite
Galois extension k′/k contained in k such that x ∈ A ⊗k k′. Set G = Gal(k′/k).
Set

P (T ) =
∏

σ∈G
(T − σ(x)) ∈ (A⊗k k′)[T ]

It is clear that P (T ) is monic and is actually an element of (A ⊗k k′)G[T ] = A[T ]
(by basic Galois theory). Moreover, if we write P (T ) = T d + a1T

d−1 + . . . + ad
the we see that ai ∈ I := A ∩ I. Combining P (x) = 0 and ai ∈ I we find
xd = −a1x

d−1−. . .−ad ∈ I(A⊗kk). Thus x is contained in the radical of I(A⊗kk).
Hence I is the radical of I(A⊗k k) and setting T = V (I) is a solution. □

Lemma 33.7.11.0389 Let k be a field. Let X be a scheme over k. The following are
equivalent

(1) X is geometrically connected,
(2) for every finite separable field extension k′/k the scheme Xk′ is connected.

Proof. It follows immediately from the definition that (1) implies (2). Assume that
X is not geometrically connected. Let k ⊂ k be a separable algebraic closure of k.
By Lemma 33.7.7 it follows that Xk is disconnected. Say Xk = U ⨿ V with U and
V open, closed, and nonempty.

Suppose that W ⊂ X is any quasi-compact open. Then Wk ∩ U and Wk ∩ V are
open and closed in Wk. In particular Wk∩U and Wk∩V are quasi-compact, and by
Lemma 33.7.9 both Wk ∩U and Wk ∩ V are defined over a finite subextension and
invariant under an open subgroup of Gal(k/k). We will use this without further
mention in the following.

Pick W0 ⊂ X quasi-compact open such that both W0,k ∩ U and W0,k ∩ V are
nonempty. Choose a finite subextension k/k′/k and a decomposition W0,k′ = U ′

0 ⨿
V ′

0 into open and closed subsets such that W0,k ∩U = (U ′
0)k and W0,k ∩V = (V ′

0)k.
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Let H = Gal(k/k′) ⊂ Gal(k/k). In particular σ(W0,k∩U) = W0,k∩U and similarly
for V .
Having chosen W0, k′ as above, for every quasi-compact open W ⊂ X we set

UW =
⋂

σ∈H
σ(Wk ∩ U), VW =

⋃
σ∈H

σ(Wk ∩ V ).

Now, since Wk ∩ U and Wk ∩ V are fixed by an open subgroup of Gal(k/k) we see
that the union and intersection above are finite. Hence UW and VW are both open
and closed. Also, by construction Wk̄ = UW ⨿ VW .
We claim that if W ⊂ W ′ ⊂ X are quasi-compact open, then Wk ∩ UW ′ = UW
and Wk ∩ VW ′ = VW . Verification omitted. Hence we see that upon defining
U =

⋃
W⊂X UW and V =

⋃
W⊂X VW we obtain Xk = U ⨿ V is a disjoint union

of open and closed subsets. It is clear that V is nonempty as it is constructed by
taking unions (locally). On the other hand, U is nonempty since it contains W0∩U
by construction. Finally, U, V ⊂ Xk̄ are closed and H-invariant by construction.
Hence by Lemma 33.7.10 we have U = (U ′)k̄, and V = (V ′)k̄ for some closed
U ′, V ′ ⊂ Xk′ . Clearly Xk′ = U ′ ⨿ V ′ and we see that Xk′ is disconnected as
desired. □

Lemma 33.7.12.038C Let k be a field. Let k/k be a (possibly infinite) Galois extension.
Let f : T → X be a morphism of schemes over k. Assume Tk connected and Xk
disconnected. Then X is disconnected.
Proof. Write Xk = U ⨿ V with U and V open and closed. Denote f : Tk → Xk
the base change of f . Since Tk is connected we see that Tk is contained in either
f

−1(U) or f−1(V ). Say Tk ⊂ f
−1(U).

Fix a quasi-compact open W ⊂ X. There exists a finite Galois subextension k/k′/k
such that U ∩Wk and V ∩Wk come from quasi-compact opens U ′, V ′ ⊂Wk′ . Then
also Wk′ = U ′ ⨿ V ′. Consider

U ′′ =
⋂

σ∈Gal(k′/k)
σ(U ′), V ′′ =

⋃
σ∈Gal(k′/k)

σ(V ′).

These are Galois invariant, open and closed, and Wk′ = U ′′ ⨿ V ′′. By Lemma
33.7.10 we get open and closed subsets UW , VW ⊂ W such that U ′′ = (UW )k′ ,
V ′′ = (VW )k′ and W = UW ⨿ VW .
We claim that if W ⊂ W ′ ⊂ X are quasi-compact open, then W ∩ UW ′ = UW
and W ∩ VW ′ = VW . Verification omitted. Hence we see that upon defining
U =

⋃
W⊂X UW and V =

⋃
W⊂X VW we obtain X = U ⨿ V . It is clear that V is

nonempty as it is constructed by taking unions (locally). On the other hand, U is
nonempty since it contains f(T ) by construction. □

Lemma 33.7.13.056R [DG67, IV Corollary
4.5.13.1(i)]

Let k be a field. Let T → X be a morphism of schemes over k.
Assume T is geometrically connected and X connected. Then X is geometrically
connected.
Proof. This is a reformulation of Lemma 33.7.12. □

Lemma 33.7.14.04KV Let k be a field. Let X be a scheme over k. Assume X is
connected and has a point x such that k is algebraically closed in κ(x). Then X
is geometrically connected. In particular, if X has a k-rational point and X is
connected, then X is geometrically connected.
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Proof. Set T = Spec(κ(x)). Let k be a separable algebraic closure of k. The as-
sumption on κ(x)/k implies that Tk is irreducible, see Algebra, Lemma 10.47.8.
Hence by Lemma 33.7.13 we see that Xk is connected. By Lemma 33.7.7 we con-
clude that X is geometrically connected. □

Lemma 33.7.15.04PY Let K/k be an extension of fields. Let X be a scheme over k.
For every connected component T of X the inverse image TK ⊂ XK is a union of
connected components of XK .

Proof. This is a purely topological statement. Denote p : XK → X the projection
morphism. Let T ⊂ X be a connected component of X. Let t ∈ TK = p−1(T ). Let
C ⊂ XK be a connected component containing t. Then p(C) is a connected subset
of X which meets T , hence p(C) ⊂ T . Hence C ⊂ TK . □

The following lemma will be superseded by the stronger Lemma 33.7.17 below.

Lemma 33.7.16.07VM Let K/k be a finite extension of fields and let X be a scheme
over k. Denote by p : XK → X the projection morphism. For every connected
component T of XK the image p(T ) is a connected component of X.

Proof. The image p(T ) is contained in some connected component X ′ of X. Con-
sider X ′ as a closed subscheme of X in any way. Then T is also a connected
component of X ′

K = p−1(X ′) and we may therefore assume that X is connected.
The morphism p is open (Morphisms, Lemma 29.23.4), closed (Morphisms, Lemma
29.44.7) and the fibers of p are finite sets (Morphisms, Lemma 29.44.10). Thus we
may apply Topology, Lemma 5.7.7 to conclude. □

Lemma 33.7.17 (Gabber).04PZ Email from Ofer
Gabber dated June
4, 2016

Let K/k be an extension of fields. Let X be a scheme
over k. Denote p : XK → X the projection morphism. Let T ⊂ XK be a connected
component. Then p(T ) is a connected component of X.

Proof. When K/k is finite this is Lemma 33.7.16. In general the proof is more
difficult.
Let T ⊂ X be the connected component of X containing the image of T . We may
replace X by T (with the induced reduced subscheme structure). Thus we may
assume X is connected. Let A = H0(X,OX). Let L ⊂ A be the maximal weakly
étale k-subalgebra, see More on Algebra, Lemma 15.105.2. Since A does not have
any nontrivial idempotents we see that L is a field and a separable algebraic exten-
sion of k by More on Algebra, Lemma 15.105.1. Observe that L is also the maximal
weakly étale L-subalgebra of A (because any weakly étale L-algebra is weakly étale
over k by More on Algebra, Lemma 15.104.9). By Schemes, Lemma 26.6.4 we
obtain a factorization X → Spec(L)→ Spec(k) of the structure morphism.
Let L′/L be a finite separable extension. By Cohomology of Schemes, Lemma
30.5.3 we have

A⊗L L′ = H0(X ×Spec(L) Spec(L′),OX×Spec(L)Spec(L′))

The maximal weakly étale L′-subalgebra of A⊗LL′ is L⊗LL′ = L′ by More on Al-
gebra, Lemma 15.105.4. In particular A⊗LL′ does not have nontrivial idempotents
(such an idempotent would generate a weakly étale subalgebra) and we conclude
that X ×Spec(L) Spec(L′) is connected. By Lemma 33.7.11 we conclude that X is
geometrically connected over L.
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Let’s give T the reduced induced scheme structure and consider the composition

T
i−→ XK = X ×Spec(k) Spec(K) π−→ Spec(L⊗k K)

The image is contained in a connected component of Spec(L ⊗k K). Since K →
L ⊗k K is integral we see that the connected components of Spec(L ⊗k K) are
points and all points are closed, see Algebra, Lemma 10.36.19. Thus we get a
quotient field L⊗kK → E such that T maps into Spec(E) ⊂ Spec(L⊗kK). Hence
i(T ) ⊂ π−1(Spec(E)). But
π−1(Spec(E)) = (X ×Spec(k) Spec(K))×Spec(L⊗kK) Spec(E) = X ×Spec(L) Spec(E)
which is connected because X is geometrically connected over L. Then we get the
equality T = X ×Spec(L) Spec(E) (set theoretically) and we conclude that T → X
is surjective as desired. □

Let X be a scheme. We denote π0(X) the set of connected components of X.

Lemma 33.7.18.038D Let k be a field, with separable algebraic closure k. Let X be a
scheme over k. There is an action

Gal(k/k)opp × π0(Xk) −→ π0(Xk)
with the following properties:

(1) An element T ∈ π0(Xk) is fixed by the action if and only if there exists
a connected component T ⊂ X, which is geometrically connected over k,
such that Tk = T .

(2) For any field extension k′/k with separable algebraic closure k′ the dia-
gram

Gal(k′
/k′)× π0(X

k
′) //

��

π0(X
k

′)

��
Gal(k/k)× π0(Xk) // π0(Xk)

is commutative (where the right vertical arrow is a bijection according to
Lemma 33.7.6).

Proof. The action (33.7.8.1) of Gal(k/k) on Xk induces an action on its connected
components. Connected components are always closed (Topology, Lemma 5.7.3).
Hence if T is as in (1), then by Lemma 33.7.10 there exists a closed subset T ⊂ X
such that T = Tk. Note that T is geometrically connected over k, see Lemma
33.7.7. To see that T is a connected component of X, suppose that T ⊂ T ′, T ̸= T ′

where T ′ is a connected component of X. In this case T ′
k′ strictly contains T

and hence is disconnected. By Lemma 33.7.12 this means that T ′ is disconnected!
Contradiction.
We omit the proof of the functoriality in (2). □

Lemma 33.7.19.038E Let k be a field, with separable algebraic closure k. Let X be a
scheme over k. Assume

(1) X is quasi-compact, and
(2) the connected components of Xk are open.

Then
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(a) π0(Xk) is finite, and
(b) the action of Gal(k/k) on π0(Xk) is continuous.

Moreover, assumptions (1) and (2) are satisfied when X is of finite type over k.

Proof. Since the connected components are open, cover Xk (Topology, Lemma
5.7.3) and Xk is quasi-compact, we conclude that there are only finitely many of
them. Thus (a) holds. By Lemma 33.7.8 these connected components are each
defined over a finite subextension of k/k and we get (b). If X is of finite type
over k, then Xk is of finite type over k (Morphisms, Lemma 29.15.4). Hence Xk
is a Noetherian scheme (Morphisms, Lemma 29.15.6). Thus Xk has finitely many
irreducible components (Properties, Lemma 28.5.7) and a fortiori finitely many
connected components (which are therefore open). □

33.8. Geometrically irreducible schemes

0364 If X is an irreducible scheme over a field, then it can happen that X becomes
reducible after extending the ground field. This does not happen for geometrically
irreducible schemes.

Definition 33.8.1.0365 Let X be a scheme over the field k. We say X is geometrically
irreducible over k if the scheme Xk′ is irreducible1 for any field extension k′ of k.

Lemma 33.8.2.054P Let X be a scheme over the field k. Let k′/k be a field exten-
sion. Then X is geometrically irreducible over k if and only if Xk′ is geometrically
irreducible over k′.

Proof. If X is geometrically irreducible over k, then it is clear that Xk′ is geo-
metrically irreducible over k′. For the converse, note that for any field extension
k′′/k there exists a common field extension k′′′/k′ and k′′′/k′′. As the morphism
Xk′′′ → Xk′′ is surjective (as a base change of a surjective morphism between spec-
tra of fields) we see that the irreducibility of Xk′′′ implies the irreducibility of Xk′′ .
Thus if Xk′ is geometrically irreducible over k′ then X is geometrically irreducible
over k. □

Lemma 33.8.3.020J Let X be a scheme over a separably closed field k. If X is irre-
ducible, then XK is irreducible for any field extension K/k. I.e., X is geometrically
irreducible over k.

Proof. Use Properties, Lemma 28.3.3 and Algebra, Lemma 10.47.2. □

Lemma 33.8.4.038F Let k be a field. Let X, Y be schemes over k. Assume X is
geometrically irreducible over k. Then the projection morphism

p : X ×k Y −→ Y

induces a bijection between irreducible components.

Proof. First, note that the scheme theoretic fibres of p are irreducible, since they
are base changes of the geometrically irreducible scheme X by field extensions.
Moreover the scheme theoretic fibres are homeomorphic to the set theoretic fibres,
see Schemes, Lemma 26.18.5. By Morphisms, Lemma 29.23.4 the map p is open.
Thus we may apply Topology, Lemma 5.8.15 to conclude. □

1An irreducible space is nonempty.
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Lemma 33.8.5.038G Let k be a field. Let X be a scheme over k. The following are
equivalent

(1) X is geometrically irreducible over k,
(2) for every nonempty affine open U the k-algebra OX(U) is geometrically

irreducible over k (see Algebra, Definition 10.47.4),
(3) X is irreducible and there exists an affine open covering X =

⋃
Ui such

that each k-algebra OX(Ui) is geometrically irreducible, and
(4) there exists an open covering X =

⋃
i∈I Xi with I ̸= ∅ such that Xi is

geometrically irreducible for each i and such that Xi ∩ Xj ̸= ∅ for all
i, j ∈ I.

Moreover, if X is geometrically irreducible so is every nonempty open subscheme
of X.

Proof. An affine scheme Spec(A) over k is geometrically irreducible if and only if
A is geometrically irreducible over k; this is immediate from the definitions. Recall
that if a scheme is irreducible so is every nonempty open subscheme of X, any two
nonempty open subsets have a nonempty intersection. Also, if every affine open
is irreducible then the scheme is irreducible, see Properties, Lemma 28.3.3. Hence
the final statement of the lemma is clear, as well as the implications (1) ⇒ (2), (2)
⇒ (3), and (3) ⇒ (4). If (4) holds, then for any field extension k′/k the scheme
Xk′ has a covering by irreducible opens which pairwise intersect. Hence Xk′ is
irreducible. Hence (4) implies (1). □

Lemma 33.8.6.054Q Let X be an irreducible scheme over the field k. Let ξ ∈ X be its
generic point. The following are equivalent

(1) X is geometrically irreducible over k, and
(2) κ(ξ) is geometrically irreducible over k.

Proof. Assume (1). Recall that OX,ξ is the filtered colimit of OX(U) where U
runs over the nonempty open affine subschemes of X. Combining Lemma 33.8.5
and Algebra, Lemma 10.47.6 we see that OX,ξ is geometrically irreducible over
k. Since OX,ξ → κ(ξ) is a surjection with locally nilpotent kernel (see Alge-
bra, Lemma 10.25.1) it follows that κ(ξ) is geometrically irreducible, see Algebra,
Lemma 10.46.7.
Assume (2). We may assume that X is reduced. Let U ⊂ X be a nonempty affine
open. Then U = Spec(A) where A is a domain with fraction field κ(ξ). Thus A is
a k-subalgebra of a geometrically irreducible k-algebra. Hence by Algebra, Lemma
10.47.6 we see that A is geometrically irreducible over k. By Lemma 33.8.5 we
conclude that X is geometrically irreducible over k. □

Lemma 33.8.7.038H Let k′/k be an extension of fields. Let X be a scheme over k. Set
X ′ = Xk′ . Assume k separably algebraically closed. Then the morphism X ′ → X
induces a bijection of irreducible components.

Proof. Since k is separably algebraically closed we see that k′ is geometrically irre-
ducible over k, see Algebra, Lemma 10.47.5. Hence Z = Spec(k′) is geometrically
irreducible over k. by Lemma 33.8.5 above. Since X ′ = Z ×k X the result is a
special case of Lemma 33.8.4. □

Lemma 33.8.8.038I Let k be a field. Let X be a scheme over k. The following are
equivalent:
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(1) X is geometrically irreducible over k,
(2) for every finite separable field extension k′/k the scheme Xk′ is irreducible,

and
(3) Xk is irreducible, where k ⊂ k is a separable algebraic closure of k.

Proof. Assume Xk is irreducible, i.e., assume (3). Let k′/k be a field extension.
There exists a field extension k

′
/k such that k′ embeds into k′ as an extension of

k. By Lemma 33.8.7 we see that X
k

′ is irreducible. Since X
k

′ → Xk′ is surjective
we conclude that Xk′ is irreducible. Hence (1) holds.
Let k ⊂ k be a separable algebraic closure of k. Assume not (3), i.e., assume Xk is
reducible. Our goal is to show that also Xk′ is reducible for some finite subextension
k/k′/k. Let X =

⋃
i∈I Ui be an affine open covering with Ui not empty. If for some i

the scheme Ui is reducible, or if for some pair i ̸= j the intersection Ui∩Uj is empty,
then X is reducible (Properties, Lemma 28.3.3) and we are done. In particular we
may assume that Ui,k ∩ Uj,k for all i, j ∈ I is nonempty and we conclude that Ui,k
has to be reducible for some i. According to Algebra, Lemma 10.47.3 this means
that Ui,k′ is reducible for some finite separable field extension k′/k. Hence also Xk′

is reducible. Thus we see that (2) implies (3).
The implication (1) ⇒ (2) is immediate. This proves the lemma. □

Lemma 33.8.9.04KW Let K/k be an extension of fields. Let X be a scheme over k.
For every irreducible component T of X the inverse image TK ⊂ XK is a union of
irreducible components of XK .

Proof. Let T ⊂ X be an irreducible component of X. The morphism TK → T is
flat, so generalizations lift along TK → T . Hence every ξ ∈ TK which is a generic
point of an irreducible component of TK maps to the generic point η of T . If ξ′ ⇝ ξ
is a specialization in XK then ξ′ maps to η since there are no points specializing
to η in X. Hence ξ′ ∈ TK and we conclude that ξ = ξ′. In other words ξ is the
generic point of an irreducible component of XK . This means that the irreducible
components of TK are all irreducible components of XK . □

For a scheme X we denote IrredComp(X) the set of irreducible components of X.

Lemma 33.8.10.04KX Let K/k be an extension of fields. Let X be a scheme over k.
For every irreducible component T ⊂ XK the image of T in X is an irreducible
component in X. This defines a canonical map

IrredComp(XK) −→ IrredComp(X)
which is surjective.

Proof. Consider the diagram
XK

��

XK

��

oo

X Xk
oo

where K is the separable algebraic closure of K, and where k is the separable
algebraic closure of k. By Lemma 33.8.7 the morphism XK → Xk induces a
bijection between irreducible components. Hence it suffices to show the lemma
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for the morphisms Xk → X and XK → XK . In other words we may assume that
K = k.
The morphism p : Xk → X is integral, flat and surjective. Flatness implies that
generalizations lift along p, see Morphisms, Lemma 29.25.9. Hence generic points
of irreducible components of Xk map to generic points of irreducible components of
X. Integrality implies that p is universally closed, see Morphisms, Lemma 29.44.7.
Hence we conclude that the image p(T ) of an irreducible component is a closed
irreducible subset which contains a generic point of an irreducible component of
X, hence p(T ) is an irreducible component of X. This proves the first assertion.
If T ⊂ X is an irreducible component, then p−1(T ) = TK is a nonempty union of
irreducible components, see Lemma 33.8.9. Each of these necessarily maps onto T
by the first part. Hence the map is surjective. □

Lemma 33.8.11.0G69 Let k be a field. Let X be a scheme over k. If X is irreducible
and has a dense set of k-rational points, then X is geometrically irreducible.

Proof. Let k′/k be a finite extension of fields and let Z,Z ′ ⊂ Xk′ be irreducible
components. It suffices to show Z = Z ′, see Lemma 33.8.8. By Lemma 33.8.10 we
have p(Z) = p(Z ′) = X where p : Xk′ → X is the projection. If Z ̸= Z ′ then Z∩Z ′

is nowhere dense in Xk′ and hence p(Z ∩ Z ′) is not dense by Morphisms, Lemma
29.48.7; here we also use that p is a finite morphism as the base change of the finite
morphism Spec(k′)→ Spec(k), see Morphisms, Lemma 29.44.6. Thus we can pick
a k-rational point x ∈ X with x ̸∈ p(Z ∩ Z ′). Since the residue field of x is k we
see that p−1({x}) = {x′} where x′ ∈ Xk′ is a point whose residue field is k′. Since
x ∈ p(Z) = p(Z ′) we conclude that x′ ∈ Z ∩ Z ′ which is the contradiction we were
looking for. □

Lemma 33.8.12.038J Let k be a field, with separable algebraic closure k. Let X be a
scheme over k. There is an action

Gal(k/k)opp × IrredComp(Xk) −→ IrredComp(Xk)
with the following properties:

(1) An element T ∈ IrredComp(Xk) is fixed by the action if and only if there
exists an irreducible component T ⊂ X, which is geometrically irreducible
over k, such that Tk = T .

(2) For any field extension k′/k with separable algebraic closure k′ the dia-
gram

Gal(k′
/k′)× IrredComp(X

k
′) //

��

IrredComp(X
k

′)

��
Gal(k/k)× IrredComp(Xk) // IrredComp(Xk)

is commutative (where the right vertical arrow is a bijection according to
Lemma 33.8.7).

Proof. The action (33.7.8.1) of Gal(k/k) on Xk induces an action on its irreducible
components. Irreducible components are always closed (Topology, Lemma 5.7.3).
Hence if T is as in (1), then by Lemma 33.7.10 there exists a closed subset T ⊂ X
such that T = Tk. Note that T is geometrically irreducible over k, see Lemma
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33.8.8. To see that T is an irreducible component of X, suppose that T ⊂ T ′,
T ̸= T ′ where T ′ is an irreducible component of X. Let η be the generic point of
T . It maps to the generic point η of T . Then the generic point ξ ∈ T ′ specializes to
η. As Xk → X is flat there exists a point ξ ∈ Xk which maps to ξ and specializes
to η. It follows that the closure of the singleton {ξ} is an irreducible closed subset
of Xξ which strictly contains T . This is the desired contradiction.

We omit the proof of the functoriality in (2). □

Lemma 33.8.13.04KY Let k be a field, with separable algebraic closure k. Let X be a
scheme over k. The fibres of the map

IrredComp(Xk) −→ IrredComp(X)

of Lemma 33.8.10 are exactly the orbits of Gal(k/k) under the action of Lemma
33.8.12.

Proof. Let T ⊂ X be an irreducible component of X. Let η ∈ T be its generic point.
By Lemmas 33.8.9 and 33.8.10 the generic points of irreducible components of T
which map into T map to η. By Algebra, Lemma 10.47.14 the Galois group acts
transitively on all of the points of Xk mapping to η. Hence the lemma follows. □

Lemma 33.8.14.04KZ Let k be a field. Assume X → Spec(k) locally of finite type. In
this case

(1) the action
Gal(k/k)opp × IrredComp(Xk) −→ IrredComp(Xk)

is continuous if we give IrredComp(Xk) the discrete topology,
(2) every irreducible component of Xk can be defined over a finite extension

of k, and
(3) given any irreducible component T ⊂ X the scheme Tk is a finite union of

irreducible components of Xk which are all in the same Gal(k/k)-orbit.

Proof. Let T be an irreducible component of Xk. We may choose an affine open
U ⊂ X such that T ∩ Uk is not empty. Write U = Spec(A), so A is a finite type
k-algebra, see Morphisms, Lemma 29.15.2. Hence Ak is a finite type k-algebra, and
in particular Noetherian. Let p = (f1, . . . , fn) be the prime ideal corresponding to
T ∩ Uk. Since Ak = A ⊗k k we see that there exists a finite subextension k/k′/k

such that each fi ∈ Ak′ . It is clear that Gal(k/k′) fixes T , which proves (1).
Part (2) follows by applying Lemma 33.8.12 (1) to the situation over k′ which implies
the irreducible component T is of the form T ′

k
for some irreducible T ′ ⊂ Xk′ .

To prove (3), let T ⊂ X be an irreducible component. Choose an irreducible
component T ⊂ Xk which maps to T , see Lemma 33.8.10. By the above the orbit
of T is finite, say it is T 1, . . . , Tn. Then T 1∪ . . .∪Tn is a Gal(k/k)-invariant closed
subset of Xk hence of the form Wk for some W ⊂ X closed by Lemma 33.7.10.
Clearly W = T and we win. □

Lemma 33.8.15.054R Let k be a field. Let X → Spec(k) be locally of finite type.
Assume X has finitely many irreducible components. Then there exists a finite
separable extension k′/k such that every irreducible component of Xk′ is geomet-
rically irreducible over k′.
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Proof. Let k be a separable algebraic closure of k. The assumption that X has
finitely many irreducible components combined with Lemma 33.8.14 (3) shows that
Xk has finitely many irreducible components T 1, . . . , Tn. By Lemma 33.8.14 (2)
there exists a finite extension k/k′/k and irreducible components Ti ⊂ Xk′ such
that T i = Ti,k and we win. □

Lemma 33.8.16.054S Let X be a scheme over the field k. Assume X has finitely many
irreducible components which are all geometrically irreducible. Then X has finitely
many connected components each of which is geometrically connected.

Proof. This is clear because a connected component is a union of irreducible com-
ponents. Details omitted. □

33.9. Geometrically integral schemes

0366 If X is an integral scheme over a field, then it can happen that X becomes either
nonreduced or reducible after extending the ground field. This does not happen for
geometrically integral schemes.

Definition 33.9.1.020H Let X be a scheme over the field k.
(1) Let x ∈ X. We say X is geometrically pointwise integral at x if for every

field extension k′/k and every x′ ∈ Xk′ lying over x the local ring OXk′ ,x′

is integral.
(2) We say X is geometrically pointwise integral if X is geometrically point-

wise integral at every point.
(3) We say X is geometrically integral over k if the scheme Xk′ is integral for

every field extension k′ of k.

The distinction between notions (2) and (3) is necessary. For example if k = R and
X = Spec(C[x]), then X is geometrically pointwise integral over R but of course
not geometrically integral.

Lemma 33.9.2.038K Let k be a field. Let X be a scheme over k. Then X is geometrically
integral over k if and only if X is both geometrically reduced and geometrically
irreducible over k.

Proof. See Properties, Lemma 28.3.4. □

Lemma 33.9.3.0BUG Let k be a field. Let X be a proper scheme over k.
(1) A = H0(X,OX) is a finite dimensional k-algebra,
(2) A =

∏
i=1,...,nAi is a product of Artinian local k-algebras, one factor for

each connected component of X,
(3) if X is reduced, then A =

∏
i=1,...,n ki is a product of fields, each a finite

extension of k,
(4) if X is geometrically reduced, then ki is finite separable over k,
(5) if X is geometrically connected, then A is geometrically irreducible over

k,
(6) if X is geometrically irreducible, then A is geometrically irreducible over

k,
(7) if X is geometrically reduced and connected, then A = k, and
(8) if X is geometrically integral, then A = k.
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Proof. By Cohomology of Schemes, Lemma 30.19.2 we see that A = H0(X,OX) is
a finite dimensional k-algebra. This proves (1).
Then A is a product of local Artinian k-algebras by Algebra, Lemma 10.53.2 and
Proposition 10.60.7. If X = Y ⨿ Z with Y and Z open in X, then we obtain
an idempotent e ∈ A by taking the section of OX which is 1 on Y and 0 on Z.
Conversely, if e ∈ A is an idempotent, then we get a corresponding decomposition
of X. Finally, as X has a Noetherian underlying topological space its connected
components are open. Hence the connected components of X correspond 1-to-1
with primitive idempotents of A. This proves (2).
If X is reduced, then A is reduced. Hence the local rings Ai = ki are reduced and
therefore fields (for example by Algebra, Lemma 10.25.1). This proves (3).
If X is geometrically reduced, then A⊗kk = H0(Xk,OXk) (equality by Cohomology
of Schemes, Lemma 30.5.2) is reduced. This implies that ki ⊗k k is a product of
fields and hence ki/k is separable for example by Algebra, Lemmas 10.44.1 and
10.44.3. This proves (4).
If X is geometrically connected, then A⊗k k = H0(Xk,OXk) is a zero dimensional
local ring by part (2) and hence its spectrum has one point, in particular it is
irreducible. Thus A is geometrically irreducible. This proves (5). Of course (5)
implies (6).
IfX is geometrically reduced and connected, then A = k1 is a field and the extension
k1/k is finite separable and geometrically irreducible. However, then k1 ⊗k k is a
product of [k1 : k] copies of k and we conclude that k1 = k. This proves (7). Of
course (7) implies (8). □

Here is a baby version of Stein factorization; actual Stein factorization will be
discussed in More on Morphisms, Section 37.53.

Lemma 33.9.4.0FD1 Let X be a proper scheme over a field k. Set A = H0(X,OX).
The fibres of the canonical morphism X → Spec(A) are geometrically connected.

Proof. Set S = Spec(A). The canonical morphism X → S is the morphism corre-
sponding to Γ(S,OS) = A = Γ(X,OX) via Schemes, Lemma 26.6.4. The k-algebra
A is a finite product A =

∏
Ai of local Artinian k-algebras finite over k, see Lemma

33.9.3. Denote si ∈ S the point corresponding to the maximal ideal of Ai. Choose
an algebraic closure k of k and set A = A ⊗k k. Choose an embedding κ(si) → k
over k; this determines a k-algebra map

σi : A = A⊗k k → κ(si)⊗k k → k

Consider the base change
X //

��

X

��
S // S

ofX to S = Spec(A). By Cohomology of Schemes, Lemma 30.5.2 we have Γ(X,OX) =
A. If si ∈ Spec(A) denotes the k-rational point corresponding to σi, then we see
that si maps to si ∈ S and Xsi is the base change of Xsi by Spec(σi). Thus we see
that it suffices to prove the lemma in case k is algebraically closed.
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Assume k is algebraically closed. In this case κ(si) is algebraically closed and
we have to show that Xsi is connected. The product decomposition A =

∏
Ai

corresponds to a disjoint union decomposition Spec(A) =
∐

Spec(Ai), see Algebra,
Lemma 10.21.2. Denote Xi the inverse image of Spec(Ai). It follows from Lemma
33.9.3 part (2) that Ai = Γ(Xi,OXi). Observe that Xsi → Xi is a closed immersion
inducing an isomorphism on underlying topological spaces (because Spec(Ai) is a
singleton). Hence if Xsi isn’t connected, then neither is Xi. So either Xi is empty
and Ai = 0 or Xi can be written as U ⨿ V with U and V open and nonempty
which would imply that Ai has a nontrivial idempotent. Since Ai is local this is a
contradiction and the proof is complete. □

Lemma 33.9.5.0FD2 Let k be a field. Let X be a proper geometrically reduced scheme
over k. The following are equivalent

(1) H0(X,OX) = k, and
(2) X is geometrically connected.

Proof. By Lemma 33.9.4 we have (1) ⇒ (2). By Lemma 33.9.3 we have (2) ⇒
(1). □

33.10. Geometrically normal schemes

038L In Properties, Definition 28.7.1 we have defined the notion of a normal scheme.
This notion is defined even for non-Noetherian schemes. Hence, contrary to our
discussion of “geometrically regular” schemes we consider all field extensions of the
ground field.

Definition 33.10.1.038M Let X be a scheme over the field k.
(1) Let x ∈ X. We say X is geometrically normal at x if for every field

extension k′/k and every x′ ∈ Xk′ lying over x the local ring OXk′ ,x′ is
normal.

(2) We say X is geometrically normal over k if X is geometrically normal at
every x ∈ X.

Lemma 33.10.2.038N Let k be a field. Let X be a scheme over k. Let x ∈ X. The
following are equivalent

(1) X is geometrically normal at x,
(2) for every finite purely inseparable field extension k′ of k and x′ ∈ Xk′

lying over x the local ring OXk′ ,x′ is normal, and
(3) the ring OX,x is geometrically normal over k (see Algebra, Definition

10.165.2).

Proof. It is clear that (1) implies (2). Assume (2). Let k′/k be a finite purely
inseparable field extension (for example k = k′). Consider the ring OX,x ⊗k k′. By
Algebra, Lemma 10.46.7 its spectrum is the same as the spectrum of OX,x. Hence
it is a local ring also (Algebra, Lemma 10.18.2). Therefore there is a unique point
x′ ∈ Xk′ lying over x and OXk′ ,x′ ∼= OX,x ⊗k k′. By assumption this is a normal
ring. Hence we deduce (3) by Algebra, Lemma 10.165.1.
Assume (3). Let k′/k be a field extension. Since Spec(k′)→ Spec(k) is surjective,
also Xk′ → X is surjective (Morphisms, Lemma 29.9.4). Let x′ ∈ Xk′ be any point
lying over x. The local ring OXk′ ,x′ is a localization of the ring OX,x ⊗k k′. Hence
it is normal by assumption and (1) is proved. □
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Lemma 33.10.3.038O Let k be a field. Let X be a scheme over k. The following are
equivalent

(1) X is geometrically normal,
(2) Xk′ is a normal scheme for every field extension k′/k,
(3) Xk′ is a normal scheme for every finitely generated field extension k′/k,
(4) Xk′ is a normal scheme for every finite purely inseparable field extension

k′/k,
(5) for every affine open U ⊂ X the ring OX(U) is geometrically normal (see

Algebra, Definition 10.165.2), and
(6) Xkperf is a normal scheme.

Proof. Assume (1). Then for every field extension k′/k and every point x′ ∈ Xk′

the local ring of Xk′ at x′ is normal. By definition this means that Xk′ is normal.
Hence (2).
It is clear that (2) implies (3) implies (4).
Assume (4) and let U ⊂ X be an affine open subscheme. Then Uk′ is a normal
scheme for any finite purely inseparable extension k′/k (including k = k′). This
means that k′ ⊗k O(U) is a normal ring for all finite purely inseparable extensions
k′/k. Hence O(U) is a geometrically normal k-algebra by definition. Hence (4)
implies (5).
Assume (5). For any field extension k′/k the base change Xk′ is gotten by gluing
the spectra of the rings OX(U) ⊗k k′ where U is affine open in X (see Schemes,
Section 26.17). Hence Xk′ is normal. So (1) holds.
The equivalence of (5) and (6) follows from the definition of geometrically normal
algebras and the equivalence (just proved) of (3) and (4). □

Lemma 33.10.4.038P Let k be a field. Let X be a scheme over k. Let k′/k be a field
extension. Let x ∈ X be a point, and let x′ ∈ Xk′ be a point lying over x. The
following are equivalent

(1) X is geometrically normal at x,
(2) Xk′ is geometrically normal at x′.

In particular, X is geometrically normal over k if and only if Xk′ is geometrically
normal over k′.

Proof. It is clear that (1) implies (2). Assume (2). Let k′′/k be a finite purely
inseparable field extension and let x′′ ∈ Xk′′ be a point lying over x (actually it is
unique). We can find a common field extension k′′′/k (i.e. with both k′ ⊂ k′′′ and
k′′ ⊂ k′′′) and a point x′′′ ∈ Xk′′′ lying over both x′ and x′′. Consider the map of
local rings

OXk′′ ,x′′ −→ OXk′′′ ,x′′′′ .

This is a flat local ring homomorphism and hence faithfully flat. By (2) we see
that the local ring on the right is normal. Thus by Algebra, Lemma 10.164.3 we
conclude that OXk′′ ,x′′ is normal. By Lemma 33.10.2 we see that X is geometrically
normal at x. □

Lemma 33.10.5.06DG Let k be a field. Let X be a geometrically normal scheme over k
and let Y be a normal scheme over k. Then X ×k Y is a normal scheme.

Proof. This reduces to Algebra, Lemma 10.165.5 by Lemma 33.10.3. □
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Lemma 33.10.6.0C3M Let k be a field. Let X be a normal scheme over k. Let K/k be
a separable field extension. Then XK is a normal scheme.

Proof. Follows from Lemma 33.10.5 and Algebra, Lemma 10.165.4. □

Lemma 33.10.7.0FD3 Let k be a field. Let X be a proper geometrically normal scheme
over k. The following are equivalent

(1) H0(X,OX) = k,
(2) X is geometrically connected,
(3) X is geometrically irreducible, and
(4) X is geometrically integral.

Proof. By Lemma 33.9.5 we have the equivalence of (1) and (2). A locally Noether-
ian normal scheme (such as Xk) is a disjoint union of its irreducible components
(Properties, Lemma 28.7.6). Thus we see that (2) and (3) are equivalent. Since Xk
is assumed reduced, we see that (3) and (4) are equivalent too. □

33.11. Change of fields and locally Noetherian schemes

038Q Let X a locally Noetherian scheme over a field k. It is not always that case that
Xk′ is locally Noetherian too. For example if X = Spec(Q) and k = Q, then
XQ is the spectrum of Q ⊗Q Q which is not Noetherian. (Hint: It has too many
idempotents). But if we only base change using finitely generated field extensions
then the Noetherian property is preserved. (Or if X is locally of finite type over k,
since this property is preserved under base change.)

Lemma 33.11.1.038R Let k be a field. Let X be a scheme over k. Let k′/k be a finitely
generated field extension. Then X is locally Noetherian if and only if Xk′ is locally
Noetherian.

Proof. Using Properties, Lemma 28.5.2 we reduce to the case where X is affine,
say X = Spec(A). In this case we have to prove that A is Noetherian if and only
if Ak′ is Noetherian. Since A → Ak′ = k′ ⊗k A is faithfully flat, we see that if
Ak′ is Noetherian, then so is A, by Algebra, Lemma 10.164.1. Conversely, if A is
Noetherian then Ak′ is Noetherian by Algebra, Lemma 10.31.8. □

33.12. Geometrically regular schemes

038S A geometrically regular scheme over a field k is a locally Noetherian scheme over k
which remains regular upon suitable changes of base field. A finite type scheme over
k is geometrically regular if and only if it is smooth over k (see Lemma 33.12.6). The
notion of geometric regularity is most interesting in situations where smoothness
cannot be used such as formal fibres (insert future reference here).

In the following definition we restrict ourselves to locally Noetherian schemes, since
the property of being a regular local ring is only defined for Noetherian local rings.
By Lemma 33.11.1 above, if we restrict ourselves to finitely generated field exten-
sions then this property is preserved under change of base field. This comment
will be used without further reference in this section. In particular the following
definition makes sense.

Definition 33.12.1.038T Let k be a field. Let X be a locally Noetherian scheme over k.
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(1) Let x ∈ X. We say X is geometrically regular at x over k if for every
finitely generated field extension k′/k and any x′ ∈ Xk′ lying over x the
local ring OXk′ ,x′ is regular.

(2) We say X is geometrically regular over k if X is geometrically regular at
all of its points.

A similar definition works to define geometrically Cohen-Macaulay, (Rk), and (Sk)
schemes over a field. We will add a section for these separately as needed.
Lemma 33.12.2.038U Let k be a field. Let X be a locally Noetherian scheme over k.
Let x ∈ X. The following are equivalent

(1) X is geometrically regular at x,
(2) for every finite purely inseparable field extension k′ of k and x′ ∈ Xk′

lying over x the local ring OXk′ ,x′ is regular, and
(3) the ring OX,x is geometrically regular over k (see Algebra, Definition

10.166.2).
Proof. It is clear that (1) implies (2). Assume (2). This in particular implies that
OX,x is a regular local ring. Let k′/k be a finite purely inseparable field extension.
Consider the ring OX,x⊗k k′. By Algebra, Lemma 10.46.7 its spectrum is the same
as the spectrum of OX,x. Hence it is a local ring also (Algebra, Lemma 10.18.2).
Therefore there is a unique point x′ ∈ Xk′ lying over x and OXk′ ,x′ ∼= OX,x ⊗k k′.
By assumption this is a regular ring. Hence we deduce (3) from the definition of a
geometrically regular ring.
Assume (3). Let k′/k be a field extension. Since Spec(k′)→ Spec(k) is surjective,
also Xk′ → X is surjective (Morphisms, Lemma 29.9.4). Let x′ ∈ Xk′ be any point
lying over x. The local ring OXk′ ,x′ is a localization of the ring OX,x ⊗k k′. Hence
it is regular by assumption and (1) is proved. □

Lemma 33.12.3.038V Let k be a field. Let X be a locally Noetherian scheme over k.
The following are equivalent

(1) X is geometrically regular,
(2) Xk′ is a regular scheme for every finitely generated field extension k′/k,
(3) Xk′ is a regular scheme for every finite purely inseparable field extension

k′/k,
(4) for every affine open U ⊂ X the ring OX(U) is geometrically regular (see

Algebra, Definition 10.166.2), and
(5) there exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

geometrically regular over k.
Proof. Assume (1). Then for every finitely generated field extension k′/k and every
point x′ ∈ Xk′ the local ring of Xk′ at x′ is regular. By Properties, Lemma 28.9.2
this means that Xk′ is regular. Hence (2).
It is clear that (2) implies (3).
Assume (3) and let U ⊂ X be an affine open subscheme. Then Uk′ is a regular
scheme for any finite purely inseparable extension k′/k (including k = k′). This
means that k′ ⊗k O(U) is a regular ring for all finite purely inseparable extensions
k′/k. Hence O(U) is a geometrically regular k-algebra and we see that (4) holds.
It is clear that (4) implies (5). Let X =

⋃
Ui be an affine open covering as in (5).

For any field extension k′/k the base change Xk′ is gotten by gluing the spectra of
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the rings OX(Ui)⊗k k′ (see Schemes, Section 26.17). Hence Xk′ is regular. So (1)
holds. □

Lemma 33.12.4.038W Let k be a field. Let X be a scheme over k. Let k′/k be a finitely
generated field extension. Let x ∈ X be a point, and let x′ ∈ Xk′ be a point lying
over x. The following are equivalent

(1) X is geometrically regular at x,
(2) Xk′ is geometrically regular at x′.

In particular, X is geometrically regular over k if and only if Xk′ is geometrically
regular over k′.

Proof. It is clear that (1) implies (2). Assume (2). Let k′′/k be a finite purely
inseparable field extension and let x′′ ∈ Xk′′ be a point lying over x (actually it is
unique). We can find a common, finitely generated, field extension k′′′/k (i.e. with
both k′ ⊂ k′′′ and k′′ ⊂ k′′′) and a point x′′′ ∈ Xk′′′ lying over both x′ and x′′.
Consider the map of local rings

OXk′′ ,x′′ −→ OXk′′′ ,x′′′′ .

This is a flat local ring homomorphism of Noetherian local rings and hence faithfully
flat. By (2) we see that the local ring on the right is regular. Thus by Algebra,
Lemma 10.110.9 we conclude that OXk′′ ,x′′ is regular. By Lemma 33.12.2 we see
that X is geometrically regular at x. □

The following lemma is a geometric variant of Algebra, Lemma 10.166.3.

Lemma 33.12.5.05AW Let k be a field. Let f : X → Y be a morphism of locally
Noetherian schemes over k. Let x ∈ X be a point and set y = f(x). If X is
geometrically regular at x and f is flat at x then Y is geometrically regular at y.
In particular, if X is geometrically regular over k and f is flat and surjective, then
Y is geometrically regular over k.

Proof. Let k′ be finite purely inseparable extension of k. Let f ′ : Xk′ → Yk′ be
the base change of f . Let x′ ∈ Xk′ be the unique point lying over x. If we show
that Yk′ is regular at y′ = f ′(x′), then Y is geometrically regular over k at y′, see
Lemma 33.12.3. By Morphisms, Lemma 29.25.7 the morphism Xk′ → Yk′ is flat at
x′. Hence the ring map

OYk′ ,y′ −→ OXk′ ,x′

is a flat local homomorphism of local Noetherian rings with right hand side regular
by assumption. Hence the left hand side is a regular local ring by Algebra, Lemma
10.110.9. □

Lemma 33.12.6.038X Let k be a field. Let X be a scheme locally of finite type over k.
Let x ∈ X. Then X is geometrically regular at x if and only if X → Spec(k) is
smooth at x (Morphisms, Definition 29.34.1).

Proof. The question is local around x, hence we may assume that X = Spec(A) for
some finite type k-algebra. Let x correspond to the prime p.

If A is smooth over k at p, then we may localize A and assume that A is smooth
over k. In this case k′⊗k A is smooth over k′ for all extension fields k′/k, and each
of these Noetherian rings is regular by Algebra, Lemma 10.140.3.
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AssumeX is geometrically regular at x. Consider the residue fieldK := κ(x) = κ(p)
of x. It is a finitely generated extension of k. By Algebra, Lemma 10.45.3 there
exists a finite purely inseparable extension k′/k such that the compositum k′K is a
separable field extension of k′. Let p′ ⊂ A′ = k′⊗k A be a prime ideal lying over p.
It is the unique prime lying over p, see Algebra, Lemma 10.46.7. Hence the residue
field K ′ := κ(p′) is the compositum k′K. By assumption the local ring (A′)p′ is
regular. Hence by Algebra, Lemma 10.140.5 we see that k′ → A′ is smooth at p′.
This in turn implies that k → A is smooth at p by Algebra, Lemma 10.137.19. The
lemma is proved. □

Example 33.12.7.038Y Let k = Fp(t). It is quite easy to give an example of a regular
variety V over k which is not geometrically reduced. For example we can take
Spec(k[x]/(xp− t)). In fact, there exists an example of a regular variety V which is
geometrically reduced, but not even geometrically normal. Namely, take for p > 2
the scheme V = Spec(k[x, y]/(y2 − xp + t)). This is a variety as the polynomial
y2 − xp + t ∈ k[x, y] is irreducible. The morphism V → Spec(k) is smooth at all
points except at the point v0 ∈ V corresponding to the maximal ideal (y, xp − t)
(because 2y is invertible). In particular we see that V is (geometrically) regular at
all points, except possibly v0. The local ring

OV,v0 =
(
k[x, y]/(y2 − xp + t)

)
(y,xp−t)

is a domain of dimension 1. Its maximal ideal is generated by 1 element, namely
y. Hence it is a discrete valuation ring and regular. Let k′ = k[t1/p]. Denote
t′ = t1/p ∈ k′, V ′ = Vk′ , v′

0 ∈ V ′ the unique point lying over v0. Over k′ we can
write xp− t = (x− t′)p, but the polynomial y2− (x− t′)p is still irreducible and V ′

is still a variety. But the element
y

x− t′
∈ (fraction field of OV ′,v′

0
)

is integral over OV ′,v′
0

(just compute its square) and not contained in it, so V ′ is
not normal at v′

0. This concludes the example.

33.13. Change of fields and the Cohen-Macaulay property

045O The following lemma says that it does not make sense to define geometrically Cohen-
Macaulay schemes, since these would be the same as Cohen-Macaulay schemes.

Lemma 33.13.1.045P Let X be a locally Noetherian scheme over the field k. Let k′/k
be a finitely generated field extension. Let x ∈ X be a point, and let x′ ∈ Xk′ be a
point lying over x. Then we have

OX,x is Cohen-Macaulay⇔ OXk′ ,x′ is Cohen-Macaulay
If X is locally of finite type over k, the same holds for any field extension k′/k.

Proof. The first case of the lemma follows from Algebra, Lemma 10.167.2. The
second case of the lemma is equivalent to Algebra, Lemma 10.130.6. □

33.14. Change of fields and the Jacobson property

0477 A scheme locally of finite type over a field has plenty of closed points, namely it is
Jacobson. Moreover, the residue fields are finite extensions of the ground field.

Lemma 33.14.1.0478 Let X be a scheme which is locally of finite type over k. Then
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(1) for any closed point x ∈ X the extension κ(x)/k is algebraic, and
(2) X is a Jacobson scheme (Properties, Definition 28.6.1).

Proof. A scheme is Jacobson if and only if it has an affine open covering by Jacobson
schemes, see Properties, Lemma 28.6.3. The property on residue fields at closed
points is also local on X. Hence we may assume that X is affine. In this case the
result is a consequence of the Hilbert Nullstellensatz, see Algebra, Theorem 10.34.1.
It also follows from a combination of Morphisms, Lemmas 29.16.8, 29.16.9, and
29.16.10. □

It turns out that if X is not locally of finite type, then we can achieve the same
result after making a suitably large base field extension.
Lemma 33.14.2.0479 Let X be a scheme over a field k. For any field extension K/k
whose cardinality is large enough we have

(1) for any closed point x ∈ XK the extension κ(x)/K is algebraic, and
(2) XK is a Jacobson scheme (Properties, Definition 28.6.1).

Proof. Choose an affine open covering X =
⋃
Ui. By Algebra, Lemma 10.35.12 and

Properties, Lemma 28.6.2 there exist cardinals κi such that Ui,K has the desired
properties over K if #(K) ≥ κi. Set κ = max{κi}. Then if the cardinality of K is
larger than κ we see that each Ui,K satisfies the conclusions of the lemma. Hence
XK is Jacobson by Properties, Lemma 28.6.3. The statement on residue fields at
closed points of XK follows from the corresponding statements for residue fields of
closed points of the Ui,K . □

33.15. Change of fields and ample invertible sheaves

0BDB The following result is typical for the results in this section.
Lemma 33.15.1.0BDC Let k be a field. Let X be a scheme over k. If there exists an
ample invertible sheaf on XK for some field extension K/k, then X has an ample
invertible sheaf.
Proof. Let K/k be a field extension such that XK has an ample invertible sheaf L.
The morphism XK → X is surjective. Hence X is quasi-compact as the image of a
quasi-compact scheme (Properties, Definition 28.26.1). Since XK is quasi-separated
(by Properties, Lemma 28.26.7) we see that X is quasi-separated: If U, V ⊂ X are
affine open, then (U ∩ V )K = UK ∩ VK is quasi-compact and (U ∩ V )K → U ∩ V
is surjective. Thus Schemes, Lemma 26.21.6 applies.
Write K = colimAi as the colimit of the subalgebras of K which are of finite type
over k. Denote Xi = X ×Spec(k) Spec(Ai). Since XK = limXi we find an i and
an invertible sheaf Li on Xi whose pullback to XK is L (Limits, Lemma 32.10.3;
here and below we use that X is quasi-compact and quasi-separated as just shown).
By Limits, Lemma 32.4.15 we may assume Li is ample after possibly increasing i.
Fix such an i and let m ⊂ Ai be a maximal ideal. By the Hilbert Nullstellensatz
(Algebra, Theorem 10.34.1) the residue field k′ = Ai/m is a finite extension of
k. Hence Xk′ ⊂ Xi is a closed subscheme hence has an ample invertible sheaf
(Properties, Lemma 28.26.3). Since Xk′ → X is finite locally free we conclude that
X has an ample invertible sheaf by Divisors, Proposition 31.17.9. □

Lemma 33.15.2.0BDD Let k be a field. Let X be a scheme over k. If XK is quasi-affine
for some field extension K/k, then X is quasi-affine.
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Proof. Let K/k be a field extension such that XK is quasi-affine. The morphism
XK → X is surjective. Hence X is quasi-compact as the image of a quasi-compact
scheme (Properties, Definition 28.18.1). Since XK is quasi-separated (as an open
subscheme of an affine scheme) we see that X is quasi-separated: If U, V ⊂ X are
affine open, then (U ∩ V )K = UK ∩ VK is quasi-compact and (U ∩ V )K → U ∩ V
is surjective. Thus Schemes, Lemma 26.21.6 applies.
Write K = colimAi as the colimit of the subalgebras of K which are of finite type
over k. Denote Xi = X×Spec(k) Spec(Ai). Since XK = limXi we find an i such that
Xi is quasi-affine (Limits, Lemma 32.4.12; here we use that X is quasi-compact and
quasi-separated as just shown). By the Hilbert Nullstellensatz (Algebra, Theorem
10.34.1) the residue field k′ = Ai/m is a finite extension of k. Hence Xk′ ⊂ Xi

is a closed subscheme hence is quasi-affine (Properties, Lemma 28.27.2). Since
Xk′ → X is finite locally free we conclude by Divisors, Lemma 31.17.10. □

Lemma 33.15.3.0BDE Let k be a field. Let X be a scheme over k. If XK is quasi-
projective over K for some field extension K/k, then X is quasi-projective over
k.

Proof. By definition a morphism of schemes g : Y → T is quasi-projective if it is
locally of finite type, quasi-compact, and there exists a g-ample invertible sheaf on
Y . Let K/k be a field extension such that XK is quasi-projective over K. Let
Spec(A) ⊂ X be an affine open. Then UK is an affine open subscheme of XK ,
hence AK is a K-algebra of finite type. Then A is a k-algebra of finite type by
Algebra, Lemma 10.126.1. Hence X → Spec(k) is locally of finite type. Since
XK → Spec(K) is quasi-compact, we see that XK is quasi-compact, hence X is
quasi-compact, hence X → Spec(k) is of finite type. By Morphisms, Lemma 29.39.4
we see that XK has an ample invertible sheaf. Then X has an ample invertible
sheaf by Lemma 33.15.1. Hence X → Spec(k) is quasi-projective by Morphisms,
Lemma 29.39.4. □

The following lemma is a special case of Descent, Lemma 35.23.14.

Lemma 33.15.4.0BDF Let k be a field. Let X be a scheme over k. If XK is proper over
K for some field extension K/k, then X is proper over k.

Proof. Let K/k be a field extension such that XK is proper over K. Recall that this
implies XK is separated and quasi-compact (Morphisms, Definition 29.41.1). The
morphism XK → X is surjective. Hence X is quasi-compact as the image of a quasi-
compact scheme (Properties, Definition 28.26.1). Since XK is separated we see that
X is quasi-separated: If U, V ⊂ X are affine open, then (U ∩ V )K = UK ∩ VK is
quasi-compact and (U ∩V )K → U ∩V is surjective. Thus Schemes, Lemma 26.21.6
applies.
Write K = colimAi as the colimit of the subalgebras of K which are of finite type
over k. Denote Xi = X ×Spec(k) Spec(Ai). By Limits, Lemma 32.13.1 there exists
an i such that Xi → Spec(Ai) is proper. Here we use that X is quasi-compact
and quasi-separated as just shown. Choose a maximal ideal m ⊂ Ai. By the
Hilbert Nullstellensatz (Algebra, Theorem 10.34.1) the residue field k′ = Ai/m is
a finite extension of k. The base change Xk′ → Spec(k′) is proper (Morphisms,
Lemma 29.41.5). Since k′/k is finite both Xk′ → X and the composition Xk′ →
Spec(k) are proper as well (Morphisms, Lemmas 29.44.11, 29.41.5, and 29.41.4).
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The first implies that X is separated over k as Xk′ is separated (Morphisms, Lemma
29.41.11). The second implies that X → Spec(k) is proper by Morphisms, Lemma
29.41.9. □

Lemma 33.15.5.0BDG Let k be a field. Let X be a scheme over k. If XK is projective
over K for some field extension K/k, then X is projective over k.

Proof. A scheme over k is projective over k if and only if it is quasi-projective and
proper over k. See Morphisms, Lemma 29.43.13. Thus the lemma follows from
Lemmas 33.15.3 and 33.15.4. □

33.16. Tangent spaces

0B28 In this section we define the tangent space of a morphism of schemes at a point of
the source using points with values in dual numbers.

Definition 33.16.1.0B29 For any ring R the dual numbers over R is the R-algebra
denoted R[ϵ]. As an R-module it is free with basis 1, ϵ and the R-algebra structure
comes from setting ϵ2 = 0.

Let f : X → S be a morphism of schemes. Let x ∈ X be a point with image
s = f(x) in S. Consider the solid commutative diagram

(33.16.1.1)0B2A

Spec(κ(x)) //

''

**Spec(κ(x)[ϵ]) //

��

X

��
Spec(κ(s)) // S

with the curved arrow being the canonical morphism of Spec(κ(x)) into X.

Lemma 33.16.2.0B2B The set of dotted arrows making (33.16.1.1) commute has a canon-
ical κ(x)-vector space structure.

Proof. Set κ = κ(x). Observe that we have a pushout in the category of schemes
Spec(κ[ϵ])⨿Spec(κ) Spec(κ[ϵ]) = Spec(κ[ϵ1, ϵ2])

where κ[ϵ1, ϵ2] is the κ-algebra with basis 1, ϵ1, ϵ2 and ϵ21 = ϵ1ϵ2 = ϵ22 = 0. This
follows immediately from the corresponding result for rings and the description
of morphisms from spectra of local rings to schemes in Schemes, Lemma 26.13.1.
Given two arrows θ1, θ2 : Spec(κ[ϵ])→ X we can consider the morphism

θ1 + θ2 : Spec(κ[ϵ])→ Spec(κ[ϵ1, ϵ2]) θ1,θ2−−−→ X

where the first arrow is given by ϵi 7→ ϵ. On the other hand, given λ ∈ κ there
is a self map of Spec(κ[ϵ]) corresponding to the κ-algebra endomorphism of κ[ϵ]
which sends ϵ to λϵ. Precomposing θ : Spec(κ[ϵ]) → X by this selfmap gives λθ.
The reader can verify the axioms of a vector space by verifying the existence of
suitable commutative diagrams of schemes. We omit the details. (An alternative
proof would be to express everything in terms of local rings and then verify the
vector space axioms on the level of ring maps.) □

Definition 33.16.3.0B2C Let f : X → S be a morphism of schemes. Let x ∈ X. The set
of dotted arrows making (33.16.1.1) commute with its canonical κ(x)-vector space
structure is called the tangent space of X over S at x and we denote it TX/S,x. An
element of this space is called a tangent vector of X/S at x.

https://stacks.math.columbia.edu/tag/0BDG
https://stacks.math.columbia.edu/tag/0B29
https://stacks.math.columbia.edu/tag/0B2B
https://stacks.math.columbia.edu/tag/0B2C


33.16. TANGENT SPACES 2801

Since tangent vectors at x ∈ X live in the scheme theoretic fibre Xs of f : X → S
over s = f(x), we get a canonical identification
(33.16.3.1)0BEA TX/S,x = TXs/s,x

This pleasing definition involving the functor of points has the following algebraic
description, which suggests defining the cotangent space of X over S at x as the
κ(x)-vector space

T ∗
X/S,x = ΩX/S,x ⊗OX,x

κ(x)
simply because it is canonically κ(x)-dual to the tangent space of X over S at x.

Lemma 33.16.4.0B2D Let f : X → S be a morphism of schemes. Let x ∈ X. There is
a canonical isomorphism

TX/S,x = HomOX,x
(ΩX/S,x, κ(x))

of vector spaces over κ(x).

Proof. Set κ = κ(x). Given θ ∈ TX/S,x we obtain a map
θ∗ΩX/S → ΩSpec(κ[ϵ])/ Spec(κ(s)) → ΩSpec(κ[ϵ])/ Spec(κ)

Taking sections we obtain an OX,x-linear map ξθ : ΩX/S,x → κdϵ, i.e., an element
of the right hand side of the formula of the lemma. To show that θ 7→ ξθ is an
isomorphism we can replace S by s and X by the scheme theoretic fibre Xs. Indeed,
both sides of the formula only depend on the scheme theoretic fibre; this is clear for
TX/S,x and for the RHS see Morphisms, Lemma 29.32.10. We may also replace X
by the spectrum of OX,x as this does not change TX/S,x (Schemes, Lemma 26.13.1)
nor ΩX/S,x (Modules, Lemma 17.28.7).
Let (A,m, κ) be a local ring over a field k. To finish the proof we have to show that
any A-linear map ξ : ΩA/k → κ comes from a unique k-algebra map φ : A → κ[ϵ]
agreeing with the canonical map c : A → κ modulo ϵ. Write φ(a) = c(a) + D(a)ϵ
the reader sees that a 7→ D(a) is a k-derivation. Using the universal property of
ΩA/k we see that each D corresponds to a unique ξ and vice versa. This finishes
the proof. □

Lemma 33.16.5.0B2E Let f : X → S be a morphism of schemes. Let x ∈ X be a
point and let s = f(x) ∈ S. Assume that κ(x) = κ(s). Then there are canonical
isomorphisms

mx/(m2
x + msOX,x) = ΩX/S,x ⊗OX,x

κ(x)
and

TX/S,x = Homκ(x)(mx/(m2
x + msOX,x), κ(x))

This works more generally if κ(x)/κ(s) is a separable algebraic extension.

Proof. The second isomorphism follows from the first by Lemma 33.16.4. For the
first, we can replace S by s and X by Xs, see Morphisms, Lemma 29.32.10. We
may also replace X by the spectrum of OX,x, see Modules, Lemma 17.28.7. Thus
we have to show the following algebra fact: let (A,m, κ) be a local ring over a field
k such that κ/k is separable algebraic. Then the canonical map

m/m2 −→ ΩA/k ⊗ κ
is an isomorphism. Observe that m/m2 = H1(NLκ/A). By Algebra, Lemma
10.134.4 it suffices to show that Ωκ/k = 0 and H1(NLκ/k) = 0. Since κ is the
union of its finite separable extensions in k it suffices to prove this when κ is a
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finite separable extension of k (Algebra, Lemma 10.134.9). In this case the ring
map k → κ is étale and hence NLκ/k = 0 (more or less by definition, see Algebra,
Section 10.143). □

Lemma 33.16.6.0B2F Let f : X → Y be a morphism of schemes over a base scheme S.
Let x ∈ X be a point. Set y = f(x). If κ(y) = κ(x), then f induces a natural linear
map

df : TX/S,x −→ TY/S,y

which is dual to the linear map ΩY/S,y ⊗ κ(y) → ΩX/S,x via the identifications of
Lemma 33.16.4.

Proof. Omitted. □

Lemma 33.16.7.0BEB Let X, Y be schemes over a base S. Let x ∈ X and y ∈ Y with
the same image point s ∈ S such that κ(s) = κ(x) and κ(s) = κ(y). There is a
canonical isomorphism

TX×SY/S,(x,y) = TX/S,x ⊕ TY/S,y
The map from left to right is induced by the maps on tangent spaces coming from
the projections X ×S Y → X and X ×S Y → Y . The map from right to left is
induced by the maps 1 × y : Xs → Xs ×s Ys and x × 1 : Ys → Xs ×s Ys via the
identification (33.16.3.1) of tangent spaces with tangent spaces of fibres.

Proof. The direct sum decomposition follows from Morphisms, Lemma 29.32.11 via
Lemma 33.16.5. Compatibility with the maps comes from Lemma 33.16.6. □

Lemma 33.16.8.0B2G Let f : X → Y be a morphism of schemes locally of finite type
over a base scheme S. Let x ∈ X be a point. Set y = f(x) and assume that
κ(y) = κ(x). Then the following are equivalent

(1) df : TX/S,x −→ TY/S,y is injective, and
(2) f is unramified at x.

Proof. The morphism f is locally of finite type by Morphisms, Lemma 29.15.8.
The map df is injective, if and only if ΩY/S,y ⊗ κ(y)→ ΩX/S,x ⊗ κ(x) is surjective
(Lemma 33.16.6). The exact sequence f∗ΩY/S → ΩX/S → ΩX/Y → 0 (Morphisms,
Lemma 29.32.9) then shows that this happens if and only if ΩX/Y,x ⊗ κ(x) = 0.
Hence the result follows from Morphisms, Lemma 29.35.14. □

33.17. Generically finite morphisms

0AB5 In this section we revisit the notion of a generically finite morphism of schemes as
studied in Morphisms, Section 29.51.

Lemma 33.17.1.0AB6 Let f : X → Y be locally of finite type. Let y ∈ Y be a point such
that OY,y is Noetherian of dimension ≤ 1. Assume in addition one of the following
conditions is satisfied

(1) for every generic point η of an irreducible component of X the field ex-
tension κ(η)/κ(f(η)) is finite (or algebraic),

(2) for every generic point η of an irreducible component of X such that
f(η)⇝ y the field extension κ(η)/κ(f(η)) is finite (or algebraic),

(3) f is quasi-finite at every generic point of an irreducible component of X,
(4) Y is locally Noetherian and f is quasi-finite at a dense set of points of X,
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(5) add more here.
Then f is quasi-finite at every point of X lying over y.

Proof. Condition (4) implies X is locally Noetherian (Morphisms, Lemma 29.15.6).
The set of points at which morphism is quasi-finite is open (Morphisms, Lemma
29.56.2). A dense open of a locally Noetherian scheme contains all generic point
of irreducible components, hence (4) implies (3). Condition (3) implies condition
(1) by Morphisms, Lemma 29.20.5. Condition (1) implies condition (2). Thus it
suffices to prove the lemma in case (2) holds.
Assume (2) holds. Recall that Spec(OY,y) is the set of points of Y specializing to
y, see Schemes, Lemma 26.13.2. Combined with Morphisms, Lemma 29.20.13 this
shows we may replace Y by Spec(OY,y). Thus we may assume Y = Spec(B) where
B is a Noetherian local ring of dimension ≤ 1 and y is the closed point.
Let X =

⋃
Xi be the irreducible components of X viewed as reduced closed sub-

schemes. If we can show each fibre Xi,y is a discrete space, then Xy =
⋃
Xi,y is

discrete as well and we conclude that X → Y is quasi-finite at all points of Xy by
Morphisms, Lemma 29.20.6. Thus we may assume X is an integral scheme.
If X → Y maps the generic point η of X to y, then X is the spectrum of a finite
extension of κ(y) and the result is true. Assume that X maps η to a point corre-
sponding to a minimal prime q of B different from mB . We obtain a factorization
X → Spec(B/q)→ Spec(B). Let x ∈ X be a point lying over y. By the dimension
formula (Morphisms, Lemma 29.52.1) we have

dim(OX,x) ≤ dim(B/q) + trdegκ(q)(R(X))− trdegκ(y)κ(x)
We know that dim(B/q) = 1, that the generic point of X is not equal to x and
specializes to x and that R(X) is algebraic over κ(q). Thus we get

1 ≤ 1− trdegκ(y)κ(x)
Hence every point x of Xy is closed in Xy by Morphisms, Lemma 29.20.2 and hence
X → Y is quasi-finite at every point x of Xy by Morphisms, Lemma 29.20.6 (which
also implies that Xy is a discrete topological space). □

Lemma 33.17.2.0AB7 Let f : X → Y be a proper morphism. Let y ∈ Y be a point such
that OY,y is Noetherian of dimension ≤ 1. Assume in addition one of the following
conditions is satisfied

(1) for every generic point η of an irreducible component of X the field ex-
tension κ(η)/κ(f(η)) is finite (or algebraic),

(2) for every generic point η of an irreducible component of X such that
f(η)⇝ y the field extension κ(η)/κ(f(η)) is finite (or algebraic),

(3) f is quasi-finite at every generic point of X,
(4) Y is locally Noetherian and f is quasi-finite at a dense set of points of X,
(5) add more here.

Then there exists an open neighbourhood V ⊂ Y of y such that f−1(V ) → V is
finite.

Proof. By Lemma 33.17.1 the morphism f is quasi-finite at every point of the fibre
Xy. Hence Xy is a discrete topological space (Morphisms, Lemma 29.20.6). As f
is proper the fibre Xy is quasi-compact, i.e., finite. Thus we can apply Cohomology
of Schemes, Lemma 30.21.2 to conclude. □
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Lemma 33.17.3.0BFP Let X be a Noetherian scheme. Let f : Y → X be a birational
proper morphism of schemes with Y reduced. Let U ⊂ X be the maximal open
over which f is an isomorphism. Then U contains

(1) every point of codimension 0 in X,
(2) every x ∈ X of codimension 1 on X such that OX,x is a discrete valuation

ring,
(3) every x ∈ X such that the fibre of Y → X over x is finite and such that
OX,x is normal, and

(4) every x ∈ X such that f is quasi-finite at some y ∈ Y lying over x and
OX,x is normal.

Proof. Part (1) follows from Morphisms, Lemma 29.51.6. Part (2) follows from
part (3) and Lemma 33.17.2 (and the fact that finite morphisms have finite fibres).

Part (3) follows from part (4) and Morphisms, Lemma 29.20.7 but we will also give
a direct proof. Let x ∈ X be as in (3). By Cohomology of Schemes, Lemma 30.21.2
we may assume f is finite. We may assume X affine. This reduces us to the case
of a finite birational morphism of Noetherian affine schemes Y → X and x ∈ X
such that OX,x is a normal domain. Since OX,x is a domain and X is Noetherian,
we may replace X by an affine open of x which is integral. Then, since Y → X is
birational and Y is reduced we see that Y is integral. Writing X = Spec(A) and
Y = Spec(B) we see that A ⊂ B is a finite inclusion of domains having the same
field of fractions. If p ⊂ A is the prime corresponding to x, then Ap being normal
implies that Ap ⊂ Bp is an equality. Since B is a finite A-module, we see there
exists an a ∈ A, a ̸∈ p such that Aa → Ba is an isomorphism.

Let x ∈ X and y ∈ Y be as in (4). After replacing X by an affine open neighbour-
hood we may assume X = Spec(A) and A ⊂ OX,x, see Properties, Lemma 28.29.8.
Then A is a domain and hence X is integral. Since f is birational and Y is reduced
it follows that Y is integral too. Consider the ring map OX,x → OY,y. This is
a ring map which is essentially of finite type, the residue field extension is finite,
and dim(OY,y/mxOY,y) = 0 (to see this trace through the definitions of quasi-finite
maps in Morphisms, Definition 29.20.1 and Algebra, Definition 10.122.3). By Alge-
bra, Lemma 10.124.2 OY,y is the localization of a finite OX,x-algebra B. Of course
we may replace B by the image of B in OY,y and assume that B is a domain with
the same fraction field as OY,y. Then OX,x ⊂ B have the same fraction field as
f is birational. Since OX,x is normal, we conclude that OX,x = B (because finite
implies integral), in particular, we see that OX,x = OY,y. By Morphisms, Lemma
29.42.4 after shrinking X we may assume there is a section X → Y of f mapping x
to y and inducing the given isomorphism on local rings. Since X → Y is closed (by
Schemes, Lemma 26.21.11) necessarily maps the generic point of X to the generic
point of Y it follows that the image of X → Y is Y . Then Y = X and we’ve proved
what we wanted to show. □

33.18. Variants of Noether normalization

0CBG Noether normalization is the statement that if k is a field and A is a finite type k
algebra of dimension d, then there exists a finite injective k-algebra homomorphism
k[x1, . . . , xd] → A. See Algebra, Lemma 10.115.4. Geometrically this means there
is a finite surjective morphism Spec(A)→ Ad

k over Spec(k).
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Lemma 33.18.1.0CBH Let f : X → S be a morphism of schemes. Let x ∈ X with image
s ∈ S. Let V ⊂ S be an affine open neighbourhood of s. If f is locally of finite
type and dimx(Xs) = d, then there exists an affine open U ⊂ X with x ∈ U and
f(U) ⊂ V and a factorization

U
π−→ Ad

V → V

of f |U : U → V such that π is quasi-finite.

Proof. This follows from Algebra, Lemma 10.125.2. □

Lemma 33.18.2.0CBI Let f : X → S be a finite type morphism of affine schemes. Let
s ∈ S. If dim(Xs) = d, then there exists a factorization

X
π−→ Ad

S → S

of f such that the morphism πs : Xs → Ad
κ(s) of fibres over s is finite.

Proof. Write S = Spec(A) and X = Spec(B) and let A → B be the ring map
corresponding to f . Let p ⊂ A be the prime ideal corresponding to s. We can
choose a surjection A[x1, . . . , xr] → B. By Algebra, Lemma 10.115.4 there exist
elements y1, . . . , yd ∈ A in the Z-subalgebra of A generated by x1, . . . , xr such
that the A-algebra homomorphism A[t1, . . . , td] → B sending ti to yi induces a
finite κ(p)-algebra homomorphism κ(p)[t1, . . . , td] → B ⊗A κ(p). This proves the
lemma. □

Lemma 33.18.3.0CBJ Let f : X → S be a morphism of schemes. Let x ∈ X. Let
V = Spec(A) be an affine open neighbourhood of f(x) in S. If f is unramified at
x, then there exist exists an affine open U ⊂ X with x ∈ U and f(U) ⊂ V such
that we have a commutative diagram

X

��

Uoo

&&

j // Spec(A[t]g′/(g))

��

// Spec(A[t]) = A1
V

uu
Y Voo

where j is an immersion, g ∈ A[t] is a monic polynomial, and g′ is the derivative of
g with respect to t. If f is étale at x, then we may choose the diagram such that j
is an open immersion.

Proof. The unramified case is a translation of Algebra, Proposition 10.152.1. In
the étale case this is a translation of Algebra, Proposition 10.144.4 or equivalently
it follows from Morphisms, Lemma 29.36.14 although the statements differ slightly.

□

Lemma 33.18.4.0CBK Let f : X → S be a finite type morphism of affine schemes. Let
x ∈ X with image s ∈ S. Let

r = dimκ(x) ΩX/S,x ⊗OX,x
κ(x) = dimκ(x) ΩXs/s,x ⊗OXs,x

κ(x) = dimκ(x) TX/S,x

Then there exists a factorization

X
π−→ Ar

S → S

of f such that π is unramified at x.
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Proof. By Morphisms, Lemma 29.32.12 the first dimension is finite. The first equal-
ity follows as the restriction of ΩX/S to the fibre is the module of differentials from
Morphisms, Lemma 29.32.10. The last equality follows from Lemma 33.16.4. Thus
we see that the statement makes sense.
To prove the lemma write S = Spec(A) and X = Spec(B) and let A → B be
the ring map corresponding to f . Let q ⊂ B be the prime ideal corresponding to
x. Choose a surjection of A-algebras A[x1, . . . , xt] → B. Since ΩB/A is generated
by dx1, . . . ,dxt we see that their images in ΩX/S,x ⊗OX,x

κ(x) generate this as a
κ(x)-vector space. After renumbering we may assume that dx1, . . . ,dxr map to a
basis of ΩX/S,x ⊗OX,x

κ(x). We claim that P = A[x1, . . . , xr]→ B is unramified at
q. To see this it suffices to show that ΩB/P,q = 0 (Algebra, Lemma 10.151.3). Note
that ΩB/P is the quotient of ΩB/A by the submodule generated by dx1, . . . ,dxr.
Hence ΩB/P,q ⊗Bq

κ(q) = 0 by our choice of x1, . . . , xr. By Nakayama’s lemma,
more precisely Algebra, Lemma 10.20.1 part (2) which applies as ΩB/P is finite (see
reference above), we conclude that ΩB/P,q = 0. □

Lemma 33.18.5.0CBL Let f : X → S be a morphism of schemes. Let x ∈ X with image
s ∈ S. Let V ⊂ S be an affine open neighbourhood of s. If f is locally of finite
type and
r = dimκ(x) ΩX/S,x ⊗OX,x

κ(x) = dimκ(x) ΩXs/s,x ⊗OXs,x
κ(x) = dimκ(x) TX/S,x

then there exist
(1) an affine open U ⊂ X with x ∈ U and f(U) ⊂ V and a factorization

U
j−→ Ar+1

V → V

of f |U such that j is an immersion, or
(2) an affine open U ⊂ X with x ∈ U and f(U) ⊂ V and a factorization

U
j−→ D → V

of f |U such that j is a closed immersion and D → V is smooth of relative
dimension r.

Proof. Pick any affine open U ⊂ X with x ∈ U and f(U) ⊂ V . Apply Lemma
33.18.4 to U → V to get U → Ar

V → V as in the statement of that lemma. By
Lemma 33.18.3 we get a factorization

U
j−→ D

j′

−→ Ar+1
V

p−→ Ar
V → V

where j and j′ are immersions, p is the projection, and p◦j′ is standard étale. Thus
we see in particular that (1) and (2) hold. □

33.19. Dimension of fibres

0B2H We have already seen that dimension of fibres of finite type morphisms typically
jump up. In this section we discuss the phenomenon that in codimension 1 this
does not happen. More generally, we discuss how much the dimension of a fibre
can jump. Here is a list of related results:

(1) For a finite type morphism X → S the set of x ∈ X with dimx(Xf(x)) ≤ d
is open, see Algebra, Lemma 10.125.6 and Morphisms, Lemma 29.28.4.

(2) We have the dimension formula, see Algebra, Lemma 10.113.1 and Mor-
phisms, Lemma 29.52.1.
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(3) Constant fibre dimension for an integral finite type scheme dominating a
valuation ring, see Algebra, Lemma 10.125.9.

(4) If X → S is of finite type and is quasi-finite at every generic point of X,
then X → S is quasi-finite in codimension 1, see Algebra, Lemma 10.113.2
and Lemma 33.17.1.

The last result mentioned above generalizes as follows.

Lemma 33.19.1.0B2I Let f : X → Y be locally of finite type. Let x ∈ X be a point
with image y ∈ Y such that OY,y is Noetherian of dimension ≤ 1. Let d ≥ 0 be an
integer such that for every generic point η of an irreducible component of X which
contains x, we have dimη(Xf(η)) = d. Then dimx(Xy) = d.

Proof. Recall that Spec(OY,y) is the set of points of Y specializing to y, see Schemes,
Lemma 26.13.2. Thus we may replace Y by Spec(OY,y) and assume Y = Spec(B)
where B is a Noetherian local ring of dimension ≤ 1 and y is the closed point. We
may also replace X by an affine neighbourhood of x.
Let X =

⋃
Xi be the irreducible components of X viewed as reduced closed sub-

schemes. If we can show each fibre Xi,y has dimension d, then Xy =
⋃
Xi,y has

dimension d as well. Thus we may assume X is an integral scheme.
If X → Y maps the generic point η of X to y, then X is a scheme over κ(y) and the
result is true by assumption. Assume that X maps η to a point ξ ∈ Y corresponding
to a minimal prime q of B different from mB . We obtain a factorization X →
Spec(B/q) → Spec(B). By the dimension formula (Morphisms, Lemma 29.52.1)
we have

dim(OX,x) + trdegκ(y)κ(x) ≤ dim(B/q) + trdegκ(q)(R(X))

We have dim(B/q) = 1. We have trdegκ(q)(R(X)) = d by our assumption that
dimη(Xξ) = d, see Morphisms, Lemma 29.28.1. Since OX,x → OXs,x has a kernel
(as η 7→ ξ ̸= y) and since OX,x is a Noetherian domain we see that dim(OX,x) >
dim(OXy,x). We conclude that

dimx(Xs) = dim(OXs,x) + trdegκ(y)κ(x) ≤ d

(Morphisms, Lemma 29.28.1). On the other hand, we have dimx(Xs) ≥ dimη(Xf(η)) =
d by Morphisms, Lemma 29.28.4. □

Lemma 33.19.2.0B2J Let f : X → Spec(R) be a morphism from an irreducible scheme
to the spectrum of a valuation ring. If f is locally of finite type and surjective,
then the special fibre is equidimensional of dimension equal to the dimension of the
generic fibre.

Proof. We may replace X by its reduction because this does not change the dimen-
sion of X or of the special fibre. Then X is integral and the lemma follows from
Algebra, Lemma 10.125.9. □

The following lemma generalizes Lemma 33.19.1.

Lemma 33.19.3.0B2K Let f : X → Y be locally of finite type. Let x ∈ X be a point
with image y ∈ Y such that OY,y is Noetherian. Let d ≥ 0 be an integer such that
for every generic point η of an irreducible component of X which contains x, we
have f(η) ̸= y and dimη(Xf(η)) = d. Then dimx(Xy) ≤ d+ dim(OY,y)− 1.
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Proof. Exactly as in the proof of Lemma 33.19.1 we reduce to the case X = Spec(A)
with A a domain and Y = Spec(B) where B is a Noetherian local ring whose
maximal ideal corresponds to y. After replacing B by B/Ker(B → A) we may
assume that B is a domain and that B ⊂ A. Then we use the dimension formula
(Morphisms, Lemma 29.52.1) to get

dim(OX,x) + trdegκ(y)κ(x) ≤ dim(B) + trdegB(A)

We have trdegB(A) = d by our assumption that dimη(Xξ) = d, see Morphisms,
Lemma 29.28.1. Since OX,x → OXy,x has a kernel (as f(η) ̸= y) and since OX,x is
a Noetherian domain we see that dim(OX,x) > dim(OXy,x). We conclude that

dimx(Xy) = dim(OXy,x) + trdegκ(y)κ(x) < dim(B) + d

(equality by Morphisms, Lemma 29.28.1) which proves what we want. □

33.20. Algebraic schemes

06LF The following definition is taken from [DG67, I Definition 6.4.1].

Definition 33.20.1.06LG Let k be a field. An algebraic k-scheme is a scheme X over k
such that the structure morphism X → Spec(k) is of finite type. A locally algebraic
k-scheme is a scheme X over k such that the structure morphism X → Spec(k) is
locally of finite type.

Note that every (locally) algebraic k-scheme is (locally) Noetherian, see Morphisms,
Lemma 29.15.6. The category of algebraic k-schemes has all products and fibre
products (unlike the category of varieties over k). Similarly for the category of
locally algebraic k-schemes.

Lemma 33.20.2.06LH Let k be a field. Let X be a locally algebraic k-scheme of dimen-
sion 0. Then X is a disjoint union of spectra of local Artinian k-algebras A with
dimk(A) <∞. If X is an algebraic k-scheme of dimension 0, then in addition X is
affine and the morphism X → Spec(k) is finite.

Proof. Let X be a locally algebraic k-scheme of dimension 0. Let U = Spec(A) ⊂ X
be an affine open subscheme. Since dim(X) = 0 we see that dim(A) = 0. By
Noether normalization, see Algebra, Lemma 10.115.4 we see that there exists a
finite injection k → A, i.e., dimk(A) < ∞. Hence A is Artinian, see Algebra,
Lemma 10.53.2. This implies that A = A1 × . . .×Ar is a product of finitely many
Artinian local rings, see Algebra, Lemma 10.53.6. Of course dimk(Ai) < ∞ for
each i as the sum of these dimensions equals dimk(A).

The arguments above show that X has an open covering whose members are finite
discrete topological spaces. Hence X is a discrete topological space. It follows that
X is isomorphic to the disjoint union of its connected components each of which is
a singleton. Since a singleton scheme is affine we conclude (by the results of the
paragraph above) that each of these singletons is the spectrum of a local Artinian
k-algebra A with dimk(A) <∞.

Finally, if X is an algebraic k-scheme of dimension 0, then X is quasi-compact
hence is a finite disjoint union X = Spec(A1) ⨿ . . . ⨿ Spec(Ar) hence affine (see
Schemes, Lemma 26.6.8) and we have seen the finiteness of X → Spec(k) in the
first paragraph of the proof. □
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The following lemma collects some statements on dimension theory for locally al-
gebraic schemes.

Lemma 33.20.3.0A21 Let k be a field. Let X be a locally algebraic k-scheme.
(1)0B17 The topological space of X is catenary (Topology, Definition 5.11.4).
(2)0B18 For x ∈ X closed, we have dimx(X) = dim(OX,x).
(3)0B19 For X irreducible we have dim(X) = dim(U) for any nonempty open

U ⊂ X and dim(X) = dimx(X) for any x ∈ X.
(4)0B1A For X irreducible any chain of irreducible closed subsets can be extended

to a maximal chain and all maximal chains of irreducible closed subsets
have length equal to dim(X).

(5)0B1B For x ∈ X we have dimx(X) = max dim(Z) = min dim(OX,x′) where the
maximum is over irreducible components Z ⊂ X containing x and the
minimum is over specializations x⇝ x′ with x′ closed in X.

(6)0B1C If X is irreducible with generic point x, then dim(X) = trdegk(κ(x)).
(7)0B1D If x ⇝ x′ is an immediate specialization of points of X, then we have

trdegk(κ(x)) = trdegk(κ(x′)) + 1.
(8)0B1E The dimension of X is the supremum of the numbers trdegk(κ(x)) where

x runs over the generic points of the irreducible components of X.
(9)0B1F If x⇝ x′ is a nontrivial specialization of points of X, then

(a) dimx(X) ≤ dimx′(X),
(b) dim(OX,x) < dim(OX,x′),
(c) trdegk(κ(x)) > trdegk(κ(x′)), and
(d) any maximal chain of nontrivial specializations x = x0 ⇝ x1 ⇝ . . .⇝

xn = x has length n = trdegk(κ(x))− trdegk(κ(x′)).
(10)0B1G For x ∈ X we have dimx(X) = trdegk(κ(x)) + dim(OX,x).
(11)0B1H If x⇝ x′ is an immediate specialization of points of X and X is irreducible

or equidimensional, then dim(OX,x′) = dim(OX,x) + 1.

Proof. Instead on relying on the more general results proved earlier we will reduce
the statements to the corresponding statements for finite type k-algebras and cite
results from the chapter on commutative algebra.

Proof of (1). This is local on X by Topology, Lemma 5.11.5. Thus we may assume
X = Spec(A) where A is a finite type k-algebra. We have to show that A is catenary
(Algebra, Lemma 10.105.2). We can reduce to k[x1, . . . , xn] using Algebra, Lemma
10.105.7 and then apply Algebra, Lemma 10.114.3. Alternatively, this holds because
k is Cohen-Macaulay (trivially) and Cohen-Macaulay rings are universally catenary
(Algebra, Lemma 10.105.9).

Proof of (2). Choose an affine neighbourhood U = Spec(A) of x. Then dimx(X) =
dimx(U). Hence we reduce to the affine case, which is Algebra, Lemma 10.114.6.

Proof of (3). It suffices to show that any two nonempty affine opens U,U ′ ⊂ X
have the same dimension (any finite chain of irreducible subsets meets an affine
open). Pick a closed point x of X with x ∈ U ∩ U ′. This is possible because X is
irreducible, hence U ∩U ′ is nonempty, hence there is such a closed point because X
is Jacobson by Lemma 33.14.1. Then dim(U) = dim(OX,x) = dim(U ′) by Algebra,
Lemma 10.114.4 (strictly speaking you have to replace X by its reduction before
applying the lemma).

https://stacks.math.columbia.edu/tag/0A21
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Proof of (4). Given a chain of irreducible closed subsets we can find an affine open
U ⊂ X which meets the smallest one. Thus the statement follows from Algebra,
Lemma 10.114.4 and dim(U) = dim(X) which we have seen in (3).
Proof of (5). Choose an affine neighbourhood U = Spec(A) of x. Then dimx(X) =
dimx(U). The rule Z 7→ Z ∩ U is a bijection between irreducible components of
X passing through x and irreducible components of U passing through x. Also,
dim(Z∩U) = dim(Z) for such Z by (3). Hence the statement follows from Algebra,
Lemma 10.114.5.
Proof of (6). By (3) this reduces to the case where X = Spec(A) is affine. In this
case it follows from Algebra, Lemma 10.116.1 applied to Ared.
Proof of (7). Let Z = {x} ⊃ Z ′ = {x′}. Then it follows from (4) that Z ⊃ Z ′ is the
start of a maximal chain of irreducible closed subschemes in Z and consequently
dim(Z) = dim(Z ′) + 1. We conclude by (6).
Proof of (8). A simple topological argument shows that dim(X) = sup dim(Z)
where the supremum is over the irreducible components of X (hint: use Topology,
Lemma 5.8.3). Thus this follows from (6).
Proof of (9). Part (a) follows from the fact that any open U ⊂ X containing x′

also contains x. Part (b) follows because OX,x is a localization of OX,x′ hence any
chain of primes in OX,x corresponds to a chain of primes in OX,x′ which can be
extended by adding mx′ at the end. Both (c) and (d) follow formally from (7).
Proof of (10). Choose an affine neighbourhood U = Spec(A) of x. Then dimx(X) =
dimx(U). Hence we reduce to the affine case, which is Algebra, Lemma 10.116.3.
Proof of (11). If X is equidimensional (Topology, Definition 5.10.5) then dim(X)
is equal to the dimension of every irreducible component of X, whence dimx(X) =
dim(X) = dimx′(X) by (5). Thus this follows from (7). □

Lemma 33.20.4.0B2L Let k be a field. Let f : X → Y be a morphism of locally algebraic
k-schemes.

(1) For y ∈ Y , the fibre Xy is a locally algebraic scheme over κ(y) hence all
the results of Lemma 33.20.3 apply.

(2) Assume X is irreducible. Set Z = f(X) and d = dim(X)−dim(Z). Then
(a) dimx(Xf(x)) ≥ d for all x ∈ X,
(b) the set of x ∈ X with dimx(Xf(x)) = d is dense open,
(c) if dim(OZ,f(x)) ≥ 1, then dimx(Xf(x)) ≤ d+ dim(OZ,f(x))− 1,
(d) if dim(OZ,f(x)) = 1, then dimx(Xf(x)) = d,

(3) For x ∈ X with y = f(x) we have dimx(Xy) ≥ dimx(X)− dimy(Y ).
Proof. The morphism f is locally of finite type by Morphisms, Lemma 29.15.8.
Hence the base change Xy → Spec(κ(y)) is locally of finite type. This proves (1).
In the rest of the proof we will freely use the results of Lemma 33.20.3 for X, Y ,
and the fibres of f .
Proof of (2). Let η ∈ X be the generic point and set ξ = f(η). Then Z = {ξ}.
Hence
d = dim(X)− dim(Z) = trdegkκ(η)− trdegkκ(ξ) = trdegκ(ξ)κ(η) = dimη(Xξ)

Thus parts (2)(a) and (2)(b) follow from Morphisms, Lemma 29.28.4. Parts (2)(c)
and (2)(d) follow from Lemmas 33.19.3 and 33.19.1.

https://stacks.math.columbia.edu/tag/0B2L
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Proof of (3). Let x ∈ X. Let X ′ ⊂ X be a irreducible component of X passing
through x of dimension dimx(X). Then (2) implies that dimx(Xy) ≥ dim(X ′) −
dim(Z ′) where Z ′ ⊂ Y is the closure of the image of X ′. This proves (3). □

Lemma 33.20.5.0B2M Let k be a field. Let X, Y be locally algebraic k-schemes.
(1) For z ∈ X × Y lying over (x, y) we have dimz(X × Y ) = dimx(X) +

dimy(Y ).
(2) We have dim(X × Y ) = dim(X) + dim(Y ).

Proof. Proof of (1). Consider the factorization

X × Y −→ Y −→ Spec(k)

of the structure morphism. The first morphism p : X × Y → Y is flat as a base
change of the flat morphism X → Spec(k) by Morphisms, Lemma 29.25.8. More-
over, we have dimz(p−1(y)) = dimx(X) by Morphisms, Lemma 29.28.3. Hence
dimz(X × Y ) = dimx(X) + dimy(Y ) by Morphisms, Lemma 29.28.2. Part (2) is a
direct consequence of (1). □

33.21. Complete local rings

0C51 Some results on complete local rings of schemes over fields.

Lemma 33.21.1.0C52 Let k be a field. Let X be a locally Noetherian scheme over k.
Let x ∈ X be a point with residue field κ. There is an isomorphism

(33.21.1.1)0C53 κ[[x1, . . . , xn]]/I −→ O∧
X,x

inducing the identity on residue fields. In general we cannot choose (33.21.1.1) to
be a k-algebra isomorphism. However, if the extension κ/k is separable, then we
can choose (33.21.1.1) to be an isomorphism of k-algebras.

Proof. The existence of the isomorphism is an immediate consequence of the Cohen
structure theorem2 (Algebra, Theorem 10.160.8).

Let p be an odd prime number, let k = Fp(t), and A = k[x, y]/(y2 + xp − t). Then
the completion A∧ of A in the maximal ideal m = (y) is isomorphic to k(t1/p)[[z]]
as a ring but not as a k-algebra. The reason is that A∧ does not contain an element
whose pth power is t (as the reader can see by computing modulo y2). This also
shows that any isomorphism (33.21.1.1) cannot be a k-algebra isomorphism.

If κ/k is separable, then there is a k-algebra homomorphism κ→ O∧
X,x inducing the

identity on residue fields by More on Algebra, Lemma 15.38.3. Let f1, . . . , fn ∈ mx
be generators. Consider the map

κ[[x1, . . . , xn]] −→ O∧
X,x, xi 7−→ fi

Since both sides are (x1, . . . , xn)-adically complete (the right hand side by Algebra,
Lemmas 10.96.3) this map is surjective by Algebra, Lemma 10.96.1 as it is surjective
modulo (x1, . . . , xn) by construction. □

2Note that if κ has characteristic p, then the theorem just says we get a surjection
Λ[[x1, . . . , xn]] → O∧

X,x where Λ is a Cohen ring for κ. But of course in this case the map
factors through Λ/pΛ[[x1, . . . , xn]] and Λ/pΛ = κ.

https://stacks.math.columbia.edu/tag/0B2M
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Lemma 33.21.2.0C54 Let K/k be an extension of fields. Let X be a locally algebraic
k-scheme. Set Y = XK . Let y ∈ Y be a point with image x ∈ X. Assume that
dim(OX,x) = dim(OY,y) and that κ(x)/k is separable. Choose an isomorphism

κ(x)[[x1, . . . , xn]]/(g1, . . . , gm) −→ O∧
X,x

of k-algebras as in (33.21.1.1). Then we have an isomorphism
κ(y)[[x1, . . . , xn]]/(g1, . . . , gm) −→ O∧

Y,y

of K-algebras as in (33.21.1.1). Here we use κ(x) → κ(y) to view gj as a power
series over κ(y).

Proof. The local ring map OX,x → OY,y induces a local ring map O∧
X,x → O∧

Y,y.
The induced map

κ(x)→ κ(x)[[x1, . . . , xn]]/(g1, . . . , gm)→ O∧
X,x → O∧

Y,y

composed with the projection to κ(y) is the canonical homomorphism κ(x)→ κ(y).
By Lemma 33.5.1 the residue field κ(y) is a localization of κ(x)⊗k K at the kernel
p0 of κ(x) ⊗k K → κ(y). On the other hand, by Lemma 33.5.3 the local ring
(κ(x)⊗k K)p0 is equal to κ(y). Hence the map

κ(x)⊗k K → O∧
Y,y

factors canonically through κ(y). We obtain a commutative diagram

κ(y) // O∧
Y,y

κ(x) //

OO

κ(x)[[x1, . . . , xn]]/(g1, . . . , gm) // O∧
X,x

OO

Let fi ∈ m∧
x ⊂ O∧

X,x be the image of xi. Observe that m∧
x = (f1, . . . , fn) as the

map is surjective. Consider the map
κ(y)[[x1, . . . , xn]] −→ O∧

Y,y, xi 7−→ fi

where here fi really means the image of fi in m∧
y . Since mxOY,y = my by Lemma

33.5.3 we see that the right hand side is complete with respect to (x1, . . . , xn) (use
Algebra, Lemma 10.96.3 to see that it is a complete local ring). Since both sides
are (x1, . . . , xn)-adically complete our map is surjective by Algebra, Lemma 10.96.1
as it is surjective modulo (x1, . . . , xn). Of course the power series g1, . . . , gm are
mapped to zero under this map, as they already map to zero in O∧

X,x. Thus we
have the commutative diagram

κ(y)[[x1, . . . , xn]]/(g1, . . . , gm) // O∧
Y,y

κ(x)[[x1, . . . , xn]]/(g1, . . . , gm) //

OO

O∧
X,x

OO

We still need to show that the top horizontal arrow is an isomorphism. We already
know that it is surjective. We know that OX,x → OY,y is flat (Lemma 33.5.1),
which implies that O∧

X,x → O∧
Y,y is flat (More on Algebra, Lemma 15.43.8). Thus

we may apply Algebra, Lemma 10.99.1 with R = κ(x)[[x1, . . . , xn]]/(g1, . . . , gm),
with S = κ(y)[[x1, . . . , xn]]/(g1, . . . , gm), with M = O∧

Y,y, and with N = S to
conclude that the map is injective. □
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33.22. Global generation

0B5W Some lemmas related to global generation of quasi-coherent modules.

Lemma 33.22.1.0B57 Let X → Spec(A) be a morphism of schemes. Let A ⊂ A′ be a
faithfully flat ring map. Let F be a quasi-coherent OX -module. Then F is globally
generated if and only if the base change FA′ is globally generated.

Proof. More precisely, set XA′ = X ×Spec(A) Spec(A′). Let FA′ = p∗F where
p : XA′ → X is the projection. By Cohomology of Schemes, Lemma 30.5.2 we have
H0(Xk′ ,FA′) = H0(X,F)⊗AA′. Thus if si, i ∈ I are generators for H0(X,F) as an
A-module, then their images in H0(XA′ ,FA′) are generators for H0(XA′ ,FA′) as an
A′-module. Thus we have to show that the map α :

⊕
i∈I OX → F , (fi) 7→

∑
fisi

is surjective if and only if p∗α is surjective. This we may check over an affine open
U = Spec(B) of X. Then F|U corresponds to a B-module M and si|U to elements
xi ∈ M . Thus we have to show that

⊕
i∈I B → M is surjective if and only if the

base change
⊕

i∈I B ⊗A A′ →M ⊗A A′ is surjective. This is true because A→ A′

is faithfully flat. □

Lemma 33.22.2.0B58 Let k be an infinite field. Let X be a scheme of finite type over k.
Let L be a very ample invertible sheaf on X. Let n ≥ 0 and x, x1, . . . , xn ∈ X be
points with x a k-rational point, i.e., κ(x) = k, and x ̸= xi for i = 1, . . . , n. Then
there exists an s ∈ H0(X,L) which vanishes at x but not at xi.

Proof. If n = 0 the result is trivial, hence we assume n > 0. By definition of
a very ample invertible sheaf, the lemma immediately reduces to the case where
X = Pr

k for some r > 0 and L = OX(1). Write Pr
k = Proj(k[T0, . . . , Tr]). Set

V = H0(X,L) = kT0 ⊕ . . .⊕ kTr. Since x is a k-rational point, we see that the set
s ∈ V which vanish at x is a codimension 1 subspace W ⊂ V and that W generates
the homogeneous prime ideal corresponding to x. Since xi ̸= x the corresponding
homogeneous prime pi ⊂ k[T0, . . . , Tr] does not contain W . Since k is infinite, we
then see that W ̸=

⋃
W ∩ qi and the proof is complete. □

Lemma 33.22.3.0B3Z Let k be an infinite field. Let X be an algebraic k-scheme. Let L
be an invertible OX -module. Let V → Γ(X,L) be a linear map of k-vector spaces
whose image generates L. Then there exists a subspace W ⊂ V with dimk(W ) ≤
dim(X) + 1 which generates L.

Proof. Throughout the proof we will use that for every x ∈ X the linear map
ψx : V → Γ(X,L)→ Lx → Lx ⊗OX,x

κ(x)
is nonzero. The proof is by induction on dim(X).
The base case is dim(X) = 0. In this case X has finitely many points X =
{x1, . . . , xn} (see for example Lemma 33.20.2). Since k is infinite there exists a
vector v ∈ V such that ψxi(v) ̸= 0 for all i. Then W = k · v does the job.
Assume dim(X) > 0. Let Xi ⊂ X be the irreducible components of dimension
equal to dim(X). Since X is Noetherian there are only finitely many of these. For
each i pick a point xi ∈ Xi. As above choose v ∈ V such that ψxi(v) ̸= 0 for all i.
Let Z ⊂ X be the zero scheme of the image of v in Γ(X,L), see Divisors, Definition
31.14.8. By construction dim(Z) < dim(X). By induction we can find W ⊂ V with
dim(W ) ≤ dim(X) such that W generates L|Z . Then W + k · v generates L. □
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33.23. Separating points and tangent vectors

0E8R This is just the following result.

Lemma 33.23.1.0E8S Let k be an algebraically closed field. Let X be a proper k-scheme.
Let L be an invertible OX -module. Let V ⊂ H0(X,L) be a k-subvector space. If

(1) for every pair of distinct closed points x, y ∈ X there is a section s ∈ V
which vanishes at x but not at y, and

(2) for every closed point x ∈ X and nonzero tangent vector θ ∈ TX/k,x there
exists a section s ∈ V which vanishes at x but whose pullback by θ is
nonzero,

then L is very ample and the canonical morphism φL,V : X → P(V ) is a closed
immersion.

Proof. Condition (1) implies in particular that the elements of V generate L over
X. Hence we get a canonical morphism

φ = φL,V : X −→ P(V )
by Constructions, Example 27.21.2. The morphism φ is proper by Morphisms,
Lemma 29.41.7. By (1) the map φ is injective on closed points (computation
omitted). In particular, the fibre over any closed point of P(V ) is a singleton
(small detail omitted). Thus we see that φ is finite, for example use Cohomology
of Schemes, Lemma 30.21.2. To finish the proof it suffices to show that the map

φ♯ : OP(V ) −→ φ∗OX
is surjective. This we may check on stalks at closed points. Let x ∈ X be a
closed point with image the closed point p = φ(x) ∈ P(V ). Since φ−1({p}) = {x}
by (1) and since φ is proper (hence closed), we see that φ−1(U) runs through a
fundamental system of open neighbourhoods of x as U runs through a fundamental
system of open neighbourhoods of p. We conclude that on stalks at p we obtain
the map

φ♯x : OP(V ),p −→ OX,x
In particular, OX,x is a finite OP(V ),p-module. Moreover, the residue fields of x
and p are equal to k (as k is algebraically closed – use the Hilbert Nullstellensatz).
Finally, condition (2) implies that the map

TX/k,x −→ TP(V )/k,p

is injective since any nonzero θ in the kernel of this map couldn’t possibly satisfy
the conclusion of (2). In terms of the map of local rings above this means that

mp/m
2
p −→ mx/m

2
x

is surjective, see Lemma 33.16.5. Now the proof is finished by applying Algebra,
Lemma 10.20.3. □

Lemma 33.23.2.0E8T Let k be an algebraically closed field. Let X be a proper k-scheme.
Let L be an invertible OX -module. Suppose that for every closed subscheme Z ⊂ X
of dimension 0 and degree 2 over k the map

H0(X,L) −→ H0(Z,L|Z)
is surjective. Then L is very ample on X over k.
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Proof. This is a reformulation of Lemma 33.23.1. Namely, given distinct closed
points x, y ∈ X taking Z = x ∪ y (viewed as closed subscheme) we get condition
(1) of the lemma. And given a nonzero tangent vector θ ∈ TX/k,x the morphism
θ : Spec(k[ϵ]) → X is a closed immersion. Setting Z = Im(θ) we obtain condition
(2) of the lemma. □

33.24. Closures of products

047A Some results on the relation between closure and products.

Lemma 33.24.1.047B Let k be a field. Let X, Y be schemes over k, and let A ⊂ X,
B ⊂ Y be subsets. Set

AB = {z ∈ X ×k Y | prX(z) ∈ A, prY (z) ∈ B} ⊂ X ×k Y
Then set theoretically we have

A×k B = AB

Proof. The inclusion AB ⊂ A ×k B is immediate. We may replace X and Y by
the reduced closed subschemes A and B. Let W ⊂ X ×k Y be a nonempty open
subset. By Morphisms, Lemma 29.23.4 the subset U = prX(W ) is nonempty open
in X. Hence A ∩ U is nonempty. Pick a ∈ A ∩ U . Denote Yκ(a) = {a} ×k Y
the fibre of prX : X ×k Y → X over a. By Morphisms, Lemma 29.23.4 again the
morphism Ya → Y is open as Spec(κ(a))→ Spec(k) is universally open. Hence the
nonempty open subset Wa = W ×X×kY Ya maps to a nonempty open subset of Y .
We conclude there exists a b ∈ B in the image. Hence AB ∩W ̸= ∅ as desired. □

Lemma 33.24.2.04Q0 Let k be a field. Let f : A → X, g : B → Y be morphisms of
schemes over k. Then set theoretically we have

f(A)×k g(B) = (f × g)(A×k B)

Proof. This follows from Lemma 33.24.1 as the image of f × g is f(A)g(B) in the
notation of that lemma. □

Lemma 33.24.3.04Q1 Let k be a field. Let f : A → X, g : B → Y be quasi-compact
morphisms of schemes over k. Let Z ⊂ X be the scheme theoretic image of f , see
Morphisms, Definition 29.6.2. Similarly, let Z ′ ⊂ Y be the scheme theoretic image
of g. Then Z ×k Z ′ is the scheme theoretic image of f × g.

Proof. Recall that Z is the smallest closed subscheme of X through which f factors.
Similarly for Z ′. Let W ⊂ X×k Y be the scheme theoretic image of f ×g. As f ×g
factors through Z ×k Z ′ we see that W ⊂ Z ×k Z ′.
To prove the other inclusion let U ⊂ X and V ⊂ Y be affine opens. By Mor-
phisms, Lemma 29.6.3 the scheme Z ∩U is the scheme theoretic image of f |f−1(U) :
f−1(U)→ U , and similarly for Z ′ ∩ V and W ∩U ×k V . Hence we may assume X
and Y affine. As f and g are quasi-compact this implies that A =

⋃
Ui is a finite

union of affines and B =
⋃
Vj is a finite union of affines. Then we may replace A

by
∐
Ui and B by

∐
Vj , i.e., we may assume that A and B are affine as well. In

this case Z is cut out by Ker(Γ(X,OX)→ Γ(A,OA)) and similarly for Z ′ and W .
Hence the result follows from the equality

Γ(A×k B,OA×kB) = Γ(A,OA)⊗k Γ(B,OB)
which holds as A and B are affine. Details omitted. □
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33.25. Schemes smooth over fields

04QM Here are two lemmas characterizing smooth schemes over fields.

Lemma 33.25.1.04QN Let k be a field. Let X be a scheme over k. Assume
(1) X is locally of finite type over k,
(2) ΩX/k is locally free, and
(3) k has characteristic zero.

Then the structure morphism X → Spec(k) is smooth.

Proof. This follows from Algebra, Lemma 10.140.7. □

In positive characteristic there exist nonreduced schemes of finite type whose sheaf
of differentials is free, for example Spec(Fp[t]/(tp)) over Spec(Fp). If the ground
field k is nonperfect of characteristic p, there exist reduced schemes X/k with free
ΩX/k which are nonsmooth, for example Spec(k[t]/(tp−a) where a ∈ k is not a pth
power.

Lemma 33.25.2.04QP Let k be a field. Let X be a scheme over k. Assume
(1) X is locally of finite type over k,
(2) ΩX/k is locally free,
(3) X is reduced, and
(4) k is perfect.

Then the structure morphism X → Spec(k) is smooth.

Proof. Let x ∈ X be a point. As X is locally Noetherian (see Morphisms, Lemma
29.15.6) there are finitely many irreducible components X1, . . . , Xn passing through
x (see Properties, Lemma 28.5.5 and Topology, Lemma 5.9.2). Let ηi ∈ Xi be
the generic point. As X is reduced we have OX,ηi = κ(ηi), see Algebra, Lemma
10.25.1. Moreover, κ(ηi) is a finitely generated field extension of the perfect field
k hence separably generated over k (see Algebra, Section 10.42). It follows that
ΩX/k,ηi = Ωκ(ηi)/k is free of rank the transcendence degree of κ(ηi) over k. By
Morphisms, Lemma 29.28.1 we conclude that dimηi(Xi) = rankηi(ΩX/k). Since
x ∈ X1 ∩ . . . ∩Xn we see that

rankx(ΩX/k) = rankηi(ΩX/k) = dim(Xi).
Therefore dimx(X) = rankx(ΩX/k), see Algebra, Lemma 10.114.5. It follows that
X → Spec(k) is smooth at x for example by Algebra, Lemma 10.140.3. □

Lemma 33.25.3.056S Let X → Spec(k) be a smooth morphism where k is a field. Then
X is a regular scheme.

Proof. (See also Lemma 33.12.6.) By Algebra, Lemma 10.140.3 every local ring
OX,x is regular. And because X is locally of finite type over k it is locally Noether-
ian. Hence X is regular by Properties, Lemma 28.9.2. □

Lemma 33.25.4.056T Let X → Spec(k) be a smooth morphism where k is a field. Then
X is geometrically regular, geometrically normal, and geometrically reduced over
k.

Proof. (See also Lemma 33.12.6.) Let k′ be a finite purely inseparable extension
of k. It suffices to prove that Xk′ is regular, normal, reduced, see Lemmas 33.12.3,
33.10.3, and 33.6.5. By Morphisms, Lemma 29.34.5 the morphism Xk′ → Spec(k′)
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is smooth too. Hence it suffices to show that a scheme X smooth over a field is
regular, normal, and reduced. We see that X is regular by Lemma 33.25.3. Hence
Properties, Lemma 28.9.4 guarantees that X is normal. □

Lemma 33.25.5.055T Let k be a field. Let d ≥ 0. Let W ⊂ Ad
k be nonempty open.

Then there exists a closed point w ∈W such that k ⊂ κ(w) is finite separable.

Proof. After possible shrinking W we may assume that W = Ad
k \ V (f) for some

f ∈ k[x1, . . . , xd]. If the lemma is wrong then f(a1, . . . , ad) = 0 for all (a1, . . . , ad) ∈
(ksep)d. This is absurd as ksep is an infinite field. □

Lemma 33.25.6.056U Let k be a field. If X is smooth over Spec(k) then the set
{x ∈ X closed such that k ⊂ κ(x) is finite separable}

is dense in X.

Proof. It suffices to show that given a nonempty smooth X over k there exists at
least one closed point whose residue field is finite separable over k. To see this,
choose a diagram

X Uoo π // Ad
k

with π étale, see Morphisms, Lemma 29.36.20. The morphism π : U → Ad
k is

open, see Morphisms, Lemma 29.36.13. By Lemma 33.25.5 we may choose a closed
point w ∈ π(U) whose residue field is finite separable over k. Pick any x ∈ U with
π(x) = w. By Morphisms, Lemma 29.36.7 the field extension κ(x)/κ(w) is finite
separable. Hence κ(x)/k is finite separable. The point x is a closed point of X by
Morphisms, Lemma 29.20.2. □

Lemma 33.25.7.056V Let X be a scheme over a field k. If X is locally of finite type and
geometrically reduced over k then X contains a dense open which is smooth over
k.

Proof. The problem is local on X, hence we may assume X is quasi-compact. Let
X = X1 ∪ . . .∪Xn be the irreducible components of X. Then Z =

⋃
i ̸=j Xi ∩Xj is

nowhere dense in X. Hence we may replace X by X \Z. As X \Z is a disjoint union
of irreducible schemes, this reduces us to the case where X is irreducible. As X is
irreducible and reduced, it is integral, see Properties, Lemma 28.3.4. Let η ∈ X be
its generic point. Then the function field K = k(X) = κ(η) is geometrically reduced
over k, hence separable over k, see Algebra, Lemma 10.44.1. Let U = Spec(A) ⊂ X
be any nonempty affine open so that K = A(0) is the fraction field of A. Apply
Algebra, Lemma 10.140.5 to conclude that A is smooth at (0) over k. By definition
this means that some principal localization of A is smooth over k and we win. □

Lemma 33.25.8.0B8X Let k be a perfect field. Let X be a locally algebraic reduced
k-scheme, for example a variety over k. Then we have

{x ∈ X | X → Spec(k) is smooth at x} = {x ∈ X | OX,x is regular}
and this is a dense open subscheme of X.

Proof. The equality of the two sets follows immediately from Algebra, Lemma
10.140.5 and the definitions (see Algebra, Definition 10.45.1 for the definition of
a perfect field). The set is open because the set of points where a morphism of
schemes is smooth is open, see Morphisms, Definition 29.34.1. Finally, we give two
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arguments to see that it is dense: (1) The generic points of X are in the set as
the local rings at generic points are fields (Algebra, Lemma 10.25.1) hence regular.
(2) We use that X is geometrically reduced by Lemma 33.6.3 and hence Lemma
33.25.7 applies. □

Lemma 33.25.9.05AX Let k be a field. Let f : X → Y be a morphism of schemes locally
of finite type over k. Let x ∈ X be a point and set y = f(x). If X → Spec(k) is
smooth at x and f is flat at x then Y → Spec(k) is smooth at y. In particular, if
X is smooth over k and f is flat and surjective, then Y is smooth over k.

Proof. It suffices to show that Y is geometrically regular at y, see Lemma 33.12.6.
This follows from Lemma 33.12.5 (and Lemma 33.12.6 applied to (X,x)). □

Lemma 33.25.10.0CDW Let k be a field. Let X be a variety over k which has a k-rational
point x such that X is smooth at x. Then X is geometrically integral over k.

Proof. Let U ⊂ X be the smooth locus of X. By assumption U is nonempty
and hence dense and scheme theoretically dense. Then Uk ⊂ Xk is dense and
scheme theoretically dense as well (some details omitted). Thus it suffices to show
that U is geometrically integral. Because U has a k-rational point it is geometri-
cally connected by Lemma 33.7.14. On the other hand, Uk is reduced and normal
(Lemma 33.25.4. Since a connected normal Noetherian scheme is integral (Proper-
ties, Lemma 28.7.6) the proof is complete. □

Lemma 33.25.11.0H3W Let X be a scheme of finite type over a field k. There exists a
finite purely inseparable extension k′/k, an integer t ≥ 0, and closed subschemes

Xk′ ⊃ Z0 ⊃ Z1 ⊃ . . . ⊃ Zt = ∅
such that Z0 = (Xk′)red and Zi \ Zi+1 is smooth over k′ for all i.

Proof. We may use induction on dim(X). By Lemma 33.6.11 we can find a finite
purely inseparable extension k′/k such that (Xk′)red is geometrically reduced over
k′. By Lemma 33.25.7 there is a nowhere dense closed subscheme X ′ ⊂ (Xk′)red
such that (Xk′)red \X ′ is smooth over k′. Then dim(X ′) < dim(X). By induction
hypothesis there exists a finite purely inseparable extension k′′/k′, an integer t′ ≥ 0,
and closed subschemes

X ′
k′′ ⊃ Y0 ⊃ Y1 ⊃ . . . ⊃ Yt′ = ∅

such that Y0 = (X ′
k′′)red and Yi \ Yi+1 is smooth over k′′ for all i. Then we let

t = t′ + 1 and we consider
Xk′′ ⊃ Z0 ⊃ Z1 ⊃ . . . ⊃ Zt = ∅

given by Z0 = (Xk′′)red and Zi = Yi−1 for i > 0; this makes sense as X ′
k′′ is a

closed subscheme of Xk′′ . We omit the verification that all the stated properties
hold. □

33.26. Types of varieties

04L0 Short section discussion some elementary global properties of varieties.

Definition 33.26.1.04L1 Let k be a field. Let X be a variety over k.
(1) We say X is an affine variety if X is an affine scheme. This is equivalent

to requiring X to be isomorphic to a closed subscheme of An
k for some n.
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(2) We say X is a projective variety if the structure morphism X → Spec(k)
is projective. By Morphisms, Lemma 29.43.4 this is true if and only if X
is isomorphic to a closed subscheme of Pn

k for some n.
(3) We say X is a quasi-projective variety if the structure morphism X →

Spec(k) is quasi-projective. By Morphisms, Lemma 29.40.6 this is true if
and only if X is isomorphic to a locally closed subscheme of Pn

k for some
n.

(4) A proper variety is a variety such that the morphism X → Spec(k) is
proper.

(5) A smooth variety is a variety such that the morphism X → Spec(k) is
smooth.

Note that a projective variety is a proper variety, see Morphisms, Lemma 29.43.5.
Also, an affine variety is quasi-projective as An

k is isomorphic to an open subscheme
of Pn

k , see Constructions, Lemma 27.13.3.
Lemma 33.26.2.04L2 Let X be a proper variety over k. Then

(1) K = H0(X,OX) is a field which is a finite extension of the field k,
(2) if X is geometrically reduced, then K/k is separable,
(3) if X is geometrically irreducible, then K/k is purely inseparable,
(4) if X is geometrically integral, then K = k.

Proof. This is a special case of Lemma 33.9.3. □

33.27. Normalization

0BXQ Some issues associated to normalization.
Lemma 33.27.1.0BXR Let k be a field. Let X be a locally algebraic scheme over k. Let
ν : Xν → X be the normalization morphism, see Morphisms, Definition 29.54.1.
Then

(1) ν is finite, dominant, and Xν is a disjoint union of normal irreducible
locally algebraic schemes over k,

(2) ν factors as Xν → Xred → X and the first morphism is the normalization
morphism of Xred,

(3) if X is a reduced algebraic scheme, then ν is birational,
(4) if X is a variety, then Xν is a variety and ν is a finite birational morphism

of varieties.
Proof. Since X is locally of finite type over a field, we see that X is locally Noether-
ian (Morphisms, Lemma 29.15.6) hence every quasi-compact open has finitely many
irreducible components (Properties, Lemma 28.5.7). Thus Morphisms, Definition
29.54.1 applies. The normalization Xν is always a disjoint union of normal integral
schemes and the normalization morphism ν is always dominant, see Morphisms,
Lemma 29.54.5. Since X is universally Nagata (Morphisms, Lemma 29.18.2) we
see that ν is finite (Morphisms, Lemma 29.54.10). Hence Xν is locally algebraic
too. At this point we have proved (1).
Part (2) is Morphisms, Lemma 29.54.2.
Part (3) is Morphisms, Lemma 29.54.7.
Part (4) follows from (1), (2), (3), and the fact that Xν is separated as a scheme
finite over a separated scheme. □
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Lemma 33.27.2.0GK4 Let k be a field. Let X be a proper scheme over k. Let ν : Xν → X
be the normalization morphism, see Morphisms, Definition 29.54.1. Then Xν is
proper over k. If X is projective over k, then Xν is projective over k.

Proof. By Lemma 33.27.1 the morphism ν is finite. Hence Xν is proper over
k by Morphisms, Lemmas 29.44.11 and 29.41.4. The morphism ν is projective
by Morphisms, Lemma 29.44.16 and hence if X is projective over k, then Xν is
projective over k by Morphisms, Lemma 29.43.14. □

Lemma 33.27.3.0BXS Let k be a field. Let f : Y → X be a quasi-compact morphism of
locally algebraic schemes over k. Let X ′ be the normalization of X in Y . If Y is
reduced, then X ′ → X is finite.

Proof. Since Y is quasi-separated (by Properties, Lemma 28.5.4 and Morphisms,
Lemma 29.15.6) the morphism f is quasi-separated (Schemes, Lemma 26.21.13).
Hence Morphisms, Definition 29.53.3 applies. The result follows from Morphisms,
Lemma 29.53.14. This uses that locally algebraic schemes are locally Noetherian
(hence have locally finitely many irreducible components) and that locally algebraic
schemes are Nagata (Morphisms, Lemma 29.18.2). Some small details omitted. □

Lemma 33.27.4.0BXT Let k be a field. Let X be an algebraic k-scheme. Then there
exists a finite purely inseparable extension k′/k such that the normalization Y of
Xk′ is geometrically normal over k′.

Proof. Let K = kperf be the perfect closure. Let YK be the normalization of XK ,
see Lemma 33.27.1. By Limits, Lemma 32.10.1 there exists a finite sub extension
K/k′/k and a morphism ν : Y → Xk′ of finite presentation whose base change to
K is the normalization morphism νK : YK → XK . Observe that Y is geometrically
normal over k′ (Lemma 33.10.3). After increasing k′ we may assume Y → Xk′ is
finite (Limits, Lemma 32.8.3). Since νK : YK → XK is the normalization morphism,
it induces a birational morphism YK → (XK)red. Hence there is a dense open VK ⊂
XK such that ν−1

K (VK) → VK is a closed immersion (inducing an isomorphism of
ν−1
K (VK) with VK,red, see for example Morphisms, Lemma 29.51.6). After increasing
k′ we find VK is the base change of a dense open V ⊂ Y and the morphism
ν−1(V )→ V is a closed immersion (Limits, Lemmas 32.4.11 and 32.8.5). It follows
readily from this that ν is the normalization morphism and the proof is complete.

□

Lemma 33.27.5.0C3N Let k be a field. Let X be a locally algebraic k-scheme. Let
K/k be an extension of fields. Let ν : Xν → X be the normalization of X and let
Y ν → XK be the normalization of the base change. Then the canonical morphism

Y ν −→ Xν ×Spec(k) Spec(K)

is an isomorphism if K/k is separable and a universal homeomorphism in general.

Proof. Set Y = XK . Let X(0), resp. Y (0) be the set of generic points of irreducible
components of X, resp. Y . Then the projection morphism π : Y → X satisfies
π(Y (0)) = X(0). This is true because π is surjective, open, and generizing, see
Morphisms, Lemmas 29.23.4 and 29.23.5. If we view X(0), resp. Y (0) as (reduced)
schemes, then Xν , resp. Y ν is the normalization of X, resp. Y in X(0), resp.
Y (0). Thus Morphisms, Lemma 29.53.5 gives a canonical morphism Y ν → Xν
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over Y → X which in turn gives the canonical morphism of the lemma by the
universal property of the fibre product.

To prove this morphism has the properties stated in the lemma we may assume
X = Spec(A) is affine. Let Q(Ared) be the total ring of fractions of Ared. Then Xν

is the spectrum of the integral closure A′ of A in Q(Ared), see Morphisms, Lemmas
29.54.2 and 29.54.3. Similarly, Y ν is the spectrum of the integral closure B′ of
A⊗k K in Q((A⊗k K)red). There is a canonical map Q(Ared)→ Q((A⊗k K)red),
a canonical map A′ → B′, and the morphism of the lemma corresponds to the
induced map

A′ ⊗k K −→ B′

of K-algebras. The kernel consists of nilpotent elements as the kernel of Q(Ared)⊗k
K → Q((A⊗k K)red) is the set of nilpotent elements.

If K/k is separable, then A′ ⊗k K is normal by Lemma 33.10.6. In particular it is
reduced, whence Q((A ⊗k K)red) = Q(A′ ⊗k K) and B′ = A′ ⊗k K by Algebra,
Lemma 10.37.16.

Assume K/k is not separable. Then the characteristic of k is p > 0. We will
show that for every b ∈ B′ there is a power q of p such that bq is in the image of
A′ ⊗k K. This will prove that the displayed map is a universal homeomorphism
by Algebra, Lemma 10.46.7. For a given b there is a subfield F ⊂ K with F/k
finitely generated such that b is contained in Q((A ⊗k F )red) and is integral over
A ⊗k F . Choose a monic polynomial P = T d + α1T

d−1 + . . . + αd with P (b) = 0
and αi ∈ A ⊗k F . Choose a transcendence basis t1, . . . , tr for F over k. Let
F/F ′/k(t1, . . . , tr) be the maximal separable subextension (Fields, Lemma 9.14.6).
Since F/F ′ is finite purely inseparable, there is a q such that λq ∈ F ′ for all λ ∈ F .
Then bq is in Q((A⊗k F ′)red) and satisfies the polynomial T d +αq1T

d−1 + . . .+ αqd
with αqi ∈ A⊗k F ′. By the separable case we see that bq ∈ A′ ⊗k F ′ and the proof
is complete. □

Lemma 33.27.6.0C3P Let k be a field. Let X be a locally algebraic k-scheme. Let
ν : Xν → X be the normalization of X. Let x ∈ X be a point such that (a)
OX,x is reduced, (b) dim(OX,x) = 1, and (c) for every x′ ∈ Xν with ν(x′) = x the
extension κ(x′)/k is separable. Then X is geometrically reduced at x and Xν is
geometrically regular at x′ with ν(x′) = x.

Proof. We will use the results of Lemma 33.27.1 without further mention. Let x′ ∈
Xν be a point over x. By dimension theory (Section 33.20) we have dim(OXν ,x′) =
1. Since Xν is normal, we see that OXν ,x′ is a discrete valuation ring (Properties,
Lemma 28.12.5). Thus OXν ,x′ is a regular local k-algebra whose residue field is
separable over k. Hence k → OXν ,x′ is formally smooth in the mx′ -adic topology,
see More on Algebra, Lemma 15.38.5. Then OXν ,x′ is geometrically regular over k
by More on Algebra, Theorem 15.40.1. Thus Xν is geometrically regular at x′ by
Lemma 33.12.2.

Since OX,x is reduced, the family of maps OX,x → OXν ,x′ is injective. Since
OXν ,x′ is a geometrically reduced k-algebra, it follows immediately that OX,x is a
geometrically reduced k-algebra. Hence X is geometrically reduced at x by Lemma
33.6.2. □

https://stacks.math.columbia.edu/tag/0C3P


33.28. GROUPS OF INVERTIBLE FUNCTIONS 2822

33.28. Groups of invertible functions

04L3 It is often (but not always) the case that O∗(X)/k∗ is a finitely generated abelian
group if X is a variety over k. We show this by a series of lemmas. Everything
rests on the following special case.

Lemma 33.28.1.04L4 Let k be an algebraically closed field. Let X be a proper variety
over k. Let X ⊂ X be an open subscheme. Assume X is normal. Then O∗(X)/k∗

is a finitely generated abelian group.

Proof. Since the statement only concerns X, we may replace X by a different
proper variety over k. Let ν : Xν → X be the normalization morphism. By
Lemma 33.27.1 we have that ν is finite and Xν is a variety. Since X is normal, we
see that ν−1(X)→ X is an isomorphism (tiny detail omitted). Finally, we see that
X
ν is proper over k as a finite morphism is proper (Morphisms, Lemma 29.44.11)

and compositions of proper morphisms are proper (Morphisms, Lemma 29.41.4).
Thus we may and do assume X is normal.

We will use without further mention that for any affine open U of X the ring O(U)
is a finitely generated k-algebra, which is Noetherian, a domain and normal, see
Algebra, Lemma 10.31.1, Properties, Definition 28.3.1, Properties, Lemmas 28.5.2
and 28.7.2, Morphisms, Lemma 29.15.2.

Let ξ1, . . . , ξr be the generic points of the complement of X in X. There are
finitely many since X has a Noetherian underlying topological space (see Mor-
phisms, Lemma 29.15.6, Properties, Lemma 28.5.5, and Topology, Lemma 5.9.2).
For each i the local ring Oi = OX,ξi is a normal Noetherian local domain (as a lo-
calization of a Noetherian normal domain). Let J ⊂ {1, . . . , r} be the set of indices
i such that dim(Oi) = 1. For j ∈ J the local ring Oj is a discrete valuation ring,
see Algebra, Lemma 10.119.7. Hence we obtain a valuation

vj : k(X)∗ −→ Z

with the property that vj(f) ≥ 0⇔ f ∈ Oj .

Think of O(X) as a sub k-algebra of k(X) = k(X). We claim that the kernel of
the map

O(X)∗ −→
∏

j∈J
Z, f 7−→

∏
vj(f)

is k∗. It is clear that this claim proves the lemma. Namely, suppose that f ∈
O(X) is an element of the kernel. Let U = Spec(B) ⊂ X be any affine open.
Then B is a Noetherian normal domain. For every height one prime q ⊂ B with
corresponding point ξ ∈ X we see that either ξ = ξj for some j ∈ J or that ξ ∈ X.
The reason is that codim({ξ}, X) = 1 by Properties, Lemma 28.10.3 and hence if
ξ ∈ X \ X it must be a generic point of X \ X, hence equal to some ξj , j ∈ J .
We conclude that f ∈ OX,ξ = Bq in either case as f is in the kernel of the map.
Thus f ∈

⋂
ht(q)=1 Bq = B, see Algebra, Lemma 10.157.6. In other words, we see

that f ∈ Γ(X,OX). But since k is algebraically closed we conclude that f ∈ k by
Lemma 33.26.2. □

Next, we generalize the case above by some elementary arguments, still keeping the
field algebraically closed.
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Lemma 33.28.2.04L5 Let k be an algebraically closed field. Let X be an integral scheme
locally of finite type over k. Then O∗(X)/k∗ is a finitely generated abelian group.

Proof. As X is integral the restriction mapping O(X)→ O(U) is injective for any
nonempty open subscheme U ⊂ X. Hence we may assume that X is affine. Choose
a closed immersion X → An

k and denote X the closure of X in Pn
k via the usual

immersion An
k → Pn

k . Thus we may assume that X is an affine open of a projective
variety X.

Let ν : Xν → X be the normalization morphism, see Morphisms, Definition 29.54.1.
We know that ν is finite, dominant, and that Xν is a normal irreducible scheme, see
Morphisms, Lemmas 29.54.5, 29.54.9, and 29.18.2. It follows that Xν is a proper
variety, because X → Spec(k) is proper as a composition of a finite and a proper
morphism (see results in Morphisms, Sections 29.41 and 29.44). It also follows that
ν is a surjective morphism, because the image of ν is closed and contains the generic
point of X. Hence setting Xν = ν−1(X) we see that it suffices to prove the result
for Xν . In other words, we may assume that X is a nonempty open of a normal
proper variety X. This case is handled by Lemma 33.28.1. □

The preceding lemma implies the following slight generalization.

Lemma 33.28.3.04L6 Let k be an algebraically closed field. Let X be a connected
reduced scheme which is locally of finite type over k with finitely many irreducible
components. Then O∗(X)/k∗ is a finitely generated abelian group.

Proof. Let X =
⋃
Xi be the irreducible components. By Lemma 33.28.2 we see

that O(Xi)∗/k∗ is a finitely generated abelian group. Let f ∈ O(X)∗ be in the
kernel of the map

O(X)∗ −→
∏
O(Xi)∗/k∗.

Then for each i there exists an element λi ∈ k such that f |Xi = λi. By restricting
to Xi ∩ Xj we conclude that λi = λj if Xi ∩ Xj ̸= ∅. Since X is connected we
conclude that all λi agree and hence that f ∈ k∗. This proves that

O(X)∗/k∗ ⊂
∏
O(Xi)∗/k∗

and the lemma follows as on the right we have a product of finitely many finitely
generated abelian groups. □

Lemma 33.28.4.04MI Let k be a field. Let X be a scheme over k which is connected
and reduced. Then the integral closure of k in Γ(X,OX) is a field.

Proof. Let k′ ⊂ Γ(X,OX) be the integral closure of k. Then X → Spec(k) factors
through Spec(k′), see Schemes, Lemma 26.6.4. As X is reduced we see that k′

has no nonzero nilpotent elements. As k → k′ is integral we see that every prime
ideal of k′ is both a maximal ideal and a minimal prime, and Spec(k′) is totally
disconnected, see Algebra, Lemmas 10.36.20 and 10.26.5. As X is connected the
morphism X → Spec(k′) is constant, say with image the point corresponding to
p ⊂ k′. Then any f ∈ k′, f ̸∈ p maps to an invertible element of OX . By definition
of k′ this then forces f to be a unit of k′. Hence we see that k′ is local with maximal
ideal p, see Algebra, Lemma 10.18.2. Since we’ve already seen that k′ is reduced
this implies that k′ is a field, see Algebra, Lemma 10.25.1. □
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Proposition 33.28.5.04L7 Let k be a field. Let X be a scheme over k. Assume that X is
locally of finite type over k, connected, reduced, and has finitely many irreducible
components. Then O(X)∗/k∗ is a finitely generated abelian group if in addition to
the conditions above at least one of the following conditions is satisfied:

(1) the integral closure of k in Γ(X,OX) is k,
(2) X has a k-rational point, or
(3) X is geometrically integral.

Proof. Let k be an algebraic closure of k. Let Y be a connected component of
(Xk)red. Note that the canonical morphism p : Y → X is open (by Morphisms,
Lemma 29.23.4) and closed (by Morphisms, Lemma 29.44.7). Hence p(Y ) = X as
X was assumed connected. In particular, as X is reduced this implies O(X) ⊂
O(Y ). By Lemma 33.8.14 we see that Y has finitely many irreducible components.
Thus Lemma 33.28.3 applies to Y . This implies that if O(X)∗/k∗ is not a finitely
generated abelian group, then there exist elements f ∈ O(X), f ̸∈ k which map
to an element of k via the map O(X) → O(Y ). In this case f is algebraic over k,
hence integral over k. Thus, if condition (1) holds, then this cannot happen. To
finish the proof we show that conditions (2) and (3) imply (1).
Let k ⊂ k′ ⊂ Γ(X,OX) be the integral closure of k in Γ(X,OX). By Lemma
33.28.4 we see that k′ is a field. If e : Spec(k) → X is a k-rational point, then
e♯ : Γ(X,OX) → k is a section to the inclusion map k → Γ(X,OX). In particular
the restriction of e♯ to k′ is a field map k′ → k over k, which clearly shows that (2)
implies (1).
If the integral closure k′ of k in Γ(X,OX) is not trivial, then we see that X is either
not geometrically connected (if k′/k is not purely inseparable) or that X is not
geometrically reduced (if k′/k is nontrivial purely inseparable). Details omitted.
Hence (3) implies (1). □

Lemma 33.28.6.04L8 Let k be a field. Let X be a variety over k. The group O(X)∗/k∗

is a finitely generated abelian group provided at least one of the following conditions
holds:

(1) k is integrally closed in Γ(X,OX),
(2) k is algebraically closed in k(X),
(3) X is geometrically integral over k, or
(4) k is the “intersection” of the field extensions κ(x)/k where x runs over the

closed points of x.
Proof. We see that (1) is enough by Proposition 33.28.5. We omit the verification
that each of (2), (3), (4) implies (1). □

33.29. Künneth formula, I

0BEC In this section we prove the Künneth formula when the base is a field and we are
considering cohomology of quasi-coherent modules. For a more general version,
please see Derived Categories of Schemes, Section 36.23.
Lemma 33.29.1.0BED Let k be a field. Let X and Y be schemes over k and let F , resp.
G be a quasi-coherent OX -module, resp. OY -module. Then we have a canonical
isomorphism
Hn(X ×Spec(k) Y,pr∗

1F ⊗OX×Spec(k)Y
pr∗

2G) =
⊕

p+q=n
Hp(X,F)⊗k Hq(Y,G)

https://stacks.math.columbia.edu/tag/04L7
https://stacks.math.columbia.edu/tag/04L8
https://stacks.math.columbia.edu/tag/0BED
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provided X and Y are quasi-compact and have affine diagonal3 (for example if X
and Y are separated).
Proof. In this proof unadorned products and tensor products are over k. As maps

Hp(X,F)⊗Hq(Y,G) −→ Hn(X × Y,pr∗
1F ⊗OX×Y pr∗

2G)
we use functoriality of cohomology to get maps Hp(X,F)→ Hp(X ×Y,pr∗

1F) and
Hp(Y,G)→ Hp(X × Y, pr∗

2G) and then we use the cup product
∪ : Hp(X × Y,pr∗

1F)⊗Hq(X × Y,pr∗
2G) −→ Hn(X × Y, pr∗

1F ⊗OX×Y pr∗
2G)

The result is true when X and Y are affine by the vanishing of higher cohomology
groups on affines (Cohomology of Schemes, Lemma 30.2.2) and the definitions (of
pullbacks of quasi-coherent modules and tensor products of quasi-coherent mod-
ules).
Choose finite affine open coverings U : X =

⋃
i∈I Ui and V : Y =

⋃
j∈J Vj . This

determines an affine open covering W : X × Y =
⋃

(i,j)∈I×J Ui × Vj . Note that W
is a refinement of pr−1

1 U and of pr−1
2 V. Thus by Cohomology, Lemma 20.15.1 we

obtain maps
Č•(U ,F)→ Č•(W,pr∗

1F) and Č•(V,G)→ Č•(W,pr∗
2G)

compatible with pullback maps on cohomology. In Cohomology, Equation (20.25.3.2)
we have constructed a map of complexes

Tot(Č•(W,pr∗
1F)⊗ Č•(W,pr∗

2G)) −→ Č•(W,pr∗
1F ⊗OX×Y pr∗

2G)
defining the cup product on cohomology. Combining the above we obtain a map of
complexes
(33.29.1.1)0BEE Tot(Č•(U ,F)⊗ Č•(V,G)) −→ Č•(W,pr∗

1F ⊗OX×Y pr∗
2G)

We warn the reader that this map is not an isomorphism of complexes. Recall that
we may compute the cohomologies of our quasi-coherent sheaves using our cover-
ings (Cohomology of Schemes, Lemmas 30.2.5 and 30.2.6). Thus on cohomology
(33.29.1.1) reproduces the map of the lemma.
Consider a short exact sequence 0→ F → F ′ → F ′′ → 0 of quasi-coherent modules.
Since the construction of (33.29.1.1) is functorial in F and since the formation of the
relevant Čech complexes is exact in the variable F (because we are taking sections
over affine opens) we find a map between short exact sequence of complexes

Tot(Č•(U ,F)⊗ Č•(V,G)) //

��

Tot(Č•(U ,F ′)⊗ Č•(V,G)) //

��

Tot(Č•(U ,F ′′)⊗ Č•(V,G))

��
Č•(W,pr∗

1F ⊗OX×Y pr∗
2G) // Č•(W,pr∗

1F ′ ⊗OX×Y pr∗
2G) // Č•(W,pr∗

1F ′′ ⊗OX×Y pr∗
2G)

(we have dropped the outer zeros). Looking at long exact cohomology sequences
we find that if the result of the lemma holds for 2-out-of-3 of F ,F ′,F ′′, then it
holds for the third.
Observe that X has finite cohomological dimension for quasi-coherent modules,
see Cohomology of Schemes, Lemma 30.4.2. Using induction on d(F) = max{d |
Hd(X,F) ̸= 0} we will reduce to the case d(F) = 0. Assume d(F) > 0. By

3The case where X and Y are quasi-separated will be discussed in Lemma 33.29.2 below.
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Cohomology of Schemes, Lemma 30.4.3 we have seen that there exists an embedding
F → F ′ such that Hp(X,F ′) = 0 for all p ≥ 1. Setting F ′′ = Coker(F → F ′) we see
that d(F ′′) < d(F). Then we can apply the result from the previous paragraph to
see that it suffices to prove the lemma for F ′ and F ′′ thereby proving the induction
step.

Arguing in the same fashion for G we find that we may assume that both F and G
have nonzero cohomology only in degree 0. Let V ⊂ Y be an affine open. Consider
the affine open covering UV : X × V =

⋃
i∈I Ui × V . It is immediate that

Č•(U ,F)⊗ G(V ) = Č•(UV ,pr∗
1F ⊗OX×Y pr∗

2G)

(equality of complexes). We conclude that

Rpr2,∗(pr∗
1F ⊗OX×Y pr∗

2G) ∼= Γ(X,F)⊗k G ∼=
⊕

α∈A
G

on Y . Here A is a basis for the k-vector space Γ(X,F). Cohomology on Y commutes
with direct sums (Cohomology, Lemma 20.19.1). Using the Leray spectral sequence
for pr2 (via Cohomology, Lemma 20.13.6) we conclude that Hn(X×Y,pr∗

1F⊗OX×Y

pr∗
2G) is zero for n > 0 and isomorphic to H0(X,F) ⊗ H0(Y,G) for n = 0. This

finishes the proof (except that we should check that the isomorphism is indeed given
by cup product in degree 0; we omit the verification). □

Lemma 33.29.2.0BEF Let k be a field. Let X and Y be schemes over k and let F , resp.
G be a quasi-coherent OX -module, resp. OY -module. Then we have a canonical
isomorphism

Hn(X ×Spec(k) Y,pr∗
1F ⊗OX×Spec(k)Y

pr∗
2G) =

⊕
p+q=n

Hp(X,F)⊗k Hq(Y,G)

provided X and Y are quasi-compact and quasi-separated.

Proof. If X and Y are separated or more generally have affine diagonal, then please
see Lemma 33.29.1 for “better” proof (the feature it has over this proof is that it
identifies the maps as pullbacks followed by cup products). Let X ′, resp. Y ′ be
the infinitesimal thickening of X, resp. Y whose structure sheaf is OX′ = OX ⊕F ,
resp. OY ′ = OY ⊕ G where F , resp. G is an ideal of square zero. Then

OX′×Y ′ = OX×Y ⊕ pr∗
1F ⊕ pr∗

2G ⊕ pr∗
1F ⊗OX×Y pr∗

2G

as sheaves on X × Y . In this way we see that it suffices to prove that

Hn(X × Y,OX×Y ) =
⊕

p+q=n
Hp(X,OX)⊗k Hq(Y,OY )

for any pair of quasi-compact and quasi-separated schemes over k. Some details
omitted.

To prove this statement we use cohomology and base change in the form of Co-
homology of Schemes, Lemma 30.7.3. This lemma tells us there exists a bounded
below complex of k-vector spaces, i.e., a complex K• of quasi-coherent modules
on Spec(k), which universally computes the cohomology of Y over Spec(k). In
particular, we see that

Rpr1,∗(OX×Y ) ∼= (X → Spec(k))∗K•

https://stacks.math.columbia.edu/tag/0BEF
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in D(OX). Up to homotopy the complex K• is isomorphic to
⊕

q≥0 H
q(Y,OY )[−q]

because this is true for every complex of vector spaces over a field. We conclude
that

Rpr1,∗(OX×Y ) ∼=
⊕

q≥0
Hq(Y,OY )[−q]⊗k OX

in D(OX). Then we have
RΓ(X × Y,OX×Y ) = RΓ(X,Rpr1,∗(OX×Y ))

= RΓ(X,
⊕

q≥0
Hq(Y,OY )[−q]⊗k OX)

=
⊕

q≥0
RΓ(X,Hq(Y,OY )⊗OX)[−q]

=
⊕

q≥0
RΓ(X,OX)⊗k Hq(Y,OY )[−q]

=
⊕

p,q≥0
Hp(X,OX)[−p]⊗k Hq(Y,OY )[−q]

as desired. The first equality by Leray for pr1 (Cohomology, Lemma 20.13.1). The
second by our decomposition of the total direct image given above. The third be-
cause cohomology always commutes with finite direct sums (and cohomology of Y
vanishes in sufficiently large degree by Cohomology of Schemes, Lemma 30.4.4).
The fourth because cohomology on X commutes with infinite direct sums by Coho-
mology, Lemma 20.19.1. The final equality by our remark on the derived category
of a field above. □

33.30. Picard groups of varieties

0BEG In this section we collect some elementary results on Picard groups of algebraic
varieties.

Lemma 33.30.1.0CDX Let A → B be a faithfully flat ring map. Let X be a quasi-
compact and quasi-separated scheme over A. Let L be an invertible OX -module
whose pullback to XB is trivial. Then H0(X,L) and H0(X,L⊗−1) are invertible
H0(X,OX)-modules and the multiplication map induces an isomorphism

H0(X,L)⊗H0(X,OX) H
0(X,L⊗−1) −→ H0(X,OX)

Proof. Denote LB the pullback of L to XB . Choose an isomorphism LB → OXB .
Set R = H0(X,OX), M = H0(X,L) and think of M as an R-module. For every
quasi-coherent OX -module F with pullback FB on XB there is a canonical isomor-
phism H0(XB ,FB) = H0(X,F)⊗AB, see Cohomology of Schemes, Lemma 30.5.2.
Thus we have

M ⊗R (R⊗A B) = M ⊗A B = H0(XB ,LB) ∼= H0(XB ,OXB ) = R⊗A B
Since R → R ⊗A B is faithfully flat (as the base change of the faithfully flat map
A → B), we conclude that M is an invertible R-module by Algebra, Proposition
10.83.3. Similarly N = H0(X,L⊗−1) is an invertible R-module. To see that the
statement on tensor products is true, use that it is true after pulling back to XB

and faithful flatness of R→ R⊗A B. Some details omitted. □

Lemma 33.30.2.0CDY Let A→ B be a faithfully flat ring map. Let X be a scheme over
A such that

(1) X is quasi-compact and quasi-separated, and
(2) R = H0(X,OX) is a semi-local ring.

https://stacks.math.columbia.edu/tag/0CDX
https://stacks.math.columbia.edu/tag/0CDY
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Then the pullback map Pic(X)→ Pic(XB) is injective.

Proof. Let L be an invertible OX -module whose pullback L′ to XB is trivial. Set
M = H0(X,L) and N = H0(X,L⊗−1). By Lemma 33.30.1 the R-modules M and
N are invertible. Since R is semi-local M ∼= R and N ∼= R, see Algebra, Lemma
10.78.7. Choose generators s ∈M and t ∈ N . Then st ∈ R = H0(X,OX) is a unit
by the last part of Lemma 33.30.1. We conclude that s and t define trivializations
of L and L⊗−1 over X. □

Lemma 33.30.3.0CC5 Let k′/k be a field extension. Let X be a scheme over k such that
(1) X is quasi-compact and quasi-separated, and
(2) R = H0(X,OX) is semi-local, e.g., if dimk R <∞.

Then the pullback map Pic(X)→ Pic(Xk′) is injective.

Proof. Special case of Lemma 33.30.2. If dimk R < ∞, then R is Artinian and
hence semi-local (Algebra, Lemmas 10.53.2 and 10.53.3). □

Example 33.30.4.0CDP Lemma 33.30.3 is not true without some condition on the scheme
X over the field k. Here is an example. Let k be a field. Let t ∈ P1

k be a closed
point. Set X = P1 \ {t}. Then we have a surjection

Z = Pic(P1
k) −→ Pic(X)

The first equality by Divisors, Lemma 31.28.5 and surjective by Divisors, Lemma
31.28.3 (as P1

k is smooth of dimension 1 over k and hence all its local rings are
discrete valuation rings). If L is in the kernel of the displayed map, then L ∼=
OP1

k
(nt) for some n ∈ Z. We leave it to the reader to show that OP1

k
(t) ∼= OP1

k
(d)

where d = [κ(t) : k]. Hence
Pic(X) = Z/dZ

Thus if t is not a k-rational point, then d > 1 and this Picard group is nonzero.
On the other hand, if we extend the ground field k to any field extension k′ such
that there exists a k-embedding κ(t) → k′, then P1

k′ \Xk′ has a k′-rational point
t′. Hence OP1

k′
(1) = OP1

k′
(t′) will be in the kernel of the map Z→ Pic(Xk′) and it

will follow in the same manner as above that Pic(Xk′) = 0.

The following lemma tells us that “rationally equivalence invertible modules” are
isomorphic on normal varieties.

Lemma 33.30.5.0BEH Let k be a field. Let X be a normal variety over k. Let U ⊂ An
k be

an open subscheme with k-rational points p, q ∈ U(k). For every invertible module
L on X ×Spec(k) U the restrictions L|X×p and L|X×q are isomorphic.

Proof. The fibres of X ×Spec(k) U → X are open subschemes of affine n-space over
fields. Hence these fibres have trivial Picard groups by Divisors, Lemma 31.28.4.
Applying Divisors, Lemma 31.28.1 we see that L is the pullback of an invertible
module N on X. □

33.31. Uniqueness of base field

04MJ The phrase “let X be a scheme over k” means that X is a scheme which comes
equipped with a morphism X → Spec(k). Now we can ask whether the field k is
uniquely determined by the scheme X. Of course this is not the case, since for
example A1

C which we ordinarily consider as a scheme over the field C of complex

https://stacks.math.columbia.edu/tag/0CC5
https://stacks.math.columbia.edu/tag/0CDP
https://stacks.math.columbia.edu/tag/0BEH
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numbers, could also be considered as a scheme over Q. But what if we ask that
the morphism X → Spec(k) does not factor as X → Spec(k′) → Spec(k) for any
nontrivial field extension k′/k? In other words we ask that k is somehow maximal
such that X lives over k.

An example to show that this still does not guarantee uniqueness of k is the scheme

X = Spec
(

Q(x)[y]
[

1
P (y) , P ∈ Q[y], P ̸= 0

])
At first sight this seems to be a scheme over Q(x), but on a second look it is clear
that it is also a scheme over Q(y). Moreover, the fields Q(x) and Q(y) are subfields
of R = Γ(X,OX) which are maximal among the subfields of R (details omitted).
In particular, both Q(x) and Q(y) are maximal in the sense above. Note that
both morphisms X → Spec(Q(x)) and X → Spec(Q(y)) are “essentially of finite
type” (i.e., the corresponding ring map is essentially of finite type). Hence X is a
Noetherian scheme of finite dimension, i.e., it is not completely pathological.

Another issue that can prevent uniqueness is that the scheme X may be nonreduced.
In that case there can be many different morphisms from X to the spectrum of a
given field. As an explicit example consider the dual numbers D = C[y]/(y2) =
C⊕ ϵC. Given any derivation θ : C→ C over Q we get a ring map

C −→ D, c 7−→ c+ ϵθ(c).

The subfield of C on which all of these maps are the same is the algebraic closure
of Q. This means that taking the intersection of all the fields that X can live over
may end up being a very small field if X is nonreduced.

One observation in this regard is the following: given a field k and two subfields
k1, k2 of k such that k is finite over k1 and over k2, then in general it is not the
case that k is finite over k1 ∩ k2. An example is the field k = Q(t) and its subfields
k1 = Q(t2) and Q((t + 1)2). Namely we have k1 ∩ k2 = Q in this case. So in the
following we have to be careful when taking intersections of fields.

Having said all of this we now show that if X is locally of finite type over a field,
then some uniqueness holds. Here is the precise result.

Proposition 33.31.1.04MK Let X be a scheme. Let a : X → Spec(k1) and b : X →
Spec(k2) be morphisms from X to spectra of fields. Assume a, b are locally of
finite type, and X is reduced, and connected. Then we have k′

1 = k′
2, where

k′
i ⊂ Γ(X,OX) is the integral closure of ki in Γ(X,OX).

Proof. First, assume the lemma holds in case X is quasi-compact (we will do the
quasi-compact case below). As X is locally of finite type over a field, it is locally
Noetherian, see Morphisms, Lemma 29.15.6. In particular this means that it is
locally connected, connected components of open subsets are open, and intersections
of quasi-compact opens are quasi-compact, see Properties, Lemma 28.5.5, Topology,
Lemma 5.7.11, Topology, Section 5.9, and Topology, Lemma 5.16.1. Pick an open
covering X =

⋃
i∈I Ui such that each Ui is quasi-compact and connected. For each

i let Ki ⊂ OX(Ui) be the integral closure of k1 and of k2. For each pair i, j ∈ I we
decompose

Ui ∩ Uj =
∐

Ui,j,l

https://stacks.math.columbia.edu/tag/04MK
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into its finitely many connected components. WriteKi,j,l ⊂ O(Ui,j,l) for the integral
closure of k1 and of k2. By Lemma 33.28.4 the rings Ki and Ki,j,l are fields. Now
we claim that k′

1 and k′
2 both equal the kernel of the map∏

Ki −→
∏

Ki,j,l, (xi)i 7−→ xi|Ui,j,l − xj |Ui,j,l

which proves what we want. Namely, it is clear that k′
1 is contained in this kernel.

On the other hand, suppose that (xi)i is in the kernel. By the sheaf condition (xi)i
corresponds to f ∈ O(X). Pick some i0 ∈ I and let P (T ) ∈ k1[T ] be a monic
polynomial with P (xi0) = 0. Then we claim that P (f) = 0 which proves that
f ∈ k1. To prove this we have to show that P (xi) = 0 for all i. Pick i ∈ I. As X
is connected there exists a sequence i0, i1, . . . , in = i ∈ I such that Uit ∩ Uit+1 ̸= ∅.
Now this means that for each t there exists an lt such that xit and xit+1 map to
the same element of the field Ki,j,l. Hence if P (xit) = 0, then P (xit+1) = 0. By
induction, starting with P (xi0) = 0 we deduce that P (xi) = 0 as desired.

To finish the proof of the lemma we prove the lemma under the additional hypothesis
that X is quasi-compact. By Lemma 33.28.4 after replacing ki by k′

i we may assume
that ki is integrally closed in Γ(X,OX). This implies that O(X)∗/k∗

i is a finitely
generated abelian group, see Proposition 33.28.5. Let k12 = k1 ∩ k2 as a subring of
O(X). Note that k12 is a field. Since

k∗
1/k

∗
12 −→ O(X)∗/k∗

2

we see that k∗
1/k

∗
12 is a finitely generated abelian group as well. Hence there exist

α1, . . . , αn ∈ k∗
1 such that every element λ ∈ k1 has the form

λ = cαe1
1 . . . αenn

for some ei ∈ Z and c ∈ k12. In particular, the ring map

k12[x1, . . . , xn,
1

x1 . . . xn
] −→ k1, xi 7−→ αi

is surjective. By the Hilbert Nullstellensatz, Algebra, Theorem 10.34.1 we conclude
that k1 is a finite extension of k12. In the same way we conclude that k2 is a finite
extension of k12. In particular both k1 and k2 are contained in the integral closure
k′

12 of k12 in Γ(X,OX). But since k′
12 is a field by Lemma 33.28.4 and since we

chose ki to be integrally closed in Γ(X,OX) we conclude that k1 = k12 = k2 as
desired. □

33.32. Automorphisms

0GWY A section on automorphisms of schemes over fields. For some information on (infin-
itesimal) automorphisms of curves, see Algebraic Curves, Section 53.25 and Moduli
of Curves, Section 109.7.

Lemma 33.32.1.0G05 Let X be a reduced scheme of finite type over a field k. Let
f : X → X be an automorphism over k which induces the identity map on the
underlying topological space of X. Then

(1) f∗F ∼= F for every coherent OX -module, and
(2) if dim(Z) > 0 for every irreducible component Z ⊂ X, then f is the

identity.

https://stacks.math.columbia.edu/tag/0G05
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Proof. Part (1) follows from part (2) and the fact that the connected components
of X of dimension 0 are spectra of fields.

Let Z ⊂ X be an irreducible component viewed as an integral closed subscheme.
Clearly f(Z) ⊂ Z and f |Z : Z → Z is an automorphism over k which induces
the identity map on the underlying topological space of Z. Since X is reduced, it
suffices to show that the arrows f |Z : Z → Z are the identity. This reduces us to
the case discussed in the next paragraph.

Assume X is irreducible of dimension > 0. Choose a nonempty affine open U ⊂ X.
Since f(U) ⊂ U and since U ⊂ X is scheme theoretically dense it suffices to prove
that f |U : U → U is the identity.

Assume X = Spec(A) is affine, irreducible, of dimension > 0 and k is an infinite
field. Let g ∈ A be nonconstant. The set

S =
⋃

λ∈k
V (g − λ)

is dense in X because it is the inverse image of the dense subset A1
k(k) by the

nonconstant morphism g : X → A1
k. If x ∈ S, then the image g(x) of g in κ(x) is

in the image of k → κ(x). Hence f ♯ : κ(x) → κ(x) fixes g(x). Thus the image of
f ♯(g) in κ(x) is equal to g(x). We conclude that

S ⊂ V (g − f ♯(g))

and since X is reduced and S is dense we conclude g = f ♯(g). This proves f ♯ = idA
as A is generated as a k-algebra by elements g as above (details omitted; hint:
the set of constant functions is a finite dimensional k-subvector space of A). We
conclude that f = idX .

Assume X = Spec(A) is affine, irreducible, of dimension > 0 and k is a finite
field. If for every 1-dimensional integral closed subscheme C ⊂ X the restriction
f |C : C → C is the identity, then f is the identity. This reduces us to the case
where X is a curve. A curve over a finite field has a finite automorphism group
(details omitted). Hence f has finite order, say n. Then we pick g : X → A1

k

nonconstant as above and we consider

S = {x ∈ X closed such that [κ(g(x)) : k] is prime to n}

Arguing as before we find that S is dense in X. Since for x ∈ X closed the map
f ♯ : κ(x)→ κ(x) is an automorphism of order dividing n we see that for x ∈ S this
automorphism acts trivially on the subfield generated by the image of g in κ(x).
Thus we conclude that S ⊂ V (g − f ♯(g)) and we win as before. □

33.33. Euler characteristics

0BEI In this section we prove some elementary properties of Euler characteristics of
coherent sheaves on schemes proper over fields.

Definition 33.33.1.0BEJ Let k be a field. Let X be a proper scheme over k. Let F be a
coherent OX -module. In this situation the Euler characteristic of F is the integer

χ(X,F) =
∑

i
(−1)i dimkH

i(X,F).

For justification of the formula see below.

https://stacks.math.columbia.edu/tag/0BEJ
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In the situation of the definition only a finite number of the vector spaces Hi(X,F)
are nonzero (Cohomology of Schemes, Lemma 30.4.5) and each of these spaces is
finite dimensional (Cohomology of Schemes, Lemma 30.19.2). Thus χ(X,F) ∈ Z
is well defined. Observe that this definition depends on the field k and not just on
the pair (X,F).

Lemma 33.33.2.08AA Let k be a field. Let X be a proper scheme over k. Let 0→ F1 →
F2 → F3 → 0 be a short exact sequence of coherent modules on X. Then

χ(X,F2) = χ(X,F1) + χ(X,F3)

Proof. Consider the long exact sequence of cohomology
0→ H0(X,F1)→ H0(X,F2)→ H0(X,F3)→ H1(X,F1)→ . . .

associated to the short exact sequence of the lemma. The rank-nullity theorem in
linear algebra shows that

0 = dimH0(X,F1)− dimH0(X,F2) + dimH0(X,F3)− dimH1(X,F1) + . . .

This immediately implies the lemma. □

Lemma 33.33.3.0AYT Let k be a field. Let X be a proper scheme over k. Let F be a
coherent sheaf with dim(Supp(F)) ≤ 0. Then

(1) F is generated by global sections,
(2) H0(X,F) =

⊕
x∈Supp(F) Fx,

(3) Hi(X,F) = 0 for i > 0,
(4) χ(X,F) = dimkH

0(X,F), and
(5) χ(X,F ⊗ E) = nχ(X,F) for every locally free module E of rank n.

Proof. By Cohomology of Schemes, Lemma 30.9.7 we see that F = i∗G where
i : Z → X is the inclusion of the scheme theoretic support of F and where G is a
coherent OZ-module. By definition of the scheme theoretic support the underlying
topological space of Z is Supp(F). Since the dimension of Z is 0, we see Z is
affine (Properties, Lemma 28.10.5). Hence G is globally generated and the higher
cohomology groups of G are zero (Cohomology of Schemes, Lemma 30.2.2). In fact,
by Lemma 33.20.2 the scheme Z is a finite disjoint union of spectra of local Artinian
rings. Thus correspondingly H0(Z,G) =

⊕
z∈Z Gz. The cohomologies of F and G

agree by Cohomology of Schemes, Lemma 30.2.4. Thus Hi(X,F) = 0 for i > 0 and
H0(X,F) = H0(Z,G). In particular we have (3) is true. For z ∈ Z corresponding
to x ∈ Supp(F) we have Gz = (i∗G)x = Fx. We conclude that (2) holds. Of course
(2) implies (1). We have (4) by definition of the Euler characteristic χ(X,F) and
(3). By the projection formula (Cohomology, Lemma 20.54.2) we have

i∗(G ⊗ i∗E) = F ⊗ E .
Since Z has dimension 0 the locally free sheaf i∗E is isomorphic to O⊕n

Z and arguing
as above we see that (5) holds. □

Lemma 33.33.4.08AB Let k′/k be an extension of fields. Let X be a proper scheme over
k. Let F be a coherent sheaf on X. Let F ′ be the pullback of F to Xk′ . Then
χ(X,F) = χ(X ′,F ′).

Proof. This is true because
Hi(Xk′ ,F ′) = Hi(X,F)⊗k k′

https://stacks.math.columbia.edu/tag/08AA
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by flat base change, see Cohomology of Schemes, Lemma 30.5.2. □

Lemma 33.33.5.0BEK Let k be a field. Let f : Y → X be a morphism of proper schemes
over k. Let G be a coherent OY -module. Then

χ(Y,G) =
∑

(−1)iχ(X,Rif∗G)

Proof. The formula makes sense: the sheaves Rif∗G are coherent and only a finite
number of them are nonzero, see Cohomology of Schemes, Proposition 30.19.1 and
Lemma 30.4.5. By Cohomology, Lemma 20.13.4 there is a spectral sequence with

Ep,q2 = Hp(X,Rqf∗G)

converging to Hp+q(Y,G). By finiteness of cohomology on X we see that only a
finite number of Ep,q2 are nonzero and each Ep,q2 is a finite dimensional vector space.
It follows that the same is true for Ep,qr for r ≥ 2 and that∑

(−1)p+q dimk E
p,q
r

is independent of r. Since for r large enough we have Ep,qr = Ep,q∞ and since
convergence means there is a filtration on Hn(Y,G) whose graded pieces are Ep,q∞
with p + q = n (this is the meaning of convergence of the spectral sequence), we
conclude. Compare also with the more general Homology, Lemma 12.24.12. □

33.34. Projective space

0B2N Some results on projective space over a field.

Lemma 33.34.1.0B2P Let k be a field and n ≥ 0. Then Pn
k is a smooth projective variety

of dimension n over k.

Proof. Omitted. □

Lemma 33.34.2.0B2Q Let k be a field and n ≥ 0. Let X,Y ⊂ An
k be closed subsets.

Assume that X and Y are equidimensional, dim(X) = r and dim(Y ) = s. Then
every irreducible component of X ∩ Y has dimension ≥ r + s− n.

Proof. Consider the closed subscheme X × Y ⊂ A2n
k where we use coordinates

x1, . . . , xn, y1, . . . , yn. Then X ∩ Y = X × Y ∩ V (x1 − y1, . . . , xn − yn). Let t ∈
X ∩ Y ⊂ X × Y be a closed point. By Lemma 33.20.5 we have dimt(X × Y ) =
dim(X) + dim(Y ). Thus dim(OX×Y,t) = r + s by Lemma 33.20.3. By Algebra,
Lemma 10.60.13 we conclude that

dim(OX∩Y,t) = dim(OX×Y,t/(x1 − y1, . . . , xn − yn)) ≥ r + s− n

This implies the result by Lemma 33.20.3. □

Lemma 33.34.3.0B2R Let k be a field and n ≥ 0. Let X,Y ⊂ Pn
k be nonempty closed

subsets. If dim(X) = r and dim(Y ) = s and r + s ≥ n, then X ∩ Y is nonempty
and dim(X ∩ Y ) ≥ r + s− n.

Proof. Write An = Spec(k[x0, . . . , xn]) and Pn = Proj(k[T0, . . . , Tn]). Consider the
morphism π : An+1 \{0} → Pn which sends (x0, . . . , xn) to the point [x0 : . . . : xn].
More precisely, it is the morphism associated to the pair (OAn+1\{0}, (x0, . . . , xn)),

https://stacks.math.columbia.edu/tag/0BEK
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see Constructions, Lemma 27.13.1. Over the standard affine open D+(Ti) we get
the morphism associated to the ring map

k

[
T0

Ti
, . . . ,

Tn
Ti

]
−→ k

[
T0, . . . , Tn,

1
Ti

]
∼= k

[
T0

Ti
, . . . ,

Tn
Ti

] [
Ti,

1
Ti

]
which is surjective and smooth of relative dimension 1 with irreducible fibres (details
omitted). Hence π−1(X) and π−1(Y ) are nonempty closed subsets of dimension
r+ 1 and s+ 1. Choose an irreducible component V ⊂ π−1(X) of dimension r+ 1
and an irreducible component W ⊂ π−1(Y ) of dimension s+ 1. Observe that this
implies V and W contain every fibre of π they meet (since π has irreducible fibres of
dimension 1 and since Lemma 33.20.4 says the fibres of V → π(V ) and W → π(W )
have dimension ≥ 1). Let V and W be the closure of V and W in An+1. Since
0 ∈ An+1 is in the closure of every fibre of π we see that 0 ∈ V ∩W . By Lemma
33.34.2 we have dim(V ∩W ) ≥ r+s−n+1. Arguing as above using Lemma 33.20.4
again, we conclude that π(V ∩W ) ⊂ X ∩ Y has dimension at least r + s − n as
desired. □

Lemma 33.34.4.0BXU Let k be a field. Let Z ⊂ Pn
k be a closed subscheme which has no

embedded points such that every irreducible component of Z has dimension n− 1.
Then the ideal I(Z) ⊂ k[T0, . . . , Tn] corresponding to Z is principal.

Proof. This is a special case of Divisors, Lemma 31.31.3. □

33.35. Coherent sheaves on projective space

089X In this section we prove some results on the cohomology of coherent sheaves on
Pn over a field which can be found in [Mum66]. These will be useful later when
discussing Quot and Hilbert schemes.

33.35.1. Preliminaries.089Y Let k be a field, n ≥ 1, d ≥ 1, and let s ∈ Γ(Pn
k ,O(d)) be a

nonzero section. In this section we will write O(d) for the dth twist of the structure
sheaf on projective space (Constructions, Definitions 27.10.1 and 27.13.2). Since
Pn
k is a variety this section is regular, hence s is a regular section of O(d) and

defines an effective Cartier divisor H = Z(s) ⊂ Pn
k , see Divisors, Section 31.13.

Such a divisor H is called a hypersurface and if d = 1 it is called a hyperplane.

Lemma 33.35.2.089Z Let k be a field. Let n ≥ 1. Let i : H → Pn
k be a hyperplane.

Then there exists an isomorphism
φ : Pn−1

k −→ H

such that i∗O(1) pulls back to O(1).

Proof. We have Pn
k = Proj(k[T0, . . . , Tn]). The section s corresponds to a homoge-

neous form in T0, . . . , Tn of degree 1, see Cohomology of Schemes, Section 30.8. Say
s =

∑
aiTi. Constructions, Lemma 27.13.7 gives that H = Proj(k[T0, . . . , Tn]/I)

for the graded ideal I defined by setting Id equal to the kernel of the map Γ(Pn
k ,O(d))→

Γ(H, i∗O(d)). By our construction of Z(s) in Divisors, Definition 31.14.8 we see
that on D+(Tj) the ideal of H is generated by

∑
aiTi/Tj in the polynomial ring

k[T0/Tj , . . . , Tn/Tj ]. Thus it is clear that I is the ideal generated by
∑
aiTi. Note

that
k[T0, . . . , Tn]/I = k[T0, . . . , Tn]/(

∑
aiTi) ∼= k[S0, . . . , Sn−1]

https://stacks.math.columbia.edu/tag/0BXU
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as graded rings. For example, if an ̸= 0, then mapping Si equal to the class of Ti
works. We obtain the desired isomorphism by functoriality of Proj. Equality of
twists of structure sheaves follows for example from Constructions, Lemma 27.11.5.

□

Lemma 33.35.3.08A0 Let k be an infinite field. Let n ≥ 1. Let F be a coherent module
on Pn

k . Then there exist a nonzero section s ∈ Γ(Pn
k ,O(1)) and a short exact

sequence
0→ F(−1)→ F → i∗G → 0

where i : H → Pn
k is the hyperplane H associated to s and G = i∗F .

Proof. The map F(−1)→ F comes from Constructions, Equation (27.10.1.2) with
n = 1, m = −1 and the section s of O(1). Let’s work out what this map looks
like if we restrict it to D+(T0). Write D+(T0) = Spec(k[x1, . . . , xn]) with xi =
Ti/T0. Identify O(1)|D+(T0) with O using the section T0. Hence if s =

∑
aiTi then

s|D+(T0) = a0 +
∑
aixi with the identification chosen above. Furthermore, suppose

F|D+(T0) corresponds to the finite k[x1, . . . , xn]-module M . Via the identification
F(−1) = F ⊗ O(−1) and our chosen trivialization of O(1) we see that F(−1)
corresponds to M as well. Thus restricting F(−1)→ F to D+(T0) gives the map

M
a0+
∑

aixi
−−−−−−−→M

To see that the arrow is injective, it suffices to pick a0 +
∑
aixi outside any of the

associated primes of M , see Algebra, Lemma 10.63.9. By Algebra, Lemma 10.63.5
the set Ass(M) of associated primes of M is finite. Note that for p ∈ Ass(M) the
intersection p ∩ {a0 +

∑
aixi} is a proper k-subvector space. We conclude that

there is a finite family of proper sub vector spaces V1, . . . , Vm ⊂ Γ(Pn
k ,O(1)) such

that if we take s outside of
⋃
Vi, then multiplication by s is injective over D+(T0).

Similarly for the restriction to D+(Tj) for j = 1, . . . , n. Since k is infinite, a finite
union of proper sub vector spaces is never equal to the whole space, hence we may
choose s such that the map is injective. The cokernel of F(−1)→ F is annihilated
by Im(s : O(−1)→ O) which is the ideal sheaf of H by Divisors, Definition 31.14.8.
Hence we obtain G on H using Cohomology of Schemes, Lemma 30.9.8. □

Remark 33.35.4.08A1 Let k be an infinite field. Let n ≥ 1. Given a finite number of
coherent modules Fi on Pn

k we can choose a single s ∈ Γ(Pn
k ,O(1)) such that the

statement of Lemma 33.35.3 works for each of them. To prove this, just apply the
lemma to

⊕
Fi.

Remark 33.35.5.0EGK In the situation of Lemmas 33.35.2 and 33.35.3 we have H ∼= Pn−1
k

with Serre twists OH(d) = i∗OPn
k
(d). For every d ∈ Z we have a short exact

sequence
0→ F(d− 1)→ F(d)→ i∗(G(d))→ 0

Namely, tensoring by OPn
k
(d) is an exact functor and by the projection formula

(Cohomology, Lemma 20.54.2) we have i∗(G(d)) = i∗G ⊗ OPn
k
(d). We obtain cor-

responding long exact sequences
Hi(Pn

k ,F(d− 1))→ Hi(Pn
k ,F(d))→ Hi(H,G(d))→ Hi+1(Pn

k ,F(d− 1))
This follows from the above and the fact that we haveHi(Pn

k , i∗G(d)) = Hi(H,G(d))
by Cohomology of Schemes, Lemma 30.2.4 (closed immersions are affine).

https://stacks.math.columbia.edu/tag/08A0
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33.35.6. Regularity.08A2 Here is the definition.

Definition 33.35.7.08A3 Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k .

We say F is m-regular if
Hi(Pn

k ,F(m− i)) = 0
for i = 1, . . . , n.

Note that F = O(d) is m-regular if and only if d ≥ −m. This follows from the
computation of cohomology groups in Cohomology of Schemes, Equation (30.8.1.1).
Namely, we see that Hn(Pn

k ,O(d)) = 0 if and only if d ≥ −n.

Lemma 33.35.8.08A4 Let k′/k be an extension of fields. Let n ≥ 0. Let F be a coherent
sheaf on Pn

k . Let F ′ be the pullback of F to Pn
k′ . Then F is m-regular if and only

if F ′ is m-regular.

Proof. This is true because
Hi(Pn

k′ ,F ′) = Hi(Pn
k ,F)⊗k k′

by flat base change, see Cohomology of Schemes, Lemma 30.5.2. □

Lemma 33.35.9.08A5 In the situation of Lemma 33.35.3, if F is m-regular, then G is
m-regular on H ∼= Pn−1

k .

Proof. Recall that Hi(Pn
k , i∗G) = Hi(H,G) by Cohomology of Schemes, Lemma

30.2.4. Hence we see that for i ≥ 1 we get
Hi(Pn

k ,F(m− i))→ Hi(H,G(m− i))→ Hi+1(Pn
k ,F(m− 1− i))

by Remark 33.35.5. The lemma follows. □

Lemma 33.35.10.08A6 Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k . If

F is m-regular, then F is (m+ 1)-regular.

Proof. We prove this by induction on n. If n = 0 every sheaf is m-regular for
all m and there is nothing to prove. By Lemma 33.35.8 we may replace k by an
infinite overfield and assume k is infinite. Thus we may apply Lemma 33.35.3. By
Lemma 33.35.9 we know that G is m-regular. By induction on n we see that G is
(m+1)-regular. Considering the long exact cohomology sequence associated to the
sequence

0→ F(m− i)→ F(m+ 1− i)→ i∗G(m+ 1− i)→ 0
as in Remark 33.35.5 the reader easily deduces for i ≥ 1 the vanishing ofHi(Pn

k ,F(m+
1−i)) from the (known) vanishing of Hi(Pn

k ,F(m−i)) and Hi(Pn
k ,G(m+1−i)). □

Lemma 33.35.11.08A7 Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k . If

F is m-regular, then the multiplication map
H0(Pn

k ,F(m))⊗k H0(Pn
k ,O(1)) −→ H0(Pn

k ,F(m+ 1))
is surjective.

Proof. Let k′/k be an extension of fields. Let F ′ be as in Lemma 33.35.8. By
Cohomology of Schemes, Lemma 30.5.2 the base change of the linear map of the
lemma to k′ is the same linear map for the sheaf F ′. Since k → k′ is faithfully flat
it suffices to prove the lemma over k′, i.e., we may assume k is infinite.

https://stacks.math.columbia.edu/tag/08A3
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Assume k is infinite. We prove the lemma by induction on n. The case n = 0 is
trivial as O(1) ∼= O is generated by T0. For n > 0 apply Lemma 33.35.3 and tensor
the sequence by O(m+ 1) to get

0→ F(m) s−→ F(m+ 1)→ i∗G(m+ 1)→ 0

see Remark 33.35.5. Let t ∈ H0(Pn
k ,F(m + 1)). By induction the image t ∈

H0(H,G(m+1)) is the image of
∑
gi⊗si with si ∈ Γ(H,O(1)) and gi ∈ H0(H,G(m)).

Since F is m-regular we have H1(Pn
k ,F(m− 1)) = 0, hence long exact cohomology

sequence associated to the short exact sequence

0→ F(m− 1) s−→ F(m)→ i∗G(m)→ 0

shows we can lift gi to fi ∈ H0(Pn
k ,F(m)). We can also lift si to si ∈ H0(Pn

k ,O(1))
(see proof of Lemma 33.35.2 for example). After substracting the image of

∑
fi⊗si

from t we see that we may assume t = 0. But this exactly means that t is the image
of f ⊗ s for some f ∈ H0(Pn

k ,F(m)) as desired. □

Lemma 33.35.12.08A8 Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k . If

F is m-regular, then F(m) is globally generated.

Proof. For all d≫ 0 the sheaf F(d) is globally generated. This follows for example
from the first part of Cohomology of Schemes, Lemma 30.14.1. Pick d ≥ m such
that F(d) is globally generated. Choose a basis f1, . . . , fr ∈ H0(Pn

k ,F). By Lemma
33.35.11 every element f ∈ H0(Pn

k ,F(d)) can be written as f =
∑
Pifi for some

Pi ∈ k[T0, . . . , Tn] homogeneous of degree d−m. Since the sections f generate F(d)
it follows that the sections fi generate F(m). □

33.35.13. Hilbert polynomials.08A9 The following lemma will be made obsolete by the
more general Lemma 33.45.1.

Lemma 33.35.14.08AC Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k .

The function
d 7−→ χ(Pn

k ,F(d))

is a polynomial.

Proof. We prove this by induction on n. If n = 0, then Pn
k = Spec(k) and F(d) =

F . Hence in this case the function is constant, i.e., a polynomial of degree 0.
Assume n > 0. By Lemma 33.33.4 we may assume k is infinite. Apply Lemma
33.35.3. Applying Lemma 33.33.2 to the twisted sequences 0→ F(d−1)→ F(d)→
i∗G(d)→ 0 we obtain

χ(Pn
k ,F(d))− χ(Pn

k ,F(d− 1)) = χ(H,G(d))

See Remark 33.35.5. Since H ∼= Pn−1
k by induction the right hand side is a poly-

nomial. The lemma is finished by noting that any function f : Z → Z with the
property that the map d 7→ f(d)− f(d− 1) is a polynomial, is itself a polynomial.
We omit the proof of this fact (hint: compare with Algebra, Lemma 10.58.5). □

Definition 33.35.15.08AD Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k .

The function d 7→ χ(Pn
k ,F(d)) is called the Hilbert polynomial of F .

https://stacks.math.columbia.edu/tag/08A8
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The Hilbert polynomial has coefficients in Q and not in general in Z. For example
the Hilbert polynomial of OPn

k
is

d 7−→
(
d+ n

n

)
= dn

n! + . . .

This follows from the following lemma and the fact that

H0(Pn
k ,OPn

k
(d)) = k[T0, . . . , Tn]d

(degree d part) whose dimension over k is
(
d+n
n

)
.

Lemma 33.35.16.08AE Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k

with Hilbert polynomial P ∈ Q[t]. Then

P (d) = dimkH
0(Pn

k ,F(d))

for all d≫ 0.

Proof. This follows from the vanishing of cohomology of high enough twists of F .
See Cohomology of Schemes, Lemma 30.14.1. □

33.35.17. Boundedness of quotients.08AF In this subsection we bound the regularity of
quotients of a given coherent sheaf on Pn in terms of the Hilbert polynomial.

Lemma 33.35.18.08AG Let k be a field. Let n ≥ 0. Let r ≥ 1. Let P ∈ Q[t]. There
exists an integer m depending on n, r, and P with the following property: if

0→ K → O⊕r → F → 0

is a short exact sequence of coherent sheaves on Pn
k and F has Hilbert polynomial

P , then K is m-regular.

Proof. We prove this by induction on n. If n = 0, then Pn
k = Spec(k) and any

coherent module is 0-regular and any surjective map is surjective on global sections.
Assume n > 0. Consider an exact sequence as in the lemma. Let P ′ ∈ Q[t] be the
polynomial P ′(t) = P (t)− P (t− 1). Let m′ be the integer which works for n− 1,
r, and P ′. By Lemmas 33.35.8 and 33.33.4 we may replace k by a field extension,
hence we may assume k is infinite. Apply Lemma 33.35.3 to the coherent sheaf
F . The Hilbert polynomial of F ′ = i∗F is P ′ (see proof of Lemma 33.35.14).
Since i∗ is right exact we see that F ′ is a quotient of O⊕r

H = i∗O⊕r. Thus the
induction hypothesis applies to F ′ on H ∼= Pn−1

k (Lemma 33.35.2). Note that the
map K(−1)→ K is injective as K ⊂ O⊕r and has cokernel i∗H where H = i∗K. By
the snake lemma (Homology, Lemma 12.5.17) we obtain a commutative diagram

https://stacks.math.columbia.edu/tag/08AE
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with exact columns and rows
0

��

0

��

0

��
0 // K(−1) //

��

O⊕r(−1) //

��

F(−1)

��

// 0

0 // K //

��

O⊕r //

��

F

��

// 0

0 // i∗H //

��

i∗O⊕r
H

//

��

i∗F ′ //

��

0

0 0 0
Thus the induction hypothesis applies to the exact sequence 0 → H → O⊕r

H →
F ′ → 0 on H ∼= Pn−1

k (Lemma 33.35.2) and H is m′-regular. Recall that this
implies that H is d-regular for all d ≥ m′ (Lemma 33.35.10).
Let i ≥ 2 and d ≥ m′. It follows from the long exact cohomology sequence associ-
ated to the left column of the diagram above and the vanishing of Hi−1(H,H(d))
that the map

Hi(Pn
k ,K(d− 1)) −→ Hi(Pn

k ,K(d))
is injective. As these groups are zero for d ≫ 0 (Cohomology of Schemes, Lemma
30.14.1) we conclude Hi(Pn

k ,K(d)) are zero for all d ≥ m′ and i ≥ 2.
We still have to control H1. First we observe that all the maps

H1(Pn
k ,K(m′ − 1))→ H1(Pn

k ,K(m′))→ H1(Pn
k ,K(m′ + 1))→ . . .

are surjective by the vanishing of H1(H,H(d)) for d ≥ m′. Suppose d > m′ is such
that

H1(Pn
k ,K(d− 1)) −→ H1(Pn

k ,K(d))
is injective. Then H0(Pn

k ,K(d)) → H0(H,H(d)) is surjective. Consider the com-
mutative diagram

H0(Pn
k ,K(d))⊗k H0(Pn

k ,O(1)) //

��

H0(Pn
k ,K(d+ 1))

��
H0(H,H(d))⊗k H0(H,OH(1)) // H0(H,H(d+ 1))

By Lemma 33.35.11 we see that the bottom horizontal arrow is surjective. Hence
the right vertical arrow is surjective. We conclude that

H1(Pn
k ,K(d)) −→ H1(Pn

k ,K(d+ 1))
is injective. By induction we see that

H1(Pn
k ,K(d− 1))→ H1(Pn

k ,K(d))→ H1(Pn
k ,K(d+ 1))→ . . .

are all injective and we conclude that H1(Pn
k ,K(d−1)) = 0 because of the eventual

vanishing of these groups. Thus the dimensions of the groups H1(Pn
k ,K(d)) for

d ≥ m′ are strictly decreasing until they become zero. It follows that the regularity
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of K is bounded by m′ +dimkH
1(Pn

k ,K(m′)). On the other hand, by the vanishing
of the higher cohomology groups we have

dimkH
1(Pn

k ,K(m′)) = −χ(Pn
k ,K(m′)) + dimkH

0(Pn
k ,K(m′))

Note that the H0 has dimension bounded by the dimension of H0(Pn
k ,O⊕r(m′))

which is at most r
(
n+m′

n

)
if m′ > 0 and zero if not. Finally, the term χ(Pn

k ,K(m′))
is equal to r

(
n+m′

n

)
− P (m′). This gives a bound of the desired type finishing the

proof of the lemma. □

33.36. Frobenii

0CC6 Let p be a prime number. If X is a scheme, then we say “X has characteristic p”,
or “X is of characteristic p”, or “X is in characteristic p” if p is zero in OX .

Definition 33.36.1.03SM Let p be a prime number. Let X be a scheme in characteristic
p. The absolute frobenius of X is the morphism FX : X → X given by the identity
on the underlying topological space and with F ♯X : OX → OX given by g 7→ gp.

This makes sense because for any ring A of characteristic p the map FA : A → A,
a 7→ ap is a ring endomorphism which induces the identity on Spec(A). Moreover,
if A is local, then FA is a local homomorphism. In this way we see that the absolute
frobenius of X is an endomorphism of X in the category of schemes. It turns out
that the absolute frobenius defines a self map of the identity functor on the category
of schemes in characteristic p.

Lemma 33.36.2.0CC7 Let p > 0 be a prime number. Let f : X → Y be a morphism of
schemes in characteristic p. Then the diagram

X

f

��

FX

// X

f

��
Y

FY // Y

commutes.

Proof. This follows from the following trivial algebraic fact: if φ : A → B is a
homomorphism of rings of characteristic p, then φ(ap) = φ(a)p. □

Lemma 33.36.3.0CC8 Let p > 0 be a prime number. Let X be a scheme in characteristic
p. Then the absolute frobenius FX : X → X is a universal homeomorphism, is
integral, and induces purely inseparable residue field extensions.

Proof. This follows from the corresponding results for the frobenius endomorphism
FA : A → A of a ring A of characteristic p > 0. See the discussion in Algebra,
Section 10.46, for example Lemma 10.46.7. □

If we are working with schemes over a fixed base, then there is a relative version of
the frobenius morphism.

Definition 33.36.4.0CC9 Let p > 0 be a prime number. Let S be a scheme in character-
istic p. Let X be a scheme over S. We define

X(p) = X(p/S) = X ×S,FS S

https://stacks.math.columbia.edu/tag/03SM
https://stacks.math.columbia.edu/tag/0CC7
https://stacks.math.columbia.edu/tag/0CC8
https://stacks.math.columbia.edu/tag/0CC9
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viewed as a scheme over S. Applying Lemma 33.36.2 we see there is a unique
morphism FX/S : X −→ X(p) over S fitting into the commutative diagram

X
FX/S

//

''

FX

++X(p) //

��

X

��
S

FS // S

where the right square is cartesian. The morphism FX/S is called the relative
Frobenius morphism of X/S.

Observe that X 7→ X(p) is a functor; it is the base change functor for the absolute
frobenius morphism FS : S → S. We have the same lemmas as before regarding
the relative Frobenius morphism.

Lemma 33.36.5.0CCA Let p > 0 be a prime number. Let S be a scheme in characteristic
p. Let f : X → Y be a morphism of schemes over S . Then the diagram

X

f

��

FX/S

// X(p)

f(p)

��
Y

FY/S // Y (p)

commutes.

Proof. This follows from Lemma 33.36.2 and the definitions. □

Lemma 33.36.6.0CCB Let p > 0 be a prime number. Let S be a scheme in characteristic
p. Let X be a scheme over S. Then the relative frobenius FX/S : X → X(p) is a
universal homeomorphism, is integral, and induces purely inseparable residue field
extensions.

Proof. By Lemma 33.36.3 the morphisms FX : X → X and the base change
h : X(p) → X of FS are universal homeomorphisms. Since h ◦ FX/S = FX we
conclude that FX/S is a universal homeomorphism (Morphisms, Lemma 29.45.8).
By Morphisms, Lemmas 29.45.5 and 29.10.2 we conclude that FX/S has the other
properties as well. □

Lemma 33.36.7.0CCC Let p > 0 be a prime number. Let S be a scheme in characteristic
p. Let X be a scheme over S. Then ΩX/S = ΩX/X(p) .

Proof. This translates into the following algebra fact. Let A → B be a homomor-
phism of rings of characteristic p. Set B′ = B ⊗A,FA A and consider the ring map
FB/A : B′ → B, b ⊗ a 7→ bpa. Then our assertion is that ΩB/A = ΩB/B′ . This is
true because d(bpa) = 0 if d : B → ΩB/A is the universal derivation and hence d is
a B′-derivation. □

Lemma 33.36.8.0CCD Let p > 0 be a prime number. Let S be a scheme in characteristic
p. Let X be a scheme over S. If X → S is locally of finite type, then FX/S is finite.

Proof. This translates into the following algebra fact. Let A→ B be a finite type
homomorphism of rings of characteristic p. Set B′ = B ⊗A,FA A and consider the
ring map FB/A : B′ → B, b ⊗ a 7→ bpa. Then our assertion is that FB/A is finite.

https://stacks.math.columbia.edu/tag/0CCA
https://stacks.math.columbia.edu/tag/0CCB
https://stacks.math.columbia.edu/tag/0CCC
https://stacks.math.columbia.edu/tag/0CCD
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Namely, if x1, . . . , xn ∈ B are generators over A, then xi is integral over B′ because
xpi = FB/A(xi⊗ 1). Hence FB/A : B′ → B is finite by Algebra, Lemma 10.36.5. □

Lemma 33.36.9.0CCE Let k be a field of characteristic p > 0. Let X be a scheme over
k. Then X is geometrically reduced if and only if X(p) is reduced.

Proof. Consider the absolute frobenius Fk : k → k. Then Fk(k) = kp in other
words, Fk : k → k is isomorphic to the embedding of k into k1/p. Thus the lemma
follows from Lemma 33.6.4. □

Lemma 33.36.10.0CCF Let k be a field of characteristic p > 0. Let X be a variety over
k. The following are equivalent

(1) X(p) is reduced,
(2) X is geometrically reduced,
(3) there is a nonempty open U ⊂ X smooth over k.

In this case X(p) is a variety over k and FX/k : X → X(p) is a finite dominant
morphism of degree pdim(X).

Proof. We have seen the equivalence of (1) and (2) in Lemma 33.36.9. We have
seen that (2) implies (3) in Lemma 33.25.7. If (3) holds, then U is geometrically
reduced (see for example Lemma 33.12.6) and hence X is geometrically reduced by
Lemma 33.6.8. In this way we see that (1), (2), and (3) are equivalent.
Assume (1), (2), and (3) hold. Since FX/k is a homeomorphism (Lemma 33.36.6)
we see that X(p) is a variety. Then FX/k is finite by Lemma 33.36.8. It is dominant
as it is surjective. To compute the degree (Morphisms, Definition 29.51.8) it suffices
to compute the degree of FU/k : U → U (p) (as FU/k = FX/k|U by Lemma 33.36.5).
After shrinking U a bit we may assume there exists an étale morphism h : U →
An
k , see Morphisms, Lemma 29.36.20. Of course n = dim(U) because An

k →
Spec(k) is smooth of relative dimension n, the étale morphism h is smooth of
relative dimension 0, and U → Spec(k) is smooth of relative dimension dim(U) and
relative dimensions add up correctly (Morphisms, Lemma 29.29.3). Observe that h
is a generically finite dominant morphism of varieties, and hence deg(h) is defined.
By Lemma 33.36.5 we have a commutative diagram

X
FX/k

//

h

��

X(p)

h(p)

��
An
k

FAn
k
/k

// (An
k )(p)

Since h(p) is a base change of h it is étale as well and it follows that h(p) is a
generically finite dominant morphism of varieties as well. The degree of h(p) is the
degree of the extension k(X(p))/k((An

k )(p)) which is the same as the degree of the
extension k(X)/k(An

k ) because h(p) is the base change of h (small detail omitted).
By multiplicativity of degrees (Morphisms, Lemma 29.51.9) it suffices to show that
the degree of FAn

k
/k is pn. To see this observe that (An

k )(p) = An
k and that FAn

k
/k

is given by the map sending the coordinates to their pth powers. □

Remark 33.36.11.0CCG Let p > 0 be a prime number. Let S be a scheme in characteristic
p. Let X be a scheme over S. For n ≥ 1

X(pn) = X(pn/S) = X ×S,Fn
S
S

https://stacks.math.columbia.edu/tag/0CCE
https://stacks.math.columbia.edu/tag/0CCF
https://stacks.math.columbia.edu/tag/0CCG
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viewed as a scheme over S. Observe that X 7→ X(pn) is a functor. Applying Lemma
33.36.2 we see FX/S,n = (FnX , idS) : X −→ X(pn) is a morphism over S fitting into
the commutative diagram

X
FX/S,n

//

''

FnX

++X(pn) //

��

X

��
S

FnS // S

where the right square is cartesian. The morphism FX/S,n is sometimes called the
n-fold relative Frobenius morphism of X/S. This makes sense because we have the
formula

FX/S,n = FX(pn−1)/S ◦ . . . ◦ FX(p)/S ◦ FX/S
which shows that FX/S,n is the composition of n relative Frobenii. Since we have

FX(pm)/S = F
(p)
X(pm−1)/S

= . . . = F
(pm)
X/S

(details omitted) we get also that

FX/S,n = F
(pn−1)
X/S ◦ . . . ◦ F (p)

X/S ◦ FX/S

33.37. Glueing dimension one rings

09MX This section contains some algebraic preliminaries to proving that a finite set of
codimension 1 points of a separated scheme is contained in an affine open.
Situation 33.37.1.09MY Here we are given a commutative diagram of rings

A // K

R

OO

// B

OO

where K is a field and A, B are subrings of K with fraction field K. Finally,
R = A×K B = A ∩B.
Lemma 33.37.2.09MZ In Situation 33.37.1 assume that B is a valuation ring. Then for
every unit u of A either u ∈ R or u−1 ∈ R.
Proof. Namely, if the image c of u in K is in B, then u ∈ R. Otherwise, c−1 ∈ B
(Algebra, Lemma 10.50.4) and u−1 ∈ R. □

The following lemma explains the meaning of the condition “A⊗B → K is surjec-
tive” which comes up quite a bit in the following.
Lemma 33.37.3.09N0 In Situation 33.37.1 assume A is a Noetherian ring of dimension
1. The following are equivalent

(1) A⊗B → K is not surjective,
(2) there exists a discrete valuation ring O ⊂ K containing both A and B.

Proof. It is clear that (2) implies (1). On the other hand, if A ⊗ B → K is not
surjective, then the image C ⊂ K is not a field hence C has a nonzero maximal ideal
m. Choose a valuation ring O ⊂ K dominating Cm. By Algebra, Lemma 10.119.12
applied to A ⊂ O the ring O is Noetherian. Hence O is a discrete valuation ring
by Algebra, Lemma 10.50.18. □

https://stacks.math.columbia.edu/tag/09MY
https://stacks.math.columbia.edu/tag/09MZ
https://stacks.math.columbia.edu/tag/09N0
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Lemma 33.37.4.09N1 In Situation 33.37.1 assume
(1) A is a Noetherian semi-local domain of dimension 1,
(2) B is a discrete valuation ring,

Then we have the following two possibilities
(a) If A∗ is not contained in R, then Spec(A) → Spec(R) and Spec(B) →

Spec(R) are open immersions covering Spec(R) and K = A⊗R B.
(b) If A∗ is contained in R, then B dominates one of the local rings of A at a

maximal ideal and A⊗B → K is not surjective.

Proof. Assumption (a) implies there is a unit u of A whose image in K lies in the
maximal ideal of B. Then u is a nonzerodivisor of R and for every a ∈ A there
exists an n such that una ∈ R. It follows that A = Ru.
Let mA be the Jacobson radical of A. Let x ∈ mA be a nonzero element. Since
dim(A) = 1 we see that K = Ax. After replacing x by xnum for some n ≥ 1 and
m ∈ Z we may assume x maps to a unit of B. We see that for every b ∈ B we have
that xnb in the image of R for some n. Thus B = Rx.
Let z ∈ R. If z ̸∈ mA and z does not map to an element of mB , then z is invertible.
Thus x+ u is invertible in R. Hence Spec(R) = D(x) ∪D(u). We have seen above
that D(u) = Spec(A) and D(x) = Spec(B).
Case (b). If x ∈ mA, then 1 + x is a unit and hence 1 + x ∈ R, i.e, x ∈ R. Thus
we see that mA ⊂ R ⊂ A. In fact, in this case A is integral over R. Namely, write
A/mA = κ1 × . . . × κn as a product of fields. Say x = (c1, . . . , cr, 0, . . . , 0) is an
element with ci ̸= 0. Then

x2 − x(c1, . . . , cr, 1, . . . , 1) = 0
Since R contains all units we see that A/mA is integral over the image of R in
it, and hence A is integral over R. It follows that R ⊂ A ⊂ B as B is integrally
closed. Moreover, if x ∈ mA is nonzero, then K = Ax =

⋃
x−nA =

⋃
x−nR. Hence

x−1 ̸∈ B, i.e., x ∈ mB . We conclude mA ⊂ mB . Thus A∩mB is a maximal ideal of
A thereby finishing the proof. □

Lemma 33.37.5.09N2 Let B be a semi-local Noetherian domain of dimension 1. Let B′

be the integral closure of B in its fraction field. Then B′ is a semi-local Dedekind
domain. Let x be a nonzero element of the Jacobson radical of B′. Then for every
y ∈ B′ there exists an n such that xny ∈ B.

Proof. Let mB be the Jacobson radical of B. The structure of B′ results from
Algebra, Lemma 10.120.18. Given x, y ∈ B′ as in the statement of the lemma
consider the subring B ⊂ A ⊂ B′ generated by x and y. Then A is finite over B
(Algebra, Lemma 10.36.5). Since the fraction fields of B and A are the same we
see that the finite module A/B is supported on the set of closed points of B. Thus
mnBA ⊂ B for a suitable n. Moreover, Spec(B′) → Spec(A) is surjective (Algebra,
Lemma 10.36.17), hence A is semi-local as well. It also follows that x is in the
Jacobson radical mA of A. Note that mA =

√
mBA. Thus xmy ∈ mBA for some m.

Then xnmy ∈ B. □

Lemma 33.37.6.09N3 In Situation 33.37.1 assume
(1) A is a Noetherian semi-local domain of dimension 1,
(2) B is a Noetherian semi-local domain of dimension 1,

https://stacks.math.columbia.edu/tag/09N1
https://stacks.math.columbia.edu/tag/09N2
https://stacks.math.columbia.edu/tag/09N3
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(3) A⊗B → K is surjective.
Then Spec(A) → Spec(R) and Spec(B) → Spec(R) are open immersions covering
Spec(R) and K = A⊗R B.
Proof. Special case: B is integrally closed in K. This means that B is a Dedekind
domain (Algebra, Lemma 10.120.17) whence all of its localizations at maximal
ideals are discrete valuation rings. Let m1, . . . ,mr be the maximal ideals of B. We
set

R1 = A×K Bm1

Observing that A⊗R1 Bm1 → K is surjective we conclude from Lemma 33.37.4 that
A and Bm1 define open subschemes covering Spec(R1) and that K = A ⊗R1 Bm1 .
In particular R1 is a semi-local Noetherian ring of dimension 1. By induction we
define

Ri+1 = Ri ×K Bmi+1

for i = 1, . . . , r − 1. Observe that R = Rn because B = Bm1 ∩ . . . ∩ Bmr (see
Algebra, Lemma 10.157.6). It follows from the inductive procedure that R → A
defines an open immersion Spec(A) → Spec(R). On the other hand, the maximal
ideals ni of R not in this open correspond to the maximal ideals mi of B and in
fact the ring map R → B defines an isomorphisms Rni → Bmi (details omitted;
hint: in each step we added exactly one maximal ideal to Spec(Ri)). It follows that
Spec(B)→ Spec(R) is an open immersion as desired.
General case. Let B′ ⊂ K be the integral closure of B. See Lemma 33.37.5. Then
the special case applies to R′ = A ×K B′. Pick x ∈ R′ which is not contained in
the maximal ideals of A and is contained in the maximal ideals of B′ (see Algebra,
Lemma 10.15.4). By Lemma 33.37.5 there exists an integer n such that xn ∈ R =
A ×K B. Replace x by xn so x ∈ R. For every y ∈ R′ there exists an integer n
such that xny ∈ R. On the other hand, it is clear that R′

x = A. Thus Rx = A.
Exchanging the roles of A and B we also find an y ∈ R such that B = Ry. Note that
inverting both x and y leaves no primes except (0). Thus K = Rxy = Rx ⊗R Ry.
This finishes the proof. □

Lemma 33.37.7.09N4 Let K be a field. Let A1, . . . , Ar ⊂ K be Noetherian semi-local
rings of dimension 1 with fraction field K. If Ai⊗Aj → K is surjective for all i ̸= j,
then there exists a Noetherian semi-local domain A ⊂ K of dimension 1 contained
in A1, . . . , Ar such that

(1) A→ Ai induces an open immersion ji : Spec(Ai)→ Spec(A),
(2) Spec(A) is the union of the opens ji(Spec(Ai)),
(3) each closed point of Spec(A) lies in exactly one of these opens.

Proof. Namely, we can take A = A1∩ . . .∩Ar. First we note that (3), once (1) and
(2) have been proven, follows from the assumption that Ai ⊗Aj → K is surjective
since if m ∈ ji(Spec(Ai)) ∩ jj(Spec(Aj)), then Ai ⊗ Aj → K ends up in Am. To
prove (1) and (2) we argue by induction on r. If r > 1 by induction we have the
results (1) and (2) for B = A2 ∩ . . . ∩ Ar. Then we apply Lemma 33.37.6 to see
they hold for A = A1 ∩B. □

Lemma 33.37.8.09N5 Let A be a domain with fraction field K. Let B1, . . . , Br ⊂ K
be Noetherian 1-dimensional semi-local domains whose fraction fields are K. If
A ⊗ Bi → K are surjective for i = 1, . . . , r, then there exists an x ∈ A such that
x−1 is in the Jacobson radical of Bi for i = 1, . . . , r.

https://stacks.math.columbia.edu/tag/09N4
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Proof. Let B′
i be the integral closure of Bi in K. Suppose we find a nonzero x ∈ A

such that x−1 is in the Jacobson radical of B′
i for i = 1, . . . , r. Then by Lemma

33.37.5, after replacing x by a power we get x−1 ∈ Bi. Since Spec(B′
i)→ Spec(Bi)

is surjective we see that x−1 is then also in the Jacobson radical of Bi. Thus we
may assume that each Bi is a semi-local Dedekind domain.
If Bi is not local, then remove Bi from the list and add back the finite collection
of local rings (Bi)m. Thus we may assume that Bi is a discrete valuation ring for
i = 1, . . . , r.
Let vi : K → Z, i = 1, . . . , r be the corresponding discrete valuations (see Algebra,
Lemma 10.120.17). We are looking for a nonzero x ∈ A with vi(x) < 0 for i =
1, . . . , r. We will prove this by induction on r.
If r = 1 and the result is wrong, then A ⊂ B and the map A ⊗ B → K is not
surjective, contradiction.
If r > 1, then by induction we can find a nonzero x ∈ A such that vi(x) < 0 for
i = 1, . . . , r − 1. If vr(x) < 0 then we are done, so we may assume vr(x) ≥ 0. By
the base case we can find y ∈ A nonzero such that vr(y) < 0. After replacing x by
a power we may assume that vi(x) < vi(y) for i = 1, . . . , r − 1. Then x + y is the
element we are looking for. □

Lemma 33.37.9.0AB2 Let A be a Noetherian local ring of dimension 1. Let L =
∏
Ap

where the product is over the minimal primes of A. Let a1, a2 ∈ mA map to the
same element of L. Then an1 = an2 for some n > 0.

Proof. Write a1 = a2 +x. Then x maps to zero in L. Hence x is a nilpotent element
of A because

⋂
p is the radical of (0) and the annihilator I of x contains a power

of the maximal ideal because p ̸∈ V (I) for all minimal primes. Say xk = 0 and
mn ⊂ I. Then

ak+n
1 = ak+n

2 +
(
n+ k

1

)
an+k−1

2 x+
(
n+ k

2

)
an+k−2

2 x2+. . .+
(
n+ k

k − 1

)
an+1

2 xk−1 = an+k
2

because a2 ∈ mA. □

Lemma 33.37.10.0AB3 Let A be a Noetherian local ring of dimension 1. Let L =
∏
Ap

and I =
⋂
p where the product and intersection are over the minimal primes of A.

Let f ∈ L be an element of the form f = i + a where a ∈ mA and i ∈ IL. Then
some power of f is in the image of A→ L.

Proof. Since A is Noetherian we have It = 0 for some t > 0. Suppose that we know
that f = a+ i with i ∈ IkL. Then fn = an + nan−1i mod Ik+1L. Hence it suffices
to show that nan−1i is in the image of Ik → IkL for some n ≫ 0. To see this,
pick a g ∈ A such that mA =

√
(g) (Algebra, Lemma 10.60.8). Then L = Ag for

example by Algebra, Proposition 10.60.7. On the other hand, there is an n such
that an ∈ (g). Hence we can clear denominators for elements of L by multiplying
by a high power of a. □

Lemma 33.37.11.0AB4 Let A be a Noetherian local ring of dimension 1. Let L =
∏
Ap

where the product is over the minimal primes of A. Let K → L be an integral ring
map. Then there exist a ∈ mA and x ∈ K which map to the same element of L
such that mA =

√
(a).

https://stacks.math.columbia.edu/tag/0AB2
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Proof. By Lemma 33.37.10 we may replace A by A/(
⋂
p) and assume that A is

a reduced ring (some details omitted). We may also replace K by the image of
K → L. Then K is a reduced ring. The map Spec(L)→ Spec(K) is surjective and
closed (details omitted). Hence Spec(K) is a finite discrete space. It follows that
K is a finite product of fields.
Let pj , j = 1, . . . ,m be the minimal primes of A. Set Lj be the fraction field of
Aj so that L =

∏
j=1,...,m Lj . Let Aj be the normalization of A/pj . Then Aj is a

semi-local Dedekind domain with at least one maximal ideal, see Algebra, Lemma
10.120.18. Let n be the sum of the numbers of maximal ideals in A1, . . . , Am. For
such a maximal ideal m ⊂ Aj we consider the function

vm : L→ Lj → Z ∪ {∞}

where the second arrow is the discrete valuation corresponding to the discrete val-
uation ring (Aj)m extended by mapping 0 to ∞. In this way we obtain n functions
v1, . . . , vn : L → Z ∪ {∞}. We will find an element x ∈ K such that vi(x) < 0 for
all i = 1, . . . , n.
First we claim that for each i there exists an element x ∈ K with vi(x) < 0. Namely,
suppose that vi corresponds to m ⊂ Aj . If vi(x) ≥ 0 for all x ∈ K, then K maps
into (Aj)m inside the fraction field Lj of Aj . The image of K in Lj is a field over Lj
is algebraic by Algebra, Lemma 10.36.18. Combined we get a contradiction with
Algebra, Lemma 10.50.8.
Suppose we have found an element x ∈ K such that v1(x) < 0, . . . , vr(x) < 0 for
some r < n. If vr+1(x) < 0, then x works for r+ 1. If not, then choose some y ∈ K
with vr+1(y) < 0 as is possible by the result of the previous paragraph. After
replacing x by xn for some n > 0, we may assume vi(x) < vi(y) for i = 1, . . . , r.
Then vj(x+y) = vj(x) < 0 for j = 1, . . . , r by properties of valuations and similarly
vr+1(x + y) = vr+1(y) < 0. Arguing by induction, we find x ∈ K with vi(x) < 0
for i = 1, . . . , n.
In particular, the element x ∈ K has nonzero projection in each factor of K (recall
that K is a finite product of fields and if some component of x was zero, then one
of the values vi(x) would be ∞). Hence x is invertible and x−1 ∈ K is an element
with ∞ > vi(x−1) > 0 for all i. It follows from Lemma 33.37.5 that for some e < 0
the element xe ∈ K maps to an element of mA/pj ⊂ A/pj for all j = 1, . . . ,m.
Observe that the cokernel of the map mA →

∏
mA/pj is annihilated by a power

of mA. Hence after replacing e by a more negative e, we find an element a ∈ mA
whose image in mA/pj is equal to the image of xe. The pair (a, xe) satisfies the
conclusions of the lemma. □

Lemma 33.37.12.09N6 Let A be a ring. Let p1, . . . , pr be a finite set of a primes of A.
Let S = A \

⋃
pi. Then S is a multiplicative system and S−1A is a semi-local ring

whose maximal ideals correspond to the maximal elements of the set {pi}.

Proof. If a, b ∈ A and a, b ∈ S, then a, b ̸∈ pi hence ab ̸∈ pi, hence ab ∈ S. Also
1 ∈ S. Thus S is a multiplicative subset of A. By the description of Spec(S−1A) in
Algebra, Lemma 10.17.5 and by Algebra, Lemma 10.15.2 we see that the primes of
S−1A correspond to the primes of A contained in one of the pi. Hence the maximal
ideals of S−1A correspond one-to-one with the maximal (w.r.t. inclusion) elements
of the set {p1, . . . , pr}. □

https://stacks.math.columbia.edu/tag/09N6


33.38. ONE DIMENSIONAL NOETHERIAN SCHEMES 2848

33.38. One dimensional Noetherian schemes

09N7 The main result of this section is that a Noetherian separated scheme of dimension
1 has an ample invertible sheaf. See Proposition 33.38.12.
Lemma 33.38.1.09N8 Let X be a scheme all of whose local rings are Noetherian of
dimension ≤ 1. Let U ⊂ X be a retrocompact open. Denote j : U → X the
inclusion morphism. Then Rpj∗F = 0, p > 0 for every quasi-coherent OU -module
F .
Proof. We may check the vanishing of Rpj∗F at stalks. Formation of Rqj∗ com-
mutes with flat base change, see Cohomology of Schemes, Lemma 30.5.2. Thus we
may assume that X is the spectrum of a Noetherian local ring of dimension ≤ 1.
In this case X has a closed point x and finitely many other points x1, . . . , xn which
specialize to x but not each other (see Algebra, Lemma 10.31.6). If x ∈ U , then
U = X and the result is clear. If not, then U = {x1, . . . , xr} for some r after pos-
sibly renumbering the points. Then U is affine (Schemes, Lemma 26.11.8). Thus
the result follows from Cohomology of Schemes, Lemma 30.2.3. □

Lemma 33.38.2.09N9 Let X be an affine scheme all of whose local rings are Noetherian
of dimension ≤ 1. Then any quasi-compact open U ⊂ X is affine.
Proof. Denote j : U → X the inclusion morphism. Let F be a quasi-coherent
OU -module. By Lemma 33.38.1 the higher direct images Rpj∗F are zero. The OX -
module j∗F is quasi-coherent (Schemes, Lemma 26.24.1). Hence it has vanishing
higher cohomology groups by Cohomology of Schemes, Lemma 30.2.2. By the Leray
spectral sequence Cohomology, Lemma 20.13.6 we have Hp(U,F) = 0 for all p > 0.
Thus U is affine, for example by Cohomology of Schemes, Lemma 30.3.1. □

Lemma 33.38.3.09NA Let X be a scheme. Let U ⊂ X be an open. Assume
(1) U is a retrocompact open of X,
(2) X \ U is discrete, and
(3) for x ∈ X \ U the local ring OX,x is Noetherian of dimension ≤ 1.

Then (1) there exists an invertible OX -module L and a section s such that U = Xs

and (2) the map Pic(X)→ Pic(U) is surjective.
Proof. Let X \ U = {xi; i ∈ I}. Choose affine opens Ui ⊂ X with xi ∈ Ui and
xj ̸∈ Ui for j ̸= i. This is possible by condition (2). Say Ui = Spec(Ai). Let
mi ⊂ Ai be the maximal ideal corresponding to xi. By our assumption on the
local rings there are only a finite number of prime ideals q ⊂ mi, q ̸= mi (see
Algebra, Lemma 10.31.6). Thus by prime avoidance (Algebra, Lemma 10.15.2) we
can find fi ∈ mi not contained in any of those primes. Then V (fi) = {mi} ⨿ Zi
for some closed subset Zi ⊂ Ui because Zi is a retrocompact open subset of V (fi)
closed under specialization, see Algebra, Lemma 10.41.7. After shrinking Ui we
may assume V (fi) = {xi}. Then

U : X = U ∪
⋃
Ui

is an open covering of X. Consider the 2-cocycle with values in O∗
X given by fi on

U ∩Ui and by fi/fj on Ui ∩Uj . This defines a line bundle L such that the section
s defined by 1 on U and fi on Ui is as in the statement of the lemma.
LetN be an invertibleOU -module. Let Ni be the invertible (Ai)fi module such that
N|U∩Ui is equal to Ñi. Observe that (Ami)fi is an Artinian ring (as a dimension
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zero Noetherian ring, see Algebra, Lemma 10.60.5). Thus it is a product of local
rings (Algebra, Lemma 10.53.6) and hence has trivial Picard group. Thus, after
shrinking Ui (i.e., after replacing Ai by (Ai)g for some g ∈ Ai, g ̸∈ mi) we can
assume that Ni = (Ai)fi , i.e., that N|U∩Ui is trivial. In this case it is clear how
to extend N to an invertible sheaf over X (by extending it by a trivial invertible
module over each Ui). □

Lemma 33.38.4.09NB Let X be an integral separated scheme. Let U ⊂ X be a nonempty
affine open such that X \U is a finite set of points x1, . . . , xr with OX,xi Noetherian
of dimension 1. Then there exists a globally generated invertible OX -module L and
a section s such that U = Xs.

Proof. Say U = Spec(A) and let K be the function field of X. Write Bi = OX,xi
and mi = mxi . Since xi ̸∈ U we see that the open U ×X Spec(Bi) of Spec(Bi) has
only one point, i.e., U ×X Spec(Bi) = Spec(K). Since X is separated, we find that
Spec(K) is a closed subscheme of U × Spec(Bi), i.e., the map A ⊗ Bi → K is a
surjection. By Lemma 33.37.8 we can find a nonzero f ∈ A such that f−1 ∈ mi for
i = 1, . . . , r. Pick opens xi ∈ Ui ⊂ X such that f−1 ∈ O(Ui). Then

U : X = U ∪
⋃
Ui

is an open covering of X. Consider the 2-cocycle with values in O∗
X given by f on

U ∩ Ui and by 1 on Ui ∩ Uj . This defines a line bundle L with two sections:
(1) a section s defined by 1 on U and f−1 on Ui is as in the statement of the

lemma, and
(2) a section t defined by f on U and 1 on Ui.

Note that Xt ⊃ U1 ∪ . . . ∪ Ur. Hence s, t generate L and the lemma is proved. □

Lemma 33.38.5.09NC Let X be a quasi-compact scheme. If for every x ∈ X there
exists a pair (L, s) consisting of a globally generated invertible sheaf L and a global
section s such that x ∈ Xs and Xs is affine, then X has an ample invertible sheaf.

Proof. Since X is quasi-compact we can find a finite collection (Li, si), i = 1, . . . , n
of pairs such that Li is globally generated, Xsi is affine and X =

⋃
Xsi . Again

because X is quasi-compact we can find, for each i, a finite collection of sections ti,j
of Li, j = 1, . . . ,mi such that X =

⋃
Xti,j . Set ti,0 = si. Consider the invertible

sheaf
L = L1 ⊗OX

. . .⊗OX
Ln

and the global sections
τJ = t1,j1 ⊗ . . .⊗ tn,jn

By Properties, Lemma 28.26.4 the open XτJ is affine as soon as ji = 0 for some
i. It is a simple matter to see that these opens cover X. Hence L is ample by
definition. □

Lemma 33.38.6.09ND Let X be a Noetherian integral separated scheme of dimension 1.
Then X has an ample invertible sheaf.

Proof. Choose an affine open covering X = U1 ∪ . . . ∪ Un. Since X is Noetherian,
each of the sets X \Ui is finite. Thus by Lemma 33.38.4 we can find a pair (Li, si)
consisting of a globally generated invertible sheaf Li and a global section si such
that Ui = Xsi . We conclude that X has an ample invertible sheaf by Lemma
33.38.5. □
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Lemma 33.38.7.0C0T Let f : X → Y be a finite morphism of schemes. Assume there
exists an open V ⊂ Y such that f−1(V ) → V is an isomorphism and Y \ V is a
discrete space. Then every invertible OX -module is the pullback of an invertible
OY -module.

Proof. We will use that Pic(X) = H1(X,O∗
X), see Cohomology, Lemma 20.6.1.

Consider the Leray spectral sequence for the abelian sheaf O∗
X and f , see Coho-

mology, Lemma 20.13.4. Consider the induced map
H1(X,O∗

X) −→ H0(Y,R1f∗O∗
X)

Divisors, Lemma 31.17.1 says exactly that this map is zero. Hence Leray gives
H1(X,O∗

X) = H1(Y, f∗O∗
X). Next we consider the map

f ♯ : O∗
Y −→ f∗O∗

X

By assumption the kernel and cokernel of this map are supported on the closed
subset T = Y \ V of Y . Since T is a discrete topological space by assumption
the higher cohomology groups of any abelian sheaf on Y supported on T is zero
(follows from Cohomology, Lemma 20.20.1, Modules, Lemma 17.6.1, and the fact
that Hi(T,F) = 0 for any i > 0 and any abelian sheaf F on T ). Breaking the
displayed map into short exact sequences

0→ Ker(f ♯)→ O∗
Y → Im(f ♯)→ 0, 0→ Im(f ♯)→ f∗O∗

X → Coker(f ♯)→ 0
we first conclude that H1(Y,O∗

Y ) → H1(Y, Im(f ♯)) is surjective and then that
H1(Y, Im(f ♯))→ H1(Y, f∗O∗

X) is surjective. Combining all the above we find that
H1(Y,O∗

Y )→ H1(X,O∗
X) is surjective as desired. □

Lemma 33.38.8.09NE Let X be a scheme. Let Z1, . . . , Zn ⊂ X be closed subschemes.
Let Li be an invertible sheaf on Zi. Assume that

(1) X is reduced,
(2) X =

⋃
Zi set theoretically, and

(3) Zi ∩ Zj is a discrete topological space for i ̸= j.
Then there exists an invertible sheaf L on X whose restriction to Zi is Li. Moreover,
if we are given sections si ∈ Γ(Zi,Li) which are nonvanishing at the points of Zi∩Zj ,
then we can choose L such that there exists a s ∈ Γ(X,L) with s|Zi = si for all i.

Proof. The existence of L can be deduced from Lemma 33.38.7 but we will also give
a direct proof and we will use the direct proof to see the statement about sections
is true. Set T =

⋃
i ̸=j Zi ∩ Zj . As X is reduced we have

X \ T =
⋃

(Zi \ T )

as schemes. Assumption (3) implies T is a discrete subset of X. Thus for each
t ∈ T we can find an open Ut ⊂ X with t ∈ Ut but t′ ̸∈ Ut for t′ ∈ T , t′ ̸= t.
By shrinking Ut if necessary, we may assume that there exist isomorphisms φt,i :
Li|Ut∩Zi → OUt∩Zi . Furthermore, for each i choose an open covering

Zi \ T =
⋃

j
Uij

such that there exist isomorphisms φi,j : Li|Uij ∼= OUij . Observe that

U : X =
⋃
Ut ∪

⋃
Uij
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is an open covering of X. We claim that we can use the isomorphisms φt,i and φi,j
to define a 2-cocycle with values in O∗

X for this covering that defines L as in the
statement of the lemma.
Namely, if i ̸= i′, then Ui,j ∩ Ui′,j′ = ∅ and there is nothing to do. For Ui,j ∩ Ui,j′

we have OX(Ui,j ∩Ui,j′) = OZi(Ui,j ∩Ui,j′) by the first remark of the proof. Thus
the transition function for Li (more precisely φi,j ◦ φ−1

i,j′) defines the value of our
cocycle on this intersection. For Ut ∩ Ui,j we can do the same thing. Finally, for
t ̸= t′ we have

Ut ∩ Ut′ =
∐

(Ut ∩ Ut′) ∩ Zi
and moreover the intersection Ut ∩ Ut′ ∩ Zi is contained in Zi \ T . Hence by the
same reasoning as before we see that

OX(Ut ∩ Ut′) =
∏
OZi(Ut ∩ Ut′ ∩ Zi)

and we can use the transition functions for Li (more precisely φt,i ◦ φ−1
t′,i) to define

the value of our cocycle on Ut ∩ Ut′ . This finishes the proof of existence of L.
Given sections si as in the last assertion of the lemma, in the argument above,
we choose Ut such that si|Ut∩Zi is nonvanishing and we choose φt,i such that
φt,i(si|Ut∩Zi) = 1. Then using 1 over Ut and φi,j(si|Ui,j ) over Ui,j will define a
section of L which restricts to si over Zi. □

Remark 33.38.9.09NW Let A be a reduced ring. Let I, J be ideals of A such that
V (I) ∪ V (J) = Spec(A). Set B = A/J . Then I → IB is an isomorphism of A-
modules. Namely, we have IB = I+J/J = I/(I ∩J) and I ∩J is zero because A is
reduced and Spec(A) = V (I)∪V (J) = V (I∩J). Thus for any projective A-module
P we also have IP = I(P/JP ).

Lemma 33.38.10.09NX Let X be a Noetherian reduced separated scheme of dimension
1. Then X has an ample invertible sheaf.

Proof. Let Zi, i = 1, . . . , n be the irreducible components of X. We view these as
reduced closed subschemes of X. By Lemma 33.38.6 there exist ample invertible
sheaves Li on Zi. Set T =

⋃
i ̸=j Zi ∩ Zj . As X is Noetherian of dimension 1, the

set T is finite and consists of closed points of X. For each i we may, possibly after
replacing Li by a power, choose si ∈ Γ(Zi,Li) such that (Zi)si is affine and contains
T ∩ Zi, see Properties, Lemma 28.29.6.
By Lemma 33.38.8 we can find an invertible sheaf L on X and s ∈ Γ(X,L) such
that (L, s)|Zi = (Li, si). Observe that Xs contains T and is set theoretically equal
to the affine closed subschemes (Zi)si . Thus it is affine by Limits, Lemma 32.11.3.
To finish the proof, it suffices to find for every x ∈ X, x ̸∈ T an integer m > 0
and a section t ∈ Γ(X,L⊗m) such that Xt is affine and x ∈ Xt. Since x ̸∈ T we
see that x ∈ Zi for some unique i, say i = 1. Let Z ⊂ X be the reduced closed
subscheme whose underlying topological space is Z2 ∪ . . .∪Zn. Let I ⊂ OX be the
ideal sheaf of Z. Denote that I1 ⊂ OZ1 the inverse image of this ideal sheaf under
the inclusion morphism Z1 → X. Observe that

Γ(X, IL⊗m) = Γ(Z1, I1L⊗m
1 )

see Remark 33.38.9. Thus it suffices to find m > 0 and t ∈ Γ(Z1, I1L⊗m
1 ) with

x ∈ (Z1)t affine. Since L1 is ample and since x is not in Z1∩T = V (I1) we can find
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a section t1 ∈ Γ(Z1, I1L⊗m1
1 ) with x ∈ (Z1)t1 , see Properties, Proposition 28.26.13.

Since L1 is ample we can find a section t2 ∈ Γ(Z1,L⊗m2
1 ) with x ∈ (Z1)t2 and (Z1)t2

affine, see Properties, Definition 28.26.1. Set m = m1 + m2 and t = t1t2. Then
t ∈ Γ(Z1, I1L⊗m

1 ) with x ∈ (Z1)t by construction and (Z1)t is affine by Properties,
Lemma 28.26.4. □

Lemma 33.38.11.09NY Let i : Z → X be a closed immersion of schemes. If the underly-
ing topological space of X is Noetherian and dim(X) ≤ 1, then Pic(X) → Pic(Z)
is surjective.

Proof. Consider the short exact sequence
0→ (1 + I) ∩ O∗

X → O∗
X → i∗O∗

Z → 0
of sheaves of abelian groups on X where I is the quasi-coherent sheaf of ideals
corresponding to Z. Since dim(X) ≤ 1 we see that H2(X,F) = 0 for any abelian
sheaf F , see Cohomology, Proposition 20.20.7. Hence the map H1(X,O∗

X) →
H1(X, i∗O∗

Z) is surjective. By Cohomology, Lemma 20.20.1 we haveH1(X, i∗O∗
Z) =

H1(Z,O∗
Z). This proves the lemma by Cohomology, Lemma 20.6.1. □

Proposition 33.38.12.09NZ Let X be a Noetherian separated scheme of dimension 1.
Then X has an ample invertible sheaf.

Proof. Let Z ⊂ X be the reduction of X. By Lemma 33.38.10 the scheme Z has
an ample invertible sheaf. Thus by Lemma 33.38.11 there exists an invertible OX -
module L on X whose restriction to Z is ample. Then L is ample by an application
of Cohomology of Schemes, Lemma 30.17.5. □

Remark 33.38.13.09P0 In fact, if X is a scheme whose reduction is a Noetherian sepa-
rated scheme of dimension 1, then X has an ample invertible sheaf. The argument
to prove this is the same as the proof of Proposition 33.38.12 except one uses Limits,
Lemma 32.11.4 instead of Cohomology of Schemes, Lemma 30.17.5.

The following lemma actually holds for quasi-finite separated morphisms as the
reader can see by using Zariski’s main theorem (More on Morphisms, Lemma
37.43.3) and Lemma 33.38.3.

Lemma 33.38.14.0C0U Let f : X → Y be a morphism of schemes. Assume Y is
Noetherian of dimension ≤ 1, f is finite, and there exists a dense open V ⊂ Y such
that f−1(V ) → V is a closed immersion. Then every invertible OX -module is the
pullback of an invertible OY -module.

Proof. We factor f as X → Z → Y where Z is the scheme theoretic image of f .
Then X → Z is an isomorphism over V ∩ Z and Lemma 33.38.7 applies. On the
other hand, Lemma 33.38.11 applies to Z → Y . Some details omitted. □

33.39. The delta invariant

0C3Q In this section we define the δ-invariant of a singular point on a reduced 1-dimensional
Nagata scheme.

Lemma 33.39.1.0C3R Let (A,m) be a Noetherian 1-dimensional local ring. Let f ∈ m.
The following are equivalent

(1) m =
√

(f),
(2) f is not contained in any minimal prime of A, and
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(3) Af =
∏

p minimal Ap as A-algebras.
Such an f ∈ m exists. If depth(A) = 1 (for example A is reduced), then (1) – (3)
are also equivalent to

(4) f is a nonzerodivisor,
(5) Af is the total ring of fractions of A.

If A is reduced, then (1) – (5) are also equivalent to
(6) Af is the product of the residue fields at the minimal primes of A.

Proof. The spectrum of A has finitely many primes p1, . . . , pn besides m and these
are all minimal, see Algebra, Lemma 10.31.6. Then the equivalence of (1) and (2)
follows from Algebra, Lemma 10.17.2. Clearly, (3) implies (2). Conversely, if (2) is
true, then the spectrum of Af is the subset {p1, . . . , pn} of Spec(A) with induced
topology, see Algebra, Lemma 10.17.5. This is a finite discrete topological space.
Hence Af =

∏
p minimal Ap by Algebra, Proposition 10.60.7. The existence of an f

is asserted in Algebra, Lemma 10.60.8.
Assume A has depth 1. (This is the maximum by Algebra, Lemma 10.72.3 and
holds if A is reduced by Algebra, Lemma 10.157.3.) Then m is not an associated
prime of A. Every minimal prime of A is an associated prime (Algebra, Proposition
10.63.6). Hence the set of nonzerodivisors of A is exactly the set of elements not
contained in any of the minimal primes by Algebra, Lemma 10.63.9. Thus (4) is
equivalent to (2). Part (5) is equivalent to (3) by Algebra, Lemma 10.25.4.
Then Ap is a field for p ⊂ A minimal, see Algebra, Lemma 10.25.1. Hence (3) is
equivalent ot (6). □

Lemma 33.39.2.0C3S Let (A,m) be a reduced Nagata 1-dimensional local ring. Let A′

be the integral closure of A in the total ring of fractions of A. Then A′ is a normal
Nagata ring, A→ A′ is finite, and A′/A has finite length as an A-module.

Proof. The total ring of fractions is essentially of finite type over A hence A→ A′

is finite because A is Nagata, see Algebra, Lemma 10.162.2. The ring A′ is normal
for example by Algebra, Lemma 10.37.16 and 10.31.6. The ring A′ is Nagata for
example by Algebra, Lemma 10.162.5. Choose f ∈ m as in Lemma 33.39.1. As
A′ ⊂ Af it is clear that Af = A′

f . Hence the support of the finite A-module
A′/A is contained in {m}. It follows that it has finite length by Algebra, Lemma
10.62.3. □

Definition 33.39.3.0C3T Let A be a reduced Nagata local ring of dimension 1. The
δ-invariant of A is lengthA(A′/A) where A′ is as in Lemma 33.39.2.

We prove some lemmas about the behaviour of this invariant.

Lemma 33.39.4.0C3U Let A be a reduced Nagata local ring of dimension 1. The δ-
invariant of A is 0 if and only if A is a discrete valuation ring.

Proof. If A is a discrete valuation ring, then A is normal and the ring A′ is equal
to A. Conversely, if the δ-invariant of A is 0, then A is integrally closed in its total
ring of fractions which implies that A is normal (Algebra, Lemma 10.37.16) and
this forces A to be a discrete valuation ring by Algebra, Lemma 10.119.7. □

Lemma 33.39.5.0C3V Let A be a reduced Nagata local ring of dimension 1. Let A →
A′ be as in Lemma 33.39.2. Let Ah, Ash, resp. A∧ be the henselization, strict
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henselization, resp. completion of A. Then Ah, Ash, resp. A∧ is a reduced Nagata
local ring of dimension 1 and A′ ⊗A Ah, A′ ⊗A Ash, resp. A′ ⊗A A∧ is the integral
closure of Ah, Ash, resp. A∧ in its total ring of fractions.

Proof. Observe that A∧ is reduced, see More on Algebra, Lemma 15.43.6. The rings
Ah and Ash are reduced by More on Algebra, Lemma 15.45.4. The dimensions of
A, Ah, Ash, and A∧ are the same by More on Algebra, Lemmas 15.43.1 and 15.45.7.

Recall that a Noetherian local ring is Nagata if and only if the formal fibres of A
are geometrically reduced, see More on Algebra, Lemma 15.52.4. This property is
inherited by Ah and Ash, see the material in More on Algebra, Section 15.51 and
especially Lemma 15.51.8. The completion is Nagata by Algebra, Lemma 10.162.8.

Now we come to the statement on integral closures. Before continuing let us pick
f ∈ m as in Lemma 33.39.1. Then the image of f in Ah, Ash, and A∧ clearly is an
element satisfying properties (1) – (6) in that ring.

Since A→ A′ is finite we see that A′⊗AAh and A′⊗AAsh is the product of henselian
local rings finite over Ah and Ash, see Algebra, Lemma 10.153.4. Each of these local
rings is the henselization of A′ at a maximal ideal m′ ⊂ A′ lying over m, see Algebra,
Lemma 10.156.1 or 10.156.3. Hence these local rings are normal domains by More
on Algebra, Lemma 15.45.6. It follows that A′ ⊗A Ah and A′ ⊗A Ash are normal
rings. Since Ah → A′ ⊗A Ah and Ash → A′ ⊗A Ash are finite (hence integral) and
since A′ ⊗A Ah ⊂ (Ah)f = Q(Ah) and A′ ⊗A Ash ⊂ (Ash)f = Q(Ash) we conclude
that A′ ⊗A Ah and A′ ⊗A Ash are the desired integral closures.

For the completion we argue in entirely the same manner. First, by Algebra, Lemma
10.97.8 we have

A′ ⊗A A∧ = (A′)∧ =
∏

(A′
m′)∧

The local rings A′
m′ are normal and have dimension 1 (by Algebra, Lemma 10.113.2

for example or the discussion in Algebra, Section 10.112). Thus A′
m′ is a discrete

valuation ring, see Algebra, Lemma 10.119.7. Hence (A′
m′)∧ is a discrete valuation

ring by More on Algebra, Lemma 15.43.5. It follows that A′ ⊗A A∧ is a normal
ring and we can conclude in exactly the same manner as before. □

Lemma 33.39.6.0C3W Let A be a reduced Nagata local ring of dimension 1. The δ-
invariant of A is the same as the δ-invariant of the henselization, strict henselization,
or the completion of A.

Proof. Let us do this in case of the completion B = A∧; the other cases are proved
in exactly the same manner. Let A′, resp. B′ be the integral closure of A, resp.
B in its total ring of fractions. Then B′ = A′ ⊗A B by Lemma 33.39.5. Hence
B′/B = A′/A⊗A B. The equality now follows from Algebra, Lemma 10.52.13 and
the fact that B ⊗A κA = κB . □

Definition 33.39.7.0C1T Let k be a field. Let X be a locally algebraic k-scheme. Let
x ∈ X be a point such that OX,x is reduced and dim(OX,x) = 1. The δ-invariant
of X at x is the δ-invariant of OX,x as defined in Definition 33.39.3.

This makes sense because the local ring of a locally algebraic scheme is Nagata
by Algebra, Proposition 10.162.16. Of course, more generally we can make this
definition whenever x ∈ X is a point of a scheme such that the local ring OX,x is
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reduced, Nagata of dimension 1. It follows from Lemma 33.39.6 that the δ-invariant
of X at x is

δ-invariant of X at x = δ-invariant of OhX,x = δ-invariant of O∧
X,x

We conclude that the δ-invariant is an invariant of the complete local ring of the
point.

Lemma 33.39.8.0C3X Let k be a field. Let X be a locally algebraic k-scheme. Let K/k
be a field extension and set Y = XK . Let y ∈ Y with image x ∈ X. Assume X is
geometrically reduced at x and dim(OX,x) = dim(OY,y) = 1. Then

δ-invariant of X at x ≤ δ-invariant of Y at y

Proof. Set A = OX,x and B = OY,y. By Lemma 33.6.2 we see that A is geometri-
cally reduced. Hence B is a localization of A ⊗k K. Let A → A′ be as in Lemma
33.39.2. Then

B′ = B ⊗(A⊗kK) (A′ ⊗k K)
is finite over B and B → B′ induces an isomorphism on total rings of fractions.
Namely, pick f ∈ mA satisfying (1) – (6) of Lemma 33.39.1; since dim(B) = 1 we
see that f ∈ mB playes the same role for B and we see that Bf = B′

f because
Af = A′

f . Let B′′ be the integral closure of B in its total ring of fractions as in
Lemma 33.39.2. Then B′ ⊂ B′′. Thus the δ-invariant of Y at y is lengthB(B′′/B)
and

lengthB(B′′/B) ≥ lengthB(B′/B)
= lengthB((A′/A)⊗A B)
= lengthB(B/mAB)lengthA(A′/A)

by Algebra, Lemma 10.52.13 since A→ B is flat (as a localization of A→ A⊗kK).
Since lengthA(A′/A) is the δ-invariant of X at x and since lengthB(B/mAB) ≥ 1
the lemma is proved. □

Lemma 33.39.9.0C3Y Let k be a field. Let X be a locally algebraic k-scheme. Let
K/k be a field extension and set Y = XK . Let y ∈ Y with image x ∈ X. Assume
assumptions (a), (b), (c) of Lemma 33.27.6 hold for x ∈ X and that dim(OY,y) = 1.
Then the δ-invariant of X at x is δ-invariant of Y at y.

Proof. Set A = OX,x and B = OY,y. By Lemma 33.27.6 we see that A is geomet-
rically reduced. Hence B is a localization of A⊗k K. Let A→ A′ be as in Lemma
33.39.2. By Lemma 33.27.6 we see that A′ ⊗k K is normal. Hence

B′ = B ⊗(A⊗kK) (A′ ⊗k K)

is normal, finite over B, and B → B′ induces an isomorphism on total rings of frac-
tions. Namely, pick f ∈ mA satisfying (1) – (6) of Lemma 33.39.1; since dim(B) = 1
we see that f ∈ mB playes the same role for B and we see that Bf = B′

f because
Af = A′

f . It follows that B → B′ is as in Lemma 33.39.2 for B. Thus we have to
show that lengthA(A′/A) = lengthB(B′/B) = lengthB((A′/A)⊗AB). Since A→ B
is flat (as a localization of A → A ⊗k K) and since mB = mAB (because B/mAB
is zero dimensional by the remarks above and a localization of K ⊗k κ(x) which is
reduced as κ(x) is separable over k) we conclude by Algebra, Lemma 10.52.13. □
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33.40. The number of branches

0C3Z We have defined the number of branches of a scheme at a point in Properties,
Section 28.15.

Lemma 33.40.1.0C1S Let X be a scheme. Assume every quasi-compact open of X has
finitely many irreducible components. Let ν : Xν → X be the normalization of X.
Let x ∈ X.

(1) The number of branches of X at x is the number of inverse images of x
in Xν .

(2) The number of geometric branches of X at x is
∑
ν(xν)=x[κ(xν) : κ(x)]s.

Proof. First note that the assumption on X exactly means that the normalization
is defined, see Morphisms, Definition 29.54.1. Then the stalk A′ = (ν∗OXν )x is the
integral closure of A = OX,x in the total ring of fractions of Ared, see Morphisms,
Lemma 29.54.4. Since ν is an integral morphism, we see that the points of Xν

lying over x correspond to the primes of A′ lying over the maximal ideal m of A.
As A→ A′ is integral, this is the same thing as the maximal ideals of A′ (Algebra,
Lemmas 10.36.20 and 10.36.22). Thus the lemma now follows from its algebraic
counterpart: More on Algebra, Lemma 15.106.7. □

Lemma 33.40.2.0C40 Let k be a field. Let X be a locally algebraic k-scheme. Let K/k
be an extension of fields. Let y ∈ XK be a point with image x in X. Then the
number of geometric branches of X at x is the number of geometric branches of
XK at y.

Proof. Write Y = XK and let Xν , resp. Y ν be the normalization of X, resp. Y .
Consider the commutative diagram

Y ν //

��

Xν
K

//

νK

��

Xν

ν

��
Y Y // X

By Lemma 33.27.5 we see that the left top horizontal arrow is a universal homeomor-
phism. Hence it induces purely inseparable residue field extensions, see Morphisms,
Lemmas 29.45.5 and 29.10.2. Thus the number of geometric branches of Y at y
is
∑
νK(y′)=y[κ(y′) : κ(y)]s by Lemma 33.40.1. Similarly

∑
ν(x′)=x[κ(x′) : κ(x)]s is

the number of geometric branches of X at x. Using Schemes, Lemma 26.17.5 our
statement follows from the following algebra fact: given a field extension l/κ and
an algebraic field extension m/κ, then∑

m⊗κl→m′
[m′ : l′]s = [m : κ]s

where the sum is over the quotient fields of m ⊗κ l. One can prove this in an
elementary way, or one can use Lemma 33.7.6 applied to

Spec(m⊗κl)×Spec(l)Spec(l) = Spec(m)⊗Spec(κ)Spec(l) −→ Spec(m)×Spec(κ)Spec(κ)

because one can interpret [m : κ]s as the number of connected components of
the right hand side and the sum

∑
m⊗κl→m′ [m′ : l′]s as the number of connected

components of the left hand side. □
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Lemma 33.40.3.0C55 Let k be a field. Let X be a locally algebraic k-scheme. Let K/k
be an extension of fields. Let y ∈ XK be a point with image x in X. Then X is
geometrically unibranch at x if and only if XK is geometrically unibranch at y.

Proof. Immediate from Lemma 33.40.2 and More on Algebra, Lemma 15.106.7. □

Definition 33.40.4.0C41 Let A and Ai, 1 ≤ i ≤ n be local rings. We say A is a wedge
of A1, . . . , An if there exist isomorphisms

κA1 → κA2 → . . .→ κAn

and A is isomorphic to the ring consisting of n-tuples (a1, . . . , an) ∈ A1 × . . .×An
which map to the same element of κAn .

If we are given a base ring Λ and A and Ai are Λ-algebras, then we require κAi →
κAi+1 to be a Λ-algebra isomorphisms and A to be isomorphic as a Λ-algebra to
the Λ-algebra consisting of n-tuples (a1, . . . , an) ∈ A1 × . . .×An which map to the
same element of κAn . In particular, if Λ = k is a field and the maps k → κAi are
isomorphisms, then there is a unique choice for the isomorphisms κAi → κAi+1 and
we often speak of the wedge of A1, . . . , An.

Lemma 33.40.5.0C42 Let (A,m) be a strictly henselian 1-dimensional reduced Nagata
local ring. Then

δ-invariant of A ≥ number of geometric branches of A− 1

If equality holds, then A is a wedge of n ≥ 1 strictly henselian discrete valuation
rings.

Proof. The number of geometric branches is equal to the number of branches of
A (immediate from More on Algebra, Definition 15.106.6). Let A → A′ be as
in Lemma 33.39.2. Observe that the number of branches of A is the number of
maximal ideals of A′, see More on Algebra, Lemma 15.106.7. There is a surjection

A′/A −→
(∏

m′
κ(m′)

)
/κ(m)

Since dimκ(m)
∏
κ(m′) is ≥ the number of branches, the inequality is obvious.

If equality holds, then κ(m′) = κ(m) for all m′ ⊂ A′ and the displayed arrow above
is an isomorphism. Since A is henselian and A → A′ is finite, we see that A′ is
a product of local henselian rings, see Algebra, Lemma 10.153.4. The factors are
the local rings A′

m′ and as A′ is normal, these factors are discrete valuation rings
(Algebra, Lemma 10.119.7). Since the displayed arrow is an isomorphism we see
that A is indeed the wedge of these local rings. □

Lemma 33.40.6.0C43 Let (A,m) be a 1-dimensional reduced Nagata local ring. Then

δ-invariant of A ≥ number of geometric branches of A− 1

Proof. We may replace A by the strict henselization of A without changing the δ-
invariant (Lemma 33.39.6) and without changing the number of geometric branches
ofA (this is immediate from the definition, see More on Algebra, Definition 15.106.6).
Thus we may assume A is strictly henselian and we may apply Lemma 33.40.5. □
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33.41. Normalization of one dimensional schemes

0C44 The normalization morphism of a Noetherian scheme of dimension 1 has unexpect-
edly good properties by the Krull-Akizuki result.

Lemma 33.41.1.0C45 Let X be a locally Noetherian scheme of dimension 1. Let ν :
Xν → X be the normalization. Then

(1) ν is integral, surjective, and induces a bijection on irreducible components,
(2) there is a factorization Xν → Xred → X and the morphism Xν → Xred

is the normalization of Xred,
(3) Xν → Xred is birational,
(4) for every closed point x ∈ X the stalk (ν∗OXν )x is the integral closure of
OX,x in the total ring of fractions of (OX,x)red = OXred,x,

(5) the fibres of ν are finite and the residue field extensions are finite,
(6) Xν is a disjoint union of integral normal Noetherian schemes and each

affine open is the spectrum of a finite product of Dedekind domains.

Proof. Many of the results are in fact general properties of the normalization mor-
phism, see Morphisms, Lemmas 29.54.2, 29.54.4, 29.54.5, and 29.54.7. What is not
clear is that the fibres are finite, that the induced residue field extensions are finite,
and that Xν locally looks like the spectrum of a Dedekind domain (and hence is
Noetherian). To see this we may assume that X = Spec(A) is affine, Noetherian,
dimension 1, and that A is reduced. Then we may use the description in Mor-
phisms, Lemma 29.54.3 to reduce to the case where A is a Noetherian domain of
dimension 1. In this case the desired properties follow from Krull-Akizuki in the
form stated in Algebra, Lemma 10.120.18. □

Of course there is a variant of the following lemma in case X is not reduced.

Lemma 33.41.2.0C1R Let X be a reduced Nagata scheme of dimension 1. Let ν : Xν →
X be the normalization. Let x ∈ X denote a closed point. Then

(1) ν : Xν → X is finite, surjective, and birational,
(2) OX ⊂ ν∗OXν and ν∗OXν/OX is a direct sum of skyscraper sheaves Qx in

the singular points x of X,
(3) A′ = (ν∗OXν )x is the integral closure of A = OX,x in its total ring of

fractions,
(4) Qx = A′/A has finite length equal to the δ-invariant of X at x,
(5) A′ is a semi-local ring which is a finite product of Dedekind domains,
(6) A∧ is a reduced Noetherian complete local ring of dimension 1,
(7) (A′)∧ is the integral closure of A∧ in its total ring of fractions,
(8) (A′)∧ is a finite product of complete discrete valuation rings, and
(9) A′/A ∼= (A′)∧/A∧.

Proof. We may and will use all the results of Lemma 33.41.1. Finiteness of ν follows
from Morphisms, Lemma 29.54.10. Since X is reduced, Nagata, of dimension 1, we
see that the regular locus is a dense open U ⊂ X by More on Algebra, Proposition
15.48.7. Since a regular scheme is normal, this shows that ν is an isomorphism over
U . Since dim(X) ≤ 1 this implies that ν is not an isomorphism over a discrete set
of closed points x ∈ X. In particular we see that we have a short exact sequence

0→ OX → ν∗OXν →
⊕

x∈X\U
Qx → 0

https://stacks.math.columbia.edu/tag/0C45
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As we have the description of the stalks of ν∗OXν by Lemma 33.41.1, we conclude
that Qx = A′/A indeed has length equal to the δ-invariant of X at x. Note that
Qx ̸= 0 exactly when x is a singular point for example by Lemma 33.39.4. The
description of A′ as a product of semi-local Dedekind domains follows from Lemma
33.41.1 as well. The relationship between A, A′, and (A′)∧ we have see in Lemma
33.39.5 (and its proof). □

33.42. Finding affine opens

09NF We continue the discussion started in Properties, Section 28.29. It turns out that we
can find affines containing a finite given set of codimension 1 points on a separated
scheme. See Proposition 33.42.7.
We will improve on the following lemma in Descent, Lemma 35.25.4.

Lemma 33.42.1.09NG Let f : X → Y be a morphism of schemes. Let X0 denote the set
of generic points of irreducible components of X. If

(1) f is separated,
(2) there is an open covering X =

⋃
Ui such that f |Ui : Ui → Y is an open

immersion, and
(3) if ξ, ξ′ ∈ X0, ξ ̸= ξ′, then f(ξ) ̸= f(ξ′),

then f is an open immersion.

Proof. Suppose that y = f(x) = f(x′). Pick a specialization y0 ⇝ y where y0 is a
generic point of an irreducible component of Y . Since f is locally on the source an
isomorphism we can pick specializations x0 ⇝ x and x′

0 ⇝ x′ mapping to y0 ⇝ y.
Note that x0, x

′
0 ∈ X0. Hence x0 = x′

0 by assumption (3). As f is separated we
conclude that x = x′. Thus f is an open immersion. □

Lemma 33.42.2.09NH Let X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. If

(1) OX,x = OS,s,
(2) X is reduced,
(3) X → S is of finite type, and
(4) S has finitely many irreducible components,

then there exists an open neighbourhood U of x such that f |U is an open immersion.

Proof. We may remove the (finitely many) irreducible components of S which do
not contain s. We may replace S by an affine open neighbourhood of s. We
may replace X by an affine open neighbourhood of x. Say S = Spec(A) and
X = Spec(B). Let q ⊂ B, resp. p ⊂ A be the prime ideal corresponding to x,
resp. s. As A is a reduced and all of the minimal primes of A are contained in
p we see that A ⊂ Ap. As X → S is of finite type, B is of finite type over A.
Let b1, . . . , bn ∈ B be elements which generate B over A Since Ap = Bq we can
find f ∈ A, f ̸∈ p and ai ∈ A such that bi and ai/f have the same image in Bq.
Thus we can find g ∈ B, g ̸∈ q such that g(fbi − ai) = 0 in B. It follows that the
image of Af → Bfg contains the images of b1, . . . , bn, in particular also the image
of g. Choose n ≥ 0 and f ′ ∈ A such that f ′/fn maps to the image of g in Bfg.
Since Ap = Bq we see that f ′ ̸∈ p. We conclude that Aff ′ → Bfg is surjective.
Finally, as Aff ′ ⊂ Ap = Bq (see above) the map Aff ′ → Bfg is injective, hence an
isomorphism. □

https://stacks.math.columbia.edu/tag/09NG
https://stacks.math.columbia.edu/tag/09NH


33.42. FINDING AFFINE OPENS 2860

Lemma 33.42.3.09NI Let f : T → X be a morphism of schemes. Let X0, resp. T 0

denote the sets of generic points of irreducible components. Let t1, . . . , tm ∈ T be
a finite set of points with images xj = f(tj). If

(1) T is affine,
(2) X is quasi-separated,
(3) X0 is finite
(4) f(T 0) ⊂ X0 and f : T 0 → X0 is injective, and
(5) OX,xj = OT,tj ,

then there exists an affine open of X containing x1, . . . , xr.

Proof. Using Limits, Proposition 32.11.2 there is an immediate reduction to the
case where X and T are reduced. Details omitted.

Assume X and T are reduced. We may write T = limi∈I Ti as a directed limit of
schemes of finite presentation over X with affine transition morphisms, see Limits,
Lemma 32.7.2. Pick i ∈ I such that Ti is affine, see Limits, Lemma 32.4.13. Say
Ti = Spec(Ri) and T = Spec(R). Let R′ ⊂ R be the image of Ri → R. Then
T ′ = Spec(R′) is affine, reduced, of finite type over X, and T → T ′ dominant. For
j = 1, . . . , r let t′j ∈ T ′ be the image of tj . Consider the local ring maps

OX,xj → OT ′,t′
j
→ OT,tj

Denote (T ′)0 the set of generic points of irreducible components of T ′. Let ξ ⇝
t′j be a specialization with ξ ∈ (T ′)0. As T → T ′ is dominant we can choose
η ∈ T 0 mapping to ξ (warning: a priori we do not know that η specializes to
tj). Assumption (3) applied to η tells us that the image θ of ξ in X corresponds
to a minimal prime of OX,xj . Lifting ξ via the isomorphism of (5) we obtain a
specialization η′ ⇝ tj with η′ ∈ T 0 mapping to θ ⇝ xj . The injectivity of (4)
shows that η = η′. Thus every minimal prime of OT ′,t′

j
lies below a minimal prime

of OT,tj . We conclude that OT ′,t′
j
→ OT,tj is injective, hence both maps above are

isomorphisms.

By Lemma 33.42.2 there exists an open U ⊂ T ′ containing all the points t′j such
that U → X is a local isomorphism as in Lemma 33.42.1. By that lemma we see
that U → X is an open immersion. Finally, by Properties, Lemma 28.29.5 we can
find an open W ⊂ U ⊂ T ′ containing all the t′j . The image of W in X is the desired
affine open. □

Lemma 33.42.4.09NJ Let X be an integral separated scheme. Let x1, . . . , xr ∈ X be
a finite set of points such that OX,xi is Noetherian of dimension ≤ 1. Then there
exists an affine open subscheme of X containing all of x1, . . . , xr.

Proof. Let K be the field of rational functions of X. Set Ai = OX,xi . Then Ai ⊂ K
and K is the fraction field of Ai. Since X is separated, and xi ̸= xj there cannot
be a valuation ring O ⊂ K dominating both Ai and Aj . Namely, considering the
diagram

Spec(O) //

��

Spec(A1)

��
Spec(A2) // X
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and applying the valuative criterion of separatedness (Schemes, Lemma 26.22.1) we
would get xi = xj . Thus we see by Lemma 33.37.3 that Ai ⊗Aj → K is surjective
for all i ̸= j. By Lemma 33.37.7 we see that A = A1∩ . . .∩Ar is a Noetherian semi-
local ring with exactly r maximal ideals m1, . . . ,mr such that Ai = Ami . Moreover,

Spec(A) = Spec(A1) ∪ . . . ∪ Spec(Ar)
is an open covering and the intersection of any two pieces of this covering is Spec(K).
Thus the given morphisms Spec(Ai)→ X glue to a morphism of schemes

Spec(A) −→ X

mapping mi to xi and inducing isomorphisms of local rings. Thus the result follows
from Lemma 33.42.3. □

Lemma 33.42.5.09NK Let A be a ring, I ⊂ A an ideal, p1, . . . , pr primes of A, and
f ∈ A/I an element. If I ̸⊂ pi for all i, then there exists an f ∈ A, f ̸∈ pi which
maps to f in A/I.

Proof. We may assume there are no inclusion relations among the pi (by removing
the smaller primes). First pick any f ∈ A lifting f . Let S be the set s ∈ {1, . . . , r}
such that f ∈ ps. If S is empty we are done. If not, consider the ideal J = I

∏
i ̸∈S pi.

Note that J is not contained in ps for s ∈ S because there are no inclusions among
the pi and because I is not contained in any pi. Hence we can choose g ∈ J , g ̸∈ ps
for s ∈ S by Algebra, Lemma 10.15.2. Then f + g is a solution to the problem
posed by the lemma. □

Lemma 33.42.6.09NM Let X be a scheme. Let T ⊂ X be finite set of points. Assume
(1) X has finitely many irreducible components Z1, . . . , Zt, and
(2) Zi ∩ T is contained in an affine open of the reduced induced subscheme

corresponding to Zi.
Then there exists an affine open subscheme of X containing T .

Proof. Using Limits, Proposition 32.11.2 there is an immediate reduction to the
case where X is reduced. Details omitted. In the rest of the proof we endow every
closed subset of X with the induced reduced closed subscheme structure.
We argue by induction that we can find an affine open U ⊂ Z1∪ . . .∪Zr containing
T ∩ (Z1 ∪ . . . ∪ Zr). For r = 1 this holds by assumption. Say r > 1 and let
U ⊂ Z1∪ . . .∪Zr−1 be an affine open containing T ∩ (Z1∪ . . .∪Zr−1). Let V ⊂ Xr

be an affine open containing T ∩ Zr (exists by assumption). Then U ∩ V contains
T ∩ (Z1 ∪ . . . ∪ Zr−1) ∩ Zr. Hence

∆ = (U ∩ Zr) \ (U ∩ V )
does not contain any element of T . Note that ∆ is a closed subset of U . By
prime avoidance (Algebra, Lemma 10.15.2), we can find a standard open U ′ of U
containing T ∩ U and avoiding ∆, i.e., U ′ ∩ Zr ⊂ U ∩ V . After replacing U by U ′

we may assume that U ∩ V is closed in U .
Using that by the same arguments as above also the set ∆′ = (U∩(Z1∪. . .∪Zr−1))\
(U ∩V ) does not contain any element of T we find a h ∈ O(V ) such that D(h) ⊂ V
contains T ∩ V and such that U ∩D(h) ⊂ U ∩ V . Using that U ∩ V is closed in U
we can use Lemma 33.42.5 to find an element g ∈ O(U) whose restriction to U ∩V
equals the restriction of h to U ∩ V and such that T ∩ U ⊂ D(g). Then we can
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replace U by D(g) and V by D(h) to reach the situation where U ∩ V is closed in
both U and V . In this case the scheme U ∪ V is affine by Limits, Lemma 32.11.3.
This proves the induction step and thereby the lemma. □

Here is a conclusion we can draw from the material above.

Proposition 33.42.7.09NN Let X be a separated scheme such that every quasi-compact
open has a finite number of irreducible components. Let x1, . . . , xr ∈ X be points
such that OX,xi is Noetherian of dimension ≤ 1. Then there exists an affine open
subscheme of X containing all of x1, . . . , xr.

Proof. We can replace X by a quasi-compact open containing x1, . . . , xr hence we
may assume that X has finitely many irreducible components. By Lemma 33.42.6
we reduce to the case where X is integral. This case is Lemma 33.42.4. □

33.43. Curves

0A22 In the Stacks project we will use the following as our definition of a curve.

Definition 33.43.1.0A23 Let k be a field. A curve is a variety of dimension 1 over k.

Two standard examples of curves over k are the affine line A1
k and the projective

line P1
k. The scheme X = Spec(k[x, y]/(f)) is a curve if and only if f ∈ k[x, y] is

irreducible.
Our definition of a curve has the same problems as our definition of a variety, see the
discussion following Definition 33.3.1. Moreover, it means that every curve comes
with a specified field of definition. For example X = Spec(C[x]) is a curve over C
but we can also view it as a curve over R. The scheme Spec(Z) isn’t a curve, even
though the schemes Spec(Z) and A1

Fp behave similarly in many respects.

Lemma 33.43.2.0A24 Let X be a separated, irreducible scheme of dimension > 0 over
a field k. Let x ∈ X be a closed point. The open subscheme X \ {x} is not proper
over k.

Proof. Since X is irreducible, U = X \ {x} is not closed in X. In particular, the
immersion U → X is not proper. By Morphisms, Lemma 29.41.7 (here we use X
is separated), U → Spec(k) is not proper either. □

Lemma 33.43.3.0A25 Let X be a separated finite type scheme over a field k. If dim(X) ≤
1 then X is H-quasi-projective over k.

Proof. By Proposition 33.38.12 the scheme X has an ample invertible sheaf L.
By Morphisms, Lemma 29.39.3 we see that X is isomorphic to a locally closed
subscheme of Pn

k over Spec(k). This is the definition of being H-quasi-projective
over k, see Morphisms, Definition 29.40.1. □

Lemma 33.43.4.0A26 Let X be a proper scheme over a field k. If dim(X) ≤ 1 then X
is H-projective over k.

Proof. By Lemma 33.43.3 we see that X is a locally closed subscheme of Pn
k for

some field k. Since X is proper over k it follows that X is a closed subscheme of
Pn
k (Morphisms, Lemma 29.41.7). □

Lemma 33.43.5.0BXV Let X be a separated scheme of finite type over k. If dim(X) ≤ 1,
then there exists an open immersion j : X → X with the following properties

https://stacks.math.columbia.edu/tag/09NN
https://stacks.math.columbia.edu/tag/0A23
https://stacks.math.columbia.edu/tag/0A24
https://stacks.math.columbia.edu/tag/0A25
https://stacks.math.columbia.edu/tag/0A26
https://stacks.math.columbia.edu/tag/0BXV


33.43. CURVES 2863

(1) X is H-projective over k, i.e., X is a closed subscheme of Pd
k for some d,

(2) j(X) ⊂ X is dense and scheme theoretically dense,
(3) X \X = {x1, . . . , xn} for some closed points xi ∈ X.

Proof. By Lemma 33.43.3 we may assume X is a locally closed subscheme of Pd
k

for some d. Let X ⊂ Pd
k be the scheme theoretic image of X → Pd

k, see Morphisms,
Definition 29.6.2. The description in Morphisms, Lemma 29.7.7 gives properties (1)
and (2). Then dim(X) = 1⇒ dim(X) = 1 for example by looking at generic points,
see Lemma 33.20.3. As X is Noetherian, it then follows that X \X = {x1, . . . , xn}
is a finite set of closed points. □

Lemma 33.43.6.0BXW Let X be a separated scheme of finite type over k. If X is reduced
and dim(X) ≤ 1, then there exists an open immersion j : X → X such that

(1) X is H-projective over k, i.e., X is a closed subscheme of Pd
k for some d,

(2) j(X) ⊂ X is dense and scheme theoretically dense,
(3) X \X = {x1, . . . , xn} for some closed points xi ∈ X,
(4) the local rings OX,xi are discrete valuation rings for i = 1, . . . , n.

Proof. Let j : X → X be as in Lemma 33.43.5. Consider the normalization X ′ of X
in X. By Lemma 33.27.3 the morphism X ′ → X is finite. By Morphisms, Lemma
29.44.16 X ′ → X is projective. By Morphisms, Lemma 29.43.16 we see that X ′ →
X is H-projective. By Morphisms, Lemma 29.43.7 we see that X ′ → Spec(k) is
H-projective. Let {x′

1, . . . , x
′
m} ⊂ X ′ be the inverse image of {x1, . . . , xn} = X \X.

Then dim(OX′,x′
i
) = 1 for all 1 ≤ i ≤ m. Hence the local rings OX′,x′ are discrete

valuation rings by Morphisms, Lemma 29.53.16. Then X → X ′ and {x′
1, . . . , x

′
m}

is as desired. □

Lemma 33.43.7.0GK5 LetX be a separated scheme of finite type over k with dim(X) ≤ 1.
Then there exists a commutative diagram

Y 1 ⨿ . . .⨿ Y n

**

Y1 ⨿ . . .⨿ Yn ν
//

��

j
oo Xk′ //

��

X

f

��
Spec(k′

1)⨿ . . .⨿ Spec(k′
n) // Spec(k′) // Spec(k)

of schemes with the following properties:
(1) k′/k is a finite purely inseparable extension of fields,
(2) ν is the normalization of Xk′ ,
(3) j is an open immersion with dense image,
(4) k′

i/k
′ is a finite separable extension for i = 1, . . . , n,

(5) Y i is smooth, projective, geometrically irreducible dimension ≤ 1 over k′
i.

Proof. As we may replace X by its reduction, we may and do assume X is reduced.
Choose X → X as in Lemma 33.43.6. If we can show the lemma for X, then the
lemma follows for X (details omitted). Thus we may and do assume X is projective.
Choose k′/k finite purely inseparable such that the normalization of Xk′ is geomet-
rically normal over k′, see Lemma 33.27.4. Denote Y = (Xk′)ν the normalization;
for properties of the normalization, see Section 33.27. Then Y is geometrically reg-
ular as normal and regular are the same in dimension ≤ 1, see Properties, Lemma
28.12.6. Hence Y is smooth over k′ by Lemma 33.12.6. Let Y = Y1⨿ . . .⨿Yn be the
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decomposition of Y into irreducible components. Set k′
i = Γ(Yi,OYi). These are

finite separable extensions of k′ by Lemma 33.9.3. The proof is finished by Lemma
33.9.4. □

Lemma 33.43.8.0B8Y Let k be a field. Let X be a curve over k. Let x ∈ X be a closed
point. We think of x as a (reduced) closed subscheme of X with sheaf of ideals I.
The following are equivalent

(1) OX,x is regular,
(2) OX,x is normal,
(3) OX,x is a discrete valuation ring,
(4) I is an invertible OX -module,
(5) x is an effective Cartier divisor on X.

If k is perfect or if κ(x) is separable over k, these are also equivalent to
(6) X → Spec(k) is smooth at x.

Proof. Since X is a curve, the local ring OX,x is a Noetherian local domain of
dimension 1 (Lemma 33.20.3). Parts (4) and (5) are equivalent by definition and
are equivalent to Ix = mx ⊂ OX,x having one generator (Divisors, Lemma 31.15.2).
The equivalence of (1), (2), (3), (4), and (5) therefore follows from Algebra, Lemma
10.119.7. The final statement follows from Lemma 33.25.8 in case k is perfect. If
κ(x)/k is separable, then the equivalence follows from Algebra, Lemma 10.140.5.

□

Remark 33.43.9.0H1F Let k be a field. Let X be a regular curve over k. By Lemmas
33.43.8 and 33.43.6 there exists a nonsingular projective curve X which is a com-
pactification of X, i.e., there exists an open immersion j : X → X such that the
complement consists of a finite number of closed points. If k is perfect, then X and
X are smooth over k and X is a smooth projective compactification of X.

Observe that if an affine scheme X over k is proper over k then X is finite over k
(Morphisms, Lemma 29.44.11) and hence has dimension 0 (Algebra, Lemma 10.53.2
and Proposition 10.60.7). Hence a scheme of dimension > 0 over k cannot be both
affine and proper over k. Thus the possibilities in the following lemma are mutually
exclusive.

Lemma 33.43.10.0A27 Let X be a curve over k. Then either X is an affine scheme or
X is H-projective over k.

Proof. Choose X → X with X \X = {x1, . . . , xr} as in Lemma 33.43.6. Then X is
a curve as well. If r = 0, then X = X is H-projective over k. Thus we may assume
r ≥ 1 and our goal is to show that X is affine. By Lemma 33.38.2 it suffices to show
that X \ {x1} is affine. This reduces us to the claim stated in the next paragraph.
Let X be an H-projective curve over k. Let x ∈ X be a closed point such that OX,x
is a discrete valuation ring. Claim: U = X \ {x} is affine. By Lemma 33.43.8 the
point x defines an effective Cartier divisor of X. For n ≥ 1 denote nx = x+ . . .+x
the n-fold sum, see Divisors, Definition 31.13.6. Denote Onx the structure sheaf of
nx viewed as a coherent module on X. Since every invertible module on the local
scheme nx is trivial the first short exact sequence of Divisors, Remark 31.14.11
reads

0→ OX
1−→ OX(nx)→ Onx → 0
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in our case. Note that dimkH
0(X,Onx) ≥ n. Namely, by Lemma 33.33.3 we

have H0(X,Onx) = OX,x/(πn) where π in OX,x is a uniformizer and the powers
πi map to k-linearly independent elements in OX,x/(πn) for i = 0, 1, . . . , n − 1.
We have dimkH

1(X,OX) < ∞ by Cohomology of Schemes, Lemma 30.19.2. If
n > dimkH

1(X,OX) we conclude from the long exact cohomology sequence that
there exists an s ∈ Γ(X,OX(nx)) which is not a section of OX . If we take n
minimal with this property, then s will map to a generator of the stalk (OX(nx))x
since otherwise it would define a section of OX((n− 1)x) ⊂ OX(nx). For this n we
conclude that s0 = 1 and s1 = s generate the invertible module L = OX(nx).
Consider the corresponding morphism f = φL,(s0,s1) : X → P1

k of Constructions,
Section 27.13. Observe that the inverse image of D+(T0) is U = X \ {x} as the
section s0 of L only vanishes at x. In particular, f is non-constant, i.e., Im(f) has
more than one point. Hence f must map the generic point η of X to the generic
point of P1

k. Hence if y ∈ P1
k is a closed point, then f−1({y}) is a closed set of X

not containing η, hence finite. Finally, f is proper4. By Cohomology of Schemes,
Lemma 30.21.25 we conclude that f is finite. Hence U = f−1(D+(T0)) is affine. □

The following lemma combined with Lemma 33.43.2 tells us that given a separated
scheme X of dimension 1 and of finite type over k, then X \ Z is affine, whenever
the closed subset Z meets every irreducible component of X.

Lemma 33.43.11.0A28 Let X be a separated scheme of finite type over k. If dim(X) ≤ 1
and no irreducible component of X is proper of dimension 1, then X is affine.

Proof. Let X =
⋃
Xi be the decomposition of X into irreducible components. We

think of Xi as an integral scheme (using the reduced induced scheme structure,
see Schemes, Definition 26.12.5). In particular Xi is a singleton (hence affine) or
a curve hence affine by Lemma 33.43.10. Then

∐
Xi → X is finite surjective and∐

Xi is affine. Thus we see that X is affine by Cohomology of Schemes, Lemma
30.13.3. □

33.44. Degrees on curves

0AYQ We start defining the degree of an invertible sheaf and more generally a locally free
sheaf on a proper scheme of dimension 1 over a field. In Section 33.33 we defined
the Euler characteristic of a coherent sheaf F on a proper scheme X over a field k
by the formula

χ(X,F) =
∑

(−1)i dimkH
i(X,F).

Definition 33.44.1.0AYR Let k be a field, let X be a proper scheme of dimension ≤ 1
over k, and let L be an invertible OX -module. The degree of L is defined by

deg(L) = χ(X,L)− χ(X,OX)

4Namely, a H-projective variety is a proper variety by Morphisms, Lemma 29.43.13. A
morphism of varieties whose source is a proper variety is a proper morphism by Morphisms,
Lemma 29.41.7.

5One can avoid using this lemma which relies on the theorem of formal functions. Namely,
X is projective hence it suffices to show a proper morphism f : X → Y with finite fibres between
quasi-projective schemes over k is finite. To do this, one chooses an affine open of X containing
the fibre of f over a point y using that any finite set of points of a quasi-projective scheme over k
is contained in an affine. Shrinking Y to a small affine neighbourhood of y one reduces to the case
of a proper morphism between affines. Such a morphism is finite by Morphisms, Lemma 29.44.7.
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More generally, if E is a locally free sheaf of rank n we define the degree of E by

deg(E) = χ(X, E)− nχ(X,OX)

Observe that this depends on the triple E/X/k. If X is disconnected and E is
finite locally free (but not of constant rank), then one can modify the definition by
summing the degrees of the restriction of E to the connected components of X. If E
is just a coherent sheaf, there are several different ways of extending the definition6.
In a series of lemmas we show that this definition has all the properties one expects
of the degree.

Lemma 33.44.2.0B59 Let k′/k be an extension of fields. Let X be a proper scheme of
dimension ≤ 1 over k. Let E be a locally free OX -module of constant rank n. Then
the degree of E/X/k is equal to the degree of Ek′/Xk′/k′.

Proof. More precisely, set Xk′ = X ×Spec(k) Spec(k′). Let Ek′ = p∗E where p :
Xk′ → X is the projection. By Cohomology of Schemes, Lemma 30.5.2 we have
Hi(Xk′ , Ek′) = Hi(X, E)⊗kk′ and Hi(Xk′ ,OXk′ ) = Hi(X,OX)⊗kk′. Hence we see
that the Euler characteristics are unchanged, hence the degree is unchanged. □

Lemma 33.44.3.0AYS Let k be a field. Let X be a proper scheme of dimension ≤ 1
over k. Let 0 → E1 → E2 → E3 → 0 be a short exact sequence of locally free
OX -modules each of finite constant rank. Then

deg(E2) = deg(E1) + deg(E3)

Proof. Follows immediately from additivity of Euler characteristics (Lemma 33.33.2)
and additivity of ranks. □

Lemma 33.44.4.0AYU Let k be a field. Let f : X ′ → X be a birational morphism of
proper schemes of dimension ≤ 1 over k. Then

deg(f∗E) = deg(E)

for every finite locally free sheaf of constant rank. More generally it suffices if f in-
duces a bijection between irreducible components of dimension 1 and isomorphisms
of local rings at the corresponding generic points.

Proof. The morphism f is proper (Morphisms, Lemma 29.41.7) and has fibres of
dimension ≤ 0. Hence f is finite (Cohomology of Schemes, Lemma 30.21.2). Thus

Rf∗f
∗E = f∗f

∗E = E ⊗OX
f∗OX′

Since f induces an isomorphism on local rings at generic points of all irreducible
components of dimension 1 we see that the kernel and cokernel

0→ K → OX → f∗OX′ → Q→ 0

6If X is a proper curve and F is a coherent sheaf on X, then one often defines the degree as
χ(X,F)− rχ(X,OX) where r = dimκ(ξ) Fξ is the rank of F at the generic point ξ of X.
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have supports of dimension ≤ 0. Note that tensoring this with E is still an exact
sequence as E is locally free. We obtain

χ(X, E)− χ(X ′, f∗E) = χ(X, E)− χ(X, f∗f
∗E)

= χ(X, E)− χ(X, E ⊗ f∗OX′)
= χ(X,K ⊗ E)− χ(X,Q⊗ E)
= nχ(X,K)− nχ(X,Q)
= nχ(X,OX)− nχ(X, f∗OX′)
= nχ(X,OX)− nχ(X ′,OX′)

which proves what we want. The first equality as f is finite, see Cohomology of
Schemes, Lemma 30.2.4. The second equality by projection formula, see Cohomol-
ogy, Lemma 20.54.2. The third by additivity of Euler characteristics, see Lemma
33.33.2. The fourth by Lemma 33.33.3. □

Lemma 33.44.5.0AYV Let k be a field. Let X be a proper curve over k with generic
point ξ. Let E be a locally free OX -module of rank n and let F be a coherent
OX -module. Then

χ(X, E ⊗ F) = r deg(E) + nχ(X,F)
where r = dimκ(ξ) Fξ is the rank of F .

Proof. Let P be the property of coherent sheaves F on X expressing that the
formula of the lemma holds. We claim that the assumptions (1) and (2) of Co-
homology of Schemes, Lemma 30.12.6 hold for P. Namely, (1) holds because the
Euler characteristic and the rank r are additive in short exact sequences of coherent
sheaves. And (2) holds too: If Z = X then we may take G = OX and P(OX) is
true by the definition of degree. If i : Z → X is the inclusion of a closed point we
may take G = i∗OZ and P holds by Lemma 33.33.3 and the fact that r = 0 in this
case. □

Let k be a field. Let X be a finite type scheme over k of dimension ≤ 1. Let
Ci ⊂ X, i = 1, . . . , t be the irreducible components of dimension 1. We view Ci
as a scheme by using the induced reduced scheme structure. Let ξi ∈ Ci be the
generic point. The multiplicity of Ci in X is defined as the length

mi = lengthOX,ξi
OX,ξi

This makes sense because OX,ξi is a zero dimensional Noetherian local ring and
hence has finite length over itself (Algebra, Proposition 10.60.7). See Chow Homol-
ogy, Section 42.9 for additional information. It turns out the degree of a locally
free sheaf only depends on the restriction of the irreducible components.

Lemma 33.44.6.0AYW Let k be a field. Let X be a proper scheme of dimension ≤ 1 over
k. Let E be a locally free OX -module of rank n. Then

deg(E) =
∑

mi deg(E|Ci)

where Ci ⊂ X, i = 1, . . . , t are the irreducible components of dimension 1 with
reduced induced scheme structure and mi is the multiplicity of Ci in X.

Proof. Observe that the statement makes sense because Ci → Spec(k) is proper
of dimension 1 (Morphisms, Lemmas 29.41.6 and 29.41.4). Consider the open
subscheme Ui = X \ (

⋃
j ̸=i Cj) and let Xi ⊂ X be the scheme theoretic closure
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of Ui. Note that Xi ∩ Ui = Ui (scheme theoretically) and that Xi ∩ Uj = ∅ (set
theoretically) for i ̸= j; this follows from the description of scheme theoretic closure
in Morphisms, Lemma 29.7.7. Thus we may apply Lemma 33.44.4 to the morphism
X ′ =

⋃
Xi → X. Since it is clear that Ci ⊂ Xi (scheme theoretically) and that

the multiplicity of Ci in Xi is equal to the multiplicity of Ci in X, we see that we
reduce to the case discussed in the following paragraph.

Assume X is irreducible with generic point ξ. Let C = Xred have multiplicity m.
We have to show that deg(E) = m deg(E|C). Let I ⊂ OX be the ideal defining the
closed subscheme C. Let e ≥ 0 be minimal such that Ie+1 = 0 (Cohomology of
Schemes, Lemma 30.10.2). We argue by induction on e. If e = 0, then X = C and
the result is immediate. Otherwise we set F = Ie viewed as a coherent OC-module
(Cohomology of Schemes, Lemma 30.9.8). Let X ′ ⊂ X be the closed subscheme
cut out by the coherent ideal Ie and let m′ be the multiplicity of C in X ′. Taking
stalks at ξ of the short exact sequence

0→ F → OX → OX′ → 0

we find (use Algebra, Lemmas 10.52.3, 10.52.6, and 10.52.5) that

m = lengthOX,ξ
OX,ξ = dimκ(ξ) Fξ + lengthOX′,ξ

OX′,ξ = r +m′

where r is the rank of F as a coherent sheaf on C. Tensoring with E we obtain a
short exact sequence

0→ E|C ⊗F → E → E ⊗OX′ → 0

By induction we have χ(E ⊗ OX′) = m′ deg(E|C). By Lemma 33.44.5 we have
χ(E|C ⊗ F) = r deg(E|C) + nχ(F). Putting everything together we obtain the
result. □

Lemma 33.44.7.0AYX Let k be a field, let X be a proper scheme of dimension ≤ 1 over
k, and let E , V be locally free OX -modules of constant finite rank. Then

deg(E ⊗ V) = rank(E) deg(V) + rank(V) deg(E)

Proof. By Lemma 33.44.6 and elementary arithmetic, we reduce to the case of a
proper curve. This case follows from Lemma 33.44.5. □

Lemma 33.44.8.0DJ5 Let k be a field, let X be a proper scheme of dimension ≤ 1 over
k, and let E be a locally free OX -module of rank n. Then

deg(E) = deg(∧n(E)) = deg(det(E))

Proof. By Lemma 33.44.6 and elementary arithmetic, we reduce to the case of a
proper curve. Then there exists a modification f : X ′ → X such that f∗E has a
filtration whose successive quotients are invertible modules, see Divisors, Lemma
31.36.1. By Lemma 33.44.4 we may work on X ′. Thus we may assume we have a
filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ En = E
by locally free OX -modules with Li = Ei/Ei−1 is invertible. By Modules, Lemma
17.26.1 and induction we find det(E) = L1 ⊗ . . . ⊗ Ln. Thus the equality follows
from Lemma 33.44.7 and additivity (Lemma 33.44.3). □
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Lemma 33.44.9.0AYY Let k be a field, let X be a proper scheme of dimension ≤ 1 over
k. Let D be an effective Cartier divisor on X. Then D is finite over Spec(k) of
degree deg(D) = dimk Γ(D,OD). For a locally free sheaf E of rank n we have

deg(E(D)) = ndeg(D) + deg(E)
where E(D) = E ⊗OX

OX(D).

Proof. Since D is nowhere dense in X (Divisors, Lemma 31.13.4) we see that
dim(D) ≤ 0. Hence D is finite over k by Lemma 33.20.2. Since k is a field, the
morphism D → Spec(k) is finite locally free and hence has a degree (Morphisms,
Definition 29.48.1), which is clearly equal to dimk Γ(D,OD) as stated in the lemma.
By Divisors, Definition 31.14.1 there is a short exact sequence

0→ OX → OX(D)→ i∗i
∗OX(D)→ 0

where i : D → X is the closed immersion. Tensoring with E we obtain a short exact
sequence

0→ E → E(D)→ i∗i
∗E(D)→ 0

The equation of the lemma follows from additivity of the Euler characteristic
(Lemma 33.33.2) and Lemma 33.33.3. □

Lemma 33.44.10.0C6P Let k be a field. Let X be a proper scheme over k which is
reduced and connected. Let κ = H0(X,OX). Then κ/k is a finite extension of
fields and w = [κ : k] divides

(1) deg(E) for all locally free OX -modules E ,
(2) [κ(x) : k] for all closed points x ∈ X, and
(3) deg(D) for all closed subschemes D ⊂ X of dimension zero.

Proof. See Lemma 33.9.3 for the assertions about κ. For every quasi-coherent OX -
module, the k-vector spaces Hi(X,F) are κ-vector spaces. The divisibilities easily
follow from this statement and the definitions. □

Lemma 33.44.11.0AYZ Let k be a field. Let f : X → Y be a nonconstant morphism of
proper curves over k. Let E be a locally free OY -module. Then

deg(f∗E) = deg(X/Y ) deg(E)

Proof. The degree of X over Y is defined in Morphisms, Definition 29.51.8. Thus
f∗OX is a coherentOY -module of rank deg(X/Y ), i.e., deg(X/Y ) = dimκ(ξ)(f∗OX)ξ
where ξ is the generic point of Y . Thus we obtain

χ(X, f∗E) = χ(Y, f∗f
∗E)

= χ(Y, E ⊗ f∗OX)
= deg(X/Y ) deg(E) + nχ(Y, f∗OX)
= deg(X/Y ) deg(E) + nχ(X,OX)

as desired. The first equality as f is finite, see Cohomology of Schemes, Lemma
30.2.4. The second equality by projection formula, see Cohomology, Lemma 20.54.2.
The third equality by Lemma 33.44.5. □

The following is a trivial but important consequence of the results on degrees above.

Lemma 33.44.12.0B40 Let k be a field. Let X be a proper curve over k. Let L be an
invertible OX -module.
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(1) If L has a nonzero section, then deg(L) ≥ 0.
(2) If L has a nonzero section s which vanishes at a point, then deg(L) > 0.
(3) If L and L−1 have nonzero sections, then L ∼= OX .
(4) If deg(L) ≤ 0 and L has a nonzero section, then L ∼= OX .
(5) If N → L is a nonzero map of invertible OX -modules, then deg(L) ≥

deg(N ) and if equality holds then it is an isomorphism.
Proof. Let s be a nonzero section of L. Since X is a curve, we see that s is a regular
section. Hence there is an effective Cartier divisor D ⊂ X and an isomorphism
L → OX(D) mapping s the canonical section 1 of OX(D), see Divisors, Lemma
31.14.10. Then deg(L) = deg(D) by Lemma 33.44.9. As deg(D) ≥ 0 and = 0 if
and only if D = ∅, this proves (1) and (2). In case (3) we see that deg(L) = 0 and
D = ∅. Similarly for (4). To see (5) apply (1) and (4) to the invertible sheaf

L ⊗OX
N⊗−1 = HomOX

(N ,L)
which has degree deg(L)− deg(N ) by Lemma 33.44.7. □

Lemma 33.44.13.0E22 Let k be a field. Let X be a proper scheme over k which is
reduced, connected, and equidimensional of dimension 1. Let L be an invertible
OX -module. If deg(L|C) ≤ 0 for all irreducible components C of X, then either
H0(X,L) = 0 or L ∼= OX .
Proof. Let s ∈ H0(X,L) be nonzero. Since X is reduced there exists an irreducible
component C of X with s|C ̸= 0. But if s|C is nonzero, then s is nonwhere
vanishing on C by Lemma 33.44.12. This in turn implies s is nowhere vanishing on
every irreducible component of X meeting C. Since X is connected, we conclude
that s vanishes nowhere and the lemma follows. □

Lemma 33.44.14.0B5X Let k be a field. Let X be a proper curve over k. Let L be an
invertible OX -module. Then L is ample if and only if deg(L) > 0.
Proof. If L is ample, then there exists an n > 0 and a section s ∈ H0(X,L⊗n) with
Xs affine. Since X isn’t affine (otherwise by Morphisms, Lemma 29.44.11 X would
be finite), we see that s vanishes at some point. Hence deg(L⊗n) > 0 by Lemma
33.44.12. By Lemma 33.44.7 we conclude that deg(L) = 1/n deg(L⊗n) > 0.
Assume deg(L) > 0. Then

dimkH
0(X,L⊗n) ≥ χ(X,Ln) = n deg(L) + χ(X,OX)

grows linearly with n. Hence for any finite collection of closed points x1, . . . , xt of
X, we can find an n such that dimkH

0(X,L⊗n) >
∑

dimk κ(xi). (Recall that by
Hilbert Nullstellensatz, the extension fields κ(xi)/k are finite, see for example Mor-
phisms, Lemma 29.20.3). Hence we can find a nonzero s ∈ H0(X,L⊗n) vanishing
in x1, . . . , xt. In particular, if we choose x1, . . . , xt such that X \ {x1, . . . , xt} is
affine, then Xs is affine too (for example by Properties, Lemma 28.26.4 although
if we choose our finite set such that L|X\{x1,...,xt} is trivial, then it is immediate).
The conclusion is that we can find an n > 0 and a nonzero section s ∈ H0(X,L⊗n)
such that Xs is affine.
We will show that for every quasi-coherent sheaf of ideals I there exists an m > 0
such that H1(X, I ⊗ L⊗m) is zero. This will finish the proof by Cohomology of
Schemes, Lemma 30.17.1. To see this we consider the maps

I s−→ I ⊗ L⊗n s−→ I ⊗ L⊗2n s−→ . . .
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Since I is torsion free, these maps are injective and isomorphisms over Xs, hence
the cokernels have vanishing H1 (by Cohomology of Schemes, Lemma 30.9.10 for
example). We conclude that the maps of vector spaces

H1(X, I)→ H1(X, I ⊗ L⊗n)→ H1(X, I ⊗ L⊗2n)→ . . .

are surjective. On the other hand, the dimension of H1(X, I) is finite, and every
element maps to zero eventually by Cohomology of Schemes, Lemma 30.17.4. Thus
for some e > 0 we see that H1(X, I ⊗ L⊗en) is zero. This finishes the proof. □

Lemma 33.44.15.0B5Y Let k be a field. Let X be a proper scheme of dimension ≤ 1 over
k. Let L be an invertible OX -module. Let Ci ⊂ X, i = 1, . . . , t be the irreducible
components of dimension 1. The following are equivalent:

(1) L is ample, and
(2) deg(L|Ci) > 0 for i = 1, . . . , t.

Proof. Let x1, . . . , xr ∈ X be the isolated closed points. Think of xi = Spec(κ(xi))
as a scheme. Consider the morphism of schemes

f : C1 ⨿ . . .⨿ Ct ⨿ x1 ⨿ . . .⨿ xr −→ X

This is a finite surjective morphism of schemes proper over k (details omitted).
Thus L is ample if and only if f∗L is ample (Cohomology of Schemes, Lemma
30.17.2). Thus we conclude by Lemma 33.44.14. □

Lemma 33.44.16.0B8Z Let k be an algebraically closed field. Let X be a proper curve
over k. Then there exist

(1) an invertible OX -module L with dimkH
0(X,L) = 1 and H1(X,L) = 0,

and
(2) an invertible OX -module N with dimkH

0(X,N ) = 0 and H1(X,N ) = 0.

Proof. Choose a closed immersion i : X → Pn
k (Lemma 33.43.4). Setting L =

i∗OPn(d) for d≫ 0 we see that there exists an invertible sheaf L with H0(X,L) ̸= 0
and H1(X,L) = 0 (see Cohomology of Schemes, Lemma 30.17.1 for vanishing
and the references therein for nonvanishing). We will finish the proof of (1) by
descending induction on t = dimkH

0(X,L). The base case t = 1 is trivial. Assume
t > 1.
Let U ⊂ X be the nonempty open subset of nonsingular points studied in Lemma
33.25.8. Let s ∈ H0(X,L) be nonzero. There exists a closed point x ∈ U such that
s does not vanish in x. Let I be the ideal sheaf of i : x→ X as in Lemma 33.43.8.
Look at the short exact sequence

0→ I ⊗OX
L → L → i∗i

∗L → 0
Observe that H0(X, i∗i∗L) = H0(x, i∗L) has dimension 1 as x is a k-rational point
(k is algebraically closed). Since s does not vanish at x we conclude that

H0(X,L) −→ H0(X, i∗i∗L)
is surjective. Hence dimkH

0(X, I ⊗OX
L) = t−1. Finally, the long exact sequence

of cohomology also shows that H1(X, I ⊗OX
L) = 0 thereby finishing the proof of

the induction step.
To get an invertible sheaf as in (2) take an invertible sheaf L as in (1) and do the
argument in the previous paragraph one more time. □

https://stacks.math.columbia.edu/tag/0B5Y
https://stacks.math.columbia.edu/tag/0B8Z


33.45. NUMERICAL INTERSECTIONS 2872

Lemma 33.44.17.0B90 Let k be an algebraically closed field. Let X be a proper curve
over k. Set g = dimkH

1(X,OX). For every invertible OX -module L with deg(L) ≥
2g − 1 we have H1(X,L) = 0.

Proof. Let N be the invertible module we found in Lemma 33.44.16 part (2). The
degree of N is χ(X,N ) − χ(X,OX) = 0 − (1 − g) = g − 1. Hence the degree of
L ⊗N⊗−1 is deg(L)− (g − 1) ≥ g. Hence χ(X,L ⊗N⊗−1) ≥ g + 1− g = 1. Thus
there is a nonzero global section s whose zero scheme is an effective Cartier divisor
D of degree deg(L)− (g − 1). This gives a short exact sequence

0→ N s−→ L → i∗(L|D)→ 0

where i : D → X is the inclusion morphism. We conclude that H0(X,L) maps
isomorphically to H0(D,L|D) which has dimension deg(L) − (g − 1). The result
follows from the definition of degree. □

33.45. Numerical intersections

0BEL In this section we play around with the Euler characteristic of coherent sheaves on
proper schemes to obtain numerical intersection numbers for invertible modules.
Our main tool will be the following lemma.

Lemma 33.45.1.0BEM Let k be a field. Let X be a proper scheme over k. Let F be a
coherent OX -module. Let L1, . . . ,Lr be invertible OX -modules. The map

(n1, . . . , nr) 7−→ χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r )

is a numerical polynomial in n1, . . . , nr of total degree at most the dimension of the
support of F .

Proof. We prove this by induction on dim(Supp(F)). If this number is zero, then
the function is constant with value dimk Γ(X,F) by Lemma 33.33.3. Assume
dim(Supp(F)) > 0.

If F has embedded associated points, then we can consider the short exact sequence
0→ K → F → F ′ → 0 constructed in Divisors, Lemma 31.4.6. Since the dimension
of the support of K is strictly less, the result holds for K by induction hypothesis
and with strictly smaller total degree. By additivity of the Euler characteristic
(Lemma 33.33.2) it suffices to prove the result for F ′. Thus we may assume F does
not have embedded associated points.

If i : Z → X is a closed immersion and F = i∗G, then we see that the result
for X, F , L1, . . . ,Lr is equivalent to the result for Z, G, i∗L1, . . . , i

∗Lr (since
the cohomologies agree, see Cohomology of Schemes, Lemma 30.2.4). Applying
Divisors, Lemma 31.4.7 we may assume that X has no embedded components and
X = Supp(F).

Pick a regular meromorphic section s of L1, see Divisors, Lemma 31.25.4. Let
I ⊂ OX be the ideal of denominators of s and consider the maps

IF → F , IF → F ⊗ L1

of Divisors, Lemma 31.24.5. These are injective and have cokernels Q, Q′ supported
on nowhere dense closed subschemes of X = Supp(F). Tensoring with the invertible
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module L⊗n1
1 ⊗ . . .⊗ L⊗nr

r is exact, hence using additivity again we see that

χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r )− χ(X,F ⊗ L⊗n1+1
1 ⊗ . . .⊗ L⊗nr

r )
= χ(Q⊗L⊗n1

1 ⊗ . . .⊗ L⊗nr
r )− χ(Q′ ⊗ L⊗n1

1 ⊗ . . .⊗ L⊗nr
r )

Thus we see that the function P (n1, . . . , nr) of the lemma has the property that

P (n1 + 1, n2, . . . , nr)− P (n1, . . . , nr)

is a numerical polynomial of total degree < the dimension of the support of F . Of
course by symmetry the same thing is true for

P (n1, . . . , ni−1, ni + 1, ni+1, . . . , nr)− P (n1, . . . , nr)

for any i ∈ {1, . . . , r}. A simple arithmetic argument shows that P is a numerical
polynomial of total degree at most dim(Supp(F)). □

The following lemma roughly shows that the leading coefficient only depends on
the length of the coherent module in the generic points of its support.

Lemma 33.45.2.0BEN Let k be a field. Let X be a proper scheme over k. Let F
be a coherent OX -module. Let L1, . . . ,Lr be invertible OX -modules. Let d =
dim(Supp(F)). Let Zi ⊂ X be the irreducible components of Supp(F) of dimension
d. Let ξi ∈ Zi be the generic point and set mi = lengthOX,ξi

(Fξi). Then

χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r )−
∑

i
mi χ(Zi,L⊗n1

1 ⊗ . . .⊗ L⊗nr
r |Zi)

is a numerical polynomial in n1, . . . , nr of total degree < d.

Proof. Consider pairs (ξ, Z) where Z ⊂ X is an integral closed subscheme of di-
mension d and ξ is its generic point. Then the finite OX,ξ-module Fξ has support
contained in {ξ} hence the length mZ = lengthOX,ξ

(Fξ) is finite (Algebra, Lemma
10.62.3) and zero unless Z = Zi for some i. Thus the expression of the lemma can
be written as

E(F) = χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r )−
∑

mZ χ(Z,L⊗n1
1 ⊗ . . .⊗ L⊗nr

r |Z)

where the sum is over integral closed subschemes Z ⊂ X of dimension d. The
assignment F 7→ E(F) is additive in short exact sequences 0 → F → F ′ →
F ′′ → 0 of coherent OX -modules whose support has dimension ≤ d. This follows
from additivity of Euler characteristics (Lemma 33.33.2) and additivity of lengths
(Algebra, Lemma 10.52.3). Let us apply Cohomology of Schemes, Lemma 30.12.3
to find a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F
by coherent subsheaves such that for each j = 1, . . . ,m there exists an integral
closed subscheme Vj ⊂ X and a nonzero sheaf of ideals Ij ⊂ OVj such that

Fj/Fj−1 ∼= (Vj → X)∗Ij

It follows that Vj ⊂ Supp(F) and hence dim(Vj) ≤ d. By the additivity we re-
marked upon above it suffices to prove the result for each of the subquotients
Fj/Fj−1. Thus it suffices to prove the result when F = (V → X)∗I where V ⊂ X
is an integral closed subscheme of dimension ≤ d and I ⊂ OV is a nonzero coherent
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sheaf of ideals. If dim(V ) < d and more generally for F whose support has dimen-
sion < d, then the first term in E(F) has total degree < d by Lemma 33.45.1 and
the second term is zero. If dim(V ) = d, then we can use the short exact sequence

0→ (V → X)∗I → (V → X)∗OV → (V → X)∗(OV /I)→ 0
The result holds for the middle sheaf because the only Z occurring in the sum is
Z = V with mZ = 1 and because

Hi(X, ((V → X)∗OV )⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r ) = Hi(V,L⊗n1
1 ⊗ . . .⊗ L⊗nr

r |V )
by the projection formula (Cohomology, Section 20.54) and Cohomology of Schemes,
Lemma 30.2.4; so in this case we actually have E(F) = 0. The result holds for the
sheaf on the right because its support has dimension < d. Thus the result holds for
the sheaf on the left and the lemma is proved. □

Definition 33.45.3.0BEP Let k be a field. Let X be a proper scheme over k. Let
i : Z → X be a closed subscheme of dimension d. Let L1, . . . ,Ld be invertible
OX -modules. We define the intersection number (L1 · · · Ld ·Z) as the coefficient of
n1 . . . nd in the numerical polynomial

χ(X, i∗OZ ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nd

d ) = χ(Z,L⊗n1
1 ⊗ . . .⊗ L⊗nd

d |Z)
In the special case that L1 = . . . = Ld = L we write (Ld · Z).

The displayed equality in the definition follows from the projection formula (Co-
homology, Section 20.54) and Cohomology of Schemes, Lemma 30.2.4. We prove a
few lemmas for these intersection numbers.

Lemma 33.45.4.0BEQ In the situation of Definition 33.45.3 the intersection number
(L1 · · · Ld · Z) is an integer.

Proof. Any numerical polynomial of degree e in n1, . . . , nd can be written uniquely
as a Z-linear combination of the functions

(
n1
k1

)(
n2
k2

)
. . .
(
nd
kd

)
with k1 + . . .+ kd ≤ e.

Apply this with e = d. Left as an exercise. □

Lemma 33.45.5.0BER In the situation of Definition 33.45.3 the intersection number
(L1 · · · Ld · Z) is additive: if Li = L′

i ⊗ L′′
i , then we have

(L1 · · · Li · · · Ld · Z) = (L1 · · · L′
i · · · Ld · Z) + (L1 · · · L′′

i · · · Ld · Z)

Proof. This is true because by Lemma 33.45.1 the function
(n1, . . . , ni−1, n

′
i, n

′′
i , ni+1, . . . , nd) 7→ χ(Z,L⊗n1

1 ⊗. . .⊗(L′
i)⊗n′

i⊗(L′′
i )⊗n′′

i ⊗. . .⊗L⊗nd
d |Z)

is a numerical polynomial of total degree at most d in d+ 1 variables. □

Lemma 33.45.6.0BES In the situation of Definition 33.45.3 let Zi ⊂ Z be the irreducible
components of dimension d. Let mi = lengthOX,ξi

(OZ,ξi) where ξi ∈ Zi is the
generic point. Then

(L1 · · · Ld · Z) =
∑

mi(L1 · · · Ld · Zi)

Proof. Immediate from Lemma 33.45.2 and the definitions. □

Lemma 33.45.7.0BET Let k be a field. Let f : Y → X be a morphism of proper
schemes over k. Let Z ⊂ Y be an integral closed subscheme of dimension d and let
L1, . . . ,Ld be invertible OX -modules. Then

(f∗L1 · · · f∗Ld · Z) = deg(f |Z : Z → f(Z))(L1 · · · Ld · f(Z))
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where deg(Z → f(Z)) is as in Morphisms, Definition 29.51.8 or 0 if dim(f(Z)) < d.

Proof. The left hand side is computed using the coefficient of n1 . . . nd in the func-
tion
χ(Y,OZ ⊗ f∗L⊗n1

1 ⊗ . . .⊗ f∗L⊗nd
d ) =

∑
(−1)iχ(X,Rif∗OZ ⊗L⊗n1

1 ⊗ . . .⊗L⊗nd
d )

The equality follows from Lemma 33.33.5 and the projection formula (Cohomol-
ogy, Lemma 20.54.2). If f(Z) has dimension < d, then the right hand side is a
polynomial of total degree < d by Lemma 33.45.1 and the result is true. Assume
dim(f(Z)) = d. Let ξ ∈ f(Z) be the generic point. By dimension theory (see Lem-
mas 33.20.3 and 33.20.4) the generic point of Z is the unique point of Z mapping
to ξ. Then f : Z → f(Z) is finite over a nonempty open of f(Z), see Morphisms,
Lemma 29.51.1. Thus deg(f : Z → f(Z)) is defined and in fact it is equal to the
length of the stalk of f∗OZ at ξ over OX,ξ. Moreover, the stalk of Rif∗OX at ξ is
zero for i > 0 because we just saw that f |Z is finite in a neighbourhood of ξ (so
that Cohomology of Schemes, Lemma 30.9.9 gives the vanishing). Thus the terms
χ(X,Rif∗OZ ⊗ L⊗n1

1 ⊗ . . .⊗ L⊗nd
d ) with i > 0 have total degree < d and

χ(X, f∗OZ⊗L⊗n1
1 ⊗. . .⊗L⊗nd

d ) = deg(f : Z → f(Z))χ(f(Z),L⊗n1
1 ⊗. . .⊗L⊗nd

d |f(Z))
modulo a polynomial of total degree < d by Lemma 33.45.2. The desired result
follows. □

Lemma 33.45.8.0BEU Let k be a field. Let X be proper over k. Let Z ⊂ X be a closed
subscheme of dimension d. Let L1, . . . ,Ld be invertible OX -modules. Assume there
exists an effective Cartier divisor D ⊂ Z such that L1|Z ∼= OZ(D). Then

(L1 · · · Ld · Z) = (L2 · · · Ld ·D)

Proof. We may replace X by Z and Li by Li|Z . Thus we may assume X = Z and
L1 = OX(D). Then L−1

1 is the ideal sheaf of D and we can consider the short exact
sequence

0→ L⊗−1
1 → OX → OD → 0

Set P (n1, . . . , nd) = χ(X,L⊗n1
1 ⊗ . . . ⊗ L⊗nd

d ) and Q(n1, . . . , nd) = χ(D,L⊗n1
1 ⊗

. . .⊗ L⊗nd
d |D). We conclude from additivity that

P (n1, . . . , nd)− P (n1 − 1, n2, . . . , nd) = Q(n1, . . . , nd)
Because the total degree of P is at most d, we see that the coefficient of n1 . . . nd
in P is equal to the coefficient of n2 . . . nd in Q. □

Lemma 33.45.9.0BEV Let k be a field. Let X be proper over k. Let Z ⊂ X be a closed
subscheme of dimension d. If L1, . . . ,Ld are ample, then (L1 · · · Ld · Z) is positive.

Proof. We will prove this by induction on d. The case d = 0 follows from Lemma
33.33.3. Assume d > 0. By Lemma 33.45.6 we may assume that Z is an integral
closed subscheme. In fact, we may replace X by Z and Li by Li|Z to reduce to the
case Z = X is a proper variety of dimension d. By Lemma 33.45.5 we may replace
L1 by a positive tensor power. Thus we may assume there exists a nonzero section
s ∈ Γ(X,L1) such that Xs is affine (here we use the definition of ample invertible
sheaf, see Properties, Definition 28.26.1). Observe that X is not affine because
proper and affine implies finite (Morphisms, Lemma 29.44.11) which contradicts
d > 0. It follows that s has a nonempty vanishing scheme Z(s) ⊂ X. Since X is
a variety, s is a regular section of L1, so Z(s) is an effective Cartier divisor, thus
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Z(s) has codimension 1 in X, and hence Z(s) has dimension d − 1 (here we use
material from Divisors, Sections 31.13, 31.14, and 31.15 and from dimension theory
as in Lemma 33.20.3). By Lemma 33.45.8 we have

(L1 · · · Ld ·X) = (L2 · · · Ld · Z(s))

By induction the right hand side is positive and the proof is complete. □

Definition 33.45.10.0BEW Let k be a field. Let X be a proper scheme over k. Let
L be an ample invertible OX -module. For any closed subscheme the degree of
Z with respect to L, denoted degL(Z), is the intersection number (Ld · Z) where
d = dim(Z).

By Lemma 33.45.9 the degree of a subscheme is always a positive integer. We note
that degL(Z) = d if and only if

χ(Z,L⊗n|Z) = d

dim(Z)!n
dim(Z) + l.o.t

as can be seen using that

(n1 + . . .+ ndim(Z))dim(Z) = dim(Z)! n1 . . . ndim(Z) + other terms

Lemma 33.45.11.0BEX Let k be a field. Let f : Y → X be a finite dominant morphism
of proper varieties over k. Let L be an ample invertible OX -module. Then

degf∗L(Y ) = deg(f) degL(X)

where deg(f) is as in Morphisms, Definition 29.51.8.

Proof. The statement makes sense because f∗L is ample by Morphisms, Lemma
29.37.7. Having said this the result is a special case of Lemma 33.45.7. □

Finally we relate the intersection number with a curve to the notion of degrees of
invertible modules on curves introduced in Section 33.44.

Lemma 33.45.12.0BEY Let k be a field. Let X be a proper scheme over k. Let Z ⊂ X
be a closed subscheme of dimension ≤ 1. Let L be an invertible OX -module. Then

(L · Z) = deg(L|Z)

where deg(L|Z) is as in Definition 33.44.1. If L is ample, then degL(Z) = deg(L|Z).

Proof. This follows from the fact that the function n 7→ χ(Z,L|⊗nZ ) has degree 1
and hence the leading coefficient is the difference of consecutive values. □

Proposition 33.45.13 (Asymptotic Riemann-Roch).0BJ8 Let k be a field. Let X be a
proper scheme over k of dimension d. Let L be an ample invertible OX -module.
Then

dimk Γ(X,L⊗n) ∼ cnd + l.o.t.

where c = degL(X)/d! is a positive constant.

Proof. This follows from the definitions, Lemma 33.45.9, and the vanishing of higher
cohomology in Cohomology of Schemes, Lemma 30.17.1. □
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33.46. Embedding dimension

0C2G There are several ways to define the embedding dimension, but for closed points
on algebraic schemes over algebraically closed fields all definitions are equivalent to
the following.

Definition 33.46.1.0C1Q Let k be an algebraically closed field. Let X be a locally
algebraic k-scheme and let x ∈ X be a closed point. The embedding dimension of
X at x is dimk mx/m

2
x.

Facts about embedding dimension. Let k,X, x be as in Definition 33.46.1.
(1) The embedding dimension of X at x is the dimension of the tangent space

TX/k,x (Definition 33.16.3) as a k-vector space.
(2) The embedding dimension of X at x is the smallest integer d ≥ 0 such

that there exists a surjection
k[[x1, . . . , xd]] −→ O∧

X,x

of k-algebras.
(3) The embedding dimension of X at x is the smallest integer d ≥ 0 such that

there exists an open neighbourhood U ⊂ X of x and a closed immersion
U → Y where Y is a smooth variety of dimension d over k.

(4) The embedding dimension of X at x is the smallest integer d ≥ 0 such
that there exists an open neighbourhood U ⊂ X of x and an unramified
morphism U → Ad

k.
(5) If we are given a closed embedding X → Y with Y smooth over k, then

the embedding dimension of X at x is the smallest integer d ≥ 0 such that
there exists a closed subscheme Z ⊂ Y with X ⊂ Z, with Z → Spec(k)
smooth at x, and with dimx(Z) = d.

If we ever need these, we will formulate a precise result and provide a proof.
Non-algebraically closed ground fields or non-closed points. Let k be a field and
let X be a locally algebraic k-scheme. If x ∈ X is a point, then we have several
options for the embedding dimension of X at x. Namely, we could use

(1) dimκ(x)(mx/m2
x),

(2) dimκ(x)(TX/k,x) = dimκ(x)(ΩX/k,x ⊗OX,x
κ(x)) (Lemma 33.16.4),

(3) the smallest integer d ≥ 0 such that there exists an open neighbourhood
U ⊂ X of x and a closed immersion U → Y where Y is a smooth variety
of dimension d over k.

In characteristic zero (1) = (2) if x is a closed point; more generally this holds if
κ(x) is separable algebraic over k, see Lemma 33.16.5. It seems that the geometric
definition (3) corresponds most closely to the geometric intuition the phrase “em-
bedding dimension” invokes. Since one can show that (3) and (2) define the same
number (this follows from Lemma 33.18.5) this is what we will use. In our termi-
nology we will make clear that we are taking the embedding dimension relative to
the ground field.

Definition 33.46.2.0C2H Let k be a field. Let X be a locally algebraic k-scheme. Let
x ∈ X be a point. The embedding dimension of X/k at x is dimκ(x)(TX/k,x).

If (A,m, κ) is a Noetherian local ring the embedding dimension of A is sometimes
defined as the dimension of m/m2 over κ. Above we have seen that if A is given as
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an algebra over a field k, it may be preferable to use dimκ(ΩA/k ⊗A κ). Let us call
this quantity the embedding dimension of A/k. With this terminology in place we
have

embed dim of X/k at x = embed dim of OX,x/k = embed dim of O∧
X,x/k

if k,X, x are as in Definition 33.46.2.

33.47. Bertini theorems

0FD4 In this section we prove results of the form: given a smooth projective variety X
over a field k there exists an ample divisor H ⊂ X which is smooth.

Lemma 33.47.1.0FD5 Let k be a field. Let X be a proper scheme over k. Let L be an
ample invertible OX -module. Let Z ⊂ X be a closed subscheme. Then there exists
an integer n0 such that for all n ≥ n0 the kernel Vn of Γ(X,L⊗n) → Γ(Z,L⊗n|Z)
generates L⊗n|X\Z and the canonical morphism

X \ Z −→ P(Vn)
is an immersion of schemes over k.

Proof. Let I ⊂ OX be the quasi-coherent ideal sheaf of Z. Observe that via the
inclusion I ⊗OX

L⊗n ⊂ L⊗n we have Vn = Γ(X, I ⊗OX
L⊗n). Choose n1 such that

for n ≥ n1 the sheaf I ⊗ L⊗n is globally generated, see Properties, Proposition
28.26.13. It follows that Vn gererates L⊗n|X\Z for n ≥ n1.
For n ≥ n1 denote ψn : Vn → Γ(X \ Z,L⊗n|X\Z) the restriction map. We get a
canonical morphism

φ = φL⊗n|X\Z ,ψn : X \ Z −→ P(Vn)
by Constructions, Example 27.21.2. Choose n2 such that for all n ≥ n2 the invert-
ible sheaf L⊗n is very ample on X. We claim that n0 = n1 + n2 works.
Proof of the claim. Say n ≥ n0 and write n = n1 +n′. For x ∈ X \Z we can choose
s1 ∈ V1 not vanishing at x. Set V ′ = Γ(X,L⊗n′). By our choice of n and n′ we
see that the corresponding morphism φ′ : X → P(V ′) is a closed immersion. Thus
if we choose s′ ∈ Γ(X,L⊗n′) not vanishing at x, then Xs′ = (φ′)−1(D+(s′)) (see
Constructions, Lemma 27.14.1) is affine and Xs′ → D+(s′) is a closed immersion.
Then s = s1 ⊗ s′ ∈ Vn does not vanish at x. If D+(s) ⊂ P(Vn) denotes the
corresponding open affine space of our projective space, then φ−1(D+(s)) = Xs ⊂
X \ Z (see reference above). The open Xs = Xs′ ∩ Xs1 is affine, see Properties,
Lemma 28.26.4. Consider the ring map

Sym(V )(s) −→ OX(Xs)
defining the morphism Xs → D+(s). Because Xs′ → D+(s′) is a closed immersion,
the images of the elements

s1 ⊗ t′

s1 ⊗ s′

where t′ ∈ V ′ generate the image of OX(Xs′) → OX(Xs). Since Xs → Xs′ is an
open immersion, this implies that Xs → D+(s) is an immersion of affine schemes
(see below). Thus φn is an immersion by Morphisms, Lemma 29.3.5.
Let a : A′ → A and c : B → A be ring maps such that Spec(a) is an immersion and
Im(a) ⊂ Im(c). Set B′ = A′ ×A B with projections b : B′ → B and c′ : B′ → A′.

https://stacks.math.columbia.edu/tag/0FD5
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By assumption c′ is surjective and hence Spec(c′) is a closed immersion. Whence
Spec(c′) ◦ Spec(a) is an immersion (Schemes, Lemma 26.24.3). Then Spec(c) has
to be an immersion because it factors the immersion Spec(c′) ◦Spec(a) = Spec(b) ◦
Spec(c), see Morphisms, Lemma 29.3.1. □

Situation 33.47.2.0G47 Let k be a field, let X be a scheme over k, let L be an invertible
OX -module, let V be a finite dimensional k-vector space, and let ψ : V → Γ(X,L)
be a k-linear map. Say dim(V ) = r and we have a basis v1, . . . , vr of V . Then we
obtain a “universal divisor”

Huniv = Z(suniv) ⊂ Ar ×k X
as the zero scheme (Divisors, Definition 31.14.8) of the section

suniv =
∑

i=1,...,r
xiψ(vi) ∈ Γ(Ar ×k X,pr∗

2L)

For a field extension k′/k the k′-points v ∈ Ar
k(k′) correspond to vectors (a1, . . . , ar)

of elements of k′. Thus we may on the one hand think of v as the element v =∑
i=1,...,r aivi ∈ V ⊗k k′ and on the other hand we may assign to v the section

ψ(v) =
∑

i=1,...,r
aiψ(vi) ∈ Γ(Xk′ ,L|Xk′ )

With this notation it is clear that the fibre of Huniv over v ∈ V ⊗ k′ is the zero
scheme of ψ(v). In a formula:

Hv = Huniv,v = Z(ψ(v))
We will denote this common value by Hv as indicated. Finally, in this situation let
P be a property of vectors v ∈ V ⊗k k′ for k′/k an arbitrary field extension7. We
say P holds for general v ∈ V ⊗k k′ if there exists a nonempty Zariski open U ⊂ Ar

k

such that if v corresponds to a k′-point of U for any k′/k then P (v) holds.

Lemma 33.47.3.0FD6 In Situation 33.47.2 assume
(1) X is smooth over k,
(2) the image of ψ : V → Γ(X,L) generates L,
(3) the corresponding morphism φL,ψ : X → P(V ) is an immersion.

Then for general v ∈ V ⊗k k′ the scheme Hv is smooth over k′.

Proof. (We observe that X is separated and finite type as a locally closed subscheme
of a projective space.) Let us use the notation introduced above the statement of
the lemma. We consider the projections

Ar
k ×k X

��

Huniv
oo

p

yy

//

q
%%

Ar
k ×k X

��
X Ar

k

Let Σ ⊂ Huniv be the singular locus of the morphsm q : Huniv → Ar
k, i.e., the set

of points where q is not smooth. Then Σ is closed because the smooth locus of a
morphism is open by definition. Since the fibre of a smooth morphism is smooth,
it suffices to prove q(Σ) is contained in a proper closed subset of Ar

k. Since Σ (with
reduced induced scheme structure) is a finite type scheme over k it suffices to prove

7For example we could consider the condition that Hv is smooth over k′, or geometrically
irreducible over k′.

https://stacks.math.columbia.edu/tag/0G47
https://stacks.math.columbia.edu/tag/0FD6


33.48. ENRIQUES-SEVERI-ZARISKI 2880

dim(Σ) < r This follows from Lemma 33.20.4. Since dimensions aren’t changed by
replacing k by a bigger field (Morphisms, Lemma 29.28.3), we may and do assume
k is algebraically closed. By dimension theory (Lemma 33.20.4), it suffices to prove
that for x ∈ X \ Z closed we have p−1({x}) ∩ Σ has dimension < r − dim(X ′)
where X ′ is the unique irreducible component of X containing x. As X is smooth
over k and x is a closed point we have dim(X ′) = dimmx/m

2
x (Morphisms, Lemma

29.34.12 and Algebra, Lemma 10.140.1). Thus we win if

dim p−1(x) ∩ Σ < r − dimmx/m
2
x

for all x ∈ X closed.

Since V globally generated L, for every irreducible component X ′ of X there is
a nonempty Zariski open of Ar such that the fibres of q over this open do not
contain X ′. (For example, if x′ ∈ X ′ is a closed point, then we can take the
open corresponding to those vectors v ∈ V such that ψ(v) does not vanish at
x′. This open will be the complement of a hyperplane in Ar

k.) Let U ⊂ Ar be
the (nonempty) intersection of these opens. Then the fibres of q−1(U) → U are
effective Cartier divisors on the fibres of U ×k X → U (because a nonvanishing
section of an invertible module on an integral scheme is a regular section). Hence
the morphism q−1(U) → U is flat by Divisors, Lemma 31.18.9. Thus for x ∈ X
closed and v ∈ V = Ar

k(k), if (x, v) ∈ Huniv, i.e., if x ∈ Hv then q is smooth at
(x, v) if and only if the fibre Hv is smooth at x, see Morphisms, Lemma 29.34.14.

Consider the image ψ(v)x in the stalk Lx of the section corresponding to v ∈ V .
We have

x ∈ Hv ⇔ ψ(v)x ∈ mxLx
If this is true, then we have

Hv singular at x⇔ ψ(v)x ∈ m2
xLx

Namely, ψ(v)x is not contained in m2
xLx ⇔ the local equation for Hv ⊂ X at

x is not contained in m2
x ⇔ OHv,x is regular (Algebra, Lemma 10.106.3) ⇔ Hv is

smooth at x over k (Algebra, Lemma 10.140.5). We conclude that the closed points
of p−1(x) ∩ Σ correspond to those v ∈ V such that ψ(v)x ∈ m2

xLx. However, as
φL,ψ is an immersion the map

V −→ Lx/m2
xLx

is surjective (small detail omitted). By the above, the closed points of the locus
p−1(x) ∩ Σ viewed as a subspace of V is the kernel of this map and hence has
dimension r − dimmx/m

2
x − 1 as desired. □

33.48. Enriques-Severi-Zariski

0FVD In this section we prove some results of the form: twisting by a “very negative”
invertible module kills low degree cohomology. We also deduce the connectedness
of a hypersurface section of a normal proper scheme of dimension ≥ 2.

Lemma 33.48.1.0FD7 Let k be a field. Let X be a proper scheme over k. Let L be an
ample invertible OX -module. Let F be a coherent OX -module. If Ass(F) does not
contain any closed points, then Γ(X,F ⊗OX

L⊗n) = 0 for n≪ 0.

https://stacks.math.columbia.edu/tag/0FD7
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Proof. For a coherent OX -module F let P(F) be the property: there exists an
n0 ∈ Z such that for n ≤ n0 every section s of F ⊗OX

L⊗n has support consisting
only of closed points. Since Ass(F) = Ass(F ⊗OX

L⊗n) we see that it suffices
to prove P holds for all coherent modules on X. To do this we will prove that
conditions (1), (2), and (3) of Cohomology of Schemes, Lemma 30.12.8 are satisfied.

To see condition (1) suppose that

0→ F1 → F → F2 → 0

is a short exact sequence of coherent OX -modules such that we have P for Fi,
i = 1, 2. Let n1, n2 be the cutoffs we find. Let F ′

2 ⊂ F2 be the maximal coherent
submodule whose support is a finite set of closed points. Let I ⊂ OX be the
annihilator of F ′

2. Since L is ample, we can find an e > 0 such that I ⊗OX
L⊗e

is globally generated. Set n0 = min(n2, n1 − e). Let n ≤ n0 and let t be a global
section of F⊗L⊗n. The image of t in F2⊗L⊗n falls into F ′

2⊗L⊗n because n ≤ n2.
Hence for any s ∈ Γ(X, I ⊗OX

L⊗e) the product t ⊗ s lies in F1 ⊗ L⊗n+e. Thus
t ⊗ s has support contained in the finite set of closed points in Ass(F1) because
n+ e ≤ n1. Since by our choice of e we may choose s invertible in any point not in
the support of F ′

2 we conclude that the support of t is contained in the union of the
finite set of closed points in Ass(F1) and the finite set of closed points in Ass(F2).
This finishes the proof of condition (1).

Condition (2) is immediate.

For condition (3) we choose G = OZ . In this case, if Z is a closed point of X, then
there is nothing the show. If dim(Z) > 0, then we will show that Γ(Z,L⊗n|Z) = 0
for n < 0. Namely, let s be a nonzero section of a negative power of L|Z . Choose
a nonzero section t of a positive power of L|Z (this is possible as L is ample, see
Properties, Proposition 28.26.13). Then sdeg(t)⊗tdeg(s) is a nonzero global section of
OZ (because Z is integral) and hence a unit (Lemma 33.9.3). This implies that t is a
trivializing section of a positive power of L. Thus the function n 7→ dimk Γ(X,L⊗n)
is bounded on an infinite set of positive integers which contradicts asymptotic
Riemann-Roch (Proposition 33.45.13) since dim(Z) > 0. □

Lemma 33.48.2 (Enriques-Severi-Zariski).0FD8 Let k be a field. Let X be a proper
scheme over k. Let L be an ample invertible OX -module. Let F be a coherent OX -
module. Assume that for x ∈ X closed we have depth(Fx) ≥ 2. Then H1(X,F⊗OX

L⊗m) = 0 for m≪ 0.

Proof. Choose a closed immersion i : X → Pn
k such that i∗O(1) ∼= L⊗e for some

e > 0 (see Morphisms, Lemma 29.39.4). Then it suffices to prove the lemma for

G = i∗(F ⊕ F ⊗ L⊕ . . .⊕F ⊗ L⊗e−1) and O(1)

on Pn
k . Namely, we have

H1(Pn
k ,G(m)) =

⊕
j=0,...,e−1

H1(X,F ⊗ L⊗j+me)

by Cohomology of Schemes, Lemma 30.2.4. Also, if y ∈ Pn
k is a closed point then

depth(Gy) = ∞ if y ̸∈ i(X) and depth(Gy) = depth(Fx) if y = i(x) because in
this case Gy ∼= F⊕e

x as a module over OPn
k
,x and we can use for example Algebra,

Lemma 10.72.11 to get the equality.

https://stacks.math.columbia.edu/tag/0FD8
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Assume X = Pn
k and L = O(1) and k is infinite. Choose s ∈ H0(P1

k,O(1)) which
determines an exact sequence

0→ F(−1) s−→ F → G → 0
as in Lemma 33.35.3. Since the map F(−1)→ F is affine locally given by multiply-
ing by a nonzerodivisor on F we see that for x ∈ Pn

k closed we have depth(Gx) ≥ 1,
see Algebra, Lemma 10.72.7. Hence by Lemma 33.48.1 we have H0(G(m)) = 0
for m ≪ 0. Looking at the long exact sequence of cohomology after twisting (see
Remark 33.35.5) we find that the sequence of numbers

dimH1(Pn
k ,F(m))

stabilizes for m ≤ m0 for some integer m0. Let N be the common dimension of
these spaces for m ≤ m0. We have to show N = 0.
For d > 0 and m ≤ m0 consider the bilinear map

H0(Pn
k ,O(d))×H1(Pn

k ,F(m− d)) −→ H1(Pn
k ,F(m))

By linear algebra, there is a codimension ≤ N2 subspace Vm ⊂ H0(Pn
k ,O(d)) such

that multiplication by s′ ∈ Vm annihilates H1(Pn
k ,F(m − d)). Observe that for

m′ < m ≤ m0 the diagram

H0(Pn
k ,O(d))×H1(Pn

k ,F(m′ − d)) //

1×sm
′−m

��

H1(Pn
k ,F(m′))

sm
′−m

��
H0(Pn

k ,O(d))×H1(Pn
k ,F(m− d)) // H1(Pn

k ,F(m))

commutes with isomorphisms going vertically. Thus Vm = V is independent of
m ≤ m0. For x ∈ Ass(F) set Z = {x}. For d large enough the linear map

H0(Pn
k ,O(d))→ H0(Z,O(d)|Z)

has rank > N2 because dim(Z) ≥ 1 (for example this follows from asymptotic
Riemann-Roch and ampleness O(1); details omitted). Hence we can find s′ ∈ V
such that s′ does not vanish in any associated point of F (use that the set of
associated points is finite). Then we obtain

0→ F(−d) s′

−→ F → G′ → 0
and as before we conclude as before that multiplication by s′ on H1(Pn

k ,F(m−d))
is injective for m≪ 0. This contradicts the choice of s′ unless N = 0 as desired.
We still have to treat the case where k is finite. In this case let K/k be any
infinite algebraic field extension. Denote FK and LK the pullbacks of F and L to
XK = Spec(K)×Spec(k) X. We have

H1(XK ,FK ⊗ L⊗m
K ) = H1(X,F ⊗ L⊗m)⊗k K

by Cohomology of Schemes, Lemma 30.5.2. On the other hand, a closed point xK
of XK maps to a closed point x of X because K/k is an algebraic extension. The
ring map OX,x → OXK ,xK is flat (Lemma 33.5.1). Hence we have

depth(FxK ) = depth(Fx ⊗OX,x
OXK ,xK ) ≥ depth(Fx)

by Algebra, Lemma 10.163.1 (in fact equality holds here but we don’t need it).
Therefore the result over k follows from the result over the infinite field K and the
proof is complete. □
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Lemma 33.48.3.0FD9 Let k be a field. Let X be a proper scheme over k. Let L be an
ample invertible OX -module. Let s ∈ Γ(X,L). Assume

(1) s is a regular section (Divisors, Definition 31.14.6),
(2) for every closed point x ∈ X we have depth(OX,x) ≥ 2, and
(3) X is connected.

Then the zero scheme Z(s) of s is connected.

Proof. Since s is a regular section, so is sn ∈ Γ(X,L⊗n) for all n > 1. Moreover, the
inclusion morphism Z(s) → Z(sn) is a bijection on underlying topological spaces.
Hence if Z(s) is disconnected, so is Z(sn). Now consider the canonical short exact
sequence

0→ L⊗−n sn−→ OX → OZ(sn) → 0
Consider the k-algebra Rn = Γ(X,OZ(sn)). If Z(s) is disconnected, i.e., Z(sn) is
disconnected, then either Rn is zero in case Z(sn) = ∅ or Rn contains a nontrivial
idempotent in case Z(sn) = U ⨿ V with U, V ⊂ Z(sn) open and nonempty (the
reader may wish to consult Lemma 33.9.3). Thus the map Γ(X,OX)→ Rn cannot
be an isomorphism. It follows that either H0(X,L⊗−n) or H1(X,L⊗−n) is nonzero
for infinitely many positive n. This contradicts Lemma 33.48.1 or 33.48.2 and the
proof is complete. □
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CHAPTER 34

Topologies on Schemes

020K 34.1. Introduction

020L In this document we explain what the different topologies on the category of schemes
are. Some references are [Gro71] and [BLR90]. Before doing so we would like to
point out that there are many different choices of sites (as defined in Sites, Definition
7.6.2) which give rise to the same notion of sheaf on the underlying category. Hence
our choices may be slightly different from those in the references but ultimately lead
to the same cohomology groups, etc.

34.2. The general procedure

020M In this section we explain a general procedure for producing the sites we will be
working with. Suppose we want to study sheaves over schemes with respect to some
topology τ . In order to get a site, as in Sites, Definition 7.6.2, of schemes with that
topology we have to do some work. Namely, we cannot simply say “consider all
schemes with the Zariski topology” since that would give a “big” category. Instead,
in each section of this chapter we will proceed as follows:

(1) We define a class Covτ of coverings of schemes satisfying the axioms of
Sites, Definition 7.6.2. It will always be the case that a Zariski open
covering of a scheme is a covering for τ .

(2) We single out a notion of standard τ -covering within the category of affine
schemes.

(3) We define what is an “absolute” big τ -site Schτ . These are the sites one
gets by appropriately choosing a set of schemes and a set of coverings.

(4) For any object S of Schτ we define the big τ -site (Sch/S)τ and for suitable
τ the small1 τ -site Sτ .

(5) In addition there is a site (Aff/S)τ using the notion of standard τ -covering
of affines2 whose category of sheaves is equivalent to the category of
sheaves on (Sch/S)τ .

The above is a little clumsy in that we do not end up with a canonical choice for
the big τ -site of a scheme, or even the small τ -site of a scheme. If you are willing
to ignore set theoretic difficulties, then you can work with classes and end up with
canonical big and small sites...

1The words big and small here do not relate to bigness/smallness of the corresponding
categories.

2In the case of the ph topology we deviate very slightly from this approach, see Definition
34.8.11 and the surrounding discussion.

2885
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34.3. The Zariski topology

020N
Definition 34.3.1.020O Let T be a scheme. A Zariski covering of T is a family of
morphisms {fi : Ti → T}i∈I of schemes such that each fi is an open immersion and
such that T =

⋃
fi(Ti).

This defines a (proper) class of coverings. Next, we show that this notion satisfies
the conditions of Sites, Definition 7.6.2.

Lemma 34.3.2.020P Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is a Zariski covering of T .
(2) If {Ti → T}i∈I is a Zariski covering and for each i we have a Zariski

covering {Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a Zariski covering.
(3) If {Ti → T}i∈I is a Zariski covering and T ′ → T is a morphism of schemes

then {T ′ ×T Ti → T ′}i∈I is a Zariski covering.

Proof. Omitted. □

Lemma 34.3.3.020Q Let T be an affine scheme. Let {Ti → T}i∈I be a Zariski covering
of T . Then there exists a Zariski covering {Uj → T}j=1,...,m which is a refinement
of {Ti → T}i∈I such that each Uj is a standard open of T , see Schemes, Definition
26.5.2. Moreover, we may choose each Uj to be an open of one of the Ti.

Proof. Follows as T is quasi-compact and standard opens form a basis for its topol-
ogy. This is also proved in Schemes, Lemma 26.5.1. □

Thus we define the corresponding standard coverings of affines as follows.

Definition 34.3.4.020R Compare Schemes, Definition 26.5.2. Let T be an affine scheme.
A standard Zariski covering of T is a Zariski covering {Uj → T}j=1,...,m with each
Uj → T inducing an isomorphism with a standard affine open of T .

Definition 34.3.5.020S A big Zariski site is any site SchZar as in Sites, Definition 7.6.2
constructed as follows:

(1) Choose any set of schemes S0, and any set of Zariski coverings Cov0 among
these schemes.

(2) As underlying category of SchZar take any category Schα constructed as
in Sets, Lemma 3.9.2 starting with the set S0.

(3) As coverings of SchZar choose any set of coverings as in Sets, Lemma
3.11.1 starting with the category Schα and the class of Zariski coverings,
and the set Cov0 chosen above.

It is shown in Sites, Lemma 7.8.8 that, after having chosen the category Schα, the
category of sheaves on Schα does not depend on the choice of coverings chosen in
(3) above. In other words, the topos Sh(SchZar) only depends on the choice of the
category Schα. It is shown in Sets, Lemma 3.9.9 that these categories are closed
under many constructions of algebraic geometry, e.g., fibre products and taking
open and closed subschemes. We can also show that the exact choice of Schα does
not matter too much, see Section 34.12.
Another approach would be to assume the existence of a strongly inaccessible car-
dinal and to define SchZar to be the category of schemes contained in a chosen
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universe with set of coverings the Zariski coverings contained in that same uni-
verse.
Before we continue with the introduction of the big Zariski site of a scheme S, let
us point out that the topology on a big Zariski site SchZar is in some sense induced
from the Zariski topology on the category of all schemes.

Lemma 34.3.6.03WV Let SchZar be a big Zariski site as in Definition 34.3.5. Let T ∈
Ob(SchZar). Let {Ti → T}i∈I be an arbitrary Zariski covering of T . There exists
a covering {Uj → T}j∈J of T in the site SchZar which is tautologically equivalent
(see Sites, Definition 7.8.2) to {Ti → T}i∈I .

Proof. Since each Ti → T is an open immersion, we see by Sets, Lemma 3.9.9 that
each Ti is isomorphic to an object Vi of SchZar. The covering {Vi → T}i∈I is
tautologically equivalent to {Ti → T}i∈I (using the identity map on I both ways).
Moreover, {Vi → T}i∈I is combinatorially equivalent to a covering {Uj → T}j∈J of
T in the site SchZar by Sets, Lemma 3.11.1. □

Definition 34.3.7.020T Let S be a scheme. Let SchZar be a big Zariski site containing
S.

(1) The big Zariski site of S, denoted (Sch/S)Zar, is the site SchZar/S intro-
duced in Sites, Section 7.25.

(2) The small Zariski site of S, which we denote SZar, is the full subcategory
of (Sch/S)Zar whose objects are those U/S such that U → S is an open
immersion. A covering of SZar is any covering {Ui → U} of (Sch/S)Zar
with U ∈ Ob(SZar).

(3) The big affine Zariski site of S, denoted (Aff/S)Zar, is the full subcategory
of (Sch/S)Zar consisting of objects U/S such that U is an affine scheme.
A covering of (Aff/S)Zar is any covering {Ui → U} of (Sch/S)Zar with
U ∈ Ob((Aff/S)Zar) which is a standard Zariski covering.

(4) The small affine Zariski site of S, denoted Saffine,Zar, is the full sub-
category of SZar whose objects are those U/S such that U is an affine
scheme. A covering of Saffine,Zar is any covering {Ui → U} of SZar with
U ∈ Ob(Saffine,Zar) which is a standard Zariski covering.

It is not completely clear that the small Zariski site, the big affine Zariski site, and
the small affine Zariski site are sites. We check this now.

Lemma 34.3.8.020U Let S be a scheme. Let SchZar be a big Zariski site containing S.
The structures SZar, (Aff/S)Zar, and Saffine,Zar defined above are sites.

Proof. Let us show that SZar is a site. It is a category with a given set of families
of morphisms with fixed target. Thus we have to show properties (1), (2) and (3) of
Sites, Definition 7.6.2. Since (Sch/S)Zar is a site, it suffices to prove that given any
covering {Ui → U} of (Sch/S)Zar with U ∈ Ob(SZar) we also have Ui ∈ Ob(SZar).
This follows from the definitions as the composition of open immersions is an open
immersion.
Let us show that (Aff/S)Zar is a site. Reasoning as above, it suffices to show that
the collection of standard Zariski coverings of affines satisfies properties (1), (2) and
(3) of Sites, Definition 7.6.2. Let R be a ring. Let f1, . . . , fn ∈ R generate the unit
ideal. For each i ∈ {1, . . . , n} let gi1, . . . , gini ∈ Rfi be elements generating the unit
ideal of Rfi . Write gij = fij/f

eij
i which is possible. After replacing fij by fifij if
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necessary, we have thatD(fij) ⊂ D(fi) ∼= Spec(Rfi) is equal toD(gij) ⊂ Spec(Rfi).
Hence we see that the family of morphisms {D(gij) → Spec(R)} is a standard
Zariski covering. From these considerations it follows that (2) holds for standard
Zariski coverings. We omit the verification of (1) and (3).
We omit the proof that Saffine,Zar is a site. □

Lemma 34.3.9.020V Let S be a scheme. Let SchZar be a big Zariski site containing
S. The underlying categories of the sites SchZar, (Sch/S)Zar, SZar, (Aff/S)Zar,
and Saffine,Zar have fibre products. In each case the obvious functor into the
category Sch of all schemes commutes with taking fibre products. The categories
(Sch/S)Zar, and SZar both have a final object, namely S/S.

Proof. For SchZar it is true by construction, see Sets, Lemma 3.9.9. Suppose we
have U → S, V → U , W → U morphisms of schemes with U, V,W ∈ Ob(SchZar).
The fibre product V ×U W in SchZar is a fibre product in Sch and is the fibre
product of V/S with W/S over U/S in the category of all schemes over S, and
hence also a fibre product in (Sch/S)Zar. This proves the result for (Sch/S)Zar.
If U → S, V → U and W → U are open immersions then so is V ×U W → S and
hence we get the result for SZar. If U, V,W are affine, so is V ×U W and hence the
result for (Aff/S)Zar and Saffine,Zar. □

Next, we check that the big, resp. small affine site defines the same topos as the
big, resp. small site.

Lemma 34.3.10.020W Let S be a scheme. Let SchZar be a big Zariski site containing
S. The functor (Aff/S)Zar → (Sch/S)Zar is a special cocontinuous functor. Hence
it induces an equivalence of topoi from Sh((Aff/S)Zar) to Sh((Sch/S)Zar).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Definition
7.29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 7.29.1. Denote
the inclusion functor u : (Aff/S)Zar → (Sch/S)Zar. Being cocontinuous just means
that any Zariski covering of T/S, T affine, can be refined by a standard Zariski
covering of T . This is the content of Lemma 34.3.3. Hence (1) holds. We see u is
continuous simply because a standard Zariski covering is a Zariski covering. Hence
(2) holds. Parts (3) and (4) follow immediately from the fact that u is fully faithful.
And finally condition (5) follows from the fact that every scheme has an affine open
covering. □

Lemma 34.3.11.0F1B Let S be a scheme. Let SchZar be a big Zariski site containing S.
The functor Saffine,Zar → SZar is a special cocontinuous functor. Hence it induces
an equivalence of topoi from Sh(Saffine,Zar) to Sh(SZar).

Proof. Omitted. Hint: compare with the proof of Lemma 34.3.10. □

Let us check that the notion of a sheaf on the small Zariski site corresponds to
notion of a sheaf on S.

Lemma 34.3.12.020X The category of sheaves on SZar is equivalent to the category of
sheaves on the underlying topological space of S.

Proof. We will use repeatedly that for any object U/S of SZar the morphism U → S
is an isomorphism onto an open subscheme. Let F be a sheaf on S. Then we define
a sheaf on SZar by the rule F ′(U/S) = F(Im(U → S)). For the converse, we choose
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for every open subscheme U ⊂ S an object U ′/S ∈ Ob(SZar) with Im(U ′ → S) = U
(here you have to use Sets, Lemma 3.9.9). Given a sheaf G on SZar we define a
sheaf on S by setting G′(U) = G(U ′/S). To see that G′ is a sheaf we use that
for any open covering U =

⋃
i∈I Ui the covering {Ui → U}i∈I is combinatorially

equivalent to a covering {U ′
j → U ′}j∈J in SZar by Sets, Lemma 3.11.1, and we use

Sites, Lemma 7.8.4. Details omitted. □

From now on we will not make any distinction between a sheaf on SZar or a sheaf
on S. We will always use the procedures of the proof of the lemma to go between
the two notions. Next, we establish some relationships between the topoi associated
to these sites.

Lemma 34.3.13.020Y Let SchZar be a big Zariski site. Let f : T → S be a morphism in
SchZar. The functor TZar → (Sch/S)Zar is cocontinuous and induces a morphism
of topoi

if : Sh(TZar) −→ Sh((Sch/S)Zar)
For a sheaf G on (Sch/S)Zar we have the formula (i−1

f G)(U/T ) = G(U/S). The
functor i−1

f also has a left adjoint if,! which commutes with fibre products and
equalizers.

Proof. Denote the functor u : TZar → (Sch/S)Zar. In other words, given and open
immersion j : U → T corresponding to an object of TZar we set u(U → T ) = (f ◦j :
U → S). This functor commutes with fibre products, see Lemma 34.3.9. Moreover,
TZar has equalizers (as any two morphisms with the same source and target are the
same) and u commutes with them. It is clearly cocontinuous. It is also continuous
as u transforms coverings to coverings and commutes with fibre products. Hence
the lemma follows from Sites, Lemmas 7.21.5 and 7.21.6. □

Lemma 34.3.14.020Z Let S be a scheme. Let SchZar be a big Zariski site containing S.
The inclusion functor SZar → (Sch/S)Zar satisfies the hypotheses of Sites, Lemma
7.21.8 and hence induces a morphism of sites

πS : (Sch/S)Zar −→ SZar

and a morphism of topoi
iS : Sh(SZar) −→ Sh((Sch/S)Zar)

such that πS ◦ iS = id. Moreover, iS = iidS with iidS as in Lemma 34.3.13. In
particular the functor i−1

S = πS,∗ is described by the rule i−1
S (G)(U/S) = G(U/S).

Proof. In this case the functor u : SZar → (Sch/S)Zar, in addition to the properties
seen in the proof of Lemma 34.3.13 above, also is fully faithful and transforms the
final object into the final object. The lemma follows. □

Definition 34.3.15.04BS In the situation of Lemma 34.3.14 the functor i−1
S = πS,∗ is

often called the restriction to the small Zariski site, and for a sheaf F on the big
Zariski site we denote F|SZar this restriction.

With this notation in place we have for a sheaf F on the big site and a sheaf G on
the big site that

MorSh(SZar)(F|SZar ,G) = MorSh((Sch/S)Zar)(F , iS,∗G)
MorSh(SZar)(G,F|SZar ) = MorSh((Sch/S)Zar)(π−1

S G,F)
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Moreover, we have (iS,∗G)|SZar = G and we have (π−1
S G)|SZar = G.

Lemma 34.3.16.0210 Let SchZar be a big Zariski site. Let f : T → S be a morphism
in SchZar. The functor

u : (Sch/T )Zar −→ (Sch/S)Zar, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint
v : (Sch/S)Zar −→ (Sch/T )Zar, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi
fbig : Sh((Sch/T )Zar) −→ Sh((Sch/S)Zar)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers (details omitted; compare with proof of Lemma 34.3.13). Hence
Sites, Lemmas 7.21.5 and 7.21.6 apply and we deduce the formula for f−1

big and the
existence of fbig!. Moreover, the functor v is a right adjoint because given U/T and
V/S we have MorS(u(U), V ) = MorT (U, V ×S T ) as desired. Thus we may apply
Sites, Lemmas 7.22.1 and 7.22.2 to get the formula for fbig,∗. □

Lemma 34.3.17.0211 Let SchZar be a big Zariski site. Let f : T → S be a morphism
in SchZar.

(1) We have if = fbig ◦ iT with if as in Lemma 34.3.13 and iT as in Lemma
34.3.14.

(2) The functor SZar → TZar, (U → S) 7→ (U ×S T → T ) is continuous and
induces a morphism of topoi

fsmall : Sh(TZar) −→ Sh(SZar).

The functors f−1
small and fsmall,∗ agree with the usual notions f−1 and f∗

is we identify sheaves on TZar, resp. SZar with sheaves on T , resp. S via
Lemma 34.3.12.

(3) We have a commutative diagram of morphisms of sites

TZar

fsmall

��

(Sch/T )Zar
fbig

��

πT
oo

SZar (Sch/S)Zar
πSoo

so that fsmall ◦ πT = πS ◦ fbig as morphisms of topoi.
(4) We have fsmall = πS ◦ fbig ◦ iT = πS ◦ if .

Proof. The equality if = fbig ◦ iT follows from the equality i−1
f = i−1

T ◦ f
−1
big which

is clear from the descriptions of these functors above. Thus we see (1).
Statement (2): See Sites, Example 7.14.2.
Part (3) follows because πS and πT are given by the inclusion functors and fsmall
and fbig by the base change functor U 7→ U ×S T .
Statement (4) follows from (3) by precomposing with iT . □
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In the situation of the lemma, using the terminology of Definition 34.3.15 we have:
for F a sheaf on the big Zariski site of T

(fbig,∗F)|SZar = fsmall,∗(F|TZar ),
This equality is clear from the commutativity of the diagram of sites of the lemma,
since restriction to the small Zariski site of T , resp. S is given by πT,∗, resp. πS,∗.
A similar formula involving pullbacks and restrictions is false.

Lemma 34.3.18.0212 Given schemes X, Y , Z in (Sch/S)Zar and morphisms f : X → Y ,
g : Y → Z we have gbig ◦ fbig = (g ◦ f)big and gsmall ◦ fsmall = (g ◦ f)small.

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 34.3.16. For the functors on the small
sites this is Sheaves, Lemma 6.21.2 via the identification of Lemma 34.3.12. □

Lemma 34.3.19.0DD9 Let SchZar be a big Zariski site. Consider a cartesian diagram

T ′
g′
//

f ′

��

T

f

��
S′ g // S

in SchZar. Then i−1
g ◦ fbig,∗ = f ′

small,∗ ◦ (ig′)−1 and g−1
big ◦ fbig,∗ = f ′

big,∗ ◦ (g′
big)−1.

Proof. Since the diagram is cartesian, we have for U ′/S′ that U ′×S′ T ′ = U ′×S T .
Hence both i−1

g ◦ fbig,∗ and f ′
small,∗ ◦ (ig′)−1 send a sheaf F on (Sch/T )Zar to the

sheaf U ′ 7→ F(U ′ ×S′ T ′) on S′
Zar (use Lemmas 34.3.13 and 34.3.17). The second

equality can be proved in the same manner or can be deduced from the very general
Sites, Lemma 7.28.1. □

We can think about a sheaf on the big Zariski site of S as a collection of “usual”
sheaves on all schemes over S.

Lemma 34.3.20.0213 Let S be a scheme contained in a big Zariski site SchZar. A sheaf
F on the big Zariski site (Sch/S)Zar is given by the following data:

(1) for every T/S ∈ Ob((Sch/S)Zar) a sheaf FT on T ,
(2) for every f : T ′ → T in (Sch/S)Zar a map cf : f−1FT → FT ′ .

These data are subject to the following conditions:
(a) given any f : T ′ → T and g : T ′′ → T ′ in (Sch/S)Zar the composition

cg ◦ g−1cf is equal to cf◦g, and
(b) if f : T ′ → T in (Sch/S)Zar is an open immersion then cf is an isomor-

phism.

Proof. This lemma follows from a purely sheaf theoretic statement discussed in
Sites, Remark 7.26.7. We also give a direct proof in this case.
Given a sheaf F on Sh((Sch/S)Zar) we set FT = i−1

p F where p : T → S is the
structure morphism. Note that FT (U) = F(U ′/S) for any open U ⊂ T , and
U ′ → T an open immersion in (Sch/T )Zar with image U , see Lemmas 34.3.12 and
34.3.13. Hence given f : T ′ → T over S and U,U ′ → T we get a canonical map
FT (U) = F(U ′/S) → F(U ′ ×T T ′/S) = FT ′(f−1(U)) where the middle is the
restriction map of F with respect to the morphism U ′ ×T T ′ → U ′ over S. The
collection of these maps are compatible with restrictions, and hence define an f -map

https://stacks.math.columbia.edu/tag/0212
https://stacks.math.columbia.edu/tag/0DD9
https://stacks.math.columbia.edu/tag/0213


34.4. THE ÉTALE TOPOLOGY 2892

cf from FT to FT ′ , see Sheaves, Definition 6.21.7 and the discussion surrounding it.
It is clear that cf◦g is the composition of cf and cg, since composition of restriction
maps of F gives restriction maps.
Conversely, given a system (FT , cf ) as in the lemma we may define a presheaf F
on Sh((Sch/S)Zar) by simply setting F(T/S) = FT (T ). As restriction mapping,
given f : T ′ → T we set for s ∈ F(T ) the pullback f∗(s) equal to cf (s) (where we
think of cf as an f -map again). The condition on the cf guarantees that pullbacks
satisfy the required functoriality property. We omit the verification that this is a
sheaf. It is clear that the constructions so defined are mutually inverse. □

34.4. The étale topology

0214 Let S be a scheme. We would like to define the étale-topology on the category of
schemes over S. According to our general principle we first introduce the notion of
an étale covering.
Definition 34.4.1.0215 Let T be a scheme. An étale covering of T is a family of mor-
phisms {fi : Ti → T}i∈I of schemes such that each fi is étale and such that
T =

⋃
fi(Ti).

Lemma 34.4.2.0216 Any Zariski covering is an étale covering.
Proof. This is clear from the definitions and the fact that an open immersion is an
étale morphism, see Morphisms, Lemma 29.36.9. □

Next, we show that this notion satisfies the conditions of Sites, Definition 7.6.2.
Lemma 34.4.3.0217 Let T be a scheme.

(1) If T ′ → T is an isomorphism then {T ′ → T} is an étale covering of T .
(2) If {Ti → T}i∈I is an étale covering and for each i we have an étale covering
{Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is an étale covering.

(3) If {Ti → T}i∈I is an étale covering and T ′ → T is a morphism of schemes
then {T ′ ×T Ti → T ′}i∈I is an étale covering.

Proof. Omitted. □

Lemma 34.4.4.0218 Let T be an affine scheme. Let {Ti → T}i∈I be an étale covering
of T . Then there exists an étale covering {Uj → T}j=1,...,m which is a refinement
of {Ti → T}i∈I such that each Uj is an affine scheme. Moreover, we may choose
each Uj to be open affine in one of the Ti.
Proof. Omitted. □

Thus we define the corresponding standard coverings of affines as follows.
Definition 34.4.5.0219 Let T be an affine scheme. A standard étale covering of T
is a family {fj : Uj → T}j=1,...,m with each Uj is affine and étale over T and
T =

⋃
fj(Uj).

In the definition above we do not assume the morphisms fj are standard étale. The
reason is that if we did then the standard étale coverings would not define a site
on Aff/S, for example because of Algebra, Lemma 10.144.2 part (4). On the other
hand, an étale morphism of affines is automatically standard smooth, see Algebra,
Lemma 10.143.2. Hence a standard étale covering is a standard smooth covering
and a standard syntomic covering.
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Definition 34.4.6.021A A big étale site is any site Schétale as in Sites, Definition 7.6.2
constructed as follows:

(1) Choose any set of schemes S0, and any set of étale coverings Cov0 among
these schemes.

(2) As underlying category take any category Schα constructed as in Sets,
Lemma 3.9.2 starting with the set S0.

(3) Choose any set of coverings as in Sets, Lemma 3.11.1 starting with the
category Schα and the class of étale coverings, and the set Cov0 chosen
above.

See the remarks following Definition 34.3.5 for motivation and explanation regard-
ing the definition of big sites.
Before we continue with the introduction of the big étale site of a scheme S, let us
point out that the topology on a big étale site Schétale is in some sense induced
from the étale topology on the category of all schemes.
Lemma 34.4.7.03WW Let Schétale be a big étale site as in Definition 34.4.6. Let T ∈
Ob(Schétale). Let {Ti → T}i∈I be an arbitrary étale covering of T .

(1) There exists a covering {Uj → T}j∈J of T in the site Schétale which refines
{Ti → T}i∈I .

(2) If {Ti → T}i∈I is a standard étale covering, then it is tautologically equiv-
alent to a covering in Schétale.

(3) If {Ti → T}i∈I is a Zariski covering, then it is tautologically equivalent to
a covering in Schétale.

Proof. For each i choose an affine open covering Ti =
⋃
j∈Ji Tij such that each

Tij maps into an affine open subscheme of T . By Lemma 34.4.3 the refinement
{Tij → T}i∈I,j∈Ji is an étale covering of T as well. Hence we may assume each
Ti is affine, and maps into an affine open Wi of T . Applying Sets, Lemma 3.9.9
we see that Wi is isomorphic to an object of Schétale. But then Ti as a finite type
scheme over Wi is isomorphic to an object Vi of Schétale by a second application
of Sets, Lemma 3.9.9. The covering {Vi → T}i∈I refines {Ti → T}i∈I (because
they are isomorphic). Moreover, {Vi → T}i∈I is combinatorially equivalent to
a covering {Uj → T}j∈J of T in the site Schétale by Sets, Lemma 3.9.9. The
covering {Uj → T}j∈J is a refinement as in (1). In the situation of (2), (3) each
of the schemes Ti is isomorphic to an object of Schétale by Sets, Lemma 3.9.9, and
another application of Sets, Lemma 3.11.1 gives what we want. □

Definition 34.4.8.021B Let S be a scheme. Let Schétale be a big étale site containing S.
(1) The big étale site of S, denoted (Sch/S)étale, is the site Schétale/S intro-

duced in Sites, Section 7.25.
(2) The small étale site of S, which we denote Sétale, is the full subcategory

of (Sch/S)étale whose objects are those U/S such that U → S is étale.
A covering of Sétale is any covering {Ui → U} of (Sch/S)étale with U ∈
Ob(Sétale).

(3) The big affine étale site of S, denoted (Aff/S)étale, is the full subcat-
egory of (Sch/S)étale whose objects are those U/S such that U is an
affine scheme. A covering of (Aff/S)étale is any covering {Ui → U} of
(Sch/S)étale with U ∈ Ob((Aff/S)étale) which is a standard étale cover-
ing.
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(4) The small affine étale site of S, denoted Saffine,étale, is the full sub-
category of Sétale whose objects are those U/S such that U is an affine
scheme. A covering of Saffine,étale is any covering {Ui → U} of Sétale
with U ∈ Ob(Saffine,étale) which is a standard étale covering.

It is not completely clear that the big affine étale site, the small étale site, and the
small affine étale site are sites. We check this now.

Lemma 34.4.9.021C Let S be a scheme. Let Schétale be a big étale site containing S.
The structures Sétale, (Aff/S)étale, and Saffine,étale are sites.

Proof. Let us show that Sétale is a site. It is a category with a given set of families
of morphisms with fixed target. Thus we have to show properties (1), (2) and
(3) of Sites, Definition 7.6.2. Since (Sch/S)étale is a site, it suffices to prove that
given any covering {Ui → U} of (Sch/S)étale with U ∈ Ob(Sétale) we also have
Ui ∈ Ob(Sétale). This follows from the definitions as the composition of étale
morphisms is an étale morphism.
Let us show that (Aff/S)étale is a site. Reasoning as above, it suffices to show that
the collection of standard étale coverings of affines satisfies properties (1), (2) and
(3) of Sites, Definition 7.6.2. This is clear since for example, given a standard étale
covering {Ti → T}i∈I and for each i we have a standard étale covering {Tij →
Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a standard étale covering because

⋃
i∈I Ji is

finite and each Tij is affine.
We omit the proof that Saffine,étale is a site. □

Lemma 34.4.10.021D Let S be a scheme. Let Schétale be a big étale site containing
S. The underlying categories of the sites Schétale, (Sch/S)étale, Sétale, (Aff/S)étale,
and Saffine,étale have fibre products. In each case the obvious functor into the
category Sch of all schemes commutes with taking fibre products. The categories
(Sch/S)étale, and Sétale both have a final object, namely S/S.

Proof. For Schétale it is true by construction, see Sets, Lemma 3.9.9. Suppose we
have U → S, V → U , W → U morphisms of schemes with U, V,W ∈ Ob(Schétale).
The fibre product V ×U W in Schétale is a fibre product in Sch and is the fibre
product of V/S with W/S over U/S in the category of all schemes over S, and
hence also a fibre product in (Sch/S)étale. This proves the result for (Sch/S)étale.
If U → S, V → U and W → U are étale then so is V ×U W → S and hence we get
the result for Sétale. If U, V,W are affine, so is V ×U W and hence the result for
(Aff/S)étale and Saffine,étale. □

Next, we check that the big, resp. small affine site defines the same topos as the
big, resp. small site.

Lemma 34.4.11.021E Let S be a scheme. Let Schétale be a big étale site containing
S. The functor (Aff/S)étale → (Sch/S)étale is special cocontinuous and induces an
equivalence of topoi from Sh((Aff/S)étale) to Sh((Sch/S)étale).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Definition
7.29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 7.29.1. Denote
the inclusion functor u : (Aff/S)étale → (Sch/S)étale. Being cocontinuous just
means that any étale covering of T/S, T affine, can be refined by a standard étale
covering of T . This is the content of Lemma 34.4.4. Hence (1) holds. We see u is
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continuous simply because a standard étale covering is a étale covering. Hence (2)
holds. Parts (3) and (4) follow immediately from the fact that u is fully faithful.
And finally condition (5) follows from the fact that every scheme has an affine open
covering. □

Lemma 34.4.12.04HR Let S be a scheme. Let Schétale be a big étale site contain-
ing S. The functor Saffine,étale → Sétale is special cocontinuous and induces an
equivalence of topoi from Sh(Saffine,étale) to Sh(Sétale).

Proof. Omitted. Hint: compare with the proof of Lemma 34.4.11. □

Next, we establish some relationships between the topoi associated to these sites.

Lemma 34.4.13.021F Let Schétale be a big étale site. Let f : T → S be a morphism in
Schétale. The functor Tétale → (Sch/S)étale is cocontinuous and induces a morphism
of topoi

if : Sh(Tétale) −→ Sh((Sch/S)étale)
For a sheaf G on (Sch/S)étale we have the formula (i−1

f G)(U/T ) = G(U/S). The
functor i−1

f also has a left adjoint if,! which commutes with fibre products and
equalizers.

Proof. Denote the functor u : Tétale → (Sch/S)étale. In other words, given an étale
morphism j : U → T corresponding to an object of Tétale we set u(U → T ) =
(f ◦ j : U → S). This functor commutes with fibre products, see Lemma 34.4.10.
Let a, b : U → V be two morphisms in Tétale. In this case the equalizer of a and b
(in the category of schemes) is

V ×∆V/T ,V×TV,(a,b) U ×T U

which is a fibre product of schemes étale over T , hence étale over T . Thus Tétale
has equalizers and u commutes with them. It is clearly cocontinuous. It is also con-
tinuous as u transforms coverings to coverings and commutes with fibre products.
Hence the Lemma follows from Sites, Lemmas 7.21.5 and 7.21.6. □

Lemma 34.4.14.021G Let S be a scheme. Let Schétale be a big étale site containing
S. The inclusion functor Sétale → (Sch/S)étale satisfies the hypotheses of Sites,
Lemma 7.21.8 and hence induces a morphism of sites

πS : (Sch/S)étale −→ Sétale

and a morphism of topoi
iS : Sh(Sétale) −→ Sh((Sch/S)étale)

such that πS ◦ iS = id. Moreover, iS = iidS with iidS as in Lemma 34.4.13. In
particular the functor i−1

S = πS,∗ is described by the rule i−1
S (G)(U/S) = G(U/S).

Proof. In this case the functor u : Sétale → (Sch/S)étale, in addition to the prop-
erties seen in the proof of Lemma 34.4.13 above, also is fully faithful and trans-
forms the final object into the final object. The lemma follows from Sites, Lemma
7.21.8. □

Definition 34.4.15.04BT In the situation of Lemma 34.4.14 the functor i−1
S = πS,∗ is

often called the restriction to the small étale site, and for a sheaf F on the big étale
site we denote F|Sétale this restriction.
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With this notation in place we have for a sheaf F on the big site and a sheaf G on
the small site that

MorSh(Sétale)(F|Sétale ,G) = MorSh((Sch/S)étale)(F , iS,∗G)
MorSh(Sétale)(G,F|Sétale) = MorSh((Sch/S)étale)(π−1

S G,F)

Moreover, we have (iS,∗G)|Sétale = G and we have (π−1
S G)|Sétale = G.

Lemma 34.4.16.021H Let Schétale be a big étale site. Let f : T → S be a morphism in
Schétale. The functor

u : (Sch/T )étale −→ (Sch/S)étale, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint
v : (Sch/S)étale −→ (Sch/T )étale, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi
fbig : Sh((Sch/T )étale) −→ Sh((Sch/S)étale)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous and commutes with fibre products
and equalizers (details omitted; compare with the proof of Lemma 34.4.13). Hence
Sites, Lemmas 7.21.5 and 7.21.6 apply and we deduce the formula for f−1

big and the
existence of fbig!. Moreover, the functor v is a right adjoint because given U/T and
V/S we have MorS(u(U), V ) = MorT (U, V ×S T ) as desired. Thus we may apply
Sites, Lemmas 7.22.1 and 7.22.2 to get the formula for fbig,∗. □

Lemma 34.4.17.021I Let Schétale be a big étale site. Let f : T → S be a morphism in
Schétale.

(1) We have if = fbig ◦ iT with if as in Lemma 34.4.13 and iT as in Lemma
34.4.14.

(2) The functor Sétale → Tétale, (U → S) 7→ (U ×S T → T ) is continuous and
induces a morphism of sites

fsmall : Tétale −→ Sétale

We have fsmall,∗(F)(U/S) = F(U ×S T/T ).
(3) We have a commutative diagram of morphisms of sites

Tétale

fsmall

��

(Sch/T )étale
fbig

��

πT
oo

Sétale (Sch/S)étale
πSoo

so that fsmall ◦ πT = πS ◦ fbig as morphisms of topoi.
(4) We have fsmall = πS ◦ fbig ◦ iT = πS ◦ if .

Proof. The equality if = fbig ◦ iT follows from the equality i−1
f = i−1

T ◦ f
−1
big which

is clear from the descriptions of these functors above. Thus we see (1).
The functor u : Sétale → Tétale, u(U → S) = (U ×S T → T ) transforms coverings
into coverings and commutes with fibre products, see Lemma 34.4.3 (3) and 34.4.10.
Moreover, both Sétale, Tétale have final objects, namely S/S and T/T and u(S/S) =
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T/T . Hence by Sites, Proposition 7.14.7 the functor u corresponds to a morphism
of sites Tétale → Sétale. This in turn gives rise to the morphism of topoi, see Sites,
Lemma 7.15.2. The description of the pushforward is clear from these references.
Part (3) follows because πS and πT are given by the inclusion functors and fsmall
and fbig by the base change functors U 7→ U ×S T .
Statement (4) follows from (3) by precomposing with iT . □

In the situation of the lemma, using the terminology of Definition 34.4.15 we have:
for F a sheaf on the big étale site of T

(fbig,∗F)|Sétale = fsmall,∗(F|Tétale),
This equality is clear from the commutativity of the diagram of sites of the lemma,
since restriction to the small étale site of T , resp. S is given by πT,∗, resp. πS,∗. A
similar formula involving pullbacks and restrictions is false.

Lemma 34.4.18.021J Given schemes X, Y , Y in Schétale and morphisms f : X → Y ,
g : Y → Z we have gbig ◦ fbig = (g ◦ f)big and gsmall ◦ fsmall = (g ◦ f)small.

Proof. This follows from the simple description of pushforward and pullback for the
functors on the big sites from Lemma 34.4.16. For the functors on the small sites
this follows from the description of the pushforward functors in Lemma 34.4.17. □

Lemma 34.4.19.0DDA Let Schétale be a big étale site. Consider a cartesian diagram

T ′
g′
//

f ′

��

T

f

��
S′ g // S

in Schétale. Then i−1
g ◦ fbig,∗ = f ′

small,∗ ◦ (ig′)−1 and g−1
big ◦ fbig,∗ = f ′

big,∗ ◦ (g′
big)−1.

Proof. Since the diagram is cartesian, we have for U ′/S′ that U ′×S′ T ′ = U ′×S T .
Hence both i−1

g ◦ fbig,∗ and f ′
small,∗ ◦ (ig′)−1 send a sheaf F on (Sch/T )étale to the

sheaf U ′ 7→ F(U ′ ×S′ T ′) on S′
étale (use Lemmas 34.4.13 and 34.4.16). The second

equality can be proved in the same manner or can be deduced from the very general
Sites, Lemma 7.28.1. □

We can think about a sheaf on the big étale site of S as a collection of “usual”
sheaves on all schemes over S.

Lemma 34.4.20.021K Let S be a scheme contained in a big étale site Schétale. A sheaf
F on the big étale site (Sch/S)étale is given by the following data:

(1) for every T/S ∈ Ob((Sch/S)étale) a sheaf FT on Tétale,
(2) for every f : T ′ → T in (Sch/S)étale a map cf : f−1

smallFT → FT ′ .
These data are subject to the following conditions:

(a) given any f : T ′ → T and g : T ′′ → T ′ in (Sch/S)étale the composition
cg ◦ g−1

smallcf is equal to cf◦g, and
(b) if f : T ′ → T in (Sch/S)étale is étale then cf is an isomorphism.

Proof. This lemma follows from a purely sheaf theoretic statement discussed in
Sites, Remark 7.26.7. We also give a direct proof in this case.
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Given a sheaf F on Sh((Sch/S)étale) we set FT = i−1
p F where p : T → S is the

structure morphism. Note that FT (U) = F(U/S) for any U → T in Tétale see
Lemma 34.4.13. Hence given f : T ′ → T over S and U → T we get a canonical
map FT (U) = F(U/S) → F(U ×T T ′/S) = FT ′(U ×T T ′) where the middle is
the restriction map of F with respect to the morphism U ×T T ′ → U over S.
The collection of these maps are compatible with restrictions, and hence define a
map c′

f : FT → fsmall,∗FT ′ where u : Tétale → T ′
étale is the base change functor

associated to f . By adjunction of fsmall,∗ (see Sites, Section 7.13) with f−1
small this

is the same as a map cf : f−1
smallFT → FT ′ . It is clear that c′

f◦g is the composition
of c′

f and fsmall,∗c
′
g, since composition of restriction maps of F gives restriction

maps, and this gives the desired relationship among cf , cg and cf◦g.
Conversely, given a system (FT , cf ) as in the lemma we may define a presheaf F
on Sh((Sch/S)étale) by simply setting F(T/S) = FT (T ). As restriction mapping,
given f : T ′ → T we set for s ∈ F(T ) the pullback f∗(s) equal to cf (s) where we
think of cf as a map FT → fsmall,∗FT ′ again. The condition on the cf guarantees
that pullbacks satisfy the required functoriality property. We omit the verification
that this is a sheaf. It is clear that the constructions so defined are mutually
inverse. □

34.5. The smooth topology

021Y In this section we define the smooth topology. This is a bit pointless as it will turn
out later (see More on Morphisms, Section 37.38) that this topology defines the
same topos as the étale topology. But still it makes sense and it is used occasionally.
Definition 34.5.1.021Z Let T be a scheme. A smooth covering of T is a family of
morphisms {fi : Ti → T}i∈I of schemes such that each fi is smooth and such that
T =

⋃
fi(Ti).

Lemma 34.5.2.0220 Any étale covering is a smooth covering, and a fortiori, any Zariski
covering is a smooth covering.
Proof. This is clear from the definitions, the fact that an étale morphism is smooth
see Morphisms, Definition 29.36.1 and Lemma 34.4.2. □

Next, we show that this notion satisfies the conditions of Sites, Definition 7.6.2.
Lemma 34.5.3.0221 Let T be a scheme.

(1) If T ′ → T is an isomorphism then {T ′ → T} is a smooth covering of T .
(2) If {Ti → T}i∈I is a smooth covering and for each i we have a smooth

covering {Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a smooth covering.
(3) If {Ti → T}i∈I is a smooth covering and T ′ → T is a morphism of schemes

then {T ′ ×T Ti → T ′}i∈I is a smooth covering.
Proof. Omitted. □

Lemma 34.5.4.0222 Let T be an affine scheme. Let {Ti → T}i∈I be a smooth covering
of T . Then there exists a smooth covering {Uj → T}j=1,...,m which is a refinement
of {Ti → T}i∈I such that each Uj is an affine scheme, and such that each morphism
Uj → T is standard smooth, see Morphisms, Definition 29.34.1. Moreover, we may
choose each Uj to be open affine in one of the Ti.
Proof. Omitted, but see Algebra, Lemma 10.137.10. □
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Thus we define the corresponding standard coverings of affines as follows.

Definition 34.5.5.0223 Let T be an affine scheme. A standard smooth covering of T is
a family {fj : Uj → T}j=1,...,m with each Uj is affine, Uj → T standard smooth
and T =

⋃
fj(Uj).

Definition 34.5.6.03WY A big smooth site is any site Schsmooth as in Sites, Definition
7.6.2 constructed as follows:

(1) Choose any set of schemes S0, and any set of smooth coverings Cov0
among these schemes.

(2) As underlying category take any category Schα constructed as in Sets,
Lemma 3.9.2 starting with the set S0.

(3) Choose any set of coverings as in Sets, Lemma 3.11.1 starting with the
category Schα and the class of smooth coverings, and the set Cov0 chosen
above.

See the remarks following Definition 34.3.5 for motivation and explanation regard-
ing the definition of big sites.

Before we continue with the introduction of the big smooth site of a scheme S,
let us point out that the topology on a big smooth site Schsmooth is in some sense
induced from the smooth topology on the category of all schemes.

Lemma 34.5.7.03WZ Let Schsmooth be a big smooth site as in Definition 34.5.6. Let
T ∈ Ob(Schsmooth). Let {Ti → T}i∈I be an arbitrary smooth covering of T .

(1) There exists a covering {Uj → T}j∈J of T in the site Schsmooth which
refines {Ti → T}i∈I .

(2) If {Ti → T}i∈I is a standard smooth covering, then it is tautologically
equivalent to a covering of Schsmooth.

(3) If {Ti → T}i∈I is a Zariski covering, then it is tautologically equivalent to
a covering of Schsmooth.

Proof. For each i choose an affine open covering Ti =
⋃
j∈Ji Tij such that each

Tij maps into an affine open subscheme of T . By Lemma 34.5.3 the refinement
{Tij → T}i∈I,j∈Ji is a smooth covering of T as well. Hence we may assume each
Ti is affine, and maps into an affine open Wi of T . Applying Sets, Lemma 3.9.9 we
see that Wi is isomorphic to an object of Schsmooth. But then Ti as a finite type
scheme over Wi is isomorphic to an object Vi of Schsmooth by a second application
of Sets, Lemma 3.9.9. The covering {Vi → T}i∈I refines {Ti → T}i∈I (because
they are isomorphic). Moreover, {Vi → T}i∈I is combinatorially equivalent to a
covering {Uj → T}j∈J of T in the site Schsmooth by Sets, Lemma 3.9.9. The
covering {Uj → T}j∈J is a refinement as in (1). In the situation of (2), (3) each of
the schemes Ti is isomorphic to an object of Schsmooth by Sets, Lemma 3.9.9, and
another application of Sets, Lemma 3.11.1 gives what we want. □

Definition 34.5.8.03X0 Let S be a scheme. Let Schsmooth be a big smooth site containing
S.

(1) The big smooth site of S, denoted (Sch/S)smooth, is the site Schsmooth/S
introduced in Sites, Section 7.25.

(2) The big affine smooth site of S, denoted (Aff/S)smooth, is the full sub-
category of (Sch/S)smooth whose objects are affine U/S. A covering of
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(Aff/S)smooth is any covering {Ui → U} of (Sch/S)smooth which is a stan-
dard smooth covering.

Next, we check that the big affine site defines the same topos as the big site.

Lemma 34.5.9.06VC Let S be a scheme. Let Schsmooth be a big smooth site containing
S. The functor (Aff/S)smooth → (Sch/S)smooth is special cocontinuous and induces
an equivalence of topoi from Sh((Aff/S)smooth) to Sh((Sch/S)smooth).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Definition
7.29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 7.29.1. Denote
the inclusion functor u : (Aff/S)smooth → (Sch/S)smooth. Being cocontinuous just
means that any smooth covering of T/S, T affine, can be refined by a standard
smooth covering of T . This is the content of Lemma 34.5.4. Hence (1) holds. We
see u is continuous simply because a standard smooth covering is a smooth covering.
Hence (2) holds. Parts (3) and (4) follow immediately from the fact that u is fully
faithful. And finally condition (5) follows from the fact that every scheme has an
affine open covering. □

To be continued...

Lemma 34.5.10.04HC Let Schsmooth be a big smooth site. Let f : T → S be a morphism
in Schsmooth. The functor

u : (Sch/T )smooth −→ (Sch/S)smooth, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint
v : (Sch/S)smooth −→ (Sch/T )smooth, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi
fbig : Sh((Sch/T )smooth) −→ Sh((Sch/S)smooth)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers. Hence Sites, Lemmas 7.21.5 and 7.21.6 apply and we deduce
the formula for f−1

big and the existence of fbig!. Moreover, the functor v is a right
adjoint because given U/T and V/S we have MorS(u(U), V ) = MorT (U, V ×S T )
as desired. Thus we may apply Sites, Lemmas 7.22.1 and 7.22.2 to get the formula
for fbig,∗. □

34.6. The syntomic topology

0224 In this section we define the syntomic topology. This topology is quite interesting in
that it often has the same cohomology groups as the fppf topology but is technically
easier to deal with.

Definition 34.6.1.0225 Let T be a scheme. An syntomic covering of T is a family of
morphisms {fi : Ti → T}i∈I of schemes such that each fi is syntomic and such that
T =

⋃
fi(Ti).

Lemma 34.6.2.0226 Any smooth covering is a syntomic covering, and a fortiori, any
étale or Zariski covering is a syntomic covering.
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Proof. This is clear from the definitions and the fact that a smooth morphism is
syntomic, see Morphisms, Lemma 29.34.7 and Lemma 34.5.2. □

Next, we show that this notion satisfies the conditions of Sites, Definition 7.6.2.

Lemma 34.6.3.0227 Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is a syntomic covering of T .
(2) If {Ti → T}i∈I is a syntomic covering and for each i we have a syntomic

covering {Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a syntomic covering.
(3) If {Ti → T}i∈I is a syntomic covering and T ′ → T is a morphism of

schemes then {T ′ ×T Ti → T ′}i∈I is a syntomic covering.

Proof. Omitted. □

Lemma 34.6.4.0228 Let T be an affine scheme. Let {Ti → T}i∈I be a syntomic covering
of T . Then there exists a syntomic covering {Uj → T}j=1,...,m which is a refinement
of {Ti → T}i∈I such that each Uj is an affine scheme, and such that each morphism
Uj → T is standard syntomic, see Morphisms, Definition 29.30.1. Moreover, we may
choose each Uj to be open affine in one of the Ti.

Proof. Omitted, but see Algebra, Lemma 10.136.15. □

Thus we define the corresponding standard coverings of affines as follows.

Definition 34.6.5.0229 Let T be an affine scheme. A standard syntomic covering of T
is a family {fj : Uj → T}j=1,...,m with each Uj is affine, Uj → T standard syntomic
and T =

⋃
fj(Uj).

Definition 34.6.6.03X1 A big syntomic site is any site Schsyntomic as in Sites, Definition
7.6.2 constructed as follows:

(1) Choose any set of schemes S0, and any set of syntomic coverings Cov0
among these schemes.

(2) As underlying category take any category Schα constructed as in Sets,
Lemma 3.9.2 starting with the set S0.

(3) Choose any set of coverings as in Sets, Lemma 3.11.1 starting with the
category Schα and the class of syntomic coverings, and the set Cov0 chosen
above.

See the remarks following Definition 34.3.5 for motivation and explanation regard-
ing the definition of big sites.
Before we continue with the introduction of the big syntomic site of a scheme S, let
us point out that the topology on a big syntomic site Schsyntomic is in some sense
induced from the syntomic topology on the category of all schemes.

Lemma 34.6.7.03X2 Let Schsyntomic be a big syntomic site as in Definition 34.6.6. Let
T ∈ Ob(Schsyntomic). Let {Ti → T}i∈I be an arbitrary syntomic covering of T .

(1) There exists a covering {Uj → T}j∈J of T in the site Schsyntomic which
refines {Ti → T}i∈I .

(2) If {Ti → T}i∈I is a standard syntomic covering, then it is tautologically
equivalent to a covering in Schsyntomic.

(3) If {Ti → T}i∈I is a Zariski covering, then it is tautologically equivalent to
a covering in Schsyntomic.
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Proof. For each i choose an affine open covering Ti =
⋃
j∈Ji Tij such that each

Tij maps into an affine open subscheme of T . By Lemma 34.6.3 the refinement
{Tij → T}i∈I,j∈Ji is a syntomic covering of T as well. Hence we may assume each
Ti is affine, and maps into an affine open Wi of T . Applying Sets, Lemma 3.9.9 we
see that Wi is isomorphic to an object of Schsyntomic. But then Ti as a finite type
scheme over Wi is isomorphic to an object Vi of Schsyntomic by a second application
of Sets, Lemma 3.9.9. The covering {Vi → T}i∈I refines {Ti → T}i∈I (because
they are isomorphic). Moreover, {Vi → T}i∈I is combinatorially equivalent to a
covering {Uj → T}j∈J of T in the site Schsyntomic by Sets, Lemma 3.9.9. The
covering {Uj → T}j∈J is a covering as in (1). In the situation of (2), (3) each of
the schemes Ti is isomorphic to an object of Schsyntomic by Sets, Lemma 3.9.9, and
another application of Sets, Lemma 3.11.1 gives what we want. □

Definition 34.6.8.03X3 Let S be a scheme. Let Schsyntomic be a big syntomic site
containing S.

(1) The big syntomic site of S, denoted (Sch/S)syntomic, is the site Schsyntomic/S
introduced in Sites, Section 7.25.

(2) The big affine syntomic site of S, denoted (Aff/S)syntomic, is the full
subcategory of (Sch/S)syntomic whose objects are affine U/S. A covering
of (Aff/S)syntomic is any covering {Ui → U} of (Sch/S)syntomic which is
a standard syntomic covering.

Next, we check that the big affine site defines the same topos as the big site.

Lemma 34.6.9.06VD Let S be a scheme. Let Schsyntomic be a big syntomic site contain-
ing S. The functor (Aff/S)syntomic → (Sch/S)syntomic is special cocontinuous and
induces an equivalence of topoi from Sh((Aff/S)syntomic) to Sh((Sch/S)syntomic).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Definition
7.29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 7.29.1. Denote
the inclusion functor u : (Aff/S)syntomic → (Sch/S)syntomic. Being cocontinuous
just means that any syntomic covering of T/S, T affine, can be refined by a standard
syntomic covering of T . This is the content of Lemma 34.6.4. Hence (1) holds. We
see u is continuous simply because a standard syntomic covering is a syntomic
covering. Hence (2) holds. Parts (3) and (4) follow immediately from the fact that
u is fully faithful. And finally condition (5) follows from the fact that every scheme
has an affine open covering. □

To be continued...

Lemma 34.6.10.04HD Let Schsyntomic be a big syntomic site. Let f : T → S be a
morphism in Schsyntomic. The functor

u : (Sch/T )syntomic −→ (Sch/S)syntomic, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint
v : (Sch/S)syntomic −→ (Sch/T )syntomic, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi
fbig : Sh((Sch/T )syntomic) −→ Sh((Sch/S)syntomic)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

https://stacks.math.columbia.edu/tag/03X3
https://stacks.math.columbia.edu/tag/06VD
https://stacks.math.columbia.edu/tag/04HD
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Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers. Hence Sites, Lemmas 7.21.5 and 7.21.6 apply and we deduce
the formula for f−1

big and the existence of fbig!. Moreover, the functor v is a right
adjoint because given U/T and V/S we have MorS(u(U), V ) = MorT (U, V ×S T )
as desired. Thus we may apply Sites, Lemmas 7.22.1 and 7.22.2 to get the formula
for fbig,∗. □

34.7. The fppf topology

021L Let S be a scheme. We would like to define the fppf-topology3 on the category of
schemes over S. According to our general principle we first introduce the notion of
an fppf-covering.

Definition 34.7.1.021M Let T be a scheme. An fppf covering of T is a family of morphisms
{fi : Ti → T}i∈I of schemes such that each fi is flat, locally of finite presentation
and such that T =

⋃
fi(Ti).

Lemma 34.7.2.021N Any syntomic covering is an fppf covering, and a fortiori, any
smooth, étale, or Zariski covering is an fppf covering.

Proof. This is clear from the definitions, the fact that a syntomic morphism is flat
and locally of finite presentation, see Morphisms, Lemmas 29.30.6 and 29.30.7, and
Lemma 34.6.2. □

Next, we show that this notion satisfies the conditions of Sites, Definition 7.6.2.

Lemma 34.7.3.021O Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is an fppf covering of T .
(2) If {Ti → T}i∈I is an fppf covering and for each i we have an fppf covering
{Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is an fppf covering.

(3) If {Ti → T}i∈I is an fppf covering and T ′ → T is a morphism of schemes
then {T ′ ×T Ti → T ′}i∈I is an fppf covering.

Proof. The first assertion is clear. The second follows as the composition of flat mor-
phisms is flat (see Morphisms, Lemma 29.25.6) and the composition of morphisms
of finite presentation is of finite presentation (see Morphisms, Lemma 29.21.3). The
third follows as the base change of a flat morphism is flat (see Morphisms, Lemma
29.25.8) and the base change of a morphism of finite presentation is of finite presen-
tation (see Morphisms, Lemma 29.21.4). Moreover, the base change of a surjective
family of morphisms is surjective (proof omitted). □

Lemma 34.7.4.021P Let T be an affine scheme. Let {Ti → T}i∈I be an fppf covering
of T . Then there exists an fppf covering {Uj → T}j=1,...,m which is a refinement of
{Ti → T}i∈I such that each Uj is an affine scheme. Moreover, we may choose each
Uj to be open affine in one of the Ti.

Proof. This follows directly from the definitions using that a morphism which is
flat and locally of finite presentation is open, see Morphisms, Lemma 29.25.10. □

Thus we define the corresponding standard coverings of affines as follows.

3The letters fppf stand for “fidèlement plat de présentation finie”.

https://stacks.math.columbia.edu/tag/021M
https://stacks.math.columbia.edu/tag/021N
https://stacks.math.columbia.edu/tag/021O
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Definition 34.7.5.021Q Let T be an affine scheme. A standard fppf covering of T is a
family {fj : Uj → T}j=1,...,m with each Uj is affine, flat and of finite presentation
over T and T =

⋃
fj(Uj).

Definition 34.7.6.021R A big fppf site is any site Schfppf as in Sites, Definition 7.6.2
constructed as follows:

(1) Choose any set of schemes S0, and any set of fppf coverings Cov0 among
these schemes.

(2) As underlying category take any category Schα constructed as in Sets,
Lemma 3.9.2 starting with the set S0.

(3) Choose any set of coverings as in Sets, Lemma 3.11.1 starting with the
category Schα and the class of fppf coverings, and the set Cov0 chosen
above.

See the remarks following Definition 34.3.5 for motivation and explanation regard-
ing the definition of big sites.

Before we continue with the introduction of the big fppf site of a scheme S, let us
point out that the topology on a big fppf site Schfppf is in some sense induced from
the fppf topology on the category of all schemes.

Lemma 34.7.7.03WX Let Schfppf be a big fppf site as in Definition 34.7.6. Let T ∈
Ob(Schfppf ). Let {Ti → T}i∈I be an arbitrary fppf covering of T .

(1) There exists a covering {Uj → T}j∈J of T in the site Schfppf which refines
{Ti → T}i∈I .

(2) If {Ti → T}i∈I is a standard fppf covering, then it is tautologically equiv-
alent to a covering of Schfppf .

(3) If {Ti → T}i∈I is a Zariski covering, then it is tautologically equivalent to
a covering of Schfppf .

Proof. For each i choose an affine open covering Ti =
⋃
j∈Ji Tij such that each

Tij maps into an affine open subscheme of T . By Lemma 34.7.3 the refinement
{Tij → T}i∈I,j∈Ji is an fppf covering of T as well. Hence we may assume each Ti
is affine, and maps into an affine open Wi of T . Applying Sets, Lemma 3.9.9 we
see that Wi is isomorphic to an object of Schfppf . But then Ti as a finite type
scheme over Wi is isomorphic to an object Vi of Schfppf by a second application
of Sets, Lemma 3.9.9. The covering {Vi → T}i∈I refines {Ti → T}i∈I (because
they are isomorphic). Moreover, {Vi → T}i∈I is combinatorially equivalent to
a covering {Uj → T}j∈J of T in the site Schfppf by Sets, Lemma 3.9.9. The
covering {Uj → T}j∈J is a refinement as in (1). In the situation of (2), (3) each
of the schemes Ti is isomorphic to an object of Schfppf by Sets, Lemma 3.9.9, and
another application of Sets, Lemma 3.11.1 gives what we want. □

Definition 34.7.8.021S Let S be a scheme. Let Schfppf be a big fppf site containing S.
(1) The big fppf site of S, denoted (Sch/S)fppf , is the site Schfppf/S intro-

duced in Sites, Section 7.25.
(2) The big affine fppf site of S, denoted (Aff/S)fppf , is the full subcategory

of (Sch/S)fppf whose objects are affine U/S. A covering of (Aff/S)fppf is
any covering {Ui → U} of (Sch/S)fppf which is a standard fppf covering.

It is not completely clear that the big affine fppf site is a site. We check this now.

https://stacks.math.columbia.edu/tag/021Q
https://stacks.math.columbia.edu/tag/021R
https://stacks.math.columbia.edu/tag/03WX
https://stacks.math.columbia.edu/tag/021S
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Lemma 34.7.9.021T Let S be a scheme. Let Schfppf be a big fppf site containing S.
Then (Aff/S)fppf is a site.

Proof. Let us show that (Aff/S)fppf is a site. Reasoning as in the proof of Lemma
34.4.9 it suffices to show that the collection of standard fppf coverings of affines
satisfies properties (1), (2) and (3) of Sites, Definition 7.6.2. This is clear since
for example, given a standard fppf covering {Ti → T}i∈I and for each i we have a
standard fppf covering {Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a standard fppf
covering because

⋃
i∈I Ji is finite and each Tij is affine. □

Lemma 34.7.10.021U Let S be a scheme. Let Schfppf be a big fppf site containing S.
The underlying categories of the sites Schfppf , (Sch/S)fppf , and (Aff/S)fppf have
fibre products. In each case the obvious functor into the category Sch of all schemes
commutes with taking fibre products. The category (Sch/S)fppf has a final object,
namely S/S.

Proof. For Schfppf it is true by construction, see Sets, Lemma 3.9.9. Suppose we
have U → S, V → U , W → U morphisms of schemes with U, V,W ∈ Ob(Schfppf ).
The fibre product V ×U W in Schfppf is a fibre product in Sch and is the fibre
product of V/S with W/S over U/S in the category of all schemes over S, and
hence also a fibre product in (Sch/S)fppf . This proves the result for (Sch/S)fppf .
If U, V,W are affine, so is V ×U W and hence the result for (Aff/S)fppf . □

Next, we check that the big affine site defines the same topos as the big site.

Lemma 34.7.11.021V Let S be a scheme. Let Schfppf be a big fppf site containing S.
The functor (Aff/S)fppf → (Sch/S)fppf is cocontinuous and induces an equivalence
of topoi from Sh((Aff/S)fppf ) to Sh((Sch/S)fppf ).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Definition
7.29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 7.29.1. Denote
the inclusion functor u : (Aff/S)fppf → (Sch/S)fppf . Being cocontinuous just
means that any fppf covering of T/S, T affine, can be refined by a standard fppf
covering of T . This is the content of Lemma 34.7.4. Hence (1) holds. We see u is
continuous simply because a standard fppf covering is a fppf covering. Hence (2)
holds. Parts (3) and (4) follow immediately from the fact that u is fully faithful.
And finally condition (5) follows from the fact that every scheme has an affine open
covering. □

Next, we establish some relationships between the topoi associated to these sites.

Lemma 34.7.12.021W Let Schfppf be a big fppf site. Let f : T → S be a morphism in
Schfppf . The functor

u : (Sch/T )fppf −→ (Sch/S)fppf , V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint
v : (Sch/S)fppf −→ (Sch/T )fppf , (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi
fbig : Sh((Sch/T )fppf ) −→ Sh((Sch/S)fppf )

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

https://stacks.math.columbia.edu/tag/021T
https://stacks.math.columbia.edu/tag/021U
https://stacks.math.columbia.edu/tag/021V
https://stacks.math.columbia.edu/tag/021W
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Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers. Hence Sites, Lemmas 7.21.5 and 7.21.6 apply and we deduce
the formula for f−1

big and the existence of fbig!. Moreover, the functor v is a right
adjoint because given U/T and V/S we have MorS(u(U), V ) = MorT (U, V ×S T )
as desired. Thus we may apply Sites, Lemmas 7.22.1 and 7.22.2 to get the formula
for fbig,∗. □

Lemma 34.7.13.021X Given schemes X, Y , Y in (Sch/S)fppf and morphisms f : X →
Y , g : Y → Z we have gbig ◦ fbig = (g ◦ f)big.

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 34.7.12. □

34.8. The ph topology

0DBC In this section we define the ph topology. This is the topology generated by Zariski
coverings and proper surjective morphisms, see Lemma 34.8.15.
We borrow our notation/terminology from the paper [GL01] by Goodwillie and
Lichtenbaum. These authors show that if we restrict to the subcategory of Noe-
therian schemes, then the ph topology is the same as the “h topology” as originally
defined by Voevodsky: this is the topology generated by Zariski open coverings and
finite type morphisms which are universally submersive. They also show that the
two topologies do not agree on non-Noetherian schemes, see [GL01, Example 4.5].
We return to (our version of) the h topology in More on Flatness, Section 38.34.
Before we can define the coverings in our topology we need to do a bit of work.

Definition 34.8.1.0DBD Let T be an affine scheme. A standard ph covering is a family
{fj : Uj → T}j=1,...,m constructed from a proper surjective morphism f : U → T
and an affine open covering U =

⋃
j=1,...,m Uj by setting fj = f |Uj .

It follows immediately from Chow’s lemma that we can refine a standard ph covering
by a standard ph covering corresponding to a surjective projective morphism.

Lemma 34.8.2.0DBE Let {fj : Uj → T}j=1,...,m be a standard ph covering. Let T ′ → T
be a morphism of affine schemes. Then {Uj ×T T ′ → T ′}j=1,...,m is a standard ph
covering.

Proof. Let f : U → T be proper surjective and let an affine open covering U =⋃
j=1,...,m Uj be given as in Definition 34.8.1. Then U×TT ′ → T ′ is proper surjective

(Morphisms, Lemmas 29.9.4 and 29.41.5). Also, U ×T T ′ =
⋃
j=1,...,m Uj ×T T ′ is

an affine open covering. This concludes the proof. □

Lemma 34.8.3.0DBF Let T be an affine scheme. Each of the following types of families
of maps with target T has a refinement by a standard ph covering:

(1) any Zariski open covering of T ,
(2) {Wji → T}j=1,...,m,i=1,...nj where {Wji → Uj}i=1,...,nj and {Uj → T}j=1,...,m

are standard ph coverings.

Proof. Part (1) follows from the fact that any Zariski open covering of T can be
refined by a finite affine open covering.
Proof of (3). Choose U → T proper surjective and U =

⋃
j=1,...,m Uj as in Definition

34.8.1. Choose Wj → Uj proper surjective and Wj =
⋃
Wji as in Definition 34.8.1.

https://stacks.math.columbia.edu/tag/021X
https://stacks.math.columbia.edu/tag/0DBD
https://stacks.math.columbia.edu/tag/0DBE
https://stacks.math.columbia.edu/tag/0DBF
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By Chow’s lemma (Limits, Lemma 32.12.1) we can find W ′
j →Wj proper surjective

and closed immersionsW ′
j → Pej

Uj
. Thus, after replacingWj byW ′

j andWj =
⋃
Wji

by a suitable affine open covering of W ′
j , we may assume there is a closed immersion

Wj ⊂ Pej
Uj

for all j = 1, . . . ,m.

Let W j ⊂ Pej
U be the scheme theoretic closure of Wj . Then Wj ⊂ W j is an open

subscheme; in fact Wj is the inverse image of Uj ⊂ U under the morphism W j → U .
(To see this use that Wj → Pej

U is quasi-compact and hence formation of the scheme
theoretic image commutes with restriction to opens, see Morphisms, Section 29.6.)
Let Zj = U \ Uj with reduced induced closed subscheme structure. Then

Vj = W j ⨿ Zj → U

is proper surjective and the open subscheme Wj ⊂ Vj is the inverse image of Uj .
Hence for v ∈ Vj , v ̸∈ Wj we can pick an affine open neighbourhood v ∈ Vj,v ⊂ Vj
which maps into Uj′ for some 1 ≤ j′ ≤ m.
To finish the proof we consider the proper surjective morphism

V = V1 ×U V2 ×U . . .×U Vm −→ U −→ T

and the covering of V by the affine opens
V1,v1 ×U . . .×U Vj−1,vj−1 ×U Wji ×U Vj+1,vj+1 ×U . . .×U Vm,vm

These do indeed form a covering, because each point of U is in some Uj and the
inverse image of Uj in V is equal to V1× . . .×Vj−1×Wj×Vj+1× . . .×Vm. Observe
that the morphism from the affine open displayed above to T factors through Wji

thus we obtain a refinement. Finally, we only need a finite number of these affine
opens as V is quasi-compact (as a scheme proper over the affine scheme T ). □

Definition 34.8.4.0DBG Let T be a scheme. A ph covering of T is a family of morphisms
{fi : Ti → T}i∈I of schemes such that fi is locally of finite type and such that
for every affine open U ⊂ T there exists a standard ph covering {Uj → U}j=1,...,m
refining the family {Ti ×T U → U}i∈I .

A standard ph covering is a ph covering by Lemma 34.8.2.

Lemma 34.8.5.0DBH A Zariski covering is a ph covering4.

Proof. This is true because a Zariski covering of an affine scheme can be refined by
a standard ph covering by Lemma 34.8.3. □

Lemma 34.8.6.0DES Let f : Y → X be a surjective proper morphism of schemes. Then
{Y → X} is a ph covering.

Proof. Omitted. □

Lemma 34.8.7.0ET9 Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms
such that fi is locally of finite type for all i. The following are equivalent

(1) {Ti → T}i∈I is a ph covering,
(2) there is a ph covering which refines {Ti → T}i∈I , and
(3) {

∐
i∈I Ti → T} is a ph covering.

4We will see in More on Morphisms, Lemma 37.48.7 that fppf coverings (and hence syntomic,
smooth, or étale coverings) are ph coverings as well.

https://stacks.math.columbia.edu/tag/0DBG
https://stacks.math.columbia.edu/tag/0DBH
https://stacks.math.columbia.edu/tag/0DES
https://stacks.math.columbia.edu/tag/0ET9
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Proof. The equivalence of (1) and (2) follows immediately from Definition 34.8.4
and the fact that a refinement of a refinement is a refinement. Because of the
equivalence of (1) and (2) and since {Ti → T}i∈I refines {

∐
i∈I Ti → T} we see

that (1) implies (3). Finally, assume (3) holds. Let U ⊂ T be an affine open and let
{Uj → U}j=1,...,m be a standard ph covering which refines {U ×T

∐
i∈I Ti → U}.

This means that for each j we have a morphism

hj : Uj −→ U ×T
∐

i∈I
Ti =

∐
i∈I

U ×T Ti

over U . Since Uj is quasi-compact, we get disjoint union decompositions Uj =∐
i∈I Uj,i by open and closed subschemes almost all of which are empty such that

hj |Uj,i maps Uj,i into U ×T Ti. It follows that

{Uj,i → U}j=1,...,m, i∈I, Uj,i ̸=∅

is a standard ph covering (small detail omitted) refining {U ×T Ti → U}i∈I . Thus
(1) holds. □

Next, we show that this notion satisfies the conditions of Sites, Definition 7.6.2.

Lemma 34.8.8.0DBI Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is a ph covering of T .
(2) If {Ti → T}i∈I is a ph covering and for each i we have a ph covering
{Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a ph covering.

(3) If {Ti → T}i∈I is a ph covering and T ′ → T is a morphism of schemes
then {T ′ ×T Ti → T ′}i∈I is a ph covering.

Proof. Assertion (1) is clear.

Proof of (3). The base change Ti×T T ′ → T ′ is locally of finite type by Morphisms,
Lemma 29.15.4. hence we only need to check the condition on affine opens. Let
U ′ ⊂ T ′ be an affine open subscheme. Since U ′ is quasi-compact we can find a
finite affine open covering U ′ = U ′

1 ∪ . . . ∪ U ′ such that U ′
j → T maps into an

affine open Uj ⊂ T . Choose a standard ph covering {Ujl → Uj}l=1,...,nj refining
{Ti ×T Uj → Uj}. By Lemma 34.8.2 the base change {Ujl ×Uj U ′

j → U ′
j} is a

standard ph covering. Note that {U ′
j → U ′} is a standard ph covering as well.

By Lemma 34.8.3 the family {Ujl ×Uj U ′
j → U ′} can be refined by a standard ph

covering. Since {Ujl ×Uj U ′
j → U ′} refines {Ti ×T U ′ → U ′} we conclude.

Proof of (2). Composition preserves being locally of finite type, see Morphisms,
Lemma 29.15.3. Hence we only need to check the condition on affine opens. Let
U ⊂ T be affine open. First we pick a standard ph covering {Uk → U}k=1,...,m
refining {Ti ×T U → U}. Say the refinement is given by morphisms Uk → Tik over
T . Then

{Tikj ×Tik Uk → Uk}j∈Jik
is a ph covering by part (3). As Uk is affine, we can find a standard ph covering
{Uka → Uk}a=1,...,bk refining this family. Then we apply Lemma 34.8.3 to see that
{Uka → U} can be refined by a standard ph covering. Since {Uka → U} refines
{Tij ×T U → U} this finishes the proof. □

Definition 34.8.9.0DBJ A big ph site is any site Schph as in Sites, Definition 7.6.2
constructed as follows:

https://stacks.math.columbia.edu/tag/0DBI
https://stacks.math.columbia.edu/tag/0DBJ
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(1) Choose any set of schemes S0, and any set of ph coverings Cov0 among
these schemes.

(2) As underlying category take any category Schα constructed as in Sets,
Lemma 3.9.2 starting with the set S0.

(3) Choose any set of coverings as in Sets, Lemma 3.11.1 starting with the
category Schα and the class of ph coverings, and the set Cov0 chosen
above.

See the remarks following Definition 34.3.5 for motivation and explanation regard-
ing the definition of big sites.
Before we continue with the introduction of the big ph site of a scheme S, let us
point out that the topology on a big ph site Schph is in some sense induced from
the ph topology on the category of all schemes.

Lemma 34.8.10.0DBK Let Schph be a big ph site as in Definition 34.8.9. Let T ∈
Ob(Schph). Let {Ti → T}i∈I be an arbitrary ph covering of T .

(1) There exists a covering {Uj → T}j∈J of T in the site Schph which refines
{Ti → T}i∈I .

(2) If {Ti → T}i∈I is a standard ph covering, then it is tautologically equiva-
lent to a covering of Schph.

(3) If {Ti → T}i∈I is a Zariski covering, then it is tautologically equivalent to
a covering of Schph.

Proof. For each i choose an affine open covering Ti =
⋃
j∈Ji Tij such that each

Tij maps into an affine open subscheme of T . By Lemmas 34.8.5 and 34.8.8 the
refinement {Tij → T}i∈I,j∈Ji is a ph covering of T as well. Hence we may assume
each Ti is affine, and maps into an affine open Wi of T . Applying Sets, Lemma
3.9.9 we see that Wi is isomorphic to an object of Schph. But then Ti as a finite
type scheme over Wi is isomorphic to an object Vi of Schph by a second application
of Sets, Lemma 3.9.9. The covering {Vi → T}i∈I refines {Ti → T}i∈I (because
they are isomorphic). Moreover, {Vi → T}i∈I is combinatorially equivalent to a
covering {Uj → T}j∈J of T in the site Schph by Sets, Lemma 3.9.9. The covering
{Uj → T}j∈J is a refinement as in (1). In the situation of (2), (3) each of the
schemes Ti is isomorphic to an object of Schph by Sets, Lemma 3.9.9, and another
application of Sets, Lemma 3.11.1 gives what we want. □

Definition 34.8.11.0DBL Let S be a scheme. Let Schph be a big ph site containing S.
(1) The big ph site of S, denoted (Sch/S)ph, is the site Schph/S introduced

in Sites, Section 7.25.
(2) The big affine ph site of S, denoted (Aff/S)ph, is the full subcategory of

(Sch/S)ph whose objects are affine U/S. A covering of (Aff/S)ph is any
finite covering {Ui → U} of (Sch/S)ph with Ui and U affine.

Observe that the coverings in (Aff/S)ph are not given by standard ph coverings.
The reason is simply that this would fail the second axiom of Sites, Definition 7.6.2.
Rather, the coverings in (Aff/S)ph are those finite families {Ui → U} of finite type
morphisms between affine objects of (Sch/S)ph which can be refined by a standard
ph covering. We explicitly state and prove that the big affine ph site is a site.

Lemma 34.8.12.0DBM Let S be a scheme. Let Schph be a big ph site containing S. Then
(Aff/S)ph is a site.

https://stacks.math.columbia.edu/tag/0DBK
https://stacks.math.columbia.edu/tag/0DBL
https://stacks.math.columbia.edu/tag/0DBM


34.8. THE PH TOPOLOGY 2910

Proof. Reasoning as in the proof of Lemma 34.4.9 it suffices to show that the
collection of finite ph coverings {Ui → U} with U , Ui affine satisfies properties
(1), (2) and (3) of Sites, Definition 7.6.2. This is clear since for example, given a
finite ph covering {Ti → T}i∈I with Ti, T affine, and for each i a finite ph covering
{Tij → Ti}j∈Ji with Tij affine , then {Tij → T}i∈I,j∈Ji is a ph covering (Lemma
34.8.8),

⋃
i∈I Ji is finite and each Tij is affine. □

Lemma 34.8.13.0DBN Let S be a scheme. Let Schph be a big ph site containing S.
The underlying categories of the sites Schph, (Sch/S)ph, and (Aff/S)ph have fibre
products. In each case the obvious functor into the category Sch of all schemes
commutes with taking fibre products. The category (Sch/S)ph has a final object,
namely S/S.

Proof. For Schph it is true by construction, see Sets, Lemma 3.9.9. Suppose we
have U → S, V → U , W → U morphisms of schemes with U, V,W ∈ Ob(Schph).
The fibre product V ×UW in Schph is a fibre product in Sch and is the fibre product
of V/S with W/S over U/S in the category of all schemes over S, and hence also
a fibre product in (Sch/S)ph. This proves the result for (Sch/S)ph. If U, V,W are
affine, so is V ×U W and hence the result for (Aff/S)ph. □

Next, we check that the big affine site defines the same topos as the big site.

Lemma 34.8.14.0DBP Let S be a scheme. Let Schph be a big ph site containing S. The
functor (Aff/S)ph → (Sch/S)ph is cocontinuous and induces an equivalence of topoi
from Sh((Aff/S)ph) to Sh((Sch/S)ph).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Definition
7.29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 7.29.1.
Denote the inclusion functor u : (Aff/S)ph → (Sch/S)ph. Being cocontinuous
follows because any ph covering of T/S, T affine, can be refined by a standard ph
covering of T by definition. Hence (1) holds. We see u is continuous simply because
a finite ph covering of an affine by affines is a ph covering. Hence (2) holds. Parts
(3) and (4) follow immediately from the fact that u is fully faithful. And finally
condition (5) follows from the fact that every scheme has an affine open covering
(which is a ph covering). □

Lemma 34.8.15.0DBQ Let F be a presheaf on (Sch/S)ph. Then F is a sheaf if and only
if

(1) F satisfies the sheaf condition for Zariski coverings, and
(2) if f : V → U is proper surjective, then F(U) maps bijectively to the

equalizer of the two maps F(V )→ F(V ×U V ).
Moreover, in the presence of (1) property (2) is equivalent to property

(2’) the sheaf property for {V → U} as in (2) with U affine.

Proof. We will show that if (1) and (2) hold, then F is sheaf. Let {Ti → T} be
a ph covering, i.e., a covering in (Sch/S)ph. We will verify the sheaf condition for
this covering. Let si ∈ F(Ti) be sections which restrict to the same section over
Ti ×T Ti′ . We will show that there exists a unique section s ∈ F(T ) restricting to
si over Ti. Let T =

⋃
Uj be an affine open covering. By property (1) it suffices

to produce sections sj ∈ F(Uj) which agree on Uj ∩ Uj′ in order to produce s.
Consider the ph coverings {Ti ×T Uj → Uj}. Then sji = si|Ti×TUj are sections

https://stacks.math.columbia.edu/tag/0DBN
https://stacks.math.columbia.edu/tag/0DBP
https://stacks.math.columbia.edu/tag/0DBQ
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agreeing over (Ti ×T Uj) ×Uj (Ti′ ×T Uj). Choose a proper surjective morphism
Vj → Uj and a finite affine open covering Vj =

⋃
Vjk such that the standard

ph covering {Vjk → Uj} refines {Ti ×T Uj → Uj}. If sjk ∈ F(Vjk) denotes the
pullback of sji to Vjk by the implied morphisms, then we find that sjk glue to a
section s′

j ∈ F(Vj). Using the agreement on overlaps once more, we find that s′
j is

in the equalizer of the two maps F(Vj)→ F(Vj ×Uj Vj). Hence by (2) we find that
s′
j comes from a unique section sj ∈ F(Uj). We omit the verification that these

sections sj have all the desired properties.

Proof of the equivalence of (2) and (2’) in the presence of (1). Suppose V → U is
a morphism of (Sch/S)ph which is proper and surjective. Choose an affine open
covering U =

⋃
Ui and set Vi = V ×U Ui. Then we see that F(U) → F(V )

is injective because we know F(Ui) → F(Vi) is injective by (2’) and we know
F(U) →

∏
F(Ui) is injective by (1). Finally, suppose that we are given an t ∈

F(V ) in the equalizer of the two maps F(V ) → F(V ×U V ). Then t|Vi is in the
equalizer of the two maps F(Vi)→ F(Vi×Ui Vi) for all i. Hence we obtain a unique
section si ∈ F(Ui) mapping to t|Vi for all i by (2’). We omit the verification that
si|Ui∩Uj = sj |Ui∩Uj for all i, j; this uses the uniqueness property just shown. By
the sheaf property for the covering U =

⋃
Ui we obtain a section s ∈ F(U). We

omit the proof that s maps to t in F(V ). □

Next, we establish some relationships between the topoi associated to these sites.

Lemma 34.8.16.0DBR Let Schph be a big ph site. Let f : T → S be a morphism in
Schph. The functor

u : (Sch/T )ph −→ (Sch/S)ph, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint

v : (Sch/S)ph −→ (Sch/T )ph, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi

fbig : Sh((Sch/T )ph) −→ Sh((Sch/S)ph)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers. Hence Sites, Lemmas 7.21.5 and 7.21.6 apply and we deduce
the formula for f−1

big and the existence of fbig!. Moreover, the functor v is a right
adjoint because given U/T and V/S we have MorS(u(U), V ) = MorT (U, V ×S T )
as desired. Thus we may apply Sites, Lemmas 7.22.1 and 7.22.2 to get the formula
for fbig,∗. □

Lemma 34.8.17.0DBS Given schemes X, Y , Y in (Sch/S)ph and morphisms f : X → Y ,
g : Y → Z we have gbig ◦ fbig = (g ◦ f)big.

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 34.8.16. □

https://stacks.math.columbia.edu/tag/0DBR
https://stacks.math.columbia.edu/tag/0DBS
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34.9. The fpqc topology

022A
Definition 34.9.1.022B Let T be a scheme. An fpqc covering of T is a family of mor-
phisms {fi : Ti → T}i∈I of schemes such that each fi is flat and such that for every
affine open U ⊂ T there exists n ≥ 0, a map a : {1, . . . , n} → I and affine opens
Vj ⊂ Ta(j), j = 1, . . . , n with

⋃n
j=1 fa(j)(Vj) = U .

To be sure this condition implies that T =
⋃
fi(Ti). It is slightly harder to recognize

an fpqc covering, hence we provide some lemmas to do so.
Lemma 34.9.2.03L7 Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms
of schemes with target T . The following are equivalent

(1) {fi : Ti → T}i∈I is an fpqc covering,
(2) each fi is flat and for every affine open U ⊂ T there exist quasi-compact

opens Ui ⊂ Ti which are almost all empty, such that U =
⋃
fi(Ui),

(3) each fi is flat and there exists an affine open covering T =
⋃
α∈A Uα and

for each α ∈ A there exist iα,1, . . . , iα,n(α) ∈ I and quasi-compact opens
Uα,j ⊂ Tiα,j such that Uα =

⋃
j=1,...,n(α) fiα,j (Uα,j).

If T is quasi-separated, these are also equivalent to
(4) each fi is flat, and for every t ∈ T there exist i1, . . . , in ∈ I and quasi-

compact opens Uj ⊂ Tij such that
⋃
j=1,...,n fij (Uj) is a (not necessarily

open) neighbourhood of t in T .
Proof. We omit the proof of the equivalence of (1), (2), and (3). From now on
assume T is quasi-separated. We prove (4) implies (2). Let U ⊂ T be an affine
open. To prove (2) it suffices to show that for every t ∈ U there exist finitely many
quasi-compact opens Uj ⊂ Tij such that fij (Uj) ⊂ U and such that

⋃
fij (Uj) is a

neighbourhood of t in U . By assumption there do exist finitely many quasi-compact
opens U ′

j ⊂ Tij such that such that
⋃
fij (U ′

j) is a neighbourhood of t in T . Since T
is quasi-separated we see that Uj = U ′

j ∩ f
−1
j (U) is quasi-compact open as desired.

Since it is clear that (2) implies (4) the proof is finished. □

Lemma 34.9.3.040I Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms
of schemes with target T . The following are equivalent

(1) {fi : Ti → T}i∈I is an fpqc covering, and
(2) setting T ′ =

∐
i∈I Ti, and f =

∐
i∈I fi the family {f : T ′ → T} is an fpqc

covering.
Proof. Suppose that U ⊂ T is an affine open. If (1) holds, then we find i1, . . . , in ∈ I
and affine opens Uj ⊂ Tij such that U =

⋃
j=1,...,n fij (Uj). Then U1⨿ . . .⨿Un ⊂ T ′

is a quasi-compact open surjecting onto U . Thus {f : T ′ → T} is an fpqc covering
by Lemma 34.9.2. Conversely, if (2) holds then there exists a quasi-compact open
U ′ ⊂ T ′ with U = f(U ′). Then Uj = U ′ ∩ Tj is quasi-compact open in Tj and
empty for almost all j. By Lemma 34.9.2 we see that (1) holds. □

Lemma 34.9.4.03L8 Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms
of schemes with target T . Assume that

(1) each fi is flat, and
(2) the family {fi : Ti → T}i∈I can be refined by an fpqc covering of T .

Then {fi : Ti → T}i∈I is an fpqc covering of T .

https://stacks.math.columbia.edu/tag/022B
https://stacks.math.columbia.edu/tag/03L7
https://stacks.math.columbia.edu/tag/040I
https://stacks.math.columbia.edu/tag/03L8
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Proof. Let {gj : Xj → T}j∈J be an fpqc covering refining {fi : Ti → T}. Suppose
that U ⊂ T is affine open. Choose j1, . . . , jm ∈ J and Vk ⊂ Xjk affine open such
that U =

⋃
gjk(Vk). For each j pick ij ∈ I and a morphism hj : Xj → Tij such

that gj = fij ◦hj . Since hjk(Vk) is quasi-compact we can find a quasi-compact open
hjk(Vk) ⊂ Uk ⊂ f−1

ijk
(U). Then U =

⋃
fijk (Uk). We conclude that {fi : Ti → T}i∈I

is an fpqc covering by Lemma 34.9.2. □

Lemma 34.9.5.03L9 Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms
of schemes with target T . Assume that

(1) each fi is flat, and
(2) there exists an fpqc covering {gj : Sj → T}j∈J such that each {Sj×T Ti →

Sj}i∈I is an fpqc covering.
Then {fi : Ti → T}i∈I is an fpqc covering of T .

Proof. We will use Lemma 34.9.2 without further mention. Let U ⊂ T be an
affine open. By (2) we can find quasi-compact opens Vj ⊂ Sj for j ∈ J , almost
all empty, such that U =

⋃
gj(Vj). Then for each j we can choose quasi-compact

opens Wij ⊂ Sj ×T Ti for i ∈ I, almost all empty, with Vj =
⋃
i pr1(Wij). Thus

{Sj ×T Ti → T} is an fpqc covering. Since this covering refines {fi : Ti → T} we
conclude by Lemma 34.9.4. □

Lemma 34.9.6.022C Any fppf covering is an fpqc covering, and a fortiori, any syntomic,
smooth, étale or Zariski covering is an fpqc covering.

Proof. We will show that an fppf covering is an fpqc covering, and then the rest
follows from Lemma 34.7.2. Let {fi : Ui → U}i∈I be an fppf covering. By definition
this means that the fi are flat which checks the first condition of Definition 34.9.1.
To check the second, let V ⊂ U be an affine open subset. Write f−1

i (V ) =
⋃
j∈Ji Vij

for some affine opens Vij ⊂ Ui. Since each fi is open (Morphisms, Lemma 29.25.10),
we see that V =

⋃
i∈I
⋃
j∈Ji fi(Vij) is an open covering of V . Since V is quasi-

compact, this covering has a finite refinement. This finishes the proof. □

The fpqc5 topology cannot be treated in the same way as the fppf topology6.
Namely, suppose that R is a nonzero ring. We will see in Lemma 34.9.14 that
there does not exist a set A of fpqc-coverings of Spec(R) such that every fpqc-
covering can be refined by an element of A. If R = k is a field, then the reason
for this unboundedness is that there does not exist a field extension of k such that
every field extension of k is contained in it.
If you ignore set theoretic difficulties, then you run into presheaves which do not
have a sheafification, see [Wat75, Theorem 5.5]. A mildly interesting option is to
consider only those faithfully flat ring extensions R → R′ where the cardinality of
R′ is suitably bounded. (And if you consider all schemes in a fixed universe as in
SGA4 then you are bounding the cardinality by a strongly inaccessible cardinal.)
However, it is not so clear what happens if you change the cardinal to a bigger one.
For these reasons we do not introduce fpqc sites and we will not consider cohomology
with respect to the fpqc-topology.

5The letters fpqc stand for “fidèlement plat quasi-compacte”.
6A more precise statement would be that the analogue of Lemma 34.7.7 for the fpqc topology

does not hold.

https://stacks.math.columbia.edu/tag/03L9
https://stacks.math.columbia.edu/tag/022C
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On the other hand, given a contravariant functor F : Schopp → Sets it does make
sense to ask whether F satisfies the sheaf property for the fpqc topology, see below.
Moreover, we can wonder about descent of object in the fpqc topology, etc. Simply
put, for certain results the correct generality is to work with fpqc coverings.

Lemma 34.9.7.022D Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is an fpqc covering of T .
(2) If {Ti → T}i∈I is an fpqc covering and for each i we have an fpqc covering
{Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is an fpqc covering.

(3) If {Ti → T}i∈I is an fpqc covering and T ′ → T is a morphism of schemes
then {T ′ ×T Ti → T ′}i∈I is an fpqc covering.

Proof. Part (1) is immediate. Recall that the composition of flat morphisms is flat
and that the base change of a flat morphism is flat (Morphisms, Lemmas 29.25.8
and 29.25.6). Thus we can apply Lemma 34.9.2 in each case to check that our
families of morphisms are fpqc coverings.

Proof of (2). Assume {Ti → T}i∈I is an fpqc covering and for each i we have an
fpqc covering {fij : Tij → Ti}j∈Ji . Let U ⊂ T be an affine open. We can find
quasi-compact opens Ui ⊂ Ti for i ∈ I, almost all empty, such that U =

⋃
fi(Ui).

Then for each i we can choose quasi-compact opens Wij ⊂ Tij for j ∈ Ji, almost
all empty, with Ui =

⋃
j fij(Uij). Thus {Tij → T} is an fpqc covering.

Proof of (3). Assume {Ti → T}i∈I is an fpqc covering and T ′ → T is a morphism
of schemes. Let U ′ ⊂ T ′ be an affine open which maps into the affine open U ⊂ T .
Choose quasi-compact opens Ui ⊂ Ti, almost all empty, such that U =

⋃
fi(Ui).

Then U ′×U Ui is a quasi-compact open of T ′×T Ti and U ′ =
⋃

pr1(U ′×U Ui). Since
T ′ can be covered by such affine opens U ′ ⊂ T ′ we see that {T ′ ×T Ti → T ′}i∈I is
an fpqc covering by Lemma 34.9.2. □

Lemma 34.9.8.022E Let T be an affine scheme. Let {Ti → T}i∈I be an fpqc covering
of T . Then there exists an fpqc covering {Uj → T}j=1,...,n which is a refinement of
{Ti → T}i∈I such that each Uj is an affine scheme. Moreover, we may choose each
Uj to be open affine in one of the Ti.

Proof. This follows directly from the definition. □

Definition 34.9.9.022F Let T be an affine scheme. A standard fpqc covering of T is a
family {fj : Uj → T}j=1,...,n with each Uj is affine, flat over T and T =

⋃
fj(Uj).

Since we do not introduce the affine site we have to show directly that the collection
of all standard fpqc coverings satisfies the axioms.

Lemma 34.9.10.03LA Let T be an affine scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is a standard fpqc covering

of T .
(2) If {Ti → T}i∈I is a standard fpqc covering and for each i we have a stan-

dard fpqc covering {Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a standard
fpqc covering.

(3) If {Ti → T}i∈I is a standard fpqc covering and T ′ → T is a morphism of
affine schemes then {T ′ ×T Ti → T ′}i∈I is a standard fpqc covering.

https://stacks.math.columbia.edu/tag/022D
https://stacks.math.columbia.edu/tag/022E
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https://stacks.math.columbia.edu/tag/03LA


34.9. THE FPQC TOPOLOGY 2915

Proof. This follows formally from the fact that compositions and base changes of
flat morphisms are flat (Morphisms, Lemmas 29.25.8 and 29.25.6) and that fibre
products of affine schemes are affine (Schemes, Lemma 26.17.2). □

Lemma 34.9.11.03LB Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms
of schemes with target T . Assume that

(1) each fi is flat, and
(2) every affine scheme Z and morphism h : Z → T there exists a standard

fpqc covering {Zj → Z}j=1,...,n which refines the family {Ti×TZ → Z}i∈I .
Then {fi : Ti → T}i∈I is an fpqc covering of T .

Proof. Let T =
⋃
Uα be an affine open covering. For each α the pullback family

{Ti ×T Uα → Uα} can be refined by a standard fpqc covering, hence is an fpqc
covering by Lemma 34.9.4. As {Uα → T} is an fpqc covering we conclude that
{Ti → T} is an fpqc covering by Lemma 34.9.5. □

Definition 34.9.12.022G Let F be a contravariant functor on the category of schemes
with values in sets.

(1) Let {Ui → T}i∈I be a family of morphisms of schemes with fixed target.
We say that F satisfies the sheaf property for the given family if for any
collection of elements ξi ∈ F (Ui) such that ξi|Ui×TUj = ξj |Ui×TUj there
exists a unique element ξ ∈ F (T ) such that ξi = ξ|Ui in F (Ui).

(2) We say that F satisfies the sheaf property for the fpqc topology if it
satisfies the sheaf property for any fpqc covering.

We try to avoid using the terminology “F is a sheaf” in this situation since we are
not defining a category of fpqc sheaves as we explained above.

Lemma 34.9.13.022H Let F be a contravariant functor on the category of schemes with
values in sets. Then F satisfies the sheaf property for the fpqc topology if and only
if it satisfies

(1) the sheaf property for every Zariski covering, and
(2) the sheaf property for any standard fpqc covering.

Moreover, in the presence of (1) property (2) is equivalent to property
(2’) the sheaf property for {V → U} with V , U affine and V → U faithfully

flat.

Proof. Assume (1) and (2) hold. Let {fi : Ti → T}i∈I be an fpqc covering. Let
si ∈ F (Ti) be a family of elements such that si and sj map to the same element
of F (Ti ×T Tj). Let W ⊂ T be the maximal open subset such that there exists a
unique s ∈ F (W ) with s|f−1

i
(W ) = si|f−1

i
(W ) for all i. Such a maximal open exists

because F satisfies the sheaf property for Zariski coverings; in fact W is the union
of all opens with this property. Let t ∈ T . We will show t ∈ W . To do this we
pick an affine open t ∈ U ⊂ T and we will show there is a unique s ∈ F (U) with
s|f−1

i
(U) = si|f−1

i
(U) for all i.

By Lemma 34.9.8 we can find a standard fpqc covering {Uj → U}j=1,...,n refining
{U×T Ti → U}, say by morphisms hj : Uj → Tij . By (2) we obtain a unique element
s ∈ F (U) such that s|Uj = F (hj)(sij ). Note that for any scheme V → U over U
there is a unique section sV ∈ F (V ) which restricts to F (hj◦pr2)(sij ) on V ×UUj for
j = 1, . . . , n. Namely, this is true if V is affine by (2) as {V ×UUj → V } is a standard

https://stacks.math.columbia.edu/tag/03LB
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fpqc covering and in general this follows from (1) and the affine case by choosing
an affine open covering of V . In particular, sV = s|V . Now, taking V = U ×T Ti
and using that sij |Tij×TTi = si|Tij×TTi we conclude that s|U×TTi = sV = si|U×TTi
which is what we had to show.
Proof of the equivalence of (2) and (2’) in the presence of (1). Suppose {Ti →
T} is a standard fpqc covering, then

∐
Ti → T is a faithfully flat morphism of

affine schemes. In the presence of (1) we have F (
∐
Ti) =

∏
F (Ti) and similarly

F ((
∐
Ti)×T (

∐
Ti)) =

∏
F (Ti×T Ti′). Thus the sheaf condition for {Ti → T} and

{
∐
Ti → T} is the same. □

The following lemma is here just to point out set theoretical difficulties do indeed
arise and should be ignored by most readers.

Lemma 34.9.14.0BBK Let R be a nonzero ring. There does not exist a set A of fpqc-
coverings of Spec(R) such that every fpqc-covering can be refined by an element of
A.

Proof. Let us first explain this when R = k is a field. For any set I consider the
purely transcendental field extension kI = k({ti}i∈I)/k. Since k → kI is faith-
fully flat we see that {Spec(kI) → Spec(k)} is an fpqc covering. Let A be a set
and for each α ∈ A let Uα = {Sα,j → Spec(k)}j∈Jα be an fpqc covering. If Uα
refines {Spec(kI) → Spec(k)} then the morphisms Sα,j → Spec(k) factor through
Spec(kI). Since Uα is a covering, at least some Sα,j is nonempty. Pick a point
s ∈ Sα,j . Since we have the factorization Sα,j → Spec(kI) → Spec(k) we obtain
a homomorphism of fields kI → κ(s). In particular, we see that the cardinality of
κ(s) is at least the cardinality of I. Thus if we take I to be a set of cardinality
bigger than the cardinalities of the residue fields of all the schemes Sα,j , then such
a factorization does not exist and the lemma holds for R = k.
General case. Since R is nonzero it has a maximal prime ideal m with residue
field κ. Let I be a set and consider RI = S−1

I R[{ti}i∈I ] where SI ⊂ R[{ti}i∈I ] is
the multiplicative subset of f ∈ R[{ti}i∈I ] such that f maps to a nonzero element
of R/p[{ti}i∈I ] for all primes p of R. Then RI is a faithfully flat R-algebra and
{Spec(RI)→ Spec(R)} is an fpqc covering. We leave it as an exercise to the reader
to show that RI ⊗R κ ∼= κ({ti}i∈I) = κI with notation as above (hint: use that
R → κ is surjective and that any f ∈ R[{ti}i∈I ] one of whose monomials occurs
with coefficient 1 is an element of SI). Let A be a set and for each α ∈ A let Uα =
{Sα,j → Spec(R)}j∈Jα be an fpqc covering. If Uα refines {Spec(RI) → Spec(R)},
then by base change we conclude that {Sα,j ×Spec(R) Spec(κ) → Spec(κ)} refines
{Spec(κI)→ Spec(κ)}. Hence by the result of the previous paragraph, there exists
an I such that this is not the case and the lemma is proved. □

34.10. The V topology

0ETA The V topology is stronger than all other topologies in this chapter. Roughly
speaking it is generated by Zariski coverings and by quasi-compact morphisms
satisfying a lifting property for specializations (Lemma 34.10.13). However, the
procedure we will use to define V coverings is a bit different. We will first define
standard V coverings of affines and then use these to define V coverings in general.
Typographical point: in the literature sometimes “v-covering” is used instead of “V
covering”.

https://stacks.math.columbia.edu/tag/0BBK
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Definition 34.10.1.0ETB Let T be an affine scheme. A standard V covering is a finite
family {Tj → T}j=1,...,m with Tj affine such that for every morphism g : Spec(V )→
T where V is a valuation ring, there is an extension V ⊂W of valuation rings (More
on Algebra, Definition 15.123.1), an index 1 ≤ j ≤ m, and a commutative diagram

Spec(W ) //

��

Tj

��
Spec(V ) g // T

We first prove a few basic lemmas about this notion.

Lemma 34.10.2.0ETC A standard fpqc covering is a standard V covering.

Proof. Let {Xi → X}i=1,...,n be a standard fpqc covering (Definition 34.9.9). Let
g : Spec(V ) → X be a morphism where V is a valuation ring. Let x ∈ X be the
image of the closed point of Spec(V ). Choose an i and a point xi ∈ Xi mapping to x.
Then Spec(V )×X Xi has a point x′

i mapping to the closed point of Spec(V ). Since
Spec(V )×X Xi → Spec(V ) is flat we can find a specialization x′′

i ⇝ x′
i of points of

Spec(V )×X Xi with x′′
i mapping to the generic point of Spec(V ), see Morphisms,

Lemma 29.25.9. By Schemes, Lemma 26.20.4 we can choose a valuation ring W
and a morphism h : Spec(W )→ Spec(V )×XXi such that h maps the generic point
of Spec(W ) to x′′

i and the closed point of Spec(W ) to x′
i. We obtain a commutative

diagram
Spec(W ) //

��

Xi

��
Spec(V ) // X

where V →W is an extension of valuation rings. This proves the lemma. □

Lemma 34.10.3.0ETD A standard ph covering is a standard V covering.

Proof. Let T be an affine scheme. Let f : U → T be a proper surjective morphism.
Let U =

⋃
j=1,...,m Uj be a finite affine open covering. We have to show that

{Uj → T} is a standard V covering, see Definition 34.8.1. Let g : Spec(V ) → T
be a morphism where V is a valuation ring with fraction field K. Since U → T is
surjective, we may choose a field extension L/K and a commutative diagram

Spec(L) //

��

U

��
Spec(K) // Spec(V ) g // T

By Algebra, Lemma 10.50.2 we can choose a valuation ring W ⊂ L dominating V .
By the valuative criterion of properness (Morphisms, Lemma 29.42.1) we can then
find the morphism h in the commutative diagram

Spec(L) //

��

Spec(W )
h

//

��

U

��
Spec(K) // Spec(V ) g // X

https://stacks.math.columbia.edu/tag/0ETB
https://stacks.math.columbia.edu/tag/0ETC
https://stacks.math.columbia.edu/tag/0ETD
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Since Spec(W ) has a unique closed point, we see that Im(h) is contained in Uj for
some j. Thus h : Spec(W )→ Uj is the desired lift and we conclude {Uj → T} is a
standard V covering. □

Lemma 34.10.4.0ETE Let {Tj → T}j=1,...,m be a standard V covering. Let T ′ → T
be a morphism of affine schemes. Then {Tj ×T T ′ → T ′}j=1,...,m is a standard V
covering.

Proof. Let Spec(V )→ T ′ be a morphism where V is a valuation ring. By assump-
tion we can find an extension of valuation rings V ⊂ W , an i, and a commutative
diagram

Spec(W ) //

��

Ti

��
Spec(V ) // T

By the universal property of fibre products we obtain a morphism Spec(W ) →
T ′ ×T Ti as desired. □

Lemma 34.10.5.0ETF Let T be an affine scheme. Let {Tj → T}j=1,...,m be a standard
V covering. Let {Tji → Tj}i=1,...nj be a standard V covering. Then {Tji → T}i,j
is a standard V covering.

Proof. This follows formally from the observation that if V ⊂ W and W ⊂ Ω are
extensions of valuation rings, then V ⊂ Ω is an extension of valuation rings. □

Lemma 34.10.6.0ETG Let T be an affine scheme. Let {Tj → T}j=1,...,m be a family of
morphisms with Tj affine for all j. The following are equivalent

(1) {Tj → T}j=1,...,m is a standard V covering,
(2) there is a standard V covering which refines {Tj → T}j=1,...,m, and
(3) {

∐
j=1,...,m Tj → T} is a standard V covering.

Proof. Omitted. Hints: This follows almost immediately from the definition. The
only slightly interesting point is that a morphism from the spectrum of a local ring
into

∐
j=1,...,m Tj must factor through some Tj . □

Definition 34.10.7.0ETH Let T be a scheme. A V covering of T is a family of morphisms
{Ti → T}i∈I of schemes such that for every affine open U ⊂ T there exists a
standard V covering {Uj → U}j=1,...,m refining the family {Ti ×T U → U}i∈I .

The V topology has the same set theoretical problems as the fpqc topology. Thus
we refrain from defining V sites and we will not consider cohomology with respect
to the V topology. On the other hand, given a F : Schopp → Sets it does make
sense to ask whether F satisfies the sheaf property for the V topology, see below.
Moreover, we can wonder about descent of object in the V topology, etc.

Lemma 34.10.8.0ETI Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms.
The following are equivalent

(1) {Ti → T}i∈I is a V covering,
(2) there is a V covering which refines {Ti → T}i∈I , and
(3) {

∐
i∈I Ti → T} is a V covering.

Proof. Omitted. Hint: compare with the proof of Lemma 34.8.7. □

https://stacks.math.columbia.edu/tag/0ETE
https://stacks.math.columbia.edu/tag/0ETF
https://stacks.math.columbia.edu/tag/0ETG
https://stacks.math.columbia.edu/tag/0ETH
https://stacks.math.columbia.edu/tag/0ETI
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Lemma 34.10.9.0ETJ Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is a V covering of T .
(2) If {Ti → T}i∈I is a V covering and for each i we have a V covering
{Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a V covering.

(3) If {Ti → T}i∈I is a V covering and T ′ → T is a morphism of schemes then
{T ′ ×T Ti → T ′}i∈I is a V covering.

Proof. Assertion (1) is clear.
Proof of (3). Let U ′ ⊂ T ′ be an affine open subscheme. Since U ′ is quasi-compact
we can find a finite affine open covering U ′ = U ′

1 ∪ . . .∪U ′ such that U ′
j → T maps

into an affine open Uj ⊂ T . Choose a standard V covering {Ujl → Uj}l=1,...,nj
refining {Ti ×T Uj → Uj}. By Lemma 34.10.4 the base change {Ujl ×Uj U ′

j → U ′
j}

is a standard V covering. Note that {U ′
j → U ′} is a standard V covering (for

example by Lemma 34.10.2). By Lemma 34.10.5 the family {Ujl ×Uj U ′
j → U ′}

is a standard V covering. Since {Ujl ×Uj U ′
j → U ′} refines {Ti ×T U ′ → U ′} we

conclude.
Proof of (2). Let U ⊂ T be affine open. First we pick a standard V covering {Uk →
U}k=1,...,m refining {Ti ×T U → U}. Say the refinement is given by morphisms
Uk → Tik over T . Then

{Tikj ×Tik Uk → Uk}j∈Jik
is a V covering by part (3). As Uk is affine, we can find a standard V covering
{Uka → Uk}a=1,...,bk refining this family. Then we apply Lemma 34.10.5 to see that
{Uka → U} is a standard V covering which refines {Tij ×T U → U}. This finishes
the proof. □

Lemma 34.10.10.0ETK Any fpqc covering is a V covering. A fortiori, any fppf, syntomic,
smooth, étale or Zariski covering is a V covering. Also, a ph covering is a V covering.
Proof. An fpqc covering can affine locally be refined by a standard fpqc covering,
see Lemmas 34.9.8. A standard fpqc covering is a standard V covering, see Lemma
34.10.2. Hence the first statement follows from our definition of V covers in terms
of standard V coverings. The conclusion for fppf, syntomic, smooth, étale or Zariski
coverings follows as these are fpqc coverings, see Lemma 34.9.6.
The statement on ph coverings follows from Lemma 34.10.3 in the same manner. □

Definition 34.10.11.0ETL Let F be a contravariant functor on the category of schemes
with values in sets. We say that F satisfies the sheaf property for the V topology
if it satisfies the sheaf property for any V covering (see Definition 34.9.12).
We try to avoid using the terminology “F is a sheaf” in this situation since we are
not defining a category of V sheaves as we explained above.
Lemma 34.10.12.0ETM Let F be a contravariant functor on the category of schemes
with values in sets. Then F satisfies the sheaf property for the V topology if and
only if it satisfies

(1) the sheaf property for every Zariski covering, and
(2) the sheaf property for any standard V covering.

Moreover, in the presence of (1) property (2) is equivalent to property
(2’) the sheaf property for a standard V covering of the form {V → U}, i.e.,

consisting of a single arrow.

https://stacks.math.columbia.edu/tag/0ETJ
https://stacks.math.columbia.edu/tag/0ETK
https://stacks.math.columbia.edu/tag/0ETL
https://stacks.math.columbia.edu/tag/0ETM


34.10. THE V TOPOLOGY 2920

Proof. Assume (1) and (2) hold. Let {fi : Ti → T}i∈I be a V covering. Let
si ∈ F (Ti) be a family of elements such that si and sj map to the same element
of F (Ti ×T Tj). Let W ⊂ T be the maximal open subset such that there exists a
unique s ∈ F (W ) with s|f−1

i
(W ) = si|f−1

i
(W ) for all i. Such a maximal open exists

because F satisfies the sheaf property for Zariski coverings; in fact W is the union
of all opens with this property. Let t ∈ T . We will show t ∈ W . To do this we
pick an affine open t ∈ U ⊂ T and we will show there is a unique s ∈ F (U) with
s|f−1

i
(U) = si|f−1

i
(U) for all i.

We can find a standard V covering {Uj → U}j=1,...,n refining {U ×T Ti → U}, say
by morphisms hj : Uj → Tij . By (2) we obtain a unique element s ∈ F (U) such
that s|Uj = F (hj)(sij ). Note that for any scheme V → U over U there is a unique
section sV ∈ F (V ) which restricts to F (hj ◦ pr2)(sij ) on V ×U Uj for j = 1, . . . , n.
Namely, this is true if V is affine by (2) as {V ×U Uj → V } is a standard V covering
(Lemma 34.10.4) and in general this follows from (1) and the affine case by choosing
an affine open covering of V . In particular, sV = s|V . Now, taking V = U ×T Ti
and using that sij |Tij×TTi = si|Tij×TTi we conclude that s|U×TTi = sV = si|U×TTi
which is what we had to show.
Proof of the equivalence of (2) and (2’) in the presence of (1). Suppose {Ti →
T}i=1,...,n is a standard V covering, then

∐
i=1,...,n Ti → T is a morphism of affine

schemes which is clearly also a standard V covering. In the presence of (1) we have
F (
∐
Ti) =

∏
F (Ti) and similarly F ((

∐
Ti)×T (

∐
Ti)) =

∏
F (Ti×T Ti′). Thus the

sheaf condition for {Ti → T} and {
∐
Ti → T} is the same. □

The following lemma shows that being a V covering is related to the possibility of
lifting specializations.

Lemma 34.10.13.0ETN Let X → Y be a quasi-compact morphism of schemes. The
following are equivalent

(1) {X → Y } is a V covering,
(2) for any valuation ring V and morphism g : Spec(V ) → Y there exists an

extension of valuation rings V ⊂W and a commutative diagram

Spec(W ) //

��

X

��
Spec(V ) // Y

(3) for any morphism Z → Y and specialization z′ ⇝ z of points in Z, there
is a specialization w′ ⇝ w of points in Z ×Y X mapping to z′ ⇝ z.

Proof. Assume (1) and let g : Spec(V ) → Y be as in (2). Since V is a local ring
there is an affine open U ⊂ Y such that g factors through U . By Definition 34.10.7
we can find a standard V covering {Uj → U} refining {X×Y U → U}. By Definition
34.10.1 we can find a j, an extension of valuation rings V ⊂W and a commutative
diagram

Spec(W ) //

��

Uj

��

// X

��
Spec(V ) // Y

https://stacks.math.columbia.edu/tag/0ETN
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We have the dotted arrow making the diagram commute by the refinement property
of the covering and we see that (2) holds.
Assume (2) and let Z → Y and z′ ⇝ z be as in (3). By Schemes, Lemma 26.20.4
we can find a valuation ring V and a morphism Spec(V )→ Z such that the closed
point of Spec(V ) maps to z and the generic point of Spec(V ) maps to z′. By (2)
we can find an extension of valuation rings V ⊂W and a commutative diagram

Spec(W ) //

��

X

��
Spec(V ) // Z // Y

The generic and closed points of Spec(W ) map to points w′ ⇝ w in Z ×Y X via
the induced morphism Spec(W )→ Z ×Y X. This shows that (3) holds.
Assume (3) holds and let U ⊂ Y be an affine open. Choose a finite affine open
covering U ×Y X =

⋃
j=1,...,m Uj . This is possible as X → Y is quasi-compact. We

claim that {Uj → U} is a standard V covering. The claim implies (1) is true and
finishes the proof of the lemma. In order to prove the claim, let V be a valuation
ring and let g : Spec(V ) → U be a morphism. By (3) we find a specialization
w′ ⇝ w of points of

T = Spec(V )×X Y = Spec(V )×U (U ×X Y )
such that w′ maps to the generic point of Spec(V ) and w maps to the closed point
of Spec(V ). By Schemes, Lemma 26.20.4 we can find a valuation ring W and a
morphism Spec(W )→ T such that the generic point of Spec(W ) maps to w′ and the
closed point of Spec(W ) maps to w. The composition Spec(W ) → T → Spec(V )
corresponds to an inclusion V ⊂ W which presents W as an extension of the
valuation ring V . Since T =

⋃
Spec(V ) ×U Uj is an open covering, we see that

Spec(W ) → T factors through Spec(V ) ×U Uj for some j. Thus we obtain a
commutative diagram

Spec(W )

��

// Uj

��
Spec(V ) // U

and the proof of the claim is complete. □

A V covering gives a universally submersive family of maps. The converse of this
lemma is false, see Examples, Section 110.78.

Lemma 34.10.14.0ETP Let {fi : Xi → X}i∈I be a V covering. Then∐
i∈I

fi :
∐

i∈I
Xi −→ X

is a universally submersive morphism of schemes (Morphisms, Definition 29.24.1).

Proof. We will use without further mention that the base change of a V covering is
a V covering (Lemma 34.10.9). In particular it suffices to show that the morphism
is submersive. Being submersive is clearly Zariski local on the base. Thus we may
assume X is affine. Then {Xi → X} can be refined by a standard V covering
{Yj → X}. If we can show that

∐
Yj → X is submersive, then since there is a

https://stacks.math.columbia.edu/tag/0ETP
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factorization
∐
Yj →

∐
Xi → X we conclude that

∐
Xi → X is submersive. Set

Y =
∐
Yj and consider the morphism of affines f : Y → X. By Lemma 34.10.13

we know that we can lift any specialization x′ ⇝ x in X to some specialization
y′ ⇝ y in Y . Thus if T ⊂ X is a subset such that f−1(T ) is closed in Y , then
T ⊂ X is closed under specialization. Since f−1(T ) ⊂ Y with the reduced induced
closed subscheme structure is an affine scheme, we conclude that T ⊂ X is closed
by Algebra, Lemma 10.41.5. Hence f is submersive. □

34.11. Change of topologies

03FE Let f : X → Y be a morphism of schemes over a base scheme S. In this case we
have the following morphisms of sites7 (with suitable choices of sites as in Remark
34.11.1 below):

(1) (Sch/X)fppf −→ (Sch/Y )fppf ,
(2) (Sch/X)fppf −→ (Sch/Y )syntomic,
(3) (Sch/X)fppf −→ (Sch/Y )smooth,
(4) (Sch/X)fppf −→ (Sch/Y )étale,
(5) (Sch/X)fppf −→ (Sch/Y )Zar,
(6) (Sch/X)syntomic −→ (Sch/Y )syntomic,
(7) (Sch/X)syntomic −→ (Sch/Y )smooth,
(8) (Sch/X)syntomic −→ (Sch/Y )étale,
(9) (Sch/X)syntomic −→ (Sch/Y )Zar,

(10) (Sch/X)smooth −→ (Sch/Y )smooth,
(11) (Sch/X)smooth −→ (Sch/Y )étale,
(12) (Sch/X)smooth −→ (Sch/Y )Zar,
(13) (Sch/X)étale −→ (Sch/Y )étale,
(14) (Sch/X)étale −→ (Sch/Y )Zar,
(15) (Sch/X)Zar −→ (Sch/Y )Zar,
(16) (Sch/X)fppf −→ Yétale,
(17) (Sch/X)syntomic −→ Yétale,
(18) (Sch/X)smooth −→ Yétale,
(19) (Sch/X)étale −→ Yétale,
(20) (Sch/X)fppf −→ YZar,
(21) (Sch/X)syntomic −→ YZar,
(22) (Sch/X)smooth −→ YZar,
(23) (Sch/X)étale −→ YZar,
(24) (Sch/X)Zar −→ YZar,
(25) Xétale −→ Yétale,
(26) Xétale −→ YZar,
(27) XZar −→ YZar,

In each case the underlying continuous functor Sch/Y → Sch/X, or Yτ → Sch/X
is the functor Y ′/Y 7→ X×Y Y ′/X. Namely, in the sections above we have seen the
morphisms fbig : (Sch/X)τ → (Sch/Y )τ and fsmall : Xτ → Yτ for τ as above. We
also have seen the morphisms of sites πY : (Sch/Y )τ → Yτ for τ ∈ {étale, Zariski}.
On the other hand, it is clear that the identity functor (Sch/X)τ → (Sch/X)τ ′

7We have not included the comparison between the ph topology and the others; for this see
More on Morphisms, Remark 37.48.8.
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defines a morphism of sites when τ is a stronger topology than τ ′. Hence composing
these gives the list of possible morphisms above.

Because of the simple description of the underlying functor it is clear that given
morphisms of schemes X → Y → Z the composition of two of the morphisms of
sites above, e.g.,

(Sch/X)τ0 −→ (Sch/Y )τ1 −→ (Sch/Z)τ2

is the corresponding morphism of sites associated to the morphism of schemes
X → Z.

Remark 34.11.1.03FF Take any category Schα constructed as in Sets, Lemma 3.9.2
starting with the set of schemes {X,Y, S}. Choose any set of coverings Covfppf
on Schα as in Sets, Lemma 3.11.1 starting with the category Schα and the class
of fppf coverings. Let Schfppf denote the big fppf site so obtained. Next, for
τ ∈ {Zariski, étale, smooth, syntomic} let Schτ have the same underlying category
as Schfppf with coverings Covτ ⊂ Covfppf simply the subset of τ -coverings. It is
straightforward to check that this gives rise to a big site Schτ .

34.12. Change of big sites

022I In this section we explain what happens on changing the big Zariski/fppf/étale
sites.

Let τ, τ ′ ∈ {Zariski, étale, smooth, syntomic, fppf}. Given two big sites Schτ
and Sch′

τ ′ we say that Schτ is contained in Sch′
τ ′ if Ob(Schτ ) ⊂ Ob(Sch′

τ ′) and
Cov(Schτ ) ⊂ Cov(Sch′

τ ′). In this case τ is stronger than τ ′, for example, no fppf
site can be contained in an étale site.

Lemma 34.12.1.022J Any set of big Zariski sites is contained in a common big Zariski
site. The same is true, mutatis mutandis, for big fppf and big étale sites.

Proof. This is true because the union of a set of sets is a set, and the constructions
in Sets, Lemmas 3.9.2 and 3.11.1 allow one to start with any initially given set of
schemes and coverings. □

Lemma 34.12.2.022K Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Suppose given
big sites Schτ and Sch′

τ . Assume that Schτ is contained in Sch′
τ . The inclusion

functor Schτ → Sch′
τ satisfies the assumptions of Sites, Lemma 7.21.8. There are

morphisms of topoi

g : Sh(Schτ ) −→ Sh(Sch′
τ )

f : Sh(Sch′
τ ) −→ Sh(Schτ )

such that f ◦ g ∼= id. For any object S of Schτ the inclusion functor (Sch/S)τ →
(Sch′/S)τ satisfies the assumptions of Sites, Lemma 7.21.8 also. Hence similarly
we obtain morphisms

g : Sh((Sch/S)τ ) −→ Sh((Sch′/S)τ )
f : Sh((Sch′/S)τ ) −→ Sh((Sch/S)τ )

with f ◦ g ∼= id.

https://stacks.math.columbia.edu/tag/03FF
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Proof. Assumptions (b), (c), and (e) of Sites, Lemma 7.21.8 are immediate for the
functors Schτ → Sch′

τ and (Sch/S)τ → (Sch′/S)τ . Property (a) holds by Lemma
34.3.6, 34.4.7, 34.5.7, 34.6.7, or 34.7.7. Property (d) holds because fibre products
in the categories Schτ , Sch′

τ exist and are compatible with fibre products in the
category of schemes. □

Discussion: The functor g−1 = f∗ is simply the restriction functor which associates
to a sheaf G on Sch′

τ the restriction G|Schτ . Hence this lemma simply says that
given any sheaf of sets F on Schτ there exists a canonical sheaf F ′ on Sch′

τ such
that F|Sch′

τ
= F ′. In fact the sheaf F ′ has the following description: it is the

sheafification of the presheaf

Sch′
τ −→ Sets, V 7−→ colimV→U F(U)

where U is an object of Schτ . This is true because F ′ = f−1F = (upF)# according
to Sites, Lemmas 7.21.5 and 7.21.8.

34.13. Extending functors

0EUV Let us start with a simple example which explains what we are doing. Let R be a
ring. Suppose F is a functor defined on the category C of R-algebras of the form

A = R[x1, . . . , xn]/(f1, . . . , fm)

for n,m ≥ 0 integers and f1, . . . , fm ∈ R[x1, . . . , xm] elements. Then for any R-
algebra B we can define

F ′(B) = colimA→B, A∈C F (A)

It turns out F ′ is the unique functor on the category of all R-algebras which extends
F and commutes with filtered colimits. The same procedure works in the category
of schemes if we impose that our functor is a Zariski sheaf.

Lemma 34.13.1.0EUW Let S be a scheme. Let C be a full subcategory of the category
Sch/S of all schemes over S. Assume

(1) if X → S is an object of C and U ⊂ X is an affine open, then U → S is
isomorphic to an object of C,

(2) if V is an affine scheme lying over an affine open U ⊂ S such that V → U
is of finite presentation, then V → S is isomorphic to an object of C.

Let F : Copp → Sets be a functor. Assume
(a) for any Zariski covering {fi : Xi → X}i∈I with X,Xi objects of C we have

the sheaf condition for F and this family8,
(b) if X = limXi is a directed limit of affine schemes over S with X,Xi

objects of C, then F (X) = colimF (Xi).
Then there is a unique way to extend F to a functor F ′ : (Sch/S)opp → Sets
satisfying the analogues of (a) and (b), i.e., F ′ satisfies the sheaf condition for any
Zariski covering and F ′(X) = colimF ′(Xi) whenever X = limXi is a directed limit
of affine schemes over S.

8As we do not know that Xi×X Xj is in C this has to be interpreted as follows: by property
(1) there exist Zariski coverings {Uijk → Xi ×X Xj}k∈Kij with Uijk an object of C. Then the
sheaf condition says that F (X) is the equalizer of the two maps from

∏
F (Xi) to

∏
F (Uijk).

https://stacks.math.columbia.edu/tag/0EUW
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Proof. The idea will be to first extend F to a sufficiently large collection of affine
schemes over S and then use the Zariski sheaf property to extend to all schemes.
Suppose that V is an affine scheme over S whose structure morphism V → S factors
through some affine open U ⊂ S. In this case we can write

V = limVi

as a cofiltered limit with Vi → U of finite presentation and Vi affine. See Algebra,
Lemma 10.127.2. By conditions (1) and (2) we may replace our Vi by objects of C.
Observe that Vi → S is locally of finite presentation (if S is quasi-separated, then
these morphisms are actually of finite presentation). Then we set

F ′(V ) = colimF (Vi)
Actually, we can give a more canonical expression, namely

F ′(V ) = colimV→V ′ F (V ′)
where the colimit is over the category of morphisms V → V ′ over S where V ′ is an
object of C whose structure morphism V ′ → S is locally of finite presentation. The
reason this is the same as the first formula is that by Limits, Proposition 32.6.1 our
inverse system Vi is cofinal in this category! Finally, note that if V were an object
of C, then F ′(V ) = F (V ) by assumption (b).
The second formula turns F ′ into a contravariant functor on the category formed by
affine schemes V over S whose structure morphism factors through an affine open
of S. Let V be such an affine scheme over S and suppose that V =

⋃
k=1,...,n Vk is

a finite open covering by affines. Then it makes sense to ask if the sheaf condition
holds for F ′ and this open covering. This is true and easy to show: write V = limVi
as in the previous paragraph. By Limits, Lemma 32.4.11 for all sufficiently large i
we can find affine opens Vi,k ⊂ Vi compatible with transition maps pulling back to
Vk in V . Thus

F ′(Vk) = colimF (Vi,k) and F ′(Vk ∩ Vl) = colimF (Vi,k ∩ Vi,l)
Strictly speaking in these formulas we need to replace Vi,k and Vi,k ∩ Vi,l by iso-
morphic affine objects of C before applying the functor F . Since I is directed the
colimits pass through equalizers. Hence the sheaf condition (b) for F and the
Zariski coverings {Vi,k → Vi} implies the sheaf condition for F ′ and this covering.
Let X be a general scheme over S. Let BX denote the collection of affine opens of
X whose structure morphism to S maps into an affine open of S. It is clear that
BX is a basis for the topology of X. By the result of the previous paragraph and
Sheaves, Lemma 6.30.4 we see that F ′ is a sheaf on BX . Hence F ′ restricted to BX
extends uniquely to a sheaf F ′

X on X, see Sheaves, Lemma 6.30.6. If X is an object
of C then we have a canonical identification F ′

X(X) = F (X) by the agreement of F ′

and F on the objects for which they are both defined and the fact that F satisfies
the sheaf condition for Zariski coverings.
Let f : X → Y be a morphism of schemes over S. We get a unique f -map from F ′

Y

to F ′
X compatible with the maps F ′(V )→ F ′(U) for all U ∈ BX and V ∈ BY with

f(U) ⊂ V , see Sheaves, Lemma 6.30.16. We omit the verification that these maps
compose correctly given morphisms X → Y → Z of schemes over S. We also omit
the verification that if f is a morphism of C, then the induced map F ′

Y (Y )→ F ′
X(X)

is the same as the map F (Y ) → F (X) via the identifications F ′
X(X) = F (X) and
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F ′
Y (Y ) = F (Y ) above. In this way we see that the desired extension of F is the

functor which sends X/S to F ′
X(X).

Property (a) for the functor X 7→ F ′
X(X) is almost immediate from the construc-

tion; we omit the details. Suppose that X = limi∈I Xi is a directed limit of affine
schemes over S. We have to show that

F ′
X(X) = colimi∈I F

′
Xi(Xi)

First assume that there is some i ∈ I such that Xi → S factors through an affine
open U ⊂ S. Then F ′ is defined on X and on Xi′ for i′ ≥ i and we see that
F ′
Xi′

(Xi′) = F ′(Xi′) for i′ ≥ i and F ′
X(X) = F ′(X). In this case every arrow

X → V with V locally of finite presentation over S factors as X → Xi′ → V for
some i′ ≥ i, see Limits, Proposition 32.6.1. Thus we have

F ′
X(X) = F ′(X)

= colimX→V F (V )
= colimi′≥i colimXi′ →V F (V )
= colimi′≥i F

′(Xi′)
= colimi′≥i F

′
Xi′

(Xi′)
= colimi′∈I F

′
Xi′

(Xi′)

as desired. Finally, in general we pick any i ∈ I and we choose a finite affine open
covering Vi = Vi,1 ∪ . . . ∪ Vi,n such that Vi,k → S factors through an affine open of
S. Let Vk ⊂ V and Vi′,k for i′ ≥ i be the inverse images of Vi,k. By the previous
case we see that

F ′
Vk

(Vk) = colimi′≥i F
′
Vi′,k

(Vi′,k)
and

F ′
Vk∩Vl(Vk ∩ Vl) = colimi′≥i F

′
Vi′,k∩Vi′,l(Vi′,k ∩ Vi′,l)

By the sheaf property and exactness of filtered colimits we find that F ′
X(X) =

colimi∈I F
′
Xi

(Xi) also in this case. This finishes the proof of property (b) and
hence finishes the proof of the lemma. □

Lemma 34.13.2.049N Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let T be an
affine scheme which is written as a limit T = limi∈I Ti of a directed inverse system
of affine schemes.

(1) Let V = {Vj → T}j=1,...,m be a standard τ -covering of T , see Definitions
34.3.4, 34.4.5, 34.5.5, 34.6.5, and 34.7.5. Then there exists an index i
and a standard τ -covering Vi = {Vi,j → Ti}j=1,...,m whose base change
T ×Ti Vi to T is isomorphic to V.

(2) Let Vi, V ′
i be a pair of standard τ -coverings of Ti. If f : T×TiVi → T×TiV ′

i

is a morphism of coverings of T , then there exists an index i′ ≥ i and a
morphism fi′ : Ti′ ×Ti V → Ti′ ×Ti V ′

i whose base change to T is f .
(3) If f, g : V → V ′

i are morphisms of standard τ -coverings of Ti whose base
changes fT , gT to T are equal then there exists an index i′ ≥ i such that
fTi′ = gTi′ .

In other words, the category of standard τ -coverings of T is the colimit over I of
the categories of standard τ -coverings of Ti.

https://stacks.math.columbia.edu/tag/049N
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Proof. Let us prove this for τ = fppf . By Limits, Lemma 32.10.1 the category
of schemes of finite presentation over T is the colimit over I of the categories of
finite presentation over Ti. By Limits, Lemmas 32.8.2 and 32.8.7 the same is true
for category of schemes which are affine, flat and of finite presentation over T . To
finish the proof of the lemma it suffices to show that if {Vj,i → Ti}j=1,...,m is a finite
family of flat finitely presented morphisms with Vj,i affine, and the base change∐
j T ×Ti Vj,i → T is surjective, then for some i′ ≥ i the morphism

∐
Ti′ ×Ti Vj,i →

Ti′ is surjective. Denote Wi′ ⊂ Ti′ , resp. W ⊂ T the image. Of course W = T
by assumption. Since the morphisms are flat and of finite presentation we see that
Wi is a quasi-compact open of Ti, see Morphisms, Lemma 29.25.10. Moreover,
W = T ×TiWi (formation of image commutes with base change). Hence by Limits,
Lemma 32.4.11 we conclude that Wi′ = Ti′ for some large enough i′ and we win.
For τ ∈ {Zariski, étale, smooth, syntomic} a standard τ -covering is a standard
fppf covering. Hence the fully faithfulness of the functor holds. The only issue is
to show that given a standard fppf covering Vi for some i such that Vi ×Ti T is a
standard τ -covering, then Vi ×Ti Ti′ is a standard τ -covering for all i′ ≫ i. This
follows immediately from Limits, Lemmas 32.8.12, 32.8.10, 32.8.9, and 32.8.16. □

Lemma 34.13.3.0GDW Let S, C, F satisfy conditions (1), (2), (a), and (b) of Lemma
34.13.1 and denote F ′ : (Sch/S)opp → Sets the unique extension constructed in the
lemma. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Assume

(c) for any standard τ -covering {Vi → V }i=1,...,n of affines in Sch/S such
that V → S factors through an affine open U ⊂ S and V → U is of finite
presentation, the sheaf condition hold for F and {Vi → V }i=1,...,n

9.
Then F ′ satisfies the sheaf condition for all τ -coverings.
Proof. Let X be a scheme over S and let {Xi → X}i∈I be a τ -covering. Let si ∈
F ′(Xi) be elements such that si and sj map to the same element of F ′(Xi ×X Xj)
for all i, j ∈ I. We have to show that there is a unique element s ∈ F ′(X) restricting
to si ∈ F ′(Xi) for all i ∈ I.
Special case: X is an affine such that the structure morphism maps into an affine
open U of S and the covering {Xi → X}i∈I is a standard τ -covering. In this case
we can write

X = limVk

as a cofiltered limit with Vk → U of finite presentation and Vk affine. See Algebra,
Lemma 10.127.2. By Lemma 34.13.2 there exists a k and a standard τ -covering
{Vk,i → Vk}i∈I whose base change to X is the given covering. For k′ ≥ k denote
{Vk′,i → Vk′}i∈I the base change to Vk′ of our covering. Then we see that
F ′(X) = colimk′≥k F (Vk)

= colimk′≥k Equalizer(
∏
F (Vk′,i)

//
//
∏
F (Vk′,i ×Vk′ Vk′,j)

= Equalizer( colimk′≥k
∏
F (Vk′,i)

//
// colimk′≥k

∏
F (Vk′,i ×Vk′ Vk′,j)

= Equalizer(
∏
F ′(Xi)

//
//
∏
F ′(Xi ×X Xj)

The first equality holds by construction of F ′. The second holds by assumption
(c). The third holds because filtered colimits are exact. The fourth again holds by

9This makes sense as V , Vi, and Vi ×V Vj are isomorphic to objects of C by (2).

https://stacks.math.columbia.edu/tag/0GDW
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construction of F ′. In this way we find that the sheaf property holds for F ′ with
respect to {Xi → X}i∈I .
General case. Choose an affine open covering X =

⋃
Uk such that each Uk maps

into an affine open of S. For every k we may choose a standard τ -covering {Vk,j →
Uk}j=1,...,mk which refines {Xi ×X Uk → Uk}i∈I . For each j ∈ {1, . . . ,mk} choose
an index ik,j ∈ I and a morphism gk,j : Vk,j → Xik,j over X. Let sk,j be the element
of F ′(Vk,j) we get by restricting sik,j via gk,j . Observe that sk,j and sk′,j′ restrict to
the same element of F ′(Vk,j ×X Vk′,j′) for all k and k′ and all j ∈ {1, . . . ,mk} and
j′ ∈ {1, . . . ,mk′}; verification omitted. In particular, by the result of the previous
paragraph there is a unique element sk ∈ F ′(Uk) restricting to sk,j for all j. With
this notation we are ready to finish the proof.
Proof of uniqueness of s: this is true because F ′ satisfies the sheaf property for
Zariski coverings and s|Uk must be equal to sk because both restrict to sk,j for all
j. This uniqueness then shows that sk and sk′ must restrict to the same section of
F ′ over (the non-affine scheme) Uk ∩Uk′ because these sections restrict to the same
section over the τ -covering {Vk,j×X Vk′,j′ → Uk∩Uk′}. Thus by the sheaf property
for Zariski coverings, there is a unique section s of F ′ over X whose restriction to
Uk is sk. We omit the verification (similar to the above) that s restricts to si over
Xi. □

Lemma 34.13.4.0EUX Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let S be a
scheme contained in a big site Schτ . Let F : (Sch/S)oppτ → Sets be a τ -sheaf
satisfying property (b) of Lemma 34.13.1 with C = (Sch/S)τ . Then the extension
F ′ of F to the category of all schemes over S satisfies the sheaf condition for all
τ -coverings.

Proof. This follows from Lemma 34.13.3 applied with C = (Sch/S)τ . Conditions
(1), (2), (a), and (b) of Lemma 34.13.1 hold; we omit the details. Thus we get our
unique extension F ′ to the category of all schemes over S. Finally, observe that
any standard τ -covering is tautologically equivalent to a covering in (Sch/S)τ , see
Sets, Lemma 3.9.9 as well as Lemmas 34.3.6, 34.4.7, 34.5.7, 34.6.7, and 34.7.7. By
Sites, Lemma 7.8.4 the sheaf property passes through tautological equivalence of
coverings. Hence the fact that F is a τ -sheaf implies that property (c) of Lemma
34.13.3 holds and we conclude. □
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CHAPTER 35

Descent

0238 35.1. Introduction

0239 In the chapter on topologies on schemes (see Topologies, Section 34.1) we introduced
Zariski, étale, fppf, smooth, syntomic and fpqc coverings of schemes. In this chapter
we discuss what kind of structures over schemes can be descended through such
coverings. See for example [Gro95a], [Gro95b], [Gro95e], [Gro95f], [Gro95c], and
[Gro95d]. This is also meant to introduce the notions of descent, descent data,
effective descent data, in the less formal setting of descent questions for quasi-
coherent sheaves, schemes, etc. The formal notion, that of a stack over a site, is
discussed in the chapter on stacks (see Stacks, Section 8.1).

35.2. Descent data for quasi-coherent sheaves

023A In this chapter we will use the convention where the projection maps pri : X× . . .×
X → X are labeled starting with i = 0. Hence we have pr0,pr1 : X × X → X,
pr0,pr1,pr2 : X ×X ×X → X, etc.
Definition 35.2.1.023B Let S be a scheme. Let {fi : Si → S}i∈I be a family of mor-
phisms with target S.

(1) A descent datum (Fi, φij) for quasi-coherent sheaves with respect to the
given family is given by a quasi-coherent sheaf Fi on Si for each i ∈ I, an
isomorphism of quasi-coherent OSi×SSj -modules φij : pr∗

0Fi → pr∗
1Fj for

each pair (i, j) ∈ I2 such that for every triple of indices (i, j, k) ∈ I3 the
diagram

pr∗
0Fi

pr∗
01φij $$

pr∗
02φik

// pr∗
2Fk

pr∗
1Fj

pr∗
12φjk

::

of OSi×SSj×SSk -modules commutes. This is called the cocycle condition.
(2) A morphism ψ : (Fi, φij)→ (F ′

i , φ
′
ij) of descent data is given by a family

ψ = (ψi)i∈I of morphisms of OSi -modules ψi : Fi → F ′
i such that all the

diagrams
pr∗

0Fi φij
//

pr∗
0ψi

��

pr∗
1Fj

pr∗
1ψj

��
pr∗

0F ′
i

φ′
ij // pr∗

1F ′
j

commute.
A good example to keep in mind is the following. Suppose that S =

⋃
Si is an

open covering. In that case we have seen descent data for sheaves of sets in Sheaves,

2931
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Section 6.33 where we called them “glueing data for sheaves of sets with respect
to the given covering”. Moreover, we proved that the category of glueing data is
equivalent to the category of sheaves on S. We will show the analogue in the setting
above when {Si → S}i∈I is an fpqc covering.
In the extreme case where the covering {S → S} is given by idS a descent datum
is necessarily of the form (F , idF ). The cocycle condition guarantees that the
identity on F is the only permitted map in this case. The following lemma shows
in particular that to every quasi-coherent sheaf of OS-modules there is associated
a unique descent datum with respect to any given family.

Lemma 35.2.2.023C Let U = {Ui → U}i∈I and V = {Vj → V }j∈J be families of
morphisms of schemes with fixed target. Let (g, α : I → J, (gi)) : U → V be a
morphism of families of maps with fixed target, see Sites, Definition 7.8.1. Let
(Fj , φjj′) be a descent datum for quasi-coherent sheaves with respect to the family
{Vj → V }j∈J . Then

(1) The system (
g∗
iFα(i), (gi × gi′)∗φα(i)α(i′)

)
is a descent datum with respect to the family {Ui → U}i∈I .

(2) This construction is functorial in the descent datum (Fj , φjj′).
(3) Given a second morphism (g′, α′ : I → J, (g′

i)) of families of maps with
fixed target with g = g′ there exists a functorial isomorphism of descent
data

(g∗
iFα(i), (gi × gi′)∗φα(i)α(i′)) ∼= ((g′

i)∗Fα′(i), (g′
i × g′

i′)∗φα′(i)α′(i′)).

Proof. Omitted. Hint: The maps g∗
iFα(i) → (g′

i)∗Fα′(i) which give the isomorphism
of descent data in part (3) are the pullbacks of the maps φα(i)α′(i) by the morphisms
(gi, g′

i) : Ui → Vα(i) ×V Vα′(i). □

Any family U = {Si → S}i∈I is a refinement of the trivial covering {S → S} in a
unique way. For a quasi-coherent sheaf F on S we denote simply (F|Si , can) the
descent datum with respect to U obtained by the procedure above.

Definition 35.2.3.023D Let S be a scheme. Let {Si → S}i∈I be a family of morphisms
with target S.

(1) Let F be a quasi-coherent OS-module. We call the unique descent on F
datum with respect to the covering {S → S} the trivial descent datum.

(2) The pullback of the trivial descent datum to {Si → S} is called the
canonical descent datum. Notation: (F|Si , can).

(3) A descent datum (Fi, φij) for quasi-coherent sheaves with respect to the
given covering is said to be effective if there exists a quasi-coherent sheaf
F on S such that (Fi, φij) is isomorphic to (F|Si , can).

Lemma 35.2.4.023E Let S be a scheme. Let S =
⋃
Ui be an open covering. Any descent

datum on quasi-coherent sheaves for the family U = {Ui → S} is effective. More-
over, the functor from the category of quasi-coherent OS-modules to the category
of descent data with respect to U is fully faithful.

Proof. This follows immediately from Sheaves, Section 6.33 and the fact that being
quasi-coherent is a local property, see Modules, Definition 17.10.1. □

To prove more we first need to study the case of modules over rings.

https://stacks.math.columbia.edu/tag/023C
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35.3. Descent for modules

023F Let R → A be a ring map. By Simplicial, Example 14.5.5 this gives rise to a
cosimplicial R-algebra

A
//
// A⊗R Aoo

//
//
//
A⊗R A⊗R Aoo

oo

Let us denote this (A/R)• so that (A/R)n is the (n + 1)-fold tensor product of A
over R. Given a map φ : [n]→ [m] the R-algebra map (A/R)•(φ) is the map

a0 ⊗ . . .⊗ an 7−→
∏

φ(i)=0
ai ⊗

∏
φ(i)=1

ai ⊗ . . .⊗
∏

φ(i)=m
ai

where we use the convention that the empty product is 1. Thus the first few maps,
notation as in Simplicial, Section 14.5, are

δ1
0 : a0 7→ 1⊗ a0
δ1

1 : a0 7→ a0 ⊗ 1
σ0

0 : a0 ⊗ a1 7→ a0a1
δ2

0 : a0 ⊗ a1 7→ 1⊗ a0 ⊗ a1
δ2

1 : a0 ⊗ a1 7→ a0 ⊗ 1⊗ a1
δ2

2 : a0 ⊗ a1 7→ a0 ⊗ a1 ⊗ 1
σ1

0 : a0 ⊗ a1 ⊗ a2 7→ a0a1 ⊗ a2
σ1

1 : a0 ⊗ a1 ⊗ a2 7→ a0 ⊗ a1a2

and so on.
An R-module M gives rise to a cosimplicial (A/R)•-module (A/R)•⊗RM . In other
words Mn = (A/R)n ⊗R M and using the R-algebra maps (A/R)n → (A/R)m to
define the corresponding maps on M ⊗R (A/R)•.
The analogue to a descent datum for quasi-coherent sheaves in the setting of mod-
ules is the following.

Definition 35.3.1.023G Let R→ A be a ring map.
(1) A descent datum (N,φ) for modules with respect to R → A is given by

an A-module N and an isomorphism of A⊗R A-modules
φ : N ⊗R A→ A⊗R N

such that the cocycle condition holds: the diagram of A⊗RA⊗RA-module
maps

N ⊗R A⊗R A φ02
//

φ01 ((

A⊗R A⊗R N

A⊗R N ⊗R A
φ12

66

commutes (see below for notation).
(2) A morphism (N,φ)→ (N ′, φ′) of descent data is a morphism ofA-modules

ψ : N → N ′ such that the diagram
N ⊗R A φ

//

ψ⊗idA
��

A⊗R N

idA⊗ψ
��

N ′ ⊗R A
φ′
// A⊗R N ′

is commutative.

https://stacks.math.columbia.edu/tag/023G
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In the definition we use the notation that φ01 = φ ⊗ idA, φ12 = idA ⊗ φ, and
φ02(n⊗ 1⊗ 1) =

∑
ai⊗ 1⊗ni if φ(n⊗ 1) =

∑
ai⊗ni. All three are A⊗RA⊗RA-

module homomorphisms. Equivalently we have
φij = φ⊗(A/R)1, (A/R)•(τ2

ij
) (A/R)2

where τ2
ij : [1] → [2] is the map 0 7→ i, 1 7→ j. Namely, (A/R)•(τ2

02)(a0 ⊗ a1) =
a0 ⊗ 1⊗ a1, and similarly for the others1.
We need some more notation to be able to state the next lemma. Let (N,φ) be a
descent datum with respect to a ring map R→ A. For n ≥ 0 and i ∈ [n] we set

Nn,i = A⊗R . . .⊗R A⊗R N ⊗R A⊗R . . .⊗R A
with the factor N in the ith spot. It is an (A/R)n-module. If we introduce the
maps τni : [0]→ [n], 0 7→ i then we see that

Nn,i = N ⊗(A/R)0, (A/R)•(τn
i

) (A/R)n
For 0 ≤ i ≤ j ≤ n we let τnij : [1]→ [n] be the map such that 0 maps to i and 1 to
j. Similarly to the above the homomorphism φ induces isomorphisms

φnij = φ⊗(A/R)1, (A/R)•(τn
ij

) (A/R)n : Nn,i −→ Nn,j

of (A/R)n-modules when i < j. If i = j we set φnij = id. Since these are all
isomorphisms they allow us to move the factor N to any spot we like. And the
cocycle condition exactly means that it does not matter how we do this (e.g., as a
composition of two of these or at once). Finally, for any β : [n] → [m] we define
the morphism

Nβ,i : Nn,i → Nm,β(i)

as the unique (A/R)•(β)-semi linear map such that
Nβ,i(1⊗ . . .⊗ n⊗ . . .⊗ 1) = 1⊗ . . .⊗ n⊗ . . .⊗ 1

for all n ∈ N . This hints at the following lemma.

Lemma 35.3.2.023H Let R → A be a ring map. Given a descent datum (N,φ) we can
associate to it a cosimplicial (A/R)•-module N•

2 by the rules Nn = Nn,n and given
β : [n]→ [m] setting we define

N•(β) = (φmβ(n)m) ◦Nβ,n : Nn,n −→ Nm,m.

This procedure is functorial in the descent datum.

Proof. Here are the first few maps where φ(n⊗ 1) =
∑
αi ⊗ xi

δ1
0 : N → A⊗N n 7→ 1⊗ n
δ1

1 : N → A⊗N n 7→
∑
αi ⊗ xi

σ0
0 : A⊗N → N a0 ⊗ n 7→ a0n
δ2

0 : A⊗N → A⊗A⊗N a0 ⊗ n 7→ 1⊗ a0 ⊗ n
δ2

1 : A⊗N → A⊗A⊗N a0 ⊗ n 7→ a0 ⊗ 1⊗ n
δ2

2 : A⊗N → A⊗A⊗N a0 ⊗ n 7→
∑
a0 ⊗ αi ⊗ xi

σ1
0 : A⊗A⊗N → A⊗N a0 ⊗ a1 ⊗ n 7→ a0a1 ⊗ n
σ1

1 : A⊗A⊗N → A⊗N a0 ⊗ a1 ⊗ n 7→ a0 ⊗ a1n

1Note that τ2
ij = δ2

k, if {i, j, k} = [2] = {0, 1, 2}, see Simplicial, Definition 14.2.1.
2We should really write (N,φ)•.

https://stacks.math.columbia.edu/tag/023H
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with notation as in Simplicial, Section 14.5. We first verify the two properties
σ0

0 ◦ δ1
0 = id and σ0

0 ◦ δ1
1 = id. The first one, σ0

0 ◦ δ1
0 = id, is clear from the

explicit description of the morphisms above. To prove the second relation we have
to use the cocycle condition (because it does not hold for an arbitrary isomorphism
φ : N ⊗R A → A ⊗R N). Write p = σ0

0 ◦ δ1
1 : N → N . By the description of the

maps above we deduce that p is also equal to
p = φ⊗ id : N = (N ⊗R A)⊗(A⊗RA) A −→ (A⊗R N)⊗(A⊗RA) A = N

Since φ is an isomorphism we see that p is an isomorphism. Write φ(n ⊗ 1) =∑
αi ⊗ xi for certain αi ∈ A and xi ∈ N . Then p(n) =

∑
αixi. Next, write

φ(xi⊗ 1) =
∑
αij ⊗ yj for certain αij ∈ A and yj ∈ N . Then the cocycle condition

says that ∑
αi ⊗ αij ⊗ yj =

∑
αi ⊗ 1⊗ xi.

This means that p(n) =
∑
αixi =

∑
αiαijyj =

∑
αip(xi) = p(p(n)). Thus p is a

projector, and since it is an isomorphism it is the identity.
To prove fully that N• is a cosimplicial module we have to check all 5 types of
relations of Simplicial, Remark 14.5.3. The relations on composing σ’s are obvious.
The relations on composing δ’s come down to the cocycle condition for φ. In exactly
the same way as above one checks the relations σj ◦ δj = σj ◦ δj+1 = id. Finally,
the other relations on compositions of δ’s and σ’s hold for any φ whatsoever. □

Note that to an R-module M we can associate a canonical descent datum, namely
(M ⊗RA, can) where can : (M ⊗RA)⊗RA→ A⊗R (M ⊗RA) is the obvious map:
(m⊗ a)⊗ a′ 7→ a⊗ (m⊗ a′).

Lemma 35.3.3.023I Let R→ A be a ring map. LetM be an R-module. The cosimplicial
(A/R)•-module associated to the canonical descent datum is isomorphic to the
cosimplicial module (A/R)• ⊗RM .

Proof. Omitted. □

Definition 35.3.4.023J Let R → A be a ring map. We say a descent datum (N,φ) is
effective if there exists an R-module M and an isomorphism of descent data from
(M ⊗R A, can) to (N,φ).

Let R → A be a ring map. Let (N,φ) be a descent datum. We may take the
cochain complex s(N•) associated with N• (see Simplicial, Section 14.25). It has
the following shape:

N → A⊗R N → A⊗R A⊗R N → . . .

We can describe the maps. The first map is the map
n 7−→ 1⊗ n− φ(n⊗ 1).

The second map on pure tensors has the values
a⊗ n 7−→ 1⊗ a⊗ n− a⊗ 1⊗ n+ a⊗ φ(n⊗ 1).

It is clear how the pattern continues.
In the special case where N = A ⊗R M we see that for any m ∈ M the element
1 ⊗ m is in the kernel of the first map of the cochain complex associated to the
cosimplicial module (A/R)• ⊗RM . Hence we get an extended cochain complex
(35.3.4.1)023K 0→M → A⊗RM → A⊗R A⊗RM → . . .

https://stacks.math.columbia.edu/tag/023I
https://stacks.math.columbia.edu/tag/023J
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Here we think of the 0 as being in degree −2, the module M in degree −1, the
module A⊗RM in degree 0, etc. Note that this complex has the shape

0→ R→ A→ A⊗R A→ A⊗R A⊗R A→ . . .

when M = R.

Lemma 35.3.5.023L Suppose that R→ A has a section. Then for any R-module M the
extended cochain complex (35.3.4.1) is exact.

Proof. By Simplicial, Lemma 14.28.5 the map R → (A/R)• is a homotopy equiv-
alence of cosimplicial R-algebras (here R denotes the constant cosimplicial R-
algebra). Hence M → (A/R)• ⊗RM is a homotopy equivalence in the category of
cosimplicial R-modules, because ⊗RM is a functor from the category of R-algebras
to the category of R-modules, see Simplicial, Lemma 14.28.4. This implies that
the induced map of associated complexes is a homotopy equivalence, see Simpli-
cial, Lemma 14.28.6. Since the complex associated to the constant cosimplicial
R-module M is the complex

M
0 // M

1 // M
0 // M

1 // M . . .

we win (since the extended version simply puts an extra M at the beginning). □

Lemma 35.3.6.023M Suppose that R → A is faithfully flat, see Algebra, Definition
10.39.1. Then for any R-module M the extended cochain complex (35.3.4.1) is
exact.

Proof. Suppose we can show there exists a faithfully flat ring map R → R′ such
that the result holds for the ring map R′ → A′ = R′ ⊗R A. Then the result follows
for R→ A. Namely, for any R-module M the cosimplicial module (M ⊗R R′)⊗R′

(A′/R′)• is just the cosimplicial module R′⊗R (M⊗R (A/R)•). Hence the vanishing
of cohomology of the complex associated to (M ⊗R R′) ⊗R′ (A′/R′)• implies the
vanishing of the cohomology of the complex associated to M ⊗R (A/R)• by faithful
flatness of R → R′. Similarly for the vanishing of cohomology groups in degrees
−1 and 0 of the extended complex (proof omitted).
But we have such a faithful flat extension. Namely R′ = A works because the
ring map R′ = A → A′ = A ⊗R A has a section a ⊗ a′ 7→ aa′ and Lemma 35.3.5
applies. □

Here is how the complex relates to the question of effectivity.

Lemma 35.3.7.039W Let R → A be a faithfully flat ring map. Let (N,φ) be a descent
datum. Then (N,φ) is effective if and only if the canonical map

A⊗R H0(s(N•)) −→ N

is an isomorphism.

Proof. If (N,φ) is effective, then we may write N = A ⊗R M with φ = can. It
follows that H0(s(N•)) = M by Lemmas 35.3.3 and 35.3.6. Conversely, suppose
the map of the lemma is an isomorphism. In this case set M = H0(s(N•)). This is
an R-submodule of N , namely M = {n ∈ N | 1⊗n = φ(n⊗ 1)}. The only thing to
check is that via the isomorphism A⊗RM → N the canonical descent data agrees
with φ. We omit the verification. □

https://stacks.math.columbia.edu/tag/023L
https://stacks.math.columbia.edu/tag/023M
https://stacks.math.columbia.edu/tag/039W
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Lemma 35.3.8.039X Let R → A be a faithfully flat ring map, and let R → R′ be
faithfully flat. Set A′ = R′⊗RA. If all descent data for R′ → A′ are effective, then
so are all descent data for R→ A.

Proof. Let (N,φ) be a descent datum for R → A. Set N ′ = R′ ⊗R N = A′ ⊗A N ,
and denote φ′ = idR′ ⊗ φ the base change of the descent datum φ. Then (N ′, φ′)
is a descent datum for R′ → A′ and H0(s(N ′

•)) = R′⊗RH0(s(N•)). Moreover, the
map A′ ⊗R′ H0(s(N ′

•)) → N ′ is identified with the base change of the A-module
map A⊗R H0(s(N))→ N via the faithfully flat map A→ A′. Hence we conclude
by Lemma 35.3.7. □

Here is the main result of this section. Its proof may seem a little clumsy; for a
more highbrow approach see Remark 35.3.11 below.

Proposition 35.3.9.023N Let R→ A be a faithfully flat ring map. Then
(1) any descent datum on modules with respect to R→ A is effective,
(2) the functorM 7→ (A⊗RM, can) fromR-modules to the category of descent

data is an equivalence, and
(3) the inverse functor is given by (N,φ) 7→ H0(s(N•)).

Proof. We only prove (1) and omit the proofs of (2) and (3). As R→ A is faithfully
flat, there exists a faithfully flat base change R→ R′ such that R′ → A′ = R′⊗RA
has a section (namely take R′ = A as in the proof of Lemma 35.3.6). Hence, using
Lemma 35.3.8 we may assume that R → A has a section, say σ : A → R. Let
(N,φ) be a descent datum relative to R→ A. Set

M = H0(s(N•)) = {n ∈ N | 1⊗ n = φ(n⊗ 1)} ⊂ N
By Lemma 35.3.7 it suffices to show that A⊗RM → N is an isomorphism.
Take an element n ∈ N . Write φ(n⊗1) =

∑
ai⊗xi for certain ai ∈ A and xi ∈ N .

By Lemma 35.3.2 we have n =
∑
aixi in N (because σ0

0 ◦δ1
1 = id in any cosimplicial

object). Next, write φ(xi ⊗ 1) =
∑
aij ⊗ yj for certain aij ∈ A and yj ∈ N . The

cocycle condition means that∑
ai ⊗ aij ⊗ yj =

∑
ai ⊗ 1⊗ xi

in A⊗R A⊗R N . We conclude two things from this:
(1) applying σ to the first A we get

∑
σ(ai)φ(xi ⊗ 1) =

∑
σ(ai)⊗ xi,

(2) applying σ to the middle A we get
∑
i ai ⊗

∑
j σ(aij)yj =

∑
ai ⊗ xi.

Part (1) shows that
∑
σ(ai)xi ∈M . Applying this to xi we see that

∑
σ(aij)yi ∈

M for all i. Multiplying out the equation in (2) we conclude that
∑
i ai(

∑
j σ(aij)yj) =∑

aixi = n. Hence A⊗RM → N is surjective. Finally, suppose that mi ∈M and∑
aimi = 0. Then we see by applying φ to

∑
aimi ⊗ 1 that

∑
ai ⊗mi = 0. In

other words A⊗RM → N is injective and we win. □

Remark 35.3.10.023O Let R be a ring. Let f1, . . . , fn ∈ R generate the unit ideal. The
ring A =

∏
iRfi is a faithfully flat R-algebra. We remark that the cosimplicial ring

(A/R)• has the following ring in degree n:∏
i0,...,in

Rfi0 ...fin

Hence the results above recover Algebra, Lemmas 10.24.2, 10.24.1 and 10.24.5. But
the results above actually say more because of exactness in higher degrees. Namely,

https://stacks.math.columbia.edu/tag/039X
https://stacks.math.columbia.edu/tag/023N
https://stacks.math.columbia.edu/tag/023O
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it implies that Čech cohomology of quasi-coherent sheaves on affines is trivial. Thus
we get a second proof of Cohomology of Schemes, Lemma 30.2.1.

Remark 35.3.11.039Y Let R be a ring. Let A• be a cosimplicialR-algebra. In this setting
a descent datum corresponds to an cosimplicial A•-module M• with the property
that for every n,m ≥ 0 and every φ : [n]→ [m] the map M(φ) : Mn →Mm induces
an isomorphism

Mn ⊗An,A(φ) Am −→Mm.

Let us call such a cosimplicial module a cartesian module. In this setting, the proof
of Proposition 35.3.9 can be split in the following steps

(1) If R → R′ and R → A are faithfully flat, then descent data for A/R are
effective if descent data for (R′ ⊗R A)/R′ are effective.

(2) Let A be an R-algebra. Descent data for A/R correspond to cartesian
(A/R)•-modules.

(3) If R → A has a section then (A/R)• is homotopy equivalent to R, the
constant cosimplicial R-algebra with value R.

(4) If A• → B• is a homotopy equivalence of cosimplicial R-algebras then the
functor M• 7→ M• ⊗A• B• induces an equivalence of categories between
cartesian A•-modules and cartesian B•-modules.

For (1) see Lemma 35.3.8. Part (2) uses Lemma 35.3.2. Part (3) we have seen in
the proof of Lemma 35.3.5 (it relies on Simplicial, Lemma 14.28.5). Moreover, part
(4) is a triviality if you think about it right!

35.4. Descent for universally injective morphisms

08WE Numerous constructions in algebraic geometry are made using techniques of descent,
such as constructing objects over a given space by first working over a somewhat
larger space which projects down to the given space, or verifying a property of a
space or a morphism by pulling back along a covering map. The utility of such tech-
niques is of course dependent on identification of a wide class of effective descent
morphisms. Early in the Grothendieckian development of modern algebraic geom-
etry, the class of morphisms which are quasi-compact and faithfully flat was shown
to be effective for descending objects, morphisms, and many properties thereof.
As usual, this statement comes down to a property of rings and modules. For
a homomorphism f : R → S to be an effective descent morphism for modules,
Grothendieck showed that it is sufficient for f to be faithfully flat. However, this
excludes many natural examples: for instance, any split ring homomorphism is an
effective descent morphism. One natural example of this even arises in the proof of
faithfully flat descent: for f : R→ S any ring homomorphism, 1S⊗f : S → S⊗RS
is split by the multiplication map whether or not it is flat.
One may then ask whether there is a natural ring-theoretic condition implying
effective descent for modules which includes both the case of a faithfully flat mor-
phism and that of a split ring homomorphism. It may surprise the reader (at least
it surprised this author) to learn that a complete answer to this question has been
known since around 1970! Namely, it is not hard to check that a necessary condition
for f : R → S to be an effective descent morphism for modules is that f must be
universally injective in the category of R-modules, that is, for any R-module M , the
map 1M⊗f : M →M⊗RS must be injective. This then turns out to be a sufficient

https://stacks.math.columbia.edu/tag/039Y
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condition as well. For example, if f is split in the category of R-modules (but not
necessarily in the category of rings), then f is an effective descent morphism for
modules.
The history of this result is a bit involved: it was originally asserted by Olivier
[Oli70], who called universally injective morphisms pure, but without a clear in-
dication of proof. One can extract the result from the work of Joyal and Tierney
[JT84], but to the best of our knowledge, the first free-standing proof to appear
in the literature is that of Mesablishvili [Mes00]. The first purpose of this section
is to expose Mesablishvili’s proof; this requires little modification of his original
presentation aside from correcting typos, with the one exception that we make
explicit the relationship between the customary definition of a descent datum in
algebraic geometry and the one used in [Mes00]. The proof turns out to be entirely
category-theoretic, and consequently can be put in the language of monads (and
thus applied in other contexts); see [JT04].
The second purpose of this section is to collect some information about which
properties of modules, algebras, and morphisms can be descended along universally
injective ring homomorphisms. The cases of finite modules and flat modules were
treated by Mesablishvili [Mes02].

35.4.1. Category-theoretic preliminaries.08WF We start by recalling a few basic notions
from category theory which will simplify the exposition. In this subsection, fix an
ambient category.
For two morphisms g1, g2 : B → C, recall that an equalizer of g1 and g2 is a
morphism f : A → B which satisfies g1 ◦ f = g2 ◦ f and is universal for this
property. This second statement means that any commutative diagram

A′

e

  ����
A

f // B
g1 //

g2
// C

without the dashed arrow can be uniquely completed. We also say in this situation
that the diagram

(35.4.1.1)08WG A
f // B

g1 //

g2
// C

is an equalizer. Reversing arrows gives the definition of a coequalizer. See Cate-
gories, Sections 4.10 and 4.11.
Since it involves a universal property, the property of being an equalizer is typically
not stable under applying a covariant functor. Just as for monomorphisms and
epimorphisms, one can get around this in some cases by exhibiting splittings.

Definition 35.4.2.08WH A split equalizer is a diagram (35.4.1.1) with g1 ◦ f = g2 ◦ f for
which there exist auxiliary morphisms h : B → A and i : C → B such that
(35.4.2.1)08WI h ◦ f = 1A, f ◦ h = i ◦ g1, i ◦ g2 = 1B .

The point is that the equalities among arrows force (35.4.1.1) to be an equalizer:
the map e factors uniquely through f by writing e = f ◦ (h ◦ e). Consequently,

https://stacks.math.columbia.edu/tag/08WH
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applying a covariant functor to a split equalizer gives a split equalizer; applying a
contravariant functor gives a split coequalizer, whose definition is apparent.

35.4.3. Universally injective morphisms.08WJ Recall that Rings denotes the category of
commutative rings with 1. For an object R of Rings we denote ModR the category
of R-modules.

Remark 35.4.4.08WK Any functor F : A → B of abelian categories which is exact and
takes nonzero objects to nonzero objects reflects injections and surjections. Namely,
exactness implies that F preserves kernels and cokernels (compare with Homology,
Section 12.7). For example, if f : R → S is a faithfully flat ring homomorphism,
then • ⊗R S : ModR → ModS has these properties.

Let R be a ring. Recall that a morphism f : M → N in ModR is universally
injective if for all P ∈ ModR, the morphism f ⊗ 1P : M ⊗R P → N ⊗R P is
injective. See Algebra, Definition 10.82.1.

Definition 35.4.5.08WL A ring map f : R→ S is universally injective if it is universally
injective as a morphism in ModR.

Example 35.4.6.08WM Any split injection in ModR is universally injective. In particular,
any split injection in Rings is universally injective.

Example 35.4.7.08WN For a ring R and f1, . . . , fn ∈ R generating the unit ideal, the
morphism R→ Rf1 ⊕ . . .⊕Rfn is universally injective. Although this is immediate
from Lemma 35.4.8, it is instructive to check it directly: we immediately reduce to
the case where R is local, in which case some fi must be a unit and so the map
R→ Rfi is an isomorphism.

Lemma 35.4.8.08WP Any faithfully flat ring map is universally injective.

Proof. This is a reformulation of Algebra, Lemma 10.82.11. □

The key observation from [Mes00] is that universal injectivity can be usefully re-
formulated in terms of a splitting, using the usual construction of an injective
cogenerator in ModR.

Definition 35.4.9.08WQ Let R be a ring. Define the contravariant functor C : ModR →
ModR by setting

C(M) = HomAb(M,Q/Z),
with the R-action on C(M) given by rf(s) = f(rs).

This functor was denoted M 7→M∨ in More on Algebra, Section 15.55.

Lemma 35.4.10.08WR For a ring R, the functor C : ModR → ModR is exact and reflects
injections and surjections.

Proof. Exactness is More on Algebra, Lemma 15.55.6 and the other properties
follow from this, see Remark 35.4.4. □

Remark 35.4.11.08WS We will use frequently the standard adjunction between Hom and
tensor product, in the form of the natural isomorphism of contravariant functors

(35.4.11.1)08WT C(•1 ⊗R •2) ∼= HomR(•1, C(•2)) : ModR ×ModR → ModR

https://stacks.math.columbia.edu/tag/08WK
https://stacks.math.columbia.edu/tag/08WL
https://stacks.math.columbia.edu/tag/08WM
https://stacks.math.columbia.edu/tag/08WN
https://stacks.math.columbia.edu/tag/08WP
https://stacks.math.columbia.edu/tag/08WQ
https://stacks.math.columbia.edu/tag/08WR
https://stacks.math.columbia.edu/tag/08WS
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taking f : M1⊗RM2 → Q/Z to the map m1 7→ (m2 7→ f(m1⊗m2)). See Algebra,
Lemma 10.14.5. A corollary of this observation is that if

C(M) //
// C(N) // C(P )

is a split coequalizer diagram in ModR, then so is
C(M ⊗R Q) //

// C(N ⊗R Q) // C(P ⊗R Q)
for any Q ∈ ModR.
Lemma 35.4.12.08WU Let R be a ring. A morphism f : M → N in ModR is universally
injective if and only if C(f) : C(N)→ C(M) is a split surjection.
Proof. By (35.4.11.1), for any P ∈ ModR we have a commutative diagram

HomR(P,C(N))
HomR(P,C(f))

//

∼=
��

HomR(P,C(M))

∼=
��

C(P ⊗R N)
C(1P⊗f) // C(P ⊗RM).

If f is universally injective, then 1C(M)⊗f : C(M)⊗RM → C(M)⊗RN is injective,
so both rows in the above diagram are surjective for P = C(M). We may thus lift
1C(M) ∈ HomR(C(M), C(M)) to some g ∈ HomR(C(N), C(M)) splitting C(f).
Conversely, if C(f) is a split surjection, then both rows in the above diagram are
surjective, so by Lemma 35.4.10, 1P ⊗ f is injective. □

Remark 35.4.13.08WV Let f : M → N be a universally injective morphism in ModR.
By choosing a splitting g of C(f), we may construct a functorial splitting of
C(1P ⊗ f) for each P ∈ ModR. Namely, by (35.4.11.1) this amounts to splitting
HomR(P,C(f)) functorially in P , and this is achieved by the map g ◦ •.
35.4.14. Descent for modules and their morphisms.08WW Throughout this subsection,
fix a ring map f : R → S. As seen in Section 35.3 we can use the language of
cosimplicial algebras to talk about descent data for modules, but in this subsection
we prefer a more down to earth terminology.
For i = 1, 2, 3, let Si be the i-fold tensor product of S over R. Define the ring
homomorphisms δ1

0 , δ
1
1 : S1 → S2, δ1

01, δ
1
02, δ

1
12 : S1 → S3, and δ2

0 , δ
2
1 , δ

2
2 : S2 → S3

by the formulas
δ1

0(a0) = 1⊗ a0

δ1
1(a0) = a0 ⊗ 1

δ2
0(a0 ⊗ a1) = 1⊗ a0 ⊗ a1

δ2
1(a0 ⊗ a1) = a0 ⊗ 1⊗ a1

δ2
2(a0 ⊗ a1) = a0 ⊗ a1 ⊗ 1

δ1
01(a0) = 1⊗ 1⊗ a0

δ1
02(a0) = 1⊗ a0 ⊗ 1
δ1

12(a0) = a0 ⊗ 1⊗ 1.
In other words, the upper index indicates the source ring, while the lower index
indicates where to insert factors of 1. (This notation is compatible with the notation
introduced in Section 35.3.)
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Recall3 from Definition 35.3.1 that for M ∈ ModS , a descent datum on M relative
to f is an isomorphism

θ : M ⊗S,δ1
0
S2 −→M ⊗S,δ1

1
S2

of S2-modules satisfying the cocycle condition

(35.4.14.1)08WX (θ ⊗ δ2
2) ◦ (θ ⊗ δ0

2) = (θ ⊗ δ1
2) : M ⊗S,δ1

01
S3 →M ⊗S,δ1

12
S3.

Let DDS/R be the category of S-modules equipped with descent data relative to f .

For example, for M0 ∈ ModR and a choice of isomorphism M ∼= M0 ⊗R S gives
rise to a descent datum by identifying M ⊗S,δ1

0
S2 and M ⊗S,δ1

1
S2 naturally with

M0 ⊗R S2. This construction in particular defines a functor f∗ : ModR → DDS/R.

Definition 35.4.15.08WY The functor f∗ : ModR → DDS/R is called base extension
along f . We say that f is a descent morphism for modules if f∗ is fully faithful.
We say that f is an effective descent morphism for modules if f∗ is an equivalence
of categories.

Our goal is to show that for f universally injective, we can use θ to locate M0
within M . This process makes crucial use of some equalizer diagrams.

Lemma 35.4.16.08WZ For (M, θ) ∈ DDS/R, the diagram
(35.4.16.1)

08X0 M
θ◦(1M⊗δ1

0) // M ⊗S,δ1
1
S2

(θ⊗δ2
2)◦(1M⊗δ2

0) //

1M⊗S2 ⊗δ2
1

// M ⊗S,δ1
12
S3

is a split equalizer.

Proof. Define the ring homomorphisms σ0
0 : S2 → S1 and σ1

0 , σ
1
1 : S3 → S2 by the

formulas

σ0
0(a0 ⊗ a1) = a0a1

σ1
0(a0 ⊗ a1 ⊗ a2) = a0a1 ⊗ a2

σ1
1(a0 ⊗ a1 ⊗ a2) = a0 ⊗ a1a2.

We then take the auxiliary morphisms to be 1M ⊗ σ0
0 : M ⊗S,δ1

1
S2 → M and

1M ⊗ σ1
0 : M ⊗S,δ1

12
S3 →M ⊗S,δ1

1
S2. Of the compatibilities required in (35.4.2.1),

the first follows from tensoring the cocycle condition (35.4.14.1) with σ1
1 and the

others are immediate. □

Lemma 35.4.17.08X1 For (M, θ) ∈ DDS/R, the diagram
(35.4.17.1)

08X2 C(M ⊗S,δ1
12
S3)

C((θ⊗δ2
2)◦(1M⊗δ2

0)) //

C(1M⊗S2 ⊗δ2
1)

// C(M ⊗S,δ1
1
S2)

C(θ◦(1M⊗δ1
0)) // C(M).

obtained by applying C to (35.4.16.1) is a split coequalizer.

Proof. Omitted. □

3To be precise, our θ here is the inverse of φ from Definition 35.3.1.
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Lemma 35.4.18.08X3 The diagram

(35.4.18.1)08X4 S1
δ1

1 // S2

δ2
2 //

δ2
1

// S3

is a split equalizer.

Proof. In Lemma 35.4.16, take (M, θ) = f∗(S). □

This suggests a definition of a potential quasi-inverse functor for f∗.

Definition 35.4.19.08X5 Define the functor f∗ : DDS/R → ModR by taking f∗(M, θ) to
be the R-submodule of M for which the diagram
(35.4.19.1)

08X6 f∗(M, θ) // M
θ◦(1M⊗δ1

0) //

1M⊗δ1
1

// M ⊗S,δ1
1
S2

is an equalizer.

Using Lemma 35.4.16 and the fact that the restriction functor ModS → ModR is
right adjoint to the base extension functor • ⊗R S : ModR → ModS , we deduce
that f∗ is right adjoint to f∗.
We are ready for the key lemma. In the faithfully flat case this is a triviality (see
Remark 35.4.21), but in the general case some argument is needed.

Lemma 35.4.20.08X7 If f is universally injective, then the diagram
(35.4.20.1)

08X8 f∗(M, θ)⊗R S
θ◦(1M⊗δ1

0) // M ⊗S,δ1
1
S2

(θ⊗δ2
2)◦(1M⊗δ2

0) //

1M⊗S2 ⊗δ2
1

// M ⊗S,δ1
12
S3

obtained by tensoring (35.4.19.1) over R with S is an equalizer.

Proof. By Lemma 35.4.12 and Remark 35.4.13, the map C(1N ⊗f) : C(N⊗RS)→
C(N) can be split functorially in N . This gives the upper vertical arrows in the
commutative diagram

C(M ⊗S,δ1
1
S2)

C(θ◦(1M⊗δ1
0)) //

C(1M⊗δ1
1)

//

��

C(M) //

��

C(f∗(M, θ))

��
C(M ⊗S,δ1

12
S3)

C((θ⊗δ2
2)◦(1M⊗δ2

0)) //

C(1M⊗S2 ⊗δ2
1)

//

��

C(M ⊗S,δ1
1
S2)

C(θ◦(1M⊗δ1
0)) //

C(1M⊗δ1
1)

��

C(M)

��
C(M ⊗S,δ1

1
S2)

C(θ◦(1M⊗δ1
0)) //

C(1M⊗δ1
1)

// C(M) // C(f∗(M, θ))

in which the compositions along the columns are identity morphisms. The second
row is the coequalizer diagram (35.4.17.1); this produces the dashed arrow. From
the top right square, we obtain auxiliary morphisms C(f∗(M, θ)) → C(M) and
C(M)→ C(M⊗S,δ1

1
S2) which imply that the first row is a split coequalizer diagram.

https://stacks.math.columbia.edu/tag/08X3
https://stacks.math.columbia.edu/tag/08X5
https://stacks.math.columbia.edu/tag/08X7


35.4. DESCENT FOR UNIVERSALLY INJECTIVE MORPHISMS 2944

By Remark 35.4.11, we may tensor with S inside C to obtain the split coequalizer
diagram

C(M ⊗S,δ2
2◦δ1

1
S3)

C((θ⊗δ2
2)◦(1M⊗δ2

0)) //

C(1M⊗S2 ⊗δ2
1)

// C(M ⊗S,δ1
1
S2)

C(θ◦(1M⊗δ1
0)) // C(f∗(M, θ)⊗R S).

By Lemma 35.4.10, we conclude (35.4.20.1) must also be an equalizer. □

Remark 35.4.21.08X9 If f is a split injection in ModR, one can simplify the argument
by splitting f directly, without using C. Things are even simpler if f is faithfully
flat; in this case, the conclusion of Lemma 35.4.20 is immediate because tensoring
over R with S preserves all equalizers.

Theorem 35.4.22.08XA The following conditions are equivalent.
(a) The morphism f is a descent morphism for modules.
(b) The morphism f is an effective descent morphism for modules.
(c) The morphism f is universally injective.

Proof. It is clear that (b) implies (a). We now check that (a) implies (c). If f
is not universally injective, we can find M ∈ ModR such that the map 1M ⊗ f :
M → M ⊗R S has nontrivial kernel N . The natural projection M → M/N is not
an isomorphism, but its image in DDS/R is an isomorphism. Hence f∗ is not fully
faithful.
We finally check that (c) implies (b). By Lemma 35.4.20, for (M, θ) ∈ DDS/R,
the natural map f∗f∗(M, θ) → M is an isomorphism of S-modules. On the other
hand, for M0 ∈ ModR, we may tensor (35.4.18.1) with M0 over R to obtain an
equalizer sequence, so M0 → f∗f

∗M is an isomorphism. Consequently, f∗ and f∗

are quasi-inverse functors, proving the claim. □

35.4.23. Descent for properties of modules.08XB Throughout this subsection, fix a uni-
versally injective ring map f : R → S, an object M ∈ ModR, and a ring map
R → A. We now investigate the question of which properties of M or A can be
checked after base extension along f . We start with some results from [Mes02].

Lemma 35.4.24.08XC If M ∈ ModR is flat, then C(M) is an injective R-module.

Proof. Let 0→ N → P → Q→ 0 be an exact sequence in ModR. Since M is flat,
0→ N ⊗RM → P ⊗RM → Q⊗RM → 0

is exact. By Lemma 35.4.10,
0→ C(Q⊗RM)→ C(P ⊗RM)→ C(N ⊗RM)→ 0

is exact. By (35.4.11.1), this last sequence can be rewritten as
0→ HomR(Q,C(M))→ HomR(P,C(M))→ HomR(N,C(M))→ 0.

Hence C(M) is an injective object of ModR. □

Theorem 35.4.25.08XD If M ⊗R S has one of the following properties as an S-module
(a) finitely generated;
(b) finitely presented;
(c) flat;
(d) faithfully flat;

https://stacks.math.columbia.edu/tag/08X9
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(e) finite projective;
then so does M as an R-module (and conversely).

Proof. To prove (a), choose a finite set {ni} of generators of M ⊗R S in ModS .
Write each ni as

∑
jmij ⊗ sij with mij ∈M and sij ∈ S. Let F be the finite free

R-module with basis eij and let F →M be the R-module map sending eij to mij .
Then F ⊗R S → M ⊗R S is surjective, so Coker(F → M) ⊗R S is zero and hence
Coker(F →M) is zero. This proves (a).
To see (b) assume M⊗RS is finitely presented. Then M is finitely generated by (a).
Choose a surjection R⊕n →M with kernel K. Then K⊗RS → S⊕r →M⊗RS → 0
is exact. By Algebra, Lemma 10.5.3 the kernel of S⊕r → M ⊗R S is a finite S-
module. Thus we can find finitely many elements k1, . . . , kt ∈ K such that the
images of ki ⊗ 1 in S⊕r generate the kernel of S⊕r →M ⊗R S. Let K ′ ⊂ K be the
submodule generated by k1, . . . , kt. Then M ′ = R⊕r/K ′ is a finitely presented R-
module with a morphism M ′ →M such that M ′⊗RS →M⊗RS is an isomorphism.
Thus M ′ ∼= M as desired.
To prove (c), let 0 → M ′ → M ′′ → M → 0 be a short exact sequence in ModR.
Since • ⊗R S is a right exact functor, M ′′ ⊗R S → M ⊗R S is surjective. So by
Lemma 35.4.10 the map C(M ⊗R S) → C(M ′′ ⊗R S) is injective. If M ⊗R S is
flat, then Lemma 35.4.24 shows C(M ⊗R S) is an injective object of ModS , so the
injection C(M ⊗R S) → C(M ′′ ⊗R S) is split in ModS and hence also in ModR.
Since C(M ⊗R S) → C(M) is a split surjection by Lemma 35.4.12, it follows that
C(M)→ C(M ′′) is a split injection in ModR. That is, the sequence

0→ C(M)→ C(M ′′)→ C(M ′)→ 0
is split exact. For N ∈ ModR, by (35.4.11.1) we see that

0→ C(M ⊗R N)→ C(M ′′ ⊗R N)→ C(M ′ ⊗R N)→ 0
is split exact. By Lemma 35.4.10,

0→M ′ ⊗R N →M ′′ ⊗R N →M ⊗R N → 0
is exact. This implies M is flat over R. Namely, taking M ′ a free module surjecting
onto M we conclude that TorR1 (M,N) = 0 for all modules N and we can use
Algebra, Lemma 10.75.8. This proves (c).
To deduce (d) from (c), note that if N ∈ ModR and M ⊗R N is zero, then M ⊗R
S ⊗S (N ⊗R S) ∼= (M ⊗R N)⊗R S is zero, so N ⊗R S is zero and hence N is zero.
To deduce (e) at this point, it suffices to recall that M is finitely generated and
projective if and only if it is finitely presented and flat. See Algebra, Lemma
10.78.2. □

There is a variant for R-algebras.

Theorem 35.4.26.08XE If A⊗R S has one of the following properties as an S-algebra
(a) of finite type;
(b) of finite presentation;
(c) formally unramified;
(d) unramified;
(e) étale;

then so does A as an R-algebra (and of course conversely).

https://stacks.math.columbia.edu/tag/08XE
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Proof. To prove (a), choose a finite set {xi} of generators of A⊗R S over S. Write
each xi as

∑
j yij ⊗ sij with yij ∈ A and sij ∈ S. Let F be the polynomial R-

algebra on variables eij and let F → M be the R-algebra map sending eij to yij .
Then F ⊗R S → A ⊗R S is surjective, so Coker(F → A) ⊗R S is zero and hence
Coker(F → A) is zero. This proves (a).
To see (b) assume A ⊗R S is a finitely presented S-algebra. Then A is finite
type over R by (a). Choose a surjection R[x1, . . . , xn] → A with kernel I. Then
I ⊗R S → S[x1, . . . , xn] → A ⊗R S → 0 is exact. By Algebra, Lemma 10.6.3 the
kernel of S[x1, . . . , xn] → A ⊗R S is a finitely generated ideal. Thus we can find
finitely many elements y1, . . . , yt ∈ I such that the images of yi⊗ 1 in S[x1, . . . , xn]
generate the kernel of S[x1, . . . , xn] → A ⊗R S. Let I ′ ⊂ I be the ideal generated
by y1, . . . , yt. Then A′ = R[x1, . . . , xn]/I ′ is a finitely presented R-algebra with a
morphism A′ → A such that A′ ⊗R S → A⊗R S is an isomorphism. Thus A′ ∼= A
as desired.
To prove (c), recall that A is formally unramified over R if and only if the module
of relative differentials ΩA/R vanishes, see Algebra, Lemma 10.148.2 or [GD67,
Proposition 17.2.1]. Since Ω(A⊗RS)/S = ΩA/R ⊗R S, the vanishing descends by
Theorem 35.4.22.
To deduce (d) from the previous cases, recall that A is unramified over R if and
only if A is formally unramified and of finite type over R, see Algebra, Lemma
10.151.2.
To prove (e), recall that by Algebra, Lemma 10.151.8 or [GD67, Théorème 17.6.1]
the algebra A is étale over R if and only if A is flat, unramified, and of finite
presentation over R. □

Remark 35.4.27.08XF It would make things easier to have a faithfully flat ring homo-
morphism g : R→ T for which T → S⊗RT has some extra structure. For instance,
if one could ensure that T → S⊗R T is split in Rings, then it would follow that ev-
ery property of a module or algebra which is stable under base extension and which
descends along faithfully flat morphisms also descends along universally injective
morphisms. An obvious guess would be to find g for which T is not only faithfully
flat but also injective in ModR, but even for R = Z no such homomorphism can
exist.

35.5. Fpqc descent of quasi-coherent sheaves

023R The main application of flat descent for modules is the corresponding descent state-
ment for quasi-coherent sheaves with respect to fpqc-coverings.

Lemma 35.5.1.023S Let S be an affine scheme. Let U = {fi : Ui → S}i=1,...,n be a
standard fpqc covering of S, see Topologies, Definition 34.9.9. Any descent datum
on quasi-coherent sheaves for U = {Ui → S} is effective. Moreover, the functor
from the category of quasi-coherent OS-modules to the category of descent data
with respect to U is fully faithful.

Proof. This is a restatement of Proposition 35.3.9 in terms of schemes. First, note
that a descent datum ξ for quasi-coherent sheaves with respect to U is exactly the
same as a descent datum ξ′ for quasi-coherent sheaves with respect to the covering
U ′ = {

∐
i=1,...,n Ui → S}. Moreover, effectivity for ξ is the same as effectivity for
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ξ′. Hence we may assume n = 1, i.e., U = {U → S} where U and S are affine. In
this case descent data correspond to descent data on modules with respect to the
ring map

Γ(S,O) −→ Γ(U,O).
Since U → S is surjective and flat, we see that this ring map is faithfully flat. In
other words, Proposition 35.3.9 applies and we win. □

Proposition 35.5.2.023T Let S be a scheme. Let U = {φi : Ui → S} be an fpqc
covering, see Topologies, Definition 34.9.1. Any descent datum on quasi-coherent
sheaves for U = {Ui → S} is effective. Moreover, the functor from the category
of quasi-coherent OS-modules to the category of descent data with respect to U is
fully faithful.

Proof. Let S =
⋃
j∈J Vj be an affine open covering. For j, j′ ∈ J we denote

Vjj′ = Vj∩Vj′ the intersection (which need not be affine). For V ⊂ S open we denote
UV = {V ×S Ui → V }i∈I which is a fpqc-covering (Topologies, Lemma 34.9.7). By
definition of an fpqc covering, we can find for each j ∈ J a finite set Kj , a map
i : Kj → I, affine opens Ui(k),k ⊂ Ui(k), k ∈ Kj such that Vj = {Ui(k),k → Vj}k∈Kj
is a standard fpqc covering of Vj . And of course, Vj is a refinement of UVj . Picture

Vj //

��

UVj //

��

U

��
Vj Vj // S

where the top horizontal arrows are morphisms of families of morphisms with fixed
target (see Sites, Definition 7.8.1).
To prove the proposition you show successively the faithfulness, fullness, and es-
sential surjectivity of the functor from quasi-coherent sheaves to descent data.
Faithfulness. Let F , G be quasi-coherent sheaves on S and let a, b : F → G be
homomorphisms of OS-modules. Suppose φ∗

i (a) = φ∗
i (b) for all i. Pick s ∈ S.

Then s = φi(u) for some i ∈ I and u ∈ Ui. Since OS,s → OUi,u is flat, hence
faithfully flat (Algebra, Lemma 10.39.17) we see that as = bs : Fs → Gs. Hence
a = b.
Fully faithfulness. Let F , G be quasi-coherent sheaves on S and let ai : φ∗

iF → φ∗
iG

be homomorphisms of OUi-modules such that pr∗
0ai = pr∗

1aj on Ui ×U Uj . We can
pull back these morphisms to get morphisms

ak : φ∗
i(k)F|Ui(k),k −→ φ∗

i(k)G|Ui(k),k

k ∈ Kj with notation as above. Moreover, Lemma 35.2.2 assures us that these define
a morphism between (canonical) descent data on Vj . Hence, by Lemma 35.5.1, we
get correspondingly unique morphisms aj : F|Vj → G|Vj . To see that aj |Vjj′ =
aj′ |Vjj′ we use that both aj and aj′ agree with the pullback of the morphism (ai)i∈I
of (canonical) descent data to any covering refining both Vj,Vjj′ and Vj′,Vjj′ , and
using the faithfulness already shown. For example the covering Vjj′ = {Vk×SVk′ →
Vjj′}k∈Kj ,k′∈Kj′ will do.

Essential surjectivity. Let ξ = (Fi, φii′) be a descent datum for quasi-coherent
sheaves relative to the covering U . Pull back this descent datum to get descent
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data ξj for quasi-coherent sheaves relative to the coverings Vj of Vj . By Lemma
35.5.1 once again there exist quasi-coherent sheaves Fj on Vj whose associated
canonical descent datum is isomorphic to ξj . By fully faithfulness (proved above)
we see there are isomorphisms

ϕjj′ : Fj |Vjj′ −→ Fj′ |Vjj′

corresponding to the isomorphism of descent data between the pullback of ξj and ξj′

to Vjj′ . To see that these maps ϕjj′ satisfy the cocycle condition we use faithfulness
(proved above) over the triple intersections Vjj′j′′ . Hence, by Lemma 35.2.4 we see
that the sheaves Fj glue to a quasi-coherent sheaf F as desired. We still have to
verify that the canonical descent datum relative to U associated to F is isomorphic
to the descent datum we started out with. This verification is omitted. □

35.6. Galois descent for quasi-coherent sheaves

0CDQ Galois descent for quasi-coherent sheaves is just a special case of fpqc descent for
quasi-coherent sheaves. In this section we will explain how to translate from a
Galois descent to an fpqc descent and then apply earlier results to conclude.

Let k′/k be a field extension. Then {Spec(k′)→ Spec(k)} is an fpqc covering. Let
X be a scheme over k. For a k-algebra A we set XA = X ×Spec(k) Spec(A). By
Topologies, Lemma 34.9.7 we see that {Xk′ → X} is an fpqc covering. Observe
that

Xk′ ×X Xk′ = Xk′⊗kk′ and Xk′ ×X Xk′ ×X Xk′ = Xk′⊗kk′⊗kk′

Thus a descent datum for quasi-coherent sheaves with respect to {Xk′ → X} is
given by a quasi-coherent sheaf F on Xk′ , an isomorphism φ : pr∗

0F → pr∗
1F on

Xk′⊗kk′ which satisfies an obvious cocycle condition on Xk′⊗kk′⊗kk′ . We will work
out what this means in the case of a Galois extension below.

Let k′/k be a finite Galois extension with Galois group G = Gal(k′/k). Then there
are k-algebra isomorphisms

k′ ⊗k k′ −→
∏

σ∈G
k′, a⊗ b −→

∏
aσ(b)

and

k′ ⊗k k′ ⊗k k′ −→
∏

(σ,τ)∈G×G
k′, a⊗ b⊗ c −→

∏
aσ(b)σ(τ(c))

The reason for choosing here aσ(b)σ(τ(c)) and not aσ(b)τ(c) is that the formulas
below simplify but it isn’t strictly necessary. Given σ ∈ G we denote

fσ = idX × Spec(σ) : Xk′ −→ Xk′

Please keep in mind that because Spec(−) is a contravariant functor we have fστ =
fτ ◦fσ and not the other way around. Using the first isomorphism above we obtain
an identification

Xk′⊗kk′ =
∐

σ∈G
Xk′

such that pr0 corresponds to the map∐
σ∈G

Xk′

∐
id

−−−→ Xk′
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and such that pr1 corresponds to the map∐
σ∈G

Xk′

∐
fσ

−−−→ Xk′

Thus we see that a descent datum φ on F over Xk′ corresponds to a family of
isomorphisms φσ : F → f∗

σF . To work out the cocycle condition we use the
identification

Xk′⊗kk′⊗kk′ =
∐

(σ,τ)∈G×G
Xk′ .

we get from our isomorphism of algebras above. Via this identification the map
pr01 corresponds to the map∐

(σ,τ)∈G×G
Xk′ −→

∐
σ∈G

Xk′

which maps the summand with index (σ, τ) to the summand with index σ via the
identity morphism. The map pr12 corresponds to the map∐

(σ,τ)∈G×G
Xk′ −→

∐
σ∈G

Xk′

which maps the summand with index (σ, τ) to the summand with index τ via the
morphism fσ. Finally, the map pr02 corresponds to the map∐

(σ,τ)∈G×G
Xk′ −→

∐
σ∈G

Xk′

which maps the summand with index (σ, τ) to the summand with index στ via the
identity morphism. Thus the cocycle condition

pr∗
02φ = pr∗

12φ ◦ pr∗
01φ

translates into one condition for each pair (σ, τ), namely
φστ = f∗

σφτ ◦ φσ
as maps F → f∗

στF . (Everything works out beautifully; for example the target of
φσ is f∗

σF and the source of f∗
σφτ is f∗

σF as well.)

Lemma 35.6.1.0CDR Let k′/k be a (finite) Galois extension with Galois group G. Let
X be a scheme over k. The category of quasi-coherent OX -modules is equivalent
to the category of systems (F , (φσ)σ∈G) where

(1) F is a quasi-coherent module on Xk′ ,
(2) φσ : F → f∗

σF is an isomorphism of modules,
(3) φστ = f∗

σφτ ◦ φσ for all σ, τ ∈ G.
Here fσ = idX × Spec(σ) : Xk′ → Xk′ .

Proof. As seen above a datum (F , (φσ)σ∈G) as in the lemma is the same thing as
a descent datum for the fpqc covering {Xk′ → X}. Thus the lemma follows from
Proposition 35.5.2. □

A slightly more general case of the above is the following. Suppose we have a
surjective finite étale morphism X → Y and a finite group G together with a group
homomorphism Gopp → AutY (X), σ 7→ fσ such that the map

G×X −→ X ×Y X, (σ, x) 7−→ (x, fσ(x))
is an isomorphism. Then the same result as above holds.

https://stacks.math.columbia.edu/tag/0CDR
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Lemma 35.6.2.0D1V Let X → Y , G, and fσ : X → X be as above. The category of
quasi-coherent OY -modules is equivalent to the category of systems (F , (φσ)σ∈G)
where

(1) F is a quasi-coherent OX -module,
(2) φσ : F → f∗

σF is an isomorphism of modules,
(3) φστ = f∗

σφτ ◦ φσ for all σ, τ ∈ G.

Proof. Since X → Y is surjective finite étale {X → Y } is an fpqc covering. Since
G×X → X×Y X, (σ, x) 7→ (x, fσ(x)) is an isomorphism, we see that G×G×X →
X ×Y X ×Y X, (σ, τ, x) 7→ (x, fσ(x), fστ (x)) is an isomorphism too. Using these
identifications, the category of data as in the lemma is the same as the category of
descent data for quasi-coherent sheaves for the covering {x→ Y }. Thus the lemma
follows from Proposition 35.5.2. □

35.7. Descent of finiteness properties of modules

05AY In this section we prove that one can check quasi-coherent module has a certain
finiteness conditions by checking on the members of a covering.

Lemma 35.7.1.05AZ Let X be a scheme. Let F be a quasi-coherent OX -module. Let
{fi : Xi → X}i∈I be an fpqc covering such that each f∗

i F is a finite type OXi -
module. Then F is a finite type OX -module.

Proof. Omitted. For the affine case, see Algebra, Lemma 10.83.2. □

Lemma 35.7.2.09UB Let f : (X,OX)→ (Y,OY ) be a morphism of locally ringed spaces.
Let F be a sheaf of OY -modules. If

(1) f is open as a map of topological spaces,
(2) f is surjective and flat, and
(3) f∗F is of finite type,

then F is of finite type.

Proof. Let y ∈ Y be a point. Choose a point x ∈ X mapping to y. Choose an open
x ∈ U ⊂ X and elements s1, . . . , sn of f∗F(U) which generate f∗F over U . Since
f∗F = f−1F ⊗f−1OY

OX we can after shrinking U assume si =
∑
tij ⊗ aij with

tij ∈ f−1F(U) and aij ∈ OX(U). After shrinking U further we may assume that
tij comes from a section sij ∈ F(V ) for some V ⊂ Y open with f(U) ⊂ V . Let N
be the number of sections sij and consider the map

σ = (sij) : O⊕N
V → F|V

By our choice of the sections we see that f∗σ|U is surjective. Hence for every u ∈ U
the map

σf(u) ⊗OY,f(u) OX,u : O⊕N
X,u −→ Ff(u) ⊗OY,f(u) OX,u

is surjective. As f is flat, the local ring map OY,f(u) → OX,u is flat, hence faithfully
flat (Algebra, Lemma 10.39.17). Hence σf(u) is surjective. Since f is open, f(U) is
an open neighbourhood of y and the proof is done. □

Lemma 35.7.3.05B0 Let X be a scheme. Let F be a quasi-coherent OX -module. Let
{fi : Xi → X}i∈I be an fpqc covering such that each f∗

i F is an OXi-module of
finite presentation. Then F is an OX -module of finite presentation.

Proof. Omitted. For the affine case, see Algebra, Lemma 10.83.2. □

https://stacks.math.columbia.edu/tag/0D1V
https://stacks.math.columbia.edu/tag/05AZ
https://stacks.math.columbia.edu/tag/09UB
https://stacks.math.columbia.edu/tag/05B0


35.7. DESCENT OF FINITENESS PROPERTIES OF MODULES 2951

Lemma 35.7.4.082U Let X be a scheme. Let F be a quasi-coherent OX -module. Let
{fi : Xi → X}i∈I be an fpqc covering such that each f∗

i F is locally generated
by r sections as an OXi-module. Then F is locally generated by r sections as an
OX -module.

Proof. By Lemma 35.7.1 we see that F is of finite type. Hence Nakayama’s lemma
(Algebra, Lemma 10.20.1) implies that F is generated by r sections in the neigh-
bourhood of a point x ∈ X if and only if dimκ(x) Fx ⊗ κ(x) ≤ r. Choose an i and
a point xi ∈ Xi mapping to x. Then dimκ(x) Fx ⊗ κ(x) = dimκ(xi)(f∗

i F)xi ⊗ κ(xi)
which is ≤ r as f∗

i F is locally generated by r sections. □

Lemma 35.7.5.05B1 Let X be a scheme. Let F be a quasi-coherent OX -module. Let
{fi : Xi → X}i∈I be an fpqc covering such that each f∗

i F is a flat OXi-module.
Then F is a flat OX -module.

Proof. Omitted. For the affine case, see Algebra, Lemma 10.83.2. □

Lemma 35.7.6.05B2 Let X be a scheme. Let F be a quasi-coherent OX -module. Let
{fi : Xi → X}i∈I be an fpqc covering such that each f∗

i F is a finite locally free
OXi-module. Then F is a finite locally free OX -module.

Proof. This follows from the fact that a quasi-coherent sheaf is finite locally free if
and only if it is of finite presentation and flat, see Algebra, Lemma 10.78.2. Namely,
if each f∗

i F is flat and of finite presentation, then so is F by Lemmas 35.7.5 and
35.7.3. □

The definition of a locally projective quasi-coherent sheaf can be found in Proper-
ties, Section 28.21.

Lemma 35.7.7.05JZ Let X be a scheme. Let F be a quasi-coherent OX -module. Let
{fi : Xi → X}i∈I be an fpqc covering such that each f∗

i F is a locally projective
OXi-module. Then F is a locally projective OX -module.

Proof. Omitted. For Zariski coverings this is Properties, Lemma 28.21.2. For the
affine case this is Algebra, Theorem 10.95.6. □

Remark 35.7.8.05VF Being locally free is a property of quasi-coherent modules which
does not descend in the fpqc topology. Namely, suppose that R is a ring and that
M is a projective R-module which is a countable direct sum M =

⊕
Ln of rank 1

locally free modules, but not locally free, see Examples, Lemma 110.33.4. Then M
becomes free on making the faithfully flat base change

R −→
⊕

m≥1

⊕
(i1,...,im)∈Z⊕m

L⊗i1
1 ⊗R . . .⊗R L⊗im

m

But we don’t know what happens for fppf coverings. In other words, we don’t know
the answer to the following question: Suppose A→ B is a faithfully flat ring map
of finite presentation. Let M be an A-module such that M ⊗A B is free. Is M a
locally free A-module? It turns out that if A is Noetherian, then the answer is yes.
This follows from the results of [Bas63]. But in general we don’t know the answer.
If you know the answer, or have a reference, please email stacks.project@gmail.com.

We also add here two results which are related to the results above, but are of a
slightly different nature.
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Lemma 35.7.9.05B3 Let f : X → Y be a morphism of schemes. Let F be a quasi-
coherent OX -module. Assume f is a finite morphism. Then F is an OX -module of
finite type if and only if f∗F is an OY -module of finite type.

Proof. As f is finite it is affine. This reduces us to the case where f is the morphism
Spec(B) → Spec(A) given by a finite ring map A → B. Moreover, then F = M̃
is the sheaf of modules associated to the B-module M . Note that M is finite as a
B-module if and only if M is finite as an A-module, see Algebra, Lemma 10.7.2.
Combined with Properties, Lemma 28.16.1 this proves the lemma. □

Lemma 35.7.10.05B4 Let f : X → Y be a morphism of schemes. Let F be a quasi-
coherent OX -module. Assume f is finite and of finite presentation. Then F is
an OX -module of finite presentation if and only if f∗F is an OY -module of finite
presentation.

Proof. As f is finite it is affine. This reduces us to the case where f is the morphism
Spec(B) → Spec(A) given by a finite and finitely presented ring map A → B.
Moreover, then F = M̃ is the sheaf of modules associated to the B-module M . Note
that M is finitely presented as a B-module if and only if M is finitely presented as
an A-module, see Algebra, Lemma 10.36.23. Combined with Properties, Lemma
28.16.2 this proves the lemma. □

35.8. Quasi-coherent sheaves and topologies, I

03DR The results in this section say there is a natural equivalence between the category
quasi-coherent modules on a scheme S and the category of quasi-coherent modules
on many of the sites associated to S in the chapter on topologies.
Let S be a scheme. Let F be a quasi-coherent OS-module. Consider the functor
(35.8.0.1)03DS (Sch/S)opp −→ Ab, (f : T → S) 7−→ Γ(T, f∗F).

Lemma 35.8.1.03DT Let S be a scheme. Let F be a quasi-coherent OS-module. Let τ ∈
{Zariski, étale, smooth, syntomic, fppf, fpqc}. The functor defined in (35.8.0.1)
satisfies the sheaf condition with respect to any τ -covering {Ti → T}i∈I of any
scheme T over S.

Proof. For τ ∈ {Zariski, étale, smooth, syntomic, fppf} a τ -covering is also a fpqc-
covering, see the results in Topologies, Lemmas 34.4.2, 34.5.2, 34.6.2, 34.7.2, and
34.9.6. Hence it suffices to prove the theorem for a fpqc covering. Assume that
{fi : Ti → T}i∈I is an fpqc covering where f : T → S is given. Suppose that we have
a family of sections si ∈ Γ(Ti, f∗

i f
∗F) such that si|Ti×TTj = sj |Ti×TTj . We have to

find the correspond section s ∈ Γ(T, f∗F). We can reinterpret the si as a family
of maps φi : f∗

i OT = OTi → f∗
i f

∗F compatible with the canonical descent data
associated to the quasi-coherent sheaves OT and f∗F on T . Hence by Proposition
35.5.2 we see that we may (uniquely) descend these to a map OT → f∗F which
gives us our section s. □

We may in particular make the following definition.

Definition 35.8.2.03DU Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let S be a
scheme. Let Schτ be a big site containing S. Let F be a quasi-coherent OS-module.

(1) The structure sheaf of the big site (Sch/S)τ is the sheaf of rings T/S 7→
Γ(T,OT ) which is denoted O or OS .

https://stacks.math.columbia.edu/tag/05B3
https://stacks.math.columbia.edu/tag/05B4
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(2) If τ = Zariski or τ = étale the structure sheaf of the small site SZar or
Sétale is the sheaf of rings T/S 7→ Γ(T,OT ) which is denoted O or OS .

(3) The sheaf of O-modules associated to F on the big site (Sch/S)τ is the
sheaf of O-modules (f : T → S) 7→ Γ(T, f∗F) which is denoted Fa (and
often simply F).

(4) If τ = Zariski or τ = étale the sheaf of O-modules associated to F on
the small site SZar or Sétale is the sheaf of O-modules (f : T → S) 7→
Γ(T, f∗F) which is denoted Fa (and often simply F).

Note how we use the same notation Fa in each case. No confusion can really arise
from this as by definition the rule that defines the sheaf Fa is independent of the
site we choose to look at.

Remark 35.8.3.03FG In Topologies, Lemma 34.3.12 we have seen that the small Zariski
site of a scheme S is equivalent to S as a topological space in the sense that the
categories of sheaves are naturally equivalent. Now that SZar is also endowed with
a structure sheaf O we see that sheaves of modules on the ringed site (SZar,O)
agree with sheaves of modules on the ringed space (S,OS).

Remark 35.8.4.070R Let f : T → S be a morphism of schemes. Each of the morphisms
of sites fsites listed in Topologies, Section 34.11 becomes a morphism of ringed
sites. Namely, each of these morphisms of sites fsites : (Sch/T )τ → (Sch/S)τ ′ , or
fsites : (Sch/S)τ → Sτ ′ is given by the continuous functor S′/S 7→ T ×S S′/S.
Hence, given S′/S we let

f ♯sites : O(S′/S) −→ fsites,∗O(S′/S) = O(S ×S S′/T )

be the usual map pr♯S′ : O(S′) → O(T ×S S′). Similarly, the morphism if :
Sh(Tτ )→ Sh((Sch/S)τ ) for τ ∈ {Zar, étale}, see Topologies, Lemmas 34.3.13 and
34.4.13, becomes a morphism of ringed topoi because i−1

f O = O. Here are some
special cases:

(1) The morphism of big sites fbig : (Sch/X)fppf → (Sch/Y )fppf , becomes a
morphism of ringed sites

(fbig, f ♯big) : ((Sch/X)fppf ,OX) −→ ((Sch/Y )fppf ,OY )
as in Modules on Sites, Definition 18.6.1. Similarly for the big syntomic,
smooth, étale and Zariski sites.

(2) The morphism of small sites fsmall : Xétale → Yétale becomes a morphism
of ringed sites

(fsmall, f ♯small) : (Xétale,OX) −→ (Yétale,OY )
as in Modules on Sites, Definition 18.6.1. Similarly for the small Zariski
site.

Let S be a scheme. It is clear that given an O-module on (say) (Sch/S)Zar the
pullback to (say) (Sch/S)fppf is just the fppf-sheafification. To see what happens
when comparing big and small sites we have the following.

Lemma 35.8.5.070S Let S be a scheme. Denote
idτ,Zar : (Sch/S)τ → SZar, τ ∈ {Zar, étale, smooth, syntomic, fppf}
idτ,étale : (Sch/S)τ → Sétale, τ ∈ {étale, smooth, syntomic, fppf}

idsmall,étale,Zar : Sétale → SZar,

https://stacks.math.columbia.edu/tag/03FG
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the morphisms of ringed sites of Remark 35.8.4. Let F be a sheaf of OS-modules
which we view a sheaf of O-modules on SZar. Then

(1) (idτ,Zar)∗F is the τ -sheafification of the Zariski sheaf
(f : T → S) 7−→ Γ(T, f∗F)

on (Sch/S)τ , and
(2) (idsmall,étale,Zar)∗F is the étale sheafification of the Zariski sheaf

(f : T → S) 7−→ Γ(T, f∗F)
on Sétale.

Let G be a sheaf of O-modules on Sétale. Then
(3) (idτ,étale)∗G is the τ -sheafification of the étale sheaf

(f : T → S) 7−→ Γ(T, f∗
smallG)

where fsmall : Tétale → Sétale is the morphism of ringed small étale sites
of Remark 35.8.4.

Proof. Proof of (1). We first note that the result is true when τ = Zar because
in that case we have the morphism of topoi if : Sh(TZar) → Sh((Sch/S)Zar) such
that idτ,Zar ◦ if = fsmall as morphisms TZar → SZar, see Topologies, Lemmas
34.3.13 and 34.3.17. Since pullback is transitive (see Modules on Sites, Lemma
18.13.3) we see that i∗f (idτ,Zar)∗F = f∗

smallF as desired. Hence, by the remark
preceding this lemma we see that (idτ,Zar)∗F is the τ -sheafification of the presheaf
T 7→ Γ(T, f∗F).
The proof of (3) is exactly the same as the proof of (1), except that it uses Topolo-
gies, Lemmas 34.4.13 and 34.4.17. We omit the proof of (2). □

Remark 35.8.6.03FH Remark 35.8.4 and Lemma 35.8.5 have the following applications:
(1) Let S be a scheme. The construction F 7→ Fa is the pullback under

the morphism of ringed sites idτ,Zar : ((Sch/S)τ ,O) → (SZar,O) or the
morphism idsmall,étale,Zar : (Sétale,O)→ (SZar,O).

(2) Let f : X → Y be a morphism of schemes. For any of the morphisms
fsites of ringed sites of Remark 35.8.4 we have

(f∗F)a = f∗
sitesFa.

This follows from (1) and the fact that pullbacks are compatible with
compositions of morphisms of ringed sites, see Modules on Sites, Lemma
18.13.3.

Lemma 35.8.7.03DV Let S be a scheme. Let F be a quasi-coherent OS-module. Let
τ ∈ {Zariski, étale, smooth, syntomic, fppf}.

(1) The sheaf Fa is a quasi-coherent O-module on (Sch/S)τ , as defined in
Modules on Sites, Definition 18.23.1.

(2) If τ = Zariski or τ = étale, then the sheaf Fa is a quasi-coherent O-
module on SZar or Sétale as defined in Modules on Sites, Definition 18.23.1.

Proof. Let {Si → S} be a Zariski covering such that we have exact sequences⊕
k∈Ki

OSi −→
⊕

j∈Ji
OSi −→ F −→ 0

https://stacks.math.columbia.edu/tag/03FH
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for some index sets Ki and Ji. This is possible by the definition of a quasi-coherent
sheaf on a ringed space (See Modules, Definition 17.10.1).
Proof of (1). Let τ ∈ {Zariski, fppf, étale, smooth, syntomic}. It is clear that
Fa|(Sch/Si)τ also sits in an exact sequence⊕

k∈Ki
O|(Sch/Si)τ −→

⊕
j∈Ji
O|(Sch/Si)τ −→ F

a|(Sch/Si)τ −→ 0

Hence Fa is quasi-coherent by Modules on Sites, Lemma 18.23.3.
Proof of (2). Let τ = étale. It is clear that Fa|(Si)étale also sits in an exact sequence⊕

k∈Ki
O|(Si)étale −→

⊕
j∈Ji
O|(Si)étale −→ F

a|(Si)étale −→ 0

Hence Fa is quasi-coherent by Modules on Sites, Lemma 18.23.3. The case τ =
Zariski is similar (actually, it is really tautological since the corresponding ringed
topoi agree). □

Lemma 35.8.8.0GN7 Let S be a scheme. Let τ ∈ {Zariski, étale, smooth, syntomic,
fppf}. Each of the functors F 7→ Fa of Definition 35.8.2

QCoh(OS)→ QCoh((Sch/S)τ ,O) or QCoh(OS)→ QCoh(Sτ ,O)
is fully faithful.

Proof. (By Lemma 35.8.7 we do indeed get functors as indicated.) We may and do
identify OS-modules on S with modules on (SZar,OS). The functor F 7→ Fa on
quasi-coherent modules F is given by pullback by a morphism f of ringed sites, see
Remark 35.8.6. In each case the functor f∗ is given by restriction along the inclusion
functor SZar → Sτ or SZar → (Sch/S)τ (see discussion of how these morphisms of
sites are defined in Topologies, Section 34.11). Combining this with the description
of f∗F = Fa we see that f∗f

∗F = F provided that F is quasi-coherent. Then we
see that

HomO(Fa,Ga) = HomO(f∗F , f∗G) = HomOS
(F , f∗f

∗G) = HomOS
(F ,G)

as desired. □

Proposition 35.8.9.03DX Let S be a scheme. Let τ ∈ {Zariski, étale, smooth, syntomic,
fppf}.

(1) The functor F 7→ Fa defines an equivalence of categories
QCoh(OS) −→ QCoh((Sch/S)τ ,O)

between the category of quasi-coherent sheaves on S and the category of
quasi-coherent O-modules on the big τ site of S.

(2) Let τ = Zariski or τ = étale. The functor F 7→ Fa defines an equivalence
of categories

QCoh(OS) −→ QCoh(Sτ ,O)
between the category of quasi-coherent sheaves on S and the category of
quasi-coherent O-modules on the small τ site of S.

Proof. We have seen in Lemma 35.8.7 that the functor is well defined. By Lemma
35.8.8 the functor is fully faithful. To finish the proof we will show that a quasi-
coherent O-module on (Sch/S)τ gives rise to a descent datum for quasi-coherent
sheaves relative to a τ -covering of S. Having produced this descent datum we will
appeal to Proposition 35.5.2 to get the corresponding quasi-coherent sheaf on S.

https://stacks.math.columbia.edu/tag/0GN7
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Let G be a quasi-coherent O-modules on the big τ site of S. By Modules on Sites,
Definition 18.23.1 there exists a τ -covering {Si → S}i∈I of S such that each of the
restrictions G|(Sch/Si)τ has a global presentation⊕

k∈Ki
O|(Sch/Si)τ −→

⊕
j∈Ji
O|(Sch/Si)τ −→ G|(Sch/Si)τ −→ 0

for some index sets Ji and Ki. We claim that this implies that G|(Sch/Si)τ is
Fai for some quasi-coherent sheaf Fi on Si. Namely, this is clear for the direct
sums

⊕
k∈Ki O|(Sch/Si)τ and

⊕
j∈Ji O|(Sch/Si)τ . Hence we see that G|(Sch/Si)τ is a

cokernel of a map φ : Kai → Lai for some quasi-coherent sheaves Ki, Li on Si. By
the fully faithfulness of ( )a we see that φ = ϕa for some map of quasi-coherent
sheaves ϕ : Ki → Li on Si. Then it is clear that G|(Sch/Si)τ

∼= Coker(ϕ)a as claimed.
Since G lives on all of the category (Sch/S)τ we see that

(pr∗
0Fi)a ∼= G|(Sch/(Si×SSj))τ

∼= (pr∗
1F)a

as O-modules on (Sch/(Si ×S Sj))τ . Hence, using fully faithfulness again we get
canonical isomorphisms

ϕij : pr∗
0Fi −→ pr∗

1Fj
of quasi-coherent modules over Si×S Sj . We omit the verification that these satisfy
the cocycle condition. Since they do we see by effectivity of descent for quasi-
coherent sheaves and the covering {Si → S} (Proposition 35.5.2) that there exists
a quasi-coherent sheaf F on S with F|Si ∼= Fi compatible with the given descent
data. In other words we are given O-module isomorphisms

ϕi : Fa|(Sch/Si)τ −→ G|(Sch/Si)τ

which agree over Si×S Sj . Hence, since HomO(Fa,G) is a sheaf (Modules on Sites,
Lemma 18.27.1), we conclude that there is a morphism of O-modules Fa → G
recovering the isomorphisms ϕi above. Hence this is an isomorphism and we win.
The case of the sites Sétale and SZar is proved in the exact same manner. □

Lemma 35.8.10.05VG Let S be a scheme. Let τ ∈ {Zariski, étale, smooth, syntomic,
fppf}. Let P be one of the properties of modules4 defined in Modules on Sites,
Definitions 18.17.1, 18.23.1, and 18.28.1. The equivalences of categories

QCoh(OS) −→ QCoh((Sch/S)τ ,O) and QCoh(OS) −→ QCoh(Sτ ,O)
defined by the rule F 7→ Fa seen in Proposition 35.8.9 have the property

F has P ⇔ Fa has P as an O-module
except (possibly) when P is “locally free” or “coherent”. If P =“coherent” the
equivalence holds for QCoh(OS)→ QCoh(Sτ ,O) when S is locally Noetherian and
τ is Zariski or étale.

Proof. This is immediate for the global properties, i.e., those defined in Modules
on Sites, Definition 18.17.1. For the local properties we can use Modules on Sites,
Lemma 18.23.3 to translate “Fa has P” into a property on the members of a
covering of X. Hence the result follows from Lemmas 35.7.1, 35.7.3, 35.7.4, 35.7.5,

4The list is: free, finite free, generated by global sections, generated by r global sections,
generated by finitely many global sections, having a global presentation, having a global finite
presentation, locally free, finite locally free, locally generated by sections, locally generated by r

sections, finite type, of finite presentation, coherent, or flat.

https://stacks.math.columbia.edu/tag/05VG
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and 35.7.6. Being coherent for a quasi-coherent module is the same as being of
finite type over a locally Noetherian scheme (see Cohomology of Schemes, Lemma
30.9.1) hence this reduces to the case of finite type modules (details omitted). □

35.9. Cohomology of quasi-coherent modules and topologies

0GN8 In this section we prove that cohomology of quasi-coherent modules is independent
of the choice of topology.

Lemma 35.9.1.03FI Let S be a scheme. Let
(a) τ ∈ {Zariski, fppf, étale, smooth, syntomic} and C = (Sch/S)τ , or
(b) let τ = étale and C = Sétale, or
(c) let τ = Zariski and C = SZar.

Let F be an abelian sheaf on C. Let U ∈ Ob(C) be affine. Let U = {Ui → U}i=1,...,n
be a standard affine τ -covering in C. Then

(1) V = {
∐
i=1,...,n Ui → U} is a τ -covering of U ,

(2) U is a refinement of V, and
(3) the induced map on Čech complexes (Cohomology on Sites, Equation

(21.8.2.1))
Č•(V,F) −→ Č•(U ,F)

is an isomorphism of complexes.

Proof. This follows because
(
∐

i0=1,...,n
Ui0)×U . . .×U (

∐
ip=1,...,n

Uip) =
∐

i0,...,ip∈{1,...,n}
Ui0 ×U . . .×U Uip

and the fact that F(
∐
a Va) =

∏
a F(Va) since disjoint unions are τ -coverings. □

Lemma 35.9.2.03FJ Let S be a scheme. Let F be a quasi-coherent sheaf on S. Let τ ,
C, U , U be as in Lemma 35.9.1. Then there is an isomorphism of complexes

Č•(U ,Fa) ∼= s((A/R)• ⊗RM)
(see Section 35.3) where R = Γ(U,OU ), M = Γ(U,Fa) and R → A is a faithfully
flat ring map. In particular

Ȟp(U ,Fa) = 0
for all p ≥ 1.

Proof. By Lemma 35.9.1 we see that Č•(U ,Fa) is isomorphic to Č•(V,Fa) where
V = {V → U} with V =

∐
i=1,...n Ui affine also. Set A = Γ(V,OV ). Since {V → U}

is a τ -covering we see that R→ A is faithfully flat. On the other hand, by definition
of Fa we have that the degree p term Čp(V,Fa) is

Γ(V ×U . . .×U V,Fa) = Γ(Spec(A⊗R . . .⊗R A),Fa) = A⊗R . . .⊗R A⊗RM

We omit the verification that the maps of the Čech complex agree with the maps in
the complex s((A/R)• ⊗RM). The vanishing of cohomology is Lemma 35.3.6. □

Proposition 35.9.3.03DW Let S be a scheme. Let F be a quasi-coherent sheaf on S. Let
τ ∈ {Zariski, étale, smooth, syntomic, fppf}.

(1) There is a canonical isomorphism
Hq(S,F) = Hq((Sch/S)τ ,Fa).

https://stacks.math.columbia.edu/tag/03FI
https://stacks.math.columbia.edu/tag/03FJ
https://stacks.math.columbia.edu/tag/03DW
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(2) There are canonical isomorphisms
Hq(S,F) = Hq(SZar,Fa) = Hq(Sétale,Fa).

Proof. The result for q = 0 is clear from the definition of Fa. Let C = (Sch/S)τ ,
or C = Sétale, or C = SZar.
We are going to apply Cohomology on Sites, Lemma 21.10.9 with F = Fa, B ⊂
Ob(C) the set of affine schemes in C, and Cov ⊂ CovC the set of standard affine
τ -coverings. Assumption (3) of the lemma is satisfied by Lemma 35.9.2. Hence we
conclude that Hp(U,Fa) = 0 for every affine object U of C.
Next, let U ∈ Ob(C) be any separated object. Denote f : U → S the structure
morphism. Let U =

⋃
Ui be an affine open covering. We may also think of this as

a τ -covering U = {Ui → U} of U in C. Note that Ui0 ×U . . .×U Uip = Ui0 ∩ . . .∩Uip
is affine as we assumed U separated. By Cohomology on Sites, Lemma 21.10.7 and
the result above we see that

Hp(U,Fa) = Ȟp(U ,Fa) = Hp(U, f∗F)
the last equality by Cohomology of Schemes, Lemma 30.2.6. In particular, if S is
separated we can take U = S and f = idS and the proposition is proved. We suggest
the reader skip the rest of the proof (or rewrite it to give a clearer exposition).
Choose an injective resolution F → I• on S. Choose an injective resolution Fa →
J • on C. Denote J n|S the restriction of J n to opens of S; this is a sheaf on the
topological space S as open coverings are τ -coverings. We get a complex

0→ F → J 0|S → J 1|S → . . .

which is exact since its sections over any affine open U ⊂ S is exact (by the
vanishing of Hp(U,Fa), p > 0 seen above). Hence by Derived Categories, Lemma
13.18.6 there exists map of complexes J •|S → I• which in particular induces a
map

RΓ(C,Fa) = Γ(S,J •) −→ Γ(S, I•) = RΓ(S,F).
Taking cohomology gives the map Hn(C,Fa)→ Hn(S,F) which we have to prove
is an isomorphism. Let U : S =

⋃
Ui be an affine open covering which we may

think of as a τ -covering also. By the above we get a map of double complexes
Č•(U ,J ) = Č•(U ,J |S) −→ Č•(U , I).

This map induces a map of spectral sequences
τEp,q2 = Ȟp(U , Hq(Fa)) −→ Ep,q2 = Ȟp(U , Hq(F))

The first spectral sequence converges to Hp+q(C,F) and the second to Hp+q(S,F).
On the other hand, we have seen that the induced maps τEp,q2 → Ep,q2 are bijections
(as all the intersections are separated being opens in affines). Whence also the maps
Hn(C,Fa)→ Hn(S,F) are isomorphisms, and we win. □

Proposition 35.9.4.03LC Let f : T → S be a morphism of schemes.
(1) The equivalences of categories of Proposition 35.8.9 are compatible with

pullback. More precisely, we have f∗(Ga) = (f∗G)a for any quasi-coherent
sheaf G on S.

(2) The equivalences of categories of Proposition 35.8.9 part (1) are not com-
patible with pushforward in general.

https://stacks.math.columbia.edu/tag/03LC
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(3) If f is quasi-compact and quasi-separated, and τ ∈ {Zariski, étale} then
f∗ and fsmall,∗ preserve quasi-coherent sheaves and the diagram

QCoh(OT )
f∗

//

F7→Fa

��

QCoh(OS)

G7→Ga

��
QCoh(Tτ ,O)

fsmall,∗ // QCoh(Sτ ,O)

is commutative, i.e., fsmall,∗(Fa) = (f∗F)a.

Proof. Part (1) follows from the discussion in Remark 35.8.6. Part (2) is just a
warning, and can be explained in the following way: First the statement cannot be
made precise since f∗ does not transform quasi-coherent sheaves into quasi-coherent
sheaves in general. Even if this is the case for f (and any base change of f), then
the compatibility over the big sites would mean that formation of f∗F commutes
with any base change, which does not hold in general. An explicit example is the
quasi-compact open immersion j : X = A2

k \ {0} → A2
k = Y where k is a field. We

have j∗OX = OY but after base change to Spec(k) by the 0 map we see that the
pushforward is zero.

Let us prove (3) in case τ = étale. Note that f , and any base change of f , transforms
quasi-coherent sheaves into quasi-coherent sheaves, see Schemes, Lemma 26.24.1.
The equality fsmall,∗(Fa) = (f∗F)a means that for any étale morphism g : U → S
we have Γ(U, g∗f∗F) = Γ(U ×S T, (g′)∗F) where g′ : U ×S T → T is the projection.
This is true by Cohomology of Schemes, Lemma 30.5.2. □

Lemma 35.9.5.071N Let f : T → S be a quasi-compact and quasi-separated morphism
of schemes. Let F be a quasi-coherent sheaf on T . For either the étale or Zariski
topology, there are canonical isomorphisms Rifsmall,∗(Fa) = (Rif∗F)a.

Proof. We prove this for the étale topology; we omit the proof in the case of the
Zariski topology. By Cohomology of Schemes, Lemma 30.4.5 the sheaves Rif∗F
are quasi-coherent so that the assertion makes sense. The sheaf Rifsmall,∗Fa is the
sheaf associated to the presheaf

U 7−→ Hi(U ×S T,Fa)

where g : U → S is an object of Sétale, see Cohomology on Sites, Lemma 21.7.4.
By our conventions the right hand side is the étale cohomology of the restriction of
Fa to the localization Tétale/U ×S T which equals (U ×S T )étale. By Proposition
35.9.3 this is presheaf the same as the presheaf

U 7−→ Hi(U ×S T, (g′)∗F),

where g′ : U ×S T → T is the projection. If U is affine then this is the same as
H0(U,Rif ′

∗(g′)∗F), see Cohomology of Schemes, Lemma 30.4.6. By Cohomology
of Schemes, Lemma 30.5.2 this is equal to H0(U, g∗Rif∗F) which is the value of
(Rif∗F)a on U . Thus the values of the sheaves of modules Rifsmall,∗(Fa) and
(Rif∗F)a on every affine object of Sétale are canonically isomorphic which implies
they are canonically isomorphic. □

https://stacks.math.columbia.edu/tag/071N
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35.10. Quasi-coherent sheaves and topologies, II

0GN9 We continue the discussion comparing quasi-coherent modules on a scheme S with
quasi-coherent modules on any of the sites associated to S in the chapter on topolo-
gies.
Lemma 35.10.1.0GNA In Lemma 35.8.5 the morphism of ringed sites idsmall,étale,Zar :
Sétale → SZar is flat.
Proof. Let us denote ϵ = idsmall,étale,Zar and Oétale and OZar the structure sheaves
on Sétale and SZar. We have to show that Oétale is a flat ϵ−1OZar-module. Recall
that étale morphisms are open, see Morphisms, Lemma 29.36.13. It follows (from
the construction of pullback on sheaves) that ϵ−1OZar is the sheafification of the
presheaf O′ on Sétale which sends an étale morphism f : V → S to OS(f(V )). If
both V and U = f(V ) ⊂ S are affine, then V → U is an étale morphism of affines,
hence corresponds to an étale ring map. Since étale ring maps are flat, we see that
OS(U) = O′(V ) → Oétale(V ) = OV (V ) is flat. Finally, for every étale morphism
f : V → S, i.e., object of Sétale, there is an affine open covering V =

⋃
Vi such that

f(Vi) is an affine open in S for all i5. Thus the result by Modules on Sites, Lemma
18.28.4. □

Lemma 35.10.2.06VE Let S be a scheme. Let τ ∈ {Zariski, étale, smooth, syntomic,
fppf}. The functors

QCoh(OS) −→ Mod((Sch/S)τ ,O) and QCoh(OS) −→ Mod(Sτ ,O)
defined by the rule F 7→ Fa seen in Proposition 35.8.9 are

(1) fully faithful,
(2) compatible with direct sums,
(3) compatible with colimits,
(4) right exact,
(5) exact as a functor QCoh(OS)→ Mod(Sétale,O),
(6) not exact as a functor QCoh(OS)→ Mod((Sch/S)τ ,O) in general,
(7) given two quasi-coherent OS-modules F , G we have (F ⊗OS

G)a = Fa⊗O
Ga,

(8) if τ = étale or τ = Zariski, given two quasi-coherent OS-modules F , G
such that F is of finite presentation we have (HomOS

(F ,G))a = HomO(Fa,Ga)
in Mod(Sτ ,O),

(9) given two quasi-coherentOS-modules F , G we do not have (HomOS
(F ,G))a =

HomO(Fa,Ga) in Mod((Sch/S)τ ,O) in general even if F is of finite pre-
sentation, and

(10) given a short exact sequence 0→ Fa1 → E → Fa2 → 0 of O-modules then
E is quasi-coherent6, i.e., E is in the essential image of the functor.

Proof. Part (1) we saw in Proposition 35.8.9.
We have seen in Schemes, Section 26.24 that a colimit of quasi-coherent sheaves
on a scheme is a quasi-coherent sheaf. Moreover, in Remark 35.8.6 we saw that
F 7→ Fa is the pullback functor for a morphism of ringed sites, hence commutes

5Namely, for y ∈ V , we pick an affine open y ∈ V ′ ⊂ V with f(V ′) contained in an affine
open U ⊂ S. Then we pick an affine open f(y) ∈ U ′ ⊂ f(V ′). Then V ′′ = f−1(U ′) ⊂ V ′ is affine
as it is equal to U ′ ×U V ′ and f(V ′′) = U ′ is affine too.

6Warning: This is misleading. See part (6).

https://stacks.math.columbia.edu/tag/0GNA
https://stacks.math.columbia.edu/tag/06VE
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with all colimits, see Modules on Sites, Lemma 18.14.3. Thus (3) and its special
case (3) hold.
This also shows that the functor is right exact (i.e., commutes with finite colimits),
hence (4).
The functor QCoh(OS)→ QCoh(Sétale,O), F 7→ Fa is left exact because an étale
morphism is flat, see Morphisms, Lemma 29.36.12. This proves (5).
To see (6), suppose that S = Spec(Z). Then 2 : OS → OS is injective but the
associated map of O-modules on (Sch/S)τ isn’t injective because 2 : F2 → F2 isn’t
injective and Spec(F2) is an object of (Sch/S)τ .
Part (7) holds because, as mentioned above, the functor F 7→ Fa is the pullback
functor for a morphism of ringed sites and such commute with tensor products by
Modules on Sites, Lemma 18.26.2.
Part (8) is obvious if τ = Zariski because the category of O-modules on SZar is
the same as the category of OS-modules on the topological space S. If τ = étale
then (8) holds because, as mentioned above, the functor F 7→ Fa is the pullback
functor for the flat morphism of ringed sites (Sétale,O) → (SZar,OS), see Lemma
35.10.1. Pullback by flat morphisms of ringed sites commutes with taking internal
hom out of a finitely presented module by Modules on Sites, Lemma 18.31.4.
To see (9), suppose that S = Spec(Z). Let F = Coker(2 : OS → OS) and G = OS .
Then Fa = Coker(2 : O → O) and Ga = O. Hence HomO(Fa,Ga) = O[2] is equal
to the 2-torsion in O, which is not zero, see proof of (6). On the other hand, the
module HomOS

(F ,G) is zero.
Proof of (10). Let 0→ Fa1 → E → Fa2 → 0 be a short exact sequence of O-modules
with F1 and F2 quasi-coherent on S. Consider the restriction

0→ F1 → E|SZar → F2

to SZar. By Proposition 35.9.3 we see that on any affine U ⊂ S we haveH1(U,Fa1 ) =
H1(U,F1) = 0. Hence the sequence above is also exact on the right. By Schemes,
Section 26.24 we conclude that F = E|SZar is quasi-coherent. Thus we obtain a
commutative diagram

Fa1 //

��

Fa //

��

Fa2 //

��

0

0 // Fa1 // E // Fa2 // 0

To finish the proof it suffices to show that the top row is also right exact. To do
this, denote once more U = Spec(A) ⊂ S an affine open of S. We have seen above
that 0 → F1(U) → E(U) → F2(U) → 0 is exact. For any affine scheme V/U ,
V = Spec(B) the map Fa1 (V )→ E(V ) is injective. We have Fa1 (V ) = F1(U)⊗A B
by definition. The injection Fa1 (V )→ E(V ) factors as

F1(U)⊗A B → E(U)⊗A B → E(U)
Considering A-algebras B of the form B = A ⊕ M we see that F1(U) → E(U)
is universally injective (see Algebra, Definition 10.82.1). Since E(U) = F(U) we
conclude that F1 → F remains injective after any base change, or equivalently that
Fa1 → Fa is injective. □
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Lemma 35.10.3.0GNB Let S be a scheme. The category QCoh(Sétale,O) of quasi-
coherent modules on Sétale has the following properties:

(1) Any direct sum of quasi-coherent sheaves is quasi-coherent.
(2) Any colimit of quasi-coherent sheaves is quasi-coherent.
(3) The kernel and cokernel of a morphism of quasi-coherent sheaves is quasi-

coherent.
(4) Given a short exact sequence of O-modules 0 → F1 → F2 → F3 → 0 if

two out of three are quasi-coherent so is the third.
(5) Given two quasi-coherent O-modules the tensor product is quasi-coherent.
(6) Given two quasi-coherent O-modules F , G such that F is of finite presen-

tation. then the internal hom HomO(F ,G) is quasi-coherent.

Proof. The corresponding facts hold for quasi-coherent modules on the scheme S,
see Schemes, Section 26.24. The proof will be to use Lemma 35.10.2 to transfer
these truths to Sétale.

Proof of (1). Let Fi, i ∈ I be a family of objects of QCoh(Sétale,O). Write Fi = Gai
for some quasi-coherent modules Gi on S. Then

⊕
Fi = (

⊕
Gi)a by the lemma

cited and we conclude.

Proof of (2). Let I → QCoh(Sétale,O), i 7→ Fi be a diagram. Write Fi = Gai so we
get a diagram I → QCoh(OS). Then colimFi = (colimGi)a by the lemma cited
and we conclude.

Proof of (3). Let a : F → F ′ be an arrow of QCoh(Sétale,O). Write a = ba for
some map b : G → G′ of quasi-coherent modules on S. By the lemma cited we have
Ker(a) = Ker(b)a and Coker(a) = Coker(b)a and we conclude.

Proof of (4). This follows from (3) except in the case when we know F1 and F3 are
quasi-coherent. In this case write F1 = Ga1 and F3 = Ga3 with Gi quasi-coherent on
S. By Lemma 35.10.2 part (10) we conclude.

Proof of (5). Let F and F ′ be in QCoh(Sétale,O). Write F = Ga and F ′ = (G′)a
with G and G′ quasi-coherent on S. By the lemma cited we have F ⊗O F ′ =
(G ⊗OS

G′)a and we conclude.

Proof of (6). Let F and G be in QCoh(Sétale,O) with F of finite presentation.
Write F = Ha and G = (I)a with H and I quasi-coherent on S. By Lemma
35.8.10 we see that H is of finite presentation. By Lemma 35.10.2 part (8) we have
HomO(F ,G) = (HomOS

(H, I))a and we conclude. □

Lemma 35.10.4.0GNC Let S be a scheme. Let τ ∈ {Zariski, étale, smooth, syntomic,
fppf}. The category QCoh((Sch/S)τ ,O) of quasi-coherent modules on (Sch/S)τ
has the following properties:

(1) Any direct sum of quasi-coherent sheaves is quasi-coherent.
(2) Any colimit of quasi-coherent sheaves is quasi-coherent.
(3) The cokernel of a morphism of quasi-coherent sheaves is quasi-coherent.
(4) Given a short exact sequence of O-modules 0 → F1 → F2 → F3 → 0 if
F1 and F3 are quasi-coherent so is F2.

(5) Given two quasi-coherent O-modules the tensor product is quasi-coherent.
(6) Given two quasi-coherent O-modules F , G such that F is finite locally

free, the internal hom HomO(F ,G) is quasi-coherent.

https://stacks.math.columbia.edu/tag/0GNB
https://stacks.math.columbia.edu/tag/0GNC
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Proof. The corresponding facts hold for quasi-coherent modules on the scheme S,
see Schemes, Section 26.24. The proof will be to use Lemma 35.10.2 to transfer
these truths to (Sch/S)τ .

Proof of (1). Let Fi, i ∈ I be a family of objects of QCoh((Sch/S)τ ,O). Write
Fi = Gai for some quasi-coherent modules Gi on S. Then

⊕
Fi = (

⊕
Gi)a by the

lemma cited and we conclude.

Proof of (2). Let I → QCoh((Sch/S)τ ,O), i 7→ Fi be a diagram. Write Fi = Gai
so we get a diagram I → QCoh(OS). Then colimFi = (colimGi)a by the lemma
cited and we conclude.

Proof of (3). Let a : F → F ′ be an arrow of QCoh((Sch/S)τ ,O). Write a = ba for
some map b : G → G′ of quasi-coherent modules on S. By the lemma cited we have
Coker(a) = Coker(b)a (because a cokernel is a colimit) and we conclude.

Proof of (4). Write F1 = Ga1 and F3 = Ga3 with Gi quasi-coherent on S. By Lemma
35.10.2 part (10) we conclude.

Proof of (5). Let F and F ′ be in QCoh((Sch/S)τ ,O). Write F = Ga and F ′ = (G′)a
with G and G′ quasi-coherent on S. By the lemma cited we have F ⊗O F ′ =
(G ⊗OS

G′)a and we conclude.

Proof of (6). Write F = Ha for some quasi-coherent OS-module. By Lemma
35.8.10 we see that H is finite locally free. The problem is Zariski local on S
(details omitted) hence we may assume H = O⊕n

S is finite free. Then F = O⊕n

and HomO(F ,G) = G⊕n is quasi-coherent. □

Example 35.10.5.0GND Let S be a scheme. Let F and G be quasi-coherent modules
on (Sch/S)τ for one of the topologies τ considered in Lemma 35.10.4. In general
it is not the case that HomO(F ,G) is quasi-coherent even if F is of finite presen-
tation. Namely, say S = Spec(Z), F = Coker(2 : O → O), and G = O. Then
HomO(F ,G) = O[2] is equal to the 2-torsion in O, which is not quasi-coherent.

Lemma 35.10.6.0GNE Let S be a scheme.
(1) The category QCoh((Sch/S)fppf ,O) has colimits and they agree with

colimits in the categories Mod((Sch/S)Zar,O), Mod((Sch/S)étale,O), and
Mod((Sch/S)fppf ,O).

(2) Given F ,G in QCoh((Sch/S)fppf ,O) the tensor products F ⊗O G com-
puted in Mod((Sch/S)Zar,O), Mod((Sch/S)étale,O), or Mod((Sch/S)fppf ,O)
agree and the common value is an object of QCoh((Sch/S)fppf ,O).

(3) Given F ,G in QCoh((Sch/S)fppf ,O) with F finite locally free (in fppf,
or equivalently étale, or equivalently Zariski topology) the internal homs
HomO(F ,G) computed in Mod((Sch/S)Zar,O), Mod((Sch/S)étale,O), or
Mod((Sch/S)fppf ,O) agree and the common value is an object of QCoh((Sch/S)fppf ,O).

Proof. This lemma collects the results shown above in a slightly different manner.
First of all, by Lemma 35.10.4 we already know the output of the construction in (1),
(2), or (3) ends up in QCoh((Sch/S)τ ,O). It remains to show in each case that the
result is independent of the topology used. The key to this is that the equivalence
QCoh(OS) → QCoh((Sch/S)τ ,O), F 7→ Fa of Proposition 35.8.9 is given by the
same formula independent of the choice of the topology τ ∈ {Zariski, étale, fppf}.

https://stacks.math.columbia.edu/tag/0GND
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Proof of (1). Let I → QCoh((Sch/S)fppf ,O), i 7→ Fi be a diagram. Write
Fi = Gai so we get a diagram I → QCoh(OS). Then colimFi = (colimGi)a in
Mod((Sch/S)τ ,O) for τ ∈ {Zariski, étale, fppf} by Lemma 35.10.2. This proves
(1).
Proof of (2). Write F = Ha and G = (I)a with H and I quasi-coherent on S.
Then F ⊗O G = (H⊗O I)a in Mod((Sch/S)τ ,O) for τ ∈ {Zariski, étale, fppf} by
Lemma 35.10.2. This proves (2).
Proof of (3). Let F and G be in QCoh((Sch/S)fppf ,O). Write F = Ha with H
quasi-coherent on S. By Lemma 35.8.10 we have
F finite locally free in fppf topology⇔ H finite locally free on S

⇔ F finite locally free in étale topology
⇔ H finite locally free on S

⇔ F finite locally free in Zariski topology
This explains the parenthetical statement of part (3). Now, if these equivalent
conditions hold, then H is finite locally free. The construction of HomO(F ,G)
in Modules on Sites, Section 18.27 depends only on F and G as presheaves of
modules (only whether the output Hom is a sheaf depends on whether F and G are
sheaves). □

35.11. Quasi-coherent modules and affines

0GZT Let S be a scheme7. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Recall that
(Aff/S)τ is the full subcategory of (Sch/S)τ whose objects are affine turned into
a site by declaring the coverings to be the standard τ -coverings. By Topologies,
Lemmas 34.3.10, 34.4.11, 34.5.9, 34.6.9, and 34.7.11 we have an equivalence of topoi
g : Sh((Aff/S)τ ) → Sh((Sch/S)τ ) whose pullback functor is given by restriction.
Recalling that O denotes the structure sheaf on (Sch/S)τ , let us temporarily and
pedantically denote OAff the restriction of O to (Aff/S)τ . Then we obtain an
equivalence
(35.11.0.1)0GZU (Sh((Aff/S)τ ),OAff) −→ (Sh((Sch/S)τ ),O)
of ringed topoi. Having said this we can compare quasi-coherent modules as well.
Lemma 35.11.1.0GZV Let S be a scheme. Let F be a presheaf of OAff-modules on
(Aff/S)fppf . The following are equivalent

(1) for every morphism U → U ′ of (Aff/S)fppf the map F(U ′)⊗O(U ′)O(U)→
F(U) is an isomorphism,

(2) F is a sheaf on (Aff/S)Zar and a quasi-coherent module on the ringed site
((Aff/S)Zar,OAff) in the sense of Modules on Sites, Definition 18.23.1,

(3) same as in (3) for the étale topology,
(4) same as in (3) for the smooth topology,
(5) same as in (3) for the syntomic topology,
(6) same as in (3) for the fppf topology,
(7) F corresponds to a quasi-coherent module on (Sch/S)Zar, (Sch/S)étale,

(Sch/S)smooth, (Sch/S)syntomic, or (Sch/S)fppf via the equivalence (35.11.0.1),

7In this section, as in Topologies, Section 34.11, we choose our sites (Sch/S)τ to have the
same underlying category for τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Then also the sites
(Aff/S)τ have the same underlying category.
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(8) F comes from a unique quasi-coherent OS-module G by the procedure
described in Section 35.8.

Proof. Since the notion of a quasi-coherent module is intrinsic (Modules on Sites,
Lemma 18.23.2) we see that the equivalence (35.11.0.1) induces an equivalence
between categories of quasi-coherent modules. Proposition 35.8.9 says the topology
we use to study quasi-coherent modules on Sch/S does not matter and it also tells
us that (8) is the same as (7). Hence we see that (2) – (8) are all equivalent.
Assume the equivalent conditions (2) – (8) hold and let G be as in (8). Let h :
U → U ′ → S be a morphism of Aff/S. Denote f : U → S and f ′ : U ′ → S
the structure morphisms, so that f = f ′ ◦ h. We have F(U ′) = Γ(U ′, (f ′)∗G) and
F(U) = Γ(U, f∗G) = Γ(U, h∗(f ′)∗G). Hence (1) holds by Schemes, Lemma 26.7.3.
Assume (1) holds. To finish the proof it suffices to prove (2). Let U be an object
of (Aff/S)Zar. Say U = Spec(R). A standard open covering U = U1 ∪ . . . ∪ Un is
given by Ui = D(fi) for some elements f1, . . . , fn ∈ R generating the unit ideal of
R. By property (1) we see that

F(Ui) = F(U)⊗R Rfi = F(U)fi
and

F(Ui ∩ Uj) = F(U)⊗R Rfifj = F(U)fifj
Thus we conclude from Algebra, Lemma 10.24.1 that F is a sheaf on (Aff/S)Zar.
Choose a presentation⊕

k∈K
R −→

⊕
l∈L

R −→ F(U) −→ 0

by free R-modules. By property (1) and the right exactness of tensor product we
see that for every morphism U ′ → U in (Aff/S)Zar we obtain a presentation⊕

k∈K
OAff (U ′) −→

⊕
l∈L
OAff (U ′) −→ F(U ′) −→ 0

In other words, we see that the restriction of F to the localized category (Aff/S)Zar/U
has a presentation⊕

k∈K
OAff |(Aff/S)Zar/U −→

⊕
l∈L
OAff |(Aff/S)Zar/U −→ F|(Aff/S)Zar/U −→ 0

With apologies for the horrible notation, this finishes the proof. □

We continue the discussion started in the introduction to this section. Let τ ∈
{Zariski, étale}. Recall that Saffine,τ is the full subcategory of Sτ whose objects
are affine turned into a site by declaring the coverings to be the standard τ coverings.
See Topologies, Definitions 34.3.7 and 34.4.8. By Topologies, Lemmas 34.3.11, resp.
34.4.12 we have an equivalence of topoi g : Sh(Saffine,τ )→ Sh(Sτ ), whose pullback
functor is given by restriction. Recalling that O denotes the structure sheaf on Sτ
let us temporarily and pedantically denote Oaffine the restriction of O to Saffine,τ .
Then we obtain an equivalence
(35.11.1.1)0GZW (Sh(Saffine,τ ),Oaffine) −→ (Sh(Sτ ),O)
of ringed topoi. Having said this we can compare quasi-coherent modules as well.

Lemma 35.11.2.0GZX Let S be a scheme. Let τ ∈ {Zariski, étale}. Let F be a presheaf
of Oaffine-modules on Saffine,τ . The following are equivalent
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(1) for every morphism U → U ′ of Saffine,τ the map F(U ′) ⊗O(U ′) O(U) →
F(U) is an isomorphism,

(2) F is a sheaf on Saffine,τ and a quasi-coherent module on the ringed site
(Saffine,τ ,Oaffine) in the sense of Modules on Sites, Definition 18.23.1,

(3) F corresponds to a quasi-coherent module on Sτ via the equivalence
(35.11.1.1),

(4) F comes from a unique quasi-coherent OS-module G by the procedure
described in Section 35.8.

Proof. Let us prove this in the case of the étale topology.
Assume (1) holds. To show that F is a sheaf, let U = {Ui → U}i=1,...,n be a
covering of Saffine,étale. The sheaf condition for F and U , by our assumption on
F . reduces to showing that

0→ F(U)→
∏
F(U)⊗O(U) O(Ui)→

∏
F(U)⊗O(U) O(Ui ×U Uj)

is exact. This is true because O(U)→
∏
O(Ui) is faithfully flat (by Lemma 35.9.1

and the fact that coverings in Saffine,étale are standard étale coverings) and we
may apply Lemma 35.3.6. Next, we show that F is quasi-coherent on Saffine,étale.
Namely, for U in Saffine,étale, set R = O(U) and choose a presentation⊕

k∈K
R −→

⊕
l∈L

R −→ F(U) −→ 0

by free R-modules. By property (1) and the right exactness of tensor product we
see that for every morphism U ′ → U in Saffine,étale we obtain a presentation⊕

k∈K
O(U ′) −→

⊕
l∈L
O(U ′) −→ F(U ′) −→ 0

In other words, we see that the restriction of F to the localized category Saffine,etale/U
has a presentation⊕

k∈K
Oaffine|Saffine,étale/U −→

⊕
l∈L
Oaffine|Saffine,étale/U −→ F|Saffine,étale/U −→ 0

as required to show that F is quasi-coherent. With apologies for the horrible
notation, this finishes the proof that (1) implies (2).
Since the notion of a quasi-coherent module is intrinsic (Modules on Sites, Lemma
18.23.2) we see that the equivalence (35.11.1.1) induces an equivalence between
categories of quasi-coherent modules. Thus we have the equivalence of (2) and (3).
The equivalence of (3) and (4) follows from Proposition 35.8.9.
Let us assume (4) and prove (1). Namely, let G be as in (4). Let h : U → U ′ → S
be a morphism of Saffine,étale. Denote f : U → S and f ′ : U ′ → S the structure
morphisms, so that f = f ′ ◦ h. We have F(U ′) = Γ(U ′, (f ′)∗G) and F(U) =
Γ(U, f∗G) = Γ(U, h∗(f ′)∗G). Hence (1) holds by Schemes, Lemma 26.7.3.
We omit the proof in the case of the Zariski topology. □

35.12. Parasitic modules

07AF Parasitic modules are those which are zero when restricted to schemes flat over the
base scheme. Here is the formal definition.

Definition 35.12.1.06ZL Let S be a scheme. Let τ ∈ {Zar, étale, smooth, syntomic, fppf}.
Let F be a presheaf of O-modules on (Sch/S)τ .
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(1) F is called parasitic8 if for every flat morphism U → S we have F(U) = 0.
(2) F is called parasitic for the τ -topology if for every τ -covering {Ui → S}i∈I

we have F(Ui) = 0 for all i.

If τ = fppf this means that F|UZar = 0 whenever U → S is flat and locally of
finite presentation; similar for the other cases.

Lemma 35.12.2.0755 Let S be a scheme. Let τ ∈ {Zar, étale, smooth, syntomic, fppf}.
Let G be a presheaf of O-modules on (Sch/S)τ .

(1) If G is parasitic for the τ -topology, then Hp
τ (U,G) = 0 for every U open

in S, resp. étale over S, resp. smooth over S, resp. syntomic over S, resp.
flat and locally of finite presentation over S.

(2) If G is parasitic then Hp
τ (U,G) = 0 for every U flat over S.

Proof. Proof in case τ = fppf ; the other cases are proved in the exact same
way. The assumption means that G(U) = 0 for any U → S flat and locally of
finite presentation. Apply Cohomology on Sites, Lemma 21.10.9 to the subset
B ⊂ Ob((Sch/S)fppf ) consisting of U → S flat and locally of finite presentation
and the collection Cov of all fppf coverings of elements of B. □

Lemma 35.12.3.07AG Let f : T → S be a morphism of schemes. For any parasitic
O-module on (Sch/T )τ the pushforward f∗F and the higher direct images Rif∗F
are parasitic O-modules on (Sch/S)τ .

Proof. Recall that Rif∗F is the sheaf associated to the presheaf
U 7→ Hi((Sch/U ×S T )τ ,F)

see Cohomology on Sites, Lemma 21.7.4. If U → S is flat, then U ×S T → T is
flat as a base change. Hence the displayed group is zero by Lemma 35.12.2. If
{Ui → U} is a τ -covering then Ui ×S T → T is also flat. Hence it is clear that the
sheafification of the displayed presheaf is zero on schemes U flat over S. □

Lemma 35.12.4.0756 Let S be a scheme. Let τ ∈ {Zar, étale}. Let G be a sheaf of
O-modules on (Sch/S)fppf such that

(1) G|Sτ is quasi-coherent, and
(2) for every flat, locally finitely presented morphism g : U → S the canonical

map g∗
τ,small(G|Sτ )→ G|Uτ is an isomorphism.

Then Hp(U,G) = Hp(U,G|Uτ ) for every U flat and locally of finite presentation
over S.

Proof. Let F be the pullback of G|Sτ to the big fppf site (Sch/S)fppf . Note that
F is quasi-coherent. There is a canonical comparison map φ : F → G which by
assumptions (1) and (2) induces an isomorphism F|Uτ → G|Uτ for all g : U → S
flat and locally of finite presentation. Hence in the short exact sequences

0→ Ker(φ)→ F → Im(φ)→ 0
and

0→ Im(φ)→ G → Coker(φ)→ 0
the sheaves Ker(φ) and Coker(φ) are parasitic for the fppf topology. By Lemma
35.12.2 we conclude that Hp(U,F) → Hp(U,G) is an isomorphism for g : U → S

8This may be nonstandard notation.
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flat and locally of finite presentation. Since the result holds for F by Proposition
35.9.3 we win. □

35.13. Fpqc coverings are universal effective epimorphisms

023P We apply the material above to prove an interesting result, namely Lemma 35.13.7.
By Sites, Section 7.12 this lemma implies that the representable presheaves on any
of the sites (Sch/S)τ are sheaves for τ ∈ {Zariski, fppf, étale, smooth, syntomic}.
First we prove a helper lemma.

Lemma 35.13.1.02KI For a scheme X denote |X| the underlying set. Let f : X → S be
a morphism of schemes. Then

|X ×S X| → |X| ×|S| |X|
is surjective.

Proof. Follows immediately from the description of points on the fibre product in
Schemes, Lemma 26.17.5. □

Lemma 35.13.2.0EUA Let {fi : Xi → X}i∈I be a family of morphisms of affine schemes.
The following are equivalent

(1) for any quasi-coherent OX -module F we have

Γ(X,F) = Equalizer
( ∏

i∈I Γ(Xi, f
∗
i F) //

//
∏
i,j∈I Γ(Xi ×X Xj , (fi × fj)∗F)

)
(2) {fi : Xi → X}i∈I is a universal effective epimorphism (Sites, Definition

7.12.1) in the category of affine schemes.

Proof. Assume (2) holds and let F be a quasi-coherent OX -module. Consider the
scheme (Constructions, Section 27.4)

X ′ = Spec
X

(OX ⊕F)
where OX ⊕F is an OX -algebra with multiplication (f, s)(f ′, s′) = (ff ′, fs′ +f ′s).
If si ∈ Γ(Xi, f

∗
i F) is a section, then si determines a unique element of

Γ(X ′ ×X Xi,OX′×XXi) = Γ(Xi,OXi)⊕ Γ(Xi, f
∗
i F)

Proof of equality omitted. If (si)i∈I is in the equalizer of (1), then, using the
equality

Mor(T,A1
Z) = Γ(T,OT )

which holds for any scheme T , we see that these sections define a family of mor-
phisms hi : X ′×X Xi → A1

Z with hi ◦pr1 = hj ◦pr2 as morphisms (X ′×X Xi)×X′

(X ′×XXj)→ A1
Z. Since we’ve assume (2) we obtain a morphism h : X ′ → A1

Z com-
patible with the morphisms hi which in turn determines an element s ∈ Γ(X,F).
We omit the verification that s maps to si in Γ(Xi, f

∗
i F).

Assume (1). Let T be an affine scheme and let hi : Xi → T be a family of morphisms
such that hi ◦ pr1 = hj ◦ pr2 on Xi ×X Xj for all i, j ∈ I. Then∏

h♯i : Γ(T,OT )→
∏

Γ(Xi,OXi)

maps into the equalizer and we find that we get a ring map Γ(T,OT )→ Γ(X,OX)
by the assumption of the lemma for F = OX . This ring map corresponds to a
morphism h : X → T such that hi = h ◦ fi. Hence our family is an effective
epimorphism.
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Let p : Y → X be a morphism of affines. We will show the base changes gi : Yi → Y
of fi form an effective epimorphism by applying the result of the previous paragraph.
Namely, if G is a quasi-coherent OY -module, then

Γ(Y,G) = Γ(X, p∗G), Γ(Yi, g∗
i G) = Γ(X, f∗

i p∗G),
and

Γ(Yi ×Y Yj , (gi × gj)∗G) = Γ(X, (fi × fj)∗p∗G)
by the trivial base change formula (Cohomology of Schemes, Lemma 30.5.1). Thus
we see property (1) lemma holds for the family gi. □

Lemma 35.13.3.0EUB Let {fi : Xi → X}i∈I be a family of morphisms of schemes.
(1) If the family is universal effective epimorphism in the category of schemes,

then
∐
fi is surjective.

(2) If X and Xi are affine and the family is a universal effective epimorphism
in the category of affine schemes, then

∐
fi is surjective.

Proof. Omitted. Hint: perform base change by Spec(κ(x)) → X to see that any
x ∈ X has to be in the image. □

Lemma 35.13.4.0EUC Let {fi : Xi → X}i∈I be a family of morphisms of schemes. If
for every morphism Y → X with Y affine the family of base changes gi : Yi → Y
forms an effective epimorphism, then the family of fi forms a universal effective
epimorphism in the category of schemes.

Proof. Let Y → X be a morphism of schemes. We have to show that the base
changes gi : Yi → Y form an effective epimorphism. To do this, assume given
a scheme T and morphisms hi : Yi → T with hi ◦ pr1 = hj ◦ pr2 on Yi ×Y Yj .
Choose an affine open covering Y =

⋃
Vα. Set Vα,i equal to the inverse image of

Vα in Yi. Then we see that Vα,i → Vα is the base change of fi by Vα → X. Thus
by assumption the family of restrictions hi|Vα,i come from a morphism of schemes
hα : Vα → T . We leave it to the reader to show that these agree on overlaps and
define the desired morphism Y → T . See discussion in Schemes, Section 26.14. □

Lemma 35.13.5.0EUD Let {fi : Xi → X}i∈I be a family of morphisms of affine schemes.
Assume the equivalent assumption of Lemma 35.13.2 hold and that moreover for
any morphism of affines Y → X the map∐

Xi ×X Y −→ Y

is a submersive map of topological spaces (Topology, Definition 5.6.3). Then our
family of morphisms is a universal effective epimorphism in the category of schemes.

Proof. By Lemma 35.13.4 it suffices to base change our family of morphisms by
Y → X with Y affine. Set Yi = Xi ×X Y . Let T be a scheme and let hi : Yi → Y
be a family of morphisms such that hi ◦ pr1 = hj ◦ pr2 on Yi ×Y Yj . Note that
Y as a set is the coequalizer of the two maps from

∐
Yi ×Y Yj to

∐
Yi. Namely,

surjectivity by the affine case of Lemma 35.13.3 and injectivity by Lemma 35.13.1.
Hence there is a set map of underlying sets h : Y → T compatible with the maps
hi. By the second condition of the lemma we see that h is continuous! Thus if
y ∈ Y and U ⊂ T is an affine open neighbourhood of h(y), then we can find an
affine open V ⊂ Y such that h(V ) ⊂ U . Setting Vi = Yi ×Y V = Xi ×X V we can
use the result proved in Lemma 35.13.2 to see that h|V : V → U ⊂ T comes from a
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unique morphism of affine schemes hV : V → U agreeing with hi|Vi as morphisms of
schemes for all i. Glueing these hV (see Schemes, Section 26.14) gives a morphism
Y → T as desired. □

Lemma 35.13.6.03N0 Let {fi : Ti → T}i∈I be a fpqc covering. Suppose that for each i we
have an open subset Wi ⊂ Ti such that for all i, j ∈ I we have pr−1

0 (Wi) = pr−1
1 (Wj)

as open subsets of Ti ×T Tj . Then there exists a unique open subset W ⊂ T such
that Wi = f−1

i (W ) for each i.

Proof. Apply Lemma 35.13.1 to the map
∐
i∈I Ti → T . It implies there exists a

subset W ⊂ T such that Wi = f−1
i (W ) for each i, namely W =

⋃
fi(Wi). To see

that W is open we may work Zariski locally on T . Hence we may assume that T is
affine. Using Topologies, Definition 34.9.1 we may choose a standard fpqc covering
{gj : Vj → T}j∈J which refines {Ti → T}i∈I . Let α : J → I and hj : Vj → Tα(j)
be as in Sites, Definition 7.8.1. Then g−1

j (W ) = h−1
j (Wα(j)). Thus we may assume

{fi : Ti → T} is a standard fpqc covering. In this case we may apply Morphisms,
Lemma 29.25.12 to the morphism

∐
Ti → T to conclude that W is open. □

Lemma 35.13.7.023Q Let {Ti → T} be an fpqc covering, see Topologies, Definition
34.9.1. Then {Ti → T} is a universal effective epimorphism in the category of
schemes, see Sites, Definition 7.12.1. In other words, every representable functor
on the category of schemes satisfies the sheaf condition for the fpqc topology, see
Topologies, Definition 34.9.12.

Proof. Let S be a scheme. We have to show the following: Given morphisms
φi : Ti → S such that φi|Ti×TTj = φj |Ti×TTj there exists a unique morphism
T → S which restricts to φi on each Ti. In other words, we have to show that the
functor hS = MorSch(−, S) satisfies the sheaf property for the fpqc topology.
If {Ti → T} is a Zariski covering, then this follows from Schemes, Lemma 26.14.1.
Thus Topologies, Lemma 34.9.13 reduces us to the case of a covering {X → Y }
given by a single surjective flat morphism of affines.
First proof. By Lemma 35.8.1 we have the sheaf condition for quasi-coherent mod-
ules for {X → Y }. By Lemma 35.13.6 the morphism X → Y is universally sub-
mersive. Hence we may apply Lemma 35.13.5 to see that {X → Y } is a universal
effective epimorphism.
Second proof. Let R → A be the faithfully flat ring map corresponding to our
surjective flat morphism π : X → Y . Let f : X → S be a morphism such that
f ◦ pr1 = f ◦ pr2 as morphisms X ×Y X = Spec(A⊗R A)→ S. By Lemma 35.13.1
we see that as a map on the underlying sets f is of the form f = g ◦ π for some
(set theoretic) map g : Spec(R)→ S. By Morphisms, Lemma 29.25.12 and the fact
that f is continuous we see that g is continuous.
Pick y ∈ Y = Spec(R). Choose U ⊂ S affine open containing g(y). Say U =
Spec(B). By the above we may choose an r ∈ R such that y ∈ D(r) ⊂ g−1(U).
The restriction of f to π−1(D(r)) into U corresponds to a ring map B → Ar. The
two induced ring maps B → Ar ⊗Rr Ar = (A ⊗R A)r are equal by assumption on
f . Note that Rr → Ar is faithfully flat. By Lemma 35.3.6 the equalizer of the two
arrows Ar → Ar⊗Rr Ar is Rr. We conclude that B → Ar factors uniquely through
a map B → Rr. This map in turn gives a morphism of schemes D(r) → U → S,
see Schemes, Lemma 26.6.4.
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What have we proved so far? We have shown that for any prime p ⊂ R, there
exists a standard affine open D(r) ⊂ Spec(R) such that the morphism f |π−1(D(r)) :
π−1(D(r))→ S factors uniquely through some morphism of schemes D(r)→ S. We
omit the verification that these morphisms glue to the desired morphism Spec(R)→
S. □

Lemma 35.13.8.0BMN Consider schemes X,Y, Z and morphisms a, b : X → Y and a
morphism c : Y → Z with c ◦ a = c ◦ b. Set d = c ◦ a = c ◦ b. If there exists an fpqc
covering {Zi → Z} such that

(1) for all i the morphism Y ×c,Z Zi → Zi is the coequalizer of (a, 1) : X×d,Z
Zi → Y ×c,Z Zi and (b, 1) : X ×d,Z Zi → Y ×c,Z Zi, and

(2) for all i and i′ the morphism Y ×c,Z (Zi ×Z Zi′) → (Zi ×Z Zi′) is the
coequalizer of (a, 1) : X ×d,Z (Zi ×Z Zi′) → Y ×c,Z (Zi ×Z Zi′) and
(b, 1) : X ×d,Z (Zi ×Z Zi′)→ Y ×c,Z (Zi ×Z Zi′)

then c is the coequalizer of a and b.

Proof. Namely, for a scheme T a morphism Z → T is the same thing as a collection
of morphism Zi → T which agree on overlaps by Lemma 35.13.7. □

35.14. Descent of finiteness and smoothness properties of morphisms

02KJ In this section we show that several properties of morphisms (being smooth, locally
of finite presentation, and so on) descend under faithfully flat morphisms. We start
with an algebraic version. (The “Noetherian” reader should consult Lemma 35.14.2
instead of the next lemma.)

Lemma 35.14.1.02KK Let R → A → B be ring maps. Assume R → B is of finite
presentation and A → B faithfully flat and of finite presentation. Then R → A is
of finite presentation.

Proof. Consider the algebra C = B ⊗A B together with the pair of maps p, q :
B → C given by p(b) = b ⊗ 1 and q(b) = 1 ⊗ b. Of course the two compositions
A→ B → C are the same. Note that as p : B → C is flat and of finite presentation
(base change of A → B), the ring map R → C is of finite presentation (as the
composite of R→ B → C).
We are going to use the criterion Algebra, Lemma 10.127.3 to show that R→ A is
of finite presentation. Let S be any R-algebra, and suppose that S = colimλ∈Λ Sλ
is written as a directed colimit of R-algebras. Let A → S be an R-algebra homo-
morphism. We have to show that A → S factors through one of the Sλ. Consider
the rings B′ = S ⊗A B and C ′ = S ⊗A C = B′ ⊗S B′. As B is faithfully flat of
finite presentation over A, also B′ is faithfully flat of finite presentation over S. By
Algebra, Lemma 10.168.1 part (2) applied to the pair (S → B′, B′) and the system
(Sλ) there exists a λ0 ∈ Λ and a flat, finitely presented Sλ0 -algebra Bλ0 such that
B′ = S ⊗Sλ0

Bλ0 . For λ ≥ λ0 set Bλ = Sλ ⊗Sλ0
Bλ0 and Cλ = Bλ ⊗Sλ Bλ.

We interrupt the flow of the argument to show that Sλ → Bλ is faithfully flat for λ
large enough. (This should really be a separate lemma somewhere else, maybe in the
chapter on limits.) Since Spec(Bλ0) → Spec(Sλ0) is flat and of finite presentation
it is open (see Morphisms, Lemma 29.25.10). Let I ⊂ Sλ0 be an ideal such that
V (I) ⊂ Spec(Sλ0) is the complement of the image. Note that formation of the
image commutes with base change. Hence, since Spec(B′)→ Spec(S) is surjective,
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and B′ = Bλ0⊗Sλ0
S we see that IS = S. Thus for some λ ≥ λ0 we have ISλ = Sλ.

For this and all greater λ the morphism Spec(Bλ)→ Spec(Sλ) is surjective.
By analogy with the notation in the first paragraph of the proof denote pλ, qλ :
Bλ → Cλ the two canonical maps. ThenB′ = colimλ≥λ0 Bλ and C ′ = colimλ≥λ0 Cλ.
Since B and C are finitely presented over R there exist (by Algebra, Lemma 10.127.3
applied several times) a λ ≥ λ0 and an R-algebra maps B → Bλ, C → Cλ such
that the diagram

C // Cλ

B //

p

OO

q

OO

Bλ

pλ

OO
qλ

OO

is commutative. OK, and this means that A → B → Bλ maps into the equalizer
of pλ and qλ. By Lemma 35.3.6 we see that Sλ is the equalizer of pλ and qλ. Thus
we get the desired ring map A→ Sλ and we win. □

Here is an easier version of this dealing with the property of being of finite type.

Lemma 35.14.2.0367 Let R → A → B be ring maps. Assume R → B is of finite type
and A→ B faithfully flat and of finite presentation. Then R→ A is of finite type.

Proof. By Algebra, Lemma 10.168.2 there exists a commutative diagram
R // A0

��

// B0

��
R // A // B

with R → A0 of finite presentation, A0 → B0 faithfully flat of finite presentation
and B = A⊗A0 B0. Since R→ B is of finite type by assumption, we may add some
elements to A0 and assume that the map B0 → B is surjective! In this case, since
A0 → B0 is faithfully flat, we see that as

(A0 → A)⊗A0 B0 ∼= (B0 → B)
is surjective, also A0 → A is surjective. Hence we win. □

Lemma 35.14.3.02KL [DG67, IV, 17.7.5
(i) and (ii)].

Let
X

f
//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that f is surjective,
flat and locally of finite presentation and assume that p is locally of finite presen-
tation (resp. locally of finite type). Then q is locally of finite presentation (resp.
locally of finite type).

Proof. The problem is local on S and Y . Hence we may assume that S and Y
are affine. Since f is flat and locally of finite presentation, we see that f is open
(Morphisms, Lemma 29.25.10). Hence, since Y is quasi-compact, there exist finitely
many affine opens Xi ⊂ X such that Y =

⋃
f(Xi). Clearly we may replace X by∐

Xi, and hence we may assume X is affine as well. In this case the lemma is
equivalent to Lemma 35.14.1 (resp. Lemma 35.14.2) above. □
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We use this to improve some of the results on morphisms obtained earlier.

Lemma 35.14.4.02KM Let
X

f
//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that
(1) f is surjective, and syntomic (resp. smooth, resp. étale),
(2) p is syntomic (resp. smooth, resp. étale).

Then q is syntomic (resp. smooth, resp. étale).

Proof. Combine Morphisms, Lemmas 29.30.16, 29.34.19, and 29.36.19 with Lemma
35.14.3 above. □

Actually we can strengthen this result as follows.

Lemma 35.14.5.05B5 Let
X

f
//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that
(1) f is surjective, flat, and locally of finite presentation,
(2) p is smooth (resp. étale).

Then q is smooth (resp. étale).

Proof. Assume (1) and that p is smooth. By Lemma 35.14.3 we see that q is locally
of finite presentation. By Morphisms, Lemma 29.25.13 we see that q is flat. Hence
now it suffices to show that the fibres of q are smooth, see Morphisms, Lemma
29.34.3. Apply Varieties, Lemma 33.25.9 to the flat surjective morphisms Xs → Ys
for s ∈ S to conclude. We omit the proof of the étale case. □

Remark 35.14.6.05B6 With the assumptions (1) and p smooth in Lemma 35.14.5 it is not
automatically the case that X → Y is smooth. A counter example is S = Spec(k),
X = Spec(k[s]), Y = Spec(k[t]) and f given by t 7→ s2. But see also Lemma 35.14.7
for some information on the structure of f .

Lemma 35.14.7.05B7 Let
X

f
//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that
(1) f is surjective, flat, and locally of finite presentation,
(2) p is syntomic.

Then both q and f are syntomic.
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Proof. By Lemma 35.14.3 we see that q is of finite presentation. By Morphisms,
Lemma 29.25.13 we see that q is flat. By Morphisms, Lemma 29.30.10 it now suffices
to show that the local rings of the fibres of Y → S and the fibres of X → Y are
local complete intersection rings. To do this we may take the fibre of X → Y → S
at a point s ∈ S, i.e., we may assume S is the spectrum of a field. Pick a point
x ∈ X with image y ∈ Y and consider the ring map

OY,y −→ OX,x
This is a flat local homomorphism of local Noetherian rings. The local ring OX,x
is a complete intersection. Thus may use Avramov’s result, see Divided Power
Algebra, Lemma 23.8.9, to conclude that both OY,y and OX,x/myOX,x are complete
intersection rings. □

The following type of lemma is occasionally useful.

Lemma 35.14.8.06NB Let X → Y → Z be morphism of schemes. Let P be one of the
following properties of morphisms of schemes: flat, locally finite type, locally finite
presentation. Assume that X → Z has P and that {X → Y } can be refined by an
fppf covering of Y . Then Y → Z is P .

Proof. Let Spec(C) ⊂ Z be an affine open and let Spec(B) ⊂ Y be an affine open
which maps into Spec(C). The assumption on X → Y implies we can find a stan-
dard affine fppf covering {Spec(Bj)→ Spec(B)} and lifts xj : Spec(Bj)→ X. Since
Spec(Bj) is quasi-compact we can find finitely many affine opens Spec(Ai) ⊂ X
lying over Spec(B) such that the image of each xj is contained in the union⋃

Spec(Ai). Hence after replacing each Spec(Bj) by a standard affine Zariski cov-
erings of itself we may assume we have a standard affine fppf covering {Spec(Bi)→
Spec(B)} such that each Spec(Bi)→ Y factors through an affine open Spec(Ai) ⊂
X lying over Spec(B). In other words, we have ring maps C → B → Ai → Bi for
each i. Note that we can also consider

C → B → A =
∏

Ai → B′ =
∏

Bi

and that the ring map B →
∏
Bi is faithfully flat and of finite presentation.

The case P = flat. In this case we know that C → A is flat and we have to
prove that C → B is flat. Suppose that N → N ′ → N ′′ is an exact sequence of
C-modules. We want to show that N ⊗C B → N ′ ⊗C B → N ′′ ⊗C B is exact. Let
H be its cohomology and let H ′ be the cohomology of N ⊗C B′ → N ′ ⊗C B′ →
N ′′ ⊗C B′. As B → B′ is flat we know that H ′ = H ⊗B B′. On the other hand
N ⊗C A → N ′ ⊗C A → N ′′ ⊗C A is exact hence has zero cohomology. Hence the
map H → H ′ is zero (as it factors through the zero module). Thus H ′ = 0. As
B → B′ is faithfully flat we conclude that H = 0 as desired.
The case P = locally finite type. In this case we know that C → A is of finite
type and we have to prove that C → B is of finite type. Because B → B′ is of
finite presentation (hence of finite type) we see that A → B′ is of finite type, see
Algebra, Lemma 10.6.2. Therefore C → B′ is of finite type and we conclude by
Lemma 35.14.2.
The case P = locally finite presentation. In this case we know that C → A is
of finite presentation and we have to prove that C → B is of finite presentation.
Because B → B′ is of finite presentation and B → A of finite type we see that
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A→ B′ is of finite presentation, see Algebra, Lemma 10.6.2. Therefore C → B′ is
of finite presentation and we conclude by Lemma 35.14.1. □

35.15. Local properties of schemes

0347 It often happens one can prove the members of a covering of a scheme have a certain
property. In many cases this implies the scheme has the property too. For example,
if S is a scheme, and f : S′ → S is a surjective flat morphism such that S′ is a
reduced scheme, then S is reduced. You can prove this by looking at local rings
and using Algebra, Lemma 10.164.2. We say that the property of being reduced
descends through flat surjective morphisms. Some results of this type are collected
in Algebra, Section 10.164 and for schemes in Section 35.19. Some analogous results
on descending properties of morphisms are in Section 35.14.

On the other hand, there are examples of surjective flat morphisms f : S′ → S
with S reduced and S′ not, for example the morphism Spec(k[x]/(x2))→ Spec(k).
Hence the property of being reduced does not ascend along flat morphisms. Having
infinite residue fields is a property which does ascend along flat morphisms (but
does not descend along surjective flat morphisms of course). Some results of this
type are collected in Algebra, Section 10.163.

Finally, we say that a property is local for the flat topology if it ascends along
flat morphisms and descends along flat surjective morphisms. A somewhat silly
example is the property of having residue fields of a given characteristic. To be
more precise, and to tie this in with the various topologies on schemes, we make
the following formal definition.

Definition 35.15.1.0348 Let P be a property of schemes. Let τ ∈ {fpqc, fppf, syntomic,
smooth, étale, Zariski}. We say P is local in the τ -topology if for any τ -covering
{Si → S}i∈I (see Topologies, Section 34.2) we have

S has P ⇔ each Si has P.

To be sure, since isomorphisms are always coverings we see (or require) that prop-
erty P holds for S if and only if it holds for any scheme S′ isomorphic to S. In fact,
if τ = fpqc, fppf, syntomic, smooth, étale, or Zariski, then if S has P and S′ → S
is flat, flat and locally of finite presentation, syntomic, smooth, étale, or an open
immersion, then S′ has P. This is true because we can always extend {S′ → S} to
a τ -covering.

We have the following implications: P is local in the fpqc topology ⇒ P is local in
the fppf topology⇒ P is local in the syntomic topology⇒ P is local in the smooth
topology ⇒ P is local in the étale topology ⇒ P is local in the Zariski topology.
This follows from Topologies, Lemmas 34.4.2, 34.5.2, 34.6.2, 34.7.2, and 34.9.6.

Lemma 35.15.2.0349 Let P be a property of schemes. Let τ ∈ {fpqc, fppf, étale,
smooth, syntomic}. Assume that

(1) the property is local in the Zariski topology,
(2) for any morphism of affine schemes S′ → S which is flat, flat of finite

presentation, étale, smooth or syntomic depending on whether τ is fpqc,
fppf, étale, smooth, or syntomic, property P holds for S′ if property P
holds for S, and
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(3) for any surjective morphism of affine schemes S′ → S which is flat, flat of
finite presentation, étale, smooth or syntomic depending on whether τ is
fpqc, fppf, étale, smooth, or syntomic, property P holds for S if property
P holds for S′.

Then P is τ local on the base.

Proof. This follows almost immediately from the definition of a τ -covering, see
Topologies, Definition 34.9.1 34.7.1 34.4.1 34.5.1, or 34.6.1 and Topologies, Lemma
34.9.8, 34.7.4, 34.4.4, 34.5.4, or 34.6.4. Details omitted. □

Remark 35.15.3.034A In Lemma 35.15.2 above if τ = smooth then in condition (3)
we may assume that the morphism is a (surjective) standard smooth morphism.
Similarly, when τ = syntomic or τ = étale.

35.16. Properties of schemes local in the fppf topology

034B In this section we find some properties of schemes which are local on the base in
the fppf topology.

Lemma 35.16.1.034C The property P(S) =“S is locally Noetherian” is local in the fppf
topology.

Proof. We will use Lemma 35.15.2. First we note that “being locally Noetherian”
is local in the Zariski topology. This is clear from the definition, see Properties,
Definition 28.5.1. Next, we show that if S′ → S is a flat, finitely presented mor-
phism of affines and S is locally Noetherian, then S′ is locally Noetherian. This is
Morphisms, Lemma 29.15.6. Finally, we have to show that if S′ → S is a surjective
flat, finitely presented morphism of affines and S′ is locally Noetherian, then S is
locally Noetherian. This follows from Algebra, Lemma 10.164.1. Thus (1), (2) and
(3) of Lemma 35.15.2 hold and we win. □

Lemma 35.16.2.0368 The property P(S) =“S is Jacobson” is local in the fppf topology.

Proof. We will use Lemma 35.15.2. First we note that “being Jacobson” is local
in the Zariski topology. This is Properties, Lemma 28.6.3. Next, we show that if
S′ → S is a flat, finitely presented morphism of affines and S is Jacobson, then S′

is Jacobson. This is Morphisms, Lemma 29.16.9. Finally, we have to show that
if f : S′ → S is a surjective flat, finitely presented morphism of affines and S′ is
Jacobson, then S is Jacobson. Say S = Spec(A) and S′ = Spec(B) and S′ → S
given by A → B. Then A → B is finitely presented and faithfully flat. Moreover,
the ring B is Jacobson, see Properties, Lemma 28.6.3.
By Algebra, Lemma 10.168.10 there exists a diagram

B // B′

A

>>__

with A→ B′ finitely presented, faithfully flat and quasi-finite. In particular, B →
B′ is finite type, and we see from Algebra, Proposition 10.35.19 that B′ is Jacobson.
Hence we may assume that A → B is quasi-finite as well as faithfully flat and of
finite presentation.
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Assume A is not Jacobson to get a contradiction. According to Algebra, Lemma
10.35.5 there exists a nonmaximal prime p ⊂ A and an element f ∈ A, f ̸∈ p such
that V (p) ∩D(f) = {p}.
This leads to a contradiction as follows. First let p ⊂ m be a maximal ideal of A.
Pick a prime m′ ⊂ B lying over m (exists because A → B is faithfully flat, see
Algebra, Lemma 10.39.16). As A→ B is flat, by going down see Algebra, Lemma
10.39.19, we can find a prime q ⊂ m′ lying over p. In particular we see that q is not
maximal. Hence according to Algebra, Lemma 10.35.5 again the set V (q)∩D(f) is
infinite (here we finally use that B is Jacobson). All points of V (q)∩D(f) map to
V (p)∩D(f) = {p}. Hence the fibre over p is infinite. This contradicts the fact that
A→ B is quasi-finite (see Algebra, Lemma 10.122.4 or more explicitly Morphisms,
Lemma 29.20.10). Thus the lemma is proved. □

Lemma 35.16.3.0BAL The property P(S) =“every quasi-compact open of S has a finite
number of irreducible components” is local in the fppf topology.

Proof. We will use Lemma 35.15.2. First we note that P is local in the Zariski
topology. Next, we show that if T → S is a flat, finitely presented morphism
of affines and S has a finite number of irreducible components, then so does T .
Namely, since T → S is flat, the generic points of T map to the generic points of
S, see Morphisms, Lemma 29.25.9. Hence it suffices to show that for s ∈ S the
fibre Ts has a finite number of generic points. Note that Ts is an affine scheme
of finite type over κ(s), see Morphisms, Lemma 29.15.4. Hence Ts is Noetherian
and has a finite number of irreducible components (Morphisms, Lemma 29.15.6 and
Properties, Lemma 28.5.7). Finally, we have to show that if T → S is a surjective
flat, finitely presented morphism of affines and T has a finite number of irreducible
components, then so does S. This follows from Topology, Lemma 5.8.5. Thus (1),
(2) and (3) of Lemma 35.15.2 hold and we win. □

35.17. Properties of schemes local in the syntomic topology

0369 In this section we find some properties of schemes which are local on the base in
the syntomic topology.

Lemma 35.17.1.036A The property P(S) =“S is locally Noetherian and (Sk)” is local
in the syntomic topology.

Proof. We will check (1), (2) and (3) of Lemma 35.15.2. As a syntomic morphism is
flat of finite presentation (Morphisms, Lemmas 29.30.7 and 29.30.6) we have already
checked this for “being locally Noetherian” in the proof of Lemma 35.16.1. We will
use this without further mention in the proof. First we note that P is local in the
Zariski topology. This is clear from the definition, see Cohomology of Schemes,
Definition 30.11.1. Next, we show that if S′ → S is a syntomic morphism of affines
and S has P, then S′ has P. This is Algebra, Lemma 10.163.4 (use Morphisms,
Lemma 29.30.2 and Algebra, Definition 10.136.1 and Lemma 10.135.3). Finally, we
show that if S′ → S is a surjective syntomic morphism of affines and S′ has P,
then S has P. This is Algebra, Lemma 10.164.5. Thus (1), (2) and (3) of Lemma
35.15.2 hold and we win. □

Lemma 35.17.2.036B The property P(S) =“S is Cohen-Macaulay” is local in the syn-
tomic topology.
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Proof. This is clear from Lemma 35.17.1 above since a scheme is Cohen-Macaulay
if and only if it is locally Noetherian and (Sk) for all k ≥ 0, see Properties, Lemma
28.12.3. □

35.18. Properties of schemes local in the smooth topology

034D In this section we find some properties of schemes which are local on the base in
the smooth topology.

Lemma 35.18.1.034E The property P(S) =“S is reduced” is local in the smooth topol-
ogy.

Proof. We will use Lemma 35.15.2. First we note that “being reduced” is local
in the Zariski topology. This is clear from the definition, see Schemes, Definition
26.12.1. Next, we show that if S′ → S is a smooth morphism of affines and S is
reduced, then S′ is reduced. This is Algebra, Lemma 10.163.7. Finally, we show
that if S′ → S is a surjective smooth morphism of affines and S′ is reduced, then
S is reduced. This is Algebra, Lemma 10.164.2. Thus (1), (2) and (3) of Lemma
35.15.2 hold and we win. □

Lemma 35.18.2.034F The property P(S) =“S is normal” is local in the smooth topology.

Proof. We will use Lemma 35.15.2. First we show “being normal” is local in the
Zariski topology. This is clear from the definition, see Properties, Definition 28.7.1.
Next, we show that if S′ → S is a smooth morphism of affines and S is normal, then
S′ is normal. This is Algebra, Lemma 10.163.9. Finally, we show that if S′ → S is
a surjective smooth morphism of affines and S′ is normal, then S is normal. This
is Algebra, Lemma 10.164.3. Thus (1), (2) and (3) of Lemma 35.15.2 hold and we
win. □

Lemma 35.18.3.036C The property P(S) =“S is locally Noetherian and (Rk)” is local
in the smooth topology.

Proof. We will check (1), (2) and (3) of Lemma 35.15.2. As a smooth morphism
is flat of finite presentation (Morphisms, Lemmas 29.34.9 and 29.34.8) we have
already checked this for “being locally Noetherian” in the proof of Lemma 35.16.1.
We will use this without further mention in the proof. First we note that P is local
in the Zariski topology. This is clear from the definition, see Properties, Definition
28.12.1. Next, we show that if S′ → S is a smooth morphism of affines and S
has P, then S′ has P. This is Algebra, Lemmas 10.163.5 (use Morphisms, Lemma
29.34.2, Algebra, Lemmas 10.137.4 and 10.140.3). Finally, we show that if S′ → S
is a surjective smooth morphism of affines and S′ has P, then S has P. This is
Algebra, Lemma 10.164.6. Thus (1), (2) and (3) of Lemma 35.15.2 hold and we
win. □

Lemma 35.18.4.036D The property P(S) =“S is regular” is local in the smooth topology.

Proof. This is clear from Lemma 35.18.3 above since a locally Noetherian scheme
is regular if and only if it is locally Noetherian and (Rk) for all k ≥ 0. □

Lemma 35.18.5.036E The property P(S) =“S is Nagata” is local in the smooth topology.
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Proof. We will check (1), (2) and (3) of Lemma 35.15.2. First we note that being
Nagata is local in the Zariski topology. This is Properties, Lemma 28.13.6. Next,
we show that if S′ → S is a smooth morphism of affines and S is Nagata, then S′

is Nagata. This is Morphisms, Lemma 29.18.1. Finally, we show that if S′ → S is
a surjective smooth morphism of affines and S′ is Nagata, then S is Nagata. This
is Algebra, Lemma 10.164.7. Thus (1), (2) and (3) of Lemma 35.15.2 hold and we
win. □

35.19. Variants on descending properties

06QL Sometimes one can descend properties, which are not local. We put results of this
kind in this section. See also Section 35.14 on descending properties of morphisms,
such as smoothness.

Lemma 35.19.1.06QM If f : X → Y is a flat and surjective morphism of schemes and X
is reduced, then Y is reduced.

Proof. The result follows by looking at local rings (Schemes, Definition 26.12.1)
and Algebra, Lemma 10.164.2. □

Lemma 35.19.2.06QN Let f : X → Y be a morphism of algebraic spaces. If f is locally
of finite presentation, flat, and surjective and X is regular, then Y is regular.

Proof. This lemma reduces to the following algebra statement: If A→ B is a faith-
fully flat, finitely presented ring homomorphism with B Noetherian and regular,
then A is Noetherian and regular. We see that A is Noetherian by Algebra, Lemma
10.164.1 and regular by Algebra, Lemma 10.110.9. □

35.20. Germs of schemes

04QQ
Definition 35.20.1.04QR Germs of schemes.

(1) A pair (X,x) consisting of a scheme X and a point x ∈ X is called the
germ of X at x.

(2) A morphism of germs f : (X,x) → (S, s) is an equivalence class of mor-
phisms of schemes f : U → S with f(x) = s where U ⊂ X is an open
neighbourhood of x. Two such f , f ′ are said to be equivalent if and only
if f and f ′ agree in some open neighbourhood of x.

(3) We define the composition of morphisms of germs by composing represen-
tatives (this is well defined).

Before we continue we need one more definition.

Definition 35.20.2.04QS Let f : (X,x) → (S, s) be a morphism of germs. We say f is
étale (resp. smooth) if there exists a representative f : U → S of f which is an étale
morphism (resp. a smooth morphism) of schemes.

35.21. Local properties of germs

04QT
Definition 35.21.1.04N1 Let P be a property of germs of schemes. We say that P is
étale local (resp. smooth local) if for any étale (resp. smooth) morphism of germs
(U ′, u′)→ (U, u) we have P(U, u)⇔ P(U ′, u′).
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Let (X,x) be a germ of a scheme. The dimension of X at x is the minimum of
the dimensions of open neighbourhoods of x in X, and any small enough open
neighbourhood has this dimension. Hence this is an invariant of the isomorphism
class of the germ. We denote this simply dimx(X). The following lemma tells us
that the assertion dimx(X) = d is an étale local property of germs.

Lemma 35.21.2.04N4 Let f : U → V be an étale morphism of schemes. Let u ∈ U and
v = f(u). Then dimu(U) = dimv(V ).

Proof. In the statement dimu(U) is the dimension of U at u as defined in Topology,
Definition 5.10.1 as the minimum of the Krull dimensions of open neighbourhoods
of u in U . Similarly for dimv(V ).
Let us show that dimv(V ) ≥ dimu(U). Let V ′ be an open neighbourhood of
v in V . Then there exists an open neighbourhood U ′ of u in U contained in
f−1(V ′) such that dimu(U) = dim(U ′). Suppose that Z0 ⊂ Z1 ⊂ . . . ⊂ Zn is
a chain of irreducible closed subschemes of U ′. If ξi ∈ Zi is the generic point
then we have specializations ξn ⇝ ξn−1 ⇝ . . . ⇝ ξ0. This gives specializations
f(ξn)⇝ f(ξn−1)⇝ . . .⇝ f(ξ0) in V ′. Note that f(ξj) ̸= f(ξi) if i ̸= j as the fibres
of f are discrete (see Morphisms, Lemma 29.36.7). Hence we see that dim(V ′) ≥ n.
The inequality dimv(V ) ≥ dimu(U) follows formally.
Let us show that dimu(U) ≥ dimv(V ). Let U ′ be an open neighbourhood of u in
U . Note that V ′ = f(U ′) is an open neighbourhood of v by Morphisms, Lemma
29.25.10. Hence dim(V ′) ≥ dimv(V ). Pick a chain Z0 ⊂ Z1 ⊂ . . . ⊂ Zn of
irreducible closed subschemes of V ′. Let ξi ∈ Zi be the generic point, so we have
specializations ξn ⇝ ξn−1 ⇝ . . .⇝ ξ0. Since ξ0 ∈ f(U ′) we can find a point η0 ∈ U ′

with f(η0) = ξ0. Consider the map of local rings
OV ′,ξ0 −→ OU ′,η0

which is a flat local ring map by Morphisms, Lemma 29.36.12. Note that the points
ξi correspond to primes of the ring on the left by Schemes, Lemma 26.13.2. Hence
by going down (see Algebra, Section 10.41) for the displayed ring map we can find
a sequence of specializations ηn ⇝ ηn−1 ⇝ . . .⇝ η0 in U ′ mapping to the sequence
ξn ⇝ ξn−1 ⇝ . . .⇝ ξ0 under f . This implies that dimu(U) ≥ dimv(V ). □

Let (X,x) be a germ of a scheme. The isomorphism class of the local ring OX,x is an
invariant of the germ. The following lemma says that the property dim(OX,x) = d
is an étale local property of germs.

Lemma 35.21.3.04N8 Let f : U → V be an étale morphism of schemes. Let u ∈ U and
v = f(u). Then dim(OU,u) = dim(OV,v).

Proof. The algebraic statement we are asked to prove is the following: If A→ B is
an étale ring map and q is a prime of B lying over p ⊂ A, then dim(Ap) = dim(Bq).
This is More on Algebra, Lemma 15.44.2. □

Let (X,x) be a germ of a scheme. The isomorphism class of the local ring OX,x
is an invariant of the germ. The following lemma says that the property “OX,x is
regular” is an étale local property of germs.

Lemma 35.21.4.0AH7 Let f : U → V be an étale morphism of schemes. Let u ∈ U and
v = f(u). Then OU,u is a regular local ring if and only if OV,v is a regular local
ring.
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Proof. The algebraic statement we are asked to prove is the following: If A → B
is an étale ring map and q is a prime of B lying over p ⊂ A, then Ap is regular if
and only if Bq is regular. This is More on Algebra, Lemma 15.44.3. □

35.22. Properties of morphisms local on the target

02KN Suppose that f : X → Y is a morphism of schemes. Let g : Y ′ → Y be a morphism
of schemes. Let f ′ : X ′ → Y ′ be the base change of f by g:

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

Let P be a property of morphisms of schemes. Then we can wonder if (a) P(f)⇒
P(f ′), and also whether the converse (b) P(f ′) ⇒ P(f) is true. If (a) holds
whenever g is flat, then we say P is preserved under flat base change. If (b) holds
whenever g is surjective and flat, then we say P descends through flat surjective
base changes. If P is preserved under flat base changes and descends through flat
surjective base changes, then we say P is flat local on the target. Compare with
the discussion in Section 35.15. This turns out to be a very important notion which
we formalize in the following definition.

Definition 35.22.1.02KO Let P be a property of morphisms of schemes over a base. Let
τ ∈ {fpqc, fppf, syntomic, smooth, étale, Zariski}. We say P is τ local on the
base, or τ local on the target, or local on the base for the τ -topology if for any τ -
covering {Yi → Y }i∈I (see Topologies, Section 34.2) and any morphism of schemes
f : X → Y over S we have

f has P ⇔ each Yi ×Y X → Yi has P.

To be sure, since isomorphisms are always coverings we see (or require) that prop-
erty P holds for X → Y if and only if it holds for any arrow X ′ → Y ′ isomorphic to
X → Y . If a property is τ -local on the target then it is preserved by base changes
by morphisms which occur in τ -coverings. Here is a formal statement.

Lemma 35.22.2.04QU Let τ ∈ {fpqc, fppf, syntomic, smooth, étale, Zariski}. Let P
be a property of morphisms which is τ local on the target. Let f : X → Y have
property P. For any morphism Y ′ → Y which is flat, resp. flat and locally of finite
presentation, resp. syntomic, resp. étale, resp. an open immersion, the base change
f ′ : Y ′ ×Y X → Y ′ of f has property P.

Proof. This is true because we can fit Y ′ → Y into a family of morphisms which
forms a τ -covering. □

A simple often used consequence of the above is that if f : X → Y has property P
which is τ -local on the target and f(X) ⊂ V for some open subscheme V ⊂ Y , then
also the induced morphism X → V has P. Proof: The base change f by V → Y
gives X → V .

Lemma 35.22.3.06QP Let τ ∈ {fppf, syntomic, smooth, étale}. Let P be a property of
morphisms which is τ local on the target. For any morphism of schemes f : X → Y
there exists a largest open W (f) ⊂ Y such that the restriction XW (f) →W (f) has
P. Moreover,
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(1) if g : Y ′ → Y is flat and locally of finite presentation, syntomic, smooth,
or étale and the base change f ′ : XY ′ → Y ′ has P, then g(Y ′) ⊂W (f),

(2) if g : Y ′ → Y is flat and locally of finite presentation, syntomic, smooth,
or étale, then W (f ′) = g−1(W (f)), and

(3) if {gi : Yi → Y } is a τ -covering, then g−1
i (W (f)) = W (fi), where fi is the

base change of f by Yi → Y .

Proof. Consider the union W of the images g(Y ′) ⊂ Y of morphisms g : Y ′ → Y
with the properties:

(1) g is flat and locally of finite presentation, syntomic, smooth, or étale, and
(2) the base change Y ′ ×g,Y X → Y ′ has property P.

Since such a morphism g is open (see Morphisms, Lemma 29.25.10) we see that
W ⊂ Y is an open subset of Y . Since P is local in the τ topology the restriction
XW → W has property P because we are given a covering {Y ′ → W} of W such
that the pullbacks have P. This proves the existence and proves that W (f) has
property (1). To see property (2) note that W (f ′) ⊃ g−1(W (f)) because P is stable
under base change by flat and locally of finite presentation, syntomic, smooth, or
étale morphisms, see Lemma 35.22.2. On the other hand, if Y ′′ ⊂ Y ′ is an open such
that XY ′′ → Y ′′ has property P, then Y ′′ → Y factors through W by construction,
i.e., Y ′′ ⊂ g−1(W (f)). This proves (2). Assertion (3) follows from (2) because each
morphism Yi → Y is flat and locally of finite presentation, syntomic, smooth, or
étale by our definition of a τ -covering. □

Lemma 35.22.4.02KP Let P be a property of morphisms of schemes over a base. Let
τ ∈ {fpqc, fppf, étale, smooth, syntomic}. Assume that

(1) the property is preserved under flat, flat and locally of finite presenta-
tion, étale, smooth, or syntomic base change depending on whether τ is
fpqc, fppf, étale, smooth, or syntomic (compare with Schemes, Definition
26.18.3),

(2) the property is Zariski local on the base.
(3) for any surjective morphism of affine schemes S′ → S which is flat, flat

of finite presentation, étale, smooth or syntomic depending on whether τ
is fpqc, fppf, étale, smooth, or syntomic, and any morphism of schemes
f : X → S property P holds for f if property P holds for the base change
f ′ : X ′ = S′ ×S X → S′.

Then P is τ local on the base.

Proof. This follows almost immediately from the definition of a τ -covering, see
Topologies, Definition 34.9.1 34.7.1 34.4.1 34.5.1, or 34.6.1 and Topologies, Lemma
34.9.8, 34.7.4, 34.4.4, 34.5.4, or 34.6.4. Details omitted. □

Remark 35.22.5.034G (This is a repeat of Remark 35.15.3 above.) In Lemma 35.22.4
above if τ = smooth then in condition (3) we may assume that the morphism
is a (surjective) standard smooth morphism. Similarly, when τ = syntomic or
τ = étale.

35.23. Properties of morphisms local in the fpqc topology on the target

02YJ In this section we find a large number of properties of morphisms of schemes which
are local on the base in the fpqc topology. By contrast, in Examples, Section 110.64
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we will show that the properties “projective” and “quasi-projective” are not local
on the base even in the Zariski topology.
Lemma 35.23.1.02KQ The property P(f) =“f is quasi-compact” is fpqc local on the
base.
Proof. A base change of a quasi-compact morphism is quasi-compact, see Schemes,
Lemma 26.19.3. Being quasi-compact is Zariski local on the base, see Schemes,
Lemma 26.19.2. Finally, let S′ → S be a flat surjective morphism of affine schemes,
and let f : X → S be a morphism. Assume that the base change f ′ : X ′ → S′

is quasi-compact. Then X ′ is quasi-compact, and X ′ → X is surjective. Hence X
is quasi-compact. This implies that f is quasi-compact. Therefore Lemma 35.22.4
applies and we win. □

Lemma 35.23.2.02KR The property P(f) =“f is quasi-separated” is fpqc local on the
base.
Proof. Any base change of a quasi-separated morphism is quasi-separated, see
Schemes, Lemma 26.21.12. Being quasi-separated is Zariski local on the base (from
the definition or by Schemes, Lemma 26.21.6). Finally, let S′ → S be a flat surjec-
tive morphism of affine schemes, and let f : X → S be a morphism. Assume that the
base change f ′ : X ′ → S′ is quasi-separated. This means that ∆′ : X ′ → X ′×S′ X ′

is quasi-compact. Note that ∆′ is the base change of ∆ : X → X×SX via S′ → S.
By Lemma 35.23.1 this implies ∆ is quasi-compact, and hence f is quasi-separated.
Therefore Lemma 35.22.4 applies and we win. □

Lemma 35.23.3.02KS The property P(f) =“f is universally closed” is fpqc local on the
base.
Proof. A base change of a universally closed morphism is universally closed by
definition. Being universally closed is Zariski local on the base (from the definition
or by Morphisms, Lemma 29.41.2). Finally, let S′ → S be a flat surjective morphism
of affine schemes, and let f : X → S be a morphism. Assume that the base change
f ′ : X ′ → S′ is universally closed. Let T → S be any morphism. Consider the
diagram

X ′

��

S′ ×S T ×S X

��

//oo T ×S X

��
S′ S′ ×S T //oo T

in which both squares are cartesian. Thus the assumption implies that the middle
vertical arrow is closed. The right horizontal arrows are flat, quasi-compact and
surjective (as base changes of S′ → S). Hence a subset of T is closed if and only
if its inverse image in S′ ×S T is closed, see Morphisms, Lemma 29.25.12. An easy
diagram chase shows that the right vertical arrow is closed too, and we conclude
X → S is universally closed. Therefore Lemma 35.22.4 applies and we win. □

Lemma 35.23.4.02KT The property P(f) =“f is universally open” is fpqc local on the
base.
Proof. The proof is the same as the proof of Lemma 35.23.3. □

Lemma 35.23.5.0CEW The property P(f) =“f is universally submersive” is fpqc local
on the base.
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Proof. The proof is the same as the proof of Lemma 35.23.3 using that a quasi-
compact flat surjective morphism is universally submersive by Morphisms, Lemma
29.25.12. □

Lemma 35.23.6.02KU The property P(f) =“f is separated” is fpqc local on the base.

Proof. A base change of a separated morphism is separated, see Schemes, Lemma
26.21.12. Being separated is Zariski local on the base (from the definition or by
Schemes, Lemma 26.21.7). Finally, let S′ → S be a flat surjective morphism of
affine schemes, and let f : X → S be a morphism. Assume that the base change
f ′ : X ′ → S′ is separated. This means that ∆′ : X ′ → X ′ ×S′ X ′ is a closed
immersion, hence universally closed. Note that ∆′ is the base change of ∆ : X →
X ×S X via S′ → S. By Lemma 35.23.3 this implies ∆ is universally closed. Since
it is an immersion (Schemes, Lemma 26.21.2) we conclude ∆ is a closed immersion.
Hence f is separated. Therefore Lemma 35.22.4 applies and we win. □

Lemma 35.23.7.02KV The property P(f) =“f is surjective” is fpqc local on the base.

Proof. This is clear. □

Lemma 35.23.8.02KW The property P(f) =“f is universally injective” is fpqc local on
the base.

Proof. A base change of a universally injective morphism is universally injective
(this is formal). Being universally injective is Zariski local on the base; this is
clear from the definition. Finally, let S′ → S be a flat surjective morphism of
affine schemes, and let f : X → S be a morphism. Assume that the base change
f ′ : X ′ → S′ is universally injective. Let K be a field, and let a, b : Spec(K) → X
be two morphisms such that f ◦ a = f ◦ b. As S′ → S is surjective and by the
discussion in Schemes, Section 26.13 there exists a field extension K ′/K and a
morphism Spec(K ′)→ S′ such that the following solid diagram commutes

Spec(K ′)

))
a′,b′

$$

��

X ′ //

��

S′

��
Spec(K) a,b // X // S

As the square is cartesian we get the two dotted arrows a′, b′ making the diagram
commute. Since X ′ → S′ is universally injective we get a′ = b′, by Morphisms,
Lemma 29.10.2. Clearly this forces a = b (by the discussion in Schemes, Section
26.13). Therefore Lemma 35.22.4 applies and we win.
An alternative proof would be to use the characterization of a universally injective
morphism as one whose diagonal is surjective, see Morphisms, Lemma 29.10.2. The
lemma then follows from the fact that the property of being surjective is fpqc local
on the base, see Lemma 35.23.7. (Hint: use that the base change of the diagonal is
the diagonal of the base change.) □

Lemma 35.23.9.0CEX The property P(f) =“f is a universal homeomorphism” is fpqc
local on the base.
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Proof. This can be proved in exactly the same manner as Lemma 35.23.3. Alter-
natively, one can use that a map of topological spaces is a homeomorphism if and
only if it is injective, surjective, and open. Thus a universal homeomorphism is the
same thing as a surjective, universally injective, and universally open morphism.
Thus the lemma follows from Lemmas 35.23.7, 35.23.8, and 35.23.4. □

Lemma 35.23.10.02KX The property P(f) =“f is locally of finite type” is fpqc local on
the base.
Proof. Being locally of finite type is preserved under base change, see Morphisms,
Lemma 29.15.4. Being locally of finite type is Zariski local on the base, see Mor-
phisms, Lemma 29.15.2. Finally, let S′ → S be a flat surjective morphism of
affine schemes, and let f : X → S be a morphism. Assume that the base change
f ′ : X ′ → S′ is locally of finite type. Let U ⊂ X be an affine open. Then
U ′ = S′×SU is affine and of finite type over S′. Write S = Spec(R), S′ = Spec(R′),
U = Spec(A), and U ′ = Spec(A′). We know that R → R′ is faithfully flat,
A′ = R′ ⊗R A and R′ → A′ is of finite type. We have to show that R → A is
of finite type. This is the result of Algebra, Lemma 10.126.1. It follows that f is
locally of finite type. Therefore Lemma 35.22.4 applies and we win. □

Lemma 35.23.11.02KY The property P(f) =“f is locally of finite presentation” is fpqc
local on the base.
Proof. Being locally of finite presentation is preserved under base change, see Mor-
phisms, Lemma 29.21.4. Being locally of finite type is Zariski local on the base,
see Morphisms, Lemma 29.21.2. Finally, let S′ → S be a flat surjective morphism
of affine schemes, and let f : X → S be a morphism. Assume that the base
change f ′ : X ′ → S′ is locally of finite presentation. Let U ⊂ X be an affine
open. Then U ′ = S′ ×S U is affine and of finite type over S′. Write S = Spec(R),
S′ = Spec(R′), U = Spec(A), and U ′ = Spec(A′). We know that R → R′ is faith-
fully flat, A′ = R′ ⊗R A and R′ → A′ is of finite presentation. We have to show
that R→ A is of finite presentation. This is the result of Algebra, Lemma 10.126.2.
It follows that f is locally of finite presentation. Therefore Lemma 35.22.4 applies
and we win. □

Lemma 35.23.12.02KZ The property P(f) =“f is of finite type” is fpqc local on the
base.
Proof. Combine Lemmas 35.23.1 and 35.23.10. □

Lemma 35.23.13.02L0 The property P(f) =“f is of finite presentation” is fpqc local on
the base.
Proof. Combine Lemmas 35.23.1, 35.23.2 and 35.23.11. □

Lemma 35.23.14.02L1 The property P(f) =“f is proper” is fpqc local on the base.
Proof. The lemma follows by combining Lemmas 35.23.3, 35.23.6 and 35.23.12. □

Lemma 35.23.15.02L2 The property P(f) =“f is flat” is fpqc local on the base.
Proof. Being flat is preserved under arbitrary base change, see Morphisms, Lemma
29.25.8. Being flat is Zariski local on the base by definition. Finally, let S′ → S
be a flat surjective morphism of affine schemes, and let f : X → S be a morphism.
Assume that the base change f ′ : X ′ → S′ is flat. Let U ⊂ X be an affine open.
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Then U ′ = S′ ×S U is affine. Write S = Spec(R), S′ = Spec(R′), U = Spec(A),
and U ′ = Spec(A′). We know that R → R′ is faithfully flat, A′ = R′ ⊗R A and
R′ → A′ is flat. Goal: Show that R → A is flat. This follows immediately from
Algebra, Lemma 10.39.8. Hence f is flat. Therefore Lemma 35.22.4 applies and we
win. □

Lemma 35.23.16.02L3 The property P(f) =“f is an open immersion” is fpqc local on
the base.

Proof. The property of being an open immersion is stable under base change, see
Schemes, Lemma 26.18.2. The property of being an open immersion is Zariski local
on the base (this is obvious).
Let S′ → S be a flat surjective morphism of affine schemes, and let f : X → S be
a morphism. Assume that the base change f ′ : X ′ → S′ is an open immersion. We
claim that f is an open immersion. Then f ′ is universally open, and universally
injective. Hence we conclude that f is universally open by Lemma 35.23.4, and
universally injective by Lemma 35.23.8. In particular f(X) ⊂ S is open. If for
every affine open U ⊂ f(X) we can prove that f−1(U) → U is an isomorphism,
then f is an open immersion and we’re done. If U ′ ⊂ S′ denotes the inverse image
of U , then U ′ → U is a faithfully flat morphism of affines and (f ′)−1(U ′) → U ′ is
an isomorphism (as f ′(X ′) contains U ′ by our choice of U). Thus we reduce to the
case discussed in the next paragraph.
Let S′ → S be a flat surjective morphism of affine schemes, let f : X → S be
a morphism, and assume that the base change f ′ : X ′ → S′ is an isomorphism.
We have to show that f is an isomorphism also. It is clear that f is surjective,
universally injective, and universally open (see arguments above for the last two).
Hence f is bijective, i.e., f is a homeomorphism. Thus f is affine by Morphisms,
Lemma 29.45.4. Since

O(S′)→ O(X ′) = O(S′)⊗O(S) O(X)
is an isomorphism and since O(S) → O(S′) is faithfully flat this implies that
O(S) → O(X) is an isomorphism. Thus f is an isomorphism. This finishes the
proof of the claim above. Therefore Lemma 35.22.4 applies and we win. □

Lemma 35.23.17.02L4 The property P(f) =“f is an isomorphism” is fpqc local on the
base.

Proof. Combine Lemmas 35.23.7 and 35.23.16. □

Lemma 35.23.18.02L5 The property P(f) =“f is affine” is fpqc local on the base.

Proof. A base change of an affine morphism is affine, see Morphisms, Lemma
29.11.8. Being affine is Zariski local on the base, see Morphisms, Lemma 29.11.3.
Finally, let g : S′ → S be a flat surjective morphism of affine schemes, and let
f : X → S be a morphism. Assume that the base change f ′ : X ′ → S′ is affine.
In other words, X ′ is affine, say X ′ = Spec(A′). Also write S = Spec(R) and
S′ = Spec(R′). We have to show that X is affine.
By Lemmas 35.23.1 and 35.23.6 we see that X → S is separated and quasi-compact.
Thus f∗OX is a quasi-coherent sheaf of OS-algebras, see Schemes, Lemma 26.24.1.
Hence f∗OX = Ã for some R-algebra A. In fact A = Γ(X,OX) of course. Also, by
flat base change (see for example Cohomology of Schemes, Lemma 30.5.2) we have
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g∗f∗OX = f ′
∗OX′ . In other words, we have A′ = R′ ⊗R A. Consider the canonical

morphism
X −→ Spec(A)

over S from Schemes, Lemma 26.6.4. By the above the base change of this morphism
to S′ is an isomorphism. Hence it is an isomorphism by Lemma 35.23.17. Therefore
Lemma 35.22.4 applies and we win. □

Lemma 35.23.19.02L6 The property P(f) =“f is a closed immersion” is fpqc local on
the base.

Proof. Let f : X → Y be a morphism of schemes. Let {Yi → Y } be an fpqc
covering. Assume that each fi : Yi ×Y X → Yi is a closed immersion. This implies
that each fi is affine, see Morphisms, Lemma 29.11.9. By Lemma 35.23.18 we
conclude that f is affine. It remains to show that OY → f∗OX is surjective. For
every y ∈ Y there exists an i and a point yi ∈ Yi mapping to y. By Cohomology
of Schemes, Lemma 30.5.2 the sheaf fi,∗(OYi×YX) is the pullback of f∗OX . By
assumption it is a quotient of OYi . Hence we see that(

OY,y −→ (f∗OX)y
)
⊗OY,y

OYi,yi
is surjective. Since OYi,yi is faithfully flat over OY,y this implies the surjectivity of
OY,y −→ (f∗OX)y as desired. □

Lemma 35.23.20.02L7 The property P(f) =“f is quasi-affine” is fpqc local on the base.

Proof. Let f : X → Y be a morphism of schemes. Let {gi : Yi → Y } be an
fpqc covering. Assume that each fi : Yi ×Y X → Yi is quasi-affine. This implies
that each fi is quasi-compact and separated. By Lemmas 35.23.1 and 35.23.6
this implies that f is quasi-compact and separated. Consider the sheaf of OY -
algebras A = f∗OX . By Schemes, Lemma 26.24.1 it is a quasi-coherent OY -algebra.
Consider the canonical morphism

j : X −→ Spec
Y

(A)

see Constructions, Lemma 27.4.7. By flat base change (see for example Cohomol-
ogy of Schemes, Lemma 30.5.2) we have g∗

i f∗OX = fi,∗OX′ where gi : Yi → Y
are the given flat maps. Hence the base change ji of j by gi is the canonical mor-
phism of Constructions, Lemma 27.4.7 for the morphism fi. By assumption and
Morphisms, Lemma 29.13.3 all of these morphisms ji are quasi-compact open im-
mersions. Hence, by Lemmas 35.23.1 and 35.23.16 we see that j is a quasi-compact
open immersion. Hence by Morphisms, Lemma 29.13.3 again we conclude that f
is quasi-affine. □

Lemma 35.23.21.02L8 The property P(f) =“f is a quasi-compact immersion” is fpqc
local on the base.

Proof. Let f : X → Y be a morphism of schemes. Let {Yi → Y } be an fpqc
covering. Write Xi = Yi ×Y X and fi : Xi → Yi the base change of f . Also
denote qi : Yi → Y the given flat morphisms. Assume each fi is a quasi-compact
immersion. By Schemes, Lemma 26.23.8 each fi is separated. By Lemmas 35.23.1
and 35.23.6 this implies that f is quasi-compact and separated. Let X → Z → Y be
the factorization of f through its scheme theoretic image. By Morphisms, Lemma
29.6.3 the closed subscheme Z ⊂ Y is cut out by the quasi-coherent sheaf of ideals
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I = Ker(OY → f∗OX) as f is quasi-compact. By flat base change (see for example
Cohomology of Schemes, Lemma 30.5.2; here we use f is separated) we see fi,∗OXi
is the pullback q∗

i f∗OX . Hence Yi ×Y Z is cut out by the quasi-coherent sheaf of
ideals q∗

i I = Ker(OYi → fi,∗OXi). By Morphisms, Lemma 29.7.7 the morphisms
Xi → Yi×Y Z are open immersions. Hence by Lemma 35.23.16 we see that X → Z
is an open immersion and hence f is a immersion as desired (we already saw it was
quasi-compact). □

Lemma 35.23.22.02L9 The property P(f) =“f is integral” is fpqc local on the base.

Proof. An integral morphism is the same thing as an affine, universally closed
morphism. See Morphisms, Lemma 29.44.7. Hence the lemma follows on combining
Lemmas 35.23.3 and 35.23.18. □

Lemma 35.23.23.02LA The property P(f) =“f is finite” is fpqc local on the base.

Proof. An finite morphism is the same thing as an integral morphism which is
locally of finite type. See Morphisms, Lemma 29.44.4. Hence the lemma follows on
combining Lemmas 35.23.10 and 35.23.22. □

Lemma 35.23.24.02VI The properties P(f) =“f is locally quasi-finite” and P(f) =“f
is quasi-finite” are fpqc local on the base.

Proof. Let f : X → S be a morphism of schemes, and let {Si → S} be an fpqc
covering such that each base change fi : Xi → Si is locally quasi-finite. We have
already seen (Lemma 35.23.10) that “locally of finite type” is fpqc local on the base,
and hence we see that f is locally of finite type. Then it follows from Morphisms,
Lemma 29.20.13 that f is locally quasi-finite. The quasi-finite case follows as we
have already seen that “quasi-compact” is fpqc local on the base (Lemma 35.23.1).

□

Lemma 35.23.25.02VJ The property P(f) =“f is locally of finite type of relative di-
mension d” is fpqc local on the base.

Proof. This follows immediately from the fact that being locally of finite type is
fpqc local on the base and Morphisms, Lemma 29.28.3. □

Lemma 35.23.26.02VK The property P(f) =“f is syntomic” is fpqc local on the base.

Proof. A morphism is syntomic if and only if it is locally of finite presentation,
flat, and has locally complete intersections as fibres. We have seen already that
being flat and locally of finite presentation are fpqc local on the base (Lemmas
35.23.15, and 35.23.11). Hence the result follows for syntomic from Morphisms,
Lemma 29.30.12. □

Lemma 35.23.27.02VL The property P(f) =“f is smooth” is fpqc local on the base.

Proof. A morphism is smooth if and only if it is locally of finite presentation, flat,
and has smooth fibres. We have seen already that being flat and locally of finite
presentation are fpqc local on the base (Lemmas 35.23.15, and 35.23.11). Hence
the result follows for smooth from Morphisms, Lemma 29.34.15. □

Lemma 35.23.28.02VM The property P(f) =“f is unramified” is fpqc local on the base.
The property P(f) =“f is G-unramified” is fpqc local on the base.
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Proof. A morphism is unramified (resp. G-unramified) if and only if it is locally of
finite type (resp. finite presentation) and its diagonal morphism is an open immer-
sion (see Morphisms, Lemma 29.35.13). We have seen already that being locally of
finite type (resp. locally of finite presentation) and an open immersion is fpqc local
on the base (Lemmas 35.23.11, 35.23.10, and 35.23.16). Hence the result follows
formally. □

Lemma 35.23.29.02VN The property P(f) =“f is étale” is fpqc local on the base.

Proof. A morphism is étale if and only if it flat and G-unramified. See Morphisms,
Lemma 29.36.16. We have seen already that being flat and G-unramified are fpqc
local on the base (Lemmas 35.23.15, and 35.23.28). Hence the result follows. □

Lemma 35.23.30.02VO The property P(f) =“f is finite locally free” is fpqc local on the
base. Let d ≥ 0. The property P(f) =“f is finite locally free of degree d” is fpqc
local on the base.

Proof. Being finite locally free is equivalent to being finite, flat and locally of fi-
nite presentation (Morphisms, Lemma 29.48.2). Hence this follows from Lemmas
35.23.23, 35.23.15, and 35.23.11. If f : Z → U is finite locally free, and {Ui → U} is
a surjective family of morphisms such that each pullback Z ×U Ui → Ui has degree
d, then Z → U has degree d, for example because we can read off the degree in a
point u ∈ U from the fibre (f∗OZ)u ⊗OU,u

κ(u). □

Lemma 35.23.31.02YK The property P(f) =“f is a monomorphism” is fpqc local on
the base.

Proof. Let f : X → S be a morphism of schemes. Let {Si → S} be an fpqc covering,
and assume each of the base changes fi : Xi → Si of f is a monomorphism. Let
a, b : T → X be two morphisms such that f ◦a = f ◦b. We have to show that a = b.
Since fi is a monomorphism we see that ai = bi, where ai, bi : Si×S T → Xi are the
base changes. In particular the compositions Si ×S T → T → X are equal. Since∐
Si×S T → T is an epimorphism (see e.g. Lemma 35.13.7) we conclude a = b. □

Lemma 35.23.32.0694 The properties
P(f) =“f is a Koszul-regular immersion”,
P(f) =“f is an H1-regular immersion”, and
P(f) =“f is a quasi-regular immersion”

are fpqc local on the base.

Proof. We will use the criterion of Lemma 35.22.4 to prove this. By Divisors, Defi-
nition 31.21.1 being a Koszul-regular (resp. H1-regular, quasi-regular) immersion is
Zariski local on the base. By Divisors, Lemma 31.21.4 being a Koszul-regular (resp.
H1-regular, quasi-regular) immersion is preserved under flat base change. The final
hypothesis (3) of Lemma 35.22.4 translates into the following algebra statement:
Let A → B be a faithfully flat ring map. Let I ⊂ A be an ideal. If IB is lo-
cally on Spec(B) generated by a Koszul-regular (resp. H1-regular, quasi-regular)
sequence in B, then I ⊂ A is locally on Spec(A) generated by a Koszul-regular
(resp. H1-regular, quasi-regular) sequence in A. This is More on Algebra, Lemma
15.32.4. □
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35.24. Properties of morphisms local in the fppf topology on the target

02YL In this section we find some properties of morphisms of schemes for which we could
not (yet) show they are local on the base in the fpqc topology which, however, are
local on the base in the fppf topology.

Lemma 35.24.1.02YM The property P(f) =“f is an immersion” is fppf local on the base.

Proof. The property of being an immersion is stable under base change, see Schemes,
Lemma 26.18.2. The property of being an immersion is Zariski local on the base.
Finally, let π : S′ → S be a surjective morphism of affine schemes, which is flat
and locally of finite presentation. Note that π : S′ → S is open by Morphisms,
Lemma 29.25.10. Let f : X → S be a morphism. Assume that the base change
f ′ : X ′ → S′ is an immersion. In particular we see that f ′(X ′) = π−1(f(X)) is
locally closed. Hence by Topology, Lemma 5.6.4 we see that f(X) ⊂ S is locally
closed. Let Z ⊂ S be the closed subset Z = f(X) \ f(X). By Topology, Lemma
5.6.4 again we see that f ′(X ′) is closed in S′ \ Z ′. Hence we may apply Lemma
35.23.19 to the fpqc covering {S′ \Z ′ → S \Z} and conclude that f : X → S \Z is
a closed immersion. In other words, f is an immersion. Therefore Lemma 35.22.4
applies and we win. □

35.25. Application of fpqc descent of properties of morphisms

02LB The following lemma may seem a bit frivolous but turns out is a useful tool in
studying étale and unramified morphisms.

Lemma 35.25.1.06NC Let f : X → Y be a flat, quasi-compact, surjective monomor-
phism. Then f is an isomorphism.

Proof. As f is a flat, quasi-compact, surjective morphism we see {X → Y } is an
fpqc covering of Y . The diagonal ∆ : X → X ×Y X is an isomorphism (Schemes,
Lemma 26.23.2). This implies that the base change of f by f is an isomorphism.
Hence we see f is an isomorphism by Lemma 35.23.17. □

We can use this lemma to show the following important result; we also give a proof
avoiding fpqc descent. We will discuss this and related results in more detail in
Étale Morphisms, Section 41.14.

Lemma 35.25.2.02LC A universally injective étale morphism is an open immersion.

First proof. Let f : X → Y be an étale morphism which is universally injective.
Then f is open (Morphisms, Lemma 29.36.13) hence we can replace Y by f(X) and
we may assume that f is surjective. Then f is bijective and open hence a homeomor-
phism. Hence f is quasi-compact. Thus by Lemma 35.25.1 it suffices to show that
f is a monomorphism. As X → Y is étale the morphism ∆X/Y : X → X ×Y X
is an open immersion by Morphisms, Lemma 29.35.13 (and Morphisms, Lemma
29.36.16). As f is universally injective ∆X/Y is also surjective, see Morphisms,
Lemma 29.10.2. Hence ∆X/Y is an isomorphism, i.e., X → Y is a monomor-
phism. □

Second proof. Let f : X → Y be an étale morphism which is universally injective.
Then f is open (Morphisms, Lemma 29.36.13) hence we can replace Y by f(X)
and we may assume that f is surjective. Since the hypotheses remain satisfied after
any base change, we conclude that f is a universal homeomorphism. Therefore f is
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integral, see Morphisms, Lemma 29.45.5. It follows that f is finite by Morphisms,
Lemma 29.44.4. It follows that f is finite locally free by Morphisms, Lemma 29.48.2.
To finish the proof, it suffices that f is finite locally free of degree 1 (a finite locally
free morphism of degree 1 is an isomorphism). There is decomposition of Y into
open and closed subschemes Vd such that f−1(Vd)→ Vd is finite locally free of degree
d, see Morphisms, Lemma 29.48.5. If Vd is not empty, we can pick a morphism
Spec(k) → Vd ⊂ Y where k is an algebraically closed field (just take the algebraic
closure of the residue field of some point of Vd). Then Spec(k)×Y X → Spec(k) is
a disjoint union of copies of Spec(k), by Morphisms, Lemma 29.36.7 and the fact
that k is algebraically closed. However, since f is universally injective, there can
only be one copy and hence d = 1 as desired. □

We can reformulate the hypotheses in the lemma above a bit by using the following
characterization of flat universally injective morphisms.

Lemma 35.25.3.09NP Let f : X → Y be a morphism of schemes. Let X0 denote the set
of generic points of irreducible components of X. If

(1) f is flat and separated,
(2) for ξ ∈ X0 we have κ(f(ξ)) = κ(ξ), and
(3) if ξ, ξ′ ∈ X0, ξ ̸= ξ′, then f(ξ) ̸= f(ξ′),

then f is universally injective.

Proof. We have to show that ∆ : X → X ×Y X is surjective, see Morphisms,
Lemma 29.10.2. As X → Y is separated, the image of ∆ is closed. Thus if ∆ is not
surjective, we can find a generic point η ∈ X ×S X of an irreducible component of
X×SX which is not in the image of ∆. The projection pr1 : X×Y X → X is flat as
a base change of the flat morphism X → Y , see Morphisms, Lemma 29.25.8. Hence
generalizations lift along pr1, see Morphisms, Lemma 29.25.9. We conclude that
ξ = pr1(η) ∈ X0. However, assumptions (2) and (3) guarantee that the scheme
(X ×Y X)f(ξ) has at most one point for every ξ ∈ X0. In other words, we have
∆(ξ) = η a contradiction. □

Thus we can reformulate Lemma 35.25.2 as follows.

Lemma 35.25.4.09NQ Let f : X → Y be a morphism of schemes. Let X0 denote the set
of generic points of irreducible components of X. If

(1) f is étale and separated,
(2) for ξ ∈ X0 we have κ(f(ξ)) = κ(ξ), and
(3) if ξ, ξ′ ∈ X0, ξ ̸= ξ′, then f(ξ) ̸= f(ξ′),

then f is an open immersion.

Proof. Immediate from Lemmas 35.25.3 and 35.25.2. □

Lemma 35.25.5.0F4J Let f : X → Y be a morphism of schemes which is locally of finite
type. Let Z be a closed subset of X. If there exists an fpqc covering {Yi → Y } such
that the inverse image Zi ⊂ Yi ×Y X is proper over Yi (Cohomology of Schemes,
Definition 30.26.2) then Z is proper over Y .

Proof. Endow Z with the reduced induced closed subscheme structure, see Schemes,
Definition 26.12.5. For every i the base change Yi ×Y Z is a closed subscheme of
Yi ×Y X whose underlying closed subset is Zi. By definition (via Cohomology of
Schemes, Lemma 30.26.1) we conclude that the projections Yi×Y Z → Yi are proper
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morphisms. Hence Z → Y is a proper morphism by Lemma 35.23.14. Thus Z is
proper over Y by definition. □

Lemma 35.25.6.0D2P Let f : X → S be a morphism of schemes. Let L be an invertible
OX -module. Let {gi : Si → S}i∈I be an fpqc covering. Let fi : Xi → Si be the
base change of f and let Li be the pullback of L to Xi. The following are equivalent

(1) L is ample on X/S, and
(2) Li is ample on Xi/Si for every i ∈ I.

Proof. The implication (1)⇒ (2) follows from Morphisms, Lemma 29.37.9. Assume
Li is ample on Xi/Si for every i ∈ I. By Morphisms, Definition 29.37.1 this implies
that Xi → Si is quasi-compact and by Morphisms, Lemma 29.37.3 this implies
Xi → S is separated. Hence f is quasi-compact and separated by Lemmas 35.23.1
and 35.23.6.
This means that A =

⊕
d≥0 f∗L⊗d is a quasi-coherent graded OS-algebra (Schemes,

Lemma 26.24.1). Moreover, the formation of A commutes with flat base change by
Cohomology of Schemes, Lemma 30.5.2. In particular, if we set Ai =

⊕
d≥0 fi,∗L

⊗d
i

then we have Ai = g∗
iA. It follows that the natural maps ψd : f∗Ad → L⊗d of

OX pullback to give the natural maps ψi,d : f∗
i (Ai)d → L⊗d

i of OXi-modules.
Since Li is ample on Xi/Si we see that for any point xi ∈ Xi, there exists a
d ≥ 1 such that f∗

i (Ai)d → L⊗d
i is surjective on stalks at xi. This follows either

directly from the definition of a relatively ample module or from Morphisms, Lemma
29.37.4. If x ∈ X, then we can choose an i and an xi ∈ Xi mapping to x. Since
OX,x → OXi,xi is flat hence faithfully flat, we conclude that for every x ∈ X there
exists a d ≥ 1 such that f∗Ad → L⊗d is surjective on stalks at x. This implies
that the open subset U(ψ) ⊂ X of Constructions, Lemma 27.19.1 corresponding to
the map ψ : f∗A →

⊕
d≥0 L⊗d of graded OX -algebras is equal to X. Consider the

corresponding morphism
rL,ψ : X −→ Proj

S
(A)

It is clear from the above that the base change of rL,ψ to Si is the morphism rLi,ψi
which is an open immersion by Morphisms, Lemma 29.37.4. Hence rL,ψ is an open
immersion by Lemma 35.23.16 and we conclude L is ample on X/S by Morphisms,
Lemma 29.37.4. □

35.26. Properties of morphisms local on the source

036F It often happens one can prove a morphism has a certain property after precom-
posing with some other morphism. In many cases this implies the morphism has
the property too. We formalize this in the following definition.

Definition 35.26.1.036G Let P be a property of morphisms of schemes. Let τ ∈
{Zariski, fpqc, fppf, étale, smooth, syntomic}. We say P is τ local on the source,
or local on the source for the τ -topology if for any morphism of schemes f : X → Y
over S, and any τ -covering {Xi → X}i∈I we have

f has P ⇔ each Xi → Y has P.

To be sure, since isomorphisms are always coverings we see (or require) that prop-
erty P holds for X → Y if and only if it holds for any arrow X ′ → Y ′ isomorphic to
X → Y . If a property is τ -local on the source then it is preserved by precomposing
with morphisms which occur in τ -coverings. Here is a formal statement.
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Lemma 35.26.2.04QV Let τ ∈ {fpqc, fppf, syntomic, smooth, étale, Zariski}. Let P
be a property of morphisms which is τ local on the source. Let f : X → Y have
property P. For any morphism a : X ′ → X which is flat, resp. flat and locally
of finite presentation, resp. syntomic, resp. étale, resp. an open immersion, the
composition f ◦ a : X ′ → Y has property P.

Proof. This is true because we can fit X ′ → X into a family of morphisms which
forms a τ -covering. □

Lemma 35.26.3.0CEY Let τ ∈ {fppf, syntomic, smooth, étale}. Let P be a property of
morphisms which is τ local on the source. For any morphism of schemes f : X → Y
there exists a largest open W (f) ⊂ X such that the restriction f |W (f) : W (f)→ Y
has P. Moreover, if g : X ′ → X is flat and locally of finite presentation, syntomic,
smooth, or étale and f ′ = f ◦ g : X ′ → Y , then g−1(W (f)) = W (f ′).

Proof. Consider the union W of the images g(X ′) ⊂ X of morphisms g : X ′ → X
with the properties:

(1) g is flat and locally of finite presentation, syntomic, smooth, or étale, and
(2) the composition X ′ → X → Y has property P.

Since such a morphism g is open (see Morphisms, Lemma 29.25.10) we see that
W ⊂ X is an open subset of X. Since P is local in the τ topology the restriction
f |W : W → Y has property P because we are given a τ covering {X ′ → W}
of W such that the pullbacks have P. This proves the existence of W (f). The
compatibility stated in the last sentence follows immediately from the construction
of W (f). □

Lemma 35.26.4.036H Let P be a property of morphisms of schemes. Let τ ∈ {fpqc,
fppf, étale, smooth, syntomic}. Assume that

(1) the property is preserved under precomposing with flat, flat locally of
finite presentation, étale, smooth or syntomic morphisms depending on
whether τ is fpqc, fppf, étale, smooth, or syntomic,

(2) the property is Zariski local on the source,
(3) the property is Zariski local on the target,
(4) for any morphism of affine schemes f : X → Y , and any surjective mor-

phism of affine schemes X ′ → X which is flat, flat of finite presentation,
étale, smooth or syntomic depending on whether τ is fpqc, fppf, étale,
smooth, or syntomic, property P holds for f if property P holds for the
composition f ′ : X ′ → Y .

Then P is τ local on the source.

Proof. This follows almost immediately from the definition of a τ -covering, see
Topologies, Definition 34.9.1 34.7.1 34.4.1 34.5.1, or 34.6.1 and Topologies, Lemma
34.9.8, 34.7.4, 34.4.4, 34.5.4, or 34.6.4. Details omitted. (Hint: Use locality on the
source and target to reduce the verification of property P to the case of a morphism
between affines. Then apply (1) and (4).) □

Remark 35.26.5.036I (This is a repeat of Remarks 35.15.3 and 35.22.5 above.) In
Lemma 35.26.4 above if τ = smooth then in condition (4) we may assume that
the morphism is a (surjective) standard smooth morphism. Similarly, when τ =
syntomic or τ = étale.
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35.27. Properties of morphisms local in the fpqc topology on the source

036J Here are some properties of morphisms that are fpqc local on the source.

Lemma 35.27.1.036K The property P(f) =“f is flat” is fpqc local on the source.

Proof. Since flatness is defined in terms of the maps of local rings (Morphisms,
Definition 29.25.1) what has to be shown is the following algebraic fact: Suppose
A → B → C are local homomorphisms of local rings, and assume B → C is flat.
Then A→ B is flat if and only if A→ C is flat. If A→ B is flat, then A→ C is flat
by Algebra, Lemma 10.39.4. Conversely, assume A→ C is flat. Note that B → C
is faithfully flat, see Algebra, Lemma 10.39.17. Hence A → B is flat by Algebra,
Lemma 10.39.10. (Also see Morphisms, Lemma 29.25.13 for a direct proof.) □

Lemma 35.27.2.036L Then property P(f : X → Y ) =“for every x ∈ X the map of local
rings OY,f(x) → OX,x is injective” is fpqc local on the source.

Proof. Omitted. This is just a (probably misguided) attempt to be playful. □

35.28. Properties of morphisms local in the fppf topology on the source

036M Here are some properties of morphisms that are fppf local on the source.

Lemma 35.28.1.036N The property P(f) =“f is locally of finite presentation” is fppf
local on the source.

Proof. Being locally of finite presentation is Zariski local on the source and the
target, see Morphisms, Lemma 29.21.2. It is a property which is preserved under
composition, see Morphisms, Lemma 29.21.3. This proves (1), (2) and (3) of Lemma
35.26.4. The final condition (4) is Lemma 35.14.1. Hence we win. □

Lemma 35.28.2.036O The property P(f) =“f is locally of finite type” is fppf local on
the source.

Proof. Being locally of finite type is Zariski local on the source and the target, see
Morphisms, Lemma 29.15.2. It is a property which is preserved under composition,
see Morphisms, Lemma 29.15.3, and a flat morphism locally of finite presentation is
locally of finite type, see Morphisms, Lemma 29.21.8. This proves (1), (2) and (3)
of Lemma 35.26.4. The final condition (4) is Lemma 35.14.2. Hence we win. □

Lemma 35.28.3.036P The property P(f) =“f is open” is fppf local on the source.

Proof. Being an open morphism is clearly Zariski local on the source and the target.
It is a property which is preserved under composition, see Morphisms, Lemma
29.23.3, and a flat morphism of finite presentation is open, see Morphisms, Lemma
29.25.10 This proves (1), (2) and (3) of Lemma 35.26.4. The final condition (4)
follows from Morphisms, Lemma 29.25.12. Hence we win. □

Lemma 35.28.4.036Q The property P(f) =“f is universally open” is fppf local on the
source.

Proof. Let f : X → Y be a morphism of schemes. Let {Xi → X}i∈I be an fppf
covering. Denote fi : Xi → X the compositions. We have to show that f is
universally open if and only if each fi is universally open. If f is universally open,
then also each fi is universally open since the maps Xi → X are universally open
and compositions of universally open morphisms are universally open (Morphisms,
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Lemmas 29.25.10 and 29.23.3). Conversely, assume each fi is universally open. Let
Y ′ → Y be a morphism of schemes. Denote X ′ = Y ′ ×Y X and X ′

i = Y ′ ×Y Xi.
Note that {X ′

i → X ′}i∈I is an fppf covering also. The morphisms f ′
i : X ′

i → Y ′

are open by assumption. Hence by the Lemma 35.28.3 above we conclude that
f ′ : X ′ → Y ′ is open as desired. □

35.29. Properties of morphisms local in the syntomic topology on the source

036R Here are some properties of morphisms that are syntomic local on the source.
Lemma 35.29.1.036S The property P(f) =“f is syntomic” is syntomic local on the
source.
Proof. Combine Lemma 35.26.4 with Morphisms, Lemma 29.30.2 (local for Zariski
on source and target), Morphisms, Lemma 29.30.3 (pre-composing), and Lemma
35.14.4 (part (4)). □

35.30. Properties of morphisms local in the smooth topology on the source

036T Here are some properties of morphisms that are smooth local on the source. Note
also the (in some respects stronger) result on descending smoothness via flat mor-
phisms, Lemma 35.14.5.
Lemma 35.30.1.036U The property P(f) =“f is smooth” is smooth local on the source.
Proof. Combine Lemma 35.26.4 with Morphisms, Lemma 29.34.2 (local for Zariski
on source and target), Morphisms, Lemma 29.34.4 (pre-composing), and Lemma
35.14.4 (part (4)). □

35.31. Properties of morphisms local in the étale topology on the source

036V Here are some properties of morphisms that are étale local on the source.
Lemma 35.31.1.036W The property P(f) =“f is étale” is étale local on the source.
Proof. Combine Lemma 35.26.4 with Morphisms, Lemma 29.36.2 (local for Zariski
on source and target), Morphisms, Lemma 29.36.3 (pre-composing), and Lemma
35.14.4 (part (4)). □

Lemma 35.31.2.03X4 The property P(f) =“f is locally quasi-finite” is étale local on
the source.
Proof. We are going to use Lemma 35.26.4. By Morphisms, Lemma 29.20.11 the
property of being locally quasi-finite is local for Zariski on source and target. By
Morphisms, Lemmas 29.20.12 and 29.36.6 we see the precomposition of a locally
quasi-finite morphism by an étale morphism is locally quasi-finite. Finally, suppose
that X → Y is a morphism of affine schemes and that X ′ → X is a surjective
étale morphism of affine schemes such that X ′ → Y is locally quasi-finite. Then
X ′ → Y is of finite type, and by Lemma 35.14.2 we see that X → Y is of finite
type also. Moreover, by assumption X ′ → Y has finite fibres, and hence X → Y
has finite fibres also. We conclude that X → Y is quasi-finite by Morphisms,
Lemma 29.20.10. This proves the last assumption of Lemma 35.26.4 and finishes
the proof. □

Lemma 35.31.3.03YV The property P(f) =“f is unramified” is étale local on the source.
The property P(f) =“f is G-unramified” is étale local on the source.
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Proof. We are going to use Lemma 35.26.4. By Morphisms, Lemma 29.35.3 the
property of being unramified (resp. G-unramified) is local for Zariski on source and
target. By Morphisms, Lemmas 29.35.4 and 29.36.5 we see the precomposition of
an unramified (resp. G-unramified) morphism by an étale morphism is unramified
(resp. G-unramified). Finally, suppose that X → Y is a morphism of affine schemes
and that f : X ′ → X is a surjective étale morphism of affine schemes such that
X ′ → Y is unramified (resp. G-unramified). Then X ′ → Y is of finite type (resp.
finite presentation), and by Lemma 35.14.2 (resp. Lemma 35.14.1) we see that
X → Y is of finite type (resp. finite presentation) also. By Morphisms, Lemma
29.34.16 we have a short exact sequence

0→ f∗ΩX/Y → ΩX′/Y → ΩX′/X → 0.
As X ′ → Y is unramified we see that the middle term is zero. Hence, as f is
faithfully flat we see that ΩX/Y = 0. Hence X → Y is unramified (resp. G-
unramified), see Morphisms, Lemma 29.35.2. This proves the last assumption of
Lemma 35.26.4 and finishes the proof. □

35.32. Properties of morphisms étale local on source-and-target

04QW Let P be a property of morphisms of schemes. There is an intuitive meaning to the
phrase “P is étale local on the source and target”. However, it turns out that this
notion is not the same as asking P to be both étale local on the source and étale
local on the target. Before we discuss this further we give two silly examples.

Example 35.32.1.04QX Consider the property P of morphisms of schemes defined by
the rule P(X → Y ) =“Y is locally Noetherian”. The reader can verify that this is
étale local on the source and étale local on the target (omitted, see Lemma 35.16.1).
But it is not true that if f : X → Y has P and g : Y → Z is étale, then g ◦ f has
P. Namely, f could be the identity on Y and g could be an open immersion of a
locally Noetherian scheme Y into a non locally Noetherian scheme Z.

The following example is in some sense worse.

Example 35.32.2.04QY Consider the property P of morphisms of schemes defined by
the rule P(f : X → Y ) =“for every y ∈ Y which is a specialization of some f(x),
x ∈ X the local ring OY,y is Noetherian”. Let us verify that this is étale local on the
source and étale local on the target. We will freely use Schemes, Lemma 26.13.2.
Local on the target: Let {gi : Yi → Y } be an étale covering. Let fi : Xi → Yi be
the base change of f , and denote hi : Xi → X the projection. Assume P(f). Let
f(xi) ⇝ yi be a specialization. Then f(hi(xi)) ⇝ gi(yi) so P(f) implies OY,gi(yi)
is Noetherian. Also OY,gi(yi) → OYi,yi is a localization of an étale ring map. Hence
OYi,yi is Noetherian by Algebra, Lemma 10.31.1. Conversely, assume P(fi) for all
i. Let f(x) ⇝ y be a specialization. Choose an i and yi ∈ Yi mapping to y. Since
x can be viewed as a point of Spec(OY,y) ×Y X and OY,y → OYi,yi is faithfully
flat, there exists a point xi ∈ Spec(OYi,yi) ×Y X mapping to x. Then xi ∈ Xi,
and fi(xi) specializes to yi. Thus we see that OYi,yi is Noetherian by P(fi) which
implies that OY,y is Noetherian by Algebra, Lemma 10.164.1.
Local on the source: Let {hi : Xi → X} be an étale covering. Let fi : Xi → Y be
the composition f ◦ hi. Assume P(f). Let f(xi) ⇝ y be a specialization. Then
f(hi(xi)) ⇝ y so P(f) implies OY,y is Noetherian. Thus P(fi) holds. Conversely,
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assume P(fi) for all i. Let f(x)⇝ y be a specialization. Choose an i and xi ∈ Xi

mapping to x. Then y is a specialization of fi(xi) = f(x). Hence P(fi) implies
OY,y is Noetherian as desired.
We claim that there exists a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with surjective étale vertical arrows, such that h has P and f does not have P.
Namely, let

Y = Spec
(

C[xn;n ∈ Z]/(xnxm;n ̸= m)
)

and let X ⊂ Y be the open subscheme which is the complement of the point all of
whose coordinates xn = 0. Let U = X, let V = X ⨿ Y , let a, b the obvious map,
and let h : U → V be the inclusion of U = X into the first summand of V . The
claim above holds because U is locally Noetherian, but Y is not.

What should be the correct notion of a property which is étale local on the source-
and-target? We think that, by analogy with Morphisms, Definition 29.14.1 it should
be the following.

Definition 35.32.3.04QZ Let P be a property of morphisms of schemes. We say P is
étale local on source-and-target if

(1) (stable under precomposing with étale maps) if f : X → Y is étale and
g : Y → Z has P, then g ◦ f has P,

(2) (stable under étale base change) if f : X → Y has P and Y ′ → Y is étale,
then the base change f ′ : Y ′ ×Y X → Y ′ has P, and

(3) (locality) given a morphism f : X → Y the following are equivalent
(a) f has P,
(b) for every x ∈ X there exists a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with étale vertical arrows and u ∈ U with a(u) = x such that h has
P.

It turns out this definition excludes the behavior seen in Examples 35.32.1 and
35.32.2. We will compare this to the definition in the paper [DM69] by Deligne
and Mumford in Remark 35.32.8. Moreover, a property which is étale local on the
source-and-target is étale local on the source and étale local on the target. Finally,
the converse is almost true as we will see in Lemma 35.32.6.

Lemma 35.32.4.04R0 Let P be a property of morphisms of schemes which is étale local
on source-and-target. Then

(1) P is étale local on the source,
(2) P is étale local on the target,
(3) P is stable under postcomposing with étale morphisms: if f : X → Y has
P and g : Y → Z is étale, then g ◦ f has P, and
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(4) P has a permanence property: given f : X → Y and g : Y → Z étale
such that g ◦ f has P, then f has P.

Proof. We write everything out completely.
Proof of (1). Let f : X → Y be a morphism of schemes. Let {Xi → X}i∈I be an
étale covering of X. If each composition hi : Xi → Y has P, then for each x ∈ X
we can find an i ∈ I and a point xi ∈ Xi mapping to x. Then (Xi, xi)→ (X,x) is
an étale morphism of germs, and idY : Y → Y is an étale morphism, and hi is as
in part (3) of Definition 35.32.3. Thus we see that f has P. Conversely, if f has P
then each Xi → Y has P by Definition 35.32.3 part (1).
Proof of (2). Let f : X → Y be a morphism of schemes. Let {Yi → Y }i∈I be an
étale covering of Y . Write Xi = Yi ×Y X and hi : Xi → Yi for the base change of
f . If each hi : Xi → Yi has P, then for each x ∈ X we pick an i ∈ I and a point
xi ∈ Xi mapping to x. Then (Xi, xi) → (X,x) is an étale morphism of germs,
Yi → Y is étale, and hi is as in part (3) of Definition 35.32.3. Thus we see that f
has P. Conversely, if f has P, then each Xi → Yi has P by Definition 35.32.3 part
(2).
Proof of (3). Assume f : X → Y has P and g : Y → Z is étale. For every x ∈ X
we can think of (X,x)→ (X,x) as an étale morphism of germs, Y → Z is an étale
morphism, and h = f is as in part (3) of Definition 35.32.3. Thus we see that g ◦ f
has P.
Proof of (4). Let f : X → Y be a morphism and g : Y → Z étale such that g ◦ f
has P. Then by Definition 35.32.3 part (2) we see that prY : Y ×Z X → Y has P.
But the morphism (f, 1) : X → Y ×Z X is étale as a section to the étale projection
prX : Y ×Z X → X, see Morphisms, Lemma 29.36.18. Hence f = prY ◦ (f, 1) has
P by Definition 35.32.3 part (1). □

The following lemma is the analogue of Morphisms, Lemma 29.14.4.

Lemma 35.32.5.04R1 Let P be a property of morphisms of schemes which is étale local
on source-and-target. Let f : X → Y be a morphism of schemes. The following are
equivalent:

(a) f has property P,
(b) for every x ∈ X there exists an étale morphism of germs a : (U, u) →

(X,x), an étale morphism b : V → Y , and a morphism h : U → V such
that f ◦ a = b ◦ h and h has P,

(c) for any commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with a, b étale the morphism h has P,
(d) for some diagram as in (c) with a : U → X surjective h has P,
(e) there exists an étale covering {Yi → Y }i∈I such that each base change

Yi ×Y X → Yi has P,
(f) there exists an étale covering {Xi → X}i∈I such that each composition

Xi → Y has P,
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(g) there exists an étale covering {Yi → Y }i∈I and for each i ∈ I an étale
covering {Xij → Yi×Y X}j∈Ji such that each morphism Xij → Yi has P.

Proof. The equivalence of (a) and (b) is part of Definition 35.32.3. The equivalence
of (a) and (e) is Lemma 35.32.4 part (2). The equivalence of (a) and (f) is Lemma
35.32.4 part (1). As (a) is now equivalent to (e) and (f) it follows that (a) equivalent
to (g).
It is clear that (c) implies (a). If (a) holds, then for any diagram as in (c) the
morphism f ◦a has P by Definition 35.32.3 part (1), whereupon h has P by Lemma
35.32.4 part (4). Thus (a) and (c) are equivalent. It is clear that (c) implies (d).
To see that (d) implies (a) assume we have a diagram as in (c) with a : U → X
surjective and h having P. Then b ◦ h has P by Lemma 35.32.4 part (3). Since
{a : U → X} is an étale covering we conclude that f has P by Lemma 35.32.4 part
(1). □

It seems that the result of the following lemma is not a formality, i.e., it actually
uses something about the geometry of étale morphisms.

Lemma 35.32.6.04R2 Let P be a property of morphisms of schemes. Assume
(1) P is étale local on the source,
(2) P is étale local on the target, and
(3) P is stable under postcomposing with open immersions: if f : X → Y has
P and Y ⊂ Z is an open subscheme then X → Z has P.

Then P is étale local on the source-and-target.

Proof. Let P be a property of morphisms of schemes which satisfies conditions
(1), (2) and (3) of the lemma. By Lemma 35.26.2 we see that P is stable under
precomposing with étale morphisms. By Lemma 35.22.2 we see that P is stable
under étale base change. Hence it suffices to prove part (3) of Definition 35.32.3
holds.
More precisely, suppose that f : X → Y is a morphism of schemes which satisfies
Definition 35.32.3 part (3)(b). In other words, for every x ∈ X there exists an
étale morphism ax : Ux → X, a point ux ∈ Ux mapping to x, an étale morphism
bx : Vx → Y , and a morphism hx : Ux → Vx such that f ◦ ax = bx ◦ hx and hx has
P. The proof of the lemma is complete once we show that f has P. Set U =

∐
Ux,

a =
∐
ax, V =

∐
Vx, b =

∐
bx, and h =

∐
hx. We obtain a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with a, b étale, a surjective. Note that h has P as each hx does and P is étale local
on the target. Because a is surjective and P is étale local on the source, it suffices
to prove that b◦h has P. This reduces the lemma to proving that P is stable under
postcomposing with an étale morphism.
During the rest of the proof we let f : X → Y be a morphism with property P and
g : Y → Z is an étale morphism. Consider the following statements:

(-) With no additional assumptions g ◦ f has property P.
(A) Whenever Z is affine g ◦ f has property P.
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(AA) Whenever X and Z are affine g ◦ f has property P.
(AAA) Whenever X, Y , and Z are affine g ◦ f has property P.

Once we have proved (-) the proof of the lemma will be complete.
Claim 1: (AAA)⇒ (AA). Namely, let f : X → Y , g : Y → Z be as above with X, Z
affine. As X is affine hence quasi-compact we can find finitely many affine open Yi ⊂
Y , i = 1, . . . , n such that X =

⋃
i=1,...,n f

−1(Yi). Set Xi = f−1(Yi). By Lemma
35.22.2 each of the morphisms Xi → Yi has P. Hence

∐
i=1,...,nXi →

∐
i=1,...,n Yi

has P as P is étale local on the target. By (AAA) applied to
∐
i=1,...,nXi →∐

i=1,...,n Yi and the étale morphism
∐
i=1,...,n Yi → Z we see that

∐
i=1,...,nXi → Z

has P. Now {
∐
i=1,...,nXi → X} is an étale covering, hence as P is étale local on

the source we conclude that X → Z has P as desired.
Claim 2: (AAA) ⇒ (A). Namely, let f : X → Y , g : Y → Z be as above with
Z affine. Choose an affine open covering X =

⋃
Xi. As P is étale local on the

source we see that each f |Xi : Xi → Y has P. By (AA), which follows from (AAA)
according to Claim 1, we see that Xi → Z has P for each i. Since {Xi → X} is an
étale covering and P is étale local on the source we conclude that X → Z has P.
Claim 3: (AAA) ⇒ (-). Namely, let f : X → Y , g : Y → Z be as above. Choose
an affine open covering Z =

⋃
Zi. Set Yi = g−1(Zi) and Xi = f−1(Yi). By Lemma

35.22.2 each of the morphisms Xi → Yi has P. By (A), which follows from (AAA)
according to Claim 2, we see that Xi → Zi has P for each i. Since P is local on
the target and Xi = (g ◦ f)−1(Zi) we conclude that X → Z has P.
Thus to prove the lemma it suffices to prove (AAA). Let f : X → Y and g : Y → Z
be as above X,Y, Z affine. Note that an étale morphism of affines has universally
bounded fibres, see Morphisms, Lemma 29.36.6 and Lemma 29.57.9. Hence we can
do induction on the integer n bounding the degree of the fibres of Y → Z. See
Morphisms, Lemma 29.57.8 for a description of this integer in the case of an étale
morphism. If n = 1, then Y → Z is an open immersion, see Lemma 35.25.2, and
the result follows from assumption (3) of the lemma. Assume n > 1.
Consider the following commutative diagram

X ×Z Y

��

fY

// Y ×Z Y

��

pr
// Y

��
X

f // Y
g // Z

Note that we have a decomposition into open and closed subschemes Y ×Z Y =
∆Y/Z(Y )⨿Y ′, see Morphisms, Lemma 29.35.13. As a base change the degrees of the
fibres of the second projection pr : Y ×Z Y → Y are bounded by n, see Morphisms,
Lemma 29.57.5. On the other hand, pr|∆(Y ) : ∆(Y ) → Y is an isomorphism and
every fibre has exactly one point. Thus, on applying Morphisms, Lemma 29.57.8
we conclude the degrees of the fibres of the restriction pr|Y ′ : Y ′ → Y are bounded
by n− 1. Set X ′ = f−1

Y (Y ′). Picture

X ⨿X ′
f⨿f ′

// ∆(Y )⨿ Y ′ // Y

X ×Z Y
fY // Y ×Z Y

pr // Y
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As P is étale local on the target and hence stable under étale base change (see
Lemma 35.22.2) we see that fY has P. Hence, as P is étale local on the source,
f ′ = fY |X′ has P. By induction hypothesis we see that X ′ → Y has P. As P
is local on the source, and {X → X ×Z Y,X ′ → X ×Y Z} is an étale covering,
we conclude that pr ◦ fY has P. Note that g ◦ f can be viewed as a morphism
g ◦ f : X → g(Y ). As pr ◦ fY is the pullback of g ◦ f : X → g(Y ) via the étale
covering {Y → g(Y )}, and as P is étale local on the target, we conclude that
g ◦ f : X → g(Y ) has property P. Finally, applying assumption (3) of the lemma
once more we conclude that g ◦ f : X → Z has property P. □

Remark 35.32.7.04R3 Using Lemma 35.32.6 and the work done in the earlier sections of
this chapter it is easy to make a list of types of morphisms which are étale local on
the source-and-target. In each case we list the lemma which implies the property is
étale local on the source and the lemma which implies the property is étale local on
the target. In each case the third assumption of Lemma 35.32.6 is trivial to check,
and we omit it. Here is the list:

(1) flat, see Lemmas 35.27.1 and 35.23.15,
(2) locally of finite presentation, see Lemmas 35.28.1 and 35.23.11,
(3) locally finite type, see Lemmas 35.28.2 and 35.23.10,
(4) universally open, see Lemmas 35.28.4 and 35.23.4,
(5) syntomic, see Lemmas 35.29.1 and 35.23.26,
(6) smooth, see Lemmas 35.30.1 and 35.23.27,
(7) étale, see Lemmas 35.31.1 and 35.23.29,
(8) locally quasi-finite, see Lemmas 35.31.2 and 35.23.24,
(9) unramified, see Lemmas 35.31.3 and 35.23.28,

(10) G-unramified, see Lemmas 35.31.3 and 35.23.28, and
(11) add more here as needed.

Remark 35.32.8.04R4 At this point we have three possible definitions of what it means
for a property P of morphisms to be “étale local on the source and target”:

(ST) P is étale local on the source and P is étale local on the target,
(DM) (the definition in the paper [DM69, Page 100] by Deligne and Mumford)

for every diagram

U

a

��

h
// V

b
��

X
f // Y

with surjective étale vertical arrows we have P(h)⇔ P(f), and
(SP) P is étale local on the source-and-target.

In this section we have seen that (SP) ⇒ (DM) ⇒ (ST). The Examples 35.32.1
and 35.32.2 show that neither implication can be reversed. Finally, Lemma 35.32.6
shows that the difference disappears when looking at properties of morphisms which
are stable under postcomposing with open immersions, which in practice will always
be the case.
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Lemma 35.32.9.0CEZ Let P be a property of morphisms of schemes which is étale local
on the source-and-target. Given a commutative diagram of schemes

X ′

g′

��

f ′
// Y ′

g

��
X

f // Y

with points

x′

��

// y′

��
x // y

such that g′ is étale at x′ and g is étale at y′, then x ∈W (f)⇔ x′ ∈W (f ′) where
W (−) is as in Lemma 35.26.3.

Proof. Lemma 35.26.3 applies since P is étale local on the source by Lemma 35.32.4.
Assume x ∈ W (f). Let U ′ ⊂ X ′ and V ′ ⊂ Y ′ be open neighbourhoods of x′

and y′ such that f ′(U ′) ⊂ V ′, g′(U ′) ⊂ W (f) and g′|U ′ and g|V ′ are étale. Then
f◦g′|U ′ = g◦f ′|U ′ has P by property (1) of Definition 35.32.3. Then f ′|U ′ : U ′ → V ′

has property P by (4) of Lemma 35.32.4. Then by (3) of Lemma 35.32.4 we conclude
that f ′

U ′ : U ′ → Y ′ has P. Hence U ′ ⊂W (f ′) by definition. Hence x′ ∈W (f ′).
Assume x′ ∈ W (f ′). Let U ′ ⊂ X ′ and V ′ ⊂ Y ′ be open neighbourhoods of x′ and
y′ such that f ′(U ′) ⊂ V ′, U ′ ⊂ W (f ′) and g′|U ′ and g|V ′ are étale. Then U ′ → Y ′

has P by definition of W (f ′). Then U ′ → V ′ has P by (4) of Lemma 35.32.4. Then
U ′ → Y has P by (3) of Lemma 35.32.4. Let U ⊂ X be the image of the étale
(hence open) morphism g′|′U : U ′ → X. Then {U ′ → U} is an étale covering and
we conclude that U → Y has P by (1) of Lemma 35.32.4. Thus U ⊂ W (f) by
definition. Hence x ∈W (f). □

Lemma 35.32.10.0CF0 Let k be a field. Let n ≥ 2. For 1 ≤ i, j ≤ n with i ̸= j and
d ≥ 0 denote Ti,j,d the automorphism of An

k given in coordinates by
(x1, . . . , xn) 7−→ (x1, . . . , xi−1, xi + xdj , xi+1, . . . , xn)

Let W ⊂ An
k be a nonempty open subscheme such that Ti,j,d(W ) = W for all i, j, d

as above. Then either W = An
k or the characteristic of k is p > 0 and An

k \W is a
finite set of closed points whose coordinates are algebraic over Fp.

Proof. We may replace k by any extension field in order to prove this. Let Z be an
irreducible component of An

k\W . Assume dim(Z) ≥ 1, to get a contradiction. Then
there exists an extension field k′/k and a k′-valued point ξ = (ξ1, . . . , ξn) ∈ (k′)n
of Zk′ ⊂ An

k′ such that at least one of x1, . . . , xn is transcendental over the prime
field. Claim: the orbit of ξ under the group generated by the transformations Ti,j,d
is Zariski dense in An

k′ . The claim will give the desired contradiction.
If the characteristic of k′ is zero, then already the operators Ti,j,0 will be enough
since these transform ξ into the points

(ξ1 + a1, . . . , ξn + an)
for arbitrary (a1, . . . , an) ∈ Zn≥0. If the characteristic is p > 0, we may assume
after renumbering that ξn is transcendental over Fp. By successively applying the
operators Ti,n,d for i < n we see the orbit of ξ contains the elements

(ξ1 + P1(ξn), . . . , ξn−1 + Pn−1(ξn), ξn)
for arbitrary (P1, . . . , Pn−1) ∈ Fp[t]. Thus the Zariski closure of the orbit contains
the coordinate hyperplane xn = ξn. Repeating the argument with a different
coordinate, we conclude that the Zariski closure contains xi = ξi + P (ξn) for any
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P ∈ Fp[t] such that ξi + P (ξn) is transcendental over Fp. Since there are infinitely
many such P the claim follows.
Of course the argument in the preceding paragraph also applies if Z = {z} has
dimension 0 and the coordinates of z in κ(z) are not algebraic over Fp. The lemma
follows. □

Lemma 35.32.11.0CF1 Let P be a property of morphisms of schemes. Assume
(1) P is étale local on the source,
(2) P is smooth local on the target,
(3) P is stable under postcomposing with open immersions: if f : X → Y has
P and Y ⊂ Z is an open subscheme then X → Z has P.

Given a commutative diagram of schemes

X ′

g′

��

f ′
// Y ′

g

��
X

f // Y

with points

x′

��

// y′

��
x // y

such that g is smooth y′ and X ′ → X ×Y Y ′ is étale at x′, then x ∈ W (f)⇔ x′ ∈
W (f ′) where W (−) is as in Lemma 35.26.3.

Proof. Since P is étale local on the source we see that x ∈W (f) if and only if the
image of x in X×Y Y ′ is in W (X×Y Y ′ → Y ′). Hence we may assume the diagram
in the lemma is cartesian.
Assume x ∈W (f). Since P is smooth local on the target we see that (g′)−1W (f) =
W (f)×Y Y ′ → Y ′ has P. Hence (g′)−1W (f) ⊂W (f ′). We conclude x′ ∈W (f ′).
Assume x′ ∈ W (f ′). For any open neighbourhood V ′ ⊂ Y ′ of y′ we may replace
Y ′ by V ′ and X ′ by U ′ = (f ′)−1V ′ because V ′ → Y ′ is smooth and hence the base
change W (f ′) ∩ U ′ → V ′ of W (f ′) → Y ′ has property P. Thus we may assume
there exists an étale morphism Y ′ → An

Y over Y , see Morphisms, Lemma 29.36.20.
Picture

X ′ //

��

Y ′

��
An
X fn

//

��

An
Y

��
X

f // Y

By Lemma 35.32.6 (and because étale coverings are smooth coverings) we see that
P is étale local on the source-and-target. By Lemma 35.32.9 we see that W (f ′) is
the inverse image of the open W (fn) ⊂ An

X . In particular W (fn) contains a point
lying over x. After replacing X by the image of W (fn) (which is open) we may
assume W (fn) → X is surjective. Claim: W (fn) = An

X . The claim implies f has
P as P is local in the smooth topology and {An

Y → Y } is a smooth covering.
Essentially, the claim follows as W (fn) ⊂ An

X is a “translation invariant” open
which meets every fibre of An

X → X. However, to produce an argument along
these lines one has to do étale localization on Y to produce enough translations
and it becomes a bit annoying. Instead we use the automorphisms of Lemma

https://stacks.math.columbia.edu/tag/0CF1
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35.32.10 and étale morphisms of affine spaces. We may assume n ≥ 2. Namely, if
n = 0, then we are done. If n = 1, then we consider the diagram

A2
X f2

//

p

��

A2
Y

��
A1
X

f1 // A1
Y

We have p−1(W (f1)) ⊂W (f2) (see first paragraph of the proof). Thus W (f2)→ X
is still surjective and we may work with f2. Assume n ≥ 2.

For any 1 ≤ i, j ≤ n with i ̸= j and d ≥ 0 denote Ti,j,d the automorphism of An

defined in Lemma 35.32.10. Then we get a commutative diagram

An
X fn

//

Ti,j,d

��

An
Y

Ti,j,d

��
An
X

fn // An
Y

whose vertical arrows are isomorphisms. We conclude that Ti,j,d(W (fn)) = W (fn).
Applying Lemma 35.32.10 we conclude for any x ∈ X the fibre W (fn)x ⊂ An

x is
either An

x (this is what we want) or κ(x) has characteristic p > 0 and W (fn)x is
the complement of a finite set Zx ⊂ An

x of closed points. The second possibility
cannot occur. Namely, consider the morphism Tp : An → An given by

(x1, . . . , xn) 7→ (x1 − xp1, . . . , xn − xpn)

As above we get a commutative diagram

An
X fn

//

Tp

��

An
Y

Tp

��
An
X

fn // An
Y

The morphism Tp : An
X → An

X is étale at every point lying over x and the morphism
Tp : An

Y → An
Y is étale at every point lying over the image of x in Y . (Details

omitted; hint: compute the derivatives.) We conclude that

T−1
p (W ) ∩An

x = W ∩An
x

by Lemma 35.32.9 (we’ve already seen P is étale local on the source-and-target).
Since Tp : An

x → An
x is finite étale of degree pn > 1 we see that if Zx is not empty

then it contains T−1
p (Zx) which is bigger. This contradiction finishes the proof. □

35.33. Properties of morphisms of germs local on source-and-target

04R5 In this section we discuss the analogue of the material in Section 35.32 for mor-
phisms of germs of schemes.
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Definition 35.33.1.04NB Let Q be a property of morphisms of germs of schemes. We
say Q is étale local on the source-and-target if for any commutative diagram

(U ′, u′)

a

��

h′
// (V ′, v′)

b

��
(U, u) h // (V, v)

of germs with étale vertical arrows we have Q(h)⇔ Q(h′).

Lemma 35.33.2.04R6 Let P be a property of morphisms of schemes which is étale local
on the source-and-target. Consider the property Q of morphisms of germs defined
by the rule

Q((X,x)→ (S, s))⇔ there exists a representative U → S which has P

Then Q is étale local on the source-and-target as in Definition 35.33.1.

Proof. If a morphism of germs (X,x) → (S, s) has Q, then there are arbitrarily
small neighbourhoods U ⊂ X of x and V ⊂ S of s such that a representative
U → V of (X,x)→ (S, s) has P. This follows from Lemma 35.32.4. Let

(U ′, u′)
h′
//

a

��

(V ′, v′)

b

��
(U, u) h // (V, v)

be as in Definition 35.33.1. Choose U1 ⊂ U and a representative h1 : U1 → V of h.
Choose V ′

1 ⊂ V ′ and an étale representative b1 : V ′
1 → V of b (Definition 35.20.2).

Choose U ′
1 ⊂ U ′ and representatives a1 : U ′

1 → U1 and h′
1 : U ′

1 → V ′
1 of a and h′

with a1 étale. After shrinking U ′
1 we may assume h1 ◦ a1 = b1 ◦ h′

1. By the initial
remark of the proof, we are trying to show u′ ∈W (h′

1)⇔ u ∈W (h1) where W (−)
is as in Lemma 35.26.3. Thus the lemma follows from Lemma 35.32.9. □

Lemma 35.33.3.04R7 Let P be a property of morphisms of schemes which is étale local
on source-and-target. Let Q be the associated property of morphisms of germs,
see Lemma 35.33.2. Let f : X → Y be a morphism of schemes. The following are
equivalent:

(1) f has property P, and
(2) for every x ∈ X the morphism of germs (X,x) → (Y, f(x)) has property
Q.

Proof. The implication (1) ⇒ (2) is direct from the definitions. The implication
(2) ⇒ (1) also follows from part (3) of Definition 35.32.3. □

A morphism of germs (X,x)→ (S, s) determines a well defined map of local rings.
Hence the following lemma makes sense.

Lemma 35.33.4.04ND The property of morphisms of germs

P((X,x)→ (S, s)) = OS,s → OX,x is flat

is étale local on the source-and-target.

https://stacks.math.columbia.edu/tag/04NB
https://stacks.math.columbia.edu/tag/04R6
https://stacks.math.columbia.edu/tag/04R7
https://stacks.math.columbia.edu/tag/04ND
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Proof. Given a diagram as in Definition 35.33.1 we obtain the following diagram of
local homomorphisms of local rings

OU ′,u′ OV ′,v′oo

OU,u

OO

OV,voo

OO

Note that the vertical arrows are localizations of étale ring maps, in particular they
are essentially of finite presentation, flat, and unramified (see Algebra, Section
10.143). In particular the vertical maps are faithfully flat, see Algebra, Lemma
10.39.17. Now, if the upper horizontal arrow is flat, then the lower horizontal arrow
is flat by an application of Algebra, Lemma 10.39.10 with R = OV,v, S = OU,u and
M = OU ′,u′ . If the lower horizontal arrow is flat, then the ring map

OV ′,v′ ⊗OV,v
OU,u ←− OV ′,v′

is flat by Algebra, Lemma 10.39.7. And the ring map

OU ′,u′ ←− OV ′,v′ ⊗OV,v
OU,u

is a localization of a map between étale ring extensions of OU,u, hence flat by
Algebra, Lemma 10.143.8. □

Lemma 35.33.5.04NI Consider a commutative diagram of morphisms of schemes

U ′ //

��

V ′

��
U // V

with étale vertical arrows and a point v′ ∈ V ′ mapping to v ∈ V . Then the
morphism of fibres U ′

v′ → Uv is étale.

Proof. Note that U ′
v → Uv is étale as a base change of the étale morphism U ′ → U .

The scheme U ′
v is a scheme over V ′

v . By Morphisms, Lemma 29.36.7 the scheme
V ′
v is a disjoint union of spectra of finite separable field extensions of κ(v). One of

these is v′ = Spec(κ(v′)). Hence U ′
v′ is an open and closed subscheme of U ′

v and it
follows that U ′

v′ → U ′
v → Uv is étale (as a composition of an open immersion and

an étale morphism, see Morphisms, Section 29.36). □

Given a morphism of germs of schemes (X,x) → (S, s) we can define the fibre as
the isomorphism class of germs (Us, x) where U → S is any representative. We will
often abuse notation and just write (Xs, x).

Lemma 35.33.6.04NJ Let d ∈ {0, 1, 2, . . . ,∞}. The property of morphisms of germs

Pd((X,x)→ (S, s)) = the local ring OXs,x of the fibre has dimension d

is étale local on the source-and-target.

Proof. Given a diagram as in Definition 35.33.1 we obtain an étale morphism of
fibres U ′

v′ → Uv mapping u′ to u, see Lemma 35.33.5. Hence the result follows from
Lemma 35.21.3. □

https://stacks.math.columbia.edu/tag/04NI
https://stacks.math.columbia.edu/tag/04NJ
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Lemma 35.33.7.04NK Let r ∈ {0, 1, 2, . . . ,∞}. The property of morphisms of germs

Pr((X,x)→ (S, s))⇔ trdegκ(s)κ(x) = r

is étale local on the source-and-target.

Proof. Given a diagram as in Definition 35.33.1 we obtain the following diagram of
local homomorphisms of local rings

OU ′,u′ OV ′,v′oo

OU,u

OO

OV,voo

OO

Note that the vertical arrows are localizations of étale ring maps, in particular they
are unramified (see Algebra, Section 10.143). Hence κ(u′)/κ(u) and κ(v′)/κ(v)
are finite separable field extensions. Thus we have trdegκ(v)κ(u) = trdegκ(v′)κ(u)
which proves the lemma. □

Let (X,x) be a germ of a scheme. The dimension of X at x is the minimum of
the dimensions of open neighbourhoods of x in X, and any small enough open
neighbourhood has this dimension. Hence this is an invariant of the isomorphism
class of the germ. We denote this simply dimx(X).

Lemma 35.33.8.04NL Let d ∈ {0, 1, 2, . . . ,∞}. The property of morphisms of germs

Pd((X,x)→ (S, s))⇔ dimx(Xs) = d

is étale local on the source-and-target.

Proof. Given a diagram as in Definition 35.33.1 we obtain an étale morphism of
fibres U ′

v′ → Uv mapping u′ to u, see Lemma 35.33.5. Hence now the equality
dimu(Uv) = dimu′(U ′

v′) follows from Lemma 35.21.2. □

35.34. Descent data for schemes over schemes

023U Most of the arguments in this section are formal relying only on the definition of a
descent datum. In Simplicial Spaces, Section 85.27 we will examine the relationship
with simplicial schemes which will somewhat clarify the situation.

Definition 35.34.1.023V Let f : X → S be a morphism of schemes.
(1) Let V → X be a scheme over X. A descent datum for V/X/S is an

isomorphism φ : V ×S X → X ×S V of schemes over X ×S X satisfying
the cocycle condition that the diagram

V ×S X ×S X
φ01

((

φ02
// X ×S X ×S V

X ×S V ×S X

φ12

66

commutes (with obvious notation).
(2) We also say that the pair (V/X,φ) is a descent datum relative to X → S.

https://stacks.math.columbia.edu/tag/04NK
https://stacks.math.columbia.edu/tag/04NL
https://stacks.math.columbia.edu/tag/023V
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(3) A morphism f : (V/X,φ)→ (V ′/X,φ′) of descent data relative to X → S
is a morphism f : V → V ′ of schemes over X such that the diagram

V ×S X φ
//

f×idX
��

X ×S V

idX×f
��

V ′ ×S X
φ′
// X ×S V ′

commutes.

There are all kinds of “miraculous” identities which arise out of the definition above.
For example the pullback of φ via the diagonal morphism ∆ : X → X ×S X can
be seen as a morphism ∆∗φ : V → V . This because X ×∆,X×SX (V ×S X) = V
and also X ×∆,X×SX (X ×S V ) = V . In fact, ∆∗φ is equal to the identity. This is
a good exercise if you are unfamiliar with this material.

Remark 35.34.2.02VP Let X → S be a morphism of schemes. Let (V/X,φ) be a descent
datum relative to X → S. We may think of the isomorphism φ as an isomorphism

(X ×S X)×pr0,X V −→ (X ×S X)×pr1,X V

of schemes over X ×S X. So loosely speaking one may think of φ as a map φ :
pr∗

0V → pr∗
1V

9. The cocycle condition then says that pr∗
02φ = pr∗

12φ ◦ pr∗
01φ. In

this way it is very similar to the case of a descent datum on quasi-coherent sheaves.

Here is the definition in case you have a family of morphisms with fixed target.

Definition 35.34.3.023W Let S be a scheme. Let {Xi → S}i∈I be a family of morphisms
with target S.

(1) A descent datum (Vi, φij) relative to the family {Xi → S} is given by a
scheme Vi overXi for each i ∈ I, an isomorphism φij : Vi×SXj → Xi×SVj
of schemes over Xi×SXj for each pair (i, j) ∈ I2 such that for every triple
of indices (i, j, k) ∈ I3 the diagram

Vi ×S Xj ×S Xk

pr∗
01φij

))

pr∗
02φik

// Xi ×S Xj ×S Vk

Xi ×S Vj ×S Xk

pr∗
12φjk

55

of schemes over Xi ×S Xj ×S Xk commutes (with obvious notation).
(2) A morphism ψ : (Vi, φij)→ (V ′

i , φ
′
ij) of descent data is given by a family

ψ = (ψi)i∈I of morphisms of Xi-schemes ψi : Vi → V ′
i such that all the

diagrams
Vi ×S Xj φij

//

ψi×id
��

Xi ×S Vj

id×ψj
��

V ′
i ×S Xj

φ′
ij // Xi ×S V ′

j

commute.

9Unfortunately, we have chosen the “wrong” direction for our arrow here. In Definitions
35.34.1 and 35.34.3 we should have the opposite direction to what was done in Definition 35.2.1
by the general principle that “functions” and “spaces” are dual.

https://stacks.math.columbia.edu/tag/02VP
https://stacks.math.columbia.edu/tag/023W
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This is the notion that comes up naturally for example when the question arises
whether the fibred category of relative curves is a stack in the fpqc topology (it
isn’t – at least not if you stick to schemes).

Remark 35.34.4.02VQ Let S be a scheme. Let {Xi → S}i∈I be a family of morphisms
with target S. Let (Vi, φij) be a descent datum relative to {Xi → S}. We may
think of the isomorphisms φij as isomorphisms

(Xi ×S Xj)×pr0,Xi Vi −→ (Xi ×S Xj)×pr1,Xj Vj

of schemes over Xi ×S Xj . So loosely speaking one may think of φij as an iso-
morphism pr∗

0Vi → pr∗
1Vj over Xi ×S Xj . The cocycle condition then says that

pr∗
02φik = pr∗

12φjk ◦ pr∗
01φij . In this way it is very similar to the case of a descent

datum on quasi-coherent sheaves.

The reason we will usually work with the version of a family consisting of a single
morphism is the following lemma.

Lemma 35.34.5.023X Let S be a scheme. Let {Xi → S}i∈I be a family of morphisms
with target S. Set X =

∐
i∈I Xi, and consider it as an S-scheme. There is a

canonical equivalence of categories

category of descent data
relative to the family {Xi → S}i∈I

−→ category of descent data
relative to X/S

which maps (Vi, φij) to (V, φ) with V =
∐
i∈I Vi and φ =

∐
φij .

Proof. Observe that X×SX =
∐
ij Xi×SXj and similarly for higher fibre products.

Giving a morphism V → X is exactly the same as giving a family Vi → Xi. And
giving a descent datum φ is exactly the same as giving a family φij . □

Lemma 35.34.6.023Y Pullback of descent data for schemes over schemes.
(1) Let

X ′
f
//

a′

��

X

a

��
S′ h // S

be a commutative diagram of morphisms of schemes. The construction

(V → X,φ) 7−→ f∗(V → X,φ) = (V ′ → X ′, φ′)

where V ′ = X ′ ×X V and where φ′ is defined as the composition

V ′ ×S′ X ′ (X ′ ×X V )×S′ X ′ (X ′ ×S′ X ′)×X×SX (V ×S X)

id×φ
��

X ′ ×S′ V ′ X ′ ×S′ (X ′ ×X V ) (X ′ ×S′ X ′)×X×SX (X ×S V )

defines a functor from the category of descent data relative to X → S to
the category of descent data relative to X ′ → S′.

(2) Given two morphisms fi : X ′ → X, i = 0, 1 making the diagram commute
the functors f∗

0 and f∗
1 are canonically isomorphic.

https://stacks.math.columbia.edu/tag/02VQ
https://stacks.math.columbia.edu/tag/023X
https://stacks.math.columbia.edu/tag/023Y
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Proof. We omit the proof of (1), but we remark that the morphism φ′ is the mor-
phism (f × f)∗φ in the notation introduced in Remark 35.34.2. For (2) we indicate
which morphism f∗

0V → f∗
1V gives the functorial isomorphism. Namely, since f0

and f1 both fit into the commutative diagram we see there is a unique morphism
r : X ′ → X ×S X with fi = pri ◦ r. Then we take

f∗
0V = X ′ ×f0,X V

= X ′ ×pr0◦r,X V

= X ′ ×r,X×SX (X ×S X)×pr0,X V
φ−→ X ′ ×r,X×SX (X ×S X)×pr1,X V

= X ′ ×pr1◦r,X V

= X ′ ×f1,X V

= f∗
1V

We omit the verification that this works. □

Definition 35.34.7.02VR With S, S′, X,X ′, f, a, a′, h as in Lemma 35.34.6 the functor
(V, φ) 7−→ f∗(V, φ)

constructed in that lemma is called the pullback functor on descent data.

Lemma 35.34.8 (Pullback of descent data for schemes over families).02VS Let U =
{Ui → S′}i∈I and V = {Vj → S}j∈J be families of morphisms with fixed target.
Let α : I → J , h : S′ → S and gi : Ui → Vα(i) be a morphism of families of maps
with fixed target, see Sites, Definition 7.8.1.

(1) Let (Yj , φjj′) be a descent datum relative to the family {Vj → S′}. The
system (

g∗
i Yα(i), (gi × gi′)∗φα(i)α(i′)

)
(with notation as in Remark 35.34.4) is a descent datum relative to V.

(2) This construction defines a functor between descent data relative to U and
descent data relative to V.

(3) Given a second α′ : I → J , h′ : S′ → S and g′
i : Ui → Vα′(i) morphism

of families of maps with fixed target, then if h = h′ the two resulting
functors between descent data are canonically isomorphic.

(4) These functors agree, via Lemma 35.34.5, with the pullback functors con-
structed in Lemma 35.34.6.

Proof. This follows from Lemma 35.34.6 via the correspondence of Lemma 35.34.5.
□

Definition 35.34.9.02VT With U = {Ui → S′}i∈I , V = {Vj → S}j∈J , α : I → J ,
h : S′ → S, and gi : Ui → Vα(i) as in Lemma 35.34.8 the functor

(Yj , φjj′) 7−→ (g∗
i Yα(i), (gi × gi′)∗φα(i)α(i′))

constructed in that lemma is called the pullback functor on descent data.

If U and V have the same target S, and if U refines V (see Sites, Definition 7.8.1)
but no explicit pair (α, gi) is given, then we can still talk about the pullback functor
since we have seen in Lemma 35.34.8 that the choice of the pair does not matter
(up to a canonical isomorphism).

https://stacks.math.columbia.edu/tag/02VR
https://stacks.math.columbia.edu/tag/02VS
https://stacks.math.columbia.edu/tag/02VT
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Definition 35.34.10.023Z Let S be a scheme. Let f : X → S be a morphism of schemes.
(1) Given a scheme U over S we have the trivial descent datum of U relative

to id : S → S, namely the identity morphism on U .
(2) By Lemma 35.34.6 we get a canonical descent datum on X ×S U relative

to X → S by pulling back the trivial descent datum via f . We often
denote (X ×S U, can) this descent datum.

(3) A descent datum (V, φ) relative to X/S is called effective if (V, φ) is iso-
morphic to the canonical descent datum (X ×S U, can) for some scheme
U over S.

Thus being effective means there exists a scheme U over S and an isomorphism
ψ : V → X ×S U of X-schemes such that φ is equal to the composition

V ×S X
ψ×idX−−−−→ X ×S U ×S X = X ×S X ×S U

idX×ψ−1

−−−−−−→ X ×S V

Definition 35.34.11.02VU Let S be a scheme. Let {Xi → S} be a family of morphisms
with target S.

(1) Given a scheme U over S we have a canonical descent datum on the family
of schemes Xi×SU by pulling back the trivial descent datum for U relative
to {id : S → S}. We denote this descent datum (Xi ×S U, can).

(2) A descent datum (Vi, φij) relative to {Xi → S} is called effective if there
exists a scheme U over S such that (Vi, φij) is isomorphic to (Xi×SU, can).

35.35. Fully faithfulness of the pullback functors

02VV It turns out that the pullback functor between descent data for fpqc-coverings is
fully faithful. In other words, morphisms of schemes satisfy fpqc descent. The
goal of this section is to prove this. The reader is encouraged instead to prove this
him/herself. The key is to use Lemma 35.13.7.

Lemma 35.35.1.02VW A surjective and flat morphism is an epimorphism in the category
of schemes.

Proof. Suppose we have h : X ′ → X surjective and flat and a, b : X → Y morphisms
such that a ◦ h = b ◦ h. As h is surjective we see that a and b agree on underlying
topological spaces. Pick x′ ∈ X ′ and set x = h(x′) and y = a(x) = b(x). Consider
the local ring maps

a♯x, b
♯
x : OY,y → OX,x

These become equal when composed with the flat local homomorphism h♯x′ : OX,x →
OX′,x′ . Since a flat local homomorphism is faithfully flat (Algebra, Lemma 10.39.17)
we conclude that h♯x′ is injective. Hence a♯x = b♯x which implies a = b as desired. □

Lemma 35.35.2.02VX Let h : S′ → S be a surjective, flat morphism of schemes. The
base change functor

Sch/S −→ Sch/S′, X 7−→ S′ ×S X

is faithful.

Proof. Let X1, X2 be schemes over S. Let α, β : X2 → X1 be morphisms over S.
If α, β base change to the same morphism then we get a commutative diagram as

https://stacks.math.columbia.edu/tag/023Z
https://stacks.math.columbia.edu/tag/02VU
https://stacks.math.columbia.edu/tag/02VW
https://stacks.math.columbia.edu/tag/02VX
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follows
X2

α

��

S′ ×S X2oo

��

// X2

β

��
X1 S′ ×S X1oo // X1

Hence it suffices to show that S′ ×S X2 → X2 is an epimorphism. As the base
change of a surjective and flat morphism it is surjective and flat (see Morphisms,
Lemmas 29.9.4 and 29.25.8). Hence the lemma follows from Lemma 35.35.1. □

Lemma 35.35.3.0240 In the situation of Lemma 35.34.6 assume that f : X ′ → X is
surjective and flat. Then the pullback functor is faithful.

Proof. Let (Vi, φi), i = 1, 2 be descent data for X → S. Let α, β : V1 → V2 be
morphisms of descent data. Suppose that f∗α = f∗β. Our task is to show that
α = β. Note that α, β are morphisms of schemes over X, and that f∗α, f∗β are
simply the base changes of α, β to morphisms over X ′. Hence the lemma follows
from Lemma 35.35.2. □

Here is the key lemma of this section.

Lemma 35.35.4.0241 In the situation of Lemma 35.34.6 assume
(1) {f : X ′ → X} is an fpqc covering (for example if f is surjective, flat, and

quasi-compact), and
(2) S = S′.

Then the pullback functor is fully faithful.

Proof. Assumption (1) implies that f is surjective and flat. Hence the pullback
functor is faithful by Lemma 35.35.3. Let (V, φ) and (W,ψ) be two descent data
relative to X → S. Set (V ′, φ′) = f∗(V, φ) and (W ′, ψ′) = f∗(W,ψ). Let α′ : V ′ →
W ′ be a morphism of descent data for X ′ over S. We have to show there exists a
morphism α : V →W of descent data for X over S whose pullback is α′.
Recall that V ′ is the base change of V by f and that φ′ is the base change of φ by
f × f (see Remark 35.34.2). By assumption the diagram

V ′ ×S X ′
φ′
//

α′×id
��

X ′ ×S V ′

id×α′

��
W ′ ×S X ′ ψ′

// X ′ ×S W ′

commutes. We claim the two compositions

V ′ ×V V ′ pri // V ′ α′
// W ′ // W , i = 0, 1

are the same. The reader is advised to prove this themselves rather than read the
rest of this paragraph. (Please email if you find a nice clean argument.) Let v0, v1
be points of V ′ which map to the same point v ∈ V . Let xi ∈ X ′ be the image of vi,
and let x be the point of X which is the image of v in X. In other words, vi = (xi, v)
in V ′ = X ′ ×X V . Write φ(v, x) = (x, v′) for some point v′ of V . This is possible
because φ is a morphism over X ×S X. Denote v′

i = (xi, v′) which is a point of
V ′. Then a calculation (using the definition of φ′) shows that φ′(vi, xj) = (xi, v′

j).
Denote wi = α′(vi) and w′

i = α′(v′
i). Now we may write wi = (xi, ui) for some
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point ui of W , and w′
i = (xi, u′

i) for some point u′
i of W . The claim is equivalent to

the assertion: u0 = u1. A formal calculation using the definition of ψ′ (see Lemma
35.34.6) shows that the commutativity of the diagram displayed above says that

((xi, xj), ψ(ui, x)) = ((xi, xj), (x, u′
j))

as points of (X ′ ×S X ′) ×X×SX (X ×S W ) for all i, j ∈ {0, 1}. This shows that
ψ(u0, x) = ψ(u1, x) and hence u0 = u1 by taking ψ−1. This proves the claim
because the argument above was formal and we can take scheme points (in other
words, we may take (v0, v1) = idV ′×V V ′).

At this point we can use Lemma 35.13.7. Namely, {V ′ → V } is a fpqc covering
as the base change of the morphism f : X ′ → X. Hence, by Lemma 35.13.7 the
morphism α′ : V ′ → W ′ → W factors through a unique morphism α : V → W
whose base change is necessarily α′. Finally, we see the diagram

V ×S X φ
//

α×id
��

X ×S V

id×α
��

W ×S X
ψ // X ×S W

commutes because its base change to X ′×SX ′ commutes and the morphism X ′×S
X ′ → X ×S X is surjective and flat (use Lemma 35.35.2). Hence α is a morphism
of descent data (V, φ)→ (W,ψ) as desired. □

The following two lemmas have been obsoleted by the improved exposition of the
previous material. But they are still true!

Lemma 35.35.5.0242 Let X → S be a morphism of schemes. Let f : X → X be a
selfmap of X over S. In this case pullback by f is isomorphic to the identity functor
on the category of descent data relative to X → S.

Proof. This is clear from Lemma 35.34.6 since it tells us that f∗ ∼= id∗. □

Lemma 35.35.6.0243 Let f : X ′ → X be a morphism of schemes over a base scheme S.
Assume there exists a morphism g : X → X ′ over S, for example if f has a section.
Then the pullback functor of Lemma 35.34.6 defines an equivalence of categories
between the category of descent data relative to X/S and X ′/S.

Proof. Let g : X → X ′ be a morphism over S. Lemma 35.35.5 above shows that
the functors f∗ ◦g∗ = (g◦f)∗ and g∗ ◦f∗ = (f ◦g)∗ are isomorphic to the respective
identity functors as desired. □

Lemma 35.35.7.040J Let f : X → X ′ be a morphism of schemes over a base scheme
S. Assume X → S is surjective and flat. Then the pullback functor of Lemma
35.34.6 is a faithful functor from the category of descent data relative to X ′/S to
the category of descent data relative to X/S.

Proof. We may factor X → X ′ as X → X ×S X ′ → X ′. The first morphism
has a section, hence induces an equivalence of categories of descent data by Lemma
35.35.6. The second morphism is surjective and flat, hence induces a faithful functor
by Lemma 35.35.3. □
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Lemma 35.35.8.040K Let f : X → X ′ be a morphism of schemes over a base scheme S.
Assume {X → S} is an fpqc covering (for example if f is surjective, flat and quasi-
compact). Then the pullback functor of Lemma 35.34.6 is a fully faithful functor
from the category of descent data relative to X ′/S to the category of descent data
relative to X/S.
Proof. We may factor X → X ′ as X → X ×S X ′ → X ′. The first morphism has
a section, hence induces an equivalence of categories of descent data by Lemma
35.35.6. The second morphism is an fpqc covering hence induces a fully faithful
functor by Lemma 35.35.4. □

Lemma 35.35.9.02VZ Let S be a scheme. Let U = {Ui → S}i∈I , and V = {Vj → S}j∈J ,
be families of morphisms with target S. Let α : I → J , id : S → S and gi : Ui →
Vα(i) be a morphism of families of maps with fixed target, see Sites, Definition 7.8.1.
Assume that for each j ∈ J the family {gi : Ui → Vj}α(i)=j is an fpqc covering of
Vj . Then the pullback functor

descent data relative to V −→ descent data relative to U
of Lemma 35.34.8 is fully faithful.
Proof. Consider the morphism of schemes

g : X =
∐

i∈I
Ui −→ Y =

∐
j∈J

Vj

over S which on the ith component maps into the α(i)th component via the mor-
phism gα(i). We claim that {g : X → Y } is an fpqc covering of schemes. Namely,
by Topologies, Lemma 34.9.3 for each j the morphism {

∐
α(i)=j Ui → Vj} is an fpqc

covering. Thus for every affine open V ⊂ Vj (which we may think of as an affine
open of Y ) we can find finitely many affine opens W1, . . . ,Wn ⊂

∐
α(i)=j Ui (which

we may think of as affine opens of X) such that V =
⋃
i=1,...,n g(Wi). This provides

enough affine opens of Y which can be covered by finitely many affine opens of
X so that Topologies, Lemma 34.9.2 part (3) applies, and the claim follows. Let
us write DD(X/S), resp. DD(U) for the category of descent data with respect to
X/S, resp. U , and similarly for Y/S and V. Consider the diagram

DD(Y/S) // DD(X/S)

DD(V)

Lemma 35.34.5

OO

// DD(U)

Lemma 35.34.5

OO

This diagram is commutative, see the proof of Lemma 35.34.8. The vertical arrows
are equivalences. Hence the lemma follows from Lemma 35.35.4 which shows the
top horizontal arrow of the diagram is fully faithful. □

The next lemma shows that, in order to check effectiveness, we may always Zariski
refine the given family of morphisms with target S.
Lemma 35.35.10.02VY Let S be a scheme. Let U = {Ui → S}i∈I , and V = {Vj →
S}j∈J , be families of morphisms with target S. Let α : I → J , id : S → S and
gi : Ui → Vα(i) be a morphism of families of maps with fixed target, see Sites,
Definition 7.8.1. Assume that for each j ∈ J the family {gi : Ui → Vj}α(i)=j is a
Zariski covering (see Topologies, Definition 34.3.1) of Vj . Then the pullback functor

descent data relative to V −→ descent data relative to U
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of Lemma 35.34.8 is an equivalence of categories. In particular, the category of
schemes over S is equivalent to the category of descent data relative to any Zariski
covering of S.
Proof. The functor is faithful and fully faithful by Lemma 35.35.9. Let us indicate
how to prove that it is essentially surjective. Let (Xi, φii′) be a descent datum
relative to U . Fix j ∈ J and set Ij = {i ∈ I | α(i) = j}. For i, i′ ∈ Ij note that
there is a canonical morphism

cii′ : Ui ×gi,Vj ,gi′ Ui′ → Ui ×S Ui′ .
Hence we can pullback φii′ by this morphism and set ψii′ = c∗

ii′φii′ for i, i′ ∈ Ij .
In this way we obtain a descent datum (Xi, ψii′) relative to the Zariski covering
{gi : Ui → Vj}i∈Ij . Note that ψii′ is an isomorphism from the open Xi,Ui×VjUi′ of
Xi to the corresponding open of Xi′ . It follows from Schemes, Section 26.14 that
we may glue (Xi, ψii′) into a scheme Yj over Vj . Moreover, the morphisms φii′ for
i ∈ Ij and i′ ∈ Ij′ glue to a morphism φjj′ : Yj ×S Vj′ → Vj ×S Yj′ satisfying the
cocycle condition (details omitted). Hence we obtain the desired descent datum
(Yj , φjj′) relative to V. □

Lemma 35.35.11.02W0 Let S be a scheme. Let U = {Ui → S}i∈I , and V = {Vj → S}j∈J ,
be fpqc-coverings of S. If U is a refinement of V, then the pullback functor

descent data relative to V −→ descent data relative to U
is fully faithful. In particular, the category of schemes over S is identified with a
full subcategory of the category of descent data relative to any fpqc-covering of S.
Proof. Consider the fpqc-covering W = {Ui ×S Vj → S}(i,j)∈I×J of S. It is a
refinement of both U and V. Hence we have a 2-commutative diagram of functors
and categories

DD(V)

%%

// DD(U)

yy
DD(W)

Notation as in the proof of Lemma 35.35.9 and commutativity by Lemma 35.34.8
part (3). Hence clearly it suffices to prove the functors DD(V) → DD(W) and
DD(U)→ DD(W) are fully faithful. This follows from Lemma 35.35.9 as desired.

□

Remark 35.35.12.040L Lemma 35.35.11 says that morphisms of schemes satisfy fpqc
descent. In other words, given a scheme S and schemes X, Y over S the functor

(Sch/S)opp −→ Sets, T 7−→ MorT (XT , YT )
satisfies the sheaf condition for the fpqc topology. The simplest case of this is
the following. Suppose that T → S is a surjective flat morphism of affines. Let
ψ0 : XT → YT be a morphism of schemes over T which is compatible with the
canonical descent data. Then there exists a unique morphism ψ : X → Y whose
base change to T is ψ0. In fact this special case follows in a straightforward manner
from Lemma 35.35.4. And, in turn, that lemma is a formal consequence of the
following two facts: (a) the base change functor by a faithfully flat morphism is
faithful, see Lemma 35.35.2 and (b) a scheme satisfies the sheaf condition for the
fpqc topology, see Lemma 35.13.7.
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Lemma 35.35.13.0AP4 Let X → S be a surjective, quasi-compact, flat morphism of
schemes. Let (V, φ) be a descent datum relative to X/S. Suppose that for all v ∈ V
there exists an open subscheme v ∈W ⊂ V such that φ(W ×S X) ⊂ X ×S W and
such that the descent datum (W,φ|W×SX) is effective. Then (V, φ) is effective.

Proof. Let V =
⋃
Wi be an open covering with φ(Wi ×S X) ⊂ X ×S Wi and such

that the descent datum (Wi, φ|Wi×SX) is effective. Let Ui → S be a scheme and let
αi : (X ×S Ui, can)→ (Wi, φ|Wi×SX) be an isomorphism of descent data. For each
pair of indices (i, j) consider the open α−1

i (Wi∩Wj) ⊂ X×SUi. Because everything
is compatible with descent data and since {X → S} is an fpqc covering, we may
apply Lemma 35.13.6 to find an open Uij ⊂ Uj such that α−1

i (Wi∩Wj) = X×SUij .
Now the identity morphism on Wi ∩ Wj is compatible with descent data, hence
comes from a unique morphism φij : Uij → Uji over S (see Remark 35.35.12). Then
(Ui, Uij , φij) is a glueing data as in Schemes, Section 26.14 (proof omitted). Thus
we may assume there is a scheme U over S such that Ui ⊂ U is open, Uij = Ui∩Uj
and φij = idUi∩Uj , see Schemes, Lemma 26.14.1. Pulling back to X we can use the
αi to get the desired isomorphism α : X ×S U → V . □

35.36. Descending types of morphisms

02W1 In the following we study the question as to whether descent data for schemes
relative to a fpqc-covering are effective. The first remark to make is that this is
not always the case. We will see this in Algebraic Spaces, Example 65.14.2. Even
projective morphisms do not always satisfy descent for fpqc-coverings, by Examples,
Lemma 110.65.1.
On the other hand, if the schemes we are trying to descend are particularly sim-
ple, then it is sometime the case that for whole classes of schemes descent data
are effective. We will introduce terminology here that describes this phenomenon
abstractly, even though it may lead to confusion if not used correctly later on.

Definition 35.36.1.02W2 Let P be a property of morphisms of schemes over a base. Let
τ ∈ {Zariski, fpqc, fppf, étale, smooth, syntomic}. We say morphisms of type P
satisfy descent for τ -coverings if for any τ -covering U : {Ui → S}i∈I (see Topologies,
Section 34.2), any descent datum (Xi, φij) relative to U such that each morphism
Xi → Ui has property P is effective.

Note that in each of the cases we have already seen that the functor from schemes
over S to descent data over U is fully faithful (Lemma 35.35.11 combined with
the results in Topologies that any τ -covering is also a fpqc-covering). We have
also seen that descent data are always effective with respect to Zariski coverings
(Lemma 35.35.10). It may be prudent to only study the notion just introduced
when P is either stable under any base change or at least local on the base in the
τ -topology (see Definition 35.22.1) in order to avoid erroneous arguments (relying
on P when descending halfway).
Here is the obligatory lemma reducing this question to the case of a covering given
by a single morphism of affines.

Lemma 35.36.2.02W3 Let P be a property of morphisms of schemes over a base. Let
τ ∈ {fpqc, fppf, étale, smooth, syntomic}. Suppose that

(1) P is stable under any base change (see Schemes, Definition 26.18.3),
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(2) if Yj → Vj , j = 1, . . . ,m have P, then so does
∐
Yj →

∐
Vj , and

(3) for any surjective morphism of affines X → S which is flat, flat of finite
presentation, étale, smooth or syntomic depending on whether τ is fpqc,
fppf, étale, smooth, or syntomic, any descent datum (V, φ) relative to X
over S such that P holds for V → X is effective.

Then morphisms of type P satisfy descent for τ -coverings.

Proof. Let S be a scheme. Let U = {φi : Ui → S}i∈I be a τ -covering of S.
Let (Xi, φii′) be a descent datum relative to U and assume that each morphism
Xi → Ui has property P. We have to show there exists a scheme X → S such that
(Xi, φii′) ∼= (Ui ×S X, can).

Before we start the proof proper we remark that for any family of morphisms
V : {Vj → S} and any morphism of families V → U , if we pullback the descent
datum (Xi, φii′) to a descent datum (Yj , φjj′) over V, then each of the morphisms
Yj → Vj has property P also. This is true because of assumption (1) that P is stable
under any base change and the definition of pullback (see Definition 35.34.9). We
will use this without further mention.

First, let us prove the lemma when S is affine. By Topologies, Lemma 34.9.8, 34.7.4,
34.4.4, 34.5.4, or 34.6.4 there exists a standard τ -covering V : {Vj → S}j=1,...,m
which refines U . The pullback functor DD(U) → DD(V) between categories of
descent data is fully faithful by Lemma 35.35.11. Hence it suffices to prove that the
descent datum over the standard τ -covering V is effective. By assumption (2) we
see that

∐
Yj →

∐
Vj has property P. By Lemma 35.34.5 this reduces us to the

covering {
∐
j=1,...,m Vj → S} for which we have assumed the result in assumption

(3) of the lemma. Hence the lemma holds when S is affine.

Assume S is general. Let V ⊂ S be an affine open. By the properties of site
the family UV = {V ×S Ui → V }i∈I is a τ -covering of V . Denote (Xi, φii′)V the
restriction (or pullback) of the given descent datum to UV . Hence by what we just
saw we obtain a scheme XV over V whose canonical descent datum with respect to
UV is isomorphic to (Xi, φii′)V . Suppose that V ′ ⊂ V is an affine open of V . Then
both XV ′ and V ′ ×V XV have canonical descent data isomorphic to (Xi, φii′)V ′ .
Hence, by Lemma 35.35.11 again we obtain a canonical morphism ρVV ′ : XV ′ → XV

over S which identifies XV ′ with the inverse image of V ′ in XV . We omit the
verification that given affine opens V ′′ ⊂ V ′ ⊂ V of S we have ρVV ′′ = ρVV ′ ◦ ρV

′

V ′′ .

By Constructions, Lemma 27.2.1 the data (XV , ρ
V
V ′) glue to a scheme X → S.

Moreover, we are given isomorphisms V ×S X → XV which recover the maps ρVV ′ .
Unwinding the construction of the schemes XV we obtain isomorphisms

V ×S Ui ×S X −→ V ×S Xi

compatible with the maps φii′ and compatible with restricting to smaller affine
opens in X. This implies that the canonical descent datum on Ui×SX is isomorphic
to the given descent datum and we win. □

35.37. Descending affine morphisms

0244 In this section we show that “affine morphisms satisfy descent for fpqc-coverings”.
Here is the formal statement.
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Lemma 35.37.1.0245 Let S be a scheme. Let {Xi → S}i∈I be an fpqc covering,
see Topologies, Definition 34.9.1. Let (Vi/Xi, φij) be a descent datum relative to
{Xi → S}. If each morphism Vi → Xi is affine, then the descent datum is effective.

Proof. Being affine is a property of morphisms of schemes which is local on the base
and preserved under any base change, see Morphisms, Lemmas 29.11.3 and 29.11.8.
Hence Lemma 35.36.2 applies and it suffices to prove the statement of the lemma
in case the fpqc-covering is given by a single {X → S} flat surjective morphism
of affines. Say X = Spec(A) and S = Spec(R) so that R → A is a faithfully flat
ring map. Let (V, φ) be a descent datum relative to X over S and assume that
V → X is affine. Then V → X being affine implies that V = Spec(B) for some
A-algebra B (see Morphisms, Definition 29.11.1). The isomorphism φ corresponds
to an isomorphism of rings

φ♯ : B ⊗R A←− A⊗R B
as A⊗R A-algebras. The cocycle condition on φ says that

B ⊗R A⊗R A A⊗R A⊗R Boo

vv
A⊗R B ⊗R A

hh

is commutative. Inverting these arrows we see that we have a descent datum for
modules with respect to R→ A as in Definition 35.3.1. Hence we may apply Propo-
sition 35.3.9 to obtain an R-module C = Ker(B → A ⊗R B) and an isomorphism
A⊗RC ∼= B respecting descent data. Given any pair c, c′ ∈ C the product cc′ in B
lies in C since the map φ is an algebra homomorphism. Hence C is an R-algebra
whose base change to A is isomorphic to B compatibly with descent data. Applying
Spec we obtain a scheme U over S such that (V, φ) ∼= (X×S U, can) as desired. □

Lemma 35.37.2.03I0 Let S be a scheme. Let {Xi → S}i∈I be an fpqc covering,
see Topologies, Definition 34.9.1. Let (Vi/Xi, φij) be a descent datum relative to
{Xi → S}. If each morphism Vi → Xi is a closed immersion, then the descent
datum is effective.

Proof. This is true because a closed immersion is an affine morphism (Morphisms,
Lemma 29.11.9), and hence Lemma 35.37.1 applies. □

35.38. Descending quasi-affine morphisms

0246 In this section we show that “quasi-affine morphisms satisfy descent for fpqc-
coverings”. Here is the formal statement.

Lemma 35.38.1.0247 Let S be a scheme. Let {Xi → S}i∈I be an fpqc covering,
see Topologies, Definition 34.9.1. Let (Vi/Xi, φij) be a descent datum relative to
{Xi → S}. If each morphism Vi → Xi is quasi-affine, then the descent datum is
effective.

Proof. Being quasi-affine is a property of morphisms of schemes which is preserved
under any base change, see Morphisms, Lemmas 29.13.3 and 29.13.5. Hence Lemma
35.36.2 applies and it suffices to prove the statement of the lemma in case the fpqc-
covering is given by a single {X → S} flat surjective morphism of affines. Say
X = Spec(A) and S = Spec(R) so that R → A is a faithfully flat ring map. Let
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(V, φ) be a descent datum relative to X over S and assume that π : V → X is
quasi-affine.
According to Morphisms, Lemma 29.13.3 this means that

V −→ Spec
X

(π∗OV ) = W

is a quasi-compact open immersion of schemes over X. The projections pri : X ×S
X → X are flat and hence we have

pr∗
0π∗OV = (π × idX)∗OV×SX , pr∗

1π∗OV = (idX × π)∗OX×SV

by flat base change (Cohomology of Schemes, Lemma 30.5.2). Thus the isomor-
phism φ : V ×S X → X ×S V (which is an isomorphism over X ×S X) induces an
isomorphism of quasi-coherent sheaves of algebras

φ♯ : pr∗
0π∗OV −→ pr∗

1π∗OV
on X ×S X. The cocycle condition for φ implies the cocycle condition for φ♯. An-
other way to say this is that it produces a descent datum φ′ on the affine scheme W
relative to X over S, which moreover has the property that the morphism V →W
is a morphism of descent data. Hence by Lemma 35.37.1 (or by effectivity of de-
scent for quasi-coherent algebras) we obtain a scheme U ′ → S with an isomorphism
(W,φ′) ∼= (X ×S U ′, can) of descent data. We note in passing that U ′ is affine by
Lemma 35.23.18.
And now we can think of V as a (quasi-compact) open V ⊂ X ×S U ′ with the
property that it is stable under the descent datum

can : X ×S U ′ ×S X → X ×S X ×S U ′, (x0, u
′, x1) 7→ (x0, x1, u

′).
In other words (x0, u

′) ∈ V ⇒ (x1, u
′) ∈ V for any x0, x1, u

′ mapping to the same
point of S. Because X → S is surjective we immediately find that V is the inverse
image of a subset U ⊂ U ′ under the morphism X ×S U ′ → U ′. Because X → S
is quasi-compact, flat and surjective also X ×S U ′ → U ′ is quasi-compact flat and
surjective. Hence by Morphisms, Lemma 29.25.12 this subset U ⊂ U ′ is open and
we win. □

35.39. Descent data in terms of sheaves

02W4 Here is another way to think about descent data in case of a covering on a site.

Lemma 35.39.1.02W5 Let τ ∈ {Zariski, fppf, étale, smooth, syntomic}10. Let Schτ be
a big τ -site. Let S ∈ Ob(Schτ ). Let {Si → S}i∈I be a covering in the site (Sch/S)τ .
There is an equivalence of categories{

descent data (Xi, φii′) such that
each Xi ∈ Ob((Sch/S)τ )

}
↔
{

sheaves F on (Sch/S)τ such that
each hSi × F is representable

}
.

Moreover,
(1) the objects representing hSi ×F on the right hand side correspond to the

schemes Xi on the left hand side, and
(2) the sheaf F is representable if and only if the corresponding descent datum

(Xi, φii′) is effective.

10The fact that fpqc is missing is not a typo. See discussion in Topologies, Section 34.9.
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Proof. We have seen in Section 35.13 that representable presheaves are sheaves
on the site (Sch/S)τ . Moreover, the Yoneda lemma (Categories, Lemma 4.3.5)
guarantees that maps between representable sheaves correspond one to one with
maps between the representing objects. We will use these remarks without further
mention during the proof.
Let us construct the functor from right to left. Let F be a sheaf on (Sch/S)τ such
that each hSi × F is representable. In this case let Xi be a representing object in
(Sch/S)τ . It comes equipped with a morphism Xi → Si. Then both Xi×S Si′ and
Si ×S Xi′ represent the sheaf hSi × F × hSi′ and hence we obtain an isomorphism

φii′ : Xi ×S Si′ → Si ×S Xi′

It is straightforward to see that the maps φii′ are morphisms over Si ×S Si′ and
satisfy the cocycle condition. The functor from right to left is given by this con-
struction F 7→ (Xi, φii′).
Let us construct a functor from left to right. For each i denote Fi the sheaf hXi .
The isomorphisms φii′ give isomorphisms

φii′ : Fi × hSi′ −→ hSi × Fi′
over hSi × hSi′ . Set F equal to the coequalizer in the following diagram

∐
i,i′ Fi × hSi′

pr0 //

pr1◦φii′
//
∐
i Fi

// F

The cocycle condition guarantees that hSi ×F is isomorphic to Fi and hence repre-
sentable. The functor from left to right is given by this construction (Xi, φii′) 7→ F .
We omit the verification that these constructions are mutually quasi-inverse func-
tors. The final statements (1) and (2) follow from the constructions. □

Remark 35.39.2.02W6 In the statement of Lemma 35.39.1 the condition that hSi ×F is
representable is equivalent to the condition that the restriction of F to (Sch/Si)τ
is representable.
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CHAPTER 36

Derived Categories of Schemes

08CU 36.1. Introduction

08CV In this chapter we discuss derived categories of modules on schemes. Most of the
material discussed here can be found in [TT90], [BN93], [BV03], and [LN07]. Of
course there are many other references.

36.2. Conventions

08CW If A is an abelian category and M is an object of A then we also denote M the
object of K(A) and/or D(A) corresponding to the complex which has M in degree
0 and is zero in all other degrees.

If we have a ring A, then K(A) denotes the homotopy category of complexes of
A-modules and D(A) the associated derived category. Similarly, if we have a ringed
space (X,OX) the symbol K(OX) denotes the homotopy category of complexes of
OX -modules and D(OX) the associated derived category.

36.3. Derived category of quasi-coherent modules

06YZ In this section we discuss the relationship between quasi-coherent modules and all
modules on a scheme X. A reference is [TT90, Appendix B]. By the discussion in
Schemes, Section 26.24 the embedding QCoh(OX) ⊂ Mod(OX) exhibits QCoh(OX)
as a weak Serre subcategory of the category of OX -modules. Denote

DQCoh(OX) ⊂ D(OX)

the subcategory of complexes whose cohomology sheaves are quasi-coherent, see
Derived Categories, Section 13.17. Thus we obtain a canonical functor

(36.3.0.1)06VT D(QCoh(OX)) −→ DQCoh(OX)

see Derived Categories, Equation (13.17.1.1).

Lemma 36.3.1.08DT Let X be a scheme. Then DQCoh(OX) has direct sums.

Proof. By Injectives, Lemma 19.13.4 the derived category D(OX) has direct sums
and they are computed by taking termwise direct sums of any representatives.
Thus it is clear that the cohomology sheaf of a direct sum is the direct sum of the
cohomology sheaves as taking direct sums is an exact functor (in any Grothendieck
abelian category). The lemma follows as the direct sum of quasi-coherent sheaves
is quasi-coherent, see Schemes, Section 26.24. □

We will need some information on derived limits. We warn the reader that in the
lemma below the derived limit will typically not be an object of DQCoh.

3023
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Lemma 36.3.2.0A0J Let X be a scheme. Let (Kn) be an inverse system of DQCoh(OX)
with derived limit K = R limKn in D(OX). Assume Hq(Kn+1) → Hq(Kn) is
surjective for all q ∈ Z and n ≥ 1. Then

(1) Hq(K) = limHq(Kn),
(2) R limHq(Kn) = limHq(Kn), and
(3) for every affine open U ⊂ X we have Hp(U, limHq(Kn)) = 0 for p > 0.

Proof. Let B be the set of affine opens of X. Since Hq(Kn) is quasi-coherent we
have Hp(U,Hq(Kn)) = 0 for U ∈ B by Cohomology of Schemes, Lemma 30.2.2.
Moreover, the maps H0(U,Hq(Kn+1))→ H0(U,Hq(Kn)) are surjective for U ∈ B
by Schemes, Lemma 26.7.5. Part (1) follows from Cohomology, Lemma 20.37.11
whose conditions we have just verified. Parts (2) and (3) follow from Cohomology,
Lemma 20.37.4. □

The following lemma will help us to “compute” a right derived functor on an object
of DQCoh(OX).

Lemma 36.3.3.08D3 Let X be a scheme. Let E be an object of DQCoh(OX). Then the
canonical map E → R lim τ≥−nE is an isomorphism1.

Proof. Denote Hi = Hi(E) the ith cohomology sheaf of E. Let B be the set of
affine open subsets of X. Then Hp(U,Hi) = 0 for all p > 0, all i ∈ Z, and all
U ∈ B, see Cohomology of Schemes, Lemma 30.2.2. Thus the lemma follows from
Cohomology, Lemma 20.37.9. □

Lemma 36.3.4.08D4 Let X be a scheme. Let F : Mod(OX)→ Ab be an additive functor
and N ≥ 0 an integer. Assume that

(1) F commutes with countable direct products,
(2) RpF (F) = 0 for all p ≥ N and F quasi-coherent.

Then for E ∈ DQCoh(OX)
(1) Hi(RF (τ≤aE))→ Hi(RF (E)) is an isomorphism for i ≤ a,
(2) Hi(RF (E))→ Hi(RF (τ≥b−N+1E)) is an isomorphism for i ≥ b,
(3) if Hi(E) = 0 for i ̸∈ [a, b] for some −∞ ≤ a ≤ b ≤ ∞, then Hi(RF (E)) =

0 for i ̸∈ [a, b+N − 1].

Proof. Statement (1) is Derived Categories, Lemma 13.16.1.

Proof of statement (2). Write En = τ≥−nE. We have E = R limEn, see Lemma
36.3.3. Thus RF (E) = R limRF (En) in D(Ab) by Injectives, Lemma 19.13.6.
Thus for every i ∈ Z we have a short exact sequence

0→ R1 limHi−1(RF (En))→ Hi(RF (E))→ limHi(RF (En))→ 0

see More on Algebra, Remark 15.86.10. To prove (2) we will show that the term
on the left is zero and that the term on the right equals Hi(RF (E−b+N−1) for any
b with i ≥ b.

For every n we have a distinguished triangle

H−n(E)[n]→ En → En−1 → H−n(E)[n+ 1]

1In particular, E has a K-injective representative as in Cohomology, Lemma 20.38.1.
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(Derived Categories, Remark 13.12.4) in D(OX). Since H−n(E) is quasi-coherent
we have

Hi(RF (H−n(E)[n])) = Ri+nF (H−n(E)) = 0
for i+ n ≥ N and

Hi(RF (H−n(E)[n+ 1])) = Ri+n+1F (H−n(E)) = 0
for i+ n+ 1 ≥ N . We conclude that

Hi(RF (En))→ Hi(RF (En−1))
is an isomorphism for n ≥ N − i. Thus the systems Hi(RF (En)) all satisfy the ML
condition and the R1 lim term in our short exact sequence is zero (see discussion in
More on Algebra, Section 15.86). Moreover, the system Hi(RF (En)) is constant
starting with n = N − i− 1 as desired.
Proof of (3). Under the assumption on E we have τ≤a−1E = 0 and we get the
vanishing of Hi(RF (E)) for i ≤ a− 1 from (1). Similarly, we have τ≥b+1E = 0 and
hence we get the vanishing of Hi(RF (E)) for i ≥ b+ n from part (2). □

The following lemma is the key ingredient to many of the results in this chapter.

Lemma 36.3.5.06Z0 Let X = Spec(A) be an affine scheme. All the functors in the
diagram

D(QCoh(OX))
(36.3.0.1)

// DQCoh(OX)

RΓ(X,−)xx
D(A)

˜
ff

are equivalences of triangulated categories. Moreover, for E in DQCoh(OX) we have
H0(X,E) = H0(X,H0(E)).

Proof. The functor RΓ(X,−) gives a functor D(OX) → D(A) and hence by re-
striction a functor
(36.3.5.1)06VU RΓ(X,−) : DQCoh(OX) −→ D(A).
We will show this functor is quasi-inverse to (36.3.0.1) via the equivalence between
quasi-coherent modules on X and the category of A-modules.
Elucidation. Denote (Y,OY ) the one point space with sheaf of rings given by A.
Denote π : (X,OX) → (Y,OY ) the obvious morphism of ringed spaces. Then
RΓ(X,−) can be identified with Rπ∗ and the functor (36.3.0.1) via the equivalence
Mod(OY ) = ModA = QCoh(OX) can be identified with Lπ∗ = π∗ = ˜(see Modules,
Lemma 17.10.5 and Schemes, Lemmas 26.7.1 and 26.7.5). Thus the functors

D(A) //
D(OX)oo

are adjoint (by Cohomology, Lemma 20.28.1). In particular we obtain canonical
adjunction mappings

a : ˜RΓ(X,E) −→ E

for E in D(OX) and
b : M• −→ RΓ(X, M̃•)

for M• a complex of A-modules.

https://stacks.math.columbia.edu/tag/06Z0
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Let E be an object of DQCoh(OX). We may apply Lemma 36.3.4 to the functor
F (−) = Γ(X,−) with N = 1 by Cohomology of Schemes, Lemma 30.2.2. Hence

H0(RΓ(X,E)) = H0(RΓ(X, τ≥0E)) = Γ(X,H0(E))

(the last equality by definition of the canonical truncation). Using this we will show
that the adjunction mappings a and b induce isomorphisms H0(a) and H0(b). Thus
a and b are quasi-isomorphisms (as the statement is invariant under shifts) and the
lemma is proved.

In both cases we use that ˜ is an exact functor (Schemes, Lemma 26.5.4). Namely,
this implies that

H0
(

˜RΓ(X,E)
)

= ˜H0(RΓ(X,E)) = ˜Γ(X,H0(E))

which is equal to H0(E) because H0(E) is quasi-coherent. Thus H0(a) is an iso-
morphism. For the other direction we have

H0(RΓ(X, M̃•)) = Γ(X,H0(M̃•)) = Γ(X, H̃0(M•)) = H0(M•)

which proves that H0(b) is an isomorphism. □

Lemma 36.3.6.08DV Let X = Spec(A) be an affine scheme. If K• is a K-flat complex
of A-modules, then K̃• is a K-flat complex of OX -modules.

Proof. By More on Algebra, Lemma 15.59.3 we see that K•⊗AAp is a K-flat com-
plex of Ap-modules for every p ∈ Spec(A). Hence we conclude from Cohomology,
Lemma 20.26.4 (and Schemes, Lemma 26.5.4) that K̃• is K-flat. □

Lemma 36.3.7.0DJK If f : X → Y is a morphism of affine schemes given by the ring
map A→ B, then the diagram

D(B)

��

// DQCoh(OX)

Rf∗

��
D(A) // DQCoh(OY )

commutes.

Proof. Follows from Lemma 36.3.5 using that RΓ(Y,Rf∗K) = RΓ(X,K) by Coho-
mology, Lemma 20.32.5. □

Lemma 36.3.8.08DW Let f : Y → X be a morphism of schemes.
(1) The functor Lf∗ sends DQCoh(OX) into DQCoh(OY ).
(2) If X and Y are affine and f is given by the ring map A → B, then the

diagram
D(B) // DQCoh(OY )

D(A) //

−⊗L
AB

OO

DQCoh(OX)

Lf∗

OO

commutes.
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Proof. We first prove the diagram

D(B) // D(OY )

D(A) //

−⊗L
AB

OO

D(OX)

Lf∗

OO

commutes. This is clear from Lemma 36.3.6 and the constructions of the functors
in question. To see (1) let E be an object of DQCoh(OX). To see that Lf∗E has
quasi-coherent cohomology sheaves we may work locally on X. Note that Lf∗ is
compatible with restricting to open subschemes. Hence we can assume that f is a
morphism of affine schemes as in (2). Then we can apply Lemma 36.3.5 to see that
E comes from a complex of A-modules. By the commutativity of the first diagram
of the proof the same holds for Lf∗E and we conclude (1) is true. □

Lemma 36.3.9.08DX Let X be a scheme.
(1) For objects K,L of DQCoh(OX) the derived tensor product K ⊗L

OX
L is

in DQCoh(OX).
(2) If X = Spec(A) is affine then

M̃• ⊗L
OX

K̃• = ˜M• ⊗L
A K

•

for any pair of complexes of A-modules K•, M•.

Proof. The equality of (2) follows immediately from Lemma 36.3.6 and the con-
struction of the derived tensor product. To see (1) letK,L be objects ofDQCoh(OX).
To check that K ⊗L L is in DQCoh(OX) we may work locally on X, hence we may
assume X = Spec(A) is affine. By Lemma 36.3.5 we may represent K and L by
complexes of A-modules. Then part (2) implies the result. □

36.4. Total direct image

08DY The following lemma is the analogue of Cohomology of Schemes, Lemma 30.4.5.

Lemma 36.4.1.08D5 Let f : X → S be a morphism of schemes. Assume that f is
quasi-separated and quasi-compact.

(1) The functor Rf∗ sends DQCoh(OX) into DQCoh(OS).
(2) If S is quasi-compact, there exists an integer N = N(X,S, f) such that

for an object E of DQCoh(OX) with Hm(E) = 0 for m > 0 we have
Hm(Rf∗E) = 0 for m ≥ N .

(3) In fact, if S is quasi-compact we can find N = N(X,S, f) such that for
every morphism of schemes S′ → S the same conclusion holds for the
functor R(f ′)∗ where f ′ : X ′ → S′ is the base change of f .

Proof. Let E be an object of DQCoh(OX). To prove (1) we have to show that
Rf∗E has quasi-coherent cohomology sheaves. The question is local on S, hence
we may assume S is quasi-compact. Pick N = N(X,S, f) as in Cohomology of
Schemes, Lemma 30.4.5. Thus Rpf∗F = 0 for all quasi-coherent OX -modules F
and all p ≥ N and the same remains true after base change.
First, assume E is bounded below. We will show (1) and (2) and (3) hold for such
E with our choice of N . In this case we can for example use the spectral sequence

Rpf∗H
q(E)⇒ Rp+qf∗E

https://stacks.math.columbia.edu/tag/08DX
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(Derived Categories, Lemma 13.21.3), the quasi-coherence of Rpf∗H
q(E), and the

vanishing of Rpf∗H
q(E) for p ≥ N to see that (1), (2), and (3) hold in this case.

Next we prove (2) and (3). Say Hm(E) = 0 for m > 0. Let U ⊂ S be affine
open. By Cohomology of Schemes, Lemma 30.4.6 and our choice of N we have
Hp(f−1(U),F) = 0 for p ≥ N and any quasi-coherent OX -module F . Hence we
may apply Lemma 36.3.4 to the functor Γ(f−1(U),−) to see that

RΓ(U,Rf∗E) = RΓ(f−1(U), E)
has vanishing cohomology in degrees ≥ N . Since this holds for all U ⊂ S affine
open we conclude that Hm(Rf∗E) = 0 for m ≥ N .
Next, we prove (1) in the general case. Recall that there is a distinguished triangle

τ≤−n−1E → E → τ≥−nE → (τ≤−n−1E)[1]
inD(OX), see Derived Categories, Remark 13.12.4. By (2) we see thatRf∗τ≤−n−1E
has vanishing cohomology sheaves in degrees ≥ −n+N . Thus, given an integer q we
see that Rqf∗E is equal to Rqf∗τ≥−nE for some n and the result above applies. □

Lemma 36.4.2.0G9N Let f : X → S be a quasi-separated and quasi-compact morphism
of schemes. Let F• be a complex of quasi-coherent OX -modules each of which is
right acyclic for f∗. Then f∗F• represents Rf∗F• in D(OS).
Proof. There is always a canonical map f∗F• → Rf∗F•. Our task is to show
that this is an isomorphism on cohomology sheaves. As the statement is invariant
under shifts it suffices to show that H0(f∗(F•)) → R0f∗F• is an isomorphism.
The statement is local on S hence we may assume S affine. By Lemma 36.4.1 we
have R0f∗F• = R0f∗τ≥−nF• for all sufficiently large n. Thus we may assume F•

bounded below. As each Fn is right f∗-acyclic by assumption we see that f∗F• →
Rf∗F• is a quasi-isomorphism by Leray’s acyclicity lemma (Derived Categories,
Lemma 13.16.7). □

Lemma 36.4.3.0G9P Let X be a quasi-separated and quasi-compact scheme. Let F• be
a complex of quasi-coherent OX -modules each of which is right acyclic for Γ(X,−).
Then Γ(X,F•) represents RΓ(X,F•) in D(Γ(X,OX).
Proof. Apply Lemma 36.4.2 to the canonical morphism X → Spec(Γ(X,OX)).
Some details omitted. □

Lemma 36.4.4.0G9Q Let X be a quasi-separated and quasi-compact scheme. For any
object K of DQCoh(OX) the spectral sequence

Ei,j2 = Hi(X,Hj(K))⇒ Hi+j(X,K)
of Cohomology, Example 20.29.3 is bounded and converges.
Proof. By the construction of the spectral sequence via Cohomology, Lemma 20.29.1
using the filtration given by τ≤−pK, we see that suffices to show that given n ∈ Z
we have

Hn(X, τ≤−pK) = 0 for p≫ 0
and

Hn(X,K) = Hn(X, τ≤−pK) for p≪ 0
The first follows from Lemma 36.3.4 applied with F = Γ(X,−) and the bound in
Cohomology of Schemes, Lemma 30.4.5. The second holds whenever −p ≤ n for
any ringed space (X,OX) and any K ∈ D(OX). □

https://stacks.math.columbia.edu/tag/0G9N
https://stacks.math.columbia.edu/tag/0G9P
https://stacks.math.columbia.edu/tag/0G9Q


36.5. AFFINE MORPHISMS 3029

Lemma 36.4.5.08DZ Let f : X → S be a quasi-separated and quasi-compact morphism
of schemes. Then Rf∗ : DQCoh(OX)→ DQCoh(OS) commutes with direct sums.

Proof. Let Ei be a family of objects of DQCoh(OX) and set E =
⊕
Ei. We want

to show that the map ⊕
Rf∗Ei −→ Rf∗E

is an isomorphism. We will show it induces an isomorphism on cohomology sheaves
in degree 0 which will imply the lemma. Choose an integer N as in Lemma 36.4.1.
Then R0f∗E = R0f∗τ≥−NE and R0f∗Ei = R0f∗τ≥−NEi by the lemma cited.
Observe that τ≥−NE =

⊕
τ≥−NEi. Thus we may assume all of the Ei have

vanishing cohomology sheaves in degrees < −N . Next we use the spectral sequences

Rpf∗H
q(E)⇒ Rp+qf∗E and Rpf∗H

q(Ei)⇒ Rp+qf∗Ei

(Derived Categories, Lemma 13.21.3) to reduce to the case of a direct sum of
quasi-coherent sheaves. This case is handled by Cohomology of Schemes, Lemma
30.6.1. □

36.5. Affine morphisms

0AVV In this section we collect some information about pushforward along an affine mor-
phism of schemes.

Lemma 36.5.1.0G9R Let f : X → S be an affine morphism of schemes. Let F• be a
complex of quasi-coherent OX -modules. Then f∗F• = Rf∗F•.

Proof. Combine Lemma 36.4.2 with Cohomology of Schemes, Lemma 30.2.3. An
alternative proof is to work affine locally on S and use Lemma 36.3.7. □

Lemma 36.5.2.08I8 Let f : X → S be an affine morphism of schemes. Then Rf∗ :
DQCoh(OX)→ DQCoh(OS) reflects isomorphisms.

Proof. The statement means that a morphism α : E → F of DQCoh(OX) is an iso-
morphism if Rf∗α is an isomorphism. We may check this on cohomology sheaves.
In particular, the question is local on S. Hence we may assume S and therefore
X is affine. In this case the statement is clear from the description of the de-
rived categories DQCoh(OX) and DQCoh(OS) given in Lemma 36.3.5. Some details
omitted. □

Lemma 36.5.3.08I9 Let f : X → S be an affine morphism of schemes. For E in
DQCoh(OS) we have Rf∗Lf

∗E = E ⊗L
OS

f∗OX .

Proof. Since f is affine the map f∗OX → Rf∗OX is an isomorphism (Cohomology
of Schemes, Lemma 30.2.3). There is a canonical map E⊗Lf∗OX = E⊗LRf∗OX →
Rf∗Lf

∗E adjoint to the map

Lf∗(E ⊗L Rf∗OX) = Lf∗E ⊗L Lf∗Rf∗OX −→ Lf∗E ⊗L OX = Lf∗E

coming from 1 : Lf∗E → Lf∗E and the canonical map Lf∗Rf∗OX → OX . To
check the map so constructed is an isomorphism we may work locally on S. Hence
we may assume S and therefore X is affine. In this case the statement is clear
from the description of the derived categories DQCoh(OX) and DQCoh(OS) and the
functor Lf∗ given in Lemmas 36.3.5 and 36.3.8. Some details omitted. □
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Let Y be a scheme. Let A be a sheaf of OY -algebras. We will denote DQCoh(A)
the inverse image of DQCoh(OX) under the restriction functor D(A) → D(OX).
In other words, K ∈ D(A) is in DQCoh(A) if and only if its cohomology sheaves
are quasi-coherent as OX -modules. If A is quasi-coherent itself this is the same as
asking the cohomology sheaves to be quasi-coherent as A-modules, see Morphisms,
Lemma 29.11.6.
Lemma 36.5.4.0AVW Let f : X → Y be an affine morphism of schemes. Then f∗ induces
an equivalence

Φ : DQCoh(OX) −→ DQCoh(f∗OX)
whose composition with DQCoh(f∗OX) → DQCoh(OY ) is Rf∗ : DQCoh(OX) →
DQCoh(OY ).
Proof. Recall that Rf∗ is computed on an object K ∈ DQCoh(OX) by choosing
a K-injective complex I• of OX -modules representing K and taking f∗I•. Thus
we let Φ(K) be the complex f∗I• viewed as a complex of f∗OX -modules. Denote
g : (X,OX) → (Y, f∗OX) the obvious morphism of ringed spaces. Then g is a
flat morphism of ringed spaces (see below for a description of the stalks) and Φ
is the restriction of Rg∗ to DQCoh(OX). We claim that Lg∗ is a quasi-inverse.
First, observe that Lg∗ sendsDQCoh(f∗OX) intoDQCoh(OX) because g∗ transforms
quasi-coherent modules into quasi-coherent modules (Modules, Lemma 17.10.4). To
finish the proof it suffices to show that the adjunction mappings

Lg∗Φ(K) = Lg∗Rg∗K → K and M → Rg∗Lg
∗M = Φ(Lg∗M)

are isomorphisms for K ∈ DQCoh(OX) and M ∈ DQCoh(f∗OX). This is a local
question, hence we may assume Y and therefore X are affine.
Assume Y = Spec(B) and X = Spec(A). Let p = x ∈ Spec(A) = X be a point
mapping to q = y ∈ Spec(B) = Y . Then (f∗OX)y = Aq and OX,x = Ap hence g
is flat. Hence g∗ is exact and Hi(Lg∗M) = g∗Hi(M) for any M in D(f∗OX). For
K ∈ DQCoh(OX) we see that

Hi(Φ(K)) = Hi(Rf∗K) = f∗H
i(K)

by the vanishing of higher direct images (Cohomology of Schemes, Lemma 30.2.3)
and Lemma 36.3.4 (small detail omitted). Thus it suffice to show that

g∗g∗F → F and G → g∗g
∗F

are isomorphisms where F is a quasi-coherent OX -module and G is a quasi-coherent
f∗OX -module. This follows from Morphisms, Lemma 29.11.6. □

36.6. Cohomology with support in a closed subset

0G7F We elaborate on the material in Cohomology, Sections 20.21 and 20.34 for schemes
and quasi-coherent modules.
Definition 36.6.1.08DA Let X be a scheme. Let E be an object of D(OX). Let T ⊂ X

be a closed subset. We say E is supported on T if the cohomology sheaves Hi(E)
are supported on T .
We repeat some of the discussion from Cohomology, Section 20.34 in the situation of
the definition. Let X be a scheme. Let T ⊂ X be a closed subset. The category of
OX -modules whose support is contained in T is a Serre subcategory of the category
of all OX -modules, see Homology, Definition 12.10.1 and Modules, Lemma 17.5.2.
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In the following we will denote DT (OX) the strictly full, saturated triangulated
subcategory of D(OX) consisting of objects supported on T , see Derived Categories,
Section 13.17.
In the situation of Definition 36.6.1 denote i : T → X the inclusion map. Recall
from Cohomology, Section 20.34 that in this situation we have a functor RHT :
D(OX)→ D(i−1OX) which is right adjoint to i∗ : D(i−1OX)→ D(OX).

Lemma 36.6.2.0G7G Let X be a scheme. Let T ⊂ X be a closed subset such that X \T
is a retrocompact open of X. Let i : T → X be the inclusion.

(1) For E in DQCoh(OX) we have i∗RHT (E) in DQCoh,T (OX).
(2) The functor i∗ ◦ RHT : DQCoh(OX) → DQCoh,T (OX) is right adjoint to

the inclusion functor DQCoh,T (OX)→ DQCoh(OX).

Proof. Set U = X \ T and denote j : U → X the inclusion. By Cohomology,
Lemma 20.34.6 there is a distinguished triangle

i∗RHT (E)→ E → Rj∗(E|U )→ i∗RHZ(E)[1]
in D(OX). By Lemma 36.4.1 the complex Rj∗(E|U ) has quasi-coherent cohomology
sheaves (this is where we use that U is retrocompact in X). Thus we see that (1)
is true. Part (2) follows from this and the adjointness of functors in Cohomology,
Lemma 20.34.2. □

Lemma 36.6.3.0G7H Let X be a scheme. Let T ⊂ X be a closed subset such that X \T
is a retrocompact open of X. Then for a family of objects Ei, i ∈ I of DQCoh(OX)
we have RHT (

⊕
Ei) =

⊕
RHT (Ei).

Proof. Set U = X \ T and denote j : U → X the inclusion. By Cohomology,
Lemma 20.34.6 there is a distinguished triangle

i∗RHT (E)→ E → Rj∗(E|U )→ i∗RHZ(E)[1]
in D(OX) for any E in D(OX). The functor E 7→ Rj∗(E|U ) commutes with
direct sums on DQCoh(OX) by Lemma 36.4.5. It follows that the same is true for
the functor i∗ ◦ RHT (details omitted). Since i∗ : D(i−1OX) → DT (OX) is an
equivalence (Cohomology, Lemma 20.34.2) we conclude. □

Remark 36.6.4.0G7I Let X be a scheme. Let f1, . . . , fc ∈ Γ(X,OX). Denote Z ⊂ X
the closed subscheme cut out by f1, . . . , fc. For 0 ≤ p < c and 1 ≤ i0 < . . . < ip ≤ c
we denote Ui0...ip ⊂ X the open subscheme where fi0 . . . fip is invertible. For any
OX -module F we set

Fi0...ip = (Ui0...ip → X)∗(F|Ui0...ip )

In this situation the extended alternating Čech complex is the complex of OX -
modules
(36.6.4.1)0G7J 0→ F →

⊕
i0
Fi0 → . . .→

⊕
i0<...<ip

Fi0...ip → . . .→ F1...c → 0

where F is put in degree 0. The maps are constructed as follows. Given 1 ≤ i0 <
. . . < ip+1 ≤ c and 0 ≤ j ≤ p+ 1 we have the canonical map

Fi0...̂ij ...ip+1
→ Fi0...ip

coming from the inclusion Ui0...ip ⊂ Ui0...̂ij ...ip+1
. The differentials in the extended

alternating complex use these canonical maps with sign (−1)j .
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Lemma 36.6.5.0G7K With X, f1, . . . , fc ∈ Γ(X,OX), and F as in Remark 36.6.4 the
complex (36.6.4.1) restricts to an acyclic complex over X \ Z.

We remark that this lemma holds more generally for any extended alternating
Čech complex defined as in Remark 36.6.4 starting with a finite open covering
X \ Z = U1 ∪ . . . ∪ Uc.

Proof. Let W ⊂ X \ Z be an open subset. Evaluating the complex of sheaves
(36.6.4.1) on W we obtain the complex

F(W )→
⊕

i0
F(Ui0 ∩W )→

⊕
i0<i1

F(Ui0i1 ∩W )→ . . .

In other words, we obtain the extended ordered Čech complex for the covering
W =

⋃
Ui ∩W and the standard ordering on {1, . . . , c}, see Cohomology, Section

20.23. By Cohomology, Lemma 20.23.7 this complex is homotopic to zero as soon
as W is contained in V (fi) for some 1 ≤ i ≤ c. This finishes the proof. □

Remark 36.6.6.0G7L Let X, f1, . . . , fc ∈ Γ(X,OX), and F be as in Remark 36.6.4.
Denote F• the complex (36.6.4.1). By Lemma 36.6.5 the cohomology sheaves of
F• are supported on Z hence F• is an object of DZ(OX). On the other hand, the
equality F0 = F determines a canonical map F• → F in D(OX). As i∗ ◦RHZ is a
right adjoint to the inclusion functor DZ(OX)→ D(OX), see Cohomology, Lemma
20.34.2, we obtain a canonical commutative diagram

F•

%%

// F

i∗RHZ(F)

::

in D(OX) functorial in the OX -module F .

Lemma 36.6.7.0G7M With X, f1, . . . , fc ∈ Γ(X,OX), and F as in Remark 36.6.4. If F
is quasi-coherent, then the complex (36.6.4.1) represents i∗RHZ(F) in DZ(OX).

Proof. Let us denote F• the complex (36.6.4.1). The statement of the lemma means
that the map F• → i∗RHZ(F) of Remark 36.6.6 is an isomorphism. Since F• is in
DZ(OX) (see remark cited), we see that i∗RHZ(F•) = F• by Cohomology, Lemma
20.34.2. The morphism Ui0...ip → X is affine as it is given over affine opens of X
by inverting the function fi0 . . . fip . Thus we see that

Fi0...ip = (Ui0...ip → X)∗F|Ui0...ip = R(Ui0...ip → X)∗F|Ui0...ip
by Cohomology of Schemes, Lemma 30.2.3 and the assumption that F is quasi-
coherent. We conclude that RHZ(Fi0...ip) = 0 by Cohomology, Lemma 20.34.7.
Thus i∗RHZ(Fp) = 0 for p > 0. Putting everything together we obtain

F• = i∗RHZ(F•) = i∗RHZ(F)
as desired. □

Lemma 36.6.8.0G7N Let X be a scheme. Let T ⊂ X be a closed subset which can
locally be cut out by at most c elements of the structure sheaf. Then HiZ(F) = 0
for i > c and any quasi-coherent OX -module F .

Proof. This follows immediately from the local description of RHT (F) given in
Lemma 36.6.7. □
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Lemma 36.6.9.0G7P Let X be a scheme. Let T ⊂ X be a closed subset which can locally
be cut out by a Koszul regular sequence having c elements. Then HiZ(F) = 0 for
i ̸= c for every flat, quasi-coherent OX -module F .

Proof. By the description of RHZ(F) given in Lemma 36.6.7 this boils down
to the following algebra statement: given a ring R, a Koszul regular sequence
f1, . . . , fc ∈ R, and a flat R-module M , the extended alternating Čech complex
M →

⊕
i0
Mfi0

→
⊕

i0<i1
Mfi0fi1

→ . . .→Mf1...fc from More on Algebra, Section
15.29 only has cohomology in degree c. By More on Algebra, Lemma 15.31.1 we
obtain the desired vanishing for the extended alternating Čech complex of R. Since
the complex for M is obtained by tensoring this with the flat R-module M (More
on Algebra, Lemma 15.29.2) we conclude. □

Remark 36.6.10.0G7Q With X, f1, . . . , fc ∈ Γ(X,OX), and F as in Remark 36.6.4.
There is a canonical OX |Z-linear map

cf1,...,fc : i∗F −→ HcZ(F)

functorial in F . Namely, denoting F• the extended alternating Čech complex
(36.6.4.1) we have the canonical map F• → i∗RHZ(F) of Remark 36.6.6. This
determines a canonical map

Coker
(⊕

F1...̂i...c → F1...c

)
−→ i∗HcZ(F)

on cohomology sheaves in degree c. Given a local section s of F we can consider
the local section

s

f1 . . . fc
of F1...c. The class of this section in the cokernel displayed above depends only on s
modulo the image of (f1, . . . , fc) : F⊕c → F . Since i∗i∗F is equal to the cokernel of
(f1, . . . , fc) : F⊕c → F we see that we get an OX -module map i∗i

∗F → i∗HcZ(F).
As i∗ is fully faithful we get the map cf1,...,fc .

Example 36.6.11.0G7R Let X = Spec(A) be affine, f1, . . . , fc ∈ A, and let F = M̃ for
some A-module M . The map cf1,...,fc of Remark 36.6.10 can be described as the
map

M/(f1, . . . , fc)M −→ Coker
(⊕

Mf1...f̂i...fc
→Mf1...fc

)
sending the class of s ∈M to the class of s/f1 . . . fc in the cokernel.

Lemma 36.6.12.0G7S With X, f1, . . . , fc ∈ Γ(X,OX), and F as in Remark 36.6.4. Let
aji ∈ Γ(X,OX) for 1 ≤ i, j ≤ c and set gj =

∑
i=1,...,c ajifi. Assume g1, . . . , gc

scheme theoretically cut out Z. If F is quasi-coherent, then
cf1,...,fc = det(aji)cg1,...,gc

where cf1,...,fc and cg1,...,gc are as in Remark 36.6.10.

Proof. We will prove that cf1,...,fc(s) = det(aij)cg1,...,gc(s) as global sections of
HZ(F) for any s ∈ F(X). This is sufficient since we then obtain the same result
for section over any open subscheme of X. To do this, for 1 ≤ i0 < . . . < ip ≤ c and
1 ≤ j0 < . . . < jq ≤ c we denote Ui0...ip ⊂ X, Vj0...jq ⊂ X, and Wi0...ip,j0...jq ⊂ X
the open subscheme where fi0 . . . fip is invertible, gj0 . . . gjq is invertible, and where
fi0 . . . fipgj0 . . . gjq is invertible. We denote Fi0...ip , resp. F ′

j0...jq
F ′′
i0...ip,j0...jq

the
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pushforward to X of the restriction of F to Ui0...ip , resp. Vj0...jq , resp. Wi0...ip,j0...jq .
Then we obtain three extended alternating Čech complexes

F• : F →
⊕

i0
Fi0 →

⊕
i0<i1

Fi0i1 → . . .

and
(F ′)• : F →

⊕
j0
F ′
j0
→
⊕

j0<j1
F ′
j0j1
→ . . .

and
(F ′′)• : F →

⊕
i0
Fi0⊕

⊕
j0
F ′
j0
→
⊕

i0<i1
Fi0i1⊕

⊕
i0,j0
F ′′
i0,j0
⊕
⊕

j0<j1
F ′
j0j1
→ . . .

whose differentials are those used in defining (36.6.4.1). There are maps of com-
plexes

(F ′′)• → F• and (F ′′)• → (F ′)•

given by the projection maps on the terms (and hence inducing the identity map
in degree 0). Observe that by Lemma 36.6.7 each of these complexes represents
i∗RHZ(F) and these maps represent the identity on this object. Thus it suffices to
find an element

σ ∈ Hc((F ′′)•(X))
mapping to cf1,...,fc(s) and det(aji)cg1,...,gc(s) by these two maps. It turns out we
can explicitly give a cocycle for σ. Namely, we take

σ1...c = s

f1 . . . fc
∈ F1...c(X) and σ′

1...c = det(aji)s
g1 . . . gc

∈ F ′
1...c(X)

and we take

σi0...ip,j0...jc−p−2 = λ(i0 . . . ip, j0 . . . jc−p−2)s
fi0 . . . fipgj0 . . . gjc−p−2

∈ F ′′
i0...ip,j0...jc−p−2

(X)

where λ(i0 . . . ip, j0 . . . jc−p−2) is the coefficient of e1∧ . . .∧ec in the formal express-
sion

ei0 ∧ . . . ∧ eip ∧ (aj01e1 + . . .+ aj0cec) ∧ . . . ∧ (ajc−p−21e1 + . . .+ ajc−p−2cec)
To verify that σ is a cocycle, we have to show for 1 ≤ i0 < . . . < ip ≤ c and
1 ≤ j0 < . . . < jc−p−1 ≤ c that we have

0 =
∑

a=0,...,p
(−1)afiaλ(i0 . . . îa . . . ip, j0 . . . jc−p−1)

+
∑

b=0,...,c−p−1
(−1)p+b+1gjbλ(i0 . . . ip, j0 . . . ĵb . . . jc−p−1)

The easiest way to see this is perhaps to argue that the formal expression
ξ = ei0 ∧ . . . ∧ eip ∧ (aj01e1 + . . .+ aj0cec) ∧ . . . ∧ (ajc−p−11e1 + . . .+ ajc−p−1cec)

is 0 as it is an element of the (c+ 1)st wedge power of the free module on e1, . . . , ec
and that the expression above is the image of ξ under the Koszul differential sending
ei → fi. Some details omitted. □

Lemma 36.6.13.0G7T Let X be a scheme. Let Z → X be a closed immersion of finite
presentation whose conormal sheaf CZ/X is locally free of rank c. Then there is a
canonical map

c : ∧c(CZ/X)∨ ⊗OZ
i∗F −→ HcZ(F)

functorial in the quasi-coherent module F .
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Proof. Follows from the construction in Remark 36.6.10 and the independence of
the choice of generators of the ideal sheaf shown in Lemma 36.6.12. Some details
omitted. □

Remark 36.6.14.0G7U Let g : X ′ → X be a morphism of schemes. Let f1, . . . , fc ∈
Γ(X,OX). Set f ′

i = g♯(fi) ∈ Γ(X ′,OX′). Denote Z ⊂ X, resp. Z ′ ⊂ X ′ the closed
subscheme cut out by f1, . . . , fc, resp. f ′

1, . . . , f
′
c. Then Z ′ = Z ×X X ′. Denote

h : Z ′ → Z the induced morphism of schemes. Let F be an OX -module. Set
F ′ = g∗F . In this setting, if F is quasi-coherent, then the diagram

(i′)−1OX′ ⊗h−1i−1OX
h−1HcZ(F) // HcZ′(F ′)

h∗i∗F //

cf1,...,fc

OO

(i′)∗F ′

cf′
1,...,f

′
c

OO

is commutative where the top horizonal arrow is the map of Cohomology, Remark
20.34.12 on cohomology sheaves in degree c. Namely, denote F•, resp. (F ′)• the ex-
tended alternating Čech complex constructed in Remark 36.6.4 using F , f1, . . . , fc,
resp. F ′, f ′

1, . . . , f
′
c. Note that (F ′)• = g∗F•. Then, without assuming F is quasi-

coherent, the diagram

i′∗L(g|Z′)∗RHZ(F) // i′∗RHZ′(Lg∗F)

��
Lg∗i∗RHZ(F) i′∗RHZ′(F ′)

Lg∗(F•)

OO

// (F ′)•

OO

is commutative where g|Z′ : (Z ′, (i′)−1OX′)→ (Z, i−1OX) is the induced morphism
of ringed spaces. Here the top horizontal arrow is given in Cohomology, Remark
20.34.12 as is the explanation for the equal sign. The arrows pointing up are from
Remark 36.6.6. The lower horizonal arrow is the map Lg∗F• → g∗F• = (F ′)•

and the arrow pointing down is induced by Lg∗F → g∗F = F ′. The diagram
commutes because going around the diagram both ways we obtain two arrows
Lg∗F• → i′∗RHZ′(F ′) whose composition with i′∗RHZ′(F ′)→ F ′ is the canonical
map Lg∗F• → F ′. Some details omitted. Now the commutativity of the first
diagram follows by looking at this diagram on cohomology sheaves in degree c and
using that the construction of the map i∗F → Coker(

⊕
F1...̂i...c → F1...c) used in

Remark 36.6.10 is compatible with pullbacks.

36.7. The coherator

08D6 Let X be a scheme. The coherator is a functor

QX : Mod(OX) −→ QCoh(OX)

which is right adjoint to the inclusion functor QCoh(OX) → Mod(OX). It exists
for any scheme X and moreover the adjunction mapping QX(F) → F is an iso-
morphism for every quasi-coherent module F , see Properties, Proposition 28.23.4.

https://stacks.math.columbia.edu/tag/0G7U
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Since QX is left exact (as a right adjoint) we can consider its right derived extension
RQX : D(OX) −→ D(QCoh(OX)).

Since QX is right adjoint to the inclusion functor QCoh(OX) → Mod(OX) we see
that RQX is right adjoint to the canonical functor D(QCoh(OX)) → D(OX) by
Derived Categories, Lemma 13.30.3.
In this section we will study the functor RQX . In Section 36.21 we will study
the (closely related) right adjoint to the inclusion functor DQCoh(OX) → D(OX)
(when it exists).
Lemma 36.7.1.08D7 Let f : X → Y be an affine morphism of schemes. Then f∗ defines
a derived functor f∗ : D(QCoh(OX)) → D(QCoh(OY )). This functor has the
property that

D(QCoh(OX))

f∗

��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

commutes.
Proof. The functor f∗ : QCoh(OX) → QCoh(OY ) is exact, see Cohomology of
Schemes, Lemma 30.2.3. Hence f∗ defines a derived functor f∗ : D(QCoh(OX))→
D(QCoh(OY )) by simply applying f∗ to any representative complex, see Derived
Categories, Lemma 13.16.9. The diagram commutes by Lemma 36.5.1. □

Lemma 36.7.2.08D8 Let f : X → Y be a morphism of schemes. Assume f is quasi-
compact, quasi-separated, and flat. Then, denoting

Φ : D(QCoh(OX))→ D(QCoh(OY ))
the right derived functor of f∗ : QCoh(OX) → QCoh(OY ) we have RQY ◦ Rf∗ =
Φ ◦RQX .
Proof. We will prove this by showing that RQY ◦Rf∗ and Φ◦RQX are right adjoint
to the same functor D(QCoh(OY ))→ D(OX).
Since f is quasi-compact and quasi-separated, we see that f∗ preserves quasi-
coherence, see Schemes, Lemma 26.24.1. Recall that QCoh(OX) is a Grothendieck
abelian category (Properties, Proposition 28.23.4). Hence any K in D(QCoh(OX))
can be represented by a K-injective complex I• of QCoh(OX), see Injectives, The-
orem 19.12.6. Then we can define Φ(K) = f∗I•.
Since f is flat, the functor f∗ is exact. Hence f∗ defines f∗ : D(OY ) → D(OX)
and also f∗ : D(QCoh(OY ))→ D(QCoh(OX)). The functor f∗ = Lf∗ : D(OY )→
D(OX) is left adjoint to Rf∗ : D(OX)→ D(OY ), see Cohomology, Lemma 20.28.1.
Similarly, the functor f∗ : D(QCoh(OY )) → D(QCoh(OX)) is left adjoint to Φ :
D(QCoh(OX))→ D(QCoh(OY )) by Derived Categories, Lemma 13.30.3.
Let A be an object of D(QCoh(OY )) and E an object of D(OX). Then

HomD(QCoh(OY ))(A,RQY (Rf∗E)) = HomD(OY )(A,Rf∗E)
= HomD(OX)(f∗A,E)
= HomD(QCoh(OX))(f∗A,RQX(E))
= HomD(QCoh(OY ))(A,Φ(RQX(E)))

https://stacks.math.columbia.edu/tag/08D7
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This implies what we want. □

Lemma 36.7.3.08D9 Let X = Spec(A) be an affine scheme. Then
(1) QX : Mod(OX)→ QCoh(OX) is the functor which sends F to the quasi-

coherent OX -module associated to the A-module Γ(X,F),
(2) RQX : D(OX) → D(QCoh(OX)) is the functor which sends E to the

complex of quasi-coherent OX -modules associated to the object RΓ(X,E)
of D(A),

(3) restricted to DQCoh(OX) the functor RQX defines a quasi-inverse to
(36.3.0.1).

Proof. The functor QX is the functor

F 7→ ˜Γ(X,F)

by Schemes, Lemma 26.7.1. This immediately implies (1) and (2). The third
assertion follows from (the proof of) Lemma 36.3.5. □

At this point we are ready to prove a criterion for when the functorD(QCoh(OX))→
DQCoh(OX) is an equivalence.

Lemma 36.7.4.09T6 Let X be a quasi-compact and quasi-separated scheme. Suppose
that for every affine open U ⊂ X the right derived functor

Φ : D(QCoh(OU ))→ D(QCoh(OX))

of the left exact functor j∗ : QCoh(OU ) → QCoh(OX) fits into a commutative
diagram

D(QCoh(OU ))

Φ
��

iU
// DQCoh(OU )

Rj∗

��
D(QCoh(OX)) iX // DQCoh(OX)

Then the functor (36.3.0.1)

D(QCoh(OX)) −→ DQCoh(OX)

is an equivalence with quasi-inverse given by RQX .

Proof. Let E be an object of DQCoh(OX) and let A be an object of D(QCoh(OX)).
We have to show that the adjunction maps

RQX(iX(A))→ A and E → iX(RQX(E))

are isomorphisms. Consider the hypothesis Hn: the adjunction maps above are
isomorphisms whenever E and iX(A) are supported (Definition 36.6.1) on a closed
subset of X which is contained in the union of n affine opens of X. We will prove
Hn by induction on n.

Base case: n = 0. In this case E = 0, hence the map E → iX(RQX(E)) is an
isomorphism. Similarly iX(A) = 0. Thus the cohomology sheaves of iX(A) are
zero. Since the inclusion functor QCoh(OX) → Mod(OX) is fully faithful and
exact, we conclude that the cohomology objects of A are zero, i.e., A = 0 and
RQX(iX(A))→ A is an isomorphism as well.
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Induction step. Suppose that E and iX(A) are supported on a closed subset T of
X contained in U1 ∪ . . . ∪ Un with Ui ⊂ X affine open. Set U = Un. Consider the
distinguished triangles

A→ Φ(A|U )→ A′ → A[1] and E → Rj∗(E|U )→ E′ → E[1]
where Φ is as in the statement of the lemma. Note that E → Rj∗(E|U ) is a quasi-
isomorphism over U = Un. Since iX ◦ Φ = Rj∗ ◦ iU by assumption and since
iX(A)|U = iU (A|U ) we see that iX(A) → iX(Φ(A|U )) is a quasi-isomorphism over
U . Hence iX(A′) and E′ are supported on the closed subset T \ U of X which is
contained in U1 ∪ . . . ∪Un−1. By induction hypothesis the statement is true for A′

and E′. By Derived Categories, Lemma 13.4.3 it suffices to prove the maps
RQX(iX(Φ(A|U )))→ Φ(A|U ) and Rj∗(E|U )→ iX(RQX(Rj∗E|U ))

are isomorphisms. By assumption and by Lemma 36.7.2 (the inclusion morphism
j : U → X is flat, quasi-compact, and quasi-separated) we have

RQX(iX(Φ(A|U ))) = RQX(Rj∗(iU (A|U ))) = Φ(RQU (iU (A|U )))
and

iX(RQX(Rj∗(E|U ))) = iX(Φ(RQU (E|U ))) = Rj∗(iU (RQU (E|U )))
Finally, the maps

RQU (iU (A|U ))→ A|U and E|U → iU (RQU (E|U ))
are isomorphisms by Lemma 36.7.3. The result follows. □

Proposition 36.7.5.08DB Let X be a quasi-compact scheme with affine diagonal. Then
the functor (36.3.0.1)

D(QCoh(OX)) −→ DQCoh(OX)
is an equivalence with quasi-inverse given by RQX .

Proof. Let U ⊂ X be an affine open. Then the morphism U → X is affine by
Morphisms, Lemma 29.11.11. Thus the assumption of Lemma 36.7.4 holds by
Lemma 36.7.1 and we win. □

Lemma 36.7.6.0CRX Let f : X → Y be a morphism of schemes. Assume X and Y are
quasi-compact and have affine diagonal. Then, denoting

Φ : D(QCoh(OX))→ D(QCoh(OY ))
the right derived functor of f∗ : QCoh(OX)→ QCoh(OY ) the diagram

D(QCoh(OX))

Φ
��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

is commutative.

Proof. Observe that the horizontal arrows in the diagram are equivalences of cat-
egories by Proposition 36.7.5. Hence we can identify these categories (and simi-
larly for other quasi-compact schemes with affine diagonal). The statement of the
lemma is that the canonical map Φ(K) → Rf∗(K) is an isomorphism for all K in
D(QCoh(OX)). Note that if K1 → K2 → K3 → K1[1] is a distinguished triangle

https://stacks.math.columbia.edu/tag/08DB
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in D(QCoh(OX)) and the statement is true for two-out-of-three, then it is true for
the third.
Let U ⊂ X be an affine open. Since the diagonal of X is affine, the inclu-
sion morphism j : U → X is affine (Morphisms, Lemma 29.11.11). Similarly,
the composition g = f ◦ j : U → Y is affine. Let I• be a K-injective com-
plex in QCoh(OU ). Since j∗ : QCoh(OU ) → QCoh(OX) has an exact left ad-
joint j∗ : QCoh(OX) → QCoh(OU ) we see that j∗I• is a K-injective complex in
QCoh(OX), see Derived Categories, Lemma 13.31.9. It follows that

Φ(j∗I•) = f∗j∗I• = g∗I•

By Lemma 36.7.1 we see that j∗I• represents Rj∗I• and g∗I• represents Rg∗I•.
On the other hand, we have Rf∗ ◦Rj∗ = Rg∗. Hence f∗j∗I• represents Rf∗(j∗I•).
We conclude that the lemma is true for any complex of the form j∗G• with G•

a complex of quasi-coherent modules on U . (Note that if G• → I• is a quasi-
isomorphism, then j∗G• → j∗I• is a quasi-isomorphism as well since j∗ is an exact
functor on quasi-coherent modules.)
Let F• be a complex of quasi-coherent OX -modules. Let T ⊂ X be a closed subset
such that the support of Fp is contained in T for all p. We will use induction on
the minimal number n of affine opens U1, . . . , Un such that T ⊂ U1 ∪ . . .∪Un. The
base case n = 0 is trivial. If n ≥ 1, then set U = U1 and denote j : U → X the
open immersion as above. We consider the map of complexes c : F• → j∗j

∗F•. We
obtain two short exact sequences of complexes:

0→ Ker(c)→ F• → Im(c)→ 0
and

0→ Im(c)→ j∗j
∗F• → Coker(c)→ 0

The complexes Ker(c) and Coker(c) are supported on T \U ⊂ U2∪ . . .∪Un and the
result holds for them by induction. The result holds for j∗j

∗F• by the discussion
in the preceding paragraph. We conclude by looking at the distinguished triangles
associated to the short exact sequences and using the initial remark of the proof. □

Remark 36.7.7 (Warning).0CRY Let X be a quasi-compact scheme with affine diagonal.
Even though we know that D(QCoh(OX)) = DQCoh(OX) by Proposition 36.7.5
strange things can happen and it is easy to make mistakes with this material. One
pitfall is to carelessly assume that this equality means derived functors are the
same. For example, suppose we have a quasi-compact open U ⊂ X. Then we can
consider the higher right derived functors

Ri(QCoh)Γ(U,−) : QCoh(OX)→ Ab
of the left exact functor Γ(U,−). Since this is a universal δ-functor, and since the
functors Hi(U,−) (defined for all abelian sheaves on X) restricted to QCoh(OX)
form a δ-functor, we obtain canonical tranformations

ti : Ri(QCoh)Γ(U,−)→ Hi(U,−).
These transformations aren’t in general isomorphisms even if X = Spec(A) is affine!
Namely, we have R1(QCoh)Γ(U, Ĩ) = 0 if I an injective A-module by construction of
right derived functors and the equivalence of QCoh(OX) and ModA. But Examples,
Lemma 110.46.2 shows there exists A, I, and U such that H1(U, Ĩ) ̸= 0.

https://stacks.math.columbia.edu/tag/0CRY
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36.8. The coherator for Noetherian schemes

09T1 In the case of Noetherian schemes we can use the following lemma.

Lemma 36.8.1.09T2 Let X be a Noetherian scheme. Let J be an injective object of
QCoh(OX). Then J is a flasque sheaf of OX -modules.

Proof. Let U ⊂ X be an open subset and let s ∈ J (U) be a section. Let I ⊂ OX
be the quasi-coherent sheaf of ideals defining the reduced induced scheme structure
on X \ U (see Schemes, Definition 26.12.5). By Cohomology of Schemes, Lemma
30.10.5 the section s corresponds to a map σ : In → J for some n. As J is an
injective object of QCoh(OX) we can extend σ to a map s̃ : OX → J . Then s̃
corresponds to a global section of J restricting to s. □

Lemma 36.8.2.09T3 Let f : X → Y be a morphism of Noetherian schemes. Then
f∗ on quasi-coherent sheaves has a right derived extension Φ : D(QCoh(OX)) →
D(QCoh(OY )) such that the diagram

D(QCoh(OX))

Φ
��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

commutes.

Proof. Since X and Y are Noetherian schemes the morphism is quasi-compact and
quasi-separated (see Properties, Lemma 28.5.4 and Schemes, Remark 26.21.18).
Thus f∗ preserve quasi-coherence, see Schemes, Lemma 26.24.1. Next, let K be
an object of D(QCoh(OX)). Since QCoh(OX) is a Grothendieck abelian category
(Properties, Proposition 28.23.4), we can represent K by a K-injective complex
I• such that each In is an injective object of QCoh(OX), see Injectives, Theorem
19.12.6. Thus we see that the functor Φ is defined by setting

Φ(K) = f∗I•

where the right hand side is viewed as an object of D(QCoh(OY )). To finish the
proof of the lemma it suffices to show that the canonical map

f∗I• −→ Rf∗I•

is an isomorphism in D(OY ). To see this by Lemma 36.4.2 it suffices to show that
In is right f∗-acyclic for all n ∈ Z. This is true because In is flasque by Lemma
36.8.1 and flasque modules are right f∗-acyclic by Cohomology, Lemma 20.12.5. □

Proposition 36.8.3.09T4 Let X be a Noetherian scheme. Then the functor (36.3.0.1)

D(QCoh(OX)) −→ DQCoh(OX)

is an equivalence with quasi-inverse given by RQX .

Proof. This follows from Lemma 36.7.4 and Lemma 36.8.2. □

https://stacks.math.columbia.edu/tag/09T2
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36.9. Koszul complexes

08CX Let A be a ring and let f1, . . . , fr be a sequence of elements of A. We have defined
the Koszul complex K•(f1, . . . , fr) in More on Algebra, Definition 15.28.2. It is
a chain complex sitting in degrees r, . . . , 0. We turn this into a cochain complex
K•(f1, . . . , fr) by setting K−n(f1, . . . , fr) = Kn(f1, . . . , fr) and using the same
differentials. In the rest of this section all the complexes will be cochain complexes.

We define a complex I•(f1, . . . , fr) such that we have a distinguished triangle

I•(f1, . . . , fr)→ A→ K•(f1, . . . , fr)→ I•(f1, . . . , fr)[1]

in K(A). In other words, we set

Ii(f1, . . . , fr) =
{
Ki−1(f1, . . . , fr) if i ≤ 0

0 else

and we use the negative of the differential on K•(f1, . . . , fr). The maps in the
distinguished triangle are the obvious ones. Note that I0(f1, . . . , fr) = A⊕r → A is
given by multiplication by fi on the ith factor. Hence I•(f1, . . . , fr) → A factors
as

I•(f1, . . . , fr)→ I → A

where I = (f1, . . . , fr). In fact, there is a short exact sequence

0→ H−1(K•(f1, . . . , fs))→ H0(I•(f1, . . . , fs))→ I → 0

and for every i < 0 we have Hi(I•(f1, . . . , fr)) = Hi−1(K•(f1, . . . , fr). Observe
that given a second sequence g1, . . . , gr of elements of A there are canonical maps

I•(f1g1, . . . , frgr)→ I•(f1, . . . , fr) and K•(f1g1, . . . , frgr)→ K•(f1, . . . , fr)

compatible with the maps described above. The first of these maps is given by
multiplication by gi on the ith summand of I0(f1g1, . . . , frgr) = A⊕r. In particular,
given f1, . . . , fr we obtain an inverse system of complexes

(36.9.0.1)08CY I•(f1, . . . , fr)← I•(f2
1 , . . . , f

2
r )← I•(f3

1 , . . . , f
3
r )← . . .

which will play an important role in that which is to follow. To easily formulate
the following lemmas we fix some notation.

Situation 36.9.1.08CZ Here A is a ring and f1, . . . , fr is a sequence of elements of A.
We set X = Spec(A) and U = D(f1) ∪ . . . ∪ D(fr) ⊂ X. We denote U : U =⋃
i=1,...,rD(fi) the given open covering of U .

Our first lemma is that the complexes above can be used to compute the cohomology
of quasi-coherent sheaves on U . Suppose given a complex I• of A-modules and an
A-module M . Then we define HomA(I•,M) to be the complex with nth term
HomA(I−n,M) and differentials given as the contragredients of the differentials on
I•.

Lemma 36.9.2.08D0 In Situation 36.9.1. Let M be an A-module and denote F the
associated OX -module. Then there is a canonical isomorphism of complexes

colime HomA(I•(fe1 , . . . , fer ),M) −→ Č•
alt(U ,F)

functorial in M .

https://stacks.math.columbia.edu/tag/08CZ
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Proof. Recall that the alternating Čech complex is the subcomplex of the usual
Čech complex given by alternating cochains, see Cohomology, Section 20.23. As
usual we view a p-cochain in Č•

alt(U ,F) as an alternating function s on {1, . . . , r}p+1

whose value si0...ip at (i0, . . . , ip) lies in Mfi0 ...fip
= F(Ui0...ip). On the other hand,

a p-cochain t in HomA(I•(fe1 , . . . , fer ),M) is given by a map t : ∧p+1(A⊕r) → M .
Write [i] ∈ A⊕r for the ith basis element and write

[i0, . . . , ip] = [i0] ∧ . . . ∧ [ip] ∈ ∧p+1(A⊕r)

Then we send t as above to s with

si0...ip = t([i0, . . . , ip])
fei0 . . . f

e
ip

It is clear that s so defined is an alternating cochain. The construction of this map
is compatible with the transition maps of the system as the transition map

I•(fe1 , . . . , fer )← I•(fe+1
1 , . . . , fe+1

r ),

of the (36.9.0.1) sends [i0, . . . , ip] to fi0 . . . fip [i0, . . . , ip]. It is clear from the de-
scription of the localizations Mfi0 ...fip

in Algebra, Lemma 10.9.9 that these maps
define an isomorphism of cochain modules in degree p in the limit. To finish the
proof we have to show that the map is compatible with differentials. To see this
recall that

d(s)i0...ip+1 =
∑p+1

j=0
(−1)jsi0...̂ij ...ip

=
∑p+1

j=0
(−1)j t([i0, . . . , îj , . . . ip+1])

fei0 . . . f̂
e
ij
. . . feip+1

On the other hand, we have

d(t)([i0, . . . , ip+1])
fei0 . . . f

e
ip+1

= t(d[i0, . . . , ip+1])
fei0 . . . f

e
ip+1

=
∑
j(−1)jfeij t([i0, . . . , îj , . . . ip+1])

fei0 . . . f
e
ip+1

The two formulas agree by inspection. □

Suppose given a finite complex I• of A-modules and a complex of A-modules M•.
We obtain a double complex H•,• = HomA(I•,M•) where Hp,q = HomA(Ip,Mq).
The first differential comes from the differential on HomA(I•,Mq) and the second
from the differential on M•. Associated to this double complex is the total complex
with degree n term given by⊕

p+q=n
HomA(Ip,Mq)

and differential as in Homology, Definition 12.18.3. As our complex I• has only
finitely many nonzero terms, the direct sum displayed above is finite. The conven-
tions for taking the total complex associated to a Čech complex of a complex are
as in Cohomology, Section 20.25.
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Lemma 36.9.3.08D1 In Situation 36.9.1. Let M• be a complex of A-modules and denote
F• the associated complex of OX -modules. Then there is a canonical isomorphism
of complexes

colime Tot(HomA(I•(fe1 , . . . , fer ),M•)) −→ Tot(Č•
alt(U ,F•))

functorial in M•.

Proof. Immediate from Lemma 36.9.2 and our conventions for taking associated
total complexes. □

Lemma 36.9.4.08D2 In Situation 36.9.1. Let F• be a complex of quasi-coherent OX -
modules. Then there is a canonical isomorphism

Tot(Č•
alt(U ,F•)) −→ RΓ(U,F•)

in D(A) functorial in F•.

Proof. Let B be the set of affine opens of U . Since the higher cohomology groups
of a quasi-coherent module on an affine scheme are zero (Cohomology of Schemes,
Lemma 30.2.2) this is a special case of Cohomology, Lemma 20.40.2. □

In Situation 36.9.1 denote Ie the object of D(OX) corresponding to the complex of
A-modules I•(fe1 , . . . , fer ) via the equivalence of Lemma 36.3.5. The maps (36.9.0.1)
give a system

I1 ← I2 ← I3 ← . . .

Moreover, there is a compatible system of maps Ie → OX which become isomor-
phisms when restricted to U . Thus we see that for every object E of D(OX) there
is a canonical map
(36.9.4.1)08DC colime HomD(OX)(Ie, E) −→ H0(U,E)
constructed by sending a map Ie → E to its restriction to U and using that
HomD(OU )(OU , E|U ) = H0(U,E).

Proposition 36.9.5.08DD In Situation 36.9.1. For every object E of DQCoh(OX) the
map (36.9.4.1) is an isomorphism.

Proof. By Lemma 36.3.5 we may assume that E is given by a complex of quasi-
coherent sheaves F•. Let M• = Γ(X,F•) be the corresponding complex of A-
modules. By Lemmas 36.9.3 and 36.9.4 we have quasi-isomorphisms

colime Tot(HomA(I•(fe1 , . . . , fer ),M•)) −→ Tot(Č•
alt(U ,F•)) −→ RΓ(U,F•)

Taking H0 on both sides we obtain
colime HomD(A)(I•(fe1 , . . . , fer ),M•) = H0(U,E)

Since HomD(A)(I•(fe1 , . . . , fer ),M•) = HomD(OX)(Ie, E) by Lemma 36.3.5 the lemma
follows. □

In Situation 36.9.1 denote Ke the object of D(OX) corresponding to the complex
of A-modules K•(fe1 , . . . , fer ) via the equivalence of Lemma 36.3.5. Thus we have
distinguished triangles

Ie → OX → Ke → Ie[1]
and a system

K1 ← K2 ← K3 ← . . .

https://stacks.math.columbia.edu/tag/08D1
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compatible with the system (Ie). Moreover, there is a compatible system of maps

Ke → H0(Ke) = OX/(fe1 , . . . , fer )

Lemma 36.9.6.08E3 In Situation 36.9.1. Let E be an object of DQCoh(OX). Assume
that Hi(E)|U = 0 for i = −r + 1, . . . , 0. Then given s ∈ H0(X,E) there exists
an e ≥ 0 and a morphism Ke → E such that s is in the image of H0(X,Ke) →
H0(X,E).

Proof. Since U is covered by r affine opens we have Hj(U,F) = 0 for j ≥ r and any
quasi-coherent module (Cohomology of Schemes, Lemma 30.4.2). By Lemma 36.3.4
we see that H0(U,E) is equal to H0(U, τ≥−r+1E). There is a spectral sequence

Hj(U,Hi(τ≥−r+1E))⇒ Hi+j(U, τ≥−NE)
see Derived Categories, Lemma 13.21.3. Hence H0(U,E) = 0 by our assumed
vanishing of cohomology sheaves of E. We conclude that s|U = 0. Think of s as a
morphism OX → E in D(OX). By Proposition 36.9.5 the composition Ie → OX →
E is zero for some e. By the distinguished triangle Ie → OX → Ke → Ie[1] we
obtain a morphism Ke → E such that s is the composition OX → Ke → E. □

36.10. Pseudo-coherent and perfect complexes

08E4 In this section we make the connection between the general notions defined in
Cohomology, Sections 20.46, 20.47, 20.48, and 20.49 and the corresponding notions
for complexes of modules in More on Algebra, Sections 15.64, 15.66, and 15.74.

Lemma 36.10.1.08E5 Let X be a scheme. If E is an m-pseudo-coherent object of
D(OX), then Hi(E) is a quasi-coherent OX -module for i > m and Hm(E) is a
quotient of a quasi-coherent OX -module. If E is pseudo-coherent, then E is an
object of DQCoh(OX).

Proof. Locally on X there exists a strictly perfect complex E• such that Hi(E) is
isomorphic to Hi(E•) for i > m and Hm(E) is a quotient of Hm(E•). The sheaves
E i are direct summands of finite free modules, hence quasi-coherent. The lemma
follows. □

Lemma 36.10.2.08E7 Let X = Spec(A) be an affine scheme. Let M• be a complex
of A-modules and let E be the corresponding object of D(OX). Then E is an m-
pseudo-coherent (resp. pseudo-coherent) as an object of D(OX) if and only if M•

is m-pseudo-coherent (resp. pseudo-coherent) as a complex of A-modules.

Proof. It is immediate from the definitions that if M• is m-pseudo-coherent, so is
E. To prove the converse, assume E is m-pseudo-coherent. As X = Spec(A) is
quasi-compact with a basis for the topology given by standard opens, we can find
a standard open covering X = D(f1) ∪ . . . ∪D(fn) and strictly perfect complexes
E•
i on D(fi) and maps αi : E•

i → E|Ui inducing isomorphisms on Hj for j > m
and surjections on Hm. By Cohomology, Lemma 20.46.8 after refining the open
covering we may assume αi is given by a map of complexes E•

i → M̃•|Ui for each
i. By Modules, Lemma 17.14.6 the terms Eni are finite locally free modules. Hence
after refining the open covering we may assume each Eni is a finite free OUi -module.
From the definition it follows that M•

fi
is an m-pseudo-coherent complex of Afi -

modules. We conclude by applying More on Algebra, Lemma 15.64.14.

https://stacks.math.columbia.edu/tag/08E3
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The case “pseudo-coherent” follows from the fact that E is pseudo-coherent if and
only if E is m-pseudo-coherent for all m (by definition) and the same is true for
M• by More on Algebra, Lemma 15.64.5. □

Lemma 36.10.3.08E8 Let X be a Noetherian scheme. Let E be an object of DQCoh(OX).
For m ∈ Z the following are equivalent

(1) Hi(E) is coherent for i ≥ m and zero for i≫ 0, and
(2) E is m-pseudo-coherent.

In particular, E is pseudo-coherent if and only if E is an object of D−
Coh(OX).

Proof. As X is quasi-compact we see that in both (1) and (2) the object E is
bounded above. Thus the question is local on X and we may assume X is affine.
Say X = Spec(A) for some Noetherian ring A. In this case E corresponds to a
complex of A-modules M• by Lemma 36.3.5. By Lemma 36.10.2 we see that E
is m-pseudo-coherent if and only if M• is m-pseudo-coherent. On the other hand,
Hi(E) is coherent if and only if Hi(M•) is a finite A-module (Properties, Lemma
28.16.1). Thus the result follows from More on Algebra, Lemma 15.64.17. □

Lemma 36.10.4.08E9 Let X = Spec(A) be an affine scheme. Let M• be a complex of
A-modules and let E be the corresponding object of D(OX). Then

(1) E has tor amplitude in [a, b] if and only if M• has tor amplitude in [a, b].
(2) E has finite tor dimension if and only if M• has finite tor dimension.

Proof. Part (2) follows trivially from part (1). In the proof of (1) we will use the
equivalence D(A) = DQCoh(X) of Lemma 36.3.5 without further mention. Assume
M• has tor amplitude in [a, b]. Then K• is isomorphic in D(A) to a complex K•

of flat A-modules with Ki = 0 for i ̸∈ [a, b], see More on Algebra, Lemma 15.66.3.
Then E is isomorphic to K̃•. Since each K̃i is a flat OX -module, we see that E
has tor amplitude in [a, b] by Cohomology, Lemma 20.48.3.

Assume that E has tor amplitude in [a, b]. Then E is bounded whence M• is in
K−(A). Thus we may replace M• by a bounded above complex of A-modules. We
may even choose a projective resolution and assume that M• is a bounded above
complex of free A-modules. Then for any A-module N we have

E ⊗L
OX

Ñ ∼= M̃• ⊗L
OX

Ñ ∼= ˜M• ⊗A N

in D(OX). Thus the vanishing of cohomology sheaves of the left hand side implies
M• has tor amplitude in [a, b]. □

Lemma 36.10.5.0DHY Let f : X → S be a morphism of affine schemes corresponding
to the ring map R → A. Let M• be a complex of A-modules and let E be the
corresponding object of D(OX). Then

(1) E as an object of D(f−1OS) has tor amplitude in [a, b] if and only if M•

has tor amplitude in [a, b] as an object of D(R).
(2) E locally has finite tor dimension as an object of D(f−1OS) if and only

if M• has finite tor dimension as an object of D(R).

Proof. Consider a prime q ⊂ A lying over p ⊂ R. Let x ∈ X and s = f(x) ∈ S be
the corresponding points. Then (f−1OS)x = OS,s = Rp and Ex = M•

q . Keeping
this in mind we can see the equivalence as follows.

https://stacks.math.columbia.edu/tag/08E8
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If M• has tor amplitude in [a, b] as a complex of R-modules, then the same is true
for the localization of M• at any prime of A. Then we conclude by Cohomology,
Lemma 20.48.5 that E has tor amplitude in [a, b] as a complex of sheaves of f−1OS-
modules. Conversely, assume that E has tor amplitude in [a, b] as an object of
D(f−1OS). We conclude (using the last cited lemma) that M•

q has tor amplitude
in [a, b] as a complex of Rp-modules for every prime q ⊂ A lying over p ⊂ R. By
More on Algebra, Lemma 15.66.15 we find that M• has tor amplitude in [a, b] as a
complex of R-modules. This finishes the proof of (1).

Since X is quasi-compact, if E locally has finite tor dimension as a complex of
f−1OS-modules, then actually E has tor amplitude in [a, b] for some a, b as a
complex of f−1OS-modules. Thus (2) follows from (1). □

Lemma 36.10.6.08EA Let X be a quasi-separated scheme. Let E be an object of
DQCoh(OX). Let a ≤ b. The following are equivalent

(1) E has tor amplitude in [a, b], and
(2) for all F in QCoh(OX) we have Hi(E ⊗L

OX
F) = 0 for i ̸∈ [a, b].

Proof. It is clear that (1) implies (2). Assume (2). Let U ⊂ X be an affine open.
As X is quasi-separated the morphism j : U → X is quasi-compact and separated,
hence j∗ transforms quasi-coherent modules into quasi-coherent modules (Schemes,
Lemma 26.24.1). Thus the functor QCoh(OX) → QCoh(OU ) is essentially sur-
jective. It follows that condition (2) implies the vanishing of Hi(E|U ⊗L

OU
G) for

i ̸∈ [a, b] for all quasi-coherent OU -modules G. Write U = Spec(A) and let M• be
the complex of A-modules corresponding to E|U by Lemma 36.3.5. We have just
shown that M• ⊗L

A N has vanishing cohomology groups outside the range [a, b], in
other words M• has tor amplitude in [a, b]. By Lemma 36.10.4 we conclude that
E|U has tor amplitude in [a, b]. This proves the lemma. □

Lemma 36.10.7.08EB Let X = Spec(A) be an affine scheme. Let M• be a complex of
A-modules and let E be the corresponding object of D(OX). Then E is a perfect
object of D(OX) if and only if M• is perfect as an object of D(A).

Proof. This is a logical consequence of Lemmas 36.10.2 and 36.10.4, Cohomology,
Lemma 20.49.5, and More on Algebra, Lemma 15.74.2. □

As a consequence of our description of pseudo-coherent complexes on schemes we
can prove certain internal homs are quasi-coherent.

Lemma 36.10.8.0A6H Let X be a scheme.
(1) If L is inD+

QCoh(OX) andK inD(OX) is pseudo-coherent, thenRHom(K,L)
is in DQCoh(OX) and locally bounded below.

(2) If L is in DQCoh(OX) and K in D(OX) is perfect, then RHom(K,L) is
in DQCoh(OX).

(3) If X = Spec(A) is affine and K,L ∈ D(A) then

RHom(K̃, L̃) = ˜RHomA(K,L)

in the following two cases
(a) K is pseudo-coherent and L is bounded below,
(b) K is perfect and L arbitrary.
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(4) If X = Spec(A) and K,L are in D(A), then the nth cohomology sheaf of
RHom(K̃, L̃) is the sheaf associated to the presheaf

X ⊃ D(f) 7−→ ExtnAf (K ⊗A Af , L⊗A Af )

for f ∈ A.

Proof. The construction of the internal hom in the derived category of OX com-
mutes with localization (see Cohomology, Section 20.42). Hence to prove (1) and
(2) we may replace X by an affine open. By Lemmas 36.3.5, 36.10.2, and 36.10.7
in order to prove (1) and (2) it suffices to prove (3).
Part (3) follows from the computation of the internal hom of Cohomology, Lemma
20.46.11 by representing K by a bounded above (resp. finite) complex of finite
projective A-modules and L by a bounded below (resp. arbitrary) complex of A-
modules.
To prove (4) recall that on any ringed space the nth cohomology sheaf ofRHom(A,B)
is the sheaf associated to the presheaf

U 7→ HomD(U)(A|U , B|U [n]) = ExtnD(OU )(A|U , B|U )

See Cohomology, Section 20.42. On the other hand, the restriction of K̃ to a
principal open D(f) is the image of K⊗AAf and similarly for L. Hence (4) follows
from the equivalence of categories of Lemma 36.3.5. □

Lemma 36.10.9.0ATN Let X be a scheme. Let K,L,M be objects of DQCoh(OX). The
map

K ⊗L
OX

RHom(M,L) −→ RHom(M,K ⊗L
OX

L)
of Cohomology, Lemma 20.42.6 is an isomorphism in the following cases

(1) M perfect, or
(2) K is perfect, or
(3) M is pseudo-coherent, L ∈ D+(OX), and K has finite tor dimension.

Proof. Lemma 36.10.8 reduces cases (1) and (3) to the affine case which is treated in
More on Algebra, Lemma 15.98.3. (You also have to use Lemmas 36.10.2, 36.10.7,
and 36.10.4 to do the translation into algebra.) If K is perfect but no other assump-
tions are made, then we do not know that either side of the arrow is in DQCoh(OX)
but the result is still true because we can work locally and reduce to the case that
K is a finite complex of finite free modules in which case it is clear. □

36.11. Derived category of coherent modules

08E0 Let X be a locally Noetherian scheme. In this case the category Coh(OX) ⊂
Mod(OX) of coherent OX -modules is a weak Serre subcategory, see Homology,
Section 12.10 and Cohomology of Schemes, Lemma 30.9.2. Denote

DCoh(OX) ⊂ D(OX)
the subcategory of complexes whose cohomology sheaves are coherent, see Derived
Categories, Section 13.17. Thus we obtain a canonical functor
(36.11.0.1)08E1 D(Coh(OX)) −→ DCoh(OX)
see Derived Categories, Equation (13.17.1.1).
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Lemma 36.11.1.0FDA Let X be a Noetherian scheme. Then the functor

D−(Coh(OX)) −→ D−
Coh(OX)(QCoh(OX))

is an equivalence.

Proof. Observe that Coh(OX) ⊂ QCoh(OX) is a Serre subcategory, see Homology,
Definition 12.10.1 and Lemma 12.10.2 and Cohomology of Schemes, Lemmas 30.9.2
and 30.9.3. On the other hand, if G → F is a surjection from a quasi-coherent OX -
module to a coherent OX -module, then there exists a coherent submodule G′ ⊂ G
which surjects onto F . Namely, we can write G as the filtered union of its coherent
submodules by Properties, Lemma 28.22.3 and then one of these will do the job.
Thus the lemma follows from Derived Categories, Lemma 13.17.4. □

Proposition 36.11.2.0FDB Let X be a Noetherian scheme. Then the functors

D−(Coh(OX)) −→ D−
Coh(OX) and Db(Coh(OX)) −→ Db

Coh(OX)
are equivalences.

Proof. Consider the commutative diagram

D−(Coh(OX)) //

��

D−
Coh(OX)

��
D−(QCoh(OX)) // D−

QCoh(OX)

By Lemma 36.11.1 the left vertical arrow is fully faithful. By Proposition 36.8.3
the bottom arrow is an equivalence. By construction the right vertical arrow is
fully faithful. We conclude that the top horizontal arrow is fully faithful. If K is
an object of D−

Coh(OX) then the object K ′ of D−(QCoh(OX)) which corresponds
to it by Proposition 36.8.3 will have coherent cohomology sheaves. Hence K ′ is in
the essential image of the left vertical arrow by Lemma 36.11.1 and we find that
the top horizontal arrow is essentially surjective. This finishes the proof for the
bounded above case. The bounded case follows immediately from the bounded
above case. □

Lemma 36.11.3.08E2 Let S be a Noetherian scheme. Let f : X → S be a morphism
of schemes which is locally of finite type. Let E be an object of Db

Coh(OX) such
that the support of Hi(E) is proper over S for all i. Then Rf∗E is an object of
Db

Coh(OS).

Proof. Consider the spectral sequence
Rpf∗H

q(E)⇒ Rp+qf∗E

see Derived Categories, Lemma 13.21.3. By assumption and Cohomology of Schemes,
Lemma 30.26.10 the sheaves Rpf∗H

q(E) are coherent. Hence Rp+qf∗E is coher-
ent, i.e., Rf∗E ∈ DCoh(OS). Boundedness from below is trivial. Boundedness
from above follows from Cohomology of Schemes, Lemma 30.4.5 or from Lemma
36.4.1. □

Lemma 36.11.4.0D0B Let S be a Noetherian scheme. Let f : X → S be a morphism
of schemes which is locally of finite type. Let E be an object of D+

Coh(OX) such
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that the support of Hi(E) is proper over S for all i. Then Rf∗E is an object of
D+

Coh(OS).
Proof. The proof is the same as the proof of Lemma 36.11.3. You can also deduce
it from Lemma 36.11.3 by considering what the exact functor Rf∗ does to the
distinguished triangles τ≤aE → E → τ≥a+1E → τ≤aE[1]. □

Lemma 36.11.5.0D0C Let X be a locally Noetherian scheme. If L is in D+
Coh(OX) and

K in D−
Coh(OX), then RHom(K,L) is in D+

Coh(OX).
Proof. It suffices to prove this when X is the spectrum of a Noetherian ring A. By
Lemma 36.10.3 we see that K is pseudo-coherent. Then we can use Lemma 36.10.8
to translate the problem into the following algebra problem: for L ∈ D+

Coh(A) and
K in D−

Coh(A), then RHomA(K,L) is in D+
Coh(A). Since L is bounded below and

K is bounded below there is a convergent spectral sequence
ExtpA(K,Hq(L))⇒ Extp+q

A (K,L)
and there are convergent spectral sequences

ExtiA(H−j(K), Hq(L))⇒ Exti+jA (K,Hq(L))
See Injectives, Remarks 19.13.9 and 19.13.11. This finishes the proof as the modules
ExtpA(M,N) are finite for finite A-modules M , N by Algebra, Lemma 10.71.9. □

Lemma 36.11.6.0FXU Let X be a Noetherian scheme. Let E in D(OX) be perfect. Then
(1) E is in Db

Coh(OX),
(2) if L is in DCoh(OX) then E⊗L

OX
L and RHomOX

(E,L) are in DCoh(OX),
(3) if L is in Db

Coh(OX) then E⊗L
OX

L and RHomOX
(E,L) are in Db

Coh(OX),
(4) if L is in D+

Coh(OX) then E⊗L
OX

L and RHomOX
(E,L) are in D+

Coh(OX),
(5) if L is in D−

Coh(OX) then E⊗L
OX

L and RHomOX
(E,L) are in D−

Coh(OX).
Proof. Since X is quasi-compact, each of these statements can be checked over the
members of any open covering of X. Thus we may assume E is represented by a
bounded complex E• of finite free modules, see Cohomology, Lemma 20.49.3. In
this case each of the statements is clear as both RHomOX

(E,L) and E ⊗L
OX

L can
be computed on the level of complexes using E•, see Cohomology, Lemmas 20.46.9
and 20.26.9. Some details omitted. □

Lemma 36.11.7.0D0D Let A be a Noetherian ring. Let X be a proper scheme over A.
For L in D+

Coh(OX) and K in D−
Coh(OX), the A-modules ExtnOX

(K,L) are finite.
Proof. Recall that

ExtnOX
(K,L) = Hn(X,RHomOX

(K,L)) = Hn(Spec(A), Rf∗RHomOX
(K,L))

see Cohomology, Lemma 20.42.1 and Cohomology, Section 20.13. Thus the result
follows from Lemmas 36.11.5 and 36.11.4. □

Lemma 36.11.8.0FDC Let X be a locally Noetherian regular scheme. Then every ob-
ject of Db

Coh(OX) is perfect. If X is quasi-compact, i.e., Noetherian regular, then
conversely every perfect object of D(OX) is in Db

Coh(OX).
Proof. Let K be an object of Db

Coh(OX). To check that K is perfect, we may
work affine locally on X (see Cohomology, Section 20.49). Then K is perfect by
Lemma 36.10.7 and More on Algebra, Lemma 15.74.14. The converse is Lemma
36.11.6. □
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36.12. Descent finiteness properties of complexes

09UC This section is the analogue of Descent, Section 35.7 for objects of the derived
category of a scheme. The easiest such result is probably the following.
Lemma 36.12.1.09UD Let f : X → Y be a surjective flat morphism of schemes (or
more generally locally ringed spaces). Let E ∈ D(OY ). Let a, b ∈ Z. Then E has
tor-amplitude in [a, b] if and only if Lf∗E has tor-amplitude in [a, b].
Proof. Pullback always preserves tor-amplitude, see Cohomology, Lemma 20.48.4.
We may check tor-amplitude in [a, b] on stalks, see Cohomology, Lemma 20.48.5. A
flat local ring homomorphism is faithfully flat by Algebra, Lemma 10.39.17. Thus
the result follows from More on Algebra, Lemma 15.66.17. □

Lemma 36.12.2.09UE Let {fi : Xi → X} be an fpqc covering of schemes. Let E ∈
DQCoh(OX). Let m ∈ Z. Then E is m-pseudo-coherent if and only if each Lf∗

i E
is m-pseudo-coherent.
Proof. Pullback always preserves m-pseudo-coherence, see Cohomology, Lemma
20.47.3. Conversely, assume that Lf∗

i E is m-pseudo-coherent for all i. Let U ⊂ X
be an affine open. It suffices to prove that E|U is m-pseudo-coherent. Since {fi :
Xi → X} is an fpqc covering, we can find finitely many affine open Vj ⊂ Xa(j) such
that fa(j)(Vj) ⊂ U and U =

⋃
fa(j)(Vj). Set V =

∐
Vi. Thus we may replace X by

U and {fi : Xi → X} by {V → U} and assume that X is affine and our covering is
given by a single surjective flat morphism {f : Y → X} of affine schemes. In this
case the result follows from More on Algebra, Lemma 15.64.15 via Lemmas 36.3.5
and 36.10.2. □

Lemma 36.12.3.09UF Let {fi : Xi → X} be an fppf covering of schemes. Let E ∈
D(OX). Let m ∈ Z. Then E is m-pseudo-coherent if and only if each Lf∗

i E is
m-pseudo-coherent.
Proof. Pullback always preserves m-pseudo-coherence, see Cohomology, Lemma
20.47.3. Conversely, assume that Lf∗

i E is m-pseudo-coherent for all i. Let U ⊂ X
be an affine open. It suffices to prove that E|U is m-pseudo-coherent. Since {fi :
Xi → X} is an fppf covering, we can find finitely many affine open Vj ⊂ Xa(j) such
that fa(j)(Vj) ⊂ U and U =

⋃
fa(j)(Vj). Set V =

∐
Vi. Thus we may replace X by

U and {fi : Xi → X} by {V → U} and assume that X is affine and our covering
is given by a single surjective flat morphism {f : Y → X} of finite presentation.
Since f is flat the derived functor Lf∗ is just given by f∗ and f∗ is exact. Hence
Hi(Lf∗E) = f∗Hi(E). Since Lf∗E is m-pseudo-coherent, we see that Lf∗E ∈
D−(OY ). Since f is surjective and flat, we see that E ∈ D−(OX). Let i ∈ Z
be the largest integer such that Hi(E) is nonzero. If i < m, then we are done.
Otherwise, f∗Hi(E) is a finite type OY -module by Cohomology, Lemma 20.47.9.
Then by Descent, Lemma 35.7.2 the OX -module Hi(E) is of finite type. Thus,
after replacing X by the members of a finite affine open covering, we may assume
there exists a map

α : O⊕n
X [−i] −→ E

such that Hi(α) is a surjection. Let C be the cone of α in D(OX). Pulling back to
Y and using Cohomology, Lemma 20.47.4 we find that Lf∗C is m-pseudo-coherent.
Moreover Hj(C) = 0 for j ≥ i. Thus by induction on i we see that C is m-pseudo-
coherent. Using Cohomology, Lemma 20.47.4 again we conclude. □
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Lemma 36.12.4.09UG Let {fi : Xi → X} be an fpqc covering of schemes. Let E ∈
D(OX). Then E is perfect if and only if each Lf∗

i E is perfect.

Proof. Pullback always preserves perfect complexes, see Cohomology, Lemma 20.49.6.
Conversely, assume that Lf∗

i E is perfect for all i. Then the cohomology sheaves
of each Lf∗

i E are quasi-coherent, see Lemma 36.10.1 and Cohomology, Lemma
20.49.5. Since the morphisms fi is flat we see that Hp(Lf∗

i E) = f∗
i H

p(E). Thus
the cohomology sheaves of E are quasi-coherent by Descent, Proposition 35.5.2.
Having said this the lemma follows formally from Cohomology, Lemma 20.49.5 and
Lemmas 36.12.1 and 36.12.2. □

Lemma 36.12.5.09VA Let i : Z → X be a morphism of ringed spaces such that i is a
closed immersion of underlying topological spaces and such that i∗OZ is pseudo-
coherent as an OX -module. Let E ∈ D(OZ). Then E is m-pseudo-coherent if and
only if Ri∗E is m-pseudo-coherent.

Proof. Throughout this proof we will use that i∗ is an exact functor, and hence
that Ri∗ = i∗, see Modules, Lemma 17.6.1.
Assume E is m-pseudo-coherent. Let x ∈ X. We will find a neighbourhood of
x such that i∗E is m-pseudo-coherent on it. If x ̸∈ Z then this is clear. Thus
we may assume x ∈ Z. We will use that U ∩ Z for x ∈ U ⊂ X open form
a fundamental system of neighbourhoods of x in Z. After shrinking X we may
assume E is bounded above. We will argue by induction on the largest integer p
such that Hp(E) is nonzero. If p < m, then there is nothing to prove. If p ≥ m,
then Hp(E) is an OZ-module of finite type, see Cohomology, Lemma 20.47.9. Thus
we may choose, after shrinking X, a map O⊕n

Z [−p]→ E which induces a surjection
O⊕n
Z → Hp(E). Choose a distinguished triangle

O⊕n
Z [−p]→ E → C → O⊕n

Z [−p+ 1]
We see that Hj(C) = 0 for j ≥ p and that C is m-pseudo-coherent by Cohomol-
ogy, Lemma 20.47.4. By induction we see that i∗C is m-pseudo-coherent on X.
Since i∗OZ is m-pseudo-coherent on X as well, we conclude from the distinguished
triangle

i∗O⊕n
Z [−p]→ i∗E → i∗C → i∗O⊕n

Z [−p+ 1]
and Cohomology, Lemma 20.47.4 that i∗E is m-pseudo-coherent.
Assume that i∗E is m-pseudo-coherent. Let z ∈ Z. We will find a neighbourhood
of z such that E is m-pseudo-coherent on it. We will use that U ∩Z for z ∈ U ⊂ X
open form a fundamental system of neighbourhoods of z in Z. After shrinking X
we may assume i∗E and hence E is bounded above. We will argue by induction on
the largest integer p such that Hp(E) is nonzero. If p < m, then there is nothing
to prove. If p ≥ m, then Hp(i∗E) = i∗H

p(E) is an OX -module of finite type, see
Cohomology, Lemma 20.47.9. Choose a complex E• of OZ-modules representing
E. We may choose, after shrinking X, a map α : O⊕n

X [−p] → i∗E• which induces
a surjection O⊕n

X → i∗H
p(E•). By adjunction we find a map α : O⊕n

Z [−p] → E•

which induces a surjection O⊕n
Z → Hp(E•). Choose a distinguished triangle

O⊕n
Z [−p]→ E → C → O⊕n

Z [−p+ 1]
We see that Hj(C) = 0 for j ≥ p. From the distinguished triangle

i∗O⊕n
Z [−p]→ i∗E → i∗C → i∗O⊕n

Z [−p+ 1]
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the fact that i∗OZ is pseudo-coherent and Cohomology, Lemma 20.47.4 we conclude
that i∗C is m-pseudo-coherent. By induction we conclude that C is m-pseudo-
coherent. By Cohomology, Lemma 20.47.4 again we conclude that E is m-pseudo-
coherent. □

Lemma 36.12.6.09VB Let f : X → Y be a finite morphism of schemes such that f∗OX
is pseudo-coherent as an OY -module2. Let E ∈ DQCoh(OX). Then E is m-pseudo-
coherent if and only if Rf∗E is m-pseudo-coherent.

Proof. This is a translation of More on Algebra, Lemma 15.64.11 into the language
of schemes. To do the translation, use Lemmas 36.3.5 and 36.10.2. □

36.13. Lifting complexes

08EC Let U ⊂ X be an open subspace of a ringed space and denote j : U → X the
inclusion morphism. The functor D(OX)→ D(OU ) is essentially surjective as Rj∗
is a right inverse to restriction. In this section we extend this to complexes with
quasi-coherent cohomology sheaves, etc.

Lemma 36.13.1.08ED Let X be a scheme and let j : U → X be a quasi-compact open
immersion. The functors

DQCoh(OX)→ DQCoh(OU ) and D+
QCoh(OX)→ D+

QCoh(OU )
are essentially surjective. If X is quasi-compact, then the functors

D−
QCoh(OX)→ D−

QCoh(OU ) and Db
QCoh(OX)→ Db

QCoh(OU )
are essentially surjective.

Proof. The argument preceding the lemma applies for the first case because Rj∗
maps DQCoh(OU ) into DQCoh(OX) by Lemma 36.4.1. It is clear that Rj∗ maps
D+

QCoh(OU ) into D+
QCoh(OX) which implies the statement on bounded below com-

plexes. Finally, Lemma 36.4.1 guarantees thatRj∗ mapsD−
QCoh(OU ) intoD−

QCoh(OX)
if X is quasi-compact. Combining these two we obtain the last statement. □

Lemma 36.13.2.0G48 Let X be a Noetherian scheme and let j : U → X be an open
immersion. The functor Db

Coh(OX)→ Db
Coh(OU ) is essentially surjective.

Proof. Let K be an object of Db
Coh(OU ). By Proposition 36.11.2 we can represent

K by a bounded complex F• of coherent OU -modules. Say F i = 0 for i ̸∈ [a, b]
for some a ≤ b. Since j is quasi-compact and separated, the terms of the bounded
complex j∗F• are quasi-coherent modules on X, see Schemes, Lemma 26.24.1. We
inductively pick a coherent submodule Gi ⊂ j∗F i as follows. For i = a we pick
any coherent submodule Ga ⊂ j∗Fa whose restriction to U is Fa. This is possible
by Properties, Lemma 28.22.2. For i > a we first pick any coherent submodule
Hi ⊂ j∗F i whose restriction to U is F i and then we set Gi = Im(Hi⊕Gi−1 → j∗F i).
It is clear that G• ⊂ j∗F• is a bounded complex of coherent OX -modules whose
restriction to U is F• as desired. □

Lemma 36.13.3.08EE Let X be an affine scheme and let U ⊂ X be a quasi-compact open
subscheme. For any pseudo-coherent object E of D(OU ) there exists a bounded
above complex of finite free OX -modules whose restriction to U is isomorphic to E.

2This means that f is pseudo-coherent, see More on Morphisms, Lemma 37.60.8.
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Proof. By Lemma 36.10.1 we see that E is an object of DQCoh(OU ). By Lemma
36.13.1 we may assume E = E′|U for some object E′ of DQCoh(OX). Write
X = Spec(A). By Lemma 36.3.5 we can find a complex M• of A-modules whose
associated complex of OX -modules is a representative of E′.

Choose f1, . . . , fr ∈ A such that U = D(f1) ∪ . . . ∪D(fr). By Lemma 36.10.2 the
complexes M•

fj
are pseudo-coherent complexes of Afj -modules. Let n be an integer.

Assume we have a map of complexes α : F • → M• where F • is bounded above,
F i = 0 for i < n, each F i is a finite free R-module, such that

Hi(αfj ) : Hi(F •
fj )→ Hi(M•

fj )

is an isomorphism for i > n and surjective for i = n. Picture

Fn //

α

��

Fn+1

α

��

// . . .

Mn−1 // Mn // Mn+1 // . . .

Since each M•
fj

has vanishing cohomology in large degrees we can find such a map
for n ≫ 0. By induction on n we are going to extend this to a map of complexes
F • →M• such that Hi(αfj ) is an isomorphism for all i. The lemma will follow by
taking F̃ •.

The induction step will be to extend the diagram above by adding Fn−1. Let C• be
the cone on α (Derived Categories, Definition 13.9.1). The long exact sequence of
cohomology shows that Hi(C•

fj
) = 0 for i ≥ n. By More on Algebra, Lemma 15.64.2

we see that C•
fj

is (n − 1)-pseudo-coherent. By More on Algebra, Lemma 15.64.3
we see that H−1(C•

fj
) is a finite Afj -module. Choose a finite free A-module Fn−1

and an A-module β : Fn−1 → C−1 such that the composition Fn−1 → Cn−1 → Cn

is zero and such that Fn−1
fj

surjects onto Hn−1(C•
fj

). (Some details omitted; hint:
clear denominators.) Since Cn−1 = Mn−1 ⊕ Fn we can write β = (αn−1,−dn−1).
The vanishing of the composition Fn−1 → Cn−1 → Cn implies these maps fit into
a morphism of complexes

Fn−1

αn−1

��

dn−1
// Fn //

α

��

Fn+1

α

��

// . . .

. . . // Mn−1 // Mn // Mn+1 // . . .

Moreover, these maps define a morphism of distinguished triangles

(Fn → . . .) //

��

(Fn−1 → . . .) //

��

Fn−1 //

β

��

(Fn → . . .)[1]

��
(Fn → . . .) // M• // C• // (Fn → . . .)[1]

Hence our choice of β implies that the map of complexes (F−1 → . . .)→M• induces
an isomorphism on cohomology localized at fj in degrees ≥ n and a surjection in
degree −1. This finishes the proof of the lemma. □
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Lemma 36.13.4.08EF Let X be a quasi-compact and quasi-separated scheme. Let E ∈
Db

QCoh(OX). There exists an integer n0 > 0 such that ExtnD(OX)(E , E) = 0 for
every finite locally free OX -module E and every n ≥ n0.

Proof. Recall that ExtnD(OX)(E , E) = HomD(OX)(E , E[n]). We have Mayer-Vietoris
for morphisms in the derived category, see Cohomology, Lemma 20.33.3. Thus if
X = U ∪ V and the result of the lemma holds for E|U , E|V , and E|U∩V for some
bound n0, then the result holds for E with bound n0 + 1. Thus it suffices to prove
the lemma when X is affine, see Cohomology of Schemes, Lemma 30.4.1.
Assume X = Spec(A) is affine. Choose a complex of A-modules M• whose asso-
ciated complex of quasi-coherent modules represents E, see Lemma 36.3.5. Write
E = P̃ for some A-module P . Since E is finite locally free, we see that P is a finite
projective A-module. We have

HomD(OX)(E , E[n]) = HomD(A)(P,M•[n])
= HomK(A)(P,M•[n])
= HomA(P,Hn(M•))

The first equality by Lemma 36.3.5, the second equality by Derived Categories,
Lemma 13.19.8, and the final equality because HomA(P,−) is an exact functor. As
E and hence M• is bounded we get zero for all sufficiently large n. □

Lemma 36.13.5.08EG Let X be an affine scheme. Let U ⊂ X be a quasi-compact open.
For every perfect object E of D(OU ) there exists an integer r and a finite locally
free sheaf F on U such that F [−r] ⊕ E is the restriction of a perfect object of
D(OX).

Proof. Say X = Spec(A). Recall that a perfect complex is pseudo-coherent, see
Cohomology, Lemma 20.49.5. By Lemma 36.13.3 we can find a bounded above
complex F• of finite free A-modules such that E is isomorphic to F•|U in D(OU ).
By Cohomology, Lemma 20.49.5 and since U is quasi-compact, we see that E has
finite tor dimension, say E has tor amplitude in [a, b]. Pick r < a and set

F = Ker(Fr → Fr+1) = Im(Fr−1 → Fr).
Since E has tor amplitude in [a, b] we see that F|U is flat (Cohomology, Lemma
20.48.2). Hence F|U is flat and of finite presentation, thus finite locally free (Prop-
erties, Lemma 28.20.2). It follows that

(F → Fr → Fr+1 → . . .)|U
is a strictly perfect complex on U representing E. We obtain a distinguished triangle

F|U [−r − 1]→ E → (Fr → Fr+1 → . . .)|U → F|U [−r]
Note that (Fr → Fr+1 → . . .) is a perfect complex on X. To finish the proof it
suffices to pick r such that the map F|U [−r−1]→ E is zero in D(OU ), see Derived
Categories, Lemma 13.4.11. By Lemma 36.13.4 this holds if r ≪ 0. □

Lemma 36.13.6.08EH Let X be an affine scheme. Let U ⊂ X be a quasi-compact open.
Let E,E′ be objects of DQCoh(OX) with E perfect. For every map α : E|U → E′|U
there exist maps

E
β←− E1

γ−→ E′

https://stacks.math.columbia.edu/tag/08EF
https://stacks.math.columbia.edu/tag/08EG
https://stacks.math.columbia.edu/tag/08EH
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of perfect complexes on X such that β : E1 → E restricts to an isomorphism on U
and such that α = γ|U ◦ β|−1

U . Moreover we can assume E1 = E ⊗L
OX

I for some
perfect complex I on X.

Proof. Write X = Spec(A). Write U = D(f1)∪ . . .∪D(fr). Choose finite complex
of finite projective A-modules M• representing E (Lemma 36.10.7). Choose a
complex of A-modules (M ′)• representing E′ (Lemma 36.3.5). In this case the
complex H• = HomA(M•, (M ′)•) is a complex of A-modules whose associated
complex of quasi-coherent OX -modules represents RHom(E,E′), see Cohomology,
Lemma 20.46.9. Then α determines an element s of H0(U,RHom(E,E′)), see
Cohomology, Lemma 20.42.1. There exists an e and a map

ξ : I•(fe1 , . . . , fer )→ HomA(M•, (M ′)•)
corresponding to s, see Proposition 36.9.5. Letting E1 be the object corresponding
to complex of quasi-coherent OX -modules associated to

Tot(I•(fe1 , . . . , fer )⊗AM•)
we obtain E1 → E using the canonical map I•(fe1 , . . . , fer )→ A and E1 → E′ using
ξ and Cohomology, Lemma 20.42.1. □

Lemma 36.13.7.08EI Let X be an affine scheme. Let U ⊂ X be a quasi-compact open.
For every perfect object F of D(OU ) the object F ⊕ F [1] is the restriction of a
perfect object of D(OX).

Proof. By Lemma 36.13.5 we can find a perfect object E of D(OX) such that
E|U = F [r] ⊕ F for some finite locally free OU -module F . By Lemma 36.13.6 we
can find a morphism of perfect complexes α : E1 → E such that (E1)|U ∼= E|U and
such that α|U is the map(

idF [r] 0
0 0

)
: F [r]⊕ F → F [r]⊕ F

Then the cone on α is a solution. □

Lemma 36.13.8.08EJ Let X be a quasi-compact and quasi-separated scheme. Let f ∈
Γ(X,OX). For any morphism α : E → E′ in DQCoh(OX) such that

(1) E is perfect, and
(2) E′ is supported on T = V (f)

there exists an n ≥ 0 such that fnα = 0.

Proof. We have Mayer-Vietoris for morphisms in the derived category, see Coho-
mology, Lemma 20.33.3. Thus if X = U ∪ V and the result of the lemma holds
for f |U , f |V , and f |U∩V , then the result holds for f . Thus it suffices to prove the
lemma when X is affine, see Cohomology of Schemes, Lemma 30.4.1.
Let X = Spec(A). Then f ∈ A. We will use the equivalence D(A) = DQCoh(X) of
Lemma 36.3.5 without further mention. Represent E by a finite complex of finite
projective A-modules P •. This is possible by Lemma 36.10.7. Let t be the largest
integer such that P t is nonzero. The distinguished triangle

P t[−t]→ P • → σ≤t−1P
• → P t[−t+ 1]

shows that by induction on the length of the complex P • we can reduce to the
case where P • has a single nonzero term. This and the shift functor reduces us

https://stacks.math.columbia.edu/tag/08EI
https://stacks.math.columbia.edu/tag/08EJ
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to the case where P • consists of a single finite projective A-module P in degree
0. Represent E′ by a complex M• of A-modules. Then α corresponds to a map
P → H0(M•). Since the module H0(M•) is supported on V (f) by assumption (2)
we see that every element of H0(M•) is annihilated by a power of f . Since P is a
finite A-module the map fnα : P → H0(M•) is zero for some n as desired. □

Lemma 36.13.9.08EK Let X be an affine scheme. Let T ⊂ X be a closed subset such
that X \ T is quasi-compact. Let U ⊂ X be a quasi-compact open. For every
perfect object F of D(OU ) supported on T ∩U the object F ⊕F [1] is the restriction
of a perfect object E of D(OX) supported in T .

Proof. Say T = V (g1, . . . , gs). After replacing gj by a power we may assume
multiplication by gj is zero on F , see Lemma 36.13.8. Choose E as in Lemma
36.13.7. Note that gj : E → E restricts to zero on U . Choose a distinguished
triangle

E
g1−→ E → C1 → E[1]

By Derived Categories, Lemma 13.4.11 the object C1 restricts to F ⊕F [1]⊕F [1]⊕
F [2] on U . Moreover, g1 : C1 → C1 has square zero by Derived Categories, Lemma
13.4.5. Namely, the diagram

E //

0
��

C1

g1

��

// E[1]

0
��

E // C1 // E[1]

is commutative since the compositions E g1−→ E → C1 and C1 → E[1] g1−→ E[1] are
zero. Continuing, setting Ci+1 equal to the cone of the map gi : Ci → Ci we obtain
a perfect complex Cs on X supported on T whose restriction to U gives

F ⊕ F [1]⊕s ⊕ F [2]⊕(s2) ⊕ . . .⊕ F [s]
Choose morphisms of perfect complexes β : C ′ → Cs and γ : C ′ → Cs as in Lemma
36.13.6 such that β|U is an isomorphism and such that γ|U ◦ β|−1

U is the morphism

F ⊕ F [1]⊕s ⊕ F [2]⊕(s2) ⊕ . . .⊕ F [s]→ F ⊕ F [1]⊕s ⊕ F [2]⊕(s2) ⊕ . . .⊕ F [s]
which is the identity on all summands except for F where it is zero. By Lemma
36.13.6 we also have C ′ = Cs ⊗L I for some perfect complex I on X. Hence the
nullity of g2

j idCs implies the same thing for C ′. Thus C ′ is supported on T as well.
Then Cone(γ) is a solution. □

A special case of the following lemma can be found in [Nee96].

Lemma 36.13.10.09IM Let X be a quasi-compact and quasi-separated scheme. Let
U ⊂ X be a quasi-compact open. Let T ⊂ X be a closed subset with X \ T retro-
compact in X. Let E be an object of DQCoh(OX). Let α : P → E|U be a map
where P is a perfect object of D(OU ) supported on T ∩U . Then there exists a map
β : R→ E where R is a perfect object of D(OX) supported on T such that P is a
direct summand of R|U in D(OU ) compatible α and β|U .

Proof. Since X is quasi-compact there exists an integer m such that X = U ∪ V1 ∪
. . .∪ Vm for some affine opens Vj of X. Arguing by induction on m we see that we
may assume m = 1. In other words, we may assume that X = U ∪V with V affine.

https://stacks.math.columbia.edu/tag/08EK
https://stacks.math.columbia.edu/tag/09IM
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By Lemma 36.13.9 we can choose a perfect object Q in D(OV ) supported on T ∩V
and an isomorphism Q|U∩V → (P ⊕ P [1])|U∩V . By Lemma 36.13.6 we can replace
Q by Q⊗L I (still supported on T ∩ V ) and assume that the map

Q|U∩V → (P ⊕ P [1])|U∩V −→ P |U∩V −→ E|U∩V

lifts to Q→ E|V . By Cohomology, Lemma 20.45.1 we find an morphism a : R→ E
of D(OX) such that a|U is isomorphic to P ⊕ P [1] → E|U and a|V isomorphic to
Q→ E|V . Thus R is perfect and supported on T as desired. □

Remark 36.13.11.09IN The proof of Lemma 36.13.10 shows that

R|U = P ⊕ P⊕n1 [1]⊕ . . .⊕ P⊕nm [m]
for somem ≥ 0 and nj ≥ 0. Thus the highest degree cohomology sheaf ofR|U equals
that of P . By repeating the construction for the map P⊕n1 [1]⊕ . . .⊕ P⊕nm [m]→
R|U , taking cones, and using induction we can achieve equality of cohomology
sheaves of R|U and P above any given degree.

36.14. Approximation by perfect complexes

08EL In this section we discuss the observation, due to Neeman and Lipman, that a
pseudo-coherent complex can be “approximated” by perfect complexes.

Definition 36.14.1.08EM Let X be a scheme. Consider triples (T,E,m) where
(1) T ⊂ X is a closed subset,
(2) E is an object of DQCoh(OX), and
(3) m ∈ Z.

We say approximation holds for the triple (T,E,m) if there exists a perfect object
P of D(OX) supported on T and a map α : P → E which induces isomorphisms
Hi(P )→ Hi(E) for i > m and a surjection Hm(P )→ Hm(E).

Approximation cannot hold for every triple. Namely, it is clear that if approxima-
tion holds for the triple (T,E,m), then

(1) E is m-pseudo-coherent, see Cohomology, Definition 20.47.1, and
(2) the cohomology sheaves Hi(E) are supported on T for i ≥ m.

Moreover, the “support” of a perfect complex is a closed subscheme whose comple-
ment is retrocompact in X (details omitted). Hence we cannot expect approxima-
tion to hold without this assumption on T . This partly explains the conditions in
the following definition.

Definition 36.14.2.08EN Let X be a scheme. We say approximation by perfect complexes
holds on X if for any closed subset T ⊂ X with X \ T retro-compact in X there
exists an integer r such that for every triple (T,E,m) as in Definition 36.14.1 with

(1) E is (m− r)-pseudo-coherent, and
(2) Hi(E) is supported on T for i ≥ m− r

approximation holds.

We will prove that approximation by perfect complexes holds for quasi-compact
and quasi-separated schemes. It seems that the second condition is necessary for
our method of proof. It is possible that the first condition may be weakened to “E
is m-pseudo-coherent” by carefuly analyzing the arguments below.

https://stacks.math.columbia.edu/tag/09IN
https://stacks.math.columbia.edu/tag/08EM
https://stacks.math.columbia.edu/tag/08EN
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Lemma 36.14.3.08EP Let X be a scheme. Let U ⊂ X be an open subscheme. Let
(T,E,m) be a triple as in Definition 36.14.1. If

(1) T ⊂ U ,
(2) approximation holds for (T,E|U ,m), and
(3) the sheaves Hi(E) for i ≥ m are supported on T ,

then approximation holds for (T,E,m).

Proof. Let j : U → X be the inclusion morphism. If P → E|U is an approximation
of the triple (T,E|U ,m) over U , then j!P = Rj∗P → j!(E|U ) → E is an approxi-
mation of (T,E,m) over X. See Cohomology, Lemmas 20.33.6 and 20.49.10. □

Lemma 36.14.4.08EQ Let X be an affine scheme. Then approximation holds for every
triple (T,E,m) as in Definition 36.14.1 such that there exists an integer r ≥ 0 with

(1) E is m-pseudo-coherent,
(2) Hi(E) is supported on T for i ≥ m− r + 1,
(3) X \ T is the union of r affine opens.

In particular, approximation by perfect complexes holds for affine schemes.

Proof. Say X = Spec(A). Write T = V (f1, . . . , fr). (The case r = 0, i.e., T = X
follows immediately from Lemma 36.10.2 and the definitions.) Let (T,E,m) be a
triple as in the lemma. Let t be the largest integer such that Ht(E) is nonzero. We
will proceed by induction on t. The base case is t < m; in this case the result is
trivial. Now suppose that t ≥ m. By Cohomology, Lemma 20.47.9 the sheaf Ht(E)
is of finite type. Since it is quasi-coherent it is generated by finitely many sections
(Properties, Lemma 28.16.1). For every s ∈ Γ(X,Ht(E)) = Ht(X,E) (see proof of
Lemma 36.3.5) we can find an e > 0 and a morphism Ke[−t]→ E such that s is in
the image of H0(Ke) = Ht(Ke[−t]) → Ht(E), see Lemma 36.9.6. Taking a finite
direct sum of these maps we obtain a map P → E where P is a perfect complex
supported on T , where Hi(P ) = 0 for i > t, and where Ht(P ) → E is surjective.
Choose a distinguished triangle

P → E → E′ → P [1]

Then E′ is m-pseudo-coherent (Cohomology, Lemma 20.47.4), Hi(E′) = 0 for
i ≥ t, and Hi(E′) is supported on T for i ≥ m − r + 1. By induction we find an
approximation P ′ → E′ of (T,E′,m). Fit the composition P ′ → E′ → P [1] into a
distinguished triangle P → P ′′ → P ′ → P [1] and extend the morphisms P ′ → E′

and P [1]→ P [1] into a morphism of distinguished triangles

P //

��

P ′′

��

// P ′

��

// P [1]

��
P // E // E′ // P [1]

using TR3. Then P ′′ is a perfect complex (Cohomology, Lemma 20.49.7) supported
on T . An easy diagram chase shows that P ′′ → E is the desired approximation. □

Lemma 36.14.5.08ER Let X be a scheme. Let X = U ∪ V be an open covering with
U quasi-compact, V affine, and U ∩ V quasi-compact. If approximation by perfect
complexes holds on U , then approximation holds on X.

https://stacks.math.columbia.edu/tag/08EP
https://stacks.math.columbia.edu/tag/08EQ
https://stacks.math.columbia.edu/tag/08ER
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Proof. Let T ⊂ X be a closed subset with X \ T retro-compact in X. Let rU be
the integer of Definition 36.14.2 adapted to the pair (U, T ∩ U). Set T ′ = T \ U .
Note that T ′ ⊂ V and that V \ T ′ = (X \ T ) ∩ U ∩ V is quasi-compact by our
assumption on T . Let r′ be the number of affines needed to cover V \T ′. We claim
that r = max(rU , r′) works for the pair (X,T ).

To see this choose a triple (T,E,m) such that E is (m − r)-pseudo-coherent and
Hi(E) is supported on T for i ≥ m − r. Let t be the largest integer such that
Ht(E)|U is nonzero. (Such an integer exists as U is quasi-compact and E|U is
(m− r)-pseudo-coherent.) We will prove that E can be approximated by induction
on t.

Base case: t ≤ m− r′. This means that Hi(E) is supported on T ′ for i ≥ m− r′.
Hence Lemma 36.14.4 guarantees the existence of an approximation P → E|V
of (T ′, E|V ,m) on V . Applying Lemma 36.14.3 we see that (T ′, E,m) can be
approximated. Such an approximation is also an approximation of (T,E,m).

Induction step. Choose an approximation P → E|U of (T ∩ U,E|U ,m). This
in particular gives a surjection Ht(P ) → Ht(E|U ). By Lemma 36.13.9 we can
choose a perfect object Q in D(OV ) supported on T ∩ V and an isomorphism
Q|U∩V → (P ⊕ P [1])|U∩V . By Lemma 36.13.6 we can replace Q by Q ⊗L I and
assume that the map

Q|U∩V → (P ⊕ P [1])|U∩V −→ P |U∩V −→ E|U∩V

lifts to Q→ E|V . By Cohomology, Lemma 20.45.1 we find an morphism a : R→ E
of D(OX) such that a|U is isomorphic to P ⊕ P [1] → E|U and a|V isomorphic to
Q→ E|V . Thus R is perfect and supported on T and the map Ht(R)→ Ht(E) is
surjective on restriction to U . Choose a distinguished triangle

R→ E → E′ → R[1]

Then E′ is (m− r)-pseudo-coherent (Cohomology, Lemma 20.47.4), Hi(E′)|U = 0
for i ≥ t, and Hi(E′) is supported on T for i ≥ m − r. By induction we find an
approximation R′ → E′ of (T,E′,m). Fit the composition R′ → E′ → R[1] into a
distinguished triangle R → R′′ → R′ → R[1] and extend the morphisms R′ → E′

and R[1]→ R[1] into a morphism of distinguished triangles

R //

��

R′′

��

// R′

��

// R[1]

��
R // E // E′ // R[1]

using TR3. Then R′′ is a perfect complex (Cohomology, Lemma 20.49.7) supported
on T . An easy diagram chase shows that R′′ → E is the desired approximation. □

Theorem 36.14.6.08ES Let X be a quasi-compact and quasi-separated scheme. Then
approximation by perfect complexes holds on X.

Proof. This follows from the induction principle of Cohomology of Schemes, Lemma
30.4.1 and Lemmas 36.14.5 and 36.14.4. □

https://stacks.math.columbia.edu/tag/08ES
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36.15. Generating derived categories

09IP In this section we prove that the derived category DQCoh(OX) of a quasi-compact
and quasi-separated scheme can be generated by a single perfect object. We urge
the reader to read the proof of this result in the wonderful paper by Bondal and
van den Bergh, see [BV03].

Lemma 36.15.1.09IQ Let X be a quasi-compact and quasi-separated scheme. Let U be
a quasi-compact open subscheme. Let P be a perfect object of D(OU ). Then P is
a direct summand of the restriction of a perfect object of D(OX).

Proof. Special case of Lemma 36.13.10. □

Lemma 36.15.2.09IR [BN93, Proposition
6.1]

In Situation 36.9.1 denote j : U → X the open immersion and
let K be the perfect object of D(OX) corresponding to the Koszul complex on
f1, . . . , fr over A. For E ∈ DQCoh(OX) the following are equivalent

(1) E = Rj∗(E|U ), and
(2) HomD(OX)(K[n], E) = 0 for all n ∈ Z.

Proof. Choose a distinguished triangle E → Rj∗(E|U )→ N → E[1]. Observe that

HomD(OX)(K[n], Rj∗(E|U )) = HomD(OU )(K|U [n], E) = 0

for all n as K|U = 0. Thus it suffices to prove the result for N . In other words,
we may assume that E restricts to zero on U . Observe that there are distinguished
triangles

K•(fe1
1 , . . . , f

e′
i
i , . . . , f

er
r )→ K•(fe1

1 , . . . , f
e′
i+e

′′
i

i , . . . , ferr )→ K•(fe1
1 , . . . , f

e′′
i
i , . . . , ferr )→ . . .

of Koszul complexes, see More on Algebra, Lemma 15.28.11. Hence if HomD(OX)(K[n], E) =
0 for all n ∈ Z then the same thing is true for the K replaced by Ke as in Lemma
36.9.6. Thus our lemma follows immediately from that one and the fact that E is
determined by the complex of A-modules RΓ(X,E), see Lemma 36.3.5. □

Theorem 36.15.3.09IS Let X be a quasi-compact and quasi-separated scheme. The cat-
egory DQCoh(OX) can be generated by a single perfect object. More precisely, there
exists a perfect object P of D(OX) such that for E ∈ DQCoh(OX) the following are
equivalent

(1) E = 0, and
(2) HomD(OX)(P [n], E) = 0 for all n ∈ Z.

Proof. We will prove this using the induction principle of Cohomology of Schemes,
Lemma 30.4.1.

If X is affine, then OX is a perfect generator. This follows from Lemma 36.3.5.

Assume that X = U ∪ V is an open covering with U quasi-compact such that the
theorem holds for U and V is an affine open. Let P be a perfect object of D(OU )
which is a generator for DQCoh(OU ). Using Lemma 36.15.1 we may choose a perfect
object Q of D(OX) whose restriction to U is a direct sum one of whose summands is
P . Say V = Spec(A). Let Z = X \U . This is a closed subset of V with V \Z quasi-
compact. Choose f1, . . . , fr ∈ A such that Z = V (f1, . . . , fr). Let K ∈ D(OV ) be
the perfect object corresponding to the Koszul complex on f1, . . . , fr over A. Note
that since K is supported on Z ⊂ V closed, the pushforward K ′ = R(V → X)∗K

https://stacks.math.columbia.edu/tag/09IQ
https://stacks.math.columbia.edu/tag/09IR
https://stacks.math.columbia.edu/tag/09IS


36.15. GENERATING DERIVED CATEGORIES 3061

is a perfect object of D(OX) whose restriction to V is K (see Cohomology, Lemma
20.49.10). We claim that Q⊕K ′ is a generator for DQCoh(OX).

Let E be an object of DQCoh(OX) such that there are no nontrivial maps from any
shift of Q⊕K ′ into E. By Cohomology, Lemma 20.33.6 we have K ′ = R(V → X)!K
and hence

HomD(OX)(K ′[n], E) = HomD(OV )(K[n], E|V )
Thus by Lemma 36.15.2 the vanishing of these groups implies that E|V is isomorphic
to R(U ∩ V → V )∗E|U∩V . This implies that E = R(U → X)∗E|U (small detail
omitted). If this is the case then

HomD(OX)(Q[n], E) = HomD(OU )(Q|U [n], E|U )

which contains HomD(OU )(P [n], E|U ) as a direct summand. Thus by our choice of
P the vanishing of these groups implies that E|U is zero. Whence E is zero. □

The following result is an strengthening of Theorem 36.15.3 proved using exactly
the same methods. Recall that for a closed subset T of a scheme X we denote
DT (OX) the strictly full, saturated, triangulated subcategory of D(OX) consisting
of objects supported on T (Definition 36.6.1). We similarly denote DQCoh,T (OX)
the strictly full, saturated, triangulated subcategory of D(OX) consisting of those
complexes whose cohomology sheaves are quasi-coherent and are suppported on T .

Lemma 36.15.4.0A9A [Rou08, Theorem
6.8]

LetX be a quasi-compact and quasi-separated scheme. Let T ⊂ X
be a closed subset such that X \ T is quasi-compact. With notation as above, the
category DQCoh,T (OX) is generated by a single perfect object.

Proof. We will prove this using the induction principle of Cohomology of Schemes,
Lemma 30.4.1.

Assume X = Spec(A) is affine. In this case there exist f1, . . . , fr ∈ A such that
T = V (f1, . . . , fr). Let K be the Koszul complex on f1, . . . , fr as in Lemma
36.15.2. Then K is a perfect object with cohomology supported on T and hence
a perfect object of DQCoh,T (OX). On the other hand, if E ∈ DQCoh,T (OX) and
Hom(K,E[n]) = 0 for all n, then Lemma 36.15.2 tells us that E = Rj∗(E|X\T ) = 0.
Hence K generates DQCoh,T (OX), (by our definition of generators of triangulated
categories in Derived Categories, Definition 13.36.3).

Assume that X = U ∪ V is an open covering with V affine and U quasi-compact
such that the lemma holds for U . Let P be a perfect object of D(OU ) supported
on T ∩U which is a generator for DQCoh,T∩U (OU ). Using Lemma 36.13.10 we may
choose a perfect object Q of D(OX) supported on T whose restriction to U is a
direct sum one of whose summands is P . Write V = Spec(B). Let Z = X\U . Then
Z is a closed subset of V such that V \Z is quasi-compact. As X is quasi-separated,
it follows that Z ∩ T is a closed subset of V such that W = V \ (Z ∩ T ) is quasi-
compact. Thus we can choose g1, . . . , gs ∈ B such that Z ∩ T = V (g1, . . . , gr).
Let K ∈ D(OV ) be the perfect object corresponding to the Koszul complex on
g1, . . . , gs over B. Note that since K is supported on (Z ∩ T ) ⊂ V closed, the
pushforward K ′ = R(V → X)∗K is a perfect object of D(OX) whose restriction to
V is K (see Cohomology, Lemma 20.49.10). We claim that Q ⊕K ′ is a generator
for DQCoh,T (OX).
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Let E be an object of DQCoh,T (OX) such that there are no nontrivial maps from any
shift of Q⊕K ′ into E. By Cohomology, Lemma 20.33.6 we have K ′ = R(V → X)!K
and hence

HomD(OX)(K ′[n], E) = HomD(OV )(K[n], E|V )
Thus by Lemma 36.15.2 we have E|V = Rj∗E|W where j : W → V is the inclusion.
Picture
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Since E is supported on T we see that E|W is supported on T ∩W = T ∩ U ∩ V
which is closed in W . We conclude that

E|V = Rj∗(E|W ) = Rj∗(Rj′
∗(E|U∩V )) = Rj′′

∗ (E|U∩V )
where the second equality is part (1) of Cohomology, Lemma 20.33.6. This implies
that E = R(U → X)∗E|U (small detail omitted). If this is the case then

HomD(OX)(Q[n], E) = HomD(OU )(Q|U [n], E|U )
which contains HomD(OU )(P [n], E|U ) as a direct summand. Thus by our choice of
P the vanishing of these groups implies that E|U is zero. Whence E is zero. □

36.16. An example generator

0BQQ In this section we prove that the derived category of projective space over a ring is
generated by a vector bundle, in fact a direct sum of shifts of the structure sheaf.
The following lemma says that

⊕
n≥0 L⊗−n is a generator if L is ample.

Lemma 36.16.1.0BQR Let X be a scheme and L an ample invertible OX -module. If K
is a nonzero object of DQCoh(OX), then for some n ≥ 0 and p ∈ Z the cohomology
group Hp(X,K ⊗L

OX
L⊗n) is nonzero.

Proof. Recall that as X has an ample invertible sheaf, it is quasi-compact and
separated (Properties, Definition 28.26.1 and Lemma 28.26.7). Thus we may apply
Proposition 36.7.5 and represent K by a complex F• of quasi-coherent modules.
Pick any p such thatHp = Ker(Fp → Fp+1)/ Im(Fp−1 → Fp) is nonzero. Choose a
point x ∈ X such that the stalk Hpx is nonzero. Choose an n ≥ 0 and s ∈ Γ(X,L⊗n)
such that Xs is an affine open neighbourhood of x. Choose τ ∈ Hp(Xs) which maps
to a nonzero element of the stalk Hpx; this is possible as Hp is quasi-coherent and
Xs is affine. Since taking sections over Xs is an exact functor on quasi-coherent
modules, we can find a section τ ′ ∈ Fp(Xs) mapping to zero in Fp+1(Xs) and
mapping to τ in Hp(Xs). By Properties, Lemma 28.17.2 there exists an m such
that τ ′ ⊗ s⊗m is the image of a section τ ′′ ∈ Γ(X,Fp ⊗L⊗mn). Applying the same
lemma once more, we find l ≥ 0 such that τ ′′⊗s⊗l maps to zero in Fp+1⊗L⊗(m+l)n.
Then τ ′′ gives a nonzero class in Hp(X,K ⊗L

OX
L(m+l)n) as desired. □

Lemma 36.16.2.0BQS Let A be a ring. Let X = Pn
A. For every a ∈ Z there exists an

exact complex

0→ OX(a)→ . . .→ OX(a+ i)⊕(n+1
i ) → . . .→ OX(a+ n+ 1)→ 0

of vector bundles on X.
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Proof. Recall that Pn
A is Proj(A[X0, . . . , Xn]), see Constructions, Definition 27.13.2.

Consider the Koszul complex

K• = K•(A[X0, . . . , Xn], X0, . . . , Xn)

over S = A[X0, . . . , Xn] on X0, . . . , Xn. Since X0, . . . , Xn is clearly a regular se-
quence in the polynomial ring S, we see that (More on Algebra, Lemma 15.30.2)
that the Koszul complex K• is exact, except in degree 0 where the cohomology is
S/(X0, . . . , Xn). Note that K• becomes a complex of graded modules if we put the
generators of Ki in degree +i. In other words an exact complex

0→ S(−n− 1)→ . . .→ S(−n− 1 + i)⊕(ni) → . . .→ S → S/(X0, . . . , Xn)→ 0

Applying the exact functor ˜ functor of Constructions, Lemma 27.8.4 and using
that the last term is in the kernel of this functor, we obtain the exact complex

0→ OX(−n− 1)→ . . .→ OX(−n− 1 + i)⊕(n+1
i ) → . . .→ OX → 0

Twisting by the invertible sheaves OX(n + a) we get the exact complexes of the
lemma. □

Lemma 36.16.3.0A9V Let A be a ring. Let X = Pn
A. Then

E = OX ⊕OX(−1)⊕ . . .⊕OX(−n)

is a generator (Derived Categories, Definition 13.36.3) of DQCoh(X).

Proof. Let K ∈ DQCoh(OX). Assume Hom(E,K[p]) = 0 for all p ∈ Z. We
have to show that K = 0. By Derived Categories, Lemma 13.36.4 we see that
Hom(E′,K[p]) is zero for all E′ ∈ ⟨E⟩ and p ∈ Z. By Lemma 36.16.2 applied with
a = −n − 1 we see that OX(−n − 1) ∈ ⟨E⟩ because it is quasi-isomorphic to a
finite complex whose terms are finite direct sums of summands of E. Repeating the
argument with a = −n − 2 we see that OX(−n − 2) ∈ ⟨E⟩. Arguing by induction
we find that OX(−m) ∈ ⟨E⟩ for all m ≥ 0. Since

Hom(OX(−m),K[p]) = Hp(X,K ⊗L
OX
OX(m)) = Hp(X,K ⊗L

OX
OX(1)⊗m)

we conclude that K = 0 by Lemma 36.16.1. (This also uses that OX(1) is an ample
invertible sheaf on X which follows from Properties, Lemma 28.26.12.) □

Remark 36.16.4.0BQT Let f : X → Y be a morphism of quasi-compact and quasi-
separated schemes. Let E ∈ DQCoh(OY ) be a generator (see Theorem 36.15.3).
Then the following are equivalent

(1) for K ∈ DQCoh(OX) we have Rf∗K = 0 if and only if K = 0,
(2) Rf∗ : DQCoh(OX)→ DQCoh(OY ) reflects isomorphisms, and
(3) Lf∗E is a generator for DQCoh(OX).

The equivalence between (1) and (2) is a formal consequence of the fact that
Rf∗ : DQCoh(OX) → DQCoh(OY ) is an exact functor of triangulated categories.
Similarly, the equivalence between (1) and (3) follows formally from the fact that
Lf∗ is the left adjoint to Rf∗. These conditions hold if f is affine (Lemma 36.5.2)
or if f is an open immersion, or if f is a composition of such. We conclude that

(1) if X is a quasi-affine scheme then OX is a generator for DQCoh(OX),
(2) if X ⊂ Pn

A is a quasi-compact locally closed subscheme, then OX ⊕
OX(−1)⊕ . . .⊕OX(−n) is a generator for DQCoh(OX) by Lemma 36.16.3.
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36.17. Compact and perfect objects

09M0 Let X be a Noetherian scheme of finite dimension. By Cohomology, Proposition
20.20.7 and Cohomology on Sites, Lemma 21.52.5 the sheaves of modules j!OU
are compact objects of D(OX) for all opens U ⊂ X. These sheaves are typically
not quasi-coherent, hence these do not give perfect objects of the derived cate-
gory D(OX). However, if we restrict ourselves to complexes with quasi-coherent
cohomology sheaves, then this does not happen. Here is the precise statement.
Proposition 36.17.1.09M1 Let X be a quasi-compact and quasi-separated scheme. An
object of DQCoh(OX) is compact if and only if it is perfect.
Proof. If K is a perfect object of D(OX) with dual K∨ (Cohomology, Lemma
20.50.5) we have

HomD(OX)(K,M) = H0(X,K∨ ⊗L
OX

M)
functorially in M . Since K∨⊗L

OX
− commutes with direct sums and since H0(X,−)

commutes with direct sums on DQCoh(OX) by Lemma 36.4.5 we conclude that K
is compact in DQCoh(OX).
Conversely, let K be a compact object of DQCoh(OX). To show that K is perfect,
it suffices to show that K|U is perfect for every affine open U ⊂ X, see Cohomol-
ogy, Lemma 20.49.2. Observe that j : U → X is a quasi-compact and separated
morphism. Hence Rj∗ : DQCoh(OU ) → DQCoh(OX) commutes with direct sums,
see Lemma 36.4.5. Thus the adjointness of restriction to U and Rj∗ implies that
K|U is a compact object of DQCoh(OU ). Hence we reduce to the case that X is
affine.
Assume X = Spec(A) is affine. By Lemma 36.3.5 the problem is translated into
the same problem for D(A). For D(A) the result is More on Algebra, Proposition
15.78.3. □

Remark 36.17.2.0GEF Let X be a quasi-compact and quasi-separated scheme. Let G
be a perfect object of D(OX) which is a generator for DQCoh(OX). By Theorem
36.15.3 there is at least one of these. Combining Lemma 36.3.1 with Proposition
36.17.1 and with Derived Categories, Proposition 13.37.6 we see that G is a classical
generator for Dperf (OX).
The following result is a strengthening of Proposition 36.17.1. Let T ⊂ X be a
closed subset of a scheme X. As before DT (OX) denotes the strictly full, saturated,
triangulated subcategory of D(OX) consisting of objects supported on T (Definition
36.6.1). Since taking direct sums commutes with taking cohomology sheaves, it
follows that DT (OX) has direct sums and that they are equal to direct sums in
D(OX).
Lemma 36.17.3.0A9B LetX be a quasi-compact and quasi-separated scheme. Let T ⊂ X
be a closed subset such that X \T is quasi-compact. An object of DQCoh,T (OX) is
compact if and only if it is perfect as an object of D(OX).
Proof. We observe that DQCoh,T (OX) is a triangulated category with direct sums
by the remark preceding the lemma. By Proposition 36.17.1 the perfect objects
define compact objects of D(OX) hence a fortiori of any subcategory preserved
under taking direct sums. For the converse we will use there exists a generator
E ∈ DQCoh,T (OX) which is a perfect complex of OX -modules, see Lemma 36.15.4.
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Hence by the above, E is compact. Then it follows from Derived Categories, Propo-
sition 13.37.6 that E is a classical generator of the full subcategory of compact
objects of DQCoh,T (OX). Thus any compact object can be constructed out of E by
a finite sequence of operations consisting of (a) taking shifts, (b) taking finite direct
sums, (c) taking cones, and (d) taking direct summands. Each of these operations
preserves the property of being perfect and the result follows. □

Remark 36.17.4.0GEG Let X be a quasi-compact and quasi-separated scheme. Let
T ⊂ X be a closed subset such that X \ T is quasi-compact. Let G be a perfect
object of DQCoh,T (OX) which is a generator for DQCoh,T (OX). By Lemma 36.15.4
there is at least one of these. Combining the fact that DQCoh,T (OX) has direct
sums with Lemma 36.17.3 and with Derived Categories, Proposition 13.37.6 we see
that G is a classical generator for Dperf,T (OX).

The following lemma is an application of the ideas that go into the proof of the
preceding lemma.

Lemma 36.17.5.0A9C LetX be a quasi-compact and quasi-separated scheme. Let T ⊂ X
be a closed subset such that U = X \ T is quasi-compact. Let α : P → E be a
morphism of DQCoh(OX) with either

(1) P is perfect and E supported on T , or
(2) P pseudo-coherent, E supported on T , and E bounded below.

Then there exists a perfect complex of OX -modules I and a map I → OX [0] such
that I ⊗L P → E is zero and such that I|U → OU [0] is an isomorphism.

Proof. Set D = DQCoh,T (OX). In both cases the complex K = RHom(P,E) is an
object of D. See Lemma 36.10.8 for quasi-coherence. It is clear that K is supported
on T as formation of RHom commutes with restriction to opens. The map α defines
an element of H0(K) = HomD(OX)(OX [0],K). Then it suffices to prove the result
for the map α : OX [0]→ K.

Let E ∈ D be a perfect generator, see Lemma 36.15.4. Write

K = hocolimKn

as in Derived Categories, Lemma 13.37.3 using the generator E. Since the functor
D → D(OX) commutes with direct sums, we see that K = hocolimKn holds in
D(OX). Since OX is a compact object of D(OX) we find an n and a morphism
αn : OX → Kn which gives rise to α, see Derived Categories, Lemma 13.33.9. By
Derived Categories, Lemma 13.37.4 applied to the morphism OX [0] → Kn in the
ambient category D(OX) we see that αn factors as OX [0] → Q → Kn where Q is
an object of ⟨E⟩. We conclude that Q is a perfect complex supported on T .

Choose a distinguished triangle

I → OX [0]→ Q→ I[1]

By construction I is perfect, the map I → OX [0] restricts to an isomorphism over
U , and the composition I → K is zero as α factors through Q. This proves the
lemma. □
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36.18. Derived categories as module categories

09M2 In this section we draw some conclusions of what has gone before. Before we do so
we need a couple more lemmas.

Lemma 36.18.1.09M3 Let X be a scheme. Let K• be a complex of OX -modules whose
cohomology sheaves are quasi-coherent. Let (E, d) = HomCompdg(OX)(K•,K•) be
the endomorphism differential graded algebra. Then the functor

−⊗L
E K

• : D(E,d) −→ D(OX)

of Differential Graded Algebra, Lemma 22.35.3 has image contained in DQCoh(OX).

Proof. Let P be a differential graded E-module with property (P) and let F• be a
filtration on P as in Differential Graded Algebra, Section 22.20. Then we have

P ⊗E K• = hocolim FiP ⊗E K•

Each of the FiP has a finite filtration whose graded pieces are direct sums of E[k].
The result follows easily. □

The following lemma can be strengthened (there is a uniformity in the vanishing
over all L with nonzero cohomology sheaves only in a fixed range).

Lemma 36.18.2.09M4 Let X be a quasi-compact and quasi-separated scheme. Let K be
a perfect object of D(OX). Then

(1) there exist integers a ≤ b such that HomD(OX)(K,L) = 0 for L ∈ DQCoh(OX)
with Hi(L) = 0 for i ∈ [a, b], and

(2) if L is bounded, then ExtnD(OX)(K,L) is zero for all but finitely many n.

Proof. Part (2) follows from (1) as ExtnD(OX)(K,L) = HomD(OX)(K,L[n]). We
prove (1). Since K is perfect we have

HomD(OX)(K,L) = H0(X,K∨ ⊗L
OX

L)

where K∨ is the “dual” perfect complex to K, see Cohomology, Lemma 20.50.5.
Note that K∨ ⊗L

OX
L is in DQCoh(X) by Lemmas 36.3.9 and 36.10.1 (to see that a

perfect complex has quasi-coherent cohomology sheaves). SayK∨ has tor amplitude
in [a, b]. Then the spectral sequence

Ep,q1 = Hp(K∨ ⊗L
OX

Hq(L))⇒ Hp+q(K∨ ⊗L
OX

L)

shows that Hj(K∨ ⊗L
OX

L) is zero if Hq(L) = 0 for q ∈ [j − b, j − a]. Let N be
the integer d of Cohomology of Schemes, Lemma 30.4.4. Then H0(X,K∨ ⊗L

OX
L)

vanishes if the cohomology sheaves

H−N (K∨ ⊗L
OX

L), H−N+1(K∨ ⊗L
OX

L), . . . , H0(K∨ ⊗L
OX

L)

are zero. Namely, by the lemma cited and Lemma 36.3.4, we have

H0(X,K∨ ⊗L
OX

L) = H0(X, τ≥−N (K∨ ⊗L
OX

L))

and by the vanishing of cohomology sheaves, this is equal to H0(X, τ≥1(K∨⊗L
OX

L))
which is zero by Derived Categories, Lemma 13.16.1. It follows that HomD(OX)(K,L)
is zero if Hi(L) = 0 for i ∈ [−b−N,−a]. □

The following result is taken from [BV03].
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Theorem 36.18.3.09M5 Let X be a quasi-compact and quasi-separated scheme. Then
there exist a differential graded algebra (E,d) with only a finite number of nonzero
cohomology groups Hi(E) such that DQCoh(OX) is equivalent to D(E,d).

Proof. LetK• be a K-injective complex ofO-modules which is perfect and generates
DQCoh(OX). Such a thing exists by Theorem 36.15.3 and the existence of K-
injective resolutions. We will show the theorem holds with

(E,d) = HomCompdg(OX)(K•,K•)

where Compdg(OX) is the differential graded category of complexes of O-modules.
Please see Differential Graded Algebra, Section 22.35. Since K• is K-injective we
have
(36.18.3.1)09M6 Hn(E) = ExtnD(OX)(K•,K•)

for all n ∈ Z. Only a finite number of these Exts are nonzero by Lemma 36.18.2.
Consider the functor

−⊗L
E K

• : D(E,d) −→ D(OX)
of Differential Graded Algebra, Lemma 22.35.3. Since K• is perfect, it defines a
compact object of D(OX), see Proposition 36.17.1. Combined with (36.18.3.1) the
functor above is fully faithful as follows from Differential Graded Algebra, Lemmas
22.35.6. It has a right adjoint

RHom(K•,−) : D(OX) −→ D(E,d)
by Differential Graded Algebra, Lemmas 22.35.5 which is a left quasi-inverse functor
by generalities on adjoint functors. On the other hand, it follows from Lemma
36.18.1 that we obtain

−⊗L
E K

• : D(E,d) −→ DQCoh(OX)
and by our choice of K• as a generator of DQCoh(OX) the kernel of the adjoint
restricted to DQCoh(OX) is zero. A formal argument shows that we obtain the
desired equivalence, see Derived Categories, Lemma 13.7.2. □

Remark 36.18.4 (Variant with support).0DJL Let X be a quasi-compact and quasi-
separated scheme. Let T ⊂ X be a closed subset such that X \T is quasi-compact.
The analogue of Theorem 36.18.3 holds for DQCoh,T (OX). This follows from the
exact same argument as in the proof of the theorem, using Lemmas 36.15.4 and
36.17.3 and a variant of Lemma 36.18.1 with supports. If we ever need this, we will
precisely state the result here and give a detailed proof.

Remark 36.18.5 (Uniqueness of dga).09SU LetX be a quasi-compact and quasi-separated
scheme over a ring R. By the construction of the proof of Theorem 36.18.3 there
exists a differential graded algebra (A,d) over R such that DQCoh(X) is R-linearly
equivalent to D(A,d) as a triangulated category. One may ask: how unique is
(A,d)? The answer is (only) slightly better than just saying that (A,d) is well
defined up to derived equivalence. Namely, suppose that (B, d) is a second such
pair. Then we have

(A,d) = HomCompdg(OX)(K•,K•)
and

(B, d) = HomCompdg(OX)(L•, L•)
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for some K-injective complexes K• and L• of OX -modules corresponding to perfect
generators of DQCoh(OX). Set

Ω = HomCompdg(OX)(K•, L•) Ω′ = HomCompdg(OX)(L•,K•)
Then Ω is a differential graded Bopp ⊗R A-module and Ω′ is a differential graded
Aopp ⊗R B-module. Moreover, the equivalence

D(A,d)→ DQCoh(OX)→ D(B, d)
is given by the functor − ⊗L

A Ω′ and similarly for the quasi-inverse. Thus we are
in the situation of Differential Graded Algebra, Remark 22.37.10. If we ever need
this remark we will provide a precise statement with a detailed proof here.

36.19. Characterizing pseudo-coherent complexes, I

0DJM We can use the methods above to characterize pseudo-coherent objects as derived
homotopy limits of approximations by perfect objects.

Lemma 36.19.1.0DJN Let X be a quasi-compact and quasi-separated scheme. Let K ∈
D(OX). The following are equivalent

(1) K is pseudo-coherent, and
(2) K = hocolimKn where Kn is perfect and τ≥−nKn → τ≥−nK is an iso-

morphism for all n.

Proof. The implication (2) ⇒ (1) is true on any ringed space. Namely, assume (2)
holds. Recall that a perfect object of the derived category is pseudo-coherent, see
Cohomology, Lemma 20.49.5. Then it follows from the definitions that τ≥−nKn is
(−n+ 1)-pseudo-coherent and hence τ≥−nK is (−n+ 1)-pseudo-coherent, hence K
is (−n+ 1)-pseudo-coherent. This is true for all n, hence K is pseudo-coherent, see
Cohomology, Definition 20.47.1.
Assume (1). We start by choosing an approximation K1 → K of (X,K,−2) by
a perfect complex K1, see Definitions 36.14.1 and 36.14.2 and Theorem 36.14.6.
Suppose by induction we have

K1 → K2 → . . .→ Kn → K

with Ki perfect such that such that τ≥−iKi → τ≥−iK is an isomorphism for all
1 ≤ i ≤ n. Then we pick a ≤ b as in Lemma 36.18.2 for the perfect object Kn.
Choose an approximation Kn+1 → K of (X,K,min(a − 1,−n − 1)). Choose a
distinguished triangle

Kn+1 → K → C → Kn+1[1]
Then we see that C ∈ DQCoh(OX) has Hi(C) = 0 for i ≥ a. Thus by our choice of
a, b we see that HomD(OX)(Kn, C) = 0. Hence the composition Kn → K → C is
zero. Hence by Derived Categories, Lemma 13.4.2 we can factor Kn → K through
Kn+1 proving the induction step.
We still have to prove that K = hocolimKn. This follows by an application of
Derived Categories, Lemma 13.33.8 to the functors Hi(−) : D(OX) → Mod(OX)
and our choice of Kn. □

Lemma 36.19.2.0DJP LetX be a quasi-compact and quasi-separated scheme. Let T ⊂ X
be a closed subset such that X \ T is quasi-compact. Let K ∈ D(OX) supported
on T . The following are equivalent
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(1) K is pseudo-coherent, and
(2) K = hocolimKn where Kn is perfect, supported on T , and τ≥−nKn →

τ≥−nK is an isomorphism for all n.

Proof. The proof of this lemma is exactly the same as the proof of Lemma 36.19.1
except that in the choice of the approximations we use the triples (T,K,m). □

36.20. An example equivalence

0CS7 In Section 36.16 we proved that the derived category of projective space Pn
A over a

ring A is generated by a vector bundle, in fact a direct sum of shifts of the structure
sheaf. In this section we prove this determines an equivalence of DQCoh(OPn

A
) with

the derived category of an A-algebra.
Before we can state the result we need some notation. Let A be a ring. Let
X = Pn

A = Proj(S) where S = A[X0, . . . , Xn]. By Lemma 36.16.3 we know that
(36.20.0.1)0CS8 P = OX ⊕OX(−1)⊕ . . .⊕OX(−n)
is a perfect generator of DQCoh(OX). Consider the (noncommutative) A-algebra

(36.20.0.2)0CS9 R = HomOX
(P, P ) =


S0 S1 S2 . . . . . .
0 S0 S1 . . . . . .
0 0 S0 . . . . . .
. . . . . . . . . . . . . . .
0 . . . . . . . . . S0


with obvious multiplication and addition. If we view P as a complex of OX -modules
in the usual way (i.e., with P in degree 0 and zero in every other degree), then we
have

R = HomCompdg(OX)(P, P )
where on the right hand side we view R as a differential graded algebra over A with
zero differential (i.e., with R in degree 0 and zero in every other degree). According
to the discussion in Differential Graded Algebra, Section 22.35 we obtain a derived
functor

−⊗L
R P : D(R) −→ D(OX),

see especially Differential Graded Algebra, Lemma 22.35.3. By Lemma 36.18.1 we
see that the essential image of this functor is contained in DQCoh(OX).

Lemma 36.20.1.0BQU [Bei78]Let A be a ring. LetX = Pn
A = Proj(S) where S = A[X0, . . . , Xn].

With P as in (36.20.0.1) and R as in (36.20.0.2) the functor
−⊗L

R P : D(R) −→ DQCoh(OX)
is an A-linear equivalence of triangulated categories sending R to P .

In words: the derived category of quasi-coherent modules on projective space is
equivalent to the derived category of modules over a (noncommutative) algebra.
This property of projective space appears to be quite unusual among all projective
schemes over A.

Proof. To prove that our functor is fully faithful it suffices to prove that ExtiX(P, P )
is zero for i ̸= 0 and equal to R for i = 0, see Differential Graded Algebra, Lemma
22.35.6. As in the proof of Lemma 36.18.2 we see that

ExtiX(P, P ) = Hi(X,P∧ ⊗ P ) =
⊕

0≤a,b≤n
Hi(X,OX(a− b))

https://stacks.math.columbia.edu/tag/0BQU
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By the computation of cohomology of projective space (Cohomology of Schemes,
Lemma 30.8.1) we find that these Ext-groups are zero unless i = 0. For i = 0 we
recover R because this is how we defined R in (36.20.0.2). By Differential Graded
Algebra, Lemma 22.35.5 our functor has a right adjoint, namely RHom(P,−) :
DQCoh(OX) → D(R). Since P is a generator for DQCoh(OX) by Lemma 36.16.3
we see that the kernel of RHom(P,−) is zero. Hence our functor is an equivalence
of triangulated categories by Derived Categories, Lemma 13.7.2. □

36.21. The coherator revisited

0CQZ In Section 36.7 we constructed and studied the right adjoint RQX to the canonical
functor D(QCoh(OX))→ D(OX). It was constructed as the right derived extension
of the coherator QX : Mod(OX)→ QCoh(OX). In this section, we study when the
inclusion functor

DQCoh(OX) −→ D(OX)
has a right adjoint. If this right adjoint exists, we will denote3 it

DQX : D(OX) −→ DQCoh(OX)
It turns out that quasi-compact and quasi-separated schemes have such a right
adjoint.

Lemma 36.21.1.0CR0 Let X be a quasi-compact and quasi-separated scheme. The
inclusion functor DQCoh(OX)→ D(OX) has a right adjoint DQX .

First proof. We will use the induction principle as in Cohomology of Schemes,
Lemma 30.4.1 to prove this. If D(QCoh(OX)) → DQCoh(OX) is an equivalence,
then the lemma is true because the functor RQX of Section 36.7 is a right adjoint
to the functor D(QCoh(OX))→ D(OX). In particular, our lemma is true for affine
schemes, see Lemma 36.7.3. Thus we see that it suffices to show: if X = U ∪V is a
union of two quasi-compact opens and the lemma holds for U , V , and U ∩ V , then
the lemma holds for X.
The adjoint exists if and only if for every object K of D(OX) we can find a distin-
guished triangle

E′ → E → K → E′[1]
in D(OX) such that E′ is in DQCoh(OX) and such that Hom(M,K) = 0 for all M in
DQCoh(OX). See Derived Categories, Lemma 13.40.7. Consider the distinguished
triangle

E → RjU,∗E|U ⊕RjV,∗E|V → RjU∩V,∗E|U∩V → E[1]
in D(OX) of Cohomology, Lemma 20.33.2. By Derived Categories, Lemma 13.40.5
it suffices to construct the desired distinguished triangles for RjU,∗E|U , RjV,∗E|V ,
and RjU∩V,∗E|U∩V . This reduces us to the statement discussed in the next para-
graph.
Let j : U → X be an open immersion corresponding with U a quasi-compact open
for which the lemma is true. Let L be an object of D(OU ). Then there exists a
distinguished triangle

E′ → Rj∗L→ K → E′[1]

3This is probably nonstandard notation. However, we have already used QX for the coherator
and RQX for its derived extension.

https://stacks.math.columbia.edu/tag/0CR0
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in D(OX) such that E′ is in DQCoh(OX) and such that Hom(M,K) = 0 for all M
in DQCoh(OX). To see this we choose a distinguished triangle

L′ → L→ Q→ L′[1]
in D(OU ) such that L′ is in DQCoh(OU ) and such that Hom(N,Q) = 0 for all N in
DQCoh(OU ). This is possible because the statement in Derived Categories, Lemma
13.40.7 is an if and only if. We obtain a distinguished triangle

Rj∗L
′ → Rj∗L→ Rj∗Q→ Rj∗L

′[1]
in D(OX). Observe that Rj∗L

′ is in DQCoh(OX) by Lemma 36.4.1. On the other
hand, if M in DQCoh(OX), then

Hom(M,Rj∗Q) = Hom(Lj∗M,Q) = 0
because Lj∗M is in DQCoh(OU ) by Lemma 36.3.8. This finishes the proof. □

Second proof. The adjoint exists by Derived Categories, Proposition 13.38.2. The
hypotheses are satisfied: First, note that DQCoh(OX) has direct sums and direct
sums commute with the inclusion functor (Lemma 36.3.1). On the other hand,
DQCoh(OX) is compactly generated because it has a perfect generator Theorem
36.15.3 and because perfect objects are compact by Proposition 36.17.1. □

Lemma 36.21.2.0CR1 Let f : X → Y be a quasi-compact and quasi-separated morphism
of schemes. If the right adjoints DQX and DQY of the inclusion functors DQCoh →
D exist for X and Y , then

Rf∗ ◦DQX = DQY ◦Rf∗

Proof. The statement makes sense because Rf∗ sends DQCoh(OX) into DQCoh(OY )
by Lemma 36.4.1. The statement is true because Lf∗ similarly maps DQCoh(OY )
into DQCoh(OX) (Lemma 36.3.8) and hence both Rf∗ ◦DQX and DQY ◦Rf∗ are
right adjoint to Lf∗ : DQCoh(OY )→ D(OX). □

Remark 36.21.3.0CR2 Let X be a quasi-compact and quasi-separated scheme. Let
X = U ∪ V with U and V quasi-compact open. By Lemma 36.21.1 the functors
DQX , DQU , DQV , DQU∩V exist. Moreover, there is a canonical distinguished
triangle
DQX(K)→ RjU,∗DQU (K|U )⊕RjV,∗DQV (K|V )→ RjU∩V,∗DQU∩V (K|U∩V )→

for any K ∈ D(OX). This follows by applying the exact functor DQX to the
distinguished triangle of Cohomology, Lemma 20.33.2 and using Lemma 36.21.2
three times.

Lemma 36.21.4.0CSA Let X be a quasi-compact and quasi-separated scheme. The
functor DQX of Lemma 36.21.1 has the following boundedness property: there
exists an integer N = N(X) such that, if K in D(OX) with Hi(U,K) = 0 for U
affine open in X and i ̸∈ [a, b], then the cohomology sheaves Hi(DQX(K)) are zero
for i ̸∈ [a, b+N ].

Proof. We will prove this using the induction principle of Cohomology of Schemes,
Lemma 30.4.1.
If X is affine, then the lemma is true with N = 0 because then RQX = DQX is
given by taking the complex of quasi-coherent sheaves associated to RΓ(X,K). See
Lemmas 36.3.5 and 36.7.3.

https://stacks.math.columbia.edu/tag/0CR1
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Asssume U, V are quasi-compact open in X and the lemma holds for U , V , and
U ∩V . Say with integers N(U), N(V ), and N(U ∩V ). Now suppose K is in D(OX)
with Hi(W,K) = 0 for all affine open W ⊂ X and all i ̸∈ [a, b]. Then K|U , K|V ,
K|U∩V have the same property. Hence we see that RQU (K|U ) and RQV (K|V ) and
RQU∩V (K|U∩V ) have vanishing cohomology sheaves outside the inverval [a, b +
max(N(U), N(V ), N(U ∩ V )). Since the functors RjU,∗, RjV,∗, RjU∩V,∗ have fi-
nite cohomological dimension on DQCoh by Lemma 36.4.1 we see that there exists
an N such that RjU,∗DQU (K|U ), RjV,∗DQV (K|V ), and RjU∩V,∗DQU∩V (K|U∩V )
have vanishing cohomology sheaves outside the interval [a, b+N ]. Then finally we
conclude by the distinguished triangle of Remark 36.21.3. □

Example 36.21.5.0CSB Let X be a quasi-compact and quasi-separated scheme. Let
(Fn) be an inverse system of quasi-coherent sheaves. Since DQX is a right adjoint
it commutes with products and therefore with derived limits. Hence we see that

DQX(R limFn) = (R lim in DQCoh(OX))(Fn)
where the first R lim is taken in D(OX). In fact, let’s write K = R limFn for this.
For any affine open U ⊂ X we have
Hi(U,K) = Hi(RΓ(U,R limFn)) = Hi(R limRΓ(U,Fn)) = Hi(R lim Γ(U,Fn))

since cohomology commutes with derived limits and since the quasi-coherent sheaves
Fn have no higher cohomology on affines. By the computation of R lim in the cat-
egory of abelian groups, we see that Hi(U,K) = 0 unless i ∈ [0, 1]. Then finally
we conclude that the R lim in DQCoh(OX), which is DQX(K) by the above, is in
Db

QCoh(OX) by Lemma 36.21.4.

36.22. Cohomology and base change, IV

08ET This section continues the discussion of Cohomology of Schemes, Section 30.22.
First, we have a very general version of the projection formula for quasi-compact
and quasi-separated morphisms of schemes and complexes with quasi-coherent co-
homology sheaves.

Lemma 36.22.1.08EU Let f : X → Y be a quasi-compact and quasi-separated morphism
of schemes. For E in DQCoh(OX) and K in DQCoh(OY ) the map

Rf∗(E)⊗L
OY

K −→ Rf∗(E ⊗L
OX

Lf∗K)
defined in Cohomology, Equation (20.54.2.1) is an isomorphism.

Proof. To check the map is an isomorphism we may work locally on Y . Hence we
reduce to the case that Y is affine.
Suppose that K =

⊕
Ki is a direct sum of some complexes Ki ∈ DQCoh(OY ). If

the statement holds for each Ki, then it holds for K. Namely, the functors Lf∗ and
⊗L preserve direct sums by construction and Rf∗ commutes with direct sums (for
complexes with quasi-coherent cohomology sheaves) by Lemma 36.4.5. Moreover,
suppose that K → L→M → K[1] is a distinguished triangle in DQCoh(Y ). Then
if the statement of the lemma holds for two of K,L,M , then it holds for the third
(as the functors involved are exact functors of triangulated categories).
Assume Y affine, say Y = Spec(A). The functor ˜ : D(A) → DQCoh(OY ) is
an equivalence (Lemma 36.3.5). Let T be the property for K ∈ D(A) that the
statement of the lemma holds for K̃. The discussion above and More on Algebra,
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Remark 15.59.11 shows that it suffices to prove T holds for A[k]. This finishes the
proof, as the statement of the lemma is clear for shifts of the structure sheaf. □

Definition 36.22.2.08IA Let S be a scheme. Let X, Y be schemes over S. We say X
and Y are Tor independent over S if for every x ∈ X and y ∈ Y mapping to the
same point s ∈ S the rings OX,x and OY,y are Tor independent over OS,s (see More
on Algebra, Definition 15.61.1).
Lemma 36.22.3.0FXV Let f : X → S and g : Y → S be morphisms of schemes. The
following are equivalent

(1) X and Y are tor independent over S, and
(2) for every affine opens U ⊂ X, V ⊂ Y , W ⊂ S with f(U) ⊂ W and

g(V ) ⊂W the rings OX(U) and OY (V ) are tor independent over OS(W ).
(3) there exists an affine open overing S =

⋃
Wi and for each i affine open

coverings f−1(Wi) =
⋃
Uij and g−1(Wi) =

⋃
Vik such that the rings

OX(Uij) and OY (Vik) are tor independent over OS(Wi) for all i, j, k.
Proof. Omitted. Hint: use More on Algebra, Lemma 15.61.6. □

Lemma 36.22.4.0FXW Let X → S and Y → S be morphisms of schemes. Let S′ → S be
a morphism of schemes and denote X ′ = X ×S S′ and Y ′ = Y ×S S′. If X and Y
are tor independent over S and S′ → S is flat, then X ′ and Y ′ are tor independent
over S′.
Proof. Omitted. Hint: use Lemma 36.22.3 and on affine opens use More on Algebra,
Lemma 15.61.4. □

Lemma 36.22.5.08IB Let g : S′ → S be a morphism of schemes. Let f : X → S be
quasi-compact and quasi-separated. Consider the base change diagram

X ′
g′
//

f ′

��

X

f

��
S′ g // S

If X and S′ are Tor independent over S, then for all E ∈ DQCoh(OX) we have
Rf ′

∗L(g′)∗E = Lg∗Rf∗E.
Proof. For any object E of D(OX) we can use Cohomology, Remark 20.28.3 to
get a canonical base change map Lg∗Rf∗E → Rf ′

∗L(g′)∗E. To check this is an
isomorphism we may work locally on S′. Hence we may assume g : S′ → S is a
morphism of affine schemes. In particular, g is affine and it suffices to show that

Rg∗Lg
∗Rf∗E → Rg∗Rf

′
∗L(g′)∗E = Rf∗(Rg′

∗L(g′)∗E)
is an isomorphism, see Lemma 36.5.2 (and use Lemmas 36.3.8, 36.3.9, and 36.4.1
to see that the objects Rf ′

∗L(g′)∗E and Lg∗Rf∗E have quasi-coherent cohomology
sheaves). Note that g′ is affine as well (Morphisms, Lemma 29.11.8). By Lemma
36.5.3 the map becomes a map

Rf∗E ⊗L
OS

g∗OS′ −→ Rf∗(E ⊗L
OX

g′
∗OX′)

Observe that g′
∗OX′ = f∗g∗OS′ . Thus by Lemma 36.22.1 it suffices to prove that

Lf∗g∗OS′ = f∗g∗OS′ . This follows from our assumption that X and S′ are Tor
independent over S. Namely, to check it we may work locally on X, hence we may
also assume X is affine. Say X = Spec(A), S = Spec(R) and S′ = Spec(R′). Our
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assumption implies that A and R′ are Tor independent over R (More on Algebra,
Lemma 15.61.6), i.e., TorRi (A,R′) = 0 for i > 0. In other words A⊗L

RR
′ = A⊗RR′

which exactly means that Lf∗g∗OS′ = f∗g∗OS′ (use Lemma 36.3.8). □

The following lemma will be used in the chapter on dualizing complexes.

Lemma 36.22.6.0AA7 Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
S′ g // S

of quasi-compact and quasi-separated schemes. Assume g and f Tor independent
and S = Spec(R), S′ = Spec(R′) affine. For M,K ∈ D(OX) the canonical map

RHomX(M,K)⊗L
R R

′ −→ RHomX′(L(g′)∗M,L(g′)∗K)
in D(R′) is an isomorphism in the following two cases

(1) M ∈ D(OX) is perfect and K ∈ DQCoh(X), or
(2) M ∈ D(OX) is pseudo-coherent, K ∈ D+

QCoh(X), and R′ has finite tor
dimension over R.

Proof. There is a canonical map RHomX(M,K) → RHomX′(L(g′)∗M,L(g′)∗K)
in D(Γ(X,OX)) of global hom complexes, see Cohomology, Section 20.44. Restrict-
ing scalars we can view this as a map in D(R). Then we can use the adjointness
of restriction and −⊗L

R R
′ to get the displayed map of the lemma. Having defined

the map it suffices to prove it is an isomorphism in the derived category of abelian
groups.
The right hand side is equal to

RHomX(M,R(g′)∗L(g′)∗K) = RHomX(M,K ⊗L
OX

g′
∗OX′)

by Lemma 36.5.3. In both cases the complexRHom(M,K) is an object ofDQCoh(OX)
by Lemma 36.10.8. There is a natural map

RHom(M,K)⊗L
OX

g′
∗OX′ −→ RHom(M,K ⊗L

OX
g′

∗OX′)
which is an isomorphism in both cases by Lemma 36.10.9. To see that this lemma
applies in case (2) we note that g′

∗OX′ = Rg′
∗OX′ = Lf∗g∗OX the second equality

by Lemma 36.22.5. Using Lemma 36.10.4 and Cohomology, Lemma 20.48.4 we
conclude that g′

∗OX′ has finite Tor dimension. Hence, in both cases by replacing
K by RHom(M,K) we reduce to proving

RΓ(X,K)⊗L
A A

′ −→ RΓ(X,K ⊗L
OX

g′
∗OX′)

is an isomorphism. Note that the left hand side is equal to RΓ(X ′, L(g′)∗K) by
Lemma 36.5.3. Hence the result follows from Lemma 36.22.5. □

Remark 36.22.7.0BZA With notation as in Lemma 36.22.6. The diagram

RHomX(M,Rg′
∗L)⊗L

R R
′ //

µ

��

RHomX′(L(g′)∗M,L(g′)∗Rg′
∗L)

a

��
RHomX(M,R(g′)∗L) RHomX′(L(g′)∗M,L)

https://stacks.math.columbia.edu/tag/0AA7
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is commutative where the top horizontal arrow is the map from the lemma, µ is the
multiplication map, and a comes from the adjunction map L(g′)∗Rg′

∗L → L. The
multiplication map is the adjunction map K ′ ⊗L

R R
′ → K ′ for any K ′ ∈ D(R′).

Lemma 36.22.8.0C0V Consider a cartesian square of schemes

X ′
g′
//

f ′

��

X

f

��
S′ g // S

Assume g and f Tor independent.
(1) If E ∈ D(OX) has tor amplitude in [a, b] as a complex of f−1OS-modules,

then L(g′)∗E has tor amplitude in [a, b] as a complex of f−1OS′ -modules.
(2) If G is an OX -module flat over S, then L(g′)∗G = (g′)∗G.

Proof. We can compute tor dimension at stalks, see Cohomology, Lemma 20.48.5.
If x′ ∈ X ′ with image x ∈ X, then

(L(g′)∗E)x′ = Ex ⊗L
OX,x

OX′,x′

Let s′ ∈ S′ and s ∈ S be the image of x′ and x. Since X and S′ are tor independent
over S, we can apply More on Algebra, Lemma 15.61.2 to see that the right hand
side of the displayed formula is equal to Ex ⊗L

OS,s
OS′,s′ in D(OS′,s′). Thus (1)

follows from More on Algebra, Lemma 15.66.13. To see (2) observe that flatness of
G is equivalent to the condition that G[0] has tor amplitude in [0, 0]. Applying (1)
we conclude. □

Lemma 36.22.9.0E23 Consider a cartesian diagram of schemes

Z ′
i′
//

g

��

X ′

f

��
Z

i // X

where i is a closed immersion. If Z and X ′ are tor independent over X, then
Ri′∗ ◦ Lg∗ = Lf∗ ◦Ri∗ as functors D(OZ)→ D(OX′).

Proof. Note that the lemma is supposed to hold for all K ∈ D(OZ). Observe that
i∗ and i′∗ are exact functors and hence Ri∗ and Ri′∗ are computed by applying i∗
and i′∗ to any representatives. Thus the base change map

Lf∗(Ri∗(K)) −→ Ri′∗(Lg∗(K))

on stalks at a point z′ ∈ Z ′ with image z ∈ Z is given by

Kz ⊗L
OX,z

OX′,z′ −→ Kz ⊗L
OZ,z

OZ′,z′

This map is an isomorphism by More on Algebra, Lemma 15.61.2 and the assumed
tor independence. □
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36.23. Künneth formula, II

0FLN For the case where the base is a field, please see Varieties, Section 33.29. Consider
a cartesian diagram of schemes

X ×S Y

p
{{

q
##

f

��

X

a
$$

Y

b
zz

S

Let K ∈ D(OX) and M ∈ D(OY ). There is a canonical map
(36.23.0.1)0FLP Ra∗K ⊗L

OS
Rb∗M −→ Rf∗(Lp∗K ⊗L

OX×SY
Lq∗M)

Namely, we can use the maps Ra∗K → Ra∗Rp∗Lp
∗K = Rf∗Lp

∗K and Rb∗M →
Rb∗Rq∗Lq

∗M = Rf∗Lq
∗M and then we can use the relative cup product (Coho-

mology, Remark 20.28.7).
Set A = Γ(S,OS). There is a global Künneth map
(36.23.0.2)0G7V RΓ(X,K)⊗L

A RΓ(Y,M) −→ RΓ(X ×S Y,Lp∗K ⊗L
OX×SY

Lq∗M)

in D(A). This map is constructed using the pullback maps RΓ(X,K)→ RΓ(X ×S
Y, Lp∗K) and RΓ(Y,M) → RΓ(X ×S Y,Lq∗M) and the cup product constructed
in Cohomology, Section 20.31.

Lemma 36.23.1.0FLQ In the situation above, if a and b are quasi-compact and quasi-
separated and X and Y are tor-independent over S, then (36.23.0.1) is an isomor-
phism for K ∈ DQCoh(OX) and M ∈ DQCoh(OY ). If in addition S = Spec(A) is
affine, then the map (36.23.0.2) is an isomorphism.

First proof. This follows from the following sequence of isomorphisms
Rf∗(Lp∗K ⊗L

OX×SY
Lq∗M) = Ra∗Rp∗(Lp∗K ⊗L

OX×SY
Lq∗M)

= Ra∗(K ⊗L
OX

Rp∗Lq
∗M)

= Ra∗(K ⊗L
OX

La∗Rb∗M)
= Ra∗K ⊗L

OS
Rb∗M

The first equality holds because f = a ◦ p. The second equality by Lemma 36.22.1.
The third equality by Lemma 36.22.5. The fourth equality by Lemma 36.22.1. We
omit the verification that the composition of these isomorphisms is the same as the
map (36.23.0.1). If S is affine, then the source and target of the arrow (36.23.0.2)
are the result of applying RΓ(S,−) to the source and target of (36.23.0.1) and we
obtain the final statement; details omitted. □

Second proof. The construction of the arrow (36.23.0.1) is compatible with restrict-
ing to open subschemes of S as is immediate from the construction of the relative
cup product. Thus it suffices to prove that (36.23.0.1) is an isomorphism when S
is affine.
Assume S = Spec(A) is affine. By Leray we have RΓ(S,Rf∗K) = RΓ(X,K) and
similarly for the other cases. By Cohomology, Lemma 20.31.7 the map (36.23.0.1)
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induces the map (36.23.0.2) on taking RΓ(S,−). On the other hand, by Lemmas
36.4.1 and 36.3.9 the source and target of the map (36.23.0.1) are in DQCoh(OS).
Thus, by Lemma 36.3.5, it suffices to prove that (36.23.0.2) is an isomorphism.
Assume S = Spec(A) and X = Spec(B) and Y = Spec(C) are all affine. We will
use Lemma 36.3.5 without further mention. In this case we can choose a K-flat
complex K• of B-modules whose terms are flat such that K is represented by K̃•.
Similarly, we can choose a K-flat complex M• of C-modules whose terms are flat
such that M is represented by M̃•. See More on Algebra, Lemma 15.59.10. Then
K̃• is a K-flat complex of OX -modules and similarly for M̃•, see Lemma 36.3.6.
Thus La∗K is represented by

a∗K̃• = ˜K• ⊗A C

and similarly for Lb∗M . This in turn is a K-flat complex of OX×SY -modules by
the lemma cited above and More on Algebra, Lemma 15.59.3. Thus we finally see
that the complex of OX×SY -modules associated to

Tot((K• ⊗A C)⊗B⊗AC (B ⊗AM•)) = Tot(K• ⊗AM•)
represents La∗K ⊗L

OX×SY
Lb∗M in the derived category of X ×S Y . Taking global

sections we obtain Tot(K•⊗AM•) which of course is also the complex representing
RΓ(X,K) ⊗L

A RΓ(Y,M). The fact that the isomorphism is given by cup product
follows from the relationship between the genuine cup product and the naive one
in Cohomology, Section 20.31 (and in particular Cohomology, Lemma 20.31.3 and
the discussion following it).
Assume S = Spec(A) and Y are affine. We will use the induction principle of
Cohomology of Schemes, Lemma 30.4.1 to prove the statement. To do this we only
have to show: if X = U ∪ V is an open covering with U and V quasi-compact and
if the map (36.23.0.2)

RΓ(U,K)⊗L
A RΓ(Y,M) −→ RΓ(U ×S Y, Lp∗K ⊗L

OX×SY
Lq∗M)

for U and Y over S, the map (36.23.0.2)

RΓ(V,K)⊗L
A RΓ(Y,M) −→ RΓ(V ×S Y, Lp∗K ⊗L

OX×SY
Lq∗M)

for V and Y over S, and the map (36.23.0.2)

RΓ(U ∩ V,K)⊗L
A RΓ(Y,M) −→ RΓ((U ∩ V )×S Y,Lp∗K ⊗L

OX×SY
Lq∗M)

for U ∩ V and Y over S are isomorphisms, then so is the map (36.23.0.2) for X
and Y over S. However, by Cohomology, Lemma 20.33.7 these maps fit into a map
of distinguished triangles with (36.23.0.2) the final leg and hence we conclude by
Derived Categories, Lemma 13.4.3.
Assume S = Spec(A) is affine. To finish the proof we can use the induction principle
of Cohomology of Schemes, Lemma 30.4.1 on Y . Namely, by the above we already
know that our map is an isomorphism when Y is affine. The rest of the argument
is exactly the same as in the previous paragraph but with the roles of X and Y
switched. □

Lemma 36.23.2.0FML Let a : X → S be a quasi-compact and quasi-separated morphism
of schemes. Let F• be a locally bounded complex of a−1OS-modules. Assume for

https://stacks.math.columbia.edu/tag/0FML
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all n ∈ Z the sheaf Fn is a flat a−1OS-module and Fn has the structure of a quasi-
coherent OX -module compatible with the given a−1OS-module structure (but the
differentials in the complex F• need not be OX -linear). Then the following hold

(1) Ra∗F• is locally bounded,
(2) Ra∗F• is in DQCoh(OS),
(3) Ra∗F• locally has finite tor dimension,
(4) G ⊗L

OS
Ra∗F• = Ra∗(a−1G ⊗a−1OS

F•) for G ∈ QCoh(OS), and
(5) K ⊗L

OS
Ra∗F• = Ra∗(a−1K ⊗L

a−1OS
F•) for K ∈ DQCoh(OS).

Proof. Parts (1), (2), (3) are local on S hence we may and do assume S is affine.
Since a is quasi-compact we conclude that X is quasi-compact. Since F• is locally
bounded, we conclude that F• is bounded.

For (1) and (2) we can use the first spectral sequence Rpa∗Fq ⇒ Rp+qa∗F• of
Derived Categories, Lemma 13.21.3. Combining Cohomology of Schemes, Lemma
30.4.5 and Homology, Lemma 12.24.11 we conclude.

Let us prove (3) by the induction principle of Cohomology of Schemes, Lemma
30.4.1. Namely, for a quasi-compact open of U of X consider the condition that
R(a|U )∗(F•|U ) has finite tor dimension. If U, V are quasi-compact open in X, then
we have a relative Mayer-Vietoris distinguished triangle

R(a|U∪V )∗F•|U∪V → R(a|U )∗F•|U ⊕R(a|V )∗F•|V → R(a|U∩V )∗F•|U∩V →

by Cohomology, Lemma 20.33.5. By the behaviour of tor amplitude in distinguished
triangles (see Cohomology, Lemma 20.48.6) we see that if we know the result for
U , V , U ∩ V , then the result holds for U ∪ V . This reduces us to the case where X
is affine. In this case we have

Ra∗F• = a∗F•

by Leray’s acyclicity lemma (Derived Categories, Lemma 13.16.7) and the vanish-
ing of higher direct images of quasi-coherent modules under an affine morphism
(Cohomology of Schemes, Lemma 30.2.3). Since Fn is S-flat by assumption and X
affine, the modules a∗Fn are flat for all n. Hence a∗F• is a bounded complex of
flat OS-modules and hence has finite tor dimension.

Proof of part (5). Denote a′ : (X, a−1OS)→ (S,OS) the obvious flat morphism of
ringed spaces. Part (5) says that

K ⊗L
OS

Ra′
∗F• = Ra′

∗(L(a′)∗K ⊗L
a−1OS

F•)

Thus Cohomology, Equation (20.54.2.1) gives a functorial map from the left to the
right and we want to show this map is an isomorphism. This question is local
on S hence we may and do assume S is affine. The rest of the proof is exactly
the same as the proof of Lemma 36.22.1 except that we have to show that the
functor K 7→ Ra′

∗(L(a′)∗K ⊗L
a−1OS

F•) commutes with direct sums. This is where
we will use Fn has the structure of a quasi-coherent OX -module. Namely, observe
that K 7→ L(a′)∗K ⊗L

a−1OS
F• commutes with arbitrary direct sums. Next, if

F• consists of a single quasi-coherent OX -module F• = Fn[−n] then we have
L(a′)∗G⊗L

a−1OS
F• = La∗K⊗L

OX
Fn[−n], see Cohomology, Lemma 20.27.4. Hence

in this case the commutation with direct sums follows from Lemma 36.4.5. Now,
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in general, since S is affine (hence X quasi-compact) and F• is locally bounded,
we see that

F• = (Fa → . . .→ Fb)
is bounded. Arguing by induction on b−a and considering the distinguished triangle

Fb[−b]→ (Fa → . . .→ Fb)→ (Fa → . . .→ Fb−1)→ Fb[−b+ 1]
the proof of this part is finished. Some details omitted.
Proof of part (4). Let a′ : (X, a−1OS) → (S,OS) be as above. Since F• is a
locally bounded complex of flat a−1OS-modules we see the complex a−1G⊗a−1OS

F•

represents L(a′)∗G ⊗L
a−1OS

F• in D(a−1OS). Hence (4) follows from (5). □

Lemma 36.23.3.0FMQ Let f : X → Y be a morphism of schemes with Y = Spec(A)
affine. Let U : X =

⋃
i∈I Ui be a finite affine open covering such that all the finite

intersections Ui0...ip = Ui0 ∩ . . . ∩ Uip are affine. Let F• be a bounded complex of
f−1OY -modules. Assume for all n ∈ Z the sheaf Fn is a flat f−1OY -module and
Fn has the structure of a quasi-coherent OX -module compatible with the given
p−1OY -module structure (but the differentials in the complex F• need not be OX -
linear). Then the complex Tot(Č•(U ,F•)) is K-flat as a complex of A-modules.

Proof. We may write
F• = (Fa → . . .→ Fb)

Arguing by induction on b− a and considering the distinguished triangle
Fb[−b]→ (Fa → . . .→ Fb)→ (Fa → . . .→ Fb−1)→ Fb[−b+ 1]

and using More on Algebra, Lemma 15.59.5 we reduce to the case where F• consists
of a single quasi-coherent OX -module F placed in degree 0. In this case the Čech
complex for F and U is homotopy equivalent to the alternating Čech complex, see
Cohomology, Lemma 20.23.6. Since Ui0...ip is always affine, we see that F(Ui0...ip)
is A-flat. Hence Č•

alt(U ,F) is a bounded complex of flat A-modules and hence K-flat
by More on Algebra, Lemma 15.59.7. □

Let X,Y, S, a, b, p, q, f be as in the introduction to this section. Let F be an OX -
module. Let G be an OY -module. Set A = Γ(S,OS). Consider the map
(36.23.3.1)0G49 RΓ(X,F)⊗L

A RΓ(Y,G) −→ RΓ(X ×S Y, p∗F ⊗OX×SY
q∗G)

in D(A). This map is constructed using the pullback maps RΓ(X,F)→ RΓ(X ×S
Y, p∗F) and RΓ(Y,G) → RΓ(X ×S Y, q∗G), the cup product constructed in Coho-
mology, Section 20.31, and the canonical map p∗F⊗L

OX×SY
q∗G → p∗F⊗OX×SY

q∗G.

Lemma 36.23.4.0FU4 In the situation above the map (36.23.3.1) is an isomorphism if
S is affine, F and G are S-flat and quasi-coherent and X and Y are quasi-compact
with affine diagonal.

Proof. We strongly urge the reader to read the proof of Varieties, Lemma 33.29.1
first. Choose finite affine open coverings U : X =

⋃
i∈I Ui and V : Y =

⋃
j∈J Vj .

This determines an affine open covering W : X ×S Y =
⋃

(i,j)∈I×J Ui ×S Vj . Note
that W is a refinement of pr−1

1 U and of pr−1
2 V. Thus by the discussion in Coho-

mology, Section 20.25 we obtain maps
Č•(U ,F)→ Č•(W, p∗F) and Č•(V,G)→ Č•(W, q∗G)

https://stacks.math.columbia.edu/tag/0FMQ
https://stacks.math.columbia.edu/tag/0FU4
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well defined up to homotopy and compatible with pullback maps on cohomology.
In Cohomology, Equation (20.25.3.2) we have constructed a map of complexes

Tot(Č•(W, p∗F)⊗A Č•(W, q∗G)) −→ Č•(W, p∗F ⊗OX×SY
q∗G)

which is compatible with the cup product on cohomology by Cohomology, Lemma
20.31.4. Combining the above we obtain a map of complexes
(36.23.4.1)0FLU Tot(Č•(U ,F)⊗A Č•(V,G))→ Č•(W, p∗F ⊗OX×SY

q∗G)
We claim this is the map in the statement of the lemma, i.e., the source and
target of this arrow are the same as the source and target of (36.23.3.1). Namely,
by Cohomology of Schemes, Lemma 30.2.2 and Cohomology, Lemma 20.25.2 the
canonical maps

Č•(U ,F)→ RΓ(X,F), Č•(V,G)→ RΓ(Y,G)
and

Č•(W, p∗F ⊗OX×SY
q∗G)→ RΓ(X ×S Y, p∗F ⊗OX×SY

q∗G)
are isomorphisms. On the other hand, the complex Č•(U ,F) is K-flat by Lemma
36.23.3 and we conclude that Tot(Č•(U ,F) ⊗A Č•(V,G)) represents the derived
tensor product RΓ(X,F)⊗L

A RΓ(Y,G) as claimed.
We still have to show that (36.23.4.1) is a quasi-isomorphism. We will do this
using dimension shifting. Set d(F) = max{d | Hd(X,F) ̸= 0}. Assume d(F) > 0.
Set U =

∐
i∈I Ui. This is an affine scheme as I is finite. Denote j : U → X

the morphism which is the inclusion Ui → X on each Ui. Since the diagonal of
X is affine, the morphism j is affine, see Morphisms, Lemma 29.11.11. It follows
that F ′ = j∗j

∗F is S-flat, see Morphisms, Lemma 29.25.4. It also follows that
d(F ′) = 0 by combining Cohomology of Schemes, Lemmas 30.2.4 and 30.2.2. For
all x ∈ X we have Fx → F ′

x is the inclusion of a direct summand: if x ∈ Ui, then
F ′ → (Ui → X)∗F|Ui gives a splitting. We conclude that F → F ′ is injective and
F ′′ = F ′/F is S-flat as well. The short exact sequence 0→ F → F ′ → F ′′ → 0 of
flat quasi-coherent OX -modules produces a short exact sequence of complexes
0→ Tot(Č•(U ,F)⊗AČ•(V,G))→ Tot(Č•(U ,F ′)⊗AČ•(V,G))→ Tot(Č•(U ,F ′′)⊗AČ•(V,G))→ 0
and a short exact sequence of complexes
0→ Č•(W, p∗F⊗OX×SY

q∗G)→ Č•(W, p∗F ′⊗OX×SY
q∗G)→ Č•(W, p∗F ′′⊗OX×SY

q∗G)→ 0
Moreover, the maps (36.23.4.1) between these are compatible with these short exact
sequences. Hence it suffices to prove (36.23.4.1) is an isomorphism for F ′ and F ′′.
Finally, we have d(F ′′) < d(F). In this way we reduce to the case d(F) = 0.
Arguing in the same fashion for G we find that we may assume that both F and G
have nonzero cohomology only in degree 0. Observe that this means that Γ(X,F)
is quasi-isomorphic to the K-flat complex Č•(U ,F) of A-modules sitting in degrees
≥ 0. It follows that Γ(X,F) is a flat A-module (because we can compute higher
Tor’s against this module by tensoring with the Cech complex). Let V ⊂ Y be an
affine open. Consider the affine open covering UV : X ×S V =

⋃
i∈I Ui ×S V . It is

immediate that
Č•(U ,F)⊗A G(V ) = Č•(UV , p∗F ⊗OX×Y q

∗G)
(equality of complexes). By the flatness of G(V ) over A we see that Γ(X,F) ⊗A
G(V ) → Č•(U ,F) ⊗A G(V ) is a quasi-isomorphism. Since the sheafification of
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V 7→ Č•(UV , p∗F ⊗OX×Y q
∗G) represents Rq∗(p∗F ⊗OX×Y q

∗G) by Cohomology of
Schemes, Lemma 30.7.1 we conclude that

Rq∗(p∗F ⊗OX×Y q
∗G) ∼= Γ(X,F)⊗A G

on Y where the notation on the right hand side indicates the module

b∗ ˜Γ(X,F)⊗OY
G

Using the Leray spectral sequence for q we find

Hn(X ×S Y, p∗F ⊗OX×Y q
∗G) = Hn(Y, b∗ ˜Γ(X,F)⊗OY

G)

Using Lemma 36.22.1 for the morphism b : Y → S = Spec(A) and using that
Γ(X,F) is A-flat we conclude that Hn(X ×S Y, p∗F ⊗OX×Y q

∗G) is zero for n > 0
and isomorphic to H0(X,F) ⊗A H0(Y,G) for n = 0. Of course, here we also use
that G only has cohomology in degree 0. This finishes the proof (except that we
should check that the isomorphism is indeed given by cup product in degree 0; we
omit the verification). □

Remark 36.23.5.0G7W Let S = Spec(A) be an affine scheme. Let a : X → S and
b : Y → S be morphisms of schemes. Let F , G be quasi-coherent OX -modules
and let E be a quasi-coherent OY -module. Let ξ ∈ Hi(X,G) with pullback p∗ξ ∈
Hi(X ×S Y, p∗G). Then the following diagram is commutative

RΓ(X,F)[−i]⊗L
A RΓ(Y, E)

��

ξ⊗id
// RΓ(X,G ⊗OX

F)⊗L
A RΓ(Y, E)

��
RΓ(X ×S Y, p∗F ⊗ q∗E)[−i] p∗ξ // RΓ(X ×S Y, p∗(G ⊗OX

F)⊗ q∗E)

where the unadorned tensor products are over OX×SY . The horizontal arrows are
from Cohomology, Remark 20.31.2 and the vertical arrows are (36.23.0.2) hence
given by pulling back followed by cup product on X ×S Y . The diagram commutes
because the global cup product (on X ×S Y with the sheaves p∗G, p∗F , and q∗E)
is associative, see Cohomology, Lemma 20.31.5.

36.24. Künneth formula, III

0G4A Let X,Y, S, a, b, p, q, f be as in the introduction to Section 36.23. In this section,
given an OX -module F and a OY -module G let us set

F ⊠ G = p∗F ⊗OX×SY
q∗G

Note that, contrary to what happens in a future section, we take the nonderived
tensor product here.

On X let F• be a complex of sheaves of abelian groups whose terms are quasi-
coherent OX -modules such that the differentials diF : F i → F i+1 are differential
operators on X/S of finite order, see Morphisms, Section 29.33. Simlarly, on Y
let G• be a complex of sheaves of abelian groups whose terms are quasi-coherent
OY -modules such that the differentials djG : Gj → Gj+1 are differential operators

https://stacks.math.columbia.edu/tag/0G7W
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on Y/S of finite order. Applying the construction of Morphisms, Lemma 29.33.2
we obtain a double complex

. . . . . . . . . . . .

. . . // F i ⊠ Gj+1 di,j+1
1 //

OO

F i+1 ⊠ Gj+1 //

OO

. . .

. . . // F i ⊠ Gj
di,j1 //

di,j2

OO

F i+1 ⊠ Gj //

di+1,j
2

OO

. . .

. . . . . .

OO

. . .

OO

. . .

of quasi-coherent modules whose maps are differential operators of finite order on
X×S Y/S. Please see the discussion in Morphisms, Remark 29.33.3 and Homology,
Example 12.18.2. To be explicit, we set

di,j1 = diF ⊠ 1 and di,j2 = 1⊠ djG
In the discussion below the notation

Tot(F• ⊠ G•)
refers to the total complex associated to this double complex. This complex has
terms which are quasi-coherent OX×SY -modules and whose differentials are differ-
ential operators of finite order on X ×S Y/S.
In the situation above there exists a “relative cup product” map
(36.24.0.1)0G4B Ra∗(F•)⊗L

OS
Rb∗(G•) −→ Rf∗ (Tot(F• ⊠ G•))

Namely, we can construct this map by combining
(1) Ra∗(F•)→ Rf∗(p−1F•),
(2) Rb∗(G•)→ Rf∗(q−1G•),
(3) Rf∗(p−1F•)⊗L

OS
Rf∗(q−1G•)→ Rf∗(p−1F• ⊗L

f−1OS
q−1G•),

(4) p−1F• ⊗L
f−1OS

q−1G• → Tot(p−1F• ⊗f−1OS
q−1G•)

(5) Tot(p−1F• ⊗f−1OS
q−1G•)→ Tot(F• ⊠ G•).

Maps (1) and (2) are pullback maps, map (3) is the relative cup product, see
Cohomology, Remark 20.28.7, map (4) compares the derived and nonderived tensor
products, and map (5) is given by the obvious maps p−1F i⊗f−1OS

q−1Gj → F i⊠Gj
on the underlying double complexes.
Set A = Γ(S,OS). There exists a “global cup product” map

(36.24.0.2)0FLR RΓ(X,F•)⊗L
A RΓ(Y,G•) −→ RΓ(X ×S Y,Tot(F• ⊠ G•))

in D(A). This is constructed similarly to the relative cup product above using
(1) RΓ(X,F•)→ RΓ(X ×S Y, p−1F•)
(2) RΓ(Y,G•)→ RΓ(X ×S Y, q−1G•),
(3) RΓ(X×S Y, p−1F•)⊗L

ARΓ(X×S Y, q−1G•)→ RΓ(X×S Y, p−1F•⊗L
f−1OS

q−1G•),
(4) p−1F• ⊗L

f−1OS
q−1G• → Tot(p−1F• ⊗f−1OS

q−1G•)
(5) Tot(p−1F• ⊗f−1OS

q−1G•)→ Tot(F• ⊠ G•).



36.24. KÜNNETH FORMULA, III 3083

Here maps (1) and (2) are the pullback maps, map (3) is the cup product con-
structed in Cohomology, Section 20.31. Maps (4) and (5) are as indicated in the
previous paragraph.

Lemma 36.24.1.0FLT In the situation above the cup product (36.24.0.2) is an isomor-
phism in D(A) if the following assumptions hold

(1) S = Spec(A) is affine,
(2) X and Y are quasi-compact with affine diagonal,
(3) F• is bounded,
(4) G• is bounded below,
(5) Fn is S-flat, and
(6) Gm is S-flat.

Proof. We will use the notation AX/S and AY/S introduced in Morphisms, Remark
29.33.3. Suppose that we have maps of complexes

F•
1 → F•

2 → F•
3 → F•

1 [1]

in the category AX/S . Then by the functoriality of the cup product we obtain a
commutative diagram

RΓ(X,F•
1 )⊗L

A RΓ(Y,G•) //

��

RΓ(X ×S Y,Tot(F•
1 ⊠ G•))

��
RΓ(X,F•

2 )⊗L
A RΓ(Y,G•) //

��

RΓ(X ×S Y,Tot(F•
2 ⊠ G•))

��
RΓ(X,F•

3 )⊗L
A RΓ(Y,G•) //

��

RΓ(X ×S Y,Tot(F•
3 ⊠ G•))

��
RΓ(X,F•

1 [1])⊗L
A RΓ(Y,G•) // RΓ(X ×S Y,Tot(F•

1 [1]⊠ G•))

If the original maps form a distinguished triangle in the homotopy category of
AX/S , then the columns of this diagram form distinguished triangles in D(A).

In the situation of the lemma, suppose that Fn = 0 for n < i. Then we may
consider the termwise split short exact sequence of complexes

0→ σ≥i+1F• → F• → F i[−i]→ 0

where the truncation is as in Homology, Section 12.15. This produces the distin-
guished triangle

σ≥i+1F• → F• → F i[−i]→ (σ≥i+1F•)[1]

in the homotopy category of AX/S where the final arrow is given by the boundary
map F i → F i+1. It follows from the discussion above that it suffices to prove
the lemma for F i[−i] and σ≥i+1F•. Since σ≥i+1F• has fewer nonzero terms, by
induction, if we can prove the lemma if F• is nonzero only in single degree, then
the lemma follows. Thus we may assume F• is nonzero only in one degree.

Assume F• is the complex which has an S-flat quasi-coherent OX -module F sitting
in degree 0 and is zero in other degrees. Observe that RΓ(X,F) has finite tor

https://stacks.math.columbia.edu/tag/0FLT
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dimension by Lemma 36.23.2 for example. Say it has tor amplitude in [i, j]. Pick
N ≫ 0 and consider the distinguished triangle

σ≥N+1G• → G• → σ≤NG• → (σ≥N+1G•)[1]
in the homotopy category of AY/S . Now observe that both

RΓ(X,F)⊗L
A RΓ(Y, σ≥N+1G•) and RΓ(X ×S Y,Tot(F ⊠ σ≥N+1G•))

have vanishing cohomology in degrees ≤ N + i. Thus, using the arguments given
above, if we want to prove our statement in a given degree, then we may assume
G• is bounded. Repeating the arguments above one more time we may also assume
G• is nonzero only in one degree. This case is handled by Lemma 36.23.4. □

36.25. Künneth formula for Ext

0FXX Consider a cartesian diagram of schemes
X ×S Y

p
{{

q
##

f

��

X

a
$$

Y

b
zz

S

For K ∈ D(OX) and M ∈ D(OY ) in this section let us define
K ⊠M = Lp∗K ⊗L

OX×SY
Lq∗M

We claim there is a canonical map
(36.25.0.1)

0FXY Ra∗RHom(K,K ′)⊗L
OS

Rb∗RHom(M,M ′) −→ Rf∗(RHom(K ⊠M,K ′ ⊠M ′))
for K,K ′ ∈ D(OX) and M,M ′ ∈ D(OY ). Namely, we can take the map adjoint to
the map

Lf∗ (Ra∗RHom(K,K ′)⊗L
OS

Rb∗RHom(M,M ′)
)

=
Lf∗Ra∗RHom(K,K ′)⊗L

OX×SY
Lf∗Rb∗RHom(M,M ′) =

Lp∗La∗Ra∗RHom(K,K ′)⊗L
OX×SY

Lq∗Lb∗Rb∗RHom(M,M ′)→
Lp∗RHom(K,K ′)⊗L

OX×SY
Lq∗RHom(M,M ′)→

RHom(Lp∗K,Lp∗K ′)⊗L
OX×SY

RHom(Lq∗M,Lq∗M ′)→
RHom(K ⊠M,K ′ ⊠M ′)

Here the first equality is compatibility of pullbacks with tensor products, Cohomol-
ogy, Lemma 20.27.3. The second equality is f = a ◦ p = b ◦ q and composition of
pullbacks, Cohomology, Lemma 20.27.2. The first arrow is given by the adjunc-
tion maps La∗Ra∗ → id and Lb∗Rb∗ → id because pushforward and pullback are
adjoint, Cohomology, Lemma 20.28.1. The second arrow is given by Cohomology,
Remark 20.42.13. The third and final arrow is Cohomology, Remark 20.42.10. A
simple special case of this is the following result.

Lemma 36.25.1.0FXZ In the situation above, assume a and b are quasi-compact and
quasi-separated and X and Y are tor independent over S. If K is perfect, K ′ ∈
DQCoh(OX), M is perfect, and M ′ ∈ DQCoh(OY ), then (36.25.0.1) is an isomor-
phism.

https://stacks.math.columbia.edu/tag/0FXZ
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Proof. In this case we have RHom(K,K ′) = K ′ ⊗L K∨, RHom(M,M ′) = M ′ ⊗L

M∨, and

RHom(K ⊠M,K ′ ⊠M ′) = (K ′ ⊗L K∨)⊠ (M ′ ⊗L M∨)

See Cohomology, Lemma 20.50.5 and we also use that being perfect is preserved by
pullback and by tensor products. Hence this case follows from Lemma 36.23.1. (We
omit the verification that with these identifications we obtain the same map.) □

36.26. Cohomology and base change, V

0DJ6 In Section 36.22 we saw a base change theorem holds when the morphisms are
tor independent. Even in the affine case there cannot be a base change theorem
without such a condition, see More on Algebra, Section 15.61. In this section we
analyze when one can get a base change result “one complex at a time”.

To make this work, suppose we have a commutative diagram

X ′
g′
//

f ′

��

X

f

��
S′ g // S

of schemes (usually we will assume it is cartesian). Let K ∈ DQCoh(OX) and let
L(g′)∗K → K ′ be a map in DQCoh(OX′). For a point x′ ∈ X ′ set x = g′(x′) ∈ X,
s′ = f ′(x′) ∈ S′ and s = f(x) = g(s′). Then we can consider the maps

Kx ⊗L
OS,s
OS′,s′ → Kx ⊗L

OX,x
OX′,x′ → K ′

x′

where the first arrow is More on Algebra, Equation (15.61.0.1) and the second
comes from (L(g′)∗K)x′ = Kx⊗L

OX,x
OX′,x′ and the given map L(g′)∗K → K ′. For

each i ∈ Z we obtain a OX,x⊗OS,s
OS′,s′-module structure on Hi(Kx⊗L

OS,s
OS′,s′).

Putting everything together we obtain canonical maps

(36.26.0.1)0DJ7 Hi(Kx ⊗L
OS,s
OS′,s′)⊗(OX,x⊗OS,sOS′,s′ ) OX′,x′ −→ Hi(K ′

x′)

of OX′,x′ -modules.

Lemma 36.26.1.0DJ8 Let
X ′

g′
//

f ′

��

X

f

��
S′ g // S

be a cartesian diagram of schemes. Let K ∈ DQCoh(OX) and let L(g′)∗K → K ′ be
a map in DQCoh(OX′). The following are equivalent

(1) for any x′ ∈ X ′ and i ∈ Z the map (36.26.0.1) is an isomorphism,
(2) for U ⊂ X, V ′ ⊂ S′ affine open both mapping into the affine open V ⊂ S

with U ′ = V ′ ×V U the composition

RΓ(U,K)⊗L
OS(U) OS′(V ′)→ RΓ(U,K)⊗L

OX(U) OX′(U ′)→ RΓ(U ′,K ′)

is an isomorphism in D(OS′(V ′)), and
(3) there is a set I of quadruples Ui, V ′

i , Vi, U
′
i , i ∈ I as in (2) with X ′ =

⋃
U ′
i .

https://stacks.math.columbia.edu/tag/0DJ8
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Proof. The second arrow in (2) comes from the equality
RΓ(U,K)⊗L

OX(U) OX′(U ′) = RΓ(U ′, L(g′)∗K)

of Lemma 36.3.8 and the given arrow L(g′)∗K → K ′. The first arrow of (2) is More
on Algebra, Equation (15.61.0.1). It is clear that (2) implies (3). Observe that (1)
is local on X ′. Therefore it suffices to show that if X, S, S′, X ′ are affine, then (1)
is equivalent to the condition that

RΓ(X,K)⊗L
OS(S) OS′(S′)→ RΓ(X,K)⊗L

OX(X) OX′(X ′)→ RΓ(X ′,K ′)

is an isomorphism in D(OS′(S′)). Say S = Spec(R), X = Spec(A), S′ = Spec(R′),
X ′ = Spec(A′), K corresponds to the complex M• of A-modules, and K ′ corre-
sponds to the complex N• of A′-modules. Note that A′ = A⊗R R′. The condition
above is that the composition

M• ⊗L
R R

′ →M• ⊗L
A A

′ → N•

is an isomorphism in D(R′). Equivalently, it is that for all i ∈ Z the map
Hi(M• ⊗L

R R
′)→ Hi(M• ⊗L

A A
′)→ Hi(N•)

is an isomorphism. Observe that this is a map of A ⊗R R′-modules, i.e., of A′-
modules. On the other hand, (1) is the requirement that for compatible primes
q′ ⊂ A′, q ⊂ A, p′ ⊂ R′, p ⊂ R the composition

Hi(M•
q ⊗L

Rp
R′

p′)⊗(Aq⊗RpR
′
p′ ) A

′
q′ → Hi(M•

q ⊗L
Aq

A′
q′)→ Hi(N•

q′)

is an isomorphism. Since
Hi(M•

q ⊗L
Rp

R′
p′)⊗(Aq⊗RpR

′
p′ ) A

′
q′ = Hi(M• ⊗L

R R
′)⊗A′ A′

q′

is the localization at q′, we see that these two conditions are equivalent by Algebra,
Lemma 10.23.1. □

Lemma 36.26.2.0DJ9 Let
X ′

g′
//

f ′

��

X

f

��
S′ g // S

be a cartesian diagram of schemes. Let K ∈ DQCoh(OX) and let L(g′)∗K → K ′ be
a map in DQCoh(OX′). If

(1) the equivalent conditions of Lemma 36.26.1 hold, and
(2) f is quasi-compact and quasi-separated,

then the composition Lg∗Rf∗K → Rf ′
∗L(g′)∗K → Rf ′

∗K
′ is an isomorphism.

Proof. We could prove this using the same method as in the proof of Lemma
36.22.5 but instead we will prove it using the induction principle and relative Mayer-
Vietoris.
To check the map is an isomorphism we may work locally on S′. Hence we may as-
sume g : S′ → S is a morphism of affine schemes. In particular X is a quasi-compact
and quasi-separated scheme. We will use the induction principle of Cohomology of
Schemes, Lemma 30.4.1 to prove that for any quasi-compact open U ⊂ X the simi-
larly constructed map Lg∗R(U → S)∗K|U → R(U ′ → S′)∗K

′|U ′ is an isomorphism.
Here U ′ = (g′)−1(U).

https://stacks.math.columbia.edu/tag/0DJ9
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If U ⊂ X is an affine open, then we find that the result is true by assumption, see
Lemma 36.26.1 part (2) and the translation into algebra afforded to us by Lemmas
36.3.5 and 36.3.8.
The induction step. Suppose that X = U ∪V is an open covering with U , V , U ∩V
quasi-compact such that the result holds for U , V , and U ∩ V . Denote a = f |U ,
b = f |V and c = f |U∩V . Let a′ : U ′ → S′, b′ : V ′ → S′ and c′ : U ′ ∩ V ′ → S′

be the base changes of a, b, and c. Using the distinguished triangles from relative
Mayer-Vietoris (Cohomology, Lemma 20.33.5) we obtain a commutative diagram

Lg∗Rf∗K //

��

Rf ′
∗K

′

��
Lg∗Ra∗K|U ⊕ Lg∗Rb∗K|V //

��

Ra′
∗K

′|U ′ ⊕Rb′
∗K

′|V ′

��
Lg∗Rc∗K|U∩V //

��

Rc′
∗K

′|U ′∩V ′

��
Lg∗Rf∗K[1] // Rf ′

∗K
′[1]

Since the 2nd and 3rd horizontal arrows are isomorphisms so is the first (Derived
Categories, Lemma 13.4.3) and the proof of the lemma is finished. □

Lemma 36.26.3.0DJA Let
X ′

g′
//

f ′

��

X

f

��
S′ g // S

be a cartesian diagram of schemes. Let K ∈ DQCoh(OX) and let L(g′)∗K → K ′ be
a map in DQCoh(OX′). If the equivalent conditions of Lemma 36.26.1 hold, then

(1) for E ∈ DQCoh(OX) the equivalent conditions of Lemma 36.26.1 hold for
L(g′)∗(E ⊗L K)→ L(g′)∗E ⊗L K ′,

(2) if E in D(OX) is perfect the equivalent conditions of Lemma 36.26.1 hold
for L(g′)∗RHom(E,K)→ RHom(L(g′)∗E,K ′), and

(3) if K is bounded below and E in D(OX) pseudo-coherent the equivalent
conditions of Lemma 36.26.1 hold for L(g′)∗RHom(E,K)→ RHom(L(g′)∗E,K ′).

Proof. The statement makes sense as the complexes involved have quasi-coherent
cohomology sheaves by Lemmas 36.3.8, 36.3.9, and 36.10.8 and Cohomology, Lem-
mas 20.47.3 and 20.49.6. Having said this, we can check the maps (36.26.0.1) are
isomorphisms in case (1) by computing the source and target of (36.26.0.1) using
the transitive property of tensor product, see More on Algebra, Lemma 15.59.15.
The map in (2) and (3) is the composition

L(g′)∗RHom(E,K)→ RHom(L(g′)∗E,L(g′)∗K)→ RHom(L(g′)∗E,K ′)
where the first arrow is Cohomology, Remark 20.42.13 and the second arrow comes
from the given map L(g′)∗K → K ′. To prove the maps (36.26.0.1) are isomorphisms
one represents Ex by a bounded complex of finite projective OX.x-modules in case

https://stacks.math.columbia.edu/tag/0DJA
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(2) or by a bounded above complex of finite free modules in case (3) and computes
the source and target of the arrow. Some details omitted. □

Lemma 36.26.4.0A1D Let f : X → S be a quasi-compact and quasi-separated morphism
of schemes. Let E ∈ DQCoh(OX). Let G• be a bounded above complex of quasi-
coherent OX -modules flat over S. Then formation of

Rf∗(E ⊗L
OX
G•)

commutes with arbitrary base change (see proof for precise statement).

Proof. The statement means the following. Let g : S′ → S be a morphism of
schemes and consider the base change diagram

X ′
g′
//

f ′

��

X

f

��
S′ g // S

in other words X ′ = S′ ×S X. The lemma asserts that

Lg∗Rf∗(E ⊗L
OX
G•) −→ Rf ′

∗

(
L(g′)∗E ⊗L

OX′ (g′)∗G•
)

is an isomorphism. Observe that on the right hand side we do not use the derived
pullback on G•. To prove this, we apply Lemmas 36.26.2 and 36.26.3 to see that it
suffices to prove the canonical map

L(g′)∗G• → (g′)∗G•

satisfies the equivalent conditions of Lemma 36.26.1. This follows by checking the
condition on stalks, where it immediately follows from the fact that G•

x⊗OS,s
OS′,s′

computes the derived tensor product by our assumptions on the complex G•. □

Lemma 36.26.5.08IE Let f : X → S be a quasi-compact and quasi-separated morphism
of schemes. Let E be an object of D(OX). Let G• be a complex of quasi-coherent
OX -modules. If

(1) E is perfect, G• is a bounded above, and Gn is flat over S, or
(2) E is pseudo-coherent, G• is bounded, and Gn is flat over S,

then formation of
Rf∗RHom(E,G•)

commutes with arbitrary base change (see proof for precise statement).

Proof. The statement means the following. Let g : S′ → S be a morphism of
schemes and consider the base change diagram

X ′
g′
//

f ′

��

X

f

��
S′ g // S

in other words X ′ = S′ ×S X. The lemma asserts that

Lg∗Rf∗RHom(E,G•) −→ R(f ′)∗RHom(L(g′)∗E, (g′)∗G•)

https://stacks.math.columbia.edu/tag/0A1D
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is an isomorphism. Observe that on the right hand side we do not use the derived
pullback on G•. To prove this, we apply Lemmas 36.26.2 and 36.26.3 to see that it
suffices to prove the canonical map

L(g′)∗G• → (g′)∗G•

satisfies the equivalent conditions of Lemma 36.26.1. This was shown in the proof
of Lemma 36.26.4. □

36.27. Producing perfect complexes

0A1E The following lemma is our main technical tool for producing perfect complexes.
Later versions of this result will reduce to this by Noetherian approximation, see
Section 36.30.

Lemma 36.27.1.08EV Let S be a Noetherian scheme. Let f : X → S be a morphism of
schemes which is locally of finite type. Let E ∈ D(OX) such that

(1) E ∈ Db
Coh(OX),

(2) the support of Hi(E) is proper over S for all i, and
(3) E has finite tor dimension as an object of D(f−1OS).

Then Rf∗E is a perfect object of D(OS).

Proof. By Lemma 36.11.3 we see that Rf∗E is an object of Db
Coh(OS). Hence

Rf∗E is pseudo-coherent (Lemma 36.10.3). Hence it suffices to show that Rf∗E
has finite tor dimension, see Cohomology, Lemma 20.49.5. By Lemma 36.10.6 it
suffices to check that Rf∗(E) ⊗L

OS
F has universally bounded cohomology for all

quasi-coherent sheaves F on S. Bounded from above is clear as Rf∗(E) is bounded
from above. Let T ⊂ X be the union of the supports of Hi(E) for all i. Then T
is proper over S by assumptions (1) and (2), see Cohomology of Schemes, Lemma
30.26.6. In particular there exists a quasi-compact open X ′ ⊂ X containing T .
Setting f ′ = f |X′ we have Rf∗(E) = Rf ′

∗(E|X′) because E restricts to zero on
X \ T . Thus we may replace X by X ′ and assume f is quasi-compact. Moreover,
f is quasi-separated by Morphisms, Lemma 29.15.7. Now

Rf∗(E)⊗L
OS
F = Rf∗

(
E ⊗L

OX
Lf∗F

)
= Rf∗

(
E ⊗L

f−1OS
f−1F

)
by Lemma 36.22.1 and Cohomology, Lemma 20.27.4. By assumption (3) the com-
plex E ⊗L

f−1OS
f−1F has cohomology sheaves in a given finite range, say [a, b].

Then Rf∗ of it has cohomology in the range [a,∞) and we win. □

Lemma 36.27.2.0DJQ Let S be a Noetherian scheme. Let f : X → S be a morphism
of schemes which is locally of finite type. Let E ∈ D(OX) be perfect. Let G• be a
bounded complex of coherent OX -modules flat over S with support proper over S.
Then K = Rf∗(E ⊗L

OX
G•) is a perfect object of D(OS).

Proof. The object K is perfect by Lemma 36.27.1. We check the lemma applies:
Locally E is isomorphic to a finite complex of finite free OX -modules. Hence locally
E ⊗L

OX
G• is isomorphic to a finite complex whose terms are of the form⊕

i=a,...,b
(Gi)⊕ri

for some integers a, b, ra, . . . , rb. This immediately implies the cohomology sheaves
Hi(E⊗L

OX
G) are coherent. The hypothesis on the tor dimension also follows as Gi

is flat over f−1OS . □

https://stacks.math.columbia.edu/tag/08EV
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Lemma 36.27.3.0DJR Let S be a Noetherian scheme. Let f : X → S be a morphism
of schemes which is locally of finite type. Let E ∈ D(OX) be perfect. Let G• be a
bounded complex of coherent OX -modules flat over S with support proper over S.
Then K = Rf∗RHom(E,G•) is a perfect object of D(OS).

Proof. Since E is a perfect complex there exists a dual perfect complex E∨, see
Cohomology, Lemma 20.50.5. Observe that RHom(E,G•) = E∨⊗L

OX
G•. Thus the

perfectness of K follows from Lemma 36.27.2. □

We will generalize the following lemma to flat and proper morphisms over general
bases in Lemma 36.30.4 and to perfect proper morphisms in More on Morphisms,
Lemma 37.61.13.

Lemma 36.27.4.0B6F Let S be a Noetherian scheme. Let f : X → S be a flat proper
morphism of schemes. Let E ∈ D(OX) be perfect. Then Rf∗E is a perfect object
of D(OS).

Proof. We claim that Lemma 36.27.1 applies. Conditions (1) and (2) are imme-
diate. Condition (3) is local on X. Thus we may assume X and S affine and E
represented by a strictly perfect complex of OX -modules. Since OX is flat as a
sheaf of f−1OS-modules we find that condition (3) is satisfied. □

36.28. A projection formula for Ext

08IC Lemma 36.28.3 (or similar results in the literature) is sometimes used to verify one
of Artin’s criteria for Quot functors, Hilbert schemes, and other moduli problems.
Suppose that f : X → S is a proper, flat, finitely presented morphism of schemes
and E ∈ D(OX) is perfect. Here the lemma says

ExtiX(E, f∗F) = ExtiS((Rf∗E
∨)∨,F)

for F quasi-coherent on S. Writing it this way makes it look like a projection
formula for Ext and indeed the result follows rather easily from Lemma 36.22.1.

Lemma 36.28.1.0A1F Assumptions and notation as in Lemma 36.27.2. Then there are
functorial isomorphisms

Hi(S,K ⊗L
OS
F) −→ Hi(X,E ⊗L

OX
(G• ⊗OX

f∗F))
for F quasi-coherent on S compatible with boundary maps (see proof).

Proof. We have
G• ⊗L

OX
Lf∗F = G• ⊗L

f−1OS
f−1F = G• ⊗f−1OS

f−1F = G• ⊗OX
f∗F

the first equality by Cohomology, Lemma 20.27.4, the second as Gn is a flat f−1OS-
module, and the third by definition of pullbacks. Hence we obtain

Hi(X,E ⊗L
OX

(G• ⊗OX
f∗F)) = Hi(X,E ⊗L

OX
G• ⊗L

OX
Lf∗F)

= Hi(S,Rf∗(E ⊗L
OX
G• ⊗L

OX
Lf∗F))

= Hi(S,Rf∗(E ⊗L
OX
G•)⊗L

OS
F)

= Hi(S,K ⊗L
OS
F)

The first equality by the above, the second by Leray (Cohomology, Lemma 20.13.1),
and the third equality by Lemma 36.22.1. The statement on boundary maps means

https://stacks.math.columbia.edu/tag/0DJR
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the following: Given a short exact sequence 0 → F1 → F2 → F3 → 0 of quasi-
coherent OS-modules, the isomorphisms fit into commutative diagrams

Hi(S,K ⊗L
OS
F3) //

δ

��

Hi(X,E ⊗L
OX

(G• ⊗OX
f∗F3))

δ

��
Hi+1(S,K ⊗L

OS
F1) // Hi+1(X,E ⊗L

OX
(G• ⊗OX

f∗F1))

where the boundary maps come from the distinguished triangle
K ⊗L

OS
F1 → K ⊗L

OS
F2 → K ⊗L

OS
F3 → K ⊗L

OS
F1[1]

and the distinguished triangle in D(OX) associated to the short exact sequence
0→ G• ⊗OX

f∗F1 → G• ⊗OX
f∗F2 → G• ⊗OX

f∗F3 → 0
of complexes of OX -modules. This sequence is exact because Gn is flat over S. We
omit the verification of the commutativity of the displayed diagram. □

Lemma 36.28.2.08ID Assumptions and notation as in Lemma 36.27.3. Then there are
functorial isomorphisms

Hi(S,K ⊗L
OS
F) −→ ExtiOX

(E,G• ⊗OX
f∗F)

for F quasi-coherent on S compatible with boundary maps (see proof).

Proof. As in the proof of Lemma 36.27.3 let E∨ be the dual perfect complex and
recall that K = Rf∗(E∨ ⊗L

OX
G•). Since we also have

ExtiOX
(E,G• ⊗OX

f∗F) = Hi(X,E∨ ⊗L
OX

(G• ⊗OX
f∗F))

by construction of E∨, the existence of the isomorphisms follows from Lemma
36.28.1 applied to E∨ and G•. The statement on boundary maps means the follow-
ing: Given a short exact sequence 0→ F1 → F2 → F3 → 0 then the isomorphisms
fit into commutative diagrams

Hi(S,K ⊗L
OS
F3) //

δ

��

ExtiOX
(E,G• ⊗OX

f∗F3)

δ

��
Hi+1(S,K ⊗L

OS
F1) // Exti+1

OX
(E,G• ⊗OX

f∗F1)

where the boundary maps come from the distinguished triangle
K ⊗L

OS
F1 → K ⊗L

OS
F2 → K ⊗L

OS
F3 → K ⊗L

OS
F1[1]

and the distinguished triangle in D(OX) associated to the short exact sequence
0→ G• ⊗OX

f∗F1 → G• ⊗OX
f∗F2 → G• ⊗OX

f∗F3 → 0
of complexes. This sequence is exact because G is flat over S. We omit the verifi-
cation of the commutativity of the displayed diagram. □

Lemma 36.28.3.08IF Let f : X → S be a morphism of schemes, E ∈ D(OX) and G• a
complex of OX -modules. Assume

(1) S is Noetherian,
(2) f is locally of finite type,
(3) E ∈ D−

Coh(OX),

https://stacks.math.columbia.edu/tag/08ID
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(4) G• is a bounded complex of coherent OX -modules flat over S with support
proper over S.

Then the following two statements are true
(A) for every m ∈ Z there exists a perfect object K of D(OS) and functorial

maps
αiF : ExtiOX

(E,G• ⊗OX
f∗F) −→ Hi(S,K ⊗L

OS
F)

for F quasi-coherent on S compatible with boundary maps (see proof)
such that αiF is an isomorphism for i ≤ m

(B) there exists a pseudo-coherent L ∈ D(OS) and functorial isomorphisms
ExtiOS

(L,F) −→ ExtiOX
(E,G• ⊗OX

f∗F)
for F quasi-coherent on S compatible with boundary maps.

Proof. Proof of (A). Suppose Gi is nonzero only for i ∈ [a, b]. We may replace
X by a quasi-compact open neighbourhood of the union of the supports of Gi.
Hence we may assume X is Noetherian. In this case X and f are quasi-compact
and quasi-separated. Choose an approximation P → E by a perfect complex P of
(X,E,−m− 1 + a) (possible by Theorem 36.14.6). Then the induced map

ExtiOX
(E,G• ⊗OX

f∗F) −→ ExtiOX
(P,G• ⊗OX

f∗F)
is an isomorphism for i ≤ m. Namely, the kernel, resp. cokernel of this map is a
quotient, resp. submodule of

ExtiOX
(C,G• ⊗OX

f∗F) resp. Exti+1
OX

(C,G• ⊗OX
f∗F)

where C is the cone of P → E. Since C has vanishing cohomology sheaves in degrees
≥ −m−1+a these Ext-groups are zero for i ≤ m+1 by Derived Categories, Lemma
13.27.3. This reduces us to the case that E is a perfect complex which is Lemma
36.28.2. The statement on boundaries is explained in the proof of Lemma 36.28.2.
Proof of (B). As in the proof of (A) we may assume X is Noetherian. Observe that
E is pseudo-coherent by Lemma 36.10.3. By Lemma 36.19.1 we can write E =
hocolimEn with En perfect and En → E inducing an isomorphism on truncations
τ≥−n. Let E∨

n be the dual perfect complex (Cohomology, Lemma 20.50.5). We
obtain an inverse system . . . → E∨

3 → E∨
2 → E∨

1 of perfect objects. This in turn
gives rise to an inverse system

. . .→ K3 → K2 → K1 with Kn = Rf∗(E∨
n ⊗L

OX
G•)

perfect on S, see Lemma 36.27.2. By Lemma 36.28.2 and its proof and by the
arguments in the previous paragraph (with P = En) for any quasi-coherent F on
S we have functorial canonical maps

ExtiOX
(E,G• ⊗OX

f∗F)

tt ))
Hi(S,Kn+1 ⊗L

OS
F) // Hi(S,Kn ⊗L

OS
F)

which are isomorphisms for i ≤ n+ a. Let Ln = K∨
n be the dual perfect complex.

Then we see that L1 → L2 → L3 → . . . is a system of perfect objects in D(OS)
such that for any quasi-coherent F on S the maps

ExtiOS
(Ln+1,F) −→ ExtiOS

(Ln,F)
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are isomorphisms for i ≤ n + a − 1. This implies that Ln → Ln+1 induces
an isomorphism on truncations τ≥−n−a+2 (hint: take cone of Ln → Ln+1 and
look at its last nonvanishing cohomology sheaf). Thus L = hocolimLn is pseudo-
coherent, see Lemma 36.19.1. The mapping property of homotopy colimits gives
that ExtiOS

(L,F) = ExtiOS
(Ln,F) for i ≤ n+ a− 3 which finishes the proof. □

Remark 36.28.4.0DJS The pseudo-coherent complex L of part (B) of Lemma 36.28.3 is
canonically associated to the situation. For example, formation of L as in (B) is
compatible with base change. In other words, given a cartesian diagram

X ′
g′
//

f ′

��

X

f

��
S′ g // S

of schemes we have canonical functorial isomorphisms
ExtiOS′ (Lg∗L,F ′) −→ ExtiOX

(L(g′)∗E, (g′)∗G• ⊗OX′ (f ′)∗F ′)
for F ′ quasi-coherent on S′. Obsere that we do not use derived pullback on G• on
the right hand side. If we ever need this, we will formulate a precise result here
and give a detailed proof.

36.29. Limits and derived categories

09RC In this section we collect some results about the derived category of a scheme which
is the limit of an inverse system of schemes. More precisely, we will work in the
following setting.

Situation 36.29.1.09RD Let S = limi∈I Si be a limit of a directed system of schemes with
affine transition morphisms fi′i : Si′ → Si. We assume that Si is quasi-compact
and quasi-separated for all i ∈ I. We denote fi : S → Si the projection. We also
fix an element 0 ∈ I.

Lemma 36.29.2.09RE In Situation 36.29.1. Let E0 and K0 be objects of D(OS0). Set
Ei = Lf∗

i0E0 and Ki = Lf∗
i0K0 for i ≥ 0 and set E = Lf∗

0E0 and K = Lf∗
0K0.

Then the map
colimi≥0 HomD(OSi

)(Ei,Ki) −→ HomD(OS)(E,K)
is an isomorphism if either

(1) E0 is perfect and K0 ∈ DQCoh(OS0), or
(2) E0 is pseudo-coherent and K0 ∈ DQCoh(OS0) has finite tor dimension.

Proof. For every open U0 ⊂ S0 consider the condition P that the canonical map
colimi≥0 HomD(OUi

)(Ei|Ui ,Ki|Ui) −→ HomD(OU )(E|U ,K|U )

is an isomorphism, where U = f−1
0 (U0) and Ui = f−1

i0 (U0). We will prove P
holds for all quasi-compact opens U0 by the induction principle of Cohomology of
Schemes, Lemma 30.4.1. Condition (2) of this lemma follows immediately from
Mayer-Vietoris for hom in the derived category, see Cohomology, Lemma 20.33.3.
Thus it suffices to prove the lemma when S0 is affine.
Assume S0 is affine. Say S0 = Spec(A0), Si = Spec(Ai), and S = Spec(A). We will
use Lemma 36.3.5 without further mention.

https://stacks.math.columbia.edu/tag/0DJS
https://stacks.math.columbia.edu/tag/09RD
https://stacks.math.columbia.edu/tag/09RE
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In case (1) the object E•
0 corresponds to a finite complex of finite projective A0-

modules, see Lemma 36.10.7. We may represent the object K0 by a K-flat complex
K•

0 of A0-modules. In this situation we are trying to prove
colimi≥0 HomD(Ai)(E•

0 ⊗A0 Ai,K
•
0 ⊗A0 Ai) −→ HomD(A)(E•

0 ⊗A0 A,K
•
0 ⊗A0 A)

Because E•
0 is a bounded above complex of projective modules we can rewrite this

as
colimi≥0 HomK(A0)(E•

0 ,K
•
0 ⊗A0 Ai) −→ HomK(A0)(E•

0 ,K
•
0 ⊗A0 A)

Since there are only a finite number of nonzero modules En0 and since these are all
finitely presented modules, this map is an isomorphism.
In case (2) the object E0 corresponds to a bounded above complex E•

0 of finite free
A0-modules, see Lemma 36.10.2. We may represent K0 by a finite complex K•

0
of flat A0-modules, see Lemma 36.10.4 and More on Algebra, Lemma 15.66.3. In
particular K•

0 is K-flat and we can argue as before to arrive at the map
colimi≥0 HomK(A0)(E•

0 ,K
•
0 ⊗A0 Ai) −→ HomK(A0)(E•

0 ,K
•
0 ⊗A0 A)

It is clear that this map is an isomorphism (only a finite number of terms are
involved since K•

0 is bounded). □

Lemma 36.29.3.09RF In Situation 36.29.1 the category of perfect objects of D(OS) is
the colimit of the categories of perfect objects of D(OSi).

Proof. For every open U0 ⊂ S0 consider the condition P that the functor
colimi≥0 Dperf (OUi) −→ Dperf (OU )

is an equivalence where perf indicates the full subcategory of perfect objects and
where U = f−1

0 (U0) and Ui = f−1
i0 (U0). We will prove P holds for all quasi-

compact opens U0 by the induction principle of Cohomology of Schemes, Lemma
30.4.1. First, we observe that we already know the functor is fully faithful by
Lemma 36.29.2. Thus it suffices to prove essential surjectivity.
We first check condition (2) of the induction principle. Thus suppose that we have
S0 = U0 ∪ V0 and that P holds for U0, V0, and U0 ∩ V0. Let E be a perfect object
of D(OS). We can find i ≥ 0 and EU,i perfect on Ui and EV,i perfect on Vi whose
pullback to U and V are isomorphic to E|U and E|V . Denote

a : EU,i → (Rfi,∗E)|Ui and b : EV,i → (Rfi,∗E)|Vi
the maps adjoint to the isomorphisms Lf∗

i EU,i → E|U and Lf∗
i EV,i → E|V . By

fully faithfulness, after increasing i, we can find an isomorphism c : EU,i|Ui∩Vi →
EV,i|Ui∩Vi which pulls back to the identifications

Lf∗
i EU,i|U∩V → E|U∩V → Lf∗

i EV,i|U∩V .

Apply Cohomology, Lemma 20.45.1 to get an object Ei on Si and a map d : Ei →
Rfi,∗E which restricts to the maps a and b over Ui and Vi. Then it is clear that Ei
is perfect and that d is adjoint to an isomorphism Lf∗

i Ei → E.
Finally, we check condition (1) of the induction principle, in other words, we check
the lemma holds when S0 is affine. Say S0 = Spec(A0), Si = Spec(Ai), and
S = Spec(A). Using Lemmas 36.3.5 and 36.10.7 we see that we have to show that

Dperf (A) = colimDperf (Ai)

https://stacks.math.columbia.edu/tag/09RF
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This is clear from the fact that perfect complexes over rings are given by finite
complexes of finite projective (hence finitely presented) modules. See More on
Algebra, Lemma 15.74.17 for details. □

36.30. Cohomology and base change, VI

0A1G A final section on cohomology and base change continuing the discussion of Sections
36.22, 36.26, and 36.27. An easy to grok special case is given in Remark 36.30.2.

Lemma 36.30.1.0A1H Let f : X → S be a morphism of finite presentation. Let E ∈
D(OX) be a perfect object. Let G• be a bounded complex of finitely presented
OX -modules, flat over S, with support proper over S. Then

K = Rf∗(E ⊗L
OX
G•)

is a perfect object of D(OS) and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 36.26.4. Thus it suffices to show
that K is a perfect object. If S is Noetherian, then this follows from Lemma 36.27.2.
We will reduce to this case by Noetherian approximation. We encourage the reader
to skip the rest of this proof.
The question is local on S, hence we may assume S is affine. Say S = Spec(R). We
write R = colimRi as a filtered colimit of Noetherian rings Ri. By Limits, Lemma
32.10.1 there exists an i and a scheme Xi of finite presentation over Ri whose base
change to R is X. By Limits, Lemma 32.10.2 we may assume after increasing i,
that there exists a bounded complex of finitely presented OXi -modules G•

i whose
pullback to X is G•. After increasing i we may assume Gni is flat over Ri, see
Limits, Lemma 32.10.4. After increasing i we may assume the support of Gni is
proper over Ri, see Limits, Lemma 32.13.5 and Cohomology of Schemes, Lemma
30.26.7. Finally, by Lemma 36.29.3 we may, after increasing i, assume there exists
a perfect object Ei of D(OXi) whose pullback to X is E. Applying Lemma 36.27.2
to Xi → Spec(Ri), Ei, G•

i and using the base change property already shown we
obtain the result. □

Remark 36.30.2.0A1I Let R be a ring. Let X be a scheme of finite presentation over
R. Let G be a finitely presented OX -module flat over R with support proper over
R. By Lemma 36.30.1 there exists a finite complex of finite projective R-modules
M• such that we have

RΓ(XR′ ,GR′) = M• ⊗R R′

functorially in the R-algebra R′.

Lemma 36.30.3.0CSC Let f : X → S be a morphism of finite presentation. Let E ∈
D(OX) be a pseudo-coherent object. Let G• be a bounded above complex of finitely
presented OX -modules, flat over S, with support proper over S. Then

K = Rf∗(E ⊗L
OX
G•)

is a pseudo-coherent object of D(OS) and its formation commutes with arbitrary
base change.

Proof. The statement on base change is Lemma 36.26.4. Thus it suffices to show
that K is a pseudo-coherent object. This will follow from Lemma 36.30.1 by ap-
proximation by perfect complexes. We encourage the reader to skip the rest of the
proof.

https://stacks.math.columbia.edu/tag/0A1H
https://stacks.math.columbia.edu/tag/0A1I
https://stacks.math.columbia.edu/tag/0CSC
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The question is local on S, hence we may assume S is affine. Then X is quasi-
compact and quasi-separated. Moreover, there exists an integer N such that total
direct image Rf∗ : DQCoh(OX) → DQCoh(OS) has cohomological dimension N as
explained in Lemma 36.4.1. Choose an integer b such that Gi = 0 for i > b. It
suffices to show that K is m-pseudo-coherent for every m. Choose an approximation
P → E by a perfect complex P of (X,E,m−N−1−b). This is possible by Theorem
36.14.6. Choose a distinguished triangle

P → E → C → P [1]

in DQCoh(OX). The cohomology sheaves of C are zero in degrees ≥ m−N − 1− b.
Hence the cohomology sheaves of C ⊗L G• are zero in degrees ≥ m−N − 1. Thus
the cohomology sheaves of Rf∗(C ⊗L G•) are zero in degrees ≥ m− 1. Hence

Rf∗(P ⊗L G•)→ Rf∗(E ⊗L G•)

is an isomorphism on cohomology sheaves in degrees ≥ m. Next, suppose that
Hi(P ) = 0 for i > a. Then P ⊗L σ≥m−N−1−aG• −→ P ⊗L G• is an isomorphism
on cohomology sheaves in degrees ≥ m−N − 1. Thus again we find that

Rf∗(P ⊗L σ≥m−N−1−aG•)→ Rf∗(P ⊗L G•)

is an isomorphism on cohomology sheaves in degrees ≥ m. By Lemma 36.30.1
the source is a perfect complex. We conclude that K is m-pseudo-coherent as
desired. □

Lemma 36.30.4.0B91 Let S be a scheme. Let f : X → S be a proper morphism of finite
presentation.

(1) Let E ∈ D(OX) be perfect and f flat. Then Rf∗E is a perfect object of
D(OS) and its formation commutes with arbitrary base change.

(2) Let G be an OX -module of finite presentation, flat over S. Then Rf∗G
is a perfect object of D(OS) and its formation commutes with arbitrary
base change.

Proof. Special cases of Lemma 36.30.1 applied with (1) G• equal to OX in degree
0 and (2) E = OX and G• consisting of G sitting in degree 0. □

Lemma 36.30.5.0CSD Let S be a scheme. Let f : X → S be a flat proper morphism of
finite presentation. Let E ∈ D(OX) be pseudo-coherent. Then Rf∗E is a pseudo-
coherent object of D(OS) and its formation commutes with arbitrary base change.

More generally, if f : X → S is proper and E on X is pseudo-coherent relative
to S (More on Morphisms, Definition 37.59.2), then Rf∗E is pseudo-coherent (but
formation does not commute with base change in this generality). See [Kie72].

Proof. Special case of Lemma 36.30.3 applied with G• equal to OX in degree 0. □

Lemma 36.30.6.0D2Q Let R be a ring. Let X be a scheme and let f : X → Spec(R) be
proper, flat, and of finite presentation. Let (Mn) be an inverse system of R-modules
with surjective transition maps. Then the canonical map

OX ⊗R (limMn) −→ limOX ⊗RMn

induces an isomorphism from the source to DQX applied to the target.

https://stacks.math.columbia.edu/tag/0B91
https://stacks.math.columbia.edu/tag/0CSD
https://stacks.math.columbia.edu/tag/0D2Q
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Proof. The statement means that for any object E of DQCoh(OX) the induced map

Hom(E,OX ⊗R (limMn)) −→ Hom(E, limOX ⊗RMn)

is an isomorphism. Since DQCoh(OX) has a perfect generator (Theorem 36.15.3)
it suffices to check this for perfect E. By Lemma 36.3.2 we have limOX ⊗RMn =
R limOX ⊗R Mn. The exact functor RHomX(E,−) : DQCoh(OX) → D(R) of
Cohomology, Section 20.44 commutes with products and hence with derived limits,
whence

RHomX(E, limOX ⊗RMn) = R limRHomX(E,OX ⊗RMn)

Let E∨ be the dual perfect complex, see Cohomology, Lemma 20.50.5. We have

RHomX(E,OX ⊗RMn) = RΓ(X,E∨ ⊗L
OX

Lf∗Mn) = RΓ(X,E∨)⊗L
RMn

by Lemma 36.22.1. From Lemma 36.30.4 we see RΓ(X,E∨) is a perfect complex of
R-modules. In particular it is a pseudo-coherent complex and by More on Algebra,
Lemma 15.102.3 we obtain

R limRΓ(X,E∨)⊗L
RMn = RΓ(X,E∨)⊗L

R limMn

as desired. □

Lemma 36.30.7.0A1J Let f : X → S be a morphism of finite presentation. Let E ∈
D(OX) be a perfect object. Let G• be a bounded complex of finitely presented
OX -modules, flat over S, with support proper over S. Then

K = Rf∗RHom(E,G•)

is a perfect object of D(OS) and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 36.26.5. Thus it suffices to show
that K is a perfect object. If S is Noetherian, then this follows from Lemma 36.27.3.
We will reduce to this case by Noetherian approximation. We encourage the reader
to skip the rest of this proof.

The question is local on S, hence we may assume S is affine. Say S = Spec(R). We
write R = colimRi as a filtered colimit of Noetherian rings Ri. By Limits, Lemma
32.10.1 there exists an i and a scheme Xi of finite presentation over Ri whose base
change to R is X. By Limits, Lemma 32.10.2 we may assume after increasing i,
that there exists a bounded complex of finitely presented OXi-modules G•

i whose
pullback to X is G•. After increasing i we may assume Gni is flat over Ri, see
Limits, Lemma 32.10.4. After increasing i we may assume the support of Gni is
proper over Ri, see Limits, Lemma 32.13.5 and Cohomology of Schemes, Lemma
30.26.7. Finally, by Lemma 36.29.3 we may, after increasing i, assume there exists
a perfect object Ei of D(OXi) whose pullback to X is E. Applying Lemma 36.27.3
to Xi → Spec(Ri), Ei, G•

i and using the base change property already shown we
obtain the result. □

36.31. Perfect complexes

0BDH We first talk about jumping loci for betti numbers of perfect complexes. Given a
complex E on a scheme X and a point x of X we often write E ⊗L

OX
κ(x) instead

of the more correct Li∗xE, where ix : x→ X is the canonical morphism.

https://stacks.math.columbia.edu/tag/0A1J
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Lemma 36.31.1.0BDI Let X be a scheme. Let E ∈ D(OX) be pseudo-coherent (for
example perfect). For any i ∈ Z consider the function

βi : X −→ {0, 1, 2, . . .}, x 7−→ dimκ(x) H
i(E ⊗L

OX
κ(x))

Then we have
(1) formation of βi commutes with arbitrary base change,
(2) the functions βi are upper semi-continuous, and
(3) the level sets of βi are locally constructible in X.

Proof. Consider a morphism of schemes f : Y → X and a point y ∈ Y . Let x be
the image of y and consider the commutative diagram

y
j
//

g

��

Y

f

��
x

i // X

Then we see that Lg∗ ◦ Li∗ = Lj∗ ◦ Lf∗. This implies that the function β′
i associ-

ated to the pseudo-coherent complex Lf∗E is the pullback of the function βi, in a
formula: β′

i = βi ◦ f . This is the meaning of (1).
Fix i and let x ∈ X. It is enough to prove (2) and (3) holds in an open neighbour-
hood of x, hence we may assume X affine. Then we can represent E by a bounded
above complex F• of finite free modules (Lemma 36.13.3). Then P = σ≥i−1F• is
a perfect object and P → E induces an isomorphism

Hi(P ⊗L
OX

κ(x′))→ Hi(E ⊗L
OX

κ(x′))
for all x′ ∈ X. Thus we may assume E is perfect. In this case by More on Algebra,
Lemma 15.75.6 there exists an affine open neighbourhood U of x and a ≤ b such
that E|U is represented by a complex

. . .→ 0→ O⊕βa(x)
U → O⊕βa+1(x)

U → . . .→ O⊕βb−1(x)
U → O⊕βb(x)

U → 0→ . . .

(This also uses earlier results to turn the problem into algebra, for example Lemmas
36.3.5 and 36.10.7.) It follows immediately that βi(x′) ≤ βi(x) for all x′ ∈ U . This
proves that βi is upper semi-continuous.
To prove (3) we may assume that X is affine and E is given by a complex of finite
free OX -modules (for example by arguing as in the previous paragraph, or by using
Cohomology, Lemma 20.49.3). Thus we have to show that given a complex

O⊕a
X → O⊕b

X → O
⊕c
X

the function associated to a point x ∈ X the dimension of the cohomology of κ⊕a
x →

κ⊕b
x → κ⊕c

x in the middle has constructible level sets. Let A ∈ Mat(a×b,Γ(X,OX))
be the matrix of the first arrow. The rank of the image of A in Mat(a × b, κ(x))
is equal to r if all (r + 1) × (r + 1)-minors of A vanish at x and there is some
r× r-minor of A which does not vanish at x. Thus the set of points where the rank
is r is a constructible locally closed set. Arguing similarly for the second arrow and
putting everything together we obtain the desired result. □

Lemma 36.31.2.0BDJ Let X be a scheme. Let E ∈ D(OX) be perfect. The function

χE : X −→ Z, x 7−→
∑

(−1)i dimκ(x) H
i(E ⊗L

OX
κ(x))

is locally constant on X.

https://stacks.math.columbia.edu/tag/0BDI
https://stacks.math.columbia.edu/tag/0BDJ
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Proof. By Cohomology, Lemma 20.49.3 we see that we can, locally on X, represent
E by a finite complex E• of finite free OX -modules. On such an open the function
χE is constant with value

∑
(−1)irank(E i). □

Lemma 36.31.3.0BDK Let X be a scheme. Let E ∈ D(OX) be perfect. Given i, r ∈ Z,
there exists an open subscheme U ⊂ X characterized by the following

(1) E|U ∼= Hi(E|U )[−i] and Hi(E|U ) is a locally free OU -module of rank r,
(2) a morphism f : Y → X factors through U if and only if Lf∗E is isomor-

phic to a locally free module of rank r placed in degree i.

Proof. Let βj : X → {0, 1, 2, . . .} for j ∈ Z be the functions of Lemma 36.31.1.
Then the set

W = {x ∈ X | βj(x) ≤ 0 for all j ̸= i}
is open in X and its formation commutes with pullback to any Y over X. This
follows from the lemma using that apriori in a neighbourhood of any point only a
finite number of the βj are nonzero. Thus we may replace X by W and assume
that βj(x) = 0 for all x ∈ X and all j ̸= i. In this case Hi(E) is a finite locally
free module and E ∼= Hi(E)[−i], see for example More on Algebra, Lemma 15.75.6.
Thus X is the disjoint union of the open subschemes where the rank of Hi(E) is
fixed and we win. □

Lemma 36.31.4.0BDL Let X be a scheme. Let E ∈ D(OX) be perfect of tor-amplitude
in [a, b] for some a, b ∈ Z. Let r ≥ 0. Then there exists a locally closed subscheme
j : Z → X characterized by the following

(1) Ha(Lj∗E) is a locally free OZ-module of rank r, and
(2) a morphism f : Y → X factors through Z if and only if for all morphisms

g : Y ′ → Y the OY ′ -module Ha(L(f ◦ g)∗E) is locally free of rank r.
Moreover, j : Z → X is of finite presentation and we have

(3) if f : Y → X factors as Y g−→ Z → X, then Ha(Lf∗E) = g∗Ha(Lj∗E),
(4) if βa(x) ≤ r for all x ∈ X, then j is a closed immersion and given f : Y →

X the following are equivalent
(a) f : Y → X factors through Z,
(b) H0(Lf∗E) is a locally free OY -module of rank r,
and if r = 1 these are also equivalent to
(c) OY → HomOY

(H0(Lf∗E), H0(Lf∗E)) is injective.

Proof. First, let U ⊂ X be the locally constructible open subscheme where the
function βa of Lemma 36.31.1 has values ≤ r. Let f : Y → X be as in (2). Then
for any y ∈ Y we have βa(Lf∗E) = r hence y maps into U by Lemma 36.31.1.
Hence f as in (2) factors through U . Thus we may replace X by U and assume
that βa(x) ∈ {0, 1, . . . , r} for all x ∈ X. We will show that in this case there is a
closed subscheme Z ⊂ X cut out by a finite type quasi-coherent ideal characterized
by the equivalence of (4) (a), (b) and (4)(c) if r = 1 and that (3) holds. This
will finish the proof because it will a fortiori show that morphisms as in (2) factor
through Z.

If x ∈ X and βa(x) < r, then there is an open neighbourhood of x where βa < r
(Lemma 36.31.1). In this way we see that set theoretically at least Z is a closed
subset.

https://stacks.math.columbia.edu/tag/0BDK
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To get a scheme theoretic structure, consider a point x ∈ X with βa(x) = r. Set
β = βa+1(x). By More on Algebra, Lemma 15.75.6 there exists an affine open
neighbourhood U of x such that K|U is represented by a complex

. . .→ 0→ O⊕r
U

(fij)−−−→ O⊕β
U → . . .→ O⊕βb−1(x)

U → O⊕βb(x)
U → 0→ . . .

(This also uses earlier results to turn the problem into algebra, for example Lemmas
36.3.5 and 36.10.7.) Now, if g : Y → U is any morphism of schemes such that g♯(fij)
is nonzero for some pair i, j, then H0(Lg∗E) is not a locally free OY -module of
rank r. See More on Algebra, Lemma 15.15.7. Trivially H0(Lg∗E) is a locally
free OY -module if g♯(fij) = 0 for all i, j. Thus we see that over U the closed
subscheme cut out by all fij satisfies (3) and we have the equivalence of (4)(a)
and (b). The characterization of Z shows that the locally constructed patches glue
(details omitted). Finally, if r = 1 then (4)(c) is equivalent to (4)(b) because in
this case locally H0(Lg∗E) ⊂ OY is the annihilator of the ideal generated by the
elements g♯(fij). □

36.32. Applications

0BDM Mostly applications of cohomology and base change. In the future we may generalize
these results to the situation discussed in Lemma 36.30.1.

Lemma 36.32.1.0BDN Let f : X → S be a flat, proper morphism of finite presentation.
Let F be an OX -module of finite presentation, flat over S. For fixed i ∈ Z consider
the function

βi : S → {0, 1, 2, . . .}, s 7−→ dimκ(s) H
i(Xs,Fs)

Then we have
(1) formation of βi commutes with arbitrary base change,
(2) the functions βi are upper semi-continuous, and
(3) the level sets of βi are locally constructible in S.

Proof. By cohomology and base change (more precisely by Lemma 36.30.4) the
object K = Rf∗F is a perfect object of the derived category of S whose formation
commutes with arbitrary base change. In particular we have

Hi(Xs,Fs) = Hi(K ⊗L
OS

κ(s))

Thus the lemma follows from Lemma 36.31.1. □

Lemma 36.32.2.0B9T Let f : X → S be a flat, proper morphism of finite presentation.
Let F be an OX -module of finite presentation, flat over S. The function

s 7−→ χ(Xs,Fs)

is locally constant on S. Formation of this function commutes with base change.

Proof. By cohomology and base change (more precisely by Lemma 36.30.4) the
object K = Rf∗F is a perfect object of the derived category of S whose formation
commutes with arbitrary base change. Thus we have to show the map

s 7−→
∑

(−1)i dimκ(s) H
i(K ⊗L

OS
κ(s))

is locally constant on S. This is Lemma 36.31.2. □

https://stacks.math.columbia.edu/tag/0BDN
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Lemma 36.32.3.0B9S Let f : X → S be a proper morphism of finite presentation. Let F
be an OX -module of finite presentation, flat over S. Fix i, r ∈ Z. Then there exists
an open subscheme U ⊂ S with the following property: A morphism T → S factors
through U if and only if RfT,∗FT is isomorphic to a finite locally free module of
rank r placed in degree i.

Proof. By cohomology and base change (more precisely by Lemma 36.30.4) the
object K = Rf∗F is a perfect object of the derived category of S whose formation
commutes with arbitrary base change. Thus this lemma follows immediately from
Lemma 36.31.3. □

Lemma 36.32.4.0D4E Let f : X → S be a morphism of finite presentation. Let F be
an OX -module of finite presentation, flat over S with support proper over S. If
Rif∗F = 0 for i > 0, then f∗F is locally free and its formation commutes with
arbitrary base change (see proof for explanation).

Proof. By Lemma 36.30.1 the object E = Rf∗F of D(OS) is perfect and its for-
mation commutes with arbitrary base change, in the sense that Rf ′

∗(g′)∗F = Lg∗E
for any cartesian diagram

X ′
g′
//

f ′

��

X

f

��
S′ g // S

of schemes. Since there is never any cohomology in degrees < 0, we see that E
(locally) has tor-amplitude in [0, b] for some b. IfHi(E) = Rif∗F = 0 for i > 0, then
E has tor amplitude in [0, 0]. Whence E = H0(E)[0]. We conclude H0(E) = f∗F
is finite locally free by More on Algebra, Lemma 15.74.2 (and the characterization
of finite projective modules in Algebra, Lemma 10.78.2). Commutation with base
change means that g∗f∗F = f ′

∗(g′)∗F for a diagram as above and it follows from
the already established commutation of base change for E. □

Lemma 36.32.5.0E62 Let f : X → S be a morphism of schemes. Assume
(1) f is proper, flat, and of finite presentation, and
(2) for all s ∈ S we have κ(s) = H0(Xs,OXs).

Then we have
(a) f∗OX = OS and this holds after any base change,
(b) locally on S we have

Rf∗OX = OS ⊕ P
in D(OS) where P is perfect of tor amplitude in [1,∞).

Proof. By cohomology and base change (Lemma 36.30.4) the complex E = Rf∗OX
is perfect and its formation commutes with arbitrary base change. This first implies
that E has tor aplitude in [0,∞). Second, it implies that for s ∈ S we have
H0(E⊗L κ(s)) = H0(Xs,OXs) = κ(s). It follows that the map OS → Rf∗OX = E
induces an isomorphism OS ⊗ κ(s) → H0(E ⊗L κ(s)). Hence H0(E) ⊗ κ(s) →
H0(E ⊗L κ(s)) is surjective and we may apply More on Algebra, Lemma 15.76.2
to see that, after replacing S by an affine open neighbourhood of s, we have a
decomposition E = H0(E) ⊕ τ≥1E with τ≥1E perfect of tor amplitude in [1,∞).
Since E has tor amplitude in [0,∞) we find that H0(E) is a flat OS-module. It
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follows that H0(E) is a flat, perfect OS-module, hence finite locally free, see More
on Algebra, Lemma 15.74.2 (and the fact that finite projective modules are finite
locally free by Algebra, Lemma 10.78.2). It follows that the map OS → H0(E) is
an isomorphism as we can check this after tensoring with residue fields (Algebra,
Lemma 10.79.4). □

Lemma 36.32.6.0E0L Let f : X → S be a morphism of schemes. Assume
(1) f is proper, flat, and of finite presentation, and
(2) the geometric fibres of f are reduced and connected.

Then f∗OX = OS and this holds after any base change.

Proof. By Lemma 36.32.5 it suffices to show that κ(s) = H0(Xs,OXs) for all s ∈ S.
This follows from Varieties, Lemma 33.9.3 and the fact that Xs is geometrically
connected and geometrically reduced. □

Lemma 36.32.7.0G7X Let f : X → S be a proper morphism of schemes. Let s ∈ S

and let e ∈ H0(Xs,OXs) be an idempotent. Then e is in the image of the map
(f∗OX)s → H0(Xs,OXs).

Proof. Let Xs = T1 ⨿ T2 be the disjoint union decomposition with T1 and T2
nonempty and open and closed in Xs corresponding to e, i.e., such that e is iden-
titically 1 on T1 and identically 0 on T2.
Assume S is Noetherian. We will use the theorem on formal functions in the form
of Cohomology of Schemes, Lemma 30.20.7. It tells us that

(f∗OX)∧
s = limnH

0(Xn,OXn)
where Xn is the nth infinitesimal neighbourhood of Xs. Since the underlying topo-
logical space of Xn is equal to that of Xs we obtain for all n a disjoint union
decomposition of schemes Xn = T1,n⨿T2,n where the underlying topological space
of Ti,n is Ti for i = 1, 2. This means H0(Xn,OXn) contains a nontrivial idempo-
tent en, namely the function which is identically 1 on T1,n and identically 0 on
T2,n. It is clear that en+1 restricts to en on Xn. Hence e∞ = lim en is a nontriv-
ial idempotent of the limit. Thus e∞ is an element of the completion of (f∗OX)s
mapping to e in H0(Xs,OXs). Since the map (f∗OX)∧

s → H0(Xs,OXs) factors
through (f∗OX)∧

s /ms(f∗OX)∧
s = (f∗OX)s/ms(f∗OX)s (Algebra, Lemma 10.96.3)

we conclude that e is in the image of the map (f∗OX)s → H0(Xs,OXs) as desired.
General case: we reduce the general case to the Noetherian case by limit argu-
ments. We urge the reader to skip the proof. We may replace S by an affine open
neighbourhood of s. Thus we may and do assume that S is affine. By Limits,
Lemma 32.13.3 we can write (f : X → S) = lim(fi : Xi → Si) with fi proper and
Si Noetherian. Denote si ∈ Si the image of s. Then s = lim si, see Limits, Lemma
32.4.4. Then Xs = X ×S s = limXi ×Si si = limXi,si because limits commute
with limits (Categories, Lemma 4.14.10). Hence e is the image of some idempotent
ei ∈ H0(Xi,si ,OXi,si ) by Limits, Lemma 32.4.7. By the Noetherian case there is
an element ẽi in the stalk (fi,∗OXi)si mapping to ei. Taking the pullback of ẽi we
get an element ẽ of (f∗OX)s mapping to e and the proof is complete. □

Lemma 36.32.8.0G7Y Let f : X → S be a morphism of schemes. Let s ∈ S. Assume
(1) f is proper, flat, and of finite presentation, and
(2) the fibre Xs is geometrically reduced.
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Then, after replacing S by an open neighbourhood of s, there exists a direct sum
decomposition Rf∗OX = f∗OX ⊕ P in D(OS) where f∗OX is a finite étale OS-
algebra and P is a perfect of tor amplitude in [1,∞).
Proof. The proof of this lemma is similar to the proof of Lemma 36.32.5 which we
suggest the reader read first. By cohomology and base change (Lemma 36.30.4) the
complex E = Rf∗OX is perfect and its formation commutes with arbitrary base
change. This first implies that E has tor aplitude in [0,∞).
We claim that after replacing S by an open neighbourhood of s we can find a direct
sum decomposition E = H0(E) ⊕ τ≥1E in D(OS) with τ≥1E of tor amplitude in
[1,∞). Assume the claim is true for now and assume we’ve made the replacement
so we have the direct sum decomposition. Since E has tor amplitude in [0,∞)
we find that H0(E) is a flat OS-module. Hence H0(E) is a flat, perfect OS-
module, hence finite locally free, see More on Algebra, Lemma 15.74.2 (and the fact
that finite projective modules are finite locally free by Algebra, Lemma 10.78.2).
Of course H0(E) = f∗OX is an OS-algebra. By cohomology and base change
we obtain H0(E) ⊗ κ(s) = H0(Xs,OXs). By Varieties, Lemma 33.9.3 and the
assumption that Xs is geometrically reduced, we see that κ(s) → H0(E) ⊗ κ(s)
is finite étale. By Morphisms, Lemma 29.36.17 applied to the finite locally free
morphism Spec

S
(H0(E))→ S, we conclude that after shrinking S the OS-algebra

H0(E) is finite étale.
It remains to prove the claim. For this it suffices to prove that the map

(f∗OX)s −→ H0(Xs,OXs) = H0(E ⊗L κ(s))
is surjective, see More on Algebra, Lemma 15.76.2. Choose a flat local ring homo-
morphism OS,s → A such that the residue field k of A is algebraically closed,
see Algebra, Lemma 10.159.1. By flat base change (Cohomology of Schemes,
Lemma 30.5.2) we get H0(XA,OXA) = (f∗OX)s ⊗OS,s

A and H0(Xk,OXk) =
H0(Xs,OXs)⊗κ(s)k. Hence it suffices to prove that H0(XA,OXA)→ H0(Xk,OXk)
is surjective. Since Xk is a reduced proper scheme over k and since k is algebraically
closed, we see that H0(Xk,OXk) is a finite product of copies of k by the already
used Varieties, Lemma 33.9.3. Since by Lemma 36.32.7 the idempotents of this
k-algebra are in the image of H0(XA,OXA)→ H0(Xk,OXk) we conclude. □

36.33. Other applications

0CRN In this section we state and prove some results that can be deduced from the theory
worked out above.
Lemma 36.33.1.0EX6 Let R be a coherent ring. Let X be a scheme of finite presentation
over R. Let G be an OX -module of finite presentation, flat over R, with support
proper over R. Then Hi(X,G) is a coherent R-module.
Proof. Combine Lemma 36.30.1 with More on Algebra, Lemmas 15.64.18 and
15.74.2. □

Lemma 36.33.2.0CRP Let X be a quasi-compact and quasi-separated scheme. Let K be
an object of DQCoh(OX) such that the cohomology sheaves Hi(K) have countable
sets of sections over affine opens. Then for any quasi-compact open U ⊂ X and
any perfect object E in D(OX) the sets

Hi(U,K ⊗L E), Exti(E|U ,K|U )

https://stacks.math.columbia.edu/tag/0EX6
https://stacks.math.columbia.edu/tag/0CRP


36.33. OTHER APPLICATIONS 3104

are countable.

Proof. Using Cohomology, Lemma 20.50.5 we see that it suffices to prove the result
for the groups Hi(U,K ⊗L E). We will use the induction principle to prove the
lemma, see Cohomology of Schemes, Lemma 30.4.1.
First we show that it holds when U = Spec(A) is affine. Namely, we can represent
K by a complex of A-modules K• and E by a finite complex of finite projective A-
modules P •. See Lemmas 36.3.5 and 36.10.7 and our definition of perfect complexes
of A-modules (More on Algebra, Definition 15.74.1). Then (E ⊗L K)|U is repre-
sented by the total complex associated to the double complex P • ⊗A K• (Lemma
36.3.9). Using induction on the length of the complex P • (or using a suitable spec-
tral sequence) we see that it suffices to show that Hi(P a ⊗A K•) is countable for
each a. Since P a is a direct summand of A⊕n for some n this follows from the
assumption that the cohomology group Hi(K•) is countable.
To finish the proof it suffices to show: if U = V ∪W and the result holds for V ,
W , and V ∩W , then the result holds for U . This is an immediate consquence of
the Mayer-Vietoris sequence, see Cohomology, Lemma 20.33.4. □

Lemma 36.33.3.0CRQ Let X be a quasi-compact and quasi-separated scheme such that
the sets of sections of OX over affine opens are countable. Let K be an object of
DQCoh(OX). The following are equivalent

(1) K = hocolimEn with En a perfect object of D(OX), and
(2) the cohomology sheaves Hi(K) have countable sets of sections over affine

opens.

Proof. If (1) is true, then (2) is true because homotopy colimits commutes with
taking cohomology sheaves (by Derived Categories, Lemma 13.33.8) and because a
perfect complex is locally isomorphic to a finite complex of finite free OX -modules
and therefore satisfies (2) by assumption on X.
Assume (2). Choose a K-injective complex K• representing K. Choose a perfect
generator E of DQCoh(OX) and represent it by a K-injective complex I•. According
to Theorem 36.18.3 and its proof there is an equivalence of triangulated categories
F : DQCoh(OX)→ D(A,d) where (A,d) is the differential graded algebra

(A,d) = HomCompdg(OX)(I•, I•)
which maps K to the differential graded module

M = HomCompdg(OX)(I•,K•)

Note that Hi(A) = Exti(E,E) and Hi(M) = Exti(E,K). Moreover, since F is an
equivalence it and its quasi-inverse commute with homotopy colimits. Therefore,
it suffices to write M as a homotopy colimit of compact objects of D(A,d). By
Differential Graded Algebra, Lemma 22.38.3 it suffices show that Exti(E,E) and
Exti(E,K) are countable for each i. This follows from Lemma 36.33.2. □

Lemma 36.33.4.0CRR Let A be a ring. Let X be a scheme of finite presentation over A.
Let f : U → X be a flat morphism of finite presentation. Then

(1) there exists an inverse system of perfect objects Ln of D(OX) such that
RΓ(U,Lf∗K) = hocolim RHomX(Ln,K)

in D(A) functorially in K in DQCoh(OX), and
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(2) there exists a system of perfect objects En of D(OX) such that

RΓ(U,Lf∗K) = hocolim RΓ(X,En ⊗L K)

in D(A) functorially in K in DQCoh(OX).

Proof. By Lemma 36.22.1 we have

RΓ(U,Lf∗K) = RΓ(X,Rf∗OU ⊗L K)

functorially in K. Observe that RΓ(X,−) commutes with homotopy colimits be-
cause it commutes with direct sums by Lemma 36.4.5. Similarly, −⊗LK commutes
with derived colimits because −⊗L K commutes with direct sums (because direct
sums in D(OX) are given by direct sums of representing complexes). Hence to prove
(2) it suffices to write Rf∗OU = hocolimEn for a system of perfect objects En of
D(OX). Once this is done we obtain (1) by setting Ln = E∨

n , see Cohomology,
Lemma 20.50.5.

Write A = colimAi with Ai of finite type over Z. By Limits, Lemma 32.10.1 we
can find an i and morphisms Ui → Xi → Spec(Ai) of finite presentation whose base
change to Spec(A) recovers U → X → Spec(A). After increasing i we may assume
that fi : Ui → Xi is flat, see Limits, Lemma 32.8.7. By Lemma 36.22.5 the derived
pullback of Rfi,∗OUi by g : X → Xi is equal to Rf∗OU . Since Lg∗ commutes with
derived colimits, it suffices to prove what we want for fi. Hence we may assume
that U and X are of finite type over Z.

Assume f : U → X is a morphism of schemes of finite type over Z. To finish the
proof we will show that Rf∗OU is a homotopy colimit of perfect complexes. To see
this we apply Lemma 36.33.3. Thus it suffices to show that Rif∗OU has countable
sets of sections over affine opens. This follows from Lemma 36.33.2 applied to the
structure sheaf. □

36.34. Characterizing pseudo-coherent complexes, II

0CSE This section is a continuation of Section 36.19. In this section we discuss charac-
terizations of pseudo-coherent complexes in terms of cohomology. More results of
this nature can be found in More on Morphisms, Section 37.69.

Lemma 36.34.1.0CSF Let A be a ring. Let R be a (possibly noncommutative) A-algebra
which is finite free as an A-module. Then any object M of D(R) which is pseudo-
coherent in D(A) can be represented by a bounded above complex of finite free
(right) R-modules.

Proof. Choose a complex M• of right R-modules representing M . Since M is
pseudo-coherent we have Hi(M) = 0 for large enough i. Let m be the smallest
index such that Hm(M) is nonzero. Then Hm(M) is a finite A-module by More on
Algebra, Lemma 15.64.3. Thus we can choose a finite free R-module Fm and a map
Fm → Mm such that Fm → Mm → Mm+1 is zero and such that Fm → Hm(M)
is surjective. Picture:

Fm

α

��

// 0

��

// . . .

Mm−1 // Mm // Mm+1 // . . .
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By descending induction on n ≤ m we are going to construct finite free R-modules
F i for i ≥ n, differentials di : F i → F i+1 for i ≥ n, maps α : F i → Ki compatible
with differentials, such that (1) Hi(α) is an isomorphism for i > n and surjective
for i = n, and (2) F i = 0 for i > m. Picture

Fn //

α

��

Fn+1

α

��

// . . . // F i

α

��

// 0

��

// . . .

Mn−1 // Mn // Mn+1 // . . . // M i // M i+1 // . . .

The base case is n = m which we’ve done above. Induction step. Let C• be
the cone on α (Derived Categories, Definition 13.9.1). The long exact sequence of
cohomology shows that Hi(C•) = 0 for i ≥ n. Observe that F • is pseudo-coherent
as a complex of A-modules because R is finite free as an A-module. Hence by More
on Algebra, Lemma 15.64.2 we see that C• is (n−1)-pseudo-coherent as a complex
of A-modules. By More on Algebra, Lemma 15.64.3 we see that Hn−1(C•) is a
finite A-module. Choose a finite free R-module Fn−1 and a map β : Fn−1 → Cn−1

such that the composition Fn−1 → Cn−1 → Cn is zero and such that Fn−1 surjects
onto Hn−1(C•). Since Cn−1 = Mn−1 ⊕ Fn we can write β = (αn−1,−dn−1). The
vanishing of the composition Fn−1 → Cn−1 → Cn implies these maps fit into a
morphism of complexes

Fn−1

αn−1

��

dn−1
// Fn //

α

��

Fn+1

α

��

// . . .

. . . // Mn−1 // Mn // Mn+1 // . . .

Moreover, these maps define a morphism of distinguished triangles

(Fn → . . .) //

��

(Fn−1 → . . .) //

��

Fn−1 //

β

��

(Fn → . . .)[1]

��
(Fn → . . .) // M• // C• // (Fn → . . .)[1]

Hence our choice of β implies that the map of complexes (Fn−1 → . . .) → M•

induces an isomorphism on cohomology in degrees ≥ n and a surjection in degree
n− 1. This finishes the proof of the lemma. □

Lemma 36.34.2.0CSG Let A be a ring. Let n ≥ 0. Let K ∈ DQCoh(OPn
A

). The following
are equivalent

(1) K is pseudo-coherent,
(2) RΓ(Pn

A, E ⊗L K) is a pseudo-coherent object of D(A) for each pseudo-
coherent object E of D(OPn

A
),

(3) RΓ(Pn
A, E ⊗L K) is a pseudo-coherent object of D(A) for each perfect

object E of D(OPn
A

),
(4) RHomPn

A
(E,K) is a pseudo-coherent object of D(A) for each perfect ob-

ject E of D(OPn
A

),
(5) RΓ(Pn

A,K⊗LOPn
A

(d)) is pseudo-coherent object ofD(A) for d = 0, 1, . . . , n.

Proof. Recall that
RHomPn

A
(E,K) = RΓ(Pn

A, RHomOPn
A

(E,K))
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by definition, see Cohomology, Section 20.44. Thus parts (4) and (3) are equivalent
by Cohomology, Lemma 20.50.5.

Since every perfect complex is pseudo-coherent, it is clear that (2) implies (3).

Assume (1) holds. Then E ⊗L K is pseudo-coherent for every pseudo-coherent E,
see Cohomology, Lemma 20.47.5. By Lemma 36.30.5 the direct image of such a
pseudo-coherent complex is pseudo-coherent and we see that (2) is true.

Part (3) implies (5) because we can take E = OPn
A

(d) for d = 0, 1, . . . , n.

To finish the proof we have to show that (5) implies (1). Let P be as in (36.20.0.1)
and R as in (36.20.0.2). By Lemma 36.20.1 we have an equivalence

−⊗L
R P : D(R) −→ DQCoh(OPn

A
)

Let M ∈ D(R) be an object such that M ⊗L P = K. By Differential Graded
Algebra, Lemma 22.35.4 there is an isomorphism

RHom(R,M) = RHomPn
A

(P,K)

in D(A). Arguing as above we obtain

RHomPn
A

(P,K) = RΓ(Pn
A, RHomOPn

A

(E,K)) = RΓ(Pn
A, P

∨ ⊗L
OPn

A

K).

Using that P∨ is the direct sum of OPn
A

(d) for d = 0, 1, . . . , n and (5) we conclude
RHom(R,M) is pseudo-coherent as a complex of A-modules. Of course M =
RHom(R,M) in D(A). Thus M is pseudo-coherent as a complex of A-modules.
By Lemma 36.34.1 we may represent M by a bounded above complex F • of finite
free R-modules. Then F • =

⋃
p≥0 σ≥pF

• is a filtration which shows that F • is a
differential graded R-module with property (P), see Differential Graded Algebra,
Section 22.20. Hence K = M ⊗L

R P is represented by F • ⊗R P (follows from the
construction of the derived tensor functor, see for example the proof of Differential
Graded Algebra, Lemma 22.35.3). Since F • ⊗R P is a bounded above complex
whose terms are direct sums of copies of P we conclude that the lemma is true. □

Lemma 36.34.3.0CSH Let A be a ring. Let X be a scheme over A which is quasi-compact
and quasi-separated. Let K ∈ D−

QCoh(OX). If RΓ(X,E ⊗L K) is pseudo-coherent
in D(A) for every perfect E in D(OX), then RΓ(X,E ⊗L K) is pseudo-coherent in
D(A) for every pseudo-coherent E in D(OX).

Proof. There exists an integer N such that RΓ(X,−) : DQCoh(OX) → D(A) has
cohomological dimension N as explained in Lemma 36.4.1. Let b ∈ Z be such
that Hi(K) = 0 for i > b. Let E be pseudo-coherent on X. It suffices to show
that RΓ(X,E ⊗L K) is m-pseudo-coherent for every m. Choose an approximation
P → E by a perfect complex P of (X,E,m − N − 1 − b). This is possible by
Theorem 36.14.6. Choose a distinguished triangle

P → E → C → P [1]

in DQCoh(OX). The cohomology sheaves of C are zero in degrees ≥ m−N − 1− b.
Hence the cohomology sheaves of C ⊗L K are zero in degrees ≥ m−N − 1. Thus
the cohomology of RΓ(X,C ⊗L K) are zero in degrees ≥ m− 1. Hence

RΓ(X,P ⊗L K)→ RΓ(X,E ⊗L K)
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is an isomorphism on cohomology in degrees ≥ m. By assumption the source
is pseudo-coherent. We conclude that RΓ(X,E ⊗L K) is m-pseudo-coherent as
desired. □

36.35. Relatively perfect objects

0DHZ In this section we introduce a notion from [Lie06a].

Definition 36.35.1.0DI0 Let f : X → S be a morphism of schemes which is flat and
locally of finite presentation. An object E of D(OX) is perfect relative to S or S-
perfect if E is pseudo-coherent (Cohomology, Definition 20.47.1) and E locally has
finite tor dimension as an object of D(f−1OS) (Cohomology, Definition 20.48.1).

Please see Remark 36.35.14 for a discussion.

Example 36.35.2.0DI1 Let k be a field. Let X be a scheme of finite presentation over
k (in particular X is quasi-compact). Then an object E of D(OX) is k-perfect if
and only if it is bounded and pseudo-coherent (by definition), i.e., if and only if it
is in Db

Coh(X) (by Lemma 36.10.3). Thus being relatively perfect does not mean
“perfect on the fibres”.

The corresponding algebra concept is studied in More on Algebra, Section 15.83.
We can link the notion for schemes with the algebraic notion as follows.

Lemma 36.35.3.0DI2 Let f : X → S be a morphism of schemes which is flat and
locally of finite presentation. Let E be an object of DQCoh(OX). The following are
equivalent

(1) E is S-perfect,
(2) for any affine open U ⊂ X mapping into an affine open V ⊂ S the complex

RΓ(U,E) is OS(V )-perfect.
(3) there exists an affine open covering S =

⋃
Vi and for each i an affine open

covering f−1(Vi) =
⋃
Uij such that the complex RΓ(Uij , E) is OS(Vi)-

perfect.

Proof. Being pseudo-coherent is a local property and “locally having finite tor di-
mension” is a local property. Hence this lemma immediately reduces to the state-
ment: if X and S are affine, then E is S-perfect if and only if K = RΓ(X,E) is
OS(S)-perfect. Say X = Spec(A), S = Spec(R) and E corresponds to K ∈ D(A),
i.e., K = RΓ(X,E), see Lemma 36.3.5.
Observe that K is R-perfect if and only if K is pseudo-coherent and has finite tor
dimension as a complex of R-modules (More on Algebra, Definition 15.83.1). By
Lemma 36.10.2 we see that E is pseudo-coherent if and only if K is pseudo-coherent.
By Lemma 36.10.5 we see that E has finite tor dimension over f−1OS if and only
if K has finite tor dimension as a complex of R-modules. □

Lemma 36.35.4.0DI3 Let f : X → S be a morphism of schemes which is flat and locally
of finite presentation. The full subcategory of D(OX) consisting of S-perfect objects
is a saturated4 triangulated subcategory.

Proof. This follows from Cohomology, Lemmas 20.47.4, 20.47.6, 20.48.6, and 20.48.8.
□

4Derived Categories, Definition 13.6.1.
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Lemma 36.35.5.0DI4 Let f : X → S be a morphism of schemes which is flat and locally
of finite presentation. A perfect object of D(OX) is S-perfect. If K,M ∈ D(OX),
then K ⊗L

OX
M is S-perfect if K is perfect and M is S-perfect.

Proof. First proof: reduce to the affine case using Lemma 36.35.3 and then apply
More on Algebra, Lemma 15.83.3. □

Lemma 36.35.6.0DI5 Let f : X → S be a morphism of schemes which is flat and locally
of finite presentation. Let g : S′ → S be a morphism of schemes. Set X ′ = S′×SX
and denote g′ : X ′ → X the projection. If K ∈ D(OX) is S-perfect, then L(g′)∗K
is S′-perfect.

Proof. First proof: reduce to the affine case using Lemma 36.35.3 and then apply
More on Algebra, Lemma 15.83.5.

Second proof: L(g′)∗K is pseudo-coherent by Cohomology, Lemma 20.47.3 and the
bounded tor dimension property follows from Lemma 36.22.8. □

Situation 36.35.7.0DI6 Let S = limi∈I Si be a limit of a directed system of schemes with
affine transition morphisms gi′i : Si′ → Si. We assume that Si is quasi-compact
and quasi-separated for all i ∈ I. We denote gi : S → Si the projection. We
fix an element 0 ∈ I and a flat morphism of finite presentation X0 → S0. We
set Xi = Si ×S0 X0 and X = S ×S0 X0 and we denote the transition morphisms
fi′i : Xi′ → Xi and fi : X → Xi the projections.

Lemma 36.35.8.0DI7 In Situation 36.35.7. Let K0 and L0 be objects of D(OX0). Set
Ki = Lf∗

i0K0 and Li = Lf∗
i0L0 for i ≥ 0 and set K = Lf∗

0K0 and L = Lf∗
0L0.

Then the map

colimi≥0 HomD(OXi
)(Ki, Li) −→ HomD(OX)(K,L)

is an isomorphism if K0 is pseudo-coherent and L0 ∈ DQCoh(OX0) has (locally)
finite tor dimension as an object of D((X0 → S0)−1OS0)

Proof. For every quasi-compact open U0 ⊂ X0 consider the condition P that

colimi≥0 HomD(OUi
)(Ki|Ui , Li|Ui) −→ HomD(OU )(K|U , L|U )

is an isomorphism where U = f−1
0 (U0) and Ui = f−1

i0 (U0). If P holds for U0, V0
and U0 ∩ V0, then it holds for U0 ∪ V0 by Mayer-Vietoris for hom in the derived
category, see Cohomology, Lemma 20.33.3.

Denote π0 : X0 → S0 the given morphism. Then we can first consider U0 =
π−1

0 (W0) with W0 ⊂ S0 quasi-compact open. By the induction principle of Coho-
mology of Schemes, Lemma 30.4.1 applied to quasi-compact opens of S0 and the
remark above, we find that it is enough to prove P for U0 = π−1

0 (W0) with W0 affine.
In other words, we have reduced to the case where S0 is affine. Next, we apply the
induction principle again, this time to all quasi-compact and quasi-separated opens
of X0, to reduce to the case where X0 is affine as well.

If X0 and S0 are affine, the result follows from More on Algebra, Lemma 15.83.7.
Namely, by Lemmas 36.10.1 and 36.3.5 the statement is translated into computa-
tions of homs in the derived categories of modules. Then Lemma 36.10.2 shows
that the complex of modules corresponding to K0 is pseudo-coherent. And Lemma
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36.10.5 shows that the complex of modules corresponding to L0 has finite tor di-
mension over OS0(S0). Thus the assumptions of More on Algebra, Lemma 15.83.7
are satisfied and we win. □

Lemma 36.35.9.0DI8 In Situation 36.35.7 the category of S-perfect objects of D(OX)
is the colimit of the categories of Si-perfect objects of D(OXi).

Proof. For every quasi-compact open U0 ⊂ X0 consider the condition P that the
functor

colimi≥0 DSi-perfect(OUi) −→ DS-perfect(OU )
is an equivalence where U = f−1

0 (U0) and Ui = f−1
i0 (U0). We observe that we

already know this functor is fully faithful by Lemma 36.35.8. Thus it suffices to
prove essential surjectivity.
Suppose that P holds for quasi-compact opens U0, V0 of X0. We claim that P holds
for U0 ∪ V0. We will use the notation Ui = f−1

i0 U0, U = f−1
0 U0, Vi = f−1

i0 V0, and
V = f−1

0 V0 and we will abusively use the symbol fi for all the morphisms U → Ui,
V → Vi, U ∩V → Ui∩Vi, and U ∪V → Ui∪Vi. Suppose E is an S-perfect object of
D(OU∪V ). Goal: show E is in the essential image of the functor. By assumption,
we can find i ≥ 0, an Si-perfect object EU,i on Ui, an Si-perfect object EV,i on Vi,
and isomorphisms Lf∗

i EU,i → E|U and Lf∗
i EV,i → E|V . Let

a : EU,i → (Rfi,∗E)|Ui and b : EV,i → (Rfi,∗E)|Vi
the maps adjoint to the isomorphisms Lf∗

i EU,i → E|U and Lf∗
i EV,i → E|V . By

fully faithfulness, after increasing i, we can find an isomorphism c : EU,i|Ui∩Vi →
EV,i|Ui∩Vi which pulls back to the identifications

Lf∗
i EU,i|U∩V → E|U∩V → Lf∗

i EV,i|U∩V .

Apply Cohomology, Lemma 20.45.1 to get an object Ei on Ui ∪ Vi and a map
d : Ei → Rfi,∗E which restricts to the maps a and b over Ui and Vi. Then it is
clear that Ei is Si-perfect (because being relatively perfect is a local property) and
that d is adjoint to an isomorphism Lf∗

i Ei → E.
By exactly the same argument as used in the proof of Lemma 36.35.8 using the
induction principle (Cohomology of Schemes, Lemma 30.4.1) we reduce to the case
where both X0 and S0 are affine. (First work with opens in S0 to reduce to S0
affine, then work with opens in X0 to reduce to X0 affine.) In the affine case the
result follows from More on Algebra, Lemma 15.83.7. The translation into algebra
is done by Lemma 36.35.3. □

Lemma 36.35.10.0DJT Let f : X → S be a morphism of schemes which is flat, proper,
and of finite presentation. Let E ∈ D(OX) be S-perfect. Then Rf∗E is a perfect
object of D(OS) and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 36.22.5. Thus it suffices to show
that Rf∗E is a perfect object. We will reduce to the case where S is Noetherian
affine by a limit argument.
The question is local on S, hence we may assume S is affine. Say S = Spec(R). We
write R = colimRi as a filtered colimit of Noetherian rings Ri. By Limits, Lemma
32.10.1 there exists an i and a scheme Xi of finite presentation over Ri whose base
change to R is X. By Limits, Lemmas 32.13.1 and 32.8.7 we may assume Xi is
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proper and flat over Ri. By Lemma 36.35.9 we may assume there exists a Ri-
perfect object Ei of D(OXi) whose pullback to X is E. Applying Lemma 36.27.1
to Xi → Spec(Ri) and Ei and using the base change property already shown we
obtain the result. □

Lemma 36.35.11.0DJU Let f : X → S be a morphism of schemes. Let E,K ∈ D(OX).
Assume

(1) S is quasi-compact and quasi-separated,
(2) f is proper, flat, and of finite presentation,
(3) E is S-perfect,
(4) K is pseudo-coherent.

Then there exists a pseudo-coherent L ∈ D(OS) such that

Rf∗RHom(K,E) = RHom(L,OS)

and the same is true after arbitrary base change: given

X ′
g′
//

f ′

��

X

f

��
S′ g // S

cartesian, then we have
Rf ′

∗RHom(L(g′)∗K,L(g′)∗E)
= RHom(Lg∗L,OS′)

Proof. Since S is quasi-compact and quasi-separated, the same is true for X. By
Lemma 36.19.1 we can write K = hocolimKn with Kn perfect and Kn → K
inducing an isomorphism on truncations τ≥−n. Let K∨

n be the dual perfect complex
(Cohomology, Lemma 20.50.5). We obtain an inverse system . . . → K∨

3 → K∨
2 →

K∨
1 of perfect objects. By Lemma 36.35.5 we see that K∨

n ⊗OX
E is S-perfect. Thus

we may apply Lemma 36.35.10 to K∨
n ⊗OX

E and we obtain an inverse system

. . .→M3 →M2 →M1

of perfect complexes on S with

Mn = Rf∗(K∨
n ⊗L

OX
E) = Rf∗RHom(Kn, E)

Moreover, the formation of these complexes commutes with any base change, namely
Lg∗Mn = Rf ′

∗((L(g′)∗Kn)∨ ⊗L
OX′ L(g′)∗E) = Rf ′

∗RHom(L(g′)∗Kn, L(g′)∗E).

As Kn → K induces an isomorphism on τ≥−n, we see that Kn → Kn+1 induces
an isomorphism on τ≥−n. It follows that K∨

n+1 → K∨
n induces an isomorphism

on τ≤n as K∨
n = RHom(Kn,OX). Suppose that E has tor amplitude in [a, b] as

a complex of f−1OY -modules. Then the same is true after any base change, see
Lemma 36.22.8. We find that K∨

n+1 ⊗OX
E → K∨

n ⊗OX
E induces an isomorphism

on τ≤n+a and the same is true after any base change. Applying the right derived
functor Rf∗ we conclude the maps Mn+1 → Mn induce isomorphisms on τ≤n+a
and the same is true after any base change. Choose a distinguished triangle

Mn+1 →Mn → Cn →Mn+1[1]

Take S′ equal to the spectrum of the residue field at a point s ∈ S and pull back to
see that Cn ⊗L

OS
κ(s) has nonzero cohomology only in degrees ≥ n + a. By More

on Algebra, Lemma 15.75.6 we see that the perfect complex Cn has tor amplitude
in [n+ a,mn] for some integer mn. In particular, the dual perfect complex C∨

n has
tor amplitude in [−mn,−n− a].
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Let Ln = M∨
n be the dual perfect complex. The conclusion from the discussion in

the previous paragraph is that Ln → Ln+1 induces isomorphisms on τ≥−n−a. Thus
L = hocolimLn is pseudo-coherent, see Lemma 36.19.1. Since we have
RHom(K,E) = RHom(hocolimKn, E) = R limRHom(Kn, E) = R limK∨

n ⊗OX
E

(Cohomology, Lemma 20.51.1) and since R lim commutes with Rf∗ we find that
Rf∗RHom(K,E) = R limMn = R limRHom(Ln,OS) = RHom(L,OS)

This proves the formula over S. Since the construction of Mn is compatible with
base chance, the formula continues to hold after any base change. □

Remark 36.35.12.0DJV The reader may have noticed the similarity between Lemma
36.35.11 and Lemma 36.28.3. Indeed, the pseudo-coherent complex L of Lemma
36.35.11 may be characterized as the unique pseudo-coherent complex on S such
that there are functorial isomorphisms

ExtiOS
(L,F) −→ ExtiOX

(K,E ⊗L
OX

Lf∗F)
compatible with boundary maps for F ranging over QCoh(OS). If we ever need
this we will formulate a precise result here and give a detailed proof.

Lemma 36.35.13.0GEH Let f : X → S be a morphism of schemes which is flat and
locally of finite presentation. Let E be a pseudo-coherent object of D(OX). The
following are equivalent

(1) E is S-perfect, and
(2) E is locally bounded below and for every point s ∈ S the object L(Xs →

X)∗E of D(OXs) is locally bounded below.

Proof. Since everything is local we immediately reduce to the case that X and S
are affine, see Lemma 36.35.3. Say X → S corresponds to Spec(A) → Spec(R)
and E corresponds to K in D(A). If s corresponds to the prime p ⊂ R, then
L(Xs → X)∗E corresponds to K⊗L

R κ(p) as R→ A is flat, see for example Lemma
36.22.5. Thus we see that our lemma follows from the corresponding algebra result,
see More on Algebra, Lemma 15.83.10. □

Remark 36.35.14.0DI9 Our Definition 36.35.1 of a relatively perfect complex is equiv-
alent to the one given in [Lie06a] whenever our definition applies5. Next, suppose
that f : X → S is only assumed to be locally of finite type (not necessarily flat,
nor locally of finite presentation). The definition in the paper cited above is that
E ∈ D(OX) is relatively perfect if

(A) locally on X the object E should be quasi-isomorphic to a finite complex
of S-flat, finitely presented OX -modules.

On the other hand, the natural generalization of our Definition 36.35.1 is
(B) E is pseudo-coherent relative to S (More on Morphisms, Definition 37.59.2)

and E locally has finite tor dimension as an object of D(f−1OS) (Coho-
mology, Definition 20.48.1).

The advantage of condition (B) is that it clearly defines a triangulated subcategory
of D(OX), whereas we suspect this is not the case for condition (A). The advantage
of condition (A) is that it is easier to work with in particular in regards to limits.

5To see this, use Lemma 36.35.3 and More on Algebra, Lemma 15.83.4.
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36.36. The resolution property

0F85 This notion is discussed in the paper [Tot04]; the discussion is continued in [Gro10],
[Gro12], and [Gro17]. It is currently not known if a proper scheme over a field
always has the resolution property or if this is false. If you know the answer to this
question, please email stacks.project@gmail.com.
We can make the following definition although it scarcely makes sense to consider
it for general schemes.

Definition 36.36.1.0F86 Let X be a scheme. We say X has the resolution property if
every quasi-coherent OX -module of finite type is the quotient of a finite locally free
OX -module.

If X is a quasi-compact and quasi-separated scheme, then it suffices to check ev-
ery OX -module module of finite presentation (automatically quasi-coherent) is the
quotient of a finite locally free OX -module, see Properties, Lemma 28.22.8. If X
is a Noetherian scheme, then finite type quasi-coherent modules are exactly the
coherent OX -modules, see Cohomology of Schemes, Lemma 30.9.1.

Lemma 36.36.2.0F87 Let X be a scheme. If X has an ample invertible OX -module,
then X has the resolution property.

Proof. Immediate consquence of Properties, Proposition 28.26.13. □

Lemma 36.36.3.0FDD Let f : X → Y be a morphism of schemes. Assume
(1) Y is quasi-compact and quasi-separated and has the resolution property,
(2) there exists an f -ample invertible module on X.

Then X has the resolution property.

Proof. Let F be a finite type quasi-coherent OX -module. Let L be an f -ample
invertible module. Choose an affine open covering Y = V1 ∪ . . . ∪ Vm. Set Uj =
f−1(Vj). By Properties, Proposition 28.26.13 for each j we know there exists finitely
many maps sj,i : L⊗nj,i |Uj → F|Uj which are jointly surjective. Consider the quasi-
coherent OY -modules

Hn = f∗(F ⊗OX
L⊗n)

We may think of sj,i as a section over Vj of the sheaf H−nj,i . Suppose we can find
finite locally free OY -modules Ei,j and maps Ei,j → H−nj,i such that sj,i is in the
image. Then the corresponding maps

f∗Ei,j ⊗OX
L⊗ni,j −→ F

are going to be jointly surjective and the lemma is proved. By Properties, Lemma
28.22.3 for each i, j we can find a finite type quasi-coherent submoduleH′

i,j ⊂ H−nj,i
which contains the section si,j over Vj . Thus the resolution property of Y produces
surjections Ei,j → H′

j,i and we conclude. □

Lemma 36.36.4.0F88 Let f : X → Y be an affine or quasi-affine morphism of schemes
with Y quasi-compact and quasi-separated. If Y has the resolution property, so
does X.

Proof. By Morphisms, Lemma 29.37.6 this is a special case of Lemma 36.36.3. □

Here is a case where one can prove the resolution property goes down.
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Lemma 36.36.5.0GTC Let f : X → Y be a surjective finite locally free morphism of
schemes. If X has the resolution property, so does Y .

Proof. The condition means that f is affine and that f∗OX is a finite locally free
OY -module of positive rank. Let G be a quasi-coherent OY -module of finite type.
By assumption there exists a surjection E → f∗G for some finite locally free OX -
module E . Since f∗ is exact on quasi-coherent modules (Cohomology of Schemes,
Lemma 30.2.3) we get a surjection

f∗E −→ f∗f
∗G = G ⊗OY

f∗OX
Taking duals we get a surjection

f∗E ⊗OY
HomOY

(f∗OX ,OY ) −→ G
Since f∗E is finite locally free6, we conclude. □

Lemma 36.36.6.0F89 Let X be a scheme. Suppose given
(1) a finite affine open covering X = U1 ∪ . . . ∪ Um
(2) finite type quasi-coherent ideals Ij with V (Ij) = X \ Uj

Then X has the resolution property if and only if Ij is the quotient of a finite
locally free OX -module for j = 1, . . . ,m.

Proof. One direction of the lemma is trivial. For the other, say Ej → Ij is a
surjection with Ej finite locally free. In the next paragraph, we reduce to the
Noetherian case; we suggest the reader skip it.
The first observation is that Uj ∩ Uj′ is quasi-compact as the complement of the
zero scheme of the quasi-coherent finite type ideal Ij′ |Uj on the affine scheme Uj ,
see Properties, Lemma 28.24.1. Hence X is quasi-compact and quasi-separated, see
Schemes, Lemma 26.21.6. By Limits, Proposition 32.5.4 we can write X = limXi as
the limit of a direct system of Noetherian schemes with affine transition morphisms.
For each j we can find an i and a finite locally free OXi -module Ei,j pulling back
to Ej , see Limits, Lemma 32.10.3. After increasing i we may assume that the
composition Ej → Ij → OX is the pullback of a map Ei,j → OXi , see Limits,
Lemma 32.10.2. Denote Ii,j ⊂ OXi the image of this map; this is a quasi-coherent
ideal sheaf on the Noetherian scheme Xi whose pullback to X is Ij . Denoting
Ui,j ⊂ Xi the complementary opens, we may assume these are affine for all i, j, see
Limits, Lemma 32.4.13. If we can prove the lemma for the opens Ui,j and the ideal
sheaves Ii,j on Xi then X, being affine over Xi, will have the resolution property
by Lemma 36.36.4. In this way we reduce to the case of a Noetherian scheme.
Assume X is Noetherian. For every coherent module F we can choose a finite list
of sections sjk ∈ F(Uj), k = 1, . . . , ej which generate the restriction of F to Uj . By
Cohomology of Schemes, Lemma 30.10.5 we can extend sjk to a map s′

jk : Injki → F
for some njk ≥ 1. Then we can consider the compositions

E⊗njk
j → Injkj → F

to conclude. □

6Namely, if A → B is a finite locally free ring map and N is a finite locally free B-module,
then N is a finite locally free A-module. To see this, first note that N finite locally free over B
implies N is flat and finitely presented as a B-module, see Algebra, Lemma 10.78.2. Then N is
an A-module of finite presentation by Algebra, Lemma 10.36.23 and a flat A-module by Algebra,
Lemma 10.39.4. Then conclude by using Algebra, Lemma 10.78.2 over A.
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Lemma 36.36.7.0GMM Let X be a scheme. If X has an ample family of invertible modules
(Morphisms, Definition 29.12.1), then X has the resolution property.

Proof. Since X is quasi-compact, there exists n and pairs (Li, si), i = 1, . . . , n
where Li is an invertible OX -module and si ∈ Γ(X,Li) is a section such that the
set of points Ui ⊂ X where si is nonvanishing is affine and X = U1 ∪ . . . ∪ Un. Let
Ii ⊂ OX be the image of si : L⊗−1

i → OX . Applying Lemma 36.36.6 we find that
X has the resolution property. □

Lemma 36.36.8.0F8A Let X be a quasi-compact, regular scheme with affine diagonal.
Then X has the resolution property.

Proof. Combine Divisors, Lemma 31.16.8 and the above Lemma 36.36.7. □

Lemma 36.36.9.0F8B Let X = limXi be a limit of a direct system of quasi-compact
and quasi-separated schemes with affine transition morphisms. Then X has the
resolution property if and only if Xi has the resolution properties for some i.

Proof. If Xi has the resolution property, then X does by Lemma 36.36.4. Assume
X has the resolution property. Choose i ∈ I. Choose a finite affine open covering
Xi = Ui,1 ∪ . . .∪Ui,m. For each j choose a finite type quasi-coherent sheaf of ideals
Ii,j ⊂ OXi such that Xi \ V (Ii,j) = Ui,j , see Properties, Lemma 28.24.1. Denote
Uj ⊂ X the inverse image of Ui,j and denote Ij ⊂ OX the pullback of Ii,j . Since
X has the resolution property, we may choose finite locally free OX -modules Ej
and surjections Ej → Ij . By Limits, Lemmas 32.10.3 and 32.10.2 after increasing
i we can find finite locally free OXi-modules Ei,j and maps Ei,j → OXi whose
base changes to X recover the compositions Ej → Ij → OX , j = 1, . . . ,m. The
pullbacks of the finitely presented OXi-modules Coker(Ei,j → OXi) and OXi/Ii,j
to X agree as quotients of OX . Hence by Limits, Lemma 32.10.2 we may assume
that these agree, in other words that the image of Ei,j → OXi is equal to Ii,j . Then
we conclude that Xi has the resolution property by Lemma 36.36.6. □

Lemma 36.36.10.0F8C Special case of
[Tot04, Proposition
1.3].

Let X be a quasi-compact and quasi-separated scheme with the
resolution property. Then X has affine diagonal.

Proof. Combining Limits, Proposition 32.5.4 and Lemma 36.36.9 this reduces to
the case where X is Noetherian (small detail omitted). Assume X is Noetherian.
Recall that X ×X is covered by the affine opens U ×V for affine opens U , V of X,
see Schemes, Section 26.17. Hence to show that the diagonal ∆ : X → X × X is
affine, it suffices to show that U ∩ V = ∆−1(U × V ) is affine for all affine opens U ,
V of X, see Morphisms, Lemma 29.11.3. In particular, it suffices to show that the
inclusion morphism j : U → X is affine if U is an affine open of X. By Cohomology
of Schemes, Lemma 30.3.4 it suffices to show that R1j∗G = 0 for any quasi-coherent
OU -module G. By Proposition 36.8.3 (this is where we use that we’ve reduced to
the Noetherian case) we can represent Rj∗G by a complex H• of quasi-coherent
OX -modules. Assume

H1(H•) = Ker(H1 → H2)/ Im(H0 → H1)

is nonzero in order to get a contradiction. Then we can find a coherent OX -module
F and a map

F −→ Ker(H1 → H2)
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such that the composition with the projection onto H1(H•) is nonzero. Namely,
we can write Ker(H1 → H2) as the filtered union of its coherent submodules by
Properties, Lemma 28.22.3 and then one of these will do the job. Next, we choose
a finite locally free OX -module E and a surjection E → F using the resolution
property of X. This produces a map in the derived category

E [−1] −→ Rj∗G
which is nonzero on cohomology sheaves and hence nonzero in D(OX). By adjunc-
tion, this is the same thing as a map

j∗E [−1]→ G
nonzero in D(OU ). Since E is finite locally free this is the same thing as a nonzero
element of

H1(U, j∗E∨ ⊗OU
G)

where E∨ = HomOX
(E ,OX) is the dual finite locally free module. However, this

group is zero by Cohomology of Schemes, Lemma 30.2.2 which is the desired con-
tradiction. (If in doubt about the step using duals, please see the more general
Cohomology, Lemma 20.50.5.) □

36.37. The resolution property and perfect complexes

0F8D In this section we discuss the relationship between perfect complexes and strictly
perfect complexes on schemes which have the resolution property.

Lemma 36.37.1.0F8E Let X be a quasi-compact and quasi-separated scheme with the
resolution property. Let F• be a bounded below complex of quasi-coherent OX -
modules representing a perfect object of D(OX). Then there exists a bounded
complex E• of finite locally free OX -modules and a quasi-isomorphism E• → F•.

Proof. Let a, b ∈ Z be integers such that F• has tor amplitude in [a, b] and such
that Fn = 0 for n < a. The existence of such a pair of integers follows from
Cohomology, Lemma 20.49.5 and the fact that X is quasi-compact. If b < a, then
F• is zero in the derived category and the lemma holds. We will prove by induction
on b − a ≥ 0 that there exists a complex Ea → . . . → Eb with E i finite locally free
and a quasi-isomorphism E• → F•.
The base case is the case b − a = 0. In this case Hb(F•) = Ha(F•) = Ker(Fa →
Fa+1) is finite locally free. Namely, it is a finitely presented OX -module of tor
dimension 0 and hence finite locally free. See Cohomology, Lemmas 20.49.5 and
20.47.9 and Properties, Lemma 28.20.2. Thus we can take E• to be Hb(F•) sitting
in degree b. The rest of the proof is dedicated to the induction step.
Assume b > a. Observe that

Hb(F•) = Ker(Fb → Fb+1)/ Im(Fb−1 → Fb)
is a finite type quasi-coherent OX -module, see Cohomology, Lemmas 20.49.5 and
20.47.9. Then we can find a finite type quasi-coherent OX -module F and a map

F −→ Ker(Fb → Fb+1)
such that the composition with the projection onto Hb(F•) is surjective. Namely,
we can write Ker(Fb → Fb+1) as the filtered union of its finite type quasi-coherent
submodules by Properties, Lemma 28.22.3 and then one of these will do the job.

https://stacks.math.columbia.edu/tag/0F8E
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Next, we choose a finite locally free OX -module Eb and a surjection Eb → F using
the resolution property of X. Consider the map of complexes

α : Eb[−b]→ F•

and its cone C(α)•, see Derived Categories, Definition 13.9.1. We observe that
C(α)• is nonzero only in degrees ≥ a, has tor amplitude in [a, b] by Cohomology,
Lemma 20.48.6, and has Hb(C(α)•) = 0 by construction. Thus we actually find
that C(α)• has tor amplitude in [a, b− 1]. Hence the induction hypothesis applies
to C(α)• and we find a map of complexes

(Ea → . . .→ Eb−1) −→ C(α)•

with properties as stated in the induction hypothesis. Unwinding the definition of
the cone this gives a commutative diagram

. . . // Eb−2 //

��

Eb−1 //

��

0 //

��

. . .

. . . // Fb−2 // Fb−1 ⊕ Eb // Fb // . . .

It is clear that we obtain a map of complexes (Ea → . . .→ Eb)→ F•. We omit the
verification that this map is a quasi-isomorphism. □

Lemma 36.37.2.0F8F Let X be a quasi-compact and quasi-separated scheme with the
resolution property. Then every perfect object of D(OX) can be represented by a
bounded complex of finite locally free OX -modules.

Proof. Let E be a perfect object of D(OX). By Lemma 36.36.10 we see that X has
affine diagonal. Hence by Proposition 36.7.5 we can represent E by a complex F•

of quasi-coherent OX -modules. Observe that E is in Db(OX) because X is quasi-
compact. Hence τ≥nF• is a bounded below complex of quasi-coherent OX -modules
which represents E if n≪ 0. Thus we may apply Lemma 36.37.1 to conclude. □

Lemma 36.37.3.0F8G Let X be a quasi-compact and quasi-separated scheme with the
resolution property. Let E• and F• be finite complexes of finite locally free OX -
modules. Then any α ∈ HomD(OX)(E•,F•) can be represented by a diagram

E• ← G• → F•

where G• is a bounded complex of finite locally freeOX -modules and where G• → E•

is a quasi-isomorphism.

Proof. By Lemma 36.36.10 we see that X has affine diagonal. Hence by Proposition
36.7.5 we can represent α by a diagram

E• ← H• → F•

where H• is a complex of quasi-coherent OX -modules and where H• → E• is a
quasi-isomorphism. For n≪ 0 the maps H• → E• and H• → F• factor through the
quasi-isomorphismH• → τ≥nH• simply because E• and F• are bounded complexes.
Thus we may replace H• by τ≥nH• and assume that H• is bounded below. Then
we may apply Lemma 36.37.1 to conclude. □

https://stacks.math.columbia.edu/tag/0F8F
https://stacks.math.columbia.edu/tag/0F8G
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Lemma 36.37.4.0F8H Let X be a quasi-compact and quasi-separated scheme with the
resolution property. Let E• and F• be finite complexes of finite locally free OX -
modules. Let α•, β• : E• → F• be two maps of complexes defining the same map
in D(OX). Then there exists a quasi-isomorphism γ• : G• → E• where G• is a
bounded complex of finite locally free OX -modules such that α• ◦ γ• and β• ◦ γ•

are homotopic maps of complexes.

Proof. By Lemma 36.36.10 we see that X has affine diagonal. Hence by Proposition
36.7.5 (and the definition of the derived category) there exists a quasi-isomorphism
γ• : G• → E• where G• is a complex of quasi-coherent OX -modules such that α•◦γ•

and β• ◦ γ• are homotopic maps of complexes. Choose a homotopy hi : Gi → F i−1

witnessing this fact. Choose n≪ 0. Then the map γ• factors canonically over the
quotient map G• → τ≥nG• as E• is bounded below. For the exact same reason the
maps hi will factor over the surjections Gi → (τ≥nG)i. Hence we see that we may
replace G• by τ≥nG•. Then we may apply Lemma 36.37.1 to conclude. □

Proposition 36.37.5.0F8I Let X be a quasi-compact and quasi-separated scheme with
the resolution property. Denote

(1) A the additive category of finite locally free OX -modules,
(2) Kb(A) the homotopy category of bounded complexes in A, see Derived

Categories, Section 13.8, and
(3) Dperf (OX) the strictly full, saturated, triangulated subcategory of D(OX)

consisting of perfect objects.
With this notation the obvious functor

Kb(A) −→ Dperf (OX)

is an exact functor of trianglated categories which factors through an equivalence
S−1Kb(A)→ Dperf (OX) of triangulated categories where S is the saturated mul-
tiplicative system of quasi-isomorphisms in Kb(A).

Proof. If you can parse the statement of the proposition, then please skip this first
paragraph. For some of the definitions used, please see Derived Categories, Defini-
tion 13.3.4 (triangulated subcategory), Derived Categories, Definition 13.6.1 (satu-
rated triangulated subcategory), Derived Categories, Definition 13.5.1 (multiplica-
tive system compatible with the triangulated structure), and Categories, Definition
4.27.20 (saturated multiplicative system). Observe that Dperf (OX) is a saturated
triangulated subcategory of D(OX) by Cohomology, Lemmas 20.49.7 and 20.49.9.
Also, note that Kb(A) is a triangulated category, see Derived Categories, Lemma
13.10.5.

It is clear that the functor sends distinguished triangles to distinguished triangles,
i.e., is exact. Then S is a saturated multiplicative system compatible with the
triangulated structure on Kb(A) by Derived Categories, Lemma 13.5.4. Hence the
localization S−1Kb(A) exists and is a triangulated category by Derived Categories,
Proposition 13.5.6. We get an exact factorization S−1Kb(A) → Dperf (OX) by
Derived Categories, Lemma 13.5.7. By Lemmas 36.37.2, 36.37.3, and 36.37.4 this
functor is an equivalence. Then finally the functor S−1Kb(A) → Dperf (OX) is
an equivalence of triangulated categories (in the sense that distinguished triangles
correspond) by Derived Categories, Lemma 13.4.18. □

https://stacks.math.columbia.edu/tag/0F8H
https://stacks.math.columbia.edu/tag/0F8I
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36.38. K-groups

0FDE A tiny bit about K0 of various categories associated to schemes. Previous ma-
terial can be found in Algebra, Section 10.55, Homology, Section 12.11, Derived
Categories, Section 13.28, and More on Algebra, Lemma 15.119.2.
Analogous to Algebra, Section 10.55 we will define two K-groups K ′

0(X) and K0(X)
for any Noetherian scheme X. The first will use coherent OX -modules and the
second will use finite locally free OX -modules.
Lemma 36.38.1.0FDF Let X be a Noetherian scheme. Then

K0(Coh(OX)) = K0(Db(Coh(OX)) = K0(Db
Coh(OX))

Proof. The first equality is Derived Categories, Lemma 13.28.2. We haveK0(Coh(OX)) =
K0(Db

Coh(OX)) by Derived Categories, Lemma 13.28.5. This proves the lemma.
(We can also use that Db(Coh(OX)) = Db

Coh(OX) by Proposition 36.11.2 to see
the second equality.) □

Here is the definition.
Definition 36.38.2.0FDG Let X be a scheme.

(1) We denote K0(X) the Grothendieck group of X. It is the zeroth K-
group of the strictly full, saturated, triangulated subcategory Dperf (OX)
of D(OX) consisting of perfect objects. In a formula

K0(X) = K0(Dperf (OX))
(2) If X is locally Noetherian, then we denote K ′

0(X) the Grothendieck group
of coherent sheaves on X. It is the is the zeroth K-group of the abelian
category of coherent OX -modules. In a formula

K ′
0(X) = K0(Coh(OX))

We will show that our definition of K0(X) agrees with the often used definition in
terms of finite locally free modules if X has the resolution property (for example if
X has an ample invertible module). See Lemma 36.38.5.
Lemma 36.38.3.0FDH Let X = Spec(R) be an affine scheme. Then K0(X) = K0(R)
and if R is Noetherian then K ′

0(X) = K ′
0(R).

Proof. Recall that K ′
0(R) and K0(R) have been defined in Algebra, Section 10.55.

By More on Algebra, Lemma 15.119.2 we have K0(R) = K0(Dperf (R)). By Lem-
mas 36.10.7 and 36.3.5 we have Dperf (R) = Dperf (OX). This proves the equality
K0(R) = K0(X).
The equality K ′

0(R) = K ′
0(X) holds because Coh(OX) is equivalent to the category

of finite R-modules by Cohomology of Schemes, Lemma 30.9.1. Moreover it is clear
that K ′

0(R) is the zeroth K-group of the category of finite R-modules from the
definitions. □

Let X be a Noetherian scheme. Then both K ′
0(X) and K0(X) are defined. In this

case there is a canonical map
K0(X) = K0(Dperf (OX)) −→ K0(Db

Coh(OX)) = K ′
0(X)

Namely, perfect complexes are in Db
Coh(OX) (by Lemma 36.10.3), the inclusion

functor Dperf (OX) → Db
Coh(OX) induces a map on zeroth K-groups (Derived

https://stacks.math.columbia.edu/tag/0FDF
https://stacks.math.columbia.edu/tag/0FDG
https://stacks.math.columbia.edu/tag/0FDH
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Categories, Lemma 13.28.3), and we have the equality on the right by Lemma
36.38.1.

Lemma 36.38.4.0FDI Let X be a Noetherian regular scheme. Then the map K0(X)→
K ′

0(X) is an isomorphism.

Proof. Follows immediately from Lemma 36.11.8 and our construction of the map
K0(X)→ K ′

0(X) above. □

Let X be a scheme. Let us denote Vect(X) the category of finite locally free OX -
modules. Although Vect(X) isn’t an abelian category in general, it is clear what a
short exact sequence of Vect(X) is. Denote K0(Vect(X)) the unique abelian group
with the following properties7:

(1) For every finite locally free OX -module E there is given an element [E ] in
K0(Vect(X)),

(2) for every short exact sequence 0→ E ′ → E → E ′′ → 0 of finite locally free
OX -modules we have the relation [E ] = [E ′] + [E ′′] in K0(Vect(X)),

(3) the group K0(Vect(X)) is generated by the elements [E ], and
(4) all relations in K0(Vect(X)) among the generators [E ] are Z-linear com-

binations of the relations coming from exact sequences as above.
We omit the detailed construction of K0(Vect(X)). There is a natural map

K0(Vect(X)) −→ K0(X)
Namely, given a finite locally free OX -module E let us denote E [0] the perfect
complex on X which has E sitting in degree 0 and zero in other degrees. Given a
short exact sequence 0 → E → E ′ → E ′′ → 0 of finite locally free OX -modules we
obtain a distinguished triangle E [0]→ E ′[0]→ E ′′[0]→ E [1], see Derived Categories,
Section 13.12. This shows that we obtain a map K0(Vect(X))→ K0(Dperf (OX)) =
K0(X) by sending [E ] to [E [0]] with apologies for the horrendous notation.

Lemma 36.38.5.0FDJ Let X be a quasi-compact and quasi-separated scheme with the
resolution property. Then the map K0(Vect(X))→ K0(X) is an isomorphism.

Proof. This lemma will follow in a straightforward manner from Lemmas 36.37.2,
36.37.3, and 36.37.4 whose results we will use without further mention. Let us
construct an inverse map

c : K0(X) = K0(Dperf (OX)) −→ K0(Vect(X))
Namely, any object of Dperf (OX) can be represented by a bounded complex E• of
finite locally free OX -modules. Then we set

c([E•]) =
∑

(−1)i[E i]

Of course we have to show that this is well defined. For the moment we view c as
a map defined on bounded complexes of finite locally free OX -modules.
Suppose that E• → F• is a surjective map of bounded complexes of finite locally
free OX -modules. Let K• be the kernel. Then we obtain short exact sequences of
OX -modules

0→ Kn → En → Fn → 0
7The correct generality here would be to define K0 for any exact category, see Injectives,

Remark 19.9.6.

https://stacks.math.columbia.edu/tag/0FDI
https://stacks.math.columbia.edu/tag/0FDJ
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which are locally split because Fn is finite locally free. Hence K• is also a bounded
complex of finite locally free OX -modules and we have c(E•) = c(K•) + c(F•) in
K0(Vect(X)).

Suppose given a bounded complex E• of finite locally free OX -modules which is
acyclic. Say En = 0 for n ̸∈ [a, b]. Then we can break E• into short exact sequences

0→ Ea → Ea+1 → Fa+1 → 0,
0→ Fa+1 → Ea+2 → Fa+3 → 0,

. . .
0→ Fb−3 → Eb−2 → Fb−2 → 0,

0→ Fb−2 → Eb−1 → Eb → 0

Arguing by descending induction we see that Fb−2, . . . ,Fa+1 are finite locally free
OX -modules, and

c(E•) =
∑

(−1)[En] =
∑

(−1)n([Fn−1] + [Fn]) = 0

Thus our construction gives zero on acyclic complexes.

It follows from the results of the preceding two paragraphs that c is well defined.
Namely, suppose the bounded complexes E• and F• of finite locally free OX -
modules represent the same object of D(OX). Then we can find quasi-isomorphisms
a : G• → E• and b : G• → F• with G• bounded complex of finite locally free OX -
modules. We obtain a short exact sequence of complexes

0→ E• → C(a)• → G•[1]→ 0

see Derived Categories, Definition 13.9.1. Since a is a quasi-isomorphism, the cone
C(a)• is acyclic (this follows for example from the discussion in Derived Categories,
Section 13.12). Hence

0 = c(C(f)•) = c(E•) + c(G•[1]) = c(E•)− c(G•)

as desired. The same argument using b shows that 0 = c(F•) − c(G•). Hence we
find that c(E•) = c(F•) and c is well defined.

A similar argument using the cone on a map E• → F• of bounded complexes of
finite locally free OX -modules shows that c(Y ) = c(X) + c(Z) if X → Y → Z is
a distinguished triangle in Dperf (OX). Details omitted. Thus we get the desired
homomorphism of abelian groups c : K0(X)→ K0(Vect(X)).

It is clear that the composition K0(Vect(X)) → K0(X) → K0(Vect(X)) is the
identity. On the other hand, let E• be a bounded complex of finite locally free
OX -modules. Then the the existence of the distinguished triangles of “stupid trun-
cations” (see Homology, Section 12.15)

σ≥nE• → σ≥n−1E• → En−1[−n+ 1]→ (σ≥nE•)[1]

and induction show that
[E•] =

∑
(−1)i[E i[0]]

in K0(X) = K0(Dperf (OX)) with apologies for the notation. Hence the map
K0(Vect(X)) → K0(Dperf (OX)) = K0(X) is surjective which finishes the proof.

□
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Remark 36.38.6.0FDK Let X be a scheme. The K-group K0(X) is canonically a com-
mutative ring. Namely, using the derived tensor product

⊗ = ⊗L
OX

: Dperf (OX)×Dperf (OX) −→ Dperf (OX)
and Derived Categories, Lemma 13.28.6 we obtain a bilinear multiplication. Since
K ⊗ L ∼= L ⊗K we see that this product is commutative. Since (K ⊗ L) ⊗M =
K ⊗ (L⊗M) we see that this product is associative. Finally, the unit of K0(X) is
the element 1 = [OX ].
If Vect(X) andK0(Vect(X)) are as above, then it is clearly the case thatK0(Vect(X))
also has a ring structure: if E and F are finite locally free OX -modules, then we
set

[E ] · [F ] = [E ⊗OX
F ]

The reader easily verifies that this indeed defines a bilinear commutative, associative
product. Details omitted. The map

K0(Vect(X)) −→ K0(X)
constructed above is a ring map with these definitions.
Now assume X is Noetherian. The derived tensor product also produces a map

⊗ = ⊗L
OX

: Dperf (OX)×Db
Coh(OX) −→ Db

Coh(OX)
Again using Derived Categories, Lemma 13.28.6 we obtain a bilinear multiplication
K0(X)×K ′

0(X)→ K ′
0(X) since K ′

0(X) = K0(Db
Coh(OX)) by Lemma 36.38.1. The

reader easily shows that this gives K ′
0(X) the structure of a module over the ring

K0(X).

Remark 36.38.7.0FDL Let f : X → Y be a proper morphism of locally Noetherian
schemes. There is a map

f∗ : K ′
0(X) −→ K ′

0(Y )
which sends [F ] to

[
⊕

i≥0
R2if∗F ]− [

⊕
i≥0

R2i+1f∗F ]

This is well defined because the sheavesRif∗F are coherent (Cohomology of Schemes,
Proposition 30.19.1), because locally only a finite number are nonzero, and because
a short exact sequence of coherent sheaves on X produces a long exact sequence of
Rif∗ on Y . If Y is quasi-compact (the only case most often used in practice), then
we can rewrite the above as

f∗[F ] =
∑

(−1)i[Rif∗F ] = [Rf∗F ]

where we have used the equality K ′
0(Y ) = K0(Db

Coh(Y )) from Lemma 36.38.1.

Lemma 36.38.8.0FDM Let f : X → Y be a proper morphism of locally Noetherian
schemes. Then we have f∗(α · f∗β) = f∗α · β for α ∈ K ′

0(X) and β ∈ K0(Y ).

Proof. Follows from Lemma 36.22.1, the discussion in Remark 36.38.7, and the
definition of the product K ′

0(X)×K0(X)→ K ′
0(X) in Remark 36.38.6. □

Remark 36.38.9.0FDN Let X be a scheme. Let Z ⊂ X be a closed subscheme. Consider
the strictly full, saturated, triangulated subcategory

DZ,perf (OX) ⊂ D(OX)

https://stacks.math.columbia.edu/tag/0FDK
https://stacks.math.columbia.edu/tag/0FDL
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consisting of perfect complexes of OX -modules whose cohomology sheaves are set-
theoretically supported on Z. The zeroth K-group K0(DZ,perf (OX)) of this trian-
gulated category is sometimes denoted KZ(X) or K0,Z(X). Using derived tensor
product exactly as in Remark 36.38.6 we see that K0(DZ,perf (OX)) has a multi-
plication which is associative and commutative, but in general K0(DZ,perf (OX))
doesn’t have a unit.

36.39. Determinants of complexes

0FJW This section is the continuation of More on Algebra, Section 15.122. For any ringed
space (X,OX) there is a functor

det :
{

category of perfect complexes
morphisms are isomorphisms

}
−→

{
category of invertible modules
morphisms are isomorphisms

}
Moreover, given an object (L,F ) of the filtered derived category DF (OX) whose
filtration is finite and whose graded parts are perfect complexes, there is a canonical
isomorphism det(grL) → det(L). See [KM76] for the original exposition. We will
add this material later (insert future reference).
For the moment we will present an ad hoc construction in the case where X is
a scheme and where we consider perfect objects L in D(OX) of tor-amplitude in
[−1, 0].

Lemma 36.39.1.0FJX Let X be a scheme. There is a functor

det :

category of perfect complexes
with tor amplitude in [−1, 0]
morphisms are isomorphisms

 −→
{

category of invertible modules
morphisms are isomorphisms

}
In addition, given a rank 0 perfect object L of D(OX) with tor-amplitude in [−1, 0]
there is a canonical element δ(L) ∈ Γ(X,det(L)) such that for any isomorphism
a : L→ K in D(OX) we have det(a)(δ(L)) = δ(K). Moreover, the construction is
affine locally given by the construction of More on Algebra, Section 15.122.

Proof. Let L be an object of the left hand side. If Spec(A) = U ⊂ X is an
affine open, then L|U corresponds to a perfect complex L• of A-modules with tor-
amplitude in [−1, 0], see Lemmas 36.3.5, 36.10.4, and 36.10.7. Then we can con-
sider the invertible A-module det(L•) constructed in More on Algebra, Lemma
15.122.4. If Spec(B) = V ⊂ U is another affine open contained in U , then
det(L•) ⊗A B = det(L• ⊗A B) and hence this construction is compatible with
restriction mappings (see Lemma 36.3.8 and note A → B is flat). Thus we can
glue these invertible modules to obtain an invertible module det(L) on X. The
functoriality and canonical sections are constructed in exactly the same manner.
Details omitted. □

Remark 36.39.2.0FJY The construction of Lemma 36.39.1 is compatible with pullbacks.
More precisely, given a morphism f : X → Y of schemes and a perfect object K of
D(OY ) of tor-amplitude in [−1, 0] then Lf∗K is a perfect object K of D(OX) of
tor-amplitude in [−1, 0] and we have a canonical identification

f∗ det(K) −→ det(Lf∗K)
Moreover, if K has rank 0, then δ(K) pulls back to δ(Lf∗K) via this map. This is
clear from the affine local construction of the determinant.

https://stacks.math.columbia.edu/tag/0FJX
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36.40. Detecting Boundedness

0GEI In this section, we show that compact generators of DQCoh of a quasi-compact,
quasi-separated scheme, as constructed in Section 36.15, have a special property.
We recommend reading that section first as it is very similar to this one.
Lemma 36.40.1.0GEJ In Situation 36.9.1 denote j : U → X the open immersion and let
K be the perfect object ofD(OX) corresponding to the Koszul complex on f1, . . . , fr
over A. Let E ∈ DQCoh(OX) and a ∈ Z. Consider the following conditions

(1) The canonical map τ≥aE → τ≥aRj∗(E|U ) is an isomorphism.
(2) We have HomD(OX)(K[−n], E) = 0 for all n ≥ a.

Then (2) implies (1) and (1) implies (2) with a replaced by a+ 1.
Proof. Choose a distinguished triangle N → E → Rj∗(E|U ) → N [1]. Then (1)
implies τ≥a+1N = 0 and (1) is implied by τ≥aN = 0. Observe that

HomD(OX)(K[−n], Rj∗(E|U )) = HomD(OU )(K|U [−n], E) = 0
for all n as K|U = 0. Thus (2) is equivalent to HomD(OX)(K[−n], N) = 0 for all
n ≥ a. Observe that there are distinguished triangles

K•(fe1
1 , . . . , f

e′
i
i , . . . , f

er
r )→ K•(fe1

1 , . . . , f
e′
i+e

′′
i

i , . . . , ferr )→ K•(fe1
1 , . . . , f

e′′
i
i , . . . , ferr )→ . . .

of Koszul complexes, see More on Algebra, Lemma 15.28.11. Hence HomD(OX)(K[−n], N) =
0 for all n ≥ a is equivalent to HomD(OX)(Ke[−n], N) = 0 for all n ≥ a and all
e ≥ 1 with Ke as in Lemma 36.9.6. Since N |U = 0, that lemma implies that this in
turn is equivalent to Hn(X,N) = 0 for n ≥ a. We conclude that (2) is equivalent
to τ≥aN = 0 since N is determined by the complex of A-modules RΓ(X,N), see
Lemma 36.3.5. Thus we find that our lemma is true. □

Lemma 36.40.2.0GEK In Situation 36.9.1 denote j : U → X the open immersion and let
K be the perfect object ofD(OX) corresponding to the Koszul complex on f1, . . . , fr
over A. Let E ∈ DQCoh(OX) and a ∈ Z. Consider the following conditions

(1) The canonical map τ≤aE → τ≤aRj∗(E|U ) is an isomorphism, and
(2) HomD(OX)(K[−n], E) = 0 for all n ≤ a.

Then (2) implies (1) and (1) implies (2) with a replaced by a− 1.
Proof. Choose a distinguished triangle E → Rj∗(E|U ) → N → E[1]. Then (1)
implies τ≤a−1N = 0 and (1) is implied by τ≤aN = 0. Observe that

HomD(OX)(K[−n], Rj∗(E|U )) = HomD(OU )(K|U [−n], E) = 0
for all n as K|U = 0. Thus (2) is equivalent to HomD(OX)(K[−n], N) = 0 for all
n ≤ a. Observe that there are distinguished triangles

K•(fe1
1 , . . . , f

e′
i
i , . . . , f

er
r )→ K•(fe1

1 , . . . , f
e′
i+e

′′
i

i , . . . , ferr )→ K•(fe1
1 , . . . , f

e′′
i
i , . . . , ferr )→ . . .

of Koszul complexes, see More on Algebra, Lemma 15.28.11. Hence HomD(OX)(K[−n], N) =
0 for all n ≤ a is equivalent to HomD(OX)(Ke[−n], N) = 0 for all n ≤ a and all
e ≥ 1 with Ke as in Lemma 36.9.6. Since N |U = 0, that lemma implies that this in
turn is equivalent to Hn(X,N) = 0 for n ≤ a. We conclude that (2) is equivalent
to τ≤aN = 0 since N is determined by the complex of A-modules RΓ(X,N), see
Lemma 36.3.5. Thus we find that our lemma is true. □

Lemma 36.40.3.0GEL Let X be a quasi-compact and quasi-separated scheme. Let P ∈
Dperf (OX) and E ∈ DQCoh(OX). Let a ∈ Z. The following are equivalent

https://stacks.math.columbia.edu/tag/0GEJ
https://stacks.math.columbia.edu/tag/0GEK
https://stacks.math.columbia.edu/tag/0GEL
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(1) HomD(OX)(P [−i], E) = 0 for i≫ 0, and
(2) HomD(OX)(P [−i], τ≥aE) = 0 for i≫ 0.

Proof. Using the triangle τ<aE → E → τ≥aE → we see that the equivalence follows
if we can show

HomD(OX)(P [−i], τ<aE) = HomD(OX)(P, (τ<aE)[i]) = 0
for i≫ 0. As P is perfect this is true by Lemma 36.18.2. □

Lemma 36.40.4.0GEM Let X be a quasi-compact and quasi-separated scheme. Let P ∈
Dperf (OX) and E ∈ DQCoh(OX). Let a ∈ Z. The following are equivalent

(1) HomD(OX)(P [−i], E) = 0 for i≪ 0, and
(2) HomD(OX)(P [−i], τ≤aE) = 0 for i≪ 0.

Proof. Using the triangle τ≤aE → E → τ>aE → we see that the equivalence follows
if we can show

HomD(OX)(P [−i], τ>aE) = HomD(OX)(P, (τ>aE)[i]) = 0
for i≪ 0. As P is perfect this is true by Lemma 36.18.2. □

Proposition 36.40.5.0GEN Let X be a quasi-compact and quasi-separated scheme. Let
G ∈ Dperf (OX) be a perfect complex which generates DQCoh(OX). Let E ∈
DQCoh(OX). The following are equivalent

(1) E ∈ D−
QCoh(OX),

(2) HomD(OX)(G[−i], E) = 0 for i≫ 0,
(3) ExtiX(G,E) = 0 for i≫ 0,
(4) RHomX(G,E) is in D−(Z),
(5) Hi(X,G∨ ⊗L

OX
E) = 0 for i≫ 0,

(6) RΓ(X,G∨ ⊗L
OX

E) is in D−(Z),
(7) for every perfect object P of D(OX)

(a) the assertions (2), (3), (4) hold with G replaced by P , and
(b) Hi(X,P ⊗L

OX
E) = 0 for i≫ 0,

(c) RΓ(X,P ⊗L
OX

E) is in D−(Z).

Proof. Assume (1). Since HomD(OX)(G[−i], E) = HomD(OX)(G,E[i]) we see that
this is zero for i≫ 0 by Lemma 36.18.2. This proves that (1) implies (2).
Parts (2), (3), (4) are equivalent by the discussion in Cohomology, Section 20.44.
Part (5) and (6) are equivalent as Hi(X,−) = Hi(RΓ(X,−)) by definition. The
equivalent conditions (2), (3), (4) are equivalent to the equivalent conditions (5),
(6) by Cohomology, Lemma 20.50.5 and the fact that (G[−i])∨ = G∨[i].
It is clear that (7) implies (2). Conversely, let us prove that the equivalent conditions
(2) – (6) imply (7). Recall that G is a classical generator for Dperf (OX) by Remark
36.17.2. For P ∈ Dperf (OX) let T (P ) be the assertion that RHomX(P,E) is in
D−(Z). Clearly, T is inherited by direct sums, satisfies the 2-out-of-three property
for distinguished triangles, is inherited by direct summands, and is perserved by
shifts. Hence by Derived Categories, Remark 13.36.7 we see that (4) implies T
holds on all of Dperf (OX). The same argument works for all other properties,
except that for property (7)(b) and (7)(c) we also use that P 7→ P∨ is a self
equivalence of Dperf (OX). Small detail omitted.

https://stacks.math.columbia.edu/tag/0GEM
https://stacks.math.columbia.edu/tag/0GEN
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We will prove the equivalent conditions (2) – (7) imply (1) using the induction
principle of Cohomology of Schemes, Lemma 30.4.1.
First, we prove (2) – (7) ⇒ (1) if X is affine. Set P = OX [0]. From (7) we obtain
Hi(X,E) = 0 for i≫ 0. Hence (1) follows since E is determined by RΓ(X,E), see
Lemma 36.3.5.
Now assume X = U ∪ V with U a quasi-compact open of X and V an affine open,
and assume the implication (2) – (7) ⇒ (1) is known for the schemes U , V , and
U∩V . Suppose E ∈ DQCoh(OX) satisfies (2) – (7). By Lemma 36.15.1 and Theorem
36.15.3 there exists a perfect complex Q on X such that Q|U generates DQCoh(OU ).
Let f1, . . . , fr ∈ Γ(V,OV ) be such that V \ U = V (f1, . . . , fr) as subsets of V . Let
K ∈ Dperf (OV ) be the object corresponding to the Koszul complex on f1, . . . , fr.
Let K ′ ∈ Dperf (OX) be
(36.40.5.1)0GEP K ′ = R(V → X)∗K = R(V → X)!K,

see Cohomology, Lemmas 20.33.6 and 20.49.10. This is a perfect complex on X
supported on the closed set X \U ⊂ V and isomorphic to K on V . By assumption,
we know RHomOX

(Q,E) and RHomOX
(K ′, E) are bounded above.

By the second description of K ′ in (36.40.5.1) we have
HomD(OV )(K[−i], E|V ) = HomD(OX)(K ′[−i], E) = 0

for i ≫ 0. Therefore, we may apply Lemma 36.40.1 to E|V to obtain an integer
a such that τ≥a(E|V ) = τ≥aR(U ∩ V → V )∗(E|U∩V ). Then τ≥aE = τ≥aR(U →
X)∗(E|U ) (check that the canonical map is an isomorphism after restricting to U
and to V ). Hence using Lemma 36.40.3 twice we see that

HomD(OU )(Q|U [−i], E|U ) = HomD(OX)(Q[−i], R(U → X)∗(E|U )) = 0
for i ≫ 0. Since the Proposition holds for U and the generator Q|U , we have
E|U ∈ D−

QCoh(OU ). But then since the functor R(U → X)∗ preserves D−
QCoh (by

Lemma 36.4.1), we get τ≥aE ∈ D−
QCoh(OX). Thus E ∈ D−

QCoh(OX). □

Proposition 36.40.6.0GEQ Let X be a quasi-compact and quasi-separated scheme. Let
G ∈ Dperf (OX) be a perfect complex which generates DQCoh(OX). Let E ∈
DQCoh(OX). The following are equivalent

(1) E ∈ D+
QCoh(OX),

(2) HomD(OX)(G[−i], E) = 0 for i≪ 0,
(3) ExtiX(G,E) = 0 for i≪ 0,
(4) RHomX(G,E) is in D+(Z),
(5) Hi(X,G∨ ⊗L

OX
E) = 0 for i≪ 0,

(6) RΓ(X,G∨ ⊗L
OX

E) is in D+(Z),
(7) for every perfect object P of D(OX)

(a) the assertions (2), (3), (4) hold with G replaced by P , and
(b) Hi(X,P ⊗L

OX
E) = 0 for i≪ 0,

(c) RΓ(X,P ⊗L
OX

E) is in D+(Z).

Proof. Assume (1). Since HomD(OX)(G[−i], E) = HomD(OX)(G,E[i]) we see that
this is zero for i≪ 0 by Lemma 36.18.2. This proves that (1) implies (2).
Parts (2), (3), (4) are equivalent by the discussion in Cohomology, Section 20.44.
Part (5) and (6) are equivalent as Hi(X,−) = Hi(RΓ(X,−)) by definition. The

https://stacks.math.columbia.edu/tag/0GEQ
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equivalent conditions (2), (3), (4) are equivalent to the equivalent conditions (5),
(6) by Cohomology, Lemma 20.50.5 and the fact that (G[−i])∨ = G∨[i].
It is clear that (7) implies (2). Conversely, let us prove that the equivalent conditions
(2) – (6) imply (7). Recall that G is a classical generator for Dperf (OX) by Remark
36.17.2. For P ∈ Dperf (OX) let T (P ) be the assertion that RHomX(P,E) is in
D+(Z). Clearly, T is inherited by direct sums, satisfies the 2-out-of-three property
for distinguished triangles, is inherited by direct summands, and is perserved by
shifts. Hence by Derived Categories, Remark 13.36.7 we see that (4) implies T
holds on all of Dperf (OX). The same argument works for all other properties,
except that for property (7)(b) and (7)(c) we also use that P 7→ P∨ is a self
equivalence of Dperf (OX). Small detail omitted.
We will prove the equivalent conditions (2) – (7) imply (1) using the induction
principle of Cohomology of Schemes, Lemma 30.4.1.
First, we prove (2) – (7) ⇒ (1) if X is affine. Let P = OX [0]. From (7) we obtain
Hi(X,E) = 0 for i≪ 0. Hence (1) follows since E is determined by RΓ(X,E), see
Lemma 36.3.5.
Now assume X = U ∪ V with U a quasi-compact open of X and V an affine open,
and assume the implication (2) – (7) ⇒ (1) is known for the schemes U , V , and
U∩V . Suppose E ∈ DQCoh(OX) satisfies (2) – (7). By Lemma 36.15.1 and Theorem
36.15.3 there exists a perfect complex Q on X such that Q|U generates DQCoh(OU ).
Let f1, . . . , fr ∈ Γ(V,OV ) be such that V \ U = V (f1, . . . , fr) as subsets of V . Let
K ∈ Dperf (OV ) be the object corresponding to the Koszul complex on f1, . . . , fr.
Let K ′ ∈ Dperf (OX) be
(36.40.6.1)0GER K ′ = R(V → X)∗K = R(V → X)!K,

see Cohomology, Lemmas 20.33.6 and 20.49.10. This is a perfect complex on X
supported on the closed set X \U ⊂ V and isomorphic to K on V . By assumption,
we know RHomOX

(Q,E) and RHomOX
(K ′, E) are bounded below.

By the second description of K ′ in (36.40.6.1) we have
HomD(OV )(K[−i], E|V ) = HomD(OX)(K ′[−i], E) = 0

for i ≪ 0. Therefore, we may apply Lemma 36.40.2 to E|V to obtain an integer
a such that τ≤a(E|V ) = τ≤aR(U ∩ V → V )∗(E|U∩V ). Then τ≤aE = τ≤aR(U →
X)∗(E|U ) (check that the canonical map is an isomorphism after restricting to U
and to V ). Hence using Lemma 36.40.4 twice we see that

HomD(OU )(Q|U [−i], E|U ) = HomD(OX)(Q[−i], R(U → X)∗(E|U )) = 0
for i ≪ 0. Since the Proposition holds for U and the generator Q|U , we have
E|U ∈ D+

QCoh(OU ). But then since the functor R(U → X)∗ preserves bounded
below objects (see Cohomology, Section 20.3) we get τ≤aE ∈ D+

QCoh(OX). Thus
E ∈ D+

QCoh(OX). □

36.41. Quasi-coherent objects in the derived category

0GZY Let X be a scheme. Recall that Xaffine,Zar denotes the category of affine opens
of X with topology given by standard Zariski coverings, see Topologies, Definition
34.3.7. We remind the reader that the topos of Xaffine,Zar is the small Zariski
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topos of X, see Topologies, Lemma 34.3.11. The site Xaffine,Zar comes with a
structure sheaf O and there is an equivalence of ringed topoi

(Sh(Xaffine,Zar),O) −→ (Sh(XZar),O)
See Descent, Equation (35.11.1.1) and the discussion in Descent, Section 35.11
surrounding it where a slightly different notation is used.
In this section we denote Xaffine the underlying category of Xaffine,Zar endowed
with the chaotic topology, i.e., such that sheaves agree with presheaves. In par-
ticular, the structure sheaf O becomes a sheaf on Xaffine as well. We obtain a
morphisms of ringed sites

ϵ : (Xaffine,Zar,O) −→ (Xaffine,O)
as in Cohomology on Sites, Section 21.27. In this section we will identifyDQCoh(OX)
with the category QC (Xaffine,O) introduced in Cohomology on Sites, Section
21.43.

Lemma 36.41.1.0GZZ In the sitation above there are canonical exact equivalences be-
tween the following triangulated categories

(1) DQCoh(OX),
(2) DQCoh(XZar,O),
(3) DQCoh(Xaffine,Zar,O),
(4) DQCoh(Xaffine,OX), and
(5) QC (Xaffine,O).

Proof. If U ⊂ V ⊂ X are affine open, then the ring map O(V ) → O(U) is flat.
Hence the equivalence between (4) and (5) is a special case of Cohomology on Sites,
Lemma 21.43.11 (the proof also clarifies the statement).
The ringed site (XZar,O) and the ringed space (X,OX) have the same categories
of modules by Descent, Remark 35.8.3. Via this equivalence the quasi-coherent
modules correspond by Descent, Proposition 35.8.9. Hence we get a canonical
exact equivalence between the triangulated categories in (1) and (2).
The discussion preceding the lemma shows that we have an equivalence of ringed
topoi (Sh(Xaffine,Zar),O) → (Sh(XZar),O) and hence an equivalence between
abelian categories of modules. Since the notion of quasi-coherent modules is intrin-
sic (Modules on Sites, Lemma 18.23.2) we see that this equivalence preserves the
subcategories of quasi-coherent modules. Thus we get a canonical exact equivalence
between the triangulated categories in (2) and (3).
To get an exact equivalence between the triangulated categories in (3) and (4) we
will apply Cohomology on Sites, Lemma 21.29.1 to the morphism ϵ : (Xaffine,Zar,O)→
(Xaffine,O) above. We take B = Ob(Xaffine) and we take A ⊂ PMod(Xaffine,O)
to be the full subcategory of those presheaves F such that F(V ) ⊗O(V ) O(U) →
F(U) is an isomorphism. Observe that by Descent, Lemma 35.11.2 objects of A
are exactly those sheaves in the Zariski topology which are quasi-coherent modules
on (Xaffine,Zar,O). On the other hand, by Modules on Sites, Lemma 18.24.2,
the objects of A are exactly the quasi-coherent modules on (Xaffine,O), i.e., in
the chaotic topology. Thus if we show that Cohomology on Sites, Lemma 21.29.1
applies, then we do indeed get the canonical equivalence between the categories of
(3) and (4) using ϵ∗ and Rϵ∗.

https://stacks.math.columbia.edu/tag/0GZZ
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We have to verify 4 conditions:
(1) Every object of A is a sheaf for the Zariski topology. This we have seen

above.
(2) A is a weak Serre subcategory of Mod(Xaffine,Zar,O). Above we have

seen that A = QCoh(Xaffine,Zar,O) and we have seen above that these,
via the equivalence Mod(Xaffine,Zar,O) = Mod(X,OX), correspond to
the quasi-coherent modules on X. Thus the result by the discussion in
Schemes, Section 26.24.

(3) Every object of Xaffine has a covering in the chaotic topology whose
members are elements of B. This holds because B contains all objects.

(4) For every object U of Xaffine and F in A we have Hp
Zar(U,F) = 0

for p > 0. This holds by the vanishing of cohomology of quasi-coherent
modules on affines, see Cohomology of Schemes, Lemma 30.2.2.

This finishes the proof. □

Remark 36.41.2.0H00 Let S be a scheme. We will later show that also QC ((Aff/S),O) is
canonically equivalent to DQCoh(OS). See Sheaves on Stacks, Proposition 96.26.4.
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CHAPTER 37

More on Morphisms

02GX 37.1. Introduction

02GY In this chapter we continue our study of properties of morphisms of schemes. A
fundamental reference is [DG67].

37.2. Thickenings

04EW The following terminology may not be completely standard, but it is convenient.

Definition 37.2.1.04EX Thickenings.
(1) We say a scheme X ′ is a thickening of a scheme X if X is a closed sub-

scheme of X ′ and the underlying topological spaces are equal.
(2) We say a scheme X ′ is a first order thickening of a scheme X if X is a

closed subscheme of X ′ and the quasi-coherent sheaf of ideals I ⊂ OX′

defining X has square zero.
(3) Given two thickenings X ⊂ X ′ and Y ⊂ Y ′ a morphism of thickenings is a

morphism f ′ : X ′ → Y ′ such that f ′(X) ⊂ Y , i.e., such that f ′|X factors
through the closed subscheme Y . In this situation we set f = f ′|X : X →
Y and we say that (f, f ′) : (X ⊂ X ′) → (Y ⊂ Y ′) is a morphism of
thickenings.

(4) Let S be a scheme. We similarly define thickenings over S, and morphisms
of thickenings over S. This means that the schemes X,X ′, Y, Y ′ above
are schemes over S, and that the morphisms X → X ′, Y → Y ′ and
f ′ : X ′ → Y ′ are morphisms over S.

Finite order thickenings. Let iX : X → X ′ be a thickening. Any local section of
the kernel I = Ker(i♯X) is locally nilpotent. Let us say that X ⊂ X ′ is a finite
order thickening if the ideal sheaf I is “globally” nilpotent, i.e., if there exists an
n ≥ 0 such that In+1 = 0. Technically the class of finite order thickenings X ⊂ X ′

is much easier to handle than the general case. Namely, in this case we have a
filtration

0 = In+1 ⊂ In ⊂ In−1 ⊂ . . . ⊂ I ⊂ OX′

and we see that X ′ is filtered by closed subspaces

X = X1 ⊂ X2 ⊂ . . . ⊂ Xn ⊂ Xn+1 = X ′

such that each pair Xi ⊂ Xi+1 is a first order thickening over S. Using simple in-
duction arguments many results proved for first order thickenings can be rephrased
as results on finite order thickenings.

First order thickening are described as follows (see Modules, Lemma 17.28.11).

3131
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Lemma 37.2.2.05YV Let X be a scheme over a base S. Consider a short exact sequence

0→ I → A → OX → 0

of sheaves on X where A is a sheaf of f−1OS-algebras, A → OX is a surjection of
sheaves of f−1OS-algebras, and I is its kernel. If

(1) I is an ideal of square zero in A, and
(2) I is quasi-coherent as an OX -module

then X ′ = (X,A) is a scheme and X → X ′ is a first order thickening over S.
Moreover, any first order thickening over S is of this form.

Proof. It is clear that X ′ is a locally ringed space. Let U = Spec(B) be an affine
open of X. Set A = Γ(U,A). Note that since H1(U, I) = 0 (see Cohomology of
Schemes, Lemma 30.2.2) the map A → B is surjective. By assumption the kernel
I = I(U) is an ideal of square zero in the ring A. By Schemes, Lemma 26.6.4 there
is a canonical morphism of locally ringed spaces

(U,A|U ) −→ Spec(A)

coming from the map B → Γ(U,A). Since this morphism fits into the commutative
diagram

(U,OX |U )

��

// Spec(B)

��
(U,A|U ) // Spec(A)

we see that it is a homeomorphism on underlying topological spaces. Thus to see
that it is an isomorphism, it suffices to check it induces an isomorphism on the
local rings. For u ∈ U corresponding to the prime p ⊂ A we obtain a commutative
diagram of short exact sequences

0 // Ip //

��

Ap
//

��

Bp
//

��

0

0 // Iu // Au // OX,u // 0.

The left and right vertical arrows are isomorphisms because I and OX are quasi-
coherent sheaves. Hence also the middle map is an isomorphism. Hence every point
of X ′ = (X,A) has an affine neighbourhood and X ′ is a scheme as desired. □

Lemma 37.2.3.06AD The case of a finite
order thickening is
[GD60, Proposition
5.1.9].

Any thickening of an affine scheme is affine.

Proof. This is a special case of Limits, Proposition 32.11.2. □

Proof for a finite order thickening. Suppose that X ⊂ X ′ is a finite order thicken-
ing with X affine. Then we may use Serre’s criterion to prove X ′ is affine. More
precisely, we will use Cohomology of Schemes, Lemma 30.3.1. Let F be a quasi-
coherent OX′ -module. It suffices to show that H1(X ′,F) = 0. Denote i : X → X ′

the given closed immersion and denote I = Ker(i♯ : OX′ → i∗OX). By our discus-
sion of finite order thickenings (following Definition 37.2.1) there exists an n ≥ 0
and a filtration

0 = Fn+1 ⊂ Fn ⊂ Fn−1 ⊂ . . . ⊂ F0 = F

https://stacks.math.columbia.edu/tag/05YV
https://stacks.math.columbia.edu/tag/06AD


37.3. MORPHISMS OF THICKENINGS 3133

by quasi-coherent submodules such that Fa/Fa+1 is annihilated by I. Namely, we
can take Fa = IaF . Then Fa/Fa+1 = i∗Ga for some quasi-coherent OX -module
Ga, see Morphisms, Lemma 29.4.1. We obtain

H1(X ′,Fa/Fa+1) = H1(X ′, i∗Ga) = H1(X,Ga) = 0
The second equality comes from Cohomology of Schemes, Lemma 30.2.4 and the
last equality from Cohomology of Schemes, Lemma 30.2.2. Thus F has a finite
filtration whose successive quotients have vanishing first cohomology and it follows
by a simple induction argument that H1(X ′,F) = 0. □

Lemma 37.2.4.09ZU Let S ⊂ S′ be a thickening of schemes. Let X ′ → S′ be a morphism
and set X = S ×S′ X ′. Then (X ⊂ X ′) → (S ⊂ S′) is a morphism of thickenings.
If S ⊂ S′ is a first (resp. finite order) thickening, then X ⊂ X ′ is a first (resp. finite
order) thickening.

Proof. Omitted. □

Lemma 37.2.5.0BPE If S ⊂ S′ and S′ ⊂ S′′ are thickenings, then so is S ⊂ S′′.

Proof. Omitted. □

Lemma 37.2.6.0BPF The property of being a thickening is fpqc local. Similarly for first
order thickenings.

Proof. The statement means the following: Let X → X ′ be a morphism of schemes
and let {gi : X ′

i → X ′} be an fpqc covering such that the base change Xi → X ′
i

is a thickening for all i. Then X → X ′ is a thickening. Since the morphisms gi
are jointly surjective we conclude that X → X ′ is surjective. By Descent, Lemma
35.23.19 we conclude that X → X ′ is a closed immersion. Thus X → X ′ is a
thickening. We omit the proof in the case of first order thickenings. □

37.3. Morphisms of thickenings

0CF2 If (f, f ′) : (X ⊂ X ′) → (Y ⊂ Y ′) is a morphism of thickenings of schemes, then
often properties of the morphism f are inherited by f ′. There are several variants.

Lemma 37.3.1.09ZV Let (f, f ′) : (X ⊂ X ′) → (S ⊂ S′) be a morphism of thickenings.
Then

(1) f is an affine morphism if and only if f ′ is an affine morphism,
(2) f is a surjective morphism if and only if f ′ is a surjective morphism,
(3) f is quasi-compact if and only if f ′ quasi-compact,
(4) f is universally closed if and only if f ′ is universally closed,
(5) f is integral if and only if f ′ is integral,
(6) f is (quasi-)separated if and only if f ′ is (quasi-)separated,
(7) f is universally injective if and only if f ′ is universally injective,
(8) f is universally open if and only if f ′ is universally open,
(9) f is quasi-affine if and only if f ′ is quasi-affine, and

(10) add more here.

Proof. Observe that S → S′ and X → X ′ are universal homeomorphisms (see for
example Morphisms, Lemma 29.45.6). This immediately implies parts (2), (3), (4),
(7), and (8). Part (1) follows from Lemma 37.2.3 which tells us that there is a
1-to-1 correspondence between affine opens of S and S′ and between affine opens of
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X and X ′. Part (9) follows from Limits, Lemma 32.11.5 and the remark just made
about affine opens of S and S′. Part (5) follows from (1) and (4) by Morphisms,
Lemma 29.44.7. Finally, note that

S ×X S = S ×X′ S → S ×X′ S′ → S′ ×X′ S′

is a thickening (the two arrows are thickenings by Lemma 37.2.4). Hence applying
(3) and (4) to the morphism (S ⊂ S′)→ (S ×X S → S′ ×X′ S′) we obtain (6). □

Lemma 37.3.2.0D2R Let (f, f ′) : (X ⊂ X ′) → (S ⊂ S′) be a morphism of thickenings.
Let L′ be an invertible sheaf on X ′ and denote L the restriction to X. Then L′ is
f ′-ample if and only if L is f -ample.

Proof. Recall that being relatively ample is a condition for each affine open in
the base, see Morphisms, Definition 29.37.1. By Lemma 37.2.3 there is a 1-to-1
correspondence between affine opens of S and S′. Thus we may assume S and S′

are affine and we reduce to proving that L′ is ample if and only if L is ample. This
is Limits, Lemma 32.11.4. □

Lemma 37.3.3.09ZW Let (f, f ′) : (X ⊂ X ′) → (S ⊂ S′) be a morphism of thickenings
such that X = S ×S′ X ′. If S ⊂ S′ is a finite order thickening, then

(1) f is a closed immersion if and only if f ′ is a closed immersion,
(2) f is locally of finite type if and only if f ′ is locally of finite type,
(3) f is locally quasi-finite if and only if f ′ is locally quasi-finite,
(4) f is locally of finite type of relative dimension d if and only if f ′ is locally

of finite type of relative dimension d,
(5) ΩX/S = 0 if and only if ΩX′/S′ = 0,
(6) f is unramified if and only if f ′ is unramified,
(7) f is proper if and only if f ′ is proper,
(8) f is finite if and only if f ′ is finite,
(9) f is a monomorphism if and only if f ′ is a monomorphism,

(10) f is an immersion if and only if f ′ is an immersion, and
(11) add more here.

Proof. The properties P listed in the lemma are all stable under base change, hence
if f ′ has property P, then so does f . See Schemes, Lemmas 26.18.2 and 26.23.5
and Morphisms, Lemmas 29.15.4, 29.20.13, 29.29.2, 29.32.10, 29.35.5, 29.41.5, and
29.44.6.
The interesting direction in each case is therefore to assume that f has the property
and deduce that f ′ has it too. By induction on the order of the thickening we may
assume that S ⊂ S′ is a first order thickening, see discussion immediately following
Definition 37.2.1.
Most of the proofs will use a reduction to the affine case. Let U ′ ⊂ S′ be an affine
open and let V ′ ⊂ X ′ be an affine open lying over U ′. Let U ′ = Spec(A′) and denote
I ⊂ A′ be the ideal defining the closed subscheme U ′∩S. Say V ′ = Spec(B′). Then
V ′ ∩X = Spec(B′/IB′). Setting A = A′/I and B = B′/IB′ we get a commutative
diagram

0 // IB′ // B′ // B // 0

0 // IA′ //

OO

A′ //

OO

A //

OO

0

https://stacks.math.columbia.edu/tag/0D2R
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with exact rows and I2 = 0.
The translation of (1) into algebra: If A → B is surjective, then A′ → B′ is
surjective. This follows from Nakayama’s lemma (Algebra, Lemma 10.20.1).
The translation of (2) into algebra: If A → B is a finite type ring map, then
A′ → B′ is a finite type ring map. This follows from Nakayama’s lemma (Algebra,
Lemma 10.20.1) applied to a map A′[x1, . . . , xn]→ B′ such that A[x1, . . . , xn]→ B
is surjective.
Proof of (3). Follows from (2) and that quasi-finiteness of a morphism which is
locally of finite type can be checked on fibres, see Morphisms, Lemma 29.20.6.
Proof of (4). Follows from (2) and that the additional property of “being of relative
dimension d” can be checked on fibres (by definition, see Morphisms, Definition
29.29.1.
The translation of (5) into algebra: If ΩB/A = 0, then ΩB′/A′ = 0. By Algebra,
Lemma 10.131.12 we have 0 = ΩB/A = ΩB′/A′/IΩB′/A′ . Hence ΩB′/A′ = 0 by
Nakayama’s lemma (Algebra, Lemma 10.20.1).
The translation of (6) into algebra: If A → B is unramified map, then A′ → B′ is
unramified. Since A → B is of finite type we see that A′ → B′ is of finite type by
(2) above. Since A → B is unramified we have ΩB/A = 0. By part (5) we have
ΩB′/A′ = 0. Thus A′ → B′ is unramified.
Proof of (7). Follows by combining (2) with results of Lemma 37.3.1 and the fact
that proper equals quasi-compact + separated + locally of finite type + universally
closed.
Proof of (8). Follows by combining (2) with results of Lemma 37.3.1 and using the
fact that finite equals integral + locally of finite type (Morphisms, Lemma 29.44.4).
Proof of (9). As f is a monomorphism we have X = X ×S X. We may apply
the results proved so far to the morphism of thickenings (X ⊂ X ′) → (X ×S X ⊂
X ′×S′ X ′). We conclude X ′ → X ′×S′ X ′ is a closed immersion by (1). In fact, it is
a first order thickening as the ideal defining the closed immersion X ′ → X ′ ×S′ X ′

is contained in the pullback of the ideal I ⊂ OS′ cutting out S in S′. Indeed,
X = X ×S X = (X ′ ×S′ X ′) ×S′ S is contained in X ′. Hence by Morphisms,
Lemma 29.32.7 it suffices to show that ΩX′/S′ = 0 which follows from (5) and the
corresponding statement for X/S.
Proof of (10). If f : X → S is an immersion, then it factors as X → U → S where
U → S is an open immersion and X → U is a closed immersion. Let U ′ ⊂ S′ be
the open subscheme whose underlying topological space is the same as U . Then
X ′ → S′ factors through U ′ and we conclude that X ′ → U ′ is a closed immersion
by part (1). This finishes the proof. □

The following lemma is a variant on the preceding one. Rather than assume that
the thickenings involved are finite order (which allows us to transfer the property
of being locally of finite type from f to f ′), we instead take as given that each of f
and f ′ is locally of finite type.

Lemma 37.3.4.0BPG Let (f, f ′) : (X ⊂ X ′)→ (Y → Y ′) be a morphism of thickenings.
Assume f and f ′ are locally of finite type and X = Y ×Y ′ X ′. Then

(1) f is locally quasi-finite if and only if f ′ is locally quasi-finite,

https://stacks.math.columbia.edu/tag/0BPG
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(2) f is finite if and only if f ′ is finite,
(3) f is a closed immersion if and only if f ′ is a closed immersion,
(4) ΩX/Y = 0 if and only if ΩX′/Y ′ = 0,
(5) f is unramified if and only if f ′ is unramified,
(6) f is a monomorphism if and only if f ′ is a monomorphism,
(7) f is an immersion if and only if f ′ is an immersion,
(8) f is proper if and only if f ′ is proper, and
(9) add more here.

Proof. The properties P listed in the lemma are all stable under base change, hence
if f ′ has property P, then so does f . See Schemes, Lemmas 26.18.2 and 26.23.5
and Morphisms, Lemmas 29.20.13, 29.29.2, 29.32.10, 29.35.5, 29.41.5, and 29.44.6.
Hence in each case we need only to prove that if f has the desired property, so does
f ′.

A morphism is locally quasi-finite if and only if it is locally of finite type and the
scheme theoretic fibres are discrete spaces, see Morphisms, Lemma 29.20.8. Since
the underlying topological space is unchanged by passing to a thickening, we see
that f ′ is locally quasi-finite if (and only if) f is. This proves (1).

Case (2) follows from case (5) of Lemma 37.3.1 and the fact that the finite mor-
phisms are precisely the integral morphisms that are locally of finite type (Mor-
phisms, Lemma 29.44.4).

Case (3). This follows immediately from Morphisms, Lemma 29.45.7.

Case (4) follows from the following algebra statement: Let A be a ring and let I ⊂ A
be a locally nilpotent ideal. Let B be a finite type A-algebra. If Ω(B/IB)/(A/I) = 0,
then ΩB/A = 0. Namely, the assumption means that IΩB/A = 0, see Algebra,
Lemma 10.131.12. On the other hand ΩB/A is a finite B-module, see Algebra,
Lemma 10.131.16. Hence the vanishing of ΩB/A follows from Nakayama’s lemma
(Algebra, Lemma 10.20.1) and the fact that IB is contained in the Jacobson radical
of B.

Case (5) follows immediately from (4) and Morphisms, Lemma 29.35.2.

Proof of (6). As f is a monomorphism we have X = X ×Y X. We may apply
the results proved so far to the morphism of thickenings (X ⊂ X ′)→ (X ×Y X ⊂
X ′ ×Y ′ X ′). We conclude ∆X′/Y ′ : X ′ → X ′ ×Y ′ X ′ is a closed immersion by
(3). In fact ∆X′/Y ′ is a bijection on underlying sets, hence ∆X′/Y ′ is a thickening.
On the other hand ∆X′/Y ′ is locally of finite presentation by Morphisms, Lemma
29.21.12. In other words, ∆X′/Y ′(X ′) is cut out by a quasi-coherent sheaf of ideals
J ⊂ OX′×Y ′X′ of finite type. Since ΩX′/Y ′ = 0 by (5) we see that the conormal
sheaf of X ′ → X ′ ×Y ′ X ′ is zero by Morphisms, Lemma 29.32.7. In other words,
J /J 2 = 0. This implies ∆X′/Y ′ is an isomorphism, for example by Algebra,
Lemma 10.21.5.

Proof of (7). If f : X → Y is an immersion, then it factors as X → V → Y where
V → Y is an open immersion and X → V is a closed immersion. Let V ′ ⊂ Y ′ be
the open subscheme whose underlying topological space is the same as V . Then
X ′ → V ′ factors through V ′ and we conclude that X ′ → V ′ is a closed immersion
by part (3).
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Case (8) follows from Lemma 37.3.1 and the definition of proper morphisms as being
the quasi-compact, universally closed, and separated morphisms that are locally of
finite type. □

37.4. Picard groups of thickenings

0C6Q Some material on Picard groups of thickenings.

Lemma 37.4.1.0C6R Let X ⊂ X ′ be a first order thickening with ideal sheaf I. Then
there is a canonical exact sequence

0 // H0(X, I) // H0(X ′,O∗
X′) // H0(X,O∗

X)

// H1(X, I) // Pic(X ′) // Pic(X)

// H2(X, I) // . . . // . . .

of abelian groups.

Proof. This is the long exact cohomology sequence associated to the short exact
sequence of sheaves of abelian groups

0→ I → O∗
X′ → O∗

X → 0

where the first map sends a local section f of I to the invertible section 1 + f of
OX′ . We also use the identification of the Picard group of a ringed space with the
first cohomology group of the sheaf of invertible functions, see Cohomology, Lemma
20.6.1. □

Lemma 37.4.2.0C6S Let X ⊂ X ′ be a thickening. Let n be an integer invertible in OX .
Then the map Pic(X ′)[n]→ Pic(X)[n] is bijective.

Proof for a finite order thickening. By the general principle explained following Def-
inition 37.2.1 this reduces to the case of a first order thickening. Then may use
Lemma 37.4.1 to see that it suffices to show that H1(X, I)[n], H1(X, I)/n, and
H2(X, I)[n] are zero. This follows as multiplication by n on I is an isomorphism
as it is an OX -module. □

Proof in general. Let I ⊂ OX′ be the quasi-coherent ideal sheaf cutting out X.
Then we have a short exact sequence of abelian groups

0→ (1 + I)∗ → O∗
X′ → O∗

X → 0

We obtain a long exact cohomology sequence as in the statement of Lemma 37.4.1
with Hi(X, I) replaced by Hi(X, (1 + I)∗). Thus it suffices to show that raising to
the nth power is an isomorphism (1 + I)∗ → (1 + I)∗. Taking sections over affine
opens this follows from Algebra, Lemma 10.32.8. □
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37.5. First order infinitesimal neighbourhood

05YW A natural construction of first order thickenings is the following. Suppose that
i : Z → X be an immersion of schemes. Choose an open subscheme U ⊂ X
such that i identifies Z with a closed subscheme Z ⊂ U . Let I ⊂ OU be the
quasi-coherent sheaf of ideals defining Z in U . Then we can consider the closed
subscheme Z ′ ⊂ U defined by the quasi-coherent sheaf of ideals I2.

Definition 37.5.1.04EY Let i : Z → X be an immersion of schemes. The first order
infinitesimal neighbourhood of Z in X is the first order thickening Z ⊂ Z ′ over X
described above.

This thickening has the following universal property (which will assuage any fears
that the construction above depends on the choice of the open U).

Lemma 37.5.2.04EZ Let i : Z → X be an immersion of schemes. The first order
infinitesimal neighbourhood Z ′ of Z in X has the following universal property:
Given any commutative diagram

Z

i

��

T
a

oo

��
X T ′boo

where T ⊂ T ′ is a first order thickening over X, there exists a unique morphism
(a′, a) : (T ⊂ T ′)→ (Z ⊂ Z ′) of thickenings over X.

Proof. Let U ⊂ X be the open used in the construction of Z ′, i.e., an open such
that Z is identified with a closed subscheme of U cut out by the quasi-coherent
sheaf of ideals I. Since |T | = |T ′| we see that b(T ′) ⊂ U . Hence we can think of b
as a morphism into U . Let J ⊂ OT ′ be the ideal cutting out T . Since b(T ) ⊂ Z by
the diagram above we see that b♯(b−1I) ⊂ J . As T ′ is a first order thickening of T
we see that J 2 = 0 hence b♯(b−1(I2)) = 0. By Schemes, Lemma 26.4.6 this implies
that b factors through Z ′. Denote a′ : T ′ → Z ′ this factorization and everything is
clear. □

Lemma 37.5.3.04F0 Let i : Z → X be an immersion of schemes. Let Z ⊂ Z ′ be the
first order infinitesimal neighbourhood of Z in X. Then the diagram

Z //

��

Z ′

��
Z // X

induces a map of conormal sheaves CZ/X → CZ/Z′ by Morphisms, Lemma 29.31.3.
This map is an isomorphism.

Proof. This is clear from the construction of Z ′ above. □

37.6. Formally unramified morphisms

02H7
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Recall that a ring map R→ A is called formally unramified (see Algebra, Definition
10.148.1) if for every commutative solid diagram

A //

!!

B/I

R //

OO

B

OO

where I ⊂ B is an ideal of square zero, at most one dotted arrow exists which
makes the diagram commute. This motivates the following analogue for morphisms
of schemes.

Definition 37.6.1.02H8 Let f : X → S be a morphism of schemes. We say f is formally
unramified if given any solid commutative diagram

X

f

��

T

i
��

oo

S T ′oo

``

where T ⊂ T ′ is a first order thickening of affine schemes over S there exists at
most one dotted arrow making the diagram commute.

We first prove some formal lemmas, i.e., lemmas which can be proved by drawing
the corresponding diagrams.

Lemma 37.6.2.04F1 If f : X → S is a formally unramified morphism, then given any
solid commutative diagram

X

f

��

T

i
��

oo

S T ′oo

``

where T ⊂ T ′ is a first order thickening of schemes over S there exists at most one
dotted arrow making the diagram commute. In other words, in Definition 37.6.1
the condition that T be affine may be dropped.

Proof. This is true because a morphism is determined by its restrictions to affine
opens. □

Lemma 37.6.3.02HA A composition of formally unramified morphisms is formally un-
ramified.

Proof. This is formal. □

Lemma 37.6.4.02HB A base change of a formally unramified morphism is formally
unramified.

Proof. This is formal. □

Lemma 37.6.5.02HC Let f : X → S be a morphism of schemes. Let U ⊂ X and V ⊂ S
be open such that f(U) ⊂ V . If f is formally unramified, so is f |U : U → V .

https://stacks.math.columbia.edu/tag/02H8
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Proof. Consider a solid diagram
U

f |U
��

T

i
��

a
oo

V T ′oo

``

as in Definition 37.6.1. If f is formally ramified, then there exists at most one
S-morphism a′ : T ′ → X such that a′|T = a. Hence clearly there exists at most
one such morphism into U . □

Lemma 37.6.6.02HD Let f : X → S be a morphism of schemes. Assume X and S are
affine. Then f is formally unramified if and only if OS(S)→ OX(X) is a formally
unramified ring map.

Proof. This is immediate from the definitions (Definition 37.6.1 and Algebra, Def-
inition 10.148.1) by the equivalence of categories of rings and affine schemes, see
Schemes, Lemma 26.6.5. □

Here is a characterization in terms of the sheaf of differentials.

Lemma 37.6.7.02H9 Let f : X → S be a morphism of schemes. Then f is formally
unramified if and only if ΩX/S = 0.

Proof. We recall some of the arguments of the proof of Morphisms, Lemma 29.32.5.
Let W ⊂ X×SX be an open such that ∆ : X → X×SX induces a closed immersion
into W . Let J ⊂ OW be the ideal sheaf of this closed immersion. Let X ′ ⊂ W be
the closed subscheme defined by the quasi-coherent sheaf of ideals J 2. Consider
the two morphisms p1, p2 : X ′ → X induced by the two projections X ×S X → X.
Note that p1 and p2 agree when composed with ∆ : X → X ′ and that X → X ′ is
a closed immersion defined by a an ideal whose square is zero. Moreover there is a
short exact sequence

0→ J /J 2 → OX′ → OX → 0
and ΩX/S = J /J 2. Moreover, J /J 2 is generated by the local sections p♯1(f)−p♯2(f)
for f a local section of OX .
Suppose that f : X → S is formally unramified. By assumption this means that
p1 = p2 when restricted to any affine open T ′ ⊂ X ′. Hence p1 = p2. By what was
said above we conclude that ΩX/S = J /J 2 = 0.
Conversely, suppose that ΩX/S = 0. Then X ′ = X. Take any pair of morphisms
f ′

1, f
′
2 : T ′ → X fitting as dotted arrows in the diagram of Definition 37.6.1. This

gives a morphism (f ′
1, f

′
2) : T ′ → X ×S X. Since f ′

1|T = f ′
2|T and |T | = |T ′| we see

that the image of T ′ under (f ′
1, f

′
2) is contained in the open W chosen above. Since

(f ′
1, f

′
2)(T ) ⊂ ∆(X) and since T is defined by an ideal of square zero in T ′ we see

that (f ′
1, f

′
2) factors through X ′. As X ′ = X we conclude f ′

1 = f ′
2 as desired. □

Lemma 37.6.8.02HE Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is unramified (resp. G-unramified), and
(2) the morphism f is locally of finite type (resp. locally of finite presentation)

and formally unramified.

Proof. Use Lemma 37.6.7 and Morphisms, Lemma 29.35.2. □
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37.7. Universal first order thickenings

04F2 Let h : Z → X be a morphism of schemes. A universal first order thickening of Z
over X is a first order thickening Z ⊂ Z ′ over X such that given any first order
thickening T ⊂ T ′ over X and a solid commutative diagram

Z

~~

T

  

a
oo

Z ′

''

T ′a′
oo

b
ww

X

there exists a unique dotted arrow making the diagram commute. Note that in
this situation (a, a′) : (T ⊂ T ′) → (Z ⊂ Z ′) is a morphism of thickenings over
X. Thus if a universal first order thickening exists, then it is unique up to unique
isomorphism. In general a universal first order thickening does not exist, but if h
is formally unramified then it does.

Lemma 37.7.1.04F3 Let h : Z → X be a formally unramified morphism of schemes.
There exists a universal first order thickening Z ⊂ Z ′ of Z over X.

Proof. During this proof we will say Z ⊂ Z ′ is a universal first order thickening of
Z over X if it satisfies the condition of the lemma. We will construct the universal
first order thickening Z ⊂ Z ′ over X by glueing, starting with the affine case which
is Algebra, Lemma 10.149.1. We begin with some general remarks.

If a universal first order thickening of Z over X exists, then it is unique up to unique
isomorphism. Moreover, suppose that V ⊂ Z and U ⊂ X are open subschemes such
that h(V ) ⊂ U . Let Z ⊂ Z ′ be a universal first order thickening of Z over X. Let
V ′ ⊂ Z ′ be the open subscheme such that V = Z ∩V ′. Then we claim that V ⊂ V ′

is the universal first order thickening of V over U . Namely, suppose given any
diagram

V

h

��

T
a

oo

��
U T ′boo

where T ⊂ T ′ is a first order thickening over U . By the universal property of Z ′

we obtain (a, a′) : (T ⊂ T ′) → (Z ⊂ Z ′). But since we have equality |T | = |T ′| of
underlying topological spaces we see that a′(T ′) ⊂ V ′. Hence we may think of (a, a′)
as a morphism of thickenings (a, a′) : (T ⊂ T ′)→ (V ⊂ V ′) over U . Uniqueness is
clear also. In a completely similar manner one proves that if h(Z) ⊂ U and Z ⊂ Z ′

is a universal first order thickening over U , then Z ⊂ Z ′ is a universal first order
thickening over X.

Before we glue affine pieces let us show that the lemma holds if Z and X are affine.
Say X = Spec(R) and Z = Spec(S). By Algebra, Lemma 10.149.1 there exists a
first order thickening Z ⊂ Z ′ over X which has the universal property of the lemma

https://stacks.math.columbia.edu/tag/04F3
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for diagrams
Z

h

��

T
a

oo

��
X T ′boo

where T, T ′ are affine. Given a general diagram we can choose an affine open
covering T ′ =

⋃
T ′
i and we obtain morphisms a′

i : T ′
i → Z ′ over X such that

a′
i|Ti = a|Ti . By uniqueness we see that a′

i and a′
j agree on any affine open of

T ′
i ∩T ′

j . Hence the morphisms a′
i glue to a global morphism a′ : T ′ → Z ′ over X as

desired. Thus the lemma holds if X and Z are affine.

Choose an affine open covering Z =
⋃
Zi such that each Zi maps into an affine

open Ui of X. By Lemma 37.6.5 the morphisms Zi → Ui are formally unramified.
Hence by the affine case we obtain universal first order thickenings Zi ⊂ Z ′

i over
Ui. By the general remarks above Zi ⊂ Z ′

i is also a universal first order thickening
of Zi over X. Let Z ′

i,j ⊂ Z ′
i be the open subscheme such that Zi ∩ Zj = Z ′

i,j ∩ Zi.
By the general remarks we see that both Z ′

i,j and Z ′
j,i are universal first order

thickenings of Zi ∩ Zj over X. Thus, by the first of our general remarks, we see
that there is a canonical isomorphism φij : Z ′

i,j → Z ′
j,i inducing the identity on

Zi ∩ Zj . We claim that these morphisms satisfy the cocycle condition of Schemes,
Section 26.14. (Verification omitted. Hint: Use that Z ′

i,j ∩ Z ′
i,k is the universal

first order thickening of Zi∩Zj ∩Zk which determines it up to unique isomorphism
by what was said above.) Hence we can use the results of Schemes, Section 26.14
to get a first order thickening Z ⊂ Z ′ over X which the property that the open
subscheme Z ′

i ⊂ Z ′ with Zi = Z ′
i ∩Z is a universal first order thickening of Zi over

X.

It turns out that this implies formally that Z ′ is a universal first order thickening
of Z over X. Namely, we have the universal property for any diagram

Z

h

��

T
a

oo

��
X T ′boo

where a(T ) is contained in some Zi. Given a general diagram we can choose an
open covering T ′ =

⋃
T ′
i such that a(Ti) ⊂ Zi. We obtain morphisms a′

i : T ′
i → Z ′

over X such that a′
i|Ti = a|Ti . We see that a′

i and a′
j necessarily agree on T ′

i ∩ T ′
j

since both a′
i|T ′

i
∩T ′

j
and a′

j |T ′
i
∩T ′

j
are solutions of the problem of mapping into the

universal first order thickening Z ′
i ∩ Z ′

j of Zi ∩ Zj over X. Hence the morphisms
a′
i glue to a global morphism a′ : T ′ → Z ′ over X as desired. This finishes the

proof. □

Definition 37.7.2.04F4 Let h : Z → X be a formally unramified morphism of schemes.
(1) The universal first order thickening of Z over X is the thickening Z ⊂ Z ′

constructed in Lemma 37.7.1.
(2) The conormal sheaf of Z over X is the conormal sheaf of Z in its universal

first order thickening Z ′ over X.
We often denote the conormal sheaf CZ/X in this situation.

https://stacks.math.columbia.edu/tag/04F4
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Thus we see that there is a short exact sequence of sheaves

0→ CZ/X → OZ′ → OZ → 0

on Z. The following lemma proves that there is no conflict between this definition
and the definition in case Z → X is an immersion.

Lemma 37.7.3.04F5 Let i : Z → X be an immersion of schemes. Then
(1) i is formally unramified,
(2) the universal first order thickening of Z over X is the first order infinites-

imal neighbourhood of Z in X of Definition 37.5.1, and
(3) the conormal sheaf of i in the sense of Morphisms, Definition 29.31.1 agrees

with the conormal sheaf of i in the sense of Definition 37.7.2.

Proof. By Morphisms, Lemmas 29.35.7 and 29.35.8 an immersion is unramified,
hence formally unramified by Lemma 37.6.8. The other assertions follow by com-
bining Lemmas 37.5.2 and 37.5.3 and the definitions. □

Lemma 37.7.4.04F6 Let Z → X be a formally unramified morphism of schemes. Then
the universal first order thickening Z ′ is formally unramified over X.

Proof. There are two proofs. The first is to show that ΩZ′/X = 0 by working affine
locally and applying Algebra, Lemma 10.149.5. Then Lemma 37.6.7 implies what
we want. The second is a direct argument as follows.

Let T ⊂ T ′ be a first order thickening. Let

Z ′

��

T
c

oo

��
X T ′oo

a,b

``

be a commutative diagram. Consider two morphisms a, b : T ′ → Z ′ fitting into the
diagram. Set T0 = c−1(Z) ⊂ T and T ′

a = a−1(Z) (scheme theoretically). Since
Z ′ is a first order thickening of Z, we see that T ′ is a first order thickening of T ′

a.
Moreover, since c = a|T we see that T0 = T ∩ T ′

a (scheme theoretically). As T ′ is a
first order thickening of T it follows that T ′

a is a first order thickening of T0. Now
a|T ′

a
and b|T ′

a
are morphisms of T ′

a into Z ′ over X which agree on T0 as morphisms
into Z. Hence by the universal property of Z ′ we conclude that a|T ′

a
= b|T ′

a
. Thus

a and b are morphism from the first order thickening T ′ of T ′
a whose restrictions

to T ′
a agree as morphisms into Z. Thus using the universal property of Z ′ once

more we conclude that a = b. In other words, the defining property of a formally
unramified morphism holds for Z ′ → X as desired. □

Lemma 37.7.5.04F7 Consider a commutative diagram of schemes

Z
h
//

f

��

X

g

��
W

h′
// Y

with h and h′ formally unramified. Let Z ⊂ Z ′ be the universal first order thicken-
ing of Z over X. Let W ⊂W ′ be the universal first order thickening of W over Y .

https://stacks.math.columbia.edu/tag/04F5
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There exists a canonical morphism (f, f ′) : (Z,Z ′) → (W,W ′) of thickenings over
Y which fits into the following commutative diagram

Z ′

~~
f ′

��
Z //

f

��

44

X

��

W ′

}}
W

44

// Y

In particular the morphism (f, f ′) of thickenings induces a morphism of conormal
sheaves f∗CW/Y → CZ/X .

Proof. The first assertion is clear from the universal property of W ′. The induced
map on conormal sheaves is the map of Morphisms, Lemma 29.31.3 applied to
(Z ⊂ Z ′)→ (W ⊂W ′). □

Lemma 37.7.6.04F8 Let
Z

h
//

f

��

X

g

��
W

h′
// Y

be a fibre product diagram in the category of schemes with h′ formally unramified.
Then h is formally unramified and if W ⊂W ′ is the universal first order thickening
of W over Y , then Z = X ×Y W ⊂ X ×Y W ′ is the universal first order thickening
of Z over X. In particular the canonical map f∗CW/Y → CZ/X of Lemma 37.7.5 is
surjective.

Proof. The morphism h is formally unramified by Lemma 37.6.4. It is clear that
X ×Y W ′ is a first order thickening. It is straightforward to check that it has the
universal property because W ′ has the universal property (by mapping properties
of fibre products). See Morphisms, Lemma 29.31.4 for why this implies that the
map of conormal sheaves is surjective. □

Lemma 37.7.7.04F9 Let
Z

h
//

f

��

X

g

��
W

h′
// Y

be a fibre product diagram in the category of schemes with h′ formally unramified
and g flat. In this case the corresponding map Z ′ → W ′ of universal first order
thickenings is flat, and f∗CW/Y → CZ/X is an isomorphism.

Proof. Flatness is preserved under base change, see Morphisms, Lemma 29.25.8.
Hence the first statement follows from the description of W ′ in Lemma 37.7.6. It is
clear that X ×Y W ′ is a first order thickening. It is straightforward to check that
it has the universal property because W ′ has the universal property (by mapping
properties of fibre products). See Morphisms, Lemma 29.31.4 for why this implies
that the map of conormal sheaves is an isomorphism. □

https://stacks.math.columbia.edu/tag/04F8
https://stacks.math.columbia.edu/tag/04F9


37.7. UNIVERSAL FIRST ORDER THICKENINGS 3145

Lemma 37.7.8.04FA Taking the universal first order thickenings commutes with taking
opens. More precisely, let h : Z → X be a formally unramified morphism of
schemes. Let V ⊂ Z, U ⊂ X be opens such that h(V ) ⊂ U . Let Z ′ be the universal
first order thickening of Z over X. Then h|V : V → U is formally unramified and
the universal first order thickening of V over U is the open subscheme V ′ ⊂ Z ′ such
that V = Z ∩ V ′. In particular, CZ/X |V = CV/U .

Proof. The first statement is Lemma 37.6.5. The compatibility of universal thick-
enings can be deduced from the proof of Lemma 37.7.1, or from Algebra, Lemma
10.149.4 or deduced from Lemma 37.7.7. □

Lemma 37.7.9.04FB Let h : Z → X be a formally unramified morphism of schemes over
S. Let Z ⊂ Z ′ be the universal first order thickening of Z over X with structure
morphism h′ : Z ′ → X. The canonical map

ch′ : (h′)∗ΩX/S −→ ΩZ′/S

induces an isomorphism h∗ΩX/S → ΩZ′/S ⊗OZ .

Proof. The map ch′ is the map defined in Morphisms, Lemma 29.32.8. If i : Z → Z ′

is the given closed immersion, then i∗ch′ is a map h∗ΩX/S → ΩZ′/S⊗OZ . Checking
that it is an isomorphism reduces to the affine case by localization, see Lemma
37.7.8 and Morphisms, Lemma 29.32.3. In this case the result is Algebra, Lemma
10.149.5. □

Lemma 37.7.10.04FC Let h : Z → X be a formally unramified morphism of schemes
over S. There is a canonical exact sequence

CZ/X → h∗ΩX/S → ΩZ/S → 0.

The first arrow is induced by dZ′/S where Z ′ is the universal first order neighbour-
hood of Z over X.

Proof. We know that there is a canonical exact sequence

CZ/Z′ → ΩZ′/S ⊗OZ → ΩZ/S → 0.

see Morphisms, Lemma 29.32.15. Hence the result follows on applying Lemma
37.7.9. □

Lemma 37.7.11.067V Let

Z
i
//

j   

X

��
Y

be a commutative diagram of schemes where i and j are formally unramified. Then
there is a canonical exact sequence

CZ/Y → CZ/X → i∗ΩX/Y → 0

where the first arrow comes from Lemma 37.7.5 and the second from Lemma 37.7.10.

https://stacks.math.columbia.edu/tag/04FA
https://stacks.math.columbia.edu/tag/04FB
https://stacks.math.columbia.edu/tag/04FC
https://stacks.math.columbia.edu/tag/067V


37.8. FORMALLY ÉTALE MORPHISMS 3146

Proof. Denote Z → Z ′ the universal first order thickening of Z over X. Denote
Z → Z ′′ the universal first order thickening of Z over Y . By Lemma 37.7.10 here
is a canonical morphism Z ′ → Z ′′ so that we have a commutative diagram

Z
i′
//

j′   

Z ′ //

��

X

��
Z ′′ // Y

Apply Morphisms, Lemma 29.32.18 to the left triangle to get an exact sequence

CZ/Z′′ → CZ/Z′ → (i′)∗ΩZ′/Z′′ → 0

As Z ′′ is formally unramified over Y (see Lemma 37.7.4) we have ΩZ′/Z′′ = ΩZ/Y
(by combining Lemma 37.6.7 and Morphisms, Lemma 29.32.9). Then we have
(i′)∗ΩZ′/Y = i∗ΩX/Y by Lemma 37.7.9. □

Lemma 37.7.12.06AE Let Z → Y → X be formally unramified morphisms of schemes.
(1) If Z ⊂ Z ′ is the universal first order thickening of Z over X and Y ⊂ Y ′ is

the universal first order thickening of Y over X, then there is a morphism
Z ′ → Y ′ and Y ×Y ′ Z ′ is the universal first order thickening of Z over Y .

(2) There is a canonical exact sequence

i∗CY/X → CZ/X → CZ/Y → 0

where the maps come from Lemma 37.7.5 and i : Z → Y is the first
morphism.

Proof. The map h : Z ′ → Y ′ in (1) comes from Lemma 37.7.5. The assertion
that Y ×Y ′ Z ′ is the universal first order thickening of Z over Y is clear from the
universal properties of Z ′ and Y ′. By Morphisms, Lemma 29.31.5 we have an exact
sequence

(i′)∗CY×Y ′Z′/Z′ → CZ/Z′ → CZ/Y×Y ′Z′ → 0

where i′ : Z → Y ×Y ′ Z ′ is the given morphism. By Morphisms, Lemma 29.31.4
there exists a surjection h∗CY/Y ′ → CY×Y ′Z′/Z′ . Combined with the equalities
CY/Y ′ = CY/X , CZ/Z′ = CZ/X , and CZ/Y×Y ′Z′ = CZ/Y this proves the lemma. □

37.8. Formally étale morphisms

02HF Recall that a ring map R → A is called formally étale (see Algebra, Definition
10.150.1) if for every commutative solid diagram

A //

!!

B/I

R //

OO

B

OO

where I ⊂ B is an ideal of square zero, there exists exactly one dotted arrow which
makes the diagram commute. This motivates the following analogue for morphisms
of schemes.

https://stacks.math.columbia.edu/tag/06AE
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Definition 37.8.1.02HG Let f : X → S be a morphism of schemes. We say f is formally
étale if given any solid commutative diagram

X

f

��

T

i
��

oo

S T ′oo

``

where T ⊂ T ′ is a first order thickening of affine schemes over S there exists exactly
one dotted arrow making the diagram commute.

It is clear that a formally étale morphism is formally unramified. Hence if f : X → S
is formally étale, then ΩX/S is zero, see Lemma 37.6.7.

Lemma 37.8.2.04FD If f : X → S is a formally étale morphism, then given any solid
commutative diagram

X

f

��

T

i
��

oo

S T ′oo

``

where T ⊂ T ′ is a first order thickening of schemes over S there exists exactly one
dotted arrow making the diagram commute. In other words, in Definition 37.8.1
the condition that T be affine may be dropped.

Proof. Let T ′ =
⋃
T ′
i be an affine open covering, and let Ti = T ∩ T ′

i . Then we get
morphisms a′

i : T ′
i → X fitting into the diagram. By uniqueness we see that a′

i and
a′
j agree on any affine open subscheme of T ′

i ∩T ′
j . Hence a′

i and a′
j agree on T ′

i ∩T ′
j .

Thus we see that the morphisms a′
i glue to a global morphism a′ : T ′ → X. The

uniqueness of a′ we have seen in Lemma 37.6.2. □

Lemma 37.8.3.02HI A composition of formally étale morphisms is formally étale.

Proof. This is formal. □

Lemma 37.8.4.02HJ A base change of a formally étale morphism is formally étale.

Proof. This is formal. □

Lemma 37.8.5.02HK Let f : X → S be a morphism of schemes. Let U ⊂ X and V ⊂ S
be open subschemes such that f(U) ⊂ V . If f is formally étale, so is f |U : U → V .

Proof. Consider a solid diagram
U

f |U
��

T

i
��

a
oo

V T ′oo

``

as in Definition 37.8.1. If f is formally ramified, then there exists exactly one S-
morphism a′ : T ′ → X such that a′|T = a. Since |T ′| = |T | we conclude that
a′(T ′) ⊂ U which gives our unique morphism from T ′ into U . □

Lemma 37.8.6.04FE Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) f is formally étale,

https://stacks.math.columbia.edu/tag/02HG
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(2) f is formally unramified and the universal first order thickening of X over
S is equal to X,

(3) f is formally unramified and CX/S = 0, and
(4) ΩX/S = 0 and CX/S = 0.

Proof. Actually, the last assertion only make sense because ΩX/S = 0 implies that
CX/S is defined via Lemma 37.6.7 and Definition 37.7.2. This also makes it clear
that (3) and (4) are equivalent.

Either of the assumptions (1), (2), and (3) imply that f is formally unramified.
Hence we may assume f is formally unramified. The equivalence of (1), (2), and
(3) follow from the universal property of the universal first order thickening X ′

of X over S and the fact that X = X ′ ⇔ CX/S = 0 since after all by definition
CX/S = CX/X′ is the ideal sheaf of X in X ′. □

Lemma 37.8.7.04FF An unramified flat morphism is formally étale.

Proof. Say X → S is unramified and flat. Then ∆ : X → X ×S X is an open
immersion, see Morphisms, Lemma 29.35.13. We have to show that CX/S is zero.
Consider the two projections p, q : X ×S X → X. As f is formally unramified (see
Lemma 37.6.8), q is formally unramified (see Lemma 37.6.4). As f is flat, p is flat,
see Morphisms, Lemma 29.25.8. Hence p∗CX/S = Cq by Lemma 37.7.7 where Cq
denotes the conormal sheaf of the formally unramified morphism q : X ×S X → X.
But ∆(X) ⊂ X ×S X is an open subscheme which maps isomorphically to X via
q. Hence by Lemma 37.7.8 we see that Cq|∆(X) = CX/X = 0. In other words, the
pullback of CX/S to X via the identity morphism is zero, i.e., CX/S = 0. □

Lemma 37.8.8.02HL Let f : X → S be a morphism of schemes. Assume X and S are
affine. Then f is formally étale if and only if OS(S) → OX(X) is a formally étale
ring map.

Proof. This is immediate from the definitions (Definition 37.8.1 and Algebra, Def-
inition 10.150.1) by the equivalence of categories of rings and affine schemes, see
Schemes, Lemma 26.6.5. □

Lemma 37.8.9.02HM Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is étale, and
(2) the morphism f is locally of finite presentation and formally étale.

Proof. Assume f is étale. An étale morphism is locally of finite presentation, flat
and unramified, see Morphisms, Section 29.36. Hence f is locally of finite presen-
tation and formally étale, see Lemma 37.8.7.

Conversely, suppose that f is locally of finite presentation and formally étale. Being
étale is local in the Zariski topology on X and S, see Morphisms, Lemma 29.36.2.
By Lemma 37.8.5 we can cover X by affine opens U which map into affine opens
V such that U → V is formally étale (and of finite presentation, see Morphisms,
Lemma 29.21.2). By Lemma 37.8.8 we see that the ring maps O(V ) → O(U) are
formally étale (and of finite presentation). We win by Algebra, Lemma 10.150.2.
(We will give another proof of this implication when we discuss formally smooth
morphisms.) □

https://stacks.math.columbia.edu/tag/04FF
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37.9. Infinitesimal deformations of maps

04BU In this section we explain how a derivation can be used to infinitesimally move a
map. Throughout this section we use that a sheaf on a thickening X ′ of X can be
seen as a sheaf on X.

Lemma 37.9.1.04FG Let S be a scheme. Let X ⊂ X ′ and Y ⊂ Y ′ be two first order
thickenings over S. Let (a, a′), (b, b′) : (X ⊂ X ′)→ (Y ⊂ Y ′) be two morphisms of
thickenings over S. Assume that

(1) a = b, and
(2) the two maps a∗CY/Y ′ → CX/X′ (Morphisms, Lemma 29.31.3) are equal.

Then the map (a′)♯ − (b′)♯ factors as

OY ′ → OY
D−→ a∗CX/X′ → a∗OX′

where D is an OS-derivation.

Proof. Instead of working on Y we work on X. The advantage is that the pullback
functor a−1 is exact. Using (1) and (2) we obtain a commutative diagram with
exact rows

0 // CX/X′ // OX′ // OX // 0

0 // a−1CY/Y ′ //

OO

a−1OY ′ //

(a′)♯

OO

(b′)♯

OO

a−1OY //

OO

0

Now it is a general fact that in such a situation the difference of the OS-algebra
maps (a′)♯ and (b′)♯ is an OS-derivation from a−1OY to CX/X′ . By adjointness of
the functors a−1 and a∗ this is the same thing as an OS-derivation from OY into
a∗CX/X′ . Some details omitted. □

Note that in the situation of the lemma above we may write D as

(37.9.1.1)04BV D = dY/S ◦ θ

where θ is an OY -linear map θ : ΩY/S → a∗CX/X′ . Of course, then by adjunction
again we may view θ as an OX -linear map θ : a∗ΩY/S → CX/X′ .

Lemma 37.9.2.02H5 Let S be a scheme. Let (a, a′) : (X ⊂ X ′) → (Y ⊂ Y ′) be a
morphism of first order thickenings over S. Let

θ : a∗ΩY/S → CX/X′

be an OX -linear map. Then there exists a unique morphism of pairs (b, b′) : (X ⊂
X ′)→ (Y ⊂ Y ′) such that (1) and (2) of Lemma 37.9.1 hold and the derivation D
and θ are related by Equation (37.9.1.1).

Proof. We simply set b = a and we define (b′)♯ to be the map

(a′)♯ +D : a−1OY ′ → OX′

where D is as in Equation (37.9.1.1). We omit the verification that (b′)♯ is a map
of sheaves of OS-algebras and that (1) and (2) of Lemma 37.9.1 hold. Equation
(37.9.1.1) holds by construction. □

https://stacks.math.columbia.edu/tag/04FG
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Remark 37.9.3.0CK1 Assumptions and notation as in Lemma 37.9.2. The action of a
local section θ on a′ is sometimes indicated by θ · a′. Note that this means nothing
else than the fact that (a′)♯ and (θ · a′)♯ differ by a derivation D which is related
to θ by Equation (37.9.1.1).
Lemma 37.9.4.04FH Let S be a scheme. Let X ⊂ X ′ and Y ⊂ Y ′ be first order
thickenings over S. Assume given a morphism a : X → Y and a map A : a∗CY/Y ′ →
CX/X′ of OX -modules. For an open subscheme U ′ ⊂ X ′ consider morphisms a′ :
U ′ → Y ′ such that

(1) a′ is a morphism over S,
(2) a′|U = a|U , and
(3) the induced map a∗CY/Y ′ |U → CX/X′ |U is the restriction of A to U .

Here U = X ∩ U ′. Then the rule
(37.9.4.1)04FI U ′ 7→ {a′ : U ′ → Y ′ such that (1), (2), (3) hold.}
defines a sheaf of sets on X ′.
Proof. Denote F the rule of the lemma. The restriction mapping F(U ′)→ F(V ′)
for V ′ ⊂ U ′ ⊂ X ′ of F is really the restriction map a′ 7→ a′|V ′ . With this definition
in place it is clear that F is a sheaf since morphisms are defined locally. □

In the following lemma we identify sheaves on X and any thickening of X.
Lemma 37.9.5.04FJ Same notation and assumptions as in Lemma 37.9.4. There is an
action of the sheaf

HomOX
(a∗ΩY/S , CX/X′)

on the sheaf (37.9.4.1). Moreover, the action is simply transitive for any open
U ′ ⊂ X ′ over which the sheaf (37.9.4.1) has a section.
Proof. This is a combination of Lemmas 37.9.1, 37.9.2, and 37.9.4. □

Remark 37.9.6.04FK A special case of Lemmas 37.9.1, 37.9.2, 37.9.4, and 37.9.5 is where
Y = Y ′. In this case the map A is always zero. The sheaf of Lemma 37.9.4 is just
given by the rule

U ′ 7→ {a′ : U ′ → Y over S with a′|U = a|U}
and we act on this by the sheaf HomOX

(a∗ΩY/S , CX/X′).
Remark 37.9.7.0CK2 Another special case of Lemmas 37.9.1, 37.9.2, 37.9.4, and 37.9.5
is where S itself is a thickening Z ⊂ Z ′ = S and Y = Z ×Z′ Y ′. Picture

(X ⊂ X ′)
(a,?)

//

(g,g′) &&

(Y ⊂ Y ′)

(h,h′)xx
(Z ⊂ Z ′)

In this case the map A : a∗CY/Y ′ → CX/X′ is determined by a: the map h∗CZ/Z′ →
CY/Y ′ is surjective (because we assumed Y = Z ×Z′ Y ′), hence the pullback
g∗CZ/Z′ = a∗h∗CZ/Z′ → a∗CY/Y ′ is surjective, and the composition g∗CZ/Z′ →
a∗CY/Y ′ → CX/X′ has to be the canonical map induced by g′. Thus the sheaf of
Lemma 37.9.4 is just given by the rule

U ′ 7→ {a′ : U ′ → Y ′ over Z ′ with a′|U = a|U}
and we act on this by the sheaf HomOX

(a∗ΩY/Z , CX/X′).
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https://stacks.math.columbia.edu/tag/04FH
https://stacks.math.columbia.edu/tag/04FJ
https://stacks.math.columbia.edu/tag/04FK
https://stacks.math.columbia.edu/tag/0CK2
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Lemma 37.9.8.04FL Let S be a scheme. Let X ⊂ X ′ be a first order thickening over
S. Let Y be a scheme over S. Let a′, b′ : X ′ → Y be two morphisms over S with
a = a′|X = b′|X . This gives rise to a commutative diagram

X //

a

��

X ′

(b′,a′)
��

Y
∆Y/S // Y ×S Y

Since the horizontal arrows are immersions with conormal sheaves CX/X′ and ΩY/S ,
by Morphisms, Lemma 29.31.3, we obtain a map θ : a∗ΩY/S → CX/X′ . Then this θ
and the derivation D of Lemma 37.9.1 are related by Equation (37.9.1.1).
Proof. Omitted. Hint: The equality may be checked on affine opens where it comes
from the following computation. If f is a local section of OY , then 1 ⊗ f − f ⊗ 1
is a local section of CY/(Y×SY ) corresponding to dY/S(f). It is mapped to the local
section (a′)♯(f)−(b′)♯(f) = D(f) of CX/X′ . In other words, θ(dY/S(f)) = D(f). □

For later purposes we need a result that roughly states that the construction of
Lemma 37.9.2 is compatible with étale localization.
Lemma 37.9.9.04BX Let

X1

��

X2
f
oo

��
S1 S2oo

be a commutative diagram of schemes with X2 → X1 and S2 → S1 étale. Then the
map cf : f∗ΩX1/S1 → ΩX2/S2 of Morphisms, Lemma 29.32.8 is an isomorphism.
Proof. We recall that an étale morphism U → V is a smooth morphism with
ΩU/V = 0. Using this we see that Morphisms, Lemma 29.32.9 implies ΩX2/S2 =
ΩX2/S1 and Morphisms, Lemma 29.34.16 implies that the map f∗ΩX1/S1 → ΩX2/S1

(for the morphism f seen as a morphism over S1) is an isomorphism. Hence the
lemma follows. □

Lemma 37.9.10.04BY Consider a commutative diagram of first order thickenings

(T2 ⊂ T ′
2)

(h,h′)
��

(a2,a
′
2)

// (X2 ⊂ X ′
2)

(f,f ′)
��

(T1 ⊂ T ′
1)

(a1,a
′
1) // (X1 ⊂ X ′

1)

and a commutative
diagram of schemes

X ′
2

//

��

S2

��
X ′

1
// S1

with X2 → X1 and S2 → S1 étale. For any OT1 -linear map θ1 : a∗
1ΩX1/S1 → CT1/T ′

1
let θ2 be the composition

a∗
2ΩX2/S2 h∗a∗

1ΩX1/S1

h∗θ1 // h∗CT1/T ′
1

// CT2/T ′
2

(equality sign is explained in the proof). Then the diagram

T ′
2

θ2·a′
2

//

��

X ′
2

��
T ′

1
θ1·a′

1 // X ′
1

https://stacks.math.columbia.edu/tag/04FL
https://stacks.math.columbia.edu/tag/04BX
https://stacks.math.columbia.edu/tag/04BY
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commutes where the actions θ2 · a′
2 and θ1 · a′

1 are as in Remark 37.9.3.

Proof. The equality sign comes from the identification f∗ΩX1/S1 = ΩX2/S2 of
Lemma 37.9.9. Namely, using this we have a∗

2ΩX2/S2 = a∗
2f

∗ΩX1/S1 = h∗a∗
1ΩX1/S1

because f ◦ a2 = a1 ◦ h. Having said this, the commutativity of the diagram may
be checked on affine opens. Hence we may assume the schemes in the initial big
diagram are affine. Thus we obtain commutative diagrams

(B′
2, I2) (A′

2, J2)
a′

2

oo

(B′
1, I1)

h′

OO

(A′
1, J1)

a′
1oo

f ′

OO

and

A′
2 R2oo

A′
1

OO

R1oo

OO

The notation signifies that I1, I2, J1, J2 are ideals of square zero and maps of pairs
are ring maps sending ideals into ideals. Set A1 = A′

1/J1, A2 = A′
2/J2, B1 = B′

1/I1,
and B2 = B′

2/I2. We are given that
A2 ⊗A1 ΩA1/R1 −→ ΩA2/R2

is an isomorphism. Then θ1 : B1 ⊗A1 ΩA1/R1 → I1 is B1-linear. This gives an
R1-derivation D1 = θ1 ◦ dA1/R1 : A1 → I1. In a similar way we see that θ2 :
B2⊗A2 ΩA2/R2 → I2 gives rise to a R2-derivation D2 = θ2 ◦ dA2/R2 : A2 → I2. The
construction of θ2 implies the following compatibility between θ1 and θ2: for every
x ∈ A1 we have

h′(D1(x)) = D2(f ′(x))
as elements of I2. We may view D1 as a map A′

1 → B′
1 using A′

1 → A1
D1−−→ I1 → B1

similarly we may view D2 as a map A′
2 → B′

2. Then the displayed equality holds
for x ∈ A′

1. By the construction of the action in Lemma 37.9.2 and Remark 37.9.3
we know that θ1 · a′

1 corresponds to the ring map a′
1 + D1 : A′

1 → B′
1 and θ2 · a′

2
corresponds to the ring map a′

2 + D2 : A′
2 → B′

2. By the displayed equality we
obtain that h′ ◦ (a′

1 +D1) = (a′
2 +D2) ◦ f ′ as desired. □

Remark 37.9.11.04BZ Lemma 37.9.10 can be improved in the following way. Suppose
that we have commutative diagrams as in Lemma 37.9.10 but we do not assume that
X2 → X1 and S2 → S1 are étale. Next, suppose we have θ1 : a∗

1ΩX1/S1 → CT1/T ′
1

and θ2 : a∗
2ΩX2/S2 → CT2/T ′

2
such that

f∗OX2 f∗D2

// f∗a2,∗CT2/T ′
2

OX1

D1 //

f♯

OO

a1,∗CT1/T ′
1

induced by (h′)♯
OO

is commutative where Di corresponds to θi as in Equation (37.9.1.1). Then we
have the conclusion of Lemma 37.9.10. The importance of the condition that both
X2 → X1 and S2 → S1 are étale is that it allows us to construct a θ2 from θ1.

37.10. Infinitesimal deformations of schemes

063X The following simple lemma is often a convenient tool to check whether an infini-
tesimal deformation of a map is flat.

Lemma 37.10.1.063Y Let (f, f ′) : (X ⊂ X ′) → (S ⊂ S′) be a morphism of first order
thickenings. Assume that f is flat. Then the following are equivalent

https://stacks.math.columbia.edu/tag/04BZ
https://stacks.math.columbia.edu/tag/063Y
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(1) f ′ is flat and X = S ×S′ X ′, and
(2) the canonical map f∗CS/S′ → CX/X′ is an isomorphism.

Proof. As the problem is local on X ′ we may assume that X,X ′, S, S′ are affine
schemes. Say S′ = Spec(A′), X ′ = Spec(B′), S = Spec(A), X = Spec(B) with
A = A′/I and B = B′/J for some square zero ideals. Then we obtain the following
commutative diagram

0 // J // B′ // B // 0

0 // I //

OO

A′ //

OO

A //

OO

0
with exact rows. The canonical map of the lemma is the map

I ⊗A B = I ⊗A′ B′ −→ J.

The assumption that f is flat signifies that A→ B is flat.

Assume (1). Then A′ → B′ is flat and J = IB′. Flatness implies TorA
′

1 (B′, A) = 0
(see Algebra, Lemma 10.75.8). This means I⊗A′ B′ → B′ is injective (see Algebra,
Remark 10.75.9). Hence we see that I ⊗A B → J is an isomorphism.
Assume (2). Then it follows that J = IB′, so that X = S ×S′ X ′. Moreover, we
get TorA

′

1 (B′, A′/I) = 0 by reversing the implications in the previous paragraph.
Hence B′ is flat over A′ by Algebra, Lemma 10.99.8. □

The following lemma is the “nilpotent” version of the “critère de platitude par
fibres”, see Section 37.16.

Lemma 37.10.2.06AF Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(S ⊂ S′)

of thickenings. Assume
(1) X ′ is flat over S′,
(2) f is flat,
(3) S ⊂ S′ is a finite order thickening, and
(4) X = S ×S′ X ′ and Y = S ×S′ Y ′.

Then f ′ is flat and Y ′ is flat over S′ at all points in the image of f ′.

Proof. Immediate consequence of Algebra, Lemma 10.101.8. □

Many properties of morphisms of schemes are preserved under flat deformations.

Lemma 37.10.3.06AG Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(S ⊂ S′)

https://stacks.math.columbia.edu/tag/06AF
https://stacks.math.columbia.edu/tag/06AG
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of thickenings. Assume S ⊂ S′ is a finite order thickening, X ′ flat over S′, X =
S ×S′ X ′, and Y = S ×S′ Y ′. Then

(1) f is flat if and only if f ′ is flat,06AH
(2) f is an isomorphism if and only if f ′ is an isomorphism,06AI
(3) f is an open immersion if and only if f ′ is an open immersion,06AJ
(4) f is quasi-compact if and only if f ′ is quasi-compact,06AK
(5) f is universally closed if and only if f ′ is universally closed,06AL
(6) f is (quasi-)separated if and only if f ′ is (quasi-)separated,06AM
(7) f is a monomorphism if and only if f ′ is a monomorphism,06AN
(8) f is surjective if and only if f ′ is surjective,06AP
(9) f is universally injective if and only if f ′ is universally injective,06AQ

(10) f is affine if and only if f ′ is affine,06AR
(11)06AS f is locally of finite type if and only if f ′ is locally of finite type,
(12) f is locally quasi-finite if and only if f ′ is locally quasi-finite,06AT
(13)06AU f is locally of finite presentation if and only if f ′ is locally of finite pre-

sentation,
(14)06AV f is locally of finite type of relative dimension d if and only if f ′ is locally

of finite type of relative dimension d,
(15) f is universally open if and only if f ′ is universally open,06AW
(16) f is syntomic if and only if f ′ is syntomic,06AX
(17) f is smooth if and only if f ′ is smooth,06AY
(18) f is unramified if and only if f ′ is unramified,06AZ
(19) f is étale if and only if f ′ is étale,06B0
(20) f is proper if and only if f ′ is proper,06B1
(21) f is integral if and only if f ′ is integral,06B2
(22) f is finite if and only if f ′ is finite,06B3
(23)06B4 f is finite locally free (of rank d) if and only if f ′ is finite locally free (of

rank d), and
(24) add more here.

Proof. The assumptions on X and Y mean that f is the base change of f ′ by X →
X ′. The properties P listed in (1) – (23) above are all stable under base change,
hence if f ′ has property P, then so does f . See Schemes, Lemmas 26.18.2, 26.19.3,
26.21.12, and 26.23.5 and Morphisms, Lemmas 29.9.4, 29.10.4, 29.11.8, 29.15.4,
29.20.13, 29.21.4, 29.29.2, 29.30.4, 29.34.5, 29.35.5, 29.36.4, 29.41.5, 29.44.6, and
29.48.4.

The interesting direction in each case is therefore to assume that f has the property
and deduce that f ′ has it too. By induction on the order of the thickening we may
assume that S ⊂ S′ is a first order thickening, see discussion immediately following
Definition 37.2.1. We make a couple of general remarks which we will use without
further mention in the arguments below. (I) Let W ′ ⊂ S′ be an affine open and
let U ′ ⊂ X ′ and V ′ ⊂ Y ′ be affine opens lying over W ′ with f ′(U ′) ⊂ V ′. Let
W ′ = Spec(R′) and denote I ⊂ R′ be the ideal defining the closed subscheme
W ′ ∩ S. Say U ′ = Spec(B′) and V ′ = Spec(A′). Then we get a commutative
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diagram
0 // IB′ // B′ // B // 0

0 // IA′ //

OO

A′ //

OO

A //

OO

0
with exact rows. Moreover IB′ ∼= I ⊗R B, see proof of Lemma 37.10.1. (II)
The morphisms X → X ′ and Y → Y ′ are universal homeomorphisms. Hence the
topology of the maps f and f ′ (after any base change) is identical. (III) If f is flat,
then f ′ is flat and Y ′ → S′ is flat at every point in the image of f ′, see Lemma
37.10.2.
Ad (1). This is general remark (III).
Ad (2). Assume f is an isomorphism. By (III) we see that Y ′ → S′ is flat. Choose
an affine open V ′ ⊂ Y ′ and set U ′ = (f ′)−1(V ′). Then V = Y ∩ V ′ is affine which
implies that V ∼= f−1(V ) = U = Y ×Y ′ U ′ is affine. By Lemma 37.2.3 we see that
U ′ is affine. Thus we have a diagram as in the general remark (I) and moreover
IA ∼= I ⊗R A because R′ → A′ is flat. Then IB′ ∼= I ⊗R B ∼= I ⊗R A ∼= IA′ and
A ∼= B. By the exactness of the rows in the diagram above we see that A′ ∼= B′,
i.e., U ′ ∼= V ′. Thus f ′ is an isomorphism.
Ad (3). Assume f is an open immersion. Then f is an isomorphism of X with an
open subscheme V ⊂ Y . Let V ′ ⊂ Y ′ be the open subscheme whose underlying
topological space is V . Then f ′ is a map from X ′ to V ′ which is an isomorphism
by (2). Hence f ′ is an open immersion.
Ad (4). Immediate from remark (II). See also Lemma 37.3.1 for a more general
statement.
Ad (5). Immediate from remark (II). See also Lemma 37.3.1 for a more general
statement.
Ad (6). Note that X ×Y X = Y ×Y ′ (X ′×Y ′ X ′) so that X ′×Y ′ X ′ is a thickening
of X ×Y X. Hence the topology of the maps ∆X/Y and ∆X′/Y ′ matches and we
win. See also Lemma 37.3.1 for a more general statement.
Ad (7). Assume f is a monomorphism. Consider the diagonal morphism ∆X′/Y ′ :
X ′ → X ′ ×Y ′ X ′. The base change of ∆X′/Y ′ by S → S′ is ∆X/Y which is an
isomorphism by assumption. By (2) we conclude that ∆X′/Y ′ is an isomorphism.
Ad (8). This is clear. See also Lemma 37.3.1 for a more general statement.
Ad (9). Immediate from remark (II). See also Lemma 37.3.1 for a more general
statement.
Ad (10). Assume f is affine. Choose an affine open V ′ ⊂ Y ′ and set U ′ =
(f ′)−1(V ′). Then V = Y ∩ V ′ is affine which implies that U = Y ×Y ′ U ′ is affine.
By Lemma 37.2.3 we see that U ′ is affine. Hence f ′ is affine. See also Lemma 37.3.1
for a more general statement.
Ad (11). Via remark (I) comes down to proving A′ → B′ is of finite type if
A → B is of finite type. Suppose that x1, . . . , xn ∈ B′ are elements whose images
in B generate B as an A-algebra. Then A′[x1, . . . , xn] → B is surjective as both
A′[x1, . . . , xn]→ B is surjective and I⊗RA[x1, . . . , xn]→ I⊗RB is surjective. See
also Lemma 37.3.3 for a more general statement.
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Ad (12). Follows from (11) and that quasi-finiteness of a morphism of finite type
can be checked on fibres, see Morphisms, Lemma 29.20.6. See also Lemma 37.3.3
for a more general statement.

Ad (13). Via remark (I) comes down to proving A′ → B′ is of finite presentation if
A → B is of finite presentation. We may assume that B′ = A′[x1, . . . , xn]/K ′ for
some ideal K ′ by (11). We get a short exact sequence

0→ K ′ → A′[x1, . . . , xn]→ B′ → 0

AsB′ is flat overR′ we see thatK ′⊗R′R is the kernel of the surjectionA[x1, . . . , xn]→
B. By assumption on A→ B there exist finitely many f ′

1, . . . , f
′
m ∈ K ′ whose im-

ages in A[x1, . . . , xn] generate this kernel. Since I is nilpotent we see that f ′
1, . . . , f

′
m

generate K ′ by Nakayama’s lemma, see Algebra, Lemma 10.20.1.

Ad (14). Follows from (11) and general remark (II). See also Lemma 37.3.3 for a
more general statement.

Ad (15). Immediate from general remark (II). See also Lemma 37.3.1 for a more
general statement.

Ad (16). Assume f is syntomic. By (13) f ′ is locally of finite presentation, by
general remark (III) f ′ is flat and the fibres of f ′ are the fibres of f . Hence f ′ is
syntomic by Morphisms, Lemma 29.30.11.

Ad (17). Assume f is smooth. By (13) f ′ is locally of finite presentation, by general
remark (III) f ′ is flat, and the fibres of f ′ are the fibres of f . Hence f ′ is smooth
by Morphisms, Lemma 29.34.3.

Ad (18). Assume f unramified. By (11) f ′ is locally of finite type and the fibres of
f ′ are the fibres of f . Hence f ′ is unramified by Morphisms, Lemma 29.35.12. See
also Lemma 37.3.3 for a more general statement.

Ad (19). Assume f étale. By (13) f ′ is locally of finite presentation, by general
remark (III) f ′ is flat, and the fibres of f ′ are the fibres of f . Hence f ′ is étale by
Morphisms, Lemma 29.36.8.

Ad (20). This follows from a combination of (6), (11), (4), and (5). See also Lemma
37.3.3 for a more general statement.

Ad (21). Combine (5) and (10) with Morphisms, Lemma 29.44.7. See also Lemma
37.3.1 for a more general statement.

Ad (22). Combine (21), and (11) with Morphisms, Lemma 29.44.4. See also Lemma
37.3.3 for a more general statement.

Ad (23). Assume f finite locally free. By (22) we see that f ′ is finite, by general
remark (III) f ′ is flat, and by (13) f ′ is locally of finite presentation. Hence f ′ is
finite locally free by Morphisms, Lemma 29.48.2. □

The following lemma is the “locally nilpotent” version of the “critère de platitude
par fibres”, see Section 37.16.
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Lemma 37.10.4.0CF3 Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(S ⊂ S′)

of thickenings. Assume
(1) Y ′ → S′ is locally of finite type,
(2) X ′ → S′ is flat and locally of finite presentation,
(3) f is flat, and
(4) X = S ×S′ X ′ and Y = S ×S′ Y ′.

Then f ′ is flat and for all y′ ∈ Y ′ in the image of f ′ the local ring OY ′,y′ is flat and
essentially of finite presentation over OS′,s′ .

Proof. Immediate consequence of Algebra, Lemma 10.128.10. □

Many properties of morphisms of schemes are preserved under flat deformations as
in the lemma above.

Lemma 37.10.5.0CF4 Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(S ⊂ S′)

of thickenings. Assume Y ′ → S′ locally of finite type, X ′ → S′ flat and locally of
finite presentation, X = S ×S′ X ′, and Y = S ×S′ Y ′. Then

(1) f is flat if and only if f ′ is flat,0CF5
(2) f is an isomorphism if and only if f ′ is an isomorphism,0CF6
(3) f is an open immersion if and only if f ′ is an open immersion,0CF7
(4) f is quasi-compact if and only if f ′ is quasi-compact,0CF8
(5) f is universally closed if and only if f ′ is universally closed,0CF9
(6) f is (quasi-)separated if and only if f ′ is (quasi-)separated,0CFA
(7) f is a monomorphism if and only if f ′ is a monomorphism,0CFB
(8) f is surjective if and only if f ′ is surjective,0CFC
(9) f is universally injective if and only if f ′ is universally injective,0CFD

(10) f is affine if and only if f ′ is affine,0CFE
(11) f is locally quasi-finite if and only if f ′ is locally quasi-finite,0CFF
(12)0CFG f is locally of finite type of relative dimension d if and only if f ′ is locally

of finite type of relative dimension d,
(13) f is universally open if and only if f ′ is universally open,0CFH
(14) f is syntomic if and only if f ′ is syntomic,0CFI
(15) f is smooth if and only if f ′ is smooth,0CFJ
(16) f is unramified if and only if f ′ is unramified,0CFK
(17) f is étale if and only if f ′ is étale,0CFL
(18) f is proper if and only if f ′ is proper,0CFM
(19) f is finite if and only if f ′ is finite,0CFN

https://stacks.math.columbia.edu/tag/0CF3
https://stacks.math.columbia.edu/tag/0CF4
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(20)0CFP f is finite locally free (of rank d) if and only if f ′ is finite locally free (of
rank d), and

(21) add more here.

Proof. The assumptions on X and Y mean that f is the base change of f ′ by
X → X ′. The properties P listed in (1) – (20) above are all stable under base
change, hence if f ′ has property P, then so does f . See Schemes, Lemmas 26.18.2,
26.19.3, 26.21.12, and 26.23.5 and Morphisms, Lemmas 29.9.4, 29.10.4, 29.11.8,
29.20.13, 29.29.2, 29.30.4, 29.34.5, 29.35.5, 29.36.4, 29.41.5, 29.44.6, and 29.48.4.
The interesting direction in each case is therefore to assume that f has the property
and deduce that f ′ has it too. We make a couple of general remarks which we will
use without further mention in the arguments below. (I) Let W ′ ⊂ S′ be an affine
open and let U ′ ⊂ X ′ and V ′ ⊂ Y ′ be affine opens lying over W ′ with f ′(U ′) ⊂ V ′.
Let W ′ = Spec(R′) and denote I ⊂ R′ be the ideal defining the closed subscheme
W ′ ∩ S. Say U ′ = Spec(B′) and V ′ = Spec(A′). Then we get a commutative
diagram

0 // IB′ // B′ // B // 0

0 // IA′ //

OO

A′ //

OO

A //

OO

0
with exact rows. (II) The morphisms X → X ′ and Y → Y ′ are universal home-
omorphisms. Hence the topology of the maps f and f ′ (after any base change) is
identical. (III) If f is flat, then f ′ is flat and Y ′ → S′ is flat at every point in the
image of f ′, see Lemma 37.10.2.
Ad (1). This is general remark (III).
Ad (2). Assume f is an isomorphism. Choose an affine open V ′ ⊂ Y ′ and set
U ′ = (f ′)−1(V ′). Then V = Y ∩ V ′ is affine which implies that V ∼= f−1(V ) =
U = Y ×Y ′ U ′ is affine. By Lemma 37.2.3 we see that U ′ is affine. Thus we have
a diagram as in the general remark (I). By Algebra, Lemma 10.126.11 we see that
A′ → B′ is an isomorphism, i.e., U ′ ∼= V ′. Thus f ′ is an isomorphism.
Ad (3). Assume f is an open immersion. Then f is an isomorphism of X with an
open subscheme V ⊂ Y . Let V ′ ⊂ Y ′ be the open subscheme whose underlying
topological space is V . Then f ′ is a map from X ′ to V ′ which is an isomorphism
by (2). Hence f ′ is an open immersion.
Ad (4). Immediate from remark (II). See also Lemma 37.3.1 for a more general
statement.
Ad (5). Immediate from remark (II). See also Lemma 37.3.1 for a more general
statement.
Ad (6). Note that X ×Y X = Y ×Y ′ (X ′×Y ′ X ′) so that X ′×Y ′ X ′ is a thickening
of X ×Y X. Hence the topology of the maps ∆X/Y and ∆X′/Y ′ matches and we
win. See also Lemma 37.3.1 for a more general statement.
Ad (7). Assume f is a monomorphism. Consider the diagonal morphism ∆X′/Y ′ :
X ′ → X ′ ×Y ′ X ′. Observe that X ′ ×Y ′ X ′ → S′ is locally of finite type. The base
change of ∆X′/Y ′ by S → S′ is ∆X/Y which is an isomorphism by assumption. By
(2) we conclude that ∆X′/Y ′ is an isomorphism.
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Ad (8). This is clear. See also Lemma 37.3.1 for a more general statement.
Ad (9). Immediate from remark (II). See also Lemma 37.3.1 for a more general
statement.
Ad (10). Assume f is affine. Choose an affine open V ′ ⊂ Y ′ and set U ′ =
(f ′)−1(V ′). Then V = Y ∩ V ′ is affine which implies that U = Y ×Y ′ U ′ is affine.
By Lemma 37.2.3 we see that U ′ is affine. Hence f ′ is affine. See also Lemma 37.3.1
for a more general statement.
Ad (11). Follows from the fact that f ′ is locally of finite type (by Morphisms,
Lemma 29.15.8) and that quasi-finiteness of a morphism of finite type can be
checked on fibres, see Morphisms, Lemma 29.20.6.
Ad (12). Follows from general remark (II) and the fact that f ′ is locally of finite
type (Morphisms, Lemma 29.15.8).
Ad (13). Immediate from general remark (II). See also Lemma 37.3.1 for a more
general statement.
Ad (14). Assume f is syntomic. By Morphisms, Lemma 29.21.11 f ′ is locally of
finite presentation. By general remark (III) f ′ is flat. The fibres of f ′ are the fibres
of f . Hence f ′ is syntomic by Morphisms, Lemma 29.30.11.
Ad (15). Assume f is smooth. By Morphisms, Lemma 29.21.11 f ′ is locally of
finite presentation. By general remark (III) f ′ is flat. The fibres of f ′ are the fibres
of f . Hence f ′ is smooth by Morphisms, Lemma 29.34.3.
Ad (16). Assume f unramified. By Morphisms, Lemma 29.15.8 f ′ is locally of finite
type. The fibres of f ′ are the fibres of f . Hence f ′ is unramified by Morphisms,
Lemma 29.35.12.
Ad (17). Assume f étale. By Morphisms, Lemma 29.21.11 f ′ is locally of finite
presentation. By general remark (III) f ′ is flat. The fibres of f ′ are the fibres of f .
Hence f ′ is étale by Morphisms, Lemma 29.36.8.
Ad (18). This follows from a combination of (6), the fact that f is locally of finite
type (Morphisms, Lemma 29.15.8), (4), and (5).
Ad (19). Combine (5), (10), Morphisms, Lemma 29.44.7, the fact that f is locally
of finite type (Morphisms, Lemma 29.15.8), and Morphisms, Lemma 29.44.4.
Ad (20). Assume f finite locally free. By (19) we see that f ′ is finite. By gen-
eral remark (III) f ′ is flat. By Morphisms, Lemma 29.21.11 f ′ is locally of finite
presentation. Hence f ′ is finite locally free by Morphisms, Lemma 29.48.2. □

Lemma 37.10.6 (Deformations of projective schemes).0D4F Let f : X → S be a mor-
phism of schemes which is proper, flat, and of finite presentation. Let L be f -ample.
Assume S is quasi-compact. There exists a d0 ≥ 0 such that for every cartesian
diagram

X
i′
//

f

��

X ′

f ′

��
S

i // S′

and invertible OX′ -module
L′ with L ∼= (i′)∗L′

where S ⊂ S′ is a thickening and f ′ is proper, flat, of finite presentation we have
(1) Rp(f ′)∗(L′)⊗d = 0 for all p > 0 and d ≥ d0,

https://stacks.math.columbia.edu/tag/0D4F
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(2) A′
d = (f ′)∗(L′)⊗d is finite locally free for d ≥ d0,

(3) A′ = OS′ ⊕
⊕

d≥d0
A′
d is a quasi-coherent OS′ -algebra of finite presenta-

tion,
(4) there is a canonical isomorphism r′ : X ′ → Proj

S′(A′), and
(5) there is a canonical isomorphism θ′ : (r′)∗OProj

S′ (A′)(1)→ L′.
The construction of A′, r′, θ′ is functorial in the data (X ′, S′, i, i′, f ′,L′).
Proof. We first describe the maps r′ and θ′. Observe that L′ is f ′-ample, see
Lemma 37.3.2. There is a canonical map of quasi-coherent graded OS′ -algebras
A′ →

⊕
d≥0(f ′)∗(L′)⊗d which is an isomorphism in degrees ≥ d0. Hence this

induces an isomorphism on relative Proj compatible with the Serre twists of the
structure sheaf, see Constructions, Lemma 27.18.4. Hence we get the morphism r′

by Morphisms, Lemma 29.37.4 (which in turn appeals to the construction given in
Constructions, Lemma 27.19.1) and it is an isomorphism by Morphisms, Lemma
29.43.17. We get the map θ′ from Constructions, Lemma 27.19.1. By Properties,
Lemma 28.28.2 we find that θ′ is an isomorphism (this also uses that the morphism
r′ over affine opens of S′ is the same as the morphism from Properties, Lemma
28.26.9 as is explained in the proof of Morphisms, Lemma 29.43.17).
Assuming the vanishing and local freeness stated in parts (1) and (2), the functori-
ality of the construction can be seen as follows. Suppose that h : T → S′ is a mor-
phism of schemes, denote fT : X ′

T → T the base change of f ′ and LT the pullback
of L to X ′

T . By cohomology and base change (as formulated in Derived Categories
of Schemes, Lemma 36.22.5 for example) we have the corresponding vanishing over
T and moreover h∗A′

d = fT,∗L⊗d
T (and thus the local freeness of pushforwards as

well as the finite generation of the corresponding graded OT -algebra AT ). Hence
the morphism rT : XT → Proj

T
(
⊕
fT,∗L⊗d

T ) is simply the base change of r′ to T
and the pullback of θ′ is the map θT .
Having said all of the above, we see that it suffices to prove (1), (2), and (3). Pick
d0 such that Rpf∗L⊗d = 0 for all d ≥ d0 and p > 0, see Cohomology of Schemes,
Lemma 30.16.1. We claim that d0 works.
By cohomology and base change (Derived Categories of Schemes, Lemma 36.30.4)
we see that E′

d = Rf ′
∗(L′)⊗d is a perfect object of D(OS′) and its formation com-

mutes with arbitrary base change. In particular, Ed = Li∗E′
d = Rf∗L⊗d. By

Derived Categories of Schemes, Lemma 36.32.4 we see that for d ≥ d0 the complex
Ed is isomorphic to the finite locally free OS-module f∗L⊗d placed in cohomological
degree 0. Then by Derived Categories of Schemes, Lemma 36.31.3 we conclude that
E′
d is isomorphic to a finite locally free module placed in cohomological degree 0.

Of course this means that E′
d = A′

d[0], that Rpf ′
∗(L′)⊗d = 0 for p > 0, and that A′

d

is finite locally free. This proves (1) and (2).
The last thing we have to show is finite presentation of A′ as a sheaf of OS′-
algebras (this notion was introduced in Properties, Section 28.22). Let U ′ =
Spec(R′) ⊂ S′ be an affine open. Then A′ = A′(U ′) is a graded R′-algebra
whose graded parts are finite projective R′-modules. We have to show that A′

is a finitely presented R′-algebra. We will prove this by reduction to the Noether-
ian case. Namely, we can find a finite type Z-subalgebra R′

0 ⊂ R′ and a pair1

1With the same properties as those enjoyed by X′ → S′ and L′, i.e., X′
0 → Spec(R′

0) is flat
and proper and L′

0 is ample.
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(X ′
0,L′

0) over R′
0 whose base change is (X ′

U ′ ,L′|X′
U′

), see Limits, Lemmas 32.10.2,
32.10.3, 32.13.1, 32.8.7, and 32.4.15. Cohomology of Schemes, Lemma 30.16.1 im-
plies A′

0 =
⊕

d≥0 H
0(X ′

0, (L′
0)⊗d) is a finitely generated graded R′

0-algebra and
implies there exists a d′

0 such that Hp(X ′
0, (L′

0)⊗d) = 0, p > 0 for d ≥ d′
0. By the

arguments given above applied to X ′
0 → Spec(R′

0) and L′
0 we see that (A′

0)d is a
finite projective R′

0-module and that

A′
d = A′

d(U ′) = H0(X ′
U ′ , (L′)⊗d|X′

U′
) = H0(X ′

0, (L′
0)⊗d)⊗R′

0
R′ = (A′

0)d ⊗R′
0
R′

for d ≥ d′
0. Now a small twist in the argument is that we don’t know that we

can choose d′
0 equal to d0

2. To get around this we use the following sequence of
arguments to finish the proof:

(a) The algebra B = R′
0⊕
⊕

d≥max(d0,d′
0)(A′

0)d is an R′
0-algebra of finite type:

apply the Artin-Tate lemma to B ⊂ A′
0, see Algebra, Lemma 10.51.7.

(b) As R′
0 is Noetherian we see that B is an R′

0-algebra of finite presentation.
(c) By right exactness of tensor product we see that B⊗R′

0
R′ is an R′-algebra

of finite presentation.
(d) By the displayed equalities this exactly says that C = R′⊕

⊕
d≥max(d0,d′

0) A
′
d

is an R′-algebra of finite presentation.
(e) The quotient A′/C is the direct sum of the finite projective R′-modules

A′
d, d0 ≤ d ≤ max(d0, d

′
0), hence finitely presented as R′-module.

(f) The quotient A′/C is finitely presented as a C-module by Algebra, Lemma
10.6.4.

(g) Thus A′ is finitely presented as a C-module by Algebra, Lemma 10.5.3.
(h) By Algebra, Lemma 10.7.4 this implies A′ is finitely presented as a C-

algebra.
(i) Finally, by Algebra, Lemma 10.6.2 applied to R′ → C → A′ this implies

A′ is finitely presented as an R′-algebra.
This finishes the proof. □

37.11. Formally smooth morphisms

02GZ Michael Artin’s position on differential criteria of smoothness (e.g., Morphisms,
Lemma 29.34.14) is that they are basically useless (in practice). In this section we
introduce the notion of a formally smooth morphism X → S. Such a morphism
is characterized by the property that T -valued points of X lift to infinitesimal
thickenings of T provided T is affine. The main result is that a morphism which
is formally smooth and locally of finite presentation is smooth, see Lemma 37.11.7.
It turns out that this criterion is often easier to use than the differential criteria
mentioned above.
Recall that a ring map R → A is called formally smooth (see Algebra, Definition
10.138.1) if for every commutative solid diagram

A //

!!

B/I

R //

OO

B

OO

2Actually, one can reduce to this case by doing more limit arguments.
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where I ⊂ B is an ideal of square zero, a dotted arrow exists which makes the
diagram commute. This motivates the following analogue for morphisms of schemes.

Definition 37.11.1.02H0 Let f : X → S be a morphism of schemes. We say f is formally
smooth if given any solid commutative diagram

X

f

��

T

i
��

oo

S T ′oo

``

where T ⊂ T ′ is a first order thickening of affine schemes over S there exists a
dotted arrow making the diagram commute.

In the cases of formally unramified and formally étale morphisms the condition that
T ′ be affine could be dropped, see Lemmas 37.6.2 and 37.8.2. This is no longer true
in the case of formally smooth morphisms. In fact, a slightly more natural condition
would be that we should be able to fill in the dotted arrow Zariski locally on T ′. In
fact, analyzing the proof of Lemma 37.11.10 shows that this would be equivalent
to the definition as it currently stands. In particular, being formally smooth is
Zariski local on the source (and in fact it is smooth local on the source, insert
future reference here).

Lemma 37.11.2.02H1 A composition of formally smooth morphisms is formally smooth.

Proof. Omitted. □

Lemma 37.11.3.02H2 A base change of a formally smooth morphism is formally smooth.

Proof. Omitted, but see Algebra, Lemma 10.138.2 for the algebraic version. □

Lemma 37.11.4.02HH Let f : X → S be a morphism of schemes. Then f is formally
étale if and only if f is formally smooth and formally unramified.

Proof. Omitted. □

Lemma 37.11.5.02H3 Let f : X → S be a morphism of schemes. Let U ⊂ X and
V ⊂ S be open subschemes such that f(U) ⊂ V . If f is formally smooth, so is
f |U : U → V .

Proof. Consider a solid diagram

U

f |U
��

T

i
��

a
oo

V T ′oo

``

as in Definition 37.11.1. If f is formally smooth, then there exists an S-morphism
a′ : T ′ → X such that a′|T = a. Since the underlying sets of T and T ′ are the same
we see that a′ is a morphism into U (see Schemes, Section 26.3). And it clearly is
a V -morphism as well. Hence the dotted arrow above as desired. □

Lemma 37.11.6.02H4 Let f : X → S be a morphism of schemes. Assume X and S
are affine. Then f is formally smooth if and only if OS(S)→ OX(X) is a formally
smooth ring map.

https://stacks.math.columbia.edu/tag/02H0
https://stacks.math.columbia.edu/tag/02H1
https://stacks.math.columbia.edu/tag/02H2
https://stacks.math.columbia.edu/tag/02HH
https://stacks.math.columbia.edu/tag/02H3
https://stacks.math.columbia.edu/tag/02H4
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Proof. This is immediate from the definitions (Definition 37.11.1 and Algebra, Def-
inition 10.138.1) by the equivalence of categories of rings and affine schemes, see
Schemes, Lemma 26.6.5. □

The following lemma is the main result of this section. It is a victory of the functorial
point of view in that it implies (combined with Limits, Proposition 32.6.1) that we
can recognize whether a morphism f : X → S is smooth in terms of “simple”
properties of the functor hX : Sch/S → Sets.

Lemma 37.11.7 (Infinitesimal lifting criterion).02H6 Let f : X → S be a morphism of
schemes. The following are equivalent:

(1) The morphism f is smooth, and
(2) the morphism f is locally of finite presentation and formally smooth.

Proof. Assume f : X → S is locally of finite presentation and formally smooth.
Consider a pair of affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ S such that
f(U) ⊂ V . By Lemma 37.11.5 we see that U → V is formally smooth. By Lemma
37.11.6 we see that R→ A is formally smooth. By Morphisms, Lemma 29.21.2 we
see that R→ A is of finite presentation. By Algebra, Proposition 10.138.13 we see
that R→ A is smooth. Hence by the definition of a smooth morphism we see that
X → S is smooth.
Conversely, assume that f : X → S is smooth. Consider a solid commutative
diagram

X

f

��

T

i
��

a
oo

S T ′oo

``

as in Definition 37.11.1. We will show the dotted arrow exists thereby proving that
f is formally smooth.
Let F be the sheaf of sets on T ′ of Lemma 37.9.4 in the special case discussed in
Remark 37.9.6. Let

H = HomOT
(a∗ΩX/S , CT/T ′)

be the sheaf of OT -modules with action H×F → F as in Lemma 37.9.5. Our goal
is simply to show that F(T ) ̸= ∅. In other words we are trying to show that F is a
trivial H-torsor on T (see Cohomology, Section 20.4). There are two steps: (I) To
show that F is a torsor we have to show that Ft ̸= ∅ for all t ∈ T (see Cohomology,
Definition 20.4.1). (II) To show that F is the trivial torsor it suffices to show that
H1(T,H) = 0 (see Cohomology, Lemma 20.4.3 – we may use either cohomology of
H as an abelian sheaf or as an OT -module, see Cohomology, Lemma 20.13.3).
First we prove (I). To see this, for every t ∈ T we can choose an affine open U ⊂ T
neighbourhood of t such that a(U) is contained in an affine open Spec(A) = W ⊂ X
which maps to an affine open Spec(R) = V ⊂ S. By Morphisms, Lemma 29.34.2 the
ring map R→ A is smooth. Hence by Algebra, Proposition 10.138.13 the ring map
R→ A is formally smooth. Lemma 37.11.6 in turn implies that W → V is formally
smooth. Hence we can lift a|U : U → W to a V -morphism a′ : U ′ → W ⊂ X
showing that F(U) ̸= ∅.
Finally we prove (II). By Morphisms, Lemma 29.32.13 we see that ΩX/S is of finite
presentation (it is even finite locally free by Morphisms, Lemma 29.34.12). Hence

https://stacks.math.columbia.edu/tag/02H6
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a∗ΩX/S is of finite presentation (see Modules, Lemma 17.11.4). Hence the sheaf
H = HomOT

(a∗ΩX/S , CT/T ′) is quasi-coherent by the discussion in Schemes, Section
26.24. Thus by Cohomology of Schemes, Lemma 30.2.2 we have H1(T,H) = 0 as
desired. □

Locally projective quasi-coherent modules are defined in Properties, Section 28.21.

Lemma 37.11.8.06B5 Let f : X → Y be a formally smooth morphism of schemes. Then
ΩX/Y is locally projective on X.

Proof. Choose U ⊂ X and V ⊂ Y affine open such that f(U) ⊂ V . By Lemma
37.11.5 f |U : U → V is formally smooth. Hence Γ(V,OV )→ Γ(U,OU ) is a formally
smooth ring map, see Lemma 37.11.6. Hence by Algebra, Lemma 10.138.7 the
Γ(U,OU )-module ΩΓ(U,OU )/Γ(V,OV ) is projective. Hence ΩU/V is locally projective,
see Properties, Section 28.21. □

Lemma 37.11.9.0D0E Let T be an affine scheme. Let F , G be quasi-coherent OT -
modules. Consider H = HomOT

(F ,G). If F is locally projective, then H1(T,H) =
0.

Proof. By the definition of a locally projective sheaf on a scheme (see Properties,
Definition 28.21.1) we see that F is a direct summand of a free OT -module. Hence
we may assume that F =

⊕
i∈I OT is a free module. In this case H =

∏
i∈I G is a

product of quasi-coherent modules. By Cohomology, Lemma 20.11.12 we conclude
that H1 = 0 because the cohomology of a quasi-coherent sheaf on an affine scheme
is zero, see Cohomology of Schemes, Lemma 30.2.2. □

Lemma 37.11.10.0D0F Let f : X → Y be a morphism of schemes. The following are
equivalent:

(1) f is formally smooth,
(2) for every x ∈ X there exist opens x ∈ U ⊂ X and f(x) ∈ V ⊂ Y with

f(U) ⊂ V such that f |U : U → V is formally smooth,
(3) for every pair of affine opens U ⊂ X and V ⊂ Y with f(U) ⊂ V the ring

map OY (V )→ OX(U) is formally smooth, and
(4) there exists an affine open covering Y =

⋃
Vj and for each j an affine

open covering f−1(Vj) =
⋃
Uji such that OY (V )→ OX(U) is a formally

smooth ring map for all j and i.

Proof. The implications (1) ⇒ (2), (1) ⇒ (3), and (2) ⇒ (4) follow from Lemma
37.11.5. The implication (3) ⇒ (4) is immediate.
Assume (4). The proof that f is formally smooth is the same as the second part of
the proof of Lemma 37.11.7. Consider a solid commutative diagram

X

f

��

T

i
��

a
oo

Y T ′oo

``

as in Definition 37.11.1. We will show the dotted arrow exists thereby proving that
f is formally smooth. Let F be the sheaf of sets on T ′ of Lemma 37.9.4 as in the
special case discussed in Remark 37.9.6. Let

H = HomOT
(a∗ΩX/Y , CT/T ′)

https://stacks.math.columbia.edu/tag/06B5
https://stacks.math.columbia.edu/tag/0D0E
https://stacks.math.columbia.edu/tag/0D0F
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be the sheaf of OT -modules on T with action H×F → F as in Lemma 37.9.5. The
action H × F → F turns F into a pseudo H-torsor, see Cohomology, Definition
20.4.1. Our goal is to show that F is a trivial H-torsor. There are two steps: (I) To
show that F is a torsor we have to show that F locally has a section. (II) To show
that F is the trivial torsor it suffices to show that H1(T,H) = 0, see Cohomology,
Lemma 20.4.3.
First we prove (I). To see this, for every t ∈ T we can choose an affine open W ⊂ T
neighbourhood of t such that a(W ) is contained in Uji for some i, j. Let W ′ ⊂ T ′ be
the corresponding open subscheme. By assumption (4) we can lift a|W : W → Uji
to a Vj-morphism a′ : W ′ → Uji showing that F(W ′) is nonempty.
Finally we prove (II). By Lemma 37.11.8 we see that ΩUji/Vj locally projective.
Hence ΩX/Y is locally projective, see Properties, Lemma 28.21.2. Hence a∗ΩX/Y
is locally projective, see Properties, Lemma 28.21.3. Hence

H1(T,H) = H1(T,HomOT
(a∗ΩX/Y , CT/T ′) = 0

by Lemma 37.11.9 as desired. □

Lemma 37.11.11.06B6 Let f : X → Y , g : Y → S be morphisms of schemes. Assume f
is formally smooth. Then

0→ f∗ΩY/S → ΩX/S → ΩX/Y → 0
(see Morphisms, Lemma 29.32.9) is short exact.
Proof. The algebraic version of this lemma is the following: Given ring maps A→
B → C with B → C formally smooth, then the sequence

0→ C ⊗B ΩB/A → ΩC/A → ΩC/B → 0
of Algebra, Lemma 10.131.7 is exact. This is Algebra, Lemma 10.138.9. □

Lemma 37.11.12.06B7 Let h : Z → X be a formally unramified morphism of schemes
over S. Assume that Z is formally smooth over S. Then the canonical exact
sequence

0→ CZ/X → h∗ΩX/S → ΩZ/S → 0
of Lemma 37.7.10 is short exact.
Proof. Let Z → Z ′ be the universal first order thickening of Z over X. From the
proof of Lemma 37.7.10 we see that our sequence is identified with the sequence

CZ/Z′ → ΩZ′/S ⊗OZ → ΩZ/S → 0.
Since Z → S is formally smooth we can locally on Z ′ find a left inverse Z ′ → Z over
S to the inclusion map Z → Z ′. Thus the sequence is locally split, see Morphisms,
Lemma 29.32.16. □

Lemma 37.11.13.067W Let
Z

i
//

j   

X

f

��
Y

be a commutative diagram of schemes where i and j are formally unramified and
f is formally smooth. Then the canonical exact sequence

0→ CZ/Y → CZ/X → i∗ΩX/Y → 0

https://stacks.math.columbia.edu/tag/06B6
https://stacks.math.columbia.edu/tag/06B7
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of Lemma 37.7.11 is exact and locally split.

Proof. Denote Z → Z ′ the universal first order thickening of Z over X. Denote
Z → Z ′′ the universal first order thickening of Z over Y . By Lemma 37.7.10 here
is a canonical morphism Z ′ → Z ′′ so that we have a commutative diagram

Z
i′
//

j′   

Z ′
a
//

k
��

X

f

��
Z ′′ b // Y

In the proof of Lemma 37.7.11 we identified the sequence above with the sequence
CZ/Z′′ → CZ/Z′ → (i′)∗ΩZ′/Z′′ → 0

Let U ′′ ⊂ Z ′′ be an affine open. Denote U ⊂ Z and U ′ ⊂ Z ′ the corresponding affine
open subschemes. As f is formally smooth there exists a morphism h : U ′′ → X
which agrees with i on U and such that f ◦ h equals b|U ′′ . Since Z ′ is the universal
first order thickening we obtain a unique morphism g : U ′′ → Z ′ such that g = a◦h.
The universal property of Z ′′ implies that k◦g is the inclusion map U ′′ → Z ′′. Hence
g is a left inverse to k. Picture

U

��

// Z ′

k
��

U ′′ //

g

==

Z ′′

Thus g induces a map CZ/Z′ |U → CZ/Z′′ |U which is a left inverse to the map
CZ/Z′′ → CZ/Z′ over U . □

37.12. Smoothness over a Noetherian base

02HW It turns out that if the base is Noetherian then we can get away with less in the
formulation of formal smoothness. In some sense the following lemmas are the
beginning of deformation theory.

Lemma 37.12.1.02HX Let f : X → S be a morphism of schemes. Let x ∈ X. As-
sume that S is locally Noetherian and f locally of finite type. The following are
equivalent:

(1) f is smooth at x,
(2) for every solid commutative diagram

X

f

��

Spec(B)

i

��

α
oo

S Spec(B′)βoo

cc

where B′ → B is a surjection of local rings with Ker(B′ → B) of square
zero, and α mapping the closed point of Spec(B) to x there exists a dotted
arrow making the diagram commute,

(3) same as in (2) but with B′ → B ranging over small extensions (see Alge-
bra, Definition 10.141.1), and

(4) same as in (2) but with B′ → B ranging over small extensions such that α
induces an isomorphism κ(x)→ κ(m) where m ⊂ B is the maximal ideal.

https://stacks.math.columbia.edu/tag/02HX
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Proof. Choose an affine neighbourhood V ⊂ S of f(x) and choose an affine neigh-
bourhood U ⊂ X of x such that f(U) ⊂ V . For any “test” diagram as in (2)
the morphism α will map Spec(B) into U and the morphism β will map Spec(B′)
into V (see Schemes, Section 26.13). Hence the lemma reduces to the morphism
f |U : U → V of affines. (Indeed, V is Noetherian and f |U is of finite type, see
Properties, Lemma 28.5.2 and Morphisms, Lemma 29.15.2.) In this affine case the
lemma is identical to Algebra, Lemma 10.141.2. □

Sometimes it is useful to know that one only needs to check the lifting criterion for
small extensions “centered” at points of finite type (see Morphisms, Section 29.16).

Lemma 37.12.2.02HY Let f : X → S be a morphism of schemes. Assume that S is
locally Noetherian and f locally of finite type. The following are equivalent:

(1) f is smooth,
(2) for every solid commutative diagram

X

f

��

Spec(B)

i

��

α
oo

S Spec(B′)βoo

cc

where B′ → B is a small extension of Artinian local rings and β of finite
type (!) there exists a dotted arrow making the diagram commute.

Proof. If f is smooth, then the infinitesimal lifting criterion (Lemma 37.11.7) says
f is formally smooth and (2) holds.
Assume (2). The set of points x ∈ X where f is not smooth forms a closed subset
T of X. By the discussion in Morphisms, Section 29.16, if T ̸= ∅ there exists a
point x ∈ T ⊂ X such that the morphism

Spec(κ(x))→ X → S

is of finite type (namely, pick any point x of T which is closed in an affine open of
X). By Morphisms, Lemma 29.16.2 given any local Artinian ring B′ with residue
field κ(x) then any morphism β : Spec(B′) → S is of finite type. Thus we see
that all the diagrams used in Lemma 37.12.1 (4) correspond to diagrams as in the
current lemma (2). Whence X → S is smooth a x a contradiction. □

Here is a useful application.

Lemma 37.12.3.0A43 Let f : X → S be a finite type morphism of locally Noetherian
schemes. Let Z ⊂ S be a closed subscheme with nth infinitesimal neighbourhood
Zn ⊂ S. Set Xn = Zn ×S X.

(1) If Xn → Zn is smooth for all n, then f is smooth at every point of f−1(Z).
(2) If Xn → Zn is étale for all n, then f is étale at every point of f−1(Z).

Proof. Assume Xn → Zn is smooth for all n. Let x ∈ X be a point lying over a
point of Z. Given a small extension B′ → B and morphisms α, β as in Lemma
37.12.1 part (3) the maximal ideal of B′ is nilpotent (as B′ is Artinian) and hence
the morphism β factors through Zn and α factors through Xn for a suitable n.
Thus the lifting property for Xn → Zn kicks in to get the desired dotted arrow
in the diagram. This proves (1). Part (2) follows from (1) and the fact that a
morphism is étale if and only if it is smooth of relative dimension 0. □
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Lemma 37.12.4.0D4G Let f : X → S be a morphism of locally Noetherian schemes. Let
Z ⊂ S be a closed subscheme with nth infinitesimal neighbourhood Zn ⊂ S. Set
Xn = Zn×SX. If Xn → Zn is flat for all n, then f is flat at every point of f−1(Z).

Proof. This is a translation of Algebra, Lemma 10.99.11 into the language of
schemes. □

37.13. The naive cotangent complex

0D0G This section is the continuation of Modules, Section 17.31 which in turn continues
the discussion in Algebra, Section 10.134.

Definition 37.13.1.0D0H Let f : X → Y be a morphism of schemes. The naive cotangent
complex of f is the complex defined in Modules, Definition 17.31.6. Notation: NLf
or NLX/Y .

Lemma 37.13.2.0D0I Let f : X → Y be a morphism of schemes. Let Spec(A) = U ⊂ X
and Spec(R) = V ⊂ S be affine opens with f(U) ⊂ V . There is a canonical map

ÑLA/R −→ NLX/Y |U

of complexes which is an isomorphism in D(OU ).

Proof. From the construction of NLX/Y in Modules, Section 17.31 we see there is
a canonical map of complexes NLOX(U)/f−1OY (U) → NLX/Y (U) of A = OX(U)-
modules, which is compatible with further restrictions. Using the canonical map
R→ f−1OY (U) we obtain a canonical map NLA/R → NLOX(U)/f−1OY (U) of com-
plexes of A-modules. Using the universal property of the ˜ functor (see Schemes,
Lemma 26.7.1) we obtain a map as in the statement of the lemma. We may check
this map is an isomorphism on cohomology sheaves by checking it induces isomor-
phisms on stalks. This follows from Algebra, Lemma 10.134.11 and 10.134.13 and
Modules, Lemma 17.31.4 (and the description of the stalks of OX and f−1OY at
a point p ∈ Spec(A) as Ap and Rq where q = R ∩ p; references used are Schemes,
Lemma 26.5.4 and Sheaves, Lemma 6.21.5). □

Lemma 37.13.3.0D0J Let f : X → Y be a morphism of schemes. The cohomology
sheaves of the complex NLX/Y are quasi-coherent, zero outside degrees −1, 0 and
equal to ΩX/Y in degree 0.

Proof. By construction of the naive cotangent complex in Modules, Section 17.31
we have that NLX/Y is a complex sitting in degrees −1, 0 and that its cohomology
in degree 0 is ΩX/Y . The sheaf of differentials is quasi-coherent (by Morphisms,
Lemma 29.32.7). To finish the proof it suffices to show that H−1(NLX/Y ) is quasi-
coherent. This follows by checking over affines using Lemma 37.13.2. □

Lemma 37.13.4.0D0K Let f : X → Y be a morphism of schemes. If f is locally of finite
presentation, then NLX/Y is locally on X quasi-isomorphic to a complex

. . .→ 0→ F−1 → F0 → 0→ . . .

of quasi-coherent OX -modules with F0 of finite presentation and F−1 of finite type.
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Proof. By Lemma 37.13.2 it suffices to show that NLA/R has this shape if R→ A is
a finitely presented ring map. Write A = R[x1, . . . , xn]/I with I finitely generated.
Then I/I2 is a finite A-module and NLA/R is quasi-isomorphic to

. . .→ 0→ I/I2 →
⊕

i=1,...,n
Adxi → 0→ . . .

by Algebra, Section 10.134 and in particular Algebra, Lemma 10.134.2. □

Lemma 37.13.5.0D0L Let f : X → Y be a morphism of schemes. The following are
equivalent

(1) f is formally smooth,
(2) H−1(NLX/Y ) = 0 and H0(NLX/Y ) = ΩX/Y is locally projective.

Proof. This follows from Algebra, Proposition 10.138.8 and Lemma 37.11.10. □

Lemma 37.13.6.0D0M Let f : X → Y be a morphism of schemes. The following are
equivalent

(1) f is formally étale,
(2) H−1(NLX/Y ) = H0(NLX/Y ) = 0.

Proof. A formally étale morphism is formally smooth and hence we haveH−1(NLX/Y ) =
0 by Lemma 37.13.5. On the other hand, we have ΩX/Y = 0 by Lemma 37.8.6.
Conversely, if (2) holds, then f is formally smooth by Lemma 37.13.5 and formally
unramified by Lemma 37.6.7 and hence formally étale by Lemmas 37.11.4. □

Lemma 37.13.7.0D0N Let f : X → Y be a morphism of schemes. The following are
equivalent

(1) f is smooth, and
(2) f is locally of finite presentation, H−1(NLX/Y ) = 0, and H0(NLX/Y ) =

ΩX/Y is finite locally free.

Proof. This follows from the definition of a smooth ring homomorphism (Algebra,
Definition 10.137.1), Lemma 37.13.2, and the definition of a smooth morphism of
schemes (Morphisms, Definition 29.34.1). We also use that finite locally free is the
same as finite projective for modules over rings (Algebra, Lemma 10.78.2). □

Lemma 37.13.8.0G7Z Let f : X → Y be a morphism of schemes. The following are
equivalent

(1) f is étale, and
(2) f is locally of finite presentation and H−1(NLX/Y ) = H0(NLX/Y ) = 0.

Proof. This follows from the definition of an étale ring homomorphism (Algebra,
Definition 10.143.1), Lemma 37.13.2, and the definition of an étale morphism of
schemes (Morphisms, Definition 29.36.1). □

Lemma 37.13.9.0FV2 Let i : Z → X be an immersion of schemes. Then NLZ/X is
isomorphic to CZ/X [1] in D(OZ) where CZ/X is the conormal sheaf of Z in X.

Proof. This follows from Algebra, Lemma 10.134.6, Morphisms, Lemma 29.31.2,
and Lemma 37.13.2. □
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Lemma 37.13.10.0E44 Let f : X → Y and g : Y → Z be morphisms of schemes. There
is a canonical six term exact sequence

H−1(f∗ NLY/Z)→ H−1(NLX/Z)→ H−1(NLX/Y )→ f∗ΩY/Z → ΩX/Z → ΩX/Y → 0

of cohomology sheaves.

Proof. Special case of Modules, Lemma 17.31.7. □

Lemma 37.13.11.0FV3 Let f : X → Y and Y → Z be morphisms of schemes. As-
sume X → Y is a complete intersection morphism. Then there is a canonical
distinguished triangle

f∗ NLY/Z → NLX/Z → NLX/Y → f∗ NLY/Z [1]

in D(OX) which recovers the 6-term exact sequence of Lemma 37.13.10.

Proof. It suffices to show the canonical map

f∗ NLY/Z → Cone(NLX/Y → NLX/Z)[−1]

of Modules, Lemma 17.31.7 is an isomorphism in D(OX). In order to show this,
it suffices to show that the 6-term sequence has a zero on the left, i.e., that
H−1(f∗ NLY/Z) → H−1(NLX/Z) is injective. Affine locally this follows from the
corresponding algebra result in More on Algebra, Lemma 15.33.6. To translate into
algebra use Lemma 37.13.2. □

Lemma 37.13.12.0G80 Let X → Y → Z be morphisms of schemes. Assume X → Z
smooth and Y → Z étale. Then X → Y is smooth.

Proof. The morphism X → Y is locally of finite presentation by Morphisms,
Lemma 29.21.11. By Lemma 37.13.7 we have H−1(NLX/Z) = 0 and the module
ΩX/Z is finite locally free. By Lemma 37.13.8 we haveH−1(NLY/Z) = H0(NLY/Z) =
0. By Lemma 37.13.10 we get H−1(NLX/Y ) = 0 and ΩX/Y ∼= ΩX/Z is finite locally
free. By Lemma 37.13.7 the morphism X → Y is smooth. □

Lemma 37.13.13.0FV4 Let f : X → Y be a morphism of schemes which factors as
f = g ◦ i with i an immersion and g : P → Y formally smooth (for example
smooth). Then there is a canonical isomorphism

NLX/Y ∼=
(
CX/P → i∗ΩP/Y

)
in D(OX) where the conormal sheaf CX/P is placed in degree −1.

Proof. (For the parenthetical statement see Lemma 37.11.7.) By Lemmas 37.13.9
and 37.13.5 we have NLX/P = CX/P [1] and NLP/Y = ΩP/Y with ΩP/Y locally
projective. This implies that i∗ NLP/Y → i∗ΩP/Y is a quasi-isomorphism too (small
detail omitted; the reason is that i∗ NLP/Y is the same thing as τ≥−1Li

∗ NLP/Y ,
see More on Algebra, Lemma 15.85.1). Thus the canonical map

i∗ NLP/Y → Cone(NLX/Y → NLX/P )[−1]

of Modules, Lemma 17.31.7 is an isomorphism in D(OX) because the cohomology
group H−1(i∗ NLP/Y ) is zero by what we said above. In other words, we have a
distinguished triangle

i∗ NLP/Y → NLX/Y → NLX/P → i∗ NLP/Y [1]
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Clearly, this means that NLX/Y is the cone on the map NLX/P [−1] → i∗ NLP/Y
which is equivalent to the statement of the lemma by our computation of the co-
homology sheaves of these objects in the derived category given above. □

Lemma 37.13.14.0FV5 Consider a cartesian diagram of schemes

X ′
g′
//

��

X

��
Y ′ // Y

The canonical map (g′)∗ NLX/Y → NLX′/Y ′ induces an isomorphism on H0 and a
surjection on H−1.

Proof. Translated into algebra this is More on Algebra, Lemma 15.85.2. To do the
translation use Lemma 37.13.2. □

Lemma 37.13.15.0FJZ Consider a cartesian diagram of schemes

X ′

��

g′
// X

��
Y ′ // Y

If Y ′ → Y is flat, then the canonical map (g′)∗ NLX/Y → NLX′/Y ′ is a quasi-
isomorphism.

Proof. By Lemma 37.13.2 this follows from Algebra, Lemma 10.134.8. □

Lemma 37.13.16.0FK0 Consider a cartesian diagram of schemes

X ′
g′
//

��

X

��
Y ′ // Y

If X → Y is flat, then the canonical map (g′)∗ NLX/Y → NLX′/Y ′ is a quasi-
isomorphism. If in additionNLX/Y has tor-amplitude in [−1, 0] then L(g′)∗ NLX/Y →
NLX′/Y ′ is a quasi-isomorphism too.

Proof. Translated into algebra this is More on Algebra, Lemma 15.85.3. To do the
translation use Lemma 37.13.2 and Derived Categories of Schemes, Lemmas 36.3.5
and 36.10.4. □

37.14. Pushouts in the category of schemes, I

07RS In this section we construct pushouts of Y ← X → X ′ where X → Y is affine and
X → X ′ is a thickening. This will actually be an important case for us, hence a
detailed discussion is merited. In Section 37.67 we discuss a more interesting and
more difficult case. See Categories, Section 4.9 for a general discussion of pushouts
in any category.
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Lemma 37.14.1.0ET0 Let A′ → A be a surjection of rings and let B → A be a ring map.
Let B′ = B ×A A′ be the fibre product of rings. Set S = Spec(A), S′ = Spec(A′),
T = Spec(B), and T ′ = Spec(B′). Then

S
i
//

f

��

S′

f ′

��
T

i′ // T ′

corresponding to
A A′oo

B

OO

B′oo

OO

is a pushout of schemes.
Proof. By More on Algebra, Lemma 15.6.2 we have T ′ = T ⨿S S′ as topological
spaces, i.e., the diagram is a pushout in the category of topological spaces. Next,
consider the map

((i′)♯, (f ′)♯) : OT ′ −→ i′∗OT ×g∗OS
f ′

∗OS′

where g = i′ ◦ f = f ′ ◦ i. We claim this map is an isomorphism of sheaves of rings.
Namely, we can view both sides as quasi-coherent OT ′ -modules (use Schemes, Lem-
mas 26.24.1 for the right hand side) and the map is OT ′ -linear. Thus it suffices to
show the map is an isomorphism on the level of global sections (Schemes, Lemma
26.7.5). On global sections we recover the identification B′ → B ×A A′ from state-
ment of the lemma (this is how we chose B′).
Let X be a scheme. Suppose we are given morphisms of schemes m′ : S′ → X
and n : T → X such that m′ ◦ i = n ◦ f (call this m). We get a unique map of
topological spaces n′ : T ′ → X compatible with m′ and n as T ′ = T ⨿S S′ (see
above). By the description of OT ′ in the previous paragraph we obtain a unique
homomorphism of sheaves of rings

(n′)♯ : OX −→ (n′)∗OT ′ = m′
∗OT ×m∗OT

n∗OS
given by (m′)♯ and n♯. Thus (n′, (n′)♯) is the unque morphism of ringed spaces
T ′ → X compatible with m′ and n. To finish the proof it suffices to show that n′

is a morphism of schemes, i.e., a morphism of locally ringed spaces.
Let t′ ∈ T ′ with image x ∈ X. We have to show that OX,x → OT ′,t′ is local. If
t′ ̸∈ T , then t′ is the image of a unique point s′ ∈ S′ and OT ′,t′ = OS′,s′ . Namely,
S′ \ S → T ′ \ T is an isomorphism of schemes as B′ → A′ induces an isomorphism
Ker(B′ → B) = Ker(A′ → A). If t′ is the image of t ∈ T , then we know that the
composition OX,x → OT ′,t′ → OT,t is local and we conclude also. □

Lemma 37.14.2.0BMP Let I → (Sch/S)fppf , i 7→ Xi be a diagram of schemes. Let
(W,Xi →W ) be a cocone for the diagram in the category of schemes (Categories,
Remark 4.14.5). If there exists a fpqc covering {Wa → W}a∈A of schemes such
that

(1) for all a ∈ A we have Wa = colimXi ×W Wa in the category of schemes,
and

(2) for all a, b ∈ A we have Wa ×W Wb = colimXi ×W Wa ×W Wb in the
category of schemes,

then W = colimXi in the category of schemes.
Proof. Namely, for a scheme T a morphism W → T is the same thing as collection
of morphism Wa → T , a ∈ A which agree on the overlaps Wa ×W Wb, see Descent,
Lemma 35.13.7. □
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Lemma 37.14.3.07RT Let X → X ′ be a thickening of schemes and let X → Y be an
affine morphism of schemes. Then there exists a pushout

X //

f

��

X ′

f ′

��
Y // Y ′

in the category of schemes. Moreover, Y ⊂ Y ′ is a thickening, X = Y ×Y ′ X ′, and

OY ′ = OY ×f∗OX
f ′

∗OX′

as sheaves on |Y | = |Y ′|.

Proof. We first construct Y ′ as a ringed space. Namely, as topological space we
take Y ′ = Y . Denote f ′ : X ′ → Y ′ the map of topological spaces which equals
f . As structure sheaf OY ′ we take the right hand side of the equation of the
lemma. To see that Y ′ is a scheme, we have to show that any point has an affine
neighbourhood. Since the formation of the fibre product of sheaves commutes with
restricting to opens, we may assume Y is affine. Then X is affine (as f is affine)
and X ′ is affine as well (see Lemma 37.2.3). Say Y ← X → X ′ corresponds to
B → A ← A′. Set B′ = B ×A A′; this is the global sections of OY ′ . As A′ → A
is surjective with locally nilpotent kernel we see that B′ → B is surjective with
locally nilpotent kernel. Hence Spec(B′) = Spec(B) (as topological spaces). We
claim that Y ′ = Spec(B′). To see this we will show for g′ ∈ B′ with image g ∈ B
that OY ′(D(g)) = B′

g′ . Namely, by More on Algebra, Lemma 15.5.3 we see that

(B′)g′ = Bg ×Ah A′
h′

where h ∈ A, h′ ∈ A′ are the images of g′. Since Bg, resp. Ah, resp. A′
h′ is equal to

OY (D(g)), resp. f∗OX(D(g)), resp. f ′
∗OX′(D(g)) the claim follows.

It remains to show that Y ′ is the pushout. The discussion above shows the scheme
Y ′ has an affine open covering Y ′ =

⋃
W ′
i such that the corresponding opens

U ′
i ⊂ X ′, Wi ⊂ Y , and Ui ⊂ X are affine open. Moreover, if A′

i, Bi, Ai are the
rings corresponding to U ′

i , Wi, Ui, then W ′
i corresponds to Bi×Ai A′

i. Thus we can
apply Lemmas 37.14.1 and 37.14.2 to conclude our construction is a pushout in the
category of schemes. □

In the following lemma we use the fibre product of categories as defined in Cate-
gories, Example 4.31.3.

Lemma 37.14.4.07RV Let X → X ′ be a thickening of schemes and let X → Y be
an affine morphism of schemes. Let Y ′ = Y ⨿X X ′ be the pushout (see Lemma
37.14.3). Base change gives a functor

F : (Sch/Y ′) −→ (Sch/Y )×(Sch/Y ′) (Sch/X ′)

given by V ′ 7−→ (V ′ ×Y ′ Y, V ′ ×Y ′ X ′, 1) which has a left adjoint

G : (Sch/Y )×(Sch/Y ′) (Sch/X ′) −→ (Sch/Y ′)

which sends the triple (V,U ′, φ) to the pushout V ⨿(V×YX) U
′. Finally, F ◦ G is

isomorphic to the identity functor.
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Proof. Let (V,U ′, φ) be an object of the fibre product category. Set U = U ′×X′ X.
Note that U → U ′ is a thickening. Since φ : V ×Y X → U ′ ×X′ X = U is an
isomorphism we have a morphism U → V over X → Y which identifies U with
the fibre product X ×Y V . In particular U → V is affine, see Morphisms, Lemma
29.11.8. Hence we can apply Lemma 37.14.3 to get a pushout V ′ = V ⨿UU ′. Denote
V ′ → Y ′ the morphism we obtain in virtue of the fact that V ′ is a pushout and
because we are given morphisms V → Y and U ′ → X ′ agreeing on U as morphisms
into Y ′. Setting G(V,U ′, φ) = V ′ gives the functor G.

Let us prove that G is a left adjoint to F . Let Z be a scheme over Y ′. We have to
show that

Mor(V ′, Z) = Mor((V,U ′, φ), F (Z))
where the morphism sets are taking in their respective categories. Let g′ : V ′ → Z
be a morphism. Denote g̃, resp. f̃ ′ the composition of g′ with the morphism V → V ′,
resp. U ′ → V ′. Base change g̃, resp. f̃ ′ by Y → Y ′, resp.X ′ → Y ′ to get a morphism
g : V → Z ×Y ′ Y , resp. f ′ : U ′ → Z ×Y ′ X ′. Then (g, f ′) is an element of the
right hand side of the equation above (details omitted). Conversely, suppose that
(g, f ′) : (V,U ′, φ) → F (Z) is an element of the right hand side. We may consider
the composition g̃ : V → Z, resp. f̃ ′ : U ′ → Z of g, resp. f by Z ×Y ′ X ′ → Z, resp.
Z ×Y ′ Y → Z. Then g̃ and f̃ ′ agree as morphism from U to Z. By the universal
property of pushout, we obtain a morphism g′ : V ′ → Z, i.e., an element of the left
hand side. We omit the verification that these constructions are mutually inverse.

To prove that F ◦G is isomorphic to the identity we have to show that the adjunction
mapping (V,U ′, φ) → F (G(V,U ′, φ)) is an isomorphism. To do this we may work
affine locally. Say X = Spec(A), X ′ = Spec(A′), and Y = Spec(B). Then A′ → A
and B → A are ring maps as in More on Algebra, Lemma 15.6.4 and Y ′ = Spec(B′)
with B′ = B×AA′. Next, suppose that V = Spec(D), U ′ = Spec(C ′) and φ is given
by an A-algebra isomorphism D⊗BA→ C ′⊗A′A = C ′/IC ′. Set D′ = D×C′/IC′C ′.
In this case the statement we have to prove is thatD′⊗B′B ∼= D andD′⊗B′A′ ∼= C ′.
This is a special case of More on Algebra, Lemma 15.6.4. □

Lemma 37.14.5.08KU Let X → X ′ be a thickening of schemes and let X → Y be an
affine morphism of schemes. Let Y ′ = Y ⨿XX ′ be the pushout (see Lemma 37.14.3).
Let V ′ → Y ′ be a morphism of schemes. Set V = Y ×Y ′ V ′, U ′ = X ′ ×Y ′ V ′, and
U = X ×Y ′ V ′. There is an equivalence of categories between

(1) quasi-coherent OV ′ -modules flat over Y ′, and
(2) the category of triples (G,F ′, φ) where

(a) G is a quasi-coherent OV -module flat over Y ,
(b) F ′ is a quasi-coherent OU ′ -module flat over X ′, and
(c) φ : (U → V )∗G → (U → U ′)∗F ′ is an isomorphism of OU -modules.

The equivalence maps G′ to ((V → V ′)∗G′, (U ′ → V ′)∗G′, can). Suppose G′ corre-
sponds to the triple (G,F ′, φ). Then

(a) G′ is a finite type OV ′ -module if and only if G and F ′ are finite type OY
and OU ′ -modules.

(b) if V ′ → Y ′ is locally of finite presentation, then G′ is an OV ′-module of
finite presentation if and only if G and F ′ are OY and OU ′ -modules of
finite presentation.
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Proof. A quasi-inverse functor assigns to the triple (G,F ′, φ) the fibre product
(V → V ′)∗G ×(U→V ′)∗F (U ′ → V ′)∗F ′

where F = (U → U ′)∗F ′. This works, because on affines we recover the equivalence
of More on Algebra, Lemma 15.7.5. Some details omitted.
Parts (a) and (b) follow from More on Algebra, Lemmas 15.7.4 and 15.7.6. □

Lemma 37.14.6.07RX In the situation of Lemma 37.14.4. If V ′ = G(V,U ′, φ) for some
triple (V,U ′, φ), then

(1) V ′ → Y ′ is locally of finite type if and only if V → Y and U ′ → X ′ are
locally of finite type,

(2) V ′ → Y ′ is flat if and only if V → Y and U ′ → X ′ are flat,
(3) V ′ → Y ′ is flat and locally of finite presentation if and only if V → Y and

U ′ → X ′ are flat and locally of finite presentation,
(4) V ′ → Y ′ is smooth if and only if V → Y and U ′ → X ′ are smooth,
(5) V ′ → Y ′ is étale if and only if V → Y and U ′ → X ′ are étale, and
(6) add more here as needed.

If W ′ is flat over Y ′, then the adjunction mapping G(F (W ′)) → W ′ is an iso-
morphism. Hence F and G define mutually quasi-inverse functors between the
category of schemes flat over Y ′ and the category of triples (V,U ′, φ) with V → Y
and U ′ → X ′ flat.

Proof. Looking over affine pieces the assertions of this lemma are equivalent to the
corresponding assertions of More on Algebra, Lemma 15.7.7. □

37.15. Openness of the flat locus

0398 This result takes some work to prove, and (perhaps) deserves its own section. Here
it is.

Theorem 37.15.1.0399 [DG67, IV Theorem
11.3.1]

Let S be a scheme. Let f : X → S be a morphism which is
locally of finite presentation. Let F be a quasi-coherent OX -module which is locally
of finite presentation. Then

U = {x ∈ X | F is flat over S at x}
is open in X.

Proof. We may test for openness locally on X hence we may assume that f is a
morphism of affine schemes. In this case the theorem is exactly Algebra, Theorem
10.129.4. □

Lemma 37.15.2.047C Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
S′ g // S

be a cartesian diagram of schemes. Let F be a quasi-coherent OX -module. Let
x′ ∈ X ′ with images x = g′(x′) and s′ = f ′(x′).

(1) If F is flat over S at x, then (g′)∗F is flat over S′ at x′.
(2) If g is flat at s′ and (g′)∗F is flat over S′ at x′, then F is flat over S at x.
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In particular, if g is flat, f is locally of finite presentation, and F is locally of finite
presentation, then formation of the open subset of Theorem 37.15.1 commutes with
base change.

Proof. Consider the commutative diagram of local rings
OX′,x′ OX,xoo

OS′,s′

OO

OS,soo

OO

Note that OX′,x′ is a localization of OX,x⊗OS,s
OS′,s′ , and that ((g′)∗F)x′ is equal

to Fx ⊗OX,x
OX′,x′ . Hence the lemma follows from Algebra, Lemma 10.100.1. □

37.16. Critère de platitude par fibres

039A Consider a commutative diagram of schemes (left hand diagram)
X

f
//

��

Y

��
S

Xs
fs

//

$$

Ys

zz
Spec(κ(s))

and a quasi-coherent OX -module F . Given a point x ∈ X lying over s ∈ S with
image y = f(x) we consider the question: Is F flat over Y at x? If F is flat over S
at x, then the theorem states this question is intimately related to the question of
whether the restriction of F to the fibre

Fs = (Xs → X)∗F
is flat over Ys at x. Below you will find a “Noetherian” version, a “finitely presented”
version, and earlier we treated a “nilpotent” version, see Lemma 37.10.2.

Theorem 37.16.1.039B Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. Let F be a quasi-coherent OX -module. Let x ∈ X. Set y = f(x) and s ∈ S
the image of x in S. Assume S, X, Y locally Noetherian, F coherent, and Fx ̸= 0.
Then the following are equivalent:

(1) F is flat over S at x, and Fs is flat over Ys at x, and
(2) Y is flat over S at y and F is flat over Y at x.

Proof. Consider the ring maps
OS,s −→ OY,y −→ OX,x

and the module Fx. The stalk of Fs at x is the module Fx/msFx and the local
ring of Ys at y is OY,y/msOY,y. Thus the implication (1) ⇒ (2) is Algebra, Lemma
10.99.15. If (2) holds, then the first ring map is faithfully flat and Fx is flat over
OY,y so by Algebra, Lemma 10.39.4 we see that Fx is flat over OS,s. Moreover,
Fx/msFx is the base change of the flat module Fx by OY,y → OY,y/msOY,y, hence
flat by Algebra, Lemma 10.39.7. □

Here is the non-Noetherian version.

Theorem 37.16.2.039C Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. Let F be a quasi-coherent OX -module. Assume

(1) X is locally of finite presentation over S,

https://stacks.math.columbia.edu/tag/039B
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(2) F an OX -module of finite presentation, and
(3) Y is locally of finite type over S.

Let x ∈ X. Set y = f(x) and let s ∈ S be the image of x in S. If Fx ̸= 0, then the
following are equivalent:

(1) F is flat over S at x, and Fs is flat over Ys at x, and
(2) Y is flat over S at y and F is flat over Y at x.

Moreover, the set of points x where (1) and (2) hold is open in Supp(F).

Proof. Consider the ring maps
OS,s −→ OY,y −→ OX,x

and the module Fx. The stalk of Fs at x is the module Fx/msFx and the local
ring of Ys at y is OY,y/msOY,y. Thus the implication (1) ⇒ (2) is Algebra, Lemma
10.128.9. If (2) holds, then the first ring map is faithfully flat and Fx is flat over
OY,y so by Algebra, Lemma 10.39.4 we see that Fx is flat over OS,s. Moreover,
Fx/msFx is the base change of the flat module Fx by OY,y → OY,y/msOY,y, hence
flat by Algebra, Lemma 10.39.7.
By Morphisms, Lemma 29.21.11 the morphism f is locally of finite presentation.
Consider the set
(37.16.2.1)05VI U = {x ∈ X | F flat at x over both Y and S}.
This set is open in X by Theorem 37.15.1. Note that if x ∈ U , then Fs is flat
at x over Ys as a base change of a flat module under the morphism Ys → Y , see
Morphisms, Lemma 29.25.7. Hence at every point of U ∩ Supp(F) condition (1) is
satisfied. On the other hand, it is clear that if x ∈ Supp(F) satisfies (1) and (2),
then x ∈ U . Thus the open set we are looking for is U ∩ Supp(F). □

These theorems are often used in the following simplified forms. We give only the
global statements – of course there are also pointwise versions.

Lemma 37.16.3.039D Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. Assume

(1) S, X, Y are locally Noetherian,
(2) X is flat over S,
(3) for every s ∈ S the morphism fs : Xs → Ys is flat.

Then f is flat. If f is also surjective, then Y is flat over S.

Proof. This is a special case of Theorem 37.16.1. □

Lemma 37.16.4.039E Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. Assume

(1) X is locally of finite presentation over S,
(2) X is flat over S,
(3) for every s ∈ S the morphism fs : Xs → Ys is flat, and
(4) Y is locally of finite type over S.

Then f is flat. If f is also surjective, then Y is flat over S.

Proof. This is a special case of Theorem 37.16.2. □

Lemma 37.16.5.05VJ Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. Let F be a quasi-coherent OX -module. Assume

https://stacks.math.columbia.edu/tag/039D
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(1) X is locally of finite presentation over S,
(2) F an OX -module of finite presentation,
(3) F is flat over S, and
(4) Y is locally of finite type over S.

Then the set
U = {x ∈ X | F flat at x over Y }.

is open in X and its formation commutes with arbitrary base change: If S′ → S
is a morphism of schemes, and U ′ is the set of points of X ′ = X ×S S′ where
F ′ = F ×S S′ is flat over Y ′ = Y ×S S′, then U ′ = U ×S S′.

Proof. By Morphisms, Lemma 29.21.11 the morphism f is locally of finite presen-
tation. Hence U is open by Theorem 37.15.1. Because we have assumed that F is
flat over S we see that Theorem 37.16.2 implies

U = {x ∈ X | Fs flat at x over Ys}.

where s always denotes the image of x in S. (This description also works trivially
when Fx = 0.) Moreover, the assumptions of the lemma remain in force for the
morphism f ′ : X ′ → Y ′ and the sheaf F ′. Hence U ′ has a similar description. In
other words, it suffices to prove that given s′ ∈ S′ mapping to s ∈ S we have

{x′ ∈ X ′
s′ | F ′

s′ flat at x′ over Y ′
s′}

is the inverse image of the corresponding locus in Xs. This is true by Lemma
37.15.2 because in the cartesian diagram

X ′
s′

��

// Xs

��
Y ′
s′ // Ys

the horizontal morphisms are flat as they are base changes by the flat morphism
Spec(κ(s′))→ Spec(κ(s)). □

Lemma 37.16.6.05VK Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. Assume

(1) X is locally of finite presentation over S,
(2) X is flat over S, and
(3) Y is locally of finite type over S.

Then the set
U = {x ∈ X | X flat at x over Y }.

is open in X and its formation commutes with arbitrary base change.

Proof. This is a special case of Lemma 37.16.5. □

The following lemma is a variant of Algebra, Lemma 10.99.4. Note that the hy-
pothesis that (Fs)x is a flat OXs,x-module means that (Fs)x is a free OXs,x-module
which is always the case if x ∈ Xs is a generic point of an irreducible component
of Xs and Xs is reduced (namely, in this case OXs,x is a field, see Algebra, Lemma
10.25.1).
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Lemma 37.16.7.080Q Let f : X → S be a morphism of schemes of finite presentation.
Let F be a finitely presented OX -module. Let x ∈ X with image s ∈ S. If F
is flat at x over S and (Fs)x is a flat OXs,x-module, then F is finite free in a
neighbourhood of x.
Proof. If Fx ⊗ κ(x) is zero, then Fx = 0 by Nakayama’s lemma (Algebra, Lemma
10.20.1) and hence F is zero in a neighbourhood of x (Modules, Lemma 17.9.5)
and the lemma holds. Thus we may assume Fx ⊗ κ(x) is not zero and we see
that Theorem 37.16.2 applies with f = id : X → X. We conclude that Fx is flat
over OX,x. Hence Fx is free, see Algebra, Lemma 10.78.5 for example. Choose
an open neighbourhood x ∈ U ⊂ X and sections s1, . . . , sr ∈ F(U) which map
to a basis in Fx. The corresponding map ψ : O⊕r

U → F|U is surjective after
shrinking U (Modules, Lemma 17.9.5). Then Ker(ψ) is of finite type (see Modules,
Lemma 17.11.3) and Ker(ψ)x = 0. Whence after shrinking U once more ψ is an
isomorphism. □

Lemma 37.16.8.0CZR Let f : X → S be a morphism of schemes which is locally of finite
presentation. Let F be a finitely presented OX -module flat over S. Then the set

{x ∈ X : F free in a neighbourhood of x}
is open in X and its formation commutes with arbitrary base change S′ → S.
Proof. Openness holds trivially. Let x ∈ X mapping to s ∈ S. By Lemma 37.16.7
we see that x is in our set if and only if F|Xs is flat at x over Xs. Clearly this is
also equivalent to F being flat at x over X (because this statement is implied by
freeness of Fx and implies flatness of F|Xs at x over Xs). Thus the base change
statement follows from Lemma 37.16.5 applied to id : X → X over S. □

37.17. Closed immersions between smooth schemes

0H1G Some results that do not fit elsewhere very well.
Lemma 37.17.1.0FUE Let S be a scheme. Let Y → X be a closed immersion of schemes
smooth over S. For every y ∈ Y there exist integers 0 ≤ m,n and a commutative
diagram

Y

��

Voo

��

// Am
S

(a1,...,am) 7→(a1,...,am,0...,0)
��

X Uoo π // Am+n
S

where U ⊂ X is open, V = Y ∩ U , π is étale, V = π−1(Am
S ), and y ∈ V .

Proof. The question is local on X hence we may replace X by an open neighbour-
hood of y. Since Y → X is a regular immersion by Divisors, Lemma 31.22.11 we
may assume X = Spec(A) is affine and there exists a regular sequence f1, . . . , fn ∈
A such that Y = V (f1, . . . , fn). After shrinking X (and hence Y ) further we may
assume there exists an étale morphism Y → Am

S , see Morphisms, Lemma 29.36.20.
Let g1, . . . , gm inOY (Y ) be the coordinate functions of this étale morphism. Choose
lifts g1, . . . , gm ∈ A of these functions and consider the morphism

(g1, . . . , gm, f1, . . . , fn) : X −→ Am+n
S

over S. This is a morphism of schemes locally of finite presentation over S and hence
is locally of finite presentation (Morphisms, Lemma 29.21.11). The restriction of
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this morphism to Am
S ⊂ Am+n

S is étale by construction. Thus, in order to show
that X → Am+n

S is étale at y it suffices to show that X → Am+n
S is flat at y, see

Morphisms, Lemma 29.36.15. Let s ∈ S be the image of y. It suffices to check that
Xs → Am+n

s is flat at y, see Theorem 37.16.2. Let z ∈ Am+n
s be the image of y.

The local ring map
OAm+n

s ,z −→ OXs,y
is flat by Algebra, Lemma 10.128.1. Namely, schemes smooth over fields are reg-
ular and regular rings are Cohen-Macaulay, see Varieties, Lemma 33.25.3 and
Algebra, Lemma 10.106.3. Thus both source and target are regular local rings
(and hence CM). The source and target have the same dimension: namely, we
have dim(OYs,y) = dim(OAm

s ,z
) by More on Algebra, Lemma 15.44.2, we have

dim(OAm+n
s ,z) = n + dim(OAm

s ,z
), and we have dim(OXs,y) = n + dim(OYs,y) be-

cause OYs,y is the quotient of OXs,y by the regular sequence f1, . . . , fn of length
n (see Divisors, Remark 31.22.5). Finally, the fibre ring of the displayed arrow is
finite over κ(z) since Ys → Am

s is étale at y. This finishes the proof. □

Remark 37.17.2.0H1H We fix a ring R and we set S = Spec(R). Fix integers 0 ≤ m and
1 ≤ n. Consider the closed immersion

Z = Am
S −→ Am+n

S = X, (a1, . . . , am) 7→ (a1, . . . , am, 0, . . . 0).

We are going to consider the blowing up X ′ of X along the closed subscheme Z.
Write

X = Spec(A) with A = R[x1, . . . , xm, y1, . . . , yn]
Then X ′ is the Proj of the Rees algebra of A with respect ot the ideal (y1, . . . , yn).
This Rees algebra is equal to B = A[T1, . . . , Tn]/(yiTj − yjTi); details omitted.
Hence X ′ = Proj(B) is smooth over S as it is covered by the affine opens

D+(Ti) = Spec(B(Ti))
= Spec(A[t1, . . . , t̂i, . . . tn]/(yj − yitj))
= Spec(R[x1, . . . , xm, yi, t1, . . . , t̂i, . . . , tn])

which are isomorphic to An+m
S . In this chart the exceptional divisor is cut out by

setting yi = 0 hence the exceptional divisor is smooth over S as well.

Lemma 37.17.3.0FUT Let S be a scheme. Let Z → X be a closed immersion of schemes
smooth over S. Let b : X ′ → X be the blowing up of Z with exceptional divisor
E ⊂ X ′. Then X ′ and E are smooth over S. The morphism p : E → Z is
canonically isomorphic to the projective space bundle

P(I/I2) −→ Z

where I ⊂ OX is the ideal sheaf of Z. The relative OE(1) coming from the projec-
tive space bundle structure is isomorphic to the restriction of OX′(−E) to E.

Proof. By Divisors, Lemma 31.22.11 the immersion Z → X is a regular immmer-
sion, hence the ideal sheaf I is of finite type, hence b is a projective morphism with
relatively ample invertible sheaf OX′(1) = OX′(−E), see Divisors, Lemmas 31.32.4
and 31.32.13. The canonical map I → b∗OX′(1) gives a closed immersion

X ′ −→ P
(⊕

n≥0
Symn

OX
(I)
)
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by the very construction of the blowup. The restriction of this morphism to E gives
a canonical map

E −→ P
(⊕

n≥0
Symn

OZ
(I/I2)

)
over Z. Since I/I2 is finite locally free if this canonical map is an isomorphism,
then the final part of the lemma holds. Having said all of this, now the question is
étale local on X. Namely, blowing up commutes with flat base change by Divisors,
Lemma 31.32.3 and we can check smoothness after precomposing with a surjective
étale morphism. Thus by the étale local structure of a closed immersion of schemes
over S given in Lemma 37.17.1 this reduces us to the case discussed in Remark
37.17.2. □

37.18. Flat modules and relative assassins

0GSF In this section we will prove that the support of a flat module is (in some sense)
equidimensional over the base in geometric situations. For the Noetherian case we
refer the reader to [DG67, IV Proposition 12.1.1.5]. First, we prove two helper
lemmas.
Lemma 37.18.1.0GSG Let A be a valuation ring. Let A→ B is a local homomorphism
of local rings which is essentially of finite type. Let u : N → M be a map of finite
B-modules. Assume M is flat over A and u : N/mAN → M/mAM is injective.
Then u is injective and M/u(N) is flat over A.
Proof. We will deduce this lemma from Algebra, Lemma 10.128.4 (please note that
we exchanged the roles of M and N). To do the reduction we will use More on
Algebra, Lemma 15.25.7 to reduce to the finitely presented case.
By assumption we can write B as a quotient of the localization of a polynomial
algebra P = A[x1, . . . , xn] at a prime ideal q. Then we can think of u : N →M as
a map of finite Pq-modules. Hence we may and do assume that B is essentially of
finite presentation over A.
Next, the B-module N is finite but perhaps not of finite presentation. Write
N = colimNλ as a filtered colimit of finitely presented B-modules with surjec-
tive transition maps. For example choose a presentation 0→ K → B⊕r → N → 0,
write K as the union of its finite submodules Kλ, and set Nλ = Coker(Kλ → B⊕r).
The module N/mAN is of finite presentation over the Noetherian ring B/mAB.
Hence for λ large enough we have Nλ/mANλ = N/mAN . Now, if we can show the
lemma for the composition uλ : Nλ →M , then we conclude that Nλ = N and the
result holds for u. Hence we may and do assume N is of finite presentation over B.
By More on Algebra, Lemma 15.25.7 the module M is of finite presentation over B.
Thus all the assumptions of Algebra, Lemma 10.128.4 hold and we conclude. □

Lemma 37.18.2.0GSH This can be found
in the proof of
[DG67, IV
Proposition 12.1.1.5]

Let f : X → S be a morphism of schemes. Let y ∈ X be a point
with image t ∈ S. Denote Y ⊂ X the closure of {y} viewed as an integral closed
subscheme of X. Let s ∈ S and let x ∈ Ys be a generic point of an irreducible
component of Ys. There exists a cartesian diagram

X ′
g′
//

f ′

��

X

f

��
S′ g // S
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with the following properties:
(1) S′ is the spectrum of a valuation ring with generic point t′ and closed

point s′,
(2) g(t′) = t and g(s′) = s,
(3) there exists a point y′ ∈ X ′

t′ which is a generic point of an irreducible
component of (S′ ×S Y )t′ = Yt ×t t′ and satisfies g′(y′) = y,

(4) denoting Y ′ ⊂ X ′ the closure of {y′} viewed as an integral closed sub-
scheme of X ′ there exists a point x′ ∈ Y ′

s′ which is a generic point of an
irreducible component of Y ′

s′ with g′(x′) = x.

Proof. We choose a valuation ring R, we set S′ = Spec(R) with generic point t′
and closed point s′, and we choose a morphism h : S′ → X with h(t′) = y and
h(s′) = x. See Schemes, Lemma 26.20.4. Set g = f ◦ h so that g(t′) = t and
g(s′) = s. Consider the base change

X ′
g′
//

��

X

��
S′

σ

CC

g // S

We obtain a section σ of the base change such that h = g′ ◦ σ.
Of course σ factors through the base change S′ ×S Y of Y as h factors through Y .
Let y′ ∈ X ′

t′ ⊂ X ′ be the generic point of an irreducible component of the fibre
(S′ ×S Y )t′ = Yt ×t t′

containing the point σ(t′), i.e., such that y′ ⇝ σ(t′). Since g′(y′) ∈ Yt and g(y′)⇝
g(σ(t′)) = y we find that g′(y′) = y because y is the generic point of the fibre Yt.
Denote Y ′ ⊂ X ′ the closure of {y′} in X ′ viewed as an integral closed subscheme.
Then σ factors through Y ′ as σ(t′) ∈ Y ′. Choose a generic point x′ ∈ Y ′

s′ of an
irreducible component of Y ′

s′ which contains σ(s′), i.e., we get x′ ⇝ σ(s′) and hence
g′(x′) ⇝ g′(σ(s′)) = x. Again as x is a generic point of an irreducible component
of Ys by assumption and as g′(Y ′) ⊂ Y we conclude that g′(x′) = x. □

Lemma 37.18.3.0GSI Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent finite type OX -module. Let y ∈ AssX/S(F) with
image t ∈ S. Denote Y ⊂ X the closure of {y} in X viewed as an integral closed
subscheme. Let s ∈ S and let x ∈ Ys be a generic point of an irreducible component
of Ys. If F is flat over S at x, then x ∈ AssX/S(F) and dimx(Ys) = dim(Yt).

Proof. Choose a diagram as in Lemma 37.18.2. Set F ′ = (g′)∗F . Divisors,
Lemma 31.7.3 implies that y′ ∈ AssX′/S′(F ′). By our choice of y′ we also see
that dim(Y ′

t′) = dim(Yt), see for example Algebra, Lemma 10.116.7. By Algebra,
Lemma 10.125.9 we see that Y ′

s′ is equidimensional of dimension equal to dim(Yt).
Since F is flat at x over S we see that F ′ is flat at x′ over S′, see Morphisms,
Lemma 29.25.7.
Suppose that we can show x′ ∈ AssX′/S(F ′). Then Divisors, Lemma 31.7.3 implies
that x ∈ AssX/S(F) and that the irreducible component C ′ of Y ′

s′ containing x′ is
an irreducible component of C ×s s′ where C ⊂ Ys is the irreducible component
containing x. Whence dim(C) = dim(C ′) = dim(Yt) (see above) and the proof is
complete. This reduces us to the case discussed in the next paragraph.
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Assume S = Spec(A) where A is a valuation ring and t and s are the generic and
closed points of S. We will assume x ̸∈ AssX/S(F) in order to get a contradiction.
In other words, we assume x ̸∈ AssXs(Fs) where Fs is the pullback of F to Xs.
Consider the ring map

A −→ OX,x = B

and the module N = Fx over B = OX,x. Then B/mAB = OXs,x and N/mAN
is the stalk of Fs at the point x. Denote q ⊂ B the prime ideal corresponding to
the point y, see Schemes, Lemma 26.13.2. Since x is a generic point of Ys we see
that the radical of q + mAB is mB . Then AssB/mAB(N/mAN) is a finite set of
prime ideals (Algebra, Lemma 10.63.5) which doesn’t contain the maximal ideal of
B/mAB since x ̸∈ AssX/S(F). Thus the image of of q in B/mAB is not contained in
any of those prime ideals. Hence by prime avoidance (Algebra, Lemma 10.15.2) we
can find an element g ∈ q whose image in B/mAB is a nonzerodivisor on N/mAN
(this uses the description of zerodivisors in Algebra, Lemma 10.63.9). Since N = Fx
is A-flat by Lemma 37.18.1 we see that

g : N −→ N

is injective. In particular, if K = Frac(A) is the fraction field of A, then we see
that

g : N ⊗A K −→ N ⊗A K
is injective. Observe that q corresponds to a prime ideal of B⊗AK. Denote Ft the
restriction of F to the generic fibre Xt. We have (B⊗AK)q = OXt,y and (N⊗AK)q
is the stalk at y of Ft. Hence we find that g ∈ my ⊂ OXt,y is a nonzerodivisor on
the stalk (Ft)y which contradicts our assumption that y ∈ AssX/S(F). □

Lemma 37.18.4.0H3X Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a finite type, quasi-coherent OX -module flat over S. Assume S is
irreducible with generic point η. If dim(Supp(Fη)) ≤ r then for all s ∈ S we have
dim(Supp(Fs)) ≤ r.

Proof. Let x ∈ Supp(Fs) be a generic point of an irreducible component of Supp(Fs).
By Algebra, Lemma 10.41.12 we can find a specialization y ⇝ x in Supp(F) with
f(y) = η. Of course we may assume y is a generic point of an irreducible component
of Supp(Fη). We conclude from Lemma 37.18.3 that the dimension of {x} is at
most r. □

Lemma 37.18.5.0GSJ Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent OX -module of finite type. Let y ∈ AssX/S(F).
Denote Y ⊂ X the closure of {y} in X viewed as an integral closed subscheme.
Denote T ⊂ S the closure of {f(y)} viewed as an integral closed subscheme. We
obtain a commutative diagram

Y //

��

X

��
T // S

where Y → T is dominant. Assume F is flat over S at all generic points of
irreducible components of fibres of Y → T (for example if F is flat over S). Then

(1) if s ∈ S and x ∈ Ys is the generic point of an irreducible component of Ys,
then x ∈ AssX/S(F), and
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(2) there is an integer d ≥ 0 such that Y → T is of relative dimension d, see
Morphisms, Definition 29.29.1.

Proof. This follows immediately from the pointwise version Lemma 37.18.3. Note
that to compute the dimension of the locally algebraic schemes Ys it suffices to look
near the generic points, see Varieties, Section 33.20. □

Remark 37.18.6.0GSK Here are some cases where the material above, especially Lemma
37.18.5, allows one to conclude that a morphism f : X → S of schemes has relative
dimension d as defined in Morphisms, Definition 29.29.1. For example, this is true
if

(1) X is integral with generic point ξ,
(2) the transcendence degree of κ(ξ) over κ(f(ξ)) is d,
(3) f is locally of finite type, and
(4) there exists a quasi-coherent OX -module F of finite type which is flat over

S with Supp(F) = X.
Another set of hypotheses that work are the following:

(1) S is irreducible with generic point η,
(2) Xη is dense in X,
(3) every irreducible component of Xη has dimension d,
(4) f is locally of finite type, and
(5) there exists a quasi-coherent OX -module F of finite type which is flat over

S with Supp(F) = X.
Of course, we can relax the flatness condition on F and require only that F is flat
over S in codimension 0, i.e., that F is flat over S at every generic point of every
fibre. If we ever need these results, we will carefully state and prove them here.

37.19. Normalization revisited

081J Normalization commutes with smooth base change.

Lemma 37.19.1.081K Let f : Y → X be a smooth morphism of schemes. Let A be a
quasi-coherent sheaf of OX -algebras. The integral closure of OY in f∗A is equal to
f∗A′ where A′ ⊂ A is the integral closure of OX in A.

Proof. This is a translation of Algebra, Lemma 10.147.4 into the language of
schemes. Details omitted. □

Lemma 37.19.2 (Normalization commutes with smooth base change).03GV Let

Y2 //

f2

��

Y1

f1

��
X2

φ // X1

be a fibre square in the category of schemes. Assume f1 is quasi-compact and
quasi-separated, and φ is smooth. Let Yi → X ′

i → Xi be the normalization of Xi

in Yi. Then X ′
2
∼= X2 ×X1 X

′
1.

Proof. The base change of the factorization Y1 → X ′
1 → X1 to X2 is a factorization

Y2 → X2 ×X1 X
′
1 → X2 and X2 ×X1 X

′
1 → X2 is integral (Morphisms, Lemma

29.44.6). Hence we get a morphism h : X ′
2 → X2×X1X

′
1 by the universal property of
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Morphisms, Lemma 29.53.4. Observe thatX ′
2 is the relative spectrum of the integral

closure of OX2 in f2,∗OY2 . If A′ ⊂ f1,∗OY1 denotes the integral closure of OX1 , then
X2 ×X1 X

′
1 is the relative spectrum of φ∗A′, see Constructions, Lemma 27.4.6. By

Cohomology of Schemes, Lemma 30.5.2 we know that f2,∗OY2 = φ∗f1,∗OY1 . Hence
the result follows from Lemma 37.19.1. □

Lemma 37.19.3 (Normalization and smooth morphisms).07TD Let X → Y be a smooth
morphism of schemes. Assume every quasi-compact open of Y has finitely many
irreducible components. Then the same is true for X and there is a unique iso-
morphism Xν = X ×Y Y ν over X where Xν , Y ν are the normalizations of X,
Y .

Proof. By Descent, Lemma 35.16.3 every quasi-compact open of X has finitely
many irreducible components. Note that Xred = X ×Y Yred as a scheme smooth
over a reduced scheme is reduced, see Descent, Lemma 35.18.1. Hence we may
assume that X and Y are reduced (as the normalization of a scheme is equal to
the normalization of its reduction by definition). Next, note that X ′ = X ×Y Y ν is
a normal scheme by Descent, Lemma 35.18.2. The morphism X ′ → Y ν is smooth
(hence flat) thus the generic points of irreducible components of X ′ lie over generic
points of irreducible components of Y ν . Since Y ν → Y is birational we conclude
that X ′ → X is birational too (because X ′ → Y ν induces an isomorphism on
fibres over generic points of Y ). We conclude that there exists a factorization
Xν → X ′ → X, see Morphisms, Lemma 29.54.5 which is an isomorphism as X ′ is
normal and integral over X. □

Lemma 37.19.4 (Normalization and henselization).0CBM Let X be a locally Noetherian
scheme. Let ν : Xν → X be the normalization morphism. Then for any point
x ∈ X the base change
Xν ×X Spec(OhX,x)→ Spec(OhX,x), resp. Xν ×X Spec(OshX,x)→ Spec(OshX,x)

is the normalization of Spec(OhX,x), resp. Spec(OshX,x).

Proof. Let η1, . . . , ηr be the generic points of the irreducible components of X pass-
ing through x. The base change of the normalization to Spec(OX,x) is the spectrum
of the integral closure of OX,x in

∏
κ(ηi). This follows from our construction of

the normalization of X in Morphisms, Definition 29.54.1 and Morphisms, Lemma
29.53.1; you can also use the description of the normalization in Morphisms, Lemma
29.54.3. Thus we reduce to the following algebra problem. Let A be a Noetherian
local ring; recall that this implies the henselization Ah and strict henselization Ash
are Noetherian too (More on Algebra, Lemma 15.45.3). Let p1, . . . , pr be its min-
imal primes. Let A′ be the integral closure of A in

∏
κ(pi). Problem: show that

A′ ⊗A Ah, resp. A′ ⊗A Ash is constructed from the Noetherian local ring Ah, resp.
Ash in the same manner.
Since Ah, resp. Ash are colimits of étale A-algebras, we see that the minimal primes
of A and Ash are exactly the primes of Ah, resp. Ash lying over the minimal primes
of A (by going down, see Algebra, Lemmas 10.39.19 and 10.30.7). Thus More on
Algebra, Lemma 15.45.13 tells us that Ah ⊗A

∏
κ(pi), resp. Ash ⊗A

∏
κ(pi) is the

product of the residue fields at the minimal primes of Ah, resp. Ash. We know
that taking the integral closure in an overring commutes with étale base change,
see Algebra, Lemma 10.147.2. Writing Ah and Ash as a limit of étale A-algebras
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we see that the same thing is true for the base change to Ah and Ash (you can also
use the more general Algebra, Lemma 10.147.5). □

37.20. Normal morphisms

038Z In the article [DM69] of Deligne and Mumford the notion of a normal morphism
is mentioned. This is just one in a series of types3 of morphisms that can all be
defined similarly. Over time we will add these in their own sections as needed.

Definition 37.20.1.0390 Let f : X → Y be a morphism of schemes. Assume that all the
fibres Xy are locally Noetherian schemes.

(1) Let x ∈ X, and y = f(x). We say that f is normal at x if f is flat at x,
and the scheme Xy is geometrically normal at x over κ(y) (see Varieties,
Definition 33.10.1).

(2) We say f is a normal morphism if f is normal at every point of X.

So the condition that the morphism X → Y is normal is stronger than just requiring
all the fibres to be normal locally Noetherian schemes.

Lemma 37.20.2.0391 Let f : X → Y be a morphism of schemes. Assume all fibres of f
are locally Noetherian. The following are equivalent

(1) f is normal, and
(2) f is flat and its fibres are geometrically normal schemes.

Proof. This follows directly from the definitions. □

Lemma 37.20.3.056W A smooth morphism is normal.

Proof. Let f : X → Y be a smooth morphism. As f is locally of finite presentation,
see Morphisms, Lemma 29.34.8 the fibres Xy are locally of finite type over a field,
hence locally Noetherian. Moreover, f is flat, see Morphisms, Lemma 29.34.9.
Finally, the fibres Xy are smooth over a field (by Morphisms, Lemma 29.34.5) and
hence geometrically normal by Varieties, Lemma 33.25.4. Thus f is normal by
Lemma 37.20.2. □

We want to show that this notion is local on the source and target for the smooth
topology. First we deal with the property of having locally Noetherian fibres.

Lemma 37.20.4.0392 The property P(f) =“the fibres of f are locally Noetherian” is
local in the fppf topology on the source and the target.

Proof. Let f : X → Y be a morphism of schemes. Let {φi : Yi → Y }i∈I be an fppf
covering of Y . Denote fi : Xi → Yi the base change of f by φi. Let i ∈ I and let
yi ∈ Yi be a point. Set y = φi(yi). Note that

Xi,yi = Spec(κ(yi))×Spec(κ(y)) Xy.

Moreover, as φi is of finite presentation the field extension κ(yi)/κ(y) is finitely
generated. Hence in this situation we have that Xy is locally Noetherian if and
only if Xi,yi is locally Noetherian, see Varieties, Lemma 33.11.1. This fact implies
locality on the target.

3The other types are coprof ≤ k, Cohen-Macaulay, (Sk), regular, (Rk), and reduced. See
[DG67, IV Definition 6.8.1.]. Gorenstein morphisms will be defined in Duality for Schemes, Section
48.24.
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Let {Xi → X} be an fppf covering of X. Let y ∈ Y . In this case {Xi,y → Xy} is
an fppf covering of the fibre. Hence the locality on the source follows from Descent,
Lemma 35.16.1. □

Lemma 37.20.5.0393 The property P(f) =“the fibres of f are locally Noetherian and
f is normal” is local in the fppf topology on the target and local in the smooth
topology on the source.

Proof. We have P(f) = P1(f) ∧ P2(f) ∧ P3(f) where P1(f) =“the fibres of f are
locally Noetherian”, P2(f) =“f is flat”, and P3(f) =“the fibres of f are geometri-
cally normal”. We have already seen that P1 and P2 are local in the fppf topology
on the source and the target, see Lemma 37.20.4, and Descent, Lemmas 35.23.15
and 35.27.1. Thus we have to deal with P3.
Let f : X → Y be a morphism of schemes. Let {φi : Yi → Y }i∈I be an fpqc
covering of Y . Denote fi : Xi → Yi the base change of f by φi. Let i ∈ I and let
yi ∈ Yi be a point. Set y = φi(yi). Note that

Xi,yi = Spec(κ(yi))×Spec(κ(y)) Xy.

Hence in this situation we have that Xy is geometrically normal if and only if Xi,yi

is geometrically normal, see Varieties, Lemma 33.10.4. This fact implies P3 is fpqc
local on the target.
Let {Xi → X} be a smooth covering of X. Let y ∈ Y . In this case {Xi,y → Xy} is
a smooth covering of the fibre. Hence the locality of P3 for the smooth topology on
the source follows from Descent, Lemma 35.18.2. Combining the above the lemma
follows. □

37.21. Regular morphisms

07R6 Compare with Section 37.20. The algebraic version of this notion is discussed in
More on Algebra, Section 15.41.

Definition 37.21.1.07R7 Let f : X → Y be a morphism of schemes. Assume that all the
fibres Xy are locally Noetherian schemes.

(1) Let x ∈ X, and y = f(x). We say that f is regular at x if f is flat at x,
and the scheme Xy is geometrically regular at x over κ(y) (see Varieties,
Definition 33.12.1).

(2) We say f is a regular morphism if f is regular at every point of X.

The condition that the morphism X → Y is regular is stronger than just requiring
all the fibres to be regular locally Noetherian schemes.

Lemma 37.21.2.07R8 Let f : X → Y be a morphism of schemes. Assume all fibres of f
are locally Noetherian. The following are equivalent

(1) f is regular,
(2) f is flat and its fibres are geometrically regular schemes,
(3) for every pair of affine opens U ⊂ X, V ⊂ Y with f(U) ⊂ V the ring map
O(V )→ O(U) is regular,

(4) there exists an open covering Y =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj is regular, and
(5) there exists an affine open covering Y =

⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring maps O(Vj)→ O(Ui) are regular.

https://stacks.math.columbia.edu/tag/0393
https://stacks.math.columbia.edu/tag/07R7
https://stacks.math.columbia.edu/tag/07R8


37.21. REGULAR MORPHISMS 3188

Proof. The equivalence of (1) and (2) is immediate from the definitions. Let x ∈ X
with y = f(x). By definition f is flat at x if and only if OY,y → OX,x is a flat
ring map, and Xy is geometrically regular at x over κ(y) if and only if OXy,x =
OX,x/myOX,x is a geometrically regular algebra over κ(y). Hence Whether or not f
is regular at x depends only on the local homomorphism of local rings OY,y → OX,x.
Thus the equivalence of (1) and (4) is clear.

Recall (More on Algebra, Definition 15.41.1) that a ring map A → B is regular if
and only if it is flat and the fibre rings B⊗A κ(p) are Noetherian and geometrically
regular for all primes p ⊂ A. By Varieties, Lemma 33.12.3 this is equivalent to
Spec(B⊗A κ(p)) being a geometrically regular scheme over κ(p). Thus we see that
(2) implies (3). It is clear that (3) implies (5). Finally, assume (5). This implies
that f is flat (see Morphisms, Lemma 29.25.3). Moreover, if y ∈ Y , then y ∈ Vj
for some j and we see that Xy =

⋃
i∈Ij Ui,y with each Ui,y geometrically regular

over κ(y) by Varieties, Lemma 33.12.3. Another application of Varieties, Lemma
33.12.3 shows that Xy is geometrically regular. Hence (2) holds and the proof of
the lemma is finished. □

Lemma 37.21.3.07R9 A smooth morphism is regular.

Proof. Let f : X → Y be a smooth morphism. As f is locally of finite presentation,
see Morphisms, Lemma 29.34.8 the fibres Xy are locally of finite type over a field,
hence locally Noetherian. Moreover, f is flat, see Morphisms, Lemma 29.34.9.
Finally, the fibres Xy are smooth over a field (by Morphisms, Lemma 29.34.5) and
hence geometrically regular by Varieties, Lemma 33.25.4. Thus f is regular by
Lemma 37.21.2. □

Lemma 37.21.4.07RA The property P(f) =“the fibres of f are locally Noetherian and
f is regular” is local in the fppf topology on the target and local in the smooth
topology on the source.

Proof. We have P(f) = P1(f) ∧ P2(f) ∧ P3(f) where P1(f) =“the fibres of f are
locally Noetherian”, P2(f) =“f is flat”, and P3(f) =“the fibres of f are geometri-
cally regular”. We have already seen that P1 and P2 are local in the fppf topology
on the source and the target, see Lemma 37.20.4, and Descent, Lemmas 35.23.15
and 35.27.1. Thus we have to deal with P3.

Let f : X → Y be a morphism of schemes. Let {φi : Yi → Y }i∈I be an fpqc
covering of Y . Denote fi : Xi → Yi the base change of f by φi. Let i ∈ I and let
yi ∈ Yi be a point. Set y = φi(yi). Note that

Xi,yi = Spec(κ(yi))×Spec(κ(y)) Xy.

Hence in this situation we have that Xy is geometrically regular if and only if Xi,yi

is geometrically regular, see Varieties, Lemma 33.12.4. This fact implies P3 is fpqc
local on the target.

Let {Xi → X} be a smooth covering of X. Let y ∈ Y . In this case {Xi,y → Xy} is
a smooth covering of the fibre. Hence the locality of P3 for the smooth topology on
the source follows from Descent, Lemma 35.18.4. Combining the above the lemma
follows. □
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37.22. Cohen-Macaulay morphisms

045Q Compare with Section 37.20. Note that, as pointed out in Algebra, Section 10.167
and Varieties, Section 33.13 “geometrically Cohen-Macaulay” is the same as plain
Cohen-Macaulay.

Definition 37.22.1.045R Let f : X → Y be a morphism of schemes. Assume that all the
fibres Xy are locally Noetherian schemes.

(1) Let x ∈ X, and y = f(x). We say that f is Cohen-Macaulay at x if f is
flat at x, and the local ring of the scheme Xy at x is Cohen-Macaulay.

(2) We say f is a Cohen-Macaulay morphism if f is Cohen-Macaulay at every
point of X.

Here is a translation.

Lemma 37.22.2.045S Let f : X → Y be a morphism of schemes. Assume all fibres of f
are locally Noetherian. The following are equivalent

(1) f is Cohen-Macaulay, and
(2) f is flat and its fibres are Cohen-Macaulay schemes.

Proof. This follows directly from the definitions. □

Lemma 37.22.3.0AFG Let f : X → Y be a morphism of locally Noetherian schemes
which is locally of finite type and Cohen-Macaulay. For every point x in X with
image y in Y ,

dimx(X) = dimy(Y ) + dimx(Xy),
where Xy denotes the fiber over y.

Proof. After replacing X by an open neighborhood of x, there is a natural number
d such that all fibers of X → Y have dimension d at every point, see Morphisms,
Lemma 29.29.4. Then f is flat, locally of finite type and of relative dimension d.
Hence the result follows from Morphisms, Lemma 29.29.6. □

Lemma 37.22.4.0C0W Let f : X → Y and g : Y → Z be morphisms of schemes. Assume
that the fibres of f , g, and g ◦ f are locally Noetherian. Let x ∈ X with images
y ∈ Y and z ∈ Z.

(1) If f is Cohen-Macaulay at x and g is Cohen-Macaulay at f(x), then g ◦ f
is Cohen-Macaulay at x.

(2) If f and g are Cohen-Macaulay, then g ◦ f is Cohen-Macaulay.
(3) If g◦f is Cohen-Macaulay at x and f is flat at x, then f is Cohen-Macaulay

at x and g is Cohen-Macaulay at f(x).
(4) If g ◦ f is Cohen-Macaulay and f is flat, then f is Cohen-Macaulay and g

is Cohen-Macaulay at every point in the image of f .

Proof. Consider the map of Noetherian local rings

OYz,y → OXz,x
and observe that its fibre is

OXz,x/mYz,yOXz,x = OXy,x
Thus the lemma this follows from Algebra, Lemma 10.163.3. □
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Lemma 37.22.5.0C0X Let f : X → Y be a flat morphism of locally Noetherian schemes.
If X is Cohen-Macaulay, then f is Cohen-Macaulay and OY,f(x) is Cohen-Macaulay
for all x ∈ X.

Proof. After translating into algebra this follows from Algebra, Lemma 10.163.3.
□

Lemma 37.22.6.045T Let f : X → Y be a morphism of schemes. Assume that all the
fibres Xy are locally Noetherian schemes. Let Y ′ → Y be locally of finite type. Let
f ′ : X ′ → Y ′ be the base change of f . Let x′ ∈ X ′ be a point with image x ∈ X.

(1) If f is Cohen-Macaulay at x, then f ′ : X ′ → Y ′ is Cohen-Macaulay at x′.
(2) If f is flat at x and f ′ is Cohen-Macaulay at x′, then f is Cohen-Macaulay

at x.
(3) If Y ′ → Y is flat at f ′(x′) and f ′ is Cohen-Macaulay at x′, then f is

Cohen-Macaulay at x.

Proof. Note that the assumption on Y ′ → Y implies that for y′ ∈ Y ′ mapping to
y ∈ Y the field extension κ(y′)/κ(y) is finitely generated. Hence also all the fibres
X ′
y′ = (Xy)κ(y′) are locally Noetherian, see Varieties, Lemma 33.11.1. Thus the

lemma makes sense. Set y′ = f ′(x′) and y = f(x). Hence we get the following
commutative diagram of local rings

OX′,x′ OX,xoo

OY ′,y′

OO

OY,yoo

OO

where the upper left corner is a localization of the tensor product of the upper right
and lower left corners over the lower right corner.
Assume f is Cohen-Macaulay at x. The flatness of OY,y → OX,x implies the flatness
of OY ′,y′ → OX′,x′ , see Algebra, Lemma 10.100.1. The fact that OX,x/myOX,x is
Cohen-Macaulay implies that OX′,x′/my′OX′,x′ is Cohen-Macaulay, see Varieties,
Lemma 33.13.1. Hence we see that f ′ is Cohen-Macaulay at x′.
Assume f is flat at x and f ′ is Cohen-Macaulay at x′. The fact thatOX′,x′/my′OX′,x′

is Cohen-Macaulay implies that OX,x/myOX,x is Cohen-Macaulay, see Varieties,
Lemma 33.13.1. Hence we see that f is Cohen-Macaulay at x.
Assume Y ′ → Y is flat at y′ and f ′ is Cohen-Macaulay at x′. The flatness of
OY ′,y′ → OX′,x′ and OY,y → OY ′,y′ implies the flatness of OY,y → OX,x, see Alge-
bra, Lemma 10.100.1. The fact that OX′,x′/my′OX′,x′ is Cohen-Macaulay implies
that OX,x/myOX,x is Cohen-Macaulay, see Varieties, Lemma 33.13.1. Hence we
see that f is Cohen-Macaulay at x. □

Lemma 37.22.7.045U [DG67, IV Corollary
12.1.7(iii)]

Let f : X → S be a morphism of schemes which is flat and locally
of finite presentation. Let

W = {x ∈ X | f is Cohen-Macaulay at x}
Then

(1) W = {x ∈ X | OXf(x),x is Cohen-Macaulay},
(2) W is open in X,
(3) W dense in every fibre of X → S,
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(4) the formation of W commutes with arbitrary base change of f : For any
morphism g : S′ → S, consider the base change f ′ : X ′ → S′ of f and the
projection g′ : X ′ → X. Then the corresponding set W ′ for the morphism
f ′ is equal to W ′ = (g′)−1(W ).

Proof. As f is flat with locally Noetherian fibres the equality in (1) holds by def-
inition. Parts (2) and (3) follow from Algebra, Lemma 10.130.5. Part (4) follows
either from Algebra, Lemma 10.130.7 or Varieties, Lemma 33.13.1. □

Lemma 37.22.8.0BUU Let f : X → S be a morphism of schemes which is flat and locally
of finite presentation. Let x ∈ X with image s ∈ S. Set d = dimx(Xs). The
following are equivalent

(1) f is Cohen-Macaulay at x,
(2) there exists an open neighbourhood U ⊂ X of x and a locally quasi-finite

morphism U → Ad
S over S which is flat at x,

(3) there exists an open neighbourhood U ⊂ X of x and a locally quasi-finite
flat morphism U → Ad

S over S,
(4) for any S-morphism g : U → Ad

S of an open neighbourhood U ⊂ X of x
we have: g is quasi-finite at x ⇒ g is flat at x.

Proof. Openness of flatness shows (2) and (3) are equivalent, see Theorem 37.15.1.
Choose affine open U = Spec(A) ⊂ X with x ∈ U and V = Spec(R) ⊂ S with
f(U) ⊂ V . Then R → A is a flat ring map of finite presentation. Let p ⊂ A be
the prime ideal corresponding to x. After replacing A by a principal localization
we may assume there exists a quasi-finite map R[x1, . . . , xd] → A, see Algebra,
Lemma 10.125.2. Thus there exists at least one pair (U, g) consisting of an open
neighbourhood U ⊂ X of x and a locally4 quasi-finite morphism g : U → Ad

S .
Claim: Given R → A flat and of finite presentation, a prime p ⊂ A and φ :
R[x1, . . . , xd] → A quasi-finite at p we have: Spec(φ) is flat at p if and only if
Spec(A)→ Spec(R) is Cohen-Macaulay at p. Namely, by Theorem 37.16.2 flatness
may be checked on fibres. The same is true for being Cohen-Macaulay (as A
is already assumed flat over R). Thus the claim follows from Algebra, Lemma
10.130.1.
The claim shows that (1) is equivalent to (4) and combined with the fact that we
have constructed a suitable (U, g) in the second paragraph, the claim also shows
that (1) is equivalent to (2). □

Lemma 37.22.9.054T Let f : X → S be a morphism of schemes which is flat and locally
of finite presentation. For d ≥ 0 there exist opens Ud ⊂ X with the following
properties

(1) W =
⋃
d≥0 Ud is dense in every fibre of f , and

(2) Ud → S is of relative dimension d (see Morphisms, Definition 29.29.1).

Proof. This follows by combining Lemma 37.22.7 with Morphisms, Lemma 29.29.4.
□

Lemma 37.22.10.054U Let f : X → S be a morphism of schemes which is flat and
locally of finite presentation. Suppose x′ ⇝ x is a specialization of points of X

4If S is quasi-separated, then g will be quasi-finite.
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with image s′ ⇝ s in S. If x is a generic point of an irreducible component of Xs

then dimx′(Xs′) = dimx(Xs).

Proof. The point x is contained in Ud for some d, where Ud as in Lemma 37.22.9. □

Lemma 37.22.11.045V The property P(f) =“the fibres of f are locally Noetherian and
f is Cohen-Macaulay” is local in the fppf topology on the target and local in the
syntomic topology on the source.

Proof. We have P(f) = P1(f) ∧ P2(f) where P1(f) =“f is flat”, and P2(f) =“the
fibres of f are locally Noetherian and Cohen-Macaulay”. We know that P1 is local
in the fppf topology on the source and the target, see Descent, Lemmas 35.23.15
and 35.27.1. Thus we have to deal with P2.

Let f : X → Y be a morphism of schemes. Let {φi : Yi → Y }i∈I be an fppf
covering of Y . Denote fi : Xi → Yi the base change of f by φi. Let i ∈ I and let
yi ∈ Yi be a point. Set y = φi(yi). Note that

Xi,yi = Spec(κ(yi))×Spec(κ(y)) Xy.

and that κ(yi)/κ(y) is a finitely generated field extension. Hence if Xy is locally
Noetherian, then Xi,yi is locally Noetherian, see Varieties, Lemma 33.11.1. And
if in addition Xy is Cohen-Macaulay, then Xi,yi is Cohen-Macaulay, see Varieties,
Lemma 33.13.1. Thus P2 is fppf local on the target.

Let {Xi → X} be a syntomic covering of X. Let y ∈ Y . In this case {Xi,y → Xy} is
a syntomic covering of the fibre. Hence the locality of P2 for the syntomic topology
on the source follows from Descent, Lemma 35.17.2. Combining the above the
lemma follows. □

37.23. Slicing Cohen-Macaulay morphisms

056X The results in this section eventually lead to the assertion that the fppf topology
is the same as the “finitely presented, flat, quasi-finite” topology. The following
lemma is very closely related to Divisors, Lemma 31.18.9.

Lemma 37.23.1.056Y Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Let h ∈ mx ⊂ OX,x. Assume

(1) f is locally of finite presentation,
(2) f is flat at x, and
(3) the image h of h in OXs,x = OX,x/msOX,x is a nonzerodivisor.

Then there exists an affine open neighbourhood U ⊂ X of x such that h comes
from h ∈ Γ(U,OU ) and such that D = V (h) is an effective Cartier divisor in U
with x ∈ D and D → S flat and locally of finite presentation.

Proof. We are going to prove this by reducing to the Noetherian case. By openness
of flatness (see Theorem 37.15.1) we may assume, after replacing X by an open
neighbourhood of x, that X → S is flat. We may also assume that X and S
are affine. After possible shrinking X a bit we may assume that there exists an
h ∈ Γ(X,OX) which maps to our given h.

We may write S = Spec(A) and we may write A = colimiAi as a directed colimit
of finite type Z algebras. Then by Algebra, Lemma 10.168.1 or Limits, Lemmas
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32.10.1, 32.8.2, and 32.10.1 we can find a cartesian diagram

X //

f

��

X0

f0

��
S // S0

with f0 flat and of finite presentation, X0 affine, and S0 affine and Noetherian.
Let x0 ∈ X0, resp. s0 ∈ S0 be the image of x, resp. s. We may also assume
there exists an element h0 ∈ Γ(X0,OX0) which restricts to h on X. (If you used
the algebra reference above then this is clear; if you used the references to the
chapter on limits then this follows from Limits, Lemma 32.10.1 by thinking of h as
a morphism X → A1

S .) Note that OXs,x is a localization of O(X0)s0 ,x0 ⊗κ(s0) κ(s),
so that O(X0)s0 ,x0 → OXs,x is a flat local ring map, in particular faithfully flat.
Hence the image h0 ∈ O(X0)s0 ,x0 is contained in m(X0)s0 ,x0 and is a nonzerodivisor.
We claim that after replacing X0 by a principal open neighbourhood of x0 the
element h0 is a nonzerodivisor in B0 = Γ(X0,OX0) such that B0/h0B0 is flat over
A0 = Γ(S0,OS0). If so then

0→ B0
h0−→ B0 → B0/h0B0 → 0

is a short exact sequence of flat A0-modules. Hence this remains exact on tensoring
with A (by Algebra, Lemma 10.39.12) and the lemma follows.
It remains to prove the claim above. The corresponding algebra statement is the
following (we drop the subscript 0 here): Let A→ B be a flat, finite type ring map
of Noetherian rings. Let q ⊂ B be a prime lying over p ⊂ A. Assume h ∈ q maps
to a nonzerodivisor in Bq/pBq. Goal: show that after possible replacing B by Bg
for some g ∈ B, g ̸∈ q the element h becomes a nonzerodivisor and B/hB becomes
flat over A. By Algebra, Lemma 10.99.2 we see that h is a nonzerodivisor in Bq

and that Bq/hBq is flat over A. By openness of flatness, see Algebra, Theorem
10.129.4 or Theorem 37.15.1 we see that B/hB is flat over A after replacing B by
Bg for some g ∈ B, g ̸∈ q. Finally, let I = {b ∈ B | hb = 0} be the annihilator of h.
Then IBq = 0 as h is a nonzerodivisor in Bq. Also I is finitely generated as B is
Noetherian. Hence there exists a g ∈ B, g ̸∈ q such that IBg = 0. After replacing
B by Bg we see that h is a nonzerodivisor. □

Lemma 37.23.2.06LI Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Let h1, . . . , hr ∈ OX,x. Assume

(1) f is locally of finite presentation,
(2) f is flat at x, and
(3) the images of h1, . . . , hr in OXs,x = OX,x/msOX,x form a regular se-

quence.
Then there exists an affine open neighbourhood U ⊂ X of x such that h1, . . . , hr
come from h1, . . . , hr ∈ Γ(U,OU ) and such that Z = V (h1, . . . , hr)→ U is a regular
immersion with x ∈ Z and Z → S flat and locally of finite presentation. Moreover,
the base change ZS′ → US′ is a regular immersion for any scheme S′ over S.

Proof. (Our conventions on regular sequences imply that hi ∈ mx for each i.) The
case r = 1 follows from Lemma 37.23.1 combined with Divisors, Lemma 31.18.1
to see that V (h1) remains an effective Cartier divisor after base change. The case
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r > 1 follows from a straightforward induction on r (applying the result for r = 1
exactly r times; details omitted).
Another way to prove the lemma is using the material from Divisors, Section 31.22.
Namely, first by openness of flatness (see Theorem 37.15.1) we may assume, after
replacing X by an open neighbourhood of x, that X → S is flat. We may also
assume that X and S are affine. After possible shrinking X a bit we may assume
that we have h1, . . . , hr ∈ Γ(X,OX). Set Z = V (h1, . . . , hr). Note that Xs is a
Noetherian scheme (because it is an algebraic κ(s)-scheme, see Varieties, Section
33.20) and that the topology on Xs is induced from the topology on X (see Schemes,
Lemma 26.18.5). Hence after shrinking X a bit more we may assume that Zs ⊂ Xs

is a regular immersion cut out by the r elements hi|Xs , see Divisors, Lemma 31.20.8
and its proof. It is also clear that r = dimx(Xs)− dimx(Zs) because

dimx(Xs) = dim(OXs,x) + trdegκ(s)(κ(x)),
dimx(Zs) = dim(OZs,x) + trdegκ(s)(κ(x)),

dim(OXs,x) = dim(OZs,x) + r

the first two equalities by Algebra, Lemma 10.116.3 and the second by r times
applying Algebra, Lemma 10.60.13. Hence Divisors, Lemma 31.22.7 part (3) ap-
plies to show that (after Zariski shrinking X) the morphism Z → X is a regular
immersion to which Divisors, Lemma 31.22.4 applies (which gives the flatness and
the statement on base change). □

Lemma 37.23.3.056Z Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Assume

(1) f is locally of finite presentation,
(2) f is flat at x, and
(3) OXs,x has depth ≥ 1.

Then there exists an affine open neighbourhood U ⊂ X of x and an effective Cartier
divisor D ⊂ U containing x such that D → S is flat and of finite presentation.
Proof. Pick any h ∈ mx ⊂ OX,x which maps to a nonzerodivisor in OXs,x and
apply Lemma 37.23.1. □

Lemma 37.23.4.0570 [DG67, IV
Proposition 17.16.1]

Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Assume

(1) f is locally of finite presentation,
(2) f is Cohen-Macaulay at x, and
(3) x is a closed point of Xs.

Then there exists a regular immersion Z → X containing x such that
(a) Z → S is flat and locally of finite presentation,
(b) Z → S is locally quasi-finite, and
(c) Zs = {x} set theoretically.

Proof. We may and do replace S by an affine open neighbourhood of s. We will
prove the lemma for affine S by induction on d = dimx(Xs).
The case d = 0. In this case we show that we may take Z to be an open neigh-
bourhood of x. (Note that an open immersion is a regular immersion.) Namely,
if d = 0, then X → S is quasi-finite at x, see Morphisms, Lemma 29.29.5. Hence
there exists an affine open neighbourhood U ⊂ X such that U → S is quasi-finite,
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see Morphisms, Lemma 29.56.2. Thus after replacing X by U we see that the fibre
Xs is a finite discrete set. Hence after replacing X by a further affine open neigh-
bourhood of X we see that f−1({s}) = {x} (because the topology on Xs is induced
from the topology on X, see Schemes, Lemma 26.18.5). This proves the lemma in
this case.
Next, assume d > 0. Note that because x is a closed point of its fibre the extension
κ(x)/κ(s) is finite (by the Hilbert Nullstellensatz, see Morphisms, Lemma 29.20.3).
Thus we see

depth(OXs,x) = dim(OXs,x) = d > 0
the first equality as OXs,x is Cohen-Macaulay and the second by Morphisms,
Lemma 29.28.1. Thus we may apply Lemma 37.23.3 to find a diagram

D //

''

U //

  

X

��
S

with x ∈ D. Note that ODs,x = OXs,x/(h) for some nonzerodivisor h, see Divi-
sors, Lemma 31.18.1. Hence ODs,x is Cohen-Macaulay of dimension one less than
the dimension of OXs,x, see Algebra, Lemma 10.104.2 for example. Thus the mor-
phism D → S is flat, locally of finite presentation, and Cohen-Macaulay at x with
dimx(Ds) = dimx(Xs)− 1 = d− 1. By induction hypothesis we can find a regular
immersion Z → D having properties (a), (b), (c). As Z → D → U are both regular
immersions, we see that also Z → U is a regular immersion by Divisors, Lemma
31.21.7. This finishes the proof. □

Lemma 37.23.5.0571 Let f : X → S be a flat morphism of schemes which is locally of
finite presentation. Let s ∈ S be a point in the image of f . Then there exists a
commutative diagram

S′ //

g
��

X

f��
S

where g : S′ → S is flat, locally of finite presentation, locally quasi-finite, and
s ∈ g(S′).
Proof. The fibre Xs is not empty by assumption. Hence there exists a closed point
x ∈ Xs where f is Cohen-Macaulay, see Lemma 37.22.7. Apply Lemma 37.23.4 and
set S′ = S. □

The following lemma shows that sheaves for the fppf topology are the same thing
as sheaves for the “quasi-finite, flat, finite presentation” topology.
Lemma 37.23.6.0572 Let S be a scheme. Let U = {Si → S}i∈I be an fppf covering of
S, see Topologies, Definition 34.7.1. Then there exists an fppf covering V = {Tj →
S}j∈J which refines (see Sites, Definition 7.8.1) U such that each Tj → S is locally
quasi-finite.
Proof. For every s ∈ S there exists an i ∈ I such that s is in the image of Si → S.
By Lemma 37.23.5 we can find a morphism gs : Ts → S such that s ∈ gs(Ts) which
is flat, locally of finite presentation and locally quasi-finite and such that gs factors
through Si → S. Hence {Ts → S} is the desired covering of S that refines U . □
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37.24. Generic fibres

054V Some results on the relationship between generic fibres and nearby fibres.

Lemma 37.24.1.054W Let f : X → Y be a finite type morphism of schemes. Assume
Y irreducible with generic point η. If Xη = ∅ then there exists a nonempty open
V ⊂ Y such that XV = V ×Y X = ∅.

Proof. Follows immediately from the more general Morphisms, Lemma 29.8.5. □

Lemma 37.24.2.05F5 Let f : X → Y be a finite type morphism of schemes. Assume
Y irreducible with generic point η. If Xη ̸= ∅ then there exists a nonempty open
V ⊂ Y such that XV = V ×Y X → V is surjective.

Proof. This follows, upon taking affine opens, from Algebra, Lemma 10.30.2. (Of
course it also follows from generic flatness.) □

Lemma 37.24.3.054X Let f : X → Y be a finite type morphism of schemes. Assume
Y irreducible with generic point η. If Z ⊂ X is a closed subset with Zη nowhere
dense in Xη, then there exists a nonempty open V ⊂ Y such that Zy is nowhere
dense in Xy for all y ∈ V .

Proof. Let Y ′ ⊂ Y be the reduction of Y . Set X ′ = Y ′ ×Y X and Z ′ = Y ′ ×Y Z.
As Y ′ → Y is a universal homeomorphism by Morphisms, Lemma 29.45.6 we see
that it suffices to prove the lemma for Z ′ ⊂ X ′ → Y ′. Thus we may assume that
Y is integral, see Properties, Lemma 28.3.4. By Morphisms, Proposition 29.27.1
there exists a nonempty affine open V ⊂ Y such that XV → V and ZV → V are
flat and of finite presentation. We claim that V works. Pick y ∈ V . If Zy has a
nonempty interior, then Zy contains a generic point ξ of an irreducible component
of Xy. Note that η ⇝ f(ξ). Since ZV → V is flat we can choose a specialization
ξ′ ⇝ ξ, ξ′ ∈ Z with f(ξ′) = η, see Morphisms, Lemma 29.25.9. By Lemma 37.22.10
we see that

dimξ′(Zη) = dimξ(Zy) = dimξ(Xy) = dimξ′(Xη).
Hence some irreducible component of Zη passing through ξ′ has dimension dimξ′(Xη)
which contradicts the assumption that Zη is nowhere dense in Xη and we win. □

Lemma 37.24.4.0573 Let f : X → Y be a finite type morphism of schemes. Assume Y
irreducible with generic point η. Let U ⊂ X be an open subscheme such that Uη is
scheme theoretically dense in Xη. Then there exists a nonempty open V ⊂ Y such
that Uy is scheme theoretically dense in Xy for all y ∈ V .

Proof. Let Y ′ ⊂ Y be the reduction of Y . Let X ′ = Y ′ ×Y X and U ′ = Y ′ ×Y U .
As Y ′ → Y induces a bijection on points, and as U ′ → U and X ′ → X induce
isomorphisms of scheme theoretic fibres, we may replace Y by Y ′ and X by X ′.
Thus we may assume that Y is integral, see Properties, Lemma 28.3.4. We may
also replace Y by a nonempty affine open. In other words we may assume that
Y = Spec(A) where A is a domain with fraction field K.
As f is of finite type we see that X is quasi-compact. Write X = X1 ∪ . . .∪Xn for
some affine opens Xi. By Morphisms, Definition 29.7.1 we see that Ui = Xi ∩ U is
an open subscheme of Xi such that Ui,η is scheme theoretically dense in Xi,η. Thus
it suffices to prove the result for the pairs (Xi, Ui), in other words we may assume
that X is affine.
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Write X = Spec(B). Note that BK is Noetherian as it is a finite type K-algebra.
Hence Uη is quasi-compact. Thus we can find finitely many g1, . . . , gm ∈ B such
that D(gj) ⊂ U and such that Uη = D(g1)η ∪ . . . ∪ D(gm)η. The fact that Uη
is scheme theoretically dense in Xη means that BK →

⊕
j(BK)gj is injective, see

Morphisms, Example 29.7.4. By Algebra, Lemma 10.24.4 this is equivalent to the
injectivity of BK →

⊕
j=1,...,mBK , b 7→ (g1b, . . . , gmb). Let M be the cokernel of

this map over A, i.e., such that we have an exact sequence

0→ I → B
(g1,...,gm)−−−−−−→

⊕
j=1,...,m

B →M → 0

After replacing A by Ah for some nonzero h we may assume that B is a flat, finitely
presented A-algebra, and that M is flat over A, see Algebra, Lemma 10.118.3. The
flatness of B over A implies that B is torsion free as an A-module, see More on
Algebra, Lemma 15.22.9. Hence B ⊂ BK . By assumption IK = 0 which implies
that I = 0 (as I ⊂ B ⊂ BK is a subset of IK). Hence now we have a short exact
sequence

0→ B
(g1,...,gm)−−−−−−→

⊕
j=1,...,m

B →M → 0

with M flat over A. Hence for every homomorphism A→ κ where κ is a field, we
obtain a short exact sequence

0→ B ⊗A κ
(g1⊗1,...,gm⊗1)−−−−−−−−−−→

⊕
j=1,...,m

B ⊗A κ→M ⊗A κ→ 0

see Algebra, Lemma 10.39.12. Reversing the arguments above this means that⋃
D(gj ⊗ 1) is scheme theoretically dense in Spec(B ⊗A κ). As

⋃
D(gj ⊗ 1) =⋃

D(gj)κ ⊂ Uκ we obtain that Uκ is scheme theoretically dense in Xκ which is
what we wanted to prove. □

Suppose given a morphism of schemes f : X → Y and a point y ∈ Y . Recall that the
fibre Xy is homeomorphic to the subset f−1({y}) of X with induced topology, see
Schemes, Lemma 26.18.5. Suppose given a closed subset T (y) ⊂ Xy. Let T be the
closure of T (y) in X. Endow T with the induced reduced scheme structure. Then
T is a closed subscheme of X with the property that Ty = T (y) set-theoretically.
In fact T is the smallest closed subscheme of X with this property. Thus it is
“harmless” to denote a closed subset of Xy by Ty if we so desire. In the following
lemma we apply this to the generic fibre of f .

Lemma 37.24.5.054Y Let f : X → Y be a finite type morphism of schemes. Assume
Y irreducible with generic point η. Let Xη = Z1,η ∪ . . . ∪ Zn,η be a covering
of the generic fibre by closed subsets of Xη. Let Zi be the closure of Zi,η in X
(see discussion above). Then there exists a nonempty open V ⊂ Y such that
Xy = Z1,y ∪ . . . ∪ Zn,y for all y ∈ V .

Proof. If Y is Noetherian then U = X\(Z1∪. . .∪Zn) is of finite type over Y and we
can directly apply Lemma 37.24.1 to get that UV = ∅ for a nonempty open V ⊂ Y .
In general we argue as follows. As the question is topological we may replace Y by
its reduction. Thus Y is integral, see Properties, Lemma 28.3.4. After shrinking
Y we may assume that X → Y is flat, see Morphisms, Proposition 29.27.1. In
this case every point x in Xy is a specialization of a point x′ ∈ Xη by Morphisms,
Lemma 29.25.9. As the Zi are closed in X and cover the generic fibre this implies
that Xy =

⋃
Zi,y for y ∈ Y as desired. □

https://stacks.math.columbia.edu/tag/054Y


37.24. GENERIC FIBRES 3198

The following lemma says that generic fibres of morphisms whose source is reduced
are reduced.

Lemma 37.24.6.054Z Let f : X → Y be a morphism of schemes. Let η ∈ Y be a generic
point of an irreducible component of Y . Then (Xη)red = (Xred)η.

Proof. Choose an affine neighbourhood Spec(A) ⊂ Y of η. Choose an affine open
Spec(B) ⊂ X mapping into Spec(A) via the morphism f . Let p ⊂ A be the minimal
prime corresponding to η. Let Bred be the quotient of B by the nilradical

√
(0).

The algebraic content of the lemma is that C = Bred ⊗A κ(p) is reduced. Denote
I ⊂ A the nilradical so that Ared = A/I. Denote pred = p/I which is a minimal
prime of Ared with κ(p) = κ(pred). Since A → Bred and A → κ(p) both factor
through A→ Ared we have C = Bred ⊗Ared κ(pred). Now κ(pred) = (Ared)pred is a
localization by Algebra, Lemma 10.25.1. Hence C is a localization of Bred (Algebra,
Lemma 10.12.15) and hence reduced. □

Lemma 37.24.7.0550 Let f : X → Y be a morphism of schemes. Assume that Y is
irreducible and f is of finite type. There exists a diagram

X ′

f ′

��

g′
// XV

//

��

X

f

��
Y ′ g // V // Y

where
(1) V is a nonempty open of Y ,
(2) XV = V ×Y X,
(3) g : Y ′ → V is a finite universal homeomorphism,
(4) X ′ = (Y ′ ×Y X)red = (Y ′ ×V XV )red,
(5) g′ is a finite universal homeomorphism,
(6) Y ′ is an integral affine scheme,
(7) f ′ is flat and of finite presentation, and
(8) the generic fibre of f ′ is geometrically reduced.

Proof. Let V = Spec(A) be a nonempty affine open of Y . By assumption the Ja-
cobson radical of A is a prime ideal p. Let K = κ(p). Let p be the characteristic of
K if positive and 1 if the characteristic is zero. By Varieties, Lemma 33.6.11 there
exists a finite purely inseparable field extension K ′/K such that XK′ is geometri-
cally reduced over K ′. Choose elements x1, . . . , xn ∈ K ′ which generate K ′ over K
and such that some p-power of xi is in A/p. Let A′ ⊂ K ′ be the finite A-subalgebra
of K ′ generated by x1, . . . , xn. Note that A′ is a domain with fraction field K ′. By
Algebra, Lemma 10.46.7 we see that A → A′ induces a universal homeomorphism
on spectra. Set Y ′ = Spec(A′). Set X ′ = (Y ′ ×Y X)red. The generic fibre of
X ′ → Y ′ is (XK)red by Lemma 37.24.6 which is geometrically reduced by construc-
tion. Note that X ′ → XV is a finite universal homeomorphism as the composition
of the reduction morphism X ′ → Y ′ ×Y X (see Morphisms, Lemma 29.45.6) and
the base change of g. At this point all of the properties of the lemma hold except
for possibly (7). This can be achieved by shrinking Y ′ and hence V , see Morphisms,
Proposition 29.27.1. □
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Lemma 37.24.8.0551 Let f : X → Y be a morphism of schemes. Assume that Y is
irreducible and f is of finite type. There exists a diagram

X ′

f ′

��

g′
// XV

//

��

X

f

��
Y ′ g // V // Y

where
(1) V is a nonempty open of Y ,
(2) XV = V ×Y X,
(3) g : Y ′ → V is surjective finite étale,
(4) X ′ = Y ′ ×Y X = Y ′ ×V XV ,
(5) g′ is surjective finite étale,
(6) Y ′ is an irreducible affine scheme, and
(7) all irreducible components of the generic fibre of f ′ are geometrically ir-

reducible.

Proof. Let V = Spec(A) be a nonempty affine open of Y . By assumption the
Jacobson radical of A is a prime ideal p. Let K = κ(p). By Varieties, Lemma
33.8.15 there exists a finite separable field extension K ′/K such that all irreducible
components of XK′ are geometrically irreducible over K ′. Choose an element α ∈
K ′ which generates K ′ over K, see Fields, Lemma 9.19.1. Let P (T ) ∈ K[T ] be the
minimal polynomial for α over K. After replacing α by fα for some f ∈ A, f ̸∈ p
we may assume that there exists a monic polynomial T d+a1T

d−1 + . . .+ad ∈ A[T ]
which maps to P (T ) ∈ K[T ] under the map A[T ] → K[T ]. Set A′ = A[T ]/(P ).
Then A→ A′ is a finite free ring map such that there exists a unique prime q lying
over p, such that K = κ(p) ⊂ κ(q) = K ′ is finite separable, and such that pA′

q is
the maximal ideal of A′

q. Hence g : Y ′ = Spec(A′) → V = Spec(A) is étale at q,
see Algebra, Lemma 10.143.7. This means that there exists an open W ⊂ Spec(A′)
such that g|W : W → Spec(A) is étale. Since g is finite and since q is the only point
lying over p we see that Z = g(Y ′ \W ) is a closed subset of V not containing p.
Hence after replacing V by a principal affine open of V which does not meet Z we
obtain that g is finite étale. □

37.25. Relative assassins

05KM
Lemma 37.25.1.05F1 Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. Let ξ ∈ AssX/S(F) and set Z = {ξ} ⊂ X. If f is locally
of finite type and F is a finite type OX -module, then there exists a nonempty
open V ⊂ Z such that for every s ∈ f(V ) the generic points of Vs are elements of
AssX/S(F).

Proof. We may replace S by an affine open neighbourhood of f(ξ) and X by an
affine open neighbourhood of ξ. Hence we may assume S = Spec(A), X = Spec(B)
and that f is given by the finite type ring map A → B, see Morphisms, Lemma
29.15.2. Moreover, we may write F = M̃ for some finite B-module M , see Prop-
erties, Lemma 28.16.1. Let q ⊂ B be the prime corresponding to ξ and let
p ⊂ A be the corresponding prime of A. By assumption q ∈ AssB(M ⊗A κ(p)),
see Algebra, Remark 10.65.6 and Divisors, Lemma 31.2.2. With this notation
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Z = V (q) ⊂ Spec(B). In particular f(Z) ⊂ V (p). Hence clearly it suffices to prove
the lemma after replacing A, B, and M by A/pA, B/pB, and M/pM . In other
words we may assume that A is a domain with fraction field K and q ⊂ B is an
associated prime of M ⊗A K.
At this point we can use generic flatness. Namely, by Algebra, Lemma 10.118.3
there exists a nonzero g ∈ A such that Mg is flat as an Ag-module. After replacing
A by Ag we may assume that M is flat as an A-module.
In this case, by Algebra, Lemma 10.65.4 we see that q is also an associated prime of
M . Hence we obtain an injective B-module map B/q→M . Let Q be the cokernel
so that we obtain a short exact sequence

0→ B/q→M → Q→ 0
of finite B-modules. After applying generic flatness Algebra, Lemma 10.118.3 once
more, this time to the B-module Q, we may assume that Q is a flat A-module. In
particular we may assume the short exact sequence above is universally injective,
see Algebra, Lemma 10.39.12. In this situation (B/q) ⊗A κ(p′) ⊂ M ⊗A κ(p′)
for any prime p′ of A. The lemma follows as a minimal prime q′ of the support
of (B/q) ⊗A κ(p′) is an associated prime of (B/q) ⊗A κ(p′) by Divisors, Lemma
31.2.9. □

Lemma 37.25.2.05KN Let f : X → Y be a morphism of schemes. Let F be a quasi-
coherent OX -module. Let U ⊂ X be an open subscheme. Assume

(1) f is of finite type,
(2) F is of finite type,
(3) Y is irreducible with generic point η, and
(4) AssXη (Fη) is not contained in Uη.

Then there exists a nonempty open subscheme V ⊂ Y such that for all y ∈ V the
set AssXy (Fy) is not contained in Uy.

Proof. Let Z ⊂ X be the scheme theoretic support of F , see Morphisms, Defini-
tion 29.5.5. Then Zη is the scheme theoretic support of Fη (Morphisms, Lemma
29.25.14). Hence the generic points of irreducible components of Zη are contained
in AssXη (Fη) by Divisors, Lemma 31.2.9. Hence we see that Zη ∩ Uη = ∅. Thus
T = Z \ U is a closed subset of Z with Tη = ∅. If we endow T with the induced
reduced scheme structure then T → Y is a morphism of finite type. By Lemma
37.24.1 there is a nonempty open V ⊂ Y with TV = ∅. Then V works. □

Lemma 37.25.3.05KP Let f : X → Y be a morphism of schemes. Let F be a quasi-
coherent OX -module. Let U ⊂ X be an open subscheme. Assume

(1) f is of finite type,
(2) F is of finite type,
(3) Y is irreducible with generic point η, and
(4) AssXη (Fη) ⊂ Uη.

Then there exists a nonempty open subscheme V ⊂ Y such that for all y ∈ V we
have AssXy (Fy) ⊂ Uy.

Proof. (This proof is the same as the proof of Lemma 37.24.4. We urge the reader
to read that proof first.) Since the statement is about fibres it is clear that we
may replace Y by its reduction. Hence we may assume that Y is integral, see
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Properties, Lemma 28.3.4. We may also assume that Y = Spec(A) is affine. Then
A is a domain with fraction field K.
As f is of finite type we see that X is quasi-compact. Write X = X1 ∪ . . . ∪ Xn

for some affine opens Xi and set Fi = F|Xi . By assumption the generic fibre of
Ui = Xi ∩ U contains AssXi,η (Fi,η). Thus it suffices to prove the result for the
triples (Xi,Fi, Ui), in other words we may assume that X is affine.

Write X = Spec(B). Let N be a finite B-module such that F = Ñ . Note that
BK is Noetherian as it is a finite type K-algebra. Hence Uη is quasi-compact.
Thus we can find finitely many g1, . . . , gm ∈ B such that D(gj) ⊂ U and such that
Uη = D(g1)η ∪ . . .∪D(gm)η. Since AssXη (Fη) ⊂ Uη we see that NK →

⊕
j(NK)gj

is injective. By Algebra, Lemma 10.24.4 this is equivalent to the injectivity of
NK →

⊕
j=1,...,mNK , n 7→ (g1n, . . . , gmn). Let I and M be the kernel and cokernel

of this map over A, i.e., such that we have an exact sequence

0→ I → N
(g1,...,gm)−−−−−−→

⊕
j=1,...,m

N →M → 0

After replacing A by Ah for some nonzero h we may assume that B is a flat, finitely
presented A-algebra and that both M and N are flat over A, see Algebra, Lemma
10.118.3. The flatness of N over A implies that N is torsion free as an A-module,
see More on Algebra, Lemma 15.22.9. Hence N ⊂ NK . By construction IK = 0
which implies that I = 0 (as I ⊂ N ⊂ NK is a subset of IK). Hence now we have
a short exact sequence

0→ N
(g1,...,gm)−−−−−−→

⊕
j=1,...,m

N →M → 0

with M flat over A. Hence for every homomorphism A→ κ where κ is a field, we
obtain a short exact sequence

0→ N ⊗A κ
(g1⊗1,...,gm⊗1)−−−−−−−−−−→

⊕
j=1,...,m

N ⊗A κ→M ⊗A κ→ 0

see Algebra, Lemma 10.39.12. Reversing the arguments above this means that⋃
D(gj ⊗ 1) contains AssB⊗Aκ(N ⊗A κ). As

⋃
D(gj ⊗ 1) =

⋃
D(gj)κ ⊂ Uκ we

obtain that Uκ contains AssX⊗κ(F ⊗ κ) which is what we wanted to prove. □

Lemma 37.25.4.05KQ Let f : X → S be a morphism which is locally of finite type.
Let F be a quasi-coherent OX -module of finite type. Let U ⊂ X be an open
subscheme. Let g : S′ → S be a morphism of schemes, let f ′ : X ′ = XS′ → S′ be
the base change of f , let g′ : X ′ → X be the projection, set F ′ = (g′)∗F , and set
U ′ = (g′)−1(U). Finally, let s′ ∈ S′ with image s = g(s′). In this case

AssXs(Fs) ⊂ Us ⇔ AssX′
s′

(F ′
s′) ⊂ U ′

s′ .

Proof. This follows immediately from Divisors, Lemma 31.7.3. See also Divisors,
Remark 31.7.4. □

Lemma 37.25.5.05KR Let f : X → Y be a morphism of finite presentation. Let F be a
quasi-coherent OX -module of finite presentation. Let U ⊂ X be an open subscheme
such that U → Y is quasi-compact. Then the set

E = {y ∈ Y | AssXy (Fy) ⊂ Uy}
is locally constructible in Y .
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Proof. Let y ∈ Y . We have to show that there exists an open neighbourhood V of
y in Y such that E∩V is constructible in V . Thus we may assume that Y is affine.
Write Y = Spec(A) and A = colimAi as a directed limit of finite type Z-algebras.
By Limits, Lemma 32.10.1 we can find an i and a morphism fi : Xi → Spec(Ai) of
finite presentation whose base change to Y recovers f . After possibly increasing i
we may assume there exists a quasi-coherent OXi-module Fi of finite presentation
whose pullback to X is isomorphic to F , see Limits, Lemma 32.10.2. After possibly
increasing i one more time we may assume there exists an open subscheme Ui ⊂ Xi

whose inverse image in X is U , see Limits, Lemma 32.4.11. By Lemma 37.25.4
it suffices to prove the lemma for fi. Thus we reduce to the case where Y is the
spectrum of a Noetherian ring.

We will use the criterion of Topology, Lemma 5.16.3 to prove that E is constructible
in case Y is a Noetherian scheme. To see this let Z ⊂ Y be an irreducible closed
subscheme. We have to show that E ∩ Z either contains a nonempty open subset
or is not dense in Z. This follows from Lemmas 37.25.2 and 37.25.3 applied to the
base change (X,F , U)×Y Z over Z. □

37.26. Reduced fibres

0574
Lemma 37.26.1.0575 Let f : X → Y be a morphism of schemes. Assume Y irreducible
with generic point η and f of finite type. If Xη is nonreduced, then there exists a
nonempty open V ⊂ Y such that for all y ∈ V the fibre Xy is nonreduced.

Proof. Let Y ′ ⊂ Y be the reduction of Y . Let X ′ → Y ′ be the base change of
f . Note that Y ′ → Y induces a bijection on points and that X ′ → X identifies
fibres. Hence we may assume that Y ′ is reduced, i.e., integral, see Properties,
Lemma 28.3.4. We may also replace Y by an affine open. Hence we may assume
that Y = Spec(A) with A a domain. Denote K the fraction field of A. Pick
an affine open Spec(B) = U ⊂ X and a section hη ∈ Γ(Uη,OUη ) = BK which
is nonzero and nilpotent. After shrinking Y we may assume that h comes from
h ∈ Γ(U,OU ) = B. After shrinking Y a bit more we may assume that h is nilpotent.
Let I = {b ∈ B | hb = 0} be the annihilator of h. Then C = B/I is a finite type
A-algebra whose generic fiber (B/I)K is nonzero (as hη ̸= 0). We apply generic
flatness to A → C and A → B/hB, see Algebra, Lemma 10.118.3, and we obtain
a g ∈ A, g ̸= 0 such that Cg is free as an Ag-module and (B/hB)g is flat as an
Ag-module. Replace Y by D(g) ⊂ Y . Now we have the short exact sequence

0→ C → B → B/hB → 0.

with B/hB flat over A and with C nonzero free as an A-module. It follows that for
any homomorphism A→ κ to a field the ring C ⊗A κ is nonzero and the sequence

0→ C ⊗A κ→ B ⊗A κ→ B/hB ⊗A κ→ 0

is exact, see Algebra, Lemma 10.39.12. Note that B/hB⊗Aκ = (B⊗Aκ)/h(B⊗Aκ)
by right exactness of tensor product. Thus we conclude that multiplication by h is
not zero on B ⊗A κ. This clearly means that for any point y ∈ Y the element h
restricts to a nonzero element of Uy, whence Xy is nonreduced. □
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Lemma 37.26.2.0576 Let f : X → Y be a morphism of schemes. Let g : Y ′ → Y be
any morphism, and denote f ′ : X ′ → Y ′ the base change of f . Then

{y′ ∈ Y ′ | X ′
y′ is geometrically reduced}

= g−1({y ∈ Y | Xy is geometrically reduced}).

Proof. This comes down to the statement that for y′ ∈ Y ′ with image y ∈ Y
the fibre X ′

y′ = Xy ×y y′ is geometrically reduced over κ(y′) if and only if Xy is
geometrically reduced over κ(y). This follows from Varieties, Lemma 33.6.6. □

Lemma 37.26.3.0577 Let f : X → Y be a morphism of schemes. Assume Y irreducible
with generic point η and f of finite type. If Xη is not geometrically reduced, then
there exists a nonempty open V ⊂ Y such that for all y ∈ V the fibre Xy is not
geometrically reduced.

Proof. Apply Lemma 37.24.7 to get

X ′

f ′

��

g′
// XV

//

��

X

f

��
Y ′ g // V // Y

with all the properties mentioned in that lemma. Let η′ be the generic point of
Y ′. Consider the morphism X ′ → XY ′ (which is the reduction morphism) and
the resulting morphism of generic fibres X ′

η′ → Xη′ . Since X ′
η′ is geometrically

reduced, and Xη is not this cannot be an isomorphism, see Varieties, Lemma 33.6.6.
Hence Xη′ is nonreduced. Hence by Lemma 37.26.1 the fibres of XY ′ → Y ′ are
nonreduced at all points y′ ∈ V ′ of a nonempty open V ′ ⊂ Y ′. Since g : Y ′ → V
is a homeomorphism Lemma 37.26.2 proves that g(V ′) is the open we are looking
for. □

Lemma 37.26.4.0578 Let f : X → Y be a morphism of schemes. Assume
(1) Y is irreducible with generic point η,
(2) Xη is geometrically reduced, and
(3) f is of finite type.

Then there exists a nonempty open subscheme V ⊂ Y such that XV → V has
geometrically reduced fibres.

Proof. Let Y ′ ⊂ Y be the reduction of Y . Let X ′ → Y ′ be the base change of f .
Note that Y ′ → Y induces a bijection on points and that X ′ → X identifies fibres.
Hence we may assume that Y ′ is reduced, i.e., integral, see Properties, Lemma
28.3.4. We may also replace Y by an affine open. Hence we may assume that
Y = Spec(A) with A a domain. Denote K the fraction field of A. After shrinking
Y a bit we may also assume that X → Y is flat and of finite presentation, see
Morphisms, Proposition 29.27.1.
As Xη is geometrically reduced there exists an open dense subset V ⊂ Xη such
that V → Spec(K) is smooth, see Varieties, Lemma 33.25.7. Let U ⊂ X be the set
of points where f is smooth. By Morphisms, Lemma 29.34.15 we see that V ⊂ Uη.
Thus the generic fibre of U is dense in the generic fibre of X. Since Xη is reduced,
it follows that Uη is scheme theoretically dense in Xη, see Morphisms, Lemma
29.7.8. We note that as U → Y is smooth all the fibres of U → Y are geometrically
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reduced. Thus it suffices to show that, after shrinking Y , for all y ∈ Y the scheme
Uy is scheme theoretically dense in Xy, see Morphisms, Lemma 29.7.9. This follows
from Lemma 37.24.4. □

Lemma 37.26.5.0579 Let f : X → Y be a morphism which is quasi-compact and locally
of finite presentation. Then the set

E = {y ∈ Y | Xy is geometrically reduced}
is locally constructible in Y .

Proof. Let y ∈ Y . We have to show that there exists an open neighbourhood V of
y in Y such that E∩V is constructible in V . Thus we may assume that Y is affine.
Then X is quasi-compact. Choose a finite affine open covering X = U1 ∪ . . . ∪ Un.
Then the fibres of Ui → Y at y form an affine open covering of the fibre of X → Y
at y. Hence we may assume X is affine as well. Write Y = Spec(A). Write
A = colimAi as a directed limit of finite type Z-algebras. By Limits, Lemma
32.10.1 we can find an i and a morphism fi : Xi → Spec(Ai) of finite presentation
whose base change to Y recovers f . By Lemma 37.26.2 it suffices to prove the
lemma for fi. Thus we reduce to the case where Y is the spectrum of a Noetherian
ring.
We will use the criterion of Topology, Lemma 5.16.3 to prove that E is constructible
in case Y is a Noetherian scheme. To see this let Z ⊂ Y be an irreducible closed
subscheme. We have to show that E ∩ Z either contains a nonempty open subset
or is not dense in Z. If Xξ is geometrically reduced, then Lemma 37.26.4 (applied
to the morphism XZ → Z) implies that all fibres Xy are geometrically reduced for
a nonempty open V ⊂ Z. If Xξ is not geometrically reduced, then Lemma 37.26.3
(applied to the morphism XZ → Z) implies that all fibres Xy are geometrically
reduced for a nonempty open V ⊂ Z. Thus we win. □

Lemma 37.26.6.0C0D Let X → Spec(R) be a proper flat morphism where R is a discrete
valuation ring. If the special fibre is reduced, then both X and the generic fibre Xη

are reduced.

Proof. Assume the special fibre Xs is reduced. Let x ∈ X be any point, and let
us show that OX,x is reduced; this will prove that X and Xη are reduced. Let
x ⇝ x′ be a specialization with x′ in the special fibre; such a specialization exists
as a proper morphism is closed. Consider the local ring A = OX,x′ . Then OX,x
is a localization of A, so it suffices to show that A is reduced. Let π ∈ R be a
uniformizer. If a ∈ A then there exists an n ≥ 0 and an element a′ ∈ A such that
a = πna′ and a′ ̸∈ πA. This follows from Krull intersection theorem (Algebra,
Lemma 10.51.4). If a is nilpotent, so is a′, because π is a nonzerodivisor by flatness
of A over R. But a′ maps to a nonzero element of the reduced ring A/πA = OXs,x′ .
This is a contradiction unless A is reduced, which is what we wanted to show. □

Lemma 37.26.7.0C0E Let f : X → Y be a flat proper morphism of finite presentation.
Then the set {y ∈ Y | Xy is geometrically reduced} is open in Y .

Proof. We may assume Y is affine. Then Y is a cofiltered limit of affine schemes
of finite type over Z. Hence we can assume X → Y is the base change of X0 → Y0
where Y0 is the spectrum of a finite type Z-algebra and X0 → Y0 is flat and proper.
See Limits, Lemma 32.10.1, 32.8.7, and 32.13.1. Since the formation of the set
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of points where the fibres are geometrically reduced commutes with base change
(Lemma 37.26.2), we may assume the base is Noetherian.

Assume Y is Noetherian. The set is constructible by Lemma 37.26.5. Hence it
suffices to show the set is stable under generalization (Topology, Lemma 5.19.10).
By Properties, Lemma 28.5.10 we reduce to the case where Y = Spec(R), R is a
discrete valuation ring, and the closed fibre Xy is geometrically reduced. To show:
the generic fibre Xη is geometrically reduced.

If not then there exists a finite extension L of the fraction field of R such that XL

is not reduced, see Varieties, Lemma 33.6.4. There exists a discrete valuation ring
R′ ⊂ L with fraction field L dominating R, see Algebra, Lemma 10.120.18. After
replacing R by R′ we reduce to Lemma 37.26.6. □

37.27. Irreducible components of fibres

0553
Lemma 37.27.1.0554 Let f : X → Y be a morphism of schemes. Assume Y irreducible
with generic point η and f of finite type. If Xη has n irreducible components, then
there exists a nonempty open V ⊂ Y such that for all y ∈ V the fibre Xy has at
least n irreducible components.

Proof. As the question is purely topological we may replace X and Y by their
reductions. In particular this implies that Y is integral, see Properties, Lemma
28.3.4. Let Xη = X1,η ∪ . . . ∪ Xn,η be the decomposition of Xη into irreducible
components. Let Xi ⊂ X be the reduced closed subscheme whose generic fibre
is Xi,η. Note that Zi,j = Xi ∩ Xj is a closed subset of Xi whose generic fibre
Zi,j,η is nowhere dense in Xi,η. Hence after shrinking Y we may assume that Zi,j,y
is nowhere dense in Xi,y for every y ∈ Y , see Lemma 37.24.3. After shrinking
Y some more we may assume that Xy =

⋃
Xi,y for y ∈ Y , see Lemma 37.24.5.

Moreover, after shrinking Y we may assume that each Xi → Y is flat and of finite
presentation, see Morphisms, Proposition 29.27.1. The morphisms Xi → Y are
open, see Morphisms, Lemma 29.25.10. Thus there exists an open neighbourhood
V of η which is contained in f(Xi) for each i. For each y ∈ V the schemes Xi,y

are nonempty closed subsets of Xy, we have Xy =
⋃
Xi,y and the intersections

Zi,j,y = Xi,y ∩Xj,y are not dense in Xi,y. Clearly this implies that Xy has at least
n irreducible components. □

Lemma 37.27.2.0555 Let f : X → Y be a morphism of schemes. Let g : Y ′ → Y be
any morphism, and denote f ′ : X ′ → Y ′ the base change of f . Then

{y′ ∈ Y ′ | X ′
y′ is geometrically irreducible}

= g−1({y ∈ Y | Xy is geometrically irreducible}).

Proof. This comes down to the statement that for y′ ∈ Y ′ with image y ∈ Y the
fibre X ′

y′ = Xy ×y y′ is geometrically irreducible over κ(y′) if and only if Xy is
geometrically irreducible over κ(y). This follows from Varieties, Lemma 33.8.2. □

Lemma 37.27.3.0556 Let f : X → Y be a morphism of schemes. Let

nX/Y : Y → {0, 1, 2, 3, . . . ,∞}
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be the function which associates to y ∈ Y the number of irreducible components of
(Xy)K where K is a separably closed extension of κ(y). This is well defined and if
g : Y ′ → Y is a morphism then

nX′/Y ′ = nX/Y ◦ g

where X ′ → Y ′ is the base change of f .

Proof. Suppose that y′ ∈ Y ′ has image y ∈ Y . Suppose K ⊃ κ(y) and K ′ ⊃ κ(y′)
are separably closed extensions. Then we may choose a commutative diagram

K // K ′′ K ′oo

κ(y)

OO

// κ(y′)

OO

of fields. The result follows as the morphisms of schemes

(X ′
y′)K′ (X ′

y′)K′′ = (Xy)K′′oo // (Xy)K

induce bijections between irreducible components, see Varieties, Lemma 33.8.7. □

Lemma 37.27.4.0557 Let A be a domain with fraction field K. Let P ∈ A[x1, . . . , xn].
Denote K the algebraic closure of K. Assume P is irreducible in K[x1, . . . , xn].
Then there exists a f ∈ A such that Pφ ∈ κ[x1, . . . , xn] is irreducible for all homo-
morphisms φ : Af → κ into fields.

Proof. There exists an automorphism Ψ of A[x1, . . . , xn] over A such that Ψ(P ) =
axdn+ lower order terms in xn with a ̸= 0, see Algebra, Lemma 10.115.2. We may
replace P by Ψ(P ) and we may replace A by Aa. Thus we may assume that P is
monic in xn of degree d > 0. For i = 1, . . . , n − 1 let di be the degree of P in xi.
Note that this implies that Pφ is monic of degree d in xn and has degree ≤ di in
xi for every homomorphism φ : A→ κ where κ is a field. Thus if Pφ is reducible,
then we can write

Pφ = Q1Q2

with Q1, Q2 monic of degree e1, e2 ≥ 0 in xn with e1 + e2 = d and having degree
≤ di in xi for i = 1, . . . , n− 1. In other words we can write

(37.27.4.1)0558 Qj = xejn +
∑

0≤l<ej

(∑
L∈L

aj,l,Lx
L
)
xln

where the sum is over the set L of multi-indices L of the form L = (l1, . . . , ln−1)
with 0 ≤ li ≤ di. For any e1, e2 ≥ 0 with e1 + e2 = d we consider the A-algebra

Be1,e2 = A[{a1,l,L}0≤l<e1,L∈L, {a2,l,L}0≤l<e2,L∈L]/(relations)
where the (relations) is the ideal generated by the coefficients of the polynomial

P −Q1Q2 ∈ A[{a1,l,L}0≤l<e1,L∈L, {a2,l,L}0≤l<e2,L∈L][x1, . . . , xn]
with Q1 and Q2 defined as in (37.27.4.1). OK, and the assumption that P is
irreducible over K implies that there does not exist any A-algebra homomorphism
Be1,e2 → K. By the Hilbert Nullstellensatz, see Algebra, Theorem 10.34.1 this
means that Be1,e2⊗AK = 0. As Be1,e2 is a finitely generated A-algebra this signifies
that we can find an fe1,e2 ∈ A such that (Be1,e2)fe1,e2

= 0. By construction this
means that if φ : Afe1,e2

→ κ is a homomorphism to a field, then Pφ does not have
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a factorization Pφ = Q1Q2 with Q1 of degree e1 in xn and Q2 of degree e2 in xn.
Thus taking f =

∏
e1,e2≥0,e1+e2=d fe1,e2 we win. □

Lemma 37.27.5.0559 Let f : X → Y be a morphism of schemes. Assume
(1) Y is irreducible with generic point η,
(2) Xη is geometrically irreducible, and
(3) f is of finite type.

Then there exists a nonempty open subscheme V ⊂ Y such that XV → V has
geometrically irreducible fibres.

First proof of Lemma 37.27.5. We give two proofs of the lemma. These are essen-
tially equivalent; the second is more self contained but a bit longer. Choose a
diagram

X ′

f ′

��

g′
// XV

//

��

X

f

��
Y ′ g // V // Y

as in Lemma 37.24.7. Note that the generic fibre of f ′ is the reduction of the generic
fibre of f (see Lemma 37.24.6) and hence is geometrically irreducible. Suppose that
the lemma holds for the morphism f ′. Then after shrinking V all the fibres of f ′ are
geometrically irreducible. As X ′ = (Y ′ ×V XV )red this implies that all the fibres
of Y ′ ×V XV are geometrically irreducible. Hence by Lemma 37.27.2 all the fibres
of XV → V are geometrically irreducible and we win. In this way we see that we
may assume that the generic fibre is geometrically reduced as well as geometrically
irreducible and we may assume Y = Spec(A) with A a domain.

Let x ∈ Xη be the generic point. As Xη is geometrically irreducible and reduced
we see that L = κ(x) is a finitely generated extension of K = κ(η) which is geo-
metrically reduced and geometrically irreducible, see Varieties, Lemmas 33.6.2 and
33.8.6. In particular the field extension L/K is separable, see Algebra, Lemma
10.44.1. Hence we can find x1, . . . , xr+1 ∈ L which generate L over K and such
that x1, . . . , xr is a transcendence basis for L over K, see Algebra, Lemma 10.42.3.
Let P ∈ K(x1, . . . , xr)[T ] be the minimal polynomial for xr+1. Clearing denomi-
nators we may assume that P has coefficients in A[x1, . . . , xr]. Note that as L is
geometrically reduced and geometrically irreducible over K, the polynomial P is
irreducible in K[x1, . . . , xr, T ] where K is the algebraic closure of K. Denote

B′ = A[x1, . . . , xr+1]/(P (xr+1))

and set X ′ = Spec(B′). By construction the fraction field of B′ is isomorphic to
L = κ(x) as K-extensions. Hence there exists an open U ⊂ X, and open U ′ ⊂ X ′

and a Y -isomorphism U → U ′, see Morphisms, Lemma 29.50.7. Here is a diagram:

X

��

Uoo

��

U ′ //

��

X ′

~~

Spec(B′)

Y Y

Note that Uη ⊂ Xη and U ′
η ⊂ X ′

η are dense opens. Thus after shrinking Y by
applying Lemma 37.24.3 we obtain that Uy is dense in Xy and U ′

y is dense in X ′
y

https://stacks.math.columbia.edu/tag/0559
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for all y ∈ Y . Thus it suffices to prove the lemma for X ′ → Y which is the content
of Lemma 37.27.4. □

Second proof of Lemma 37.27.5. Let Y ′ ⊂ Y be the reduction of Y . Let X ′ → X
be the reduction of X. Note that X ′ → X → Y factors through Y ′, see Schemes,
Lemma 26.12.7. As Y ′ → Y and X ′ → X are universal homeomorphisms by
Morphisms, Lemma 29.45.6 we see that it suffices to prove the lemma for X ′ → Y ′.
Thus we may assume that X and Y are reduced. In particular Y is integral, see
Properties, Lemma 28.3.4. Thus by Morphisms, Proposition 29.27.1 there exists a
nonempty affine open V ⊂ Y such that XV → V is flat and of finite presentation.
After replacing Y by V we may assume, in addition to (1), (2), (3) that Y is
integral affine, X is reduced, and f is flat and of finite presentation. In particular
f is universally open, see Morphisms, Lemma 29.25.10.
Pick a nonempty affine open U ⊂ X. Then U → Y is flat and of finite presentation
with geometrically irreducible generic fibre. The complement Xη \ Uη is nowhere
dense. Thus after shrinking Y we may assume Uy ⊂ Xy is open dense for all y ∈ Y ,
see Lemma 37.24.3. Thus we may replace X by U and we reduce to the case where
Y is integral affine and X is reduced affine, flat and of finite presentation over Y
with geometrically irreducible generic fibre Xη.
Write X = Spec(B) and Y = Spec(A). Then A is a domain, B is reduced, A→ B
is flat of finite presentation, and BK is geometrically irreducible over the fraction
field K of A. In particular we see that BK is a domain. Let L be the fraction field
of BK . Note that L is a finitely generated field extension of K as B is an A-algebra
of finite presentation. Let K ′/K be a finite purely inseparable extension such
that (L ⊗K K ′)red is a separably generated field extension, see Algebra, Lemma
10.45.3. Choose x1, . . . , xn ∈ K ′ which generate the field extension K ′ over K,
and such that xqii ∈ A for some prime power qi (proof existence xi omitted). Let
A′ be the A-subalgebra of K ′ generated by x1, . . . , xn. Then A′ is a finite A-
subalgebra A′ ⊂ K ′ whose fraction field is K ′. Note that Spec(A′)→ Spec(A) is a
universal homeomorphism, see Algebra, Lemma 10.46.7. Hence it suffices to prove
the result after base changing to Spec(A′). We are going to replace A by A′ and
B by (B⊗A A′)red to arrive at the situation where L is a separably generated field
extension of K. Of course it may happen that (B ⊗A A′)red is no longer flat, or of
finite presentation over A′, but this can be remedied by replacing A′ by A′

f for a
suitable f ∈ A′, see Algebra, Lemma 10.118.3.
At this point we know that A is a domain, B is reduced, A→ B is flat and of finite
presentation, BK is a domain whose fraction field L is a separably generated field
extension of the fraction field K of A. By Algebra, Lemma 10.42.3 we may write
L = K(x1, . . . , xr+1) where x1, . . . , xr are algebraically independent over K, and
xr+1 is separable over K(x1, . . . , xr). After clearing denominators we may assume
that the minimal polynomial P ∈ K(x1, . . . , xr)[T ] of xr+1 over K(x1, . . . , xr)
has coefficients in A[x1, . . . , xr]. Note that since L/K is separable and since L is
geometrically irreducible over K, the polynomial P is irreducible over the algebraic
closure K of K. Denote

B′ = A[x1, . . . , xr+1]/(P (xr+1)).
By construction the fraction fields of B and B′ are isomorphic as K-extensions.
Hence there exists an isomorphism of A-algebras Bh ∼= B′

h′ for suitable h ∈ B and
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h′ ∈ B′, see Morphisms, Lemma 29.50.7. In other words X and X ′ = Spec(B′)
have a common affine open U . Here is a diagram:

X = Spec(B)

((

Uoo //

��

Spec(B′) = X ′

vv
Y = Spec(A)

After shrinking Y once more (by applying Lemma 37.24.3 to Z = X \ U in X and
Z ′ = X ′ \ U in X ′) we see that Uy is dense in Xy and Uy is dense in X ′

y for all
y ∈ Y . Thus it suffices to prove the lemma for X ′ → Y which is the content of
Lemma 37.27.4. □

Lemma 37.27.6.055A Let f : X → Y be a morphism of schemes. Let nX/Y be the
function on Y counting the numbers of geometrically irreducible components of
fibres of f introduced in Lemma 37.27.3. Assume f of finite type. Let y ∈ Y be a
point. Then there exists a nonempty open V ⊂ {y} such that nX/Y |V is constant.

Proof. Let Z be the reduced induced scheme structure on {y}. Let fZ : XZ → Z be
the base change of f . Clearly it suffices to prove the lemma for fZ and the generic
point of Z. Hence we may assume that Y is an integral scheme, see Properties,
Lemma 28.3.4. Our goal in this case is to produce a nonempty open V ⊂ Y such
that nX/Y |V is constant.

We apply Lemma 37.24.8 to f : X → Y and we get g : Y ′ → V ⊂ Y . As
g : Y ′ → V is surjective finite étale, in particular open (see Morphisms, Lemma
29.36.13), it suffices to prove that there exists an open V ′ ⊂ Y ′ such that nX′/Y ′ |V ′

is constant, see Lemma 37.27.3. Thus we see that we may assume that all irreducible
components of the generic fibre Xη are geometrically irreducible over κ(η).

At this point suppose that Xη = X1,η
⋃
. . .
⋃
Xn,η is the decomposition of the

generic fibre into (geometrically) irreducible components. In particular nX/Y (η) =
n. Let Xi be the closure of Xi,η in X. After shrinking Y we may assume that
X =

⋃
Xi, see Lemma 37.24.5. After shrinking Y some more we see that each fibre

of f has at least n irreducible components, see Lemma 37.27.1. Hence nX/Y (y) ≥ n
for all y ∈ Y . After shrinking Y some more we obtain that Xi,y is geometrically
irreducible for each i and all y ∈ Y , see Lemma 37.27.5. Since Xy =

⋃
Xi,y this

shows that nX/Y (y) ≤ n and finishes the proof. □

Lemma 37.27.7.055B Let f : X → Y be a morphism of schemes. Let nX/Y be the
function on Y counting the numbers of geometrically irreducible components of
fibres of f introduced in Lemma 37.27.3. Assume f of finite presentation. Then
the level sets

En = {y ∈ Y | nX/Y (y) = n}
of nX/Y are locally constructible in Y .

Proof. Fix n. Let y ∈ Y . We have to show that there exists an open neighbourhood
V of y in Y such that En ∩ V is constructible in V . Thus we may assume that
Y is affine. Write Y = Spec(A) and A = colimAi as a directed limit of finite
type Z-algebras. By Limits, Lemma 32.10.1 we can find an i and a morphism
fi : Xi → Spec(Ai) of finite presentation whose base change to Y recovers f . By

https://stacks.math.columbia.edu/tag/055A
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Lemma 37.27.3 it suffices to prove the lemma for fi. Thus we reduce to the case
where Y is the spectrum of a Noetherian ring.
We will use the criterion of Topology, Lemma 5.16.3 to prove that En is con-
structible in case Y is a Noetherian scheme. To see this let Z ⊂ Y be an irreducible
closed subscheme. We have to show that En ∩ Z either contains a nonempty open
subset or is not dense in Z. Let ξ ∈ Z be the generic point. Then Lemma 37.27.6
shows that nX/Y is constant in a neighbourhood of ξ in Z. This clearly implies
what we want. □

37.28. Connected components of fibres

055C
Lemma 37.28.1.055D Let f : X → Y be a morphism of schemes. Assume Y irreducible
with generic point η and f of finite type. If Xη has n connected components, then
there exists a nonempty open V ⊂ Y such that for all y ∈ V the fibre Xy has at
least n connected components.

Proof. As the question is purely topological we may replace X and Y by their
reductions. In particular this implies that Y is integral, see Properties, Lemma
28.3.4. Let Xη = X1,η ∪ . . . ∪ Xn,η be the decomposition of Xη into connected
components. Let Xi ⊂ X be the reduced closed subscheme whose generic fibre is
Xi,η. Note that Zi,j = Xi ∩Xj is a closed subset of X whose generic fibre Zi,j,η is
empty. Hence after shrinking Y we may assume that Zi,j = ∅, see Lemma 37.24.1.
After shrinking Y some more we may assume that Xy =

⋃
Xi,y for y ∈ Y , see

Lemma 37.24.5. Moreover, after shrinking Y we may assume that each Xi → Y is
flat and of finite presentation, see Morphisms, Proposition 29.27.1. The morphisms
Xi → Y are open, see Morphisms, Lemma 29.25.10. Thus there exists an open
neighbourhood V of η which is contained in f(Xi) for each i. For each y ∈ V the
schemes Xi,y are nonempty closed subsets of Xy, we have Xy =

⋃
Xi,y and the

intersections Zi,j,y = Xi,y ∩ Xj,y are empty! Clearly this implies that Xy has at
least n connected components. □

Lemma 37.28.2.055E Let f : X → Y be a morphism of schemes. Let g : Y ′ → Y be
any morphism, and denote f ′ : X ′ → Y ′ the base change of f . Then

{y′ ∈ Y ′ | X ′
y′ is geometrically connected}

= g−1({y ∈ Y | Xy is geometrically connected}).

Proof. This comes down to the statement that for y′ ∈ Y ′ with image y ∈ Y the
fibre X ′

y′ = Xy ×y y′ is geometrically connected over κ(y′) if and only if Xy is
geometrically connected over κ(y). This follows from Varieties, Lemma 33.7.3. □

Lemma 37.28.3.055F Let f : X → Y be a morphism of schemes. Let
nX/Y : Y → {0, 1, 2, 3, . . . ,∞}

be the function which associates to y ∈ Y the number of connected components of
(Xy)K where K is a separably closed extension of κ(y). This is well defined and if
g : Y ′ → Y is a morphism then

nX′/Y ′ = nX/Y ◦ g

where X ′ → Y ′ is the base change of f .

https://stacks.math.columbia.edu/tag/055D
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Proof. Suppose that y′ ∈ Y ′ has image y ∈ Y . Suppose K ⊃ κ(y) and K ′ ⊃ κ(y′)
are separably closed extensions. Then we may choose a commutative diagram

K // K ′′ K ′oo

κ(y)

OO

// κ(y′)

OO

of fields. The result follows as the morphisms of schemes

(X ′
y′)K′ (X ′

y′)K′′ = (Xy)K′′oo // (Xy)K

induce bijections between connected components, see Varieties, Lemma 33.7.6. □

Lemma 37.28.4.055G Let f : X → Y be a morphism of schemes. Assume
(1) Y is irreducible with generic point η,
(2) Xη is geometrically connected, and
(3) f is of finite type.

Then there exists a nonempty open subscheme V ⊂ Y such that XV → V has
geometrically connected fibres.

Proof. Choose a diagram

X ′

f ′

��

g′
// XV

//

��

X

f

��
Y ′ g // V // Y

as in Lemma 37.24.8. Note that the generic fibre of f ′ is geometrically connected
(for example by Lemma 37.28.3). Suppose that the lemma holds for the morphism
f ′. This means that there exists a nonempty open W ⊂ Y ′ such that every fibre
of X ′ → Y ′ over W is geometrically connected. Then, as g is an open morphism
by Morphisms, Lemma 29.36.13 all the fibres of f at points of the nonempty open
V = g(W ) are geometrically connected, see Lemma 37.28.3. In this way we see
that we may assume that the irreducible components of the generic fibre Xη are
geometrically irreducible.
Let Y ′ be the reduction of Y , and set X ′ = Y ′ ×Y X. Then it suffices to prove
the lemma for the morphism X ′ → Y ′ (for example by Lemma 37.28.3 once again).
Since the generic fibre of X ′ → Y ′ is the same as the generic fibre of X → Y
we see that we may assume that Y is irreducible and reduced (i.e., integral, see
Properties, Lemma 28.3.4) and that the irreducible components of the generic fibre
Xη are geometrically irreducible.
At this point suppose that Xη = X1,η

⋃
. . .
⋃
Xn,η is the decomposition of the

generic fibre into (geometrically) irreducible components. Let Xi be the closure of
Xi,η in X. After shrinking Y we may assume that X =

⋃
Xi, see Lemma 37.24.5.

Let Zi,j = Xi ∩Xj . Let
{1, . . . , n} × {1, . . . , n} = I ⨿ J

where (i, j) ∈ I if Zi,j,η = ∅ and (i, j) ∈ J if Zi,j,η ̸= ∅. After shrinking Y we
may assume that Zi,j = ∅ for all (i, j) ∈ I, see Lemma 37.24.1. After shrinking
Y we obtain that Xi,y is geometrically irreducible for each i and all y ∈ Y , see

https://stacks.math.columbia.edu/tag/055G
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Lemma 37.27.5. After shrinking Y some more we achieve the situation where
each Zi,j → Y is flat and of finite presentation for all (i, j) ∈ J , see Morphisms,
Proposition 29.27.1. This means that f(Zi,j) ⊂ Y is open, see Morphisms, Lemma
29.25.10. We claim that

V =
⋂

(i,j)∈J
f(Zi,j)

works, i.e., that Xy is geometrically connected for each y ∈ V . Namely, the fact
that Xη is connected implies that the equivalence relation generated by the pairs
in J has only one equivalence class. Now if y ∈ V and K ⊃ κ(y) is a separably
closed extension, then the irreducible components of (Xy)K are the fibres (Xi,y)K .
Moreover, we see by construction and y ∈ V that (Xi,y)K meets (Xj,y)K if and
only if (i, j) ∈ J . Hence the remark on equivalence classes shows that (Xy)K is
connected and we win. □

Lemma 37.28.5.055H Let f : X → Y be a morphism of schemes. Let nX/Y be the
function on Y counting the numbers of geometrically connected components of
fibres of f introduced in Lemma 37.28.3. Assume f of finite type. Let y ∈ Y be a
point. Then there exists a nonempty open V ⊂ {y} such that nX/Y |V is constant.

Proof. Let Z be the reduced induced scheme structure on {y}. Let fZ : XZ → Z be
the base change of f . Clearly it suffices to prove the lemma for fZ and the generic
point of Z. Hence we may assume that Y is an integral scheme, see Properties,
Lemma 28.3.4. Our goal in this case is to produce a nonempty open V ⊂ Y such
that nX/Y |V is constant.
We apply Lemma 37.24.8 to f : X → Y and we get g : Y ′ → V ⊂ Y . As
g : Y ′ → V is surjective finite étale, in particular open (see Morphisms, Lemma
29.36.13), it suffices to prove that there exists an open V ′ ⊂ Y ′ such that nX′/Y ′ |V ′

is constant, see Lemma 37.27.3. Thus we see that we may assume that all irreducible
components of the generic fibre Xη are geometrically irreducible over κ(η). By
Varieties, Lemma 33.8.16 this implies that also the connected components of Xη

are geometrically connected.
At this point suppose that Xη = X1,η

⋃
. . .
⋃
Xn,η is the decomposition of the

generic fibre into (geometrically) connected components. In particular nX/Y (η) =
n. Let Xi be the closure of Xi,η in X. After shrinking Y we may assume that
X =

⋃
Xi, see Lemma 37.24.5. After shrinking Y some more we see that each fibre

of f has at least n connected components, see Lemma 37.28.1. Hence nX/Y (y) ≥ n
for all y ∈ Y . After shrinking Y some more we obtain that Xi,y is geometrically
connected for each i and all y ∈ Y , see Lemma 37.28.4. Since Xy =

⋃
Xi,y this

shows that nX/Y (y) ≤ n and finishes the proof. □

Lemma 37.28.6.055I Let f : X → Y be a morphism of schemes. Let nX/Y be the
function on Y counting the numbers of geometric connected components of fibres
of f introduced in Lemma 37.28.3. Assume f of finite presentation. Then the level
sets

En = {y ∈ Y | nX/Y (y) = n}
of nX/Y are locally constructible in Y .

Proof. Fix n. Let y ∈ Y . We have to show that there exists an open neighbourhood
V of y in Y such that En ∩ V is constructible in V . Thus we may assume that
Y is affine. Write Y = Spec(A) and A = colimAi as a directed limit of finite

https://stacks.math.columbia.edu/tag/055H
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type Z-algebras. By Limits, Lemma 32.10.1 we can find an i and a morphism
fi : Xi → Spec(Ai) of finite presentation whose base change to Y recovers f . By
Lemma 37.28.3 it suffices to prove the lemma for fi. Thus we reduce to the case
where Y is the spectrum of a Noetherian ring.
We will use the criterion of Topology, Lemma 5.16.3 to prove that En is con-
structible in case Y is a Noetherian scheme. To see this let Z ⊂ Y be an irreducible
closed subscheme. We have to show that En ∩ Z either contains a nonempty open
subset or is not dense in Z. Let ξ ∈ Z be the generic point. Then Lemma 37.28.5
shows that nX/Y is constant in a neighbourhood of ξ in Z. This clearly implies
what we want. □

Lemma 37.28.7.055J Let f : X → S be a morphism of schemes. Assume that
(1) S is the spectrum of a discrete valuation ring,
(2) f is flat,
(3) X is connected,
(4) the closed fibre Xs is reduced.

Then the generic fibre Xη is connected.
Proof. Write S = Spec(R) and let π ∈ R be a uniformizer. To get a contradiction
assume that Xη is disconnected. This means there exists a nontrivial idempotent
e ∈ Γ(Xη,OXη ). Let U = Spec(A) be any affine open in X. Note that π is a
nonzerodivisor on A as A is flat over R, see More on Algebra, Lemma 15.22.9 for
example. Then e|Uη corresponds to an element e ∈ A[1/π]. Let z ∈ A be an
element such that e = z/πn with n ≥ 0 minimal. Note that z2 = πnz. This means
that z mod πA is nilpotent if n > 0. By assumption A/πA is reduced, and hence
minimality of n implies n = 0. Thus we conclude that e ∈ A! In other words
e ∈ Γ(X,OX). As X is connected it follows that e is a trivial idempotent which is
a contradiction. □

37.29. Connected components meeting a section

055K The results in this section are in particular applicable to a group scheme G → S
and its neutral section e : S → G.
Situation 37.29.1.055L Here f : X → Y be a morphism of schemes, and s : Y → X

is a section of f . For every y ∈ Y we denote X0
y the connected component of Xy

containing s(y). Finally, we set X0 =
⋃
y∈Y X

0
y .

Lemma 37.29.2.055M Let f : X → Y , s : Y → X be as in Situation 37.29.1. If
g : Y ′ → Y is any morphism, consider the base change diagram

X ′
g′
//

f ′

��

X

f

��
Y ′

s′

AA

g // Y

s

]]

so that we obtain (X ′)0 ⊂ X ′. Then (X ′)0 = (g′)−1(X0).
Proof. Let y′ ∈ Y ′ with image y ∈ Y . We may think of X0

y as a closed subscheme
of Xy, see for example Morphisms, Definition 29.26.3. As s(y) ∈ X0

y we conclude
from Varieties, Lemma 33.7.14 that X0

y is a geometrically connected scheme over
κ(y). Hence X0

y ×y y′ → X ′
y′ is a connected closed subscheme which contains s′(y′).

https://stacks.math.columbia.edu/tag/055J
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Thus X0
y ×y y′ ⊂ (X ′

y′)0. The other inclusion X0
y ×y y′ ⊃ (X ′

y′)0 is clear as the
image of (X ′

y′)0 in Xy is a connected subset of Xy which contains s(y). □

Lemma 37.29.3.055N Let f : X → Y , s : Y → X be as in Situation 37.29.1. Assume f
of finite type. Let y ∈ Y be a point. Then there exists a nonempty open V ⊂ {y}
such that the inverse image of X0 in the base change XV is open and closed in XV .

Proof. Let Z ⊂ Y be the induced reduced closed subscheme structure on {y}. Let
fZ : XZ → Z and sZ : Z → XZ be the base changes of f and s. By Lemma 37.29.2
we have (XZ)0 = (X0)Z . Hence it suffices to prove the lemma for the morphism
XZ → Z and the point x ∈ XZ which maps to the generic point of Z. In other
words we have reduced the problem to the case where Y is an integral scheme (see
Properties, Lemma 28.3.4) with generic point η. Our goal is to show that after
shrinking Y the subset X0 becomes an open and closed subset of X.

Note that the scheme Xη is of finite type over a field, hence Noetherian. Thus its
connected components are open as well as closed. Hence we may write Xη = X0

η⨿Tη
for some open and closed subset Tη of Xη. Next, let T ⊂ X be the closure of Tη
and let X00 ⊂ X be the closure of X0

η . Note that Tη, resp. X0
η is the generic fibre

of T , resp. X00, see discussion preceding Lemma 37.24.5. Moreover, that lemma
implies that after shrinking Y we may assume that X = X00∪T (set theoretically).
Note that (T ∩ X00)η = Tη ∩ X0

η = ∅. Hence after shrinking Y we may assume
that T ∩X00 = ∅, see Lemma 37.24.1. In particular X00 is open in X. Note that
X0
η is connected and has a rational point, namely s(η), hence it is geometrically

connected, see Varieties, Lemma 33.7.14. Thus after shrinking Y we may assume
that all fibres of X00 → Y are geometrically connected, see Lemma 37.28.4. At this
point it follows that the fibres X00

y are open, closed, and connected subsets of Xy

containing σ(y). It follows that X0 = X00 and we win. □

Lemma 37.29.4.055P Let f : X → Y , s : Y → X be as in Situation 37.29.1. If f is of
finite presentation then X0 is locally constructible in X.

Proof. Let x ∈ X. We have to show that there exists an open neighbourhood U of x
such that X0∩U is constructible in U . This reduces us to the case where Y is affine.
Write Y = Spec(A) and A = colimAi as a directed limit of finite type Z-algebras.
By Limits, Lemma 32.10.1 we can find an i and a morphism fi : Xi → Spec(Ai) of
finite presentation, endowed with a section si : Spec(Ai) → Xi whose base change
to Y recovers f and the section s. By Lemma 37.29.2 it suffices to prove the lemma
for fi, si. Thus we reduce to the case where Y is the spectrum of a Noetherian ring.

Assume Y is a Noetherian affine scheme. Since f is of finite presentation, i.e., of
finite type, we see that X is a Noetherian scheme too, see Morphisms, Lemma
29.15.6. In order to prove the lemma in this case it suffices to show that for every
irreducible closed subset Z ⊂ X the intersection Z∩X0 either contains a nonempty
open of Z or is not dense in Z, see Topology, Lemma 5.16.3. Let x ∈ Z be the
generic point, and let y = f(x). By Lemma 37.29.3 there exists a nonempty open
subset V ⊂ {y} such that X0 ∩XV is open and closed in XV . Since f(Z) ⊂ {y}
and f(x) = y ∈ V we see that W = f−1(V ) ∩ Z is a nonempty open subset of Z.
It follows that X0 ∩W is open and closed in W . Since W is irreducible we see that
X0 ∩W is either empty or equal to W . This proves the lemma. □

https://stacks.math.columbia.edu/tag/055N
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Lemma 37.29.5.055Q Let f : X → Y , s : Y → X be as in Situation 37.29.1. Let y ∈ Y
be a point. Assume

(1) f is of finite presentation and flat, and
(2) the fibre Xy is geometrically reduced.

Then X0 is a neighbourhood of X0
y in X.

Proof. We may replace Y with an affine open neighbourhood of y. Write Y =
Spec(A) and A = colimAi as a directed limit of finite type Z-algebras. By Limits,
Lemma 32.10.1 we can find an i and a morphism fi : Xi → Spec(Ai) of finite
presentation, endowed with a section si : Spec(Ai) → Xi whose base change to Y
recovers f and the section s. After possibly increasing i we may also assume that
fi is flat, see Limits, Lemma 32.8.7. Let yi be the image of y in Yi. Note that Xy =
(Xi,yi) ×yi y. Hence Xi,yi is geometrically reduced, see Varieties, Lemma 33.6.6.
By Lemma 37.29.2 it suffices to prove the lemma for the system fi, si, yi ∈ Yi. Thus
we reduce to the case where Y is the spectrum of a Noetherian ring.

Assume Y is the spectrum of a Noetherian ring. Since f is of finite presentation, i.e.,
of finite type, we see that X is a Noetherian scheme too, see Morphisms, Lemma
29.15.6. Let x ∈ X0 be a point lying over y. By Topology, Lemma 5.16.4 it suffices
to prove that for any irreducible closed Z ⊂ X passing through x the intersection
X0∩Z is dense in Z. In particular it suffices to prove that the generic point x′ ∈ Z
is in X0. By Properties, Lemma 28.5.10 we can find a discrete valuation ring R and
a morphism Spec(R)→ X which maps the special point to x and the generic point
to x′. We are going to think of Spec(R) as a scheme over Y via the composition
Spec(R) → X → Y . By Lemma 37.29.2 we have that (XR)0 is the inverse image
of X0. By construction we have a second section t : Spec(R) → XR (besides the
base change sR of s) of the structure morphism XR → Spec(R) such that t(ηR) is
a point of XR which maps to x′ and t(0R) is a point of XR which maps to x. Note
that t(0R) is in (XR)0 and that t(ηR) ⇝ t(0R). Thus it suffices to prove that this
implies that t(ηR) ∈ (XR)0. Hence it suffices to prove the lemma in the case where
Y is the spectrum of a discrete valuation ring and y its closed point.

Assume Y is the spectrum of a discrete valuation ring and y is its closed point. Our
goal is to prove that X0 is a neighbourhood of X0

y . Note that X0
y is open and closed

in Xy as Xy has finitely many irreducible components. Hence the complement
C = Xy \X0

y is closed in X. Thus U = X \C is an open neighbourhood of X0
y and

U0 = X0. Hence it suffices to prove the result for the morphism U → Y . In other
words, we may assume that Xy is connected. Suppose that X is disconnected, say
X = X1 ⨿ . . . ⨿Xn is a decomposition into connected components. Then s(Y ) is
completely contained in one of the Xi. Say s(Y ) ⊂ X1. Then X0 ⊂ X1. Hence
we may replace X by X1 and assume that X is connected. At this point Lemma
37.28.7 implies that Xη is connected, i.e., X0 = X and we win. □

Lemma 37.29.6.055R Let f : X → Y , s : Y → X be as in Situation 37.29.1. Assume
(1) f is of finite presentation and flat, and
(2) all fibres of f are geometrically reduced.

Then X0 is open in X.

Proof. This is an immediate consequence of Lemma 37.29.5. □

https://stacks.math.columbia.edu/tag/055Q
https://stacks.math.columbia.edu/tag/055R


37.30. DIMENSION OF FIBRES 3216

37.30. Dimension of fibres

05F6
Lemma 37.30.1.05F7 Let f : X → Y be a morphism of schemes. Assume Y irreducible
with generic point η and f of finite type. If Xη has dimension n, then there exists
a nonempty open V ⊂ Y such that for all y ∈ V the fibre Xy has dimension n.
Proof. Let Z = {x ∈ X | dimx(Xf(x)) > n}. By Morphisms, Lemma 29.28.4 this
is a closed subset of X. By assumption Zη = ∅. Hence by Lemma 37.24.1 we may
shrink Y and assume that Z = ∅. Let Z ′ = {x ∈ X | dimx(Xf(x)) > n− 1} = {x ∈
X | dimx(Xf(x)) = n}. As before this is a closed subset of X. By assumption we
have Z ′

η ̸= ∅. Hence after shrinking Y we may assume that Z ′ → Y is surjective,
see Lemma 37.24.2. Hence we win. □

Lemma 37.30.2.05F8 Let f : X → Y be a morphism of finite type. Let
nX/Y : Y → {0, 1, 2, 3, . . . ,∞}

be the function which associates to y ∈ Y the dimension of Xy. If g : Y ′ → Y is a
morphism then

nX′/Y ′ = nX/Y ◦ g
where X ′ → Y ′ is the base change of f .
Proof. This follows from Morphisms, Lemma 29.28.3. □

Lemma 37.30.3.05F9 Let f : X → Y be a morphism of schemes. Let nX/Y be the
function on Y giving the dimension of fibres of f introduced in Lemma 37.30.2.
Assume f of finite presentation. Then the level sets

En = {y ∈ Y | nX/Y (y) = n}
of nX/Y are locally constructible in Y .
Proof. Fix n. Let y ∈ Y . We have to show that there exists an open neighbourhood
V of y in Y such that En ∩ V is constructible in V . Thus we may assume that
Y is affine. Write Y = Spec(A) and A = colimAi as a directed limit of finite
type Z-algebras. By Limits, Lemma 32.10.1 we can find an i and a morphism
fi : Xi → Spec(Ai) of finite presentation whose base change to Y recovers f . By
Lemma 37.30.2 it suffices to prove the lemma for fi. Thus we reduce to the case
where Y is the spectrum of a Noetherian ring.
We will use the criterion of Topology, Lemma 5.16.3 to prove that En is con-
structible in case Y is a Noetherian scheme. To see this let Z ⊂ Y be an irreducible
closed subscheme. We have to show that En ∩ Z either contains a nonempty open
subset or is not dense in Z. Let ξ ∈ Z be the generic point. Then Lemma 37.30.1
shows that nX/Y is constant in a neighbourhood of ξ in Z. This implies what we
want. □

Lemma 37.30.4.0D4H Let f : X → Y be a flat morphism of schemes of finite presenta-
tion. Let nX/Y be the function on Y giving the dimension of fibres of f introduced
in Lemma 37.30.2. Then nX/Y is lower semi-continuous.
Proof. Let W ⊂ X, W =

∐
d≥0 Ud be the open constructed in Lemmas 37.22.7 and

37.22.9. Let y ∈ Y be a point. If nX/Y (y) = dim(Xy) = n, then y is in the image of
Un → Y . By Morphisms, Lemma 29.25.10 we see that f(Un) is open in Y . Hence
there is an open neighbourhoof of y where nX/Y is ≥ n. □

https://stacks.math.columbia.edu/tag/05F7
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Lemma 37.30.5.0D4I Let f : X → Y be a proper morphism of schemes. Let nX/Y be
the function on Y giving the dimension of fibres of f introduced in Lemma 37.30.2.
Then nX/Y is upper semi-continuous.

Proof. Let Zd = {x ∈ X | dimx(Xf(x)) > d}. Then Zd is a closed subset of X by
Morphisms, Lemma 29.28.4. Since f is proper f(Zd) is closed. Since y ∈ f(Zd)⇔
nX/Y (y) > d we see that the lemma is true. □

Lemma 37.30.6.0D4J Let f : X → Y be a proper, flat morphism of schemes of finite
presentation. Let nX/Y be the function on Y giving the dimension of fibres of f
introduced in Lemma 37.30.2. Then nX/Y is locally constant.

Proof. Immediate consequence of Lemmas 37.30.4 and 37.30.5. □

37.31. Weak relative Noether normalization

0GTD The goal of this section is to prove Lemma 37.31.3.

Lemma 37.31.1.0GTE Let R be a ring. Let p1, . . . , pr be prime ideals of R with pi ̸⊂ pj
if i ̸= j. Let ki ⊂ κ(pi) be subfields such that the extensions κ(pi)/ki are not
algebraic. Let J ⊂ R be an ideal not contained in any of the pi. Then there exists
an element x ∈ J such that the image of x in κ(pi) is transcendental over ki for
i = 1, . . . , r.

Proof. The ideal Ji = Jp1 . . . p̂i . . . pr is not contained in pi, see Algebra, Lemma
10.15.1. It follows that every element ξ of κ(pi) = Frac(B/pi) is of the form ξ = a/b
with a, b ∈ Ji and b ̸∈ pi. Choosing ξ transcendental over ki we see that either a or
b maps to an element of κ(pi) transcendental over ki. We conclude that for every
i = 1, . . . , r we can find an element xi ∈ Ji = Jp1 . . . p̂i . . . pr which maps to an
element of κ(pi) transcendental over ki. Then x = x1 + . . .+ xr works. □

Lemma 37.31.2.0GTF Let R → S be a finite type ring map. Let d ≥ 0. Let a, b ∈ S.
Assume that the fibres of

fa : Spec(S) −→ A1
R

given by the R-algebra map R[x] → S sending x to a have dimension ≤ d. Then
there exists an n0 such that for n ≥ n0 the fibres of

fan+b : Spec(S) −→ A1
R

given by the R-algebra map R[x]→ S sending x to an + b have dimension ≤ d.

Proof. In this paragraph we reduce to the case whereR→ S is of finite presentation.
Namely, write S = R[A,B, x1, . . . , xn]/J for some ideal J ⊂ R[x1, . . . , xn] where A
and B map to a and b in S. Then J is the union of its finitely generated ideals
Jλ ⊂ J . Set Sλ = R[A,B, x1, . . . , xn]/Jλ and denote aλ, bλ ∈ Sλ the images of A
and B. Then for some λ the fibres of

faλ : Spec(Sλ) −→ A1
R

have dimension ≤ d, see Limits, Lemma 32.18.1. Fix such a λ. If we can find n0
which works for R → Sλ, aλ, bλ, then n0 works for R → S. Namely, the fibres of
fan
λ

+bλ : Spec(Sλ)→ A1
R contain the fibres of fan+b : Spec(S)→ A1

R. This reduces
us to the case discussed in the next paragraph.
Assume R → S is of finite presentation. In this paragraph we reduce to the case
where R is of finite type over Z. By Algebra, Lemma 10.127.18 we can find a

https://stacks.math.columbia.edu/tag/0D4I
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directed set Λ and a system of ring maps Rλ → Sλ over Λ whose colimit is R→ S
such that Sµ = Sλ ⊗Rλ Rµ for µ ≥ λ and such that each Rλ and Sλ is of finite
type over Z. Choose λ0 ∈ Λ and elements aλ0 , bλ0 ∈ Sλ0 mapping to a, b ∈ S. For
λ ≥ λ0 denote aλ, bλ ∈ Sλ the image of aλ0 , bλ0 . Then for λ ≥ λ0 large enough the
fibres of

faλ : Spec(Sλ) −→ A1
Rλ

have dimension ≤ d, see Limits, Lemma 32.18.4. Fix such a λ. If we can find n0
which works for Rλ → Sλ, aλ, bλ, then n0 works for R → S. Namely, any fibre of
fan+b : Spec(S) → A1

R has the same dimension as a fibre of fan
λ

+bλ : Spec(Sλ) →
A1
Rλ

by Morphisms, Lemma 29.28.3. This reduces us the the case discussed in the
next paragraph.

Assume R and S are of finite type over Z. In particular the dimension of R is finite,
and we may use induction on dim(R). Thus we may assume the result holds for all
situations with R′ → S′, a, b as in the lemma with R′ and S′ of finite type over Z
but with dim(R′) < dim(R).

Since the statement is about the topology of the spectrum of S we may assume S is
reduced. Let Sν be the normalization of S. Then S ⊂ Sν is a finite extension as S
is excellent, see Algebra, Proposition 10.162.16 and Morphisms, Lemma 29.54.10.
Thus Spec(Sν) → Spec(S) is surjective and finite (Algebra, Lemma 10.36.17). It
follows that if the result holds for R → Sν and the images of a, b in Sν , then the
result holds for R → S, a, b. (Small detail omitted.) This reduces us to the case
discussed in the next paragraph.

Assume R and S are of finite type over Z and S normal. Then S = S1 × . . . × Sr
for some normal domains Si. If the result holds for each R → Si and the images
of a, b in Si, then the result holds for R → S, a, b. (Small detail omitted.) This
reduces us to the case discussed in the next paragraph.

Assume R and S are of finite type over Z and S a normal domain. We may replace
R by the image of R in S (this does not increase the dimension of R). This reduces
us to the case discussed in the next paragraph.

Assume R ⊂ S are of finite type over Z and S a normal domain. Consider the
morphism

fa : Spec(S)→ A1
R

The assumption tells us that fa has fibres of dimension ≤ d. Hence the fibres of
f : Spec(S) → Spec(R) have dimension ≤ d + 1 (Morphisms, Lemma 29.28.2).
Consider the morphism of integral schemes

ϕ : Spec(S)→ A2
R = Spec(R[x, y])

corresponding to the R-algebra map R[x, y]→ S sending x to a and y to b. There
are two cases to consider

(1) ϕ is dominant, and
(2) ϕ is not dominant.

We claim that in both cases there exists an integer n0 and a nonempty open V ⊂
Spec(R) such that for n ≥ n0 the fibres of fan+b at points q ∈ A1

V have dimension
≤ d.
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Proof of the claim in case (1). We have fan+b = πn ◦ ϕ where
πn : A2

R → A1
R

is the flat morphism corresponding to the R-algebra map R[x] → R[x, y] sending
x to xn + y. Since ϕ is dominant there is a dense open U ⊂ Spec(S) such that
ϕ|U : U → A2

R is flat (this follows for example from generic flatness, see Morphisms,
Proposition 29.27.1). Then the composition

fan+b|U : U ϕ|U−−→ A2
R

πn−−→ A1
R

is flat as well. Hence the fibres of this morphism have at least codimension 1
in the fibres of f |U : U → Spec(R) by Morphisms, Lemma 29.28.2. In other
words, the fibres of fan+b|U have dimension ≤ d. On the other hand, since U
is dense in Spec(S), we can find a nonempty open V ⊂ Spec(R) such that U ∩
f−1(p) ⊂ f−1(p) is dense for all p ∈ V (see for example Lemma 37.24.3). Thus
dim(f−1(p) \U ∩ f−1(p)) ≤ d and we conclude that our claim is true (as any fibres
of fan+b : Spec(S)→ A1

R is contained in a fibre of f).
Case (2). In this case we can find a nonzero g =

∑
cijx

iyj in R[x, y] such that
Im(ϕ) ⊂ V (g). In fact, we may assume g is irreducible over Frac(R). If g ∈ R[x],
say with leading coefficient c, then over V = D(c) ⊂ Spec(R) the fibres of f already
have dimension ≤ d (because the image of fa is contained in V (g) ⊂ A1

R which
has finite fibres over V ). Hence we may assume g is not contained in R[x]. Let
s ≥ 1 be the degree of g as a polynomial in y and let t be the degree of

∑
cisx

i as
a polynomial in x. Then cts is nonzero and

g(x,−xn) = (−1)sctsxt+sn + l.o.t.

provided that n is bigger than the degree of g as a polynomial in x (small detail
omitted). For such n the polynomial g(x,−xn) is a nonzero polynomial in x and
maps to a nonzero polynomial in κ(p)[x] for all p ⊂ R, cst ̸∈ p. We conclude that
our claim is true for V equal to the principal open D(cts) of Spec(R).
OK, and now we can use induction on dim(R). Namely, let I ⊂ R be an ideal such
that V (I) = Spec(R) \V . Observe that dim(R/I) < dim(R) as R is a domain. Let
n′

0 be the integer we have by induction on dim(R) for R/I → S/IS and the images
of a and b in S/IS. Then max(n0, n

′
0) works. □

Lemma 37.31.3.0GTG Let R → S be a finite type ring map. Let d be the maximum
of the dimensions of fibres of Spec(S)→ Spec(R). Then there exists a quasi-finite
ring map R[t1, . . . , td]→ S.

Proof. In this paragraph we reduce to the case whereR→ S is of finite presentation.
Namely, write S = R[x1, . . . , xn]/J for some ideal J ⊂ R[x1, . . . , xn]. Then J is the
union of its finitely generated ideals Jλ ⊂ J . Set Sλ = R[x1, . . . , xn]/Jλ. Then for
some λ the fibres of Spec(Sλ)→ Spec(R) have dimension ≤ d, see Limits, Lemma
32.18.1. Fix such a λ. If we can find a quasi-finite R[t1, . . . , td] → Sλ, then of
course the composition R[t1, . . . , td]→ S is quasi-finite. This reduces us to the case
discussed in the next paragraph.
Assume R → S is of finite presentation. In this paragraph we reduce to the case
where R is of finite type over Z. By Algebra, Lemma 10.127.18 we can find a
directed set Λ and a system of ring maps Rλ → Sλ over Λ whose colimit is R→ S
such that Sµ = Sλ⊗Rλ Rµ for µ ≥ λ and such that each Rλ and Sλ is of finite type

https://stacks.math.columbia.edu/tag/0GTG
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over Z. Then for λ large enough the fibres of Spec(Sλ)→ Spec(Rλ) have dimension
≤ d, see Limits, Lemma 32.18.4. Fix such a λ. If we can find a quasi-finite ring
map Rλ[t1, . . . , td]→ Sλ, then the base change R[t1, . . . , td]→ S is quasi-finite too
(Algebra, Lemma 10.122.8). This reduces us the the case discussed in the next
paragraph.
Assume R and S are of finite type over Z. If d = 0, then the ring map is quasi-finite
and we are done. Assume d > 0. We will find an element a ∈ S such that the fibres
of the R-algebra map R[x] → S, x 7→ a have dimension < d. This will finish the
proof by induction.
We will prove the existence of a by induction on dim(R).
Let q1, . . . , qr ⊂ S be those among the minimal primes of S such that dimqi(S/R) =
d. For notation, see Algebra, Definition 10.125.1. Say qi lies over the prime pi ⊂ R.
We have trdegκ(pi)(κ(qi)) = d as qi is a generic point of its fibre; for example apply
Algebra, Lemma 10.116.3 to S ⊗R κ(pi). Hence by Lemma 37.31.1 we can find an
element a ∈ S such that the image of a in κ(qi) is transcendental over κ(pi) for
i = 1, . . . , r. Consider the morphism

fa : Spec(S) −→ A1
R

corresponding the R-algebra homomorphism R[x] → S to mapping x to a. Let
U ⊂ Spec(S) be the open subset where the fibres have dimension ≤ d − 1, see
Morphisms, Lemma 29.28.4. By construction U contains all the generic points of
Spec(S). In particular we see that U contains all generic points of all the generic
fibres of Spec(S)→ Spec(R) as such points are necessarily generic points of Spec(S).
Set T = Spec(S) \ U viewed as a reduced closed subscheme of Spec(S). It follows
from what we just said and the assumption that dim(S/R) ≤ d that the generic
fibres of T → Spec(R) have dimension ≤ d− 1. Hence by Lemma 37.30.1, applied
several times to produce open neighbourhoods of the generic points of Spec(R), we
can find a dense open V ⊂ Spec(R) such that TV → V has fibres of dimension
≤ d− 1. We conclude that for q ∈ A1

V the fibre of fa over q has dimension ≤ d− 1
(as we have bounded the dimension of the fibre of fa|U and of the fibre of fa|T ).
By prime avoidance, we may assume that V = D(f) for some f ∈ R. Then we
see that the ring map Rf [x] → Sf , x 7→ a has fibres of dimension ≤ d − 1. We
may replace a by fa and assume a ∈ (f). By induction on dim(R) we can find
an element b ∈ S/fS such that the fibres of Spec(S/fS)→ Spec(R/fR[x]), x 7→ b
have dimension ≤ d− 1. Let b ∈ S be a lift of b. By Lemma 37.31.2 there exists an
n > 0 such that an + b still works for Rf → Sf . On the other hand, the image of
an + b in S/fS is b and the proof is complete. □

37.32. Bertini theorems

0G4C We continue the discussion started in Varieties, Section 33.47. In this section we
prove that general hyperplane sections of geometrically irreducible varieties are
geometrically irreducible following the remarkable argument given in [Jou83].

Lemma 37.32.1.0G4D See pages 71 and 72
of [Jou83]

Let K/k be a geometrically irreducible and finitely generated
field extension. Let n ≥ 1. Let g1, . . . , gn ∈ K be elements such that there exist
c1, . . . , cn ∈ k such that the elements

x1, . . . , xn,
∑

gixi,
∑

cigi ∈ K(x1, . . . , xn)

https://stacks.math.columbia.edu/tag/0G4D
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are algebraically independent over k. Then K(x1, . . . , xn) is geometrically irre-
ducible over k(x1, . . . , xn,

∑
gixi).

Proof. Let c1, . . . , cn ∈ k be as in the statement of the lemma. Write ξ =
∑
gixi

and δ =
∑
cigi. For a ∈ k consider the automorphism σa of K(x1, . . . , xn) given

by the identity on K and the rules
σa(xi) = xi + aci

Observe that σa(ξ) = ξ + aδ and σa(δ) = δ. Consider the tower of fields
K0 = k(x1, . . . , xn) ⊂ K1 = K0(ξ) ⊂ K2 = K0(ξ, δ) ⊂ K(x1, . . . , xn) = Ω

Observe that σa(K0) = K0 and σa(K2) = K2. Let θ ∈ Ω be separable algebraic
over K1. We have to show θ ∈ K1, see Algebra, Lemma 10.47.12.
Denote K ′

2 the separable algebraic closure of K2 in Ω. Since K ′
2/K2 is finite (Al-

gebra, Lemma 10.47.13) and separable there are only a finite number of fields in
between K ′

2 and K2 (Fields, Lemma 9.19.1). If k is infinite5, then we can find
distinct elements a1, a2 of k such that

K2(σa1(θ)) = K2(σa2(θ))
as subfields of Ω. Write θi = σai(θ) and ξi = σai(ξ) = ξ + aiδ. Observe that

K2 = K0(ξ1, ξ2)
as we have ξi = ξ + aiδ, ξ = (a2ξ1 − a1ξ2)/(a2 − a1), and δ = (ξ1 − ξ2)/(a1 − a2).
Since K2/K0 is purely transcendental of degree 2 we conclude that ξ1 and ξ2 are
algebraically indepedent over K0. Since θ1 is algebraic over K0(ξ1) we conclude
that ξ2 is transcendental over K0(ξ1, θ1).
By assumptionK/k is geometrically irreducible. This implies thatK(x1, . . . , xn)/K0
is geometrically irreducible (Algebra, Lemma 10.47.10). This in turn implies that
K0(ξ1, θ1)/K0 is geometrically irreducible as a subextension (Algebra, Lemma 10.47.6).
Since ξ2 is transcendental over K0(ξ1, θ1) we conclude that K0(ξ1, ξ2, θ1)/K0(ξ2) is
geometrically irreducible (Algebra, Lemma 10.47.11). By our choice of a1, a2 above
we have

K0(ξ1, ξ2, θ1) = K2(σa1(θ)) = K2(σa2(θ)) = K0(ξ1, ξ2, θ2)
Since θ2 is separably algebraic over K0(ξ2) we conclude by Algebra, Lemma 10.47.12
again that θ2 ∈ K0(ξ2). Taking σ−1

a2
of this relation givens θ ∈ K0(ξ) = K1 as

desired.
This finishes the proof in case k is infinite. If k is finite, then we can choose a vari-
able t and consider the extension K(t)/k(t) which is geometrically irreducible by
Algebra, Lemma 10.47.10. Since it is still be true that x1, . . . , xn,

∑
gixi,

∑
cigi in

K(t, x1, . . . , xn) are algebraically independent over k(t) we conclude thatK(t, x1, . . . , xn)
is geometrically irreducible over k(t, x1, . . . , xn,

∑
gixi) by the argument already

given. Then using Algebra, Lemma 10.47.10 once more finishes the job. □

Lemma 37.32.2.0G4E Let A be a domain of finite type over a field k. Let n ≥ 2. Let
g1, . . . , gn ∈ A be elements such that V (g1, g2) has an irreducible component of
dimension dim(A)− 2. Then there exist c1, . . . , cn ∈ k such that the elements

x1, . . . , xn,
∑

gixi,
∑

cigi ∈ Frac(A)(x1, . . . , xn)

5We will deal with the finite field case in the last paragraph of the proof.
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are algebraically independent over k.

Proof. The algebraic independence over k means that the morphism
T = Spec(A[x1, . . . , xn]) −→ Spec(k[x1, . . . , xn, y, z]) = S

given by y =
∑
gixi and z =

∑
cigi is dominant. Set d = dim(A). If T → S is

not dominant, then the image has dimension < n + 2 and hence every irreducible
component of every fibre has dimension > d + n − (n + 2) = d − 2, see Varieties,
Lemma 33.20.4. Choose a closed point u ∈ V (g1, g2) contained in an irreducible
component of dimension d−2 and in no other component of V (g1, g2). Consider the
closed point t = (u, 1, 0, . . . 0) of T lying over u. Set (c1, . . . , cn) = (0, 1, 0, . . . , 0).
Then t maps to the point s = (1, 0, . . . , 0) of S. The fibre of T → S over s is cut
out by

x1 − 1, x2, . . . , xn,
∑

xigi, g2

and hence equivalently is cut out by
x1 − 1, x2, . . . , xn, g1, g2

By our condition on g1, g2 this subscheme has an irreducible component of dimen-
sion d− 2. □

Lemma 37.32.3.0G4F [Jou83, Theorem 6.3
part 4)]

In Varieties, Situation 33.47.2 assume
(1) X is of finite type over k,
(2) X is geometrically irreducible over k,
(3) there exist v1, v2, v3 ∈ V and an irreducible component Z of Hv2 ∩ Hv3

such that Z ̸⊂ Hv1 and codim(Z,X) = 2, and
(4) every irreducible component Y of

⋂
v∈V Hv has codim(Y,X) ≥ 2.

Then for general v ∈ V ⊗k k′ the scheme Hv is geometrically irreducible over k′.

Proof. In order for assumption (3) to hold, the elements v1, v2, v3 must be k-linearly
independent in V (small detail omitted). Thus we may choose a basis v1, . . . , vr
of V incorporating these elements as the first 3. Recall that Huniv ⊂ Ar

k ×k X
is the “universal divisor”. Consider the projection q : Huniv → Ar

k whose scheme
theoretic fibres are the divisors Hv. By Lemma 37.27.5 it suffices to show that the
generic fibre of q is geometrically irreducible. To prove this we may replace X by
its reduction, hence we may assume X is an integral scheme of finite type over k.
Let U ⊂ X be a nonempty affine open such that L|U ∼= OU . Write U = Spec(A).
Denote fi ∈ A the element corresponding to section ψ(vi)|U via the isomorphism
L|U ∼= OU . Then Huniv ∩ (Ar

k ×k U) is given by
HU = Spec(A[x1, . . . , xr]/(x1f1 + . . .+ xrfr))

By our choice of basis we see that f1 cannot be zero because this would mean
v1 = 0 and hence Hv1 = X which contradicts assumption (3). Hence

∑
xifi is a

nonzerodivisor in A[x1, . . . , xr]. It follows that every irreducible component of HU

has dimension d+ r − 1 where d = dim(X) = dim(A). If U ′ = U ∩D(f1) then we
see that
HU ′ = Spec(Af1 [x1, . . . , xr]/(x1f1+. . .+xrfr)) ∼= Spec(Af1 [x2, . . . xr]) = Ar−1

k ×kU ′

is irreducible. On the other hand, we have
HU \HU ′ = Spec(A/(f1)[x1, . . . , xr]/(x2f2 + . . .+ xrfr))

https://stacks.math.columbia.edu/tag/0G4F
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which has dimension at most d+r−2. Namely, for i ̸= 1 the scheme (HU \HU ′)×U
D(fi) is either empty (if fi = 0) or by the same argument as above isomorphic to
an r − 1 dimensional affine space over an open of Spec(A/(f1)) and hence has
dimension at most d + r − 2. On the other hand, (HU \HU ′) ×U V (f2, . . . , fr) is
an r dimensional affine space over Spec(A/(f1, . . . , fr)) and hence assumption (4)
tells us this has dimension at most d + r − 2. We conclude that HU is irreducible
for every U as above. It follows that Huniv is irreducible.
Thus it suffices to show that the generic point of Huniv is geometrically irreducible
over the generic point of Ar

k, see Varieties, Lemma 33.8.6. Choose a nonempty
affine open U = Spec(A) of X contained in X \ Hv1 which meets the irreducible
component Z of Hv2 ∩ Hv3 whose existence is asserted in assumption (3). With
notation as above we have to prove that the field extension

Frac(A[x1, . . . , xr]/(x1f1 + . . .+ xrfr))/k(x1, . . . , xr)
is geometrically irreducible. Observe that f1 is invertible in A by our choice of U .
Set K = Frac(A) equal to the fraction field of A. Eliminating the variable x1 as
above, we find that we have to show that the field extension

K(x2, . . . , xr)/k(x2, . . . , xr,−
∑

i=2,...,r
f−1

1 fixi)

is geometrically irreducible. By Lemma 37.32.1 it suffices to show that for some
c2, . . . , cr ∈ k the elements

x2, . . . , xr,
∑

i=2,...,r
f−1

1 fixi,
∑

i=2,...,r
cif

−1
1 fi

are algebraically independent over k in the fraction field of A[x2, . . . , xr]. This
follows from Lemma 37.32.2 and the fact that Z ∩ U is an irreducible component
of V (f−1

1 f2, f
−1
1 f3) ⊂ U . □

Remark 37.32.4.0G4G Let us sketch a “geometric” proof of a special case of Lemma
37.32.3. Namely, say k is an algebraically closed field and X ⊂ Pn

k is smooth and
irreducible of dimension ≥ 2. Then we claim there is a hyperplane H ⊂ Pn

k such
that X ∩ H is smooth and irreducible. Namely, by Varieties, Lemma 33.47.3 for
a general v ∈ V = kT0 ⊕ . . . ⊕ kTn the corresponding hyperplane section X ∩Hv

is smooth. On the other hand, by Enriques-Severi-Zariski the scheme X ∩ Hv is
connected, see Varieties, Lemma 33.48.3. Hence X ∩Hv is smooth and irreducible.

37.33. Theorem of the cube

0BEZ The following lemma tells us that the diagonal of the Picard functor is representable
by locally closed immersions under the assumptions made in the lemma.

Lemma 37.33.1.0BDP Let f : X → S be a flat, proper morphism of finite presentation.
Let E be a finite locally free OX -module. For a morphism g : T → S consider the
base change diagram

XT

p

��

q
// X

f

��
T

g // S

Assume OT → p∗OXT is an isomorphism for all g : T → S. Then there exists
an immersion j : Z → S of finite presentation such that a morphism g : T → S

https://stacks.math.columbia.edu/tag/0G4G
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factors through Z if and only if there exists a finite locally free OT -module N with
p∗N ∼= q∗E .

Proof. Observe that the fibres Xs of f are connected by our assumption that
H0(Xs,OXs) = κ(s). Thus the rank of E is constant on the fibres. Since f is
open (Morphisms, Lemma 29.25.10) and closed we conclude that there is a decom-
position S =

∐
Sr of S into open and closed subschemes such that E has constant

rank r on the inverse image of Sr. Thus we may assume E has constant rank r. We
will denote E∨ = Hom(E ,OX) the dual rank r module.

By cohomology and base change (more precisely by Derived Categories of Schemes,
Lemma 36.30.4) we see that E = Rf∗E is a perfect object of the derived category
of S and that its formation commutes with arbitrary change of base. Similarly for
E′ = Rf∗E∨. Since there is never any cohomology in degrees < 0, we see that E and
E′ have (locally) tor-amplitude in [0, b] for some b. Observe that for any g : T → S
we have p∗(q∗E) = H0(Lg∗E) and p∗(q∗E∨) = H0(Lg∗E′). Let j : Z → S and
j′ : Z ′ → S be immersions of finite presentation constructed in Derived Categories
of Schemes, Lemma 36.31.4 for E and E′ with a = 0 and r = r; these are roughly
speaking characterized by the property that H0(Lj∗E) and H0((j′)∗E′) are finite
locally free modules compatible with pullback.

Let g : T → S be a morphism. If there exists an N as in the lemma, then, using
the projection formula Cohomology, Lemma 20.54.2, we see that the modules

p∗(q∗L) ∼= p∗(p∗N ) ∼= N ⊗OT
p∗OXT ∼= N and similarly p∗(q∗E∨) ∼= N∨

are finite locally free modules of rank r and remain so after any further base change
T ′ → T . Hence in this case T → S factors through j and through j′. Thus we
may replace S by Z ×S Z ′ and assume that f∗E and f∗E∨ are finite locally free
OS-modules of rank r whose formation commutes with arbitrary change of base
(small detail omitted).

In this sitation if g : T → S be a morphism and there exists an N as in the lemma,
then the map (cup product in degree 0)

p∗(q∗E)⊗OT
p∗(q∗E∨) −→ OT

is a perfect pairing. Conversely, if this cup product map is a perfect pairing, then
we see that locally on T we may choose a basis of sections σ1, . . . , σr in p∗(q∗E)
and τ1, . . . , τr in p∗(q∗E∨) whose products satisfy σiτj = δij . Thinking of σi as a
section of q∗E on XT and τj as a section of q∗E∨ on XT , we conclude that

σ1, . . . , σr : O⊕r
XT
−→ q∗E

is an isomorphism with inverse given by

τ1, . . . , τr : q∗E −→ O⊕r
XT

In other words, we see that p∗p∗q
∗E ∼= q∗E . But the condition that the cupproduct

is nondegenerate picks out a retrocompact open subscheme (namely, the locus where
a suitable determinant is nonzero) and the proof is complete. □

The lemma above in particular tells us, that if a vector bundle is trivial on fibres
for a proper flat family of proper spaces, then it is the pull back of a vector bundle.
Let’s spell this out a bit.
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Lemma 37.33.2.0EX7 Let f : X → S be a flat, proper morphism of finite presentation
such that f∗OX = OS and this remains true after arbitrary base change. Let E be
a finite locally free OX -module. Assume

(1) E|Xs is isomorphic to O⊕rs
Xs

for all s ∈ S, and
(2) S is reduced.

Then E = f∗N for some finite locally free OS-module N .

Proof. Namely, in this case the locally closed immersion j : Z → S of Lemma
37.33.1 is bijective and hence a closed immersion. But since S is reduced, j is an
isomorphism. □

Lemma 37.33.3.0EX8 Let f : X → S be a proper flat morphism of finite presentation.
Let L be an invertible OX -module. Assume

(1) S is the spectrum of a valuation ring,
(2) L is trivial on the generic fibre Xη of f ,
(3) the closed fibre X0 of f is integral,
(4) H0(Xη,OXη ) is equal to the function field of S.

Then L is trivial.

Proof. Write S = Spec(A). We will first prove the lemma when A is a discrete
valuation ring (as this is the case most often used in practice). Let π ∈ A be a
uniformizer. Take a trivializing section s ∈ Γ(Xη,Lη). After replacing s by πns
if necessary we can assume that s ∈ Γ(X,L). If s|X0 = 0, then we see that s is
divisible by π (because X0 is the scheme theoretic fibre and X is flat over A). Thus
we may assume that s|X0 is nonzero. Then the zero locus Z(s) of s is contained
in X0 but does not contain the generic point of X0 (because X0 is integral). This
means that the Z(s) has codimension ≥ 2 in X which contradicts Divisors, Lemma
31.15.3 unless Z(s) = ∅ as desired.
Proof in the general case. Since the valuation ring A is coherent (Algebra, Example
10.90.2) we see that H0(X,L) is a coherent A-module, see Derived Categories of
Schemes, Lemma 36.33.1. Equivalently, H0(X,L) is a finitely presented A-module
(Algebra, Lemma 10.90.4). Since H0(X,L) is torsion free (by flatness of X over
A), we see from More on Algebra, Lemma 15.124.3 that H0(X,L) = A⊕n for some
n. By flat base change (Cohomology of Schemes, Lemma 30.5.2) we have

K = H0(Xη,OXη ) ∼= H0(Xη,Lη) = H0(X,L)⊗A K
where K is the fraction field of A. Thus n = 1. Pick a generator s ∈ H0(X,L).
Let m ⊂ A be the maximal ideal. Then κ = A/m = colimA/π where this is a
filtered colimit over nonzero π ∈ m (here we use that A is a valuation ring). Thus
X0 = limX ×S Spec(A/π). If s|X0 is zero, then for some π we see that s restricts
to zero on X ×S Spec(A/π), see Limits, Lemma 32.4.7. But if this happens, then
π−1s is a global section of L which contradicts the fact that s is a generator of
H0(X,L). Thus s|X0 is not zero. Let Z(s) ⊂ X be the zero scheme of s. Since
s|X0 is not zero and since X0 is integral, we see that Z(s)0 ⊂ X0 is an effective
Cartier divisor. Since f is proper and S is local, every point of Z(s) specializes to
a point of Z(s)0. Thus by Divisors, Lemma 31.18.9 part (3) we see that Z(s) is a
relative effective Cartier divisor, in particular Z(s)→ S is flat. Hence if Z(s) were
nonemtpy, then Z(s)η would be nonempty which contradicts the fact that s|Xη is
a trivialization of Lη. Thus Z(s) = ∅ as desired. □

https://stacks.math.columbia.edu/tag/0EX7
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Lemma 37.33.4.0BF0 Let f : X → S and E be as in Lemma 37.33.1 and in addition
assume E is an invertible OX -module. If moreover the geometric fibres of f are
integral, then Z is closed in S.

Proof. Since j : Z → S is of finite presentation, it suffices to show: for any mor-
phism g : Spec(A)→ S where A is a valuation ring with fraction field K such that
g(Spec(K)) ∈ j(Z) we have g(Spec(A)) ⊂ j(Z). See Morphisms, Lemma 29.6.5.
This follows from Lemma 37.33.3 and the characterization of j : Z → S in Lemma
37.33.1. □

Lemma 37.33.5.0BF1 Consider a commutative diagram of schemes

X ′ //

f ′
  

X

f��
S

with f ′ : X ′ → S and f : X → S satisfying the hypotheses of Lemma 37.33.1. Let
L be an invertible OX -module and let L′ be the pullback to X ′. Let Z ⊂ S, resp.
Z ′ ⊂ S be the locally closed subscheme constructed in Lemma 37.33.1 for (f,L),
resp. (f ′,L′) so that Z ⊂ Z ′. If s ∈ Z and

H1(Xs,O) −→ H1(X ′
s,O)

is injective, then Z ∩ U = Z ′ ∩ U for some open neighbourhood U of s.

Proof. We may replace S by Z ′. After shrinking S to an affine open neighbourhood
of s we may assume that L′ = OX′ . Let E = Rf∗L and E′ = Rf ′

∗L′ = Rf ′
∗OX′ .

These are perfect complexes whose formation commutes with arbitrary change of
base (Derived Categories of Schemes, Lemma 36.30.4). In particular we see that

E ⊗L
OS

κ(s) = RΓ(Xs,Ls) = RΓ(Xs,OXs)

The second equality because s ∈ Z. Set hi = dimκ(s) H
i(Xs,OXs). After shrinking

S we can represent E by a complex
OS → O⊕h1

S → O⊕h2
S → . . .

see More on Algebra, Lemma 15.75.6 (strictly speaking this also uses Derived Cat-
egories of Schemes, Lemmas 36.3.5 and 36.10.7). Similarly, we may assume E′ is
represented by a complex

OS → O
⊕h′

1
S → O⊕h′

2
S → . . .

where h′
i = dimκ(s) H

i(X ′
s,OX′

s
). By functoriality of cohomology we have a map

E −→ E′

in D(OS) whose formation commutes with change of base. Since the complex
representing E is a finite complex of finite free modules and since S is affine, we
can choose a map of complexes

OS
d
//

a

��

O⊕h1
S

//

b
��

O⊕h2
S

//

c
��

. . .

OS
d′
// O⊕h′

1
S

// O⊕h′
2

S
// . . .

https://stacks.math.columbia.edu/tag/0BF0
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representing the given map E → E′. Since s ∈ Z we see that the trivializing
section of Ls pulls back to a trivializing section of L′

s = OX′
s
. Thus a ⊗ κ(s) is

an isomorphism, hence after shrinking S we see that a is an isomorphism. Finally,
we use the hypothesis that H1(Xs,O) → H1(X ′

s,O) is injective, to see that there
exists a h1 × h1 minor of the matrix defining b which maps to a nonzero element
in κ(s). Hence after shrinking S we may assume that b is injective. However, since
L′ = OX′ we see that d′ = 0. It follows that d = 0. In this way we see that the
trivializing section of Ls lifts to a section of L over X. A straightforward topological
argument (omitted) shows that this means that L is trivial after possibly shrinking
S a bit further. □

Lemma 37.33.6.0BF2 Consider n commutative diagrams of schemes

Xi
//

fi   

X

f��
S

with fi : Xi → S and f : X → S satisfying the hypotheses of Lemma 37.33.1. Let
L be an invertible OX -module and let Li be the pullback to Xi. Let Z ⊂ S, resp.
Zi ⊂ S be the locally closed subscheme constructed in Lemma 37.33.1 for (f,L),
resp. (fi,Li) so that Z ⊂

⋂
i=1,...,n Zi. If s ∈ Z and

H1(Xs,O) −→
⊕

i=1,...,n
H1(Xi,s,O)

is injective, then Z∩U = (
⋂
i=1,...,n Zi)∩U (scheme theoretic intersection) for some

open neighbourhood U of s.

Proof. This lemma is a variant of Lemma 37.33.5 and we strongly urge the reader
to read that proof first; this proof is basically a copy of that proof with minor
modifications. It follows from the description of (scheme valued) points of Z and the
Zi that Z ⊂

⋂
i=1,...,n Zi where we take the scheme theoretic intersection. Thus we

may replace S by the scheme theoretic intersection
⋂
i=1,...,n Zi. After shrinking S

to an affine open neighbourhood of s we may assume that Li = OXi for i = 1, . . . , n.
Let E = Rf∗L and Ei = Rfi,∗Li = Rfi,∗OXi . These are perfect complexes whose
formation commutes with arbitrary change of base (Derived Categories of Schemes,
Lemma 36.30.4). In particular we see that

E ⊗L
OS

κ(s) = RΓ(Xs,Ls) = RΓ(Xs,OXs)

The second equality because s ∈ Z. Set hj = dimκ(s) H
j(Xs,OXs). After shrinking

S we can represent E by a complex
OS → O⊕h1

S → O⊕h2
S → . . .

see More on Algebra, Lemma 15.75.6 (strictly speaking this also uses Derived Cat-
egories of Schemes, Lemmas 36.3.5 and 36.10.7). Similarly, we may assume Ei is
represented by a complex

OS → O
⊕hi,1
S → O⊕hi,2

S → . . .

where hi,j = dimκ(s) H
j(Xi,s,OXi,s). By functoriality of cohomology we have a

map
E −→ Ei

https://stacks.math.columbia.edu/tag/0BF2
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in D(OS) whose formation commutes with change of base. Since the complex
representing E is a finite complex of finite free modules and since S is affine, we
can choose a map of complexes

OS
d
//

ai

��

O⊕h1
S

//

bi
��

O⊕h2
S

//

ci
��

. . .

OS
di // O⊕hi,1

S
// O⊕hi,2

S
// . . .

representing the given map E → Ei. Since s ∈ Z we see that the trivializing
section of Ls pulls back to a trivializing section of Li,s = OXi,s . Thus ai ⊗ κ(s) is
an isomorphism, hence after shrinking S we see that ai is an isomorphism. Finally,
we use the hypothesis that H1(Xs,O) →

⊕
i=1,...,nH

1(Xi,s,O) is injective, to see
that there exists a h1 × h1 minor of the matrix defining ⊕bi which maps to a
nonzero element in κ(s). Hence after shrinking S we may assume that (b1, . . . , bn) :
Oh1
S →

⊕
i=1,...,nO

hi,1
S is injective. However, since Li = OXi we see that di = 0

for i = 1, . . . n. It follows that d = 0 because (b1, . . . , bn) ◦ d = (⊕di) ◦ (a1, . . . , an).
In this way we see that the trivializing section of Ls lifts to a section of L over X.
A straightforward topological argument (omitted) shows that this means that L is
trivial after possibly shrinking S a bit further. □

Lemma 37.33.7.0BF3 Let f : X → S and g : Y → S be morphisms of schemes satisfying
the hypotheses of Lemma 37.33.1. Let σ : S → X and τ : S → Y be sections of
f and g. Let s ∈ S. Let L be an invertible sheaf on X ×S Y . If (1 × τ)∗L on X,
(σ× 1)∗L on Y , and L|(X×SY )s are trivial, then there is an open neighbourhood U
of s such that L is trivial over (X ×S Y )U .

Proof. By Künneth (Varieties, Lemma 33.29.1) the map
H1(Xs ×Spec(κ(s)) Ys,O)→ H1(Xs,O)⊕H1(Ys,O)

is injective. Thus we may apply Lemma 37.33.6 to the two morphisms
1× τ : X → X ×S Y and σ × 1 : Y → X ×S Y

to conclude. □

Theorem 37.33.8 (Theorem of the cube).0BF4 Let S be a scheme. Let X, Y , and Z
be schemes over S. Let x : S → X and y : S → Y be sections of the structure
morphisms. Let L be an invertible module on X ×S Y ×S Z. If

(1) X → S and Y → S are flat, proper morphisms of finite presentation with
geometrically integral fibres,

(2) the pullbacks of L by x × idY × idZ and idX × y × idZ are trivial over
Y ×S Z and X ×S Z,

(3) there is a point z ∈ Z such that L restricted to X ×S Y ×S z is trivial,
and

(4) Z is connected,
then L is trivial.

An often used special case is the following. Let k be a field. Let X,Y, Z be varieties
with k-rational points x, y, z. Let L be an invertible module on X × Y × Z. If

(1) L is trivial over x× Y × Z, X × y × Z, and X × Y × z, and
(2) X and Y are geometrically integral and proper over k,

https://stacks.math.columbia.edu/tag/0BF3
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then L is trivial.

Proof. Observe that the morphism X ×S Y → S is a flat, proper morphism of
finite presentation whose geometrically integral fibres (see Varieties, Lemmas 33.9.2,
33.8.4, and 33.6.7 for the statement about the fibres). By Derived Categories of
Schemes, Lemma 36.32.6 we see that the pushforward of the structure sheaf by
X → S, Y → S, or X ×S Y → S is the structure sheaf of S and the same remains
true after any base change. Thus we may apply Lemma 37.33.1 to the morphism

p : X ×S Y ×S Z −→ Z

and the invertible module L to get a “universal” locally closed subscheme Z ′ ⊂ Z
such that L|X×SY×SZ′ is the pullback of an invertible module N on Z ′. The
existence of z shows that Z ′ is nonempty. By Lemma 37.33.4 we see that Z ′ ⊂ Z
is a closed subscheme. Let z′ ∈ Z ′ be a point. Observe that we may write p as the
product morphism

(X ×S Z)×Z (Y ×S Z) −→ Z

Hence we may apply Lemma 37.33.7 to the morphism p, the point z′, and the
sections σ : Z → X ×S Z and τ : Z → Y ×S Z given by x and y. We conclude
that Z ′ is open. Hence Z ′ = Z and L = p∗N for some invertible module N on Z.
Pulling back via x × y × idZ : Z → X ×S Y ×S Z we obtain on the one hand N
and on the other hand we obtain the trivial invertible module by assumption (2).
Thus N = OZ and the proof is complete. □

37.34. Limit arguments

05FA Some lemmas involving limits of schemes, and Noetherian approximation. We stick
mostly to the affine case. Some of these lemmas are special cases of lemmas in the
chapter on limits.

Lemma 37.34.1.05FB Let f : X → S be a morphism of affine schemes, which is of finite
presentation. Then there exists a cartesian diagram

X0

f0

��

X
g
oo

f

��
S0 Soo

such that
(1) X0, S0 are affine schemes,
(2) S0 of finite type over Z,
(3) f0 is of finite type.

Proof. Write S = Spec(A) and X = Spec(B). As f is of finite presentation we see
that B is of finite presentation as an A-algebra, see Morphisms, Lemma 29.21.2.
Thus the lemma follows from Algebra, Lemma 10.127.18. □

Lemma 37.34.2.05FC Let f : X → S be a morphism of affine schemes, which is of
finite presentation. Let F be a quasi-coherent OX -module of finite presentation.
Then there exists a diagram as in Lemma 37.34.1 such that there exists a coherent
OX0 -module F0 with g∗F0 = F .

https://stacks.math.columbia.edu/tag/05FB
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Proof. Write S = Spec(A), X = Spec(B), and F = M̃ . As f is of finite presentation
we see that B is of finite presentation as an A-algebra, see Morphisms, Lemma
29.21.2. As F is of finite presentation overOX we see thatM is of finite presentation
as a B-module, see Properties, Lemma 28.16.2. Thus the lemma follows from
Algebra, Lemma 10.127.18. □

Lemma 37.34.3.05FD Let f : X → S be a morphism of affine schemes, which is of finite
presentation. Let F be a quasi-coherent OX -module of finite presentation and flat
over S. Then we may choose a diagram as in Lemma 37.34.2 and sheaf F0 such
that in addition F0 is flat over S0.

Proof. Write S = Spec(A), X = Spec(B), and F = M̃ . As f is of finite presentation
we see that B is of finite presentation as an A-algebra, see Morphisms, Lemma
29.21.2. As F is of finite presentation overOX we see thatM is of finite presentation
as a B-module, see Properties, Lemma 28.16.2. As F is flat over S we see that
M is flat over A, see Morphisms, Lemma 29.25.2. Thus the lemma follows from
Algebra, Lemma 10.168.1. □

Lemma 37.34.4.05FE Let f : X → S be a morphism of affine schemes, which is of finite
presentation and flat. Then there exists a diagram as in Lemma 37.34.1 such that
in addition f0 is flat.

Proof. This is a special case of Lemma 37.34.3. □

Lemma 37.34.5.05FF Let f : X → S be a morphism of affine schemes, which is smooth.
Then there exists a diagram as in Lemma 37.34.1 such that in addition f0 is smooth.

Proof. Write S = Spec(A), X = Spec(B), and as f is smooth we see that B is
smooth as an A-algebra, see Morphisms, Lemma 29.34.2. Hence the lemma follows
from Algebra, Lemma 10.138.14. □

Lemma 37.34.6.05FG Let f : X → S be a morphism of affine schemes, which is of finite
presentation with geometrically reduced fibres. Then there exists a diagram as in
Lemma 37.34.1 such that in addition f0 has geometrically reduced fibres.

Proof. Apply Lemma 37.34.1 to get a cartesian diagram

X0

f0

��

X
g
oo

f

��
S0 S

hoo

of affine schemes with X0 → S0 a finite type morphism of schemes of finite type over
Z. By Lemma 37.26.5 the set E ⊂ S0 of points where the fibre of f0 is geometrically
reduced is a constructible subset. By Lemma 37.26.2 we have h(S) ⊂ E. Write
S0 = Spec(A0) and S = Spec(A). Write A = colimiAi as a direct colimit of
finite type A0-algebras. By Limits, Lemma 32.4.10 we see that Spec(Ai) → S0
has image contained in E for some i. After replacing S0 by Spec(Ai) and X0 by
X0 ×S0 Spec(Ai) we see that all fibres of f0 are geometrically reduced. □

Lemma 37.34.7.05FH Let f : X → S be a morphism of affine schemes, which is of finite
presentation with geometrically irreducible fibres. Then there exists a diagram as
in Lemma 37.34.1 such that in addition f0 has geometrically irreducible fibres.
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Proof. Apply Lemma 37.34.1 to get a cartesian diagram

X0

f0

��

X
g
oo

f

��
S0 S

hoo

of affine schemes with X0 → S0 a finite type morphism of schemes of finite type over
Z. By Lemma 37.27.7 the set E ⊂ S0 of points where the fibre of f0 is geometrically
irreducible is a constructible subset. By Lemma 37.27.2 we have h(S) ⊂ E. Write
S0 = Spec(A0) and S = Spec(A). Write A = colimiAi as a direct colimit of
finite type A0-algebras. By Limits, Lemma 32.4.10 we see that Spec(Ai) → S0
has image contained in E for some i. After replacing S0 by Spec(Ai) and X0 by
X0 ×S0 Spec(Ai) we see that all fibres of f0 are geometrically irreducible. □

Lemma 37.34.8.05FI Let f : X → S be a morphism of affine schemes, which is of finite
presentation with geometrically connected fibres. Then there exists a diagram as
in Lemma 37.34.1 such that in addition f0 has geometrically connected fibres.

Proof. Apply Lemma 37.34.1 to get a cartesian diagram

X0

f0

��

X
g
oo

f

��
S0 S

hoo

of affine schemes with X0 → S0 a finite type morphism of schemes of finite type over
Z. By Lemma 37.28.6 the set E ⊂ S0 of points where the fibre of f0 is geometrically
connected is a constructible subset. By Lemma 37.28.2 we have h(S) ⊂ E. Write
S0 = Spec(A0) and S = Spec(A). Write A = colimiAi as a direct colimit of
finite type A0-algebras. By Limits, Lemma 32.4.10 we see that Spec(Ai) → S0
has image contained in E for some i. After replacing S0 by Spec(Ai) and X0 by
X0 ×S0 Spec(Ai) we see that all fibres of f0 are geometrically connected. □

Lemma 37.34.9.05FJ Let d ≥ 0 be an integer. Let f : X → S be a morphism of affine
schemes, which is of finite presentation all of whose fibres have dimension d. Then
there exists a diagram as in Lemma 37.34.1 such that in addition all fibres of f0
have dimension d.

Proof. Apply Lemma 37.34.1 to get a cartesian diagram

X0

f0

��

X
g
oo

f

��
S0 S

hoo

of affine schemes with X0 → S0 a finite type morphism of schemes of finite type
over Z. By Lemma 37.30.3 the set E ⊂ S0 of points where the fibre of f0 has
dimension d is a constructible subset. By Lemma 37.30.2 we have h(S) ⊂ E. Write
S0 = Spec(A0) and S = Spec(A). Write A = colimiAi as a direct colimit of
finite type A0-algebras. By Limits, Lemma 32.4.10 we see that Spec(Ai) → S0
has image contained in E for some i. After replacing S0 by Spec(Ai) and X0 by
X0 ×S0 Spec(Ai) we see that all fibres of f0 have dimension d. □
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Lemma 37.34.10.05FK Let f : X → S be a morphism of affine schemes, which is standard
syntomic (see Morphisms, Definition 29.30.1). Then there exists a diagram as in
Lemma 37.34.1 such that in addition f0 is standard syntomic.

Proof. This lemma is a copy of Algebra, Lemma 10.136.11. □

Lemma 37.34.11.05FL (Noetherian approximation and combining properties.) Let P ,
Q be properties of morphisms of schemes which are stable under base change. Let
f : X → S be a morphism of finite presentation of affine schemes. Assume we can
find cartesian diagrams

X1

f1

��

Xoo

f

��
S1 Soo

and

X2

f2

��

Xoo

f

��
S2 Soo

of affine schemes, with S1, S2 of finite type over Z and f1, f2 of finite type such that
f1 has property P and f2 has property Q. Then we can find a cartesian diagram

X0

f0

��

Xoo

f

��
S0 Soo

of affine schemes with S0 of finite type over Z and f0 of finite type such that f0 has
both property P and property Q.

Proof. The given pair of diagrams correspond to cocartesian diagrams of rings
B1 // B

A1

OO

// A

OO

and

B2 // B

A2

OO

// A

OO

Let A0 ⊂ A be a finite type Z-subalgebra of A containing the image of both A1 → A
and A2 → A. Such a subalgebra exists because by assumption both A1 and A2 are
of finite type over Z. Note that the rings B0,1 = B1 ⊗A1 A0 and B0,2 = B2 ⊗A2 A0
are finite type A0-algebras with the property that B0,1⊗A0 A

∼= B ∼= B0,2⊗A0 A as
A-algebras. As A is the directed colimit of its finite type A0-subalgebras, by Limits,
Lemma 32.10.1 we may assume after enlarging A0 that there exists an isomorphism
B0,1 ∼= B0,2 as A0-algebras. Since properties P and Q are assumed stable under
base change we conclude that setting S0 = Spec(A0) and

X0 = X1 ×S1 S0 = Spec(B0,1) ∼= Spec(B0,2) = X2 ×S2 S0

works. □

37.35. Étale neighbourhoods

02LD It turns out that some properties of morphisms are easier to study after doing an
étale base change. It is convenient to introduce the following terminology.

Definition 37.35.1.02LE Let S be a scheme. Let s ∈ S be a point.
(1) An étale neighbourhood of (S, s) is a pair (U, u) together with an étale

morphism of schemes φ : U → S such that φ(u) = s.
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(2) A morphism of étale neighbourhoods f : (V, v)→ (U, u) of (S, s) is simply
a morphism of S-schemes f : V → U such that f(v) = u.

(3) An elementary étale neighbourhood is an étale neighbourhood φ : (U, u)→
(S, s) such that κ(s) = κ(u).

The notion of an elementary étale neighbourhood has many different names in the
literature, for example these are sometimes called “étale neighbourhoods” ([Mil80,
Page 36] or “strongly étale” ([KPR75, Page 108]). Here we follow the convention
of the paper [GR71] by calling them elementary étale neighbourhoods.
If f : (V, v) → (U, u) is a morphism of étale neighbourhoods, then f is automat-
ically étale, see Morphisms, Lemma 29.36.18. Hence it turns (V, v) into an étale
neighbourhood of (U, u). Of course, since the composition of étale morphisms is
étale (Morphisms, Lemma 29.36.3) we see that conversely any étale neighbourhood
(V, v) of (U, u) is an étale neighbourhood of (S, s) as well. We also remark that
if U ⊂ S is an open neighbourhood of s, then (U, s) → (S, s) is an étale neigh-
bourhood. This follows from the fact that an open immersion is étale (Morphisms,
Lemma 29.36.9). We will use these remarks without further mention throughout
this section.
Note that κ(u)/κ(s) is a finite separable extension if (U, u) → (S, s) is an étale
neighbourhood, see Morphisms, Lemma 29.36.15.

Lemma 37.35.2.02LF Let S be a scheme. Let s ∈ S. Let k/κ(s) be a finite separable
field extension. Then there exists an étale neighbourhood (U, u)→ (S, s) such that
the field extension κ(u)/κ(s) is isomorphic to k/κ(s).

Proof. We may assume S is affine. In this case the lemma follows from Algebra,
Lemma 10.144.3. □

Lemma 37.35.3.057A Let S be a scheme, and let s be a point of S. The category of
étale neighborhoods has the following properties:

(1) Let (Ui, ui)i=1,2 be two étale neighborhoods of s in S. Then there exists a
third étale neighborhood (U, u) and morphisms (U, u)→ (Ui, ui), i = 1, 2.

(2) Let h1, h2 : (U, u) → (U ′, u′) be two morphisms between étale neigh-
borhoods of s. Assume h1, h2 induce the same map κ(u′) → κ(u) of
residue fields. Then there exist an étale neighborhood (U ′′, u′′) and a
morphism h : (U ′′, u′′)→ (U, u) which equalizes h1 and h2, i.e., such that
h1 ◦ h = h2 ◦ h.

Proof. For part (1), consider the fibre product U = U1 ×S U2. It is étale over
both U1 and U2 because étale morphisms are preserved under base change, see
Morphisms, Lemma 29.36.4. There is a point of U mapping to both u1 and u2 for
example by the description of points of a fibre product in Schemes, Lemma 26.17.5.
For part (2), define U ′′ as the fibre product

U ′′ //

��

U

(h1,h2)
��

U ′ ∆ // U ′ ×S U ′.

Since h1 and h2 induce the same map of residue fields κ(u′)→ κ(u) there exists a
point u′′ ∈ U ′′ lying over u′ with κ(u′′) = κ(u′). In particular U ′′ ̸= ∅. Moreover,
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since U ′ is étale over S, so is the fibre product U ′ ×S U ′ (see Morphisms, Lemmas
29.36.4 and 29.36.3). Hence the vertical arrow (h1, h2) is étale by Morphisms,
Lemma 29.36.18. Therefore U ′′ is étale over U ′ by base change, and hence also
étale over S (because compositions of étale morphisms are étale). Thus (U ′′, u′′) is
a solution to the problem. □

Lemma 37.35.4.057B Let S be a scheme, and let s be a point of S. The category
of elementary étale neighborhoods of (S, s) is cofiltered (see Categories, Definition
4.20.1).

Proof. This is immediate from the definitions and Lemma 37.35.3. □

Lemma 37.35.5.05KS Let S be a scheme. Let s ∈ S. Then we have

OhS,s = colim(U,u)O(U)

where the colimit is over the filtered category which is opposite to the category of
elementary étale neighbourhoods (U, u) of (S, s).

Proof. Let Spec(A) ⊂ S be an affine neighbourhood of s. Let p ⊂ A be the
prime ideal corresponding to s. With these choices we have canonical isomorphisms
OS,s = Ap and κ(s) = κ(p). A cofinal system of elementary étale neighbourhoods
is given by those elementary étale neighbourhoods (U, u) such that U is affine and
U → S factors through Spec(A). In other words, we see that the right hand side
is equal to colim(B,q) B where the colimit is over étale A-algebras B endowed with
a prime q lying over p with κ(p) = κ(q). Thus the lemma follows from Algebra,
Lemma 10.155.7. □

We can lift étale neighbourhoods of points on fibres to the total space.

Lemma 37.35.6.0CAS Let X → S be a morphism of schemes. Let x ∈ X with image
s ∈ S. Let (V, v)→ (Xs, x) be an étale neighbourhood. Then there exists an étale
neighbourhood (U, u)→ (X,x) such that there exists a morphism (Us, u)→ (V, v)
of étale neighbourhoods of (Xs, x) which is an open immersion.

Proof. We may assume X, V , and S affine. Say the morphism X → S is given by
A→ B the point x by a prime q ⊂ B, the point s by p = A∩ q, and the morphism
V → Xs by B ⊗A κ(p) → C. Since κ(p) is a localization of A/p there exists an
f ∈ A, f ̸∈ p and an étale ring map B ⊗A (A/p)f → D such that

C = (B ⊗A κ(p))⊗B⊗A(A/p)f D

See Algebra, Lemma 10.143.3 part (9). After replacing A by Af and B by Bf
we may assume D is étale over B ⊗A A/p = B/pB. Then we can apply Algebra,
Lemma 10.143.10. This proves the lemma. □

37.36. Étale neighbourhoods and branches

0CB2 The number of (geometric) branches of a scheme at a point was defined in Prop-
erties, Section 28.15. In Varieties, Section 33.40 we related this to fibres of the
normalization morphism. In this section we discuss a characterization of this num-
ber in terms of étale neighbourhoods.
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Lemma 37.36.1.0CB3 Let R = colimRi be colimit of a directed system of rings whose
transition maps are faithfully flat. Then the number of minimal primes of R taken
as an element of {0, 1, 2, . . . ,∞} is the supremum of the numbers of minimal primes
of the Ri.

Proof. If A → B is a flat ring map, then Spec(B) → Spec(A) maps minimal
primes to minimal primes by going down (Algebra, Lemma 10.39.19). If A → B
is faithfully flat, then every minimal prime is the image of a minimal prime (by
Algebra, Lemma 10.39.16 and 10.30.7). Hence the number of minimal primes of Ri
is ≥ the number of minimal primes of Ri′ if i ≤ i′. By Algebra, Lemma 10.39.20
each of the maps Ri → R is faithfully flat and we also see that the number of
minimal primes of R is ≥ the number of minimal primes of Ri. Finally, suppose
that q1, . . . , qn are pairwise distinct minimal primes of R. Then we can find an
i such that Ri ∩ q1, . . . , Ri ∩ qn are pairwise distinct (as sets and hence as prime
ideals). This implies the lemma. □

Lemma 37.36.2.0CB4 Let X be a scheme and x ∈ X a point. Then
(1) the number of branches of X at x is equal to the supremum of the number

of irreducible components of U passing through u taken over elementary
étale neighbourhoods (U, u)→ (X,x),

(2) the number of geometric branches of X at x is equal to the supremum of
the number of irreducible components of U passing through u taken over
étale neighbourhoods (U, u)→ (X,x),

(3) X is unibranch at x if and only if for every elementary étale neighbourhood
(U, u) → (X,x) there is exactly one irreducible component of U passing
through u, and

(4) X is geometrically unibranch at x if and only if for every étale neigh-
bourhood (U, u) → (X,x) there is exactly one irreducible component of
U passing through u.

Proof. Parts (3) and (4) follow from parts (1) and (2) via Properties, Lemma
28.15.6.
Proof of (1). Let Spec(A) be an affine open neighbourhood of x and let p ⊂ A be
the prime ideal corresponding to x. We may replace X by Spec(A) and it suffices
to consider affine elementary étale neighbourhoods (U, u) in the supremum as they
form a cofinal subsystem. Recall that the henselization Ahp is the colimit of the
rings Bq over the category of pairs (B, q) where B is an étale A-algebra and q is
a prime lying over p with κ(q) = κ(p), see Algebra, Lemma 10.155.7. These pairs
(B, q) correspond exactly to the affine elementary étale neighbourhoods (U, u) by
the correspondence between rings and affine schemes. Observe that irreducible
components of Spec(B) passing through q are exactly the minimal prime ideals of
Bq. The number of minimal primes of Ahp is the number of branches of X at x by
Properties, Definition 28.15.4. Observe that the transition maps Bq → B′

q′ in the
system are all flat. Since a flat local ring map is faithfully flat (Algebra, Lemma
10.39.17) we see that the lemma follows from Lemma 37.36.1.
Proof of (2). The proof is the same as the proof of (1), except that we use Algebra,
Lemma 10.155.11. There is a tiny difference: given a separable algebraic closure κsep
of κ(x) for every étale neighbourhood (U, u) we can choose a κ(x)-embedding ϕ :
κ(u) → κsep because κ(u)/κ(x) is finite separable (Morphisms, Lemma 29.36.15).
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Hence we can look at the supremum over all triples (U, u, ϕ) where (U, u)→ (X,x)
is an affine étale neighbourhood and ϕ : κ(u) → κsep is a κ(x)-embedding. These
triples correspond exactly to the triples in Algebra, Lemma 10.155.11 and the rest
of the proof is exactly the same. □

We will need a relative variant of the lemma above.
Lemma 37.36.3.0CB5 Let X → S be a morphism of schemes and x ∈ X a point with
image s. Then

(1) the number of branches of the fibre Xs at x is equal to the supremum of
the number of irreducible components of the fibre Us passing through u
taken over elementary étale neighbourhoods (U, u)→ (X,x),

(2) the number of geometric branches of the fibre Xs at x is equal to the
supremum of the number of irreducible components of the fibre Us passing
through u taken over étale neighbourhoods (U, u)→ (X,x),

(3) the fibre Xs is unibranch at x if and only if for every elementary étale
neighbourhood (U, u)→ (X,x) there is exactly one irreducible component
of the fibre Us passing through u, and

(4) X is geometrically unibranch at x if and only if for every étale neighbour-
hood (U, u) → (X,x) there is exactly one irreducible component of Us
passing through u.

Proof. Combine Lemmas 37.36.2 and 37.35.6. □

Lemma 37.36.4.0DQ2 Let X → S be a smooth morphism of schemes. Let x ∈ X with
image s ∈ S. Then

(1) The number of geometric branches of X at x is equal to the number of
geometric branches of S at s.

(2) If κ(x)/κ(s) is a purely inseparable6 extension of fields, then number of
branches of X at x is equal to the number of branches of S at s.

Proof. Follows immediately from More on Algebra, Lemma 15.106.8 and the defi-
nitions. □

37.37. Unramified and étale morphisms

0GS7 Sometimes unramified morphisms are automatically étale.
Lemma 37.37.1.0GS8 Let f : X → Y be a morphism of schemes. Let x ∈ X with image
y ∈ Y . Assume

(1) Y is integral and geometrically unibranch at y,
(2) f is locally of finite type,
(3) there is a specialization x′ ⇝ x such that f(x′) is the generic point of Y ,
(4) f is unramified at x.

Then f is étale at x.
Proof. We may replace X and Y by suitable affine open neighbourhoods of x and
y. Then Y is the spectrum of a domain A and X is the spectrum of a finite type A-
algebra B. Let q ⊂ B be the prime ideal corresponding to x and p ⊂ A the prime
ideal corresponding to y. The local ring Ap = OY,y is geometrically unibranch.

6In fact, it would suffice if κ(x) is geometrically irreducible over κ(s). If we ever need this
we will add a detailed proof.
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The ring map A→ B is unramified at q. Also, the point x′ in (3) corresponds to a
prime ideal q′ ⊂ q such that A ∩ q′ = (0). It follows that Ap → Bq is injective. We
conclude by More on Algebra, Lemma 15.107.2. □

Lemma 37.37.2.0GS9 [Gro71, Expose I,
Corollary 9.11]

Let f : X → Y be a morphism of schemes. Assume
(1) Y is integral and geometrically unibranch,
(2) at least one irreducible component of X dominates Y ,
(3) f is unramified, and
(4) X is connected.

Then f is étale and X is irreducible.

Proof. Let X ′ ⊂ X be the irreducible component which dominates Y . This means
that the generic point of X ′ maps to the generic point of Y (see for example
Morphisms, Lemma 29.8.6). By Lemma 37.37.1 we see that f is étale at every point
of X ′. In particular, the open subscheme U ⊂ X where f is étale contains X ′. Note
that every quasi-compact open of U has finitely many irreducible components, see
Descent, Lemma 35.16.3. On the other hand since Y is geometrically unibranch
and U is étale over Y , the scheme U is geometrically unibranch. In particular,
through every point of U there passes at most one irreducible component. A simple
topological argument now shows that X ′ ⊂ U is both open and closed. Then of
course X ′ is open and closed in X and by connectedness we find X = U = X ′ as
desired. □

Lemma 37.37.3.0GSA Let f : X → Y and g : Y → Z be morphisms of schemes. Let
x ∈ X with image y ∈ Y . Assume

(1) Y is integral and geometrically unibranch at y,
(2) f is locally of finite type,
(3) g ◦ f is étale at x,
(4) there is a specialization x′ ⇝ x such that f(x′) is the generic point of Y .

Then f is étale at x and g is étale at y.

Proof. The morphism f is unramified at x by Morphisms, Lemmas 29.35.16 and
29.36.5. Hence f is étale at x by Lemma 37.37.1. Then by étale descent we see
that g is étale at y, see for example Descent, Lemma 35.14.4. □

Lemma 37.37.4.0GSB Let f : X → Y and g : Y → Z be morphisms of schemes. Assume
(1) Y is integral and geometrically unibranch,
(2) f is locally of finite type,
(3) g ◦ f is étale,
(4) every irreducible component of X dominates Y .

Then f is étale and g is étale at every point in the image of f .

Proof. Immediate from the pointwise version Lemma 37.37.3. □

37.38. Slicing smooth morphisms

055S In this section we explain a result that roughly states that smooth coverings of a
scheme S can be refined by étale coverings. The technique to prove this relies on a
slicing argument.

Lemma 37.38.1.057C Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Let h ∈ mx ⊂ OX,x. Assume
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(1) f is smooth at x, and
(2) the image dh of dh in

ΩXs/s,x ⊗OXs,x
κ(x) = ΩX/S,x ⊗OX,x

κ(x)
is nonzero.

Then there exists an affine open neighbourhood U ⊂ X of x such that h comes
from h ∈ Γ(U,OU ) and such that D = V (h) is an effective Cartier divisor in U
with x ∈ D and D → S smooth.

Proof. As f is smooth at x we may assume, after replacing X by an open neigh-
bourhood of x that f is smooth. In particular we see that f is flat and locally
of finite presentation. By Lemma 37.23.1 we already know there exists an open
neighbourhood U ⊂ X of x such that h comes from h ∈ Γ(U,OU ) and such that
D = V (h) is an effective Cartier divisor in U with x ∈ D and D → S flat and of
finite presentation. By Morphisms, Lemma 29.32.15 we have a short exact sequence

CD/U → i∗ΩU/S → ΩD/S → 0
where i : D → U is the closed immersion and CD/U is the conormal sheaf of D
in U . As D is an effective Cartier divisor cut out by h ∈ Γ(U,OU ) we see that
CD/U = h · OS . Since U → S is smooth the sheaf ΩU/S is finite locally free, hence
its pullback i∗ΩU/S is finite locally free also. The first arrow of the sequence maps
the free generator h to the section dh|D of i∗ΩU/S which has nonzero value in the
fibre ΩU/S,x ⊗ κ(x) by assumption. By right exactness of ⊗κ(x) we conclude that

dimκ(x)
(
ΩD/S,x ⊗ κ(x)

)
= dimκ(x)

(
ΩU/S,x ⊗ κ(x)

)
− 1.

By Morphisms, Lemma 29.34.14 we see that ΩU/S,x ⊗ κ(x) can be generated by at
most dimx(Us) elements. By the displayed formula we see that ΩD/S,x⊗κ(x) can be
generated by at most dimx(Us)− 1 elements. Note that dimx(Ds) = dimx(Us)− 1
for example because dim(ODs,x) = dim(OUs,x) − 1 by Algebra, Lemma 10.60.13
(also Ds ⊂ Us is effective Cartier, see Divisors, Lemma 31.18.1) and then using
Morphisms, Lemma 29.28.1. Thus we conclude that ΩD/S,x⊗κ(x) can be generated
by at most dimx(Ds) elements and we conclude that D → S is smooth at x by
Morphisms, Lemma 29.34.14 again. After shrinking U we get that D → S is
smooth and we win. □

Lemma 37.38.2.057D Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Assume

(1) f is smooth at x, and
(2) the map

ΩXs/s,x ⊗OXs,x
κ(x) −→ Ωκ(x)/κ(s)

has a nonzero kernel.
Then there exists an affine open neighbourhood U ⊂ X of x and an effective Cartier
divisor D ⊂ U containing x such that D → S is smooth.

Proof. Write k = κ(s) and R = OXs,x. Denote m the maximal ideal of R and
κ = R/m so that κ = κ(x). As formation of modules of differentials commutes with
localization (see Algebra, Lemma 10.131.8) we have ΩXs/s,x = ΩR/k. By Algebra,
Lemma 10.131.9 there is an exact sequence

m/m2 d−→ ΩR/k ⊗R κ→ Ωκ/k → 0.

https://stacks.math.columbia.edu/tag/057D
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Hence if (2) holds, there exists an element h ∈ m such that dh is nonzero. Choose
a lift h ∈ OX,x of h and apply Lemma 37.38.1. □

Remark 37.38.3.057E The second condition in Lemma 37.38.2 is necessary even if x is a
closed point of a positive dimensional fibre. An example is the following: Let k be
a field of characteristic p > 0 which is imperfect. Let a ∈ k be an element which is
not a pth power. Let m = (x, yp − a) ⊂ k[x, y]. This corresponds to a closed point
w of X = A2

k. Set S = A1
k and let f : X → S be the morphism corresponding to

k[x]→ k[x, y]. Then there does not exist any commutative diagram

S′
h

//

g
��

X

f��
S

with g étale and w in the image of h. This is clear as the residue field extension
κ(w)/κ(f(w)) is purely inseparable, but for any s′ ∈ S′ with g(s′) = f(w) the
extension κ(s′)/κ(f(w)) would be separable.

If you assume the residue field extension is separable then the phenomenon of
Remark 37.38.3 does not happen. Here is the precise result.

Lemma 37.38.4.057F Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Assume

(1) f is smooth at x,
(2) the residue field extension κ(x)/κ(s) is separable, and
(3) x is not a generic point of Xs.

Then there exists an affine open neighbourhood U ⊂ X of x and an effective Cartier
divisor D ⊂ U containing x such that D → S is smooth.

Proof. Write k = κ(s) and R = OXs,x. Denote m the maximal ideal of R and
κ = R/m so that κ = κ(x). As formation of modules of differentials commutes
with localization (see Algebra, Lemma 10.131.8) we have ΩXs/s,x = ΩR/k. By
assumption (2) and Algebra, Lemma 10.140.4 the map

d : m/m2 −→ ΩR/k ⊗R κ(m)

is injective. Assumption (3) implies that m/m2 ̸= 0. Thus there exists an element
h ∈ m such that dh is nonzero. Choose a lift h ∈ OX,x of h and apply Lemma
37.38.1. □

The subscheme Z constructed in the following lemma is really a complete intersec-
tion in an affine open neighbourhood of x. If we ever need this we will explicitly
formulate a separate lemma stating this fact.

Lemma 37.38.5.057G Let f : X → S be a morphism of schemes. Let x ∈ X be a point
with image s ∈ S. Assume

(1) f is smooth at x, and
(2) x is a closed point of Xs and κ(s) ⊂ κ(x) is separable.

Then there exists an immersion Z → X containing x such that
(1) Z → S is étale, and
(2) Zs = {x} set theoretically.

https://stacks.math.columbia.edu/tag/057E
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Proof. We may and do replace S by an affine open neighbourhood of s. We may
and do replace X by an affine open neighbourhood of x such that X → S is
smooth. We will prove the lemma for smooth morphisms of affines by induction on
d = dimx(Xs).
The case d = 0. In this case we show that we may take Z to be an open neigh-
bourhood of x. Namely, if d = 0, then X → S is quasi-finite at x, see Morphisms,
Lemma 29.29.5. Hence there exists an affine open neighbourhood U ⊂ X such
that U → S is quasi-finite, see Morphisms, Lemma 29.56.2. Thus after replacing
X by U we see that X is quasi-finite and smooth over S, hence smooth of relative
dimension 0 over S, hence étale over S. Moreover, the fibre Xs is a finite discrete
set. Hence after replacing X by a further affine open neighbourhood of X we see
that f−1({s}) = {x} (because the topology on Xs is induced from the topology on
X, see Schemes, Lemma 26.18.5). This proves the lemma in this case.
Next, assume d > 0. Note that because x is a closed point of its fibre the extension
κ(x)/κ(s) is finite (by the Hilbert Nullstellensatz, see Morphisms, Lemma 29.20.3).
Thus we see Ωκ(x)/κ(s) = 0 as this holds for algebraic separable field extensions.
Thus we may apply Lemma 37.38.2 to find a diagram

D //

''

U //

  

X

��
S

with x ∈ D. Note that dimx(Ds) = dimx(Xs)−1 for example because dim(ODs,x) =
dim(OXs,x)− 1 by Algebra, Lemma 10.60.13 (also Ds ⊂ Xs is effective Cartier, see
Divisors, Lemma 31.18.1) and then using Morphisms, Lemma 29.28.1. Thus the
morphism D → S is smooth with dimx(Ds) = dimx(Xs) − 1 = d − 1. By induc-
tion hypothesis we can find an immersion Z → D as desired, which finishes the
proof. □

Lemma 37.38.6.055U Let f : X → S be a smooth morphism of schemes. Let s ∈ S be a
point in the image of f . Then there exists an étale neighbourhood (S′, s′)→ (S, s)
and a S-morphism S′ → X.

First proof of Lemma 37.38.6. By assumptionXs ̸= ∅. By Varieties, Lemma 33.25.6
there exists a closed point x ∈ Xs such that κ(x) is a finite separable field exten-
sion of κ(s). Hence by Lemma 37.38.5 there exists an immersion Z → X such that
Z → S is étale and such that x ∈ Z. Take (S′, s′) = (Z, x). □

Second proof of Lemma 37.38.6. Pick a point x ∈ X with f(x) = s. Choose a
diagram

X

��

Uoo

��

π
// Ad

V

~~
S Voo

with π étale, x ∈ U and V = Spec(R) affine, see Morphisms, Lemma 29.36.20. In
particular s ∈ V . The morphism π : U → Ad

V is open, see Morphisms, Lemma
29.36.13. Thus W = π(U)∩Ad

s is a nonempty open subset of Ad
s . Let w ∈W be a

point with κ(s) ⊂ κ(w) finite separable, see Varieties, Lemma 33.25.5. By Algebra,
Lemma 10.114.1 there exist d elements f1, . . . , fd ∈ κ(s)[x1, . . . , xd] which generate

https://stacks.math.columbia.edu/tag/055U
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the maximal ideal corresponding to w in κ(s)[x1, . . . , xd]. After replacing R by
a principal localization we may assume there are f1, . . . , fd ∈ R[x1, . . . , xd] which
map to f1, . . . , fd ∈ κ(s)[x1, . . . , xd]. Consider the R-algebra

R′ = R[x1, . . . , xd]/(f1, . . . , fd)
and set S′ = Spec(R′). By construction we have a closed immersion j : S′ → Ad

V

over V . By construction the fibre of S′ → V over s is a single point s′ whose residue
field is finite separable over κ(s). Let q′ ⊂ R′ be the corresponding prime. By Al-
gebra, Lemma 10.136.10 we see that (R′)g is a relative global complete intersection
over R for some g ∈ R′, g ̸∈ q. Thus S′ → V is flat and of finite presentation in a
neighbourhood of s′, see Algebra, Lemma 10.136.13. By construction the scheme
theoretic fibre of S′ → V over s is Spec(κ(s′)). Hence it follows from Morphisms,
Lemma 29.36.15 that S′ → S is étale at s′. Set

S′′ = U ×π,Ad
V
,j S

′.

By construction there exists a point s′′ ∈ S′′ which maps to s′ via the projection
p : S′′ → S′. Note that p is étale as the base change of the étale morphism π, see
Morphisms, Lemma 29.36.4. Choose a small affine neighbourhood S′′′ ⊂ S′′ of s′′

which maps into the nonempty open neighbourhood of s′ ∈ S′ where the morphism
S′ → S is étale. Then the étale neighbourhood (S′′′, s′′) → (S, s) is a solution to
the problem posed by the lemma. □

The following lemma shows that sheaves for the smooth topology are the same
thing as sheaves for the étale topology.

Lemma 37.38.7.055V Let S be a scheme. Let U = {Si → S}i∈I be a smooth covering of
S, see Topologies, Definition 34.5.1. Then there exists an étale covering V = {Tj →
S}j∈J (see Topologies, Definition 34.4.1) which refines (see Sites, Definition 7.8.1)
U .

Proof. For every s ∈ S there exists an i ∈ I such that s is in the image of Si → S.
By Lemma 37.38.6 we can find an étale morphism gs : Ts → S such that s ∈ gs(Ts)
and such that gs factors through Si → S. Hence {Ts → S} is an étale covering of
S that refines U . □

Lemma 37.38.8.0EY4 Let f : X → S be a smooth morphism of schemes. Then there
exists an étale covering {Ui → X}i∈I such that Ui → S factors as Ui → Vi → S
where Vi → S is étale and Ui → Vi is a smooth morphism of affine schemes, which
has a section, and has geometrically connected fibres.

Proof. Let s ∈ S. By Varieties, Lemma 33.25.6 the set of closed points x ∈ Xs

such that κ(x)/κ(s) is separable is dense in Xs. Thus it suffices to construct an
étale morphism U → X with x in the image such that U → S factors in the
manner described in the lemma. To do this, choose an immersion Z → X passing
through x such that Z → S is étale (Lemma 37.38.5). After replacing S by Z
and X by Z ×S X we see that we may assume X → S has a section σ : S → X
with σ(s) = x. Then we can first replace S by an affine open neighbourhood of
s and next replace X by an affine open neighbourhood of x. Then finally, we
consider the subset X0 ⊂ X of Section 37.29. By Lemmas 37.29.6 and 37.29.4 this
is a retrocompact open subscheme containing σ such that the fibres X0 → S are
geometrically connected. If X0 is not affine, then we choose an affine open U ⊂ X0

https://stacks.math.columbia.edu/tag/055V
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containing x. Since X0 → S is smooth, the image of U is open. Choose an affine
open neighbourhood V ⊂ S of s contained in σ−1(U) and in the image of U → S.
Finally, the reader sees that U ∩ f−1(V ) → V has all the desired properties. For
example U ∩f−1(V ) is equal to U×S V is affine as a fibre product of affine schemes.
Also, the geometric fibres of U ∩ f−1(V ) → V are nonempty open subschemes of
the irreducible fibres of X0 → S and hence connected. Some details omitted. □

37.39. Étale neighbourhoods and Artin approximation

0CAT In this section we prove results of the form: if two pointed schemes have isomorphic
complete local rings, then they have isomorphic étale neighbourhoods. We will rely
on Popescu’s theorem, see Smoothing Ring Maps, Theorem 16.12.1.

Lemma 37.39.1.0CAU Let S be a locally Noetherian scheme. Let X, Y be schemes locally
of finite type over S. Let x ∈ X and y ∈ Y be points lying over the same point
s ∈ S. Assume OS,s is a G-ring. Assume further we are given a local OS,s-algebra
map

φ : OY,y −→ O∧
X,x

For every N ≥ 1 there exists an elementary étale neighbourhood (U, u) → (X,x)
and an S-morphism f : U → Y mapping u to y such that the diagram

O∧
X,x

// O∧
U,u

OY,y
f♯u //

φ

OO

OU,u

OO

commutes modulo mNu .

Proof. The question is local on X hence we may assume X, Y , S are affine. Say
S = Spec(R), X = Spec(A), Y = Spec(B). Write B = R[x1, . . . , xn]/(f1, . . . , fm).
Let p ⊂ A be the prime ideal corresponding to x. The local ring OX,x = Ap is a
G-ring by More on Algebra, Proposition 15.50.10. The map φ is a map

B∧
q −→ A∧

p

where q ⊂ B is the prime corresponding to y. Let a1, . . . , an ∈ A∧
p be the images

of x1, . . . , xn via R[x1, . . . , xn] → B → B∧
q → A∧

p . Then we can apply Smoothing
Ring Maps, Lemma 16.13.4 to get an étale ring map A → A′ and a prime ideal
p′ ⊂ A′ and b1, . . . , bn ∈ A′ such that κ(p) = κ(p′), ai − bi ∈ (p′)N (A′

p′)∧, and
fj(b1, . . . , bn) = 0 for j = 1, . . . , n. This determines an R-algebra map B → A′ by
sending the class of xi to bi ∈ A′. This finishes the proof by taking U = Spec(A′)→
Spec(B) as the morphism f and u = p′. □

Lemma 37.39.2.0CAV Let S be a locally Noetherian scheme. Let X, Y be schemes locally
of finite type over S. Let x ∈ X and y ∈ Y be points lying over the same point
s ∈ S. Assume OS,s is a G-ring. Assume we have an OS,s-algebra isomorphism

φ : O∧
Y,y −→ O∧

X,x

between the complete local rings. Then for every N ≥ 1 there exists morphisms

(X,x)← (U, u)→ (Y, y)

https://stacks.math.columbia.edu/tag/0CAU
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of pointed schemes over S such that both arrows define elementary étale neighbour-
hoods and such that the diagram

O∧
U,u

O∧
Y,y

φ //

<<

O∧
X,x

bb

commutes modulo mNu .

Proof. We may assume N ≥ 2. Apply Lemma 37.39.1 to get (U, u) → (X,x) and
f : (U, u) → (Y, y). We claim that f is étale at u which will finish the proof. In
fact, we will show that the induced map O∧

Y,y → O∧
U,u is an isomorphism. Having

proved this, Lemma 37.12.1 will show that f is smooth at u and of course f is
unramified at u as well, so Morphisms, Lemma 29.36.5 tells us f is étale at u. For
a local ring (R,m) we set Grm(R) =

⊕
n≥0 m

n/mn+1. To prove the claim we look
at the induced diagram of graded rings

Grmu(OU,u)

Grmy (OY,y)
φ //

77

Grmx(OX,x)

gg

Since N ≥ 2 this diagram is actually commutative as the displayed graded algebras
are generated in degree 1! By assumption the lower arrow is an isomorphism.
By More on Algebra, Lemma 15.43.9 (for example) the map O∧

X,x → O∧
U,u is an

isomorphism and hence the north-west arrow in the diagram is an isomorphism.
We conclude that f induces an isomorphism Grmx(OX,x) → Grmy (OU,u). Using
induction and the short exact sequences

0→ Grnm(R)→ R/mn+1 → R/mn → 0

for both local rings we conclude (from the snake lemma) that f induces isomor-
phisms OY,y/mny → OU,u/mnu for all n which is what we wanted to show. □

Lemma 37.39.3.0GDX Let X → S, Y → T , x, s, y, t, σ, yσ, and φ be given as follows:
we have morphisms of schemes

X

��

Y

��
S T

with points

x

��

y

��
s t

Here S is locally Noetherian and T is of finite type over Z. The morphisms X → S
and Y → T are locally of finite type. The local ring OS,s is a G-ring. The map

σ : OT,t −→ O∧
S,s

is a local homomorphism. Set Yσ = Y ×T,σ Spec(O∧
S,s). Next, yσ is a point of Yσ

mapping to y and the closed point of Spec(O∧
S,s). Finally

φ : O∧
X,x −→ O∧

Yσ,yσ

https://stacks.math.columbia.edu/tag/0GDX
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is an isomorphism of O∧
S,s-algebras. In this situation there exists a commutative

diagram
X

��

Woo

��

// Y ×T,τ V //

zz

Y

��
S Voo τ // T

of schemes and points w ∈W , v ∈ V such that
(1) (V, v)→ (S, s) is an elementary étale neighbourhood,
(2) (W,w)→ (X,x) is an elementary étale neighbourhood, and
(3) τ(v) = t.

Let yτ ∈ Y ×T V correspond to yσ via the identification (Yσ)s = (Y ×T V )v. Then
(4) (W,w)→ (Y ×T,τ V, yτ ) is an elementary étale neighbourhood.

Proof. Denote Xσ = X ×S Spec(O∧
S,s) and xσ ∈ Xσ the unique point lying over x.

Observe that O∧
S,s is a G-ring by More on Algebra, Proposition 15.50.6. By Lemma

37.39.2 we can choose
(Xσ, xσ)← (U, u)→ (Yσ, yσ)

where both arrows are elementary étale neighbourhoods.
After replacing S by an open neighbourhood of s, we may assume S = Spec(R) is
affine. Since OS,s is a G-ring by Smoothing Ring Maps, Theorem 16.12.1 the ring
O∧
S,s is a filtered colimit of smooth R-algebras. Thus we can write

Spec(O∧
S,s) = limSi

as a directed limit of affine schemes Si smooth over S. Denote si ∈ Si the image
of the closed point of Spec(O∧

S,s). Observe that κ(s) = κ(si). Set Xi = X ×S Si
and denote xi ∈ Xi the unique point mapping to x. Note that κ(x) = κ(xi).
Since T is of finite type over Z by Limits, Proposition 32.6.1 we can choose an i
and a morphism σi : (Si, si) → (T, t) of pointed schemes whose composition with
Spec(O∧

S,s) → Si is equal to σ. Set Yi = Y ×T Si and denote yi the image of yσ.
Note that κ(yi) = κ(yσ). By Limits, Lemma 32.10.1 we can choose an i and a
diagram

Xi

  

Uioo

��

// Yi

~~
Si

whose base change to Spec(O∧
S,s) recovers Xσ ← U → Yσ. By Limits, Lemma

32.8.10 after increasing i we may assume the morphisms Xi ← Ui → Yi are étale.
Let ui ∈ Ui be the image of u. Then ui 7→ xi hence κ(x) = κ(xσ) = κ(u) ⊃
κ(ui) ⊃ κ(xi) = κ(x) and we see that κ(ui) = κ(xi). Hence (Xi, xi) ← (Ui, ui) is
an elementary étale neighbourhood. Since also κ(yi) = κ(yσ) = κ(u) we see that
also (Ui, ui)→ (Yi, yi) is an elementary étale neighbourhood.
At this point we have constructed a diagram

X

��

X ×S Sioo

$$

Uioo //

��

Y ×T Si //

{{

Y

��
S Sioo // T
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as in the statement of the lemma, except that Si → S is smooth. By Lemma 37.38.5
and after shrinking Si we can assume there exists a closed subscheme V ⊂ Si
passing through si such that V → S is étale. Setting W equal to the scheme
theoretic inverse image of V in Ui we conclude. □

We strongly encourage the reader to skip the rest of this section.

Lemma 37.39.4.0CAW Consider a diagram

X

��

Y

��
S Too

with points

x

��

y

��
s too

where S be a locally Noetherian scheme and the morphisms are locally of finite
type. Assume OS,s is a G-ring. Assume further we are given a local OS,s-algebra
map

σ : OT,t −→ O∧
S,s

and a local OS,s-algebra map

φ : OX,x −→ O∧
Yσ,yσ

where Yσ = Y ×T,σ Spec(O∧
S,s) and yσ is the unique point of Yσ lying over y. For

every N ≥ 1 there exists a commutative diagram

X

��

X ×S Voo

##

W
f
oo //

��

Y ×T,τ V //

zz

Y

��
S Voo τ // T

of schemes over S and points w ∈W , v ∈ V such that
(1) v 7→ s, τ(v) = t, f(w) = (x, v), and w 7→ (y, v),
(2) (V, v)→ (S, s) is an elementary étale neighbourhood,
(3) the diagram

O∧
S,s

// O∧
V,v

OT,t
τ♯v //

σ

OO

OV,v

OO

commutes module mNv ,
(4) (W,w)→ (Y ×T,τ V, (y, v)) is an elementary étale neighbourhood,
(5) the diagram

OX,x φ
// O∧

Yσ,yσ
// OYσ,yσ/mNyσ OY×T,τV,(y,v)/m

N
(y,v)

∼=
��

OX,x // OX×SV,(x,v)
f♯w // OW,w // OW,w/mNw

commutes. The equality comes from the fact that Yσ and Y ×T,τ V are
canonically isomorphic over OV,v/mNv = OS,s/mNs by parts (2) and (3).

https://stacks.math.columbia.edu/tag/0CAW
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Proof. After replacing X, S, T , Y by affine open subschemes we may assume the
diagram in the statement of the lemma comes from applying Spec to a diagram

A B

R

OO

// C

OO

with primes

pA pB

pR pC

of Noetherian rings and finite type ring maps. In this proof every ring E will be
a Noetherian R-algebra endowed with a prime ideal pE lying over pR and all ring
maps will be R-algebra maps compatible with the given primes. Moreover, if we
write E∧ we mean the completion of the localization of E at pE . We will also use
without further mention that an étale ring map E1 → E2 such that κ(pE1) = κ(pE2)
induces an isomorphism E∧

1 = E∧
2 by More on Algebra, Lemma 15.43.9.

With this notation σ and φ correspond to ring maps
σ : C → R∧ and φ : A −→ (B ⊗C,σ R∧)∧

Here is a picture

A

φ
--

B // B ⊗C,σ R∧ // (B ⊗C,σ R∧)∧

R //

OO

C
σ //

OO

R∧

OO 66

Observe that R∧ is a G-ring by More on Algebra, Proposition 15.50.6. Thus B⊗C,σ
R∧ is a G-ring by More on Algebra, Proposition 15.50.10. By Lemma 37.39.1
(translated into algebra) there exists an étale ring map B ⊗C,σ R∧ → B′ inducing
an isomorphism κ(pB⊗C,σR∧) → κ(pB′) and an R-algebra map A → B′ such that
the composition

A→ B′ → (B′)∧ = (B ⊗C,σ R∧)∧

is the same as φ modulo (p(B⊗C,σR∧)∧)N . Thus we may replace φ by this com-
position because the only way φ enters the conclusion is via the commutativity
requirement in part (5) of the statement of the lemma. Picture:

B′ // (B′)∧

A

66

B // B ⊗C,σ R∧ //

OO

(B ⊗C,σ R∧)∧

R //

OO

C
σ //

OO

R∧

OO 66

Next, we use that R∧ is a filtered colimit of smooth R-algebras (Smoothing Ring
Maps, Theorem 16.12.1) because RpR is a G-ring by assumption. Since C is of
finite presentation over R we get a factorization

C → R′ → R∧

for some R→ R′ smooth, see Algebra, Lemma 10.127.3. After increasing R′ we may
assume there exists an étale B ⊗C R′-algebra B′′ whose base change to B ⊗C,σ R∧

is B′, see Algebra, Lemma 10.143.3. Then B′ is the filtered colimit of these B′′
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and we conclude that after increasing R′ we may assume there is an R-algebra
map A → B′′ such that A → B′′ → B′ is the previously constructed map (same
reference as above). Picture

B′′ // B′ // (B′)∧

A

66

B // B ⊗C R′ //

OO

B ⊗C,σ R∧ //

OO

(B ⊗C,σ R∧)∧

R //

OO

C //

OO

R′ //

OO

R∧

OO 66

and
B′ = B′′ ⊗(B⊗CR′) (B ⊗C,σ R∧)

This means that we may replace C by R′, σ : C → R∧ by R′ → R∧, and B by B′′

so that we simplify to the diagram

A // B // B ⊗C,σ R∧

R //

OO

C
σ //

OO

R∧

OO

with φ equal to the composition of the horizontal arrows followed by the canonical
map from B ⊗C,σ R∧ to its completion. The final step in the proof is to apply
Lemma 37.39.1 (or its proof) one more time to Spec(C) and Spec(R) over Spec(R)
and the map C → R∧. The lemma produces a ring map C → D such that R→ D
is étale, such that κ(pR) = κ(pD), and such that

C → D → D∧ = R∧

is equal to σ : C → R∧ modulo (pR∧)N . Then we can take

V = Spec(D) and W = Spec(B ⊗C D)

as our solution to the problem posed by the lemma. Namely the diagram

A // B ⊗C,σ R∧ // B ⊗C,σ R∧/(pR∧)N B ⊗C D/(pD)N

A // A⊗R D // B ⊗R D // B ⊗C D/(pD)N

commutes because C → D → D∧ = R∧ is equal to σ modulo (pR∧)N . This proves
part (5) and the other properties are immediate from the construction. □

Lemma 37.39.5.0CAX Let T → S be finite type morphisms of Noetherian schemes.
Let t ∈ T map to s ∈ S and let σ : OT,t → O∧

S,s be a local OS,s-algebra map.
For every N ≥ 1 there exists a finite type morphism (T ′, t′) → (T, t) such that
σ factors through OT,t → OT ′,t′ and such that for every local OS,s-algebra map
σ′ : OT,t → O∧

S,s which factors through OT,t → OT ′,t′ the maps σ and σ′ agree
modulo mNs .
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Proof. We may assume S and T are affine. Say S = Spec(R) and T = Spec(C).
Let c1, . . . , cn ∈ C be generators of C as an R-algebra. Let p ⊂ R be the prime
ideal corresponding to s. Say p = (f1, . . . , fm). After replacing R by a principal
localization (to clear denominators in Rp) we may assume there exist r1, . . . , rn ∈ R
and ai,I ∈ O∧

S,s where I = (i1, . . . , im) with
∑
ij = N such that

σ(ci) = ri +
∑

I
ai,If

i1
1 . . . f imm

in O∧
S,s. Then we consider

C ′ = C[ti,I ]/
(
ci − ri −

∑
I
ti,If

i1
1 . . . f imm

)
with p′ = pC ′ +(ti,I) and factorization of σ : C → O∧

S,s through C ′ given by sending
ti,I to ai,I . Taking T ′ = Spec(C ′) works because any σ′ as in the statement of the
lemma will send ci to ri modulo the maximal ideal to the power N . □

Lemma 37.39.6.0CAY Let Y → T → S be finite type morphisms of Noetherian schemes.
Let t ∈ T map to s ∈ S and let σ : OT,t → O∧

S,s be a local OS,s-algebra map.
There exists a finite type morphism (T ′, t′) → (T, t) such that σ factors through
OT,t → OT ′,t′ and such that for every local OS,s-algebra map σ′ : OT,t → O∧

S,s

which factors through OT,t → OT ′,t′ the closed immersions
Y ×T,σ Spec(O∧

S,s) = Yσ ←− Yt −→ Yσ′ = Y ×T,σ′ Spec(O∧
S,s)

have isomorphic conormal algebras.

Proof. A useful observation is that κ(s) = κ(t) by the existence of σ. Observe that
the statement makes sense as the fibres of Yσ and Yσ′ over s ∈ Spec(O∧

S,s) are both
canonically isomorphic to Yt. We will think of the property “σ′ factors through
OT,t → OT ′,t′” as a constraint on σ′. If we have several such constraints, say
given by (T ′

i , t
′
i) → (T, t), i = 1, . . . , n then we can combined them by considering

(T ′
1 ×T . . . ×T T ′

n, (t′1, . . . , t′n)) → (T, t). We will use this without further mention
in the following.
By Lemma 37.39.5 we can assume that any σ′ as in the statement of the lemma is
the same as σ modulo m2

s. Note that the conormal algebra of Yt in Yσ is just the
quasi-coherent graded OYt-algebra⊕

n≥0
mnsOYσ/mn+1

s OYσ

and similarly for Yσ′ . Since σ and σ′ agree modulo m2
s we see that these two algebras

are the same in degrees 0 and 1. On the other hand, these conormal algebras are
generated in degree 1 over degree 0. Hence if there is an isomorphism extending
the isomorphism just constructed in degrees 0 and 1, then it is unique.
We may assume S and T are affine. Let Y = Y1 ∪ . . . ∪ Yn be an affine open
covering. If we can construct (T ′

i , t
′
i)→ (T, t) as in the lemma such that the desired

isomorphism (see previous paragraph) exists for Yi → T → S and σ, then these
glue by uniqueness to prove the result for Y → T . Thus we may assume Y is affine.
Write S = Spec(R), T = Spec(C), and Y = Spec(B). Choose a presentation
B = C[x1, . . . , xn]/(f1, . . . , fm). Denote R∧ = O∧

S,s. Let akj ∈ R∧[x1, . . . , xn] be
polynomials such that∑

j=1,...,m
akjσ(fj) = 0, for k = 1, . . . ,K
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is a set of generators for the module of relations among the σ(fj) ∈ R∧[x1, . . . , xn].
Thus we have an exact sequence
(37.39.6.1)

0CAZ R∧[x1, . . . , xn]⊕K → R∧[x1, . . . , xn]⊕m → R∧[x1, . . . , xn]→ B ⊗C,σ R∧ → 0
Let c be an integer which works in the Artin-Rees lemma for both the first and the
second map in this sequence and the ideal mR∧R∧[x1, . . . , xn] as defined in More
on Algebra, Section 15.4. Write

akj =
∑

I∈Ω
akj,Ix

I and fj =
∑

I∈Ω
fj,Ix

I

in multiindex notation where akj,I ∈ R∧, fj,I ∈ C, and Ω a finite set of multiindices.
Then we see that∑

j=1,...,m, I,I′∈Ω, I+I′=I′′
akj,Iσ(fj,I′) = 0, I ′′ a multiindex

in R∧. Thus we take
C ′ = C[tjk,I ]/

(∑
j=1,...,m, I,I′∈Ω, I+I′=I′′

tkj,Ifj,I′ , I ′′ a multiindex
)

Then σ factors through a map σ̃ : C ′ → R∧ sending tkj,I to ajk,I . Thus T ′ =
Spec(C ′) comes with a point t′ ∈ T ′ such that σ factors through OT,t → OT ′,t′ .
Let tkj =

∑
tkj,Ix

I in C ′[x1, . . . , xn]. Then we see that we have a complex
(37.39.6.2)

0CB0 C ′[x1, . . . , xn]⊕K → C ′[x1, . . . , xn]⊕m → C ′[x1, . . . , xn]→ B ⊗C C ′ → 0
which is exact at C ′[x1, . . . , xn] and whose base change by σ̃ gives (37.39.6.1).
By Lemma 37.39.5 we can find a further morphism (T ′′, t′′) → (T ′, t′) such that
σ̃ factors through OT ′,t′ → OT ′′,t′′ and such that if σ′ : C → R∧ factors through
OT ′′,t′′ , then the induced map σ̃′ : C ′ → R∧ agrees modulo mc+1

s with σ̃. Thus if
σ′ is such a map, then we obtain a complex

R∧[x1, . . . , xn]⊕K → R∧[x1, . . . , xn]⊕m → R∧[x1, . . . , xn]→ B ⊗C,σ′ R∧ → 0
over R∧[x1, . . . , xn] by applying σ̃′ to the polynomials tkj and fj . In other words,
this is the base change of the complex (37.39.6.2) by σ̃′. The matrices defining
this complex are congruent modulo mc+1

s to the matrices defining the complex
(37.39.6.1) because σ̃ and σ̃′ are congruent modulo mc+1

s . Since (37.39.6.1) is exact,
we can apply More on Algebra, Lemma 15.4.2 to conclude that

Grms(B ⊗C,σ′ R∧) ∼= Grms(B ⊗C,σ R∧)
as desired. □

Lemma 37.39.7.0CB1 With notation an assumptions as in Lemma 37.39.4 assume that
φ induces an isomorphism on completions. Then we can choose our diagram such
that f is étale.

Proof. We may assume N ≥ 2 and we may replace (T, t) with (T ′, t′) as in Lemma
37.39.6. Since (V, v) → (S, s) is an elementary étale neighbourhood, so is (X ×S
V, (x, v)) → (X,x). Thus OX,x → OX×SV,(x,v) induces an isomorphism on com-
pletions by More on Algebra, Lemma 15.43.9. We claim OX,x → OW,w induces an
isomorphism on completions. Having proved this, Lemma 37.12.1 will show that f
is smooth at w and of course f is unramified at u as well, so Morphisms, Lemma
29.36.5 tells us f is étale at w.
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First we use the commutativity in part (5) of Lemma 37.39.4 to see that for i ≤ N
there is a commutative diagram

Grimx(OX,x)
φ

// Grimyσ (O∧
Yσ,yσ

) Grim(y,v)
(OY×T,τV,(y,v))

∼=
��

Grimx(OX,x)
∼= // Grim(x,v)

(OX×SV,(x,v))
f♯w // Grimw(OW,w)

This implies that f ♯w defines an isomorphism κ(x)→ κ(w) on residue fields and an
isomorphism mx/m

2
x → mw/m

2
w on cotangent spaces. Hence f ♯w defines a surjection

O∧
X,x → O∧

W,w on complete local rings.
By Lemma 37.39.6 there is an isomorphism of Grms(O(Y×T,τV,(y,v)) with Grms(OYσ,yσ ).
This follows by taking stalks of the isomorphism of conormal sheaves at the point
y. Since our local rings are Noetherian taking associated graded with respect to ms
commutes with completion because completion with respect to an ideal is an exact
functor on finite modules over Noetherian rings. This produces the right vertical
isomorphism in the diagram of graded rings

Grms(O∧
W,w) Grms(O∧

(Y×T,τV,(y,v))oo

Grms(O∧
X,x) φ //

OO

Grms(O∧
Yσ,yσ

)

∼=

OO

We do not claim the diagram commutes. By the result of the previous paragraph
the left arrow is surjective. The other three arrows are isomorphisms. It follows
that the left arrow is a surjective map between isomorphic Noetherian rings. Hence
it is an isomorphism by Algebra, Lemma 10.31.10 (you can argue this directly using
Hilbert functions as well). In particular O∧

X,x → O∧
W,w must be injective as well as

surjective which finishes the proof. □

37.40. Finite free locally dominates étale

04HE In this section we explain a result that roughly states that étale coverings of a
scheme S can be refined by Zariski coverings of finite locally free covers of S.
Lemma 37.40.1.02LG Let S be a scheme. Let s ∈ S. Let f : (U, u) → (S, s) be an
étale neighbourhood. There exists an affine open neighbourhood s ∈ V ⊂ S and a
surjective, finite locally free morphism π : T → V such that for every t ∈ π−1(s)
there exists an open neighbourhood t ∈Wt ⊂ T and a commutative diagram

T

π

��

Wt
oo

ht

//

  

U

��
V // S

with ht(t) = u.
Proof. The problem is local on S hence we may replace S by any open neighbour-
hood of s. We may also replace U by an open neighbourhood of u. Hence, by
Morphisms, Lemma 29.36.14 we may assume that U → S is a standard étale mor-
phism of affine schemes. In this case the lemma (with V = S) follows from Algebra,
Lemma 10.144.5. □
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Lemma 37.40.2.02LH Let f : U → S be a surjective étale morphism of affine schemes.
There exists a surjective, finite locally free morphism π : T → S and a finite open
covering T = T1∪ . . .∪Tn such that each Ti → S factors through U → S. Diagram:∐

Ti

!!}}
T

π

""

U
f

||
S

where the south-west arrow is a Zariski-covering.
Proof. This is a restatement of Algebra, Lemma 10.144.6. □

Remark 37.40.3.02LI In terms of topologies Lemmas 37.40.1 and 37.40.2 mean the
following. Let S be any scheme. Let {fi : Ui → S} be an étale covering of S. There
exists a Zariski open covering S =

⋃
Vj , for each j a finite locally free, surjective

morphism Wj → Vj , and for each j a Zariski open covering {Wj,k → Wj} such
that the family {Wj,k → S} refines the given étale covering {fi : Ui → S}. What
does this mean in practice? Well, for example, suppose we have a descent problem
which we know how to solve for Zariski coverings and for fppf coverings of the form
{π : T → S} with π finite locally free and surjective. Then this descent problem
has an affirmative answer for étale coverings as well. This trick was used by Gabber
in his proof that Br(X) = Br′(X) for an affine scheme X, see [Hoo82].

37.41. Étale localization of quasi-finite morphisms

04HF Now we come to a series of lemmas around the theme “quasi-finite morphisms
become finite after étale localization”. The general idea is the following. Suppose
given a morphism of schemes f : X → S and a point s ∈ S. Let φ : (U, u)→ (S, s)
be an étale neighbourhood of s in S. Consider the fibre product XU = U ×SX and
the basic diagram

(37.41.0.1)02LJ

V //

!!

XU

��

// X

f

��
U

φ // S

where V ⊂ XU is open. Is there some standard model for the morphism fU : XU →
U , or for the morphism V → U for suitable opens V ? Of course the answer is no
in general. But for quasi-finite morphisms we can say something.
Lemma 37.41.1.02LK Let f : X → S be a morphism of schemes. Let x ∈ X. Set
s = f(x). Assume that

(1) f is locally of finite type, and
(2) x ∈ Xs is isolated7.

Then there exist
(a) an elementary étale neighbourhood (U, u)→ (S, s),
(b) an open subscheme V ⊂ XU (see 37.41.0.1)

7In the presence of (1) this means that f is quasi-finite at x, see Morphisms, Lemma 29.20.6.
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such that
(i) V → U is a finite morphism,
(ii) there is a unique point v of V mapping to u in U , and
(iii) the point v maps to x under the morphism XU → X, inducing κ(x) =

κ(v).
Moreover, for any elementary étale neighbourhood (U ′, u′) → (U, u) setting V ′ =
U ′ ×U V ⊂ XU ′ the triple (U ′, u′, V ′) satisfies the properties (i), (ii), and (iii) as
well.

Proof. Let Y ⊂ X, W ⊂ S be affine opens such that f(Y ) ⊂ W and such that
x ∈ Y . Note that x is also an isolated point of the fibre of the morphism f |Y : Y →
W . If we can prove the theorem for f |Y : Y →W , then the theorem follows for f .
Hence we reduce to the case where f is a morphism of affine schemes. This case is
Algebra, Lemma 10.145.2. □

In the preceding and following lemma we do not assume that the morphism f is
separated. This means that the opens V , Vi created in them are not necessarily
closed in XU . Moreover, if we choose the neighbourhood U to be affine, then each
Vi is affine, but the intersections Vi ∩ Vj need not be affine (in the nonseparated
case).

Lemma 37.41.2.02LL Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X be
points having the same image s in S. Assume that

(1) f is locally of finite type, and
(2) xi ∈ Xs is isolated for i = 1, . . . , n.

Then there exist
(a) an elementary étale neighbourhood (U, u)→ (S, s),
(b) for each i an open subscheme Vi ⊂ XU ,

such that for each i we have
(i) Vi → U is a finite morphism,
(ii) there is a unique point vi of Vi mapping to u in U , and
(iii) the point vi maps to xi in X and κ(xi) = κ(vi).

Proof. We will use induction on n. Namely, suppose (U, u)→ (S, s) and Vi ⊂ XU ,
i = 1, . . . , n − 1 work for x1, . . . , xn−1. Since κ(s) = κ(u) the fibre (XU )u = Xs.
Hence there exists a unique point x′

n ∈ Xu ⊂ XU corresponding to xn ∈ Xs.
Also x′

n is isolated in Xu. Hence by Lemma 37.41.1 there exists an elementary
étale neighbourhood (U ′, u′) → (U, u) and an open Vn ⊂ XU ′ which works for x′

n

and hence for xn. By the final assertion of Lemma 37.41.1 the open subschemes
V ′
i = U ′ ×U Vi for i = 1, . . . , n − 1 still work with respect to x1, . . . , xn−1. Hence

we win. □

If we allow a nontrivial field extension κ(u)/κ(s), i.e., general étale neighbourhoods,
then we can split the points as follows.

Lemma 37.41.3.02LM Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X be
points having the same image s in S. Assume that

(1) f is locally of finite type, and
(2) xi ∈ Xs is isolated for i = 1, . . . , n.

Then there exist
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(a) an étale neighbourhood (U, u)→ (S, s),
(b) for each i an integer mi and open subschemes Vi,j ⊂ XU , j = 1, . . . ,mi

such that we have
(i) each Vi,j → U is a finite morphism,
(ii) there is a unique point vi,j of Vi,j mapping to u in U with κ(u) ⊂ κ(vi,j)

finite purely inseparable,
(iv) if vi,j = vi′,j′ , then i = i′ and j = j′, and
(iii) the points vi,j map to xi in X and no other points of (XU )u map to xi.

Proof. This proof is a variant of the proof of Algebra, Lemma 10.145.4 in the
language of schemes. By Morphisms, Lemma 29.20.6 the morphism f is quasi-
finite at each of the points xi. Hence κ(s) ⊂ κ(xi) is finite for each i (Morphisms,
Lemma 29.20.5). For each i, let κ(s) ⊂ Li ⊂ κ(xi) be the subfield such that Li/κ(s)
is separable, and κ(xi)/Li is purely inseparable. Choose a finite Galois extension
L/κ(s) such that there exist κ(s)-embeddings Li → L for i = 1, . . . , n. Choose an
étale neighbourhood (U, u)→ (S, s) such that L ∼= κ(u) as κ(s)-extensions (Lemma
37.35.2).
Let yi,j , j = 1, . . . ,mi be the points of XU lying over xi ∈ X and u ∈ U . By
Schemes, Lemma 26.17.5 these points yi,j correspond exactly to the primes in the
rings κ(u) ⊗κ(s) κ(xi). This also explains why there are finitely many; in fact
mi = [Li : κ(s)] but we do not need this. By our choice of L (and elementary
field theory) we see that κ(u) ⊂ κ(yi,j) is finite purely inseparable for each pair
i, j. Also, by Morphisms, Lemma 29.20.13 for example, the morphism XU → U is
quasi-finite at the points yi,j for all i, j.
Apply Lemma 37.41.2 to the morphism XU → U , the point u ∈ U and the points
yi,j ∈ (XU )u. This gives an étale neighbourhood (U ′, u′)→ (U, u) with κ(u) = κ(u′)
and opens Vi,j ⊂ XU ′ with the properties (i), (ii), and (iii) of that lemma. We
claim that the étale neighbourhood (U ′, u′)→ (S, s) and the opens Vi,j ⊂ XU ′ are
a solution to the problem posed by the lemma. We omit the verifications. □

Lemma 37.41.4.02LN Let f : X → S be a morphism of schemes. Let s ∈ S. Let
x1, . . . , xn ∈ Xs. Assume that

(1) f is locally of finite type,
(2) f is separated, and
(3) x1, . . . , xn are pairwise distinct isolated points of Xs.

Then there exists an elementary étale neighbourhood (U, u)→ (S, s) and a decom-
position

U ×S X = W ⨿ V1 ⨿ . . .⨿ Vn
into open and closed subschemes such that the morphisms Vi → U are finite, the
fibres of Vi → U over u are singletons {vi}, each vi maps to xi with κ(xi) = κ(vi),
and the fibre of W → U over u contains no points mapping to any of the xi.
Proof. Choose (U, u) → (S, s) and Vi ⊂ XU as in Lemma 37.41.2. Since XU →
U is separated (Schemes, Lemma 26.21.12) and Vi → U is finite hence proper
(Morphisms, Lemma 29.44.11) we see that Vi ⊂ XU is closed by Morphisms, Lemma
29.41.7. Hence Vi ∩ Vj is a closed subset of Vi which does not contain vi. Hence
the image of Vi ∩Vj in U is a closed set (because Vi → U proper) not containing u.
After shrinking U we may therefore assume that Vi ∩ Vj = ∅ for all i, j. This gives
the decomposition as in the lemma. □
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Here is the variant where we reduce to purely inseparable field extensions.

Lemma 37.41.5.02LO Let f : X → S be a morphism of schemes. Let s ∈ S. Let
x1, . . . , xn ∈ Xs. Assume that

(1) f is locally of finite type,
(2) f is separated, and
(3) x1, . . . , xn are pairwise distinct isolated points of Xs.

Then there exists an étale neighbourhood (U, u)→ (S, s) and a decomposition

U ×S X = W ⨿
∐

i=1,...,n

∐
j=1,...,mi

Vi,j

into open and closed subschemes such that the morphisms Vi,j → U are finite, the
fibres of Vi,j → U over u are singletons {vi,j}, each vi,j maps to xi, κ(u) ⊂ κ(vi,j)
is purely inseparable, and the fibre of W → U over u contains no points mapping
to any of the xi.

Proof. This is proved in exactly the same way as the proof of Lemma 37.41.4 except
that it uses Lemma 37.41.3 instead of Lemma 37.41.2. □

The following version may be a little easier to parse.

Lemma 37.41.6.02LP Let f : X → S be a morphism of schemes. Let s ∈ S. Assume
that

(1) f is locally of finite type,
(2) f is separated, and
(3) Xs has at most finitely many isolated points.

Then there exists an elementary étale neighbourhood (U, u)→ (S, s) and a decom-
position

U ×S X = W ⨿ V
into open and closed subschemes such that the morphism V → U is finite, and the
fibre Wu of the morphism W → U contains no isolated points. In particular, if
f−1(s) is a finite set, then Wu = ∅.

Proof. This is clear from Lemma 37.41.4 by choosing x1, . . . , xn the complete set
of isolated points of Xs and setting V =

⋃
Vi. □

37.42. Étale localization of integral morphisms

0BUH Some variants of the results of Section 37.41 for the case of integral morphisms.

Lemma 37.42.1.0BSR Let R→ S be an integral ring map. Let p ⊂ R be a prime ideal.
Assume

(1) there are finitely many primes q1, . . . , qn lying over p, and
(2) for each i the maximal separable subextension κ(q)/κ(qi)sep/κ(p) (Fields,

Lemma 9.14.6) is finite over κ(p).
Then there exists an étale ring map R→ R′ and a prime p′ lying over p such that

S ⊗R R′ = A1 × . . .×Am
with R′ → Aj integral having a unique prime rj over p′ such that κ(rj)/κ(p′) is
purely inseparable.
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First proof. This proof uses Algebra, Lemma 10.145.4. Namely, choose a generator
θi ∈ κ(qi)sep of this field over κ(p) (Fields, Lemma 9.19.1). The spectrum of the
fibre ring S⊗Rκ(p) is finite discrete with points corresponding to q1, . . . , qn. By the
Chinese remainder theorem (Algebra, Lemma 10.15.4) we see that S ⊗R κ(p) →∏
κ(qi) is surjective. Hence after replacing R by Rg for some g ∈ R, g ̸∈ p we

may assume that (0, . . . , 0, θi, 0, . . . , 0) ∈
∏
κ(qi) is the image of some xi ∈ S.

Let S′ ⊂ S be the R-subalgebra generated by our xi. Since Spec(S) → Spec(S′)
is surjective (Algebra, Lemma 10.36.17) we conclude that q′

i = S′ ∩ qi are the
primes of S′ over p. By our choice of xi we conclude these primes are distinct that
and κ(q′

i)sep = κ(qi)sep. In particular the field extensions κ(qi)/κ(q′
i) are purely

inseparable. Since R → S′ is finite we may apply Algebra, Lemma 10.145.4. and
we get R→ R′ and p′ and a decomposition

S′ ⊗R R′ = A′
1 × . . .×A′

m ×B′

with R′ → A′
j integral having a unique prime r′

j over p′ such that κ(r′
j)/κ(p′) is

purely inseparable and such that B′ does not have a prime lying over p′. Since
R′ → B′ is finite (as R → S′ is finite) we can after localizing R′ at some g′ ∈ R′,
g′ ̸∈ p′ assume that B′ = 0. Via the map S′ ⊗R R′ → S ⊗R R′ we get the
corresponding decomposition for S. □

Second proof. This proof uses strict henselization. First, assume R is strictly
henselization with maximal ideal p. Then S/pS has finitely many primes corre-
sponding to q1, . . . , qn, each maximal, each with purely inseparable residue field
over κ(p). Hence S/pS is equal to

∏
(S/pS)pi . By More on Algebra, Lemma

15.11.6 we can lift this product decomposition to a product composition of S as in
the statement.

In the general case, let Rsh be the strict henselization of Rp. Then we can apply
the result of the first paragraph to Rsh → S ⊗R Rsh. Consider the m mutually
orthogonal idempotents in S ⊗R Rsh corresponding to the product decomposition.
Since Rsh is a filtered colimit of étale ring maps (R, p) → (R′, p′) by Algebra,
Lemma 10.155.11 we see that these idempotents descend to some R′ as desired. □

37.43. Zariski’s Main Theorem

02LQ In this section we prove Zariski’s main theorem as reformulated by Grothendieck.
Often when we say “Zariski’s main theorem” in this content we mean either of
Lemma 37.43.1, Lemma 37.43.2, or Lemma 37.43.3. In most texts people refer to
the last of these as Zariski’s main theorem.

We have already proved the algebraic version in Algebra, Theorem 10.123.12 and
we have already restated this algebraic version in the language of schemes, see
Morphisms, Theorem 29.56.1. The version in this section is more subtle; to get the
full result we use the étale localization techniques of Section 37.41 to reduce to the
algebraic case.

Lemma 37.43.1.03GW Let f : X → S be a morphism of schemes. Assume f is of
finite type and separated. Let S′ be the normalization of S in X, see Morphisms,

https://stacks.math.columbia.edu/tag/03GW
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Definition 29.53.3. Picture:
X

f ��

f ′
// S′

ν
��

S

Then there exists an open subscheme U ′ ⊂ S′ such that
(1) (f ′)−1(U ′)→ U ′ is an isomorphism, and
(2) (f ′)−1(U ′) ⊂ X is the set of points at which f is quasi-finite.

Proof. By Morphisms, Lemma 29.56.2 the subset U ⊂ X of points where f is
quasi-finite is open. The lemma is equivalent to

(a) U ′ = f ′(U) ⊂ S′ is open,
(b) U = (f ′)−1(U ′), and
(c) U → U ′ is an isomorphism.

Let x ∈ U be arbitrary. We claim there exists an open neighbourhood f ′(x) ∈ V ⊂
S′ such that (f ′)−1V → V is an isomorphism. We first prove the claim implies the
lemma. Namely, then (f ′)−1V ∼= V is both locally of finite type over S (as an open
subscheme of X) and for v ∈ V the residue field extension κ(v)/κ(ν(v)) is algebraic
(as V ⊂ S′ and S′ is integral over S). Hence the fibres of V → S are discrete
(Morphisms, Lemma 29.20.2) and (f ′)−1V → S is locally quasi-finite (Morphisms,
Lemma 29.20.8). This implies (f ′)−1V ⊂ U and V ⊂ U ′. Since x was arbitrary we
see that (a), (b), and (c) are true.
Let s = f(x). Let (T, t) → (S, s) be an elementary étale neighbourhood. Denote
by a subscript T the base change to T . Let y = (x, t) ∈ XT be the unique point
in the fibre Xt lying over x. Note that UT ⊂ XT is the set of points where fT is
quasi-finite, see Morphisms, Lemma 29.20.13. Note that

XT
f ′
T−−→ S′

T
νT−−→ T

is the normalization of T in XT , see Lemma 37.19.2. Suppose that the claim holds
for y ∈ UT ⊂ XT → S′

T → T , i.e., suppose that we can find an open neighbourhood
f ′
T (y) ∈ V ′ ⊂ S′

T such that (f ′
T )−1V ′ → V ′ is an isomorphism. The morphism

S′
T → S′ is étale hence the image V ⊂ S′ of V ′ is open. Observe that f ′(x) ∈ V as
f ′
T (y) ∈ V ′. Observe that

(f ′
T )−1V ′ //

��

(f ′)−1(V )

��
V ′ // V

is a fibre square (as S′
T×S′X = XT ). Since the left vertical arrow is an isomorphism

and {V ′ → V } is a étale covering, we conclude that the right vertical arrow is an
isomorphism by Descent, Lemma 35.23.17. In other words, the claim holds for
x ∈ U ⊂ X → S′ → S.
By the result of the previous paragraph we may replace S by an elementary étale
neighbourhood of s = f(x) in order to prove the claim. Thus we may assume there
is a decomposition

X = V ⨿W



37.43. ZARISKI’S MAIN THEOREM 3257

into open and closed subschemes where V → S is finite and x ∈ V , see Lemma
37.41.4. Since X is a disjoint union of V and W over S and since V → S is finite
we see that the normalization of S in X is the morphism

X = V ⨿W −→ V ⨿W ′ −→ S

where W ′ is the normalization of S in W , see Morphisms, Lemmas 29.53.10, 29.44.4,
and 29.53.12. The claim follows and we win. □

Lemma 37.43.2.02LR Let f : X → S be a morphism of schemes. Assume f is quasi-finite
and separated. Let S′ be the normalization of S in X, see Morphisms, Definition
29.53.3. Picture:

X

f ��

f ′
// S′

ν
��

S

Then f ′ is a quasi-compact open immersion and ν is integral. In particular f is
quasi-affine.

Proof. This follows from Lemma 37.43.1. Namely, by that lemma there exists an
open subscheme U ′ ⊂ S′ such that (f ′)−1(U ′) = X and X → U ′ is an isomorphism.
In other words, f ′ is an open immersion. Note that f ′ is quasi-compact as f is quasi-
compact and ν : S′ → S is separated (Schemes, Lemma 26.21.14). It follows that
f is quasi-affine by Morphisms, Lemma 29.13.3. □

Lemma 37.43.3 (Zariski’s Main Theorem).05K0 [DG67, IV Corollary
18.12.13]

Let f : X → S be a morphism of
schemes. Assume f is quasi-finite and separated and assume that S is quasi-
compact and quasi-separated. Then there exists a factorization

X

f ��

j
// T

π
��

S

where j is a quasi-compact open immersion and π is finite.

Proof. Let X → S′ → S be as in the conclusion of Lemma 37.43.2. By Properties,
Lemma 28.22.13 we can write ν∗OS′ = colimi∈I Ai as a directed colimit of finite
quasi-coherent OX -algebras Ai ⊂ ν∗OS′ . Then πi : Ti = Spec

S
(Ai)→ S is a finite

morphism for each i. Note that the transition morphisms Ti′ → Ti are affine and
that S′ = limTi.
By Limits, Lemma 32.4.11 there exists an i and a quasi-compact open Ui ⊂ Ti
whose inverse image in S′ equals f ′(X). For i′ ≥ i let Ui′ be the inverse image of
Ui in Ti′ . Then X ∼= f ′(X) = limi′≥i Ui′ , see Limits, Lemma 32.2.2. By Limits,
Lemma 32.4.16 we see that X → Ui′ is a closed immersion for some i′ ≥ i. (In
fact X ∼= Ui′ for sufficiently large i′ but we don’t need this.) Hence X → Ti′ is
an immersion. By Morphisms, Lemma 29.3.2 we can factor this as X → T → Ti′

where the first arrow is an open immersion and the second a closed immersion.
Thus we win. □

Lemma 37.43.4.0F2N With notation and hypotheses as in Lemma 37.43.3. Assume
moreover that f is locally of finite presentation. Then we can choose the factoriza-
tion such that T is finite and of finite presentation over S.

https://stacks.math.columbia.edu/tag/02LR
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Proof. By Limits, Lemma 32.9.8 we can write T = limTi where all Ti are finite
and of finite presentation over Y and the transition morphisms Ti′ → Ti are closed
immersions. By Limits, Lemma 32.4.11 there exists an i and an open subscheme
Ui ⊂ Ti whose inverse image in T is X. By Limits, Lemma 32.4.16 we see that
X ∼= Ui for large enough i. Replacing T by Ti finishes the proof. □

37.44. Applications of Zariski’s Main Theorem, I

0F2P A first application is the characterization of finite morphisms as proper morphisms
with finite fibres.

Lemma 37.44.1.02LS Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) f is finite,
(2) f is proper with finite fibres,
(3) f is proper and locally quasi-finite,
(4) f is universally closed, separated, locally of finite type and has finite fibres.

Proof. We have (1) implies (2) by Morphisms, Lemmas 29.44.11, 29.20.10, and
29.44.10. We have (2) implies (3) by Morphisms, Lemma 29.20.7. We have (3)
implies (4) by the definition of proper morphisms and Morphisms, Lemmas 29.20.9
and 29.20.10.

Assume (4). Pick s ∈ S. By Morphisms, Lemma 29.20.7 we see that all the finitely
many points of Xs are isolated in Xs. Choose an elementary étale neighbourhood
(U, u) → (S, s) and decomposition XU = V ⨿W as in Lemma 37.41.6. Note that
Wu = ∅ because all points of Xs are isolated. Since f is universally closed we see
that the image of W in U is a closed set not containing u. After shrinking U we
may assume that W = ∅. In other words we see that XU = V is finite over U . Since
s ∈ S was arbitrary this means there exists a family {Ui → S} of étale morphisms
whose images cover S such that the base changes XUi → Ui are finite. Note that
{Ui → S} is an étale covering, see Topologies, Definition 34.4.1. Hence it is an fpqc
covering, see Topologies, Lemma 34.9.6. Hence we conclude f is finite by Descent,
Lemma 35.23.23. □

As a consequence we have the following useful results.

Lemma 37.44.2.02UP Let f : X → S be a morphism of schemes. Let s ∈ S. Assume that
f is proper and f−1({s}) is a finite set. Then there exists an open neighbourhood
V ⊂ S of s such that f |f−1(V ) : f−1(V )→ V is finite.

Proof. The morphism f is quasi-finite at all the points of f−1({s}) by Morphisms,
Lemma 29.20.7. By Morphisms, Lemma 29.56.2 the set of points at which f is
quasi-finite is an open U ⊂ X. Let Z = X \ U . Then s ̸∈ f(Z). Since f is
proper the set f(Z) ⊂ S is closed. Choose any open neighbourhood V ⊂ S of s
with f(Z) ∩ V = ∅. Then f−1(V ) → V is locally quasi-finite and proper. Hence
it is quasi-finite (Morphisms, Lemma 29.20.9), hence has finite fibres (Morphisms,
Lemma 29.20.10), hence is finite by Lemma 37.44.1. □

https://stacks.math.columbia.edu/tag/02LS
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Lemma 37.44.3.0AH8 Consider a commutative diagram of schemes

X
h

//

f ��

Y

g
��

S

Let s ∈ S. Assume
(1) X → S is a proper morphism,
(2) Y → S is separated and locally of finite type, and
(3) the image of Xs → Ys is finite.

Then there is an open subspace U ⊂ S containing s such that XU → YU factors
through a closed subscheme Z ⊂ YU finite over U .

Proof. Let Z ⊂ Y be the scheme theoretic image of h, see Morphisms, Section 29.6.
By Morphisms, Lemma 29.41.10 the morphism X → Z is surjective and Z → S
is proper. Thus Xs → Zs is surjective. We see that either (3) implies Zs is finite.
Hence Z → S is finite in an open neighbourhood of s by Lemma 37.44.2. □

37.45. Applications of Zariski’s Main Theorem, II

0F2Q In this section we give a few more consequences of Zariski’s main theorem to the
structure of quasi-finite morphisms.

Lemma 37.45.1.07S0 Let f : X → Y be a separated, locally quasi-finite morphism with
Y affine. Then every finite set of points of X is contained in an open affine of X.

Proof. Let x1, . . . , xn ∈ X. Choose a quasi-compact open U ⊂ X with xi ∈ U .
Then U → Y is quasi-affine by Lemma 37.43.2. Hence there exists an affine open
V ⊂ U containing x1, . . . , xn by Properties, Lemma 28.29.5. □

Lemma 37.45.2.03I1 Let f : Y → X be a quasi-finite morphism. There exists a dense
open U ⊂ X such that f |f−1(U) : f−1(U)→ U is finite.

Proof. If Ui ⊂ X, i ∈ I is a collection of opens such that the restrictions f |f−1(Ui) :
f−1(Ui)→ Ui are finite, then with U =

⋃
Ui the restriction f |f−1(U) : f−1(U)→ U

is finite, see Morphisms, Lemma 29.44.3. Thus the problem is local on X and we
may assume that X is affine.
Assume X is affine. Write Y =

⋃
j=1,...,m Vj with Vj affine. This is possible since f

is quasi-finite and hence in particular quasi-compact. Each Vj → X is quasi-finite
and separated. Let η ∈ X be a generic point of an irreducible component of X.
We see from Morphisms, Lemmas 29.20.10 and 29.51.1 that there exists an open
neighbourhood η ∈ Uη such that f−1(Uη) ∩ Vj → Uη is finite. We may choose Uη
such that it works for each j = 1, . . . ,m. Note that the collection of generic points
of X is dense in X. Thus we see there exists a dense open W =

⋃
η Uη such that

each f−1(W ) ∩ Vj →W is finite. It suffices to show that there exists a dense open
U ⊂ W such that f |f−1(U) : f−1(U) → U is finite. Thus we may replace X by an
affine open subscheme of W and assume that each Vj → X is finite.
Assume X is affine, Y =

⋃
j=1,...,m Vj with Vj affine, and the restrictions f |Vj :

Vj → X are finite. Set

∆ij =
(
Vi ∩ Vj \ Vi ∩ Vj

)
∩ Vj .

https://stacks.math.columbia.edu/tag/0AH8
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This is a nowhere dense closed subset of Vj because it is the boundary of the open
subset Vi ∩Vj in Vj . By Morphisms, Lemma 29.48.7 the image f(∆ij) is a nowhere
dense closed subset of X. By Topology, Lemma 5.21.2 the union T =

⋃
f(∆ij) is

a nowhere dense closed subset of X. Thus U = X \ T is a dense open subset of
X. We claim that f |f−1(U) : f−1(U) → U is finite. To see this let U ′ ⊂ U be an
affine open. Set Y ′ = f−1(U ′) = U ′ ×X Y , V ′

j = Y ′ ∩ Vj = U ′ ×X Vj . Consider the
restriction

f ′ = f |Y ′ : Y ′ −→ U ′

of f . This morphism now has the property that Y ′ =
⋃
j=1,...,m V

′
j is an affine open

covering, each V ′
j → U ′ is finite, and V ′

i ∩ V ′
j is (open and) closed both in V ′

i and
V ′
j . Hence V ′

i ∩ V ′
j is affine, and the map

O(V ′
i )⊗Z O(V ′

j ) −→ O(V ′
i ∩ V ′

j )

is surjective. This implies that Y ′ is separated, see Schemes, Lemma 26.21.7. Fi-
nally, consider the commutative diagram∐

j=1,...,m V
′
j

%%

// Y ′

��
U ′

The south-east arrow is finite, hence proper, the horizontal arrow is surjective,
and the south-west arrow is separated. Hence by Morphisms, Lemma 29.41.9 we
conclude that Y ′ → U ′ is proper. Since it is also quasi-finite, we see that it is finite
by Lemma 37.44.1, and we win. □

Lemma 37.45.3.07RY Let f : X → S be flat, locally of finite presentation, separated,
locally quasi-finite with universally bounded fibres. Then there exist closed subsets

∅ = Z−1 ⊂ Z0 ⊂ Z1 ⊂ Z2 ⊂ . . . ⊂ Zn = S

such that with Sr = Zr \ Zr−1 the stratification S =
∐
r=0,...,n Sr is characterized

by the following universal property: Given g : T → S the projection X ×S T → T
is finite locally free of degree r if and only if g(T ) ⊂ Sr (set theoretically).

Proof. Let n be an integer bounding the degree of the fibres of X → S. By Mor-
phisms, Lemma 29.57.5 we see that any base change has degrees of fibres bounded
by n also. In particular, all the integers r that occur in the statement of the lemma
will be ≤ n. We will prove the lemma by induction on n. The base case is n = 0
which is obvious.

We claim the set of points s ∈ S with degκ(s)(Xs) = n is an open subset Sn ⊂ S
and that X ×S Sn → Sn is finite locally free of degree n. Namely, suppose that
s ∈ S is such a point. Choose an elementary étale morphism (U, u) → (S, s) and
a decomposition U ×S X = W ⨿ V as in Lemma 37.41.6. Since V → U is finite,
flat, and locally of finite presentation, we see that V → U is finite locally free,
see Morphisms, Lemma 29.48.2. After shrinking U to a smaller neighbourhood of
u we may assume V → U is finite locally free of some degree d, see Morphisms,
Lemma 29.48.5. As u 7→ s and Wu = ∅ we see that d = n. Since n is the maximum
degree of a fibre we see that W = ∅! Thus U ×S X → U is finite locally free of
degree n. By Descent, Lemma 35.23.30 we conclude that X → S is finite locally

https://stacks.math.columbia.edu/tag/07RY
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free of degree n over Im(U → S) which is an open neighbourhood of s (Morphisms,
Lemma 29.36.13). This proves the claim.
Let S′ = S \ Sn endowed with the reduced induced scheme structure and set
X ′ = X ×S S′. Note that the degrees of fibres of X ′ → S′ are universally bounded
by n − 1. By induction we find a stratification S′ = S0 ⨿ . . . ⨿ Sn−1 adapted to
the morphism X ′ → S′. We claim that S =

∐
r=0,...,n Sr works for the morphism

X → S. Let g : T → S be a morphism of schemes and assume that X ×S T → T is
finite locally free of degree r. As remarked above this implies that r ≤ n. If r = n,
then it is clear that T → S factors through Sn. If r < n, then g(T ) ⊂ S′ = S \ Sd
(set theoretically) hence Tred → S factors through S′, see Schemes, Lemma 26.12.7.
Note that X ×S Tred → Tred is also finite locally free of degree r as a base change.
By the universal property of the stratification S′ =

∐
r=0,...,n−1 Sr we see that

g(T ) = g(Tred) is contained in Sr. Conversely, suppose that we have g : T → S
such that g(T ) ⊂ Sr (set theoretically). If r = n, then g factors through Sn and
it is clear that X ×S T → T is finite locally free of degree n as a base change. If
r < n, then X×S T → T is a morphism which is separated, flat, and locally of finite
presentation, such that the restriction to Tred is finite locally free of degree r. Since
Tred → T is a universal homeomorphism, we conclude that X ×S Tred → X ×S T
is a universal homeomorphism too and hence X ×S T → T is universally closed (as
this is true for the finite morphism X×S Tred → Tred). It follows that X×S T → T
is finite, for example by Lemma 37.44.1. Then we can use Morphisms, Lemma
29.48.2 to see that X ×S T → T is finite locally free. Finally, the degree is r as all
the fibres have degree r. □

Lemma 37.45.4.07RZ Let f : X → S be a morphism of schemes which is flat, locally of
finite presentation, separated, and quasi-finite. Then there exist closed subsets

∅ = Z−1 ⊂ Z0 ⊂ Z1 ⊂ Z2 ⊂ . . . ⊂ S
such that with Sr = Zr \ Zr−1 the stratification S =

∐
Sr is characterized by the

following universal property: Given a morphism g : T → S the projection X×ST →
T is finite locally free of degree r if and only if g(T ) ⊂ Sr (set theoretically).
Moreover, the inclusion maps Sr → S are quasi-compact.

Proof. The question is local on S, hence we may assume that S is affine. By
Morphisms, Lemma 29.57.9 the fibres of f are universally bounded in this case.
Hence the existence of the stratification follows from Lemma 37.45.3.
We will show that Ur = S \Zr → S is quasi-compact for each r ≥ 0. This will prove
the final statement by elementary topology. Since a composition of quasi-compact
maps is quasi-compact it suffices to prove that Ur → Ur−1 is quasi-compact. Choose
an affine open W ⊂ Ur−1. Write W = Spec(A). Then Zr ∩W = V (I) for some
ideal I ⊂ A and X ×S Spec(A/I) → Spec(A/I) is finite locally free of degree
r. Note that A/I = colimA/Ii where Ii ⊂ I runs through the finitely generated
ideals. By Limits, Lemma 32.8.8 we see that X ×S Spec(A/Ii) → Spec(A/Ii)
is finite locally free of degree r for some i. (This uses that X → S is of finite
presentation, as it is locally of finite presentation, separated, and quasi-compact.)
Hence Spec(A/Ii) → Spec(A) = W factors (set theoretically) through Zr ∩W . It
follows that Zr ∩W = V (Ii) is the zero set of a finite subset of elements of A. This
means that W \ Zr is a finite union of standard opens, hence quasi-compact, as
desired. □

https://stacks.math.columbia.edu/tag/07RZ
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Lemma 37.45.5.086R Let f : X → S be a flat, locally of finite presentation, separated,
and locally quasi-finite morphism of schemes. Then there exist open subschemes

S = U0 ⊃ U1 ⊃ U2 ⊃ . . .

such that a morphism Spec(k) → S where k is a field factors through Ud if and
only if X ×S Spec(k) has degree ≥ d over k.

Proof. The statement simply means that the collection of points where the degree
of the fibre is ≥ d is open. Thus we can work locally on S and assume S is affine. In
this case, for every W ⊂ X quasi-compact open, the set of points Ud(W ) where the
fibres of W → S have degree ≥ d is open by Lemma 37.45.4. Since Ud =

⋃
W Ud(W )

the result follows. □

Lemma 37.45.6.082V Let f : X → S be a morphism of schemes which is flat, locally of
finite presentation, and locally quasi-finite. Let g ∈ Γ(X,OX) nonzero. Then there
exist an open V ⊂ X such that g|V ̸= 0, an open U ⊂ S fitting into a commutative
diagram

V //

π

��

X

f

��
U // S,

a quasi-coherent subsheaf F ⊂ OU , an integer r > 0, and an injective OU -module
map F⊕r → π∗OV whose image contains g|V .

Proof. We may assume X and S affine. We obtain a filtration ∅ = Z−1 ⊂ Z0 ⊂
Z1 ⊂ Z2 ⊂ . . . ⊂ Zn = S as in Lemmas 37.45.3 and 37.45.4. Let T ⊂ X be the
scheme theoretic support of the finite OX -module Im(g : OX → OX). Note that T
is the support of g as a section of OX (Modules, Definition 17.5.1) and for any open
V ⊂ X we have g|V ̸= 0 if and only if V ∩T ̸= ∅. Let r be the smallest integer such
that f(T ) ⊂ Zr set theoretically. Let ξ ∈ T be a generic point of an irreducible
component of T such that f(ξ) ̸∈ Zr−1 (and hence f(ξ) ∈ Zr). We may replace
S by an affine neighbourhood of f(ξ) contained in S \ Zr−1. Write S = Spec(A)
and let I = (a1, . . . , am) ⊂ A be a finitely generated ideal such that V (I) = Zr
(set theoretically, see Algebra, Lemma 10.29.1). Since the support of g is contained
in f−1V (I) by our choice of r we see that there exists an integer N such that
aNj g = 0 for j = 1, . . . ,m. Replacing aj by arj we may assume that Ig = 0. For any
A-module M write M [I] for the I-torsion of M , i.e., M [I] = {m ∈ M | Im = 0}.
Write X = Spec(B), so g ∈ B[I]. Since A→ B is flat we see that

B[I] = A[I]⊗A B ∼= A[I]⊗A/I B/IB
By our choice of Zr, the A/I-module B/IB is finite locally free of rank r. Hence
after replacing S by a smaller affine open neighbourhood of f(ξ) we may assume
that B/IB ∼= (A/IA)⊕r as A/I-modules. Choose a map ψ : A⊕r → B which
reduces modulo I to the isomorphism of the previous sentence. Then we see that
the induced map

A[I]⊕r −→ B[I]
is an isomorphism. The lemma follows by taking F the quasi-coherent sheaf asso-
ciated to the A-module A[I] and the map F⊕r → π∗OV the one corresponding to
A[I]⊕r ⊂ A⊕r → B. □
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Lemma 37.45.7.09Z0 Let U → X be a surjective étale morphism of schemes. Assume
X is quasi-compact and quasi-separated. Then there exists a surjective integral
morphism Y → X, such that for every y ∈ Y there is an open neighbourhood
V ⊂ Y such that V → X factors through U . In fact, we may assume Y → X is
finite and of finite presentation.

Proof. Since X is quasi-compact, there exist finitely many affine opens Ui ⊂ U
such that U ′ =

∐
Ui → X is surjective. After replacing U by U ′, we see that

we may assume U is affine. In particular U → X is separated (Schemes, Lemma
26.21.15). Then there exists an integer d bounding the degree of the geometric
fibres of U → X (see Morphisms, Lemma 29.57.9). We will prove the lemma by
induction on d for all quasi-compact and separated schemes U mapping surjective
and étale onto X. If d = 1, then U = X and the result holds with Y = U . Assume
d > 1.
We apply Lemma 37.43.2 and we obtain a factorization

U
j

//

  

Y

π~~
X

with π integral and j a quasi-compact open immersion. We may and do assume
that j(U) is scheme theoretically dense in Y . Note that

U ×X Y = U ⨿W
where the first summand is the image of U → U ×X Y (which is closed by Schemes,
Lemma 26.21.10 and open because it is étale as a morphism between schemes étale
over Y ) and the second summand is the (open and closed) complement. The image
V ⊂ Y of W is an open subscheme containing Y \ U .
The étale morphism W → Y has geometric fibres of cardinality < d. Namely, this
is clear for geometric points of U ⊂ Y by inspection. Since U ⊂ Y is dense, it holds
for all geometric points of Y for example by Lemma 37.45.3 (the degree of the fibres
of a quasi-compact separated étale morphism does not go up under specialization).
Thus we may apply the induction hypothesis to W → V and find a surjective
integral morphism Z → V with Z a scheme, which Zariski locally factors through
W . Choose a factorization Z → Z ′ → Y with Z ′ → Y integral and Z → Z ′ open
immersion (Lemma 37.43.2). After replacing Z ′ by the scheme theoretic closure of
Z in Z ′ we may assume that Z is scheme theoretically dense in Z ′. After doing this
we have Z ′×Y V = Z. Finally, let T ⊂ Y be the induced reduced closed subscheme
structure on Y \ V . Consider the morphism

Z ′ ⨿ T −→ X

This is a surjective integral morphism by construction. Since T ⊂ U it is clear that
the morphism T → X factors through U . On the other hand, let z ∈ Z ′ be a point.
If z ̸∈ Z, then z maps to a point of Y \V ⊂ U and we find a neighbourhood of z on
which the morphism factors through U . If z ∈ Z, then we have a neighbourhood
Ω ⊂ Z which factors through W ⊂ U ×X Y and hence through U . This proves
existence.
Assume we have found Y → X integral and surjective which Zariski locally factors
through U . Choose a finite affine open covering Y =

⋃
Vj such that Vj → X factors
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through U . We can write Y = limYi with Yi → X finite and of finite presentation,
see Limits, Lemma 32.7.3. For large enough i we can find affine opens Vi,j ⊂ Yi
whose inverse image in Y recovers Vj , see Limits, Lemma 32.4.11. For even larger i
the morphisms Vj → U over X come from morphisms Vi,j → U over X, see Limits,
Proposition 32.6.1. This finishes the proof. □

37.46. Application to morphisms with connected fibres

057H In this section we prove some lemmas that produce morphisms all of whose fibres
are geometrically connected or geometrically integral. This will be useful in our
study of the local structure of morphisms of finite type later.

Lemma 37.46.1.057I Consider a diagram of morphisms of schemes

Z
σ
//

  

X

��
Y

an a point y ∈ Y . Assume
(1) X → Y is of finite presentation and flat,
(2) Z → Y is finite locally free,
(3) Zy ̸= ∅,
(4) all fibres of X → Y are geometrically reduced, and
(5) Xy is geometrically connected over κ(y).

Then there exists a quasi-compact open X0 ⊂ X such that X0
y = Xy and such that

all nonempty fibres of X0 → Y are geometrically connected.

Proof. In this proof we will use that flat, finite presentation, finite locally free are
properties that are preserved under base change and composition. We will also use
that a finite locally free morphism is both open and closed. You can find these facts
as Morphisms, Lemmas 29.25.8, 29.21.4, 29.48.4, 29.25.6, 29.21.3, 29.48.3, 29.25.10,
and 29.44.11.
Note that XZ → Z is flat morphism of finite presentation which has a section s
coming from σ. Let X0

Z denote the subset of XZ defined in Situation 37.29.1. By
Lemma 37.29.6 it is an open subset of XZ .
The pullback XZ×Y Z of X to Z ×Y Z comes equipped with two sections s0, s1,
namely the base changes of s by pr0,pr1 : Z ×Y Z → Z. The construction of
Situation 37.29.1 gives two subsets (XZ×Y Z)0

s0
and (XZ×Y Z)0

s1
. By Lemma 37.29.2

these are the inverse images of X0
Z under the morphisms 1X × pr0, 1X × pr1 :

XZ×Y Z → XZ . In particular these subsets are open.
Let (Z ×Y Z)y = {z1, . . . , zn}. As Xy is geometrically connected, we see that the
fibres of (XZ×Y Z)0

s0
and (XZ×Y Z)0

s1
over each zi agree (being equal to the whole

fibre). Another way to say this is that
s0(zi) ∈ (XZ×Y Z)0

s1
and s1(zi) ∈ (XZ×Y Z)0

s0
.

Since the sets (XZ×Y Z)0
s0

and (XZ×Y Z)0
s1

are open in XZ×Y Z there exists an open
neighbourhood W ⊂ Z ×Y Z of (Z ×Y Z)y such that

s0(W ) ⊂ (XZ×Y Z)0
s1

and s1(W ) ⊂ (XZ×Y Z)0
s0
.
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Then it follows directly from the construction in Situation 37.29.1 that
p−1(W ) ∩ (XZ×Y Z)0

s0
= p−1(W ) ∩ (XZ×Y Z)0

s1

where p : XZ×Y Z → Z×W Z is the projection. Because Z×Y Z → Y is finite locally
free, hence open and closed, there exists an affine open neighbourhood V ⊂ Y of
y such that q−1(V ) ⊂ W , where q : Z ×Y Z → Y is the structure morphism. To
prove the lemma we may replace Y by V . After we do this we see that X0

Z ⊂ YZ
is an open such that

(1X × pr0)−1(X0
Z) = (1X × pr1)−1(X0

Z).
This means that the image X0 ⊂ X of X0

Z is an open such that (XZ → X)−1(X0) =
X0
Z , see Descent, Lemma 35.13.6. Finally, X0 is quasi-compact because X0

Z is
quasi-compact by Lemma 37.29.4 (use that at this point Y is affine, hence X is
quasi-compact and quasi-separated, hence locally constructible is the same as con-
structible and in particular quasi-compact; details omitted). In this way we see
that X0 has all the desired properties. □

Lemma 37.46.2.055W Let h : Y → S be a morphism of schemes. Let s ∈ S be a point.
Let T ⊂ Ys be an open subscheme. Assume

(1) h is flat and of finite presentation,
(2) all fibres of h are geometrically reduced, and
(3) T is geometrically connected over κ(s).

Then we can find an affine elementary étale neighbourhood (S′, s′)→ (S, s) and a
quasi-compact open V ⊂ YS′ such that

(a) all fibres of V → S′ are geometrically connected,
(b) Vs′ = T ×s s′.

Proof. The problem is clearly local on S, hence we may replace S by an affine open
neighbourhood of s. The topology on Ys is induced from the topology on Y , see
Schemes, Lemma 26.18.5. Hence we can find a quasi-compact open V ⊂ Y such
that Vs = T . The restriction of h to V is quasi-compact (as S affine and V quasi-
compact), quasi-separated, locally of finite presentation, and flat hence flat of finite
presentation. Thus after replacing Y by V we may assume, in addition to (1) and
(2) that Ys = T and S affine.
Pick a closed point y ∈ Ys such that h is Cohen-Macaulay at y, see Lemma 37.22.7.
By Lemma 37.23.4 there exists a diagram

Z //

��

Y

��
S

such that Z → S is flat, locally of finite presentation, locally quasi-finite with
Zs = {y}. Apply Lemma 37.41.1 to find an elementary neighbourhood (S′, s′) →
(S, s) and an open Z ′ ⊂ ZS′ = S′ ×S Z with Z ′ → S′ finite with a unique point
z′ ∈ Z ′ lying over s. Note that Z ′ → S′ is also locally of finite presentation and
flat (as an open of the base change of Z → S), hence Z ′ → S′ is finite locally
free, see Morphisms, Lemma 29.48.2. Note that YS′ → S′ is flat and of finite
presentation with geometrically reduced fibres as a base change of h. Also Ys′ = Ys
is geometrically connected. Apply Lemma 37.46.1 to Z ′ → YS′ over S′ to get
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V ⊂ YS′ quasi-compact open satisfying (2) whose fibres over S′ are either empty
or geometrically connected. As V → S′ is open (Morphisms, Lemma 29.25.10),
after replacing S′ by an affine open neighbourhood of s′ we may assume V → S′ is
surjective, whence (1) holds. □

Lemma 37.46.3.0EY5 Let f : X → S be a morphism of schemes which is locally of finite
presentation and flat with geometrically reduced fibres. Then there exists an étale
covering {Xi → X}i∈I such that Xi → S factors as Xi → Si → S where Si → S
is étale and Xi → Si is flat of finite presentation with geometrically connected and
geometrically reduced fibres.

Proof. Pick a point x ∈ X with image s ∈ S. We will produce a diagram

X ′ //

$$

S′ ×S X //

��

X

��
S′ // S

and points s′ ∈ S′, x′ ∈ X ′, y ∈ S′ ×S X such that x′ maps to x, (S′, s′) → (S, s)
is an étale neighbourhood, (X ′, x′)→ (S′×S X, y) is an étale neighbourhood8, and
X ′ → S′ has geometrically connected fibres. If we can do this for every x ∈ X,
then the lemma follows (with members of the covering given by the collection of
étale morphisms X ′ → X so produced). The first step is the replace X and S by
affine open neighbourhoods of x and s which reduces us to the case that X and S
are affine (and hence f of finite presentation).

Choose a separable algebraic extension k of κ(s). Denote Xk the base change of Xs.
Choose a point x in Xk mapping to x ∈ Xs. Choose a connected quasi-compact
open neighbourhood V ⊂ Xk of x. (This is possible because any scheme locally
of finite type over a field is locally connected as a locally Noetherian topological
space.) By Varieties, Lemma 33.7.9 we can find a finite separable extension k′/κ(s)
and a quasi-compact open V ′ ⊂ Xk′ whose base change is V . In particular V ′ is
geometrically connected over k′, see Varieties, Lemma 33.7.7. By Lemma 37.35.2
we can find an étale neighbourhood (S′, s′) → (S, s) such that κ(s′) is isomorphic
to k′ as an extension of κ(s). Denote x′ ∈ (S′ ×S X)s′ = Xk′ the image of x. Thus
after replacing (S, s) by (S′, s′) and (X,x) by (S′ ×S X,x′) we reduce to the case
handled in the next paragrah.

Assume there is a quasi-compact open V ⊂ Xs which contains x and is geometrically
irreducible. Then we can apply Lemma 37.46.2 to find an affine étale neighbourhood
(S′, s′) → (S, s) and a quasi-compact open X ′ ⊂ S′ ×S X such that X ′ → S′ has
geometrically connected fibres and such that X ′ contains a point mapping to x.
This finishes the proof. □

Lemma 37.46.4.057J Let h : Y → S be a morphism of schemes. Let s ∈ S be a point.
Let T ⊂ Ys be an open subscheme. Assume

(1) h is of finite presentation,
(2) h is normal, and
(3) T is geometrically irreducible over κ(s).

8The proof actually gives an open X′ ⊂ S′ ×S X.
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Then we can find an affine elementary étale neighbourhood (S′, s′)→ (S, s) and a
quasi-compact open V ⊂ YS′ such that

(a) all fibres of V → S′ are geometrically integral,
(b) Vs′ = T ×s s′.

Proof. Apply Lemma 37.46.2 to find an affine elementary étale neighbourhood
(S′, s′)→ (S, s) and a quasi-compact open V ⊂ YS′ such that all fibres of V → S′

are geometrically connected and Vs′ = T ×s s′. As V is an open of the base change
of h all fibres of V → S′ are geometrically normal, see Lemma 37.20.2. In partic-
ular, they are geometrically reduced. To finish the proof we have to show they are
geometrically irreducible. But, if t ∈ S′ then Vt is of finite type over κ(t) and hence
Vt ×κ(t) κ(t) is of finite type over κ(t) hence Noetherian. By choice of S′ → S the
scheme Vt ×κ(t) κ(t) is connected. Hence Vt ×κ(t) κ(t) is irreducible by Properties,
Lemma 28.7.6 and we win. □

37.47. Application to the structure of finite type morphisms

052D The result in this section can be found in [GR71]. Loosely stated it says that a
finite type morphism is étale locally on the source and target the composition of
a finite morphism by a smooth morphism with geometrically connected fibres of
relative dimension equal to the fibre dimension of the original morphism.

Lemma 37.47.1.052E Let f : X → S be a morphism. Let x ∈ X and set s = f(x).
Assume that f is locally of finite type and that n = dimx(Xs). Then there exists
a commutative diagram

X

��

X ′
g

oo

π

��

x_

��

x′�oo
_

��
Y

h

��

y_

��
S S s s

and a point x′ ∈ X ′ with g(x′) = x such that with y = π(x′) we have
(1) h : Y → S is smooth of relative dimension n,
(2) g : (X ′, x′)→ (X,x) is an elementary étale neighbourhood,
(3) π is finite, and π−1({y}) = {x′}, and
(4) κ(y) is a purely transcendental extension of κ(s).

Moreover, if f is locally of finite presentation then π is of finite presentation.

Proof. The problem is local on X and S, hence we may assume that X and S
are affine. By Algebra, Lemma 10.125.3 after replacing X by a standard open
neighbourhood of x in X we may assume there is a factorization

X
π // An

S
// S

such that π is quasi-finite and such that κ(π(x)) is purely transcendental over κ(s).
By Lemma 37.41.1 there exists an elementary étale neighbourhood

(Y, y)→ (An
S , π(x))
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and an open X ′ ⊂ X ×An
S
Y which contains a unique point x′ lying over y such

that X ′ → Y is finite. This proves (1) – (4) hold. For the final assertion, use
Morphisms, Lemma 29.21.11. □

Lemma 37.47.2.057K Let f : X → S be a morphism. Let x ∈ X and set s = f(x).
Assume that f is locally of finite type and that n = dimx(Xs). Then there exists
a commutative diagram

X

��

X ′
g

oo

π

��

x_

��

x′�oo
_

��
Y ′

h

��

y′
_

��
S S′eoo s s′�oo

and a point x′ ∈ X ′ with g(x′) = x such that with y′ = π(x′), s′ = h(y′) we have
(1) h : Y ′ → S′ is smooth of relative dimension n,
(2) all fibres of Y ′ → S′ are geometrically integral,
(3) g : (X ′, x′)→ (X,x) is an elementary étale neighbourhood,
(4) π is finite, and π−1({y′}) = {x′},
(5) κ(y′) is a purely transcendental extension of κ(s′), and
(6) e : (S′, s′)→ (S, s) is an elementary étale neighbourhood.

Moreover, if f is locally of finite presentation, then π is of finite presentation.

Proof. The question is local on S, hence we may replace S by an affine open neigh-
bourhood of s. Next, we apply Lemma 37.47.1 to get a commutative diagram

X

��

X ′
g

oo

π

��

x_

��

x′�oo
_

��
Y

h

��

y_

��
S S s s

where h is smooth of relative dimension n and κ(y) is a purely transcendental
extension of κ(s). Since the question is local on X also, we may replace Y by an
affine neighbourhood of y (and X ′ by the inverse image of this under π). As S
is affine this guarantees that Y → S is quasi-compact, separated and smooth, in
particular of finite presentation. Let T be the connected component of Ys containing
y. As Ys is Noetherian we see that T is open. We also see that T is geometrically
connected over κ(s) by Varieties, Lemma 33.7.14. Since T is also smooth over
κ(s) it is geometrically normal, see Varieties, Lemma 33.25.4. We conclude that T
is geometrically irreducible over κ(s) (as a connected Noetherian normal scheme is
irreducible, see Properties, Lemma 28.7.6). Finally, note that the smooth morphism
h is normal by Lemma 37.20.3. At this point we have verified all assumption of
Lemma 37.46.4 hold for the morphism h : Y → S and open T ⊂ Ys. As a result of
applying Lemma 37.46.4 we obtain e : S′ → S, s′ ∈ S′, Y ′ as in the commutative
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diagram

X

��

X ′
g

oo

π

��

X ′ ×Y Y ′oo

��

x_

��

x′�oo
_

��

(x′, s′)�oo
_

��
Y

h

��

Y ′

��

oo y_

��

(y, s′)�oo
_

��
S S S′eoo s s s′�oo

where e : (S′, s′) → (S, s) is an elementary étale neighbourhood, and where Y ′ ⊂
YS′ is an open neighbourhood all of whose fibres over S′ are geometrically irre-
ducible, such that Y ′

s′ = T via the identification Ys = YS′,s′ . Let (y, s′) ∈ Y ′ be
the point corresponding to y ∈ T ; this is also the unique point of Y ×S S′ ly-
ing over y with residue field equal to κ(y) which maps to s′ in S′. Similarly, let
(x′, s′) ∈ X ′ ×Y Y ′ ⊂ X ′ ×S S′ be the unique point over x′ with residue field equal
to κ(x′) lying over s′. Then the outer part of this diagram is a solution to the
problem posed in the lemma. Some minor details omitted. □

Lemma 37.47.3.057L Assumption and notation as in Lemma 37.47.2. In addition to
properties (1) – (6) we may also arrange it so that

(7) S′, Y ′, X ′ are affine.

Proof. Note that if Y ′ is affine, then X ′ is affine as π is finite. Choose an affine open
neighbourhood U ′ ⊂ S′ of s′. Choose an affine open neighbourhood V ′ ⊂ h−1(U ′)
of y′. Let W ′ = h(V ′). This is an open neighbourhood of s′ in S′, see Morphisms,
Lemma 29.34.10, contained in U ′. Choose an affine open neighbourhood U ′′ ⊂
W ′ of s′. Then h−1(U ′′) ∩ V ′ is affine because it is equal to U ′′ ×U ′ V ′. By
construction h−1(U ′′)∩V ′ → U ′′ is a surjective smooth morphism whose fibres are
(nonempty) open subschemes of geometrically integral fibres of Y ′ → S′, and hence
geometrically integral. Thus we may replace S′ by U ′′ and Y ′ by h−1(U ′′)∩V ′. □

The significance of the property π−1({y′}) = {x′} is partially explained by the
following lemma.

Lemma 37.47.4.05B8 Let π : X → Y be a finite morphism. Let x ∈ X with y = π(x)
such that π−1({y}) = {x}. Then

(1) For every neighbourhood U ⊂ X of x in X, there exists a neighbourhood
V ⊂ Y of y such that π−1(V ) ⊂ U .

(2) The ring map OY,y → OX,x is finite.
(3) If π is of finite presentation, then OY,y → OX,x is of finite presentation.
(4) For any quasi-coherent OX -module F we have Fx = π∗Fy as OY,y-

modules.

Proof. The first assertion is purely topological; use that π is a continuous and
closed map such that π−1({y}) = {x}. To prove the second and third parts we may
assume X = Spec(B) and Y = Spec(A). Then A → B is a finite ring map and y
corresponds to a prime p of A such that there exists a unique prime q of B lying
over p. Then Bq = Bp, see Algebra, Lemma 10.41.11. In other words, the map
Ap → Bq is equal to the map Ap → Bp you get from localizing A→ B at p. Thus
(2) and (3) follow from simple properties of localization (some details omitted). For
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the final statement, suppose that F = M̃ for some B-module M . Then F = Mq

and π∗Fy = Mp. By the above these localizations agree. Alternatively you can use
part (1) and the definition of stalks to see that Fx = π∗Fy directly. □

37.48. Application to the fppf topology

05WM We can use the above étale localization techniques to prove the following result
describing the fppf topology as being equal to the topology “generated by” Zariski
coverings and by coverings of the form {f : T → S} where f is surjective finite
locally free.

Lemma 37.48.1.0DET Let S be a scheme. Let {Si → S}i∈I be an fppf covering. Then
there exist

(1) an étale covering {S′
a → S},

(2) surjective finite locally free morphisms Va → S′
a,

such that the fppf covering {Va → S} refines the given covering {Si → S}.

Proof. We may assume that each Si → S is locally quasi-finite, see Lemma 37.23.6.

Fix a point s ∈ S. Pick an i ∈ I and a point si ∈ Si mapping to s. Choose an
elementary étale neighbourhood (S′, s)→ (S, s) such that there exists an open

Si ×S S′ ⊃ V

which contains a unique point v ∈ V mapping to s ∈ S′ and such that V → S′ is
finite, see Lemma 37.41.1. Then V → S′ is finite locally free, because it is finite
and because Si×S S′ → S′ is flat and locally of finite presentation as a base change
of the morphism Si → S, see Morphisms, Lemmas 29.21.4, 29.25.8, and 29.48.2.
Hence V → S′ is open, and after shrinking S′ we may assume that V → S′ is
surjective finite locally free. Since we can do this for every point of S we conclude
that {Si → S} can be refined by a covering of the form {Va → S}a∈A where each
Va → S factors as Va → S′

a → S with S′
a → S étale and Va → S′

a surjective finite
locally free. □

Lemma 37.48.2.05WN Let S be a scheme. Let {Si → S}i∈I be an fppf covering. Then
there exist

(1) a Zariski open covering S =
⋃
Uj ,

(2) surjective finite locally free morphisms Wj → Uj ,
(3) Zariski open coverings Wj =

⋃
kWj,k,

(4) surjective finite locally free morphisms Tj,k →Wj,k

such that the fppf covering {Tj,k → S} refines the given covering {Si → S}.

Proof. Let {Va → S}a∈A be the fppf covering found in Lemma 37.48.1. In other
words, this covering refines {Si → S} and each Va → S factors as Va → S′

a → S
with S′

a → S étale and Va → S′
a surjective finite locally free.

By Remark 37.40.3 there exists a Zariski open covering S =
⋃
Uj , for each j a finite

locally free, surjective morphism Wj → Uj , and for each j a Zariski open covering
{Wj,k →Wj} such that the family {Wj,k → S} refines the étale covering {S′

a → S},
i.e., for each pair j, k there exists an a(j, k) and a factorization Wj,k → S′

a → S of
the morphism Wj,k → S. Set Tj,k = Wj,k ×S′

a
Va and everything is clear. □
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Lemma 37.48.3.0CNX Let S be a scheme. If U ⊂ S is open and V → U is a surjective
integral morphism, then there exists a surjective integral morphism V → S with
V ×S U isomorphic to V as schemes over U .
Proof. Let V ′ → S be the normalization of S in U , see Morphisms, Section 29.53.
By construction V ′ → S is integral. By Morphisms, Lemmas 29.53.6 and 29.53.12
we see that the inverse image of U in V ′ is V . Let Z be the reduced induced scheme
structure on S \ U . Then V = V ′ ⨿ Z works. □

Lemma 37.48.4.0CNY Let S be a quasi-compact and quasi-separated scheme. If U ⊂ S
is a quasi-compact open and V → U is a surjective finite morphism, then there
exists a surjective finite morphism V → S with V ×S U isomorphic to V as schemes
over U .
Proof. By Zariski’s Main Theorem (Lemma 37.43.3) we can assume V is a quasi-
compact open in a scheme V ′ finite over S. After replacing V ′ by the scheme
theoretic image of V we may assume that V is dense in V ′. It follows that V ′×SU =
V because V → V ′×SU is closed as V is finite over U . Let Z be the reduced induced
scheme structure on S \ U . Then V = V ′ ⨿ Z works. □

Lemma 37.48.5.0CNZ Let S be a scheme. Let {Si → S}i∈I be an fppf covering. Then
there exists a surjective integral morphism S′ → S and an open covering S′ =

⋃
U ′
α

such that for each α the morphism U ′
α → S factors through Si → S for some i.

Proof. Choose S =
⋃
Uj , Wj → Uj , Wj =

⋃
Wj,k, and Tj,k → Wj,k as in Lemma

37.48.2. By Lemma 37.48.3 we can extend Wj → Uj to a surjective integral mor-
phism W j → S. After this we can extend Tj,k → Wj,k to a surjective integral
morphism T j,k → W j . We set T j equal to the product of all the schemes T j,k
over W j (Limits, Lemma 32.3.1). Then we set S′ equal to the product of all the
schemes T j over S. If x ∈ S′, then there is a j such that the image of x in S lies
in Uj . Hence there is a k such that the image of x under the projection S′ → W j

lies in Wj,k. Hence under the projection S′ → T j → T j,k the point x ends up in
Tj,k. And Tj,k → S factors through Si for some i. Finally, the morphism S′ → S
is integral and surjective by Limits, Lemmas 32.3.3 and 32.3.2. □

Lemma 37.48.6.0CP0 Let S be a quasi-compact and quasi-separated scheme. Let {Si →
S}i∈I be an fppf covering. Then there exists a surjective finite morphism S′ → S
of finite presentation and an open covering S′ =

⋃
U ′
α such that for each α the

morphism U ′
α → S factors through Si → S for some i.

Proof. Let Y → X be the integral surjective morphism found in Lemma 37.48.5.
Choose a finite affine open covering Y =

⋃
Vj such that Vj → X factors through

Si(j). We can write Y = limYλ with Yλ → X finite and of finite presentation,
see Limits, Lemma 32.7.3. For large enough λ we can find affine opens Vλ,j ⊂ Yλ
whose inverse image in Y recovers Vj , see Limits, Lemma 32.4.11. For even larger
λ the morphisms Vj → Si(j) over X come from morphisms Vλ,j → Si(j) over X, see
Limits, Proposition 32.6.1. Setting S′ = Yλ for this λ finishes the proof. □

Lemma 37.48.7.0DBT An fppf covering of schemes is a ph covering.
Proof. Let {Ti → T} be an fppf covering of schemes, see Topologies, Definition
34.7.1. Observe that Ti → T is locally of finite type. Let U ⊂ T be an affine open.
It suffices to show that {Ti ×T U → U} can be refined by a standard ph covering,

https://stacks.math.columbia.edu/tag/0CNX
https://stacks.math.columbia.edu/tag/0CNY
https://stacks.math.columbia.edu/tag/0CNZ
https://stacks.math.columbia.edu/tag/0CP0
https://stacks.math.columbia.edu/tag/0DBT
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see Topologies, Definition 34.8.4. This follows immediately from Lemma 37.48.6
and the fact that a finite morphism is proper (Morphisms, Lemma 29.44.11). □

Remark 37.48.8.0DBU As a consequence of Lemma 37.48.7 we obtain a comparison
morphism

ϵ : (Sch/S)ph −→ (Sch/S)fppf
This is the morphism of sites given by the identity functor on underlying categories
(with suitable choices of sites as in Topologies, Remark 34.11.1). The functor ϵ∗
is the identity on underlying presheaves and the functor ϵ−1 associated to an fppf
sheaf its ph sheafification. By composition we can in addition compare the ph
topology with the syntomic, smooth, étale, and Zariski topologies.

37.49. Quasi-projective schemes

0B41 The term “quasi-projective scheme” has not yet been defined. A possible definition
could be a scheme which has an ample invertible sheaf. However, if X is a scheme
over a base scheme S, then we say that X is quasi-projective over S if the morphism
X → S is quasi-projective (Morphisms, Definition 29.40.1). Since the identity
morphism of any scheme is quasi-projective, we see that a scheme quasi-projective
over S doesn’t necessarily have an ample invertible sheaf. For this reason it seems
better to leave the term “quasi-projective scheme” undefined.

Lemma 37.49.1.0B42 Let S be a scheme which has an ample invertible sheaf. Let
f : X → S be a morphism of schemes. The following are equivalent

(1) X → S is quasi-projective,
(2) X → S is H-quasi-projective,
(3) there exists a quasi-compact open immersion X → X ′ of schemes over S

with X ′ → S projective,
(4) X → S is of finite type and X has an ample invertible sheaf, and
(5) X → S is of finite type and there exists an f -very ample invertible sheaf.

Proof. The implication (2) ⇒ (1) is Morphisms, Lemma 29.40.5. The implication
(1)⇒ (2) is Morphisms, Lemma 29.43.16. The implication (2)⇒ (3) is Morphisms,
Lemma 29.43.11
Assume X ⊂ X ′ is as in (3). In particular X → S is of finite type. By Morphisms,
Lemma 29.43.11 the morphism X → S is H-projective. Thus there exists a quasi-
compact immersion i : X → Pn

S . Hence L = i∗OPn
S
(1) is f -very ample. As X → S

is quasi-compact we conclude from Morphisms, Lemma 29.38.2 that L is f -ample.
Thus X → S is quasi-projective by definition.
The implication (4) ⇒ (2) is Morphisms, Lemma 29.39.3.
Assume the equivalent conditions (1), (2), (3) hold. Choose an immersion i : X →
Pn
S over S. Let L be an ample invertible sheaf on S. To finish the proof we

will show that N = f∗L ⊗OX
i∗OPn

S
(1) is ample on X. By Properties, Lemma

28.26.14 we reduce to the case X = Pn
S . Let s ∈ Γ(S,L⊗d) be a section such

that the corresponding open Ss is affine. Say Ss = Spec(A). Recall that Pn
S is

the projective bundle associated to OST0 ⊕ . . .⊕OSTn, see Constructions, Lemma
27.21.5 and its proof. Let si ∈ Γ(Pn

S ,O(1)) be the global section corresponding to
the section Ti of OST0 ⊕ . . .⊕OSTn. Then we see that Xf∗s⊗s⊗n

i
is affine because

it is equal to Spec(A[T0/Ti, . . . , Tn/Ti]). This proves that N is ample by definition.

https://stacks.math.columbia.edu/tag/0DBU
https://stacks.math.columbia.edu/tag/0B42
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The equivalence of (1) and (5) follows from Morphisms, Lemmas 29.38.2 and
29.39.5. □

Lemma 37.49.2.0B43 Let S be a scheme which has an ample invertible sheaf. Let QPS
be the full subcategory of the category of schemes over S satisfying the equivalent
conditions of Lemma 37.49.1.

(1) if S′ → S is a morphism of schemes and S′ has an ample invertible sheaf,
then base change determines a functor QPS → QPS′ ,

(2) if X ∈ QPS and Y ∈ QPX , then Y ∈ QPS ,
(3) the category QPS is closed under fibre products,
(4) the category QPS is closed under finite disjoint unions,
(5) if X → S is projective, then X ∈ QPS ,
(6) if X → S is quasi-affine of finite type, then X is in QPS ,
(7) if X → S is quasi-finite and separated, then X ∈ QPS ,
(8) if X → S is a quasi-compact immersion, then X ∈ QPS ,
(9) add more here.

Proof. Part (1) follows from Morphisms, Lemma 29.40.2.

Part (2) follows from the fourth characterization of Lemma 37.49.1.

If X → S and Y → S are quasi-projective, then X ×S Y → Y is quasi-projective
by Morphisms, Lemma 29.40.2. Hence (3) follows from (2).

If X = Y ⨿ Z is a disjoint union of schemes and L is an invertible OX -module
such that L|Y and L|Z are ample, then L is ample (details omitted). Thus part (4)
follows from the fourth characterization of Lemma 37.49.1.

Part (5) follows from Morphisms, Lemma 29.43.10.

Part (6) follows from Morphisms, Lemma 29.40.7.

Part (7) follows from part (6) and Lemma 37.43.2.

Part (8) follows from part (7) and Morphisms, Lemma 29.20.16. □

The following lemma doesn’t really belong in this section, but there does not seem
to be a good spot for it anywhere else.

Lemma 37.49.3.0EJY Let X be a quasi-affine scheme. Let f : U → X be an integral
morphism. Then U is quasi-affine and the diagram

U //

��

Spec(Γ(U,OU ))

��
X // Spec(Γ(X,OX))

is cartesian.

Proof. The scheme U is quasi-affine because integral morphisms are affine, affine
morphisms are quasi-affine, a scheme is quasi-affine if and only if the structure
morphism to Spec(Z) is quasi-affine, and compositions of quasi-affine morphisms
are quasi-affine. The first two statements follow immediately from the definition and

https://stacks.math.columbia.edu/tag/0B43
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the third is Morphisms, Lemma 29.13.4. Set U ′ = X×Spec(Γ(X,OX)) Spec(Γ(U,OU ))
and consider the extended diagram

U
j
//

��

U ′

��

// Spec(Γ(U,OU ))

��
X // Spec(Γ(X,OX))

The morphism j is closed by Morphisms, Lemma 29.41.7 combined with the fact
that an integral morphism is universally closed (Morphisms, Lemma 29.44.7) and
the fact that the vertical arrows are in the diagram are separated. On the other
hand, j is open because the horizontal arrows in the diagram of the lemma are
open by Properties, Lemma 28.18.4. Thus j identifies U with an open and closed
subscheme of U ′. If U ̸= U ′ then U isn’t dense in U ′ and a fortiori not dense in the
spectrum of Γ(U,OU ). However, the scheme theoretic image of U in Spec(Γ(U,OU ))
is Spec(Γ(U,OU )) because any ideal in Γ(U,OU ) cutting out a closed subscheme
through which U factors would have to be zero. Hence U is dense in Spec(Γ(U,OU ))
for example by Morphisms, Lemma 29.6.3. Thus U = U ′ and we win. □

37.50. Projective schemes

0B44 This section is the analogue of Section 37.49 for projective morphisms.

Lemma 37.50.1.0B45 Let S be a scheme which has an ample invertible sheaf. Let
f : X → S be a morphism of schemes. The following are equivalent

(1) X → S is projective,
(2) X → S is H-projective,
(3) X → S is quasi-projective and proper,
(4) X → S is H-quasi-projective and proper,
(5) X → S is proper and X has an ample invertible sheaf,
(6) X → S is proper and there exists an f -ample invertible sheaf,
(7) X → S is proper and there exists an f -very ample invertible sheaf,
(8) there is a quasi-coherent graded OS-algebra A generated by A1 over A0

with A1 a finite type OS-module such that X = Proj
S

(A).

Proof. Observe first that in each case the morphism f is proper, see Morphisms,
Lemmas 29.43.3 and 29.43.5. Hence it suffices to prove the equivalence of the
notions in case f is a proper morphism. We will use this without further mention
in the following.

The equivalences (1) ⇔ (3) and (2) ⇔ (4) are Morphisms, Lemma 29.43.13.

The implication (2) ⇒ (1) is Morphisms, Lemma 29.43.3.

The implications (1) ⇒ (2) and (3) ⇒ (4) are Morphisms, Lemma 29.43.16.

The implication (1) ⇒ (7) is immediate from Morphisms, Definitions 29.43.1 and
29.38.1.

The conditions (3) and (6) are equivalent by Morphisms, Definition 29.40.1.

Thus (1) – (4), (6) are equivalent and imply (7). By Lemma 37.49.1 conditions (3),
(5), and (7) are equivalent. Thus we see that (1) – (7) are equivalent.

https://stacks.math.columbia.edu/tag/0B45
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By Divisors, Lemma 31.30.5 we see that (8) implies (1). Conversely, if (2) holds,
then we can choose a closed immersion

i : X −→ Pn
S = Proj

S
(OS [T0, . . . , Tn]).

See Constructions, Lemma 27.21.5 for the equality. By Divisors, Lemma 31.31.1
we see that X is the relative Proj of a quasi-coherent graded quotient algebra A of
OS [T0, . . . , Tn]. Then A satisfies the conditions of (8). □

Lemma 37.50.2.0B46 Let S be a scheme which has an ample invertible sheaf. Let PS
be the full subcategory of the category of schemes over S satisfying the equivalent
conditions of Lemma 37.50.1.

(1) if S′ → S is a morphism of schemes and S′ has an ample invertible sheaf,
then base change determines a functor PS → PS′ ,

(2) if X ∈ PS and Y ∈ PX , then Y ∈ PS ,
(3) the category PS is closed under fibre products,
(4) the category PS is closed under finite disjoint unions,
(5) if X → S is finite, then X is in PS ,
(6) add more here.

Proof. Part (1) follows from Morphisms, Lemma 29.43.9.

Part (2) follows from the fifth characterization of Lemma 37.50.1 and the fact that
compositions of proper morphisms are proper (Morphisms, Lemma 29.41.4).

If X → S and Y → S are projective, then X×S Y → Y is projective by Morphisms,
Lemma 29.43.9. Hence (3) follows from (2).

If X = Y ⨿ Z is a disjoint union of schemes and L is an invertible OX -module
such that L|Y and L|Z are ample, then L is ample (details omitted). Thus part (4)
follows from the fifth characterization of Lemma 37.50.1.

Part (5) follows from Morphisms, Lemma 29.44.16. □

Here is a slightly different type of result.

Lemma 37.50.3.0D2S [DG67, IV Corollary
9.6.4]

Let f : X → Y be a proper morphism of schemes. Let L be
an invertible OX -module. Let y ∈ Y be a point such that Ly is ample on Xy.
Then there is an open neighbourhood V ⊂ Y of y such that L|f−1(V ) is ample on
f−1(V )/V .

Proof. We may assume Y is affine. Then we find a directed set I and an inverse
system of morphisms Xi → Yi of schemes with Yi of finite type over Z, with affine
transition morphisms Xi → Xi′ and Yi → Yi′ , with Xi → Yi proper, such that
X → Y = lim(Xi → Yi). See Limits, Lemma 32.13.3. After shrinking I we can
assume we have a compatible system of invertibleOXi -modules Li pulling back to L,
see Limits, Lemma 32.10.3. Let yi ∈ Yi be the image of y. Then κ(y) = colim κ(yi).
Hence for some i we have Li,yi is ample on Xi,yi by Limits, Lemma 32.4.15. By
Cohomology of Schemes, Lemma 30.21.4 we find an open neigbourhood Vi ⊂ Yi of
yi such that Li restricted to f−1

i (Vi) is ample relative to Vi. Letting V ⊂ Y be the
inverse image of Vi finishes the proof (hints: use Morphisms, Lemma 29.37.9 and
the fact that X → Y ×Yi Xi is affine and the fact that the pullback of an ample
invertible sheaf by an affine morphism is ample by Morphisms, Lemma 29.37.7). □

https://stacks.math.columbia.edu/tag/0B46
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37.51. Proj and Spec

0EKF In this section we clarify the relationship between the Proj and the spectrum of a
graded ring.

Let R be a ring. Let A be a graded R-algebra, see Algebra, Section 10.56. For
m ≥ 0 we denote A≥m =

⊕
d≥mAd. Consider the graded ring

B =
⊕

d≥0
A≥d

For d′ ≥ d and a ∈ Ad′ let us denote a(d) ∈ B the element in Bd corresponding to
a. Let us denote σ : A→ B and ψ : A→ B the two obvious ring maps: if a ∈ Ad,
then σ(a) = a(0) and ψ(a) = a(d). Then ψ is a graded ring map and σ turns B into
a graded algebra over A. There is also a surjective graded ring map τ : B → A
which for d′ ≥ d and a ∈ Ad′ sends a(d) to 0 if d′ > d and to a if d′ = d.

Affine schemes and spectra. We set X = Spec(A). The irrelevant ideal A+ cuts
out a closed subscheme Z = V (A+) = Spec(A/A+) = Spec(A0). Set U = X \ Z.

U −→ X −→ Z

Projective schemes and Proj. Set P = Proj(A). We may and do view P as a scheme
over Spec(A0) = Z. Set L = Proj(B). We may and do view L as a scheme over
Spec(B0) = Spec(A) = X; observe that the identification of B0 with A is given by
σ. The surjection τ defines a closed immersion 0 : P → L. Since A σ−→ B → A is
equal to the map A→ A0 → A we conclude that

P

��

0
// L

��
Z // X

is commutative.

We claim that ψ defines a morphism L→ P . To see this, by Constructions, Lemma
27.11.1, it suffices to check ψ(A+) ̸⊂ p for every homogeneous prime ideal p ⊂ B
with B+ ̸⊂ p. First, pick g ∈ B+ homogeneous g ̸∈ p. Then we can write g as a
finite sum g =

∑
a

(d)
i with ai ∈ Adi for some di ≥ d. We conclude that there exist

d′ ≥ d and a ∈ Ad′ such that a(d) ̸∈ p. Then

(a(d))d
′

= (ad
′
)(d′d) = a(d)(ad

′−1)(d(d′−1)) = ψ(a)(ad
′−1)(d(d′−1))

(the notation leaves something to be desired) is not in p. Hence ψ(a) ̸∈ p, proving
the claim. Thus we can extend our diagram above to a commutative diagram

P

��

0
// L

��

π
// P

��
Z // X // Z

where X → Z is given by A0 → A. Since τ ◦ ψ = idA we see π ◦ 0 = idP .

Observe that π is an affine morphism. This is clear from the construction in Con-
structions, Lemma 27.11.1. In fact, if f ∈ Ad for some d > 0, then setting g = ψ(f)
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we have π−1(D+(f)) = D+(g). In this case we have the following equality of
homogeneous parts

(B[1/g])m′ =
⊕

m≥m′
(A[1/f ])m

This isomorphism is compatible with further localization. Taking m′ = 0 we see
that π∗OL is the direct sum of OP (m) for m ≥ 09. We conclude L is idendified
with the relative spectrum:

L = Spec
P

(⊕
m≥0
OP (m)

)
In particular L → P is a cone10, see Constructions, Section 27.7. Moreover, it is
clear that 0 : P → L is the vertex of the cone.
Let f ∈ Ad for some d > 0 and g = ψ(f) ∈ Bd as in the previous paragraph.
Looking at the structure of the ring maps

A0 //

��

A

σ

��

// A0

��
(A[1/f ])0

ψ // (B[1/g])0 =
⊕

m≥0(A[1/f ])m τ // (A[1/f ])0

some compuations11 in graded rings will show that
(1) σ(A+)(B[1/g])0 ⊂ Ker(τ : (B[1/g])0 → (A[1/f ])0),
(2) σ(f) ∈ (B[1/g])0 is a nonzerodivisor,
(3) σ(f)(B[1/g])0 = σ(Ad)(B[1/g])0 as ideals,
(4) σ(f)(B[1/g])0 and Ker(τ : (B[1/g])0 → (A[1/f ])0) have the same radical,
(5) if d = 1, then σ(f)(B[1/g])0 = Ker(τ : (B[1/g])0 → (A[1/f ])0).

We see in particular that
0(D+(f)) = V (σ(f)) ⊂ D+(g) = Spec((B[1/g])0)

set theoretically. In other words, the ideal generated by σ(Ad) cuts out an effective
Cartier divisor on D+(g) which is set theoretically equal to the image of the closed
immersion 0 : P → L.
We claim that L→ X is an isomorphism over U . Namely, if f ∈ Ad for some d > 0,
then

Spec(Af )×X L = Proj(Af ⊗A B) = Proj(Bσ(f))
For each e we have (Bσ(f))e = Af ⊗B Be = Af ⊗A A≥e = Af , the final equality
induced by the injection A≥e ⊂ A. Hence Bσ(f) ∼= Af [T ] with T in degree 1. This
proves the claim as Proj(Af [T ]) → Spec(Af ) is an isomorphism. From now on we
identify U with the corresponding open of L.

9It similarly follows that π∗OL(i) =
⊕

m≥−iOP (m).
10Often L is a line bundle over P , see below.
11Parts (1) and (2) are clear. To see (3), note that if a ∈ Ad, then σ(a) = σ(f)ψ(a/f). For

(4) note that b/gm is in the kernel of τ if and only if b ∈ A≥md maps to zero in Amd. Thus it
suffices to show if m′ > md and a ∈ Am′ , then some power of a(md)/gm is in the ideal generated
by σ(f). Take e such that em′ − emd ≥ d. Then

(a(md)/gm)e = (ae)(emd)/gem = (fae)(emd+d)/gem+1 = σ(f) · (ae)(emd+d)/gem+1

as desired (apologies for the terrible notation). To see (5) argue as before and note that
a(md)/gm = σ(f) · a(md+1)/gm+1 if d = 1.
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The identification made in the previous paragraph lets us consider the restriction
π|U : U → P . Pick f ∈ Ad for some d > 0 and g = ψ(f) ∈ Bd as we have done
above several times. Then

U ∩ π−1(D+(f)) = U ∩D+(g)

is the complement of the zero locus of σ(f) ∈ (B[1/g])0 via the identification of
D+(g) with the spectrum of (B[1/g])0. This is assertion (4) above. Therefore
U ∩D+(g) is affine and

OL(U ∩D+(g)) = (B[1/g])0[1/σ(f)] =
⊕

m∈Z
(A[1/f ])m

where the last equal sign is the natural extension of the identification (B[1/g])0 =⊕
m≥0(A[1/f ])m made above. Exactly as we did before with π : L→ P we conclude

that π|U : U → P is affine and

U = Spec
P

(⊕
m∈Z

OP (m)
)

as schemes over P .

Summarising the above, our constructions produce a commutative diagram

(37.51.0.1)0EKG

Spec
P

(⊕
m∈ZOP (m)

)
// L = Spec

P

(⊕
m≥0OP (m)

)
σ

��

π
// P

��
U // X // Z

of schemes where π is a cone whose zero section 0 : P → L maps set theoretically
onto the inverse image of Z in L.

Let W ⊂ P be the largest open such that OP (1)|W is invertible and the natural
maps induce isomorphisms OP (m)|W ∼= OP (1)⊗m|W for all m ∈ Z, i.e., the open of
Constructions, Lemma 27.10.4 for d = 1. Then we see that L|W = π−1(W ) → W
is a vector bundle (Constructions, Section 27.6) of rank 1, namely,

L|W = V(OP (1)|W )

in Grothendieckian notation. This is immediate from the above showing that L|W
is equal to the relative spectrum of the symmetric algebra over OW on OP (1)|W .
Then clearly the morphism 0|W : W → L|W is the zero section of this vector
bundle. In particular 0(W ) is an effective Cartier divisor on L|W . Moreover, the
open U |W = (π|U )−1(W ) is the complement of the zero section.

If A is generated by f1, . . . , fr ∈ A1 over A0, then (f1, . . . , fr)m = A≥m for all
m ≥ 0 and hence our B above is the Rees algebra for A+ = (f1, . . . , fr). Thus in
this case L → X is the blowup of Z and W = P where W is as in the preceding
paragraph.

If P is quasi-compact, then for d sufficiently divisible, the closed subscheme D ⊂ L
cut out by σ(Ad)OL is an effective Cartier divisor, 0 : P → L factors through D,
and 0(P ) = D set theoretically. This follows from Constructions, Lemma 27.8.9
and (1), (2), (3), and (4) proved above. (Take any d divisible by the lcm of the
degrees of the elements found in the lemma.)
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We continue to assume P is quasi-compact. Let F be a quasi-coherent OP -module.
Let us set FU = π∗F|U . Then we have

(37.51.0.2)0EKH RΓ(U,FU ) =
⊕

m∈Z
RΓ(P,F ⊗OP

OP (m))

Moreover, this direct sum decomposition is functorial in F and the induced A-
module structure on the right is the same as the A-module structure on the left
coming from U ⊂ X. To prove the formula, since π|U is affine and (π|U )∗OU =⊕

m∈ZOP (m) we get

R(π|U )∗FU = (π|U )∗FU
= (π|U )∗(π|U )∗F

= F ⊗OP

⊕
m∈Z

OP (m)

=
⊕

m∈Z
F ⊗OP

OP (m)

By Leray we find that RΓ(U,FU ) = RΓ(P,R(π|U )∗FU ), see Cohomology, Lemma
20.13.6. The proof is finished because taking cohomology commutes with direct
sums in this case, see Derived Categories of Schemes, Lemma 36.4.5. This is where
we use that P is quasi-compact; P is separated by Constructions, Lemma 27.8.8.

Lemma 37.51.1.0EKI Let R be a ring. Let P be a proper scheme over R and let L be
an ample invertible OP -module. Set A =

⊕
m≥0 Γ(P,L⊗m). Then P = Proj(A)

and diagram (37.51.0.1) becomes the diagram

Spec
P

(⊕
m∈Z L⊗m) // L = Spec

P

(⊕
m≥0 L⊗m

)
σ

��

π
// P

��
U // X // Z

having the properties explained above.

Proof. We have P = Proj(A) by Morphisms, Lemma 29.43.17. Moreover, by
Properties, Lemma 28.28.2 via this identification we have OP (m) = L⊗m for all
m ∈ Z. □

37.52. Closed points in fibres

053Q Some of the material in this section is taken from the preprint [OP10].

Lemma 37.52.1.053R Let f : X → S be a morphism of schemes. Let Z ⊂ X be a closed
subscheme. Let s ∈ S. Assume

(1) S is irreducible with generic point η,
(2) X is irreducible,
(3) f is dominant,
(4) f is locally of finite type,
(5) dim(Xs) ≤ dim(Xη),
(6) Z is locally principal in X, and
(7) Zη = ∅.

Then the fibre Zs is (set theoretically) a union of irreducible components of Xs.

https://stacks.math.columbia.edu/tag/0EKI
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37.52. CLOSED POINTS IN FIBRES 3280

Proof. Let Xred denote the reduction of X. Then Z ∩ Xred is a locally principal
closed subscheme of Xred, see Divisors, Lemma 31.13.11. Hence we may assume
that X is reduced. In other words X is integral, see Properties, Lemma 28.3.4. In
this case the morphism X → S factors through Sred, see Schemes, Lemma 26.12.7.
Thus we may replace S by Sred and assume that S is integral too.
The assertion that f is dominant signifies that the generic point of X is mapped to
η, see Morphisms, Lemma 29.8.6. Moreover, the scheme Xη is an integral scheme
which is locally of finite type over the field κ(η). Hence d = dim(Xη) ≥ 0 is
equal to dimξ(Xη) for every point ξ of Xη, see Algebra, Lemmas 10.114.4 and
10.114.5. In view of Morphisms, Lemma 29.28.4 and condition (5) we conclude
that dimx(Xs) = d for every x ∈ Xs.
In the Noetherian case the assertion can be proved as follows. If the lemma does
not holds there exists x ∈ Zs which is a generic point of an irreducible component
of Zs but not a generic point of any irreducible component of Xs. Then we see
that dimx(Zs) ≤ d − 1, because dimx(Xs) = d and in a neighbourhood of x in
Xs the closed subscheme Zs does not contain any of the irreducible components of
Xs. Hence after replacing X by an open neighbourhood of x we may assume that
dimz(Zf(z)) ≤ d − 1 for all z ∈ Z, see Morphisms, Lemma 29.28.4. Let ξ′ ∈ Z be
a generic point of an irreducible component of Z and set s′ = f(ξ). As Z ̸= X is
locally principal we see that dim(OX,ξ) = 1, see Algebra, Lemma 10.60.11 (this is
where we use X is Noetherian). Let ξ ∈ X be the generic point of X and let ξ1
be a generic point of any irreducible component of Xs′ which contains ξ′. Then we
see that we have the specializations

ξ ⇝ ξ1 ⇝ ξ′.

As dim(OX,ξ) = 1 one of the two specializations has to be an equality. By assump-
tion s′ ̸= η, hence the first specialization is not an equality. Hence ξ′ = ξ1 is a
generic point of an irreducible component of Xs′ . Applying Morphisms, Lemma
29.28.4 one more time this implies dimξ′(Zs′) = dimξ′(Xs′) ≥ dim(Xη) = d which
gives the desired contradiction.
In the general case we reduce to the Noetherian case as follows. If the lemma is
false then there exists a point x ∈ X lying over s such that x is a generic point of
an irreducible component of Zs, but not a generic point of any of the irreducible
components of Xs. Let U ⊂ S be an affine neighbourhood of s and let V ⊂ X be an
affine neighbourhood of x with f(V ) ⊂ U . Write U = Spec(A) and V = Spec(B)
so that f |V is given by a ring map A → B. Let q ⊂ B, resp. p ⊂ A be the prime
corresponding to x, resp. s. After possibly shrinking V we may assume Z ∩ V is
cut out by some element g ∈ B. Denote K the fraction field of A. What we know
at this point is the following:

(1) A ⊂ B is a finitely generated extension of domains,
(2) the element g ⊗ 1 is invertible in B ⊗A K,
(3) d = dim(B ⊗A K) = dim(B ⊗A κ(p)),
(4) g ⊗ 1 is not a unit of B ⊗A κ(p), and
(5) g ⊗ 1 is not in any of the minimal primes of B ⊗A κ(p).

We are seeking a contradiction.
Pick elements x1, . . . , xn ∈ B which generate B over A. For a finitely generated
Z-algebra A0 ⊂ A let B0 ⊂ B be the A0-subalgebra generated by x1, . . . , xn, denote
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K0 the fraction field of A0, and set p0 = A0 ∩ p. We claim that when A0 is large
enough then (1) – (5) also hold for the system (A0 ⊂ B0, g, p0).
We prove each of the conditions in turn. Part (1) holds by construction. For part
(2) write (g⊗ 1)h = 1 for some h⊗ 1/a ∈ B⊗AK. Write g =

∑
aIx

I , h =
∑
a′
Ix
I

(multi-index notation) for some coefficients aI , a′
I ∈ A. As soon as A0 contains a

and the aI , a′
I then (2) holds because B0⊗A0 K0 ⊂ B⊗AK (as localizations of the

injective map B0 → B). To achieve (3) consider the exact sequence
0→ I → A[X1, . . . , Xn]→ B → 0

which defines I where the second map sends Xi to xi. Since ⊗ is right exact we see
that I⊗AK, respectively I⊗A κ(p) is the kernel of the surjection K[X1, . . . , Xn]→
B ⊗A K, respectively κ(p)[X1, . . . , Xn]→ B ⊗A κ(p). As a polynomial ring over a
field is Noetherian there exist finitely many elements hj ∈ I, j = 1, . . . ,m which
generate I ⊗A K and I ⊗A κ(p). Write hj =

∑
aj,IX

I . As soon as A0 contains all
aj,I we get to the situation where
B0 ⊗A0 K0 ⊗K0 K = B ⊗A K and B0 ⊗A0 κ(p0)⊗κ(p0) κ(p) = B ⊗A κ(p).

By either Morphisms, Lemma 29.28.3 or Algebra, Lemma 10.116.5 we see that the
dimension equalities of (3) are satisfied. Part (4) is immediate. As B0⊗A0 κ(p0) ⊂
B ⊗A κ(p) each minimal prime of B0 ⊗A0 κ(p0) lies under a minimal prime of
B⊗A κ(p) by Algebra, Lemma 10.30.6. This implies that (5) holds. In this way we
reduce the problem to the Noetherian case which we have dealt with above. □

Here is an algebraic application of the lemma above. The fourth assumption of the
lemma holds if A→ B is flat, see Lemma 37.52.3.

Lemma 37.52.2.053S Let A→ B be a local homomorphism of local rings, and g ∈ mB .
Assume

(1) A and B are domains and A ⊂ B,
(2) B is essentially of finite type over A,
(3) g is not contained in any minimal prime over mAB, and
(4) dim(B/mAB) + trdegκ(mA)(κ(mB)) = trdegA(B).

Then A ⊂ B/gB, i.e., the generic point of Spec(A) is in the image of the morphism
Spec(B/gB)→ Spec(A).

Proof. Note that the two assertions are equivalent by Algebra, Lemma 10.30.6. To
start the proof let C be an A-algebra of finite type and q a prime of C such that B =
Cq. Of course we may assume that C is a domain and that g ∈ C. After replacing
C by a localization we see that dim(C/mAC) = dim(B/mAB)+trdegκ(mA)(κ(mB)),
see Morphisms, Lemma 29.28.1. Setting K equal to the fraction field of A we see by
the same reference that dim(C ⊗A K) = trdegA(B). Hence assumption (4) means
that the generic and closed fibres of the morphism Spec(C) → Spec(A) have the
same dimension.
Suppose that the lemma is false. Then (B/gB)⊗A K = 0. This means that g ⊗ 1
is invertible in B ⊗A K = Cq ⊗A K. As Cq is a limit of principal localizations
we conclude that g ⊗ 1 is invertible in Ch ⊗A K for some h ∈ C, h ̸∈ q. Thus
after replacing C by Ch we may assume that (C/gC)⊗A K = 0. We do one more
replacement of C to make sure that the minimal primes of C/mAC correspond
one-to-one with the minimal primes of B/mAB. At this point we apply Lemma

https://stacks.math.columbia.edu/tag/053S
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37.52.1 to X = Spec(C) → Spec(A) = S and the locally closed subscheme Z =
Spec(C/gC). Since ZK = ∅ we see that Z ⊗ κ(mA) has to contain an irreducible
component of X ⊗ κ(mA) = Spec(C/mAC). But this contradicts the assumption
that g is not contained in any prime minimal over mAB. The lemma follows. □

Lemma 37.52.3.053T Let A→ B be a local homomorphism of local rings. Assume
(1) A and B are domains and A ⊂ B,
(2) B is essentially of finite type over A, and
(3) B is flat over A.

Then we have

dim(B/mAB) + trdegκ(mA)(κ(mB)) = trdegA(B).

Proof. Let C be an A-algebra of finite type and q a prime of C such that B =
Cq. We may assume C is a domain. We have dimq(C/mAC) = dim(B/mAB) +
trdegκ(mA)(κ(mB)), see Morphisms, Lemma 29.28.1. Setting K equal to the fraction
field of A we see by the same reference that dim(C ⊗A K) = trdegA(B). Thus we
are really trying to prove that dimq(C/mAC) = dim(C ⊗AK). Choose a valuation
ring A′ in K dominating A, see Algebra, Lemma 10.50.2. Set C ′ = C⊗AA′. Choose
a prime q′ of C ′ lying over q; such a prime exists because

C ′/mA′C ′ = C/mAC ⊗κ(mA) κ(mA′)

which proves that C/mAC → C ′/mA′C ′ is faithfully flat. This also proves that
dimq(C/mAC) = dimq′(C ′/mA′C ′), see Algebra, Lemma 10.116.6. Note that B′ =
C ′

q′ is a localization of B ⊗A A′. Hence B′ is flat over A′. The generic fibre
B′ ⊗A′ K is a localization of B ⊗A K. Hence B′ is a domain. If we prove the
lemma for A′ ⊂ B′, then we get the equality dimq′(C ′/mA′C ′) = dim(C ′ ⊗A′ K)
which implies the desired equality dimq(C/mAC) = dim(C⊗AK) by what was said
above. This reduces the lemma to the case where A is a valuation ring.

Let A ⊂ B be as in the lemma with A a valuation ring. As before write B = Cq

for some domain C of finite type over A. By Algebra, Lemma 10.125.9 we obtain
dim(C/mAC) = dim(C ⊗A K) and we win. □

Lemma 37.52.4.053U Let f : X → S be a morphism of schemes. Let x ⇝ x′ be a
specialization of points in X. Set s = f(x) and s′ = f(x′). Assume

(1) x′ is a closed point of Xs′ , and
(2) f is locally of finite type.

Then the set

{x1 ∈ X such that f(x1) = s and x1 is closed in Xs and x⇝ x1 ⇝ x′}

is dense in the closure of x in Xs.

Proof. We apply Schemes, Lemma 26.20.4 to the specialization x ⇝ x′. This
produces a morphism φ : Spec(B) → X where B is a valuation ring such that φ
maps the generic point to x and the closed point to x′. We may also assume that
κ(x) is the fraction field of B. Let A = B ∩ κ(s). Note that this is a valuation
ring (see Algebra, Lemma 10.50.7) which dominates the image of OS,s′ → κ(s).
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Consider the commutative diagram

Spec(B)

%%

// XA

��

// X

��
Spec(A) // S

The generic (resp. closed) point of B maps to a point xA (resp. x′
A) of XA lying

over the generic (resp. closed) point of Spec(A). Note that x′
A is a closed point of

the special fibre of XA by Morphisms, Lemma 29.20.4. Note that the generic fibre
of XA → Spec(A) is isomorphic to Xs. Thus we have reduced the lemma to the
case where S is the spectrum of a valuation ring, s = η ∈ S is the generic point,
and s′ ∈ S is the closed point.

We will prove the lemma by induction on dimx(Xη). If dimx(Xη) = 0, then there
are no other points of Xη specializing to x and x is closed in its fibre, see Morphisms,
Lemma 29.20.6, and the result holds. Assume dimx(Xη) > 0.

Let X ′ ⊂ X be the reduced induced scheme structure on the irreducible closed
subscheme {x} of X, see Schemes, Definition 26.12.5. To prove the lemma we may
replace X by X ′ as this only decreases dimx(Xη). Hence we may also assume that
X is an integral scheme and that x is its generic point. In addition, we may replace
X by an affine neighbourhood of x′. Thus we have X = Spec(B) where A ⊂ B is
a finite type extension of domains. Note that in this case dimx(Xη) = dim(Xη) =
dim(Xs′), and that in fact Xs′ is equidimensional, see Algebra, Lemma 10.125.9.

Let W ⊂ Xη be a proper closed subset (this is the subset we want to “avoid”).
As Xs is of finite type over a field we see that W has finitely many irreducible
components W = W1 ∪ . . . ∪Wn. Let qj ⊂ B, j = 1, . . . , r be the corresponding
prime ideals. Let q ⊂ B be the maximal ideal corresponding to the point x′. Let
p1, . . . , ps ⊂ B be the minimal primes lying over mAB. There are finitely many
as these correspond to the irreducible components of the Noetherian scheme Xs′ .
Moreover, each of these irreducible components has dimension > 0 (see above)
hence we see that pi ̸= q for all i. Now, pick an element g ∈ q such that g ̸∈ qj
for all j and g ̸∈ pi for all i, see Algebra, Lemma 10.15.2. Denote Z ⊂ X the
locally principal closed subscheme defined by g. Let Zη = Z1,η ∪ . . . ∪ Zn,η, n ≥ 0
be the decomposition of the generic fibre of Z into irreducible components (finitely
many as the generic fibre is Noetherian). Denote Zi ⊂ X the closure of Zi,η. After
replacing X by a smaller affine neighbourhood we may assume that x′ ∈ Zi for each
i = 1, . . . , n. By construction Z ∩Xs′ does not contain any irreducible component
of Xs′ . Hence by Lemma 37.52.1 we conclude that Zη ̸= ∅! In other words n ≥ 1.
Letting x1 ∈ Z1 be the generic point we see that x1 ⇝ x′ and f(x1) = η. Also,
by construction Z1,η ∩Wj ⊂Wj is a proper closed subset. Hence every irreducible
component of Z1,η∩Wj has codimension ≥ 2 in Xη whereas codim(Z1,η, Xη) = 1 by
Algebra, Lemma 10.60.11. Thus W∩Z1,η is a proper closed subset. At this point we
see that the induction hypothesis applies to Z1 → S and the specialization x1 ⇝ x′.
This produces a closed point x2 of Z1,η not contained in W which specializes to
x′. Thus we obtain x ⇝ x2 ⇝ x′, the point x2 is closed in Xη, and x2 ̸∈ W as
desired. □
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Remark 37.52.5.053V The proof of Lemma 37.52.4 actually shows that there exists a
sequence of specializations

x⇝ x1 ⇝ x2 ⇝ . . .⇝ xd ⇝ x′

where all xi are in the fibre Xs, each specialization is immediate, and xd is a closed
point of Xs. The integer d = trdegκ(s)(κ(x)) = dim({x}) where the closure is taken
in Xs. Moreover, the points xi can be chosen to avoid any closed subset of Xs

which does not contain the point x.

Examples, Section 110.38 shows that the following lemma is false if A is not assumed
Noetherian.

Lemma 37.52.6.05GT Let φ : A→ B be a local ring map of local rings. Let V ⊂ Spec(B)
be an open subscheme which contains at least one prime not lying over mA. Assume
A is Noetherian, φ essentially of finite type, and A/mA ⊂ B/mB is finite. Then
there exists a q ∈ V , mA ̸= q ∩ A such that A → B/q is the localization of a
quasi-finite ring map.

Proof. Since A is Noetherian and A → B is essentially of finite type, we know
that B is Noetherian too. By Properties, Lemma 28.6.4 the topological space
Spec(B)\{mB} is Jacobson. Hence we can choose a closed point q which is contained
in the nonempty open

V \ {q ⊂ B | mA = q ∩A}.
(Nonempty by assumption, open because {mA} is a closed subset of Spec(A).) Then
Spec(B/q) has two points, namely mB and q and q does not lie over mA. Write
B/q = Cm for some finite type A-algebra C and prime ideal m. Then A → C
is quasi-finite at m by Algebra, Lemma 10.122.2 (2). Hence by Algebra, Lemma
10.123.13 we see that after replacing C by a principal localization the ring map
A→ C is quasi-finite. □

Lemma 37.52.7.05GU Let f : X → S be a morphism of schemes. Let x ∈ X with image
s ∈ S. Let U ⊂ X be an open subscheme. Assume f locally of finite type, S locally
Noetherian, x a closed point of Xs, and assume there exists a point x′ ∈ U with
x′ ⇝ x and f(x′) ̸= s. Then there exists a closed subscheme Z ⊂ X such that (a)
x ∈ Z, (b) f |Z : Z → S is quasi-finite at x, and (c) there exists a z ∈ Z, z ∈ U ,
z ⇝ x and f(z) ̸= s.

Proof. This is a reformulation of Lemma 37.52.6. Namely, set A = OS,s and
B = OX,x. Denote V ⊂ Spec(B) the inverse image of U . The ring map f ♯ : A→ B
is essentially of finite type. By assumption there exists at least one point of V which
does not map to the closed point of Spec(A). Hence all the assumptions of Lemma
37.52.6 hold and we obtain a prime q ⊂ B which does not lie over mA and such that
A→ B/q is the localization of a quasi-finite ring map. Let z ∈ X be the image of
the point q under the canonical morphism Spec(B) → X. Set Z = {z} with the
induced reduced scheme structure. As z ⇝ x we see that x ∈ Z and OZ,x = B/q.
By construction Z → S is quasi-finite at x. □

Remark 37.52.8.05GV We can use Lemma 37.52.6 or its variant Lemma 37.52.7 to give
an alternative proof of Lemma 37.52.4 in case S is locally Noetherian. Here is
a rough sketch. Namely, first replace S by the spectrum of the local ring at s′.
Then we may use induction on dim(S). The case dim(S) = 0 is trivial because
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then s′ = s. Replace X by the reduced induced scheme structure on {x}. Apply
Lemma 37.52.7 to X → S and x′ 7→ s′ and any nonempty open U ⊂ X containing
x. This gives us a closed subscheme x′ ∈ Z ⊂ X a point z ∈ Z such that Z → S is
quasi-finite at x′ and such that f(z) ̸= s′. Then z is a closed point of Xf(z), and
z ⇝ x′. As f(z) ̸= s′ we see dim(OS,f(z)) < dim(S). Since x is the generic point
of X we see x ⇝ z, hence s = f(x) ⇝ f(z). Apply the induction hypothesis to
s⇝ f(z) and z 7→ f(z) to win.

Lemma 37.52.9.05GW Suppose that f : X → S is locally of finite type, S locally
Noetherian, x ∈ X a closed point of its fibre Xs, and U ⊂ X an open subscheme
such that U ∩Xs = ∅ and x ∈ U , then the conclusions of Lemma 37.52.7 hold.

Proof. Namely, we can reduce this to the cited lemma as follows: First we replace X
and S by affine neighbourhoods of x and s. Then X is Noetherian, in particular U
is quasi-compact (see Morphisms, Lemma 29.15.6 and Topology, Lemmas 5.9.2 and
5.12.13). Hence there exists a specialization x′ ⇝ x with x′ ∈ U (see Morphisms,
Lemma 29.6.5). Note that f(x′) ̸= s. Thus we see all hypotheses of the lemma are
satisfied and we win. □

37.53. Stein factorization

03GX Stein factorization is the statement that a proper morphism f : X → S with
f∗OX = OS has connected fibres.

Lemma 37.53.1.03GY Let S be a scheme. Let f : X → S be a universally closed and
quasi-separated morphism. There exists a factorization

X
f ′

//

f ��

S′

π
��

S

with the following properties:
(1) the morphism f ′ is universally closed, quasi-compact, quasi-separated,

and surjective,
(2) the morphism π : S′ → S is integral,
(3) we have f ′

∗OX = OS′ ,
(4) we have S′ = Spec

S
(f∗OX), and

(5) S′ is the normalization of S in X, see Morphisms, Definition 29.53.3.
Formation of the factorization f = π ◦ f ′ commutes with flat base change.

Proof. By Morphisms, Lemma 29.41.8 the morphism f is quasi-compact. Hence
the normalization S′ of S in X is defined (Morphisms, Definition 29.53.3) and we
have the factorization X → S′ → S. By Morphisms, Lemma 29.53.11 we have (2),
(4), and (5). The morphism f ′ is universally closed by Morphisms, Lemma 29.41.7.
It is quasi-compact by Schemes, Lemma 26.21.14 and quasi-separated by Schemes,
Lemma 26.21.13.
To show the remaining statements we may assume the base scheme S is affine, say
S = Spec(R). Then S′ = Spec(A) with A = Γ(X,OX) an integral R-algebra. Thus
it is clear that f ′

∗OX is OS′ (because f ′
∗OX is quasi-coherent, by Schemes, Lemma

26.24.1, and hence equal to Ã). This proves (3).
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Let us show that f ′ is surjective. As f ′ is universally closed (see above) the image
of f ′ is a closed subset V (I) ⊂ S′ = Spec(A). Pick h ∈ I. Then h|X = f ♯(h) is a
global section of the structure sheaf of X which vanishes at every point. As X is
quasi-compact this means that h|X is a nilpotent section, i.e., hn|X = 0 for some
n > 0. But A = Γ(X,OX), hence hn = 0. In other words I is contained in the
Jacobson radical ideal of A and we conclude that V (I) = S′ as desired. □

Lemma 37.53.2.0E0M In Lemma 37.53.1 assume in addition that f is locally of finite
type. Then for s ∈ S the fibre π−1({s}) = {s1, . . . , sn} is finite and the field
extensions κ(si)/κ(s) are finite.

Proof. Recall that there are no specializations among the points of π−1({s}), see
Algebra, Lemma 10.36.20. As f ′ is surjective, we find that |Xs| → π−1({s}) is
surjective. Observe that Xs is a quasi-separated scheme of finite type over a field
(quasi-compactness was shown in the proof of the referenced lemma). Thus Xs is
Noetherian (Morphisms, Lemma 29.15.6). A topological argument (omitted) now
shows that π−1({s}) is finite. For each i we can pick a finite type point xi ∈ Xs

mapping to si (Morphisms, Lemma 29.16.7). We conclude that κ(si)/κ(s) is finite:
xi can be represented by a morphism Spec(ki)→ Xs of finite type (by our definition
of finite type points) and hence Spec(ki) → s = Spec(κ(s)) is of finite type (as a
composition of finite type morphisms), hence ki/κ(s) is finite (Morphisms, Lemma
29.16.1). □

Lemma 37.53.3.03GZ Let f : X → S be a morphism of schemes. Let s ∈ S. Then Xs is
geometrically connected, if and only if for every étale neighbourhood (U, u)→ (S, s)
the base change XU → U has connected fibre Xu.

Proof. If Xs is geometrically connected, then any base change of it is connected. On
the other hand, suppose that Xs is not geometrically connected. Then by Varieties,
Lemma 33.7.11 we see that Xs ×Spec(κ(s)) Spec(k) is disconnected for some finite
separable field extension k/κ(s). By Lemma 37.35.2 there exists an affine étale
neighbourhood (U, u) → (S, s) such that κ(u)/κ(s) is identified with k/κ(s). In
this case Xu is disconnected. □

Theorem 37.53.4 (Stein factorization; Noetherian case).03H0 Let S be a locally Noe-
therian scheme. Let f : X → S be a proper morphism. There exists a factorization

X
f ′

//

f ��

S′

π
��

S

with the following properties:
(1) the morphism f ′ is proper with geometrically connected fibres,
(2) the morphism π : S′ → S is finite,
(3) we have f ′

∗OX = OS′ ,
(4) we have S′ = Spec

S
(f∗OX), and

(5) S′ is the normalization of S in X, see Morphisms, Definition 29.53.3.

Proof. Let f = π ◦ f ′ be the factorization of Lemma 37.53.1. Note that besides the
conclusions of Lemma 37.53.1 we also have that f ′ is separated (Schemes, Lemma
26.21.13) and finite type (Morphisms, Lemma 29.15.8). Hence f ′ is proper. By
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Cohomology of Schemes, Proposition 30.19.1 we see that f∗OX is a coherent OS-
module. Hence we see that π is finite, i.e., (2) holds.
This proves all but the most interesting assertion, namely that all the fibres of f ′ are
geometrically connected. It is clear from the discussion above that we may replace
S by S′, and we may therefore assume that S is Noetherian, affine, f : X → S is
proper, and f∗OX = OS . Let s ∈ S be a point of S. We have to show that Xs

is geometrically connected. By Lemma 37.53.3 we see that it suffices to show Xu

is connected for every étale neighbourhood (U, u) → (S, s). We may assume U is
affine. Thus U is Noetherian (Morphisms, Lemma 29.15.6), the base change fU :
XU → U is proper (Morphisms, Lemma 29.41.5), and that also (fU )∗OXU = OU
(Cohomology of Schemes, Lemma 30.5.2). Hence after replacing (f : X → S, s) by
the base change (fU : XU → U, u) it suffices to prove that the fibre Xs is connected
when f∗OX = OS . We can deduce this from Derived Categories of Schemes, Lemma
36.32.7 (by looking at idempotents in the structure sheaf of Xs) but we will also
give a direct argument below.
Namely, we apply the theorem on formal functions, more precisely Cohomology of
Schemes, Lemma 30.20.7. It tells us that

O∧
S,s = (f∗OX)∧

s = limnH
0(Xn,OXn)

where Xn is the nth infinitesimal neighbourhood of Xs. Since the underlying topo-
logical space of Xn is equal to that of Xs we see that if Xs = T1 ⨿ T2 is a disjoint
union of nonempty open and closed subschemes, then similarly Xn = T1,n ⨿ T2,n
for all n. And this in turn means H0(Xn,OXn) contains a nontrivial idempotent
e1,n, namely the function which is identically 1 on T1,n and identically 0 on T2,n.
It is clear that e1,n+1 restricts to e1,n on Xn. Hence e1 = lim e1,n is a nontrivial
idempotent of the limit. This contradicts the fact that O∧

S,s is a local ring. Thus
the assumption was wrong, i.e., Xs is connected, and we win. □

Theorem 37.53.5 (Stein factorization; general case).03H2 Let S be a scheme. Let f :
X → S be a proper morphism. There exists a factorization

X
f ′

//

f ��

S′

π
��

S

with the following properties:
(1) the morphism f ′ is proper with geometrically connected fibres,
(2) the morphism π : S′ → S is integral,
(3) we have f ′

∗OX = OS′ ,
(4) we have S′ = Spec

S
(f∗OX), and

(5) S′ is the normalization of S in X, see Morphisms, Definition 29.53.3.

Proof. We may apply Lemma 37.53.1 to get the morphism f ′ : X → S′. Note
that besides the conclusions of Lemma 37.53.1 we also have that f ′ is separated
(Schemes, Lemma 26.21.13) and finite type (Morphisms, Lemma 29.15.8). Hence
f ′ is proper. At this point we have proved all of the statements except for the
statement that f ′ has geometrically connected fibres.
We may assume that S = Spec(R) is affine. Set R′ = Γ(X,OX). Then S′ =
Spec(R′). Thus we may replace S by S′ and assume that S = Spec(R) is affine
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R = Γ(X,OX). Next, let s ∈ S be a point. Let U → S be an étale morphism
of affine schemes and let u ∈ U be a point mapping to s. Let XU → U be
the base change of X. By Lemma 37.53.3 it suffices to show that the fibre of
XU → U over u is connected. By Cohomology of Schemes, Lemma 30.5.2 we see
that Γ(XU ,OXU ) = Γ(U,OU ). Hence we have to show: Given S = Spec(R) affine,
X → S proper with Γ(X,OX) = R and s ∈ S is a point, the fibre Xs is connected.
To do this it suffices to show that the only idempotents e ∈ H0(Xs,OXs) are 0
and 1 (we already know that Xs is nonempty by Lemma 37.53.1). By Derived
Categories of Schemes, Lemma 36.32.7 after replacing R by a principal localization
we may assume e is the image of an element of R. Since R→ H0(Xs,OXs) factors
through κ(s) we conclude. □

Here is an application.

Lemma 37.53.6.0AY8 Let f : X → S be a morphism of schemes. Assume
(1) f is proper,
(2) S is integral with generic point ξ,
(3) S is normal,
(4) X is reduced,
(5) every generic point of an irreducible component of X maps to ξ,
(6) we have H0(Xξ,O) = κ(ξ).

Then f∗OX = OS and f has geometrically connected fibres.

Proof. Apply Theorem 37.53.5 to get a factorization X → S′ → S. It is enough
to show that S′ = S. This will follow from Morphisms, Lemma 29.54.8. Namely,
S′ is reduced because X is reduced (Morphisms, Lemma 29.53.8). The morphism
S′ → S is integral by the theorem cited above. Every generic point of S′ lies over
ξ by Morphisms, Lemma 29.53.9 and assumption (5). On the other hand, since
S′ is the relative spectrum of f∗OX we see that the scheme theoretic fibre S′

ξ is
the spectrum of H0(Xξ,O) which is equal to κ(ξ) by assumption. Hence S′ is an
integral scheme with function field equal to the function field of S. This finishes
the proof. □

Here is another application.

Lemma 37.53.7.0BUI Let X → S be a flat proper morphism of finite presentation.
Let nX/S be the function on S counting the numbers of geometric connected com-
ponents of fibres of f introduced in Lemma 37.28.3. Then nX/S is lower semi-
continuous.

Proof. Let s ∈ S. Set n = nX/S(s). Note that n < ∞ as the geometric fibre of
X → S at s is a proper scheme over a field, hence Noetherian, hence has a finite
number of connected components. We have to find an open neighbourhood V of s
such that nX/S |V ≥ n. Let X → S′ → S be the Stein factorization as in Theorem
37.53.5. By Lemma 37.53.2 there are finitely many points s′

1, . . . , s
′
m ∈ S′ lying

over s and the extensions κ(s′
i)/κ(s) are finite. Then Lemma 37.42.1 tells us that

after replacing S by an étale neighbourhood of s we may assume S′ = V1⨿ . . .⨿Vm
as a scheme with s′

i ∈ Vi and κ(s′
i)/κ(s) purely inseparable. Then the schemes Xs′

i

are geometrically connected over κ(s), hence m = n. The schemes Xi = (f ′)−1(Vi),
i = 1, . . . , n are flat and of finite presentation over S. Hence the image of Xi → S
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is open (Morphisms, Lemma 29.25.10). Thus in a neighbourhood of s we see that
nX/S is at least n. □

Lemma 37.53.8.0E0N Let f : X → S be a morphism of schemes. Assume
(1) f is proper, flat, and of finite presentation, and
(2) the geometric fibres of f are reduced.

Then the function nX/S : S → Z counting the numbers of geometric connected
components of fibres of f is locally constant.

Proof. By Lemma 37.53.7 the function nX/S is lower semincontinuous. For s ∈ S
consider the κ(s)-algebra

A = H0(Xs,OXs)
By Varieties, Lemma 33.9.3 and the fact that Xs is geometrically reduced A is
finite product of finite separable extensions of κ(s). Hence A⊗κ(s)κ(s) is a product
of β0(s) = dimκ(s) H

0(E ⊗L κ(s)) copies of κ(s). Thus Xs has β0(s) = dimκ(s) A
connected components. In other words, we have nX/S = β0 as functions on S. Thus
nX/S is upper semi-continuous by Derived Categories of Schemes, Lemma 36.32.1.
This finishes the proof. □

A final application.

Lemma 37.53.9.0CT9 A reference for the
case of an adic
Noetherian base is
[DG67, III,
Proposition 5.5.1]

Let (A, I) be a henselian pair. Let X → Spec(A) be separated and
of finite type. Set X0 = X ×Spec(A) Spec(A/I). Let Y ⊂ X0 be an open and closed
subscheme such that Y → Spec(A/I) is proper. Then there exists an open and
closed subscheme W ⊂ X which is proper over A with W ×Spec(A) Spec(A/I) = Y .

Proof. We will denote T 7→ T0 the base change by Spec(A/I) → Spec(A). By
Chow’s lemma (in the form of Limits, Lemma 32.12.1) there exists a surjective
proper morphism φ : X ′ → X such that X ′ admits an immersion into Pn

A. Set
Y ′ = φ−1(Y ). This is an open and closed subscheme of X ′

0. Suppose the lemma
holds for (X ′, Y ′). Let W ′ ⊂ X ′ be the open and closed subscheme proper over
A such that Y ′ = W ′

0. By Morphisms, Lemma 29.41.7 W = φ(W ′) ⊂ X and
Q = φ(X ′ \W ′) ⊂ X are closed subsets and by Morphisms, Lemma 29.41.9 W is
proper over A. The image of W ∩Q in Spec(A) is closed. Since (A, I) is henselian,
if W ∩Q is nonempty, then we find that W ∩Q has a point lying over Spec(A/I).
This is impossible as W ′

0 = Y ′ = φ−1(Y ). We conclude that W is an open and
closed subscheme of X proper over A with W0 = Y . Thus we reduce to the case
described in the next paragraph.
Assume there exists an immersion j : X → Pn

A over A. Let X be the scheme
theoretic image of j. Since j is a quasi-compact morphism (Schemes, Lemma
26.21.14) we see that j : X → X is an open immersion (Morphisms, Lemma
29.7.7). Hence the base change j0 : X0 → X0 is an open immersion as well. Thus
j0(Y ) ⊂ X0 is open. It is also closed by Morphisms, Lemma 29.41.7. Suppose that
the lemma holds for (X, j0(Y )). Let W ⊂ X be the corresponding open and closed
subscheme proper over A such that j0(Y ) = W 0. Then T = W \ j(X) is closed in
W , hence has closed image in Spec(A) by properness of W over A. Since (A, I) is
henselian, we find that if T is nonempty, then there is a point of T mapping into
Spec(A/I). This is impossible because j0(Y ) = W 0 is contained in j(X). Hence
W is contained in j(X) and we can set W ⊂ X equal to the unique open and
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closed subscheme mapping isomorphically to W via j. Thus we reduce to the case
described in the next paragraph.

Assume X ⊂ Pn
A is a closed subscheme. Then X → Spec(A) is a proper morphism.

Let Z = X0 \Y . This is an open and closed subscheme of X0 and X0 = Y ⨿Z. Let
X → X ′ → Spec(A) be the Stein factorization as in Theorem 37.53.5. Let Y ′ ⊂ X ′

0
and Z ′ ⊂ X ′

0 be the images of Y and Z. Since the fibres of X → Z are geometrically
connected, we see that Y ′ ∩ Z ′ = ∅. Hence X ′

0 = Y ′ ⨿ Z ′ as X → X ′ is surjective.
Since X ′ → Spec(A) is integral, we see that X ′ is the spectrum of an A-algebra
integral over A. Recall that open and closed subsets of spectra correspond 1-to-1
with idempotents in the corresponding ring, see Algebra, Lemma 10.21.3. Hence
by More on Algebra, Lemma 15.11.6 we see that we may write X ′ = W ′ ⨿ V ′ with
W ′ and V ′ open and closed and with Y ′ = W ′

0 and Z ′ = V ′
0 . Let W be the inverse

image in X to finish the proof. □

37.54. Generic flatness stratification

0H3Y We can use generic flatness to construct a stratification of the base such that a
given module becomes flat over the strata.

Lemma 37.54.1 (Generic flatness stratification).0ASY Let f : X → S be a morphism
of finite presentation between quasi-compact and quasi-separated schemes. Let F
be an OX -module of finite presentation. Then there exists a t ≥ 0 and closed
subschemes

S ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅
such that Si → S is defined by a finite type ideal sheaf, S0 ⊂ S is a thickening, and
F pulled back to X ×S (Si \ Si+1) is flat over Si \ Si+1.

Proof. We can find a cartesian diagram

X

��

// X0

��
S // S0

and a finitely presented OX0 -module F0 which pulls back to F such that X0 and
S0 are of finite type over Z. See Limits, Proposition 32.5.4 and Lemmas 32.10.1
and 32.10.2. Thus we may assume X and S are of finite type over Z and F is a
coherent OX -module.

Assume X and S are of finite type over Z and F is a coherent OX -module. In
this case every quasi-coherent ideal is of finite type, hence we do not have to check
the condition that Si is cut out by a finite type ideal. Set S0 = Sred equal to the
reduction of S. By generic flatness as stated in Morphisms, Proposition 29.27.2
there is a dense open U0 ⊂ S0 such that F pulled back to X ×S U0 is flat over U0.
Let S1 ⊂ S0 be the reduced closed subscheme whose underlying closed subset is
S \ U0. We continue in this way, provided S1 ̸= ∅, to find S0 ⊃ S1 ⊃ . . .. Because
S is Noetherian any descending chain of closed subsets stabilizes hence we see that
St = ∅ for some t ≥ 0. □
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Lemma 37.54.2.0H3Z Let f : X → S be a morphism of finite presentation between
quasi-compact and quasi-separated schemes. Then there exists a t ≥ 0 and closed
subschemes

S ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅
such that Si → S is defined by a finite type ideal sheaf, S0 ⊂ S is a thickening, and
X ×S (Si \ Si+1) is flat over Si \ Si+1.

Proof. Apply Lemma 37.54.1 with F = OX . □

Lemma 37.54.3.0H40 Let R be a Noetherian domain. Let R → A → B be finite type
ring maps. Let M be a finite A-module and let N a finite B-module. Let M → N
be an A-linear map. There exists an nonzero f ∈ R such that the cokernel of
Mf → Nf is a flat Rf -module.

Proof. By replacing M by the image of M → N , we may assume M ⊂ N . Choose a
filtration 0 = N0 ⊂ N1 ⊂ . . . ⊂ Nt = N such that Ni/Ni−1 = B/qi for some prime
ideal qi ⊂ B, see Algebra, Lemma 10.62.1. Set Mi = M∩Ni. Then Q = N/M has a
filtration by the submodules Qi = Ni/Mi. It suffices to prove Qi/Qi−1 becomes flat
after localizing at a nonzero element of f (since extensions of flat modules are flat
by Algebra, Lemma 10.39.13). Since Qi/Qi−1 is isomorphic to the cokernel of the
map Mi/Mi−1 → Ni/Ni−1, we reduce to the case discussed in the next paragraph.
Assume B is a domain and M ⊂ N = B. After replacing A by the image of A in
B we may assume A ⊂ B. By generic flatness, we may assume A and B are flat
over R (Algebra, Lemma 10.118.1). It now suffices to show M → B becomes R-
universally injective after replacing R by a principal localization (Algebra, Lemma
10.82.7). By generic freeness, we can find a nonzero g ∈ A such that Bg is a free
Ag-module (Algebra, Lemma 10.118.1). Thus we may choose a direct summand
M ′ ⊂ Bg as an Ag-module, which is finite free as an Ag-module, and such that
M → B → Bg factors through M ′. Clearly, it suffices to show that M → M ′

becomes R-universally injective after replacing R by a principal localization.
Say M ′ = A⊕n

g . Since M ⊂ M ′ is a finite A-module, we see that M is contained
in (1/gm)A⊕n for some m ≥ 0. After changing our basis for M ′ we may assume
M ⊂ A⊕n. Then it suffices to show that A⊕n/M and Ag/A become R-flat after
replacing R by a principal localization. Namely, then M ′ → A⊕n and A⊕n → A⊕n

g

are universally injective by Algebra, Lemma 10.39.12 and consequently so is the
composition M →M ′ = A⊕n

g .

By generic flatness (see reference above), we may assume the module A⊕n/M is
R-flat. For the quotient Ag/A we use the fact that

Ag/A = colim(1/gm)A/A ∼= colimA/gmA

and the module A/gmA has a filtration of length m whose succesive quotients are
isomorphic to A/gA. Again by generic flatness we may assume A/gA is R-flat and
hence each A/gmA is R-flat, and hence so is Ag/A. □

Let f : X → Y be a morphism of schemes over a base scheme S. Let Z ⊂ Y be
the scheme theoretic image of f , see Morphisms, Section 29.6. Let g : S′ → S be
a morphism of schemes and let f ′ : X ×S S′ → Y ×S S′ be the base change of f
by g. It is not always true that Z ×S S′ ⊂ Y ×S S′ is the scheme theoretic image
of f ′. Let us say that formation of the scheme theoretic image of f/S commutes
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with arbitrary base change if for every g as above the scheme theoretic image of f ′

is equal to Z ×S S′.

Lemma 37.54.4.0H41 Let S be a quasi-compact and quasi-separated scheme. Let f :
X → Y be a morphism of schemes over S with both X and Y of finite presentation
over S. Then there exists a t ≥ 0 and closed subschemes

S ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅
with the following properties:

(1) Si → S is defined by a finite type ideal sheaf,
(2) S0 ⊂ S is a thickening, and
(3) with Ti = Si\Si+1 and fi the base change of f to Ti we have: formation of

the scheme theoretic image of fi/Ti commutes with arbitrary base change
(see discussion above the lemma).

Proof. We can find a commutative diagram
X

��

// Y

��

// S

��
U // V // W

with cartesian squares such that U , V , W are of finite type over Z. Namely,
first write S as a cofiltered limit of finite type schemes over Z with affine transition
morphisms using Limits, Proposition 32.5.4 and then descend the morphism X → Y
using Limits, Lemma 32.10.1. This reduces us to the case discussed in the next
paragraph.
Assume S is Noetherian. In this case every quasi-coherent ideal is of finite type,
hence we do not have to check the condition that Si is cut out by a finite type ideal.
Set S0 = Sred equal to the reduction of S. Let η ∈ S0 be a generic point of an
irreducible component of S0. By Noetherian induction on the underlying topological
space of S0, we may assume the result holds for any closed subscheme of S0 not
containing η. Thus it suffices to show that there exists an open neighbourhood
U0 ⊂ S0 such that the base change f0 of f to U0 has property (3).
Let R be a Noetherian domain. Let f : X → Y be a morphism of finite type
schemes over R. By the discussion in the previous paragraph it suffices to show
that after replacing R by Rg for some g ∈ R nonzero and X, Y by their base
changes to Rg, formation of the scheme theoretic image of f/R commutes with
arbitrary base change.
Let Y = V1 ∪ . . . Vn be an affine open covering. Let Ui = f−1(Vi). If the statement
is true for each of the morphisms Ui → Vi over R, then it holds for f . Namely,
the scheme theoretic image of Ui → Vi is the intersection of Vi with the scheme
theoretic image of f : X → Y by Morphisms, Lemma 29.6.3. Thus we may assume
Y is affine.
Let X = U1 ∪ . . . Un be an affine open covering. Then the scheme theoretic image
of X → Y is the same as the scheme theoretic imge of

∐
Ui → Y . Thus we may

assume X is affine.
Say X = Spec(A) and Y = Spec(B) and f corresponds to the R-algebra map
φ : A→ B. Then the scheme theoretic image of f is Spec(A/Ker(φ)) and similarly
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after base change (by an affine morphism, but it is enough to check for those). Thus
formation of the scheme theoretic image commutes with base change if Ker(φ ⊗R
R′) = Ker(φ)⊗R R′ for all ring maps R→ R′.

After replacing R, A, B by Rg, Ag, Bg for a suitable nonzero g in R, we may
assume A and B are flat over R. By Lemma 37.54.3 we may also assume B/A is a
flat R-module. Then 0 → Ker(φ) → A → B → B/A → 0 is an exact sequence of
flat R-modules, which implies the desired base change statement. □

37.55. Stratifying a morphism

0H42 Let f : X → S be a finitely presented morphism of quasi-compact and quasi-
separated schemes. In Section 37.54 we have seen that we can stratify S such that
X is flat over the strata. In this section look for stratifications of both S and X
such that we obtain smooth strata; this won’t quite work and we’ll need a base
change by finite locally free morphisms as well.

Lemma 37.55.1.0H43 Let f : X → S be a morphism of schemes of finite presentation.
Let η ∈ S be a generic point of an irreducible component of S. Assume S is reduced.
Then there exist

(1) an open subscheme U ⊂ S containing η,
(2) a surjective, universally injective, finite locally free morphism V → U ,
(3) a t ≥ 0 and closed subschemes

X ×S V ⊃ Z0 ⊃ Z1 ⊃ . . . ⊃ Zt = ∅

such that Zi → X×SV is defined by a finite type ideal sheaf, Z0 ⊂ X×SV
is a thickening, and such that the morphism Zi \ Zi+1 → V is smooth.

Proof. It is clear that we may replace S by an open neighbourhood of η and X
by the restriction to this open. Thus we may assume S = Spec(A) where A is a
reduced ring and η corresponds to a minimal prime ideal p. Recall that the local
ring OS,η = Ap is equal to κ(p) in this case, see Algebra, Lemma 10.25.1.

Apply Varieties, Lemma 33.25.11 to the scheme Xη over k = κ(η). Denote k′/k the
purely inseparable field extension this produces. In the next paragraph we reduce
to the case k′ = k. (This step corresponds to finding the morphism V → U in the
statement of the lemma; in particular we can take V = U if the characteristic of
κ(p) is zero.)

If the characteristic of k = κ(p) is zero, then k′ = k. If the characteristic of
k = κ(p) is p > 0, then p maps to zero in Ap = κ(p). Hence after replacing A by
a principal localization (i.e., shrinking S) we may assume p = 0 in A. If k′ ̸= k,
then there exists an β ∈ k′, β ̸∈ k such that βp ∈ k. After replacing A by a
principal localization we may assume there exists an a ∈ A such that βp = a. Set
A′ = A[x]/(xp − a). Then S′ = Spec(A′) → Spec(A) = S is finite locally free,
surjective, and universally injective. Moreover, if p′ ⊂ A′ denotes the unique prime
ideal lying over p, then A′

p′ = k(β) and k′/k(β) has smaller degree. Thus after
replacing S by S′ and η by the point η′ corresponding to p′ we see that the degree
of k′ over the residue field of η has decreased. Continuing like this, by induction
we reduce to the case k′ = κ(p) = κ(η).
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Thus we may assume S is affine, reduced, and that we have a t ≥ 0 and closed
subschemes

Xη ⊃ Zη,0 ⊃ Zη,1 ⊃ . . . ⊃ Zη,t = ∅
such that Zη,0 = (Xη)red and Zη,i \ Zη,i+1 is smooth over η for all i. Recall that
κ(η) = κ(p) = Ap is the filtered colimit of Aa for a ∈ A, a ̸∈ p. See Algebra, Lemma
10.9.9. Thus we can descend the diagram above to a corresponding diagram over
Spec(Aa) for some a ∈ A, a ̸∈ p. More precisely, after replacing S by Spec(Aa) we
may assume we have a t ≥ 0 and closed subschemes

X ⊃ Z0 ⊃ Z1 ⊃ . . . ⊃ Zt = ∅
such that Zi → X is a closed immersion of finite presentation, such that Z0 → X is
a thickening, and such that Zi \Zi+1 is smooth over S. In other words, the lemma
holds. More precisely, we first use Limits, Lemma 32.10.1 to obtain morphisms

Zt → Zt−1 → . . .→ Z0 → X

over S, each of finite presentation, and whose base change to η produces the inclu-
sions between the given closed subschemes above. After shrinking S further we may
assume each of the morphisms is a closed immersion, see Limits, Lemma 32.8.5.
After shrinking S we may assume Z0 → X is surjective and hence a thickening, see
Limits, Lemma 32.8.15. After shrinking S once more we may assume Zi \Zi+1 → S
is smooth, see Limits, Lemma 32.8.9. This finishes the proof. □

Lemma 37.55.2.0H44 Let f : X → S be a morphism of finite presentation between
quasi-compact and quasi-separated schemes. Then there exists a t ≥ 0 and closed
subschemes

S ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅
such that

(1) Si → S is defined by a finite type ideal sheaf,
(2) S0 ⊂ S is a thickening,
(3) for each i there exists a surjective finite locally free morphism Ti → Si \

Si+1,
(4) for each i there exists a ti ≥ 0 and closed subschemes

Xi = X ×S Ti ⊃ Zi,0 ⊃ Zi,1 ⊃ . . . ⊃ Zi,ti = ∅
such that Zi,j → Xi is defined by a finite type ideal sheaf, Zi,0 ⊂ Xi is a
thickening, and such that the morphism Zi,j \ Zi,j+1 → Ti is smooth.

Proof. We can find a cartesian diagram
X

��

// X0

��
S // S0

such that X0 and S0 are of finite type over Z. See Limits, Proposition 32.5.4 and
Lemma 32.10.1. Thus we may assume X and S are of finite type over Z. Namely,
a solution of the problem posed by the lemma for X0 → S0 will base change to a
solution over S; details omitted.
Assume X and S are of finite type over Z. In this case every quasi-coherent ideal
is of finite type, hence we do not have to check the condition that Si is cut out by
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a finite type ideal. Set S0 = Sred equal to the reduction of S. Let η ∈ S0 be a
generic point of an irreducible component. By Lemma 37.55.1 we can find an open
subscheme U ⊂ S0, a surjective, universally injective, finite locally free morphism
V → U , a t0 ≥ 0 and closed subschemes

X ×S V ⊃ Z0,0 ⊃ Z0,1 ⊃ . . . ⊃ Z0,t0 = ∅
such that Z0,i → X ×S V is defined by a finite type ideal sheaf, Z0,0 ⊂ X ×S V is
a thickening, and such that the morphism Z0,i \ Z0,i+1 → V is smooth. Then we
let S1 ⊂ S0 be the reduced induced subscheme structure on S0 \U . By Noetherian
induction on the underlying topological space of S, we may assume that the lemma
holds for X ×S S1 → S1. This produces t ≥ 1 and

S1 = S1 ⊃ S2 ⊃ . . . ⊃ St = ∅
and ti and Zi,j as in the statement of the lemma. This proves the lemma. □

37.56. Improving morphisms of relative dimension one

0GK6 We can make any curve be smooth and projective after extending the ground field,
compactifying, and normalizing. This also implies results about finite type mor-
phisms whose generic fibres have dimension 1.

Lemma 37.56.1.0GK7 Let f : X → S be a morphism of schemes. Let η ∈ S be a
generic point of an irreducible component of S. Assume f is separated, of finite
presentation, and dim(Xη) ≤ 1. Then there exists a commutative diagram

Y 1 ⨿ . . .⨿ Y n

((

Y1 ⨿ . . .⨿ Yn ν
//

��

j
oo XV

//

��

XU
//

��

X

f

��
T1 ⨿ . . .⨿ Tn // V // U // S

of schemes with the following properties:
(1) U ⊂ X is an open neighbourhood of η,
(2) V → U is a finite, surjective, universally injective morphism,
(3) XU = U ×S X and XV = V ×S X are the base changes,
(4) ν is finite, surjective, and there is an open W ⊂ XV such that

(a) W is dense in all fibres of XV → V ,
(b) ν−1(W ) ∩ Yi is dense in all fibres of Yi → Ti, and
(c) ν−1(W )→W is a thickening,

(5) j is an open immersion,
(6) Ti → V is finite étale,
(7) Yi → Ti is surjective and smooth,
(8) Y i → Ti is smooth, proper, with geometrically connected fibres of dimen-

sion ≤ 1.

Proof. It is clear that we may replace S by an open neighbourhood of η and X by
the restriction to this open. Moreover, we may replace S by its reduction and X
by the base change to this reduction. Thus we may assume S = Spec(A) where A
is a reduced ring and η corresponds to a minimal prime ideal p. Recall that the
local ring OS,η = Ap is equal to κ(p) in this case, see Algebra, Lemma 10.25.1.
Apply Varieties, Lemma 33.43.7 to the scheme Xη over k = κ(η). Denote k′/k the
purely inseparable field extension this produces. In the next paragraph we reduce
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to the case k′ = k. (This step corresponds to finding the morphism V → U in the
statement of the lemma; in particular we can take V = U if the characteristic of
κ(p) is zero.)
If the characteristic of k = κ(p) is zero, then k′ = k. If the characteristic of
k = κ(p) is p > 0, then p maps to zero in Ap = κ(p). Hence after replacing A by
a principal localization (i.e., shrinking S) we may assume p = 0 in A. If k′ ̸= k,
then there exists an β ∈ k′, β ̸∈ k such that βp ∈ k. After replacing A by a
principal localization we may assume there exists an a ∈ A such that βp = a. Set
A′ = A[x]/(xp − a). Then S′ = Spec(A′) → Spec(A) = S is finite, surjective, and
universally injective. Moreover, if p′ ⊂ A′ denotes the unique prime ideal lying
over p, then A′

p′ = k(β) and k′/k(β) has smaller degree. Thus after replacing S by
S′ and η by the point η′ corresponding to p′ we see that the degree of k′ over the
residue field of η has decreased. Continuing like this, by induction we reduce to the
case k′ = κ(p) = κ(η).
Thus we may assume S is affine, reduced, and that we have a diagram

Y 1,η ⨿ . . .⨿ Y n,η

**

Y1,η ⨿ . . .⨿ Yn,η ν
//

��

j
oo Xη

��
Spec(k1)⨿ . . .⨿ Spec(kn) // η

of schemes with the following properties:
(1) ν is the normalization of Xη,
(2) j is an open immersion with dense image,
(3) ki/κ(η) is a finite separable extension for i = 1, . . . , n,
(4) Y i,η is smooth, projective, and geometrically irreducible of dimension ≤ 1

over ki.
Recall that κ(η) = κ(p) = Ap is the filtered colimit of Aa for a ∈ A, a ̸∈ p. See
Algebra, Lemma 10.9.9. Thus we can descend the diagram above to a corresponding
diagram over Spec(Aa) for some a ∈ A, a ̸∈ p. More precisely, after replacing S by
Spec(Aa) we may assume we have a commutative diagram

Y 1 ⨿ . . .⨿ Y n

((

Y1 ⨿ . . .⨿ Yn ν
//

��

j
oo X

��
T1 ⨿ . . .⨿ Tn // S

of schemes whose base change to η is the diagram above with the following prop-
erties

(1) ν is a finite, surjective morphism,
(2) j is an open immersion,
(3) Ti → S is finite étale for i = 1, . . . , n,
(4) Yi → Ti is smooth and surjective,
(5) Y i → Ti is smooth and proper and has geometrically connected fibres of

dimension ≤ 1.
For this we first use Limits, Lemma 32.10.1 to obtain the diagram base changing to
the previous diagram. Then we use Limits, Lemmas 32.8.10, 32.8.9, 32.8.3, 32.4.13,
32.8.12, 32.13.1, and 32.8.15 to obtain ν finite, surjective, j open immersion, Ti → S
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finite étale, Yi → T smooth, Y i → Ti proper and smooth. Since Yi cannot be empty,
since smooth morphisms are open, and since Ti → S is finite étale, after shrinking
S we may assume Yi → Ti is surjective. Finally, the fibre of Y i → Ti over the
unique point ηi = Spec(ki) of Ti lying over η is geometrically connected. Hence by
another shrinking we may assume the same thing is true for all fibres, see Lemma
37.53.8.

It remains to prove the existence of an open W ⊂ X satisfying (a), (b), and (c).
Since νη :

∐
Yi,η → Xη is the normalization morphism, we know by Varieties,

Lemma 33.27.1 there exists a dense open Wη ⊂ Xη such that ν−1(Wη) → Wη

is equal to the inclusion of the reduction of Wη into Wη. Let W ⊂ X be a
quasi-compact open whose fibre over η is the open Wη we just found. After re-
placing A = Γ(S,OS) by another localization we may assume ν−1(W ) → W is a
closed immersion, see Limits, Lemma 32.8.5. Since ν is also surjective we conclude
ν−1(W ) → W is a thickening. Set Wi = ν−1(W ) ∩ Yi. Shrinking S once more we
can assume Wi → Ti is surjective for all i (same argument as above). Then we find
that Wi ⊂ Yi is dense in all fibres of Yi → Ti as Yi → Ti has geometrically irre-
ducible fibres. Since ν is finite and surjective, it then follows that W = ν(ν−1(W ))
is dense in all fibres of X → S too. □

37.57. Descending separated locally quasi-finite morphisms

02W7 In this section we show that “separated locally quasi-finite morphisms satisfy de-
scent for fppf-coverings”. See Descent, Definition 35.36.1 for terminology. This is
in the marvellous (for many reasons) paper by Raynaud and Gruson hidden in the
proof of [GR71, Lemma 5.7.1]. It can also be found in [Mur95], and [ABD+66, Ex-
posé X, Lemma 5.4] under the additional hypothesis that the morphism is locally
of finite presentation. Here is the formal statement.

Lemma 37.57.1.02W8 Let S be a scheme. Let {Xi → S}i∈I be an fppf covering, see
Topologies, Definition 34.7.1. Let (Vi/Xi, φij) be a descent datum relative to {Xi →
S}. If each morphism Vi → Xi is separated and locally quasi-finite, then the descent
datum is effective.

Proof. Being separated and being locally quasi-finite are properties of morphisms of
schemes which are preserved under any base change, see Schemes, Lemma 26.21.12
and Morphisms, Lemma 29.20.13. Hence Descent, Lemma 35.36.2 applies and it
suffices to prove the statement of the lemma in case the fppf-covering is given by
a single {X → S} flat surjective morphism of finite presentation of affines. Say
X = Spec(A) and S = Spec(R) so that R → A is a faithfully flat ring map. Let
(V, φ) be a descent datum relative to X over S and assume that π : V → X is
separated and locally quasi-finite.

https://stacks.math.columbia.edu/tag/02W8
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Let W 1 ⊂ V be any affine open. Consider W = pr1(φ(W 1 ×S X)) ⊂ V . Here is a
picture

W 1 ×S X //

��

&&

φ(W 1 ×S X)

��

ww
V ×S X

φ //

&&

��

X ×S V

xx

��

X ×S X
1 //

pr0

��

X ×S X

pr1

��
W 1 // V // X X Voo Woo

Ok, and now since X → S is flat and of finite presentation it is universally open
(Morphisms, Lemma 29.25.10). Hence we conclude that W is open. Moreover, it
is also clearly the case that W is quasi-compact, and W 1 ⊂W . Moreover, we note
that φ(W ×S X) = X ×S W by the cocycle condition for φ. Hence we obtain a
new descent datum (W,φ′) by restricting φ to W ×S X. Note that the morphism
W → X is quasi-compact, separated and locally quasi-finite. This implies that it is
separated and quasi-finite by definition. Hence it is quasi-affine by Lemma 37.43.2.
Thus by Descent, Lemma 35.38.1 we see that the descent datum (W,φ′) is effective.
In other words, we find that there exists an open covering V =

⋃
Wi by quasi-

compact opens Wi which are stable for the descent morphism φ. Moreover, for
each such quasi-compact open W ⊂ V the corresponding descent data (W,φ′) is
effective. This means the original descent datum is effective by glueing the schemes
obtained from descending the opens Wi, see Descent, Lemma 35.35.13. □

37.58. Relative finite presentation

05GX Let R→ A be a finite type ring map. Let M be an A-module. In More on Algebra,
Section 15.80 we defined what it means for M to be finitely presented relative to
R. We also proved this notion has good localization properties and glues. Hence
we can define the corresponding global notion as follows.

Definition 37.58.1.05H1 Let f : X → S be a morphism of schemes which is locally of
finite type. Let F be a quasi-coherent OX -module. We say F is finitely presented
relative to S or of finite presentation relative to S if there exists an affine open
covering S =

⋃
Vi and for every i an affine open covering f−1(Vi) =

⋃
j Uij such

that F(Uij) is a OX(Uij)-module of finite presentation relative to OS(Vi).

Note that this implies that F is a finite type OX -module. If X → S is just locally
of finite type, then F may be of finite presentation relative to S, without X → S
being locally of finite presentation. We will see that X → S is locally of finite
presentation if and only if OX is of finite presentation relative to S.

Lemma 37.58.2.09T7 Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent OX -module. The following are equivalent

(1) F is of finite presentation relative to S,
(2) for every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the OX(U)-module
F(U) is finitely presented relative to OS(V ).

https://stacks.math.columbia.edu/tag/05H1
https://stacks.math.columbia.edu/tag/09T7
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Moreover, if this is true, then for every open subschemes U ⊂ X and V ⊂ S with
f(U) ⊂ V the restriction F|U is of finite presentation relative to V .

Proof. The final statement is clear from the equivalence of (1) and (2). It is also
clear that (2) implies (1). Assume (1) holds. Let S =

⋃
Vi and f−1(Vi) =

⋃
Uij

be affine open coverings as in Definition 37.58.1. Let U ⊂ X and V ⊂ S be as
in (2). By More on Algebra, Lemma 15.80.8 it suffices to find a standard open
covering U =

⋃
Uk of U such that F(Uk) is finitely presented relative to OS(V ). In

other words, for every u ∈ U it suffices to find a standard affine open u ∈ U ′ ⊂ U
such that F(U ′) is finitely presented relative to OS(V ). Pick i such that f(u) ∈ Vi
and then pick j such that u ∈ Uij . By Schemes, Lemma 26.11.5 we can find
v ∈ V ′ ⊂ V ∩ Vi which is standard affine open in V ′ and Vi. Then f−1V ′ ∩ U ,
resp. f−1V ′ ∩ Uij are standard affine opens of U , resp. Uij . Applying the lemma
again we can find u ∈ U ′ ⊂ f−1V ′ ∩ U ∩ Uij which is standard affine open in
both f−1V ′ ∩U and f−1V ′ ∩Uij . Thus U ′ is also a standard affine open of U and
Uij . By More on Algebra, Lemma 15.80.4 the assumption that F(Uij) is finitely
presented relative to OS(Vi) implies that F(U ′) is finitely presented relative to
OS(Vi). Since OX(U ′) = OX(U ′) ⊗OS(Vi) OS(V ′) we see from More on Algebra,
Lemma 15.80.5 that F(U ′) is finitely presented relative to OS(V ′). Applying More
on Algebra, Lemma 15.80.4 again we conclude that F(U ′) is finitely presented
relative to OS(V ). This finishes the proof. □

Lemma 37.58.3.09T8 Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent OX -module.

(1) If f is locally of finite presentation, then F is of finite presentation relative
to S if and only if F is of finite presentation.

(2) The morphism f is locally of finite presentation if and only if OX is of
finite presentation relative to S.

Proof. Follows immediately from the definitions, see discussion following More on
Algebra, Definition 15.80.2. □

Lemma 37.58.4.09T9 Let π : X → Y be a finite morphism of schemes locally of finite
type over a base scheme S. Let F be a quasi-coherent OX -module. Then F is of
finite presentation relative to S if and only if π∗F is of finite presentation relative
to S.

Proof. Translation of the result of More on Algebra, Lemma 15.80.3 into the lan-
guage of schemes. □

Lemma 37.58.5.09TA Let f : X → S be a morphism of schemes which is locally of
finite type. Let F be a quasi-coherent OX -module. Let S′ → S be a morphism of
schemes, set X ′ = X ×S S′ and denote F ′ the pullback of F to X ′. If F is of finite
presentation relative to S, then F ′ is of finite presentation relative to S′.

Proof. Translation of the result of More on Algebra, Lemma 15.80.5 into the lan-
guage of schemes. □

Lemma 37.58.6.09TB Let X → Y → S be morphisms of schemes which are locally of
finite type. Let G be a quasi-coherent OY -module. If f : X → Y is locally of
finite presentation and G of finite presentation relative to S, then f∗G is of finite
presentation relative to S.

https://stacks.math.columbia.edu/tag/09T8
https://stacks.math.columbia.edu/tag/09T9
https://stacks.math.columbia.edu/tag/09TA
https://stacks.math.columbia.edu/tag/09TB
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Proof. Translation of the result of More on Algebra, Lemma 15.80.6 into the lan-
guage of schemes. □

Lemma 37.58.7.09TC Let X → Y → S be morphisms of schemes which are locally
of finite type. Let F be a quasi-coherent OX -module. If Y → S is locally of
finite presentation and F is of finite presentation relative to Y , then F is of finite
presentation relative to S.

Proof. Translation of the result of More on Algebra, Lemma 15.80.7 into the lan-
guage of schemes. □

Lemma 37.58.8.09TD Let X → S be a morphism of schemes which is locally of finite
type. Let 0 → F ′ → F → F ′′ → 0 be a short exact sequence of quasi-coherent
OX -modules.

(1) If F ′,F ′′ are finitely presented relative to S, then so is F .
(2) If F ′ is a finite type OX -module and F is finitely presented relative to S,

then F ′′ is finitely presented relative to S.

Proof. Translation of the result of More on Algebra, Lemma 15.80.9 into the lan-
guage of schemes. □

Lemma 37.58.9.09TE Let X → S be a morphism of schemes which is locally of finite
type. Let F ,F ′ be quasi-coherent OX -modules. If F ⊕ F ′ is finitely presented
relative to S, then so are F and F ′.

Proof. Translation of the result of More on Algebra, Lemma 15.80.10 into the
language of schemes. □

37.59. Relative pseudo-coherence

09UH This section is the analogue of More on Algebra, Section 15.81 for schemes. We
strongly urge the reader to take a look at that section first. Although we have de-
veloped the material in this section and the material on pseudo-coherent complexes
in Cohomology, Sections 20.46, 20.47, 20.48, and 20.49 for arbitrary complexes of
OX -modules, if X is a scheme then working exclusively with objects in DQCoh(OX)
greatly simplifies many of the lemmmas and arguments, often reducing the prob-
lem at hand immediately to the algebraic counterpart. Moreover, one of the first
thing we do is to show that being relatively pseudo-coherent implies the cohomol-
ogy sheaves are quasi-coherent, see Lemma 37.59.3. Hence, on a first reading we
suggest the reader work exclusively with objects in DQCoh(OX).

Lemma 37.59.1.09VC Let X → S be a finite type morphism of affine schemes. Let E
be an object of D(OX). Let m ∈ Z. The following are equivalent

(1) for some closed immersion i : X → An
S the object Ri∗E of D(OAn

S
) is

m-pseudo-coherent, and
(2) for all closed immersions i : X → An

S the object Ri∗E of D(OAn
S
) is

m-pseudo-coherent.

Proof. Say S = Spec(R) and X = Spec(A). Let i correspond to the surjection α :
R[x1, . . . , xn]→ A and let X → Am

S correspond to β : R[y1, . . . , ym]→ A. Choose

https://stacks.math.columbia.edu/tag/09TC
https://stacks.math.columbia.edu/tag/09TD
https://stacks.math.columbia.edu/tag/09TE
https://stacks.math.columbia.edu/tag/09VC
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fj ∈ R[x1, . . . , xn] with α(fj) = β(yj) and gi ∈ R[y1, . . . , ym] with β(gi) = α(xi).
Then we get a commutative diagram

R[x1, . . . , xn, y1, . . . , ym]

xi 7→gi

��

yj 7→fj

// R[x1, . . . , xn]

��
R[y1, . . . , ym] // A

corresponding to the commutative diagram of closed immersions

An+m
S An

S
oo

Am
S

OO

X

OO

oo

Thus it suffices to show that under a closed immersion

f : Am
S → An+m

S

an object E of D(OAm
S

) is m-pseudo-coherent if and only if Rf∗E is m-pseudo-
coherent. This follows from Derived Categories of Schemes, Lemma 36.12.5 and
the fact that f∗OAm

S
is a pseudo-coherent OAn+m

S
-module. The pseudo-coherence

of f∗OAm
S

is straightforward to prove directly, but it also follows from Derived
Categories of Schemes, Lemma 36.10.2 and More on Algebra, Lemma 15.81.3. □

Recall that if f : X → S is a morphism of scheme which is locally of finite type,
then for every pair of affine opens U ⊂ X and V ⊂ S such that f(U) ⊂ V , the ring
map OS(V )→ OX(U) is of finite type (Morphisms, Lemma 29.15.2). Hence there
always exist closed immersions U → An

V and the following definition makes sense.

Definition 37.59.2.09UI Let f : X → S be a morphism of schemes which is locally of
finite type. Let E be an object of D(OX). Let F be an OX -module. Fix m ∈ Z.

(1) We say E is m-pseudo-coherent relative to S if there exists an affine open
covering S =

⋃
Vi and for each i an affine open covering f−1(Vi) =

⋃
Uij

such that the equivalent conditions of Lemma 37.59.1 are satisfied for each
of the pairs (Uij → Vi, E|Uij ).

(2) We say E is pseudo-coherent relative to S if E is m-pseudo-coherent rel-
ative to S for all m ∈ Z.

(3) We say F is m-pseudo-coherent relative to S if F viewed as an object of
D(OX) is m-pseudo-coherent relative to S.

(4) We say F is pseudo-coherent relative to S if F viewed as an object of
D(OX) is pseudo-coherent relative to S.

If X is quasi-compact and E is m-pseudo-coherent relative to S for some m, then E
is bounded above. If E is pseudo-coherent relative to S, then E has quasi-coherent
cohomology sheaves.

Lemma 37.59.3.0CSU Let f : X → S be a morphism of schemes which is locally of
finite type. If E in D(OX) is m-pseudo-coherent relative to S, then Hi(E) is a
quasi-coherent OX -module for i > m. If E is pseudo-coherent relative to S, then
E is an object of DQCoh(OX).

https://stacks.math.columbia.edu/tag/09UI
https://stacks.math.columbia.edu/tag/0CSU
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Proof. Choose an affine open covering S =
⋃
Vi and for each i an affine open

covering f−1(Vi) =
⋃
Uij such that the equivalent conditions of Lemma 37.59.1

are satisfied for each of the pairs (Uij → Vi, E|Uij ). Since being quasi-coherent is
local on X, we may assume that there exists an closed immersion i : X → An

S

such that Ri∗E is m-pseudo-coherent on An
S . By Derived Categories of Schemes,

Lemma 36.10.1 this means that Hq(Ri∗E) is quasi-coherent for q > m. Since i∗
is an exact functor, we have i∗Hq(E) = Hq(Ri∗E) is quasi-coherent on An

S . By
Morphisms, Lemma 29.4.1 this implies that Hq(E) is quasi-coherent as desired
(strictly speaking it implies there exists some quasi-coherent OX -module F such
that i∗F = i∗H

q(E) and then Modules, Lemma 17.13.4 tells us that F ∼= Hq(E)
hence the result). □

Next, we prove the condition of relative pseudo-coherence localizes well.

Lemma 37.59.4.09VD Let S be an affine scheme. Let V ⊂ S be a standard open. Let
X → V be a finite type morphism of affine schemes. Let U ⊂ X be an affine open.
Let E be an object of D(OX). If the equivalent conditions of Lemma 37.59.1 are
satisfied for the pair (X → V,E), then the equivalent conditions of Lemma 37.59.1
are satisfied for the pair (U → S,E|U ).

Proof. Write S = Spec(R), V = D(f), X = Spec(A), and U = D(g). Assume the
equivalent conditions of Lemma 37.59.1 are satisfied for the pair (X → V,E).

Choose Rf [x1, . . . , xn] → A surjective. Write Rf = R[x0]/(fx0 − 1). Then
R[x0, x1, . . . , xn] → A is surjective, and Rf [x1, . . . , xn] is pseudo-coherent as an
R[x0, . . . , xn]-module. Thus we have

X → An
V → An+1

S

and we can apply Derived Categories of Schemes, Lemma 36.12.5 to conclude that
the pushforward E′ of E to An+1

S is m-pseudo-coherent.

Choose an element g′ ∈ R[x0, x1, . . . , xn] which maps to g ∈ A. Consider the
surjection R[x0, . . . , xn+1]→ R[x0, . . . , xn, 1/g′]. We obtain

X

��

U

��

oo

##
An+1
S D(g′)oo // An+2

S

where the lower left arrow is an open immersion and the lower right arrow is a closed
immersion. We conclude as before that the pushforward of E′|D(g′) to An+2

S is m-
pseudo-coherent. Since this is also the pushforward of E|U to An+2

S we conclude
the lemma is true. □

Lemma 37.59.5.09VE Let X → S be a finite type morphism of affine schemes. Let E be
an object of D(OX). Let m ∈ Z. Let X =

⋃
Ui be a standard affine open covering.

The following are equivalent
(1) the equivalent conditions of Lemma 37.59.1 hold for the pairs (Ui →

S,E|Ui),
(2) the equivalent conditions of Lemma 37.59.1 hold for the pair (X → S,E).

https://stacks.math.columbia.edu/tag/09VD
https://stacks.math.columbia.edu/tag/09VE
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Proof. The implication (2)⇒ (1) is Lemma 37.59.4. Assume (1). Say S = Spec(R)
and X = Spec(A) and Ui = D(fi). Write 1 =

∑
figi in A. Consider the surjections

R[xi, yi, zi]→ R[xi, yi, zi]/(
∑

yizi − 1)→ A.

which sends yi to fi and zi to gi. Note that R[xi, yi, zi]/(
∑
yizi − 1) is pseudo-

coherent as an R[xi, yi, zi]-module. Thus it suffices to prove that the pushforward
of E to T = Spec(R[xi, yi, zi]/(

∑
yizi − 1)) is m-pseudo-coherent, see Derived

Categories of Schemes, Lemma 36.12.5. For each i0 it suffices to prove the restriction
of this pushforward to Wi0 = Spec(R[xi, yi, zi, 1/yi0 ]/(

∑
yizi − 1)) is m-pseudo-

coherent. Note that there is a commutative diagram

X

��

Ui0oo

��
T Wi0
oo

which implies that the pushforward of E to T restricted to Wi0 is the pushforward
of E|Ui0 to Wi0 . Since R[xi, yi, zi, 1/yi0 ]/(

∑
yizi−1) is isomorphic to a polynomial

ring over R this proves what we want. □

Lemma 37.59.6.09UJ Let f : X → S be a morphism of schemes which is locally of finite
type. Let E be an object of D(OX). Fix m ∈ Z. The following are equivalent

(1) E is m-pseudo-coherent relative to S,
(2) for every affine opens U ⊂ X and V ⊂ S with f(U) ⊂ V the equivalent

conditions of Lemma 37.59.1 are satisfied for the pair (U → V,E|U ).
Moreover, if this is true, then for every open subschemes U ⊂ X and V ⊂ S with
f(U) ⊂ V the restriction E|U is m-pseudo-coherent relative to V .

Proof. The final statement is clear from the equivalence of (1) and (2). It is also
clear that (2) implies (1). Assume (1) holds. Let S =

⋃
Vi and f−1(Vi) =

⋃
Uij

be affine open coverings as in Definition 37.59.2. Let U ⊂ X and V ⊂ S be as in
(2). By Lemma 37.59.5 it suffices to find a standard open covering U =

⋃
Uk of

U such that the equivalent conditions of Lemma 37.59.1 are satisfied for the pairs
(Uk → V,E|Uk). In other words, for every u ∈ U it suffices to find a standard
affine open u ∈ U ′ ⊂ U such that the equivalent conditions of Lemma 37.59.1 are
satisfied for the pair (U ′ → V,E|U ′). Pick i such that f(u) ∈ Vi and then pick
j such that u ∈ Uij . By Schemes, Lemma 26.11.5 we can find v ∈ V ′ ⊂ V ∩ Vi
which is standard affine open in V ′ and Vi. Then f−1V ′ ∩ U , resp. f−1V ′ ∩ Uij
are standard affine opens of U , resp. Uij . Applying the lemma again we can find
u ∈ U ′ ⊂ f−1V ′ ∩ U ∩ Uij which is standard affine open in both f−1V ′ ∩ U and
f−1V ′∩Uij . Thus U ′ is also a standard affine open of U and Uij . By Lemma 37.59.4
the assumption that the equivalent conditions of Lemma 37.59.1 are satisfied for
the pair (Uij → Vi, E|Uij ) implies that the equivalent conditions of Lemma 37.59.1
are satisfied for the pair (U ′ → V,E|U ′). □

For objects of the derived category whose cohomology sheaves are quasi-coherent,
we can relate relative m-pseudo-coherence to the notion defined in More on Alge-
bra, Definition 15.81.4. We will use the fact that for an affine scheme U = Spec(A)
the functor RΓ(U,−) induces an equivalence between DQCoh(OU ) and D(A), see
Derived Categories of Schemes, Lemma 36.3.5. This functor is compatible with

https://stacks.math.columbia.edu/tag/09UJ
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pullbacks: if E is an object of DQCoh(OU ) and A → B is a ring map correspond-
ing to a morphism of affine schemes g : V = Spec(B) → Spec(A) = U , then
RΓ(V,Lg∗E) = RΓ(U,E)⊗L

AB. See Derived Categories of Schemes, Lemma 36.3.8.
Lemma 37.59.7.09VF Let f : X → S be a morphism of schemes which is locally of finite
type. Let E be an object of DQCoh(OX). Fix m ∈ Z. The following are equivalent

(1) E is m-pseudo-coherent relative to S,
(2) there exists an affine open covering S =

⋃
Vi and for each i an affine

open covering f−1(Vi) =
⋃
Uij such that the complex of OX(Uij)-modules

RΓ(Uij , E) is m-pseudo-coherent relative to OS(Vi), and
(3) for every affine opens U ⊂ X and V ⊂ S with f(U) ⊂ V the complex of
OX(U)-modules RΓ(U,E) is m-pseudo-coherent relative to OS(V ).

Proof. Let U and V be as in (2) and choose a closed immersion i : U → An
V . A

formal argument, using Lemma 37.59.6, shows it suffices to prove that Ri∗(E|U ) is
m-pseudo-coherent if and only if RΓ(U,E) is m-pseudo-coherent relative to OS(V ).
Say U = Spec(A), V = Spec(R), and An

V = Spec(R[x1, . . . , xn]. By the remarks
preceding the lemma, E|U is quasi-isomorphic to the complex of quasi-coherent
sheaves on U associated to the object RΓ(U,E) of D(A). Note that RΓ(U,E) =
RΓ(An

V , Ri∗(E|U )) as i is a closed immersion (and hence i∗ is exact). Thus Ri∗E
is associated to RΓ(U,E) viewed as an object of D(R[x1, . . . , xn]). We conclude as
m-pseudo-coherence of Ri∗(E|U ) is equivalent to m-pseudo-coherence of RΓ(U,E)
in D(R[x1, . . . , xn]) by Derived Categories of Schemes, Lemma 36.10.2 which is
equivalent to RΓ(U,E) is m-pseudo-coherent relative to R = OS(V ) by definition.

□

Lemma 37.59.8.09VG Let i : X → Y morphism of schemes locally of finite type over a
base scheme S. Assume that i induces a homeomorphism of X with a closed subset
of Y . Let E be an object of D(OX). Then E is m-pseudo-coherent relative to S if
and only if Ri∗E is m-pseudo-coherent relative to S.
Proof. By Morphisms, Lemma 29.45.4 the morphism i is affine. Thus we may
assume S, Y , and X are affine. Say S = Spec(R), Y = Spec(A), and X = Spec(B).
The condition means that A/rad(A) → B/rad(B) is surjective; here rad(A) and
rad(B) denote the Jacobson radical of A and B. As B is of finite type over A, we
can find b1, . . . , bm ∈ rad(B) which generate B as an A-algebra. Say bNj = 0 for all
j. Consider the diagram of rings

B R[xi, yj ]/(yNj )oo R[xi, yj ]oo

A

OO

R[xi]oo

OO 77

which translates into a diagram

X

��

// T

��

// An+m
S

||
Y // An

S

of affine schemes. By Lemma 37.59.6 we see that E is m-pseudo-coherent relative
to S if and only if its pushforward to An+m

S is m-pseudo-coherent. By Derived

https://stacks.math.columbia.edu/tag/09VF
https://stacks.math.columbia.edu/tag/09VG


37.59. RELATIVE PSEUDO-COHERENCE 3305

Categories of Schemes, Lemma 36.12.5 we see that this is true if and only if its
pushforward to T is m-pseudo-coherent. The same lemma shows that this holds if
and only if the pushforward to An

S is m-pseudo-coherent. Again by Lemma 37.59.6
this holds if and only if Ri∗E is m-pseudo-coherent relative to S. □

Lemma 37.59.9.09UK Let π : X → Y be a finite morphism of schemes locally of finite
type over a base scheme S. Let E be an object of DQCoh(OX). Then E is m-
pseudo-coherent relative to S if and only if Rπ∗E is m-pseudo-coherent relative to
S.

Proof. Translation of the result of More on Algebra, Lemma 15.81.5 into the lan-
guage of schemes. Observe that Rπ∗ indeed maps DQCoh(OX) into DQCoh(OY ) by
Derived Categories of Schemes, Lemma 36.4.1. To do the translation use Lemma
37.59.6. □

Lemma 37.59.10.09UL Let f : X → S be a morphism of schemes which is locally of
finite type. Let (E,E′, E′′) be a distinguished triangle of D(OX). Let m ∈ Z.

(1) If E is (m+1)-pseudo-coherent relative to S and E′ is m-pseudo-coherent
relative to S then E′′ is m-pseudo-coherent relative to S.

(2) If E,E′′ arem-pseudo-coherent relative to S, then E′ ism-pseudo-coherent
relative to S.

(3) If E′ is (m+1)-pseudo-coherent relative to S and E′′ is m-pseudo-coherent
relative to S, then E is (m+ 1)-pseudo-coherent relative to S.

Moreover, if two out of three of E,E′, E′′ are pseudo-coherent relative to S, the so
is the third.

Proof. Immediate from Lemma 37.59.6 and Cohomology, Lemma 20.47.4. □

Lemma 37.59.11.09UM Let X → S be a morphism of schemes which is locally of finite
type. Let F be an OX -module. Then

(1) F is m-pseudo-coherent relative to S for all m > 0,
(2) F is 0-pseudo-coherent relative to S if and only if F is a finite type OX -

module,
(3) F is (−1)-pseudo-coherent relative to S if and only if F is quasi-coherent

and finitely presented relative to S.

Proof. Part (1) is immediate from the definition. To see part (3) we may work
locally on X (both properties are local). Thus we may assume X and S are affine.
Choose a closed immersion i : X → An

S . Then we see that F is (−1)-pseudo-
coherent relative to S if and only if i∗F is (−1)-pseudo-coherent, which is true if
and only if i∗F is an OAn

S
-module of finite presentation, see Cohomology, Lemma

20.47.9. A module of finite presentation is quasi-coherent, see Modules, Lemma
17.11.2. By Morphisms, Lemma 29.4.1 we see that F is quasi-coherent if and only
if i∗F is quasi-coherent. Having said this part (3) follows. The proof of (2) is
similar but less involved. □

Lemma 37.59.12.09UN Let X → S be a morphism of schemes which is locally of finite
type. Let m ∈ Z. Let E,K be objects of D(OX). If E ⊕K is m-pseudo-coherent
relative to S so are E and K.

Proof. Follows from Cohomology, Lemma 20.47.6 and the definitions. □
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Lemma 37.59.13.09UP Let X → S be a morphism of schemes which is locally of finite
type. Let m ∈ Z. Let F• be a (locally) bounded above complex of OX -modules
such that F i is (m − i)-pseudo-coherent relative to S for all i. Then F• is m-
pseudo-coherent relative to S.

Proof. Follows from Cohomology, Lemma 20.47.7 and the definitions. □

Lemma 37.59.14.09UQ Let X → S be a morphism of schemes which is locally of finite
type. Let m ∈ Z. Let E be an object of D(OX). If E is (locally) bounded above
and Hi(E) is (m − i)-pseudo-coherent relative to S for all i, then E is m-pseudo-
coherent relative to S.

Proof. Follows from Cohomology, Lemma 20.47.8 and the definitions. □

Lemma 37.59.15.09UR Let X → S be a morphism of schemes which is locally of finite
type. Let m ∈ Z. Let E be an object of D(OX) which is m-pseudo-coherent relative
to S. Let S′ → S be a morphism of schemes. Set X ′ = X ×S S′ and denote E′ the
derived pullback of E to X ′. If S′ and X are Tor independent over S, then E′ is
m-pseudo-coherent relative to S′.

Proof. The problem is local on X and X ′ hence we may assume X, S, S′, and
X ′ are affine. Choose a closed immersion i : X → An

S and denote i′ : X ′ → An
S′

the base change to S′. Denote g : X ′ → X and g′ : An
S′ → An

S the projections,
so E′ = Lg∗E. Since X and S′ are tor-independent over S, the base change map
(Cohomology, Remark 20.28.3) induces an isomorphism

Ri′∗(Lg∗E) = L(g′)∗Ri∗E

Namely, for a point x′ ∈ X ′ lying over x ∈ X the base change map on stalks at x′

is the map
Ex ⊗L

OAn
S
,x
OAn

S′ ,x
′ −→ Ex ⊗L

OX,x
OX′,x′

coming from the closed immersions i and i′. Note that the source is quasi-isomorphic
to a localization of Ex ⊗L

OS,s
OS′,s′ which is isomorphic to the target as OX′,x′ is

isomorphic to (the same) localization of OX,x ⊗L
OS,s

OS′,s′ by assumption. We
conclude the lemma holds by an application of Cohomology, Lemma 20.47.3. □

Lemma 37.59.16.09US Let f : X → Y be a morphism of schemes locally of finite type
over a base S. Let m ∈ Z. Let E be an object of D(OY ). Assume

(1) OX is pseudo-coherent relative to Y 12, and
(2) E is m-pseudo-coherent relative to S.

Then Lf∗E is m-pseudo-coherent relative to S.

Proof. The problem is local on X. Thus we may assume X, Y , and S are affine.
Arguing as in the proof of More on Algebra, Lemma 15.81.13 we can find a com-
mutative diagram

X
i
//

f

��

Ad
Y j

//

p
~~

An+d
S

||
Y // An

S

12This means f is pseudo-coherent, see Definition 37.60.2.
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Observe that
Ri∗Lf

∗E = Ri∗Li
∗Lp∗E = Lp∗E ⊗L

OAn
Y

Ri∗OX

by Cohomology, Lemma 20.54.4. By assumption and the fact that Y is affine, we
can represent Ri∗OX = i∗OX by a complexes of finite free OAn

Y
-modules F•, with

Fq = 0 for q > 0 (details omitted; use Derived Categories of Schemes, Lemma
36.10.2 and More on Algebra, Lemma 15.81.7). By assumption E is bounded
above, say Hq(E) = 0 for q > a. Represent E by a complex E• of OY -modules
with Eq = 0 for q > a. Then the derived tensor product above is represented by
Tot(p∗E• ⊗OAn

Y

F•).

Since j is a closed immersion, the functor j∗ is exact and Rj∗ is computed by
applying j∗ to any representating complex of sheaves. Thus we have to show that
j∗Tot(p∗E•⊗OAn

Y

F•) is m-pseudo-coherent as a complex of OAn+m
S

-modules. Note
that Tot(p∗E•⊗OAn

Y

F•) has a filtration by subcomplexes with successive quotients
the complexes p∗E• ⊗OAn

Y

Fq[−q]. Note that for q ≪ 0 the complexes p∗E• ⊗OAn
Y

Fq[−q] have zero cohomology in degrees ≤ m and hence are m-pseudo-coherent.
Hence, applying Lemma 37.59.10 and induction, it suffices to show that p∗E•⊗OAn

Y

Fq[−q] is pseudo-coherent relative to S for all q. Note that Fq = 0 for q > 0. Since
also Fq is finite free this reduces to proving that p∗E• is m-pseudo-coherent relative
to S which follows from Lemma 37.59.15 for instance. □

Lemma 37.59.17.09UT Let f : X → Y be a morphism of schemes locally of finite
type over a base S. Let m ∈ Z. Let E be an object of D(OX). Assume OY is
pseudo-coherent relative to S13. Then the following are equivalent

(1) E is m-pseudo-coherent relative to Y , and
(2) E is m-pseudo-coherent relative to S.

Proof. The question is local on X, hence we may assume X, Y , and S are affine.
Arguing as in the proof of More on Algebra, Lemma 15.81.13 we can find a com-
mutative diagram

X
i
//

f

��

Am
Y j

//

p
~~

An+m
S

||
Y // An

S

The assumption that OY is pseudo-coherent relative to S implies that OAm
Y

is
pseudo-coherent relative to Am

S (by flat base change; this can be seen by using for
example Lemma 37.59.15). This in turn implies that j∗OAn

Y
is pseudo-coherent

as an OAn+m
S

-module. Then the equivalence of the lemma follows from Derived
Categories of Schemes, Lemma 36.12.5. □

Lemma 37.59.18.09UU Let
X

��

i
// P

��
S

13This means Y → S is pseudo-coherent, see Definition 37.60.2.
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be a commutative diagram of schemes. Assume i is a closed immersion and P → S
flat and locally of finite presentation. Let E be an object of D(OX). Then the
following are equivalent

(1) E is m-pseudo-coherent relative to S,
(2) Ri∗E is m-pseudo-coherent relative to S, and
(3) Ri∗E is m-pseudo-coherent on P .

Proof. The equivalence of (1) and (2) is Lemma 37.59.9. The equivalence of (2) and
(3) follows from Lemma 37.59.17 applied to id : P → P provided we can show that
OP is pseudo-coherent relative to S. This follows from More on Algebra, Lemma
15.82.4 and the definitions. □

37.60. Pseudo-coherent morphisms

067X Avoid reading this section at all cost. If you need some of this material, first
take a look at the corresponding algebra sections, see More on Algebra, Sections
15.64, 15.81, and 15.82. For now the only thing you need to know is that a ring
map A → B is pseudo-coherent if and only if B = A[x1, . . . , xn]/I and B as an
A[x1, . . . , xn]-module has a resolution by finite free A[x1, . . . , xn]-modules.
Lemma 37.60.1.067Y Let f : X → S be a morphism of schemes. The following are
equivalent

(1) there exist an affine open covering S =
⋃
Vj and for each j an affine

open covering f−1(Vj) =
⋃
Uji such that OS(Vj)→ OX(Uij) is a pseudo-

coherent ring map,
(2) for every pair of affine opens U ⊂ X, V ⊂ S such that f(U) ⊂ V the ring

map OS(V )→ OX(U) is pseudo-coherent, and
(3) f is locally of finite type and OX is pseudo-coherent relative to S.

Proof. To see the equivalence of (1) and (2) it suffices to check conditions (1)(a),
(b), (c) of Morphisms, Definition 29.14.1 for the property of being a pseudo-coherent
ring map. These properties follow (using localization is flat) from More on Algebra,
Lemmas 15.81.12, 15.81.11, and 15.81.16.
If (1) holds, then f is locally of finite type as a pseudo-coherent ring map is of finite
type by definition. Moreover, (1) implies via Lemma 37.59.7 and the definitions
that OX is pseudo-coherent relative to S. Conversely, if (3) holds, then we see that
for every U and V as in (2) the ring OX(U) is of finite type over OS(V ) and OX(U)
is as a module pseudo-coherent relative to OS(V ), see Lemmas 37.59.6 and 37.59.7.
This is the definition of a pseudo-coherent ring map, hence (2) and (1) hold. □

Definition 37.60.2.067Z A morphism of schemes f : X → S is called pseudo-coherent if
the equivalent conditions of Lemma 37.60.1 are satisfied. In this case we also say
that X is pseudo-coherent over S.
Beware that a base change of a pseudo-coherent morphism is not pseudo-coherent
in general.
Lemma 37.60.3.0680 A flat base change of a pseudo-coherent morphism is pseudo-
coherent.
Proof. This translates into the following algebra result: Let A → B be a pseudo-
coherent ring map. Let A → A′ be flat. Then A′ → B ⊗A A′ is pseudo-coherent.
This follows from the more general More on Algebra, Lemma 15.81.12. □

https://stacks.math.columbia.edu/tag/067Y
https://stacks.math.columbia.edu/tag/067Z
https://stacks.math.columbia.edu/tag/0680


37.60. PSEUDO-COHERENT MORPHISMS 3309

Lemma 37.60.4.0681 A composition of pseudo-coherent morphisms of schemes is pseudo-
coherent.

Proof. This translates into the following algebra result: If A→ B → C are compos-
able pseudo-coherent ring maps then A→ C is pseudo-coherent. This follows from
either More on Algebra, Lemma 15.81.13 or More on Algebra, Lemma 15.81.15. □

Lemma 37.60.5.0682 A pseudo-coherent morphism is locally of finite presentation.

Proof. Immediate from the definitions. □

Lemma 37.60.6.0695 A flat morphism which is locally of finite presentation is pseudo-
coherent.

Proof. This follows from the fact that a flat ring map of finite presentation is
pseudo-coherent (and even perfect), see More on Algebra, Lemma 15.82.4. □

Lemma 37.60.7.0683 Let f : X → Y be a morphism of schemes pseudo-coherent over
a base scheme S. Then f is pseudo-coherent.

Proof. This translates into the following algebra result: If R → A → B are com-
posable ring maps and R → A, R → B pseudo-coherent, then R → B is pseudo-
coherent. This follows from More on Algebra, Lemma 15.81.15. □

Lemma 37.60.8.0AVX Let f : X → S be a finite morphism of schemes. Then f is
pseudo-coherent if and only if f∗OX is pseudo-coherent as an OS-module.

Proof. Translated into algebra this lemma says the following: If R → A is a finite
ring map, then R→ A is pseudo-coherent as a ring map (which means by definition
that A as an A-module is pseudo-coherent relative to R) if and only if A is pseudo-
coherent as an R-module. This follows from the more general More on Algebra,
Lemma 15.81.5. □

Lemma 37.60.9.0684 Let f : X → S be a morphism of schemes. If S is locally
Noetherian, then f is pseudo-coherent if and only if f is locally of finite type.

Proof. This translates into the following algebra result: If R → A is a finite type
ring map with R Noetherian, then R→ A is pseudo-coherent if and only if R→ A
is of finite type. To see this, note that a pseudo-coherent ring map is of finite
type by definition. Conversely, if R → A is of finite type, then we can write
A = R[x1, . . . , xn]/I and it follows from More on Algebra, Lemma 15.64.17 that
A is pseudo-coherent as an R[x1, . . . , xn]-module, i.e., R→ A is a pseudo-coherent
ring map. □

Lemma 37.60.10.0696 The property P(f) =“f is pseudo-coherent” is fpqc local on the
base.

Proof. We will use the criterion of Descent, Lemma 35.22.4 to prove this. By Defini-
tion 37.60.2 being pseudo-coherent is Zariski local on the base. By Lemma 37.60.3
being pseudo-coherent is preserved under flat base change. The final hypothesis
(3) of Descent, Lemma 35.22.4 translates into the following algebra statement: Let
A→ B be a faithfully flat ring map. Let C = A[x1, . . . , xn]/I be an A-algebra. If
C ⊗A B is pseudo-coherent as an B[x1, . . . , xn]-module, then C is pseudo-coherent
as a A[x1, . . . , xn]-module. This is More on Algebra, Lemma 15.64.15. □
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Lemma 37.60.11.0697 Let A→ B be a flat ring map of finite presentation. Let I ⊂ B
be an ideal. Then A→ B/I is pseudo-coherent if and only if I is pseudo-coherent
as a B-module.

Proof. Choose a presentation B = A[x1, . . . , xn]/J . Note that B is pseudo-coherent
as an A[x1, . . . , xn]-module because A → B is a pseudo-coherent ring map by
Lemma 37.60.6. Note that A→ B/I is pseudo-coherent if and only if B/I is pseudo-
coherent as an A[x1, . . . , xn]-module. By More on Algebra, Lemma 15.64.11 we see
this is equivalent to the condition that B/I is pseudo-coherent as an B-module.
This proves the lemma as the short exact sequence 0 → I → B → B/I → 0
shows that I is pseudo-coherent if and only if B/I is (see More on Algebra, Lemma
15.64.6). □

The following lemma will be obsoleted by the stronger Lemma 37.60.13.

Lemma 37.60.12.0698 The property P(f) =“f is pseudo-coherent” is syntomic local on
the source.

Proof. We will use the criterion of Descent, Lemma 35.26.4 to prove this. It follows
from Lemmas 37.60.6 and 37.60.4 that being pseudo-coherent is preserved under
precomposing with flat morphisms locally of finite presentation, in particular un-
der precomposing with syntomic morphisms (see Morphisms, Lemmas 29.30.7 and
29.30.6). It is clear from Definition 37.60.2 that being pseudo-coherent is Zariski
local on the source and target. Hence, according to the aforementioned Descent,
Lemma 35.26.4 it suffices to prove the following: Suppose X ′ → X → Y are mor-
phisms of affine schemes with X ′ → X syntomic and X ′ → Y pseudo-coherent.
Then X → Y is pseudo-coherent. To see this, note that in any case X → Y is of fi-
nite presentation by Descent, Lemma 35.14.1. Choose a closed immersion X → An

Y .
By Algebra, Lemma 10.136.18 we can find an affine open covering X ′ =

⋃
i=1,...,nX

′
i

and syntomic morphisms Wi → An
Y lifting the morphisms X ′

i → X, i.e., such that
there are fibre product diagrams

X ′
i

��

// Wi

��
X // An

Y

After replacing X ′ by
∐
X ′
i and setting W =

∐
Wi we obtain a fibre product

diagram

X ′

��

// W

h

��
X // An

Y

with W → An
Y flat and of finite presentation and X ′ → Y still pseudo-coherent.

Since W → An
Y is open (see Morphisms, Lemma 29.25.10) and X ′ → X is surjective

we can find f ∈ Γ(An
Y ,O) such that X ⊂ D(f) ⊂ Im(h). Write Y = Spec(R), X =

Spec(A), X ′ = Spec(A′) and W = Spec(B), A = R[x1, . . . , xn]/I and A′ = B/IB.

https://stacks.math.columbia.edu/tag/0697
https://stacks.math.columbia.edu/tag/0698


37.61. PERFECT MORPHISMS 3311

Then R→ A′ is pseudo-coherent. Picture

A′ = B/IB Boo

A = R[x1, . . . , xn]/I

OO

R[x1, . . . , xn]oo

OO

By Lemma 37.60.11 we see that IB is pseudo-coherent as a B-module. The ring
map R[x1, . . . , xn]f → Bf is faithfully flat by our choice of f above. This implies
that If ⊂ R[x1, . . . , xn]f is pseudo-coherent, see More on Algebra, Lemma 15.64.15.
Applying Lemma 37.60.11 one more time we see thatR→ A is pseudo-coherent. □

Lemma 37.60.13.0699 The property P(f) =“f is pseudo-coherent” is fppf local on the
source.

Proof. Let f : X → S be a morphism of schemes. Let {gi : Xi → X} be an fppf
covering such that each composition f ◦gi is pseudo-coherent. According to Lemma
37.48.2 there exist

(1) a Zariski open covering X =
⋃
Uj ,

(2) surjective finite locally free morphisms Wj → Uj ,
(3) Zariski open coverings Wj =

⋃
kWj,k,

(4) surjective finite locally free morphisms Tj,k →Wj,k

such that the fppf covering {hj,k : Tj,k → X} refines the given covering {Xi → X}.
Denote ψj,k : Tj,k → Xα(j,k) the morphisms that witness the fact that {Tj,k → X}
refines the given covering {Xi → X}. Note that Tj,k → X is a flat, locally finitely
presented morphism, so both Xi and Tj,k are pseudo-coherent over X by Lemma
37.60.6. Hence ψj,k : Tj,k → Xi is pseudo-coherent, see Lemma 37.60.7. Hence
Tj,k → S is pseudo coherent as the composition of ψj,k and f ◦ gα(j,k), see Lemma
37.60.4. Thus we see we have reduced the lemma to the case of a Zariski open
covering (which is OK) and the case of a covering given by a single surjective finite
locally free morphism which we deal with in the following paragraph.
Assume that X ′ → X → S is a sequence of morphisms of schemes with X ′ → X
surjective finite locally free and X ′ → Y pseudo-coherent. Our goal is to show that
X → S is pseudo-coherent. Note that by Descent, Lemma 35.14.3 the morphism
X → S is locally of finite presentation. It is clear that the problem reduces to the
case that X ′, X and S are affine and X ′ → X is free of some rank r > 0. The
corresponding algebra problem is the following: Suppose R → A → A′ are ring
maps such that R → A′ is pseudo-coherent, R → A is of finite presentation, and
A′ ∼= A⊕r as an A-module. Goal: Show R→ A is pseudo-coherent. The assumption
that R→ A′ is pseudo-coherent means that A′ as an A′-module is pseudo-coherent
relative to R. By More on Algebra, Lemma 15.81.5 this implies that A′ as an
A-module is pseudo-coherent relative to R. Since A′ ∼= A⊕r as an A-module we
see that A as an A-module is pseudo-coherent relative to R, see More on Algebra,
Lemma 15.81.8. This by definition means that R → A is pseudo-coherent and we
win. □

37.61. Perfect morphisms

0685 In order to understand the material in this section you have to understand the
material of the section on pseudo-coherent morphisms just a little bit. For now the
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only thing you need to know is that a ring map A → B is perfect if and only if it
is pseudo-coherent and B has finite tor dimension as an A-module.

Lemma 37.61.1.0686 Let f : X → S be a morphism of schemes which is locally of finite
type. The following are equivalent

(1) there exist an affine open covering S =
⋃
Vj and for each j an affine open

covering f−1(Vj) =
⋃
Uji such that OS(Vj) → OX(Uij) is a perfect ring

map, and
(2) for every pair of affine opens U ⊂ X, V ⊂ S such that f(U) ⊂ V the ring

map OS(V )→ OX(U) is perfect.

Proof. Assume (1) and let U, V be as in (2). It follows from Lemma 37.60.1 that
OS(V ) → OX(U) is pseudo-coherent. Hence it suffices to prove that the property
of a ring map being "of finite tor dimension" satisfies conditions (1)(a), (b), (c)
of Morphisms, Definition 29.14.1. These properties follow from More on Algebra,
Lemmas 15.66.11, 15.66.14, and 15.66.16. Some details omitted. □

Definition 37.61.2.0687 A morphism of schemes f : X → S is called perfect if the
equivalent conditions of Lemma 37.61.1 are satisfied. In this case we also say that
X is perfect over S.

Note that a perfect morphism is in particular pseudo-coherent, hence locally of
finite presentation. Beware that a base change of a perfect morphism is not perfect
in general.

Lemma 37.61.3.0688 A flat base change of a perfect morphism is perfect.

Proof. This translates into the following algebra result: Let A → B be a perfect
ring map. Let A → A′ be flat. Then A′ → B ⊗A A′ is perfect. This result for
pseudo-coherent ring maps we have seen in Lemma 37.60.3. The corresponding fact
for finite tor dimension follows from More on Algebra, Lemma 15.66.14. □

Lemma 37.61.4.0689 A composition of perfect morphisms of schemes is perfect.

Proof. This translates into the following algebra result: If A → B → C are com-
posable perfect ring maps then A → C is perfect. We have seen this is the case
for pseudo-coherent in Lemma 37.60.4 and its proof. By assumption there exist
integers n, m such that B has tor dimension ≤ n over A and C has tor dimension
≤ m over B. Then for any A-module M we have

M ⊗L
A C = (M ⊗L

A B)⊗L
B C

and the spectral sequence of More on Algebra, Example 15.62.4 shows that TorAp (M,C) =
0 for p > n+m as desired. □

Lemma 37.61.5.068A Let f : X → S be a morphism of schemes. The following are
equivalent

(1) f is flat and perfect, and
(2) f is flat and locally of finite presentation.

Proof. The implication (2) ⇒ (1) is More on Algebra, Lemma 15.82.4. The con-
verse follows from the fact that a pseudo-coherent morphism is locally of finite
presentation, see Lemma 37.60.5. □
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Lemma 37.61.6.068B Let f : X → S be a morphism of schemes. Assume S is regular
and f is locally of finite type. Then f is perfect.

Proof. See More on Algebra, Lemma 15.82.5. □

Lemma 37.61.7.068C A regular immersion of schemes is perfect. A Koszul-regular
immersion of schemes is perfect.

Proof. Since a regular immersion is a Koszul-regular immersion, see Divisors, Lemma
31.21.2, it suffices to prove the second statement. This translates into the following
algebraic statement: Suppose that I ⊂ A is an ideal generated by a Koszul-regular
sequence f1, . . . , fr of A. Then A → A/I is a perfect ring map. Since A → A/I
is surjective this is a presentation of A/I by a polynomial algebra over A. Hence
it suffices to see that A/I is pseudo-coherent as an A-module and has finite tor
dimension. By definition of a Koszul sequence the Koszul complex K(A, f1, . . . , fr)
is a finite free resolution of A/I. Hence A/I is a perfect complex of A-modules and
we win. □

Lemma 37.61.8.068D Let
X

f
//

��

Y

��
S

be a commutative diagram of morphisms of schemes. Assume Y → S smooth and
X → S perfect. Then f : X → Y is perfect.

Proof. We can factor f as the composition
X −→ X ×S Y −→ Y

where the first morphism is the map i = (1, f) and the second morphism is the
projection. Since Y → S is flat, see Morphisms, Lemma 29.34.9, we see that
X ×S Y → Y is perfect by Lemma 37.61.3. As Y → S is smooth, also X ×S Y →
X is smooth, see Morphisms, Lemma 29.34.5. Hence i is a section of a smooth
morphism, therefore i is a regular immersion, see Divisors, Lemma 31.22.8. This
implies that i is perfect, see Lemma 37.61.7. We conclude that f is perfect because
the composition of perfect morphisms is perfect, see Lemma 37.61.4. □

Remark 37.61.9.069A It is not true that a morphism between schemes X,Y perfect over
a base S is perfect. An example is S = Spec(k), X = Spec(k), Y = Spec(k[x]/(x2)
and X → Y the unique S-morphism.

Lemma 37.61.10.069B The property P(f) =“f is perfect” is fpqc local on the base.

Proof. We will use the criterion of Descent, Lemma 35.22.4 to prove this. By
Definition 37.61.2 being perfect is Zariski local on the base. By Lemma 37.61.3 being
perfect is preserved under flat base change. The final hypothesis (3) of Descent,
Lemma 35.22.4 translates into the following algebra statement: Let A → B be a
faithfully flat ring map. Let C = A[x1, . . . , xn]/I be an A-algebra. If C ⊗A B is
perfect as an B[x1, . . . , xn]-module, then C is perfect as a A[x1, . . . , xn]-module.
This is More on Algebra, Lemma 15.74.13. □

Lemma 37.61.11.069C Let f : X → S be a pseudo-coherent morphism of schemes. The
following are equivalent
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(1) f is perfect,
(2) OX locally has finite tor dimension as a sheaf of f−1OS-modules, and
(3) for all x ∈ X the ring OX,x has finite tor dimension as an OS,f(x)-module.

Proof. The problem is local on X and S. Hence we may assume that X = Spec(B),
S = Spec(A) and f corresponds to a pseudo-coherent ring map A→ B.
If (1) holds, then B has finite tor dimension d as A-module. Then Bq has tor
dimension d as an Ap-module for all primes q ⊂ B with p = A ∩ q, see More on
Algebra, Lemma 15.66.15. Then OX has tor dimension d as a sheaf of f−1OS-
modules by Cohomology, Lemma 20.48.5. Thus (1) implies (2).
By Cohomology, Lemma 20.48.5 (2) implies (3).
Assume (3). We cannot use More on Algebra, Lemma 15.66.15 to conclude as
we are not given that the tor dimension of Bq over Ap is bounded independent
of q. Choose a presentation A[x1, . . . , xn] → B. Then B is pseudo-coherent as a
A[x1, . . . , xn]-module. Let q ⊂ A[x1, . . . , xn] be a prime ideal lying over p ⊂ A.
Then either Bq is zero or by assumption it has finite tor dimension as an Ap-
module. Since the fibres of A→ A[x1, . . . , xn] have finite global dimension, we can
apply More on Algebra, Lemma 15.77.5 to Ap → A[x1, . . . , xn]q to see that Bq is a
perfect A[x1, . . . , xn]q-module. Hence B is a perfect A[x1, . . . , xn]-module by More
on Algebra, Lemma 15.77.3. Thus A→ B is a perfect ring map by definition. □

Lemma 37.61.12.0G2E Let i : Z → X be a perfect closed immersion of schemes. Then
i∗OZ is a perfect OX -module, i.e., it is a perfect object of D(OX).

Proof. This is more or less immediate from the definition. Namely, let U = Spec(A)
be an affine open of X. Then i−1(U) = Spec(A/I) for some ideal I ⊂ A and A/I
has a finite resolution by finite projective A-modules by More on Algebra, Lemma
15.82.2. Hence i∗OZ |U can be represented by a finite length complex of finite locally
free OU -modules. This is what we had to show, see Cohomology, Section 20.49. □

Lemma 37.61.13.0B6G Let S be a Noetherian scheme. Let f : X → S be a perfect
proper morphism of schemes. Let E ∈ D(OX) be perfect. Then Rf∗E is a perfect
object of D(OS).

Proof. We claim that Derived Categories of Schemes, Lemma 36.27.1 applies. Con-
ditions (1) and (2) are immediate. Condition (3) is local on X. Thus we may assume
X and S affine and E represented by a strictly perfect complex of OX -modules.
Thus it suffices to show that OX has finite tor dimension as a sheaf of f−1OS-
modules. This is equivalent to being perfect by Lemma 37.61.11. □

Lemma 37.61.14.069D The property P(f) =“f is perfect” is fppf local on the source.

Proof. Let {gi : Xi → X}i∈I be an fppf covering of schemes and let f : X → S be
a morphism such that each f ◦ gi is perfect. By Lemma 37.60.13 we conclude that
f is pseudo-coherent. Hence by Lemma 37.61.11 it suffices to check that OX,x is
an OS,f(x)-module of finite tor dimension for all x ∈ X. Pick i ∈ I and xi ∈ Xi

mapping to x. Then we see that OXi,xi has finite tor dimension over OS,f(x) and
that OX,x → OXi,xi is faithfully flat. The desired conclusion follows from More on
Algebra, Lemma 15.66.17. □

Lemma 37.61.15.09RK Let i : Z → Y and j : Y → X be immersions of schemes. Assume
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(1) X is locally Noetherian,
(2) j ◦ i is a regular immersion, and
(3) i is perfect.

Then i and j are regular immersions.

Proof. SinceX (and hence Y ) is locally Noetherian all 4 types of regular immersions
agree, and moreover we may check whether a morphism is a regular immersion on
the level of local rings, see Divisors, Lemma 31.20.8. Thus the result follows from
Divided Power Algebra, Lemma 23.7.5. □

37.62. Local complete intersection morphisms

068E In Divisors, Section 31.21 we have defined 4 different types of regular immersions:
regular, Koszul-regular, H1-regular, and quasi-regular. In this section we consider
morphisms f : X → S which locally on X factor as

X
i

//

��

An
S

~~
S

where i is a ∗-regular immersion for ∗ ∈ {∅,Koszul,H1, quasi}. However, we don’t
know how to prove that this condition is independent of the factorization if ∗ = ∅,
i.e., when we require i to be a regular immersion. On the other hand, we want a
local complete intersection morphism to be perfect, which is only going to be true if
∗ = Koszul or ∗ = ∅. Hence we will define a local complete intersection morphism
or Koszul morphism to be a morphism of schemes f : X → S that locally on X has
a factorization as above with i a Koszul-regular immersion. To see that this works
we first prove this is independent of the chosen factorizations.

Lemma 37.62.1.069E Let S be a scheme. Let U , P , P ′ be schemes over S. Let u ∈ U .
Let i : U → P , i′ : U → P ′ be immersions over S. Assume P and P ′ smooth over
S. Then the following are equivalent

(1) i is a Koszul-regular immersion in a neighbourhood of x, and
(2) i′ is a Koszul-regular immersion in a neighbourhood of x.

Proof. Assume i is a Koszul-regular immersion in a neighbourhood of x. Consider
the morphism j = (i, i′) : U → P ×S P ′ = P ′′. Since P ′′ = P ×S P ′ → P is
smooth, it follows from Divisors, Lemma 31.22.9 that j is a Koszul-regular immer-
sion, whereupon it follows from Divisors, Lemma 31.22.12 that i′ is a Koszul-regular
immersion. □

Before we state the definition, let us make the following simple remark. Let f :
X → S be a morphism of schemes which is locally of finite type. Let x ∈ X.
Then there exist an open neighbourhood U ⊂ X and a factorization of f |U as the
composition of an immersion i : U → An

S followed by the projection An
S → S which

is smooth. Picture
X

��

Uoo

��

i
// An

S = P

π
{{

S

https://stacks.math.columbia.edu/tag/069E
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In fact you can do this with any affine open neighbourhood U of x in X, see
Morphisms, Lemma 29.39.2.

Definition 37.62.2.069F Let f : X → S be a morphism of schemes.
(1) Let x ∈ X. We say that f is Koszul at x if f is of finite type at x and

there exists an open neighbourhood and a factorization of f |U as π ◦ i
where i : U → P is a Koszul-regular immersion and π : P → S is smooth.

(2) We say f is a Koszul morphism, or that f is a local complete intersection
morphism if f is Koszul at every point.

We have seen above that the choice of the factorization f |U = π◦ i is irrelevant, i.e.,
given a factorization of f |U as an immersion i followed by a smooth morphism π,
whether or not i is Koszul regular in a neighbourhood of x is an intrinsic property
of f at x. Let us record this here explicitly as a lemma so that we can refer to it

Lemma 37.62.3.069G Let f : X → S be a local complete intersection morphism. Let P
be a scheme smooth over S. Let U ⊂ X be an open subscheme and i : U → P an
immersion of schemes over S. Then i is a Koszul-regular immersion.

Proof. This is the defining property of a local complete intersection morphism. See
discussion above. □

It seems like a good idea to collect here some properties in common with all Koszul
morphisms.

Lemma 37.62.4.069H Let f : X → S be a local complete intersection morphism. Then
(1) f is locally of finite presentation,
(2) f is pseudo-coherent, and
(3) f is perfect.

Proof. Since a perfect morphism is pseudo-coherent (because a perfect ring map is
pseudo-coherent) and a pseudo-coherent morphism is locally of finite presentation
(because a pseudo-coherent ring map is of finite presentation) it suffices to prove
the last statement. Being perfect is a local property, hence we may assume that f
factors as π ◦ i where π is smooth and i is a Koszul-regular immersion. A Koszul-
regular immersion is perfect, see Lemma 37.61.7. A smooth morphism is perfect as
it is flat and locally of finite presentation, see Lemma 37.61.5. Finally a composition
of perfect morphisms is perfect, see Lemma 37.61.4. □

Lemma 37.62.5.07DB Let f : X = Spec(B) → S = Spec(A) be a morphism of affine
schemes. Then f is a local complete intersection morphism if and only if A → B
is a local complete intersection homomorphism, see More on Algebra, Definition
15.33.2.

Proof. Follows immediately from the definitions. □

Beware that a base change of a Koszul morphism is not Koszul in general.

Lemma 37.62.6.069I A flat base change of a local complete intersection morphism is a
local complete intersection morphism.

Proof. Omitted. Hint: This is true because a base change of a smooth morphism
is smooth and a flat base change of a Koszul-regular immersion is a Koszul-regular
immersion, see Divisors, Lemma 31.21.3. □
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Lemma 37.62.7.069J A composition of local complete intersection morphisms is a local
complete intersection morphism.

Proof. Let g : Y → S and f : X → Y be local complete intersection morphisms.
Let x ∈ X and set y = f(x). Choose an open neighbourhood V ⊂ Y of y and
a factorization g|V = π ◦ i for some Koszul-regular immersion i : V → P and
smooth morphism π : P → S. Next choose an open neighbourhood U of x ∈ X
and a factorization f |U = π′ ◦ i′ for some Koszul-regular immersion i′ : U → P ′

and smooth morphism π′ : P ′ → Y . In fact, we may assume that P ′ = An
V , see

discussion preceding and following Definition 37.62.2. Picture:

X

��

Uoo
i′
// P ′ = An

V

��
Y

��

Voo
i

// P

��
S Soo

Set P ′′ = An
P . Then U → P ′ → P ′′ is a Koszul-regular immersion as a composition

of Koszul-regular immersions, namely i′ and the flat base change of i via P ′′ → P ,
see Divisors, Lemma 31.21.3 and Divisors, Lemma 31.21.7. Also P ′′ → P → S is
smooth as a composition of smooth morphisms, see Morphisms, Lemma 29.34.4.
Hence we conclude that X → S is Koszul at x as desired. □

Lemma 37.62.8.069K Let f : X → S be a morphism of schemes. The following are
equivalent

(1) f is flat and a local complete intersection morphism, and
(2) f is syntomic.

Proof. Working affine locally this is More on Algebra, Lemma 15.33.5. We also
give a more geometric proof.
Assume (2). By Morphisms, Lemma 29.30.10 for every point x of X there exist
affine open neighbourhoods U of x and V of f(x) such that f |U : U → V is standard
syntomic. This means that U = Spec(R[x1, . . . , xn]/(f1, . . . , fc)) → V = Spec(R)
where R[x1, . . . , xn]/(f1, . . . , fc) is a relative global complete intersection over R.
By Algebra, Lemma 10.136.12 the sequence f1, . . . , fc is a regular sequence in each
local ring R[x1, . . . , xn]q for every prime q ⊃ (f1, . . . , fc). Consider the Koszul
complex K• = K•(R[x1, . . . , xn], f1, . . . , fc) with homology groups Hi = Hi(K•).
By More on Algebra, Lemma 15.30.2 we see that (Hi)q = 0, i > 0 for every q as
above. On the other hand, by More on Algebra, Lemma 15.28.6 we see that Hi

is annihilated by (f1, . . . , fc). Hence we see that Hi = 0, i > 0 and f1, . . . , fc is
a Koszul-regular sequence. This proves that U → V factors as a Koszul-regular
immersion U → An

V followed by a smooth morphism as desired.
Assume (1). Then f is a flat and locally of finite presentation (Lemma 37.62.4).
Hence, according to Morphisms, Lemma 29.30.10 it suffices to show that the local
rings OXs,x are local complete intersection rings. Choose, locally on X, a factoriza-
tion f = π ◦ i for some Koszul-regular immersion i : X → P and smooth morphism
π : P → S. Note that X → P is a relative quasi-regular immersion over S, see Di-
visors, Definition 31.22.2. Hence according to Divisors, Lemma 31.22.4 we see that

https://stacks.math.columbia.edu/tag/069J
https://stacks.math.columbia.edu/tag/069K


37.62. LOCAL COMPLETE INTERSECTION MORPHISMS 3318

X → P is a regular immersion and the same remains true after any base change.
Thus each fibre is a regular immersion, whence all the local rings of all the fibres
of X are local complete intersections. □

Lemma 37.62.9.069L A regular immersion of schemes is a local complete intersection
morphism. A Koszul-regular immersion of schemes is a local complete intersection
morphism.

Proof. Since a regular immersion is a Koszul-regular immersion, see Divisors, Lemma
31.21.2, it suffices to prove the second statement. The second statement follows im-
mediately from the definition. □

Lemma 37.62.10.069M Let
X

f
//

��

Y

��
S

be a commutative diagram of morphisms of schemes. Assume Y → S smooth and
X → S is a local complete intersection morphism. Then f : X → Y is a local
complete intersection morphism.

Proof. Immediate from the definitions. □

Lemma 37.62.11.0E9K Let f : X → Y be a morphism of schemes. If f is locally of finite
type and X and Y are regular, then f is a local complete intersection morphism.

Proof. We may assume there is a factorization X → An
Y → Y where the first arrow

is an immersion. As Y is regular also An
Y is regular by Algebra, Lemma 10.163.10.

Hence X → An
Y is a regular immersion by Divisors, Lemma 31.21.12. □

The following lemma is of a different nature.

Lemma 37.62.12.09RL Let
X

f
//

��

Y

��
S

be a commutative diagram of morphisms of schemes. Assume
(1) S is locally Noetherian,
(2) Y → S is locally of finite type,
(3) f : X → Y is perfect,
(4) X → S is a local complete intersection morphism.

Then X → Y is a local complete intersection morphism and Y → S is Koszul at
f(x) for all x ∈ X.

Proof. In the course of this proof all schemes will be locally Noetherian and all rings
will be Noetherian. We will use without further mention that regular sequences and
Koszul regular sequences agree in this setting, see More on Algebra, Lemma 15.30.7.
Moreover, whether an ideal (resp. ideal sheaf) is regular may be checked on local
rings (resp. stalks), see Algebra, Lemma 10.68.6 (resp. Divisors, Lemma 31.20.8)
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The question is local. Hence we may assume S, X, Y are affine. In this situation
we may choose a commutative diagram

An+m
S

��

Xoo

��
An
S

��

Yoo

||
S

whose horizontal arrows are closed immersions. Let x ∈ X be a point and consider
the corresponding commutative diagram of local rings

J // OAn+m
S

,x
// OX,x

I //

OO

OAn
S
,f(x) //

OO

OY,f(x)

OO

where J and I are the kernels of the horizontal arrows. Since X → S is a local
complete intersection morphism, the ideal J is generated by a regular sequence.
Since X → Y is perfect the ring OX,x has finite tor dimension over OY,f(x). Hence
we may apply Divided Power Algebra, Lemma 23.7.6 to conclude that I and J/I are
generated by regular sequences. By our initial remarks, this finishes the proof. □

Lemma 37.62.13.0FJ2 Let
X

f
//

��

Y

��
S

be a commutative diagram of morphisms of schemes. Assume S is locally Noether-
ian, Y → S is locally of finite type, Y is regular, and X → S is a local complete
intersection morphism. Then f : X → Y is a local complete intersection morphism
and Y → S is Koszul at f(x) for all x ∈ X.

Proof. This is a special case of Lemma 37.62.12 in view of Lemma 37.61.6 (and
Morphisms, Lemma 29.15.8). □

Lemma 37.62.14.0FK1 Let i : X → Y be an immersion. If
(1) i is perfect,
(2) Y is locally Noetherian, and
(3) the conormal sheaf CX/Y is finite locally free,

then i is a regular immersion.

Proof. Translated into algebra, this is Divided Power Algebra, Proposition 23.11.3.
□

Lemma 37.62.15.0FV6 Let f : X → Y be a local complete intersection homomorphism.
Then the naive cotangent complex NLX/Y is a perfect object of D(OX) of tor-
amplitude in [−1, 0].
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Proof. Translated into algebra this is More on Algebra, Lemma 15.85.4. To do
the translation use Lemmas 37.62.5 and 37.13.2 as well as Derived Categories of
Schemes, Lemmas 36.3.5, 36.10.4 and 36.10.7. □

Lemma 37.62.16.0FK2 Let f : X → Y be a perfect morphism of locally Noetherian
schemes. The following are equivalent

(1) f is a local complete intersection morphism,
(2) NLX/Y has tor-amplitude in [−1, 0], and
(3) NLX/Y is perfect with tor-amplitude in [−1, 0].

Proof. Translated into algebra this is Divided Power Algebra, Lemma 23.11.4. To
do the translation use Lemmas 37.62.5 and 37.13.2 as well as Derived Categories
of Schemes, Lemmas 36.3.5, 36.10.4 and 36.10.7. □

Lemma 37.62.17.0FK3 Let f : X → Y be a flat morphism of finite presentation. The
following are equivalent

(1) f is a local complete intersection morphism,
(2) f is syntomic,
(3) NLX/Y has tor-amplitude in [−1, 0], and
(4) NLX/Y is perfect with tor-amplitude in [−1, 0].

Proof. Translated into algebra this is Divided Power Algebra, Lemma 23.11.5. To
do the translation use Lemmas 37.62.5 and 37.13.2 as well as Derived Categories
of Schemes, Lemmas 36.3.5, 36.10.4 and 36.10.7. □

The following lemma gives a characterization of smooth morphisms as flat mor-
phisms whose diagonal is perfect.
Lemma 37.62.18.0FDP Let f : X → Y be a finite type morphism of locally Noetherian
schemes. Denote ∆ : X → X ×Y X the diagonal morphism. The following are
equivalent

(1) f is smooth,
(2) f is flat and ∆ : X → X ×Y X is a regular immersion,
(3) f is flat and ∆ : X → X ×Y X is a local complete intersection morphism,
(4) f is flat and ∆ : X → X ×Y X is perfect.

Proof. Assume (1). Then f is flat by Morphisms, Lemma 29.34.9. The projections
X ×Y X → X are smooth by Morphisms, Lemma 29.34.5. Hence the diagonal
is a section to a smooth morphism and hence a regular immersion, see Divisors,
Lemma 31.22.8. Hence (1) ⇒ (2). The implication (2) ⇒ (3) is Lemma 37.62.9.
The implication (3) ⇒ (4) is Lemma 37.62.4. The interesting implication (4) ⇒
(1) follows immediately from Divided Power Algebra, Lemma 23.10.2. □

Lemma 37.62.19.069N The property P(f) =“f is a local complete intersection mor-
phism” is fpqc local on the base.
Proof. Let f : X → S be a morphism of schemes. Let {Si → S} be an fpqc covering
of S. Assume that each base change fi : Xi → Si of f is a local complete intersec-
tion morphism. Note that this implies in particular that f is locally of finite type,
see Lemma 37.62.4 and Descent, Lemma 35.23.10. Let x ∈ X. Choose an open
neighbourhood U of x and an immersion j : U → An

S over S (see discussion pre-
ceding Definition 37.62.2). We have to show that j is a Koszul-regular immersion.
Since fi is a local complete intersection morphism, we see that the base change
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ji : U ×S Si → An
Si

is a Koszul-regular immersion, see Lemma 37.62.3. Because
{An

Si
→ An

S} is a fpqc covering we see from Descent, Lemma 35.23.32 that j is a
Koszul-regular immersion as desired. □

Lemma 37.62.20.069P The property P(f) =“f is a local complete intersection mor-
phism” is syntomic local on the source.

Proof. We will use the criterion of Descent, Lemma 35.26.4 to prove this. It follows
from Lemmas 37.62.8 and 37.62.7 that being a local complete intersection mor-
phism is preserved under precomposing with syntomic morphisms. It is clear from
Definition 37.62.2 that being a local complete intersection morphism is Zariski local
on the source and target. Hence, according to the aforementioned Descent, Lemma
35.26.4 it suffices to prove the following: Suppose X ′ → X → Y are morphisms of
affine schemes with X ′ → X syntomic and X ′ → Y a local complete intersection
morphism. Then X → Y is a local complete intersection morphism. To see this,
note that in any case X → Y is of finite presentation by Descent, Lemma 35.14.1.
Choose a closed immersion X → An

Y . By Algebra, Lemma 10.136.18 we can find an
affine open covering X ′ =

⋃
i=1,...,nX

′
i and syntomic morphisms Wi → An

Y lifting
the morphisms X ′

i → X, i.e., such that there are fibre product diagrams

X ′
i

��

// Wi

��
X // An

Y

After replacing X ′ by
∐
X ′
i and setting W =

∐
Wi we obtain a fibre product

diagram of affine schemes
X ′

��

// W

h

��
X // An

Y

with h : W → An
Y syntomic and X ′ → Y still a local complete intersection mor-

phism. Since W → An
Y is open (see Morphisms, Lemma 29.25.10) and X ′ → X is

surjective we see that X is contained in the image of W → An
Y . Choose a closed

immersion W → An+m
Y over An

Y . Now the diagram looks like

X ′

��

// W

h

��

// An+m
Y

||
X // An

Y

Because h is syntomic and hence a local complete intersection morphism (see above)
the morphism W → An+m

Y is a Koszul-regular immersion. Because X ′ → Y is
a local complete intersection morphism the morphism X ′ → An+m

Y is a Koszul-
regular immersion. We conclude from Divisors, Lemma 31.21.8 that X ′ → W is a
Koszul-regular immersion. Hence, since being a Koszul-regular immersion is fpqc
local on the target (see Descent, Lemma 35.23.32) we conclude that X → An

Y is a
Koszul-regular immersion which is what we had to show. □

https://stacks.math.columbia.edu/tag/069P
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Lemma 37.62.21.06B8 Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. Assume both X and Y are flat and locally of finite presentation over S.
Then the set

{x ∈ X | f Koszul at x}.
is open in X and its formation commutes with arbitrary base change S′ → S.

Proof. The set is open by definition (see Definition 37.62.2). Let S′ → S be a
morphism of schemes. Set X ′ = S′ ×S X, Y ′ = S′ ×S Y , and denote f ′ : X ′ → Y ′

the base change of f . Let x′ ∈ X ′ be a point such that f ′ is Koszul at x′. Denote
s′ ∈ S′, x ∈ X, y′ ∈ Y ′ , y ∈ Y , s ∈ S the image of x′. Note that f is locally of
finite presentation, see Morphisms, Lemma 29.21.11. Hence we may choose an affine
neighbourhood U ⊂ X of x and an immersion i : U → An

Y . Denote U ′ = S′ ×S U
and i′ : U ′ → An

Y ′ the base change of i. The assumption that f ′ is Koszul at x′

implies that i′ is a Koszul-regular immersion in a neighbourhood of x′, see Lemma
37.62.3. The scheme X ′ is flat and locally of finite presentation over S′ as a base
change of X (see Morphisms, Lemmas 29.25.8 and 29.21.4). Hence i′ is a relative
H1-regular immersion over S′ in a neighbourhood of x′ (see Divisors, Definition
31.22.2). Thus the base change i′s′ : U ′

s′ → An
Y ′
s′

is a H1-regular immersion in an
open neighbourhood of x′, see Divisors, Lemma 31.22.1 and the discussion following
Divisors, Definition 31.22.2. Since s′ = Spec(κ(s′))→ Spec(κ(s)) = s is a surjective
flat universally open morphism (see Morphisms, Lemma 29.23.4) we conclude that
the base change is : Us → An

Ys
is an H1-regular immersion in a neighbourhood of

x, see Descent, Lemma 35.23.32. Finally, note that An
Y is flat and locally of finite

presentation over S, hence Divisors, Lemma 31.22.7 implies that i is a (Koszul-
)regular immersion in a neighbourhood of x as desired. □

Lemma 37.62.22.06B9 Let f : X → Y be a local complete intersection morphism of
schemes. Then f is unramified if and only if f is formally unramified and in this
case the conormal sheaf CX/Y is finite locally free on X.

Proof. The first assertion follows immediately from Lemma 37.6.8 and the fact that
a local complete intersection morphism is locally of finite type. To compute the
conormal sheaf of f we choose, locally on X, a factorization of f as f = p ◦ i
where i : X → V is a Koszul-regular immersion and V → Y is smooth. By Lemma
37.11.13 we see that CX/Y is a locally direct summand of CX/V which is finite locally
free as i is a Koszul-regular (hence quasi-regular) immersion, see Divisors, Lemma
31.21.5. □

Lemma 37.62.23.06BA Let Z → Y → X be formally unramified morphisms of schemes.
Assume that Z → Y is a local complete intersection morphism. The exact sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0
of Lemma 37.7.12 is short exact.

Proof. The question is local on Z hence we may assume there exists a factorization
Z → An

Y → Y of the morphism Z → Y . Then we get a commutative diagram

Z
i′
// An

Y
//

��

An
X

��
Z

i // Y // X

https://stacks.math.columbia.edu/tag/06B8
https://stacks.math.columbia.edu/tag/06B9
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As Z → Y is a local complete intersection morphism, we see that Z → An
Y is a

Koszul-regular immersion. Hence by Divisors, Lemma 31.21.6 the sequence
0→ (i′)∗CAn

Y
/An

X
→ CZ/An

X
→ CZ/An

Y
→ 0

is exact and locally split. Note that i∗CY/X = (i′)∗CAn
Y
/An

X
by Lemma 37.7.7 and

note that the diagram
(i′)∗CAn

Y
/An

X

// CZ/An
X

i∗CY/X

∼=

OO

// CZ/X

OO

is commutative. Hence the lower horizontal arrow is a locally split injection. This
proves the lemma. □

37.63. Exact sequences of differentials and conormal sheaves

06BB In this section we collect some results on exact sequences of conormal sheaves and
sheaves of differentials. In some sense these are all realizations of the triangle of
cotangent complexes associated to a pair of composable morphisms of schemes.
Let g : Z → Y and f : Y → X be morphisms of schemes.

(1) There is a canonical exact sequence
g∗ΩY/X → ΩZ/X → ΩZ/Y → 0,

see Morphisms, Lemma 29.32.9. If g : Z → Y is smooth or more gen-
erally formally smooth, then this sequence is a short exact sequence, see
Morphisms, Lemma 29.34.16 or see Lemma 37.11.11.

(2) If g is an immersion or more generally formally unramified, then there is
a canonical exact sequence

CZ/Y → g∗ΩY/X → ΩZ/X → 0,
see Morphisms, Lemma 29.32.15 or see Lemma 37.7.10. If f ◦ g : Z → X
is smooth or more generally formally smooth, then this sequence is a short
exact sequence, see Morphisms, Lemma 29.34.17 or see Lemma 37.11.12.

(3) If g and f ◦ g are immersions or more generally formally unramified, then
there is a canonical exact sequence

CZ/X → CZ/Y → g∗ΩY/X → 0,
see Morphisms, Lemma 29.32.18 or see Lemma 37.7.11. If f : Y → X is
smooth or more generally formally smooth, then this sequence is a short
exact sequence, see Morphisms, Lemma 29.34.18 or see Lemma 37.11.13.

(4) If g and f are immersions or more generally formally unramified, then
there is a canonical exact sequence

g∗CY/X → CZ/X → CZ/Y → 0.
see Morphisms, Lemma 29.31.5 or see Lemma 37.7.12. If g : Z → Y
is a regular immersion14 or more generally a local complete intersection
morphism, then this sequence is a short exact sequence, see Divisors,
Lemma 31.21.6 or see Lemma 37.62.23.

14It suffices for g to be a H1-regular immersion. Observe that an immersion which is a local
complete intersection morphism is Koszul regular.
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37.64. Weakly étale morphisms

094N A ring homomorphism A→ B is weakly étale if both A→ B and B⊗AB → B are
flat, see More on Algebra, Definition 15.104.1. The analogous notion for morphisms
of schemes is the following.

Definition 37.64.1.094P A morphism of schemes X → Y is weakly étale or absolutely
flat if both X → Y and the diagonal morphism X → X ×Y X are flat.

An étale morphism is weakly étale and conversely it turns out that a weakly étale
morphism is indeed somewhat like an étale morphism. For example, if X → Y is
weakly étale, then LX/Y = 0, as follows from Cotangent, Lemma 92.8.4. We will
prove a very precise result relating weakly étale morphisms to étale morphisms later
(see Pro-étale Cohomology, Section 61.9). In this section we stick with the basics.

Lemma 37.64.2.094Q Let f : X → Y be a morphism of schemes. The following are
equivalent

(1) X → Y is weakly étale, and
(2) for every x ∈ X the ring map OY,f(x) → OX,x is weakly étale.

Proof. Observe that under both assumptions (1) and (2) the morphism f is flat.
Thus we may assume f is flat. Let x ∈ X with image y = f(x) in Y . There are
canonical maps of rings

OX,x ⊗OY,y
OX,x −→ OX×YX,∆X/Y (x) −→ OX,x

where the first map is a localization (hence flat) and the second map is a surjection
(hence an epimorphism of rings). Condition (1) means that for all x the second
arrow is flat. Condition (2) is that for all x the composition is flat. These conditions
are equivalent by Algebra, Lemma 10.39.4 and More on Algebra, Lemma 15.104.2.

□

Lemma 37.64.3.094R Let X → Y be a morphism of schemes such that X → X ×Y X
is flat. Let F be an OX -module. If F is flat over Y , then F is flat over X.

Proof. Let x ∈ X with image y = f(x) in Y . Since X → X×Y X is flat, we see that
OX,x ⊗OY,y

OX,x → OX,x is flat. Hence the result follows from More on Algebra,
Lemma 15.104.2 and the definitions. □

Lemma 37.64.4.094S Let f : X → S be a morphism of schemes. The following are
equivalent

(1) The morphism f is weakly étale.
(2) For every affine opens U ⊂ X, V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is weakly étale.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj , j ∈ J, i ∈ Ij is weakly
étale.

(4) There exists an affine open covering S =
⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj)→ OX(Ui) is of weakly

étale, for all j ∈ J, i ∈ Ij .
Moreover, if f is weakly étale then for any open subschemes U ⊂ X, V ⊂ S with
f(U) ⊂ V the restriction f |U : U → V is weakly-étale.

https://stacks.math.columbia.edu/tag/094P
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Proof. Suppose given open subschemes U ⊂ X, V ⊂ S with f(U) ⊂ V . Then
U ×V U ⊂ X ×Y X is open (Schemes, Lemma 26.17.3) and the diagonal ∆U/V of
f |U : U → V is the restriction ∆X/Y |U : U → U ×V U . Since flatness is a local
property of morphisms of schemes (Morphisms, Lemma 29.25.3) the final statement
of the lemma is follows as well as the equivalence of (1) and (3). If X and Y are
affine, then X → Y is weakly étale if and only if OY (Y )→ OX(X) is weakly étale
(use again Morphisms, Lemma 29.25.3). Thus (1) and (3) are also equivalent to (2)
and (4). □

Lemma 37.64.5.094T Let X → Y → Z be morphisms of schemes.
(1) If X → X ×Y X and Y → Y ×Z Y are flat, then X → X ×Z X is flat.
(2) If X → Y and Y → Z are weakly étale, then X → Z is weakly étale.

Proof. Part (1) follows from the factorization
X → X ×Y X → X ×Z X

of the diagonal of X over Z, the fact that
X ×Y X = (X ×Z X)×(Y×ZY ) Y,

the fact that a base change of a flat morphism is flat, and the fact that the compo-
sition of flat morphisms is flat (Morphisms, Lemmas 29.25.8 and 29.25.6). Part (2)
follows from part (1) and the fact (just used) that the composition of flat morphisms
is flat. □

Lemma 37.64.6.094U Let X → Y and Y ′ → Y be morphisms of schemes and let
X ′ = Y ′ ×Y X be the base change of X.

(1) If X → X ×Y X is flat, then X ′ → X ′ ×Y ′ X ′ is flat.
(2) If X → Y is weakly étale, then X ′ → Y ′ is weakly étale.

Proof. Assume X → X ×Y X is flat. The morphism X ′ → X ′ ×Y ′ X ′ is the base
change of X → X ×Y X by Y ′ → Y . Hence it is flat by Morphisms, Lemmas
29.25.8. This proves (1). Part (2) follows from (1) and the fact (just used) that the
base change of a flat morphism is flat. □

Lemma 37.64.7.094V Let X → Y → Z be morphisms of schemes. Assume that X → Y
is flat and surjective and that X → X ×Z X is flat. Then Y → Y ×Z Y is flat.

Proof. Consider the commutative diagram

X //

��

X ×Z X

��
Y // Y ×Z Y

The top horizontal arrow is flat and the vertical arrows are flat. Hence X is flat over
Y ×Z Y . By Morphisms, Lemma 29.25.13 we see that Y is flat over Y ×Z Y . □

Lemma 37.64.8.094W Let f : X → Y be a weakly étale morphism of schemes. Then f
is formally unramified, i.e., ΩX/Y = 0.

Proof. Recall that f is formally unramified if and only if ΩX/Y = 0 by Lemma
37.6.7. Via Lemma 37.64.4 and Morphisms, Lemma 29.32.5 this follows from the
case of rings which is More on Algebra, Lemma 15.104.12. □

https://stacks.math.columbia.edu/tag/094T
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Lemma 37.64.9.094X Let f : X → Y be a morphism of schemes. Then X → Y is
weakly étale in each of the following cases

(1) X → Y is a flat monomorphism,
(2) X → Y is an open immersion,
(3) X → Y is flat and unramified,
(4) X → Y is étale.

Proof. If (1) holds, then ∆X/Y is an isomorphism (Schemes, Lemma 26.23.2), hence
certainly f is weakly étale. Case (2) is a special case of (1). The diagonal of an
unramified morphism is an open immersion (Morphisms, Lemma 29.35.13), hence
flat. Thus a flat unramified morphism is weakly étale. An étale morphism is flat
and unramified (Morphisms, Lemma 29.36.5), hence (4) follows from (3). □

Lemma 37.64.10.094Y Let f : X → Y be a morphism of schemes. If Y is reduced and
f weakly étale, then X is reduced.

Proof. Via Lemma 37.64.4 this follows from the case of rings which is More on
Algebra, Lemma 15.104.8. □

The following lemma uses a nontrivial result about weakly étale ring maps.

Lemma 37.64.11.094Z Let f : X → Y be a morphism of schemes. The following are
equivalent

(1) f is weakly étale, and
(2) for x ∈ X the local ring map OY,f(x) → OX,x induces an isomorphism on

strict henselizations.

Proof. Let x ∈ X be a point with image y = f(x) in Y . Choose a separable
algebraic closure κsep of κ(x). Let OshX,x be the strict henselization corresponding
to κsep and OshY,y the strict henselization relative to the separable algebraic closure
of κ(y) in κsep. Consider the commutative diagram

OX,x // OshX,x

OY,y

OO

// OshY,y

OO

local homomorphisms of local rings, see Algebra, Lemma 10.155.10. Since the strict
henselization is a filtered colimit of étale ring maps, More on Algebra, Lemma
15.104.14 shows the horizontal maps are weakly étale. Moreover, the horizontal
maps are faithfully flat by More on Algebra, Lemma 15.45.1.
Assume f weakly étale. By Lemma 37.64.2 the left vertical arrow is weakly étale.
By More on Algebra, Lemmas 15.104.9 and 15.104.11 the right vertical arrow is
weakly étale. By More on Algebra, Theorem 15.104.24 we conclude the right vertical
map is an isomorphism.
Assume OshY,y → OshX,x is an isomorphism. Then OY,y → OshX,x is weakly étale. Since
OX,x → OshX,x is faithfully flat we conclude that OY,y → OX,x is weakly étale by
More on Algebra, Lemma 15.104.10. Thus (2) implies (1) by Lemma 37.64.2. □

Lemma 37.64.12.0950 Let f : X → Y be a morphism of schemes. If Y is a normal
scheme and f weakly étale, then X is a normal scheme.

https://stacks.math.columbia.edu/tag/094X
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Proof. By More on Algebra, Lemma 15.45.6 a scheme S is normal if and only if
for all s ∈ S the strict henselization of OS,s is a normal domain. Hence the lemma
follows from Lemma 37.64.11. □

Lemma 37.64.13.0951 Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. If X, Y are weakly étale over S, then f is weakly étale.

Proof. We will use Morphisms, Lemmas 29.25.8 and 29.25.6 without further men-
tion. Write X → Y as the composition X → X ×S Y → Y . The second morphism
is flat as the base change of the flat morphism X → S. The first is the base change
of the flat morphism Y → Y ×S Y by the morphism X×S Y → Y ×S Y , hence flat.
Thus X → Y is flat. The morphism X ×Y X → X ×S X is an immersion. Thus
Lemma 37.64.3 implies, that since X is flat over X ×S X it follows that X is flat
over X ×Y X. □

The following is a scheme theoretic generalization of the observation that a field
extension that is simultaneously separable and purely inseparable must be an iso-
morphism.

Lemma 37.64.14.0F6V Let f : X → Y be a morphism of schemes. If f is weakly étale
and a universal homeomorphism, it is an isomorphism.

Proof. Since f is a universal homeomorphism, the diagonal ∆ : X → X ×Y X is
a surjective closed immersion by Morphisms, Lemmas 29.45.4 and 29.10.2. Since
∆ is also flat, we see that ∆ must be an isomorphism by Morphisms, Lemma
29.26.1. In other words, f is a monomorphism (Schemes, Lemma 26.23.2). Since
f is a universal homeomorphism it is certainly quasi-compact. Hence by Descent,
Lemma 35.25.1 we find that f is an isomorphism. □

The following is a weakly étale generalization of Étale Morphisms, Lemma 41.14.3.

Lemma 37.64.15.0F6W Let U → X be a weakly étale morphism of schemes where X is
a scheme in characteristic p. Then the relative Frobenius FU/X : U → U ×X,FX X
is an isomorphism.

Proof. The morphism FU/X is a universal homeomorphism by Varieties, Lemma
33.36.6. The morphism FU/X is weakly étale as a morphism between schemes
weakly étale over X by Lemma 37.64.13. Hence FU/X is an isomorphism by Lemma
37.64.14. □

37.65. Reduced fibre theorem

09IJ In this section we discuss the simplest kind of theorem of the kind advertised by the
title. Although the proof of the result is kind of laborious, in essence it follows in
a straightforward manner from Epp’s result on eliminating ramification, see More
on Algebra, Theorem 15.115.18.

Let A be a Dedekind domain with fraction field K. Let X be a scheme flat and
of finite type over A. Let L be a finite extension of K. Let B be the integral
closure of A in L. Then B is a Dedekind domain (Algebra, Lemma 10.120.18). Let
XB = X ×Spec(A) Spec(B) be the base change. Then XB → Spec(B) is of finite
type (Morphisms, Lemma 29.15.4). Hence XB is Noetherian (Morphisms, Lemma

https://stacks.math.columbia.edu/tag/0951
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29.15.6). Thus the normalization ν : Y → XB exists (see Morphisms, Definition
29.54.1 and the discussion following). Picture

(37.65.0.1)09IK Y

##

ν
// XB

//

��

X

��
Spec(B) // Spec(A)

We sometimes call Y the normalized base change of X. In general the morphism
ν may not be finite. But if A is a Nagata ring (a condition that is virtually always
satisfied in practice) then ν is finite and Y is of finite type over B, see Morphisms,
Lemmas 29.54.10 and 29.18.1.
Taking the normalized base change commutes with composition. More precisely,
if M/L/K are finite extensions of fields with integral closures A ⊂ B ⊂ C then
the normalized base change Z of Y → Spec(B) relative to M/L is equal to the
normalized base change of X → Spec(A) relative to M/K.

Theorem 37.65.1.09IL Let A be a Dedekind ring with fraction field K. Let X be a
scheme flat and of finite type over A. Assume A is a Nagata ring. There exists
a finite extension L/K such that the normalized base change Y is smooth over
Spec(B) at all generic points of all fibres.

Proof. During the proof we will repeatedly use that formation of the set of points
where a (flat, finitely presented) morphism like X → Spec(A) is smooth commutes
with base change, see Morphisms, Lemma 29.34.15.
We first choose a finite extension L/K such that (XL)red is geometrically reduced
over L, see Varieties, Lemma 33.6.11. Since Y → (XB)red is birational we see
applying Varieties, Lemma 33.6.8 that YL is geometrically reduced over L as well.
Hence YL → Spec(L) is smooth on a dense open V ⊂ YL by Varieties, Lemma
33.25.7. Thus the smooth locus U ⊂ Y of the morphism Y → Spec(B) is open (by
Morphisms, Definition 29.34.1) and is dense in the generic fibre. Replacing A by B
and X by Y we reduce to the case treated in the next paragraph.
Assume X is normal and the smooth locus U ⊂ X of X → Spec(A) is dense in the
generic fibre. This implies that U is dense in all but finitely many fibres, see Lemma
37.24.3. Let x1, . . . , xr ∈ X \ U be the finitely many generic points of irreducible
components of X \ U which are moreover generic points of irreducible components
of fibres of X → Spec(A). Set Oi = OX,xi . Let Ai be the localization of A at the
maximal ideal corresponding to the image of xi in Spec(A). By More on Algebra,
Proposition 15.116.8 there exist finite extensions Ki/K which are solutions for the
extension of discrete valuation rings Ai → Oi. Let L/K be a finite extension
dominating all of the extensions Ki/K. Then L/K is still a solution for Ai → Oi
by More on Algebra, Lemma 15.116.1.
Consider the diagram (37.65.0.1) with the extension L/K we just produced. Note
that UB ⊂ XB is smooth over B, hence normal (for example use Algebra, Lemma
10.163.9). Thus Y → XB is an isomorphism over UB . Let y ∈ Y be a generic point
of an irreducible component of a fibre of Y → Spec(B) lying over the maximal ideal
m ⊂ B. Assume that y ̸∈ UB . Then y maps to one of the points xi. It follows that
OY,y is a local ring of the integral closure of Oi in R(X) ⊗K L (details omitted).
Hence because L/K is a solution for Ai → Oi we see that Bm → OY,y is formally

https://stacks.math.columbia.edu/tag/09IL
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smooth in the my-adic topology (this is the definition of being a "solution"). In
other words, mOY,y = my and the residue field extension is separable, see More
on Algebra, Lemma 15.111.5. Hence the local ring of the fibre at y is κ(y). This
implies the fibre is smooth over κ(m) at y for example by Algebra, Lemma 10.140.5.
This finishes the proof. □

Lemma 37.65.2 (Variant over curves).0BRQ Let f : X → S be a flat, finite type morphism
of schemes. Assume S is Nagata, integral with function field K, and regular of
dimension 1. Then there exists a finite extension L/K such that in the diagram

Y

g
##

ν
// X ×S T

��

// X

f

��
T // S

the morphism g is smooth at all generic points of fibres. Here T is the normalization
of S in Spec(L) and ν : Y → X ×S T is the normalization.

Proof. Choose a finite affine open covering S =
⋃

Spec(Ai). Then K is equal to
the fraction field of Ai for all i. Let Xi = X ×S Spec(Ai). Choose Li/K as in
Theorem 37.65.1 for the morphism Xi → Spec(Ai). Let Bi ⊂ Li be the integral
closure of Ai and let Yi be the normalized base change of X to Bi. Let L/K be a
finite extension dominating each Li. Let Ti ⊂ T be the inverse image of Spec(Ai).
For each i we get a commutative diagram

g−1(Ti) //

��

Yi //

��

X ×S Spec(Ai)

��
Ti // Spec(Bi) // Spec(Ai)

and in fact the left hand square is a normalized base change as discussed at the
beginning of the section. In the proof of Theorem 37.65.1 we have seen that the
smooth locus of Y → T contains the inverse image in g−1(Ti) of the set of points
where Yi is smooth over Bi. This proves the lemma. □

Lemma 37.65.3 (Variant with separable extension).0BRR Let A be a Dedekind ring with
fraction field K. Let X be a scheme flat and of finite type over A. Assume A is a
Nagata ring and that for every generic point η of an irreducible component of X the
field extension κ(η)/K is separable. Then there exists a finite separable extension
L/K such that the normalized base change Y is smooth over Spec(B) at all generic
points of all fibres.

Proof. This is proved in exactly the same manner as Theorem 37.65.1 with a few
minor modifications. The most important change is to use More on Algebra, Lemma
15.116.9 instead of More on Algebra, Proposition 15.116.8. During the proof we will
repeatedly use that formation of the set of points where a (flat, finitely presented)
morphism like X → Spec(A) is smooth commutes with base change, see Morphisms,
Lemma 29.34.15.
Since X is flat over A every generic point η of X maps to the generic point of
Spec(A). After replacing X by its reduction we may assume X is reduced. In
this case XK is geometrically reduced over K by Varieties, Lemma 33.6.8. Hence
XK → Spec(K) is smooth on a dense open by Varieties, Lemma 33.25.7. Thus
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the smooth locus U ⊂ X of the morphism X → Spec(A) is open (by Morphisms,
Definition 29.34.1) and is dense in the generic fibre. This reduces us to the situation
of the following paragraph.

Assume X is normal and the smooth locus U ⊂ X of X → Spec(A) is dense in the
generic fibre. This implies that U is dense in all but finitely many fibres, see Lemma
37.24.3. Let x1, . . . , xr ∈ X \ U be the finitely many generic points of irreducible
components of X \ U which are moreover generic points of irreducible components
of fibres of X → Spec(A). Set Oi = OX,xi . Observe that the fraction field of Oi
is the residue field of a generic point of X. Let Ai be the localization of A at the
maximal ideal corresponding to the image of xi in Spec(A). We may apply More
on Algebra, Lemma 15.116.9 and we find finite separable extensions Ki/K which
are solutions for Ai → Oi. Let L/K be a finite separable extension dominating
all of the extensions Ki/K. Then L/K is still a solution for Ai → Oi by More on
Algebra, Lemma 15.116.1.

Consider the diagram (37.65.0.1) with the extension L/K we just produced. Note
that UB ⊂ XB is smooth over B, hence normal (for example use Algebra, Lemma
10.163.9). Thus Y → XB is an isomorphism over UB . Let y ∈ Y be a generic point
of an irreducible component of a fibre of Y → Spec(B) lying over the maximal ideal
m ⊂ B. Assume that y ̸∈ UB . Then y maps to one of the points xi. It follows that
OY,y is a local ring of the integral closure of Oi in R(X) ⊗K L (details omitted).
Hence because L/K is a solution for Ai → Oi we see that Bm → OY,y is formally
smooth (this is the definition of being a "solution"). In other words, mOY,y = my
and the residue field extension is separable. Hence the local ring of the fibre at y
is κ(y). This implies the fibre is smooth over κ(m) at y for example by Algebra,
Lemma 10.140.5. This finishes the proof. □

Lemma 37.65.4 (Variant with separable extensions over curves).0BRS Let f : X → S
be a flat, finite type morphism of schemes. Assume S is Nagata, integral with
function field K, and regular of dimension 1. Assume the field extensions κ(η)/K
are separable for every generic point η of an irreducible component of X. Then
there exists a finite separable extension L/K such that in the diagram

Y

g
##

ν
// X ×S T

��

// X

f

��
T // S

the morphism g is smooth at all generic points of fibres. Here T is the normalization
of S in Spec(L) and ν : Y → X ×S T is the normalization.

Proof. This follows from Lemma 37.65.3 in exactly the same manner that Lemma
37.65.2 follows from Theorem 37.65.1. □

37.66. Ind-quasi-affine morphisms

0AP5 A bit of theory to be used later.

Definition 37.66.1.0AP6 A scheme X is ind-quasi-affine if every quasi-compact open of
X is quasi-affine. Similarly, a morphism of schemes X → Y is ind-quasi-affine if
f−1(V ) is ind-quasi-affine for each affine open V in Y .
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An example of an ind-quasi-affine scheme is an open of an affine scheme. If X =⋃
i∈I Ui is a union of quasi-affine opens such that any two Ui are contained in a third,

then X is ind-quasi-affine. An ind-quasi-affine scheme X is separated because any
two affine opens U, V are contained in a separated open subscheme of X, namely
U ∪ V . Similarly an ind-quasi-affine morphism is separated.
Lemma 37.66.2.0F1U For a morphism of schemes f : X → Y , the following are equiva-
lent:

(1) f is ind-quasi-affine,
(2) for every affine open subscheme V ⊂ Y and every quasi-compact open

subscheme U ⊂ f−1(V ), the induced morphism U → V is quasi-affine.
(3) for some cover {Vj}j∈J of Y by quasi-compact and quasi-separated open

subschemes Vj ⊂ Y , every j ∈ J , and every quasi-compact open sub-
scheme U ⊂ f−1(Vj), the induced morphism U → Vj is quasi-affine.

(4) for every quasi-compact and quasi-separated open subscheme V ⊂ Y and
every quasi-compact open subscheme U ⊂ f−1(V ), the induced morphism
U → V is quasi-affine.

In particular, the property of being an ind-quasi-affine morphism is Zariski local on
the base.
Proof. The equivalence (1) ⇔ (2) follows from the definitions and Morphisms,
Lemma 29.13.3. For (2) ⇒ (4), let U and V be as in (4). By Schemes, Lemma
26.21.14, the induced morphism U → V is quasi-compact. Thus, for every affine
open V ′ ⊂ V , the fiber product V ′ ×V U is quasi-compact, so, by (2), the induced
map V ′×V U → V ′ is quasi-affine. Thus, U → V is also quasi-affine by Morphisms,
Lemma 29.13.3. This argument also gives (3) ⇒ (4): indeed, keeping the same
notation, those affine opens V ′ ⊂ V that lie in one of the Vj cover V , so one needs
to argue that the quasi-compact map V ′ ×V U → V ′ is quasi-affine. However, by
(3), the composition V ′ ×V U → V ′ → Vj is quasi-affine and, by Schemes, Lemma
26.21.13, the map V ′ → Vj is quasi-separated. Thus, V ′ ×V U → V ′ is quasi-affine
by Morphisms, Lemma 29.13.8. The final implications (4)⇒ (2) and (4)⇒ (3) are
evident. □

Lemma 37.66.3.0F1V The property of being an ind-quasi-affine morphism is stable under
composition.
Proof. Let f : X → Y and g : Y → Z be ind-quasi-affine morphisms. Let V ⊂ Z
and U ⊂ f−1(g−1(V )) be quasi-compact opens such that V is also quasi-separated.
The image f(U) is a quasi-compact subset of g−1(V ), so it is contained in some
quasi-compact open W ⊂ g−1(V ) (a union of finitely many affines). We obtain a
factorization U → W → V . The map W → V is quasi-affine by Lemma 37.66.2,
so, in particular, W is quasi-separated. Then, by Lemma 37.66.2 again, U →W is
quasi-affine as well. Consequently, by Morphisms, Lemma 29.13.4, the composition
U → V is also quasi-affine, and it remains to apply Lemma 37.66.2 once more. □

Lemma 37.66.4.0F1W Any quasi-affine morphism is ind-quasi-affine. Any immersion is
ind-quasi-affine.
Proof. The first assertion is immediate from the definitions. In particular, affine
morphisms, such as closed immersions, are ind-quasi-affine. Thus, by Lemma
37.66.3, it remains to show that an open immersion is ind-quasi-affine. This, how-
ever, is immediate from the definitions. □
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Lemma 37.66.5.0F1X If f : X → Y and g : Y → Z are morphisms of schemes such that
g ◦ f is ind-quasi-affine, then f is ind-quasi-affine.

Proof. By Lemma 37.66.2, we may work Zariski locally on Z and then on Y , so
we lose no generality by assuming that Z, and then also Y , is affine. Then any
quasi-compact open of X is quasi-affine, so Lemma 37.66.2 gives the claim. □

Lemma 37.66.6.0AP7 The property of being ind-quasi-affine is stable under base change.

Proof. Let f : X → Y be an ind-quasi-affine morphism. For checking that every
base change of f is ind-quasi-affine, by Lemma 37.66.2, we may work Zariski locally
on Y , so we assume that Y is affine. Furthermore, we may also assume that in the
base change morphism Z → Y the scheme Z is affine, too. The base change
X ×Y Z → X is an affine morphism, so, by Lemmas 37.66.3 and 37.66.4, the
map X ×Y Z → Y is ind-quasi-affine. Then, by Lemma 37.66.5, the base change
X ×Y Z → Z is ind-quasi-affine, as desired. □

Lemma 37.66.7.0AP8 The property of being ind-quasi-affine is fpqc local on the base.

Proof. The stability of ind-quasi-affineness under base change supplied by Lemma
37.66.6 gives one direction. For the other, let f : X → Y be a morphism of schemes
and let {gi : Yi → Y } be an fpqc covering such that the base change fi : Xi → Yi
is ind-quasi-affine for all i. We need to show f is ind-quasi-affine.

By Lemma 37.66.2, we may work Zariski locally on Y , so we assume that Y is affine.
Then we use stability under base change ensured by Lemma 37.66.6 to refine the
cover and assume that it is given by a single affine, faithfully flat morphism g : Y ′ →
Y . For any quasi-compact open U ⊂ X, its Y ′-base change U ×Y Y ′ ⊂ X ×Y Y ′ is
also quasi-compact. It remains to observe that, by Descent, Lemma 35.23.20, the
map U → Y is quasi-affine if and only if so is U ×Y Y ′ → Y ′. □

Lemma 37.66.8.0AP9 A separated locally quasi-finite morphism of schemes is ind-quasi-
affine.

Proof. Let f : X → Y be a separated locally quasi-finite morphism of schemes.
Let V ⊂ Y be affine and U ⊂ f−1(V ) quasi-compact open. We have to show U
is quasi-affine. Since U → V is a separated quasi-finite morphism of schemes, this
follows from Zariski’s Main Theorem. See Lemma 37.43.2. □

37.67. Pushouts in the category of schemes, II

0ECH This section is a continuation of Section 37.14. In this section we construct pushouts
of Y ← Z → X where Z → X is a closed immersion and Z → Y is integral and an
additional condition is satisfied. Please see the detailed discussion in [Fer03].

Situation 37.67.1.0ECI Here S is a scheme and i : Z → X and j : Z → Y are morphisms
of schemes over S. We assume

(1) i is a closed immersion,
(2) j is an integral morphism of schemes,
(3) for y ∈ Y there exists an affine open U ⊂ X with j−1({y}) ⊂ i−1(U).

Lemma 37.67.2.0ECJ In Situation 37.67.1 then for y ∈ Y there exist affine opens U ⊂ X
and V ⊂ Y with i−1(U) = j−1(V ) and y ∈ V .
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Proof. Let y ∈ Y . Choose an affine open U ⊂ X such that j−1({y}) ⊂ i−1(U)
(possible by assumption). Choose an affine open V ⊂ Y neighbourhood of y such
that j−1(V ) ⊂ i−1(U). This is possible because j : Z → Y is a closed morphism
(Morphisms, Lemma 29.44.7) and i−1(U) contains the fibre over y. Since j is
integral, the scheme theoretic fibre Zy is the spectrum of an algebra integral over a
field. By Limits, Lemma 32.11.6 we can find an f ∈ Γ(i−1(U),Oi−1(U)) such that
Zy ⊂ D(f) ⊂ j−1(V ). Since i|i−1(U) : i−1(U)→ U is a closed immersion of affines,
we can choose an f ∈ Γ(U,OU ) whose restriction to i−1(U) is f . After replacing U
by the principal open D(f) ⊂ U we find affine opens y ∈ V ⊂ Y and U ⊂ X with

j−1({y}) ⊂ i−1(U) ⊂ j−1(V )
Now we (in some sense) repeat the argument. Namely, we choose g ∈ Γ(V,OV )
such that y ∈ D(g) and j−1(D(g)) ⊂ i−1(U) (possible by the same argument as
above). Then we can pick f ∈ Γ(U,OU ) whose restriction to i−1(U) is the pullback
of g by i−1(U)→ V (again possible by the same reason as above). Then we finally
have affine opens y ∈ V ′ = D(g) ⊂ V ⊂ Y and U ′ = D(f) ⊂ U ⊂ X with
j−1(V ′) = i−1(V ′). □

Proposition 37.67.3.0E25 [Fer03, Theorem 7.1
part iii]

In Situation 37.67.1 the pushout Y ⨿ZX exists in the category
of schemes. Picture

Z
i
//

j

��

X

a

��
Y

b // Y ⨿Z X
The diagram is a fibre square, the morphism a is integral, the morphism b is a
closed immersion, and

OY⨿ZX = b∗OY ×c∗OZ
a∗OX

as sheaves of rings where c = a ◦ i = b ◦ j.

Proof. As a topological space we set Y ⨿Z X equal to the pushout of the diagram
in the category of topological spaces (Topology, Section 5.29). This is just the
pushout of the underlying sets (Topology, Lemma 5.29.1) endowed with the quotient
topology. On Y ⨿Z X we have the maps of sheaves of rings

b∗OY −→ c∗OZ ←− a∗OX
and we can define

OY⨿ZX = b∗OY ×c∗OZ
a∗OX

as the fibre product in the category of sheaves of rings. To prove that we obtain a
scheme we have to show that every point has an affine open neighbourhood. This
is clear for points not in the image of c as the image of c is a closed subset whose
complement is isomorphic as a ringed space to (Y \ j(Z))⨿ (X \ i(Z)).
A point in the image of c corresponds to a unique y ∈ Y in the image of j. By
Lemma 37.67.2 we find affine opens U ⊂ X and V ⊂ Y with y ∈ V and i−1(U) =
j−1(V ). Since the construction of the first paragraph is clearly compatible with
restriction to compatible open subschemes, to prove that it produces a scheme we
may assume X, Y , and Z are affine.
If X = Spec(A), Y = Spec(B), and Z = Spec(C) are affine, then More on Algebra,
Lemma 15.6.2 shows that Y ⨿Z X = Spec(B×C A) as topological spaces. To finish
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the proof that Y ×Z X is a scheme, it suffices to show that on Spec(B ×C A) the
structure sheaf is the fibre product of the pushforwards. This follows by applying
More on Algebra, Lemma 15.5.3 to principal affine opens of Spec(B ×C A).
The discussion above shows the scheme Y ⨿XZ has an affine open covering Y ⨿XZ =⋃
Wi such that Ui = a−1(Wi), Vi = b−1(Wi), and Ωi = c−1(Wi) are affine open

in X, Y , and Z. Thus a and b are affine. Moreover, if Ai, Bi, Ci are the rings
corresponding to Ui, Vi, Ωi, then Ai → Ci is surjective and Wi corresponds to
Ai ×Ci Bi which surjects onto Bi. Hence b is a closed immersion. The ring map
Ai ×Ci Bi → Ai is integral by More on Algebra, Lemma 15.6.3 hence a is integral.
The diagram is cartesian because

Ci ∼= Bi ⊗Bi×CiAi Ai
This follows as Bi×Ci Ai → Bi and Ai → Ci are surjective maps whose kernels are
the same.
Finally, we can apply Lemmas 37.14.1 and 37.14.2 to conclude our construction is
a pushout in the category of schemes. □

Lemma 37.67.4.0E26 In Situation 37.67.1. If X and Y are separated, then the pushout
Y ⨿Z X (Proposition 37.67.3) is separated. Same with “separated over S”, “quasi-
separated”, and “quasi-separated over S”.

Proof. The morphism Y ⨿X → Y ⨿Z X is surjective and universall closed. Thus
we may apply Morphisms, Lemma 29.41.11. □

Lemma 37.67.5.0E27 In Situation 37.67.1 assume S is a locally Noetherian scheme
and X, Y , and Z are locally of finite type over S. Then the pushout Y ⨿Z X
(Proposition 37.67.3) is locally of finite type over S.

Proof. Looking on affine opens we recover the result of More on Algebra, Lemma
15.5.1. □

Lemma 37.67.6.0ECK In Situation 37.67.1 suppose given a commutative diagram

Y ′

g

��

Z ′
j′
oo

i′
//

h

��

X ′

f

��
Y Zoo // X

with cartesian squares and f, g, h separated and locally quasi-finite. Then
(1) the pushouts Y ⨿Z X and Y ′ ⨿Z′ X ′ exist,
(2) Y ′ ⨿Z′ X ′ → Y ⨿Z X is separated and locally quasi-finite, and
(3) the squares

Y ′ //

��

Y ′ ⨿Z′ X ′

��

X ′oo

��
Y // Y ⨿Z X Xoo

are cartesian.

Proof. The pushout Y ⨿ZX exists by Proposition 37.67.3. To see that the pushout
Y ′⨿Z′X ′ exists, we check condition (3) of Situation 37.67.1 holds for (X ′, Y ′, Z ′, i′, j′).
Namely, let y′ ∈ Y ′ and denote y ∈ Y the image. Choose U ⊂ X affine open with
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i(j−1(y)) ⊂ U . Choose a quasi-compact open U ′ ⊂ X ′ contained in f−1(U) con-
taining the quasi-compact subset i′((j′)−1({y′})). By Lemma 37.66.8 we see that
U ′ is quasi-affine. Since Z ′

y′ is the spectrum of an algebra integral over a field, we
can apply Limits, Lemma 32.11.6 and we find there exists an affine open subscheme
of U ′ containing i′((j′)−1({y′})) as desired.
Having verified existence we check the other assertions. Affine locally we are exactly
in the situation of More on Algebra, Lemma 15.7.7 with B → D and A′ → C ′

locally quasi-finite15. In particular, the morphism Y ′ ⨿Z′ X ′ → Y ⨿Z X is locally
of finite type. The squares in of the diagram are cartesian by More on Algebra,
Lemma 15.6.4. Since being locally quasi-finite can be checked on fibres (Morphisms,
Lemma 29.20.6) we conclude that Y ′ ⨿Z′ X ′ → Y ⨿Z X is locally quasi-finite.
We still have to check Y ′ ⨿Z′ X ′ → Y ⨿Z X is separated. Observe that Y ′ ⨿X ′ →
Y ′⨿Z′ X ′ is universally closed and surjective by Proposition 37.67.3. Since also the
morphism Y ′ ⨿X ′ → Y ⨿Z X is separated (as it factors as Y ′ ⨿X ′ → Y ⨿X →
Y ⨿Z X) we conclude by Morphisms, Lemma 29.41.11. □

Lemma 37.67.7.0ECL In Situation 37.67.1 the category of schemes flat, separated,
and locally quasi-finite over the pushout Y ⨿Z X is equivalent to the category
of (X ′, Y ′, Z ′, i′, j′, f, g, h) as in Lemma 37.67.6 with f, g, h flat. Similarly with
“flat” replaced with “étale”.
Proof. If we start with (X ′, Y ′, Z ′, i′, j′, f, g, h) as in Lemma 37.67.6 with f, g, h
flat or étale, then Y ′⨿Z′ X ′ → Y ⨿ZX is flat or étale by More on Algebra, Lemma
15.7.7.
For the converse, let W → Y ⨿ZX be a separated and locally quasi-finite morphism.
Set X ′ = W ×Y⨿ZX X, Y ′ = W ×Y⨿ZX Y , and Z ′ = W ×Y⨿ZX Z with obvious
morphisms i′, j′, f, g, h. Form the pushout Y ′ ⨿Z′ X ′. We obtain a morphism

Y ′ ⨿Z′ X ′ −→W

of schemes over Y ⨿X Z by the universal property of the pushout. If we do not
assume that W → Y ⨿Z X is flat, then in general this morphism won’t be an
isomorphism. (In fact, More on Algebra, Lemma 15.6.5 shows the displayed arrow
is a closed immersion but not an isomorphism in general.) However, if W → Y ×ZX
is flat, then it is an isomorphism by More on Algebra, Lemma 15.7.7. □

Next, we discuss existence in the case where both morphisms are closed immersions.
Lemma 37.67.8.0B7M Let i : Z → X and j : Z → Y be closed immersions of schemes.
Then the pushout Y ⨿Z X exists in the category of schemes. Picture

Z
i
//

j

��

X

a

��
Y

b // Y ⨿Z X
The diagram is a fibre square, the morphisms a and b are closed immersions, and
there is a short exact sequence

0→ OY⨿ZX → a∗OX ⊕ b∗OY → c∗OZ → 0
where c = a ◦ i = b ◦ j.

15To be precise X,Y, Z, Y ⨿ZX,X′, Y ′, Z′, Y ′⨿Z′X′ correspond to A′, B,A,B′, C′, D,C,D′.
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Proof. This is a special case of Proposition 37.67.3. Observe that hypothesis (3) in
Situation 37.67.1 is immediate because the fibres of j are singletons. Finally, reverse
the roles of the arrows to conclude that both a and b are closed immersions. □

Lemma 37.67.9.0CYY Let i : Z → X and j : Z → Y be closed immersions of schemes.
Let f : X ′ → X and g : Y ′ → Y be morphisms of schemes and let φ : X ′ ×X,i Z →
Y ′ ×Y,j Z be an isomorphism of schemes over Z. Consider the morphism

h : X ′ ⨿X′×X,iZ,φ Y
′ −→ X ⨿Z Y

Then we have
(1) h is locally of finite type if and only if f and g are locally of finite type,
(2) h is flat if and only if f and g are flat,
(3) h is flat and locally of finite presentation if and only if f and g are flat

and locally of finite presentation,
(4) h is smooth if and only if f and g are smooth,
(5) h is étale if and only if f and g are étale, and
(6) add more here as needed.

Proof. We know that the pushouts exist by Lemma 37.67.8. In particular we get
the morphism h. Hence we may replace all schemes in sight by affine schemes. In
this case the assertions of the lemma are equivalent to the corresponding assertions
of More on Algebra, Lemma 15.7.7. □

37.68. Relative morphisms

0BL0 In this section we prove a representability result which we will use in Fundamental
Groups, Section 58.5 to prove a result on the category of finite étale coverings of
a scheme. The material in this section is discussed in the correct generality in
Criteria for Representability, Section 97.10.
Let S be a scheme. Let Z and X be schemes over S. Given a scheme T over S we
can consider morphisms b : T ×S Z → T ×S X over S. Picture

(37.68.0.1)0BL1

T ×S Z

##

b
// T ×S X

{{

Z

��

X

��
T // S

Of course, we can also think of b as a morphism b : T ×S Z → X such that

T ×S Z //

��

b **
Z

��

X

��
T // S

commutes. In this situation we can define a functor
(37.68.0.2)0BL2 MorS(Z,X) : (Sch/S)opp −→ Sets, T 7−→ {b as above}
Here is a basic representability result.

Lemma 37.68.1.05Y6 Let Z → S and X → S be morphisms of affine schemes. Assume
Γ(Z,OZ) is a finite free Γ(S,OS)-module. Then MorS(Z,X) is representable by
an affine scheme over S.
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Proof. Write S = Spec(R). Choose a basis {e1, . . . , em} for Γ(Z,OZ) over R.
Choose a presentation

Γ(X,OX) = R[{xi}i∈I ]/({fk}k∈K).
We will denote xi the image of xi in this quotient. Write

P = R[{aij}i∈I,1≤j≤m].
Consider the R-algebra map

Ψ : R[{xi}i∈I ] −→ P ⊗R Γ(Z,OZ), xi 7−→
∑

j
aij ⊗ ej .

Write Ψ(fk) =
∑
ckj ⊗ ej with ckj ∈ P . Finally, denote J ⊂ P the ideal generated

by the elements ckj , k ∈ K, 1 ≤ j ≤ m. We claim that W = Spec(P/J) represents
the functor MorS(Z,X).
First, note that by construction P/J is an R-algebra, hence a morphism W → S.
Second, by construction the map Ψ factors through Γ(X,OX), hence we obtain an
P/J-algebra homomorphism

P/J ⊗R Γ(X,OX) −→ P/J ⊗R Γ(Z,OZ)
which determines a morphism buniv : W ×S Z → W ×S X. By the Yoneda lemma
buniv determines a transformation of functors W → MorS(Z,X) which we claim
is an isomorphism. To show that it is an isomorphism it suffices to show that it
induces a bijection of sets W (T )→ MorS(Z,X)(T ) over any affine scheme T .
Suppose T = Spec(R′) is an affine scheme over S and b ∈ MorS(Z,X)(T ). The
structure morphism T → S defines an R-algebra structure on R′ and b defines an
R′-algebra map

b♯ : R′ ⊗R Γ(X,OX) −→ R′ ⊗R Γ(Z,OZ).
In particular we can write b♯(1 ⊗ xi) =

∑
αij ⊗ ej for some αij ∈ R′. This

corresponds to an R-algebra map P → R′ determined by the rule aij 7→ αij .
This map factors through the quotient P/J by the construction of the ideal J to
give a map P/J → R′. This in turn corresponds to a morphism T →W such that
b is the pullback of buniv. Some details omitted. □

Lemma 37.68.2.0BL3 Let Z → S and X → S be morphisms of schemes. If Z → S
is finite locally free and X → S is affine, then MorS(Z,X) is representable by a
scheme affine over S.

Proof. Choose an affine open covering S =
⋃
Ui such that Γ(Z ×S Ui,OZ×SUi)

is finite free over OS(Ui). Let Fi ⊂ MorS(Z,X) be the subfunctor which assigns
to T/S the empty set if T → S does not factor through Ui and MorS(Z,X)(T )
otherwise. Then the collection of these subfunctors satisfy the conditions (2)(a),
(2)(b), (2)(c) of Schemes, Lemma 26.15.4 which proves the lemma. Condition
(2)(a) follows from Lemma 37.68.1 and the other two follow from straightforward
arguments. □

The condition on the morphism f : X → S in the lemma below is very useful to
prove statements like it. It holds if one of the following is true: X is quasi-affine,
f is quasi-affine, f is quasi-projective, f is locally projective, there exists an ample
invertible sheaf on X, there exists an f -ample invertible sheaf on X, or there exists
an f -very ample invertible sheaf on X.
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Lemma 37.68.3.0BL4 Let Z → S and X → S be morphisms of schemes. Assume
(1) Z → S is finite locally free, and
(2) for all (s, x1, . . . , xd) where s ∈ S and x1, . . . , xd ∈ Xs there exists an

affine open U ⊂ X with x1, . . . , xd ∈ U .
Then MorS(Z,X) is representable by a scheme.

Proof. Consider the set I of pairs (U, V ) where U ⊂ X and V ⊂ S are affine open
and U → S factors through V . For i ∈ I denote (Ui, Vi) the corresponding pair.
Set Fi = MorVi(ZVi , Ui). It is immediate that Fi is a subfunctor of MorS(Z,X).
Then we claim that conditions (2)(a), (2)(b), (2)(c) of Schemes, Lemma 26.15.4
which proves the lemma.

Condition (2)(a) follows from Lemma 37.68.2.

To check condition (2)(b) consider T/S and b ∈ MorS(Z,X). Thinking of b as a
morphism T ×S Z → X we find an open b−1(Ui) ⊂ T ×S Z. Clearly, b ∈ Fi(T )
if and only if b−1(Ui) = T ×S Z. Since the projection p : T ×S Z → T is finite
hence closed, the set Ui,b ⊂ T of points t ∈ T with p−1({t}) ⊂ b−1(Ui) is open.
Then f : T ′ → T factors through Ui,b if and only if b ◦ f ∈ Fi(T ′) and we are done
checking (2)(b).

Finally, we check condition (2)(c) and this is where our condition on X → S is used.
Namely, consider T/S and b ∈ MorS(Z,X). It suffices to prove that every t ∈ T
is contained in one of the opens Ui,b defined in the previous paragraph. This is
equivalent to the condition that b(p−1({t})) ⊂ Ui for some i where p : T ×S Z → T
is the projection and b : T ×S Z → X is the given morphism. Since p is finite, the
set b(p−1({t})) ⊂ X is finite and contained in the fibre of X → S over the image s
of t in S. Thus our condition on X → S exactly shows a suitable pair exists. □

Lemma 37.68.4.0BL5 Let Z → S and X → S be morphisms of schemes. Assume
Z → S is finite locally free and X → S is separated and locally quasi-finite. Then
MorS(Z,X) is representable by a scheme.

Proof. This follows from Lemmas 37.68.3 and 37.45.1. □

37.69. Characterizing pseudo-coherent complexes, III

0CSI In this section we discuss characterizations of pseudo-coherent complexes in terms
of cohomology. This is a continuation of Derived Categories of Schemes, Section
36.34. A basic tool will be to reduce to the case of projective space using a derived
version of Chow’s lemma, see Lemma 37.69.2.

Lemma 37.69.1.0CTA Consider a commutative diagram of schemes

Z ′

��

// Y ′

��
X ′ // S′

Let S → S′ be a morphism. Denote by X and Y the base changes of X ′ and Y ′

to S. Assume Y ′ → S′ and Z ′ → X ′ are flat. Then X ×S Y and Z ′ are Tor
independent over X ′ ×S′ Y ′.
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Proof. The question is local, hence we may assume all schemes are affine (some
details omitted). Observe that

X ×S Y //

��

X ′ ×S′ Y ′

��
X // X ′

is cartesian with flat vertical arrows. Write X = Spec(A), X ′ = Spec(A′), X ′ ×S′

Y ′ = Spec(B′). Then X ×S Y = Spec(A ⊗A′ B′). Write Z ′ = Spec(C ′). We have
to show

TorB
′

p (A⊗A′ B′, C ′) = 0, for p > 0
Since A′ → B′ is flat we have A⊗A′ B′ = A⊗L

A′ B′. Hence
(A⊗A′ B′)⊗L

B′ C ′ = (A⊗L
A′ B′)⊗L

B′ C ′ = A⊗L
A′ C ′ = A⊗A′ C ′

The second equality by More on Algebra, Lemma 15.60.5. The last equality because
A′ → C ′ is flat. This proves the lemma. □

Lemma 37.69.2 (Derived Chow’s lemma).0CSJ Let A be a ring. Let X be a sepa-
rated scheme of finite presentation over A. Let x ∈ X. Then there exist an open
neighbourhood U ⊂ X of x, an n ≥ 0, an open V ⊂ Pn

A, a closed subscheme
Z ⊂ X ×A Pn

A, a point z ∈ Z, and an object E in D(OX×APn
A

) such that
(1) Z → X ×A Pn

A is of finite presentation,
(2) b : Z → X is an isomorphism over U and b(z) = x,
(3) c : Z → Pn

A is a closed immersion over V ,
(4) b−1(U) = c−1(V ), in particular c(z) ∈ V ,
(5) E|X×AV

∼= (b, c)∗OZ |X×AV ,
(6) E is pseudo-coherent and supported on Z.

Proof. We can find a finite type Z-subalgebra A′ ⊂ A and a scheme X ′ separated
and of finite presentation over A′ whose base change to A is X. See Limits, Lemmas
32.10.1 and 32.8.6. Let x′ ∈ X ′ be the image of x. If we can prove the lemma for
x′ ∈ X ′/A′, then the lemma follows for x ∈ X/A. Namely, if U ′, n′, V ′, Z ′, z′, E′

provide the solution for x′ ∈ X ′/A′, then we can let U ⊂ X be the inverse image of
U ′, let n = n′, let V ⊂ Pn

A be the inverse image of V ′, let Z ⊂ X×Pn be the scheme
theoretic inverse image of Z ′, let z ∈ Z be the unique point mapping to x, and let E
be the derived pullback of E′. Observe that E is pseudo-coherent by Cohomology,
Lemma 20.47.3. It only remains to check (5). To see this set W = b−1(U) = c−1(V )
and W ′ = (b′)−1(U) = (c′)−1(V ′) and consider the cartesian square

W

(b,c)
��

// W ′

(b′,c′)
��

X ×A V // X ′ ×A′ V ′

By Lemma 37.69.1 the schemes X×AV and W ′ are Tor independent over X ′×A′V ′.
Hence the derived pullback of (b′, c′)∗OW ′ to X ×A V is (b, c)∗OW by Derived Cat-
egories of Schemes, Lemma 36.22.5. This also uses that R(b′, c′)∗OZ′ = (b′, c′)∗OZ′

because (b′, c′) is a closed immersion and simiarly for (b, c)∗OZ . Since E′|U ′×A′V ′ =
(b′, c′)∗OW ′ we obtain E|U×AV = (b, c)∗OW and (5) holds. This reduces us to the
situation described in the next paragraph.
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Assume A is of finite type over Z. Choose an affine open neighbourhood U ⊂ X
of x. Then U is of finite type over A. Choose a closed immersion U → An

A and
denote j : U → Pn

A the immersion we get by composing with the open immersion
An
A → Pn

A. Let Z be the scheme theoretic closure of
(idU , j) : U −→ X ×A Pn

A

Since the projection X × Pn → X is separated, we conclude from Morphisms,
Lemma 29.6.8 that b : Z → X is an isomorphism over U . Let z ∈ Z be the unique
point lying over x.
Let Y ⊂ Pn

A be the scheme theoretic closure of j. Then it is clear that Z ⊂ X×AY
is the scheme theoretic closure of (idU , j) : U → X ×A Y . As X is separated,
the morphism X ×A Y → Y is separated as well. Hence we see that Z → Y is
an isomorphism over the open subscheme j(U) ⊂ Y by the same lemma we used
above. Choose V ⊂ Pn

A open with V ∩ Y = j(U). Then we see that (3) and (4)
hold.
Because A is Noetherian we see that X and X ×A Pn

A are Noetherian schemes.
Hence we can take E = (b, c)∗OZ in this case, see Derived Categories of Schemes,
Lemma 36.10.3. This finishes the proof. □

Lemma 37.69.3.0CSK Let A, x ∈ X, and U, n, V, Z, z, E be as in Lemma 37.69.2. For
any K ∈ DQCoh(OX) we have

Rq∗(Lp∗K ⊗L E)|V = R(U → V )∗K|U
where p : X ×A Pn

A → X and q : X ×A Pn
A → Pn

A are the projections and where
the morphism U → V is the finitely presented closed immersion c ◦ (b|U )−1.

Proof. Since b−1(U) = c−1(V ) and since c is a closed immersion over V , we see
that c ◦ (b|U )−1 is a closed immersion. It is of finite presentation because U and V
are of finite presentation over A, see Morphisms, Lemma 29.21.11. First we have

Rq∗(Lp∗K ⊗L E)|V = Rq′
∗
(
(Lp∗K ⊗L E)|X×AV

)
where q′ : X ×A V → V is the projection because formation of total direct image
commutes with localization. Set W = b−1(U) = c−1(V ) and denote i : W →
X ×A V the closed immersion i = (b, c)|W . Then

Rq′
∗
(
(Lp∗K ⊗L E)|X×AV

)
= Rq′

∗(Lp∗K|X×AV ⊗L i∗OW )
by property (5). Since i is a closed immersion we have i∗OW = Ri∗OW . Using
Derived Categories of Schemes, Lemma 36.22.1 we can rewrite this as

Rq′
∗Ri∗Li

∗Lp∗K|X×AV = R(q′ ◦ i)∗Lb
∗K|W = R(U → V )∗K|U

which is what we want. □

Lemma 37.69.4.0CSL Let A be a ring. Let X be a scheme separated and of finite
presentation over A. Let K ∈ DQCoh(OX). If RΓ(X,E ⊗L K) is pseudo-coherent
in D(A) for every pseudo-coherent E in D(OX), then K is pseudo-coherent relative
to A.

Proof. Assume K ∈ DQCoh(OX) and RΓ(X,E ⊗L K) is pseudo-coherent in D(A)
for every pseudo-coherent E in D(OX). Let x ∈ X. We will show that K is pseudo-
coherent relative to A in a neighbourhood of x and this will prove the lemma.
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Choose U, n, V, Z, z, E as in Lemma 37.69.2. Denote p : X × Pn → X and q :
X ×Pn → Pn

A the projections. Then for any i ∈ Z we have

RΓ(Pn
A, Rq∗(Lp∗K ⊗L E)⊗L OPn

A
(i))

= RΓ(X ×Pn, Lp∗K ⊗L E ⊗L Lq∗OPn
A

(i))
= RΓ(X,K ⊗L Rq∗(E ⊗L Lq∗OPn

A
(i)))

by Derived Categories of Schemes, Lemma 36.22.1. By Derived Categories of
Schemes, Lemma 36.30.5 the complex Rq∗(E ⊗L Lq∗OPn

A
(i)) is pseudo-coherent

on X. Hence the assumption tells us the expression in the displayed formula is a
pseudo-coherent object of D(A). By Derived Categories of Schemes, Lemma 36.34.2
we conclude that Rq∗(Lp∗K ⊗L E) is pseudo-coherent on Pn

A. By Lemma 37.69.3
we have

Rq∗(Lp∗K ⊗L E)|X×AV = R(U → V )∗K|U
Since U → V is a closed immersion into an open subscheme of Pn

A this means K|U
is pseudo-coherent relative to A by Lemma 37.59.18. □

Lemma 37.69.5.0GES Let A be a ring. Let X be a scheme separated and of finite
presentation over A. Let K ∈ DQCoh(OX). If RΓ(X,E ⊗L K) is pseudo-coherent
in D(A) for every perfect E ∈ D(OX), then K is pseudo-coherent relative to A.

Proof. In view of Lemma 37.69.4, it suffices to show RΓ(X,E ⊗L K) is pseudo-
coherent in D(A) for every pseudo-coherent E ∈ D(OX). By Derived Categories
of Schemes, Proposition 36.40.5 it follows that K ∈ D−

QCoh(OX). Now the result
follows by Derived Categories of Schemes, Lemma 36.34.3. □

Lemma 37.69.6.0GET Let A be a ring. Let X be a scheme separated, of finite presenta-
tion, and flat over A. Let K ∈ DQCoh(OX). If RΓ(X,E ⊗L K) is perfect in D(A)
for every perfect E ∈ D(OX), then K is Spec(A)-perfect.

Proof. By Lemma 37.69.5, K is pseudo-coherent relative to A. By Lemma 37.59.18,
K is pseudo-coherent in D(OX). By Derived Categories of Schemes, Proposition
36.40.6 we see that K is in D−(OX). Let p be a prime ideal of A and denote
i : Y → X the inclusion of the scheme theoretic fibre over p, i.e., Y is a scheme
over κ(p). By Derived Categories of Schemes, Lemma 36.35.13, we will be done if
we can show Li∗(K) is bounded below. Let G ∈ Dperf (OX) be a perfect complex
which generates DQCoh(OX), see Derived Categories of Schemes, Theorem 36.15.3.
We have

RHomOY
(Li∗(G), Li∗(K)) = RΓ(Y,Li∗(G∨ ⊗L K))

= RΓ(X,G∨ ⊗L K)⊗L
A κ(p)

The first equality uses that Li∗ preserves perfect objects and duals and Cohomology,
Lemma 20.50.5; we omit some details. The second equality follows from Derived
Categories of Schemes, Lemma 36.22.5 as X is flat over A. It follows from our
hypothesis that this is a perfect object of D(κ(p)). The object Li∗(G) ∈ Dperf (OY )
generates DQCoh(OY ) by Derived Categories of Schemes, Remark 36.16.4. Hence
Derived Categories of Schemes, Proposition 36.40.6 now implies that Li∗(K) is
bounded below and we win. □
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37.70. Descent finiteness properties of complexes

0CSM This section is the continuation of Derived Categories of Schemes, Section 36.12.

Lemma 37.70.1.0CSN Let X → S be locally of finite type. Let {fi : Xi → X} be an
fppf covering of schemes. Let E ∈ DQCoh(OX). Let m ∈ Z. Then E is m-pseudo-
coherent relative to S if and only if each Lf∗

i E is m-pseudo-coherent relative to
S.

Proof. Assume E ism-pseudo-coherent relative to S. The morphisms fi are pseudo-
coherent by Lemma 37.60.6. Hence Lf∗

i E is m-pseudo-coherent relative to S by
Lemma 37.59.16.

Conversely, assume that Lf∗
i E is m-pseudo-coherent relative to S for each i. Pick

S =
⋃
Uj , Wj → Uj , Wj =

⋃
Wj,k, Tj,k → Wj,k, and morphisms αj,k : Tj,k →

Xi(j,k) over S as in Lemma 37.48.2. Since the morphism Tj,K → S is flat and of
finite presentation, we see that αj,k is pseudo-coherent by Lemma 37.60.7. Hence

Lα∗
j,kLf

∗
i(j,k)E = L(Ti,k → S)∗E

is m-pseudo-coherent relative to S by Lemma 37.59.16. Now we want to descend
this property through the coverings {Tj,k → Wj,k}, Wj =

⋃
Wj,k, {Wj → Uj},

and S =
⋃
Uj . Since for Zariski coverings the result is true (by the definition of

m-pseudo-coherence relative to S), this means we may assume we have a single
surjective finite locally free morphism π : Y → X such that Lπ∗E is pseudo-
coherent relative to S. In this case Rπ∗Lπ

∗E is pseudo-coherent relative to S by
Lemma 37.59.9 (this is the first time we use that E has quasi-coherent cohomology
sheaves). We have Rπ∗Lπ

∗E = E⊗L
OX

π∗OY for example by Derived Categories of
Schemes, Lemma 36.22.1 and locally on X the map OX → π∗OY is the inclusion
of a direct summand. Hence we conclude by Lemma 37.59.12. □

Lemma 37.70.2.0CSP Let X → T → S be morphisms of schemes. Assume T → S
is flat and locally of finite presentation and X → T locally of finite type. Let
E ∈ D(OX). Let m ∈ Z. Then E is m-pseudo-coherent relative to S if and only if
E is m-pseudo-coherent relative to T .

Proof. Locally on X we can choose a closed immersion i : X → An
T . Then An

T → S
is flat and locally of finite presentation. Thus we may apply Lemma 37.59.17 to see
the equivalence holds. □

Lemma 37.70.3.0CSQ Let f : X → S be locally of finite type. Let {Si → S} be an fppf
covering of schemes. Denote fi : Xi → Si the base change of f and gi : Xi → X
the projection. Let E ∈ DQCoh(OX). Let m ∈ Z. Then E is m-pseudo-coherent
relative to S if and only if each Lg∗

iE is m-pseudo-coherent relative to Si.

Proof. This follows formally from Lemmas 37.70.1 and 37.70.2. Namely, if E is
m-pseudo-coherent relative to S, then Lg∗

iE is m-pseudo-coherent relative to S (by
the first lemma), hence Lg∗

iE is m-pseudo-coherent relative to Si (by the second).
Conversely, if Lg∗

iE is m-pseudo-coherent relative to Si, then Lg∗
iE is m-pseudo-

coherent relative to S (by the second lemma), hence E is m-pseudo-coherent relative
to S (by the first lemma). □
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37.71. Relatively perfect objects

0DJW This section is a continuation of the discussion in Derived Categories of Schemes,
Section 36.35.

Lemma 37.71.1.0DJX Let i : X → X ′ be a finite order thickening of schemes. Let
K ′ ∈ D(OX′) be an object such that K = Li∗K ′ is pseudo-coherent. Then K ′ is
pseudo-coherent.

Proof. We first prove K ′ has quasi-coherent cohomology sheaves. To do this, we
may reduce to the case of a first order thickening, see Section 37.2. Let I ⊂ OX′

be the quasi-coherent sheaf of ideals cutting out X. Tensoring the short exact
sequence

0→ I → OX′ → i∗OX → 0
with K ′ we obtain a distinguished triangle

K ′ ⊗L
OX′ I → K ′ → K ′ ⊗L

OX′ i∗OX → (K ′ ⊗L
OX′ I)[1]

Since i∗ = Ri∗ and since we may view I as a quasi-coherent OX -module (as we
have a first order thickening) we may rewrite this as

i∗(K ⊗L
OX
I)→ K ′ → i∗K → i∗(K ⊗L

OX
I)[1]

Please use Cohomology, Lemma 20.54.4 to identify the terms. Since K is in
DQCoh(OX) we conclude that K ′ is in DQCoh(OX′); this uses Derived Categories
of Schemes, Lemmas 36.10.1, 36.3.9, and 36.4.1.
Assume K ′ is in DQCoh(OX′). The question is local on X ′ hence we may assume
X ′ is affine. Say X ′ = Spec(A′) and X = Spec(A) with A = A′/I and I nilpotent.
Then K ′ comes from an object M ′ ∈ D(A′), see Derived Categories of Schemes,
Lemma 36.3.5. Thus M = M ′⊗L

A′A is a pseudo-coherent object of D(A) by Derived
Categories of Schemes, Lemma 36.10.2 and our assumption on K. Hence we can
represent M by a bounded above complex of finite free A-modules E•, see More on
Algebra, Lemma 15.64.5. By More on Algebra, Lemma 15.75.3 we conclude that
M ′ is pseudo-coherent as desired. □

Lemma 37.71.2.0DJY Consider a cartesian diagram

X
i
//

f

��

X ′

f ′

��
Y

j // Y ′

of schemes. Assume X ′ → Y ′ is flat and locally of finite presentation and Y → Y ′

is a finite order thickening. Let E′ ∈ D(OX′). If E = Li∗(E′) is Y -perfect, then
E′ is Y ′-perfect.

Proof. Recall that being Y -perfect for E means E is pseudo-coherent and locally
has finite tor dimension as a complex of f−1OY -modules (Derived Categories of
Schemes, Definition 36.35.1). By Lemma 37.71.1 we find that E′ is pseudo-coherent.
In particular, E′ is in DQCoh(OX′), see Derived Categories of Schemes, Lemma
36.10.1. To prove that E′ locally has finite tor dimension we may work locally on
X ′. Hence we may assume X ′, S′, X, S are affine, say given by rings A′, R′, A,
R. Then we reduce to the commutative algebra version by Derived Categories of
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Schemes, Lemma 36.35.3. The commutative algebra version in More on Algebra,
Lemma 15.83.8. □

Lemma 37.71.3.0DJZ Let (R, I) be a pair consisting of a ring and an ideal I contained
in the Jacobson radical. Set S = Spec(R) and S0 = Spec(R/I). Let f : X → S be
proper, flat, and of finite presentation. Denote X0 = S0 ×S X. Let E ∈ D(OX) be
pseudo-coherent. If the derived restriction E0 of E to X0 is S0-perfect, then E is
S-perfect.
Proof. Choose a finite affine open covering X = U1 ∪ . . . ∪ Un. For each i we can
choose a closed immersion Ui → Adi

S . Set Ui,0 = S0 ×S Ui. For each i the complex
E0|Ui,0 has tor amplitude in [ai, bi] for some ai, bi ∈ Z. Let x ∈ X be a point. We
will show that the tor amplitude of Ex over R is in [ai−di, bi] for some i. This will
finish the proof as the tor amplitude can be read off from the stalks by Cohomology,
Lemma 20.48.5.
Since f is proper f({x}) is a closed subset of S. Since I is contained in the Jacobson
radical, we see that f({x}) meeting the closed subset S0 ⊂ S. Hence there is a
specialization x ⇝ x0 with x0 ∈ X0. Pick an i with x0 ∈ Ui, so x0 ∈ Ui,0. We
will fix i for the rest of the proof. Write Ui = Spec(A). Then A is a flat, finitely
presented R-algebra which is a quotient of a polynomial R-algebra in di-variables.
The restriction E|Ui corresponds (by Derived Categories of Schemes, Lemma 36.3.5
and 36.10.2) to a pseudo-coherent object K of D(A). Observe that E0 corresponds
to K⊗L

AA/IA. Let q ⊂ q0 ⊂ A be the prime ideals corresponding to x⇝ x0. Then
Ex = Kq and Kq is a localization of Kq0 . Hence it suffices to show that Kq0 has
tor amplitude in [ai − di, bi] as a complex of R-modules. Let I ⊂ p0 ⊂ R be the
prime ideal corresponding to f(x0). Then we have

K ⊗L
R κ(p0) = (K ⊗L

R R/I)⊗L
R/I κ(p0)

= (K ⊗L
A A/IA)⊗L

R/I κ(p0)
the second equality because R→ A is flat. By our choice of ai, bi this complex has
cohomology only in degrees in the interval [ai, bi]. Thus we may finally apply More
on Algebra, Lemma 15.83.9 to R→ A, q0, p0 and K to conclude. □

37.72. Contracting rational curves

0E7E In this section we study proper morphisms f : X → Y whose fibres have dimension
≤ 1 having R1f∗OX = 0. To understand the title of this section, please take a look
at Algebraic Curves, Sections 53.22, 53.23, and 53.24.
Lemma 37.72.1.0E7F Let f : X → Y be a proper morphism of schemes. Let y ∈ Y be
a point with dim(Xy) ≤ 1. If

(1) R1f∗OX = 0, or more generally
(2) there is a morphism g : Y ′ → Y such that y is in the image of g and such

that R′f ′
∗OX′ = 0 where f ′ : X ′ → Y ′ is the base change of f by g.

Then H1(Xy,OXy ) = 0.
Proof. To prove the lemma we may replace Y by an open neighbourhood of y.
Thus we may assume Y is affine and that all fibres of f have dimension ≤ 1, see
Morphisms, Lemma 29.28.4. In this case R1f∗OX is a quasi-coherent OY -module
of finite type and its formation commutes with arbitrary base change, see Limits,
Lemmas 32.19.3 and 32.19.2. The lemma follows immediately. □
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Lemma 37.72.2.0E7G Let f : X → Y be a proper morphism of schemes. Let y ∈ Y
be a point with dim(Xy) ≤ 1 and H1(Xy,OXy ) = 0. Then there is an open
neighbourhood V ⊂ Y of y such that R1f∗OX |V = 0 and the same is true after
base change by any Y ′ → V .

Proof. To prove the lemma we may replace Y by an open neighbourhood of y.
Thus we may assume Y is affine and that all fibres of f have dimension ≤ 1, see
Morphisms, Lemma 29.28.4. In this case R1f∗OX is a quasi-coherent OY -module
of finite type and its formation commutes with arbitrary base change, see Limits,
Lemmas 32.19.3 and 32.19.2. Say Y = Spec(A), y corresponds to the prime p ⊂ A,
and R1f∗OX corresponds to the finite A-module M . Then H1(Xy,OXy ) = 0
means that pMp = Mp by the statement on base change. By Nakayama’s lemma
we conclude Mp = 0. Since M is finite, we find an f ∈ A, f ̸∈ p such that Mf = 0.
Thus taking V the principal open D(f) we obtain the desired result. □

Lemma 37.72.3.0E7H Let f : X → Y be a proper morphism of schemes such that
dim(Xy) ≤ 1 and H1(Xy,OXy ) = 0 for all y ∈ Y . Let F be quasi-coherent on X.
Then

(1) Rpf∗F = 0 for p > 1, and
(2) R1f∗F = 0 if there is a surjection f∗G → F with G quasi-coherent on Y .

If Y is affine, then we also have
(3) Hp(X,F) = 0 for p ̸∈ {0, 1}, and
(4) H1(X,F) = 0 if F is globally generated.

Proof. The vanishing in (1) is Limits, Lemma 32.19.2. To prove (2) we may work
locally on Y and assume Y is affine. Then R1f∗F is the quasi-coherent module on Y
associated to the module H1(X,F). Here we use that Y is affine, quasi-coherence of
higher direct images (Cohomology of Schemes, Lemma 30.4.5), and Cohomology of
Schemes, Lemma 30.4.6. Since Y is affine, the quasi-coherent module G is globally
generated, and hence so is f∗G and F . In this way we see that (4) implies (2).
Part (3) follows from (1) as well as the remarks on quasi-coherence of direct images
just made. Thus all that remains is the prove (4). If F is globally generated, then
there is a surjection

⊕
i∈I OX → F . By part (1) and the long exact sequence

of cohomology this induces a surjection on H1. Since H1(X,OX) = 0 because
R1f∗OX = 0 by Lemma 37.72.2, and since H1(X,−) commutes with direct sums
(Cohomology, Lemma 20.19.1) we conclude. □

Lemma 37.72.4.0E7I Let f : X → Y be a proper morphism of schemes. Assume
(1) for all y ∈ Y we have dim(Xy) ≤ 1 and H1(Xy,OXy ) = 0, and
(2) OY → f∗OX is surjective.

Then OY ′ → f ′
∗OX′ is surjective for any base change f ′ : X ′ → Y ′ of f .

Proof. We may assume Y and Y ′ affine. Then we can choose a closed immersion
Y ′ → Y ′′ with Y ′′ → Y a flat morphism of affines. By flat base change (Cohomology
of Schemes, Lemma 30.5.2) we see that the result holds for X ′′ → Y ′′. Thus we
may assume Y ′ is a closed subscheme of Y . Let I ⊂ OY be the ideal cutting out
Y ′. Then there is a short exact sequence

0→ IOX → OX → OX′ → 0
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where we view OX′ as a quasi-coherent module on X. By Lemma 37.72.3 we have
H1(X, IOX) = 0. It follows that

H0(Y,OY )→ H0(Y, f∗OX) = H0(X,OX)→ H0(X,OX′)
is surjective as desired. The first arrow is surjective as Y is affine and since we
assumed OY → f∗OX is surjective and the second by the long exact sequence of
cohomology associated to the short exact sequence above and the vanishing just
proved. □

Lemma 37.72.5.0E7J Consider a commutative diagram

X
f

//

��

Y

��
S

of morphisms of schemes. Let s ∈ S be a point. Assume
(1) X → S is locally of finite presentation and flat at points of Xs,
(2) f is proper,
(3) the fibres of fs : Xs → Ys have dimension ≤ 1 and R1fs,∗OXs = 0,
(4) OYs → fs,∗OXs is surjective.

Then there is an open Ys ⊂ V ⊂ Y such that (a) f−1(V ) is flat over S, (b)
dim(Xy) ≤ 1 for y ∈ V , (c) R1f∗OX |V = 0, (d) OV → f∗OX |V is surjective, and
(b), (c), and (d) remain true after base change by any Y ′ → V .

Proof. Let y ∈ Y be a point over s. It suffices to find an open neighbourhood of y
with the desired properties. As a first step, we replace Y by the open V found in
Lemma 37.72.2 so that R1f∗OX is zero universally (the hypothesis of the lemma
holds by Lemma 37.72.1). We also shrink Y so that all fibres of f have dimension
≤ 1 (use Morphisms, Lemma 29.28.4 and properness of f). Thus we may assume
we have (b) and (c) with V = Y and after any base change Y ′ → Y . Thus by
Lemma 37.72.4 it now suffices to show (d) over Y . We may still shrink Y further;
for example, we may and do assume Y and S are affine.
By Theorem 37.15.1 there is an open subset U ⊂ X where X → S is flat which
contains Xs by hypothesis. Then f(X \ U) is a closed subset not containing y.
Thus after shrinking Y we may assume X is flat over S.
Say S = Spec(R). Choose a closed immersion Y → Y ′ where Y ′ is the spectrum
of a polynomial ring R[xe; e ∈ E] on a set E. Denote f ′ : X → Y ′ the composition
of f with Y → Y ′. Then the hypotheses (1) – (4) as well as (b) and (c) hold for
f ′ and s. If we we show OY ′ → f ′

∗OX is surjective in an open neighbourhood of y,
then the same is true for OY → f∗OX . Thus we may assume Y is the spectrum of
R[xe; e ∈ E].
At this point X and Y are flat over S. Then Ys and X are tor independent over Y .
We urge the reader to find their own proof, but it also follows from Lemma 37.69.1
applied to the square with corners X,Y, S, S and its base change by s→ S. Hence

Rfs,∗OXs = L(Ys → Y )∗Rf∗OX
by Derived Categories of Schemes, Lemma 36.22.5. Because of the vanishing already
established this implies fs,∗OXs = (Ys → Y )∗f∗OX . We conclude thatOY → f∗OX
is a map of quasi-coherent OY -modules whose pullback to Ys is surjective. We claim
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f∗OX is a finite type OY -module. If true, then the cokernel F of OY → f∗OX is
a finite type quasi-coherent OY -module such that Fy ⊗ κ(y) = 0. By Nakayama’s
lemma (Algebra, Lemma 10.20.1) we have Fy = 0. Thus F is zero in an open
neighbourhood of y (Modules, Lemma 17.9.5) and the proof is complete.
Proof of the claim. For a finite subset E′ ⊂ E set Y ′ = Spec(R[xe; e ∈ E′]). For
large enough E′ the morphism f ′ : X → Y → Y ′ is proper, see Limits, Lemma
32.13.4. We fix E′ and Y ′ in the following. Write R = colimRi as the colimit of its
finite type Z-subalgebras. Set Si = Spec(Ri) and Y ′

i = Spec(Ri[xe; e ∈ E′]). For i
large enough we can find a diagram

X

��

f ′
// Y ′

��

// S

��
Xi

f ′
i // Y ′

i
// Si

with cartesian squares such that Xi is flat over Si and Xi → Y ′
i is proper. See

Limits, Lemmas 32.10.1, 32.8.7, and 32.13.1. The same argument as above shows
Y ′ and Xi are tor independent over Y ′

i and hence
RΓ(X,OX) = RΓ(Xi,OXi)⊗L

Ri[xe;e∈E′] R[xe; e ∈ E′]
by the same reference as above. By Cohomology of Schemes, Lemma 30.19.2 the
complex RΓ(Xi,OXi) is pseudo-coherent in the derived category of the Noetherian
ring Ri[xe; e ∈ E′] (see More on Algebra, Lemma 15.64.17). Hence RΓ(X,OX)
is pseudo-coherent in the derived category of R[xe; e ∈ E′], see More on Algebra,
Lemma 15.64.12. Since the only nonvanishing cohomology module is H0(X,OX) we
conclude it is a finite R[xe; e ∈ E′]-module, see More on Algebra, Lemma 15.64.4.
This concludes the proof. □

Lemma 37.72.6.0E7K Consider a commutative diagram

X
f

//

��

Y

��
S

of morphisms of schemes. Assume X → S is flat, f is proper, dim(Xy) ≤ 1 for
y ∈ Y , and R1f∗OX = 0. Then f∗OX is S-flat and formation of f∗OX commutes
with arbitrary base change S′ → S.
Proof. We may assume Y and S are affine, say S = Spec(A). To show the quasi-
coherent OY -module f∗OX is flat relative to S it suffices to show that H0(X,OX)
is flat over A (some details omitted). By Lemma 37.72.3 we have H1(X,OX ⊗A
M) = 0 for every A-module M . Since also OX is flat over A we deduce the
functor M 7→ H0(X,OX ⊗A M) is exact. Moreover, this functor commutes with
direct sums by Cohomology, Lemma 20.19.1. Then it is an exercise to see that
H0(X,OX ⊗AM) = M ⊗AH0(X,OX) functorially in M and this gives the desired
flatness. Finally, if S′ → S is a morphism of affines given by the ring map A→ A′,
then in the affine case just discussed we see that

H0(X ×S S′,OX×SS′) = H0(X,OX ⊗A A′) = H0(X,OX)⊗A A′

This shows that formation of f∗OX commutes with any base change S′ → S. Some
details omitted. □
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Lemma 37.72.7.0E7L Consider a commutative diagram

X
f

//

��

Y

��
S

of morphisms of schemes. Let s ∈ S be a point. Assume
(1) X → S is locally of finite presentation and flat at points of Xs,
(2) Y → S is locally of finite presentation,
(3) f is proper,
(4) the fibres of fs : Xs → Ys have dimension ≤ 1 and R1fs,∗OXs = 0,
(5) OYs → fs,∗OXs is an isomorphism.

Then there is an open Ys ⊂ V ⊂ Y such that (a) V is flat over S, (b) f−1(V ) is flat
over S, (c) dim(Xy) ≤ 1 for y ∈ V , (d) R1f∗OX |V = 0, (e) OV → f∗OX |V is an
isomorphism, and (a) – (e) remain true after base change of f−1(V ) → V by any
S′ → S.

Proof. Let y ∈ Ys. We may always replace Y by an open neighbourhood of y.
Thus we may assume Y and S affine. We may also assume that X is flat over
S, dim(Xy) ≤ 1 for y ∈ Y , R1f∗OX = 0 universally, and that OY → f∗OX is
surjective, see Lemma 37.72.5. (We won’t use all of this.)
Assume S and Y affine. Write S = limSi as a cofiltered of affine Noetherian schemes
Si. By Limits, Lemma 32.10.1 there exists an element 0 ∈ I and a diagram

X0
f0

//

  

Y0

~~
S0

of finite type morphisms of schemes whose base change to S is the diagram of the
lemma. After increasing 0 we may assume Y0 is affine and X0 → S0 proper, see
Limits, Lemmas 32.13.1 and 32.4.13. Let s0 ∈ S0 be the image of s. As Ys is
affine, we see that R1fs,∗OXs = 0 is equivalent to H1(Xs,OXs) = 0. Since Xs

is the base change of X0,s0 by the faithfully flat map κ(s0) → κ(s) we see that
H1(X0,s0 ,OX0,s0

) = 0 and hence R1f0,∗OX0,s0
= 0. Similarly, as OYs → fs,∗OXs

is an isomorphism, so is OY0,s0
→ f0,∗OX0,s0

. Since the dimensions of the fibres of
Xs → Ys are at most 1, the same is true for the morphism X0,s0 → Y0,s0 . Finally,
since X → S is flat, after increasing 0 we may assume X0 is flat over S0, see Limits,
Lemma 32.8.7. Thus it suffices to prove the lemma for X0 → Y0 → S0 and the
point s0.
Combining the reduction arguments above we reduce to the case where S and
Y affine, S Noetherian, the fibres of f have dimension ≤ 1, and R1f∗OX = 0
universally. Let y ∈ Ys be a point. Claim:

OY,y −→ (f∗OX)y
is an isomorphism. The claim implies the lemma. Namely, since f∗OX is coherent
(Cohomology of Schemes, Proposition 30.19.1) the claim means we can replace Y
by an open neighbourhood of y and obtain an isomorphism OY → f∗OX . Then
we conclude that Y is flat over S by Lemma 37.72.6. Finally, the isomorphism
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OY → f∗OX remains an isomorphism after any base change S′ → S by the final
statement of Lemma 37.72.6.
Proof of the claim. We already know that OY,y −→ (f∗OX)y is surjective (Lemma
37.72.5) and that (f∗OX)y is OS,s-flat (Lemma 37.72.6) and that the induced map

OYs,y = OY,y/msOY,y −→ (f∗OX)y/ms(f∗OX)y → (fs,∗OXs)y
is injective by the assumption in the lemma. Then it follows from Algebra, Lemma
10.99.1 that OY,y −→ (f∗OX)y is injective as desired. □

Lemma 37.72.8.0E24 Let f : X → Y be a proper morphism of Noetherian schemes
such that f∗OX = OY , such that the fibres of f have dimension ≤ 1, and such that
H1(Xy,OXy ) = 0 for y ∈ Y . Then f∗ : Pic(Y ) → Pic(X) is a bijection onto the
subgroup of L ∈ Pic(X) with L|Xy ∼= OXy for all y ∈ Y .

Proof. By the projection formula (Cohomology, Lemma 20.54.2) we see that f∗f
∗N ∼=

N for N ∈ Pic(Y ). We claim that for L ∈ Pic(X) with L|Xy ∼= OXy for all y ∈ Y
we have N = f∗L is invertible and L ∼= f∗N . This will finish the proof.
The OY -module N = f∗L is coherent by Cohomology of Schemes, Proposition
30.19.1. Thus to see that it is an invertible OY -module, it suffices to check on
stalks (Algebra, Lemma 10.78.2). Since the map from a Noetherian local ring to its
completion is faithfully flat, it suffices to check the completion (f∗L)∧

y is free (see
Algebra, Section 10.97 and Lemma 10.78.6). For this we will use the theorem of
formal functions as formulated in Cohomology of Schemes, Lemma 30.20.7. Since
f∗OX = OY and hence (f∗OX)∧

y
∼= O∧

Y,y, it suffices to show that L|Xn ∼= OXn for
each n (compatibly for varying n. By Lemma 37.4.1 we have an exact sequence

H1(Xy,m
n
yOX/mn+1

y OX)→ Pic(Xn+1)→ Pic(Xn)
with notation as in the theorem on formal functions. Observe that we have a
surjection

O⊕rn
Xy
∼= mny/m

n+1
y ⊗κ(y) OXy −→ mnyOX/mn+1

y OX
for some integers rn ≥ 0. Since dim(Xy) ≤ 1 this surjection induces a surjection
on first cohomology groups (by the vanishing of cohomology in degrees ≥ 2 coming
from Cohomology, Proposition 20.20.7). Hence the H1 in the sequence is zero and
the transition maps Pic(Xn+1)→ Pic(Xn) are injective as desired.
We still have to show that f∗N ∼= L. This is proved by the same method and we
omit the details. □

37.73. Affine stratifications

0F2R This material is taken from [RV04]. Please read a little bit about stratifications in
Topology, Section 5.28 before reading this section.
If X is a scheme, then a stratification of X usually means a stratification of the
underlying topological space of X. The strata are locally closed subsets. We will
view these strata as reduced locally closed subschemes of X using Schemes, Remark
26.12.6.

Definition 37.73.1.0F2S Let X be a scheme. An affine stratification is a locally finite
stratification X =

∐
i∈I Xi whose strata Xi are affine and such that the inclusion

morphisms Xi → X are affine.
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The condition that a stratification X =
∐
Xi is locally finite is, in the presence of

the condition that the inclusion morphisms Xi → X are quasi-compact, equivalent
to the condition that the strata are locally constructible subsets ofX, see Properties,
Lemma 28.2.7.
The condition that Xi → X is an affine morphism is independent on the scheme
structure we put on the locally closed subset Xi, see Lemma 37.3.1. Moreover, if
X is separated (or more generally has affine diagonal) and X =

∐
Xi is a locally

finite stratification with affine strata, then the morphisms Xi → X are affine. See
Morphisms, Lemma 29.11.11. This allows us to disregard the condition of affineness
of the inclusion morphisms Xi → X in most cases of interest.
We are often interested in the case where the partially ordered index set I of the
stratification is finite. Recall that the length of a partially ordered set I is the
supremum of the lengths p of chains i0 < i1 < . . . < ip of elements of I.

Lemma 37.73.2.0F2T Let X be a scheme. Let X =
∐
i∈I Xi be a finite affine stratifica-

tion. There exists an affine stratification with index set {0, . . . , n} where n is the
length of I.

Proof. Recall that we have a partial ordering on I such that the closure of Xi is
contained in

⋃
j≤iXj for all i ∈ I. Let I ′ ⊂ I be the set of maximal indices of I. If

i ∈ I ′, then Xi is open in X because the union of the closures of the other strata
is the complement of Xi. Let U =

⋃
i∈I′ Xi viewed as an open subscheme of X so

that Ured =
∐
i∈I′ Xi as schemes. Then U is an affine scheme by Schemes, Lemma

26.6.8 and Lemma 37.2.3. The morphism U → X is affine as each Xi → X, i ∈ I ′

is affine by the same reasoning using Lemma 37.3.1. The complement Z = X \ U
endowed with the reduced induced scheme structure has the affine stratification
Z =

⋃
i∈I\I′ Xi. Here we use that a morphism of schemes T → Z is affine if and

only if the composition T → X is affine; this follows from Morphisms, Lemmas
29.11.9, 29.11.7, and 29.11.11. Observe that the partially ordered set I \ I ′ has
length exactly one less than the length of I. Hence by induction we find that Z
has an affine stratification Z = Z0 ⨿ . . . ⨿ Zn−1 with index set {1, . . . , n}. Setting
Zn = U we obtain the desired stratification of X. □

If a scheme X has a finite affine stratification, then of course X is quasi-compact.
A bit less obvious is the fact that it forces X to be quasi-separated as well.

Lemma 37.73.3.0F2U Let X be a scheme. The following are equivalent
(1) X has a finite affine stratification, and
(2) X is quasi-compact and quasi-separated.

Proof. Let X =
⋃
Xi be a finite affine stratification. Since each Xi is affine hence

quasi-compact, we conclude that X is quasi-compact. Let U, V ⊂ X be affine open.
Then U ∩Xi and V ∩Xi are affine open in Xi since Xi → X is an affine morphism.
Hence U ∩ V ∩Xi is an affine open of the affine scheme Xi (see Schemes, Lemma
26.21.7 for example). Therefore U ∩V =

∐
U ∩V ∩Xi is quasi-compact as a finite

union of affine strata. We conclude that X is quasi-separated by Schemes, Lemma
26.21.6.
Assume X is quasi-compact and quasi-separated. We may use the induction prin-
ciple of Cohomology of Schemes, Lemma 30.4.1 to prove the assertion that X has a
finite affine stratification. If X is empty, then it has an empty affine stratification.
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If X is nonempty affine then it has an affine stratification with one stratum. Next,
asssume X = U ∪ V where U is quasi-compact open, V is affine open, and we have
a finite affine stratifications U =

⋃
i∈I Ui and U ∩V =

∐
j∈JWj . Denote Z = X \V

and Z ′ = X \ U . Note that Z is closed in U and Z ′ is closed in V . Observe that
Ui ∩ Z and Ui ∩Wj = Ui ×U Wj are affine schemes affine over U . (Hints: use that
Ui×UWj →Wj is affine as a base change of Ui → U , hence Ui∩Wj is affine, hence
Ui ∩Wj → Ui is affine, hence Ui ∩Wj → U is affine.) It follows that

U =
∐

i∈I
(Ui ∩ Z)⨿

∐
(i,j)∈I×J

(Ui ∩Wj)

is a finite affine stratification with partial ordering on I⨿I×J given by i′ ≤ (i, j)⇔
i′ ≤ i and (i′, j′) ≤ (i, j) ⇔ i′ ≤ i and j′ ≤ j. Observe that (Ui ∩ Z) ×X V = ∅
and (Ui ∩Wj)×X V = Ui ∩Wj are affine. Hence the morphisms Ui ∩ Z → X and
Ui ∩Wj → X are affine because we can check affineness of a morphism locally on
the target (Morphisms, Lemma 29.11.3) and we have affineness over both U and
V . To finish the proof we take the stratification above and we add one additional
stratum, namely Z ′, whose index we add as a minimal element to the partially
ordered set. □

Definition 37.73.4.0F2V Let X be a nonempty quasi-compact and quasi-separated
scheme. The affine stratification number is the smallest integer n ≥ 0 such that the
following equivalent conditions are satisfied

(1) there exists a finite affine stratification X =
∐
i∈I Xi where I has length

n,
(2) there exists an affine stratification X = X0 ⨿ X1 ⨿ . . . ⨿ Xn with index

set {0, . . . , n}.
The equivalence of the conditions holds by Lemma 37.73.2. The existence of a finite
affine stratification is proven in Lemma 37.73.3.
Lemma 37.73.5.0F2W Let X be a separated scheme which has an open covering by n+1
affines. Then the affine stratification number of X is at most n.
Proof. Say X = U0 ∪ . . . ∪ Un is an affine open covering. Set

Xi = (Ui ∪ . . . ∪ Un) \ (Ui+1 ∪ . . . ∪ Un)
Then Xi is affine as a closed subscheme of Ui. The morphism Xi → X is affine by
Morphisms, Lemma 29.11.11. Finally, we have Xi ⊂ Xi ∪Xi−1 ∪ . . . X0. □

Lemma 37.73.6.0F2X Let X be a Noetherian scheme of dimension ∞ > d ≥ 0. Then
the affine stratification number of X is at most d.
Proof. By induction on d. If d = 0, then X is affine, see Properties, Lemma
28.10.5. Assume d > 0. Let η1, . . . , ηn be the generic points of the irreducible
components of X (Properties, Lemma 28.5.7). We can cover X by affine opens
containing η1, . . . , ηn, see Properties, Lemma 28.29.4. Since X is quasi-compact we
can find a finite affine open covering X =

⋃
j=1,...,m Uj with η1, . . . , ηn ∈ Uj for

all j = 1, . . . ,m. Choose an affine open U ⊂ U1 ∩ . . . ∩ Um containing η1, . . . , ηn
(possible by the lemma already quoted). Then the morphism U → X is affine
because U → Uj is affine for all j, see Morphisms, Lemma 29.11.3. Let Z = X \U .
By construction dim(Z) < dim(X). By induction hypothesis we can find an affine
stratification Z =

⋃
i∈{0,...,n} Zi of Z with n ≤ dim(Z). Setting U = Xn+1 and

Xi = Zi for i ≤ n we conclude. □
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Proposition 37.73.7.0F2Y Let X be a nonempty quasi-compact and quasi-separated
scheme with affine stratification number n. Then Hp(X,F) = 0, p > n for every
quasi-coherent OX -module F .

Proof. We will prove this by induction on the affine stratification number n. If
n = 0, then X is affine and the result is Cohomology of Schemes, Lemma 30.2.2.
Assume n > 0. By Definition 37.73.4 there is an affine scheme U and an affine
open immersion j : U → X such that the complement Z has affine stratification
number n − 1. As U and j are affine we have Hp(X, j∗(F|U )) = 0 for p > 0, see
Cohomology of Schemes, Lemmas 30.2.4 and 30.2.3. Denote K and Q the kernel
and cokernel of the map F → j∗(F|U ). Thus we obtain an exact sequence

0→ K → F → j∗(F|U )→ Q→ 0
of quasi-coherent OX -modules (see Schemes, Section 26.24). A standard argument,
breaking our exact sequence into short exact sequences and using the long exact
cohomology sequence, shows it suffices to prove Hp(X,K) = 0 and Hp(X,Q) = 0
for p ≥ n. Since F → j∗(F|U ) restricts to an isomorphism over U , we see that K and
Q are supported on Z. By Properties, Lemma 28.22.3 we can write these modules
as the filtered colimits of their finite type quasi-coherent submodules. Using the fact
that cohomology of sheaves on X commutes with filtered colimits, see Cohomology,
Lemma 20.19.1, we conclude it suffices to show that if G is a finite type quasi-
coherent module whose support is contained in Z, then Hp(X,G) = 0 for p ≥ n.
Let Z ′ ⊂ X be the scheme theoretic support of G ⊕ OZ ; we may and do think of
G as a quasi-coherent module on Z ′, see Morphisms, Section 29.5. Then Z ′ and Z
have the same underlying topological space and hence the same affine stratification
number, namely n − 1. Hence Hp(X,G) = Hp(Z ′,G) (equality by Cohomology of
Schemes, Lemma 30.2.4) vanishes for p ≥ n by induction hypothesis. □

Example 37.73.8.0F2Z Let k be a field and let X = Pn
k be n-dimensional projective

space over k. Lemma 37.73.5 applies to this by Constructions, Lemma 27.13.3.
Hence the affine stratification number of Pn

k is at most n. On the other hand, we
have nonzero cohomology in degree n for some quasi-coherent modules on Pn

k , see
Cohomology of Schemes, Lemma 30.8.1. Using Proposition 37.73.7 we conclude
that the affine stratification number of Pn

k is equal to n.

37.74. Universally open morphisms

0F30 Some material on universally open morphisms.

Lemma 37.74.1.0F31 Let f : X → S be a morphism of schemes. The following are
equivalent

(1) f is universally open,
(2) for every morphism S′ → S which is locally of finite presentation the base

change XS′ → S′ is open, and
(3) for every n the morphism An ×X → An × S is open.

Proof. It is clear that (1) implies (2) and (2) implies (3). Let us prove that (3)
implies (1). Suppose that the base change XT → T is not open for some morphism
of schemes g : T → S. Then we can find some affine opens V ⊂ S, U ⊂ X, W ⊂ T
with f(U) ⊂ V and g(W ) ⊂ V such that U ×V W → W is not open. If we can
show that this implies An × U → An × V is not open, then An × X → An × S
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is not open and the proof is complete. This reduces us to the result proved in the
next paragraph.
Let A→ B be a ring map such that A′ → B′ = A′ ⊗A B does not induce an open
map of spectra for some A-algebra A′. As the principal opens give a basis for the
topology of Spec(B′) we conclude that the image of D(g) in Spec(A′) is not open
for some g ∈ B′. Write g =

∑
i=1,...,n a

′
i ⊗ bi for some n, a′

i ∈ A′, and bi ∈ B.
Consider the element h =

∑
i=1,...,n xibi in B[x1, . . . , xn]. Assume that D(h) maps

to an open subset under the morphism
Spec(B[x1, . . . , xn]) −→ Spec(A[x1, . . . , xn])

in order to get a contradiction. Then D(h) would map surjectively onto a quasi-
compact open U ⊂ Spec(A[x1, . . . , xn]). Let A[x1, . . . , xn] → A′ be the A-algebra
homomorphism sending xi to a′

i. This also induces a B-algebra homomorphism
B[x1, . . . , xn]→ B′ sending h to g. Since

Spec(B[x1, . . . , xn])

��

Spec(B′)oo

��
Spec(A[x1, . . . , xn]) Spec(A′)oo

is cartesian the image of D(g) in Spec(A′) is equal to the inverse image of U in
Spec(A′) and hence open which is the desired contradiction. □

Lemma 37.74.2.0F32 Let f : X → Y be a morphism of schemes. If
(1) f is locally quasi-finite,
(2) Y is geometrically unibranch and locally Noetherian, and
(3) every irreducible component of X dominates an irreducible component of

Y ,
then f is universally open.

Proof. For any n the scheme An×Y is geometrically unibranch by Lemma 37.36.4
and Properties, Lemma 28.15.6. Hence the hypotheses of the lemma hold for the
morphisms An × X → An × Y for all n. By Lemma 37.74.1 it suffices to prove
f is open. By Morphisms, Lemma 29.23.2 it suffices to show that generalizations
lift along f . Suppose that y′ ⇝ y is a specialization of points in Y and x ∈ X is a
point mapping to y. As in Lemma 37.41.1 choose a diagram

u

��

U

��

// X

��
v V // Y

where (V, v) → (Y, y) is an elementary étale neighbourhood, U → V is finite, u is
the unique point of U mapping to v, U ⊂ V ×Y X is open, and v 7→ y and u 7→ x.
Let E be an irreducible component of U passing through u (there is at least one of
these). Since U → X is étale, E maps to an irreducible component of X, which in
turn dominates an irreducible component of Y (by assumption). Since U → V is
finite hence closed, we conclude that the image E′ ⊂ V of E is an irreducible closed
subset passing through v which dominates an irreducible component of Y . Since
V → Y is étale E′ must be an irreducible component of V passing through v. Since
Y is geometrically unibranch we see that E′ is the unique irreducible component of
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V passing through v (Lemma 37.36.2). Since V is locally Noetherian we may after
shrinking V assume that E′ = V (equality of sets).

Since V → Y is étale we can find a specialization v′ ⇝ v whose image is y′ ⇝ y.
By the above we can find u′ ∈ U mapping to v′. Then u′ ⇝ u because u is the only
point of U mapping to v and U → V is closed. Then finally the image x′ ∈ X of u′

is a point specializing to x and mapping to y′ and the proof is complete. □

Lemma 37.74.3.0F33 Let A → B be a ring map. Say B is generated as an A-module
by b1, . . . , bd ∈ B. Set h =

∑
xibi ∈ B[x1, . . . , xd]. Then Spec(B) → Spec(A) is

universally open if and only if the image of D(h) in Spec(A[x1, . . . , xd]) is open.

Proof. If Spec(B)→ Spec(A) is universally open, then of course the image of D(h)
is open. Conversely, assume the image U of D(h) is open. Let A → A′ be a ring
map. It suffices to show that the image of any principal open D(g) ⊂ Spec(A′⊗AB)
in Spec(A′) is open. We may write g =

∑
i=1,...,d a

′
i ⊗ bi for some a′

i ∈ A′. Let
A[x1, . . . , xn] → A′ be the A-algebra homomorphism sending xi to a′

i. This also
induces a B-algebra homomorphism B[x1, . . . , xn]→ A′⊗AB sending h to g. Since

Spec(B[x1, . . . , xn])

��

Spec(B′)oo

��
Spec(A[x1, . . . , xn]) Spec(A′)oo

is cartesian the image of D(g) in Spec(A′) is equal to the inverse image of U in
Spec(A′) and hence open. □

Lemma 37.74.4.0F34 Let S = limSi be a limit of a directed system of schemes with
affine transition morphisms. Let 0 ∈ I and let f0 : X0 → Y0 be a morphism of
schemes over S0. Assume S0, X0, Y0 are quasi-compact and quasi-separated. Let
fi : Xi → Yi be the base change of f0 to Si and let f : X → Y be the base change
of f0 to S. If

(1) f is locally quasi-finite and universally open, and
(2) f0 is locally of finite presentation,

then there exists an i ≥ 0 such that fi is locally quasi-finite and universally open.

Proof. By Limits, Lemma 32.18.2 after increasing 0 we may assume f0 is locally
quasi-finite. Let x ∈ X. By étale localization of quasi-finite morphisms we can find
a diagram

X

��

Uoo

��
Y Voo

where V → Y is étale, U ⊂ XV is open, U → V is finite, and x is in the image
of U → X, see Lemma 37.41.1. After shrinking V we may assume V and U are
affine. Since X is quasi-compact, it follows, by taking a finite disjoint union of such
V and U , that we can make a diagram as above such that U → X is surjective. By
Limits, Lemmas 32.10.1, 32.4.11, 32.8.15, 32.8.3, 32.8.10, and 32.4.13 after possibly
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increasing 0 we may assume we have a diagram

X0

��

U0oo

��
Y0 V0oo

where V0 is affine, V0 → Y0 is étale, U0 ⊂ (X0)V0 is open, U0 → V0 is finite, and
U0 → X0 is surjective. Since Vi → Yi is étale and hence universally open, follows
that it suffices to prove that Ui → Vi is universally open for large enough i. This
reduces us to the case discussed in the next paragraph.
Let A = colimAi be a filtered colimit of rings. Let A0 → B0 be a ring map.
Set B = A ⊗A0 B0 and Bi = Ai ⊗A0 B0. Assume A0 → B0 is finite, of finite
presentation, and A → B is universally open. We have to show that Ai → Bi
is universally open for i large enough. Pick b0,1, . . . , b0,d ∈ B0 which generate B0
as an A0-module. Set h0 =

∑
j=1,...,d xjb0,j in B0[x1, . . . , xd]. Denote h, resp.

hi the image of h0 in B[x1, . . . , xd], resp. Bi[x1, . . . , xd]. The image U of D(h)
in Spec(A[x1, . . . , xd]) is open as A → B is universally open. Of course U is
quasi-compact as the image of an affine scheme. For i large enough there is a quasi-
compact open Ui ⊂ Spec(Ai[x1, . . . , xd]) whose inverse image in Spec(A[x1, . . . , xd])
is U , see Limits, Lemma 32.4.11. After increasing i we may assume that D(hi) maps
into Ui; this follows from the same lemma by considering the pullback of Ui inD(hi).
Finally, for i even larger the morphism of schemes D(hi)→ Ui will be surjective by
an application of the already used Limits, Lemma 32.8.15. We conclude Ai → Bi
is universally open by Lemma 37.74.3. □

Lemma 37.74.5.0F35 Let f : X → Y be a locally quasi-finite morphism. Then
(1) the functions nX/Y of Lemmas 37.27.3 and 37.28.3 agree,
(2) if X is quasi-compact, then nX/Y attains a maximum d <∞.

Proof. Agreement of the functions is immediate from the fact that the (geomet-
ric) fibres of a locally quasi-finite morphism are discrete, see Morphisms, Lemma
29.20.8. Boundedness follows from Morphisms, Lemmas 29.57.2 and 29.57.9. □

Lemma 37.74.6.0F36 Let f : X → Y be a separated, locally quasi-finite, and universally
open morphism of schemes. Let nX/Y be as in Lemma 37.74.5. If nX/Y (y) ≥ d for
some y ∈ Y and d ≥ 0, then nX/Y ≥ d in an open neighbourhood of y.

Proof. The question is local on Y hence we may assume Y affine. Let K be an
algebraic closure of the residue field κ(y). Our assumption is that (Xy)K has ≥ d
connected components. Then for a suitable quasi-compact open X ′ ⊂ X the scheme
(X ′

y)K has ≥ d connected components; details omitted. After replacing X by X ′

we may assume X is quasi-compact. Then f is quasi-finite. Let x1, . . . , xn be the
points of X lying over y. Apply Lemma 37.41.5 to get an étale neighbourhood
(U, u)→ (Y, y) and a decomposition

U ×Y X = W ⨿
∐

i=1,...,n

∐
j=1,...,mi

Vi,j

as in locus citatus. Observe that nX/Y (y) =
∑
imi in this situation; some details

omitted. Since f is universally open, we see that Vi,j → U is open for all i, j. Hence
after shrinking U we may assume Vi,j → U is surjective for all i, j. This proves that
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nU×YX/U ≥
∑
imi = nX/Y (y) ≥ d. Since the construction of nX/Y is compatible

with base change the proof is complete. □

Lemma 37.74.7.0F37 Let f : X → Y be a separated, locally quasi-finite, and universally
open morphism of schemes. Let nX/Y be as in Lemma 37.74.5. If nX/Y attains a
maximum d <∞, then the set

Yd = {y ∈ Y | nX/Y (y) = d}

is open in Y and the morphism f−1(Yd)→ Yd is finite.

Proof. The openness of Yd is immediate from Lemma 37.74.6. To prove finiteness
over Yd we redo the argument of the proof of that lemma. Namely, let y ∈ Yd. Then
there are at most d points of X lying over y. Say x1, . . . , xn are the points of X
lying over y. Apply Lemma 37.41.5 to get an étale neighbourhood (U, u) → (Y, y)
and a decomposition

U ×Y X = W ⨿
∐

i=1,...,n

∐
j=1,...,mi

Vi,j

as in locus citatus. Observe that d = nX/Y (y) =
∑
imi in this situation; some

details omitted. Since f is universally open, we see that Vi,j → U is open for all
i, j. Hence after shrinking U we may assume Vi,j → U is surjective for all i, j and we
may assume U maps into W . This proves that nU×YX/U ≥

∑
imi = d. Since the

construction of nX/Y is compatible with base change we know that nU×YX/U = d.
This means that W has to be empty and we conclude that U ×Y X → U is finite.
By Descent, Lemma 35.23.23 this implies that X → Y is finite over the image of
the open morphism U → Y . In other words, we see that f is finite over an open
neighbourhood of y as desired. □

37.75. Weightings

0F38 The material in this section is taken from [AGV71, Exposee XVII, 6.2.4].

Let π : U → V be a locally quasi-finite morphism of schemes with finite fibres.
Given a function w : U → Z we define a function∫

π
w : V −→ Z, v 7−→

∑
u∈U, π(u)=v w(u)[κ(u) : κ(v)]s

Note that the field extensions are finite (Morphisms, Lemma 29.20.5), [κ′ : κ]s is
the separable degree (Fields, Definition 9.14.7), and the sum is finite as the fibres of
π are assumed finite. Another way to compute the value of

∫
π
w at a point v ∈ V is

as follows. Choose an algebraically closed field k and a morphism v : Spec(k)→ V
whose image is v. Then we have

(
∫
π
w)(v) =

∑
u∈Uv w(u)

where of course w(u) denotes the value of w at the image u of the point u under the
morphism Uv → U . Note that we may view u ∈ Uv as morphisms u : Spec(k)→ U
such that π ◦ u = v. Namely, since U → V is locally quasi-finite with finite fibres,
the scheme Uv is the spectrum of a finite dimension algebra over k and all of whose
prime ideals are maximal ideals with residue field k. To see that the equality holds,
note that the number of morphisms u lying over a given u is equal to [κ(u) : κ(v)]s
by Fields, Lemma 9.14.8.
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Lemma 37.75.1.0F39 Given a cartesian square

U

π

��

U ′
h

oo

π′

��
V V ′goo

with π locally quasi-finite with finite fibres and a function w : U → Z we have
(
∫
π
w) ◦ g =

∫
π′(w ◦ h).

Proof. This follows immediately from the second description of
∫
π
w given above.

To prove it from the definition, you use that if E/F is a finite extension of fields
and F ′/F is another field extension, then writing (E⊗F F ′)red =

∏
E′
i as a product

of fields finite over F ′, we have

[E : F ]s =
∑

[E′
i : F ′]s

To prove this equality pick an algebraically closed field extension Ω/F ′ and observe
that

[E : F ]s = |MorF (E,Ω)|
= |MorF ′(E ⊗F F ′,Ω)|
= |MorF ′((E ⊗F F ′)red,Ω)|

=
∑
|MorF ′(E′

i,Ω)|

=
∑

[E′
i : F ′]s

where we have used Fields, Lemma 9.14.8. □

Definition 37.75.2.0F3A Let f : X → Y be a locally quasi-finite morphism. A weighting
or a pondération of f is a map w : X → Z such that for any diagram

X

f

��

U
h
oo

π

��
Y V

goo

where V → Y is étale, U ⊂ XV is open, and U → V finite, the function
∫
π
(w ◦ h)

is locally constant.

Of course taking w = 0 we obtain a weighting of any locally quasi-finite morphism
f , albeit not a very interesting one. It will turn out that positive weightings, i.e.,
w : X → Z>0 are the most interesting ones for various purposes.

Lemma 37.75.3.0F3B Let f : X → Y be a locally quasi-finite morphism. Let w : X → Z
be a weighting. Let f ′ : X ′ → Y ′ be the base change of f by a morphism Y ′ → Y .
Then the composition w′ : X ′ → Z of w and the projection X ′ → X is a weighting
of f ′.

Proof. Consider a diagram
X ′

f ′

��

U ′
h′
oo

π′

��
Y ′ V ′g′
oo
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as in Definition 37.75.2 for the morphism f ′. For any v′ ∈ V ′ we have to show that∫
π′(w′ ◦h′) is constant in an open neighbourhood of v′. By Lemma 37.75.1 (and the

fact that étale morphisms are open) we may replace V ′ by any étale neighbourhood
of v′. After replacing V ′ by an étale neighbourhood of v′ we may assume that
U ′ = U ′

1 ⨿ . . . ⨿ U ′
n where each U ′

i has a unique point u′
i lying over v′ such that

κ(u′
i)/κ(v′) is purely inseparable, see Lemma 37.41.5. Clearly, it suffices to prove

that
∫
U ′
i
→V ′ w

′|U ′
i

is constant in a neighbourhood of v′. This reduces us to the case
discussed in the next paragraph.
We have v′ ∈ V ′ and there is a unique point u′ of U ′ lying over v′ with κ(u′)/κ(v′)
purely inseparable. Denote x ∈ X and y ∈ Y the image of u′ and v′. We can find an
étale neighbourhood (V, v) → (Y, y) and an open U ⊂ XV such that π : U → V is
finite and such that there is a unique point u ∈ U lying over v which maps to x ∈ X
via the projection h : U → X such that moreover κ(u)/κ(v) is purely inseparable.
This is possible by the lemma used above. Consider the morphism

U ′′ = U ×X U ′ −→ V ×Y V ′ = V ′′

Since u and u′ both map to x ∈ X there is a point u′′ ∈ U ′′ mapping to (u, u′).
Denote v′′ ∈ V ′′ the image of u′′. After replacing V ′, v′ by V ′′, v′′ we may assume
that the composition V ′ → Y ′ → Y factors through a map of étale neighbourhoods
(V ′, v′)→ (V, v) such that the induced morphism X ′

V ′ = XV ′ → XV sends u′ to u.
Inside the base change X ′

V ′ = XV ′ we have two open subschemes, namely U ′ and
the inverse image UV ′ of U ⊂ XV . By construction both contain a unique point
lying over v′, namely u′ for both of them. Thus after shrinking V ′ we may assume
these open subsets are the same; namely, U ′ \ (U ′ ∩UV ′) and UV ′ \ (U ′ ∩UV ′) have
a closed image in V ′ and these images do not contain v′. Thus U ′ = UV ′ and we
find a cartesian diagram as in Lemma 37.75.1. Since

∫
π
(w ◦ h) is locally constant

by assumption we conclude. □

Lemma 37.75.4.0GK8 Let f : X → Y be a locally quasi-finite morphism. Let w : X → Z
be a weighting of f . If X ′ ⊂ X is open, then w|X′ is a weighting of f |X′ : X ′ → Y .

Proof. Immediate from the definition. □

Lemma 37.75.5.0GK9 Let f : X → Y and g : Y → Z be locally quasi-finite morphisms.
Let wf : X → Z be a weighting of f and let wg : Y → Z be a weighting of g. Then
the function

X −→ Z, x 7−→ wf (x)wg(f(x))
is a weighting of g ◦ f .

Proof. Let us set wg◦f (x) = wf (x)wg(f(x)) for x ∈ X. Consider a diagram

X

g◦f
��

Uoo

π

��
Z Woo

where W → Z is étale, U ⊂ XW is open, and U → W finite. We have to show
that

∫
π
wg◦f |U is locally constant. Choose a point w ∈ W . By Lemma 37.75.1

(and the fact that étale morphisms are open) it suffices to show that
∫
π
wg◦f |U is

constant after replacing (W,w) by an étale neighbourhood. After replacing (W,w)
by an étale neighbourhood we may assume U = U1 ⨿ . . . ⨿ Un where each Ui
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has a unique point ui lying over w such that κ(ui)/κ(w) is purely inseparable,
see Lemma 37.41.5. Clearly, it suffices to show that

∫
Ui→W

wg◦f |Ui is constant in
an étale neighbourhood of w. This reduces us to the case discussed in the next
paragraph.
We have w ∈ W and there is a unique point u ∈ U lying over w with κ(u)/κ(w)
purely inseparable. Consider the point v = f(u) ∈ Y . After replacing (W,w) by an
elementary étale neighbourhood we may assume there is an open neighbourhood
V ⊂ YW of v such that V → W is finite, see Lemma 37.41.1. Then f−1

W (V ) ∩ U
is an open neighbourhood of u where fW : XW → YW is the base change of f to
W . Hence after Zariski shrinking W , we may assume fW (U) ⊂ V . Thus we obtain
morphisms

U
a−→ V

b−→W

and U → V is finite as V → W is separated (because finite). Since wf and wg
are weightings of f and g we see that

∫
a
wf |U is locally constant on V and

∫
b
wg|V

is locally constant on W . Thus after shrinking W one more time we may assume
these functions are constant say with values n and m. It follows immediately that∫
π
wg◦f |U =

∫
b◦a wg◦f |U is constant with value nm as desired. □

Lemma 37.75.6.0F3C Let f : X → Y be a locally quasi-finite morphism. Let w : X → Z
be a weighting. If w(x) > 0 for all x ∈ X, then f is universally open.

Proof. Since the property is preserved by base change, see Lemma 37.75.3, it suffices
to prove that f is open. Since we may also replace X by any open of X, it suffices
to prove that f(X) is open. Let y ∈ f(X). Choose x ∈ X with f(x) = y. It suffices
to prove that f(X) contains an open neighbourhood of y and it suffices to do so
after replacing Y by an étale neighbourhood of y. By étale localization of quasi-
finite morphisms, see Section 37.41, we may assume there is an open neighbourhood
U ⊂ X of x such that π = f |U : U → Y is finite. Then

∫
π
w|U is locally constant

and has positive value at y. Hence π(U) contains an open neighbourhood of y and
the proof is complete. □

Lemma 37.75.7.0F3D Let f : X → Y be a morphism of schemes. Assume f is lo-
cally quasi-finite, locally of finite presentation, and flat. Then there is a positive
weighting w : X → Z>0 of f given by the rule that sends x ∈ X lying over y ∈ Y
to

w(x) = lengthOX,x
(OX,x/myOX,x)[κ(x) : κ(y)]i

where [κ′ : κ]i is the inseparable degree (Fields, Definition 9.14.7).

Proof. Consider a diagram as in Definition 37.75.2. Let u ∈ U with images x, y, v
in X,Y, V . Then we claim that

lengthOX,x
(OX,x/myOX,x) = lengthOU,u

(OU,u/mvOU,u)
and

[κ(x) : κ(y)]i = [κ(u) : κ(v)]i
The first equality follows as OX,x → OU,u is a flat local homomorphism such that
myOU,u = mvOU,u and mxOU,u = mu (because OY,y → OV,v and OX,x → OU,u
are unramified) and hence the equality by Algebra, Lemma 10.52.13. The second
equality follows because κ(v)/κ(y) is a finite separable extension and κ(u) is a
factor of κ(x) ⊗κ(y) κ(v) and hence the inseparable degree is unchanged. Having
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said this, we see that formation of the function in the lemma commutes with étale
base change. This reduces the problem to the discussion of the next paragraph.
Assume that f is a finite, flat morphism of finite presentation. We have to show
that

∫
f
w is locally constant on Y . In fact, f is finite locally free (Morphisms,

Lemma 29.48.2) and we will show that
∫
f
w is equal to the degree of f (which is a

locally constant function on Y ). Namely, for y ∈ Y we see that

(
∫
f
w)(y) =

∑
f(x)=y

lengthOX,x
(OX,x/myOX,x)[κ(x) : κ(y)]i[κ(x) : κ(y)]s

=
∑

f(x)=y
lengthOX,x

(OX,x/myOX,x)[κ(x) : κ(y)]

= lengthOY,y
((f∗OX)y/my(f∗OX)y)

Last equality by Algebra, Lemma 10.52.12. The final number is the rank of f∗OX
at y as desired. □

Lemma 37.75.8.0F3E Let f : X → Y be a morphism of schemes. Assume
(1) f is locally quasi-finite, and
(2) Y is geometrically unibranch and locally Noetherian.

Then there is a weighting w : X → Z≥0 given by the rule that sends x ∈ X lying
over y ∈ Y to the “generic separable degree” of OshX,x over OshY,y.

Proof. It follows from Algebra, Lemma 10.156.3 that OshY,y → OshX,x is finite. Since
Y is geometrically unibranch there is a unique minimal prime p in OshY,y, see More
on Algebra, Lemma 15.106.5. Write

(κ(p)⊗Osh
Y,y
OshX,x)red =

∏
Ki

as a finite product of fields. We set w(x) =
∑

[Ki : κ(p)]s.
Since this definition is clearly insensitive to étale localization, in order to show that
w is a weighting we reduce to showing that if f is a finite morphism, then

∫
f
w is

locally constant. Observe that the value of
∫
f
w in a generic point η of Y is just

the number of points of the geometric fibre Xη of X → Y over η. Moreover, since
Y is unibranch a point y of Y is the specialization of a unique generic point η.
Hence it suffices to show that (

∫
f
w)(y) is equal to the number of points of Xη.

After passing to an affine neighbourhood of y we may assume X → Y is given by
a finite ring map A→ B. Suppose OshY,y is constructed using a map κ(y)→ k into
an algebraically closed field k. Then

OshY,y ⊗A B =
∏

f(x)=y

∏
φ∈Morκ(y)(κ(x),k)

OshX,x

by Algebra, Lemma 10.153.4 and the lemma used above. Observe that the minimal
prime p of OshY,y maps to the prime of A corresponding to η. Hence we see that
the desired equality holds because the number of points of a geometric fibre is
unchanged by a field extension. □

37.76. More on weightings

0F3F We prove a few more basic properties of weightings. Allthough at first it appears
that weightings can be very wild, it actually turns out the condition imposed in
Definition 37.75.2 is rather strong.
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Lemma 37.76.1.0F3G Let f : X → Y be a locally quasi-finite morphism. Let w : X → Z
be a weighting of f . Then the level sets of the function w are locally constructible
in X.
Proof. In the proof below we will use Lemmas 37.75.4 and 37.75.3 without further
mention. We will also use elementary properties of constructible subsets of schemes
and topological spaces, see Topology, Section 5.15 and Properties, Section 28.2.
Using this the reader sees question is local on X and Y ; details omitted. Hence we
may assume X and Y are affine. If we can find a surjective morphism Y ′ → Y of
finite presentation such that the level sets of w pull back to locally constructible
subsets of X ′ = Y ′ ×Y X, then we conclude by Morphisms, Theorem 29.22.3.
Assume X and Y affine. We may choose an immersion X → T where T → Y is
finite, see Lemma 37.43.3. By Morphisms, Lemma 29.48.6 after replacing Y by Y ′

surjective finite locally free over Y , replacing X by Y ′×Y X and T by a scheme finite
locally free over Y ′ containing Y ′ ×Y T as a closed subscheme, we may assume T
is finite locally free over Y , contains closed subschemes Ti mapping isomorphically
to Y such that T =

⋃
i=1,...,n Ti (set theoretically). Since Ti ⊂ T is a constructible

closed subset (as the image of a finitely presented morphism Y → T of schemes), we
see that for I ⊂ {1, . . . , n} the intersection

⋂
i∈I Ti is a constructible closed subset

of T and hence maps to a constructible closed subset of Y .
For a disjoint union decomposition {1, . . . , n} = I1 ⨿ . . . ⨿ Ir with nonempty
parts consider the subset YI1,...,Ir ⊂ Y consisting of points y ∈ Y such that
Ty = {x1, . . . , xr} consists of exactly r points with xj ∈ Ti ⇔ i ∈ Ij . By our
remarks above this is a constructible partition of Y . There exists an affine scheme
Y ′ of finite presentation over Y such that the image of Y ′ → Y is exactly YI1,...,Ir ,
see Algebra, Lemma 10.29.4. Hence we may assume that Y = YI1,...,Ir for some dis-
joint union decomposition {1, . . . , n} = I1⨿. . .⨿Ir. In this case T = T (1)⨿. . .⨿T (r)
with T (j) =

⋂
i∈Ij Ti is a decomposition of T into disjoint closed (and hence open)

subsets. Intersecting with the locally closed subscheme X we obtain an analogous
decomposition X = X(1) ⨿ . . . ⨿X(r) into open and closed parts. The morphism
X(j) → Y an immersion. Since w is a weighting, it follows that w|X(j) is locally
constant16 and we conclude. □

Lemma 37.76.2.0F3H Let f : X → Y be a locally quasi-finite morphism of finite pre-
sentation. Let w : X → Z be a weighting of f . Then the level sets of the function∫
f
w are locally constructible in Y .

Proof. By Lemma 37.75.1 formation of the function
∫
f
w commutes with arbitrary

base change and by Lemma 37.75.3 after base change we still have a weighthing.
This means that if we can find Y ′ → Y surjective and of finite presentation, then
it suffices to prove the result after base change to Y ′, see Morphisms, Theorem
29.22.3.
The question is local on Y hence we may assume Y is affine. Then X is quasi-
compact and quasi-separated (as f is of finite presentation). Suppose that X =
U ∪ V are quasi-compact open. Then we have∫

f
w =

∫
f |Uw|U +

∫
f |V w|V −

∫
f |U∩V

w|U∩V

16In fact, if f : X → Y is an immersion and w is a weighting of f , then f restricts to an open
map on the locus where w is nonzero.

https://stacks.math.columbia.edu/tag/0F3G
https://stacks.math.columbia.edu/tag/0F3H


37.76. MORE ON WEIGHTINGS 3362

Thus if we know the result for w|U , w|V , w|U∩V then we know the result for w.
By the induction principle (Cohomology of Schemes, Lemma 30.4.1) it suffices to
prove the lemma when X is affine.
Assume X and Y are affine. We may choose an open immersion X → T where
T → Y is finite, see Lemma 37.43.3. Because we may still base change with a
suitable Y ′ → Y we can use Morphisms, Lemma 29.48.6 to reduce to the case
where all residue field extensions induced by the morphism T → Y (and a foriori
induced by X → Y ) are trivial. In this situation

∫
f
w is just taking the sums of

the values of w in fibres. The level sets of w are locally constructible in X (Lemma
37.76.1). The function w only takes a finite number of values by Properties, Lemma
28.2.7. Hence we conclude by Morphisms, Theorem 29.22.3 and some elementary
arguments on sums of integers. □

Lemma 37.76.3.0F3I Let f : X → Y be a locally quasi-finite morphism. Let w : X →
Z>0 be a positive weighting of f . Then w is upper semi-continuous.
Proof. Let x ∈ X with image y ∈ Y . Choose an étale neighbourhood (V, v)→ (Y, y)
and an open U ⊂ XV such that π : U → V is finite and there is a unique point
u ∈ U mapping to v with κ(u)/κ(v) purely inseparable. See Lemma 37.41.3. Then
(
∫
π
w|U )(v) = w(u). It follows from Definition 37.75.2 that after replacing V by a

neighbourhood of v we we have w|U (u′) ≤ w|U (u) = w(x) for all u′ ∈ U . Namely,
w|U (u′) occurs as a summand in the expression for (

∫
π
w|U )(π(u′)). This proves

the lemma because the étale morphism U → X is open. □

Lemma 37.76.4.0F3J Let f : X → Y be a separated, locally quasi-finite morphism with
finite fibres. Let w : X → Z>0 be a positive weighting of f . Then

∫
f
w is lower

semi-continuous.
Proof. Let y ∈ Y . Let x1, . . . , xr ∈ X be the points lying over y. Apply Lemma
37.41.5 to get an étale neighbourhood (U, u)→ (Y, y) and a decomposition

U ×Y X = W ⨿
∐

i=1,...,n

∐
j=1,...,mi

Vi,j

as in locus citatus. Observe that (
∫
f
w)(y) =

∑
w(vi,j) where w(vi,j) = w(xi).

Since
∫
Vi,j→U

w|Vi,j is locally constant by definition, we may after shrinking U

assume these functions are constant with value w(vi,j). We conclude that∫
U×YX→U

w|U×YX =
∫
W→U

w|W +
∑∫

Vi,j→U
w|Vi,j =

∫
W→U

w|W + (
∫
f
w)(y)

This is ≥ (
∫
f
w)(y) and we conclude because U → Y is open and formation of the

integral commutes with base change (Lemma 37.75.1). □

Lemma 37.76.5.0F3K Let f : X → Y be a locally quasi-finite morphism with X quasi-
compact. Let w : X → Z be a weighting of f . Then

∫
f
w attains its maximum.

Proof. It follows from Lemma 37.76.1 and Properties, Lemma 28.2.7 that w only
takes a finite number of values on X. It follows from Morphisms, Lemma 29.57.9
that X → Y has bounded geometric fibres. This shows that

∫
f
w is bounded. □

Lemma 37.76.6.0F3L Let f : X → Y be a separated, locally quasi-finite morphism. Let
w : X → Z>0 be a positive weighting of f . Assume

∫
w
f attains its maximum d

and let Yd ⊂ Y be the open set of points y with (
∫
f
w)(y) = d. Then the morphism

f−1(Yd)→ Yd is finite.
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Proof. Observe that Yd is open by Lemma 37.76.4. Let y ∈ Yd. Say x1, . . . , xn are
the points of X lying over y. Apply Lemma 37.41.5 to get an étale neighbourhood
(U, u)→ (Y, y) and a decomposition

U ×Y X = W ⨿
∐

i=1,...,n

∐
j=1,...,mi

Vi,j

as in locus citatus. Observe that d =
∑
w(vi,j) where w(vi,j) = w(xi). Since∫

Vi,j→U
w|Vi,j is locally constant by definition, we may after shrinking U assume

these functions are constant with value w(vi,j). We conclude that∫
U×YX→U

w|U×YX =
∫
W→U

w|W +
∑∫

Vi,j→U
w|Vi,j =

∫
W→U

w|W + (
∫
f
w)(y)

This is ≥ (
∫
f
w)(y) = d and we conclude that W must be the emptyset. Thus

U ×Y X → U is finite. By Descent, Lemma 35.23.23 this implies that X → Y is
finite over the image of the open morphism U → Y . In other words, we see that f
is finite over an open neighbourhood of y as desired. □

Lemma 37.76.7.0F3M Let A→ B be a ring map which is finite and of finite presentation.
There exists a finitely presented ring map A → Auniv and an idempotent euniv ∈
B⊗AAuniv such that for any ring map A→ A′ and idempotent e ∈ B⊗AA′ there
is a ring map Auniv → A′ mapping euniv to e.

Proof. Choose b1, . . . , bn ∈ B generating B as an A-module. For each i choose a
monic Pi ∈ A[x] such that Pi(bi) = 0 in B, see Algebra, Lemma 10.36.3. Thus B
is a quotient of the finite free A-algebra B′ = A[x1, . . . , xn]/(P1(x1), . . . , Pn(xn)).
Let J ⊂ B′ be the kernel of the surjection B′ → B. Then J = (f1, . . . , fm)
is finitely generated as B is a finitely generated A-algebra, see Algebra, Lemma
10.6.2. Choose an A-basis b′

1, . . . , b
′
N of B′. Consider the algebra

Auniv = A[z1, . . . , zN , y1, . . . , ym]/I

where I is the ideal generated by the coefficients in A[z1, . . . , zn, y1, . . . , ym] of the
basis elements b′

1, . . . , b
′
N of the expresssion

(
∑

zjb
′
j)2 −

∑
zjb

′
j +

∑
ykfk

in B′[z1, . . . , zN , y1, . . . , ym]. By construction the element
∑
zjb

′
j maps to an idem-

potent euniv in the algebra B⊗AAuniv. Moreover, if e ∈ B⊗AA′ is an idempotent,
then we can lift e to an element of the form

∑
b′
j ⊗ a′

j in B′ ⊗A A′ and we can find
a′′
k ∈ A′ such that

(
∑

b′
j ⊗ a′

j)2 −
∑

b′
j ⊗ a′

j +
∑

fk ⊗ a′′
k

is zero in B′ ⊗A A′. Hence we get an A-algebra map Auniv → A sending zj to a′
j

and yk to a′′
k mapping euniv to e. This finishes the proof. □

Lemma 37.76.8.0F3N Let X → Y be a morphism of affine schemes which is quasi-finite
and of finite presentation. There exists a morphism Yuniv → Y of finite presentation
and an open subscheme Uuniv ⊂ Yuniv ×Y X such that Uuniv → Yuniv is finite with
the following property: given any morphism Y ′ → Y of affine schemes and an open
subscheme U ′ ⊂ Y ′ ×Y X such that U ′ → Y ′ is finite, there exists a morphism
Y ′ → Yuniv such that the inverse image of Uuniv is U ′.
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Proof. Recall that a finite type morphism is quasi-finite if and only if it has relative
dimension 0, see Morphisms, Lemma 29.29.5. By Lemma 37.34.9 applied with d = 0
we reduce to the case where X and Y are Noetherian. We may choose an open
immersion X → X ′ such that X ′ → Y is finite, see Algebra, Lemma 10.123.14.
Note that if we have Y ′ → Y and U ′ as in (2), then

U ′ → Y ′ ×Y X → Y ′ ×Y X ′

is open immersion between schemes finite over Y ′ and hence is closed as well. We
conclude that U ′ corresponds to an idempotent in

Γ(Y ′,OY ′)⊗Γ(Y,OY ) Γ(X ′,OX′)
whose corresponding open and closed subset is contained in the open Y ′×Y X. Let
Y ′
univ → Y and idempotent

e′
univ ∈ Γ(Yuniv,OYuniv )⊗Γ(Y,OY ) Γ(X ′,OX′)

be the pair constructed in Lemma 37.76.7 for the ring map Γ(Y,OY )→ Γ(X ′,OX′)
(here we use that Y is Noetherian to see that X ′ is of finite presentation over Y ).
Let U ′

univ ⊂ Y ′
univ ×Y X ′ be the corresponding open and closed subscheme. Then

we see that
U ′
univ \ Y ′

univ ×Y X
is a closed subset of U ′

univ and hence has closed image T ⊂ Y ′
univ. If we set

Yuniv = Y ′
univ \ T and Uuniv the restriction of U ′

univ to Yuniv ×Y X, then we see
that the lemma is true. □

Lemma 37.76.9.0F3P Let Y = lim Yi be a directed limit of affine schemes. Let 0 ∈ I
and let f0 : X0 → Y0 be a morphism of affine schemes which is quasi-finite and of
finite presentation. Let f : X → Y and fi : Xi → Yi for i ≥ 0 be the base changes
of f0. If w : X → Z is a weighting of f , then for sufficiently large i there exists a
weighting wi : Xi → Z of fi whose pullback to X is w.

Proof. By Lemma 37.76.1 the level sets of w are constructible subsets Ek of X.
This implies the function w only takes a finite number of values by Properties,
Lemma 28.2.7. Thus there exists an i such that Ek descends to a construcible
subset Ei,k in Xi for all k; moreover, we may assume Xi =

∐
Ei,k. This follows

as the topological space of X is the limit in the category of topological spaces of
the spectral spaces Xi along a directed system with spectral transition maps. See
Limits, Section 32.4 and Topology, Section 5.24. We define wi : Xi → Z such that
its level sets are the constructible sets Ei,k.
Choose Yi,univ → Yi and Ui,univ ⊂ Yi,univ ×Yi Xi as in Lemma 37.76.8. By the
universal property of the construction, in order to show that wi is a weighting, it
would suffice to show that

τi =
∫
Ui,univ→Yi,univ

wi|Ui,univ
is locally constant on Yi,univ. By Lemma 37.76.2 this function has constructible
level sets but it may not (yet) be locally constant. Set Yuniv = Yi,univ ×Yi Y and
let Uuniv ⊂ Yuniv ×Y X be the inverse image of Ui,univ. Then, since the pullback
of w to Yuniv ×Y X is a weighting for Yuniv ×Y X → Yuniv (Lemma 37.75.3) we do
have that

τ =
∫
Uuniv→Yuniv

wi|Uuniv
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is locally constant on Yuniv. Thus the level sets of τ are open and closed. Finally,
we have Yuniv = limi′≥i Yi′,univ and the level sets of τ are the inverse limits of
the level sets of τi′ (similarly defined). Hence the references above imply that for
sufficiently large i′ the level sets of τi′ are open as well. For such an index i′ we
conclude that wi′ is a weighting of fi′ as desired. □

37.77. Weightings and affine stratification numbers

0F3Q In this section we give a bound for the affine stratification number of a scheme
which has a certain kind of cover by an affine scheme.

Lemma 37.77.1.0F3R Let f : X → Y be a morphism of affine schemes which is quasi-
finite and of finite presentation. Let w : X → Z>0 be a postive weighting of f . Let
d <∞ be the maximum value of

∫
f
w. The open

Yd = {y ∈ Y | (
∫
f
w)(y) = d}

of Y is affine.

Proof. Observe that
∫
f
w attains its maximum by Lemma 37.76.5. The set Yd is

open by Lemma 37.76.4. Thus the statement of the lemma makes sense.
Reduction to the Noetherian case; please skip this paragraph. Recall that a fi-
nite type morphism is quasi-finite if and only if it has relative dimension 0, see
Morphisms, Lemma 29.29.5. By Lemma 37.34.9 applied with d = 0 we can find a
quasi-finite morphism f0 : X0 → Y0 of affine Noetherian schemes and a morphism
Y → Y0 such that f is the base change of f0. Then we can write Y = limYi
as a directed limit of affine schemes of finite type over Y0, see Algebra, Lemma
10.127.2. By Lemma 37.76.9 we can find an i such that our weighting w descends
to a weighting wi of the base change fi : Xi → Yi of f0. Now if the lemma holds
for fi, wi, then it implies the lemma for f as formation of

∫
f
w commutes with base

change, see Lemma 37.75.1.
Assume X and Y Noetherian. Let X ′ → Y ′ be the base change of f by a morphism
g : Y ′ → Y . The formation of

∫
f
w and hence the open Yd commute with base

change. If g is finite and surjective, then Y ′
d → Yd is finite and surjective. In

this case proving that Yd is affine is equivalent to showing that Y ′
d is affine, see

Cohomology of Schemes, Lemma 30.13.3.
We may choose an immersion X → T with T finite over Y , see Lemma 37.43.3. We
are going to apply Morphisms, Lemma 29.48.6 to the finite morphism T → Y . This
lemma tells us that there is a finite surjective morphism Y ′ → Y such that Y ′×Y T
is a closed subscheme of a scheme T ′ finite over Y ′ which has a special form. By
the discussion in the first paragraph, we may replace Y by Y ′, T by T ′, and X by
Y ′×Y X. Thus we may assume there is an immersion X → T (not necessarily open
or closed) and closed subschemes Ti ⊂ T , i = 1, . . . , n where

(1) T → Y is finite (and locally free),
(2) Ti → Y is an isomorphism, and
(3) T =

⋃
i=1,...,n Ti set theoretically.

Let Y ′ =
∐
Yk be the disjoint union of the irreducible components of Y (viewed as

integral closed subschemes of Y ). Then we may base change once more by Y ′ → Y ;
here we are using that Y is Noetherian. Thus we may in addition assume Y is
integral and Noetherian.
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We also may and do assume that Ti ̸= Tj if i ̸= j by removing repeats. Since Y and
hence all Ti are integral, this means that if Ti and Tj intersect, then they intersect
in a closed subset which maps to a proper closed subset of Y .
Observe that Vi = X ∩ Ti is a locally closed subset which is in addition a closed
subscheme of X hence affine. Let η ∈ Y and ηi ∈ Ti be the generic points. If
η ̸∈ Yd, then Yd = ∅ and we’re done. Assume η ∈ Yd. Denote I ∈ {1, . . . , n} the
subset of indices i such that ηi ∈ Vi. For i ∈ I the locally closed subset Vi ⊂ Ti
contains the generic point of the irreducible space Ti and hence is open. On the
other hand, since f is open (Lemma 37.75.6), for any x ∈ X we can find an i ∈ I and
a specialization ηi ⇝ x. It follows that x ∈ Ti and hence x ∈ Vi. In other words, we
see that X =

⋃
i∈I Vi set theoretically. We claim that Yd =

⋂
i∈I Im(Vi → Y ); this

will finish the proof as the intersection of affine opens Im(Vi → Y ) of Y is affine.
For y ∈ Y let f−1({y}) = {x1, . . . , xr} in X. For each i ∈ I there is at most one
j(i) ∈ {1, . . . , xr} such that ηi ⇝ xj(i). In fact, j(i) exists and is equal to j if and
only if xj ∈ Vi. If i ∈ I is such that j = j(i) exists, then Vi → Y is an isomorphism
in a neighbourhood of xj 7→ y. Hence

⋃
i∈I, j(i)=j Vi → Y is finite after replacing

source and target by neighbourhoods of xj 7→ y. Thus the definition of a weighting
tells us that w(xj) =

∑
i∈I, j(i)=j w(ηi). Thus we see that

(
∫
f
w)(η) =

∑
i∈I w(ηi) ≥

∑
j(i) exists w(ηi) =

∑
j w(xj) = (

∫
f
w)(y)

Thus equality holds if and only if y is contained in
⋂
i∈I Im(Vi → Y ) which is what

we wanted to show. □

Proposition 37.77.2.0F3S Let f : X → Y be a surjective quasi-finite morphism of
schemes. Let w : X → Z>0 be a positive weighting of f . Assume X affine and Y
separated17. Then the affine stratification number of Y is at most the number of
distinct values of

∫
f
w.

Proof. Note that since Y is separated, the morphism X → Y is affine (Morphisms,
Lemma 29.11.11). The function

∫
f
w attains its maximum d by Lemma 37.76.5. We

will use induction on d. Consider the open subscheme Yd = {y ∈ Y | (
∫
f
w)(y) = d}

of Y and recall that f−1(Yd)→ Yd is finite, see Lemma 37.76.6. By Lemma 37.77.1
for every affine open W ⊂ Y we have that Yd ∩W is affine (this uses that W ×Y X
is affine, being affine over X). Hence Yd → Y is an affine morphism of schemes. We
conclude that f−1(Yd) = Yd ×Y X is an affine scheme being affine over X. Then
f−1(Yd) → Yd is surjective and hence Yd is affine by Limits, Lemma 32.11.1. Set
X ′ = X \ f−1(Yd) and Y ′ = Y \Yd viewed as closed subschemes of X and Y . Since
X ′ is closed in X it is affine. Since Y ′ is closed in Y it is separated. The morphism
f ′ : X ′ → Y ′ is surjective and w induces a weighting w′ of f ′, see Lemma 37.75.3.
By induction Y ′ has an affine stratification of length ≤ the number of distinct values
of
∫
f ′ w

′ and the proof is complete. □

37.78. Completely decomposed morphisms

0GTH Nishnevich studied the notion of a completely decomposed family of étale mor-
phisms, in order to define what is now called the Nishnevich topology, see for
example [Nis89].

17It suffices if the diagonal of Y is affine.
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Definition 37.78.1.0GTI A morphism f : X → Y of schemes is said to be completely
decomposed18 if for all points y ∈ Y there is a point x ∈ X with f(x) = y such that
the field extension κ(x)/κ(y) is trivial. A family of morphisms {fi : Xi → Y }i∈I of
schemes with fixed target is said to be completely decomposed if

∐
fi :

∐
Yi → X

is completely decomposed.

We start with some basic lemmas.

Lemma 37.78.2.0GTJ The composition of two completely decomposed morphisms of
schemes is completely decomposed. If {fi : Xi → Y }i∈I is completely decomposed
and for each i we have a family {Xij → Xi}j∈Ji which is completely decomposed,
then the family {Xij → Y }i∈I,j∈Ji is completely decomposed.

Proof. Omitted. □

Lemma 37.78.3.0GTK The base change of a completely decomposed morphism of schemes
is completely decomposed. If {fi : Xi → Y }i∈I is completely decomposed and Y ′ →
Y is a morphism of schemes, then {Xi ×Y Y ′ → Y ′}i∈I is completely decomposed.

Proof. Let f : X → Y and g : Y ′ → Y be morphisms of schemes. Let y′ ∈ Y ′ be
a point with image y = g(y′) in Y . If x ∈ X is a point such that f(x) = y and
κ(x) = κ(y), then there exists a unique point x′ ∈ X ′ = X ×Y Y ′ which maps to
y′ in Y ′ and to x in X and moreover κ(x′) = κ(y′), see Schemes, Lemma 26.17.5.
From this fact the lemma follows easily; we omit the details. □

Lemma 37.78.4.0GTL [EHIK21, Lemma
2.1.2]

Let f : X → Y be a morphism of schemes. Assume f is completely
decomposed, f is locally of finite presentation, and Y is quasi-compact and quasi-
separated. Then there exist n ≥ 0 and morphisms Zi → Y , i = 1, . . . , n with the
following properties

(1)
∐
Zi → Y is surjective,

(2) Zi → Y is an immersion for all i,
(3) Zi → Y is of finite presentation for all i, and
(4) the base change X ×Y Zi → Zi has a section for all i.

Proof. Let y ∈ Y . By assumption there is a morphism σ : Spec(κ(y)) → X over
Y . We can write Spec(κ(y)) as a directed limit of affine schemes Z over Y such
that Z → Y is an immersion of finite presentation. Namely, choose an affine open
y ∈ Spec(A) ⊂ Y and say y corresponds to the prime ideal p of A. Then κ(p) is
the filtered colimit of the rings (A/I)f where I ⊂ p is a finitely generated ideal
and f ∈ A, f ̸∈ p. The morphisms Z = Spec((A/I)f ) → Y are immersions of
finite presentation; quasi-compactness of Z → Y follows as Y is quasi-separated,
see Schemes, Lemma 26.21.14. By Limits, Proposition 32.6.1 for some such Z there
is a morphism σ′ : Z → X over Y agreeing with σ on the spectrum of κ(p). Since
σ′ is a morphism over Y , we obtain a section of the projection X ×Y Z → Z

We conclude that Y is the union of the images of immersions Z → Y of finite
presentation such that X ×Y Z → Z has a section. Since the image of Z →
Y is constructible (Morphisms, Lemma 29.22.2) and since Y is compact in the
constructible topology (Properties, Lemma 28.2.4 and Topology, Lemma 5.23.2),
we see that a finite number of these suffice. □

18This may be nonstandard terminology.
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Lemma 37.78.5.0GTM Let S = limλ∈Λ Sλ be a limit of a directed system of schemes with
affine transition morphisms. Let 0 ∈ Λ and let f0 : X0 → Y0 be a morphism of
schemes over S0. For λ ≥ 0 let fλ : Xλ → Yλ be the base change of f0 to Sλ and
let f : X → Y be the base change of f0 to S. If

(1) f is completely decomposed,
(2) Y0 is quasi-compact and quasi-separated, and
(3) f0 is locally of finite presentation,

then there exists an λ ≥ 0 such that fλ is completely decomposed.
Proof. Since Y0 is quasi-compact and quasi-separated, the scheme Y , which is affine
over Y0, is quasi-compact and quasi-separated. Choose n ≥ 0 and Zi → Y , i =
1, . . . , n as in Lemma 37.78.4. Denote σi : Zi → X morphisms over Y which exist
by our choice of Zi. After increasing 0 ∈ Λ we may assume there exist morphisms
Zi,0 → Y0 of finite presentation whose base changes to S are the morphisms Zi → Y ,
see Limits, Lemma 32.10.1. By Limits, Lemma 32.8.13 we may assume, after
possibly increasing 0, that Zi,0 → Y0 is an immersion. Since

∐
Zi → Y is surjective,

we may assume, after possibly increasing 0, that
∐
Zi,0 → Y0 is surjective, see

Limits, Lemma 32.8.15. Observe that Zi = limλ≥0 Zi,λ where Zi,λ = Yλ ×Y0 Zi,0.
Let us view the compositions

Zi
σi−→ X → X0

as morphisms over Y0. Since f0 is locally of finite presentation by Limits, Proposi-
tion 32.6.1 we can find a λ ≥ 0 such that there exist morphisms σ′

i,λ : Zi,λ → X0
over Y0 whose precomposition with Zi → Zi,λ are the displayed arrows. Of course,
then σ′

i,λ determines a morphism σi,λ : Zi,λ → Xλ = X0 ×Y0 Yλ over Yλ. Since∐
Zi,λ → Yλ is surjective we conclude that Xλ → Yλ is completely decomposed. □

37.79. Families of ample invertible modules

0GTN We continue the discussion from Morphisms, Section 29.12.
Lemma 37.79.1.0GTP Let f : X → Y be a morphism of schemes. Assume

(1) Y has an ample family of invertible modules,
(2) there exists an f -ample invertible module on X.

Then X has an ample family of invertible modules.
Proof. Let L be an f -ample invertible module on X. This in particular implies that
f is quasi-compact, see Morphisms, Definition 29.37.1. Since Y is quasi-compact
by Morphisms, Definition 29.12.1 we see that X is quasi-compact (and hence X
itself satisfies the first condition of Morphisms, Definition 29.12.1). Let x ∈ X with
image y ∈ Y . By assumption (2) we can find an invertible OY -module N and a
section t ∈ Γ(Y,N ) such that the locus Yt where t does not vanish is affine. Then
L is ample over f−1(Yt) = Xf∗t and hence we can find a section s ∈ Γ(Xf∗t,L)
such that (Xf∗t)s is affine and contains x. By Properties, Lemma 28.17.2 for some
n ≥ 0 the product (f∗t)ns extends to a section s′ ∈ Γ(X, f∗N⊗n⊗L). Then finally
the section s′′ = f∗ts′ of f∗N⊗n+1 ⊗ L vanishes at every point of X \Xf∗t hence
we see that Xs′′ = (Xf∗t)s is affine as desired. □

Lemma 37.79.2.0GTQ Let f : X → Y be an affine or quasi-affine morphism of schemes.
If Y has an ample family of invertible modules, so does X.
Proof. By Morphisms, Lemma 29.37.6 this is a special case of Lemma 37.79.1. □
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37.80. Blowing up and ample families of invertible modules

0GTR We prove a result from [Gro10].

Lemma 37.80.1.0GTS Let X be a scheme. Suppose given effective Cartier divisors
D1, . . . , Dm on X and invertible modules L1, . . . ,Lm such that

⋂
Di = ∅ and

Li|X\Di is ample. Then X has an ample family of invertible modules.

Proof. Let x ∈ X. Choose an index i ∈ {1, . . . ,m} such that x ̸∈ Di. Set Ui =
X \Di. Since Li|Ui we can find an n ≥ 1 and a section s ∈ Γ(Ui,L⊗n

i ) such that the
locus (Ui)s where s doesn’t vanish is affine (Properties, Definition 28.26.1). Since
Ui is the locus where the canonical section 1 ∈ OX(Di) doesn’t vanish, we see from
Properties, Lemma 28.17.2 there exists an N ≥ 0 such that s extends to a section

s′ ∈ Γ(X,L⊗n
i ⊗OX

OX(NDi))
After replacing N by N + 1 we see that s′ vanishes at every point of Di and hence
that Xs′ = (Ui)s is affine. This proves that X has an ample family of invertible
modules, see Morphisms, Definition 29.12.1. □

Lemma 37.80.2.0GTT [Gro10, Proposition
1.3.1]

LetX be a quasi-compact and quasi-separated scheme with finitely
many irreducible components. There exists a quasi-compact dense open U ⊂ X
and a U -admissible blowing up X ′ → X such that the scheme X ′ has an ample
family of invertible modules.

Proof. Let η1, . . . , ηn ∈ X be the generic points of the irreducible components of
X. By Properties, Lemma 28.29.4 and the fact that X is quasi-compact we can
find a finite affine open covering X = U1 ∪ . . . ∪ Um such that each Ui contains
η1, . . . , ηn. In particular the quasi-compact open subset U = U1 ∩ . . .∩Um is dense
in X. Let Ii ⊂ OX be a finite type quasi-coherent ideal sheaf such that Ui = X \Zi
where Zi = V (Ii), see Properties, Lemma 28.24.1. Let

f : X ′ −→ X

be the blowing up of X in the ideal sheaf I = I1 · · · Im. Note that f is a U -
admissible blowing up as V (I) is (set theoretically) the union of the Zi which
are disjoint from U . Also, f is a projective morphism and OX′(1) is f -relatively
ample, see Divisors, Lemma 31.32.13. By Divisors, Lemma 31.32.12 for each i the
morphism f ′ factors as X ′ → X ′

i → X where X ′
i → X is the blowing up in Ii and

X ′ → X ′
i is another blowing up (namely in the pullback of the products of the ideals

Ij omitting Ii). It follows from this that Di = f−1(Zi) ⊂ X ′ is an effective Cartier
divisor, see Divisors, Lemmas 31.32.11 and 31.32.4. We have X ′ \ Di = f−1(Ui).
As OX′(1) is f -ample, the restriction of OX′(1) to X ′ \Di is ample. It follows from
Lemma 37.80.1 that X ′ has an ample family of invertible modules. □

Proposition 37.80.3.0GTU Let X be a quasi-compact and quasi-separated scheme. There
exists a morphism f : Y → X which is of finite presentation, proper, and completely
decomposed (Definition 37.78.1) such that the scheme Y has an ample family of
invertible modules.

Proof. By Limits, Proposition 32.5.4 there exists an affine morphism X → X0
where X0 is a scheme of finite type over Z. Below we produce a morphism Y0 → X0
with all the desired properties. Then setting Y = X ×X0 Y0 and f equal to the
projection f : Y → X we conclude. To see this observe that f is of finite presen-
tation (Morphisms, Lemma 29.21.4), f is proper (Morphisms, Lemma 29.41.5), f
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is completely decomposed (Lemma 37.78.3). Finally, since Y → Y0 is affine (as the
base change of X → X0) we see that Y has an ample family of invertible modules
by Lemma 37.79.2. This reduces us to the case discussed in the next paragraph.

Assume X is of finite type over Z. In particular dim(X) < ∞. We will argue
by induction on dim(X). If dim(X) = 0, then X is affine and has the resolution
property. In general, there exists a dense open U ⊂ X and a U -admissible blowing
up X ′ → X such that X ′ has an ample family of invertible modules, see Lemma
37.80.2. Since f : X ′ → X is an isomorphism over U we see that every point of
U lifts to a point of X ′ with the same residue field. Let Z = X \ U with the
reduced induced scheme structure. Then dim(Z) < dim(X) as U is dense in X
(see above). By induction we find a proper, completely decomposed morphism
W → Z such that W has an ample family of invertible modules. Then it follows
that Y = X ′ ⨿W → X is the desired morphism. □

37.81. The extensive criterion for closed immersions

0H2N In this section, we give a criterion for a morphism of schemes to be a closed immer-
sion.

Lemma 37.81.1.0H2P A morphism f : X → Y of affine schemes is a closed immersion
if and only if for every injective ring map A→ B and commutative square

Spec(B)

��

// X

f

��
Spec(A) //

;;

Y

there exists a lift Spec(A)→ X making the two triangles commute.

Proof. Let the morphism f be given by the ring map ϕ : R→ S. Then f is a closed
immersion if and only if ϕ is surjective.

First, we assume that ϕ is surjective. Let ψ : A→ B be an injective ring map, and
suppose we are given a commutative diagram

R
α //

ϕ

��

A

ψ

��
S

β //

??

B

Then we define a lift S → A by s 7→ α(r), where r ∈ R is such that ϕ(r) = s.
This is well-defined because ψ is injective and the square commutes. Since taking
the ring spectrum defines an anti-equivalence between commutative rings and affine
schemes, the desired lifting property for f holds.

Next, we assume that ϕ has lifts against all injective ring maps ψ : A → B. Note
that ϕ(R) is a subring of S, so we obtain a commutative square

R //

ϕ

��

ϕ(R)

��
S

==

S
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in which a lift S → ϕ(R) exists. Hence, the inclusion ϕ(R) → S must be an
isomorphism, which shows that ϕ is surjective, and we win. □

Lemma 37.81.2.0H2Q LetX be a scheme. If the canonical morphismX → Spec(Γ(X,OX))
of Schemes, Lemma 26.6.4 has a retraction, then X is an affine scheme.

Proof. Write S = Spec(Γ(X,OX)) and f : X → S the morphism given in the
lemma. Let s : S → X be a retraction; so idX = sf . Then fsf = idSf . Since f
induces an isomorphism Γ(S,OS)→ Γ(X,OX) this means that fs and idS induce
the same map on Γ(S,OS). Whence fs = idS as S is affine. Hence f is an
isomorphism and X is an affine scheme, as was to be shown. □

Lemma 37.81.3.0H2R Let X be a scheme. Let f : X → S = Spec(Γ(X,OX)) be the
canonical morphism of Schemes, Lemma 26.6.4. The largest quasi-coherent OS-
module contained in the kernel of f ♯ : OS → f∗OX is zero. If X is quasi-compact,
then f ♯ is injective. In particular, if X is quasi-compact, then f is a dominant
morphism.

Proof. Let M ⊂ Γ(S,OS) be the submodule corresponding to the largest quasi-
coherent OS-module contained in the kernel of f ♯. Then any element a ∈ M is
mapped to zero by f ♯. However, f ♯(a) is the element of

Γ(S, f∗OX) = Γ(X,OX) = Γ(S,OS)

corresponding to a itself! Thus a = 0. Hence M = 0 which proves the first assertion.
Note that this is equivalent to the morphism f : X → S being scheme-theoretically
surjective.

If X is quasi-compact, then Ker(f ♯) is quasi-coherent by Morphisms, Lemma 29.6.3.
Hence Ker(f ♯) = 0 and f ♯ is injective. In this case, f is a dominant morphism by
part (4) of Morphisms, Lemma 29.6.3. □

Lemma 37.81.4.0H2S Let f : X → Y be a quasi-compact morphism of schemes. Then
f is a closed immersion if and only if for every injective ring map A → B and
commutative square

Spec(B)

��

// X

f

��
Spec(A) //

;;

Y

there exists a lift SpecA→ X making the diagram commute.

Proof. Assume that f is a closed immersion. Let A→ B be an injective ring map
and consider a commutative square

Spec(B)

��

// X

f

��
Spec(A) //

;;

Y
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Then Spec(A) ×Y X → Spec(A) is a closed immersion and hence we get an ideal
I ⊂ A and a commutative diagram

Spec(B)

��

// Spec(A/I) //

��

X

f

��
Spec(A) //

88

Spec(A) // Y

We obtain a lift by Lemma 37.81.1.
Assume that f has the lifting property stated in the lemma. To prove that f is
a closed immersion is local on Y , hence we may and do assume Y is affine. In
particular, Y is quasi-compact and therefore X is quasi-compact. Hence there
exists a finite affine open covering X = U1 ∪ . . . ∪Un. The source of the morphism

π : U =
∐

Ui −→ X

is affine and the induced ring map Γ(X,OX)→ Γ(U,OU ) is injective. By assump-
tion, there exists a lift in the diagram

U
π //

��

X

f

��
Spec(Γ(X,OX)) f ′

//

h

88

Y

where f ′ is the morphism of affine schemes corresponding to the ring map Γ(Y,OY )→
Γ(X,OX). It follows from the fact that π is an epimorphism that the morphism h
is a retraction of the canonical morphism X → Spec(Γ(X,OX)); details omitted.
Hence X is affine by Lemma 37.81.2. By Lemma 37.81.1 we conclude that f is a
closed immersion. □
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CHAPTER 38

More on Flatness

057M 38.1. Introduction

057N In this chapter, we discuss some advanced results on flat modules and flat mor-
phisms of schemes and applications. Most of the results on flatness can be found
in the paper [GR71] by Raynaud and Gruson.

Before reading this chapter we advise the reader to take a look at the following
results (this list also serves as a pointer to previous results):

(1) General discussion on flat modules in Algebra, Section 10.39.
(2) The relationship between Tor-groups and flatness, see Algebra, Section

10.75.
(3) Criteria for flatness, see Algebra, Section 10.99 (Noetherian case), Alge-

bra, Section 10.101 (Artinian case), Algebra, Section 10.128 (non-Noetherian
case), and finally More on Morphisms, Section 37.16.

(4) Generic flatness, see Algebra, Section 10.118 and Morphisms, Section
29.27.

(5) Openness of the flat locus, see Algebra, Section 10.129 and More on Mor-
phisms, Section 37.15.

(6) Flattening, see More on Algebra, Sections 15.16, 15.17, 15.18, 15.19, and
15.20.

(7) Additional results in More on Algebra, Sections 15.21, 15.22, 15.25, and
15.26.

As applications of the material on flatness we discuss the following topics: a non-
Noetherian version of Grothendieck’s existence theorem, blowing up and flatness,
Nagata’s theorem on compactifications, the h topology, blow up squares and de-
scent, weak normalization, descent of vector bundles in positive characteristic, and
the local structure of perfect complexes in the h topology.

38.2. Lemmas on étale localization

05FM In this section we list some lemmas on étale localization which will be useful later
in this chapter. Please skip this section on a first reading.

Lemma 38.2.1.057R Let i : Z → X be a closed immersion of affine schemes. Let Z ′ → Z
be an étale morphism with Z ′ affine. Then there exists an étale morphism X ′ → X
with X ′ affine such that Z ′ ∼= Z ×X X ′ as schemes over Z.

Proof. See Algebra, Lemma 10.143.10. □

3374
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Lemma 38.2.2.05H2 Let
X

��

X ′oo

��
S S′oo

be a commutative diagram of schemes with X ′ → X and S′ → S étale. Let s′ ∈ S′

be a point. Then
X ′ ×S′ Spec(OS′,s′) −→ X ×S Spec(OS′,s′)

is étale.

Proof. This is true because X ′ → XS′ is étale as a morphism of schemes étale over
X, see Morphisms, Lemma 29.36.18 and the base change of an étale morphism is
étale, see Morphisms, Lemma 29.36.4. □

Lemma 38.2.3.05B9 Let X → T → S be morphisms of schemes with T → S étale. Let
F be a quasi-coherent OX -module. Let x ∈ X be a point. Then

F flat over S at x⇔ F flat over T at x
In particular F is flat over S if and only if F is flat over T .

Proof. As an étale morphism is a flat morphism (see Morphisms, Lemma 29.36.12)
the implication “⇐” follows from Algebra, Lemma 10.39.4. For the converse assume
that F is flat at x over S. Denote x̃ ∈ X ×S T the point lying over x in X and
over the image of x in T in T . Then (X ×S T → X)∗F is flat at x̃ over T via pr2 :
X ×S T → T , see Morphisms, Lemma 29.25.7. The diagonal ∆T/S : T → T ×S T
is an open immersion; combine Morphisms, Lemmas 29.35.13 and 29.36.5. So X is
identified with open subscheme of X ×S T , the restriction of pr2 to this open is the
given morphism X → T , the point x̃ corresponds to the point x in this open, and
(X ×S T → X)∗F restricted to this open is F . Whence we see that F is flat at x
over T . □

Lemma 38.2.4.05BA Let T → S be an étale morphism. Let t ∈ T with image s ∈ S.
Let M be a OT,t-module. Then

M flat over OS,s ⇔M flat over OT,t.

Proof. We may replace S by an affine neighbourhood of s and after that T by an
affine neighbourhood of t. Set F = (Spec(OT,t)→ T )∗M̃ . This is a quasi-coherent
sheaf (see Schemes, Lemma 26.24.1 or argue directly) on T whose stalk at t is M
(details omitted). Apply Lemma 38.2.3. □

Lemma 38.2.5.05VL Let S be a scheme and s ∈ S a point. Denote OhS,s (resp. OshS,s)
the henselization (resp. strict henselization), see Algebra, Definition 10.155.3. Let
Msh be a OshS,s-module. The following are equivalent

(1) Msh is flat over OS,s,
(2) Msh is flat over OhS,s, and
(3) Msh is flat over OshS,s.

If Msh = Mh ⊗Oh
S,s
OshS,s this is also equivalent to

(4) Mh is flat over OS,s, and
(5) Mh is flat over OhS,s.
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If Mh = M ⊗OS,s
OhS,s this is also equivalent to

(6) M is flat over OS,s.

Proof. By More on Algebra, Lemma 15.45.1 the local ring maps OS,s → OhS,s →
OshS,s are faithfully flat. Hence (3) ⇒ (2) ⇒ (1) and (5) ⇒ (4) follow from Algebra,
Lemma 10.39.4. By faithful flatness the equivalences (6)⇔ (5) and (5)⇔ (3) follow
from Algebra, Lemma 10.39.8. Thus it suffices to show that (1) ⇒ (2) ⇒ (3) and
(4) ⇒ (5). To prove these we may assume S is an affine scheme.

Assume (1). By Lemma 38.2.4 we see that Msh is flat over OT,t for any étale
neighbourhood (T, t) → (S, s). Since OhS,s and OshS,s are directed colimits of local
rings of the form OT,t (see Algebra, Lemmas 10.155.7 and 10.155.11) we conclude
that Msh is flat over OhS,s and OshS,s by Algebra, Lemma 10.39.6. Thus (1) implies
(2) and (3). Of course this implies also (2) ⇒ (3) by replacing OS,s by OhS,s. The
same argument applies to prove (4) ⇒ (5). □

Lemma 38.2.6.0DK0 Let S be a scheme and s ∈ S a point. Denote OhS,s (resp. OshS,s)
the henselization (resp. strict henselization), see Algebra, Definition 10.155.3. Let
Msh be an object of D(OshS,s). Let a, b ∈ Z. The following are equivalent

(1) Msh has tor amplitude in [a, b] over OS,s,
(2) Msh has tor amplitude in [a, b] over OhS,s, and
(3) Msh has tor amplitude in [a, b] over OshS,s.

If Msh = Mh ⊗L
Oh
S,s

OshS,s for Mh ∈ D(OhS,s) this is also equivalent to

(4) Mh has tor amplitude in [a, b] over OS,s, and
(5) Mh has tor amplitude in [a, b] over OhS,s.

If Mh = M ⊗L
OS,s
OhS,s for M ∈ D(OS,s) this is also equivalent to

(6) M has tor amplitude in [a, b] over OS,s.

Proof. By More on Algebra, Lemma 15.45.1 the local ring maps OS,s → OhS,s →
OshS,s are faithfully flat. Hence (3) ⇒ (2) ⇒ (1) and (5) ⇒ (4) follow from More on
Algebra, Lemma 15.66.11. By faithful flatness the equivalences (6) ⇔ (5) and (5)
⇔ (3) follow from More on Algebra, Lemma 15.66.17. Thus it suffices to show that
(1) ⇒ (3), (2) ⇒ (3), and (4) ⇒ (5).

Assume (1). In particular Msh has vanishing cohomology in degrees < a and > b.
Hence we can represent Msh by a complex P • of free OshX,x-modules with P i = 0 for
i > b (see for example the very general Derived Categories, Lemma 13.15.4). Note
that Pn is flat over OS,s for all n. Consider Coker(da−1

P ). By More on Algebra,
Lemma 15.66.2 this is a flat OS,s-module. Hence by Lemma 38.2.5 this is a flat
OshS,s-module. Thus τ≥aP

• is a complex of flat OshS,s-modules representing Msh in
D(OshS,s and we find that Msh has tor amplitude in [a, b], see More on Algebra,
Lemma 15.66.3. Thus (1) implies (3). Of course this implies also (2) ⇒ (3) by
replacing OS,s by OhS,s. The same argument applies to prove (4) ⇒ (5). □

Lemma 38.2.7.05FN Let g : T → S be a finite flat morphism of schemes. Let G be a
quasi-coherent OS-module. Let t ∈ T be a point with image s ∈ S. Then

t ∈WeakAss(g∗G)⇔ s ∈WeakAss(G)
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Proof. The implication “⇐” follows immediately from Divisors, Lemma 31.6.4.
Assume t ∈ WeakAss(g∗G). Let Spec(A) ⊂ S be an affine open neighbourhood
of s. Let G be the quasi-coherent sheaf associated to the A-module M . Let p ⊂ A
be the prime ideal corresponding to s. As g is finite flat we have g−1(Spec(A)) =
Spec(B) for some finite flat A-algebra B. Note that g∗G is the quasi-coherent
OSpec(B)-module associated to the B-module M ⊗A B and g∗g

∗G is the quasi-
coherentOSpec(A)-module associated to the A-moduleM⊗AB. By Algebra, Lemma
10.78.5 we have Bp

∼= A⊕n
p for some integer n ≥ 0. Note that n ≥ 1 as we assumed

there exists at least one point of T lying over s. Hence we see by looking at stalks
that

s ∈WeakAss(G)⇔ s ∈WeakAss(g∗g
∗G)

Now the assumption that t ∈ WeakAss(g∗G) implies that s ∈ WeakAss(g∗g
∗G) by

Divisors, Lemma 31.6.3 and hence by the above s ∈WeakAss(G). □

Lemma 38.2.8.05FP Let h : U → S be an étale morphism of schemes. Let G be a
quasi-coherent OS-module. Let u ∈ U be a point with image s ∈ S. Then

u ∈WeakAss(h∗G)⇔ s ∈WeakAss(G)

Proof. After replacing S and U by affine neighbourhoods of s and u we may assume
that g is a standard étale morphism of affines, see Morphisms, Lemma 29.36.14.
Thus we may assume S = Spec(A) and X = Spec(A[x, 1/g]/(f)), where f is monic
and f ′ is invertible in A[x, 1/g]. Note that A[x, 1/g]/(f) = (A[x]/(f))g is also the
localization of the finite free A-algebra A[x]/(f). Hence we may think of U as an
open subscheme of the scheme T = Spec(A[x]/(f)) which is finite locally free over
S. This reduces us to Lemma 38.2.7 above. □

Lemma 38.2.9.0CTU Let S be a scheme and s ∈ S a point. Denote OhS,s (resp. OshS,s)
the henselization (resp. strict henselization), see Algebra, Definition 10.155.3. Let
F be a quasi-coherent OS-module. The following are equivalent

(1) s is a weakly associated point of F ,
(2) ms is a weakly associated prime of Fs,
(3) mhs is a weakly associated prime of Fs ⊗OS,s

OhS,s, and
(4) mshs is a weakly associated prime of Fs ⊗OS,s

OshS,s.

Proof. The equivalence of (1) and (2) is the definition, see Divisors, Definition
31.5.1. The implications (2) ⇒ (3) ⇒ (4) follows from Divisors, Lemma 31.6.4
applied to the flat (More on Algebra, Lemma 15.45.1) morphisms

Spec(OshS,s)→ Spec(OhS,s)→ Spec(OS,s)
and the closed points. To prove (4)⇒ (2) we may replace S by an affine neighbour-
hood. Suppose that x ∈ Fs ⊗OS,s

OshS,s is an element whose annihilator has radical
equal to mshs . (See Algebra, Lemma 10.66.2.) Since OshS,s is equal to the limit of
OU,u over étale neighbourhoods f : (U, u) → (S, s) by Algebra, Lemma 10.155.11
we may assume that x is the image of some x′ ∈ Fs⊗OS,s

OU,u. The local ring map
OU,u → OshS,s is faithfully flat (as it is the strict henselization), hence universally
injective (Algebra, Lemma 10.82.11). It follows that the annihilator of x′ is the
inverse image of the annihilator of x. Hence the radical of this annihilator is equal
to mu. Thus u is a weakly associated point of f∗F . By Lemma 38.2.8 we see that
s is a weakly associated point of F . □
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38.3. The local structure of a finite type module

057P The key technical lemma that makes a lot of the arguments in this chapter work is
the geometric Lemma 38.3.2.

Lemma 38.3.1.057Q Let f : X → S be a finite type morphism of affine schemes. Let
F be a finite type quasi-coherent OX -module. Let x ∈ X with image s = f(x)
in S. Set Fs = F|Xs . Then there exist a closed immersion i : Z → X of finite
presentation, and a quasi-coherent finite type OZ-module G such that i∗G = F and
Zs = Supp(Fs).

Proof. Say the morphism f : X → S is given by the ring map A→ B and that F
is the quasi-coherent sheaf associated to the B-module M . By Morphisms, Lemma
29.15.2 we know that A→ B is a finite type ring map, and by Properties, Lemma
28.16.1 we know that M is a finite B-module. In particular the support of F is
the closed subscheme of Spec(B) cut out by the annihilator I = {x ∈ B | xm =
0 ∀m ∈ M} of M , see Algebra, Lemma 10.40.5. Let q ⊂ B be the prime ideal
corresponding to x and let p ⊂ A be the prime ideal corresponding to s. Note that
Xs = Spec(B ⊗A κ(p)) and that Fs is the quasi-coherent sheaf associated to the
B ⊗A κ(p) module M ⊗A κ(p). By Morphisms, Lemma 29.5.3 the support of Fs is
equal to V (I(B ⊗A κ(p))). Since B ⊗A κ(p) is of finite type over κ(p) there exist
finitely many elements f1, . . . , fm ∈ I such that

I(B ⊗A κ(p)) = (f1, . . . , fn)(B ⊗A κ(p)).
Denote i : Z → X the closed subscheme cut out by (f1, . . . , fm), in a formula
Z = Spec(B/(f1, . . . , fm)). Since M is annihilated by I we can think of M as
an B/(f1, . . . , fm)-module. In other words, F is the pushforward of a finite type
module on Z. As Zs = Supp(Fs) by construction, this proves the lemma. □

Lemma 38.3.2.057S Let f : X → S be morphism of schemes which is locally of finite
type. Let F be a finite type quasi-coherent OX -module. Let x ∈ X with image
s = f(x) in S. Set Fs = F|Xs and n = dimx(Supp(Fs)). Then we can construct

(1) elementary étale neighbourhoods g : (X ′, x′) → (X,x), e : (S′, s′) →
(S, s),

(2) a commutative diagram

X

f

��

X ′

��

g
oo Z ′

i
oo

π

��
Y ′

h
��

S S′eoo S′

(3) a point z′ ∈ Z ′ with i(z′) = x′, y′ = π(z′), h(y′) = s′,
(4) a finite type quasi-coherent OZ′ -module G,

such that the following properties hold
(1) X ′, Z ′, Y ′, S′ are affine schemes,
(2) i is a closed immersion of finite presentation,
(3) i∗(G) ∼= g∗F ,
(4) π is finite and π−1({y′}) = {z′},
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(5) the extension κ(y′)/κ(s′) is purely transcendental,
(6) h is smooth of relative dimension n with geometrically integral fibres.

Proof. Let V ⊂ S be an affine neighbourhood of s. Let U ⊂ f−1(V ) be an affine
neighbourhood of x. Then it suffices to prove the lemma for f |U : U → V and F|U .
Hence in the rest of the proof we assume that X and S are affine.
First, suppose that Xs = Supp(Fs), in particular n = dimx(Xs). Apply More on
Morphisms, Lemmas 37.47.2 and 37.47.3. This gives us a commutative diagram

X

��

X ′
g

oo

π

��
Y ′

h
��

S S′eoo

and point x′ ∈ X ′. We set Z ′ = X ′, i = id, and G = g∗F to obtain a solution in
this case.
In general choose a closed immersion Z → X and a sheaf G on Z as in Lemma
38.3.1. Applying the result of the previous paragraph to Z → S and G we obtain a
diagram

X

f

��

Zoo

f |Z

��

Z ′
g

oo

π

��
Y ′

h
��

S S S′eoo

and point z′ ∈ Z ′ satisfying all the required properties. We will use Lemma 38.2.1
to embed Z ′ into a scheme étale over X. We cannot apply the lemma directly as
we want X ′ to be a scheme over S′. Instead we consider the morphisms

Z ′ // Z ×S S′ // X ×S S′

The first morphism is étale by Morphisms, Lemma 29.36.18. The second is a closed
immersion as a base change of a closed immersion. Finally, as X, S, S′, Z, Z ′ are
all affine we may apply Lemma 38.2.1 to get an étale morphism of affine schemes
X ′ → X ×S S′ such that

Z ′ = (Z ×S S′)×(X×SS′) X
′ = Z ×X X ′.

As Z → X is a closed immersion of finite presentation, so is Z ′ → X ′. Let x′ ∈ X ′

be the point corresponding to z′ ∈ Z ′. Then the completed diagram
X

��

X ′

��

oo Z ′
i

oo

π

��
Y ′

h
��

S S′eoo S′



38.3. THE LOCAL STRUCTURE OF A FINITE TYPE MODULE 3380

is a solution of the original problem. □

Lemma 38.3.3.057T Assumptions and notation as in Lemma 38.3.2. If f is locally of
finite presentation then π is of finite presentation. In this case the following are
equivalent

(1) F is an OX -module of finite presentation in a neighbourhood of x,
(2) G is an OZ′ -module of finite presentation in a neighbourhood of z′, and
(3) π∗G is an OY ′ -module of finite presentation in a neighbourhood of y′.

Still assuming f locally of finite presentation the following are equivalent to each
other

(a) Fx is an OX,x-module of finite presentation,
(b) Gz′ is an OZ′,z′ -module of finite presentation, and
(c) (π∗G)y′ is an OY ′,y′ -module of finite presentation.

Proof. Assume f locally of finite presentation. Then Z ′ → S is locally of finite
presentation as a composition of such, see Morphisms, Lemma 29.21.3. Note that
Y ′ → S is also locally of finite presentation as a composition of a smooth and an
étale morphism. Hence Morphisms, Lemma 29.21.11 implies π is locally of finite
presentation. Since π is finite we conclude that it is also separated and quasi-
compact, hence π is actually of finite presentation.
To prove the equivalence of (1), (2), and (3) we also consider: (4) g∗F is a OX′ -
module of finite presentation in a neighbourhood of x′. The pullback of a module of
finite presentation is of finite presentation, see Modules, Lemma 17.11.4. Hence (1)
⇒ (4). The étale morphism g is open, see Morphisms, Lemma 29.36.13. Hence for
any open neighbourhood U ′ ⊂ X ′ of x′, the image g(U ′) is an open neighbourhood
of x and the map {U ′ → g(U ′)} is an étale covering. Thus (4) ⇒ (1) by Descent,
Lemma 35.7.3. Using Descent, Lemma 35.7.10 and some easy topological arguments
(see More on Morphisms, Lemma 37.47.4) we see that (4) ⇔ (2) ⇔ (3).
To prove the equivalence of (a), (b), (c) consider the ring maps

OX,x → OX′,x′ → OZ′,z′ ← OY ′,y′

The first ring map is faithfully flat. Hence Fx is of finite presentation over OX,x if
and only if g∗Fx′ is of finite presentation over OX′,x′ , see Algebra, Lemma 10.83.2.
The second ring map is surjective (hence finite) and finitely presented by assump-
tion, hence g∗Fx′ is of finite presentation over OX′,x′ if and only if Gz′ is of finite
presentation over OZ′,z′ , see Algebra, Lemma 10.36.23. Because π is finite, of finite
presentation, and π−1({y′}) = {x′} the ring homomorphism OY ′,y′ ← OZ′,z′ is
finite and of finite presentation, see More on Morphisms, Lemma 37.47.4. Hence
Gz′ is of finite presentation over OZ′,z′ if and only if π∗Gy′ is of finite presentation
over OY ′,y′ , see Algebra, Lemma 10.36.23. □

Lemma 38.3.4.057U Assumptions and notation as in Lemma 38.3.2. The following are
equivalent

(1) F is flat over S in a neighbourhood of x,
(2) G is flat over S′ in a neighbourhood of z′, and
(3) π∗G is flat over S′ in a neighbourhood of y′.

The following are equivalent also
(a) Fx is flat over OS,s,
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(b) Gz′ is flat over OS′,s′ , and
(c) (π∗G)y′ is flat over OS′,s′ .

Proof. To prove the equivalence of (1), (2), and (3) we also consider: (4) g∗F is
flat over S in a neighbourhood of x′. We will use Lemma 38.2.3 to equate flatness
over S and S′ without further mention. The étale morphism g is flat and open,
see Morphisms, Lemma 29.36.13. Hence for any open neighbourhood U ′ ⊂ X ′ of
x′, the image g(U ′) is an open neighbourhood of x and the map U ′ → g(U ′) is
surjective and flat. Thus (4) ⇔ (1) by Morphisms, Lemma 29.25.13. Note that

Γ(X ′, g∗F) = Γ(Z ′,G) = Γ(Y ′, π∗G)
Hence the flatness of g∗F , G and π∗G over S′ are all equivalent (this uses that X ′,
Z ′, Y ′, and S′ are all affine). Some omitted topological arguments (compare More
on Morphisms, Lemma 37.47.4) regarding affine neighbourhoods now show that (4)
⇔ (2) ⇔ (3).
To prove the equivalence of (a), (b), (c) consider the commutative diagram of local
ring maps

OX′,x′
ι
// OZ′,z′ OY ′,y′

α
oo OS′,s′

β
oo

OX,x

γ

OO

OS,s
φoo

ϵ

OO

We will use Lemma 38.2.4 to equate flatness over OS,s and OS′,s′ without further
mention. The map γ is faithfully flat. Hence Fx is flat over OS,s if and only
if g∗Fx′ is flat over OS′,s′ , see Algebra, Lemma 10.39.9. As OS′,s′ -modules the
modules g∗Fx′ , Gz′ , and π∗Gy′ are all isomorphic, see More on Morphisms, Lemma
37.47.4. This finishes the proof. □

38.4. One step dévissage

05H3 In this section we explain what is a one step dévissage of a module. A one step
dévissage exist étale locally on base and target. We discuss base change, Zariski
shrinking and étale localization of a one step dévissage.

Definition 38.4.1.05H4 Let S be a scheme. Let X be locally of finite type over S. Let
F be a quasi-coherent OX -module of finite type. Let s ∈ S be a point. A one step
dévissage of F/X/S over s is given by morphisms of schemes over S

X Z
ioo π // Y

and a quasi-coherent OZ-module G of finite type such that
(1) X, S, Z and Y are affine,
(2) i is a closed immersion of finite presentation,
(3) F ∼= i∗G,
(4) π is finite, and
(5) the structure morphism Y → S is smooth with geometrically irreducible

fibres of dimension dim(Supp(Fs)).
In this case we say (Z, Y, i, π,G) is a one step dévissage of F/X/S over s.

Note that such a one step dévissage can only exist if X and S are affine. In the
definition above we only require X to be (locally) of finite type over S and we
continue working in this setting below. In [GR71] the authors use consistently the

https://stacks.math.columbia.edu/tag/05H4


38.4. ONE STEP DÉVISSAGE 3382

setup where X → S is locally of finite presentation and F quasi-coherent OX -
module of finite type. The advantage of this choice is that it “makes sense” to ask
for F to be of finite presentation as an OX -module, whereas in our setting it “does
not make sense”. Please see More on Morphisms, Section 37.58 for a discussion; the
observations made there show that in our setup we may consider the condition of F
being “locally of finite presentation relative to S”, and we could work consistently
with this notion. Instead however, we will rely on the results of Lemma 38.3.3
and the observations in Remark 38.6.3 to deal with this issue in an ad hoc fashion
whenever it comes up.

Definition 38.4.2.05H5 Let S be a scheme. Let X be locally of finite type over S. Let
F be a quasi-coherent OX -module of finite type. Let x ∈ X be a point with image
s in S. A one step dévissage of F/X/S at x is a system (Z, Y, i, π,G, z, y), where
(Z, Y, i, π,G) is a one step dévissage of F/X/S over s and

(1) dimx(Supp(Fs)) = dim(Supp(Fs)),
(2) z ∈ Z is a point with i(z) = x and π(z) = y,
(3) we have π−1({y}) = {z},
(4) the extension κ(y)/κ(s) is purely transcendental.

A one step dévissage of F/X/S at x can only exist if X and S are affine. Condition
(1) assures us that Y → S has relative dimension equal to dimx(Supp(Fs)) via
condition (5) of Definition 38.4.1.

Lemma 38.4.3.05H6 Let f : X → S be morphism of schemes which is locally of finite
type. Let F be a finite type quasi-coherent OX -module. Let x ∈ X with image
s = f(x) in S. Then there exists a commutative diagram of pointed schemes

(X,x)

f

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

such that (S′, s′) → (S, s) and (X ′, x′) → (X,x) are elementary étale neighbour-
hoods, and such that g∗F/X ′/S′ has a one step dévissage at x′.

Proof. This is immediate from Definition 38.4.2 and Lemma 38.3.2. □

Lemma 38.4.4.05H7 Let S, X, F , s be as in Definition 38.4.1. Let (Z, Y, i, π,G) be a one
step dévissage of F/X/S over s. Let (S′, s′)→ (S, s) be any morphism of pointed
schemes. Given this data let X ′, Z ′, Y ′, i′, π′ be the base changes of X,Z, Y, i, π via
S′ → S. Let F ′ be the pullback of F to X ′ and let G′ be the pullback of G to Z ′.
If S′ is affine, then (Z ′, Y ′, i′, π′,G′) is a one step dévissage of F ′/X ′/S′ over s′.

Proof. Fibre products of affines are affine, see Schemes, Lemma 26.17.2. Base
change preserves closed immersions, morphisms of finite presentation, finite mor-
phisms, smooth morphisms, morphisms with geometrically irreducible fibres, and
morphisms of relative dimension n, see Morphisms, Lemmas 29.2.4, 29.21.4, 29.44.6,
29.34.5, 29.29.2, and More on Morphisms, Lemma 37.27.2. We have i′∗G′ ∼= F ′ be-
cause pushforward along the finite morphism i commutes with base change, see Co-
homology of Schemes, Lemma 30.5.1. We have dim(Supp(Fs)) = dim(Supp(F ′

s′))
by Morphisms, Lemma 29.28.3 because

Supp(Fs)×s s′ = Supp(F ′
s′).
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This proves the lemma. □

Lemma 38.4.5.05H8 Let S, X, F , x, s be as in Definition 38.4.2. Let (Z, Y, i, π,G, z, y)
be a one step dévissage of F/X/S at x. Let (S′, s′) → (S, s) be a morphism of
pointed schemes which induces an isomorphism κ(s) = κ(s′). Let (Z ′, Y ′, i′, π′,G′)
be as constructed in Lemma 38.4.4 and let x′ ∈ X ′ (resp. z′ ∈ Z ′, y′ ∈ Y ′) be the
unique point mapping to both x ∈ X (resp. z ∈ Z, y ∈ Y ) and s′ ∈ S′. If S′ is
affine, then (Z ′, Y ′, i′, π′,G′, z′, y′) is a one step dévissage of F ′/X ′/S′ at x′.

Proof. By Lemma 38.4.4 (Z ′, Y ′, i′, π′,G′) is a one step dévissage of F ′/X ′/S′ over
s′. Properties (1) – (4) of Definition 38.4.2 hold for (Z ′, Y ′, i′, π′,G′, z′, y′) as the
assumption that κ(s) = κ(s′) insures that the fibres X ′

s′ , Z ′
s′ , and Y ′

s′ are isomorphic
to Xs, Zs, and Ys. □

Definition 38.4.6.05H9 Let S, X, F , x, s be as in Definition 38.4.2. Let (Z, Y, i, π,G, z, y)
be a one step dévissage of F/X/S at x. Let us define a standard shrinking of this
situation to be given by standard opens S′ ⊂ S, X ′ ⊂ X, Z ′ ⊂ Z, and Y ′ ⊂ Y such
that s ∈ S′, x ∈ X ′, z ∈ Z ′, and y ∈ Y ′ and such that

(Z ′, Y ′, i|Z′ , π|Z′ ,G|Z′ , z, y)

is a one step dévissage of F|X′/X ′/S′ at x.

Lemma 38.4.7.05HA With assumption and notation as in Definition 38.4.6 we have:
(1)05HB If S′ ⊂ S is a standard open neighbourhood of s, then setting X ′ = XS′ ,

Z ′ = ZS′ and Y ′ = YS′ we obtain a standard shrinking.
(2)05HC Let W ⊂ Y be a standard open neighbourhood of y. Then there exists a

standard shrinking with Y ′ = W ×S S′.
(3)05HD Let U ⊂ X be an open neighbourhood of x. Then there exists a standard

shrinking with X ′ ⊂ U .

Proof. Part (1) is immediate from Lemma 38.4.5 and the fact that the inverse
image of a standard open under a morphism of affine schemes is a standard open,
see Algebra, Lemma 10.17.4.

Let W ⊂ Y as in (2). Because Y → S is smooth it is open, see Morphisms, Lemma
29.34.10. Hence we can find a standard open neighbourhood S′ of s contained in
the image of W . Then the fibres of WS′ → S′ are nonempty open subschemes
of the fibres of Y → S over S′ and hence geometrically irreducible too. Setting
Y ′ = WS′ and Z ′ = π−1(Y ′) we see that Z ′ ⊂ Z is a standard open neighbourhood
of z. Let h ∈ Γ(Z,OZ) be a function such that Z ′ = D(h). As i : Z → X is a
closed immersion, we can find a function h ∈ Γ(X,OX) such that i♯(h) = h. Take
X ′ = D(h) ⊂ X. In this way we obtain a standard shrinking as in (2).

Let U ⊂ X be as in (3). We may after shrinking U assume that U is a standard
open. By More on Morphisms, Lemma 37.47.4 there exists a standard open W ⊂ Y
neighbourhood of y such that π−1(W ) ⊂ i−1(U). Apply (2) to get a standard
shrinking X ′, S′, Z ′, Y ′ with Y ′ = WS′ . Since Z ′ ⊂ π−1(W ) ⊂ i−1(U) we may
replace X ′ by X ′ ∩ U (still a standard open as U is also standard open) without
violating any of the conditions defining a standard shrinking. Hence we win. □
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Lemma 38.4.8.05HE Let S, X, F , x, s be as in Definition 38.4.2. Let (Z, Y, i, π,G, z, y)
be a one step dévissage of F/X/S at x. Let

(Y, y)

��

(Y ′, y′)oo

��
(S, s) (S′, s′)oo

be a commutative diagram of pointed schemes such that the horizontal arrows are
elementary étale neighbourhoods. Then there exists a commutative diagram

(X ′′, x′′)

uu ��

(Z ′′, z′′)oo

tt ��
(X,x)

��

(Z, z)oo

��

(S′′, s′′)

uu

(Y ′′, y′′)

tt

oo

(S, s) (Y, y)oo

of pointed schemes with the following properties:
(1) (S′′, s′′) → (S′, s′) is an elementary étale neighbourhood and the mor-

phism S′′ → S is the composition S′′ → S′ → S,
(2) Y ′′ is an open subscheme of Y ′ ×S′ S′′,
(3) Z ′′ = Z ×Y Y ′′,
(4) (X ′′, x′′)→ (X,x) is an elementary étale neighbourhood, and
(5) (Z ′′, Y ′′, i′′, π′′,G′′, z′′, y′′) is a one step dévissage at x′′ of the sheaf F ′′.

Here F ′′ (resp. G′′) is the pullback of F (resp. G) via the morphism X ′′ → X (resp.
Z ′′ → Z) and i′′ : Z ′′ → X ′′ and π′′ : Z ′′ → Y ′′ are as in the diagram.

Proof. Let (S′′, s′′) → (S′, s′) be any elementary étale neighbourhood with S′′

affine. Let Y ′′ ⊂ Y ′ ×S′ S′′ be any affine open neighbourhood containing the point
y′′ = (y′, s′′). Then we obtain an affine (Z ′′, z′′) by (3). Moreover ZS′′ → XS′′

is a closed immersion and Z ′′ → ZS′′ is an étale morphism. Hence Lemma 38.2.1
applies and we can find an étale morphism X ′′ → XS′ of affines such that Z ′′ ∼=
X ′′ ×XS′ ZS′ . Denote i′′ : Z ′′ → X ′′ the corresponding closed immersion. Setting
x′′ = i′′(z′′) we obtain a commutative diagram as in the lemma. Properties (1),
(2), (3), and (4) hold by construction. Thus it suffices to show that (5) holds for a
suitable choice of (S′′, s′′)→ (S′, s′) and Y ′′.

We first list those properties which hold for any choice of (S′′, s′′) → (S′, s′) and
Y ′′ as in the first paragraph. As we have Z ′′ = X ′′ ×X Z by construction we see
that i′′∗G′′ = F ′′ (with notation as in the statement of the lemma), see Cohomology
of Schemes, Lemma 30.5.1. Set n = dim(Supp(Fs)) = dimx(Supp(Fs)). The mor-
phism Y ′′ → S′′ is smooth of relative dimension n (because Y ′ → S′ is smooth of
relative dimension n as the composition Y ′ → YS′ → S′ of an étale and smooth mor-
phism of relative dimension n and because base change preserves smooth morphisms
of relative dimension n). We have κ(y′′) = κ(y) and κ(s) = κ(s′′) hence κ(y′′) is a
purely transcendental extension of κ(s′′). The morphism of fibres X ′′

s′′ → Xs is an
étale morphism of affine schemes over κ(s) = κ(s′′) mapping the point x′′ to the
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point x and pulling back Fs to F ′′
s′′ . Hence

dim(Supp(F ′′
s′′)) = dim(Supp(Fs)) = n = dimx(Supp(Fs)) = dimx′′(Supp(F ′′

s′′))

because dimension is invariant under étale localization, see Descent, Lemma 35.21.2.
As π′′ : Z ′′ → Y ′′ is the base change of π we see that π′′ is finite and as κ(y) = κ(y′′)
we see that π−1({y′′}) = {z′′}.

At this point we have verified all the conditions of Definition 38.4.1 except we
have not verified that Y ′′ → S′′ has geometrically irreducible fibres. Of course
in general this is not going to be true, and it is at this point that we will use
that κ(s) ⊂ κ(y) is purely transcendental. Namely, let T ⊂ Y ′

s′ be the irreducible
component of Y ′

s′ containing y′ = (y, s′). Note that T is an open subscheme of
Y ′
s′ as this is a smooth scheme over κ(s′). By Varieties, Lemma 33.7.14 we see

that T is geometrically connected because κ(s′) = κ(s) is algebraically closed in
κ(y′) = κ(y). As T is smooth we see that T is geometrically irreducible. Hence
More on Morphisms, Lemma 37.46.4 applies and we can find an elementary étale
morphism (S′′, s′′) → (S′, s′) and an affine open Y ′′ ⊂ Y ′

S′′ such that all fibres
of Y ′′ → S′′ are geometrically irreducible and such that T = Y ′′

s′′ . After shrinking
(first Y ′′ and then S′′) we may assume that both Y ′′ and S′′ are affine. This finishes
the proof of the lemma. □

Lemma 38.4.9.05HF Let S, X, F , s be as in Definition 38.4.1. Let (Z, Y, i, π,G) be a
one step dévissage of F/X/S over s. Let ξ ∈ Ys be the (unique) generic point.
Then there exists an integer r > 0 and an OY -module map

α : O⊕r
Y −→ π∗G

such that
α : κ(ξ)⊕r −→ (π∗G)ξ ⊗OY,ξ

κ(ξ)

is an isomorphism. Moreover, in this case we have

dim(Supp(Coker(α)s)) < dim(Supp(Fs)).

Proof. By assumption the schemes S and Y are affine. Write S = Spec(A) and
Y = Spec(B). As π is finite the OY -module π∗G is a finite type quasi-coherent OY -
module. Hence π∗G = Ñ for some finite B-module N . Let p ⊂ B be the prime ideal
corresponding to ξ. To obtain α set r = dimκ(p) N ⊗B κ(p) and pick x1, . . . , xr ∈ N
which form a basis of N ⊗B κ(p). Take α : B⊕r → N to be the map given by
the formula α(b1, . . . , br) =

∑
bixi. It is clear that α : κ(p)⊕r → N ⊗B κ(p) is an

isomorphism as desired. Finally, suppose α is any map with this property. Then
N ′ = Coker(α) is a finite B-module such that N ′⊗κ(p) = 0. By Nakayama’s lemma
(Algebra, Lemma 10.20.1) we see that N ′

p = 0. Since the fibre Ys is geometrically
irreducible of dimension n with generic point ξ and since we have just seen that ξ
is not in the support of Coker(α) the last assertion of the lemma holds. □

38.5. Complete dévissage

05HG In this section we explain what is a complete dévissage of a module and prove that
such exist. The material in this section is mainly bookkeeping.
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Definition 38.5.1.05HH Let S be a scheme. Let X be locally of finite type over S. Let
F be a quasi-coherent OX -module of finite type. Let s ∈ S be a point. A complete
dévissage of F/X/S over s is given by a diagram

X Z1
i1
oo

π1

��
Y1 Z2

i2
oo

π2

��
Y2 Z3oo

��... ...oo

��
Yn

of schemes over S, finite type quasi-coherent OZk -modules Gk, and OYk -module
maps

αk : O⊕rk
Yk
−→ πk,∗Gk, k = 1, . . . , n

satisfying the following properties:
(1) (Z1, Y1, i1, π1,G1) is a one step dévissage of F/X/S over s,
(2) the map αk induces an isomorphism

κ(ξk)⊕rk −→ (πk,∗Gk)ξk ⊗OYk,ξk
κ(ξk)

where ξk ∈ (Yk)s is the unique generic point,
(3) for k = 2, . . . , n the system (Zk, Yk, ik, πk,Gk) is a one step dévissage of

Coker(αk−1)/Yk−1/S over s,
(4) Coker(αn) = 0.

In this case we say that (Zk, Yk, ik, πk,Gk, αk)k=1,...,n is a complete dévissage of
F/X/S over s.

Definition 38.5.2.05HI Let S be a scheme. Let X be locally of finite type over S. Let
F be a quasi-coherent OX -module of finite type. Let x ∈ X be a point with image
s ∈ S. A complete dévissage of F/X/S at x is given by a system

(Zk, Yk, ik, πk,Gk, αk, zk, yk)k=1,...,n

such that (Zk, Yk, ik, πk,Gk, αk) is a complete dévissage of F/X/S over s, and such
that

(1) (Z1, Y1, i1, π1,G1, z1, y1) is a one step dévissage of F/X/S at x,
(2) for k = 2, . . . , n the system (Zk, Yk, ik, πk,Gk, zk, yk) is a one step dévissage

of Coker(αk−1)/Yk−1/S at yk−1.

Again we remark that a complete dévissage can only exist if X and S are affine.

Lemma 38.5.3.05HJ Let S, X, F , s be as in Definition 38.5.1. Let (S′, s′) → (S, s) be
any morphism of pointed schemes. Let (Zk, Yk, ik, πk,Gk, αk)k=1,...,n be a complete
dévissage of F/X/S over s. Given this data let X ′, Z ′

k, Y
′
k, i

′
k, π

′
k be the base changes

of X,Zk, Yk, ik, πk via S′ → S. Let F ′ be the pullback of F to X ′ and let G′
k be

https://stacks.math.columbia.edu/tag/05HH
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the pullback of Gk to Z ′
k. Let α′

k be the pullback of αk to Y ′
k. If S′ is affine, then

(Z ′
k, Y

′
k, i

′
k, π

′
k,G′

k, α
′
k)k=1,...,n is a complete dévissage of F ′/X ′/S′ over s′.

Proof. By Lemma 38.4.4 we know that the base change of a one step dévissage
is a one step dévissage. Hence it suffices to prove that formation of Coker(αk)
commutes with base change and that condition (2) of Definition 38.5.1 is preserved
by base change. The first is true as π′

k,∗G′
k is the pullback of πk,∗Gk (by Cohomology

of Schemes, Lemma 30.5.1) and because ⊗ is right exact. The second because by
the same token we have

(πk,∗Gk)ξk ⊗OYk,ξk
κ(ξk)⊗κ(ξk) κ(ξ′

k) ∼= (π′
k,∗G′

k)ξ′
k
⊗OY ′

k
,ξ′
k

κ(ξ′
k)

with obvious notation. □

Lemma 38.5.4.05HK Let S, X, F , x, s be as in Definition 38.5.2. Let (S′, s′) → (S, s)
be a morphism of pointed schemes which induces an isomorphism κ(s) = κ(s′). Let
(Zk, Yk, ik, πk,Gk, αk, zk, yk)k=1,...,n be a complete dévissage of F/X/S at x. Let
(Z ′

k, Y
′
k, i

′
k, π

′
k,G′

k, α
′
k)k=1,...,n be as constructed in Lemma 38.5.3 and let x′ ∈ X ′

(resp. z′
k ∈ Z ′, y′

k ∈ Y ′) be the unique point mapping to both x ∈ X (resp. zk ∈ Zk,
yk ∈ Yk) and s′ ∈ S′. If S′ is affine, then (Z ′

k, Y
′
k, i

′
k, π

′
k,G′

k, α
′
k, z

′
k, y

′
k)k=1,...,n is a

complete dévissage of F ′/X ′/S′ at x′.

Proof. Combine Lemma 38.5.3 and Lemma 38.4.5. □

Definition 38.5.5.05HL Let S, X, F , x, s be as in Definition 38.5.2. Consider a com-
plete dévissage (Zk, Yk, ik, πk,Gk, αk, zk, yk)k=1,...,n of F/X/S at x. Let us define a
standard shrinking of this situation to be given by standard opens S′ ⊂ S, X ′ ⊂ X,
Z ′
k ⊂ Zk, and Y ′

k ⊂ Yk such that sk ∈ S′, xk ∈ X ′, zk ∈ Z ′, and yk ∈ Y ′ and such
that

(Z ′
k, Y

′
k, i

′
k, π

′
k,G′

k, α
′
k, zk, yk)k=1,...,n

is a one step dévissage of F ′/X ′/S′ at x where G′
k = Gk|Z′

k
and F ′ = F|X′ .

Lemma 38.5.6.05HM With assumption and notation as in Definition 38.5.5 we have:
(1)05HN If S′ ⊂ S is a standard open neighbourhood of s, then setting X ′ = XS′ ,

Z ′
k = ZS′ and Y ′

k = YS′ we obtain a standard shrinking.
(2)05HP Let W ⊂ Yn be a standard open neighbourhood of y. Then there exists a

standard shrinking with Y ′
n = W ×S S′.

(3)05HQ Let U ⊂ X be an open neighbourhood of x. Then there exists a standard
shrinking with X ′ ⊂ U .

Proof. Part (1) is immediate from Lemmas 38.5.4 and 38.4.7.
Proof of (2). For convenience denote X = Y0. We apply Lemma 38.4.7 (2) to find a
standard shrinking S′, Y ′

n−1, Z
′
n, Y

′
n of the one step dévissage of Coker(αn−1)/Yn−1/S

at yn−1 with Y ′
n = W ×S S′. We may repeat this procedure and find a standard

shrinking S′′, Y ′′
n−2, Z

′′
n−1, Y

′′
n−1 of the one step dévissage of Coker(αn−2)/Yn−2/S

at yn−2 with Y ′′
n−1 = Y ′

n−1×S S′′. We may continue in this manner until we obtain
S(n), Y

(n)
0 , Z

(n)
1 , Y

(n)
1 . At this point it is clear that we obtain our desired standard

shrinking by taking S(n), X(n), Z(n−k)
k ×SS(n), and Y (n−k)

k ×SS(n) with the desired
property.
Proof of (3). We use induction on the length of the complete dévissage. First
we apply Lemma 38.4.7 (3) to find a standard shrinking S′, X ′, Z ′

1, Y
′

1 of the one
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step dévissage of F/X/S at x with X ′ ⊂ U . If n = 1, then we are done. If
n > 1, then by induction we can find a standard shrinking S′′, Y ′′

1 , Z ′′
k , and Y ′′

k of
the complete dévissage (Zk, Yk, ik, πk,Gk, αk, zk, yk)k=2,...,n of Coker(α1)/Y1/S at
x such that Y ′′

1 ⊂ Y ′
1 . Using Lemma 38.4.7 (2) we can find S′′′ ⊂ S′, X ′′′ ⊂ X ′, Z ′′′

1
and Y ′′′

1 = Y ′′
1 ×S S′′′ which is a standard shrinking. The solution to our problem

is to take

S′′′, X ′′′, Z ′′′
1 , Y

′′′
1 , Z ′′

2 ×S S′′′, Y ′′
2 ×S S′′′, . . . , Z ′′

n ×S S′′′, Y ′′
n ×S S′′′

This ends the proof of the lemma. □

Proposition 38.5.7.05HR Let S be a scheme. Let X be locally of finite type over S. Let
x ∈ X be a point with image s ∈ S. There exists a commutative diagram

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

of pointed schemes such that the horizontal arrows are elementary étale neighbour-
hoods and such that g∗F/X ′/S′ has a complete dévissage at x.

Proof. We prove this by induction on the integer d = dimx(Supp(Fs)). By Lemma
38.4.3 there exists a diagram

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

of pointed schemes such that the horizontal arrows are elementary étale neigh-
bourhoods and such that g∗F/X ′/S′ has a one step dévissage at x′. The local
nature of the problem implies that we may replace (X,x) → (S, s) by (X ′, x′) →
(S′, s′). Thus after doing so we may assume that there exists a one step dévissage
(Z1, Y1, i1, π1,G1) of F/X/S at x.

We apply Lemma 38.4.9 to find a map

α1 : O⊕r1
Y1
−→ π1,∗G1

which induces an isomorphism of vector spaces over κ(ξ1) where ξ1 ∈ Y1 is the
unique generic point of the fibre of Y1 over s. Moreover dimy1(Supp(Coker(α1)s)) <
d. It may happen that the stalk of Coker(α1)s at y1 is zero. In this case we may
shrink Y1 by Lemma 38.4.7 (2) and assume that Coker(α1) = 0 so we obtain a
complete dévissage of length zero.

Assume now that the stalk of Coker(α1)s at y1 is not zero. In this case, by induction,
there exists a commutative diagram

(38.5.7.1)05HS

(Y1, y1)

��

(Y ′
1 , y

′
1)

h
oo

��
(S, s) (S′, s′)oo
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of pointed schemes such that the horizontal arrows are elementary étale neighbour-
hoods and such that h∗ Coker(α1)/Y ′

1/S
′ has a complete dévissage

(Zk, Yk, ik, πk,Gk, αk, zk, yk)k=2,...,n

at y′
1. (In particular i2 : Z2 → Y ′

1 is a closed immersion into Y ′
2 .) At this point

we apply Lemma 38.4.8 to S,X,F , x, s, the system (Z1, Y1, i1, π1,G1) and diagram
(38.5.7.1). We obtain a diagram

(X ′′, x′′)

tt ��

(Z ′′
1 , z

′′
1 )oo

tt ��
(X,x)

��

(Z1, z1)oo

��

(S′′, s′′)

tt

(Y ′′
1 , y

′′
1 )

tt

oo

(S, s) (Y1, y1)oo

with all the properties as listed in the referenced lemma. In particular Y ′′
1 ⊂

Y ′
1 ×S′ S′′. Set X1 = Y ′

1 ×S′ S′′ and let F1 denote the pullback of Coker(α1). By
Lemma 38.5.4 the system

(38.5.7.2)05HT (Zk ×S′ S′′, Yk ×S′ S′′, i′′k , π
′′
k ,G′′

k , α
′′
k , z

′′
k , y

′′
k )k=2,...,n

is a complete dévissage of F1 to X1. Again, the nature of the problem allows us to
replace (X,x)→ (S, s) by (X ′′, x′′)→ (S′′, s′′). In this we see that we may assume:

(a) There exists a one step dévissage (Z1, Y1, i1, π1,G1) of F/X/S at x,
(b) there exists an α1 : O⊕r1

Y1
→ π1,∗G1 such that α⊗κ(ξ1) is an isomorphism,

(c) Y1 ⊂ X1 is open, y1 = x1, and F1|Y1
∼= Coker(α1), and

(d) there exists a complete dévissage (Zk, Yk, ik, πk,Gk, αk, zk, yk)k=2,...,n of
F1/X1/S at x1.

To finish the proof all we have to do is shrink the one step dévissage and the
complete dévissage such that they fit together to a complete dévissage. (We suggest
the reader do this on their own using Lemmas 38.4.7 and 38.5.6 instead of reading
the proof that follows.) Since Y1 ⊂ X1 is an open neighbourhood of x1 we may
apply Lemma 38.5.6 (3) to find a standard shrinking S′, X ′

1, Z
′
2, Y

′
2 , . . . , Y

′
n of the

datum (d) so that X ′
1 ⊂ Y1. Note that X ′

1 is also a standard open of the affine
scheme Y1. Next, we shrink the datum (a) as follows: first we shrink the base S to
S′, see Lemma 38.4.7 (1) and then we shrink the result to S′′, X ′′, Z ′′

1 , Y ′′
1 using

Lemma 38.4.7 (2) such that eventually Y ′′
1 = X ′

1 ×S S′′ and S′′ ⊂ S′. Then we see
that

Z ′′
1 , Y

′′
1 , Z

′
2 ×S′ S′′, Y ′

2 ×S′ S′′, . . . , Y ′
n ×S′ S′′

gives the complete dévissage we were looking for. □

Some more bookkeeping gives the following consequence.

Lemma 38.5.8.05HU Let X → S be a finite type morphism of schemes. Let F be a finite
type quasi-coherent OX -module. Let s ∈ S be a point. There exists an elementary
étale neighbourhood (S′, s′) → (S, s) and étale morphisms hi : Yi → XS′ , i =
1, . . . , n such that for each i there exists a complete dévissage of Fi/Yi/S′ over s′,
where Fi is the pullback of F to Yi and such that Xs = (XS′)s′ ⊂

⋃
hi(Yi).
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Proof. For every point x ∈ Xs we can find a diagram
(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

of pointed schemes such that the horizontal arrows are elementary étale neighbour-
hoods and such that g∗F/X ′/S′ has a complete dévissage at x′. As X → S is of
finite type the fibre Xs is quasi-compact, and since each g : X ′ → X as above is
open we can cover Xs by a finite union of g(X ′

s′). Thus we can find a finite family
of such diagrams

(X,x)

��

(X ′
i, x

′
i)gi

oo

��
(S, s) (S′

i, s
′
i)oo

i = 1, . . . , n

such that Xs =
⋃
gi(X ′

i). Set S′ = S′
1 ×S . . .×S S′

n and let Yi = Xi ×S′
i
S′ be the

base change of X ′
i to S′. By Lemma 38.5.3 we see that the pullback of F to Yi has

a complete dévissage over s and we win. □

38.6. Translation into algebra

05HV It may be useful to spell out algebraically what it means to have a complete dévis-
sage. We introduce the following notion (which is not that useful so we give it an
impossibly long name).
Definition 38.6.1.05HW Let R→ S be a ring map. Let q be a prime of S lying over the
prime p of R. A elementary étale localization of the ring map R→ S at q is given
by a commutative diagram of rings and accompanying primes

S // S′

R

OO

// R′

OO q q′

p p′

such that R → R′ and S → S′ are étale ring maps and κ(p) = κ(p′) and κ(q) =
κ(q′).
Definition 38.6.2.05HX Let R → S be a finite type ring map. Let r be a prime of R.
Let N be a finite S-module. A complete dévissage of N/S/R over r is given by
R-algebra maps

A1 A2 ... An

S

??

B1

`` >>

...

`` ??

...

__ >>

Bn

aa

finite Ai-modules Mi and Bi-module maps αi : B⊕ri
i →Mi such that

(1) S → A1 is surjective and of finite presentation,
(2) Bi → Ai+1 is surjective and of finite presentation,
(3) Bi → Ai is finite,
(4) R→ Bi is smooth with geometrically irreducible fibres,
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(5) N ∼= M1 as S-modules,
(6) Coker(αi) ∼= Mi+1 as Bi-modules,
(7) αi : κ(pi)⊕ri →Mi ⊗Bi κ(pi) is an isomorphism where pi = rBi, and
(8) Coker(αn) = 0.

In this situation we say that (Ai, Bi,Mi, αi)i=1,...,n is a complete dévissage of
N/S/R over r.

Remark 38.6.3.05HY Note that the R-algebras Bi for all i and Ai for i ≥ 2 are of finite
presentation over R. If S is of finite presentation over R, then it is also the case that
A1 is of finite presentation over R. In this case all the ring maps in the complete
dévissage are of finite presentation. See Algebra, Lemma 10.6.2. Still assuming S
of finite presentation over R the following are equivalent

(1) M is of finite presentation over S,
(2) M1 is of finite presentation over A1,
(3) M1 is of finite presentation over B1,
(4) each Mi is of finite presentation both as an Ai-module and as a Bi-module.

The equivalences (1) ⇔ (2) and (2) ⇔ (3) follow from Algebra, Lemma 10.36.23.
If M1 is finitely presented, so is Coker(α1) (see Algebra, Lemma 10.5.3) and hence
M2, etc.

Definition 38.6.4.05HZ Let R → S be a finite type ring map. Let q be a prime of S
lying over the prime r of R. Let N be a finite S-module. A complete dévissage of
N/S/R at q is given by a complete dévissage (Ai, Bi,Mi, αi)i=1,...,n of N/S/R over
r and prime ideals qi ⊂ Bi lying over r such that

(1) κ(r) ⊂ κ(qi) is purely transcendental,
(2) there is a unique prime q′

i ⊂ Ai lying over qi ⊂ Bi,
(3) q = q′

1 ∩ S and qi = q′
i+1 ∩Ai,

(4) R→ Bi has relative dimension dimqi(Supp(Mi ⊗R κ(r))).

Remark 38.6.5.05I0 Let A → B be a finite type ring map and let N be a finite B-
module. Let q be a prime of B lying over the prime r of A. Set X = Spec(B),
S = Spec(A) and F = Ñ on X. Let x be the point corresponding to q and let
s ∈ S be the point corresponding to p. Then

(1) if there exists a complete dévissage of F/X/S over s then there exists a
complete dévissage of N/B/A over p, and

(2) there exists a complete dévissage of F/X/S at x if and only if there exists
a complete dévissage of N/B/A at q.

There is just a small twist in that we omitted the condition on the relative dimension
in the formulation of “a complete dévissage of N/B/A over p” which is why the
implication in (1) only goes in one direction. The notion of a complete dévissage
at q does have this condition built in. In any case we will only use that existence
for F/X/S implies the existence for N/B/A.

Lemma 38.6.6.05I1 Let R → S be a finite type ring map. Let M be a finite S-
module. Let q be a prime ideal of S. There exists an elementary étale localization
R′ → S′, q′, p′ of the ring map R → S at q such that there exists a complete
dévissage of (M ⊗S S′)/S′/R′ at q′.

Proof. This is a reformulation of Proposition 38.5.7 via Remark 38.6.5 □
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38.7. Localization and universally injective maps

05DD
Lemma 38.7.1.05DE Let R→ S be a ring map. Let N be a S-module. Assume

(1) R is a local ring with maximal ideal m,
(2) S = S/mS is Noetherian, and
(3) N = N/mRN is a finite S-module.

Let Σ ⊂ S be the multiplicative subset of elements which are not a zerodivisor on N .
Then Σ−1S is a semi-local ring whose spectrum consists of primes q ⊂ S contained
in an element of AssS(N). Moreover, any maximal ideal of Σ−1S corresponds to
an associated prime of N over S.

Proof. Note that AssS(N) = AssS(N), see Algebra, Lemma 10.63.14. This is a
finite set by Algebra, Lemma 10.63.5. Say {q1, . . . , qr} = AssS(N). We have
Σ = S \ (

⋃
qi) by Algebra, Lemma 10.63.9. By the description of Spec(Σ−1S) in

Algebra, Lemma 10.17.5 and by Algebra, Lemma 10.15.2 we see that the primes of
Σ−1S correspond to the primes of S contained in one of the qi. Hence the maximal
ideals of Σ−1S correspond one-to-one with the maximal (w.r.t. inclusion) elements
of the set {q1, . . . , qr}. This proves the lemma. □

Lemma 38.7.2.05DF Assumption and notation as in Lemma 38.7.1. Assume moreover
that

(1) S is local and R→ S is a local homomorphism,
(2) S is essentially of finite presentation over R,
(3) N is finitely presented over S, and
(4) N is flat over R.

Then each s ∈ Σ defines a universally injective R-module map s : N → N , and the
map N → Σ−1N is R-universally injective.

Proof. By Algebra, Lemma 10.128.4 the sequence 0 → N → N → N/sN → 0 is
exact and N/sN is flat over R. This implies that s : N → N is universally injective,
see Algebra, Lemma 10.39.12. The map N → Σ−1N is universally injective as the
directed colimit of the maps s : N → N . □

Lemma 38.7.3.05DG Let R→ S be a ring map. Let N be an S-module. Let S → S′ be
a ring map. Assume

(1) R→ S is a local homomorphism of local rings
(2) S is essentially of finite presentation over R,
(3) N is of finite presentation over S,
(4) N is flat over R,
(5) S → S′ is flat, and
(6) the image of Spec(S′)→ Spec(S) contains all primes q of S lying over mR

such that q is an associated prime of N/mRN .
Then N → N ⊗S S′ is R-universally injective.

Proof. Set N ′ = N ⊗R S′. Consider the commutative diagram
N

��

// N ′

��
Σ−1N // Σ−1N ′
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where Σ ⊂ S is the set of elements which are not a zerodivisor on N/mRN . If we
can show that the map N → Σ−1N ′ is universally injective, then N → N ′ is too
(see Algebra, Lemma 10.82.10).
By Lemma 38.7.1 the ring Σ−1S is a semi-local ring whose maximal ideals cor-
respond to associated primes of N/mRN . Hence the image of Spec(Σ−1S′) →
Spec(Σ−1S) contains all these maximal ideals by assumption. By Algebra, Lemma
10.39.16 the ring map Σ−1S → Σ−1S′ is faithfully flat. Hence Σ−1N → Σ−1N ′,
which is the map

N ⊗S Σ−1S −→ N ⊗S Σ−1S′

is universally injective, see Algebra, Lemmas 10.82.11 and 10.82.8. Finally, we apply
Lemma 38.7.2 to see that N → Σ−1N is universally injective. As the composition
of universally injective module maps is universally injective (see Algebra, Lemma
10.82.9) we conclude that N → Σ−1N ′ is universally injective and we win. □

Lemma 38.7.4.05DH Let R→ S be a ring map. Let N be an S-module. Let S → S′ be
a ring map. Assume

(1) R→ S is of finite presentation and N is of finite presentation over S,
(2) N is flat over R,
(3) S → S′ is flat, and
(4) the image of Spec(S′) → Spec(S) contains all primes q such that q is an

associated prime of N ⊗R κ(p) where p is the inverse image of q in R.
Then N → N ⊗S S′ is R-universally injective.

Proof. By Algebra, Lemma 10.82.12 it suffices to show that Nq → (N ⊗R S′)q is a
Rp-universally injective for any prime q of S lying over p in R. Thus we may apply
Lemma 38.7.3 to the ring maps Rp → Sq → S′

q and the module Nq. □

The reader may want to compare the following lemma to Algebra, Lemmas 10.99.1
and 10.128.4 and the results of Section 38.25. In each case the conclusion is that
the map u : M → N is universally injective with flat cokernel.

Lemma 38.7.5.05FQ Let (R,m) be a local ring. Let u : M → N be an R-module map.
If M is a projective R-module, N is a flat R-module, and u : M/mM → N/mN is
injective then u is universally injective.

Proof. By Algebra, Theorem 10.85.4 the module M is free. If we show the result
holds for every finitely generated direct summand of M , then the lemma follows.
Hence we may assume that M is finite free. Write N = colimiNi as a directed
colimit of finite free modules, see Algebra, Theorem 10.81.4. Note that u : M → N
factors through Ni for some i (as M is finite free). Denote ui : M → Ni the
corresponding R-module map. As u is injective we see that ui : M/mM → Ni/mNi
is injective and remains injective on composing with the maps Ni/mNi → Ni′/mNi′

for all i′ ≥ i. As M and Ni′ are finite free over the local ring R this implies that
M → Ni′ is a split injection for all i′ ≥ i. Hence for any R-module Q we see that
M ⊗R Q→ Ni′ ⊗R Q is injective for all i′ ≥ i. As −⊗R Q commutes with colimits
we conclude that M ⊗R Q→ Ni′ ⊗R Q is injective as desired. □

Lemma 38.7.6.05FR Assumption and notation as in Lemma 38.7.1. Assume moreover
that N is projective as an R-module. Then each s ∈ Σ defines a universally injective
R-module map s : N → N , and the map N → Σ−1N is R-universally injective.
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Proof. Pick s ∈ Σ. By Lemma 38.7.5 the map s : N → N is universally injective.
The map N → Σ−1N is universally injective as the directed colimit of the maps
s : N → N . □

38.8. Completion and Mittag-Leffler modules

05DI
Lemma 38.8.1.05DJ Let R be a ring. Let I ⊂ R be an ideal. Let A be a set. Assume R
is Noetherian and complete with respect to I. The completion (

⊕
α∈AR)∧ is flat

and Mittag-Leffler.

Proof. By More on Algebra, Lemma 15.27.1 the map (
⊕

α∈AR)∧ →
∏
α∈AR is

universally injective. Thus, by Algebra, Lemmas 10.82.7 and 10.89.7 it suffices to
show that

∏
α∈AR is flat and Mittag-Leffler. By Algebra, Proposition 10.90.6 (and

Algebra, Lemma 10.90.5) we see that
∏
α∈AR is flat. Thus we conclude because a

product of copies of R is Mittag-Leffler, see Algebra, Lemma 10.91.3. □

Lemma 38.8.2.05DK Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
Assume

(1) R is Noetherian and I-adically complete,
(2) M is flat over R, and
(3) M/IM is a projective R/I-module.

Then the I-adic completion M∧ is a flat Mittag-Leffler R-module.

Proof. Choose a surjection F → M where F is a free R-module. By Algebra,
Lemma 10.97.9 the module M∧ is a direct summand of the module F∧. Hence
it suffices to prove the lemma for F . In this case the lemma follows from Lemma
38.8.1. □

In Lemmas 38.8.3 and 38.8.4 the assumption that S be Noetherian holds if R→ S
is of finite type, see Algebra, Lemma 10.31.1.

Lemma 38.8.3.05DL Let R be a ring. Let I ⊂ R be an ideal. Let R→ S be a ring map,
and N an S-module. Assume

(1) R is a Noetherian ring,
(2) S is a Noetherian ring,
(3) N is a finite S-module, and
(4) for any finite R-module Q, any q ∈ AssS(Q⊗R N) satisfies IS + q ̸= S.

Then the map N → N∧ of N into the I-adic completion of N is universally injective
as a map of R-modules.

Proof. We have to show that for any finite R-moduleQ the mapQ⊗RN → Q⊗RN∧

is injective, see Algebra, Theorem 10.82.3. As there is a canonical map Q⊗RN∧ →
(Q ⊗R N)∧ it suffices to prove that the canonical map Q ⊗R N → (Q ⊗R N)∧ is
injective. Hence we may replace N by Q⊗RN and it suffices to prove the injectivity
for the map N → N∧.
Let K = Ker(N → N∧). It suffices to show that Kq = 0 for q ∈ Ass(N) as N is a
submodule of

∏
q∈Ass(N) Nq, see Algebra, Lemma 10.63.19. Pick q ∈ Ass(N). By

the last assumption we see that there exists a prime q′ ⊃ IS + q. Since Kq is a
localization of Kq′ it suffices to prove the vanishing of Kq′ . Note that K =

⋂
InN ,

hence Kq′ ⊂
⋂
InNq′ . Hence Kq′ = 0 by Algebra, Lemma 10.51.4. □
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Lemma 38.8.4.05DM Let R be a ring. Let I ⊂ R be an ideal. Let R→ S be a ring map,
and N an S-module. Assume

(1) R is a Noetherian ring,
(2) S is a Noetherian ring,
(3) N is a finite S-module,
(4) N is flat over R, and
(5) for any prime q ⊂ S which is an associated prime of N ⊗R κ(p) where

p = R ∩ q we have IS + q ̸= S.
Then the map N → N∧ of N into the I-adic completion of N is universally injective
as a map of R-modules.

Proof. This follows from Lemma 38.8.3 because Algebra, Lemma 10.65.5 and Re-
mark 10.65.6 guarantee that the set of associated primes of tensor products N⊗RQ
are contained in the set of associated primes of the modules N ⊗R κ(p). □

38.9. Projective modules

05DN The following lemma can be used to prove projectivity by Noetherian induction on
the base, see Lemma 38.9.2.

Lemma 38.9.1.05DP Let R be a ring. Let I ⊂ R be an ideal. Let R→ S be a ring map,
and N an S-module. Assume

(1) R is Noetherian and I-adically complete,
(2) R→ S is of finite type,
(3) N is a finite S-module,
(4) N is flat over R,
(5) N/IN is projective as a R/I-module, and
(6) for any prime q ⊂ S which is an associated prime of N ⊗R κ(p) where

p = R ∩ q we have IS + q ̸= S.
Then N is projective as an R-module.

Proof. By Lemma 38.8.4 the map N → N∧ is universally injective. By Lemma
38.8.2 the module N∧ is Mittag-Leffler. By Algebra, Lemma 10.89.7 we conclude
that N is Mittag-Leffler. Hence N is countably generated, flat and Mittag-Leffler
as an R-module, whence projective by Algebra, Lemma 10.93.1. □

Lemma 38.9.2.05FS Let R be a ring. Let R→ S be a ring map. Assume
(1) R is Noetherian,
(2) R→ S is of finite type and flat, and
(3) every fibre ring S ⊗R κ(p) is geometrically integral over κ(p).

Then S is projective as an R-module.

Proof. Consider the set
{I ⊂ R | S/IS not projective as R/I-module}

We have to show this set is empty. To get a contradiction assume it is nonempty.
Then it contains a maximal element I. Let J =

√
I be its radical. If I ̸= J ,

then S/JS is projective as a R/J-module, and S/IS is flat over R/I and J/I is a
nilpotent ideal in R/I. Applying Algebra, Lemma 10.77.7 we see that S/IS is a
projective R/I-module, which is a contradiction. Hence we may assume that I is
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a radical ideal. In other words we are reduced to proving the lemma in case R is a
reduced ring and S/IS is a projective R/I-module for every nonzero ideal I of R.

Assume R is a reduced ring and S/IS is a projective R/I-module for every nonzero
ideal I of R. By generic flatness, Algebra, Lemma 10.118.1 (applied to a localization
Rg which is a domain) or the more general Algebra, Lemma 10.118.7 there exists
a nonzero f ∈ R such that Sf is free as an Rf -module. Denote R∧ = limR/(fn)
the (f)-adic completion of R. Note that the ring map

R −→ Rf ×R∧

is a faithfully flat ring map, see Algebra, Lemma 10.97.2. Hence by faithfully
flat descent of projectivity, see Algebra, Theorem 10.95.6 it suffices to prove that
S⊗RR∧ is a projective R∧-module. To see this we will use the criterion of Lemma
38.9.1. First of all, note that S/fS = (S⊗RR∧)/f(S⊗RR∧) is a projective R/(f)-
module and that S ⊗R R∧ is flat and of finite type over R∧ as a base change of
such. Next, suppose that p∧ is a prime ideal of R∧. Let p ⊂ R be the corresponding
prime of R. As R → S has geometrically integral fibre rings, the same is true
for the fibre rings of any base change. Hence q∧ = p∧(S ⊗R R∧), is a prime
ideals lying over p∧ and it is the unique associated prime of S ⊗R κ(p∧). Thus
we win if f(S ⊗R R∧) + q∧ ̸= S ⊗R R∧. This is true because p∧ + fR∧ ̸= R∧

as f lies in the Jacobson radical of the f -adically complete ring R∧ and because
R∧ → S⊗RR∧ is surjective on spectra as its fibres are nonempty (irreducible spaces
are nonempty). □

Lemma 38.9.3.05FT Let R be a ring. Let R→ S be a ring map. Assume
(1) R→ S is of finite presentation and flat, and
(2) every fibre ring S ⊗R κ(p) is geometrically integral over κ(p).

Then S is projective as an R-module.

Proof. We can find a cocartesian diagram of rings

S0 // S

R0

OO

// R

OO

such that R0 is of finite type over Z, the map R0 → S0 is of finite type and
flat with geometrically integral fibres, see More on Morphisms, Lemmas 37.34.4,
37.34.6, 37.34.7, and 37.34.11. By Lemma 38.9.2 we see that S0 is a projective
R0-module. Hence S = S0 ⊗R0 R is a projective R-module, see Algebra, Lemma
10.94.1. □

Remark 38.9.4.05FU Lemma 38.9.3 is a key step in the development of results in this
chapter. The analogue of this lemma in [GR71] is [GR71, I Proposition 3.3.1]: If
R → S is smooth with geometrically integral fibres, then S is projective as an
R-module. This is a special case of Lemma 38.9.3, but as we will later improve
on this lemma anyway, we do not gain much from having a stronger result at this
point. We briefly sketch the proof of this as it is given in [GR71].

(1) First reduce to the case where R is Noetherian as above.
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(2) Since projectivity descends through faithfully flat ring maps, see Algebra,
Theorem 10.95.6 we may work locally in the fppf topology on R, hence
we may assume that R → S has a section σ : S → R. (Just by the usual
trick of base changing to S.) Set I = Ker(S → R).

(3) Localizing a bit more on R we may assume that I/I2 is a free R-module
and that the completion S∧ of S with respect to I is isomorphic to
R[[t1, . . . , tn]], see Morphisms, Lemma 29.34.20. Here we are using that
R→ S is smooth.

(4) To prove that S is projective as an R-module, it suffices to prove that
S is flat, countably generated and Mittag-Leffler as an R-module, see
Algebra, Lemma 10.93.1. The first two properties are evident. Thus it
suffices to prove that S is Mittag-Leffler as an R-module. By Algebra,
Lemma 10.91.4 the module R[[t1, . . . , tn]] is Mittag-Leffler over R. Hence
Algebra, Lemma 10.89.7 shows that it suffices to show that the S → S∧

is universally injective as a map of R-modules.
(5) Apply Lemma 38.7.4 to see that S → S∧ is R-universally injective.

Namely, as R→ S has geometrically integral fibres, any associated point
of any fibre ring is just the generic point of the fibre ring which is in the
image of Spec(S∧)→ Spec(S).

There is an analogy between the proof as sketched just now, and the development
of the arguments leading to the proof of Lemma 38.9.3. In both a completion plays
an essential role, and both times the assumption of having geometrically integral
fibres assures one that the map from S to the completion of S is R-universally
injective.

38.10. Flat finite type modules, Part I

05I2 In some cases given a ring map R→ S of finite presentation and a finite S-module
N the flatness of N over R implies that N is of finite presentation. In this section
we prove this is true “pointwise”. We remark that the first proof of Proposition
38.10.3 uses the geometric results of Section 38.3 but not the existence of a complete
dévissage.
Lemma 38.10.1.05I3 Let (R,m) be a local ring. Let R→ S be a finitely presented flat
ring map with geometrically integral fibres. Write p = mS. Let q ⊂ S be a prime
ideal lying over m. Let N be a finite S-module. There exist r ≥ 0 and an S-module
map

α : S⊕r −→ N

such that α : κ(p)⊕r → N ⊗S κ(p) is an isomorphism. For any such α the following
are equivalent:

(1) Nq is R-flat,
(2) α is R-universally injective and Coker(α)q is R-flat,
(3) α is injective and Coker(α)q is R-flat,
(4) αp is an isomorphism and Coker(α)q is R-flat, and
(5) αq is injective and Coker(α)q is R-flat.

Proof. To obtain α set r = dimκ(p) N ⊗S κ(p) and pick x1, . . . , xr ∈ N which form
a basis of N ⊗S κ(p). Define α(s1, . . . , sr) =

∑
sixi. This proves the existence.

Fix an α. The most interesting implication is (1) ⇒ (2) which we prove first.
Assume (1). Because S/mS is a domain with fraction field κ(p) we see that
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(S/mS)⊕r → Np/mNp = N ⊗S κ(p) is injective. Hence by Lemmas 38.7.5 and
38.9.3. the map S⊕r → Np is R-universally injective. It follows that S⊕r → N
is R-universally injective, see Algebra, Lemma 10.82.10. Then also the localiza-
tion αq is R-universally injective, see Algebra, Lemma 10.82.13. We conclude that
Coker(α)q is R-flat by Algebra, Lemma 10.82.7.
The implication (2) ⇒ (3) is immediate. If (3) holds, then αp is injective as a
localization of an injective module map. By Nakayama’s lemma (Algebra, Lemma
10.20.1) αp is surjective too. Hence (3) ⇒ (4). If (4) holds, then αp is an isomor-
phism, so α is injective as Sq → Sp is injective. Namely, elements of S \ p are
nonzerodivisors on S by a combination of Lemmas 38.7.6 and 38.9.3. Hence (4)
⇒ (5). Finally, if (5) holds, then Nq is R-flat as an extension of flat modules, see
Algebra, Lemma 10.39.13. Hence (5) ⇒ (1) and the proof is finished. □

Lemma 38.10.2.05I4 Let (R,m) be a local ring. Let R → S be a ring map of finite
presentation. Let N be a finite S-module. Let q be a prime of S lying over m.
Assume that Nq is flat over R, and assume there exists a complete dévissage of
N/S/R at q. Then N is a finitely presented S-module, free as an R-module, and
there exists an isomorphism

N ∼= B⊕r1
1 ⊕ . . .⊕B⊕rn

n

as R-modules where each Bi is a smooth R-algebra with geometrically irreducible
fibres.

Proof. Let (Ai, Bi,Mi, αi, qi)i=1,...,n be the given complete dévissage. We prove the
lemma by induction on n. Note that N is finitely presented as an S-module if and
only if M1 is finitely presented as an B1-module, see Remark 38.6.3. Note that Nq

∼=
(M1)q1 as R-modules because (a) Nq

∼= (M1)q′
1

where q′
1 is the unique prime in A1

lying over q1 and (b) (A1)q′
1

= (A1)q1 by Algebra, Lemma 10.41.11, so (c) (M1)q′
1
∼=

(M1)q1 . Hence (M1)q1 is a flat R-module. Thus we may replace (S,N) by (B1,M1)
in order to prove the lemma. By Lemma 38.10.1 the map α1 : B⊕r1

1 → M1 is R-
universally injective and Coker(α1)q is R-flat. Note that (Ai, Bi,Mi, αi, qi)i=2,...,n
is a complete dévissage of Coker(α1)/B1/R at q1. Hence the induction hypothesis
implies that Coker(α1) is finitely presented as a B1-module, free as an R-module,
and has a decomposition as in the lemma. This implies that M1 is finitely presented
as a B1-module, see Algebra, Lemma 10.5.3. It further implies that M1 ∼= B⊕r1

1 ⊕
Coker(α1) as R-modules, hence a decomposition as in the lemma. Finally, B1 is
projective as an R-module by Lemma 38.9.3 hence free as an R-module by Algebra,
Theorem 10.85.4. This finishes the proof. □

Proposition 38.10.3.05I5 Let f : X → S be a morphism of schemes. Let F be a
quasi-coherent sheaf on X. Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite presentation,
(2) F is of finite type, and
(3) F is flat at x over S.

Then there exists an elementary étale neighbourhood (S′, s′)→ (S, s) and an open
subscheme

V ⊂ X ×S Spec(OS′,s′)
which contains the unique point of X ×S Spec(OS′,s′) mapping to x such that the
pullback of F to V is an OV -module of finite presentation and flat over OS′,s′ .
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First proof. This proof is longer but does not use the existence of a complete dévis-
sage. The problem is local around x and s, hence we may assume that X and S
are affine. During the proof we will finitely many times replace S by an elementary
étale neighbourhood of (S, s). The goal is then to find (after such a replacement)
an open V ⊂ X×S Spec(OS,s) containing x such that F|V is flat over S and finitely
presented. Of course we may also replace S by Spec(OS,s) at any point of the proof,
i.e., we may assume S is a local scheme. We will prove the proposition by induction
on the integer n = dimx(Supp(Fs)).
We can choose

(1) elementary étale neighbourhoods g : (X ′, x′) → (X,x), e : (S′, s′) →
(S, s),

(2) a commutative diagram

X

f

��

X ′

��

g
oo Z ′

i
oo

π

��
Y ′

h
��

S S′eoo S′

(3) a point z′ ∈ Z ′ with i(z′) = x′, y′ = π(z′), h(y′) = s′,
(4) a finite type quasi-coherent OZ′ -module G,

as in Lemma 38.3.2. We are going to replace S by Spec(OS′,s′), see remarks in first
paragraph of the proof. Consider the diagram

XOS′,s′

f

��

X ′
OS′,s′

��

g
oo Z ′

OS′,s′i
oo

π

��
Y ′

OS′,s′

hxx
Spec(OS′,s′)

Here we have base changed the schemes X ′, Z ′, Y ′ over S′ via Spec(OS′,s′) → S′

and the scheme X over S via Spec(OS′,s′) → S. It is still the case that g is étale,
see Lemma 38.2.2. After replacing X by XOS′,s′ , X ′ by X ′

OS′,s′ , Z ′ by Z ′
OS′,s′ , and

Y ′ by Y ′
OS′,s′ we may assume we have a diagram as Lemma 38.3.2 where in addition

S = S′ is a local scheme with closed point s. By Lemmas 38.3.3 and 38.3.4 the
result for Y ′ → S, the sheaf π∗G, and the point y′ implies the result for X → S, F
and x. Hence we may assume that S is local and X → S is a smooth morphism of
affines with geometrically irreducible fibres of dimension n.
The base case of the induction: n = 0. As X → S is smooth with geometrically
irreducible fibres of dimension 0 we see that X → S is an open immersion, see
Descent, Lemma 35.25.2. As S is local and the closed point is in the image of
X → S we conclude that X = S. Thus we see that F corresponds to a finite flat
OS,s module. In this case the result follows from Algebra, Lemma 10.78.5 which
tells us that F is in fact finite free.
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The induction step. Assume the result holds whenever the dimension of the support
in the closed fibre is < n. Write S = Spec(A), X = Spec(B) and F = Ñ for some
B-module N . Note that A is a local ring; denote its maximal ideal m. Then p = mB
is the unique minimal prime lying over m as X → S has geometrically irreducible
fibres. Finally, let q ⊂ B be the prime corresponding to x. By Lemma 38.10.1 we
can choose a map

α : B⊕r → N

such that κ(p)⊕r → N ⊗B κ(p) is an isomorphism. Moreover, as Nq is A-flat
the lemma also shows that α is injective and that Coker(α)q is A-flat. Set Q =
Coker(α). Note that the support of Q/mQ does not contain p. Hence it is certainly
the case that dimq(Supp(Q/mQ)) < n. Combining everything we know about Q
we see that the induction hypothesis applies to Q. It follows that there exists
an elementary étale morphism (S′, s) → (S, s) such that the conclusion holds for
Q⊗AA′ over B⊗AA′ where A′ = OS′,s′ . After replacing A by A′ we have an exact
sequence

0→ B⊕r → N → Q→ 0
(here we use that α is injective as mentioned above) of finite B-modules and we
also get an element g ∈ B, g ̸∈ q such that Qg is finitely presented over Bg and flat
over A. Since localization is exact we see that

0→ B⊕r
g → Ng → Qg → 0

is still exact. As Bg and Qg are flat over A we conclude that Ng is flat over A,
see Algebra, Lemma 10.39.13, and as Bg and Qg are finitely presented over Bg the
same holds for Ng, see Algebra, Lemma 10.5.3. □

Second proof. We apply Proposition 38.5.7 to find a commutative diagram
(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

of pointed schemes such that the horizontal arrows are elementary étale neighbour-
hoods and such that g∗F/X ′/S′ has a complete dévissage at x. (In particular S′

and X ′ are affine.) By Morphisms, Lemma 29.25.13 we see that g∗F is flat at x′

over S and by Lemma 38.2.3 we see that it is flat at x′ over S′. Via Remark 38.6.5
we deduce that

Γ(X ′, g∗F)/Γ(X ′,OX′)/Γ(S′,OS′)
has a complete dévissage at the prime of Γ(X ′,OX′) corresponding to x′. We may
base change this complete dévissage to the local ring OS′,s′ of Γ(S′,OS′) at the
prime corresponding to s′. Thus Lemma 38.10.2 implies that

Γ(X ′,F ′)⊗Γ(S′,OS′ ) OS′,s′

is flat over OS′,s′ and of finite presentation over Γ(X ′,OX′) ⊗Γ(S′,OS′ ) OS′,s′ . In
other words, the restriction of F to X ′ ×S′ Spec(OS′,s′) is of finite presentation
and flat over OS′,s′ . Since the morphism X ′×S′ Spec(OS′,s′)→ X ×S Spec(OS′,s′)
is étale (Lemma 38.2.2) its image V ⊂ X ×S Spec(OS′,s′) is an open subscheme,
and by étale descent the restriction of F to V is of finite presentation and flat over
OS′,s′ . (Results used: Morphisms, Lemma 29.36.13, Descent, Lemma 35.7.3, and
Morphisms, Lemma 29.25.13.) □
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Lemma 38.10.4.05M9 Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent OX -module of finite type. Let s ∈ S. Then the
set

{x ∈ Xs | F flat over S at x}
is open in the fibre Xs.

Proof. Suppose x ∈ U . Choose an elementary étale neighbourhood (S′, s′)→ (S, s)
and open V ⊂ X ×S Spec(OS′,s′) as in Proposition 38.10.3. Note that Xs′ = Xs as
κ(s) = κ(s′). If x′ ∈ V ∩Xs′ , then the pullback of F to X ×S S′ is flat over S′ at
x′. Hence F is flat at x′ over S, see Morphisms, Lemma 29.25.13. In other words
Xs ∩ V ⊂ U is an open neighbourhood of x in U . □

Lemma 38.10.5.05KT Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite type,
(2) F is of finite type, and
(3) F is flat at x over S.

Then there exists an elementary étale neighbourhood (S′, s′)→ (S, s) and an open
subscheme

V ⊂ X ×S Spec(OS′,s′)
which contains the unique point of X ×S Spec(OS′,s′) mapping to x such that the
pullback of F to V is flat over OS′,s′ .

Proof. (The only difference between this and Proposition 38.10.3 is that we do not
assume f is of finite presentation.) The question is local on X and S, hence we
may assume X and S are affine. Write X = Spec(B), S = Spec(A) and write
B = A[x1, . . . , xn]/I. In other words we obtain a closed immersion i : X → An

S .
Denote t = i(x) ∈ An

S . We may apply Proposition 38.10.3 to An
S → S, the sheaf

i∗F and the point t. We obtain an elementary étale neighbourhood (S′, s′)→ (S, s)
and an open subscheme

W ⊂ An
OS′,s′

such that the pullback of i∗F to W is flat over OS′,s′ . This means that V :=
W ∩

(
X ×S Spec(OS′,s′)

)
is the desired open subscheme. □

Lemma 38.10.6.05KU Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let s ∈ S. Assume that

(1) f is of finite presentation,
(2) F is of finite type, and
(3) F is flat over S at every point of the fibre Xs.

Then there exists an elementary étale neighbourhood (S′, s′)→ (S, s) and an open
subscheme

V ⊂ X ×S Spec(OS′,s′)
which contains the fibre Xs = X ×S s′ such that the pullback of F to V is an
OV -module of finite presentation and flat over OS′,s′ .

Proof. For every point x ∈ Xs we can use Proposition 38.10.3 to find an elementary
étale neighbourhood (Sx, sx) → (S, s) and an open Vx ⊂ X ×S Spec(OSx,sx) such
that x ∈ Xs = X ×S sx is contained in Vx and such that the pullback of F to Vx
is an OVx -module of finite presentation and flat over OSx,sx . In particular we may

https://stacks.math.columbia.edu/tag/05M9
https://stacks.math.columbia.edu/tag/05KT
https://stacks.math.columbia.edu/tag/05KU
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view the fibre (Vx)sx as an open neighbourhood of x in Xs. Because Xs is quasi-
compact we can find a finite number of points x1, . . . , xn ∈ Xs such that Xs is the
union of the (Vxi)sxi . Choose an elementary étale neighbourhood (S′, s′) → (S, s)
which dominates each of the neighbourhoods (Sxi , sxi), see More on Morphisms,
Lemma 37.35.4. Set V =

⋃
Vi where Vi is the inverse images of the open Vxi via

the morphism
X ×S Spec(OS′,s′) −→ X ×S Spec(OSxi ,sxi )

By construction V contains Xs and by construction the pullback of F to V is an
OV -module of finite presentation and flat over OS′,s′ . □

Lemma 38.10.7.05KV Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let s ∈ S. Assume that

(1) f is of finite type,
(2) F is of finite type, and
(3) F is flat over S at every point of the fibre Xs.

Then there exists an elementary étale neighbourhood (S′, s′)→ (S, s) and an open
subscheme

V ⊂ X ×S Spec(OS′,s′)
which contains the fibre Xs = X ×S s′ such that the pullback of F to V is flat over
OS′,s′ .

Proof. (The only difference between this and Lemma 38.10.6 is that we do not
assume f is of finite presentation.) For every point x ∈ Xs we can use Lemma
38.10.5 to find an elementary étale neighbourhood (Sx, sx) → (S, s) and an open
Vx ⊂ X ×S Spec(OSx,sx) such that x ∈ Xs = X ×S sx is contained in Vx and such
that the pullback of F to Vx is flat over OSx,sx . In particular we may view the
fibre (Vx)sx as an open neighbourhood of x in Xs. Because Xs is quasi-compact
we can find a finite number of points x1, . . . , xn ∈ Xs such that Xs is the union
of the (Vxi)sxi . Choose an elementary étale neighbourhood (S′, s′) → (S, s) which
dominates each of the neighbourhoods (Sxi , sxi), see More on Morphisms, Lemma
37.35.4. Set V =

⋃
Vi where Vi is the inverse images of the open Vxi via the

morphism
X ×S Spec(OS′,s′) −→ X ×S Spec(OSxi ,sxi )

By construction V contains Xs and by construction the pullback of F to V is flat
over OS′,s′ . □

Lemma 38.10.8.05I6 Let S be a scheme. Let X be locally of finite type over S. Let
x ∈ X with image s ∈ S. If X is flat at x over S, then there exists an elementary
étale neighbourhood (S′, s′)→ (S, s) and an open subscheme

V ⊂ X ×S Spec(OS′,s′)

which contains the unique point of X ×S Spec(OS′,s′) mapping to x such that
V → Spec(OS′,s′) is flat and of finite presentation.

Proof. The question is local on X and S, hence we may assume X and S are affine.
Write X = Spec(B), S = Spec(A) and write B = A[x1, . . . , xn]/I. In other words
we obtain a closed immersion i : X → An

S . Denote t = i(x) ∈ An
S . We may apply

https://stacks.math.columbia.edu/tag/05KV
https://stacks.math.columbia.edu/tag/05I6
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Proposition 38.10.3 to An
S → S, the sheaf F = i∗OX and the point t. We obtain

an elementary étale neighbourhood (S′, s′)→ (S, s) and an open subscheme
W ⊂ An

OS′,s′

such that the pullback of i∗OX is flat and of finite presentation. This means that
V := W ∩

(
X ×S Spec(OS′,s′)

)
is the desired open subscheme. □

Lemma 38.10.9.05I7 Let f : X → S be a morphism which is locally of finite presenta-
tion. Let F be a quasi-coherent OX -module of finite type. If x ∈ X and F is flat
at x over S, then Fx is an OX,x-module of finite presentation.

Proof. Let s = f(x). By Proposition 38.10.3 there exists an elementary étale
neighbourhood (S′, s′)→ (S, s) such that the pullback of F to X×S Spec(OS′,s′) is
of finite presentation in a neighbourhood of the point x′ ∈ Xs′ = Xs corresponding
to x. The ring map

OX,x −→ OX×SSpec(OS′,s′ ),x′ = OX×SS′,x′

is flat and local as a localization of an étale ring map. Hence Fx is of finite pre-
sentation over OX,x by descent, see Algebra, Lemma 10.83.2 (and also that a flat
local ring map is faithfully flat, see Algebra, Lemma 10.39.17). □

Lemma 38.10.10.05I8 Let f : X → S be a morphism which is locally of finite type. Let
x ∈ X with image s ∈ S. If f is flat at x over S, then OX,x is essentially of finite
presentation over OS,s.

Proof. We may assumeX and S affine. WriteX = Spec(B), S = Spec(A) and write
B = A[x1, . . . , xn]/I. In other words we obtain a closed immersion i : X → An

S .
Denote t = i(x) ∈ An

S . We may apply Lemma 38.10.9 to An
S → S, the sheaf

F = i∗OX and the point t. We conclude that OX,x is of finite presentation over
OAn

S
,t which implies what we want. □

38.11. Extending properties from an open

0B47 In this section we collect a number of results of the form: If f : X → S is a flat
morphism of schemes and f satisfies some property over a dense open of S, then f
satisfies the same property over all of S.

Lemma 38.11.1.081N Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. Let U ⊂ S be open. Assume

(1) f is locally of finite presentation,
(2) F is of finite type and flat over S,
(3) U ⊂ S is retrocompact and scheme theoretically dense,
(4) F|f−1U is of finite presentation.

Then F is of finite presentation.

Proof. The problem is local on X and S, hence we may assume X and S affine.
Write S = Spec(A) and X = Spec(B). Let N be a finite B-module such that F
is the quasi-coherent sheaf associated to N . We have U = D(f1) ∪ . . . ∪ D(fn)
for some fi ∈ A, see Algebra, Lemma 10.29.1. As U is schematically dense the
map A → Af1 × . . . × Afn is injective. Pick a prime q ⊂ B lying over p ⊂ A
corresponding to x ∈ X mapping to s ∈ S. By Lemma 38.10.9 the module Nq is
of finite presentation over Bq. Choose a surjection φ : B⊕m → N of B-modules.

https://stacks.math.columbia.edu/tag/05I7
https://stacks.math.columbia.edu/tag/05I8
https://stacks.math.columbia.edu/tag/081N
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Choose k1, . . . , kt ∈ Ker(φ) and set N ′ = B⊕m/
∑
Bkj . There is a canonical

surjection N ′ → N and N is the filtered colimit of the B-modules N ′ constructed
in this manner. Thus we see that we can choose k1, . . . , kt such that (a) N ′

fi
∼= Nfi ,

i = 1, . . . , n and (b) N ′
q
∼= Nq. This in particular implies that N ′

q is flat over A. By
openness of flatness, see Algebra, Theorem 10.129.4 we conclude that there exists
a g ∈ B, g ̸∈ q such that N ′

g is flat over A. Consider the commutative diagram

N ′
g

//

��

Ng

��∏
N ′
gfi

// ∏Ngfi

The bottom arrow is an isomorphism by choice of k1, . . . , kt. The left vertical arrow
is an injective map as A→

∏
Afi is injective and N ′

g is flat over A. Hence the top
horizontal arrow is injective, hence an isomorphism. This proves that Ng is of finite
presentation over Bg. We conclude by applying Algebra, Lemma 10.23.2. □

Lemma 38.11.2.081P Let f : X → S be a morphism of schemes. Let U ⊂ S be open.
Assume

(1) f is locally of finite type and flat,
(2) U ⊂ S is retrocompact and scheme theoretically dense,
(3) f |f−1U : f−1U → U is locally of finite presentation.

Then f is of locally of finite presentation.

Proof. The question is local on X and S, hence we may assume X and S affine.
Choose a closed immersion i : X → An

S and apply Lemma 38.11.1 to i∗OX . Some
details omitted. □

Lemma 38.11.3.081L Let f : X → S be a morphism of schemes which is flat and locally
of finite type. Let U ⊂ S be a dense open such that XU → U has relative dimension
≤ e, see Morphisms, Definition 29.29.1. If also either

(1) f is locally of finite presentation, or
(2) U ⊂ S is retrocompact,

then f has relative dimension ≤ e.

Proof. Proof in case (1). Let W ⊂ X be the open subscheme constructed and
studied in More on Morphisms, Lemmas 37.22.7 and 37.22.9. Note that every
generic point of every fibre is contained in W , hence it suffices to prove the result
for W . Since W =

⋃
d≥0 Ud, it suffices to prove that Ud = ∅ for d > e. Since f is

flat and locally of finite presentation it is open hence f(Ud) is open (Morphisms,
Lemma 29.25.10). Thus if Ud is not empty, then f(Ud) ∩ U ̸= ∅ as desired.

Proof in case (2). We may replace S by its reduction. Then U is scheme theoretically
dense. Hence f is locally of finite presentation by Lemma 38.11.2. In this way we
reduce to case (1). □

Lemma 38.11.4.0B48 Let f : X → S be a morphism of schemes which is flat and proper.
Let U ⊂ S be a dense open such that XU → U is finite. If also either f is locally
of finite presentation or U ⊂ S is retrocompact, then f is finite.

https://stacks.math.columbia.edu/tag/081P
https://stacks.math.columbia.edu/tag/081L
https://stacks.math.columbia.edu/tag/0B48
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Proof. By Lemma 38.11.3 the fibres of f have dimension zero. Hence f is quasi-
finite (Morphisms, Lemma 29.29.5) whence has finite fibres (Morphisms, Lemma
29.20.10). Hence f is finite by More on Morphisms, Lemma 37.44.1. □

Lemma 38.11.5.081M Let f : X → S be a morphism of schemes and U ⊂ S an open. If
(1) f is separated, locally of finite type, and flat,
(2) f−1(U)→ U is an isomorphism, and
(3) U ⊂ S is retrocompact and scheme theoretically dense,

then f is an open immersion.

Proof. By Lemma 38.11.2 the morphism f is locally of finite presentation. The
image f(X) ⊂ S is open (Morphisms, Lemma 29.25.10) hence we may replace S by
f(X). Thus we have to prove that f is an isomorphism. We may assume S is affine.
We can reduce to the case that X is quasi-compact because it suffices to show that
any quasi-compact open X ′ ⊂ X whose image is S maps isomorphically to S. Thus
we may assume f is quasi-compact. All the fibers of f have dimension 0, see Lemma
38.11.3. Hence f is quasi-finite, see Morphisms, Lemma 29.29.5. Let s ∈ S. Choose
an elementary étale neighbourhood g : (T, t)→ (S, s) such that X ×S T = V ⨿W
with V → T finite and Wt = ∅, see More on Morphisms, Lemma 37.41.6. Denote
π : V ⨿W → T the given morphism. Since π is flat and locally of finite presentation,
we see that π(V ) is open in T (Morphisms, Lemma 29.25.10). After shrinking T we
may assume that T = π(V ). Since f is an isomorphism over U we see that π is an
isomorphism over g−1U . Since π(V ) = T this implies that π−1g−1U is contained
in V . By Morphisms, Lemma 29.25.15 we see that π−1g−1U ⊂ V ⨿W is scheme
theoretically dense. Hence we deduce that W = ∅. Thus X ×S T = V is finite over
T . This implies that f is finite (after replacing S by an open neighbourhood of s),
for example by Descent, Lemma 35.23.23. Then f is finite locally free (Morphisms,
Lemma 29.48.2) and after shrinking S to a smaller open neighbourhood of s we
see that f is finite locally free of some degree d (Morphisms, Lemma 29.48.5). But
d = 1 as is clear from the fact that the degree is 1 over the dense open U . Hence f
is an isomorphism. □

38.12. Flat finitely presented modules

05I9 In some cases given a ring map R→ S of finite presentation and a finitely presented
S-module N the flatness of N over R implies that N is projective as an R-module,
at least after replacing S by an étale extension. In this section we collect a some
results of this nature.

Lemma 38.12.1.05IA Let R be a ring. Let R→ S be a finitely presented flat ring map
with geometrically integral fibres. Let q ⊂ S be a prime ideal lying over the prime
r ⊂ R. Set p = rS. Let N be a finitely presented S-module. There exists r ≥ 0
and an S-module map

α : S⊕r −→ N

such that α : κ(p)⊕r → N ⊗S κ(p) is an isomorphism. For any such α the following
are equivalent:

(1) Nq is R-flat,
(2) there exists an f ∈ R, f ̸∈ r such that αf : S⊕r

f → Nf is Rf -universally
injective and a g ∈ S, g ̸∈ q such that Coker(α)g is R-flat,

(3) αr is Rr-universally injective and Coker(α)q is R-flat

https://stacks.math.columbia.edu/tag/081M
https://stacks.math.columbia.edu/tag/05IA
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(4) αr is injective and Coker(α)q is R-flat,
(5) αp is an isomorphism and Coker(α)q is R-flat, and
(6) αq is injective and Coker(α)q is R-flat.

Proof. To obtain α set r = dimκ(p) N ⊗S κ(p) and pick x1, . . . , xr ∈ N which form
a basis of N ⊗S κ(p). Define α(s1, . . . , sr) =

∑
sixi. This proves the existence.

Fix a choice of α. We may apply Lemma 38.10.1 to the map αr : S⊕r
r → Nr. Hence

we see that (1), (3), (4), (5), and (6) are all equivalent. Since it is also clear that
(2) implies (3) we see that all we have to do is show that (1) implies (2).
Assume (1). By openness of flatness, see Algebra, Theorem 10.129.4, the set

U1 = {q′ ⊂ S | Nq′ is flat over R}
is open in Spec(S). It contains q by assumption and hence p. Because S⊕r and N
are finitely presented S-modules the set

U2 = {q′ ⊂ S | αq′ is an isomorphism}
is open in Spec(S), see Algebra, Lemma 10.79.2. It contains p by (5). As R → S
is finitely presented and flat the map Φ : Spec(S)→ Spec(R) is open, see Algebra,
Proposition 10.41.8. For any prime r′ ∈ Φ(U1∩U2) we see that there exists a prime q′

lying over r′ such that Nq′ is flat and such that αq′ is an isomorphism, which implies
that α⊗κ(p′) is an isomorphism where p′ = r′S. Thus αr′ is Rr′ -universally injective
by the implication (1) ⇒ (3). Hence if we pick f ∈ R, f ̸∈ r such that D(f) ⊂
Φ(U1∩U2) then we conclude that αf is Rf -universally injective, see Algebra, Lemma
10.82.12. The same reasoning also shows that for any q′ ∈ U1 ∩ Φ−1(Φ(U1 ∩ U2))
the module Coker(α)q′ is R-flat. Note that q ∈ U1 ∩ Φ−1(Φ(U1 ∩ U2)). Hence we
can find a g ∈ S, g ̸∈ q such that D(g) ⊂ U1 ∩ Φ−1(Φ(U1 ∩ U2)) and we win. □

Lemma 38.12.2.05IB Let R → S be a ring map of finite presentation. Let N be a
finitely presented S-module flat over R. Let r ⊂ R be a prime ideal. Assume there
exists a complete dévissage of N/S/R over r. Then there exists an f ∈ R, f ̸∈ r
such that

Nf ∼= B⊕r1
1 ⊕ . . .⊕B⊕rn

n

as R-modules where each Bi is a smooth Rf -algebra with geometrically irreducible
fibres. Moreover, Nf is projective as an Rf -module.

Proof. Let (Ai, Bi,Mi, αi)i=1,...,n be the given complete dévissage. We prove the
lemma by induction on n. Note that the assertions of the lemma are entirely about
the structure of N as an R-module. Hence we may replace N by M1, and we may
think of M1 as a B1-module. See Remark 38.6.3 in order to see why M1 is of
finite presentation as a B1-module. By Lemma 38.12.1 we may, after replacing R
by Rf for some f ∈ R, f ̸∈ r, assume the map α1 : B⊕r1

1 → M1 is R-universally
injective. Since M1 and B⊕r1

1 are R-flat and finitely presented as B1-modules we
see that Coker(α1) is R-flat (Algebra, Lemma 10.82.7) and finitely presented as a
B1-module. Note that (Ai, Bi,Mi, αi)i=2,...,n is a complete dévissage of Coker(α1).
Hence the induction hypothesis implies that, after replacing R by Rf for some
f ∈ R, f ̸∈ r, we may assume that Coker(α1) has a decomposition as in the
lemma and is projective. In particular M1 = B⊕r1

1 ⊕ Coker(α1). This proves the
statement regarding the decomposition. The statement on projectivity follows as
B1 is projective as an R-module by Lemma 38.9.3. □

https://stacks.math.columbia.edu/tag/05IB
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Remark 38.12.3.05IC There is a variant of Lemma 38.12.2 where we weaken the flatness
condition by assuming only that N is flat at some given prime q lying over r
but where we strengthen the dévissage condition by assuming the existence of a
complete dévissage at q. Compare with Lemma 38.10.2.

The following is the main result of this section.

Proposition 38.12.4.05ID Let f : X → S be a morphism of schemes. Let F be a
quasi-coherent sheaf on X. Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite presentation,
(2) F is of finite presentation, and
(3) F is flat at x over S.

Then there exists a commutative diagram of pointed schemes

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

whose horizontal arrows are elementary étale neighbourhoods such that X ′, S′ are
affine and such that Γ(X ′, g∗F) is a projective Γ(S′,OS′)-module.

Proof. By openness of flatness, see More on Morphisms, Theorem 37.15.1 we may
replace X by an open neighbourhood of x and assume that F is flat over S. Next,
we apply Proposition 38.5.7 to find a diagram as in the statement of the proposition
such that g∗F/X ′/S′ has a complete dévissage over s′. (In particular S′ and X ′

are affine.) By Morphisms, Lemma 29.25.13 we see that g∗F is flat over S and by
Lemma 38.2.3 we see that it is flat over S′. Via Remark 38.6.5 we deduce that

Γ(X ′, g∗F)/Γ(X ′,OX′)/Γ(S′,OS′)
has a complete dévissage over the prime of Γ(S′,OS′) corresponding to s′. Thus
Lemma 38.12.2 implies that the result of the proposition holds after replacing S′

by a standard open neighbourhood of s′. □

In the rest of this section we prove a number of variants on this result. The first is
a “global” version.

Lemma 38.12.5.05KW Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let s ∈ S. Assume that

(1) f is of finite presentation,
(2) F is of finite presentation, and
(3) F is flat over S at every point of the fibre Xs.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and a com-
mutative diagram of schemes

X

��

X ′
g

oo

��
S S′oo

such that g is étale, Xs ⊂ g(X ′), the schemes X ′, S′ are affine, and such that
Γ(X ′, g∗F) is a projective Γ(S′,OS′)-module.

https://stacks.math.columbia.edu/tag/05IC
https://stacks.math.columbia.edu/tag/05ID
https://stacks.math.columbia.edu/tag/05KW
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Proof. For every point x ∈ Xs we can use Proposition 38.12.4 to find a commutative
diagram

(X,x)

��

(Yx, yx)
gx
oo

��
(S, s) (Sx, sx)oo

whose horizontal arrows are elementary étale neighbourhoods such that Yx, Sx are
affine and such that Γ(Yx, g∗

xF) is a projective Γ(Sx,OSx)-module. In particular
gx(Yx)∩Xs is an open neighbourhood of x in Xs. Because Xs is quasi-compact we
can find a finite number of points x1, . . . , xn ∈ Xs such that Xs is the union of the
gxi(Yxi) ∩ Xs. Choose an elementary étale neighbourhood (S′, s′) → (S, s) which
dominates each of the neighbourhoods (Sxi , sxi), see More on Morphisms, Lemma
37.35.4. We may also assume that S′ is affine. Set X ′ =

∐
Yxi ×Sxi S

′ and endow
it with the obvious morphism g : X ′ → X. By construction g(X ′) contains Xs and

Γ(X ′, g∗F) =
⊕

Γ(Yxi , g∗
xiF)⊗Γ(Sxi ,OSxi

) Γ(S′,OS′).

This is a projective Γ(S′,OS′)-module, see Algebra, Lemma 10.94.1. □

The following two lemmas are reformulations of the results above in case F = OX .
Lemma 38.12.6.05IE Let f : X → S be locally of finite presentation. Let x ∈ X with
image s ∈ S. If f is flat at x over S, then there exists a commutative diagram of
pointed schemes

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

whose horizontal arrows are elementary étale neighbourhoods such that X ′, S′ are
affine and such that Γ(X ′,OX′) is a projective Γ(S′,OS′)-module.
Proof. This is a special case of Proposition 38.12.4. □

Lemma 38.12.7.05KX Let f : X → S be of finite presentation. Let s ∈ S. If X is flat
over S at all points of Xs, then there exists an elementary étale neighbourhood
(S′, s′)→ (S, s) and a commutative diagram of schemes

X

��

X ′
g

oo

��
S S′oo

with g étale, Xs ⊂ g(X ′), such that X ′, S′ are affine, and such that Γ(X ′,OX′) is
a projective Γ(S′,OS′)-module.
Proof. This is a special case of Lemma 38.12.5. □

The following lemmas explain consequences of Proposition 38.12.4 in case we only
assume the morphism and the sheaf are of finite type (and not necessarily of finite
presentation).
Lemma 38.12.8.05KY Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let x ∈ X with image s ∈ S. Assume that

https://stacks.math.columbia.edu/tag/05IE
https://stacks.math.columbia.edu/tag/05KX
https://stacks.math.columbia.edu/tag/05KY
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(1) f is locally of finite presentation,
(2) F is of finite type, and
(3) F is flat at x over S.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and a com-
mutative diagram of pointed schemes

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (Spec(OS′,s′), s′)oo

such that X ′ → X ×S Spec(OS′,s′) is étale, κ(x) = κ(x′), the scheme X ′ is affine
of finite presentation over OS′,s′ , the sheaf g∗F is of finite presentation over OX′ ,
and such that Γ(X ′, g∗F) is a free OS′,s′ -module.

Proof. To prove the lemma we may replace (S, s) by any elementary étale neigh-
bourhood, and we may also replace S by Spec(OS,s). Hence by Proposition 38.10.3
we may assume that F is finitely presented and flat over S in a neighbourhood of x.
In this case the result follows from Proposition 38.12.4 because Algebra, Theorem
10.85.4 assures us that projective = free over a local ring. □

Lemma 38.12.9.05KZ Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite type,
(2) F is of finite type, and
(3) F is flat at x over S.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and a com-
mutative diagram of pointed schemes

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (Spec(OS′,s′), s′)oo

such that X ′ → X ×S Spec(OS′,s′) is étale, κ(x) = κ(x′), the scheme X ′ is affine,
and such that Γ(X ′, g∗F) is a free OS′,s′ -module.

Proof. (The only difference with Lemma 38.12.8 is that we do not assume f is of
finite presentation.) The problem is local on X and S. Hence we may assume X
and S are affine, say X = Spec(B) and S = Spec(A). Since B is a finite type
A-algebra we can find a surjection A[x1, . . . , xn] → B. In other words, we can
choose a closed immersion i : X → An

S . Set t = i(x) and G = i∗F . Note that
Gt ∼= Fx are OS,s-modules. Hence G is flat over S at t. We apply Lemma 38.12.8
to the morphism An

S → S, the point t, and the sheaf G. Thus we can find an
elementary étale neighbourhood (S′, s′) → (S, s) and a commutative diagram of
pointed schemes

(An
S , t)

��

(Y, y)
h

oo

��
(S, s) (Spec(OS′,s′), s′)oo

https://stacks.math.columbia.edu/tag/05KZ
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such that Y → An
OS′,s′ is étale, κ(t) = κ(y), the scheme Y is affine, and such that

Γ(Y, h∗G) is a projective OS′,s′ -module. Then a solution to the original problem is
given by the closed subscheme X ′ = Y ×An

S
X of Y . □

Lemma 38.12.10.05L0 Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let s ∈ S. Assume that

(1) f is of finite presentation,
(2) F is of finite type, and
(3) F is flat over S at all points of Xs.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and a com-
mutative diagram of schemes

X

��

X ′
g

oo

��
S Spec(OS′,s′)oo

such that X ′ → X ×S Spec(OS′,s′) is étale, Xs = g((X ′)s′), the scheme X ′ is affine
of finite presentation over OS′,s′ , the sheaf g∗F is of finite presentation over OX′ ,
and such that Γ(X ′, g∗F) is a free OS′,s′ -module.

Proof. For every point x ∈ Xs we can use Lemma 38.12.8 to find an elementary
étale neighbourhood (Sx, sx)→ (S, s) and a commutative diagram

(X,x)

��

(Yx, yx)
gx

oo

��
(S, s) (Spec(OSx,sx), sx)oo

such that Yx → X ×S Spec(OSx,sx) is étale, κ(x) = κ(yx), the scheme Yx is affine
of finite presentation over OSx,sx , the sheaf g∗

xF is of finite presentation over OYx ,
and such that Γ(Yx, g∗

xF) is a free OSx,sx -module. In particular gx((Yx)sx) is an
open neighbourhood of x in Xs. Because Xs is quasi-compact we can find a finite
number of points x1, . . . , xn ∈ Xs such that Xs is the union of the gxi((Yxi)sxi ).
Choose an elementary étale neighbourhood (S′, s′)→ (S, s) which dominates each
of the neighbourhoods (Sxi , sxi), see More on Morphisms, Lemma 37.35.4. Set

X ′ =
∐

Yxi ×Spec(OSxi
,sxi

) Spec(OS′,s′)

and endow it with the obvious morphism g : X ′ → X. By construction Xs = g(X ′
s′)

and
Γ(X ′, g∗F) =

⊕
Γ(Yxi , g∗

xiF)⊗OSxi
,sxi
OS′,s′ .

This is a free OS′,s′ -module as a direct sum of base changes of free modules. Some
minor details omitted. □

Lemma 38.12.11.05L1 Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let s ∈ S. Assume that

(1) f is of finite type,
(2) F is of finite type, and
(3) F is flat over S at all points of Xs.

https://stacks.math.columbia.edu/tag/05L0
https://stacks.math.columbia.edu/tag/05L1
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Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and a com-
mutative diagram of schemes

X

��

X ′
g

oo

��
S Spec(OS′,s′)oo

such that X ′ → X×S Spec(OS′,s′) is étale, Xs = g((X ′)s′), the scheme X ′ is affine,
and such that Γ(X ′, g∗F) is a free OS′,s′ -module.

Proof. (The only difference with Lemma 38.12.10 is that we do not assume f is of
finite presentation.) For every point x ∈ Xs we can use Lemma 38.12.9 to find an
elementary étale neighbourhood (Sx, sx)→ (S, s) and a commutative diagram

(X,x)

��

(Yx, yx)
gx

oo

��
(S, s) (Spec(OSx,sx), sx)oo

such that Yx → X ×S Spec(OSx,sx) is étale, κ(x) = κ(yx), the scheme Yx is affine,
and such that Γ(Yx, g∗

xF) is a free OSx,sx -module. In particular gx((Yx)sx) is an
open neighbourhood of x in Xs. Because Xs is quasi-compact we can find a finite
number of points x1, . . . , xn ∈ Xs such that Xs is the union of the gxi((Yxi)sxi ).
Choose an elementary étale neighbourhood (S′, s′)→ (S, s) which dominates each
of the neighbourhoods (Sxi , sxi), see More on Morphisms, Lemma 37.35.4. Set

X ′ =
∐

Yxi ×Spec(OSxi
,sxi

) Spec(OS′,s′)

and endow it with the obvious morphism g : X ′ → X. By construction Xs = g(X ′
s′)

and
Γ(X ′, g∗F) =

⊕
Γ(Yxi , g∗

xiF)⊗OSxi
,sxi
OS′,s′ .

This is a free OS′,s′ -module as a direct sum of base changes of free modules. □

38.13. Flat finite type modules, Part II

05IF We will need the following lemma.

Lemma 38.13.1.0CU6 Let R → S be a ring map of finite presentation. Let N be a
finitely presented S-module. Let q ⊂ S be a prime ideal lying over p ⊂ R. Set
S = S ⊗R κ(p), q = qS, and N = N ⊗R κ(p). Then we can find a g ∈ S with g ̸∈ q
such that g ∈ r for all r ∈ AssS(N) such that r ̸⊂ q.

Proof. Namely, if AssS(N) = {r1, . . . , rn} (finiteness by Algebra, Lemma 10.63.5),
then after renumbering we may assume that

r1 ⊂ q, . . . , rr ⊂ q, rr+1 ̸⊂ q, . . . , rn ̸⊂ q

Since q is a prime ideal we see that the product rr+1 . . . rn is not contained in q and
hence we can pick an element a of S contained in rr+1, . . . , rn but not in q. If there
exists g ∈ S mapping to a, then g works. In general we can find a nonzero element
λ ∈ κ(p) such that λa is the image of a g ∈ S. □

The following lemma has a sligthly stronger variant Lemma 38.13.4 below.

https://stacks.math.columbia.edu/tag/0CU6
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Lemma 38.13.2.05IG Let R → S be a ring map of finite presentation. Let N be a
finitely presented S-module which is flat as an R-module. Let M be an R-module.
Let q be a prime of S lying over p ⊂ R. Then

q ∈WeakAssS(M ⊗R N)⇔
(
p ∈WeakAssR(M) and q ∈ AssS(N)

)
Here S = S ⊗R κ(p), q = qS, and N = N ⊗R κ(p).

Proof. Pick g ∈ S as in Lemma 38.13.1. Apply Proposition 38.12.4 to the morphism
of schemes Spec(Sg)→ Spec(R), the quasi-coherent module associated to Ng, and
the points corresponding to the primes qSg and p. Translating into algebra we
obtain a commutative diagram of rings

S // Sg // S′

R

__ OO

// R′

OO q qSg q′

p p′

endowed with primes as shown, the horizontal arrows are étale, and N ⊗S S′ is
projective as an R′-module. Set N ′ = N ⊗S S′, M ′ = M ⊗R R′, S′ = S′ ⊗R′ κ(q′),
q′ = q′S

′, and
N

′ = N ′ ⊗R′ κ(p′) = N ⊗S S
′

By Lemma 38.2.8 we have
WeakAssS′(M ′ ⊗R′ N ′) = (Spec(S′)→ Spec(S))−1WeakAssS(M ⊗R N)

WeakAssR′(M ′) = (Spec(R′)→ Spec(R))−1WeakAssR(M)

Ass
S

′(N ′) = (Spec(S′)→ Spec(S))−1AssS(N)

Use Algebra, Lemma 10.66.9 for N and N
′. In particular we have

q ∈WeakAssS(M ⊗R N)⇔ q′ ∈WeakAssS′(M ′ ⊗R′ N ′)
p ∈WeakAssR(M)⇔ p′ ∈WeakAssR′(M ′)

q ∈ AssS(N)⇔ q′ ∈WeakAss
S

′(N ′)

Our careful choice of g and the formula for Ass
S

′(N ′) above shows that

(38.13.2.1)0CU7 if r′ ∈ Ass
S

′(N ′) lies over r ⊂ S then r ⊂ q

This will be a key observation later in the proof. We will use the characterization of
weakly associated primes given in Algebra, Lemma 10.66.2 without further mention.

Suppose that q ̸∈ AssS(N). Then q′ ̸∈ Ass
S

′(N ′). By Algebra, Lemmas 10.63.9,
10.63.5, and 10.15.2 there exists an element a′ ∈ q′ which is not a zerodivisor on
N

′. After replacing a′ by λa′ for some nonzero λ ∈ κ(p) we can find a′ ∈ q′

mapping to a′. By Lemma 38.7.6 the map a′ : N ′
p′ → N ′

p′ is R′
p′ -universally

injective. In particular we see that a′ : M ′ ⊗R′ N ′ → M ′ ⊗R′ N ′ is injective
after localizing at p′ and hence after localizing at q′. Clearly this implies that
q′ ̸∈ WeakAssS′(M ′ ⊗R′ N ′). We conclude that q ∈ WeakAssS(M ⊗R N) implies
q ∈ AssS(N).
Assume q ∈ WeakAssS(M ⊗R N). We want to show p ∈ WeakAssS(M). Let
z ∈ M ⊗R N be an element such that q is minimal over J = AnnS(z). Let fi ∈ p,

https://stacks.math.columbia.edu/tag/05IG
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i ∈ I be a set of generators of the ideal p. Since q lies over p, for every i we
can choose an ni ≥ 1 and gi ∈ S, gi ̸∈ q with gif

ni
i ∈ J , i.e., gifnii z = 0. Let

z′ ∈ (M ′ ⊗R′ N ′)p′ be the image of z. Observe that z′ is nonzero because z has
nonzero image in (M ⊗R N)q and because Sq → S′

q′ is faithfully flat. We claim
that fnii z′ = 0.
Proof of the claim: Let g′

i ∈ S′ be the image of gi. By the key observation (38.13.2.1)
we find that the image g′

i ∈ S
′ is not contained in r′ for any r′ ∈ Ass

S
′(N). Hence by

Lemma 38.7.6 we see that g′
i : N ′

p′ → N ′
p′ is R′

p′ -universally injective. In particular
we see that g′

i : M ′ ⊗R′ N ′ → M ′ ⊗R′ N ′ is injective after localizating at p′. The
claim follows because gifnii z′ = 0.
Our claim shows that the annihilator of z′ in R′

p′ contains the elements fnii . As
R → R′ is étale we have p′R′

p′ = pR′
p′ by Algebra, Lemma 10.143.5. Hence the

annihilator of z′ in R′
p′ has radical equal to p′Rp′ (here we use z′ is not zero). On

the other hand
z′ ∈ (M ′ ⊗R′ N ′)p′ = M ′

p′ ⊗R′
p′
N ′

p′

The module N ′
p′ is projective over the local ring R′

p′ and hence free (Algebra, Theo-
rem 10.85.4). Thus we can find a finite free direct summand F ′ ⊂ N ′

p′ such that z′ ∈
M ′

p′ ⊗R′
p′
F ′. If F ′ has rank n, then we deduce that p′R′

p′ ∈WeakAssR′
p′

(M ′
p′

⊕n).
This implies p′R′

p′ ∈WeakAss(M ′
p′) for example by Algebra, Lemma 10.66.4. Then

p′ ∈ WeakAssR′(M ′) which in turn gives p ∈ WeakAssR(M). This finishes the
proof of the implication “⇒” of the equivalence of the lemma.
Assume that p ∈ WeakAssR(M) and q ∈ AssS(N). We want to show that q is
weakly associated to M ⊗R N . Note that q′ is a maximal element of Ass

S
′(N ′).

This is a consequence of (38.13.2.1) and the fact that there are no inclusions among
the primes of S′ lying over q (as fibres of étale morphisms are discrete Morphisms,
Lemma 29.36.7). Thus, after replacing R,S, p, q,M,N by R′, S′, p′, q′,M ′, N ′ we
may assume, in addition to the assumptions of the lemma, that

(1) p ∈WeakAssR(M),
(2) q ∈ AssS(N),
(3) N is projective as an R-module, and
(4) q is maximal in AssS(N).

There is one more reduction, namely, we may replace R,S,M,N by their localiza-
tions at p. This leads to one more condition, namely,

(5) R is a local ring with maximal ideal p.
We will finish by showing that (1) – (5) imply q ∈WeakAss(M ⊗R N).
Since R is local and p ∈ WeakAssR(M) we can pick a y ∈ M whose annihilator
I has radical equal to p. Write q = (g1, . . . , gn) for some gi ∈ S. Choose gi ∈ S
mapping to gi. Then q = pS + g1S + . . .+ gnS. Consider the map

Ψ : N/IN −→ (N/IN)⊕n, z 7−→ (g1z, . . . , gnz).
This is a homomorphism of projective R/I-modules. The local ring R/I is auto-
associated (More on Algebra, Definition 15.15.1) as p/I is locally nilpotent. The
map Ψ ⊗ κ(p) is not injective, because q ∈ AssS(N). Hence More on Algebra,
Lemma 15.15.4 implies Ψ is not injective. Pick z ∈ N/IN nonzero in the kernel
of Ψ. The annihilator J = AnnS(z) contains IS and gi by construction. Thus
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√
J ⊂ S contains q. Let s ⊂ S be a prime minimal over J . Then q ⊂ s, s lies

over p, and s ∈WeakAssS(N/IN). The last fact by definition of weakly associated
primes. Apply the “⇒” part of the lemma (which we’ve already proven) to the ring
map R → S and the modules R/I and N to conclude that s ∈ AssS(N). Since
q ⊂ s the maximality of q, see condition (4) above, implies that q = s. This shows
that q = s and we conlude what we want. □

Lemma 38.13.3.05IH Let S be a scheme. Let f : X → S be locally of finite type. Let
x ∈ X with image s ∈ S. Let F be a finite type quasi-coherent sheaf on X. Let G
be a quasi-coherent sheaf on S. If F is flat at x over S, then

x ∈WeakAssX(F ⊗OX
f∗G)⇔ s ∈WeakAssS(G) and x ∈ AssXs(Fs).

Proof. In this paragraph we reduce to f being of finite presentation. The question
is local on X and S, hence we may assume X and S are affine. Write X = Spec(B),
S = Spec(A) and write B = A[x1, . . . , xn]/I. In other words we obtain a closed
immersion i : X → An

S over S. Denote t = i(x) ∈ An
S . Note that i∗F is a finite

type quasi-coherent sheaf on An
S which is flat at t over S and note that

i∗(F ⊗OX
f∗G) = i∗F ⊗OAn

S

p∗G

where p : An
S → S is the projection. Note that t is a weakly associated point of

i∗(F ⊗OX
f∗G) if and only if x is a weakly associated point of F ⊗OX

f∗G, see
Divisors, Lemma 31.6.3. Similarly x ∈ AssXs(Fs) if and only if t ∈ AssAn

s
((i∗F)s)

(see Algebra, Lemma 10.63.14). Hence it suffices to prove the lemma in case X =
An
S . Thus we may assume that X → S is of finite presentation.

In this paragraph we reduce to F being of finite presentation and flat over S.
Choose an elementary étale neighbourhood e : (S′, s′) → (S, s) and an open V ⊂
X ×S Spec(OS′,s′) as in Proposition 38.10.3. Let x′ ∈ X ′ = X ×S S′ be the unique
point mapping to x and s′. Then it suffices to prove the statement for X ′ → S′,
x′, s′, (X ′ → X)∗F , and e∗G, see Lemma 38.2.8. Let v ∈ V the unique point
mapping to x′ and let s′ ∈ Spec(OS′,s′) be the closed point. Then OV,v = OX′,x′

and OSpec(OS′,s′ ),s′ = OS′,s′ and similarly for the stalks of pullbacks of F and
G. Also Vs′ ⊂ X ′

s′ is an open subscheme. Since the condition of being a weakly
associated point depend only on the stalk of the sheaf, we may replace X ′ → S′,
x′, s′, (X ′ → X)∗F , and e∗G by V → Spec(OS′,s′), v, s′, (V → X)∗F , and
(Spec(OS′,s′)→ S)∗G. Thus we may assume that f is of finite presentation and F
of finite presentation and flat over S.

Assume f is of finite presentation and F of finite presentation and flat over S.
After shrinking X and S to affine neighbourhoods of x and s, this case is handled
by Lemma 38.13.2. □

Lemma 38.13.4.05II Let R → S be a ring map which is essentially of finite type. Let
N be a localization of a finite S-module flat over R. Let M be an R-module. Then

WeakAssS(M ⊗R N) =
⋃

p∈WeakAssR(M)
AssS⊗Rκ(p)(N ⊗R κ(p))

Proof. This lemma is a translation of Lemma 38.13.3 into algebra. Details of trans-
lation omitted. □

https://stacks.math.columbia.edu/tag/05IH
https://stacks.math.columbia.edu/tag/05II
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Lemma 38.13.5.05IJ Let f : X → S be a morphism which is locally of finite type.
Let F be a finite type quasi-coherent sheaf on X which is flat over S. Let G be a
quasi-coherent sheaf on S. Then we have

WeakAssX(F ⊗OX
f∗G) =

⋃
s∈WeakAssS(G)

AssXs(Fs)

Proof. Immediate consequence of Lemma 38.13.3. □

Theorem 38.13.6.05IK Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. Assume

(1) X → S is locally of finite presentation,
(2) F is an OX -module of finite type, and
(3) the set of weakly associated points of S is locally finite in S.

Then U = {x ∈ X | F flat at x over S} is open in X and F|U is an OU -module of
finite presentation and flat over S.

Proof. Let x ∈ X be such that F is flat at x over S. We have to find an open
neighbourhood of x such that F restricts to a S-flat finitely presented module on
this neighbourhood. The problem is local on X and S, hence we may assume that
X and S are affine. As Fx is a finitely presented OX,x-module by Lemma 38.10.9
we conclude from Algebra, Lemma 10.126.5 there exists a finitely presented OX -
module F ′ and a map φ : F ′ → F which induces an isomorphism φx : F ′

x → Fx.
In particular we see that F ′ is flat over S at x, hence by openness of flatness More
on Morphisms, Theorem 37.15.1 we see that after shrinking X we may assume that
F ′ is flat over S. As F is of finite type after shrinking X we may assume that φ
is surjective, see Modules, Lemma 17.9.4 or alternatively use Nakayama’s lemma
(Algebra, Lemma 10.20.1). By Lemma 38.13.5 we have

WeakAssX(F ′) ⊂
⋃

s∈WeakAss(S)
AssXs(F ′

s)

As WeakAss(S) is finite by assumption and since AssXs(F ′
s) is finite by Divi-

sors, Lemma 31.2.5 we conclude that WeakAssX(F ′) is finite. Using Algebra,
Lemma 10.15.2 we may, after shrinking X once more, assume that WeakAssX(F ′)
is contained in the generalization of x. Now consider K = Ker(φ). We have
WeakAssX(K) ⊂ WeakAssX(F ′) (by Divisors, Lemma 31.5.4) but on the other
hand, φx is an isomorphism, also φx′ is an isomorphism for all x′ ⇝ x. We con-
clude that WeakAssX(K) = ∅ whence K = 0 by Divisors, Lemma 31.5.5. □

Lemma 38.13.7.05IL Let R→ S be a ring map of finite presentation. Let M be a finite
S-module. Assume WeakAssS(S) is finite. Then

U = {q ⊂ S |Mq flat over R}

is open in Spec(S) and for every g ∈ S such that D(g) ⊂ U the localization Mg is
a finitely presented Sg-module flat over R.

Proof. Follows immediately from Theorem 38.13.6. □

Lemma 38.13.8.05IM Let f : X → S be a morphism of schemes which is locally of finite
type. Assume the set of weakly associated points of S is locally finite in S. Then
the set of points x ∈ X where f is flat is an open subscheme U ⊂ X and U → S is
flat and locally of finite presentation.
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Proof. The problem is local on X and S, hence we may assume that X and S
are affine. Then X → S corresponds to a finite type ring map A → B. Choose
a surjection A[x1, . . . , xn] → B and consider B as an A[x1, . . . , xn]-module. An
application of Lemma 38.13.7 finishes the proof. □

Lemma 38.13.9.05IN Let f : X → S be a morphism of schemes which is locally of finite
type and flat. If S is integral, then f is locally of finite presentation.

Proof. Special case of Lemma 38.13.8. □

Proposition 38.13.10.053G Let R be a domain. Let R→ S be a ring map of finite type.
Let M be a finite S-module.

(1) If S is flat over R, then S is a finitely presented R-algebra.
(2) If M is flat as an R-module, then M is finitely presented as an S-module.

Proof. Part (1) is a special case of Lemma 38.13.9. For Part (2) choose a surjection
R[x1, . . . , xn] → S. By Lemma 38.13.7 we find that M is finitely presented as an
R[x1, . . . , xn]-module. We conclude by Algebra, Lemma 10.6.4. □

Lemma 38.13.11 (Finite type version of Theorem 38.13.6).05IQ Let f : X → S be a
morphism of schemes. Let F be a quasi-coherent OX -module. Assume

(1) X → S is locally of finite type,
(2) F is an OX -module of finite type, and
(3) the set of weakly associated points of S is locally finite in S.

Then U = {x ∈ X | F flat at x over S} is open in X and F|U is flat over S and
locally finitely presented relative to S (see More on Morphisms, Definition 37.58.1).

Proof. The question is local on X and S. Thus we may assume X and S are affine.
Then we may choose a closed immersion i : X → An

S . We apply Theorem 38.13.6
to X ′ = An

S → S and the quasi-coherent module F ′ = i∗F of finite type and we
find that

U ′ = {x′ ∈ X ′ | F ′ flat at x′ over S}
is open in X ′ and that F ′|U ′ is of finite presentation. Since F ′ restricts to zero on
X ′ \ i(X) and since F ′

i(x)
∼= Fx for all x ∈ X we see that

U ′ = i(U)⨿ (X ′ \ i(X))

Hence U = i−1(U ′) is open. Moreover, it is clear that F ′|U ′ = (i|U )∗(F|U ). Hence
we conclude that F|U is finitely presented relative to S by More on Morphisms,
Lemmas 37.58.3 and 37.58.4. □

Lemma 38.13.12.05IR Let R → S be a ring map of finite type. Let M be a finite
S-module. Assume WeakAssR(R) is finite. Then

U = {q ⊂ S |Mq flat over R}

is open in Spec(S) and for every g ∈ S such that D(g) ⊂ U the localization Mg is
flat over R and an Sg-module finitely presented relative to R (see More on Algebra,
Definition 15.80.2).

Proof. This is Lemma 38.13.11 translated into algebra. □
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38.14. Examples of relatively pure modules

05IS In the short section we discuss some examples of results that will serve as motivation
for the notion of a relatively pure module and the concept of an impurity which we
will introduce later. Each of the examples is stated as a lemma. Note the similarity
with the condition on associated primes to the conditions appearing in Lemmas
38.7.4, 38.8.3, 38.8.4, and 38.9.1. See also Algebra, Lemma 10.65.1 for a discussion.

Lemma 38.14.1.05FV Let R be a local ring with maximal ideal m. Let R→ S be a ring
map. Let N be an S-module. Assume

(1) N is projective as an R-module, and
(2) S/mS is Noetherian and N/mN is a finite S/mS-module.

Then for any prime q ⊂ S which is an associated prime of N⊗Rκ(p) where p = R∩q
we have q + mS ̸= S.

Proof. Note that the hypotheses of Lemmas 38.7.1 and 38.7.6 are satisfied. We
will use the conclusions of these lemmas without further mention. Let Σ ⊂ S be
the multiplicative set of elements which are not zerodivisors on N/mN . The map
N → Σ−1N is R-universally injective. Hence we see that any q ⊂ S which is
an associated prime of N ⊗R κ(p) is also an associated prime of Σ−1N ⊗R κ(p).
Clearly this implies that q corresponds to a prime of Σ−1S. Thus q ⊂ q′ where q′

corresponds to an associated prime of N/mN and we win. □

The following lemma gives another (slightly silly) example of this phenomenon.

Lemma 38.14.2.05IT Let R be a ring. Let I ⊂ R be an ideal. Let R→ S be a ring map.
Let N be an S-module. If N is I-adically complete, then for any R-module M and
for any prime q ⊂ S which is an associated prime of N ⊗RM we have q + IS ̸= S.

Proof. Let S∧ denote the I-adic completion of S. Note that N is an S∧-module,
hence also N ⊗R M is an S∧-module. Let z ∈ N ⊗R M be an element such that
q = AnnS(z). Since z ̸= 0 we see that AnnS∧(z) ̸= S∧. Hence qS∧ ̸= S∧. Hence
there exists a maximal ideal m ⊂ S∧ with qS∧ ⊂ m. Since IS∧ ⊂ m by Algebra,
Lemma 10.96.6 we win. □

Note that the following lemma gives an alternative proof of Lemma 38.14.1 as a
projective module over a local ring is free, see Algebra, Theorem 10.85.4.

Lemma 38.14.3.05IU Let R be a local ring with maximal ideal m. Let R→ S be a ring
map. Let N be an S-module. Assume N is isomorphic as an R-module to a direct
sum of finite R-modules. Then for any R-module M and for any prime q ⊂ S which
is an associated prime of N ⊗RM we have q + mS ̸= S.

Proof. Write N =
⊕

i∈IMi with each Mi a finite R-module. Let M be an R-
module and let q ⊂ S be an associated prime of N ⊗R M such that q + mS = S.
Let z ∈ N ⊗R M be an element with q = AnnS(z). After modifying the direct
sum decomposition a little bit we may assume that z ∈M1⊗RM for some element
1 ∈ I. Write 1 = f +

∑
xjgj for some f ∈ q, xj ∈ m, and gj ∈ S. For any g ∈ S

denote g′ the R-linear map
M1 → N

g−→ N →M1

where the first arrow is the inclusion map, the second arrow is multiplication by
g and the third arrow is the projection map. Because each xj ∈ R we obtain the
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equality
f ′ +

∑
xjg

′
j = idM1 ∈ EndR(M1)

By Nakayama’s lemma (Algebra, Lemma 10.20.1) we see that f ′ is surjective, hence
by Algebra, Lemma 10.16.4 we see that f ′ is an isomorphism. In particular the
map

M1 ⊗RM → N ⊗RM
f−→ N ⊗RM →M1 ⊗RM

is an isomorphism. This contradicts the assumption that fz = 0. □

Lemma 38.14.4.05IV Let R be a henselian local ring with maximal ideal m. Let R→ S
be a ring map. Let N be an S-module. Assume N is countably generated and
Mittag-Leffler as an R-module. Then for any R-module M and for any prime
q ⊂ S which is an associated prime of N ⊗RM we have q + mS ̸= S.

Proof. This lemma reduces to Lemma 38.14.3 by Algebra, Lemma 10.153.13. □

Suppose f : X → S is a morphism of schemes and F is a quasi-coherent module on
X. Let ξ ∈ AssX/S(F) and let Z = {ξ}. Picture

ξ_

��

Z //

��

X

f

��
f(ξ) S

Note that f(Z) ⊂ {f(ξ)} and that f(Z) is closed if and only if equality holds, i.e.,
f(Z) = {f(ξ)}. It follows from Lemma 38.14.1 that if S, X are affine, the fibres Xs

are Noetherian, F is of finite type, and Γ(X,F) is a projective Γ(S,OS)-module,
then f(Z) = {f(ξ)} is a closed subset. Slightly different analogous statements holds
for the cases described in Lemmas 38.14.2, 38.14.3, and 38.14.4.

38.15. Impurities

05IW We want to formalize the phenomenon of which we gave examples in Section 38.14
in terms of specializations of points of AssX/S(F). We also want to work locally
around a point s ∈ S. In order to do so we make the following definitions.

Situation 38.15.1.05FW Here S, X are schemes and f : X → S is a finite type morphism.
Also, F is a finite type quasi-coherent OX -module. Finally s is a point of S.

In this situation consider a morphism g : T → S, a point t ∈ T with g(t) = s, a
specialization t′ ⇝ t, and a point ξ ∈ XT in the base change of X lying over t′.
Picture

(38.15.1.1)05IX

ξ_

��
t′ // t � // s

XT

��

// X

��
T

g // S

Moreover, denote FT the pullback of F to XT .

Definition 38.15.2.05IY In Situation 38.15.1 we say a diagram (38.15.1.1) defines an
impurity of F above s if ξ ∈ AssXT /T (FT ) and {ξ} ∩Xt = ∅. We will indicate this
by saying “let (g : T → S, t′ ⇝ t, ξ) be an impurity of F above s”.

https://stacks.math.columbia.edu/tag/05IV
https://stacks.math.columbia.edu/tag/05FW
https://stacks.math.columbia.edu/tag/05IY


38.15. IMPURITIES 3419

Lemma 38.15.3.05FX In Situation 38.15.1. If there exists an impurity of F above s,
then there exists an impurity (g : T → S, t′ ⇝ t, ξ) of F above s such that g is
locally of finite presentation and t a closed point of the fibre of g above s.

Proof. Let (g : T → S, t′ ⇝ t, ξ) be any impurity of F above s. We apply Limits,
Lemma 32.14.1 to t ∈ T and Z = {ξ} to obtain an open neighbourhood V ⊂ T of
t, a commutative diagram

V

��

a
// T ′

b

��
T

g // S,

and a closed subscheme Z ′ ⊂ XT ′ such that
(1) the morphism b : T ′ → S is locally of finite presentation,
(2) we have Z ′ ∩Xa(t) = ∅, and
(3) Z ∩XV maps into Z ′ via the morphism XV → XT ′ .

As t′ specializes to t we may replace T by the open neighbourhood V of t. Thus
we have a commutative diagram

XT

��

// XT ′

��

// X

��
T

a // T ′ b // S

where b ◦ a = g. Let ξ′ ∈ XT ′ denote the image of ξ. By Divisors, Lemma 31.7.3
we see that ξ′ ∈ AssXT ′/T ′(FT ′). Moreover, by construction the closure of {ξ′} is
contained in the closed subset Z ′ which avoids the fibre Xa(t). In this way we see
that (T ′ → S, a(t′)⇝ a(t), ξ′) is an impurity of F above s.

Thus we may assume that g : T → S is locally of finite presentation. Let Z = {ξ}.
By assumption Zt = ∅. By More on Morphisms, Lemma 37.24.1 this means that
Zt′′ = ∅ for t′′ in an open subset of {t}. Since the fibre of T → S over s is a
Jacobson scheme, see Morphisms, Lemma 29.16.10 we find that there exist a closed
point t′′ ∈ {t} such that Zt′′ = ∅. Then (g : T → S, t′ ⇝ t′′, ξ) is the desired
impurity. □

Lemma 38.15.4.05IZ In Situation 38.15.1. Let (g : T → S, t′ ⇝ t, ξ) be an impurity of
F above s. Assume T = limi∈I Ti is a directed limit of affine schemes over S. Then
for some i the triple (Ti → S, t′i ⇝ ti, ξi) is an impurity of F above s.

Proof. The notation in the statement means this: Let pi : T → Ti be the projection
morphisms, let ti = pi(t) and t′i = pi(t′). Finally ξi ∈ XTi is the image of ξ. By
Divisors, Lemma 31.7.3 it is true that ξi is a point of the relative assassin of FTi
over Ti. Thus the only point is to show that {ξi} ∩Xti = ∅ for some i.

First proof. Let Zi = {ξi} ⊂ XTi and Z = {ξ} ⊂ XT endowed with the reduced
induced scheme structure. Then Z = limZi by Limits, Lemma 32.4.4. Choose a
field k and a morphism Spec(k)→ T whose image is t. Then

∅ = Z ×T Spec(k) = (limZi)×(limTi) Spec(k) = limZi ×Ti Spec(k)
because limits commute with fibred products (limits commute with limits). Each
Zi ×Ti Spec(k) is quasi-compact because XTi → Ti is of finite type and hence
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Zi → Ti is of finite type. Hence Zi ×Ti Spec(k) is empty for some i by Limits,
Lemma 32.4.3. Since the image of the composition Spec(k) → T → Ti is ti we
obtain what we want.

Second proof. Set Z = {ξ}. Apply Limits, Lemma 32.14.1 to this situation to
obtain an open neighbourhood V ⊂ T of t, a commutative diagram

V

��

a
// T ′

b

��
T

g // S,

and a closed subscheme Z ′ ⊂ XT ′ such that
(1) the morphism b : T ′ → S is locally of finite presentation,
(2) we have Z ′ ∩Xa(t) = ∅, and
(3) Z ∩XV maps into Z ′ via the morphism XV → XT ′ .

We may assume V is an affine open of T , hence by Limits, Lemmas 32.4.11 and
32.4.13 we can find an i and an affine open Vi ⊂ Ti with V = f−1

i (Vi). By
Limits, Proposition 32.6.1 after possibly increasing i a bit we can find a morphism
ai : Vi → T ′ such that a = ai ◦ fi|V . The induced morphism XVi → XT ′ maps ξi
into Z ′. As Z ′ ∩Xa(t) = ∅ we conclude that (Ti → S, t′i ⇝ ti, ξi) is an impurity of
F above s. □

Lemma 38.15.5.05J0 In Situation 38.15.1. If there exists an impurity (g : T → S, t′ ⇝
t, ξ) of F above s with g quasi-finite at t, then there exists an impurity (g : T →
S, t′ ⇝ t, ξ) such that (T, t)→ (S, s) is an elementary étale neighbourhood.

Proof. Let (g : T → S, t′ ⇝ t, ξ) be an impurity of F above s such that g is quasi-
finite at t. After shrinking T we may assume that g is locally of finite type. Apply
More on Morphisms, Lemma 37.41.1 to T → S and t 7→ s. This gives us a diagram

T

��

T ×S Uoo

��

Voo

{{
S Uoo

where (U, u) → (S, s) is an elementary étale neighbourhood and V ⊂ T ×S U is
an open neighbourhood of v = (t, u) such that V → U is finite and such that v
is the unique point of V lying over u. Since the morphism V → T is étale hence
flat we see that there exists a specialization v′ ⇝ v such that v′ 7→ t′. Note that
κ(t′) ⊂ κ(v′) is finite separable. Pick any point ζ ∈ Xv′ mapping to ξ ∈ Xt′ . By
Divisors, Lemma 31.7.3 we see that ζ ∈ AssXV /V (FV ). Moreover, the closure {ζ}
does not meet the fibre Xv as by assumption the closure {ξ} does not meet Xt. In
other words (V → S, v′ ⇝ v, ζ) is an impurity of F above S.

Next, let u′ ∈ U ′ be the image of v′ and let θ ∈ XU be the image of ζ. Then θ 7→ u′

and u′ ⇝ u. By Divisors, Lemma 31.7.3 we see that θ ∈ AssXU/U (F). Moreover,
as π : XV → XU is finite we see that π

(
{ζ}
)

= {π(ζ)}. Since v is the unique point
of V lying over u we see that Xu ∩ {π(ζ)} = ∅ because Xv ∩ {ζ} = ∅. In this way
we conclude that (U → S, u′ ⇝ u, θ) is an impurity of F above s and we win. □
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Lemma 38.15.6.05J1 In Situation 38.15.1. Assume that S is locally Noetherian. If there
exists an impurity of F above s, then there exists an impurity (g : T → S, t′ ⇝ t, ξ)
of F above s such that g is quasi-finite at t.

Proof. We may replace S by an affine neighbourhood of s. By Lemma 38.15.3 we
may assume that we have an impurity (g : T → S, t′ ⇝ t, ξ) of such that g is locally
of finite type and t a closed point of the fibre of g above s. We may replace T by
the reduced induced scheme structure on {t′}. Let Z = {ξ} ⊂ XT . By assumption
Zt = ∅ and the image of Z → T contains t′. By More on Morphisms, Lemma 37.25.1
there exists a nonempty open V ⊂ Z such that for any w ∈ f(V ) any generic point
ξ′ of Vw is in AssXT /T (FT ). By More on Morphisms, Lemma 37.24.2 there exists a
nonempty open W ⊂ T with W ⊂ f(V ). By More on Morphisms, Lemma 37.52.7
there exists a closed subscheme T ′ ⊂ T such that t ∈ T ′, T ′ → S is quasi-finite at
t, and there exists a point z ∈ T ′ ∩W , z ⇝ t which does not map to s. Choose
any generic point ξ′ of the nonempty scheme Vz. Then (T ′ → S, z ⇝ t, ξ′) is the
desired impurity. □

In the following we will use the henselization Sh = Spec(OhS,s) of S at s, see Étale
Cohomology, Definition 59.33.2. Since Sh → S maps to closed point of Sh to s and
induces an isomorphism of residue fields, we will indicate s ∈ Sh this closed point
also. Thus (Sh, s)→ (S, s) is a morphism of pointed schemes.

Lemma 38.15.7.05J2 In Situation 38.15.1. If there exists an impurity (Sh → S, s′ ⇝
s, ξ) of F above s then there exists an impurity (T → S, t′ ⇝ t, ξ) of F above s
where (T, t)→ (S, s) is an elementary étale neighbourhood.

Proof. We may replace S by an affine neighbourhood of s. Say S = Spec(A)
and s corresponds to the prime p ⊂ A. Then OhS,s = colim(T,t) Γ(T,OT ) where
the limit is over the opposite of the cofiltered category of affine elementary étale
neighbourhoods (T, t) of (S, s), see More on Morphisms, Lemma 37.35.5 and its
proof. Hence Sh = limi Ti and we win by Lemma 38.15.4. □

Lemma 38.15.8.05J3 In Situation 38.15.1 the following are equivalent
(1) there exists an impurity (Sh → S, s′ ⇝ s, ξ) of F above s where Sh is the

henselization of S at s,
(2) there exists an impurity (T → S, t′ ⇝ t, ξ) of F above s such that (T, t)→

(S, s) is an elementary étale neighbourhood, and
(3) there exists an impurity (T → S, t′ ⇝ t, ξ) of F above s such that T → S

is quasi-finite at t.

Proof. As an étale morphism is locally quasi-finite it is clear that (2) implies (3).
We have seen that (3) implies (2) in Lemma 38.15.5. We have seen that (1) implies
(2) in Lemma 38.15.7. Finally, if (T → S, t′ ⇝ t, ξ) is an impurity of F above s
such that (T, t)→ (S, s) is an elementary étale neighbourhood, then we can choose
a factorization Sh → T → S of the structure morphism Sh → S. Choose any
point s′ ∈ Sh mapping to t′ and choose any ξ′ ∈ Xs′ mapping to ξ ∈ Xt′ . Then
(Sh → S, s′ ⇝ s, ξ′) is an impurity of F above s. We omit the details. □

38.16. Relatively pure modules

05BB The notion of a module pure relative to a base was introduced in [GR71].
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Definition 38.16.1.05J4 Let f : X → S be a morphism of schemes which is of finite
type. Let F be a finite type quasi-coherent OX -module.

(1) Let s ∈ S. We say F is pure along Xs if there is no impurity (g :
T → S, t′ ⇝ t, ξ) of F above s with (T, t) → (S, s) an elementary étale
neighbourhood.

(2) We say F is universally pure along Xs if there does not exist any impurity
of F above s.

(3) We say that X is pure along Xs if OX is pure along Xs.
(4) We say F is universally S-pure, or universally pure relative to S if F is

universally pure along Xs for every s ∈ S.
(5) We say F is S-pure, or pure relative to S if F is pure along Xs for every

s ∈ S.
(6) We say that X is S-pure or pure relative to S if OX is pure relative to S.

We intentionally restrict ourselves here to morphisms which are of finite type and
not just morphisms which are locally of finite type, see Remark 38.16.2 for a dis-
cussion. In the situation of the definition Lemma 38.15.8 tells us that the following
are equivalent

(1) F is pure along Xs,
(2) there is no impurity (g : T → S, t′ ⇝ t, ξ) with g quasi-finite at t,
(3) there does not exist any impurity of the form (Sh → S, s′ ⇝ s, ξ), where

Sh is the henselization of S at s.
If we denote Xh = X×SSh and Fh the pullback of F to Xh, then we can formulate
the last condition in the following more positive way:

(4) All points of AssXh/Sh(Fh) specialize to points of Xs.
In particular, it is clear that F is pure along Xs if and only if the pullback of F to
X ×S Spec(OS,s) is pure along Xs.

Remark 38.16.2.05J5 Let f : X → S be a morphism which is locally of finite type
and F a quasi-coherent finite type OX -module. In this case it is still true that (1)
and (2) above are equivalent because the proof of Lemma 38.15.5 does not use that
f is quasi-compact. It is also clear that (3) and (4) are equivalent. However, we
don’t know if (1) and (3) are equivalent. In this case it may sometimes be more
convenient to define purity using the equivalent conditions (3) and (4) as is done in
[GR71]. On the other hand, for many applications it seems that the correct notion
is really that of being universally pure.

A natural question to ask is if the property of being pure relative to the base is
preserved by base change, i.e., if being pure is the same thing as being universally
pure. It turns out that this is true over Noetherian base schemes (see Lemma
38.16.5), or if the sheaf is flat (see Lemmas 38.18.3 and 38.18.4). It is not true in
general, even if the morphism and the sheaf are of finite presentation, see Examples,
Section 110.39 for a counter example. First we match our usage of “universally” to
the usual notion.

Lemma 38.16.3.05J6 Let f : X → S be a morphism of schemes which is of finite type.
Let F be a finite type quasi-coherent OX -module. Let s ∈ S. The following are
equivalent

(1) F is universally pure along Xs, and
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(2) for every morphism of pointed schemes (S′, s′)→ (S, s) the pullback FS′

is pure along Xs′ .
In particular, F is universally pure relative to S if and only if every base change
FS′ of F is pure relative to S′.

Proof. This is formal. □

Lemma 38.16.4.05J7 Let f : X → S be a morphism of schemes which is of finite type.
Let F be a finite type quasi-coherent OX -module. Let s ∈ S. Let (S′, s′)→ (S, s)
be a morphism of pointed schemes. If S′ → S is quasi-finite at s′ and F is pure
along Xs, then FS′ is pure along Xs′ .

Proof. It (T → S′, t′ ⇝ t, ξ) is an impurity of FS′ above s′ with T → S′ quasi-finite
at t, then (T → S, t′ → t, ξ) is an impurity of F above s with T → S quasi-finite
at t, see Morphisms, Lemma 29.20.12. Hence the lemma follows immediately from
the characterization (2) of purity given following Definition 38.16.1. □

Lemma 38.16.5.05J8 Let f : X → S be a morphism of schemes which is of finite type.
Let F be a finite type quasi-coherent OX -module. Let s ∈ S. If OS,s is Noetherian
then F is pure along Xs if and only if F is universally pure along Xs.

Proof. First we may replace S by Spec(OS,s), i.e., we may assume that S is Noether-
ian. Next, use Lemma 38.15.6 and characterization (2) of purity given in discussion
following Definition 38.16.1 to conclude. □

Purity satisfies flat descent.

Lemma 38.16.6.05J9 Let f : X → S be a morphism of schemes which is of finite type.
Let F be a finite type quasi-coherent OX -module. Let s ∈ S. Let (S′, s′)→ (S, s)
be a morphism of pointed schemes. Assume S′ → S is flat at s′.

(1) If FS′ is pure along Xs′ , then F is pure along Xs.
(2) If FS′ is universally pure along Xs′ , then F is universally pure along Xs.

Proof. Let (T → S, t′ ⇝ t, ξ) be an impurity of F above s. Set T1 = T ×S S′,
and let t1 be the unique point of T1 mapping to t and s′. Since T1 → T is flat at
t1, see Morphisms, Lemma 29.25.8, there exists a specialization t′1 ⇝ t1 lying over
t′ ⇝ t, see Algebra, Section 10.41. Choose a point ξ1 ∈ Xt′1

which corresponds to a
generic point of Spec(κ(t′1)⊗κ(t′) κ(ξ)), see Schemes, Lemma 26.17.5. By Divisors,
Lemma 31.7.3 we see that ξ1 ∈ AssXT1/T1(FT1). As the Zariski closure of {ξ1} in
XT1 maps into the Zariski closure of {ξ} in XT we conclude that this closure is
disjoint from Xt1 . Hence (T1 → S′, t′1 ⇝ t1, ξ1) is an impurity of FS′ above s′. In
other words we have proved the contrapositive to part (2) of the lemma. Finally, if
(T, t) → (S, s) is an elementary étale neighbourhood, then (T1, t1) → (S′, s′) is an
elementary étale neighbourhood too, and in this way we see that (1) holds. □

Lemma 38.16.7.05K1 Let i : Z → X be a closed immersion of schemes of finite type
over a scheme S. Let s ∈ S. Let F be a finite type, quasi-coherent sheaf on Z.
Then F is (universally) pure along Zs if and only if i∗F is (universally) pure along
Xs.

Proof. This follows from Divisors, Lemma 31.8.3. □
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38.17. Examples of relatively pure sheaves

05K2 Here are some example cases where it is possible to see what purity means.

Lemma 38.17.1.05K3 Let f : X → S be a morphism of schemes which is of finite type.
Let F be a finite type quasi-coherent OX -module.

(1) If the support of F is proper over S, then F is universally pure relative
to S.

(2) If f is proper, then F is universally pure relative to S.
(3) If f is proper, then X is universally pure relative to S.

Proof. First we reduce (1) to (2). Namely, let Z ⊂ X be the scheme theoretic
support of F . Let i : Z → X be the corresponding closed immersion and write
F = i∗G for some finite type quasi-coherent OZ-module G, see Morphisms, Section
29.5. In case (1) Z → S is proper by assumption. Thus by Lemma 38.16.7 case (1)
reduces to case (2).

Assume f is proper. Let (g : T → S, t′ ⇝ t, ξ) be an impurity of F above s ∈ S.
Since f is proper, it is universally closed. Hence fT : XT → T is closed. Since
fT (ξ) = t′ this implies that t ∈ f({ξ}) which is a contradiction. □

Lemma 38.17.2.05K4 Let f : X → S be a separated, finite type morphism of schemes.
Let F be a finite type, quasi-coherent OX -module. Assume that Supp(Fs) is finite
for every s ∈ S. Then the following are equivalent

(1) F is pure relative to S,
(2) the scheme theoretic support of F is finite over S, and
(3) F is universally pure relative to S.

In particular, given a quasi-finite separated morphism X → S we see that X is
pure relative to S if and only if X → S is finite.

Proof. Let Z ⊂ X be the scheme theoretic support of F , see Morphisms, Definition
29.5.5. Then Z → S is a separated, finite type morphism of schemes with finite
fibres. Hence it is separated and quasi-finite, see Morphisms, Lemma 29.20.10. By
Lemma 38.16.7 it suffices to prove the lemma for Z → S and the sheaf F viewed
as a finite type quasi-coherent module on Z. Hence we may assume that X → S is
separated and quasi-finite and that Supp(F) = X.

It follows from Lemma 38.17.1 and Morphisms, Lemma 29.44.11 that (2) implies
(3). Trivially (3) implies (1). Assume (1) holds. We will prove that (2) holds. It is
clear that we may assume S is affine. By More on Morphisms, Lemma 37.43.3 we
can find a diagram

X

f ��

j
// T

π
��

S

with π finite and j a quasi-compact open immersion. If we show that j is closed,
then j is a closed immersion and we conclude that f = π ◦ j is finite. To show that
j is closed it suffices to show that specializations lift along j, see Schemes, Lemma
26.19.8. Let x ∈ X, set t′ = j(x) and let t′ ⇝ t be a specialization. We have to
show t ∈ j(X). Set s′ = f(x) and s = π(t) so s′ ⇝ s. By More on Morphisms,
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Lemma 37.41.4 we can find an elementary étale neighbourhood (U, u)→ (S, s) and
a decomposition

TU = T ×S U = V ⨿W
into open and closed subschemes, such that V → U is finite and there exists a unique
point v of V mapping to u, and such that v maps to t in T . As V → T is étale, we
can lift generalizations, see Morphisms, Lemmas 29.25.9 and 29.36.12. Hence there
exists a specialization v′ ⇝ v such that v′ maps to t′ ∈ T . In particular we see that
v′ ∈ XU ⊂ TU . Denote u′ ∈ U the image of t′. Note that v′ ∈ AssXU/U (F) because
Xu′ is a finite discrete set and Xu′ = Supp(Fu′). As F is pure relative to S we see
that v′ must specialize to a point in Xu. Since v is the only point of V lying over u
(and since no point of W can be a specialization of v′) we see that v ∈ Xu. Hence
t ∈ X. □

Lemma 38.17.3.05K5 Let f : X → S be a finite type, flat morphism of schemes with
geometrically integral fibres. Then X is universally pure over S.

Proof. Let ξ ∈ X with s′ = f(ξ) and s′ ⇝ s a specialization of S. If ξ is an
associated point of Xs′ , then ξ is the unique generic point because Xs′ is an integral
scheme. Let ξ0 be the unique generic point of Xs. As X → S is flat we can lift
s′ ⇝ s to a specialization ξ′ ⇝ ξ0 in X, see Morphisms, Lemma 29.25.9. The ξ ⇝ ξ′

because ξ is the generic point of Xs′ hence ξ ⇝ ξ0. This means that (idS , s′ → s, ξ)
is not an impurity of OX above s. Since the assumption that f is finite type, flat
with geometrically integral fibres is preserved under base change, we see that there
doesn’t exist an impurity after any base change. In this way we see that X is
universally S-pure. □

Lemma 38.17.4.05K6 Let f : X → S be a finite type, affine morphism of schemes. Let
F be a finite type quasi-coherent OX -module such that f∗F is locally projective on
S, see Properties, Definition 28.21.1. Then F is universally pure over S.

Proof. After reducing to the case where S is the spectrum of a henselian local ring
this follows from Lemma 38.14.1. □

38.18. A criterion for purity

05L2 We first prove that given a flat family of finite type quasi-coherent sheaves the
points in the relative assassin specialize to points in the relative assassins of nearby
fibres (if they specialize at all).

Lemma 38.18.1.05L3 Let f : X → S be a morphism of schemes of finite type. Let
F be a quasi-coherent OX -module of finite type. Let s ∈ S. Assume that F is
flat over S at all points of Xs. Let x′ ∈ AssX/S(F) with f(x′) = s′ such that
s′ ⇝ s is a specialization in S. If x′ specializes to a point of Xs, then x′ ⇝ x with
x ∈ AssXs(Fs).

Proof. Say x′ ⇝ t with t ∈ Xs. Then we can find specializations x′ ⇝ x⇝ t with
x corresponding to a generic point of an irreducible component of {x′} ∩ f−1({s}).
By assumption F is flat over S at x. By More on Morphisms, Lemma 37.18.3 we
see that x ∈ AssX/S(F) as desired. □
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Lemma 38.18.2.05L4 Let f : X → S be a morphism of schemes of finite type. Let F
be a quasi-coherent OX -module of finite type. Let s ∈ S. Let (S′, s′) → (S, s) be
an elementary étale neighbourhood and let

X

��

X ′
g

oo

��
S S′oo

be a commutative diagram of morphisms of schemes. Assume
(1) F is flat over S at all points of Xs,
(2) X ′ → S′ is of finite type,
(3) g∗F is pure along X ′

s′ ,
(4) g : X ′ → X is étale, and
(5) g(X ′) contains AssXs(Fs).

In this situation F is pure alongXs if and only if the image ofX ′ → X×SS′ contains
the points of AssX×SS′/S′(F ×S S′) lying over points in S′ which specialize to s′.

Proof. Since the morphism S′ → S is étale, we see that if F is pure along Xs, then
F×S S′ is pure along Xs, see Lemma 38.16.4. Since purity satisfies flat descent, see
Lemma 38.16.6, we see that if F ×S S′ is pure along Xs′ , then F is pure along Xs.
Hence we may replace S by S′ and assume that S = S′ so that g : X ′ → X is an
étale morphism between schemes of finite type over S. Moreover, we may replace
S by Spec(OS,s) and assume that S is local.
First, assume that F is pure along Xs. In this case every point of AssX/S(F) spe-
cializes to a point of Xs by purity. Hence by Lemma 38.18.1 we see that every point
of AssX/S(F) specializes to a point of AssXs(Fs). Thus every point of AssX/S(F)
is in the image of g (as the image is open and contains AssXs(Fs)).
Conversely, assume that g(X ′) contains AssX/S(F). Let Sh = Spec(OhS,s) be the
henselization of S at s. Denote gh : (X ′)h → Xh the base change of g by Sh → S,
and denote Fh the pullback of F to Xh. By Divisors, Lemma 31.7.3 and Remark
31.7.4 the relative assassin AssXh/Sh(Fh) is the inverse image of AssX/S(F) via
the projection Xh → X. As we have assumed that g(X ′) contains AssX/S(F) we
conclude that the base change gh((X ′)h) = g(X ′) ×S Sh contains AssXh/Sh(Fh).
In this way we reduce to the case where S is the spectrum of a henselian local
ring. Let x ∈ AssX/S(F). To finish the proof of the lemma we have to show that
x specializes to a point of Xs, see criterion (4) for purity in discussion following
Definition 38.16.1. By assumption there exists a x′ ∈ X ′ such that g(x′) = x. As
g : X ′ → X is étale, we see that x′ ∈ AssX′/S(g∗F), see Lemma 38.2.8 (applied to
the morphism of fibres X ′

w → Xw where w ∈ S is the image of x′). Since g∗F is
pure along X ′

s we see that x′ ⇝ y for some y ∈ X ′
s. Hence x = g(x′) ⇝ g(y) and

g(y) ∈ Xs as desired. □

Lemma 38.18.3.05L5 Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. Let s ∈ S. Assume

(1) f is of finite type,
(2) F is of finite type,
(3) F is flat over S at all points of Xs, and
(4) F is pure along Xs.
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Then F is universally pure along Xs.

Proof. We first make a preliminary remark. Suppose that (S′, s′) → (S, s) is an
elementary étale neighbourhood. Denote F ′ the pullback of F to X ′ = X ×S S′.
By the discussion following Definition 38.16.1 we see that F ′ is pure along X ′

s′ .
Moreover, F ′ is flat over S′ along X ′

s′ . Then it suffices to prove that F ′ is universally
pure along X ′

s′ . Namely, given any morphism (T, t) → (S, s) of pointed schemes
the fibre product (T ′, t′) = (T ×S S′, (t, s′)) is flat over (T, t) and hence if FT ′ is
pure along Xt′ then FT is pure along Xt by Lemma 38.16.6. Thus during the proof
we may always replace (s, S) by an elementary étale neighbourhood. We may also
replace S by Spec(OS,s) due to the local nature of the problem.
Choose an elementary étale neighbourhood (S′, s′) → (S, s) and a commutative
diagram

X

��

X ′
g

oo

��
S Spec(OS′,s′)oo

such that X ′ → X×S Spec(OS′,s′) is étale, Xs = g((X ′)s′), the scheme X ′ is affine,
and such that Γ(X ′, g∗F) is a free OS′,s′ -module, see Lemma 38.12.11. Note that
X ′ → Spec(OS′,s′) is of finite type (as a quasi-compact morphism which is the
composition of an étale morphism and the base change of a finite type morphism).
By our preliminary remarks in the first paragraph of the proof we may replace S
by Spec(OS′,s′). Hence we may assume there exists a commutative diagram

X

��

X ′
g

oo

~~
S

of schemes of finite type over S, where g is étale, Xs ⊂ g(X ′), with S local with
closed point s, with X ′ affine, and with Γ(X ′, g∗F) a free Γ(S,OS)-module. Note
that in this case g∗F is universally pure over S, see Lemma 38.17.4.
In this situation we apply Lemma 38.18.2 to deduce that AssX/S(F) ⊂ g(X ′) from
our assumption that F is pure along Xs and flat over S along Xs. By Divisors,
Lemma 31.7.3 and Remark 31.7.4 we see that for any morphism of pointed schemes
(T, t)→ (S, s) we have

AssXT /T (FT ) ⊂ (XT → X)−1(AssX/S(F)) ⊂ g(X ′)×S T = gT (X ′
T ).

Hence by Lemma 38.18.2 applied to the base change of our displayed diagram to
(T, t) we conclude that FT is pure along Xt as desired. □

Lemma 38.18.4.05L6 Let f : X → S be a finite type morphism of schemes. Let F be a
finite type quasi-coherent OX -module. Assume F is flat over S. In this case F is
pure relative to S if and only if F is universally pure relative to S.

Proof. Immediate consequence of Lemma 38.18.3 and the definitions. □

Lemma 38.18.5.05MA Let I be a directed set. Let (Si, gii′) be an inverse system of affine
schemes over I. Set S = limi Si and s ∈ S. Denote gi : S → Si the projections
and set si = gi(s). Suppose that f : X → S is a morphism of finite presentation,
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F a quasi-coherent OX -module of finite presentation which is pure along Xs and
flat over S at all points of Xs. Then there exists an i ∈ I, a morphism of finite
presentation Xi → Si, a quasi-coherent OXi-module Fi of finite presentation which
is pure along (Xi)si and flat over Si at all points of (Xi)si such that X ∼= Xi×Si S
and such that the pullback of Fi to X is isomorphic to F .

Proof. Let U ⊂ X be the set of points where F is flat over S. By More on
Morphisms, Theorem 37.15.1 this is an open subscheme of X. By assumption
Xs ⊂ U . As Xs is quasi-compact, we can find a quasi-compact open U ′ ⊂ U
with Xs ⊂ U ′. By Limits, Lemma 32.10.1 we can find an i ∈ I and a morphism
of finite presentation fi : Xi → Si whose base change to S is isomorphic to fi.
Fix such a choice and set Xi′ = Xi ×Si Si′ . Then X = limi′ Xi′ with affine
transition morphisms. By Limits, Lemma 32.10.2 we can, after possible increasing
i assume there exists a quasi-coherent OXi-module Fi of finite presentation whose
base change to S is isomorphic to F . By Limits, Lemma 32.4.11 after possibly
increasing i we may assume there exists an open U ′

i ⊂ Xi whose inverse image in
X is U ′. Note that in particular (Xi)si ⊂ U ′

i . By Limits, Lemma 32.10.4 (after
increasing i once more) we may assume that Fi is flat on U ′

i . In particular we see
that Fi is flat along (Xi)si .

Next, we use Lemma 38.12.5 to choose an elementary étale neighbourhood (S′
i, s

′
i)→

(Si, si) and a commutative diagram of schemes

Xi

��

X ′
igi

oo

��
Si S′

i
oo

such that gi is étale, (Xi)si ⊂ gi(X ′
i), the schemes X ′

i, S′
i are affine, and such that

Γ(X ′
i, g

∗
iFi) is a projective Γ(S′

i,OS′
i
)-module. Note that g∗

iFi is universally pure
over S′

i, see Lemma 38.17.4. We may base change the diagram above to a diagram
with morphisms (S′

i′ , s
′
i′)→ (Si′ , si′) and gi′ : X ′

i′ → Xi′ over Si′ for any i′ ≥ i and
we may base change the diagram to a diagram with morphisms (S′, s′) → (S, s)
and g : X ′ → X over S.

At this point we can use our criterion for purity. Set W ′
i ⊂ Xi ×Si S′

i equal to the
image of the étale morphism X ′

i → Xi ×Si S′
i. For every i′ ≥ i we have similarly

the image W ′
i′ ⊂ Xi′ ×Si′ S

′
i′ and we have the image W ′ ⊂ X ×S S′. Taking images

commutes with base change, hence W ′
i′ = W ′

i ×S′
i
S′
i′ and W ′ = Wi×S′

i
S′. Because

F is pure along Xs the Lemma 38.18.2 implies that

(38.18.5.1)05MB f−1(Spec(OS′,s′)) ∩AssX×SS′/S′(F ×S S′) ⊂W ′

By More on Morphisms, Lemma 37.25.5 we see that

E = {t ∈ S′ | AssXt(Ft) ⊂W ′} and Ei′ = {t ∈ S′
i′ | AssXt(Fi′,t) ⊂W ′

i′}

are locally constructible subsets of S′ and S′
i′ . By More on Morphisms, Lemma

37.25.4 we see that Ei′ is the inverse image of Ei under the morphism S′
i′ →

S′
i and that E is the inverse image of Ei under the morphism S′ → S′

i. Thus
Equation (38.18.5.1) is equivalent to the assertion that Spec(OS′,s′) maps into Ei.
As OS′,s′ = colimi′≥iOS′

i′
,s′
i′

we see that Spec(OS′
i′
,s′
i′

) maps into Ei for some i′ ≥ i,
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see Limits, Lemma 32.4.10. Then, applying Lemma 38.18.2 to the situation over
Si′ , we conclude that Fi′ is pure along (Xi′)si′ . □

Lemma 38.18.6.05MC Let f : X → S be a morphism of finite presentation. Let F be a
quasi-coherent OX -module of finite presentation flat over S. Then the set

U = {s ∈ S | F is pure along Xs}
is open in S.

Proof. Let s ∈ U . Using Lemma 38.12.5 we can find an elementary étale neigh-
bourhood (S′, s′)→ (S, s) and a commutative diagram

X

��

X ′
g

oo

��
S S′oo

such that g is étale, Xs ⊂ g(X ′), the schemes X ′, S′ are affine, and such that
Γ(X ′, g∗F) is a projective Γ(S′,OS′)-module. Note that g∗F is universally pure
over S′, see Lemma 38.17.4. Set W ′ ⊂ X ×S S′ equal to the image of the étale
morphism X ′ → X ×S S′. Note that W is open and quasi-compact over S′. Set

E = {t ∈ S′ | AssXt(Ft) ⊂W ′}.
By More on Morphisms, Lemma 37.25.5 E is a constructible subset of S′. By
Lemma 38.18.2 we see that Spec(OS′,s′) ⊂ E. By Morphisms, Lemma 29.22.4 we
see that E contains an open neighbourhood V ′ of s′. Applying Lemma 38.18.2 once
more we see that for any point s1 in the image of V ′ in S the sheaf F is pure along
Xs1 . Since S′ → S is étale the image of V ′ in S is open and we win. □

38.19. How purity is used

05L7 Here are some examples of how purity can be used. The first lemma actually uses
a slightly weaker form of purity.

Lemma 38.19.1.05L8 Let f : X → S be a morphism of finite type. Let F be a quasi-
coherent sheaf of finite type on X. Assume S is local with closed point s. Assume
F is pure along Xs and that F is flat over S. Let φ : F → G of quasi-coherent
OX -modules. Then the following are equivalent

(1) the map on stalks φx is injective for all x ∈ AssXs(Fs), and
(2) φ is injective.

Proof. Let K = Ker(φ). Our goal is to prove that K = 0. In order to do this it
suffices to prove that WeakAssX(K) = ∅, see Divisors, Lemma 31.5.5. We have
WeakAssX(K) ⊂ WeakAssX(F), see Divisors, Lemma 31.5.4. As F is flat we see
from Lemma 38.13.5 that WeakAssX(F) ⊂ AssX/S(F). By purity any point x′ of
AssX/S(F) is a generalization of a point of Xs, and hence is the specialization of
a point x ∈ AssXs(Fs), by Lemma 38.18.1. Hence the injectivity of φx implies the
injectivity of φx′ , whence Kx′ = 0. □

Proposition 38.19.2.05MD Let f : X → S be an affine, finitely presented morphism of
schemes. Let F be a quasi-coherent OX -module of finite presentation, flat over S.
Then the following are equivalent

(1) f∗F is locally projective on S, and
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(2) F is pure relative to S.
In particular, given a ring map A→ B of finite presentation and a finitely presented
B-module N flat over A we have: N is projective as an A-module if and only if Ñ
on Spec(B) is pure relative to Spec(A).

Proof. The implication (1) ⇒ (2) is Lemma 38.17.4. Assume F is pure relative to
S. Note that by Lemma 38.18.3 this implies F remains pure after any base change.
By Descent, Lemma 35.7.7 it suffices to prove f∗F is fpqc locally projective on S.
Pick s ∈ S. We will prove that the restriction of f∗F to an étale neighbourhood of
s is locally projective. Namely, by Lemma 38.12.5, after replacing S by an affine
elementary étale neighbourhood of s, we may assume there exists a diagram

X

��

X ′
g

oo

~~
S

of schemes affine and of finite presentation over S, where g is étale, Xs ⊂ g(X ′),
and with Γ(X ′, g∗F) a projective Γ(S,OS)-module. Note that in this case g∗F is
universally pure over S, see Lemma 38.17.4. Hence by Lemma 38.18.2 we see that
the open g(X ′) contains the points of AssX/S(F) lying over Spec(OS,s). Set

E = {t ∈ S | AssXt(Ft) ⊂ g(X ′)}.

By More on Morphisms, Lemma 37.25.5 E is a constructible subset of S. We have
seen that Spec(OS,s) ⊂ E. By Morphisms, Lemma 29.22.4 we see that E contains
an open neighbourhood of s. Hence after replacing S by an affine neighbourhood
of s we may assume that AssX/S(F) ⊂ g(X ′). By Lemma 38.7.4 this means that

Γ(X,F) −→ Γ(X ′, g∗F)

is Γ(S,OS)-universally injective. By Algebra, Lemma 10.89.7 we conclude that
Γ(X,F) is Mittag-Leffler as an Γ(S,OS)-module. Since Γ(X,F) is countably gen-
erated and flat as a Γ(S,OS)-module, we conclude it is projective by Algebra,
Lemma 10.93.1. □

We can use the proposition to improve some of our earlier results. The following
lemma is an improvement of Proposition 38.12.4.

Lemma 38.19.3.05ME Let f : X → S be a morphism which is locally of finite presen-
tation. Let F be a quasi-coherent OX -module which is of finite presentation. Let
x ∈ X with s = f(x) ∈ S. If F is flat at x over S there exists an affine elemen-
tary étale neighbourhood (S′, s′)→ (S, s) and an affine open U ′ ⊂ X ×S S′ which
contains x′ = (x, s′) such that Γ(U ′,F|U ′) is a projective Γ(S′,OS′)-module.

Proof. During the proof we may replace X by an open neighbourhood of x and
we may replace S by an elementary étale neighbourhood of s. Hence, by openness
of flatness (see More on Morphisms, Theorem 37.15.1) we may assume that F is
flat over S. We may assume S and X are affine. After shrinking X some more we
may assume that any point of AssXs(Fs) is a generalization of x. This property
is preserved on replacing (S, s) by an elementary étale neighbourhood. Hence we
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may apply Lemma 38.12.5 to arrive at the situation where there exists a diagram

X

��

X ′
g

oo

~~
S

of schemes affine and of finite presentation over S, where g is étale, Xs ⊂ g(X ′),
and with Γ(X ′, g∗F) a projective Γ(S,OS)-module. Note that in this case g∗F is
universally pure over S, see Lemma 38.17.4.

Let U ⊂ g(X ′) be an affine open neighbourhood of x. We claim that F|U is pure
along Us. If we prove this, then the lemma follows because F|U will be pure relative
to S after shrinking S, see Lemma 38.18.6, whereupon the projectivity follows from
Proposition 38.19.2. To prove the claim we have to show, after replacing (S, s)
by an arbitrary elementary étale neighbourhood, that any point ξ of AssU/S(F|U )
lying over some s′ ∈ S, s′ ⇝ s specializes to a point of Us. Since U ⊂ g(X ′) we
can find a ξ′ ∈ X ′ with g(ξ′) = ξ. Because g∗F is pure over S, using Lemma
38.18.1, we see there exists a specialization ξ′ ⇝ x′ with x′ ∈ AssX′

s
(g∗Fs). Then

g(x′) ∈ AssXs(Fs) (see for example Lemma 38.2.8 applied to the étale morphism
X ′
s → Xs of Noetherian schemes) and hence g(x′) ⇝ x by our choice of X above!

Since x ∈ U we conclude that g(x′) ∈ U . Thus ξ = g(ξ′) ⇝ g(x′) ∈ Us as
desired. □

The following lemma is an improvement of Lemma 38.12.9.

Lemma 38.19.4.05MF Let f : X → S be a morphism which is locally of finite type.
Let F be a quasi-coherent OX -module which is of finite type. Let x ∈ X with
s = f(x) ∈ S. If F is flat at x over S there exists an affine elementary étale
neighbourhood (S′, s′) → (S, s) and an affine open U ′ ⊂ X ×S Spec(OS′,s′) which
contains x′ = (x, s′) such that Γ(U ′,F|U ′) is a free OS′,s′ -module.

Proof. The question is Zariski local on X and S. Hence we may assume that X
and S are affine. Then we can find a closed immersion i : X → An

S over S. It is
clear that it suffices to prove the lemma for the sheaf i∗F on An

S and the point
i(x). In this way we reduce to the case where X → S is of finite presentation. After
replacing S by Spec(OS′,s′) and X by an open of X×S Spec(OS′,s′) we may assume
that F is of finite presentation, see Proposition 38.10.3. In this case we may appeal
to Lemma 38.19.3 and Algebra, Theorem 10.85.4 to conclude. □

Lemma 38.19.5.05U7 Let A→ B be a local ring map of local rings which is essentially
of finite type. Let N be a finite B-module which is flat as an A-module. If A is
henselian, then N is a filtered colimit

N = colimi Fi

of free A-modules Fi such that all transition maps ui : Fi → Fi′ of the system induce
injective maps ui : Fi/mAFi → Fi′/mAFi′ . Also, N is a Mittag-Leffler A-module.

Proof. We can find a morphism of finite type X → S = Spec(A) and a point x ∈ X
lying over the closed point s of S and a finite type quasi-coherent OX -module F
such that Fx ∼= N as an A-module. After shrinking X we may assume that each
point of AssXs(Fs) specializes to x. By Lemma 38.19.4 we see that there exists a
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fundamental system of affine open neighbourhoods Ui ⊂ X of x such that Γ(Ui,F)
is a free A-module Fi. Note that if Ui′ ⊂ Ui, then

Fi/mAFi = Γ(Ui,s,Fs) −→ Γ(Ui′,s,Fs) = Fi′/mAFi′

is injective because a section of the kernel would be supported at a closed subset
of Xs not meeting x which is a contradiction to our choice of X above. Since
the maps Fi → Fi′ are A-universally injective (Lemma 38.7.5) it follows that N is
Mittag-Leffler by Algebra, Lemma 10.89.9. □

The following lemma should be skipped if reading through for the first time.

Lemma 38.19.6.0ASX Let A→ B be a local ring map of local rings which is essentially
of finite type. Let N be a finite B-module which is flat as an A-module. If A is a
valuation ring, then any element of N has a content ideal I ⊂ A (More on Algebra,
Definition 15.24.1). Also, I is a principal ideal.

Proof. The final statement follows from the fact that I is a finitely generated ideal
by More on Algebra, Lemma 15.24.2 and Algebra, Lemma 10.50.15.

Proof of existence of I. Let A ⊂ Ah be the henselization. Let B′ be the localization
of B⊗A Ah at the maximal ideal mB ⊗Ah +B⊗mAh . Then B → B′ is flat, hence
faithfully flat. LetN ′ = N⊗BB′. Let x ∈ N and let x′ ∈ N ′ be the image. We claim
that for an ideal I ⊂ A we have x ∈ IN ⇔ x′ ∈ IN ′. Namely, N/IN → N ′/IN ′

is the tensor product of B → B′ with N/IN and B → B′ is universally injective
by Algebra, Lemma 10.82.11. By More on Algebra, Lemma 15.123.6 and Algebra,
Lemma 10.50.17 the map A→ Ah defines an inclusion preserving bijection I 7→ IAh

on sets of ideals. We conclude that x has a content ideal in A if and only if x′ has
a content ideal in Ah. The assertion for x′ ∈ N ′ follows from Lemma 38.19.5 and
Algebra, Lemma 10.89.6. □

An application is the following.

Lemma 38.19.7.0H2T Let X → Spec(R) be a proper flat morphism where R is a valu-
ation ring. If the special fibre is reduced, then X and every fibre of X → Spec(R)
is reduced.

Proof. Assume the special fibre Xs is reduced. Let x ∈ X be any point, and let
us show that OX,x is reduced; this will prove that X is reduced. Let x ⇝ x′ be a
specialization with x′ in the special fibre; such a specialization exists as a proper
morphism is closed. Consider the local ring A = OX,x′ . Then OX,x is a localization
of A, so it suffices to show that A is reduced. Let a ∈ A and let I = (π) ⊂ R be its
content ideal, see Lemma 38.19.6. Then a = πa′ and a′ maps to a nonzero element
of A/mA where m ⊂ R is the maximal ideal. If a is nilpotent, so is a′, because π is
a nonzerodivisor by flatness of A over R. But a′ maps to a nonzero element of the
reduced ring A/mA = OXs,x′ . This is a contradiction unless A is reduced, which is
what we wanted to show.

Of course, if X is reduced, so is the generic fibre of X over R. If p ⊂ R is a prime
ideal, then R/p is a valuation ring by Algebra, Lemma 10.50.9. Hence redoing the
argument with the base change of X to R/p proves the fibre over p is reduced. □
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38.20. Flattening functors

05MG Let S be a scheme. Recall that a functor F : (Sch/S)opp → Sets is called limit
preserving if for every directed inverse system {Ti}i∈I of affine schemes with limit
T we have F (T ) = colimi F (Ti).

Situation 38.20.1.05MH Let f : X → S be a morphism of schemes. Let u : F → G be
a homomorphism of quasi-coherent OX -modules. For any scheme T over S we will
denote uT : FT → GT the base change of u to T , in other words, uT is the pullback
of u via the projection morphism XT = X ×S T → X. In this situation we can
consider the functor
(38.20.1.1)

05MI Fiso : (Sch/S)opp −→ Sets, T −→
{
{∗} if uT is an isomorphism,
∅ else.

There are variants Finj , Fsurj , Fzero where we ask that uT is injective, surjective,
or zero.

Lemma 38.20.2.05MJ In Situation 38.20.1.
(1) Each of the functors Fiso, Finj , Fsurj , Fzero satisfies the sheaf property

for the fpqc topology.
(2) If f is quasi-compact and G is of finite type, then Fsurj is limit preserving.
(3) If f is quasi-compact and F of finite type, then Fzero is limit preserving.
(4) If f is quasi-compact, F is of finite type, and G is of finite presentation,

then Fiso is limit preserving.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over S. Set Xi = XTi =
X ×S Ti and ui = uTi . Note that {Xi → XT }i∈I is an fpqc covering of XT , see
Topologies, Lemma 34.9.7. In particular, for every x ∈ XT there exists an i ∈ I and
an xi ∈ Xi mapping to x. Since OXT ,x → OXi,xi is flat, hence faithfully flat (see
Algebra, Lemma 10.39.17) we conclude that (ui)xi is injective, surjective, bijective,
or zero if and only if (uT )x is injective, surjective, bijective, or zero. Whence part
(1) of the lemma.
Proof of (2). Assume f quasi-compact and G of finite type. Let T = limi∈I Ti be a
directed limit of affine S-schemes and assume that uT is surjective. Set Xi = XTi =
X ×S Ti and ui = uTi : Fi = FTi → Gi = GTi . To prove part (2) we have to show
that ui is surjective for some i. Pick i0 ∈ I and replace I by {i | i ≥ i0}. Since f is
quasi-compact the scheme Xi0 is quasi-compact. Hence we may choose affine opens
W1, . . . ,Wm ⊂ X and an affine open covering Xi0 = U1,i0 ∪ . . . ∪ Um,i0 such that
Uj,i0 maps into Wj under the projection morphism Xi0 → X. For any i ∈ I let Uj,i
be the inverse image of Uj,i0 . Setting Uj = limi Uj,i we see that XT = U1∪ . . .∪Um
is an affine open covering of XT . Now it suffices to show, for a given j ∈ {1, . . . ,m}
that ui|Uj,i is surjective for some i = i(j) ∈ I. Using Properties, Lemma 28.16.1 this
translates into the following algebra problem: Let A be a ring and let u : M → N
be an A-module map. Suppose that R = colimi∈I Ri is a directed colimit of A-
algebras. If N is a finite A-module and if u⊗ 1 : M ⊗A R→ N ⊗A R is surjective,
then for some i the map u⊗ 1 : M ⊗ARi → N ⊗ARi is surjective. This is Algebra,
Lemma 10.127.5 part (2).
Proof of (3). Exactly the same arguments as given in the proof of (2) reduces this to
the following algebra problem: Let A be a ring and let u : M → N be an A-module
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map. Suppose that R = colimi∈I Ri is a directed colimit of A-algebras. If M is a
finite A-module and if u⊗ 1 : M ⊗A R→ N ⊗A R is zero, then for some i the map
u⊗ 1 : M ⊗A Ri → N ⊗A Ri is zero. This is Algebra, Lemma 10.127.5 part (1).
Proof of (4). Assume f quasi-compact and F ,G of finite presentation. Arguing
in exactly the same manner as in the previous paragraph (using in addition also
Properties, Lemma 28.16.2) part (3) translates into the following algebra statement:
Let A be a ring and let u : M → N be an A-module map. Suppose that R =
colimi∈I Ri is a directed colimit of A-algebras. Assume M is a finite A-module, N
is a finitely presented A-module, and u⊗1 : M ⊗AR→ N ⊗AR is an isomorphism.
Then for some i the map u⊗ 1 : M ⊗A Ri → N ⊗A Ri is an isomorphism. This is
Algebra, Lemma 10.127.5 part (3). □

Situation 38.20.3.05MK Let (A,mA) be a local ring. Denote C the category whose objects
are A-algebras A′ which are local rings such that the algebra structure A → A′ is
a local homomorphism of local rings. A morphism between objects A′, A′′ of C is
a local homomorphism A′ → A′′ of A-algebras. Let A→ B be a local ring map of
local rings and let M be a B-module. If A′ is an object of C we set B′ = B⊗AA′ and
we set M ′ = M ⊗A A′ as a B′-module. Given A′ ∈ Ob(C), consider the condition
(38.20.3.1)05ML ∀q ∈ V (mA′B′ + mBB

′) ⊂ Spec(B′) : M ′
q is flat over A′.

Note the similarity with More on Algebra, Equation (15.19.1.1). In particular, if
A′ → A′′ is a morphism of C and (38.20.3.1) holds for A′, then it holds for A′′, see
More on Algebra, Lemma 15.19.2. Hence we obtain a functor

(38.20.3.2)05MM Flf : C −→ Sets, A′ −→
{
{∗} if (38.20.3.1) holds,
∅ else.

Lemma 38.20.4.05MN In Situation 38.20.3.
(1) If A′ → A′′ is a flat morphism in C then Flf (A′) = Flf (A′′).
(2) If A → B is essentially of finite presentation and M is a B-module of

finite presentation, then Flf is limit preserving: If {Ai}i∈I is a directed
system of objects of C, then Flf (colimiAi) = colimi Flf (Ai).

Proof. Part (1) is a special case of More on Algebra, Lemma 15.19.3. Part (2) is a
special case of More on Algebra, Lemma 15.19.4. □

Lemma 38.20.5.05P4 In Situation 38.20.3. Let B → C is a local map of local A-
algebras and N a C-module. Denote F ′

lf : C → Sets the functor associated to the
pair (C,N). If M ∼= N as B-modules and B → C is finite, then Flf = F ′

lf .

Proof. Let A′ be an object of C. Set C ′ = C ⊗A A′ and N ′ = N ⊗A A′ similarly to
the definitions of B′, M ′ in Situation 38.20.3. Note that M ′ ∼= N ′ as B′-modules.
The assumption that B → C is finite has two consequences: (a) mC =

√
mBC and

(b) B′ → C ′ is finite. Consequence (a) implies that

V (mA′C ′ + mCC
′) = (Spec(C ′)→ Spec(B′))−1

V (mA′B′ + mBB
′).

Suppose q ⊂ V (mA′B′ + mBB
′). Then M ′

q is flat over A′ if and only if the C ′
q-

module N ′
q is flat over A′ (because these are isomorphic as A′-modules) if and only

if for every maximal ideal r of C ′
q the module N ′

r is flat over A′ (see Algebra, Lemma
10.39.18). As B′

q → C ′
q is finite by (b), the maximal ideals of C ′

q correspond exactly
to the primes of C ′ lying over q (see Algebra, Lemma 10.36.22) and these primes
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are all contained in V (mA′C ′ + mCC
′) by the displayed equation above. Thus the

result of the lemma holds. □

Lemma 38.20.6.05P5 In Situation 38.20.3 suppose that B → C is a flat local homo-
morphism of local rings. Set N = M ⊗B C. Denote F ′

lf : C → Sets the functor
associated to the pair (C,N). Then Flf = F ′

lf .

Proof. Let A′ be an object of C. Set C ′ = C⊗AA′ and N ′ = N ⊗AA′ = M ′⊗B′ C ′

similarly to the definitions of B′, M ′ in Situation 38.20.3. Note that
V (mA′B′ + mBB

′) = Spec(κ(mB)⊗A κ(mA′))
and similarly for V (mA′C ′ + mCC

′). The ring map
κ(mB)⊗A κ(mA′) −→ κ(mC)⊗A κ(mA′)

is faithfully flat, hence V (mA′C ′+mCC
′)→ V (mA′B′+mBB

′) is surjective. Finally,
if r ∈ V (mA′C ′ + mCC

′) maps to q ∈ V (mA′B′ + mBB
′), then M ′

q is flat over A′ if
and only if N ′

r is flat over A′ because B′ → C ′ is flat, see Algebra, Lemma 10.39.9.
The lemma follows formally from these remarks. □

Situation 38.20.7.05MP Let f : X → S be a smooth morphism with geometrically
irreducible fibres. Let F be a quasi-coherent OX -module of finite type. For any
scheme T over S we will denote FT the base change of F to T , in other words, FT
is the pullback of F via the projection morphism XT = X ×S T → X. Note that
XT → T is smooth with geometrically irreducible fibres, see Morphisms, Lemma
29.34.5 and More on Morphisms, Lemma 37.27.2. Let p ≥ 0 be an integer. Given
a point t ∈ T consider the condition
(38.20.7.1)05MQ FT is free of rank p in a neighbourhood of ξt
where ξt is the generic point of the fibre Xt. This condition for all t ∈ T is stable
under base change, and hence we obtain a functor
(38.20.7.2)

05MR Hp : (Sch/S)opp −→ Sets, T −→
{
{∗} if FT satisfies (38.20.7.1) ∀t ∈ T,
∅ else.

Lemma 38.20.8.05MS In Situation 38.20.7.
(1) The functor Hp satisfies the sheaf property for the fpqc topology.
(2) If F is of finite presentation, then functor Hp is limit preserving.

Proof. Let {Ti → T}i∈I be an fpqc1 covering of schemes over S. Set Xi = XTi =
X×STi and denote Fi the pullback of F to Xi. Assume that Fi satisfies (38.20.7.1)
for all i. Pick t ∈ T and let ξt ∈ XT denote the generic point of Xt. We have to
show that F is free in a neighbourhood of ξt. For some i ∈ I we can find a ti ∈ Ti
mapping to t. Let ξi ∈ Xi denote the generic point of Xti , so that ξi maps to ξt. The
fact that Fi is free of rank p in a neighbourhood of ξi implies that (Fi)xi ∼= O

⊕p
Xi,xi

which implies that FT,ξt ∼= O
⊕p
XT ,ξt

as OXT ,ξt → OXi,xi is flat, see for example
Algebra, Lemma 10.78.6. Thus there exists an affine neighbourhood U of ξt in XT

and a surjection O⊕p
U → FU = FT |U , see Modules, Lemma 17.9.4. After shrinking

T we may assume that U → T is surjective. Hence U → T is a smooth morphism

1It is quite easy to show that Hp is a sheaf for the fppf topology using that flat morphisms
of finite presentation are open. This is all we really need later on. But it is kind of fun to prove
directly that it also satisfies the sheaf condition for the fpqc topology.
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of affines with geometrically irreducible fibres. Moreover, for every t′ ∈ T we see
that the induced map

α : O⊕p
U,ξt′

−→ FU,ξt′
is an isomorphism (since by the same argument as before the module on the right
is free of rank p). It follows from Lemma 38.10.1 that

Γ(U,O⊕p
U )⊗Γ(T,OT ) OT,t′ −→ Γ(U,FU )⊗Γ(T,OT ) OT,t′

is injective for every t′ ∈ T . Hence we see the surjection α is an isomorphism. This
finishes the proof of (1).
Assume that F is of finite presentation. Let T = limi∈I Ti be a directed limit of
affine S-schemes and assume that FT satisfies (38.20.7.1). Set Xi = XTi = X×S Ti
and denote Fi the pullback of F to Xi. Let U ⊂ XT denote the open subscheme
of points where FT is flat over T , see More on Morphisms, Theorem 37.15.1. By
assumption every generic point of every fibre is a point of U , i.e., U → T is a
smooth surjective morphism with geometrically irreducible fibres. We may shrink
U a bit and assume that U is quasi-compact. Using Limits, Lemma 32.4.11 we can
find an i ∈ I and a quasi-compact open Ui ⊂ Xi whose inverse image in XT is
U . After increasing i we may assume that Fi|Ui is flat over Ti, see Limits, Lemma
32.10.4. In particular, Fi|Ui is finite locally free hence defines a locally constant
rank function ρ : Ui → {0, 1, 2, . . .}. Let (Ui)p ⊂ Ui denote the open and closed
subset where ρ has value p. Let Vi ⊂ Ti be the image of (Ui)p; note that Vi is open
and quasi-compact. By assumption the image of T → Ti is contained in Vi. Hence
there exists an i′ ≥ i such that Ti′ → Ti factors through Vi by Limits, Lemma
32.4.11. Then Fi′ satisfies (38.20.7.1) as desired. Some details omitted. □

Lemma 38.20.9.0CWF Let f : X → S be a morphism of schemes which is locally of
finite type. Let F be a quasi-coherent OX -module of finite type. Let n ≥ 0. The
following are equivalent

(1) for s ∈ S the closed subset Z ⊂ Xs of points where F is not flat over S
(see Lemma 38.10.4) satisfies dim(Z) < n, and

(2) for x ∈ X such that F is not flat at x over S we have trdegκ(f(x))(κ(x)) <
n.

If this is true, then it remains true after any base change.

Proof. Let x ∈ X be a point over s ∈ S. Then the dimension of the closure of {x} in
Xs is trdegκ(s)(κ(x)) by Varieties, Lemma 33.20.3. Conversely, if Z ⊂ Xs is a closed
subset of dimension d, then there exists a point x ∈ Z with trdegκ(s)(κ(x)) = d

(same reference). Therefore the equivalence of (1) and (2) holds (even fibre by
fibre). The statement on base change follows from Morphisms, Lemmas 29.25.7
and 29.28.3. □

Definition 38.20.10.0CWG Let f : X → S be a morphism of schemes which is locally
of finite type. Let F be a quasi-coherent OX -module of finite type. Let n ≥ 0.
We say F is flat over S in dimensions ≥ n if the equivalent conditions of Lemma
38.20.9 are satisfied.

Situation 38.20.11.05MT Let f : X → S be a morphism of schemes which is locally of
finite type. Let F be a quasi-coherent OX -module of finite type. For any scheme
T over S we will denote FT the base change of F to T , in other words, FT is
the pullback of F via the projection morphism XT = X ×S T → X. Note that
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XT → T is of finite type and that FT is an OXT -module of finite type (Morphisms,
Lemma 29.15.4 and Modules, Lemma 17.9.2). Let n ≥ 0. By Definition 38.20.10
and Lemma 38.20.9 we obtain a functor
(38.20.11.1)

05MU Fn : (Sch/S)opp −→ Sets, T −→
{
{∗} if FT is flat over T in dim ≥ n,
∅ else.

Lemma 38.20.12.05MV In Situation 38.20.11.
(1) The functor Fn satisfies the sheaf property for the fpqc topology.
(2) If f is quasi-compact and locally of finite presentation and F is of finite

presentation, then the functor Fn is limit preserving.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over S. Set Xi = XTi =
X ×S Ti and denote Fi the pullback of F to Xi. Assume that Fi is flat over Ti in
dimensions ≥ n for all i. Let t ∈ T . Choose an index i and a point ti ∈ Ti mapping
to t. Consider the cartesian diagram

XSpec(OT,t)

��

XSpec(OTi,ti
)

��

oo

Spec(OT,t) Spec(OTi,ti)oo

As the lower horizontal morphism is flat we see from More on Morphisms, Lemma
37.15.2 that the set Zi ⊂ Xti where Fi is not flat over Ti and the set Z ⊂ Xt where
FT is not flat over T are related by the rule Zi = Zκ(ti). Hence we see that FT is
flat over T in dimensions ≥ n by Morphisms, Lemma 29.28.3.
Assume that f is quasi-compact and locally of finite presentation and that F is of
finite presentation. In this paragraph we first reduce the proof of (2) to the case
where f is of finite presentation. Let T = limi∈I Ti be a directed limit of affine S-
schemes and assume that FT is flat in dimensions ≥ n. Set Xi = XTi = X×STi and
denote Fi the pullback of F to Xi. We have to show that Fi is flat in dimensions
≥ n for some i. Pick i0 ∈ I and replace I by {i | i ≥ i0}. Since Ti0 is affine (hence
quasi-compact) there exist finitely many affine opens Wj ⊂ S, j = 1, . . . ,m and an
affine open overing Ti0 =

⋃
j=1,...,m Vj,i0 such that Ti0 → S maps Vj,i0 into Wj . For

i ≥ i0 denote Vj,i the inverse image of Vj,i0 in Ti. If we can show, for each j, that
there exists an i such that FVj,i0 is flat in dimensions ≥ n, then we win. In this way
we reduce to the case that S is affine. In this case X is quasi-compact and we can
choose a finite affine open covering X = W1 ∪ . . . ∪Wm. In this case the result for
(X → S,F) is equivalent to the result for (

∐
Wj ,

∐
F|Wj

). Hence we may assume
that f is of finite presentation.
Assume f is of finite presentation and F is of finite presentation. Let U ⊂ XT de-
note the open subscheme of points where FT is flat over T , see More on Morphisms,
Theorem 37.15.1. By assumption the dimension of every fibre of Z = XT \ U over
T has dimension < n. By Limits, Lemma 32.18.5 we can find a closed subscheme
Z ⊂ Z ′ ⊂ XT such that dim(Z ′

t) < n for all t ∈ T and such that Z ′ → XT is of
finite presentation. By Limits, Lemmas 32.10.1 and 32.8.5 there exists an i ∈ I
and a closed subscheme Z ′

i ⊂ Xi of finite presentation whose base change to T is
Z ′. By Limits, Lemma 32.18.1 we may assume all fibres of Z ′

i → Ti have dimension
< n. By Limits, Lemma 32.10.4 we may assume that Fi|Xi\T ′

i
is flat over Ti. This
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implies that Fi is flat in dimensions ≥ n; here we use that Z ′ → XT is of finite
presentation, and hence the complement XT \ Z ′ is quasi-compact! Thus part (2)
is proved and the proof of the lemma is complete. □

Situation 38.20.13.05MW Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. For any scheme T over S we will denote FT the base change
of F to T , in other words, FT is the pullback of F via the projection morphism
XT = X ×S T → X. Since the base change of a flat module is flat we obtain a
functor

(38.20.13.1)05MX Fflat : (Sch/S)opp −→ Sets, T −→
{
{∗} if FT is flat over T,
∅ else.

Lemma 38.20.14.05MY In Situation 38.20.13.
(1) The functor Fflat satisfies the sheaf property for the fpqc topology.
(2) If f is quasi-compact and locally of finite presentation and F is of finite

presentation, then the functor Fflat is limit preserving.

Proof. Part (1) follows from the following statement: If T ′ → T is a surjective flat
morphism of schemes over S, then FT ′ is flat over T ′ if and only if FT is flat over
T , see More on Morphisms, Lemma 37.15.2. Part (2) follows from Limits, Lemma
32.10.4 after reducing to the case where X and S are affine (compare with the proof
of Lemma 38.20.12). □

38.21. Flattening stratifications

052F Just the definitions. The reader looking for a “generic flatness stratification”, should
consult More on Morphisms, Section 37.54.

Definition 38.21.1.05P6 Let X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. We say that the universal flattening of F exists if the functor
Fflat defined in Situation 38.20.13 is representable by a scheme S′ over S. We say
that the universal flattening of X exists if the universal flattening of OX exists.

Note that if the universal flattening S′2 of F exists, then the morphism S′ → S is
a surjective monomorphism of schemes such that FS′ is flat over S′ and such that
a morphism T → S factors through S′ if and only if FT is flat over T .

Example 38.21.2.0FJ1 Let X = S = Spec(k[x, y]) where k is a field. Let F = M̃ where
M = k[x, x−1, y]/(y). For a k[x, y]-algebra A set Fflat(A) = Fflat(Spec(A)). Then
Fflat(k[x, y]/(x, y)n) = {∗} for all n, while Fflat(k[[x, y]]) = ∅. This means that
Fflat isn’t representable (even by an algebraic space, see Formal Spaces, Lemma
87.33.3). Thus the universal flattening does not exist in this case.

We define (compare with Topology, Remark 5.28.5) a (locally finite, scheme theo-
retic) stratification of a scheme S to be given by closed subschemes Zi ⊂ S indexed
by a partially ordered set I such that S =

⋃
Zi (set theoretically), such that every

point of S has a neighbourhood meeting only a finite number of Zi, and such that

Zi ∩ Zj =
⋃

k≤i,j
Zk.

2The scheme S′ is sometimes called the universal flatificator. In [GR71] it is called the
platificateur universel. Existence of the universal flattening should not be confused with the type
of results discussed in More on Algebra, Section 15.26.
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Setting Si = Zi \
⋃
j<i Zj the actual stratification is the decomposition S =

∐
Si

into locally closed subschemes. We often only indicate the strata Si and leave the
construction of the closed subschemes Zi to the reader. Given a stratification we
obtain a monomorphism

S′ =
∐

i∈I
Si −→ S.

We will call this the monomorphism associated to the stratification. With this
terminology we can define what it means to have a flattening stratification.

Definition 38.21.3.05P7 Let X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. We say that F has a flattening stratification if the functor
Fflat defined in Situation 38.20.13 is representable by a monomorphism S′ → S
associated to a stratification of S by locally closed subschemes. We say that X has
a flattening stratification if OX has a flattening stratification.

When a flattening stratification exists, it is often important to understand the index
set labeling the strata and its partial ordering. This often has to do with ranks of
modules. For example if X = S and F is a finitely presented OS-module, then the
flattening stratification exists and is given by the Fitting ideals of F , see Divisors,
Lemma 31.9.7.

38.22. Flattening stratification over an Artinian ring

05PA A flatting stratification exists when the base scheme is the spectrum of an Artinian
ring.

Lemma 38.22.1.05PB Let S be the spectrum of an Artinian ring. For any scheme X
over S, and any quasi-coherent OX -module there exists a universal flattening. In
fact the universal flattening is given by a closed immersion S′ → S, and hence is a
flattening stratification for F as well.

Proof. Choose an affine open covering X =
⋃
Ui. Then Fflat is the product of the

functors associated to each of the pairs (Ui,F|Ui). Hence it suffices to prove the
result for each (Ui,F|Ui). In the affine case the lemma follows immediately from
More on Algebra, Lemma 15.17.2. □

38.23. Flattening a map

05PC Theorem 38.23.3 is the key to further flattening statements.

Lemma 38.23.1.05PD Let S be a scheme. Let g : X ′ → X be a flat morphism of schemes
over S with X locally of finite type over S. Let F be a finite type quasi-coherent
OX -module which is flat over S. If AssX/S(F) ⊂ g(X ′) then the canonical map

F −→ g∗g
∗F

is injective, and remains injective after any base change.

Proof. The final assertion means that FT → (gT )∗g
∗
TFT is injective for any mor-

phism T → S. The assumption AssX/S(F) ⊂ g(X ′) is preserved by base change,
see Divisors, Lemma 31.7.3 and Remark 31.7.4. The same holds for the assumption
of flatness and finite type. Hence it suffices to prove the injectivity of the displayed
arrow. Let K = Ker(F → g∗g

∗F). Our goal is to prove that K = 0. In order to
do this it suffices to prove that WeakAssX(K) = ∅, see Divisors, Lemma 31.5.5.
We have WeakAssX(K) ⊂WeakAssX(F), see Divisors, Lemma 31.5.4. As F is flat
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we see from Lemma 38.13.5 that WeakAssX(F) ⊂ AssX/S(F). By assumption any
point x of AssX/S(F) is the image of some x′ ∈ X ′. Since g is flat the local ring
map OX,x → OX′,x′ is faithfully flat, hence the map

Fx −→ g∗Fx′ = Fx ⊗OX,x
OX′,x′

is injective (see Algebra, Lemma 10.82.11). This implies that Kx = 0 as desired. □

Lemma 38.23.2.05PE Let A be a ring. Let u : M → N be a surjective map of A-
modules. If M is projective as an A-module, then there exists an ideal I ⊂ A such
that for any ring map φ : A→ B the following are equivalent

(1) u⊗ 1 : M ⊗A B → N ⊗A B is an isomorphism, and
(2) φ(I) = 0.

Proof. AsM is projective we can find a projective A-module C such that F = M⊕C
is a free A-module. By replacing u by u⊕ 1 : F = M ⊕C → N ⊕C we see that we
may assume M is free. In this case let I be the ideal of A generated by coefficients
of all the elements of Ker(u) with respect to some (fixed) basis of M . The reason
this works is that, since u is surjective and ⊗AB is right exact, Ker(u ⊗ 1) is the
image of Ker(u)⊗A B in M ⊗A B. □

Theorem 38.23.3.05PF In Situation 38.20.1 assume
(1) f is of finite presentation,
(2) F is of finite presentation, flat over S, and pure relative to S, and
(3) u is surjective.

Then Fiso is representable by a closed immersion Z → S. Moreover Z → S is of
finite presentation if G is of finite presentation.

Proof. We will use without further mention that F is universally pure over S, see
Lemma 38.18.3. By Lemma 38.20.2 and Descent, Lemmas 35.37.2 and 35.39.1 the
question is local for the étale topology on S. Hence it suffices to prove, given s ∈ S,
that there exists an étale neighbourhood of (S, s) so that the theorem holds.
Using Lemma 38.12.5 and after replacing S by an elementary étale neighbourhood
of s we may assume there exists a commutative diagram

X

��

X ′
g

oo

~~
S

of schemes of finite presentation over S, where g is étale, Xs ⊂ g(X ′), the schemes
X ′ and S are affine, Γ(X ′, g∗F) a projective Γ(S,OS)-module. Note that g∗F is
universally pure over S, see Lemma 38.17.4. Hence by Lemma 38.18.2 we see that
the open g(X ′) contains the points of AssX/S(F) lying over Spec(OS,s). Set

E = {t ∈ S | AssXt(Ft) ⊂ g(X ′)}.
By More on Morphisms, Lemma 37.25.5 E is a constructible subset of S. We
have seen that Spec(OS,s) ⊂ E. By Morphisms, Lemma 29.22.4 we see that E
contains an open neighbourhood of s. Hence after replacing S by a smaller affine
neighbourhood of s we may assume that AssX/S(F) ⊂ g(X ′).
Since we have assumed that u is surjective we have Fiso = Finj . From Lemma
38.23.1 it follows that u : F → G is injective if and only if g∗u : g∗F → g∗G is
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injective, and the same remains true after any base change. Hence we have reduced
to the case where, in addition to the assumptions in the theorem, X → S is a
morphism of affine schemes and Γ(X,F) is a projective Γ(S,OS)-module. This
case follows immediately from Lemma 38.23.2.

To see that Z is of finite presentation if G is of finite presentation, combine Lemma
38.20.2 part (4) with Limits, Remark 32.6.2. □

Lemma 38.23.4.07AI Let f : X → S be a morphism of schemes which is of finite
presentation, flat, and pure. Let Y be a closed subscheme of X. Let F = f∗Y be
the Weil restriction functor of Y along f , defined by

F : (Sch/S)opp → Sets, T 7→
{
{∗} if YT → XT is an isomorphism,
∅ else.

Then F is representable by a closed immersion Z → S. Moreover Z → S is of finite
presentation if Y → S is.

Proof. Let I be the ideal sheaf defining Y in X and let u : OX → OX/I be
the surjection. Then for an S-scheme T , the closed immersion YT → XT is an
isomorphism if and only if uT is an isomorphism. Hence the result follows from
Theorem 38.23.3. □

38.24. Flattening in the local case

05MZ In this section we start applying the earlier material to obtain a shadow of the
flattening stratification.

Theorem 38.24.1.05PG In Situation 38.20.3 assume A is henselian, B is essentially of
finite type over A, and M is a finite B-module. Then there exists an ideal I ⊂ A
such that A/I corepresents the functor Flf on the category C. In other words
given a local homomorphism of local rings φ : A → A′ with B′ = B ⊗A A′ and
M ′ = M ⊗A A′ the following are equivalent:

(1) ∀q ∈ V (mA′B′ + mBB
′) ⊂ Spec(B′) : M ′

q is flat over A′, and
(2) φ(I) = 0.

If B is essentially of finite presentation over A and M of finite presentation over B,
then I is a finitely generated ideal.

Proof. Choose a finite type ring map A→ C and a finite C-module N and a prime
q of C such that B = Cq and M = Nq. In the following, when we say “the theorem
holds for (N/C/A, q) we mean that it holds for (A → B,M) where B = Cq and
M = Nq. By Lemma 38.20.6 the functor Flf is unchanged if we replace B by a
local ring flat over B. Hence, since A is henselian, we may apply Lemma 38.6.6
and assume that there exists a complete dévissage of N/C/A at q.

Let (Ai, Bi,Mi, αi, qi)i=1,...,n be such a complete dévissage of N/C/A at q. Let
q′
i ⊂ Ai be the unique prime lying over qi ⊂ Bi as in Definition 38.6.4. Since
C → A1 is surjective and N ∼= M1 as C-modules, we see by Lemma 38.20.5 it
suffices to prove the theorem holds for (M1/A1/A, q

′
1). Since B1 → A1 is finite and

q1 is the only prime of B1 over q′
1 we see that (A1)q′

1
→ (B1)q1 is finite (see Algebra,

Lemma 10.41.11 or More on Morphisms, Lemma 37.47.4). Hence by Lemma 38.20.5
it suffices to prove the theorem holds for (M1/B1/A, q1).

https://stacks.math.columbia.edu/tag/07AI
https://stacks.math.columbia.edu/tag/05PG


38.24. FLATTENING IN THE LOCAL CASE 3442

At this point we may assume, by induction on the length n of the dévissage, that
the theorem holds for (M2/B2/A, q2). (If n = 1, then M2 = 0 which is flat over
A.) Reversing the last couple of steps of the previous paragraph, using that M2 ∼=
Coker(α2) as B1-modules, we see that the theorem holds for (Coker(α1)/B1/A, q1).
Let A′ be an object of C. At this point we use Lemma 38.10.1 to see that if
(M1 ⊗A A′)q′ is flat over A′ for a prime q′ of B1 ⊗A A′ lying over mA′ , then
(Coker(α1)⊗A A′)q′ is flat over A′. Hence we conclude that Flf is a subfunctor of
the functor F ′

lf associated to the module Coker(α1)q1 over (B1)q1 . By the previous
paragraph we know F ′

lf is corepresented by A/J for some ideal J ⊂ A. Hence we
may replace A by A/J and assume that Coker(α1)q1 is flat over A.
Since Coker(α1) is a B1-module for which there exist a complete dévissage of
N1/B1/A at q1 and since Coker(α1)q1 is flat over A by Lemma 38.10.2 we see
that Coker(α1) is free as an A-module, in particular flat as an A-module. Hence
Lemma 38.10.1 implies Flf (A′) is nonempty if and only if α⊗ 1A′ is injective. Let
N1 = Im(α1) ⊂M1 so that we have exact sequences

0→ N1 →M1 → Coker(α1)→ 0 and B⊕r1
1 → N1 → 0

The flatness of Coker(α1) implies the first sequence is universally exact (see Algebra,
Lemma 10.82.5). Hence α ⊗ 1A′ is injective if and only if B⊕r1

1 ⊗A A′ → N1 ⊗A
A′ is an isomorphism. Finally, Theorem 38.23.3 applies to show this functor is
corepresentable by A/I for some ideal I and we conclude Flf is corepresentable by
A/I also.
To prove the final statement, suppose that A→ B is essentially of finite presentation
and M of finite presentation over B. Let I ⊂ A be the ideal such that Flf is
corepresented by A/I. Write I =

⋃
Iλ where Iλ ranges over the finitely generated

ideals contained in I. Then, since Flf (A/I) = {∗} we see that Flf (A/Iλ) = {∗} for
some λ, see Lemma 38.20.4 part (2). Clearly this implies that I = Iλ. □

Remark 38.24.2.05PH Here is a scheme theoretic reformulation of Theorem 38.24.1. Let
(X,x) → (S, s) be a morphism of pointed schemes which is locally of finite type.
Let F be a finite type quasi-coherent OX -module. Assume S henselian local with
closed point s. There exists a closed subscheme Z ⊂ S with the following property:
for any morphism of pointed schemes (T, t)→ (S, s) the following are equivalent

(1) FT is flat over T at all points of the fibre Xt which map to x ∈ Xs, and
(2) Spec(OT,t)→ S factors through Z.

Moreover, if X → S is of finite presentation at x and Fx of finite presentation over
OX,x, then Z → S is of finite presentation.
At this point we can obtain some very general results completely for free from the
result above. Note that perhaps the most interesting case is when E = Xs!
Lemma 38.24.3.05PI Let S be the spectrum of a henselian local ring with closed point
s. Let X → S be a morphism of schemes which is locally of finite type. Let F be
a finite type quasi-coherent OX -module. Let E ⊂ Xs be a subset. There exists a
closed subscheme Z ⊂ S with the following property: for any morphism of pointed
schemes (T, t)→ (S, s) the following are equivalent

(1) FT is flat over T at all points of the fibre Xt which map to a point of
E ⊂ Xs, and

(2) Spec(OT,t)→ S factors through Z.
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Moreover, if X → S is locally of finite presentation, F is of finite presentation, and
E ⊂ Xs is closed and quasi-compact, then Z → S is of finite presentation.

Proof. For x ∈ Xs denote Zx ⊂ S the closed subscheme we found in Remark
38.24.2. Then it is clear that Z =

⋂
x∈E Zx works!

To prove the final statement assume X locally of finite presentation, F of finite
presentation and Z closed and quasi-compact. First, choose finitely many affine
opens Wj ⊂ X such that E ⊂

⋃
Wj . It clearly suffices to prove the result for each

morphism Wj → S with sheaf F|Xj and closed subset E ∩ Wj . Hence we may
assume X is affine. In this case, More on Algebra, Lemma 15.19.4 shows that the
functor defined by (1) is “limit preserving”. Hence we can show that Z → S is of
finite presentation exactly as in the last part of the proof of Theorem 38.24.1. □

Remark 38.24.4.052G Tracing the proof of Lemma 38.24.3 to its origins we find a long
and winding road. But if we assume that

(1) f is of finite type,
(2) F is a finite type OX -module,
(3) E = Xs, and
(4) S is the spectrum of a Noetherian complete local ring.

then there is a proof relying completely on more elementary algebra as follows:
first we reduce to the case where X is affine by taking a finite affine open cover.
In this case Z exists by More on Algebra, Lemma 15.20.3. The key step in this
proof is constructing the closed subscheme Z step by step inside the truncations
Spec(OS,s/mns ). This relies on the fact that flattening stratifications always exist
when the base is Artinian, and the fact that OS,s = limOS,s/mns .

38.25. Variants of a lemma

0ASZ In this section we discuss variants of Algebra, Lemmas 10.128.4 and 10.99.1. The
most general version is Proposition 38.25.13; this was stated as [GR71, Lemma
4.2.2] but the proof in loc.cit. only gives the weaker result as stated in Lemma
38.25.5. The intricate proof of Proposition 38.25.13 is due to Ofer Gabber. As we
currently have no application for the proposition we encourage the reader to skip
to the next section after reading the proof of Lemma 38.25.5; this lemma will be
used in the next section to prove Theorem 38.26.1.

Situation 38.25.1.0AT0 Let φ : A → B be a local ring homomorphism of local rings
which is essentially of finite type. Let M be a flat A-module, N a finite B-module
and u : N →M an A-module map such that u : N/mAN →M/mAM is injective.

In this situation it is our goal to show that u is A-universally injective, N is of finite
presentation over B, and N is flat as an A-module. If this is true, we will say the
lemma holds in the given situation.

Lemma 38.25.2.0AT1 If in Situation 38.25.1 the ring A is Noetherian then the lemma
holds.

Proof. Applying Algebra, Lemma 10.99.1 we see that u is injective and thatN/u(M)
is flat over A. Then u is A-universally injective (Algebra, Lemma 10.39.12) and N
is A-flat (Algebra, Lemma 10.39.13). Since B is Noetherian in this case we see that
N is of finite presentation. □
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Lemma 38.25.3.0AT2 Let A0 be a local ring. If the lemma holds for every Situation
38.25.1 with A = A0, with B a localization of a polynomial algebra over A, and
N of finite presentation over B, then the lemma holds for every Situation 38.25.1
with A = A0.

Proof. Let A→ B, u : N →M be as in Situation 38.25.1. Write B = C/I where C
is the localization of a polynomial algebra over A at a prime. If we can show that
N is finitely presented as a C-module, then a fortiori this shows that N is finitely
presented as a B-module (see Algebra, Lemma 10.6.4). Hence we may assume that
B is the localization of a polynomial algebra. Next, write N = B⊕n/K for some
submodule K ⊂ B⊕n. Since B/mAB is Noetherian (as it is essentially of finite
type over a field), there exist finitely many elements k1, . . . , ks ∈ K such that for
K ′ =

∑
Bki and N ′ = B⊕n/K ′ the canonical surjection N ′ → N induces an

isomorphism N ′/mAN
′ ∼= N/mAN . Now, if the lemma holds for the composition

u′ : N ′ → M , then u′ is injective, hence N ′ = N and u′ = u. Thus the lemma
holds for the original situation. □

Lemma 38.25.4.0AT3 If in Situation 38.25.1 the ring A is henselian then the lemma
holds.

Proof. It suffices to prove this when B is essentially of finite presentation over A
and N is of finite presentation over B, see Lemma 38.25.3. Let us temporarily
make the additional assumption that N is flat over A. Then N is a filtered colimit
N = colimi Fi of free A-modules Fi such that the transition maps uii′ : Fi → Fi′ are
injective modulo mA, see Lemma 38.19.5. Each of the compositions ui : Fi → M
is A-universally injective by Lemma 38.7.5 wherefore u = colim ui is A-universally
injective as desired.

Assume A is a henselian local ring, B is essentially of finite presentation over A, N
of finite presentation over B. By Theorem 38.24.1 there exists a finitely generated
ideal I ⊂ A such that N/IN is flat over A/I and such that N/I2N is not flat over
A/I2 unless I = 0. The result of the previous paragraph shows that the lemma
holds for u mod I : N/IN →M/IM over A/I. Consider the commutative diagram

0 // M ⊗A I/I2 // M/I2M // M/IM // 0

N ⊗A I/I2 //

u

OO

N/I2N //

u

OO

N/IN //

u

OO

0

whose rows are exact by right exactness of ⊗ and the fact that M is flat over A.
Note that the left vertical arrow is the map N/IN ⊗A/I I/I2 →M/IM ⊗A/I I/I2,
hence is injective. A diagram chase shows that the lower left arrow is injective, i.e.,
Tor1

A/I2(I/I2,M/I2) = 0 see Algebra, Remark 10.75.9. Hence N/I2N is flat over
A/I2 by Algebra, Lemma 10.99.8 a contradiction unless I = 0. □

The following lemma discusses the special case of Situation 38.25.1 where M has a
B-module structure and u is B-linear. This is the case most often used in practice
and it is significantly easier to prove than the general case.

Lemma 38.25.5.0AT4 Let A → B be a local ring homomorphism of local rings which
is essentially of finite type. Let u : N → M be a B-module map. If N is a finite
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B-module, M is flat over A, and u : N/mAN → M/mAM is injective, then u is
A-universally injective, N is of finite presentation over B, and N is flat over A.

Proof. Let A→ Ah be the henselization of A. Let B′ be the localization of B⊗AAh
at the maximal ideal mB ⊗ Ah + B ⊗ mAh . Since B → B′ is flat (hence faithfully
flat, see Algebra, Lemma 10.39.17), we may replace A → B with Ah → B′, the
module M by M ⊗BB′, the module N by N ⊗BB′, and u by u⊗ idB′ , see Algebra,
Lemmas 10.83.2 and 10.39.9. Thus we may assume that A is a henselian local ring.
In this case our lemma follows from the more general Lemma 38.25.4. □

Lemma 38.25.6.0AT5 If in Situation 38.25.1 the ring A is a valuation ring then the
lemma holds.

Proof. Recall that an A-module is flat if and only if it is torsion free, see More on
Algebra, Lemma 15.22.10. Let T ⊂ N be the A-torsion. Then u(T ) = 0 and N/T
is A-flat. Hence N/T is finitely presented over B, see More on Algebra, Lemma
15.25.6. Thus T is a finite B-module, see Algebra, Lemma 10.5.3. Since N/T is A-
flat we see that T/mAT ⊂ N/mAN , see Algebra, Lemma 10.39.12. As u is injective
but u(T ) = 0, we conclude that T/mAT = 0. Hence T = 0 by Nakayama’s lemma,
see Algebra, Lemma 10.20.1. At this point we have proved two out of the three
assertions (N is A-flat and of finite presentation over B) and what is left is to show
that u is universally injective.
By Algebra, Theorem 10.82.3 it suffices to show that N⊗AQ→M⊗AQ is injective
for every finitely presented A-module Q. By More on Algebra, Lemma 15.124.3 we
may assume Q = A/(a) with a ∈ mA nonzero. Thus it suffices to show that
N/aN → M/aM is injective. Let x ∈ N with u(x) ∈ aM . By Lemma 38.19.6
we know that x has a content ideal I ⊂ A. Since I is finitely generated (More on
Algebra, Lemma 15.24.2) and A is a valuation ring, we have I = (b) for some b (by
Algebra, Lemma 10.50.15). By More on Algebra, Lemma 15.24.3 the element u(x)
has content ideal I as well. Since u(x) ∈ aM we see that (b) ⊂ (a) by More on
Algebra, Definition 15.24.1. Since x ∈ bN we conclude x ∈ aN as desired. □

Consider the following situation

(38.25.6.1)0AT6 A→ B of finite presentation, S ⊂ B a multiplicative subset, and
N a finitely presented S−1B-module

In this situation a pure spreadout is an affine open U ⊂ Spec(B) with Spec(S−1B) ⊂
U and a finitely presented O(U)-module N ′ extending N such that N ′ is A-
projective and N ′ → N = S−1N ′ is A-universally injective.
In (38.25.6.1) if A→ A1 is a ring map, then we can base change: take B1 = B⊗AA1,
let S1 ⊂ B1 be the image of S, and let N1 = N ⊗A A1. This works because
S−1

1 B1 = S−1B ⊗A A1. We will use this without further mention in the following.

Lemma 38.25.7.0AT7 In (38.25.6.1) if there exists a pure spreadout, then
(1) elements of N have content ideals in A, and
(2) if u : N → M is a morphism to a flat A-module M such that N/mN →

M/mM is injective for all maximal ideals m of A, then u is A-universally
injective.

Proof. Choose U , N ′ as in the definition of a pure spreadout. Any element x′ ∈ N ′

has a content ideal in A because N ′ is A-projective (this can easily be seen directly,
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but it also follows from More on Algebra, Lemma 15.24.4 and Algebra, Example
10.91.1). Since N ′ → N is A-universally injective, we see that the image x ∈ N of
any x′ ∈ N ′ has a content ideal in A (it is the same as the content ideal of x′). For
a general x ∈ N we choose s ∈ S such that sx is in the image of N ′ → N and we
use that x and sx have the same content ideal.
Let u : N → M be as in (2). To show that u is A-universally injective, we may
replace A by a localization at a maximal ideal (small detail omitted). Assume A is
local with maximal ideal m. Pick s ∈ S and consider the composition

N ′ → N
1/s−−→ N

u−→M

Each of these maps is injective modulo m, hence the composition is A-universally
injective by Lemma 38.7.5. Since N = colims∈S(1/s)N ′ we conclude that u is
A-inversally injective as a colimit of universally injective maps. □

Lemma 38.25.8.0AT8 In (38.25.6.1) for every p ∈ Spec(A) there is a finitely generated
ideal I ⊂ pAp such that over Ap/I we have a pure spreadout.

Proof. We may replace A by Ap. Thus we may assume A is local and p is the
maximal ideal m of A. We may write N = S−1N ′ for some finitely presented
B-module N ′ by clearing denominators in a presentation of N over S−1B. Since
B/mB is Noetherian, the kernel K of N ′/mN ′ → N/mN is finitely generated. Thus
we can pick s ∈ S such that K is annihilated by s. After replacing B by Bs which is
allowed as it just means passing to an affine open subscheme of Spec(B), we find that
the elements of S are injective on N ′/mN ′. At this point we choose a local subring
A0 ⊂ A essentially of finite type over Z, a finite type ring map A0 → B0 such that
B = A⊗A0 B0, and a finite B0-module N ′

0 such that N ′ = B ⊗B0 N
′
0 = A⊗A0 N

′
0.

We claim that I = mA0A works. Namely, we have
N ′/IN ′ = N ′

0/mA0N
′
0 ⊗κA0

A/I

which is free over A/I. Multiplication by the elements of S is injective after divid-
ing out by the maximal ideal, hence N ′/IN ′ → N/IN is universally injective for
example by Lemma 38.7.6. □

Lemma 38.25.9.0AT9 In (38.25.6.1) assume N is A-flat, M is a flat A-module, and
u : N →M is an A-module map such that u⊗ idκ(p) is injective for all p ∈ Spec(A).
Then u is A-universally injective.

Proof. By Algebra, Lemma 10.82.14 it suffices to check that N/IN → M/IM is
injective for every ideal I ⊂ A. After replacing A by A/I we see that it suffices to
prove that u is injective.
Proof that u is injective. Let x ∈ N be a nonzero element of the kernel of u. Then
there exists a weakly associated prime p of the module Ax, see Algebra, Lemma
10.66.5. Replacing A by Ap we may assume A is local and we find a nonzero
element y ∈ Ax whose annihilator has radical equal to mA, see Algebra, Lemma
10.66.2. Thus Supp(y) ⊂ Spec(S−1B) is nonempty and contained in the closed
fibre of Spec(S−1B) → Spec(A). Let I ⊂ mA be a finitely generated ideal so that
we have a pure spreadout over A/I, see Lemma 38.25.8. Then Iny = 0 for some
n. Now y ∈ AnnM (In) = AnnA(In) ⊗R N by flatness. Thus, to get the desired
contradiction, it suffices to show that

AnnA(In)⊗R N −→ AnnA(In)⊗RM

https://stacks.math.columbia.edu/tag/0AT8
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is injective. Since N and M are flat and since AnnA(In) is annihilated by In,
it suffices to show that Q ⊗A N → Q ⊗A M is injective for every A-module Q
annihilated by I. This holds by our choice of I and Lemma 38.25.7 part (2). □

Lemma 38.25.10.0ATA Let A be a local domain which is not a field. Let S be a set of
finitely generated ideals of A. Assume that S is closed under products and such that⋃
I∈S V (I) is the complement of the generic point of Spec(A). Then

⋂
I∈S I = (0).

Proof. Since mA ⊂ A is not the generic point of Spec(A) we see that I ⊂ mA for
at least one I ∈ S. Hence

⋂
I∈S I ⊂ mA. Let f ∈ mA be nonzero. Then V (f) ⊂⋃

I∈S V (I). Since the constructible topology on V (f) is quasi-compact (Topology,
Lemma 5.23.2 and Algebra, Lemma 10.26.2) we find that V (f) ⊂ V (I1)∪. . .∪V (In)
for some Ij ∈ S. Because I1 . . . In ∈ S we see that V (f) ⊂ V (I) for some I. As I
is finitely generated this implies that Im ⊂ (f) for some m and since S is closed
under products we see that I ⊂ (f2) for some I ∈ S. Then it is not possible to
have f ∈ I. □

Lemma 38.25.11.0ATB Let A be a local ring. Let I, J ⊂ A be ideals. If J is finitely
generated and I ⊂ Jn for all n ≥ 1, then V (I) contains the closed points of
Spec(A) \ V (J).

Proof. Let p ⊂ A be a closed point of Spec(A) \ V (J). We want to show that
I ⊂ p. If not, then some f ∈ I maps to a nonzero element of A/p. Note that
V (J) ∩ Spec(A/p) is the set of non-generic points. Hence by Lemma 38.25.10
applied to the collection of ideals JnA/p we conclude that the image of f is zero in
A/p. □

Lemma 38.25.12.0ATC Let A be a local ring. Let I ⊂ A be an ideal. Let U ⊂ Spec(A)
be quasi-compact open. Let M be an A-module. Assume that

(1) M/IM is flat over A/I,
(2) M is flat over U ,

Then M/I2M is flat over A/I2 where I2 = Ker(I → Γ(U, I/I2)).

Proof. It suffices to show that M ⊗A I/I2 → IM/I2M is injective, see Algebra,
Lemma 10.99.9. This is true over U by assumption (2). Thus it suffices to show that
M⊗AI/I2 injects into its sections over U . We haveM⊗AI/I2 = M/IM⊗AI/I2 and
M/IM is a filtered colimit of finite free A/I-modules (Algebra, Theorem 10.81.4).
Hence it suffices to show that I/I2 injects into its sections over U , which follows
from the construction of I2. □

Proposition 38.25.13.05U9 Let A → B be a local ring homomorphism of local rings
which is essentially of finite type. Let M be a flat A-module, N a finite B-module
and u : N → M an A-module map such that u : N/mAN → M/mAM is injective.
Then u is A-universally injective, N is of finite presentation over B, and N is flat
over A.

Proof. We may assume that B is the localization of a finitely presented A-algebra
B0 and that N is the localization of a finitely presented B0-module M0, see Lemma
38.25.3. By More on Morphisms, Lemma 37.54.1 there exists a “generic flatness
stratification” for M̃0 on Spec(B0) over Spec(A). Translating back to N we find a
sequence of closed subschemes

S = Spec(A) ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅
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with Si ⊂ S cut out by a finitely generated ideal of A such that the pullback of Ñ
to Spec(B) ×S (Si \ Si+1) is flat over Si \ Si+1. We will prove the proposition by
induction on t (the base case t = 1 will be proved in parallel with the other steps).
Let Spec(A/Ji) be the scheme theoretic closure of Si \ Si+1.
Claim 1. N/JiN is flat over A/Ji. This is immediate for i = t− 1 and follows from
the induction hypothesis for i > 0. Thus we may assume t > 1, St−1 ̸= ∅, and
J0 = 0 and we have to prove that N is flat. Let J ⊂ A be the ideal defining S1.
By induction on t again, we also have flatness modulo powers of J . Let Ah be the
henselization of A and let B′ be the localization of B ⊗A Ah at the maximal ideal
mB ⊗ Ah + B ⊗ mAh . Then B → B′ is faithfully flat. Set N ′ = N ⊗B B′. Note
that N ′ is Ah-flat if and only if N is A-flat. By Theorem 38.24.1 there is a smallest
ideal I ⊂ Ah such that N ′/IN ′ is flat over Ah/I, and I is finitely generated. By
the above I ⊂ JnAh for all n ≥ 1. Let Shi ⊂ Spec(Ah) be the inverse image of
Si ⊂ Spec(A). By Lemma 38.25.11 we see that V (I) contains the closed points of
U = Spec(Ah)−Sh1 . By construction N ′ is Ah-flat over U . By Lemma 38.25.12 we
see that N ′/I2N

′ is flat over A/I2, where I2 = Ker(I → Γ(U, I/I2)). Hence I = I2
by minimality of I. This implies that I = I2 locally on U , i.e., we have IOU,u = (0)
or IOU,u = (1) for all u ∈ U . Since V (I) contains the closed points of U we see that
I = 0 on U . Since U ⊂ Spec(Ah) is scheme theoretically dense (because replaced A
by A/J0 in the beginning of this paragraph), we see that I = 0. Thus N ′ is Ah-flat
and hence Claim 1 holds.
We return to the situation as laid out before Claim 1. With Ah the henselization
of A, with B′ the localization of B ⊗A Ah at the maximal ideal mB ⊗ Ah + B ⊗
mAh , and with N ′ = N ⊗B B′ we now see that the flattening ideal I ⊂ Ah of
Theorem 38.24.1 is nilpotent. If nil(Ah) denotes the ideal of nilpotent elements,
then nil(Ah) = nil(A)Ah (More on Algebra, Lemma 15.45.5). Hence there exists a
finitely generated nilpotent ideal I0 ⊂ A such that N/I0N is flat over A/I0.
Claim 2. For every prime ideal p ⊂ A the map κ(p)⊗AN → κ(p)⊗AM is injective.
We say p is bad it this is false. Suppose that C is a nonempty chain of bad
primes and set p∗ =

⋃
p∈C p. By Lemma 38.25.8 there is a finitely generated ideal

a ⊂ p∗Ap∗ such that there is a pure spreadout over V (a). If p∗ were good, then it
would follow from Lemma 38.25.7 that the points of V (a) are good. However, since
a is finitely generated and since p∗Ap∗ =

⋃
p∈C Ap∗ we see that V (a) contains a

p ∈ C, contradiction. Hence p∗ is bad. By Zorn’s lemma, if there exists a bad prime,
there exists a maximal one, say p. In other words, we may assume every p′ ⊃ p,
p′ ̸= p is good. In this case we see that for every f ∈ A, f ̸∈ p the map u⊗ idA/(p+f)
is universally injective, see Lemma 38.25.9. Thus it suffices to show that N/pN is
separated for the topology defined by the submodules f(N/pN). Since B → B′ is
faithfully flat, it is enough to prove the same for the module N ′/pN ′. By Lemma
38.19.5 and More on Algebra, Lemma 15.24.4 elements of N ′/pN ′ have content
ideals in Ah/pAh. Thus it suffices to show that

⋂
f∈A,f ̸∈p f(Ah/pAh) = 0. Then it

suffices to show the same for Ah/qAh for every prime q ⊂ Ah minimal over pAh.
Because A → Ah is the henselization, every q contracts to p and every q′ ⊃ q,
q′ ̸= q contracts to a prime p′ which strictly contains p. Thus we get the vanishing
of the intersections from Lemma 38.25.10.
At this point we can put everything together. Namely, using Claim 1 and Claim
2 we see that N/I0N → M/I0M is A/I0-universally injective by Lemma 38.25.9.
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Then the diagrams

N ⊗A (In0 /In+1
0 ) //

��

M ⊗A (In0 /In+1
0 )

In0 N/I
n+1
0 N // In0 M/In+1

0 M

show that the left vertical arrows are injective. Hence by Algebra, Lemma 10.99.9
we see that N is flat. In a similar way the universal injectivity of u can be reduced
(even without proving flatness of N first) to the one modulo I0. This finishes the
proof. □

38.26. Flat finite type modules, Part III

05U8 The following result is one of the main results of this chapter.

Theorem 38.26.1.05UA Let f : X → S be locally of finite type. Let F be a quasi-
coherent OX -module of finite type. Let x ∈ X with image s ∈ S. The following
are equivalent

(1) F is flat at x over S, and
(2) for every x′ ∈ AssXs(Fs) which specializes to x we have that F is flat at

x′ over S.

Proof. It is clear that (1) implies (2) as Fx′ is a localization of Fx for every point
which specializes to x. Set A = OS,s, B = OX,x and N = Fx. Let Σ ⊂ B be the
multiplicative subset of B of elements which act as nonzerodivisors on N/mAN .
Assumption (2) implies that Σ−1N is A-flat by the description of Spec(Σ−1N) in
Lemma 38.7.1. On the other hand, the map N → Σ−1N is injective modulo mA
by construction. Hence applying Lemma 38.25.5 we win. □

Now we apply this directly to obtain the following useful results.

Lemma 38.26.2.05UB Let S be a local scheme with closed point s. Let f : X → S be
locally of finite type. Let F be a finite type quasi-coherent OX -module. Assume
that

(1) every point of AssX/S(F) specializes to a point of the closed fibre Xs
3,

(2) F is flat over S at every point of Xs.
Then F is flat over S.

Proof. This is immediate from the fact that it suffices to check for flatness at points
of the relative assassin of F over S by Theorem 38.26.1. □

38.27. Universal flattening

05PS If f : X → S is a proper, finitely presented morphism of schemes then one can find
a universal flattening of f . In this section we discuss this and some of its variants.

Lemma 38.27.1.05UC In Situation 38.20.7. For each p ≥ 0 the functor Hp (38.20.7.2) is
representable by a locally closed immersion Sp → S. If F is of finite presentation,
then Sp → S is of finite presentation.

3For example this holds if f is finite type and F is pure along Xs, or if f is proper.
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Proof. For each S we will prove the statement for all p ≥ 0 concurrently. The
functor Hp is a sheaf for the fppf topology by Lemma 38.20.8. Hence combin-
ing Descent, Lemma 35.39.1, More on Morphisms, Lemma 37.57.1 , and Descent,
Lemma 35.24.1 we see that the question is local for the étale topology on S. In
particular, the question is Zariski local on S.
For s ∈ S denote ξs the unique generic point of the fibre Xs. Note that for
every s ∈ S the restriction Fs of F is locally free of some rank p(s) ≥ 0 in some
neighbourhood of ξs. (As Xs is irreducible and smooth this follows from generic
flatness for Fs over Xs, see Algebra, Lemma 10.118.1 although this is overkill.) For
future reference we note that

p(s) = dimκ(ξs)(Fξs ⊗OX,ξs
κ(ξs)).

In particular Hp(s)(s) is nonempty and Hq(s) is empty if q ̸= p(s).
Let U ⊂ X be an open subscheme. As f : X → S is smooth, it is open. It is
immediate from (38.20.7.2) that the functor Hp for the pair (f |U : U → f(U),F|U )
and the functor Hp for the pair (f |f−1(f(U)),F|f−1(f(U))) are the same. Hence to
prove the existence of Sp over f(U) we may always replace X by U .
Pick s ∈ S. There exists an affine open neighbourhood U of ξs such that F|U can
be generated by at most p(s) elements. By the arguments above we see that in
order to prove the statement for Hp(s) in an neighbourhood of s we may assume
that F is generated by p(s) elements, i.e., that there exists a surjection

u : O⊕p(s)
X −→ F

In this case it is clear that Hp(s) is equal to Fiso (38.20.1.1) for the map u (this fol-
lows immediately from Lemma 38.19.1 but also from Lemma 38.12.1 after shrinking
a bit more so that both S and X are affine.) Thus we may apply Theorem 38.23.3
to see that Hp(s) is representable by a closed immersion in a neighbourhood of s.
The result follows formally from the above. Namely, the arguments above show
that locally on S the function s 7→ p(s) is bounded. Hence we may use induction
on p = maxs∈S p(s). The functor Hp is representable by a closed immersion Sp → S
by the above. Replace S by S \ Sp which drops the maximum by at least one and
we win by induction hypothesis.
Assume F is of finite presentation. Then Sp → S is locally of finite presentation by
Lemma 38.20.8 part (2) combined with Limits, Remark 32.6.2. Then we redo the
induction argument in the paragraph to see that each Sp is quasi-compact when S
is affine: first if p = maxs∈S p(s), then Sp ⊂ S is closed (see above) hence quasi-
compact. Then U = S \ Sp is quasi-compact open in S because Sp → S is a closed
immersion of finite presentation (see discussion in Morphisms, Section 29.22 for
example). Then Sp−1 → U is a closed immersion of finite presentation, and so
Sp−1 is quasi-compact and U ′ = S \ (Sp ∪ Sp−1) is quasi-compact. And so on. □

Lemma 38.27.2.05UD In Situation 38.20.11. Let h : X ′ → X be an étale morphism. Set
F ′ = h∗F and f ′ = f ◦ h. Let F ′

n be (38.20.11.1) associated to (f ′ : X ′ → S,F ′).
Then Fn is a subfunctor of F ′

n and if h(X ′) ⊃ AssX/S(F), then Fn = F ′
n.

Proof. Let T → S be any morphism. Then hT : X ′
T → XT is étale as a base change

of the étale morphism g. For t ∈ T denote Z ⊂ Xt the set of points where FT is
not flat over T , and similarly denote Z ′ ⊂ X ′

t the set of points where F ′
T is not

https://stacks.math.columbia.edu/tag/05UD
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flat over T . As F ′
T = h∗

TFT we see that Z ′ = h−1
t (Z), see Morphisms, Lemma

29.25.13. Hence Z ′ → Z is an étale morphism, so dim(Z ′) ≤ dim(Z) (for example
by Descent, Lemma 35.21.2 or just because an étale morphism is smooth of relative
dimension 0). This implies that Fn ⊂ F ′

n.

Finally, suppose that h(X ′) ⊃ AssX/S(F) and that T → S is a morphism such
that F ′

n(T ) is nonempty, i.e., such that F ′
T is flat in dimensions ≥ n over T . Pick

a point t ∈ T and let Z ⊂ Xt and Z ′ ⊂ X ′
t be as above. To get a contradiction

assume that dim(Z) ≥ n. Pick a generic point ξ ∈ Z corresponding to a component
of dimension ≥ n. Let x ∈ AssXt(Ft) be a generalization of ξ. Then x maps to a
point of AssX/S(F) by Divisors, Lemma 31.7.3 and Remark 31.7.4. Thus we see
that x is in the image of hT , say x = hT (x′) for some x′ ∈ X ′

T . But x′ ̸∈ Z ′ as
x ⇝ ξ and dim(Z ′) < n. Hence F ′

T is flat over T at x′ which implies that FT is
flat at x over T (by Morphisms, Lemma 29.25.13). Since this holds for every such
x we conclude that FT is flat over T at ξ by Theorem 38.26.1 which is the desired
contradiction. □

Lemma 38.27.3.05UE Assume that X → S is a smooth morphism of affine schemes
with geometrically irreducible fibres of dimension d and that F is a quasi-coherent
OX -module of finite presentation. Then Fd =

∐
p=0,...,cHp for some c ≥ 0 with Fd

as in (38.20.11.1) and Hp as in (38.20.7.2).

Proof. As X is affine and F is quasi-coherent of finite presentation we know that F
can be generated by c ≥ 0 elements. Then dimκ(x)(Fx ⊗ κ(x)) in any point x ∈ X
never exceeds c. In particular Hp = ∅ for p > c. Moreover, note that there certainly
is an inclusion

∐
Hp → Fd. Having said this the content of the lemma is that, if

a base change FT is flat in dimensions ≥ d over T and if t ∈ T , then FT is free of
some rank r in an open neighbourhood U ⊂ XT of the unique generic point ξ of
Xt. Namely, then Hr contains the image of U which is an open neighbourhood of
t. The existence of U follows from More on Morphisms, Lemma 37.16.7. □

Lemma 38.27.4.05UF In Situation 38.20.11. Let s ∈ S let d ≥ 0. Assume
(1) there exists a complete dévissage of F/X/S over some point s ∈ S,
(2) X is of finite presentation over S,
(3) F is an OX -module of finite presentation, and
(4) F is flat in dimensions ≥ d+ 1 over S.

Then after possibly replacing S by an open neighbourhood of s the functor Fd
(38.20.11.1) is representable by a monomorphism Zd → S of finite presentation.

Proof. A preliminary remark is that X, S are affine schemes and that it suffices to
prove Fd is representable by a monomorphism of finite presentation Zd → S on the
category of affine schemes over S. (Of course we do not require Zd to be affine.)
Hence throughout the proof of the lemma we work in the category of affine schemes
over S.

Let (Zk, Yk, ik, πk,Gk, αk)k=1,...,n be a complete dévissage of F/X/S over s, see
Definition 38.5.1. We will use induction on the length n of the dévissage. Recall
that Yk → S is smooth with geometrically irreducible fibres, see Definition 38.4.1.
Let dk be the relative dimension of Yk over S. Recall that ik,∗Gk = Coker(αk)
and that ik is a closed immersion. By the definitions referenced above we have
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d1 = dim(Supp(Fs)) and
dk = dim(Supp(Coker(αk−1)s)) = dim(Supp(Gk,s))

for k = 2, . . . , n. It follows that d1 > d2 > . . . > dn ≥ 0 because αk is an
isomorphism in the generic point of (Yk)s.
Note that i1 is a closed immersion and F = i1,∗G1. Hence for any morphism of
schemes T → S with T affine, we have FT = i1,T,∗G1,T and i1,T is still a closed
immersion of schemes over T . Thus FT is flat in dimensions ≥ d over T if and only
if G1,T is flat in dimensions ≥ d over T . Because π1 : Z1 → Y1 is finite we see in
the same manner that G1,T is flat in dimensions ≥ d over T if and only if π1,T,∗G1,T
is flat in dimensions ≥ d over T . The same arguments work for “flat in dimensions
≥ d + 1” and we conclude in particular that π1,∗G1 is flat over S in dimensions
≥ d+ 1 by our assumption on F .
Suppose that d1 > d. It follows from the discussion above that in particular π1,∗G1
is flat over S at the generic point of (Y1)s. By Lemma 38.12.1 we may replace S by
an affine neighbourhood of s and assume that α1 is S-universally injective. Because
α1 is S-universally injective, for any morphism T → S with T affine, we have a
short exact sequence

0→ O⊕r1
Y1,T
→ π1,T,∗G1,T → Coker(α1)T → 0

and still the first arrow is T -universally injective. Hence the set of points of (Y1)T
where π1,T,∗G1,T is flat over T is the same as the set of points of (Y1)T where
Coker(α1)T is flat over S. In this way the question reduces to the sheaf Coker(α1)
which has a complete dévissage of length n− 1 and we win by induction.
If d1 < d then Fd is represented by S and we win.
The last case is the case d1 = d. This case follows from a combination of Lemma
38.27.3 and Lemma 38.27.1. □

Theorem 38.27.5.05UG In Situation 38.20.11. Assume moreover that f is of finite
presentation, that F is an OX -module of finite presentation, and that F is pure
relative to S. Then Fn is representable by a monomorphism Zn → S of finite
presentation.

Proof. The functor Fn is a sheaf for the fppf topology by Lemma 38.20.12. Observe
that a monomorphism of finite presentation is separated and quasi-finite (Mor-
phisms, Lemma 29.20.15). Hence combining Descent, Lemma 35.39.1, More on
Morphisms, Lemma 37.57.1 , and Descent, Lemmas 35.23.31 and 35.23.13 we see
that the question is local for the étale topology on S.
In particular the situation is local for the Zariski topology on S and we may assume
that S is affine. In this case the dimension of the fibres of f is bounded above, hence
we see that Fn is representable for n large enough. Thus we may use descending
induction on n. Suppose that we know Fn+1 is representable by a monomorphism
Zn+1 → S of finite presentation. Consider the base change Xn+1 = Zn+1 ×S X
and the pullback Fn+1 of F to Xn+1. The morphism Zn+1 → S is quasi-finite as it
is a monomorphism of finite presentation, hence Lemma 38.16.4 implies that Fn+1
is pure relative to Zn+1. Since Fn is a subfunctor of Fn+1 we conclude that in
order to prove the result for Fn it suffices to prove the result for the corresponding
functor for the situation Fn+1/Xn+1/Zn+1. In this way we reduce to proving the
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result for Fn in case Sn+1 = S, i.e., we may assume that F is flat in dimensions
≥ n+ 1 over S.

Fix n and assume F is flat in dimensions ≥ n+1 over S. To finish the proof we have
to show that Fn is representable by a monomorphism Zn → S of finite presentation.
Since the question is local in the étale topology on S it suffices to show that for
every s ∈ S there exists an elementary étale neighbourhood (S′, s′) → (S, s) such
that the result holds after base change to S′. Thus by Lemma 38.5.8 we may assume
there exist étale morphisms hj : Yj → X, j = 1, . . . ,m such that for each j there
exists a complete dévissage of Fj/Yj/S over s, where Fj is the pullback of F to Yj
and such that Xs ⊂

⋃
hj(Yj). Note that by Lemma 38.27.2 the sheaves Fj are still

flat over in dimensions ≥ n+1 over S. Set W =
⋃
hj(Yj), which is a quasi-compact

open of X. As F is pure along Xs we see that

E = {t ∈ S | AssXt(Ft) ⊂W}.

contains all generalizations of s. By More on Morphisms, Lemma 37.25.5 E is a
constructible subset of S. We have seen that Spec(OS,s) ⊂ E. By Morphisms,
Lemma 29.22.4 we see that E contains an open neighbourhood of s. Hence after
shrinking S we may assume that E = S. It follows from Lemma 38.27.2 that
it suffices to prove the lemma for the functor Fn associated to X =

∐
Yj and

F =
∐
Fj . If Fj,n denotes the functor for Yj → S and the sheaf Fi we see

that Fn =
∏
Fj,n. Hence it suffices to prove each Fj,n is representable by some

monomorphism Zj,n → S of finite presentation, since then

Zn = Z1,n ×S . . .×S Zm,n

Thus we have reduced the theorem to the special case handled in Lemma 38.27.4.
□

We make explicit what the theorem means in terms of universal flattenings in the
following lemma.

Lemma 38.27.6.05UH Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module.

(1) If f is of finite presentation, F is an OX -module of finite presentation,
and F is pure relative to S, then there exists a universal flattening S′ → S
of F . Moreover S′ → S is a monomorphism of finite presentation.

(2) If f is of finite presentation and X is pure relative to S, then there exists
a universal flattening S′ → S of X. Moreover S′ → S is a monomorphism
of finite presentation.

(3) If f is proper and of finite presentation and F is an OX -module of fi-
nite presentation, then there exists a universal flattening S′ → S of F .
Moreover S′ → S is a monomorphism of finite presentation.

(4) If f is proper and of finite presentation then there exists a universal flat-
tening S′ → S of X.

Proof. These statements follow immediately from Theorem 38.27.5 applied to F0 =
Fflat and the fact that if f is proper then F is automatically pure over the base,
see Lemma 38.17.1. □
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38.28. Grothendieck’s Existence Theorem, IV

0CTB This section continues the discussion in Cohomology of Schemes, Sections 30.24,
30.25, and 30.27. We will work in the following situation.

Situation 38.28.1.0CTC Here we have an inverse system of rings (An) with surjective
transition maps whose kernels are locally nilpotent. Set A = limAn. We have a
scheme X separated and of finite presentation over A. We set Xn = X ×Spec(A)
Spec(An) and we view it as a closed subscheme of X. We assume further given a
system (Fn, φn) where Fn is a finitely presented OXn -module, flat over An, with
support proper over An, and

φn : Fn ⊗OXn
OXn−1 −→ Fn−1

is an isomorphism (notation using the equivalence of Morphisms, Lemma 29.4.1).

Our goal is to see if we can find a quasi-coherent sheaf F on X such that Fn =
F ⊗OX

OXn for all n.

Lemma 38.28.2.0CTD In Situation 38.28.1 consider

K = R limDQCoh(OX)(Fn) = DQX(R limD(OX) Fn)

Then K is in Db
QCoh(OX) and in fact K has nonzero cohomology sheaves only in

degrees ≥ 0.

Proof. Special case of Derived Categories of Schemes, Example 36.21.5. □

Lemma 38.28.3.0CTE In Situation 38.28.1 let K be as in Lemma 38.28.2. For any perfect
object E of D(OX) we have

(1) M = RΓ(X,K ⊗L E) is a perfect object of D(A) and there is a canonical
isomorphism RΓ(Xn,Fn ⊗L E|Xn) = M ⊗L

A An in D(An),
(2) N = RHomX(E,K) is a perfect object of D(A) and there is a canonical

isomorphism RHomXn(E|Xn ,Fn) = N ⊗L
A An in D(An).

In both statements E|Xn denotes the derived pullback of E to Xn.

Proof. Proof of (2). Write En = E|Xn and Nn = RHomXn(En,Fn). Recall
that RHomXn(−,−) is equal to RΓ(Xn, RHom(−,−)), see Cohomology, Section
20.44. Hence by Derived Categories of Schemes, Lemma 36.30.7 we see that Nn
is a perfect object of D(An) whose formation commutes with base change. Thus
the maps Nn ⊗L

An
An−1 → Nn−1 coming from φn are isomorphisms. By More on

Algebra, Lemma 15.97.3 we find that R limNn is perfect and that its base change
back to An recovers Nn. On the other hand, the exact functor RHomX(E,−) :
DQCoh(OX)→ D(A) of triangulated categories commutes with products and hence
with derived limits, whence

RHomX(E,K) = R limRHomX(E,Fn) = R limRHomX(En,Fn) = R limNn

This proves (2). To see that (1) holds, translate it into (2) using Cohomology,
Lemma 20.50.5. □

Lemma 38.28.4.0CTF In Situation 38.28.1 let K be as in Lemma 38.28.2. Then K is
pseudo-coherent relative to A.
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Proof. Combinging Lemma 38.28.3 and Derived Categories of Schemes, Lemma
36.34.3 we see that RΓ(X,K ⊗L E) is pseudo-coherent in D(A) for all pseudo-
coherent E in D(OX). Thus the lemma follows from More on Morphisms, Lemma
37.69.4. □

Lemma 38.28.5.0CTG In Situation 38.28.1 let K be as in Lemma 38.28.2. For any
quasi-compact open U ⊂ X we have

RΓ(U,K)⊗L
A An = RΓ(Un,Fn)

in D(An) where Un = U ∩Xn.

Proof. Fix n. By Derived Categories of Schemes, Lemma 36.33.4 there exists a
system of perfect complexes Em on X such that RΓ(U,K) = hocolimRΓ(X,K ⊗L

Em). In fact, this formula holds not just for K but for every object of DQCoh(OX).
Applying this to Fn we obtain

RΓ(Un,Fn) = RΓ(U,Fn)
= hocolimmRΓ(X,Fn ⊗L Em)
= hocolimmRΓ(Xn,Fn ⊗L Em|Xn)

Using Lemma 38.28.3 and the fact that −⊗L
AAn commutes with homotopy colimits

we obtain the result. □

Lemma 38.28.6.0CTH In Situation 38.28.1 letK be as in Lemma 38.28.2. DenoteX0 ⊂ X
the closed subset consisting of points lying over the closed subset Spec(A1) =
Spec(A2) = . . . of Spec(A). There exists an open W ⊂ X containing X0 such that

(1) Hi(K)|W is zero unless i = 0,
(2) F = H0(K)|W is of finite presentation, and
(3) Fn = F ⊗OX

OXn .

Proof. Fix n ≥ 1. By construction there is a canonical map K → Fn in DQCoh(OX)
and hence a canonical map H0(K)→ Fn of quasi-coherent sheaves. This explains
the meaning of part (3).

Let x ∈ X0 be a point. We will find an open neighbourhood W of x such that
(1), (2), and (3) are true. Since X0 is quasi-compact this will prove the lemma.
Let U ⊂ X be an affine open neighbourhood of x. Say U = Spec(B). Choose a
surjection P → B with P smooth over A. By Lemma 38.28.4 and the definition of
relative pseudo-coherence there exists a bounded above complex F • of finite free
P -modules representing Ri∗K where i : U → Spec(P ) is the closed immersion
induced by the presentation. Let Mn be the B-module corresponding to Fn|U . By
Lemma 38.28.5

Hi(F • ⊗A An) =
{

0 if i ̸= 0
Mn if i = 0

Let i be the maximal index such that F i is nonzero. If i ≤ 0, then (1), (2), and (3)
are true. If not, then i > 0 and we see that the rank of the map

F i−1 → F i

in the point x is maximal. Hence in an open neighbourhood of x inside Spec(P )
the rank is maximal. Thus after replacing P by a principal localization we may
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assume that the displayed map is surjective. Since F i is finite free we may choose
a splitting F i−1 = F ′ ⊕ F i. Then we may replace F • by the complex

. . .→ F i−2 → F ′ → 0→ . . .

and we win by induction on i. □

Lemma 38.28.7.0CTI In Situation 38.28.1 let K be as in Lemma 38.28.2. Let W ⊂ X

be as in Lemma 38.28.6. Set F = H0(K)|W . Then, after possibly shrinking the
open W , the support of F is proper over A.

Proof. Fix n ≥ 1. Let In = Ker(A → An). By More on Algebra, Lemma 15.11.3
the pair (A, In) is henselian. Let Z ⊂ W be the support of F . This is a closed
subset as F is of finite presentation. By part (3) of Lemma 38.28.6 we see that
Z×Spec(A)Spec(An) is equal to the support of Fn and hence proper over Spec(A/I).
By More on Morphisms, Lemma 37.53.9 we can write Z = Z1⨿Z2 with Z1, Z2 open
and closed in Z, with Z1 proper over A, and with Z1 ×Spec(A) Spec(A/In) equal to
the support of Fn. In other words, Z2 does not meet X0. Hence after replacing W
by W \ Z2 we obtain the lemma. □

Lemma 38.28.8.0CTJ Let A = limAn be a limit of a system of rings whose transition
maps are surjective and with locally nilpotent kernels. Let S = Spec(A). Let
T → S be a monomorphism which is locally of finite type. If Spec(An)→ S factors
through T for all n, then T = S.

Proof. Set Sn = Spec(An). Let T0 ⊂ T be the common image of the factorizations
Sn → T . Then T0 is quasi-compact. Let T ′ ⊂ T be a quasi-compact open containing
T0. Then Sn → T factors through T ′. If we can show that T ′ = S, then T ′ = T = S.
Hence we may assume T is quasi-compact.
Assume T is quasi-compact. In this case T → S is separated and quasi-finite
(Morphisms, Lemma 29.20.15). Using Zariski’s Main Theorem (in the form of
More on Morphisms, Lemma 37.43.3) we choose a factorization T → W → S with
W → S finite and T →W an open immersion. Write W = Spec(B). The (unique)
factorizations Sn → T may be viewed as morphisms into W and we obtain

A −→ B −→ limAn = A

Consider the morphism h : S = Spec(A) → Spec(B) = W coming from the arrow
on the right. Then

T ×W,h S
is an open subscheme of S containing the image of Sn → S for all n. To finish the
proof it suffices to show that any open U ⊂ S containing the image of Sn → S for
some n ≥ 1 is equal to S. This is true because (A,Ker(A→ An)) is a henselian pair
(More on Algebra, Lemma 15.11.3) and hence every closed point of S is contained
in the image of Sn → S. □

Theorem 38.28.9 (Grothendieck Existence Theorem).0CTK In Situation 38.28.1 there
exists a finitely presented OX -module F , flat over A, with support proper over A,
such that Fn = F ⊗OX

OXn for all n compatibly with the maps φn.

Proof. Apply Lemmas 38.28.2, 38.28.3, 38.28.4, 38.28.5, 38.28.6, and 38.28.7 to get
an open subscheme W ⊂ X containing all points lying over Spec(An) and a finitely
presented OW -module F whose support is proper over A with Fn = F ⊗OW

OXn
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for all n ≥ 1. (This makes sense as Xn ⊂ W .) By Lemma 38.17.1 we see that F
is universally pure relative to Spec(A). By Theorem 38.27.5 (for explanation, see
Lemma 38.27.6) there exists a universal flattening S′ → Spec(A) of F and moreover
the morphism S′ → Spec(A) is a monomorphism of finite presentation. Since the
base change of F to Spec(An) is Fn we find that Spec(An) → Spec(A) factors
(uniquely) through S′ for each n. By Lemma 38.28.8 we see that S′ = Spec(A).
This means that F is flat over A. Finally, since the scheme theoretic support Z of
F is proper over Spec(A), the morphism Z → X is closed. Hence the pushforward
(W → X)∗F is supported on W and has all the desired properties. □

38.29. Grothendieck’s Existence Theorem, V

0DIA In this section we prove an analogue for Grothendieck’s existence theorem in the
derived category, following the method used in Section 38.28 for quasi-coherent
modules. The classical case is discussed in Cohomology of Schemes, Sections 30.24,
30.25, and 30.27. We will work in the following situation.

Situation 38.29.1.0DIB Here we have an inverse system of rings (An) with surjective
transition maps whose kernels are locally nilpotent. Set A = limAn. We have a
scheme X proper, flat, and of finite presentation over A. We set Xn = X ×Spec(A)
Spec(An) and we view it as a closed subscheme of X. We assume further given a
system (Kn, φn) where Kn is a pseudo-coherent object of D(OXn) and

φn : Kn −→ Kn−1

is a map in D(OXn) which induces an isomorphism Kn ⊗L
OXn

OXn−1 → Kn−1 in
D(OXn−1).

More precisely, we should write φn : Kn → Rin−1,∗Kn−1 where in−1 : Xn−1 → Xn

is the inclusion morphism and in this notation the condition is that the adjoint
map Li∗n−1Kn → Kn−1 is an isomorphism. Our goal is to find a pseudo-coherent
K ∈ D(OX) such thatKn = K⊗L

OX
OXn for all n (with the same abuse of notation).

Lemma 38.29.2.0DIC In Situation 38.29.1 consider
K = R limDQCoh(OX)(Kn) = DQX(R limD(OX) Kn)

Then K is in D−
QCoh(OX).

Proof. The functor DQX exists because X is quasi-compact and quasi-separated,
see Derived Categories of Schemes, Lemma 36.21.1. Since DQX is a right adjoint
it commutes with products and therefore with derived limits. Hence the equality
in the statement of the lemma.
By Derived Categories of Schemes, Lemma 36.21.4 the functor DQX has bounded
cohomological dimension. Hence it suffices to show that R limKn ∈ D−(OX). To
see this, let U ⊂ X be an affine open. Then there is a canonical exact sequence

0→ R1 limHm−1(U,Kn)→ Hm(U,R limKn)→ limHm(U,Kn)→ 0
by Cohomology, Lemma 20.37.1. Since U is affine and Kn is pseudo-coherent (and
hence has quasi-coherent cohomology sheaves by Derived Categories of Schemes,
Lemma 36.10.1) we see that Hm(U,Kn) = Hm(Kn)(U) by Derived Categories of
Schemes, Lemma 36.3.5. Thus we conclude that it suffices to show that Kn is
bounded above independent of n.
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Since Kn is pseudo-coherent we have Kn ∈ D−(OXn). Suppose that an is maximal
such that Han(Kn) is nonzero. Of course a1 ≤ a2 ≤ a3 ≤ . . .. Note that Han(Kn)
is an OXn -module of finite presentation (Cohomology, Lemma 20.47.9). We have
Han(Kn−1) = Han(Kn)⊗OXn

OXn−1 . Since Xn−1 → Xn is a thickening, it follows
from Nakayama’s lemma (Algebra, Lemma 10.20.1) that if Han(Kn)⊗OXn

OXn−1

is zero, then Han(Kn) is zero too. Thus an = an−1 for all n and we conclude. □

Lemma 38.29.3.0DID In Situation 38.29.1 let K be as in Lemma 38.29.2. For any perfect
object E of D(OX) the cohomology

M = RΓ(X,K ⊗L E)
is a pseudo-coherent object of D(A) and there is a canonical isomorphism

RΓ(Xn,Kn ⊗L E|Xn) = M ⊗L
A An

in D(An). Here E|Xn denotes the derived pullback of E to Xn.

Proof. Write En = E|Xn and Mn = RΓ(Xn,Kn ⊗L E|Xn). By Derived Categories
of Schemes, Lemma 36.30.5 we see that Mn is a pseudo-coherent object of D(An)
whose formation commutes with base change. Thus the maps Mn ⊗L

An
An−1 →

Mn−1 coming from φn are isomorphisms. By More on Algebra, Lemma 15.97.1 we
find that R limMn is pseudo-coherent and that its base change back to An recovers
Mn. On the other hand, the exact functor RΓ(X,−) : DQCoh(OX) → D(A) of
triangulated categories commutes with products and hence with derived limits,
whence
RΓ(X,E ⊗L K) = R limRΓ(X,E ⊗L Kn) = R limRΓ(Xn, En ⊗L Kn) = R limMn

as desired. □

Lemma 38.29.4.0DIE In Situation 38.29.1 let K be as in Lemma 38.29.2. Then K is
pseudo-coherent on X.

Proof. Combinging Lemma 38.29.3 and Derived Categories of Schemes, Lemma
36.34.3 we see that RΓ(X,K ⊗L E) is pseudo-coherent in D(A) for all pseudo-
coherent E in D(OX). Thus it follows from More on Morphisms, Lemma 37.69.4
that K is pseudo-coherent relative to A. Since X is of flat and of finite presentation
over A, this is the same as being pseudo-coherent on X, see More on Morphisms,
Lemma 37.59.18. □

Lemma 38.29.5.0DIF In Situation 38.29.1 let K be as in Lemma 38.29.2. For any
quasi-compact open U ⊂ X we have

RΓ(U,K)⊗L
A An = RΓ(Un,Kn)

in D(An) where Un = U ∩Xn.

Proof. Fix n. By Derived Categories of Schemes, Lemma 36.33.4 there exists a
system of perfect complexes Em on X such that RΓ(U,K) = hocolimRΓ(X,K ⊗L

Em). In fact, this formula holds not just for K but for every object of DQCoh(OX).
Applying this to Kn we obtain

RΓ(Un,Kn) = RΓ(U,Kn)
= hocolimmRΓ(X,Kn ⊗L Em)
= hocolimmRΓ(Xn,Kn ⊗L Em|Xn)
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Using Lemma 38.29.3 and the fact that −⊗L
AAn commutes with homotopy colimits

we obtain the result. □

Theorem 38.29.6 (Derived Grothendieck Existence Theorem).0DIG In Situation 38.29.1
there exists a pseudo-coherent K in D(OX) such that Kn = K ⊗L

OX
OXn for all n

compatibly with the maps φn.

Proof. Apply Lemmas 38.29.2, 38.29.3, 38.29.4 to get a pseudo-coherent object K
of D(OX). Choosing affine opens in Lemma 38.29.5 it follows immediately that K
restricts to Kn over Xn. □

Remark 38.29.7.0DIH The result in this section can be generalized. It is probably
correct if we only assume X → Spec(A) to be separated, of finite presentation, and
Kn pseudo-coherent relative to An supported on a closed subset of Xn proper over
An. The outcome will be a K which is pseudo-coherent relative to A supported
on a closed subset proper over A. If we ever need this, we will formulate a precise
statement and prove it here.

38.30. Blowing up and flatness

080X In this section we continue our discussion of results of the form: “After a blowup
the strict transform becomes flat”, see More on Algebra, Section 15.26 and Divisors,
Section 31.35. We will use the following (more or less standard) notation in this
section. If X → S is a morphism of schemes, F is a quasi-coherent module on X,
and T → S is a morphism of schemes, then we denote FT the pullback of F to the
base change XT = X ×S T .

Remark 38.30.1.080Y Let S be a quasi-compact and quasi-separated scheme. Let f :
X → S be a morphism of schemes. Let F be a quasi-coherent module on X. Let
U ⊂ S be a quasi-compact open subscheme. Given a U -admissible blowup S′ → S
we denote X ′ the strict transform of X and F ′ the strict transform of F which we
think of as a quasi-coherent module on X ′ (via Divisors, Lemma 31.33.2). Let P
be a property of F/X/S which is stable under strict transform (as above) for U -
admissible blowups. The general problem in this section is: Show (under auxiliary
conditions on F/X/S) there exists a U -admissible blowup S′ → S such that the
strict transform F ′/X ′/S′ has P .
The general strategy will be to use that a composition of U -admissible blowups is
a U -admissible blowup, see Divisors, Lemma 31.34.2. In fact, we will make use of
the more precise Divisors, Lemma 31.32.14 and combine it with Divisors, Lemma
31.33.6. The result is that it suffices to find a sequence of U -admissible blowups

S = S0 ← S1 ← . . .← Sn

such that, setting F0 = F and X0 = X and setting Fi/Xi equal to the strict
transform of Fi−1/Xi−1, we arrive at Fn/Xn/Sn with property P .
In particular, choose a finite type quasi-coherent sheaf of ideals I ⊂ OS such that
V (I) = S \ U , see Properties, Lemma 28.24.1. Let S′ → S be the blowup in I
and let E ⊂ S′ be the exceptional divisor (Divisors, Lemma 31.32.4). Then we see
that we’ve reduced the problem to the case where there exists an effective Cartier
divisor D ⊂ S whose support is X \ U . In particular we may assume U is scheme
theoretically dense in S (Divisors, Lemma 31.13.4).
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Suppose that P is local on S: If S =
⋃
Si is a finite open covering by quasi-compact

opens and P holds for FSi/XSi/Si then P holds for F/X/S. In this case the general
problem above is local on S as well, i.e., if given s ∈ S we can find a quasi-compact
open neighbourhood W of s such that the problem for FW /XW /W is solvable, then
the problem is solvable for F/X/S. This follows from Divisors, Lemmas 31.34.3
and 31.34.4.

Lemma 38.30.2.0810 Let R be a ring and let f ∈ R. Let r ≥ 0 be an integer. Let
R→ S be a ring map and let M be an S-module. Assume

(1) R→ S is of finite presentation and flat,
(2) every fibre ring S ⊗R κ(p) is geometrically integral over R,
(3) M is a finite S-module,
(4) Mf is a finitely presented Sf -module,
(5) for all p ∈ R, f ̸∈ p with q = pS the module Mq is free of rank r over Sq.

Then there exists a finitely generated ideal I ⊂ R with V (f) = V (I) such that for
all a ∈ I with R′ = R[ Ia ] the quotient

M ′ = (M ⊗R R′)/a-power torsion
over S′ = S ⊗R R′ satisfies the following: for every prime p′ ⊂ R′ there exists a
g ∈ S′, g ̸∈ p′S′ such that M ′

g is a free S′
g-module of rank r.

Proof. This lemma is a generalization of More on Algebra, Lemma 15.26.5; we
urge the reader to read that proof first. Choose a surjection S⊕n → M , which
is possible by (1). Choose a finite submodule K ⊂ Ker(S⊕n → M) such that
S⊕n/K → M becomes an isomorphism after inverting f . This is possible by (4).
Set M1 = S⊕n/K and suppose we can prove the lemma for M1. Say I ⊂ R is the
corresponding ideal. Then for a ∈ I the map

M ′
1 = (M1 ⊗R R′)/a-power torsion −→M ′ = (M ⊗R R′)/a-power torsion

is surjective. It is also an isomorphism after inverting a in R′ as R′
a = Rf , see

Algebra, Lemma 10.70.7. But a is a nonzerodivisor on M ′
1, whence the displayed

map is an isomorphism. Thus it suffices to prove the lemma in case M is a finitely
presented S-module.
Assume M is a finitely presented S-module satisfying (3). Then J = Fitr(M) ⊂ S
is a finitely generated ideal. By Lemma 38.9.3 we can write S as a direct summand
of a free R-module:

⊕
α∈AR = S⊕C. For any element h ∈ S writing h =

∑
aα in

the decomposition above, we say that the aα are the coefficients of h. Let I ′ ⊂ R be
the ideal of coefficients of elements of J . Multiplication by an element of S defines
an R-linear map S → S, hence I ′ is generated by the coefficients of the generators
of J , i.e., I ′ is a finitely generated ideal. We claim that I = fI ′ works.
We first check that V (f) = V (I). The inclusion V (f) ⊂ V (I) is clear. Conversely,
if f ̸∈ p, then q = pS is not an element of V (J) by property (5) and More on
Algebra, Lemma 15.8.6. Hence there is an element of J which does not map to zero
in S ⊗R κ(p). Thus there exists an element of I ′ which is not contained in p, so
p ̸∈ V (fI ′) = V (I).
Let a ∈ I and set R′ = R[ Ia ]. We may write a = fa′ for some a′ ∈ I ′. By Algebra,
Lemmas 10.70.2 and 10.70.8 we see that I ′R′ = a′R′ and a′ is a nonzerodivisor in
R′. Set S′ = S ⊗S R′. Every element g of JS′ = Fitr(M ⊗S S′) can be written
as g =

∑
α cα for some cα ∈ I ′R′. Since I ′R′ = a′R′ we can write cα = a′c′

α for
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some c′
α ∈ R′ and g = (

∑
c′
α)a′ = g′a′ in S′. Moreover, there is an g0 ∈ J such

that a′ = cα for some α. For this element we have g0 = g′
0a

′ in S′ where g′
0 is a

unit in S′. Let p′ ⊂ R′ be a prime ideal and q′ = p′S′. By the above we see that
JS′

q′ is the principal ideal generated by the nonzerodivisor a′. It follows from More
on Algebra, Lemma 15.8.8 that M ′

q′ can be generated by r elements. Since M ′ is
finite, there exist m1, . . . ,mr ∈M ′ and g ∈ S′, g ̸∈ q′ such that the corresponding
map (S′)⊕r →M ′ becomes surjective after inverting g.

Finally, consider the ideal J ′ = Fitk−1(M ′). Note that J ′S′
g is generated by the

coefficients of relations between m1, . . . ,mr (compatibility of Fitting ideal with
base change). Thus it suffices to show that J ′ = 0, see More on Algebra, Lemma
15.8.7. Since R′

a = Rf (Algebra, Lemma 10.70.7) and M ′
a = Mf we see from (5)

that J ′
a maps to zero in Sq′′ for any prime q′′ ⊂ S′ of the form q′′ = p′′S′ where

p′′ ⊂ R′
a. Since S′

a ⊂
∏

q′′ as above S
′
q′′ (as (S′

a)p′′ ⊂ S′
q′′ by Lemma 38.7.4) we see

that J ′R′
a = 0. Since a is a nonzerodivisor in R′ we conclude that J ′ = 0 and we

win. □

Lemma 38.30.3.0811 Let S be a quasi-compact and quasi-separated scheme. Let X → S
be a morphism of schemes. Let F be a quasi-coherent module on X. Let U ⊂ S
be a quasi-compact open. Assume

(1) X → S is affine, of finite presentation, flat, geometrically integral fibres,
(2) F is a module of finite type,
(3) FU is of finite presentation,
(4) F is flat over S at all generic points of fibres lying over points of U .

Then there exists a U -admissible blowup S′ → S and an open subscheme V ⊂ XS′

such that (a) the strict transform F ′ of F restricts to a finitely locally free OV -
module and (b) V → S′ is surjective.

Proof. Given F/X/S and U ⊂ S with hypotheses as in the lemma, denote P
the property “F is flat over S at all generic points of fibres”. It is clear that P
is preserved under strict transform, see Divisors, Lemma 31.33.3 and Morphisms,
Lemma 29.25.7. It is also clear that P is local on S. Hence any and all observations
of Remark 38.30.1 apply to the problem posed by the lemma.

Consider the function r : U → Z≥0 which assigns to u ∈ U the integer

r(u) = dimκ(ξu)(Fξu ⊗ κ(ξu))

where ξu is the generic point of the fibre Xu. By More on Morphisms, Lemma
37.16.7 and the fact that the image of an open in XS in S is open, we see that r(u)
is locally constant. Accordingly U = U0 ⨿U1 ⨿ . . .⨿Uc is a finite disjoint union of
open and closed subschemes where r is constant with value i on Ui. By Divisors,
Lemma 31.34.5 we can find a U -admissible blowup to decompose S into the disjoint
union of two schemes, the first containing U0 and the second U1∪. . .∪Uc. Repeating
this c−1 more times we may assume that S is a disjoint union S = S0⨿S1⨿ . . .⨿Sc
with Ui ⊂ Si. Thus we may assume the function r defined above is constant, say
with value r.

By Remark 38.30.1 we see that we may assume that we have an effective Cartier
divisor D ⊂ S whose support is S \ U . Another application of Remark 38.30.1
combined with Divisors, Lemma 31.13.2 tells us we may assume that S = Spec(R)
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and D = Spec(R/(f)) for some nonzerodivisor f ∈ R. This case is handled by
Lemma 38.30.2. □

Lemma 38.30.4.0812 Let A → C be a finite locally free ring map of rank d. Let
h ∈ C be an element such that Ch is étale over A. Let J ⊂ C be an ideal. Set
I = Fit0(C/J) where we think of C/J as a finite A-module. Then ICh = JJ ′ for
some ideal J ′ ⊂ Ch. If J is finitely generated so are I and J ′.

Proof. We will use basic properties of Fitting ideals, see More on Algebra, Lemma
15.8.4. Then IC is the Fitting ideal of C/J⊗AC. Note that C → C⊗AC, c 7→ 1⊗c
has a section (the multiplication map). By assumption C → C ⊗A C is étale at
every prime in the image of Spec(Ch) under this section. Hence the multiplication
map C⊗ACh → Ch is étale in particular flat, see Algebra, Lemma 10.143.8. Hence
there exists a Ch-algebra such that C⊗ACh ∼= Ch⊕C ′ as Ch-algebras, see Algebra,
Lemma 10.143.9. Thus (C/J) ⊗A Ch ∼= (Ch/Jh) ⊕ C ′/I ′ as Ch-modules for some
ideal I ′ ⊂ C ′. Hence ICh = JJ ′ with J ′ = Fit0(C ′/I ′) where we view C ′/J ′ as a
Ch-module. □

Lemma 38.30.5.0813 Let A→ B be an étale ring map. Let a ∈ A be a nonzerodivisor.
Let J ⊂ B be a finite type ideal with V (J) ⊂ V (aB). For every q ⊂ B there exists
a finite type ideal I ⊂ A with V (I) ⊂ V (a) and g ∈ B, g ̸∈ q such that IBg = JJ ′

for some finite type ideal J ′ ⊂ Bg.

Proof. We may replace B by a principal localization at an element g ∈ B, g ̸∈ q.
Thus we may assume that B is standard étale, see Algebra, Proposition 10.144.4.
Thus we may assume B is a localization of C = A[x]/(f) for some monic f ∈ A[x]
of some degree d. Say B = Ch for some h ∈ C. Choose elements h1, . . . , hn ∈ C
which generate J over B. The condition V (J) ⊂ V (aB) signifies that am =

∑
bihi

in B for some large m. Set hn+1 = am. As in Lemma 38.30.4 we take I =
Fit0(C/(h1, . . . , hr+1)). Since the module C/(h1, . . . , hr+1) is annihilated by am

we see that adm ∈ I which implies that V (I) ⊂ V (a). □

Lemma 38.30.6.0814 Let S be a quasi-compact and quasi-separated scheme. Let X → S
be a morphism of schemes. Let F be a quasi-coherent module on X. Let U ⊂ S
be a quasi-compact open. Assume there exist finitely many commutative diagrams

Xi
ji
//

��

X

��
S∗
i

// Si
ei // S

where
(1) ei : Si → S are quasi-compact étale morphisms and S =

⋃
ei(Si),

(2) ji : Xi → X are étale morphisms and X =
⋃
ji(Xi),

(3) S∗
i → Si is an e−1

i (U)-admissible blowup such that the strict transform
F∗
i of j∗

i F is flat over S∗
i .

Then there exists a U -admissible blowup S′ → S such that the strict transform of
F is flat over S′.
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Proof. We claim that the hypotheses of the lemma are preserved under U -admissible
blowups. Namely, suppose b : S′ → S is a U -admissible blowup in the quasi-
coherent sheaf of ideals I. Moreover, let S∗

i → Si be the blowup in the quasi-
coherent sheaf of ideals Ji. Then the collection of morphisms e′

i : S′
i = Si×SS′ → S′

and j′
i : X ′

i = Xi ×S S′ → X ×S S′ satisfy conditions (1), (2), (3) for the strict
transform F ′ of F relative to the blowup S′ → S. First, observe that S′

i is the
blowup of Si in the pullback of I, see Divisors, Lemma 31.32.3. Second, consider
the blowup S′∗

i → S′
i of S′

i in the pullback of the ideal Ji. By Divisors, Lemma
31.32.12 we get a commutative diagram

S′∗
i

//

  ��

S′
i

��
S∗
i

// Si

and all the morphisms in the diagram above are blowups. Hence by Divisors,
Lemmas 31.33.3 and 31.33.6 we see

the strict transform of (j′
i)∗F ′ under S′∗

i → S′
i

= the strict transform of j∗
i F under S′∗

i → Si

= the strict transform of F ′
i under S′∗

i → S′
i

= the pullback of F∗
i via Xi ×Si S′∗

i → Xi

which is therefore flat over S′∗
i (Morphisms, Lemma 29.25.7). Having said this,

we see that all observations of Remark 38.30.1 apply to the problem of finding a
U -admissible blowup such that the strict transform of F becomes flat over the base
under assumptions as in the lemma. In particular, we may assume that S \ U is
the support of an effective Cartier divisor D ⊂ S. Another application of Remark
38.30.1 combined with Divisors, Lemma 31.13.2 shows we may assume that S =
Spec(A) and D = Spec(A/(a)) for some nonzerodivisor a ∈ A.
Pick an i and s ∈ Si. Lemma 38.30.5 implies we can find an open neighbourhood
s ∈Wi ⊂ Si and a finite type quasi-coherent ideal I ⊂ OS such that I ·OWi

= JiJ ′
i

for some finite type quasi-coherent ideal J ′
i ⊂ OWi

and such that V (I) ⊂ V (a) =
S \U . Since Si is quasi-compact we can replace Si by a finite collection W1, . . . ,Wn

of these opens and assume that for each i there exists a quasi-coherent sheaf of ideals
Ii ⊂ OS such that Ii · OSi = JiJ ′

i for some finite type quasi-coherent ideal J ′
i ⊂

OSi . As in the discussion of the first paragraph of the proof, consider the blowup
S′ of S in the product I1 . . . In (this blowup is U -admissible by construction). The
base change of S′ → S to Si is the blowup in

Ji · J ′
i I1 . . . Îi . . . In

which factors through the given blowup S∗
i → Si (Divisors, Lemma 31.32.12). In

the notation of the diagram above this means that S′∗
i = S′

i. Hence after replacing
S by S′ we arrive in the situation that j∗

i F is flat over Si. Hence j∗
i F is flat over

S, see Lemma 38.2.3. By Morphisms, Lemma 29.25.13 we see that F is flat over
S. □

Theorem 38.30.7.0815 Let S be a quasi-compact and quasi-separated scheme. Let X
be a scheme over S. Let F be a quasi-coherent module on X. Let U ⊂ S be a
quasi-compact open. Assume
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(1) X is quasi-compact,
(2) X is locally of finite presentation over S,
(3) F is a module of finite type,
(4) FU is of finite presentation, and
(5) FU is flat over U .

Then there exists a U -admissible blowup S′ → S such that the strict transform F ′

of F is an OX×SS′-module of finite presentation and flat over S′.

Proof. We first prove that we can find a U -admissible blowup such that the strict
transform is flat. The question is étale local on the source and the target, see Lemma
38.30.6 for a precise statement. In particular, we may assume that S = Spec(R)
and X = Spec(A) are affine. For s ∈ S write Fs = F|Xs (pullback of F to the
fibre). As X → S is of finite type d = maxs∈S dim(Supp(Fs)) is an integer. We
will do induction on d.
Let x ∈ X be a point of X lying over s ∈ S with dimx(Supp(Fs)) = d. Apply
Lemma 38.3.2 to get g : X ′ → X, e : S′ → S, i : Z ′ → X ′, and π : Z ′ → Y ′.
Observe that Y ′ → S′ is a smooth morphism of affines with geometrically irreducible
fibres of dimension d. Because the problem is étale local it suffices to prove the
theorem for g∗F/X ′/S′. Because i : Z ′ → X ′ is a closed immersion of finite
presentation (and since strict transform commutes with affine pushforward, see
Divisors, Lemma 31.33.4) it suffices to prove the flattening result for G. Since π is
finite (hence also affine) it suffices to prove the flattening result for π∗G/Y ′/S′. Thus
we may assume that X → S is a smooth morphism of affines with geometrically
irreducible fibres of dimension d.
Next, we apply a blowup as in Lemma 38.30.3. Doing so we reach the situation
where there exists an open V ⊂ X surjecting onto S such that F|V is finite locally
free. Let ξ ∈ X be the generic point of Xs. Let r = dimκ(ξ) Fξ ⊗ κ(ξ). Choose a
map α : O⊕r

X → F which induces an isomorphism κ(ξ)⊕r → Fξ ⊗ κ(ξ). Because
F is locally free over V we find an open neighbourhood W of ξ where α is an
isomorphism. Shrink S to an affine open neighbourhood of s such that W → S
is surjective. Say F is the quasi-coherent module associated to the A-module N .
Since F is flat over S at all generic points of fibres (in fact at all points of W ), we
see that

αp : A⊕r
p → Np

is universally injective for all primes p of R, see Lemma 38.10.1. Hence α is uni-
versally injective, see Algebra, Lemma 10.82.12. Set H = Coker(α). By Divisors,
Lemma 31.33.7 we see that, given a U -admissible blowup S′ → S the strict trans-
forms of F ′ and H′ fit into an exact sequence

0→ O⊕r
X×SS′ → F ′ → H′ → 0

Hence Lemma 38.10.1 also shows that F ′ is flat at a point x′ if and only if H′ is
flat at that point. In particular HU is flat over U and HU is a module of finite
presentation. We may apply the induction hypothesis to H to see that there exists
a U -admissible blowup such that the strict transform H′ is flat as desired.
To finish the proof of the theorem we still have to show that F ′ is a module of
finite presentation (after possibly another U -admissible blowup). This follows from
Lemma 38.11.1 as we can assume U ⊂ S is scheme theoretically dense (see third
paragraph of Remark 38.30.1). This finishes the proof of the theorem. □
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38.31. Applications

081Q In this section we apply some of the results above.

Lemma 38.31.1.081R Let S be a quasi-compact and quasi-separated scheme. Let X be
a scheme over S. Let U ⊂ S be a quasi-compact open. Assume

(1) X → S is of finite type and quasi-separated, and
(2) XU → U is flat and locally of finite presentation.

Then there exists a U -admissible blowup S′ → S such that the strict transform of
X is flat and of finite presentation over S′.

Proof. Since X → S is quasi-compact and quasi-separated by assumption, the
strict transform of X with respect to a blowing up S′ → S is also quasi-compact
and quasi-separated. Hence to prove the lemma it suffices to find a U -admissible
blowup such that the strict transform is flat and locally of finite presentation. Let
X = W1 ∪ . . . ∪Wn be a finite affine open covering. If we can find a U -admissible
blowup Si → S such that the strict transform of Wi is flat and locally of finite
presentation, then there exists a U -admissible blowing up S′ → S dominating all
Si → S which does the job (see Divisors, Lemma 31.34.4; see also Remark 38.30.1).
Hence we may assume X is affine.
Assume X is affine. By Morphisms, Lemma 29.39.2 we can choose an immersion
j : X → An

S over S. Let V ⊂ An
S be a quasi-compact open subscheme such that j

induces a closed immersion i : X → V over S. Apply Theorem 38.30.7 to V → S
and the quasi-coherent module i∗OX to obtain a U -admissible blowup S′ → S
such that the strict transform of i∗OX is flat over S′ and of finite presentation
over OV×SS′ . Let X ′ be the strict transform of X with respect to S′ → S. Let
i′ : X ′ → V ×SS′ be the induced morphism. Since taking strict transform commutes
with pushforward along affine morphisms (Divisors, Lemma 31.33.4), we see that
i′∗OX′ is flat over S and of finite presentation as a OV×SS′ -module. This implies
the lemma. □

Lemma 38.31.2.0B49 Let S be a quasi-compact and quasi-separated scheme. Let X be
a scheme over S. Let U ⊂ S be a quasi-compact open. Assume

(1) X → S is proper, and
(2) XU → U is finite locally free.

Then there exists a U -admissible blowup S′ → S such that the strict transform of
X is finite locally free over S′.

Proof. By Lemma 38.31.1 we may assume that X → S is flat and of finite presenta-
tion. After replacing S by a U -admissible blowup if necessary, we may assume that
U ⊂ S is scheme theoretically dense. Then f is finite by Lemma 38.11.4. Hence f
is finite locally free by Morphisms, Lemma 29.48.2. □

Lemma 38.31.3.081S Let φ : X → S be a separated morphism of finite type with S
quasi-compact and quasi-separated. Let U ⊂ S be a quasi-compact open such that
φ−1U → U is an isomorphism. Then there exists a U -admissible blowup S′ → S
such that the strict transform X ′ of X is isomorphic to an open subscheme of S′.

Proof. The discussion in Remark 38.30.1 applies. Thus we may do a first U -
admissible blowup and assume the complement S \U is the support of an effective
Cartier divisor D. In particular U is scheme theoretically dense in S. Next, we do
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another U -admissible blowup to get to the situation where X → S is flat and of
finite presentation, see Lemma 38.31.1. In this case the result follows from Lemma
38.11.5. □

The following lemma says that a proper modification can be dominated by a blowup.

Lemma 38.31.4.081T Let φ : X → S be a proper morphism with S quasi-compact and
quasi-separated. Let U ⊂ S be a quasi-compact open such that φ−1U → U is an
isomorphism. Then there exists a U -admissible blowup S′ → S which dominates
X, i.e., such that there exists a factorization S′ → X → S of the blowup morphism.

Proof. The discussion in Remark 38.30.1 applies. Thus we may do a first U -
admissible blowup and assume the complement S \U is the support of an effective
Cartier divisor D. In particular U is scheme theoretically dense in S. Choose an-
other U -admissible blowup S′ → S such that the strict transform X ′ of X is an
open subscheme of S′, see Lemma 38.31.3. Since X ′ → S′ is proper, and U ⊂ S′ is
dense, we see that X ′ = S′. Some details omitted. □

Lemma 38.31.5.0CP1 Let S be a scheme. Let U ⊂ W ⊂ S be open subschemes. Let
f : X →W be a morphism and let s : U → X be a morphism such that f ◦s = idU .
Assume

(1) f is proper,
(2) S is quasi-compact and quasi-separated, and
(3) U and W are quasi-compact.

Then there exists a U -admissible blowup b : S′ → S and a morphism s′ : b−1(W )→
X extending s with f ◦ s′ = b|b−1(W ).

Proof. We may and do replace X by the scheme theoretic image of s. Then X →W
is an isomorphism over U , see Morphisms, Lemma 29.6.8. By Lemma 38.31.4 there
exists a U -admissible blowup W ′ → W and an extension W ′ → X of s. We
finish the proof by applying Divisors, Lemma 31.34.3 to extend W ′ → W to a
U -admissible blowup of S. □

38.32. Compactifications

0ATT Let S be a quasi-compact and quasi-separated scheme. We will say a scheme X
over S has a compactification over S or is compactifyable over S if there exists a
quasi-compact open immersion X → X into a scheme X proper over S. If X has a
compactification over S, then X → S is separated and of finite type. It is a theorem
of Nagata, see [Lüt93], [Con07b], [Nag56], [Nag57a], [Nag62a], and [Nag63], that
the converse is true as well. We will prove this theorem in the next section, see
Theorem 38.33.8.
Let S be a quasi-compact and quasi-separated scheme. Let X → S be a separated
finite type morphism of schemes. The category of compactifications of X over S is
the category defined as follows:

(1) Objects are open immersions j : X → X over S with X → S proper.
(2) Morphisms (j′ : X → X

′) → (j : X → X) are morphisms f : X ′ → X of
schemes over S such that f ◦ j′ = j.

If j : X → X is a compactification, then j is a quasi-compact open immersion, see
Schemes, Remark 26.21.18.
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Warning. We do not assume compactifications j : X → X to have dense image.
Consequently, if f : X ′ → X is a morphism of compactifications, it may not be the
case that f−1(j(X)) = j′(X).

Lemma 38.32.1.0ATU Let S be a quasi-compact and quasi-separated scheme. Let X be
a compactifyable scheme over S.

(a) The category of compactifications of X over S is cofiltered.
(b) The full subcategory consisting of compactifications j : X → X such that

j(X) is dense and scheme theoretically dense in X is initial (Categories,
Definition 4.17.3).

(c) If f : X ′ → X is a morphism of compactifications of X such that j′(X) is
dense in X

′, then f−1(j(X)) = j′(X).

Proof. To prove part (a) we have to check conditions (1), (2), (3) of Categories,
Definition 4.20.1. Condition (1) holds exactly because we assumed that X is com-
pactifyable. Let ji : X → Xi, i = 1, 2 be two compactifications. Then we can
consider the scheme theoretic image X of (j1, j2) : X → X1 ×S X2. This deter-
mines a third compactification j : X → X which dominates both ji:

(X,X1) (X,X)oo // (X,X2)

Thus (2) holds. Let f1, f2 : X1 → X2 be two morphisms between compactifications
ji : X → Xi, i = 1, 2. Let X ⊂ X1 be the equalizer of f1 and f2. As X2 → S
is separated, we see that X is a closed subscheme of X1 and hence proper over S.
Moreover, we obtain an open immersion X → X because f1|X = f2|X = idX . The
morphism (X → X) → (j1 : X → X1) given by the closed immersion X → X1
equalizes f1 and f2 which proves condition (3).

Proof of (b). Let j : X → X be a compactification. If X ′ denotes the scheme
theoretic closure of X in X, then X is dense and scheme theoretically dense in
X

′ by Morphisms, Lemma 29.7.7. This proves the first condition of Categories,
Definition 4.17.3. Since we have already shown the category of compactifications
of X is cofiltered, the second condition of Categories, Definition 4.17.3 follows from
the first (we omit the solution to this categorical exercise).

Proof of (c). After replacing X ′ with the scheme theoretic closure of j′(X) (which
doesn’t change the underlying topological space) this follows from Morphisms,
Lemma 29.6.8. □

We can also consider the category of all compactifications (for varying X). It
turns out that this category, localized at the set of morphisms which induce an
isomorphism on the interior is equivalent to the category of compactifyable schemes
over S.

Lemma 38.32.2.0A9Z Let S be a quasi-compact and quasi-separated scheme. Let f :
X → Y be a morphism of schemes over S with Y separated and of finite type over
S and X compactifyable over S. Then X has a compactification over Y .

Proof. Let j : X → X be a compactification of X over S. Then we let X ′ be
the scheme theoretic image of (j, f) : X → X ×S Y . The morphism X

′ → Y is
proper because X ×S Y → Y is proper as a base change of X → S. On the other
hand, since Y is separated over S, the morphism (1, f) : X → X ×S Y is a closed
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immersion (Schemes, Lemma 26.21.10) and hence X → X
′ is an open immersion

by Morphisms, Lemma 29.6.8 applied to the “partial section” s = (j, f) to the
projection X ×S Y → X. □

Let S be a quasi-compact and quasi-separated scheme. We define the category of
compactifications to be the category whose objects are pairs (X,X) where X is a
scheme proper over S and X ⊂ X is a quasi-compact open and whose morphisms
are commutative diagrams

X

��

f
// Y

��
X

f // Y

of morphisms of schemes over S.

Lemma 38.32.3.0ATV Let S be a quasi-compact and quasi-separated scheme. The col-
lection of morphisms (u, u) : (X ′, X

′) → (X,X) such that u is an isomorphism
forms a right multiplicative system (Categories, Definition 4.27.1) of arrows in the
category of compactifications.

Proof. Axiom RMS1 is trivial to verify. Let us check RMS2 holds. Suppose given
a diagram

(X ′, X
′)

(u,u)
��

(Y, Y )
(f,f) // (X,X)

with u : X ′ → X an isomorphism. Then we let Y ′ = Y ×X X ′ with the projection
map v : Y ′ → Y (an isomorphism). We also set Y ′ = Y ×X X

′ with the projection
map v : Y ′ → Y It is clear that Y ′ → Y

′ is an open immersion. The diagram

(Y ′, Y
′)

(g,g)
//

(v,v)
��

(X ′, X
′)

(u,u)
��

(Y, Y )
(f,f) // (X,X)

shows that axiom RMS2 holds.

Let us check RMS3 holds. Suppose given a pair of morphisms (f, f), (g, g) :
(X,X) → (Y, Y ) of compactifications and a morphism (v, v) : (Y, Y ) → (Y ′, Y

′)
such that v is an isomorphism and such that (v, v) ◦ (f, f) = (v, v) ◦ (g, g). Then
f = g. Hence if we let X

′ ⊂ X be the equalizer of f and g, then (u, u) :
(X,X ′) → (X,X) will be a morphism of the category of compactifications such
that (f, f) ◦ (u, u) = (g, g) ◦ (u, u) as desired. □

Lemma 38.32.4.0ATW Let S be a quasi-compact and quasi-separated scheme. The func-
tor (X,X) 7→ X defines an equivalence from the category of compactifications
localized (Categories, Lemma 4.27.11) at the right multiplicative system of Lemma
38.32.3 to the category of compactifyable schemes over S.
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Proof. Denote C the category of compactifications and denote Q : C → C′ the
localization functor of Categories, Lemma 4.27.16. Denote D the category of com-
pactifyable schemes over S. It is clear from the lemma just cited and our choice
of multiplicative system that we obtain a functor C′ → D. This functor is clearly
essentially surjective. If f : X → Y is a morphism of compactifyable schemes, then
we choose an open immersion Y → Y into a scheme proper over S, and then we
choose an embedding X → X into a scheme X proper over Y (possible by Lemma
38.32.2 applied to X → Y ). This gives a morphism (X,X)→ (Y, Y ) of compactifi-
cations which produces our given morphism X → Y . Finally, suppose given a pair
of morphisms in the localized category with the same source and target: say

a = ((f, f) : (X ′, X
′)→ (Y, Y ), (u, u) : (X ′, X

′)→ (X,X))
and

b = ((g, g) : (X ′′, X
′′)→ (Y, Y ), (v, v) : (X ′′, X

′′)→ (X,X))
which produce the same morphism X → Y over S, in other words f ◦u−1 = g◦v−1.
By Categories, Lemma 4.27.13 we may assume that (X ′, X

′) = (X ′′, X
′′) and

(u, u) = (v, v). In this case we can consider the equalizer X ′′′ ⊂ X
′ of f and

g. The morphism (w,w) : (X ′, X
′′′)→ (X ′, X

′) is in the multiplicative subset and
we see that a = b in the localized category by precomposing with (w,w). □

38.33. Nagata compactification

0F3T In this section we prove the theorem announced in Section 38.32.

Lemma 38.33.1.0F3U Let X → S be a morphism of schemes. If X = U ∪ V is an open
cover such that U → S and V → S are separated and U ∩ V → U ×S V is closed,
then X → S is separated.

Proof. Omitted. Hint: check that ∆ : X → X ×S X is closed by using the open
covering of X ×S X given by U ×S U , U ×S V , V ×S U , and V ×S V . □

Lemma 38.33.2.0F3V LetX be a quasi-compact and quasi-separated scheme. Let U ⊂ X
be a quasi-compact open.

(1) If Z1, Z2 ⊂ X are closed subschemes of finite presentation such that Z1 ∩
Z2 ∩ U = ∅, then there exists a U -admissible blowing up X ′ → X such
that the strict transforms of Z1 and Z2 are disjoint.

(2) If T1, T2 ⊂ U are disjoint constructible closed subsets, then there is a U -
admissible blowing up X ′ → X such that the closures of T1 and T2 are
disjoint.

Proof. Proof of (1). The assumption that Zi → X is of finite presentation signifies
that the quasi-coherent ideal sheaf Ii of Zi is of finite type, see Morphisms, Lemma
29.21.7. Denote Z ⊂ X the closed subscheme cut out by the product I1I2. Observe
that Z ∩U is the disjoint union of Z1 ∩U and Z2 ∩U . By Divisors, Lemma 31.34.5
there is a U ∩ Z-admissible blowup Z ′ → Z such that the strict transforms of Z1
and Z2 are disjoint. Denote Y ⊂ Z the center of this blowing up. Then Y → X is
a closed immersion of finite presentation as the composition of Y → Z and Z → X
(Divisors, Definition 31.34.1 and Morphisms, Lemma 29.21.3). Thus the blowing
up X ′ → X of Y is a U -admissible blowing up. By general properties of strict
transforms, the strict transform of Z1, Z2 with respect to X ′ → X is the same as
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the strict transform of Z1, Z2 with respect to Z ′ → Z, see Divisors, Lemma 31.33.2.
Thus (1) is proved.
Proof of (2). By Properties, Lemma 28.24.1 there exists a finite type quasi-coherent
sheaf of ideals Ji ⊂ OU such that Ti = V (Ji) (set theoretically). By Properties,
Lemma 28.22.2 there exists a finite type quasi-coherent sheaf of ideals Ii ⊂ OX
whose restriction to U is Ji. Apply the result of part (1) to the closed subschemes
Zi = V (Ii) to conclude. □

Lemma 38.33.3.0F3W Let f : X → Y be a proper morphism of quasi-compact and
quasi-separated schemes. Let V ⊂ Y be a quasi-compact open and U = f−1(V ).
Let T ⊂ V be a closed subset such that f |U : U → V is an isomorphism over
an open neighbourhood of T in V . Then there exists a V -admissible blowing up
Y ′ → Y such that the strict transform f ′ : X ′ → Y ′ of f is an isomorphism over
an open neighbourhood of the closure of T in Y ′.
Proof. Let T ′ ⊂ V be the complement of the maximal open over which f |U is an
isomorphism. Then T ′, T are closed in V and T ∩ T ′ = ∅. Since V is a spectral
topological space, we can find constructible closed subsets Tc, T ′

c with T ⊂ Tc,
T ′ ⊂ T ′

c such that Tc ∩ T ′
c = ∅ (choose a quasi-compact open W of V containing

T ′ not meeting T and set Tc = V \W , then choose a quasi-compact open W ′ of V
containing Tc not meeting T ′ and set T ′

c = V \W ′). By Lemma 38.33.2 we may,
after replacing Y by a V -admissible blowing up, assume that Tc and T ′

c have disjoint
closures in Y . Set Y0 = Y \ T ′

c, V0 = V \ T ′
c, U0 = U ×V V0, and X0 = X ×Y Y0.

Since U0 → V0 is an isomorphism, we can find a V0-admissible blowing up Y ′
0 → Y0

such that the strict transform X ′
0 of X0 maps isomorphically to Y ′

0 , see Lemma
38.31.3. By Divisors, Lemma 31.34.3 there exists a V -admissible blow up Y ′ → Y
whose restriction to Y0 is Y ′

0 → Y0. If f ′ : X ′ → Y ′ denotes the strict transform
of f , then we see what we want is true because f ′ restricts to an isomorphism over
Y ′

0 . □

Lemma 38.33.4.0F3X Let S be a quasi-compact and quasi-separated scheme. Let U →
X1 and U → X2 be open immersions of schemes over S and assume U , X1, X2 of
finite type and separated over S. Then there exists a commutative diagram

X ′
1

��

// X X ′
2

oo

��
X1 Uoo

`` OO >>

// X2

of schemes over S where X ′
i → Xi is a U -admissible blowup, X ′

i → X is an open
immersion, and X is separated and finite type over S.
Proof. Throughout the proof all schemes will be separated of finite type over S.
This in particular implies these schemes are quasi-compact and quasi-separated
and the morphisms between them are quasi-compact and separated. See Schemes,
Sections 26.19 and 26.21. We will use that if U → W is an immersion of such
schemes over S, then the scheme theoretic image Z of U in W is a closed subscheme
of W and U → Z is an open immersion, U ⊂ Z is scheme theoretically dense, and
U ⊂ Z is dense topologically. See Morphisms, Lemma 29.7.7.
Let X12 ⊂ X1 ×S X2 be the scheme theoretic image of U → X1 ×S X2. The pro-
jections pi : X12 → Xi induce isomorphisms p−1

i (U) → U by Morphisms, Lemma
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29.6.8. Choose a U -admissible blowup Xi
i → Xi such that the strict transform

Xi
12 of X12 is isomorphic to an open subscheme of Xi

i , see Lemma 38.31.3. Let
Ii ⊂ OXi be the corresponding finite type quasi-coherent sheaf of ideals. Recall
that Xi

12 → X12 is the blowup in p−1
i IiOX12 , see Divisors, Lemma 31.33.2. Let

X ′
12 be the blowup of X12 in p−1

1 I1p
−1
2 I2OX12 , see Divisors, Lemma 31.32.12 for

what this entails. We obtain in particular a commutative diagram

X ′
12

��

// X2
12

��
X1

12
// X12

where all the morphisms are U -admissible blowing ups. Since Xi
12 ⊂ Xi

i is an open
we may choose a U -admissible blowup X ′

i → Xi
i restricting to X ′

12 → Xi
12, see

Divisors, Lemma 31.34.3. Then X ′
12 ⊂ X ′

i is an open subscheme and the diagram

X ′
12

��

// X ′
i

��
Xi

12
// Xi

i

is commutative with vertical arrows blowing ups and horizontal arrows open immer-
sions. Note that X ′

12 → X ′
1×SX ′

2 is an immersion and proper (use that X ′
12 → X12

is proper and X12 → X1 ×S X2 is closed and X ′
1 ×S X ′

2 → X1 ×S X2 is separated
and apply Morphisms, Lemma 29.41.7). Thus X ′

12 → X ′
1 ×S X ′

2 is a closed immer-
sion. It follows that if we define X by glueing X ′

1 and X ′
2 along the common open

subscheme X ′
12, then X → S is of finite type and separated (Lemma 38.33.1). As

compositions of U -admissible blowups are U -admissible blowups (Divisors, Lemma
31.34.2) the lemma is proved. □

Lemma 38.33.5.0F3Y Let X → S and Y → S be morphisms of schemes. Let U ⊂ X
be an open subscheme. Let V → X ×S Y be a quasi-compact morphism whose
composition with the first projection maps into U . Let Z ⊂ X ×S Y be the scheme
theoretic image of V → X×S Y . Let X ′ → X be a U -admissible blowup. Then the
scheme theoretic image of V → X ′ ×S Y is the strict transform of Z with respect
to the blowing up.

Proof. Denote Z ′ → Z the strict transform. The morphism Z ′ → X ′ induces a
morphism Z ′ → X ′ ×S Y which is a closed immersion (as Z ′ is a closed subscheme
ofX ′×XZ by definition). Thus to finish the proof it suffices to show that the scheme
theoretic image Z ′′ of V → Z ′ is Z ′. Observe that Z ′′ ⊂ Z ′ is a closed subscheme
such that V → Z ′ factors through Z ′′. Since both V → X ×S Y and V → X ′×S Y
are quasi-compact (for the latter this follows from Schemes, Lemma 26.21.14 and the
fact that X ′×S Y → X ×S Y is separated as a base change of a proper morphism),
by Morphisms, Lemma 29.6.3 we see that Z ∩ (U ×S Y ) = Z ′′ ∩ (U ×S Y ). Thus
the inclusion morphism Z ′′ → Z ′ is an isomorphism away from the exceptional
divisor E of Z ′ → Z. However, the structure sheaf of Z ′ does not have any nonzero
sections supported on E (by definition of strict transforms) and we conclude that
the surjection OZ′ → OZ′′ must be an isomorphism. □
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Lemma 38.33.6.0F3Z Let S be a quasi-compact and quasi-separated scheme. Let U
be a scheme of finite type and separated over S. Let V ⊂ U be a quasi-compact
open. If V has a compactification V ⊂ Y over S, then there exists a V -admissible
blowing up Y ′ → Y and an open V ⊂ V ′ ⊂ Y ′ such that V → U extends to a
proper morphism V ′ → U .

Proof. Consider the scheme theoretic image Z ⊂ Y ×S U of the “diagonal” mor-
phism V → Y ×S U . If we replace Y by a V -admissible blowing up, then Z
is replaced by the strict transform with respect to this blowing up, see Lemma
38.33.5. Hence by Lemma 38.31.3 we may assume Z → Y is an open immersion.
If V ′ ⊂ Y denotes the image, then we see that the induced morphism V ′ → U
is proper because the projection Y ×S U → U is proper and V ′ ∼= Z is a closed
subscheme of Y ×S U . □

The following lemma is formulated in the Noetherian case only. The version for
quasi-compact and quasi-separated schemes is true as well, but will be trivially
implied by the main theorem in this section.

Lemma 38.33.7.0F40 Let S be a Noetherian scheme. Let U be a scheme of finite
type and separated over S. Let U = U1 ∪ U2 be opens such that U1 and U2 have
compactifications over S and such that U1 ∩ U2 is dense in U . Then U has a
compactification over S.

Proof. Choose a compactification Ui ⊂ Xi for i = 1, 2. We may assume Ui is
scheme theoretically dense in Xi. We may assume there is an open Vi ⊂ Xi and a
proper morphism ψi : Vi → U extending id : Ui → Ui, see Lemma 38.33.6. Picture

Ui //

��

Vi //

ψi~~

Xi

U

If {i, j} = {1, 2} denote Zi = U \Uj = Ui\(U1∩U2) and Zj = U \Ui = Uj\(U1∩U2).
Thus we have

U = U1 ⨿ Z2 = Z1 ⨿ U2 = Z1 ⨿ (U1 ∩ U2)⨿ Z2

Denote Zi,i ⊂ Vi the inverse image of Zi under ψi. Observe that ψi is an isomor-
phism over an open neighbourhood of Zi. Denote Zi,j ⊂ Vi the inverse image of Zj
under ψi. Observe that ψi : Zi,j → Zj is a proper morphism. Since Zi and Zj are
disjoint closed subsets of U , we see that Zi,i and Zi,j are disjoint closed subsets of
Vi.
Denote Zi,i and Zi,j the closures of Zi,i and Zi,j in Xi. After replacing Xi by a
Vi-admissible blowup we may assume that Zi,i and Zi,j are disjoint, see Lemma
38.33.2. We assume this holds for both X1 and X2. Observe that this property is
preserved if we replace Xi by a further Vi-admissible blowup.
Set V12 = V1 ×U V2. We have an immersion V12 → X1 ×S X2 which is the com-
position of the closed immersion V12 = V1 ×U V2 → V1 ×S V2 (Schemes, Lemma
26.21.9) and the open immersion V1 ×S V2 → X1 ×S X2. Let X12 ⊂ X1 ×S X2 be
the scheme theoretic image of V12 → X1 ×S X2. The projection morphisms

p1 : X12 → X1 and p2 : X12 → X2
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are proper as X1 and X2 are proper over S. If we replace X1 by a V1-admissible
blowing up, then X12 is replaced by the strict transform with respect to this blowing
up, see Lemma 38.33.5.

Denote ψ : V12 → U the compositions ψ = ψ1 ◦ p1|V12 = ψ2 ◦ p2|V12 . Consider the
closed subscheme

Z12,2 = (p1|V12)−1(Z1,2) = (p2|V12)−1(Z2,2) = ψ−1(Z2) ⊂ V12

The morphism p1|V12 : V12 → V1 is an isomorphism over an open neighbourhood
of Z1,2 because ψ2 : V2 → U is an isomorphism over an open neighbourhood of Z2
and V12 = V1 ×U V2. By Lemma 38.33.3 there exists a V1-admissible blowing up
X ′

1 → X1 such that the strict tranform p′
1 : X ′

12 → X ′
1 of p1 is an isomorphism over

an open neighbourhood of the closure of Z1,2 in X ′
1. After replacing X1 by X ′

1 and
X12 by X ′

12 we may assume that p1 is an isomorphism over an open neighbourhood
of Z1,2.

The reduction of the previous paragraph tells us that

X12 ∩ (Z1,2 ×S Z2,1) = ∅

where the intersection taken in X1 ×S X2. Namely, the inverse image p−1
1 (Z1,2)

in X12 maps isomorphically to Z1,2. In particular, we see that Z12,2 is dense in
p−1

1 (Z1,2). Thus p2 maps p−1
1 (Z1,2) into Z2,2. Since Z2,2 ∩ Z2,1 = ∅ we conclude.

Consider the schemes

Wi = U
∐

Ui
(Xi \ Zi,j), i = 1, 2

obtained by glueing. Let us apply Lemma 38.33.1 to see that Wi → S is separated.
First, U → S and Xi → S are separated. The immersion Ui → U ×S (Xi \ Zi,j) is
closed because any specialization ui ⇝ u with ui ∈ Ui and u ∈ U \ Ui can be lifted
uniquely to a specialization ui ⇝ vi in Vi along the proper morphism ψi : Vi → U
and then vi must be in Zi,j . Thus the image of the immersion is closed, whence
the immersion is a closed immersion.

On the other hand, for any valuation ring A over S with fraction field K and any
morphism γ : Spec(K) → (U1 ∩ U2) over S, there is an i and an extension of γ to
a morphism hi : Spec(A) → Wi. Namely, for both i = 1, 2 there is a morphism
gi : Spec(A)→ Xi extending γ by the valuative criterion of properness for Xi over
S, see Morphisms, Lemma 29.42.1. Thus we only are in trouble if gi(mA) ∈ Zi,j
for i = 1, 2. This is impossible by the emptyness of the intersection of X12 and
Z1,2 ×S Z2,1 we proved above.

Consider a diagram

W ′
1

��

// W W ′
2

oo

��
W1 Uoo

`` OO >>

// W2
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as in Lemma 38.33.4. By the previous paragraph for every solid diagram

Spec(K)
γ

//

��

W

��
Spec(A)

;;

// S

where Im(γ) ⊂ U1 ∩ U2 there is an i and an extension hi : Spec(A) → Wi of γ.
Using the valuative criterion of properness for W ′

i → Wi, we can then lift hi to
h′
i : Spec(A) → W ′

i . Hence the dotted arrow in the diagram exists. Since W is
separated over S, we see that the arrow is unique as well. This implies that W → S
is universally closed by Morphisms, Lemma 29.42.2. As W → S is already of finite
type and separated, we win. □

Theorem 38.33.8.0F41 See [Lüt93],
[Con07b], [Nag56],
[Nag57a], [Nag62a],
and [Nag63]

Let S be a quasi-compact and quasi-separated scheme. Let
X → S be a separated, finite type morphism. Then X has a compactification over
S.

Proof. We first reduce to the Noetherian case. We strongly urge the reader to
skip this paragraph. There exists a closed immersion X → X ′ with X ′ → S
of finite presentation and separated. See Limits, Proposition 32.9.6. If we find
a compactification of X ′ over S, then taking the scheme theoretic image of X
in this will give a compactification of X over S. Thus we may assume X → S
is separated and of finite presentation. We may write S = limSi as a directed
limit of a system of Noetherian schemes with affine transition morphisms. See
Limits, Proposition 32.5.4. We can choose an i and a morphism Xi → Si of finite
presentation whose base change to S is X → S, see Limits, Lemma 32.10.1. After
increasing i we may assume Xi → Si is separated, see Limits, Lemma 32.8.6. If we
can find a compactification of Xi over Si, then the base change of this to S will be
a compactification of X over S. This reduces us to the case discussed in the next
paragraph.
Assume S is Noetherian. We can choose a finite affine open coveringX =

⋃
i=1,...,n Ui

such that U1∩ . . .∩Un is dense in X. This follows from Properties, Lemma 28.29.4
and the fact that X is quasi-compact with finitely many irreducible components.
For each i we can choose an ni ≥ 0 and an immersion Ui → Ani

S by Morphisms,
Lemma 29.39.2. Hence Ui has a compactification over S for i = 1, . . . , n by taking
the scheme theoretic image in Pni

S . Applying Lemma 38.33.7 (n − 1) times we
conclude that the theorem is true. □

38.34. The h topology

0ETQ For us, loosely speaking, an h sheaf is a sheaf for the Zariski topology which satisfies
the sheaf property for surjective proper morphisms of finite presentation, see Lemma
38.34.17. However, it may be worth pointing out that the definition of the h
topology on the category of schemes depends on the reference.
Voevodsky initially defined an h covering to be a finite collection of finite type mor-
phisms which are jointly universally submersive (Morphisms, Definition 29.24.1).
See [Voe96, Definition 3.1.2]. This definition works best if the underlying category
of schemes is restricted to all schemes of finite type over a fixed Noetherian base
scheme. In this setting, Voevodsky relates h coverings to ph coverings. The ph
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topology is generated by Zariski coverings and proper surjective morphisms. See
Topologies, Section 34.8 for more information.
In Topologies, Section 34.10 we study the V topology. A quasi-compact morphism
X → Y defines a V covering, if any specialization of points of Y is the image of a
specialization of points in X and the same is true after any base change (Topolo-
gies, Lemma 34.10.13). In this case X → Y is universally submersive (Topologies,
Lemma 34.10.14). It turns out the notion of a V covering is a good replacement for
“families of morphisms with fixed target which are jointly universally submersive”
when working with non-Noetherian schemes.
Our approach will be to first prove the equivalence between ph covers and V cover-
ings for (possibly infinite) families of morphisms which are locally of finite presen-
tation. We will then use these families as our notion of h coverings in the Stacks
project. For Noetherian schemes and finite families these coverings match those
in Voevodsky’s definition, see Lemma 38.34.3. On the category of schemes of fi-
nite presentation over a fixed quasi-compact and quasi-separated scheme S these
coverings determine the same topology as the one in [BS17, Definition 2.7].

Lemma 38.34.1.0ETR Let {fi : Xi → X}i∈I be a family of morphisms of schemes
with fixed target with fi locally of finite presentation for all i. The following are
equivalent

(1) {Xi → X} is a ph covering, and
(2) {Xi → X} is a V covering.

Proof. Let U ⊂ X be affine open. Looking at Topologies, Definitions 34.8.4 and
34.10.7 it suffices to show that the base change {Xi×X U → U} can be refined by a
standard ph covering if and only if it can be refined by a standard V covering. Thus
we may assume X is affine and we have to show {Xi → X} can be refined by a
standard ph covering if and only if it can be refined by a standard V covering. Since
a standard ph covering is a standard V covering, see Topologies, Lemma 34.10.3 it
suffices to prove the other implication.
Assume X is affine and assume {fi : Xi → X}i∈I can be refined by a standard
V covering {gj : Yj → X}j=1,...,m. For each j choose an ij and a morphism
hj : Yj → Xij such that gj = fij ◦ hj . Since Yj is affine hence quasi-compact, for
each j we can find finitely many affine opens Uj,k ⊂ Xij such that Im(hj) ⊂

⋃
Uj,k.

Then {Uj,k → X}j,k refines {Xi → X} and is a standard V covering (as it is a
finite family of morphisms of affines and it inherits the lifting property for valuation
rings from the corresponding property of {Yj → X}). Thus we reduce to the case
discussed in the next paragraph.
Assume {fi : Xi → X}i=1,...,n is a standard V covering with fi of finite presentation.
We have to show that {Xi → X} can be refined by a standard ph covering. Choose
a generic flatness stratification

X = S ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅
as in More on Morphisms, Lemma 37.54.2 for the finitely presented morphism∐

i=1,...,n
fi :

∐
i=1,...,n

Xi −→ X

of affines. We are going to use all the properties of the stratification without
further mention. By construction the base change of each fi to Uk = Sk \ Sk+1 is
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flat. Denote Yk the scheme theoretic closure of Uk in Sk. Since Uk → Sk is a quasi-
compact open immersion (see Properties, Lemma 28.24.1), we see that Uk ⊂ Yk
is a quasi-compact dense (and scheme theoretically dense) open immersion, see
Morphisms, Lemma 29.6.3. The morphism

∐
k=0,...,t−1 Yk → X is finite surjective,

hence {Yk → X} is a standard ph covering and hence a standard V covering (see
above). By the transitivity property of standard V coverings (Topologies, Lemma
34.10.5) it suffices to show that the pullback of the covering {Xi → X} to each Yk
can be refined by a standard V covering. This reduces us to the case described in
the next paragraph.

Assume {fi : Xi → X}i=1,...,n is a standard V covering with fi of finite presentation
and there is a dense quasi-compact open U ⊂ X such that Xi ×X U → U is flat.
By Theorem 38.30.7 there is a U -admissible blowup X ′ → X such that the strict
transform f ′

i : X ′
i → X ′ of fi is flat. Observe that the projective (hence closed)

morphism X ′ → X is surjective as U ⊂ X is dense and as U is identified with an
open of X ′. After replacing X ′ by a further U -admissible blowup if necessary, we
may also assume U ⊂ X ′ is scheme theoretically dense (see Remark 38.30.1). Hence
for every point x ∈ X ′ there is a valuation ring V and a morphism g : Spec(V )→ X ′

such that the generic point of Spec(V ) maps into U and the closed point of Spec(V )
maps to x, see Morphisms, Lemma 29.6.5. Since {Xi → X} is a standard V
covering, we can choose an extension of valuation rings V ⊂ W , an index i, and a
morphism Spec(W )→ Xi such that the diagram

Spec(W )

��

// Xi

��
Spec(V ) // X ′ // X

is commutative. Since X ′
i ⊂ X ′ ×X Xi is a closed subscheme containing the open

U ×X Xi, since Spec(W ) is an integral scheme, and since the induced morphism
h : Spec(W ) → X ′ ×X Xi maps the generic point of Spec(W ) into U ×X Xi, we
conclude that h factors through the closed subscheme X ′

i ⊂ X ′×XXi. We conclude
that {f ′

i : X ′
i → X ′} is a V covering. In particular,

∐
f ′
i is surjective. In particular

{X ′
i → X ′} is an fppf covering. Since an fppf covering is a ph covering (More

on Morphisms, Lemma 37.48.7), we can find a standard ph covering {Yj → X ′}
refining {X ′

i → X}. Say this covering is given by a proper surjective morphism
Y → X ′ and a finite affine open covering Y =

⋃
Yj . Then the composition Y → X

is proper surjective and we conclude that {Yj → X} is a standard ph covering.
This finishes the proof. □

Here is our definition.

Definition 38.34.2.0ETS Let T be a scheme. A h covering of T is a family of morphisms
{fi : Ti → T}i∈I such that each fi is locally of finite presentation and one of the
equivalent conditions of Lemma 38.34.1 is satisfied.

For Noetherian schemes this is the same thing as a ph covering (we record this in
Lemma 38.34.4 below) and we recover Voevodsky’s notion.

Lemma 38.34.3.0ETT Let X be a Noetherian scheme. Let {Xi → X}i∈I be a finite
family of finite type morphisms. The following are equivalent

https://stacks.math.columbia.edu/tag/0ETS
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(1)
∐
i∈I Xi → X is universally submersive (Morphisms, Definition 29.24.1),

and
(2) {Xi → X}i∈I is an h covering.

Proof. The implication (2)⇒ (1) follows from the more general Topologies, Lemma
34.10.14 and our definition of h covers. Assume

∐
Xi → X is universally submer-

sive. We will show that {Xi → X} can be refined by a ph covering; this will suffice
by Topologies, Lemma 34.8.7 and our definition of h coverings. The argument will
be the same as the one used in the proof of Lemma 38.34.1.

Choose a generic flatness stratification

X = S ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅

as in More on Morphisms, Lemma 37.54.2 for the finitely presented morphism∐
i=1,...,n

fi :
∐

i=1,...,n
Xi −→ X

We are going to use all the properties of the stratification without further mention.
By construction the base change of each fi to Uk = Sk \ Sk+1 is flat. Denote Yk
the scheme theoretic closure of Uk in Sk. Since Uk → Sk is a quasi-compact open
immersion (all schemes in this paragraph are Noetherian), we see that Uk ⊂ Yk
is a quasi-compact dense (and scheme theoretically dense) open immersion, see
Morphisms, Lemma 29.6.3. The morphism

∐
k=0,...,t−1 Yk → X is finite surjective,

hence {Yk → X} is a ph covering. By the transitivity property of ph coverings
(Topologies, Lemma 34.8.8) it suffices to show that the pullback of the covering
{Xi → X} to each Yk can be refined by a ph covering. This reduces us to the case
described in the next paragraph.

Assume
∐
Xi → X is universally submersive and there is a dense open U ⊂ X such

that Xi ×X U → U is flat for all i. By Theorem 38.30.7 there is a U -admissible
blowup X ′ → X such that the strict transform f ′

i : X ′
i → X ′ of fi is flat for all

i. Observe that the projective (hence closed) morphism X ′ → X is surjective as
U ⊂ X is dense and as U is identified with an open of X ′. After replacing X ′ by a
further U -admissible blowup if necessary, we may also assume U ⊂ X ′ is dense (see
Remark 38.30.1). Hence for every point x ∈ X ′ there is a discrete valuation ring
A and a morphism g : Spec(A)→ X ′ such that the generic point of Spec(A) maps
into U and the closed point of Spec(A) maps to x, see Limits, Lemma 32.15.1. Set

W = Spec(A)×X
∐

Xi =
∐

Spec(A)×X Xi

Since
∐
Xi → X is universally submersive, there is a specialization w′ ⇝ w in W

such that w′ maps to the generic point of Spec(A) and w maps to the closed point
of Spec(A). (If not, then the closed fibre of W → Spec(A) is stable under general-
izations, hence open, which contradicts the fact that W → Spec(A) is submersive.)
Say w′ ∈ Spec(A)×X Xi so of course w ∈ Spec(A)×X Xi as well. Let x′

i ⇝ xi be
the image of w′ ⇝ w in X ′ ×X Xi. Since x′

i ∈ X ′
i and since X ′

i ⊂ X ′ ×X Xi is a
closed subscheme we see that xi ∈ X ′

i. Since xi maps to x ∈ X ′ we conclude that∐
X ′
i → X ′ is surjective! In particular {X ′

i → X ′} is an fppf covering. But an fppf
covering is a ph covering (More on Morphisms, Lemma 37.48.7). Since X ′ → X
is proper surjective, we conclude that {X ′

i → X} is a ph covering and the proof is
complete. □
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Lemma 38.34.4.0H45 Let X be a locally Noetherian scheme. A family of morphisms
{fi : Xi → X}i∈I with target X is an h covering if and only if it is a ph covering.
Proof. By Definition 38.34.2 a h covering is a ph covering. Conversely, if {fi :
Xi → X} is a ph covering, then the morphisms fi are locally of finite type (Topolo-
gies, Definition 34.8.4). Since X is locally Noetherian, each fi is locally of finite
presentation and we see that we have a h covering by definition. □

The following lemma and [Ryd07b, Theorem 8.4] shows our definition agrees with
(or at least is closely related to) the definition in the paper [Ryd07b] by David
Rydh. We restrict to affine base for simplicity.
Lemma 38.34.5.0ETU Let X be an affine scheme. Let {Xi → X}i∈I be an h covering.
Then there exists a surjective proper morphism

Y −→ X

of finite presentation (!) and a finite affine open covering Y =
⋃
j=1,...,m Yj such

that {Yj → X}j=1,...,m refines {Xi → X}i∈I .
Proof. By assumption there exists a proper surjective morphism Y → X and a
finite affine open covering Y =

⋃
j=1,...,m Yj such that {Yj → X}j=1,...,m refines

{Xi → X}i∈I . This means that for each j there is an index ij ∈ I and a morphism
hj : Yj → Xij over X. See Definition 38.34.2 and Topologies, Definition 34.8.4.
The problem is that we don’t know that Y → X is of finite presentation. By Limits,
Lemma 32.13.2 we can write

Y = limYλ

as a directed limit of schemes Yλ proper and of finite presentation over X such that
the morphisms Y → Yλ and the the transition morphisms are closed immersions.
Observe that each Yλ → X is surjective. By Limits, Lemma 32.4.11 we can find a λ
and quasi-compact opens Yλ,j ⊂ Yλ, j = 1, . . . ,m covering Yλ and restricting to Yj
in Y . Then Yj = limYλ,j . After increasing λ we may assume Yλ,j is affine for all j,
see Limits, Lemma 32.4.13. Finally, since Xi → X is locally of finite presentation
we can use the functorial characterization of morphisms which are locally of finite
presentation (Limits, Proposition 32.6.1) to find a λ such that for each j there is
a morphism hλ,j : Yλ,j → Xij whose restriction to Yj is the morphism hj chosen
above. Thus {Yλ,j → X} refines {Xi → X} and the proof is complete. □

We return to the development of the general theory of h coverings.
Lemma 38.34.6.0ETV An fppf covering is a h covering. Hence syntomic, smooth, étale,
and Zariski coverings are h coverings as well.
Proof. This is true because in an fppf covering the morphisms are required to be
locally of finite presentation and because fppf coverings are ph covering, see More
on Morphisms, Lemma 37.48.7. The second statement follows from the first and
Topologies, Lemma 34.7.2. □

Lemma 38.34.7.0ETW Let f : Y → X be a surjective proper morphism of schemes which
is of finite presentation. Then {Y → X} is an h covering.
Proof. Combine Topologies, Lemmas 34.10.10 and 34.8.6. □

Lemma 38.34.8.0ETX Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms
such that fi is locally of finite presentation for all i. The following are equivalent
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(1) {Ti → T}i∈I is an h covering,
(2) there is an h covering which refines {Ti → T}i∈I , and
(3) {

∐
i∈I Ti → T} is an h covering.

Proof. This follows from the analogous statement for ph coverings (Topologies,
Lemma 34.8.7) or from the analogous statement for V coverings (Topologies, Lemma
34.10.8). □

Next, we show that our notion of an h covering satisfies the conditions of Sites,
Definition 7.6.2.

Lemma 38.34.9.0ETY Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is an h covering of T .
(2) If {Ti → T}i∈I is an h covering and for each i we have an h covering
{Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is an h covering.

(3) If {Ti → T}i∈I is an h covering and T ′ → T is a morphism of schemes
then {T ′ ×T Ti → T ′}i∈I is an h covering.

Proof. Follows immediately from the corresponding statement for either ph or V
coverings (Topologies, Lemma 34.8.8 or 34.10.9) and the fact that the class of
morphisms which are locally of finite presentation is preserved under base change
and composition. □

Next, we define the big h sites we will work with in the Stacks project. It makes
sense to read the general discussion in Topologies, Section 34.2 before proceeding.

Definition 38.34.10.0ETZ A big h site is any site Schh as in Sites, Definition 7.6.2
constructed as follows:

(1) Choose any set of schemes S0, and any set of h coverings Cov0 among
these schemes.

(2) As underlying category take any category Schα constructed as in Sets,
Lemma 3.9.2 starting with the set S0.

(3) Choose any set of coverings as in Sets, Lemma 3.11.1 starting with the
category Schα and the class of h coverings, and the set Cov0 chosen above.

See the remarks following Topologies, Definition 34.3.5 for motivation and expla-
nation regarding the definition of big sites.

Definition 38.34.11.0EUY Let T be an affine scheme. A standard h covering of T is
a family {fi : Ti → T}i=1,...,n with each Ti affine, with fi of finite presentation
satisfying either of the following equivalent conditions: (1) {Ui → U} can be refined
by a standard ph covering or (2) {Ui → U} is a V covering.

The equivalence of the conditions follows from Lemma 38.34.1, Topologies, Defini-
tion 34.8.4, and Lemma 34.8.7.
Before we continue with the introduction of the big h site of a scheme S, let us
point out that the topology on a big h site Schh is in some sense induced from the
h topology on the category of all schemes.

Lemma 38.34.12.0EU0 Let Schh be a big h site as in Definition 38.34.10. Let T ∈
Ob(Schh). Let {Ti → T}i∈I be an arbitrary h covering of T .

(1) There exists a covering {Uj → T}j∈J of T in the site Schh which refines
{Ti → T}i∈I .
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(2) If {Ti → T}i∈I is a standard h covering, then it is tautologically equivalent
to a covering of Schh.

(3) If {Ti → T}i∈I is a Zariski covering, then it is tautologically equivalent to
a covering of Schh.

Proof. Omitted. Hint: this is exactly the same as the proof of Topologies, Lemma
34.8.10. □

Definition 38.34.13.0EU1 Let S be a scheme. Let Schh be a big h site containing S.
(1) The big h site of S, denoted (Sch/S)h, is the site Schh/S introduced in

Sites, Section 7.25.
(2) The big affine h site of S, denoted (Aff/S)h, is the full subcategory of

(Sch/S)h whose objects are affine U/S. A covering of (Aff/S)h is any
covering {Ui → U} of (Sch/S)h which is a standard h covering.

We explicitly state that the big affine h site is a site.
Lemma 38.34.14.0EU2 Let S be a scheme. Let Schh be a big h site containing S. Then
(Aff/S)h is a site.
Proof. Reasoning as in the proof of Topologies, Lemma 34.4.9 it suffices to show
that the collection of standard h coverings satisfies properties (1), (2) and (3) of
Sites, Definition 7.6.2. This is clear since for example, given a standard h covering
{Ti → T}i∈I and for each i a standard h covering {Tij → Ti}j∈Ji , then {Tij →
T}i∈I,j∈Ji is a h covering (Lemma 38.34.9),

⋃
i∈I Ji is finite and each Tij is affine.

Thus {Tij → T}i∈I,j∈Ji is a standard h covering. □

Lemma 38.34.15.0EU3 Let S be a scheme. Let Schh be a big h site containing S. The
underlying categories of the sites Schh, (Sch/S)h, and (Aff/S)h have fibre products.
In each case the obvious functor into the category Sch of all schemes commutes with
taking fibre products. The category (Sch/S)h has a final object, namely S/S.
Proof. For Schh it is true by construction, see Sets, Lemma 3.9.9. Suppose we have
U → S, V → U , W → U morphisms of schemes with U, V,W ∈ Ob(Schh). The
fibre product V ×U W in Schh is a fibre product in Sch and is the fibre product
of V/S with W/S over U/S in the category of all schemes over S, and hence also
a fibre product in (Sch/S)h. This proves the result for (Sch/S)h. If U, V,W are
affine, so is V ×U W and hence the result for (Aff/S)h. □

Next, we check that the big affine site defines the same topos as the big site.
Lemma 38.34.16.0EU4 Let S be a scheme. Let Schh be a big h site containing S. The
functor (Aff/S)h → (Sch/S)h is cocontinuous and induces an equivalence of topoi
from Sh((Aff/S)h) to Sh((Sch/S)h).
Proof. The notion of a special cocontinuous functor is introduced in Sites, Definition
7.29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 7.29.1.
Denote the inclusion functor u : (Aff/S)h → (Sch/S)h. Being cocontinuous follows
because any h covering of T/S, T affine, can be refined by a standard h covering
for example by Lemma 38.34.5. Hence (1) holds. We see u is continuous simply
because a standard h covering is a h covering. Hence (2) holds. Parts (3) and (4)
follow immediately from the fact that u is fully faithful. And finally condition (5)
follows from the fact that every scheme has an affine open covering (which is a h
covering). □
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Lemma 38.34.17.0EU5 Let F be a presheaf on (Sch/S)h. Then F is a sheaf if and only
if

(1) F satisfies the sheaf condition for Zariski coverings, and
(2) if f : V → U is proper, surjective, and of finite presentation, then F(U)

maps bijectively to the equalizer of the two maps F(V )→ F(V ×U V ).
Moreover, in the presence of (1) property (2) is equivalent to property

(2’) the sheaf property for {V → U} as in (2) with U affine.

Proof. We will show that if (1) and (2) hold, then F is sheaf. Let {Ti → T}
be a covering in (Sch/S)h. We will verify the sheaf condition for this covering.
Let si ∈ F(Ti) be sections which restrict to the same section over Ti ×T Ti′ . We
will show that there exists a unique section s ∈ F(T ) restricting to si over Ti.
Let T =

⋃
Uj be an affine open covering. By property (1) it suffices to produce

sections sj ∈ F(Uj) which agree on Uj ∩ Uj′ in order to produce s. Consider
the coverings {Ti ×T Uj → Uj}. Then sji = si|Ti×TUj are sections agreeing over
(Ti×T Uj)×Uj (Ti′ ×T Uj). Choose a proper surjective morphism Vj → Uj of finite
presentation and a finite affine open covering Vj =

⋃
Vjk such that {Vjk → Uj}

refines {Ti×T Uj → Uj}. See Lemma 38.34.5. If sjk ∈ F(Vjk) denotes the pullback
of sji to Vjk by the implied morphisms, then we find that sjk glue to a section
s′
j ∈ F(Vj). Using the agreement on overlaps once more, we find that s′

j is in
the equalizer of the two maps F(Vj) → F(Vj ×Uj Vj). Hence by (2) we find that
s′
j comes from a unique section sj ∈ F(Uj). We omit the verification that these

sections sj have all the desired properties.

Proof of the equivalence of (2) and (2’) in the presence of (1). Suppose V → U
is a morphism of (Sch/S)h which is proper, surjective, and of finite presentation.
Choose an affine open covering U =

⋃
Ui and set Vi = V ×U Ui. Then we see that

F(U)→ F(V ) is injective because we know F(Ui)→ F(Vi) is injective by (2’) and
we know F(U) →

∏
F(Ui) is injective by (1). Finally, suppose that we are given

an t ∈ F(V ) in the equalizer of the two maps F(V )→ F(V ×U V ). Then t|Vi is in
the equalizer of the two maps F(Vi) → F(Vi ×Ui Vi) for all i. Hence we obtain a
unique section si ∈ F(Ui) mapping to t|Vi for all i by (2’). We omit the verification
that si|Ui∩Uj = sj |Ui∩Uj for all i, j; this uses the uniqueness property just shown.
By the sheaf property for the covering U =

⋃
Ui we obtain a section s ∈ F(U). We

omit the proof that s maps to t in F(V ). □

Next, we establish some relationships between the topoi associated to these sites.

Lemma 38.34.18.0EU6 Let Schh be a big h site. Let f : T → S be a morphism in Schh.
The functor

u : (Sch/T )h −→ (Sch/S)h, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint

v : (Sch/S)h −→ (Sch/T )h, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi

fbig : Sh((Sch/T )h) −→ Sh((Sch/S)h)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.
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Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers. Hence Sites, Lemmas 7.21.5 and 7.21.6 apply and we deduce
the formula for f−1

big and the existence of fbig!. Moreover, the functor v is a right
adjoint because given U/T and V/S we have MorS(u(U), V ) = MorT (U, V ×S T )
as desired. Thus we may apply Sites, Lemmas 7.22.1 and 7.22.2 to get the formula
for fbig,∗. □

Lemma 38.34.19.0EU7 Given schemes X, Y , Y in (Sch/S)h and morphisms f : X → Y ,
g : Y → Z we have gbig ◦ fbig = (g ◦ f)big.

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 38.34.18. □

38.35. More on the h topology

0EUZ In this section we prove a few more results on the h topology. First, some non-
examples.

Example 38.35.1.0EV0 The “structure sheaf” O is not a sheaf in the h topology. For
example, consider a surjective closed immersion of finite presentation X → Y . Then
{X → Y } is an h covering for example by Lemma 38.34.7. Moreover, note that
X ×Y X = X. Thus if O where a sheaf in the h topology, then OY (Y )→ OX(X)
would be bijective. This is not the case as soon as X, Y are affine and the morphism
X → Y is not an isomorphism.

Example 38.35.2.0EV1 On any of the sites (Sch/S)h the topology is not subcanonical, in
other words, representable sheaves are not sheaves. Namely, the “structure sheaf”O
is representable because O(X) = MorS(X,A1

S) in (Sch/S)h and we saw in Example
38.35.1 that O is not a sheaf.

Lemma 38.35.3.0EV2 Let T be an affine scheme which is written as a limit T = limi∈I Ti
of a directed inverse system of affine schemes.

(1) Let V = {Vj → T}j=1,...,m be a standard h covering of T , see Definition
38.34.11. Then there exists an index i and a standard h covering Vi =
{Vi,j → Ti}j=1,...,m whose base change T ×Ti Vi to T is isomorphic to V.

(2) Let Vi, V ′
i be a pair of standard h coverings of Ti. If f : T×TiVi → T×TiV ′

i

is a morphism of coverings of T , then there exists an index i′ ≥ i and a
morphism fi′ : Ti′ ×Ti V → Ti′ ×Ti V ′

i whose base change to T is f .
(3) If f, g : V → V ′

i are morphisms of standard h coverings of Ti whose base
changes fT , gT to T are equal then there exists an index i′ ≥ i such that
fTi′ = gTi′ .

In other words, the category of standard h coverings of T is the colimit over I of
the categories of standard h coverings of Ti.

Proof. By Limits, Lemma 32.10.1 the category of schemes of finite presentation
over T is the colimit over I of the categories of finite presentation over Ti. By
Limits, Lemma 32.8.2 the same is true for category of schemes which are affine and
of finite presentation over T . To finish the proof of the lemma it suffices to show
that if {Vj,i → Ti}j=1,...,m is a finite family of finitely presented morphisms with
Vj,i affine, and the base change family {T ×Ti Vj,i → T} is an h covering, then for
some i′ ≥ i the family {Ti′ ×Ti Vj,i → Ti′} is an h covering. To see this we use
Lemma 38.34.5 to choose a finitely presented, proper, surjective morphism Y → T
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and a finite affine open covering Y =
⋃
k=1,...,n Yk such that {Yk → T}k=1,...,n

refines {T ×Ti Vj,i → T}. Using the arguments above and Limits, Lemmas 32.13.1,
32.8.15, and 32.4.11 we can find an i′ ≥ i and a finitely presented, surjective,
proper morphism Yi′ → Ti′ and an affine open covering Yi′ =

⋃
k=1,...,n Yi′,k such

that moreover {Yi′,k → Yi′} refines {Ti′ ×Ti Vj,i → Ti′}. It follows that this last
mentioned family is a h covering and the proof is complete. □

Lemma 38.35.4.0EV3 Let S be a scheme contained in a big site Schh. Let F : (Sch/S)opph →
Sets be an h sheaf satisfying property (b) of Topologies, Lemma 34.13.1 with
C = (Sch/S)h. Then the extension F ′ of F to the category of all schemes over
S satisfies the sheaf condition for all h coverings and is limit preserving (Limits,
Remark 32.6.2).

Proof. This is proven by the arguments given in the proofs of Topologies, Lemmas
34.13.3 and 34.13.4 using Lemmas 38.35.3 and 38.34.12. Details omitted. □

38.36. Blow up squares and the ph topology

0EW0 Let X be a scheme. Let Z ⊂ X be a closed subscheme such that the inclusion mor-
phism is of finite presentation, i.e., the quasi-coherent sheaf of ideals corresponding
to Z is of finite type. Let b : X ′ → X be the blowup of X in Z and let E = b−1(Z)
be the exceptional divisor. See Divisors, Section 31.32. In this situation and in this
section, let us say

(38.36.0.1)0EV5
E

��

// X ′

b

��
Z // X

is a blow up square.

Lemma 38.36.1.0EW1 Let F be a sheaf on a site (Sch/S)ph, see Topologies, Definition
34.8.11. Then for any blow up square (38.36.0.1) in the category (Sch/S)ph the
diagram

F(E) F(X ′)oo

F(Z)

OO

F(X)

OO

oo

is cartesian in the category of sets.

Proof. Since Z⨿X ′ → X is a surjective proper morphism we see that {Z⨿X ′ → X}
is a ph covering (Topologies, Lemma 34.8.6). We have

(Z ⨿X ′)×X (Z ⨿X ′) = Z ⨿ E ⨿ E ⨿X ′ ×X X ′

Since F is a Zariski sheaf we see that F sends disjoint unions to products. Thus the
sheaf condition for the covering {Z ⨿X ′ → X} says that F(X) → F(Z)× F(X ′)
is injective with image the set of pairs (t, s′) such that (a) t|E = s′|E and (b) s′ is
in the equalizer of the two maps F(X ′) → F(X ′ ×X X ′). Next, observe that the
obvious morphism

E ×Z E ⨿X ′ −→ X ′ ×X X ′
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is a surjective proper morphism as b induces an isomorphism X ′ \E → X \Z. We
conclude that F(X ′ ×X X ′)→ F(E ×Z E)×F(X ′) is injective. It follows that (a)
⇒ (b) which means that the lemma is true. □

Lemma 38.36.2.0EW2 Let F be a sheaf on a site (Sch/S)ph as in Topologies, Definition
34.8.11. Let X → X ′ be a morphism of (Sch/S)ph which is a thickening. Then
F(X ′)→ F(X) is bijective.

Proof. Observe that X → X ′ is a proper surjective morphism of and X×X′X = X.
By the sheaf property for the ph covering {X → X ′} (Topologies, Lemma 34.8.6)
we conclude. □

38.37. Almost blow up squares and the h topology

0EV4 Consider a blow up square (38.36.0.1). Although the morphism b : X ′ → X is
projective (Divisors, Lemma 31.32.13) in general there is no simple way to guarantee
that b is of finite presentation. Since h coverings are constructed using morphisms of
finite presentation, we need a variant. Namely, we will say a commutative diagram

(38.37.0.1)0EV6
E

��

// X ′

b

��
Z // X

of schemes is an almost blow up square if the following conditions are satisfied
(1) Z → X is a closed immersion of finite presentation,
(2) E = b−1(Z) is a locally principal closed subscheme of X ′,
(3) b is proper and of finite presentation,
(4) the closed subscheme X ′′ ⊂ X ′ cut out by the quasi-coherent ideal of

sections of OX′ supported on E (Properties, Lemma 28.24.5) is the blow
up of X in Z.

It follows that the morphism b induces an isomorphism X ′ \ E → X \ Z. For
some very simple examples of almost blow up squares, see Examples 38.37.10 and
38.37.11.
The base change of a blow up usually isn’t a blow up, but almost blow ups are
compatible with base change.

Lemma 38.37.1.0EV7 Consider an almost blow up square (38.37.0.1). Let Y → X be
any morphism. Then the base change

Y ×X E

��

// Y ×X X ′

��
Y ×X Z // Y

is an almost blow up square too.

Proof. The morphism Y ×X X ′ → Y is proper and of finite presentation by Mor-
phisms, Lemmas 29.41.5 and 29.21.4. The morphism Y ×X Z → Y is a closed
immersion (Morphisms, Lemma 29.2.4) of finite presentation. The inverse image of
Y ×X Z in Y ×X X ′ is equal to the inverse image of E in Y ×X X ′ and hence is
locally principal (Divisors, Lemma 31.13.11). Let X ′′ ⊂ X ′, resp. Y ′′ ⊂ Y ×X X ′

be the closed subscheme corresponding to the quasi-coherent ideal of sections of
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OX′ , resp. OY×YX′ supported on E, resp. Y ×X E. Clearly, Y ′′ ⊂ Y ×X X ′′ is the
closed subscheme corresponding to the quasi-coherent ideal of sections of OY×YX′′

supported on Y ×X (E ∩X ′′). Thus Y ′′ is the strict transform of Y relative to the
blowing up X ′′ → X, see Divisors, Definition 31.33.1. Thus by Divisors, Lemma
31.33.2 we see that Y ′′ is the blow up of Y ×X Z on Y . □

One can shrink almost blow up squares.

Lemma 38.37.2.0EV8 Consider an almost blow up square (38.37.0.1). Let W → X ′ be
a closed immersion of finite presentation. The following are equivalent

(1) X ′ \ E is scheme theoretically contained in W ,
(2) the blowup X ′′ of X in Z is scheme theoretically contained in W ,
(3) the diagram

E ∩W

��

// W

��
Z // X

is an almost blow up square. Here E ∩W is the scheme theoretic inter-
section.

Proof. Assume (1). Then the surjection OX′ → OW is an isomorphism over the
open X ′ ⊂ E. Since the ideal sheaf of X ′′ ⊂ X ′ is the sections of OX′ supported
on E (by our definition of almost blow up squares) we conclude (2) is true. If (2) is
true, then (3) holds. If (3) holds, then (1) holds because X ′′∩(X ′\E) is isomorphic
to X \ Z which in turn is isomorphic to X ′ \ E. □

The actual blowup is the limit of shrinkings of any given almost blowup.

Lemma 38.37.3.0EV9 Consider an almost blow up square (38.37.0.1) with X quasi-
compact and quasi-separated. Then the blowup X ′′ of X in Z can be written
as

X ′′ = limX ′
i

where the limit is over the directed system of closed subschemes X ′
i ⊂ X ′ of finite

presentation satisfying the equivalent conditions of Lemma 38.37.2.

Proof. Let I ⊂ OX′ be the quasi-coherent sheaf of ideals corresponding to X ′′. By
Properties, Lemma 28.22.3 we can write I as the filtered colimit I = colim Ii of its
quasi-coherent submodules of finite type. Since these modules correspond 1-to-1 to
the closed subschemes X ′

i the proof is complete. □

Almost blow up squares exist.

Lemma 38.37.4.0EVA LetX be a quasi-compact and quasi-separated scheme. Let Z ⊂ X
be a closed subscheme cut out by a finite type quasi-coherent sheaf of ideals. Then
there exists an almost blow up square as in (38.37.0.1).

Proof. We may write X = limXi as a directed limit of an inverse system of Noe-
therian schemes with affine transition morphisms, see Limits, Proposition 32.5.4.
We can find an index i and a closed immersion Zi → Xi whose base change to
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X is the closed immersion Z → X. See Limits, Lemmas 32.10.1 and 32.8.5. Let
bi : X ′

i → Xi be the blowing up with center Zi. This produces a blow up square

Ei //

��

X ′
i

bi

��
Zi // Xi

where all the morphisms are finite type morphisms of Noetherian schemes and
hence of finite presentation. Thus this is an almost blow up square. By Lemma
38.37.1 the base change of this diagram to X produces the desired almost blow up
square. □

Almost blow up squares are unique up to shrinking as in Lemma 38.37.2.

Lemma 38.37.5.0EVB Let X be a quasi-compact and quasi-separated scheme and let
Z ⊂ X be a closed subscheme cut out by a finite type quasi-coherent sheaf of ideals.
Suppose given almost blow up squares (38.37.0.1)

Ek //

��

X ′
k

��
Z // X

for k = 1, 2, then there exists an almost blow up square

E //

��

X ′

��
Z // X

and closed immersions ik : X ′ → X ′
k over X with E = i−1

k (Ek).

Proof. Denote X ′′ → X the blowing up of Z in X. We view X ′′ as a closed
subscheme of both X ′

1 and X ′
2. Write X ′′ = limX ′

1,i as in Lemma 38.37.3. By
Limits, Proposition 32.6.1 there exists an i and a morphism h : X ′

1,i → X ′
2 agreeing

with the inclusions X ′′ ⊂ X ′
1,i and X ′′ ⊂ X ′

2. By Limits, Lemma 32.4.20 the
restriction of h to X ′

1,i′ is a closed immersion for some i′ ≥ i. This finishes the
proof. □

Our flattening techniques for blowing up are inherited by almost blowups in favor-
able situations.

Lemma 38.37.6.0EVC Let Y be a quasi-compact and quasi-separated scheme. Let X be
a scheme of finite presentation over Y . Let V ⊂ Y be a quasi-compact open such

https://stacks.math.columbia.edu/tag/0EVB
https://stacks.math.columbia.edu/tag/0EVC


38.37. ALMOST BLOW UP SQUARES AND THE H TOPOLOGY 3487

that XV → V is flat. Then there exist a commutative diagram

E

��

  

Doo

��

~~
Y ′

��

X ′oo

��
Y Xoo

Z

>>

Too

``

whose right and left hand squares are almost blow up squares, whose lower and top
squares are cartesian, such that Z ∩ V = ∅, and such that X ′ → Y ′ is flat (and of
finite presentation).

Proof. If Y is a Noetherian scheme, then this lemma follows immediately from
Lemma 38.31.1 because in this case blow up squares are almost blow up squares
(we also use that strict transforms are blow ups). The general case is reduced to
the Noetherian case by absolute Noetherian approximation.

We may write Y = limYi as a directed limit of an inverse system of Noetherian
schemes with affine transition morphisms, see Limits, Proposition 32.5.4. We can
find an index i and a morphism Xi → Yi of finite presentation whose base change
to Y is X → Y . See Limits, Lemmas 32.10.1. After increasing i we may assume
V is the inverse image of an open subscheme Vi ⊂ Yi, see Limits, Lemma 32.4.11.
Finally, after increasing i we may assume that Xi,Vi → Vi is flat, see Limits, Lemma
32.8.7. By the Noetherian case, we may construct a diagram as in the lemma for
Xi → Yi ⊃ Vi. The base change of this diagram by Y → Yi provides the solution.
Use that base change preserves properties of morphisms, see Morphisms, Lemmas
29.41.5, 29.21.4, 29.2.4, and 29.25.8 and that base change of an almost blow up
square is an almost blow up square, see Lemma 38.37.1. □

Lemma 38.37.7.0EVD Let F be a sheaf on one of the sites (Sch/S)h constructed in
Definition 38.34.13. Then for any almost blow up square (38.37.0.1) in the category
(Sch/S)h the diagram

F(E) F(X ′)oo

F(Z)

OO

F(X)

OO

oo

is cartesian in the category of sets.

Proof. Since Z ⨿X ′ → X is a surjective proper morphism of finite presentation we
see that {Z ⨿X ′ → X} is an h covering (Lemma 38.34.7). We have

(Z ⨿X ′)×X (Z ⨿X ′) = Z ⨿ E ⨿ E ⨿X ′ ×X X ′

Since F is a Zariski sheaf we see that F sends disjoint unions to products. Thus the
sheaf condition for the covering {Z ⨿X ′ → X} says that F(X) → F(Z)× F(X ′)
is injective with image the set of pairs (t, s′) such that (a) t|E = s′|E and (b) s′ is
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in the equalizer of the two maps F(X ′) → F(X ′ ×X X ′). Next, observe that the
obvious morphism

E ×Z E ⨿X ′ −→ X ′ ×X X ′

is a surjective proper morphism of finite presentation as b induces an isomorphism
X ′\E → X \Z. We conclude that F(X ′×XX ′)→ F(E×ZE)×F(X ′) is injective.
It follows that (a) ⇒ (b) which means that the lemma is true. □

Lemma 38.37.8.0EVE Let F be a sheaf on one of the sites (Sch/S)h constructed in
Definition 38.34.13. Let X → X ′ be a morphism of (Sch/S)h which is a thickening
and of finite presentation. Then F(X ′)→ F(X) is bijective.

Proof. First proof. Observe that X → X ′ is a proper surjective morphism of finite
presentation and X×X′X = X. By the sheaf property for the h covering {X → X ′}
(Lemma 38.34.7) we conclude.
Second proof (silly). The blow up of X ′ in X is the empty scheme. The reason
is that the affine blowup algebra A[ Ia ] (Algebra, Section 10.70) is zero if a is a
nilpotent element of A. Details omitted. Hence we get an almost blow up square
of the form

∅ //

��

∅

��
X // X ′

Since F is a sheaf we have that F(∅) is a singleton. Applying Lemma 38.37.7 we
get the conclusion. □

Proposition 38.37.9.0EVF Let F be a presheaf on one of the sites (Sch/S)h constructed
in Definition 38.34.13. Then F is a sheaf if and only if the following conditions are
satisfied

(1) F is a sheaf for the Zariski topology,
(2) given a morphism f : X → Y of (Sch/S)h with Y affine and f surjective,

flat, proper, and of finite presentation, then F(Y ) is the equalizer of the
two maps F(X)→ F(X ×Y X),

(3) given an almost blow up square (38.37.0.1) with X affine in the category
(Sch/S)h the diagram

F(E) F(X ′)oo

F(Z)

OO

F(X)

OO

oo

is cartesian in the category of sets.

Proof. Assume F is a sheaf. Condition (1) holds because a Zariski covering is a
h covering, see Lemma 38.34.6. Condition (2) holds because for f as in (2) we
have that {X → Y } is an fppf covering (this is clear) and hence an h covering, see
Lemma 38.34.6. Condition (3) holds by Lemma 38.37.7.
Conversely, assume F satisfies (1), (2), and (3). We will prove F is a sheaf by ap-
plying Lemma 38.34.17. Consider a surjective, finitely presented, proper morphism
f : X → Y in (Sch/S)h with Y affine. It suffices to show that F(Y ) is the equalizer
of the two maps F(X)→ F(X ×Y X).
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First, assume that f : X → Y is in addition a closed immersion (in other words, f
is a thickening). Then the blow up of Y in X is the empty scheme and this produces
an almost blow up square consisting with ∅, ∅, X, Y at the vertices (compare with
the second proof of Lemma 38.37.8). Hence we see that condition (3) tells us that

F(∅) F(∅)oo

F(X)

OO

F(Y )

OO

oo

is cartesian in the category of sets. Since F is a sheaf for the Zariski topology, we
see that F(∅) is a singleton. Hence we see that F(X) = F(Y ).

Interlude A: let T → T ′ be a morphism of (Sch/S)h which is a thickening and
of finite presentation. Then F(T ′) → F(T ) is bijective. Namely, choose an affine
open covering T ′ =

⋃
T ′
i and let Ti = T ×T ′ T ′

i be the corresponding affine opens of
T . Then we have F(T ′

i )→ F(Ti) is bijective for all i by the result of the previous
paragraph. Using the Zariski sheaf property we see that F(T ′)→ F(T ) is injective.
Repeating the argument we find that it is bijective. Minor details omitted.

Interlude B: consider an almost blow up square (38.37.0.1) in the category (Sch/S)h.
Then we claim the diagram

F(E) F(X ′)oo

F(Z)

OO

F(X)

OO

oo

is cartesian in the category of sets. This is a consequence of condition (3) as follows
by choosing an affine open covering of X and arguing as in Interlude A. We omit
the details.

Next, let f : X → Y be a surjective, finitely presented, proper morphism in
(Sch/S)h with Y affine. Choose a generic flatness stratification

Y ⊃ Y0 ⊃ Y1 ⊃ . . . ⊃ Yt = ∅

as in More on Morphisms, Lemma 37.54.2 for f : X → Y . We are going to use all
the properties of the stratification without further mention. Set X0 = X ×Y Y0.
By the Interlude B we have F(Y0) = F(Y ), F(X0) = F(X), and F(X0 ×Y0 X0) =
F(X ×Y X).

We are going to prove the result by induction on t. If t = 1 then X0 → Y0 is
surjective, proper, flat, and of finite presentation and we see that the result holds
by property (2). For t > 1 we may replace Y by Y0 and X by X0 (see above) and
assume Y = Y0.
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Consider the quasi-compact open subscheme V = Y \ Y1 = Y0 \ Y1. Choose a
diagram

E

��

  

Doo

��

~~
Y ′

��

X ′oo

��
Y Xoo

Z

>>

Too

``

as in Lemma 38.37.6 for f : X → Y ⊃ V . Then f ′ : X ′ → Y ′ is flat and of finite
presentation. Also f ′ is proper (use Morphisms, Lemmas 29.41.4 and 29.41.7 to see
this). Thus the image W = f ′(X ′) ⊂ Y ′ is an open (Morphisms, Lemma 29.25.10)
and closed subscheme of Y ′. Observe that Y ′ \ E is contained in W . By Lemma
38.37.2 this means we may replace Y ′ by W in the above diagram. In other words,
we may and do assume f ′ is surjective. At this point we know that

F(E) F(Y ′)oo

F(Z)

OO

F(Y )

OO

oo

and

F(D) F(X ′)oo

F(T )

OO

F(X)

OO

oo

are cartesian by Interlude B. Note that Z ∩Y1 → Z is a thickening of finite presen-
tation (as Z is set theoretically contained in Y1 as a closed subscheme of Y disjoint
from V ). Thus we obtain a filtration

Z ⊃ Z ∩ Y1 ⊃ Z ∩ Y2 ⊂ . . . ⊂ Z ∩ Yt = ∅

as above for the restriction T = Z ×Y X → Z of f to T . Thus by induction
hypothesis we find that F(Z) → F(T ) is an injective map of sets whose image is
the equalizer of the two maps F(T )→ F(T ×Z T ).

Let s ∈ F(X) be in the equalizer of the two maps F(X) → F(X ×Y X). By the
above we see that the restriction s|T comes from a unique element t ∈ F(Z) and
similarly that the restriction s|X′ comes from a unique element t′ ∈ F(Y ′). Chasing
sections using the restriction maps for F corresponding to the arrows in the huge
commutative diagram above the reader finds that t and t′ restrict to the same
element of F(E) because they restrict to the same element of F(D) and we have
(2); here we use that D → E is surjective, flat, proper, and of finite presentation as
the restriction of X ′ → Y ′. Thus by the first of the two cartesian squares displayed
above we get a unique section u ∈ F(Y ) restricting to t and t′ on Z and Y ′. To see
that u restrict to s on X use the second diagram. □
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Example 38.37.10.0EVG Let A be a ring. Let f ∈ A be an element. Let J ⊂ A be a
finitely generated ideal annihilated by a power of f . Then

E = Spec(A/fA+ J) //

��

Spec(A/J) = X ′

��
Z = Spec(A/fA) // Spec(A) = X

is an almost blowup square.

Example 38.37.11.0EVH Let A be a ring. Let f1, f2 ∈ A be elements.

E = Proj(A/(f1, f2)[T0, T1]) //

��

Proj(A[T0, T1]/(f2T0 − f1T1) = X ′

��
Z = Spec(A/(f1, f2)) // Spec(A) = X

is an almost blowup square.

Lemma 38.37.12.0EVI Let F be a presheaf on one of the sites (Sch/S)h constructed in
Definition 38.34.13. Then F is a sheaf if and only if the following conditions are
satisfied

(1) F is a sheaf for the Zariski topology,
(2) given a morphism f : X → Y of (Sch/S)h with Y affine and f surjective,

flat, proper, and of finite presentation, then F(Y ) is the equalizer of the
two maps F(X)→ F(X ×Y X),

(3) F turns an almost blow up square as in Example 38.37.10 in the category
(Sch/S)h into a cartesian diagram of sets, and

(4) F turns an almost blow up square as in Example 38.37.11 in the category
(Sch/S)h into a cartesian diagram of sets.

Proof. By Proposition 38.37.9 it suffices to show that given an almost blow up
square (38.37.0.1) with X affine in the category (Sch/S)h the diagram

F(E) F(X ′)oo

F(Z)

OO

F(X)

OO

oo

is cartesian in the category of sets. The rough idea of the proof is to dominate the
morphism by other almost blowup squares to which we can apply assumptions (3)
and (4) locally.

Suppose we have an almost blow up square (38.37.0.1) in the category (Sch/S)h,
an open covering X =

⋃
Ui, and open coverings Ui ∩ Uj =

⋃
Uijk such that the

diagrams

F(E ∩ b−1(Ui)) F(b−1(Ui))oo

F(Z ∩ Ui)

OO

F(Ui)

OO

oo

and

F(E ∩ b−1(Uijk)) F(b−1(Uijk))oo

F(Z ∩ Uijk)

OO

F(Uijk)

OO

oo
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are cartesian, then the same is true for
F(E) F(X ′)oo

F(Z)

OO

F(X)

OO

oo

This follows as F is a sheaf in the Zariski topology.
In particular, if we have a blow up square (38.37.0.1) such that b : X ′ → X is a
closed immersion and Z is a locally principal closed subscheme, then we see that
F(X) = F(X ′)×F(E)F(Z). Namely, affine locally on X we obtain an almost blow
up square as in (3).
Let Z ⊂ X, Ek ⊂ X ′

k → X, E ⊂ X ′ → X, and ik : X ′ → X ′
k be as in the statement

of Lemma 38.37.5. Then
E

��

// X ′

��
Ek // X ′

k

is an almost blow up square of the kind discussed in the previous paragraph. Thus
F(X ′

k) = F(X ′)×F(E) F(Ek)
for k = 1, 2 by the result of the previous paragraph. It follows that

F(X) −→ F(X ′
k)×F(Ek) F(Z)

is bijective for k = 1 if and only if it is bijective for k = 2. Thus given a closed
immersion Z → X of finite presentation with X quasi-compact and quasi-separated,
whether or not F(X) = F(X ′)×F(E)F(Z) is independent of the choice of the almost
blow up square (38.37.0.1) one chooses. (Moreover, by Lemma 38.37.4 there does
indeed exist an almost blow up square for Z ⊂ X.)
Finally, consider an affine object X of (Sch/S)h and a closed immersion Z → X
of finite presentation. We will prove the desired property for the pair (X,Z) by
induction on the number of generators r for the ideal defining Z in X. If the number
of generators is ≤ 2, then we can choose our almost blow up square as in Example
38.37.11 and we conclude by assumption (4).
Induction step. Suppose X = Spec(A) and Z = Spec(A/(f1, . . . , fr)) with r > 2.
Choose a blow up square (38.37.0.1) for the pair (X,Z). Set Z1 = Spec(A/(f1, f2))
and let

E1

��

// Y

��
Z1 // X

be the almost blow up square constructed in Example 38.37.11. By Lemma 38.37.1
the base changes

(I)

Y ×X E //

��

Y ×X X ′

��
Y ×X Z // Y

and (II)

E //

��

Z1 ×X X ′

��
Z // Z1
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are almost blow up squares. The ideal of Z in Z1 is generated by r − 2 elements.
The ideal of Y ×X Z is generated by the pullbacks of f1, . . . , fr to Y . Locally on
Y the ideal generated by f1, f2 can be generated by one element, thus Y ×X Z is
affine locally on Y cut out by at most r−1 elements. By induction hypotheses and
the discussion above

F(Y ) = F(Y ×X X ′)×F(Y×XE) F(Y ×X Z)
and

F(Z1) = F(Z1 ×X X ′)×F(E) F(Z)
By assumption (4) we have

F(X) = F(Y )×F(E1) F(Z1)
Now suppose we have a pair (s′, t) with s′ ∈ F(X ′) and t ∈ F(Z) with same
restriction in F(E). Then (s′|Z1 ×X X ′, t) are the image of a unique element t1 ∈
F(Z1). Similarly, (s′|Y×XX′ , t|Y×XZ) are the image of a unique element sY ∈ F(Y ).
We claim that sY and t1 restrict to the same element of F(E1). This is true because
the almost blow up square

E1 ×X E //

��

E1 ×X X ′

��
E1 ×X Z // E1

is the base change of almost blow up square (I) via E1 → Y and the base change of
almost blow up square (II) via E1 → Z1 and because the pairs of sections used to
construct sY and t1 match. Thus by the third fibre product equality we see that
there is a unique s ∈ F(X) mapping to sY in F(Y ) and to t1 in F(Z). We omit
the verification that s maps to s′ in F(X ′) and to t in F(Z); hint: use uniqueness
of s just constructed and work affine locally. □

Lemma 38.37.13.0EX9 Let p : S → (Sch/S)h be a category fibred in groupoids. Then
S is a stack in groupoids if and only if the following conditions are satisfied

(1) S is a stack in groupoids for the Zariski topology,
(2) given a morphism f : X → Y of (Sch/S)h with Y affine and f surjective,

flat, proper, and of finite presentation, then
SY −→ SX ×SX×Y X

SX
is an equivalence of categories,

(3) for an almost blow up square as in Example 38.37.10 or 38.37.11 in the
category (Sch/S)h the functor

SX −→ SZ ×SE SX′

is an equivalence of categories.

Proof. This lemma is a formal consequence of Lemma 38.37.12 and our defnition of
stacks in groupoids. For example, assume (1), (2), (3). To show that S is a stack,
we have to prove descent for morphisms and objects, see Stacks, Definition 8.5.1.
If x, y are objects of S over an object U of (Sch/S)h, then our assumptions imply
Isom(x, y) is a presheaf on (Sch/U)h which satisfies (1), (2), (3), and (4) of Lemma
38.37.12 and therefore is a sheaf. Some details omitted.

https://stacks.math.columbia.edu/tag/0EX9
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Let {Ui → U}i∈I be a covering of (Sch/S)h. Let (xi, φij) be a descent datum in S
relative to the family {Ui → U}i∈I , see Stacks, Definition 8.3.1. Consider the rule
F which to V/U in (Sch/U)h associates the set of pairs (y, ψi) where y is an object
of SV and ψi : y|Ui×UV → xi|Ui×UV is a morphism of S over Ui ×U V such that

φij |Ui×UUj×UV ◦ ψi|Ui×UUj×UV = ψj |Ui×UUj×UV

up to isomorphism. Since we already have descent for morphisms, it is clear that
F (V/U) is either empty or a singleton set. On the other hand, we have F (Ui0/U)
is nonempty because it contains (xi0 , φi0i). Since our goal is to prove that F (U/U)
is nonempty, it suffices to show that F is a sheaf on (Sch/U)h. To do this we may
use the criterion of Lemma 38.37.12. However, our assumptions (1), (2), (3) imply
(by drawing some commutative diagrams which we omit), that properties (1), (2),
(3), and (4) of Lemma 38.37.12 hold for F .
We omit the verification that if S is a stack in groupoids, then (1), (2), and (3) are
satisfied. □

38.38. Absolute weak normalization and h coverings

0EVS In this section we use the criteria found in Section 38.37 to exhibit some h sheaves
and we relate h sheafification of the structure sheaf to absolute weak normalization.
We will need the following elementary lemma to do this.

Lemma 38.38.1.0EVJ Let Z,X,X ′, E be an almost blow up square as in Example
38.37.11. Then Hp(X ′,OX′) = 0 for p > 0 and Γ(X,OX) → Γ(X ′,OX′) is a
surjective map of rings whose kernel is an ideal of square zero.

Proof. First assume that A = Z[f1, f2] is the polynomial ring. In this case our
almost blow up square is the blowing up of X = Spec(A) in the closed subscheme
Z and in fact X ′ ⊂ P1

X is an effective Cartier divisor cut out by the global section
f2T0 − f1T1 of OP1

X
(1). Thus we have a resolution

0→ OP1
X

(−1)→ OP1
X
→ OX′ → 0

Using the description of the cohomology given in Cohomology of Schemes, Section
30.8 it follows that in this case Γ(X,OX) → Γ(X ′,OX′) is an isomorphism and
H1(X ′,OX′) = 0.
Next, we observe that any diagram as in Example 38.37.11 is the base change of the
diagram in the previous paragraph by the ring map Z[f1, f2]→ A. Hence by More
on Morphisms, Lemmas 37.72.1, 37.72.2, and 37.72.4 we conclude that H1(X ′,OX′)
is zero in general and the surjectivity of the map H0(X,OX) → H0(X ′,OX′) in
general.
Next, in the general case, let us study the kernel. If a ∈ A maps to zero, then
looking on affine charts we see that

a = (f1x− f2)(a0 + a1x+ . . .+ arx
r) in A[x]

for some r ≥ 0 and a0, . . . , ar ∈ A and similarly
a = (f1 − f2y)(b0 + b1y + . . .+ bsy

s) in A[y]
for some s ≥ 0 and b0, . . . , bs ∈ A. This means we have

a = f2a0, f1a0 = f2a1, . . . , f1ar = 0, a = f1b0, f2b0 = f1b1, . . . , f2bs = 0
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If (a′, r′, a′
i, s

′, b′
j) is a second such system, then we have
aa′ = f1f2a0b

′
0 = f1f2a1b

′
1 = f1f2a2b

′
2 = . . . = 0

as desired. □

For an Fp-algebra A we set colimF A equal to the colimit of the system

A
F−→ A

F−→ A
F−→ . . .

where F : A→ A, a 7→ ap is the Frobenius endomorphism.

Lemma 38.38.2.0EVK Let p be a prime number. Let S be a scheme over Fp. Let
(Sch/S)h be a site as in Definition 38.34.13. There is a unique sheaf F on (Sch/S)h
such that

F(X) = colimF Γ(X,OX)
for any quasi-compact and quasi-separated object X of (Sch/S)h.

Proof. Denote F the Zariski sheafification of the functor
X −→ colimF Γ(X,OX)

For quasi-compact and quasi-separated schemesX we have F(X) = colimF Γ(X,OX).
by Sheaves, Lemma 6.29.1 and the fact that O is a sheaf for the Zariski topology.
Thus it suffices to show that F is a h sheaf. To prove this we check conditions (1),
(2), (3), and (4) of Lemma 38.37.12. Condition (1) holds because we performed an
(almost unnecessary) Zariski sheafification. Condition (2) holds because O is an
fppf sheaf (Descent, Lemma 35.8.1) and if A is the equalizer of two maps B → C of
Fp-algebras, then colimF A is the equalizer of the two maps colimF B → colimF C.
We check condition (3). Let A, f, J be as in Example 38.37.10. We have to show
that

colimF A = colimF A/J ×colimF A/fA+J colimF A/fA

This reduces to the following algebra question: suppose a′, a′′ ∈ A are such that
Fn(a′ − a′′) ∈ fA + J . Find a ∈ A and m ≥ 0 such that a − Fm(a′) ∈ J and
a − Fm(a′′) ∈ fA and show that the pair (a,m) is uniquely determined up to a
replacement of the form (a,m) 7→ (F (a),m+1). To do this just write Fn(a′−a′′) =
fh+g with h ∈ A and g ∈ J and set a = Fn(a′)−g = Fn(a′′) +fh and set m = n.
To see uniqueness, suppose (a1,m1) is a second solution. By a replacement of the
form given above we may assume m = m1. Then we see that a − a1 ∈ J and
a − a1 ∈ fA. Since J is annihilated by a power of f we see that a − a1 is a
nilpotent element. Hence F k(a − a1) is zero for some large k. Thus after doing
more replacements we get a = a1.
We check condition (4). Let X,X ′, Z,E be as in Example 38.37.11. By Lemma
38.38.1 we see that

F(X) = colimF Γ(X,OX) −→ colimF Γ(X ′,OX′) = F(X ′)
is bijective. Since E = P1

Z in this case we also see that F(Z)→ F(E) is bijective.
Thus the conclusion holds in this case as well. □

Let p be a prime number. For an Fp-algebra A we set limF A equal to the limit of
the inverse system

. . .
F−→ A

F−→ A
F−→ A

where F : A→ A, a 7→ ap is the Frobenius endomorphism.
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Lemma 38.38.3.0EVL Let p be a prime number. Let S be a scheme over Fp. Let
(Sch/S)h be a site as in Definition 38.34.13. The rule

F(X) = limF Γ(X,OX)
defines a sheaf on (Sch/S)h.

Proof. To prove F is a sheaf, let’s check conditions (1), (2), (3), and (4) of Lemma
38.37.12. Condition (1) holds because limits of sheaves are sheaves and O is a
Zariski sheaf. Condition (2) holds because O is an fppf sheaf (Descent, Lemma
35.8.1) and if A is the equalizer of two maps B → C of Fp-algebras, then limF A is
the equalizer of the two maps limF B → limF C.
We check condition (3). Let A, f, J be as in Example 38.37.10. We have to show
that

limF A→ limF A/J ×limF A/fA+J limF A/fA

= limF (A/J ×A/fA+J A/fA)
= limF A/(fA ∩ J)

is bijective. Since J is annihilated by a power of f we see that a = fA ∩ J is a
nilpotent ideal, i.e., there exists an n such that an = 0. It is straightforward to
verify that in this case limF A→ limF A/a is bijective.
We check condition (4). Let X,X ′, Z,E be as in Example 38.37.11. By Lemma
38.38.1 and the same argument as above we see that

F(X) = limF Γ(X,OX) −→ limF Γ(X ′,OX′) = F(X ′)
is bijective. Since E = P1

Z in this case we also see that F(Z)→ F(E) is bijective.
Thus the conclusion holds in this case as well. □

In the following lemma we use the absolute weak normalization Xawn of a scheme
X, see Morphisms, Section 29.47.

Lemma 38.38.4.0EVT Let (Sch/S)ph be a site as in Topologies, Definition 34.8.11. The
rule

X 7−→ Γ(Xawn,OXawn)
is a sheaf on (Sch/S)ph.

Proof. To prove F is a sheaf, let’s check conditions (1) and (2) of Topologies,
Lemma 34.8.15. Condition (1) holds because formation of Xawn commutes with
open coverings, see Morphisms, Lemma 29.47.7 and its proof.
Let π : Y → X be a surjective proper morphism. We have to show that the
equalizer of the two maps

Γ(Y awn,OY awn)→ Γ((Y ×X Y )awn,O(Y×XY )awn)
is equal to Γ(Xawn,OXawn). Let f be an element of this equalizer. Then we
consider the morphism

f : Y awn −→ A1
X

Since Y awn → X is universally closed, the scheme theoretic image Z of f is a
closed subscheme of A1

X proper over X and f : Y awn → Z is surjective. See
Morphisms, Lemma 29.41.10. Thus Z → X is finite (Morphisms, Lemma 29.44.11)
and surjective.
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Let k be a field and let z1, z2 : Spec(k)→ Z be two morphisms equalized by Z → X.
We claim that z1 = z2. It suffices to show the images λi = z∗

i f ∈ k agree (as the
structure sheaf of Z is generated by f over the structure sheaf of X). To see this
we choose a field extension K/k and morphisms y1, y2 : Spec(K)→ Y awn such that
zi ◦ (Spec(K) → Spec(k)) = f ◦ yi. This is possible by the surjectivity of the map
Y awn → Z. Choose an algebraically closed extension Ω/k of very large cardinality.
For any k-algebra maps σi : K → Ω we obtain

Spec(Ω) σ1,σ2−−−→ Spec(K ⊗k K) y1,y2−−−→ Y awn ×X Y awn

Since the canonical morphism (Y ×X Y )awn → Y awn×X Y awn is a universal home-
omorphism and since Ω is algebraically closed, we can lift the composition above
uniquely to a morphism Spec(Ω)→ (Y ×X Y )awn. Since f is in the equalizer above,
this proves that σ1(λ1) = σ2(λ2). An easy lemma about field extensions shows that
this implies λ1 = λ2; details omitted.

We conclude that Z → X is universally injective, i.e., Z → X is injective on
points and induces purely inseparated residue field extensions (Morphisms, Lemma
29.10.2). All in all we conclude that Z → X is a universal homeomorphism, see
Morphisms, Lemma 29.45.5.

Let g : Xawn → Z be the map obtained from the universal property of Xawn.
Then Y awn → Xawn → Z and f : Y awn → Z are two morphisms over X. By the
universal property of Y awn → Y the two corresponding morphisms Y awn → Y ×XZ
over Y have to be equal. This implies that g ◦ πwan = f as morphisms into A1

X

and we conclude that g ∈ Γ(Xawn,OXawn) is the element we were looking for. □

Lemma 38.38.5.0EVU Let S be a scheme. Choose a site (Sch/S)h as in Definition
38.34.13. The rule

X 7−→ Γ(Xawn,OXawn)
is the sheafification of the “structure sheaf” O on (Sch/S)h. Similarly for the ph
topology.

Proof. In Lemma 38.38.4 we have seen that the rule F of the lemma defines a sheaf
in the ph topology and hence a fortiori a sheaf for the h topology. Clearly, there is
a canonical map of presheaves of rings O → F . To finish the proof, it suffices to
show

(1) if f ∈ O(X) maps to zero in F(X), then there is a h covering {Xi → X}
such that f |Xi = 0, and

(2) given f ∈ F(X) there is a h covering {Xi → X} such that f |Xi is the
image of fi ∈ O(Xi).

Let f be as in (1). Then f |Xawn = 0. This means that f is locally nilpotent. Thus
if X ′ ⊂ X is the closed subscheme cut out by f , then X ′ → X is a surjective
closed immersion of finite presentation. Hence {X ′ → X} is the desired h covering.
Let f be as in (2). After replacing X by the members of an affine open covering
we may assume X = Spec(A) is affine. Then f ∈ Aawn, see Morphisms, Lemma
29.47.6. By Morphisms, Lemma 29.46.11 we can find a ring map A → B of finite
presentation such that Spec(B)→ Spec(A) is a universal homeomorphism and such
that f is the image of an element b ∈ B under the canonical map B → Aawn. Then
{Spec(B)→ Spec(A)} is an h covering and we conclude. The statement about the
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ph topology follows in the same manner (or it can be deduced from the statement
for the h topology). □

Let p be a prime number. An Fp-algebra A is called perfect if the map F : A→ A,
x 7→ xp is an automorphism of A.

Lemma 38.38.6.0EVV Let p be a prime number. An Fp-algebra A is absolutely weakly
normal if and only if it is perfect.

Proof. It is immediate from condition (2)(b) in Morphisms, Definition 29.47.1 that
if A is absolutely weakly normal, then it is perfect.
Assume A is perfect. Suppose x, y ∈ A with x3 = y2. If p > 3 then we can write
p = 2n+ 3m for some n,m > 0. Choose a, b ∈ A with ap = x and bp = y. Setting
c = anbm we have

c2p = x2ny2m = x2n+3m = xp

and hence c2 = x. Similarly c3 = y. If p = 2, then write x = a2 to get a6 = y2

which implies a3 = y. If p = 3, then write y = a3 to get x3 = a6 which implies
x = a2.
Suppose x, y ∈ A with ℓℓx = yℓ for some prime number ℓ. If ℓ ̸= p, then a = y/ℓ
satsifies aℓ = x and ℓa = y. If ℓ = p, then y = 0 and x = ap for some a. □

Lemma 38.38.7.0EVW Let p be a prime number.
(1) If A is an Fp-algebra, then colimF A = Aawn.
(2) If S is a scheme over Fp, then the h sheafification of O sends a quasi-

compact and quasi-separated X to colimF Γ(X,OX).

Proof. Proof of (1). Observe that A → colimF A induces a universal homeo-
morphism on spectra by Algebra, Lemma 10.46.7. Thus it suffices to show that
B = colimF A is absolutely weakly normal, see Morphisms, Lemma 29.47.6. Note
that the ring map F : B → B is an automorphism, in other words, B is a perfect
ring. Hence Lemma 38.38.6 applies.
Proof of (2). This follows from (1) and Lemmas 38.38.2 and 38.38.5 by looking
affine locally. □

38.39. Descent vector bundles in positive characteristic

0EXA A reference for this section is [BS17].
For a scheme S let us denote Vect(S) the category of finite locally free OS-modules.
Let p be a prime number. Let S be a quasi-compact and quasi-separated scheme
over Fp. In this section we will work with the category

colimF Vect(S) = colim
(

Vect(S) F∗

−−→ Vect(S) F∗

−−→ Vect(S) F∗

−−→ . . .
)

where F : S → S is the absolute Frobenius morphism. In down to earth terms an
object of this category is a pair (E , n) where E is a finite locally free OS-module
and n ≥ 0 is an integer. For morphisms we take

HomcolimF Vect(S)((E , n), (G,m)) = colimN HomS(FN−n,∗E , FN−m,∗G)
where F : S → S is the absolute Frobenius morphism of S. Thus the object (E , n)
is isomorphic to the object (F ∗E , n+ 1).
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Lemma 38.39.1.0EXB Let p be a prime number. Let S be a quasi-compact and quasi-
separated scheme over Fp. The category colimF Vect(S) is equivalent to the cate-
gory of finite locally free modules over the sheaf of rings colimF OS on S.

Proof. Omitted. □

Lemma 38.39.2.0EXC Let p be a prime number. Consider an almost blowup square
X,X ′, Z,E in characteristic p as in Example 38.37.10. Then the functor

colimF Vect(X) −→ colimF Vect(Z)×colimF Vect(E) colimF Vect(X ′)

is an equivalence.

Proof. Let A, f, J be as in Example 38.37.10. Since all our schemes are affine and
since we have internal Hom in the category of vector bundles, the fully faithfulness
of the functor follows if we can show that

colimP ⊗A,FN A = colimP ⊗A,FN A/J ×colimP⊗A,FNA/fA+J colimP ⊗A,FN A/fA

for a finite projective A-module P . After writing P as a summand of a finite free
module, this follows from the case where P is finite free. This case immediately
reduces to the case P = A. The case P = A follows from Lemma 38.38.2 (in fact
we proved this case directly in the proof of this lemma).

Essential surjectivity. Here we obtain the following algebra problem. Suppose P1
is a finite projective A/J-module, P2 is a finite projective A/fA-module, and

φ : P1 ⊗A/J A/fA+ J −→ P2 ⊗A/fA A/fA+ J

is an isomorphism. Goal: show that there exists an N , a finite projective A-
module P , an isomorphism φ1 : P ⊗AA/J → P1⊗A/J,FN A/J , and an isomorphism
φ2 : P ⊗A A/fA → P2 ⊗A/fA,FN A/fA compatible with φ in an obvious manner.
This can be seen as follows. First, observe that

A/(J ∩ fA) = A/J ×A/fA+J A/fA

Hence by More on Algebra, Lemma 15.6.9 there is a finite projective module P ′

over A/(J ∩ fA) which comes with isomorphisms φ′
1 : P ′ ⊗A A/J → P1 and

φ2 : P ′⊗AA/fA→ P2 compatible with φ. Since J is a finitely generated ideal and
f -power torsion we see that J ∩ fA is a nilpotent ideal. Hence for some N there is
a factorization

A
α−→ A/(J ∩ fA) β−→ A

of FN . Setting P = P ′ ⊗A/(J∩fA),β A we conclude. □

Lemma 38.39.3.0EXD Let p be a prime number. Consider an almost blowup square
X,X ′, Z,E in characteristic p as in Example 38.37.11. Then the functor

G : colimF Vect(X) −→ colimF Vect(Z)×colimF Vect(E) colimF Vect(X ′)

is an equivalence.

Proof. Fully faithfulness. Suppose that (E , n) and (F ,m) are objects of colimF Vect(X).
Let (a, b) : G(E , n) → G(F ,m) be a morphism in the RHS. We may choose
N ≫ 0 and think of a as a map a : FN−n,∗E|Z → FN−m,∗F|Z and b as a map
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b : FN−n,∗E|X′ → FN−m,∗F|X′ agreeing over E. Choose a finite affine open cov-
ering X = X1 ∪ . . .∪Xn such that E|Xi and F|Xi are finite free OXi-modules. For
each i the base change

Ei //

��

X ′
i

��
Zi // Xi

is another almost blow up square as in Example 38.37.11. For these squares we
know that
colimF H

0(Xi,OXi) = colimF H
0(Zi,OZi)×colimF H0(Ei,OEi

) colimF H
0(X ′

i,OX′
i
)

by Lemma 38.38.2 (see proof of the lemma). Hence after increasing N we may
assume the maps a|Zi and b|X′

i
come from maps ci : FN−n,∗E|Xi → FN−m,∗F|Xi .

After possibly increasing N we may assume ci and cj agree on Xi∩Xj . Thus these
maps glue to give the desired morphism (E , n)→ (F ,m) in the LHS.
Essential surjectivity. Let (F ,G, φ) be a triple consisting of a finite locally free OZ-
module F , a finite locally free OX′ -module G, and an isomorphism φ : F|E → G|E .
We have to show that after replacing this triple by a Frobenius power pullback, it
comes from a finite locally free OX -module.
Noetherian reduction; we urge the reader to skip this paragraph. Recall that X =
Spec(A) and Z = Spec(A/(f1, f2)), X ′ = Proj(A[T0, T1]/(f2T0 − f1T1)), and E =
P1
Z . By Limits, Lemma 32.10.3 we can find a finitely generated Fp-subalgebra A0 ⊂

A containing f1 and f2 such that the triple (F ,G, φ) descends to X0 = Spec(A0)
and Z0 = Spec(A0/(f1, f2)), X ′

0 = Proj(A0[T0, T1]/(f2T0 − f1T1)), and E0 = P1
Z0

.
Thus we may assume our schemes are Noetherian.
Assume X is Noetherian. We may choose a finite affine open covering X = X1 ∪
. . .∪Xn such that F|Z∩Xi is free. Since we can glue objects of colimF Vect(X) in the
Zariski topology (Lemma 38.39.1), and since we already know fully faithfulness over
Xi and Xi ∩Xj (see first paragraph of the proof), it suffices to prove the existence
over each Xi. This reduces us to the case discussed in the next paragraph.
Assume X is Noetherian and F = O⊕r

Z . Using φ we get an isomorphism O⊕r
E →

G|E . Let I = (f1, f2) ⊂ A. Let I ⊂ OX′ be the ideal sheaf of E; it is globally
generated by f1 and f2. For any n there is a surjection

(In/In+1)⊕r = In/In+1 ⊗OE
G|E −→ InG/In+1G

Hence the first cohomology group of this module is zero. Here we use that E = P1
Z

and hence its structure sheaf and in fact any globally generated quasi-coherent
module has vanishing H1. Compare with More on Morphisms, Lemma 37.72.3.
Then using the short exact sequences

0→ InG/In+1G → G/In+1G → G/InG → 0
and induction, we see that

limH0(X ′,G/InG)→ H0(E,G|E) = H0(E,O⊕r
E ) = A/I⊕r

is surjective. By the theorem on formal functions (Cohomology of Schemes, Theo-
rem 30.20.5) this implies that

H0(X ′,G)→ H0(E,G|E) = H0(E,O⊕r
E ) = A/I⊕r
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is surjective. Thus we can choose a map α : O⊕r
X′ → G which is compatible with the

given trivialization of G|E . Thus α is an isomorphism over an open neighbourhood
of E in X ′. Thus every point of Z has an affine open neighbourhood where we can
solve the problem. Since X ′ \ E → X \ Z is an isomorphism, the same holds for
points of X not in Z. Thus another Zariski glueing argument finishes the proof. □

Proposition 38.39.4.0EXE Let p be a prime number. Let S be a scheme in characteristic
p. Then the category fibred in groupoids

p : S −→ (Sch/S)h
whose fibre category over U is the category of finite locally free colimF OU -modules
over U is a stack in groupoids. Moreover, if U is quasi-compact and quasi-separated,
then SU is colimF Vect(U).

Proof. The final assertion is the content of Lemma 38.39.1. To prove the proposition
we will check conditions (1), (2), and (3) of Lemma 38.37.13.
Condition (1) holds because by definition we have glueing for the Zariski topology.
To see condition (2), suppose that f : X → Y is a surjective, flat, proper morphism
of finite presentation over S with Y affine. Since Y,X,X ×Y X are quasi-compact
and quasi-separated, we can use the description of fibre categories given in the
statement of the proposition. Then it is clearly enough to show that

Vect(Y ) −→ Vect(X)×Vect(X×YX) Vect(X)
is an equivalence (as this will imply the same for the colimits). This follows im-
mediately from fppf descent of finite locally free modules, see Descent, Proposition
35.5.2 and Lemma 35.7.6.
Condition (3) is the content of Lemmas 38.39.2 and 38.39.3. □

Lemma 38.39.5.0EXF Let f : X → S be a proper morphism with geometrically con-
nected fibres where S is the spectrum of a discrete valuation ring. Denote η ∈ S the
generic point and denote Xn ⊂ X the closed subscheme cutout by the nth power of
a uniformizer on S. Then there exists an integer n such that the following is true:
any finite locally free OX -module E such that E|Xη and E|Xn are free, is free.

Proof. We first reduce to the case where X → S has a section. Say S = Spec(A).
Choose a closed point ξ of Xη. Choose an extension of discrete valuation rings
A ⊂ B such that the fraction field of B is κ(ξ). This is possible by Krull-Akizuki
(Algebra, Lemma 10.120.18) and the fact that κ(ξ) is a finite extension of the
fraction field of A. By the valuative criterion of properness (Morphisms, Lemma
29.42.1) we get a B-valued point τ : Spec(B) → X which induces a section σ :
Spec(B) → XB . For a finite locally free OX -module E let EB be the pullback to
the base change XB . By flat base change (Cohomology of Schemes, Lemma 30.5.2)
we see that H0(XB , EB) = H0(X, E) ⊗A B. Thus if EB is free of rank r, then the
sections in H0(X, E) generate the free B-module τ∗E = σ∗EB . In particular, we
can find r global sections s1, . . . , sr of E which generate τ∗E . Then

s1, . . . , sr : O⊕r
X −→ E

is a map of finite locally free OX -modules of rank r and the pullback to XB is a
map of free OXB -modules which restricts to an isomorphism in one point of each
fibre. Taking the determinant we get a function g ∈ Γ(Xη,OXB ) which is invertible

https://stacks.math.columbia.edu/tag/0EXE
https://stacks.math.columbia.edu/tag/0EXF
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in one point of each fibre. As the fibres are proper and connected, we see that g
must be invertible (details omitted; hint: use Varieties, Lemma 33.9.3). Thus it
suffices to prove the lemma for the base change XB → Spec(B).
Assume we have a section σ : S → X. Let E be a finite locally free OX -module
which is assumed free on the generic fibre and on Xn (we will choose n later).
Choose an isomorphism σ∗E = O⊕r

S . Consider the map
K = RΓ(X, E) −→ RΓ(S, σ∗E) = A⊕r

in D(A). Arguing as above, we see E is free if (and only if) the induced map
H0(K) = H0(X, E)→ A⊕r is surjective.
Set L = RΓ(X,O⊕r

X ) and observe that the corresponding map L → A⊕r has the
desired property. Observe that K ⊗A Q(A) ∼= L⊗A Q(A) by flat base change and
the assumption that E is free on the generic fibre. Let π ∈ A be a uniformizer.
Observe that

K ⊗L
A A/π

mA = RΓ(X, E πm−−→ E)
and similarly for L. Denote Etors ⊂ E the coherent subsheaf of sections supported
on the special fibre and similarly for other OX -modules. Choose k > 0 such that
(OX)tors → OX/πkOX is injective (Cohomology of Schemes, Lemma 30.10.3).
Since E is locally free, we see that Etors ⊂ E/πkE . Then for n ≥ m + k we have
isomorphisms

(E πm−−→ E) ∼= (E/πkE πm−−→ E/πk+mE)
∼= (O⊕r

X /πkO⊕r
X

πm−−→ O⊕r
X /πk+mO⊕r

X )
∼= (O⊕r

X
πm−−→ O⊕r

X )

in D(OX). This determines an isomorphism
K ⊗L

A A/π
mA ∼= L⊗L

A A/π
mA

in D(A) (holds when n ≥ m+k). Observe that these isomorphisms are compatible
with pulling back by σ hence in particular we conclude that K ⊗L

A A/πmA →
(A/πmA)⊕r defines an surjection on degree 0 cohomology modules (as this is true
for L). Since A is a discrete valuation ring, we have

K ∼=
⊕

Hi(K)[−i] and L ∼=
⊕

Hi(L)[−i]

in D(A). See More on Algebra, Example 15.69.3. The cohomology groups Hi(K) =
Hi(X, E) and Hi(L) = Hi(X,OX)⊕r are finite A-modules by Cohomology of
Schemes, Lemma 30.19.2. By More on Algebra, Lemma 15.124.3 these modules
are direct sums of cyclic modules. We have seen above that the rank βi of the free
part of Hi(K) and Hi(L) are the same. Next, observe that

Hi(L⊗L
A A/π

mA) = Hi(L)/πmHi(L)⊕Hi+1(L)[πm]
and similarly for K. Let e be the largest integer such that A/πeA occurs as a
summand of Hi(X,OX), or equivalently Hi(L), for some i. Then taking m = e+ 1
we see that Hi(L ⊗L

A A/π
mA) is a direct sum of βi copies of A/πmA and some

other cyclic modules each annihilated by πe. By the same reasoning for K and
the isomorphism K ⊗L

A A/π
mA ∼= L⊗L

A A/π
mA it follows that Hi(K) cannot have

any cyclic summands of the form A/πlA with l > e. (It also follows that K is
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isomorphic to L as an object of D(A), but we won’t need this.) Then the only way
the map
H0(K ⊗L

A A/π
e+1A) = H0(K)/πe+1H0(K)⊕H1(K)[πe+1] −→ (A/πe+1A)⊕r

is surjective, is if it is surjective on the first summand. This is what we wanted
to show. (To be precise, the integer n in the statement of the lemma, if there is a
section σ, should be equal to k+ e+ 1 where k and e are as above and depend only
on X.) □

Lemma 38.39.6.0EXG Let f : X → S be a morphism of schemes. Let E be a finite
locally free OX -module. Assume

(1) f is flat and proper and OS = f∗OX ,
(2) S is a normal Noetherian scheme,
(3) the pullback of E to X×S Spec(OS,s) is free for every codimension 1 point

s ∈ S.
Then E is isomorphic to the pullback of a finite locally free OS-module.

Proof. We will prove the canonical map
Φ : f∗f∗E −→ E

is an isomorphism. By flat base change (Cohomology of Schemes, Lemma 30.5.2)
and assumptions (1) and (3) we see that the pullback of this to X ×S Spec(OS,s) is
an isomorphism for every codimension 1 point s ∈ S. By Divisors, Lemma 31.2.11
it suffices to prove that depth((f∗f∗E)x) ≥ 2 for any point x ∈ X mapping to a
point s ∈ S of codimension ≥ 2. Since f is flat and (f∗f∗E)x = (f∗E)s ⊗OS,s

OX,x,
it suffices to prove that depth((f∗E)s) ≥ 2, see Algebra, Lemma 10.163.2. Since
S is a normal Noetherian scheme and dim(OS,s) ≥ 2 we have depth(OS,s) ≥ 2,
see Properties, Lemma 28.12.5. Thus we get what we want from Divisors, Lemma
31.6.6. □

We can use the results above to prove the following miraculous statement.

Theorem 38.39.7.0EXH Let p be a prime number. Let Y be a quasi-compact and quasi-
separated scheme over Fp. Let f : X → Y be a proper, surjective morphism of
finite presentation with geometrically connected fibres. Then the functor

colimF Vect(Y ) −→ colimF Vect(X)
is fully faithful with essential image described as follows. Let E be a finite locally
free OX -module. Assume for all y ∈ Y there exists integers ny, ry ≥ 0 such that

Fny,∗E|Xy,red ∼= O
⊕ry
Xy,red

Then for some n ≥ 0 the nth Frobenius power pullback Fn,∗E is the pullback of a
finite locally free OY -module.

Proof. Proof of fully faithfulness. Since vectorbundles on Y are locally trivial, this
reduces to the statement that

colimF Γ(Y,OY ) −→ colimF Γ(X,OX)
is bijective. Since {X → Y } is an h covering, this will follow from Lemma 38.38.2
if we can show that the two maps

colimF Γ(X,OX) −→ colimF Γ(X ×Y X,OX×YX)

https://stacks.math.columbia.edu/tag/0EXG
https://stacks.math.columbia.edu/tag/0EXH
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are equal. Let g ∈ Γ(X,OX) and denote g1 and g2 the two pullbacks of g to
X×Y X. Since Xy,red is geometrically connected, we see that H0(Xy,red,OXy,red) is
a purely inseparable extension of κ(y), see Varieties, Lemma 33.9.3. Thus gq|Xy,red
comes from an element of κ(y) for some p-power q (which may depend on y). It
follows that gq1 and gq2 map to the same element of the residue field at any point of
(X ×Y X)y = Xy ×y Xy. Hence g1 − g2 restricts to zero on (X ×Y X)red. Hence
(g1 − g2)n = 0 for some n which we may take to be a p-power as desired.

Description of essential image. Let E be as in the statement of the proposition. We
first reduce to the Noetherian case.

Let y ∈ Y be a point and view it as a morphism y → Y from the spectrum of the
residue field into Y . We can write y → Y as a filtered limit of morphisms Yi → Y of
finite presentation with Yi affine. (It is best to prove this yourself, but it also follows
formally from Limits, Lemma 32.7.2 and 32.4.13.) For each i set Zi = Yi ×Y X.
Then Xy = limZi and Xy,red = limZi,red. By Limits, Lemma 32.10.2 we can find
an i such that Fny,∗E|Zi,red ∼= O

⊕ry
Zi,red

. Fix i. We have Zi,red = limZi,j where
Zi,j → Zi is a thickening of finite presentation (Limits, Lemma 32.9.4). Using
the same lemma as before we can find a j such that Fny,∗E|Zi,j ∼= O

⊕ry
Zi,j

. We
conclude that for each y ∈ Y there exists a morphism Yy → Y of finite presentation
whose image contains y and a thickening Zy → Yy ×Y X such that Fny,∗E|Zy ∼=
O⊕ry
Zy

. Observe that the image of Yy → Y is constructible (Morphisms, Lemma
29.22.2). Since Y is quasi-compact in the constructible topology (Topology, Lemma
5.23.2 and Properties, Lemma 28.2.4) we conclude that there are a finite number
of morphisms

Y1 → Y, Y2 → Y, . . . , YN → Y

of finite presentation such that Y =
⋃

Im(Ya → Y ) set theoretically and such that
for each a ∈ {1, . . . , N} there exist integers na, ra ≥ 0 and there is a thickening
Za ⊂ Ya ×Y X of finite presentation such that Fna,∗E|Za ∼= O⊕ra

Za
.

Formulated in this way, the condition descends to an absolute Noetherian ap-
proximation. We stronly urge the reader to skip this paragraph. First write
Y = limi∈I Yi as a cofiltered limit of schemes of finite type over Fp with affine tran-
sition morphisms (Limits, Lemma 32.7.2). Next, we can assume we have proper
morphisms fi : Xi → Yi whose base change to Y recovers f : X → Y , see Lim-
its, Lemma 32.10.1. After increasing i we may assume there exists a finite locally
free OXi-module Ei whose pullback to X is isomorphic to E , see Limits, Lemma
32.10.3. Pick 0 ∈ I and denote E ⊂ Y0 the constructible subset where the geometric
fibres of f0 are connected, see More on Morphisms, Lemma 37.28.6. Then Y → Y0
maps into E, see More on Morphisms, Lemma 37.28.2. Thus Yi → Y0 maps into
E for i ≫ 0, see Limits, Lemma 32.4.10. Hence we see that the fibres of fi are
geometrically connected for i ≫ 0. By Limits, Lemma 32.10.1 for large enough
i we can find morphisms Yi,a → Yi of finite type whose base change to Y recov-
ers Ya → Y , a ∈ {1, . . . , N}. After possibly increasing i we can find thickenings
Zi,a ⊂ Yi,a ×Yi Xi whose base change to Ya ×Y X recovers Za (same reference as
before combined with Limits, Lemmas 32.8.5 and 32.8.15). Since Za = limZi,a we
find that after increasing i we may assume Fna,∗Ei|Zi,a ∼= O⊕ra

Zi,a
, see Limits, Lemma

32.10.2. Finally, after increasing i one more time we may assume
∐
Yi,a → Yi is
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surjective by Limits, Lemma 32.8.15. At this point all the assumptions hold for
Xi → Yi and Ei and we see that it suffices to prove result for Xi → Yi and Ei.
Assume Y is of finite type over Fp. To prove the result we will use induction on
dim(Y ). We are trying to find an object of colimF Vect(Y ) which pulls back to
the object of colimF Vect(X) determined by E . By the fully faithfulness already
proven and because of Proposition 38.39.4 it suffices to construct a descent of E
after replacing Y by the members of a h covering and X by the corresponding base
change. This means that we may replace Y by a scheme proper and surjective over
Y provided this does not increase the dimension of Y . If T ⊂ T ′ is a thickening of
schemes of finite type over Fp then colimF Vect(T ) = colimF Vect(T ′) as {T → T ′}
is a h covering such that T ×T ′ T = T . If T ′ → T is a universal homeomorphism of
schemes of finite type over Fp, then colimF Vect(T ) = colimF Vect(T ′) as {T → T ′}
is a h covering such that the diagonal T ⊂ T ×T ′ T is a thickening.
Using the general remarks made above, we may and do replace X by its reduction
and we may assume X is reduced. Consider the Stein factorization X → Y ′ → Y ,
see More on Morphisms, Theorem 37.53.4. Then Y ′ → Y is a universal homeomor-
phism of schemes of finite type over Fp. By the above we may replace Y by Y ′.
Thus we may assume f∗OX = OY and that Y is reduced. This reduces us to the
case discussed in the next paragraph.
Assume Y is reduced and f∗OX = OY over a dense open subscheme of Y . Then
X → Y is flat over a dense open subscheme V ⊂ Y , see Morphisms, Proposition
29.27.2. By Lemma 38.31.1 there is a V -admissible blowing up Y ′ → Y such that
the strict transform X ′ of X is flat over Y ′. Observe that dim(Y ′) = dim(Y ) as Y
and Y ′ have a common dense open subscheme. By More on Morphisms, Lemma
37.53.7 and the fact that V ⊂ Y ′ is dense all fibres of f ′ : X ′ → Y ′ are geometrically
connected. We still have (f ′

∗OX′)|V = OV . Write
Y ′ ×Y X = X ′ ∪ E ×Y X

where E ⊂ Y ′ is the exceptional divisor of the blowing up. By the general remarks
above, it suffices to prove existence for Y ′ ×Y X → Y ′ and the restriction of E to
Y ′×Y X. Suppose that we find some object ξ′ in colimF Vect(Y ′) pulling back to the
restriction of E to X ′ (viewed as an object of the colimit category). By induction on
dim(Y ) we can find an object ξ′′ in colimF Vect(E) pulling back to the restriction
of E to E ×Y X. Then the fully faithfullness determines a unique isomorphism
ξ′|E → ξ′′ compatible with the given identifications with the restriction of E to
E ×Y ′ X ′. Since

{E ×Y X → Y ′ ×Y X,X ′ → Y ′ ×Y X}
is a h covering given by a pair of closed immersions with

(E ×Y X)×(Y ′×YX) X
′ = E ×Y ′ X ′

we conclude that ξ′ pulls back to the restriction of E to Y ′ ×Y X. Thus it suffices
to find ξ′ and we reduce to the case discussed in the next paragraph.
Assume Y is reduced, f is flat, and f∗OX = OY over a dense open subscheme of
Y . In this case we consider the normalization Y ν → Y (Morphisms, Section 29.54).
This is a finite surjective morphism (Morphisms, Lemma 29.54.10 and 29.18.2)
which is an isomorphism over a dense open. Hence by our general remarks we
may replace Y by Y ν and X by Y ν ×Y X. After this replacement we see that
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OY = f∗OX (because the Stein factorization has to be an isomorphism in this case;
small detail omitted).
Assume Y is a normal Noetherian scheme, that f is flat, and that f∗OX = OY .
After replacing E by a suitable Frobenius power pullback, we may assume E is
trivial on the scheme theoretic fibres of f at the generic points of the irreducible
components of Y (because colimF Vect(−) is an equivalence on universal homeo-
morphisms, see above). Similarly to the arguments above (in the reduction to the
Noetherian case) we conclude there is a dense open subscheme V ⊂ Y such that
E|f−1(V ) is free. Let Z ⊂ Y be a closed subscheme such that Y = V ⨿ Z set the-
oretically. Let z1, . . . , zt ∈ Z be the generic points of the irreducible components
of Z of codimension 1. Then Ai = OY,zi is a discrete valuation ring. Let ni be
the integer found in Lemma 38.39.5 for the scheme XAi over Ai. After replacing
E by a suitable Frobenius power pullback, we may assume E is free over XAi/m

ni
i

(again because the colimit category is invariant under universal homeomorphisms,
see above). Then Lemma 38.39.5 tells us that E is free on XAi . Thus finally we
conclude by applying Lemma 38.39.6. □

38.40. Blowing up complexes

0ESM This section finds normal forms for perfect objects of the derived category after
blowups.

Lemma 38.40.1.0ESP Let X be a scheme. Let E ∈ D(OX) be pseudo-coherent. For
every p, k ∈ Z there is an finite type quasi-coherent sheaf of ideals Fitp,k(E) ⊂ OX
with the following property: for U ⊂ X open such that E|U is isomorphic to

. . .→ O⊕nb−2
U

db−2−−−→ O⊕nb−1
U

db−1−−−→ O⊕nb
U → 0→ . . .

the restriction Fitp,k(E)|U is generated by the minors of the matrix of dp of size
−k + np+1 − np+2 + . . .+ (−1)b−p+1nb

Convention: the ideal generated by r × r-minors is OU if r ≤ 0 and the ideal
generated by r × r-minors where r > min(np, np+1) is zero.

Proof. Observe that E locally on X has the shape as stated in the lemma, see More
on Algebra, Section 15.64, Cohomology, Section 20.47, and Derived Categories
of Schemes, Section 36.10. Thus it suffices to prove that the ideal of minors is
independent of the chosen representative. To do this, it suffices to check in local
rings. Over a local ring (R,m, κ) consider a bounded above complex

F • : . . .→ R⊕nb−2
db−2−−−→ R⊕nb−1

db−1−−−→ R⊕nb → 0→ . . .

Denote Fitk,p(F •) ⊂ R the ideal generated by the minors of size k−np+1 +np+2−
. . . + (−1)b−pnb in the matrix of dp. Suppose some matrix coefficient of some
differential of F • is invertible. Then we pick a largest integer i such that di has
an invertible matrix coefficient. By Algebra, Lemma 10.102.2 the complex F • is
isomorphic to a direct sum of a trivial complex . . . → 0 → R → R → 0 → . . .
with nonzero terms in degrees i and i + 1 and a complex (F ′)•. We leave it to
the reader to see that Fitp,k(F •) = Fitp,k((F ′)•); this is where the formula for
the size of the minors is used. If (F ′)• has another differential with an invertible
matrix coefficient, we do it again, etc. Continuing in this manner, we eventually
reach a complex (F∞)• all of whose differentials have matrices with coefficients in

https://stacks.math.columbia.edu/tag/0ESP
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m. Here you may have to do an infinite number of steps, but for any cutoff only
a finite number of these steps affect the complex in degrees ≥ the cutoff. Thus
the “limit” (F∞)• is a well defined bounded above complex of finite free modules,
comes equipped with a quasi-isomorphism (F∞)• → F • into the complex we started
with, and Fitp,k(F •) = Fitp,k((F∞)•). Since the complex (F∞)• is unique up to
isomorphism by More on Algebra, Lemma 15.75.5 the proof is complete. □

Lemma 38.40.2.0ESQ Let X be a scheme. Let E ∈ D(OX) be perfect. Let U ⊂ X

be a scheme theoretically dense open subscheme such that Hi(E|U ) is finite locally
free of constant rank ri for all i ∈ Z. Then there exists a U -admissible blowup
b : X ′ → X such that Hi(Lb∗E) is a perfect OX′ -module of tor dimension ≤ 1 for
all i ∈ Z.

Proof. We will construct and study the blowup affine locally. Namely, suppose
that V ⊂ X is an affine open subscheme such that E|V can be represented by the
complex

O⊕na
V

da−→ . . .
db−1−−−→ O⊕nb

V

Set ki = ri+1 − ri+2 + . . .+ (−1)b−i+1rb. A computation which we omit show that
over U ∩ V the rank of di is

ρi = −ki + ni+1 − ni+2 + . . .+ (−1)b−i+1nb

in the sense that the cokernel of di is finite locally free of rank ni+1 − ρi. Let
Ii ⊂ OV be the ideal generated by the minors of size ρi × ρi in the matrix of di.
On the one hand, comparing with Lemma 38.40.1 we see the ideal Ii corresponds
to the global ideal Fiti,ki(E) which was shown to be independent of the choice of
the complex representing E|V . On the other hand, Ii is the (ni+1 − ρi)th Fitting
ideal of Coker(di). Please keep this in mind.
We let b : X ′ → X be the blowing up in the product of the ideals Fiti,ki(E);
this makes sense as locally on X almost all of these ideals are equal to the unit
ideal (see above). This blowup dominates the blowups bi : X ′

i → X in the ideals
Fiti,ki(E), see Divisors, Lemma 31.32.12. By Divisors, Lemma 31.35.3 each bi is
a U -admissible blowup. It follows that b is a U -admissible blowup (tiny detail
omitted; compare with the proof of Divisors, Lemma 31.34.4). Finally, U is still a
scheme theoretically dense open subscheme of X ′. Thus after replacing X by X ′

we end up in the situation discussed in the next paragraph.
Assume Fiti,ki(E) is an invertible ideal for all i. Choose an affine open V and a
complex of finite free modules representing E|V as above. It follows from Divisors,
Lemma 31.35.3 that Coker(di) has tor dimension ≤ 1. Thus Im(di) is finite locally
free as the kernel of a map from a finite locally free module to a finitely presented
module of tor dimension ≤ 1. Hence Ker(di) is finite locally free as well (same
argument). Thus the short exact sequence

0→ Im(di−1)→ Ker(di)→ Hi(E)|V → 0
shows what we want and the proof is complete. □

Lemma 38.40.3.0ESR Let X be an integral scheme. Let E ∈ D(OX) be perfect. Then
there exists a nonempty open U ⊂ X such that Hi(E|U ) is finite locally free of
constant rank ri for all i ∈ Z and there exists a U -admissible blowup b : X ′ → X
such that Hi(Lb∗E) is a perfect OX′ -module of tor dimension ≤ 1 for all i ∈ Z.

https://stacks.math.columbia.edu/tag/0ESQ
https://stacks.math.columbia.edu/tag/0ESR
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Proof. We strongly urge the reader to find their own proof of the existence of U .
Let η ∈ X be the generic point. The restriction of E to η is isomorphic in D(κ(η))
to a finite complex V • of finite dimensional vector spaces with zero differentials. Set
ri = dimκ(η) V

i. Then the perfect object E′ in D(OX) represented by the complex
with terms O⊕ri

X and zero differentials becomes isomorphic to E after pulling back
to η. Hence by Derived Categories of Schemes, Lemma 36.35.9 there is an open
neighbourhood U of η such that E|U and E′|U are isomorphic. This proves the first
assertion. The second follows from the first and Lemma 38.40.2 as any nonempty
open is scheme theoretically dense in the integral scheme X. □

Remark 38.40.4.0F8J Let X be a scheme. Let E ∈ D(OX) be a perfect object such that
Hi(E) is a perfect OX -module of tor dimension ≤ 1 for all i ∈ Z. This property
sometimes allows one to reduce questions about E to questions about Hi(E). For
example, suppose

Ea da−→ . . .
db−2

−−−→ Eb−1 db−1

−−−→ Eb

is a bounded complex of finite locally free OX -modules representing E. Then
Im(di) and Ker(di) are finite locally free OX -modules for all i. Namely, suppose
by induction we know this for all indices bigger than i. Then we can first use the
short exact sequence

0→ Im(di)→ Ker(di+1)→ Hi+1(E)→ 0

and the assumption that Hi+1(E) is perfect of tor dimension ≤ 1 to conclude that
Im(di) is finite locally free. The same argument used again for the short exact
sequence

0→ Ker(di)→ E i → Im(di)→ 0
then gives that Ker(di) is finite locally free. It follows that the distinguished trian-
gles

τ≤k−1E → τ≤kE → Hk(E)[−k]→ (τ≤k−1E)[1]
are represented by the following short exact sequences of bounded complexes of
finite locally free modules

0
↓

Ea → . . . → Ek−2 → Ker(dk−1)
↓ ↓ ↓
Ea → . . . → Ek−2 → Ek−1 → Ker(dk)

↓ ↓
Im(dk−1) → Ker(dk)
↓
0

Here the complexes are the rows and the “obvious” zeros are omitted from the
display.

38.41. Blowing up perfect modules

0F8K This section tries to find normal forms for perfect modules of tor dimension ≤ 1
after blowups. We are only partially successful.

https://stacks.math.columbia.edu/tag/0F8J
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Lemma 38.41.1.0ESS Let X be a scheme. Let F be a perfect OX -module of tor dimen-
sion ≤ 1. For any blowup b : X ′ → X we have Lb∗F = b∗F and b∗F is a perfect
OX -module of tor dimension ≤ 1.

Proof. We may assume X = Spec(A) is affine and we may assume the A-module
M corresponding to F has a presentation

0→ A⊕m → A⊕n →M → 0
Suppose I ⊂ A is an ideal and a ∈ I. Recall that the affine blowup algebra A[ Ia ]
is a subring of Aa. Since localization is exact we see that A⊕m

a → A⊕n
a is injective.

Hence A[ Ia ]⊕m → A[ Ia ]⊕n is injective too. This proves the lemma. □

Lemma 38.41.2.0EST Let X be a scheme. Let F be a perfect OX -module of tor di-
mension ≤ 1. Let U ⊂ X be a scheme theoretically dense open such that F|U
is finite locally free of constant rank r. Then there exists a U -admissible blowup
b : X ′ → X such that there is a canonical short exact sequence

0→ K → b∗F → Q → 0
whereQ is finite locally free of rank r and K is a perfectOX -module of tor dimension
≤ 1 whose restriction to U is zero.

Proof. Combine Divisors, Lemma 31.35.3 and Lemma 38.41.1. □

Lemma 38.41.3.0ESU Let X be a scheme. Let F be a perfect OX -module of tor dimen-
sion ≤ 1. Let U ⊂ X be an open such that F|U = 0. Then there is a U -admissible
blowup

b : X ′ → X

such that F ′ = b∗F is equipped with two canonical locally finite filtrations
0 = F 0 ⊂ F 1 ⊂ F 2 ⊂ . . . ⊂ F ′ and F ′ = F1 ⊃ F2 ⊃ F3 ⊃ . . . ⊃ 0

such that for each n ≥ 1 there is an effective Cartier divisor Dn ⊂ X ′ with the
property that

F i/F i−1 and Fi/Fi+1

are finite locally free of rank i on Di.

Proof. Choose an affine open V ⊂ X such that there exists a presentation

0→ O⊕n
V

A−→ O⊕n
V → F → 0

for some n and some matrix A. The ideal we are going to blowup in is the product
of the Fitting ideals Fitk(F) for k ≥ 0. This makes sense because in the affine
situation above we see that Fitk(F)|V = OV for k > n. It is clear that this is
a U -admissible blowing up. By Divisors, Lemma 31.32.12 we see that on X ′ the
ideals Fitk(F) are invertible. Thus we reduce to the case discussed in the next
paragraph.
Assume Fitk(F) is an invertible ideal for k ≥ 0. If Ek ⊂ X is the effective Cartier
divisor defined by Fitk(F) for k ≥ 0, then the effective Cartier divisors Dk in the
statement of the lemma will satisfy

Ek = Dk+1 + 2Dk+2 + 3Dk+3 + . . .

This makes sense as the collection Dk will be locally finite. Moreover, it uniquely
determines the effective Cartier divisors Dk hence it suffices to construct Dk locally.
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Choose an affine open V ⊂ X and presentation of F|V as above. We will construct
the divisors and filtrations by induction on the integer n in the presentation. We
set Dk|V = ∅ for k > n and we set Dn|V = En−1|V . After shrinking V we may
assume that Fitn−1(F)|V is generated by a single nonzerodivisor f ∈ Γ(V,OV ).
Since Fitn−1(F)|V is the ideal generated by the entries of A, we see that there is
a matrix A′ in Γ(V,OV ) such that A = fA′. Define F ′ on V by the short exact
sequence

0→ O⊕n
V

A′

−→ O⊕n
V → F ′ → 0

Since the entries of A′ generate the unit ideal in Γ(V,OV ) we see that F ′ locally
on V has a presentation with n decreased by 1, see Algebra, Lemma 10.102.2.
Further note that fn−kFitk(F ′) = Fitk(F)|V for k = 0, . . . , n. Hence Fitk(F ′) is an
invertible ideal for all k. We conclude by induction that there exist effective Cartier
divisors D′

k ⊂ V such that F ′ has two canonical filtrations as in the statement of
the lemma. Then we set Dk|V = D′

k for k = 1, . . . , n − 1. Observe that the
equalities between effective Cartier divisors displayed above hold with these choices.
Finally, we come to the construction of the filtrations. Namely, we have short exact
sequences

0→ O⊕n
Dn∩V → F → F

′ → 0 and 0→ F ′ → F → O⊕n
Dn∩V → 0

coming from the two factorizations A = A′f = fA′ of A. These sequences are
canonical because in the first one the submodule is Ker(f : F → F) and in the
second one the quotient module is Coker(f : F → F). □

Lemma 38.41.4.0ESV Let X be a scheme. Let φ : F → G be a homorphism of perfect
OX -modules of tor dimension ≤ 1. Let U ⊂ X be a scheme theoretically dense open
such that F|U = 0 and G|U = 0. Then there is a U -admissible blowup b : X ′ → X
such that the kernel, image, and cokernel of b∗φ are perfect OX′ -modules of tor
dimension ≤ 1.

Proof. The assumptions tell us that the object (F → G) of D(OX) is perfect. Thus
we get a U -admissible blowup that works for the cokernel and kernel by Lemmas
38.40.2 and 38.41.1 (to see what the complex looks like after pullback). The image
is the kernel of the cokernel and hence is going to be perfect of tor dimension ≤ 1
as well. □

38.42. An operator introduced by Berthelot and Ogus

0F8L Please read Cohomology, Section 20.55 first.

Let X be a scheme. Let D ⊂ X be an effective Cartier divisor. Let I = ID ⊂ OX
be the ideal sheaf of D, see Divisors, Section 31.14. Clearly we can apply the
discussion in Cohomology, Section 20.55 to X and I.

Lemma 38.42.1.0F8M Let X be a scheme. Let D ⊂ X be an effective Cartier divisor
with ideal sheaf I ⊂ OX . Let F• be a complex of quasi-coherent OX -modules
such that F i is I-torsion free for all i. Then ηIF• is a complex of quasi-coherent
OX -modules. Moreover, if U = Spec(A) ⊂ X is affine open and D ∩ U = V (f),
then ηf (F•(U)) is canonically isomorphic to (ηIF•)(U).

Proof. Omitted. □
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Lemma 38.42.2.0GTV Let X be a scheme. Let D ⊂ X be an effective Cartier divisor with
ideal sheaf I ⊂ OX . The functor LηI : D(OX)→ D(OX) of Cohomology, Lemma
20.55.7 sends DQCoh(OX) into itself. Moreover, if X = Spec(A) is affine and D =
V (f), then the functor Lηf on D(A) defined in More on Algebra, Lemma 15.95.4
and the functor LηI on DQCoh(OX) correspond via the equivalence of Derived
Categories of Schemes, Lemma 36.3.5.

Proof. Omitted. □

38.43. Blowing up complexes, II

0F8R The material in this section will be used to construct a version of Macpherson’s
graph construction in Section 38.44.

Situation 38.43.1.0F8S Here X is a scheme, D ⊂ X is an effective Cartier divisor with
ideal sheaf I ⊂ OX , and M is a perfect object of D(OX).

Let (X,D,M) be a triple as in Situation 38.43.1. Consider an affine open U =
Spec(A) ⊂ X such that

(1) D ∩ U = V (f) for some nonzerodivisor f ∈ A, and
(2) there exists a bounded complex M• of finite free A-modules represent-

ing M |U (via the equivalence of Derived Categories of Schemes, Lemma
36.3.5).

We will say that (U,A, f,M•) is an affine chart for (X,D,M). Consider the ideals
Ii(M•, f) ⊂ A defined in More on Algebra, Section 15.96. Let us say (X,S,M) is a
good triple if for every x ∈ D there exists an affine chart (U,A, f,M•) with x ∈ U
and Ii(M•, f) principal ideals for all i ∈ Z.

Lemma 38.43.2.0F8T In Situation 38.43.1 let h : Y → X be a morphism of schemes
such that the pullback E = h−1D of D is defined (Divisors, Definition 31.13.12).
Let (U,A, f,M•) is an affine chart for (X,D,M). Let V = Spec(B) ⊂ Y is an
affine open with h(V ) ⊂ U . Denote g ∈ B the image of f ∈ A. Then

(1) (V,B, g,M• ⊗A B) is an affine chart for (Y,E,Lh∗M),
(2) Ii(M•, f)B = Ii(M• ⊗A B, g) in B, and
(3) if (X,D,M) is a good triple, then (Y,E,Lh∗M) is a good triple.

Proof. The first statement follows from the folowing observations: g is a nonzero-
divisor in B which defines E∩V ⊂ V and M•⊗AB represents M•⊗L

AB and hence
represents the pullback of M to V by Derived Categories of Schemes, Lemma 36.3.8.
Part (2) follows from part (1) and More on Algebra, Lemma 15.96.3. Combined
with More on Algebra, Lemma 15.96.3 we conclude that the second statement of
the lemma holds. □

Lemma 38.43.3.0GTW Let X,D, I,M be as in Situation 38.43.1. If (X,D,M) is a good
triple, then LηIM is a perfect object of D(OX).

Proof. Translation of More on Algebra, Lemma 15.96.5. To do the translation use
Lemma 38.42.2. □

Lemma 38.43.4.0GTX Let X,D, I,M be as in Situation 38.43.1. Assume (X,D,M) is
a good triple. If there exists a locally bounded complex M• of finite locally free
OX -modules representing M , then there exists a locally bounded complex Q• of
finite locally free OX′ -modules representing LηIM .
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Proof. By Cohomology, Lemma 20.55.7 the complexQ• = ηIM• represents LηIM .
To check that this complex is locally bounded and consists of finite locally free, we
may work affine locally. Then the boundedness is clear. Choose an affine chart
(U,A, f,M•) for (X,D,M) such that the ideals Ii(M•, f) are principal and such
that Mi|U is finite free for each i. By our assumption that (X,D,M) is a good
triple we can do this. Writing N i = Γ(U,Mi|U ) we get a bounded complex N•

of finite free A-modules representing the same object in D(A) as the complex M•

(by Derived Categories of Schemes, Lemma 36.3.5). Then Ii(N•, f) is a principal
ideal for all i by More on Algebra, Lemma 15.96.1. Hence the complex ηfN

• is a
bounded complex of finite locally free A-modules. Since Qi|U is the quasi-coherent
OU -module corresponding to ηfN i by Lemma 38.42.1 we conclude. □

Lemma 38.43.5.0F9X In Situation 38.43.1 let h : Y → X be a morphism of schemes
such that the pullback E = h−1D is defined. If (X,D,M) is a good triple, then

Lh∗(LηIM) = LηJ (Lh∗M)
in D(OY ) where J is the ideal sheaf of E.

Proof. Translation of More on Algebra, Lemma 15.96.6. Use Lemmas 38.42.1 and
38.42.2 to do the translation. □

Lemma 38.43.6.0GTY In Situation 38.43.1 there is a unique morphism b : X ′ → X such
that

(1) the pullback D′ = b−1D is defined and (X ′, D′,M ′) is a good triple where
M ′ = Lb∗M , and

(2) for any morphism of schemes h : Y → X such that the pullback E = h−1D
is defined and (Y,E,Lh∗M) is a good triple, there is a unique factorization
of h through b.

Moreover, for any affine chart (U,A, f,M•) the restriction b−1(U) → U is the
blowing up in the product of the ideals Ii(M•, f) and for any quasi-compact open
W ⊂ X the restriction b|b−1(W ) : b−1(W )→W is a W \D-admissible blowing up.

Proof. The proof is just that we will locally blow up X in the product ideals
Ii(M•, f) for any affine chart (U,A, f,M•). The first few lemmas in More on
Algebra, Section 15.96 show that this is well defined. The universal property (2)
then follows from the universal property of blowing up. The details can be found
below.
Let U,A, f,M• be an affine chart for (X,D,M). All but a finite number of the
ideals Ii(M•, f) are equal to A hence it makes sense to look at

I =
∏

i
Ii(M•, f)

and this is a finitely generated ideal of A. Denote
bU : U ′ → U

the blowing up of U in I. Then b−1
U (U ∩D) is defined by Divisors, Lemma 31.32.11.

Recall that fri ∈ Ii(M•, f) and hence bU is a (U \D)-admissible blowing up. By Di-
visors, Lemma 31.32.12 for each i the morphism bU factors as U ′ → U ′

i → U where
U ′
i → U is the blowing up in Ii(M•, f) and U ′ → U ′

i is another blowing up. It fol-
lows that the pullback Ii(M•, f)OU ′ of Ii(M•, f) to U ′ is an invertible ideal sheaf,
see Divisors, Lemmas 31.32.11 and 31.32.4. It follows that (U ′, b−1D,Lb∗M |U ) is a
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good triple, see Lemma 38.43.2 for the behaviour of the ideals Ii(−,−) under pull-
back. Finally, we claim that bU : U ′ → U has the universal property mentioned in
part (2) of the statement of the lemma. Namely, suppose h : Y → U is a morphism
of schemes such that the pullback E = h−1(D ∩ U) is defined and (Y,E,Lh∗M) is
a good triple. Then Y is covered by affine charts (V,B, g,N•) such that Ii(N•, g)
is an invertible ideal for each i. Then g and the image of f in B differ by a unit
as they both cut out the effective Cartier divisor E ∩ V . Hence we may assume g
is the image of f by More on Algebra, Lemma 15.96.2. Then Ii(N•, g) is isomor-
phic to Ii(M• ⊗A B, g) as a B-module by More on Algebra, Lemma 15.96.1. Thus
Ii(M• ⊗A B, g) = Ii(M•, f)B (Lemma 38.43.2) is an invertible B-module. Hence
the ideal IB is invertible. It follows that IOY is invertible. Hence we obtain a
unique factorization of h through bU by Divisors, Lemma 31.32.5.
Let B be the set of affine opens U ⊂ X such that there exists an affine chart
(U,A, f,M•) for (X,D,M). Then B is a basis for the topology on X; details
omitted. For U ∈ B we have the morphism bU : U ′ → U constructed above which
satisfies the universal property over U . If U1 ⊂ U2 ⊂ X are both in B, then
bU1 : U ′

1 → U1 is canonically isomorphic to

bU2 |b−1
U2

(U1) : b−1
U2

(U1) −→ U1

by the universal propery. In other words, we get an isomorphism U ′
1 → b−1

U2
(U1)

over U1. These isomorphisms satisfy the cocycle condition (again by the universal
property) and hence by Constructions, Lemma 27.2.1 we get a morphism b : X ′ →
X whose restriction to each U in B is isomorphic to U ′ → U . Then the morphism
b : X ′ → X satisfies properties (1) and (2) of the statement of the lemma as these
properties may be checked locally (details omitted).
We still have to prove the final assertion of the lemma. Let W ⊂ X be a quasi-
compact open. Choose a finite covering W = U1 ∪ . . . ∪ UT such that for each
1 ≤ t ≤ T there exists an affine chart (Ut, At, ft,M•

t ). We will use below that for
any affine open V = Spec(B) ⊂ Ut ∩ Ut′ we have (a) the images of ft and ft′ in B
differ by a unit, and (b) the complexes M•

t ⊗A B and Mt′ ⊗A B define isomorphic
objects of D(B). For i ∈ Z, set

Ni = maxt=1,...,T

(∑
j≥i

(−1)j−irk(M j
t )
)

Then Nt −
∑
j≥i(−1)j−irk(M j

t ) ≥ 0 and we can consider the ideals

It,i = f
Ni−
∑

j≥i
(−1)j−irk(Mj

t )
t Ii(M•

t , ft) ⊂ At
It follows from More on Algebra, Lemmas 15.96.2 and 15.96.1 that the ideals It,i glue
to a quasi-coherent, finite type ideal Ii ⊂ OW . Moreover, all but a finite number
of these ideals are equal to OW . Clearly, the morphism X ′ → X constructed above
restricts to the blowing up of W in the product of the ideals Ii. This finishes the
proof. □

Lemma 38.43.7.0F8U In Situation 38.43.1 let b : X ′ → X be the morphism of Lemma
38.43.6. Consider the effective Cartier divisor D′ = b−1D with ideal sheaf I ′ ⊂ OX′ .
Then Q = LηI′Lb∗M is a perfect object of D(OX′).

Proof. Follows from Lemmas 38.43.6 and 38.43.3. □
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Lemma 38.43.8.0F8V In Situation 38.43.1 let h : Y → X be a morphism of schemes
such that the pullback E = h−1D is defined. Let b : X ′ → X, resp. c : Y ′ → Y
be as constructed in Lemma 38.43.6 for D ⊂ X and M , resp. E ⊂ Y and Lh∗M .
Then Y ′ is the strict transform of Y with respect to b : X ′ → X (see proof for a
precise formulation of this) and

LηJ ′L(h ◦ c)∗M = L(Y ′ → X ′)∗Q

where Q = LηI′Lb∗M as in Lemma 38.43.7. In particular, if (Y,E,Lh∗M) is a
good triple and k : Y → X ′ is the unique morphism such that h = b ◦ k, then
LηJLh

∗M = Lk∗Q.

Proof. Denote E′ = c−1E. Then (Y ′, E′, L(h ◦ c)∗M) is a good triple. Hence by
the universal property of Lemma 38.43.6 there is a unique morphism

h′ : Y ′ −→ X ′

such that b ◦ h′ = h ◦ c. In particular, there is a morphism (h′, c) : Y ′ → X ′ ×X Y .
We claim that given W ⊂ X quasi-compact open, such that b−1(W ) → W is a
blowing up, this morphism identifies Y ′|W with the strict transform of YW with
respect to b−1(W )→ W . In turn, to see this is true is a local question on W , and
we may therefore prove the statement over an affine chart. We do this in the next
paragraph.
Let (U,A, f,M•) be an affine chart for (X,D,M). Recall from the proof of Lemma
38.43.7 that the restriction of b : X ′ → X to U is the blowing up of U = Spec(A)
in the product of the ideals Ii(M•, f). Now if V = Spec(B) ⊂ Y is any affine
open with h(V ) ⊂ U , then (V,B, g,M• ⊗A B) is an affine chart for (Y,E,Lh∗M)
where g ∈ B is the image of f , see Lemma 38.43.2. Hence the restriction of
c : Y ′ → Y to V is the blowing up in the product of the ideals Ii(M•, f)B, i.e.,
the morphism c : Y ′ → Y over h−1(U) is the blowing up of h−1(U) in the ideal∏
Ii(M•, f)Oh−1(U). Since this is also true for the strict transform, we see that our

claim on strict transforms is true.
Having said this the equality LηJ ′L(h◦c)∗M = L(Y ′ → X ′)∗Q follows from Lemma
38.43.5. The final statement is a special case of this (namely, the case where c = idY
and k = h′). □

Lemma 38.43.9.0F8W In Situation 38.43.1 let W ⊂ X be the maximal open subscheme
over which the cohomology sheaves of M are locally free. Then the morphism
b : X ′ → X of Lemma 38.43.6 is an isomorphism over W .

Proof. This is true because for any affine chart (U,A, f,M•) with U ⊂ W we
have that Ii(M•, f) are locally generated by a power of f by More on Algebra,
Lemma 15.96.4. Since f is a nonzerodivisor, the blowing up b−1(U) → U is an
isomorphism. □

Lemma 38.43.10.0GTZ Let X,D, I,M be as in Situation 38.43.1. If (X,D,M) is a good
triple, then there exists a closed immersion

i : T −→ D

of finite presentation with the following properties
(1) T scheme theoretically contains D ∩ W where W ⊂ X is the maximal

open over which the cohomology sheaves of M are locally free,
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(2) the cohomology sheaves of Li∗LηIM are locally free, and
(3) for any point t ∈ T with image x = i(t) ∈ W the rank of Hi(M)x over
OX,x and the rank of Hi(Li∗LηIM)t over OT,t agree.

Proof. Let (U,A, f,M•) be an affine chart for (X,D,M) such that Ii(M•, f) is a
principal ideal for all i ∈ Z. Then we define T ∩U ⊂ D∩U as the closed subscheme
defined by the ideal

J(M•, f) =
∑

Ji(M•, f) ⊂ A/fA

studied in More on Algebra, Lemmas 15.96.8 and 15.96.9; in terms of the second
lemma we see that T ∩ U → D ∩ U is given by the ring map A/fA → C studied
there. Since (X,D,M) is a good triple we can cover X by affine charts of this
form and by the first of the two lemmas, this construction glues. Hence we obtain
a closed subscheme T ⊂ D which on good affine charts as above is given by the
ideal J(M•, f). Then properties (1) and (2) follow from the second lemma. Details
omitted. Small observation to help the reader: since ηfM• is a complex of locally
free modules by More on Algebra, Lemma 15.96.5 we see that Li∗LηIM |T∩U is
represented by the complex ηfM•⊗AC of C-modules. The statement (3) on ranks
follows from Cohomology, Lemma 20.55.10. □

Lemma 38.43.11.0F8X In Situation 38.43.1. Let b : X ′ → X and D′ be as in Lemma
38.43.6. Let Q = LηI′Lb∗M be as in Lemma 38.43.7. Let W ⊂ X be the maximal
open where M has locally free cohomology modules. Then there exists a closed
immersion i : T → D′ of finite presentation such that

(1) D′ ∩ b−1(W ) ⊂ T scheme theoretically,
(2) Li∗Q has locally free cohomology sheaves, and
(3) for t ∈ T mapping to w ∈W the rank of Hi(Li∗Q)t over OT,t is equal to

the rank of Hi(M)x over OX,x.

Proof. Lemma 38.43.9 tells us that b is an isomorphism over W . Hence b−1(W ) ⊂
X ′ is contained in the maximal open W ′ ⊂ X ′ where Lb∗M has locally free co-
homology sheaves. Then the actual statements in the lemma are an immediate
consequence of Lemma 38.43.10 applied to (X ′, D′, Lb∗M) and the other lemmas
mentioned in the statement. □

Lemma 38.43.12.0F8Y In Situation 38.43.1. Let b : X ′ → X, D′ ⊂ X ′, and Q be as
in Lemma 38.43.7. Let ρ = (ρi)i∈Z be integers. Let W (ρ) ⊂ X be the maximal
open subscheme where Hi(M) is locally free of rank ρi for all i. Let i : T → D′ be
as in Lemma 38.43.11. Then there exists an open and closed subscheme T (ρ) ⊂ T
containing D′ ∩ b−1(W (ρ)) scheme theoretically such that Hi(Li∗Q|T (ρ)) is locally
free of rank ρi for all i.

Proof. Let T (ρ) ⊂ T be the open and closed subscheme where Hi(Li∗Q) has rank
ρi for all i. Then the statement is immediate from the assertion in Lemma 38.43.11
on ranks of the cohomology modules. □

Lemma 38.43.13.0GU0 In Situation 38.43.1. Let b : X ′ → X, D′ ⊂ X ′, and Q be as
in Lemma 38.43.7. If there exists a locally bounded complex M• of finite locally
free OX -modules representing M , then there exists a locally bounded complex Q•

of finite locally free OX′ -modules representing Q.
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Proof. Recall that Q = LηI′Lb∗M where I ′ is the ideal sheaf of the effective Cartier
divisor D′. The locally bounded complex (M′)• = b∗M• of finite locally free OX′ -
modules represents Lb∗M . Thus the lemma follows from Lemma 38.43.4. □

Lemma 38.43.14.0F9Y Let X be a scheme and let D ⊂ X be an effective Cartier divisor.
Let M ∈ D(OX) be a perfect object. Let W ⊂ X be the maximal open over which
the cohomology sheaves Hi(M) are locally free. There exists a proper morphism
b : X ′ −→ X and an object Q in D(OX′) with the following properties

(1) b : X ′ → X is an isomorphism over X \D,
(2) b : X ′ → X is an isomorphism over W ,
(3) D′ = b−1D is an effective Cartier divisor,
(4) Q = LηI′Lb∗M where I ′ is the ideal sheaf of D′,
(5) Q is a perfect object of D(OX′),
(6) there exists a closed immersion i : T → D′ of finite presentation such that

(a) D′ ∩ b−1(W ) ⊂ T scheme theoretically,
(b) Li∗Q has finite locally free cohomology sheaves,
(c) for t ∈ T with image w ∈W the rank of Hi(Li∗Q)t over OT,t is equal

to the rank of Hi(M)x over OX,x,
(7) for any affine chart (U,A, f,M•) for (X,D,M) the restriction of b to U

is the blowing up of U = Spec(A) in the ideal I =
∏
Ii(M•, f), and

(8) for any affine chart (V,B, g,N•) for (X ′, D′, Lb∗N) such that Ii(N•, g) is
principal, we have
(a) Q|V corresponds to ηgN•,
(b) T ⊂ V ∩D′ corresponds to the ideal J(N•, g) =

∑
Ji(N•, g) ⊂ B/gB

studied in More on Algebra, Lemma 15.96.9.
(9) If M can be represented by a locally bounded complex of finite locally free
OX -modules, then Q can be represented by a bounded complex of finite
locally free OX′ -modules.

Proof. This statement collects the information obtained in Lemmas 38.43.2, 38.43.3,
38.43.5, 38.43.6, 38.43.7, 38.43.8, 38.43.9, 38.43.10, 38.43.11, and 38.43.13. □

38.44. Blowing up complexes, III

0F8Z In this section we give an “algebra version” of the version of Macpherson’s graph
construction given in [Ful98, Section 18.1].
Let X be a scheme. Let E be a perfect object of D(OX). Let U ⊂ X be the
maximal open subscheme such that E|U has locally free cohomology sheaves.
Consider the commutative diagram

A1
X

//

!!

P1
X

p

��

(P1
X)∞oo

{{
X

∞

FF

Here we recall that A1 = D+(T0) is the first standard affine open of P1 and that
∞ = V+(T0) is the complementary effective Cartier divisor and the diagram above
is the pullback of these schemes to X. Observe that ∞ : X → (P1

X)∞ is an
isomorphism. Then

(P1
X , (P1

X)∞, Lp
∗E)
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is a triple as in Situation 38.43.1 in Section 38.43. Let
b : W −→ P1

X and W∞ = b−1((P1
X)∞)

be the blowing up and effective Cartier divisor constructed starting with this triple
in Lemma 38.43.6. We also denote

Q = LηILb
∗M = LηIL(p ◦ b)∗E

the perfect object of D(OW ) considered in Lemma 38.43.7. Here I ⊂ OW is the
ideal sheaf of W∞.

Lemma 38.44.1.0F90 The construction above has the following properties:
(1) b is an isomorphism over P1

U ∪A1
X ,

(2) the restriction of Q to A1
X is equal to the pullback of E,

(3) there exists a closed immersion i : T → W∞ of finite presentation such
that (W∞ → X)−1U ⊂ T scheme theoretically and such that Li∗Q has
locally free cohomology sheaves,

(4) for t ∈ T with image u ∈ U we have that the rank Hi(Li∗Q)t over OT,t
is equal to the rank of Hi(M)u over OU,u,

(5) if E can be represented by a locally bounded complex of finite locally free
OX -modules, then Q can be represented by a locally bounded complex of
finite locally free OW -modules.

Proof. This follows immediately from the results in Section 38.43; for a statement
collecting everything needed, see Lemma 38.43.14. □
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CHAPTER 39

Groupoid Schemes

022L 39.1. Introduction

022M This chapter is devoted to generalities concerning groupoid schemes. See for exam-
ple the beautiful paper [KM97] by Keel and Mori.

39.2. Notation

022N Let S be a scheme. If U , T are schemes over S we denote U(T ) for the set of
T -valued points of U over S. In a formula: U(T ) = MorS(T,U). We try to reserve
the letter T to denote a “test scheme” over S, as in the discussion that follows.
Suppose we are given schemes X, Y over S and a morphism of schemes f : X → Y
over S. For any scheme T over S we get an induced map of sets

f : X(T ) −→ Y (T )
which as indicated we denote by f also. In fact this construction is functorial
in the scheme T/S. Yoneda’s Lemma, see Categories, Lemma 4.3.5, says that f
determines and is determined by this transformation of functors f : hX → hY .
More generally, we use the same notation for maps between fibre products. For
example, if X, Y , Z are schemes over S, and if m : X ×S Y → Z ×S Z is a
morphism of schemes over S, then we think of m as corresponding to a collection
of maps between T -valued points

X(T )× Y (T ) −→ Z(T )× Z(T ).
And so on and so forth.
We continue our convention to label projection maps starting with index 0, so we
have pr0 : X ×S Y → X and pr1 : X ×S Y → Y .

39.3. Equivalence relations

022O Recall that a relation R on a set A is just a subset of R ⊂ A×A. We usually write
aRb to indicate (a, b) ∈ R. We say the relation is transitive if aRb, bRc⇒ aRc. We
say the relation is reflexive if aRa for all a ∈ A. We say the relation is symmetric if
aRb⇒ bRa. A relation is called an equivalence relation if it is transitive, reflexive
and symmetric.
In the setting of schemes we are going to relax the notion of a relation a little bit
and just require R→ A×A to be a map. Here is the definition.

Definition 39.3.1.022P Let S be a scheme. Let U be a scheme over S.
(1) A pre-relation on U over S is any morphism of schemes j : R→ U ×S U .

In this case we set t = pr0 ◦ j and s = pr1 ◦ j, so that j = (t, s).
(2) A relation on U over S is a monomorphism of schemes j : R→ U ×S U .

3519
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(3) A pre-equivalence relation is a pre-relation j : R→ U ×S U such that the
image of j : R(T )→ U(T )× U(T ) is an equivalence relation for all T/S.

(4) We say a morphism R→ U ×S U of schemes is an equivalence relation on
U over S if and only if for every scheme T over S the T -valued points of
R define an equivalence relation on the set of T -valued points of U .

In other words, an equivalence relation is a pre-equivalence relation such that j is
a relation.

Lemma 39.3.2.02V8 Let S be a scheme. Let U be a scheme over S. Let j : R→ U ×S U
be a pre-relation. Let g : U ′ → U be a morphism of schemes. Finally, set

R′ = (U ′ ×S U ′)×U×SU R
j′

−→ U ′ ×S U ′

Then j′ is a pre-relation on U ′ over S. If j is a relation, then j′ is a relation. If j is a
pre-equivalence relation, then j′ is a pre-equivalence relation. If j is an equivalence
relation, then j′ is an equivalence relation.

Proof. Omitted. □

Definition 39.3.3.02V9 Let S be a scheme. Let U be a scheme over S. Let j : R→ U×SU
be a pre-relation. Let g : U ′ → U be a morphism of schemes. The pre-relation
j′ : R′ → U ′ ×S U ′ is called the restriction, or pullback of the pre-relation j to U ′.
In this situation we sometimes write R′ = R|U ′ .

Lemma 39.3.4.022Q Let j : R → U ×S U be a pre-relation. Consider the relation on
points of the scheme U defined by the rule

x ∼ y ⇔ ∃ r ∈ R : t(r) = x, s(r) = y.

If j is a pre-equivalence relation then this is an equivalence relation.

Proof. Suppose that x ∼ y and y ∼ z. Pick r ∈ R with t(r) = x, s(r) = y and
pick r′ ∈ R with t(r′) = y, s(r′) = z. Pick a field K fitting into the following
commutative diagram

κ(r) // K

κ(y)

OO

// κ(r′)

OO

Denote xK , yK , zK : Spec(K)→ U the morphisms
Spec(K)→ Spec(κ(r))→ Spec(κ(x))→ U
Spec(K)→ Spec(κ(r))→ Spec(κ(y))→ U
Spec(K)→ Spec(κ(r′))→ Spec(κ(z))→ U

By construction (xK , yK) ∈ j(R(K)) and (yK , zK) ∈ j(R(K)). Since j is a pre-
equivalence relation we see that also (xK , zK) ∈ j(R(K)). This clearly implies that
x ∼ z.
The proof that ∼ is reflexive and symmetric is omitted. □

Lemma 39.3.5.0DT7 Let j : R→ U ×S U be a pre-relation. Assume
(1) s, t are unramified,
(2) for any algebraically closed field k over S the map R(k) → U(k) × U(k)

is an equivalence relation,
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(3) there are morphisms e : U → R, i : R→ R, c : R×s,U,t R→ R such that

U
e

//

∆
��

R

j

��

R

j

��

i
// R

j

��

R×s,U,t R

j×j
��

c
// R

j

��
U ×S U // U ×S U U ×S U

flip // U ×S U U ×S U ×S U
pr02 // U ×S U

are commutative.
Then j is an equivalence relation.

Proof. By condition (1) and Morphisms, Lemma 29.35.16 we see that j is a unram-
ified. Then ∆j : R → R ×U×SU R is an open immersion by Morphisms, Lemma
29.35.13. However, then condition (2) says ∆j is bijective on k-valued points, hence
∆j is an isomorphism, hence j is a monomorphism. Then it easily follows from the
commutative diagrams that R(T ) ⊂ U(T )× U(T ) is an equivalence relation for all
schemes T over S. □

39.4. Group schemes

022R Let us recall that a group is a pair (G,m) where G is a set, and m : G×G→ G is
a map of sets with the following properties:

(1) (associativity) m(g,m(g′, g′′)) = m(m(g, g′), g′′) for all g, g′, g′′ ∈ G,
(2) (identity) there exists a unique element e ∈ G (called the identity, unit,

or 1 of G) such that m(g, e) = m(e, g) = g for all g ∈ G, and
(3) (inverse) for all g ∈ G there exists a i(g) ∈ G such that m(g, i(g)) =

m(i(g), g) = e, where e is the identity.
Thus we obtain a map e : {∗} → G and a map i : G → G so that the quadruple
(G,m, e, i) satisfies the axioms listed above.

A homomorphism of groups ψ : (G,m) → (G′,m′) is a map of sets ψ : G → G′

such that m′(ψ(g), ψ(g′)) = ψ(m(g, g′)). This automatically insures that ψ(e) = e′

and i′(ψ(g)) = ψ(i(g)). (Obvious notation.) We will use this below.

Definition 39.4.1.022S Let S be a scheme.
(1) A group scheme over S is a pair (G,m), where G is a scheme over S and

m : G ×S G → G is a morphism of schemes over S with the following
property: For every scheme T over S the pair (G(T ),m) is a group.

(2) A morphism ψ : (G,m)→ (G′,m′) of group schemes over S is a morphism
ψ : G → G′ of schemes over S such that for every T/S the induced map
ψ : G(T )→ G′(T ) is a homomorphism of groups.

Let (G,m) be a group scheme over the scheme S. By the discussion above (and the
discussion in Section 39.2) we obtain morphisms of schemes over S: (identity) e :
S → G and (inverse) i : G→ G such that for every T the quadruple (G(T ),m, e, i)
satisfies the axioms of a group listed above.

Let (G,m), (G′,m′) be group schemes over S. Let f : G → G′ be a morphism
of schemes over S. It follows from the definition that f is a morphism of group
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schemes over S if and only if the following diagram is commutative:

G×S G
f×f
//

m

��

G′ ×S G′

m′

��
G

f // G′

Lemma 39.4.2.022T Let (G,m) be a group scheme over S. Let S′ → S be a morphism
of schemes. The pullback (GS′ ,mS′) is a group scheme over S′.

Proof. Omitted. □

Definition 39.4.3.047D Let S be a scheme. Let (G,m) be a group scheme over S.
(1) A closed subgroup scheme of G is a closed subscheme H ⊂ G such that

m|H×SH factors through H and induces a group scheme structure on H
over S.

(2) An open subgroup scheme of G is an open subscheme G′ ⊂ G such that
m|G′×SG′ factors through G′ and induces a group scheme structure on G′

over S.

Alternatively, we could say that H is a closed subgroup scheme of G if it is a group
scheme over S endowed with a morphism of group schemes i : H → G over S which
identifies H with a closed subscheme of G.

Lemma 39.4.4.0G8L Let S be a scheme. Let (G,m, e, i) be a group scheme over S.
(1) A closed subscheme H ⊂ G is a closed subgroup scheme if and only if

e : S → G, m|H×SH : H ×S H → G, and i|H : H → G factor through H.
(2) An open subscheme H ⊂ G is an open subgroup scheme if and only if

e : S → G, m|H×SH : H ×S H → G, and i|H : H → G factor through H.

Proof. Looking at T -valued points this translates into the well known conditions
characterizing subsets of groups as subgroups. □

Definition 39.4.5.047E Let S be a scheme. Let (G,m) be a group scheme over S.
(1) We say G is a smooth group scheme if the structure morphism G→ S is

smooth.
(2) We say G is a flat group scheme if the structure morphism G→ S is flat.
(3) We say G is a separated group scheme if the structure morphism G→ S

is separated.
Add more as needed.

39.5. Examples of group schemes

047F
Example 39.5.1 (Multiplicative group scheme).022U Consider the functor which asso-
ciates to any scheme T the group Γ(T,O∗

T ) of units in the global sections of the
structure sheaf. This is representable by the scheme

Gm = Spec(Z[x, x−1])
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The morphism giving the group structure is the morphism
Gm ×Gm → Gm

Spec(Z[x, x−1]⊗Z Z[x, x−1]) → Spec(Z[x, x−1])
Z[x, x−1]⊗Z Z[x, x−1] ← Z[x, x−1]

x⊗ x ← x

Hence we see that Gm is a group scheme over Z. For any scheme S the base change
Gm,S is a group scheme over S whose functor of points is

T/S 7−→ Gm,S(T ) = Gm(T ) = Γ(T,O∗
T )

as before.

Example 39.5.2 (Roots of unity).040M Let n ∈ N. Consider the functor which associates
to any scheme T the subgroup of Γ(T,O∗

T ) consisting of nth roots of unity. This is
representable by the scheme

µn = Spec(Z[x]/(xn − 1)).
The morphism giving the group structure is the morphism

µn × µn → µn

Spec(Z[x]/(xn − 1)⊗Z Z[x]/(xn − 1)) → Spec(Z[x]/(xn − 1))
Z[x]/(xn − 1)⊗Z Z[x]/(xn − 1) ← Z[x]/(xn − 1)

x⊗ x ← x

Hence we see that µn is a group scheme over Z. For any scheme S the base change
µn,S is a group scheme over S whose functor of points is

T/S 7−→ µn,S(T ) = µn(T ) = {f ∈ Γ(T,O∗
T ) | fn = 1}

as before.

Example 39.5.3 (Additive group scheme).022V Consider the functor which associates
to any scheme T the group Γ(T,OT ) of global sections of the structure sheaf. This
is representable by the scheme

Ga = Spec(Z[x])
The morphism giving the group structure is the morphism

Ga ×Ga → Ga

Spec(Z[x]⊗Z Z[x]) → Spec(Z[x])
Z[x]⊗Z Z[x] ← Z[x]
x⊗ 1 + 1⊗ x ← x

Hence we see that Ga is a group scheme over Z. For any scheme S the base change
Ga,S is a group scheme over S whose functor of points is

T/S 7−→ Ga,S(T ) = Ga(T ) = Γ(T,OT )
as before.

Example 39.5.4 (General linear group scheme).022W Let n ≥ 1. Consider the functor
which associates to any scheme T the group

GLn(Γ(T,OT ))
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of invertible n× n matrices over the global sections of the structure sheaf. This is
representable by the scheme

GLn = Spec(Z[{xij}1≤i,j≤n][1/d])

where d = det((xij)) with (xij) the n × n matrix with entry xij in the (i, j)-spot.
The morphism giving the group structure is the morphism

GLn ×GLn → GLn
Spec(Z[xij , 1/d]⊗Z Z[xij , 1/d]) → Spec(Z[xij , 1/d])

Z[xij , 1/d]⊗Z Z[xij , 1/d] ← Z[xij , 1/d]∑
xik ⊗ xkj ← xij

Hence we see that GLn is a group scheme over Z. For any scheme S the base change
GLn,S is a group scheme over S whose functor of points is

T/S 7−→ GLn,S(T ) = GLn(T ) = GLn(Γ(T,OT ))

as before.

Example 39.5.5.022X The determinant defines a morphism of group schemes

det : GLn −→ Gm

over Z. By base change it gives a morphism of group schemes GLn,S → Gm,S over
any base scheme S.

Example 39.5.6 (Constant group).03YW Let G be an abstract group. Consider the func-
tor which associates to any scheme T the group of locally constant maps T → G
(where T has the Zariski topology and G the discrete topology). This is repre-
sentable by the scheme

GSpec(Z) =
∐

g∈G
Spec(Z).

The morphism giving the group structure is the morphism

GSpec(Z) ×Spec(Z) GSpec(Z) −→ GSpec(Z)

which maps the component corresponding to the pair (g, g′) to the component
corresponding to gg′. For any scheme S the base change GS is a group scheme over
S whose functor of points is

T/S 7−→ GS(T ) = {f : T → G locally constant}

as before.

39.6. Properties of group schemes

045W In this section we collect some simple properties of group schemes which hold over
any base.

Lemma 39.6.1.047G Let S be a scheme. Let G be a group scheme over S. Then G→ S
is separated (resp. quasi-separated) if and only if the identity morphism e : S → G
is a closed immersion (resp. quasi-compact).
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Proof. We recall that by Schemes, Lemma 26.21.11 we have that e is an immersion
which is a closed immersion (resp. quasi-compact) if G → S is separated (resp.
quasi-separated). For the converse, consider the diagram

G
∆G/S

//

��

G×S G

(g,g′) 7→m(i(g),g′)
��

S
e // G

It is an exercise in the functorial point of view in algebraic geometry to show that
this diagram is cartesian. In other words, we see that ∆G/S is a base change of
e. Hence if e is a closed immersion (resp. quasi-compact) so is ∆G/S , see Schemes,
Lemma 26.18.2 (resp. Schemes, Lemma 26.19.3). □

Lemma 39.6.2.047H Let S be a scheme. Let G be a group scheme over S. Let T be a
scheme over S and let ψ : T → G be a morphism over S. If T is flat over S, then
the morphism

T ×S G −→ G, (t, g) 7−→ m(ψ(t), g)
is flat. In particular, if G is flat over S, then m : G×S G→ G is flat.

Proof. Consider the diagram

T ×S G (t,g)7→(t,m(ψ(t),g))
// T ×S G pr

//

��

G

��
T // S

The left top horizontal arrow is an isomorphism and the square is cartesian. Hence
the lemma follows from Morphisms, Lemma 29.25.8. □

Lemma 39.6.3.047I [MvdGE,
Proposition 3.15]

Let (G,m, e, i) be a group scheme over the scheme S. Denote
f : G→ S the structure morphism. Then there exist canonical isomorphisms

ΩG/S ∼= f∗CS/G ∼= f∗e∗ΩG/S
where CS/G denotes the conormal sheaf of the immersion e. In particular, if S is
the spectrum of a field, then ΩG/S is a free OG-module.

Proof. By Morphisms, Lemma 29.32.10 we have
ΩG×SG/G = pr∗

0ΩG/S
where on the left hand side we view G ×S G as a scheme over G using pr1. Let
τ : G ×S G → G ×S G be the “shearing map” given by (g, h) 7→ (m(g, h), h) on
points. This map is an automorphism of G ×S G viewed as a scheme over G via
the projection pr1. Combining these two remarks we obtain an isomorphism

τ∗pr∗
0ΩG/S → pr∗

0ΩG/S
Since pr0 ◦ τ = m this can be rewritten as an isomorphism

m∗ΩG/S → pr∗
0ΩG/S

Pulling back this isomorphism by (e ◦ f, idG) : G→ G×S G and using that m ◦ (e ◦
f, idG) = idG and pr0 ◦ (e ◦ f, idG) = e ◦ f we obtain an isomorphism

ΩG/S → f∗e∗ΩG/S

https://stacks.math.columbia.edu/tag/047H
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as desired. By Morphisms, Lemma 29.32.16 we have CS/G ∼= e∗ΩG/S . If S is
the spectrum of a field, then any OS-module on S is free and the final statement
follows. □

Lemma 39.6.4.0BF5 Let S be a scheme. Let G be a group scheme over S. Let s ∈ S.
Then the composition

TG/S,e(s) ⊕ TG/S,e(s) = TG×SG/S,(e(s),e(s)) → TG/S,e(s)

is addition of tangent vectors. Here the = comes from Varieties, Lemma 33.16.7
and the right arrow is induced from m : G×SG→ G via Varieties, Lemma 33.16.6.

Proof. We will use Varieties, Equation (33.16.3.1) and work with tangent vectors
in fibres. An element θ in the first factor TGs/s,e(s) is the image of θ via the
map TGs/s,e(s) → TGs×Gs/s,(e(s),e(s)) coming from (1, e) : Gs → Gs × Gs. Since
m ◦ (1, e) = 1 we see that θ maps to θ by functoriality. Since the map is linear we
see that (θ1, θ2) maps to θ1 + θ2. □

39.7. Properties of group schemes over a field

047J In this section we collect some properties of group schemes over a field. In the case
of group schemes which are (locally) algebraic over a field we can say a lot more,
see Section 39.8.

Lemma 39.7.1.047K If (G,m) is a group scheme over a field k, then the multiplication
map m : G×k G→ G is open.

Proof. The multiplication map is isomorphic to the projection map pr0 : G×kG→
G because the diagram

G×k G

m

��

(g,g′)7→(m(g,g′),g′)
// G×k G

(g,g′) 7→g

��
G

id // G

is commutative with isomorphisms as horizontal arrows. The projection is open by
Morphisms, Lemma 29.23.4. □

Lemma 39.7.2.0B7N If (G,m) is a group scheme over a field k. Let U ⊂ G open and
T → G a morphism of schemes. Then the image of the composition T ×k U →
G×k G→ G is open.

Proof. For any field extension K/k the morphism GK → G is open (Morphisms,
Lemma 29.23.4). Every point ξ of T ×k U is the image of a morphism (t, u) :
Spec(K)→ T ×kU for some K. Then the image of TK×K UK = (T ×kU)K → GK
contains the translate t · UK which is open. Combining these facts we see that the
image of T ×k U → G contains an open neighbourhood of the image of ξ. Since ξ
was arbitrary we win. □

Lemma 39.7.3.047L Let G be a group scheme over a field. Then G is a separated
scheme.

Proof. Say S = Spec(k) with k a field, and let G be a group scheme over S.
By Lemma 39.6.1 we have to show that e : S → G is a closed immersion. By
Morphisms, Lemma 29.20.2 the image of e : S → G is a closed point of G. It is
clear that OG → e∗OS is surjective, since e∗OS is a skyscraper sheaf supported at
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the neutral element of G with value k. We conclude that e is a closed immersion
by Schemes, Lemma 26.24.2. □

Lemma 39.7.4.047M Let G be a group scheme over a field k. Then
(1) every local ring OG,g of G has a unique minimal prime ideal,
(2) there is exactly one irreducible component Z of G passing through e, and
(3) Z is geometrically irreducible over k.

Proof. For any point g ∈ G there exists a field extension K/k and a K-valued
point g′ ∈ G(K) mapping to g. If we think of g′ as a K-rational point of the group
scheme GK , then we see that OG,g → OGK ,g′ is a faithfully flat local ring map (as
GK → G is flat, and a local flat ring map is faithfully flat, see Algebra, Lemma
10.39.17). The result for OGK ,g′ implies the result for OG,g, see Algebra, Lemma
10.30.5. Hence in order to prove (1) it suffices to prove it for k-rational points g of
G. In this case translation by g defines an automorphism G→ G which maps e to
g. Hence OG,g ∼= OG,e. In this way we see that (2) implies (1), since irreducible
components passing through e correspond one to one with minimal prime ideals of
OG,e.
In order to prove (2) and (3) it suffices to prove (2) when k is algebraically closed.
In this case, let Z1, Z2 be two irreducible components of G passing through e. Since
k is algebraically closed the closed subscheme Z1 ×k Z2 ⊂ G ×k G is irreducible
too, see Varieties, Lemma 33.8.4. Hence m(Z1×k Z2) is contained in an irreducible
component of G. On the other hand it contains Z1 and Z2 since m|e×G = idG and
m|G×e = idG. We conclude Z1 = Z2 as desired. □

Remark 39.7.5.04L9 Warning: The result of Lemma 39.7.4 does not mean that ev-
ery irreducible component of G/k is geometrically irreducible. For example the
group scheme µ3,Q = Spec(Q[x]/(x3 − 1)) over Q has two irreducible components
corresponding to the factorization x3 − 1 = (x − 1)(x2 + x + 1). The first factor
corresponds to the irreducible component passing through the identity, and the
second irreducible component is not geometrically irreducible over Spec(Q).
Lemma 39.7.6.047R Let G be a group scheme over a perfect field k. Then the reduction
Gred of G is a closed subgroup scheme of G.
Proof. Omitted. Hint: Use that Gred ×k Gred is reduced by Varieties, Lemmas
33.6.3 and 33.6.7. □

Lemma 39.7.7.047S Let k be a field. Let ψ : G′ → G be a morphism of group schemes
over k. If ψ(G′) is open in G, then ψ(G′) is closed in G.
Proof. Let U = ψ(G′) ⊂ G. Let Z = G \ ψ(G′) = G \ U with the reduced induced
closed subscheme structure. By Lemma 39.7.2 the image of

Z ×k G′ −→ Z ×k U −→ G

is open (the first arrow is surjective). On the other hand, since ψ is a homomorphism
of group schemes, the image of Z×kG′ → G is contained in Z (because translation
by ψ(g′) preserves U for all points g′ of G′; small detail omitted). Hence Z ⊂ G is
an open subset (although not necessarily an open subscheme). Thus U = ψ(G′) is
closed. □

Lemma 39.7.8.047T Let i : G′ → G be an immersion of group schemes over a field k.
Then i is a closed immersion, i.e., i(G′) is a closed subgroup scheme of G.
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Proof. To show that i is a closed immersion it suffices to show that i(G′) is a closed
subset of G. Let k ⊂ k′ be a perfect extension of k. If i(G′

k′) ⊂ Gk′ is closed,
then i(G′) ⊂ G is closed by Morphisms, Lemma 29.25.12 (as Gk′ → G is flat,
quasi-compact and surjective). Hence we may and do assume k is perfect. We will
use without further mention that products of reduced schemes over k are reduced.
We may replace G′ and G by their reductions, see Lemma 39.7.6. Let G′ ⊂ G be
the closure of i(G′) viewed as a reduced closed subscheme. By Varieties, Lemma
33.24.1 we conclude that G′×kG′ is the closure of the image of G′×kG′ → G×kG.
Hence

m
(
G′ ×k G′

)
⊂ G′

as m is continuous. It follows that G′ ⊂ G is a (reduced) closed subgroup scheme.
By Lemma 39.7.7 we see that i(G′) ⊂ G′ is also closed which implies that i(G′) = G′

as desired. □

Lemma 39.7.9.0B7P Let G be a group scheme over a field k. If G is irreducible, then G
is quasi-compact.

Proof. Suppose that K/k is a field extension. If GK is quasi-compact, then G is
too as GK → G is surjective. By Lemma 39.7.4 we see that GK is irreducible.
Hence it suffices to prove the lemma after replacing k by some extension. Choose
K to be an algebraically closed field extension of very large cardinality. Then by
Varieties, Lemma 33.14.2, we see that GK is a Jacobson scheme all of whose closed
points have residue field equal to K. In other words we may assume G is a Jacobson
scheme all of whose closed points have residue field k.
Let U ⊂ G be a nonempty affine open. Let g ∈ G(k). Then gU ∩U ̸= ∅. Hence we
see that g is in the image of the morphism

U ×Spec(k) U −→ G, (u1, u2) 7−→ u1u
−1
2

Since the image of this morphism is open (Lemma 39.7.1) we see that the image
is all of G (because G is Jacobson and closed points are k-rational). Since U is
affine, so is U ×Spec(k) U . Hence G is the image of a quasi-compact scheme, hence
quasi-compact. □

Lemma 39.7.10.0B7Q Let G be a group scheme over a field k. If G is connected, then
G is irreducible.

Proof. By Varieties, Lemma 33.7.14 we see that G is geometrically connected. If
we show that GK is irreducible for some field extension K/k, then the lemma
follows. Hence we may apply Varieties, Lemma 33.14.2 to reduce to the case where
k is algebraically closed, G is a Jacobson scheme, and all the closed points are
k-rational.
Let Z ⊂ G be the unique irreducible component of G passing through the neutral el-
ement, see Lemma 39.7.4. Endowing Z with the reduced induced closed subscheme
structure, we see that Z ×k Z is reduced and irreducible (Varieties, Lemmas 33.6.7
and 33.8.4). We conclude that m|Z×kZ : Z ×k Z → G factors through Z. Hence Z
becomes a closed subgroup scheme of G.
To get a contradiction, assume there exists another irreducible component Z ′ ⊂ G.
Then Z ∩ Z ′ = ∅ by Lemma 39.7.4. By Lemma 39.7.9 we see that Z is quasi-
compact. Thus we may choose a quasi-compact open U ⊂ G with Z ⊂ U and

https://stacks.math.columbia.edu/tag/0B7P
https://stacks.math.columbia.edu/tag/0B7Q


39.7. PROPERTIES OF GROUP SCHEMES OVER A FIELD 3529

U ∩ Z ′ = ∅. The image W of Z ×k U → G is open in G by Lemma 39.7.2. On the
other hand, W is quasi-compact as the image of a quasi-compact space. We claim
that W is closed.

Proof of the claim. Since W is quasi-compact, we see that points in the closure of
W are specializations of points of W (Morphisms, Lemma 29.6.5). Thus we have
to show that any irreducible component Z ′′ ⊂ G of G which meets W is contained
in W . As G is Jacobson and closed points are rational, Z ′′∩W has a rational point
g ∈ Z ′′(k) ∩W (k) and hence Z ′′ = Zg. But W = m(Z ×k W ) by construction, so
Z ′′ ∩W ̸= ∅ implies Z ′′ ⊂W .

By the claim W ⊂ G is an open and closed subset of G. Now W ∩ Z ′ = ∅ since
otherwise by the argument given in the precending paragraph we would get Z ′ = Zg
for some g ∈ W (k). Then as Z is a subgroup we could even pick g ∈ U(k) which
would contradict Z ′ ∩ U = ∅. Hence W ⊂ G is a proper open and closed subset
which contradicts the assumption that G is connected. □

Proposition 39.7.11.0B7R Let G be a group scheme over a field k. There exists a
canonical closed subgroup scheme G0 ⊂ G with the following properties

(1) G0 → G is a flat closed immersion,
(2) G0 ⊂ G is the connected component of the identity,
(3) G0 is geometrically irreducible, and
(4) G0 is quasi-compact.

Proof. Let G0 be the connected component of the identity with its canonical scheme
structure (Morphisms, Definition 29.26.3). To show that G0 is a closed subsgroup
scheme we will use the criterion of Lemma 39.4.4. The morphism e : Spec(k)→ G
factors through G0 as we chose G0 to be the connected component of G containing
e. Since i : G→ G is an automorphism fixing e, we see that i sends G0 into itself.
By Varieties, Lemma 33.7.13 the scheme G0 is geometrically connected over k. Thus
G0 ×k G0 is connected (Varieties, Lemma 33.7.4). Thus m(G0 ×k G0) ⊂ G0 set
theoretically. Thus m|G0×kG0 : G0 ×k G0 → G factors through G0 by Morphisms,
Lemma 29.26.1. Hence G0 is a closed subgroup scheme of G. By Lemma 39.7.10
we see that G0 is irreducible. By Lemma 39.7.4 we see that G0 is geometrically
irreducible. By Lemma 39.7.9 we see that G0 is quasi-compact. □

Lemma 39.7.12.0B7T Let k be a field. Let T = Spec(A) where A is a directed colimit
of algebras which are finite products of copies of k. For any scheme X over k we
have |T ×k X| = |T | × |X| as topological spaces.

Proof. By taking an affine open covering we reduce to the case of an affine X.
Say X = Spec(B). Write A = colimAi with Ai =

∏
t∈Ti k and Ti finite. Then

Ti = |Spec(Ai)| with the discrete topology and the transition morphisms Ai → Ai′

are given by set maps Ti′ → Ti. Thus |T | = limTi as a topological space, see
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Limits, Lemma 32.4.6. Similarly we have
|T ×k X| = |Spec(A⊗k B)|

= |Spec(colimAi ⊗k B)|
= lim |Spec(Ai ⊗k B)|

= lim |Spec(
∏

t∈Ti
B)|

= limTi × |X|
= (limTi)× |X|
= |T | × |X|

by the lemma above and the fact that limits commute with limits. □

The following lemma says that in fact we can put a “algebraic profinite family of
points” in an affine open. We urge the reader to read Lemma 39.8.6 first.

Lemma 39.7.13.0B7U Let k be an algebraically closed field. Let G be a group scheme
over k. Assume that G is Jacobson and that all closed points are k-rational. Let
T = Spec(A) where A is a directed colimit of algebras which are finite products
of copies of k. For any morphism f : T → G there exists an affine open U ⊂ G
containing f(T ).

Proof. Let G0 ⊂ G be the closed subgroup scheme found in Proposition 39.7.11.
The first two paragraphs serve to reduce to the case G = G0.
Observe that T is a directed inverse limit of finite topological spaces (Limits, Lemma
32.4.6), hence profinite as a topological space (Topology, Definition 5.22.1). Let
W ⊂ G be a quasi-compact open containing the image of T → G. After replacing
W by the image of G0×W → G×G→ G we may assume that W is invariant under
the action of left translation by G0, see Lemma 39.7.2. Consider the composition

ψ = π ◦ f : T f−→W
π−→ π0(W )

The space π0(W ) is profinite (Topology, Lemma 5.23.9 and Properties, Lemma
28.2.4). Let Fξ ⊂ T be the fibre of T → π0(W ) over ξ ∈ π0(W ). Assume that
for all ξ we can find an affine open Uξ ⊂ W with F ⊂ U . Since ψ : T → π0(W )
is universally closed as a map of topological spaces (Topology, Lemma 5.17.7), we
can find a quasi-compact open Vξ ⊂ π0(W ) such that ψ−1(Vξ) ⊂ f−1(Uξ) (easy
topological argument omitted). After replacing Uξ by Uξ ∩ π−1(Vξ), which is open
and closed in Uξ hence affine, we see that Uξ ⊂ π−1(Vξ) and Uξ ∩T = ψ−1(Vξ). By
Topology, Lemma 5.22.4 we can find a finite disjoint union decomposition π0(W ) =⋃
i=1,...,n Vi by quasi-compact opens such that Vi ⊂ Vξi for some i. Then we see

that
f(T ) ⊂

⋃
i=1,...,n

Uξi ∩ π−1(Vi)
the right hand side of which is a finite disjoint union of affines, therefore affine.
Let Z be a connected component of G which meets f(T ). Then Z has a k-rational
point z (because all residue fields of the scheme T are isomorphic to k). Hence
Z = G0z. By our choice of W , we see that Z ⊂W . The argument in the preceding
paragraph reduces us to the problem of finding an affine open neighbourhood of
f(T ) ∩ Z in W . After translation by a rational point we may assume that Z = G0

(details omitted). Observe that the scheme theoretic inverse image T ′ = f−1(G0) ⊂
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T is a closed subscheme, which has the same type. After replacing T by T ′ we may
assume that f(T ) ⊂ G0. Choose an affine open neighbourhood U ⊂ G of e ∈ G, so
that in particular U ∩G0 is nonempty. We will show there exists a g ∈ G0(k) such
that f(T ) ⊂ g−1U . This will finish the proof as g−1U ⊂W by the left G0-invariance
of W .

The arguments in the preceding two paragraphs allow us to pass to G0 and reduce
the problem to the following: Assume G is irreducible and U ⊂ G an affine open
neighbourhood of e. Show that f(T ) ⊂ g−1U for some g ∈ G(k). Consider the
morphism

U ×k T −→ G×k T, (t, u) −→ (uf(t)−1, t)
which is an open immersion (because the extension of this morphism to G×k T →
G×kT is an isomorphism). By our assumption on T we see that we have |U×kT | =
|U | × |T | and similarly for G ×k T , see Lemma 39.7.12. Hence the image of the
displayed open immersion is a finite union of boxes

⋃
i=1,...,n Ui × Vi with Vi ⊂ T

and Ui ⊂ G quasi-compact open. This means that the possible opens Uf(t)−1,
t ∈ T are finite in number, say Uf(t1)−1, . . . , Uf(tr)−1. Since G is irreducible the
intersection

Uf(t1)−1 ∩ . . . ∩ Uf(tr)−1

is nonempty and since G is Jacobson with closed points k-rational, we can choose
a k-valued point g ∈ G(k) of this intersection. Then we see that g ∈ Uf(t)−1 for
all t ∈ T which means that f(t) ∈ g−1U as desired. □

Remark 39.7.14.047V If G is a group scheme over a field, is there always a quasi-
compact open and closed subgroup scheme? By Proposition 39.7.11 this question
is only interesting if G has infinitely many connected components (geometrically).

Lemma 39.7.15.047U Let G be a group scheme over a field. There exists an open and
closed subscheme G′ ⊂ G which is a countable union of affines.

Proof. Let e ∈ U(k) be a quasi-compact open neighbourhood of the identity ele-
ment. By replacing U by U ∩ i(U) we may assume that U is invariant under the
inverse map. As G is separated this is still a quasi-compact set. Set

G′ =
⋃

n≥1
mn(U ×k . . .×k U)

where mn : G ×k . . . ×k G → G is the n-slot multiplication map (g1, . . . , gn) 7→
m(m(. . . (m(g1, g2), g3), . . .), gn). Each of these maps are open (see Lemma 39.7.1)
hence G′ is an open subgroup scheme. By Lemma 39.7.7 it is also a closed subgroup
scheme. □

39.8. Properties of algebraic group schemes

0BF6 Recall that a scheme over a field k is (locally) algebraic if it is (locally) of finite
type over Spec(k), see Varieties, Definition 33.20.1. This is the sense of algebraic
we are using in the title of this section.

Lemma 39.8.1.045X Let k be a field. Let G be a locally algebraic group scheme over k.
Then G is equidimensional and dim(G) = dimg(G) for all g ∈ G. For any closed
point g ∈ G we have dim(G) = dim(OG,g).
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Proof. Let us first prove that dimg(G) = dimg′(G) for any pair of points g, g′ ∈ G.
By Morphisms, Lemma 29.28.3 we may extend the ground field at will. Hence
we may assume that both g and g′ are defined over k. Hence there exists an
automorphism of G mapping g to g′, whence the equality. By Morphisms, Lemma
29.28.1 we have dimg(G) = dim(OG,g) + trdegk(κ(g)). On the other hand, the
dimension of G (or any open subset of G) is the supremum of the dimensions of
the local rings of G, see Properties, Lemma 28.10.3. Clearly this is maximal for
closed points g in which case trdegk(κ(g)) = 0 (by the Hilbert Nullstellensatz, see
Morphisms, Section 29.16). Hence the lemma follows. □

The following result is sometimes referred to as Cartier’s theorem.

Lemma 39.8.2.047N Let k be a field of characteristic 0. Let G be a locally algebraic
group scheme over k. Then the structure morphism G → Spec(k) is smooth, i.e.,
G is a smooth group scheme.

Proof. By Lemma 39.6.3 the module of differentials of G over k is free. Hence
smoothness follows from Varieties, Lemma 33.25.1. □

Remark 39.8.3.047O Any group scheme over a field of characteristic 0 is reduced, see
[Per75, I, Theorem 1.1 and I, Corollary 3.9, and II, Theorem 2.4] and also [Per76,
Proposition 4.2.8]. This was a question raised in [Oor66, page 80]. We have seen
in Lemma 39.8.2 that this holds when the group scheme is locally of finite type.

Lemma 39.8.4.047P Let k be a perfect field of characteristic p > 0 (see Lemma 39.8.2
for the characteristic zero case). Let G be a locally algebraic group scheme over k.
If G is reduced then the structure morphism G → Spec(k) is smooth, i.e., G is a
smooth group scheme.

Proof. By Lemma 39.6.3 the sheaf ΩG/k is free. Hence the lemma follows from
Varieties, Lemma 33.25.2. □

Remark 39.8.5.047Q Let k be a field of characteristic p > 0. Let α ∈ k be an element
which is not a pth power. The closed subgroup scheme

G = V (xp + αyp) ⊂ G2
a,k

is reduced and irreducible but not smooth (not even normal).

The following lemma is a special case of Lemma 39.7.13 with a somewhat easier
proof.

Lemma 39.8.6.0B7S Let k be an algebraically closed field. Let G be a locally algebraic
group scheme over k. Let g1, . . . , gn ∈ G(k) be k-rational points. Then there exists
an affine open U ⊂ G containing g1, . . . , gn.

Proof. We first argue by induction on n that we may assume all gi are on the
same connected component of G. Namely, if not, then we can find a decomposition
G = W1⨿W2 with Wi open in G and (after possibly renumbering) g1, . . . , gr ∈W1
and gr+1, . . . , gn ∈ W2 for some 0 < r < n. By induction we can find affine opens
U1 and U2 of G with g1, . . . , gr ∈ U1 and gr+1, . . . , gn ∈ U2. Then

g1, . . . , gn ∈ (U1 ∩W1) ∪ (U2 ∩W2)
is a solution to the problem. Thus we may assume g1, . . . , gn are all on the same
connected component of G. Translating by g−1

1 we may assume g1, . . . , gn ∈ G0
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where G0 ⊂ G is as in Proposition 39.7.11. Choose an affine open neighbourhood
U of e, in particular U ∩G0 is nonempty. Since G0 is irreducible we see that

G0 ∩ (Ug−1
1 ∩ . . . ∩ Ug−1

n )

is nonempty. Since G → Spec(k) is locally of finite type, also G0 → Spec(k) is
locally of finite type, hence any nonempty open has a k-rational point. Thus we
can pick g ∈ G0(k) with g ∈ Ug−1

i for all i. Then gi ∈ g−1U for all i and g−1U is
the affine open we were looking for. □

Lemma 39.8.7.0BF7 Let k be a field. Let G be an algebraic group scheme over k. Then
G is quasi-projective over k.

Proof. By Varieties, Lemma 33.15.1 we may assume that k is algebraically closed.
Let G0 ⊂ G be the connected component of G as in Proposition 39.7.11. Then every
other connected component of G has a k-rational point and hence is isomorphic to
G0 as a scheme. Since G is quasi-compact and Noetherian, there are finitely many
of these connected components. Thus we reduce to the case discussed in the next
paragraph.

Let G be a connected algebraic group scheme over an algebraically closed field k.
If the characteristic of k is zero, then G is smooth over k by Lemma 39.8.2. If the
characteristic of k is p > 0, then we letH = Gred be the reduction ofG. By Divisors,
Proposition 31.17.9 it suffices to show that H has an ample invertible sheaf. (For an
algebraic scheme over k having an ample invertible sheaf is equivalent to being quasi-
projective over k, see for example the very general More on Morphisms, Lemma
37.49.1.) By Lemma 39.7.6 we see that H is a group scheme over k. By Lemma
39.8.4 we see that H is smooth over k. This reduces us to the situation discussed
in the next paragraph.

Let G be a quasi-compact irreducible smooth group scheme over an algebraically
closed field k. Observe that the local rings of G are regular and hence UFDs (Vari-
eties, Lemma 33.25.3 and More on Algebra, Lemma 15.121.2). The complement of
a nonempty affine open of G is the support of an effective Cartier divisor D. This
follows from Divisors, Lemma 31.16.6. (Observe that G is separated by Lemma
39.7.3.) We conclude there exists an effective Cartier divisor D ⊂ G such that
G \ D is affine. We will use below that for any n ≥ 1 and g1, . . . , gn ∈ G(k) the
complement G \

⋃
Dgi is affine. Namely, it is the intersection of the affine opens

G \Dgi ∼= G \D in the separated scheme G.

We may choose the top row of the diagram

G U
joo π // Ad

k

W
π′
//

OO

V

OO

such that U ̸= ∅, j : U → G is an open immersion, and π is étale, see Morphisms,
Lemma 29.36.20. There is a nonempty affine open V ⊂ Ad

k such that with W =
π−1(V ) the morphism π′ = π|W : W → V is finite étale. In particular π′ is finite
locally free, say of degree n. Consider the effective Cartier divisor

D = {(g, w) | m(g, j(w)) ∈ D} ⊂ G×W
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(This is the restriction to G×W of the pullback of D ⊂ G under the flat morphism
m : G × G → G.) Consider the closed subset1 T = (1 × π′)(D) ⊂ G × V . Since
π′ is finite locally free, every irreducible component of T has codimension 1 in
G × V . Since G × V is smooth over k we conclude these components are effective
Cartier divisors (Divisors, Lemma 31.15.7 and lemmas cited above) and hence T
is the support of an effective Cartier divisor E in G × V . If v ∈ V (k), then
(π′)−1(v) = {w1, . . . , wn} ⊂W (k) and we see that

Ev =
⋃

i=1,...,n
Dj(wi)−1

in G set theoretically. In particular we see that G \ Ev is affine open (see above).
Moreover, if g ∈ G(k), then there exists a v ∈ V such that g ̸∈ Ev. Namely, the
set W ′ of w ∈ W such that g ̸∈ Dj(w)−1 is nonempty open and it suffices to pick
v such that the fibre of W ′ → V over v has n elements.
Consider the invertible sheaf M = OG×V (E) on G × V . By Varieties, Lemma
33.30.5 the isomorphism class L of the restrictionMv = OG(Ev) is independent of
v ∈ V (k). On the other hand, for every g ∈ G(k) we can find a v such that g ̸∈ Ev
and such that G \ Ev is affine. Thus the canonical section (Divisors, Definition
31.14.1) of OG(Ev) corresponds to a section sv of L which does not vanish at g
and such that Gsv is affine. This means that L is ample by definition (Properties,
Definition 28.26.1). □

Lemma 39.8.8.0BF8 Let k be a field. Let G be a locally algebraic group scheme over k.
Then the center of G is a closed subgroup scheme of G.

Proof. Let Aut(G) denote the contravariant functor on the category of schemes
over k which associates to S/k the set of automorphisms of the base change GS as
a group scheme over S. There is a natural transformation

G −→ Aut(G), g 7−→ inng
sending an S-valued point g of G to the inner automorphism of G determined by
g. The center C of G is by definition the kernel of this transformation, i.e., the
functor which to S associates those g ∈ G(S) whose associated inner automorphism
is trivial. The statement of the lemma is that this functor is representable by a
closed subgroup scheme of G.
Choose an integer n ≥ 1. Let Gn ⊂ G be the nth infinitesimal neighbourhood of
the identity element e of G. For every scheme S/k the base change Gn,S is the nth
infinitesimal neighbourhood of eS : S → GS . Thus we see that there is a natural
transformation Aut(G) → Aut(Gn) where the right hand side is the functor of
automorphisms of Gn as a scheme (Gn isn’t in general a group scheme). Observe
that Gn is the spectrum of an artinian local ring An with residue field k which
has finite dimension as a k-vector space (Varieties, Lemma 33.20.2). Since every
automorphism of Gn induces in particular an invertible linear map An → An, we
obtain transformations of functors

G→ Aut(G)→ Aut(Gn)→ GL(An)

1Using the material in Divisors, Section 31.17 we could take as effective Cartier divisor E
the norm of the effective Cartier divisor D along the finite locally free morphism 1× π′ bypassing
some of the arguments.
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The final group valued functor is representable, see Example 39.5.4, and the last
arrow is visibly injective. Thus for every n we obtain a closed subgroup scheme

Hn = Ker(G→ Aut(Gn)) = Ker(G→ GL(An)).
As a first approximation we set H =

⋂
n≥1 Hn (scheme theoretic intersection). This

is a closed subgroup scheme which contains the center C.
Let h be an S-valued point of H with S locally Noetherian. Then the automorphism
innh induces the identity on all the closed subschemes Gn,S . Consider the kernel
K = Ker(innh : GS → GS). This is a closed subgroup scheme of GS over S
containing the closed subschemes Gn,S for n ≥ 1. This implies that K contains an
open neighbourhood of e(S) ⊂ GS , see Algebra, Remark 10.51.6. Let G0 ⊂ G be
as in Proposition 39.7.11. Since G0 is geometrically irreducible, we conclude that
K contains G0

S (for any nonempty open U ⊂ G0
k′ and any field extension k′/k we

have U ·U−1 = G0
k′ , see proof of Lemma 39.7.9). Applying this with S = H we find

that G0 and H are subgroup schemes of G whose points commute: for any scheme
S and any S-valued points g ∈ G0(S), h ∈ H(S) we have gh = hg in G(S).
Assume that k is algebraically closed. Then we can pick a k-valued point gi in each
irreducible component Gi of G. Observe that in this case the connected components
of G are the irreducible components of G are the translates of G0 by our gi. We
claim that

C = H ∩
⋂

i
Ker(inngi : G→ G) (scheme theoretic intersection)

Namely, C is contained in the right hand side. On the other hand, every S-valued
point h of the right hand side commutes with G0 and with gi hence with everything
in G =

⋃
G0gi.

The case of a general base field k follows from the result for the algebraic closure
k by descent. Namely, let A ⊂ Gk the closed subgroup scheme representing the
center of Gk. Then we have

A×Spec(k) Spec(k) = Spec(k)×Spec(k) A

as closed subschemes of Gk⊗kk by the functorial nature of the center. Hence we see
that A descends to a closed subgroup scheme Z ⊂ G by Descent, Lemma 35.37.2
(and Descent, Lemma 35.23.19). Then Z represents C (small argument omitted)
and the proof is complete. □

39.9. Abelian varieties

0BF9 An excellent reference for this material is Mumford’s book on abelian varieties,
see [Mum70]. We encourage the reader to look there. There are many equivalent
definitions; here is one.

Definition 39.9.1.03RO Let k be a field. An abelian variety is a group scheme over k
which is also a proper, geometrically integral variety over k2.

We prove a few lemmas about this notion and then we collect all the results together
in Proposition 39.9.11.

Lemma 39.9.2.0BFA Let k be a field. Let A be an abelian variety over k. Then A is
projective.

2For equivalent definitions see Remark 39.9.12.

https://stacks.math.columbia.edu/tag/03RO
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Proof. This follows from Lemma 39.8.7 and More on Morphisms, Lemma 37.50.1.
□

Lemma 39.9.3.0BFB Let k be a field. Let A be an abelian variety over k. For any field
extension K/k the base change AK is an abelian variety over K.
Proof. Omitted. Note that this is why we insisted on A being geometrically integral;
without that condition this lemma (and many others below) would be wrong. □

Lemma 39.9.4.0BFC Let k be a field. Let A be an abelian variety over k. Then A is
smooth over k.
Proof. If k is perfect then this follows from Lemma 39.8.2 (characteristic zero) and
Lemma 39.8.4 (positive characteristic). We can reduce the general case to this case
by descent for smoothness (Descent, Lemma 35.23.27) and going to the perfect
closure using Lemma 39.9.3. □

Lemma 39.9.5.0BFD An abelian variety is an abelian group scheme, i.e., the group law
is commutative.
Proof. Let k be a field. Let A be an abelian variety over k. By Lemma 39.9.3 we
may replace k by its algebraic closure. Consider the morphism

h : A×k A −→ A×k A, (x, y) 7−→ (x, xyx−1y−1)
This is a morphism over A via the first projection on either side. Let e ∈ A(k)
be the unit. Then we see that h|e×A is constant with value (e, e). By More on
Morphisms, Lemma 37.44.3 there exists an open neighbourhood U ⊂ A of e such
that h|U×A factors through some Z ⊂ U × A finite over U . This means that for
x ∈ U(k) the morphism A → A, y 7→ xyx−1y−1 takes finitely many values. Of
course this means it is constant with value e. Thus (x, y) 7→ xyx−1y−1 is constant
with value e on U ×A which implies that the group law on A is abelian. □

Lemma 39.9.6.0BFE Let k be a field. Let A be an abelian variety over k. Let L be an
invertible OA-module. Then there is an isomorphism

m∗
1,2,3L ⊗m∗

1L ⊗m∗
2L ⊗m∗

3L ∼= m∗
1,2L ⊗m∗

1,3L ⊗m∗
2,3L

of invertible modules on A ×k A ×k A where mi1,...,it : A ×k A ×k A → A is the
morphism (x1, x2, x3) 7→

∑
xij .

Proof. Apply the theorem of the cube (More on Morphisms, Theorem 37.33.8) to
the difference
M = m∗

1,2,3L ⊗m∗
1L ⊗m∗

2L ⊗m∗
3L ⊗m∗

1,2L⊗−1 ⊗m∗
1,3L⊗−1 ⊗m∗

2,3L⊗−1

This works because the restriction of M to A×A× e = A×A is equal to
n∗

1,2L ⊗ n∗
1L ⊗ n∗

2L ⊗ n∗
1,2L⊗−1 ⊗ n∗

1L⊗−1 ⊗ n∗
2L⊗−1 ∼= OA×kA

where ni1,...,it : A ×k A → A is the morphism (x1, x2) 7→
∑
xij . Similarly for

A× e×A and e×A×A. □

Lemma 39.9.7.0BFF Let k be a field. Let A be an abelian variety over k. Let L be an
invertible OA-module. Then

[n]∗L ∼= L⊗n(n+1)/2 ⊗ ([−1]∗L)⊗n(n−1)/2

where [n] : A → A sends x to x + x + . . . + x with n summands and where
[−1] : A→ A is the inverse of A.

https://stacks.math.columbia.edu/tag/0BFB
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Proof. Consider the morphism A → A ×k A ×k A, x 7→ (x, x,−x) where −x =
[−1](x). Pulling back the relation of Lemma 39.9.6 we obtain

L ⊗ L⊗ L⊗ [−1]∗L ∼= [2]∗L

which proves the result for n = 2. By induction assume the result holds for
1, 2, . . . , n. Then consider the morphism A → A ×k A ×k A, x 7→ (x, x, [n − 1]x).
Pulling back the relation of Lemma 39.9.6 we obtain

[n+ 1]∗L ⊗ L⊗ L⊗ [n− 1]∗L ∼= [2]∗L ⊗ [n]∗L ⊗ [n]∗L

and the result follows by elementary arithmetic. □

Lemma 39.9.8.0BFG Let k be a field. Let A be an abelian variety over k. Let [d] : A→ A

be the multiplication by d. Then [d] is finite locally free of degree d2 dim(A).

Proof. By Lemma 39.9.2 (and More on Morphisms, Lemma 37.50.1) we see that
A has an ample invertible module L. Since [−1] : A → A is an automorphism, we
see that [−1]∗L is an ample invertible OX -module as well. Thus N = L ⊗ [−1]∗L
is ample, see Properties, Lemma 28.26.5. Since N ∼= [−1]∗N we see that [d]∗N ∼=
N⊗d2 by Lemma 39.9.7.

To get a contradiction, let C ⊂ X be a proper curve contained in a fibre of [d].
Then N⊗d2 |C ∼= OC is an ample invertible OC-module of degree 0 which contra-
dicts Varieties, Lemma 33.44.14 for example. (You can also use Varieties, Lemma
33.45.9.) Thus every fibre of [d] has dimension 0 and hence [d] is finite for example
by Cohomology of Schemes, Lemma 30.21.1. Moreover, since A is smooth over k by
Lemma 39.9.4 we see that [d] : A→ A is flat by Algebra, Lemma 10.128.1 (we also
use that schemes smooth over fields are regular and that regular rings are Cohen-
Macaulay, see Varieties, Lemma 33.25.3 and Algebra, Lemma 10.106.3). Thus [d]
is finite flat hence finite locally free by Morphisms, Lemma 29.48.2.

Finally, we come to the formula for the degree. By Varieties, Lemma 33.45.11 we
see that

degN ⊗d2 (A) = deg([d]) degN (A)

Since the degree of A with respect to N⊗d2 , respectively N is the coefficient of
ndim(A) in the polynomial

n 7−→ χ(A,N⊗nd2
), respectively n 7−→ χ(A,N⊗n)

we see that deg([d]) = d2 dim(A). □

Lemma 39.9.9.0BFH Let k be a field. Let A be a nonzero abelian variety over k. Then
[d] : A→ A is étale if and only if d is invertible in k.

Proof. Observe that [d](x+ y) = [d](x) + [d](y). Since translation by a point is an
automorphism of A, we see that the set of points where [d] : A→ A is étale is either
empty or equal to A (some details omitted). Thus it suffices to check whether [d]
is étale at the unit e ∈ A(k). Since we know that [d] is finite locally free (Lemma
39.9.8) to see that it is étale at e is equivalent to proving that d[d] : TA/k,e → TA/k,e
is injective. See Varieties, Lemma 33.16.8 and Morphisms, Lemma 29.36.16. By
Lemma 39.6.4 we see that d[d] is given by multiplication by d on TA/k,e. □

https://stacks.math.columbia.edu/tag/0BFG
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Lemma 39.9.10.0C0Y Let k be a field of characteristic p > 0. Let A be an abelian
variety of dimension g over k. The fibre of [p] : A → A over 0 has at most pg
distinct points.

Proof. To prove this, we may and do replace k by the algebraic closure. By Lemma
39.6.4 the derivative of [p] is multiplication by p as a map TA/k,e → TA/k,e and
hence is zero (compare with proof of Lemma 39.9.9). Since [p] commutes with
translation we conclude that the derivative of [p] is everywhere zero, i.e., that the
induced map [p]∗ΩA/k → ΩA/k is zero. Looking at generic points, we find that the
corresponding map [p]∗ : k(A) → k(A) of function fields induces the zero map on
Ωk(A)/k. Let t1, . . . , tg be a p-basis of k(A) over k (More on Algebra, Definition
15.46.1 and Lemma 15.46.2). Then [p]∗(ti) has a pth root by Algebra, Lemma
10.158.2. We conclude that k(A)[x1, . . . , xg]/(xp1− t1, . . . , xpg− tg) is a subextension
of [p]∗ : k(A)→ k(A). Thus we can find an affine open U ⊂ A such that ti ∈ OA(U)
and xi ∈ OA([p]−1(U)). We obtain a factorization

[p]−1(U) π1−→ Spec(O(U)[x1, . . . , xg]/(xp1 − t1, . . . , xpg − tg))
π2−→ U

of [p] over U . After shrinking U we may assume that π1 is finite locally free (for
example by generic flatness – actually it is already finite locally free in our case).
By Lemma 39.9.8 we see that [p] has degree p2g. Since π2 has degree pg we see that
π1 has degree pg as well. The morphism π2 is a universal homeomorphism hence the
fibres are singletons. We conclude that the (set theoretic) fibres of [p]−1(U)→ U are
the fibres of π1. Hence they have at most pg elements. Since [p] is a homomorphism
of group schemes over k, the fibre of [p] : A(k)→ A(k) has the same cardinality for
every a ∈ A(k) and the proof is complete. □

Proposition 39.9.11.03RP Wonderfully
explained in
[Mum70].

Let A be an abelian variety over a field k. Then

(1) A is projective over k,
(2) A is a commutative group scheme,
(3) the morphism [n] : A→ A is surjective for all n ≥ 1,
(4) if k is algebraically closed, then A(k) is a divisible abelian group,
(5) A[n] = Ker([n] : A → A) is a finite group scheme of degree n2 dimA over

k,
(6) A[n] is étale over k if and only if n ∈ k∗,
(7) if n ∈ k∗ and k is algebraically closed, then A(k)[n] ∼= (Z/nZ)⊕2 dim(A),
(8) if k is algebraically closed of characteristic p > 0, then there exists an

integer 0 ≤ f ≤ dim(A) such that A(k)[pm] ∼= (Z/pmZ)⊕f for all m ≥ 1.

Proof. Part (1) follows from Lemma 39.9.2. Part (2) follows from Lemma 39.9.5.
Part (3) follows from Lemma 39.9.8. If k is algebraically closed then surjective
morphisms of varieties over k induce surjective maps on k-rational points, hence
(4) follows from (3). Part (5) follows from Lemma 39.9.8 and the fact that a base
change of a finite locally free morphism of degree N is a finite locally free morphism
of degree N . Part (6) follows from Lemma 39.9.9. Namely, if n is invertible in k,
then [n] is étale and hence A[n] is étale over k. On the other hand, if n is not
invertible in k, then [n] is not étale at e and it follows that A[n] is not étale over k
at e (use Morphisms, Lemmas 29.36.16 and 29.35.15).
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Assume k is algebraically closed. Set g = dim(A). Proof of (7). Let ℓ be a prime
number which is invertible in k. Then we see that

A[ℓ](k) = A(k)[ℓ]

is a finite abelian group, annihilated by ℓ, of order ℓ2g. It follows that it is isomorphic
to (Z/ℓZ)2g by the structure theory for finite abelian groups. Next, we consider
the short exact sequence

0→ A(k)[ℓ]→ A(k)[ℓ2] ℓ−→ A(k)[ℓ]→ 0

Arguing similarly as above we conclude that A(k)[ℓ2] ∼= (Z/ℓ2Z)2g. By induction on
the exponent we find that A(k)[ℓm] ∼= (Z/ℓmZ)2g. For composite integers n prime
to the characteristic of k we take primary parts and we find the correct shape of
the n-torsion in A(k). The proof of (8) proceeds in exactly the same way, using
that Lemma 39.9.10 gives A(k)[p] ∼= (Z/pZ)⊕f for some 0 ≤ f ≤ g. □

Remark 39.9.12.0H2U Let k be a field. There are 2× 4× 2 = 16 equivalent definitions
of abelian varieties. Let

• projective, proper,
• geometrically irreducible, irreducible, geometrically connected, connected,
• smooth, geometrically reduced

be three sets of properties, pick one from each of them, and let A be a group
scheme over k with the chosen properties over k. Then A is an abelian variety. If
we pick the options “proper, geometrically irreducible, geometrically reduced”, then
we recover Definition 39.9.1 (use Varieties, Lemma 33.9.2). The weakest possible
options would be “proper, connected, and geometrically reduced”, see for example
Morphisms, Lemma 29.43.5 and Varieties, Lemma 33.25.4. So say A is a proper,
connected, and geometrically reduced group scheme over k. Then A is geometrically
irreducible by Lemmas 39.7.10 and 39.7.4 and hence an abelian variety. Finally,
if A/k is an abelian variety, then it is projective and smooth over k (Proposition
39.9.11), whence satisfies the strongest possible options "projective, geometrically
irreducible, smooth".

39.10. Actions of group schemes

022Y Let (G,m) be a group and let V be a set. Recall that a (left) action of G on V is
given by a map a : G× V → V such that

(1) (associativity) a(m(g, g′), v) = a(g, a(g′, v)) for all g, g′ ∈ G and v ∈ V ,
and

(2) (identity) a(e, v) = v for all v ∈ V .
We also say that V is a G-set (this usually means we drop the a from the notation
– which is abuse of notation). A map of G-sets ψ : V → V ′ is any set map such
that ψ(a(g, v)) = a(g, ψ(v)) for all v ∈ V .

Definition 39.10.1.022Z Let S be a scheme. Let (G,m) be a group scheme over S.
(1) An action of G on the scheme X/S is a morphism a : G×S X → X over

S such that for every T/S the map a : G(T )×X(T )→ X(T ) defines the
structure of a G(T )-set on X(T ).

https://stacks.math.columbia.edu/tag/0H2U
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(2) Suppose that X, Y are schemes over S each endowed with an action of G.
An equivariant or more precisely a G-equivariant morphism ψ : X → Y
is a morphism of schemes over S such that for every T/S the map ψ :
X(T )→ Y (T ) is a morphism of G(T )-sets.

In situation (1) this means that the diagrams

(39.10.1.1)03LD

G×S G×S X 1G×a
//

m×1X
��

G×S X

a

��
G×S X

a // X

G×S X a
// X

X

e×1X

OO

1X

;;

are commutative. In situation (2) this just means that the diagram

G×S X id×ψ
//

a

��

G×S Y

a

��
X

ψ // Y

commutes.

Definition 39.10.2.07S1 Let S, G → S, and X → S as in Definition 39.10.1. Let
a : G×S X → X be an action of G on X/S. We say the action is free if for every
scheme T over S the action a : G(T )×X(T )→ X(T ) is a free action of the group
G(T ) on the set X(T ).

Lemma 39.10.3.07S2 Situation as in Definition 39.10.2, The action a is free if and only
if

G×S X → X ×S X, (g, x) 7→ (a(g, x), x)
is a monomorphism.

Proof. Immediate from the definitions. □

39.11. Principal homogeneous spaces

0497 In Cohomology on Sites, Definition 21.4.1 we have defined a torsor for a sheaf
of groups on a site. Suppose τ ∈ {Zariski, étale, smooth, syntomic, fppf} is a
topology and (G,m) is a group scheme over S. Since τ is stronger than the canonical
topology (see Descent, Lemma 35.13.7) we see that G (see Sites, Definition 7.12.3)
is a sheaf of groups on (Sch/S)τ . Hence we already know what it means to have a
torsor for G on (Sch/S)τ . A special situation arises if this sheaf is representable.
In the following definitions we define directly what it means for the representing
scheme to be a G-torsor.

Definition 39.11.1.0498 Let S be a scheme. Let (G,m) be a group scheme over S. Let
X be a scheme over S, and let a : G×S X → X be an action of G on X.

(1) We say X is a pseudo G-torsor or that X is formally principally homoge-
neous under G if the induced morphism of schemes G×S X → X ×S X,
(g, x) 7→ (a(g, x), x) is an isomorphism of schemes over S.

(2) A pseudo G-torsor X is called trivial if there exists an G-equivariant
isomorphism G→ X over S where G acts on G by left multiplication.

It is clear that if S′ → S is a morphism of schemes then the pullback XS′ of a
pseudo G-torsor over S is a pseudo GS′ -torsor over S′.

https://stacks.math.columbia.edu/tag/07S1
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Lemma 39.11.2.0499 In the situation of Definition 39.11.1.
(1) The scheme X is a pseudo G-torsor if and only if for every scheme T over

S the set X(T ) is either empty or the action of the group G(T ) on X(T )
is simply transitive.

(2) A pseudo G-torsor X is trivial if and only if the morphism X → S has a
section.

Proof. Omitted. □

Definition 39.11.3.049A Let S be a scheme. Let (G,m) be a group scheme over S. Let
X be a pseudo G-torsor over S.

(1) We say X is a principal homogeneous space or a G-torsor if there exists a
fpqc covering3 {Si → S}i∈I such that each XSi → Si has a section (i.e.,
is a trivial pseudo GSi-torsor).

(2) Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. We say X is a G-torsor
in the τ topology, or a τ G-torsor, or simply a τ torsor if there exists a τ
covering {Si → S}i∈I such that each XSi → Si has a section.

(3) If X is a G-torsor, then we say that it is quasi-isotrivial if it is a torsor
for the étale topology.

(4) If X is a G-torsor, then we say that it is locally trivial if it is a torsor for
the Zariski topology.

We sometimes say “let X be a G-torsor over S” to indicate that X is a scheme over
S equipped with an action of G which turns it into a principal homogeneous space
over S. Next we show that this agrees with the notation introduced earlier when
both apply.

Lemma 39.11.4.049B Let S be a scheme. Let (G,m) be a group scheme over S. Let
X be a scheme over S, and let a : G ×S X → X be an action of G on X. Let
τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Then X is a G-torsor in the τ -
topology if and only if X is a G-torsor on (Sch/S)τ .

Proof. Omitted. □

Remark 39.11.5.049C Let (G,m) be a group scheme over the scheme S. In this situation
we have the following natural types of questions:

(1) If X → S is a pseudo G-torsor and X → S is surjective, then is X
necessarily a G-torsor?

(2) Is every G-torsor on (Sch/S)fppf representable? In other words, does
every G-torsor come from a fppf G-torsor?

(3) Is every G-torsor an fppf (resp. smooth, resp. étale, resp. Zariski) torsor?
In general the answers to these questions is no. To get a positive answer we need
to impose additional conditions on G → S. For example: If S is the spectrum of
a field, then the answer to (1) is yes because then {X → S} is a fpqc covering
trivializing X. If G → S is affine, then the answer to (2) is yes (this follows from
Descent, Lemma 35.37.1). If G = GLn,S then the answer to (3) is yes and in fact
any GLn,S-torsor is locally trivial (this follows from Descent, Lemma 35.7.6).

3This means that the default type of torsor is a pseudo torsor which is trivial on an fpqc
covering. This is the definition in [ABD+66, Exposé IV, 6.5]. It is a little bit inconvenient for us
as we most often work in the fppf topology.
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39.12. Equivariant quasi-coherent sheaves

03LE We think of “functions” as dual to “space”. Thus for a morphism of spaces the
map on functions goes the other way. Moreover, we think of the sections of a sheaf
of modules as “functions”. This leads us naturally to the direction of the arrows
chosen in the following definition.

Definition 39.12.1.03LF Let S be a scheme, let (G,m) be a group scheme over S, and
let a : G×S X → X be an action of the group scheme G on X/S. A G-equivariant
quasi-coherent OX -module, or simply an equivariant quasi-coherent OX -module, is
a pair (F , α), where F is a quasi-coherent OX -module, and α is a OG×SX -module
map

α : a∗F −→ pr∗
1F

where pr1 : G×S X → X is the projection such that
(1) the diagram

(1G × a)∗pr∗
1F pr∗

12α
// pr∗

2F

(1G × a)∗a∗F

(1G×a)∗α

OO

(m× 1X)∗a∗F

(m×1X)∗α

OO

is a commutative in the category of OG×SG×SX -modules, and
(2) the pullback

(e× 1X)∗α : F −→ F
is the identity map.

For explanation compare with the relevant diagrams of Equation (39.10.1.1).

Note that the commutativity of the first diagram guarantees that (e× 1X)∗α is an
idempotent operator on F , and hence condition (2) is just the condition that it is
an isomorphism.

Lemma 39.12.2.03LG Let S be a scheme. Let G be a group scheme over S. Let
f : Y → X be a G-equivariant morphism between S-schemes endowed with G-
actions. Then pullback f∗ given by (F , α) 7→ (f∗F , (1G × f)∗α) defines a functor
from the category of G-equivariant quasi-coherent OX -modules to the category of
G-equivariant quasi-coherent OY -modules.

Proof. Omitted. □

Let us give an example.

Example 39.12.3.0EKJ Let A be a Z-graded ring, i.e., A comes with a direct sum
decomposition A =

⊕
n∈Z An and An · Am ⊂ An+m. Set X = Spec(A). Then we

obtain a Gm-action
a : Gm ×X −→ X

by the ring map µ : A→ A⊗Z[x, x−1], f 7→ f ⊗ xdeg(f). Namely, to check this we
have to verify that

A
µ

//

µ

��

A⊗ Z[x, x−1]

µ⊗1
��

A⊗ Z[x, x−1] 1⊗m // A⊗ Z[x, x−1]⊗ Z[x, x−1]

https://stacks.math.columbia.edu/tag/03LF
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where m(x) = x⊗x, see Example 39.5.1. This is immediately clear when evaluating
on a homogeneous element. Suppose that M is a graded A-module. Then we obtain
a Gm-equivariant quasi-coherent OX -module F = M̃ by using α as in Definition
39.12.1 corresponding to the A⊗ Z[x, x−1]-module map

M ⊗A,µ (A⊗ Z[x, x−1]) −→M ⊗A,idA⊗1 (A⊗ Z[x, x−1])
sending m⊗ 1⊗ 1 to m⊗ 1⊗ xdeg(m) for m ∈M homogeneous.

Lemma 39.12.4.0EKK Let a : Gm ×X → X be an action on an affine scheme. Then X
is the spectrum of a Z-graded ring and the action is as in Example 39.12.3.

Proof. Let f ∈ A = Γ(X,OX). Then we can write

a♯(f) =
∑

n∈Z
fn ⊗ xn in A⊗ Z[x, x−1] = Γ(Gm ×X,OGm×X)

as a finite sum with fn in A uniquely determined. Thus we obtain maps A → A,
f 7→ fn. Since a is an action, if we evaluate at x = 1, we see f =

∑
fn. Since a is

an action we find that∑
(fn)m ⊗ xm ⊗ xn =

∑
fnx

n ⊗ xn

(compare with computation in Example 39.12.3). Thus (fn)m = 0 if n ̸= m and
(fn)n = fn. Thus if we set

An = {f ∈ A | fn = f}
then we get A =

∑
An. On the other hand, the sum has to be direct since f = 0

implies fn = 0 in the situation above. □

Lemma 39.12.5.0EKL Let A be a graded ring. Let X = Spec(A) with action a :
Gm ×X → X as in Example 39.12.3. Let F be a Gm-equivariant quasi-coherent
OX -module. Then M = Γ(X,F) has a canonical grading such that it is a graded
A-module and such that the isomorphism M̃ → F (Schemes, Lemma 26.7.4) is an
isomorphism of Gm-equivariant modules where the Gm-equivariant structure on
M̃ is the one from Example 39.12.3.

Proof. You can either prove this by repeating the arguments of Lemma 39.12.4 for
the moduleM . Alternatively, you can consider the scheme (X ′,OX′) = (X,OX⊕F)
where F is viewed as an ideal of square zero. There is a natural action a′ : Gm ×
X ′ → X ′ defined using the action on X and on F . Then apply Lemma 39.12.4 to
X ′ and conclude. (The nice thing about this argument is that it immediately shows
that the grading on A and M are compatible, i.e., that M is a graded A-module.)
Details omitted. □

39.13. Groupoids

0230 Recall that a groupoid is a category in which every morphism is an isomorphism,
see Categories, Definition 4.2.5. Hence a groupoid has a set of objects Ob, a set
of arrows Arrows, a source and target map s, t : Arrows→ Ob, and a composition
law c : Arrows×s,Ob,t Arrows→ Arrows. These maps satisfy exactly the following
axioms

(1) (associativity) c ◦ (1, c) = c ◦ (c, 1) as maps Arrows×s,Ob,t Arrows×s,Ob,t
Arrows→ Arrows,

(2) (identity) there exists a map e : Ob→ Arrows such that

https://stacks.math.columbia.edu/tag/0EKK
https://stacks.math.columbia.edu/tag/0EKL


39.13. GROUPOIDS 3544

(a) s ◦ e = t ◦ e = id as maps Ob→ Ob,
(b) c ◦ (1, e ◦ s) = c ◦ (e ◦ t, 1) = 1 as maps Arrows→ Arrows,

(3) (inverse) there exists a map i : Arrows→ Arrows such that
(a) s ◦ i = t, t ◦ i = s as maps Arrows→ Ob, and
(b) c ◦ (1, i) = e ◦ t and c ◦ (i, 1) = e ◦ s as maps Arrows→ Arrows.

If this is the case the maps e and i are uniquely determined and i is a bijection.
Note that if (Ob′,Arrows′, s′, t′, c′) is a second groupoid category, then a functor
f : (Ob,Arrows, s, t, c) → (Ob′,Arrows′, s′, t′, c′) is given by a pair of set maps
f : Ob→ Ob′ and f : Arrows→ Arrows′ such that s′ ◦ f = f ◦ s, t′ ◦ f = f ◦ t, and
c′ ◦ (f, f) = f ◦ c. The compatibility with identity and inverse is automatic. We
will use this below. (Warning: The compatibility with identity has to be imposed
in the case of general categories.)

Definition 39.13.1.0231 Let S be a scheme.
(1) A groupoid scheme over S, or simply a groupoid over S is a quintuple

(U,R, s, t, c) where U and R are schemes over S, and s, t : R → U and
c : R ×s,U,t R → R are morphisms of schemes over S with the following
property: For any scheme T over S the quintuple

(U(T ), R(T ), s, t, c)
is a groupoid category in the sense described above.

(2) A morphism f : (U,R, s, t, c)→ (U ′, R′, s′, t′, c′) of groupoid schemes over
S is given by morphisms of schemes f : U → U ′ and f : R→ R′ with the
following property: For any scheme T over S the maps f define a functor
from the groupoid category (U(T ), R(T ), s, t, c) to the groupoid category
(U ′(T ), R′(T ), s′, t′, c′).

Let (U,R, s, t, c) be a groupoid over S. Note that, by the remarks preceding the
definition and the Yoneda lemma, there are unique morphisms of schemes e : U → R
and i : R → R over S such that for every scheme T over S the induced map
e : U(T ) → R(T ) is the identity, and i : R(T ) → R(T ) is the inverse of the
groupoid category. The septuple (U,R, s, t, c, e, i) satisfies commutative diagrams
corresponding to each of the axioms (1), (2)(a), (2)(b), (3)(a) and (3)(b) above,
and conversely given a septuple with this property the quintuple (U,R, s, t, c) is a
groupoid scheme. Note that i is an isomorphism, and e is a section of both s and
t. Moreover, given a groupoid scheme over S we denote

j = (t, s) : R −→ U ×S U

which is compatible with our conventions in Section 39.3 above. We sometimes say
“let (U,R, s, t, c, e, i) be a groupoid over S” to stress the existence of identity and
inverse.

Lemma 39.13.2.0232 Given a groupoid scheme (U,R, s, t, c) over S the morphism j :
R→ U ×S U is a pre-equivalence relation.

Proof. Omitted. This is a nice exercise in the definitions. □

Lemma 39.13.3.0233 Given an equivalence relation j : R → U ×S U over S there is a
unique way to extend it to a groupoid (U,R, s, t, c) over S.

Proof. Omitted. This is a nice exercise in the definitions. □

https://stacks.math.columbia.edu/tag/0231
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Lemma 39.13.4.02YE Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. In the
commutative diagram

U

R

s

��

t

::

R×s,U,t Rpr0
oo

pr1

��

c
// R

s

��

t

dd

U R
too s // U

the two lower squares are fibre product squares. Moreover, the triangle on top
(which is really a square) is also cartesian.

Proof. Omitted. Exercise in the definitions and the functorial point of view in
algebraic geometry. □

Lemma 39.13.5.03C6 Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid over S.
The diagram

(39.13.5.1)03C7 R×t,U,t R
pr1 //

pr0
//

(pr0,c◦(i,1))
��

R
t //

idR
��

U

idU
��

R×s,U,t R
c //

pr0
//

pr1

��

R
t //

s

��

U

R
s //

t
// U

is commutative. The two top rows are isomorphic via the vertical maps given. The
two lower left squares are cartesian.

Proof. The commutativity of the diagram follows from the axioms of a groupoid.
Note that, in terms of groupoids, the top left vertical arrow assigns to a pair of
morphisms (α, β) with the same target, the pair of morphisms (α, α−1 ◦ β). In any
groupoid this defines a bijection between Arrows×t,Ob,tArrows and Arrows×s,Ob,t
Arrows. Hence the second assertion of the lemma. The last assertion follows from
Lemma 39.13.4. □

Lemma 39.13.6.0DT8 Let (U,R, s, t, c) be a groupoid over a scheme S. Let S′ → S
be a morphism. Then the base changes U ′ = S′ ×S U , R′ = S′ ×S R endowed
with the base changes s′, t′, c′ of the morphisms s, t, c form a groupoid scheme
(U ′, R′, s′, t′, c′) over S′ and the projections determine a morphism (U ′, R′, s′, t′, c′)→
(U,R, s, t, c) of groupoid schemes over S.

Proof. Omitted. Hint: R′ ×s′,U ′,t′ R
′ = S′ ×S (R×s,U,t R). □

39.14. Quasi-coherent sheaves on groupoids

03LH See the introduction of Section 39.12 for our choices in direction of arrows.

https://stacks.math.columbia.edu/tag/02YE
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Definition 39.14.1.03LI Let S be a scheme, let (U,R, s, t, c) be a groupoid scheme over
S. A quasi-coherent module on (U,R, s, t, c) is a pair (F , α), where F is a quasi-
coherent OU -module, and α is a OR-module map

α : t∗F −→ s∗F
such that

(1) the diagram
pr∗

1t
∗F

pr∗
1α
// pr∗

1s
∗F

pr∗
0s

∗F c∗s∗F

pr∗
0t

∗F
pr∗

0α

ee

c∗t∗F
c∗α

::

is a commutative in the category of OR×s,U,tR-modules, and
(2) the pullback

e∗α : F −→ F
is the identity map.

Compare with the commutative diagrams of Lemma 39.13.4.
The commutativity of the first diagram forces the operator e∗α to be idempotent.
Hence the second condition can be reformulated as saying that e∗α is an isomor-
phism. In fact, the condition implies that α is an isomorphism.
Lemma 39.14.2.077Q Let S be a scheme, let (U,R, s, t, c) be a groupoid scheme over S.
If (F , α) is a quasi-coherent module on (U,R, s, t, c) then α is an isomorphism.
Proof. Pull back the commutative diagram of Definition 39.14.1 by the morphism
(i, 1) : R → R ×s,U,t R. Then we see that i∗α ◦ α = s∗e∗α. Pulling back by the
morphism (1, i) we obtain the relation α ◦ i∗α = t∗e∗α. By the second assumption
these morphisms are the identity. Hence i∗α is an inverse of α. □

Lemma 39.14.3.03LJ Let S be a scheme. Consider a morphism f : (U,R, s, t, c) →
(U ′, R′, s′, t′, c′) of groupoid schemes over S. Then pullback f∗ given by

(F , α) 7→ (f∗F , f∗α)
defines a functor from the category of quasi-coherent sheaves on (U ′, R′, s′, t′, c′) to
the category of quasi-coherent sheaves on (U,R, s, t, c).
Proof. Omitted. □

Lemma 39.14.4.09VH Let S be a scheme. Consider a morphism f : (U,R, s, t, c) →
(U ′, R′, s′, t′, c′) of groupoid schemes over S. Assume that

(1) f : U → U ′ is quasi-compact and quasi-separated,
(2) the square

R

t

��

f
// R′

t′

��
U

f // U ′

is cartesian, and

https://stacks.math.columbia.edu/tag/03LI
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(3) s′ and t′ are flat.
Then pushforward f∗ given by

(F , α) 7→ (f∗F , f∗α)
defines a functor from the category of quasi-coherent sheaves on (U,R, s, t, c) to
the category of quasi-coherent sheaves on (U ′, R′, s′, t′, c′) which is right adjoint to
pullback as defined in Lemma 39.14.3.

Proof. Since U → U ′ is quasi-compact and quasi-separated we see that f∗ trans-
forms quasi-coherent sheaves into quasi-coherent sheaves (Schemes, Lemma 26.24.1).
Moreover, since the squares

R

t

��

f
// R′

t′

��
U

f // U ′

and
R

s

��

f
// R′

s′

��
U

f // U ′

are cartesian we find that (t′)∗f∗F = f∗t
∗F and (s′)∗f∗F = f∗s

∗F , see Coho-
mology of Schemes, Lemma 30.5.2. Thus it makes sense to think of f∗α as a
map (t′)∗f∗F → (s′)∗f∗F . A similar argument shows that f∗α satisfies the cocy-
cle condition. The functor is adjoint to the pullback functor since pullback and
pushforward on modules on ringed spaces are adjoint. Some details omitted. □

Lemma 39.14.5.077R Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. The category of quasi-coherent modules on (U,R, s, t, c) has colimits.

Proof. Let i 7→ (Fi, αi) be a diagram over the index category I. We can form the
colimit F = colimFi which is a quasi-coherent sheaf on U , see Schemes, Section
26.24. Since colimits commute with pullback we see that s∗F = colim s∗Fi and
similarly t∗F = colim t∗Fi. Hence we can set α = colimαi. We omit the proof that
(F , α) is the colimit of the diagram in the category of quasi-coherent modules on
(U,R, s, t, c). □

Lemma 39.14.6.077S Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. If s, t are flat, then the category of quasi-coherent modules on (U,R, s, t, c) is
abelian.

Proof. Let φ : (F , α) → (G, β) be a homomorphism of quasi-coherent modules on
(U,R, s, t, c). Since s is flat we see that

0→ s∗ Ker(φ)→ s∗F → s∗G → s∗ Coker(φ)→ 0
is exact and similarly for pullback by t. Hence α and β induce isomorphisms κ :
t∗ Ker(φ)→ s∗ Ker(φ) and λ : t∗ Coker(φ)→ s∗ Coker(φ) which satisfy the cocycle
condition. Then it is straightforward to verify that (Ker(φ), κ) and (Coker(φ), λ)
are a kernel and cokernel in the category of quasi-coherent modules on (U,R, s, t, c).
Moreover, the condition Coim(φ) = Im(φ) follows because it holds over U . □

39.15. Colimits of quasi-coherent modules

07TS In this section we prove some technical results saying that under suitable assump-
tions every quasi-coherent module on a groupoid is a filtered colimit of “small”
quasi-coherent modules.

https://stacks.math.columbia.edu/tag/077R
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Lemma 39.15.1.07TR Let (U,R, s, t, c) be a groupoid scheme over S. Assume s, t are
flat, quasi-compact, and quasi-separated. For any quasi-coherent module G on U ,
there exists a canonical isomorphism α : t∗s∗t

∗G → s∗s∗t
∗G which turns (s∗t

∗G, α)
into a quasi-coherent module on (U,R, s, t, c). This construction defines a functor

QCoh(OU ) −→ QCoh(U,R, s, t, c)
which is a right adjoint to the forgetful functor (F , β) 7→ F .

Proof. The pushforward of a quasi-coherent module along a quasi-compact and
quasi-separated morphism is quasi-coherent, see Schemes, Lemma 26.24.1. Hence
s∗t

∗G is quasi-coherent. With notation as in Lemma 39.13.4 we have
t∗s∗t

∗G = pr1,∗pr∗
0t

∗G = pr1,∗c
∗t∗G = s∗s∗t

∗G

The middle equality because t ◦ c = t ◦ pr0 as morphisms R ×s,U,t R → U , and
the first and the last equality because we know that base change and pushforward
commute in these steps by Cohomology of Schemes, Lemma 30.5.2.
To verify the cocycle condition of Definition 39.14.1 for α and the adjointness
property we describe the construction G 7→ (s∗t

∗G, α) in another way. Consider the
groupoid scheme (R,R×t,U,tR,pr0,pr1,pr02) associated to the equivalence relation
R×t,U,t R on R, see Lemma 39.13.3. There is a morphism

f : (R,R×t,U,t R,pr1,pr0,pr02) −→ (U,R, s, t, c)
of groupoid schemes given by s : R → U and R ×t,U,t R → R given by (r0, r1) 7→
r−1

0 ◦ r1; we omit the verification of the commutativity of the required diagrams.
Since t, s : R→ U are quasi-compact, quasi-separated, and flat, and since we have
a cartesian square

R×t,U,t R

pr0

��

(r0,r1)7→r−1
0 ◦r1

// R

t

��
R

s // U

by Lemma 39.13.5 it follows that Lemma 39.14.4 applies to f . Thus pushforward
and pullback of quasi-coherent modules along f are adjoint functors. To finish the
proof we will identify these functors with the functors described above. To do this,
note that

t∗ : QCoh(OU ) −→ QCoh(R,R×t,U,t R,pr1,pr0,pr02)
is an equivalence by the theory of descent of quasi-coherent sheaves as {t : R→ U}
is an fpqc covering, see Descent, Proposition 35.5.2.
Pushforward along f precomposed with the equivalence t∗ sends G to (s∗t

∗G, α); we
omit the verification that the isomorphism α obtained in this fashion is the same
as the one constructed above.
Pullback along f postcomposed with the inverse of the equivalence t∗ sends (F , β)
to the descent relative to {t : R→ U} of the module s∗F endowed with the descent
datum γ on R×t,U,tR which is the pullback of β by (r0, r1) 7→ r−1

0 ◦r1. Consider the
isomorphism β : t∗F → s∗F . The canonical descent datum (Descent, Definition
35.2.3) on t∗F relative to {t : R→ U} translates via β into the map

pr∗
0s

∗F pr∗
0β

−1

−−−−−→ pr∗
0t

∗F can−−→ pr∗
1t

∗F pr∗
1β−−−→ pr∗

1s
∗F

https://stacks.math.columbia.edu/tag/07TR
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Since β satisfies the cocycle condition, this is equal to the pullback of β by (r0, r1) 7→
r−1

0 ◦ r1. To see this take the actual cocycle relation in Definition 39.14.1 and
pull it back by the morphism (pr0, c ◦ (i, 1)) : R ×t,U,t R → R ×s,U,t R which
also plays a role in the commutative diagram of Lemma 39.13.5. It follows that
(s∗F , γ) is isomorphic to (t∗F , can). All in all, we conclude that pullback by f
postcomposed with the inverse of the equivalence t∗ is isomorphic to the forgetful
functor (F , β) 7→ F . □

Remark 39.15.2.0GNF In the situation of Lemma 39.15.1 denote
F : QCoh(U,R, s, t, c)→ QCoh(OU ), (F , β) 7→ F

the forgetful functor and denote
G : QCoh(OU )→ QCoh(U,R, s, t, c), G 7→ (s∗t

∗G, α)
the right adjoint constructed in the lemma. Then the unit η : id → G ◦ F of the
adjunction evaluated on (F , β) is given by the map

F → s∗s
∗F β−1

−−→ s∗t
∗F

We omit the verification.

Lemma 39.15.3.07TT Let f : Y → X be a morphism of schemes. Let F be a quasi-
coherent OX -module, let G be a quasi-coherent OY -module, and let φ : G → f∗F
be a module map. Assume

(1) φ is injective,
(2) f is quasi-compact, quasi-separated, flat, and surjective,
(3) X, Y are locally Noetherian, and
(4) G is a coherent OY -module.

Then F ∩ f∗G defined as the pullback
F // f∗f

∗F

F ∩ f∗G

OO

// f∗G

OO

is a coherent OX -module.

Proof. We will freely use the characterization of coherent modules of Cohomology
of Schemes, Lemma 30.9.1 as well as the fact that coherent modules form a Serre
subcategory of QCoh(OX), see Cohomology of Schemes, Lemma 30.9.3. If f has a
section σ, then we see that F∩f∗G is contained in the image of σ∗G → σ∗f∗F = F ,
hence coherent. In general, to show that F ∩ f∗G is coherent, it suffices the show
that f∗(F ∩ f∗G) is coherent (see Descent, Lemma 35.7.1). Since f is flat this is
equal to f∗F ∩ f∗f∗G. Since f is flat, quasi-compact, and quasi-separated we see
f∗f∗G = p∗q

∗G where p, q : Y ×X Y → Y are the projections, see Cohomology of
Schemes, Lemma 30.5.2. Since p has a section we win. □

Let S be a scheme. Let (U,R, s, t, c) be a groupoid in schemes over S. Assume that
U is locally Noetherian. In the lemma below we say that a quasi-coherent sheaf
(F , α) on (U,R, s, t, c) is coherent if F is a coherent OU -module.

Lemma 39.15.4.07TU Let (U,R, s, t, c) be a groupoid scheme over S. Assume that
(1) U , R are Noetherian,

https://stacks.math.columbia.edu/tag/0GNF
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(2) s, t are flat, quasi-compact, and quasi-separated.
Then every quasi-coherent module (F , β) on (U,R, s, t, c) is a filtered colimit of
coherent modules.

Proof. We will use the characterization of Cohomology of Schemes, Lemma 30.9.1
of coherent modules on locally Noetherian scheme without further mention. We
can write F = colimHi as the filtered colimit of coherent submodules Hi ⊂ F ,
see Cohomology of Schemes, Lemma 30.10.4. Given a quasi-coherent sheaf H on U
we denote (s∗t

∗H, α) the quasi-coherent sheaf on (U,R, s, t, c) of Lemma 39.15.1.
Consider the adjunction map (F , β)→ (s∗t

∗F , α) in QCoh(U,R, s, t, c), see Remark
39.15.2. Set

(Fi, βi) = (F , β)×(s∗t∗F,α) (s∗t
∗Hi, α)

in QCoh(U,R, s, t, c). Since restriction to U is an exact functor on QCoh(U,R, s, t, c)
by the proof of Lemma 39.14.6 we obtain a pullback diagram

F // s∗t
∗F

Fi //

OO

s∗t
∗Hi

OO

in other words Fi = F ∩ s∗t
∗Hi. By the description of the adjunction map in

Remark 39.15.2 this diagram is isomorphic to the diagram

F // s∗s
∗F

Fi //

OO

s∗t
∗Hi

OO

where the right vertical arrow is the result of appplying s∗ to the map

t∗Hi → t∗F β−→ s∗F

This arrow is injective as t is a flat morphism. It follows that Fi is coherent by
Lemma 39.15.3. Finally, because s is quasi-compact and quasi-separated we see that
s∗ commutes with colimits (see Cohomology of Schemes, Lemma 30.6.1). Hence
s∗t

∗F = colim s∗t
∗Hi and hence (F , β) = colim(Fi, βi) as desired. □

Here is a curious lemma that is useful when working with groupoids on fields. In
fact, this is the standard argument to prove that any representation of an algebraic
group is a colimit of finite dimensional representations.

Lemma 39.15.5.07TV Let (U,R, s, t, c) be a groupoid scheme over S. Assume that
(1) U , R are affine,
(2) there exist ei ∈ OR(R) such that every element g ∈ OR(R) can be uniquely

written as
∑
s∗(fi)ei for some fi ∈ OU (U).

Then every quasi-coherent module (F , α) on (U,R, s, t, c) is a filtered colimit of
finite type quasi-coherent modules.

Proof. The assumption means that OR(R) is a free OU (U)-module via s with basis
ei. Hence for any quasi-coherent OU -module G we see that s∗G(R) =

⊕
i G(U)ei.

We will write s(−) to indicate pullback of sections by s and similarly for other

https://stacks.math.columbia.edu/tag/07TV
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morphisms. Let (F , α) be a quasi-coherent module on (U,R, s, t, c). Let σ ∈ F(U).
By the above we can write

α(t(σ)) =
∑

s(σi)ei
for some unique σi ∈ F(U) (all but finitely many are zero of course). We can also
write

c(ei) =
∑

pr1(fij)pr0(ej)
as functions on R ×s,U,t R. Then the commutativity of the diagram in Definition
39.14.1 means that∑

pr1(α(t(σi)))pr0(ei) =
∑

pr1(s(σi)fij)pr0(ej)

(calculation omitted). Picking off the coefficients of pr0(el) we see that α(t(σl)) =∑
s(σi)fil. Hence the submodule G ⊂ F generated by the elements σi defines a

finite type quasi-coherent module preserved by α. Hence it is a subobject of F in
QCoh(U,R, s, t, c). This submodule contains σ (as one sees by pulling back the first
relation by e). Hence we win. □

We suggest the reader skip the rest of this section. Let S be a scheme. Let
(U,R, s, t, c) be a groupoid in schemes over S. Let κ be a cardinal. In the following
we will say that a quasi-coherent sheaf (F , α) on (U,R, s, t, c) is κ-generated if F
is a κ-generated OU -module, see Properties, Definition 28.23.1.

Lemma 39.15.6.077T Let (U,R, s, t, c) be a groupoid scheme over S. Let κ be a cardinal.
There exists a set T and a family (Ft, αt)t∈T of κ-generated quasi-coherent modules
on (U,R, s, t, c) such that every κ-generated quasi-coherent module on (U,R, s, t, c)
is isomorphic to one of the (Ft, αt).

Proof. For each quasi-coherent module F on U there is a (possibly empty) set of
maps α : t∗F → s∗F such that (F , α) is a quasi-coherent modules on (U,R, s, t, c).
By Properties, Lemma 28.23.2 there exists a set of isomorphism classes of κ-
generated quasi-coherent OU -modules. □

Lemma 39.15.7.077U Let (U,R, s, t, c) be a groupoid scheme over S. Assume that s, t
are flat. There exists a cardinal κ such that every quasi-coherent module (F , α) on
(U,R, s, t, c) is the directed colimit of its κ-generated quasi-coherent submodules.

Proof. In the statement of the lemma and in this proof a submodule of a quasi-
coherent module (F , α) is a quasi-coherent submodule G ⊂ F such that α(t∗G) =
s∗G as subsheaves of s∗F . This makes sense because since s, t are flat the pullbacks
s∗ and t∗ are exact, i.e., preserve subsheaves. The proof will be a repeat of the
proof of Properties, Lemma 28.23.3. We urge the reader to read that proof first.
Choose an affine open covering U =

⋃
i∈I Ui. For each pair i, j choose affine open

coverings
Ui ∩ Uj =

⋃
k∈Iij

Uijk and s−1(Ui) ∩ t−1(Uj) =
⋃

k∈Jij
Wijk.

Write Ui = Spec(Ai), Uijk = Spec(Aijk), Wijk = Spec(Bijk). Let κ be any infinite
cardinal ≥ than the cardinality of any of the sets I, Iij , Jij .
Let (F , α) be a quasi-coherent module on (U,R, s, t, c). Set Mi = F(Ui), Mijk =
F(Uijk). Note that

Mi ⊗Ai Aijk = Mijk = Mj ⊗Aj Aijk

https://stacks.math.columbia.edu/tag/077T
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and that α gives isomorphisms
α|Wijk

: Mi ⊗Ai,t Bijk −→Mj ⊗Aj ,s Bijk
see Schemes, Lemma 26.7.3. Using the axiom of choice we choose a map

(i, j, k,m) 7→ S(i, j, k,m)
which associates to every i, j ∈ I, k ∈ Iij or k ∈ Jij and m ∈ Mi a finite subset
S(i, j, k,m) ⊂Mj such that we have

m⊗ 1 =
∑

m′∈S(i,j,k,m)
m′ ⊗ am′ or α(m⊗ 1) =

∑
m′∈S(i,j,k,m)

m′ ⊗ bm′

in Mijk for some am′ ∈ Aijk or bm′ ∈ Bijk. Moreover, let’s agree that S(i, i, k,m) =
{m} for all i, j = i, k,m when k ∈ Iij . Fix such a collection S(i, j, k,m)
Given a family S = (Si)i∈I of subsets Si ⊂ Mi of cardinality at most κ we set
S ′ = (S′

i) where
S′
j =

⋃
(i,j,k,m) such that m∈Si

S(i, j, k,m)

Note that Si ⊂ S′
i. Note that S′

i has cardinality at most κ because it is a union
over a set of cardinality at most κ of finite sets. Set S(0) = S, S(1) = S ′ and by
induction S(n+1) = (S(n))′. Then set S(∞) =

⋃
n≥0 S(n). Writing S(∞) = (S(∞)

i )
we see that for any element m ∈ S(∞)

i the image of m in Mijk can be written as a
finite sum

∑
m′ ⊗ am′ with m′ ∈ S(∞)

j . In this way we see that setting

Ni = Ai-submodule of Mi generated by S(∞)
i

we have
Ni ⊗Ai Aijk = Nj ⊗Aj Aijk and α(Ni ⊗Ai,t Bijk) = Nj ⊗Aj ,s Bijk

as submodules of Mijk or Mj ⊗Aj ,s Bijk. Thus there exists a quasi-coherent sub-
module G ⊂ F with G(Ui) = Ni such that α(t∗G) = s∗G as submodules of s∗F . In
other words, (G, α|t∗G) is a submodule of (F , α). Moreover, by construction G is
κ-generated.
Let {(Gt, αt)}t∈T be the set of κ-generated quasi-coherent submodules of (F , α).
If t, t′ ∈ T then Gt + Gt′ is also a κ-generated quasi-coherent submodule as it is
the image of the map Gt ⊕ Gt′ → F . Hence the system (ordered by inclusion) is
directed. The arguments above show that every section of F over Ui is in one of
the Gt (because we can start with S such that the given section is an element of
Si). Hence colimt Gt → F is both injective and surjective as desired. □

39.16. Groupoids and group schemes

03LK There are many ways to construct a groupoid out of an action a of a group G on
a set V . We choose the one where we think of an element g ∈ G as an arrow
with source v and target a(g, v). This leads to the following construction for group
actions of schemes.

Lemma 39.16.1.0234 Let S be a scheme. Let Y be a scheme over S. Let (G,m) be a
group scheme over Y with identity eG and inverse iG. Let X/Y be a scheme over
Y and let a : G ×Y X → X be an action of G on X/Y . Then we get a groupoid
scheme (U,R, s, t, c, e, i) over S in the following manner:

(1) We set U = X, and R = G×Y X.

https://stacks.math.columbia.edu/tag/0234
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(2) We set s : R→ U equal to (g, x) 7→ x.
(3) We set t : R→ U equal to (g, x) 7→ a(g, x).
(4) We set c : R×s,U,t R→ R equal to ((g, x), (g′, x′)) 7→ (m(g, g′), x′).
(5) We set e : U → R equal to x 7→ (eG(x), x).
(6) We set i : R→ R equal to (g, x) 7→ (iG(g), a(g, x)).

Proof. Omitted. Hint: It is enough to show that this works on the set level. For this
use the description above the lemma describing g as an arrow from v to a(g, v). □

Lemma 39.16.2.03LL Let S be a scheme. Let Y be a scheme over S. Let (G,m) be
a group scheme over Y . Let X be a scheme over Y and let a : G ×Y X → X be
an action of G on X over Y . Let (U,R, s, t, c) be the groupoid scheme constructed
in Lemma 39.16.1. The rule (F , α) 7→ (F , α) defines an equivalence of categories
between G-equivariant OX -modules and the category of quasi-coherent modules on
(U,R, s, t, c).
Proof. The assertion makes sense because t = a and s = pr1 as morphisms R =
G×Y X → X, see Definitions 39.12.1 and 39.14.1. Using the translation in Lemma
39.16.1 the commutativity requirements of the two definitions match up exactly. □

39.17. The stabilizer group scheme

03LM Given a groupoid scheme we get a group scheme as follows.
Lemma 39.17.1.0235 Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. The
scheme G defined by the cartesian square

G //

��

R

j=(t,s)
��

U
∆ // U ×S U

is a group scheme over U with composition law m induced by the composition law
c.
Proof. This is true because in a groupoid category the set of self maps of any object
forms a group. □

Since ∆ is an immersion we see that G = j−1(∆U/S) is a locally closed subscheme
of R. Thinking of it in this way, the structure morphism j−1(∆U/S)→ U is induced
by either s or t (it is the same), and m is induced by c.
Definition 39.17.2.0236 Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S.
The group scheme j−1(∆U/S) → U is called the stabilizer of the groupoid scheme
(U,R, s, t, c).
In the literature the stabilizer group scheme is often denoted S (because the word
stabilizer starts with an “s” presumably); we cannot do this since we have already
used S for the base scheme.
Lemma 39.17.3.0237 Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S, and
let G/U be its stabilizer. Denote Rt/U the scheme R seen as a scheme over U via
the morphism t : R→ U . There is a canonical left action

a : G×U Rt −→ Rt

induced by the composition law c.
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Proof. In terms of points over T/S we define a(g, r) = c(g, r). □

Lemma 39.17.4.04Q2 Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Let G be the stabilizer group scheme of R. Let

G0 = G×U,pr0 (U ×S U) = G×S U
as a group scheme over U×SU . The action of G on R of Lemma 39.17.3 induces an
action of G0 on R over U ×S U which turns R into a pseudo G0-torsor over U ×S U .

Proof. This is true because in a groupoid category C the set MorC(x, y) is a principal
homogeneous set under the group MorC(y, y). □

Lemma 39.17.5.04Q3 Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Let p ∈ U ×S U be a point. Denote Rp the scheme theoretic fibre of j = (t, s) :
R→ U ×S U . If Rp ̸= ∅, then the action

G0,κ(p) ×κ(p) Rp −→ Rp

(see Lemma 39.17.4) which turns Rp into a Gκ(p)-torsor over κ(p).

Proof. The action is a pseudo-torsor by the lemma cited in the statement. And if
Rp is not the empty scheme, then {Rp → p} is an fpqc covering which trivializes
the pseudo-torsor. □

39.18. Restricting groupoids

02VA Consider a (usual) groupoid C = (Ob,Arrows, s, t, c). Suppose we have a map of
sets g : Ob′ → Ob. Then we can construct a groupoid C′ = (Ob′,Arrows′, s′, t′, c′)
by thinking of a morphism between elements x′, y′ of Ob′ as a morphism in C
between g(x′), g(y′). In other words we set

Arrows′ = Ob′ ×g,Ob,t Arrows×s,Ob,g Ob′.

with obvious choices for s′, t′, and c′. There is a canonical functor C′ → C which is
fully faithful, but not necessarily essentially surjective. This groupoid C′ endowed
with the functor C′ → C is called the restriction of the groupoid C to Ob′.

Lemma 39.18.1.02VB Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Let g : U ′ → U be a morphism of schemes. Consider the following diagram

R′

��

//

t′

%%

s′

**
R×s,U U ′ //

��

U ′

g

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′ g // U

where all the squares are fibre product squares. Then there is a canonical compo-
sition law c′ : R′ ×s′,U ′,t′ R

′ → R′ such that (U ′, R′, s′, t′, c′) is a groupoid scheme
over S and such that U ′ → U , R′ → R defines a morphism (U ′, R′, s′, t′, c′) →
(U,R, s, t, c) of groupoid schemes over S. Moreover, for any scheme T over S the
functor of groupoids

(U ′(T ), R′(T ), s′, t′, c′)→ (U(T ), R(T ), s, t, c)
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is the restriction (see above) of (U(T ), R(T ), s, t, c) via the map U ′(T )→ U(T ).

Proof. Omitted. □

Definition 39.18.2.02VC Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme
over S. Let g : U ′ → U be a morphism of schemes. The morphism of groupoids
(U ′, R′, s′, t′, c′)→ (U,R, s, t, c) constructed in Lemma 39.18.1 is called the restric-
tion of (U,R, s, t, c) to U ′. We sometime use the notation R′ = R|U ′ in this case.

Lemma 39.18.3.02VD The notions of restricting groupoids and (pre-)equivalence rela-
tions defined in Definitions 39.18.2 and 39.3.3 agree via the constructions of Lemmas
39.13.2 and 39.13.3.

Proof. What we are saying here is that R′ of Lemma 39.18.1 is also equal to
R′ = (U ′ ×S U ′)×U×SU R −→ U ′ ×S U ′

In fact this might have been a clearer way to state that lemma. □

Lemma 39.18.4.04ML Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let g : U ′ → U be a morphism of schemes. Let (U ′, R′, s′, t′, c′) be the restriction
of (U,R, s, t, c) via g. Let G be the stabilizer of (U,R, s, t, c) and let G′ be the
stabilizer of (U ′, R′, s′, t′, c′). Then G′ is the base change of G by g, i.e., there is a
canonical identification G′ = U ′ ×g,U G.

Proof. Omitted. □

39.19. Invariant subschemes

03LN In this section we discuss briefly the notion of an invariant subscheme.

Definition 39.19.1.03BC Let (U,R, s, t, c) be a groupoid scheme over the base scheme S.
(1) A subset W ⊂ U is set-theoretically R-invariant if t(s−1(W )) ⊂W .
(2) An open W ⊂ U is R-invariant if t(s−1(W )) ⊂W .
(3) A closed subscheme Z ⊂ U is called R-invariant if t−1(Z) = s−1(Z).

Here we use the scheme theoretic inverse image, see Schemes, Definition
26.17.7.

(4) A monomorphism of schemes T → U is R-invariant if T ×U,tR = R×s,U T
as schemes over R.

For subsets and open subschemes W ⊂ U the R-invariance is also equivalent to
requiring that s−1(W ) = t−1(W ) as subsets of R. If W ⊂ U is an R-equivariant
open subscheme then the restriction of R to W is just RW = s−1(W ) = t−1(W ).
Similarly, if Z ⊂ U is an R-invariant closed subscheme, then the restriction of R to
Z is just RZ = s−1(Z) = t−1(Z).

Lemma 39.19.2.03LO Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S.

(1) For any subset W ⊂ U the subset t(s−1(W )) is set-theoretically R-
invariant.

(2) If s and t are open, then for every open W ⊂ U the open t(s−1(W )) is an
R-invariant open subscheme.

(3) If s and t are open and quasi-compact, then U has an open covering
consisting of R-invariant quasi-compact open subschemes.
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Proof. Part (1) follows from Lemmas 39.3.4 and 39.13.2, namely, t(s−1(W )) is the
set of points of U equivalent to a point of W . Next, assume s and t open and
W ⊂ U open. Since s is open the set W ′ = t(s−1(W )) is an open subset of U .
Finally, assume that s, t are both open and quasi-compact. Then, if W ⊂ U is
a quasi-compact open, then also W ′ = t(s−1(W )) is a quasi-compact open, and
invariant by the discussion above. Letting W range over all affine opens of U we
see (3). □

Lemma 39.19.3.0APA Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume s and t quasi-compact and flat and U quasi-separated. Let W ⊂ U be
quasi-compact open. Then t(s−1(W )) is an intersection of a nonempty family of
quasi-compact open subsets of U .

Proof. Note that s−1(W ) is quasi-compact open in R. As a continuous map t maps
the quasi-compact subset s−1(W ) to a quasi-compact subset t(s−1(W )). As t is
flat and s−1(W ) is closed under generalization, so is t(s−1(W )), see (Morphisms,
Lemma 29.25.9 and Topology, Lemma 5.19.6). Pick a quasi-compact open W ′ ⊂ U
containing t(s−1(W )). By Properties, Lemma 28.2.4 we see that W ′ is a spec-
tral space (here we use that U is quasi-separated). Then the lemma follows from
Topology, Lemma 5.24.7 applied to t(s−1(W )) ⊂W ′. □

Lemma 39.19.4.0APB Assumptions and notation as in Lemma 39.19.3. There exists an
R-invariant open V ⊂ U and a quasi-compact open W ′ such that W ⊂ V ⊂ W ′ ⊂
U .

Proof. Set E = t(s−1(W )). Recall that E is set-theoretically R-invariant (Lemma
39.19.2). By Lemma 39.19.3 there exists a quasi-compact open W ′ containing E.
Let Z = U \ W ′ and consider T = t(s−1(Z)). Observe that Z ⊂ T and that
E ∩ T = ∅ because s−1(E) = t−1(E) is disjoint from s−1(Z). Since T is the image
of the closed subset s−1(Z) ⊂ R under the quasi-compact morphism t : R → U
we see that any point ξ in the closure T is the specialization of a point of T , see
Morphisms, Lemma 29.6.5 (and Morphisms, Lemma 29.6.3 to see that the scheme
theoretic image is the closure of the image). Say ξ′ ⇝ ξ with ξ′ ∈ T . Suppose
that r ∈ R and s(r) = ξ. Since s is flat we can find a specialization r′ ⇝ r in R
such that s(r′) = ξ′ (Morphisms, Lemma 29.25.9). Then t(r′)⇝ t(r). We conclude
that t(r′) ∈ T as T is set-theoretically invariant by Lemma 39.19.2. Thus T is a
set-theoretically R-invariant closed subset and V = U \T is the open we are looking
for. It is contained in W ′ which finishes the proof. □

39.20. Quotient sheaves

02VE Let τ ∈ {Zariski, étale, fppf, smooth, syntomic}. Let S be a scheme. Let j : R→
U ×S U be a pre-relation over S. Say U,R, S are objects of a τ -site Schτ (see
Topologies, Section 34.2). Then we can consider the functors

hU , hR : (Sch/S)oppτ −→ Sets.
These are sheaves, see Descent, Lemma 35.13.7. The morphism j induces a map
j : hR → hU × hU . For each object T ∈ Ob((Sch/S)τ ) we can take the equivalence
relation ∼T generated by j(T ) : R(T ) → U(T ) × U(T ) and consider the quotient.
Hence we get a presheaf
(39.20.0.1)02VF (Sch/S)oppτ −→ Sets, T 7−→ U(T )/ ∼T

https://stacks.math.columbia.edu/tag/0APA
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Definition 39.20.1.02VG Let τ , S, and the pre-relation j : R → U ×S U be as above.
In this setting the quotient sheaf U/R associated to j is the sheafification of the
presheaf (39.20.0.1) in the τ -topology. If j : R → U ×S U comes from the action
of a group scheme G/S on U as in Lemma 39.16.1 then we sometimes denote the
quotient sheaf U/G.

This means exactly that the diagram

hR
//
// hU // U/R

is a coequalizer diagram in the category of sheaves of sets on (Sch/S)τ . Using
the Yoneda embedding we may view (Sch/S)τ as a full subcategory of sheaves on
(Sch/S)τ and hence identify schemes with representable functors. Using this abuse
of notation we will often depict the diagram above simply

R
s //

t
// U // U/R

We will mostly work with the fppf topology when considering quotient sheaves of
groupoids/equivalence relations.

Definition 39.20.2.03BD In the situation of Definition 39.20.1. We say that the pre-
relation j has a representable quotient if the sheaf U/R is representable. We will
say a groupoid (U,R, s, t, c) has a representable quotient if the quotient U/R with
j = (t, s) is representable.

The following lemma characterizes schemes M representing the quotient. It applies
for example if τ = fppf , U → M is flat, of finite presentation and surjective, and
R ∼= U ×M U .

Lemma 39.20.3.03C5 In the situation of Definition 39.20.1. Assume there is a scheme
M , and a morphism U →M such that

(1) the morphism U →M equalizes s, t,
(2) the morphism U → M induces a surjection of sheaves hU → hM in the

τ -topology, and
(3) the induced map (t, s) : R → U ×M U induces a surjection of sheaves

hR → hU×MU in the τ -topology.
In this case M represents the quotient sheaf U/R.

Proof. Condition (1) says that hU → hM factors through U/R. Condition (2)
says that U/R → hM is surjective as a map of sheaves. Condition (3) says that
U/R→ hM is injective as a map of sheaves. Hence the lemma follows. □

The following lemma is wrong if we do not require j to be a pre-equivalence relation
(but just a pre-relation say).

Lemma 39.20.4.045Y Let τ ∈ {Zariski, étale, fppf, smooth, syntomic}. Let S be a
scheme. Let j : R→ U ×S U be a pre-equivalence relation over S. Assume U,R, S
are objects of a τ -site Schτ . For T ∈ Ob((Sch/S)τ ) and a, b ∈ U(T ) the following
are equivalent:

(1) a and b map to the same element of (U/R)(T ), and
(2) there exists a τ -covering {fi : Ti → T} of T and morphisms ri : Ti → R

such that a ◦ fi = s ◦ ri and b ◦ fi = t ◦ ri.
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In other words, in this case the map of τ -sheaves
hR −→ hU ×U/R hU

is surjective.

Proof. Omitted. Hint: The reason this works is that the presheaf (39.20.0.1) in
this case is really given by T 7→ U(T )/j(R(T )) as j(R(T )) ⊂ U(T ) × U(T ) is an
equivalence relation, see Definition 39.3.1. □

Lemma 39.20.5.045Z Let τ ∈ {Zariski, étale, fppf, smooth, syntomic}. Let S be a
scheme. Let j : R → U ×S U be a pre-equivalence relation over S and g : U ′ → U
a morphism of schemes over S. Let j′ : R′ → U ′ ×S U ′ be the restriction of j to
U ′. Assume U,U ′, R, S are objects of a τ -site Schτ . The map of quotient sheaves

U ′/R′ −→ U/R

is injective. If g defines a surjection hU ′ → hU of sheaves in the τ -topology (for
example if {g : U ′ → U} is a τ -covering), then U ′/R′ → U/R is an isomorphism.

Proof. Suppose ξ, ξ′ ∈ (U ′/R′)(T ) are sections which map to the same section of
U/R. Then we can find a τ -covering T = {Ti → T} of T such that ξ|Ti , ξ′|Ti are
given by ai, a′

i ∈ U ′(Ti). By Lemma 39.20.4 and the axioms of a site we may after
refining T assume there exist morphisms ri : Ti → R such that g ◦ ai = s ◦ ri,
g ◦ a′

i = t ◦ ri. Since by construction R′ = R ×U×SU (U ′ ×S U ′) we see that
(ri, (ai, a′

i)) ∈ R′(Ti) and this shows that ai and a′
i define the same section of

U ′/R′ over Ti. By the sheaf condition this implies ξ = ξ′.
If hU ′ → hU is a surjection of sheaves, then of course U ′/R′ → U/R is surjective
also. If {g : U ′ → U} is a τ -covering, then the map of sheaves hU ′ → hU is
surjective, see Sites, Lemma 7.12.4. Hence U ′/R′ → U/R is surjective also in this
case. □

Lemma 39.20.6.02VH Let τ ∈ {Zariski, étale, fppf, smooth, syntomic}. Let S be a
scheme. Let (U,R, s, t, c) be a groupoid scheme over S. Let g : U ′ → U a morphism
of schemes over S. Let (U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c) to U ′.
Assume U,U ′, R, S are objects of a τ -site Schτ . The map of quotient sheaves

U ′/R′ −→ U/R

is injective. If the composition

U ′ ×g,U,t R pr1
//

h

((
R

s
// U

defines a surjection of sheaves in the τ -topology then the map is bijective. This
holds for example if {h : U ′ ×g,U,t R → U} is a τ -covering, or if U ′ → U defines
a surjection of sheaves in the τ -topology, or if {g : U ′ → U} is a covering in the
τ -topology.

Proof. Injectivity follows on combining Lemmas 39.13.2 and 39.20.5. To see surjec-
tivity (see Sites, Section 7.11 for a characterization of surjective maps of sheaves)
we argue as follows. Suppose that T is a scheme and σ ∈ U/R(T ). There exists a
covering {Ti → T} such that σ|Ti is the image of some element fi ∈ U(Ti). Hence
we may assume that σ is the image of f ∈ U(T ). By the assumption that h is
a surjection of sheaves, we can find a τ -covering {φi : Ti → T} and morphisms

https://stacks.math.columbia.edu/tag/045Z
https://stacks.math.columbia.edu/tag/02VH


39.21. DESCENT IN TERMS OF GROUPOIDS 3559

fi : Ti → U ′×g,U,tR such that f ◦φi = h◦fi. Denote f ′
i = pr0 ◦fi : Ti → U ′. Then

we see that f ′
i ∈ U ′(Ti) maps to g ◦f ′

i ∈ U(Ti) and that g ◦f ′
i ∼Ti h◦fi = f ◦φi no-

tation as in (39.20.0.1). Namely, the element of R(Ti) giving the relation is pr1 ◦fi.
This means that the restriction of σ to Ti is in the image of U ′/R′(Ti)→ U/R(Ti)
as desired.

If {h} is a τ -covering, then it induces a surjection of sheaves, see Sites, Lemma
7.12.4. If U ′ → U is surjective, then also h is surjective as s has a section (namely
the neutral element e of the groupoid scheme). □

Lemma 39.20.7.07S3 Let S be a scheme. Let f : (U,R, j)→ (U ′, R′, j′) be a morphism
between equivalence relations over S. Assume that

R

s

��

f
// R′

s′

��
U

f // U ′

is cartesian. For any τ ∈ {Zariski, étale, fppf, smooth, syntomic} the diagram

U

��

// U/R

f

��
U ′ // U ′/R′

is a fibre product square of τ -sheaves.

Proof. By Lemma 39.20.4 the quotient sheaves have a simple description which we
will use below without further mention. We first show that

U −→ U ′ ×U ′/R′ U/R

is injective. Namely, assume a, b ∈ U(T ) map to the same element on the right
hand side. Then f(a) = f(b). After replacing T by the members of a τ -covering we
may assume that there exists an r ∈ R(T ) such that a = s(r) and b = t(r). Then
r′ = f(r) is a T -valued point of R′ with s′(r′) = t′(r′). Hence r′ = e′(f(a)) (where
e′ is the identity of the groupoid scheme associated to j′, see Lemma 39.13.3).
Because the first diagram of the lemma is cartesian this implies that r has to equal
e(a). Thus a = b.

Finally, we show that the displayed arrow is surjective. Let T be a scheme over S
and let (a′, b) be a section of the sheaf U ′ ×U ′/R′ U/R over T . After replacing T
by the members of a τ -covering we may assume that b is the class of an element
b ∈ U(T ). After replacing T by the members of a τ -covering we may assume that
there exists an r′ ∈ R′(T ) such that a′ = t(r′) and s′(r′) = f(b). Because the
first diagram of the lemma is cartesian we can find r ∈ R(T ) such that s(r) = b
and f(r) = r′. Then it is clear that a = t(r) ∈ U(T ) is a section which maps to
(a′, b). □

39.21. Descent in terms of groupoids

0APC Cartesian morphisms are defined as follows.
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Definition 39.21.1.0APD Let S be a scheme. Let f : (U ′, R′, s′, t′, c′)→ (U,R, s, t, c) be a
morphism of groupoid schemes over S. We say f is cartesian, or that (U ′, R′, s′, t′, c′)
is cartesian over (U,R, s, t, c), if the diagram

R′
f
//

s′

��

R

s

��
U ′ f // U

is a fibre square in the category of schemes. A morphism of groupoid schemes
cartesian over (U,R, s, t, c) is a morphism of groupoid schemes compatible with the
structure morphisms towards (U,R, s, t, c).

Cartesian morphisms are related to descent data. First we prove a general lemma
describing the category of cartesian groupoid schemes over a fixed groupoid scheme.

Lemma 39.21.2.0APE Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. The category of groupoid schemes cartesian over (U,R, s, t, c) is equivalent to
the category of pairs (V, φ) where V is a scheme over U and

φ : V ×U,t R −→ R×s,U V

is an isomorphism over R such that e∗φ = idV and such that

c∗φ = pr∗
1φ ◦ pr∗

0φ

as morphisms of schemes over R×s,U,t R.

Proof. The pullback notation in the lemma signifies base change. The displayed
formula makes sense because

(R×s,U,t R)×pr1,R,pr1 (V ×U,t R) = (R×s,U,t R)×pr0,R,pr0 (R×s,U V )

as schemes over R×s,U,t R.

Given (V, φ) we set U ′ = V and R′ = V ×U,t R. We set t′ : R′ → U ′ equal to
the projection V ×U,t R → V . We set s′ equal to φ followed by the projection
R×s,U V → V . We set c′ equal to the composition

R′ ×s′,U ′,t′ R
′ φ,1−−→ (R×s,U V )×V (V ×U,t R)
−→ R×s,U V ×U,t R
φ−1,1−−−−→ V ×U,t (R×s,U,t R)
1,c−−→ V ×U,t R = R′

A computation, which we omit shows that we obtain a groupoid scheme over
(U,R, s, t, c). It is clear that this groupoid scheme is cartesian over (U,R, s, t, c).

Conversely, given f : (U ′, R′, s′, t′, c′)→ (U,R, s, t, c) cartesian then the morphisms

U ′ ×U,t R
t′,f←−− R′ f,s′

−−→ R×s,U U ′

are isomorphisms and we can set V = U ′ and φ equal to the composition (f, s′) ◦
(t′, f)−1. We omit the proof that φ satisfies the conditions in the lemma. We omit
the proof that these constructions are mutually inverse. □
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Let S be a scheme. Let f : X → Y be a morphism of schemes over S. Then we
obtain a groupoid scheme (X,X ×Y X,pr1,pr0, c) over S. Namely, j : X ×Y X →
X ×S X is an equivalence relation and we can take the associated groupoid, see
Lemma 39.13.3.

Lemma 39.21.3.0APF Let S be a scheme. Let f : X → Y be a morphism of schemes
over S. The construction of Lemma 39.21.2 determines an equivalence

category of groupoid schemes
cartesian over (X,X ×Y X, . . .)

−→ category of descent data
relative to X/Y

Proof. This is clear from Lemma 39.21.2 and the definition of descent data on
schemes in Descent, Definition 35.34.1. □

39.22. Separation conditions

02YG This really means conditions on the morphism j : R → U ×S U when given a
groupoid (U,R, s, t, c) over S. As in the previous section we first formulate the
corresponding diagram.

Lemma 39.22.1.02YH Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. Let
G→ U be the stabilizer group scheme. The commutative diagram

R

∆R/U×SU

��

f 7→(f,s(f))
// R×s,U U

��

// U

��
R×(U×SU) R

(f,g) 7→(f,f−1◦g) // R×s,U G // G

the two left horizontal arrows are isomorphisms and the right square is a fibre
product square.

Proof. Omitted. Exercise in the definitions and the functorial point of view in
algebraic geometry. □

Lemma 39.22.2.02YI Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. Let
G→ U be the stabilizer group scheme.

(1) The following are equivalent
(a) j : R→ U ×S U is separated,
(b) G→ U is separated, and
(c) e : U → G is a closed immersion.

(2) The following are equivalent
(a) j : R→ U ×S U is quasi-separated,
(b) G→ U is quasi-separated, and
(c) e : U → G is quasi-compact.

Proof. The group scheme G → U is the base change of R → U ×S U by the
diagonal morphism U → U ×S U , see Lemma 39.17.1. Hence if j is separated (resp.
quasi-separated), then G → U is separated (resp. quasi-separated). (See Schemes,
Lemma 26.21.12). Thus (a) ⇒ (b) in both (1) and (2).

If G → U is separated (resp. quasi-separated), then the morphism U → G, as
a section of the structure morphism G → U is a closed immersion (resp. quasi-
compact), see Schemes, Lemma 26.21.11. Thus (b) ⇒ (a) in both (1) and (2).
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By the result of Lemma 39.22.1 (and Schemes, Lemmas 26.18.2 and 26.19.3) we see
that if e is a closed immersion (resp. quasi-compact) ∆R/U×SU is a closed immersion
(resp. quasi-compact). Thus (c) ⇒ (a) in both (1) and (2). □

39.23. Finite flat groupoids, affine case

03BE Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. Assume U =
Spec(A), and R = Spec(B) are affine. In this case we get two ring maps s♯, t♯ :
A −→ B. Let C be the equalizer of s♯ and t♯. In a formula

(39.23.0.1)03BF C = {a ∈ A | t♯(a) = s♯(a)}.

We will sometimes call this the ring of R-invariant functions on U . What properties
does M = Spec(C) have? The first observation is that the diagram

R
s
//

t

��

U

��
U // M

is commutative, i.e., the morphism U → M equalizes s, t. Moreover, if T is any
affine scheme, and if U → T is a morphism which equalizes s, t, then U → T factors
through U →M . In other words, U →M is a coequalizer in the category of affine
schemes.

We would like to find conditions that guarantee the morphism U → M is really
a “quotient” in the category of schemes. We will discuss this at length elsewhere
(insert future reference here); here we just discuss some special cases. Namely, we
will focus on the case where s, t are finite locally free.

Example 39.23.1.03BG Let k be a field. Let U = GL2,k. Let B ⊂ GL2 be the closed
subgroup scheme of upper triangular matrices. Then the quotient sheaf GL2,k/B
(in the Zariski, étale or fppf topology, see Definition 39.20.1) is representable by
the projective line: P1 = GL2,k/B. (Details omitted.) On the other hand, the ring
of invariant functions in this case is just k. Note that in this case the morphisms
s, t : R = GL2,k ×k B → GL2,k = U are smooth of relative dimension 3.

Recall that in Exercises, Exercises 111.22.6 and 111.22.7 we have defined the de-
terminant and the norm for finitely locally free modules and finite locally free ring
extensions. If φ : A → B is a finite locally free ring map, then we will denote
Normφ(b) ∈ A the norm of b ∈ B. In the case of a finite locally free morphism of
schemes, the norm was constructed in Divisors, Lemma 31.17.6.

Lemma 39.23.2.03BH Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(A) and R = Spec(B) are affine and s, t : R→ U finite locally
free. Let C be as in (39.23.0.1). Let f ∈ A. Then Norms♯(t♯(f)) ∈ C.
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Proof. Consider the commutative diagram

U

R

s

��

t

::

R×s,U,t Rpr0
oo

pr1

��

c
// R

s

��

t

dd

U R
too s // U

of Lemma 39.13.4. Think of f ∈ Γ(U,OU ). The commutativity of the top part of the
diagram shows that pr♯0(t♯(f)) = c♯(t♯(f)) as elements of Γ(R×S,U,tR,O). Looking
at the right lower cartesian square the compatibility of the norm construction with
base change shows that s♯(Norms♯(t♯(f))) = Normpr♯1

(c♯(t♯(f))). Similarly we get
t♯(Norms♯(t♯(f))) = Normpr♯1

(pr♯0(t♯(f))). Hence by the first equality of this proof
we see that s♯(Norms♯(t♯(f))) = t♯(Norms♯(t♯(f))) as desired. □

Lemma 39.23.3.03BI Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume s, t : R→ U finite locally free. Then

U =
∐

r≥1
Ur

is a disjoint union of R-invariant opens such that the restriction Rr of R to Ur has
the property that s, t : Rr → Ur are finite locally free of rank r.

Proof. By Morphisms, Lemma 29.48.5 there exists a decomposition U =
∐
r≥0 Ur

such that s : s−1(Ur)→ Ur is finite locally free of rank r. As s is surjective we see
that U0 = ∅. Note that u ∈ Ur ⇔ if and only if the scheme theoretic fibre s−1(u)
has degree r over κ(u). Now, if z ∈ R with s(z) = u and t(z) = u′ then using
notation as in Lemma 39.13.4

pr−1
1 (z)→ Spec(κ(z))

is the base change of both s−1(u)→ Spec(κ(u)) and s−1(u′)→ Spec(κ(u′)) by the
lemma cited. Hence u ∈ Ur ⇔ u′ ∈ Ur, in other words, the open subsets Ur are
R-invariant. In particular the restriction of R to Ur is just s−1(Ur) and s : Rr → Ur
is finite locally free of rank r. As t : Rr → Ur is isomorphic to s by the inverse of
Rr we see that it has also rank r. □

Lemma 39.23.4.03BJ Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(A) and R = Spec(B) are affine and s, t : R→ U finite locally
free. Let C ⊂ A be as in (39.23.0.1). Then A is integral over C.

Proof. First, by Lemma 39.23.3 we know that (U,R, s, t, c) is a disjoint union of
groupoid schemes (Ur, Rr, s, t, c) such that each s, t : Rr → Ur has constant rank
r. As U is quasi-compact, we have Ur = ∅ for almost all r. It suffices to prove the
lemma for each (Ur, Rr, s, t, c) and hence we may assume that s, t are finite locally
free of rank r.
Assume that s, t are finite locally free of rank r. Let f ∈ A. Consider the element
x− f ∈ A[x], where we think of x as the coordinate on A1. Since

(U ×A1, R×A1, s× idA1 , t× idA1 , c× idA1)
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is also a groupoid scheme with finite source and target, we may apply Lemma
39.23.2 to it and we see that P (x) = Norms♯(t♯(x − f)) is an element of C[x].
Because s♯ : A→ B is finite locally free of rank r we see that P is monic of degree
r. Moreover P (f) = 0 by Cayley-Hamilton (Algebra, Lemma 10.16.1). □

Lemma 39.23.5.03BK Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(A) and R = Spec(B) are affine and s, t : R → U finite
locally free. Let C ⊂ A be as in (39.23.0.1). Let C → C ′ be a ring map, and set
U ′ = Spec(A⊗C C ′), R′ = Spec(B ⊗C C ′). Then

(1) The maps s, t, c induce maps s′, t′, c′ such that (U ′, R′, s′, t′, c′) is a groupoid
scheme. Let C1 ⊂ A′ be the R′-invariant functions on U ′.

(2) The canonical map φ : C ′ → C1 satisfies
(a) for every f ∈ C1 there exists an n > 0 and a polynomial P ∈ C ′[x]

whose image in C1[x] is (x− f)n, and
(b) for every f ∈ Ker(φ) there exists an n > 0 such that fn = 0.

(3) If C → C ′ is flat then φ is an isomorphism.

Proof. The proof of part (1) is omitted. Let us denote A′ = A ⊗C C ′ and B′ =
B ⊗C C ′. Then we have

C1 = {a ∈ A′ | (t′)♯(a) = (s′)♯(a)} = {a ∈ A⊗C C ′ | t♯ ⊗ 1(a) = s♯ ⊗ 1(a)}.
In other words, C1 is the kernel of the difference map (t♯− s♯)⊗ 1 which is just the
base change of the C-linear map t♯ − s♯ : A→ B by C → C ′. Hence (3) follows.
Proof of part (2)(b). Since C → A is integral (Lemma 39.23.4) and injective we
see that Spec(A) → Spec(C) is surjective, see Algebra, Lemma 10.36.17. Thus
also Spec(A′) → Spec(C ′) is surjective as a base change of a surjective morphism
(Morphisms, Lemma 29.9.4). Hence Spec(C1) → Spec(C ′) is surjective also. This
implies (2)(b) holds for example by Algebra, Lemma 10.30.6.
Proof of part (2)(a). By Lemma 39.23.3 our groupoid scheme (U,R, s, t, c) de-
composes as a finite disjoint union of groupoid schemes (Ur, Rr, s, t, c) such that
s, t : Rr → Ur are finite locally free of rank r. Pulling back by U ′ = Spec(C ′)→ U
we obtain a similar decomposition of U ′ and U1 = Spec(C1). We will show
in the next paragraph that (2)(a) holds for the corresponding system of rings
Ar, Br, Cr, C

′
r, C

1
r with n = r. Then given f ∈ C1 let Pr ∈ Cr[x] be the poly-

nomial whose image in C1
r [x] is the image of (x − f)r. Choosing a sufficiently

divisible integer n we see that there is a polynomial P ∈ C ′[x] whose image in
C1[x] is (x−f)n; namely, we take P to be the unique element of C ′[x] whose image
in C ′

r[x] is Pn/rr .
In this paragraph we prove (2)(a) in case the ring maps s♯, t♯ : A → B are finite
locally free of a fixed rank r. Let f ∈ C1 ⊂ A′ = A ⊗C C ′. Choose a flat C-
algebra D and a surjection D → C ′. Choose a lift g ∈ A⊗C D of f . Consider the
polynomial

P = Norms♯⊗1(t♯ ⊗ 1(x− g))
in (A⊗CD)[x]. By Lemma 39.23.2 and part (3) of the current lemma the coefficients
of P are in D (compare with the proof of Lemma 39.23.4). On the other hand, the
image of P in (A⊗C C ′)[x] is (x− f)r because t♯ ⊗ 1(x− f) = s♯(x− f) and s♯ is
finite locally free of rank r. This proves what we want with P as in the statement
(2)(a) given by the image of our P under the map D[x]→ C ′[x]. □
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Lemma 39.23.6.03BL Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(A) and R = Spec(B) are affine and s, t : R→ U finite locally
free. Let C ⊂ A be as in (39.23.0.1). Then U → M = Spec(C) has the following
properties:

(1) the map on points |U | → |M | is surjective and u0, u1 ∈ |U | map to
the same point if and only if there exists a r ∈ |R| with t(r) = u0 and
s(r) = u1, in a formula

|M | = |U |/|R|
(2) for any algebraically closed field k we have

M(k) = U(k)/R(k)

Proof. Since C → A is integral (Lemma 39.23.4) and injective we see that Spec(A)→
Spec(C) is surjective, see Algebra, Lemma 10.36.17. Thus |U | → |M | is surjective.
Let k be an algebraically closed field and let C → k be a ring map. Since surjective
morphisms are preserved under base change (Morphisms, Lemma 29.9.4) we see
that A ⊗C k is not zero. Now k ⊂ A ⊗C k is a nonzero integral extension. Hence
any residue field of A ⊗C k is an algebraic extension of k, hence equal to k. Thus
we see that U(k)→M(k) is surjective.
Let a0, a1 : A → k be two ring maps. If there exists a ring map b : B → k such
that a0 = b ◦ t♯ and a1 = b ◦ s♯ then we see that a0|C = a1|C by definition. Thus
the map U(k)→M(k) equalizes the two maps R(k)→ U(k). Conversely, suppose
that a0|C = a1|C . Let us name this algebra map c : C → k. Consider the diagram

B

xx
k A

a0
oo

a1oo

OO OO

C

OO

c

ff

If we can construct a dotted arrow making the diagram commute, then the proof
of part (2) of the lemma is complete. Since s : A → B is finite there exist finitely
many ring maps b1, . . . , bn : B → k such that bi ◦ s♯ = a1. If the dotted arrow does
not exist, then we see that none of the a′

i = bi ◦ t♯, i = 1, . . . , n is equal to a0. Hence
the maximal ideals

m′
i = Ker(a′

i ⊗ 1 : A⊗C k → k)
of A ⊗C k are distinct from m = Ker(a0 ⊗ 1 : A ⊗C k → k). By Algebra, Lemma
10.15.2 we would get an element f ∈ A⊗C k with f ∈ m, but f ̸∈ m′

i for i = 1, . . . , n.
Consider the norm

g = Norms♯⊗1(t♯ ⊗ 1(f)) ∈ A⊗C k
By Lemma 39.23.2 this lies in the invariants C1 ⊂ A ⊗C k of the base change
groupoid (base change via the map c : C → k). On the one hand, a1(g) ∈ k∗ since
the value of t♯(f) at all the points (which correspond to b1, . . . , bn) lying over a1
is invertible (insert future reference on property determinant here). On the other
hand, since f ∈ m, we see that f is not a unit, hence t♯(f) is not a unit (as t♯ ⊗ 1
is faithfully flat), hence its norm is not a unit (insert future reference on property
determinant here). We conclude that C1 contains an element which is not nilpotent
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and not a unit. We will now show that this leads to a contradiction. Namely, apply
Lemma 39.23.5 to the map c : C → C ′ = k, then we see that the map of k into the
invariants C1 is injective and moreover, that for any element x ∈ C1 there exists
an integer n > 0 such that xn ∈ k. Hence every element of C1 is either a unit or
nilpotent.

We still have to finish the proof of (1). We already know that |U | → |M | is
surjective. It is clear that |U | → |M | is |R|-invariant. Finally, suppose u0, u1 ∈ U
maps to the same point m ∈ M . Then the induced field extensions κ(u0)/κ(m)
and κ(u1)/κ(m) are algebraic (as A is integral over C as used above). Hence if k
is an algebraic closure of κ(m) then we can find κ(m)-embeddings u0 : κ(u0) → k
and u1 : κ(u1) → k. These determine k-valued points u0, u1 ∈ U(k) mapping to
the same point of M(k). By part (2) we see that there exists a point r ∈ R(k)
with s(r) = u0 and t(r) = u1. The image r ∈ R of r is a point with s(r) = u0 and
t(r) = u1 as desired. □

Lemma 39.23.7.0DT9 Let S be a scheme. Let f : (U ′, R′, s′, t′) → (U,R, s, t, c) be a
morphism of groupoid schemes over S.

(1) U , R, U ′, R′ are affine,
(2) s, t, s′, t′ are finite locally free,
(3) the diagrams

R′

s′

��

f
// R

s

��
U ′ f // U

R′

t′

��

f
// R

t

��
U ′ f // U

G′

��

f
// G

��
U ′ f // U

are cartesian where G and G′ are the stabilizer group schemes, and
(4) f : U ′ → U is étale.

Then the map C → C ′ from the R-invariant functions on U to the R′-invariant
functions on U ′ is étale and U ′ = Spec(C ′)×Spec(C) U .

Proof. Set M = Spec(C) and M ′ = Spec(C ′). Write U = Spec(A), U ′ = Spec(A′),
R = Spec(B), and R′ = Spec(B′). We will use the results of Lemmas 39.23.4,
39.23.5, and 39.23.6 without further mention.

Assume C is a strictly henselian local ring. Let p ∈ M be the closed point and
let p′ ∈ M ′ map to p. Claim: in this case there is a disjoint union decomposition
(U ′, R′, s′, t′, c′) = (U,R, s, t, c)⨿ (U ′′, R′′, s′′, t′′, c′′) over (U,R, s, t, c) such that for
the corresponding disjoint union decomposition M ′ = M ⨿M ′′ over M the point
p′ corresponds to p ∈M .

The claim implies the lemma. Suppose that M1 → M is a flat morphism of affine
schemes. Then we can base change everything to M1 without affecting the hy-
potheses (1) – (4). From Lemma 39.23.5 we see M1, resp. M ′

1 is the spectrum of
the R1-invariant functions on U1, resp. the R′

1-invariant functions on U ′
1. Suppose

that p′ ∈ M ′ maps to p ∈ M . Let M1 be the spectrum of the strict henselization
of OM,p with closed point p1 ∈M1. Choose a point p′

1 ∈M ′
1 mapping to p1 and p′.

From the claim we get

(U ′
1, R

′
1, s

′
1, t

′
1, c

′
1) = (U1, R1, s1, t1, c1)⨿ (U ′′

1 , R
′′
1 , s

′′
1 , t

′′
1 , c

′′
1)

https://stacks.math.columbia.edu/tag/0DT9
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and correspondingly M ′
1 = M1 ⨿M ′′

1 as a scheme over M1. Write M1 = Spec(C1)
and write C1 = colimCi as a filtered colimit of étale C-algebras. SetMi = Spec(Ci).
The M1 = limMi and similarly for the other schemes. By Limits, Lemmas 32.4.11
and 32.8.11 we can find an i such that

(U ′
i , R

′
i, s

′
i, t

′
i, c

′
i) = (Ui, Ri, si, ti, ci)⨿ (U ′′

i , R
′′
i , s

′′
i , t

′′
i , c

′′
i )

We conclude that M ′
i = Mi⨿M ′′

i . In particular M ′ →M becomes étale at a point
over p′ after an étale base change. This implies that M ′ → M is étale at p′ (for
example by Morphisms, Lemma 29.36.17). We will prove U ′ ∼= M ′ ×M U after we
prove the claim.
Proof of the claim. Observe that Up and U ′

p′ have finitely many points. For u ∈ Up
we have κ(u)/κ(p) is algebraic, hence κ(u) is separably closed. As U ′ → U is
étale, we conclude the morphism U ′

p′ → Up induces isomorphisms on residue field
extensions. Let u′ ∈ U ′

p′ with image u ∈ Up. By assumption (3) the morphism of
scheme theoretic fibres (s′)−1(u′) → s−1(u), (t′)−1(u′) → t−1(u), and G′

u′ → Gu
are isomorphisms. Observing that Up = t(s−1(u)) (set theoretically) we conclude
that the points of U ′

p′ surject onto the points of Up. Suppose that u′
1 and u′

2 are
points of U ′

p′ mapping to the same point u of Up. Then there exists a point r′ ∈ R′
p′

with s′(r′) = u′
1 and t′(r′) = u′

2. Consider the two towers of fields
κ(r′)/κ(u′

1)/κ(u)/κ(p) κ(r′)/κ(u′
2)/κ(u)/κ(p)

whose “ends” are the same as the two “ends” of the two towers
κ(r′)/κ(u′

1)/κ(p′)/κ(p) κ(r′)/κ(u′
2)/κ(p′)/κ(p)

These two induce the same maps κ(p′) → κ(r′) as (U ′
p′ , R′

p′ , s′, t′, c′) is a groupoid
over p′. Since κ(u)/κ(p) is purely inseparable, we conclude that the two induced
maps κ(u) → κ(r′) are the same. Therefore r′ maps to a point of the fibre Gu.
By assumption (3) we conclude that r′ ∈ (G′)u′

1
. Namely, we may think of G as

a closed subscheme of R viewed as a scheme over U via s and use that the base
change to U ′ gives G′ ⊂ R′. In particular we have u′

1 = u′
2. We conclude that

U ′
p′ → Up is a bijective map on points inducing isomorphisms on residue fields. It

follows that U ′
p′ is a finite set of closed points (Algebra, Lemma 10.35.9) and hence

U ′
p′ is closed in U ′. Let J ′ ⊂ A′ be the radical ideal cutting out U ′

p′ set theoretically.
Second part proof of the claim. Let m ⊂ C be the maximal ideal. Observe that
(A,mA) is a henselian pair by More on Algebra, Lemma 15.11.8. Let J =

√
mA.

Then (A, J) is a henselian pair (More on Algebra, Lemma 15.11.7) and the étale
ring map A→ A′ induces an isomorphism A/J → A′/J ′ by our deliberations above.
We conclude that A′ = A×A′′ by More on Algebra, Lemma 15.11.6. Consider the
corresponding disjoint union decomposition U ′ = U ⨿ U ′′. The open (s′)−1(U)
is the set of points of R′ specializing to a point of R′

p′ . Similarly for (t′)−1(U).
Similarly we have (s′)−1(U ′′) = (t′)−1(U ′′) as this is the set of points which do not
specialize to R′

p′ . Hence we obtain a disjoint union decomposition
(U ′, R′, s′, t′, c′) = (U,R, s, t, c)⨿ (U ′′, R′′, s′′, t′′, c′′)

This immediately gives M ′ = M ⨿M ′′ and the proof of the claim is complete.
We still have to prove that the canonical map U ′ → M ′ ×M U is an isomorphism.
It is an étale morphism (Morphisms, Lemma 29.36.18). On the other hand, by base
changing to strictly henselian local rings (as in the third paragraph of the proof) and
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using the bijectivity U ′
p′ → Up established in the course of the proof of the claim, we

see that U ′ →M ′×M U is universally bijective (some details omitted). However, a
universally bijective étale morphism is an isomorphism (Descent, Lemma 35.25.2)
and the proof is complete. □

Lemma 39.23.8.03C8 Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume

(1) U = Spec(A), and R = Spec(B) are affine, and
(2) there exist elements xi ∈ A, i ∈ I such that B =

⊕
i∈I s

♯(A)t♯(xi).
Then A =

⊕
i∈I Cxi, and B ∼= A ⊗C A where C ⊂ A is the R-invariant functions

on U as in (39.23.0.1).

Proof. During this proof we will write s, t : A → B instead of s♯, t♯, and similarly
c : B → B⊗s,A,tB. We write p0 : B → B⊗s,A,tB, b 7→ b⊗1 and p1 : B → B⊗s,A,tB,
b 7→ 1 ⊗ b. By Lemma 39.13.5 and the definition of C we have the following
commutative diagram

B ⊗s,A,t B B
coo

p0
oo A

t
oo

B

p1

OO

A
soo

t
oo

s

OO

C

OO

oo

Moreover the tow left squares are cocartesian in the category of rings, and the top
row is isomorphic to the diagram

B ⊗t,A,t B B
p1oo

p0
oo A

t
oo

which is an equalizer diagram according to Descent, Lemma 35.3.6 because condi-
tion (2) implies in particular that s (and hence also then isomorphic arrow t) is
faithfully flat. The lower row is an equalizer diagram by definition of C. We can
use the xi and get a commutative diagram

B ⊗s,A,t B B
coo

p0
oo A

t
oo

⊕
i∈I Bxi

p1

OO

⊕
i∈I Axi

soo

t
oo

s

OO

⊕
i∈I Cxi

OO

oo

where in the right vertical arrow we map xi to xi, in the middle vertical arrow we
map xi to t(xi) and in the left vertical arrow we map xi to c(t(xi)) = t(xi) ⊗ 1 =
p0(t(xi)) (equality by the commutativity of the top part of the diagram in Lemma
39.13.4). Then the diagram commutes. Moreover the middle vertical arrow is
an isomorphism by assumption. Since the left two squares are cocartesian we
conclude that also the left vertical arrow is an isomorphism. On the other hand,
the horizontal rows are exact (i.e., they are equalizers). Hence we conclude that
also the right vertical arrow is an isomorphism. □

Proposition 39.23.9.03BM Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme
over S. Assume

(1) U = Spec(A), and R = Spec(B) are affine,

https://stacks.math.columbia.edu/tag/03C8
https://stacks.math.columbia.edu/tag/03BM
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(2) s, t : R→ U finite locally free, and
(3) j = (t, s) is an equivalence.

In this case, let C ⊂ A be as in (39.23.0.1). Then U → M = Spec(C) is finite
locally free and R = U ×M U . Moreover, M represents the quotient sheaf U/R in
the fppf topology (see Definition 39.20.1).

Proof. During this proof we use the notation s, t : A → B instead of the notation
s♯, t♯. By Lemma 39.20.3 it suffices to show that C → A is finite locally free and
that the map

t⊗ s : A⊗C A −→ B

is an isomorphism. First, note that j is a monomorphism, and also finite (since
already s and t are finite). Hence we see that j is a closed immersion by Morphisms,
Lemma 29.44.15. Hence A⊗C A→ B is surjective.

We will perform base change by flat ring maps C → C ′ as in Lemma 39.23.5,
and we will use that formation of invariants commutes with flat base change, see
part (3) of the lemma cited. We will show below that for every prime p ⊂ C,
there exists a local flat ring map Cp → C ′

p such that the result holds after a
base change to C ′

p. This implies immediately that A ⊗C A → B is injective (use
Algebra, Lemma 10.23.1). It also implies that C → A is flat, by combining Algebra,
Lemmas 10.39.17, 10.39.18, and 10.39.8. Then since U → Spec(C) is surjective also
(Lemma 39.23.6) we conclude that C → A is faithfully flat. Then the isomorphism
B ∼= A⊗C A implies that A is a finitely presented C-module, see Algebra, Lemma
10.83.2. Hence A is finite locally free over C, see Algebra, Lemma 10.78.2.

By Lemma 39.23.3 we know that A is a finite product of rings Ar and B is a finite
product of rings Br such that the groupoid scheme decomposes accordingly (see the
proof of Lemma 39.23.4). Then also C is a product of rings Cr and correspondingly
C ′ decomposes as a product. Hence we may and do assume that the ring maps
s, t : A→ B are finite locally free of a fixed rank r.

The local ring maps Cp → C ′
p we are going to use are any local flat ring maps such

that the residue field of C ′
p is infinite. By Algebra, Lemma 10.159.1 such local ring

maps exist.

Assume C is a local ring with maximal ideal m and infinite residue field, and assume
that s, t : A→ B is finite locally free of constant rank r > 0. Since C ⊂ A is integral
(Lemma 39.23.4) all primes lying over m are maximal, and all maximal ideals of A
lie over m. Similarly for C ⊂ B. Pick a maximal ideal m′ of A lying over m (exists
by Lemma 39.23.6). Since t : A→ B is finite locally free there exist at most finitely
many maximal ideals of B lying over m′. Hence we conclude (by Lemma 39.23.6
again) that A has finitely many maximal ideals, i.e., A is semi-local. This in turn
implies that B is semi-local as well. OK, and now, because t ⊗ s : A ⊗C A → B
is surjective, we can apply Algebra, Lemma 10.78.8 to the ring map C → A, the
A-module M = B (seen as an A-module via t) and the C-submodule s(A) ⊂ B.
This lemma implies that there exist x1, . . . , xr ∈ A such that M is free over A
on the basis s(x1), . . . , s(xr). Hence we conclude that C → A is finite free and
B ∼= A⊗C A by applying Lemma 39.23.8. □
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39.24. Finite flat groupoids

03JD In this section we prove a lemma that will help to show that the quotient of a scheme
by a finite flat equivalence relation is a scheme, provided that each equivalence class
is contained in an affine. See Properties of Spaces, Proposition 66.14.1.

Lemma 39.24.1.03JE Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume s, t are finite locally free. Let u ∈ U be a point such that t(s−1({u}))
is contained in an affine open of U . Then there exists an R-invariant affine open
neighbourhood of u in U .

Proof. Since s is finite locally free it has finite fibres. Hence t(s−1({u})) = {u1, . . . , un}
is a finite set. Note that u ∈ {u1, . . . , un}. Let W ⊂ U be an affine open containing
{u1, . . . , un}, in particular u ∈ W . Consider Z = R \ s−1(W ) ∩ t−1(W ). This is a
closed subset of R. The image t(Z) is a closed subset of U which can be loosely
described as the set of points of U which are R-equivalent to a point of U \W .
Hence W ′ = U \ t(Z) is an R-invariant, open subscheme of U contained in W , and
{u1, . . . , un} ⊂W ′. Picture

{u1, . . . , un} ⊂W ′ ⊂W ⊂ U.
Let f ∈ Γ(W,OW ) be an element such that {u1, . . . , un} ⊂ D(f) ⊂W ′. Such an f
exists by Algebra, Lemma 10.15.2. By our choice of W ′ we have s−1(W ′) ⊂ t−1(W ),
and hence we get a diagram

s−1(W ′)

s

��

t
// W

W ′

The vertical arrow is finite locally free by assumption. Set
g = Norms(t♯f) ∈ Γ(W ′,OW ′)

By construction g is a function on W ′ which is nonzero in u, as t♯(f) is nonzero
in each of the points of R lying over u, since f is nonzero in u1, . . . , un. Similarly,
D(g) ⊂ W ′ is equal to the set of points w such that f is not zero in any of the
points equivalent to w. This means that D(g) is an R-invariant affine open of W ′.
The final picture is

{u1, . . . , un} ⊂ D(g) ⊂ D(f) ⊂W ′ ⊂W ⊂ U
and hence we win. □

39.25. Descending quasi-projective schemes

0CCH We can use Lemma 39.24.1 to show that a certain type of descent datum is effective.

Lemma 39.25.1.0CCI Let X → Y be a surjective finite locally free morphism. Let V be
a scheme over X such that for all (y, v1, . . . , vd) where y ∈ Y and v1, . . . , vd ∈ Vy
there exists an affine open U ⊂ V with v1, . . . , vd ∈ U . Then any descent datum
on V/X/Y is effective.

Proof. Let φ be a descent datum as in Descent, Definition 35.34.1. Recall that
the functor from schemes over Y to descent data relative to {X → Y } is fully
faithful, see Descent, Lemma 35.35.11. Thus using Constructions, Lemma 27.2.1
it suffices to prove the lemma in the case that Y is affine. Some details omitted

https://stacks.math.columbia.edu/tag/03JE
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(this argument can be avoided if Y is separated or has affine diagonal, because then
every morphism from an affine scheme to X is affine).
Assume Y is affine. If V is also affine, then we have effectivity by Descent,
Lemma 35.37.1. Hence by Descent, Lemma 35.35.13 it suffices to prove that every
point v of V has a φ-invariant affine open neighbourhood. Consider the groupoid
(X,X ×Y X,pr1,pr0,pr02). By Lemma 39.21.3 the descent datum φ determines
and is determined by a cartesian morphism of groupoid schemes

(V,R, s, t, c) −→ (X,X ×Y X,pr1,pr0,pr02)
over Spec(Z). Since X → Y is finite locally free, we see that pri : X ×Y X → X
and hence s and t are finite locally free. In particular the R-orbit t(s−1({v})) of
our point v ∈ V is finite. Using the equivalence of categories of Lemma 39.21.3
once more we see that φ-invariant opens of V are the same thing as R-invariant
opens of V . Our assumption shows there exists an affine open of V containing the
orbit t(s−1({v})) as all the points in this orbit map to the same point of Y . Thus
Lemma 39.24.1 provides an R-invariant affine open containing v. □

Lemma 39.25.2.0CCJ Let X → Y be a surjective finite locally free morphism. Let V be
a scheme over X such that one of the following holds

(1) V → X is projective,
(2) V → X is quasi-projective,
(3) there exists an ample invertible sheaf on V ,
(4) there exists an X-ample invertible sheaf on V ,
(5) there exists an X-very ample invertible sheaf on V .

Then any descent datum on V/X/Y is effective.

Proof. We check the condition in Lemma 39.25.1. Let y ∈ Y and v1, . . . , vd ∈ V
points over y. Case (1) is a special case of (2), see Morphisms, Lemma 29.43.10.
Case (2) is a special case of (4), see Morphisms, Definition 29.40.1. If there exists an
ample invertible sheaf on V , then there exists an affine open containing v1, . . . , vd by
Properties, Lemma 28.29.5. Thus (3) is true. In cases (4) and (5) it is harmless to
replace Y by an affine open neighbourhood of y. Then X is affine too. In case (4) we
see that V has an ample invertible sheaf by Morphisms, Definition 29.37.1 and the
result follows from case (3). In case (5) we can replace V by a quasi-compact open
containing v1, . . . , vd and we reduce to case (4) by Morphisms, Lemma 29.38.2. □
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CHAPTER 40

More on Groupoid Schemes

04LA 40.1. Introduction

04LB This chapter is devoted to advanced topics on groupoid schemes. Even though the
results are stated in terms of groupoid schemes, the reader should keep in mind the
2-cartesian diagram

(40.1.0.1)04LC

R //

��

U

��
U // [U/R]

where [U/R] is the quotient stack, see Groupoids in Spaces, Remark 78.20.4. Many
of the results are motivated by thinking about this diagram. See for example the
beautiful paper [KM97] by Keel and Mori.

40.2. Notation

04LD We continue to abide by the conventions and notation introduced in Groupoids,
Section 39.2.

40.3. Useful diagrams

04LE We briefly restate the results of Groupoids, Lemmas 39.13.4 and 39.13.5 for easy
reference in this chapter. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme
over S. In the commutative diagram

(40.3.0.1)04LF

U

R

s

��

t

::

R×s,U,t Rpr0
oo

pr1

��

c
// R

s

��

t

dd

U R
too s // U

the two lower squares are fibre product squares. Moreover, the triangle on top
(which is really a square) is also cartesian.

3574
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The diagram

(40.3.0.2)04LG

R×t,U,t R
pr1 //

pr0
//

pr0×c◦(i,1)
��

R
t //

idR
��

U

idU
��

R×s,U,t R
c //

pr0
//

pr1

��

R
t //

s

��

U

R
s //

t
// U

is commutative. The two top rows are isomorphic via the vertical maps given. The
two lower left squares are cartesian.

40.4. Sheaf of differentials

04R8 The following lemma is the analogue of Groupoids, Lemma 39.6.3.

Lemma 40.4.1.04R9 Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
The sheaf of differentials of R seen as a scheme over U via t is a quotient of the
pullback via t of the conormal sheaf of the immersion e : U → R. In a formula:
there is a canonical surjection t∗CU/R → ΩR/U . If s is flat, then this map is an
isomorphism.

Proof. Note that e : U → R is an immersion as it is a section of the morphism s,
see Schemes, Lemma 26.21.11. Consider the following diagram

R
(1,i)
//

t

��

R×s,U,t R

c

��

(pr0,i◦pr1)
// R×t,U,t R

U
e // R

The square on the left is cartesian, because if a ◦ b = e, then b = i(a). The com-
position of the horizontal maps is the diagonal morphism of t : R → U . The right
top horizontal arrow is an isomorphism. Hence since ΩR/U is the conormal sheaf
of the composition it is isomorphic to the conormal sheaf of (1, i). By Morphisms,
Lemma 29.31.4 we get the surjection t∗CU/R → ΩR/U and if c is flat, then this is an
isomorphism. Since c is a base change of s by the properties of Diagram (40.3.0.2)
we conclude that if s is flat, then c is flat, see Morphisms, Lemma 29.25.8. □

40.5. Local structure

0CK3 Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid scheme over S. Let u ∈ U
be a point. In this section we explain what kind of structure we obtain on the local
rings

A = OU,u and B = OR,e(u)

The convention we will use is to denote the local ring homomorphisms induced
by the morphisms s, t, c, e, i by the corresponding letters. In particular we have a

https://stacks.math.columbia.edu/tag/04R9
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commutative diagram
A

t ��

1

''
B

e // A

A

s

??

1

77

of local rings. Thus if I ⊂ B denotes the kernel of e : B → A, then B = s(A)⊕ I =
t(A)⊕ I. Let us denote

C = OR×s,U,tR,(e(u),e(u))

Then we have
C = (B ⊗s,A,t B)mB⊗B+B⊗mB

Let J ⊂ C be the ideal of C generated by I ⊗B+B⊗ I. Then J is also the kernel
of the local ring homomorphism

(e, e) : C −→ A

The composition law c : R×s,U,t R→ R corresponds to a ring map
c : B −→ C

sending I into J .

Lemma 40.5.1.0CK4 The map I/I2 → J/J2 induced by c is the composition

I/I2 (1,1)−−−→ I/I2 ⊕ I/I2 → J/J2

where the second arrow comes from the equality J = (I ⊗B +B ⊗ I)C. The map
i : B → B induces the map −1 : I/I2 → I/I2.

Proof. To describe a local homomorphism from C to another local ring it is enough
to say what happens to elements of the form b1⊗ b2. Keeping this in mind we have
the two canonical maps

e2 : C → B, b1 ⊗ b2 7→ b1s(e(b2)), e1 : C → B, b1 ⊗ b2 7→ t(e(b1))b2

corresponding to the embeddings R → R ×s,U,t R given by r 7→ (r, e(s(r))) and
r 7→ (e(t(r)), r). These maps define maps J/J2 → I/I2 which jointly give an
inverse to the map I/I2 ⊕ I/I2 → J/J2 of the lemma. Thus to prove statement
we only have to show that e1 ◦ c : B → B and e2 ◦ c : B → B are the identity
maps. This follows from the fact that both compositions R→ R×s,U,t R→ R are
identities.
The statement on i follows from the statement on c and the fact that c◦(1, i) = e◦t.
Some details omitted. □

40.6. Properties of groupoids

02YD Let (U,R, s, t, c) be a groupoid scheme. The idea behind the results in this section
is that s : R → U is a base change of the morphism U → [U/R] (see Diagram
(40.1.0.1). Hence the local properties of s : R → U should reflect local properties
of the morphism U → [U/R]. This doesn’t work, because [U/R] is not always an
algebraic stack, and hence we cannot speak of geometric or algebraic properties
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of U → [U/R]. But it turns out that we can make some of it work without even
referring to the quotient stack at all.
Here is a first example of such a result. The open W ⊂ U ′ found in the lemma is
roughly speaking the locus where the morphism U ′ → [U/R] has property P.

Lemma 40.6.1.04LH Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid over S. Let
g : U ′ → U be a morphism of schemes. Denote h the composition

h : U ′ ×g,U,t R pr1
// R

s
// U.

Let P,Q,R be properties of morphisms of schemes. Assume
(1) R ⇒ Q,
(2) Q is preserved under base change and composition,
(3) for any morphism f : X → Y which has Q there exists a largest open

W (P, f) ⊂ X such that f |W (P,f) has P, and
(4) for any morphism f : X → Y which has Q, and any morphism Y ′ → Y

which has R we have Y ′×Y W (P, f) = W (P, f ′), where f ′ : XY ′ → Y ′ is
the base change of f .

If s, t have R and g has Q, then there exists an open subscheme W ⊂ U ′ such that
W ×g,U,t R = W (P, h).

Proof. Note that the following diagram is commutative

U ′ ×g,U,t R×t,U,t R pr12
//

pr02

��
pr01

��

R×t,U,t R

pr1

��
pr0

��
U ′ ×g,U,t R

pr1 // R

with both squares cartesian (this uses that the two maps t ◦ pri : R ×t,U,t R → U
are equal). Combining this with the properties of diagram (40.3.0.2) we get a
commutative diagram

U ′ ×g,U,t R×t,U,t R
c◦(i,1)

//

pr02

��
pr01

��

R

s

��
t

��
U ′ ×g,U,t R

h // U

where both squares are cartesian.
Assume s, t have R and g has Q. Then h has Q as a composition of s (which has R
hence Q) and a base change of g (which has Q). Thus W (P, h) ⊂ U ′×g,U,tR exists.
By our assumptions we have pr−1

01 (W (P, h)) = pr−1
02 (W (P, h)) since both are the

largest open on which c ◦ (i, 1) has P. Note that the projection U ′ ×g,U,t R → U ′

has a section, namely σ : U ′ → U ′ ×g,U,t R, u′ 7→ (u′, e(g(u′))). Also via the
isomorphism

(U ′ ×g,U,t R)×U ′ (U ′ ×g,U,t R) = U ′ ×g,U,t R×t,U,t R

the two projections of the left hand side to U ′ ×g,U,t R agree with the morphisms
pr01 and pr02 on the right hand side. Since pr−1

01 (W (P, h)) = pr−1
02 (W (P, h)) we

conclude that W (P, h) is the inverse image of a subset of U , which is necessarily
the open set W = σ−1(W (P, h)). □
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Remark 40.6.2.04LI Warning: Lemma 40.6.1 should be used with care. For example, it
applies to P =“flat”, Q =“empty”, and R =“flat and locally of finite presentation”.
But given a morphism of schemes f : X → Y the largest open W ⊂ X such that
f |W is flat is not the set of points where f is flat!
Remark 40.6.3.047W Notwithstanding the warning in Remark 40.6.2 there are some
cases where Lemma 40.6.1 can be used without causing too much ambiguity. We
give a list. In each case we omit the verification of assumptions (1) and (2) and we
give references which imply (3) and (4). Here is the list:

(1) Q = R =“locally of finite type”, and P =“relative dimension ≤ d”.
See Morphisms, Definition 29.29.1 and Morphisms, Lemmas 29.28.4 and
29.28.3.

(2) Q = R =“locally of finite type”, and P =“locally quasi-finite”. This is the
case d = 0 of the previous item, see Morphisms, Lemma 29.29.5.

(3) Q = R =“locally of finite type”, and P =“unramified”. See Morphisms,
Lemmas 29.35.3 and 29.35.15.

What is interesting about the cases listed above is that we do not need to assume
that s, t are flat to get a conclusion about the locus where the morphism h has
property P. We continue the list:

(4) Q =“locally of finite presentation”, R =“flat and locally of finite presen-
tation”, and P =“flat”. See More on Morphisms, Theorem 37.15.1 and
Lemma 37.15.2.

(5) Q =“locally of finite presentation”, R =“flat and locally of finite presen-
tation”, and P =“Cohen-Macaulay”. See More on Morphisms, Definition
37.22.1 and More on Morphisms, Lemmas 37.22.6 and 37.22.7.

(6) Q =“locally of finite presentation”, R =“flat and locally of finite presen-
tation”, and P =“syntomic” use Morphisms, Lemma 29.30.12 (the locus
is automatically open).

(7) Q =“locally of finite presentation”, R =“flat and locally of finite presen-
tation”, and P =“smooth”. See Morphisms, Lemma 29.34.15 (the locus is
automatically open).

(8) Q =“locally of finite presentation”, R =“flat and locally of finite presen-
tation”, and P =“étale”. See Morphisms, Lemma 29.36.17 (the locus is
automatically open).

Here is the second result. The R-invariant open W ⊂ U should be thought of as
the inverse image of the largest open of [U/R] over which the morphism U → [U/R]
has property P.
Lemma 40.6.4.03JC Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. Let
τ ∈ {Zariski, fppf, étale, smooth, syntomic}1. Let P be a property of morphisms
of schemes which is τ -local on the target (Descent, Definition 35.22.1). Assume
{s : R→ U} and {t : R→ U} are coverings for the τ -topology. Let W ⊂ U be the
maximal open subscheme such that s|s−1(W ) : s−1(W )→W has property P. Then
W is R-invariant, see Groupoids, Definition 39.19.1.
Proof. The existence and properties of the open W ⊂ U are described in Descent,
Lemma 35.22.3. In Diagram (40.3.0.1) let W1 ⊂ R be the maximal open subscheme
over which the morphism pr1 : R ×s,U,t R → R has property P. It follows from

1The fact that fpqc is missing is not a typo.
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the aforementioned Descent, Lemma 35.22.3 and the assumption that {s : R→ U}
and {t : R→ U} are coverings for the τ -topology that t−1(W ) = W1 = s−1(W ) as
desired. □

Lemma 40.6.5.06QQ Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. Let
G → U be its stabilizer group scheme. Let τ ∈ {fppf, étale, smooth, syntomic}.
Let P be a property of morphisms which is τ -local on the target. Assume {s : R→
U} and {t : R→ U} are coverings for the τ -topology. Let W ⊂ U be the maximal
open subscheme such that GW → W has property P. Then W is R-invariant (see
Groupoids, Definition 39.19.1).

Proof. The existence and properties of the open W ⊂ U are described in Descent,
Lemma 35.22.3. The morphism

G×U,t R −→ R×s,U G, (g, r) 7−→ (r, r−1 ◦ g ◦ r)
is an isomorphism over R (where ◦ denotes composition in the groupoid). Hence
s−1(W ) = t−1(W ) by the properties of W proved in the aforementioned Descent,
Lemma 35.22.3. □

40.7. Comparing fibres

04LJ Let (U,R, s, t, c, e, i) be a groupoid scheme over S. Diagram (40.3.0.1) gives us a
way to compare the fibres of the map s : R→ U in a groupoid. For a point u ∈ U
we will denote Fu = s−1(u) the scheme theoretic fibre of s : R → U over u. For
example the diagram implies that if u, u′ ∈ U are points such that s(r) = u and
t(r) = u′, then (Fu)κ(r) ∼= (Fu′)κ(r). This is a special case of the more general and
more precise Lemma 40.7.1 below. To see this take r′ = i(r).
A pair (X,x) consisting of a scheme X and a point x ∈ X is sometimes called
the germ of X at x. A morphism of germs f : (X,x) → (S, s) is a morphism
f : U → S defined on an open neighbourhood of x with f(x) = s. Two such f , f ′

are said to give the same morphism of germs if and only if f and f ′ agree in some
open neighbourhood of x. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. We
temporarily introduce the following concept: We say that two morphisms of germs
f : (X,x)→ (S, s) and f ′ : (X ′, x′)→ (S′, s′) are isomorphic locally on the base in
the τ -topology, if there exists a pointed scheme (S′′, s′′) and morphisms of germs
g : (S′′, s′′)→ (S, s), and g′ : (S′′, s′′)→ (S′, s′) such that

(1) g and g′ are an open immersion (resp. étale, smooth, syntomic, flat and
locally of finite presentation) at s′′,

(2) there exists an isomorphism
(S′′ ×g,S,f X, x̃) ∼= (S′′ ×g′,S′,f ′ X ′, x̃′)

of germs over the germ (S′′, s′′) for some choice of points x̃ and x̃′ lying
over (s′′, x) and (s′′, x′).

Finally, we simply say that the maps of germs f : (X,x)→ (S, s) and f ′ : (X ′, x′)→
(S′, s′) are flat locally on the base isomorphic if there exist S′′, s′′, g, g′ as above
but with (1) replaced by the condition that g and g′ are flat at s′′ (this is much
weaker than any of the τ conditions above as a flat morphism need not be open).

Lemma 40.7.1.02YF Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. Let
r, r′ ∈ R with t(r) = t(r′) in U . Set u = s(r), u′ = s(r′). Denote Fu = s−1(u) and
Fu′ = s−1(u′) the scheme theoretic fibres.
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(1) There exists a common field extension κ(u) ⊂ k, κ(u′) ⊂ k and an iso-
morphism (Fu)k ∼= (Fu′)k.

(2) We may choose the isomorphism of (1) such that a point lying over r maps
to a point lying over r′.

(3) If the morphisms s, t are flat then the morphisms of germs s : (R, r) →
(U, u) and s : (R, r′)→ (U, u′) are flat locally on the base isomorphic.

(4) If the morphisms s, t are étale (resp. smooth, syntomic, or flat and locally
of finite presentation) then the morphisms of germs s : (R, r) → (U, u)
and s : (R, r′) → (U, u′) are locally on the base isomorphic in the étale
(resp. smooth, syntomic, or fppf) topology.

Proof. We repeatedly use the properties and the existence of diagram (40.3.0.1).
By the properties of the diagram (and Schemes, Lemma 26.17.5) there exists a
point ξ of R×s,U,t R with pr0(ξ) = r and c(ξ) = r′. Let r̃ = pr1(ξ) ∈ R.

Proof of (1). Set k = κ(r̃). Since t(r̃) = u and s(r̃) = u′ we see that k is a
common extension of both κ(u) and κ(u′) and in fact that both (Fu)k and (Fu′)k
are isomorphic to the fibre of pr1 : R×s,U,t R→ R over r̃. Hence (1) is proved.

Part (2) follows since the point ξ maps to r, resp. r′.

Part (3) is clear from the above (using the point ξ for ũ and ũ′) and the definitions.

If s and t are flat and of finite presentation, then they are open morphisms (Mor-
phisms, Lemma 29.25.10). Hence the image of some affine open neighbourhood V ′′

of r̃ will cover an open neighbourhood V of u, resp. V ′ of u′. These can be used to
show that properties (1) and (2) of the definition of “locally on the base isomorphic
in the τ -topology”. □

40.8. Cohen-Macaulay presentations

04LK Given any groupoid (U,R, s, t, c) with s, t flat and locally of finite presentation
there exists an “equivalent” groupoid (U ′, R′, s′, t′, c′) such that s′ and t′ are Cohen-
Macaulay morphisms (and locally of finite presentation). See More on Morphisms,
Section 37.22 for more information on Cohen-Macaulay morphisms. Here “equiva-
lent” can be taken to mean that the quotient stacks [U/R] and [U ′/R′] are equivalent
stacks, see Groupoids in Spaces, Section 78.20 and Section 78.25.

Lemma 40.8.1.0460 Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. Assume
s and t are flat and locally of finite presentation. Then there exists an open U ′ ⊂ U
such that

(1) t−1(U ′) ⊂ R is the largest open subscheme of R on which the morphism
s is Cohen-Macaulay,

(2) s−1(U ′) ⊂ R is the largest open subscheme of R on which the morphism
t is Cohen-Macaulay,

(3) the morphism t|s−1(U ′) : s−1(U ′)→ U is surjective,
(4) the morphism s|t−1(U ′) : t−1(U ′)→ U is surjective, and
(5) the restriction R′ = s−1(U ′) ∩ t−1(U ′) of R to U ′ defines a groupoid

(U ′, R′, s′, t′, c′) which has the property that the morphisms s′ and t′ are
Cohen-Macaulay and locally of finite presentation.
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Proof. Apply Lemma 40.6.1 with g = id and Q =“locally of finite presentation”,
R =“flat and locally of finite presentation”, and P =“Cohen-Macaulay”, see Re-
mark 40.6.3. This gives us an open U ′ ⊂ U such that Let t−1(U ′) ⊂ R is the largest
open subscheme of R on which the morphism s is Cohen-Macaulay. This proves
(1). Let i : R → R be the inverse of the groupoid. Since i is an isomorphism, and
s ◦ i = t and t ◦ i = s we see that s−1(U ′) is also the largest open of R on which t
is Cohen-Macaulay. This proves (2). By More on Morphisms, Lemma 37.22.7 the
open subset t−1(U ′) is dense in every fibre of s : R → U . This proves (3). Same
argument for (4). Part (5) is a formal consequence of (1) and (2) and the discussion
of restrictions in Groupoids, Section 39.18. □

40.9. Restricting groupoids

04MM In this section we collect a bunch of lemmas on properties of groupoids which are
inherited by restrictions. Most of these lemmas can be proved by contemplating
the defining diagram

(40.9.0.1)04MN

R′

��

//

t′

%%

s′

**
R×s,U U ′ //

��

U ′

g

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′ g // U

of a restriction. See Groupoids, Lemma 39.18.1.

Lemma 40.9.1.04MP Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let g : U ′ → U be a morphism of schemes. Let (U ′, R′, s′, t′, c′) be the restriction
of (U,R, s, t, c) via g.

(1) If s, t are locally of finite type and g is locally of finite type, then s′, t′ are
locally of finite type.

(2) If s, t are locally of finite presentation and g is locally of finite presentation,
then s′, t′ are locally of finite presentation.

(3) If s, t are flat and g is flat, then s′, t′ are flat.
(4) Add more here.

Proof. The property of being locally of finite type is stable under composition and
arbitrary base change, see Morphisms, Lemmas 29.15.3 and 29.15.4. Hence (1)
is clear from Diagram (40.9.0.1). For the other cases, see Morphisms, Lemmas
29.21.3, 29.21.4, 29.25.6, and 29.25.8. □

The following lemma could have been used to prove the results of the preceding
lemma in a more uniform way.

Lemma 40.9.2.04MV Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let g : U ′ → U be a morphism of schemes. Let (U ′, R′, s′, t′, c′) be the restriction
of (U,R, s, t, c) via g, and let h = s ◦ pr1 : U ′ ×g,U,t R → U . If P is a property of
morphisms of schemes such that

(1) h has property P, and
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(2) P is preserved under base change,
then s′, t′ have property P.

Proof. This is clear as s′ is the base change of h by Diagram (40.9.0.1) and t′ is
isomorphic to s′ as a morphism of schemes. □

Lemma 40.9.3.04MW Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let g : U ′ → U and g′ : U ′′ → U ′ be morphisms of schemes. Set g′′ = g ◦ g′. Let
(U ′, R′, s′, t′, c′) be the restriction of R to U ′. Let h = s ◦ pr1 : U ′ ×g,U,t R → U ,
let h′ = s′ ◦ pr1 : U ′′ ×g′,U ′,t R→ U ′, and let h′′ = s ◦ pr1 : U ′′ ×g′′,U,t R→ U . The
following diagram is commutative

U ′′ ×g′,U ′,t R
′

h′

��

(U ′ ×g,U,t R)×U (U ′′ ×g′′,U,t R)oo //

��

U ′′ ×g′′,U,t R

h′′

��
U ′ U ′ ×g,U,t R

pr0oo h // U

with both squares cartesian where the left upper horizontal arrow is given by the
rule

(U ′ ×g,U,t R)×U (U ′′ ×g′′,U,t R) −→ U ′′ ×g′,U ′,t R
′

((u′, r0), (u′′, r1)) 7−→ (u′′, (c(r1, i(r0)), (g′(u′′), u′)))
with notation as explained in the proof.

Proof. We work this out by exploiting the functorial point of view and reducing the
lemma to a statement on arrows in restrictions of a groupoid category. In the last
formula of the lemma the notation ((u′, r0), (u′′, r1)) indicates a T -valued point of
(U ′×g,U,tR)×U (U ′′×g′′,U,tR). This means that u′, u′′, r0, r1 are T -valued points of
U ′, U ′′, R,R and that g(u′) = t(r0), g(g′(u′′)) = g′′(u′′) = t(r1), and s(r0) = s(r1).
It would be more correct here to write g ◦ u′ = t ◦ r0 and so on but this makes the
notation even more unreadable. If we think of r1 and r0 as arrows in a groupoid
category then we can represent this by the picture

t(r0) = g(u′) s(r0) = s(r1)r0oo r1 // t(r1) = g(g′(u′′))

This diagram in particular demonstrates that the composition c(r1, i(r0)) makes
sense. Recall that

R′ = R×(t,s),U×SU,g×g U
′ ×S U ′

hence a T -valued point of R′ looks like (r, (u′
0, u

′
1)) with t(r) = g(u′

0) and s(r) =
g(u′

1). In particular given ((u′, r0), (u′′, r1)) as above we get the T -valued point
(c(r1, i(r0)), (g′(u′′), u′)) of R′ because we have t(c(r1, i(r0))) = t(r1) = g(g′(u′′))
and s(c(r1, i(r0))) = s(i(r0)) = t(r0) = g(u′). We leave it to the reader to show
that the left square commutes with this definition.

To show that the left square is cartesian, suppose we are given (v′′, p′) and (v′, p)
which are T -valued points of U ′′ ×g′,U ′,t R

′ and U ′ ×g,U,t R with v′ = s′(p′). This
also means that g′(v′′) = t′(p′) and g(v′) = t(p). By the discussion above we know
that we can write p′ = (r, (u′

0, u
′
1)) with t(r) = g(u′

0) and s(r) = g(u′
1). Using this

notation we see that v′ = s′(p′) = u′
1 and g′(v′′) = t′(p′) = u′

0. Here is a picture

s(p) p // g(v′) = g(u′
1) r // g(u′

0) = g(g′(v′′))
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What we have to show is that there exists a unique T -valued point ((u′, r0), (u′′, r1))
as above such that v′ = u′, p = r0, v′′ = u′′ and p′ = (c(r1, i(r0)), (g′(u′′), u′)).
Comparing the two diagrams above it is clear that we have no choice but to take

((u′, r0), (u′′, r1)) = ((v′, p), (v′′, c(r, p))

Some details omitted. □

Lemma 40.9.4.04MX Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let g : U ′ → U and g′ : U ′′ → U ′ be morphisms of schemes. Set g′′ = g ◦ g′. Let
(U ′, R′, s′, t′, c′) be the restriction of R to U ′. Let h = s ◦ pr1 : U ′ ×g,U,t R → U ,
let h′ = s′ ◦ pr1 : U ′′ ×g′,U ′,t R → U ′, and let h′′ = s ◦ pr1 : U ′′ ×g′′,U,t R → U .
Let τ ∈ {Zariski, étale, smooth, syntomic, fppf, fpqc}. Let P be a property of
morphisms of schemes which is preserved under base change, and which is local on
the target for the τ -topology. If

(1) h(U ′ ×U R) is open in U ,
(2) {h : U ′ ×U R→ h(U ′ ×U R)} is a τ -covering,
(3) h′ has property P,

then h′′ has property P. Conversely, if
(a) {t : R→ U} is a τ -covering,
(d) h′′ has property P,

then h′ has property P.

Proof. This follows formally from the properties of the diagram of Lemma 40.9.3.
In the first case, note that the image of the morphism h′′ is contained in the image
of h, as g′′ = g ◦ g′. Hence we may replace the U in the lower right corner of the
diagram by h(U ′ ×U R). This explains the significance of conditions (1) and (2) in
the lemma. In the second case, note that {pr0 : U ′ ×g,U,t R → U ′} is a τ -covering
as a base change of τ and condition (a). □

40.10. Properties of groupoids on fields

04LL A “groupoid on a field” indicates a groupoid scheme (U,R, s, t, c) where U is the
spectrum of a field. It does not mean that (U,R, s, t, c) is defined over a field, more
precisely, it does not mean that the morphisms s, t : R → U are equal. Given any
field k, an abstract group G and a group homomorphism φ : G→ Aut(k) we obtain
a groupoid scheme (U,R, s, t, c) over Z by setting

U = Spec(k)

R =
∐

g∈G
Spec(k)

s =
∐

g∈G
Spec(idk)

t =
∐

g∈G
Spec(φ(g))

c = composition in G

This example still is a groupoid scheme over Spec(kG). Hence, if G is finite, then
U = Spec(k) is finite over Spec(kG). In some sense our goal in this section is to
show that suitable finiteness conditions on s, t force any groupoid on a field to be
defined over a finite index subfield k′ ⊂ k.

https://stacks.math.columbia.edu/tag/04MX
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If k is a field and (G,m) is a group scheme over k with structure morphism p : G→
Spec(k), then (Spec(k), G, p, p,m) is an example of a groupoid on a field (and in
this case of course the whole structure is defined over a field). Hence this section
can be viewed as the analogue of Groupoids, Section 39.7.
Lemma 40.10.1.04LM Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
If U is the spectrum of a field, then the composition morphism c : R×s,U,t R→ R
is open.
Proof. The composition is isomorphic to the projection map pr1 : R ×t,U,t R → R
by Diagram (40.3.0.2). The projection is open by Morphisms, Lemma 29.23.4. □

Lemma 40.10.2.04LN Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. If U is the spectrum of a field, then R is a separated scheme.
Proof. By Groupoids, Lemma 39.7.3 the stabilizer group scheme G → U is sepa-
rated. By Groupoids, Lemma 39.22.2 the morphism j = (t, s) : R → U ×S U is
separated. As U is the spectrum of a field the scheme U ×S U is affine (by the
construction of fibre products in Schemes, Section 26.17). Hence R is a separated
scheme, see Schemes, Lemma 26.21.12. □

Lemma 40.10.3.04LP Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(k) with k a field. For any points r, r′ ∈ R there exists a field
extension k′/k and points r1, r2 ∈ R×s,Spec(k) Spec(k′) and a diagram

R R×s,Spec(k) Spec(k′)
pr0oo φ // R×s,Spec(k) Spec(k′)

pr0 // R

such that φ is an isomorphism of schemes over Spec(k′), we have φ(r1) = r2,
pr0(r1) = r, and pr0(r2) = r′.
Proof. This is a special case of Lemma 40.7.1 parts (1) and (2). □

Lemma 40.10.4.04LQ Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume U = Spec(k) with k a field. Let k′/k be a field extension, U ′ = Spec(k′) and
let (U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c) via U ′ → U . In the defining
diagram

R′

��

//

t′

%%

s′

**

&&

R×s,U U ′ //

��

U ′

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′ // U
all the morphisms are surjective, flat, and universally open. The dotted arrow
R′ → R is in addition affine.
Proof. The morphism U ′ → U equals Spec(k′)→ Spec(k), hence is affine, surjective
and flat. The morphisms s, t : R → U and the morphism U ′ → U are universally
open by Morphisms, Lemma 29.23.4. Since R is not empty and U is the spectrum
of a field the morphisms s, t : R → U are surjective and flat. Then you conclude
by using Morphisms, Lemmas 29.9.4, 29.9.2, 29.23.3, 29.11.8, 29.11.7, 29.25.8, and
29.25.6. □
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Lemma 40.10.5.04LR Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(k) with k a field. For any point r ∈ R there exist

(1) a field extension k′/k with k′ algebraically closed,
(2) a point r′ ∈ R′ where (U ′, R′, s′, t′, c′) is the restriction of (U,R, s, t, c) via

Spec(k′)→ Spec(k)
such that

(1) the point r′ maps to r under the morphism R′ → R, and
(2) the maps s′, t′ : R′ → Spec(k′) induce isomorphisms k′ → κ(r′).

Proof. Translating the geometric statement into a statement on fields, this means
that we can find a diagram

k′ k′
1

oo

k′

τ

OO

κ(r)
σ

aa

k
s

oo

i

``

k

i

aa

t

OO

where i : k → k′ is the embedding of k into k′, the maps s, t : k → κ(r) are induced
by s, t : R → U , and the map τ : k′ → k′ is an automorphism. To produce such a
diagram we may proceed in the following way:

(1) Pick i : k → k′ a field map with k′ algebraically closed of very large
transcendence degree over k.

(2) Pick an embedding σ : κ(r) → k′ such that σ ◦ s = i. Such a σ exists
because we can just choose a transcendence basis {xα}α∈A of κ(r) over k
and find yα ∈ k′, α ∈ A which are algebraically independent over i(k), and
map s(k)({xα}) into k′ by the rules s(λ) 7→ i(λ) for λ ∈ k and xα 7→ yα
for α ∈ A. Then extend to τ : κ(α) → k′ using that k′ is algebraically
closed.

(3) Pick an automorphism τ : k′ → k′ such that τ ◦ i = σ ◦ t. To do this
pick a transcendence basis {xα}α∈A of k over its prime field. On the one
hand, extend {i(xα)} to a transcendence basis of k′ by adding {yβ}β∈B
and extend {σ(t(xα))} to a transcendence basis of k′ by adding {zγ}γ∈C .
As k′ is algebraically closed we can extend the isomorphism σ ◦ t ◦ i−1 :
i(k) → σ(t(k)) to an isomorphism τ ′ : i(k) → σ(t(k)) of their algebraic
closures in k′. As k′ has large transcendence degree we see that the sets
B and C have the same cardinality. Thus we can use a bijection B → C
to extend τ ′ to an isomorphism

i(k)({yβ}) −→ σ(t(k))({zγ})

and then since k′ is the algebraic closure of both sides we see that this
extends to an automorphism τ : k′ → k′ as desired.

This proves the lemma. □

Lemma 40.10.6.04LS Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(k) with k a field. If r ∈ R is a point such that s, t induce

https://stacks.math.columbia.edu/tag/04LR
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isomorphisms k → κ(r), then the map

R −→ R, x 7−→ c(r, x)

(see proof for precise notation) is an automorphism R→ R which maps e to r.

Proof. This is completely obvious if you think about groupoids in a functorial way.
But we will also spell it out completely. Denote a : U → R the morphism with
image r such that s◦a = idU which exists by the hypothesis that s : k → κ(r) is an
isomorphism. Similarly, denote b : U → R the morphism with image r such that
t ◦ b = idU . Note that b = a ◦ (t ◦ a)−1, in particular a ◦ s ◦ b = b.

Consider the morphism Ψ : R→ R given on T -valued points by

(f : T → R) 7−→ (c(a ◦ t ◦ f, f) : T → R)

To see this is defined we have to check that s ◦ a ◦ t ◦ f = t ◦ f which is obvious as
s ◦ a = 1. Note that Φ(e) = a, so that in order to prove the lemma it suffices to
show that Φ is an automorphism of R. Let Φ : R → R be the morphism given on
T -valued points by

(g : T → R) 7−→ (c(i ◦ b ◦ t ◦ g, g) : T → R).

This is defined because s ◦ i ◦ b ◦ t ◦ g = t ◦ b ◦ t ◦ g = t ◦ g. We claim that Φ and Ψ
are inverse to each other. To see this we compute

c(a ◦ t ◦ c(i ◦ b ◦ t ◦ g, g), c(i ◦ b ◦ t ◦ g, g))
= c(a ◦ t ◦ i ◦ b ◦ t ◦ g, c(i ◦ b ◦ t ◦ g, g))
= c(a ◦ s ◦ b ◦ t ◦ g, c(i ◦ b ◦ t ◦ g, g))
= c(b ◦ t ◦ g, c(i ◦ b ◦ t ◦ g, g))
= c(c(b ◦ t ◦ g, i ◦ b ◦ t ◦ g), g))
= c(e, g)
= g

where we have used the relation a ◦ s ◦ b = b shown above. In the other direction
we have

c(i ◦ b ◦ t ◦ c(a ◦ t ◦ f, f), c(a ◦ t ◦ f, f))
= c(i ◦ b ◦ t ◦ a ◦ t ◦ f, c(a ◦ t ◦ f, f))
= c(i ◦ a ◦ (t ◦ a)−1 ◦ t ◦ a ◦ t ◦ f, c(a ◦ t ◦ f, f))
= c(i ◦ a ◦ t ◦ f, c(a ◦ t ◦ f, f))
= c(c(i ◦ a ◦ t ◦ f, a ◦ t ◦ f), f)
= c(e, f)
= f

The lemma is proved. □

Lemma 40.10.7.0B7V Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. If U is the spectrum of a field, W ⊂ R is open, and Z → R is a morphism of
schemes, then the image of the composition Z ×s,U,tW → R×s,U,t R→ R is open.

https://stacks.math.columbia.edu/tag/0B7V
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Proof. Write U = Spec(k). Consider a field extension k′/k. Denote U ′ = Spec(k′).
Let R′ be the restriction of R via U ′ → U . Set Z ′ = Z ×R R′ and W ′ = R′ ×RW .
Consider a point ξ = (z, w) of Z ×s,U,t W . Let r ∈ R be the image of z under
Z → R. Pick k′ ⊃ k and r′ ∈ R′ as in Lemma 40.10.5. We can choose z′ ∈ Z ′

mapping to z and r′. Then we can find ξ′ ∈ Z ′×s′,U ′,t′W
′ mapping to z′ and ξ. The

open c(r′,W ′) (Lemma 40.10.6) is contained in the image of Z ′ ×s′,U ′,t′ W
′ → R′.

Observe that Z ′ ×s′,U ′,t′ W
′ = (Z ×s,U,t W ) ×R×s,U,tR (R′ ×s′,U ′,t′ R

′). Hence the
image of Z ′ ×s′,U ′,t′ W

′ → R′ → R is contained in the image of Z ×s,U,t W → R.
As R′ → R is open (Lemma 40.10.4) we conclude the image contains an open
neighbourhood of the image of ξ as desired. □

Lemma 40.10.8.04LT Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(k) with k a field. By abuse of notation denote e ∈ R the
image of the identity morphism e : U → R. Then

(1) every local ring OR,r of R has a unique minimal prime ideal,
(2) there is exactly one irreducible component Z of R passing through e, and
(3) Z is geometrically irreducible over k via either s or t.

Proof. Let r ∈ R be a point. In this proof we will use the correspondence between
irreducible components of R passing through a point r and minimal primes of the
local ring OR,r without further mention. Choose k ⊂ k′ and r′ ∈ R′ as in Lemma
40.10.5. Note that OR,r → OR′,r′ is faithfully flat and local, see Lemma 40.10.4.
Hence the result for r′ ∈ R′ implies the result for r ∈ R. In other words we may
assume that s, t : k → κ(r) are isomorphisms. By Lemma 40.10.6 there exists an
automorphism moving e to r. Hence we may assume r = e, i.e., part (1) follows
from part (2).

We first prove (2) in case k is separably algebraically closed. Namely, let X,Y ⊂ R
be irreducible components passing through e. Then by Varieties, Lemma 33.8.4
and 33.8.3 the scheme X ×s,U,t Y is irreducible as well. Hence c(X ×s,U,t Y ) ⊂ R
is an irreducible subset. We claim it contains both X and Y (as subsets of R).
Namely, let T be the spectrum of a field. If x : T → X is a T -valued point of X,
then c(x, e ◦ s ◦x) = x and e ◦ s ◦x factors through Y as e ∈ Y . Similarly for points
of Y . This clearly implies that X = Y , i.e., there is a unique irreducible component
of R passing through e.

Proof of (2) and (3) in general. Let k ⊂ k′ be a separable algebraic closure, and
let (U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c) via Spec(k′) → Spec(k). By
the previous paragraph there is exactly one irreducible component Z ′ of R′ passing
through e′. Denote e′′ ∈ R ×s,U U ′ the base change of e. As R′ → R ×s,U U ′

is faithfully flat, see Lemma 40.10.4, and e′ 7→ e′′ we see that there is exactly
one irreducible component Z ′′ of R ×s,k k′ passing through e′′. This implies, as
R×k k′ → R is faithfully flat, that there is exactly one irreducible component Z of
R passing through e. This proves (2).

To prove (3) let Z ′′′ ⊂ R ×k k′ be an arbitrary irreducible component of Z ×k k′.
By Varieties, Lemma 33.8.13 we see that Z ′′′ = σ(Z ′′) for some σ ∈ Gal(k′/k).
Since σ(e′′) = e′′ we see that e′′ ∈ Z ′′′ and hence Z ′′′ = Z ′′. This means that Z
is geometrically irreducible over Spec(k) via the morphism s. The same argument
implies that Z is geometrically irreducible over Spec(k) via the morphism t. □

https://stacks.math.columbia.edu/tag/04LT
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Lemma 40.10.9.04LU Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(k) with k a field. Assume s, t are locally of finite type. Then

(1) R is equidimensional,
(2) dim(R) = dimr(R) for all r ∈ R,
(3) for any r ∈ R we have trdegs(k)(κ(r)) = trdegt(k)(κ(r)), and
(4) for any closed point r ∈ R we have dim(R) = dim(OR,r).

Proof. Let r, r′ ∈ R. Then dimr(R) = dimr′(R) by Lemma 40.10.3 and Morphisms,
Lemma 29.28.3. By Morphisms, Lemma 29.28.1 we have

dimr(R) = dim(OR,r) + trdegs(k)(κ(r)) = dim(OR,r) + trdegt(k)(κ(r)).

On the other hand, the dimension of R (or any open subset of R) is the supremum
of the dimensions of the local rings of R, see Properties, Lemma 28.10.3. Clearly
this is maximal for closed points r in which case trdegk(κ(r)) = 0 (by the Hilbert
Nullstellensatz, see Morphisms, Section 29.16). Hence the lemma follows. □

Lemma 40.10.10.04MQ Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(k) with k a field. Assume s, t are locally of finite type. Then
dim(R) = dim(G) where G is the stabilizer group scheme of R.

Proof. Let Z ⊂ R be the irreducible component passing through e (see Lemma
40.10.8) thought of as an integral closed subscheme of R. Let k′

s, resp. k′
t be the

integral closure of s(k), resp. t(k) in Γ(Z,OZ). Recall that k′
s and k′

t are fields, see
Varieties, Lemma 33.28.4. By Varieties, Proposition 33.31.1 we have k′

s = k′
t as

subrings of Γ(Z,OZ). As e factors through Z we obtain a commutative diagram

k

t ##

1

))Γ(Z,OZ) e // k

k

s
;;

1

55

This on the one hand shows that k′
s = s(k), k′

t = t(k), so s(k) = t(k), which
combined with the diagram above implies that s = t! In other words, we conclude
that Z is a closed subscheme of G = R ×(t,s),U×SU,∆ U . The lemma follows as
both G and R are equidimensional, see Lemma 40.10.9 and Groupoids, Lemma
39.8.1. □

Remark 40.10.11.04MR Warning: Lemma 40.10.10 is wrong without the condition that
s and t are locally of finite type. An easy example is to start with the action

Gm,Q ×Q A1
Q → A1

Q

and restrict the corresponding groupoid scheme to the generic point of A1
Q. In

other words restrict via the morphism Spec(Q(x))→ Spec(Q[x]) = A1
Q. Then you

get a groupoid scheme (U,R, s, t, c) with U = Spec(Q(x)) and

R = Spec
(

Q(x)[y]
[

1
P (xy) , P ∈ Q[T ], P ̸= 0

])
In this case dim(R) = 1 and dim(G) = 0.
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Lemma 40.10.12.04RA Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume

(1) U = Spec(k) with k a field,
(2) s, t are locally of finite type, and
(3) the characteristic of k is zero.

Then s, t : R→ U are smooth.
Proof. By Lemma 40.4.1 the sheaf of differentials of R→ U is free. Hence smooth-
ness follows from Varieties, Lemma 33.25.1. □

Lemma 40.10.13.04RB Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume

(1) U = Spec(k) with k a field,
(2) s, t are locally of finite type,
(3) R is reduced, and
(4) k is perfect.

Then s, t : R→ U are smooth.
Proof. By Lemma 40.4.1 the sheaf ΩR/U is free. Hence the lemma follows from
Varieties, Lemma 33.25.2. □

40.11. Morphisms of groupoids on fields

04Q4 This section studies morphisms between groupoids on fields. This is slightly more
general, but very akin to, studying morphisms of groupschemes over a field.
Situation 40.11.1.04Q5 Let S be a scheme. Let U = Spec(k) be a scheme over S with
k a field. Let (U,R1, s1, t1, c1), (U,R2, s2, t2, c2) be groupoid schemes over S with
identical first component. Let a : R1 → R2 be a morphism such that (idU , a)
defines a morphism of groupoid schemes over S, see Groupoids, Definition 39.13.1.
In particular, the following diagrams commute

R1
t1

((
s1

��

a
  
R2

t2

��

s2
// U

U

R1 ×s1,U,t1 R1 c1
//

a×a
��

R1

a

��
R2 ×s2,U,t2 R2

c2 // R2

The following lemma is a generalization of Groupoids, Lemma 39.7.7.
Lemma 40.11.2.04Q6 Notation and assumptions as in Situation 40.11.1. If a(R1) is
open in R2, then a(R1) is closed in R2.
Proof. Let r2 ∈ R2 be a point in the closure of a(R1). We want to show r2 ∈ a(R1).
Pick k ⊂ k′ and r′

2 ∈ R′
2 adapted to (U,R2, s2, t2, c2) and r2 as in Lemma 40.10.5.

Let R′
i be the restriction of Ri via the morphism U ′ = Spec(k′) → U = Spec(k).

Let a′ : R′
1 → R′

2 be the base change of a. The diagram

R′
1

a′
//

p1

��

R′
2

p2

��
R1

a // R2
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https://stacks.math.columbia.edu/tag/04RB
https://stacks.math.columbia.edu/tag/04Q5
https://stacks.math.columbia.edu/tag/04Q6


40.11. MORPHISMS OF GROUPOIDS ON FIELDS 3590

is a fibre square. Hence the image of a′ is the inverse image of the image of a via
the morphism p2 : R′

2 → R2. By Lemma 40.10.4 the map p2 is surjective and open.
Hence by Topology, Lemma 5.6.4 we see that r′

2 is in the closure of a′(R′
1). This

means that we may assume that r2 ∈ R2 has the property that the maps k → κ(r2)
induced by s2 and t2 are isomorphisms.
In this case we can use Lemma 40.10.6. This lemma implies c(r2, a(R1)) is an
open neighbourhood of r2. Hence a(R1) ∩ c(r2, a(R1)) ̸= ∅ as we assumed that r2
was a point of the closure of a(R1). Using the inverse of R2 and R1 we see this
means c2(a(R1), a(R1)) contains r2. As c2(a(R1), a(R1)) ⊂ a(c1(R1, R1)) = a(R1)
we conclude r2 ∈ a(R1) as desired. □

Lemma 40.11.3.04Q7 Notation and assumptions as in Situation 40.11.1. Let Z ⊂ R2 be
the reduced closed subscheme (see Schemes, Definition 26.12.5) whose underlying
topological space is the closure of the image of a : R1 → R2. Then c2(Z×s2,U,t2Z) ⊂
Z set theoretically.

Proof. Consider the commutative diagram

R1 ×s1,U,t1 R1 //

��

R1

��
R2 ×s2,U,t2 R2 // R2

By Varieties, Lemma 33.24.2 the closure of the image of the left vertical arrow is
(set theoretically) Z ×s2,U,t2 Z. Hence the result follows. □

Lemma 40.11.4.04Q8 Notation and assumptions as in Situation 40.11.1. Assume that
k is perfect. Let Z ⊂ R2 be the reduced closed subscheme (see Schemes, Definition
26.12.5) whose underlying topological space is the closure of the image of a : R1 →
R2. Then

(U,Z, s2|Z , t2|Z , c2|Z)
is a groupoid scheme over S.

Proof. We first explain why the statement makes sense. Since U is the spectrum of a
perfect field k, the scheme Z is geometrically reduced over k (via either projection),
see Varieties, Lemma 33.6.3. Hence the scheme Z ×s2,U,t2 Z ⊂ Z is reduced, see
Varieties, Lemma 33.6.7. Hence by Lemma 40.11.3 we see that c induces a morphism
Z×s2,U,t2Z → Z. Finally, it is clear that e2 factors through Z and that the map i2 :
R2 → R2 preserves Z. Since the morphisms of the septuple (U,R2, s2, t2, c2, e2, i2)
satisfies the axioms of a groupoid, it follows that after restricting to Z they satisfy
the axioms. □

Lemma 40.11.5.04Q9 Notation and assumptions as in Situation 40.11.1. If the image
a(R1) is a locally closed subset of R2 then it is a closed subset.

Proof. Let k ⊂ k′ be a perfect closure of the field k. Let R′
i be the restriction of

Ri via the morphism U ′ = Spec(k′)→ Spec(k). Note that the morphisms R′
i → Ri

are universal homeomorphisms as compositions of base changes of the universal
homeomorphism U ′ → U (see diagram in statement of Lemma 40.10.4). Hence it
suffices to prove that a′(R′

1) is closed in R′
2. In other words, we may assume that

k is perfect.
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If k is perfect, then the closure of the image is a groupoid scheme Z ⊂ R2, by
Lemma 40.11.4. By the same lemma applied to idR1 : R1 → R1 we see that
(R2)red is a groupoid scheme. Thus we may apply Lemma 40.11.2 to the morphism
a|(R2)red : (R2)red → Z to conclude that Z equals the image of a. □

Lemma 40.11.6.04QA Notation and assumptions as in Situation 40.11.1. Assume that
a : R1 → R2 is a quasi-compact morphism. Let Z ⊂ R2 be the scheme theoretic
image (see Morphisms, Definition 29.6.2) of a : R1 → R2. Then

(U,Z, s2|Z , t2|Z , c2|Z)

is a groupoid scheme over S.

Proof. The main difficulty is to show that c2|Z×s2,U,t2Z
maps into Z. Consider the

commutative diagram
R1 ×s1,U,t1 R1 //

a×a
��

R1

��
R2 ×s2,U,t2 R2 // R2

By Varieties, Lemma 33.24.3 we see that the scheme theoretic image of a × a is
Z ×s2,U,t2 Z. By the commutativity of the diagram we conclude that Z ×s2,U,t2 Z
maps into Z by the bottom horizontal arrow. As in the proof of Lemma 40.11.4 it
is also true that i2(Z) ⊂ Z and that e2 factors through Z. Hence we conclude as
in the proof of that lemma. □

Lemma 40.11.7.04QB Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U is the spectrum of a field. Let Z ⊂ U ×S U be the reduced closed
subscheme (see Schemes, Definition 26.12.5) whose underlying topological space is
the closure of the image of j = (t, s) : R→ U ×S U . Then pr02(Z ×pr1,U,pr0 Z) ⊂ Z
set theoretically.

Proof. As (U,U ×S U,pr1,pr0,pr02) is a groupoid scheme over S this is a special
case of Lemma 40.11.3. But we can also prove it directly as follows.

Write U = Spec(k). Denote Rs (resp. Zs, resp. U2
s ) the scheme R (resp. Z, resp.

U ×S U) viewed as a scheme over k via s (resp. pr1|Z , resp. pr1). Similarly, denote
tR (resp. tZ, resp. tU2) the scheme R (resp. Z, resp. U ×S U) viewed as a scheme
over k via t (resp. pr0|Z , resp. pr0). The morphism j induces morphisms of schemes
js : Rs → U2

s and tj : tR→ tU
2 over k. Consider the commutative diagram

Rs ×k tR
c //

js×tj
��

R

j

��
U2
s ×k tU2 // U ×S U

By Varieties, Lemma 33.24.2 we see that the closure of the image of js × tj is
Zs ×k tZ. By the commutativity of the diagram we conclude that Zs ×k tZ maps
into Z by the bottom horizontal arrow. □

Lemma 40.11.8.04QC Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume U is the spectrum of a perfect field. Let Z ⊂ U ×S U be the reduced closed

https://stacks.math.columbia.edu/tag/04QA
https://stacks.math.columbia.edu/tag/04QB
https://stacks.math.columbia.edu/tag/04QC
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subscheme (see Schemes, Definition 26.12.5) whose underlying topological space is
the closure of the image of j = (t, s) : R→ U ×S U . Then

(U,Z,pr0|Z ,pr1|Z ,pr02|Z×pr1,U,pr0Z
)

is a groupoid scheme over S.

Proof. As (U,U ×S U,pr1,pr0,pr02) is a groupoid scheme over S this is a special
case of Lemma 40.11.4. But we can also prove it directly as follows.
We first explain why the statement makes sense. Since U is the spectrum of a perfect
field k, the scheme Z is geometrically reduced over k (via either projection), see
Varieties, Lemma 33.6.3. Hence the scheme Z ×pr1,U,pr0 Z ⊂ Z is reduced, see
Varieties, Lemma 33.6.7. Hence by Lemma 40.11.7 we see that pr02 induces a
morphism Z ×pr1,U,pr0 Z → Z. Finally, it is clear that ∆U/S factors through Z
and that the map σ : U ×S U → U ×S U , (x, y) 7→ (y, x) preserves Z. Since
(U,U×S U,pr0,pr1,pr02,∆U/S , σ) satisfies the axioms of a groupoid, it follows that
after restricting to Z they satisfy the axioms. □

Lemma 40.11.9.04QD Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume U is the spectrum of a field and assume R is quasi-compact (equivalently
s, t are quasi-compact). Let Z ⊂ U ×S U be the scheme theoretic image (see
Morphisms, Definition 29.6.2) of j = (t, s) : R→ U ×S U . Then

(U,Z,pr0|Z ,pr1|Z ,pr02|Z×pr1,U,pr0Z
)

is a groupoid scheme over S.

Proof. As (U,U ×S U,pr1,pr0,pr02) is a groupoid scheme over S this is a special
case of Lemma 40.11.6. But we can also prove it directly as follows.
The main difficulty is to show that pr02|Z×pr1,U,pr0Z

maps into Z. Write U =
Spec(k). Denote Rs (resp. Zs, resp. U2

s ) the scheme R (resp. Z, resp. U ×S U)
viewed as a scheme over k via s (resp. pr1|Z , resp. pr1). Similarly, denote tR (resp.
tZ, resp. tU

2) the scheme R (resp. Z, resp. U ×S U) viewed as a scheme over
k via t (resp. pr0|Z , resp. pr0). The morphism j induces morphisms of schemes
js : Rs → U2

s and tj : tR→ tU
2 over k. Consider the commutative diagram

Rs ×k tR
c //

js×tj
��

R

j

��
U2
s ×k tU2 // U ×S U

By Varieties, Lemma 33.24.3 we see that the scheme theoretic image of js × tj is
Zs ×k tZ. By the commutativity of the diagram we conclude that Zs ×k tZ maps
into Z by the bottom horizontal arrow. As in the proof of Lemma 40.11.8 it is also
true that σ(Z) ⊂ Z and that ∆U/S factors through Z. Hence we conclude as in the
proof of that lemma. □

40.12. Slicing groupoids

04LV The following lemma shows that we may slice a Cohen-Macaulay groupoid scheme
in order to reduce the dimension of the fibres, provided that the dimension of the
stabilizer is small. This is an essential step in the process of improving a given
presentation of a quotient stack.

https://stacks.math.columbia.edu/tag/04QD
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Situation 40.12.1.04MY Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme
over S. Let g : U ′ → U be a morphism of schemes. Let u ∈ U be a point, and let
u′ ∈ U ′ be a point such that g(u′) = u. Given these data, denote (U ′, R′, s′, t′, c′) the
restriction of (U,R, s, t, c) via the morphism g. Denote G→ U the stabilizer group
scheme of R, which is a locally closed subscheme of R. Denote h the composition

h = s ◦ pr1 : U ′ ×g,U,t R −→ U.

Denote Fu = s−1(u) (scheme theoretic fibre), and Gu the scheme theoretic fibre of
G over u. Similarly for R′ we denote F ′

u′ = (s′)−1(u′). Because g(u′) = u we have
F ′
u′ = h−1(u)×Spec(κ(u)) Spec(κ(u′)).

The point e(u) ∈ R may be viewed as a point on Gu and Fu also, and e′(u′) is a
point of R′ (resp. G′

u′ , resp. F ′
u′) which maps to e(u) in R (resp. Gu, resp. Fu).

Lemma 40.12.2.0461 Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid scheme
over S. Let G → U be the stabilizer group scheme. Assume s and t are Cohen-
Macaulay and locally of finite presentation. Let u ∈ U be a finite type point of
the scheme U , see Morphisms, Definition 29.16.3. With notation as in Situation
40.12.1, set

d1 = dim(Gu), d2 = dime(u)(Fu).
If d2 > d1, then there exist an affine scheme U ′ and a morphism g : U ′ → U such
that (with notation as in Situation 40.12.1)

(1) g is an immersion
(2) u ∈ U ′,
(3) g is locally of finite presentation,
(4) the morphism h : U ′ ×g,U,t R −→ U is Cohen-Macaulay at (u, e(u)), and
(5) we have dime′(u)(F ′

u) = d2 − 1.

Proof. Let Spec(A) ⊂ U be an affine neighbourhood of u such that u corresponds
to a closed point of U , see Morphisms, Lemma 29.16.4. Let Spec(B) ⊂ R be an
affine neighbourhood of e(u) which maps via j into the open Spec(A)×S Spec(A) ⊂
U ×S U . Let m ⊂ A be the maximal ideal corresponding to u. Let q ⊂ B be the
prime ideal corresponding to e(u). Pictures:

B A
s
oo

A

t

OO

and

Bq Ams
oo

Am

t

OO

Note that the two induced maps s, t : κ(m)→ κ(q) are equal and isomorphisms as
s ◦ e = t ◦ e = idU . In particular we see that q is a maximal ideal as well. The ring
maps s, t : A→ B are of finite presentation and flat. By assumption the ring

OFu,e(u) = Bq/s(m)Bq

is Cohen-Macaulay of dimension d2. The equality of dimension holds by Morphisms,
Lemma 29.28.1.
Let R′′ be the restriction of R to u = Spec(κ(u)) via the morphism Spec(κ(u)) →
U . As u → U is locally of finite type, we see that (Spec(κ(u)), R′′, s′′, t′′, c′′)
is a groupoid scheme with s′′, t′′ locally of finite type, see Lemma 40.9.1. By
Lemma 40.10.10 this implies that dim(G′′) = dim(R′′). We also have dim(R′′) =

https://stacks.math.columbia.edu/tag/04MY
https://stacks.math.columbia.edu/tag/0461
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dime′′(R′′) = dim(OR′′,e′′), see Lemma 40.10.9. By Groupoids, Lemma 39.18.4 we
have G′′ = Gu. Hence we conclude that dim(OR′′,e′′) = d1.

As a scheme R′′ is

R′′ = R×(U×SU)

(
Spec(κ(m))×S Spec(κ(m))

)
Hence an affine open neighbourhood of e′′ is the spectrum of the ring

B ⊗(A⊗A) (κ(m)⊗ κ(m)) = B/s(m)B + t(m)B

We conclude that
OR′′,e′′ = Bq/s(m)Bq + t(m)Bq

and so now we know that this ring has dimension d1.

We claim this implies we can find an element f ∈ m such that

dim(Bq/(s(m)Bq + fBq) < d2

Namely, suppose nj ⊃ s(m)Bq, j = 1, . . . ,m correspond to the minimal primes of
the local ring Bq/s(m)Bq. There are finitely many as this ring is Noetherian (since
it is essentially of finite type over a field – but also because a Cohen-Macaulay ring
is Noetherian). By the Cohen-Macaulay condition we have dim(Bq/nj) = d2, for
example by Algebra, Lemma 10.104.4. Note that dim(Bq/(nj + t(m)Bq)) ≤ d1 as
it is a quotient of the ring OR′′,e′′ = Bq/s(m)Bq + t(m)Bq which has dimension
d1. As d1 < d2 this implies that m ̸⊂ t−1(ni). By prime avoidance, see Algebra,
Lemma 10.15.2, we can find f ∈ m with t(f) ̸∈ nj for j = 1, . . . ,m. For this choice
of f we have the displayed inequality above, see Algebra, Lemma 10.60.13.

Set A′ = A/fA and U ′ = Spec(A′). Then it is clear that U ′ → U is an immersion,
locally of finite presentation and that u ∈ U ′. Thus (1), (2) and (3) of the lemma
hold. The morphism

U ′ ×g,U,t R −→ U

factors through Spec(A) and corresponds to the ring map

B/t(f)B A/(f)⊗A,t B A
soo

Now, we see t(f) is not a zerodivisor on Bq/s(m)Bq as this is a Cohen-Macaulay ring
of positive dimension and f is not contained in any minimal prime, see for example
Algebra, Lemma 10.104.2. Hence by Algebra, Lemma 10.128.5 we conclude that
s : Am → Bq/t(f)Bq is flat with fibre ring Bq/(s(m)Bq + t(f)Bq) which is Cohen-
Macaulay by Algebra, Lemma 10.104.2 again. This implies part (4) of the lemma.
To see part (5) note that by Diagram (40.9.0.1) the fibre F ′

u is equal to the fibre of h
over u. Hence dime′(u)(F ′

u) = dim(Bq/(s(m)Bq + t(f)Bq)) by Morphisms, Lemma
29.28.1 and the dimension of this ring is d2 − 1 by Algebra, Lemma 10.104.2 once
more. This proves the final assertion of the lemma and we win. □

Now that we know how to slice we can combine it with the preceding material to get
the following “optimal” result. It is optimal in the sense that since Gu is a locally
closed subscheme of Fu one always has the inequality dim(Gu) = dime(u)(Gu) ≤
dime(u)(Fu) so it is not possible to slice more than in the lemma.
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Lemma 40.12.3.04MZ Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid scheme
over S. Let G → U be the stabilizer group scheme. Assume s and t are Cohen-
Macaulay and locally of finite presentation. Let u ∈ U be a finite type point of
the scheme U , see Morphisms, Definition 29.16.3. With notation as in Situation
40.12.1 there exist an affine scheme U ′ and a morphism g : U ′ → U such that

(1) g is an immersion,
(2) u ∈ U ′,
(3) g is locally of finite presentation,
(4) the morphism h : U ′ ×g,U,t R −→ U is Cohen-Macaulay and locally of

finite presentation,
(5) the morphisms s′, t′ : R′ → U ′ are Cohen-Macaulay and locally of finite

presentation, and
(6) dime(u)(F ′

u) = dim(G′
u).

Proof. As s is locally of finite presentation the scheme Fu is locally of finite type
over κ(u). Hence dime(u)(Fu) <∞ and we may argue by induction on dime(u)(Fu).

If dime(u)(Fu) = dim(Gu) there is nothing to prove. Assume dime(u)(Fu) >
dim(Gu). This means that Lemma 40.12.2 applies and we find a morphism g :
U ′ → U which has properties (1), (2), (3), instead of (6) we have dime(u)(F ′

u) <
dime(u)(Fu), and instead of (4) and (5) we have that the composition

h = s ◦ pr1 : U ′ ×g,U,t R −→ U

is Cohen-Macaulay at the point (u, e(u)). We apply Remark 40.6.3 and we obtain
an open subscheme U ′′ ⊂ U ′ such that U ′′ ×g,U,t R ⊂ U ′ ×g,U,t R is the largest
open subscheme on which h is Cohen-Macaulay. Since (u, e(u)) ∈ U ′′ ×g,U,t R we
see that u ∈ U ′′. Hence we may replace U ′ by U ′′ and assume that in fact h is
Cohen-Macaulay everywhere! By Lemma 40.9.2 we conclude that s′, t′ are locally
of finite presentation and Cohen-Macaulay (use Morphisms, Lemma 29.21.4 and
More on Morphisms, Lemma 37.22.6).

By construction dime′(u)(F ′
u) < dime(u)(Fu), so we may apply the induction hy-

pothesis to (U ′, R′, s′, t′, c′) and the point u ∈ U ′. Note that u is also a finite type
point of U ′ (for example you can see this using the characterization of finite type
points from Morphisms, Lemma 29.16.4). Let g′ : U ′′ → U ′ and (U ′′, R′′, s′′, t′′, c′′)
be the solution of the corresponding problem starting with (U ′, R′, s′, t′, c′) and the
point u ∈ U ′. We claim that the composition

g′′ = g ◦ g′ : U ′′ −→ U

is a solution for the original problem. Properties (1), (2), (3), (5), and (6) are
immediate. To see (4) note that the morphism

h′′ = s ◦ pr1 : U ′′ ×g′′,U,t R −→ U

is locally of finite presentation and Cohen-Macaulay by an application of Lemma
40.9.4 (use More on Morphisms, Lemma 37.22.11 to see that Cohen-Macaulay mor-
phisms are fppf local on the target). □

In case the stabilizer group scheme has fibres of dimension 0 this leads to the
following slicing lemma.

https://stacks.math.columbia.edu/tag/04MZ
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Lemma 40.12.4.04N0 Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid scheme
over S. Let G → U be the stabilizer group scheme. Assume s and t are Cohen-
Macaulay and locally of finite presentation. Let u ∈ U be a finite type point of
the scheme U , see Morphisms, Definition 29.16.3. Assume that G → U is locally
quasi-finite. With notation as in Situation 40.12.1 there exist an affine scheme U ′

and a morphism g : U ′ → U such that

(1) g is an immersion,
(2) u ∈ U ′,
(3) g is locally of finite presentation,
(4) the morphism h : U ′ ×g,U,t R −→ U is flat, locally of finite presentation,

and locally quasi-finite, and
(5) the morphisms s′, t′ : R′ → U ′ are flat, locally of finite presentation, and

locally quasi-finite.

Proof. Take g : U ′ → U as in Lemma 40.12.3. Since h−1(u) = F ′
u we see that

h has relative dimension ≤ 0 at (u, e(u)). Hence, by Remark 40.6.3, we obtain
an open subscheme U ′′ ⊂ U ′ such that u ∈ U ′′ and U ′′ ×g,U,t R is the maximal
open subscheme of U ′ ×g,U,t R on which h has relative dimension ≤ 0. After
replacing U ′ by U ′′ we see that h has relative dimension ≤ 0. This implies that h is
locally quasi-finite by Morphisms, Lemma 29.29.5. Since it is still locally of finite
presentation and Cohen-Macaulay we see that it is flat, locally of finite presentation
and locally quasi-finite, i.e., (4) above holds. This implies that s′ is flat, locally
of finite presentation and locally quasi-finite as a base change of h, see Lemma
40.9.2. □

40.13. Étale localization of groupoids

03FK In this section we begin applying the étale localization techniques of More on Mor-
phisms, Section 37.41 to groupoid schemes. More advanced material of this kind
can be found in More on Groupoids in Spaces, Section 79.15. Lemma 40.13.2 will be
used to prove results on algebraic spaces separated and quasi-finite over a scheme,
namely Morphisms of Spaces, Proposition 67.50.2 and its corollary Morphisms of
Spaces, Lemma 67.51.1.

Lemma 40.13.1.03FL Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Let p ∈ S be a point, and let u ∈ U be a point lying over p. Assume that

(1) U → S is locally of finite type,
(2) U → S is quasi-finite at u,
(3) U → S is separated,
(4) R→ S is separated,
(5) s, t are flat and locally of finite presentation, and
(6) s−1({u}) is finite.

https://stacks.math.columbia.edu/tag/04N0
https://stacks.math.columbia.edu/tag/03FL
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Then there exists an étale neighbourhood (S′, p′)→ (S, p) with κ(p) = κ(p′) and a
base change diagram

R′ ⨿W ′ S′ ×S R //

s′

��
t′

��

R

s

��
t

��
U ′ ⨿W S′ ×S U //

��

U

��
S′ // S

where the equal signs are decompositions into open and closed subschemes such
that

(a) there exists a point u′ of U ′ mapping to u in U ,
(b) the fibre (U ′)p′ equals t′

(
(s′)−1({u′})

)
set theoretically,

(c) the fibre (R′)p′ equals (s′)−1((U ′)p′
)

set theoretically,
(d) the schemes U ′ and R′ are finite over S′,
(e) we have s′(R′) ⊂ U ′ and t′(R′) ⊂ U ′,
(f) we have c′(R′ ×s′,U ′,t′ R

′) ⊂ R′ where c′ is the base change of c, and
(g) the morphisms s′, t′, c′ determine a groupoid structure by taking the sys-

tem (U ′, R′, s′|R′ , t′|R′ , c′|R′×s′,U′,t′R
′).

Proof. Let us denote f : U → S the structure morphism of U . By assumption (6)
we can write s−1({u}) = {r1, . . . , rn}. Since this set is finite, we see that s is quasi-
finite at each of these finitely many inverse images, see Morphisms, Lemma 29.20.7.
Hence we see that f ◦ s : R → S is quasi-finite at each ri (Morphisms, Lemma
29.20.12). Hence ri is isolated in the fibre Rp, see Morphisms, Lemma 29.20.6.
Write t({r1, . . . , rn}) = {u1, . . . , um}. Note that it may happen that m < n and
note that u ∈ {u1, . . . , um}. Since t is flat and locally of finite presentation, the
morphism of fibres tp : Rp → Up is flat and locally of finite presentation (Morphisms,
Lemmas 29.25.8 and 29.21.4), hence open (Morphisms, Lemma 29.25.10). The fact
that each ri is isolated in Rp implies that each uj = t(ri) is isolated in Up. Using
Morphisms, Lemma 29.20.6 again, we see that f is quasi-finite at u1, . . . , um.
Denote Fu = s−1(u) and Fuj = s−1(uj) the scheme theoretic fibres. Note that Fu
is finite over κ(u) as it is locally of finite type over κ(u) with finitely many points
(for example it follows from the much more general Morphisms, Lemma 29.57.9).
By Lemma 40.7.1 we see that Fu and Fuj become isomorphic over a common field
extension of κ(u) and κ(uj). Hence we see that Fuj is finite over κ(uj). In particular
we see s−1({uj}) is a finite set for each j = 1, . . . ,m. Thus we see that assumptions
(2) and (6) hold for each uj also (above we saw that U → S is quasi-finite at
uj). Hence the argument of the first paragraph applies to each uj and we see that
R→ U is quasi-finite at each of the points of

{r1, . . . , rN} = s−1({u1, . . . , um})
Note that t({r1, . . . , rN}) = {u1, . . . , um} and t−1({u1, . . . , um}) = {r1, . . . , rN}
since R is a groupoid2. Moreover, we have pr0(c−1({r1, . . . , rN})) = {r1, . . . , rN}

2Explanation in groupoid language: The original set {r1, . . . , rn} was the set of arrows with
source u. The set {u1, . . . , um} was the set of objects isomorphic to u. And {r1, . . . , rN} is the
set of all arrows between all the objects equivalent to u.
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and pr1(c−1({r1, . . . , rN})) = {r1, . . . , rN}. Similarly we get e({u1, . . . , um}) ⊂
{r1, . . . , rN} and i({r1, . . . , rN}) = {r1, . . . , rN}.
We may apply More on Morphisms, Lemma 37.41.4 to the pairs (U → S, {u1, . . . , um})
and (R → S, {r1, . . . , rN}) to get an étale neighbourhood (S′, p′) → (S, p) which
induces an identification κ(p) = κ(p′) such that S′×S U and S′×S R decompose as

S′ ×S U = U ′ ⨿W, S′ ×S R = R′ ⨿W ′

with U ′ → S′ finite and (U ′)p′ mapping bijectively to {u1, . . . , um}, and R′ → S′

finite and (R′)p′ mapping bijectively to {r1, . . . , rN}. Moreover, no point of Wp′

(resp. (W ′)p′) maps to any of the points uj (resp. ri). At this point (a), (b), (c), and
(d) of the lemma are satisfied. Moreover, the inclusions of (e) and (f) hold on fibres
over p′, i.e., s′((R′)p′) ⊂ (U ′)p′ , t′((R′)p′) ⊂ (U ′)p′ , and c′((R′ ×s′,U ′,t′ R

′)p′) ⊂
(R′)p′ .
We claim that we can replace S′ by a Zariski open neighbourhood of p′ so that
the inclusions of (e) and (f) hold. For example, consider the set E = (s′|R′)−1(W ).
This is open and closed in R′ and does not contain any points of R′ lying over
p′. Since R′ → S′ is closed, after replacing S′ by S′ \ (R′ → S′)(E) we reach a
situation where E is empty. In other words s′ maps R′ into U ′. Note that this
property is preserved under further shrinking S′. Similarly, we can arrange it so
that t′ maps R′ into U ′. At this point (e) holds. In the same manner, consider the
set E = (c′|R′×s′,U′,t′R

′)−1(W ′). It is open and closed in the scheme R′ ×s′,U ′,t′ R
′

which is finite over S′, and does not contain any points lying over p′. Hence after
replacing S′ by S′ \(R′×s′,U ′,t′ R

′ → S′)(E) we reach a situation where E is empty.
In other words we obtain the inclusion in (f). We may repeat the argument also
with the identity e′ : S′ ×S U → S′ ×S R and the inverse i′ : S′ ×S R → S′ ×S R
so that we may assume (after shrinking S′ some more) that (e′|U ′)−1(W ′) = ∅ and
(i′|R′)−1(W ′) = ∅.
At this point we see that we may consider the structure

(U ′, R′, s′|R′ , t′|R′ , c′|R′×t′,U′,s′R′ , e′|U ′ , i′|R′).
The axioms of a groupoid scheme over S′ hold because they hold for the groupoid
scheme (S′ ×S U, S′ ×S R, s′, t′, c′, e′, i′). □

Lemma 40.13.2.03X5 Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let p ∈ S be a point, and let u ∈ U be a point lying over p. Assume assumptions
(1) – (6) of Lemma 40.13.1 hold as well as

(7) j : R→ U ×S U is universally closed3.
Then we can choose (S′, p′) → (S, p) and decompositions S′ ×S U = U ′ ⨿W and
S′ ×S R = R′ ⨿W ′ and u′ ∈ U ′ such that (a) – (g) of Lemma 40.13.1 hold as well
as

(h) R′ is the restriction of S′ ×S R to U ′.

Proof. We apply Lemma 40.13.1 for the groupoid (U,R, s, t, c) over the scheme S
with points p and u. Hence we get an étale neighbourhood (S′, p′) → (S, p) and
disjoint union decompositions

S′ ×S U = U ′ ⨿W, S′ ×S R = R′ ⨿W ′

3In view of the other conditions this is equivalent to requiring j to be proper.

https://stacks.math.columbia.edu/tag/03X5
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and u′ ∈ U ′ satisfying conclusions (a), (b), (c), (d), (e), (f), and (g). We may shrink
S′ to a smaller neighbourhood of p′ without affecting the conclusions (a) – (g). We
will show that for a suitable shrinking conclusion (h) holds as well. Let us denote
j′ the base change of j to S′. By conclusion (e) it is clear that

j′−1(U ′ ×S′ U ′) = R′ ⨿Rest

for some open and closed Rest piece. Since U ′ → S′ is finite by conclusion (d) we
see that U ′×S′U ′ is finite over S′. Since j is universally closed, also j′ is universally
closed, and hence j′|Rest is universally closed too. By conclusions (b) and (c) we
see that the fibre of

(U ′ ×S′ U ′ → S′) ◦ j′|Rest : Rest −→ S′

over p′ is empty. Hence, since Rest → S′ is closed as a composition of closed
morphisms, after replacing S′ by S′\Im(Rest→ S′), we may assume that Rest = ∅.
And this is exactly the condition that R′ is the restriction of S′ ×S R to the open
subscheme U ′ ⊂ S′ ×S U , see Groupoids, Lemma 39.18.3 and its proof. □

40.14. Finite groupoids

0AB8 A groupoid scheme (U,R, s, t, c) is sometimes called finite if the morphisms s and
t are finite. This is potentially confusing as it doesn’t imply that U or R or the
quotient sheaf U/R are finite over anything.

Lemma 40.14.1.0AB9 Let (U,R, s, t, c) be a groupoid scheme over a scheme S. Assume
s, t are finite. There exists a sequence of R-invariant closed subschemes

U = Z0 ⊃ Z1 ⊃ Z2 ⊃ . . .

such that
⋂
Zr = ∅ and such that s−1(Zr−1) \ s−1(Zr)→ Zr−1 \Zr is finite locally

free of rank r.

Proof. Let {Zr} be the stratification of U given by the Fitting ideals of the finite
type quasi-coherent modules s∗OR. See Divisors, Lemma 31.9.6. Since the identity
e : U → R is a section to s we see that s∗OR contains OS as a direct summand.
Hence U = Z−1 = Z0 (details omitted). Since formation of Fitting ideals commutes
with base change (More on Algebra, Lemma 15.8.4) we find that s−1(Zr) corre-
sponds to the rth Fitting ideal of pr1,∗OR×s,U,tR because the lower right square of
diagram (40.3.0.1) is cartesian. Using the fact that the lower left square is also
cartesian we conclude that s−1(Zr) = t−1(Zr), in other words Zr is R-invariant.
The morphism s−1(Zr−1) \ s−1(Zr) → Zr−1 \ Zr is finite locally free of rank r
because the module s∗OR pulls back to a finite locally free module of rank r on
Zr−1 \ Zr by Divisors, Lemma 31.9.6. □

Lemma 40.14.2.0ABA Let (U,R, s, t, c) be a groupoid scheme over a scheme S. Assume
s, t are finite. There exists an open subscheme W ⊂ U and a closed subscheme
W ′ ⊂W such that

(1) W and W ′ are R-invariant,
(2) U = t(s−1(W )) set theoretically,
(3) W is a thickening of W ′, and
(4) the maps s′, t′ of the restriction (W ′, R′, s′, t′, c′) are finite locally free.
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Proof. Consider the stratification U = Z0 ⊃ Z1 ⊃ Z2 ⊃ . . . of Lemma 40.14.1.
We will construct disjoint unions W =

∐
r≥1 Wr and W ′ =

∐
r≥1 W

′
r with each

W ′
r → Wr a thickening of R-invariant subschemes of U such that the morphisms

s′
r, t

′
r of the restrictions (W ′

r, R
′
r, s

′
r, t

′
r, c

′
r) are finite locally free of rank r. To begin

we setW1 = W ′
1 = U\Z1. This is anR-invariant open subscheme of U , it is true that

W0 is a thickening of W ′
0, and the maps s′

1, t′1 of the restriction (W ′
1, R

′
1, s

′
1, t

′
1, c

′
1)

are isomorphisms, i.e., finite locally free of rank 1. Moreover, every point of U \Z1
is in t(s−1(W1)).
Assume we have found subschemes W ′

r ⊂Wr ⊂ U for r ≤ n such that
(1) W1, . . . ,Wn are disjoint,
(2) Wr and W ′

r are R-invariant,
(3) U \ Zn ⊂

⋃
r≤n t(s−1(Wr)) set theoretically,

(4) Wr is a thickening of W ′
r,

(5) the maps s′
r, t′r of the restriction (W ′

r, R
′
r, s

′
r, t

′
r, c

′
r) are finite locally free

of rank r.
Then we set

Wn+1 = Zn \
(
Zn+1 ∪

⋃
r≤n

t(s−1(Wr))
)

set theoretically and

W ′
n+1 = Zn \

(
Zn+1 ∪

⋃
r≤n

t(s−1(Wr))
)

scheme theoretically. Then Wn+1 is an R-invariant open subscheme of U because
Zn+1 \ U \ Zn+1 is open in U and U \ Zn+1 is contained in the closed subset⋃
r≤n t(s−1(Wr)) we are removing by property (3) and the fact that t is a closed

morphism. It is clear that W ′
n+1 is a closed subscheme of Wn+1 with the same

underlying topological space. Finally, properties (1), (2) and (3) are clear and
property (5) follows from Lemma 40.14.1.
By Lemma 40.14.1 we have

⋂
Zr = ∅. Hence every point of U is contained in U \Zn

for some n. Thus we see that U =
⋃
r≥1 t(s−1(Wr)) set theoretically and we see

that (2) holds. Thus W ′ ⊂W satisfy (1), (2), (3), and (4). □

Let (U,R, s, t, c) be a groupoid scheme. Given a point u ∈ U the R-orbit of u is the
subset t(s−1({u})) of U .

Lemma 40.14.3.0ABB In Lemma 40.14.2 assume in addition that s and t are of finite
presentation. Then

(1) the morphism W ′ →W is of finite presentation, and
(2) if u ∈ U is a point whose R-orbit consists of generic points of irreducible

components of U , then u ∈W .

Proof. In this case the stratification U = Z0 ⊃ Z1 ⊃ Z2 ⊃ . . . of Lemma 40.14.1
is given by closed immersions Zk → U of finite presentation, see Divisors, Lemma
31.9.6. Part (1) follows immediately from this as W ′ → W is locally given by
intersecting the open W by Zr. To see part (2) let {u1, . . . , un} be the orbit of
u. Since the closed subschemes Zk are R-invariant and

⋂
Zk = ∅, we find an k

such that ui ∈ Zk and ui ̸∈ Zk+1 for all i. The image of Zk → U and Zk+1 → U
is locally constructible (Morphisms, Theorem 29.22.3). Since ui ∈ U is a generic
point of an irreducible component of U , there exists an open neighbourhood Ui of
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ui which is contained in Zk \Zk+1 set theoretically (Properties, Lemma 28.2.2). In
the proof of Lemma 40.14.2 we have constructed W as a disjoint union

∐
Wr with

Wr ⊂ Zr−1 \Zr such that U =
⋃
t(s−1(Wr)). As {u1, . . . , un} is an R-orbit we see

that u ∈ t(s−1(Wr)) implies ui ∈ Wr for some i which implies Ui ∩Wr ̸= ∅ which
implies r = k. Thus we conclude that u is in

Wk+1 = Zk \
(
Zk+1 ∪

⋃
r≤k

t(s−1(Wr))
)

as desired. □

Lemma 40.14.4.0ABC Let (U,R, s, t, c) be a groupoid scheme over a scheme S. Assume
s, t are finite and of finite presentation and U quasi-separated. Let u1, . . . , um ∈ U
be points whose orbits consist of generic points of irreducible components of U .
Then there exist R-invariant subschemes V ′ ⊂ V ⊂ U such that

(1) u1, . . . , um ∈ V ′,
(2) V is open in U ,
(3) V ′ and V are affine,
(4) V ′ ⊂ V is a thickening of finite presentation,
(5) the morphisms s′, t′ of the restriction (V ′, R′, s′, t′, c′) are finite locally

free.

Proof. Let W ′ ⊂ W ⊂ U be as in Lemma 40.14.2. By Lemma 40.14.3 we get
uj ∈W and that W ′ →W is a thickening of finite presentation. By Limits, Lemma
32.11.3 it suffices to find an R-invariant affine open subscheme V ′ of W ′ containing
uj (because then we can let V ⊂ W be the corresponding open subscheme which
will be affine). Thus we may replace (U,R, s, t, c) by the restriction (W ′, R′, s′, t′, c′)
to W ′. In other words, we may assume we have a groupoid scheme (U,R, s, t, c)
whose morphisms s and t are finite locally free. By Properties, Lemma 28.29.1 we
can find an affine open containing the union of the orbits of u1, . . . , um. Finally, we
can apply Groupoids, Lemma 39.24.1 to conclude. □

The following lemma is a special case of Lemma 40.14.4 but we redo the argument
as it is slightly easier in this case (it avoids using Lemma 40.14.3).

Lemma 40.14.5.0ABD Let (U,R, s, t, c) be a groupoid scheme over a scheme S. Assume
s, t finite, U is locally Noetherian, and u1, . . . , um ∈ U points whose orbits consist
of generic points of irreducible components of U . Then there exist R-invariant
subschemes V ′ ⊂ V ⊂ U such that

(1) u1, . . . , um ∈ V ′,
(2) V is open in U ,
(3) V ′ and V are affine,
(4) V ′ ⊂ V is a thickening,
(5) the morphisms s′, t′ of the restriction (V ′, R′, s′, t′, c′) are finite locally

free.

Proof. Let {uj1, . . . , ujnj} be the orbit of uj . Let W ′ ⊂ W ⊂ U be as in Lemma
40.14.2. Since U = t(s−1(W )) we see that at least one uji ∈ W . Since uji is a
generic point of an irreducible component and U locally Noetherian, this implies
that uji ∈ W . Since W is R-invariant, we conclude that uj ∈ W and in fact
the whole orbit is contained in W . By Cohomology of Schemes, Lemma 30.13.3 it
suffices to find an R-invariant affine open subscheme V ′ of W ′ containing u1, . . . , um
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(because then we can let V ⊂ W be the corresponding open subscheme which will
be affine). Thus we may replace (U,R, s, t, c) by the restriction (W ′, R′, s′, t′, c′) to
W ′. In other words, we may assume we have a groupoid scheme (U,R, s, t, c) whose
morphisms s and t are finite locally free. By Properties, Lemma 28.29.1 we can find
an affine open containing {uij} (a locally Noetherian scheme is quasi-separated by
Properties, Lemma 28.5.4). Finally, we can apply Groupoids, Lemma 39.24.1 to
conclude. □

Lemma 40.14.6.0ABE Let (U,R, s, t, c) be a groupoid scheme over a scheme S with s, t
integral. Let g : U ′ → U be an integral morphism such that every R-orbit in
U meets g(U ′). Let (U ′, R′, s′, t′, c′) be the restriction of R to U ′. If u′ ∈ U ′ is
contained in an R′-invariant affine open, then the image u ∈ U is contained in an
R-invariant affine open of U .

Proof. Let W ′ ⊂ U ′ be an R′-invariant affine open. Set R̃ = U ′×g,U,tR with maps
pr0 : R̃ → U ′ and h = s ◦ pr1 : R̃ → U . Observe that pr0 and h are integral. It
follows that W̃ = pr−1

0 (W ′) is affine. SinceW ′ is R′-invariant, the imageW = h(W̃ )
is set theoretically R-invariant and W̃ = h−1(W ) set theoretically (details omitted).
Thus, if we can show thatW is open, thenW is a scheme and the morphism W̃ →W
is integral surjective which implies that W is affine by Limits, Proposition 32.11.2.
However, our assumption on orbits meeting U ′ implies that h : R̃→ U is surjective.
Since an integral surjective morphism is submersive (Topology, Lemma 5.6.5 and
Morphisms, Lemma 29.44.7) it follows that W is open. □

The following technical lemma produces “almost” invariant functions in the situa-
tion of a finite groupoid on a quasi-affine scheme.

Lemma 40.14.7.0ABF Let (U,R, s, t, c) be a groupoid scheme with s, t finite and of finite
presentation. Let u1, . . . , um ∈ U be points whose R-orbits consist of generic points
of irreducible components of U . Let j : U → Spec(A) be an immersion. Let I ⊂ A
be an ideal such that j(U) ∩ V (I) = ∅ and V (I) ∪ j(U) is closed in Spec(A). Then
there exists an h ∈ I such that j−1D(h) is an R-invariant affine open subscheme of
U containing u1, . . . , um.

Proof. Let u1, . . . , um ∈ V ′ ⊂ V ⊂ U be as in Lemma 40.14.4. Since U \ V is
closed in U , j an immersion, and V (I) ∪ j(U) is closed in Spec(A), we can find
an ideal J ⊂ I such that V (J) = V (I) ∪ j(U \ V ). For example we can take the
ideal of elements of I which vanish on j(U \ V ). Thus we can replace (U,R, s, t, c),
j : U → Spec(A), and I by (V ′, R′, s′, t′, c′), j|V ′ : V ′ → Spec(A), and J . In other
words, we may assume that U is affine and that s and t are finite locally free. Take
any f ∈ I which does not vanish at all the points in the R-orbits of u1, . . . , um
(Algebra, Lemma 10.15.2). Consider

g = Norms(t♯(j♯(f))) ∈ Γ(U,OU )

Since f ∈ I and since V (I) ∪ j(U) is closed we see that U ∩ D(f) → D(f) is a
closed immersion. Hence fng is the image of an element h ∈ I for some n > 0.
We claim that h works. Namely, we have seen in Groupoids, Lemma 39.23.2 that
g is an R-invariant function, hence D(g) ⊂ U is R-invariant. Since f does not
vanish on the orbit of uj , the function g does not vanish at uj . Moreover, we have
V (g) ⊃ V (j♯(f)) and hence j−1D(h) = D(g). □
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Lemma 40.14.8.0ABG Let (U,R, s, t, c) be a groupoid scheme. If s, t are finite, and
u, u′ ∈ R are distinct points in the same orbit, then u′ is not a specialization of u.
Proof. Let r ∈ R with s(r) = u and t(r) = u′. If u ⇝ u′ then we can find a
nontrivial specialization r ⇝ r′ with s(r′) = u′, see Schemes, Lemma 26.19.8. Set
u′′ = t(r′). Note that u′′ ̸= u′ as there are no specializations in the fibres of a finite
morphism. Hence we can continue and find a nontrivial specialization r′ ⇝ r′′

with s(r′′) = u′′, etc. This shows that the orbit of u contains an infinite sequence
u⇝ u′ ⇝ u′′ ⇝ . . . of specializations which is nonsense as the orbit t(s−1({u})) is
finite. □

Lemma 40.14.9.0ABH Let j : V → Spec(A) be a quasi-compact immersion of schemes.
Let f ∈ A be such that j−1D(f) is affine and j(V ) ∩ V (f) is closed. Then V is
affine.
Proof. This follows from Morphisms, Lemma 29.11.14 but we will also give a direct
proof. Let A′ = Γ(V,OV ). Then j′ : V → Spec(A′) is a quasi-compact open
immersion, see Properties, Lemma 28.18.4. Let f ′ ∈ A′ be the image of f . Then
(j′)−1D(f ′) = j−1D(f) is affine. On the other hand, j′(V ) ∩ V (f ′) is a subscheme
of Spec(A′) which maps isomorphically to the closed subscheme j(V ) ∩ V (f) of
Spec(A). Hence it is closed in Spec(A′) for example by Schemes, Lemma 26.21.11.
Thus we may replace A by A′ and assume that j is an open immersion and A =
Γ(V,OV ).
In this case we claim that j(V ) = Spec(A) which finishes the proof. If not, then we
can find a principal affine open D(g) ⊂ Spec(A) which meets the complement and
avoids the closed subset j(V ) ∩ V (f). Note that j maps j−1D(f) isomorphically
onto D(f), see Properties, Lemma 28.18.3. Hence D(g) meets V (f). On the other
hand, j−1D(g) is a principal open of the affine open j−1D(f) hence affine. Hence
by Properties, Lemma 28.18.3 again we see that D(g) is isomorphic to j−1D(g) ⊂
j−1D(f) which implies thatD(g) ⊂ D(f). This contradiction finishes the proof. □

Lemma 40.14.10.0ABI Let (U,R, s, t, c) be a groupoid scheme. Let u ∈ U . Assume
(1) s, t are finite morphisms,
(2) U is separated and locally Noetherian,
(3) dim(OU,u′) ≤ 1 for every point u′ in the orbit of u.

Then u is contained in an R-invariant affine open of U .
Proof. The R-orbit of u is finite. By conditions (2) and (3) it is contained in an
affine open U ′ of U , see Varieties, Proposition 33.42.7. Then t(s−1(U \ U ′)) is an
R-invariant closed subset of U which does not contain u. Thus U \ t(s−1(U \U ′)) is
an R-invariant open of U ′ containing u. Replacing U by this open we may assume
U is quasi-affine.
By Lemma 40.14.6 we may replace U by its reduction and assume U is reduced.
This means R-invariant subschemes W ′ ⊂ W ⊂ U of Lemma 40.14.2 are equal
W ′ = W . As U = t(s−1(W )) some point u′ of the R-orbit of u is contained in W
and by Lemma 40.14.6 we may replace U by W and u by u′. Hence we may assume
there is a dense open R-invariant subscheme W ⊂ U such that the morphisms
sW , tW of the restriction (W,RW , sW , tW , cW ) are finite locally free.
If u ∈ W then we are done by Groupoids, Lemma 39.24.1 (because W is quasi-
affine so any finite set of points of W is contained in an affine open, see Properties,
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Lemma 28.29.5). Thus we assume u ̸∈W and hence none of the points of the orbit
of u is in W . Let ξ ∈ U be a point with a nontrivial specialization to a point u′ in
the orbit of u. Since there are no specializations among the points in the orbit of u
(Lemma 40.14.8) we see that ξ is not in the orbit. By assumption (3) we see that
ξ is a generic point of U and hence ξ ∈ W . As U is Noetherian there are finitely
many of these points ξ1, . . . , ξm ∈ W . Because sW , tW are flat the orbit of each ξj
consists of generic points of irreducible components of W (and hence U).
Let j : U → Spec(A) be an immersion of U into an affine scheme (this is possible as
U is quasi-affine). Let J ⊂ A be an ideal such that V (J)∩j(W ) = ∅ and V (J)∪j(W )
is closed. Apply Lemma 40.14.7 to the groupoid scheme (W,RW , sW , tW , cW ), the
morphism j|W : W → Spec(A), the points ξj , and the ideal J to find an f ∈ J
such that (j|W )−1D(f) is an RW -invariant affine open containing ξj for all j. Since
f ∈ J we see that j−1D(f) ⊂ W , i.e., j−1D(f) is an R-invariant affine open of U
contained in W containing all ξj .
Let Z be the reduced induced closed subscheme structure on

U \ j−1D(f) = j−1V (f).
Then Z is set theoretically R-invariant (but it may not be scheme theoretically
R-invariant). Let (Z,RZ , sZ , tZ , cZ) be the restriction of R to Z. Since Z → U is
finite, it follows that sZ and tZ are finite. Since u ∈ Z the orbit of u is in Z and
agrees with the RZ-orbit of u viewed as a point of Z. Since dim(OU,u′) ≤ 1 and
since ξj ̸∈ Z for all j, we see that dim(OZ,u′) ≤ 0 for all u′ in the orbit of u. In
other words, the RZ-orbit of u consists of generic points of irreducible components
of Z.
Let I ⊂ A be an ideal such that V (I) ∩ j(U) = ∅ and V (I) ∪ j(U) is closed.
Apply Lemma 40.14.7 to the groupoid scheme (Z,RZ , sZ , tZ , cZ), the restriction
j|Z , the ideal I, and the point u ∈ Z to obtain h ∈ I such that j−1D(h) ∩ Z is an
RZ-invariant open affine containing u.
Consider the RW -invariant (Groupoids, Lemma 39.23.2) function

g = NormsW (t♯W (j♯(h)|W )) ∈ Γ(W,OW )
(In the following we only need the restriction of g to j−1D(f) and in this case the
norm is along a finite locally free morphism of affines.) We claim that

V = (Wg ∩ j−1D(f)) ∪ (j−1D(h) ∩ Z)
is an R-invariant affine open of U which finishes the proof of the lemma. It is set
theoretically R-invariant by construction. As V is a constuctible set, to see that it
is open it suffices to show it is closed under generalization in U (Topology, Lemma
5.19.10 or the more general Topology, Lemma 5.23.6). Since Wg ∩ j−1D(f) is open
in U , it suffices to consider a specialization u1 ⇝ u2 of U with u2 ∈ j−1D(h) ∩ Z.
This means that h is nonzero in j(u2) and u2 ∈ Z. If u1 ∈ Z, then j(u1) ⇝ j(u2)
and since h is nonzero in j(u2) it is nonzero in j(u1) which implies u1 ∈ V . If u1 ̸∈ Z
and also not in Wg ∩ j−1D(f), then u1 ∈ W , u1 ̸∈ Wg because the complement of
Z = j−1V (f) is contained in W ∩ j−1D(f). Hence there exists a point r1 ∈ R with
s(r1) = u1 such that h is zero in t(r1). Since s is finite we can find a specialization
r1 ⇝ r2 with s(r2) = u2. However, then we conclude that h is zero in u′

2 = t(r2)
which contradicts the fact that j−1D(h)∩Z is R-invariant and u2 is in it. Thus V
is open.
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Observe that V ⊂ j−1D(h) for our function h ∈ I. Thus we obtain an immersion
j′ : V −→ Spec(Ah)

Let f ′ ∈ Ah be the image of f . Then (j′)−1D(f ′) is the principal open determined
by g in the affine open j−1D(f) of U . Hence (j′)−1D(f) is affine. Finally, j′(V ) ∩
V (f ′) = j′(j−1D(h)∩Z) is closed in Spec(Ah/(f ′)) = Spec((A/f)h) = D(h)∩V (f)
by our choice of h ∈ I and the ideal I. Hence we can apply Lemma 40.14.9 to
conclude that V is affine as claimed above. □

40.15. Descending ind-quasi-affine morphisms

0APG Ind-quasi-affine morphisms were defined in More on Morphisms, Section 37.66. This
section is the analogue of Descent, Section 35.38 for ind-quasi-affine-morphisms.
Let X be a quasi-separated scheme. Let E ⊂ X be a subset which is an intersection
of a nonempty family of quasi-compact opens of X. Say E =

⋂
i∈I Ui with Ui ⊂ X

quasi-compact open and I nonempty. By adding finite intersections we may assume
that for i, j ∈ I there exists a k ∈ I with Uk ⊂ Ui ∩ Uj . In this situation we have
(40.15.0.1)0APH Γ(E,F|E) = colim Γ(Ui,F|Ui)
for any sheaf F defined on X. Namely, fix i0 ∈ I and replace X by Ui0 and I by
{i ∈ I | Ui ⊂ Ui0}. Then X is quasi-compact and quasi-separated, hence a spectral
space, see Properties, Lemma 28.2.4. Then we see the equality holds by Topology,
Lemma 5.24.7 and Sheaves, Lemma 6.29.4. (In fact, the formula holds for higher
cohomology groups as well if F is abelian, see Cohomology, Lemma 20.19.2.)

Lemma 40.15.1.0API LetX be an ind-quasi-affine scheme. Let E ⊂ X be an intersection
of a nonempty family of quasi-compact opens of X. Set A = Γ(E,OX |E) and
Y = Spec(A). Then the canonical morphism

j : (E,OX |E) −→ (Y,OY )
of Schemes, Lemma 26.6.4 determines an isomorphism (E,OX |E) → (E′,OY |E′)
where E′ ⊂ Y is an intersection of quasi-compact opens. If W ⊂ E is open in X,
then j(W ) is open in Y .

Proof. Note that (E,OX |E) is a locally ringed space so that Schemes, Lemma 26.6.4
applies to A → Γ(E,OX |E). Write E =

⋂
i∈I Ui with I ̸= ∅ and Ui ⊂ X quasi-

compact open. We may and do assume that for i, j ∈ I there exists a k ∈ I with
Uk ⊂ Ui ∩ Uj . Set Ai = Γ(Ui,OUi). We obtain commutative diagrams

(E,OX |E) //

��

(Spec(A),OSpec(A))

��
(Ui,OUi) // (Spec(Ai),OSpec(Ai))

Since Ui is quasi-affine, we see that Ui → Spec(Ai) is a quasi-compact open im-
mersion. On the other hand A = colimAi. Hence Spec(A) = lim Spec(Ai) as
topological spaces (Limits, Lemma 32.4.6). Since E = limUi (by Topology, Lemma
5.24.7) we see that E → Spec(A) is a homeomorphism onto its image E′ and that
E′ is the intersection of the inverse images of the opens Ui ⊂ Spec(Ai) in Spec(A).
For any e ∈ E the local ring OX,e is the value of OUi,e which is the same as the
value on Spec(A).

https://stacks.math.columbia.edu/tag/0API
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To prove the final assertion of the lemma we argue as follows. Pick i, j ∈ I with
Ui ⊂ Uj . Consider the following commutative diagrams

Ui //

��

Spec(Ai)

��
Ui // Spec(Aj)

W //

��

Spec(Ai)

��
W // Spec(Aj)

W //

��

Spec(A)

��
W // Spec(Aj)

By Properties, Lemma 28.18.5 the first diagram is cartesian. Hence the second is
cartesian as well. Passing to the limit we find that the third diagram is cartesian,
so the top horizontal arrow of this diagram is an open immersion. □

Lemma 40.15.2.0APJ Suppose given a cartesian diagram

X

f

��

// Spec(B)

��
Y // Spec(A)

of schemes. Let E ⊂ Y be an intersection of a nonempty family of quasi-compact
opens of Y . Then

Γ(f−1(E),OX |f−1(E)) = Γ(E,OY |E)⊗A B
provided Y is quasi-separated and A→ B is flat.

Proof. Write E =
⋂
i∈I Vi with Vi ⊂ Y quasi-compact open. We may and do

assume that for i, j ∈ I there exists a k ∈ I with Vk ⊂ Vi ∩ Vj . Then we have
similarly that f−1(E) =

⋂
i∈I f

−1(Vi) in X. Thus the result follows from equation
(40.15.0.1) and the corresponding result for Vi and f−1(Vi) which is Cohomology
of Schemes, Lemma 30.5.2. □

Lemma 40.15.3 (Gabber).0APK Let S be a scheme. Let {Xi → S}i∈I be an fpqc
covering. Let (Vi/Xi, φij) be a descent datum relative to {Xi → S}, see Descent,
Definition 35.34.3. If each morphism Vi → Xi is ind-quasi-affine, then the descent
datum is effective.

Proof. Being ind-quasi-affine is a property of morphisms of schemes which is pre-
served under any base change, see More on Morphisms, Lemma 37.66.6. Hence
Descent, Lemma 35.36.2 applies and it suffices to prove the statement of the lemma
in case the fpqc-covering is given by a single {X → S} flat surjective morphism of
affines. Say X = Spec(A) and S = Spec(R) so that R → A is a faithfully flat ring
map. Let (V, φ) be a descent datum relative to X over S and assume that V → X
is ind-quasi-affine, in other words, V is ind-quasi-affine.
Let (U,R, s, t, c) be the groupoid scheme over S with U = X and R = X ×S X
and s, t, c as usual. By Groupoids, Lemma 39.21.3 the pair (V, φ) corresponds to a
cartesian morphism (U ′, R′, s′, t′, c′)→ (U,R, s, t, c) of groupoid schemes. Let u′ ∈
U ′ be any point. By Groupoids, Lemmas 39.19.2, 39.19.3, and 39.19.4 we can choose
u′ ∈ W ⊂ E ⊂ U ′ where W is open and R′-invariant, and E is set-theoretically
R′-invariant and an intersection of a nonempty family of quasi-compact opens.
Translating back to (V, φ), for any v ∈ V we can find v ∈ W ⊂ E ⊂ V with the
following properties: (a) W is open and φ(W ×S X) = X ×S W and (b) E an

https://stacks.math.columbia.edu/tag/0APJ
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intersection of quasi-compact opens and φ(E ×S X) = X ×S E set-theoretically.
Here we use the notation E ×S X to mean the inverse image of E in V ×S X by
the projection morphism and similarly for X ×S E. By Lemma 40.15.2 this implies
that φ defines an isomorphism

Γ(E,OV |E)⊗R A = Γ(E ×S X,OV×SX |E×SX)
→ Γ(X ×S E,OX×SV |X×SE)
= A⊗R Γ(E,OV |E)

of A ⊗R A-algebras which we will call ψ. The cocycle condition for φ translates
into the cocycle condition for ψ as in Descent, Definition 35.3.1 (details omitted).
By Descent, Proposition 35.3.9 we find an R-algebra R′ and an isomorphism χ :
R′⊗RA→ Γ(E,OV |E) of A-algebras, compatible with ψ and the canonical descent
datum on R′ ⊗R A.
By Lemma 40.15.1 we obtain a canonical “embedding”

j : (E,OV |E) −→ Spec(Γ(E,OV |E)) = Spec(R′ ⊗R A)
of locally ringed spaces. The construction of this map is canonical and we get a
commutative diagram

E ×S X φ
//

xx

j′

))

X ×S E

&&

j′′

uu
E

j

%%

Spec(R′ ⊗R A⊗R A)

uu ))

E

j

yy
Spec(R′ ⊗R A)

))

Spec(R′ ⊗R A)

uu
Spec(R′)

where j′ and j′′ come from the same construction applied to E ×S X ⊂ V ×S X
and X ×S E ⊂ X ×S V via χ and the identifications used to construct ψ. It
follows that j(W ) is an open subscheme of Spec(R′ ⊗R A) whose inverse image
under the two projections Spec(R′ ⊗R A ⊗R A) → Spec(R′ ⊗R A) are equal. By
Descent, Lemma 35.13.6 we find an open W0 ⊂ Spec(R′) whose base change to
Spec(A) is j(W ). Contemplating the diagram above we see that the descent datum
(W,φ|W×SX) is effective. By Descent, Lemma 35.35.13 we see that our descent
datum is effective. □
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CHAPTER 41

Étale Morphisms of Schemes

024J 41.1. Introduction

024K In this Chapter, we discuss étale morphisms of schemes. We illustrate some of the
more important concepts by working with the Noetherian case. Our principal goal
is to collect for the reader enough commutative algebra results to start reading a
treatise on étale cohomology. An auxiliary goal is to provide enough evidence to
ensure that the reader stops calling the phrase “the étale topology of schemes” an
exercise in general nonsense, if (s)he does indulge in such blasphemy.

We will refer to the other chapters of the Stacks project for standard results in
algebraic geometry (on schemes and commutative algebra). We will provide detailed
proofs of the new results that we state here.

41.2. Conventions

039F In this chapter, frequently schemes will be assumed locally Noetherian and fre-
quently rings will be assumed Noetherian. But in all the statements we will reit-
erate this when necessary, and make sure we list all the hypotheses! On the other
hand, here are some general facts that we will use often and are useful to keep in
mind:

(1) A ring homomorphism A→ B of finite type with A Noetherian is of finite
presentation. See Algebra, Lemma 10.31.4.

(2) A morphism (locally) of finite type between locally Noetherian schemes
is automatically (locally) of finite presentation. See Morphisms, Lemma
29.21.9.

(3) Add more like this here.

41.3. Unramified morphisms

024L We first define “unramified homomorphisms of local rings” for Noetherian local
rings. We cannot use the term “unramified” as there already is a notion of an un-
ramified ring map (Algebra, Section 10.151) and it is different. After discussing the
notion a bit we globalize it to describe unramified morphisms of locally Noetherian
schemes.

Definition 41.3.1.024M Let A, B be Noetherian local rings. A local homomorphism
A→ B is said to be unramified homomorphism of local rings if

(1) mAB = mB ,
(2) κ(mB) is a finite separable extension of κ(mA), and
(3) B is essentially of finite type over A (this means that B is the localization

of a finite type A-algebra at a prime).

3610
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This is the local version of the definition in Algebra, Section 10.151. In that section
a ring map R→ S is defined to be unramified if and only if it is of finite type, and
ΩS/R = 0. We say R → S is unramified at a prime q ⊂ S if there exists a g ∈ S,
g ̸∈ q such that R→ Sg is an unramified ring map. It is shown in Algebra, Lemmas
10.151.5 and 10.151.7 that given a ring map R→ S of finite type, and a prime q of
S lying over p ⊂ R, then we have

R→ S is unramified at q⇔ pSq = qSq and κ(p) ⊂ κ(q) finite separable
Thus we see that for a local homomorphism of local rings the properties of our
definition above are closely related to the question of being unramified. In fact, we
have proved the following lemma.

Lemma 41.3.2.039G Let A → B be of finite type with A a Noetherian ring. Let q be
a prime of B lying over p ⊂ A. Then A → B is unramified at q if and only if
Ap → Bq is an unramified homomorphism of local rings.

Proof. See discussion above. □

We will characterize the property of being unramified in terms of completions. For
a Noetherian local ring A we denote A∧ the completion of A with respect to the
maximal ideal. It is also a Noetherian local ring, see Algebra, Lemma 10.97.6.

Lemma 41.3.3.039H Let A, B be Noetherian local rings. Let A→ B be a local homo-
morphism.

(1) if A → B is an unramified homomorphism of local rings, then B∧ is a
finite A∧ module,

(2) if A → B is an unramified homomorphism of local rings and κ(mA) =
κ(mB), then A∧ → B∧ is surjective,

(3) if A → B is an unramified homomorphism of local rings and κ(mA) is
separably closed, then A∧ → B∧ is surjective,

(4) if A and B are complete discrete valuation rings, then A → B is an
unramified homomorphism of local rings if and only if the uniformizer for
A maps to a uniformizer for B, and the residue field extension is finite
separable (and B is essentially of finite type over A).

Proof. Part (1) is a special case of Algebra, Lemma 10.97.7. For part (2), note
that the κ(mA)-vector space B∧/mA∧B∧ is generated by 1. Hence by Nakayama’s
lemma (Algebra, Lemma 10.20.1) the map A∧ → B∧ is surjective. Part (3) is a
special case of part (2). Part (4) is immediate from the definitions. □

Lemma 41.3.4.039I Let A, B be Noetherian local rings. Let A → B be a local ho-
momorphism such that B is essentially of finite type over A. The following are
equivalent

(1) A→ B is an unramified homomorphism of local rings
(2) A∧ → B∧ is an unramified homomorphism of local rings, and
(3) A∧ → B∧ is unramified.

Proof. The equivalence of (1) and (2) follows from the fact that mAA∧ is the maxi-
mal ideal ofA∧ (and similarly forB) and faithful flatness ofB → B∧. For example if
A∧ → B∧ is unramified, then mAB

∧ = (mAB)B∧ = mBB
∧ and hence mAB = mB .

Assume the equivalent conditions (1) and (2). By Lemma 41.3.3 we see that A∧ →
B∧ is finite. Hence A∧ → B∧ is of finite presentation, and by Algebra, Lemma

https://stacks.math.columbia.edu/tag/039G
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10.151.7 we conclude that A∧ → B∧ is unramified at mB∧ . Since B∧ is local we
conclude that A∧ → B∧ is unramified.
Assume (3). By Algebra, Lemma 10.151.5 we conclude that A∧ → B∧ is an un-
ramified homomorphism of local rings, i.e., (2) holds. □

Definition 41.3.5.024N (See Morphisms, Definition 29.35.1 for the definition in the
general case.) Let Y be a locally Noetherian scheme. Let f : X → Y be locally of
finite type. Let x ∈ X.

(1) We say f is unramified at x if OY,f(x) → OX,x is an unramified homomor-
phism of local rings.

(2) The morphism f : X → Y is said to be unramified if it is unramified at
all points of X.

Let us prove that this definition agrees with the definition in the chapter on mor-
phisms of schemes. This in particular guarantees that the set of points where a
morphism is unramified is open.

Lemma 41.3.6.039J Let Y be a locally Noetherian scheme. Let f : X → Y be locally of
finite type. Let x ∈ X. The morphism f is unramified at x in the sense of Definition
41.3.5 if and only if it is unramified in the sense of Morphisms, Definition 29.35.1.

Proof. This follows from Lemma 41.3.2 and the definitions. □

Here are some results on unramified morphisms. The formulations as given in
this list apply only to morphisms locally of finite type between locally Noetherian
schemes. In each case we give a reference to the general result as proved earlier in
the project, but in some cases one can prove the result more easily in the Noetherian
case. Here is the list:

(1) Unramifiedness is local on the source and the target in the Zariski topol-
ogy.

(2) Unramified morphisms are stable under base change and composition. See
Morphisms, Lemmas 29.35.5 and 29.35.4.

(3) Unramified morphisms of schemes are locally quasi-finite and quasi-compact
unramified morphisms are quasi-finite. See Morphisms, Lemma 29.35.10

(4) Unramified morphisms have relative dimension 0. See Morphisms, Defi-
nition 29.29.1 and Morphisms, Lemma 29.29.5.

(5) A morphism is unramified if and only if all its fibres are unramified. That
is, unramifiedness can be checked on the scheme theoretic fibres. See
Morphisms, Lemma 29.35.12.

(6) Let X and Y be unramified over a base scheme S. Any S-morphism from
X to Y is unramified. See Morphisms, Lemma 29.35.16.

41.4. Three other characterizations of unramified morphisms

024O The following theorem gives three equivalent notions of being unramified at a point.
See Morphisms, Lemma 29.35.14 for (part of) the statement for general schemes.

Theorem 41.4.1.024P Let Y be a locally Noetherian scheme. Let f : X → Y be a
morphism of schemes which is locally of finite type. Let x be a point of X. The
following are equivalent

(1) f is unramified at x,

https://stacks.math.columbia.edu/tag/024N
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(2) the stalk ΩX/Y,x of the module of relative differentials at x is trivial,
(3) there exist open neighbourhoods U of x and V of f(x), and a commutative

diagram
U

i
//

��

An
V

~~
V

where i is a closed immersion defined by a quasi-coherent sheaf of ideals
I such that the differentials dg for g ∈ Ii(x) generate ΩAn

V
/V,i(x), and

(4) the diagonal ∆X/Y : X → X ×Y X is a local isomorphism at x.

Proof. The equivalence of (1) and (2) is proved in Morphisms, Lemma 29.35.14.

If f is unramified at x, then f is unramified in an open neighbourhood of x; this
does not follow immediately from Definition 41.3.5 of this chapter but it does follow
from Morphisms, Definition 29.35.1 which we proved to be equivalent in Lemma
41.3.6. Choose affine opens V ⊂ Y , U ⊂ X with f(U) ⊂ V and x ∈ U , such that
f is unramified on U , i.e., f |U : U → V is unramified. By Morphisms, Lemma
29.35.13 the morphism U → U ×V U is an open immersion. This proves that (1)
implies (4).

If ∆X/Y is a local isomorphism at x, then ΩX/Y,x = 0 by Morphisms, Lemma
29.32.7. Hence we see that (4) implies (2). At this point we know that (1), (2) and
(4) are all equivalent.

Assume (3). The assumption on the diagram combined with Morphisms, Lemma
29.32.15 show that ΩU/V,x = 0. Since ΩU/V,x = ΩX/Y,x we conclude (2) holds.

Finally, assume that (2) holds. To prove (3) we may localize onX and Y and assume
that X and Y are affine. Say X = Spec(B) and Y = Spec(A). The point x ∈ X
corresponds to a prime q ⊂ B. Our assumption is that ΩB/A,q = 0 (see Morphisms,
Lemma 29.32.5 for the relationship between differentials on schemes and modules
of differentials in commutative algebra). Since Y is locally Noetherian and f locally
of finite type we see that A is Noetherian and B ∼= A[x1, . . . , xn]/(f1, . . . , fm), see
Properties, Lemma 28.5.2 and Morphisms, Lemma 29.15.2. In particular, ΩB/A is
a finite B-module. Hence we can find a single g ∈ B, g ̸∈ q such that the principal
localization (ΩB/A)g is zero. Hence after replacing B by Bg we see that ΩB/A =
0 (formation of modules of differentials commutes with localization, see Algebra,
Lemma 10.131.8). This means that d(fj) generate the kernel of the canonical map
ΩA[x1,...,xn]/A ⊗A B → ΩB/A. Thus the surjection A[x1, . . . , xn]→ B of A-algebras
gives the commutative diagram of (3), and the theorem is proved. □

How can we use this theorem? Well, here are a few remarks:
(1) Suppose that f : X → Y and g : Y → Z are two morphisms locally of

finite type between locally Noetherian schemes. There is a canonical short
exact sequence

f∗(ΩY/Z)→ ΩX/Z → ΩX/Y → 0

see Morphisms, Lemma 29.32.9. The theorem therefore implies that if
g ◦ f is unramified, then so is f . This is Morphisms, Lemma 29.35.16.
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(2) Since ΩX/Y is isomorphic to the conormal sheaf of the diagonal morphism
(Morphisms, Lemma 29.32.7) we see that if X → Y is a monomorphism of
locally Noetherian schemes and locally of finite type, then X → Y is un-
ramified. In particular, open and closed immersions of locally Noetherian
schemes are unramified. See Morphisms, Lemmas 29.35.7 and 29.35.8.

(3) The theorem also implies that the set of points where a morphism f : X →
Y (locally of finite type of locally Noetherian schemes) is not unramified is
the support of the coherent sheaf ΩX/Y . This allows one to give a scheme
theoretic definition to the “ramification locus”.

41.5. The functorial characterization of unramified morphisms

024Q In basic algebraic geometry we learn that some classes of morphisms can be char-
acterized functorially, and that such descriptions are quite useful. Unramified mor-
phisms too have such a characterization.

Theorem 41.5.1.024R Let f : X → S be a morphism of schemes. Assume S is a
locally Noetherian scheme, and f is locally of finite type. Then the following are
equivalent:

(1) f is unramified,
(2) the morphism f is formally unramified: for any affine S-scheme T and

subscheme T0 of T defined by a square-zero ideal, the natural map

HomS(T,X) −→ HomS(T0, X)

is injective.

Proof. See More on Morphisms, Lemma 37.6.8 for a more general statement and
proof. What follows is a sketch of the proof in the current case.

Firstly, one checks both properties are local on the source and the target. This we
may assume that S and X are affine. Say X = Spec(B) and S = Spec(R). Say
T = Spec(C). Let J be the square-zero ideal of C with T0 = Spec(C/J). Assume
that we are given the diagram

B

ϕ

��

ϕ̄

!!
R //

??

C // C/J

Secondly, one checks that the association ϕ′ 7→ ϕ′−ϕ gives a bijection between the
set of liftings of ϕ̄ and the module DerR(B, J). Thus, we obtain the implication
(1) ⇒ (2) via the description of unramified morphisms having trivial module of
differentials, see Theorem 41.4.1.

To obtain the reverse implication, consider the surjection q : C = (B ⊗R B)/I2 →
B = C/J defined by the square zero ideal J = I/I2 where I is the kernel of
the multiplication map B ⊗R B → B. We already have a lifting B → C defined
by, say, b 7→ b ⊗ 1. Thus, by the same reasoning as above, we obtain a bijective
correspondence between liftings of id : B → C/J and DerR(B, J). The hypothesis
therefore implies that the latter module is trivial. But we know that J ∼= ΩB/R.
Thus, B/R is unramified. □

https://stacks.math.columbia.edu/tag/024R


41.6. TOPOLOGICAL PROPERTIES OF UNRAMIFIED MORPHISMS 3615

41.6. Topological properties of unramified morphisms

024S The first topological result that will be of utility to us is one which says that
unramified and separated morphisms have “nice” sections. The material in this
section does not require any Noetherian hypotheses.

Proposition 41.6.1.024T Sections of unramified morphisms.
(1) Any section of an unramified morphism is an open immersion.
(2) Any section of a separated morphism is a closed immersion.
(3) Any section of an unramified separated morphism is open and closed.

Proof. Fix a base scheme S. If f : X ′ → X is any S-morphism, then the graph
Γf : X ′ → X ′ ×S X is obtained as the base change of the diagonal ∆X/S : X →
X ×S X via the projection X ′ ×S X → X ×S X. If g : X → S is separated (resp.
unramified) then the diagonal is a closed immersion (resp. open immersion) by
Schemes, Definition 26.21.3 (resp. Morphisms, Lemma 29.35.13). Hence so is the
graph as a base change (by Schemes, Lemma 26.18.2). In the special case X ′ = S,
we obtain (1), resp. (2). Part (3) follows on combining (1) and (2). □

We can now explicitly describe the sections of unramified morphisms.

Theorem 41.6.2.024U Let Y be a connected scheme. Let f : X → Y be unramified
and separated. Every section of f is an isomorphism onto a connected component.
There exists a bijective correspondence

sections of f ↔
{

connected components X ′ of X such that
the induced map X ′ → Y is an isomorphism

}
In particular, given x ∈ X there is at most one section passing through x.

Proof. Direct from Proposition 41.6.1 part (3). □

The preceding theorem gives us some idea of the “rigidity” of unramified mor-
phisms. Further indication is provided by the following proposition which, besides
being intrinsically interesting, is also useful in the theory of the algebraic fundamen-
tal group (see [Gro71, Exposé V]). See also the more general Morphisms, Lemma
29.35.17.

Proposition 41.6.3.024V Let S is be a scheme. Let π : X → S be unramified and
separated. Let Y be an S-scheme and y ∈ Y a point. Let f, g : Y → X be two
S-morphisms. Assume

(1) Y is connected
(2) x = f(y) = g(y), and
(3) the induced maps f ♯, g♯ : κ(x)→ κ(y) on residue fields are equal.

Then f = g.

Proof. The maps f, g : Y → X define maps f ′, g′ : Y → XY = Y ×S X which are
sections of the structure map XY → Y . Note that f = g if and only if f ′ = g′.
The structure map XY → Y is the base change of π and hence unramified and
separated also (see Morphisms, Lemmas 29.35.5 and Schemes, Lemma 26.21.12).
Thus according to Theorem 41.6.2 it suffices to prove that f ′ and g′ pass through the
same point of XY . And this is exactly what the hypotheses (2) and (3) guarantee,
namely f ′(y) = g′(y) ∈ XY . □
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Lemma 41.6.4.0AKI Let S be a Noetherian scheme. Let X → S be a quasi-compact
unramified morphism. Let Y → S be a morphism with Y Noetherian. Then
MorS(Y,X) is a finite set.
Proof. Assume first X → S is separated (which is often the case in practice). Since
Y is Noetherian it has finitely many connected components. Thus we may assume
Y is connected. Choose a point y ∈ Y with image s ∈ S. Since X → S is unramified
and quasi-compact then fibre Xs is finite, say Xs = {x1, . . . , xn} and κ(xi)/κ(s)
is a finite field extension. See Morphisms, Lemma 29.35.10, 29.20.5, and 29.20.10.
For each i there are at most finitely many κ(s)-algebra maps κ(xi) → κ(y) (by
elementary field theory). Thus MorS(Y,X) is finite by Proposition 41.6.3.
General case. There exists a nonempty open U ⊂ S such that XU → U is finite
(in particular separated), see Morphisms, Lemma 29.51.1 (the lemma applies since
we’ve already seen above that a quasi-compact unramified morphism is quasi-finite
and since X → S is quasi-separated by Morphisms, Lemma 29.15.7). Let Z ⊂ S be
the reduced closed subscheme supported on the complement of U . By Noetherian
induction, we see that MorZ(YZ , XZ) is finite (details omitted). By the result of
the first paragraph the set MorU (YU , XU ) is finite. Thus it suffices to show that

MorS(Y,X) −→ MorZ(YZ , XZ)×MorU (YU , XU )
is injective. This follows from the fact that the set of points where two morphisms
a, b : Y → X agree is open in Y , due to the fact that ∆ : X → X ×S X is open, see
Morphisms, Lemma 29.35.13. □

41.7. Universally injective, unramified morphisms

06ND Recall that a morphism of schemes f : X → Y is universally injective if any base
change of f is injective (on underlying topological spaces), see Morphisms, Defini-
tion 29.10.1. Universally injective and unramified morphisms can be characterized
as follows.
Lemma 41.7.1.05VH Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) f is unramified and a monomorphism,
(2) f is unramified and universally injective,
(3) f is locally of finite type and a monomorphism,
(4) f is universally injective, locally of finite type, and formally unramified,
(5) f is locally of finite type and Xs is either empty or Xs → s is an isomor-

phism for all s ∈ S.
Proof. We have seen in More on Morphisms, Lemma 37.6.8 that being formally
unramified and locally of finite type is the same thing as being unramified. Hence
(4) is equivalent to (2). A monomorphism is certainly universally injective and
formally unramified hence (3) implies (4). It is clear that (1) implies (3). Finally, if
(2) holds, then ∆ : X → X ×S X is both an open immersion (Morphisms, Lemma
29.35.13) and surjective (Morphisms, Lemma 29.10.2) hence an isomorphism, i.e.,
f is a monomorphism. In this way we see that (2) implies (1).
Condition (3) implies (5) because monomorphisms are preserved under base change
(Schemes, Lemma 26.23.5) and because of the description of monomorphisms to-
wards the spectra of fields in Schemes, Lemma 26.23.11. Condition (5) implies (4)
by Morphisms, Lemmas 29.10.2 and 29.35.12. □
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This leads to the following useful characterization of closed immersions.

Lemma 41.7.2.04XV Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) f is a closed immersion,
(2) f is a proper monomorphism,
(3) f is proper, unramified, and universally injective,
(4) f is universally closed, unramified, and a monomorphism,
(5) f is universally closed, unramified, and universally injective,
(6) f is universally closed, locally of finite type, and a monomorphism,
(7) f is universally closed, universally injective, locally of finite type, and

formally unramified.

Proof. The equivalence of (4) – (7) follows immediately from Lemma 41.7.1.

Let f : X → S satisfy (6). Then f is separated, see Schemes, Lemma 26.23.3 and
has finite fibres. Hence More on Morphisms, Lemma 37.44.1 shows f is finite. Then
Morphisms, Lemma 29.44.15 implies f is a closed immersion, i.e., (1) holds.

Note that (1) ⇒ (2) because a closed immersion is proper and a monomorphism
(Morphisms, Lemma 29.41.6 and Schemes, Lemma 26.23.8). By Lemma 41.7.1 we
see that (2) implies (3). It is clear that (3) implies (5). □

Here is another result of a similar flavor.

Lemma 41.7.3.04DG Let π : X → S be a morphism of schemes. Let s ∈ S. Assume that
(1) π is finite,
(2) π is unramified,
(3) π−1({s}) = {x}, and
(4) κ(s) ⊂ κ(x) is purely inseparable1.

Then there exists an open neighbourhood U of s such that π|π−1(U) : π−1(U)→ U
is a closed immersion.

Proof. The question is local on S. Hence we may assume that S = Spec(A). By
definition of a finite morphism this implies X = Spec(B). Note that the ring map
φ : A → B defining π is a finite unramified ring map. Let p ⊂ A be the prime
corresponding to s. Let q ⊂ B be the prime corresponding to x. Conditions (2), (3)
and (4) imply that Bq/pBq = κ(p). By Algebra, Lemma 10.41.11 we have Bq = Bp

(note that a finite ring map satisfies going up, see Algebra, Section 10.41.) Hence
we see that Bp/pBp = κ(p). As B is a finite A-module we see from Nakayama’s
lemma (see Algebra, Lemma 10.20.1) that Bp = φ(Ap). Hence (using the finiteness
of B as an A-module again) there exists a f ∈ A, f ̸∈ p such that Bf = φ(Af ) as
desired. □

The topological results presented above will be used to give a functorial character-
ization of étale morphisms similar to Theorem 41.5.1.

1In view of condition (2) this is equivalent to κ(s) = κ(x).
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41.8. Examples of unramified morphisms

024W Here are a few examples.

Example 41.8.1.024X Let k be a field. Unramified quasi-compact morphisms X →
Spec(k) are affine. This is true because X has dimension 0 and is Noetherian, hence
is a finite discrete set, and each point gives an affine open, so X is a finite disjoint
union of affines hence affine. Noether normalization forces X to be the spectrum
of a finite k-algebra A. This algebra is a product of finite separable field extensions
of k. Thus, an unramified quasi-compact morphism to Spec(k) corresponds to a
finite number of finite separable field extensions of k. In particular, an unramified
morphism with a connected source and a one point target is forced to be a finite
separable field extension. As we will see later, X → Spec(k) is étale if and only if it
is unramified. Thus, in this case at least, we obtain a very easy description of the
étale topology of a scheme. Of course, the cohomology of this topology is another
story.

Example 41.8.2.024Y Property (3) in Theorem 41.4.1 gives us a canonical source of
examples for unramified morphisms. Fix a ring R and an integer n. Let I =
(g1, . . . , gm) be an ideal in R[x1, . . . , xn]. Let q ⊂ R[x1, . . . , xn] be a prime. Assume
I ⊂ q and that the matrix(

∂gi
∂xj

)
mod q ∈ Mat(n×m,κ(q))

has rank n. Then the morphism f : Z = Spec(R[x1, . . . , xn]/I) → Spec(R) is
unramified at the point x ∈ Z ⊂ An

R corresponding to q. Clearly we must have
m ≥ n. In the extreme case m = n, i.e., the differential of the map An

R → An
R

defined by the gi’s is an isomorphism of the tangent spaces, then f is also flat x
and, hence, is an étale map (see Algebra, Definition 10.137.6, Lemma 10.137.7 and
Example 10.137.8).

Example 41.8.3.024Z Fix an extension of number fields L/K with rings of integers OL
and OK . The injection K → L defines a morphism f : Spec(OL)→ Spec(OK). As
discussed above, the points where f is unramified in our sense correspond to the
set of points where f is unramified in the conventional sense. In the conventional
sense, the locus of ramification in Spec(OL) can be defined by vanishing set of the
different; this is an ideal in OL. In fact, the different is nothing but the annihilator
of the module ΩOL/OK

. Similarly, the discriminant is an ideal in OK , namely it
is the norm of the different. The vanishing set of the discriminant is precisely
the set of points of K which ramify in L. Thus, denoting by X the complement
of the closed subset defined by the different in Spec(OL), we obtain a morphism
X → Spec(OK) which is unramified. Furthermore, this morphism is also flat, as
any local homomorphism of discrete valuation rings is flat, and hence this morphism
is actually étale. If L/K is finite Galois, then denoting by Y the complement of the
closed subset defined by the discriminant in Spec(OK), we see that we get even a
finite étale morphism X → Y . Thus, this is an example of a finite étale covering.

41.9. Flat morphisms

0250 This section simply exists to summarize the properties of flatness that will be useful
to us. Thus, we will be content with stating the theorems precisely and giving
references for the proofs.
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After briefly recalling the necessary facts about flat modules over Noetherian rings,
we state a theorem of Grothendieck which gives sufficient conditions for “hyperplane
sections” of certain modules to be flat.

Definition 41.9.1.0251 Flatness of modules and rings.
(1) A module N over a ring A is said to be flat if the functor M 7→M ⊗A N

is exact.
(2) If this functor is also faithful, we say that N is faithfully flat over A.
(3) A morphism of rings f : A → B is said to be flat (resp. faithfully flat) if

the functor M 7→M ⊗A B is exact (resp. faithful and exact).

Here is a list of facts with references to the algebra chapter.
(1) Free and projective modules are flat. This is clear for free modules and

follows for projective modules as they are direct summands of free modules
and ⊗ commutes with direct sums.

(2) Flatness is a local property, that is, M is flat over A if and only if Mp is
flat over Ap for all p ∈ Spec(A). See Algebra, Lemma 10.39.18.

(3) If M is a flat A-module and A→ B is a ring map, then M ⊗A B is a flat
B-module. See Algebra, Lemma 10.39.7.

(4) Finite flat modules over local rings are free. See Algebra, Lemma 10.78.5.
(5) If f : A → B is a morphism of arbitrary rings, f is flat if and only if the

induced maps Af−1(q) → Bq are flat for all q ∈ Spec(B). See Algebra,
Lemma 10.39.18

(6) If f : A→ B is a local homomorphism of local rings, f is flat if and only
if it is faithfully flat. See Algebra, Lemma 10.39.17.

(7) A map A → B of rings is faithfully flat if and only if it is flat and the
induced map on spectra is surjective. See Algebra, Lemma 10.39.16.

(8) If A is a Noetherian local ring, the completion A∧ is faithfully flat over
A. See Algebra, Lemma 10.97.3.

(9) Let A be a Noetherian local ring and M an A-module. Then M is flat
over A if and only if M ⊗A A∧ is flat over A∧. (Combine the previous
statement with Algebra, Lemma 10.39.8.)

Before we move on to the geometric category, we present Grothendieck’s theorem,
which provides a convenient recipe for producing flat modules.

Theorem 41.9.2.0252 Let A, B be Noetherian local rings. Let f : A → B be a local
homomorphism. If M is a finite B-module that is flat as an A-module, and t ∈ mB
is an element such that multiplication by t is injective on M/mAM , then M/tM is
also A-flat.

Proof. See Algebra, Lemma 10.99.1. See also [Mat70a, Section 20]. □

Definition 41.9.3.0253 (See Morphisms, Definition 29.25.1). Let f : X → Y be a
morphism of schemes. Let F be a quasi-coherent OX -module.

(1) Let x ∈ X. We say F is flat over Y at x ∈ X if Fx is a flat OY,f(x)-module.
This uses the map OY,f(x) → OX,x to think of Fx as a OY,f(x)-module.

(2) Let x ∈ X. We say f is flat at x ∈ X if OY,f(x) → OX,x is flat.
(3) We say f is flat if it is flat at all points of X.
(4) A morphism f : X → Y that is flat and surjective is sometimes said to be

faithfully flat.
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Once again, here is a list of results:
(1) The property (of a morphism) of being flat is, by fiat, local in the Zariski

topology on the source and the target.
(2) Open immersions are flat. (This is clear because it induces isomorphisms

on local rings.)
(3) Flat morphisms are stable under base change and composition. Mor-

phisms, Lemmas 29.25.8 and 29.25.6.
(4) If f : X → Y is flat, then the pullback functor QCoh(OY )→ QCoh(OX)

is exact. This is immediate by looking at stalks.
(5) Let f : X → Y be a morphism of schemes, and assume Y is quasi-compact

and quasi-separated. In this case if the functor f∗ is exact then f is flat.
(Proof omitted. Hint: Use Properties, Lemma 28.22.1 to see that Y has
“enough” ideal sheaves and use the characterization of flatness in Algebra,
Lemma 10.39.5.)

41.10. Topological properties of flat morphisms

0254 We “recall” below some openness properties that flat morphisms enjoy.

Theorem 41.10.1.0255 Let Y be a locally Noetherian scheme. Let f : X → Y be a
morphism which is locally of finite type. Let F be a coherent OX -module. The set
of points in X where F is flat over Y is an open set. In particular the set of points
where f is flat is open in X.

Proof. See More on Morphisms, Theorem 37.15.1. □

Theorem 41.10.2.039K Let Y be a locally Noetherian scheme. Let f : X → Y be a
morphism which is flat and locally of finite type. Then f is (universally) open.

Proof. See Morphisms, Lemma 29.25.10. □

Theorem 41.10.3.0256 A faithfully flat quasi-compact morphism is a quotient map for
the Zariski topology.

Proof. See Morphisms, Lemma 29.25.12. □

An important reason to study flat morphisms is that they provide the adequate
framework for capturing the notion of a family of schemes parametrized by the
points of another scheme. Naively one may think that any morphism f : X → S
should be thought of as a family parametrized by the points of S. However, without
a flatness restriction on f , really bizarre things can happen in this so-called family.
For instance, we aren’t guaranteed that relative dimension (dimension of the fibres)
is constant in a family. Other numerical invariants, such as the Hilbert polynomial,
too may change from fibre to fibre. Flatness prevents such things from happening
and, therefore, provides some “continuity” to the fibres.

41.11. Étale morphisms

0257 In this section, we will define étale morphisms and prove a number of important
properties about them. The most important one, no doubt, is the functorial char-
acterization presented in Theorem 41.16.1. Following this, we will also discuss a
few properties of rings which are insensitive to an étale extension (properties which
hold for a ring if and only if they hold for all its étale extensions) to motivate the
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basic tenet of étale cohomology – étale morphisms are the algebraic analogue of
local isomorphisms.

As the title suggests, we will define the class of étale morphisms – the class of mor-
phisms (whose surjective families) we shall deem to be coverings in the category of
schemes over a base scheme S in order to define the étale site Sétale. Intuitively, an
étale morphism is supposed to capture the idea of a covering space and, therefore,
should be close to a local isomorphism. If we’re working with varieties over alge-
braically closed fields, this last statement can be made into a definition provided
we replace “local isomorphism” with “formal local isomorphism” (isomorphism af-
ter completion). One can then give a definition over any base field by asking that
the base change to the algebraic closure be étale (in the aforementioned sense).
But, rather than proceeding via such aesthetically displeasing constructions, we
will adopt a cleaner, albeit slightly more abstract, algebraic approach.

We first define “étale homomorphisms of local rings” for Noetherian local rings.
We cannot use the term “étale”, as there already is a notion of an étale ring map
(Algebra, Section 10.143) and it is different.

Definition 41.11.1.0258 Let A, B be Noetherian local rings. A local homomorphism
f : A → B is said to be an étale homomorphism of local rings if it is flat and an
unramified homomorphism of local rings (please see Definition 41.3.1).

This is the local version of the definition of an étale ring map in Algebra, Section
10.143. The exact definition given in that section is that it is a smooth ring map
of relative dimension 0. It is shown (in Algebra, Lemma 10.143.2) that an étale
R-algebra S always has a presentation

S = R[x1, . . . , xn]/(f1, . . . , fn)

such that

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fn/∂x1
∂f1/∂x2 ∂f2/∂x2 . . . ∂fn/∂x2
. . . . . . . . . . . .

∂f1/∂xn ∂f2/∂xn . . . ∂fn/∂xn


maps to an invertible element in S. The following two lemmas link the two notions.

Lemma 41.11.2.039L Let A→ B be of finite type with A a Noetherian ring. Let q be
a prime of B lying over p ⊂ A. Then A → B is étale at q if and only if Ap → Bq

is an étale homomorphism of local rings.

Proof. See Algebra, Lemmas 10.143.3 (flatness of étale maps), 10.143.5 (étale maps
are unramified) and 10.143.7 (flat and unramified maps are étale). □

Lemma 41.11.3.039M Let A, B be Noetherian local rings. Let A → B be a local
homomorphism such that B is essentially of finite type over A. The following are
equivalent

(1) A→ B is an étale homomorphism of local rings
(2) A∧ → B∧ is an étale homomorphism of local rings, and
(3) A∧ → B∧ is étale.

Moreover, in this case B∧ ∼= (A∧)⊕n as A∧-modules for some n ≥ 1.
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Proof. To see the equivalences of (1), (2) and (3), as we have the corresponding
results for unramified ring maps (Lemma 41.3.4) it suffices to prove that A→ B is
flat if and only if A∧ → B∧ is flat. This is clear from our lists of properties of flat
maps since the ring maps A → A∧ and B → B∧ are faithfully flat. For the final
statement, by Lemma 41.3.3 we see that B∧ is a finite flat A∧ module. Hence it is
finite free by our list of properties on flat modules in Section 41.9. □

The integer n which occurs in the lemma above is nothing other than the degree
[κ(mB) : κ(mA)] of the residue field extension. In particular, if κ(mA) is separably
closed, we see that A∧ → B∧ is an isomorphism, which vindicates our earlier claims.

Definition 41.11.4.0259 (See Morphisms, Definition 29.36.1.) Let Y be a locally Noe-
therian scheme. Let f : X → Y be a morphism of schemes which is locally of finite
type.

(1) Let x ∈ X. We say f is étale at x ∈ X if OY,f(x) → OX,x is an étale
homomorphism of local rings.

(2) The morphism is said to be étale if it is étale at all its points.

Let us prove that this definition agrees with the definition in the chapter on mor-
phisms of schemes. This in particular guarantees that the set of points where a
morphism is étale is open.

Lemma 41.11.5.039N Let Y be a locally Noetherian scheme. Let f : X → Y be locally
of finite type. Let x ∈ X. The morphism f is étale at x in the sense of Definition
41.11.4 if and only if it is étale at x in the sense of Morphisms, Definition 29.36.1.

Proof. This follows from Lemma 41.11.2 and the definitions. □

Here are some results on étale morphisms. The formulations as given in this list
apply only to morphisms locally of finite type between locally Noetherian schemes.
In each case we give a reference to the general result as proved earlier in the project,
but in some cases one can prove the result more easily in the Noetherian case. Here
is the list:

(1) An étale morphism is unramified. (Clear from our definitions.)
(2) Étaleness is local on the source and the target in the Zariski topology.
(3) Étale morphisms are stable under base change and composition. See Mor-

phisms, Lemmas 29.36.4 and 29.36.3.
(4) Étale morphisms of schemes are locally quasi-finite and quasi-compact

étale morphisms are quasi-finite. (This is true because it holds for unram-
ified morphisms as seen earlier.)

(5) Étale morphisms have relative dimension 0. See Morphisms, Definition
29.29.1 and Morphisms, Lemma 29.29.5.

(6) A morphism is étale if and only if it is flat and all its fibres are étale. See
Morphisms, Lemma 29.36.8.

(7) Étale morphisms are open. This is true because an étale morphism is flat,
and Theorem 41.10.2.

(8) Let X and Y be étale over a base scheme S. Any S-morphism from X to
Y is étale. See Morphisms, Lemma 29.36.18.

41.12. The structure theorem

025A
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We present a theorem which describes the local structure of étale and unramified
morphisms. Besides its obvious independent importance, this theorem also allows
us to make the transition to another definition of étale morphisms that captures
the geometric intuition better than the one we’ve used so far.

To state it we need the notion of a standard étale ring map, see Algebra, Definition
10.144.1. Namely, suppose that R is a ring and f, g ∈ R[t] are polynomials such
that

(a) f is a monic polynomial, and
(b) f ′ = df/dt is invertible in the localization R[t]g/(f).

Then the map
R −→ R[t]g/(f) = R[t, 1/g]/(f)

is a standard étale algebra, and any standard étale algebra is isomorphic to one of
these. It is a pleasant exercise to prove that such a ring map is flat, and unramified
and hence étale (as expected of course). A special case of a standard étale ring map
is any ring map

R −→ R[t]f ′/(f) = R[t, 1/f ′]/(f)

with f a monic polynomial, and any standard étale algebra is (isomorphic to) a
principal localization of one of these.

Theorem 41.12.1.025B Let f : A→ B be an étale homomorphism of local rings. Then
there exist f, g ∈ A[t] such that

(1) B′ = A[t]g/(f) is standard étale – see (a) and (b) above, and
(2) B is isomorphic to a localization of B′ at a prime.

Proof. Write B = B′
q for some finite type A-algebra B′ (we can do this because B

is essentially of finite type over A). By Lemma 41.11.2 we see that A→ B′ is étale
at q. Hence we may apply Algebra, Proposition 10.144.4 to see that a principal
localization of B′ is standard étale. □

Here is the version for unramified homomorphisms of local rings.

Theorem 41.12.2.039O Let f : A→ B be an unramified morphism of local rings. Then
there exist f, g ∈ A[t] such that

(1) B′ = A[t]g/(f) is standard étale – see (a) and (b) above, and
(2) B is isomorphic to a quotient of a localization of B′ at a prime.

Proof. Write B = B′
q for some finite type A-algebra B′ (we can do this because

B is essentially of finite type over A). By Lemma 41.3.2 we see that A → B′ is
unramified at q. Hence we may apply Algebra, Proposition 10.152.1 to see that a
principal localization of B′ is a quotient of a standard étale A-algebra. □

Via standard lifting arguments, one then obtains the following geometric statement
which will be of essential use to us.

Theorem 41.12.3.025C Let φ : X → Y be a morphism of schemes. Let x ∈ X. Let
V ⊂ Y be an affine open neighbourhood of φ(x). If φ is étale at x, then there exist
exists an affine open U ⊂ X with x ∈ U and φ(U) ⊂ V such that we have the
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following diagram
X

��

Uoo

��

j
// Spec(R[t]f ′/(f))

��
Y Voo Spec(R)

where j is an open immersion, and f ∈ R[t] is monic.

Proof. This is equivalent to Morphisms, Lemma 29.36.14 although the statements
differ slightly. See also, Varieties, Lemma 33.18.3 for a variant for unramified
morphisms. □

41.13. Étale and smooth morphisms

039P An étale morphism is smooth of relative dimension zero. The projection An
S → S

is a standard example of a smooth morphism of relative dimension n. It turns
out that any smooth morphism is étale locally of this form. Here is the precise
statement.

Theorem 41.13.1.039Q Let φ : X → Y be a morphism of schemes. Let x ∈ X. If φ is
smooth at x, then there exist an integer n ≥ 0 and affine opens V ⊂ Y and U ⊂ X
with x ∈ U and φ(U) ⊂ V such that there exists a commutative diagram

X

��

Uoo

��

π
// An

R

��

Spec(R[x1, . . . , xn])

vv
Y Voo Spec(R)

where π is étale.

Proof. See Morphisms, Lemma 29.36.20. □

41.14. Topological properties of étale morphisms

025F We present a few of the topological properties of étale and unramified morphisms.
First, we give what Grothendieck calls the fundamental property of étale mor-
phisms, see [Gro71, Exposé I.5].

Theorem 41.14.1.025G Let f : X → Y be a morphism of schemes. The following are
equivalent:

(1) f is an open immersion,
(2) f is universally injective and étale, and
(3) f is a flat monomorphism, locally of finite presentation.

Proof. An open immersion is universally injective since any base change of an open
immersion is an open immersion. Moreover, it is étale by Morphisms, Lemma
29.36.9. Hence (1) implies (2).
Assume f is universally injective and étale. Since f is étale it is flat and locally
of finite presentation, see Morphisms, Lemmas 29.36.12 and 29.36.11. By Lemma
41.7.1 we see that f is a monomorphism. Hence (2) implies (3).
Assume f is flat, locally of finite presentation, and a monomorphism. Then f is
open, see Morphisms, Lemma 29.25.10. Thus we may replace Y by f(X) and we
may assume f is surjective. Then f is open and bijective hence a homeomorphism.
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Hence f is quasi-compact. Hence Descent, Lemma 35.25.1 shows that f is an
isomorphism and we win. □

Here is another result of a similar flavor.
Lemma 41.14.2.04DH Let π : X → S be a morphism of schemes. Let s ∈ S. Assume
that

(1) π is finite,
(2) π is étale,
(3) π−1({s}) = {x}, and
(4) κ(s) ⊂ κ(x) is purely inseparable2.

Then there exists an open neighbourhood U of s such that π|π−1(U) : π−1(U)→ U
is an isomorphism.
Proof. By Lemma 41.7.3 there exists an open neighbourhood U of s such that
π|π−1(U) : π−1(U)→ U is a closed immersion. But a morphism which is étale and
a closed immersion is an open immersion (for example by Theorem 41.14.1). Hence
after shrinking U we obtain an isomorphism. □

Lemma 41.14.3.0EBS Let U → X be an étale morphism of schemes where X is a
scheme in characteristic p. Then the relative Frobenius FU/X : U → U ×X,FX X is
an isomorphism.
Proof. The morphism FU/X is a universal homeomorphism by Varieties, Lemma
33.36.6. The morphism FU/X is étale as a morphism between schemes étale over
X (Morphisms, Lemma 29.36.18). Hence FU/X is an isomorphism by Theorem
41.14.1. □

41.15. Topological invariance of the étale topology

06NE Next, we present an extremely crucial theorem which, roughly speaking, says that
étaleness is a topological property.
Theorem 41.15.1.025H Let X and Y be two schemes over a base scheme S. Let S0 be
a closed subscheme of S with the same underlying topological space (for example
if the ideal sheaf of S0 in S has square zero). Denote X0 (resp. Y0) the base change
S0 ×S X (resp. S0 ×S Y ). If X is étale over S, then the map

MorS(Y,X) −→ MorS0(Y0, X0)
is bijective.
Proof. After base changing via Y → S, we may assume that Y = S. In this case
the theorem states that any S-morphism σ0 : S0 → X actually factors uniquely
through a section S → X of the étale structure morphism f : X → S.
Uniqueness. Suppose we have two sections σ, σ′ through which σ0 factors. Because
X → S is étale we see that ∆ : X → X ×S X is an open immersion (Morphisms,
Lemma 29.35.13). The morphism (σ, σ′) : S → X ×S X factors through this open
because for any s ∈ S we have (σ, σ′)(s) = (σ0(s), σ0(s)). Thus σ = σ′.
To prove existence we first reduce to the affine case (we suggest the reader skip
this step). Let X =

⋃
Xi be an affine open covering such that each Xi maps into

an affine open Si of S. For every s ∈ S we can choose an i such that σ0(s) ∈ Xi.

2In view of condition (2) this is equivalent to κ(s) = κ(x).
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Choose an affine open neighbourhood U ⊂ Si of s such that σ0(U0) ⊂ Xi,0. Note
that X ′ = Xi×S U = Xi×Si U is affine. If we can lift σ0|U0 : U0 → X ′

0 to U → X ′,
then by uniqueness these local lifts will glue to a global morphism S → X. Thus
we may assume S and X are affine.
Existence when S and X are affine. Write S = Spec(A) and X = Spec(B). Then
A → B is étale and in particular smooth (of relative dimension 0). As |S0| = |S|
we see that S0 = Spec(A/I) with I ⊂ A locally nilpotent. Thus existence follows
from Algebra, Lemma 10.138.17. □

From the proof of preceeding theorem, we also obtain one direction of the promised
functorial characterization of étale morphisms. The following theorem will be
strengthened in Étale Cohomology, Theorem 59.45.2.

Theorem 41.15.2 (Une equivalence remarquable de catégories).039R [DG67, IV,
Theorem 18.1.2]

Let S be a scheme.
Let S0 ⊂ S be a closed subscheme with the same underlying topological space (for
example if the ideal sheaf of S0 in S has square zero). The functor

X 7−→ X0 = S0 ×S X

defines an equivalence of categories
{schemes X étale over S} ↔ {schemes X0 étale over S0}

Proof. By Theorem 41.15.1 we see that this functor is fully faithful. It remains to
show that the functor is essentially surjective. Let Y → S0 be an étale morphism
of schemes.
Suppose that the result holds if S and Y are affine. In that case, we choose an
affine open covering Y =

⋃
Vj such that each Vj maps into an affine open of S. By

assumption (affine case) we can find étale morphisms Wj → S such that Wj,0 ∼= Vj
(as schemes over S0). Let Wj,j′ ⊂ Wj be the open subscheme whose underlying
topological space corresponds to Vj ∩ Vj′ . Because we have isomorphisms

Wj,j′,0 ∼= Vj ∩ Vj′ ∼= Wj′,j,0

as schemes over S0 we see by fully faithfulness that we obtain isomorphisms θj,j′ :
Wj,j′ → Wj′,j of schemes over S. We omit the verification that these isomor-
phisms satisfy the cocycle condition of Schemes, Section 26.14. Applying Schemes,
Lemma 26.14.2 we obtain a scheme X → S by glueing the schemes Wj along the
identifications θj,j′ . It is clear that X → S is étale and X0 ∼= Y by construction.
Thus it suffices to show the lemma in case S and Y are affine. Say S = Spec(R)
and S0 = Spec(R/I) with I locally nilpotent. By Algebra, Lemma 10.143.2 we
know that Y is the spectrum of a ring A with

A = (R/I)[x1, . . . , xn]/(f1, . . . , fn)
such that

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fn/∂x1
∂f1/∂x2 ∂f2/∂x2 . . . ∂fn/∂x2
. . . . . . . . . . . .

∂f1/∂xn ∂f2/∂xn . . . ∂fn/∂xn


maps to an invertible element in A. Choose any lifts fi ∈ R[x1, . . . , xn]. Set

A = R[x1, . . . , xn]/(f1, . . . , fn)
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Since I is locally nilpotent the ideal IA is locally nilpotent (Algebra, Lemma
10.32.3). Observe that A = A/IA. It follows that the determinant of the ma-
trix of partials of the fi is invertible in the algebra A by Algebra, Lemma 10.32.4.
Hence R→ A is étale and the proof is complete. □

41.16. The functorial characterization

025J We finally present the promised functorial characterization. Thus there are four
ways to think about étale morphisms of schemes:

(1) as a smooth morphism of relative dimension 0,
(2) as locally finitely presented, flat, and unramified morphisms,
(3) using the structure theorem, and
(4) using the functorial characterization.

Theorem 41.16.1.025K Let f : X → S be a morphism that is locally of finite presenta-
tion. The following are equivalent

(1) f is étale,
(2) for all affine S-schemes Y , and closed subschemes Y0 ⊂ Y defined by

square-zero ideals, the natural map
MorS(Y,X) −→ MorS(Y0, X)

is bijective.

Proof. This is More on Morphisms, Lemma 37.8.9. □

This characterization says that solutions to the equations defining X can be lifted
uniquely through nilpotent thickenings.

41.17. Étale local structure of unramified morphisms

04HG In the chapter More on Morphisms, Section 37.41 the reader can find some results
on the étale local structure of quasi-finite morphisms. In this section we want to
combine this with the topological properties of unramified morphisms we have seen
in this chapter. The basic overall picture to keep in mind is

V //

!!

XU

��

// X

f

��
U // S

see More on Morphisms, Equation (37.41.0.1). We start with a very general case.

Lemma 41.17.1.04HH Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X be
points having the same image s in S. Assume f is unramified at each xi. Then there
exists an étale neighbourhood (U, u) → (S, s) and opens Vi,j ⊂ XU , i = 1, . . . , n,
j = 1, . . . ,mi such that

(1) Vi,j → U is a closed immersion passing through u,
(2) u is not in the image of Vi,j ∩ Vi′,j′ unless i = i′ and j = j′, and
(3) any point of (XU )u mapping to xi is in some Vi,j .

Proof. By Morphisms, Definition 29.35.1 there exists an open neighbourhood of
each xi which is locally of finite type over S. ReplacingX by an open neighbourhood
of {x1, . . . , xn} we may assume f is locally of finite type. Apply More on Morphisms,
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Lemma 37.41.3 to get the étale neighbourhood (U, u) and the opens Vi,j finite over
U . By Lemma 41.7.3 after possibly shrinking U we get that Vi,j → U is a closed
immersion. □

Lemma 41.17.2.04HI Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X be
points having the same image s in S. Assume f is separated and f is unramified
at each xi. Then there exists an étale neighbourhood (U, u)→ (S, s) and a disjoint
union decomposition

XU = W ⨿
∐

i,j
Vi,j

such that
(1) Vi,j → U is a closed immersion passing through u,
(2) the fibre Wu contains no point mapping to any xi.

In particular, if f−1({s}) = {x1, . . . , xn}, then the fibre Wu is empty.

Proof. Apply Lemma 41.17.1. We may assume U is affine, soXU is separated. Then
Vi,j → XU is a closed map, see Morphisms, Lemma 29.41.7. Suppose (i, j) ̸= (i′, j′).
Then Vi,j ∩Vi′,j′ is closed in Vi,j and its image in U does not contain u. Hence after
shrinking U we may assume that Vi,j ∩ Vi′,j′ = ∅. Moreover,

⋃
Vi,j is a closed and

open subscheme of XU and hence has an open and closed complement W . This
finishes the proof. □

The following lemma is in some sense much weaker than the preceding one but it
may be useful to state it explicitly here. It says that a finite unramified morphism
is étale locally on the base a closed immersion.

Lemma 41.17.3.04HJ Let f : X → S be a finite unramified morphism of schemes. Let
s ∈ S. There exists an étale neighbourhood (U, u) → (S, s) and a finite disjoint
union decomposition

XU =
∐

j
Vj

such that each Vj → U is a closed immersion.

Proof. Since X → S is finite the fibre over s is a finite set {x1, . . . , xn} of points of
X. Apply Lemma 41.17.2 to this set (a finite morphism is separated, see Morphisms,
Section 29.44). The image of W in U is a closed subset (as XU → U is finite, hence
proper) which does not contain u. After removing this from U we see that W = ∅
as desired. □

41.18. Étale local structure of étale morphisms

04HK This is a bit silly, but perhaps helps form intuition about étale morphisms. We
simply copy over the results of Section 41.17 and change “closed immersion” into
“isomorphism”.

Lemma 41.18.1.04HL Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X
be points having the same image s in S. Assume f is étale at each xi. Then there
exists an étale neighbourhood (U, u) → (S, s) and opens Vi,j ⊂ XU , i = 1, . . . , n,
j = 1, . . . ,mi such that

(1) Vi,j → U is an isomorphism,
(2) u is not in the image of Vi,j ∩ Vi′,j′ unless i = i′ and j = j′, and
(3) any point of (XU )u mapping to xi is in some Vi,j .
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Proof. An étale morphism is unramified, hence we may apply Lemma 41.17.1. Now
Vi,j → U is a closed immersion and étale. Hence it is an open immersion, for
example by Theorem 41.14.1. Replace U by the intersection of the images of Vi,j →
U to get the lemma. □

Lemma 41.18.2.04HM Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X be
points having the same image s in S. Assume f is separated and f is étale at each
xi. Then there exists an étale neighbourhood (U, u) → (S, s) and a finite disjoint
union decomposition

XU = W ⨿
∐

i,j
Vi,j

of schemes such that
(1) Vi,j → U is an isomorphism,
(2) the fibre Wu contains no point mapping to any xi.

In particular, if f−1({s}) = {x1, . . . , xn}, then the fibre Wu is empty.

Proof. An étale morphism is unramified, hence we may apply Lemma 41.17.2. As
in the proof of Lemma 41.18.1 the morphisms Vi,j → U are open immersions and
we win after replacing U by the intersection of their images. □

The following lemma is in some sense much weaker than the preceding one but it
may be useful to state it explicitly here. It says that a finite étale morphism is étale
locally on the base a “topological covering space”, i.e., a finite product of copies of
the base.

Lemma 41.18.3.04HN Let f : X → S be a finite étale morphism of schemes. Let s ∈ S.
There exists an étale neighbourhood (U, u) → (S, s) and a finite disjoint union
decomposition

XU =
∐

j
Vj

of schemes such that each Vj → U is an isomorphism.

Proof. An étale morphism is unramified, hence we may apply Lemma 41.17.3. As
in the proof of Lemma 41.18.1 we see that Vi,j → U is an open immersion and we
win after replacing U by the intersection of their images. □

41.19. Permanence properties

025L In what follows, we present a few “permanence” properties of étale homomorphisms
of Noetherian local rings (as defined in Definition 41.11.1). See More on Algebra,
Sections 15.43 and 15.45 for the analogue of this material for the completion and
henselization of a Noetherian local ring.

Lemma 41.19.1.039S Let A, B be Noetherian local rings. Let A → B be a étale
homomorphism of local rings. Then dim(A) = dim(B).

Proof. See for example Algebra, Lemma 10.112.7. □

Proposition 41.19.2.039T Let A, B be Noetherian local rings. Let f : A → B be an
étale homomorphism of local rings. Then depth(A) = depth(B)

Proof. See Algebra, Lemma 10.163.2. □

https://stacks.math.columbia.edu/tag/04HM
https://stacks.math.columbia.edu/tag/04HN
https://stacks.math.columbia.edu/tag/039S
https://stacks.math.columbia.edu/tag/039T


41.19. PERMANENCE PROPERTIES 3630

Proposition 41.19.3.025Q Let A, B be Noetherian local rings. Let f : A → B be an
étale homomorphism of local rings. Then A is Cohen-Macaulay if and only if B is
so.
Proof. A local ring A is Cohen-Macaulay if and only if dim(A) = depth(A). As
both of these invariants is preserved under an étale extension, the claim follows. □

Proposition 41.19.4.025N Let A, B be Noetherian local rings. Let f : A → B be an
étale homomorphism of local rings. Then A is regular if and only if B is so.
Proof. If B is regular, then A is regular by Algebra, Lemma 10.110.9. Assume A is
regular. Let m be the maximal ideal of A. Then dimκ(m) m/m

2 = dim(A) = dim(B)
(see Lemma 41.19.1). On the other hand, mB is the maximal ideal of B and hence
mB/mB = mB/m2B is generated by at most dim(B) elements. Thus B is regular.
(You can also use the slightly more general Algebra, Lemma 10.112.8.) □

Proposition 41.19.5.025O Let A, B be Noetherian local rings. Let f : A → B be an
étale homomorphism of local rings. Then A is reduced if and only if B is so.
Proof. It is clear from the faithful flatness of A → B that if B is reduced, so
is A. See also Algebra, Lemma 10.164.2. Conversely, assume A is reduced. By
assumption B is a localization of a finite type A-algebra B′ at some prime q. After
replacing B′ by a localization we may assume that B′ is étale over A, see Lemma
41.11.2. Then we see that Algebra, Lemma 10.163.7 applies to A → B′ and B′ is
reduced. Hence B is reduced. □

Remark 41.19.6.039U The result on “reducedness” does not hold with a weaker definition
of étale local ring maps A→ B where one drops the assumption that B is essentially
of finite type over A. Namely, it can happen that a Noetherian local domain A
has nonreduced completion A∧, see Examples, Section 110.16. But the ring map
A → A∧ is flat, and mAA

∧ is the maximal ideal of A∧ and of course A and A∧

have the same residue fields. This is why it is important to consider this notion
only for ring extensions which are essentially of finite type (or essentially of finite
presentation if A is not Noetherian).
Proposition 41.19.7.025P [Gro71, Expose I,

Theorem 9.5 part
(i)]

Let A, B be Noetherian local rings. Let f : A → B be an
étale homomorphism of local rings. Then A is a normal domain if and only if B is
so.
Proof. See Algebra, Lemma 10.164.3 for descending normality. Conversely, assume
A is normal. By assumption B is a localization of a finite type A-algebra B′ at
some prime q. After replacing B′ by a localization we may assume that B′ is étale
over A, see Lemma 41.11.2. Then we see that Algebra, Lemma 10.163.9 applies to
A→ B′ and we conclude that B′ is normal. Hence B is a normal domain. □

The preceeding propositions give some indication as to why we’d like to think
of étale maps as “local isomorphisms”. Another property that gives an excellent
indication that we have the “right” definition is the fact that for C-schemes of
finite type, a morphism is étale if and only if the associated morphism on analytic
spaces (the C-valued points given the complex topology) is a local isomorphism
in the analytic sense (open embedding locally on the source). This fact can be
proven with the aid of the structure theorem and the fact that the analytification
commutes with the formation of the completed local rings – the details are left to
the reader.
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41.20. Descending étale morphisms

0BTH In order to understand the language used in this section we encourage the reader
to take a look at Descent, Section 35.34. Let f : X → S be a morphism of schemes.
Consider the pullback functor

(41.20.0.1)0BTI schemes U étale over S −→ descent data (V, φ) relative to X/S
with V étale over X

sending U to the canonical descent datum (X ×S U, can).

Lemma 41.20.1.0BTJ If f : X → S is surjective, then the functor (41.20.0.1) is faithful.

Proof. Let a, b : U1 → U2 be two morphisms between schemes étale over S. Assume
the base changes of a and b to X agree. We have to show that a = b. By Proposition
41.6.3 it suffices to show that a and b agree on points and residue fields. This is
clear because for every u ∈ U1 we can find a point v ∈ X ×S U1 mapping to u. □

Lemma 41.20.2.0BTK Assume f : X → S is submersive and any étale base change of f
is submersive. Then the functor (41.20.0.1) is fully faithful.

Proof. By Lemma 41.20.1 the functor is faithful. Let U1 → S and U2 → S be
étale morphisms and let a : X ×S U1 → X ×S U2 be a morphism compatible with
canonical descent data. We will prove that a is the base change of a morphism
U1 → U2.
Let U ′

2 ⊂ U2 be an open subscheme. Consider W = a−1(X×S U ′
2). This is an open

subscheme of X ×S U1 which is compatible with the canonical descent datum on
V1 = X ×S U1. This means that the two inverse images of W by the projections
V1 ×U1 V1 → V1 agree. Since V1 → U1 is surjective (as the base change of X → S)
we conclude that W is the inverse image of some subset U ′

1 ⊂ U1. Since W is open,
our assumption on f implies that U ′

1 ⊂ U1 is open.
Let U2 =

⋃
U2,i be an affine open covering. By the result of the preceding paragraph

we obtain an open covering U1 =
⋃
U1,i such that X×SU1,i = a−1(X×SU2,i). If we

can prove there exists a morphism U1,i → U2,i whose base change is the morphism
ai : X ×S U1,i → X ×S U2,i then we can glue these morphisms to a morphism
U1 → U2 (using faithfulness). In this way we reduce to the case that U2 is affine.
In particular U2 → S is separated (Schemes, Lemma 26.21.13).
Assume U2 → S is separated. Then the graph Γa of a is a closed subscheme of

V = (X ×S U1)×X (X ×S U2) = X ×S U1 ×S U2

by Schemes, Lemma 26.21.10. On the other hand the graph is open for example
because it is a section of an étale morphism (Proposition 41.6.1). Since a is a
morphism of descent data, the two inverse images of Γa ⊂ V under the projections
V ×U1×SU2 V → V are the same. Hence arguing as in the second paragraph of
the proof we find an open and closed subscheme Γ ⊂ U1 ×S U2 whose base change
to X gives Γa. Then Γ → U1 is an étale morphism whose base change to X
is an isomorphism. This means that Γ → U1 is universally bijective, hence an
isomorphism by Theorem 41.14.1. Thus Γ is the graph of a morphism U1 → U2
and the base change of this morphism is a as desired. □

Lemma 41.20.3.0BTL Let f : X → S be a morphism of schemes. In the following cases
the functor (41.20.0.1) is fully faithful:
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(1) f is surjective and universally closed (e.g., finite, integral, or proper),
(2) f is surjective and universally open (e.g., locally of finite presentation and

flat, smooth, or etale),
(3) f is surjective, quasi-compact, and flat.

Proof. This follows from Lemma 41.20.2. For example a closed surjective map of
topological spaces is submersive (Topology, Lemma 5.6.5). Finite, integral, and
proper morphisms are universally closed, see Morphisms, Lemmas 29.44.7 and
29.44.11 and Definition 29.41.1. On the other hand an open surjective map of
topological spaces is submersive (Topology, Lemma 5.6.4). Flat locally finitely pre-
sented, smooth, and étale morphisms are universally open, see Morphisms, Lemmas
29.25.10, 29.34.10, and 29.36.13. The case of surjective, quasi-compact, flat mor-
phisms follows from Morphisms, Lemma 29.25.12. □

Lemma 41.20.4.0BTM Let f : X → S be a morphism of schemes. Let (V, φ) be a descent
datum relative to X/S with V → X étale. Let S =

⋃
Si be an open covering.

Assume that
(1) the pullback of the descent datum (V, φ) to X ×S Si/Si is effective,
(2) the functor (41.20.0.1) for X×S (Si∩Sj)→ (Si∩Sj) is fully faithful, and
(3) the functor (41.20.0.1) for X×S (Si∩Sj ∩Sk)→ (Si∩Sj ∩Sk) is faithful.

Then (V, φ) is effective.

Proof. (Recall that pullbacks of descent data are defined in Descent, Definition
35.34.7.) Set Xi = X ×S Si. Denote (Vi, φi) the pullback of (V, φ) to Xi/Si.
By assumption (1) we can find an étale morphism Ui → Si which comes with an
isomorphism Xi ×Si Ui → Vi compatible with can and φi. By assumption (2) we
obtain isomorphisms ψij : Ui ×Si (Si ∩ Sj) → Uj ×Sj (Si ∩ Sj). By assumption
(3) these isomorphisms satisfy the cocycle condition so that (Ui, ψij) is a descend
datum for the Zariski covering {Si → S}. Then Descent, Lemma 35.35.10 (which
is essentially just a reformulation of Schemes, Section 26.14) tells us that there
exists a morphism of schemes U → S and isomorphisms U ×S Si → Ui compatible
with ψij . The isomorphisms U ×S Si → Ui determine corresponding isomorphisms
Xi×SU → Vi which glue to a morphism X×SU → V compatible with the canonical
descent datum and φ. □

Lemma 41.20.5.0BTN Let (A, I) be a henselian pair. Let U → Spec(A) be a quasi-
compact, separated, étale morphism such that U ×Spec(A) Spec(A/I)→ Spec(A/I)
is finite. Then

U = Ufin ⨿ Uaway
where Ufin → Spec(A) is finite and Uaway has no points lying over Z.

Proof. By Zariski’s main theorem, the scheme U is quasi-affine. In fact, we can
find an open immersion U → T with T affine and T → Spec(A) finite, see More
on Morphisms, Lemma 37.43.3. Write Z = Spec(A/I) and denote UZ → TZ the
base change. Since UZ → Z is finite, we see that UZ → TZ is closed as well as
open. Hence by More on Algebra, Lemma 15.11.6 we obtain a unique decomposition
T = T ′⨿T ′′ with T ′

Z = UZ . Set Ufin = U∩T ′ and Uaway = U∩T ′′. Since T ′
Z ⊂ UZ

we see that all closed points of T ′ are in U hence T ′ ⊂ U , hence Ufin = T ′, hence
Ufin → Spec(A) is finite. We omit the proof of uniqueness of the decomposition. □

https://stacks.math.columbia.edu/tag/0BTM
https://stacks.math.columbia.edu/tag/0BTN


41.20. DESCENDING ÉTALE MORPHISMS 3633

Proposition 41.20.6.0BTP Let f : X → S be a surjective integral morphism. The functor
(41.20.0.1) induces an equivalence

schemes quasi-compact,
separated, étale over S −→

descent data (V, φ) relative to X/S with
V quasi-compact, separated, étale over X

Proof. By Lemma 41.20.3 the functor (41.20.0.1) is fully faithful and the same
remains the case after any base change S → S′. Let (V, φ) be a descent data
relative to X/S with V → X quasi-compact, separated, and étale. We can use
Lemma 41.20.4 to see that it suffices to prove the effectivity Zariski locally on S.
In particular we may and do assume that S is affine.

If S is affine we can find a directed set Λ and an inverse system Xλ → Sλ of finite
morphisms of affine schemes of finite type over Spec(Z) such that (X → S) =
lim(Xλ → Sλ). See Algebra, Lemma 10.127.15. Since limits commute with limits
we deduce that X×SX = limXλ×SλXλ and X×SX×SX = limXλ×SλXλ×SλXλ.
Observe that V → X is a morphism of finite presentation. Using Limits, Lemmas
32.10.1 we can find an λ and a descent datum (Vλ, φλ) relative to Xλ/Sλ whose
pullback to X/S is (V, φ). Of course it is enough to show that (Vλ, φλ) is effective.
Note that Vλ is quasi-compact by construction. After possibly increasing λ we may
assume that Vλ → Xλ is separated and étale, see Limits, Lemma 32.8.6 and 32.8.10.
Thus we may assume that f is finite surjective and S affine of finite type over Z.

Consider an open S′ ⊂ S such that the pullback (V ′, φ′) of (V, φ) to X ′ = X ×S S′

is effective. Below we will prove, that S′ ̸= S implies there is a strictly larger open
over which the descent datum is effective. Since S is Noetherian (and hence has a
Noetherian underlying topological space) this will finish the proof. Let ξ ∈ S be
a generic point of an irreducible component of the closed subset Z = S \ S′. If
ξ ∈ S′′ ⊂ S is an open over which the descent datum is effective, then the descent
datum is effective over S′∪S′′ by the glueing argument of the first paragraph. Thus
in the rest of the proof we may replace S by an affine open neighbourhood of ξ.

After a first such replacement we may assume that Z is irreducible with generic
point Z. Let us endow Z with the reduced induced closed subscheme structure.
After another shrinking we may assume XZ = X ×S Z = f−1(Z) → Z is flat, see
Morphisms, Proposition 29.27.1. Let (VZ , φZ) be the pullback of the descent datum
to XZ/Z. By More on Morphisms, Lemma 37.57.1 this descent datum is effective
and we obtain an étale morphism UZ → Z whose base change is isomorphic to VZ
in a manner compatible with descent data. Of course UZ → Z is quasi-compact
and separated (Descent, Lemmas 35.23.1 and 35.23.6). Thus after shrinking once
more we may assume that UZ → Z is finite, see Morphisms, Lemma 29.51.1.

Let S = Spec(A) and let I ⊂ A be the prime ideal corresponding to Z ⊂ S.
Let (Ah, IAh) be the henselization of the pair (A, I). Denote Sh = Spec(Ah) and
Zh = V (IAh) ∼= Z. We claim that it suffices to show effectivity after base change
to Sh. Namely, {Sh → S, S′ → S} is an fpqc covering (A → Ah is flat by More
on Algebra, Lemma 15.12.2) and by More on Morphisms, Lemma 37.57.1 we have
fpqc descent for separated étale morphisms. Namely, if Uh → Sh and U ′ → S′ are
the objects corresponding to the pullbacks (V h, φh) and (V ′, φ′), then the required
isomorphisms

Uh ×S Sh → Sh ×S V h and Uh ×S S′ → Sh ×S U ′
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are obtained by the fully faithfulness pointed out in the first paragraph. In this
way we reduce to the situation described in the next paragraph.

Here S = Spec(A), Z = V (I), S′ = S \ Z where (A, I) is a henselian pair, we have
U ′ → S′ corresponding to the descent datum (V ′, φ′) and we have a finite étale
morphism UZ → Z corresponding to the descent datum (VZ , φZ). We no longer
have that A is of finite type over Z; but the rest of the argument will not even use
that A is Noetherian. By More on Algebra, Lemma 15.13.2 we can find a finite
étale morphism Ufin → S whose restriction to Z is isomorphic to UZ → Z. Write
X = Spec(B) and Y = V (IB). Since (B, IB) is a henselian pair (More on Algebra,
Lemma 15.11.8) and since the restriction V → X to Y is finite (as base change of
UZ → Z) we see that there is a canonical disjoint union decomposition

V = Vfin ⨿ Vaway
were Vfin → X is finite and where Vaway has no points lying over Y . See Lemma
41.20.5. Using the uniqueness of this decomposition over X ×S X we see that φ
preserves it and we obtain

(V, φ) = (Vfin, φfin)⨿ (Vaway, φaway)

in the category of descent data. By More on Algebra, Lemma 15.13.2 there is a
unique isomorphism

X ×S Ufin −→ Vfin

compatible with the given isomorphism Y ×Z UZ → V ×X Y over Y . By the
uniqueness we see that this isomorphism is compatible with descent data, i.e.,
(X ×S Ufin, can) ∼= (Vfin, φfin). Denote U ′

fin = Ufin ×S S′. By fully faithfulness
we obtain a morphism U ′

fin → U ′ which is the inclusion of an open (and closed)
subscheme. Then we set U = Ufin ⨿U ′

fin
U ′ (glueing of schemes as in Schemes,

Section 26.14). The morphisms X ×S Ufin → V and X ×S U ′ → V glue to a
morphism X ×S U → V which is the desired isomorphism. □

41.21. Normal crossings divisors

0CBN Here is the definition.

Definition 41.21.1.0BI9 Let X be a locally Noetherian scheme. A strict normal crossings
divisor onX is an effective Cartier divisorD ⊂ X such that for every p ∈ D the local
ring OX,p is regular and there exists a regular system of parameters x1, . . . , xd ∈ mp
and 1 ≤ r ≤ d such that D is cut out by x1 . . . xr in OX,p.

We often encounter effective Cartier divisors E on locally Noetherian schemes X
such that there exists a strict normal crossings divisor D with E ⊂ D set theoret-
ically. In this case we have E =

∑
aiDi with ai ≥ 0 where D =

⋃
i∈I Di is the

decomposition of D into its irreducible components. Observe that D′ =
⋃
ai>0 Di

is a strict normal crossings divisor with E = D′ set theoretically. When the above
happens we will say that E is supported on a strict normal crossings divisor.

Lemma 41.21.2.0BIA Let X be a locally Noetherian scheme. Let D ⊂ X be an effective
Cartier divisor. Let Di ⊂ D, i ∈ I be its irreducible components viewed as reduced
closed subschemes of X. The following are equivalent

(1) D is a strict normal crossings divisor, and
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(2) D is reduced, each Di is an effective Cartier divisor, and for J ⊂ I finite
the scheme theoretic intersection DJ =

⋂
j∈J Dj is a regular scheme each

of whose irreducible components has codimension |J | in X.

Proof. Assume D is a strict normal crossings divisor. Pick p ∈ D and choose a
regular system of parameters x1, . . . , xd ∈ mp and 1 ≤ r ≤ d as in Definition 41.21.1.
Since OX,p/(xi) is a regular local ring (and in particular a domain) we see that the
irreducible components D1, . . . , Dr of D passing through p correspond 1-to-1 to the
height one primes (x1), . . . , (xr) of OX,p. By Algebra, Lemma 10.106.3 we find that
the intersections Di1 ∩ . . . ∩Dis have codimension s in an open neighbourhood of
p and that this intersection has a regular local ring at p. Since this holds for all
p ∈ D we conclude that (2) holds.

Assume (2). Let p ∈ D. Since OX,p is finite dimensional we see that p can be
contained in at most dim(OX,p) of the components Di. Say p ∈ D1, . . . , Dr for
some r ≥ 1. Let x1, . . . , xr ∈ mp be local equations for D1, . . . , Dr. Then x1 is a
nonzerodivisor in OX,p and OX,p/(x1) = OD1,p is regular. Hence OX,p is regular,
see Algebra, Lemma 10.106.7. Since D1 ∩ . . . ∩ Dr is a regular (hence normal)
scheme it is a disjoint union of its irreducible components (Properties, Lemma
28.7.6). Let Z ⊂ D1 ∩ . . . ∩Dr be the irreducible component containing p. Then
OZ,p = OX,p/(x1, . . . , xr) is regular of codimension r (note that since we already
know that OX,p is regular and hence Cohen-Macaulay, there is no ambiguity about
codimension as the ring is catenary, see Algebra, Lemmas 10.106.3 and 10.104.4).
Hence dim(OZ,p) = dim(OX,p)−r. Choose additional xr+1, . . . , xn ∈ mp which map
to a minimal system of generators of mZ,p. Then mp = (x1, . . . , xn) by Nakayama’s
lemma and we see that D is a normal crossings divisor. □

Lemma 41.21.3.0CBP Let X be a locally Noetherian scheme. Let D ⊂ X be a strict
normal crossings divisor. If f : Y → X is a smooth morphism of schemes, then the
pullback f∗D is a strict normal crossings divisor on Y .

Proof. As f is flat the pullback is defined by Divisors, Lemma 31.13.13 hence the
statement makes sense. Let q ∈ f∗D map to p ∈ D. Choose a regular system
of parameters x1, . . . , xd ∈ mp and 1 ≤ r ≤ d as in Definition 41.21.1. Since f is
smooth the local ring homomorphism OX,p → OY,q is flat and the fibre ring

OY,q/mpOY,q = OYp,q

is a regular local ring (see for example Algebra, Lemma 10.140.3). Pick y1, . . . , yn ∈
mq which map to a regular system of parameters inOYp,q. Then x1, . . . , xd, y1, . . . , yn
generate the maximal ideal mq. Hence OY,q is a regular local ring of dimension d+n
by Algebra, Lemma 10.112.7 and x1, . . . , xd, y1, . . . , yn is a regular system of pa-
rameters. Since f∗D is cut out by x1 . . . xr in OY,q we conclude that the lemma is
true. □

Here is the definition of a normal crossings divisor.

Definition 41.21.4.0BSF Let X be a locally Noetherian scheme. A normal crossings
divisor on X is an effective Cartier divisor D ⊂ X such that for every p ∈ D there
exists an étale morphism U → X with p in the image and D ×X U a strict normal
crossings divisor on U .
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For example D = V (x2 + y2) is a normal crossings divisor (but not a strict one) on
Spec(R[x, y]) because after pulling back to the étale cover Spec(C[x, y]) we obtain
(x− iy)(x+ iy) = 0.

Lemma 41.21.5.0CBQ Let X be a locally Noetherian scheme. Let D ⊂ X be a normal
crossings divisor. If f : Y → X is a smooth morphism of schemes, then the pullback
f∗D is a normal crossings divisor on Y .

Proof. As f is flat the pullback is defined by Divisors, Lemma 31.13.13 hence the
statement makes sense. Let q ∈ f∗D map to p ∈ D. Choose an étale morphism
U → X whose image contains p such that D×X U ⊂ U is a strict normal crossings
divisor as in Definition 41.21.4. Set V = Y ×X U . Then V → Y is étale as a base
change of U → X (Morphisms, Lemma 29.36.4) and the pullback D ×X V is a
strict normal crossings divisor on V by Lemma 41.21.3. Thus we have checked the
condition of Definition 41.21.4 for q ∈ f∗D and we conclude. □

Lemma 41.21.6.0CBR Let X be a locally Noetherian scheme. Let D ⊂ X be a closed
subscheme. The following are equivalent

(1) D is a normal crossings divisor in X,
(2) D is reduced, the normalization ν : Dν → D is unramified, and for any

n ≥ 1 the scheme
Zn = Dν ×D . . .×D Dν \ {(p1, . . . , pn) | pi = pj for some i ̸= j}
is regular, the morphism Zn → X is a local complete intersection mor-
phism whose conormal sheaf is locally free of rank n.

Proof. First we explain how to think about condition (2). The diagonal of an
unramified morphism is open (Morphisms, Lemma 29.35.13). On the other hand
Dν → D is separated, hence the diagonal Dν → Dν ×D Dν is closed. Thus Zn is
an open and closed subscheme of Dν ×D . . .×D Dν . On the other hand, Zn → X
is unramified as it is the composition

Zn → Dν ×D . . .×D Dν → . . .→ Dν ×D Dν → Dν → D → X

and each of the arrows is unramified. Since an unramified morphism is formally
unramified (More on Morphisms, Lemma 37.6.8) we have a conormal sheaf Cn =
CZn/X of Zn → X, see More on Morphisms, Definition 37.7.2.
Formation of normalization commutes with étale localization by More on Mor-
phisms, Lemma 37.19.3. Checking that local rings are regular, or that a morphism
is unramified, or that a morphism is a local complete intersection or that a mor-
phism is unramified and has a conormal sheaf which is locally free of a given rank,
may be done étale locally (see More on Algebra, Lemma 15.44.3, Descent, Lemma
35.23.28, More on Morphisms, Lemma 37.62.19 and Descent, Lemma 35.7.6).
By the remark of the preceding paragraph and the definition of normal crossings
divisor it suffices to prove that a strict normal crossings divisor D =

⋃
i∈I Di

satisfies (2). In this case Dν =
∐
Di and Dν → D is unramified (being unramified

is local on the source and Di → D is a closed immersion which is unramified).
Similarly, Z1 = Dν → X is a local complete intersection morphism because we
may check this locally on the source and each morphism Di → X is a regular
immersion as it is the inclusion of a Cartier divisor (see Lemma 41.21.2 and More
on Morphisms, Lemma 37.62.9). Since an effective Cartier divisor has an invertible
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conormal sheaf, we conclude that the requirement on the conormal sheaf is satisfied.
Similarly, the scheme Zn for n ≥ 2 is the disjoint union of the schemes DJ =⋂
j∈J Dj where J ⊂ I runs over the subsets of order n. Since DJ → X is a regular

immersion of codimension n (by the definition of strict normal crossings and the
fact that we may check this on stalks by Divisors, Lemma 31.20.8) it follows in the
same manner that Zn → X has the required properties. Some details omitted.
Assume (2). Let p ∈ D. Since Dν → D is unramified, it is finite (by Morphisms,
Lemma 29.44.4). Hence Dν → X is finite unramified. By Lemma 41.17.3 and
étale localization (permissible by the discussion in the second paragraph and the
definition of normal crossings divisors) we reduce to the case where Dν =

∐
i∈I Di

with I finite and Di → U a closed immersion. After shrinking X if necessary,
we may assume p ∈ Di for all i ∈ I. The condition that Z1 = Dν → X is
an unramified local complete intersection morphism with conormal sheaf locally
free of rank 1 implies that Di ⊂ X is an effective Cartier divisor, see More on
Morphisms, Lemma 37.62.3 and Divisors, Lemma 31.21.3. To finish the proof we
may assume X = Spec(A) is affine and Di = V (fi) with fi ∈ A a nonzerodivisor.
If I = {1, . . . , r}, then p ∈ Zr = V (f1, . . . , fr). The same reference as above implies
that (f1, . . . , fr) is a Koszul regular ideal in A. Since the conormal sheaf has rank r,
we see that f1, . . . , fr is a minimal set of generators of the ideal defining Zr in OX,p.
This implies that f1, . . . , fr is a regular sequence inOX,p such thatOX,p/(f1, . . . , fr)
is regular. Thus we conclude by Algebra, Lemma 10.106.7 that f1, . . . , fr can be
extended to a regular system of parameters in OX,p and this finishes the proof. □

Lemma 41.21.7.0CBS Let X be a locally Noetherian scheme. Let D ⊂ X be a closed
subscheme. If X is J-2 or Nagata, then following are equivalent

(1) D is a normal crossings divisor in X,
(2) for every p ∈ D the pullback of D to the spectrum of the strict henseliza-

tion OshX,p is a strict normal crossings divisor.

Proof. The implication (1)⇒ (2) is straightforward and does not need the assump-
tion that X is J-2 or Nagata. Namely, let p ∈ D and choose an étale neighbourhood
(U, u) → (X, p) such that the pullback of D is a strict normal crossings divisor on
U . Then OshX,p = OshU,u and we see that the trace of D on Spec(OshU,u) is cut out by
part of a regular system of parameters as this is already the case in OU,u.
To prove the implication in the other direction we will use the criterion of Lemma
41.21.6. Observe that formation of the normalization Dν → D commutes with
strict henselization, see More on Morphisms, Lemma 37.19.4. If we can show that
Dν → D is finite, then we see that Dν → D and the schemes Zn satisfy all desired
properties because these can all be checked on the level of local rings (but the
finiteness of the morphism Dν → D is not something we can check on local rings).
We omit the detailed verifications.
If X is Nagata, then Dν → D is finite by Morphisms, Lemma 29.54.10.
Assume X is J-2. Choose a point p ∈ D. We will show that Dν → D is finite over
a neighbourhood of p. By assumption there exists a regular system of parameters
f1, . . . , fd of OshX,p and 1 ≤ r ≤ d such that the trace of D on Spec(OshX,p) is cut out
by f1 . . . fr. Then

Dν ×X Spec(OshX,p) =
∐

i=1,...,r
V (fi)
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Choose an affine étale neighbourhood (U, u) → (X, p) such that fi comes from
fi ∈ OU (U). Set Di = V (fi) ⊂ U . The strict henselization of ODi,u is OshX,p/(fi)
which is regular. Hence ODi,u is regular (for example by More on Algebra, Lemma
15.45.10). Because X is J-2 the regular locus is open in Di. Thus after replacing
U by a Zariski open we may assume that Di is regular for each i. It follows that∐

i=1,...,r
Di = Dν ×X U −→ D ×X U

is the normalization morphism and it is clearly finite. In other words, we have found
an étale neighbourhood (U, u) of (X, p) such that the base change of Dν → D to
this neighbourhood is finite. This implies Dν → D is finite by descent (Descent,
Lemma 35.23.23) and the proof is complete. □
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CHAPTER 42

Chow Homology and Chern Classes

02P3 42.1. Introduction

02P4 In this chapter we discuss Chow homology groups and the construction of Chern
classes of vector bundles as elements of operational Chow cohomology groups (ev-
erything with Z-coefficients).

We start this chapter by giving the shortest possible algebraic proof of the Key
Lemma 42.6.3. We first define the Herbrand quotient (Section 42.2) and we compute
it in some cases (Section 42.3). Next, we prove some simple algebra lemmas on
existence of suitable factorizations after modifications (Section 42.4). Using these
we construct/define the tame symbol in Section 42.5. Only the most basic properties
of the tame symbol are needed to prove the Key Lemma, which we do in Section
42.6.

Next, we introduce the basic setup we work with in the rest of this chapter in
Section 42.7. To make the material a little bit more challenging we decided to treat
a somewhat more general case than is usually done. Namely we assume our schemes
X are locally of finite type over a fixed locally Noetherian base scheme which is
universally catenary and is endowed with a dimension function. These assumptions
suffice to be able to define the Chow homology groups CH∗(X) and the action of
capping with Chern classes on them. This is an indication that we should be able
to define these also for algebraic stacks locally of finite type over such a base.

Next, we follow the first few chapters of [Ful98] in order to define cycles, flat pull-
back, proper pushforward, and rational equivalence, except that we have been less
precise about the supports of the cycles involved.

We diverge from the presentation given in [Ful98] by using the Key lemma men-
tioned above to prove a basic commutativity relation in Section 42.27. Using this
we prove that the operation of intersecting with an invertible sheaf passes through
rational equivalence and is commutative, see Section 42.28. One more applica-
tion of the Key lemma proves that the Gysin map of an effective Cartier divisor
passes through rational equivalence, see Section 42.30. Having proved this, it is
straightforward to define Chern classes of vector bundles, prove additivity, prove
the splitting principle, introduce Chern characters, Todd classes, and state the
Grothendieck-Riemann-Roch theorem.

There are two appendices. In Appendix A (Section 42.68) we discuss an alterna-
tive (longer) construction of the tame symbol and corresponding proof of the Key
Lemma. Finally, in Appendix B (Section 42.69) we briefly discuss the relation-
ship with K-theory of coherent sheaves and we discuss some blowup lemmas. We
suggest the reader look at their introductions for more information.
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We will return to the Chow groups CH∗(X) for smooth projective varieties over
algebraically closed fields in the next chapter. Using a moving lemma as in [Sam56],
[Che58a], and [Che58b] and Serre’s Tor-formula (see [Ser00] or [Ser65]) we will define
a ring structure on CH∗(X). See Intersection Theory, Section 43.1 ff.

42.2. Periodic complexes and Herbrand quotients

02PF Of course there is a very general notion of periodic complexes. We can require
periodicity of the maps, or periodicity of the objects. We will add these here as
needed. For the moment we only need the following cases.

Definition 42.2.1.02PG Let R be a ring.
(1) A 2-periodic complex over R is given by a quadruple (M,N,φ, ψ) consist-

ing of R-modules M , N and R-module maps φ : M → N , ψ : N → M
such that

. . . // M
φ // N

ψ // M
φ // N // . . .

is a complex. In this setting we define the cohomology modules of the
complex to be the R-modules

H0(M,N,φ, ψ) = Ker(φ)/ Im(ψ) and H1(M,N,φ, ψ) = Ker(ψ)/ Im(φ).

We say the 2-periodic complex is exact if the cohomology groups are zero.
(2) A (2, 1)-periodic complex over R is given by a triple (M,φ, ψ) consisting

of an R-module M and R-module maps φ : M → M , ψ : M → M such
that

. . . // M
φ // M

ψ // M
φ // M // . . .

is a complex. Since this is a special case of a 2-periodic complex we have its
cohomology modules H0(M,φ, ψ), H1(M,φ, ψ) and a notion of exactness.

In the following we will use any result proved for 2-periodic complexes without
further mention for (2, 1)-periodic complexes. It is clear that the collection of
2-periodic complexes forms a category with morphisms (f, g) : (M,N,φ, ψ) →
(M ′, N ′, φ′, ψ′) pairs of morphisms f : M → M ′ and g : N → N ′ such that
φ′ ◦ f = g ◦ φ and ψ′ ◦ g = f ◦ ψ. We obtain an abelian category, with kernels and
cokernels as in Homology, Lemma 12.13.3.

Definition 42.2.2.02PH Let (M,N,φ, ψ) be a 2-periodic complex over a ring R whose
cohomology modules have finite length. In this case we define the multiplicity of
(M,N,φ, ψ) to be the integer

eR(M,N,φ, ψ) = lengthR(H0(M,N,φ, ψ))− lengthR(H1(M,N,φ, ψ))

In the case of a (2, 1)-periodic complex (M,φ, ψ), we denote this by eR(M,φ, ψ)
and we will sometimes call this the (additive) Herbrand quotient.

If the cohomology groups of (M,φ, ψ) are finite abelian groups, then it is customary
to call the (multiplicative) Herbrand quotient

q(M,φ, ψ) = #H0(M,φ, ψ)
#H1(M,φ, ψ)

https://stacks.math.columbia.edu/tag/02PG
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In words: the multiplicative Herbrand quotient is the number of elements of H0

divided by the number of elements of H1. If R is local and if the residue field of R
is finite with q elements, then we see that

q(M,φ, ψ) = qeR(M,φ,ψ)

An example of a (2, 1)-periodic complex over a ring R is any triple of the form
(M, 0, ψ) where M is an R-module and ψ is an R-linear map. If the kernel and
cokernel of ψ have finite length, then we obtain
(42.2.2.1)0EA6 eR(M, 0, ψ) = lengthR(Coker(ψ))− lengthR(Ker(ψ))
We state and prove the obligatory lemmas on these notations.

Lemma 42.2.3.0EA7 Let R be a ring. Suppose that we have a short exact sequence of
2-periodic complexes

0→ (M1, N1, φ1, ψ1)→ (M2, N2, φ2, ψ2)→ (M3, N3, φ3, ψ3)→ 0
If two out of three have cohomology modules of finite length so does the third and
we have

eR(M2, N2, φ2, ψ2) = eR(M1, N1, φ1, ψ1) + eR(M3, N3, φ3, ψ3).

Proof. We abbreviateA = (M1, N1, φ1, ψ1), B = (M2, N2, φ2, ψ2) and C = (M3, N3, φ3, ψ3).
We have a long exact cohomology sequence
. . .→ H1(C)→ H0(A)→ H0(B)→ H0(C)→ H1(A)→ H1(B)→ H1(C)→ . . .

This gives a finite exact sequence
0→ I → H0(A)→ H0(B)→ H0(C)→ H1(A)→ H1(B)→ K → 0

with 0 → K → H1(C) → I → 0 a filtration. By additivity of the length function
(Algebra, Lemma 10.52.3) we see the result. □

Lemma 42.2.4.0EA8 Let R be a ring. If (M,N,φ, ψ) is a 2-periodic complex such that
M , N have finite length, then eR(M,N,φ, ψ) = lengthR(M) − lengthR(N). In
particular, if (M,φ, ψ) is a (2, 1)-periodic complex such that M has finite length,
then eR(M,φ, ψ) = 0.

Proof. This follows from the additity of Lemma 42.2.3 and the short exact sequence
0→ (M, 0, 0, 0)→ (M,N,φ, ψ)→ (0, N, 0, 0)→ 0. □

Lemma 42.2.5.0EA9 Let R be a ring. Let f : (M,φ, ψ) → (M ′, φ′, ψ′) be a map of
(2, 1)-periodic complexes whose cohomology modules have finite length. If Ker(f)
and Coker(f) have finite length, then eR(M,φ, ψ) = eR(M ′, φ′, ψ′).

Proof. Apply the additivity of Lemma 42.2.3 and observe that (Ker(f), φ, ψ) and
(Coker(f), φ′, ψ′) have vanishing multiplicity by Lemma 42.2.4. □

42.3. Calculation of some multiplicities

0EAA To prove equality of certain cycles later on we need to compute some multiplicities.
Our main tool, besides the elementary lemmas on multiplicities given in the previous
section, will be Algebra, Lemma 10.121.7.

Lemma 42.3.1.02QF Let R be a Noetherian local ring. Let M be a finite R-module.
Let x ∈ R. Assume that

https://stacks.math.columbia.edu/tag/0EA7
https://stacks.math.columbia.edu/tag/0EA8
https://stacks.math.columbia.edu/tag/0EA9
https://stacks.math.columbia.edu/tag/02QF
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(1) dim(Supp(M)) ≤ 1, and
(2) dim(Supp(M/xM)) ≤ 0.

Write Supp(M) = {m, q1, . . . , qt}. Then

eR(M, 0, x) =
∑

i=1,...,t
ordR/qi(x)lengthRqi

(Mqi).

Proof. We first make some preparatory remarks. The result of the lemma holds
if M has finite length, i.e., if t = 0, because both the left hand side and the right
hand side are zero in this case, see Lemma 42.2.4. Also, if we have a short exact
sequence 0→M →M ′ →M ′′ → 0 of modules satisfying (1) and (2), then lemma
for 2 out of 3 of these implies the lemma for the third by the additivity of length
(Algebra, Lemma 10.52.3) and additivty of multiplicities (Lemma 42.2.3).

Denote Mi the image of M in Mqi , so Supp(Mi) = {m, qi}. The kernel and cok-
ernel of the map M →

⊕
Mi have support {m} and hence have finite length. By

our preparatory remarks, it follows that it suffices to prove the lemma for each Mi.
Thus we may assume that Supp(M) = {m, q}. In this case we have a finite filtration
M ⊃ qM ⊃ q2M ⊃ . . . ⊃ qnM = 0 by Algebra, Lemma 10.62.4. Again additivity
shows that it suffices to prove the lemma in the case M is annihilated by q. In this
case we can view M as a R/q-module, i.e., we may assume that R is a Noetherian
local domain of dimension 1 with fraction field K. Dividing by the torsion submod-
ule, i.e., by the kernel of M →M ⊗RK = V (the torsion has finite length hence is
handled by our preliminary remarks) we may assume that M ⊂ V is a lattice (Al-
gebra, Definition 10.121.3). Then x : M → M is injective and lengthR(M/xM) =
d(M,xM) (Algebra, Definition 10.121.5). Since lengthK(V ) = dimK(V ) we see
that det(x : V → V ) = xdimK(V ) and ordR(det(x : V → V )) = dimK(V )ordR(x).
Thus the desired equality follows from Algebra, Lemma 10.121.7 in this case. □

Lemma 42.3.2.02QG Let R be a Noetherian local ring. Let x ∈ R. If M is a finite Cohen-
Macaulay module over R with dim(Supp(M)) = 1 and dim(Supp(M/xM)) = 0,
then

lengthR(M/xM) =
∑

i
lengthR(R/(x, qi))lengthRqi

(Mqi).

where q1, . . . , qt are the minimal primes of the support of M . If I ⊂ R is an ideal
such that x is a nonzerodivisor on R/I and dim(R/I) = 1, then

lengthR(R/(x, I)) =
∑

i
lengthR(R/(x, qi))lengthRqi

((R/I)qi)

where q1, . . . , qn are the minimal primes over I.

Proof. These are special cases of Lemma 42.3.1. □

Here is another case where we can determine the value of a multiplicity.

Lemma 42.3.3.0EAB Let R be a ring. Let M be an R-module. Let φ : M → M be an
endomorphism and n > 0 such that φn = 0 and such that Ker(φ)/ Im(φn−1) has
finite length as an R-module. Then

eR(M,φi, φn−i) = 0

for i = 0, . . . , n.

https://stacks.math.columbia.edu/tag/02QG
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Proof. The cases i = 0, n are trivial as φ0 = idM by convention. Let us think
of M as an R[t]-module where multiplication by t is given by φ. Let us write
Ki = Ker(ti : M →M) and
ai = lengthR(Ki/t

n−iM), bi = lengthR(Ki/tKi+1), ci = lengthR(K1/t
iKi+1)

Boundary values are a0 = an = b0 = c0 = 0. The ci are integers for i < n as
K1/t

iKi+1 is a quotient of K1/t
n−1M which is assumed to have finite length. We

will use frequently that Ki ∩ tjM = tjKi+j . For 0 < i < n − 1 we have an exact
sequence

0→ K1/t
n−i−1Kn−i → Ki+1/t

n−i−1M
t−→ Ki/t

n−iM → Ki/tKi+1 → 0
By induction on i we conclude that ai and bi are integers for i < n and that

cn−i−1 − ai+1 + ai − bi = 0
For 0 < i < n− 1 there is a short exact sequence

0→ Ki/tKi+1 → Ki+1/tKi+2
ti−→ K1/t

i+1Ki+2 → K1/t
iKi+1 → 0

which gives
bi − bi+1 + ci+1 − ci = 0

Since b0 = c0 we conclude that bi = ci for i < n. Then we see that
a2 = a1 + bn−2 − b1, a3 = a2 + bn−3 − b2, . . .

It is straighforward to see that this implies ai = an−i as desired. □

Lemma 42.3.4.0EAC Let (R,m) be a Noetherian local ring. Let (M,φ, ψ) be a (2, 1)-
periodic complex over R with M finite and with cohomology groups of finite length
over R. Let x ∈ R be such that dim(Supp(M/xM)) ≤ 0. Then

eR(M,xφ, ψ) = eR(M,φ, ψ)− eR(Im(φ), 0, x)
and

eR(M,φ, xψ) = eR(M,φ, ψ) + eR(Im(ψ), 0, x)

Proof. We will only prove the first formula as the second is proved in exactly the
same manner. Let M ′ = M [x∞] be the x-power torsion submodule of M . Consider
the short exact sequence 0 → M ′ → M → M ′′ → 0. Then M ′′ is x-power torsion
free (More on Algebra, Lemma 15.88.4). Since φ, ψ map M ′ into M ′ we obtain a
short exact sequence

0→ (M ′, φ′, ψ′)→ (M,φ, ψ)→ (M ′′, φ′′, ψ′′)→ 0
of (2, 1)-periodic complexes. Also, we get a short exact sequence 0→M ′∩Im(φ)→
Im(φ) → Im(φ′′) → 0. We have eR(M ′, φ, ψ) = eR(M ′, xφ, ψ) = eR(M ′ ∩
Im(φ), 0, x) = 0 by Lemma 42.2.5. By additivity (Lemma 42.2.3) we see that it
suffices to prove the lemma for (M ′′, φ′′, ψ′′). This reduces us to the case discussed
in the next paragraph.
Assume x : M → M is injective. In this case Ker(xφ) = Ker(φ). On the other
hand we have a short exact sequence

0→ Im(φ)/x Im(φ)→ Ker(ψ)/ Im(xφ)→ Ker(ψ)/ Im(φ)→ 0
This together with (42.2.2.1) proves the formula. □

https://stacks.math.columbia.edu/tag/0EAC
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42.4. Preparation for tame symbols

0EAD In this section we put some lemma that will help us define the tame symbol in the
next section.

Lemma 42.4.1.0EAE Let A be a Noetherian ring. Let m1, . . . ,mr be pairwise distinct
maximal ideals of A. For i = 1, . . . , r let φi : Ami → Bi be a ring map whose
kernel and cokernel are annihilated by a power of mi. Then there exists a ring map
φ : A→ B such that

(1) the localization of φ at mi is isomorphic to φi, and
(2) Ker(φ) and Coker(φ) are annihilated by a power of m1 ∩ . . . ∩mr.

Moreover, if each φi is finite, injective, or surjective then so is φ.

Proof. Set I = m1 ∩ . . . ∩ mr. Set Ai = Ami and A′ =
∏
Ai. Then IA′ =

∏
miAi

and A→ A′ is a flat ring map such that A/I ∼= A′/IA′. Thus we may use More on
Algebra, Lemma 15.89.16 to see that there exists an A-module map φ : A→ B with
φi isomorphic to the localization of φ at mi. Then we can use the discussion in More
on Algebra, Remark 15.89.19 to endow B with an A-algebra structure matching the
given A-algebra structure on Bi. The final statement of the lemma follows easily
from the fact that Ker(φ)mi ∼= Ker(φi) and Coker(φ)mi ∼= Coker(φi). □

The following lemma is very similar to Algebra, Lemma 10.119.3.

Lemma 42.4.2.02Q7 Let (R,m) be a Noetherian local ring of dimension 1. Let a, b ∈ R be
nonzerodivisors. There exists a finite ring extension R ⊂ R′ with R′/R annihilated
by a power of m and nonzerodivisors t, a′, b′ ∈ R′ such that a = ta′ and b = tb′ and
R′ = a′R′ + b′R′.

Proof. If a or b is a unit, then the lemma is true with R = R′. Thus we may
assume a, b ∈ m. Set I = (a, b). The idea is to blow up R in I. Instead of
doing the algebraic argument we work geometrically. Let X = Proj(

⊕
d≥0 I

d). By
Divisors, Lemma 31.32.4 the morphism X → Spec(R) is an isomorphism over the
punctured spectrum U = Spec(R) \ {m}. Thus we may and do view U as an open
subscheme of X. The morphism X → Spec(R) is projective by Divisors, Lemma
31.32.13. Also, every generic point of X lies in U , for example by Divisors, Lemma
31.32.10. It follows from Varieties, Lemma 33.17.2 that X → Spec(R) is finite.
Thus X = Spec(R′) is affine and R→ R′ is finite. We have Ra ∼= R′

a as U = D(a).
Hence a power of a annihilates the finite R-module R′/R. As m =

√
(a) we see

that R′/R is annihilated by a power of m. By Divisors, Lemma 31.32.4 we see that
IR′ is a locally principal ideal. Since R′ is semi-local we see that IR′ is principal,
see Algebra, Lemma 10.78.7, say IR′ = (t). Then we have a = a′t and b = b′t and
everything is clear. □

Lemma 42.4.3.0EAF Let (R,m) be a Noetherian local ring of dimension 1. Let a, b ∈ R
be nonzerodivisors with a ∈ m. There exists an integer n = n(R, a, b) such that for
a finite ring extension R ⊂ R′ if b = amc for some c ∈ R′, then m ≤ n.

Proof. Choose a minimal prime q ⊂ R. Observe that dim(R/q) = 1, in particular
R/q is not a field. We can choose a discrete valuation ring A dominating R/q with
the same fraction field, see Algebra, Lemma 10.119.1. Observe that a and b map to
nonzero elements of A as nonzerodivisors in R are not contained in q. Let v be the
discrete valuation on A. Then v(a) > 0 as a ∈ m. We claim n = v(b)/v(a) works.

https://stacks.math.columbia.edu/tag/0EAE
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Let R ⊂ R′ be given. Set A′ = A ⊗R R′. Since Spec(R′) → Spec(R) is surjective
(Algebra, Lemma 10.36.17) also Spec(A′)→ Spec(A) is surjective (Algebra, Lemma
10.30.3). Pick a prime q′ ⊂ A′ lying over (0) ⊂ A. Then A ⊂ A′′ = A′/q′ is a
finite extension of rings (again inducing a surjection on spectra). Pick a maximal
ideal m′′ ⊂ A′′ lying over the maximal ideal of A and a discrete valuation ring A′′′

dominating A′′
m′′ (see lemma cited above). Then A→ A′′′ is an extension of discrete

valuation rings and we have b = amc in A′′′. Thus v′′′(b) ≥ mv′′′(a). Since v′′′ = ev
where e is the ramification index of A′′′/A, we find that m ≤ n as desired. □

Lemma 42.4.4.0EAG Let (A,m) be a Noetherian local ring of dimension 1. Let r ≥ 2
and let a1, . . . , ar ∈ A be nonzerodivisors not all units. Then there exist

(1) a finite ring extension A ⊂ B with B/A annihilated by a power of m,
(2) for each maximal ideal mj ⊂ B a nonzerodivisor πj ∈ Bj = Bmj , and
(3) factorizations ai = ui,jπ

ei,j
j in Bj with ui,j ∈ Bj units and ei,j ≥ 0.

Proof. Since at least one ai is not a unit we find that m is not an associated prime
of A. Moreover, for any A ⊂ B as in the statement m is not an associated prime
of B and mj is not an associate prime of Bj . Keeping this in mind will help check
the arguments below.
First, we claim that it suffices to prove the lemma for r = 2. We will argue this by
induction on r; we suggest the reader skip the proof. Suppose we are given A ⊂ B
and πj in Bj = Bmj and factorizations ai = ui,jπ

ei,j
j for i = 1, . . . , r− 1 in Bj with

ui,j ∈ Bj units and ei,j ≥ 0. Then by the case r = 2 for πj and ar in Bj we can
find extensions Bj ⊂ Cj and for every maximal ideal mj,k of Cj a nonzerodivisor
πj,k ∈ Cj,k = (Cj)mj,k and factorizations

πj = vj,kπ
fj,k
j,k and ar = wj,kπ

gj,k
j,k

as in the lemma. There exists a unique finite extension B ⊂ C with C/B annihilated
by a power of m such that Cj ∼= Cmj for all j, see Lemma 42.4.1. The maximal
ideals of C correspond 1-to-1 to the maximal ideals mj,k in the localizations and in
these localizations we have

ai = ui,jπ
ei,j
j = ui,jv

ei,j
j,k π

ei,jfj,k
j,k

for i ≤ r − 1. Since ar factors correctly too the proof of the induction step is
complete.
Proof of the case r = 2. We will use induction on

ℓ = min(lengthA(A/a1A), lengthA(A/a2A)).
If ℓ = 0, then either a1 or a2 is a unit and the lemma holds with A = B. Thus we
may and do assume ℓ > 0.
Suppose we have a finite extension of rings A ⊂ A′ such that A′/A is annihilated by
a power of m and such that m is not an associated prime of A′. Let m1, . . . ,mr ⊂ A′

be the maximal ideals and set A′
i = A′

mi . If we can solve the problem for a1, a2
in each A′

i, then we can apply Lemma 42.4.1 to produce a solution for a1, a2 in A.
Choose x ∈ {a1, a2} such that ℓ = lengthA(A/xA). By Lemma 42.2.5 and (42.2.2.1)
we have lengthA(A/xA) = lengthA(A′/xA′). On the other hand, we have

lengthA(A′/xA′) =
∑

[κ(mi) : κ(m)]lengthA′
i
(A′

i/xA
′
i)

https://stacks.math.columbia.edu/tag/0EAG
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by Algebra, Lemma 10.52.12. Since x ∈ m we see that each term on the right hand
side is positive. We conclude that the induction hypothesis applies to a1, a2 in each
A′
i if r > 1 or if r = 1 and [κ(m1) : κ(m)] > 1. We conclude that we may assume

each A′ as above is local with the same residue field as A.
Applying the discussion of the previous paragraph, we may replace A by the ring
constructed in Lemma 42.4.2 for a1, a2 ∈ A. Then since A is local we find, after
possibly switching a1 and a2, that a2 ∈ (a1). Write a2 = am1 c with m > 0 maximal.
In fact, by Lemma 42.4.3 we may assume m is maximal even after replacing A by
any finite extension A ⊂ A′ as in the previous paragraph. If c is a unit, then we
are done. If not, then we replace A by the ring constructed in Lemma 42.4.2 for
a1, c ∈ A. Then either (1) c = a1c

′ or (2) a1 = ca′
1. The first case cannot happen

since it would give a2 = am+1
1 c′ contradicting the maximality of m. In the second

case we get a1 = ca′
1 and a2 = cm+1(a′

1)m. Then it suffices to prove the lemma for
A and c, a′

1. If a′
1 is a unit we’re done and if not, then lengthA(A/cA) < ℓ because

cA is a strictly bigger ideal than a1A. Thus we win by induction hypothesis. □

42.5. Tame symbols

0EAH Consider a Noetherian local ring (A,m) of dimension 1. We denote Q(A) the total
ring of fractions of A, see Algebra, Example 10.9.8. The tame symbol will be a map

∂A(−,−) : Q(A)∗ ×Q(A)∗ −→ κ(m)∗

satisfying the following properties:
(1) ∂A(f, gh) = ∂A(f, g)∂A(f, h)0EAI for f, g, h ∈ Q(A)∗,
(2) ∂A(f, g)∂A(g, f) = 10EAJ for f, g ∈ Q(A)∗,
(3) ∂A(f, 1− f) = 10EAK for f ∈ Q(A)∗ such that 1− f ∈ Q(A)∗,
(4) ∂A(aa′, b) = ∂A(a, b)∂A(a′, b)0EAL and ∂A(a, bb′) = ∂A(a, b)∂A(a, b′) for a, a′, b, b′ ∈

A nonzerodivisors,
(5) ∂A(b, b) = (−1)m0EAM with m = lengthA(A/bA) for b ∈ A a nonzerodivisor,
(6) ∂A(u, b) = um mod m0EAN with m = lengthA(A/bA) for u ∈ A a unit and

b ∈ A a nonzerodivisor, and
(7)0EAP ∂A(a, b− a)∂A(b, b) = ∂A(b, b− a)∂A(a, b) for a, b ∈ A such that a, b, b− a

are nonzerodivisors.
Since it is easier to work with elements of A we will often think of ∂A as a map
defined on pairs of nonzerodivisors of A satisfying (4), (5), (6), (7). It is an exercise
to see that setting

∂A(a
b
,
c

d
) = ∂A(a, c)∂A(a, d)−1∂A(b, c)−1∂A(b, d)

we get a well defined map Q(A)∗ ×Q(A)∗ → κ(m)∗ satisfying (1), (2), (3) as well
as the other properties.
We do not claim there is a unique map with these properties. Instead, we will give
a recipe for constructing such a map. Namely, given a1, a2 ∈ A nonzerodivisors, we
choose a ring extension A ⊂ B and local factorizations as in Lemma 42.4.4. Then
we define
(42.5.0.1)0EAQ ∂A(a1, a2) =

∏
j

Normκ(mj)/κ(m)((−1)e1,je2,ju
e2,j
1,j u

−e1,j
2,j mod mj)mj

where mj = lengthBj (Bj/πjBj) and the product is taken over the maximal ideals
m1, . . . ,mr of B.
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Lemma 42.5.1.0EAR The formula (42.5.0.1) determines a well defined element of κ(m)∗.
In other words, the right hand side does not depend on the choice of the local
factorizations or the choice of B.

Proof. Independence of choice of factorizations. Suppose we have a Noetherian
1-dimensional local ring B, elements a1, a2 ∈ B, and nonzerodivisors π, θ such that
we can write

a1 = u1π
e1 = v1θ

f1 , a2 = u2π
e2 = v2θ

f2

with ei, fi ≥ 0 integers and ui, vi units in B. Observe that this implies

ae2
1 = ue2

1 u
−e1
2 ae1

2 , af2
1 = vf2

1 v−f1
2 af1

2

On the other hand, setting m = lengthB(B/πB) and k = lengthB(B/θB) we find
e2m = lengthB(B/a2B) = f2k. Expanding ae2m

1 = af2k
1 using the above we find

(ue2
1 u

−e1
2 )m = (vf2

1 v−f1
2 )k

This proves the desired equality up to signs. To see the signs work out we have to
show me1e2 is even if and only if kf1f2 is even. This follows as both me2 = kf2
and me1 = kf1 (same argument as above).

Independence of choice of B. Suppose given two extensions A ⊂ B and A ⊂ B′ as
in Lemma 42.4.4. Then

C = (B ⊗A B′)/(m-power torsion)

will be a third one. Thus we may assume we have A ⊂ B ⊂ C and factorizations
over the local rings of B and we have to show that using the same factorizations over
the local rings of C gives the same element of κ(m). By transitivity of norms (Fields,
Lemma 9.20.5) this comes down to the following problem: if B is a Noetherian local
ring of dimension 1 and π ∈ B is a nonzerodivisor, then

λm =
∏

Normκk/κ(λ)mk

Here we have used the following notation: (1) κ is the residue field of B, (2) λ is an
element of κ, (3) mk ⊂ C are the maximal ideals of C, (4) κk = κ(mk) is the residue
field of Ck = Cmk , (5) m = lengthB(B/πB), and (6) mk = lengthCk(Ck/πCk).
The displayed equality holds because Normκk/κ(λ) = λ[κk:κ] as λ ∈ κ and because
m =

∑
mk[κk : κ]. First, we have m = lengthB(B/xB) = lengthB(C/πC) by

Lemma 42.2.5 and (42.2.2.1). Finally, we have lengthB(C/πC) =
∑
mk[κk : κ] by

Algebra, Lemma 10.52.12. □

Lemma 42.5.2.0EAS The tame symbol (42.5.0.1) satisfies (4), (5), (6), (7) and hence
gives a map ∂A : Q(A)∗ ×Q(A)∗ → κ(m)∗ satisfying (1), (2), (3).

Proof. Let us prove (4). Let a1, a2, a3 ∈ A be nonzerodivisors. Choose A ⊂ B as
in Lemma 42.4.4 for a1, a2, a3. Then the equality

∂A(a1a2, a3) = ∂A(a1, a3)∂A(a2, a3)

follows from the equality

(−1)(e1,j+e2,j)e3,j (u1,ju2,j)e3,ju
−e1,j−e2,j
3,j = (−1)e1,je3,ju

e3,j
1,j u

−e1,j
3,j (−1)e2,je3,ju

e3,j
2,j u

−e2,j
3,j

in Bj . Properties (5) and (6) are equally immediate.

https://stacks.math.columbia.edu/tag/0EAR
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Let us prove (7). Let a1, a2, a1 − a2 ∈ A be nonzerodivisors and set a3 = a1 − a2.
Choose A ⊂ B as in Lemma 42.4.4 for a1, a2, a3. Then it suffices to show

(−1)e1,je2,j+e1,je3,j+e2,je3,j+e2,ju
e2,j−e3,j
1,j u

e3,j−e1,j
2,j u

e1,j−e2,j
3,j mod mj = 1

This is clear if e1,j = e2,j = e3,j . Say e1,j > e2,j . Then we see that e3,j = e2,j
because a3 = a1 − a2 and we see that u3,j has the same residue class as −u2,j .
Hence the formula is true – the signs work out as well and this verification is the
reason for the choice of signs in (42.5.0.1). The other cases are handled in exactly
the same manner. □

Lemma 42.5.3.0EAT Let (A,m) be a Noetherian local ring of dimension 1. Let A ⊂ B
be a finite ring extension with B/A annihilated by a power of m and m not an
associated prime of B. For a, b ∈ A nonzerodivisors we have

∂A(a, b) =
∏

Normκ(mj)/κ(m)(∂Bj (a, b))

where the product is over the maximal ideals mj of B and Bj = Bmj .

Proof. Choose Bj ⊂ Cj as in Lemma 42.4.4 for a, b. By Lemma 42.4.1 we can
choose a finite ring extension B ⊂ C with Cj ∼= Cmj for all j. Let mj,k ⊂ C be the
maximal ideals of C lying over mj . Let

a = uj,kπ
fj,k
j,k , b = vj,kπ

gj,k
j,k

be the local factorizations which exist by our choice of Cj ∼= Cmj . By definition we
have

∂A(a, b) =
∏

j,k
Normκ(mj,k)/κ(m)((−1)fj,kgj,kugj,kj,k v

−fj,k
j,k mod mj,k)mj,k

and
∂Bj (a, b) =

∏
k

Normκ(mj,k)/κ(mj)((−1)fj,kgj,kugj,kj,k v
−fj,k
j,k mod mj,k)mj,k

The result follows by transitivity of norms for κ(mj,k)/κ(mj)/κ(m), see Fields,
Lemma 9.20.5. □

Lemma 42.5.4.0EPG Let (A,m, κ) → (A′,m′, κ′) be a local homomorphism of Noe-
therian local rings. Assume A → A′ is flat and dim(A) = dim(A′) = 1. Set
m = lengthA′(A′/mA′). For a1, a2 ∈ A nonzerodivisors ∂A(a1, a2)m maps to
∂A′(a1, a2) via κ→ κ′.

Proof. If a1, a2 are both units, then ∂A(a1, a2) = 1 and ∂A′(a1, a2) = 1 and the
result is true. If not, then we can choose a ring extension A ⊂ B and local fac-
torizations as in Lemma 42.4.4. Denote m1, . . . ,mm be the maximal ideals of B.
Let m1, . . . ,mm be the maximal ideals of B with residue fields κ1, . . . , κm. For
each j ∈ {1, . . . ,m} denote πj ∈ Bj = Bmj a nonzerodivisor such that we have
factorizations ai = ui,jπ

ei,j
j as in the lemma. By definition we have

∂A(a1, a2) =
∏

j
Normκj/κ((−1)e1,je2,ju

e2,j
1,j u

−e1,j
2,j mod mj)mj

where mj = lengthBj (Bj/πjBj).

Set B′ = A′ ⊗A B. Since A′ is flat over A we see that A′ ⊂ B′ is a ring extension
with B′/A′ annihilated by a power of m′. Let

m′
j,l, l = 1, . . . , nj

https://stacks.math.columbia.edu/tag/0EAT
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be the maximal ideals of B′ lying over mj . Denote κ′
j,l the residue field of m′

j,l.
Denote B′

j,l the localization of B′ at m′
j,l. As factorizations of a1 and a2 in B′

j,l we
use the image of the factorizations ai = ui,jπ

ei,j
j given to us in Bj . By definition

we have
∂A′(a1, a2) =

∏
j,l

Normκ′
j,l
/κ′((−1)e1,je2,ju

e2,j
1,j u

−e1,j
2,j mod m′

j,l)m
′
j,l

where m′
j,l = lengthB′

j,l
(B′

j,l/πjB
′
j,l).

Comparing the formulae above we see that it suffices to show that for each j and
for any unit u ∈ Bj we have

(42.5.4.1)0GU1
(
Normκj/κ(u mod mj)mj

)m =
∏

l
Normκ′

j,l
/κ′(u mod m′

j,l)m
′
j,l

in κ′. We are going to use the construction of determinants of endomorphisms
of finite length modules in More on Algebra, Section 15.120 to prove this. Set
M = Bj/πjBj . By More on Algebra, Lemma 15.120.2 we have

Normκj/κ(u mod mj)mj = detκ(u : M →M)
Thus, by More on Algebra, Lemma 15.120.3, the left hand side of (42.5.4.1) is equal
to detκ′(u : M ⊗A A′ →M ⊗A A′). We have an isomorphism

M ⊗A A′ = (Bj/πjBj)⊗A A′ =
⊕

l
B′
j,l/πjB

′
j,l

of A′-modules. Setting M ′
l = B′

j,l/πjB
′
j,l we see that Normκ′

j,l
/κ′(u mod m′

j,l)m
′
j,l =

detκ′(uj : M ′
l →M ′

l ) by More on Algebra, Lemma 15.120.2 again. Hence (42.5.4.1)
holds by multiplicativity of the determinant construction, see More on Algebra,
Lemma 15.120.1. □

42.6. A key lemma

0EAU In this section we apply the results above to prove Lemma 42.6.3. This lemma is
a low degree case of the statement that there is a complex for Milnor K-theory
similar to the Gersten-Quillen complex in Quillen’s K-theory. See Remark 42.6.4.

Lemma 42.6.1.0EAV Let (A,m) be a 2-dimensional Noetherian local ring. Let t ∈ m be a
nonzerodivisor. Say V (t) = {m, q1, . . . , qr}. Let Aqi ⊂ Bi be a finite ring extension
with Bi/Aqi annihilated by a power of t. Then there exists a finite extension A ⊂ B
of local rings identifying residue fields with Bi ∼= Bqi and B/A annihilated by a
power of t.

Proof. Choose n > 0 such that Bi ⊂ t−nAqi . Let M ⊂ t−nA, resp. M ′ ⊂ t−2nA be
the A-submodule consisting of elements mapping to Bi in t−nAqi , resp. t−2nAqi .
Then M ⊂ M ′ are finite A-modules as A is Noetherian and Mqi = M ′

qi = Bi as
localization is exact. Thus M ′/M is annihilated by mc for some c > 0. Observe
that M ·M ⊂M ′ under the multiplication t−nA× t−nA→ t−2nA. Hence B = A+
mc+1M is a finite A-algebra with the correct localizations. We omit the verification
that B is local with maximal ideal m + mc+1M . □

Lemma 42.6.2.0EAW Let (A,m) be a 2-dimensional Noetherian local ring. Let a, b ∈ A
be nonzerodivisors. Then we have∑

ordA/q(∂Aq
(a, b)) = 0

where the sum is over the height 1 primes q of A.

https://stacks.math.columbia.edu/tag/0EAV
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Proof. If q is a height 1 prime of A such that a, b map to a unit of Aq, then
∂Aq

(a, b) = 1. Thus the sum is finite. In fact, if V (ab) = {m, q1, . . . , qr} then the
sum is over i = 1, . . . , r. For each i we pick an extension Aqi ⊂ Bi as in Lemma
42.4.4 for a, b. By Lemma 42.6.1 with t = ab and the given list of primes we may
assume we have a finite local extension A ⊂ B with B/A annihilated by a power of
ab and such that for each i the Bqi

∼= Bi. Observe that if qi,j are the primes of B
lying over qi then we have

ordA/qi(∂Aqi
(a, b)) =

∑
j

ordB/qi,j (∂Bqi,j
(a, b))

by Lemma 42.5.3 and Algebra, Lemma 10.121.8. Thus we may replace A by B and
reduce to the case discussed in the next paragraph.

Assume for each i there is a nonzerodivisor πi ∈ Aqi and units ui, vi ∈ Aqi such
that for some integers ei, fi ≥ 0 we have

a = uiπ
ei
i , b = viπ

fi
i

in Aqi . Setting mi = lengthAqi
(Aqi/πi) we have ∂Aqi

(a, b) = ((−1)eifiufii v
−ei
i )mi

by definition. Since a, b are nonzerodivisors the (2, 1)-periodic complex (A/(ab), a, b)
has vanishing cohomology. Denote Mi the image of A/(ab) in Aqi/(ab). Then we
have a map

A/(ab) −→
⊕

Mi

whose kernel and cokernel are supported in {m} and hence have finite length. Thus
we see that ∑

eA(Mi, a, b) = 0

by Lemma 42.2.5. Hence it suffices to show eA(Mi, a, b) = −ordA/qi(∂Aqi
(a, b)).

Let us prove this first, in case πi, ui, vi are the images of elements πi, ui, vi ∈ A
(using the same symbols should not cause any confusion). In this case we get

eA(Mi, a, b) = eA(Mi, uiπ
ei
i , viπ

fi
i )

= eA(Mi, π
ei
i , π

fi
i )− eA(πeii Mi, 0, ui) + eA(πfii Mi, 0, vi)

= 0− fimiordA/qi(ui) + eimiordA/qi(vi)

= −miordA/qi(u
fi
i v

−ei
i ) = −ordA/qi(∂Aqi

(a, b))

The second equality holds by Lemma 42.3.4. Observe thatMi ⊂ (Mi)qi = Aqi/(π
ei+fi
i )

and (πeii Mi)qi ∼= Aqi/π
fi
i and (πfii Mi)qi ∼= Aqi/π

ei
i . The 0 in the third equality

comes from Lemma 42.3.3 and the other two terms come from Lemma 42.3.1. The
last two equalities follow from multiplicativity of the order function and from the
definition of our tame symbol.

In general, we may first choose c ∈ A, c ̸∈ qi such that cπi ∈ A. After replacing πi
by cπi and ui by c−eiui and vi by c−fivi we may and do assume πi is in A. Next,
choose an c ∈ A, c ̸∈ qi with cui, cvi ∈ A. Then we observe that

eA(Mi, ca, cb) = eA(Mi, a, b)− eA(aMi, 0, c) + eA(bMi, 0, c)

by Lemma 42.3.1. On the other hand, we have

∂Aqi
(ca, cb) = cmi(fi−ei)∂Aqi

(a, b)
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in κ(qi)∗ because c is a unit in Aqi . The arguments in the previous paragraph show
that eA(Mi, ca, cb) = −ordA/qi(∂Aqi

(ca, cb)). Thus it suffices to prove

eA(aMi, 0, c) = ordA/qi(cmifi) and eA(bMi, 0, c) = ordA/qi(cmiei)
and this follows from Lemma 42.3.1 by the description (see above) of what happens
when we localize at qi. □

Lemma 42.6.3 (Key Lemma).0EAX When A is an
excellent ring this is
[Kat86, Proposition
1].

Let A be a 2-dimensional Noetherian local domain
with fraction field K. Let f, g ∈ K∗. Let q1, . . . , qt be the height 1 primes q of A
such that either f or g is not an element of A∗

q. Then we have∑
i=1,...,t

ordA/qi(∂Aqi
(f, g)) = 0

We can also write this as∑
height(q)=1

ordA/q(∂Aq
(f, g)) = 0

since at any height 1 prime q of A where f, g ∈ A∗
q we have ∂Aq

(f, g) = 1.
Proof. Since the tame symbols ∂Aq

(f, g) are bilinear and the order functions ordA/q
are additive it suffices to prove the formula when f and g are elements of A. This
case is proven in Lemma 42.6.2. □

Remark 42.6.4 (Milnor K-theory).0EAY For a field k let us denote KM
∗ (k) the quotient

of the tensor algebra on k∗ divided by the two-sided ideal generated by the elements
x⊗ 1− x for x ∈ k \ {0, 1}. Thus KM

0 (k) = Z, KM
1 (k) = k∗, and

KM
2 (k) = k∗ ⊗Z k

∗/⟨x⊗ 1− x⟩
If A is a discrete valuation ring with fraction field F = Frac(A) and residue field κ,
there is a tame symbol

∂A : KM
i+1(F )→ KM

i (κ)
defined as in Section 42.5; see [Kat86]. More generally, this map can be extended
to the case where A is an excellent local domain of dimension 1 using normalization
and norm maps on KM

i , see [Kat86]; presumably the method in Section 42.5 can be
used to extend the construction of the tame symbol ∂A to arbitrary Noetherian local
domains A of dimension 1. Next, let X be a Noetherian scheme with a dimension
function δ. Then we can use these tame symbols to get the arrows in the following:⊕

δ(x)=j+1
KM
i+1(κ(x)) −→

⊕
δ(x)=j

KM
i (κ(x)) −→

⊕
δ(x)=j−1

KM
i−1(κ(x))

However, it is not clear, that the composition is zero, i.e., that we obtain a complex
of abelian groups. For excellent X this is shown in [Kat86]. When i = 1 and j
arbitrary, this follows from Lemma 42.6.3.

42.7. Setup

02QK We will throughout work over a locally Noetherian universally catenary base S
endowed with a dimension function δ. Although it is likely possible to generalize
(parts of) the discussion in the chapter, it seems that this is a good first approxima-
tion. It is exactly the generality discussed in [Tho90]. We usually do not assume
our schemes are separated or quasi-compact. Many interesting algebraic stacks
are non-separated and/or non-quasi-compact and this is a good case study to see
how to develop a reasonable theory for those as well. In order to reference these
hypotheses we give it a number.

https://stacks.math.columbia.edu/tag/0EAX
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Situation 42.7.1.02QL Here S is a locally Noetherian, and universally catenary scheme.
Moreover, we assume S is endowed with a dimension function δ : S −→ Z.

See Morphisms, Definition 29.17.1 for the notion of a universally catenary scheme,
and see Topology, Definition 5.20.1 for the notion of a dimension function. Recall
that any locally Noetherian catenary scheme locally has a dimension function, see
Properties, Lemma 28.11.3. Moreover, there are lots of schemes which are univer-
sally catenary, see Morphisms, Lemma 29.17.5.

Let (S, δ) be as in Situation 42.7.1. Any scheme X locally of finite type over S is
locally Noetherian and catenary. In fact, X has a canonical dimension function

δ = δX/S : X −→ Z

associated to (f : X → S, δ) given by the rule δX/S(x) = δ(f(x))+trdegκ(f(x))κ(x).
See Morphisms, Lemma 29.52.3. Moreover, if h : X → Y is a morphism of schemes
locally of finite type over S, and x ∈ X, y = h(x), then obviously δX/S(x) =
δY/S(y) + trdegκ(y)κ(x). We will freely use this function and its properties in the
following.

Here are the basic examples of setups as above. In fact, the main interest lies in
the case where the base is the spectrum of a field, or the case where the base is the
spectrum of a Dedekind ring (e.g. Z, or a discrete valuation ring).

Example 42.7.2.02QM Here S = Spec(k) and k is a field. We set δ(pt) = 0 where pt
indicates the unique point of S. The pair (S, δ) is an example of a situation as in
Situation 42.7.1 by Morphisms, Lemma 29.17.5.

Example 42.7.3.02QN Here S = Spec(A), where A is a Noetherian domain of dimension
1. For example we could consider A = Z. We set δ(p) = 0 if p is a maximal ideal
and δ(p) = 1 if p = (0) corresponds to the generic point. This is an example of
Situation 42.7.1 by Morphisms, Lemma 29.17.5.

Example 42.7.4.0F91 Here S is a Cohen-Macaulay scheme. Then S is universally
catenary by Morphisms, Lemma 29.17.5. We set δ(s) = −dim(OS,s). If s′ ⇝
s is a nontrivial specialization of points of S, then OS,s′ is the localization of
OS,s at a nonmaximal prime ideal p ⊂ OS,s, see Schemes, Lemma 26.13.2. Thus
dim(OS,s) = dim(OS,s′) + dim(OS,s/p) > dim(OS,s′) by Algebra, Lemma 10.104.4.
Hence δ(s′) > δ(s). If s′ ⇝ s is an immediate specialization, then there is no prime
ideal strictly between p and ms and we find δ(s′) = δ(s) + 1. Thus δ is a dimension
function. In other words, the pair (S, δ) is an example of Situation 42.7.1.

If S is Jacobson and δ sends closed points to zero, then δ is the function sending a
point to the dimension of its closure.

Lemma 42.7.5.02QO Let (S, δ) be as in Situation 42.7.1. Assume in addition S is a
Jacobson scheme, and δ(s) = 0 for every closed point s of S. Let X be locally of
finite type over S. Let Z ⊂ X be an integral closed subscheme and let ξ ∈ Z be its
generic point. The following integers are the same:

(1) δX/S(ξ),
(2) dim(Z), and
(3) dim(OZ,z) where z is a closed point of Z.

https://stacks.math.columbia.edu/tag/02QL
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Proof. Let X → S, ξ ∈ Z ⊂ X be as in the lemma. Since X is locally of finite type
over S we see that X is Jacobson, see Morphisms, Lemma 29.16.9. Hence closed
points of X are dense in every closed subset of Z and map to closed points of S.
Hence given any chain of irreducible closed subsets of Z we can end it with a closed
point of Z. It follows that dim(Z) = supz(dim(OZ,z) (see Properties, Lemma
28.10.3) where z ∈ Z runs over the closed points of Z. Note that dim(OZ,z) =
δ(ξ) − δ(z) by the properties of a dimension function. For each closed z ∈ Z
the field extension κ(z)/κ(f(z)) is finite, see Morphisms, Lemma 29.16.8. Hence
δX/S(z) = δ(f(z)) = 0 for z ∈ Z closed. It follows that all three integers are
equal. □

In the situation of the lemma above the value of δ at the generic point of a closed
irreducible subset is the dimension of the irreducible closed subset. However, in
general we cannot expect the equality to hold. For example if S = Spec(C[[t]])
and X = Spec(C((t))) then we would get δ(x) = 1 for the unique point of X,
but dim(X) = 0. Still we want to think of δX/S as giving the dimension of the
irreducible closed subschemes. Thus we introduce the following terminology.
Definition 42.7.6.02QP Let (S, δ) as in Situation 42.7.1. For any scheme X locally of
finite type over S and any irreducible closed subset Z ⊂ X we define

dimδ(Z) = δ(ξ)
where ξ ∈ Z is the generic point of Z. We will call this the δ-dimension of Z. If
Z is a closed subscheme of X, then we define dimδ(Z) as the supremum of the
δ-dimensions of its irreducible components.

42.8. Cycles

02QQ Since we are not assuming our schemes are quasi-compact we have to be a little
careful when defining cycles. We have to allow infinite sums because a rational
function may have infinitely many poles for example. In any case, if X is quasi-
compact then a cycle is a finite sum as usual.
Definition 42.8.1.02QR Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let k ∈ Z.

(1) A cycle on X is a formal sum

α =
∑

nZ [Z]
where the sum is over integral closed subschemes Z ⊂ X, each nZ ∈ Z, and
the collection {Z;nZ ̸= 0} is locally finite (Topology, Definition 5.28.4).

(2) A k-cycle on X is a cycle

α =
∑

nZ [Z]

where nZ ̸= 0⇒ dimδ(Z) = k.
(3) The abelian group of all k-cycles on X is denoted Zk(X).

In other words, a k-cycle on X is a locally finite formal Z-linear combination of
integral closed subschemes of δ-dimension k. Addition of k-cycles α =

∑
nZ [Z]

and β =
∑
mZ [Z] is given by

α+ β =
∑

(nZ +mZ)[Z],
i.e., by adding the coefficients.

https://stacks.math.columbia.edu/tag/02QP
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Remark 42.8.2.0GU2 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let k ∈ Z. Then we can write

Zk(X) =
⊕′

δ(x)=k
KM

0 (κ(x)) ⊂
⊕

δ(x)=k
KM

0 (κ(x))

with the following notation and conventions:
(1) KM

0 (κ(x)) = Z is the degree 0 part of the Milnor K-theory of the residue
field κ(x) of the point x ∈ X (see Remark 42.6.4), and

(2) the direct sum on the right is over all points x ∈ X with δ(x) = k,
(3) the notation

⊕′
x signifies that we consider the subgroup consisting of

locally finite elements; namely, elements
∑
x nx such that for every quasi-

compact open U ⊂ X the set of x ∈ U with nx ̸= 0 is finite.

Definition 42.8.3.0H46 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. The support of a cycle α =

∑
nZ [Z] on X is

Supp(α) =
⋃

nZ ̸=0
Z ⊂ X

Since the collection {Z;nZ ̸= 0} is locally finite we see that Supp(α) is a closed
subset of X. If α is a k-cycle, then every irreducible component Z of Supp(α) has
δ-dimension k.

Definition 42.8.4.0H47 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. A cycle α on X is effective if it can be written as α =

∑
nZ [Z] with

nZ ≥ 0 for all Z.

The set of all effective cycles is a monoid because the sum of two effective cycles is
effective, but it is not a group (unless X = ∅).

42.9. Cycle associated to a closed subscheme

02QS
Lemma 42.9.1.02QT Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let Z ⊂ X be a closed subscheme.

(1) Let Z ′ ⊂ Z be an irreducible component and let ξ ∈ Z ′ be its generic
point. Then

lengthOX,ξ
OZ,ξ <∞

(2) If dimδ(Z) ≤ k and ξ ∈ Z with δ(ξ) = k, then ξ is a generic point of an
irreducible component of Z.

Proof. Let Z ′ ⊂ Z, ξ ∈ Z ′ be as in (1). Then dim(OZ,ξ) = 0 (for example by
Properties, Lemma 28.10.3). Hence OZ,ξ is Noetherian local ring of dimension zero,
and hence has finite length over itself (see Algebra, Proposition 10.60.7). Hence, it
also has finite length over OX,ξ, see Algebra, Lemma 10.52.5.

Assume ξ ∈ Z and δ(ξ) = k. Consider the closure Z ′ = {ξ}. It is an irreducible
closed subscheme with dimδ(Z ′) = k by definition. Since dimδ(Z) = k it must be
an irreducible component of Z. Hence we see (2) holds. □

Definition 42.9.2.02QU Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let Z ⊂ X be a closed subscheme.

https://stacks.math.columbia.edu/tag/0GU2
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(1) For any irreducible component Z ′ ⊂ Z with generic point ξ the integer
mZ′,Z = lengthOX,ξ

OZ,ξ (Lemma 42.9.1) is called the multiplicity of Z ′

in Z.
(2) Assume dimδ(Z) ≤ k. The k-cycle associated to Z is

[Z]k =
∑

mZ′,Z [Z ′]

where the sum is over the irreducible components of Z of δ-dimension k.
(This is a k-cycle by Divisors, Lemma 31.26.1.)

It is important to note that we only define [Z]k if the δ-dimension of Z does not
exceed k. In other words, by convention, if we write [Z]k then this implies that
dimδ(Z) ≤ k.

42.10. Cycle associated to a coherent sheaf

02QV
Lemma 42.10.1.02QW Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let F be a coherent OX -module.

(1) The collection of irreducible components of the support of F is locally
finite.

(2) Let Z ′ ⊂ Supp(F) be an irreducible component and let ξ ∈ Z ′ be its
generic point. Then

lengthOX,ξ
Fξ <∞

(3) If dimδ(Supp(F)) ≤ k and ξ ∈ Z with δ(ξ) = k, then ξ is a generic point
of an irreducible component of Supp(F).

Proof. By Cohomology of Schemes, Lemma 30.9.7 the support Z of F is a closed
subset of X. We may think of Z as a reduced closed subscheme of X (Schemes,
Lemma 26.12.4). Hence (1) follows from Divisors, Lemma 31.26.1 applied to Z and
(3) follows from Lemma 42.9.1 applied to Z.
Let ξ ∈ Z ′ be as in (2). In this case for any specialization ξ′ ⇝ ξ in X we have
Fξ′ = 0. Recall that the non-maximal primes of OX,ξ correspond to the points of
X specializing to ξ (Schemes, Lemma 26.13.2). Hence Fξ is a finite OX,ξ-module
whose support is {mξ}. Hence it has finite length by Algebra, Lemma 10.62.3. □

Definition 42.10.2.02QX Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let F be a coherent OX -module.

(1) For any irreducible component Z ′ ⊂ Supp(F) with generic point ξ the
integer mZ′,F = lengthOX,ξ

Fξ (Lemma 42.10.1) is called the multiplicity
of Z ′ in F .

(2) Assume dimδ(Supp(F)) ≤ k. The k-cycle associated to F is

[F ]k =
∑

mZ′,F [Z ′]

where the sum is over the irreducible components of Supp(F) of δ-dimension
k. (This is a k-cycle by Lemma 42.10.1.)

It is important to note that we only define [F ]k if F is coherent and the δ-dimension
of Supp(F) does not exceed k. In other words, by convention, if we write [F ]k then
this implies that F is coherent on X and dimδ(Supp(F)) ≤ k.
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Lemma 42.10.3.02QY Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let Z ⊂ X be a closed subscheme. If dimδ(Z) ≤ k, then [Z]k = [OZ ]k.

Proof. This is because in this case the multiplicities mZ′,Z and mZ′,OZ
agree by

definition. □

Lemma 42.10.4.02QZ Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let 0 → F → G → H → 0 be a short exact sequence of coherent sheaves
on X. Assume that the δ-dimension of the supports of F , G, and H is ≤ k. Then
[G]k = [F ]k + [H]k.

Proof. Follows immediately from additivity of lengths, see Algebra, Lemma 10.52.3.
□

42.11. Preparation for proper pushforward

02R0
Lemma 42.11.1.02R1 Let (S, δ) be as in Situation 42.7.1. Let X, Y be locally of
finite type over S. Let f : X → Y be a morphism. Assume X, Y integral and
dimδ(X) = dimδ(Y ). Then either f(X) is contained in a proper closed subscheme
of Y , or f is dominant and the extension of function fields R(X)/R(Y ) is finite.

Proof. The closure f(X) ⊂ Y is irreducible as X is irreducible (Topology, Lemmas
5.8.2 and 5.8.3). If f(X) ̸= Y , then we are done. If f(X) = Y , then f is dominant
and by Morphisms, Lemma 29.8.6 we see that the generic point ηY of Y is in the
image of f . Of course this implies that f(ηX) = ηY , where ηX ∈ X is the generic
point of X. Since δ(ηX) = δ(ηY ) we see that R(Y ) = κ(ηY ) ⊂ κ(ηX) = R(X) is an
extension of transcendence degree 0. Hence R(Y ) ⊂ R(X) is a finite extension by
Morphisms, Lemma 29.51.7 (which applies by Morphisms, Lemma 29.15.8). □

Lemma 42.11.2.02R2 Let (S, δ) be as in Situation 42.7.1. Let X, Y be locally of finite
type over S. Let f : X → Y be a morphism. Assume f is quasi-compact, and
{Zi}i∈I is a locally finite collection of closed subsets of X. Then {f(Zi)}i∈I is a
locally finite collection of closed subsets of Y .

Proof. Let V ⊂ Y be a quasi-compact open subset. Since f is quasi-compact the
open f−1(V ) is quasi-compact. Hence the set {i ∈ I | Zi ∩ f−1(V ) ̸= ∅} is finite by
a simple topological argument which we omit. Since this is the same as the set

{i ∈ I | f(Zi) ∩ V ̸= ∅} = {i ∈ I | f(Zi) ∩ V ̸= ∅}
the lemma is proved. □

42.12. Proper pushforward

02R3
Definition 42.12.1.02R4 Let (S, δ) be as in Situation 42.7.1. Let X, Y be locally of
finite type over S. Let f : X → Y be a morphism. Assume f is proper.

(1) Let Z ⊂ X be an integral closed subscheme with dimδ(Z) = k. We define

f∗[Z] =
{

0 if dimδ(f(Z)) < k,
deg(Z/f(Z))[f(Z)] if dimδ(f(Z)) = k.

Here we think of f(Z) ⊂ Y as an integral closed subscheme. The degree
of Z over f(Z) is finite if dimδ(f(Z)) = dimδ(Z) by Lemma 42.11.1.
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(2) Let α =
∑
nZ [Z] be a k-cycle on X. The pushforward of α as the sum

f∗α =
∑

nZf∗[Z]

where each f∗[Z] is defined as above. The sum is locally finite by Lemma
42.11.2 above.

By definition the proper pushforward of cycles
f∗ : Zk(X) −→ Zk(Y )

is a homomorphism of abelian groups. It turns X 7→ Zk(X) into a covariant functor
on the category of schemes locally of finite type over S with morphisms equal to
proper morphisms.

Lemma 42.12.2.02R5 Let (S, δ) be as in Situation 42.7.1. Let X, Y , and Z be locally
of finite type over S. Let f : X → Y and g : Y → Z be proper morphisms. Then
g∗ ◦ f∗ = (g ◦ f)∗ as maps Zk(X)→ Zk(Z).

Proof. Let W ⊂ X be an integral closed subscheme of dimension k. Consider
W ′ = f(W ) ⊂ Y and W ′′ = g(f(W )) ⊂ Z. Since f , g are proper we see that
W ′ (resp. W ′′) is an integral closed subscheme of Y (resp. Z). We have to show
that g∗(f∗[W ]) = (g ◦ f)∗[W ]. If dimδ(W ′′) < k, then both sides are zero. If
dimδ(W ′′) = k, then we see the induced morphisms

W −→W ′ −→W ′′

both satisfy the hypotheses of Lemma 42.11.1. Hence
g∗(f∗[W ]) = deg(W/W ′) deg(W ′/W ′′)[W ′′], (g ◦ f)∗[W ] = deg(W/W ′′)[W ′′].

Then we can apply Morphisms, Lemma 29.51.9 to conclude. □

A closed immersion is proper. If i : Z → X is a closed immersion then the maps
i∗ : Zk(Z) −→ Zk(X)

are all injective.

Lemma 42.12.3.0F92 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let X1, X2 ⊂ X be closed subschemes such that X = X1 ∪ X2 set
theoretically. For every k ∈ Z the sequence of abelian groups

Zk(X1 ∩X2) // Zk(X1)⊕ Zk(X2) // Zk(X) // 0

is exact. Here X1 ∩X2 is the scheme theoretic intersection and the maps are the
pushforward maps with one multiplied by −1.

Proof. First assume X is quasi-compact. Then Zk(X) is a free Z-module with basis
given by the elements [Z] where Z ⊂ X is integral closed of δ-dimension k. The
groups Zk(X1), Zk(X2), Zk(X1 ∩X2) are free on the subset of these Z such that
Z ⊂ X1, Z ⊂ X2, Z ⊂ X1 ∩X2. This immediately proves the lemma in this case.
The general case is similar and the proof is omitted. □

Lemma 42.12.4.02R6 Let (S, δ) be as in Situation 42.7.1. Let f : X → Y be a proper
morphism of schemes which are locally of finite type over S.

(1) Let Z ⊂ X be a closed subscheme with dimδ(Z) ≤ k. Then
f∗[Z]k = [f∗OZ ]k.

https://stacks.math.columbia.edu/tag/02R5
https://stacks.math.columbia.edu/tag/0F92
https://stacks.math.columbia.edu/tag/02R6


42.12. PROPER PUSHFORWARD 3660

(2) Let F be a coherent sheaf on X such that dimδ(Supp(F)) ≤ k. Then
f∗[F ]k = [f∗F ]k.

Note that the statement makes sense since f∗F and f∗OZ are coherent OY -modules
by Cohomology of Schemes, Proposition 30.19.1.

Proof. Part (1) follows from (2) and Lemma 42.10.3. Let F be a coherent sheaf on
X. Assume that dimδ(Supp(F)) ≤ k. By Cohomology of Schemes, Lemma 30.9.7
there exists a closed subscheme i : Z → X and a coherent OZ-module G such that
i∗G ∼= F and such that the support of F is Z. Let Z ′ ⊂ Y be the scheme theoretic
image of f |Z : Z → Y . Consider the commutative diagram of schemes

Z
i
//

f |Z
��

X

f

��
Z ′ i′ // Y

We have f∗F = f∗i∗G = i′∗(f |Z)∗G by going around the diagram in two ways.
Suppose we know the result holds for closed immersions and for f |Z . Then we see
that
f∗[F ]k = f∗i∗[G]k = (i′)∗(f |Z)∗[G]k = (i′)∗[(f |Z)∗G]k = [(i′)∗(f |Z)∗G]k = [f∗F ]k

as desired. The case of a closed immersion is straightforward (omitted). Note that
f |Z : Z → Z ′ is a dominant morphism (see Morphisms, Lemma 29.6.3). Thus
we have reduced to the case where dimδ(X) ≤ k and f : X → Y is proper and
dominant.
Assume dimδ(X) ≤ k and f : X → Y is proper and dominant. Since f is dominant,
for every irreducible component Z ⊂ Y with generic point η there exists a point
ξ ∈ X such that f(ξ) = η. Hence δ(η) ≤ δ(ξ) ≤ k. Thus we see that in the
expressions

f∗[F ]k =
∑

nZ [Z], and [f∗F ]k =
∑

mZ [Z].
whenever nZ ̸= 0, or mZ ̸= 0 the integral closed subscheme Z is actually an irre-
ducible component of Y of δ-dimension k. Pick such an integral closed subscheme
Z ⊂ Y and denote η its generic point. Note that for any ξ ∈ X with f(ξ) = η we
have δ(ξ) ≥ k and hence ξ is a generic point of an irreducible component of X of
δ-dimension k as well (see Lemma 42.9.1). Since f is quasi-compact and X is locally
Noetherian, there can be only finitely many of these and hence f−1({η}) is finite.
By Morphisms, Lemma 29.51.1 there exists an open neighbourhood η ∈ V ⊂ Y
such that f−1(V )→ V is finite. Replacing Y by V and X by f−1(V ) we reduce to
the case where Y is affine, and f is finite.
Write Y = Spec(R) and X = Spec(A) (possible as a finite morphism is affine).
Then R and A are Noetherian rings and A is finite over R. Moreover F = M̃ for
some finite A-module M . Note that f∗F corresponds to M viewed as an R-module.
Let p ⊂ R be the minimal prime corresponding to η ∈ Y . The coefficient of Z in
[f∗F ]k is clearly lengthRp

(Mp). Let qi, i = 1, . . . , t be the primes of A lying over
p. Then Ap =

∏
Aqi since Ap is an Artinian ring being finite over the dimension

zero local Noetherian ring Rp. Clearly the coefficient of Z in f∗[F ]k is∑
i=1,...,t

[κ(qi) : κ(p)]lengthAqi
(Mqi)
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Hence the desired equality follows from Algebra, Lemma 10.52.12. □

42.13. Preparation for flat pullback

02R7 Recall that a morphism f : X → Y which is locally of finite type is said to have
relative dimension r if every nonempty fibre is equidimensional of dimension r. See
Morphisms, Definition 29.29.1.
Lemma 42.13.1.02R8 Let (S, δ) be as in Situation 42.7.1. Let X, Y be locally of finite
type over S. Let f : X → Y be a morphism. Assume f is flat of relative dimension
r. For any closed subset Z ⊂ Y we have

dimδ(f−1(Z)) = dimδ(Z) + r.

provided f−1(Z) is nonempty. If Z is irreducible and Z ′ ⊂ f−1(Z) is an irreducible
component, then Z ′ dominates Z and dimδ(Z ′) = dimδ(Z) + r.
Proof. It suffices to prove the final statement. We may replace Y by the integral
closed subscheme Z and X by the scheme theoretic inverse image f−1(Z) = Z×Y X.
Hence we may assume Z = Y is integral and f is a flat morphism of relative
dimension r. Since Y is locally Noetherian the morphism f which is locally of finite
type, is actually locally of finite presentation. Hence Morphisms, Lemma 29.25.10
applies and we see that f is open. Let ξ ∈ X be a generic point of an irreducible
component of X. By the openness of f we see that f(ξ) is the generic point η
of Z = Y . Note that dimξ(Xη) = r by assumption that f has relative dimension
r. On the other hand, since ξ is a generic point of X we see that OX,ξ = OXη,ξ
has only one prime ideal and hence has dimension 0. Thus by Morphisms, Lemma
29.28.1 we conclude that the transcendence degree of κ(ξ) over κ(η) is r. In other
words, δ(ξ) = δ(η) + r as desired. □

Here is the lemma that we will use to prove that the flat pullback of a locally finite
collection of closed subschemes is locally finite.
Lemma 42.13.2.02R9 Let (S, δ) be as in Situation 42.7.1. Let X, Y be locally of finite
type over S. Let f : X → Y be a morphism. Assume {Zi}i∈I is a locally finite
collection of closed subsets of Y . Then {f−1(Zi)}i∈I is a locally finite collection of
closed subsets of X.
Proof. Let U ⊂ X be a quasi-compact open subset. Since the image f(U) ⊂ Y
is a quasi-compact subset there exists a quasi-compact open V ⊂ Y such that
f(U) ⊂ V . Note that

{i ∈ I | f−1(Zi) ∩ U ̸= ∅} ⊂ {i ∈ I | Zi ∩ V ̸= ∅}.
Since the right hand side is finite by assumption we win. □

42.14. Flat pullback

02RA In the following we use f−1(Z) to denote the scheme theoretic inverse image of a
closed subscheme Z ⊂ Y for a morphism of schemes f : X → Y . We recall that
the scheme theoretic inverse image is the fibre product

f−1(Z) //

��

X

��
Z // Y

https://stacks.math.columbia.edu/tag/02R8
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and it is also the closed subscheme of X cut out by the quasi-coherent sheaf of ideals
f−1(I)OX , if I ⊂ OY is the quasi-coherent sheaf of ideals corresponding to Z in
Y . (This is discussed in Schemes, Section 26.4 and Lemma 26.17.6 and Definition
26.17.7.)
Definition 42.14.1.02RB Let (S, δ) be as in Situation 42.7.1. Let X, Y be locally of finite
type over S. Let f : X → Y be a morphism. Assume f is flat of relative dimension
r.

(1) Let Z ⊂ Y be an integral closed subscheme of δ-dimension k. We define
f∗[Z] to be the (k + r)-cycle on X to the scheme theoretic inverse image

f∗[Z] = [f−1(Z)]k+r.

This makes sense since dimδ(f−1(Z)) = k + r by Lemma 42.13.1.
(2) Let α =

∑
ni[Zi] be a k-cycle on Y . The flat pullback of α by f is the

sum
f∗α =

∑
nif

∗[Zi]
where each f∗[Zi] is defined as above. The sum is locally finite by Lemma
42.13.2.

(3) We denote f∗ : Zk(Y )→ Zk+r(X) the map of abelian groups so obtained.
An open immersion is flat. This is an important though trivial special case of a flat
morphism. If U ⊂ X is open then sometimes the pullback by j : U → X of a cycle
is called the restriction of the cycle to U . Note that in this case the maps

j∗ : Zk(X) −→ Zk(U)
are all surjective. The reason is that given any integral closed subscheme Z ′ ⊂ U , we
can take the closure of Z of Z ′ in X and think of it as a reduced closed subscheme
of X (see Schemes, Lemma 26.12.4). And clearly Z ∩ U = Z ′, in other words
j∗[Z] = [Z ′] whence the surjectivity. In fact a little bit more is true.
Lemma 42.14.2.02RC Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let U ⊂ X be an open subscheme, and denote i : Y = X \ U → X as a
reduced closed subscheme of X. For every k ∈ Z the sequence

Zk(Y ) i∗ // Zk(X) j∗
// Zk(U) // 0

is an exact complex of abelian groups.
Proof. First assume X is quasi-compact. Then Zk(X) is a free Z-module with
basis given by the elements [Z] where Z ⊂ X is integral closed of δ-dimension k.
Such a basis element maps either to the basis element [Z ∩ U ] or to zero if Z ⊂ Y .
Hence the lemma is clear in this case. The general case is similar and the proof is
omitted. □

Lemma 42.14.3.02RD Let (S, δ) be as in Situation 42.7.1. Let X,Y, Z be locally of
finite type over S. Let f : X → Y and g : Y → Z be flat morphisms of relative
dimensions r and s. Then g ◦ f is flat of relative dimension r + s and

f∗ ◦ g∗ = (g ◦ f)∗

as maps Zk(Z)→ Zk+r+s(X).
Proof. The composition is flat of relative dimension r + s by Morphisms, Lemma
29.29.3. Suppose that
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(1) W ⊂ Z is a closed integral subscheme of δ-dimension k,
(2) W ′ ⊂ Y is a closed integral subscheme of δ-dimension k + s with W ′ ⊂

g−1(W ), and
(3) W ′′ ⊂ Y is a closed integral subscheme of δ-dimension k + s + r with

W ′′ ⊂ f−1(W ′).
We have to show that the coefficient n of [W ′′] in (g ◦ f)∗[W ] agrees with the
coefficient m of [W ′′] in f∗(g∗[W ]). That it suffices to check the lemma in these
cases follows from Lemma 42.13.1. Let ξ′′ ∈W ′′, ξ′ ∈W ′ and ξ ∈W be the generic
points. Consider the local rings A = OZ,ξ, B = OY,ξ′ and C = OX,ξ′′ . Then we
have local flat ring maps A→ B, B → C and moreover

n = lengthC(C/mAC), and m = lengthC(C/mBC)lengthB(B/mAB)

Hence the equality follows from Algebra, Lemma 10.52.14. □

Lemma 42.14.4.02RE Let (S, δ) be as in Situation 42.7.1. Let X,Y be locally of finite
type over S. Let f : X → Y be a flat morphism of relative dimension r.

(1) Let Z ⊂ Y be a closed subscheme with dimδ(Z) ≤ k. Then we have
dimδ(f−1(Z)) ≤ k + r and [f−1(Z)]k+r = f∗[Z]k in Zk+r(X).

(2) Let F be a coherent sheaf on Y with dimδ(Supp(F)) ≤ k. Then we have
dimδ(Supp(f∗F)) ≤ k + r and

f∗[F ]k = [f∗F ]k+r

in Zk+r(X).

Proof. The statements on dimensions follow immediately from Lemma 42.13.1.
Part (1) follows from part (2) by Lemma 42.10.3 and the fact that f∗OZ = Of−1(Z).

Proof of (2). As X, Y are locally Noetherian we may apply Cohomology of Schemes,
Lemma 30.9.1 to see that F is of finite type, hence f∗F is of finite type (Modules,
Lemma 17.9.2), hence f∗F is coherent (Cohomology of Schemes, Lemma 30.9.1
again). Thus the lemma makes sense. Let W ⊂ Y be an integral closed subscheme
of δ-dimension k, and let W ′ ⊂ X be an integral closed subscheme of dimension
k + r mapping into W under f . We have to show that the coefficient n of [W ′] in
f∗[F ]k agrees with the coefficient m of [W ′] in [f∗F ]k+r. Let ξ ∈ W and ξ′ ∈ W ′

be the generic points. Let A = OY,ξ, B = OX,ξ′ and set M = Fξ as an A-module.
(Note that M has finite length by our dimension assumptions, but we actually do
not need to verify this. See Lemma 42.10.1.) We have f∗Fξ′ = B ⊗AM . Thus we
see that

n = lengthB(B ⊗AM) and m = lengthA(M)lengthB(B/mAB)

Thus the equality follows from Algebra, Lemma 10.52.13. □

42.15. Push and pull

02RF In this section we verify that proper pushforward and flat pullback are compat-
ible when this makes sense. By the work we did above this is a consequence of
cohomology and base change.
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Lemma 42.15.1.02RG Let (S, δ) be as in Situation 42.7.1. Let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a fibre product diagram of schemes locally of finite type over S. Assume f :
X → Y proper and g : Y ′ → Y flat of relative dimension r. Then also f ′ is proper
and g′ is flat of relative dimension r. For any k-cycle α on X we have

g∗f∗α = f ′
∗(g′)∗α

in Zk+r(Y ′).
Proof. The assertion that f ′ is proper follows from Morphisms, Lemma 29.41.5.
The assertion that g′ is flat of relative dimension r follows from Morphisms, Lemmas
29.29.2 and 29.25.8. It suffices to prove the equality of cycles when α = [W ] for some
integral closed subscheme W ⊂ X of δ-dimension k. Note that in this case we have
α = [OW ]k, see Lemma 42.10.3. By Lemmas 42.12.4 and 42.14.4 it therefore suffices
to show that f ′

∗(g′)∗OW is isomorphic to g∗f∗OW . This follows from cohomology
and base change, see Cohomology of Schemes, Lemma 30.5.2. □

Lemma 42.15.2.02RH Let (S, δ) be as in Situation 42.7.1. Let X, Y be locally of
finite type over S. Let f : X → Y be a finite locally free morphism of degree d
(see Morphisms, Definition 29.48.1). Then f is both proper and flat of relative
dimension 0, and

f∗f
∗α = dα

for every α ∈ Zk(Y ).
Proof. A finite locally free morphism is flat and finite by Morphisms, Lemma
29.48.2, and a finite morphism is proper by Morphisms, Lemma 29.44.11. We
omit showing that a finite morphism has relative dimension 0. Thus the formula
makes sense. To prove it, let Z ⊂ Y be an integral closed subscheme of δ-dimension
k. It suffices to prove the formula for α = [Z]. Since the base change of a finite
locally free morphism is finite locally free (Morphisms, Lemma 29.48.4) we see that
f∗f

∗OZ is a finite locally free sheaf of rank d on Z. Hence
f∗f

∗[Z] = f∗f
∗[OZ ]k = [f∗f

∗OZ ]k = d[Z]
where we have used Lemmas 42.14.4 and 42.12.4. □

42.16. Preparation for principal divisors

02RI Some of the material in this section partially overlaps with the discussion in Divi-
sors, Section 31.26.
Lemma 42.16.1.02RK Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Assume X is integral.

(1) If Z ⊂ X is an integral closed subscheme, then the following are equivalent:
(a) Z is a prime divisor,
(b) Z has codimension 1 in X, and
(c) dimδ(Z) = dimδ(X)− 1.

(2) If Z is an irreducible component of an effective Cartier divisor on X, then
dimδ(Z) = dimδ(X)− 1.
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Proof. Part (1) follows from the definition of a prime divisor (Divisors, Definition
31.26.2) and the definition of a dimension function (Topology, Definition 5.20.1).
Let ξ ∈ Z be the generic point of an irreducible component Z of an effective Cartier
divisor D ⊂ X. Then dim(OD,ξ) = 0 and OD,ξ = OX,ξ/(f) for some nonzerodivisor
f ∈ OX,ξ (Divisors, Lemma 31.15.2). Then dim(OX,ξ) = 1 by Algebra, Lemma
10.60.13. Hence Z is as in (1) by Properties, Lemma 28.10.3 and the proof is
complete. □

Lemma 42.16.2.02RM Let f : X → Y be a morphism of schemes. Let ξ ∈ Y be a point.
Assume that

(1) X, Y are integral,
(2) Y is locally Noetherian
(3) f is proper, dominant and R(Y ) ⊂ R(X) is finite, and
(4) dim(OY,ξ) = 1.

Then there exists an open neighbourhood V ⊂ Y of ξ such that f |f−1(V ) : f−1(V )→
V is finite.

Proof. This lemma is a special case of Varieties, Lemma 33.17.2. Here is a direct
argument in this case. By Cohomology of Schemes, Lemma 30.21.2 it suffices to
prove that f−1({ξ}) is finite. We replace Y by an affine open, say Y = Spec(R).
Note thatR is Noetherian, as Y is assumed locally Noetherian. Since f is proper it is
quasi-compact. Hence we can find a finite affine open coveringX = U1∪. . .∪Un with
each Ui = Spec(Ai). Note that R→ Ai is a finite type injective homomorphism of
domains such that the induced extension of fraction fields is finite. Thus the lemma
follows from Algebra, Lemma 10.113.2. □

42.17. Principal divisors

02RN The following definition is the analogue of Divisors, Definition 31.26.5 in our current
setup.

Definition 42.17.1.02RO Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Assume X is integral with dimδ(X) = n. Let f ∈ R(X)∗. The
principal divisor associated to f is the (n− 1)-cycle

div(f) = divX(f) =
∑

ordZ(f)[Z]

defined in Divisors, Definition 31.26.5. This makes sense because prime divisors
have δ-dimension n− 1 by Lemma 42.16.1.

In the situation of the definition for f, g ∈ R(X)∗ we have
divX(fg) = divX(f) + divX(g)

in Zn−1(X). See Divisors, Lemma 31.26.6. The following lemma will be superseded
by the more general Lemma 42.20.2.

Lemma 42.17.2.02RR Let (S, δ) be as in Situation 42.7.1. Let X, Y be locally of finite
type over S. Assume X, Y are integral and n = dimδ(Y ). Let f : X → Y be a flat
morphism of relative dimension r. Let g ∈ R(Y )∗. Then

f∗(divY (g)) = divX(g)
in Zn+r−1(X).
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Proof. Note that since f is flat it is dominant so that f induces an embedding
R(Y ) ⊂ R(X), and hence we may think of g as an element of R(X)∗. Let Z ⊂ X
be an integral closed subscheme of δ-dimension n+ r − 1. Let ξ ∈ Z be its generic
point. If dimδ(f(Z)) > n− 1, then we see that the coefficient of [Z] in the left and
right hand side of the equation is zero. Hence we may assume that Z ′ = f(Z) is
an integral closed subscheme of Y of δ-dimension n − 1. Let ξ′ = f(ξ). It is the
generic point of Z ′. Set A = OY,ξ′ , B = OX,ξ. The ring map A → B is a flat
local homomorphism of Noetherian local domains of dimension 1. We have g in the
fraction field of A. What we have to show is that

ordA(g)lengthB(B/mAB) = ordB(g).
This follows from Algebra, Lemma 10.52.13 (details omitted). □

42.18. Principal divisors and pushforward

02RS The first lemma implies that the pushforward of a principal divisor along a generi-
cally finite morphism is a principal divisor.

Lemma 42.18.1.02RT Let (S, δ) be as in Situation 42.7.1. Let X, Y be locally of
finite type over S. Assume X, Y are integral and n = dimδ(X) = dimδ(Y ). Let
p : X → Y be a dominant proper morphism. Let f ∈ R(X)∗. Set

g = NmR(X)/R(Y )(f).
Then we have p∗div(f) = div(g).

Proof. Let Z ⊂ Y be an integral closed subscheme of δ-dimension n − 1. We
want to show that the coefficient of [Z] in p∗div(f) and div(g) are equal. We may
apply Lemma 42.16.2 to the morphism p : X → Y and the generic point ξ ∈ Z.
Hence we may replace Y by an affine open neighbourhood of ξ and assume that
p : X → Y is finite. Write Y = Spec(R) and X = Spec(A) with p induced by a
finite homomorphism R → A of Noetherian domains which induces an finite field
extension L/K of fraction fields. Now we have f ∈ L, g = Nm(f) ∈ K, and a
prime p ⊂ R with dim(Rp) = 1. The coefficient of [Z] in divY (g) is ordRp

(g). The
coefficient of [Z] in p∗divX(f) is∑

q lying over p
[κ(q) : κ(p)]ordAq

(f)

The desired equality therefore follows from Algebra, Lemma 10.121.8. □

An important role in the discussion of principal divisors is played by the “universal”
principal divisor [0]− [∞] on P1

S . To make this more precise, let us denote
(42.18.1.1)0F93 D0, D∞ ⊂ P1

S = Proj
S

(OS [T0, T1])
the closed subscheme cut out by the section T1, resp. T0 of O(1). These are effective
Cartier divisors, see Divisors, Definition 31.13.1 and Lemma 31.14.10. The following
lemma says that loosely speaking we have “div(T1/T0) = [D0]− [D1]” and that this
is the universal principal divisor.

Lemma 42.18.2.02RQ Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Assume X is integral and n = dimδ(X). Let f ∈ R(X)∗. Let U ⊂ X
be a nonempty open such that f corresponds to a section f ∈ Γ(U,O∗

X). Let
Y ⊂ X ×S P1

S be the closure of the graph of f : U → P1
S . Then

(1) the projection morphism p : Y → X is proper,

https://stacks.math.columbia.edu/tag/02RT
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(2) p|p−1(U) : p−1(U)→ U is an isomorphism,
(3) the pullbacks Y0 = q−1D0 and Y∞ = q−1D∞ via the morphism q : Y →

P1
S are defined (Divisors, Definition 31.13.12),

(4) we have
divY (f) = [Y0]n−1 − [Y∞]n−1

(5) we have
divX(f) = p∗divY (f)

(6) if we view Y0 and Y∞ as closed subschemes of X via the morphism p then
we have

divX(f) = [Y0]n−1 − [Y∞]n−1

Proof. Since X is integral, we see that U is integral. Hence Y is integral, and
(1, f)(U) ⊂ Y is an open dense subscheme. Also, note that the closed subscheme
Y ⊂ X ×S P1

S does not depend on the choice of the open U , since after all it is the
closure of the one point set {η′} = {(1, f)(η)} where η ∈ X is the generic point.
Having said this let us prove the assertions of the lemma.

For (1) note that p is the composition of the closed immersion Y → X×SP1
S = P1

X

with the proper morphism P1
X → X. As a composition of proper morphisms is

proper (Morphisms, Lemma 29.41.4) we conclude.

It is clear that Y ∩ U ×S P1
S = (1, f)(U). Thus (2) follows. It also follows that

dimδ(Y ) = n.

Note that q(η′) = f(η) is not contained in D0 or D∞ since f ∈ R(X)∗. Hence (3)
by Divisors, Lemma 31.13.13. We obtain dimδ(Y0) = n− 1 and dimδ(Y∞) = n− 1
from Lemma 42.16.1.

Consider the effective Cartier divisor Y0. At every point ξ ∈ Y0 we have f ∈ OY,ξ
and the local equation for Y0 is given by f . In particular, if δ(ξ) = n− 1 so ξ is the
generic point of a integral closed subscheme Z of δ-dimension n − 1, then we see
that the coefficient of [Z] in divY (f) is

ordZ(f) = lengthOY,ξ
(OY,ξ/fOY,ξ) = lengthOY,ξ

(OY0,ξ)

which is the coefficient of [Z] in [Y0]n−1. A similar argument using the rational
function 1/f shows that −[Y∞] agrees with the terms with negative coefficients in
the expression for divY (f). Hence (4) follows.

Note that D0 → S is an isomorphism. Hence we see that X ×S D0 → X is
an isomorphism as well. Clearly we have Y0 = Y ∩ X ×S D0 (scheme theoretic
intersection) inside X ×S P1

S . Hence it is really the case that Y0 → X is a closed
immersion. It follows that

p∗OY0 = OY ′
0

where Y ′
0 ⊂ X is the image of Y0 → X. By Lemma 42.12.4 we have p∗[Y0]n−1 =

[Y ′
0 ]n−1. The same is true for D∞ and Y∞. Hence (6) is a consequence of (5).

Finally, (5) follows immediately from Lemma 42.18.1. □

The following lemma says that the degree of a principal divisor on a proper curve
is zero.
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Lemma 42.18.3.02RU Let K be any field. Let X be a 1-dimensional integral scheme
endowed with a proper morphism c : X → Spec(K). Let f ∈ K(X)∗ be an
invertible rational function. Then∑

x∈X closed
[κ(x) : K]ordOX,x

(f) = 0

where ord is as in Algebra, Definition 10.121.2. In other words, c∗div(f) = 0.
Proof. Consider the diagram

Y
p

//

q

��

X

c

��
P1
K

c′
// Spec(K)

that we constructed in Lemma 42.18.2 starting with X and the rational function
f over S = Spec(K). We will use all the results of this lemma without further
mention. We have to show that c∗divX(f) = c∗p∗divY (f) = 0. This is the same
as proving that c′

∗q∗divY (f) = 0. If q(Y ) is a closed point of P1
K then we see

that divX(f) = 0 and the lemma holds. Thus we may assume that q is dominant.
Suppose we can show that q : Y → P1

K is finite locally free of degree d (see
Morphisms, Definition 29.48.1). Since divY (f) = [q−1D0]0 − [q−1D∞]0 we see (by
definition of flat pullback) that divY (f) = q∗([D0]0 − [D∞]0). Then by Lemma
42.15.2 we get q∗divY (f) = d([D0]0 − [D∞]0). Since clearly c′

∗[D0]0 = c′
∗[D∞]0 we

win.
It remains to show that q is finite locally free. (It will automatically have some given
degree as P1

K is connected.) Since dim(P1
K) = 1 we see that q is finite for example

by Lemma 42.16.2. All local rings of P1
K at closed points are regular local rings of

dimension 1 (in other words discrete valuation rings), since they are localizations
of K[T ] (see Algebra, Lemma 10.114.1). Hence for y ∈ Y closed the local ring OY,y
will be flat over OP1

K
,q(y) as soon as it is torsion free (More on Algebra, Lemma

15.22.11). This is obviously the case as OY,y is a domain and q is dominant. Thus
q is flat. Hence q is finite locally free by Morphisms, Lemma 29.48.2. □

42.19. Rational equivalence

02RV In this section we define rational equivalence on k-cycles. We will allow locally
finite sums of images of principal divisors (under closed immersions). This leads to
some pretty strange phenomena, see Example 42.19.5. However, if we do not allow
these then we do not know how to prove that capping with Chern classes of line
bundles factors through rational equivalence.
Definition 42.19.1.02RW Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally
of finite type over S. Let k ∈ Z.

(1) Given any locally finite collection {Wj ⊂ X} of integral closed subschemes
with dimδ(Wj) = k + 1, and any fj ∈ R(Wj)∗ we may consider∑

(ij)∗div(fj) ∈ Zk(X)
where ij : Wj → X is the inclusion morphism. This makes sense as the
morphism

∐
ij :

∐
Wj → X is proper.

(2) We say that α ∈ Zk(X) is rationally equivalent to zero if α is a cycle of
the form displayed above.

https://stacks.math.columbia.edu/tag/02RU
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(3) We say α, β ∈ Zk(X) are rationally equivalent and we write α ∼rat β if
α− β is rationally equivalent to zero.

(4) We define
CHk(X) = Zk(X)/ ∼rat

to be the Chow group of k-cycles on X. This is sometimes called the
Chow group of k-cycles modulo rational equivalence on X.

There are many other interesting (adequate) equivalence relations. Rational equiv-
alence is the coarsest one of them all.

Remark 42.19.2.0GU3 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let k ∈ Z. Let us show that we have a presentation⊕′

δ(x)=k+1
KM

1 (κ(x)) ∂−→
⊕′

δ(x)=k
KM

0 (κ(x))→ CHk(X)→ 0

Here we use the notation and conventions introduced in Remark 42.8.2 and in
addition

(1) KM
1 (κ(x)) = κ(x)∗ is the degree 1 part of the Milnor K-theory of the

residue field κ(x) of the point x ∈ X (see Remark 42.6.4), and
(2) the differential ∂ is defined as follows: given an element ξ =

∑
x fx we

denote Wx = x the integral closed subscheme of X with generic point x
and we set

∂(ξ) =
∑

(Wx → X)∗div(fx)
in Zk(X) which makes sense as we have seen that the second term of the
complex is equal to Zk(X) by Remark 42.8.2.

The fact that we obtain a presentation of CHk(X) follows immediately by compar-
ing with Definition 42.19.1.

A very simple but important lemma is the following.

Lemma 42.19.3.02RX Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of
finite type over S. Let U ⊂ X be an open subscheme, and denote i : Y = X\U → X
as a reduced closed subscheme of X. Let k ∈ Z. Suppose α, β ∈ Zk(X). If
α|U ∼rat β|U then there exist a cycle γ ∈ Zk(Y ) such that

α ∼rat β + i∗γ.

In other words, the sequence

CHk(Y ) i∗ // CHk(X) j∗
// CHk(U) // 0

is an exact complex of abelian groups.

Proof. Let {Wj}j∈J be a locally finite collection of integral closed subschemes of
U of δ-dimension k + 1, and let fj ∈ R(Wj)∗ be elements such that (α − β)|U =∑

(ij)∗div(fj) as in the definition. Set W ′
j ⊂ X equal to the closure of Wj . Suppose

that V ⊂ X is a quasi-compact open. Then also V ∩U is quasi-compact open in U
as V is Noetherian. Hence the set {j ∈ J |Wj ∩ V ̸= ∅} = {j ∈ J |W ′

j ∩ V ̸= ∅} is
finite since {Wj} is locally finite. In other words we see that {W ′

j} is also locally
finite. Since R(Wj) = R(W ′

j) we see that

α− β −
∑

(i′j)∗div(fj)

is a cycle supported on Y and the lemma follows (see Lemma 42.14.2). □
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Lemma 42.19.4.0F94 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let X1, X2 ⊂ X be closed subschemes such that X = X1 ∪ X2 set
theoretically. For every k ∈ Z the sequence of abelian groups

CHk(X1 ∩X2) // CHk(X1)⊕ CHk(X2) // CHk(X) // 0

is exact. Here X1 ∩X2 is the scheme theoretic intersection and the maps are the
pushforward maps with one multiplied by −1.

Proof. By Lemma 42.12.3 the arrow CHk(X1)⊕CHk(X2)→ CHk(X) is surjective.
Suppose that (α1, α2) maps to zero under this map. Write α1 =

∑
n1,i[W1,i] and

α2 =
∑
n2,i[W2,i]. Then we obtain a locally finite collection {Wj}j∈J of integral

closed subschemes of X of δ-dimension k + 1 and fj ∈ R(Wj)∗ such that∑
n1,i[W1,i] +

∑
n2,i[W2,i] =

∑
(ij)∗div(fj)

as cycles on X where ij : Wj → X is the inclusion morphism. Choose a disjoint
union decomposition J = J1 ⨿ J2 such that Wj ⊂ X1 if j ∈ J1 and Wj ⊂ X2 if
j ∈ J2. (This is possible because the Wj are integral.) Then we can write the
equation above as∑

n1,i[W1,i]−
∑

j∈J1
(ij)∗div(fj) = −

∑
n2,i[W2,i] +

∑
j∈J2

(ij)∗div(fj)

Hence this expression is a cycle (!) on X1∩X2. In other words the element (α1, α2)
is in the image of the first arrow and the proof is complete. □

Example 42.19.5.02RY Here is a “strange” example. Suppose that S is the spectrum of
a field k with δ as in Example 42.7.2. Suppose that X = C1 ∪C2 ∪ . . . is an infinite
union of curves Cj ∼= P1

k glued together in the following way: The point ∞ ∈ Cj is
glued transversally to the point 0 ∈ Cj+1 for j = 1, 2, 3, . . .. Take the point 0 ∈ C1.
This gives a zero cycle [0] ∈ Z0(X). The “strangeness” in this situation is that
actually [0] ∼rat 0! Namely we can choose the rational function fj ∈ R(Cj) to be
the function which has a simple zero at 0 and a simple pole at ∞ and no other
zeros or poles. Then we see that the sum

∑
(ij)∗div(fj) is exactly the 0-cycle [0].

In fact it turns out that CH0(X) = 0 in this example. If you find this too bizarre,
then you can just make sure your spaces are always quasi-compact (so X does not
even exist for you).

Remark 42.19.6.02RZ Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of
finite type over S. Suppose we have infinite collections αi, βi ∈ Zk(X), i ∈ I of k-
cycles on X. Suppose that the supports of αi and βi form locally finite collections of
closed subsets of X so that

∑
αi and

∑
βi are defined as cycles. Moreover, assume

that αi ∼rat βi for each i. Then it is not clear that
∑
αi ∼rat

∑
βi. Namely,

the problem is that the rational equivalences may be given by locally finite families
{Wi,j , fi,j ∈ R(Wi,j)∗}j∈Ji but the union {Wi,j}i∈I,j∈Ji may not be locally finite.

In many cases in practice, one has a locally finite family of closed subsets {Ti}i∈I
such that αi, βi are supported on Ti and such that αi = βi in CHk(Ti), in other
words, the families {Wi,j , fi,j ∈ R(Wi,j)∗}j∈Ji consist of subschemes Wi,j ⊂ Ti.
In this case it is true that

∑
αi ∼rat

∑
βi on X, simply because the family

{Wi,j}i∈I,j∈Ji is automatically locally finite in this case.
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42.20. Rational equivalence and push and pull

02S0 In this section we show that flat pullback and proper pushforward commute with
rational equivalence.

Lemma 42.20.1.0EPH Let (S, δ) be as in Situation 42.7.1. Let X, Y be schemes locally
of finite type over S. Assume Y integral with dimδ(Y ) = k. Let f : X → Y be a
flat morphism of relative dimension r. Then for g ∈ R(Y )∗ we have

f∗divY (g) =
∑

njij,∗divXj (g ◦ f |Xj )

as (k+ r− 1)-cycles on X where the sum is over the irreducible components Xj of
X and nj is the multiplicity of Xj in X.

Proof. Let Z ⊂ X be an integral closed subscheme of δ-dimension k + r − 1. We
have to show that the coefficient n of [Z] in f∗div(g) is equal to the coefficient m of
[Z] in

∑
ij,∗div(g ◦ f |Xj ). Let Z ′ be the closure of f(Z) which is an integral closed

subscheme of Y . By Lemma 42.13.1 we have dimδ(Z ′) ≥ k−1. Thus either Z ′ = Y
or Z ′ is a prime divisor on Y . If Z ′ = Y , then the coefficients n and m are both
zero: this is clear for n by definition of f∗ and follows for m because g ◦ f |Xj is a
unit in any point of Xj mapping to the generic point of Y . Hence we may assume
that Z ′ ⊂ Y is a prime divisor.
We are going to translate the equality of n and m into algebra. Namely, let ξ′ ∈ Z ′

and ξ ∈ Z be the generic points. Set A = OY,ξ′ and B = OX,ξ. Note that A, B are
Noetherian, A→ B is flat, local, A is a domain, and mAB is an ideal of definition
of the local ring B. The rational function g is an element of the fraction field Q(A)
of A. By construction, the closed subschemes Xj which meet ξ correspond 1-to-1
with minimal primes

q1, . . . , qs ⊂ B
The integers nj are the corresponding lengths

ni = lengthBqi
(Bqi)

The rational functions g ◦ f |Xj correspond to the image gi ∈ κ(qi)∗ of g ∈ Q(A).
Putting everything together we see that

n = ordA(g)lengthB(B/mAB)
and that

m =
∑

ordB/qi(gi)lengthBqi
(Bqi)

Writing g = x/y for some nonzero x, y ∈ A we see that it suffices to prove
lengthA(A/(x))lengthB(B/mAB) = lengthB(B/xB)

(equality uses Algebra, Lemma 10.52.13) equals∑
i=1,...,s

lengthB/qi(B/(x, qi))lengthBqi
(Bqi)

and similarly for y. As A → B is flat it follows that x is a nonzerodivisor in B.
Hence the desired equality follows from Lemma 42.3.2. □

Lemma 42.20.2.02S1 Let (S, δ) be as in Situation 42.7.1. Let X, Y be schemes locally
of finite type over S. Let f : X → Y be a flat morphism of relative dimension
r. Let α ∼rat β be rationally equivalent k-cycles on Y . Then f∗α ∼rat f∗β as
(k + r)-cycles on X.
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Proof. What do we have to show? Well, suppose we are given a collection
ij : Wj −→ Y

of closed immersions, with each Wj integral of δ-dimension k + 1 and rational
functions gj ∈ R(Wj)∗. Moreover, assume that the collection {ij(Wj)}j∈J is locally
finite on Y . Then we have to show that

f∗(
∑

ij,∗div(gj)) =
∑

f∗ij,∗div(gj)

is rationally equivalent to zero on X. The sum on the right makes sense as {Wj}
is locally finite in X by Lemma 42.13.2.
Consider the fibre products

i′j : W ′
j = Wj ×Y X −→ X.

and denote fj : W ′
j →Wj the first projection. By Lemma 42.15.1 we can write the

sum above as ∑
i′j,∗(f∗

j div(gj))
By Lemma 42.20.1 we see that each f∗

j div(gj) is rationally equivalent to zero on
W ′
j . Hence each i′j,∗(f∗

j div(gj)) is rationally equivalent to zero. Then the same is
true for the displayed sum by the discussion in Remark 42.19.6. □

Lemma 42.20.3.02S2 Let (S, δ) be as in Situation 42.7.1. Let X, Y be schemes locally
of finite type over S. Let p : X → Y be a proper morphism. Suppose α, β ∈ Zk(X)
are rationally equivalent. Then p∗α is rationally equivalent to p∗β.

Proof. What do we have to show? Well, suppose we are given a collection
ij : Wj −→ X

of closed immersions, with each Wj integral of δ-dimension k + 1 and rational
functions fj ∈ R(Wj)∗. Moreover, assume that the collection {ij(Wj)}j∈J is locally
finite on X. Then we have to show that

p∗

(∑
ij,∗div(fj)

)
is rationally equivalent to zero on X.
Note that the sum is equal to ∑

p∗ij,∗div(fj).

Let W ′
j ⊂ Y be the integral closed subscheme which is the image of p ◦ ij . The

collection {W ′
j} is locally finite in Y by Lemma 42.11.2. Hence it suffices to show,

for a given j, that either p∗ij,∗div(fj) = 0 or that it is equal to i′j,∗div(gj) for some
gj ∈ R(W ′

j)∗.
The arguments above therefore reduce us to the case of a single integral closed
subscheme W ⊂ X of δ-dimension k + 1. Let f ∈ R(W )∗. Let W ′ = p(W ) as
above. We get a commutative diagram of morphisms

W
i
//

p′

��

X

p

��
W ′ i′ // Y

https://stacks.math.columbia.edu/tag/02S2
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Note that p∗i∗div(f) = i′∗(p′)∗div(f) by Lemma 42.12.2. As explained above we
have to show that (p′)∗div(f) is the divisor of a rational function on W ′ or zero.
There are three cases to distinguish.
The case dimδ(W ′) < k. In this case automatically (p′)∗div(f) = 0 and there is
nothing to prove.
The case dimδ(W ′) = k. Let us show that (p′)∗div(f) = 0 in this case. Let η ∈W ′

be the generic point. Note that c : Wη → Spec(K) is a proper integral curve over
K = κ(η) whose function field K(Wη) is identified with R(W ). Here is a diagram

Wη
//

c

��

W

p′

��
Spec(K) // W ′

Let us denote fη ∈ K(Wη)∗ the rational function corresponding to f ∈ R(W )∗.
Moreover, the closed points ξ of Wη correspond 1 − 1 to the closed integral sub-
schemes Z = Zξ ⊂W of δ-dimension k with p′(Z) = W ′. Note that the multiplicity
of Zξ in div(f) is equal to ordOWη,ξ

(fη) simply because the local rings OWη,ξ and
OW,ξ are identified (as subrings of their fraction fields). Hence we see that the mul-
tiplicity of [W ′] in (p′)∗div(f) is equal to the multiplicity of [Spec(K)] in c∗div(fη).
By Lemma 42.18.3 this is zero.
The case dimδ(W ′) = k + 1. In this case Lemma 42.18.1 applies, and we see that
indeed p′

∗div(f) = div(g) for some g ∈ R(W ′)∗ as desired. □

42.21. Rational equivalence and the projective line

02S3 Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of finite type over S.
Given any closed subscheme Z ⊂ X ×S P1

S = X × P1 we let Z0, resp. Z∞ be the
scheme theoretic closed subscheme Z0 = pr−1

2 (D0), resp. Z∞ = pr−1
2 (D∞). Here

D0, D∞ are as in (42.18.1.1).

Lemma 42.21.1.02S4 Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally
of finite type over S. Let W ⊂ X ×S P1

S be an integral closed subscheme of
δ-dimension k + 1. Assume W ̸= W0, and W ̸= W∞. Then

(1) W0, W∞ are effective Cartier divisors of W ,
(2) W0, W∞ can be viewed as closed subschemes of X and

[W0]k ∼rat [W∞]k,
(3) for any locally finite family of integral closed subschemes Wi ⊂ X ×S

P1
S of δ-dimension k + 1 with Wi ̸= (Wi)0 and Wi ̸= (Wi)∞ we have∑
([(Wi)0]k − [(Wi)∞]k) ∼rat 0 on X, and

(4) for any α ∈ Zk(X) with α ∼rat 0 there exists a locally finite family
of integral closed subschemes Wi ⊂ X ×S P1

S as above such that α =∑
([(Wi)0]k − [(Wi)∞]k).

Proof. Part (1) follows from Divisors, Lemma 31.13.13 since the generic point of W
is not mapped into D0 or D∞ under the projection X×S P1

S → P1
S by assumption.

Since X ×S D0 → X is a closed immersion, we see that W0 is isomorphic to a
closed subscheme of X. Similarly for W∞. The morphism p : W → X is proper as

https://stacks.math.columbia.edu/tag/02S4
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a composition of the closed immersion W → X ×S P1
S and the proper morphism

X ×S P1
S → X. By Lemma 42.18.2 we have [W0]k ∼rat [W∞]k as cycles on W .

Hence part (2) follows from Lemma 42.20.3 as clearly p∗[W0]k = [W0]k and similarly
for W∞.
The only content of statement (3) is, given parts (1) and (2), that the collection
{(Wi)0, (Wi)∞} is a locally finite collection of closed subschemes of X. This is clear.
Suppose that α ∼rat 0. By definition this means there exist integral closed sub-
schemes Vi ⊂ X of δ-dimension k + 1 and rational functions fi ∈ R(Vi)∗ such that
the family {Vi}i∈I is locally finite in X and such that α =

∑
(Vi → X)∗div(fi). Let

Wi ⊂ Vi ×S P1
S ⊂ X ×S P1

S

be the closure of the graph of the rational map fi as in Lemma 42.18.2. Then we
have that (Vi → X)∗div(fi) is equal to [(Wi)0]k − [(Wi)∞]k by that same lemma.
Hence the result is clear. □

Lemma 42.21.2.02S5 Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of
finite type over S. Let Z be a closed subscheme of X ×P1. Assume

(1) dimδ(Z) ≤ k + 1,
(2) dimδ(Z0) ≤ k, dimδ(Z∞) ≤ k, and
(3) for any embedded point ξ (Divisors, Definition 31.4.1) of Z either ξ ̸∈

Z0 ∪ Z∞ or δ(ξ) < k.
Then [Z0]k ∼rat [Z∞]k as k-cycles on X.

Proof. Let {Wi}i∈I be the collection of irreducible components of Z which have
δ-dimension k + 1. Write

[Z]k+1 =
∑

ni[Wi]
with ni > 0 as per definition. Note that {Wi} is a locally finite collection of closed
subsets of X ×S P1

S by Divisors, Lemma 31.26.1. We claim that

[Z0]k =
∑

ni[(Wi)0]k
and similarly for [Z∞]k. If we prove this then the lemma follows from Lemma
42.21.1.
Let Z ′ ⊂ X be an integral closed subscheme of δ-dimension k. To prove the
equality above it suffices to show that the coefficient n of [Z ′] in [Z0]k is the same
as the coefficient m of [Z ′] in

∑
ni[(Wi)0]k. Let ξ′ ∈ Z ′ be the generic point. Set

ξ = (ξ′, 0) ∈ X ×S P1
S . Consider the local ring A = OX×SP1

S
,ξ. Let I ⊂ A be the

ideal cutting out Z, in other words so that A/I = OZ,ξ. Let t ∈ A be the element
cutting out X×SD0 (i.e., the coordinate of P1 at zero pulled back). By our choice
of ξ′ ∈ Z ′ we have δ(ξ) = k and hence dim(A/I) = 1. Since ξ is not an embedded
point by assumption (3) we see that A/I is Cohen-Macaulay. Since dimδ(Z0) = k
we see that dim(A/(t, I)) = 0 which implies that t is a nonzerodivisor on A/I.
Finally, the irreducible closed subschemes Wi passing through ξ correspond to the
minimal primes I ⊂ qi over I. The multiplicities ni correspond to the lengths
lengthAqi

(A/I)qi . Hence we see that

n = lengthA(A/(t, I))
and

m =
∑

lengthA(A/(t, qi))lengthAqi
(A/I)qi

https://stacks.math.columbia.edu/tag/02S5
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Thus the result follows from Lemma 42.3.2. □

Lemma 42.21.3.02S6 Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of
finite type over S. Let F be a coherent sheaf on X ×P1. Let i0, i∞ : X → X ×P1

be the closed immersion such that it(x) = (x, t). Denote F0 = i∗0F and F∞ = i∗∞F .
Assume

(1) dimδ(Supp(F)) ≤ k + 1,
(2) dimδ(Supp(F0)) ≤ k, dimδ(Supp(F∞)) ≤ k, and
(3) for any embedded associated point ξ of F either ξ ̸∈ (X×P1)0∪(X×P1)∞

or δ(ξ) < k.
Then [F0]k ∼rat [F∞]k as k-cycles on X.
Proof. Let {Wi}i∈I be the collection of irreducible components of Supp(F) which
have δ-dimension k + 1. Write

[F ]k+1 =
∑

ni[Wi]

with ni > 0 as per definition. Note that {Wi} is a locally finite collection of closed
subsets of X ×S P1

S by Lemma 42.10.1. We claim that

[F0]k =
∑

ni[(Wi)0]k
and similarly for [F∞]k. If we prove this then the lemma follows from Lemma
42.21.1.
Let Z ′ ⊂ X be an integral closed subscheme of δ-dimension k. To prove the
equality above it suffices to show that the coefficient n of [Z ′] in [F0]k is the same
as the coefficient m of [Z ′] in

∑
ni[(Wi)0]k. Let ξ′ ∈ Z ′ be the generic point. Set

ξ = (ξ′, 0) ∈ X ×S P1
S . Consider the local ring A = OX×SP1

S
,ξ. Let M = Fξ as

an A-module. Let t ∈ A be the element cutting out X ×S D0 (i.e., the coordinate
of P1 at zero pulled back). By our choice of ξ′ ∈ Z ′ we have δ(ξ) = k and hence
dim(Supp(M)) = 1. Since ξ is not an associated point of F by assumption (3) we
see that M is a Cohen-Macaulay module. Since dimδ(Supp(F0)) = k we see that
dim(Supp(M/tM)) = 0 which implies that t is a nonzerodivisor on M . Finally,
the irreducible closed subschemes Wi passing through ξ correspond to the minimal
primes qi of Ass(M). The multiplicities ni correspond to the lengths lengthAqi

Mqi .
Hence we see that

n = lengthA(M/tM)
and

m =
∑

lengthA(A/(t, qi)A)lengthAqi
Mqi

Thus the result follows from Lemma 42.3.2. □

42.22. Chow groups and envelopes

0GU4 Here is the definition.
Definition 42.22.1.0GU5 [Ful98, Definition

18.3]
Let X be a scheme. An envelope is a proper morphism f : Y →

X which is completely decomposed (More on Morphisms, Definition 37.78.1).
The exact sequence of Lemma 42.22.4 is the main motivation for the definition.
Lemma 42.22.2.0GU6 Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of
finite type over S. If f : Y → X and g : Z → Y are envelopes, then f ◦ g is an
envelope.

https://stacks.math.columbia.edu/tag/02S6
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Proof. Follows from Morphisms, Lemma 29.41.4 and More on Morphisms, Lemma
37.78.2. □

Lemma 42.22.3.0GU7 Let (S, δ) be as in Situation 42.7.1. Let X ′ → X be a morphism
of schemes locally of finite type over S. If f : Y → X is an envelope, then the base
change f ′ : Y ′ → X ′ of f is an envelope too.

Proof. Follows from Morphisms, Lemma 29.41.5 and More on Morphisms, Lemma
37.78.3. □

Lemma 42.22.4.0GU8 Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of
finite type over S. Let f : Y → X be an envelope. Then we have an exact sequence

CHk(Y ×X Y ) p∗−q∗−−−−→ CHk(Y ) f∗−→ CHk(X)→ 0
for all k ∈ Z. Here p, q : Y ×X Y → Y are the projections.

Proof. Since f is an envelope, f is proper and hence pushforward on cycles and
cycle classes is defined, see Sections 42.12 and 42.15. Similarly, the morphisms p
and q are proper as base changes of f . The composition of the arrows is zero as
f∗ ◦ p∗ = (p ◦ f)∗ = (q ◦ f)∗ = f∗ ◦ q∗, see Lemma 42.12.2.
Let us show that f∗ : Zk(Y ) → Zk(X) is surjective. Namely, suppose that we
have α =

∑
ni[Zi] ∈ Zk(X) where Zi ⊂ X is a locally finite family of integral

closed subschemes. Let xi ∈ Zi be the generic point. Since f is an envelope and
hence completely decomposed, there exists a point yi ∈ Y with f(yi) = xi and
with κ(yi)/κ(xi) trivial. Let Wi ⊂ Y be the integral closed subscheme with generic
point yi. Since f is closed, we see that f(Wi) = Zi. It follows that the family
of closed subschemes Wi is locally finite on Y . Since κ(yi)/κ(xi) is trivial we see
that dimδ(Wi) = dimδ(Zi) = k. Hence β =

∑
ni[Wi] is in Zk(Y ). Finally, since

κ(yi)/κ(xi) is trivial, the degree of the dominant morphism f |Wi
: Wi → Zi is 1

and we conclude that f∗β = α.
Since f∗ : Zk(Y )→ Zk(X) is surjective, a fortiori the map f∗ : CHk(Y )→ CHk(X)
is surjective.
Let β ∈ Zk(Y ) be an element such that f∗β is zero in CHk(X). This means
we can find a locally finite family of integral closed subschemes Zj ⊂ X with
dimδ(Zj) = k + 1 and fj ∈ R(Zj)∗ such that

f∗β =
∑

(Zj → X)∗div(fj)

as cycles where ij : Zj → X is the given closed immersion. Arguing exactly
as above, we can find a locally finite family of integral closed subschemes Wj ⊂ Y
with f(Wj) = Zj and such that Wj → Zj is birational, i.e., induces an isomorphism
R(Zj) = R(Wj). Denote gj ∈ R(Wj)∗ the element corresponding to fj . Observe
that Wj → Zj is proper and that (Wj → Zj)∗div(gj) = div(fj) as cycles on Zj . It
follows from this that if we replace β by the rationally equivalent cycle

β′ = β −
∑

(Wj → Y )∗div(gj)

then we find that f∗β
′ = 0. (This uses Lemma 42.12.2.) Thus to finish the proof

of the lemma it suffices to show the claim in the following paragraph.
Claim: if β ∈ Zk(Y ) and f∗β = 0, then β = δ + p∗γ − q∗γ in Zk(Y ) for some
γ ∈ Zk(Y ×X Y ). Namely, write β =

∑
j∈J nj [Wj ] with {Wj}j∈J a locally finite
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family of integral closed subschemes of Y with dimδ(Wj) = k. Fix an integral
closed subscheme Z ⊂ X. Consider the subset JZ = {j ∈ J : f(Wj) = Z}. This is
a finite set. There are three cases:

(1) JZ = ∅. In this case we set γZ = 0.
(2) JZ ̸= ∅ and dimδ(Z) = k. The condition f∗β = 0 implies by looking at

the coefficient of Z that
∑
j∈JZ nj deg(Wj/Z) = 0. In this case we choose

an integral closed subscheme W ⊂ Y which maps birationally onto Z (see
above). Looking at generic points, we see that Wj ×Z W has a unique
irreducible component W ′

j ⊂Wj×ZW ⊂ Y ×X Y mapping birationally to
Wj . Then W ′

j → W is dominant and deg(W ′
j/W ) = deg(Wj/W ). Thus

if we set γZ =
∑
j∈JZ nj [W

′
j ] then we see that p∗γZ =

∑
j∈JZ nj [Wj ] and

q∗γZ =
∑
j∈JZ nj deg(W ′

j/W )[W ] = 0.
(3) JZ ̸= ∅ and dimδ(Z) < k. In this case we choose an integral closed

subscheme W ⊂ Y which maps birationally onto Z (see above). Looking
at generic points, we see that Wj×ZW has a unique irreducible component
W ′
j ⊂ Wj ×Z W ⊂ Y ×X Y mapping birationally to Wj . Then W ′

j → W
is dominant and k = dimδ(W ′

j) > dimδ(W ) = dimδ(Z). Thus if we set
γZ =

∑
j∈JZ nj [W

′
j ] then we see that p∗γZ =

∑
j∈JZ nj [Wj ] and q∗γZ = 0.

Since the family of integral closed subschemes {f(Wj)} is locally finite on X
(Lemma 42.11.2) we see that the k-cycle

γ =
∑

Z⊂X integral closed
γZ

on Y ×X Y is well defined. By our computations above it follows that p∗γZ = β
and q∗γZ = 0 which implies what we wanted to prove. □

42.23. Chow groups and K-groups

0FDQ In this section we are going to compare K0 of the category of coherent sheaves to
the chow groups.
Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of finite type over
S. We denote Coh(X) = Coh(OX) the category of coherent sheaves on X. It is an
abelian category, see Cohomology of Schemes, Lemma 30.9.2. For any k ∈ Z we let
Coh≤k(X) be the full subcategory of Coh(X) consisting of those coherent sheaves
F having dimδ(Supp(F)) ≤ k.

Lemma 42.23.1.02S8 Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of
finite type over S. The categories Coh≤k(X) are Serre subcategories of the abelian
category Coh(X).

Proof. The definition of a Serre subcategory is Homology, Definition 12.10.1. The
proof of the lemma is straightforward and omitted. □

Lemma 42.23.2.02S9 Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of
finite type over S. The maps

Zk(X) −→ K0(Coh≤k(X)/Coh≤k−1(X)),
∑

nZ [Z] 7→
[⊕

nZ>0
O⊕nZ
Z

]
−
[⊕

nZ<0
O⊕−nZ
Z

]
and

K0(Coh≤k(X)/Coh≤k−1(X)) −→ Zk(X), F 7−→ [F ]k
are mutually inverse isomorphisms.

https://stacks.math.columbia.edu/tag/02S8
https://stacks.math.columbia.edu/tag/02S9


42.23. CHOW GROUPS AND K-GROUPS 3678

Proof. Note that if
∑
nZ [Z] is in Zk(X), then the direct sums

⊕
nZ>0O

⊕nZ
Z and⊕

nZ<0O
⊕−nZ
Z are coherent sheaves on X since the family {Z | nZ > 0} is locally

finite on X. The map F → [F ]k is additive on Coh≤k(X), see Lemma 42.10.4.
And [F ]k = 0 if F ∈ Coh≤k−1(X). By part (1) of Homology, Lemma 12.11.3 this
implies that the second map is well defined too. It is clear that the composition of
the first map with the second map is the identity.
Conversely, say we start with a coherent sheaf F on X. Write [F ]k =

∑
i∈I ni[Zi]

with ni > 0 and Zi ⊂ X, i ∈ I pairwise distinct integral closed subschemes of
δ-dimension k. We have to show that

[F ] = [
⊕

i∈I
O⊕ni
Zi

]

in K0(Coh≤k(X)/Coh≤k−1(X)). Denote ξi ∈ Zi the generic point. If we set

F ′ = Ker(F →
⊕

ξi,∗Fξi)

then F ′ is the maximal coherent submodule of F whose support has dimension≤ k−
1. In particular F and F/F ′ have the same class in K0(Coh≤k(X)/Coh≤k−1(X)).
Thus after replacing F by F/F ′ we may and do assume that the kernel F ′ displayed
above is zero.
For each i ∈ I we choose a filtration

Fξi = F0
i ⊃ F1

i ⊃ . . . ⊃ F
ni
i = 0

such that the successive quotients are of dimension 1 over the residue field at ξi.
This is possible as the length of Fξi over OX,ξi is ni. For p > ni set Fpi = 0. For
p ≥ 0 we denote

Fp = Ker
(
F −→

⊕
ξi,∗(Fξi/F

p
i )
)

Then Fp is coherent, F0 = F , and Fp/Fp+1 is isomorphic to a free OZi-module
of rank 1 (if ni > p) or 0 (if ni ≤ p) in an open neighbourhood of ξi. Moreover,
F ′ =

⋂
Fp = 0. Since every quasi-compact open U ⊂ X contains only a finite

number of ξi we conclude that Fp|U is zero for p ≫ 0. Hence
⊕

p≥0 Fp is a
coherent OX -module. Consider the short exact sequences

0→
⊕

p>0
Fp →

⊕
p≥0
Fp →

⊕
p>0
Fp/Fp+1 → 0

and
0→

⊕
p>0
Fp →

⊕
p≥0
Fp → F → 0

of coherent OX -modules. This already shows that

[F ] = [
⊕
Fp/Fp+1]

in K0(Coh≤k(X)/Coh≤k−1(X)). Next, for every p ≥ 0 and i ∈ I such that ni > p
we choose a nonzero ideal sheaf Ii,p ⊂ OZi and a map Ii,p → Fp/Fp+1 on X which
is an isomorphism over the open neighbourhood of ξi mentioned above. This is
possible by Cohomology of Schemes, Lemma 30.10.6. Then we consider the short
exact sequence

0→
⊕

p≥0,i∈I,ni>p
Ii,p →

⊕
Fp/Fp+1 → Q→ 0

and the short exact sequence

0→
⊕

p≥0,i∈I,ni>p
Ii,p →

⊕
p≥0,i∈I,ni>p

OZi → Q′ → 0
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Observe that both Q and Q′ are zero in a neighbourhood of the points ξi and that
they are supported on

⋃
Zi. Hence Q and Q′ are in Coh≤k−1(X). Since⊕
i∈I
O⊕ni
Zi
∼=
⊕

p≥0,i∈I,ni>p
OZi

this concludes the proof. □

Lemma 42.23.3.0FDR Let π : X → Y be a finite morphism of schemes locally of finite
type over (S, δ) as in Situation 42.7.1. Then π∗ : Coh(X) → Coh(Y ) is an exact
functor which sends Coh≤k(X) into Coh≤k(Y ) and induces homomorphisms on
K0 of these categories and their quotients. The maps of Lemma 42.23.2 fit into a
commutative diagram

Zk(X)

π∗

��

// K0(Coh≤k(X)/Coh≤k−1(X))

π∗

��

// Zk(X)

π∗

��
Zk(Y ) // K0(Coh≤k(Y )/Coh≤k−1(Y )) // Zk(Y )

Proof. A finite morphism is affine, hence pushforward of quasi-coherent modules
along π is an exact functor by Cohomology of Schemes, Lemma 30.2.3. A finite
morphism is proper, hence π∗ sends coherent sheaves to coherent sheaves, see Coho-
mology of Schemes, Proposition 30.19.1. The statement on dimensions of supports
is clear. Commutativity on the right follows immediately from Lemma 42.12.4.
Since the horizontal arrows are bijections, we find that we have commutativity on
the left as well. □

Lemma 42.23.4.0FDS Let X be a scheme locally of finite type over (S, δ) as in Situation
42.7.1. There is a canonical map

CHk(X) −→ K0(Coh≤k+1(X)/Coh≤k−1(X))
induced by the map Zk(X)→ K0(Coh≤k(X)/Coh≤k−1(X)) from Lemma 42.23.2.

Proof. We have to show that an element α of Zk(X) which is rationally equiv-
alent to zero, is mapped to zero in K0(Coh≤k+1(X)/Coh≤k−1(X)). Write α =∑

(ij)∗div(fj) as in Definition 42.19.1. Observe that

π =
∐

ij : W =
∐

Wj −→ X

is a finite morphism as each ij : Wj → X is a closed immersion and the family of
Wj is locally finite in X. Hence we may use Lemma 42.23.3 to reduce to the case of
W . Since W is a disjoint union of integral scheme, we reduce to the case discussed
in the next paragraph.
Assume X is integral of δ-dimension k + 1. Let f be a nonzero rational func-
tion on X. Let α = div(f). We have to show that α is mapped to zero in
K0(Coh≤k+1(X)/Coh≤k−1(X)). Let I ⊂ OX be the ideal of denominators of f ,
see Divisors, Definition 31.23.10. Then we have short exact sequences

0→ I → OX → OX/I → 0
and

0→ I f−→ OX → OX/fI → 0
See Divisors, Lemma 31.23.9. We claim that

[OX/I]k − [OX/fI]k = div(f)
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The claim implies the element α = div(f) is represented by [OX/I] − [OX/fI]
in K0(Coh≤k(X)/Coh≤k−1(X)). Then the short exact sequences show that this
element maps to zero in K0(Coh≤k+1(X)/Coh≤k−1(X)).
To prove the claim, let Z ⊂ X be an integral closed subscheme of δ-dimension k
and let ξ ∈ Z be its generic point. Then I = Iξ ⊂ A = OX,ξ is an ideal such that
fI ⊂ A. Now the coefficient of [Z] in div(f) is ordA(f). (Of course as usual we
identify the function field of X with the fraction field of A.) On the other hand,
the coefficient of [Z] in [OX/I]− [OX/fI] is

lengthA(A/I)− lengthA(A/fI)
Using the distance fuction of Algebra, Definition 10.121.5 we can rewrite this as

d(A, I)− d(A, fI) = d(I, fI) = ordA(f)
The equalities hold by Algebra, Lemmas 10.121.6 and 10.121.7. (Using these lem-
mas isn’t necessary, but convenient.) □

Remark 42.23.5.02SD Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of
finite type over S. We will see later (in Lemma 42.69.3) that the map

CHk(X) −→ K0(Cohk+1(X)/Coh≤k−1(X))
of Lemma 42.23.4 is injective. Composing with the canonical map

K0(Cohk+1(X)/Coh≤k−1(X)) −→ K0(Coh(X)/Coh≤k−1(X))
we obtain a canonical map

CHk(X) −→ K0(Coh(X)/Coh≤k−1(X)).
We have not been able to find a statement or conjecture in the literature as to
whether this map should be injective or not. It seems reasonable to expect the
kernel of this map to be torsion. We will return to this question (insert future
reference).

Lemma 42.23.6.0FDT Let X be a locally Noetherian scheme. Let Z ⊂ X be a closed
subscheme. Denote CohZ(X) ⊂ Coh(X) the Serre subcategory of coherent OX -
modules whose set theoretic support is contained in Z. Then the exact inclusion
functor Coh(Z)→ CohZ(X) induces an isomorphism

K ′
0(Z) = K0(Coh(Z)) −→ K0(CohZ(X))

Proof. Let F be an object of CohZ(X). Let I ⊂ OX be the quasi-coherent ideal
sheaf of Z. Consider the descending filtration

. . . ⊂ Fp = IpF ⊂ Fp−1 ⊂ . . . ⊂ F0 = F
Exactly as in the proof of Lemma 42.23.4 this filtration is locally finite and hence⊕

p≥0 Fp,
⊕

p≥1 Fp, and
⊕

p≥0 Fp/Fp+1 are coherent OX -modules supported on
Z. Hence we get

[F ] = [
⊕

p≥0
Fp/Fp+1]

in K0(CohZ(X)) exactly as in the proof of Lemma 42.23.4. Since the coherent
module

⊕
p≥0 Fp/Fp+1 is annihilated by I we conclude that [F ] is in the image.

Actually, we claim that the map

F 7−→ c(F) = [
⊕

p≥0
Fp/Fp+1]

https://stacks.math.columbia.edu/tag/02SD
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factors through K0(CohZ(X)) and is an inverse to the map in the statement of the
lemma. To see this all we have to show is that if

0→ F → G → H → 0

is a short exact sequence in CohZ(X), then we get c(G) = c(F) + c(H). Observe
that for all q ≥ 0 we have a short exact sequence

0→ (F ∩ IqG)/(F ∩ Iq+1G)→ Gq/Gq+1 → Hq/Hq+1 → 0

For p, q ≥ 0 consider the coherent submodule

Fp,q = IpF ∩ IqG

Arguing exactly as above and using that the filtrations Fp = IpF and F ∩IqG are
locally finite, we find that

[
⊕

p≥0
Fp/Fp+1] = [

⊕
p,q≥0

Fp,q/(Fp+1,q+Fp,q+1)] = [
⊕

q≥0
(F∩IqG)/(F∩Iq+1G)]

in K0(Coh(Z)). Combined with the exact sequences above we obtain the desired
result. Some details omitted. □

42.24. The divisor associated to an invertible sheaf

02SI The following definition is the analogue of Divisors, Definition 31.27.4 in our current
setup.

Definition 42.24.1.02SJ Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Assume X is integral and n = dimδ(X). Let L be an invertible
OX -module.

(1) For any nonzero meromorphic section s of L we define the Weil divisor
associated to s is the (n− 1)-cycle

divL(s) =
∑

ordZ,L(s)[Z]

defined in Divisors, Definition 31.27.4. This makes sense because Weil
divisors have δ-dimension n− 1 by Lemma 42.16.1.

(2) We define Weil divisor associated to L as

c1(L) ∩ [X] = class of divL(s) ∈ CHn−1(X)

where s is any nonzero meromorphic section of L over X. This is well
defined by Divisors, Lemma 31.27.3.

Let X and S be as in Definition 42.24.1 above. Set n = dimδ(X). It is clear
from the definitions that Cl(X) = CHn−1(X) where Cl(X) is the Weil divisor class
group of X as defined in Divisors, Definition 31.26.7. The map

Pic(X) −→ CHn−1(X), L 7−→ c1(L) ∩ [X]

is the same as the map Pic(X)→ Cl(X) constructed in Divisors, Equation (31.27.5.1)
for arbitrary locally Noetherian integral schemes. In particular, this map is a ho-
momorphism of abelian groups, it is injective if X is a normal scheme, and an
isomorphism if all local rings of X are UFDs. See Divisors, Lemmas 31.27.6 and
31.27.7. There are some cases where it is easy to compute the Weil divisor associ-
ated to an invertible sheaf.
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Lemma 42.24.2.02SK Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Assume X is integral and n = dimδ(X). Let L be an invertible OX -module.
Let s ∈ Γ(X,L) be a nonzero global section. Then

divL(s) = [Z(s)]n−1

in Zn−1(X) and
c1(L) ∩ [X] = [Z(s)]n−1

in CHn−1(X).

Proof. Let Z ⊂ X be an integral closed subscheme of δ-dimension n − 1. Let
ξ ∈ Z be its generic point. Choose a generator sξ ∈ Lξ. Write s = fsξ for some
f ∈ OX,ξ. By definition of Z(s), see Divisors, Definition 31.14.8 we see that Z(s)
is cut out by a quasi-coherent sheaf of ideals I ⊂ OX such that Iξ = (f). Hence
lengthOX,x

(OZ(s),ξ) = lengthOX,x
(OX,ξ/(f)) = ordOX,x

(f) as desired. □

The following lemma will be superseded by the more general Lemma 42.26.2.

Lemma 42.24.3.02SM Let (S, δ) be as in Situation 42.7.1. Let X, Y be locally of finite
type over S. Assume X, Y are integral and n = dimδ(Y ). Let L be an invertible
OY -module. Let f : X → Y be a flat morphism of relative dimension r. Then

f∗(c1(L) ∩ [Y ]) = c1(f∗L) ∩ [X]
in CHn+r−1(X).

Proof. Let s be a nonzero meromorphic section of L. We will show that actually
f∗divL(s) = divf∗L(f∗s) and hence the lemma holds. To see this let ξ ∈ Y be a
point and let sξ ∈ Lξ be a generator. Write s = gsξ with g ∈ R(Y )∗. Then there is
an open neighbourhood V ⊂ Y of ξ such that sξ ∈ L(V ) and such that sξ generates
L|V . Hence we see that

divL(s)|V = divY (g)|V .
In exactly the same way, since f∗sξ generates f∗L over f−1(V ) and since f∗s =
gf∗sξ we also have

divL(f∗s)|f−1(V ) = divX(g)|f−1(V ).

Thus the desired equality of cycles over f−1(V ) follows from the corresponding
result for pullbacks of principal divisors, see Lemma 42.17.2. □

42.25. Intersecting with an invertible sheaf

02SN In this section we study the following construction.

Definition 42.25.1.02SO Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let L be an invertible OX -module. We define, for every integer k, an
operation

c1(L) ∩ − : Zk+1(X)→ CHk(X)
called intersection with the first Chern class of L.

(1) Given an integral closed subscheme i : W → X with dimδ(W ) = k+ 1 we
define

c1(L) ∩ [W ] = i∗(c1(i∗L) ∩ [W ])
where the right hand side is defined in Definition 42.24.1.

(2) For a general (k + 1)-cycle α =
∑
ni[Wi] we set

c1(L) ∩ α =
∑

nic1(L) ∩ [Wi]
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Write each c1(L) ∩Wi =
∑
j ni,j [Zi,j ] with {Zi,j}j a locally finite sum of integral

closed subschemes of Wi. Since {Wi} is a locally finite collection of integral closed
subschemes on X, it follows easily that {Zi,j}i,j is a locally finite collection of
closed subschemes of X. Hence c1(L) ∩ α =

∑
nini,j [Zi,j ] is a cycle. Another,

more convenient, way to think about this is to observe that the morphism
∐
Wi →

X is proper. Hence c1(L) ∩ α can be viewed as the pushforward of a class in
CHk(

∐
Wi) =

∏
CHk(Wi). This also explains why the result is well defined up to

rational equivalence on X.

The main goal for the next few sections is to show that intersecting with c1(L)
factors through rational equivalence. This is not a triviality.

Lemma 42.25.2.02SP Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let L, N be an invertible sheaves on X. Then

c1(L) ∩ α+ c1(N ) ∩ α = c1(L ⊗OX
N ) ∩ α

in CHk(X) for every α ∈ Zk+1(X). Moreover, c1(OX) ∩ α = 0 for all α.

Proof. The additivity follows directly from Divisors, Lemma 31.27.5 and the defini-
tions. To see that c1(OX)∩α = 0 consider the section 1 ∈ Γ(X,OX). This restricts
to an everywhere nonzero section on any integral closed subscheme W ⊂ X. Hence
c1(OX) ∩ [W ] = 0 as desired. □

Recall that Z(s) ⊂ X denotes the zero scheme of a global section s of an invertible
sheaf on a scheme X, see Divisors, Definition 31.14.8.

Lemma 42.25.3.0EPI Let (S, δ) be as in Situation 42.7.1. Let Y be locally of finite type
over S. Let L be an invertible OY -module. Let s ∈ Γ(Y,L). Assume

(1) dimδ(Y ) ≤ k + 1,
(2) dimδ(Z(s)) ≤ k, and
(3) for every generic point ξ of an irreducible component of Z(s) of δ-dimension

k the multiplication by s induces an injection OY,ξ → Lξ.
Write [Y ]k+1 =

∑
ni[Yi] where Yi ⊂ Y are the irreducible components of Y of

δ-dimension k + 1. Set si = s|Yi ∈ Γ(Yi,L|Yi). Then

(42.25.3.1)02SR [Z(s)]k =
∑

ni[Z(si)]k

as k-cycles on Y .

Proof. Let Z ⊂ Y be an integral closed subscheme of δ-dimension k. Let ξ ∈ Z
be its generic point. We want to compare the coefficient n of [Z] in the expression∑
ni[Z(si)]k with the coefficient m of [Z] in the expression [Z(s)]k. Choose a

generator sξ ∈ Lξ. Write A = OY,ξ, L = Lξ. Then L = Asξ. Write s = fsξ for
some (unique) f ∈ A. Hypothesis (3) means that f : A → A is injective. Since
dimδ(Y ) ≤ k + 1 and dimδ(Z) = k we have dim(A) = 0 or 1. We have

m = lengthA(A/(f))

which is finite in either case.

If dim(A) = 0, then f : A → A being injective implies that f ∈ A∗. Hence in this
case m is zero. Moreover, the condition dim(A) = 0 means that ξ does not lie on
any irreducible component of δ-dimension k + 1, i.e., n = 0 as well.
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Now, let dim(A) = 1. Since A is a Noetherian local ring it has finitely many minimal
primes q1, . . . , qt. These correspond 1-1 with the Yi passing through ξ′. Moreover
ni = lengthAqi

(Aqi). Also, the multiplicity of [Z] in [Z(si)]k is lengthA(A/(f, qi)).
Hence the equation to prove in this case is

lengthA(A/(f)) =
∑

lengthAqi
(Aqi)lengthA(A/(f, qi))

which follows from Lemma 42.3.2. □

The following lemma is a useful result in order to compute the intersection product
of the c1 of an invertible sheaf and the cycle associated to a closed subscheme.
Recall that Z(s) ⊂ X denotes the zero scheme of a global section s of an invertible
sheaf on a scheme X, see Divisors, Definition 31.14.8.

Lemma 42.25.4.02SQ Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let L be an invertible OX -module. Let Y ⊂ X be a closed subscheme. Let
s ∈ Γ(Y,L|Y ). Assume

(1) dimδ(Y ) ≤ k + 1,
(2) dimδ(Z(s)) ≤ k, and
(3) for every generic point ξ of an irreducible component of Z(s) of δ-dimension

k the multiplication by s induces an injection OY,ξ → (L|Y )ξ1.
Then

c1(L) ∩ [Y ]k+1 = [Z(s)]k
in CHk(X).

Proof. Write
[Y ]k+1 =

∑
ni[Yi]

where Yi ⊂ Y are the irreducible components of Y of δ-dimension k+1 and ni > 0.
By assumption the restriction si = s|Yi ∈ Γ(Yi,L|Yi) is not zero, and hence is a
regular section. By Lemma 42.24.2 we see that [Z(si)]k represents c1(L|Yi). Hence
by definition

c1(L) ∩ [Y ]k+1 =
∑

ni[Z(si)]k
Thus the result follows from Lemma 42.25.3. □

42.26. Intersecting with an invertible sheaf and push and pull

0AYA In this section we prove that the operation c1(L) ∩− commutes with flat pullback
and proper pushforward.

Lemma 42.26.1.0EPJ Let (S, δ) be as in Situation 42.7.1. Let X, Y be locally of finite
type over S. Let f : X → Y be a flat morphism of relative dimension r. Let L
be an invertible sheaf on Y . Assume Y is integral and n = dimδ(Y ). Let s be a
nonzero meromorphic section of L. Then we have

f∗divL(s) =
∑

nidivf∗L|Xi (si)

in Zn+r−1(X). Here the sum is over the irreducible components Xi ⊂ X of δ-
dimension n + r, the section si = f |∗Xi(s) is the pullback of s, and ni = mXi,X is
the multiplicity of Xi in X.

1For example, this holds if s is a regular section of L|Y .
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Proof. To prove this equality of cycles, we may work locally on Y . Hence we
may assume Y is affine and s = p/q for some nonzero sections p ∈ Γ(Y,L) and
q ∈ Γ(Y,O). If we can show both

f∗divL(p) =
∑

nidivf∗L|Xi (pi) and f∗divO(q) =
∑

nidivOXi
(qi)

(with obvious notations) then we win by the additivity, see Divisors, Lemma 31.27.5.
Thus we may assume that s ∈ Γ(Y,L). In this case we may apply the equality
(42.25.3.1) to see that

[Z(f∗(s))]k+r−1 =
∑

nidivf∗L|Xi (si)

where f∗(s) ∈ f∗L denotes the pullback of s to X. On the other hand we have

f∗divL(s) = f∗[Z(s)]k−1 = [f−1(Z(s))]k+r−1,

by Lemmas 42.24.2 and 42.14.4. Since Z(f∗(s)) = f−1(Z(s)) we win. □

Lemma 42.26.2.02SS Let (S, δ) be as in Situation 42.7.1. Let X, Y be locally of finite
type over S. Let f : X → Y be a flat morphism of relative dimension r. Let L be
an invertible sheaf on Y . Let α be a k-cycle on Y . Then

f∗(c1(L) ∩ α) = c1(f∗L) ∩ f∗α

in CHk+r−1(X).

Proof. Write α =
∑
ni[Wi]. We will show that

f∗(c1(L) ∩ [Wi]) = c1(f∗L) ∩ f∗[Wi]

in CHk+r−1(X) by producing a rational equivalence on the closed subscheme f−1(Wi)
of X. By the discussion in Remark 42.19.6 this will prove the equality of the lemma
is true.

Let W ⊂ Y be an integral closed subscheme of δ-dimension k. Consider the closed
subscheme W ′ = f−1(W ) = W ×Y X so that we have the fibre product diagram

W ′ //

h

��

X

f

��
W // Y

We have to show that f∗(c1(L) ∩ [W ]) = c1(f∗L) ∩ f∗[W ]. Choose a nonzero
meromorphic section s of L|W . Let W ′

i ⊂ W ′ be the irreducible components of
δ-dimension k + r. Write [W ′]k+r =

∑
ni[W ′

i ] with ni the multiplicity of W ′
i in

W ′ as per definition. So f∗[W ] =
∑
ni[W ′

i ] in Zk+r(X). Since each W ′
i → W is

dominant we see that si = s|W ′
i

is a nonzero meromorphic section for each i. By
Lemma 42.26.1 we have the following equality of cycles

h∗divL|W (s) =
∑

nidivf∗L|W ′
i

(si)

in Zk+r−1(W ′). This finishes the proof since the left hand side is a cycle on W ′

which pushes to f∗(c1(L)∩ [W ]) in CHk+r−1(X) and the right hand side is a cycle
on W ′ which pushes to c1(f∗L) ∩ f∗[W ] in CHk+r−1(X). □
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Lemma 42.26.3.02ST Let (S, δ) be as in Situation 42.7.1. Let X, Y be locally of finite
type over S. Let f : X → Y be a proper morphism. Let L be an invertible sheaf
on Y . Let s be a nonzero meromorphic section s of L on Y . Assume X, Y integral,
f dominant, and dimδ(X) = dimδ(Y ). Then

f∗ (divf∗L(f∗s)) = [R(X) : R(Y )]divL(s).

as cycles on Y . In particular

f∗(c1(f∗L) ∩ [X]) = [R(X) : R(Y )]c1(L) ∩ [Y ] = c1(L) ∩ f∗[X]

Proof. The last equation follows from the first since f∗[X] = [R(X) : R(Y )][Y ] by
definition. It turns out that we can re-use Lemma 42.18.1 to prove this. Namely,
since we are trying to prove an equality of cycles, we may work locally on Y . Hence
we may assume that L = OY . In this case s corresponds to a rational function
g ∈ R(Y ), and we are simply trying to prove

f∗ (divX(g)) = [R(X) : R(Y )]divY (g).

Comparing with the result of the aforementioned Lemma 42.18.1 we see this true
since NmR(X)/R(Y )(g) = g[R(X):R(Y )] as g ∈ R(Y )∗. □

Lemma 42.26.4.02SU Let (S, δ) be as in Situation 42.7.1. Let X, Y be locally of finite
type over S. Let p : X → Y be a proper morphism. Let α ∈ Zk+1(X). Let L be
an invertible sheaf on Y . Then

p∗(c1(p∗L) ∩ α) = c1(L) ∩ p∗α

in CHk(Y ).

Proof. Suppose that p has the property that for every integral closed subscheme
W ⊂ X the map p|W : W → Y is a closed immersion. Then, by definition of
capping with c1(L) the lemma holds.

We will use this remark to reduce to a special case. Namely, write α =
∑
ni[Wi]

with ni ̸= 0 and Wi pairwise distinct. Let W ′
i ⊂ Y be the image of Wi (as an

integral closed subscheme). Consider the diagram

X ′ =
∐
Wi q

//

p′

��

X

p

��
Y ′ =

∐
W ′
i

q′
// Y.

Since {Wi} is locally finite on X, and p is proper we see that {W ′
i} is locally finite on

Y and that q, q′, p′ are also proper morphisms. We may think of
∑
ni[Wi] also as a

k-cycle α′ ∈ Zk(X ′). Clearly q∗α
′ = α. We have q∗(c1(q∗p∗L)∩α′) = c1(p∗L)∩q∗α

′

and (q′)∗(c1((q′)∗L) ∩ p′
∗α

′) = c1(L) ∩ q′
∗p

′
∗α

′ by the initial remark of the proof.
Hence it suffices to prove the lemma for the morphism p′ and the cycle

∑
ni[Wi].

Clearly, this means we may assume X, Y integral, f : X → Y dominant and
α = [X]. In this case the result follows from Lemma 42.26.3. □
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42.27. The key formula

0AYB Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type over S. Assume
X is integral and dimδ(X) = n. Let L and N be invertible sheaves on X. Let s
be a nonzero meromorphic section of L and let t be a nonzero meromorphic section
of N . Let Zi ⊂ X, i ∈ I be a locally finite set of irreducible closed subsets of
codimension 1 with the following property: If Z ̸∈ {Zi} with generic point ξ, then
s is a generator for Lξ and t is a generator for Nξ. Such a set exists by Divisors,
Lemma 31.27.2. Then

divL(s) =
∑

ordZi,L(s)[Zi]
and similarly

divN (t) =
∑

ordZi,N (t)[Zi]
Unwinding the definitions more, we pick for each i generators si ∈ Lξi and ti ∈ Nξi
where ξi is the generic point of Zi. Then we can write

s = fisi and t = giti

Set Bi = OX,ξi . Then by definition
ordZi,L(s) = ordBi(fi) and ordZi,N (t) = ordBi(gi)

Since ti is a generator of Nξi we see that its image in the fibre Nξi ⊗ κ(ξi) is a
nonzero meromorphic section of N|Zi . We will denote this image ti|Zi . From our
definitions it follows that

c1(N ) ∩ divL(s) =
∑

ordBi(fi)(Zi → X)∗divN |Zi (ti|Zi)

and similarly

c1(L) ∩ divN (t) =
∑

ordBi(gi)(Zi → X)∗divL|Zi (si|Zi)

in CHn−2(X). We are going to find a rational equivalence between these two cycles.
To do this we consider the tame symbol

∂Bi(fi, gi) ∈ κ(ξi)∗

see Section 42.5.

Lemma 42.27.1 (Key formula).0AYC In the situation above the cycle∑
(Zi → X)∗

(
ordBi(fi)divN |Zi (ti|Zi)− ordBi(gi)divL|Zi (si|Zi)

)
is equal to the cycle ∑

(Zi → X)∗div(∂Bi(fi, gi))

Proof. First, let us examine what happens if we replace si by usi for some unit u
in Bi. Then fi gets replaced by u−1fi. Thus the first part of the first expression of
the lemma is unchanged and in the second part we add

−ordBi(gi)div(u|Zi)
(where u|Zi is the image of u in the residue field) by Divisors, Lemma 31.27.3 and
in the second expression we add

div(∂Bi(u−1, gi))
by bi-linearity of the tame symbol. These terms agree by property (6) of the tame
symbol.
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Let Z ⊂ X be an irreducible closed with dimδ(Z) = n − 2. To show that the
coefficients of Z of the two cycles of the lemma is the same, we may do a replacement
si 7→ usi as in the previous paragraph. In exactly the same way one shows that we
may do a replacement ti 7→ vti for some unit v of Bi.

Since we are proving the equality of cycles we may argue one coefficient at a time.
Thus we choose an irreducible closed Z ⊂ X with dimδ(Z) = n − 2 and compare
coefficients. Let ξ ∈ Z be the generic point and set A = OX,ξ. This is a Noetherian
local domain of dimension 2. Choose generators σ and τ for Lξ and Nξ. After
shrinking X, we may and do assume σ and τ define trivializations of the invertible
sheaves L and N over all of X. Because Zi is locally finite after shrinking X we
may assume Z ⊂ Zi for all i ∈ I and that I is finite. Then ξi corresponds to a
prime qi ⊂ A of height 1. We may write si = aiσ and ti = biτ for some ai and bi
units in Aqi . By the remarks above, it suffices to prove the lemma when ai = bi = 1
for all i.

Assume ai = bi = 1 for all i. Then the first expression of the lemma is zero, because
we choose σ and τ to be trivializing sections. Write s = fσ and t = gτ with f and
g in the fraction field of A. By the previous paragraph we have reduced to the case
fi = f and gi = g for all i. Moreover, for a height 1 prime q of A which is not in
{qi} we have that both f and g are units in Aq (by our choice of the family {Zi}
in the discussion preceding the lemma). Thus the coefficient of Z in the second
expression of the lemma is ∑

i
ordA/qi(∂Bi(f, g))

which is zero by the key Lemma 42.6.3. □

Remark 42.27.2.0GU9 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let k ∈ Z. We claim that there is a complex⊕′

δ(x)=k+2
KM

2 (κ(x)) ∂−→
⊕′

δ(x)=k+1
KM

1 (κ(x)) ∂−→
⊕′

δ(x)=k
KM

0 (κ(x))

Here we use notation and conventions introduced in Remark 42.19.2 and in addition
(1) KM

2 (κ(x)) is the degree 2 part of the Milnor K-theory of the residue
field κ(x) of the point x ∈ X (see Remark 42.6.4) which is the quotient
of κ(x)∗ ⊗Z κ(x)∗ by the subgroup generated by elements of the form
λ⊗ (1− λ) for λ ∈ κ(x) \ {0, 1}, and

(2) the first differential ∂ is defined as follows: given an element ξ =
∑
x αx

in the first term we set

∂(ξ) =
∑

x⇝x′, δ(x′)=k+1
∂OWx,x′ (αx)

where ∂OWx,x′ : KM
2 (κ(x)) → KM

1 (κ(x)) is the tame symbol constructed
in Section 42.5.

We claim that we get a complex, i.e., that ∂◦∂ = 0. To see this it suffices to take an
element ξ as above and a point x′′ ∈ X with δ(x′′) = k and check that the coefficient
of x′′ in the element ∂(∂(ξ)) is zero. Because ξ =

∑
αx is a locally finite sum, we

may in fact assume by additivity that ξ = αx for some x ∈ X with δ(x) = k + 2
and αx ∈ KM

2 (κ(x)). By linearity again we may assume that αx = f ⊗ g for some
f, g ∈ κ(x)∗. Denote W ⊂ X the integral closed subscheme with generic point x.

https://stacks.math.columbia.edu/tag/0GU9
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If x′′ ̸∈ W , then it is immediately clear that the coefficient of x in ∂(∂(ξ)) is zero.
If x′′ ∈W , then we see that the coefficient of x′′ in ∂(∂(x)) is equal to∑

x⇝x′⇝x′′, δ(x′)=k+1
ordO

{x′},x′′
(∂OW,x′ (f, g))

The key algebraic Lemma 42.6.3 says exactly that this is zero.
Remark 42.27.3.0GUA Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let k ∈ Z. The complex in Remark 42.27.2 and the presentation of
CHk(X) in Remark 42.19.2 suggests that we can define a first higher Chow group

CHM
k (X, 1) = H1(the complex of Remark 42.27.2)

We use the supscript M to distinguish our notation from the higher chow groups
defined in the literature, e.g., in the papers by Spencer Bloch ([Blo86] and [Blo94]).
Let U ⊂ X be open with complement Y ⊂ X (viewed as reduced closed subscheme).
Then we find a split short exact sequence

0→
⊕′

y∈Y,δ(y)=k+i
KM
i (κ(y))→

⊕′

x∈X,δ(x)=k+i
KM
i (κ(x))→

⊕′

u∈U,δ(u)=k+i
KM
i (κ(u))→ 0

for i = 2, 1, 0 compatible with the boundary maps in the complexes of Remark
42.27.2. Applying the snake lemma (see Homology, Lemma 12.13.6) we obtain a
six term exact sequence
CHM

k (Y, 1)→ CHM
k (X, 1)→ CHM

k (U, 1)→ CHk(Y )→ CHk(X)→ CHk(U)→ 0
extending the canonical exact sequence of Lemma 42.19.3. With some work, one
may also define flat pullback and proper pushforward for the first higher chow group
CHM

k (X, 1). We will return to this later (insert future reference here).

42.28. Intersecting with an invertible sheaf and rational equivalence

02TG Applying the key lemma we obtain the fundamental properties of intersecting with
invertible sheaves. In particular, we will see that c1(L)∩− factors through rational
equivalence and that these operations for different invertible sheaves commute.
Lemma 42.28.1.02TH Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Assume X integral and dimδ(X) = n. Let L, N be invertible on X.
Choose a nonzero meromorphic section s of L and a nonzero meromorphic section
t of N . Set α = divL(s) and β = divN (t). Then

c1(N ) ∩ α = c1(L) ∩ β
in CHn−2(X).
Proof. Immediate from the key Lemma 42.27.1 and the discussion preceding it. □

Lemma 42.28.2.02TI Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let L be invertible on X. The operation α 7→ c1(L) ∩ α factors through
rational equivalence to give an operation

c1(L) ∩ − : CHk+1(X)→ CHk(X)
Proof. Let α ∈ Zk+1(X), and α ∼rat 0. We have to show that c1(L)∩α as defined
in Definition 42.25.1 is zero. By Definition 42.19.1 there exists a locally finite family
{Wj} of integral closed subschemes with dimδ(Wj) = k + 2 and rational functions
fj ∈ R(Wj)∗ such that

α =
∑

(ij)∗divWj (fj)

https://stacks.math.columbia.edu/tag/0GUA
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Note that p :
∐
Wj → X is a proper morphism, and hence α = p∗α

′ where
α′ ∈ Zk+1(

∐
Wj) is the sum of the principal divisors divWj (fj). By Lemma 42.26.4

we have c1(L)∩α = p∗(c1(p∗L)∩α′). Hence it suffices to show that each c1(L|Wj )∩
divWj

(fj) is zero. In other words we may assume thatX is integral and α = divX(f)
for some f ∈ R(X)∗.

Assume X is integral and α = divX(f) for some f ∈ R(X)∗. We can think of
f as a regular meromorphic section of the invertible sheaf N = OX . Choose
a meromorphic section s of L and denote β = divL(s). By Lemma 42.28.1 we
conclude that

c1(L) ∩ α = c1(OX) ∩ β.
However, by Lemma 42.25.2 we see that the right hand side is zero in CHk(X) as
desired. □

Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type over S. Let L
be invertible on X. We will denote

c1(L) ∩ − : CHk+1(X)→ CHk(X)

the operation c1(L) ∩ −. This makes sense by Lemma 42.28.2. We will denote
c1(L)s ∩ − the s-fold iterate of this operation for all s ≥ 0.

Lemma 42.28.3.02TJ Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let L, N be invertible on X. For any α ∈ CHk+2(X) we have

c1(L) ∩ c1(N ) ∩ α = c1(N ) ∩ c1(L) ∩ α

as elements of CHk(X).

Proof. Write α =
∑
mj [Zj ] for some locally finite collection of integral closed

subschemes Zj ⊂ X with dimδ(Zj) = k + 2. Consider the proper morphism p :∐
Zj → X. Set α′ =

∑
mj [Zj ] as a (k+ 2)-cycle on

∐
Zj . By several applications

of Lemma 42.26.4 we see that c1(L)∩ c1(N )∩ α = p∗(c1(p∗L)∩ c1(p∗N )∩ α′) and
c1(N ) ∩ c1(L) ∩ α = p∗(c1(p∗N ) ∩ c1(p∗L) ∩ α′). Hence it suffices to prove the
formula in case X is integral and α = [X]. In this case the result follows from
Lemma 42.28.1 and the definitions. □

42.29. Gysin homomorphisms

02T7 In this section we define the gysin map for the zero locus D of a section of an invert-
ible sheaf. An interesting case occurs when D is an effective Cartier divisor, but
the generalization to arbitrary D allows us a flexibility to formulate various com-
patibilities, see Remark 42.29.7 and Lemmas 42.29.8, 42.29.9, and 42.30.5. These
results can be generalized to locally principal closed subschemes endowed with a
virtual normal bundle (Remark 42.29.2) or to pseudo-divisors (Remark 42.29.3).

Recall that effective Cartier divisors correspond 1-to-1 to isomorphism classes of
pairs (L, s) where L is an invertible sheaf and s is a regular global section, see
Divisors, Lemma 31.14.10. If D corresponds to (L, s), then L = OX(D). Please
keep this in mind while reading this section.

Definition 42.29.1.02T8 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let (L, s) be a pair consisting of an invertible sheaf and a global

https://stacks.math.columbia.edu/tag/02TJ
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section s ∈ Γ(X,L). Let D = Z(s) be the zero scheme of s, and denote i : D → X
the closed immersion. We define, for every integer k, a Gysin homomorphism

i∗ : Zk+1(X)→ CHk(D).
by the following rules:

(1) Given a integral closed subscheme W ⊂ X with dimδ(W ) = k + 1 we
define
(a) if W ̸⊂ D, then i∗[W ] = [D ∩W ]k as a k-cycle on D, and
(b) if W ⊂ D, then i∗[W ] = i′∗(c1(L|W ) ∩ [W ]), where i′ : W → D is the

induced closed immersion.
(2) For a general (k + 1)-cycle α =

∑
nj [Wj ] we set

i∗α =
∑

nji
∗[Wj ]

(3) If D is an effective Cartier divisor, then we denote D · α = i∗i
∗α the

pushforward of the class i∗α to a class on X.

In fact, as we will see later, this Gysin homomorphism i∗ can be viewed as an
example of a non-flat pullback. Thus we will sometimes informally call the class
i∗α the pullback of the class α.

Remark 42.29.2.0B70 Let X be a scheme locally of finite type over S as in Situation
42.7.1. Let (D,N , σ) be a triple consisting of a locally principal (Divisors, Definition
31.13.1) closed subscheme i : D → X, an invertible OD-module N , and a surjection
σ : N⊗−1 → i∗ID ofOD-modules2. HereN should be thought of as a virtual normal
bundle of D in X. The construction of i∗ : Zk+1(X) → CHk(D) in Definition
42.29.1 generalizes to such triples, see Section 42.54.

Remark 42.29.3.0B7D Let X be a scheme locally of finite type over S as in Situation
42.7.1. In [Ful98] a pseudo-divisor on X is defined as a triple D = (L, Z, s) where
L is an invertible OX -module, Z ⊂ X is a closed subset, and s ∈ Γ(X \ Z,L) is
a nowhere vanishing section. Similarly to the above, one can define for every α in
CHk+1(X) a product D · α in CHk(Z ∩ |α|) where |α| is the support of α.

Lemma 42.29.4.02T9 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let (L, s, i : D → X) be as in Definition 42.29.1. Let α be a (k + 1)-cycle
on X. Then i∗i∗α = c1(L)∩α in CHk(X). In particular, if D is an effective Cartier
divisor, then D · α = c1(OX(D)) ∩ α.

Proof. Write α =
∑
nj [Wj ] where ij : Wj → X are integral closed subschemes

with dimδ(Wj) = k. Since D is the zero scheme of s we see that D ∩Wj is the
zero scheme of the restriction s|Wj

. Hence for each j such that Wj ̸⊂ D we have
c1(L) ∩ [Wj ] = [D ∩Wj ]k by Lemma 42.25.4. So we have

c1(L) ∩ α =
∑

Wj ̸⊂D
nj [D ∩Wj ]k +

∑
Wj⊂D

njij,∗(c1(L)|Wj
) ∩ [Wj ])

in CHk(X) by Definition 42.25.1. The right hand side matches (termwise) the
pushforward of the class i∗α on D from Definition 42.29.1. Hence we win. □

Lemma 42.29.5.02TB Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let (L, s, i : D → X) be as in Definition 42.29.1.

2This condition assures us that if D is an effective Cartier divisor, then N = OX(D)|D.

https://stacks.math.columbia.edu/tag/0B70
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(1) Let Z ⊂ X be a closed subscheme such that dimδ(Z) ≤ k + 1 and such
that D∩Z is an effective Cartier divisor on Z. Then i∗[Z]k+1 = [D∩Z]k.

(2) Let F be a coherent sheaf on X such that dimδ(Supp(F)) ≤ k + 1 and
s : F → F ⊗OX

L is injective. Then

i∗[F ]k+1 = [i∗F ]k
in CHk(D).

Proof. Assume Z ⊂ X as in (1). Then set F = OZ . The assumption that D ∩Z is
an effective Cartier divisor is equivalent to the assumption that s : F → F ⊗OX

L
is injective. Moreover [Z]k+1 = [F ]k+1] and [D ∩ Z]k = [OD∩Z ]k = [i∗F ]k. See
Lemma 42.10.3. Hence part (1) follows from part (2).

Write [F ]k+1 =
∑
mj [Wj ] with mj > 0 and pairwise distinct integral closed sub-

schemes Wj ⊂ X of δ-dimension k + 1. The assumption that s : F → F ⊗OX
L is

injective implies that Wj ̸⊂ D for all j. By definition we see that

i∗[F ]k+1 =
∑

mj [D ∩Wj ]k.

We claim that ∑
[D ∩Wj ]k = [i∗F ]k

as cycles. Let Z ⊂ D be an integral closed subscheme of δ-dimension k. Let
ξ ∈ Z be its generic point. Let A = OX,ξ. Let M = Fξ. Let f ∈ A be an
element generating the ideal of D, i.e., such that OD,ξ = A/fA. By assumption
dim(Supp(M)) = 1, the map f : M → M is injective, and lengthA(M/fM) < ∞.
Moreover, lengthA(M/fM) is the coefficient of [Z] in [i∗F ]k. On the other hand,
let q1, . . . , qt be the minimal primes in the support of M . Then∑

lengthAqi
(Mqi)ordA/qi(f)

is the coefficient of [Z] in
∑

[D ∩ Wj ]k. Hence we see the equality by Lemma
42.3.2. □

Remark 42.29.6.0B6Z Let X → S, L, s, i : D → X be as in Definition 42.29.1 and
assume that L|D ∼= OD. In this case we can define a canonical map i∗ : Zk+1(X)→
Zk(D) on cycles, by requiring that i∗[W ] = 0 whenever W ⊂ D is an integral closed
subscheme. The possibility to do this will be useful later on.

Remark 42.29.7.0B6Y Let f : X ′ → X be a morphism of schemes locally of finite type
over S as in Situation 42.7.1. Let (L, s, i : D → X) be a triple as in Definition
42.29.1. Then we can set L′ = f∗L, s′ = f∗s, and D′ = X ′ ×X D = Z(s′). This
gives a commutative diagram

D′

g

��

i′
// X ′

f

��
D

i // X

and we can ask for various compatibilities between i∗ and (i′)∗.

Lemma 42.29.8.02TA Let (S, δ) be as in Situation 42.7.1. Let f : X ′ → X be a proper
morphism of schemes locally of finite type over S. Let (L, s, i : D → X) be as in

https://stacks.math.columbia.edu/tag/0B6Z
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Definition 42.29.1. Form the diagram

D′

g

��

i′
// X ′

f

��
D

i // X

as in Remark 42.29.7. For any (k+ 1)-cycle α′ on X ′ we have i∗f∗α
′ = g∗(i′)∗α′ in

CHk(D) (this makes sense as f∗ is defined on the level of cycles).

Proof. Suppose α = [W ′] for some integral closed subscheme W ′ ⊂ X ′. Let W =
f(W ′) ⊂ X. In case W ′ ̸⊂ D′, then W ̸⊂ D and we see that

[W ′ ∩D′]k = divL′|W ′ (s′|W ′) and [W ∩D]k = divL|W (s|W )
and hence f∗ of the first cycle equals the second cycle by Lemma 42.26.3. Hence
the equality holds as cycles. In case W ′ ⊂ D′, then W ⊂ D and f∗(c1(L|W ′)∩ [W ′])
is equal to c1(L|W ) ∩ [W ] in CHk(W ) by the second assertion of Lemma 42.26.3.
By Remark 42.19.6 the result follows for general α′. □

Lemma 42.29.9.0B71 Let (S, δ) be as in Situation 42.7.1. Let f : X ′ → X be a flat
morphism of relative dimension r of schemes locally of finite type over S. Let
(L, s, i : D → X) be as in Definition 42.29.1. Form the diagram

D′

g

��

i′
// X ′

f

��
D

i // X

as in Remark 42.29.7. For any (k + 1)-cycle α on X we have (i′)∗f∗α = g∗i∗α in
CHk+r(D′) (this makes sense as f∗ is defined on the level of cycles).

Proof. Suppose α = [W ] for some integral closed subscheme W ⊂ X. Let W ′ =
f−1(W ) ⊂ X ′. In case W ̸⊂ D, then W ′ ̸⊂ D′ and we see that

W ′ ∩D′ = g−1(W ∩D)
as closed subschemes of D′. Hence the equality holds as cycles, see Lemma 42.14.4.
In case W ⊂ D, then W ′ ⊂ D′ and W ′ = g−1(W ) with [W ′]k+1+r = g∗[W ] and
equality holds in CHk+r(D′) by Lemma 42.26.2. By Remark 42.19.6 the result
follows for general α′. □

42.30. Gysin homomorphisms and rational equivalence

02TK In this section we use the key formula to show the Gysin homomorphism factor
through rational equivalence. We also prove an important commutativity property.

Lemma 42.30.1.02TM Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let X be integral and n = dimδ(X). Let i : D → X be an effective Cartier
divisor. Let N be an invertible OX -module and let t be a nonzero meromorphic
section of N . Then i∗divN (t) = c1(N|D) ∩ [D]n−1 in CHn−2(D).

Proof. Write divN (t) =
∑

ordZi,N (t)[Zi] for some integral closed subschemes Zi ⊂
X of δ-dimension n − 1. We may assume that the family {Zi} is locally finite,
that t ∈ Γ(U,N|U ) is a generator where U = X \

⋃
Zi, and that every irreducible

component of D is one of the Zi, see Divisors, Lemmas 31.26.1, 31.26.4, and 31.27.2.

https://stacks.math.columbia.edu/tag/0B71
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Set L = OX(D). Denote s ∈ Γ(X,OX(D)) = Γ(X,L) the canonical section. We
will apply the discussion of Section 42.27 to our current situation. For each i let
ξi ∈ Zi be its generic point. Let Bi = OX,ξi . For each i we pick generators si ∈ Lξi
and ti ∈ Nξi over Bi but we insist that we pick si = s if Zi ̸⊂ D. Write s = fisi
and t = giti with fi, gi ∈ Bi. Then ordZi,N (t) = ordBi(gi). On the other hand, we
have fi ∈ Bi and

[D]n−1 =
∑

ordBi(fi)[Zi]
because of our choices of si. We claim that

i∗divN (t) =
∑

ordBi(gi)divL|Zi (si|Zi)

as cycles. More precisely, the right hand side is a cycle representing the left
hand side. Namely, this is clear by our formula for divN (t) and the fact that
divL|Zi (si|Zi) = [Z(si|Zi)]n−2 = [Zi ∩ D]n−2 when Zi ̸⊂ D because in that case
si|Zi = s|Zi is a regular section, see Lemma 42.24.2. Similarly,

c1(N ) ∩ [D]n−1 =
∑

ordBi(fi)divN |Zi (ti|Zi)

The key formula (Lemma 42.27.1) gives the equality∑(
ordBi(fi)divN |Zi (ti|Zi)− ordBi(gi)divL|Zi (si|Zi)

)
=
∑

divZi(∂Bi(fi, gi))

of cycles. If Zi ̸⊂ D, then fi = 1 and hence divZi(∂Bi(fi, gi)) = 0. Thus we
get a rational equivalence between our specific cycles representing i∗divN (t) and
c1(N ) ∩ [D]n−1 on D. This finishes the proof. □

Lemma 42.30.2.02TO Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let (L, s, i : D → X) be as in Definition 42.29.1. The Gysin homomorphism
factors through rational equivalence to give a map i∗ : CHk+1(X)→ CHk(D).

Proof. Let α ∈ Zk+1(X) and assume that α ∼rat 0. This means there exists a
locally finite collection of integral closed subschemes Wj ⊂ X of δ-dimension k + 2
and fj ∈ R(Wj)∗ such that α =

∑
ij,∗divWj

(fj). Set X ′ =
∐
Wi and consider the

diagram
D′

q

��

i′
// X ′

p

��
D

i // X

of Remark 42.29.7. Since X ′ → X is proper we see that i∗p∗ = q∗(i′)∗ by Lemma
42.29.8. As we know that q∗ factors through rational equivalence (Lemma 42.20.3),
it suffices to prove the result for α′ =

∑
divWj

(fj) on X ′. Clearly this reduces us
to the case where X is integral and α = div(f) for some f ∈ R(X)∗.
Assume X is integral and α = div(f) for some f ∈ R(X)∗. If X = D, then we
see that i∗α is equal to c1(L) ∩ α. This is rationally equivalent to zero by Lemma
42.28.2. If D ̸= X, then we see that i∗divX(f) is equal to c1(OD) ∩ [D]n−1 in
CHn−2(D) by Lemma 42.30.1. Of course capping with c1(OD) is the zero map
(Lemma 42.25.2). □

Lemma 42.30.3.0F95 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let (L, s, i : D → X) be as in Definition 42.29.1. Then i∗i∗ : CHk(D) →
CHk−1(D) sends α to c1(L|D) ∩ α.

https://stacks.math.columbia.edu/tag/02TO
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Proof. This is immediate from the definition of i∗ on cycles and the definition of i∗
given in Definition 42.29.1. □

Lemma 42.30.4.0B72 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let (L, s, i : D → X) be a triple as in Definition 42.29.1. Let N be an
invertible OX -module. Then i∗(c1(N ) ∩ α) = c1(i∗N ) ∩ i∗α in CHk−2(D) for all
α ∈ CHk(X).
Proof. With exactly the same proof as in Lemma 42.30.2 this follows from Lemmas
42.26.4, 42.28.3, and 42.30.1. □

Lemma 42.30.5.0B73 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let (L, s, i : D → X) and (L′, s′, i′ : D′ → X) be two triples as in
Definition 42.29.1. Then the diagram

CHk(X)
i∗

//

(i′)∗

��

CHk−1(D)

j∗

��
CHk−1(D′)

(j′)∗
// CHk−2(D ∩D′)

commutes where each of the maps is a gysin map.
Proof. Denote j : D ∩ D′ → D and j′ : D ∩ D′ → D′ the closed immersions cor-
responding to (L|D′ , s|D′ and (L′

D, s|D). We have to show that (j′)∗i∗α = j∗(i′)∗α
for all α ∈ CHk(X). Let W ⊂ X be an integral closed subscheme of dimension k.
Let us prove the equality in case α = [W ]. We will deduce it from the key formula.
We let σ be a nonzero meromorphic section of L|W which we require to be equal
to s|W if W ̸⊂ D. We let σ′ be a nonzero meromorphic section of L′|W which we
require to be equal to s′|W if W ̸⊂ D′. Write

divL|W (σ) =
∑

ordZi,L|W (σ)[Zi] =
∑

ni[Zi]
and similarly

divL′|W (σ′) =
∑

ordZi,L′|W (σ′)[Zi] =
∑

n′
i[Zi]

as in the discussion in Section 42.27. Then we see that Zi ⊂ D if ni ̸= 0 and
Z ′
i ⊂ D′ if n′

i ̸= 0. For each i, let ξi ∈ Zi be the generic point. As in Section
42.27 we choose for each i an element σi ∈ Lξi , resp. σ′

i ∈ L′
ξi

which generates over
Bi = OW,ξi and which is equal to the image of s, resp. s′ if Zi ̸⊂ D, resp. Zi ̸⊂ D′.
Write σ = fiσi and σ′ = f ′

iσ
′
i so that ni = ordBi(fi) and n′

i = ordBi(f ′
i). From our

definitions it follows that
(j′)∗i∗[W ] =

∑
ordBi(fi)divL′|Zi (σ

′
i|Zi)

as cycles and
j∗(i′)∗[W ] =

∑
ordBi(f ′

i)divL|Zi (σi|Zi)
The key formula (Lemma 42.27.1) now gives the equality∑(

ordBi(fi)divL′|Zi (σ
′
i|Zi)− ordBi(f ′

i)divL|Zi (σi|Zi)
)

=
∑

divZi(∂Bi(fi, f ′
i))

of cycles. Note that divZi(∂Bi(fi, f ′
i)) = 0 if Zi ̸⊂ D ∩ D′ because in this case

either fi = 1 or f ′
i = 1. Thus we get a rational equivalence between our specific

cycles representing (j′)∗i∗[W ] and j∗(i′)∗[W ] on D ∩D′ ∩W . By Remark 42.19.6
the result follows for general α. □
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42.31. Relative effective Cartier divisors

02TP Relative effective Cartier divisors are defined and studied in Divisors, Section 31.18.
To develop the basic results on Chern classes of vector bundles we only need the
case where both the ambient scheme and the effective Cartier divisor are flat over
the base.

Lemma 42.31.1.02TR Let (S, δ) be as in Situation 42.7.1. Let X, Y be locally of finite
type over S. Let p : X → Y be a flat morphism of relative dimension r. Let
i : D → X be a relative effective Cartier divisor (Divisors, Definition 31.18.2). Let
L = OX(D). For any α ∈ CHk+1(Y ) we have

i∗p∗α = (p|D)∗α

in CHk+r(D) and
c1(L) ∩ p∗α = i∗((p|D)∗α)

in CHk+r(X).

Proof. Let W ⊂ Y be an integral closed subscheme of δ-dimension k + 1. By
Divisors, Lemma 31.18.1 we see that D ∩ p−1W is an effective Cartier divisor on
p−1W . By Lemma 42.29.5 we get the first equality in

i∗[p−1W ]k+r+1 = [D ∩ p−1W ]k+r = [(p|D)−1(W )]k+r.

and the second because D∩ p−1(W ) = (p|D)−1(W ) as schemes. Since by definition
p∗[W ] = [p−1W ]k+r+1 we see that i∗p∗[W ] = (p|D)∗[W ] as cycles. If α =

∑
mj [Wj ]

is a general k + 1 cycle, then we get i∗α =
∑
mji

∗p∗[Wj ] =
∑
mj(p|D)∗[Wj ] as

cycles. This proves then first equality. To deduce the second from the first apply
Lemma 42.29.4. □

42.32. Affine bundles

02TS For an affine bundle the pullback map is surjective on Chow groups.

Lemma 42.32.1.02TT Let (S, δ) be as in Situation 42.7.1. Let X, Y be locally of
finite type over S. Let f : X → Y be a flat morphism of relative dimension r.
Assume that for every y ∈ Y , there exists an open neighbourhood U ⊂ Y such
that f |f−1(U) : f−1(U) → U is identified with the morphism U ×Ar → U . Then
f∗ : CHk(Y )→ CHk+r(X) is surjective for all k ∈ Z.

Proof. Let α ∈ CHk+r(X). Write α =
∑
mj [Wj ] with mj ̸= 0 and Wj pairwise

distinct integral closed subschemes of δ-dimension k + r. Then the family {Wj} is
locally finite in X. For any quasi-compact open V ⊂ Y we see that f−1(V ) ∩Wj

is nonempty only for finitely many j. Hence the collection Zj = f(Wj) of closures
of images is a locally finite collection of integral closed subschemes of Y .
Consider the fibre product diagrams

f−1(Zj) //

fj

��

X

f

��
Zj // Y

Suppose that [Wj ] ∈ Zk+r(f−1(Zj)) is rationally equivalent to f∗
j βj for some k-cycle

βj ∈ CHk(Zj). Then β =
∑
mjβj will be a k-cycle on Y and f∗β =

∑
mjf

∗
j βj

https://stacks.math.columbia.edu/tag/02TR
https://stacks.math.columbia.edu/tag/02TT
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will be rationally equivalent to α (see Remark 42.19.6). This reduces us to the case
Y integral, and α = [W ] for some integral closed subscheme of X dominating Y .
In particular we may assume that d = dimδ(Y ) <∞.
Hence we can use induction on d = dimδ(Y ). If d < k, then CHk+r(X) = 0 and the
lemma holds. By assumption there exists a dense open V ⊂ Y such that f−1(V ) ∼=
V × Ar as schemes over V . Suppose that we can show that α|f−1(V ) = f∗β for
some β ∈ Zk(V ). By Lemma 42.14.2 we see that β = β′|V for some β′ ∈ Zk(Y ).
By the exact sequence CHk(f−1(Y \ V )) → CHk(X) → CHk(f−1(V )) of Lemma
42.19.3 we see that α − f∗β′ comes from a cycle α′ ∈ CHk+r(f−1(Y \ V )). Since
dimδ(Y \ V ) < d we win by induction on d.
Thus we may assume that X = Y ×Ar. In this case we can factor f as

X = Y ×Ar → Y ×Ar−1 → . . .→ Y ×A1 → Y.

Hence it suffices to do the case r = 1. By the argument in the second paragraph of
the proof we are reduced to the case α = [W ], Y integral, and W → Y dominant.
Again we can do induction on d = dimδ(Y ). If W = Y ×A1, then [W ] = f∗[Y ].
Lastly, W ⊂ Y × A1 is a proper inclusion, then W → Y induces a finite field
extension R(W )/R(Y ). Let P (T ) ∈ R(Y )[T ] be the monic irreducible polynomial
such that the generic fibre of W → Y is cut out by P in A1

R(Y ). Let V ⊂ Y be a
nonempty open such that P ∈ Γ(V,OY )[T ], and such that W ∩ f−1(V ) is still cut
out by P . Then we see that α|f−1(V ) ∼rat 0 and hence α ∼rat α′ for some cycle α′

on (Y \ V )×A1. By induction on the dimension we win. □

Lemma 42.32.2.0B74 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let L be an invertible OX -module. Let

p : L = Spec(Sym∗(L)) −→ X

be the associated vector bundle over X. Then p∗ : CHk(X) → CHk+1(L) is an
isomorphism for all k.

Proof. For surjectivity see Lemma 42.32.1. Let o : X → L be the zero section of
L→ X, i.e., the morphism corresponding to the surjection Sym∗(L)→ OX which
maps L⊗n to zero for all n > 0. Then p ◦ o = idX and o(X) is an effective Cartier
divisor on L. Hence by Lemma 42.31.1 we see that o∗ ◦ p∗ = id and we conclude
that p∗ is injective too. □

Remark 42.32.3.02TU We will see later (Lemma 42.36.3) that if X is a vector bundle
of rank r over Y then the pullback map CHk(Y )→ CHk+r(X) is an isomorphism.
This is true whenever X → Y satisfies the assumptions of Lemma 42.32.1, see
[Tot14, Lemma 2.2]. We will sketch a proof in Remark 42.32.8 using higher chow
groups.

Lemma 42.32.4.0F96 In the situation of Lemma 42.32.2 denote o : X → L the zero
section (see proof of the lemma). Then we have

(1) o(X) is the zero scheme of a regular global section of p∗L⊗−1,
(2) o∗ : CHk(X)→ CHk(L) as o is a closed immersion,
(3) o∗ : CHk+1(L)→ CHk(X) as o(X) is an effective Cartier divisor,
(4) o∗p∗ : CHk(X)→ CHk(X) is the identity map,
(5) o∗α = −p∗(c1(L) ∩ α) for any α ∈ CHk(X), and
(6) o∗o∗ : CHk(X)→ CHk−1(X) is equal to the map α 7→ −c1(L) ∩ α.

https://stacks.math.columbia.edu/tag/0B74
https://stacks.math.columbia.edu/tag/02TU
https://stacks.math.columbia.edu/tag/0F96
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Proof. Since p∗OL = Sym∗(L) we have p∗(p∗L⊗−1) = Sym∗(L) ⊗OX
L⊗−1 by the

projection formula (Cohomology, Lemma 20.54.2) and the section mentioned in (1)
is the canonical trivialization OX → L ⊗OX

L⊗−1. We omit the proof that the
vanishing locus of this section is precisely o(X). This proves (1).

Parts (2), (3), and (4) we’ve seen in the course of the proof of Lemma 42.32.2. Of
course (4) is the first formula in Lemma 42.31.1.

Part (5) follows from the second formula in Lemma 42.31.1, additivity of capping
with c1 (Lemma 42.25.2), and the fact that capping with c1 commutes with flat
pullback (Lemma 42.26.2).

Part (6) follows from Lemma 42.30.3 and the fact that o∗p∗L = L. □

Lemma 42.32.5.0F97 Let Y be a scheme. Let Li, i = 1, 2 be invertible OY -modules.
Let s be a global section of L1 ⊗OX

L2. Denote i : D → X the zero scheme of s.
Then there exists a commutative diagram

D1
i1
//

p1

��

L

p

��

D2
i2

oo

p2

��
D

i // Y D
ioo

and sections si of p∗Li such that the following hold:
(1) p∗s = s1 ⊗ s2,
(2) p is of finite type and flat of relative dimension 1,
(3) Di is the zero scheme of si,
(4) Di

∼= Spec(Sym∗(L⊗−1
1−i )|D)) over D for i = 1, 2,

(5) p−1D = D1 ∪D2 (scheme theoretic union),
(6) D1 ∩D2 (scheme theoretic intersection) maps isomorphically to D, and
(7) D1 ∩D2 → Di is the zero section of the line bundle Di → D for i = 1, 2.

Moreover, the formation of this diagram and the sections si commutes with arbi-
trary base change.

Proof. Let p : X → Y be the relative spectrum of the quasi-coherent sheaf of
OY -algebras

A =
(⊕

a1,a2≥0
L⊗−a1

1 ⊗OY
L⊗−a2

2

)
/J

where J is the ideal generated by local sections of the form st − t for t a local
section of any summand L⊗−a1

1 ⊗L⊗−a2
2 with a1, a2 > 0. The sections si viewed as

maps p∗L⊗−1
i → OX are defined as the adjoints of the maps L⊗−1

i → A = p∗OX .
For any y ∈ Y we can choose an affine open V ⊂ Y , say V = Spec(B), containing
y and trivializations zi : OV → L⊗−1

i |V . Observe that f = s(z1z2) ∈ A cuts out
the closed subscheme D. Then clearly

p−1(V ) = Spec(B[z1, z2]/(z1z2 − f))

Since Di is cut out by zi everything is clear. □

Lemma 42.32.6.0F98 In the situation of Lemma 42.32.5 assume Y is locally of finite
type over (S, δ) as in Situation 42.7.1. Then we have i∗1p∗α = p∗

1i
∗α in CHk(D1)

for all α ∈ CHk(Y ).

https://stacks.math.columbia.edu/tag/0F97
https://stacks.math.columbia.edu/tag/0F98
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Proof. Let W ⊂ Y be an integral closed subscheme of δ-dimension k. We distin-
guish two cases.
Assume W ⊂ D. Then i∗[W ] = c1(L1) ∩ [W ] + c1(L2) ∩ [W ] in CHk−1(D) by our
definition of gysin homomorphisms and the additivity of Lemma 42.25.2. Hence
p∗

1i
∗[W ] = p∗

1(c1(L1) ∩ [W ]) + p∗
1(c1(L2) ∩ [W ]). On the other hand, we have

p∗[W ] = [p−1(W )]k+1 by construction of flat pullback. And p−1(W ) = W1 ∪W2
(scheme theoretically) where Wi = p−1

i (W ) is a line bundle over W by the lemma
(since formation of the diagram commutes with base change). Then [p−1(W )]k+1 =
[W1] + [W2] as Wi are integral closed subschemes of L of δ-dimension k+ 1. Hence

i∗1p
∗[W ] = i∗1[p−1(W )]k+1

= i∗1([W1] + [W2])
= c1(p∗

1L1) ∩ [W1] + [W1 ∩W2]k
= c1(p∗

1L1) ∩ p∗
1[W ] + [W1 ∩W2]k

= p∗
1(c1(L1) ∩ [W ]) + [W1 ∩W2]k

by construction of gysin homomorphisms, the definition of flat pullback (for the
second equality), and compatibility of c1 ∩ − with flat pullback (Lemma 42.26.2).
Since W1 ∩W2 is the zero section of the line bundle W1 →W we see from Lemma
42.32.4 that [W1 ∩W2]k = p∗

1(c1(L2) ∩ [W ]). Note that here we use the fact that
D1 is the line bundle which is the relative spectrum of the inverse of L2. Thus we
get the same thing as before.
Assume W ̸⊂ D. In this case, both i∗1p

∗[W ] and p∗
1i

∗[W ] are represented by the
k − 1 cycle associated to the scheme theoretic inverse image of W in D1. □

Lemma 42.32.7.0F99 In Situation 42.7.1 let X be a scheme locally of finite type over
S. Let (L, s, i : D → X) be a triple as in Definition 42.29.1. There exists a
commutative diagram

D′
i′
//

p

��

X ′

g

��
D

i // X

such that
(1) p and g are of finite type and flat of relative dimension 1,
(2) p∗ : CHk(D)→ CHk+1(D′) is injective for all k,
(3) D′ ⊂ X ′ is the zero scheme of a global section s′ ∈ Γ(X ′,OX′),
(4) p∗i∗ = (i′)∗g∗ as maps CHk(X)→ CHk(D′).

Moreover, these properties remain true after arbitrary base change by morphisms
Y → X which are locally of finite type.

Proof. Observe that (i′)∗ is defined because we have the triple (OX′ , s′, i′ : D′ →
X ′) as in Definition 42.29.1. Thus the statement makes sense.
Set L1 = OX , L2 = L and apply Lemma 42.32.5 with the section s of L = L1⊗OX

L2. Take D′ = D1. The results now follow from the lemma, from Lemma 42.32.6
and injectivity by Lemma 42.32.2. □

Remark 42.32.8.0GUB Let (S, δ) be as in Situation 42.7.1. Let Y be locally of finite
type over S. Let r ≥ 0. Let f : X → Y be a morphism of schemes. Assume every

https://stacks.math.columbia.edu/tag/0F99
https://stacks.math.columbia.edu/tag/0GUB
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y ∈ Y is contained in an open V ⊂ Y such that f−1(V ) ∼= V ×Ar as schemes over
V . In this remark we sketch a proof of the fact that f∗ : CHk(Y )→ CHk+r(X) is
an isomorphism. First, by Lemma 42.32.1 the map is surjective. Let α ∈ CHk(Y )
with f∗α = 0. We will prove that α = 0.
Step 1. We may assume that dimδ(Y ) < ∞. (This is immediate in all cases in
practice so we suggest the reader skip this step.) Namely, any rational equivalence
witnessing that f∗α = 0 on X, will use a locally finite collection of integral closed
subschemes of dimension k + r + 1. Taking the union of the closures of the images
of these in Y we get a closed subscheme Y ′ ⊂ Y of dimδ(Y ′) ≤ k+ r+ 1 such that
α is the image of some α′ ∈ CHk(Y ′) and such that (f ′)∗α = 0 where f ′ is the base
change of f to Y ′.
Step 2. Assume d = dimδ(Y ) < ∞. Then we can use induction on d. If d < k,
then α = 0 and we are done; this is the base case of the induction. In general, our
assumption on f shows we can choose a dense open V ⊂ Y such that U = f−1(V ) =
Ar
V . Denote Y ′ ⊂ Y the complement of V as a reduced closed subscheme and set

X ′ = f−1(Y ′). Consider

CHM
k+r(U, 1) // CHk+r(X ′) // CHk+r(X) // CHk+r(U) // 0

CHM
k (V, 1) //

OO

CHk(Y ′) //

OO

CHk(Y ) //

OO

CHk(V ) //

OO

0

Here we use the first higher Chow groups of V and U and the six term ex-
act sequences constructed in Remark 42.27.3, as well as flat pullback for these
higher chow groups and compatibility of flat pullback with these six term exact
sequences. Since U = Ar

V the vertical map on the right is an isomorphism. The
map CHk(Y ′) → CHk+r(X ′) is bijective by induction on d. Hence to finish the
argument is suffices to show that

CHM
k (V, 1) −→ CHM

k+r(U, 1)
is surjective. Arguing as in the proof of Lemma 42.32.1 this reduces to Step 3
below.
Step 3. Let F be a field. Then CHM

0 (A1
F , 1) = 0. (In the proof of the lemma cited

above we proved analogously that CH0(A1
F ) = 0.) We have

CHM
0 (A1

F , 1) = Coker
(
∂ : KM

2 (F (T )) −→
⊕

p⊂F [T ] maximal
κ(p)∗

)
The classical argument for the vanishing of the cokernel is to show by induction
on the degree of κ(p)/F that the summand corresponding to p is in the image. If
p is generated by the irreducible monic polynomial P (T ) ∈ F [T ] and if u ∈ κ(x)∗

is the residue class of some Q(T ) ∈ F [T ] with deg(Q) < deg(P ) then one shows
that ∂(Q,P ) produces the element u at p and perhaps some other units at primes
dividing Q which have lower degree. This finishes the sketch of the proof.

42.33. Bivariant intersection theory

0B75 In order to intelligently talk about higher Chern classes of vector bundles we intro-
duce bivariant chow classes as in [Ful98]. Our definition differs from [Ful98] in two
respects: (1) we work in a different setting, and (2) we only require our bivariant
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classes commute with the gysin homomorphisms for zero schemes of sections of
invertible modules (Section 42.29). We will see later, in Lemma 42.54.8, that our
bivariant classes commute with all higher codimension gysin homomorphisms and
hence satisfy all properties required of them in [Ful98]; see also [Ful98, Theorem
17.1].

Definition 42.33.1.0B76 Similar to [Ful98,
Definition 17.1]

Let (S, δ) be as in Situation 42.7.1. Let f : X → Y be a
morphism of schemes locally of finite type over S. Let p ∈ Z. A bivariant class
c of degree p for f is given by a rule which assigns to every locally of finite type
morphism Y ′ → Y and every k a map

c ∩ − : CHk(Y ′) −→ CHk−p(X ′)
where X ′ = Y ′ ×Y X, satisfying the following conditions

(1) if Y ′′ → Y ′ is a proper, then c ∩ (Y ′′ → Y ′)∗α
′′ = (X ′′ → X ′)∗(c ∩ α′′)

for all α′′ on Y ′′ where X ′′ = Y ′′ ×Y X,
(2) if Y ′′ → Y ′ is flat locally of finite type of fixed relative dimension, then

c ∩ (Y ′′ → Y ′)∗α′ = (X ′′ → X ′)∗(c ∩ α′) for all α′ on Y ′, and
(3) if (L′, s′, i′ : D′ → Y ′) is as in Definition 42.29.1 with pullback (N ′, t′, j′ :

E′ → X ′) to X ′, then we have c ∩ (i′)∗α′ = (j′)∗(c ∩ α′) for all α′ on Y ′.
The collection of all bivariant classes of degree p for f is denoted Ap(X → Y ).

Let (S, δ) be as in Situation 42.7.1. Let X → Y and Y → Z be morphisms of
schemes locally of finite type over S. Let p ∈ Z. It is clear that Ap(X → Y ) is an
abelian group. Moreover, it is clear that we have a bilinear composition

Ap(X → Y )×Aq(Y → Z)→ Ap+q(X → Z)
which is associative.

Lemma 42.33.2.0B78 Let (S, δ) be as in Situation 42.7.1. Let f : X → Y be a flat
morphism of relative dimension r between schemes locally of finite type over S.
Then the rule that to Y ′ → Y assigns (f ′)∗ : CHk(Y ′) → CHk+r(X ′) where
X ′ = X ×Y Y ′ is a bivariant class of degree −r.

Proof. This follows from Lemmas 42.20.2, 42.14.3, 42.15.1, and 42.29.9. □

Lemma 42.33.3.0B79 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let (L, s, i : D → X) be a triple as in Definition 42.29.1. Then the rule
that to f : X ′ → X assigns (i′)∗ : CHk(X ′)→ CHk−1(D′) where D′ = D ×X X ′ is
a bivariant class of degree 1.

Proof. This follows from Lemmas 42.30.2, 42.29.8, 42.29.9, and 42.30.5. □

Lemma 42.33.4.0EPK Let (S, δ) be as in Situation 42.7.1. Let f : X → Y and g : Y → Z
be morphisms of schemes locally of finite type over S. Let c ∈ Ap(X → Z) and
assume f is proper. Then the rule that to Z ′ → Z assigns α 7−→ f ′

∗(c ∩ α) is a
bivariant class denoted f∗ ◦ c ∈ Ap(Y → Z).

Proof. This follows from Lemmas 42.12.2, 42.15.1, and 42.29.8. □

Remark 42.33.5.0F9Z Let (S, δ) be as in Situation 42.7.1. Let X → Y and Y ′ → Y be
morphisms of schemes locally of finite type over S. Let X ′ = Y ′×Y X. Then there
is an obvious restriction map

Ap(X → Y ) −→ Ap(X ′ → Y ′), c 7−→ res(c)

https://stacks.math.columbia.edu/tag/0B76
https://stacks.math.columbia.edu/tag/0B78
https://stacks.math.columbia.edu/tag/0B79
https://stacks.math.columbia.edu/tag/0EPK
https://stacks.math.columbia.edu/tag/0F9Z
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obtained by viewing a scheme Y ′′ locally of finite type over Y ′ as a scheme locally
of finite type over Y and settting res(c)∩α′′ = c∩α′′ for any α′′ ∈ CHk(Y ′′). This
restriction operation is compatible with compositions in an obvious manner.

Remark 42.33.6.0FA2 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. For i = 1, 2 let Zi → X be a morphism of schemes locally of finite
type. Let ci ∈ Api(Zi → X), i = 1, 2 be bivariant classes. For any α ∈ CHk(X) we
can ask whether

c1 ∩ c2 ∩ α = c2 ∩ c1 ∩ α
in CHk−p1−p2(Z1 ×X Z2). If this is true and if it holds after any base change by
X ′ → X locally of finite type, then we say c1 and c2 commute. Of course this is
the same thing as saying that

res(c1) ◦ c2 = res(c2) ◦ c1

in Ap1+p2(Z1 ×X Z2 → X). Here res(c1) ∈ Ap1(Z1 ×X Z2 → Z2) is the restriction
of c1 as in Remark 42.33.5; similarly for res(c2).

Example 42.33.7.0FA3 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let (L, s, i : D → X) a triple as in Definition 42.29.1. Let Z → X be
a morphism of schemes locally of finite type and let c ∈ Ap(Z → X) be a bivariant
class. Then the bivariant gysin class c′ ∈ A1(D → X) of Lemma 42.33.3 commutes
with c in the sense of Remark 42.33.6. Namely, this is a restatement of condition
(3) of Definition 42.33.1.

Remark 42.33.8.0FDU There is a more general type of bivariant class that doesn’t seem
to be considered in the literature. Namely, suppose we are given a diagram

X −→ Z ←− Y

of schemes locally of finite type over (S, δ) as in Situation 42.7.1. Let p ∈ Z. Then
we can consider a rule c which assigns to every Z ′ → Z locally of finite type maps

c ∩ − : CHk(Y ′) −→ CHk−p(X ′)

for all k ∈ Z where X ′ = X ×Z Z ′ and Y ′ = Z ′ ×Z Y compatible with
(1) proper pushforward if given Z ′′ → Z ′ proper,
(2) flat pullback if given Z ′′ → Z ′ flat of fixed relative dimension, and
(3) gysin maps if given D′ ⊂ Z ′ as in Definition 42.29.1.

We omit the detailed formulations. Suppose we denote the collection of all such
operations Ap(X → Z ← Y ). A simple example of the utility of this concept is
when we have a proper morphism f : X2 → X1. Then f∗ isn’t a bivariant operation
in the sense of Definition 42.33.1 but it is in the above generalized sense, namely,
f∗ ∈ A0(X1 → X1 ← X2).

42.34. Chow cohomology and the first Chern class

0FDV We will be most interested in Ap(X) = Ap(X → X), which will always mean the
bivariant cohomology classes for idX . Namely, that is where Chern classes will live.

Definition 42.34.1.0B7E Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. The Chow cohomology of X is the graded Z-algebra A∗(X) whose
degree p component is Ap(X → X).

https://stacks.math.columbia.edu/tag/0FA2
https://stacks.math.columbia.edu/tag/0FA3
https://stacks.math.columbia.edu/tag/0FDU
https://stacks.math.columbia.edu/tag/0B7E
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Warning: It is not clear that the Z-algebra structure on A∗(X) is commutative,
but we will see that Chern classes live in its center.

Remark 42.34.2.0B7F Let (S, δ) be as in Situation 42.7.1. Let f : Y ′ → Y be a morphism
of schemes locally of finite type over S. As a special case of Remark 42.33.5 there
is a canonical Z-algebra map res : A∗(Y )→ A∗(Y ′). This map is often denoted f∗

in the literature.

Lemma 42.34.3.0B77 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let L be an invertible OX -module. Then the rule that to f : X ′ → X
assigns c1(f∗L) ∩ − : CHk(X ′)→ CHk−1(X ′) is a bivariant class of degree 1.

Proof. This follows from Lemmas 42.28.2, 42.26.4, 42.26.2, and 42.30.4. □

The lemma above finally allows us to make the following definition.

Definition 42.34.4.0FDW Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let L be an invertible OX -module. The first Chern class c1(L) ∈
A1(X) of L is the bivariant class of Lemma 42.34.3.

For finite locally free modules we construct the Chern classes in Section 42.38. Let
us prove that c1(L) is in the center of A∗(X).

Lemma 42.34.5.0B7B Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let L be an invertible OX -module. Then

(1) c1(L) ∈ A1(X) is in the center of A∗(X) and
(2) if f : X ′ → X is locally of finite type and c ∈ A∗(X ′ → X), then

c ◦ c1(L) = c1(f∗L) ◦ c.

Proof. Of course (2) implies (1). Let p : L → X be as in Lemma 42.32.2 and let
o : X → L be the zero section. Denote p′ : L′ → X ′ and o′ : X ′ → L′ their base
changes. By Lemma 42.32.4 we have

p∗(c1(L) ∩ α) = −o∗α and (p′)∗(c1(f∗L) ∩ α′) = −o′
∗α

′

Since c is a bivariant class we have
(p′)∗(c ∩ c1(L) ∩ α) = c ∩ p∗(c1(L) ∩ α)

= −c ∩ o∗α

= −o′
∗(c ∩ α)

= (p′)∗(c1(f∗L) ∩ c ∩ α)
Since (p′)∗ is injective by one of the lemmas cited above we obtain c ∩ c1(L) ∩ α =
c1(f∗L)∩ c∩α. The same is true after any base change by Y → X locally of finite
type and hence we have the equality of bivariant classes stated in (2). □

Lemma 42.34.6.0FDX Let (S, δ) be as in Situation 42.7.1. Let X be a finite type scheme
over S which has an ample invertible sheaf. Assume d = dim(X) < ∞ (here
we really mean dimension and not δ-dimension). Then for any invertible sheaves
L1, . . . ,Ld+1 on X we have c1(L1) ◦ . . . ◦ c1(Ld+1) = 0 in Ad+1(X).

Proof. We prove this by induction on d. The base case d = 0 is true because in this
case X is a finite set of closed points and hence every invertible module is trivial.
Assume d > 0. By Divisors, Lemma 31.15.12 we can write Ld+1 ∼= OX(D) ⊗
OX(D′)⊗−1 for some effective Cartier divisors D,D′ ⊂ X. Then c1(Ld+1) is the

https://stacks.math.columbia.edu/tag/0B7F
https://stacks.math.columbia.edu/tag/0B77
https://stacks.math.columbia.edu/tag/0FDW
https://stacks.math.columbia.edu/tag/0B7B
https://stacks.math.columbia.edu/tag/0FDX


42.35. LEMMAS ON BIVARIANT CLASSES 3704

difference of c1(OX(D)) and c1(OX(D′)) and hence we may assume Ld+1 = OX(D)
for some effective Cartier divisor.
Denote i : D → X the inclusion morphism and denote i∗ ∈ A1(D → X) the
bivariant class given by the gysin hommomorphism as in Lemma 42.33.3. We have
i∗ ◦ i∗ = c1(Ld+1) in A1(X) by Lemma 42.29.4 (and Lemma 42.33.4 to make sense
of the left hand side). Since c1(Li) commutes with both i∗ and i∗ (by definition of
bivariant classes) we conclude that
c1(L1)◦ . . .◦c1(Ld+1) = i∗◦c1(L1)◦ . . .◦c1(Ld)◦i∗ = i∗◦c1(L1|D)◦ . . .◦c1(Ld|D)◦i∗

Thus we conclude by induction on d. Namely, we have dim(D) < d as none of the
generic points of X are in D. □

Remark 42.34.7.0FA0 Let (S, δ) be as in Situation 42.7.1. Let Z → X be a closed
immersion of schemes locally of finite type over S and let p ≥ 0. In this setting we
define

A(p)(Z → X) =
∏

i≤p−1
Ai(X)×

∏
i≥p

Ai(Z → X).

Then A(p)(Z → X) canonically comes equipped with the structure of a graded
algebra. In fact, more generally there is a multiplication

A(p)(Z → X)×A(q)(Z → X) −→ A(max(p,q))(Z → X)
In order to define these we define maps

Ai(Z → X)×Aj(X)→ Ai+j(Z → X)
Ai(X)×Aj(Z → X)→ Ai+j(Z → X)

Ai(Z → X)×Aj(Z → X)→ Ai+j(Z → X)
For the first we use composition of bivariant classes. For the second we use restric-
tion Ai(X) → Ai(Z) (Remark 42.33.5) and composition Ai(Z) × Aj(Z → X) →
Ai+j(Z → X). For the third, we send (c, c′) to res(c) ◦ c′ where res : Ai(Z →
X)→ Ai(Z) is the restriction map (see Remark 42.33.5). We omit the verification
that these multiplications are associative in a suitable sense.

Remark 42.34.8.0FA1 Let (S, δ) be as in Situation 42.7.1. Let Z → X be a closed
immersion of schemes locally of finite type over S. Denote res : Ap(Z → X) →
Ap(Z) the restriction map of Remark 42.33.5. For c ∈ Ap(Z → X) we have
res(c)∩ α = c∩ i∗α for α ∈ CH∗(Z). Namely res(c)∩ α = c∩ α and compatibility
of c with proper pushforward gives (Z → Z)∗(c ∩ α) = c ∩ (Z → X)∗α.

42.35. Lemmas on bivariant classes

0FDY In this section we prove some elementary results on bivariant classes. Here is a
criterion to see that an operation passes through rational equivalence.

Lemma 42.35.1.0B7A Very weak form of
[Ful98, Theorem
17.1]

Let (S, δ) be as in Situation 42.7.1. Let f : X → Y be a morphism
of schemes locally of finite type over S. Let p ∈ Z. Suppose given a rule which
assigns to every locally of finite type morphism Y ′ → Y and every k a map

c ∩ − : Zk(Y ′) −→ CHk−p(X ′)
where Y ′ = X ′×XY , satisfying condition (3) of Definition 42.33.1 whenever L′|D′ ∼=
OD′ . Then c ∩ − factors through rational equivalence.
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Proof. The statement makes sense because given a triple (L, s, i : D → X) as in
Definition 42.29.1 such that L|D ∼= OD, then the operation i∗ is defined on the
level of cycles, see Remark 42.29.6. Let α ∈ Zk(X ′) be a cycle which is rationally
equivalent to zero. We have to show that c∩α = 0. By Lemma 42.21.1 there exists
a cycle β ∈ Zk+1(X ′ ×P1) such that α = i∗0β − i∗∞β where i0, i∞ : X ′ → X ′ ×P1

are the closed immersions of X ′ over 0,∞. Since these are examples of effective
Cartier divisors with trivial normal bundles, we see that c ∩ i∗0β = j∗

0 (c ∩ β) and
c ∩ i∗∞β = j∗

∞(c ∩ β) where j0, j∞ : Y ′ → Y ′ ×P1 are closed immersions as before.
Since j∗

0 (c ∩ β) ∼rat j∗
∞(c ∩ β) (follows from Lemma 42.21.1) we conclude. □

Lemma 42.35.2.0F9A Weak form of
[Ful98, Theorem
17.1]

Let (S, δ) be as in Situation 42.7.1. Let f : X → Y be a morphism
of schemes locally of finite type over S. Let p ∈ Z. Suppose given a rule which
assigns to every locally of finite type morphism Y ′ → Y and every k a map

c ∩ − : CHk(Y ′) −→ CHk−p(X ′)

where Y ′ = X ′ ×X Y , satisfying conditions (1), (2) of Definition 42.33.1 and con-
dition (3) whenever L′|D′ ∼= OD′ . Then c ∩ − is a bivariant class.

Proof. Let Y ′ → Y be a morphism of schemes which is locally of finite type. Let
(L′, s′, i′ : D′ → Y ′) be as in Definition 42.29.1 with pullback (N ′, t′, j′ : E′ → X ′)
to X ′. We have to show that c ∩ (i′)∗α′ = (j′)∗(c ∩ α′) for all α′ ∈ CHk(Y ′).

Denote g : Y ′′ → Y ′ the smooth morphism of relative dimension 1 with i′′ : D′′ →
Y ′′ and p : D′′ → D′ constructed in Lemma 42.32.7. (Warning: D′′ isn’t the full
inverse image of D′.) Denote f : X ′′ → X ′ and E′′ ⊂ X ′′ their base changes by
X ′ → Y ′. Picture

X ′′ //

h
��

Y ′′

g

��

E′′ //

q

��

j′′
==

D′′

p

��

i′′
==

X ′ // Y ′

E′ //

j′
==

D′

i′
==

By the properties given in the lemma we know that β′ = (i′)∗α′ is the unique
element of CHk−1(D′) such that p∗β′ = (i′′)∗g∗α′. Similarly, we know that γ′ =
(j′)∗(c∩α′) is the unique element of CHk−1−p(E′) such that q∗γ′ = (j′′)∗h∗(c∩α′).
Since we know that

(j′′)∗h∗(c ∩ α′) = (j′′)∗(c ∩ g∗α′) = c ∩ (i′′)∗g∗α′

by our assuptions on c; note that the modified version of (3) assumed in the state-
ment of the lemma applies to i′′ and its base change j′′. We similarly know that

q∗(c ∩ β′) = c ∩ p∗β′

We conclude that γ′ = c ∩ β′ by the uniqueness pointed out above. □

Here a criterion for when a bivariant class is zero.

https://stacks.math.columbia.edu/tag/0F9A
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Lemma 42.35.3.02UC Let (S, δ) be as in Situation 42.7.1. Let f : X → Y be a morphism
of schemes locally of finite type over S. Let c ∈ Ap(X → Y ). For Y ′′ → Y ′ → Y
set X ′′ = Y ′′ ×Y X and X ′ = Y ′ ×Y X. The following are equivalent

(1) c is zero,
(2) c∩ [Y ′] = 0 in CH∗(X ′) for every integral scheme Y ′ locally of finite type

over Y , and
(3) for every integral scheme Y ′ locally of finite type over Y , there exists a

proper birational morphism Y ′′ → Y ′ such that c∩ [Y ′′] = 0 in CH∗(X ′′).

Proof. The implications (1) ⇒ (2) ⇒ (3) are clear. Assumption (3) implies (2)
because (Y ′′ → Y ′)∗[Y ′′] = [Y ′] and hence c ∩ [Y ′] = (X ′′ → X ′)∗(c ∩ [Y ′′])
as c is a bivariant class. Assume (2). Let Y ′ → Y be locally of finite type. Let
α ∈ CHk(Y ′). Write α =

∑
ni[Y ′

i ] with Y ′
i ⊂ Y ′ a locally finite collection of integral

closed subschemes of δ-dimension k. Then we see that α is pushforward of the
cycle α′ =

∑
ni[Y ′

i ] on Y ′′ =
∐
Y ′
i under the proper morphism Y ′′ → Y ′. By the

properties of bivariant classes it suffices to prove that c∩α′ = 0 in CHk−p(X ′′). We
have CHk−p(X ′′) =

∏
CHk−p(X ′

i) where X ′
i = Y ′

i ×Y X. This follows immediately
from the definitions. The projection maps CHk−p(X ′′) → CHk−p(X ′

i) are given
by flat pullback. Since capping with c commutes with flat pullback, we see that it
suffices to show that c∩ [Y ′

i ] is zero in CHk−p(X ′
i) which is true by assumption. □

Lemma 42.35.4.0FDZ Let (S, δ) be as in Situation 42.7.1. Let f : X → Y be a morphism
of schemes locally of finite type over S. Assume we have disjoint union decompo-
sitions X =

∐
i∈I Xi and Y =

∐
j∈J Yj by open and closed subschemes and a map

a : I → J of sets such that f(Xi) ⊂ Ya(i). Then

Ap(X → Y ) =
∏

i∈I
Ap(Xi → Ya(i))

Proof. Suppose given an element (ci) ∈
∏
iA

p(Xi → Ya(i)). Then given β ∈
CHk(Y ) we can map this to the element of CHk−p(X) whose restriction to Xi is ci∩
β|Ya(i) . This works because CHk−p(X) =

∏
i CHk−p(Xi). The same construction

works after base change by any Y ′ → Y locally of finite type and we get c ∈
Ap(X → Y ). Thus we obtain a map Ψ from the right hand side of the formula to
the left hand side of the formula. Conversely, given c ∈ Ap(X → Y ) and an element
βi ∈ CHk(Ya(i)) we can consider the element (c∩ (Ya(i) → Y )∗βi)|Xi in CHk−p(Xi).
The same thing works after base change by any Y ′ → Y locally of finite type and
we get ci ∈ Ap(Xi → Ya(i)). Thus we obtain a map Φ from the left hand side of
the formula to the right hand side of the formula. It is immediate that Φ ◦Ψ = id.
For the converse, suppose that c ∈ Ap(X → Y ) and β ∈ CHk(Y ). Say Φ(c) = (ci).
Let j ∈ J . Because c commutes with flat pullback we get

(c ∩ β)|∐
a(i)=j

Xi
= c ∩ β|Yj

Because c commutes with proper pushforward we get

(
∐

a(i)=j
Xi → X)∗((c ∩ β)|∐

a(i)=j
Xi

) = c ∩ (Yj → Y )∗β|Yj

The left hand side is the cycle on X restricting to (c ∩ β)|Xi on Xi for i ∈ I with
a(i) = j and 0 else. The right hand side is a cycle on X whose restriction to Xi is
ci ∩ β|Yj for i ∈ I with a(i) = j. Thus c ∩ β = Ψ((ci)) as desired. □

https://stacks.math.columbia.edu/tag/02UC
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Remark 42.35.5.0FE0 Let (S, δ) be as in Situation 42.7.1. Let f : X → Y be a morphism
of schemes locally of finite type over S. Let X =

∐
i∈I Xi and Y =

∐
j∈J Yj be

the decomposition of X and Y into their connected components (the connected
components are open as X and Y are locally Noetherian, see Topology, Lemma 5.9.6
and Properties, Lemma 28.5.5). Let a(i) ∈ J be the index such that f(Xi) ⊂ Ya(i).
Then Ap(X → Y ) =

∏
Ap(Xi → Ya(i)) by Lemma 42.35.4. In this setting it is

convenient to set
A∗(X → Y )∧ =

∏
i
A∗(Xi → Ya(i))

This “completed” bivariant group is the subset

A∗(X → Y )∧ ⊂
∏

p≥0
Ap(X)

consisting of elements c = (c0, c1, c2, . . .) such that for each connected component
Xi the image of cp in Ap(Xi → Ya(i)) is zero for almost all p. If Y → Z is a second
morphism, then the composition A∗(X → Y )×A∗(Y → Z)→ A∗(X → Z) extends
to a composition A∗(X → Y )∧ × A∗(Y → Z)∧ → A∗(X → Z)∧ of completions.
We sometimes call A∗(X)∧ = A∗(X → X)∧ the completed bivariant cohomology
ring of X.

Lemma 42.35.6.0GUC Let (S, δ) be as in Situation 42.7.1. Let f : X → Y be a morphism
of schemes locally of finite type over S. Let g : Y ′ → Y be an envelope (Definition
42.22.1) and denote X ′ = Y ′ ×Y X. Let p ∈ Z and let c′ ∈ Ap(X ′ → Y ′). If the
two restrictions

res1(c′) = res2(c′) ∈ Ap(X ′ ×X X ′ → Y ′ ×Y Y ′)

are equal (see proof), then there exists a unique c ∈ Ap(X → Y ) whose restriction
res(c) = c′ in Ap(X ′ → Y ′).

Proof. We have a commutative diagram

X ′ ×X X ′

f ′′

��

a //

b
// X

′

f ′

��

h
// X

f

��
Y ′ ×Y Y ′

p //

q
// Y

′ g // Y

The element res1(c′) is the restriction (see Remark 42.33.5) of c′ for the cartesian
square with morphisms a, f ′, p, f ′′ and the element res2(c′) is the restriction of c′

for the cartesian square with morphisms b, f ′, q, f ′′. Assume res1(c′) = res2(c′) and
let β ∈ CHk(Y ). By Lemma 42.22.4 we can find a β′ ∈ CHk(Y ′) with g∗β

′ = β.
Then we set

c ∩ β = h∗(c′ ∩ β′)
To see that this is independent of the choice of β′ it suffices to show that h∗(c′ ∩
(p∗γ − q∗γ)) is zero for γ ∈ CHk(Y ′ ×Y Y ′). Since c′ is a bivariant class we have

h∗(c′ ∩ (p∗γ − q∗γ)) = h∗(a∗(c′ ∩ γ)− b∗(c′ ∩ γ)) = 0

the last equality since h∗ ◦ a∗ = h∗ ◦ b∗ as h ◦ a = h ◦ b.

Observe that our choice for c∩ β is forced by the requirement that res(c) = c′ and
the compatibility of bivariant classes with proper pushforward.

https://stacks.math.columbia.edu/tag/0FE0
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Of course, in order to define the bivariant class c we need to construct maps c ∩
− : CHk(Y1) → CHk+p(Y1 ×Y X) for any morphism Y1 → Y locally of finite
type satisfying the conditions listed in Definition 42.33.1. Denote Y ′

1 = Y ′ ×Y Y1,
X1 = X ×Y Y1. The morphism Y ′

1 → Y1 is an envelope by Lemma 42.22.3. Hence
we can use the base changed diagram

X ′
1 ×X1 X

′
1

f ′′
1
��

a1 //

b1

// X
′
1

f ′
1
��

h1

// X1

f1

��
Y ′

1 ×Y1 Y
′

1

p1 //

q1
// Y

′
1

g1 // Y1

and the same arguments to get a well defined map c ∩ − : CHk(Y1)→ CHk+p(X1)
as before.

Next, we have to check conditions (1), (2), and (3) of Definition 42.33.1 for c. For
example, suppose that t : Y2 → Y1 is a proper morphism of schemes locally of finite
type over Y . Denote as above the base changes of the first diagram to Y1, resp. Y2,
by subscripts 1, resp. 2. Denote t′ : Y ′

2 → Y ′
1 , s : X2 → X1, and s′ : X ′

2 → X ′
1 the

base changes of t to Y ′, X, and X ′. We have to show that

s∗(c ∩ β2) = c ∩ t∗β2

for β2 ∈ CHk(Y2). Choose β′
2 ∈ CHk(Y ′

2) with g2,∗β
′
2 = β2. Since c′ is a bivariant

class and the diagrams

X ′
2

s′

��

h2

// X2

s

��
X ′

1
h1 // X1

and

X ′
2

s′

��

f ′
2

// Y ′
2

t′

��
X ′

2
f ′

1 // Y ′
1

are cartesian we have

s∗(c ∩ β2) = s∗(h2,∗(c′ ∩ β′
2)) = h1,∗s

′
∗(c′ ∩ β′

2) = h1,∗(c′ ∩ (t′∗β′
2))

and the final expression computes c ∩ t∗β2 by construction: t′∗β′
2 ∈ CHk(Y ′

1) is a
class whose image by g1,∗ is t∗β2. This proves condition (1). The other conditions
are proved in the same manner and we omit the detailed arguments. □

42.36. Projective space bundle formula

02TV Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type over S. Consider
a finite locally free OX -module E of rank r. Our convention is that the projective
bundle associated to E is the morphism

P(E) = Proj
X

(Sym∗(E)) π // X

over X with OP(E)(1) normalized so that π∗(OP(E)(1)) = E . In particular there is
a surjection π∗E → OP(E)(1). We will say informally “let (π : P → X,OP (1)) be
the projective bundle associated to E” to denote the situation where P = P(E) and
OP (1) = OP(E)(1).
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Lemma 42.36.1.02TW Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let E be a finite locally freeOX -module E of rank r. Let (π : P → X,OP (1))
be the projective bundle associated to E . For any α ∈ CHk(X) the element

π∗ (c1(OP (1))s ∩ π∗α) ∈ CHk+r−1−s(X)
is 0 if s < r − 1 and is equal to α when s = r − 1.

Proof. Let Z ⊂ X be an integral closed subscheme of δ-dimension k. Note that
π∗[Z] = [π−1(Z)] as π−1(Z) is integral of δ-dimension r − 1. If s < r − 1, then by
construction c1(OP (1))s ∩ π∗[Z] is represented by a (k+ r− 1− s)-cycle supported
on π−1(Z). Hence the pushforward of this cycle is zero for dimension reasons.
Let s = r−1. By the argument given above we see that π∗(c1(OP (1))s∩π∗α) = n[Z]
for some n ∈ Z. We want to show that n = 1. For the same dimension reasons
as above it suffices to prove this result after replacing X by X \ T where T ⊂ Z
is a proper closed subset. Let ξ be the generic point of Z. We can choose el-
ements e1, . . . , er−1 ∈ Eξ which form part of a basis of Eξ. These give rational
sections s1, . . . , sr−1 of OP (1)|π−1(Z) whose common zero set is the closure of the
image a rational section of P(E|Z) → Z union a closed subset whose support
maps to a proper closed subset T of Z. After removing T from X (and corre-
spondingly π−1(T ) from P ), we see that s1, . . . , sn form a sequence of global sec-
tions si ∈ Γ(π−1(Z),Oπ−1(Z)(1)) whose common zero set is the image of a section
Z → π−1(Z). Hence we see successively that

π∗[Z] = [π−1(Z)]
c1(OP (1)) ∩ π∗[Z] = [Z(s1)]
c1(OP (1))2 ∩ π∗[Z] = [Z(s1) ∩ Z(s2)]

. . . = . . .

c1(OP (1))r−1 ∩ π∗[Z] = [Z(s1) ∩ . . . ∩ Z(sr−1)]
by repeated applications of Lemma 42.25.4. Since the pushforward by π of the
image of a section of π over Z is clearly [Z] we see the result when α = [Z].
We omit the verification that these arguments imply the result for a general cycle
α =

∑
nj [Zj ]. □

Lemma 42.36.2 (Projective space bundle formula).02TX Let (S, δ) be as in Situation
42.7.1. Let X be locally of finite type over S. Let E be a finite locally free OX -
module E of rank r. Let (π : P → X,OP (1)) be the projective bundle associated
to E . The map ⊕r−1

i=0
CHk+i(X) −→ CHk+r−1(P ),

(α0, . . . , αr−1) 7−→ π∗α0 + c1(OP (1)) ∩ π∗α1 + . . .+ c1(OP (1))r−1 ∩ π∗αr−1

is an isomorphism.

Proof. Fix k ∈ Z. We first show the map is injective. Suppose that (α0, . . . , αr−1)
is an element of the left hand side that maps to zero. By Lemma 42.36.1 we see
that

0 = π∗(π∗α0 + c1(OP (1)) ∩ π∗α1 + . . .+ c1(OP (1))r−1 ∩ π∗αr−1) = αr−1

Next, we see that
0 = π∗(c1(OP (1))∩(π∗α0+c1(OP (1))∩π∗α1+. . .+c1(OP (1))r−2∩π∗αr−2)) = αr−2

https://stacks.math.columbia.edu/tag/02TW
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and so on. Hence the map is injective.

It remains to show the map is surjective. Let Xi, i ∈ I be the irreducible com-
ponents of X. Then Pi = P(E|Xi), i ∈ I are the irreducible components of P .
Consider the commutative diagram∐

Pi∐
πi

��

p
// P

π

��∐
Xi

q // X

Observe that p∗ is surjective. If β ∈ CHk(
∐
Xi) then π∗q∗β = p∗(

∐
πi)∗β, see

Lemma 42.15.1. Similarly for capping with c1(O(1)) by Lemma 42.26.4. Hence, if
the map of the lemma is surjective for each of the morphisms πi : Pi → Xi, then
the map is surjective for π : P → X. Hence we may assume X is irreducible. Thus
dimδ(X) <∞ and in particular we may use induction on dimδ(X).

The result is clear if dimδ(X) < k. Let α ∈ CHk+r−1(P ). For any locally closed
subscheme T ⊂ X denote γT :

⊕
CHk+i(T )→ CHk+r−1(π−1(T )) the map

γT (α0, . . . , αr−1) = π∗α0 + . . .+ c1(Oπ−1(T )(1))r−1 ∩ π∗αr−1.

Suppose for some nonempty open U ⊂ X we have α|π−1(U) = γU (α0, . . . , αr−1).
Then we may choose lifts α′

i ∈ CHk+i(X) and we see that α − γX(α′
0, . . . , α

′
r−1)

is by Lemma 42.19.3 rationally equivalent to a k-cycle on PY = P(E|Y ) where
Y = X \ U as a reduced closed subscheme. Note that dimδ(Y ) < dimδ(X). By
induction the result holds for PY → Y and hence the result holds for α. Hence we
may replace X by any nonempty open of X.

In particular we may assume that E ∼= O⊕r
X . In this case P(E) = X ×Pr−1. Let us

use the stratification

Pr−1 = Ar−1 ⨿Ar−2 ⨿ . . .⨿A0

The closure of each stratum is a Pr−1−i which is a representative of c1(O(1))i ∩
[Pr−1]. Hence P has a similar stratification

P = Ur−1 ⨿ Ur−2 ⨿ . . .⨿ U0

Let P i be the closure of U i. Let πi : P i → X be the restriction of π to P i.
Let α ∈ CHk+r−1(P ). By Lemma 42.32.1 we can write α|Ur−1 = π∗α0|Ur−1 for
some α0 ∈ CHk(X). Hence the difference α − π∗α0 is the image of some α′ ∈
CHk+r−1(P r−2). By Lemma 42.32.1 again we can write α′|Ur−2 = (πr−2)∗α1|Ur−2

for some α1 ∈ CHk+1(X). By Lemma 42.31.1 we see that the image of (πr−2)∗α1
represents c1(OP (1)) ∩ π∗α1. We also see that α− π∗α0 − c1(OP (1)) ∩ π∗α1 is the
image of some α′′ ∈ CHk+r−1(P r−3). And so on. □

Lemma 42.36.3.02TY Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let E be a finite locally free sheaf of rank r on X. Let

p : E = Spec(Sym∗(E)) −→ X

be the associated vector bundle over X. Then p∗ : CHk(X) → CHk+r(E) is an
isomorphism for all k.

https://stacks.math.columbia.edu/tag/02TY
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Proof. (For the case of linebundles, see Lemma 42.32.2.) For surjectivity see Lemma
42.32.1. Let (π : P → X,OP (1)) be the projective space bundle associated to the
finite locally free sheaf E⊕OX . Let s ∈ Γ(P,OP (1)) correspond to the global section
(0, 1) ∈ Γ(X, E ⊕ OX). Let D = Z(s) ⊂ P . Note that (π|D : D → X,OP (1)|D) is
the projective space bundle associated to E . We denote πD = π|D and OD(1) =
OP (1)|D. Moreover, D is an effective Cartier divisor on P . Hence OP (D) = OP (1)
(see Divisors, Lemma 31.14.10). Also there is an isomorphism E ∼= P \D. Denote
j : E → P the corresponding open immersion. For injectivity we use that the kernel
of

j∗ : CHk+r(P ) −→ CHk+r(E)
are the cycles supported in the effective Cartier divisor D, see Lemma 42.19.3. So
if p∗α = 0, then π∗α = i∗β for some β ∈ CHk+r(D). By Lemma 42.36.2 we may
write

β = π∗
Dβ0 + . . .+ c1(OD(1))r−1 ∩ π∗

Dβr−1.

for some βi ∈ CHk+i(X). By Lemmas 42.31.1 and 42.26.4 this implies

π∗α = i∗β = c1(OP (1)) ∩ π∗β0 + . . .+ c1(OD(1))r ∩ π∗βr−1.

Since the rank of E ⊕ OX is r + 1 this contradicts Lemma 42.26.4 unless all α and
all βi are zero. □

42.37. The Chern classes of a vector bundle

02TZ We can use the projective space bundle formula to define the Chern classes of a
rank r vector bundle in terms of the expansion of c1(O(1))r in terms of the lower
powers, see formula (42.37.1.1). The reason for the signs will be explained later.

Definition 42.37.1.02U0 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Assume X is integral and n = dimδ(X). Let E be a finite locally
free sheaf of rank r on X. Let (π : P → X,OP (1)) be the projective space bundle
associated to E .

(1) By Lemma 42.36.2 there are elements ci ∈ CHn−i(X), i = 0, . . . , r such
that c0 = [X], and

(42.37.1.1)02U1
∑r

i=0
(−1)ic1(OP (1))i ∩ π∗cr−i = 0.

(2) With notation as above we set ci(E)∩[X] = ci as an element of CHn−i(X).
We call these the Chern classes of E on X.

(3) The total Chern class of E on X is the combination

c(E) ∩ [X] = c0(E) ∩ [X] + c1(E) ∩ [X] + . . .+ cr(E) ∩ [X]

which is an element of CH∗(X) =
⊕

k∈Z CHk(X).

Let us check that this does not give a new notion in case the vector bundle has
rank 1.

Lemma 42.37.2.02U2 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Assume X is integral and n = dimδ(X). Let L be an invertible OX -module.
The first Chern class of L on X of Definition 42.37.1 is equal to the Weil divisor
associated to L by Definition 42.24.1.

https://stacks.math.columbia.edu/tag/02U0
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Proof. In this proof we use c1(L) ∩ [X] to denote the construction of Definition
42.24.1. Since L has rank 1 we have P(L) = X and OP(L)(1) = L by our normal-
izations. Hence (42.37.1.1) reads

(−1)1c1(L) ∩ c0 + (−1)0c1 = 0
Since c0 = [X], we conclude c1 = c1(L) ∩ [X] as desired. □

Remark 42.37.3.02U3 We could also rewrite equation 42.37.1.1 as

(42.37.3.1)05M8
∑r

i=0
c1(OP (−1))i ∩ π∗cr−i = 0.

but we find it easier to work with the tautological quotient sheaf OP (1) instead of
its dual.

42.38. Intersecting with Chern classes

02U4 In this section we define Chern classes of vector bundles on X as bivariant classes on
X, see Lemma 42.38.7 and the discussion following this lemma. Our construction
follows the familiar pattern of first defining the operation on prime cycles and then
summing. In Lemma 42.38.2 we show that the result is determined by the usual for-
mula on the associated projective bundle. Next, we show that capping with Chern
classes passes through rational equivalence, commutes with proper pushforward,
commutes with flat pullback, and commutes with the gysin maps for inclusions of
effective Cartier divisors. These lemmas could have been avoided by directly us-
ing the characterization in Lemma 42.38.2 and using Lemma 42.33.4; the reader
who wishes to see this worked out should consult Chow Groups of Spaces, Lemma
82.28.1.

Definition 42.38.1.02U5 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let E be a finite locally free sheaf of rank r on X. We define, for every
integer k and any 0 ≤ j ≤ r, an operation

cj(E) ∩ − : Zk(X)→ CHk−j(X)
called intersection with the jth Chern class of E .

(1) Given an integral closed subscheme i : W → X of δ-dimension k we define
cj(E) ∩ [W ] = i∗(cj(i∗E) ∩ [W ]) ∈ CHk−j(X)

where cj(i∗E) ∩ [W ] is as defined in Definition 42.37.1.
(2) For a general k-cycle α =

∑
ni[Wi] we set

cj(E) ∩ α =
∑

nicj(E) ∩ [Wi]

If E has rank 1 then this agrees with our previous definition (Definition 42.25.1) by
Lemma 42.37.2.

Lemma 42.38.2.02U6 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let E be a finite locally free sheaf of rank r on X. Let (π : P → X,OP (1))
be the projective bundle associated to E . For α ∈ Zk(X) the elements cj(E) ∩ α
are the unique elements αj of CHk−j(X) such that α0 = α and∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(αr−i) = 0

holds in the Chow group of P .

https://stacks.math.columbia.edu/tag/02U3
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Proof. The uniqueness of α0, . . . , αr such that α0 = α and such that the displayed
equation holds follows from the projective space bundle formula Lemma 42.36.2.
The identity holds by definition for α = [W ] where W is an integral closed sub-
scheme of X. For a general k-cycle α on X write α =

∑
na[Wa] with na ̸= 0, and

ia : Wa → X pairwise distinct integral closed subschemes. Then the family {Wa}
is locally finite on X. Set Pa = π−1(Wa) = P(E|Wa

). Denote i′a : Pa → P the
corresponding closed immersions. Consider the fibre product diagram

P ′

π′

��

∐
Pa∐

πa

��

∐
i′a

// P

π

��
X ′ ∐

Wa

∐
ia // X

The morphism p : X ′ → X is proper. Moreover π′ : P ′ → X ′ together with
the invertible sheaf OP ′(1) =

∐
OPa(1) which is also the pullback of OP (1) is the

projective bundle associated to E ′ = p∗E . By definition

cj(E) ∩ [α] =
∑

ia,∗(cj(E|Wa
) ∩ [Wa]).

Write βa,j = cj(E|Wa
) ∩ [Wa] which is an element of CHk−j(Wa). We have∑r

i=0
(−1)ic1(OPa(1))i ∩ π∗

a(βa,r−i) = 0

for each a by definition. Thus clearly we have∑r

i=0
(−1)ic1(OP ′(1))i ∩ (π′)∗(βr−i) = 0

with βj =
∑
naβa,j ∈ CHk−j(X ′). Denote p′ : P ′ → P the morphism

∐
i′a. We

have π∗p∗βj = p′
∗(π′)∗βj by Lemma 42.15.1. By the projection formula of Lemma

42.26.4 we conclude that∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(p∗βj) = 0

Since p∗βj is a representative of cj(E) ∩ α we win. □

We will consistently use this characterization of Chern classes to prove many more
properties.

Lemma 42.38.3.02U7 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let E be a finite locally free sheaf of rank r on X. If α ∼rat β are rationally
equivalent k-cycles on X then cj(E) ∩ α = cj(E) ∩ β in CHk−j(X).

Proof. By Lemma 42.38.2 the elements αj = cj(E) ∩ α, j ≥ 1 and βj = cj(E) ∩
β, j ≥ 1 are uniquely determined by the same equation in the chow group of
the projective bundle associated to E . (This of course relies on the fact that flat
pullback is compatible with rational equivalence, see Lemma 42.20.2.) Hence they
are equal. □

In other words capping with Chern classes of finite locally free sheaves factors
through rational equivalence to give maps

cj(E) ∩ − : CHk(X)→ CHk−j(X).
Our next task is to show that Chern classes are bivariant classes, see Definition
42.33.1.

https://stacks.math.columbia.edu/tag/02U7
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Lemma 42.38.4.02U9 Let (S, δ) be as in Situation 42.7.1. Let X, Y be locally of finite
type over S. Let E be a finite locally free sheaf of rank r on X. Let p : X → Y be
a proper morphism. Let α be a k-cycle on X. Let E be a finite locally free sheaf
on Y . Then

p∗(cj(p∗E) ∩ α) = cj(E) ∩ p∗α

Proof. Let (π : P → Y,OP (1)) be the projective bundle associated to E . Then
PX = X×Y P is the projective bundle associated to p∗E and OPX (1) is the pullback
of OP (1). Write αj = cj(p∗E) ∩ α, so α0 = α. By Lemma 42.38.2 we have∑r

i=0
(−1)ic1(OP (1))i ∩ π∗

X(αr−i) = 0

in the chow group of PX . Consider the fibre product diagram

PX
p′
//

πX

��

P

π

��
X

p // Y

Apply proper pushforward p′
∗ (Lemma 42.20.3) to the displayed equality above.

Using Lemmas 42.26.4 and 42.15.1 we obtain∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(p∗αr−i) = 0

in the chow group of P . By the characterization of Lemma 42.38.2 we conclude. □

Lemma 42.38.5.02U8 Let (S, δ) be as in Situation 42.7.1. Let X, Y be locally of finite
type over S. Let E be a finite locally free sheaf of rank r on Y . Let f : X → Y be
a flat morphism of relative dimension r. Let α be a k-cycle on Y . Then

f∗(cj(E) ∩ α) = cj(f∗E) ∩ f∗α

Proof. Write αj = cj(E) ∩ α, so α0 = α. By Lemma 42.38.2 we have∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(αr−i) = 0

in the chow group of the projective bundle (π : P → Y,OP (1)) associated to E .
Consider the fibre product diagram

PX = P(f∗E)
f ′
//

πX

��

P

π

��
X

f // Y

Note that OPX (1) is the pullback of OP (1). Apply flat pullback (f ′)∗ (Lemma
42.20.2) to the displayed equation above. By Lemmas 42.26.2 and 42.14.3 we see
that ∑r

i=0
(−1)ic1(OPX (1))i ∩ π∗

X(f∗αr−i) = 0
holds in the chow group of PX . By the characterization of Lemma 42.38.2 we
conclude. □

Lemma 42.38.6.0B7G Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let E be a finite locally free sheaf of rank r on X. Let (L, s, i : D → X) be
as in Definition 42.29.1. Then cj(E|D) ∩ i∗α = i∗(cj(E) ∩ α) for all α ∈ CHk(X).

https://stacks.math.columbia.edu/tag/02U9
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Proof. Write αj = cj(E) ∩ α, so α0 = α. By Lemma 42.38.2 we have∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(αr−i) = 0

in the chow group of the projective bundle (π : P → X,OP (1)) associated to E .
Consider the fibre product diagram

PD = P(E|D)
i′
//

πD

��

P

π

��
D

i // X

Note that OPD (1) is the pullback of OP (1). Apply the gysin map (i′)∗ (Lemma
42.30.2) to the displayed equation above. Applying Lemmas 42.30.4 and 42.29.9
we obtain ∑r

i=0
(−1)ic1(OPD (1))i ∩ π∗

D(i∗αr−i) = 0
in the chow group of PD. By the characterization of Lemma 42.38.2 we conclude.

□

At this point we have enough material to be able to prove that capping with Chern
classes defines a bivariant class.

Lemma 42.38.7.0B7H Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let E be a locally free OX -module of rank r. Let 0 ≤ p ≤ r. Then the rule
that to f : X ′ → X assigns cp(f∗E) ∩ − : CHk(X ′) → CHk−p(X ′) is a bivariant
class of degree p.

Proof. Immediate from Lemmas 42.38.3, 42.38.4, 42.38.5, and 42.38.6 and Defini-
tion 42.33.1. □

This lemma allows us to define the Chern classes of a finite locally free module as
follows.

Definition 42.38.8.0FE1 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let E be a locally free OX -module of rank r. For i = 0, . . . , r the
ith Chern class of E is the bivariant class ci(E) ∈ Ai(X) of degree i constructed in
Lemma 42.38.7. The total Chern class of E is the formal sum

c(E) = c0(E) + c1(E) + . . .+ cr(E)
which is viewed as a nonhomogeneous bivariant class on X.

By the remark following Definition 42.38.1 if E is invertible, then this definition
agrees with Definition 42.34.4. Next we see that Chern classes are in the center of
the bivariant Chow cohomology ring A∗(X).

Lemma 42.38.9.02UA Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let E be a locally free OX -module of rank r. Then

(1) cj(E) ∈ Aj(X) is in the center of A∗(X) and
(2) if f : X ′ → X is locally of finite type and c ∈ A∗(X ′ → X), then

c ◦ cj(E) = cj(f∗E) ◦ c.
In particular, if F is a second locally free OX -module on X of rank s, then

ci(E) ∩ cj(F) ∩ α = cj(F) ∩ ci(E) ∩ α
as elements of CHk−i−j(X) for all α ∈ CHk(X).

https://stacks.math.columbia.edu/tag/0B7H
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Proof. It is immediate that (2) implies (1). Let α ∈ CHk(X). Write αj = cj(E)∩α,
so α0 = α. By Lemma 42.38.2 we have∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(αr−i) = 0

in the chow group of the projective bundle (π : P → Y,OP (1)) associated to E .
Denote π′ : P ′ → X ′ the base change of π by f . Using Lemma 42.34.5 and the
properties of bivariant classes we obtain

0 = c ∩
(∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(αr−i)

)
=
∑r

i=0
(−1)ic1(OP ′(1))i ∩ (π′)∗(c ∩ αr−i)

in the Chow group of P ′ (calculation omitted). Hence we see that c ∩ αj is equal
to cj(f∗E) ∩ (c ∩ α) by the characterization of Lemma 42.38.2. This proves the
lemma. □

Remark 42.38.10.0ESW Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let E be a finite locally free OX -module. If the rank of E is not
constant then we can still define the Chern classes of E . Namely, in this case we
can write

X = X0 ⨿X1 ⨿X2 ⨿ . . .
where Xr ⊂ X is the open and closed subspace where the rank of E is r. By Lemma
42.35.4 we have Ap(X) =

∏
Ap(Xr). Hence we can define cp(E) to be the product

of the classes cp(E|Xr ) in Ap(Xr). Explicitly, if X ′ → X is a morphism locally of
finite type, then we obtain by pullback a corresponding decomposition of X ′ and
we find that

CH∗(X ′) =
∏

r≥0
CH∗(X ′

r)

by our definitions. Then cp(E) ∈ Ap(X) is the bivariant class which preserves
these direct product decompositions and acts by the already defined operations
ci(E|Xr ) ∩− on the factors. Observe that in this setting it may happen that cp(E)
is nonzero for infinitely many p. It follows that the total chern class is an element

c(E) = c0(E) + c1(E) + c2(E) + . . . ∈ A∗(X)∧

of the completed bivariant cohomology ring, see Remark 42.35.5. In this setting we
define the “rank” of E to be the element r(E) ∈ A0(X) as the bivariant operation
which sends (αr) ∈

∏
CH∗(X ′

r) to (rαr) ∈
∏

CH∗(X ′
r). Note that it is still true

that cp(E) and r(E) are in the center of A∗(X).

Remark 42.38.11.0FA4 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let E be a finite locally free OX -module. In general we write X =

∐
Xr as

in Remark 42.38.10. If only a finite number of the Xr are nonempty, then we can
set

ctop(E) =
∑

r
cr(E|Xr ) ∈ A∗(X) =

⊕
A∗(Xr)

where the equality is Lemma 42.35.4. If infinitely many Xr are nonempty, we will
use the same notation to denote

ctop(E) =
∏

cr(E|Xr ) ∈
∏

Ar(Xr) ⊂ A∗(X)∧

see Remark 42.35.5 for notation.

https://stacks.math.columbia.edu/tag/0ESW
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42.39. Polynomial relations among Chern classes

02UB Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type over S. Let Ei
be a finite collection of finite locally free sheaves on X. By Lemma 42.38.9 we see
that the Chern classes

cj(Ei) ∈ A∗(X)
generate a commutative (and even central) Z-subalgebra of the Chow cohomology
algebra A∗(X). Thus we can say what it means for a polynomial in these Chern
classes to be zero, or for two polynomials to be the same. As an example, saying
that c1(E1)5 + c2(E2)c3(E3) = 0 means that the operations

CHk(Y ) −→ CHk−5(Y ), α 7−→ c1(E1)5 ∩ α+ c2(E2) ∩ c3(E3) ∩ α
are zero for all morphisms f : Y → X which are locally of finite type. By Lemma
42.35.3 this is equivalent to the requirement that given any morphism f : Y → X
where Y is an integral scheme locally of finite type over S the cycle

c1(E1)5 ∩ [Y ] + c2(E2) ∩ c3(E3) ∩ [Y ]
is zero in CHdim(Y )−5(Y ).
A specific example is the relation

c1(L ⊗OX
N ) = c1(L) + c1(N )

proved in Lemma 42.25.2. More generally, here is what happens when we tensor
an arbitrary locally free sheaf by an invertible sheaf.

Lemma 42.39.1.02UD Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let E be a finite locally free sheaf of rank r on X. Let L be an invertible
sheaf on X. Then we have

(42.39.1.1)02UE ci(E ⊗ L) =
∑i

j=0

(
r − i+ j

j

)
ci−j(E)c1(L)j

in A∗(X).

Proof. This should hold for any triple (X, E ,L). In particular it should hold when
X is integral and by Lemma 42.35.3 it is enough to prove it holds when capping
with [X] for such X. Thus assume that X is integral. Let (π : P → X,OP (1)),
resp. (π′ : P ′ → X,OP ′(1)) be the projective space bundle associated to E , resp.
E ⊗ L. Consider the canonical morphism

P

π   

g
// P ′

π′
~~

X

see Constructions, Lemma 27.20.1. It has the property that g∗OP ′(1) = OP (1) ⊗
π∗L. This means that we have∑r

i=0
(−1)i(ξ + x)i ∩ π∗(cr−i(E ⊗ L) ∩ [X]) = 0

in CH∗(P ), where ξ represents c1(OP (1)) and x represents c1(π∗L). By simple
algebra this is equivalent to∑r

i=0
(−1)iξi

(∑r

j=i
(−1)j−i

(
j

i

)
xj−i ∩ π∗(cr−j(E ⊗ L) ∩ [X])

)
= 0

https://stacks.math.columbia.edu/tag/02UD
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Comparing with Equation (42.37.1.1) it follows from this that

cr−i(E) ∩ [X] =
∑r

j=i

(
j

i

)
(−c1(L))j−i ∩ cr−j(E ⊗ L) ∩ [X]

Reworking this (getting rid of minus signs, and renumbering) we get the desired
relation. □

Some example cases of (42.39.1.1) are

c1(E ⊗ L) = c1(E) + rc1(L)

c2(E ⊗ L) = c2(E) + (r − 1)c1(E)c1(L) +
(
r

2

)
c1(L)2

c3(E ⊗ L) = c3(E) + (r − 2)c2(E)c1(L) +
(
r − 1

2

)
c1(E)c1(L)2 +

(
r

3

)
c1(L)3

42.40. Additivity of Chern classes

02UF All of the preliminary lemmas follow trivially from the final result.

Lemma 42.40.1.02UG Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let E , F be finite locally free sheaves on X of ranks r, r− 1 which fit into
a short exact sequence

0→ OX → E → F → 0
Then we have

cr(E) = 0, cj(E) = cj(F), j = 0, . . . , r − 1
in A∗(X).

Proof. By Lemma 42.35.3 it suffices to show that if X is integral then cj(E)∩ [X] =
cj(F) ∩ [X]. Let (π : P → X,OP (1)), resp. (π′ : P ′ → X,OP ′(1)) denote the
projective space bundle associated to E , resp. F . The surjection E → F gives rise
to a closed immersion

i : P ′ −→ P

over X. Moreover, the element 1 ∈ Γ(X,OX) ⊂ Γ(X, E) gives rise to a global
section s ∈ Γ(P,OP (1)) whose zero set is exactly P ′. Hence P ′ is an effective
Cartier divisor on P such that OP (P ′) ∼= OP (1). Hence we see that

c1(OP (1)) ∩ π∗α = i∗((π′)∗α)

for any cycle class α on X by Lemma 42.31.1. By Lemma 42.38.2 we see that
αj = cj(F) ∩ [X], j = 0, . . . , r − 1 satisfy∑r−1

j=0
(−1)jc1(OP ′(1))j ∩ (π′)∗αj = 0

Pushing this to P and using the remark above as well as Lemma 42.26.4 we get∑r−1

j=0
(−1)jc1(OP (1))j+1 ∩ π∗αj = 0

By the uniqueness of Lemma 42.38.2 we conclude that cr(E)∩ [X] = 0 and cj(E)∩
[X] = αj = cj(F) ∩ [X] for j = 0, . . . , r − 1. Hence the lemma holds. □
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Lemma 42.40.2.02UH Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let E , F be finite locally free sheaves on X of ranks r, r− 1 which fit into
a short exact sequence

0→ L → E → F → 0
where L is an invertible sheaf. Then

c(E) = c(L)c(F)
in A∗(X).

Proof. This relation really just says that ci(E) = ci(F)+ c1(L)ci−1(F). By Lemma
42.40.1 we have cj(E ⊗ L⊗−1) = cj(F ⊗ L⊗−1) for j = 0, . . . , r were we set cr(F ⊗
L−1) = 0 by convention. Applying Lemma 42.39.1 we deduce

i∑
j=0

(
r − i+ j

j

)
(−1)jci−j(E)c1(L)j =

i∑
j=0

(
r − 1− i+ j

j

)
(−1)jci−j(F)c1(L)j

Setting ci(E) = ci(F) + c1(L)ci−1(F) gives a “solution” of this equation. The
lemma follows if we show that this is the only possible solution. We omit the
verification. □

Lemma 42.40.3.02UI Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of
finite type over S. Suppose that E sits in an exact sequence

0→ E1 → E → E2 → 0
of finite locally free sheaves Ei of rank ri. The total Chern classes satisfy

c(E) = c(E1)c(E2)
in A∗(X).

Proof. By Lemma 42.35.3 we may assume that X is integral and we have to show
the identity when capping against [X]. By induction on r1. The case r1 = 1 is
Lemma 42.40.2. Assume r1 > 1. Let (π : P → X,OP (1)) denote the projective
space bundle associated to E1. Note that

(1) π∗ : CH∗(X)→ CH∗(P ) is injective, and
(2) π∗E1 sits in a short exact sequence 0 → F → π∗E1 → L → 0 where L is

invertible.
The first assertion follows from the projective space bundle formula and the second
follows from the definition of a projective space bundle. (In fact L = OP (1).) Let
Q = π∗E/F , which sits in an exact sequence 0 → L → Q → π∗E2 → 0. By
induction we have

c(π∗E) ∩ [P ] = c(F) ∩ c(π∗E/F) ∩ [P ]
= c(F) ∩ c(L) ∩ c(π∗E2) ∩ [P ]
= c(π∗E1) ∩ c(π∗E2) ∩ [P ]

Since [P ] = π∗[X] we win by Lemma 42.38.5. □

Lemma 42.40.4.02UJ Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let Li, i = 1, . . . , r be invertible OX -modules on X. Let E be a locally free
rank OX -module endowed with a filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E
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such that Ei/Ei−1 ∼= Li. Set c1(Li) = xi. Then

c(E) =
∏r

i=1
(1 + xi)

in A∗(X).

Proof. Apply Lemma 42.40.2 and induction. □

42.41. Degrees of zero cycles

0AZ0 We start defining the degree of a zero cycle on a proper scheme over a field. One
approach is to define it directly as in Lemma 42.41.2 and then show it is well defined
by Lemma 42.18.3. Instead we define it as follows.

Definition 42.41.1.0AZ1 Let k be a field (Example 42.7.2). Let p : X → Spec(k) be
proper. The degree of a zero cycle on X is given by proper pushforward

p∗ : CH0(X)→ CH0(Spec(k))
(Lemma 42.20.3) combined with the natural isomorphism CH0(Spec(k)) = Z which
maps [Spec(k)] to 1. Notation: deg(α).

Let us spell this out further.

Lemma 42.41.2.0AZ2 Let k be a field. Let X be proper over k. Let α =
∑
ni[Zi] be in

Z0(X). Then
deg(α) =

∑
ni deg(Zi)

where deg(Zi) is the degree of Zi → Spec(k), i.e., deg(Zi) = dimk Γ(Zi,OZi).

Proof. This is the definition of proper pushforward (Definition 42.12.1). □

Next, we make the connection with degrees of vector bundles over 1-dimensional
proper schemes over fields as defined in Varieties, Section 33.44.

Lemma 42.41.3.0AZ3 Let k be a field. Let X be a proper scheme over k of dimension
≤ 1. Let E be a finite locally free OX -module of constant rank. Then

deg(E) = deg(c1(E) ∩ [X]1)
where the left hand side is defined in Varieties, Definition 33.44.1.

Proof. Let Ci ⊂ X, i = 1, . . . , t be the irreducible components of dimension 1 with
reduced induced scheme structure and let mi be the multiplicity of Ci in X. Then
[X]1 =

∑
mi[Ci] and c1(E) ∩ [X]1 is the sum of the pushforwards of the cycles

mic1(E|Ci) ∩ [Ci]. Since we have a similar decomposition of the degree of E by
Varieties, Lemma 33.44.6 it suffices to prove the lemma in case X is a proper curve
over k.
Assume X is a proper curve over k. By Divisors, Lemma 31.36.1 there exists a
modification f : X ′ → X such that f∗E has a filtration whose successive quotients
are invertible OX′-modules. Since f∗[X ′]1 = [X]1 we conclude from Lemma 42.38.4
that

deg(c1(E) ∩ [X]1) = deg(c1(f∗E) ∩ [X ′]1)
Since we have a similar relationship for the degree by Varieties, Lemma 33.44.4 we
reduce to the case where E has a filtration whose successive quotients are invertible
OX -modules. In this case, we may use additivity of the degree (Varieties, Lemma
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33.44.3) and of first Chern classes (Lemma 42.40.3) to reduce to the case discussed
in the next paragraph.
Assume X is a proper curve over k and E is an invertible OX -module. By Di-
visors, Lemma 31.15.12 we see that E is isomorphic to OX(D) ⊗ OX(D′)⊗−1 for
some effective Cartier divisors D,D′ on X (this also uses that X is projective,
see Varieties, Lemma 33.43.4 for example). By additivity of degree under tensor
product of invertible sheaves (Varieties, Lemma 33.44.7) and additivity of c1 under
tensor product of invertible sheaves (Lemma 42.25.2 or 42.39.1) we reduce to the
case E = OX(D). In this case the left hand side gives deg(D) (Varieties, Lemma
33.44.9) and the right hand side gives deg([D]0) by Lemma 42.25.4. Since

[D]0 =
∑

x∈D
lengthOX,x

(OD,x)[x] =
∑

x∈D
lengthOD,x

(OD,x)[x]

by definition, we see
deg([D]0) =

∑
x∈D

lengthOD,x
(OD,x)[κ(x) : k] = dimk Γ(D,OD) = deg(D)

The penultimate equality by Algebra, Lemma 10.52.12 using that D is affine. □

Finally, we can tie everything up with the numerical intersections defined in Vari-
eties, Section 33.45.

Lemma 42.41.4.0BFI Let k be a field. Let X be a proper scheme over k. Let Z ⊂ X
be a closed subscheme of dimension d. Let L1, . . . ,Ld be invertible OX -modules.
Then

(L1 · · · Ld · Z) = deg(c1(L1) ∩ . . . ∩ c1(Ld) ∩ [Z]d)
where the left hand side is defined in Varieties, Definition 33.45.3. In particular,

degL(Z) = deg(c1(L)d ∩ [Z]d)
if L is an ample invertible OX -module.

Proof. We will prove this by induction on d. If d = 0, then the result is true by
Varieties, Lemma 33.33.3. Assume d > 0.
Let Zi ⊂ Z, i = 1, . . . , t be the irreducible components of dimension d with reduced
induced scheme structure and let mi be the multiplicity of Zi in Z. Then [Z]d =∑
mi[Zi] and c1(L1) ∩ . . . ∩ c1(Ld) ∩ [Z]d is the sum of the cycles mic1(L1) ∩ . . . ∩

c1(Ld)∩ [Zi]. Since we have a similar decomposition for (L1 · · · Ld ·Z) by Varieties,
Lemma 33.45.2 it suffices to prove the lemma in case Z = X is a proper variety of
dimension d over k.
By Chow’s lemma there exists a birational proper morphism f : Y → X with
Y H-projective over k. See Cohomology of Schemes, Lemma 30.18.1 and Remark
30.18.2. Then

(f∗L1 · · · f∗Ld · Y ) = (L1 · · · Ld ·X)
by Varieties, Lemma 33.45.7 and we have

f∗(c1(f∗L1) ∩ . . . ∩ c1(f∗Ld) ∩ [Y ]) = c1(L1) ∩ . . . ∩ c1(Ld) ∩ [X]
by Lemma 42.26.4. Thus we may replace X by Y and assume that X is projective
over k.
If X is a proper d-dimensional projective variety, then we can write L1 = OX(D)⊗
OX(D′)⊗−1 for some effective Cartier divisors D,D′ ⊂ X by Divisors, Lemma
31.15.12. By additivity for both sides of the equation (Varieties, Lemma 33.45.5
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and Lemma 42.25.2) we reduce to the case L1 = OX(D) for some effective Cartier
divisor D. By Varieties, Lemma 33.45.8 we have

(L1 · · · Ld ·X) = (L2 · · · Ld ·D)
and by Lemma 42.25.4 we have

c1(L1) ∩ . . . ∩ c1(Ld) ∩ [X] = c1(L2) ∩ . . . ∩ c1(Ld) ∩ [D]d−1

Thus we obtain the result from our induction hypothesis. □

42.42. Cycles of given codimension

0FE2 In some cases there is a second grading on the abelian group of all cycles given by
codimension.

Lemma 42.42.1.0FE3 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Write δ = δX/S as in Section 42.7. The following are equivalent

(1) There exists a decomposition X =
∐
n∈Z Xn into open and closed sub-

schemes such that δ(ξ) = n whenever ξ ∈ Xn is a generic point of an
irreducible component of Xn.

(2) For all x ∈ X there exists an open neighbourhood U ⊂ X of x and an
integer n such that δ(ξ) = n whenever ξ ∈ U is a generic point of an
irreducible component of U .

(3) For all x ∈ X there exists an integer nx such that δ(ξ) = nx for any
generic point ξ of an irreducible component of X containing x.

The conditions are satisfied if X is either normal or Cohen-Macaulay3.

Proof. It is clear that (1) ⇒ (2) ⇒ (3). Conversely, if (3) holds, then we set
Xn = {x ∈ X | nx = n} and we get a decomposition as in (1). Namely, Xn is open
because given x the union of the irreducible components of X passing through x
minus the union of the irreducible components of X not passing through x is an
open neighbourhood of x. If X is normal, then X is a disjoint union of integral
schemes (Properties, Lemma 28.7.7) and hence the properties hold. If X is Cohen-
Macaulay, then δ′ : X → Z, x 7→ − dim(OX,x) is a dimension function on X (see
Example 42.7.4). Since δ − δ′ is locally constant (Topology, Lemma 5.20.3) and
since δ′(ξ) = 0 for every generic point ξ of X we see that (2) holds. □

Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type over S satisfying
the equivalent conditions of Lemma 42.42.1. For an integral closed subscheme
Z ⊂ X we have the codimension codim(Z,X) of Z in X, see Topology, Definition
5.11.1. We define a codimension p-cycle to be a cycle α =

∑
nZ [Z] on X such

that nZ ̸= 0 ⇒ codim(Z,X) = p. The abelian group of all codimension p-cycles
is denoted Zp(X). Let X =

∐
Xn be the decomposition given in Lemma 42.42.1

part (1). Recalling that our cycles are defined as locally finite sums, it is clear that

Zp(X) =
∏

n
Zn−p(Xn)

Moreover, we see that
∏
p Z

p(X) =
∏
k Zk(X). We could now define rational

equivalence of codimension p cycles on X in exactly the same manner as before
and in fact we could redevelop the whole theory from scratch for cycles of a given

3In fact, it suffices if X is (S2). Compare with Local Cohomology, Lemma 51.3.2.
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codimension for X as in Lemma 42.42.1. However, instead we simply define the
Chow group of codimension p-cycles as

CHp(X) =
∏

n
CHn−p(Xn)

As before we have
∏
p CHp(X) =

∏
k CHk(X). If X is quasi-compact, then the

product in the formula is finite (and hence is a direct sum) and we have
⊕

p CHp(X) =⊕
k CHk(X). If X is quasi-compact and finite dimensional, then only a finite num-

ber of these groups is nonzero.
Many of the constructions and results for Chow groups proved above have natural
counterparts for the Chow groups CH∗(X). Each of these is shown by decompos-
ing the relevant schemes into “equidimensional” pieces as in Lemma 42.42.1 and
applying the results already proved for the factors in the product decomposition
given above. Let us list some of them.

(1) If f : X → Y is a flat morphism of schemes locally of finite type over S
and X and Y satisfy the equivalent conditions of Lemma 42.42.1 then flat
pullback determines a map

f∗ : CHp(Y )→ CHp(X)
(2) If f : X → Y is a morphism of schemes locally of finite type over S and

X and Y satisfy the equivalent conditions of Lemma 42.42.1 let us say f
has codimension r ∈ Z if for all pairs of irreducible components Z ⊂ X,
W ⊂ Y with f(Z) ⊂W we have dimδ(W )− dimδ(Z) = r.

(3) If f : X → Y is a proper morphism of schemes locally of finite type over
S and X and Y satisfy the equivalent conditions of Lemma 42.42.1 and f
has codimension r, then proper pushforward is a map

f∗ : CHp(X)→ CHp+r(Y )
(4) If f : X → Y is a morphism of schemes locally of finite type over S and

X and Y satisfy the equivalent conditions of Lemma 42.42.1 and f has
codimension r and c ∈ Aq(X → Y ), then c induces maps

c ∩ − : CHp(Y )→ CHp+q−r(X)
(5) If X is a scheme locally of finite type over S satisfying the equivalent

conditions of Lemma 42.42.1 and L is an invertible OX -module, then
c1(L) ∩ − : CHp(X)→ CHp+1(X)

(6) If X is a scheme locally of finite type over S satisfying the equivalent
conditions of Lemma 42.42.1 and E is a finite locally free OX -module,
then

ci(E) ∩ − : CHp(X)→ CHp+i(X)
Warning: the property for a morphism to have codimension r is not preserved by
base change.

Remark 42.42.2.0FE4 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S satisfying the equivalent conditions of Lemma 42.42.1. Let X =

∐
Xn

be the decomposition into open and closed subschemes such that every irreducible
component of Xn has δ-dimension n. In this situation we sometimes set

[X] =
∑

n
[Xn]n ∈ CH0(X)
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This class is a kind of “fundamental class” of X in Chow theory.

42.43. The splitting principle

02UK In our setting it is not so easy to say what the splitting principle exactly says/is.
Here is a possible formulation.

Lemma 42.43.1.02UL Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let Ei be a finite collection of locally free OX -modules of rank ri. There
exists a projective flat morphism π : P → X of relative dimension d such that

(1) for any morphism f : Y → X the map π∗
Y : CH∗(Y ) → CH∗+d(Y ×X P )

is injective, and
(2) each π∗Ei has a filtration whose successive quotients Li,1, . . . ,Li,ri are

invertible OP -modules.
Moreover, when (1) holds the restriction map A∗(X) → A∗(P ) (Remark 42.34.2)
is injective.

Proof. We may assume ri ≥ 1 for all i. We will prove the lemma by induction on∑
(ri − 1). If this integer is 0, then Ei is invertible for all i and we conclude by

taking π = idX . If not, then we can pick an i such that ri > 1 and consider the
morphism πi : Pi = P(Ei)→ X. We have a short exact sequence

0→ F → π∗
i Ei → OPi(1)→ 0

of finite locally free OPi-modules of ranks ri − 1, ri, and 1. Observe that π∗
i is

injective on chow groups after any base change by the projective bundle formula
(Lemma 42.36.2). By the induction hypothesis applied to the finite locally free OPi-
modules F and π∗

i′Ei′ for i′ ̸= i, we find a morphism π : P → Pi with properties
stated as in the lemma. Then the composition πi ◦ π : P → X does the job. Some
details omitted. □

Remark 42.43.2.0FVE The proof of Lemma 42.43.1 shows that the morphism π : P → X
has the following additional properties:

(1) π is a finite composition of projective space bundles associated to locally
free modules of finite constant rank, and

(2) for every α ∈ CHk(X) we have α = π∗(ξ1 ∩ . . .∩ ξd ∩ π∗α) where ξi is the
first Chern class of some invertible OP -module.

The second observation follows from the first and Lemma 42.36.1. We will add
more observations here as needed.

Let (S, δ), X, and Ei be as in Lemma 42.43.1. The splitting principle refers to the
practice of symbolically writing

c(Ei) =
∏

(1 + xi,j)

The symbols xi,1, . . . , xi,ri are called the Chern roots of Ei. In other words, the
pth Chern class of Ei is the pth elementary symmetric function in the Chern roots.
The usefulness of the splitting principle comes from the assertion that in order to
prove a polynomial relation among Chern classes of the Ei it is enough to prove the
corresponding relation among the Chern roots.
Namely, let π : P → X be as in Lemma 42.43.1. Recall that there is a canonical
Z-algebra map π∗ : A∗(X) → A∗(P ), see Remark 42.34.2. The injectivity of π∗

Y
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on Chow groups for every Y over X, implies that the map π∗ : A∗(X)→ A∗(P ) is
injective (details omitted). We have

π∗c(Ei) =
∏

(1 + c1(Li,j))

by Lemma 42.40.4. Thus we may think of the Chern roots xi,j as the elements
c1(Li,j) ∈ A∗(P ) and the displayed equation as taking place in A∗(P ) after applying
the injective map π∗ : A∗(X)→ A∗(P ) to the left hand side of the equation.
To see how this works, it is best to give some examples.

Lemma 42.43.3.0FA5 In Situation 42.7.1 let X be locally of finite type over S. Let E
be a finite locally free OX -module with dual E∨. Then

ci(E∨) = (−1)ici(E)
in Ai(X).

Proof. Choose a morphism π : P → X as in Lemma 42.43.1. By the injectivity of
π∗ (after any base change) it suffices to prove the relation between the Chern classes
of E and E∨ after pulling back to P . Thus we may assume there exist invertible
OX -modules Li, i = 1, . . . , r and a filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E
such that Ei/Ei−1 ∼= Li. Then we obtain the dual filtration

0 = E⊥
r ⊂ E⊥

1 ⊂ E⊥
2 ⊂ . . . ⊂ E⊥

0 = E∨

such that E⊥
i−1/E⊥

i
∼= L⊗−1

i . Set xi = c1(Li). Then c1(L⊗−1
i ) = −xi by Lemma

42.25.2. By Lemma 42.40.4 we have

c(E) =
∏r

i=1
(1 + xi) and c(E∨) =

∏r

i=1
(1− xi)

in A∗(X). The result follows from a formal computation which we omit. □

Lemma 42.43.4.0FA6 In Situation 42.7.1 let X be locally of finite type over S. Let E
and F be a finite locally free OX -modules of ranks r and s. Then we have

c1(E ⊗ F) = rc1(F) + sc1(E)

c2(E ⊗ F) = rc2(F) + sc2(E) +
(
r

2

)
c1(F)2 + (rs− 1)c1(F)c1(E) +

(
s

2

)
c1(E)2

and so on in A∗(X).

Proof. Arguing exactly as in the proof of Lemma 42.43.3 we may assume we have
invertible OX -modules Li, i = 1, . . . , r Ni, i = 1, . . . , s filtrations

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E and 0 = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fs = F
such that Ei/Ei−1 ∼= Li and such that Fj/Fj−1 ∼= Nj . Ordering pairs (i, j) lexico-
graphically we obtain a filtration

0 ⊂ . . . ⊂ Ei ⊗Fj + Ei−1 ⊗F ⊂ . . . ⊂ E ⊗ F
with successive quotients

L1 ⊗N1,L1 ⊗N2, . . . ,L1 ⊗Ns,L2 ⊗N1, . . . ,Lr ⊗Ns
By Lemma 42.40.4 we have

c(E) =
∏

(1 + xi), c(F) =
∏

(1 + yj), and c(E ⊗ F) =
∏

(1 + xi + yj),
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in A∗(X). The result follows from a formal computation which we omit. □

Remark 42.43.5.0FA7 The equalities proven above remain true even when we work with
finite locally free OX -modules whose rank is allowed to be nonconstant. In fact, we
can work with polynomials in the rank and the Chern classes as follows. Consider
the graded polynomial ring Z[r, c1, c2, c3, . . .] where r has degree 0 and ci has degree
i. Let

P ∈ Z[r, c1, c2, c3, . . .]
be a homogeneous polynomial of degree p. Then for any finite locally free OX -
module E on X we can consider

P (E) = P (r(E), c1(E), c2(E), c3(E), . . .) ∈ Ap(X)

see Remark 42.38.10 for notation and conventions. To prove relations among these
polynomials (for multiple finite locally free modules) we can work locally on X and
use the splitting principle as above. For example, we claim that

c2(HomOX
(E , E)) = P (E)

where P = 2rc2 − (r − 1)c2
1. Namely, since HomOX

(E , E) = E ⊗ E∨ this follows
easily from Lemmas 42.43.3 and 42.43.4 above by decomposing X into parts where
the rank of E is constant as in Remark 42.38.10.

Example 42.43.6.0F9B For every p ≥ 1 there is a unique homogeneous polynomial
Pp ∈ Z[c1, c2, c3, . . .] of degree p such that, for any n ≥ p we have

Pp(s1, s2, . . . , sp) =
∑

xpi

in Z[x1, . . . , xn] where s1, . . . , sp are the elementary symmetric polynomials in
x1, . . . , xn, so

si =
∑

1≤j1<...<ji≤n
xj1xj2 . . . xji

The existence of Pp comes from the well known fact that the elementary symmetric
functions generate the ring of all symmetric functions over the integers. Another
way to characterize Pp ∈ Z[c1, c2, c3, . . .] is that we have

log(1 + c1 + c2 + c3 + . . .) =
∑

p≥1
(−1)p−1Pp

p

as formal power series. This is clear by writing 1 + c1 + c2 + . . . =
∏

(1 + xi) and
applying the power series for the logarithm function. Expanding the left hand side
we get

(c1 + c2 + . . .)− (1/2)(c1 + c2 + . . .)2 + (1/3)(c1 + c2 + . . .)3 − . . .
= c1 + (c2 − (1/2)c2

1) + (c3 − c1c2 + (1/3)c3
1) + . . .

In this way we find that

P1 = c1,

P2 = c2
1 − 2c2,

P3 = c3
1 − 3c1c2 + 3c3,

P4 = c4
1 − 4c2

1c2 + 4c1c3 + 2c2
2 − 4c4,

https://stacks.math.columbia.edu/tag/0FA7
https://stacks.math.columbia.edu/tag/0F9B


42.44. CHERN CLASSES AND SECTIONS 3727

and so on. Since the Chern classes of a finite locally free OX -module E are the
elementary symmetric polynomials in the Chern roots xi, we see that

Pp(E) =
∑

xpi

For convenience we set P0 = r in Z[r, c1, c2, c3, . . .] so that P0(E) = r(E) as a
bivariant class (as in Remarks 42.38.10 and 42.43.5).

42.44. Chern classes and sections

0FA8 A brief section whose main result is that we may compute the top Chern class of a
finite locally free module using the vanishing locus of a “regular section.

Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of finite type over
S. Let E be a finite locally free OX -module. Let f : X ′ → X be locally of finite
type. Let

s ∈ Γ(X ′, f∗E)
be a global section of the pullback of E to X ′. Let Z(s) ⊂ X ′ be the zero scheme of
s. More precisely, we define Z(s) to be the closed subscheme whose quasi-coherent
sheaf of ideals is the image of the map s : f∗E∨ → OX′ .

Lemma 42.44.1.0FA9 In the situation described just above assume dimδ(X ′) = n, that
f∗E has constant rank r, that dimδ(Z(s)) ≤ n− r, and that for every generic point
ξ ∈ Z(s) with δ(ξ) = n − r the ideal of Z(s) in OX′,ξ is generated by a regular
sequence of length r. Then

cr(E) ∩ [X ′]n = [Z(s)]n−r

in CH∗(X ′).

Proof. Since cr(E) is a bivariant class (Lemma 42.38.7) we may assume X = X ′

and we have to show that cr(E) ∩ [X]n = [Z(s)]n−r in CHn−r(X). We will prove
the lemma by induction on r ≥ 0. (The case r = 0 is trivial.) The case r = 1 is
handled by Lemma 42.25.4. Assume r > 1.

Let π : P → X be the projective space bundle associated to E and consider the
short exact sequence

0→ E ′ → π∗E → OP (1)→ 0
By the projective space bundle formula (Lemma 42.36.2) it suffices to prove the
equality after pulling back by π. Observe that π−1Z(s) = Z(π∗s) has δ-dimension
≤ n − 1 and that the assumption on regular sequences at generic points of δ-
dimension n − 1 holds by flat pullback, see Algebra, Lemma 10.68.5. Let t ∈
Γ(P,OP (1)) be the image of π∗s. We claim

[Z(t)]n+r−2 = c1(OP (1)) ∩ [P ]n+r−1

Assuming the claim we finish the proof as follows. The restriction π∗s|Z(t) maps to
zero in OP (1)|Z(t) hence comes from a unique element s′ ∈ Γ(Z(t), E ′|Z(t)). Note
that Z(s′) = Z(π∗s) as closed subschemes of P . If ξ ∈ Z(s′) is a generic point
with δ(ξ) = n− 1, then the ideal of Z(s′) in OZ(t),ξ can be generated by a regular
sequence of length r − 1: it is generated by r − 1 elements which are the images
of r − 1 elements in OP,ξ which together with a generator of the ideal of Z(t) in
OP,ξ form a regular sequence of length r in OP,ξ. Hence we can apply the induction

https://stacks.math.columbia.edu/tag/0FA9
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hypothesis to s′ on Z(t) to get cr−1(E ′) ∩ [Z(t)]n+r−2 = [Z(s′)]n−1. Combining all
of the above we obtain

cr(π∗E) ∩ [P ]n+r−1 = cr−1(E ′) ∩ c1(OP (1)) ∩ [P ]n+r−1

= cr−1(E ′) ∩ [Z(t)]n+r−2

= [Z(s′)]n−1

= [Z(π∗s)]n−1

which is what we had to show.
Proof of the claim. This will follow from an application of the already used Lemma
42.25.4. We have π−1(Z(s)) = Z(π∗s) ⊂ Z(t). On the other hand, for x ∈ X if
Px ⊂ Z(t), then t|Px = 0 which implies that s is zero in the fibre E ⊗ κ(x), which
implies x ∈ Z(s). It follows that dimδ(Z(t)) ≤ n+ (r− 1)− 1. Finally, let ξ ∈ Z(t)
be a generic point with δ(ξ) = n + r − 2. If ξ is not the generic point of the fibre
of P → X it is immediate that a local equation of Z(t) is a nonzerodivisor in OP,ξ
(because we can check this on the fibre by Algebra, Lemma 10.99.2). If ξ is the
generic point of a fibre, then x = π(ξ) ∈ Z(s) and δ(x) = n+r−2− (r−1) = n−1.
This is a contradiction with dimδ(Z(s)) ≤ n− r because r > 1 so this case doesn’t
happen. □

Lemma 42.44.2.0FAA Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of
finite type over S. Let

0→ N ′ → N → E → 0
be a short exact sequence of finite locally free OX -modules. Consider the closed
embedding

i : N ′ = Spec
X

(Sym((N ′)∨)) −→ N = Spec
X

(Sym(N∨))
For α ∈ CHk(X) we have

i∗(p′)∗α = p∗(ctop(E) ∩ α)
where p′ : N ′ → X and p : N → X are the structure morphisms.

Proof. Here ctop(E) is the bivariant class defined in Remark 42.38.11. By its very
definition, in order to verify the formula, we may assume that E has constant rank.
We may similarly assume N ′ and N have constant ranks, say r′ and r, so E has
rank r − r′ and ctop(E) = cr−r′(E). Observe that p∗E has a canonical section

s ∈ Γ(N, p∗E) = Γ(X, p∗p
∗E) = Γ(X, E ⊗OX

Sym(N∨) ⊃ Γ(X,Hom(N , E))
corresponding to the surjection N → E given in the statement of the lemma. The
vanishing scheme of this section is exactly N ′ ⊂ N . Let Y ⊂ X be an integral
closed subscheme of δ-dimension n. Then we have

(1) p∗[Y ] = [p−1(Y )] since p−1(Y ) is integral of δ-dimension n+ r,
(2) (p′)∗[Y ] = [(p′)−1(Y )] since (p′)−1(Y ) is integral of δ-dimension n+ r′,
(3) the restriction of s to p−1Y has vanishing scheme (p′)−1Y and the closed

immersion (p′)−1Y → p−1Y is a regular immersion (locally cut out by a
regular sequence).

We conclude that
(p′)∗[Y ] = cr−r′(p∗E) ∩ p∗[Y ] in CH∗(N)

by Lemma 42.44.1. This proves the lemma. □

https://stacks.math.columbia.edu/tag/0FAA
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42.45. The Chern character and tensor products

02UM Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type over S. We define
the Chern character of a finite locally free OX -module to be the formal expression

ch(E) =
∑r

i=1
exi

if the xi are the Chern roots of E . Writing this as a polynomial in the Chern classes
we obtain

ch(E) = r(E) + c1(E) + 1
2(c1(E)2 − 2c2(E)) + 1

6(c1(E)3 − 3c1(E)c2(E) + 3c3(E))

+ 1
24(c1(E)4 − 4c1(E)2c2(E) + 4c1(E)c3(E) + 2c2(E)2 − 4c4(E)) + . . .

=
∑

p=0,1,2,...

Pp(E)
p!

with Pp polynomials in the Chern classes as in Example 42.43.6. The degree p
component of the above is

chp(E) = Pp(E)
p! ∈ Ap(X)⊗Q

What does it mean that the coefficients are rational numbers? Well this simply
means that we think of chp(E) as an element of Ap(X)⊗Q.

Remark 42.45.1.0ESX In the discussion above we have defined the components of the
Chern character chp(E) ∈ Ap(X)⊗Q of E even if the rank of E is not constant. See
Remarks 42.38.10 and 42.43.5. Thus the full Chern character of E is an element
of
∏
p≥0(Ap(X)⊗Q). If X is quasi-compact and dim(X) <∞ (usual dimension),

then one can show using Lemma 42.34.6 and the splitting principle that ch(E) ∈
A∗(X)⊗Q.

Lemma 42.45.2.0F9C Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let 0 → E1 → E → E2 → 0 be a short exact sequence of finite locally free
OX -modules. Then we have the equality

ch(E) = ch(E1) + ch(E2)
More precisely, we have Pp(E) = Pp(E1) + Pp(E2) in Ap(X) where Pp is as in
Example 42.43.6.

Proof. It suffices to prove the more precise statement. By Section 42.43 this follows
because if x1,i, i = 1, . . . , r1 and x2,i, i = 1, . . . , r2 are the Chern roots of E1 and
E2, then x1,1, . . . , x1,r1 , x2,1, . . . , x2,r2 are the Chern roots of E . Hence we get the
result from our choice of Pp in Example 42.43.6. □

Lemma 42.45.3.0F9D Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let E1 and E2 be finite locally free OX -modules. Then we have the equality

ch(E1 ⊗OX
E2) = ch(E1)ch(E2)

More precisely, we have

Pp(E1 ⊗OX
E2) =

∑
p1+p2=p

(
p

p1

)
Pp1(E1)Pp2(E2)

in Ap(X) where Pp is as in Example 42.43.6.
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Proof. It suffices to prove the more precise statement. By Section 42.43 this follows
because if x1,i, i = 1, . . . , r1 and x2,i, i = 1, . . . , r2 are the Chern roots of E1 and
E2, then x1,i + x2,j , 1 ≤ i ≤ r1, 1 ≤ j ≤ r2 are the Chern roots of E1 ⊗ E2. Hence
we get the result from the binomial formula for (x1,i + x2,j)p and the shape of our
polynomials Pp in Example 42.43.6. □

Lemma 42.45.4.0FAB In Situation 42.7.1 let X be locally of finite type over S. Let E
be a finite locally free OX -module with dual E∨. Then chi(E∨) = (−1)ichi(E) in
Ai(X)⊗Q.

Proof. Follows from the corresponding result for Chern classes (Lemma 42.43.3).
□

42.46. Chern classes and the derived category

0ESY In this section we define the total Chern class of a perfect object E of the derived
category of a scheme X, under the assumption that E may be represented by a
finite complex of finite locally free modules on an envelope of X.

Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type over S. Let

Ea → Ea+1 → . . .→ Eb

be a bounded complex of finite locally free OX -modules of constant rank. Then we
define the total Chern class of the complex by the formula

c(E•) =
∏

n=a,...,b
c(En)(−1)n ∈

∏
p≥0

Ap(X)

Here the inverse is the formal inverse, so

(1 + c1 + c2 + c3 + . . .)−1 = 1− c1 + c2
1 − c2 − c3

1 + 2c1c2 − c3 + . . .

We will denote cp(E•) ∈ Ap(X) the degree p part of c(E•). We similarly define the
Chern character of the complex by the formula

ch(E•) =
∑

n=a,...,b
(−1)nch(En) ∈

∏
p≥0

(Ap(X)⊗Q)

We will denote chp(E•) ∈ Ap(X) ⊗ Q the degree p part of ch(E•). Finally, for
Pp ∈ Z[r, c1, c2, c3, . . .] as in Example 42.43.6 we define

Pp(E•) =
∑

n=a,...,b
(−1)nPp(En)

in Ap(X). Then we have chp(E•) = (1/p!)Pp(E•) as usual. The next lemma shows
that these constructions only depends on the image of the complex in the derived
category.

Lemma 42.46.1.0ESZ Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let E ∈ D(OX) be an object such that there exists a locally bounded
complex E• of finite locally free OX -modules representing E. Then a slight gener-
alization of the above constructions

c(E•) ∈
∏

p≥0
Ap(X), ch(E•) ∈

∏
p≥0

Ap(X)⊗Q, Pp(E•) ∈ Ap(X)

are independent of the choice of the complex E•.
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Proof. We prove this for the total Chern class; the other two cases follow by the
same arguments using Lemma 42.45.2 instead of Lemma 42.40.3.
As in Remark 42.38.10 in order to define the total chern class c(E•) we decompose
X into open and closed subschemes

X =
∐

i∈I
Xi

such that the rank En is constant on Xi for all n and i. (Since these ranks are
locally constant functions on X we can do this.) Since E• is locally bounded, we
see that only a finite number of the sheaves En|Xi are nonzero for a fixed i. Hence
we can define

c(E•|Xi) =
∏

n
c(En|Xi)(−1)n ∈

∏
p≥0

Ap(Xi)

as above. By Lemma 42.35.4 we have Ap(X) =
∏
iA

p(Xi). Hence for each p ∈ Z
we have a unique element cp(E•) ∈ Ap(X) restricting to cp(E•|Xi) on Xi for all i.
Suppose we have a second locally bounded complex F• of finite locally free OX -
modules representing E. Let g : Y → X be a morphism locally of finite type with
Y integral. By Lemma 42.35.3 it suffices to show that with c(g∗E•)∩[Y ] is the same
as c(g∗F•) ∩ [Y ] and it even suffices to prove this after replacing Y by an integral
scheme proper and birational over Y . Then first we conclude that g∗E• and g∗F•

are bounded complexes of finite locally free OY -modules of constant rank. Next,
by More on Flatness, Lemma 38.40.3 we may assume that Hi(Lg∗E) is perfect of
tor dimension ≤ 1 for all i ∈ Z. This reduces us to the case discussed in the next
paragraph.
Assume X is integral, E• and F• are bounded complexes of finite locally free
modules of constant rank, and Hi(E) is a perfect OX -module of tor dimension ≤ 1
for all i ∈ Z. We have to show that c(E•)∩ [X] is the same as c(F•)∩ [X]. Denote
diE : E i → E i+1 and diF : F i → F i+1 the differentials of our complexes. By More on
Flatness, Remark 38.40.4 we know that Im(diE), Ker(diE), Im(diF ), and Ker(diF ) are
finite locally free OX -modules for all i. By additivity (Lemma 42.40.3) we see that

c(E•) =
∏

i
c(Ker(diE))(−1)ic(Im(diE))(−1)i

and similarly for F•. Since we have the short exact sequences
0→ Im(diE)→ Ker(diE)→ Hi(E)→ 0 and 0→ Im(diF )→ Ker(diF )→ Hi(E)→ 0
we reduce to the problem stated and solved in the next paragraph.
Assume X is integral and we have two short exact sequences

0→ E ′ → E → Q→ 0 and 0→ F ′ → F → Q→ 0
with E , E ′, F , F ′ finite locally free. Problem: show that c(E)c(E ′)−1 ∩ [X] =
c(F)c(F ′)−1 ∩ [X]. To do this, consider the short exact sequence

0→ G → E ⊕ F → Q → 0
defining G. Since Q has tor dimension ≤ 1 we see that G is finite locally free. A
diagram chase shows that the kernel of the surjection G → F maps isomorphically
to E ′ in E and the kernel of the surjection G → E maps isomorphically to F ′ in F .
(Working affine locally this follows from or is equivalent to Schanuel’s lemma, see
Algebra, Lemma 10.109.1.) We conclude that

c(E)c(F ′) = c(G) = c(F)c(E ′)



42.46. CHERN CLASSES AND THE DERIVED CATEGORY 3732

as desired. □

Lemma 42.46.2.0GUD Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let E ∈ D(OX) be a perfect object. Assume there exists an envelope
f : Y → X (Definition 42.22.1) such that Lf∗E is isomorphic in D(OY ) to a locally
bounded complex E• of finite locally free OY -modules. Then there exists unique
bivariant classes c(E) ∈

∏
p≥0 A

p(X), ch(E) ∈
∏
p≥0 A

p(X) ⊗ Q, and Pp(E) ∈
Ap(X), independent of the choice of f : Y → X and E•, such that the restriction
of these classes to Y are equal to c(E•), ch(E•), and Pp(E•).

Proof. Fix p ∈ Z. We will prove the lemma for the chern class cp(E) ∈ Ap(X) and
omit the arguments for the other cases.
Let g : T → X be a morphism locally of finite type such that there exists a
locally bounded complex E• of finite locally free OT -modules representing Lg∗E
in D(OT ). The bivariant class cp(E•) ∈ Ap(T ) is independent of the choice of E•

by Lemma 42.46.1. Let us write cp(Lg∗E) ∈ Ap(T ) for this class. For any further
morphism h : T ′ → T which is locally of finite type, setting g′ = g ◦ h we see that
L(g′)∗E = L(g ◦h)∗E = Lh∗Lg∗E is represented by h∗E• in D(OT ′). We conclude
that cp(L(g′)∗E) makes sense and is equal to the restriction (Remark 42.33.5) of
cp(Lg∗E) to T ′ (strictly speaking this requires an application of Lemma 42.38.7).
Let f : Y → X and E• be as in the statement of the lemma. We obtain a bivariant
class cp(E) ∈ Ap(X) from an application of Lemma 42.35.6 to f : Y → X and the
class c′ = cp(Lf∗E) we constructed in the previous paragraph. The assumption in
the lemma is satisfied because by the discussion in the previous paragraph we have
res1(c′) = cp(Lg∗E) = res2(c′) where g = f ◦ p = f ◦ q : Y ×X Y → X.
Finally, suppose that f ′ : Y ′ → X is a second envelope such that L(f ′)∗E is
represented by a bounded complex of finite locally free OY ′ -modules. Then it
follows that the restrictions of cp(Lf∗E) and cp(L(f ′)∗E) to Y ×X Y ′ are equal.
Since Y ×X Y ′ → X is an envelope (Lemmas 42.22.3 and 42.22.2), we see that our
two candidates for cp(E) agree by the unicity in Lemma 42.35.6. □

Definition 42.46.3.0F9E Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let E ∈ D(OX) be a perfect object.

(1) We say the Chern classes of E are defined4 if there exists an envelope
f : Y → X such that Lf∗E is isomorphic in D(OY ) to a locally bounded
complex of finite locally free OY -modules.

(2) If the Chern classes of E are defined, then we define

c(E) ∈
∏

p≥0
Ap(X), ch(E) ∈

∏
p≥0

Ap(X)⊗Q, Pp(E) ∈ Ap(X)

by an application of Lemma 42.46.2.

This definition applies in many but not all situations envisioned in this chapter, see
Lemma 42.46.4. Perhaps an elementary construction of these bivariant classes for
general E/X/(S, δ) as in the definition exists; we don’t know.

Lemma 42.46.4.0GUE Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let E ∈ D(OX) be a perfect object. If one of the following conditions hold,
then the Chern classes of E are defined:

4See Lemma 42.46.4 for some criteria.
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(1) there exists an envelope f : Y → X such that Lf∗E is isomorphic in
D(OY ) to a locally bounded complex of finite locally free OY -modules,

(2) E can be represented by a bounded complex of finite locally free OX -
modules,

(3) the irreducible components of X are quasi-compact,
(4) X is quasi-compact,
(5) there exists a morphism X → X ′ of schemes locally of finite type over

S such that E is the pullback of a perfect object E′ on X ′ whose chern
classes are defined, or

(6) add more here.

Proof. Condition (1) is just Definition 42.46.3 part (1). Condition (2) implies (1).
As in (3) assume the irreducible components Xi of X are quasi-compact. We view
Xi as a reduced integral closed subscheme over X. The morphism

∐
Xi → X is an

envelope. For each i there exists an envelope X ′
i → Xi such that X ′

i has an ample
family of invertible modules, see More on Morphisms, Proposition 37.80.3. Observe
that f : Y =

∐
X ′
i → X is an envelope; small detail omitted. By Derived Categories

of Schemes, Lemma 36.36.7 each X ′
i has the resolution property. Thus the perfect

object L(f |X′
i
)∗E of D(OX′

i
) can be represented by a bounded complex of finite

locally free OX′
i
-modules, see Derived Categories of Schemes, Lemma 36.37.2. This

proves (3) implies (1).
Part (4) implies (3).
Let g : X → X ′ and E′ be as in part (5). Then there exists an envelope f ′ : Y ′ → X ′

such that L(f ′)∗E′ is represented by a locally bounded complex (E ′)• of OY ′-
modules. Then the base change f : Y → X is an envelope by Lemma 42.22.3.
Moreover, the pulllback E• = g∗(E ′)• represents Lf∗E and we see that the chern
classes of E are defined. □

Lemma 42.46.5.0GUF Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let E ∈ D(OX) be a perfect object. Assume the Chern classes of E
are defined. For g : W → X locally of finite type with W integral, there exists a
commutative diagram

W ′

g′
!!

b
// W

g
~~

X

withW ′ integral and b : W ′ →W proper birational such that L(g′)∗E is represented
by a bounded complex E• of locally free OW ′ -modules of constant rank and we have
res(cp(E)) = cp(E•) in Ap(W ′).

Proof. Choose an envelope f : Y → X such that Lf∗E is isomorphic in D(OY ) to
a locally bounded complex E• of finite locally free OY -modules. The base change
Y ×XW →W of f is an envelope by Lemma 42.22.3. Choose a point ξ ∈ Y ×XW
mapping to the generic point of W with the same residue field. Consider the
integral closed subscheme W ′ ⊂ Y ×X W with generic point ξ. The restriction of
the projection Y ×X W →W to W ′ is a proper birational morphism b : W ′ →W .
Set g′ = g ◦ b. Finally, consider the pullback (W ′ → Y )∗E•. This is a locally
bounded complex of finite locally free modules on W ′. Since W ′ is integral it

https://stacks.math.columbia.edu/tag/0GUF
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follows that it is bounded and that the terms have constant rank. Finally, by
construction (W ′ → Y )∗E• represents L(g′)∗E and by construction its pth chern
class gives the restriction of cp(E) by W ′ → X. This finishes the proof. □

Lemma 42.46.6.0FAC Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let E ∈ D(OX) be perfect. If the Chern classes of E are defined then

(1) cp(E) is in the center of the algebra A∗(X), and
(2) if g : X ′ → X is locally of finite type and c ∈ A∗(X ′ → X), then

c ◦ cp(E) = cp(Lg∗E) ◦ c.

Proof. Part (1) follows immediately from part (2). Let g : X ′ → X and c ∈
A∗(X ′ → X) be as in (2). To show that c ◦ cp(E) − cp(Lg∗E) ◦ c = 0 we use the
criterion of Lemma 42.35.3. Thus we may assume that X is integral and by Lemma
42.46.5 we may even assume that E is represented by a bounded complex E• of
finite locally free OX -modules of constant rank. Then we have to show that

c ∩ cp(E•) ∩ [X] = cp(E•) ∩ c ∩ [X]
in CH∗(X ′). This is immediate from Lemma 42.38.9 and the construction of cp(E•)
as a polynomial in the chern classes of the locally free modules En. □

Lemma 42.46.7.0F9F Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let

E1 → E2 → E3 → E1[1]
be a distinguished triangle of perfect objects in D(OX). If one of the following
conditions holds

(1) there exists an envelope f : Y → X such that Lf∗E1 → Lf∗E2 can be
represented by a map of locally bounded complexes of finite locally free
OY -modules,

(2) E1 → E2 can be represented be a map of locally bounded complexes of
finite locally free OX -modules,

(3) the irreducible components of X are quasi-compact,
(4) X is quasi-compact, or
(5) add more here,

then the Chern classes of E1, E2, E3 are defined and we have c(E2) = c(E1)c(E3),
ch(E2) = ch(E1) + ch(E3), and Pp(E2) = Pp(E1) + Pp(E3).

Proof. Let f : Y → X be an envelope and let α• : E•
1 → E•

2 be a map of locally
bounded complexes of finite locally free OY -modules representing Lf∗E1 → Lf∗E2.
Then the cone C(α)• represents Lf∗E3. Since C(α)n = En2 ⊕En+1

1 we see that C(α)•

is a locally bounded complex of finite locally free OY -modules. We conclude that
the Chern classes of E1, E2, E3 are defined. Moreover, recall that cp(E1) is defined
as the unique element of Ap(X) which restricts to cp(E•

1 ) in Ap(Y ). Similarly for E2
and E3. Hence it suffices to prove c(E•

2 ) = c(E•
1 )c(C(α)•) in

∏
p≥0 A

p(Y ). In turn,
it suffices to prove this after restricting to a connected component of Y . Hence
we may assume the complexes E•

1 and E•
2 are bounded complexes of finite locally

free OY -modules of fixed rank. In this case the desired equality follows from the
multiplicativity of Lemma 42.40.3. In the case of ch or Pp we use Lemmas 42.45.2.
In the previous paragraph we have seen that the lemma holds if condition (1) is
satisfied. Since (2) implies (1) this deals with the second case. Assume (3). Arguing
exactly as in the proof of Lemma 42.46.4 we find an envelope f : Y → X such that

https://stacks.math.columbia.edu/tag/0FAC
https://stacks.math.columbia.edu/tag/0F9F


42.46. CHERN CLASSES AND THE DERIVED CATEGORY 3735

Y is a disjoint union Y =
∐
Yi of quasi-compact (and quasi-separated) schemes

each having the resolution property. Then we may represent the restriction of
Lf∗E1 → Lf∗E2 to Yi by a map of bounded complexes of finite locally free modules,
see Derived Categories of Schemes, Proposition 36.37.5. In this way we see that
condition (3) implies condition (1). Of course condition (4) implies condition (3)
and the proof is complete. □

Remark 42.46.8.0FAD The Chern classes of a perfect complex, when defined, satisfy a
kind of splitting principle. Namely, suppose that (S, δ), X,E are as in Definition
42.46.3 such that the Chern classes of E are defined. Say we want to prove a
relation between the bivariant classes cp(E), Pp(E), and chp(E). To do this, we
may choose an envelope f : Y → X and a locally bounded complex E• of finite
locally free OX -modules representing E. By the uniqueness in Lemma 42.46.2 it
suffices to prove the desired relation between the bivariant classes cp(E•), Pp(E•),
and chp(E•). Thus we may replace X by a connected component of Y and assume
that E is represented by a bounded complex E• of finite locally free modules of
fixed rank. Using the splitting principle (Lemma 42.43.1) we may assume each
E i has a filtration whose successive quotients Li,j are invertible modules. Settting
xi,j = c1(Li,j) we see that

c(E) =
∏

i even
(1 + xi,j)

∏
i odd

(1 + xi,j)−1

and
Pp(E) =

∑
i even

(xi,j)p −
∑

i odd
(xi,j)p

Formally taking the logarithm for the expression for c(E) above we find that

log(c(E)) =
∑

(−1)p−1Pp(E)
p

Looking at the construction of the polynomials Pp in Example 42.43.6 it follows
that Pp(E) is the exact same expression in the Chern classes of E as in the case of
vector bundles, in other words, we have

P1(E) = c1(E),
P2(E) = c1(E)2 − 2c2(E),
P3(E) = c1(E)3 − 3c1(E)c2(E) + 3c3(E),
P4(E) = c1(E)4 − 4c1(E)2c2(E) + 4c1(E)c3(E) + 2c2(E)2 − 4c4(E),

and so on. On the other hand, the bivariant class P0(E) = r(E) = ch0(E) cannot
be recovered from the Chern class c(E) of E; the chern class doesn’t know about
the rank of the complex.

Lemma 42.46.9.0FAE In Situation 42.7.1 let X be locally of finite type over S. Let
E ∈ D(OX) be a perfect object whose Chern classes are defined. Then ci(E∨) =
(−1)ici(E), Pi(E∨) = (−1)iPi(E), and chi(E∨) = (−1)ichi(E) in Ai(X).

Proof. First proof: argue as in the proof of Lemma 42.46.6 to reduce to the case
where E is represented by a bounded complex of finite locally free modules of fixed
rank and apply Lemma 42.43.3. Second proof: use the splitting principle discussed
in Remark 42.46.8 and use that the chern roots of E∨ are the negatives of the chern
roots of E. □
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Lemma 42.46.10.0FAF In Situation 42.7.1 let X be locally of finite type over S. Let
E be a perfect object of D(OX) whose Chern classes are defined. Let L be an
invertible OX -module. Then

ci(E ⊗ L) =
∑i

j=0

(
r − i+ j

j

)
ci−j(E)c1(L)j

provided E has constant rank r ∈ Z.
Proof. In the case where E is locally free of rank r this is Lemma 42.39.1. The
reader can deduce the lemma from this special case by a formal computation. An
alternative is to use the splitting principle of Remark 42.46.8. In this case one ends
up having to prove the following algebra fact: if we write formally∏

a=1,...,n(1 + xa)∏
n=1,...,m(1 + yb)

= 1 + c1 + c2 + c3 + . . .

with ci homogeneous of degree i in Z[xi, yj ] then we have∏
a=1,...,n(1 + xa + t)∏
b=1,...,m(1 + yb + t) =

∑
i≥0

∑i

j=0

(
r − i+ j

j

)
ci−jt

j

where r = n−m. We omit the details. □

Lemma 42.46.11.0FAG In Situation 42.7.1 let X be locally of finite type over S. Let E
and F be perfect objects of D(OX) whose Chern classes are defined. Then we have

c1(E ⊗L
OX

F ) = r(E)c1(F) + r(F )c1(E)
and for c2(E ⊗L

OX
F ) we have the expression

r(E)c2(F )+r(F )c2(E)+
(
r(E)

2

)
c1(F )2+(r(E)r(F )−1)c1(F )c1(E)+

(
r(F )

2

)
c1(E)2

and so on for higher Chern classes in A∗(X). Similarly, we have ch(E ⊗L
OX

F ) =
ch(E)ch(F ) in A∗(X)⊗Q. More precisely, we have

Pp(E ⊗L
OX

F ) =
∑

p1+p2=p

(
p

p1

)
Pp1(E)Pp2(F )

in Ap(X).
Proof. After choosing an envelope f : Y → X such that Lf∗E and Lf∗F can
be represented by locally bounded complexes of finite locally free OX -modules this
follows by a compuation from the corresponding result for vector bundles in Lemmas
42.43.4 and 42.45.3. A better proof is probably to use the splitting principle as in
Remark 42.46.8 and reduce the lemma to computations in polynomial rings which
we describe in the next paragraph.
Let A be a commutative ring (for us this will be the subring of the bivariant chow
ring of X generated by Chern classes). Let S be a finite set together with maps
ϵ : S → {±1} and f : S → A. Define

Pp(S, f, ϵ) =
∑

s∈S
ϵ(s)f(s)p

in A. Given a second triple (S′, ϵ′, f ′) the equality that has to be shown for Pp is
the equality

Pp(S × S′, f + f ′, ϵϵ′) =
∑

p1+p2=p

(
p

p1

)
Pp1(S, f, ϵ)Pp2(S′, f ′, ϵ′)
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To see this is true, one reduces to the polynomial ring on variables S ⨿ S′ and one
shows that each term f(s)if ′(s′)j occurs on the left and right hand side with the
same coefficient. To verify the formulas for c1(E ⊗L

OX
F ) and c2(E ⊗L

OX
F ) we use

the splitting principle to reduce to checking these formulae in a torsion free ring.
Then we use the relationship between Pj(E) and ci(E) proved in Remark 42.46.8.
For example
c1(E ⊗ F ) = P1(E ⊗ F ) = r(F )P1(E) + r(E)P1(F ) = r(F )c1(E) + r(E)c1(F )

the middle equation because r(E) = P0(E) by definition. Similarly, we have
2c2(E ⊗ F )
= c1(E ⊗ F )2 − P2(E ⊗ F )
= (r(F )c1(E) + r(E)c1(F ))2 − r(F )P2(E)− P1(E)P1(F )− r(E)P2(F )
= (r(F )c1(E) + r(E)c1(F ))2 − r(F )(c1(E)2 − 2c2(E))− c1(E)c1(F )−
r(E)(c1(F )2 − 2c2(F ))

which the reader can verify agrees with the formula in the statement of the lemma
up to a factor of 2. □

42.47. A baby case of localized Chern classes

0F9G In this section we discuss some properties of the bivariant classes constructed in
the following lemma; most of these properties follow immediately from the charac-
terization given in the lemma. We urge the reader to skip the rest of the section.

Lemma 42.47.1.0F9H Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let ij : Xj → X, j = 1, 2 be closed immersions such that X = X1 ∪X2 set
theoretically. Let E2 ∈ D(OX2) be a perfect object. Assume

(1) Chern classes of E2 are defined,
(2) the restriction E2|X1∩X2 is zero, resp. isomorphic to a finite locally free
OX1∩X2 -module of rank < p sitting in cohomological degree 0.

Then there is a canonical bivariant class
P ′
p(E2), resp. c′

p(E2) ∈ Ap(X2 → X)
characterized by the property

P ′
p(E2) ∩ i2,∗α2 = Pp(E2) ∩ α2 and P ′

p(E2) ∩ i1,∗α1 = 0,
respectively

c′
p(E2) ∩ i2,∗α2 = cp(E2) ∩ α2 and c′

p(E2) ∩ i1,∗α1 = 0
for αi ∈ CHk(Xi) and similarly after any base change X ′ → X locally of finite
type.

Proof. We are going to use the material of Section 42.46 without further mention.
Assume E2|X1∩X2 is zero. Consider a morphism of schemes X ′ → X which is locally
of finite type and denote i′j : X ′

j → X ′ the base change of ij . By Lemma 42.19.4
we can write any element α′ ∈ CHk(X ′) as i′1,∗α′

1 + i′2,∗α
′
2 where α′

2 ∈ CHk(X ′
2) is

well defined up to an element in the image of pushforward by X ′
1∩X ′

2 → X ′
2. Then

we can set P ′
p(E2) ∩ α′ = Pp(E2) ∩ α′

2 ∈ CHk−p(X ′
2). This is well defined by our

assumption that E2 restricts to zero on X1 ∩X2.
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If E2|X1∩X2 is isomorphic to a finite locally free OX1∩X2-module of rank < p sitting
in cohomological degree 0, then cp(E2|X1∩X2) = 0 by rank considerations and we
can argue in exactly the same manner. □

Lemma 42.47.2.0FAH In Lemma 42.47.1 the bivariant class P ′
p(E2), resp. c′

p(E2) in
Ap(X2 → X) does not depend on the choice of X1.

Proof. Suppose that X ′
1 ⊂ X is another closed subscheme such that X = X ′

1 ∪X2
set theoretically and the restriction E2|X′

1∩X2 is zero, resp. isomorphic to a finite
locally free OX′

1∩X2-module of rank < p sitting in cohomological degree 0. Then
X = (X1 ∩X ′

1)∪X2. Hence we can write any element α ∈ CHk(X) as i∗β+ i2,∗α2
with α2 ∈ CHk(X ′

2) and β ∈ CHk(X1 ∩ X ′
1). Thus it is clear that P ′

p(E2) ∩ α =
Pp(E2) ∩ α2 ∈ CHk−p(X2), resp. c′

p(E2) ∩ α = cp(E2) ∩ α2 ∈ CHk−p(X2), is
independent of whether we use X1 or X ′

1. Similarly after any base change. □

Lemma 42.47.3.0GUG In Lemma 42.47.1 let X ′ → X be a morphism which is locally of
finite type. Denote X ′ = X ′

1∪X ′
2 and E′

2 ∈ D(OX′
2
) the pullbacks to X ′. Then the

class P ′
p(E′

2), resp. c′
p(E′

2) in Ap(X ′
2 → X ′) constructed in Lemma 42.47.1 using

X ′ = X ′
1 ∪X ′

2 and E′
2 is the restriction (Remark 42.33.5) of the class P ′

p(E2), resp.
c′
p(E2) in Ap(X2 → X).

Proof. Immediate from the characterization of these classes in Lemma 42.47.1. □

Lemma 42.47.4.0F9I In Lemma 42.47.1 say E2 is the restriction of a perfect E ∈ D(OX)
such that E|X1 is zero, resp. isomorphic to a finite locally free OX1-module of rank
< p sitting in cohomological degree 0. If Chern classes of E are defined, then
i2,∗ ◦ P ′

p(E2) = Pp(E), resp. i2,∗ ◦ c′
p(E2) = cp(E) (with ◦ as in Lemma 42.33.4).

Proof. First, assume E|X1 is zero. With notations as in the proof of Lemma 42.47.1
the lemma in this case follows from

Pp(E) ∩ α′ = i′1,∗(Pp(E) ∩ α′
1) + i′2,∗(Pp(E) ∩ α′

2)
= i′1,∗(Pp(E|X1) ∩ α′

1) + i′2,∗(P ′
p(E2) ∩ α′)

= i′2,∗(P ′
p(E2) ∩ α′)

The case where E|X1 is isomorphic to a finite locally free OX1-module of rank < p
sitting in cohomological degree 0 is similar. □

Lemma 42.47.5.0FAI In Lemma 42.47.1 suppose we have closed subschemes X ′
2 ⊂ X2

and X1 ⊂ X ′
1 ⊂ X such that X = X ′

1 ∪X ′
2 set theoretically. Assume E2|X′

1∩X2 is
zero, resp. isomorphic to a finite locally free module of rank < p placed in degree 0.
Then we have (X ′

2 → X2)∗ ◦ P ′
p(E2|X′

2
) = P ′

p(E2), resp. (X ′
2 → X2)∗ ◦ c′

p(E2|X′
2
) =

cp(E2) (with ◦ as in Lemma 42.33.4).

Proof. This follows immediately from the characterization of these classes in Lemma
42.47.1. □

Lemma 42.47.6.0FAJ In Lemma 42.47.1 let f : Y → X be locally of finite type and say
c ∈ A∗(Y → X). Then

c ◦ P ′
p(E2) = P ′

p(Lf∗
2E2) ◦ c resp. c ◦ c′

p(E2) = c′
p(Lf∗

2E2) ◦ c

in A∗(Y2 → Y ) where f2 : Y2 → X2 is the base change of f .
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Proof. Let α ∈ CHk(X). We may write
α = α1 + α2

with αi ∈ CHk(Xi); we are omitting the pushforwards by the closed immersions
Xi → X. The reader then checks that c′

p(E2) ∩ α = cp(E2) ∩ α2, c ∩ c′
p(E2) ∩ α =

c∩ cp(E2)∩α2, c∩α = c∩α1 + c∩α2, and c′
p(Lf∗

2E2)∩ c∩α = cp(Lf∗
2E2)∩ c∩α2.

We conclude by Lemma 42.46.6. □

Lemma 42.47.7.0FAK In Lemma 42.47.1 assume E2|X1∩X2 is zero. Then
P ′

1(E2) = c′
1(E2),

P ′
2(E2) = c′

1(E2)2 − 2c′
2(E2),

P ′
3(E2) = c′

1(E2)3 − 3c′
1(E2)c′

2(E2) + 3c′
3(E2),

P ′
4(E2) = c′

1(E2)4 − 4c′
1(E2)2c′

2(E2) + 4c′
1(E2)c′

3(E2) + 2c′
2(E2)2 − 4c′

4(E2),
and so on with multiplication as in Remark 42.34.7.
Proof. The statement makes sense because the zero sheaf has rank < 1 and hence
the classes c′

p(E2) are defined for all p ≥ 1. The equalities follow immediately from
the characterization of the classes produced by Lemma 42.47.1 and the correspond-
ing result for capping with the Chern classes of E2 given in Remark 42.46.8. □

Lemma 42.47.8.0FAL Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let ij : Xj → X, j = 1, 2 be closed immersions such that X = X1 ∪X2 set
theoretically. Let E,F ∈ D(OX) be perfect objects. Assume

(1) Chern classes of E and F are defined,
(2) the restrictions E|X1∩X2 and F |X1∩X2 are isomorphic to a finite locally

free OX1 -modules of rank < p and < q sitting in cohomological degree 0.
With notation as in Remark 42.34.7 set
c(p)(E) = 1 + c1(E) + . . .+ cp−1(E) + c′

p(E|X2) + c′
p+1(E|X2) + . . . ∈ A(p)(X2 → X)

with c′
p(E|X2) as in Lemma 42.47.1. Similarly for c(q)(F ) and c(p+q)(E⊕F ). Then

c(p+q)(E ⊕ F ) = c(p)(E)c(q)(F ) in A(p+q)(X2 → X).
Proof. Immediate from the characterization of the classes in Lemma 42.47.1 and
the additivity in Lemma 42.46.7. □

Lemma 42.47.9.0FAM Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let ij : Xj → X, j = 1, 2 be closed immersions such that X = X1 ∪X2 set
theoretically. Let E,F ∈ D(OX2) be perfect objects. Assume

(1) Chern classes of E and F are defined,
(2) the restrictions E|X1∩X2 and F |X1∩X2 are zero,

Denote P ′
p(E), P ′

p(F ), P ′
p(E ⊕ F ) ∈ Ap(X2 → X) for p ≥ 0 the classes constructed

in Lemma 42.47.1. Then P ′
p(E ⊕ F ) = P ′

p(E) + P ′
p(F ).

Proof. Immediate from the characterization of the classes in Lemma 42.47.1 and
the additivity in Lemma 42.46.7. □

Lemma 42.47.10.0FAN In Lemma 42.47.1 assume E2 has constant rank 0. Let L be an
invertible OX -module. Then

c′
i(E2 ⊗ L) =

∑i

j=0

(
−i+ j

j

)
c′
i−j(E2)c1(L)j
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Proof. The assumption on rank implies that E2|X1∩X2 is zero. Hence c′
i(E2) is

defined for all i ≥ 1 and the statement makes sense. The actual equality follows
immediately from Lemma 42.46.10 and the characterization of c′

i in Lemma 42.47.1.
□

Lemma 42.47.11.0FE5 In Situation 42.7.1 let X be locally of finite type over S. Let

X = X1 ∪X2 = X ′
1 ∪X ′

2

be two ways of writing X as a set theoretic union of closed subschemes. Let E, E′

be perfect objects of D(OX) whose Chern classes are defined. Assume that E|X1

and E′|X′
1

are zero5 for i = 1, 2. Denote
(1) r = P ′

0(E) ∈ A0(X2 → X) and r′ = P ′
0(E′) ∈ A0(X ′

2 → X),
(2) γp = c′

p(E|X2) ∈ Ap(X2 → X) and γ′
p = c′

p(E′|X′
2
) ∈ Ap(X ′

2 → X),
(3) χp = P ′

p(E|X2) ∈ Ap(X2 → X) and χ′
p = P ′

p(E′|X′
2
) ∈ Ap(X ′

2 → X)
the classes constructed in Lemma 42.47.1. Then we have

c′
1((E ⊗L

OX
E′)|X2∩X′

2
) = rγ′

1 + r′γ1

in A1(X2 ∩X ′
2 → X) and

c′
2((E ⊗L

OX
E′)|X2∩X′

2
) = rγ′

2 + r′γ2 +
(
r

2

)
(γ′

1)2 + (rr′ − 1)γ′
1γ1 +

(
r′

2

)
γ2

1

in A2(X2 ∩X ′
2 → X) and so on for higher Chern classes. Similarly, we have

P ′
p((E ⊗L

OX
E′)|X2∩X′

2
) =

∑
p1+p2=p

(
p

p1

)
χp1χ

′
p2

in Ap(X2 ∩X ′
2 → X).

Proof. First we observe that the statement makes sense. Namely, we have X =
(X2∩X ′

2)∪Y where Y = (X1∩X ′
1)∪(X1∩X ′

2)∪(X2∩X ′
1) and the object E⊗L

OX
E′

restricts to zero on Y . The actual equalities follow from the characterization of our
classes in Lemma 42.47.1 and the equalities of Lemma 42.46.11. We omit the
details. □

42.48. Gysin at infinity

0FAP This section is about the bivariant class constructed in the next lemma. We urge
the reader to skip the rest of the section.

Lemma 42.48.1.0F9J Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let b : W → P1

X be a proper morphism of schemes which is an isomorphism
over A1

X . Denote i∞ : W∞ → W the inverse image of the divisor D∞ ⊂ P1
X with

complement A1
X . Then there is a canonical bivariant class

C ∈ A0(W∞ → X)

with the property that i∞,∗(C ∩α) = i0,∗α for α ∈ CHk(X) and similarly after any
base change by X ′ → X locally of finite type.

5Presumably there is a variant of this lemma where we only assume these restrictions are
isomorphic to a finite locally free modules of rank < p and < p′.
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Proof. Given α ∈ CHk(X) there exists a β ∈ CHk+1(W ) restricting to the flat
pullback of α on b−1(A1

X), see Lemma 42.14.2. A second choice of β differs from β
by a cycle supported on W∞, see Lemma 42.19.3. Since the normal bundle of the
effective Cartier divisor D∞ ⊂ P1

X of (42.18.1.1) is trivial, the gysin homomorphism
i∗∞ kills cycle classes supported on W∞, see Remark 42.29.6. Hence setting C∩α =
i∗∞β is well defined.

Since W∞ and W0 = X×{0} are the pullbacks of the rationally equivalent effective
Cartier divisors D0, D∞ in P1

X , we see that i∗∞β and i∗0β map to the same cycle
class on W ; namely, both represent the class c1(OP1

X
(1)) ∩ β by Lemma 42.29.4.

By our choice of β we have i∗0β = α as cycles on W0 = X × {0}, see for example
Lemma 42.31.1. Thus we see that i∞,∗(C ∩ α) = i0,∗α as stated in the lemma.

Observe that the assumptions on b are preserved by any base change by X ′ → X
locally of finite type. Hence we get an operation C ∩ − : CHk(X ′) → CHk(W ′

∞)
by the same construction as above. To see that this family of operations defines a
bivariant class, we consider the diagram

CH∗(X)

flat pullback
��

CH∗+1(W∞) //

0

''

CH∗+1(W )

i∗∞
��

flat pullback // CH∗+1(A1
X) //

C∩−uu

0

CH∗(W∞)

for X as indicated and the base change of this diagram for any X ′ → X. We
know that flat pullback and i∗∞ are bivariant operations, see Lemmas 42.33.2 and
42.33.3. Then a formal argument (involving huge diagrams of schemes and their
chow groups) shows that the dotted arrow is a bivariant operation. □

Lemma 42.48.2.0GUH In Lemma 42.48.1 let X ′ → X be a morphism which is locally of
finite type. Denote b′ : W ′ → P1

X′ and i′∞ : W ′
∞ → W ′ the base changes of b and

i∞. Then the class C ′ ∈ A0(W ′
∞ → X ′) constructed as in Lemma 42.48.1 using b′

is the restriction (Remark 42.33.5) of C.

Proof. Immediate from the construction and the fact that a similar statement holds
for flat pullback and i∗∞. □

Lemma 42.48.3.0FAQ In Lemma 42.48.1 let g : W ′ → W be a proper morphism which
is an isomorphism over A1

X . Let C ′ ∈ A0(W ′
∞ → X) and C ∈ A0(W∞ → X) be

the classes constructed in Lemma 42.48.1. Then g∞,∗ ◦ C ′ = C in A0(W∞ → X).

Proof. Set b′ = b ◦ g : W ′ → P1
X . Denote i′∞ : W ′

∞ → W ′ the inclusion morphism.
Denote g∞ : W ′

∞ → W∞ the restriction of g. Given α ∈ CHk(X) choose β′ ∈
CHk+1(W ′) restricting to the flat pullback of α on (b′)−1A1

X . Then β = g∗β
′ ∈

CHk+1(W ) restricts to the flat pullback of α on b−1A1
X . Then i∗∞β = g∞,∗(i′∞)∗β′

by Lemma 42.29.8. This and the corresponding fact after base change by morphisms
X ′ → X locally of finite type, corresponds to the assertion made in the lemma. □

Lemma 42.48.4.0FAR In Lemma 42.48.1 we have C ◦ (W∞ → X)∗ ◦ i∗∞ = i∗∞.
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Proof. Let β ∈ CHk+1(W ). Denote i0 : X = X × {0} → W the closed immersion
of the fibre over 0 in P1. Then (W∞ → X)∗i

∗
∞β = i∗0β in CHk(X) because

i∞,∗i
∗
∞β and i0,∗i∗0β represent the same class on W (for example by Lemma 42.29.4)

and hence pushforward to the same class on X. The restriction of β to b−1(A1
X)

restricts to the flat pullback of i∗0β = (W∞ → X)∗i
∗
∞β because we can check this

after pullback by i0, see Lemmas 42.32.2 and 42.32.4. Hence we may use β when
computing the image of (W∞ → X)∗i

∗
∞β under C and we get the desired result. □

Lemma 42.48.5.0FAS In Lemma 42.48.1 let f : Y → X be a morphism locally of finite
type and c ∈ A∗(Y → X). Then C ◦ c = c ◦ C in A∗(W∞ ×X Y → X).

Proof. Consider the commutative diagram

W∞ ×X Y WY,∞
iY,∞

//

��

WY
bY

//

��

P1
Y pY

//

��

Y

f

��
W∞

i∞ // W
b // P1

X

p // X

with cartesian squares. For an elemnent α ∈ CHk(X) choose β ∈ CHk+1(W ) whose
restriction to b−1(A1

X) is the flat pullback of α. Then c ∩ β is a class in CH∗(WY )
whose restriction to b−1

Y (A1
Y ) is the flat pullback of c ∩ α. Next, we have

i∗Y,∞(c ∩ β) = c ∩ i∗∞β
because c is a bivariant class. This exactly says that C ∩ c ∩ α = c ∩ C ∩ α. The
same argument works after any base change by X ′ → X locally of finite type. This
proves the lemma. □

42.49. Preparation for localized Chern classes

0FAT In this section we discuss some properties of the bivariant classes constructed in
the following lemma. We urge the reader to skip the rest of the section.

Lemma 42.49.1.0F9K Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let Z ⊂ X be a closed subscheme. Let

b : W −→ P1
X

be a proper morphism of schemes. Let Q ∈ D(OW ) be a perfect object. Denote
W∞ ⊂ W the inverse image of the divisor D∞ ⊂ P1

X with complement A1
X . We

assume
(A0) Chern classes of Q are defined (Section 42.46),
(A1) b is an isomorphism over A1

X ,
(A2) there exists a closed subscheme T ⊂ W∞ containing all points of W∞

lying over X \Z such that Q|T is zero, resp. isomorphic to a finite locally
free OT -module of rank < p sitting in cohomological degree 0.

Then there exists a canonical bivariant class
P ′
p(Q), resp. c′

p(Q) ∈ Ap(Z → X)
with (Z → X)∗ ◦ P ′

p(Q) = Pp(Q|X×{0}), resp. (Z → X)∗ ◦ c′
p(Q) = cp(Q|X×{0}).

Proof. Denote E ⊂W∞ the inverse image of Z. Then W∞ = T ∪E and b induces
a proper morphism E → Z. Denote C ∈ A0(W∞ → X) the bivariant class con-
structed in Lemma 42.48.1. Denote P ′

p(Q|E), resp. c′
p(Q|E) in Ap(E → W∞) the

https://stacks.math.columbia.edu/tag/0FAS
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bivariant class constructed in Lemma 42.47.1. This makes sense because (Q|E)|T∩E
is zero, resp. isomorphic to a finite locally free OE∩T -module of rank < p sitting in
cohomological degree 0 by assumption (A2). Then we define

P ′
p(Q) = (E → Z)∗ ◦ P ′

p(Q|E) ◦ C, resp. c′
p(Q) = (E → Z)∗ ◦ c′

p(Q|E) ◦ C

This is a bivariant class, see Lemma 42.33.4. Since E → Z → X is equal to
E →W∞ →W → X we see that

(Z → X)∗ ◦ c′
p(Q) = (W → X)∗ ◦ i∞,∗ ◦ (E →W∞)∗ ◦ c′

p(Q|E) ◦ C
= (W → X)∗ ◦ i∞,∗ ◦ cp(Q|W∞) ◦ C
= (W → X)∗ ◦ cp(Q) ◦ i∞,∗ ◦ C
= (W → X)∗ ◦ cp(Q) ◦ i0,∗
= (W → X)∗ ◦ i0,∗ ◦ cp(Q|X×{0})
= cp(Q|X×{0})

The second equality holds by Lemma 42.47.4. The third equality because cp(Q) is a
bivariant class. The fourth equality by Lemma 42.48.1. The fifth equality because
cp(Q) is a bivariant class. The final equality because (W0 → W ) ◦ (W → X) is
the identity on X if we identify W0 with X as we’ve done above. The exact same
sequence of equations works to prove the property for P ′

p(Q). □

Lemma 42.49.2.0GUI In Lemma 42.49.1 let X ′ → X be a morphism which is locally
of finite type. Denote Z ′, b′ : W ′ → P1

X′ , and T ′ ⊂ W ′
∞ the base changes of Z,

b : W → P1
X , and T ⊂ W∞. Set Q′ = (W ′ → W )∗Q. Then the class P ′

p(Q′), resp.
c′
p(Q′) in Ap(Z ′ → X ′) constructed as in Lemma 42.49.1 using b′, Q′, and T ′ is the

restriction (Remark 42.33.5) of the class P ′
p(Q), resp. c′

p(Q) in Ap(Z → X).

Proof. Recall that the construction is as follows

P ′
p(Q) = (E → Z)∗ ◦ P ′

p(Q|E) ◦ C, resp. c′
p(Q) = (E → Z)∗ ◦ c′

p(Q|E) ◦ C

Thus the lemma follows from the corresponding base change property for C (Lemma
42.48.2) and the fact that the same base change property holds for the classes
constructed in Lemma 42.47.1 (small detail omitted). □

Lemma 42.49.3.0FAU In Lemma 42.49.1 the bivariant class P ′
p(Q), resp. c′

p(Q) is in-
dependent of the choice of the closed subscheme T . Moreover, given a proper
morphism g : W ′ → W which is an isomorphism over A1

X , then setting Q′ = g∗Q
we have P ′

p(Q) = P ′
p(Q′), resp. c′

p(Q) = c′
p(Q′).

Proof. The independence of T follows immediately from Lemma 42.47.2.

Let g : W ′ →W be a proper morphism which is an isomorphism over A1
X . Observe

that taking T ′ = g−1(T ) ⊂ W ′
∞ is a closed subscheme satisfying (A2) hence the

operator P ′
p(Q′), resp. c′

p(Q′) in Ap(Z → X) corresponding to b′ = b◦g : W ′ → P1
X

and Q′ is defined. Denote E′ ⊂W ′
∞ the inverse image of Z in W ′

∞. Recall that

c′
p(Q′) = (E′ → Z)∗ ◦ c′

p(Q′|E′) ◦ C ′

with C ′ ∈ A0(W ′
∞ → X) and c′

p(Q′|E′) ∈ Ap(E′ → W ′
∞). By Lemma 42.48.3 we

have g∞,∗ ◦ C ′ = C. Observe that E′ is also the inverse image of E in W ′
∞ by g∞.
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Since moreover Q′ = g∗Q we find that c′
p(Q′|E′) is simply the restriction of c′

p(Q|E)
to schemes lying over W ′

∞, see Remark 42.33.5. Thus we obtain
c′
p(Q′) = (E′ → Z)∗ ◦ c′

p(Q′|E′) ◦ C ′

= (E → Z)∗ ◦ (E′ → E)∗ ◦ c′
p(Q|E) ◦ C ′

= (E → Z)∗ ◦ c′
p(Q|E) ◦ g∞,∗ ◦ C ′

= (E → Z)∗ ◦ c′
p(Q|E) ◦ C

= c′
p(Q)

In the third equality we used that c′
p(Q|E) commutes with proper pushforward as

it is a bivariant class. The equality P ′
p(Q) = P ′

p(Q′) is proved in exactly the same
way. □

Lemma 42.49.4.0FAV In Lemma 42.49.1 assume Q|T is isomorphic to a finite locally free
OT -module of rank < p. Denote C ∈ A0(W∞ → X) the class of Lemma 42.48.1.
Then

C ◦ cp(Q|X×{0}) = C ◦ (Z → X)∗ ◦ c′
p(Q) = cp(Q|W∞) ◦ C

Proof. The first equality holds because cp(Q|X×{0}) = (Z → X)∗◦c′
p(Q) by Lemma

42.49.1. We may prove the second equality one cycle class at a time (see Lemma
42.35.3). Since the construction of the bivariant classes in the lemma is compatible
with base change, we may assume we have some α ∈ CHk(X) and we have to show
that C ∩ (Z → X)∗(c′

p(Q) ∩ α) = cp(Q|W∞) ∩ C ∩ α. Observe that

C ∩ (Z → X)∗(c′
p(Q) ∩ α) = C ∩ (Z → X)∗(E → Z)∗(c′

p(Q|E) ∩ C ∩ α)
= C ∩ (W∞ → X)∗(E →W∞)∗(c′

p(Q|E) ∩ C ∩ α)
= C ∩ (W∞ → X)∗(E →W∞)∗(c′

p(Q|E) ∩ i∗∞β)
= C ∩ (W∞ → X)∗(cp(Q|W∞) ∩ i∗∞β)
= C ∩ (W∞ → X)∗i

∗
∞(cp(Q) ∩ β)

= i∗∞(cp(Q) ∩ β)
= cp(Q|W∞) ∩ i∗∞β
= cp(Q|W∞) ∩ C ∩ α

as desired. For the first equality we used that c′
p(Q) = (E → Z)∗ ◦ c′

p(Q|E) ◦ C
where E ⊂ W∞ is the inverse image of Z and c′

p(Q|E) is the class constructed
in Lemma 42.47.1. The second equality is just the statement that E → Z → X
is equal to E → W∞ → X. For the third equality we choose β ∈ CHk+1(W )
whose restriction to b−1(A1

X) is the flat pullback of α so that C ∩ α = i∗∞β by
construction. The fourth equality is Lemma 42.47.4. The fifth equality is the fact
that cp(Q) is a bivariant class and hence commutes with i∗∞. The sixth equality is
Lemma 42.48.4. The seventh uses again that cp(Q) is a bivariant class. The final
holds as C ∩ α = i∗∞β. □

Lemma 42.49.5.0FAW In Lemma 42.49.1 let Y → X be a morphism locally of finite type
and let c ∈ A∗(Y → X) be a bivariant class. Then

P ′
p(Q) ◦ c = c ◦ P ′

p(Q) resp. c′
p(Q) ◦ c = c ◦ c′

p(Q)

in A∗(Y ×X Z → X).
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Proof. Let E ⊂ W∞ be the inverse image of Z. Recall that P ′
p(Q) = (E →

Z)∗ ◦ P ′
p(Q|E) ◦C, resp. c′

p(Q) = (E → Z)∗ ◦ c′
p(Q|E) ◦C where C is as in Lemma

42.48.1 and P ′
p(Q|E), resp. c′

p(Q|E) are as in Lemma 42.47.1. By Lemma 42.48.5
we see that C commutes with c and by Lemma 42.47.6 we see that P ′

p(Q|E), resp.
c′
p(Q|E) commutes with c. Since c is a bivariant class it commutes with proper

pushforward by E → Z by definition. This finishes the proof. □

Lemma 42.49.6.0FAX In Lemma 42.49.1 assume Q|T is zero. In A∗(Z → X) we have
P ′

1(Q) = c′
1(Q),

P ′
2(Q) = c′

1(Q)2 − 2c′
2(Q),

P ′
3(Q) = c′

1(Q)3 − 3c′
1(Q)c′

2(Q) + 3c′
3(Q),

P ′
4(Q) = c′

1(Q)4 − 4c′
1(Q)2c′

2(Q) + 4c′
1(Q)c′

3(Q) + 2c′
2(Q)2 − 4c′

4(Q),
and so on with multiplication as in Remark 42.34.7.

Proof. The statement makes sense because the zero sheaf has rank < 1 and hence
the classes c′

p(Q) are defined for all p ≥ 1. In the proof of Lemma 42.49.1 we have
constructed the classes P ′

p(Q) and c′
p(Q) using the bivariant class C ∈ A0(W∞ →

X) of Lemma 42.48.1 and the bivariant classes P ′
p(Q|E) and c′

p(Q|E) of Lemma
42.47.1 for the restriction Q|E of Q to the inverse image E of Z in W∞. Observe
that by Lemma 42.47.7 we have the desired relationship between P ′

p(Q|E) and
c′
p(Q|E). Recall that

P ′
p(Q) = (E → Z)∗ ◦ P ′

p(Q|E) ◦ C and c′
p(Q) = (E → Z)∗ ◦ c′

p(Q|E) ◦ C
To finish the proof it suffices to show the multiplications defined in Remark 42.34.7
on the classes ap = c′

p(Q) and on the classes bp = c′
p(Q|E) agree:

ap1ap2 . . . apr = (E → Z)∗ ◦ bp1bp2 . . . bpr ◦ C
Some details omitted. If r = 1, then this is true. For r > 1 note that by Remark
42.34.8 the multiplication in Remark 42.34.7 proceeds by inserting (Z → X)∗, resp.
(E →W∞)∗ in between the factors of the product ap1ap2 . . . apr , resp. bp1bp2 . . . bpr
and taking compositions as bivariant classes. Now by Lemma 42.47.1 we have

(E →W∞)∗ ◦ bpi = cpi(Q|W∞)
and by Lemma 42.49.4 we have

C ◦ (Z → X)∗ ◦ api = cpi(Q|W∞) ◦ C
for i = 2, . . . , r. A calculation shows that the left and right hand side of the desired
equality both simplify to

(E → Z)∗ ◦ c′
p1

(Q|E) ◦ cp2(Q|W∞) ◦ . . . ◦ cpr (Q|W∞) ◦ C
and the proof is complete. □

Lemma 42.49.7.0FAY In Lemma 42.49.1 assume Q|T is isomorphic to a finite locally
free OT -module of rank < p. Assume we have another perfect object Q′ ∈ D(OW )
whose Chern classes are defined with Q′|T isomorphic to a finite locally free OT -
module of rank < p′ placed in cohomological degree 0. With notation as in Remark
42.34.7 set

c(p)(Q) = 1 + c1(Q|X×{0}) + . . .+ cp−1(Q|X×{0}) + c′
p(Q) + c′

p+1(Q) + . . .
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in A(p)(Z → X) with c′
i(Q) for i ≥ p as in Lemma 42.49.1. Similarly for c(p′)(Q′)

and c(p+p′)(Q⊕Q′). Then c(p+p′)(Q⊕Q′) = c(p)(Q)c(p′)(Q′) in A(p+p′)(Z → X).

Proof. Recall that the image of c′
i(Q) in Ap(X) is equal to ci(Q|X×{0}) for i ≥ p

and similarly for Q′ and Q⊕Q′, see Lemma 42.49.1. Hence the equality in degrees
< p+ p′ follows from the additivity of Lemma 42.46.7.
Let’s take n ≥ p + p′. As in the proof of Lemma 42.49.1 let E ⊂ W∞ denote the
inverse image of Z. Observe that we have the equality

c(p+p′)(Q|E ⊕Q′|E) = c(p)(Q|E)c(p′)(Q′|E)
in A(p+p′)(E →W∞) by Lemma 42.47.8. Since by construction

c′
p(Q⊕Q′) = (E → Z)∗ ◦ c′

p(Q|E ⊕Q′|E) ◦ C
we conclude that suffices to show for all i+ j = n we have

(E → Z)∗ ◦ c(p)
i (Q|E)c(p′)

j (Q′|E) ◦ C = c
(p)
i (Q)c(p′)

j (Q′)
in An(Z → X) where the multiplication is the one from Remark 42.34.7 on both
sides. There are three cases, depending on whether i ≥ p, j ≥ p′, or both.
Assume i ≥ p and j ≥ p′. In this case the products are defined by inserting
(E → W∞)∗, resp. (Z → X)∗ in between the two factors and taking compositions
as bivariant classes, see Remark 42.34.8. In other words, we have to show

(E → Z)∗ ◦ c′
i(Q|E) ◦ (E →W∞)∗ ◦ c′

j(Q′|E) ◦ C = c′
i(Q) ◦ (Z → X)∗ ◦ c′

j(Q′)
By Lemma 42.47.1 the left hand side is equal to

(E → Z)∗ ◦ c′
i(Q|E) ◦ cj(Q′|W∞) ◦ C

Since c′
i(Q) = (E → Z)∗ ◦ c′

i(Q|E) ◦ C the right hand side is equal to
(E → Z)∗ ◦ c′

i(Q|E) ◦ C ◦ (Z → X)∗ ◦ c′
j(Q′)

which is immediately seen to be equal to the above by Lemma 42.49.4.
Assume i ≥ p and j < p. Unwinding the products in this case we have to show

(E → Z)∗ ◦ c′
i(Q|E) ◦ cj(Q′|W∞) ◦ C = c′

i(Q) ◦ cj(Q′|X×{0})
Again using that c′

i(Q) = (E → Z)∗ ◦ c′
i(Q|E) ◦ C we see that it suffices to show

cj(Q′|W∞) ◦ C = C ◦ cj(Q′|X×{0}) which is part of Lemma 42.49.4.
Assume i < p and j ≥ p′. Unwinding the products in this case we have to show

(E → Z)∗ ◦ ci(Q|E) ◦ c′
j(Q′|E) ◦ C = ci(Q|Z×{0}) ◦ c′

j(Q′)
However, since c′

j(Q|E) and c′
j(Q′) are bivariant classes, they commute with capping

with Chern classes (Lemma 42.38.9). Hence it suffices to prove
(E → Z)∗ ◦ c′

j(Q′|E) ◦ ci(Q|W∞) ◦ C = c′
j(Q′) ◦ ci(Q|X×{0})

which we reduces us to the case discussed in the preceding paragraph. □

Lemma 42.49.8.0FAZ In Lemma 42.49.1 assume Q|T is zero. Assume we have another
perfect objectQ′ ∈ D(OW ) whose Chern classes are defined such that the restriction
Q′|T is zero. In this case the classes P ′

p(Q), P ′
p(Q′), P ′

p(Q ⊕ Q′) ∈ Ap(Z → X)
constructed in Lemma 42.49.1 satisfy P ′

p(Q⊕Q′) = P ′
p(Q) + P ′

p(Q′).

Proof. This follows immediately from the construction of these classes and Lemma
42.47.9. □
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42.50. Localized Chern classes

0FB0 Outline of the construction. Let F be a field, let X be a variety over F , let E
be a perfect object of D(OX), and let Z ⊂ X be a closed subscheme such that
E|X\Z = 0. Then we want to construct elements

cp(Z → X,E) ∈ Ap(Z → X)
We will do this by constructing a diagram

W

f

��

q
// X

P1
F

and a perfect object Q of D(OW ) such that
(1) f is flat, and f , q are proper; for t ∈ P1

F denote Wt the fibre of f ,
qt : Wt → X the restriction of q, and Qt = Q|Wt ,

(2) qt : Wt → X is an isomorphism and Qt = q∗
tE for t ∈ A1

F ,
(3) q∞ : W∞ → X is an isomorphism over X \ Z,
(4) if T ⊂W∞ is the closure of q−1

∞ (X \ Z) then Q∞|T is zero.
The idea is to think of this as a family {(Wt, Qt)} parametrized by t ∈ P1. For
t ̸= ∞ we see that cp(Qt) is just cp(E) on the chow groups of Qt = X. But for
t =∞ we see that cp(Q∞) sends classes on Q∞ to classes supported on E = q−1

∞ (Z)
since Q∞|T = 0. We think of E as the exceptional locus of q∞ : W∞ → X. Since
any α ∈ CH∗(X) gives rise to a “family” of cycles αt ∈ CH∗(Wt) it makes sense to
define cp(Z → X,E) ∩ α as the pushforward (E → Z)∗(cp(Q∞) ∩ α∞).
To make this work there are two main ingredients: (1) the construction of W and
Q is a sort of algebraic Macpherson’s graph construction; it is done in More on
Flatness, Section 38.44. (2) the construction of the actual class given W and Q is
done in Section 42.49 relying on Sections 42.48 and 42.47.
Situation 42.50.1.0GUJ Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally
of finite type over S. Let i : Z → X be a closed immersion. Let E ∈ D(OX) be an
object. Let p ≥ 0. Assume

(1) E is a perfect object of D(OX),
(2) the restriction E|X\Z is zero, resp. isomorphic to a finite locally freeOX\Z-

module of rank < p sitting in cohomological degree 0, and
(3) at least one6 of the following is true: (a) X is quasi-compact, (b) X has

quasi-compact irreducible components, (c) there exists a locally bounded
complex of finite locally free OX -modules representing E, or (d) there ex-
ists a morphism X → X ′ of schemes locally of finite type over S such that
E is the pullback of a perfect object on X ′ and the irreducible components
of X ′ are quasi-compact.

Lemma 42.50.2.0FB2 In Situation 42.50.1 there exists a canonical bivariant class
Pp(Z → X,E) ∈ Ap(Z → X), resp. cp(Z → X,E) ∈ Ap(Z → X)

with the property that
(42.50.2.1)0FB1 i∗ ◦ Pp(Z → X,E) = Pp(E), resp. i∗ ◦ cp(Z → X,E) = cp(E)

6Please ignore this technical condition on a first reading; see discussion in Remark 42.50.5.
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as bivariant classes on X (with ◦ as in Lemma 42.33.4).

Proof. The construction of these bivariant classes is as follows. Let
b : W −→ P1

X and T −→W∞ and Q

be the blowing up, the perfect object Q in D(OW ), and the closed immersion
constructed in More on Flatness, Section 38.44 and Lemma 38.44.1. Let T ′ ⊂ T be
the open and closed subscheme such that Q|T ′ is zero, resp. isomorphic to a finite
locally free OT ′ -module of rank < p sitting in cohomological degree 0. By condition
(2) of Situation 42.50.1 the morphisms

T ′ → T →W∞ → X

are all isomorphisms of schemes over the open subscheme X \ Z of X. Below
we check the chern classes of Q are defined. Recalling that Q|X×{0} ∼= E by
construction, we conclude that the bivariant class constructed in Lemma 42.49.1
using W, b,Q, T ′ gives us classes

Pp(Z → X,E) = P ′
p(Q) ∈ Ap(Z → X)

and
cp(Z → X,E) = c′

p(Q) ∈ Ap(Z → X)
satisfying (42.50.2.1).
In this paragraph we prove that the chern classes of Q are defined (Definition
42.46.3); we suggest the reader skip this. If assumption (3)(a) or (3)(b) of Situation
42.50.1 holds, i.e., if X has quasi-compact irreducible components, then the same
is true for W (because W → X is proper). Hence we conclude that the chern
classes of any perfect object of D(OW ) are defined by Lemma 42.46.4. If (3)(c)
hold, i.e., if E can be represented by a locally bounded complex of finite locally
free modules, then the object Q can be represented by a locally bounded complex
of finite locally free OW -modules by part (5) of More on Flatness, Lemma 38.44.1.
Hence the chern classes of Q are defined. Finally, assume (3)(d) holds, i.e., assume
we have a morphism X → X ′ of schemes locally of finite type over S such that
E is the pullback of a perfect object E′ on X ′ and the irreducible components of
X ′ are quasi-compact. Let b′ : W ′ → P1

X′ and Q′ ∈ D(OW ′) be the morphism
and perfect object constructed as in More on Flatness, Section 38.44 starting with
the triple (P1

X′ , (P1
X′)∞, L(p′)∗E′). By the discussion above we see that the chern

classes of Q′ are defined. Since b and b′ were constructed via an application of More
on Flatness, Lemma 38.43.6 it follows from More on Flatness, Lemma 38.43.8 that
there exists a morphism W →W ′ such that Q = L(W →W ′)∗Q′. Then it follows
from Lemma 42.46.4 that the chern classes of Q are defined. □

Definition 42.50.3.0FB5 With (S, δ), X, E ∈ D(OX), and i : Z → X as in Situation
42.50.1.

(1) If the restriction E|X\Z is zero, then for all p ≥ 0 we define
Pp(Z → X,E) ∈ Ap(Z → X)

by the construction in Lemma 42.50.2 and we define the localized Chern
character by the formula

ch(Z → X,E) =
∑

p=0,1,2,...

Pp(Z → X,E)
p! in

∏
p≥0

Ap(Z → X)⊗Q
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(2) If the restriction E|X\Z is isomorphic to a finite locally free OX\Z-module
of rank < p sitting in cohomological degree 0, then we define the localized
pth Chern class cp(Z → X,E) by the construction in Lemma 42.50.2.

In the situation of the definition assume E|X\Z is zero. Then, to be sure, we have
the equality

i∗ ◦ ch(Z → X,E) = ch(E)
in A∗(X)⊗Q because we have shown the equality (42.50.2.1) above.

Here is an important sanity check.

Lemma 42.50.4.0FB3 In Situation 42.50.1 let f : X ′ → X be a morphism of schemes
which is locally of finite type. Denote E′ = f∗E and Z ′ = f−1(Z). Then the
bivariant class of Definition 42.50.3

Pp(Z ′ → X ′, E′) ∈ Ap(Z ′ → X ′), resp. cp(Z ′ → X ′, E′) ∈ Ap(Z ′ → X ′)

constructed as in Lemma 42.50.2 using X ′, Z ′, E′ is the restriction (Remark 42.33.5)
of the bivariant class Pp(Z → X,E) ∈ Ap(Z → X), resp. cp(Z → X,E) ∈ Ap(Z →
X).

Proof. Denote p : P1
X → X and p′ : P1

X′ → X ′ the structure morphisms. Recall
that b : W → P1

X and b′ : W ′ → P1
X′ are the morphism constructed from the

triples (P1
X , (P1

X)∞, p∗E) and (P1
X′ , (P1

X′)∞, (p′)∗E′) in More on Flatness, Lemma
38.43.6. Furthermore Q = LηI∞p

∗E and Q = LηI′
∞

(p′)∗E′ where I∞ ⊂ OW is the
ideal sheaf of W∞ and I ′

∞ ⊂ OW ′ is the ideal sheaf of W ′
∞. Next, h : P1

X′ → P1
X

is a morphism of schemes such that the pullback of the effective Cartier divisor
(P1

X)∞ is the effective Cartier divisor (P1
X′)∞ and such that h∗p∗E = (p′)∗E′. By

More on Flatness, Lemma 38.43.8 we obtain a commutative diagram

W ′

b′
%%

g
// P1

X′ ×P1
X
W

r

��

q
// W

b

��
P1
X′ // P1

X

such that W ′ is the “strict transform” of P1
X′ with respect to b and such that Q′ =

(q ◦ g)∗Q. Now recall that Pp(Z → X,E) = P ′
p(Q), resp. cp(Z → X,E) = c′

p(Q)
where P ′

p(Q), resp. c′
p(Q) are constructed in Lemma 42.49.1 using b,Q, T ′ where T ′

is a closed subscheme T ′ ⊂ W∞ with the following two properties: (a) T ′ contains
all points of W∞ lying over X \Z, and (b) Q|T ′ is zero, resp. isomorphic to a finite
locally free module of rank < p placed in degree 0. In the construction of Lemma
42.49.1 we chose a particular closed subscheme T ′ with properties (a) and (b) but
the precise choice of T ′ is immaterial, see Lemma 42.49.3.

Next, by Lemma 42.49.2 the restriction of the bivariant class Pp(Z → X,E) =
P ′
p(Q), resp. cp(Z → X,E) = cp(Q′) to X ′ corresponds to the class P ′

p(q∗Q), resp.
c′
p(q∗Q) constructed as in Lemma 42.49.1 using r : P1

X′×P1
X
W → P1

X′ , the complex
q∗Q, and the inverse image q−1(T ′).

Now by the second statement of Lemma 42.49.3 we have P ′
p(Q′) = P ′

p(q∗Q), resp.
c′
p(q∗Q) = c′

p(Q′). Since Pp(Z ′ → X ′, E′) = P ′
p(Q′), resp. cp(Z ′ → X ′, E′) = c′

p(Q′)
we conclude that the lemma is true. □
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Remark 42.50.5.0GUK In Situation 42.50.1 it would have been more natural to replace
assumption (3) with the assumption: “the chern classes of E are defined”. In fact,
combining Lemmas 42.50.2 and 42.50.4 with Lemma 42.35.6 it is easy to extend
the definition to this (slightly) more general case. If we ever need this we will do
so here.

Lemma 42.50.6.0FB4 In Situation 42.50.1 we have

Pp(Z → X,E) ∩ i∗α = Pp(E|Z) ∩ α, resp. cp(Z → X,E) ∩ i∗α = cp(E|Z) ∩ α

in CH∗(Z) for any α ∈ CH∗(Z).

Proof. We only prove the second equality and we omit the proof of the first. Since
cp(Z → X,E) is a bivariant class and since the base change of Z → X by Z → X
is id : Z → Z we have cp(Z → X,E)∩ i∗α = cp(Z → X,E)∩α. By Lemma 42.50.4
the restriction of cp(Z → X,E) to Z (!) is the localized Chern class for id : Z → Z
and E|Z . Thus the result follows from (42.50.2.1) with X = Z. □

Lemma 42.50.7.0FB6 In Situation 42.50.1 if α ∈ CHk(X) has support disjoint from Z,
then Pp(Z → X,E) ∩ α = 0, resp. cp(Z → X,E) ∩ α = 0.

Proof. This is immediate from the construction of the localized Chern classes. It
also follows from the fact that we can compute cp(Z → X,E)∩α by first restricting
cp(Z → X,E) to the support of α, and then using Lemma 42.50.4 to see that this
restriction is zero. □

Lemma 42.50.8.0FB7 In Situation 42.50.1 assume Z ⊂ Z ′ ⊂ X where Z ′ is a closed
subscheme of X. Then Pp(Z ′ → X,E) = (Z → Z ′)∗ ◦ Pp(Z → X,E), resp.
cp(Z ′ → X,E) = (Z → Z ′)∗ ◦ cp(Z → X,E) (with ◦ as in Lemma 42.33.4).

Proof. The construction of Pp(Z ′ → X,E), resp. cp(Z ′ → X,E) in Lemma 42.50.2
uses the exact same morphism b : W → P1

X and perfect object Q of D(OW ). Then
we can use Lemma 42.47.5 to conclude. Some details omitted. □

Lemma 42.50.9.0FB8 In Lemma 42.47.1 say E2 is the restriction of a perfect E ∈ D(OX)
whose restriction to X1 is zero, resp. isomorphic to a finite locally free OX1 -module
of rank < p sitting in cohomological degree 0. Then the class P ′

p(E2), resp. c′
p(E2)

of Lemma 42.47.1 agrees with Pp(X2 → X,E), resp. cp(X2 → X,E) of Definition
42.50.3 provided E satisfies assumption (3) of Situation 42.50.1.

Proof. The assumptions on E imply that there is an open U ⊂ X containing X1
such that E|U is zero, resp. isomorphic to a finite locally free OU -module of rank
< p. See More on Algebra, Lemma 15.75.6. Let Z ⊂ X be the complement
of U in X endowed with the reduced induced closed subscheme structure. Then
Pp(X2 → X,E) = (Z → X2)∗ ◦ Pp(Z → X,E), resp. cp(X2 → X,E) = (Z →
X2)∗ ◦ cp(Z → X,E) by Lemma 42.50.8. Now we can prove that Pp(X2 → X,E),
resp. cp(X2 → X,E) satisfies the characterization of P ′

p(E2), resp. c′
p(E2) given in

Lemma 42.47.1. Namely, by the relation Pp(X2 → X,E) = (Z → X2)∗ ◦ Pp(Z →
X,E), resp. cp(X2 → X,E) = (Z → X2)∗ ◦ cp(Z → X,E) just proven and the fact
that X1 ∩Z = ∅, the composition Pp(X2 → X,E) ◦ i1,∗, resp. cp(X2 → X,E) ◦ i1,∗
is zero by Lemma 42.50.7. On the other hand, Pp(X2 → X,E) ◦ i2,∗ = Pp(E2),
resp. cp(X2 → X,E) ◦ i2,∗ = cp(E2) by Lemma 42.50.6. □
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42.51. Two technical lemmas

0FE6 In this section we develop some additional tools to allow us to work more comfort-
ably with localized Chern classes. The following lemma is a more precise version of
something we’ve already encountered in the proofs of Lemmas 42.49.6 and 42.49.7.

Lemma 42.51.1.0FE7 Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let b : W −→ P1

X be a proper morphism of schemes. Let n ≥ 1.
For i = 1, . . . , n let Zi ⊂ X be a closed subscheme, let Qi ∈ D(OW ) be a perfect
object, let pi ≥ 0 be an integer, and let Ti ⊂ W∞, i = 1, . . . , n be closed. Denote
Wi = b−1(P1

Zi
). Assume

(1) for i = 1, . . . , n the assumption of Lemma 42.49.1 hold for b, Zi, Qi, Ti, pi,
(2) Qi|W\Wi

is zero, resp. isomorphic to a finite locally free module of rank
< pi placed in cohomological degree 0,

(3) Qi on W satisfies assumption (3) of Situation 42.50.1.
Then P ′

pn(Qn) ◦ . . . ◦ P ′
p1

(Q1) is equal to

(Wn,∞ ∩ . . . ∩W1,∞ → Zn ∩ . . . ∩ Z1)∗ ◦ P ′
pn(Qn|Wn,∞) ◦ . . . ◦ P ′

p1
(Q1|W1,∞) ◦ C

in Apn+...+p1(Zn ∩ . . . ∩ Z1 → X), resp. c′
pn(Qn) ◦ . . . ◦ c′

p1
(Q1) is equal to

(Wn,∞ ∩ . . . ∩W1,∞ → Zn ∩ . . . ∩ Z1)∗ ◦ c′
pn(Qn|Wn,∞) ◦ . . . ◦ c′

p1
(Q1|W1,∞) ◦ C

in Apn+...+p1(Zn ∩ . . . ∩ Z1 → X).

Proof. Let us prove the statement on Chern classes by induction on n; the statement
on Pp(−) is proved in the exact same manner. The case n = 1 is the construction
of c′

p1
(Q1) because W1,∞ is the inverse image of Z1 in W∞. For n > 1 we have by

induction that c′
pn(Qn) ◦ . . . ◦ c′

p1
(Q1) is equal to

c′
pn(Qn)◦(Wn−1,∞∩. . .∩W1,∞ → Zn−1∩. . .∩Z1)∗◦c′

pn−1
(Qn−1|Wn−1,∞)◦. . .◦c′

p1
(Q1|W1,∞)◦C

By Lemma 42.49.2 the restriction of c′
pn(Qn) to Zn−1∩ . . .∩Z1 is computed by the

closed subset Zn ∩ . . .∩Z1, the morphism b′ : Wn−1 ∩ . . .∩W1 → P1
Zn−1∩...∩Z1

and
the restriction of Qn to Wn−1 ∩ . . .∩W1. Observe that (b′)−1(Zn) = Wn ∩ . . .∩W1
and that (Wn∩ . . .∩W1)∞ = Wn,∞∩ . . .∩W1,∞. Denote Cn−1 ∈ A0(Wn−1,∞∩ . . .∩
W1,∞ → Zn−1 ∩ . . . ∩ Z1) the class of Lemma 42.48.1. We conclude the restriction
of c′

pn(Qn) to Zn−1 ∩ . . . ∩ Z1 is

(Wn,∞ ∩ . . . ∩W1,∞ → Zn ∩ . . . ∩ Z1)∗ ◦ c′
pn(Qn|(Wn∩...∩W1)∞) ◦ Cn−1

= (Wn,∞ ∩ . . . ∩W1,∞ → Zn ∩ . . . ∩ Z1)∗ ◦ c′
pn(Qn|Wn,∞) ◦ Cn−1

where the equality follows from Lemma 42.47.3 (we omit writing the restriction on
the right). Hence the above becomes

(Wn,∞ ∩ . . . ∩W1,∞ → Zn ∩ . . . ∩ Z1)∗ ◦ c′
pn(Qn|Wn,∞)◦

Cn−1 ◦ (Wn−1,∞ ∩ . . . ∩W1,∞ → Zn−1 ∩ . . . ∩ Z1)∗

◦c′
pn−1

(Qn−1|Wn−1,∞) ◦ . . . ◦ c′
p1

(Q1|W1,∞) ◦ C

By Lemma 42.48.4 we know that the composition Cn−1 ◦ (Wn−1,∞ ∩ . . .∩W1,∞ →
Zn−1 ∩ . . . ∩ Z1)∗ is the identity on elements in the image of the gysin map

(Wn−1,∞ ∩ . . . ∩W1,∞ →Wn−1 ∩ . . . ∩W1)∗
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Thus it suffices to show that any element in the image of c′
pn−1

(Qn−1|Wn−1,∞)◦ . . .◦
c′
p1

(Q1|W1,∞) ◦ C is in the image of the gysin map. We may write
c′
pi(Qi|Wi,∞) = restriction of cpi(Wi →W,Qi) to Wi,∞

by Lemma 42.50.9 and assumptions (2) and (3) on Qi in the statement of the
lemma. Thus, if β ∈ CHk+1(W ) restricts to the flat pullback of α on b−1(A1

X),
then
c′
pn−1

(Qn−1|Wn−1,∞) ∩ . . . ∩ c′
p1

(Q1|W1,∞) ∩ C ∩ α
= c′

pn−1
(Qn−1|Wn−1,∞) ∩ . . . ∩ c′

p1
(Q1|W1,∞) ∩ i∗∞β

= cpn−1(Wn−1 →W,Qn−1) ∩ . . . ∩ cpn−1(W1 →W,Q1) ∩ i∗∞β
= (Wn−1,∞ ∩ . . . ∩W1,∞ →Wn−1 ∩ . . . ∩W1)∗ (cpn−1(Wn−1 →W,Qn−1) ∩ . . . ∩ cp1(W1 →W,Q1) ∩ β

)
as desired. Namely, for the last equality we use that cpi(Wi →W,Qi) is a bivariant
class and hence commutes with i∗∞ by definition. □

The following lemma gives us a tremendous amount of flexibility if we want to
compute the localized Chern classes of a complex.

Lemma 42.51.2.0FE8 Assume (S, δ), X, Z, b : W → P1
X , Q, T, p satisfy the assumptions

of Lemma 42.49.1. Let F ∈ D(OX) be a perfect object such that
(1) the restriction of Q to b−1(A1

X) is isomorphic to the pullback of F ,
(2) F |X\Z is zero, resp. isomorphic to a finite locally free OX\Z-module of

rank < p sitting in cohomological degree 0, and
(3) Q on W and F on X satisfy assumption (3) of Situation 42.50.1.

Then the class P ′
p(Q), resp. c′

p(Q) in Ap(Z → X) constructed in Lemma 42.49.1 is
equal to Pp(Z → X,F ), resp. cp(Z → X,F ) from Definition 42.50.3.

Proof. The assumptions are preserved by base change with a morphism X ′ → X
locally of finite type. Hence it suffices to show that Pp(Z → X,F )∩α = P ′

p(Q)∩α,
resp. cp(Z → X,F ) ∩ α = c′

p(Q) ∩ α for any α ∈ CHk(X). Choose β ∈ CHk+1(W )
whose restriction to b−1(A1

X) is equal to the flat pullback of α as in the construction
of C in Lemma 42.48.1. Denote W ′ = b−1(Z) and denote E = W ′

∞ ⊂ W∞ the
inverse image of Z by W∞ → X. The lemma follows from the following sequence
of equalities (the case of Pp is similar)

c′
p(Q) ∩ α = (E → Z)∗(c′

p(Q|E) ∩ i∗∞β)
= (E → Z)∗(cp(E →W∞, Q|W∞) ∩ i∗∞β)
= (W ′

∞ → Z)∗(cp(W ′ →W,Q) ∩ i∗∞β)
= (W ′

∞ → Z)∗((i′∞)∗(cp(W ′ →W,Q) ∩ β))
= (W ′

∞ → Z)∗((i′∞)∗(cp(Z ′ → X,F ) ∩ β))
= (W ′

0 → Z)∗((i′0)∗(cp(Z ′ → X,F ) ∩ β))
= (W ′

0 → Z)∗(cp(Z ′ → X,F ) ∩ i∗0β))
= cp(Z → X,F ) ∩ α

The first equality is the construction of c′
p(Q) in Lemma 42.49.1. The second is

Lemma 42.50.9. The base change of W ′ → W by W∞ → W is the morphism
E = W ′

∞ → W∞. Hence the third equality holds by Lemma 42.50.4. The fourth
equality, in which i′∞ : W ′

∞ →W ′ is the inclusion morphism, follows from the fact

https://stacks.math.columbia.edu/tag/0FE8


42.52. PROPERTIES OF LOCALIZED CHERN CLASSES 3753

that cp(W ′ →W,Q) is a bivariant class. For the fith equality, observe that cp(W ′ →
W,Q) and cp(Z ′ → X,F ) restrict to the same bivariant class in Ap((b′)−1 →
b−1(A1

X)) by assumption (1) of the lemma which says that Q and F restrict to the
same object of D(Ob−1(A1

X
)); use Lemma 42.50.4. Since (i′∞)∗ annihilates cycles

supported on W ′
∞ (see Remark 42.29.6) we conclude the fifth equality is true.

The sixth equality holds because W ′
∞ and W ′

0 are the pullbacks of the rationally
equivalent effective Cartier divisors D0, D∞ in P1

Z and hence i∗∞β and i∗0β map to
the same cycle class on W ′; namely, both represent the class c1(OP1

Z
(1))∩ cp(Z →

X,F) ∩ β by Lemma 42.29.4. The seventh equality holds because cp(Z → X,F ) is
a bivariant class. By construction W ′

0 = Z and i∗0β = α which explains why the
final equality holds. □

42.52. Properties of localized Chern classes

0FB9 The main results in this section are additivity and multiplicativity for localized
Chern classes.

Lemma 42.52.1.0FBA In Situation 42.50.1 assume E|X\Z is zero. Then
P1(Z → X,E) = c1(Z → X,E),
P2(Z → X,E) = c1(Z → X,E)2 − 2c2(Z → X,E),
P3(Z → X,E) = c1(Z → X,E)3 − 3c1(Z → X,E)c2(Z → X,E) + 3c3(Z → X,E),

and so on where the products are taken in the algebra A(1)(Z → X) of Remark
42.34.7.

Proof. The statement makes sense because the zero sheaf has rank < 1 and hence
the classes cp(Z → X,E) are defined for all p ≥ 1. The result itself follows imme-
diately from the more general Lemma 42.49.6 as the localized Chern classes where
defined using the procedure of Lemma 42.49.1 in Section 42.50. □

Lemma 42.52.2.0FBB In Situation 42.50.1 let Y → X be locally of finite type and
c ∈ A∗(Y → X). Then

Pp(Z → X,E) ◦ c = c ◦ Pp(Z → X,E),
respectively

cp(Z → X,E) ◦ c = c ◦ cp(Z → X,E)
in A∗(Y ×X Z → X).

Proof. This follows from Lemma 42.49.5. More precisely, let
b : W → P1

X and Q and T ′ ⊂ T ⊂W∞

be as in the proof of Lemma 42.50.2. By definition cp(Z → X,E) = c′
p(Q) as

bivariant operations where the right hand side is the bivariant class constructed in
Lemma 42.49.1 using W, b,Q, T ′. By Lemma 42.49.5 we have P ′

p(Q)◦c = c◦P ′
p(Q),

resp. c′
p(Q) ◦ c = c ◦ c′

p(Q) in A∗(Y ×X Z → X) and we conclude. □

Remark 42.52.3.0FBC In Situation 42.50.1 it is convenient to define

c(p)(Z → X,E) = 1+c1(E)+ . . .+cp−1(E)+cp(Z → X,E)+cp+1(Z → X,E)+ . . .

as an element of the algebra A(p)(Z → X) considered in Remark 42.34.7.
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Lemma 42.52.4.0FBD Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let Z → X be a closed immersion. Let

E1 → E2 → E3 → E1[1]
be a distinguished triangle of perfect objects in D(OX). Assume

(1) the restrictions E1|X\Z and E3|X\Z are isomorphic to finite locally free
OX\Z-modules of rank < p1 and < p3 placed in degree 0, and

(2) at least one of the following is true: (a) X is quasi-compact, (b) X has
quasi-compact irreducible components, (c) E3 → E1[1] can be represented
by a map of locally bounded complexes of finite locally free OX -modules,
or (d) there exists an envelope f : Y → X such that Lf∗E3 → Lf∗E1[1]
can be represented by a map of locally bounded complexes of finite locally
free OY -modules.

With notation as in Remark 42.52.3 we have
c(p1+p3)(Z → X,E2) = c(p1)(Z → X,E1)c(p3)(Z → X,E3)

in A(p1+p3)(Z → X).

Proof. Observe that the assumptions imply that E2|X\Z is zero, resp. isomorphic
to a finite locally free OX\Z-module of rank < p1 + p3. Thus the statement makes
sense.
Let f : Y → X be an envelope. Expanding the left and right hand sides of the
formula in the statement of the lemma we see that we have to prove some equalities
of classes in A∗(X) and in A∗(Z → X). By the uniqueness in Lemma 42.35.6
it suffices to prove the corresponding relations in A∗(Y ) and A∗(Z → Y ). Since
moreover the construction of the classes involved is compatible with base change
(Lemma 42.50.4) we may replace X by Y and the distinguished triangle by its
pullback.
In the proof of Lemma 42.46.7 we have seen that conditions (2)(a), (2)(b), and (2)(c)
imply condition (2)(d). Combined with the discussion in the previous paragraph
we reduce to the case discussed in the next paragraph.
Let φ• : E•

3 [−1] → E•
1 be a map of locally bounded complexes of finite locally free

OX -modules representing the map E3[−1]→ E1 in the derived category. Consider
the scheme X ′ = A1×X with projection g : X ′ → X. Let Z ′ = g−1(Z) = A1×Z.
Denote t the coordinate on A1. Consider the cone C• of the map of complexes

tg∗φ• : g∗E•
3 [−1] −→ g∗E•

1

over X ′. We obtain a distinguished triangle
g∗E•

1 → C• → g∗E•
3 → g∗E•

1 [1]
where the first three terms form a termwise split short exact sequence of complexes.
Clearly C• is a bounded complex of finite locally free OX′ -modules whose restriction
to X ′ \ Z ′ is isomorphic to a finite locally free OX′\Z′ -module of rank < p1 + p3
placed in degree 0. Thus we have the localized Chern classes

cp(Z ′ → X ′, C•) ∈ Ap(Z ′ → X ′)
for p ≥ p1 + p3. For any α ∈ CHk(X) consider

cp(Z ′ → X ′, C•) ∩ g∗α ∈ CHk+1−p(A1 ×X)

https://stacks.math.columbia.edu/tag/0FBD
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If we restrict to t = 0, then the map tg∗φ• restricts to zero and C•|t=0 is the direct
sum of E•

1 and E•
3 . By compatibility of localized Chern classes with base change

(Lemma 42.50.4) we conclude that

i∗0 ◦ c(p1+p3)(Z ′ → X ′, C•) ◦ g∗ = c(p1+p2)(Z → X,E1 ⊕ E3)

in A(p1+p3)(Z → X). On the other hand, if we restrict to t = 1, then the map
tg∗φ• restricts to φ and C•|t=1 is a bounded complex of finite locally free modules
representing E2. We conclude that

i∗1 ◦ c(p1+p3)(Z ′ → X ′, C•) ◦ g∗ = c(p1+p2)(Z → X,E2)

in A(p1+p3)(Z → X). Since i∗0 = i∗1 by definition of rational equivalence (more
precisely this follows from the formulae in Lemma 42.32.4) we conclude that

c(p1+p2)(Z → X,E2) = c(p1+p2)(Z → X,E1 ⊕ E3)

This reduces us to the case discussed in the next paragraph.

Assume E2 = E1 ⊕ E3 and the triples (X,Z,Ei) are as in Situation 42.50.1. For
i = 1, 3 let

bi : Wi → P1
X and Qi and T ′

i ⊂ Ti ⊂Wi,∞

be as in the proof of Lemma 42.50.2. By definition

cp(Z → X,Ei) = c′
p(Qi)

where the right hand side is the bivariant class constructed in Lemma 42.49.1 using
Wi, bi, Qi, T

′
i . Set W = W1 ×b1,P1

X
,b2 W2 and consider the cartesian diagram

W

g1

��

b

!!

g3
// W3

b3
��

W1
b1 // P1

X

Of course b−1(A1) maps isomorphically to A1
X . Observe that T ′ = g−1

1 (T ′
1) ∩

g−1
2 (T ′

2) still contains all the points of W∞ lying over X \ Z. By Lemma 42.49.3
we may use W , b, g∗

iQi, and T ′ to construct cp(Z → X,Ei) for i = 1, 3. Also, by
the stronger independence given in Lemma 42.51.2 we may use W , b, g∗

1Q1⊕ g∗
3Q3,

and T ′ to compute the classes cp(Z → X,E2). Thus the desired equality follows
from Lemma 42.49.7. □

Lemma 42.52.5.0FBE Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let Z → X be a closed immersion. Let

E1 → E2 → E3 → E1[1]

be a distinguished triangle of perfect objects in D(OX). Assume
(1) the restrictions E1|X\Z and E3|X\Z are zero, and
(2) at least one of the following is true: (a) X is quasi-compact, (b) X has

quasi-compact irreducible components, (c) E3 → E1[1] can be represented
by a map of locally bounded complexes of finite locally free OX -modules,
or (d) there exists an envelope f : Y → X such that Lf∗E3 → Lf∗E1[1]
can be represented by a map of locally bounded complexes of finite locally
free OY -modules.

https://stacks.math.columbia.edu/tag/0FBE
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Then we have
Pp(Z → X,E2) = Pp(Z → X,E1) + Pp(Z → X,E3)

for all p ∈ Z and consequently ch(Z → X,E2) = ch(Z → X,E1) + ch(Z → X,E3).

Proof. The proof is exactly the same as the proof of Lemma 42.52.4 except it
uses Lemma 42.49.8 at the very end. For p > 0 we can deduce this lemma from
Lemma 42.52.4 with p1 = p3 = 1 and the relationship between Pp(Z → X,E) and
cp(Z → X,E) given in Lemma 42.52.1. The case p = 0 can be shown directly (it is
only interesting if X has a connected component entirely contained in Z). □

Lemma 42.52.6.0FBF In Situation 42.7.1 let X be locally of finite type over S. Let
Zi ⊂ X, i = 1, 2 be closed subschemes. Let Fi, i = 1, 2 be perfect objects of
D(OX). Assume for i = 1, 2 that Fi|X\Zi is zero7 and that Fi on X satisfies
assumption (3) of Situation 42.50.1. Denote ri = P0(Zi → X,Fi) ∈ A0(Zi → X).
Then we have

c1(Z1 ∩ Z2 → X,F1 ⊗L
OX

F2) = r1c1(Z2 → X,F2) + r2c1(Z1 → X,F1)

in A1(Z1 ∩ Z2 → X) and
c2(Z1 ∩ Z2 → X,F1 ⊗L

OX
F2) = r1c2(Z2 → X,F2) + r2c2(Z1 → X,F1)+(

r1

2

)
c1(Z2 → X,F2)2+

(r1r2 − 1)c1(Z2 → X,F2)c1(Z1 → X,F1)+(
r2

2

)
c1(Z1 → X,F1)2

in A2(Z1 ∩ Z2 → X) and so on for higher Chern classes. Similarly, we have
ch(Z1 ∩ Z2 → X,F1 ⊗L

OX
F2) = ch(Z1 → X,F1)ch(Z2 → X,F2)

in
∏
p≥0 A

p(Z1 ∩ Z2 → X)⊗Q. More precisely, we have

Pp(Z1 ∩Z2 → X,F1⊗L
OX

F2) =
∑

p1+p2=p

(
p

p1

)
Pp1(Z1 → X,F1)Pp2(Z2 → X,F2)

in Ap(Z1 ∩ Z2 → X).

Proof. Choose proper morphisms bi : Wi → P1
X and Qi ∈ D(OWi

) as well as closed
subschemes Ti ⊂ Wi,∞ as in the construction of the localized Chern classes for Fi
or more generally as in Lemma 42.51.2. Choose a commutative diagram

W

g1

��

b

!!

g2
// W2

b2
��

W1
b1 // P1

X

where all morphisms are proper and isomorphisms over A1
X . For example, we can

take W to be the closure of the graph of the isomorphism between b−1
1 (A1

X) and
b−1

2 (A1
X). By Lemma 42.51.2 we may work with W , b = bi ◦gi, Lg∗

iQi, and g−1
i (Ti)

7Presumably there is a variant of this lemma where we only assume Fi|X\Zi is isomorphic
to a finite locally free OX\Zi -module of rank < pi.

https://stacks.math.columbia.edu/tag/0FBF
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to construct the localized Chern classes cp(Zi → X,Fi). Thus we reduce to the
situation described in the next paragraph.
Assume we have

(1) a proper morphism b : W → P1
X which is an isomorphism over A1

X ,
(2) Ei ⊂W∞ is the inverse image of Zi,
(3) perfect objects Qi ∈ D(OW ) whose Chern classes are defined, such that

(a) the restriction of Qi to b−1(A1
X) is the pullback of Fi, and

(b) there exists a closed subscheme Ti ⊂ W∞ containing all points of
W∞ lying over X \ Zi such that Qi|Ti is zero.

By Lemma 42.51.2 we have
cp(Zi → X,Fi) = c′

p(Qi) = (Ei → Zi)∗ ◦ c′
p(Qi|Ei) ◦ C

and
Pp(Zi → X,Fi) = P ′

p(Qi) = (Ei → Zi)∗ ◦ P ′
p(Qi|Ei) ◦ C

for i = 1, 2. Next, we observe that Q = Q1 ⊗L
OW

Q2 satisfies (3)(a) and (3)(b) for
F1 ⊗L

OX
F2 and T1 ∪ T2. Hence we see that

cp(Z1 ∩ Z2 → X,F1 ⊗L
OX

F2) = (E1 ∩ E2 → Z1 ∩ Z2)∗ ◦ c′
p(Q|E1∩E2) ◦ C

and
Pp(Z1 ∩ Z2 → X,F1 ⊗L

OX
F2) = (E1 ∩ E2 → Z1 ∩ Z2)∗ ◦ P ′

p(Q|E1∩E2) ◦ C
by the same lemma. By Lemma 42.47.11 the classes c′

p(Q|E1∩E2) and P ′
p(Q|E1∩E2)

can be expanded in the correct manner in terms of the classes c′
p(Qi|Ei) and

P ′
p(Qi|Ei). Then finally Lemma 42.51.1 tells us that polynomials in c′

p(Qi|Ei) and
P ′
p(Qi|Ei) agree with the corresponding polynomials in c′

p(Qi) and P ′
p(Qi) as de-

sired. □

42.53. Blowing up at infinity

0FBG Let X be a scheme. Let Z ⊂ X be a closed subscheme cut out by a finite type
quasi-coherent sheaf of ideals. Denote X ′ → X the blowing up with center Z. Let
b : W → P1

X be the blowing up with center ∞(Z). Denote E ⊂W the exceptional
divisor. There is a commutative diagram

X ′ //

��

W

b
��

X
∞ // P1

X

whose horizontal arrows are closed immersion (Divisors, Lemma 31.33.2). Denote
E ⊂ W the exceptional divisor and W∞ ⊂ W the inverse image of (P1

X)∞. Then
the following are true

(1) b is an isomorphism over A1
X ∪P1

X\Z ,
(2) X ′ is an effective Cartier divisor on W ,
(3) X ′ ∩ E is the exceptional divisor of X ′ → X,
(4) W∞ = X ′ + E as effective Cartier divisors on W ,
(5) E = Proj

Z
(CZ/X,∗[S]) where S is a variable placed in degree 1,

(6) X ′ ∩ E = Proj
Z

(CZ/X,∗),
(7)0FBH E \X ′ = E \ (X ′ ∩ E) = Spec

Z
(CZ/X,∗) = CZX,
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(8)0FE9 there is a closed immersion P1
Z → W whose composition with b is the

inclusion morphism P1
Z → P1

X and whose base change by ∞ is the com-
position Z → CZX → E →W∞ where the first arrow is the vertex of the
cone.

We recall that CZ/X,∗ is the conormal algebra of Z in X, see Divisors, Definition
31.19.1 and that CZX is the normal cone of Z in X, see Divisors, Definition 31.19.5.
We now give the proof of the numbered assertions above. We strongly urge the
reader to work through some examples instead of reading the proofs.
Part (1) follows from the corresponding assertion of Divisors, Lemma 31.32.4. Ob-
serve that E ⊂W is an effective Cartier divisor by the same lemma.
Observe that W∞ is an effective Cartier divisor by Divisors, Lemma 31.32.11. Since
E ⊂ W∞ we can write W∞ = D + E for some effective Cartier divisor D, see
Divisors, Lemma 31.13.8. We will see below that D = X ′ which will prove (2) and
(4).
Since X ′ is the strict transform of the closed immersion ∞ : X → P1

X (see above)
it follows that the exceptional divisor of X ′ → X is equal to the intersection X ′∩E
(for example because both are cut out by the pullback of the ideal sheaf of Z to
X ′). This proves (3).
The intersection of ∞(Z) with P1

Z is the effective Cartier divisor (P1
Z)∞ hence the

strict transform of P1
Z by the blowing up b maps isomorphically to P1

Z (see Divisors,
Lemmas 31.33.2 and 31.32.7). This gives us the morphism P1

Z →W mentioned in
(8). It is a closed immersion as b is separated, see Schemes, Lemma 26.21.11.
Suppose that Spec(A) ⊂ X is an affine open and that Z ∩ Spec(A) corresponds to
the finitely generated ideal I ⊂ A. An affine neighbourhood of ∞(Z ∩ Spec(A)) is
the affine space over A with coordinate s = T0/T1. Denote J = (I, s) ⊂ A[s] the
ideal generated by I and s. Let B = A[s] ⊕ J ⊕ J2 ⊕ . . . be the Rees algebra of
(A[s], J). Observe that

Jn = In ⊕ sIn−1 ⊕ s2In−2 . . .⊕ snA⊕ sn+1A⊕ . . .

as an A-submodule of A[s] for all n ≥ 0. Consider the open subscheme
Proj(B) = Proj(A[s]⊕ J ⊕ J2 ⊕ . . .) ⊂W

Finally, denote S the element s ∈ J viewed as a degree 1 element of B.
Since formation of Proj commutes with base change (Constructions, Lemma 27.11.6)
we see that

E = Proj(B ⊗A[s] A/I) = Proj((A/I ⊕ I/I2 ⊕ I2/I3 ⊕ . . .)[S])

The verification that B ⊗A[s] A/I =
⊕
Jn/Jn+1 is as given follows immediately

from our description of the powers Jn above. This proves (5) because the conormal
algebra of Z ∩ Spec(A) in Spec(A) corresponds to the graded A-algebra A/I ⊕
I/I2 ⊕ I2/I3 ⊕ . . . by Divisors, Lemma 31.19.2.

Recall that Proj(B) is covered by the affine opens D+(S) and D+(f (1)) for f ∈ I
which are the spectra of affine blowup algebras A[s][Js ] and A[s][Jf ], see Divisors,
Lemma 31.32.2 and Algebra, Definition 10.70.1. We will describe each of these
affine opens and this will finish the proof.
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The open D+(S), i.e., the spectrum of A[s][Js ]. It follows from the description of
the powers of J above that

A[s][Js ] =
∑
s−nIn[s] ⊂ A[s, s−1]

The element s is a nonzerodivisor in this ring, defines the exceptional divisor E as
well as W∞. Hence D ∩ D+(S) = ∅. Finally, the quotient of A[s][Js ] by s is the
conormal algebra

A/I ⊕ I/I2 ⊕ I2/I3 ⊕ . . .
This proves (7).
The open D+(f (1)), i.e., the spectrum of A[s][Jf ]. It follows from the description of
the powers of J above that

A[s][Jf ] = A[ If ][ sf ]
where s

f is a variable. The element f is a nonzerodivisor in this ring whose zero
scheme defines the exceptional divisor E. Since s defines W∞ and s = f · sf we
conclude that s

f defines the divisor D constructed above. Then we see that

D ∩D+(f (1)) = Spec(A[ If ])
which is the corresponding open of the blowup X ′ over Spec(A). Namely, the
surjective graded A[s]-algebra map B → A ⊕ I ⊕ I2 ⊕ . . . to the Rees algebra of
(A, I) corresponds to the closed immersion X ′ → W over Spec(A[s]). This proves
D = X ′ as desired.
Let us prove (6). Observe that the zero scheme of s

f in the previous paragraph is
the restriction of the zero scheme of S on the affine open D+(f (1)). Hence we see
that S = 0 defines X ′ ∩ E on E. Thus (6) follows from (5).
Finally, we have to prove the last part of (8). This is clear because the map P1

Z →W
is affine locally given by the surjection

B → B ⊗A[s] A/I = (A/I ⊕ I/I2 ⊕ I2/I3 ⊕ . . .)[S]→ A/I[S]
and the identification Proj(A/I[S]) = Spec(A/I). Some details omitted.

42.54. Higher codimension gysin homomorphisms

0FBI Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of finite type over
S. In this section we are going to consider triples

(Z → X,N , σ : N∨ → CZ/X)
consisting of a closed immersion Z → X and a locally free OZ-module N and a
surjection σ : N∨ → CZ/X from the dual of N to the conormal sheaf of Z in X, see
Morphisms, Section 29.31. We will say N is a virtual normal sheaf for Z in X.

Lemma 42.54.1.0FBJ Let (S, δ) be as in Situation 42.7.1. Let

Z ′ //

g

��

X ′

f

��
Z // X

be a cartesian diagram of schemes locally of finite type over S whose horizontal
arrows are closed immersions. If N is a virtual normal sheaf for Z in X, then
N ′ = g∗N is a virtual normal sheaf for Z ′ in X ′.

https://stacks.math.columbia.edu/tag/0FBJ
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Proof. This follows from the surjectivity of the map g∗CZ/X → CZ′/X′ proved in
Morphisms, Lemma 29.31.4. □

Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of finite type over S.
Let N be a virtual normal bundle for a closed immersion Z → X. In this situation
we set

p : N = Spec
Z

(Sym(N∨)) −→ Z

equal to the vector bundle over Z whose sections correspond to sections of N . In
this situation we have canonical closed immersions

CZX −→ NZX −→ N

The first closed immersion is Divisors, Equation (31.19.5.1) and the second closed
immersion corresponds to the surjection Sym(N∨) → Sym(CZ/X) induced by σ.
Let

b : W −→ P1
X

be the blowing up in ∞(Z) constructed in Section 42.53. By Lemma 42.48.1 we
have a canonical bivariant class in

C ∈ A0(W∞ → X)
Consider the open immersion j : CZX → W∞ of (7) and the closed immersion
i : CZX → N constructed above. By Lemma 42.36.3 for every α ∈ CHk(X) there
exists a unique β ∈ CH∗(Z) such that

i∗j
∗(C ∩ α) = p∗β

We set c(Z → X,N ) ∩ α = β.

Lemma 42.54.2.0FBK The construction above defines a bivariant class8

c(Z → X,N ) ∈ A∗(Z → X)∧

and moreover the construction is compatible with base change as in Lemma 42.54.1.
If N has constant rank r, then c(Z → X,N ) ∈ Ar(Z → X).

Proof. Since both i∗ ◦ j∗ ◦C and p∗ are bivariant classes (see Lemmas 42.33.2 and
42.33.4) we can use the equation

i∗ ◦ j∗ ◦ C = p∗ ◦ c(Z → X,N )
(suitably interpreted) to define c(Z → X,N ) as a bivariant class. This works
because p∗ is always bijective on chow groups by Lemma 42.36.3.
Let X ′ → X, Z ′ → X ′, and N ′ be as in Lemma 42.54.1. Write c = c(Z → X,N )
and c′ = c(Z ′ → X ′,N ′). The second statement of the lemma means that c′ is the
restriction of c as in Remark 42.33.5. Since we claim this is true for all X ′/X locally
of finite type, a formal argument shows that it suffices to check that c′ ∩α′ = c∩α′

for α′ ∈ CHk(X ′). To see this, note that we have a commutative diagram

CZ′X ′

��

// W ′
∞

��

// W ′

��

// P1
X′

��
CZX // W∞ // W // P1

X

8The notation A∗(Z → X)∧ is discussed in Remark 42.35.5. If X is quasi-compact, then
A∗(Z → X)∧ = A∗(Z → X).

https://stacks.math.columbia.edu/tag/0FBK
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which induces closed immersions:
W ′ →W ×P1

X
P1
X′ , W ′

∞ →W∞ ×X X ′, CZ′X ′ → CZX ×Z Z ′

To get c∩α′ we use the class C∩α′ defined using the morphism W×P1
X

P1
X′ → P1

X′

in Lemma 42.48.1. To get c′∩α′ on the other hand, we use the class C ′∩α′ defined
using the morphism W ′ → P1

X′ . By Lemma 42.48.3 the pushforward of C ′ ∩ α′ by
the closed immersion W ′

∞ → (W ×P1
X

P1
X′)∞, is equal to C ∩ α′. Hence the same

is true for the pullbacks to the opens
CZ′X ′ ⊂W ′

∞, CZX ×Z Z ′ ⊂ (W ×P1
X

P1
X′)∞

by Lemma 42.15.1. Since we have a commutative diagram

CZ′X ′

��

// N ′

CZX ×Z Z ′ // N ×Z Z ′

these classes pushforward to the same class on N ′ which proves that we obtain the
same element c ∩ α′ = c′ ∩ α′ in CH∗(Z ′). □

Lemma 42.54.3.0FBL Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of
finite type over S. Let N be a virtual normal sheaf for a closed subscheme Z of
X. Suppose that we have a short exact sequence 0 → N ′ → N → E → 0 of finite
locally free OZ-modules such that the given surjection σ : N∨ → CZ/X factors
through a map σ′ : (N ′)∨ → CZ/X . Then

c(Z → X,N ) = ctop(E) ◦ c(Z → X,N ′)
as bivariant classes.

Proof. Denote N ′ → N the closed immersion of vector bundles corresponding to
the surjection N∨ → (N ′)∨. Then we have closed immersions

CZX → N ′ → N

Thus the desired relationship between the bivariant classes follows immediately
from Lemma 42.44.2. □

Lemma 42.54.4.0FV7 Let (S, δ) be as in Situation 42.7.1. Consider a cartesian diagram

Z ′ //

g

��

X ′

f

��
Z // X

of schemes locally of finite type over S whose horizontal arrows are closed immer-
sions. Let N , resp. N ′ be a virtual normal sheaf for Z ⊂ X, resp. Z ′ → X ′. Assume
given a short exact sequence 0→ N ′ → g∗N → E → 0 of finite locally free modules
on Z ′ such that the diagram

g∗N∨ //

��

(N ′)∨

��
g∗CZ/X // CZ′/X′

https://stacks.math.columbia.edu/tag/0FBL
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commutes. Then we have
res(c(Z → X,N )) = ctop(E) ◦ c(Z ′ → X ′,N ′)

in A∗(Z ′ → X ′)∧.

Proof. By Lemma 42.54.2 we have res(c(Z → X,N )) = c(Z ′ → X ′, g∗N ) and the
equality follows from Lemma 42.54.3. □

Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of finite type over S.
Let N be a virtual normal sheaf for a closed subscheme Z of X. Let Y → X be a
morphism which is locally of finite type. Assume Z ×X Y → Y is a regular closed
immersion, see Divisors, Section 31.21. In this case the conormal sheaf CZ×XY/Y
is a finite locally free OZ×XY -module and we obtain a short exact sequence

0→ E∨ → N∨|Z×XY → CZ×XY/Y → 0
The quotient N|Y×XZ → E is called the excess normal sheaf of the situation.

Lemma 42.54.5.0FBM In the situation described just above assume dimδ(Y ) = n and
that CY×XZ/Z has constant rank r. Then

c(Z → X,N ) ∩ [Y ]n = ctop(E) ∩ [Z ×X Y ]n−r

in CH∗(Z ×X Y ).

Proof. The bivariant class ctop(E) ∈ A∗(Z ×X Y ) was defined in Remark 42.38.11.
By Lemma 42.54.2 we may replace X by Y . Thus we may assume Z → X is a
regular closed immersion of codimension r, we have dimδ(X) = n, and we have to
show that c(Z → X,N ) ∩ [X]n = ctop(E) ∩ [Z]n−r in CH∗(Z). By Lemma 42.54.3
we may even assume N∨ → CZ/X is an isomorphism. In other words, we have to
show c(Z → X, C∨

Z/X) ∩ [X]n = [Z]n−r in CH∗(Z).

Let us trace through the steps in the definition of c(Z → X, C∨
Z/X) ∩ [X]n. Let

b : W → P1
X be the blowing up of∞(Z). We first have to compute C ∩ [X]n where

C ∈ A0(W∞ → X) is the class of Lemma 42.48.1. To do this, note that [W ]n+1 is
a cycle on W whose restriction to A1

X is equal to the flat pullback of [X]n. Hence
C ∩ [X]n is equal to i∗∞[W ]n+1. Since W∞ is an effective Cartier divisor on W we
have i∗∞[W ]n+1 = [W∞]n, see Lemma 42.29.5. The restriction of this class to the
open CZX ⊂W∞ is of course just [CZX]n. Because Z ⊂ X is regularly embedded
we have

CZ/X,∗ = Sym(CZ/X)
as graded OZ-algebras, see Divisors, Lemma 31.21.5. Hence p : N = CZX → Z
is the structure morphism of the vector bundle associated to the finite locally free
module CZ/X of rank r. Then it is clear that p∗[Z]n−r = [CZX]n and the proof is
complete. □

Lemma 42.54.6.0FEA Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of
finite type over S. Let N be a virtual normal sheaf for a closed subscheme Z of
X. Let Y → X be a morphism which is locally of finite type. Given integers r, n
assume

(1) N is locally free of rank r,
(2) every irreducible component of Y has δ-dimension n,
(3) dimδ(Z ×X Y ) ≤ n− r, and
(4) for ξ ∈ Z ×X Y with δ(ξ) = n− r the local ring OY,ξ is Cohen-Macaulay.
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Then c(Z → X,N ) ∩ [Y ]n = [Z ×X Y ]n−r in CHn−r(Z ×X Y ).

Proof. The statement makes sense as Z ×X Y is a closed subscheme of Y . Because
N has rank r we know that c(Z → X,N ) ∩ [Y ]n is in CHn−r(Z ×X Y ). Since
dimδ(Z ∩ Y ) ≤ n − r the chow group CHn−r(Z ×X Y ) is freely generated by the
cycle classes of the irreducible components W ⊂ Z ×X Y of δ-dimension n− r. Let
ξ ∈W be the generic point. By assumption (2) we see that dim(OY,ξ) = r. On the
other hand, since N has rank r and since N∨ → CZ/X is surjective, we see that
the ideal sheaf of Z is locally cut out by r equations. Hence the quasi-coherent
ideal sheaf I ⊂ OY of Z ×X Y in Y is locally generated by r elements. Since OY,ξ
is Cohen-Macaulay of dimension r and since Iξ is an ideal of definition (as ξ is
a generic point of Z ×X Y ) it follows that Iξ is generated by a regular sequence
(Algebra, Lemma 10.104.2). By Divisors, Lemma 31.20.8 we see that I is generated
by a regular sequence over an open neighbourhood V ⊂ Y of ξ. By our description
of CHn−r(Z ×X Y ) it suffices to show that c(Z → X,N ) ∩ [V ]n = [Z ×X V ]n−r
in CHn−r(Z ×X V ). This follows from Lemma 42.54.5 because the excess normal
sheaf is 0 over V . □

Lemma 42.54.7.0FBN Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of
finite type over S. Let (L, s, i : D → X) be a triple as in Definition 42.29.1. The
gysin homomorphism i∗ viewed as an element of A1(D → X) (see Lemma 42.33.3)
is the same as the bivariant class c(D → X,N ) ∈ A1(D → X) constructed using
N = i∗L viewed as a virtual normal sheaf for D in X.

Proof. We will use the criterion of Lemma 42.35.3. Thus we may assume that X
is an integral scheme and we have to show that i∗[X] is equal to c ∩ [X]. Let
n = dimδ(X). As usual, there are two cases.

If X = D, then we see that both classes are represented by c1(N ) ∩ [X]n. See
Lemma 42.54.5 and Definition 42.29.1.

If D ̸= X, then D → X is an effective Cartier divisor and in particular a regular
closed immersion of codimension 1. Again by Lemma 42.54.5 we conclude c(D →
X,N )∩ [X]n = [D]n−1. The same is true by definition for the gysin homomorphism
and we conclude once again. □

Lemma 42.54.8.0FBP Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of
finite type over S. Let Z ⊂ X be a closed subscheme with virtual normal sheaf N .
Let Y → X be locally of finite type and c ∈ A∗(Y → X). Then c and c(Z → X,N )
commute (Remark 42.33.6).

Proof. To check this we may use Lemma 42.35.3. Thus we may assume X is an
integral scheme and we have to show c∩c(Z → X,N )∩[X] = c(Z → X,N )∩c∩[X]
in CH∗(Z ×X Y ).

If Z = X, then c(Z → X,N ) = ctop(N ) by Lemma 42.54.5 which commutes with
the bivariant class c, see Lemma 42.38.9.

Assume that Z is not equal to X. By Lemma 42.35.3 it even suffices to prove the
result after blowing up X (in a nonzero ideal). Let us blowup X in the ideal sheaf of
Z. This reduces us to the case where Z is an effective Cartier divisor, see Divisors,
Lemma 31.32.4,
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If Z is an effective Cartier divisor, then we have

c(Z → X,N ) = ctop(E) ◦ i∗

where i∗ ∈ A1(Z → X) is the gysin homomorphism associated to i : Z → X
(Lemma 42.33.3) and E is the dual of the kernel of N∨ → CZ/X , see Lemmas
42.54.3 and 42.54.7. Then we conclude because Chern classes are in the center
of the bivariant ring (in the strong sense formulated in Lemma 42.38.9) and c
commutes with the gysin homomorphism i∗ by definition of bivariant classes. □

Let (S, δ) be as in Situation 42.7.1. Let X be an integral scheme locally of finite
type over S of δ-dimension n. Let Z ⊂ Y ⊂ X be closed subschemes which are
both effective Cartier divisors in X. Denote o : Y → CYX the zero section of the
normal line cone of Y in X. As CYX is a line bundle over Y we obtain a bivariant
class o∗ ∈ A1(Y → CYX), see Lemma 42.33.3.

Lemma 42.54.9.0FEB With notation as above we have

o∗[CZX]n = [CZY ]n−1

in CHn−1(Y ×o,CYX CZX).

Proof. Denote W → P1
X the blowing up of ∞(Z) as in Section 42.53. Similarly,

denote W ′ → P1
X the blowing up of∞(Y ). Since∞(Z) ⊂ ∞(Y ) we get an opposite

inclusion of ideal sheaves and hence a map of the graded algebras defining these
blowups. This produces a rational morphism from W to W ′ which in fact has a
canonical representative

W ⊃ U −→W ′

See Constructions, Lemma 27.18.1. A local calculation (omitted) shows that U
contains at least all points of W not lying over ∞ and the open subscheme CZX
of the special fibre. After shrinking U we may assume U∞ = CZX and A1

X ⊂
U . Another local calculation (omitted) shows that the morphism U∞ → W ′

∞
induces the canonical morphism CZX → CYX ⊂ W ′

∞ of normal cones induced by
the inclusion of ideals sheaves coming from Z ⊂ Y . Denote W ′′ ⊂ W the strict
transform of P1

Y ⊂ P1
X in W . Then W ′′ is the blowing up of P1

Y in ∞(Z) by
Divisors, Lemma 31.33.2 and hence (W ′′ ∩ U)∞ = CZY .

Consider the effective Cartier divisor i : P1
Y → W ′ from (8) and its associated

bivariant class i∗ ∈ A1(P1
Y → W ′) from Lemma 42.33.3. We similarly denote

(i′∞)∗ ∈ A1(W ′
∞ → W ′) the gysin map at infinity. Observe that the restriction of

i′∞ (Remark 42.33.5) to U is the restriction of i∗∞ ∈ A1(W∞ → W ) to U . On the
one hand we have

(i′∞)∗i∗[U ]n+1 = i∗∞i
∗[U ]n+1 = i∗∞[(W ′′ ∩ U)∞]n+1 = [CZY ]n

because i∗∞ kills all classes supported over ∞, because i∗[U ] and [W ′′] agree as
cycles over A1, and because CZY is the fibre of W ′′ ∩ U over ∞. On the other
hand, we have

(i′∞)∗i∗[U ]n+1 = i∗i∗∞[U ]n+1 = i∗[U∞] = o∗[CYX]n
because (i′∞)∗ and i∗ commute (Lemma 42.30.5) and because the fibre of i : P1

Y →
W ′ over ∞ factors as o : Y → CYX and the open immersion CYX → W ′

∞. The
lemma follows. □
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Lemma 42.54.10.0FEC Let (S, δ) be as in Situation 42.7.1. Let Z ⊂ Y ⊂ X be closed
subschemes of a scheme locally of finite type over S. Let N be a virtual normal
sheaf for Z ⊂ X. Let N ′ be a virtual normal sheaf for Z ⊂ Y . Let N ′′ be a virtual
normal sheaf for Y ⊂ X. Assume there is a commutative diagram

(N ′′)∨|Z //

��

N∨ //

��

(N ′)∨

��
CY/X |Z // CZ/X // CZ/Y

where the sequence at the bottom is from More on Morphisms, Lemma 37.7.12 and
the top sequence is a short exact sequence. Then

c(Z → X,N ) = c(Z → Y,N ′) ◦ c(Y → X,N ′′)

in A∗(Z → X)∧.

Proof. Observe that the assumptions remain satisfied after any base change by a
morphism X ′ → X which is locally of finite type (the short exact sequence of virtual
normal sheaves is locally split hence remains exact after any base change). Thus to
check the equality of bivariant classes we may use Lemma 42.35.3. Thus we may
assume X is an integral scheme and we have to show c(Z → X,N ) ∩ [X] = c(Z →
Y,N ′) ∩ c(Y → X,N ′′) ∩ [X].

If Y = X, then we have

c(Z → Y,N ′) ∩ c(Y → X,N ′′) ∩ [X] = c(Z → Y,N ′) ∩ ctop(N ′′) ∩ [Y ]
= ctop(N ′′|Z) ∩ c(Z → Y,N ′) ∩ [Y ]
= c(Z → X,N ) ∩ [X]

The first equality by Lemma 42.54.3. The second because Chern classes commute
with bivariant classes (Lemma 42.38.9). The third equality by Lemma 42.54.3.

Assume Y ̸= X. By Lemma 42.35.3 it even suffices to prove the result after blowing
up X in a nonzero ideal. Let us blowup X in the product of the ideal sheaf of Y
and the ideal sheaf of Z. This reduces us to the case where both Y and Z are
effective Cartier divisors on X, see Divisors, Lemmas 31.32.4 and 31.32.12.

Denote N ′′ → E the surjection of finite locally free OZ-modules such that 0 →
E∨ → (N ′′)∨ → CY/X → 0 is a short exact sequence. Then N → E|Z is a surjection
as well. Denote N1 the finite locally free kernel of this map and observe that
N∨ → CZ/X factors through N1. By Lemma 42.54.3 we have

c(Y → X,N ′′) = ctop(E) ◦ c(Y → X, C∨
Y/X)

and
c(Z → X,N ) = ctop(E|Z) ◦ c(Z → X,N1)

Since Chern classes of bundles commute with bivariant classes (Lemma 42.38.9) it
suffices to prove

c(Z → X,N1) = c(Z → Y,N ′) ◦ c(Y → X, C∨
Y/X)

in A∗(Z → X). This we may assume that N ′′ = CY/X . This reduces us to the case
discussed in the next paragraph.
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In this paragraph Z and Y are effective Cartier divisors on X integral of dimension
n, we have N ′′ = CY/X . In this case c(Y → X, C∨

Y/X) ∩ [X] = [Y ]n−1 by Lemma
42.54.5. Thus we have to prove that c(Z → X,N ) ∩ [X] = c(Z → Y,N ′) ∩ [Y ]n−1.
Denote N and N ′ the vector bundles over Z associated to N and N ′. Consider the
commutative diagram

N ′
i
// N // (CYX)×Y Z

CZY //

OO

CZX

OO

of cones and vector bundles over Z. Observe that N ′ is a relative effective Cartier
divisor in N over Z and that

N ′

��

i
// N

��
Z

o // (CYX)×Y Z

is cartesian where o is the zero section of the line bundle CYX over Y . By Lemma
42.54.9 we have o∗[CZX]n = [CZY ]n−1 in

CHn−1(Y ×o,CYX CZX) = CHn−1(Z ×o,(CYX)×Y Z CZX)

By the cartesian property of the square above this implies that

i∗[CZX]n = [CZY ]n−1

in CHn−1(N ′). Now observe that γ = c(Z → X,N )∩ [X] and γ′ = c(Z → Y,N ′)∩
[Y ]n−1 are characterized by p∗γ = [CZX]n in CHn(N) and by (p′)∗γ′ = [CZY ]n−1
in CHn−1(N ′). Hence the proof is finished as i∗ ◦p∗ = (p′)∗ by Lemma 42.31.1. □

Remark 42.54.11 (Variant for immersions).0FBQ Let (S, δ) be as in Situation 42.7.1.
Let X be a scheme locally of finite type over S. Let i : Z → X be an immersion of
schemes. In this situation

(1) the conormal sheaf CZ/X of Z in X is defined (Morphisms, Definition
29.31.1),

(2) we say a pair consisting of a finite locally free OZ-module N and a sur-
jection σ : N∨ → CZ/X is a virtual normal bundle for the immersion
Z → X,

(3) choose an open subscheme U ⊂ X such that Z → X factors through a
closed immersion Z → U and set c(Z → X,N ) = c(Z → U,N ) ◦ (U →
X)∗.

The bivariant class c(Z → X,N ) does not depend on the choice of the open sub-
scheme U . All of the lemmas have immediate counterparts for this slightly more
general construction. We omit the details.

42.55. Calculating some classes

0FED To get further we need to compute the values of some of the classes we’ve con-
structed above.
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Lemma 42.55.1.0FEE Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of
finite type over S. Let E be a locally free OX -module of rank r. Then∏

n=0,...,r
c(∧nE)(−1)n = 1− (r − 1)!cr(E) + . . .

Proof. By the splitting principle we can turn this into a calculation in the polyno-
mial ring on the Chern roots x1, . . . , xr of E . See Section 42.43. Observe that

c(∧nE) =
∏

1≤i1<...<in≤r
(1 + xi1 + . . .+ xin)

Thus the logarithm of the left hand side of the equation in the lemma is

−
∑

p≥1

∑r

n=0

∑
1≤i1<...<in≤r

(−1)p+n

p
(xi1 + . . .+ xin)p

Please notice the minus sign in front. However, we have∑
p≥0

∑r

n=0

∑
1≤i1<...<in≤r

(−1)p+n

p! (xi1 + . . .+ xin)p =
∏

(1− e−xi)

Hence we see that the first nonzero term in our Chern class is in degree r and equal
to the predicted value. □

Lemma 42.55.2.0FEF Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally
of finite type over S. Let C be a locally free OX -module of rank r. Consider the
morphisms

X = Proj
X

(OX [T ]) i−→ E = Proj
X

(Sym∗(C)[T ]) π−→ X

Then ct(i∗OX) = 0 for t = 1, . . . , r − 1 and in A0(C → E) we have
p∗ ◦ π∗ ◦ cr(i∗OX) = (−1)r−1(r − 1)!j∗

where j : C → E and p : C → X are the inclusion and structure morphism of the
vector bundle C = Spec(Sym∗(C)).

Proof. The canonical map π∗C → OE(1) vanishes exactly along i(X). Hence the
Koszul complex on the map

π∗C ⊗ OE(−1)→ OE
is a resolution of i∗OX . In particular we see that i∗OX is a perfect object of D(OE)
whose Chern classes are defined. The vanishing of ct(i∗OX) for t = 1, . . . , t − 1
follows from Lemma 42.55.1. This lemma also gives

cr(i∗OX) = −(r − 1)!cr(π∗C ⊗ OE(−1))
On the other hand, by Lemma 42.43.3 we have

cr(π∗C ⊗ OE(−1)) = (−1)rcr(π∗C∨ ⊗OE(1))
and π∗C∨ ⊗OE(1) has a section s vanishing exactly along i(X).
After replacing X by a scheme locally of finite type over X, it suffices to prove
that both sides of the equality have the same effect on an element α ∈ CH∗(E).
Since C → X is a vector bundle, every cycle class on C is of the form p∗β for some
β ∈ CH∗(X) (Lemma 42.36.3). Hence by Lemma 42.19.3 we can write α = π∗β+γ
where γ is supported on E \ C. Using the equalities above it suffices to show that

p∗(π∗(cr(π∗C∨ ⊗OE(1)) ∩ [W ])) = j∗[W ]
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when W ⊂ E is an integral closed subscheme which is either (a) disjoint from C or
(b) is of the form W = π−1Y for some integral closed subscheme Y ⊂ X. Using
the section s and Lemma 42.44.1 we find in case (a) cr(π∗C∨ ⊗ OE(1)) ∩ [W ] = 0
and in case (b) cr(π∗C∨ ⊗ OE(1)) ∩ [W ] = [i(Y )]. The result follows easily from
this; details omitted. □

Lemma 42.55.3.0FEG Let (S, δ) be as in Situation 42.7.1. Let i : Z → X be a regular
closed immersion of codimension r between schemes locally of finite type over S.
Let N = C∨

Z/X be the normal sheaf. If X is quasi-compact (or has quasi-compact
irreducible components), then ct(Z → X, i∗OZ) = 0 for t = 1, . . . , r − 1 and

cr(Z → X, i∗OZ) = (−1)r−1(r − 1)!c(Z → X,N ) in Ar(Z → X)
where ct(Z → X, i∗OZ) is the localized Chern class of Definition 42.50.3.

Proof. For any x ∈ Z we can choose an affine open neighbourhood Spec(A) ⊂ X
such that Z ∩ Spec(A) = V (f1, . . . , fr) where f1, . . . , fr ∈ A is a regular sequence.
See Divisors, Definition 31.21.1 and Lemma 31.20.8. Then we see that the Koszul
complex on f1, . . . , fr is a resolution of A/(f1, . . . , fr) for example by More on
Algebra, Lemma 15.30.2. Hence A/(f1, . . . , fr) is perfect as an A-module. It follows
that F = i∗OZ is a perfect object of D(OX) whose restriction to X \Z is zero. The
assumption that X is quasi-compact (or has quasi-compact irreducible components)
means that the localized Chern classes ct(Z → X, i∗OZ) are defined, see Situation
42.50.1 and Definition 42.50.3. All in all we conclude that the statement makes
sense.
Denote b : W → P1

X the blowing up in ∞(Z) as in Section 42.53. By (8) we have
a closed immersion

i′ : P1
Z −→W

We claim that Q = i′∗OP1
Z

is a perfect object of D(OW ) and that F and Q satisfy
the assumptions of Lemma 42.51.2.
Assume the claim. The output of Lemma 42.51.2 is that we have

cp(Z → X,F ) = c′
p(Q) = (E → Z)∗ ◦ c′

p(Q|E) ◦ C
for all p ≥ 1. Observe that Q|E is equal to the pushforward of the structure sheaf
of Z via the morphism Z → E which is the base change of i′ by ∞. Thus the
vanishing of ct(Z → X,F ) for 1 ≤ t ≤ r − 1 by Lemma 42.55.2 applied to E → Z.
Because CZ/X = N∨ is locally free the bivariant class c(Z → X,N ) is characterized
by the relation

j∗ ◦ C = p∗ ◦ c(Z → X,N )
where j : CZX → W∞ and p : CZX → Z are the given maps. (Recall C ∈
A0(W∞ → X) is the class of Lemma 42.48.1.) Thus the displayed equation in the
statement of the lemma follows from the corresponding equation in Lemma 42.55.2.
Proof of the claim. Let A and f1, . . . , fr be as above. Consider the affine open
Spec(A[s]) ⊂ P1

X as in Section 42.53. Recall that s = 0 defines (P1
X)∞ over this

open. Hence over Spec(A[s]) we are blowing up in the ideal generated by the regular
sequence s, f1, . . . , fr. By More on Algebra, Lemma 15.31.2 the r + 1 affine charts
are global complete intersections over A[s]. The chart corresponding to the affine
blowup algebra

A[s][f1/s, . . . , fr/s] = A[s, y1, . . . , yr]/(syi − fi)
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contains i′(Z ∩ Spec(A)) as the closed subscheme cut out by y1, . . . , yr. Since
y1, . . . , yr, sy1−f1, . . . , syr−fr is a regular sequence in the polynomial ringA[s, y1, . . . , yr]
we find that i′ is a regular immersion. Some details omitted. As above we conclude
that Q = i′∗OP1

Z
is a perfect object of D(OW ). All the other assumptions on F and

Q in Lemma 42.51.2 (and Lemma 42.49.1) are immediately verified. □

Lemma 42.55.4.0FEH In the situation of Lemma 42.55.3 say dimδ(X) = n. Then we
have

(1) ct(Z → X, i∗OZ) ∩ [X]n = 0 for t = 1, . . . , r − 1,
(2) cr(Z → X, i∗OZ) ∩ [X]n = (−1)r−1(r − 1)![Z]n−r,
(3) cht(Z → X, i∗OZ) ∩ [X]n = 0 for t = 0, . . . , r − 1, and
(4) chr(Z → X, i∗OZ) ∩ [X]n = [Z]n−r.

Proof. Parts (1) and (2) follow immediately from Lemma 42.55.3 combined with
Lemma 42.54.5. Then we deduce parts (3) and (4) using the relationship between
chp = (1/p!)Pp and cp given in Lemma 42.52.1. (Namely, (−1)r−1(r − 1)!chr = cr
provided c1 = c2 = . . . = cr−1 = 0.) □

42.56. An Adams operator

0FEI We do the minimal amount of work to define the second adams operator. Let X
be a scheme. Recall that Vect(X) denotes the category of finite locally free OX -
modules. Moreover, recall that we have constructed a zeroth K-group K0(Vect(X))
associated to this category in Derived Categories of Schemes, Section 36.38. Finally,
K0(Vect(X)) is a ring, see Derived Categories of Schemes, Remark 36.38.6.

Lemma 42.56.1.0FEJ Let X be a scheme. There is a ring map

ψ2 : K0(Vect(X)) −→ K0(Vect(X))

which sends [L] to [L⊗2] when L is invertible and is compatible with pullbacks.

Proof. Let X be a scheme. Let E be a finite locally free OX -module. We will
consider the element

ψ2(E) = [Sym2(E)]− [∧2(E)]
of K0(Vect(X)).

Let X be a scheme and consider a short exact sequence

0→ E → F → G → 0

of finite locally free OX -modules. Let us think of this as a filtration on F with 2
steps. The induced filtration on Sym2(F) has 3 steps with graded pieces Sym2(E),
E ⊗ F , and Sym2(G). Hence

[Sym2(F)] = [Sym2(E)] + [E ⊗ F ] + [Sym2(G)]

In exactly the same manner one shows that

[∧2(F)] = [∧2(E)] + [E ⊗ F ] + [∧2(G)]

Thus we see that ψ2(F) = ψ2(E) + ψ2(G). We conclude that we obtain a well
defined additive map ψ2 : K0(Vect(X))→ K0(Vect(X)).

It is clear that this map commutes with pullbacks.
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We still have to show that ψ2 is a ring map. Let X be a scheme and let E and F
be finite locally free OX -modules. Observe that there is a short exact sequence

0→ ∧2(E)⊗ ∧2(F)→ Sym2(E ⊗ F)→ Sym2(E)⊗ Sym2(F)→ 0

where the first map sends (e ∧ e′) ⊗ (f ∧ f ′) to (e ⊗ f)(e′ ⊗ f ′) − (e′ ⊗ f)(e ⊗ f ′)
and the second map sends (e⊗ f)(e′ ⊗ f ′) to ee′ ⊗ ff ′. Similarly, there is a short
exact sequence

0→ Sym2(E)⊗ ∧2(F)→ ∧2(E ⊗ F)→ ∧2(E)⊗ Sym2(F)→ 0

where the first map sends ee′⊗ f ∧ f ′ to (e⊗ f)∧ (e′⊗ f ′) + (e′⊗ f)∧ (e⊗ f ′) and
the second map sends (e ⊗ f) ∧ (e′ ⊗ f ′) to (e ∧ e′) ⊗ (ff ′). As above this proves
the map ψ2 is multiplicative. Since it is clear that ψ2(1) = 1 this concludes the
proof. □

Remark 42.56.2.0FEK Let X be a scheme such that 2 is invertible on X. Then the Adams
operator ψ2 can be defined on the K-group K0(X) = K0(Dperf (OX)) (Derived
Categories of Schemes, Definition 36.38.2) in a straightforward manner. Namely,
given a perfect complex L on X we get an action of the group {±1} on L⊗L L by
switching the factors. Then we can set

ψ2(L) = [(L⊗L L)+]− [(L⊗L L)−]

where (−)+ denotes taking invariants and (−)− denotes taking anti-invariants (suit-
ably defined). Using exactness of taking invariants and anti-invariants one can argue
similarly to the proof of Lemma 42.56.1 to show that this is well defined. When 2
is not invertible on X the situation is a good deal more complicated and another
approach has to be used.

Lemma 42.56.3.0FV8 Let X be a scheme. There is a ring map ψ−1 : K0(Vect(X)) →
K0(Vect(X)) which sends [E ] to [E∨] when E is finite locally free and is compatible
with pullbacks.

Proof. The only thing to check is that taking duals is compatible with short exact
sequences and with pullbacks. This is clear. □

Remark 42.56.4.0FEL Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. The Chern class map defines a canonical map

c : K0(Vect(X)) −→
∏

i≥0
Ai(X)

by sending a generator [E ] on the left hand side to c(E) = 1+c1(E)+c2(E)+ . . . and
extending multiplicatively. Thus −[E ] is sent to the formal inverse c(E)−1 which is
why we have the infinite product on the right hand side. This is well defined by
Lemma 42.40.3.

Remark 42.56.5.0FEM Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. The Chern character map defines a canonical ring map

ch : K0(Vect(X)) −→
∏

i≥0
Ai(X)⊗Q

by sending a generator [E ] on the left hand side to ch(E) and extending additively.
This is well defined by Lemma 42.45.2 and a ring homomorphism by Lemma 42.45.3.

https://stacks.math.columbia.edu/tag/0FEK
https://stacks.math.columbia.edu/tag/0FV8
https://stacks.math.columbia.edu/tag/0FEL
https://stacks.math.columbia.edu/tag/0FEM
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Lemma 42.56.6.0FEN Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. If ψ2 is as in Lemma 42.56.1 and c and ch are as in Remarks 42.56.4
and 42.56.5 then we have ci(ψ2(α)) = 2ici(α) and chi(ψ2(α)) = 2ichi(α) for all
α ∈ K0(Vect(X)).

Proof. Observe that the map
∏
i≥0 A

i(X) →
∏
i≥0 A

i(X) multiplying by 2i on
Ai(X) is a ring map. Hence, since ψ2 is also a ring map, it suffices to prove the
formulas for additive generators of K0(Vect(X)). Thus we may assume α = [E ]
for some finite locally free OX -module E . By construction of the Chern classes of
E we immediately reduce to the case where E has constant rank r, see Remark
42.38.10. In this case, we can choose a projective smooth morphism p : P → X
such that restriction A∗(X) → A∗(P ) is injective and such that p∗E has a finite
filtration whose graded parts are invertible OP -modules Lj , see Lemma 42.43.1.
Then [p∗E ] =

∑
[Lj ] and hence ψ2([pE ]) =

∑
[L⊗2
j ] by definition of ψ2. Setting

xj = c1(Lj) we have

c(α) =
∏

(1 + xj) and c(ψ2(α)) =
∏

(1 + 2xj)

in
∏
Ai(P ) and we have

ch(α) =
∑

exp(xj) and ch(ψ2(α)) =
∑

exp(2xj)

in
∏
Ai(P ). From these formulas the desired result follows. □

Remark 42.56.7.0FEP Let X be a locally Noetherian scheme. Let Z ⊂ X be a closed
subscheme. Consider the strictly full, saturated, triangulated subcategory

DZ,perf (OX) ⊂ D(OX)
consisting of perfect complexes of OX -modules whose cohomology sheaves are set-
theoretically supported on Z. Denote CohZ(X) ⊂ Coh(X) the Serre subcategory
of coherent OX -modules whose set theoretic support is contained in Z. Observe
that given E ∈ DZ,perf (OX) Zariski locally on X only a finite number of the coho-
mology sheaves Hi(E) are nonzero (and they are all settheoretically supported on
Z). Hence we can define

K0(DZ,perf (OX)) −→ K0(CohZ(X)) = K ′
0(Z)

(equality by Lemma 42.23.6) by the rule

E 7−→ [
⊕

i∈Z
H2i(E)]− [

⊕
i∈Z

H2i+1(E)]

This works because given a distinguished triangle in DZ,perf (OX) we have a long
exact sequence of cohomology sheaves.

Remark 42.56.8.0FEQ Let X, Z, DZ,perf (OX) be as in Remark 42.56.7. Assume X is
regular. Then there is a canonical map

K0(Coh(Z)) −→ K0(DZ,perf (OX))
defined as follows. For any coherent OZ-module F denote F [0] the object of D(OX)
which has F in degree 0 and is zero in other degrees. Then F [0] is a perfect
complex on X by Derived Categories of Schemes, Lemma 36.11.8. Hence F [0]
is an object of DZ,perf (OX). On the other hand, given a short exact sequence
0 → F → F ′ → F ′′ → 0 of coherent OZ-modules we obtain a distinguished
triangle F [0]→ F ′[0]→ F ′′[0]→ F [1], see Derived Categories, Section 13.12. This

https://stacks.math.columbia.edu/tag/0FEN
https://stacks.math.columbia.edu/tag/0FEP
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shows that we obtain a map K0(Coh(Z)) → K0(DZ,perf (OX)) by sending [F ] to
[F [0]] with apologies for the horrendous notation.

Lemma 42.56.9.0FER Let X be a Noetherian regular scheme. Let Z ⊂ X be a closed
subscheme. The maps constructed in Remarks 42.56.7 and 42.56.8 are mutually
inverse and we get K ′

0(Z) = K0(DZ,perf (OX)).

Proof. Clearly the composition
K0(Coh(Z)) −→ K0(DZ,perf (OX)) −→ K0(Coh(Z))

is the identity map. Thus it suffices to show the first arrow is surjective. Let E be an
object of DZ,perf (OX). Recall that Dperf (OX) = Db

Coh(OX) by Derived Categories
of Schemes, Lemma 36.11.8. Hence the cohomologies Hi(E) are coherent, can be
viewed as objects of DZ,perf (OX), and only a finite number are nonzero. Using the
distinguished triangles of canonical truncations the reader sees that

[E] =
∑

(−1)i[Hi(E)[0]]

in K0(DZ,perf (OX)). Then it suffices to show that [F [0]] is in the image of the map
for any coherent OX -module set theoretically supported on Z. Since we can find a
finite filtration on F whose subquotients are OZ-modules, the proof is complete. □

Remark 42.56.10.0FES Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let Z ⊂ X be a closed subscheme and let DZ,perf (OX) be as in Remark
42.56.7. If X is quasi-compact (or more generally the irreducible components of X
are quasi-compact), then the localized Chern classes define a canonical map

c(Z → X,−) : K0(DZ,perf (OX)) −→ A0(X)×
∏

i≥1
Ai(Z → X)

by sending a generator [E] on the left hand side to
c(Z → X,E) = 1 + c1(Z → X,E) + c2(Z → X,E) + . . .

and extending multiplicatively (with product on the right hand side as in Remark
42.34.7). The quasi-compactness condition on X guarantees that the localized chern
classes are defined (Situation 42.50.1 and Definition 42.50.3) and that these localized
chern classes convert distinguished triangles into the corresponding products in the
bivariant chow rings (Lemma 42.52.4).

Remark 42.56.11.0FET Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let Z ⊂ X be a closed subscheme and let DZ,perf (OX) be as in
Remark 42.56.7. If the irreducible components of X are quasi-compact, then the
localized Chern character defines a canonical additive and multiplicative map

ch(Z → X,−) : K0(DZ,perf (OX)) −→
∏

i≥0
Ai(Z → X)⊗Q

by sending a generator [E] on the left hand side to ch(Z → X,E) and extending ad-
ditively. Namely, the condition on the irreducible components of X guarantees that
the localized chern character is defined (Situation 42.50.1 and Definition 42.50.3)
and that these localized chern characters convert distinguished triangles into the
corresponding sums in the bivariant chow rings (Lemma 42.52.5). The multiplica-
tion on K0(DZ,perf (X)) is defined using derived tensor product (Derived Categories
of Schemes, Remark 36.38.9) hence ch(Z → X,αβ) = ch(Z → X,α)ch(Z → X,β)
by Lemma 42.52.6. If X is quasi-compact, then the map ch(Z → X,−) has image
contained in A∗(Z → X)⊗Q; we omit the details.

https://stacks.math.columbia.edu/tag/0FER
https://stacks.math.columbia.edu/tag/0FES
https://stacks.math.columbia.edu/tag/0FET
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Remark 42.56.12.0FEU Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S and assume X is quasi-compact (or more generally the irreducible
components of X are quasi-compact). With Z = X and notation as in Remarks
42.56.10 and 42.56.11 we have DZ,perf (OX) = Dperf (OX) and we see that

K0(DZ,perf (OX)) = K0(Dperf (OX)) = K0(X)
see Derived Categories of Schemes, Definition 36.38.2. Hence we get

c : K0(X)→
∏

Ai(X) and ch : K0(X)→
∏

Ai(X)⊗Q

as a special case of Remarks 42.56.10 and 42.56.11. Of course, instead we could have
just directly used Definition 42.46.3 and Lemmas 42.46.7 and 42.46.11 to construct
these maps (as this immediately seen to produce the same classes). Recall that there
is a canonical map K0(Vect(X))→ K0(X) which sends a finite locally free module
to itself viewed as a perfect complex (placed in degree 0), see Derived Categories
of Schemes, Section 36.38. Then the diagram

K0((Vect(X))

c
''

// K0(Dperf (OX)) = K0(X)

c
uu∏

Ai(X)
commutes where the south-east arrow is the one constructed in Remark 42.56.4.
Similarly, the diagram

K0((Vect(X))

ch ((

// K0(Dperf (OX)) = K0(X)

chuu∏
Ai(X)⊗Q

commutes where the south-east arrow is the one constructed in Remark 42.56.5.

42.57. Chow groups and K-groups revisited

0FEV This section is the continuation of Section 42.23. Let (S, δ) be as in Situation
42.7.1. Let X be locally of finite type over S. The K-group K ′

0(X) = K0(Coh(X))
of coherent sheaves on X has a canonical increasing filtration

FkK
′
0(X) = Im

(
K0(Coh≤k(X))→ K0(Coh(X)

)
This is called the filtration by dimension of supports. Observe that

grkK ′
0(X) ⊂ K ′

0(X)/Fk−1K
′
0(X) = K0(Coh(X)/Coh≤k−1(X))

where the equality holds by Homology, Lemma 12.11.3. The discussion in Remark
42.23.5 shows that there are canonical maps

CHk(X) −→ grkK ′
0(X)

defined by sending the class of an integral closed subscheme Z ⊂ X of δ-dimension
k to the class of [OZ ] on the right hand side.

Proposition 42.57.1.0FEW Let (S, δ) be as in Situation 42.7.1. Assume given a closed
immersion X → Y of schemes locally of finite type over S with Y regular and
quasi-compact. Then the composition

K ′
0(X)→ K0(DX,perf (OY ))→ A∗(X → Y )⊗Q→ CH∗(X)⊗Q

https://stacks.math.columbia.edu/tag/0FEU
https://stacks.math.columbia.edu/tag/0FEW
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of the map F 7→ F [0] from Remark 42.56.8, the map ch(X → Y,−) from Remark
42.56.11, and the map c 7→ c ∩ [Y ] induces an isomorphism

K ′
0(X)⊗Q −→ CH∗(X)⊗Q

which depends on the choice of Y . Moreover, the canonical map

CHk(X)⊗Q −→ grkK ′
0(X)⊗Q

(see above) is an isomorphism of Q-vector spaces for all k ∈ Z.

Proof. Since Y is regular, the construction in Remark 42.56.8 applies. Since Y is
quasi-compact, the construction in Remark 42.56.11 applies. We have that Y is
locally equidimensional (Lemma 42.42.1) and thus the “fundamental cycle” [Y ] is
defined as an element of CH∗(Y ), see Remark 42.42.2. Combining this with the
map CHk(X)→ grkK ′

0(X) constructed above we see that it suffices to prove
(1) If F is a coherent OX -module whose support has δ-dimension ≤ k, then

the composition above sends [F ] into
⊕

k′≤k CHk′(X)⊗Q.
(2) If Z ⊂ X is an integral closed subscheme of δ-dimension k, then the

composition above sends [OZ ] to an element whose degree k part is the
class of [Z] in CHk(X)⊗Q.

Namely, if this holds, then our maps induce maps grkK ′
0(X)⊗Q→ CHk(X)⊗Q

which are inverse to the canonical maps CHk(X)⊗Q→ grkK ′
0(X)⊗Q given above

the proposition.

Given a coherent OX -module F the composition above sends [F ] to

ch(X → Y,F [0]) ∩ [Y ] ∈ CH∗(X)⊗Q

If F is (set theoretically) supported on a closed subscheme Z ⊂ X, then we have

ch(X → Y,F [0]) = (Z → X)∗ ◦ ch(Z → Y,F [0])

by Lemma 42.50.8. We conclude that in this case we end up in the image of
CH∗(Z)→ CH∗(X). Hence we get condition (1).

Let Z ⊂ X be an integral closed subscheme of δ-dimension k. The composition
above sends [OZ ] to the element

ch(X → Y,OZ [0]) ∩ [Y ] = (Z → X)∗ch(Z → Y,OZ [0]) ∩ [Y ]

by the same argument as above. Thus it suffices to prove that the degree k part
of ch(Z → Y,OZ [0]) ∩ [Y ] ∈ CH∗(Z) ⊗Q is [Z]. Since CHk(Z) = Z, in order to
prove this we may replace Y by an open neighbourhood of the generic point ξ of
Z. Since the maximal ideal of the regular local ring OX,ξ is generated by a regular
sequence (Algebra, Lemma 10.106.3) we may assume the ideal of Z is generated by
a regular sequence, see Divisors, Lemma 31.20.8. Thus we deduce the result from
Lemma 42.55.4. □

42.58. Rational intersection products on regular schemes

0FEX We will show that CH∗(X) ⊗ Q has an intersection product if X is Noetherian,
regular, finite dimensional, with affine diagonal. The basis for the construction is
the following result (which is a corollary of the proposition in the previous section).
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Lemma 42.58.1.0FEY Let (S, δ) be as in Situation 42.7.1. Let X be a quasi-compact
regular scheme of finite type over S with affine diagonal and δX/S : X → Z bounded.
Then the composition

K0(Vect(X))⊗Q −→ A∗(X)⊗Q −→ CH∗(X)⊗Q
of the map ch from Remark 42.56.5 and the map c 7→ c ∩ [X] is an isomorphism.
Proof. We haveK ′

0(X) = K0(X) = K0(Vect(X)) by Derived Categories of Schemes,
Lemmas 36.38.4, 36.36.8, and 36.38.5. By Remark 42.56.12 the composition given
agrees with the map of Proposition 42.57.1 for X = Y . Thus the result follows
from the proposition. □

Let X,S, δ be as in Lemma 42.58.1. For simplicity let us work with cycles of a
given codimension, see Section 42.42. Let [X] be the fundamental cycle of X, see
Remark 42.42.2. Pick α ∈ CHi(X) and β ∈ CHj(X). By the lemma we can find
a unique α′ ∈ K0(Vect(X))⊗Q with ch(α′) ∩ [X] = α. Of course this means that
chi′(α′) ∩ [X] = 0 if i′ ̸= i and chi(α′) ∩ [X] = α. By Lemma 42.56.6 we see that
α′′ = 2−iψ2(α′) is another solution. By uniqueness we get α′′ = α′ and we conclude
that chi′(α) = 0 in Ai

′(X)⊗Q for i′ ̸= i. Then we can define
α · β = ch(α′) ∩ β = chi(α′) ∩ β

in CHi+j(X) ⊗Q by the property of α′ we observed above. This is a symmetric
pairing: namely, if we pick β′ ∈ K0(Vect(X))⊗Q lifting β, then we get

α · β = ch(α′) ∩ β = ch(α′) ∩ ch(β′) ∩ [X]
and we know that Chern classes commute. The intersection product is associative
for the same reason

(α · β) · γ = ch(α′) ∩ ch(β′) ∩ ch(γ′) ∩ [X]
because we know composition of bivariant classes is associative. Perhaps a better
way to formulate this is as follows: there is a unique commutative, associative inter-
section product on CH∗(X)⊗Q compatible with grading such that the isomorphism
K0(Vect(X))⊗Q→ CH∗(X)⊗Q is an isomorphism of rings.

42.59. Gysin maps for local complete intersection morphisms

0FEZ Before reading this section, we suggest the reader read up on regular immersions
(Divisors, Section 31.21) and local complete intersection morphisms (More on Mor-
phisms, Section 37.62).
Let (S, δ) be as in Situation 42.7.1. Let i : X → Y be a regular immersion9 of
schemes locally of finite type over S. In particular, the conormal sheaf CX/Y is
finite locally free (see Divisors, Lemma 31.21.5). Hence the normal sheaf

NX/Y = HomOX
(CX/Y ,OX)

is finite locally free as well and we have a surjection N∨
X/Y → CX/Y (because an

isomorphism is also a surjection). The construction in Section 42.54 gives us a
canonical bivariant class

i! = c(X → Y,NX/Y ) ∈ A∗(X → Y )∧

9See Divisors, Definition 31.21.1. Observe that regular immersions are the same thing as
Koszul-regular immersions or quasi-regular immersions for locally Noetherian schemes, see Divi-
sors, Lemma 31.21.3. We will use this without further mention in this section.

https://stacks.math.columbia.edu/tag/0FEY
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We need a couple of lemmas about this notion.

Lemma 42.59.1.0FF0 Let (S, δ) be as in Situation 42.7.1. Let i : X → Y and j : Y → Z
be regular immersions of schemes locally of finite type over S. Then j◦i is a regular
immersion and (j ◦ i)! = i! ◦ j!.

Proof. The first statement is Divisors, Lemma 31.21.7. By Divisors, Lemma 31.21.6
there is a short exact sequence

0→ i∗(CY/Z)→ CX/Z → CX/Y → 0

Thus the result by the more general Lemma 42.54.10. □

Lemma 42.59.2.0FF1 Let (S, δ) be as in Situation 42.7.1. Let p : P → X be a smooth
morphism of schemes locally of finite type over S and let s : X → P be a section.
Then s is a regular immersion and 1 = s! ◦ p∗ in A∗(X)∧ where p∗ ∈ A∗(P → X)∧

is the bivariant class of Lemma 42.33.2.

Proof. The first statement is Divisors, Lemma 31.22.8. It suffices to show that
s! ∩ p∗[Z] = [Z] in CH∗(X) for any integral closed subscheme Z ⊂ X as the
assumptions are preserved by base change by X ′ → X locally of finite type. After
replacing P by an open neighbourhood of s(Z) we may assume P → X is smooth of
fixed relative dimension r. Say dimδ(Z) = n. Then every irreducible component of
p−1(Z) has dimension r+n and p∗[Z] is given by [p−1(Z)]n+r. Observe that s(X)∩
p−1(Z) = s(Z) scheme theoretically. Hence by the same reference as used above
s(X)∩ p−1(Z) is a closed subscheme regularly embedded in p−1(Z) of codimension
r. We conclude by Lemma 42.54.5. □

Let (S, δ) be as in Situation 42.7.1. Consider a commutative diagram

X

f   

i
// P

g
��

Y

of schemes locally of finite type over S such that g is smooth and i is a regular
immersion. Combining the bivariant class i! discussed above with the bivariant
class g∗ ∈ A∗(P → Y )∧ of Lemma 42.33.2 we obtain

f ! = i! ◦ g∗ ∈ A∗(X → Y )

Observe that the morphism f is a local complete intersection morphism, see More
on Morphisms, Definition 37.62.2. Conversely, if f : X → Y is a local complete
intersection morphism of locally Noetherian schemes and f = g ◦ i with g smooth,
then i is a regular immersion. We claim that our construction of f ! only depends
on the morphism f and not on the choice of factorization f = g ◦ i.

Lemma 42.59.3.0FF2 Let (S, δ) be as in Situation 42.7.1. Let f : X → Y be a local
complete intersection morphism of schemes locally of finite type over S. The bi-
variant class f ! is independent of the choice of the factorization f = g ◦ i with g
smooth (provided one exists).

Proof. Given a second such factorization f = g′ ◦ i′ we can consider the smooth
morphism g′′ : P×Y P ′ → Y , the immersion i′′ : X → P×Y P ′ and the factorization

https://stacks.math.columbia.edu/tag/0FF0
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f = g′′ ◦ i′′. Thus we may assume that we have a diagram

P ′

p

��

g′

  
X

i //

i′
>>

P
g // Y

where p is a smooth morphism. Then (g′)∗ = p∗ ◦ g∗ (Lemma 42.14.3) and hence
it suffices to show that i! = (i′)! ◦ p∗ in A∗(X → P ). Consider the commutative
diagram

X ×P P ′

p

��

j
// P ′

p

��
X

s

::

1 // X
i // P

where s = (1, i′). Then s and j are regular immersions (by Divisors, Lemma
31.22.8 and Divisors, Lemma 31.21.4) and i′ = j ◦ s. By Lemma 42.59.1 we have
(i′)! = s! ◦ j!. Since the square is cartesian, the bivariant class j! is the restriction
(Remark 42.33.5) of i! to P ′, see Lemma 42.54.2. Since bivariant classes commute
with flat pullbacks we find j! ◦ p∗ = p∗ ◦ i!. Thus it suffices to show that s! ◦ p∗ = id
which is done in Lemma 42.59.2. □

Definition 42.59.4.0FF3 Let (S, δ) be as in Situation 42.7.1. Let f : X → Y be a local
complete intersection morphism of schemes locally of finite type over S. We say the
gysin map for f exists if we can write f = g ◦ i with g smooth and i an immersion.
In this case we define the gysin map f ! = i! ◦ g∗ ∈ A∗(X → Y ) as above.

It follows from the definition that for a regular immersion this agrees with the
construction earlier and for a smooth morphism this agrees with flat pullback. In
fact, this agreement holds for all syntomic morphisms.

Lemma 42.59.5.0FF4 Let (S, δ) be as in Situation 42.7.1. Let f : X → Y be a local
complete intersection morphism of schemes locally of finite type over S. If the
gysin map exists for f and f is flat, then f ! is equal to the bivariant class of Lemma
42.33.2.

Proof. Choose a factorization f = g◦i with i : X → P an immersion and g : P → Y
smooth. Observe that for any morphism Y ′ → Y which is locally of finite type, the
base changes of f ′, g′, i′ satisfy the same assumptions (see Morphisms, Lemmas
29.34.5 and 29.30.4 and More on Morphisms, Lemma 37.62.8). Thus we reduce
to proving that f∗[Y ] = i!(g∗[Y ]) in case Y is integral, see Lemma 42.35.3. Set
n = dimδ(Y ). After decomposing X and P into connected components we may
assume f is flat of relative dimension r and g is smooth of relative dimension
t. Then f∗[Y ] = [X]n+s and g∗[Y ] = [P ]n+t. On the other hand i is a regular
immersion of codimension t− s. Thus i![P ]n+t = [X]n+s (Lemma 42.54.5) and the
proof is complete. □

Lemma 42.59.6.0FF5 Let (S, δ) be as in Situation 42.7.1. Let f : X → Y and g : Y → Z
be local complete intersection morphisms of schemes locally of finite type over S.
Assume the gysin map exists for g ◦ f and g. Then the gysin map exists for f and
(g ◦ f)! = f ! ◦ g!.

https://stacks.math.columbia.edu/tag/0FF3
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Proof. Observe that g ◦ f is a local complete intersection morphism by More on
Morphisms, Lemma 37.62.7 and hence the statement of the lemma makes sense. If
X → P is an immersion of X into a scheme P smooth over Z then X → P ×Z Y
is an immersion of X into a scheme smooth over Y . This prove the first assertion
of the lemma. Let Y → P ′ be an immersion of Y into a scheme P ′ smooth over Z.
Consider the commutative diagram

X //

��

P ×Z Y a
//

p
{{

P ×Z P ′

q
xx

Y
b
//

��

P ′

zz
Z

Here the horizontal arrows are regular immersions, the south-west arrows are smooth,
and the square is cartesian. Whence a! ◦ q∗ = p∗ ◦ b! as bivariant classes commute
with flat pullback. Combining this fact with Lemmas 42.59.1 and 42.14.3 the reader
finds the statement of the lemma holds true. Small detail omitted. □

Lemma 42.59.7.0FF6 Let (S, δ) be as in Situation 42.7.1. Consider a commutative
diagram

X ′′

��

// X ′

��

// X

f

��
Y ′′ // Y ′ // Y

of schemes locally of finite type over S with both square cartesian. Assume f :
X → Y is a local complete intersection morphism such that the gysin map exists
for f . Let c ∈ A∗(Y ′′ → Y ′). Denote res(f !) ∈ A∗(X ′ → Y ′) the restriction of f !

to Y ′ (Remark 42.33.5). Then c and res(f !) commute (Remark 42.33.6).

Proof. Choose a factorization f = g ◦ i with g smooth and i an immersion. Since
f ! = i! ◦ g! it suffices to prove the lemma for g! (which is given by flat pullback)
and for i!. The result for flat pullback is part of the definition of a bivariant class.
The case of i! follows immediately from Lemma 42.54.8. □

Lemma 42.59.8.0FF7 Let (S, δ) be as in Situation 42.7.1. Consider a cartesian diagram

X ′

f ′

��

// X

f

��
Y ′ // Y

of schemes locally of finite type over S. Assume
(1) f is a local complete intersection morphism and the gysin map exists for

f ,
(2) X, X ′, Y , Y ′ satisfy the equivalent conditions of Lemma 42.42.1,
(3) for x′ ∈ X ′ with images x, y′, and y in X, Y ′, and Y we have nx′ −ny′ =

nx − ny where nx′ , nx, ny′ , and ny are as in the lemma, and
(4) for every generic point ξ ∈ X ′ the local ring OY ′,f ′(ξ) is Cohen-Macaulay.

Then f ![Y ′] = [X ′] where [Y ′] and [X ′] are as in Remark 42.42.2.
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Proof. Recall that nx′ is the common value of δ(ξ) where ξ is the generic point of
an irreducible component passing through x′. Moreover, the functions x′ 7→ nx′ ,
x 7→ nx, y′ 7→ ny′ , and y 7→ ny are locally constant. Let X ′

n, Xn, Y ′
n, and Yn be

the open and closed subscheme of X ′, X, Y ′, and Y where the function has value
n. Recall that [X ′] =

∑
[X ′

n]n and [Y ′] =
∑

[Y ′
n]n. Having said this, it is clear that

to prove the lemma we may replace X ′ by one of its connected components and X,
Y ′, Y by the connected component that it maps into. Then we know that X ′, X,
Y ′, and Y are δ-equidimensional in the sense that each irreducible component has
the same δ-dimension. Say n′, n, m′, and m is this common value for X ′, X, Y ′,
and Y . The last assumption means that n′ −m′ = n−m.
Choose a factorization f = g ◦ i where i : X → P is an immersion and g : P → Y
is smooth. As X is connected, we see that the relative dimension of P → Y at
points of i(X) is constant. Hence after replacing P by an open neighbourhood of
i(X), we may assume that P → Y has constant relative dimension and i : X → P
is a closed immersion. Denote g′ : Y ′ ×Y P → Y ′ the base change of g and
denote i′ : X ′ → Y ′ ×Y P the base change of i. It is clear that g∗[Y ] = [P ] and
(g′)∗[Y ′] = [Y ′ ×Y P ]. Finally, if ξ′ ∈ X ′ is a generic point, then OY ′×Y P,i′(ξ) is
Cohen-Macaulay. Namely, the local ring map OY ′,f ′(ξ) → OY ′×Y P,i′(ξ) is flat with
regular fibre (see Algebra, Section 10.142), a regular local ring is Cohen-Macaulay
(Algebra, Lemma 10.106.3), OY ′,f ′(ξ) is Cohen-Macaulay by assumption (4) and
we get what we want from Algebra, Lemma 10.163.3. Thus we reduce to the case
discussed in the next paragraph.
Assume f is a regular closed immersion and X ′, X, Y ′, and Y are δ-equidimensional
of δ-dimensions n′, n, m′, and m and m′ − n′ = m− n. In this case we obtain the
result immediately from Lemma 42.54.6. □

Remark 42.59.9.0FF8 Let (S, δ) be as in Situation 42.7.1. Let f : X → Y be a local
complete intersection morphism of schemes locally of finite type over S. Assume
the gysin map exists for f . Then f ! ◦ ci(E) = ci(f∗E) ◦ f ! and similarly for the
Chern character, see Lemma 42.59.7. If X and Y satisfy the equivalent conditions
of Lemma 42.42.1 and Y is Cohen-Macaulay (for example), then f ![Y ] = [X] by
Lemma 42.59.8. In this case we also get f !(ci(E)∩[Y ]) = ci(f∗E)∩[X] and similarly
for the Chern character.

Lemma 42.59.10.0FV9 Let (S, δ) be as in Situation 42.7.1. Consider a cartesian square

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

of schemes locally of finite type over S. Assume
(1) both f and f ′ are local complete intersection morphisms, and
(2) the gysin map exists for f

Then C = Ker(H−1((g′)∗ NLX/Y ) → H−1(NLX′/Y ′)) is a finite locally free OX′ -
module, the gysin map exists for f ′, and we have

res(f !) = ctop(C∨) ◦ (f ′)!

in A∗(X ′ → Y ′).
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Proof. The fact that C is finite locally free follows immediately from More on Alge-
bra, Lemma 15.85.5. Choose a factorization f = g ◦ i with g : P → Y smooth and i
an immersion. Then we can factor f ′ = g′ ◦ i′ where g′ : P ′ → Y ′ and i′ : X ′ → P ′

the base changes. Picture

X ′ //

��

P ′ //

��

Y ′

��
X // P // Y

In particular, we see that the gysin map exists for f ′. By More on Morphisms,
Lemmas 37.13.13 we have

NLX/Y =
(
CX/P → i∗ΩP/Y

)
where CX/P is the conormal sheaf of the embedding i. Similarly for the primed
version. We have (g′)∗i∗ΩP/Y = (i′)∗ΩP ′/Y ′ because ΩP/Y pulls back to ΩP ′/Y ′ by
Morphisms, Lemma 29.32.10. Also, recall that (g′)∗CX/P → CX′/P ′ is surjective, see
Morphisms, Lemma 29.31.4. We deduce that the sheaf C is canonicallly isomorphic
to the kernel of the map (g′)∗CX/P → CX′/P ′ of finite locally free modules. Recall
that i! is defined using N = C∨

Z/X and similarly for (i′)!. Thus we have

res(i!) = ctop(C∨) ◦ (i′)!

in A∗(X ′ → P ′) by an application of Lemma 42.54.4. Since finally we have f ! =
i! ◦ g∗, (f ′)! = (i′)! ◦ (g′)∗, and (g′)∗ = res(g∗) we conclude. □

Lemma 42.59.11 (Blow up formula).0FVA Let (S, δ) be as in Situation 42.7.1. Let
i : Z → X be a regular closed immersion of schemes locally of finite type over S.
Let b : X ′ → X be the blowing up with center Z. Picture

E
j
//

π

��

X ′

b

��
Z

i // X

Assume that the gysin map exists for b. Then we have

res(b!) = ctop(F∨) ◦ π∗

in A∗(E → Z) where F is the kernel of the canonical map π∗CZ/X → CE/X′ .

Proof. Observe that the morphism b is a local complete intersection morphism by
More on Algebra, Lemma 15.31.2 and hence the statement makes sense. Since
Z → X is a regular immersion (and hence a fortiori quasi-regular) we see that
CZ/X is finite locally free and the map Sym∗(CZ/X)→ CZ/X,∗ is an isomorphism, see
Divisors, Lemma 31.21.5. Since E = Proj(CZ/X,∗) we conclude that E = P(CZ/X)
is a projective space bundle over Z. Thus E → Z is smooth and certainly a local
complete intersection morphism. Thus Lemma 42.59.10 applies and we see that

res(b!) = ctop(C∨) ◦ π!

with C as in the statement there. Of course π∗ = π! by Lemma 42.59.5. It remains to
show that F is equal to the kernel C of the map H−1(j∗ NLX′/X)→ H−1(NLE/Z).
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Since E → Z is smooth we have H−1(NLE/Z) = 0, see More on Morphisms, Lemma
37.13.7. Hence it suffices to show that F can be identified with H−1(j∗ NLX′/X).
By More on Morphisms, Lemmas 37.13.11 and 37.13.9 we have an exact sequence

0→ H−1(j∗ NLX′/X)→ H−1(NLE/X)→ CE/X′ → . . .

By the same lemmas applied to E → Z → X we obtain an isomorphism π∗CZ/X =
H−1(π∗ NLZ/X)→ H−1(NLE/X). Thus we conclude. □

Lemma 42.59.12.0FF9 Let (S, δ) be as in Situation 42.7.1. Let f : X → Y be a
morphism of schemes locally of finite type over S such that both X and Y are
quasi-compact, regular, have affine diagonal, and finite dimension. Then f is a
local complete intersection morphism. Assume moreover the gysin map exists for
f . Then

f !(α · β) = f !α · f !β

in CH∗(X)⊗Q where the intersection product is as in Section 42.58.

Proof. The first statement follows from More on Morphisms, Lemma 37.62.11.
Observe that f ![Y ] = [X], see Lemma 42.59.8. Write α = ch(α′) ∩ [Y ] and
β = ch(β′) ∩ [Y ] where α′, β′ ∈ K0(Vect(X)) ⊗ Q as in Section 42.58. Setting
c = ch(α′) and c′ = ch(β′) we find α · β = c ∩ c′ ∩ [Y ] by construction. By Lemma
42.59.7 we know that f ! commutes with both c and c′. Hence

f !(α · β) = f !(c ∩ c′ ∩ [Y ])
= c ∩ c′ ∩ f ![Y ]
= c ∩ c′ ∩ [X]
= (c ∩ [X]) · (c′ ∩ [X])
= (c ∩ f ![Y ]) · (c′ ∩ f ![Y ])
= f !(α) · f !(β)

as desired. □

Lemma 42.59.13.0FFA Let (S, δ) be as in Situation 42.7.1. Let f : X → Y be a
morphism of schemes locally of finite type over S such that both X and Y are
quasi-compact, regular, have affine diagonal, and finite dimension. Then f is a
local complete intersection morphism. Assume moreover the gysin map exists for
f and that f is proper. Then

f∗(α · f !β) = f∗α · β

in CH∗(Y )⊗Q where the intersection product is as in Section 42.58.

Proof. The first statement follows from More on Morphisms, Lemma 37.62.11.
Observe that f ![Y ] = [X], see Lemma 42.59.8. Write α = ch(α′) ∩ [X] and
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β = ch(β′) ∩ [Y ] α′ ∈ K0(Vect(X)) ⊗ Q and β′ ∈ K0(Vect(Y )) ⊗ Q as in Sec-
tion 42.58. Set c = ch(α′) and c′ = ch(β′). We have

f∗(α · f !β) = f∗(c ∩ f !(c′ ∩ [Y ]e))
= f∗(c ∩ c′ ∩ f ![Y ]e)
= f∗(c ∩ c′ ∩ [X]d)
= f∗(c′ ∩ c ∩ [X]d)
= c′ ∩ f∗(c ∩ [X]d)
= β · f∗(α)

The first equality by the construction of the intersection product. By Lemma
42.59.7 we know that f ! commutes with c′. The fact that Chern classes are in the
center of the bivariant ring justifies switching the order of capping [X] with c and
c′. Commuting c′ with f∗ is allowed as c′ is a bivariant class. The final equality is
again the construction of the intersection product. □

42.60. Gysin maps for diagonals

0FBR Let (S, δ) be as in Situation 42.7.1. Let f : X → Y be a smooth morphism of
schemes locally of finite type over S. Then the diagonal morphism ∆ : X −→
X ×Y X is a regular immersion, see More on Morphisms, Lemma 37.62.18. Thus
we have the gysin map

∆! ∈ A∗(X → X ×Y X)∧

constructed in Section 42.59. If X → Y has constant relative dimension d, then
∆! ∈ Ad(X → X ×Y X).

Lemma 42.60.1.0FBS In the situation above we have ∆! ◦ pr!
i = 1 in A0(X).

Proof. Observe that the projections pri : X ×Y X → X are smooth and hence we
have gysin maps for these projections as well. Thus the lemma makes sense and is
a special case of Lemma 42.59.6. □

Proposition 42.60.2.0FBT [Ful98, Proposition
17.4.2]

Let (S, δ) be as in Situation 42.7.1. Let f : X → Y and
g : Y → Z be morphisms of schemes locally of finite type over S. If g is smooth of
relative dimension d, then Ap(X → Y ) = Ap−d(X → Z).

Proof. We will use that smooth morphisms are local complete intersection mor-
phisms whose gysin maps exist (see Section 42.59). In particular we have g! ∈
A−d(Y → Z). Then we can send c ∈ Ap(X → Y ) to c ◦ g! ∈ Ap−d(X → Z).

Conversely, let c′ ∈ Ap−d(X → Z). Denote res(c′) the restriction (Remark 42.33.5)
of c′ by the morphism Y → Z. Since the diagram

X ×Z Y pr2
//

pr1

��

Y

g

��
X

f // Z

is cartesian we find res(c′) ∈ Ap−d(X ×Z Y → Y ). Let ∆ : Y → Y ×Z Y be
the diagonal and denote res(∆!) the restriction of ∆! to X ×Z Y by the morphism
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X ×Z Y → Y ×Z Y . Since the diagram
X //

��

X ×Z Y

��
Y

∆ // Y ×Z Y

is cartesian we see that res(∆!) ∈ Ad(X → X ×Z Y ). Combining these two restric-
tions we obtain

res(∆!) ◦ res(c′) ∈ Ap(X → Y )
Thus we have produced maps Ap(X → Y )→ Ap−d(X → Z) and Ap−d(X → Z)→
Ap(X → Y ). To finish the proof we will show these maps are mutually inverse.
Let us start with c ∈ Ap(X → Y ). Consider the diagram

X

��

// Y

��
X ×Z Y //

pr1

��

Y ×Z Y p2
//

p1

��

Y

g

��
X

f // Y
g // Z

whose squares are carteisan. The lower two square of this diagram show that
res(c ◦ g!) = res(c) ∩ p!

2 where in this formula res(c) means the restriction of c via
p1. Looking at the upper square of the diagram and using Lemma 42.59.7 we get
c ◦∆! = res(∆!) ◦ res(c). We compute

res(∆!) ◦ res(c ◦ g!) = res(∆!) ◦ res(c) ◦ p!
2

= c ◦∆! ◦ p!
2

= c

The final equality by Lemma 42.60.1.
Conversely, let us start with c′ ∈ Ap−d(X → Z). Looking at the lower rectangle of
the diagram above we find res(c′) ◦ g! = pr!

1 ◦ c′. We compute
res(∆!) ◦ res(c′) ◦ g! = res(∆!) ◦ pr!

1 ◦ c′

= c′

The final equality holds because the left two squares of the diagram show that
id = res(∆! ◦ p!

1) = res(∆!) ◦ pr!
1. This finishes the proof. □

42.61. Exterior product

0FBU Let k be a field. In this section we work over S = Spec(k) with δ : S → Z defined
by sending the unique point to 0, see Example 42.7.2.
Consider a cartesian square

X ×k Y //

��

Y

��
X // Spec(k) = S
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of schemes locally of finite type over k. Then there is a canonical map
× : CHn(X)⊗Z CHm(Y ) −→ CHn+m(X ×k Y )

which is uniquely determined by the following rule: given integral closed subschemes
X ′ ⊂ X and Y ′ ⊂ Y of dimensions n and m we have

[X ′]× [Y ′] = [X ′ ×k Y ′]n+m

in CHn+m(X ×k Y ).

Lemma 42.61.1.0FBV The map × : CHn(X) ⊗Z CHm(Y ) → CHn+m(X ×k Y ) is well
defined.

Proof. A first remark is that if α =
∑
ni[Xi] and β =

∑
mj [Yj ] with Xi ⊂ X and

Yj ⊂ Y locally finite families of integral closed subschemes of dimensions n and
m, then Xi ×k Yj is a locally finite collection of closed subschemes of X ×k Y of
dimensions n+m and we can indeed consider

α× β =
∑

nimj [Xi ×k Yj ]n+m

as a (n+m)-cycle on X×k Y . In this way we obtain an additive map × : Zn(X)⊗Z
Zm(Y )→ Zn+m(X×kY ). The problem is to show that this procedure is compatible
with rational equivalence.
Let i : X ′ → X be the inclusion morphism of an integral closed subscheme of
dimension n. Then flat pullback along the morphism p′ : X ′ → Spec(k) is an
element (p′)∗ ∈ A−n(X ′ → Spec(k)) by Lemma 42.33.2 and hence c′ = i∗ ◦ (p′)∗ ∈
A−n(X → Spec(k)) by Lemma 42.33.4. This produces maps

c′ ∩ − : CHm(Y ) −→ CHm+n(X ×k Y )
which the reader easily sends [Y ′] to [X ′×kY ′]n+m for any integral closed subscheme
Y ′ ⊂ Y of dimension m. Hence the construction ([X ′], [Y ′]) 7→ [X ′ ×k Y ′]n+m
factors through rational equivalence in the second variable, i.e., gives a well defined
map Zn(X) ⊗Z CHm(Y ) → CHn+m(X ×k Y ). By symmetry the same is true for
the other variable and we conclude. □

Lemma 42.61.2.0FBW Let k be a field. Let X be a scheme locally of finite type over k.
Then we have a canonical identification

Ap(X → Spec(k)) = CH−p(X)
for all p ∈ Z.

Proof. Consider the element [Spec(k)] ∈ CH0(Spec(k)). We get a map Ap(X →
Spec(k))→ CH−p(X) by sending c to c ∩ [Spec(k)].
Conversely, suppose we have α ∈ CH−p(X). Then we can define cα ∈ Ap(X →
Spec(k)) as follows: given X ′ → Spec(k) and α′ ∈ CHn(X ′) we let

cα ∩ α′ = α× α′

in CHn−p(X ×k X ′). To show that this is a bivariant class we write α =
∑
ni[Xi]

as in Definition 42.8.1. Consider the composition∐
Xi

g−→ X → Spec(k)

and denote f :
∐
Xi → Spec(k) the composition. Then g is proper and f is flat

of relative dimension −p. Pullback along f is a bivariant class f∗ ∈ Ap(
∐
Xi →
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Spec(k)) by Lemma 42.33.2. Denote ν ∈ A0(
∐
Xi) the bivariant class which mul-

tiplies a cycle by ni on the ith component. Thus ν ◦ f∗ ∈ Ap(
∐
Xi → X). Finally,

we have a bivariant class
g∗ ◦ ν ◦ f∗

by Lemma 42.33.4. The reader easily verifies that cα is equal to this class and hence
is itself a bivariant class.
To finish the proof we have to show that the two constructions are mutually inverse.
Since cα ∩ [Spec(k)] = α this is clear for one of the two directions. For the other,
let c ∈ Ap(X → Spec(k)) and set α = c ∩ [Spec(k)]. It suffices to prove that

c ∩ [X ′] = cα ∩ [X ′]
when X ′ is an integral scheme locally of finite type over Spec(k), see Lemma 42.35.3.
However, then p′ : X ′ → Spec(k) is flat of relative dimension dim(X ′) and hence
[X ′] = (p′)∗[Spec(k)]. Thus the fact that the bivariant classes c and cα agree on
[Spec(k)] implies they agree when capped against [X ′] and the proof is complete. □

Lemma 42.61.3.0FBX Let k be a field. Let X be a scheme locally of finite type over k.
Let c ∈ Ap(X → Spec(k)). Let Y → Z be a morphism of schemes locally of finite
type over k. Let c′ ∈ Aq(Y → Z). Then c ◦ c′ = c′ ◦ c in Ap+q(X ×k Y → Z).

Proof. In the proof of Lemma 42.61.2 we have seen that c is given by a combination
of proper pushforward, multiplying by integers over connected components, and flat
pullback. Since c′ commutes with each of these operations by definition of bivariant
classes, we conclude. Some details omitted. □

Remark 42.61.4.0FBY The upshot of Lemmas 42.61.2 and 42.61.3 is the following. Let
k be a field. Let X be a scheme locally of finite type over k. Let α ∈ CH∗(X). Let
Y → Z be a morphism of schemes locally of finite type over k. Let c′ ∈ Aq(Y → Z).
Then

α× (c′ ∩ β) = c′ ∩ (α× β)
in CH∗(X ×k Y ) for any β ∈ CH∗(Z). Namely, this follows by taking c = cα ∈
A∗(X → Spec(k)) the bivariant class corresponding to α, see proof of Lemma
42.61.2.

Lemma 42.61.5.0FBZ Exterior product is associative. More precisely, let k be a field,
let X,Y, Z be schemes locally of finite type over k, let α ∈ CH∗(X), β ∈ CH∗(Y ),
γ ∈ CH∗(Z). Then (α× β)× γ = α× (β × γ) in CH∗(X ×k Y ×k Z).

Proof. Omitted. Hint: associativity of fibre product of schemes. □

42.62. Intersection products

0FC0 Let k be a field. In this section we work over S = Spec(k) with δ : S → Z defined
by sending the unique point to 0, see Example 42.7.2.
Let X be a smooth scheme over k. The bivariant class ∆! of Section 42.60 allows us
to define a kind of intersection product on chow groups of schemes locally of finite
type over X. Namely, suppose that Y → X and Z → X are morphisms of schemes
which are locally of finite type. Then observe that

Y ×X Z = (Y ×k Z)×X×kX,∆ X
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Hence we can consider the following sequence of maps

CHn(Y )⊗Z CHm(Z) ×−→ CHn+m(Y ×k Z) ∆!

−→ CHn+m−∗(Y ×X Z)

Here the first arrow is the exterior product constructed in Section 42.61 and the
second arrow is the gysin map for the diagonal studied in Section 42.60. If X
is equidimensional of dimension d, then we end up in CHn+m−d(Y ×X Z) and in
general we can decompose into the parts lying over the open and closed subschemes
of X where X has a given dimension. Given α ∈ CH∗(Y ) and β ∈ CH∗(Z) we will
denote

α · β = ∆!(α× β) ∈ CH∗(Y ×X Z)
In the special case where X = Y = Z we obtain a multiplication

CH∗(X)× CH∗(X)→ CH∗(X), (α, β) 7→ α · β

which is called the intersection product. We observe that this product is clearly
symmetric. Associativity follows from the next lemma.

Lemma 42.62.1.0FC1 The product defined above is associative. More precisely, let k be
a field, let X be smooth over k, let Y, Z,W be schemes locally of finite type over
X, let α ∈ CH∗(Y ), β ∈ CH∗(Z), γ ∈ CH∗(W ). Then (α · β) · γ = α · (β · γ) in
CH∗(Y ×X Z ×X W ).

Proof. By Lemma 42.61.5 we have (α×β)×γ = α× (β×γ) in CH∗(Y ×kZ×kW ).
Consider the closed immersions

∆12 : X ×k X −→ X ×k X ×k X, (x, x′) 7→ (x, x, x′)

and
∆23 : X ×k X −→ X ×k X ×k X, (x, x′) 7→ (x, x′, x′)

Denote ∆!
12 and ∆!

23 the corresponding bivariant classes; observe that ∆!
12 is the

restriction (Remark 42.33.5) of ∆! to X×kX×kX by the map pr12 and that ∆!
23 is

the restriction of ∆! to X ×kX ×kX by the map pr23. Thus clearly the restriction
of ∆!

12 by ∆23 is ∆! and the restriction of ∆!
23 by ∆12 is ∆! too. Thus by Lemma

42.54.8 we have
∆! ◦∆!

12 = ∆! ◦∆!
23

Now we can prove the lemma by the following sequence of equalities:

(α · β) · γ = ∆!(∆!(α× β)× γ)
= ∆!(∆!

12((α× β)× γ))
= ∆!(∆!

23((α× β)× γ))
= ∆!(∆!

23(α× (β × γ))
= ∆!(α×∆!(β × γ))
= α · (β · γ)

All equalities are clear from the above except perhaps for the second and penulti-
mate one. The equation ∆!

23(α×(β×γ)) = α×∆!(β×γ) holds by Remark 42.61.4.
Similarly for the second equation. □
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Lemma 42.62.2.0FC2 Let k be a field. LetX be a smooth scheme over k, equidimensional
of dimension d. The map

Ap(X) −→ CHd−p(X), c 7−→ c ∩ [X]d
is an isomorphism. Via this isomorphism composition of bivariant classes turns into
the intersection product defined above.

Proof. Denote g : X → Spec(k) the structure morphism. The map is the composi-
tion of the isomorphisms

Ap(X)→ Ap−d(X → Spec(k))→ CHd−p(X)
The first is the isomorphism c 7→ c ◦ g∗ of Proposition 42.60.2 and the second is
the isomorphism c 7→ c ∩ [Spec(k)] of Lemma 42.61.2. From the proof of Lemma
42.61.2 we see that the inverse to the second arrow sends α ∈ CHd−p(X) to the
bivariant class cα which sends β ∈ CH∗(Y ) for Y locally of finite type over k to
α × β in CH∗(X ×k Y ). From the proof of Proposition 42.60.2 we see the inverse
to the first arrow in turn sends cα to the bivariant class which sends β ∈ CH∗(Y )
for Y → X locally of finite type to ∆!(α× β) = α · β. From this the final result of
the lemma follows. □

Lemma 42.62.3.0FFB Let k be a field. Let f : X → Y be a morphism of schemes smooth
over k. Then the gysin map exists for f and f !(α · β) = f !α · f !β.

Proof. Observe that X → X×k Y is an immersion of X into a scheme smooth over
Y . Hence the gysin map exists for f (Definition 42.59.4). To prove the formula we
may decompose X and Y into their connected components, hence we may assume
X is smooth over k and equidimensional of dimension d and Y is smooth over k
and equidimensional of dimension e. Observe that f ![Y ]e = [X]d (see for example
Lemma 42.59.8). Write α = c∩ [Y ]e and β = c′∩ [Y ]e and hence α ·β = c∩c′∩ [Y ]e,
see Lemma 42.62.2. By Lemma 42.59.7 we know that f ! commutes with both c and
c′. Hence

f !(α · β) = f !(c ∩ c′ ∩ [Y ]e)
= c ∩ c′ ∩ f ![Y ]e
= c ∩ c′ ∩ [X]d
= (c ∩ [X]d) · (c′ ∩ [X]d)
= (c ∩ f ![Y ]e) · (c′ ∩ f ![Y ]e)
= f !(α) · f !(β)

as desired where we have used Lemma 42.62.2 for X as well.
An alternative proof can be given by proving that (f × f)!(α× β) = f !α× f !β and
using Lemma 42.59.6. □

Lemma 42.62.4.0FFC Let k be a field. Let f : X → Y be a proper morphism of schemes
smooth over k. Then the gysin map exists for f and f∗(α · f !β) = f∗α · β.

Proof. Observe that X → X×k Y is an immersion of X into a scheme smooth over
Y . Hence the gysin map exists for f (Definition 42.59.4). To prove the formula we
may decompose X and Y into their connected components, hence we may assume
X is smooth over k and equidimensional of dimension d and Y is smooth over k
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and equidimensional of dimension e. Observe that f ![Y ]e = [X]d (see for example
Lemma 42.59.8). Write α = c ∩ [X]d and β = c′ ∩ [Y ]e, see Lemma 42.62.2. We
have

f∗(α · f !β) = f∗(c ∩ f !(c′ ∩ [Y ]e))
= f∗(c ∩ c′ ∩ f ![Y ]e)
= f∗(c ∩ c′ ∩ [X]d)
= f∗(c′ ∩ c ∩ [X]d)
= c′ ∩ f∗(c ∩ [X]d)
= β · f∗(α)

The first equality by the result of Lemma 42.62.2 for X. By Lemma 42.59.7 we know
that f ! commutes with c′. The commutativity of the intersection product justifies
switching the order of capping [X]d with c and c′ (via the lemma). Commuting
c′ with f∗ is allowed as c′ is a bivariant class. The final equality is again the
lemma. □

Lemma 42.62.5.0FFD Let k be a field. Let X be an integral scheme smooth over k.
Let Y,Z ⊂ X be integral closed subschemes. Set d = dim(Y ) + dim(Z)− dim(X).
Assume

(1) dim(Y ∩ Z) ≤ d, and
(2) OY,ξ and OZ,ξ are Cohen-Macaulay for every ξ ∈ Y ∩ Z with δ(ξ) = d.

Then [Y ] · [Z] = [Y ∩ Z]d in CHd(X).

Proof. Recall that [Y ] · [Z] = ∆!([Y × Z]) where ∆! = c(∆ : X → X × X, TX/k)
is a higher codimension gysin map (Section 42.54) with TX/k = Hom(ΩX/k,OX)
locally free of rank dim(X). We have the equality of schemes

Y ∩ Z = X ×∆,(X×X) (Y × Z)
and dim(Y × Z) = dim(Y ) + dim(Z) and hence conditions (1), (2), and (3) of
Lemma 42.54.6 hold. Finally, if ξ ∈ Y ∩Z, then we have a flat local homomorphism

OY,ξ −→ OY×Z,ξ

whose “fibre” is OZ,ξ. It follows that if both OY,ξ and OZ,ξ are Cohen-Macaulay,
then so is OY×Z,ξ, see Algebra, Lemma 10.163.3. In this way we see that all the
hypotheses of Lemma 42.54.6 are satisfied and we conclude. □

Lemma 42.62.6.0FFE Let k be a field. Let X be a scheme smooth over k. Let i : Y → X
be a regular closed immersion. Let α ∈ CH∗(X). If Y is equidimensional of
dimension e, then α · [Y ]e = i∗(i!(α)) in CH∗(X).

Proof. After decomposing X into connected components we may and do assume X
is equidimensional of dimension d. Write α = c∩ [X]n with x ∈ A∗(X), see Lemma
42.62.2. Then
i∗(i!(α)) = i∗(i!(c ∩ [X]n)) = i∗(c ∩ i![X]n) = i∗(c ∩ [Y ]e) = c ∩ i∗[Y ]e = α · [Y ]e

The first equality by choice of c. Then second equality by Lemma 42.59.7. The
third because i![X]d = [Y ]e in CH∗(Y ) (Lemma 42.59.8). The fourth because
bivariant classes commute with proper pushforward. The last equality by Lemma
42.62.2. □
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Lemma 42.62.7.0FFF Let k be a field. Let X be a smooth scheme over k which is
quasi-compact and has affine diagonal. Then the intersection product on CH∗(X)
constructed in this section agrees after tensoring with Q with the intersection prod-
uct constructed in Section 42.58.

Proof. Let α ∈ CHi(X) and β ∈ CHj(X). Write α = ch(α′) ∩ [X] and β =
ch(β′) ∩ [X] α′, β′ ∈ K0(Vect(X)) ⊗ Q as in Section 42.58. Set c = ch(α′) and
c′ = ch(β′). Then the intersection product in Section 42.58 produces c ∩ c′ ∩ [X].
This is the same as α · β by Lemma 42.62.2 (or rather the generalization that
Ai(X) → CHi(X), c 7→ c ∩ [X] is an isomorphism for any smooth scheme X over
k). □

42.63. Exterior product over Dedekind domains

0FC3 Let S be a locally Noetherian scheme which has an open covering by spectra of
Dedekind domains. Set δ(s) = 0 for s ∈ S closed and δ(s) = 1 otherwise. Then
(S, δ) is a special case of our general Situation 42.7.1; see Example 42.7.3. Observe
that S is normal (Algebra, Lemma 10.120.17) and hence a disjoint union of normal
integral schemes (Properties, Lemma 28.7.7). Thus all of the arguments below
reduce to the case where S is irreducible. On the other hand, we allow S to be
nonseparated (so S could be the affine line with 0 doubled for example).
Consider a cartesian square

X ×S Y //

��

Y

��
X // S

of schemes locally of finite type over S. We claim there is a canonical map
× : CHn(X)⊗Z CHm(Y ) −→ CHn+m−1(X ×S Y )

which is uniquely determined by the following rule: given integral closed subschemes
X ′ ⊂ X and Y ′ ⊂ Y of δ-dimensions n and m we set

(1) [X ′]× [Y ′] = [X ′ ×S Y ′]n+m−1 if X ′ or Y ′ dominates an irreducible com-
ponent of S,

(2) [X ′]× [Y ′] = 0 if neither X ′ nor Y ′ dominates an irreducible component
of S.

Lemma 42.63.1.0FC4 The map × : CHn(X)⊗Z CHm(Y )→ CHn+m−1(X ×S Y ) is well
defined.

Proof. Consider n and m cycles α =
∑
i∈I ni[Xi] and β =

∑
j∈J mj [Yj ] with Xi ⊂

X and Yj ⊂ Y locally finite families of integral closed subschemes of δ-dimensions
n and m. Let K ⊂ I × J be the set of pairs (i, j) ∈ I × J such that Xi or Yj
dominates an irreducible component of S. Then {Xi×S Yj}(i,j)∈K is a locally finite
collection of closed subschemes of X ×S Y of δ-dimension n + m − 1. This means
we can indeed consider

α× β =
∑

(i,j)∈K
nimj [Xi ×S Yj ]n+m−1

as a (n + m − 1)-cycle on X ×S Y . In this way we obtain an additive map × :
Zn(X)⊗Z Zm(Y )→ Zn+m(X ×S Y ). The problem is to show that this procedure
is compatible with rational equivalence.
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Let i : X ′ → X be the inclusion morphism of an integral closed subscheme of δ-
dimension n which dominates an irreducible component of S. Then p′ : X ′ → S
is flat of relative dimension n − 1, see More on Algebra, Lemma 15.22.11. Hence
flat pullback along p′ is an element (p′)∗ ∈ A−n+1(X ′ → S) by Lemma 42.33.2 and
hence c′ = i∗ ◦ (p′)∗ ∈ A−n+1(X → S) by Lemma 42.33.4. This produces maps

c′ ∩ − : CHm(Y ) −→ CHm+n−1(X ×S Y )

which sends [Y ′] to [X ′ ×S Y ′]n+m−1 for any integral closed subscheme Y ′ ⊂ Y of
δ-dimension m.

Let i : X ′ → X be the inclusion morphism of an integral closed subscheme of
δ-dimension n such that the composition X ′ → X → S factors through a closed
point s ∈ S. Since s is a closed point of the spectrum of a Dedekind domain, we see
that s is an effective Cartier divisor on S whose normal bundle is trivial. Denote
c ∈ A1(s → S) the gysin homomorphism, see Lemma 42.33.3. The morphism
p′ : X ′ → s is flat of relative dimension n. Hence flat pullback along p′ is an
element (p′)∗ ∈ A−n(X ′ → S) by Lemma 42.33.2. Thus

c′ = i∗ ◦ (p′)∗ ◦ c ∈ A−n(X → S)

by Lemma 42.33.4. This produces maps

c′ ∩ − : CHm(Y ) −→ CHm+n−1(X ×S Y )

which for any integral closed subscheme Y ′ ⊂ Y of δ-dimension m sends [Y ′] to
either [X ′ ×S Y ′]n+m−1 if Y ′ dominates an irreducible component of S or to 0 if
not.

From the previous two paragraphs we conclude the construction ([X ′], [Y ′]) 7→
[X ′ ×S Y ′]n+m−1 factors through rational equivalence in the second variable, i.e.,
gives a well defined map Zn(X)⊗Z CHm(Y )→ CHn+m−1(X ×S Y ). By symmetry
the same is true for the other variable and we conclude. □

Lemma 42.63.2.0FC5 Let (S, δ) be as above. Let X be a scheme locally of finite type
over S. Then we have a canonical identification

Ap(X → S) = CH1−p(X)

for all p ∈ Z.

Proof. Consider the element [S]1 ∈ CH1(S). We get a map Ap(X → S) →
CH1−p(X) by sending c to c ∩ [S]1.

Conversely, suppose we have α ∈ CH1−p(X). Then we can define cα ∈ Ap(X → S)
as follows: given X ′ → S and α′ ∈ CHn(X ′) we let

cα ∩ α′ = α× α′

in CHn−p(X×SX ′). To show that this is a bivariant class we write α =
∑
i∈I ni[Xi]

as in Definition 42.8.1. In particular the morphism

g :
∐

i∈I
Xi −→ X

is proper. Pick i ∈ I. If Xi dominates an irreducible component of S, then the
structure morphism pi : Xi → S is flat and we have ξi = p∗

i ∈ Ap(Xi → S). On
the other hand, if pi factors as p′

i : Xi → si followed by the inclusion si → S of a
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closed point, then we have ξi = (p′
i)∗ ◦ ci ∈ Ap(Xi → S) where ci ∈ A1(si → S) is

the gysin homomorphism and (p′
i)∗ is flat pullback. Observe that

Ap(
∐

i∈I
Xi → S) =

∏
i∈I

Ap(Xi → S)

Thus we have
ξ =

∑
niξi ∈ Ap(

∐
i∈I

Xi → S)

Finally, since g is proper we have a bivariant class

g∗ ◦ ξ ∈ Ap(X → S)

by Lemma 42.33.4. The reader easily verifies that cα is equal to this class (please
compare with the proof of Lemma 42.63.1) and hence is itself a bivariant class.

To finish the proof we have to show that the two constructions are mutually inverse.
Since cα ∩ [S]1 = α this is clear for one of the two directions. For the other, let
c ∈ Ap(X → S) and set α = c ∩ [S]1. It suffices to prove that

c ∩ [X ′] = cα ∩ [X ′]

when X ′ is an integral scheme locally of finite type over S, see Lemma 42.35.3.
However, either p′ : X ′ → S is flat of relative dimension dimδ(X ′) − 1 and hence
[X ′] = (p′)∗[S]1 or X ′ → S factors as X ′ → s → S and hence [X ′] = (p′)∗(s →
S)∗[S]1. Thus the fact that the bivariant classes c and cα agree on [S]1 implies they
agree when capped against [X ′] (since bivariant classes commute with flat pullback
and gysin maps) and the proof is complete. □

Lemma 42.63.3.0FC6 Let (S, δ) be as above. Let X be a scheme locally of finite type
over S. Let c ∈ Ap(X → S). Let Y → Z be a morphism of schemes locally of finite
type over S. Let c′ ∈ Aq(Y → Z). Then c ◦ c′ = c′ ◦ c in Ap+q(X ×S Y → X ×S Z).

Proof. In the proof of Lemma 42.63.2 we have seen that c is given by a combination
of proper pushforward, multiplying by integers over connected components, flat
pullback, and gysin maps. Since c′ commutes with each of these operations by
definition of bivariant classes, we conclude. Some details omitted. □

Remark 42.63.4.0FC7 The upshot of Lemmas 42.63.2 and 42.63.3 is the following. Let
(S, δ) be as above. Let X be a scheme locally of finite type over S. Let α ∈
CH∗(X). Let Y → Z be a morphism of schemes locally of finite type over S. Let
c′ ∈ Aq(Y → Z). Then

α× (c′ ∩ β) = c′ ∩ (α× β)

in CH∗(X ×S Y ) for any β ∈ CH∗(Z). Namely, this follows by taking c = cα ∈
A∗(X → S) the bivariant class corresponding to α, see proof of Lemma 42.63.2.

Lemma 42.63.5.0FC8 Exterior product is associative. More precisely, let (S, δ) be as
above, let X,Y, Z be schemes locally of finite type over S, let α ∈ CH∗(X), β ∈
CH∗(Y ), γ ∈ CH∗(Z). Then (α× β)× γ = α× (β × γ) in CH∗(X ×S Y ×S Z).

Proof. Omitted. Hint: associativity of fibre product of schemes. □
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42.64. Intersection products over Dedekind domains

0FC9 Let S be a locally Noetherian scheme which has an open covering by spectra of
Dedekind domains. Set δ(s) = 0 for s ∈ S closed and δ(s) = 1 otherwise. Then
(S, δ) is a special case of our general Situation 42.7.1; see Example 42.7.3 and
discussion in Section 42.63.

Let X be a smooth scheme over S. The bivariant class ∆! of Section 42.60 allows
us to define a kind of intersection product on chow groups of schemes locally of
finite type over X. Namely, suppose that Y → X and Z → X are morphisms of
schemes which are locally of finite type. Then observe that

Y ×X Z = (Y ×S Z)×X×SX,∆ X

Hence we can consider the following sequence of maps

CHn(Y )⊗Z CHm(Y ) ×−→ CHn+m−1(Y ×S Z) ∆!

−→ CHn+m−∗(Y ×X Z)

Here the first arrow is the exterior product constructed in Section 42.63 and the
second arrow is the gysin map for the diagonal studied in Section 42.60. If X is
equidimensional of dimension d, then X → S is smooth of relative dimension d− 1
and hence we end up in CHn+m−d(Y ×X Z). In general we can decompose into
the parts lying over the open and closed subschemes of X where X has a given
dimension. Given α ∈ CH∗(Y ) and β ∈ CH∗(Z) we will denote

α · β = ∆!(α× β) ∈ CH∗(Y ×X Z)

In the special case where X = Y = Z we obtain a multiplication

CH∗(X)× CH∗(X)→ CH∗(X), (α, β) 7→ α · β

which is called the intersection product. We observe that this product is clearly
symmetric. Associativity follows from the next lemma.

Lemma 42.64.1.0FCA The product defined above is associative. More precisely, with
(S, δ) as above, let X be smooth over S, let Y, Z,W be schemes locally of finite type
over X, let α ∈ CH∗(Y ), β ∈ CH∗(Z), γ ∈ CH∗(W ). Then (α · β) · γ = α · (β · γ)
in CH∗(Y ×X Z ×X W ).

Proof. By Lemma 42.63.5 we have (α×β)×γ = α×(β×γ) in CH∗(Y ×SZ×SW ).
Consider the closed immersions

∆12 : X ×S X −→ X ×S X ×S X, (x, x′) 7→ (x, x, x′)

and
∆23 : X ×S X −→ X ×S X ×S X, (x, x′) 7→ (x, x′, x′)

Denote ∆!
12 and ∆!

23 the corresponding bivariant classes; observe that ∆!
12 is the

restriction (Remark 42.33.5) of ∆! to X×SX×SX by the map pr12 and that ∆!
23 is

the restriction of ∆! to X×SX×SX by the map pr23. Thus clearly the restriction
of ∆!

12 by ∆23 is ∆! and the restriction of ∆!
23 by ∆12 is ∆! too. Thus by Lemma

42.54.8 we have
∆! ◦∆!

12 = ∆! ◦∆!
23
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Now we can prove the lemma by the following sequence of equalities:

(α · β) · γ = ∆!(∆!(α× β)× γ)
= ∆!(∆!

12((α× β)× γ))
= ∆!(∆!

23((α× β)× γ))
= ∆!(∆!

23(α× (β × γ))
= ∆!(α×∆!(β × γ))
= α · (β · γ)

All equalities are clear from the above except perhaps for the second and penulti-
mate one. The equation ∆!

23(α×(β×γ)) = α×∆!(β×γ) holds by Remark 42.61.4.
Similarly for the second equation. □

Lemma 42.64.2.0FCB Let (S, δ) be as above. Let X be a smooth scheme over S,
equidimensional of dimension d. The map

Ap(X) −→ CHd−p(X), c 7−→ c ∩ [X]d
is an isomorphism. Via this isomorphism composition of bivariant classes turns into
the intersection product defined above.

Proof. Denote g : X → S the structure morphism. The map is the composition of
the isomorphisms

Ap(X)→ Ap−d+1(X → S)→ CHd−p(X)

The first is the isomorphism c 7→ c ◦ g∗ of Proposition 42.60.2 and the second is
the isomorphism c 7→ c∩ [S]1 of Lemma 42.63.2. From the proof of Lemma 42.63.2
we see that the inverse to the second arrow sends α ∈ CHd−p(X) to the bivariant
class cα which sends β ∈ CH∗(Y ) for Y locally of finite type over k to α × β in
CH∗(X ×k Y ). From the proof of Proposition 42.60.2 we see the inverse to the first
arrow in turn sends cα to the bivariant class which sends β ∈ CH∗(Y ) for Y → X
locally of finite type to ∆!(α× β) = α · β. From this the final result of the lemma
follows. □

42.65. Todd classes

02UN A final class associated to a vector bundle E of rank r is its Todd class Todd(E).
In terms of the Chern roots x1, . . . , xr it is defined as

Todd(E) =
∏r

i=1

xi
1− e−xi

In terms of the Chern classes ci = ci(E) we have

Todd(E) = 1+ 1
2c1 + 1

12(c2
1 + c2)+ 1

24c1c2 + 1
720(−c4

1 +4c2
1c2 +3c2

2 + c1c3− c4)+ . . .

We have made the appropriate remarks about denominators in the previous section.
It is the case that given an exact sequence

0→ E1 → E → E2 → 0

we have
Todd(E) = Todd(E1)Todd(E2).
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42.66. Grothendieck-Riemann-Roch

02UO Let (S, δ) be as in Situation 42.7.1. Let X,Y be locally of finite type over S. Let E
be a finite locally free sheaf E on X of rank r. Let f : X → Y be a proper smooth
morphism. Assume that Rif∗E are locally free sheaves on Y of finite rank. The
Grothendieck-Riemann-Roch theorem say in this case that

f∗(Todd(TX/Y )ch(E)) =
∑

(−1)ich(Rif∗E)

Here
TX/Y = HomOX

(ΩX/Y ,OX)
is the relative tangent bundle of X over Y . If Y = Spec(k) where k is a field, then
we can restate this as

χ(X, E) = deg(Todd(TX/k)ch(E))
The theorem is more general and becomes easier to prove when formulated in correct
generality. We will return to this elsewhere (insert future reference here).

42.67. Change of base scheme

0FVF In this section we explain how to compare theories for different base schemes.

Situation 42.67.1.0FVG Here (S, δ) and (S′, δ′) are as in Situation 42.7.1. Furthermore
g : S′ → S is a flat morphism of schemes and c ∈ Z is an integer such that: for all
s ∈ S and s′ ∈ S′ a generic point of an irreducible component of g−1({s}) we have
δ(s′) = δ(s) + c.

We will see that for a scheme X locally of finite type over S there is a well defined
map CHk(X)→ CHk+c(X ×S S′) of Chow groups which (by and large) commutes
with the operations we have defined in this chapter.

Lemma 42.67.2.0FVH In Situation 42.67.1 let X → S be locally of finite type. Denote
X ′ → S′ the base change by S′ → S. If X is integral with dimδ(X) = k, then every
irreducible component Z ′ of X ′ has dimδ′(Z ′) = k + c,

Proof. The projection X ′ → X is flat as a base change of the flat morphism S′ →
S (Morphisms, Lemma 29.25.8). Hence every generic point x′ of an irreducible
component of X ′ maps to the generic point x ∈ X (because generalizations lift
along X ′ → X by Morphisms, Lemma 29.25.9). Let s ∈ S be the image of x.
Recall that the scheme S′

s = S′ ×S s has the same underlying topological space
as g−1({s}) (Schemes, Lemma 26.18.5). We may view x′ as a point of the scheme
S′
s ×s x which comes equipped with a monomorphism S′

s ×s x → S′ ×S X. Of
course, x′ is a generic point of an irreducible component of S′

s ×s x as well. Using
the flatness of Spec(κ(x)) → Spec(κ(s)) = s and arguing as above, we see that
x′ maps to a generic point s′ of an irreducible component of g−1({s}). Hence
δ′(s′) = δ(s) + c by assumption. We have dimx(Xs) = dimx′(Xs′) by Morphisms,
Lemma 29.28.3. Since x is a generic point of an irreducible component Xs (this
is an irreducible scheme but we don’t need this) and x′ is a generic point of an
irreducible component of X ′

s′ we conclude that trdegκ(s)(κ(x)) = trdegκ(s′)(κ(x′))
by Morphisms, Lemma 29.28.1. Then
δX′/S′(x′) = δ(s′) + trdegκ(s′)(κ(x′)) = δ(s) + c+ trdegκ(s)(κ(x)) = δX/S(x) + c

This proves what we want by Definition 42.7.6. □
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In Situation 42.67.1 let X → S be locally of finite type. Denote X ′ → S′ the base
change by g : S′ → S. There is a unique homomorphism

g∗ : Zk(X) −→ Zk+c(X ′)

which given an integral closed subscheme Z ⊂ X of δ-dimension k sends [Z] to
[Z ×S S′]k+c. This makes sense by Lemma 42.67.2.

Lemma 42.67.3.0FVI In Situation 42.67.1 let X → S locally of finite type and let
X ′ → S be the base change by S′ → S.

(1) Let Z ⊂ X be a closed subscheme with dimδ(Z) ≤ k and base change
Z ′ ⊂ X ′. Then we have dimδ′(Z ′)) ≤ k + c and [Z ′]k+c = g∗[Z]k in
Zk+c(X ′).

(2) Let F be a coherent sheaf on X with dimδ(Supp(F)) ≤ k and base change
F ′ on X ′. Then we have dimδ(Supp(F ′)) ≤ k + c and g∗[F ]k = [F ′]k+c
in Zk+c(X ′).

Proof. The proof is exactly the same is the proof of Lemma 42.14.4 and we suggest
the reader skip it.

The statements on dimensions follow from Lemma 42.67.2. Part (1) follows from
part (2) by Lemma 42.10.3 and the fact that the base change of the coherent module
OZ is OZ′ .

Proof of (2). As X, X ′ are locally Noetherian we may apply Cohomology of
Schemes, Lemma 30.9.1 to see that F is of finite type, hence F ′ is of finite type
(Modules, Lemma 17.9.2), hence F ′ is coherent (Cohomology of Schemes, Lemma
30.9.1 again). Thus the lemma makes sense. Let W ⊂ X be an integral closed
subscheme of δ-dimension k, and let W ′ ⊂ X ′ be an integral closed subscheme of
δ′-dimension k + c mapping into W under X ′ → X. We have to show that the
coefficient n of [W ′] in g∗[F ]k agrees with the coefficient m of [W ′] in [F ′]k+c. Let
ξ ∈ W and ξ′ ∈ W ′ be the generic points. Let A = OX,ξ, B = OX′,ξ′ and set
M = Fξ as an A-module. (Note that M has finite length by our dimension as-
sumptions, but we actually do not need to verify this. See Lemma 42.10.1.) We
have F ′

ξ′ = B ⊗AM . Thus we see that

n = lengthB(B ⊗AM) and m = lengthA(M)lengthB(B/mAB)

Thus the equality follows from Algebra, Lemma 10.52.13. □

Lemma 42.67.4.0FVJ In Situation 42.67.1 let X → S be locally of finite type and let
X ′ → S′ be the base change by S′ → S. The map g∗ : Zk(X) → Zk+c(X ′) above
factors through rational equivalence to give a map

g∗ : CHk(X) −→ CHk+c(X ′)

of chow groups.

Proof. Suppose that α ∈ Zk(X) is a k-cycle which is rationally equivalent to zero.
By Lemma 42.21.1 there exists a locally finite family of integral closed subschemes
Wi ⊂ X×P1 of δ-dimension k not contained in the divisors (X×P1)0 or (X×P1)∞
of X × P1 such that α =

∑
([(Wi)0]k − [(Wi)∞]k). Thus it suffices to prove for

W ⊂ X×P1 integral closed of δ-dimension k not contained in the divisors (X×P1)0
or (X ×P1)∞ of X ×P1 we have

https://stacks.math.columbia.edu/tag/0FVI
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(1) the base change W ′ ⊂ X ′×P1 satisfies the assumptions of Lemma 42.21.2
with k replaced by k + c, and

(2) g∗[W0]k = [(W ′)0]k+c and g∗[W∞]k = [(W ′)∞]k+c.
Part (2) follows immediately from Lemma 42.67.3 and the fact that (W ′)0 is the
base change of W0 (by associativity of fibre products). For part (1), first the
statement on dimensions follows from Lemma 42.67.2. Then let w′ ∈ (W ′)0 with
image w ∈ W0 and z ∈ P1

S . Denote t ∈ OP1
S
,z the usual equation for 0 : S → P1

S .
Since OW,w → OW ′,w′ is flat and since t is a nonzerodivisor on OW,w (as W is
integral and W ̸= W0) we see that also t is a nonzerodivisor in OW ′,w′ . Hence W ′

has no associated points lying on W ′
0. □

Lemma 42.67.5.0FVK In Situation 42.67.1 let Y → X → S be locally of finite type and
let Y ′ → X ′ → S′ be the base change by S′ → S. Assume f : Y → X is flat of
relative dimension r. Then f ′ : Y ′ → X ′ is flat of relative dimension r and the
diagrams

Zk+r(Y )
g∗
// Zk+c+r(Y ′)

Zk(X) g∗
//

(f ′)∗

OO

Zk+c(X ′)

f∗

OO

and

CHk+r(Y )
g∗
// CHk+c+r(Y ′)

CHk(X) g∗
//

(f ′)∗

OO

CHk+c(X ′)

f∗

OO

of cycle and chow groups commutes.

Proof. It suffices to show the first diagram commutes. To see this, let Z ⊂ X
be an integral closed subscheme of δ-dimension k and denote Z ′ ⊂ X ′ its base
change. By construction we have g∗[Z] = [Z ′]k+c. By Lemma 42.14.4 we have
(f ′)∗g∗[Z] = [Z ′ ×X′ Y ′]k+c+r. Conversely, we have f∗[Z] = [Z ×X Y ]k+r by
Definition 42.14.1. By Lemma 42.67.3 we have g∗f∗[Z] = [(Z ×X Y )′]k+r+c. Since
(Z ×X Y )′ = Z ′ ×X′ Y ′ by associativity of fibre product we conclude. □

Lemma 42.67.6.0FVL In Situation 42.67.1 let Y → X → S be locally of finite type and
let Y ′ → X ′ → S′ be the base change by S′ → S. Assume f : Y → X is proper.
Then f ′ : Y ′ → X ′ is proper and the diagram

Zk(Y )
g∗
//

f∗

��

Zk+c(Y ′)

f ′
∗
��

Zk(X) g∗
// Zk+c(X ′)

and

CHk(Y )
g∗
//

f∗

��

CHk+c(Y ′)

f ′
∗
��

CHk(X) g∗
// CHk+c(X ′)

of cycle and chow groups commutes.

Proof. It suffices to show the first diagram commutes. To see this, let Z ⊂ Y
be an integral closed subscheme of δ-dimension k and denote Z ′ ⊂ X ′ its base
change. By construction we have g∗[Z] = [Z ′]k+c. By Lemma 42.12.4 we have
(f ′)∗g

∗[Z] = [f ′
∗OZ′ ]k+c. By the same lemma we have f∗[Z] = [f∗OZ ]k. By Lemma

42.67.3 we have g∗f∗[Z] = [(X ′ → X)∗f∗OZ ]k+r. Thus it suffices to show that

(X ′ → X)∗f∗OZ ∼= f ′
∗OZ′

as coherent modules on X ′. As X ′ → X is flat and as OZ′ = (Y ′ → Y )∗OZ , this
follows from flat base change, see Cohomology of Schemes, Lemma 30.5.2. □

https://stacks.math.columbia.edu/tag/0FVK
https://stacks.math.columbia.edu/tag/0FVL


42.67. CHANGE OF BASE SCHEME 3797

Lemma 42.67.7.0FVM In Situation 42.67.1 let X → S be locally of finite type and let
X ′ → S′ be the base change by S′ → S. Let L be an invertible OX -module with
base change L′ on X ′. Then the diagram

CHk(X)
g∗
//

c1(L)∩−
��

CHk+c(X ′)

c1(L′)∩−
��

CHk−1(X) g∗
// CHk+c−1(X ′)

of chow groups commutes.

Proof. Let p : L→ X be the line bundle associated to L with zero section o : X →
L. For α ∈ CHk(X) we know that β = c1(L)∩α is the unique element of CHk−1(X)
such that o∗α = −p∗β, see Lemmas 42.32.2 and 42.32.4. The same characterization
holds after pullback. Hence the lemma follows from Lemmas 42.67.5 and 42.67.6.

□

Lemma 42.67.8.0FVN In Situation 42.67.1 let X → S be locally of finite type and let
X ′ → S′ be the base change by S′ → S. Let E be a finite locally free OX -module
of rank r with base change E ′ on X ′. Then the diagram

CHk(X)
g∗
//

ci(E)∩−
��

CHk+c(X ′)

ci(E′)∩−
��

CHk−i(X) g∗
// CHk+c−i(X ′)

of chow groups commutes for all i.

Proof. Set P = P(E). The base change P ′ of P is equal to P(E ′). Since we already
know that flat pullback and cupping with c1 of an invertible module commute with
base change (Lemmas 42.67.5 and 42.67.7) the lemma follows from the characteri-
zation of capping with ci(E) given in Lemma 42.38.2. □

Lemma 42.67.9.0FVP Let (S, δ), (S′, δ′), (S′′, δ′′) be as in Situation 42.7.1. Let g : S′ →
S and g′ : S′′ → S′ be flat morphisms of schemes and let c, c′ ∈ Z be integers
such that S, δ, S′, δ′, g, c and S′, δ′, S′′, g′, c′ are as in Situation 42.67.1. Let X → S
be locally of finite type and denote X ′ → S′ and X ′′ → S′′ the base changes by
S′ → S and S′′ → S. Then

(1) S, δ, S′′, δ′′, g ◦ g′, c+ c′ is as in Situation 42.67.1,
(2) the maps g∗ : Zk(X) → Zk+c(X ′) and (g′)∗ : Zk+c(X ′) → Zk+c+c′(X ′′)

of compose to give the map (g ◦ g′)∗ : Zk(X)→ Zk+c+c′(X ′′), and
(3) the maps g∗ : CHk(X)→ CHk+c(X ′) and (g′)∗ : CHk+c(X ′)→ CHk+c+c′(X ′′)

of Lemma 42.67.4 compose to give the map (g◦g′)∗ : CHk(X)→ CHk+c+c′(X ′′)
of Lemma 42.67.4.

Proof. Let s ∈ S and let s′′ ∈ S′′ be a generic point of an irreducible component
of (g ◦ g′)−1({s}). Set s′ = g′(s′′). Clearly, s′′ is a generic point of an irreducible
component of (g′)−1({s′}). Moreover, since g′ is flat and hence generalizations
lift along g′ (Morphisms, Lemma 29.25.8) we see that also s′ is a generic point of
an irreducible component of g−1({s}). Thus by assumption δ′(s′) = δ(s) + c and
δ′′(s′′) = δ′(s′) + c′. We conclude δ′′(s′′) = δ(s) + c + c′ and the first part of the
statement is true.
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For the second part, let Z ⊂ X be an integral closed subscheme of δ-dimension
k. Denote Z ′ ⊂ X ′ and Z ′′ ⊂ X ′′ the base changes. By definition we have
g∗[Z] = [Z ′]k+c. By Lemma 42.67.3 we have (g′)∗[Z ′]k+c = [Z ′′]k+c+c′ . This
proves the final statement. □

Lemma 42.67.10.0FVQ In Situation 42.67.1 assume c = 0 and assume that S′ = limi∈I Si
is a filtered limit of schemes Si affine over S such that

(1) with δi equal to Si → S
δ−→ Z the pair (Si, δi) is as in Situation 42.7.1,

(2) Si, δi, S, δ, S → Si, c = 0 is as in Situation 42.67.1,
(3) Si, δi, Si′ , δi′ , Si → Si′ , c = 0 for i ≥ i′ is as in Situation 42.67.1.

Then for a quasi-compact scheme X of finite type over S with base change X ′

and Xi by S′ → S and Si → S we have Zk(X ′) = colimZk(Xi) and CHk(X ′) =
colim CHk(Xi).

Proof. By the result of Lemma 42.67.9 we obtain a system of cycle groups Zk(Xi)
and a system of chow groups CHk(Xi) as well as maps colimZk(Xi)→ Zk(X ′) and
colim CHi(Xi) → CHk(X ′). We may replace S by a quasi-compact open through
which X → S factors, hence we may and do assume all the schemes occuring in
this proof are Noetherian (and hence quasi-compact and quasi-separated).

Let us show that the map colimZk(Xi)→ Zk(X ′) is surjective. Namely, let Z ′ ⊂ X ′

be an integral closed subscheme of δ′-dimension k. By Limits, Lemma 32.10.1 we
can find an i and a morphism Zi → Xi of finite presentation whose base change is
Z ′. Afer increasing i we may assume Zi is a closed subscheme of Xi, see Limits,
Lemma 32.8.5. Then Z ′ → Xi factors through Zi and we may replace Zi by the
scheme theoretic image of Z ′ → Xi. In this way we see that we may assume
Zi is an integral closed subscheme of Xi. By Lemma 42.67.2 we conclude that
dimδi(Zi) = dimδ′(Z ′) = k. Thus Zk(Xi) → Zk(X ′) maps [Zi] to [Z ′] and we
conclude surjectivity holds.

Let us show that the map colimZk(Xi)→ Zk(X ′) is injective. Let αi =
∑
nj [Zj ] ∈

Zk(Xi) be a cycle whose image in Zk(X ′) is zero. We may and do assume Zj ̸= Zj′

if j ̸= j′ and nj ̸= 0 for all j. Denote Z ′
j ⊂ X ′ the base change of Zj . By Lemma

42.67.2 each irreducible component of Z ′
j has δ′-dimension k. Moreover, as Zj is

irreducible and Z ′
j → Zj is flat (as the base change of S′ → S) we see that Z ′

j → Zj
is dominant. Hence if Z ′

j is nonempty, then some irreducible component, say Z ′,
of Z ′

j dominates Zj . It follows that Z ′ cannot be an irreducible component of Z ′
j′

for j′ ̸= j. Hence if Z ′
j is nonempty, then we see that (S′ → Si)∗αi =

∑
[Z ′
j ]r

is nonzero (as the coefficient of Z ′ would be nonzero). Thus we see that Z ′
j = ∅

for all j. However, this means that the base change of Zj by some transition map
Si′ → Si is empty by Limits, Lemma 32.4.3. Thus αi dies in the colimit as desired.

The surjectivity of colimZk(Xi)→ Zk(X ′) implies that colim CHk(Xi)→ CHk(X ′)
is surjective. To finish the proof we show that this map is injective. Let αi ∈
CHk(Xi) be a cycle whose image α′ ∈ CHk(X ′) is zero. Then there exist integral
closed subschemes W ′

l ⊂ X ′, l = 1, . . . , r of δ”-dimension k+1 and nonzero rational
functions f ′

l on W ′
l such that α′ =

∑
l=1,...,r divW ′

l
(f ′
l ). Arguing as above we can

find an i and integral closed subschemes Wi,l ⊂ Xi of δi-dimension k + 1 whose
base change is W ′

l . After increasin i we may assume we have rational functions
fi,l on Wi,l. Namely, we may think of f ′

l as a section of the structure sheaf over a

https://stacks.math.columbia.edu/tag/0FVQ
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nonempty open U ′
l ⊂ W ′

l , we can descend these opens by Limits, Lemma 32.4.11
and after increasing i we may descend f ′

l by Limits, Lemma 32.4.7. We claim that

αi =
∑

l=1,...,r
divWi,l

(fi,l)

after possibly increasing i.
To prove the claim, let Z ′

l,j ⊂W ′
l be a finite collection of integral closed subschemes

of δ′-dimension k such that f ′
l is an invertible regular function outside

⋃
j Y

′
l,j . After

increasing i (by the arguments above) we may assume there exist integral closed
subschemes Zi,l,j ⊂ Wi of δi-dimension k such that fi,l is an invertible regular
function outside

⋃
j Zi,l,j . Then we may write

divW ′
l
(f ′
l ) =

∑
nl,j [Z ′

l,j ]

and
divWi,l

(fi,l) =
∑

ni,l,j [Zi,l,j ]
To prove the claim it suffices to show that nl,i = ni,l,j . Namely, this will imply that
βi = αi −

∑
l=1,...,r divWi,l

(fi,l) is a cycle on Xi whose pullback to X ′ is zero as a
cycle! It follows that βi pulls back to zero as a cycle on Xi′ for some i′ ≥ i by an
easy argument we omit.
To prove the equality nl,i = ni,l,j we choose a generic point ξ′ ∈ Z ′

l,j and we denote
ξ ∈ Zi,l,j the image which is a generic point also. Then the local ring map

OWi,l,ξ −→ OW ′
l
,ξ′

is flat as W ′
l →Wi,l is the base change of the flat morphism S′ → Si. We also have

mξOW ′
l
,ξ′ = mξ′ because Zi,l,j pulls back to Z ′

l,j ! Thus the equality of

nl,j = ordZ′
l,j

(f ′
l ) = ordOW ′

l
,ξ′ (f ′

l ) and ni,l,j = ordZi,l,j (fi,l) = ordOWi,l,ξ
(fi,l)

follows from Algebra, Lemma 10.52.13 and the construction of ord in Algebra,
Section 10.121. □

42.68. Appendix A: Alternative approach to key lemma

0EAZ In this appendix we first define determinants detκ(M) of finite length modules M
over local rings (R,m, κ), see Subsection 42.68.1. The determinant detκ(M) is a
1-dimensional κ-vector space. We use this in Subsection 42.68.12 to define the
determinant detκ(M,φ, ψ) ∈ κ∗ of an exact (2, 1)-periodic complex (M,φ, ψ) with
M of finite length. In Subsection 42.68.26 we use these determinants to construct a
tame symbol dR(a, b) = detκ(R/ab, a, b) for a pair of nonzerodivisors a, b ∈ R when
R is Noetherian of dimension 1. Although there is no doubt that

dR(a, b) = ∂R(a, b)
where ∂R is as in Section 42.5, we have not (yet) added the verification. The
advantage of the tame symbol as constructed in this appendix is that it extends
(for example) to pairs of injective endomorphisms φ,ψ of a finite R-module M
of dimension 1 such that φ(ψ(M)) = ψ(φ(M)). In Subsection 42.68.40 we relate
Herbrand quotients and determinants. An easy to state version of the main result
(Proposition 42.68.43) is the formula

−eR(M,φ, ψ) = ordR(detK(MK , φ, ψ))
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when (M,φ, ψ) is a (2, 1)-periodic complex whose Herbrand quotient eR (Definition
42.2.2) is defined over a 1-dimensonal Noetherian local domain R with fraction field
K. We use this proposition to give an alternative proof of the key lemma (Lemma
42.6.3) for the tame symbol constructed in this appendix, see Lemma 42.68.46.

42.68.1. Determinants of finite length modules.02P5 The material in this section is re-
lated to the material in the paper [KM76] and to the material in the thesis [Ros09].

Let (R,m, κ) be a local ring. Let φ : M → M be an R-linear endomorphism of
a finite length R-module M . In More on Algebra, Section 15.120 we have already
defined the determinant detκ(φ) (and the trace and the characteristic polynomial)
of φ relative to κ. In this section, we will construct a canonical 1-dimensional κ-
vector space detκ(M) such that detκ(φ : M → M) : detκ(M) → detκ(M) is equal
to multiplication by detκ(φ). If M is annihilated by m, then M can be viewed
as a finite dimension κ-vector space and then we have detκ(M) = ∧nκ(M) where
n = dimκ(M). Our construction will generalize this to all finite length modules
over R and if R contains its residue field, then the determinant detκ(M) will be
given by the usual determinant in a suitable sense, see Remark 42.68.9.

Definition 42.68.2.02P6 Let R be a local ring with maximal ideal m and residue field
κ. Let M be a finite length R-module. Say l = lengthR(M).

(1) Given elements x1, . . . , xr ∈M we denote ⟨x1, . . . , xr⟩ = Rx1 + . . .+Rxr
the R-submodule of M generated by x1, . . . , xr.

(2) We will say an l-tuple of elements (e1, . . . , el) of M is admissible if mei ⊂
⟨e1, . . . , ei−1⟩ for i = 1, . . . , l.

(3) A symbol [e1, . . . , el] will mean (e1, . . . , el) is an admissible l-tuple.
(4) An admissible relation between symbols is one of the following:

(a) if (e1, . . . , el) is an admissible sequence and for some 1 ≤ a ≤ l we
have ea ∈ ⟨e1, . . . , ea−1⟩, then [e1, . . . , el] = 0,

(b) if (e1, . . . , el) is an admissible sequence and for some 1 ≤ a ≤ l we
have ea = λe′

a + x with λ ∈ R∗, and x ∈ ⟨e1, . . . , ea−1⟩, then

[e1, . . . , el] = λ[e1, . . . , ea−1, e
′
a, ea+1, . . . , el]

where λ ∈ κ∗ is the image of λ in the residue field, and
(c) if (e1, . . . , el) is an admissible sequence and mea ⊂ ⟨e1, . . . , ea−2⟩ then

[e1, . . . , el] = −[e1, . . . , ea−2, ea, ea−1, ea+1, . . . , el].

(5) We define the determinant of the finite length R-module M to be

detκ(M) =
{

κ-vector space generated by symbols
κ-linear combinations of admissible relations

}
We stress that always l = lengthR(M). We also stress that it does not follow that
the symbol [e1, . . . , el] is additive in the entries (this will typically not be the case).
Before we can show that the determinant detκ(M) actually has dimension 1 we
have to show that it has dimension at most 1.

Lemma 42.68.3.02P7 With notations as above we have dimκ(detκ(M)) ≤ 1.

Proof. Fix an admissible sequence (f1, . . . , fl) of M such that

lengthR(⟨f1, . . . , fi⟩) = i

https://stacks.math.columbia.edu/tag/02P6
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for i = 1, . . . , l. Such an admissible sequence exists exactly because M has length l.
We will show that any element of detκ(M) is a κ-multiple of the symbol [f1, . . . , fl].
This will prove the lemma.
Let (e1, . . . , el) be an admissible sequence of M . It suffices to show that [e1, . . . , el]
is a multiple of [f1, . . . , fl]. First assume that ⟨e1, . . . , el⟩ ≠ M . Then there exists
an i ∈ [1, . . . , l] such that ei ∈ ⟨e1, . . . , ei−1⟩. It immediately follows from the
first admissible relation that [e1, . . . , en] = 0 in detκ(M). Hence we may assume
that ⟨e1, . . . , el⟩ = M . In particular there exists a smallest index i ∈ {1, . . . , l}
such that f1 ∈ ⟨e1, . . . , ei⟩. This means that ei = λf1 + x with x ∈ ⟨e1, . . . , ei−1⟩
and λ ∈ R∗. By the second admissible relation this means that [e1, . . . , el] =
λ[e1, . . . , ei−1, f1, ei+1, . . . , el]. Note that mf1 = 0. Hence by applying the third
admissible relation i− 1 times we see that

[e1, . . . , el] = (−1)i−1λ[f1, e1, . . . , ei−1, ei+1, . . . , el].
Note that it is also the case that ⟨f1, e1, . . . , ei−1, ei+1, . . . , el⟩ = M . By induction
suppose we have proven that our original symbol is equal to a scalar times

[f1, . . . , fj , ej+1, . . . , el]
for some admissible sequence (f1, . . . , fj , ej+1, . . . , el) whose elements generate M ,
i.e., with ⟨f1, . . . , fj , ej+1, . . . , el⟩ = M . Then we find the smallest i such that
fj+1 ∈ ⟨f1, . . . , fj , ej+1, . . . , ei⟩ and we go through the same process as above to see
that

[f1, . . . , fj , ej+1, . . . , el] = (scalar)[f1, . . . , fj , fj+1, ej+1, . . . , êi, . . . , el]
Continuing in this vein we obtain the desired result. □

Before we show that detκ(M) always has dimension 1, let us show that it agrees
with the usual top exterior power in the case the module is a vector space over κ.
Lemma 42.68.4.02P8 Let R be a local ring with maximal ideal m and residue field κ.
Let M be a finite length R-module which is annihilated by m. Let l = dimκ(M).
Then the map

detκ(M) −→ ∧lκ(M), [e1, . . . , el] 7−→ e1 ∧ . . . ∧ el
is an isomorphism.
Proof. It is clear that the rule described in the lemma gives a κ-linear map since all
of the admissible relations are satisfied by the usual symbols e1 ∧ . . .∧ el. It is also
clearly a surjective map. Since by Lemma 42.68.3 the left hand side has dimension
at most one we see that the map is an isomorphism. □

Lemma 42.68.5.02P9 Let R be a local ring with maximal ideal m and residue field κ.
Let M be a finite length R-module. The determinant detκ(M) defined above is a
κ-vector space of dimension 1. It is generated by the symbol [f1, . . . , fl] for any
admissible sequence such that ⟨f1, . . . fl⟩ = M .
Proof. We know detκ(M) has dimension at most 1, and in fact that it is generated
by [f1, . . . , fl], by Lemma 42.68.3 and its proof. We will show by induction on
l = length(M) that it is nonzero. For l = 1 it follows from Lemma 42.68.4. Choose
a nonzero element f ∈M with mf = 0. Set M = M/⟨f⟩, and denote the quotient
map x 7→ x. We will define a surjective map

ψ : detk(M)→ detκ(M)

https://stacks.math.columbia.edu/tag/02P8
https://stacks.math.columbia.edu/tag/02P9
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which will prove the lemma since by induction the determinant of M is nonzero.
We define ψ on symbols as follows. Let (e1, . . . , el) be an admissible sequence. If
f ̸∈ ⟨e1, . . . , el⟩ then we simply set ψ([e1, . . . , el]) = 0. If f ∈ ⟨e1, . . . , el⟩ then we
choose an i minimal such that f ∈ ⟨e1, . . . , ei⟩. We may write ei = λf +x for some
unit λ ∈ R and x ∈ ⟨e1, . . . , ei−1⟩. In this case we set

ψ([e1, . . . , el]) = (−1)iλ[e1, . . . , ei−1, ei+1, . . . , el].
Note that it is indeed the case that (e1, . . . , ei−1, ei+1, . . . , el) is an admissible se-
quence in M , so this makes sense. Let us show that extending this rule κ-linearly
to linear combinations of symbols does indeed lead to a map on determinants. To
do this we have to show that the admissible relations are mapped to zero.
Type (a) relations. Suppose we have (e1, . . . , el) an admissible sequence and for
some 1 ≤ a ≤ l we have ea ∈ ⟨e1, . . . , ea−1⟩. Suppose that f ∈ ⟨e1, . . . , ei⟩
with i minimal. Then i ̸= a and ea ∈ ⟨e1, . . . , êi, . . . , ea−1⟩ if i < a or ea ∈
⟨e1, . . . , ea−1⟩ if i > a. Thus the same admissible relation for detκ(M) forces the
symbol [e1, . . . , ei−1, ei+1, . . . , el] to be zero as desired.
Type (b) relations. Suppose we have (e1, . . . , el) an admissible sequence and for
some 1 ≤ a ≤ l we have ea = λe′

a+x with λ ∈ R∗, and x ∈ ⟨e1, . . . , ea−1⟩. Suppose
that f ∈ ⟨e1, . . . , ei⟩ with i minimal. Say ei = µf + y with y ∈ ⟨e1, . . . , ei−1⟩. If
i < a then the desired equality is
(−1)iλ[e1, . . . , ei−1, ei+1, . . . , el] = (−1)iλ[e1, . . . , ei−1, ei+1, . . . , ea−1, e

′
a, ea+1, . . . , el]

which follows from ea = λe′
a + x and the corresponding admissible relation for

detκ(M). If i > a then the desired equality is

(−1)iλ[e1, . . . , ei−1, ei+1, . . . , el] = (−1)iλ[e1, . . . , ea−1, e
′
a, ea+1, . . . , ei−1, ei+1, . . . , el]

which follows from ea = λe′
a + x and the corresponding admissible relation for

detκ(M). The interesting case is when i = a. In this case we have ea = λe′
a + x =

µf + y. Hence also e′
a = λ−1(µf + y − x). Thus we see that

ψ([e1, . . . , el]) = (−1)iµ[e1, . . . , ei−1, ei+1, . . . , el] = ψ(λ[e1, . . . , ea−1, e
′
a, ea+1, . . . , el])

as desired.
Type (c) relations. Suppose that (e1, . . . , el) is an admissible sequence and mea ⊂
⟨e1, . . . , ea−2⟩. Suppose that f ∈ ⟨e1, . . . , ei⟩ with i minimal. Say ei = λf + x with
x ∈ ⟨e1, . . . , ei−1⟩. We distinguish 4 cases:
Case 1: i < a− 1. The desired equality is

(−1)iλ[e1, . . . , ei−1, ei+1, . . . , el]
= (−1)i+1λ[e1, . . . , ei−1, ei+1, . . . , ea−2, ea, ea−1, ea+1, . . . , el]

which follows from the type (c) admissible relation for detκ(M).
Case 2: i > a. The desired equality is

(−1)iλ[e1, . . . , ei−1, ei+1, . . . , el]
= (−1)i+1λ[e1, . . . , ea−2, ea, ea−1, ea+1, . . . , ei−1, ei+1, . . . , el]

which follows from the type (c) admissible relation for detκ(M).
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Case 3: i = a. We write ea = λf + µea−1 + y with y ∈ ⟨e1, . . . , ea−2⟩. Then

ψ([e1, . . . , el]) = (−1)aλ[e1, . . . , ea−1, ea+1, . . . , el]

by definition. If µ is nonzero, then we have ea−1 = −µ−1λf + µ−1ea − µ−1y and
we obtain

ψ(−[e1, . . . , ea−2, ea, ea−1, ea+1, . . . , el]) = (−1)aµ−1λ[e1, . . . , ea−2, ea, ea+1, . . . , el]

by definition. Since in M we have ea = µea−1 + y we see the two outcomes are
equal by relation (a) for detκ(M). If on the other hand µ is zero, then we can write
ea = λf + y with y ∈ ⟨e1, . . . , ea−2⟩ and we have

ψ(−[e1, . . . , ea−2, ea, ea−1, ea+1, . . . , el]) = (−1)aλ[e1, . . . , ea−1, ea+1, . . . , el]

which is equal to ψ([e1, . . . , el]).

Case 4: i = a− 1. Here we have

ψ([e1, . . . , el]) = (−1)a−1λ[e1, . . . , ea−2, ea, . . . , el]

by definition. If f ̸∈ ⟨e1, . . . , ea−2, ea⟩ then

ψ(−[e1, . . . , ea−2, ea, ea−1, ea+1, . . . , el]) = (−1)a+1λ[e1, . . . , ea−2, ea, . . . , el]

Since (−1)a−1 = (−1)a+1 the two expressions are the same. Finally, assume f ∈
⟨e1, . . . , ea−2, ea⟩. In this case we see that ea−1 = λf + x with x ∈ ⟨e1, . . . , ea−2⟩
and ea = µf + y with y ∈ ⟨e1, . . . , ea−2⟩ for units λ, µ ∈ R. We conclude that
both ea ∈ ⟨e1, . . . , ea−1⟩ and ea−1 ∈ ⟨e1, . . . , ea−2, ea⟩. In this case a relation of
type (a) applies to both [e1, . . . , el] and [e1, . . . , ea−2, ea, ea−1, ea+1, . . . , el] and the
compatibility of ψ with these shown above to see that both

ψ([e1, . . . , el]) and ψ([e1, . . . , ea−2, ea, ea−1, ea+1, . . . , el])

are zero, as desired.

At this point we have shown that ψ is well defined, and all that remains is to show
that it is surjective. To see this let (f2, . . . , f l) be an admissible sequence in M . We
can choose lifts f2, . . . , fl ∈M , and then (f, f2, . . . , fl) is an admissible sequence in
M . Since ψ([f, f2, . . . , fl]) = [f2, . . . , fl] we win. □

Let R be a local ring with maximal ideal m and residue field κ. Note that if φ :
M → N is an isomorphism of finite length R-modules, then we get an isomorphism

detκ(φ) : detκ(M)→ detκ(N)

simply by the rule

detκ(φ)([e1, . . . , el]) = [φ(e1), . . . , φ(el)]

for any symbol [e1, . . . , el] for M . Hence we see that detκ is a functor

(42.68.5.1)05M7
{

finite length R-modules
with isomorphisms

}
−→

{
1-dimensional κ-vector spaces

with isomorphisms

}
This is typical for a “determinant functor” (see [Knu02]), as is the following addi-
tivity property.
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Lemma 42.68.6.02PA Let (R,m, κ) be a local ring. For every short exact sequence
0→ K → L→M → 0

of finite length R-modules there exists a canonical isomorphism
γK→L→M : detκ(K)⊗κ detκ(M) −→ detκ(L)

defined by the rule on nonzero symbols
[e1, . . . , ek]⊗ [f1, . . . , fm] −→ [e1, . . . , ek, f1, . . . , fm]

with the following properties:
(1) For every isomorphism of short exact sequences, i.e., for every commuta-

tive diagram
0 // K //

u

��

L //

v

��

M //

w

��

0

0 // K ′ // L′ // M ′ // 0
with short exact rows and isomorphisms u, v, w we have

γK′→L′→M ′ ◦ (detκ(u)⊗ detκ(w)) = detκ(v) ◦ γK→L→M ,

(2) for every commutative square of finite length R-modules with exact rows
and columns

0

��

0

��

0

��
0 // A //

��

B //

��

C //

��

0

0 // D //

��

E //

��

F //

��

0

0 // G //

��

H //

��

I //

��

0

0 0 0
the following diagram is commutative

detκ(A)⊗ detκ(C)⊗ detκ(G)⊗ detκ(I)

ϵ

��

γA→B→C⊗γG→H→I

// detκ(B)⊗ detκ(H)

γB→E→H

��
detκ(E)

detκ(A)⊗ detκ(G)⊗ detκ(C)⊗ detκ(I) γA→D→G⊗γC→F→I // detκ(D)⊗ detκ(F )

γD→E→F

OO

where ϵ is the switch of the factors in the tensor product times (−1)cg
with c = lengthR(C) and g = lengthR(G), and

(3) the map γK→L→M agrees with the usual isomorphism if 0 → K → L →
M → 0 is actually a short exact sequence of κ-vector spaces.

https://stacks.math.columbia.edu/tag/02PA


42.68. APPENDIX A: ALTERNATIVE APPROACH TO KEY LEMMA 3805

Proof. The significance of taking nonzero symbols in the explicit description of
the map γK→L→M is simply that if (e1, . . . , el) is an admissible sequence in K,
and (f1, . . . , fm) is an admissible sequence in M , then it is not guaranteed that
(e1, . . . , el, f1, . . . , fm) is an admissible sequence in L (where of course fi ∈ L sig-
nifies a lift of f i). However, if the symbol [e1, . . . , el] is nonzero in detκ(K), then
necessarily K = ⟨e1, . . . , ek⟩ (see proof of Lemma 42.68.3), and in this case it is true
that (e1, . . . , ek, f1, . . . , fm) is an admissible sequence. Moreover, by the admissible
relations of type (b) for detκ(L) we see that the value of [e1, . . . , ek, f1, . . . , fm] in
detκ(L) is independent of the choice of the lifts fi in this case also. Given this
remark, it is clear that an admissible relation for e1, . . . , ek in K translates into an
admissible relation among e1, . . . , ek, f1, . . . , fm in L, and similarly for an admissi-
ble relation among the f1, . . . , fm. Thus γ defines a linear map of vector spaces as
claimed in the lemma.
By Lemma 42.68.5 we know detκ(L) is generated by any single symbol [x1, . . . , xk+m]
such that (x1, . . . , xk+m) is an admissible sequence with L = ⟨x1, . . . , xk+m⟩. Hence
it is clear that the map γK→L→M is surjective and hence an isomorphism.
Property (1) holds because

detκ(v)([e1, . . . , ek, f1, . . . , fm])
= [v(e1), . . . , v(ek), v(f1), . . . , v(fm)]
= γK′→L′→M ′([u(e1), . . . , u(ek)]⊗ [w(f1), . . . , w(fm)]).

Property (2) means that given a symbol [α1, . . . , αa] generating detκ(A), a symbol
[γ1, . . . , γc] generating detκ(C), a symbol [ζ1, . . . , ζg] generating detκ(G), and a
symbol [ι1, . . . , ιi] generating detκ(I) we have

[α1, . . . , αa, γ̃1, . . . , γ̃c, ζ̃1, . . . , ζ̃g, ι̃1, . . . , ι̃i]
= (−1)cg[α1, . . . , αa, ζ̃1, . . . , ζ̃g, γ̃1, . . . , γ̃c, ι̃1, . . . , ι̃i]

(for suitable lifts x̃ in E) in detκ(E). This holds because we may use the admissible
relations of type (c) cg times in the following order: move the ζ̃1 past the elements
γ̃c, . . . , γ̃1 (allowed since mζ̃1 ⊂ A), then move ζ̃2 past the elements γ̃c, . . . , γ̃1
(allowed since mζ̃2 ⊂ A+Rζ̃1), and so on.
Part (3) of the lemma is obvious. This finishes the proof. □

We can use the maps γ of the lemma to define more general maps γ as follows.
Suppose that (R,m, κ) is a local ring. Let M be a finite length R-module and
suppose we are given a finite filtration (see Homology, Definition 12.19.1)

0 = Fm ⊂ Fm−1 ⊂ . . . ⊂ Fn+1 ⊂ Fn = M

then there is a well defined and canonical isomorphism
γ(M,F ) : detκ(Fm−1/Fm)⊗κ . . .⊗k detκ(Fn/Fn+1) −→ detκ(M)

To construct it we use isomorphisms of Lemma 42.68.6 coming from the short exact
sequences 0→ F i−1/F i →M/F i →M/F i−1 → 0. Part (2) of Lemma 42.68.6 with
G = 0 shows we obtain the same isomorphism if we use the short exact sequences
0→ F i → F i−1 → F i−1/F i → 0.
Here is another typical result for determinant functors. It is not hard to show. The
tricky part is usually to show the existence of a determinant functor.
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Lemma 42.68.7.02PB Let (R,m, κ) be any local ring. The functor

detκ :
{

finite length R-modules
with isomorphisms

}
−→

{
1-dimensional κ-vector spaces

with isomorphisms

}
endowed with the maps γK→L→M is characterized by the following properties

(1) its restriction to the subcategory of modules annihilated by m is isomor-
phic to the usual determinant functor (see Lemma 42.68.4), and

(2) (1), (2) and (3) of Lemma 42.68.6 hold.

Proof. Omitted. □

Lemma 42.68.8.02PC Let (R′,m′) → (R,m) be a local ring homomorphism which in-
duces an isomorphism on residue fields κ. Then for every finite length R-module the
restriction MR′ is a finite length R′-module and there is a canonical isomorphism

detR,κ(M) −→ detR′,κ(MR′)

This isomorphism is functorial inM and compatible with the isomorphisms γK→L→M

of Lemma 42.68.6 defined for detR,κ and detR′,κ.

Proof. If the length of M as an R-module is l, then the length of M as an R′-
module (i.e., MR′) is l as well, see Algebra, Lemma 10.52.12. Note that an ad-
missible sequence x1, . . . , xl of M over R is an admissible sequence of M over
R′ as m′ maps into m. The isomorphism is obtained by mapping the symbol
[x1, . . . , xl] ∈ detR,κ(M) to the corresponding symbol [x1, . . . , xl] ∈ detR′,κ(M).
It is immediate to verify that this is functorial for isomorphisms and compatible
with the isomorphisms γ of Lemma 42.68.6. □

Remark 42.68.9.0BDQ Let (R,m, κ) be a local ring and assume either the characteristic
of κ is zero or it is p and pR = 0. Let M1, . . . ,Mn be finite length R-modules. We
will show below that there exists an ideal I ⊂ m annihilating Mi for i = 1, . . . , n
and a section σ : κ → R/I of the canonical surjection R/I → κ. The restriction
Mi,κ of Mi via σ is a κ-vector space of dimension li = lengthR(Mi) and using
Lemma 42.68.8 we see that

detκ(Mi) = ∧liκ (Mi,κ)

These isomorphisms are compatible with the isomorphisms γK→M→L of Lemma
42.68.6 for short exact sequences of finite length R-modules annihilated by I. The
conclusion is that verifying a property of detκ often reduces to verifying correspond-
ing properties of the usual determinant on the category finite dimensional vector
spaces.

For I we can take the annihilator (Algebra, Definition 10.40.3) of the module M =⊕
Mi. In this case we see that R/I ⊂ EndR(M) hence has finite length. Thus

R/I is an Artinian local ring with residue field κ. Since an Artinian local ring is
complete we see that R/I has a coefficient ring by the Cohen structure theorem
(Algebra, Theorem 10.160.8) which is a field by our assumption on R.

Here is a case where we can compute the determinant of a linear map. In fact there
is nothing mysterious about this in any case, see Example 42.68.11 for a random
example.

https://stacks.math.columbia.edu/tag/02PB
https://stacks.math.columbia.edu/tag/02PC
https://stacks.math.columbia.edu/tag/0BDQ
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Lemma 42.68.10.02PD Let R be a local ring with residue field κ. Let u ∈ R∗ be a
unit. Let M be a module of finite length over R. Denote uM : M → M the map
multiplication by u. Then

detκ(uM ) : detκ(M) −→ detκ(M)

is multiplication by ul where l = lengthR(M) and u ∈ κ∗ is the image of u.

Proof. Denote fM ∈ κ∗ the element such that detκ(uM ) = fM iddetκ(M). Suppose
that 0 → K → L → M → 0 is a short exact sequence of finite R-modules. Then
we see that uk, uL, uM give an isomorphism of short exact sequences. Hence by
Lemma 42.68.6 (1) we conclude that fKfM = fL. This means that by induction on
length it suffices to prove the lemma in the case of length 1 where it is trivial. □

Example 42.68.11.02PE Consider the local ring R = Zp. Set M = Zp/(p2) ⊕ Zp/(p3).
Let u : M →M be the map given by the matrix

u =
(
a b
pc d

)
where a, b, c, d ∈ Zp, and a, d ∈ Z∗

p. In this case detκ(u) equals multiplication by
a2d3 mod p ∈ F∗

p. This can easily be seen by consider the effect of u on the symbol
[p2e, pe, pf, e, f ] where e = (0, 1) ∈M and f = (1, 0) ∈M .

42.68.12. Periodic complexes and determinants.0BDR Let R be a local ring with residue
field κ. Let (M,φ, ψ) be a (2, 1)-periodic complex over R. Assume that M has
finite length and that (M,φ, ψ) is exact. We are going to use the determinant
construction to define an invariant of this situation. See Subsection 42.68.1. Let us
abbreviate Kφ = Ker(φ), Iφ = Im(φ), Kψ = Ker(ψ), and Iψ = Im(ψ). The short
exact sequences

0→ Kφ →M → Iφ → 0, 0→ Kψ →M → Iψ → 0

give isomorphisms

γφ : detκ(Kφ)⊗ detκ(Iφ) −→ detκ(M), γψ : detκ(Kψ)⊗ detκ(Iψ) −→ detκ(M),

see Lemma 42.68.6. On the other hand the exactness of the complex gives equalities
Kφ = Iψ, and Kψ = Iφ and hence an isomorphism

σ : detκ(Kφ)⊗ detκ(Iφ) −→ detκ(Kψ)⊗ detκ(Iψ)

by switching the factors. Using this notation we can define our invariant.

Definition 42.68.13.02PJ Let R be a local ring with residue field κ. Let (M,φ, ψ) be a
(2, 1)-periodic complex over R. Assume that M has finite length and that (M,φ, ψ)
is exact. The determinant of (M,φ, ψ) is the element

detκ(M,φ, ψ) ∈ κ∗

such that the composition

detκ(M)
γψ◦σ◦γ−1

φ−−−−−−→ detκ(M)

is multiplication by (−1)lengthR(Iφ)lengthR(Iψ) detκ(M,φ, ψ).

https://stacks.math.columbia.edu/tag/02PD
https://stacks.math.columbia.edu/tag/02PE
https://stacks.math.columbia.edu/tag/02PJ
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Remark 42.68.14.02PK Here is a more down to earth description of the determinant
introduced above. Let R be a local ring with residue field κ. Let (M,φ, ψ) be a
(2, 1)-periodic complex over R. Assume that M has finite length and that (M,φ, ψ)
is exact. Let us abbreviate Iφ = Im(φ), Iψ = Im(ψ) as above. Assume that
lengthR(Iφ) = a and lengthR(Iψ) = b, so that a + b = lengthR(M) by exactness.
Choose admissible sequences x1, . . . , xa ∈ Iφ and y1, . . . , yb ∈ Iψ such that the sym-
bol [x1, . . . , xa] generates detκ(Iφ) and the symbol [x1, . . . , xb] generates detκ(Iψ).
Choose x̃i ∈M such that φ(x̃i) = xi. Choose ỹj ∈M such that ψ(ỹj) = yj . Then
detκ(M,φ, ψ) is characterized by the equality

[x1, . . . , xa, ỹ1, . . . , ỹb] = (−1)ab detκ(M,φ, ψ)[y1, . . . , yb, x̃1, . . . , x̃a]

in detκ(M). This also explains the sign.

Lemma 42.68.15.02PL Let R be a local ring with residue field κ. Let (M,φ, ψ) be a
(2, 1)-periodic complex over R. Assume that M has finite length and that (M,φ, ψ)
is exact. Then

detκ(M,φ, ψ) detκ(M,ψ, φ) = 1.

Proof. Omitted. □

Lemma 42.68.16.02PM Let R be a local ring with residue field κ. Let (M,φ, φ) be a
(2, 1)-periodic complex over R. Assume that M has finite length and that (M,φ, φ)
is exact. Then lengthR(M) = 2lengthR(Im(φ)) and

detκ(M,φ, φ) = (−1)lengthR(Im(φ)) = (−1) 1
2 lengthR(M)

Proof. Follows directly from the sign rule in the definitions. □

Lemma 42.68.17.02PN Let R be a local ring with residue field κ. Let M be a finite
length R-module.

(1) if φ : M →M is an isomorphism then detκ(M,φ, 0) = detκ(φ).
(2) if ψ : M →M is an isomorphism then detκ(M, 0, ψ) = detκ(ψ)−1.

Proof. Let us prove (1). Set ψ = 0. Then we may, with notation as above Definition
42.68.13, identify Kφ = Iψ = 0, Iφ = Kψ = M . With these identifications, the
map

γφ : κ⊗ detκ(M) = detκ(Kφ)⊗ detκ(Iφ) −→ detκ(M)
is identified with detκ(φ−1). On the other hand the map γψ is identified with the
identity map. Hence γψ ◦ σ ◦ γ−1

φ is equal to detκ(φ) in this case. Whence the
result. We omit the proof of (2). □

Lemma 42.68.18.02PO Let R be a local ring with residue field κ. Suppose that we have
a short exact sequence of (2, 1)-periodic complexes

0→ (M1, φ1, ψ1)→ (M2, φ2, ψ2)→ (M3, φ3, ψ3)→ 0

with all Mi of finite length, and each (M1, φ1, ψ1) exact. Then

detκ(M2, φ2, ψ2) = detκ(M1, φ1, ψ1) detκ(M3, φ3, ψ3).

in κ∗.

https://stacks.math.columbia.edu/tag/02PK
https://stacks.math.columbia.edu/tag/02PL
https://stacks.math.columbia.edu/tag/02PM
https://stacks.math.columbia.edu/tag/02PN
https://stacks.math.columbia.edu/tag/02PO
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Proof. Let us abbreviate Iφ,i = Im(φi), Kφ,i = Ker(φi), Iψ,i = Im(ψi), and Kψ,i =
Ker(ψi). Observe that we have a commutative square

0

��

0

��

0

��
0 // Kφ,1 //

��

Kφ,2 //

��

Kφ,3 //

��

0

0 // M1 //

��

M2 //

��

M3 //

��

0

0 // Iφ,1 //

��

Iφ,2 //

��

Iφ,3 //

��

0

0 0 0
of finite length R-modules with exact rows and columns. The top row is exact
since it can be identified with the sequence Iψ,1 → Iψ,2 → Iψ,3 → 0 of images, and
similarly for the bottom row. There is a similar diagram involving the modules
Iψ,i and Kψ,i. By definition detκ(M2, φ2, ψ2) corresponds, up to a sign, to the
composition of the left vertical maps in the following diagram

detκ(M1)⊗ detκ(M3) γ //

γ−1⊗γ−1

��

detκ(M2)

γ−1

��
detκ(Kφ,1)⊗ detκ(Iφ,1)⊗ detκ(Kφ,3)⊗ detκ(Iφ,3)

σ⊗σ
��

γ⊗γ // detκ(Kφ,2)⊗ detκ(Iφ,2)

σ

��
detκ(Kψ,1)⊗ detκ(Iψ,1)⊗ detκ(Kψ,3)⊗ detκ(Iψ,3)

γ⊗γ
��

γ⊗γ // detκ(Kψ,2)⊗ detκ(Iψ,2)

γ

��
detκ(M1)⊗ detκ(M3) γ // detκ(M2)

The top and bottom squares are commutative up to sign by applying Lemma 42.68.6
(2). The middle square is trivially commutative (we are just switching factors).
Hence we see that detκ(M2, φ2, ψ2) = ϵ detκ(M1, φ1, ψ1) detκ(M3, φ3, ψ3) for some
sign ϵ. And the sign can be worked out, namely the outer rectangle in the diagram
above commutes up to

ϵ = (−1)length(Iφ,1)length(Kφ,3)+length(Iψ,1)length(Kψ,3)

= (−1)length(Iφ,1)length(Iψ,3)+length(Iψ,1)length(Iφ,3)

(proof omitted). It follows easily from this that the signs work out as well. □

Example 42.68.19.02PP Let k be a field. Consider the ring R = k[T ]/(T 2) of dual
numbers over k. Denote t the class of T in R. Let M = R and φ = ut, ψ = vt with
u, v ∈ k∗. In this case detk(M) has generator e = [t, 1]. We identify Iφ = Kφ =
Iψ = Kψ = (t). Then γφ(t ⊗ t) = u−1[t, 1] (since u−1 ∈ M is a lift of t ∈ Iφ) and
γψ(t⊗ t) = v−1[t, 1] (same reason). Hence we see that detk(M,φ, ψ) = −u/v ∈ k∗.

https://stacks.math.columbia.edu/tag/02PP
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Example 42.68.20.02PQ Let R = Zp and let M = Zp/(pl). Let φ = pbu and φ = pav
with a, b ≥ 0, a+ b = l and u, v ∈ Z∗

p. Then a computation as in Example 42.68.19
shows that

detFp(Zp/(pl), pbu, pav) = (−1)abua/vb mod p

= (−1)ordp(α)ordp(β)α
ordp(β)

βordp(α) mod p

with α = pbu, β = pav ∈ Zp. See Lemma 42.68.37 for a more general case (and a
proof).

Example 42.68.21.02PR Let R = k be a field. Let M = k⊕a ⊕ k⊕b be l = a + b
dimensional. Let φ and ψ be the following diagonal matrices

φ = diag(u1, . . . , ua, 0, . . . , 0), ψ = diag(0, . . . , 0, v1, . . . , vb)
with ui, vj ∈ k∗. In this case we have

detk(M,φ, ψ) = u1 . . . ua
v1 . . . vb

.

This can be seen by a direct computation or by computing in case l = 1 and using
the additivity of Lemma 42.68.18.

Example 42.68.22.02PS Let R = k be a field. Let M = k⊕a⊕k⊕a be l = 2a dimensional.
Let φ and ψ be the following block matrices

φ =
(

0 U
0 0

)
, ψ =

(
0 V
0 0

)
,

with U, V ∈ Mat(a× a, k) invertible. In this case we have

detk(M,φ, ψ) = (−1)a det(U)
det(V ) .

This can be seen by a direct computation. The case a = 1 is similar to the compu-
tation in Example 42.68.19.

Example 42.68.23.02PT Let R = k be a field. Let M = k⊕4. Let

φ =


0 0 0 0
u1 0 0 0
0 0 0 0
0 0 u2 0

 φ =


0 0 0 0
0 0 v2 0
0 0 0 0
v1 0 0 0


with u1, u2, v1, v2 ∈ k∗. Then we have

detk(M,φ, ψ) = −u1u2

v1v2
.

Next we come to the analogue of the fact that the determinant of a composition
of linear endomorphisms is the product of the determinants. To avoid very long
formulae we write Iφ = Im(φ), and Kφ = Ker(φ) for any R-module map φ : M →
M . We also denote φψ = φ ◦ ψ for a pair of morphisms φ,ψ : M →M .

Lemma 42.68.24.02PU Let R be a local ring with residue field κ. Let M be a finite
length R-module. Let α, β, γ be endomorphisms of M . Assume that

(1) Iα = Kβγ , and similarly for any permutation of α, β, γ,
(2) Kα = Iβγ , and similarly for any permutation of α, β, γ.

Then

https://stacks.math.columbia.edu/tag/02PQ
https://stacks.math.columbia.edu/tag/02PR
https://stacks.math.columbia.edu/tag/02PS
https://stacks.math.columbia.edu/tag/02PT
https://stacks.math.columbia.edu/tag/02PU
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(1) The triple (M,α, βγ) is an exact (2, 1)-periodic complex.
(2) The triple (Iγ , α, β) is an exact (2, 1)-periodic complex.
(3) The triple (M/Kβ , α, γ) is an exact (2, 1)-periodic complex.
(4) We have

detκ(M,α, βγ) = detκ(Iγ , α, β) detκ(M/Kβ , α, γ).

Proof. It is clear that the assumptions imply part (1) of the lemma.
To see part (1) note that the assumptions imply that Iγα = Iαγ , and similarly for
kernels and any other pair of morphisms. Moreover, we see that Iγβ = Iβγ = Kα ⊂
Iγ and similarly for any other pair. In particular we get a short exact sequence

0→ Iβγ → Iγ
α−→ Iαγ → 0

and similarly we get a short exact sequence

0→ Iαγ → Iγ
β−→ Iβγ → 0.

This proves (Iγ , α, β) is an exact (2, 1)-periodic complex. Hence part (2) of the
lemma holds.
To see that α, γ give well defined endomorphisms of M/Kβ we have to check that
α(Kβ) ⊂ Kβ and γ(Kβ) ⊂ Kβ . This is true because α(Kβ) = α(Iγα) = Iαγα ⊂
Iαγ = Kβ , and similarly in the other case. The kernel of the map α : M/Kβ →
M/Kβ is Kβα/Kβ = Iγ/Kβ . Similarly, the kernel of γ : M/Kβ → M/Kβ is equal
to Iα/Kβ . Hence we conclude that (3) holds.
We introduce r = lengthR(Kα), s = lengthR(Kβ) and t = lengthR(Kγ). By
the exact sequences above and our hypotheses we have lengthR(Iα) = s + t,
lengthR(Iβ) = r + t, lengthR(Iγ) = r + s, and length(M) = r + s+ t. Choose

(1) an admissible sequence x1, . . . , xr ∈ Kα generating Kα

(2) an admissible sequence y1, . . . , ys ∈ Kβ generating Kβ ,
(3) an admissible sequence z1, . . . , zt ∈ Kγ generating Kγ ,
(4) elements x̃i ∈M such that βγx̃i = xi,
(5) elements ỹi ∈M such that αγỹi = yi,
(6) elements z̃i ∈M such that βαz̃i = zi.

With these choices the sequence y1, . . . , ys, αz̃1, . . . , αz̃t is an admissible sequence in
Iα generating it. Hence, by Remark 42.68.14 the determinant D = detκ(M,α, βγ)
is the unique element of κ∗ such that

[y1, . . . , ys, αz̃1, . . . , αz̃s, x̃1, . . . , x̃r]
= (−1)r(s+t)D[x1, . . . , xr, γỹ1, . . . , γỹs, z̃1, . . . , z̃t]

By the same remark, we see that D1 = detκ(M/Kβ , α, γ) is characterized by
[y1, . . . , ys, αz̃1, . . . , αz̃t, x̃1, . . . , x̃r] = (−1)rtD1[y1, . . . , ys, γx̃1, . . . , γx̃r, z̃1, . . . , z̃t]

By the same remark, we see that D2 = detκ(Iγ , α, β) is characterized by
[y1, . . . , ys, γx̃1, . . . , γx̃r, z̃1, . . . , z̃t] = (−1)rsD2[x1, . . . , xr, γỹ1, . . . , γỹs, z̃1, . . . , z̃t]

Combining the formulas above we see that D = D1D2 as desired. □

Lemma 42.68.25.02PV Let R be a local ring with residue field κ. Let α : (M,φ, ψ) →
(M ′, φ′, ψ′) be a morphism of (2, 1)-periodic complexes over R. Assume

(1) M , M ′ have finite length,

https://stacks.math.columbia.edu/tag/02PV
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(2) (M,φ, ψ), (M ′, φ′, ψ′) are exact,
(3) the maps φ, ψ induce the zero map on K = Ker(α), and
(4) the maps φ, ψ induce the zero map on Q = Coker(α).

Denote N = α(M) ⊂ M ′. We obtain two short exact sequences of (2, 1)-periodic
complexes

0→ (N,φ′, ψ′)→ (M ′, φ′, ψ′)→ (Q, 0, 0)→ 0
0→ (K, 0, 0)→ (M,φ, ψ)→ (N,φ′, ψ′)→ 0

which induce two isomorphisms αi : Q→ K, i = 0, 1. Then
detκ(M,φ, ψ) = detκ(α−1

0 ◦ α1) detκ(M ′, φ′, ψ′)
In particular, if α0 = α1, then detκ(M,φ, ψ) = detκ(M ′, φ′, ψ′).

Proof. There are (at least) two ways to prove this lemma. One is to produce an
enormous commutative diagram using the properties of the determinants. The
other is to use the characterization of the determinants in terms of admissible
sequences of elements. It is the second approach that we will use.
First let us explain precisely what the maps αi are. Namely, α0 is the composition

α0 : Q = H0(Q, 0, 0)→ H1(N,φ′, ψ′)→ H2(K, 0, 0) = K

and α1 is the composition
α1 : Q = H1(Q, 0, 0)→ H2(N,φ′, ψ′)→ H3(K, 0, 0) = K

coming from the boundary maps of the short exact sequences of complexes displayed
in the lemma. The fact that the complexes (M,φ, ψ), (M ′, φ′, ψ′) are exact implies
these maps are isomorphisms.
We will use the notation Iφ = Im(φ), Kφ = Ker(φ) and similarly for the other
maps. Exactness for M and M ′ means that Kφ = Iψ and three similar equalities.
We introduce k = lengthR(K), a = lengthR(Iφ), b = lengthR(Iψ). Then we see
that lengthR(M) = a + b, and lengthR(N) = a + b − k, lengthR(Q) = k and
lengthR(M ′) = a+b. The exact sequences below will show that also lengthR(Iφ′) =
a and lengthR(Iψ′) = b.
The assumption that K ⊂ Kφ = Iψ means that φ factors through N to give an
exact sequence

0→ α(Iψ)→ N
φα−1

−−−→ Iψ → 0.
Here φα−1(x′) = y means x′ = α(x) and y = φ(x). Similarly, we have

0→ α(Iφ)→ N
ψα−1

−−−→ Iφ → 0.
The assumption that ψ′ induces the zero map on Q means that Iψ′ = Kφ′ ⊂ N .
This means the quotient φ′(N) ⊂ Iφ′ is identified with Q. Note that φ′(N) = α(Iφ).
Hence we conclude there is an isomorphism

φ′ : Q→ Iφ′/α(Iφ)
simply described by φ′(x′ mod N) = φ′(x′) mod α(Iφ). In exactly the same way
we get

ψ′ : Q→ Iψ′/α(Iψ)
Finally, note that α0 is the composition

Q
φ′
// Iφ′/α(Iφ)

ψα−1|I
φ′/α(Iφ)

// K
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and similarly α1 = φα−1|Iψ′/α(Iψ) ◦ ψ′.

To shorten the formulas below we are going to write αx instead of α(x) in the
following. No confusion should result since all maps are indicated by Greek letters
and elements by Roman letters. We are going to choose

(1) an admissible sequence z1, . . . , zk ∈ K generating K,
(2) elements z′

i ∈M such that φz′
i = zi,

(3) elements z′′
i ∈M such that ψz′′

i = zi,
(4) elements xk+1, . . . , xa ∈ Iφ such that z1, . . . , zk, xk+1, . . . , xa is an admis-

sible sequence generating Iφ,
(5) elements x̃i ∈M such that φx̃i = xi,
(6) elements yk+1, . . . , yb ∈ Iψ such that z1, . . . , zk, yk+1, . . . , yb is an admis-

sible sequence generating Iψ,
(7) elements ỹi ∈M such that ψỹi = yi, and
(8) elements w1, . . . , wk ∈ M ′ such that w1 mod N, . . . , wk mod N are an

admissible sequence in Q generating Q.
By Remark 42.68.14 the element D = detκ(M,φ, ψ) ∈ κ∗ is characterized by

[z1, . . . , zk, xk+1, . . . , xa, z
′′
1 , . . . , z

′′
k , ỹk+1, . . . , ỹb]

= (−1)abD[z1, . . . , zk, yk+1, . . . , yb, z
′
1, . . . , z

′
k, x̃k+1, . . . , x̃a]

Note that by the discussion above αxk+1, . . . , αxa, φw1, . . . , φwk is an admissible
sequence generating Iφ′ and αyk+1, . . . , αyb, ψw1, . . . , ψwk is an admissible sequence
generating Iψ′ . Hence by Remark 42.68.14 the element D′ = detκ(M ′, φ′, ψ′) ∈ κ∗

is characterized by
[αxk+1, . . . , αxa, φ

′w1, . . . , φ
′wk, αỹk+1, . . . , αỹb, w1, . . . , wk]

= (−1)abD′[αyk+1, . . . , αyb, ψ
′w1, . . . , ψ

′wk, αx̃k+1, . . . , αx̃a, w1, . . . , wk]
Note how in the first, resp. second displayed formula the first, resp. last k entries of
the symbols on both sides are the same. Hence these formulas are really equivalent
to the equalities

[αxk+1, . . . , αxa, αz
′′
1 , . . . , αz

′′
k , αỹk+1, . . . , αỹb]

= (−1)abD[αyk+1, . . . , αyb, αz
′
1, . . . , αz

′
k, αx̃k+1, . . . , αx̃a]

and
[αxk+1, . . . , αxa, φ

′w1, . . . , φ
′wk, αỹk+1, . . . , αỹb]

= (−1)abD′[αyk+1, . . . , αyb, ψ
′w1, . . . , ψ

′wk, αx̃k+1, . . . , αx̃a]
in detκ(N). Note that φ′w1, . . . , φ

′wk and αz′′
1 , . . . , z

′′
k are admissible sequences

generating the module Iφ′/α(Iφ). Write
[φ′w1, . . . , φ

′wk] = λ0[αz′′
1 , . . . , αz

′′
k ]

in detκ(Iφ′/α(Iφ)) for some λ0 ∈ κ∗. Similarly, write
[ψ′w1, . . . , ψ

′wk] = λ1[αz′
1, . . . , αz

′
k]

in detκ(Iψ′/α(Iψ)) for some λ1 ∈ κ∗. On the one hand it is clear that
αi([w1, . . . , wk]) = λi[z1, . . . , zk]

for i = 0, 1 by our description of αi above, which means that
detκ(α−1

0 ◦ α1) = λ1/λ0
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and on the other hand it is clear that

λ0[αxk+1, . . . , αxa, αz
′′
1 , . . . , αz

′′
k , αỹk+1, . . . , αỹb]

= [αxk+1, . . . , αxa, φ
′w1, . . . , φ

′wk, αỹk+1, . . . , αỹb]

and

λ1[αyk+1, . . . , αyb, αz
′
1, . . . , αz

′
k, αx̃k+1, . . . , αx̃a]

= [αyk+1, . . . , αyb, ψ
′w1, . . . , ψ

′wk, αx̃k+1, . . . , αx̃a]

which imply λ0D = λ1D
′. The lemma follows. □

42.68.26. Symbols.02PW The correct generality for this construction is perhaps the sit-
uation of the following lemma.

Lemma 42.68.27.02PX Let A be a Noetherian local ring. Let M be a finite A-module of
dimension 1. Assume φ,ψ : M →M are two injective A-module maps, and assume
φ(ψ(M)) = ψ(φ(M)), for example if φ and ψ commute. Then lengthR(M/φψM) <
∞ and (M/φψM,φ, ψ) is an exact (2, 1)-periodic complex.

Proof. Let q be a minimal prime of the support of M . Then Mq is a finite length
Aq-module, see Algebra, Lemma 10.62.3. Hence both φ and ψ induce isomorphisms
Mq → Mq. Thus the support of M/φψM is {mA} and hence it has finite length
(see lemma cited above). Finally, the kernel of φ on M/φψM is clearly ψM/φψM ,
and hence the kernel of φ is the image of ψ on M/φψM . Similarly the other way
since M/φψM = M/ψφM by assumption. □

Lemma 42.68.28.02PY Let A be a Noetherian local ring. Let a, b ∈ A.
(1) If M is a finite A-module of dimension 1 such that a, b are nonzerodivisors

on M , then lengthA(M/abM) <∞ and (M/abM, a, b) is a (2, 1)-periodic
exact complex.

(2) If a, b are nonzerodivisors and dim(A) = 1 then lengthA(A/(ab)) < ∞
and (A/(ab), a, b) is a (2, 1)-periodic exact complex.

In particular, in these cases detκ(M/abM, a, b) ∈ κ∗, resp. detκ(A/(ab), a, b) ∈ κ∗

are defined.

Proof. Follows from Lemma 42.68.27. □

Definition 42.68.29.02PZ Let A be a Noetherian local ring with residue field κ. Let a, b ∈
A. Let M be a finite A-module of dimension 1 such that a, b are nonzerodivisors
on M . We define the symbol associated to M,a, b to be the element

dM (a, b) = detκ(M/abM, a, b) ∈ κ∗

Lemma 42.68.30.02Q0 Let A be a Noetherian local ring. Let a, b, c ∈ A. Let M be a
finite A-module with dim(Supp(M)) = 1. Assume a, b, c are nonzerodivisors on M .
Then

dM (a, bc) = dM (a, b)dM (a, c)
and dM (a, b)dM (b, a) = 1.

Proof. The first statement follows from Lemma 42.68.24 applied to M/abcM and
endomorphisms α, β, γ given by multiplication by a, b, c. The second comes from
Lemma 42.68.15. □

https://stacks.math.columbia.edu/tag/02PX
https://stacks.math.columbia.edu/tag/02PY
https://stacks.math.columbia.edu/tag/02PZ
https://stacks.math.columbia.edu/tag/02Q0
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Definition 42.68.31.02Q1 Let A be a Noetherian local domain of dimension 1 with
residue field κ. Let K be the fraction field of A. We define the tame symbol of A
to be the map

K∗ ×K∗ −→ κ∗, (x, y) 7−→ dA(x, y)
where dA(x, y) is extended to K∗ ×K∗ by the multiplicativity of Lemma 42.68.30.

It is clear that we may extend more generally dM (−,−) to certain rings of fractions
of A (even if A is not a domain).

Lemma 42.68.32.0AY9 Let A be a Noetherian local ring and M a finite A-module of di-
mension 1. Let a ∈ A be a nonzerodivisor onM . Then dM (a, a) = (−1)lengthA(M/aM).

Proof. Immediate from Lemma 42.68.16. □

Lemma 42.68.33.02Q2 Let A be a Noetherian local ring. Let M be a finite A-module
of dimension 1. Let b ∈ A be a nonzerodivisor on M , and let u ∈ A∗. Then

dM (u, b) = ulengthA(M/bM) mod mA.

In particular, if M = A, then dA(u, b) = uordA(b) mod mA.

Proof. Note that in this case M/ubM = M/bM on which multiplication by b is zero.
Hence dM (u, b) = detκ(u|M/bM ) by Lemma 42.68.17. The lemma then follows from
Lemma 42.68.10. □

Lemma 42.68.34.02Q3 Let A be a Noetherian local ring. Let a, b ∈ A. Let
0→M →M ′ →M ′′ → 0

be a short exact sequence of A-modules of dimension 1 such that a, b are nonzero-
divisors on all three A-modules. Then

dM ′(a, b) = dM (a, b)dM ′′(a, b)
in κ∗.

Proof. It is easy to see that this leads to a short exact sequence of exact (2, 1)-
periodic complexes

0→ (M/abM, a, b)→ (M ′/abM ′, a, b)→ (M ′′/abM ′′, a, b)→ 0
Hence the lemma follows from Lemma 42.68.18. □

Lemma 42.68.35.02Q4 Let A be a Noetherian local ring. Let α : M → M ′ be a
homomorphism of finite A-modules of dimension 1. Let a, b ∈ A. Assume

(1) a, b are nonzerodivisors on both M and M ′, and
(2) dim(Ker(α)),dim(Coker(α)) ≤ 0.

Then dM (a, b) = dM ′(a, b).

Proof. If a ∈ A∗, then the equality follows from the equality length(M/bM) =
length(M ′/bM ′) and Lemma 42.68.33. Similarly if b is a unit the lemma holds as
well (by the symmetry of Lemma 42.68.30). Hence we may assume that a, b ∈ mA.
This in particular implies that m is not an associated prime of M , and hence
α : M → M ′ is injective. This permits us to think of M as a submodule of
M ′. By assumption M ′/M is a finite A-module with support {mA} and hence has
finite length. Note that for any third module M ′′ with M ⊂ M ′′ ⊂ M ′ the maps
M →M ′′ and M ′′ →M ′ satisfy the assumptions of the lemma as well. This reduces

https://stacks.math.columbia.edu/tag/02Q1
https://stacks.math.columbia.edu/tag/0AY9
https://stacks.math.columbia.edu/tag/02Q2
https://stacks.math.columbia.edu/tag/02Q3
https://stacks.math.columbia.edu/tag/02Q4
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us, by induction on the length of M ′/M , to the case where lengthA(M ′/M) = 1.
Finally, in this case consider the map

α : M/abM −→M ′/abM ′.

By construction the cokernel Q of α has length 1. Since a, b ∈ mA, they act trivially
on Q. It also follows that the kernel K of α has length 1 and hence also a, b act
trivially on K. Hence we may apply Lemma 42.68.25. Thus it suffices to see that
the two maps αi : Q → K are the same. In fact, both maps are equal to the map
q = x′ mod Im(α) 7→ abx′ ∈ K. We omit the verification. □

Lemma 42.68.36.02Q5 Let A be a Noetherian local ring. Let M be a finite A-module
with dim(Supp(M)) = 1. Let a, b ∈ A nonzerodivisors on M . Let q1, . . . , qt be the
minimal primes in the support of M . Then

dM (a, b) =
∏

i=1,...,t
dA/qi(a, b)

lengthAqi
(Mqi

)

as elements of κ∗.

Proof. Choose a filtration by A-submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mj/Mj−1 is isomorphic to A/pj for some prime ideal pj of
A. See Algebra, Lemma 10.62.1. For each j we have either pj = qi for some i, or
pj = mA. Moreover, for a fixed i, the number of j such that pj = qi is equal to
lengthAqi

(Mqi) by Algebra, Lemma 10.62.5. Hence dMj (a, b) is defined for each j

and

dMj (a, b) =
{
dMj−1(a, b)dA/qi(a, b) if pj = qi

dMj−1(a, b) if pj = mA

by Lemma 42.68.34 in the first instance and Lemma 42.68.35 in the second. Hence
the lemma. □

Lemma 42.68.37.02Q6 Let A be a discrete valuation ring with fraction field K. For
nonzero x, y ∈ K we have

dA(x, y) = (−1)ordA(x)ordA(y)x
ordA(y)

yordA(x) mod mA,

in other words the symbol is equal to the usual tame symbol.

Proof. By multiplicativity it suffices to prove this when x, y ∈ A. Let t ∈ A be
a uniformizer. Write x = tbu and y = tbv for some a, b ≥ 0 and u, v ∈ A∗. Set
l = a+ b. Then tl−1, . . . , tb is an admissible sequence in (x)/(xy) and tl−1, . . . , ta is
an admissible sequence in (y)/(xy). Hence by Remark 42.68.14 we see that dA(x, y)
is characterized by the equation

[tl−1, . . . , tb, v−1tb−1, . . . , v−1] = (−1)abdA(x, y)[tl−1, . . . , ta, u−1ta−1, . . . , u−1].

Hence by the admissible relations for the symbols [x1, . . . , xl] we see that

dA(x, y) = (−1)abua/vb mod mA

as desired. □
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Lemma 42.68.38.02Q8 Let A be a Noetherian local ring. Let a, b ∈ A. Let M be a finite
A-module of dimension 1 on which each of a, b, b− a are nonzerodivisors. Then

dM (a, b− a)dM (b, b) = dM (b, b− a)dM (a, b)

in κ∗.

Proof. By Lemma 42.68.36 it suffices to show the relation when M = A/q for some
prime q ⊂ A with dim(A/q) = 1.

In case M = A/q we may replace A by A/q and a, b by their images in A/q. Hence
we may assume A = M and A a local Noetherian domain of dimension 1. The
reason is that the residue field κ of A and A/q are the same and that for any A/q-
module M the determinant taken over A or over A/q are canonically identified. See
Lemma 42.68.8.

It suffices to show the relation when both a, b are in the maximal ideal. Namely,
the case where one or both are units follows from Lemmas 42.68.33 and 42.68.32.

Choose an extension A ⊂ A′ and factorizations a = ta′, b = tb′ as in Lemma 42.4.2.
Note that also b− a = t(b′ − a′) and that A′ = (a′, b′) = (a′, b′ − a′) = (b′ − a′, b′).
Here and in the following we think of A′ as an A-module and a, b, a′, b′, t as A-
module endomorphisms of A′. We will use the notation dAA′(a′, b′) and so on to
indicate

dAA′(a′, b′) = detκ(A′/a′b′A′, a′, b′)
which is defined by Lemma 42.68.27. The upper index A is used to distinguish this
from the already defined symbol dA′(a′, b′) which is different (for example because
it has values in the residue field of A′ which may be different from κ). By Lemma
42.68.35 we see that dA(a, b) = dAA′(a, b), and similarly for the other combinations.
Using this and multiplicativity we see that it suffices to prove

dAA′(a′, b′ − a′)dAA′(b′, b′) = dAA′(b′, b′ − a′)dAA′(a′, b′)

Now, since (a′, b′) = A′ and so on we have
A′/(a′(b′ − a′)) ∼= A′/(a′)⊕A′/(b′ − a′)
A′/(b′(b′ − a′)) ∼= A′/(b′)⊕A′/(b′ − a′)

A′/(a′b′) ∼= A′/(a′)⊕A′/(b′)

Moreover, note that multiplication by b′ − a′ on A/(a′) is equal to multiplication
by b′, and that multiplication by b′−a′ on A/(b′) is equal to multiplication by −a′.
Using Lemmas 42.68.17 and 42.68.18 we conclude

dAA′(a′, b′ − a′) = detκ(b′|A′/(a′))−1 detκ(a′|A′/(b′−a′))
dAA′(b′, b′ − a′) = detκ(−a′|A′/(b′))−1 detκ(b′|A′/(b′−a′))
dAA′(a′, b′) = detκ(b′|A′/(a′))−1 detκ(a′|A′/(b′))

Hence we conclude that

(−1)lengthA(A′/(b′))dAA′(a′, b′ − a′) = dAA′(b′, b′ − a′)dAA′(a′, b′)

the sign coming from the −a′ in the second equality above. On the other hand,
by Lemma 42.68.16 we have dAA′(b′, b′) = (−1)lengthA(A′/(b′)) and the lemma is
proved. □

The tame symbol is a Steinberg symbol.
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Lemma 42.68.39.02Q9 Let A be a Noetherian local domain of dimension 1 with fraction
field K. For x ∈ K \ {0, 1} we have

dA(x, 1− x) = 1

Proof. Write x = a/b with a, b ∈ A. The hypothesis implies, since 1−x = (b−a)/b,
that also b− a ̸= 0. Hence we compute

dA(x, 1− x) = dA(a, b− a)dA(a, b)−1dA(b, b− a)−1dA(b, b)

Thus we have to show that dA(a, b − a)dA(b, b) = dA(b, b − a)dA(a, b). This is
Lemma 42.68.38. □

42.68.40. Lengths and determinants.02QA In this section we use the determinant to
compare lattices. The key lemma is the following.

Lemma 42.68.41.02QB Let R be a Noetherian local ring. Let q ⊂ R be a prime with
dim(R/q) = 1. Let φ : M → N be a homomorphism of finite R-modules. Assume
there exist x1, . . . , xl ∈M and y1, . . . , yl ∈M with the following properties

(1) M = ⟨x1, . . . , xl⟩,
(2) ⟨x1, . . . , xi⟩/⟨x1, . . . , xi−1⟩ ∼= R/q for i = 1, . . . , l,
(3) N = ⟨y1, . . . , yl⟩, and
(4) ⟨y1, . . . , yi⟩/⟨y1, . . . , yi−1⟩ ∼= R/q for i = 1, . . . , l.

Then φ is injective if and only if φq is an isomorphism, and in this case we have

lengthR(Coker(φ)) = ordR/q(f)

where f ∈ κ(q) is the element such that

[φ(x1), . . . , φ(xl)] = f [y1, . . . , yl]

in detκ(q)(Nq).

Proof. First, note that the lemma holds in case l = 1. Namely, in this case x1 is a
basis of M over R/q and y1 is a basis of N over R/q and we have φ(x1) = fy1 for
some f ∈ R. Thus φ is injective if and only if f ̸∈ q. Moreover, Coker(φ) = R/(f, q)
and hence the lemma holds by definition of ordR/q(f) (see Algebra, Definition
10.121.2).

In fact, suppose more generally that φ(xi) = fiyi for some fi ∈ R, fi ̸∈ q. Then
the induced maps

⟨x1, . . . , xi⟩/⟨x1, . . . , xi−1⟩ −→ ⟨y1, . . . , yi⟩/⟨y1, . . . , yi−1⟩

are all injective and have cokernels isomorphic to R/(fi, q). Hence we see that

lengthR(Coker(φ)) =
∑

ordR/q(fi).

On the other hand it is clear that

[φ(x1), . . . , φ(xl)] = f1 . . . fl[y1, . . . , yl]

in this case from the admissible relation (b) for symbols. Hence we see the result
holds in this case also.
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We prove the general case by induction on l. Assume l > 1. Let i ∈ {1, . . . , l} be
minimal such that φ(x1) ∈ ⟨y1, . . . , yi⟩. We will argue by induction on i. If i = 1,
then we get a commutative diagram

0 // ⟨x1⟩ //

��

⟨x1, . . . , xl⟩ //

��

⟨x1, . . . , xl⟩/⟨x1⟩ //

��

0

0 // ⟨y1⟩ // ⟨y1, . . . , yl⟩ // ⟨y1, . . . , yl⟩/⟨y1⟩ // 0

and the lemma follows from the snake lemma and induction on l. Assume now that
i > 1. Write φ(x1) = a1y1 + . . . + ai−1yi−1 + ayi with aj , a ∈ R and a ̸∈ q (since
otherwise i was not minimal). Set

x′
j =

{
xj if j = 1
axj if j ≥ 2 and y′

j =
{
yj if j < i
ayj if j ≥ i

Let M ′ = ⟨x′
1, . . . , x

′
l⟩ and N ′ = ⟨y′

1, . . . , y
′
l⟩. Since φ(x′

1) = a1y
′
1+. . .+ai−1y

′
i−1+y′

i

by construction and since for j > 1 we have φ(x′
j) = aφ(xi) ∈ ⟨y′

1, . . . , y
′
l⟩ we get a

commutative diagram of R-modules and maps

M ′

��

φ′
// N ′

��
M

φ // N

By the result of the second paragraph of the proof we know that lengthR(M/M ′) =
(l−1)ordR/q(a) and similarly lengthR(M/M ′) = (l−i+1)ordR/q(a). By a diagram
chase this implies that

lengthR(Coker(φ′)) = lengthR(Coker(φ)) + i ordR/q(a).
On the other hand, it is clear that writing

[φ(x1), . . . , φ(xl)] = f [y1, . . . , yl], [φ′(x′
1), . . . , φ(x′

l)] = f ′[y′
1, . . . , y

′
l]

we have f ′ = aif . Hence it suffices to prove the lemma for the case that φ(x1) =
a1y1 + . . . ai−1yi−1 + yi, i.e., in the case that a = 1. Next, recall that

[y1, . . . , yl] = [y1, . . . , yi−1, a1y1 + . . . ai−1yi−1 + yi, yi+1, . . . , yl]
by the admissible relations for symbols. The sequence y1, . . . , yi−1, a1y1 + . . . +
ai−1yi−1 +yi, yi+1, . . . , yl satisfies the conditions (3), (4) of the lemma also. Hence,
we may actually assume that φ(x1) = yi. In this case, note that we have qx1 = 0
which implies also qyi = 0. We have

[y1, . . . , yl] = −[y1, . . . , yi−2, yi, yi−1, yi+1, . . . , yl]
by the third of the admissible relations defining detκ(q)(Nq). Hence we may replace
y1, . . . , yl by the sequence y′

1, . . . , y
′
l = y1, . . . , yi−2, yi, yi−1, yi+1, . . . , yl (which also

satisfies conditions (3) and (4) of the lemma). Clearly this decreases the invariant
i by 1 and we win by induction on i. □

To use the previous lemma we show that often sequences of elements with the
required properties exist.

Lemma 42.68.42.02QC Let R be a local Noetherian ring. Let q ⊂ R be a prime ideal.
Let M be a finite R-module such that q is one of the minimal primes of the support
of M . Then there exist x1, . . . , xl ∈M such that
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(1) the support of M/⟨x1, . . . , xl⟩ does not contain q, and
(2) ⟨x1, . . . , xi⟩/⟨x1, . . . , xi−1⟩ ∼= R/q for i = 1, . . . , l.

Moreover, in this case l = lengthRq
(Mq).

Proof. The condition that q is a minimal prime in the support of M implies that l =
lengthRq

(Mq) is finite (see Algebra, Lemma 10.62.3). Hence we can find y1, . . . , yl ∈
Mq such that ⟨y1, . . . , yi⟩/⟨y1, . . . , yi−1⟩ ∼= κ(q) for i = 1, . . . , l. We can find fi ∈ R,
fi ̸∈ q such that fiyi is the image of some element zi ∈ M . Moreover, as R
is Noetherian we can write q = (g1, . . . , gt) for some gj ∈ R. By assumption
gjyi ∈ ⟨y1, . . . , yi−1⟩ inside the module Mq. By our choice of zi we can find some
further elements fji ∈ R, fij ̸∈ q such that fijgjzi ∈ ⟨z1, . . . , zi−1⟩ (equality in the
module M). The lemma follows by taking

x1 = f11f12 . . . f1tz1, x2 = f11f12 . . . f1tf21f22 . . . f2tz2,

and so on. Namely, since all the elements fi, fij are invertible in Rq we still have
that Rqx1 + . . .+Rqxi/Rqx1 + . . .+Rqxi−1 ∼= κ(q) for i = 1, . . . , l. By construction,
qxi ∈ ⟨x1, . . . , xi−1⟩. Thus ⟨x1, . . . , xi⟩/⟨x1, . . . , xi−1⟩ is an R-module generated by
one element, annihilated q such that localizing at q gives a q-dimensional vector
space over κ(q). Hence it is isomorphic to R/q. □

Here is the main result of this section. We will see below the various different
consequences of this proposition. The reader is encouraged to first prove the easier
Lemma 42.68.44 his/herself.

Proposition 42.68.43.02QD LetR be a local Noetherian ring with residue field κ. Suppose
that (M,φ, ψ) is a (2, 1)-periodic complex over R. Assume

(1) M is a finite R-module,
(2) the cohomology modules of (M,φ, ψ) are of finite length, and
(3) dim(Supp(M)) = 1.

Let qi, i = 1, . . . , t be the minimal primes of the support of M . Then we have10

−eR(M,φ, ψ) =
∑

i=1,...,t
ordR/qi

(
detκ(qi)(Mqi , φqi , ψqi)

)
Proof. We first reduce to the case t = 1 in the following way. Note that Supp(M) =
{m, q1, . . . , qt}, where m ⊂ R is the maximal ideal. Let Mi denote the image of
M →Mqi , so Supp(Mi) = {m, qi}. The map φ (resp. ψ) induces an R-module map
φi : Mi → Mi (resp. ψi : Mi → Mi). Thus we get a morphism of (2, 1)-periodic
complexes

(M,φ, ψ) −→
⊕

i=1,...,t
(Mi, φi, ψi).

The kernel and cokernel of this map have support contained in {m}. Hence by
Lemma 42.2.5 we have

eR(M,φ, ψ) =
∑

i=1,...,t
eR(Mi, φi, ψi)

On the other hand we clearly have Mqi = Mi,qi , and hence the terms of the right
hand side of the formula of the lemma are equal to the expressions

ordR/qi
(
detκ(qi)(Mi,qi , φi,qi , ψi,qi)

)
10Obviously we could get rid of the minus sign by redefining detκ(M,φ, ψ) as the inverse of

its current value, see Definition 42.68.13.
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In other words, if we can prove the lemma for each of the modules Mi, then the
lemma holds. This reduces us to the case t = 1.

Assume we have a (2, 1)-periodic complex (M,φ, ψ) over a Noetherian local ring
with M a finite R-module, Supp(M) = {m, q}, and finite length cohomology mod-
ules. The proof in this case follows from Lemma 42.68.41 and careful bookkeeping.
Denote Kφ = Ker(φ), Iφ = Im(φ), Kψ = Ker(ψ), and Iψ = Im(ψ). Since R is
Noetherian these are all finite R-modules. Set

a = lengthRq
(Iφ,q) = lengthRq

(Kψ,q), b = lengthRq
(Iψ,q) = lengthRq

(Kφ,q).

Equalities because the complex becomes exact after localizing at q. Note that
l = lengthRq

(Mq) is equal to l = a+ b.

We are going to use Lemma 42.68.42 to choose sequences of elements in finite R-
modules N with support contained in {m, q}. In this case Nq has finite length,
say n ∈ N. Let us call a sequence w1, . . . , wn ∈ N with properties (1) and (2)
of Lemma 42.68.42 a “good sequence”. Note that the quotient N/⟨w1, . . . , wn⟩ of
N by the submodule generated by a good sequence has support (contained in)
{m} and hence has finite length (Algebra, Lemma 10.62.3). Moreover, the symbol
[w1, . . . , wn] ∈ detκ(q)(Nq) is a generator, see Lemma 42.68.5.

Having said this we choose good sequences

x1, . . . , xb in Kφ, t1, . . . , ta in Kψ,
y1, . . . , ya in Iφ ∩ ⟨t1, . . . ta⟩, s1, . . . , sb in Iψ ∩ ⟨x1, . . . , xb⟩.

We will adjust our choices a little bit as follows. Choose lifts ỹi ∈ M of yi ∈ Iφ
and s̃i ∈ M of si ∈ Iψ. It may not be the case that qỹ1 ⊂ ⟨x1, . . . , xb⟩ and
it may not be the case that qs̃1 ⊂ ⟨t1, . . . , ta⟩. However, using that q is finitely
generated (as in the proof of Lemma 42.68.42) we can find a d ∈ R, d ̸∈ q such that
qdỹ1 ⊂ ⟨x1, . . . , xb⟩ and qds̃1 ⊂ ⟨t1, . . . , ta⟩. Thus after replacing yi by dyi, ỹi by
dỹi, si by dsi and s̃i by ds̃i we see that we may assume also that x1, . . . , xb, ỹ1, . . . , ỹb
and t1, . . . , ta, s̃1, . . . , s̃b are good sequences in M .

Finally, we choose a good sequence z1, . . . , zl in the finite R-module

⟨x1, . . . , xb, ỹ1, . . . , ỹa⟩ ∩ ⟨t1, . . . , ta, s̃1, . . . , s̃b⟩.

Note that this is also a good sequence in M .

Since Iφ,q = Kψ,q there is a unique element h ∈ κ(q) such that [y1, . . . , ya] =
h[t1, . . . , ta] inside detκ(q)(Kψ,q). Similarly, as Iψ,q = Kφ,q there is a unique element
h ∈ κ(q) such that [s1, . . . , sb] = g[x1, . . . , xb] inside detκ(q)(Kφ,q). We can also do
this with the three good sequences we have in M . All in all we get the following
identities

[y1, . . . , ya] = h[t1, . . . , ta]
[s1, . . . , sb] = g[x1, . . . , xb]
[z1, . . . , zl] = fφ[x1, . . . , xb, ỹ1, . . . , ỹa]
[z1, . . . , zl] = fψ[t1, . . . , ta, s̃1, . . . , s̃b]

for some g, h, fφ, fψ ∈ κ(q).
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Having set up all this notation let us compute detκ(q)(M,φ, ψ). Namely, consider
the element [z1, . . . , zl]. Under the map γψ ◦ σ ◦ γ−1

φ of Definition 42.68.13 we have

[z1, . . . , zl] = fφ[x1, . . . , xb, ỹ1, . . . , ỹa]
7→ fφ[x1, . . . , xb]⊗ [y1, . . . , ya]
7→ fφh/g[t1, . . . , ta]⊗ [s1, . . . , sb]
7→ fφh/g[t1, . . . , ta, s̃1, . . . , s̃b]
= fφh/fψg[z1, . . . , zl]

This means that detκ(q)(Mq, φq, ψq) is equal to fφh/fψg up to a sign.

We abbreviate the following quantities

kφ = lengthR(Kφ/⟨x1, . . . , xb⟩)
kψ = lengthR(Kψ/⟨t1, . . . , ta⟩)
iφ = lengthR(Iφ/⟨y1, . . . , ya⟩)
iψ = lengthR(Iψ/⟨s1, . . . , sa⟩)
mφ = lengthR(M/⟨x1, . . . , xb, ỹ1, . . . , ỹa⟩)
mψ = lengthR(M/⟨t1, . . . , ta, s̃1, . . . , s̃b⟩)
δφ = lengthR(⟨x1, . . . , xb, ỹ1, . . . , ỹa⟩⟨z1, . . . , zl⟩)
δψ = lengthR(⟨t1, . . . , ta, s̃1, . . . , s̃b⟩⟨z1, . . . , zl⟩)

Using the exact sequences 0→ Kφ →M → Iφ → 0 we get mφ = kφ+ iφ. Similarly
we have mψ = kψ + iψ. We have δφ + mφ = δψ + mψ since this is equal to the
colength of ⟨z1, . . . , zl⟩ in M . Finally, we have

δφ = ordR/q(fφ), δψ = ordR/q(fψ)

by our first application of the key Lemma 42.68.41.

Next, let us compute the multiplicity of the periodic complex

eR(M,φ, ψ) = lengthR(Kφ/Iψ)− lengthR(Kψ/Iφ)
= lengthR(⟨x1, . . . , xb⟩/⟨s1, . . . , sb⟩) + kφ − iψ
−lengthR(⟨t1, . . . , ta⟩/⟨y1, . . . , ya⟩)− kψ + iφ

= ordR/q(g/h) + kφ − iψ − kψ + iφ

= ordR/q(g/h) +mφ −mψ

= ordR/q(g/h) + δψ − δφ
= ordR/q(fψg/fφh)

where we used the key Lemma 42.68.41 twice in the third equality. By our compu-
tation of detκ(q)(Mq, φq, ψq) this proves the proposition. □

In most applications the following lemma suffices.

Lemma 42.68.44.02QE Let R be a Noetherian local ring with maximal ideal m. Let M
be a finite R-module, and let ψ : M →M be an R-module map. Assume that

(1) Ker(ψ) and Coker(ψ) have finite length, and
(2) dim(Supp(M)) ≤ 1.
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Write Supp(M) = {m, q1, . . . , qt} and denote fi ∈ κ(qi)∗ the element such that
detκ(qi)(ψqi) : detκ(qi)(Mqi)→ detκ(qi)(Mqi) is multiplication by fi. Then we have

lengthR(Coker(ψ))− lengthR(Ker(ψ)) =
∑

i=1,...,t
ordR/qi(fi).

Proof. Recall thatH0(M, 0, ψ) = Coker(ψ) andH1(M, 0, ψ) = Ker(ψ), see remarks
above Definition 42.2.2. The lemma follows by combining Proposition 42.68.43 with
Lemma 42.68.17.

Alternative proof. Reduce to the case Supp(M) = {m, q} as in the proof of Propo-
sition 42.68.43. Then directly combine Lemmas 42.68.41 and 42.68.42 to prove this
specific case of Proposition 42.68.43. There is much less bookkeeping in this case,
and the reader is encouraged to work this out. Details omitted. □

42.68.45. Application to the key lemma.02QI In this section we apply the results above
to show the analogue of the key lemma (Lemma 42.6.3) with the tame symbol
dA constructed above. Please see Remark 42.6.4 for the relationship with Milnor
K-theory.

Lemma 42.68.46 (Key Lemma).02QJ When A is an
excellent ring this is
[Kat86, Proposition
1].

Let A be a 2-dimensional Noetherian local domain
with fraction field K. Let f, g ∈ K∗. Let q1, . . . , qt be the height 1 primes q of A
such that either f or g is not an element of A∗

q. Then we have∑
i=1,...,t

ordA/qi(dAqi
(f, g)) = 0

We can also write this as∑
height(q)=1

ordA/q(dAq
(f, g)) = 0

since at any height one prime q of A where f, g ∈ A∗
q we have dAq

(f, g) = 1 by
Lemma 42.68.33.

Proof. Since the tame symbols dAq
(f, g) are additive (Lemma 42.68.30) and the

order functions ordA/q are additive (Algebra, Lemma 10.121.1) it suffices to prove
the formula when f = a ∈ A and g = b ∈ A. In this case we see that we have to
show ∑

height(q)=1
ordA/q(detκ(Aq/(ab), a, b)) = 0

By Proposition 42.68.43 this is equivalent to showing that

eA(A/(ab), a, b) = 0.

Since the complex A/(ab) a−→ A/(ab) b−→ A/(ab) a−→ A/(ab) is exact we win. □

42.69. Appendix B: Alternative approaches

0AYD In this appendix we first briefly try to connect the material in the main text with
K-theory of coherent sheaves. In particular we describe how cupping with c1 of
an invertible module is related to tensoring by this invertible module, see Lemma
42.69.7. This material is obviously very interesting and deserves a much more
detailed and expansive exposition.

https://stacks.math.columbia.edu/tag/02QJ
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42.69.1. Rational equivalence and K-groups.02S7 This section is a continuation of Sec-
tion 42.23. The motivation for the following lemma is Homology, Lemma 12.11.3.

Lemma 42.69.2.02SB Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of
finite type over S. Let F be a coherent sheaf on X. Let

. . . // F
φ // F

ψ // F
φ // F // . . .

be a complex as in Homology, Equation (12.11.2.1). Assume that
(1) dimδ(Supp(F)) ≤ k + 1.
(2) dimδ(Supp(Hi(F , φ, ψ))) ≤ k for i = 0, 1.

Then we have
[H0(F , φ, ψ)]k ∼rat [H1(F , φ, ψ)]k

as k-cycles on X.

Proof. Let {Wj}j∈J be the collection of irreducible components of Supp(F) which
have δ-dimension k+1. Note that {Wj} is a locally finite collection of closed subsets
of X by Lemma 42.10.1. For every j, let ξj ∈Wj be the generic point. Set

fj = detκ(ξj)(Fξj , φξj , ψξj ) ∈ R(Wj)∗.

See Definition 42.68.13 for notation. We claim that

−[H0(F , φ, ψ)]k + [H1(F , φ, ψ)]k =
∑

(Wj → X)∗div(fj)

If we prove this then the lemma follows.

Let Z ⊂ X be an integral closed subscheme of δ-dimension k. To prove the
equality above it suffices to show that the coefficient n of [Z] in [H0(F , φ, ψ)]k −
[H1(F , φ, ψ)]k is the same as the coefficient m of [Z] in

∑
(Wj → X)∗div(fj). Let

ξ ∈ Z be the generic point. Consider the local ring A = OX,ξ. Let M = Fξ as
an A-module. Denote φ,ψ : M → M the action of φ,ψ on the stalk. By our
choice of ξ ∈ Z we have δ(ξ) = k and hence dim(Supp(M)) = 1. Finally, the
integral closed subschemes Wj passing through ξ correspond to the minimal primes
qi of Supp(M). In each case the element fj ∈ R(Wj)∗ corresponds to the element
detκ(qi)(Mqi , φ, ψ) in κ(qi)∗. Hence we see that

n = −eA(M,φ, ψ)

and
m =

∑
ordA/qi(detκ(qi)(Mqi , φ, ψ))

Thus the result follows from Proposition 42.68.43. □

Lemma 42.69.3.02SC Let (S, δ) be as in Situation 42.7.1. Let X be a scheme locally of
finite type over S. The map

CHk(X) −→ K0(Coh≤k+1(X)/Coh≤k−1(X))

from Lemma 42.23.4 induces a bijection from CHk(X) onto the image Bk(X) of
the map

K0(Coh≤k(X)/Coh≤k−1(X)) −→ K0(Coh≤k+1(X)/Coh≤k−1(X)).

https://stacks.math.columbia.edu/tag/02SB
https://stacks.math.columbia.edu/tag/02SC


42.69. APPENDIX B: ALTERNATIVE APPROACHES 3825

Proof. By Lemma 42.23.2 we have Zk(X) = K0(Coh≤k(X)/Coh≤k−1(X)) compat-
ible with the map of Lemma 42.23.4. Thus, suppose we have an element [A]− [B]
of K0(Coh≤k(X)/Coh≤k−1(X)) which maps to zero in Bk(X), i.e., maps to zero
in K0(Coh≤k+1(X)/Coh≤k−1(X)). We have to show that [A]− [B] corresponds to
a cycle rationally equivalent to zero on X. Suppose [A] = [A] and [B] = [B] for
some coherent sheaves A,B on X supported in δ-dimension ≤ k. The assumption
that [A] − [B] maps to zero in the group K0(Coh≤k+1(X)/Coh≤k−1(X)) means
that there exists coherent sheaves A′,B′ on X supported in δ-dimension ≤ k − 1
such that [A ⊕ A′] − [B ⊕ B′] is zero in K0(Cohk+1(X)) (use part (1) of Homol-
ogy, Lemma 12.11.3). By part (2) of Homology, Lemma 12.11.3 this means there
exists a (2, 1)-periodic complex (F , φ, ψ) in the category Coh≤k+1(X) such that
A ⊕ A′ = H0(F , φ, ψ) and B ⊕ B′ = H1(F , φ, ψ). By Lemma 42.69.2 this implies
that

[A⊕A′]k ∼rat [B ⊕ B′]k
This proves that [A]− [B] maps to a cycle rationally equivalent to zero by the map

K0(Coh≤k(X)/Coh≤k−1(X)) −→ Zk(X)

of Lemma 42.23.2. This is what we had to prove and the proof is complete. □

42.69.4. Cartier divisors and K-groups.02SV In this section we describe how the inter-
section with the first Chern class of an invertible sheaf L corresponds to tensoring
with L −O in K-groups.

Lemma 42.69.5.02QH Let A be a Noetherian local ring. Let M be a finite A-module.
Let a, b ∈ A. Assume

(1) dim(A) = 1,
(2) both a and b are nonzerodivisors in A,
(3) A has no embedded primes,
(4) M has no embedded associated primes,
(5) Supp(M) = Spec(A).

Let I = {x ∈ A | x(a/b) ∈ A}. Let q1, . . . , qt be the minimal primes of A. Then
(a/b)IM ⊂M and

lengthA(M/(a/b)IM)− lengthA(M/IM) =
∑

i
lengthAqi

(Mqi)ordA/qi(a/b)

Proof. Since M has no embedded associated primes, and since the support of M is
Spec(A) we see that Ass(M) = {q1, . . . , qt}. Hence a, b are nonzerodivisors on M .
Note that

lengthA(M/(a/b)IM)
= lengthA(bM/aIM)
= lengthA(M/aIM)− lengthA(M/bM)
= lengthA(M/aM) + lengthA(aM/aIM)− lengthA(M/bM)
= lengthA(M/aM) + lengthA(M/IM)− lengthA(M/bM)

as the injective map b : M → bM maps (a/b)IM to aIM and the injective map
a : M → aM maps IM to aIM . Hence the left hand side of the equation of the
lemma is equal to

lengthA(M/aM)− lengthA(M/bM).

https://stacks.math.columbia.edu/tag/02QH
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Applying the second formula of Lemma 42.3.2 with x = a, b respectively and using
Algebra, Definition 10.121.2 of the ord-functions we get the result. □

Lemma 42.69.6.02SW Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite type
over S. Let L be an invertible OX -module. Let F be a coherent OX -module. Let
s ∈ Γ(X,KX(L)) be a meromorphic section of L. Assume

(1) dimδ(X) ≤ k + 1,
(2) X has no embedded points,
(3) F has no embedded associated points,
(4) the support of F is X, and
(5) the section s is regular meromorphic.

In this situation let I ⊂ OX be the ideal of denominators of s, see Divisors, Defi-
nition 31.23.10. Then we have the following:

(1) there are short exact sequences

0 → IF 1−→ F → Q1 → 0
0 → IF s−→ F ⊗OX

L → Q2 → 0
(2) the coherent sheaves Q1, Q2 are supported in δ-dimension ≤ k,
(3) the section s restricts to a regular meromorphic section si on every irre-

ducible component Xi of X of δ-dimension k + 1, and
(4) writing [F ]k+1 =

∑
mi[Xi] we have

[Q2]k − [Q1]k =
∑

mi(Xi → X)∗divL|Xi (si)

in Zk(X), in particular
[Q2]k − [Q1]k = c1(L) ∩ [F ]k+1

in CHk(X).

Proof. Recall from Divisors, Lemma 31.24.5 the existence of injective maps 1 :
IF → F and s : IF → F ⊗OX

L whose cokernels are supported on a closed
nowhere dense subsets T . Denote Qi there cokernels as in the lemma. We conclude
that dimδ(Supp(Qi)) ≤ k. By Divisors, Lemmas 31.23.5 and 31.23.8 the pullbacks
si are defined and are regular meromorphic sections for L|Xi . The equality of cycles
in (4) implies the equality of cycle classes in (4). Hence the only remaining thing
to show is that

[Q2]k − [Q1]k =
∑

mi(Xi → X)∗divL|Xi (si)

holds in Zk(X). To see this, let Z ⊂ X be an integral closed subscheme of δ-
dimension k. Let ξ ∈ Z be the generic point. Let A = OX,ξ and M = Fξ.
Moreover, choose a generator sξ ∈ Lξ. Then we can write s = (a/b)sξ where
a, b ∈ A are nonzerodivisors. In this case I = Iξ = {x ∈ A | x(a/b) ∈ A}. In this
case the coefficient of [Z] in the left hand side is

lengthA(M/(a/b)IM)− lengthA(M/IM)
and the coefficient of [Z] in the right hand side is∑

lengthAqi
(Mqi)ordA/qi(a/b)

where q1, . . . , qt are the minimal primes of the 1-dimensional local ring A. Hence
the result follows from Lemma 42.69.5. □

https://stacks.math.columbia.edu/tag/02SW
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Lemma 42.69.7.02SX Let (S, δ) be as in Situation 42.7.1. Let X be locally of finite
type over S. Let L be an invertible OX -module. Let F be a coherent OX -module.
Assume dimδ(Supp(F)) ≤ k + 1. Then the element

[F ⊗OX
L]− [F ] ∈ K0(Coh≤k+1(X)/Coh≤k−1(X))

lies in the subgroupBk(X) of Lemma 42.69.3 and maps to the element c1(L)∩[F ]k+1
via the map Bk(X)→ CHk(X).

Proof. Let
0→ K → F → F ′ → 0

be the short exact sequence constructed in Divisors, Lemma 31.4.6. This in par-
ticular means that F ′ has no embedded associated points. Since the support of K
is nowhere dense in the support of F we see that dimδ(Supp(K)) ≤ k. We may
re-apply Divisors, Lemma 31.4.6 starting with K to get a short exact sequence

0→ K′′ → K → K′ → 0

where now dimδ(Supp(K′′)) < k and K′ has no embedded associated points. Sup-
pose we can prove the lemma for the coherent sheaves F ′ and K′. Then we see
from the equations

[F ]k+1 = [F ′]k+1 + [K′]k+1 + [K′′]k+1

(use Lemma 42.10.4),

[F ⊗OX
L]− [F ] = [F ′ ⊗OX

L]− [F ′] + [K′ ⊗OX
L]− [K′] + [K′′ ⊗OX

L]− [K′′]

(use the ⊗L is exact) and the trivial vanishing of [K′′]k+1 and [K′′ ⊗OX
L] − [K′′]

in K0(Coh≤k+1(X)/Coh≤k−1(X)) that the result holds for F . What this means is
that we may assume that the sheaf F has no embedded associated points.

Assume X, F as in the lemma, and assume in addition that F has no embedded
associated points. Consider the sheaf of ideals I ⊂ OX , the corresponding closed
subscheme i : Z → X and the coherent OZ-module G constructed in Divisors,
Lemma 31.4.7. Recall that Z is a locally Noetherian scheme without embedded
points, G is a coherent sheaf without embedded associated points, with Supp(G) =
Z and such that i∗G = F . Moreover, set N = L|Z .

By Divisors, Lemma 31.25.4 the invertible sheaf N has a regular meromorphic
section s over Z. Let us denote J ⊂ OZ the sheaf of denominators of s. By
Lemma 42.69.6 there exist short exact sequences

0 → JG 1−→ G → Q1 → 0
0 → JG s−→ G ⊗OZ

N → Q2 → 0

such that dimδ(Supp(Qi)) ≤ k and such that the cycle [Q2]k − [Q1]k is a represen-
tative of c1(N ) ∩ [G]k+1. We see (using the fact that i∗(G ⊗ N ) = F ⊗ L by the
projection formula, see Cohomology, Lemma 20.54.2) that

[F ⊗OX
L]− [F ] = [i∗Q2]− [i∗Q1]

https://stacks.math.columbia.edu/tag/02SX
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in K0(Coh≤k+1(X)/Coh≤k−1(X)). This already shows that [F ⊗OX
L]− [F ] is an

element of Bk(X). Moreover we have
[i∗Q2]k − [i∗Q1]k = i∗ ([Q2]k − [Q1]k)

= i∗ (c1(N ) ∩ [G]k+1)
= c1(L) ∩ i∗[G]k+1

= c1(L) ∩ [F ]k+1

by the above and Lemmas 42.26.4 and 42.12.4. And this agree with the image of the
element under Bk(X)→ CHk(X) by definition. Hence the lemma is proved. □
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CHAPTER 43

Intersection Theory

0AZ6 43.1. Introduction

0AZ7 In this chapter we construct the intersection product on the Chow groups modulo
rational equivalence on a nonsingular projective variety over an algebraically closed
field. Our tools are Serre’s Tor formula (see [Ser65, Chapter V]), reduction to the
diagonal, and the moving lemma.
We first recall cycles and how to construct proper pushforward and flat pullback of
cycles. Next, we introduce rational equivalence of cycles which gives us the Chow
groups CH∗(X). Proper pushforward and flat pullback factor through rational
equivalence to give operations on Chow groups. This takes up Sections 43.3, 43.4,
43.5, 43.6, 43.7, 43.8, 43.9, 43.10, and 43.11. For proofs we mostly refer to the
chapter on Chow homology where these results have been proven in the setting of
schemes locally of finite type over a universally catenary Noetherian base, see Chow
Homology, Section 42.7 ff.
Since we work on a nonsingular projective X any irreducible component of the
intersection V ∩ W of two irreducible closed subvarieties has dimension at least
dim(V )+dim(W )−dim(X). We say V andW intersect properly if equality holds for
every irreducible component Z. In this case we define the intersection multiplicity
eZ = e(X,V ·W,Z) by the formula

eZ =
∑

i
(−1)ilengthOX,Z

TorOX,Z

i (OW,Z ,OV,Z)

We need to do a little bit of commutative algebra to show that these intersection
multiplicities agree with intuition in simple cases, namely, that sometimes

eZ = lengthOX,Z
OV ∩W,Z ,

in other words, only Tor0 contributes. This happens when V and W are Cohen-
Macaulay in the generic point of Z or when W is cut out by a regular sequence
in OX,Z which also defines a regular sequence on OV,Z . However, Example 43.14.4
shows that higher tors are necessary in general. Moreover, there is a relationship
with the Samuel multiplicity. These matters are discussed in Sections 43.13, 43.14,
43.15, 43.16, and 43.17.
Reduction to the diagonal is the statement that we can intersect V and W by
intersecting V ×W with the diagonal in X ×X. This innocuous statement, which
is clear on the level of scheme theoretic intersections, reduces an intersection of a
general pair of closed subschemes, to the case where one of the two is locally cut
out by a regular sequence. We use this, following Serre, to obtain positivity of
intersection multiplicities. Moreover, reduction to the diagonal leads to additivity
of intersection multiplicities, associativity, and a projection formula. This can be
found in Sections 43.18, 43.19, 43.20, 43.21, and 43.22.

3830
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Finally, we come to the moving lemmas and applications. There are two parts to
the moving lemma. The first is that given closed subvarieties

Z ⊂ X ⊂ PN

with X nonsingular, we can find a subvariety C ⊂ PN intersecting X properly such
that

C ·X = [Z] +
∑

mj [Zj ]

and such that the other components Zj are “more general” than Z. The second
part is that one can move C ⊂ PN over a rational curve to a subvariety in general
position with respect to any given list of subvarieties. Combined these results imply
that it suffices to define the intersection product of cycles on X which intersect
properly which was done above. Of course this only leads to an intersection product
on CH∗(X) if one can show, as we do in the text, that these products pass through
rational equivalence. This and some applications are discussed in Sections 43.23,
43.24, 43.25, 43.26, 43.27, and 43.28.

43.2. Conventions

0AZ8 We fix an algebraically closed ground field C of any characteristic. All schemes and
varieties are over C and all morphisms are over C. A variety X is nonsingular if X
is a regular scheme (see Properties, Definition 28.9.1). In our case this means that
the morphism X → Spec(C) is smooth (see Varieties, Lemma 33.12.6).

43.3. Cycles

0AZ9 Let X be a variety. A closed subvariety of X is an integral closed subscheme Z ⊂ X.
A k-cycle on X is a finite formal sum

∑
ni[Zi] where each Zi is a closed subvariety

of dimension k. Whenever we use the notation α =
∑
ni[Zi] for a k-cycle we always

assume the subvarieties Zi are pairwise distinct and ni ̸= 0 for all i. In this case
the support of α is the closed subset

Supp(α) =
⋃
Zi ⊂ X

of dimension k. The group of k-cycles is denoted Zk(X). See Chow Homology,
Section 42.8.

43.4. Cycle associated to closed subscheme

0AZA Suppose that X is a variety and that Z ⊂ X be a closed subscheme with dim(Z) ≤
k. Let Zi be the irreducible components of Z of dimension k and let ni be the
multiplicity of Zi in Z defined as

ni = lengthOX,Zi
OZ,Zi

where OX,Zi , resp. OZ,Zi is the local ring of X, resp. Z at the generic point of Zi.
We define the k-cycle associated to Z to be the k-cycle

[Z]k =
∑

ni[Zi].

See Chow Homology, Section 42.9.
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43.5. Cycle associated to a coherent sheaf

0AZB Suppose thatX is a variety and that F is a coherentOX -module with dim(Supp(F)) ≤
k. Let Zi be the irreducible components of Supp(F) of dimension k and let ni be
the multiplicity of Zi in F defined as

ni = lengthOX,Zi
Fξi

where OX,Zi is the local ring of X at the generic point ξi of Zi and Fξi is the stalk
of F at this point. We define the k-cycle associated to F to be the k-cycle

[F ]k =
∑

ni[Zi].

See Chow Homology, Section 42.10. Note that, if Z ⊂ X is a closed subscheme
with dim(Z) ≤ k, then [Z]k = [OZ ]k by definition.

43.6. Proper pushforward

0AZC Suppose that f : X → Y is a proper morphism of varieties. Let Z ⊂ X be a
k-dimensional closed subvariety. We define f∗[Z] to be 0 if dim(f(Z)) < k and
d · [f(Z)] if dim(f(Z)) = k where

d = [C(Z) : C(f(Z))] = deg(Z/f(Z))
is the degree of the dominant morphism Z → f(Z), see Morphisms, Definition
29.51.8. Let α =

∑
ni[Zi] be a k-cycle on X. The pushforward of α is the sum

f∗α =
∑
nif∗[Zi] where each f∗[Zi] is defined as above. This defines a homomor-

phism
f∗ : Zk(X) −→ Zk(Y )

See Chow Homology, Section 42.12.

Lemma 43.6.1.0AZD See [Ser65, Chapter
V].

Suppose that f : X → Y is a proper morphism of varieties. Let F
be a coherent sheaf with dim(Supp(F)) ≤ k, then f∗[F ]k = [f∗F ]k. In particular,
if Z ⊂ X is a closed subscheme of dimension ≤ k, then f∗[Z]k = [f∗OZ ]k.

Proof. See Chow Homology, Lemma 42.12.4. □

Lemma 43.6.2.0B0N Let f : X → Y and g : Y → Z be proper morphisms of varieties.
Then g∗ ◦ f∗ = (g ◦ f)∗ as maps Zk(X)→ Zk(Z).

Proof. Special case of Chow Homology, Lemma 42.12.2. □

43.7. Flat pullback

0AZE Suppose that f : X → Y is a flat morphism of varieties. By Morphisms, Lemma
29.28.2 every fibre of f has dimension r = dim(X) − dim(Y )1. Let Z ⊂ X be a
k-dimensional closed subvariety. We define f∗[Z] to be the (k+ r)-cycle associated
to the scheme theoretic inverse image: f∗[Z] = [f−1(Z)]k+r. Let α =

∑
ni[Zi] be

a k-cycle on Y . The pullback of α is the sum f∗α =
∑
nif

∗[Zi] where each f∗[Zi]
is defined as above. This defines a homomorphism

f∗ : Zk(Y ) −→ Zk+r(X)
See Chow Homology, Section 42.14.

1Conversely, if f : X → Y is a dominant morphism of varieties, X is Cohen-Macaulay, Y is
nonsingular, and all fibres have the same dimension r, then f is flat. This follows from Algebra,
Lemma 10.128.1 and Varieties, Lemma 33.20.4 showing dim(X) = dim(Y ) + r.

https://stacks.math.columbia.edu/tag/0AZD
https://stacks.math.columbia.edu/tag/0B0N
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Lemma 43.7.1.0AZF Let f : X → Y be a flat morphism of varieties. Set r = dim(X)−
dim(Y ). Then f∗[F ]k = [f∗F ]k+r if F is a coherent sheaf on Y and the dimension
of the support of F is at most k.

Proof. See Chow Homology, Lemma 42.14.4. □

Lemma 43.7.2.0B0P Let f : X → Y and g : Y → Z be flat morphisms of varieties.
Then g ◦ f is flat and f∗ ◦ g∗ = (g ◦ f)∗ as maps Zk(Z)→ Zk+dim(X)−dim(Z)(X).

Proof. Special case of Chow Homology, Lemma 42.14.3. □

43.8. Rational Equivalence

0AZG We are going to define rational equivalence in a way which at first glance may
seem different from what you are used to, or from what is in [Ful98, Chapter I] or
Chow Homology, Section 42.19. However, in Section 43.9 we will show that the two
notions agree.
Let X be a variety. Let W ⊂ X × P1 be a closed subvariety of dimension k + 1.
Let a, b be distinct closed points of P1. Assume that X × a, X × b and W intersect
properly:

dim(W ∩X × a) ≤ k, dim(W ∩X × b) ≤ k.
This is true as soon as W → P1 is dominant or if W is contained in a fibre of
the projection over a closed point different from a or b (this is an uninteresting
case which we will discard). In this situation the scheme theoretic fibre Wa of the
morphism W → P1 is equal to the scheme theoretic intersection W ∩ X × a in
X ×P1. Identifying X × a and X × b with X we may think of the fibres Wa and
Wb as closed subschemes of X of dimension ≤ k2. A basic example of a rational
equivalence is

[Wa]k ∼rat [Wb]k
The cycles [Wa]k and [Wb]k are easy to compute in practice (given W ) because
they are obtained by proper intersection with a Cartier divisor (we will see this in
Section 43.17). Since the automorphism group of P1 is 2-transitive we may move
the pair of closed points a, b to any pair we like. A traditional choice is to choose
a = 0 and b =∞.
More generally, let α =

∑
ni[Wi] be a (k + 1)-cycle on X × P1. Let ai, bi be

pairs of distinct closed points of P1. Assume that X × ai, X × bi and Wi intersect
properly, in other words, each Wi, ai, bi satisfies the condition discussed above. A
cycle rationally equivalent to zero is any cycle of the form∑

ni([Wi,ai ]k − [Wi,bi ]k).
This is indeed a k-cycle. The collection of k-cycles rationally equivalent to zero is
an additive subgroup of the group of k-cycles. We say two k-cycles are rationally
equivalent, notation α ∼rat α′, if α− α′ is a cycle rationally equivalent to zero.
We define

CHk(X) = Zk(X)/ ∼rat
to be the Chow group of k-cycles on X. We will see in Lemma 43.9.1 that this
agrees with the Chow group as defined in Chow Homology, Definition 42.19.1.

2We will sometimes think of Wa as a closed subscheme of X ×P1 and sometimes as a closed
subscheme of X. It should always be clear from context which point of view is taken.
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43.9. Rational equivalence and rational functions

0AZH Let X be a variety. Let W ⊂ X be a subvariety of dimension k+1. Let f ∈ C(W )∗

be a nonzero rational function on W . For every subvariety Z ⊂ W of dimension k
one can define the order of vanishing ordW,Z(f) of f at Z. If f is an element of the
local ring OW,Z , then one has

ordW,Z(f) = lengthOX,Z
OW,Z/fOW,Z

where OX,Z , resp. OW,Z is the local ring of X, resp. W at the generic point of
Z. In general one extends the definition by multiplicativity. The principal divisor
associated to f is

divW (f) =
∑

ordW,Z(f)[Z]

in Zk(W ). Since W ⊂ X is a closed subvariety we may think of divW (f) as a cycle
on X. See Chow Homology, Section 42.17.

Lemma 43.9.1.0AZI Let X be a variety. Let W ⊂ X be a subvariety of dimension k+1.
Let f ∈ C(W )∗ be a nonzero rational function on W . Then divW (f) is rationally
equivalent to zero on X. Conversely, these principal divisors generate the abelian
group of cycles rationally equivalent to zero on X.

Proof. The first assertion follows from Chow Homology, Lemma 42.18.2. More
precisely, let W ′ ⊂ X × P1 be the closure of the graph of f . Then divW (f) =
[W ′

0]k− [W ′
∞] in Zk(W ) ⊂ Zk(X), see part (6) of Chow Homology, Lemma 42.18.2.

For the second, let W ′ ⊂ X ×P1 be a closed subvariety of dimension k + 1 which
dominates P1. We will show that [W ′

0]k − [W ′
∞]k is a principal divisor which will

finish the proof. Let W ⊂ X be the image of W ′ under the projection to X.
Then W ⊂ X is a closed subvariety and W ′ → W is proper and dominant with
fibres of dimension 0 or 1. If dim(W ) = k, then W ′ = W × P1 and we see that
[W ′

0]k − [W ′
∞]k = [W ]− [W ] = 0. If dim(W ) = k + 1, then W ′ →W is generically

finite3. Let f denote the projection W ′ → P1 viewed as an element of C(W ′)∗. Let
g = Nm(f) ∈ C(W )∗ be the norm. By Chow Homology, Lemma 42.18.1 we have

divW (g) = prX,∗divW ′(f)

Since divW ′(f) = [W ′
0]k − [W ′

∞]k by Chow Homology, Lemma 42.18.2 the proof is
complete. □

43.10. Proper pushforward and rational equivalence

0AZJ Suppose that f : X → Y is a proper morphism of varieties. Let α ∼rat 0 be a
k-cycle on X rationally equivalent to 0. Then the pushforward of α is rationally
equivalent to zero: f∗α ∼rat 0. See Chapter I of [Ful98] or Chow Homology, Lemma
42.20.3.

3If W ′ →W is birational, then the result follows from Chow Homology, Lemma 42.18.2. Our
task is to show that even if W ′ → W has degree > 1 the basic rational equivalence [W ′

0]k ∼rat
[W ′

∞]k comes from a principal divisor on a subvariety of X.

https://stacks.math.columbia.edu/tag/0AZI
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Therefore we obtain a commutative diagram
Zk(X) //

f∗

��

CHk(X)

f∗

��
Zk(Y ) // CHk(Y )

of groups of k-cycles.

43.11. Flat pullback and rational equivalence

0AZK Suppose that f : X → Y is a flat morphism of varieties. Set r = dim(X)−dim(Y ).
Let α ∼rat 0 be a k-cycle on Y rationally equivalent to 0. Then the pullback of
α is rationally equivalent to zero: f∗α ∼rat 0. See Chapter I of [Ful98] or Chow
Homology, Lemma 42.20.2.
Therefore we obtain a commutative diagram

Zk+r(X) // CHk+r(X)

Zk(Y ) //

f∗

OO

CHk(Y )

f∗

OO

of groups of k-cycles.

43.12. The short exact sequence for an open

0B5Z Let X be a variety and let U ⊂ X be an open subvariety. Let X \ U =
⋃
Zi be

the decomposition into irreducible components4. Then for each k ≥ 0 there exists
a commutative diagram⊕

Zk(Zi) //

��

Zk(X) //

��

Zk(U)

��

// 0

⊕
CHk(Zi) // CHk(X) // CHk(U) // 0

with exact rows. Here the vertical arrows are the canonical quotient maps. The
left horizontal arrows are given by proper pushforward along the closed immer-
sions Zi → X. The right horizontal arrows are given by flat pullback along the
open immersion j : U → X. Since we have seen that these maps factor through
rational equivalence we obtain the commutativity of the squares. The top row is
exact simply because every subvariety of X is either contained in some Zi or has
irreducible intersection with U . The bottom row is exact because every principal
divisor divW (f) on U is the restriction of a principal divisor on X. More precisely,
if W ⊂ U is a (k + 1)-dimensional closed subvariety and f ∈ C(W )∗, then denote
W the closure of W in X. Then W ⊂W is an open immersion, so C(W ) = C(W )
and we may think of f as a nonconstant rational function on W . Then clearly

j∗divW (f) = divW (f)
in Zk(X). The exactness of the lower row follows easily from this. For details see
Chow Homology, Lemma 42.19.3.

4Since in this chapter we only consider Chow groups of varieties, we are prohibited from
taking Zk(X \ U) and CHk(X \ U), hence the approach using the varieties Zi.
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43.13. Proper intersections

0AZL First a few lemmas to get dimension estimates.

Lemma 43.13.1.0AZM Let X and Y be varieties. Then X × Y is a variety and dim(X ×
Y ) = dim(X) + dim(Y ).

Proof. The scheme X ×Y = X ×Spec(C) Y is a variety by Varieties, Lemma 33.3.3.
The statement on dimension is Varieties, Lemma 33.20.5. □

Recall that a regular immersion i : X → Y of schemes is a closed immersion
whose corresponding sheaf of ideals is locally generated by a regular sequence, see
Divisors, Section 31.21. Moreover, the conormal sheaf CX/Y is finite locally free of
rank equal to the length of the regular sequence. Let us say i is a regular immersion
of codimension c if CX/Y is locally free of rank c.
More generally, recall (More on Morphisms, Section 37.62) that f : X → Y is a
local complete intersection morphism if we can cover X by opens U such that we
can factor f |U as

U
i

//

��

An
Y

~~
Y

where i is a Koszul regular immersion (if Y is locally Noetherian this is the same
as asking i to be a regular immersion, see Divisors, Lemma 31.21.3). Let us say
that f is a local complete intersection morphism of relative dimension r if for any
factorization as above, the closed immersion i has conormal sheaf of rank n− r (in
other words if i is a Koszul-regular immersion of codimension n − r which in the
Noetherian case just means it is regular immersion of codimension n− r).

Lemma 43.13.2.0AZN Let f : X → Y be a morphism of varieties.
(1) If Z ⊂ Y is a subvariety dimension d and f is a regular immersion of

codimension c, then every irreducible component of f−1(Z) has dimension
≥ d− c.

(2) If Z ⊂ Y is a subvariety of dimension d and f is a local complete intersec-
tion morphism of relative dimension r, then every irreducible component
of f−1(Z) has dimension ≥ d+ r.

Proof. Proof of (1). We may work locally, hence we may assume that Y =
Spec(A) and X = V (f1, . . . , fc) where f1, . . . , fc is a regular sequence in A. If
Z = Spec(A/p), then we see that f−1(Z) = Spec(A/p + (f1, . . . , fc)). If V is an
irreducible component of f−1(Z), then we can choose a closed point v ∈ V not
contained in any other irreducible component of f−1(Z). Then

dim(Z) = dimOZ,v and dim(V ) = dimOV,v = dimOZ,v/(f1, . . . , fc)
The first equality for example by Algebra, Lemma 10.116.1 and the second equality
by our choice of closed point. The result now follows from the fact that dividing
by one element in the maximal ideal decreases the dimension by at most 1, see
Algebra, Lemma 10.60.13.
Proof of (2). Choose a factorization as in the definition of a local complete inter-
section and apply (1). Some details omitted. □
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Lemma 43.13.3.0B0Q Let X be a nonsingular variety. Then the diagonal ∆ : X → X×X
is a regular immersion of codimension dim(X).

Proof. In fact, any closed immersion between nonsingular projective varieties is a
regular immersion, see Divisors, Lemma 31.22.11. □

The following lemma demonstrates how reduction to the diagonal works.

Lemma 43.13.4.0AZP Let X be a nonsingular variety and let W,V ⊂ X be closed
subvarieties with dim(W ) = s and dim(V ) = r. Then every irreducible component
Z of V ∩W has dimension ≥ r + s− dim(X).

Proof. Since V ∩W = ∆−1(V ×W ) (scheme theoretically) we conclude by Lemmas
43.13.3 and 43.13.2. □

This lemma suggests the following definition.

Definition 43.13.5.0AZQ Let X be a nonsingular variety.
(1) Let W,V ⊂ X be closed subvarieties with dim(W ) = s and dim(V ) = r.

We say that W and V intersect properly if dim(V ∩W ) ≤ r+s−dim(X).
(2) Let α =

∑
ni[Wi] be an s-cycle, and β =

∑
jmj [Vj ] be an r-cycle on X.

We say that α and β intersect properly if Wi and Vj intersect properly
for all i and j.

43.14. Intersection multiplicities using Tor formula

0AZR A basic fact we will use frequently is that given sheaves of modules F , G on a ringed
space (X,OX) and a point x ∈ X we have

TorOX
p (F ,G)x = TorOX,x

p (Fx,Gx)
as OX,x-modules. This can be seen in several ways from our construction of derived
tensor products in Cohomology, Section 20.26, for example it follows from Cohomol-
ogy, Lemma 20.26.4. Moreover, if X is a scheme and F and G are quasi-coherent,
then the modules TorOX

p (F ,G) are quasi-coherent too, see Derived Categories of
Schemes, Lemma 36.3.9. More important for our purposes is the following result.

Lemma 43.14.1.0AZS Let X be a locally Noetherian scheme.
(1) If F and G are coherent OX -modules, then TorOX

p (F ,G) is too.
(2) If L and K are in D−

Coh(OX), then so is L⊗L
OX

K.

Proof. Let us explain how to prove (1) in a more elementary way and part (2) using
previously developed general theory.
Proof of (1). Since formation of Tor commutes with localization we may assume X
is affine. Hence X = Spec(A) for some Noetherian ring A and F , G correspond to
finite A-modules M and N (Cohomology of Schemes, Lemma 30.9.1). By Derived
Categories of Schemes, Lemma 36.3.9 we may compute the Tor’s by first computing
the Tor’s of M and N over A, and then taking the associated OX -module. Since
the modules TorAp (M,N) are finite by Algebra, Lemma 10.75.7 we conclude.
By Derived Categories of Schemes, Lemma 36.10.3 the assumption is equivalent to
asking L and K to be (locally) pseudo-coherent. Then L⊗L

OX
K is pseudo-coherent

by Cohomology, Lemma 20.47.5. □
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Lemma 43.14.2.0AZT LetX be a nonsingular variety. Let F , G be coherentOX -modules.
The OX -module TorOX

p (F ,G) is coherent, has stalk at x equal to TorOX,x
p (Fx,Gx),

is supported on Supp(F) ∩ Supp(G), and is nonzero only for p ∈ {0, . . . ,dim(X)}.

Proof. The result on stalks was discussed above and it implies the support condi-
tion. The Tor’s are coherent by Lemma 43.14.1. The vanishing of negative Tor’s
is immediate from the construction. The vanishing of Torp for p > dim(X) can be
seen as follows: the local rings OX,x are regular (as X is nonsingular) of dimen-
sion ≤ dim(X) (Algebra, Lemma 10.116.1), hence OX,x has finite global dimension
≤ dim(X) (Algebra, Lemma 10.110.8) which implies that Tor-groups of modules
vanish beyond the dimension (More on Algebra, Lemma 15.66.19). □

Let X be a nonsingular variety and W,V ⊂ X be closed subvarieties with dim(W ) =
s and dim(V ) = r. Assume V and W intersect properly. In this case Lemma 43.13.4
tells us all irreducible components of V ∩W have dimension equal to r+s−dim(X).
The sheaves TorOX

j (OW ,OV ) are coherent, supported on V ∩W , and zero if j < 0
or j > dim(X) (Lemma 43.14.2). We define the intersection product as

W · V =
∑

i
(−1)i[TorOX

i (OW ,OV )]r+s−dim(X).

We stress that this makes sense only because of our assumption that V and W
intersect properly. This fact will necessitate a moving lemma in order to define the
intersection product in general.
With this notation, the cycle V ·W is a formal linear combination

∑
eZZ of the

irreducible components Z of the intersection V ∩W . The integers eZ are called the
intersection multiplicities

eZ = e(X,V ·W,Z) =
∑

i
(−1)ilengthOX,Z

TorOX,Z

i (OW,Z ,OV,Z)

where OX,Z , resp. OW,Z , resp. OV,Z denotes the local ring of X, resp. W , resp. V
at the generic point of Z. These alternating sums of lengths of Tor’s satisfy many
good properties, as we will see later on.
In the case of transversal intersections, the intersection number is 1.

Lemma 43.14.3.0B1I Let X be a nonsingular variety. Let V,W ⊂ X be closed sub-
varieties which intersect properly. Let Z be an irreducible component of V ∩W
and assume that the multiplicity (in the sense of Section 43.4) of Z in the closed
subscheme V ∩W is 1. Then e(X,V ·W,Z) = 1 and V and W are smooth in a
general point of Z.

Proof. Let (A,m, κ) = (OX,ξ,mξ, κ(ξ)) where ξ ∈ Z is the generic point. Then
dim(A) = dim(X) − dim(Z), see Varieties, Lemma 33.20.3. Let I, J ⊂ A cut
out the trace of V and W in Spec(A). Set I = I + m2/m2. Then dimκ I ≤
dim(X) − dim(V ) with equality if and only if A/I is regular (this follows from
the lemma cited above and the definition of regular rings, see Algebra, Definition
10.60.10 and the discussion preceding it). Similarly for J . If the multiplicity is
1, then lengthA(A/I + J) = 1, hence I + J = m, hence I + J = m/m2. Then
we get equality everywhere (because the intersection is proper). Hence we find
f1, . . . , fa ∈ I and g1, . . . gb ∈ J such that f1, . . . , gb is a basis for m/m2. Then
f1, . . . , gb is a regular system of parameters and a regular sequence (Algebra, Lemma
10.106.3). The same lemma shows A/(f1, . . . , fa) is a regular local ring of dimension
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dim(X)− dim(V ), hence A/(f1, . . . , fa)→ A/I is an isomorphism (if the kernel is
nonzero, then the dimension of A/I is strictly less, see Algebra, Lemmas 10.106.2
and 10.60.13). We conclude I = (f1, . . . , fa) and J = (g1, . . . , gb) by symmetry.
Thus the Koszul complex K•(A, f1, . . . , fa) on f1, . . . , fa is a resolution of A/I, see
More on Algebra, Lemma 15.30.2. Hence

TorAp (A/I,A/J) = Hp(K•(A, f1, . . . , fa)⊗A A/J)
= Hp(K•(A/J, f1 mod J, . . . , fa mod J))

Since we’ve seen above that f1 mod J, . . . , fa mod J is a regular system of param-
eters in the regular local ring A/J we conclude that there is only one cohomology
group, namely H0 = A/(I + J) = κ. This finishes the proof. □

Example 43.14.4.0B2S In this example we show that it is necessary to use the higher
tors in the formula for the intersection multiplicities above. Let X be a nonsingular
variety of dimension 4. Let p ∈ X be a closed point. Let V,W ⊂ X be closed
subvarieties in X. Assume that there is an isomorphism

O∧
X,p
∼= C[[x, y, z, w]]

such that the ideal of V is (xz, xw, yz, yw) and the ideal of W is (x − z, y − w).
Then a computation shows that

length C[[x, y, z, w]]/(xz, xw, yz, yw, x− z, y − w) = 3

On the other hand, the multiplicity e(X,V · W,p) = 2 as can be seen from the
fact that formal locally V is the union of two smooth planes x = y = 0 and
z = w = 0 at p, each of which has intersection multiplicity 1 with the plane
x − z = y − w = 0 (Lemma 43.14.3). To make an actual example, take a general
morphism f : P2 → P4 given by 5 homogeneous polynomials of degree > 1. The
image V ⊂ P4 = X will have singularities of the type described above, because
there will be p1, p2 ∈ P2 with f(p1) = f(p2). To find W take a general plane
passing through such a point.

43.15. Algebraic multiplicities

0AZU Let (A,m, κ) be a Noetherian local ring. Let M be a finite A-module and let I ⊂ A
be an ideal of definition (Algebra, Definition 10.59.1). Recall that the function

χI,M (n) = lengthA(M/InM) =
∑

p=0,...,n−1
lengthA(IpM/Ip+1M)

is a numerical polynomial (Algebra, Proposition 10.59.5). The degree of this poly-
nomial is equal to dim(Supp(M)) by Algebra, Lemma 10.62.6.

Definition 43.15.1.0AZV In the situation above, if d ≥ dim(Supp(M)), then we set
eI(M,d) equal to 0 if d > dim(Supp(M)) and equal to d! times the leading coeffi-
cient of the numerical polynomial χI,M so that

χI,M (n) ∼ eI(M,d)n
d

d! + lower order terms

The multiplicity ofM for the ideal of definition I is eI(M) = eI(M, dim(Supp(M))).

We have the following properties of these multiplicities.
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Lemma 43.15.2.0AZW Let A be a Noetherian local ring. Let I ⊂ A be an ideal of
definition. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of finite
A-modules. Let d ≥ dim(Supp(M)). Then

eI(M,d) = eI(M ′, d) + eI(M ′′, d)

Proof. Immediate from the definitions and Algebra, Lemma 10.59.10. □

Lemma 43.15.3.0AZX Let A be a Noetherian local ring. Let I ⊂ A be an ideal of
definition. Let M be a finite A-module. Let d ≥ dim(Supp(M)). Then

eI(M,d) =
∑

lengthAp
(Mp)eI(A/p, d)

where the sum is over primes p ⊂ A with dim(A/p) = d.

Proof. Both the left and side and the right hand side are additive in short exact
sequences of modules of dimension ≤ d, see Lemma 43.15.2 and Algebra, Lemma
10.52.3. Hence by Algebra, Lemma 10.62.1 it suffices to prove this when M = A/q
for some prime q of A with dim(A/q) ≤ d. This case is obvious. □

Lemma 43.15.4.0AZY Let P be a polynomial of degree r with leading coefficient a. Then

r!a =
∑

i=0,...,r
(−1)i

(
r

i

)
P (t− i)

for any t.

Proof. Let us write ∆ the operator which to a polynomial P associates the poly-
nomial ∆(P ) = P (t)− P (t− 1). We claim that

∆r(P ) =
∑

i=0,...,r
(−1)i

(
r

i

)
P (t− i)

This is true for r = 0, 1 by inspection. Assume it is true for r. Then we compute

∆r+1(P ) =
∑

i=0,...,r
(−1)i

(
r

i

)
∆(P )(t− i)

=
∑

n=−r,...,0
(−1)i

(
r

i

)
(P (t− i)− P (t− i− 1))

Thus the claim follows from the equality(
r + 1
i

)
=
(
r

i

)
+
(

r

i− 1

)
The lemma follows from the fact that ∆(P ) is of degree r−1 with leading coefficient
ra if the degree of P is r. □

An important fact is that one can compute the multiplicity in terms of the Koszul
complex. Recall that if R is a ring and f1, . . . , fr ∈ R, then K•(f1, . . . , fr) denotes
the Koszul complex, see More on Algebra, Section 15.28.

Theorem 43.15.5.0AZZ [Ser65, Theorem 1
in part B of Chapter
IV]

Let A be a Noetherian local ring. Let I = (f1, . . . , fr) ⊂ A be
an ideal of definition. Let M be a finite A-module. Then

eI(M, r) =
∑

(−1)ilengthAHi(K•(f1, . . . , fr)⊗AM)
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Proof. Let us change the Koszul complex K•(f1, . . . , fr) into a cochain complex
K• by setting Kn = K−n(f1, . . . , fr). Then K• is sitting in degrees −r, . . . , 0 and
Hi(K• ⊗AM) = H−i(K•(f1, . . . , fr)⊗AM). The statement of the theorem makes
sense as the modules Hi(K• ⊗M) are annihilated by f1, . . . , fr (More on Algebra,
Lemma 15.28.6) hence have finite length. Define a filtration on the complex K• by
setting

F p(Kn ⊗AM) = Imax(0,p+n)(Kn ⊗AM), p ∈ Z
Since fiIp ⊂ Ip+1 this is a filtration by subcomplexes. Thus we have a filtered
complex and we obtain a spectral sequence, see Homology, Section 12.24. We have

E0 =
⊕

p,q
Ep,q0 =

⊕
p,q

grp(Kp+q ⊗AM) = GrI(K• ⊗AM)

Since Kn is finite free we have

GrI(K• ⊗AM) = GrI(K•)⊗GrI(A) GrI(M)

Note that GrI(K•) is the Koszul complex over GrI(A) on the elements f1, . . . , fr ∈
I/I2. A simple calculation (omitted) shows that the differential d0 on E0 agrees
with the differential coming from the Koszul complex. Since GrI(M) is a finite
GrI(A)-module and since GrI(A) is Noetherian (as a quotient of A/I[x1, . . . , xr]
with xi 7→ f i), the cohomology module E1 =

⊕
Ep,q1 is a finite GrI(A)-module.

However, as above E1 is annihilated by f1, . . . , fr. We conclude E1 has finite
length. In particular we find that GrpF (K• ⊗M) is acyclic for p≫ 0.

Next, we check that the spectral sequence above converges using Homology, Lemma
12.24.10. The required equalities follow easily from the Artin-Rees lemma in the
form stated in Algebra, Lemma 10.51.3. Thus we see that∑

(−1)ilengthA(Hi(K• ⊗AM)) =
∑

(−1)p+qlengthA(Ep,q∞ )

=
∑

(−1)p+qlengthA(Ep,q1 )

because as we’ve seen above the length of E1 is finite (of course this uses additivity
of lengths). Pick t so large that GrpF (K• ⊗M) is acyclic for p ≥ t (see above).
Using additivity again we see that∑

(−1)p+qlengthA(Ep,q1 ) =
∑

n

∑
p≤t

(−1)nlengthA(grp(Kn ⊗AM))

This is equal to ∑
n=−r,...,0

(−1)n
(
r

|n|

)
χI,M (t+ n)

by our choice of filtration above and the definition of χI,M in Algebra, Section
10.59. The lemma follows from Lemma 43.15.4 and the definition of eI(M, r). □

Remark 43.15.6 (Trivial generalization).0B00 Let (A,m, κ) be a Noetherian local ring.
Let M be a finite A-module. Let I ⊂ A be an ideal. The following are equivalent

(1) I ′ = I + Ann(M) is an ideal of definition (Algebra, Definition 10.59.1),
(2) the image I of I in A = A/Ann(M) is an ideal of definition,
(3) Supp(M/IM) ⊂ {m},
(4) dim(Supp(M/IM)) ≤ 0, and
(5) lengthA(M/IM) <∞.

https://stacks.math.columbia.edu/tag/0B00
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This follows from Algebra, Lemma 10.62.3 (details omitted). If this is the case we
have M/InM = M/(I ′)nM for all n and M/InM = M/I

n
M for all n if M is

viewed as an A-module. Thus we can define

χI,M (n) = lengthA(M/InM) =
∑

p=0,...,n−1
lengthA(IpM/Ip+1M)

and we get
χI,M (n) = χI′,M (n) = χI,M (n)

for all n by the equalities above. All the results of Algebra, Section 10.59 and all the
results in this section, have analogues in this setting. In particular we can define
multiplicities eI(M,d) for d ≥ dim(Supp(M)) and we have

χI,M (n) ∼ eI(M,d)n
d

d! + lower order terms

as in the case where I is an ideal of definition.

43.16. Computing intersection multiplicities

0B01 In this section we discuss some cases where the intersection multiplicities can be
computed by different means. Here is a first example.

Lemma 43.16.1.0B02 Let X be a nonsingular variety and W,V ⊂ X closed subvarieties
which intersect properly. Let Z be an irreducible component of V ∩W with generic
point ξ. Assume that OW,ξ and OV,ξ are Cohen-Macaulay. Then

e(X,V ·W,Z) = lengthOX,ξ
(OV ∩W,ξ)

where V ∩W is the scheme theoretic intersection. In particular, if both V and W
are Cohen-Macaulay, then V ·W = [V ∩W ]dim(V )+dim(W )−dim(X).

Proof. Set A = OX,ξ, B = OV,ξ, and C = OW,ξ. By Auslander-Buchsbaum (Alge-
bra, Proposition 10.111.1) we can find a finite free resolution F• → B of length

depth(A)− depth(B) = dim(A)− dim(B) = dim(C)

First equality as A and B are Cohen-Macaulay and the second as V and W intersect
properly. Then F• ⊗A C is a complex of finite free modules representing B ⊗L

A C
hence has cohomology modules with support in {mA}. By the Acyclicity lemma
(Algebra, Lemma 10.102.8) which applies as C is Cohen-Macaulay we conclude that
F• ⊗A C has nonzero cohomology only in degree 0. This finishes the proof. □

Lemma 43.16.2.0B03 Let A be a Noetherian local ring. Let I = (f1, . . . , fr) be an
ideal generated by a regular sequence. Let M be a finite A-module. Assume that
dim(Supp(M/IM)) = 0. Then

eI(M, r) =
∑

(−1)ilengthA(TorAi (A/I,M))

Here eI(M, r) is as in Remark 43.15.6.

Proof. Since f1, . . . , fr is a regular sequence the Koszul complex K•(f1, . . . , fr) is
a resolution of A/I over A, see More on Algebra, Lemma 15.30.7. Thus the right
hand side is equal to∑

(−1)ilengthAHi(K•(f1, . . . , fr)⊗AM)

https://stacks.math.columbia.edu/tag/0B02
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Now the result follows immediately from Theorem 43.15.5 if I is an ideal of defi-
nition. In general, we replace A by A = A/Ann(M) and f1, . . . , fr by f1, . . . , fr
which is allowed because

K•(f1, . . . , fr)⊗AM = K•(f1, . . . , fr)⊗AM

Since eI(M, r) = eI(M, r) where I = (f1, . . . , fr) ⊂ A is an ideal of definition the
result follows from Theorem 43.15.5 in this case as well. □

Lemma 43.16.3.0B04 Let X be a nonsingular variety. Let W,V ⊂ X be closed subva-
rieties which intersect properly. Let Z be an irreducible component of V ∩W with
generic point ξ. Suppose the ideal of V in OX,ξ is cut out by a regular sequence
f1, . . . , fc ∈ OX,ξ. Then e(X,V ·W,Z) is equal to c! times the leading coefficient
in the Hilbert polynomial

t 7→ lengthOX,ξ
OW,ξ/(f1, . . . , fc)t, t≫ 0.

In particular, this coefficient is > 0.

Proof. The equality

e(X,V ·W,Z) = e(f1,...,fc)(OW,ξ, c)

follows from the more general Lemma 43.16.2. To see that e(f1,...,fc)(OW,ξ, c) is
> 0 or equivalently that e(f1,...,fc)(OW,ξ, c) is the leading coefficient of the Hilbert
polynomial it suffices to show that the dimension of OW,ξ is c, because the degree of
the Hilbert polynomial is equal to the dimension by Algebra, Proposition 10.60.9.
Say dim(V ) = r, dim(W ) = s, and dim(X) = n. Then dim(Z) = r + s− n as the
intersection is proper. Thus the transcendence degree of κ(ξ) over C is r + s − n,
see Algebra, Lemma 10.116.1. We have r+ c = n because V is cut out by a regular
sequence in a neighbourhood of ξ, see Divisors, Lemma 31.20.8 and then Lemma
43.13.2 applies (for example). Thus

dim(OW,ξ) = s− (r + s− n) = s− ((n− c) + s− n) = c

the first equality by Algebra, Lemma 10.116.3. □

Lemma 43.16.4.0B05 In Lemma 43.16.3 assume that c = 1, i.e., V is an effective Cartier
divisor. Then

e(X,V ·W,Z) = lengthOX,ξ
(OW,ξ/f1OW,ξ).

Proof. In this case the image of f1 in OW,ξ is nonzero by properness of intersection,
hence a nonzerodivisor divisor. Moreover, OW,ξ is a Noetherian local domain of
dimension 1. Thus

lengthOX,ξ
(OW,ξ/f t1OW,ξ) = tlengthOX,ξ

(OW,ξ/f1OW,ξ)

for all t ≥ 1, see Algebra, Lemma 10.121.1. This proves the lemma. □

Lemma 43.16.5.0B06 In Lemma 43.16.3 assume that the local ring OW,ξ is Cohen-
Macaulay. Then we have

e(X,V ·W,Z) = lengthOX,ξ
(OW,ξ/f1OW,ξ + . . .+ fcOW,ξ).

Proof. This follows immediately from Lemma 43.16.1. Alternatively, we can deduce
it from Lemma 43.16.3. Namely, by Algebra, Lemma 10.104.2 we see that f1, . . . , fc
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is a regular sequence in OW,ξ. Then Algebra, Lemma 10.69.2 shows that f1, . . . , fc
is a quasi-regular sequence. This easily implies the length of OW,ξ/(f1, . . . , fc)t is(

c+ t

c

)
lengthOX,ξ

(OW,ξ/f1OW,ξ + . . .+ fcOW,ξ).

Looking at the leading coefficient we conclude. □

43.17. Intersection product using Tor formula

0B08 Let X be a nonsingular variety. Let α =
∑
ni[Wi] be an r-cycle and β =

∑
jmj [Vj ]

be an s-cycle on X. Assume that α and β intersect properly, see Definition 43.13.5.
In this case we define

α · β =
∑

i,j
nimjWi · Vj .

where Wi ·Vj is as defined in Section 43.14. If β = [V ] where V is a closed subvariety
of dimension s, then we sometimes write α · β = α · V .

Lemma 43.17.1.0B07 Let X be a nonsingular variety. Let a, b ∈ P1 be distinct closed
points. Let k ≥ 0.

(1) If W ⊂ X ×P1 is a closed subvariety of dimension k+ 1 which intersects
X × a properly, then
(a) [Wa]k = W ·X × a as cycles on X ×P1, and
(b) [Wa]k = prX,∗(W ·X × a) as cycles on X.

(2) Let α be a (k + 1)-cycle on X × P1 which intersects X × a and X × b
properly. Then prX,∗(α ·X×a−α ·X× b) is rationally equivalent to zero.

(3) Conversely, any k-cycle which is rationally equivalent to 0 is of this form.

Proof. First we observe that X×a is an effective Cartier divisor in X×P1 and that
Wa is the scheme theoretic intersection ofW withX×a. Hence the equality in (1)(a)
is immediate from the definitions and the calculation of intersection multiplicity
in case of a Cartier divisor given in Lemma 43.16.4. Part (1)(b) holds because
Wa → X × P1 → X maps isomorphically onto its image which is how we viewed
Wa as a closed subscheme of X in Section 43.8. Parts (2) and (3) are formal
consequences of part (1) and the definitions. □

For transversal intersections of closed subschemes the intersection multiplicity is 1.

Lemma 43.17.2.0B1J Let X be a nonsingular variety. Let r, s ≥ 0 and let Y,Z ⊂ X be
closed subschemes with dim(Y ) ≤ r and dim(Z) ≤ s. Assume [Y ]r =

∑
ni[Yi] and

[Z]s =
∑
mj [Zj ] intersect properly. Let T be an irreducible component of Yi0 ∩Zj0

for some i0 and j0 and assume that the multiplicity (in the sense of Section 43.4)
of T in the closed subscheme Y ∩ Z is 1. Then

(1) the coefficient of T in [Y ]r · [Z]s is 1,
(2) Y and Z are nonsingular at the generic point of Z,
(3) ni0 = 1, mj0 = 1, and
(4) T is not contained in Yi or Zj for i ̸= i0 and j ̸= j0.

Proof. Set n = dim(X), a = n − r, b = n − s. Observe that dim(T ) = r +
s − n = n − a − b by the assumption that the intersections are transversal. Let
(A,m, κ) = (OX,ξ,mξ, κ(ξ)) where ξ ∈ T is the generic point. Then dim(A) = a+b,
see Varieties, Lemma 33.20.3. Let I0, I, J0, J ⊂ A cut out the trace of Yi0 , Y , Zj0 ,
Z in Spec(A). Then dim(A/I) = dim(A/I0) = b and dim(A/J) = dim(A/J0) = a

https://stacks.math.columbia.edu/tag/0B07
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by the same reference. Set I = I + m2/m2. Then I ⊂ I0 ⊂ m and J ⊂ J0 ⊂ m
and I + J = m. By Lemma 43.14.3 and its proof we see that I0 = (f1, . . . , fa) and
J0 = (g1, . . . , gb) where f1, . . . , gb is a regular system of parameters for the regular
local ring A. Since I + J = m, the map

I ⊕ J → m/m2 = κf1 ⊕ . . .⊕ κfa ⊕ κg1 ⊕ . . .⊕ κgb
is surjective. We conclude that we can find f ′

1, . . . , f
′
a ∈ I and g′

1, . . . , g
′
b ∈ J whose

residue classes in m/m2 are equal to the residue classes of f1, . . . , fa and g1, . . . , gb.
Then f ′

1, . . . , g
′
b is a regular system of parameters of A. By Algebra, Lemma 10.106.3

we find thatA/(f ′
1, . . . , f

′
a) is a regular local ring of dimension b. Thus any nontrivial

quotient of A/(f ′
1, . . . , f

′
a) has strictly smaller dimension (Algebra, Lemmas 10.106.2

and 10.60.13). Hence I = (f ′
1, . . . , f

′
a) = I0. By symmetry J = J0. This proves

(2), (3), and (4). Finally, the coefficient of T in [Y ]r · [Z]s is the coefficient of T in
Yi0 · Zj0 which is 1 by Lemma 43.14.3. □

43.18. Exterior product

0B09 Let X and Y be varieties. Let V , resp. W be a closed subvariety of X, resp. Y .
The product V ×W is a closed subvariety of X×Y (Lemma 43.13.1). For a k-cycle
α =

∑
ni[Vi] and a l-cycle β =

∑
mj [Vj ] on Y we define the exterior product of α

and β to be the cycle α×β =
∑
nimj [Vi×Wj ]. Exterior product defines a Z-linear

map
Zr(X)⊗Z Zs(Y ) −→ Zr+s(X × Y )

Let us prove that exterior product factors through rational equivalence.

Lemma 43.18.1.0B0S Let X and Y be varieties. Let α ∈ Zr(X) and β ∈ Zs(Y ). If
α ∼rat 0 or β ∼rat 0, then α× β ∼rat 0.

Proof. By linearity and symmetry in X and Y , it suffices to prove this when α = [V ]
for some subvariety V ⊂ X of dimension s and β = [Wa]s − [Wb]s for some closed
subvariety W ⊂ Y ×P1 of dimension s+1 which intersects Y ×a and Y ×b properly.
In this case the lemma follows if we can prove

[(V ×W )a]r+s = [V ]× [Wa]s
and similarly with a replaced by b. Namely, then we see that α × β = [(V ×
W )a]r+s − [(V × W )b]r+s as desired. To see the displayed equality we note the
equality

V ×Wa = (V ×W )a
of schemes. The projection V ×Wa → Wa induces a bijection of irreducible com-
ponents (see for example Varieties, Lemma 33.8.4). Let W ′ ⊂Wa be an irreducible
component with generic point ζ. Then V × W ′ is the corresponding irreducible
component of V ×Wa (see Lemma 43.13.1). Let ξ be the generic point of V ×W ′.
We have to show that

lengthOY,ζ
(OWa,ζ) = lengthOX×Y,ξ

(OV×Wa,ξ)

In this formula we may replace OY,ζ by OWa,ζ and we may replace OX×Y,ζ by
OV×Wa,ζ (see Algebra, Lemma 10.52.5). As OWa,ζ → OV×Wa,ξ is flat, by Algebra,
Lemma 10.52.13 it suffices to show that

lengthOV×Wa,ξ
(OV×Wa,ξ/mζOV×Wa,ξ) = 1
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This is true because the quotient on the right is the local ring OV×W ′,ξ of a variety
at a generic point hence equal to κ(ξ). □

We conclude that exterior product defines a commutative diagram

Zr(X)⊗Z Zs(Y ) //

��

Zr+s(X × Y )

��
CHr(X)⊗Z CHs(Y ) // CHr+s(X × Y )

for any pair of varieties X and Y . For nonsingular varieties we can think of the
exterior product as an intersection product of pullbacks.

Lemma 43.18.2.0B0R Let X and Y be nonsingular varieties. Let α ∈ Zr(X) and
β ∈ Zs(Y ). Then

(1) pr∗
Y (β) = [X]× β and pr∗

X(α) = α× [Y ],
(2) α× [Y ] and [X]× β intersect properly on X × Y , and
(3) we have α× β = (α× [Y ]) · ([X]× β) = pr∗

Y (α) · pr∗
X(β) in Zr+s(X × Y ).

Proof. By linearity we may assume α = [V ] and β = [W ]. Then (1) says that
pr−1
Y (W ) = X ×W and pr−1

X (V ) = V × Y . This is clear. Part (2) holds because
X ×W ∩ V × Y = V ×W and dim(V ×W ) = r + s by Lemma 43.13.1.

Proof of (3). Let ξ be the generic point of V ×W . Since the projections X×W →W
is smooth as a base change of X → Spec(C), we see that X ×W is nonsingular
at every point lying over the generic point of W , in particular at ξ. Similarly for
V × Y . Hence OX×W,ξ and OV×Y,ξ are Cohen-Macaulay local rings and Lemma
43.16.1 applies. Since V × Y ∩X ×W = V ×W scheme theoretically the proof is
complete. □

43.19. Reduction to the diagonal

0B0A Let X be a nonsingular variety. We will use ∆ to denote either the diagonal
morphism ∆ : X → X ×X or the image ∆ ⊂ X ×X. Reduction to the diagonal
is the statement that intersection products on X can be reduced to intersection
products of exterior products with the diagonal on X ×X.

Lemma 43.19.1.0B0T Let X be a nonsingular variety.
(1) If F and G are coherent OX -modules, then there are canonical isomor-

phisms

TorOX×X
i (O∆,pr∗

1F ⊗OX×X pr∗
2G) = ∆∗TorOX

i (F ,G)

(2) If K and M are in DQCoh(OX), then there is a canonical isomorphism

L∆∗
(
Lpr∗

1K ⊗L
OX×X

Lpr∗
2M
)

= K ⊗L
OX

M

in DQCoh(OX) and a canonical isomorphism

O∆ ⊗L
OX×X

Lpr∗
1K ⊗L

OX×X
Lpr∗

2M = ∆∗(K ⊗L
OX

M)

in DQCoh(X ×X).
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Proof. Let us explain how to prove (1) in a more elementary way and part (2) using
more general theory. As (2) implies (1) the reader can skip the proof of (1).

Proof of (1). Choose an affine open Spec(A) ⊂ X. Then A is a Noetherian
C-algebra and F , G correspond to finite A-modules M and N (Cohomology of
Schemes, Lemma 30.9.1). By Derived Categories of Schemes, Lemma 36.3.9 we
may compute Tori over OX by first computing the Tor’s of M and N over A, and
then taking the associated OX -module. For the Tori over OX×X we compute the
tor of A and M ⊗C N over A ⊗C A and then take the associated OX×X -module.
Hence on this affine patch we have to prove that

TorA⊗CA
i (A,M ⊗C N) = TorAi (M,N)

To see this choose resolutions F• → M and G• → M by finite free A-modules
(Algebra, Lemma 10.71.1). Note that Tot(F• ⊗C G•) is a resolution of M ⊗C N
as it computes Tor groups over C! Of course the terms of F• ⊗C G• are finite free
A⊗C A-modules. Hence the left hand side of the displayed equation is the module

Hi(A⊗A⊗CA Tot(F• ⊗C G•))

and the right hand side is the module

Hi(Tot(F• ⊗A G•))

Since A⊗A⊗CA (Fp ⊗C Gq) = Fp ⊗A Gq we see that these modules are equal. This
defines an isomorphism over the affine open Spec(A) × Spec(A) (which is good
enough for the application to equality of intersection numbers). We omit the proof
that these isomorphisms glue.

Proof of (2). The second statement follows from the first by the projection formula
as stated in Derived Categories of Schemes, Lemma 36.22.1. To see the first, repre-
sent K and M by K-flat complexes K• andM•. Since pullback and tensor product
preserve K-flat complexes (Cohomology, Lemmas 20.26.5 and 20.26.8) we see that
it suffices to show

∆∗Tot(pr∗
1K• ⊗OX×X pr∗

2M•) = Tot(K• ⊗OX
M•)

Thus it suffices to see that there are canonical isomorphisms

∆∗(pr∗
1K ⊗OX×X pr∗

2M) −→ K⊗OX
M

whenever K and M are OX -modules (not necessarily quasi-coherent or flat). We
omit the details. □

Lemma 43.19.2.0B0U Let X be a nonsingular variety. Let α, resp. β be an r-cycle, resp.
s-cycle on X. Assume α and β intersect properly. Then

(1) α× β and [∆] intersect properly
(2) we have ∆∗(α · β) = [∆] · α× β as cycles on X ×X,
(3) if X is proper, then pr1,∗([∆] · α× β) = α · β, where pr1 : X ×X → X is

the projection.

Proof. By linearity it suffices to prove this when α = [V ] and β = [W ] for some
closed subvarieties V ⊂ X and W ⊂ Y which intersect properly. Recall that V ×W
is a closed subvariety of dimension r+s. Observe that scheme theoretically we have
V ∩W = ∆−1(V ×W ) as well as ∆(V ∩W ) = ∆ ∩ V ×W . This proves (1).
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Proof of (2). Let Z ⊂ V ∩W be an irreducible component with generic point ξ.
We have to show that the coefficient of Z in α · β is the same as the coefficient of
∆(Z) in [∆] · α× β. The first is given by the integer∑

(−1)ilengthOX,ξ
TorOX

i (OV ,OW )ξ
and the second by the integer∑

(−1)ilengthOX×Y,∆(ξ)
TorOX×Y

i (O∆,OV×W )∆(ξ)

However, by Lemma 43.19.1 we have

TorOX
i (OV ,OW )ξ ∼= TorOX×Y

i (O∆,OV×W )∆(ξ)

as OX×X,∆(ξ)-modules. Thus equality of lengths (by Algebra, Lemma 10.52.5 to
be precise).
Part (2) implies (3) because pr1,∗ ◦∆∗ = id by Lemma 43.6.2. □

Proposition 43.19.3.0B0V This is one of the
main results of
[Ser65].

Let X be a nonsingular variety. Let V ⊂ X and W ⊂ Y
be closed subvarieties which intersect properly. Let Z ⊂ V ∩W be an irreducible
component. Then e(X,V ·W,Z) > 0.

Proof. By Lemma 43.19.2 we have
e(X,V ·W,Z) = e(X ×X,∆ · V ×W,∆(Z))

Since ∆ : X → X × X is a regular immersion (see Lemma 43.13.3), we see that
e(X ×X,∆ · V ×W,∆(Z)) is a positive integer by Lemma 43.16.3. □

The following is a key lemma in the development of the theory as is done in this
chapter. Essentially, this lemma tells us that the intersection numbers have a
suitable additivity property.

Lemma 43.19.4.0B0W [Ser65, Chapter V]Let X be a nonsingular variety. Let F and G be coherent sheaves
on X with dim(Supp(F)) ≤ r, dim(Supp(G)) ≤ s, and dim(Supp(F)∩ Supp(G)) ≤
r + s− dimX. In this case [F ]r and [G]s intersect properly and

[F ]r · [G]s =
∑

(−1)p[TorOX
p (F ,G)]r+s−dim(X).

Proof. The statement that [F ]r and [G]s intersect properly is immediate. Since we
are proving an equality of cycles we may work locally on X. (Observe that the
formation of the intersection product of cycles, the formation of Tor-sheaves, and
forming the cycle associated to a coherent sheaf, each commute with restriction to
open subschemes.) Thus we may and do assume that X is affine.
Denote
RHS(F ,G) = [F ]r · [G]s and LHS(F ,G) =

∑
(−1)p[TorOX

p (F ,G)]r+s−dim(X)

Consider a short exact sequence
0→ F1 → F2 → F3 → 0

of coherent sheaves on X with Supp(Fi) ⊂ Supp(F), then both LHS(Fi,G) and
RHS(Fi,G) are defined for i = 1, 2, 3 and we have

RHS(F2,G) = RHS(F1,G) +RHS(F3,G)
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and similarly for LHS. Namely, the support condition guarantees that everything
is defined, the short exact sequence and additivity of lengths gives

[F2]r = [F1]r + [F3]r
(Chow Homology, Lemma 42.10.4) which implies additivity for RHS. The long exact
sequence of Tors

. . .→ Tor1(F3,G)→ Tor0(F1,G)→ Tor0(F2,G)→ Tor0(F3,G)→ 0
and additivity of lengths as before implies additivity for LHS.
By Algebra, Lemma 10.62.1 and the fact that X is affine, we can find a filtration
of F whose graded pieces are structure sheaves of closed subvarieties of Supp(F).
The additivity shown in the previous paragraph, implies that it suffices to prove
LHS = RHS with F replaced by OV where V ⊂ Supp(F). By symmetry we can
do the same for G. This reduces us to proving that

LHS(OV ,OW ) = RHS(OV ,OW )
where W ⊂ Supp(G) is a closed subvariety. If dim(V ) = r and dim(W ) = s,
then this equality is the definition of V · W . On the other hand, if dim(V ) <
r or dim(W ) < s, i.e., [V ]r = 0 or [W ]s = 0, then we have to prove that
RHS(OV ,OW ) = 0 5.
Let Z ⊂ V ∩W be an irreducible component of dimension r+s−dim(X). This is the
maximal dimension of a component and it suffices to show that the coefficient of Z
in RHS is zero. Let ξ ∈ Z be the generic point. Write A = OX,ξ, B = OX×X,∆(ξ),
and C = OV×W,∆(ξ). By Lemma 43.19.1 we have

coeff of Z in RHS(OV ,OW ) =
∑

(−1)ilengthBTorBi (A,C)

Since dim(V ) < r or dim(W ) < s we have dim(V × W ) < r + s which implies
dim(C) < dim(X) (small detail omitted). Moreover, the kernel I of B → A is gen-
erated by a regular sequence of length dim(X) (Lemma 43.13.3). Hence vanishing
by Lemma 43.16.2 because the Hilbert function of C with respect to I has degree
dim(C) < n by Algebra, Proposition 10.60.9. □

Remark 43.19.5.0B0X Let (A,m, κ) be a regular local ring. Let M and N be nonzero
finite A-modules such that M ⊗A N is supported in {m}. Then

χ(M,N) =
∑

(−1)ilengthATorAi (M,N)

is finite. Let r = dim(Supp(M)) and s = dim(Supp(N)). In [Ser65] it is shown
that r + s ≤ dim(A) and the following conjectures are made:

(1) if r + s < dim(A), then χ(M,N) = 0, and
(2) if r + s = dim(A), then χ(M,N) > 0.

The arguments that prove Lemma 43.19.4 and Proposition 43.19.3 can be leveraged
(as is done in Serre’s text) to show that (1) and (2) are true if A contains a field.
Currently, conjecture (1) is known in general and it is known that χ(M,N) ≥ 0 in
general (Gabber). Positivity is, as far as we know, still an open problem.

5The reader can see that this is not a triviality by taking r = s = 1 and X a nonsingular
surface and V = W a closed point x of X. In this case there are 3 nonzero Tors of lengths 1, 2, 1
at x.
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43.20. Associativity of intersections

0B1K It is clear that proper intersections as defined above are commutative. Using the key
Lemma 43.19.4 we can prove that (proper) intersection products are associative.

Lemma 43.20.1.0B1L Let X be a nonsingular variety. Let U, V,W be closed subvarieties.
Assume that U, V,W intersect properly pairwise and that dim(U ∩ V ∩ W ) ≤
dim(U) + dim(V ) + dim(W )− 2 dim(X). Then

U · (V ·W ) = (U · V ) ·W

as cycles on X.

Proof. We are going to use Lemma 43.19.4 without further mention. This implies
that

V ·W =
∑

(−1)i[Tori(OV ,OW )]b+c−n

U · (V ·W ) =
∑

(−1)i+j [Torj(OU ,Tori(OV ,OW ))]a+b+c−2n

U · V =
∑

(−1)i[Tori(OU ,OV )]a+b−n

(U · V ) ·W =
∑

(−1)i+j [Torj(Tori(OU ,OV ),OW ))]a+b+c−2n

where dim(U) = a, dim(V ) = b, dim(W ) = c, dim(X) = n. The assumptions in
the lemma guarantee that the coherent sheaves in the formulae above satisfy the
required bounds on dimensions of supports in order to make sense of these. Now
consider the object

K = OU ⊗L
OX
OV ⊗L

OX
OW

of the derived category DCoh(OX). We claim that the expressions obtained above
for U · (V ·W ) and (U · V ) ·W are equal to∑

(−1)k[Hk(K)]a+b+c−2n

This will prove the lemma. By symmetry it suffices to prove one of these equalities.
To do this we represent OU and OV ⊗L

OX
OW by K-flat complexes M• and L•

and use the spectral sequence associated to the double complex M• ⊗OX
L• in

Homology, Section 12.25. This is a spectral sequence with E2 page

Ep,q2 = Tor−p(OU ,Tor−q(OV ,OW ))

converging to Hp+q(K) (details omitted; compare with More on Algebra, Example
15.62.4). Since lengths are additive in short exact sequences we see that the result
is true. □

43.21. Flat pullback and intersection products

0B0B Short discussion of the interaction between intersections and flat pullback.

Lemma 43.21.1.0B0Y Let f : X → Y be a flat morphism of nonsingular varieties. Set
e = dim(X)−dim(Y ). Let F and G be coherent sheaves on Y with dim(Supp(F)) ≤
r, dim(Supp(G)) ≤ s, and dim(Supp(F)∩ Supp(G)) ≤ r+ s− dim(Y ). In this case
the cycles [f∗F ]r+e and [f∗G]s+e intersect properly and

f∗([F ]r · [G]s) = [f∗F ]r+e · [f∗G]s+e

https://stacks.math.columbia.edu/tag/0B1L
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Proof. The statement that [f∗F ]r+e and [f∗G]s+e intersect properly is immediate
from the assumption that f has relative dimension e. By Lemmas 43.19.4 and
43.7.1 it suffices to show that

f∗TorOY
i (F ,G) = TorOX

i (f∗F , f∗G)
as OX -modules. This follows from Cohomology, Lemma 20.27.3 and the fact that
f∗ is exact, so Lf∗F = f∗F and similarly for G. □

Lemma 43.21.2.0B0Z Let f : X → Y be a flat morphism of nonsingular varieties. Let α
be a r-cycle on Y and β an s-cycle on Y . Assume that α and β intersect properly.
Then f∗α and f∗β intersect properly and f∗(α · β) = f∗α · f∗β.

Proof. By linearity we may assume that α = [V ] and β = [W ] for some closed
subvarieties V,W ⊂ Y of dimension r, s. Say f has relative dimension e. Then
the lemma is a special case of Lemma 43.21.1 because [V ] = [OV ]r, [W ] = [OW ]r,
f∗[V ] = [f−1(V )]r+e = [f∗OV ]r+e, and f∗[W ] = [f−1(W )]s+e = [f∗OW ]s+e. □

43.22. Projection formula for flat proper morphisms

0B0C Short discussion of the projection formula for flat proper morphisms.

Lemma 43.22.1.0B10 See [Ser65, Chapter
V, C), Section 7,
formula (10)] for a
more general
formula.

Let f : X → Y be a flat proper morphism of nonsingular varieties.
Set e = dim(X)− dim(Y ). Let α be an r-cycle on X and let β be a s-cycle on Y .
Assume that α and f∗(β) intersect properly. Then f∗(α) and β intersect properly
and

f∗(α) · β = f∗(α · f∗β)

Proof. By linearity we reduce to the case where α = [V ] and β = [W ] for some
closed subvariety V ⊂ X and W ⊂ Y of dimension r and s. Then f−1(W ) has pure
dimension s + e. We assume the cycles [V ] and f∗[W ] intersect properly. We will
use without further mention the fact that V ∩ f−1(W )→ f(V ) ∩W is surjective.
Let a be the dimension of the generic fibre of V → f(V ). If a > 0, then f∗[V ] = 0.
In particular f∗α and β intersect properly. To finish this case we have to show that
f∗([V ] · f∗[W ]) = 0. However, since every fibre of V → f(V ) has dimension ≥ a
(see Morphisms, Lemma 29.28.4) we conclude that every irreducible component Z
of V ∩ f−1(W ) has fibres of dimension ≥ a over f(Z). This certainly implies what
we want.
Assume that V → f(V ) is generically finite. Let Z ⊂ f(V ) ∩W be an irreducible
component. Let Zi ⊂ V ∩ f−1(W ), i = 1, . . . , t be the irreducible components of
V ∩ f−1(W ) dominating Z. By assumption each Zi has dimension r + s + e −
dim(X) = r + s − dim(Y ). Hence dim(Z) ≤ r + s − dim(Y ). Thus we see that
f(V ) and W intersect properly, dim(Z) = r + s − dim(Y ), and each Zi → Z is
generically finite. In particular, it follows that V → f(V ) has finite fibre over the
generic point ξ of Z. Thus V → Y is finite in an open neighbourhood of ξ, see
Cohomology of Schemes, Lemma 30.21.2. Using a very general projection formula
for derived tensor products, we get

Rf∗(OV ⊗L
OX

Lf∗OW ) = Rf∗OV ⊗L
OY
OW

see Derived Categories of Schemes, Lemma 36.22.1. Since f is flat, we see that
Lf∗OW = f∗OW . Since f |V is finite in an open neighbourhood of ξ we have

(Rf∗F)ξ = (f∗F)ξ

https://stacks.math.columbia.edu/tag/0B0Z
https://stacks.math.columbia.edu/tag/0B10


43.22. PROJECTION FORMULA FOR FLAT PROPER MORPHISMS 3852

for any coherent sheaf on X whose support is contained in V (see Cohomology of
Schemes, Lemma 30.20.8). Thus we conclude that

(43.22.1.1)0B11
(
f∗TorOX

i (OV , f∗OW )
)
ξ

=
(

TorOY
i (f∗OV ,OW )

)
ξ

for all i. Since f∗[W ] = [f∗OW ]s+e by Lemma 43.7.1 we have

[V ] · f∗[W ] =
∑

(−1)i[TorOX
i (OV , f∗OW )]r+s−dim(Y )

by Lemma 43.19.4. Applying Lemma 43.6.1 we find

f∗([V ] · f∗[W ]) =
∑

(−1)i[f∗TorOX
i (OV , f∗OW )]r+s−dim(Y )

Since f∗[V ] = [f∗OV ]r by Lemma 43.6.1 we have

[f∗V ] · [W ] =
∑

(−1)i[TorOX
i (f∗OV ,OW )]r+s−dim(Y )

again by Lemma 43.19.4. Comparing the formula for f∗([V ] · f∗[W ]) with the
formula for f∗[V ] · [W ] and looking at the coefficient of Z by taking lengths of
stalks at ξ, we see that (43.22.1.1) finishes the proof. □

Lemma 43.22.2.0B1M Let X → P be a closed immersion of nonsingular varieties. Let
C ′ ⊂ P ×P1 be a closed subvariety of dimension r + 1. Assume

(1) the fibre C = C ′
0 has dimension r, i.e., C ′ → P1 is dominant,

(2) C ′ intersects X ×P1 properly,
(3) [C]r intersects X properly.

Then setting α = [C]r · X viewed as cycle on X and β = C ′ · X × P1 viewed as
cycle on X ×P1, we have

α = prX,∗(β ·X × 0)

as cycles on X where prX : X ×P1 → X is the projection.

Proof. Let pr : P × P1 → P be the projection. Since we are proving an equality
of cycles it suffices to think of α, resp. β as a cycle on P , resp. P ×P1 and prove
the result for pushing forward by pr. Because pr∗X = X × P1 and pr defines an
isomorphism of C ′

0 onto C the projection formula (Lemma 43.22.1) gives

pr∗([C ′
0]r ·X ×P1) = [C]r ·X = α

On the other hand, we have [C ′
0]r = C ′ · P × 0 as cycles on P × P1 by Lemma

43.17.1. Hence

[C ′
0]r ·X ×P1 = (C ′ · P × 0) ·X ×P1 = (C ′ ·X ×P1) · P × 0

by associativity (Lemma 43.20.1) and commutativity of the intersection product.
It remains to show that the intersection product of C ′ · X × P1 with P × 0 on
P ×P1 is equal (as a cycle) to the intersection product of β with X× 0 on X×P1.
Write C ′ · X × P1 =

∑
nk[Ek] and hence β =

∑
nk[Ek] for some subvarieties

Ek ⊂ X × P1 ⊂ P × P1. Then both intersections are equal to
∑
mk[Ek,0] by

Lemma 43.17.1 applied twice. This finishes the proof. □
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43.23. Projections

0B1N Recall that we are working over a fixed algebraically closed ground field C. If V is
a finite dimensional vector space over C then we set

P(V ) = Proj(Sym(V ))
where Sym(V ) is the symmetric algebra on V over C. See Constructions, Example
27.21.2. The normalization is chosen such that V = Γ(P(V ),OP(V )(1)). Of course
we have P(V ) ∼= Pn

C if dim(V ) = n + 1. We note that P(V ) is a nonsingular
projective variety.
Let p ∈ P(V ) be a closed point. The point p corresponds to a surjection V → Lp
of vector spaces where dim(Lp) = 1, see Constructions, Lemma 27.12.3. Let us
denote Wp = Ker(V → Lp). Projection from p is the morphism

rp : P(V ) \ {p} −→ P(Wp)
of Constructions, Lemma 27.11.1. Here is a lemma to warm up.

Lemma 43.23.1.0B1P Let V be a vector space of dimension n+ 1. Let X ⊂ P(V ) be a
closed subscheme. If X ̸= P(V ), then there is a nonempty Zariski open U ⊂ P(V )
such that for all closed points p ∈ U the restriction of the projection rp defines a
finite morphism rp|X : X → P(Wp).

Proof. We claim the lemma holds with U = P(V ) \ X. For a closed point p of
U we indeed obtain a morphism rp|X : X → P(Wp). This morphism is proper
because X is a proper scheme (Morphisms, Lemmas 29.43.5 and 29.41.7). On the
other hand, the fibres of rp are affine lines as can be seen by a direct calculation.
Hence the fibres of rp|X are proper and affine, whence finite (Morphisms, Lemma
29.44.11). Finally, a proper morphism with finite fibres is finite (Cohomology of
Schemes, Lemma 30.21.1). □

Lemma 43.23.2.0B1Q Let V be a vector space of dimension n+ 1. Let X ⊂ P(V ) be a
closed subvariety. Let x ∈ X be a nonsingular point.

(1) If dim(X) < n−1, then there is a nonempty Zariski open U ⊂ P(V ) such
that for all closed points p ∈ U the morphism rp|X : X → rp(X) is an
isomorphism over an open neighbourhood of rp(x).

(2) If dim(X) = n−1, then there is a nonempty Zariski open U ⊂ P(V ) such
that for all closed points p ∈ U the morphism rp|X : X → P(Wp) is étale
at x.

Proof. Proof of (1). Note that if x, y ∈ X have the same image under rp then p is
on the line xy. Consider the finite type scheme

T = {(y, p) | y ∈ X \ {x}, p ∈ P(V ), p ∈ xy}
and the morphisms T → X and T → P(V ) given by (y, p) 7→ y and (y, p) 7→ p.
Since each fibre of T → X is a line, we see that the dimension of T is dim(X)+1 <
dim(P(V )). Hence T → P(V ) is not surjective. On the other hand, consider the
finite type scheme

T ′ = {p | p ∈ P(V ) \ {x}, xp tangent to X at x}
Then the dimension of T ′ is dim(X) < dim(P(V )). Thus the morphism T ′ →
P(V ) is not surjective either. Let U ⊂ P(V ) \ X be nonempty open and disjoint
from these images; such a U exists because the images of T and T ′ in P(V ) are
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constructible by Morphisms, Lemma 29.22.2. Then for p ∈ U closed the projection
rp|X : X → P(Wp) is injective on the tangent space at x and r−1

p ({rp(x)}) = {x}.
This means that rp is unramified at x (Varieties, Lemma 33.16.8), finite by Lemma
43.23.1, and r−1

p ({rp(x)}) = {x} thus Étale Morphisms, Lemma 41.7.3 applies and
there is an open neighbourhood R of rp(x) in P(Wp) such that (rp|X)−1(R) → R
is a closed immersion which proves (1).
Proof of (2). In this case we still conclude that the morphism T ′ → P(V ) is not
surjective. Arguing as above we conclude that for U ⊂ P(V ) avoiding X and the
image of T ′, the projection rp|X : X → P(Wp) is étale at x and finite. □

Lemma 43.23.3.0B1R Let V be a vector space of dimension n+ 1. Let Y, Z ⊂ P(V ) be
closed subvarieties. There is a nonempty Zariski open U ⊂ P(V ) such that for all
closed points p ∈ U we have

Y ∩ r−1
p (rp(Z)) = (Y ∩ Z) ∪ E

with E ⊂ Y closed and dim(E) ≤ dim(Y ) + dim(Z) + 1− n.
Proof. Set Y ′ = Y \ Y ∩ Z. Let y ∈ Y ′, z ∈ Z be closed points with rp(y) = rp(z).
Then p is on the line yz passing through y and z. Consider the finite type scheme

T = {(y, z, p) | y ∈ Y ′, z ∈ Z, p ∈ yz}
and the morphism T → P(V ) given by (y, z, p) 7→ p. Observe that T is irreducible
and that dim(T ) = dim(Y ) + dim(Z) + 1. Hence the general fibre of T → P(V )
has dimension at most dim(Y ) + dim(Z) + 1 − n, more precisely, there exists a
nonempty open U ⊂ P(V ) \ (Y ∪ Z) over which the fibre has dimension at most
dim(Y ) + dim(Z) + 1− n (Varieties, Lemma 33.20.4). Let p ∈ U be a closed point
and let F ⊂ T be the fibre of T → P(V ) over p. Then

(Y ∩ r−1
p (rp(Z))) \ (Y ∩ Z)

is the image of F → Y , (y, z, p) 7→ y. Again by Varieties, Lemma 33.20.4 the closure
of the image of F → Y has dimension at most dim(Y ) + dim(Z) + 1− n. □

Lemma 43.23.4.0B2T Let V be a vector space. Let B ⊂ P(V ) be a closed subvariety of
codimension ≥ 2. Let p ∈ P(V ) be a closed point, p ̸∈ B. Then there exists a line
ℓ ⊂ P(V ) with ℓ∩B = ∅. Moreover, these lines sweep out an open subset of P(V ).
Proof. Consider the image of B under the projection rp : P(V ) → P(Wp). Since
dim(Wp) = dim(V ) − 1, we see that rp(B) has codimension ≥ 1 in P(Wp). For
any q ∈ P(V ) with rp(q) ̸∈ rp(B) we see that the line ℓ = pq connecting p and q
works. □

Lemma 43.23.5.0B2U Let V be a vector space. Let G = PGL(V ). Then G × P(V ) →
P(V ) is doubly transitive.
Proof. Omitted. Hint: This follows from the fact that GL(V ) acts doubly transitive
on pairs of linearly independent vectors. □

Lemma 43.23.6.0B2V Let k be a field. Let n ≥ 1 be an integer and let xij , 1 ≤ i, j ≤ n
be variables. Then

det


x11 x12 . . . x1n
x21 . . . . . . . . .
. . . . . . . . . . . .
xn1 . . . . . . xnn
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is an irreducible element of the polynomial ring k[xij ].

Proof. Let V be an n dimensional vector space. Translating into geometry the
lemma signifies that the variety C of non-invertible linear maps V → V is irre-
ducible. Let W be a vector space of dimension n−1. By elementary linear algebra,
the morphism

Hom(W,V )×Hom(V,W ) −→ Hom(V, V ), (ψ,φ) 7−→ ψ ◦ φ

has image C. Since the source is irreducible, so is the image. □

Let V be a vector space of dimension n+1. Set E = End(V ). Let E∨ = Hom(E,C)
be the dual vector space. Write P = P(E∨). There is a canonical linear map

V −→ V ⊗C E∨ = Hom(E, V )
sending v ∈ V to the map g 7→ g(v) in Hom(E, V ). Recall that we have a canonical
map E∨ → Γ(P,OP(1)) which is an isomorphism. Hence we obtain a canonical
map

ψ : V ⊗OP → V ⊗OP(1)
of sheaves of modules on P which on global sections recovers the given map. Recall
that a projective bundle P(E) is defined as the relative Proj of the symmetric algebra
on E , see Constructions, Definition 27.21.1. We are going to study the rational map
between P(V ⊗OP(1)) and P(V ⊗OP) associated to ψ. By Constructions, Lemma
27.16.10 we have a canonical isomorphism

P(V ⊗OP) = P×P(V )
By Constructions, Lemma 27.20.1 we see that

P(V ⊗OP(1)) = P(V ⊗OP) = P×P(V )
Combining this with Constructions, Lemma 27.18.1 we obtain

(43.23.6.1)0B2W P×P(V ) ⊃ U(ψ) rψ−→ P×P(V )
To understand this better we work out what happens on fibres over P. Let g ∈ E be
nonzero. This defines a nonzero map E∨ → C, hence a point [g] ∈ P. On the other
hand, g defines a C-linear map g : V → V . Hence we obtain, by Constructions,
Lemma 27.11.1 a map

P(V ) ⊃ U(g) rg−→ P(V )
What we will use below is that U(g) is the fibre U(ψ)[g] and that rg is the fibre of
rψ over the point [g]. Another observation we will use is that the complement of
U(g) in P(V ) is the image of the closed immersion

P(Coker(g)) −→ P(V )
and the image of rg is the image of the closed immersion

P(Im(g)) −→ P(V )

Lemma 43.23.7.0B1S With notation as above. Let X,Y be closed subvarieties of P(V )
which intersect properly such that X ̸= P(V ) and X ∩ Y ̸= ∅. For a general line
ℓ ⊂ P with [idV ] ∈ ℓ we have

(1) X ⊂ Ug for all [g] ∈ ℓ,
(2) g(X) intersects Y properly for all [g] ∈ ℓ.
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Proof. Let B ⊂ P be the set of “bad” points, i.e., those points [g] that violate
either (1) or (2). Note that [idV ] ̸∈ B by assumption. Moreover, B is closed. Hence
it suffices to prove that dim(B) ≤ dim(P)− 2 (Lemma 43.23.4).

First, consider the open G = PGL(V ) ⊂ P consisting of points [g] such that
g : V → V is invertible. Since G acts doubly transitively on P(V ) (Lemma 43.23.5)
we see that

T = {(x, y, [g]) | x ∈ X, y ∈ Y, [g] ∈ G, rg(x) = y}
is a locally trivial fibration over X × Y with fibre equal to the stabilizer of a point
in G. Hence T is a variety. Observe that the fibre of T → G over [g] is rg(X) ∩ Y .
The morphism T → G is surjective, because any translate of X intersects Y (note
that by the assumption that X and Y intersect properly and that X∩Y ̸= ∅ we see
that dim(X)+dim(Y ) ≥ dim(P(V )) and then Varieties, Lemma 33.34.3 implies all
translates of X intersect Y ). Since the dimensions of fibres of a dominant morphism
of varieties do not jump in codimension 1 (Varieties, Lemma 33.20.4) we conclude
that B ∩G has codimension ≥ 2.

Next we look at the complement Z = P \G. This is an irreducible variety because
the determinant is an irreducible polynomial (Lemma 43.23.6). Thus it suffices to
prove that B does not contain the generic point of Z. For a general point [g] ∈ Z the
cokernel V → Coker(g) has dimension 1, hence U(g) is the complement of a point.
Since X ̸= P(V ) we see that for a general [g] ∈ Z we have X ⊂ U(g). Moreover, the
morphism rg|X : X → rg(X) is finite, hence dim(rg(X)) = dim(X). On the other
hand, for such a g the image of rg is the closed subspace H = P(Im(g)) ⊂ P(V )
which has codimension 1. For general point of Z we see that H ∩ Y has dimension
1 less than Y (compare with Varieties, Lemma 33.35.3). Thus we see that we
have to show that rg(X) and H ∩ Y intersect properly in H. For a fixed choice of
H, we can by postcomposing g by an automorphism, move rg(X) by an arbitrary
automorphism of H = P(Im(g)). Thus we can argue as above to conclude that the
intersection of H ∩ Y with rg(X) is proper for general g with given H = P(Im(g)).
Some details omitted. □

43.24. Moving Lemma

0B0D The moving lemma states that given an r-cycle α and an s-cycle β there exists α′,
α′ ∼rat α such that α′ and β intersect properly (Lemma 43.24.3). See [Sam56],
[Che58a], [Che58b]. The key to this is Lemma 43.24.1; the reader may find this
lemma in the form stated in [Ful98, Example 11.4.1] and find a proof in [Rob72].

Lemma 43.24.1.0B0E See [Rob72].Let X ⊂ PN be a nonsingular closed subvariety. Let n = dim(X)
and 0 ≤ d, d′ < n. Let Z ⊂ X be a closed subvariety of dimension d and Ti ⊂ X,
i ∈ I be a finite collection of closed subvarieties of dimension d′. Then there exists
a subvariety C ⊂ PN such that C intersects X properly and such that

C ·X = Z +
∑

j∈J
mjZj

where Zj ⊂ X are irreducible of dimension d, distinct from Z, and

dim(Zj ∩ Ti) ≤ dim(Z ∩ Ti)

with strict inequality if Z does not intersect Ti properly in X.
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Proof. Write PN = P(VN ) so dim(VN ) = N + 1 and set XN = X. We are going
to choose a sequence of projections from points

rN : P(VN ) \ {pN} → P(VN−1),
rN−1 : P(VN−1) \ {pN−1} → P(VN−2),
. . . ,

rn+1 : P(Vn+1) \ {pn+1} → P(Vn)
as in Section 43.23. At each step we will choose pN , pN−1, . . . , pn+1 in a suitable
Zariski open set. Pick a closed point x ∈ Z ⊂ X. For every i pick closed points
xit ∈ Ti ∩ Z, at least one in each irreducible component of Ti ∩ Z. Taking the
composition we obtain a morphism

π = (rn+1 ◦ . . . ◦ rN )|X : X −→ P(Vn)
which has the following properties

(1) π is finite,
(2) π is étale at x and all xit,
(3) π|Z : Z → π(Z) is an isomorphism over an open neighbourhood of π(xit),
(4) Ti ∩ π−1(π(Z)) = (Ti ∩ Z) ∪ Ei with Ei ⊂ Ti closed and dim(Ei) ≤

d+ d′ + 1− (n+ 1) = d+ d′ − n.
It follows in a straightforward manner from Lemmas 43.23.1, 43.23.2, and 43.23.3
and induction that we can do this; observe that the last projection is from P(Vn+1)
and that dim(Vn+1) = n+ 2 which explains the inequality in (4).
Let C ⊂ P(VN ) be the scheme theoretic closure of (rn+1◦. . .◦rN )−1(π(Z)). Because
π is étale at the point x of Z, we see that the closed subscheme C ∩ X contains
Z with multiplicity 1 (local calculation omitted). Hence by Lemma 43.17.2 we
conclude that

C ·X = [Z] +
∑

mj [Zj ]
for some subvarieties Zj ⊂ X of dimension d. Note that

C ∩X = π−1(π(Z))
set theoretically. Hence Ti∩Zj ⊂ Ti∩π−1(π(Z)) ⊂ Ti∩Z∪Ei. For any irreducible
component of Ti∩Z contained in Ei we have the desired dimension bound. Finally,
let V be an irreducible component of Ti∩Zj which is contained in Ti∩Z. To finish
the proof it suffices to show that V does not contain any of the points xit, because
then dim(V ) < dim(Z ∩ Ti). To show this it suffices to show that xit ̸∈ Zj for all
i, t, j.
Set Z ′ = π(Z) and Z ′′ = π−1(Z ′), scheme theoretically. By condition (3) we can
find an open U ⊂ P(Vn) containing π(xit) such that π−1(U) ∩ Z → U ∩ Z ′ is
an isomorphism. In particular, Z → Z ′ is a local isomorphism at xit. On the
other hand, Z ′′ → Z ′ is étale at xit by condition (2). Hence the closed immersion
Z → Z ′′ is étale at xit (Morphisms, Lemma 29.36.18). Thus Z = Z ′′ in a Zariski
neighbourhood of xit which proves the assertion. □

The actual moving is done using the following lemma.

Lemma 43.24.2.0B1T Let C ⊂ PN be a closed subvariety. Let X ⊂ PN be subvariety
and let Ti ⊂ X be a finite collection of closed subvarieties. Assume that C and X
intersect properly. Then there exists a closed subvariety C ′ ⊂ PN ×P1 such that
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(1) C ′ → P1 is dominant,
(2) C ′

0 = C scheme theoretically,
(3) C ′ and X ×P1 intersect properly,
(4) C ′

∞ properly intersects each of the given Ti.

Proof. If C ∩X = ∅, then we take the constant family C ′ = C ×P1. Thus we may
and do assume C ∩X ̸= ∅.

Write PN = P(V ) so dim(V ) = N + 1. Let E = End(V ). Let E∨ = Hom(E,C).
Set P = P(E∨) as in Lemma 43.23.7. Choose a general line ℓ ⊂ P passing through
idV . Set C ′ ⊂ ℓ × P(V ) equal to the closed subscheme having fibre rg(C) over
[g] ∈ ℓ. More precisely, C ′ is the image of

ℓ× C ⊂ P×P(V )

under the morphism (43.23.6.1). By Lemma 43.23.7 this makes sense, i.e., ℓ×C ⊂
U(ψ). The morphism ℓ×C → C ′ is finite and C ′

[g] = rg(C) set theoretically for all
[g] ∈ ℓ. Parts (1) and (2) are clear with 0 = [idV ] ∈ ℓ. Part (3) follows from the
fact that rg(C) and X intersect properly for all [g] ∈ ℓ. Part (4) follows from the
fact that a general point ∞ = [g] ∈ ℓ is a general point of P and for such as point
rg(C) ∩ T is proper for any closed subvariety T of P(V ). Details omitted. □

Lemma 43.24.3.0B1U Let X be a nonsingular projective variety. Let α be an r-cycle
and β be an s-cycle on X. Then there exists an r-cycle α′ such that α′ ∼rat α and
such that α′ and β intersect properly.

Proof. Write β =
∑
ni[Ti] for some subvarieties Ti ⊂ X of dimension s. By

linearity we may assume that α = [Z] for some irreducible closed subvariety Z ⊂ X
of dimension r. We will prove the lemma by induction on the maximum e of the
integers

dim(Z ∩ Ti)
The base case is e = r + s− dim(X). In this case Z intersects β properly and the
lemma is trivial.

Induction step. Assume that e > r + s− dim(X). Choose an embedding X ⊂ PN

and apply Lemma 43.24.1 to find a closed subvariety C ⊂ PN such that C ·X =
[Z] +

∑
mj [Zj ] and such that the induction hypothesis applies to each Zj . Next,

apply Lemma 43.24.2 to C, X, Ti to find C ′ ⊂ PN × P1. Let γ = C ′ · X × P1

viewed as a cycle on X ×P1. By Lemma 43.22.2 we have

[Z] +
∑

mj [Zj ] = prX,∗(γ ·X × 0)

On the other hand the cycle γ∞ = prX,∗(γ · X × ∞) is supported on C ′
∞ ∩ X

hence intersects β transversally. Thus we see that [Z] ∼rat −
∑
mj [Zj ] + γ∞ by

Lemma 43.17.1. Since by induction each [Zj ] is rationally equivalent to a cycle
which properly intersects β this finishes the proof. □

43.25. Intersection products and rational equivalence

0B0F With definitions as above we show that the intersection product is well defined
modulo rational equivalence. We first deal with a special case.
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Lemma 43.25.1.0B60 Let X be a nonsingular variety. Let W ⊂ X ×P1 be an (s+ 1)-
dimensional subvariety dominating P1. Let Wa, resp. Wb be the fibre of W → P1

over a, resp. b. Let V be a r-dimensional subvariety of X such that V intersects
both Wa and Wb properly. Then [V ] · [Wa]r ∼rat [V ] · [Wb]r.

Proof. We have [Wa]r = prX,∗(W · X × a) and similarly for [Wb]r, see Lemma
43.17.1. Thus we reduce to showing

V · prX,∗(W ·X × a) ∼rat V · prX,∗(W ·X × b).

Applying the projection formula Lemma 43.22.1 we get

V · prX,∗(W ·X × a) = prX,∗(V ×P1 · (W ·X × a))

and similarly for b. Thus we reduce to showing

prX,∗(V ×P1 · (W ·X × a)) ∼rat prX,∗(V ×P1 · (W ·X × b))

If V ×P1 intersects W properly, then associativity for the intersection multiplicities
(Lemma 43.20.1) gives V ×P1 · (W ·X × a) = (V ×P1 ·W ) ·X × a and similarly
for b. Thus we reduce to showing

prX,∗((V ×P1 ·W ) ·X × a) ∼rat prX,∗((V ×P1 ·W ) ·X × b)

which is true by Lemma 43.17.1.

The argument above does not quite work. The obstruction is that we do not know
that V ×P1 and W intersect properly. We only know that V and Wa and V and
Wb intersect properly. Let Zi, i ∈ I be the irreducible components of V ×P1 ∩W .
Then we know that dim(Zi) ≥ r+1+s+1−n−1 = r+s+1−n where n = dim(X),
see Lemma 43.13.4. Since we have assumed that V and Wa intersect properly, we
see that dim(Zi,a) = r + s − n or Zi,a = ∅. On the other hand, if Zi,a ̸= ∅, then
dim(Zi,a) ≥ dim(Zi)− 1 = r + s− n. It follows that dim(Zi) = r + s+ 1− n if Zi
meets X × a and in this case Zi → P1 is surjective. Thus we may write I = I ′⨿ I ′′

where I ′ is the set of i ∈ I such that Zi → P1 is surjective and I ′′ is the set of i ∈ I
such that Zi lies over a closed point ti ∈ P1 with ti ̸= a and ti ̸= b. Consider the
cycle

γ =
∑

i∈I′
ei[Zi]

where we take

ei =
∑

p
(−1)plengthOX×P1,Zi

Tor
OX×P1,Zi
p (OV×P1,Zi ,OW,Zi)

We will show that γ can be used as a replacement for the intersection product of
V ×P1 and W .

We will show this using associativity of intersection products in exactly the same
way as above. Let U = P1 \ {ti, i ∈ I ′′}. Note that X × a and X × b are contained
in X × U . The subvarieties

V × U, WU , X × a of X × U

intersect transversally pairwise by our choice of U and moreover dim(V ×U ∩WU ∩
X × a) = dim(V ∩Wa) has the expected dimension. Thus we see that

V × U · (WU ·X × a) = (V × U ·WU ) ·X × a
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as cycles on X × U by Lemma 43.20.1. By construction γ restricts to the cycle
V ×U ·WU on X×U . Trivially, V ×P1 ·(W ×X×a) restricts to V ×U ·(WU ·X×a)
on X × U . Hence

V ×P1 · (W ·X × a) = γ ·X × a
as cycles on X×P1 (because both sides are contained in X×U and are equal after
restricting to X × U by what was said before). Since we have the same for b we
conclude

V · [Wa] = prX,∗(V ×P1 · (W ·X × a))
= prX,∗(γ ·X × a)
∼rat prX,∗(γ ·X × b)
= prX,∗(V ×P1 · (W ·X × b))
= V · [Wb]

The first and the last equality by the first paragraph of the proof, the second and
penultimate equalities were shown in this paragraph, and the middle equivalence is
Lemma 43.17.1. □

Theorem 43.25.2.0B1V Let X be a nonsingular projective variety. Let α, resp. β be
an r, resp. s cycle on X. Assume that α and β intersect properly so that α · β is
defined. Finally, assume that α ∼rat 0. Then α · β ∼rat 0.

Proof. Pick a closed immersion X ⊂ PN . By linearity it suffices to prove the result
when β = [Z] for some s-dimensional closed subvariety Z ⊂ X which intersects α
properly. The condition α ∼rat 0 means there are finitely many (r+1)-dimensional
closed subvarieties Wi ⊂ X ×P1 such that

α =
∑

[Wi,ai ]r − [Wi,bi ]r
for some pairs of points ai, bi of P1. Let W t

i,ai
and W t

i,bi
be the irreducible compo-

nents of Wi,ai and Wi,bi . We will use induction on the maximum d of the integers
dim(Z ∩W t

i,ai), dim(Z ∩W t
i,bi)

The main problem in the rest of the proof is that although we know that Z intersects
α properly, it may not be the case that Z intersects the “intermediate” varieties
W t
i,ai

and W t
i,bi

properly, i.e., it may happen that d > r + s− dim(X).
Base case: d = r+s−dim(X). In this case all the intersections of Z with the W t

i,ai

and W t
i,bi

are proper and the desired result follows from Lemma 43.25.1, because
it applies to show that [Z] · [Wi,ai ]r ∼rat [Z] · [Wi,bi ]r for each i.
Induction step: d > r + s − dim(X). Apply Lemma 43.24.1 to Z ⊂ X and the
family of subvarieties {W t

i,ai
,W t

i,bi
}. Then we find a closed subvariety C ⊂ PN

intersecting X properly such that

C ·X = [Z] +
∑

mj [Zj ]

and such that
dim(Zj ∩W t

i,ai) ≤ dim(Z ∩W t
i,ai), dim(Zj ∩W t

i,bi) ≤ dim(Z ∩W t
i,bi)

with strict inequality if the right hand side is > r + s − dim(X). This implies
two things: (a) the induction hypothesis applies to each Zj , and (b) C ·X and α
intersect properly (because α is a linear combination of those [W t

i,ai
] and [W t

i,ai
]
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which intersect Z properly). Next, pick C ′ ⊂ PN × P1 as in Lemma 43.24.2
with respect to C, X, and W t

i,ai
, W t

i,bi
. Write C ′ · X × P1 =

∑
nk[Ek] for some

subvarieties Ek ⊂ X × P1 of dimension s + 1. Note that nk > 0 for all k by
Proposition 43.19.3. By Lemma 43.22.2 we have

[Z] +
∑

mj [Zj ] =
∑

nk[Ek,0]s

Since Ek,0 ⊂ C ∩ X we see that [Ek,0]s and α intersect properly. On the other
hand, the cycle

γ =
∑

nk[Ek,∞]s
is supported on C ′

∞ ∩X and hence properly intersects each W t
i,ai

, W t
i,bi

. Thus by
the base case and linearity, we see that

γ · α ∼rat 0

As we have seen that Ek,0 and Ek,∞ intersect α properly Lemma 43.25.1 applied
to Ek ⊂ X ×P1 and α gives

[Ek,0] · α ∼rat [Ek,∞] · α

Putting everything together we have

[Z] · α = (
∑

nk[Ek,0]r −
∑

mj [Zj ]) · α

∼rat
∑

nk[Ek,0] · α (by induction hypothesis)

∼rat
∑

nk[Ek,∞] · α (by the lemma)
= γ · α
∼rat 0 (by base case)

This finishes the proof. □

Remark 43.25.3.0B61 Lemma 43.24.3 and Theorem 43.25.2 also hold for nonsingular
quasi-projective varieties with the same proof. The only change is that one needs
to prove the following version of the moving Lemma 43.24.1: Let X ⊂ PN be a
closed subvariety. Let n = dim(X) and 0 ≤ d, d′ < n. Let Xreg ⊂ X be the open
subset of nonsingular points. Let Z ⊂ Xreg be a closed subvariety of dimension d
and Ti ⊂ Xreg, i ∈ I be a finite collection of closed subvarieties of dimension d′.
Then there exists a subvariety C ⊂ PN such that C intersects X properly and such
that

(C ·X)|Xreg = Z +
∑

j∈J
mjZj

where Zj ⊂ Xreg are irreducible of dimension d, distinct from Z, and

dim(Zj ∩ Ti) ≤ dim(Z ∩ Ti)

with strict inequality if Z does not intersect Ti properly in Xreg.

43.26. Chow rings

0B0G Let X be a nonsingular projective variety. We define the intersection product

CHr(X)× CHs(X) −→ CHr+s−dim(X)(X), (α, β) 7−→ α · β
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as follows. Let α ∈ Zr(X) and β ∈ Zs(X). If α and β intersect properly, we use
the definition given in Section 43.17. If not, then we choose α ∼rat α′ as in Lemma
43.24.3 and we set

α · β = class of α′ · β ∈ CHr+s−dim(X)(X)
This is well defined and passes through rational equivalence by Theorem 43.25.2.
The intersection product on CH∗(X) is commutative (this is clear), associative
(Lemma 43.20.1) and has a unit [X] ∈ CHdim(X)(X).
We often use CHc(X) = CHdimX−c(X) to denote the Chow group of cycles of
codimension c, see Chow Homology, Section 42.42. The intersection product defines
a product

CHk(X)× CHl(X) −→ CHk+l(X)
which is commutative, associative, and has a unit 1 = [X] ∈ CH0(X).

43.27. Pullback for a general morphism

0B0H Let f : X → Y be a morphism of nonsingular projective varieties. We define
f∗ : CHk(Y )→ CHk+dimX−dimY (X)

by the rule
f∗(α) = prX,∗(Γf · pr∗

Y (α))
where Γf ⊂ X ×Y is the graph of f . Note that in this generality, it is defined only
on cycle classes and not on cycles. With the notation CH∗ introduced in Section
43.26 we may think of pullback as a map

f∗ : CH∗(Y )→ CH∗(X)
in other words, it is a map of graded abelian groups.

Lemma 43.27.1.0B2X Let f : X → Y be a morphism of nonsingular projective varieties.
The pullback map on chow groups satisfies:

(1) f∗ : CH∗(Y )→ CH∗(X) is a ring map,
(2) (g ◦ f)∗ = f∗ ◦ g∗ for a composable pair f, g,
(3) the projection formula holds: f∗(α) · β = f∗(α · f∗β), and
(4) if f is flat then it agrees with the previous definition.

Proof. All of these follow readily from the results above.
For (1) it suffices to show that prX,∗(Γf · α · β) = prX,∗(Γf · α) · prX,∗(Γf · β) for
cycles α, β on X × Y . If α is a cycle on X × Y which intersects Γf properly, then
it is easy to see that

Γf · α = Γf · pr∗
X(prX,∗(Γf · α))

as cycles because Γf is a graph. Thus we get the first equality in
prX,∗(Γf · α · β) = prX,∗(Γf · pr∗

X(prX,∗(Γf · α)) · β)
= prX,∗(pr∗

X(prX,∗(Γf · α)) · (Γf · β))
= prX,∗(Γf · α) · prX,∗(Γf · β)

the last step by the projection formula in the flat case (Lemma 43.22.1).
If g : Y → Z then property (2) follows formally from the observation that

Γ = pr∗
X×Y Γf · pr∗

Y×ZΓg
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in Z∗(X × Y × Z) where Γ = {(x, f(x), g(f(x))} and maps isomorphically to Γg◦f
in X × Z. The equality follows from the scheme theoretic equality and Lemma
43.14.3.
For (3) we use the projection formula for flat maps twice

f∗(α · prX,∗(Γf · pr∗
Y (β))) = f∗(prX,∗(pr∗

Xα · Γf · pr∗
Y (β)))

= prY,∗(pr∗
Xα · Γf · pr∗

Y (β)))
= ptY,∗(pr∗

Xα · Γf ) · β
= f∗(α) · β

where in the last equality we use the remark on graphs made above. This proves
(3).
Property (4) rests on identifying the intersection product Γf · pr∗

Y α in the case f is
flat. Namely, in this case if V ⊂ Y is a closed subvariety, then every generic point
ξ of the scheme f−1(V ) ∼= Γf ∩ pr−1

Y (V ) lies over the generic point of V . Hence
the local ring of pr−1

Y (V ) = X × V at ξ is Cohen-Macaulay. Since Γf ⊂ X × Y is a
regular immersion (as a morphism of smooth projective varieties) we find that

Γf · pr∗
Y [V ] = [Γf ∩ pr−1

Y (V )]d
with d the dimension of Γf ∩ pr−1

Y (V ), see Lemma 43.16.5. Since Γf ∩ pr−1
Y (V )

maps isomorphically to f−1(V ) we conclude. □

43.28. Pullback of cycles

0B0I Suppose that X and Y be nonsingular projective varieties, and let f : X → Y be a
morphism. Suppose that Z ⊂ Y is a closed subvariety. Let f−1(Z) be the scheme
theoretic inverse image:

f−1(Z) //

��

Z

��
X // Y

is a fibre product diagram of schemes. In particular f−1(Z) ⊂ X is a closed
subscheme of X. In this case we always have

dim f−1(Z) ≥ dimZ + dimX − dimY.

If equality holds in the formula above, then f∗[Z] = [f−1(Z)]dimZ+dimX−dimY

provided that the scheme Z is Cohen-Macaulay at the images of the generic points of
f−1(Z). This follows by identifying f−1(Z) with the scheme theoretic intersection
of Γf and X ×Z and using Lemma 43.16.5. Details are similar to the proof of part
(4) of Lemma 43.27.1 above.
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CHAPTER 44

Picard Schemes of Curves

0B92 44.1. Introduction

0B93 In this chapter we do just enough work to construct the Picard scheme of a pro-
jective nonsingular curve over an algebraically closed field. See [Kle05] for a more
thorough discussion as well as historical background.

Later in the Stacks project we will discuss Hilbert and Quot functors in much
greater generality.

44.2. Hilbert scheme of points

0B94 Let X → S be a morphism of schemes. Let d ≥ 0 be an integer. For a scheme T
over S we let

HilbdX/S(T ) =
{
Z ⊂ XT closed subscheme such that
Z → T is finite locally free of degree d

}
If T ′ → T is a morphism of schemes over S and if Z ∈ HilbdX/S(T ), then the base
change ZT ′ ⊂ XT ′ is an element of HilbdX/S(T ′). In this way we obtain a functor

HilbdX/S : (Sch/S)opp −→ Sets, T −→ HilbdX/S(T )

In general HilbdX/S is an algebraic space (insert future reference here). In this section
we will show that HilbdX/S is representable by a scheme if any finite number of points
in a fibre of X → S are contained in an affine open. If HilbdX/S is representable by
a scheme, we often denote this scheme by HilbdX/S .

Lemma 44.2.1.0B95 Let X → S be a morphism of schemes. The functor HilbdX/S
satisfies the sheaf property for the fpqc topology (Topologies, Definition 34.9.12).

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over S. Set Xi = XTi =
X ×S Ti. Note that {Xi → XT }i∈I is an fpqc covering of XT (Topologies, Lemma
34.9.7) and that XTi×TTi′ = Xi×XT Xi′ . Suppose that Zi ∈ HilbdX/S(Ti) is a collec-
tion of elements such that Zi and Zi′ map to the same element of HilbdX/S(Ti×T Ti′).
By effective descent for closed immersions (Descent, Lemma 35.37.2) there is a
closed immersion Z → XT whose base change by Xi → XT is equal to Zi → Xi.
The morphism Z → T then has the property that its base change to Ti is the mor-
phism Zi → Ti. Hence Z → T is finite locally free of degree d by Descent, Lemma
35.23.30. □

Lemma 44.2.2.0B96 Let X → S be a morphism of schemes. If X → S is of finite
presentation, then the functor HilbdX/S is limit preserving (Limits, Remark 32.6.2).
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Proof. Let T = limTi be a limit of affine schemes over S. We have to show
that HilbdX/S(T ) = colim HilbdX/S(Ti). Observe that if Z → XT is an element
of HilbdX/S(T ), then Z → T is of finite presentation. Hence by Limits, Lemma
32.10.1 there exists an i, a scheme Zi of finite presentation over Ti, and a morphism
Zi → XTi over Ti whose base change to T gives Z → XT . We apply Limits, Lemma
32.8.5 to see that we may assume Zi → XTi is a closed immersion after increasing
i. We apply Limits, Lemma 32.8.8 to see that Zi → Ti is finite locally free of degree
d after possibly increasing i. Then Zi ∈ HilbdX/S(Ti) as desired. □

Let S be a scheme. Let i : X → Y be a closed immersion of schemes over S. Then
there is a transformation of functors

HilbdX/S −→ HilbdY/S
which maps an element Z ∈ HilbdX/S(T ) to iT (Z) ⊂ YT in HilbdY/S . Here iT : XT →
YT is the base change of i.
Lemma 44.2.3.0B97 Let S be a scheme. Let i : X → Y be a closed immersion of
schemes. If HilbdY/S is representable by a scheme, so is HilbdX/S and the corre-
sponding morphism of schemes HilbdX/S → HilbdY/S is a closed immersion.

Proof. Let T be a scheme over S and let Z ∈ HilbdY/S(T ). Claim: there is a closed
subscheme TX ⊂ T such that a morphism of schemes T ′ → T factors through TX
if and only if ZT ′ → YT ′ factors through XT ′ . Applying this to a scheme Tuniv
representing HilbdY/S and the universal object1 Zuniv ∈ HilbdY/S(Tuniv) we get a
closed subscheme Tuniv,X ⊂ Tuniv such that Zuniv,X = Zuniv ×Tuniv Tuniv,X is a
closed subscheme of X×STuniv,X and hence defines an element of HilbdX/S(Tuniv,X).
A formal argument then shows that Tuniv,X is a scheme representing HilbdX/S with
universal object Zuniv,X .
Proof of the claim. Consider Z ′ = XT ×YT Z. Given T ′ → T we see that ZT ′ → YT ′

factors through XT ′ if and only if Z ′
T ′ → ZT ′ is an isomorphism. Thus the claim

follows from the very general More on Flatness, Lemma 38.23.4. However, in this
special case one can prove the statement directly as follows: first reduce to the case
T = Spec(A) and Z = Spec(B). After shrinking T further we may assume there is
an isomorphism φ : B → A⊕d as A-modules. Then Z ′ = Spec(B/J) for some ideal
J ⊂ B. Let gβ ∈ J be a collection of generators and write φ(gβ) = (g1

β , . . . , g
d
β).

Then it is clear that TX is given by Spec(A/(gjβ)). □

Lemma 44.2.4.0B98 Let X → S be a morphism of schemes. If X → S is separated and
HilbdX/S is representable, then HilbdX/S → S is separated.

Proof. In this proof all unadorned products are over S. Let H = HilbdX/S and
let Z ∈ HilbdX/S(H) be the universal object. Consider the two objects Z1, Z2 ∈
HilbdX/S(H × H) we get by pulling back Z by the two projections H × H → H.
Then Z1 = Z × H ⊂ XH×H and Z2 = H × Z ⊂ XH×H . Since H represents
the functor HilbdX/S , the diagonal morphism ∆ : H → H × H has the following
universal property: A morphism of schemes T → H ×H factors through ∆ if and
only if Z1,T = Z2,T as elements of HilbdX/S(T ). Set Z = Z1×XH×H Z2. Then we see

1See Categories, Section 4.3
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that T → H ×H factors through ∆ if and only if the morphisms ZT → Z1,T and
ZT → Z2,T are isomorphisms. It follows from the very general More on Flatness,
Lemma 38.23.4 that ∆ is a closed immersion. In the proof of Lemma 44.2.3 the
reader finds an alternative easier proof of the needed result in our special case. □

Lemma 44.2.5.0B99 Let X → S be a morphism of affine schemes. Let d ≥ 0. Then
HilbdX/S is representable.

Proof. Say S = Spec(R). Then we can choose a closed immersion of X into the
spectrum of R[xi; i ∈ I] for some set I (of sufficiently large cardinality. Hence by
Lemma 44.2.3 we may assume that X = Spec(A) where A = R[xi; i ∈ I]. We will
use Schemes, Lemma 26.15.4 to prove the lemma in this case.
Condition (1) of the lemma follows from Lemma 44.2.1.
For every subset W ⊂ A of cardinality d we will construct a subfunctor FW of
HilbdX/S . (It would be enough to consider the case where W consists of a collection
of monomials in the xi but we do not need this.) Namely, we will say that Z ∈
HilbdX/S(T ) is in FW (T ) if and only if the OT -linear map⊕

f∈W
OT −→ (Z → T )∗OZ , (gf ) 7−→

∑
gff |Z

is surjective (equivalently an isomorphism). Here for f ∈ A and Z ∈ HilbdX/S(T )
we denote f |Z the pullback of f by the morphism Z → XT → X.
Openness, i.e., condition (2)(b) of the lemma. This follows from Algebra, Lemma
10.79.4.
Covering, i.e., condition (2)(c) of the lemma. Since

A⊗R OT = (XT → T )∗OXT → (Z → T )∗OZ
is surjective and since (Z → T )∗OZ is finite locally free of rank d, for every point
t ∈ T we can find a finite subset W ⊂ A of cardinality d whose images form a basis
of the d-dimensional κ(t)-vector space ((Z → T )∗OZ)t ⊗OT,t

κ(t). By Nakayama’s
lemma there is an open neighbourhood V ⊂ T of t such that ZV ∈ FW (V ).
Representable, i.e., condition (2)(a) of the lemma. Let W ⊂ A have cardinality d.
We claim that FW is representable by an affine scheme over R. We will construct
this affine scheme here, but we encourage the reader to think it trough for them-
selves. Choose a numbering f1, . . . , fd of the elements of W . We will construct a
universal element Zuniv = Spec(Buniv) of FW over Tuniv = Spec(Runiv) which will
be the spectrum of

Buniv = Runiv[e1, . . . , ed]/(ekel −
∑

cmklem)
where the el will be the images of the fl and where the closed immersion Zuniv →
XTuniv is given by the ring map

A⊗R Runiv −→ Buniv

mapping 1⊗ 1 to
∑
blel and xi to

∑
bliel. In fact, we claim that FW is represented

by the spectrum of the ring
Runiv = R[cmkl, bl, bli]/auniv

where the ideal auniv is generated by the following elements:
(1) multiplication on Buniv is commutative, i.e., cmlk − cmkl ∈ auniv,
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(2) multiplication on Buniv is associative, i.e., cmlkcpmn − c
p
lqc

q
kn ∈ auniv,

(3)
∑
blel is a multiplicative 1 in Buniv, in other words, we should have

(
∑
blel)ek = ek for all k, which means

∑
blcmlk − δkm ∈ auniv (Kronecker

delta).
After dividing out by the ideal a′

univ of the elements listed sofar we obtain a well
defined ring map

Ψ : A⊗R R[cmkl, bl, bli]/a′
univ −→

(
R[cmkl, bl, bli]/a′

univ

)
[e1, . . . , ed]/(ekel −

∑
cmklem)

sending 1⊗ 1 to
∑
blel and xi ⊗ 1 to

∑
bliel. We need to add some more elements

to our ideal because we need
(5) fl to map to el in Buniv. Write Ψ(fl) − el =

∑
hml em with hml ∈

R[cmkl, bl, bli]/a′
univ then we need to set hml equal to zero.

Thus setting auniv ⊂ R[cmkl, bl, bli] equal to a′
univ+ ideal generated by lifts of hml to

R[cmkl, bl, bli], then it is clear that FW is represented by Spec(Runiv). □

Proposition 44.2.6.0B9A Let X → S be a morphism of schemes. Let d ≥ 0. Assume
for all (s, x1, . . . , xd) where s ∈ S and x1, . . . , xd ∈ Xs there exists an affine open
U ⊂ X with x1, . . . , xd ∈ U . Then HilbdX/S is representable by a scheme.

Proof. Either using relative glueing (Constructions, Section 27.2) or using the func-
torial point of view (Schemes, Lemma 26.15.4) we reduce to the case where S is
affine. Details omitted.
Assume S is affine. For U ⊂ X affine open, denote FU ⊂ HilbdX/S the subfunctor
such that for a scheme T/S an element Z ∈ HilbdX/S(T ) is in FU (T ) if and only if
Z ⊂ UT . We will use Schemes, Lemma 26.15.4 and the subfunctors FU to conclude.
Condition (1) is Lemma 44.2.1.
Condition (2)(a) follows from the fact that FU = HilbdU/S and that this is repre-
sentable by Lemma 44.2.5. Namely, if Z ∈ FU (T ), then Z can be viewed as a
closed subscheme of UT which is finite locally free of degree d over T and hence
Z ∈ HilbdU/S(T ). Conversely, if Z ∈ HilbdU/S(T ) then Z → UT → XT is a closed
immersion2 and we may view Z as an element of FU (T ).
Let Z ∈ HilbdX/S(T ) for some scheme T over S. Let

B = (Z → T )
(
(Z → XT → X)−1(X \ U)

)
This is a closed subset of T and it is clear that over the open TZ,U = T \ B the
restriction Zt′ maps into UT ′ . On the other hand, for any b ∈ B the fibre Zb does
not map into U . Thus we see that given a morphism T ′ → T we have ZT ′ ∈ FU (T ′)
⇔ T ′ → T factors through the open TZ,U . This proves condition (2)(b).

2This is clear if X → S is separated as in this case Morphisms, Lemma 29.41.7 tells us that
the immersion φ : Z → XT has closed image and hence is a closed immersion by Schemes, Lemma
26.10.4. We suggest the reader skip the rest of this footnote as we don’t know of any instance
where the assumptions on X → S hold but X → S is not separated. In the general case, let
x ∈ XT be a point in the closure of φ(Z). We have to show that x ∈ φ(Z). Let t ∈ T be the
image of x. By assumption on X → S we can choose an affine open W ⊂ XT containing x and
φ(Zt). Then φ−1(W ) is an open containing the whole fibre Zt and since Z → T is closed, we may
after replacing T by an open neighbourhood of t assume that Z = φ−1(W ). Then φ(Z) ⊂ W is
closed by the separated case (as W → T is separated) and we conclude x ∈ φ(Z).
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Condition (2)(c) follows from our assumption on X/S. All we have to do is show
the following: If T is the spectrum of a field and Z ⊂ XT is a closed subscheme,
finite flat of degree d over T , then Z → XT → X factors through an affine open
U of X. This is clear because Z will have at most d points and these will all map
into the fibre of X over the image point of T → S. □

Remark 44.2.7.0B9B Let f : X → S be a morphism of schemes. The assumption of
Proposition 44.2.6 and hence the conclusion holds in each of the following cases:

(1) X is quasi-affine,
(2) f is quasi-affine,
(3) f is quasi-projective,
(4) f is locally projective,
(5) there exists an ample invertible sheaf on X,
(6) there exists an f -ample invertible sheaf on X, and
(7) there exists an f -very ample invertible sheaf on X.

Namely, in each of these cases, every finite set of points of a fibre Xs is contained
in a quasi-compact open U of X which comes with an ample invertible sheaf, is
isomorphic to an open of an affine scheme, or is isomorphic to an open of Proj of
a graded ring (in each case this follows by unwinding the definitions). Thus the
existence of suitable affine opens by Properties, Lemma 28.29.5.

44.3. Moduli of divisors on smooth curves

0B9C For a smooth morphism X → S of relative dimension 1 the functor HilbdX/S
parametrizes relative effective Cartier divisors as defined in Divisors, Section 31.18.

Lemma 44.3.1.0B9D Let X → S be a smooth morphism of schemes of relative dimension
1. Let D ⊂ X be a closed subscheme. Consider the following conditions

(1) D → S is finite locally free,
(2) D is a relative effective Cartier divisor on X/S,
(3) D → S is locally quasi-finite, flat, and locally of finite presentation, and
(4) D → S is locally quasi-finite and flat.

We always have the implications

(1)⇒ (2)⇔ (3)⇒ (4)

If S is locally Noetherian, then the last arrow is an if and only if. If X → S is
proper (and S arbitrary), then the first arrow is an if and only if.

Proof. Equivalence of (2) and (3). This follows from Divisors, Lemma 31.18.9 if we
can show the equivalence of (2) and (3) when S is the spectrum of a field k. Let
x ∈ X be a closed point. As X is smooth of relative dimension 1 over k and we
see that OX,x is a regular local ring of dimension 1 (see Varieties, Lemma 33.25.3).
Thus OX,x is a discrete valuation ring (Algebra, Lemma 10.119.7) and hence a
PID. It follows that every sheaf of ideals I ⊂ OX which is nonvanishing at all the
generic points of X is invertible (Divisors, Lemma 31.15.2). In other words, every
closed subscheme of X which does not contain a generic point is an effective Cartier
divisor. It follows that (2) and (3) are equivalent.

If S is Noetherian, then any locally quasi-finite morphism D → S is locally of finite
presentation (Morphisms, Lemma 29.21.9), whence (3) is equivalent to (4).
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If X → S is proper (and S is arbitrary), then D → S is proper as well. Since a
proper locally quasi-finite morphism is finite (More on Morphisms, Lemma 37.44.1)
and a finite, flat, and finitely presented morphism is finite locally free (Morphisms,
Lemma 29.48.2), we see that (1) is equivalent to (2). □

Lemma 44.3.2.0B9E Let X → S be a smooth morphism of schemes of relative dimension
1. Let D1, D2 ⊂ X be closed subschemes finite locally free of degrees d1, d2 over
S. Then D1 +D2 is finite locally free of degree d1 + d2 over S.

Proof. By Lemma 44.3.1 we see that D1 and D2 are relative effective Cartier di-
visors on X/S. Thus D = D1 + D2 is a relative effective Cartier divisor on X/S
by Divisors, Lemma 31.18.3. Hence D → S is locally quasi-finite, flat, and locally
of finite presentation by Lemma 44.3.1. Applying Morphisms, Lemma 29.41.11 the
surjective integral morphism D1⨿D2 → D we find that D → S is separated. Then
Morphisms, Lemma 29.41.9 implies that D → S is proper. This implies that D → S
is finite (More on Morphisms, Lemma 37.44.1) and in turn we see that D → S is
finite locally free (Morphisms, Lemma 29.48.2). Thus it suffice to show that the
degree of D → S is d1 + d2. To do this we may base change to a fibre of X → S,
hence we may assume that S = Spec(k) for some field k. In this case, there exists
a finite set of closed points x1, . . . , xn ∈ X such that D1 and D2 are supported on
{x1, . . . , xn}. In fact, there are nonzerodivisors fi,j ∈ OX,xi such that

D1 =
∐

Spec(OX,xi/(fi,1)) and D2 =
∐

Spec(OX,xi/(fi,2))

Then we see that
D =

∐
Spec(OX,xi/(fi,1fi,2))

From this one sees easily that D has degree d1 +d2 over k (if need be, use Algebra,
Lemma 10.121.1). □

Lemma 44.3.3.0B9F Let X → S be a smooth morphism of schemes of relative dimension
1. Let D1, D2 ⊂ X be closed subschemes finite locally free of degrees d1, d2 over S.
If D1 ⊂ D2 (as closed subschemes) then there is a closed subscheme D ⊂ X finite
locally free of degree d2 − d1 over S such that D2 = D1 +D.

Proof. This proof is almost exactly the same as the proof of Lemma 44.3.2. By
Lemma 44.3.1 we see that D1 and D2 are relative effective Cartier divisors on X/S.
By Divisors, Lemma 31.18.4 there is a relative effective Cartier divisor D ⊂ X such
that D2 = D1 + D. Hence D → S is locally quasi-finite, flat, and locally of finite
presentation by Lemma 44.3.1. Since D is a closed subscheme of D2, we see that
D → S is finite. It follows that D → S is finite locally free (Morphisms, Lemma
29.48.2). Thus it suffice to show that the degree of D → S is d2 − d1. This follows
from Lemma 44.3.2. □

Let X → S be a smooth morphism of schemes of relative dimension 1. By Lemma
44.3.1 for a scheme T over S and D ∈ HilbdX/S(T ), we can view D as a relative
effective Cartier divisor on XT /T such that D → T is finite locally free of degree
d. Hence, by Lemma 44.3.2 we obtain a transformation of functors

Hilbd1
X/S ×Hilbd2

X/S −→ Hilbd1+d2
X/S , (D1, D2) 7−→ D1 +D2
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If HilbdX/S is representable for all degrees d, then this transformation of functors
corresponds to a morphism of schemes

Hilbd1
X/S ×S Hilbd2

X/S −→ Hilbd1+d2
X/S

over S. Observe that Hilb0
X/S = S and Hilb1

X/S = X. A special case of the
morphism above is the morphism

HilbdX/S ×S X −→ Hilbd+1
X/S , (D,x) 7−→ D + x

Lemma 44.3.4.0B9G Let X → S be a smooth morphism of schemes of relative dimension
1 such that the functors HilbdX/S are representable. The morphism HilbdX/S×SX →
Hilbd+1

X/S is finite locally free of degree d+ 1.

Proof. Let Duniv ⊂ X×S Hilbd+1
X/S be the universal object. There is a commutative

diagram

HilbdX/S ×S X //

&&

Duniv

{{

� � // Hilbd+1
X/S ×S X

Hilbd+1
X/S

where the top horizontal arrow maps (D′, x) to (D′ +x, x). We claim this morphism
is an isomorphism which certainly proves the lemma. Namely, given a scheme T
over S, a T -valued point ξ of Duniv is given by a pair ξ = (D,x) where D ⊂ XT

is a closed subscheme finite locally free of degree d + 1 over T and x : T → X is
a morphism whose graph x : T → XT factors through D. Then by Lemma 44.3.3
we can write D = D′ + x for some D′ ⊂ XT finite locally free of degree d over T .
Sending ξ = (D,x) to the pair (D′, x) is the desired inverse. □

Lemma 44.3.5.0B9H Let X → S be a smooth morphism of schemes of relative dimension
1 such that the functors HilbdX/S are representable. The schemes HilbdX/S are
smooth over S of relative dimension d.

Proof. We have Hilb0
X/S = S and Hilb1

X/S = X thus the result is true for d = 0, 1.
Assuming the result for d, we see that HilbdX/S×SX is smooth over S (Morphisms,
Lemma 29.34.5 and 29.34.4). Since HilbdX/S×SX → Hilbd+1

X/S is finite locally free of
degree d+ 1 by Lemma 44.3.4 the result follows from Descent, Lemma 35.14.5. We
omit the verification that the relative dimension is as claimed (you can do this by
looking at fibres, or by keeping track of the dimensions in the argument above). □

We collect all the information obtained sofar in the case of a proper smooth curve
over a field.

Proposition 44.3.6.0B9I Let X be a geometrically irreducible smooth proper curve over
a field k.

(1) The functors HilbdX/k are representable by smooth proper varieties HilbdX/k
of dimension d over k.

(2) For a field extension k′/k the k′-rational points of HilbdX/k are in 1-to-1
bijection with effective Cartier divisors of degree d on Xk′ .
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(3) For d1, d2 ≥ 0 there is a morphism

Hilbd1
X/k ×k Hilbd2

X/k −→ Hilbd1+d2
X/k

which is finite locally free of degree
(
d1+d2
d1

)
.

Proof. The functors HilbdX/k are representable by Proposition 44.2.6 (see also Re-
mark 44.2.7) and the fact that X is projective (Varieties, Lemma 33.43.4). The
schemes HilbdX/k are separated over k by Lemma 44.2.4. The schemes HilbdX/k are
smooth over k by Lemma 44.3.5. Starting with X = Hilb1

X/k, the morphisms of
Lemma 44.3.4, and induction we find a morphism

Xd = X ×k X ×k . . .×k X −→ HilbdX/k, (x1, . . . , xd) −→ x1 + . . .+ xd

which is finite locally free of degree d!. Since X is proper over k, so is Xd, hence
HilbdX/k is proper over k by Morphisms, Lemma 29.41.9. Since X is geometrically
irreducible over k, the product Xd is irreducible (Varieties, Lemma 33.8.4) hence
the image is irreducible (in fact geometrically irreducible). This proves (1). Part
(2) follows from the definitions. Part (3) follows from the commutative diagram

Xd1 ×k Xd2

��

Xd1+d2

��
Hilbd1

X/k ×k Hilbd2
X/k

// Hilbd1+d2
X/k

and multiplicativity of degrees of finite locally free morphisms. □

Remark 44.3.7.0B9J Let X be a geometrically irreducible smooth proper curve over
a field k as in Proposition 44.3.6. Let d ≥ 0. The universal closed object is a
relatively effective divisor

Duniv ⊂ Hilbd+1
X/k ×k X

over Hilbd+1
X/k by Lemma 44.3.1. In fact, Duniv is isomorphic as a scheme to

HilbdX/k ×k X, see proof of Lemma 44.3.4. In particular, Duniv is an effective
Cartier divisor and we obtain an invertible module O(Duniv). If [D] ∈ Hilbd+1

X/k

denotes the k-rational point corresponding to the effective Cartier divisor D ⊂ X
of degree d+ 1, then the restriction of O(Duniv) to the fibre [D]×X is OX(D).

44.4. The Picard functor

0B9K Given any scheme X we denote Pic(X) the set of isomorphism classes of invertible
OX -modules. See Modules, Definition 17.25.9. Given a morphism f : X → Y of
schemes, pullback defines a group homomorphism Pic(Y ) → Pic(X). The assign-
ment X ⇝ Pic(X) is a contravariant functor from the category of schemes to the
category of abelian groups. This functor is not representable, but it turns out that
a relative variant of this construction sometimes is representable.
Let us define the Picard functor for a morphism of schemes f : X → S. The idea
behind our construction is that we’ll take it to be the sheaf R1f∗Gm where we use
the fppf topology to compute the higher direct image. Unwinding the definitions
this leads to the following more direct definition.
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Definition 44.4.1.0B9L Let Schfppf be a big site as in Topologies, Definition 34.7.8.
Let f : X → S be a morphism of this site. The Picard functor PicX/S is the fppf
sheafification of the functor

(Sch/S)fppf −→ Sets, T 7−→ Pic(XT )

If this functor is representable, then we denote PicX/S a scheme representing it.

An often used remark is that if T ∈ Ob((Sch/S)fppf ), then PicXT /T is the restric-
tion of PicX/S to (Sch/T )fppf . It turns out to be nontrivial to see what the value
of PicX/S is on schemes T over S. Here is a lemma that helps with this task.

Lemma 44.4.2.0B9M Let f : X → S be as in Definition 44.4.1. If OT → fT,∗OXT is an
isomorphism for all T ∈ Ob((Sch/S)fppf ), then

0→ Pic(T )→ Pic(XT )→ PicX/S(T )

is an exact sequence for all T .

Proof. We may replace S by T and X by XT and assume that S = T to simplify
the notation. Let N be an invertible OS-module. If f∗N ∼= OX , then we see that
f∗f

∗N ∼= f∗OX ∼= OS by assumption. Since N is locally trivial, we see that the
canonical map N → f∗f

∗N is locally an isomorphism (because OS → f∗f
∗OS is

an isomorphism by assumption). Hence we conclude that N → f∗f
∗N → OS is an

isomorphism and we see that N is trivial. This proves the first arrow is injective.

Let L be an invertible OX -module which is in the kernel of Pic(X) → PicX/S(S).
Then there exists an fppf covering {Si → S} such that L pulls back to the trivial
invertible sheaf on XSi . Choose a trivializing section si. Then pr∗

0si and pr∗
1sj are

both trivialising sections of L over XSi×SSj and hence differ by a multiplicative
unit

fij ∈ Γ(XSi×SSj ,O∗
XSi×SSj

) = Γ(Si ×S Sj ,O∗
Si×SSj )

(equality by our assumption on pushforward of structure sheaves). Of course these
elements satisfy the cocycle condition on Si ×S Sj ×S Sk, hence they define a
descent datum on invertible sheaves for the fppf covering {Si → S}. By Descent,
Proposition 35.5.2 there is an invertible OS-module N with trivializations over Si
whose associated descent datum is {fij}. Then f∗N ∼= L as the functor from
descent data to modules is fully faithful (see proposition cited above). □

Lemma 44.4.3.0B9N Let f : X → S be as in Definition 44.4.1. Assume f has a section
σ and that OT → fT,∗OXT is an isomorphism for all T ∈ Ob((Sch/S)fppf ). Then

0→ Pic(T )→ Pic(XT )→ PicX/S(T )→ 0

is a split exact sequence with splitting given by σ∗
T : Pic(XT )→ Pic(T ).

Proof. Denote K(T ) = Ker(σ∗
T : Pic(XT ) → Pic(T )). Since σ is a section of f we

see that Pic(XT ) is the direct sum of Pic(T ) and K(T ). Thus by Lemma 44.4.2 we
see that K(T ) ⊂ PicX/S(T ) for all T . Moreover, it is clear from the construction
that PicX/S is the sheafification of the presheaf K. To finish the proof it suffices
to show that K satisfies the sheaf condition for fppf coverings which we do in the
next paragraph.

https://stacks.math.columbia.edu/tag/0B9L
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Let {Ti → T} be an fppf covering. Let Li be elements of K(Ti) which map to the
same elements of K(Ti ×T Tj) for all i and j. Choose an isomorphism αi : OTi →
σ∗
Ti
Li for all i. Choose an isomorphism

φij : Li|XTi×T Tj
−→ Lj |XTi×T Tj

If the map
αj |Ti×TTj ◦ σ∗

Ti×TTjφij ◦ αi|Ti×TTj : OTi×TTj → OTi×TTj
is not equal to multiplication by 1 but some uij , then we can scale φij by u−1

ij to
correct this. Having done this, consider the self map

φki|XTi×T Tj×T Tk
◦ φjk|XTi×T Tj×T Tk

◦ φij |XTi×T Tj×T Tk
on Li|XTi×T Tj×T Tk

which is given by multiplication by some regular function fijk on the scheme
XTi×TTj×TTk . By our choice of φij we see that the pullback of this map by σ
is equal to multiplication by 1. By our assumption on functions on X, we see that
fijk = 1. Thus we obtain a descent datum for the fppf covering {XTi → X}.
By Descent, Proposition 35.5.2 there is an invertible OXT -module L and an iso-
morphism α : OT → σ∗

TL whose pullback to XTi recovers (Li, αi) (small detail
omitted). Thus L defines an object of K(T ) as desired. □

44.5. A representability criterion

0B9P To prove the Picard functor is representable we will use the following criterion.

Lemma 44.5.1.0B9Q Let k be a field. Let G : (Sch/k)opp → Groups be a functor. With
terminology as in Schemes, Definition 26.15.3, assume that

(1) G satisfies the sheaf property for the Zariski topology,
(2) there exists a subfunctor F ⊂ G such that

(a) F is representable,
(b) F ⊂ G is representable by open immersion,
(c) for every field extension K of k and g ∈ G(K) there exists a g′ ∈ G(k)

such that g′g ∈ F (K).
Then G is representable by a group scheme over k.

Proof. This follows from Schemes, Lemma 26.15.4. Namely, take I = G(k) and
for i = g′ ∈ I take Fi ⊂ G the subfunctor which associates to T over k the
set of elements g ∈ G(T ) with g′g ∈ F (T ). Then Fi ∼= F by multiplication by
g′. The map Fi → G is isomorphic to the map F → G by multiplication by g′,
hence is representable by open immersions. Finally, the collection (Fi)i∈I covers G
by assumption (2)(c). Thus the lemma mentioned above applies and the proof is
complete. □

44.6. The Picard scheme of a curve

0B9R In this section we will apply Lemma 44.5.1 to show that PicX/k is representable,
when k is an algebraically closed field and X is a smooth projective curve over k.
To make this work we use a bit of cohomology and base change developed in the
chapter on derived categories of schemes.

Lemma 44.6.1.0B9U Let k be a field. Let X be a smooth projective curve over k which
has a k-rational point. Then the hypotheses of Lemma 44.4.3 are satisfied.

https://stacks.math.columbia.edu/tag/0B9Q
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Proof. The meaning of the phrase “has a k-rational point” is exactly that the struc-
ture morphism f : X → Spec(k) has a section, which verifies the first condition.
By Varieties, Lemma 33.26.2 we see that k′ = H0(X,OX) is a field extension of k.
Since X has a k-rational point there is a k-algebra homomorphism k′ → k and we
conclude k′ = k. Since k is a field, any morphism T → Spec(k) is flat. Hence we
see by cohomology and base change (Cohomology of Schemes, Lemma 30.5.2) that
OT → fT,∗OXT is an isomorphism. This finishes the proof. □

Let X be a smooth projective curve over a field k with a k-rational point σ. Then
the functor

PicX/k,σ : (Sch/k)opp −→ Ab, T 7−→ Ker(Pic(XT ) σ∗
T−−→ Pic(T ))

is isomorphic to PicX/k on (Sch/k)fppf by Lemmas 44.6.1 and 44.4.3. Hence it
will suffice to prove that PicX/k,σ is representable. We will use the notation “L ∈
PicX/k,σ(T )” to signify that T is a scheme over k and L is an invertible OXT -module
whose restriction to T via σT is isomorphic to OT .

Lemma 44.6.2.0B9V Let k be a field. Let X be a smooth projective curve over k with a
k-rational point σ. For a scheme T over k, consider the subset F (T ) ⊂ PicX/k,σ(T )
consisting of L such that RfT,∗L is isomorphic to an invertible OT -module placed
in degree 0. Then F ⊂ PicX/k,σ is a subfunctor and the inclusion is representable
by open immersions.

Proof. Immediate from Derived Categories of Schemes, Lemma 36.32.3 applied with
i = 0 and r = 1 and Schemes, Definition 26.15.3. □

To continue it is convenient to make the following definition.

Definition 44.6.3.0B9W Let k be a field. Let X be a smooth projective geometrically
irreducible curve over k. The genus of X is g = dimkH

1(X,OX).

Lemma 44.6.4.0B9X Let k be a field. Let X be a smooth projective curve of genus g
over k with a k-rational point σ. The open subfunctor F defined in Lemma 44.6.2
is representable by an open subscheme of HilbgX/k.

Proof. In this proof unadorned products are over Spec(k). By Proposition 44.3.6
the scheme H = HilbgX/k exists. Consider the universal divisor Duniv ⊂ H × X
and the associated invertible sheaf O(Duniv), see Remark 44.3.7. We adjust by
tensoring with the pullback via σH : H → H ×X to get

LH = O(Duniv)⊗OH×X pr∗
Hσ

∗
HO(Duniv)⊗−1 ∈ PicX/k,σ(H)

By the Yoneda lemma (Categories, Lemma 4.3.5) the invertible sheaf LH defines a
natural transformation

hH −→ PicX/k,σ
Because F is an open subfuctor, there exists a maximal open W ⊂ H such that
LH |W×X is in F (W ). Of course, this open is nothing else than the open subscheme
constructed in Derived Categories of Schemes, Lemma 36.32.3 with i = 0 and r = 1
for the morphism H ×X → H and the sheaf F = O(Duniv). Applying the Yoneda

https://stacks.math.columbia.edu/tag/0B9V
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lemma again we obtain a commutative diagram

hW

��

// F

��
hH // PicX/k,σ

To finish the proof we will show that the top horizontal arrow is an isomorphism.
Let L ∈ F (T ) ⊂ PicX/k,σ(T ). Let N be the invertible OT -module such that
RfT,∗L ∼= N [0]. The adjunction map

f∗
TN −→ L corresponds to a section s of L ⊗ f∗

TN⊗−1

on XT . Claim: The zero scheme of s is a relative effective Cartier divisor D on
(T ×X)/T finite locally free of degree g over T .
Let us finish the proof of the lemma admitting the claim. Namely, D defines a
morphism m : T → H such that D is the pullback of Duniv. Then

(m× idX)∗O(Duniv) ∼= OT×X(D)
Hence (m × idX)∗LH and O(D) differ by the pullback of an invertible sheaf on
H. This in particular shows that m : T → H factors through the open W ⊂ H
above. Moreover, it follows that these invertible modules define, after adjusting
by pullback via σT as above, the same element of PicX/k,σ(T ). Chasing diagrams
using Yoneda’s lemma we see that m ∈ hW (T ) maps to L ∈ F (T ). We omit
the verification that the rule F (T ) → hW (T ), L 7→ m defines an inverse of the
transformation of functors above.
Proof of the claim. Since D is a locally principal closed subscheme of T × X, it
suffices to show that the fibres of D over T are effective Cartier divisors, see Lemma
44.3.1 and Divisors, Lemma 31.18.9. Because taking cohomology of L commutes
with base change (Derived Categories of Schemes, Lemma 36.30.4) we reduce to
T = Spec(K) where K/k is a field extension. Then L is an invertible sheaf on XK

with H0(XK ,L) = K and H1(XK ,L) = 0. Thus
deg(L) = χ(XK ,L)− χ(XK ,OXK ) = 1− (1− g) = g

See Varieties, Definition 33.44.1. To finish the proof we have to show a nonzero
section of L defines an effective Cartier divisor on XK . This is clear. □

Lemma 44.6.5.0B9Y Let k be a separably closed field. Let X be a smooth projec-
tive curve of genus g over k. Let K/k be a field extension and let L be an in-
vertible sheaf on XK . Then there exists an invertible sheaf L0 on X such that
dimK H

0(XK ,L ⊗OXK
L0|XK ) = 1 and dimK H

1(XK ,L ⊗OXK
L0|XK ) = 0.

Proof. This proof is a variant of the proof of Varieties, Lemma 33.44.16. We en-
courage the reader to read that proof first.
First we pick an ample invertible sheaf L0 and we replace L by L ⊗OXK

L⊗n
0 |XK

for some n ≫ 0. The result will be that we may assume that H0(XK ,L) ̸= 0 and
H1(XK ,L) = 0. Namely, we will get the vanishing by Cohomology of Schemes,
Lemma 30.17.1 and the nonvanishing because the degree of the tensor product is
≫ 0. We will finish the proof by descending induction on t = dimK H

0(XK ,L).
The base case t = 1 is trivial. Assume t > 1.

https://stacks.math.columbia.edu/tag/0B9Y
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Observe that for a k-rational point x of X, the inverse image xK is a K-rational
point of XK . Moreover, there are infinitely many k-rational points by Varieties,
Lemma 33.25.6. Therefore the points xK form a Zariski dense collection of points
of XK .

Let s ∈ H0(XK ,L) be nonzero. From the previous paragraph we deduce there
exists a k-rational point x such that s does not vanish in xK . Let I be the ideal
sheaf of i : xK → XK as in Varieties, Lemma 33.43.8. Look at the short exact
sequence

0→ I ⊗OXK
L → L → i∗i

∗L → 0

Observe that H0(XK , i∗i
∗L) = H0(xK , i∗L) has dimension 1 over K. Since s does

not vanish at x we conclude that

H0(XK ,L) −→ H0(X, i∗i∗L)

is surjective. Hence dimK H
0(XK , I ⊗OXK

L) = t − 1. Finally, the long exact
sequence of cohomology also shows that H1(XK , I ⊗OXK

L) = 0 thereby finishing
the proof of the induction step. □

Proposition 44.6.6.0B9Z Let k be a separably closed field. Let X be a smooth projective
curve over k. The Picard functor PicX/k is representable.

Proof. Since k is separably closed there exists a k-rational point σ of X, see Va-
rieties, Lemma 33.25.6. As discussed above, it suffices to show that the functor
PicX/k,σ classifying invertible modules trivial along σ is representable. To do this
we will check conditions (1), (2)(a), (2)(b), and (2)(c) of Lemma 44.5.1.

The functor PicX/k,σ satisfies the sheaf condition for the fppf topology because it
is isomorphic to PicX/k. It would be more correct to say that we’ve shown the
sheaf condition for PicX/k,σ in the proof of Lemma 44.4.3 which applies by Lemma
44.6.1. This proves condition (1)

As our subfunctor we use F as defined in Lemma 44.6.2. Condition (2)(b) follows.
Condition (2)(a) is Lemma 44.6.4. Condition (2)(c) is Lemma 44.6.5. □

In fact, the proof given above produces more information which we collect here.

Lemma 44.6.7.0BA0 Let k be a separably closed field. Let X be a smooth projective
curve of genus g over k.

(1) PicX/k is a disjoint union of g-dimensional smooth proper varieties PicdX/k,
(2) k-points of PicdX/k correspond to invertible OX -modules of degree d,
(3) Pic0

X/k is an open and closed subgroup scheme,
(4) for d ≥ 0 there is a canonical morphism γd : HilbdX/k → PicdX/k
(5) the morphisms γd are surjective for d ≥ g and smooth for d ≥ 2g − 1,
(6) the morphism HilbgX/k → PicgX/k is birational.

Proof. Pick a k-rational point σ of X. Recall that PicX/k is isomorphic to the
functor PicX/k,σ. By Derived Categories of Schemes, Lemma 36.32.2 for every
d ∈ Z there is an open subfunctor

PicdX/k,σ ⊂ PicX/k,σ

https://stacks.math.columbia.edu/tag/0B9Z
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whose value on a scheme T over k consists of those L ∈ PicX/k,σ(T ) such that
χ(Xt,Lt) = d+ 1− g and moreover we have

PicX/k,σ =
∐

d∈Z
PicdX/k,σ

as fppf sheaves. It follows that the scheme PicX/k (which exists by Proposition
44.6.6) has a corresponding decomposition

PicX/k,σ =
∐

d∈Z
PicdX/k,σ

where the points of PicdX/k,σ correspond to isomorphism classes of invertible mod-
ules of degree d on X.
Fix d ≥ 0. There is a morphism

γd : HilbdX/k −→ PicdX/k
coming from the invertible sheaf O(Duniv) on HilbdX/k×kX (Remark 44.3.7) by the
Yoneda lemma (Categories, Lemma 4.3.5). Our proof of the representability of the
Picard functor ofX/k in Proposition 44.6.6 and Lemma 44.6.4 shows that γg induces
an open immersion on a nonempty open of HilbgX/k. Moreover, the proof shows that
the translates of this open by k-rational points of the group scheme PicX/k define
an open covering. Since HilbgX/K is smooth of dimension g (Proposition 44.3.6)
over k, we conclude that the group scheme PicX/k is smooth of dimension g over k.
By Groupoids, Lemma 39.7.3 we see that PicX/k is separated. Hence, for every
d ≥ 0, the image of γd is a proper variety over k (Morphisms, Lemma 29.41.10).
Let d ≥ g. Then for any field extension K/k and any invertible OXK -module L of
degree d, we see that χ(XK ,L) = d+1−g > 0. Hence L has a nonzero section and
we conclude that L = OXK (D) for some divisor D ⊂ XK of degree d. It follows
that γd is surjective.
Combining the facts mentioned above we see that PicdX/k is proper for d ≥ g. This
finishes the proof of (2) because now we see that PicdX/k is proper for d ≥ g but
then all PicdX/k are proper by translation.
It remains to prove that γd is smooth for d ≥ 2g − 1. Consider an invertible
OX -module L of degree d. Then the fibre of the point corresponding to L is

Z = {D ⊂ X | OX(D) ∼= L} ⊂ HilbdX/k
with its natural scheme structure. Since any isomorphism OX(D) → L is well
defined up to multiplying by a nonzero scalar, we see that the canonical section
1 ∈ OX(D) is mapped to a section s ∈ Γ(X,L) well defined up to multiplication
by a nonzero scalar. In this way we obtain a morphism

Z −→ Proj(Sym(Γ(X,L)∗))
(dual because of our conventions). This morphism is an isomorphism, because given
an section of L we can take the associated effective Cartier divisor, in other words we
can construct an inverse of the displayed morphism; we omit the precise formulation
and proof. Since dimH0(X,L) = d + 1 − g for every L of degree d ≥ 2g − 1 by
Varieties, Lemma 33.44.17 we see that Proj(Sym(Γ(X,L)∗)) ∼= Pd−g

k . We conclude
that dim(Z) = dim(Pd−g

k ) = d−g. We conclude that the fibres of the morphism γd
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all have dimension equal to the difference of the dimensions of HilbdX/k and PicdX/k.
It follows that γd is flat, see Algebra, Lemma 10.128.1. As moreover the fibres are
smooth, we conclude that γd is smooth by Morphisms, Lemma 29.34.3. □

44.7. Some remarks on Picard groups

0CDS This section continues the discussion in Varieties, Section 33.30 and will be contin-
ued in Algebraic Curves, Section 53.17.

Lemma 44.7.1.0CDT Let k be a field. Let X be a quasi-compact and quasi-separated
scheme over k with H0(X,OX) = k. If X has a k-rational point, then for any
Galois extension k′/k we have

Pic(X) = Pic(Xk′)Gal(k′/k)

Moreover the action of Gal(k′/k) on Pic(Xk′) is continuous.

Proof. Since Gal(k′/k) = Aut(k′/k) it acts (from the right) on Spec(k′), hence it
acts (from the right) on Xk′ = X ×Spec(k) Spec(k′), and since Pic(−) is a con-
travariant functor, it acts (from the left) on Pic(Xk′). If k′/k is an infinite Galois
extension, then we write k′ = colim k′

λ as a filtered colimit of finite Galois exten-
sions, see Fields, Lemma 9.22.3. Then Xk′ = limXkλ (as in Limits, Section 32.2)
and we obtain

Pic(Xk′) = colim Pic(Xkλ)
by Limits, Lemma 32.10.3. Moreover, the transition maps in this system of abelian
groups are injective by Varieties, Lemma 33.30.3. It follows that every element of
Pic(Xk′) is fixed by one of the open subgroups Gal(k′/kλ), which exactly means
that the action is continuous. Injectivity of the transition maps implies that it
suffices to prove the statement on fixed points in the case that k′/k is finite Galois.
Assume k′/k is finite Galois with Galois group G = Gal(k′/k). Let L be an element
of Pic(Xk′) fixed byG. We will use Galois descent (Descent, Lemma 35.6.1) to prove
that L is the pullback of an invertible sheaf on X. Recall that fσ = idX ×Spec(σ) :
Xk′ → Xk′ and that σ acts on Pic(Xk′) by pulling back by fσ. Hence for each
σ ∈ G we can choose an isomorphism φσ : L → f∗

σL because L is a fixed by the
G-action. The trouble is that we don’t know if we can choose φσ such that the
cocycle condition φστ = f∗

σφτ ◦ φσ holds. To see that this is possible we use that
X has a k-rational point x ∈ X(k). Of course, x similarly determines a k′-rational
point x′ ∈ Xk′ which is fixed by fσ for all σ. Pick a nonzero element s in the fibre
of L at x′; the fibre is the 1-dimensional k′ = κ(x′)-vector space

Lx′ ⊗OX
k′ ,x′ κ(x′).

Then f∗
σs is a nonzero element of the fibre of f∗

σL at x′. Since we can multiply φσ
by an element of (k′)∗ we may assume that φσ sends s to f∗

σs. Then we see that
both φστ and f∗

σφτ ◦ φσ send s to f∗
στs = f∗

τ f
∗
σs. Since H0(Xk′ ,OXk′ ) = k′ these

two isomorphisms have to be the same (as one is a global unit times the other and
they agree in x′) and the proof is complete. □

Lemma 44.7.2.0CD5 Let k be a field of characteristic p > 0. Let X be a quasi-compact
and quasi-separated scheme over k with H0(X,OX) = k. Let n be an integer prime
to p. Then the map

Pic(X)[n] −→ Pic(Xk′)[n]

https://stacks.math.columbia.edu/tag/0CDT
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is bijective for any purely inseparable extension k′/k.

Proof. First we observe that the map Pic(X)→ Pic(Xk′) is injective by Varieties,
Lemma 33.30.3. Hence we have to show the map in the lemma is surjective. Let
L be an invertible OXk′ -module which has order dividing n in Pic(Xk′). Choose
an isomorphism α : L⊗n → OXk′ of invertible modules. We will prove that we can
descend the pair (L, α) to X.
Set A = k′ ⊗k k′. Since k′/k is purely inseparable, the kernel of the multiplication
map A→ k′ is a locally nilpotent ideal I of A. Observe that

XA = X ×Spec(k) Spec(A) = Xk′ ×X Xk′

comes with two projections pri : XA → Xk′ , i = 0, 1 which agree over A/I. Hence
the invertible modules Li = pr∗

iL agree over the closed subscheme XA/I = Xk′ .
Since XA/I → XA is a thickening and since Li are n-torsion, we see that there
exists an isomorphism φ : L0 → L1 by More on Morphisms, Lemma 37.4.2. We
may pick φ to reduce to the identity modulo I. Namely, H0(X,OX) = k implies
H0(Xk′ ,OXk′ ) = k′ by Cohomology of Schemes, Lemma 30.5.2 and A → k′ is
surjective hence we can adjust φ by multiplying by a suitable element of A. Consider
the map

λ : OXA
pr∗

0α
−1

−−−−−→ L⊗n
0

φ⊗n

−−−→ L⊗n
1

pr∗
0α−−−→ OXA

We can view λ as an element of A because H0(XA,OXA) = A (same reference
as above). Since φ reduces to the identity modulo I we see that λ = 1 mod I.
Then there is a unique nth root of λ in 1 + I (Algebra, Lemma 10.32.8) and after
multiplying φ by its inverse we get λ = 1. We claim that (L, φ) is a descent datum
for the fpqc covering {Xk′ → X} (Descent, Definition 35.2.1). If true, then L is the
pullback of an invertible OX -module N by Descent, Proposition 35.5.2. Injectivity
of the map on Picard groups shows that N is a torsion element of Pic(X) of the
same order as L.
Proof of the claim. To see this we have to verify that

pr∗
12φ ◦ pr∗

01φ = pr∗
02φ on Xk′ ×X Xk′ ×X Xk′ = Xk′⊗kk′⊗kk′

As before the diagonal morphism ∆ : Xk′ → Xk′⊗kk′⊗kk′ is a thickening. The left
and right hand sides of the equality signs are maps a, b : p∗

0L → p∗
2L compatible with

p∗
0α and p∗

2α where pi : Xk′⊗kk′⊗kk′ → Xk′ are the projection morphisms. Finally,
a, b pull back to the same map under ∆. Affine locally (in local trivializations) this
means that a, b are given by multiplication by invertible functions which reduce to
the same function modulo a locally nilpotent ideal and which have the same nth
powers. Then it follows from Algebra, Lemma 10.32.8 that these functions are the
same. □
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CHAPTER 45

Weil Cohomology Theories

0FFG 45.1. Introduction

0FFH In this chapter we discuss Weil cohomology theories for smooth projective schemes
over a base field. Briefly, for us such a cohomology theory H∗ is one which has
Künneth, Poincaré duality, and cycle classes (with suitable compatibilities). We
warn the reader that there is no universal agreement in the literature as to what
constitutes a “Weil cohomology theory”.

Before reading this chapter the reader should take a look at Categories, Section 4.43
and Homology, Section 12.17 where we define (symmetric) monoidal categories and
we develop just enough basic language concerning these categories for the needs of
this chapter. Equipped with this language we construct in Section 45.3 the sym-
metric monoidal graded category whose objects are smooth projective schemes and
whose morphisms are correspondences. In Section 45.4 we add images of projec-
tors and invert the Lefschetz motive in order to obtain the symmetric monoidal
Karoubian category Mk of Chow motives. This category comes equipped with a
contravariant functor

h : {smooth projective schemes over k} −→Mk

As we will see below, a key property of a Weil cohomology theory is that it factors
over h.

First, in the case of an algebraically closed base field, we define what we call a
“classical Weil cohomology theory”, see Section 45.7. This notion is the same as
the notion introduced in [Kle68, Section 1.2] and agrees with the notion introduced
in [Kle72, page 65]. However, our notion does not a priori agree with the notion
introduced in [Kle94, page 10] because there the author adds two Lefschetz type
axioms and it isn’t known whether any classical Weil cohomology theory as defined
in this chapter satisfies those axioms. At the end of Section 45.7 we show that a
classical Weil cohomology theory is of the form H∗ = G ◦ h where G is a sym-
metric monoidal functor from Mk to the category of graded vector spaces over the
coefficient field of H∗.

In Section 45.8 we prove a couple of lemmas on cycle groups over non-closed fields
which will be used in discussing Weil cohomology theories on smooth projective
schemes over arbitrary fields.

Our motivation for our axioms of a Weil cohomology theory H∗ over a general base
field k are the following

(1) H∗ = G ◦h for a symmetric monoidal functor G from Mk to the category
of graded vector spaces over the coefficient field F of H∗,

3884
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(2) G should send the Tate motive (inverse of the Lefschetz motive) to a
1-dimensional vector space F (1) sitting in degree −2,

(3) when k is algebraically closed we should recover the notion discussion in
Section 45.7 up to choosing a basis element of F (1).

First, in Section 45.9 we analyze the first two conditions. After developing a few
more results in Section 45.10 in Section 45.11 we add the necessary axioms to obtain
property (3).
In the final Section 45.14 we detail an alternative approach to Weil cohomology
theories, using a first Chern class map instead of cycle classes. It is this approach
that will be most suited for proving that certain cohomology theories are Weil
cohomology theories in later chapters, see de Rham Cohomology, Section 50.22.

45.2. Conventions and notation

0FFI Let F be a field. In this chapter we view the category of F -graded vector spaces as
an F -linear symmetric monoidal category with associativity constraint as usual and
with commutativity constraint involving signs. See Homology, Example 12.17.4.
LetR be a ring. In this chapter a graded commutativeR-algebraA is a commutative
differential graded R-algebra (Differential Graded Algebra, Definitions 22.3.1 and
22.3.3) whose differential is zero. Thus A is an R-module endowed with a grading
A =

⊕
n∈Z A

n by R-submodules. The R-bilinear multiplication

An ×Am −→ An+m, α× β 7−→ α ∪ β

will be called the cup product in this chapter. The commutativity constraint is
α∪ β = (−1)nmβ ∪ α if α ∈ An and β ∈ Am. Finally, there is a multiplicative unit
1 ∈ A0, or equivalently, there is an additive and multiplicative map R→ A0 which
is compatible the R-module structure on A.
Let k be a field. Let X be a scheme of finite type over k. The Chow groups CHk(X)
ofX of cycles of dimension k modulo rational equivalence have been defined in Chow
Homology, Definition 42.19.1. If X is normal or Cohen-Macaulay, then we can also
consider the Chow groups CHp(X) of cycles of codimension p (Chow Homology,
Section 42.42) and then [X] ∈ CH0(X) denotes the “fundamental class” of X, see
Chow Homology, Remark 42.42.2. If X is smooth and α and β are cycles on X,
then α ·β denotes the intersection product of α and β, see Chow Homology, Section
42.62.

45.3. Correspondences

0FFZ Let k be a field. For schemes X and Y over k we denote X × Y the product of X
and Y in the category of schemes over k. In this section we construct the graded
category over Q whose objects are smooth projective schemes over k and whose
morphisms are correspondences.
Let X and Y be smooth projective schemes over k. Let X =

∐
Xd be the decom-

position of X into the open and closed subschemes which are equidimensional with
dim(Xd) = d. We define the Q-vector space of correspondences of degree r from X
to Y by the formula:

Corrr(X,Y ) =
⊕

d
CHd+r(Xd × Y )⊗Q ⊂ CH∗(X × Y )⊗Q
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Given c ∈ Corrr(X,Y ) and β ∈ CHk(Y )⊗Q we can define the pullback of β by c
using the formula

c∗(β) = pr1,∗(c · pr∗
2β) in CHk−r(X)⊗Q

This makes sense because pr2 is flat of relative dimension d on Xd×Y , hence pr∗
2β

is a cycle of dimension d+ k on Xd×Y , hence c ·pr∗
2α is a cycle of dimension k− r

on Xd × Y whose pushforward by the proper morphism pr1 is a cycle of the same
dimension. Similarly, switching to grading by codimension, given α ∈ CHi(X)⊗Q
we can define the pushforward of α by c using the formula

c∗(α) = pr2,∗(c · pr∗
1α) in CHi+r(Y )⊗Q

This makes sense because pr∗
1α is a cycle of codimension i on X ×Y , hence c ·pr∗

1α
is a cycle of codimension i + d + r on Xd × Y , which pushes forward to a cycle of
codimension i+ r on Y .
Given a three smooth projective schemes X,Y, Z over k we define a composition of
correspondences

Corrs(Y,Z)× Corrr(X,Y ) −→ Corrr+s(X,Z)
by the rule

(c′, c) 7−→ c′ ◦ c = pr13,∗(pr∗
12c · pr∗

23c
′)

where pr12 : X × Y ×Z → X × Y is the projection and similarly for pr13 and pr23.

Lemma 45.3.1.0FG0 We have the following for correspondences:
(1) composition of correspondences is Q-bilinear and associative,
(2) there is a canonical isomorphism

CH−r(X)⊗Q = Corrr(X,Spec(k))
such that pullback by correspondences corresponds to composition,

(3) there is a canonical isomorphism
CHr(X)⊗Q = Corrr(Spec(k), X)

such that pushforward by correspondences corresponds to composition,
(4) composition of correspondences is compatible with pushforward and pull-

back of cycles.

Proof. Bilinearity follows immediately from the linearity of pushforward and pull-
back and the bilinearity of the intersection product. To prove associativity, say we
have X,Y, Z,W and c ∈ Corr(X,Y ), c′ ∈ Corr(Y,Z), and c′′ ∈ Corr(Z,W ). Then
we have

c′′ ◦ (c′ ◦ c) = pr134
14,∗(pr134,∗

13 pr123
13,∗(pr123,∗

12 c · pr123,∗
23 c′) · pr134,∗

34 c′′)
= pr134

14,∗(pr1234
134,∗pr1234,∗

123 (pr123,∗
12 c · pr123,∗

23 c′) · pr134,∗
34 c′′)

= pr134
14,∗(pr1234

134,∗(pr1234,∗
12 c · pr1234,∗

23 c′) · pr134,∗
34 c′′)

= pr134
14,∗pr1234

134,∗((pr1234,∗
12 c · pr1234,∗

23 c′) · pr1234,∗
34 c′′)

= pr1234
14,∗ ((pr1234,∗

12 c · pr1234,∗
23 c′) · pr1234,∗

34 c′′)
Here we use the notation

p1234
134 : X × Y × Z ×W → X × Z ×W and p134

14 : X × Z ×W → X ×W

https://stacks.math.columbia.edu/tag/0FG0
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the projections and similarly for other indices. The first equality is the definition of
the composition. The second equality holds because pr134,∗

13 pr123
13,∗ = pr1234

134,∗pr1234,∗
123

by Chow Homology, Lemma 42.15.1. The third equality holds because intersection
product commutes with the gysin map for p1234

123 (which is given by flat pullback),
see Chow Homology, Lemma 42.62.3. The fourth equality follows from the pro-
jection formula for p1234

134 , see Chow Homology, Lemma 42.62.4. The fourth equal-
ity is that proper pushforward is compatible with composition, see Chow Homol-
ogy, Lemma 42.12.2. Since intersection product is associative by Chow Homology,
Lemma 42.62.1 this concludes the proof of associativity of composition of corre-
spondences.

We omit the proofs of (2) and (3) as these are essentially proved by carefully
bookkeeping where various cycles live and in what (co)dimension.

The statement on pushforward and pullback of cycles means that (c′ ◦ c)∗(α) =
c∗((c′)∗(α)) and (c′ ◦ c)∗(α) = (c′)∗(c∗(α)). This follows on combining (1), (2), and
(3). □

Example 45.3.2.0FG1 Let f : Y → X be a morphism of smooth projective schemes over
k. Denote Γf ⊂ X×Y the graph of f . More precisely, Γf is the image of the closed
immersion

(f, idY ) : Y −→ X × Y
Let X =

∐
Xd be the decomposition of X into its open and closed parts Xd which

are equidimensional of dimension d. Then Γf ∩ (Xd × Y ) has pure codimension
d. Hence [Γf ] ∈ CH∗(X × Y ) ⊗ Q is contained in Corr0(X × Y ), i.e., [Γf ] is a
correspondence of degree 0 from X to Y .

Lemma 45.3.3.0FG2 Smooth projective schemes over k with correspondences and com-
position of correspondences as defined above form a graded category over Q (Dif-
ferential Graded Algebra, Definition 22.25.1).

Proof. Everything is clear from the construction and Lemma 45.3.1 except for the
existence of identity morphisms. Given a smooth projective scheme X consider the
class [∆] of the diagonal ∆ ⊂ X ×X in Corr0(X,X). We note that ∆ is equal to
the graph of the identity idX : X → X which is a fact we will use below.

To prove that [∆] can serve as an identity we have to show that [∆] ◦ c = c and
c′ ◦ [∆] = c′ for any correspondences c ∈ Corrr(Y,X) and c′ ∈ Corrs(X,Y ). For
the second case we have to show that

c′ = pr13,∗(pr∗
12[∆] · pr∗

23c
′)

where pr12 : X ×X × Y → X ×X is the projection and simlarly for pr13 and pr23.
We may write c′ =

∑
ai[Zi] for some integral closed subschemes Zi ⊂ X × Y and

rational numers ai. Thus it clearly suffices to show that

[Z] = pr13,∗(pr∗
12[∆] · pr∗

23[Z])

in the chow group of X × Y for any integral closed subscheme Z of X × Y . After
replacing X and Y by the irreducible component containing the image of Z under
the two projections we may assume X and Y are integral as well. Then we have to
show

[Z] = pr13,∗([∆× Y ] · [X × Z])

https://stacks.math.columbia.edu/tag/0FG1
https://stacks.math.columbia.edu/tag/0FG2
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Denote Z ′ ⊂ X×X×Y the image of Z by the morphism (∆, 1) : X×Y → X×X×Y .
Then Z ′ is a closed subscheme of X×X×Y isomorphic to Z and Z ′ = ∆×Y ∩X×Z
scheme theoretically. By Chow Homology, Lemma 42.62.51 we conclude that

[Z ′] = [∆× Y ] · [X × Z]
Since Z ′ maps isomorphically to Z by pr13 also we conclude. The verification that
[∆] ◦ c = c is similar and we omit it. □

Lemma 45.3.4.0FG3 There is a contravariant functor from the category of smooth pro-
jective schemes over k to the category of correspondences which is the identity on
objects and sends f : Y → X to the element [Γf ] ∈ Corr0(X,Y ).

Proof. In the proof of Lemma 45.3.3 we have seen that this construction sends
identities to identities. To finish the proof we have to show if g : Z → Y is another
morphism of smooth projective schemes over k, then we have [Γg] ◦ [Γf ] = [Γf◦g]
in Corr0(X,Z). Arguing as in the proof of Lemma 45.3.3 we see that it suffices to
show

[Γf◦g] = pr13,∗([Γf × Z] · [X × Γg])
in CH∗(X × Z) when X, Y , Z are integral. Denote Z ′ ⊂ X × Y × Z the image of
the closed immersion (f ◦ g, g, 1) : Z → X × Y × Z. Then Z ′ = Γf × Z ∩X × Γg
scheme theoretically and we conclude using Chow Homology, Lemma 42.62.5 that

[Z ′] = [Γf × Z] · [X × Γg]
Since it is clear that pr13,∗([Z ′]) = [Γf◦g] the proof is complete. □

Remark 45.3.5.0FG4 Let X and Y be smooth projective schemes over k. Assume X is
equidimensional of dimension d and Y is equidimensional of dimension e. Then the
isomorphism X × Y → Y ×X switching the factors determines an isomorphism

Corrr(X,Y ) −→ Corrd−e+r(Y,X), c 7−→ ct

called the transpose. It acts on cycles as well as cycle classes. An example which
is sometimes useful, is the transpose [Γf ]t = [Γtf ] of the graph of a morphism
f : Y → X.

Lemma 45.3.6.0FG5 Let f : Y → X be a morphism of smooth projective schemes over
k. Let [Γf ] ∈ Corr0(X,Y ) be as in Example 45.3.2. Then

(1) pushforward of cycles by the correspondence [Γf ] agrees with the gysin
map f ! : CH∗(X)→ CH∗(Y ),

(2) pullback of cycles by the correspondence [Γf ] agrees with the pushforward
map f∗ : CH∗(Y )→ CH∗(X),

(3) if X and Y are equidimensional of dimensions d and e, then
(a) pushforward of cycles by the correspondence [Γtf ] of Remark 45.3.5

corresponds to pushforward of cycles by f , and
(b) pullback of cycles by the correspondence [Γtf ] of Remark 45.3.5 cor-

responds to the gysin map f !.

1The reader verifies that dim(Z′) = dim(∆× Y ) + dim(X ×Z)− dim(X ×X × Y ) and that
Z′ has a unique generic point mapping to the generic point of Z (where the local ring is CM) and
to some point of X (where the local ring is CM). Thus all the hypothese of the lemma are indeed
verified.

https://stacks.math.columbia.edu/tag/0FG3
https://stacks.math.columbia.edu/tag/0FG4
https://stacks.math.columbia.edu/tag/0FG5
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Proof. Proof of (1). Recall that [Γf ]∗(α) = pr2,∗([Γf ] · pr∗
1α). We have

[Γf ] · pr∗
1α = (f, 1)∗((f, 1)!pr∗

1α) = (f, 1)∗((f, 1)!pr!
1α) = (f, 1)∗(f !α)

The first equality by Chow Homology, Lemma 42.62.6. The second by Chow Ho-
mology, Lemma 42.59.5. The third because pr1 ◦ (f, 1) = f and Chow Homology,
Lemma 42.59.6. Then we coclude because pr2,∗ ◦ (f, 1)∗ = 1∗ by Chow Homology,
Lemma 42.12.2.

Proof of (2). Recall that [Γf ]∗(β) = pr1,∗([Γf ] ·pr∗
2β). Arguing exactly as above we

have
[Γf ] · pr∗

2β = (f, 1)∗β

Thus the result follows as before.

Proof of (3). Proved in exactly the same manner as above. □

Example 45.3.7.0FG6 Let X = P1
k. Then we have

Corr0(X,X) = CH1(X ×X)⊗Q = CH1(X ×X)⊗Q

Choose a k-rational point x ∈ X and consider the cycles c0 = [x × X] and c2 =
[X × x]. A computation shows that 1 = [∆] = c0 + c2 in Corr0(X,X) and that we
have the following rules for composition c0 ◦ c0 = c0, c0 ◦ c2 = 0, c2 ◦ c0 = 0, and
c2 ◦ c2 = c2. In other words, c0 and c2 are orthogonal idempotents in the algebra
Corr0(X,X) and in fact we get

Corr0(X,X) = Q×Q

as a Q-algebra.

The category of correspondences is a symmetric monoidal category. Given smooth
projective schemes X and Y over k, we define X ⊗Y = X ×Y . Given four smooth
projective schemes X,X ′, Y, Y ′ over k we define a tensor product

⊗ : Corrr(X,Y )× Corrr
′
(X ′, Y ′) −→ Corrr+r′

(X ×X ′, Y × Y ′)

by the rule
(c, c′) 7−→ c⊗ c′ = pr∗

13c · pr∗
24c

′

where pr13 : X ×X ′ × Y × Y ′ → X × Y and pr24 : X ×X ′ × Y × Y ′ → X ′ × Y ′

are the projections. As associativity constraint

X ⊗ (Y ⊗ Z) = (X ⊗ Y )⊗ Z

we use the usual associativity constraint on products of schemes. The commuta-
tivity constraint will be given by the isomorphism X × Y → Y ×X switching the
factors.

Lemma 45.3.8.0FG7 The tensor product of correspondences defined above turns the
category of correspondences into a symmetric monoidal category with unit Spec(k).

Proof. Omitted. □

Lemma 45.3.9.0FG8 Let f : Y → X be a morphism of smooth projective schemes
over k. Assume X and Y equidimensional of dimensions d and e. Denote a =
[Γf ] ∈ Corr0(X,Y ) and at = [Γtf ] ∈ Corrd−e(Y,X). Set ηX = [ΓX→X×X ] ∈

https://stacks.math.columbia.edu/tag/0FG6
https://stacks.math.columbia.edu/tag/0FG7
https://stacks.math.columbia.edu/tag/0FG8
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Corr0(X ×X,X), ηY = [ΓY→Y×Y ] ∈ Corr0(Y × Y, Y ), [X] ∈ Corr−d(X,Spec(k)),
and [Y ] ∈ Corr−e(Y, Spec(k)). The diagram

X ⊗ Y
a⊗id

//

id⊗at

��

Y ⊗ Y
ηY

// Y

[Y ]
��

X ⊗X
ηX // X

[X] // Spec(k)

is commutative in the category of correspondences.

Proof. Recall that Corrr(W, Spec(k)) = CH−r(W ) for any smooth projective scheme
W over k and given c ∈ Corrs(W ′,W ) the composition with c agrees with pullback
by c as a map CH−r(W )→ CH−r−s(W ′) (Lemma 45.3.1). Finally, we have Lemma
45.3.6 which tells us how to convert this into usual pushforward and pullback of
cycles. We have

(a⊗ id)∗η∗
Y [Y ] = (a⊗ id)∗[∆Y ] = (f × id)∗∆Y = [Γf ]

and the other way around we get

(id⊗ at)∗η∗
X [X] = (id⊗ at)∗[∆X ] = (id× f)![∆X ] = [Γf ]

The last equality follows from Chow Homology, Lemma 42.59.8. In other words,
going either way around the diagram we obtain the element of Corrd(X×Y, Spec(k))
corresponding to the cycle Γf ⊂ X × Y . □

45.4. Chow motives

0FG9 We fix a base field k. In this section we construct an additive Karoubian Q-linear
category Mk endowed with a symmetric monoidal structure and a contravariant
functor

h : {smooth projective schemes over k} −→Mk

which maps products to tensor products and disjoint unions to direct sums. Our
construction will be characterized by the fact that h factors through the symmetric
monoidal category whose objects are smooth projective varieties and whose mor-
phisms are correspondences of degree 0 such that the image of the projector c2 on
h(P1

k) from Example 45.3.7 is invertible in Mk, see Lemma 45.4.8. At the end of
the section we will show that every motive, i.e., every object of Mk to has a (left)
dual, see Lemma 45.4.10.

A motive or a Chow motive over k will be a triple (X, p,m) where
(1) X is a smooth projective scheme over k,
(2) p ∈ Corr0(X,X) satisfies p ◦ p = p,
(3) m ∈ Z.

Given a second motive (Y, q, n) we define a morphism of motives or a morphism of
Chow motives to be an element of

Hom((X, p,m), (Y, q, n)) = q ◦ Corrn−m(X,Y ) ◦ p ⊂ Corrn−m(X,Y )

Composition of morphisms of motives is defined using the composition of corre-
spondences defined above.
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Lemma 45.4.1.0FGA The category Mk whose objects are motives over k and morphisms
are morphisms of motives over k is a Q-linear category. There is a contravariant
functor

h : {smooth projective schemes over k} −→Mk

defined by h(X) = (X, 1, 0) and h(f) = [Γf ].

Proof. Follows immediately from Lemma 45.3.4. □

Lemma 45.4.2.0FGB The category Mk is Karoubian.

Proof. Let M = (X, p,m) be a motive and let a ∈ Mor(M,M) be a projector.
Then a = a ◦ a both in Mor(M,M) as well as in Corr0(X,X). Set N = (X, a,m).
Since we have a = p◦a◦a in Corr0(X,X) we see that a : N →M is a morphism of
Mk. Next, suppose that b : (Y, q, n)→M is a morphism such that (1− a) ◦ b = 0.
Then b = a ◦ b as well as b = b ◦ q. Hence b is a morphism b : (Y, q, n)→ N . Thus
we see that the projector 1 − a has a kernel, namely N and we find that Mk is
Karoubian, see Homology, Definition 12.4.1. □

We define a functor
⊗ : Mk ×Mk −→Mk

On objects we use the formula
(X, p,m)⊗ (Y, q, n) = (X × Y, p⊗ q,m+ n)

On morphisms, we use

Mor((X, p,m), (Y, q, n))×Mor((X ′, p′,m′), (Y ′, q′, n′))

��
Mor((X ×X ′, p⊗ p′,m+m′), (Y × Y ′, q ⊗ q′, n+ n′))

given by the rule (a, a′) 7−→ a⊗a′ where ⊗ on correspondences is as in Section 45.3.
This makes sense: by definition of morphisms of motives we can write a = q ◦ c ◦ p
and a′ = q′ ◦ c′ ◦ p′ with c ∈ Corrn−m(X,Y ) and c′ ∈ Corrn

′−m′
(X ′, Y ′) and then

we obtain
a⊗ a′ = (q ◦ c ◦ p)⊗ (q′ ◦ c′ ◦ p′) = (q ⊗ q′) ◦ (c⊗ c′) ◦ (p⊗ p′)

which is indeed a morphism of motives from (X×X ′, p⊗p′,m+m′) to (Y ×Y ′, q⊗
q′, n+ n′).

Lemma 45.4.3.0FGC The category Mk with tensor product defined as above is symmetric
monoidal with the obvious associativity and commutativity constraints and with
unit 1 = (Spec(k), 1, 0).

Proof. Follows readily from Lemma 45.3.8. Details omitted. □

The motives 1(n) = (Spec(k), 1, n) are useful. Observe that
1 = 1(0) and 1(n+m) = 1(n)⊗ 1(m)

Thus tensoring with 1(1) is an autoequivalence of the category of motives. Given a
motive M we sometimes write M(n) = M ⊗ 1(n). Observe that if M = (X, p,m),
then M(n) = (X, p,m+ n).

Lemma 45.4.4.0FGD With notation as in Example 45.3.7

https://stacks.math.columbia.edu/tag/0FGA
https://stacks.math.columbia.edu/tag/0FGB
https://stacks.math.columbia.edu/tag/0FGC
https://stacks.math.columbia.edu/tag/0FGD
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(1) the motive (X, c0, 0) is isomorphic to the motive 1 = (Spec(k), 1, 0).
(2) the motive (X, c2, 0) is isomorphic to the motive 1(−1) = (Spec(k), 1,−1).

Proof. We will use Lemma 45.3.4 without further mention. The structure morphism
X → Spec(k) gives a correspondence a ∈ Corr0(Spec(k), X). On the other hand,
the rational point x is a morphism Spec(k) → X which gives a correspondence
b ∈ Corr0(X,Spec(k)). We have b ◦ a = 1 as a correspondence on Spec(k). The
composition a ◦ b corresponds to the graph of the composition X → x→ X which
is c0 = [x × X]. Thus a = a ◦ b ◦ a = c0 ◦ a and b = a ◦ b ◦ a = b ◦ c0. Hence,
unwinding the definitions, we see that a and b are mutually inverse morphisms
a : (Spec(k), 1, 0)→ (X, c0, 0) and b : (X, c0, 0)→ (Spec(k), 1, 0).
We will proceed exactly as above to prove the second statement. Denote

a′ ∈ Corr1(Spec(k), X) = CH1(X)
the class of the point x. Denote

b′ ∈ Corr−1(X,Spec(k)) = CH1(X)
the class of [X]. We have b′ ◦ a′ = 1 as a correspondence on Spec(k) because
[x] · [X] = [x] on X = Spec(k)×X × Spec(k). Computing the intersection product
pr∗

12b
′ · pr∗

23a
′ on X × Spec(k) × X gives the cycle X × Spec(k) × x. Hence the

composition a′ ◦ b′ is equal to c2 as a correspondence on X. Thus a′ = a′ ◦ b ◦ a′ =
c2 ◦ a′ and b′ = b′ ◦ a′ ◦ b′ = b′ ◦ c2. Recall that

Mor((Spec(k), 1,−1), (X, c2, 0)) = c2 ◦ Corr1(Spec(k), X) ⊂ Corr1(Spec(k), X)
and
Mor((X, c2, 0), (Spec(k), 1,−1)) = Corr−1(X,Spec(k)) ◦ c2 ⊂ Corr−1(X,Spec(k))

Hence, we see that a′ and b′ are mutually inverse morphisms a′ : (Spec(k), 1,−1)→
(X, c0, 0) and b′ : (X, c0, 0)→ (Spec(k), 1,−1). □

Remark 45.4.5 (Lefschetz and Tate motive).0FGE Let X = P1
k and c2 be as in Example

45.3.7. In the literature the motive (X, c2, 0) is sometimes called the Lefschetz
motive and depending on the reference the notation L, L, Q(−1), or h2(P1

k) may
be used to denote it. By Lemma 45.4.4 the Lefschetz motive is isomorphic to 1(−1).
Hence the Lefschetz motive is invertible (Categories, Definition 4.43.4) with inverse
1(1). The motive 1(1) is sometimes called the Tate motive and depending on the
reference the notation L−1, L−1, T, or Q(1) may be used to denote it.

Lemma 45.4.6.0FGF The category Mk is additive.

Proof. Let (Y, p,m) and (Z, q, n) be motives. If n = m, then a direct sum is given
by (Y ⨿ Z, p+ q,m), with obvious notation. Details omitted.
Suppose that n < m. Let X, c2 be as in Example 45.3.7. Then we consider

(Z, q, n) = (Z, q,m)⊗ (Spec(k), 1,−1)⊗ . . .⊗ (Spec(k), 1,−1)
∼= (Z, q,m)⊗ (X, c2, 0)⊗ . . .⊗ (X, c2, 0)
∼= (Z ×Xm−n, q ⊗ c2 ⊗ . . .⊗ c2,m)

where we have used Lemma 45.4.4. This reduces us to the case discussed in the
first paragraph. □

Lemma 45.4.7.0FGG In Mk we have h(P1
k) ∼= 1⊕ 1(−1).

https://stacks.math.columbia.edu/tag/0FGE
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Proof. This follows from Example 45.3.7 and Lemma 45.4.4. □

Lemma 45.4.8.0FGH Let X, c2 be as in Example 45.3.7. Let C be a Q-linear Karoubian
symmetric monoidal category. Any Q-linear functor

F :
{

smooth projective schemes over k
morphisms are correspondences of degree 0

}
−→ C

of symmetric monoidal categories such that the image of F (c2) on F (X) is an
invertible object, factors uniquely through a functor F : Mk → C of symmetric
monoidal categories.

Proof. Denote U in C the invertible object which is assumed to exist in the state-
ment of the lemma. We extend F to motives by setting

F (X, p,m) = (the image of the projector F (p) in F (X))⊗ U⊗−m

which makes sense because U is invertible and because C is Karoubian. An impor-
tant feature of this choice is that F (X, c2, 0) = U . Observe that

F ((X, p,m)⊗ (Y, q, n)) = F (X × Y, p⊗ q,m+ n)
= (the image of F (p⊗ q) in F (X × Y ))⊗ U⊗−m−n

= F (X, p,m)⊗ F (Y, q, n)
Thus we see that our rule is compatible with tensor products on the level of objects
(details omitted).
Next, we extend F to morphisms of motives. Suppose that

a ∈ Hom((Y, p,m), (Z, q, n)) = q ◦ Corrn−m(Y,Z) ◦ p ⊂ Corrn−m(Y,Z)
is a morphism. If n = m, then a is a correspondence of degree 0 and we can use
F (a) : F (Y )→ F (Z) to get the desired map F (Y, p,m)→ F (Z, q, n). If n < m we
get canonical identifications

s : F ((Z, q, n))→ F (Z, q,m)⊗ Um−n

→ F (Z, q,m)⊗ F (X, c2, 0)⊗ . . .⊗ F (X, c2, 0)
→ F ((Z, q,m)⊗ (X, c2, 0)⊗ . . .⊗ (X, c2, 0))
→ F ((Z ×Xm−n, q ⊗ c2 ⊗ . . .⊗ c2,m))

Namely, for the first isomorphism we use the definition of F on motives above. For
the second, we use the choice of U . For the third we use the compatibility of F
on tensor products of motives. The fourth is the definition of tensor products on
motives. On the other hand, since we similarly have an isomorphism

σ : (Z, q, n)→ (Z ×Xm−n, q ⊗ c2 ⊗ . . .⊗ c2,m)
(see proof of Lemma 45.4.6). Composing a with this isomorphism gives

σ ◦ a ∈ Hom((Y, p,m), (Z ×Xm−n, q ⊗ c2 ⊗ . . .⊗ c2,m))
Putting everything together we obtain

s−1 ◦ F (σ ◦ a) : F (Y, p,m)→ F (Z, q, n)
If n > m we similarly define isomorphisms

t : F ((Y, p,m))→ F ((Y ×Xn−m, p⊗ c2 ⊗ . . .⊗ c2, n))

https://stacks.math.columbia.edu/tag/0FGH
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and
τ : (Y, p,m))→ (Y ×Xn−m, p⊗ c2 ⊗ . . .⊗ c2, n)

and we set F (a) = F (a ◦ τ−1) ◦ t. We omit the verification that this construction
defines a functor of symmetric monoidal categories. □

Lemma 45.4.9.0FGI Let X be a smooth projective scheme over k which is equidimen-
sional of dimension d. Then h(X)(d) is a left dual to h(X) in Mk.

Proof. We will use Lemma 45.3.1 without further mention. We compute

Hom(1, h(X)⊗ h(X)(d)) = Corrd(Spec(k), X ×X) = CHd(X ×X)

Here we have η = [∆]. On the other hand, we have

Hom(h(X)(d)⊗ h(X),1) = Corr−d(X ×X,Spec(k)) = CHd(X ×X)

and here we have the class ϵ = [∆] of the diagonal as well. The composition of
the correspondence [∆] ⊗ 1 with 1 ⊗ [∆] either way is the correspondence [∆] = 1
in Corr0(X,X) which proves the required diagrams of Categories, Definition 4.43.5
commute. Namely, observe that

[∆]⊗ 1 ∈ Corrd(X,X ×X ×X) = CH2d(X ×X ×X ×X)

is given by the class of the cycle pr1234,−1
23 (∆)∩pr1234,−1

14 (∆) with obvious notation.
Similarly, the class

1⊗ [∆] ∈ Corr−d(X ×X ×X,X) = CH2d(X ×X ×X ×X)

is given by the class of the cycle pr1234,−1
23 (∆) ∩ pr1234,−1

14 (∆). The composition
(1 ⊗ [∆]) ◦ ([∆] ⊗ 1) is by definition the pushforward pr12345

15,∗ of the intersection
product

[pr12345,−1
23 (∆)∩pr12345,−1

14 (∆)]·[pr12345,−1
34 (∆)∩pr12345,−1

15 (∆)] = [small diagonal in X5]

which is equal to ∆ as desired. We omit the proof of the formula for the composition
in the other order. □

Lemma 45.4.10.0FGJ Every object of Mk has a left dual.

Proof. Let M = (X, p,m) be an object of Mk. Then M is a summand of (X, 0,m) =
h(X)(m). By Homology, Lemma 12.17.3 it suffices to show that h(X)(m) = h(X)⊗
1(m) has a dual. By construction 1(−m) is a left dual of 1(m). Hence it suffices to
show that h(X) has a left dual, see Categories, Lemma 4.43.8. Let X =

∐
Xi be

the decomposition of X into irreducible components. Then h(X) =
⊕
h(Xi) and

it suffices to show that h(Xi) has a left dual, see Homology, Lemma 12.17.2. This
follows from Lemma 45.4.9. □

45.5. Chow groups of motives

0FGK We define the Chow groups of a motive as follows.

Definition 45.5.1.0FGL Let k be a base field. Let M = (X, p,m) be a Chow motive over
k. For i ∈ Z we define the ith Chow group of M by the formula

CHi(M) = p
(
CHi+m(X)⊗Q

)

https://stacks.math.columbia.edu/tag/0FGI
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We have CHi(h(X)) = CHi(X)⊗Q if X is a smooth projective scheme over k.
Observe that CHi(−) is a functor from Mk to Q-vector spaces. Indeed, if c :
M → N is a morphism of motives M = (X, p,m) and N = (Y, q, n), then c is
a correspondence of degree n − m from X to Y and hence pushforward along c
(Section 45.3) is a family of maps

c∗ : CHi+m(X)⊗Q −→ CHi+n(Y )⊗Q
Since c = q ◦ c ◦ p by definition of morphisms of motives, we see that indeed we
obtain

c∗ : CHi(M)→ CHi(N)
for all i ∈ Z. This is compatible with compositions of morphisms of motives by
Lemma 45.3.1. This functoriality of Chow groups can also be deduced from the
following lemma.

Lemma 45.5.2.0FGM Let k be a base field. The functor CHi(−) on the category of
motives Mk is representable by 1(−i), i.e., we have

CHi(M) = HomMk
(1(−i),M)

functorially in M in Mk.

Proof. Immediate from the definitions and Lemma 45.3.1. □

The reader can imagine that we can use Lemma 45.5.2, the Yoneda lemma, and
the duality in Lemma 45.4.9 to obtain the following.

Lemma 45.5.3 (Manin).0FGN Let k be a base field. Let c : M → N be a morphism of
motives. If for every smooth projective scheme X over k the map c⊗1 : M⊗h(X)→
N ⊗ h(X) induces an isomorphism on Chow groups, then c is an isomorphism.

Proof. Any object L of Mk is a summand of h(X)(m) for some smooth projective
scheme X over k and some m ∈ Z. Observe that the Chow groups of M ⊗h(X)(m)
are the same as the Chow groups of of M ⊗ h(X) up to a shift in degrees. Hence
our assumption implies that c ⊗ 1 : M ⊗ L → N ⊗ L induces an isomorphism on
Chow groups for every object L of Mk. By Lemma 45.5.2 we see that

HomMk
(1,M ⊗ L)→ HomMk

(1, N ⊗ L)
is an isomorphism for every L. Since every object of Mk has a left dual (Lemma
45.4.10) we conclude that

HomMk
(K,M)→ HomMk

(K,N)
is an isomorphism for every object K of Mk, see Categories, Lemma 4.43.6. We
conclude by the Yoneda lemma (Categories, Lemma 4.3.5). □

45.6. Projective space bundle formula

0FGP Let k be a base field. Let X be a smooth projective scheme over k. Let E be a
locally free OX -module of rank r. Our convention is that the projective bundle
associated to E is the morphism

P = P(E) = Proj
X

(Sym∗(E)) p // X

over X with OP (1) normalized so that p∗(OP (1)) = E . Recall that
[Γp] ∈ Corr0(X,P ) ⊂ CH∗(X × P )⊗Q

https://stacks.math.columbia.edu/tag/0FGM
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See Example 45.3.2. For i = 0, . . . , r − 1 consider the correspondences

ci = c1(pr∗
2OP (1))i ∩ [Γp] ∈ Corri(X,P )

We may and do think of ci as a morphism h(X)(−i)→ h(P ).

Lemma 45.6.1 (Projective space bundle formula).0FGQ In the situation above, the map∑
i=0,...,r−1

ci :
⊕

i=0,...,r−1
h(X)(−i) −→ h(P )

is an isomorphism in the category of motives.

Proof. By Lemma 45.5.3 it suffices to show that our map defines an isomorphism
on Chow groups of motives after taking the product with any smooth projective
scheme Z. Observe that P × Z → X × Z is the projective bundle associated to
the pullback of E to X × Z. Hence the statement on Chow groups is true by the
projective space bundle formula given in Chow Homology, Lemma 42.36.2. Namely,
pushforward of cycles along [Γp] is given by pullback of cycles by p according to
Lemma 45.3.6 and Chow Homology, Lemma 42.59.5. Hence pushforward along ci
sends α to c1(OP (1))i ∩ p∗α. Some details omitted. □

In the situation above, for j = 0, . . . , r − 1 consider the correspondences

c′
j = c1(pr∗

1OP (1))r−1−j ∩ [Γtp] ∈ Corr−j(P,X)

For i, j ∈ {0, . . . , r − 1} we have

c′
j ◦ ci = pr13,∗

(
c1(pr∗

2OP (1))i+r−1−j ∩ (pr∗
12[Γp] · pr∗

23[Γtp])
)

The cycles pr−1
12 Γp and pr−1

23 Γtp intersect transversally and with intersection equal
to the image of (p, 1, p) : P → X × P × X. Observe that the fibres of (p, p) =
pr13 ◦ (p, 1, p) : P → X × X have dimension r − 1. We immediately conclude
c′
j ◦ ci = 0 for i + r − 1 − j < r − 1, in other words when i < j. On the other

hand, by the projective space bundle formula (Chow Homology, Lemma 42.36.2)
the cycle c1(OP (1))r−1 ∩ [P ] maps to [X] in X. Hence for i = j the pushforward
above gives the class of the diagonal and hence we see that

c′
i ◦ ci = 1 ∈ Corr0(X,X)

for all i ∈ {0, . . . , r − 1}. Thus we see that the matrix of the composition⊕
h(X)(−i)

⊕
ci

−−−→ h(P )
⊕

c′
j−−−→
⊕

h(X)(−j)

is invertible (upper triangular with 1s on the diagonal). We conclude from the
projective space bundle formula (Lemma 45.6.1) that also the composition the
other way around is invertible, but it seems a bit harder to prove this directly.

Lemma 45.6.2.0FGR Let p : P → X be as in Lemma 45.6.1. The class [∆P ] of the
diagonal of P in CH∗(P × P ) can be written as

[∆P ] =
(∑

i=0,...,r−1

(
r − 1
i

)
cr−1−i(pr∗

1S∨) ∩ c1(pr∗
2OP (1))i

)
∩ (p× p)∗[∆X ]

where S is the kernel of the canonical surjection p∗E → OP (1).

https://stacks.math.columbia.edu/tag/0FGQ
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Proof. Observe that (p × p)∗[∆X ] = [P ×X P ]. Since ∆P ⊂ P ×X P ⊂ P × P
and since capping with Chern classes commutes with proper pushforward (Chow
Homology, Lemma 42.38.4) it suffices to show that the class of ∆P ⊂ P ×X P in
CH∗(P ×X P ) is equal to(∑

i=0,...,r−1

(
r − 1
i

)
cr−1−i(q∗

1S∨) ∩ c1(q∗
2OP (1))i

)
∩ [P ×X P ]

where qi : P ×X P → P , i = 1, 2 are the projections. Set q = p ◦ q1 = p ◦ q2 :
P ×X P → X. Consider the maps

q∗
1S ⊗ q∗

2OP (−1)→ q∗E ⊗ q∗E∨ → OP×XP

where the final arrow is the pullback by q of the evaluation map E ⊗OX
E∨ → OX .

The source of the composition is a module locally free of rank r − 1 and a local
calculation shows that this map vanishes exactly along ∆P . By Chow Homology,
Lemma 42.44.1 the class [∆P ] is the top Chern class of the dual

q∗
1S∨ ⊗ q∗

2OP (1)
The desired result follows from Chow Homology, Lemma 42.39.1. □

45.7. Classical Weil cohomology theories

0FGS In this section we define what we will call a classical Weil cohomology theory. This
is exactly what is called a Weil cohomology theory in [Kle68, Section 1.2].
We fix an algebraically closed field k (the base field). In this section variety will
mean a variety over k, see Varieties, Section 33.3. We fix a field F of characteristic
0 (the coefficient field). A Weil cohomology theory is given by data (D1), (D2),
and (D3) subject to axioms (A), (B), and (C).
The data is given by:

(D1) A contravariant functor H∗ from the category of smooth projective vari-
eties to the category of graded commutative F -algebras.

(D2) For every smooth projective varietyX a group homomorphism γ : CHi(X)→
H2i(X).

(D3) For every smooth projective varietyX of dimension d a map
∫
X

: H2d(X)→
F .

We make some remarks to explain what this means and to introduce some termi-
nology associated with this.
Remarks on (D1). Given a smooth projective variety X we say that H∗(X) is the
cohomology of X. Given a morphism f : X → Y of smooth projective varieties we
denote f∗ : H∗(Y )→ H∗(X) the map H∗(f) and we call it the pullback map.
Remarks on (D2). The map γ is called the cycle class map. We say that γ(α) is
the cohomology class of α. If Z ⊂ Y ⊂ X are closed subschemes with Y and X
smooth projective varieties and Z integral, then [Z] could mean the class of the
cycle [Z] in CH∗(Y ) or in CH∗(X). In this case the notation γ([Z]) is ambiguous
and the intended meaning has to be deduced from context.
Remarks on (D3). The map

∫
X

is sometimes called the trace map and is sometimes
denoted TrX .
The first axiom is often called Poincaré duality
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(A) Let X be a smooth projective variety of dimension d. Then
(a) dimF H

i(X) <∞ for all i,
(b) Hi(X) × H2d−i(X) → H2d(X) → F is a perfect pairing for all i

where the final map is the trace map
∫
X

,
(c) Hi(X) = 0 unless i ∈ [0, 2d], and
(d)

∫
X

: H2d(X)→ F is an isomorphism.
Let f : X → Y be a morphism of smooth projective varieties with dim(X) = d and
dim(Y ) = e. Using Poincaré duality we can define a pushforward

f∗ : H2d−i(X) −→ H2e−i(Y )
as the contragredient of the linear map f∗ : Hi(Y ) → Hi(X). In a formula, for
a ∈ H2d−i(X), the element f∗a ∈ H2e−i(Y ) is characterized by∫

X

f∗b ∪ a =
∫
Y

b ∪ f∗a

for all b ∈ Hi(Y ).

Lemma 45.7.1.0FGT Assume given (D1) and (D3) satisfying (A). For f : X → Y a
morphism of smooth projective varieties we have f∗(f∗b∪a) = b∪f∗a. If g : Y → Z
is a second morphism of smooth projective varieties, then g∗ ◦ f∗ = (g ◦ f)∗.

Proof. The first equality holds because∫
Y

c ∪ b ∪ f∗a =
∫
X

f∗c ∪ f∗b ∪ a =
∫
Y

c ∪ f∗(f∗b ∪ a).

The second equality holds because∫
Z

c ∪ (g ◦ f)∗a =
∫
X

(g ◦ f)∗c ∪ a =
∫
X

f∗g∗c ∪ a =
∫
Y

g∗c ∪ f∗a =
∫
Z

c ∪ g∗f∗a

This ends the proof. □

The second axiom says that H∗ respects the monoidal structure given by products
via the Künneth formula

(B) Let X and Y be smooth projective varieties. The map
H∗(X)⊗F H∗(Y )→ H∗(X × Y ), a⊗ b 7→ pr∗

1a ∪ pr∗
2b

is an isomorphism.
The third axiom concerns the cycle class maps

(C) The cycle class maps satisfy the following rules
(a) for a morphism f : X → Y of smooth projective varieties we have

γ(f !β) = f∗γ(β) for β ∈ CH∗(Y ),
(b) for a morphism f : X → Y of smooth projective varieties we have

γ(f∗α) = f∗γ(α) for α ∈ CH∗(X),
(c) for any smooth projective variety X we have γ(α · β) = γ(α) ∪ γ(β)

for α, β ∈ CH∗(X), and
(d)

∫
Spec(k) γ([Spec(k)]) = 1.

Remark 45.7.2.0FGU Let X be a smooth projective variety. We obtain maps

H∗(X)⊗F H∗(X) −→ H∗(X ×X) ∆∗

−−→ H∗(X)

https://stacks.math.columbia.edu/tag/0FGT
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where the first arrow is as in axiom (B) and ∆∗ is pullback along the diagonal
morphism ∆ : X → X ×X. The composition is the cup product as pullback is an
algebra homomorphism and pri ◦∆ = id. On the other hand, given cycles α, β on
X the intersection product is defined by the formula

α · β = ∆!(α× β)
In other words, α · β is the pullback of the exterior product α × β on X × X by
the diagonal. Note also that α × β = pr∗

1α · pr∗
2β in CH∗(X × X) (we omit the

proof). Hence, given axiom (C)(a), axiom (C)(c) is equivalent to the statement
that γ is compatible with exterior product in the sense that γ(α × β) is equal to
pr∗

1γ(α) ∪ pr∗
2γ(β). This is how axiom (C)(c) is formulated in [Kle68].

Definition 45.7.3.0FGV Let k be an algebraically closed field. Let F be a field of charac-
teristic 0. A classical Weil cohomology theory over k with coefficients in F is given
by data (D1), (D2), and (D3) satisfying Poincaré duality, the Künneth formula,
and compatibility with cycle classes, more precisely, satisfying (A), (B), and (C).
We do a tiny bit of work.
Lemma 45.7.4.0FGW Let H∗ be a classical Weil cohomology theory (Definition 45.7.3).
Let X be a smooth projective variety of dimension d. The diagram

CHd(X)
γ
// H2d(X)∫

X

��
CH0(X) deg // F

commutes where deg : CH0(X)→ Z is the degree of zero cycles discussed in Chow
Homology, Section 42.41.
Proof. The result holds for Spec(k) by axiom (C)(d). Let x : Spec(k) → X be
a closed point of X. Then we have γ([x]) = x∗γ([Spec(k)]) in H2d(X) by axiom
(C)(b). Hence

∫
X
γ([x]) = 1 by the definition of x∗. □

Lemma 45.7.5.0FGX Let H∗ be a classical Weil cohomology theory (Definition 45.7.3).
Let X and Y be smooth projective varieties. Then

∫
X×Y =

∫
X
⊗
∫
Y

.

Proof. Say dim(X) = d and dim(Y ) = e. By axiom (B) we have H2d+2e(X ×Y ) =
H2d(X) ⊗ H2e(Y ) and by axiom (A)(d) this is 1-dimensional. By Lemma 45.7.4
this 1-dimensional vector space generated by the class γ([x × y]) of a closed point
(x, y) and

∫
X×Y γ([x× y]) = 1. Since γ([x× y]) = γ([x])⊗ γ([y]) by axioms (C)(a)

and (C)(c) and since
∫
X
γ([x]) = 1 and

∫
Y
γ([y]) = 1 we conclude. □

Lemma 45.7.6.0FGY Let H∗ be a classical Weil cohomology theory (Definition 45.7.3).
Let X and Y be smooth projective varieties. Then pr2,∗ : H∗(X × Y ) → H∗(Y )
sends a⊗ b to (

∫
X
a)b.

Proof. This is equivalent to the result of Lemma 45.7.5. □

Lemma 45.7.7.0FGZ Let H∗ be a classical Weil cohomology theory (Definition 45.7.3).
Let X be a smooth projective variety of dimension d. Choose a basis ei,j , j =
1, . . . , βi of Hi(X) over F . Using Künneth write

γ([∆]) =
∑

i=0,...,2d

∑
j
ei,j ⊗ e′

2d−i,j in
⊕

i
Hi(X)⊗F H2d−i(X)

https://stacks.math.columbia.edu/tag/0FGV
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with e′
2d−i,j ∈ H2d−i(X). Then

∫
X
ei,j ∪ e′

2d−i,j′ = (−1)iδjj′ .

Proof. Recall that ∆∗ : H∗(X × X) → H∗(X) is equal to the cup product map
H∗(X) ⊗F H∗(X) → H∗(X), see Remark 45.7.2. On the other hand we have
γ([∆]) = ∆∗γ([X]) = ∆∗1 by axiom (C)(b) and the fact that γ([X]) = 1. Namely,
[X] · [X] = [X] hence by axiom (C)(c) the cohomology class γ([X]) is 0 or 1 in the
1-dimensional F -algebra H0(X); here we have also used axioms (A)(d) and (A)(b).
But γ([X]) cannot be zero as [X] · [x] = [x] for a closed point x of X and we have
the nonvanishing of γ([x]) by Lemma 45.7.4. Hence∫

X×X
γ([∆]) ∪ a⊗ b =

∫
X×X

∆∗1 ∪ a⊗ b =
∫
X

a ∪ b

by the definition of ∆∗. On the other hand, we have∫
X×X

(
∑

ei,j ⊗ e′
2d−i,j) ∪ a⊗ b =

∑
(
∫
X

a ∪ ei,j)(
∫
X

e′
2d−i,j ∪ b)

by Lemma 45.7.5; note that we made two switches of order so that the sign is 1.
Thus if we choose a such that

∫
X
a ∪ ei,j = 1 and all other pairings equal to zero,

then we conclude that
∫
X
e′

2d−i,j ∪ b =
∫
X
a ∪ b for all b, i.e., e′

2d−i,j = a. This
proves the lemma. □

Lemma 45.7.8.0FH0 Let H∗ be a classical Weil cohomology theory (Definition 45.7.3).
Let X be a smooth projective variety. We have∑

i=0,...,2 dim(X)
(−1)i dimF H

i(X) = deg([∆] · [∆]) = deg(cd(TX) ∩ [X])

Proof. Equality on the right. We have [∆] · [∆] = ∆∗(∆![∆]) (Chow Homology,
Lemma 42.62.6). Since ∆∗ preserves degrees of 0-cycles it suffices to compute the
degree of ∆![∆]. The class ∆![∆] is given by capping [∆] with the top Chern class
of the normal sheaf of ∆ ⊂ X ×X (Chow Homology, Lemma 42.54.5). Since the
conormal sheaf of ∆ is ΩX/k (Morphisms, Lemma 29.32.7) we see that the normal
sheaf is equal to the tangent sheaf TX = HomOX

(ΩX/k,OX) as desired.
Equality on the left. By Lemma 45.7.4 we have

deg([∆] · [∆]) =
∫
X×X

γ([∆]) ∪ γ([∆])

=
∫
X×X

∆∗1 ∪ γ([∆])

=
∫
X×X

∆∗(∆∗γ([∆]))

=
∫
X

∆∗γ([∆])

Write γ([∆]) =
∑
ei,j ⊗ e′

2d−i,j as in Lemma 45.7.7. Recalling that ∆∗ is given by
cup product we obtain∫

X

∑
i,j
ei,j ∪ e′

2d−i,j =
∑

i,j

∫
X

ei,j ∪ e′
2d−i,j =

∑
i,j

(−1)i =
∑

(−1)iβi

as desired. □

We will now tie classical Weil cohomology theories in with motives as follows.

https://stacks.math.columbia.edu/tag/0FH0
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Lemma 45.7.9.0FH1 Let k be an algebraically closed field. Let F be a field of charac-
teristic 0. Consider a Q-linear functor

G : Mk −→ graded F -vector spaces
of symmetric monoidal categories such that G(1(1)) is nonzero only in degree −2.
Then we obtain data (D1), (D2), (D3) satisfying all of (A), (B), (C) except for
possibly (A)(c) and (A)(d).

Proof. We obtain a contravariant functor from the category of smooth projective
varieties to the category of graded F -vector spaces by setting H∗(X) = G(h(X)).
By assumption we have a canonical isomorphism
H∗(X×Y ) = G(h(X×Y )) = G(h(X)⊗h(Y )) = G(h(X))⊗G(h(Y )) = H∗(X)⊗H∗(Y )
compatible with pullbacks. Using pullback along the diagonal ∆ : X → X ×X we
obtain a canonical map

H∗(X)⊗H∗(X) = H∗(X ×X)→ H∗(X)
of graded vector spaces compatible with pullbacks. This defines a functorial graded
F -algebra structure on H∗(X). Since ∆ commutes with the commutativity con-
straint h(X)⊗h(X)→ h(X)⊗h(X) (switching the factors) and since G is a functor
of symmetric monoidal categories (so compatible with commutativity constraints),
and by our convention in Homology, Example 12.17.4 we conclude that H∗(X) is
a graded commutative algebra! Hence we get our datum (D1).
Since 1(1) is invertible in the category of motives we see that G(1(1)) is invert-
ible in the category of graded F -vector spaces. Thus

∑
i dimF G

i(1(1)) = 1. By
assumption we only get something nonzero in degree −2 and we may choose an
isomorphism F [2] → G(1(1)) of graded F -vector spaces. Here and below F [n]
means the graded F -vector space which has F in degree −n and zero elsewhere.
Using compatibility with tensor products, we find for all n ∈ Z an isomorphism
F [2n]→ G(1(n)) compatible with tensor products.
Let X be a smooth projective variety. By Lemma 45.3.1 we have

CHr(X)⊗Q = Corrr(Spec(k), X) = Hom(1(−r), h(X))
Applying the functor G we obtain

γ : CHr(X)⊗Q −→ Hom(G(1(−r)), H∗(X)) = H2r(X)
This is the datum (D2).
Let X be a smooth projective variety of dimension d. By Lemma 45.3.1 we have
Mor(h(X)(d),1) = Mor((X, 1, d), (Spec(k), 1, 0)) = Corr−d(X,Spec(k)) = CHd(X)
Thus the class of the cycle [X] in CHd(X) defines a morphism h(X)(d) → 1.
Applying G we obtain

H∗(X)⊗ F [−2d] = G(h(X)(d)) −→ G(1) = F

This map is zero except in degree 0 where we obtain
∫
X

: H2d(X) → F . This is
the datum (D3).
Let X be a smooth projective variety of dimension d. By Lemma 45.4.9 we know
that h(X)(d) is a left dual to h(X). Hence G(h(X)(d)) = H∗(X) ⊗ F [−2d] is
a left dual to H∗(X) in the category of graded F -vector spaces. By Homology,
Lemma 12.17.5 we find that

∑
i dimF H

i(X) <∞ and that ϵ : h(X)(d)⊗h(X)→ 1

https://stacks.math.columbia.edu/tag/0FH1
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produces nondegenerate pairings H2d−i(X)⊗FHi(X)→ F . In the proof of Lemma
45.4.9 we have seen that ϵ is given by [∆] via the identifications

Hom(h(X)(d)⊗ h(X),1) = Corr−d(X ×X,Spec(k)) = CHd(X ×X)

Thus ϵ is the composition of [X] : h(X)(d) → 1 and h(∆)(d) : h(X)(d) ⊗ h(X) →
h(X)(d). It follows that the pairings above are given by cup product followed by∫
X

. This proves axiom (A) parts (a) and (b).

Axiom (B) follows from the assumption that G is compatible with tensor structures
and our construction of the cup product above.

Axiom (C). Our construction of γ takes a cycle α on X, interprets it as a corre-
spondence a from Spec(k) to X of some degree, and then applies G. If f : Y → X
is a morphism of smooth projective varieties, then f !α is the pushforward (!) of α
by the correspondence [Γf ] from X to Y , see Lemma 45.3.6. Hence f !α viewed as
a correspondence from Spec(k) to Y is equal to a◦ [Γf ], see Lemma 45.3.1. Since G
is a functor, we conclude γ is compatible with pullbacks, i.e., axiom (C)(a) holds.

Let f : Y → X be a morphism of smooth projective varieties and let β ∈ CHr(Y )
be a cycle on Y . We have to show that∫

Y

γ(β) ∪ f∗c =
∫
X

γ(f∗β) ∪ c

for all c ∈ H∗(X). Let a, at, ηX , ηY , [X], [Y ] be as in Lemma 45.3.9. Let b be β
viewed as a correspondence from Spec(k) to Y of degree r. Then f∗β viewed as a
correspondence from Spec(k) to X is equal to at ◦ b, see Lemmas 45.3.6 and 45.3.1.
The displayed equality above holds if we can show that

h(X) = 1⊗h(X) b⊗1−−→ h(Y )(r)⊗h(X) 1⊗a−−→ h(Y )(r)⊗h(Y ) ηY−−→ h(Y )(r) [Y ]−−→ 1(r−e)

is equal to

h(X) = 1⊗h(X) at◦b⊗1−−−−→ h(X)(r+ d− e)⊗h(X) ηX−−→ h(X)(r+ d− e) [X]−−→ 1(r− e)

This follows immediately from Lemma 45.3.9. Thus we have axiom (C)(b).

To prove axiom (C)(c) we use the discussion in Remark 45.7.2. Hence it suffices to
prove that γ is compatible with exterior products. Let X, Y be smooth projective
varieties and let α, β be cycles on them. Denote a, b the corresponding correspon-
dences from Spec(k) to X, Y . Then α×β corresponds to the correspondence a⊗ b
from Spec(k) to X⊗Y = X×Y . Hence the requirement follows from the fact that
G is compatible with the tensor structures on both sides.

Axiom (C)(d) follows because the cycle [Spec(k)] corresponds to the identity mor-
phism on h(Spec(k)). This finishes the proof of the lemma. □

Lemma 45.7.10.0FH2 Let k be an algebraically closed field. Let F be a field of charac-
teristic 0. Let H∗ be a classical Weil cohomology theory. Then we can construct a
Q-linear functor

G : Mk −→ graded F -vector spaces
of symmetric monoidal categories such that H∗(X) = G(h(X)).

https://stacks.math.columbia.edu/tag/0FH2
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Proof. By Lemma 45.4.8 it suffices to construct a functor G on the category of
smooth projective schemes over k with morphisms given by correspondences of
degree 0 such that the image of G(c2) on G(P1) is an invertible graded F -vector
space. Since every smooth projective scheme is canonically a disjoint union of
smooth projective varieties, it suffices to construct G on the category whose objects
are smooth projective varieties and whose morphisms are correspondences of degree
0. (Some details omitted.)

Given a smooth projective variety X we set G(X) = H∗(X).

Given a correspondence c ∈ Corr0(X,Y ) between smooth projective varieties we
consider the map G(c) : G(X) = H∗(X)→ G(Y ) = H∗(Y ) given by the rule

a 7−→ G(c)(a) = pr2,∗(γ(c) ∪ pr∗
1a)

It is clear that G(c) is additive in c and hence Q-linear. Compatibility of γ with
pullbacks, pushforwards, and intersection products given by axioms (C)(a), (C)(b),
and (C)(c) shows that we have G(c′ ◦ c) = G(c′) ◦G(c) if c′ ∈ Corr0(Y,Z). Namely,
for a ∈ H∗(X) we have

(G(c′) ◦G(c))(a) = pr23
3,∗(γ(c′) ∪ pr23,∗

2 (pr12
2,∗(γ(c) ∪ pr12,∗

1 a)))
= pr23

3,∗(γ(c′) ∪ pr123
23,∗(pr123,∗

12 (γ(c) ∪ pr12,∗
1 a)))

= pr23
3,∗pr123

23,∗(pr123,∗
23 γ(c′) ∪ pr123,∗

12 γ(c) ∪ pr123,∗
1 a)

= pr23
3,∗pr123

23,∗(γ(pr123,∗
23 c′) ∪ γ(pr123,∗

12 c) ∪ pr123,∗
1 a)

= pr13
3,∗pr123

13,∗(γ(pr123,∗
23 c′ · pr123,∗

12 c) ∪ pr123,∗
1 a)

= pr13
3,∗(γ(pr123

13,∗(pr123,∗
23 c′ · pr123,∗

12 c)) ∪ pr13,∗
1 a)

= G(c′ ◦ c)(a)

with obvious notation. The first equality follows from the definitions. The second
equality holds because pr23,∗

2 ◦ pr12
2,∗ = pr123

23,∗ ◦ pr123,∗
12 as follows immediately from

the description of pushforward along projections given in Lemma 45.7.6. The third
equality holds by Lemma 45.7.1 and the fact that H∗ is a functor. The fourth
equalith holds by axiom (C)(a) and the fact that the gysin map agrees with flat
pullback for flat morphisms (Chow Homology, Lemma 42.59.5). The fifth equality
uses axiom (C)(c) as well as Lemma 45.7.1 to see that pr23

3,∗ ◦pr123
23,∗ = pr13

3,∗ ◦pr123
13,∗.

The sixth equality uses the projection formula from Lemma 45.7.1 as well as axiom
(C)(b) to see that pr123

13,∗γ(pr123,∗
23 c′ ·pr123,∗

12 c) = γ(pr123
13,∗(pr123,∗

23 c′ ·pr123,∗
12 c)). Finally,

the last equality is the definition.

To finish the proof that G is a functor, we have to show identities are preserved. In
other words, if 1 = [∆] ∈ Corr0(X,X) is the identity in the category of correspon-
dences (see Lemma 45.3.3 and its proof), then we have to show that G([∆]) = id.
This follows from the determination of γ([∆]) in Lemma 45.7.7 and Lemma 45.7.6.
This finishes the construction of G as a functor on smooth projective varieties and
correspondences of degree 0.

It follows from axioms (A)(c) and (A)(d) that G(Spec(k)) = H∗(Spec(k)) is canon-
ically isomorphic to F as an F -algebra. The Künneth axiom (B) shows our functor
is compatible with tensor products. Thus our functor is a functor of symmetric
monoidal categories.
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We still have to check that the image of G(c2) on G(P1) is an invertible graded
F -vector space (in particular we don’t know yet that G extends to Mk). By axiom
(A)(d) the map

∫
P1 : H2(P1) → F is an isomorphism. By axiom (A)(b) we

see that dimF H
0(P1) = 1. By Lemma 45.7.8 and axiom (A)(c) we obtain 2 −

dimF H
1(P1) = c1(TP1) = 2. Hence H1(P1) = 0. Thus

G(P1) = H0(P1)⊕H2(P1)

Recall that 1 = c0 + c2 is a decomposition of the identity into a sum of orthog-
onal idempotents in Corr0(P1,P1), see Example 45.3.7. We have c0 = a ◦ b
where a ∈ Corr0(Spec(k),P1) and b ∈ Corr0(P1,Spec(k)) and where b ◦ a = 1
in Corr0(Spec(k),Spec(k)), see proof of Lemma 45.4.4. Since F = G(Spec(k)), it
follows from functoriality that G(c0) is the projector onto the summand H0(P1) ⊂
G(P1). Hence G(c2) must necessarily be the projection onto H2(P1) and the proof
is complete. □

Proposition 45.7.11.0FH3 Let k be an algebraically closed field. Let F be a field of
characteristic 0. A classical Weil cohomology theory is the same thing as a Q-
linear functor

G : Mk −→ graded F -vector spaces
of symmetric monoidal categories together with an isomorphism F [2]→ G(1(1)) of
graded F -vector spaces such that in addition

(1) G(h(X)) lives in nonnegative degrees, and
(2) dimF G

0(h(X)) = 1
for any smooth projective variety X.

Proof. Given G and F [2]→ G(1(1)) by setting H∗(X) = G(h(X)) we obtain data
(D1), (D2), and (D3) satisfying all of (A), (B), and (C) except for possibly (A)(c)
and (A)(d), see Lemma 45.7.9 and its proof. Observe that assumptions (1) and (2)
imply axioms (A)(c) and (A)(d) in the presence of the known axioms (A)(a) and
(A)(b).

Conversely, given H∗ we get a functor G by the construction of Lemma 45.7.10.
Let X = P1, c0, c2 be as in Example 45.3.7. We have constructed an isomorphism
1(−1) → (X, c2, 0) of motives in Lemma 45.4.4. In the proof of Lemma 45.7.10
we have seen that G(1(−1)) = G(X, c2, 0) = H2(P1)[−2]. Hence the isomorphism∫

P1 : H2(P1)→ F of axiom (A)(d) gives an isomorphism G(1(−1))→ F [−2] which
determines an isomorphism F [2] → G(1(1)). Finally, since G(h(X)) = H∗(X)
assumptions (1) and (2) follow from axiom (A). □

45.8. Cycles over non-closed fields

0FH4 Some lemmas which will help us in our study of motives over base fields which are
not algebraically closed.

Lemma 45.8.1.0FH5 Let k be a field. Let X be a smooth projective scheme over k. Then
CH0(X) is generated by classes of closed points whose residue fields are separable
over k.

Proof. The lemma is immediate if k has characteristic 0 or is perfect. Thus we may
assume k is an infinite field of characteristic p > 0.

https://stacks.math.columbia.edu/tag/0FH3
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We may assume X is irreducible of dimension d. Then k′ = H0(X,OX) is a finite
separable field extension of k and that X is geometrically integral over k′. See
Varieties, Lemmas 33.25.4, 33.9.3, and 33.9.4. We may and do replace k by k′ and
assume that X is geometrically integral.
Let x ∈ X be a closed point. To prove the lemma we are going to show that
[x] ∈ CH0(X) is rationally equivalent to an integer linear combination of classes of
closed points whose residue fields are separable over k. Choose an ample invertible
OX -module L. Set

V = {s ∈ H0(X,L) | s(x) = 0}
After replacing L by a power we may assume (a) L is very ample, (b) V generates
L over X \ x, (c) the morphism X \ x → P(V ) is an immersion, (d) the map
V → mxLx/m2

xLx is surjective, see Morphisms, Lemma 29.39.5, Varieties, Lemma
33.47.1, and Properties, Proposition 28.26.13. Consider the set

V d ⊃ U = {(s1, . . . , sd) ∈ V d | s1, . . . , sd generate mxLx/m2
xLx over κ(x)}

Since OX,x is a regular local ring of dimension d we have dimκ(x)(mx/m2
x) = d and

hence we see that U is a nonempty (Zariski) open of V d. For (s1, . . . , sd) ∈ U set
Hi = Z(si). Since s1, . . . , sd generate mxLx we see that

H1 ∩ . . . ∩Hd = x⨿ Z

scheme theoretically for some closed subscheme Z ⊂ X. By Bertini (in the form of
Varieties, Lemma 33.47.3) for a general element s1 ∈ V the scheme H1 ∩ (X \ x) is
smooth over k of dimension d− 1. Having chosen s1, for a general element s2 ∈ V
the scheme H1 ∩H2 ∩ (X \ x) is smooth over k of dimension d− 2. And so on. We
conclude that for sufficiently general (s1, . . . , sd) ∈ U the scheme Z is étale over
Spec(k). In particular H1 ∩ . . . ∩Hd has dimension 0 and hence

[H1] · . . . · [Hd] = [x] + [Z]
in CH0(X) by repeated application of Chow Homology, Lemma 42.62.5 (details
omitted). This finishes the proof as it shows that [x] ∼rat −[Z] + [Z ′] where
Z ′ = H ′

1∩ . . .∩H ′
d is a general complete intersection of vanishing loci of sufficiently

general sections of L which will be étale over k by the same argument as before. □

Lemma 45.8.2.0FH6 Let K/k be an algebraic field extension. Let X be a finite type
scheme over k. Then CHi(XK) = colim CHi(Xk′) where the colimit is over the
subextensions K/k′/k with k′/k finite.

Proof. This is a special case of Chow Homology, Lemma 42.67.10. □

Lemma 45.8.3.0FH7 Let k be a field. Let X be a geometrically irreducible smooth
projective scheme over k. Let x, x′ ∈ X be k-rational points. Let n be an integer
invertible in k. Then there exists a finite separable extension k′/k such that the
pullback of [x]− [x′] to Xk′ is divisible by n in CH0(Xk′).

Proof. Let k′ be a separable algebraic closure of k. Suppose that we can show the
the pullback of [x] − [x′] to Xk′ is divisible by n in CH0(Xk′). Then we conclude
by Lemma 45.8.2. Thus we may and do assume k is separably algebraically closed.
Suppose dim(X) > 1. Let L be an ample invertible sheaf on X. Set

V = {s ∈ H0(X,L) | s(x) = 0 and s(x′) = 0}

https://stacks.math.columbia.edu/tag/0FH6
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After replacing L by a power we see that for a general v ∈ V the corresponding
divisor Hv ⊂ X is smooth away from x and x′, see Varieties, Lemmas 33.47.1 and
33.47.3. To find v we use that k is infinite (being separably algebraically closed).
If we choose s general, then the image of s in mxLx/m2

xLx will be nonzero, which
implies that Hv is smooth at x (details omitted). Similarly for x′. Thus Hv is
smooth. By Varieties, Lemma 33.48.3 (applied to the base change of everything to
the algebraic closure of k) we see that Hv is geometrically connected. It suffices to
prove the result for [x]− [x′] seen as an element of CH0(Hv). In this way we reduce
to the case of a curve.

Assume X is a curve. Then we see that OX(x− x′) defines a k-rational point g of
J = Pic0

X/k, see Picard Schemes of Curves, Lemma 44.6.7. Recall that J is a proper
smooth variety over k which is also a group scheme over k (same reference). Hence
J is geometrically integral (see Varieties, Lemma 33.7.13 and 33.25.4). In other
words, J is an abelian variety, see Groupoids, Definition 39.9.1. Thus [n] : J → J
is finite étale by Groupoids, Proposition 39.9.11 (this is where we use n is invertible
in k). Since k is separably closed we conclude that g = [n](g′) for some g′ ∈ J(k).
If L is the degree 0 invertible module on X corresponding to g′, then we conclude
that OX(x− x′) ∼= L⊗n as desired. □

Lemma 45.8.4.0FH8 Let K/k be an algebraic extension of fields. Let X be a finite type
scheme over k. The kernel of the map CHi(X)→ CHi(XK) constructed in Lemma
45.8.2 is torsion.

Proof. It clearly suffices to show that the kernel of flat pullback CHi(X)→ CHi(Xk′)
by π : Xk′ → X is torsion for any finite extension k′/k. This is clear because
π∗π

∗α = [k′ : k]α by Chow Homology, Lemma 42.15.2. □

Lemma 45.8.5 (Voevodsky).0FH9 [Voe95]Let k be a field. Let X be a geometrically irreducible
smooth projective scheme over k. Let x, x′ ∈ X be k-rational points. For n large
enough the class of the zero cycle

([x]− [x′])× . . .× ([x]− [x′]) ∈ CH0(Xn)

is torsion.

Proof. If we can show this after base change to the algebraic closure of k, then the
result follows over k because the kernel of pullback is torsion by Lemma 45.8.4.
Hence we may and do assume k is algebraically closed.

Using Bertini we can choose a smooth curve C ⊂ X passing through x and x′. See
proof of Lemma 45.8.3. Hence we may assume X is a curve.

Assume X is a curve and k is algebraically closed. Write Sn(X) = HilbnX/k with no-
tation as in Picard Schemes of Curves, Sections 44.2 and 44.3. There is a canonical
morphism

π : Xn −→ Sn(X)
which sends the k-rational point (x1, . . . , xn) to the k-rational point corresponding
to the divisor [x1]+. . .+[xn] on X. There is a faithful action of the symmetric group
Sn on Xn. The morphism π is Sn-invariant and the fibres of π are Sn-orbits (set
theoretically). Finally, π is finite flat of degree n!, see Picard Schemes of Curves,
Lemma 44.3.4.

https://stacks.math.columbia.edu/tag/0FH8
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Let αn be the zero cycle on Xn given by the formula in the statement of the lemma.
Let L = OX(x− x′). Then c1(L) ∩ [X] = [x]− [x′]. Thus

αn = c1(L1) ∩ . . . ∩ c1(Ln) ∩ [Xn]
where Li = pr∗

iL and pri : Xn → X is the ith projection. By either Divi-
sors, Lemma 31.17.6 or Divisors, Lemma 31.17.7 there is a norm for π. Set
N = Normπ(L1), see Divisors, Lemma 31.17.2. We have

π∗N = (L1 ⊗ . . .⊗ Ln)⊗(n−1)!

in Pic(Xn) by a calculation. Deails omitted; hint: this follows from the fact that
Normπ : π∗OXn → OSn(X) composed with the natural map π∗OSn(X) → OXn is
equal to the product over all σ ∈ Sn of the action of σ on π∗OXn . Consider

βn = c1(N )n ∩ [Sn(X)]
in CH0(Sn(X)). Observe that c1(Li) ∩ c1(Li) = 0 because Li is pulled back from
a curve, see Chow Homology, Lemma 42.34.6. Thus we see that

π∗βn = ((n− 1)!)n(
∑

i=1,...,n
c1(Li))n ∩ [Xn]

= ((n− 1)!)nnnc1(L1) ∩ . . . ∩ c1(Ln) ∩ [Xn]
= (n!)nαn

Thus it suffices to show that βn is torsion.
There is a canonical morphism

f : Sn(X) −→ PicnX/k
See Picard Schemes of Curves, Lemma 44.6.7. For n ≥ 2g − 1 this morphism
is a projective space bundle (details omitted; compare with the proof of Picard
Schemes of Curves, Lemma 44.6.7). The invertible sheaf N is trivial on the fibres
of f , see below. Thus by the projective space bundle formula (Chow Homology,
Lemma 42.36.2) we see that N = f∗M for some invertible module M on PicnX/k.
Of course, then we see that

c1(N )n = f∗(c1(M)n)
is zero because n > g = dim(PicnX/k) and we can use Chow Homology, Lemma
42.34.6 as before.
We still have to show that N is trivial on a fibre F of f . Since the fibres of
f are projective spaces and since Pic(Pm

k ) = Z (Divisors, Lemma 31.28.5), this
can be shown by computing the degree of N on a line contained in the fibre.
Instead we will prove it by proving that N is algebraically equivalent to zero.
First we claim there is a connected finite type scheme T over k, an invertible
module L′ on T × X and k-rational points p, q ∈ T such that Mp

∼= OX and
Mq = L. Namely, since L = OX(x − x′) we can take T = X, p = x′, q = x, and
L′ = OX×X(∆)⊗ pr∗

2OX(−x′). Then we let L′
i on T ×Xn for i = 1, . . . , n be the

pullback of L′ by idT ×pri : T ×Xn → T ×X. Finally, we let N ′ = NormidT×π(L′
1)

on T × Sn(X). By construction we have N ′
p = OSn(X) and N ′

q = N . We conclude
that

N ′|T×F

is an invertible module on T×F ∼= T×Pm
k whose fibre over p is the trivial invertible

module and whose fibre over q is N|F . Since the euler characteristic of the trivial
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bundle is 1 and since this euler characteristic is locally constant in families (Derived
Categories of Schemes, Lemma 36.32.2) we conclude χ(F,N⊗s|F ) = 1 for all s ∈ Z.
This can happen only if N|F ∼= OF (see Cohomology of Schemes, Lemma 30.8.1)
and the proof is complete. Some details omitted. □

45.9. Weil cohomology theories, I

0FHA This section is the analogue of Section 45.7 over arbitrary fields. In other words, we
work out what data and axioms correspond to functors G of symmetric monoidal
categories from the category of motives to the category of graded vector spaces such
that G(1(1)) sits in degree −2. In Section 45.11 we will define a Weil cohomology
theory by adding a single suplementary condition.
We fix a field k (the base field). We fix a field F of characteristic 0 (the coefficient
field). The data is given by:

(D0) A 1-dimensional F -vector space F (1).
(D1) A contravariant functorH∗ from the category of smooth projective schemes

over k to the category of graded commutative F -algebras.
(D2) For every smooth projective scheme X over k a group homomorphism

γ : CHi(X)→ H2i(X)(i).
(D3) For every nonempty smooth projective scheme X over k which is equidi-

mensional of dimension d a map
∫
X

: H2d(X)(d)→ F .
We make some remarks to explain what this means and to introduce some termi-
nology associated with this.
Remarks on (D0). The vector space F (1) gives rise to Tate twists on the category
of F -vector spaces. Namely, for n ∈ Z we set F (n) = F (1)⊗n if n ≥ 0, we set
F (−1) = HomF (F (1), F ), and we set F (n) = F (−1)⊗−n if n < 0. Please compare
with More on Algebra, Section 15.117. For an F -vector space V we define the nth
Tate twist

V (n) = V ⊗F F (n)
We will use obvious notation, e.g., given F -vector spaces U , V and W and a linear
map U⊗F V →W we obtain a linear map U(n)⊗F V (m)→W (n+m) for n,m ∈ Z.
Remarks on (D1). Given a smooth projective scheme X over k we say that H∗(X)
is the cohomology of X. Given a morphism f : X → Y of smooth projective
schemes over k we denote f∗ : H∗(Y )→ H∗(X) the map H∗(f) and we call it the
pullback map.
Remarks on (D2). The map γ is called the cycle class map. We say that γ(α) is
the cohomology class of α. If Z ⊂ Y ⊂ X are closed subschemes with Y and X
smooth projective over k and Z integral, then [Z] could mean the class of the cycle
[Z] in CH∗(Y ) or in CH∗(X). In this case the notation γ([Z]) is ambiguous and
the intended meaning has to be deduced from context.
Remarks on (D3). The map

∫
X

is sometimes called the trace map and is sometimes
denoted TrX .
The first axiom is often called Poincaré duality

(A) Let X be a nonempty smooth projective scheme over k which is equidi-
mensional of dimension d. Then
(a) dimF H

i(X) <∞ for all i,
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(b) Hi(X)×H2d−i(X)(d)→ H2d(X)(d)→ F is a perfect pairing for all
i where the final map is the trace map

∫
X

.
Let f : X → Y be a morphism of nonempty smooth projective schemes with X
equidimensional of dimension d and Y is equidimensional of dimension e. Using
Poincaré duality we can define a pushforward

f∗ : H2d−i(X)(d) −→ H2e−i(Y )(e)
as the contragredient of the linear map f∗ : Hi(Y ) → Hi(X). In a formula, for
a ∈ H2d−i(X)(d), the element f∗a ∈ H2e−i(Y )(e) is characterized by∫

X

f∗b ∪ a =
∫
Y

b ∪ f∗a

for all b ∈ Hi(Y ).

Lemma 45.9.1.0FHB Assume given (D0), (D1), and (D3) satisfying (A). For f : X → Y
a morphism of nonempty equidimensional smooth projective schemes over k we
have f∗(f∗b ∪ a) = b ∪ f∗a. If g : Y → Z is a second morphism with Z nonempty
smooth projective and equidimensional, then g∗ ◦ f∗ = (g ◦ f)∗.

Proof. The first equality holds because∫
Y

c ∪ b ∪ f∗a =
∫
X

f∗c ∪ f∗b ∪ a =
∫
Y

c ∪ f∗(f∗b ∪ a).

The second equality holds because∫
Z

c ∪ (g ◦ f)∗a =
∫
X

(g ◦ f)∗c ∪ a =
∫
X

f∗g∗c ∪ a =
∫
Y

g∗c ∪ f∗a =
∫
Z

c ∪ g∗f∗a

This ends the proof. □

The second axiom says that H∗ respects the monoidal structure given by products
via the Künneth formula

(B) Let X and Y be smooth projective schemes over k.
(a) H∗(X)⊗F H∗(Y )→ H∗(X ×Y ), α⊗ β 7→ pr∗

1α∪ pr∗
2β is an isomor-

phism,
(b) ifX and Y are nonempty and equidimensional, then

∫
X×Y =

∫
X
⊗
∫
Y

via (a).
Using axiom (B)(b) we can compute pushforwards along projections.

Lemma 45.9.2.0FHC Assume given (D0), (D1), and (D3) satisfying (A) and (B). Let
X and Y be nonempty smooth projective schemes over k equidimensional of di-
mensions d and e. Then pr2,∗ : H∗(X × Y )(d + e) → H∗(Y )(e) sends a ⊗ b to
(
∫
X
a)b.

Proof. This follows from axioms (B)(a) and (B)(b). □

The third axiom concerns the cycle class maps
(C) The cycle class maps satisfy the following rules

(a) for a morphism f : X → Y of smooth projective schemes over k we
have γ(f !β) = f∗γ(β) for β ∈ CH∗(Y ),

(b) for a morphism f : X → Y of nonempty equidimensional smooth
projective schemes over k we have γ(f∗α) = f∗γ(α) for α ∈ CH∗(X),

https://stacks.math.columbia.edu/tag/0FHB
https://stacks.math.columbia.edu/tag/0FHC
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(c) for any smooth projective scheme X over k we have γ(α ·β) = γ(α)∪
γ(β) for α, β ∈ CH∗(X), and

(d)
∫

Spec(k) γ([Spec(k)]) = 1.
Let us elucidate axiom (C)(b). Namely, say f : X → Y is as in (C)(b) with
dim(X) = d and dim(Y ) = e. Then we see that pushforward on Chow groups gives

f∗ : CHd−i(X) = CHi(X)→ CHi(Y ) = CHe−i(Y )
Say α ∈ CHd−i(X). On the one hand, we have f∗α ∈ CHe−i(Y ) and hence γ(f∗α) ∈
H2e−2i(Y )(e− i). On the other hand, we have γ(α) ∈ H2d−2i(X)(d− i) and hence
f∗γ(α) ∈ H2e−2i(Y )(e − i) as well. Thus the condition γ(f∗α) = f∗γ(α) makes
sense.

Remark 45.9.3.0FHD Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and
(C)(a). Let X be a smooth projective scheme over k. We obtain maps

H∗(X)⊗F H∗(X) −→ H∗(X ×X) ∆∗

−−→ H∗(X)
where the first arrow is as in axiom (B) and ∆∗ is pullback along the diagonal
morphism ∆ : X → X ×X. The composition is the cup product as pullback is an
algebra homomorphism and pri ◦∆ = id. On the other hand, given cycles α, β on
X the intersection product is defined by the formula

α · β = ∆!(α× β)
In other words, α · β is the pullback of the exterior product α × β on X × X by
the diagonal. Note also that α × β = pr∗

1α · pr∗
2β in CH∗(X × X) (we omit the

proof). Hence, given axiom (C)(a), axiom (C)(c) is equivalent to the statement
that γ is compatible with exterior product in the sense that γ(α × β) is equal to
pr∗

1γ(α) ∪ pr∗
2γ(β).

Lemma 45.9.4.0FHE Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and
(C). Then Hi(Spec(k)) = 0 for i ̸= 0 and there is a unique F -algebra isomorphism
F = H0(Spec(k)). We have γ([Spec(k)]) = 1 and

∫
Spec(k) 1 = 1.

Proof. By axiom (C)(d) we see that H0(Spec(k)) is nonzero and even γ([Spec(k)])
is nonzero. Since Spec(k)× Spec(k) = Spec(k) we get

H∗(Spec(k))⊗F H∗(Spec(k)) = H∗(Spec(k))
by axiom (B)(a) which implies (look at dimensions) that only H0 is nonzero and
moreover has dimension 1. Thus F = H0(Spec(k)) via the unique F -algebra iso-
morphism given by mapping 1 ∈ F to 1 ∈ H0(Spec(k)). Since [Spec(k)]·[Spec(k)] =
[Spec(k)] in the Chow ring of Spec(k) we conclude that γ([Spec(k))∪γ([Spec(k)]) =
γ([Spec(k)]) by axiom (C)(c). Since we already know that γ([Spec(k)]) is nonzero
we conclude that it has to be equal to 1. Finally, we have

∫
Spec(k) 1 = 1 since∫

Spec(k) γ([Spec(k)]) = 1 by axiom (C)(d). □

Lemma 45.9.5.0FHF Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and
(C). Let X be a smooth projective scheme over k. If X = ∅, then H∗(X) = 0. If
X is nonempty, then γ([X]) = 1 and 1 ̸= 0 in H0(X).

Proof. First assumeX is nonempty. Observe that [X] is the pullback of [Spec(k)] by
the structure morphism p : X → Spec(k). Hence we get γ([X]) = 1 by axiom (C)(a)
and Lemma 45.9.4. Let X ′ ⊂ X be an irreducible component. By functoriality it

https://stacks.math.columbia.edu/tag/0FHD
https://stacks.math.columbia.edu/tag/0FHE
https://stacks.math.columbia.edu/tag/0FHF
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suffices to show 1 ̸= 0 in H0(X ′). Thus we may and do assume X is irreducible,
and in particular nonempty and equidimensional, say of dimension d. To see that
1 ̸= 0 it suffices to show that H∗(X) is nonzero.
Let x ∈ X be a closed point whose residue field k′ is separable over k, see Varieties,
Lemma 33.25.6. Let i : Spec(k′)→ X be the inclusion morphism. Denote p : X →
Spec(k) is the structure morphism. Observe that p∗i∗[Spec(k′)] = [k′ : k][Spec(k)]
in CH0(Spec(k)). Using axiom (C)(b) twice and Lemma 45.9.4 we conclude that

p∗i∗γ([Spec(k′)]) = γ([k′ : k][Spec(k)]) = [k′ : k] ∈ F = H0(Spec(k))
is nonzero. Thus i∗γ([Spec(k)]) ∈ H2d(X)(d) is nonzero (because it maps to some-
thing nonzero via p∗). This concludes the proof in case X is nonempty.
Finally, we consider the case of the empty scheme. Axiom (B)(a) gives H∗(∅) ⊗
H∗(∅) = H∗(∅) and we get that H∗(∅) is either zero or 1-dimensional in degree
0. Then axiom (B)(a) again shows that H∗(∅) ⊗ H∗(X) = H∗(∅) for all smooth
projective schemes X over k. Using axiom (A)(b) and the nonvanishing of H0(X)
we’ve seen above we find that H∗(X) is nonzero in at least two degrees if dim(X) >
0. This then forces H∗(∅) to be zero. □

Lemma 45.9.6.0FHG Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B),
and (C). Let i : X → Y be a closed immersion of nonempty smooth projective
equidimensional schemes over k. Then γ([X]) = i∗1 in H2c(Y )(c) where c =
dim(Y )− dim(X).

Proof. This is true because 1 = γ([X]) in H0(X) by Lemma 45.9.5 and then we
can apply axiom (C)(b). □

Lemma 45.9.7.0FHH Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and
(C). Let X be a nonempty smooth projective scheme over k equidimensional of
dimension d. Choose a basis ei,j , j = 1, . . . , βi of Hi(X) over F . Using Künneth
write

γ([∆]) =
∑

i

∑
j
ei,j ⊗ e′

2d−i,j in
⊕

i
Hi(X)⊗F H2d−i(X)(d)

with e′
2d−i,j ∈ H2d−i(X)(d). Then

∫
X
ei,j ∪ e′

2d−i,j′ = (−1)iδjj′ .

Proof. Recall that ∆∗ : H∗(X × X) → H∗(X) is equal to the cup product map
H∗(X) ⊗F H∗(X) → H∗(X), see Remark 45.9.3. On the other hand, recall that
γ([∆]) = ∆∗1 (Lemma 45.9.6) and hence∫

X×X
γ([∆]) ∪ a⊗ b =

∫
X×X

∆∗1 ∪ a⊗ b =
∫
X

a ∪ b

by Lemma 45.9.1. On the other hand, we have∫
X×X

(
∑

ei,j ⊗ e′
2d−i,j) ∪ a⊗ b =

∑
(
∫
X

a ∪ ei,j)(
∫
X

e′
2d−i,j ∪ b)

by axiom (B)(b); note that we made two switches of order so that the sign for each
term is 1. Thus if we choose a such that

∫
X
a∪ ei,j = 1 and all other pairings equal

to zero, then we conclude that
∫
X
e′

2d−i,j ∪ b =
∫
X
a ∪ b for all b, i.e., e′

2d−i,j = a.
This proves the lemma. □

Lemma 45.9.8.0FHI Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and
(C). Then H∗(P1

k) is 1-dimensional in dimensions 0 and 2 and zero in other degrees.

https://stacks.math.columbia.edu/tag/0FHG
https://stacks.math.columbia.edu/tag/0FHH
https://stacks.math.columbia.edu/tag/0FHI
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Proof. Let x ∈ P1
k be a k-rational point. Observe that ∆ = pr∗

1x+ pr∗
2x as divisors

on P1
k ×P1

k. Using axiom (C)(a) and additivity of γ we see that
γ([∆]) = pr∗

1γ([x]) + pr∗
2γ([x]) = γ([x])⊗ 1 + 1⊗ γ([x])

in H∗(P1
k × P1

k) = H∗(P1
k) ⊗F H∗(P1

k). However, by Lemma 45.9.7 we know
that γ([∆]) cannot be written as a sum of fewer than

∑
βi pure tensors where

βi = dimF H
i(P1

k). Thus we see that
∑
βi ≤ 2. By Lemma 45.9.5 we have

H0(P1
k) ̸= 0. By Poincaré duality, more precisely axiom (A)(b), we have β0 = β2.

Therefore the lemma holds. □

Lemma 45.9.9.0FHJ Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B),
and (C). If X and Y are smooth projective schemes over k, then H∗(X ⨿ Y ) →
H∗(X)×H∗(Y ), a 7→ (i∗a, j∗a) is an isomorphism where i, j are the coprojections.
Proof. If X or Y is empty, then this is true because H∗(∅) = 0 by Lemma 45.9.5.
Thus we may assume both X and Y are nonempty.
We first show that the map is injective. First, observe that we can find morphisms
X ′ → X and Y ′ → Y of smooth projective schemes so that X ′ and Y ′ are equidi-
mensional of the same dimension and such that X ′ → X and Y ′ → Y each have a
section. Namely, decompose X =

∐
Xd and Y =

∐
Ye into open and closed sub-

schemes equidimensional of dimension d and e. Then take X ′ =
∐
Xd ×Pn−d and

Y ′ =
∐
Ye×Pn−e for some n sufficiently large. Thus pullback by X ′⨿Y ′ → X⨿Y

is injective (because there is a section) and it suffices to show the injectivity for
X ′, Y ′ as we do in the next parapgrah.
Let us show the map is injective when X and Y are equidimensional of the same
dimension d. Observe that [X ⨿ Y ] = [X] + [Y ] in CH0(X ⨿ Y ) and that [X] and
[Y ] are orthogonal idempotents in CH0(X ⨿ Y ). Thus

1 = γ([X ⨿ Y ] = γ([X]) + γ([Y ]) = i∗1 + j∗1
is a decomposition into orthogonal idempotents. Here we have used Lemmas 45.9.5
and 45.9.6 and axiom (C)(c). Then we see that

a = a ∪ 1 = a ∪ i∗1 + a ∪ j∗1 = i∗(i∗a) + j∗(j∗a)
by the projection formula (Lemma 45.9.1) and hence the map is injective.
We show the map is surjective. Write e = γ([X]) and f = γ([Y ]) viewed as elements
in H0(X ⨿ Y ). We have i∗e = 1, i∗f = 0, j∗e = 0, and j∗f = 1 by axiom (C)(a).
Hence if i∗ : H∗(X ⨿ Y ) → H∗(X) and j∗ : H∗(X ⨿ Y ) → H∗(Y ) are surjective,
then so is (i∗, j∗). Namely, for a, a′ ∈ H∗(X ⨿ Y ) we have

(i∗a, j∗a′) = (i∗(a ∪ e+ a′ ∪ f), j∗(a ∪ e+ a′ ∪ f))
By symmetry it suffices to show i∗ : H∗(X ⨿ Y )→ H∗(X) is surjective. If there is
a morphism Y → X, then there is a morphism g : X ⨿ Y → X with g ◦ i = idX
and we conclude. To finish the proof, observe that in order to prove i∗ is surjective,
it suffices to do so after tensoring by a nonzero graded F -vector space. Hence by
axiom (B)(b) and nonvanishing of cohomology (Lemma 45.9.5) it suffices to prove
i∗ is surjective after replacing X and Y by X×Spec(k′) and Y ×Spec(k′) for some
finite separable extension k′/k. If we choose k′ such that there exists a closed point
x ∈ X with κ(x) = k′ (and this is possible by Varieties, Lemma 33.25.6) then
there is a morphism Y × Spec(k′) → X × Spec(k′) and we find that the proof is
complete. □

https://stacks.math.columbia.edu/tag/0FHJ
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Lemma 45.9.10.0FHK Let k be a field. Let F be a field of characteristic 0. Assume
given a Q-linear functor

G : Mk −→ graded F -vector spaces
of symmetric monoidal categories such that G(1(1)) is nonzero only in degree −2.
Then we obtain data (D0), (D1), (D2), and (D3) satisfying all of (A), (B), and (C)
above.

Proof. This proof is the same as the proof of Lemma 45.7.9; we urge the reader to
read the proof of that lemma instead.
We obtain a contravariant functor from the category of smooth projective schemes
over k to the category of graded F -vector spaces by setting H∗(X) = G(h(X)). By
assumption we have a canonical isomorphism
H∗(X×Y ) = G(h(X×Y )) = G(h(X)⊗h(Y )) = G(h(X))⊗G(h(Y )) = H∗(X)⊗H∗(Y )
compatible with pullbacks. Using pullback along the diagonal ∆ : X → X ×X we
obtain a canonical map

H∗(X)⊗H∗(X) = H∗(X ×X)→ H∗(X)
of graded vector spaces compatible with pullbacks. This defines a functorial graded
F -algebra structure on H∗(X). Since ∆ commutes with the commutativity con-
straint h(X)⊗h(X)→ h(X)⊗h(X) (switching the factors) and since G is a functor
of symmetric monoidal categories (so compatible with commutativity constraints),
and by our convention in Homology, Example 12.17.4 we conclude that H∗(X) is
a graded commutative algebra! Hence we get our datum (D1).
Since 1(1) is invertible in the category of motives we see that G(1(1)) is invert-
ible in the category of graded F -vector spaces. Thus

∑
i dimF G

i(1(1)) = 1. By
assumption we only get something nonzero in degree −2. Our datum (D0) is the
vector space F (1) = G−2(1(1)). Since G is a symmetric monoidal functor we see
that F (n) = G−2n(1(n)) for all n ∈ Z. It follows that

H2r(X)(r) = G2r(h(X))⊗G−2r(1(r)) = G0(h(X)(r))
a formula we will frequently use below.
Let X be a smooth projective scheme over k. By Lemma 45.3.1 we have

CHr(X)⊗Q = Corrr(Spec(k), X) = Hom(1(−r), h(X)) = Hom(1, h(X)(r))
Applying the functor G this maps into Hom(G(1), G(h(X)(r))). By taking the
image of 1 in G0(1) = F into G0(h(X)(r)) = H2r(X)(r) we obtain

γ : CHr(X)⊗Q −→ H2r(X)(r)
This is the datum (D2).
Let X be a nonempty smooth projective scheme over k which is equidimensional of
dimension d. By Lemma 45.3.1 we have
Mor(h(X)(d),1) = Mor((X, 1, d), (Spec(k), 1, 0)) = Corr−d(X,Spec(k)) = CHd(X)
Thus the class of the cycle [X] in CHd(X) defines a morphism h(X)(d) → 1.
Applying G and taking degree 0 parts we obtain

H2d(X)(d) = G0(h(X)(d)) −→ G0(1) = F

This map
∫
X

: H2d(X)(d)→ F is the datum (D3).

https://stacks.math.columbia.edu/tag/0FHK


45.9. WEIL COHOMOLOGY THEORIES, I 3914

Let X be a smooth projective scheme over k which is nonempty and equidimensional
of dimension d. By Lemma 45.4.9 we know that h(X)(d) is a left dual to h(X).
Hence G(h(X)(d)) = H∗(X)⊗F F (d)[2d] is a left dual to H∗(X) in the category of
graded F -vector spaces. Here [n] is the shift functor on graded vector spaces. By
Homology, Lemma 12.17.5 we find that

∑
i dimF H

i(X) <∞ and that ϵ : h(X)(d)⊗
h(X) → 1 produces nondegenerate pairings H2d−i(X)(d) ⊗F Hi(X) → F . In the
proof of Lemma 45.4.9 we have seen that ϵ is given by [∆] via the identifications

Hom(h(X)(d)⊗ h(X),1) = Corr−d(X ×X,Spec(k)) = CHd(X ×X)

Thus ϵ is the composition of [X] : h(X)(d) → 1 and h(∆)(d) : h(X)(d) ⊗ h(X) →
h(X)(d). It follows that the pairings above are given by cup product followed by∫
X

. This proves axiom (A).

Axiom (B) follows from the assumption that G is compatible with tensor structures
and our construction of the cup product above.

Axiom (C). Our construction of γ takes a cycle α on X, interprets it a correspon-
dence a from Spec(k) to X of some degree, and then applies G. If f : Y → X is
a morphism of nonempty equidimensional smooth projective schemes over k, then
f !α is the pushforward (!) of α by the correspondence [Γf ] from X to Y , see Lemma
45.3.6. Hence f !α viewed as a correspondence from Spec(k) to Y is equal to a◦ [Γf ],
see Lemma 45.3.1. Since G is a functor, we conclude γ is compatible with pullbacks,
i.e., axiom (C)(a) holds.

Let f : Y → X be a morphism of nonempty equidimensional smooth projective
schemes over k and let β ∈ CHr(Y ) be a cycle on Y . We have to show that∫

Y

γ(β) ∪ f∗c =
∫
X

γ(f∗β) ∪ c

for all c ∈ H∗(X). Let a, at, ηX , ηY , [X], [Y ] be as in Lemma 45.3.9. Let b be β
viewed as a correspondence from Spec(k) to Y of degree r. Then f∗β viewed as a
correspondence from Spec(k) to X is equal to at ◦ b, see Lemmas 45.3.6 and 45.3.1.
The displayed equality above holds if we can show that

h(X) = 1⊗h(X) b⊗1−−→ h(Y )(r)⊗h(X) 1⊗a−−→ h(Y )(r)⊗h(Y ) ηY−−→ h(Y )(r) [Y ]−−→ 1(r−e)

is equal to

h(X) = 1⊗h(X) at◦b⊗1−−−−→ h(X)(r+ d− e)⊗h(X) ηX−−→ h(X)(r+ d− e) [X]−−→ 1(r− e)

This follows immediately from Lemma 45.3.9. Thus we have axiom (C)(b).

To prove axiom (C)(c) we use the discussion in Remark 45.7.2. Hence it suffices
to prove that γ is compatible with exterior products. Let X, Y be nonempty
smooth projective schemes over k and let α, β be cycles on them. Denote a, b the
corresponding correspondences from Spec(k) to X, Y . Then α× β corresponds to
the correspondence a⊗ b from Spec(k) to X ⊗ Y = X × Y . Hence the requirement
follows from the fact that G is compatible with the tensor structures on both sides.

Axiom (C)(d) follows because the cycle [Spec(k)] corresponds to the identity mor-
phism on h(Spec(k)). This finishes the proof of the lemma. □
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Lemma 45.9.11.0FHL Let k be a field. Let F be a field of characteristic 0. Given (D0),
(D1), (D2), and (D3) satisfying (A), (B), and (C) we can construct a Q-linear
functor

G : Mk −→ graded F -vector spaces

of symmetric monoidal categories such that H∗(X) = G(h(X)).

Proof. The proof of this lemma is the same as the proof of Lemma 45.7.10; we urge
the reader to read the proof of that lemma instead.

By Lemma 45.4.8 it suffices to construct a functor G on the category of smooth
projective schemes over k with morphisms given by correspondences of degree 0
such that the image of G(c2) on G(P1

k) is an invertible graded F -vector space.

Let X be a smooth projective scheme over k. There is a canonical decomposition

X =
∐

0≤d≤dim(X)
Xd

into open and closed subschemes such that Xd is equidimensional of dimension d.
By Lemma 45.9.9 we have correspondingly

H∗(X) −→
∏

0≤d≤dim(X)
H∗(Xd)

If Y is a second smooth projective scheme over k and we similarly decompose
Y =

∐
Ye, then

Corr0(X,Y ) =
⊕

Corr0(Xd, Ye)

As well we have X⊗Y =
∐
Xd⊗Ye in the category of correspondences. From these

observations it follows that it suffices to construct G on the category whose objects
are equidimensional smooth projective schemes over k and whose morphisms are
correspondences of degree 0. (Some details omitted.)

Given an equdimensional smooth projective scheme X over k we set G(X) =
H∗(X). Observe that G(X) = 0 if X = ∅ (Lemma 45.9.5). Thus maps from
and to G(∅) are zero and we may and do assume our schemes are nonempty in the
discussions below.

Given a correspondence c ∈ Corr0(X,Y ) between nonempty equidmensional smooth
projective schemes over k we consider the map G(c) : G(X) = H∗(X) → G(Y ) =
H∗(Y ) given by the rule

a 7−→ G(c)(a) = pr2,∗(γ(c) ∪ pr∗
1a)

It is clear that G(c) is additive in c and hence Q-linear. Compatibility of γ with
pullbacks, pushforwards, and intersection products given by axioms (C)(a), (C)(b),
and (C)(c) shows that we have G(c′ ◦ c) = G(c′) ◦G(c) if c′ ∈ Corr0(Y, Z). Namely,

https://stacks.math.columbia.edu/tag/0FHL


45.9. WEIL COHOMOLOGY THEORIES, I 3916

for a ∈ H∗(X) we have

(G(c′) ◦G(c))(a) = pr23
3,∗(γ(c′) ∪ pr23,∗

2 (pr12
2,∗(γ(c) ∪ pr12,∗

1 a)))
= pr23

3,∗(γ(c′) ∪ pr123
23,∗(pr123,∗

12 (γ(c) ∪ pr12,∗
1 a)))

= pr23
3,∗pr123

23,∗(pr123,∗
23 γ(c′) ∪ pr123,∗

12 γ(c) ∪ pr123,∗
1 a)

= pr23
3,∗pr123

23,∗(γ(pr123,∗
23 c′) ∪ γ(pr123,∗

12 c) ∪ pr123,∗
1 a)

= pr13
3,∗pr123

13,∗(γ(pr123,∗
23 c′ · pr123,∗

12 c) ∪ pr123,∗
1 a)

= pr13
3,∗(γ(pr123

13,∗(pr123,∗
23 c′ · pr123,∗

12 c)) ∪ pr13,∗
1 a)

= G(c′ ◦ c)(a)

with obvious notation. The first equality follows from the definitions. The second
equality holds because pr23,∗

2 ◦ pr12
2,∗ = pr123

23,∗ ◦ pr123,∗
12 as follows immediately from

the description of pushforward along projections given in Lemma 45.9.2. The third
equality holds by Lemma 45.9.1 and the fact that H∗ is a functor. The fourth
equalith holds by axiom (C)(a) and the fact that the gysin map agrees with flat
pullback for flat morphisms (Chow Homology, Lemma 42.59.5). The fifth equality
uses axiom (C)(c) as well as Lemma 45.9.1 to see that pr23

3,∗ ◦pr123
23,∗ = pr13

3,∗ ◦pr123
13,∗.

The sixth equality uses the projection formula from Lemma 45.9.1 as well as axiom
(C)(b) to see that pr123

13,∗γ(pr123,∗
23 c′ ·pr123,∗

12 c) = γ(pr123
13,∗(pr123,∗

23 c′ ·pr123,∗
12 c)). Finally,

the last equality is the definition.

To finish the proof that G is a functor, we have to show identities are preserved.
In other words, if 1 = [∆] ∈ Corr0(X,X) is the identity in the category of corre-
spondences (Lemma 45.3.3), then we have to show that G([∆]) = id. This follows
from the determination of γ([∆]) in Lemma 45.9.7 and Lemma 45.9.2. This fin-
ishes the construction of G as a functor on smooth projective schemes over k and
correspondences of degree 0.

By Lemma 45.9.4 we have thatG(Spec(k)) = H∗(Spec(k)) is canonically isomorphic
to F as an F -algebra. The Künneth axiom (B)(a) shows our functor is compat-
ible with tensor products. Thus our functor is a functor of symmetric monoidal
categories.

We still have to check that the image of G(c2) on G(P1
k) = H∗(P1

k) is an invertible
graded F -vector space (in particular we don’t know yet that G extends to Mk).
By Lemma 45.9.8 we only have nonzero cohomology in degrees 0 and 2 both of
dimension 1. We have 1 = c0 + c2 is a decomposition of the identity into a sum
of orthogonal idempotents in Corr0(P1

k,P1
k), see Example 45.3.7. Further we have

c0 = a ◦ b where a ∈ Corr0(Spec(k),P1
k) and b ∈ Corr0(P1

k,Spec(k)) and where
b ◦ a = 1 in Corr0(Spec(k),Spec(k)), see proof of Lemma 45.4.4. Thus G(c0) is the
projector onto the degree 0 part. It follows that G(c2) must be the projector onto
the degree 2 part and the proof is complete. □

Proposition 45.9.12.0FHM Let k be a field. Let F be a field of characteristic 0. There is
a 1-to-1 correspondence between the following

(1) data (D0), (D1), (D2), and (D3) satisfying (A), (B), and(C), and
(2) Q-linear symmetric monoidal functors

G : Mk −→ graded F -vector spaces

https://stacks.math.columbia.edu/tag/0FHM
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such that G(1(1)) is nonzero only in degree −2.

Proof. Given G as in (2) by setting H∗(X) = G(h(X)) we obtain data (D0), (D1),
(D2), and (D3) satisfying (A), (B), and (C), see Lemma 45.9.10 and its proof.
Conversely, given data (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C) we
get a functor G as in (2) by the construction of the proof of Lemma 45.9.11.
We omit the detailed proof that these constructions are inverse to each other. □

45.10. Further properties

0FHN In this section we prove a few more results one obtains if given data (D0), (D1),
(D2), and (D3) satisfying (A), (B), and (C) as in Section 45.9.

Lemma 45.10.1.0FHP Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B),
and (C). Let X,Y be nonempty smooth projective schemes both equidimensional
of dimension d over k. Then

∫
X⨿Y =

∫
X

+
∫
Y

.

Proof. Denote i : X → X ⨿ Y and j : Y → X ⨿ Y be the coprojections. By
Lemma 45.9.9 the map (i∗, j∗) : H∗(X ⨿Y )→ H∗(X)×H∗(Y ) is an isomorphism.
The statement of the lemma means that under the isomorphism (i∗, j∗) : H2d(X ⨿
Y )(d)→ H2d(X)(d)⊕H2d(Y )(d) the map

∫
X

+
∫
Y

is tranformed into
∫
X⨿Y . This

is true because∫
X⨿Y

a =
∫
X⨿Y

i∗(i∗a) + j∗(j∗a) =
∫
X

i∗a+
∫
Y

j∗a

where the equality a = i∗(i∗a)+j∗(j∗a) was shown in the proof of Lemma 45.9.9. □

Lemma 45.10.2.0FHQ Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and
(C). Let X be a smooth projective scheme of dimension zero over k. Then

(1) Hi(X) = 0 for i ̸= 0,
(2) H0(X) is a finite separable algebra over F ,
(3) dimF H

0(X) = deg(X → Spec(F )),
(4)

∫
X

: H0(X)→ F is the trace map,
(5) γ([X]) = 1, and
(6)

∫
X
γ([X]) = deg(X → Spec(k)).

Proof. We can write X = Spec(k′) where k′ is a finite separable algebra over k.
Observe that deg(X → Spec(k)) = [k′ : k]. Choose a finite Galois extension k′′/k
containing each of the factors of k′. (Recall that a finite separable k-algebra is a
product of finite separable field extension of k.) Set Σ = Homk(k′, k′′). Then we
get

k′ ⊗k k′′ =
∏

σ∈Σ
k′′

Setting Y = Spec(k′′) axioms (B)(a) and Lemma 45.9.9 give

H∗(X)⊗F H∗(Y ) =
∏

σ∈Σ
H∗(Y )

as graded commutative F -algebras. By Lemma 45.9.5 the F -algebra H∗(Y ) is
nonzero. Comparing dimensions on either side of the displayed equation we con-
clude that H∗(X) sits only in degree 0 and dimF H

0(X) = [k′ : k]. Applying this
to Y we get H∗(Y ) = H0(Y ). Since

H0(X)⊗F H0(Y ) = H0(Y )× . . .×H0(Y )

https://stacks.math.columbia.edu/tag/0FHP
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as F -algebras, it follows that H0(X) is a separable F -algebra because we may check
this after the faithfully flat base change F → H0(Y ).
The displayed isomorphism above is given by the map

H0(X)⊗F H0(Y ) −→
∏

σ∈Σ
H0(Y ), a⊗ b 7−→

∏
σ

Spec(σ)∗a ∪ b

Via this isomorphism we have
∫
X×Y =

∑
σ

∫
Y

by Lemma 45.10.1. Thus∫
X

a = pr1,∗(a⊗ 1) =
∑

Spec(σ)∗a

in H0(Y ); the first equality by Lemma 45.9.2 and the second by the observation we
just made. Choose an algebraic closure F and a F -algebra map τ : H0(Y ) → F .
The isomorphism above base changes to the isomorphism

H0(X)⊗F F −→
∏

σ∈Σ
F , a⊗ b 7−→

∏
σ
τ(Spec(σ)∗a)b

It follows that a 7→ τ(Spec(σ)∗a) is a full set of embeddings of H0(X) into F .
Applying τ to the formula for

∫
X
a obtained above we conclude that

∫
X

is the
trace map. By Lemma 45.9.5 we have γ([X]) = 1. Finally, we have

∫
X
γ([X]) =

deg(X → Spec(k)) because γ([X]) = 1 and the trace of 1 is equal to [k′ : k] □

Lemma 45.10.3.0FHR Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and
(C). Let X be a nonempty smooth projective scheme equidimensional of dimension
d over k. The diagram

CHd(X)
γ
// H2d(X)(d)∫

X

��
CH0(X) deg // F

commutes where deg : CH0(X)→ Z is the degree of zero cycles discussed in Chow
Homology, Section 42.41.

Proof. Let x be a closed point of X whose residue field is separable over k. View
x as a scheme and denote i : x → X the inclusion morphism. To avoid confusion
denote γ′ : CH0(x)→ H0(x) the cycle class map for x. Then we have∫

X

γ([x]) =
∫
X

γ(i∗[x]) =
∫
X

i∗γ
′([x]) =

∫
x

γ′([x]) = deg(x→ Spec(k))

The second equality is axiom (C)(b) and the third equality is the definition of i∗ on
cohomology. The final equality is Lemma 45.10.2. This proves the lemma because
CH0(X) is generated by the classes of points x as above by Lemma 45.8.1. □

Lemma 45.10.4.0FHS Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and
(C). Let X be a nonempty smooth projective scheme over k which is equidimen-
sional of dimension d. We have∑

i
(−1)i dimF H

i(X) = deg(∆ ·∆) = deg(cd(TX/k))

Proof. Equality on the right. We have [∆] · [∆] = ∆∗(∆![∆]) (Chow Homology,
Lemma 42.62.6). Since ∆∗ preserves degrees of 0-cycles it suffices to compute the
degree of ∆![∆]. The class ∆![∆] is given by capping [∆] with the top Chern class
of the normal sheaf of ∆ ⊂ X ×X (Chow Homology, Lemma 42.54.5). Since the

https://stacks.math.columbia.edu/tag/0FHR
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conormal sheaf of ∆ is ΩX/k (Morphisms, Lemma 29.32.7) we see that the normal
sheaf is equal to the tangent sheaf TX/k = HomOX

(ΩX/k,OX) as desired.
Equality on the left. By Lemma 45.10.3 we have

deg([∆] · [∆]) =
∫
X×X

γ([∆]) ∪ γ([∆])

=
∫
X×X

∆∗1 ∪ γ([∆])

=
∫
X×X

∆∗(∆∗γ([∆]))

=
∫
X

∆∗γ([∆])

We have used Lemmas 45.9.6 and 45.9.1. Write γ([∆]) =
∑
ei,j ⊗ e′

2d−i,j as in
Lemma 45.9.7. Recalling that ∆∗ is given by cup product (Remark 45.9.3) we
obtain∫

X

∑
i,j
ei,j ∪ e′

2d−i,j =
∑

i,j

∫
X

ei,j ∪ e′
2d−i,j =

∑
i,j

(−1)i =
∑

(−1)iβi

as desired. □

Lemma 45.10.5.0FHT Let F be a field of characteristic 0. Let F ′ and Fi, i = 1, . . . , r
be finite separable F -algebras. Let A be a finite F -algebra. Let σ, σ′ : A→ F ′ and
σi : A→ Fi be F -algebra maps. Assume σ and σ′ surjective. If there is a relation

TrF ′/F ◦ σ − TrF ′/F ◦ σ′ = n(
∑

miTrFi/F ◦ σi)

where n > 1 and mi are integers, then σ = σ′.

Proof. We may write A =
∏
Aj as a finite product of local Artinian F -algebras

(Aj ,mj , κj), see Algebra, Lemma 10.53.2 and Proposition 10.60.7. Denote A′ =∏
κj where the product is over those j such that κj/k is separable. Then each of

the maps σ, σ′, σi factors over the map A → A′. After replacing A by A′ we may
assume A is a finite separable F -algebra.

Choose an algebraic closure F . Set A = A⊗F F , F ′ = F ′⊗F F , and F i = Fi⊗F F .
We can base change σ, σ′, σi to get F algebra maps A→ F

′ and A→ F i. Moreover
Tr
F

′
/F

is the base change of TrF ′/F and similarly for TrFi/F . Thus we may replace
F by F and we reduce to the case discussed in the next paragraph.
Assume F is algebraically closed and A a finite separable F -algebra. Then each
of A, F ′, Fi is a product of copies of F . Let us say an element e of a product
F × . . .×F of copies of F is a minimal idempotent if it generates one of the factors,
i.e., if e = (0, . . . , 0, 1, 0, . . . , 0). Let e ∈ A be a minimal idempotent. Since σ and
σ′ are surjective, we see that σ(e) and σ′(e) are minimal idempotents or zero. If
σ ̸= σ′, then we can choose a minimal idempotent e ∈ A such that σ(e) = 0 and
σ′(e) ̸= 0 or vice versa. Then TrF ′/F (σ(e)) = 0 and TrF ′/F (σ′(e)) = 1 or vice
versa. On the other hand, σi(e) is an idempotent and hence TrFi/F (σi(e)) = ri is
an integer. We conclude that

−1 =
∑

nmiri = n(
∑

miri) or 1 =
∑

nmiri = n(
∑

miri)

which is impossible. □

https://stacks.math.columbia.edu/tag/0FHT
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Lemma 45.10.6.0FHU Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and
(C). Let k′/k be a finite separable extension. Let X be a smooth projective scheme
over k′. Let x, x′ ∈ X be k′-rational points. If γ(x) ̸= γ(x′), then [x] − [x′] is not
divisible by any integer n > 1 in CH0(X).

Proof. If x and x′ lie on distinct irreducible components of X, then the result is
obvious. Thus we may X irreducible of dimension d. Say [x] − [x′] is divisible by
n > 1 in CH0(X). We may write [x] − [x′] = n(

∑
mi[xi]) in CH0(X) for some

xi ∈ X closed points whose residue fields are separable over k by Lemma 45.8.1.
Then

γ([x])− γ([x′]) = n(
∑

miγ([xi]))

in H2d(X)(d). Denote i∗, (i′)∗, i∗i the pullback maps H0(X) → H0(x), H0(X) →
H0(x′), H0(X) → H0(xi). Recall that H0(x) is a finite separable F -algebra and
that

∫
x

: H0(x)→ F is the trace map (Lemma 45.10.2) which we will denote Trx.
Similarly for x′ and xi. Then by Poincaré duality in the form of axiom (A)(b) the
equation above is dual to

Trx ◦ i∗ − Trx′ ◦ (i′)∗ = n(
∑

miTrxi ◦ i∗i )

which takes place in HomF (H0(X), F ). Finally, observe that i∗ and (i′)∗ are surjec-
tive as x and x′ are k′-rational points and hence the compositions H0(Spec(k′))→
H0(X) → H0(x) and H0(Spec(k′)) → H0(X) → H0(x′) are isomorphisms. By
Lemma 45.10.5 we conclude that i∗ = (i′)∗ which contradicts the assumption that
γ([x]) ̸= γ([x′]). □

Lemma 45.10.7.0FHV Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and
(C). Let k′/k be a finite separable extension. Let X be a geometrically irreducible
smooth projective scheme over k′ of dimension d. Then γ : CH0(X)→ H2d(X)(d)
factors through deg : CH0(X)→ Z.

Proof. By Lemma 45.8.1 it suffices to show: given closed points x, x′ ∈ X whose
residue fields are separable over k we have deg(x′)γ([x]) = deg(x)γ([x′]).

We first reduce to the case of k′-rational points. Let k′′/k′ be a Galois extension
such that κ(x) and κ(x′) embed into k′′ over k. Set Y = X ×Spec(k′) Spec(k′′) and
denote p : Y → X the projection. By our choice of k′′/k′ there exists a k′′-rational
point y, resp. y′ on Y mapping to x, resp. x′. Then p∗[y] = [k′′ : κ(x)][x] and
p∗[y′] = [k′′ : κ(x′)][x′] in CH0(X). By compatibility with pushforwards given in
axiom (C)(b) it suffices to prove γ([y]) = γ([y′]) in CH2d(Y )(d). This reduces us to
the discussion in the next paragraph.

Assume x and x′ are k′-rational points. By Lemma 45.8.3 there exists a finite
separable extension k′′/k′ of fields such that the pullback [y]− [y′] of the difference
[x]− [x′] becomes divisible by an integer n > 1 on Y = X×Spec(k′) Spec(k′′). (Note
that y, y′ ∈ Y are k′′-rational points.) By Lemma 45.10.6 we have γ([y]) = γ([y′])
in H2d(Y )(d). By compatibility with pushforward in axiom (C)(b) we conclude the
same for x and x′. □

Lemma 45.10.8.0FHW Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B),
and (C). Let f : X → Y be a dominant morphism of irreducible smooth projective
schemes over k. Then H∗(Y )→ H∗(X) is injective.

https://stacks.math.columbia.edu/tag/0FHU
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Proof. There exists an integral closed subscheme Z ⊂ X of the same dimension
as Y mapping onto Y . Thus f∗[Z] = m[Y ] for some m > 0. Then f∗γ([Z]) =
mγ([Y ]) = m in H∗(Y ) because of Lemma 45.9.5. Hence by the projection formula
(Lemma 45.9.1) we have f∗(f∗a ∪ γ([Z])) = ma and we conclude. □

Lemma 45.10.9.0FHX Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B),
and (C). Let k′′/k′/k be finite separable algebras and let X be a smooth projective
scheme over k′. Then

H∗(X)⊗H0(Spec(k′)) H
0(Spec(k′′)) = H∗(X ×Spec(k′) Spec(k′′))

Proof. We will use the results of Lemma 45.10.2 without further mention. Write
k′ ⊗k k′′ = k′′ × l

for some finite separable k′-algebra l. Write F ′ = H0(Spec(k′)), F ′′ = H0(Spec(k′′)),
and G = H0(Spec(l)). Since Spec(k′) × Spec(k′′) = Spec(k′′) ⨿ Spec(l) we deduce
from axiom (B)(a) and Lemma 45.9.9 that we have

F ′ ⊗F F ′′ = F ′′ ×G
The map from left to right identifies F ′′ with F ′ ⊗F ′ F ′′. By the same token we
have

H∗(X)⊗F F ′′ = H∗(X ×Spec(k′) Spec(k′′))×H∗(X ×Spec(k′) Spec(l))
as modules over F ′ ⊗F F ′′ = F ′′ ×G. This proves the lemma. □

45.11. Weil cohomology theories, II

0FHY For us a Weil cohomology theory will be the analogue of a classical Weil cohomol-
ogy theory (Section 45.7) when the ground field k is not algebraically closed. In
Section 45.9 we listed axioms which guarantee our cohomology theory comes from
a symmetric monoidal functor on the category of motives over k. Missing from our
axioms so far are the condition Hi(X) = 0 for i < 0 and a condition on H2d(X)(d)
for X equidimensional of dimension d corresponding to the classical axioms (A)(c)
and (A)(d). Let us first convince the reader that it is necessary to impose such
conditions.

Example 45.11.1.0FHZ Let k = C and F = C both be equal to the field of complex
numbers. For X smooth projective over k denote Hp,q(X) = Hq(X,ΩpX/k). Let
(H ′)∗ be the functor which sends X to (H ′)∗(X) =

⊕
Hp,q(X) with the usual cup

product. This is a classical Weil cohomology theory (insert future reference here).
By Proposition 45.7.11 we obtain a Q-linear symmetric monoidal functor G′ from
Mk to the category of graded F -vector spaces. Of course, in this case for every M
in Mk the value G′(M) is naturally bigraded, i.e., we have

(G′)(M) =
⊕

(G′)p,q(M), (G′)n =
⊕

n=p+q
(G′)p,q(M)

with (G′)p,q sitting in total degree p+q as indicated. Now we are going to construct
a Q-linear symmetric monoidal functor G to the category of graded F -vector spaces
by setting

Gn(M) =
⊕

n=3p−q
(G′)p,q(M)

We omit the verification that this defines a symmetric monoidal functor (a tech-
nical point is that because we chose odd numbers 3 and −1 above the functor G

https://stacks.math.columbia.edu/tag/0FHX
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is compatible with the commutativity constraints). Observe that G(1(1)) is still
sitting in degree −2! Hence by Lemma 45.7.9 we obtain a functor H∗, cycle classes
γ, and trace maps satisfying all classical axioms (A), (B), (C), except for possibly
the classical axioms (A)(a) and (A)(d). However, if E is an elliptic curve over k,
then we find dimH−1(E) = 1, i.e., axiom (A)(a) is indeed violated.

Lemma 45.11.2.0FI0 Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B),
and (C). Let X be a smooth projective scheme over k. Set k′ = Γ(X,OX). The
following are equivalent

(1) there exist finitely many closed points x1, . . . , xr ∈ X whose residue fields
are separable over k such that H0(X)→ H0(x1)⊕. . .⊕H0(xr) is injective,

(2) the map H0(Spec(k′))→ H0(X) is an isomorphism.
If this is true, then H0(X) is a finite separable algebra over F . If X is equidimen-
sional of dimension d, then (1) and (2) are also equivalent to

(3) the classes of closed points generate H2d(X)(d) as a module over H0(X).

Proof. We observe that the statement makes sense because k′ is a finite separable
algebra over k (Varieties, Lemma 33.9.3) and hence Spec(k′) is smooth and projec-
tive over k. The compatibility of H∗ with direct sums (Lemmas 45.9.9 and 45.10.1)
shows that it suffices to prove the lemma when X is connected. Hence we may
assume X is irreducible and we have to show the equivalence of (1), (2), and (3).
Set d = dim(X). This implies that k′ is a field finite separable over k and that X
is geometrically irreducible over k′, see Varieties, Lemmas 33.9.3 and 33.9.4.

By Lemma 45.8.1 we see that the closed points in (3) may be assumed to have
separable residue fields over k. By axioms (A)(a) and (A)(b) we see that conditions
(1) and (3) are equivalent.

If (2) holds, then pick any closed point x ∈ X whose residue field is finite separable
over k′. Then H0(Spec(k′)) = H0(X)→ H0(x) is injective for example by Lemma
45.10.8.

Assume the equivalent conditions (1) and (3) hold. Choose x1, . . . , xr ∈ X as in
(1). Choose a finite separable extension k′′/k′. By Lemma 45.10.9 we have

H0(X)⊗H0(Spec(k′)) H
0(Spec(k′′)) = H0(X ×Spec(k′) Spec(k′′))

Thus in order to show that H0(Spec(k′)) → H0(X) is an isomorphism we may
replace k′ by k′′. Thus we may assume x1, . . . , xr are k′-rational points (this replaces
each xi with multiple points, so r is increased in this step). By Lemma 45.10.7
γ(x1) = γ(x2) = . . . = γ(xr). By axiom (A)(b) all the maps H0(X)→ H0(xi) are
the same. This means (2) holds.

Finally, Lemma 45.10.2 implies H0(X) is a separable F -algebra if (1) holds. □

Lemma 45.11.3.0FI1 Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and
(C). If there exists a smooth projective scheme Y over k such that Hi(Y ) is nonzero
for some i < 0, then there exists an equidimensional smooth projective scheme X
over k such that the equivalent conditions of Lemma 45.11.2 fail for X.

Proof. By Lemma 45.9.9 we may assume Y is irreducible and a fortiori equidimen-
sional. If i is odd, then after replacing Y by Y × Y we find an example where Y

https://stacks.math.columbia.edu/tag/0FI0
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is equidimensional and i = −2l for some l > 0. Set X = Y × (P1
k)l. Using axiom

(B)(a) we obtain

H0(X) ⊃ H0(Y )⊕Hi(Y )⊗F H2(P1
k)⊗F l

with both summands nonzero. Thus it is clear that H0(X) cannot be isomorphic to
H0 of the spectrum of Γ(X,OX) = Γ(Y,OY ) as this falls into the first summand. □

Thus it makes sense to finally make the following definition.

Definition 45.11.4.0FI2 Let k be a field. Let F be a field of characteristic 0. A Weil
cohomology theory over k with coefficients in F is given by data (D0), (D1), (D2),
and (D3) satisfying Poincaré duality, the Künneth formula, and compatibility with
cycle classes, more precisely, satisfying axioms (A), (B), and (C) of Section 45.9
and in addition such that the equivalent conditions (1) and (2) of Lemma 45.11.2
hold for every smooth projective X over k.

By Lemma 45.11.3 this means also that there are no nonzero negative cohomology
groups. In particular, if k is algebraically closed, then a Weil cohomology theory
as above together with an isomorphism F → F (1) is the same thing as a classical
Weil cohomology theory.

Remark 45.11.5.0FI3 Let H∗ be a Weil cohomology theory (Definition 45.11.4). Let
X be a geometrically irreducible smooth projective scheme of dimension d over k′

with k′/k a finite separable extension of fields. Suppose that

H0(Spec(k′)) = F1 × . . .× Fr
for some fields Fi. Then we accordingly can write

H∗(X) =
∏

i=1,...,r
H∗(X)⊗H0(Spec(k′)) Fi

Now, our final assumption in Definition 45.11.4 tells us that H0(X) is free of rank 1
over

∏
Fi. In other words, each of the factors H0(X)⊗H0(Spec(k′))Fi has dimension

1 over Fi. Poincaré duality then tells us that the same is true for cohomology in
degree 2d. What isn’t clear however is that the same holds in other degrees. Namely,
we don’t know that given 0 < n < dim(X) the integers

dimFi H
n(X)⊗H0(Spec(k′)) Fi

are independent of i! This question is closely related to the following open question:
given an algebraically closed base field k, a field of characteristic zero F , a classical
Weil cohomology theory H∗ over k with coefficient field F , and a smooth projective
variety X over k is it true that the betti numbers of X

βi = dimF H
i(X)

are independent of F and the Weil cohomology theory H∗?

Proposition 45.11.6.0GIJ Let k be a field. Let F be a field of characteristic 0. A Weil
cohomology theory is the same thing as a Q-linear symmetric monoidal functor

G : Mk −→ graded F -vector spaces

such that
(1) G(1(1)) is nonzero only in degree −2, and

https://stacks.math.columbia.edu/tag/0FI2
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(2) for every smooth projective scheme X over k with k′ = Γ(X,OX) the
homomorphism G(h(Spec(k′))) → G(h(X)) of graded F -vector spaces is
an isomorphism in degree 0.

Proof. Immediate consequence of Proposition 45.9.12 and Definition 45.11.4. Of
course we could replace (2) by the condition that G(h(X))→

⊕
G(h(xi)) is injec-

tive in degree 0 for some choice of closed points x1, . . . , xr ∈ X whose residue fields
are separable over k. □

45.12. Chern classes

0FI4 In this section we discuss how given a first Chern class and a projective space
bundle formula we can get all Chern classes. A reference for this section is [Gro58]
although our axioms are slightly different.
Let C be a category of schemes with the following properties

(1) Every X ∈ Ob(C) is quasi-compact and quasi-separated.
(2) If X ∈ Ob(C) and U ⊂ X is open and closed, then U → X is a morphism

of C. If X ′ → X is a morphism of C factoring through U , then X ′ → U is
a morphism of C.

(3) If X ∈ Ob(C) and if E is a finite locally free OX -module, then
(a) p : P(E)→ X is a morphism of C,
(b) for a morphism f : X ′ → X in C the induced morphism P(f∗E) →

P(E) is a morphism of C,
(c) if E → F is a surjection onto another finite locally free OX -module

then the closed immersion P(F)→ P(E) is a morphism of C.
Next, assume given a contravariant functor A from the category C to the category
of graded algebras. Here a graded algebra A is a unital, associative, not necessarily
commutative Z-algebra A endowed with a grading A =

⊕
i≥0 A

i. Given a morphism
f : X ′ → X of C we denote f∗ : A(X) → A(X ′) the induced algebra map. We
will denote the product of a, b ∈ A(X) by a∪ b. Finally, we assume given for every
object X of C an additive map

cA1 : Pic(X) −→ A1(X)
We assume the following axioms are satisfied

(1) Given X ∈ Ob(C) and L ∈ Pic(X) the element cA1 (L) is in the center of
the algebra A(X).

(2) If X ∈ Ob(C) and X = U ⨿ V with U and V open and closed, then
A(X) = A(U)×A(V ) via the induced maps A(X)→ A(U) and A(X)→
A(V ).

(3) If f : X ′ → X is a morphism of C and L is an invertible OX -module, then
f∗cA1 (L) = cA1 (f∗L).

(4) Given X ∈ Ob(C) and locally free OX -module E of constant rank r con-
sider the morphism p : P = P(E)→ X of C. Then the map⊕

i=0,...,r−1
A(X) −→ A(P ), (a0, . . . , ar−1) 7−→

∑
cA1 (OP (1))i ∪ p∗(ai)

is bijective.
(5) Let X ∈ Ob(C) and let E → F be a surjection of finite locally free OX -

modules of ranks r + 1 and r. Denote i : P ′ = P(F) → P(E) = P the
corresponding incusion morphism. This is a morphism of C which exhibits
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P ′ as an effective Cartier divisor on P . Then for a ∈ A(P ) with i∗a = 0
we have a ∪ cA1 (OP (P ′)) = 0.

To formulate our result recall that Vect(X) denotes the (exact) category of finite
locally free OX -modules. In Derived Categories of Schemes, Section 36.38 we have
defined the zeroth K-group K0(Vect(X)) of this category. Moreover, we have seen
that K0(Vect(X)) is a ring, see Derived Categories of Schemes, Remark 36.38.6.

Proposition 45.12.1.0FI5 In the situation above there is a unique rule which assigns to
every X ∈ Ob(C) a “total Chern class”

cA : K0(Vect(X)) −→
∏

i≥0
Ai(X)

with the following properties
(1) For X ∈ Ob(C) we have cA(α+ β) = cA(α)cA(β) and cA(0) = 1.
(2) If f : X ′ → X is a morphism of C, then f∗ ◦ cA = cA ◦ f∗.
(3) Given X ∈ Ob(C) and L ∈ Pic(X) we have cA([L]) = 1 + cA1 (L).

Proof. Let X ∈ Ob(C) and let E be a finite locally free OX -module. We first show
how to define an element cA(E) ∈ A(X).

As a first step, let X =
⋃
Xr be the decomposition into open and closed subschemes

such that E|Xr has constant rank r. Since X is quasi-compact, this decomposition
is finite. Hence A(X) =

∏
A(Xr). Thus it suffices to define cA(E) when E has

constant rank r. In this case let p : P → X be the projective bundle of E . We
can uniquely define elements cAi (E) ∈ Ai(X) for i ≥ 0 such that cA0 (E) = 1 and the
equation

(45.12.1.1)0FI6
∑r

i=0
(−1)ic1(OP (1))i ∪ p∗cAr−i(E) = 0

is true. As usual we set cA(E) = cA0 (E) + cA1 (E) + . . .+ cAr (E) in A(X).

If E is invertible, then cA(E) = 1 + cA1 (L). This follows immediately from the
construction above.

The elements cAi (E) are in the center of A(X). Namely, to prove this we may assume
E has constant rank r. Let p : P → X be the corresponding projective bundle. if
a ∈ A(X) then p∗a∪ (−1)rc1(OP (1))r = (−1)rc1(OP (1))r∪p∗a and hence we must
have the same for all the other terms in the expression defining cAi (E) as well and
we conclude.

If f : X ′ → X is a morphism of C, then f∗cAi (E) = cAi (f∗E). Namely, to prove
this we may assume E has constant rank r. Let p : P → X and p′ : P ′ → X ′

be the projective bundles corresponding to E and f∗E . The induced morphism
g : P ′ → P is a morphism of C. The pullback by g of the equality defining cAi (E) is
the corresponding equation for f∗E and we conclude.

Let X ∈ Ob(C). Consider a short exact sequence

0→ L → E → F → 0

of finite locally free OX -modules with L invertible. Then

cA(E) = cA(L)cA(F)

https://stacks.math.columbia.edu/tag/0FI5
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Namely, by the construction of cAi we may assume E has constant rank r + 1 and
F has constant rank r. The inclusion

i : P ′ = P(F) −→ P(E) = P

is a morphism of C and it is the zero scheme of a regular section of the invertible
module L⊗−1 ⊗OP (1). The element∑r

i=0
(−1)icA1 (OP (1))i ∪ p∗cAi (F)

pulls back to zero on P ′ by definition. Hence we see that(
cA1 (OP (1))− cA1 (L)

)
∪
(∑r

i=0
(−1)icA1 (OP (1))i ∪ p∗cAi (F)

)
= 0

in A∗(P ) by assumption (5) on our cohomology A. By definition of cA1 (E) this gives
the desired equality.
Let X ∈ Ob(C). Consider a short exact sequence

0→ E → F → G → 0
of finite locally free OX -modules. Then

cA(F) = cA(E)cA(G)
Namely, by the construction of cAi we may assume E , F , and G have constant ranks
r, s, and t. We prove it by induction on r. The case r = 1 was done above. If r > 1,
then it suffices to check this after pulling back by the morphism P(E∨)→ X. Thus
we may assume we have an invertible submodule L ⊂ E such that both E ′ = E/L
and F ′ = E/L are finite locally free (of ranks s− 1 and t− 1). Then we have

cA(E) = cA(L)cA(E ′) and cA(F) = cA(L)cA(F ′)
Since we have the short exact sequence

0→ E ′ → F ′ → G → 0
we see by induction hypothesis that

cA(F ′) = cA(E ′)cA(G)
Thus the result follows from a formal calculation.
At this point for X ∈ Ob(C) we can define cA : K0(Vect(X)) → A(X). Namely,
we send a generator [E ] to cA(E) and we extend multiplicatively. Thus for example
cA(−[E ]) = cA(E)−1 is the formal inverse of aA([E ]). The multiplicativity in short
exact sequences shown above guarantees that this works.
Uniqueness. Suppose X ∈ Ob(C) and E is a finite locally free OX -module. We
want to show that conditions (1), (2), and (3) of the lemma uniquely determine
cA([E ]). To prove this we may assume E has constant rank r; this already uses (2).
Then we may use induction on r. If r = 1, then uniqueness follows from (3). If
r > 1 we pullback using (2) to the projective bundle p : P → X and we see that
we may assume we have a short exact sequence 0 → E ′ → E → E ′′ → 0 with E ′

and E ′′ having lower rank. By induction hypothesis cA(E ′) and cA(E ′′) are uniquely
determined. Thus uniqueness for E by the axiom (1). □

Lemma 45.12.2.0FI7 In the situation above. LetX ∈ Ob(C). Let Ei be a finite collection
of locally free OX -modules of rank ri. There exists a morphism p : P → X in C
such that

https://stacks.math.columbia.edu/tag/0FI7
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(1) p∗ : A(X)→ A(P ) is injective,
(2) each p∗Ei has a filtration whose successive quotients Li,1, . . . ,Li,ri are

invertible OP -modules.

Proof. We may assume ri ≥ 1 for all i. We will prove the lemma by induction on∑
(ri − 1). If this integer is 0, then Ei is invertible for all i and we conclude by

taking π = idX . If not, then we can pick an i such that ri > 1 and consider the
projective bundle p : P → X associated to Ei. We have a short exact sequence

0→ F → p∗Ei → OP (1)→ 0

of finite locally freeOP -modules of ranks ri−1, ri, and 1. Observe that p∗ : A(X)→
A(P ) is injective by assumption. By the induction hypothesis applied to the finite
locally free OP -modules F and p∗Ei′ for i′ ̸= i, we find a morphism p′ : P ′ → P
with properties stated as in the lemma. Then the composition p ◦ p′ : P ′ → X does
the job. □

Lemma 45.12.3.0FI8 Let X ∈ Ob(C). Let E be a finite locally free OX -module. Let L
be an invertible OX -module. Then

cAi (E ⊗ L) =
∑i

j=0

(
r − i+ j

j

)
cAi−j(E) ∪ cA1 (L)j

Proof. By the construction of cAi we may assume E has constant rank r. Let
p : P → X and p′ : P ′ → X be the projective bundle associated to E and E ⊗ L.
Then there is an isomorphism g : P → P ′ such that g∗OP ′(1) = OP (1)⊗ p∗L. See
Constructions, Lemma 27.20.1. Thus

g∗cA1 (OP ′(1)) = cA1 (OP (1)) + p∗cA1 (L)

The desired equality follows formally from this and the definition of Chern classes
using equation (45.12.1.1). □

Proposition 45.12.4.0FI9 In the situation above assume A(X) is a Q-algebra for all
X ∈ Ob(C). Then there is a unique rule which assigns to every X ∈ Ob(C) a
“chern character”

chA : K0(Vect(X)) −→
∏

i≥0
Ai(X)

with the following properties
(1) chA is a ring map for all X ∈ Ob(C).
(2) If f : X ′ → X is a morphism of C, then f∗ ◦ chA = chA ◦ f∗.
(3) Given X ∈ Ob(C) and L ∈ Pic(X) we have chA([L]) = exp(cA1 (L)).

Proof. Let X ∈ Ob(C) and let E be a finite locally free OX -module. We first show
how to define the rank rA(E) ∈ A0(X). Namely, letX =

⋃
Xr be the decomposition

into open and closed subschemes such that E|Xr has constant rank r. Since X is
quasi-compact, this decomposition is finite, say X = X0 ⨿ X1 ⨿ . . . ⨿ Xn. Then
A(X) = A(X0)×A(X1)× . . .×A(Xn). Thus we can define rA(E) = (0, 1, . . . , n) ∈
A0(X).

Let Pp(c1, . . . , cp) be the polynomials constructed in Chow Homology, Example
42.43.6. Then we can define

chA(E) = rA(E) +
∑

i≥1
(1/i!)Pi(cA1 (E), . . . , cAi (E)) ∈

∏
i≥0

Ai(X)

https://stacks.math.columbia.edu/tag/0FI8
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where ciA are the Chern classes of Proposition 45.12.1. It follows immediately that
we have property (2) and (3) of the lemma.
We still have to show the following three statements

(1) If 0 → E1 → E → E2 → 0 is a short exact sequence of finite locally free
OX -modules on X ∈ Ob(C), then chA(E) = chA(E1) + chA(E2).

(2) If E1 and E2 → 0 are finite locally free OX -modules on X ∈ Ob(C), then
chA(E1 ⊗ E2) = chA(E1)chA(E2).

Namely, the first will prove that chA factors through K0(Vect(X)) and the first
and the second will combined show that chA is a ring map.
To prove these statements we can reduce to the case where E1 and E2 have constant
ranks r1 and r2. In this case the equalities in A0(X) are immediate. To prove the
equalities in higher degrees, by Lemma 45.12.2 we may assume that E1 and E2 have
filtrations whose graded pieces are invertible modules L1,j , j = 1, . . . , r1 and L2,j ,
j = 1, . . . , r2. Using the multiplicativity of Chern classes we get

cAi (E1) = si(cA1 (L1,1), . . . , cA1 (L1,r1))
where si is the ith elementary symmetric function as in Chow Homology, Example
42.43.6. Similarly for cAi (E2). In case (1) we get

cAi (E) = si(cA1 (L1,1), . . . , cA1 (L1,r1), cA1 (L2,1), . . . , cA1 (L2,r2))
and for case (2) we get

cAi (E1 ⊗ E2) = si(cA1 (L1,1) + cA1 (L2,1), . . . , cA1 (L1,r1) + cA1 (L2,r2))
By the definition of the polynomials Pi we see that this means

Pi(cA1 (E1), . . . , cAi (E1)) =
∑

j=1,...,r1
cA1 (L1,j)i

and similarly for E2. In case (1) we have also

Pi(cA1 (E), . . . , cAi (E)) =
∑

j=1,...,r1
cA1 (L1,j)i +

∑
j=1,...,r2

cA1 (L2,j)i

In case (2) we get accordingly

Pi(cA1 (E1 ⊗ E2), . . . , cAi (E1 ⊗ E2)) =
∑

j=1,...,r1

∑
j′=1,...,r2

(cA1 (L1,j) + cA1 (L2,j′))i

Thus the desired equalities are now consequences of elementary identities between
symmetric polynomials.
We omit the proof of uniqueness. □

Lemma 45.12.5.0FIA In the situation above let X ∈ Ob(C). If ψ2 is as in Chow
Homology, Lemma 42.56.1 and cA and chA are as in Propositions 45.12.1 and
45.12.4 then we have cAi (ψ2(α)) = 2icAi (α) and chAi (ψ2(α)) = 2ichAi (α) for all
α ∈ K0(Vect(X)).

Proof. Observe that the map
∏
i≥0 A

i(X) →
∏
i≥0 A

i(X) multiplying by 2i on
Ai(X) is a ring map. Hence, since ψ2 is also a ring map, it suffices to prove the
formulas for additive generators of K0(Vect(X)). Thus we may assume α = [E ]
for some finite locally free OX -module E . By construction of the Chern classes of
E we immediately reduce to the case where E has constant rank r. In this case,
we can choose a projective smooth morphism p : P → X such that restriction
A∗(X)→ A∗(P ) is injective and such that p∗E has a finite filtration whose graded

https://stacks.math.columbia.edu/tag/0FIA
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parts are invertible OP -modules Lj , see Lemma 45.12.2. Then [p∗E ] =
∑

[Lj ] and
hence ψ2([p∗E ]) =

∑
[L⊗2
j ] by definition of ψ2. Setting xj = cA1 (Lj) we have

cA(α) =
∏

(1 + xj) and cA(ψ2(α)) =
∏

(1 + 2xj)

in
∏
Ai(P ) and we have

chA(α) =
∑

exp(xj) and chA(ψ2(α)) =
∑

exp(2xj)

in
∏
Ai(P ). From these formulas the desired result follows. □

45.13. Exterior powers and K-groups

0FIB We do the minimal amount of work to define the lambda operators. Let X be
a scheme. Recall that Vect(X) denotes the category of finite locally free OX -
modules. Moreover, recall that we have constructed a zeroth K-group K0(Vect(X))
associated to this category in Derived Categories of Schemes, Section 36.38. Finally,
K0(Vect(X)) is a ring, see Derived Categories of Schemes, Remark 36.38.6.

Lemma 45.13.1.0FIC Let X be a scheme. There are maps

λr : K0(Vect(X)) −→ K0(Vect(X))

which sends [E ] to [∧r(E)] when E is a finite locally free OX -module and which are
compatible with pullbacks.

Proof. Consider the ring R = K0(Vect(X))[[t]] where t is a variable. For a finite
locally free OX -module E we set

c(E) =
∑∞

i=0
[∧i(E)]ti

in R. We claim that given a short exact sequence

0→ E ′ → E → E ′′ → 0

of finite locally free OX -modules we have c(E) = c(E ′)c(E ′′). The claim implies that
c extends to a map

c : K0(Vect(X)) −→ R

which converts addition in K0(Vect(X)) to multiplication in R. Writing c(α) =∑
λi(α)ti we obtain the desired operators λi.

To see the claim, we consider the short exact sequence as a filtration on E with 2
steps. We obtain an induced filtration on ∧r(E) with r + 1 steps and subquotients

∧r(E ′),∧r−1(E ′)⊗ E ′′,∧r−2(E ′)⊗ ∧2(E ′′), . . . ∧r (E ′′)

Thus we see that [∧r(E)] is equal to∑r

i=0
[∧r−i(E ′)][∧i(E ′′)]

and the result follows easily from this and elementary algebra. □

https://stacks.math.columbia.edu/tag/0FIC
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45.14. Weil cohomology theories, III

0FID Let k be a field. Let F be a field of characteristic zero. Suppose we are given the
following data

(D0) A 1-dimensional F -vector space F (1).
(D1) A contravariant functor H∗(−) from the category of smooth projective

schemes over k to the category of graded commutative F -algebras.
(D2’) For every smooth projective scheme X over k a homomorphism cH1 :

Pic(X)→ H2(X)(1) of abelian groups.
We will use the terminology, notation, and conventions regarding (D0) and (D1)
as discussed in Section 45.9. Given a smooth projective scheme X over k and
an invertible OX -module L the cohomology class cH1 (L) ∈ H2(X)(1) of (D2’) is
sometimes called the first Chern class of L in cohomology.

Here is the list of axioms.
(A1) H∗ is compatible with finite coproducts
(A2) cH1 is compatible with pullbacks
(A3) Let X be a smooth projective scheme over k. Let E be a locally free OX -

module of rank r ≥ 1. Consider the morphism p : P = P(E)→ X. Then
the map⊕

i=0,...,r−1
H∗(X)(−i) −→ H∗(P ), (a0, . . . , ar−1) 7−→

∑
cH1 (OP (1))i ∪ p∗(ai)

is an isomorphism of F -vector spaces.
(A4) Let i : Y → X be the inclusion of an effective Cartier divisor over k with

both X and Y smooth and projective over k. For a ∈ H∗(X) with i∗a = 0
we have a ∪ cH1 (OX(Y )) = 0.

(A5) H∗ is compatible with finite products
(A6) Let X be a nonempty smooth, projective scheme over k equidimensional

of dimension d. Then there exists an F -linear map λ : H2d(X)(d) → F
such that (id⊗ λ)γ([∆]) = 1 in H∗(X).

(A7) If b : X ′ → X is the blowing up of a smooth center in a smooth projective
scheme X over k2, then b∗ : H∗(X)→ H∗(X ′) is injective.

(A8) If X is a smooth projective scheme over k and k′ = Γ(X,OX), then the
map H0(Spec(k′))→ H0(X) is an isomorphism.

(A9) Let X be a nonempty smooth projective scheme over k equidimensional
of dimension d. Let i : Y → X be a nonempty effective Cartier divisor
smooth over k. For a ∈ H2d−2(X)(d − 1) we have λY (i∗(a)) = λX(a ∪
cH1 (OX(Y )) where λY and λX are as in axiom (A6) for X and Y .

Let us explain more precisely what we mean by each of these axioms. Axioms (A3),
(A4), and (A7) are clear as stated.

Ad (A1). This means that H∗(∅) = 0 and that (i∗, j∗) : H∗(X ⨿ Y ) → H∗(X) ×
H∗(Y ) is an isomorphism where i and j are the coprojections.

Ad (A2). This means that given a morphism f : X → Y of smooth projective
schemes over k and an invertible OY -module N we have f∗cH1 (L) = cH1 (f∗L).

2Then X′ is smooth and projective over k as well, see More on Morphisms, Lemma 37.17.3.
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Ad (A5). This means that H∗(Spec(k)) = F and that for X and Y smooth projec-
tive over k the map H∗(X)⊗F H∗(Y ) → H∗(X × Y ), a⊗ b 7→ p∗(a) ∪ q∗(b) is an
isomorphism where p and q are the projections.

Ad (A6). Let X be a nonempty smooth projective scheme over k which is equidi-
mensional of dimension d. By Lemma 45.14.2 if we have axioms (A1) – (A4) we
can consider the class of the diagonal

γ([∆]) ∈ H2d(X ×X)(d) =
⊕

i
Hi(X)⊗F H2d−i(X)(d)

where the tensor decomposition comes from axiom (A5). Given an F -linear map
λ : H2d(X)(d)→ F we may also view λ as an F -linear map λ : H∗(X)(d)→ F by
precomposing with the projection onto H2d(X)(d). Having said this axiom (A6)
makes sense.

Ad (A8). Let X be a smooth projective scheme over k. Then k′ = Γ(X,OX) is a
finite separable k-algebra (Varieties, Lemma 33.9.3) and hence Spec(k′) is smooth
and projective over k. Thus we may apply H∗ to Spec(k′) and axiom (A8) makes
sense.

Ad (A9). We will see in Remark 45.14.6 that if we have axioms (A1) – (A7) then
the map λ of axiom (A6) is unique.

Lemma 45.14.1.0FIE Assume given (D0), (D1), and (D2’) satisfying axioms (A1), (A2),
(A3), and (A4). There is a unique rule which assigns to every smooth projective X
over k a ring homomorphism

chH : K0(Vect(X)) −→
∏

i≥0
H2i(X)(i)

compatible with pullbacks such that chH(L) = exp(cH1 (L)) for any invertible OX -
module L.

Proof. Immediate from Proposition 45.12.4 applied to the category of smooth pro-
jective schemes over k, the functor A : X 7→

⊕
i≥0 H

2i(X)(i), and the map cH1 . □

Lemma 45.14.2.0FIF Assume given (D0), (D1), and (D2’) satisfying axioms (A1), (A2),
(A3), and (A4). There is a unique rule which assigns to every smooth projective X
over k a graded ring homomorphism

γ : CH∗(X) −→
⊕

i≥0
H2i(X)(i)

compatible with pullbacks such that chH(α) = γ(ch(α)) for α in K0(Vect(X)).

Proof. Recall that we have an isomorphism

K0(Vect(X))⊗Q −→ CH∗(X)⊗Q, α 7−→ ch(α) ∩ [X]

see Chow Homology, Lemma 42.58.1. It is an isomorphism of rings by Chow Ho-
mology, Remark 42.56.5. We define γ by the formula γ(α) = chH(α′) where chH
is as in Lemma 45.14.1 and α′ ∈ K0(Vect(X)) is such that ch(α′) ∩ [X] = α in
CH∗(X)⊗Q.

The construction α 7→ γ(α) is compatible with pullbacks because both chH and
taking Chern classes is compatible with pullbacks, see Lemma 45.14.1 and Chow
Homology, Remark 42.59.9.

https://stacks.math.columbia.edu/tag/0FIE
https://stacks.math.columbia.edu/tag/0FIF
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We still have to see that γ is graded. Let ψ2 : K0(Vect(X))→ K0(Vect(X)) be the
second Adams operator, see Chow Homology, Lemma 42.56.1. If α ∈ CHi(X) and
α′ ∈ K0(Vect(X))⊗Q is the unique element with ch(α′) ∩ [X] = α, then we have
seen in Chow Homology, Section 42.58 that ψ2(α′) = 2iα′. Hence we conclude that
chH(α′) ∈ H2i(X)(i) by Lemma 45.12.5 as desired. □

Lemma 45.14.3.0FIH Let b : X ′ → X be the blowing up of a smooth projective scheme
over k in a smooth closed subscheme Z ⊂ X. Picture

E
j
//

π

��

X ′

b

��
Z

i // X

Assume there exists an element of K0(X) whose restriction to Z is equal to the class
of CZ/X in K0(Z). Assume every irreducible component of Z has codimension r in
X. Then there exists a cycle θ ∈ CHr−1(X ′) such that b![Z] = [E] · θ in CHr(X ′)
and π∗j

!(θ) = [Z] in CHr(Z).

Proof. The scheme X is smooth and projective over k and hence we have K0(X) =
K0(Vect(X)). See Derived Categories of Schemes, Lemmas 36.36.2 and 36.38.5.
Let α ∈ K0(Vect(X)) be an element whose restriction to Z is CZ/X . By Chow
Homology, Lemma 42.56.3 there exists an element α∨ which restricts to C∨

Z/X . By
the blow up formula (Chow Homology, Lemma 42.59.11) we have

b![Z] = b!i∗[Z] = j∗res(b!)([Z]) = j∗(cr−1(F∨) ∩ π∗[Z]) = j∗(cr−1(F∨) ∩ [E])

where F is the kernel of the surjection π∗CZ/X → CE/X′ . Observe that b∗α∨ −
[OX′(E)] is an element ofK0(Vect(X ′)) which restricts to [π∗C∨

Z/X ]−[C∨
E/X′ ] = [F∨]

on E. Since capping with Chern classes commutes with j∗ we conclude that the
above is equal to

cr−1(b∗α∨ − [OX′(E)]) ∩ [E]
in the chow group of X ′. Hence we see that setting

θ = cr−1(b∗α∨ − [OX′(E)]) ∩ [X ′]

we get the first relation θ · [E] = b![Z] for example by Chow Homology, Lemma
42.62.2. For the second relation observe that

j!θ = j!(cr−1(b∗α∨ − [OX′(E)]) ∩ [X ′]) = cr−1(F∨) ∩ j![X ′] = cr−1(F∨) ∩ [E]

in the chow groups of E. To prove that π∗ of this is equal to [Z] it suffices to prove
that the degree of the codimension r − 1 cycle (−1)r−1cr−1(F) ∩ [E] on the fibres
of π is 1. This is a computation we omit. □

Lemma 45.14.4.0FII Assume given data (D0), (D1), and (D2’) satisfying axioms (A1)
– (A4) and (A7). Let X be a smooth projective scheme over k. Let Z ⊂ X
be a smooth closed subscheme such that every irreducible component of Z has
codimension r in X. Assume the class of CZ/X in K0(Z) is the restriction of an
element of K0(X). If a ∈ H∗(X) and a|Z = 0 in H∗(Z), then γ([Z]) ∪ a = 0.

Proof. Let b : X ′ → X be the blowing up. By (A7) it suffices to show that

b∗(γ([Z]) ∪ a) = b∗γ([Z]) ∪ b∗a = 0

https://stacks.math.columbia.edu/tag/0FIH
https://stacks.math.columbia.edu/tag/0FII
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By Lemma 45.14.3 we have
b∗γ([Z]) = γ(b∗[Z]) = γ([E] · θ) = γ([E]) ∪ γ(θ)

Hence because b∗a restricts to zero on E and since γ([E]) = cH1 (OX′(E)) we get
what we want from (A4). □

Lemma 45.14.5.0FIJ Assume given data (D0), (D1), and (D2’) satisfying axioms (A1)
– (A7). Then axiom (A) of Section 45.9 holds with

∫
X

= λ as in axiom (A6).

Proof. Let X be a nonempty smooth projective scheme over k which is equidimen-
sional of dimension d. We will show that the graded F -vector space H∗(X)(d)[2d] is
a left dual to H∗(X). This will prove what we want by Homology, Lemma 12.17.5.
We are going to use axiom (A5) which in particular says that

H∗(X ×X)(d) =
⊕

Hi(X)⊗Hj(X)(d) =
⊕

Hi(X)(d)⊗Hj(X)

Define a map
η : F −→ H∗(X ×X)(d)

by multiplying by γ([∆]) ∈ H2d(X ×X)(d). On the other hand, define a map

ϵ : H∗(X ×X)(d) −→ H∗(X)(d) λ−→ F

by first using pullback ∆∗ by the diagonal morphism ∆ : X → X × X and then
using the F -linear map λ : H2d(X)(d) → F of axiom (A6) precomposed by the
projection H∗(X)(d)→ H2d(X)(d). In order to show that H∗(X)(d) is a left dual
to H∗(X) we have to show that the composition of the maps

η ⊗ 1 : H∗(X) −→ H∗(X ×X ×X)(d)
and

1⊗ ϵ : H∗(X ×X ×X)(d) −→ H∗(X)
is the identity. If a ∈ H∗(X) then we see that the composition maps a to

(1⊗ λ)(∆∗
23(q∗

12γ([∆]) ∪ q∗
3a)) = (1⊗ λ)(γ([∆]) ∪ p∗

2a)
where qi : X × X × X → X and qij : X × X × X → X × X are the projections,
∆23 : X×X → X×X×X is the diagonal, and pi : X×X → X are the projections.
The equality holds because ∆∗

23(q∗
12γ([∆]) = ∆∗

23γ([∆×X]) = γ([∆]) and because
∆∗

23q
∗
3a = p∗

2a. Since γ([∆]) ∪ p∗
1a = γ([∆]) ∪ p∗

2a (see below) the above simplifies
to

(1⊗ λ)(γ([∆]) ∪ p∗
1a) = a

by our choice of λ as desired. The second condition (ϵ ⊗ 1) ◦ (1 ⊗ η) = id of
Categories, Definition 4.43.5 is proved in exactly the same manner.
Note that p∗

1a and pr∗
2a restrict to the same cohomology class on ∆ ⊂ X × X.

Moreover we have C∆/X×X = Ω1
∆ which is the restriction of p∗

1Ω1
X . Hence Lemma

45.14.4 implies γ([∆]) ∪ p∗
1a = γ([∆]) ∪ p∗

2a and the proof is complete. □

Remark 45.14.6 (Uniqueness of trace maps).0FIK Assume given data (D0), (D1), and
(D2’) satisfying axioms (A1) – (A7). Let X be a smooth projective scheme over k
which is nonempty and equidimensional of dimension d. Combining what was said
in the proofs of Lemma 45.14.5 and Homology, Lemma 12.17.5 we see that

γ([∆]) ∈
⊕

i
Hi(X)⊗H2d−i(X)(d)

https://stacks.math.columbia.edu/tag/0FIJ
https://stacks.math.columbia.edu/tag/0FIK
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defines a perfect duality between Hi(X) and H2d−i(X)(d) for all i. In particular,
the linear map

∫
X

= λ : H2d(X)(d)→ F of axiom (A6) is unique! We will call the
linear map

∫
X

the trace map of X from now on.

Lemma 45.14.7.0FIL Assume given data (D0), (D1), and (D2’) satisfying axioms (A1)
– (A7). Then axiom (B) of Section 45.9 holds.

Proof. Axiom (B)(a) is immediate from axiom (A5). Let X and Y be nonempty
smooth projective schemes over k equidimensional of dimensions d and e. To see
that axiom (B)(b) holds, observe that the diagonal ∆X×Y of X × Y is the inter-
section product of the pullbacks of the diagonals ∆X of X and ∆Y of Y by the
projections p : X × Y × X × Y → X × X and q : X × Y × X × Y → Y × Y .
Compatibility of γ with intersection products then gives that

γ([∆X×Y ]) ∈ H2d+2e(X × Y ×X × Y )(d+ e)
is the cup product of the pullbacks of γ([∆X ]) and γ([∆Y ]) by p and q. Write

γ([∆X×Y ]) =
∑

ηX×Y,i with ηX×Y,i ∈ Hi(X × Y )⊗H2d+2e−i(X × Y )(d+ e)

and simiarly γ([∆X ]) =
∑
ηX,i and γ([∆Y ]) =

∑
ηY,i. The observation above

implies we have
ηX×Y,0 =

∑
i∈Z

p∗ηX,i ∪ q∗ηY,−i

(If our cohomology theory vanishes in negative degrees, which will be true in almost
all cases, then only the term for i = 0 contributes and ηX×Y,0 lies in H0(X) ⊗
H0(Y ) ⊗ H2d(X)(d) ⊗ H2e(Y )(e) as expected, but we don’t need this.) Since
λX : H2d(X)(d) → F and λY : H2e(Y )(e) → F send ηX,0 and ηY,0 to 1 in H∗(X)
and H∗(Y ), we see that λX⊗λY sends ηX×Y,0 to 1 in H∗(X)⊗H∗(Y ) = H∗(X×Y )
and the proof is complete. □

Lemma 45.14.8.0FIM Assume given data (D0), (D1), and (D2’) satisfying axioms (A1)
– (A7). Then axiom (C)(d) of Section 45.9 holds.

Proof. We have γ([Spec(k)]) = 1 ∈ H∗(Spec(k)) by construction. Since
H0(Spec(k)) = F, H0(Spec(k)× Spec(k)) = H0(Spec(k))⊗F H0(Spec(k))

the map
∫

Spec(k) = λ of axiom (A6) must send 1 to 1 because we have seen that∫
Spec(k)×Spec(k) =

∫
Spec(k)

∫
Spec(k) in Lemma 45.14.7. □

Assume given data (D0), (D1), and (D2’) satisfying axioms (A1) – (A7). Then we
obtain data (D0), (D1), (D2), and (D3) of Section 45.9 satisfying axioms (A), (B)
and (C)(a), (C)(c), and (C)(d) of Section 45.9, see Lemmas 45.14.5, 45.14.7, and
45.14.8. Moreover, we have the pushforwards f∗ : H∗(X)→ H∗(Y ) as constructed
in Section 45.9. The only axiom of Section 45.9 which isn’t clear yet is axiom
(C)(b).

Lemma 45.14.9.0FIN Assume given data (D0), (D1), and (D2’) satisfying axioms (A1)
– (A7). Let p : P → X be as in axiom (A3) with X nonempty equidimensional.
Then γ commutes with pushforward along p.

Proof. It suffices to prove this on generators for CH∗(P ). Thus it suffices to prove
this for a cycle class of the form ξi · p∗α where 0 ≤ i ≤ r − 1 and α ∈ CH∗(X).
Note that p∗(ξi · p∗α) = 0 if i < r − 1 and p∗(ξr−1 · p∗α) = α. On the other hand,

https://stacks.math.columbia.edu/tag/0FIL
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we have γ(ξi · p∗α) = ci ∪ p∗γ(α) and by the projection formula (Lemma 45.9.1) we
have

p∗γ(ξi · p∗α) = p∗(ci) ∪ γ(α)
Thus it suffices to show that p∗c

i = 0 for i < r − 1 and p∗c
r−1 = 1. Equivalently,

it suffices to prove that λP : H2d+2r−2(P )(d+ r − 1)→ F defined by the rules

λP (ci ∪ p∗(a)) =
{

0 if i < r − 1∫
X

(a) if i = r − 1
satisfies the condition of axiom (A5). This follows from the computation of the
class of the diagonal of P in Lemma 45.6.2. □

Lemma 45.14.10.0FVR Assume given data (D0), (D1), and (D2’) satisfying axioms (A1)
– (A7). If k′/k is a Galois extension, then we have

∫
Spec(k′) 1 = [k′ : k].

Proof. We observe that
Spec(k′)× Spec(k′) =

∐
σ∈Gal(k′/k)

(Spec(σ)× id)−1∆

as cycles on Spec(k′) × Spec(k′). Our construction of γ always sends [X] to 1 in
H0(X). Thus 1⊗ 1 = 1 =

∑
(Spec(σ)× id)∗γ([∆]). Denote λ : H0(Spec(k′))→ F

the map from axiom (A6), in other words (id⊗ λ)(γ(∆)) = 1 in H0(Spec(k′)). We
obtain

λ(1)1 = (id⊗ λ)(1⊗ 1)

= (id⊗ λ)(
∑

(Spec(σ)× id)∗γ([∆]))

=
∑

(Spec(σ)× id)∗((id⊗ λ)(γ([∆]))

=
∑

(Spec(σ)× id)∗(1)
= [k′ : k]

Since λ is another name for
∫

Spec(k′) (Remark 45.14.6) the proof is complete. □

Lemma 45.14.11.0FIP Assume given data (D0), (D1), and (D2’) satisfying axioms (A1)
– (A7). In order to show that γ commutes with pushforward it suffices to show that
i∗(1) = γ([Z]) if i : Z → X is a closed immersion of nonempty smooth projective
equidimensional schemes over k.

Proof. We will use without further mention that we’ve constructed our cycle class
map γ in Lemma 45.14.2 compatible with intersection products and pullbacks and
that we’ve already shown axioms (A), (B), (C)(a), (C)(c), and (C)(d) of Section
45.9, see Lemma 45.14.5, Remark 45.14.6, and Lemmas 45.14.7 and 45.14.8. In
particular, we may use (for example) Lemma 45.9.1 to see that pushforward on H∗

is compatible with composition and satisfies the projection formula.
Let f : X → Y be a morphism of nonempty equidimensional smooth projective
schemes over k. We are trying to show f∗γ(α) = γ(f∗α) for any cycle class α
on X. We can write α as a Q-linear combination of products of Chern classes of
locally free OX -modules (Chow Homology, Lemma 42.58.1). Thus we may assume
α is a product of Chern classes of finite locally free OX -modules E1, . . . , Er. Pick
p : P → X as in the splitting principle (Chow Homology, Lemma 42.43.1). By
Chow Homology, Remark 42.43.2 we see that p is a composition of projective space
bundles and that α = p∗(ξ1 ∩ . . . ∩ ξd ∩ ·p∗α) where ξi are first Chern classes

https://stacks.math.columbia.edu/tag/0FVR
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of invertible modules. By Lemma 45.14.9 we know that p∗ commutes with cycle
classes. Thus it suffices to prove the property for the composition f ◦ p. Since
p∗E1, . . . , p

∗Er have filtrations whose successive quotients are invertible modules,
this reduces us to the case where α is of the form ξ1 ∩ . . . ∩ ξt ∩ [X] for some first
Chern classes ξi of invertible modules Li.

Assume α = c1(L1) ∩ . . . ∩ c1(Lt) ∩ [X] for some invertible modules Li on X. Let
L be an ample invertible OX -module. For n ≫ 0 the invertible OX -modules L⊗n

and L1 ⊗ L⊗n are both very ample on X over k, see Morphisms, Lemma 29.39.8.
Since c1(L1) = c1(L1⊗L⊗n)− c1(L⊗n) this reduces us to the case where L1 is very
ample. Repeating this with Li for i = 2, . . . , t we reduce to the case where Li is
very ample on X over k for all i = 1, . . . , t.

Assume k is infinite and α = c1(L1)∩. . .∩c1(Lt)∩[X] for some very ample invertible
modules Li on X over k. By Bertini in the form of Varieties, Lemma 33.47.3 we can
successively find regular sections si of Li such that the schemes Z(s1)∩ . . .∩Z(si)
are smooth over k and of codimension i in X. By the construction of capping with
the first class of an invertible module (going back to Chow Homology, Definition
42.24.1), this reduces us to the case where α = [Z] for some nonempty smooth
closed subscheme Z ⊂ X which is equidimensional.

Assume α = [Z] where Z ⊂ X is a smooth closed subscheme. Choose a closed
embedding X → Pn. We can factor f as

X → Y ×Pn → Y

Since we know the result for the second morphism by Lemma 45.14.9 it suffices to
prove the result when α = [Z] where i : Z → X is a closed immersion and f is a
closed immersion. Then j = f ◦ i is a closed embedding too. Using the hypothesis
for i and j we win.

We still have to prove the lemma in case k is finite. We urge the reader to skip
the rest of the proof. Everything we said above continues to work, except that we
do not know we can choose the sections si cutting out our Z over k as k is finite.
However, we do know that we can find si over the algebraic closure k of k (by the
same lemma). This means that we can find a finite extension k′/k such that our
sections si are defined over k′. Denote π : Xk′ → X the projection. The arguments
above shows that we get the desired conclusion (from the assumption in the lemma)
for the cycle π∗α and the morphism f ◦ π : Xk′ → Y . We have π∗π

∗α = [k′ : k]α,
see Chow Homology, Lemma 42.15.2. On the other hand, we have

π∗γ(π∗α) = π∗π
∗γ(α) = γ(α)π∗1

by the projection formula for our cohomology theory. Observe that π is a projection
(!) and hence we have π∗(1) =

∫
Spec(k′)(1)1 by Lemma 45.9.2. Thus to finish the

proof in the finite field case, it suffices to prove that
∫

Spec(k′)(1) = [k′ : k] which we
do in Lemma 45.14.10. □

In the lemmas below we use the Grassmannians defined and constructed in Con-
structions, Section 27.22.

Lemma 45.14.12.0FIQ Assume given data (D0), (D1), and (D2’) satisfying axioms
(A1) – (A7). Given integers 0 < l < n and a nonempty equidimensional smooth
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projective scheme X over k consider the projection morphism p : X×G(l, n)→ X.
Then γ commutes with pushforward along p.

Proof. If l = 1 or l = n−1 then p is a projective bundle and the result follows from
Lemma 45.14.9. In general there exists a morphism

h : Y → X ×G(l, n)
such that both h and p ◦ h are compositions of projective space bundles. Namely,
denote G(1, 2, . . . , l;n) the partial flag variety. Then the morphism

G(1, 2, . . . , l;n)→ G(l, n)
is a compostion of projective space bundles and similarly the structure morphism
G(1, 2, . . . , l;n)→ Spec(k) is of this form. Thus we may set Y = X×G(1, 2, . . . , l;n).
Since every cycle on X ×G(l, n) is the pushforward of a cycle on Y , the result for
Y → X and the result for Y → X ×G(l, n) imply the result for p. □

Lemma 45.14.13.0FIR Assume given data (D0), (D1), and (D2’) satisfying axioms (A1)
– (A7). In order to show that γ commutes with pushforward it suffices to show that
i∗(1) = γ([Z]) if i : Z → X is a closed immersion of nonempty smooth projective
equidimensional schemes over k such that the class of CZ/X in K0(Z) is the pullback
of a class in K0(X).

Proof. By Lemma 45.14.11 it suffices to show that i∗(1) = γ([Z]) if i : Z → X is a
closed immersion of nonempty smooth projective equidimensional schemes over k.
Say Z has codimension r in X. Let L be a sufficiently ample invertible module on
X. Choose n > 0 and a surjection

O⊕n
Z → CZ/X ⊗ L|Z

This gives a morphism g : Z → G(n − r, n) to the Grassmannian over k, see
Constructions, Section 27.22. Consider the composition

Z → X ×G(n− r, n)→ X

Pushforward along the second morphism is compatible with classes of cycles by
Lemma 45.14.12. The conormal sheaf C of the closed immersion Z → X×G(n−r, n)
sits in a short exact sequence

0→ CZ/X → C → g∗ΩG(n−r,n) → 0

See More on Morphisms, Lemma 37.11.13. Since CZ/X ⊗ L|Z is the pull back of a
finite locally free sheaf on G(n− r, n) we conclude that the class of C in K0(Z) is
the pullback of a class in K0(X ×G(n − r, n)). Hence we have the property for
Z → X ×G(n− r, n) and we conclude. □

Lemma 45.14.14.0FVS Assume given data (D0), (D1), and (D2’) satisfying axioms
(A1) – (A7). If k′′/k′/k are finite separable field extensions, then H0(Spec(k′))→
H0(Spec(k′′)) is injective.

Proof. We may replace k′′ by its normal closure over k which is Galois over k, see
Fields, Lemma 9.21.5. Then k′′ is Galois over k′ as well, see Fields, Lemma 9.21.4.
We deduce we have an isomorphism

k′ ⊗k k′′ −→
∏

σ∈Gal(k′′/k′)
k′′, η ⊗ ζ 7−→ (ησ(ζ))σ

https://stacks.math.columbia.edu/tag/0FIR
https://stacks.math.columbia.edu/tag/0FVS
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This produces an isomorphism
∐
σ Spec(k′′) → Spec(k′) × Spec(k′′) which on co-

homology produces the isomorphism

H∗(Spec(k′))⊗FH∗(Spec(k′′))→
∏

σ
H∗(Spec(k′′)), a′⊗a′′ 7−→ (π∗a′∪Spec(σ)∗a′′)σ

where π : Spec(k′′) → Spec(k′) is the morphism corresponding to the inclusion of
k′ in k′′. We conclude the lemma is true by taking a′′ = 1. □

Lemma 45.14.15.0FIS Assume given data (D0), (D1), and (D2’) satisfying axioms (A1)
– (A8). Let b : X ′ → X be a blowing up of a smooth projective scheme X over
k which is nonempty equidimensional of dimension d in a nonwhere dense smooth
center Z. Then b∗(1) = 1.

Proof. We may replace X by a connected component of X (some details omitted).
Thus we may assume X is connected and hence irreducible. Set k′ = Γ(X,OX) =
Γ(X ′,OX′); we omit the proof of the equality. Choose a closed point x′ ∈ X ′ which
isn’t contained in the exceptional divisor and whose residue field k′′ is separable
over k; this is possible by Varieties, Lemma 33.25.6. Denote x ∈ X the image
(whose residue field is equal to k′′ as well of course). Consider the diagram

x′ ×X ′ //

��

X ′ ×X ′

��
x×X // X ×X

The class of the diagonal ∆ = ∆X pulls back to the class of the “diagonal point”
δx : x→ x×X and similarly for the class of the diagonal ∆′. On the other hand,
the diagonal point δx pulls back to the diagonal point δx′ by the left vertical arrow.
Write γ([∆]) =

∑
ηi with ηi ∈ Hi(X) ⊗ H2d−i(X)(d) and γ([∆′]) =

∑
η′
i with

η′
i ∈ Hi(X ′) ⊗ H2d−i(X ′)(d). The arguments above show that η0 and η′

0 map to
the same class in

H0(x′)⊗F H2d(X ′)(d)
We have H0(Spec(k′)) = H0(X) = H0(X ′) by axiom (A8). By Lemma 45.14.14
this common value maps injectively into H0(x′). We conclude that η0 maps to η′

0
by the map

H0(X)⊗F H2d(X)(d) −→ H0(X ′)⊗F H2d(X ′)(d)

This means that
∫
X

is equal to
∫
X′ composed with the pullback map. This proves

the lemma. □

Lemma 45.14.16.0FIT Assume given data (D0), (D1), and (D2’) satisfying axioms (A1)
– (A8). Then the cycle class map γ commutes with pushforward.

Proof. Let i : Z → X be as in Lemma 45.14.13. Consider the diagram

E
j
//

π

��

X ′

b

��
Z

i // X

Let θ ∈ CHr−1(X ′) be as in Lemma 45.14.3. Then π∗j
!θ = [Z] in CH∗(Z) implies

that π∗γ(j!θ) = 1 by Lemma 45.14.9 because π is a projective space bundle. Hence

https://stacks.math.columbia.edu/tag/0FIS
https://stacks.math.columbia.edu/tag/0FIT
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we see that

i∗(1) = i∗(π∗(γ(j!θ))) = b∗j∗(j∗γ(θ)) = b∗(j∗(1) ∪ γ(θ))

We have j∗(1) = γ([E]) by (A9). Thus this is equal to

b∗(γ([E]) ∪ γ(θ)) = b∗(γ([E] · θ)) = b∗(γ(b∗[Z])) = b∗b
∗γ([Z]) = b∗(1) ∪ γ([Z])

Since b∗(1) = 1 by Lemma 45.14.15 the proof is complete. □

Proposition 45.14.17.0FIU Assume given data (D0), (D1), and (D2’) satisfying axioms
(A1) – (A8). Then we have a Weil cohomology theory.

Proof. We have axioms (A), (B) and (C)(a), (C)(c), and (C)(d) of Section 45.9 by
Lemmas 45.14.5, 45.14.7, and 45.14.8. We have axiom (C)(b) by Lemma 45.14.16.
Finally, the additional condition of Definition 45.11.4 holds because it is the same
as our axiom (A8). □

The following lemma is sometimes useful to show that we get a Weil cohomology
theory over a nonclosed field by reducing to a closed one.

Lemma 45.14.18.0FVT Let k′/k be an extension of fields. Let F ′/F be an extension of
fields of characteristic 0. Assume given

(1) data (D0), (D1), (D2’) for k and F denoted F (1), H∗, cH1 ,
(2) data (D0), (D1), (D2’) for k′ and F ′ denoted F ′(1), (H ′)∗, cH

′

1 , and
(3) an isomorphism F (1)⊗F F ′ → F ′(1), functorial isomorphisms H∗(X)⊗F

F ′ → (H ′)∗(Xk′) on the category of smooth projective schemes X over k
such that the diagrams

Pic(X)
cH1

//

��

H2(X)(1)

��
Pic(Xk′)

cH
′

1 // (H ′)2(Xk′)(1)

commute.
In this case, if F ′(1), (H ′)∗, cH

′

1 satisfy axioms (A1) – (A9), then the same is true
for F (1), H∗, cH1 .

Proof. We go by the axioms one by one.

Axiom (A1). We have to show H∗(∅) = 0 and that (i∗, j∗) : H∗(X ⨿ Y ) →
H∗(X) × H∗(Y ) is an isomorphism where i and j are the coprojections. By the
functorial nature of the isomorphisms H∗(X)⊗F F ′ → (H ′)∗(Xk′) this follows from
linear algebra: if φ : V → W is an F -linear map of F -vector spaces, then φ is an
isomorphism if and only if φF ′ : V ⊗F F ′ →W ⊗F F ′ is an isomorphism.

Axiom (A2). This means that given a morphism f : X → Y of smooth projective
schemes over k and an invertible OY -module N we have f∗cH1 (L) = cH1 (f∗L). This
is immediately clear from the corresponding property for cH′

1 , the commutative
diagrams in the lemma, and the fact that the canonical map V → V ⊗F F ′ is
injective for any F -vector space V .

Axiom (A3). This follows from the principle stated in the proof of axiom (A1) and
compatibility of cH1 and cH

′

1 .

https://stacks.math.columbia.edu/tag/0FIU
https://stacks.math.columbia.edu/tag/0FVT
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Axiom (A4). Let i : Y → X be the inclusion of an effective Cartier divisor over
k with both X and Y smooth and projective over k. For a ∈ H∗(X) with i∗a =
0 we have to show a ∪ cH1 (OX(Y )) = 0. Denote a′ ∈ (H ′)∗(Xk′) the image of
a. The assumption implies that (i′)∗a′ = 0 where i′ : Yk′ → Xk′ is the base
change of i. Hence we get a′ ∪ cH′

1 (OXk′ (Yk′)) = 0 by the axiom for (H ′)∗. Since
a′ ∪ cH′

1 (OXk′ (Yk′)) is the image of a ∪ cH1 (OX(Y )) we conclude by the princple
stated in the proof of axiom (A2).

Axiom (A5). This means that H∗(Spec(k)) = F and that for X and Y smooth
projective over k the map H∗(X)⊗F H∗(Y )→ H∗(X×Y ), a⊗ b 7→ p∗(a)∪ q∗(b) is
an isomorphism where p and q are the projections. This follows from the principle
stated in the proof of axiom (A1).

We interrupt the flow of the arguments to show that for every smooth projective
scheme X over k the diagram

CH∗(X)
γ
//

g∗

��

⊕
H2i(X)(i)

��
CH∗(Xk′) γ′

//⊕(H ′)2i(Xk′)(i)

commutes. Observe that we have γ as we know axioms (A1) – (A4) already; see
Lemma 45.14.2. Also, the left vertical arrow is the one discussed in Chow Homology,
Section 42.67 for the morphism of base schemes g : Spec(k′) → Spec(k). More
precisely, it is the map given in Chow Homology, Lemma 42.67.4. Pick α ∈ CH∗(X).
Write α = ch(β) ∩ [X] in CH∗(X) ⊗ Q for some β ∈ K0(Vect(X)) ⊗ Q so that
γ(α) = chH(β); this is our construction of γ. Since the map of Chow Homology,
Lemma 42.67.4 is compatible with capping with Chern classes by Chow Homology,
Lemma 42.67.8 we see that g∗α = ch((Xk′ → X)∗β) ∩ [Xk′ ]. Hence γ′(g∗α) =
chH

′((Xk′ → X)∗β). Thus commutativity of the diagram will hold if for any locally
free OX -module E of rank r and 0 ≤ i ≤ r the element cHi (E) of H2i(X)(i) maps
to the element cH′

i (Ek′) in (H ′)2i(Xk′)(i). Because we have the projective space
bundle formula for both X and X ′ we may replace X by a projective space bundle
over X finitely many times to show this. Thus we may assume E has a filtration
whose graded pieces are invertible OX -modules L1, . . . ,Lr. See Chow Homology,
Lemma 42.43.1 and Remark 42.43.2. Then cHi (E is the ith elementary symmetric
polynomial in cH1 (L1), . . . , cH1 (Lr) and we conclude by our assumption that we have
agreement for first Chern classes.

Axiom (A6). Suppose given F -vector spaces V , W , an element v ∈ V , and a tensor
ξ ∈ V ⊗F W . Denote V ′ = V ⊗F F ′, W ′ = W ⊗F F ′ and v′, ξ′ the images of v, ξ in
V ′, V ′⊗F ′W ′. The linear algebra principle we will use in the proof of axiom (A6) is
the following: there exists an F -linear map λ : W → F such that (1⊗λ)ξ = v if and
only if there exists an F ′-linear map λ′ : W ⊗F F ′ → F ′ such that (1⊗ λ′)ξ′ = v′.

Let X be a nonempty equidimensional smooth projective scheme over k of dimen-
sion d. Denote γ = γ([∆]) in H2d(X×X)(d) (unadorned fibre products will be over
k). Observe/recall that this makes sense as we know axioms (A1) – (A4) already;
see Lemma 45.14.2. We may decompose

γ =
∑

γi, γi ∈ Hi(X)⊗F H2d−i(X)(d)
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in the Künneth decomposition. Similarly, denote γ′ = γ([∆′]) =
∑
γ′
i in (H ′)2d(Xk′×k′

Xk′)(d). By the linear algebra princple mentioned above, it suffices to show that
γ0 maps to γ′

0 in (H ′)0(X) ⊗F ′ (H ′)2d(X ′)(d). By the compatibility of Künneth
decompositions we see that it suffice to show that γ maps to γ′ in

(H ′)2d(Xk′ ×k′ Xk′)(d) = (H ′)2d((X ×X)k′)(d)
Since ∆k′ = ∆′ this follows from the discussion above.
Axiom (A7). This follows from the linear algebra fact: a linear map V → W of
F -vector spaces is injective if and only if V ⊗F F ′ →W ⊗F F ′ is injective.
Axiom (A8). Follows from the linear algebra fact used in the proof of axiom (A1).
Axiom (A9). Let X be a nonempty smooth projective scheme over k equidimen-
sional of dimension d. Let i : Y → X be a nonempty effective Cartier divisor
smooth over k. Let λY and λX be as in axiom (A6) for X and Y . We have to show:
for a ∈ H2d−2(X)(d − 1) we have λY (i∗(a)) = λX(a ∪ cH1 (OX(Y )). By Remark
45.14.6 we know that λX : H2d(X)(d)→ F and λY : H2d−2(Y )(d− 1) are uniquely
determined by the requirement in axiom (A6). Having said this, it follows from our
proof of axiom (A6) for H∗ above that λX ⊗ idF ′ corresponds to λXk′ via the given
identification H2d(X)(d)⊗F F ′ = H2d(Xk′)(d). Thus the fact that we know axiom
(A9) for F ′(1), (H ′)∗, cH

′

1 implies the axiom for F (1), H∗, cH1 by a diagram chase.
This completes the proof of the lemma. □
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CHAPTER 46

Adequate Modules

06Z1 46.1. Introduction

06Z2 For any scheme X the category QCoh(OX) of quasi-coherent modules is abelian
and a weak Serre subcategory of the abelian category of all OX -modules. The same
thing works for the category of quasi-coherent modules on an algebraic space X
viewed as a subcategory of the category of all OX -modules on the small étale site
of X. Moreover, for a quasi-compact and quasi-separated morphism f : X → Y
the pushforward f∗ and higher direct images preserve quasi-coherence.

Next, let X be a scheme and let O be the structure sheaf on one of the big sites
of X, say, the big fppf site. The category of quasi-coherent O-modules is abelian
(in fact it is equivalent to the category of usual quasi-coherent OX -modules on the
scheme X we mentioned above) but its imbedding into Mod(O) is not exact. An
example is the map of quasi-coherent modules

OA1
k
−→ OA1

k

on A1
k = Spec(k[x]) given by multiplication by x. In the abelian category of

quasi-coherent sheaves this map is injective, whereas in the abelian category of
all O-modules on the big site of A1

k this map has a nontrivial kernel as we see
by evaluating on sections over Spec(k[x]/(x)) = Spec(k). Moreover, for a quasi-
compact and quasi-separated morphism f : X → Y the functor fbig,∗ does not
preserve quasi-coherence.

In this chapter we introduce the category of what we will call adequate modules,
closely related to quasi-coherent modules, which “fixes” the two problems mentioned
above. Another solution, which we will implement when we talk about quasi-
coherent modules on algebraic stacks, is to consider O-modules which are locally
quasi-coherent and satisfy the flat base change property. See Cohomology of Stacks,
Section 103.8, Cohomology of Stacks, Remark 103.10.7, and Derived Categories of
Stacks, Section 104.5.

46.2. Conventions

06Z3 In this chapter we fix τ ∈ {Zar, étale, smooth, syntomic, fppf} and we fix a big
τ -site Schτ as in Topologies, Section 34.2. All schemes will be objects of Schτ . In
particular, given a scheme S we obtain sites (Aff/S)τ ⊂ (Sch/S)τ . The structure
sheaf O on these sites is defined by the rule O(T ) = Γ(T,OT ).

All rings A will be such that Spec(A) is (isomorphic to) an object of Schτ . Given a
ring A we denote AlgA the category of A-algebras whose objects are the A-algebras
B of the form B = Γ(U,OU ) where S is an affine object of Schτ . Thus given an

3943
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affine scheme S = Spec(A) the functor
(Aff/S)τ −→ AlgA, U 7−→ O(U)

is an equivalence.

46.3. Adequate functors

06US In this section we discuss a topic closely related to direct images of quasi-coherent
sheaves. Most of this material was taken from the paper [Jaf97].

Definition 46.3.1.06Z4 Let A be a ring. A module-valued functor is a functor F :
AlgA → Ab such that

(1) for every object B of AlgA the group F (B) is endowed with the structure
of a B-module, and

(2) for any morphism B → B′ of AlgA the map F (B)→ F (B′) is B-linear.
A morphism of module-valued functors is a transformation of functors φ : F → G
such that F (B)→ G(B) is B-linear for all B ∈ Ob(AlgA).

Let S = Spec(A) be an affine scheme. The category of module-valued functors on
AlgA is equivalent to the category PMod((Aff/S)τ ,O) of presheaves of O-modules.
The equivalence is given by the rule which assigns to the module-valued functor
F the presheaf F defined by the rule F(U) = F (O(U)). This is clear from the
equivalence (Aff/S)τ → AlgA, U 7→ O(U) given in Section 46.2. The quasi-inverse
sets F (B) = F(Spec(B)).
An important special case of a module-valued functor comes about as follows. Let
M be an A-module. Then we will denote M the module-valued functor B 7→
M ⊗A B (with obvious B-module structure). Note that if M → N is a map of A-
modules then there is an associated morphism M → N of module-valued functors.
Conversely, any morphism of module-valued functors M → N comes from an A-
module map M → N as the reader can see by evaluating on B = A. In other words
ModA is a full subcategory of the category of module-valued functors on AlgA.
Given and A-module map φ : M → N then Coker(M → N) = Q where Q =
Coker(M → N) because ⊗ is right exact. But this isn’t the case for the kernel in
general: for example an injective map of A-modules need not be injective after base
change. Thus the following definition makes sense.

Definition 46.3.2.06UT Let A be a ring. A module-valued functor F on AlgA is called
(1) adequate if there exists a map of A-modules M → N such that F is

isomorphic to Ker(M → N).
(2) linearly adequate if F is isomorphic to the kernel of a map A⊕n → A⊕m.

Note that F is adequate if and only if there exists an exact sequence 0 → F →
M → N and F is linearly adequate if and only if there exists an exact sequence
0→ F → A⊕n → A⊕m.
Let A be a ring. In this section we will show the category of adequate functors on
AlgA is abelian (Lemmas 46.3.10 and 46.3.11) and has a set of generators (Lemma
46.3.6). We will also see that it is a weak Serre subcategory of the category of all
module-valued functors on AlgA (Lemma 46.3.16) and that it has arbitrary colimits
(Lemma 46.3.12).

https://stacks.math.columbia.edu/tag/06Z4
https://stacks.math.columbia.edu/tag/06UT
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Lemma 46.3.3.06UU Let A be a ring. Let F be an adequate functor on AlgA. If
B = colimBi is a filtered colimit of A-algebras, then F (B) = colimF (Bi).

Proof. This holds because for any A-module M we have M ⊗AB = colimM ⊗ABi
(see Algebra, Lemma 10.12.9) and because filtered colimits commute with exact
sequences, see Algebra, Lemma 10.8.8. □

Remark 46.3.4.06UV Consider the category Algfp,A whose objects are A-algebras B
of the form B = A[x1, . . . , xn]/(f1, . . . , fm) and whose morphisms are A-algebra
maps. Every A-algebra B is a filtered colimit of finitely presented A-algebra, i.e., a
filtered colimit of objects of Algfp,A. By Lemma 46.3.3 we conclude every adequate
functor F is determined by its restriction to Algfp,A. For some questions we can
therefore restrict to functors on Algfp,A. For example, the category of adequate
functors does not depend on the choice of the big τ -site chosen in Section 46.2.

Lemma 46.3.5.06UW Let A be a ring. Let F be an adequate functor on AlgA. If B → B′

is flat, then F (B)⊗B B′ → F (B′) is an isomorphism.

Proof. Choose an exact sequence 0→ F →M → N . This gives the diagram

0 // F (B)⊗B B′ //

��

(M ⊗A B)⊗B B′ //

��

(N ⊗A B)⊗B B′

��
0 // F (B′) // M ⊗A B′ // N ⊗A B′

where the rows are exact (the top one because B → B′ is flat). Since the right two
vertical arrows are isomorphisms, so is the left one. □

Lemma 46.3.6.06UX Let A be a ring. Let F be an adequate functor on AlgA. Then
there exists a surjection L→ F with L a direct sum of linearly adequate functors.

Proof. Choose an exact sequence 0→ F →M → N where M → N is given by φ :
M → N . By Lemma 46.3.3 it suffices to construct L→ F such that L(B)→ F (B)
is surjective for every finitely presented A-algebra B. Hence it suffices to construct,
given a finitely presented A-algebra B and an element ξ ∈ F (B) a map L → F
with L linearly adequate such that ξ is in the image of L(B) → F (B). (Because
there is a set worth of such pairs (B, ξ) up to isomorphism.)

To do this write
∑
i=1,...,nmi ⊗ bi the image of ξ in M(B) = M ⊗A B. We know

that
∑
φ(mi) ⊗ bi = 0 in N ⊗A B. As N is a filtered colimit of finitely presented

A-modules, we can find a finitely presented A-module N ′, a commutative diagram
of A-modules

A⊕n //

m1,...,mn

��

N ′

��
M // N

such that (b1, . . . , bn) maps to zero in N ′ ⊗A B. Choose a presentation A⊕l →
A⊕k → N ′ → 0. Choose a lift A⊕n → A⊕k of the map A⊕n → N ′ of the diagram.
Then we see that there exist (c1, . . . , cl) ∈ B⊕l such that (b1, . . . , bn, c1, . . . , cl) maps
to zero in B⊕k under the map B⊕n ⊕ B⊕l → B⊕k. Consider the commutative
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diagram
A⊕n ⊕A⊕l //

��

A⊕k

��
M // N

where the left vertical arrow is zero on the summand A⊕l. Then we see that L equal
to the kernel of A⊕n+l → A⊕k works because the element (b1, . . . , bn, c1, . . . , cl) ∈
L(B) maps to ξ. □

Consider a graded A-algebra B =
⊕

d≥0 Bd. Then there are two A-algebra maps
p, a : B → B[t, t−1], namely p : b 7→ b and a : b 7→ tdeg(b)b where b is homogeneous.
If F is a module-valued functor on AlgA, then we define
(46.3.6.1)06UY F (B)(k) = {ξ ∈ F (B) | tkF (p)(ξ) = F (a)(ξ)}.
For functors which behave well with respect to flat ring extensions this gives a
direct sum decomposition. This amounts to the fact that representations of Gm

are completely reducible.

Lemma 46.3.7.06UZ Let A be a ring. Let F be a module-valued functor on AlgA.
Assume that for B → B′ flat the map F (B) ⊗B B′ → F (B′) is an isomorphism.
Let B be a graded A-algebra. Then

(1) F (B) =
⊕

k∈Z F (B)(k), and
(2) the map B → B0 → B induces map F (B) → F (B) whose image is

contained in F (B)(0).

Proof. Let x ∈ F (B). The map p : B → B[t, t−1] is free hence we know that

F (B[t, t−1]) =
⊕

k∈Z
F (p)(F (B)) · tk =

⊕
k∈Z

F (B) · tk

as indicated we drop the F (p) in the rest of the proof. Write F (a)(x) =
∑
tkxk for

some xk ∈ F (B). Denote ϵ : B[t, t−1] → B the B-algebra map t 7→ 1. Note that
the compositions ϵ◦p, ϵ◦a : B → B[t, t−1]→ B are the identity. Hence we see that

x = F (ϵ)(F (a)(x)) = F (ϵ)(
∑

tkxk) =
∑

xk.

On the other hand, we claim that xk ∈ F (B)(k). Namely, consider the commutative
diagram

B
a

//

a′

��

B[t, t−1]

f

��
B[s, s−1] g // B[t, s, t−1, s−1]

where a′(b) = sdeg(b)b, f(b) = b, f(t) = st and g(b) = tdeg(b)b and g(s) = s. Then

F (g)(F (a′))(x) = F (g)(
∑

skxk) =
∑

skF (a)(xk)
and going the other way we see

F (f)(F (a))(x) = F (f)(
∑

tkxk) =
∑

(st)kxk.

Since B → B[s, t, s−1, t−1] is free we see that F (B[t, s, t−1, s−1]) =
⊕

k,l∈Z F (B) ·
tksl and comparing coefficients in the expressions above we find F (a)(xk) = tkxk
as desired.
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Finally, the image of F (B0) → F (B) is contained in F (B)(0) because B0 → B
a−→

B[t, t−1] is equal to B0 → B
p−→ B[t, t−1]. □

As a particular case of Lemma 46.3.7 note that

M(B)(k) = M ⊗A Bk
where Bk is the degree k part of the graded A-algebra B.

Lemma 46.3.8.06V0 Let A be a ring. Given a solid diagram

0 // L

φ

��

// A⊕n //

}}

A⊕m

M

of module-valued functors on AlgA with exact row there exists a dotted arrow
making the diagram commute.

Proof. Suppose that the map A⊕n → A⊕m is given by the m×n-matrix (aij). Con-
sider the ring B = A[x1, . . . , xn]/(

∑
aijxj). The element (x1, . . . , xn) ∈ A⊕n(B)

maps to zero in A⊕m(B) hence is the image of a unique element ξ ∈ L(B). Note that
ξ has the following universal property: for any A-algebra C and any ξ′ ∈ L(C) there
exists an A-algebra map B → C such that ξ maps to ξ′ via the map L(B)→ L(C).

Note that B is a graded A-algebra, hence we can use Lemmas 46.3.7 and 46.3.5
to decompose the values of our functors on B into graded pieces. Note that ξ ∈
L(B)(1) as (x1, . . . , xn) is an element of degree one in A⊕n(B). Hence we see that
φ(ξ) ∈ M(B)(1) = M ⊗A B1. Since B1 is generated by x1, . . . , xn as an A-module
we can write φ(ξ) =

∑
mi ⊗ xi. Consider the map A⊕n → M which maps the

ith basis vector to mi. By construction the associated map A⊕n → M maps the
element ξ to φ(ξ). It follows from the universal property mentioned above that the
diagram commutes. □

Lemma 46.3.9.06V1 Let A be a ring. Let φ : F → M be a map of module-valued
functors on AlgA with F adequate. Then Coker(φ) is adequate.

Proof. By Lemma 46.3.6 we may assume that F =
⊕
Li is a direct sum of linearly

adequate functors. Choose exact sequences 0 → Li → A⊕ni → A⊕mi . For each i
choose a map A⊕ni →M as in Lemma 46.3.8. Consider the diagram

0 //⊕Li //

��

⊕
A⊕ni //

zz

⊕
A⊕mi

M

Consider the A-modules

Q = Coker(
⊕

A⊕ni →M⊕
⊕

A⊕mi) and P = Coker(
⊕

A⊕ni →
⊕

A⊕mi).

Then we see that Coker(φ) is isomorphic to the kernel of Q→ P . □

Lemma 46.3.10.06V2 Let A be a ring. Let φ : F → G be a map of adequate functors
on AlgA. Then Coker(φ) is adequate.
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Proof. Choose an injection G → M . Then we have an injection G/F → M/F .
By Lemma 46.3.9 we see that M/F is adequate, hence we can find an injection
M/F → N . Composing we obtain an injection G/F → N . By Lemma 46.3.9 the
cokernel of the induced map G → N is adequate hence we can find an injection
N/G→ K. Then 0→ G/F → N → K is exact and we win. □

Lemma 46.3.11.06V3 Let A be a ring. Let φ : F → G be a map of adequate functors
on AlgA. Then Ker(φ) is adequate.

Proof. Choose an injection F →M and an injection G→ N . Denote F →M ⊕N
the diagonal map so that

F

��

// G

��
M ⊕N // N

commutes. By Lemma 46.3.10 we can find a module map M ⊕N → K such that F
is the kernel of M ⊕N → K. Then Ker(φ) is the kernel of M ⊕N → K ⊕N . □

Lemma 46.3.12.06V4 Let A be a ring. An arbitrary direct sum of adequate functors on
AlgA is adequate. A colimit of adequate functors is adequate.

Proof. The statement on direct sums is immediate. A general colimit can be written
as a kernel of a map between direct sums, see Categories, Lemma 4.14.12. Hence
this follows from Lemma 46.3.11. □

Lemma 46.3.13.06V5 Let A be a ring. Let F,G be module-valued functors on AlgA.
Let φ : F → G be a transformation of functors. Assume

(1) φ is additive,
(2) for every A-algebra B and ξ ∈ F (B) and unit u ∈ B∗ we have φ(uξ) =

uφ(ξ) in G(B), and
(3) for any flat ring map B → B′ we have G(B)⊗B B′ = G(B′).

Then φ is a morphism of module-valued functors.

Proof. Let B be an A-algebra, ξ ∈ F (B), and b ∈ B. We have to show that
φ(bξ) = bφ(ξ). Consider the ring map

B → B′ = B[x, y, x−1, y−1]/(x+ y − b).
This ring map is faithfully flat, hence G(B) ⊂ G(B′). On the other hand
φ(bξ) = φ((x+ y)ξ) = φ(xξ) + φ(yξ) = xφ(ξ) + yφ(ξ) = (x+ y)φ(ξ) = bφ(ξ)

because x, y are units in B′. Hence we win. □

Lemma 46.3.14.06V6 Let A be a ring. Let 0 → M → G → L → 0 be a short exact
sequence of module-valued functors on AlgA with L linearly adequate. Then G is
adequate.

Proof. We first point out that for any flat A-algebra map B → B′ the map G(B)⊗B
B′ → G(B′) is an isomorphism. Namely, this holds for M and L, see Lemma 46.3.5
and hence follows for G by the five lemma. In particular, by Lemma 46.3.7 we see
that G(B) =

⊕
k∈Z G(B)(k) for any graded A-algebra B.

Choose an exact sequence 0 → L → A⊕n → A⊕m. Suppose that the map
A⊕n → A⊕m is given by the m × n-matrix (aij). Consider the graded A-algebra
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B = A[x1, . . . , xn]/(
∑
aijxj). The element (x1, . . . , xn) ∈ A⊕n(B) maps to zero

in A⊕m(B) hence is the image of a unique element ξ ∈ L(B). Observe that
ξ ∈ L(B)(1). The map

HomA(B,C) −→ L(C), f 7−→ L(f)(ξ)
defines an isomorphism of functors. The reason is that f is determined by the
images ci = f(xi) ∈ C which have to satisfy the relations

∑
aijcj = 0. And L(C)

is the set of n-tuples (c1, . . . , cn) satisfying the relations
∑
aijcj = 0.

Since the value of each of the functors M , G, L on B is a direct sum of its weight
spaces (by the lemma mentioned above) exactness of 0 → M → G → L → 0
implies the sequence 0 → M(B)(1) → G(B)(1) → L(B)(1) → 0 is exact. Thus we
may choose an element θ ∈ G(B)(1) mapping to ξ.
Consider the graded A-algebra

C = A[x1, . . . , xn, y1, . . . , yn]/(
∑

aijxj ,
∑

aijyj)

There are three graded A-algebra homomorphisms p1, p2,m : B → C defined by
the rules

p1(xi) = xi, p1(xi) = yi, m(xi) = xi + yi.

We will show that the element
τ = G(m)(θ)−G(p1)(θ)−G(p2)(θ) ∈ G(C)

is zero. First, τ maps to zero in L(C) by a direct calculation. Hence τ is an
element of M(C). Moreover, since m, p1, p2 are graded algebra maps we see that
τ ∈ G(C)(1) and since M ⊂ G we conclude

τ ∈M(C)(1) = M ⊗A C1.

We may write uniquely τ = M(p1)(τ1) +M(p2)(τ2) with τi ∈M ⊗AB1 = M(B)(1)

because C1 = p1(B1) ⊕ p2(B1). Consider the ring map q1 : C → B defined by
xi 7→ xi and yi 7→ 0. Then M(q1)(τ) = M(q1)(M(p1)(τ1) + M(p2)(τ2)) = τ1. On
the other hand, because q1◦m = q1◦p1 we see that G(q1)(τ) = −G(q1◦p2)(τ). Since
q1 ◦ p2 factors as B → A→ B we see that G(q1 ◦ p2)(τ) is in G(B)(0), see Lemma
46.3.7. Hence τ1 = 0 because it is in G(B)(0) ∩M(B)(1) ⊂ G(B)(0) ∩G(B)(1) = 0.
Similarly τ2 = 0, whence τ = 0.
Since θ ∈ G(B) we obtain a transformation of functors

ψ : L(−) = HomA(B,−) −→ G(−)
by mapping f : B → C to G(f)(θ). Since θ is a lift of ξ the map ψ is a right inverse
of G→ L. In terms of ψ the statements proved above have the following meaning:
τ = 0 means that ψ is additive and θ ∈ G(B)(1) implies that for any A-algebra
D we have ψ(ul) = uψ(l) in G(D) for l ∈ L(D) and u ∈ D∗ a unit. This implies
that ψ is a morphism of module-valued functors, see Lemma 46.3.13. Clearly this
implies that G ∼= M ⊕ L and we win. □

Remark 46.3.15.06V7 Let A be a ring. The proof of Lemma 46.3.14 shows that any
extension 0→M → E → L→ 0 of module-valued functors on AlgA with L linearly
adequate splits. It uses only the following properties of the module-valued functor
F = M :

(1) F (B)⊗B B′ → F (B′) is an isomorphism for a flat ring map B → B′, and
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(2) F (C)(1) = F (p1)(F (B)(1))⊕F (p2)(F (B)(1)) whereB = A[x1, . . . , xn]/(
∑
aijxj)

and C = A[x1, . . . , xn, y1, . . . , yn]/(
∑
aijxj ,

∑
aijyj).

These two properties hold for any adequate functor F ; details omitted. Hence we
see that L is a projective object of the abelian category of adequate functors.

Lemma 46.3.16.06V8 Let A be a ring. Let 0 → F → G → H → 0 be a short exact
sequence of module-valued functors on AlgA. If F and H are adequate, so is G.

Proof. Choose an exact sequence 0 → F → M → N . If we can show that (M ⊕
G)/F is adequate, then G is the kernel of the map of adequate functors (M ⊕
G)/F → N , hence adequate by Lemma 46.3.11. Thus we may assume F = M .

We can choose a surjection L → H where L is a direct sum of linearly adequate
functors, see Lemma 46.3.6. If we can show that the pullback G×H L is adequate,
then G is the cokernel of the map Ker(L → H) → G ×H L hence adequate by
Lemma 46.3.10. Thus we may assume that H =

⊕
Li is a direct sum of linearly

adequate functors. By Lemma 46.3.14 each of the pullbacks G×H Li is adequate.
By Lemma 46.3.12 we see that

⊕
G×H Li is adequate. Then G is the cokernel of⊕

i ̸=i′
F −→

⊕
G×H Li

where ξ in the summand (i, i′) maps to (0, . . . , 0, ξ, 0, . . . , 0,−ξ, 0, . . . , 0) with nonzero
entries in the summands i and i′. Thus G is adequate by Lemma 46.3.10. □

Lemma 46.3.17.06V9 Let A→ A′ be a ring map. If F is an adequate functor on AlgA,
then its restriction F ′ to AlgA′ is adequate too.

Proof. Choose an exact sequence 0 → F → M → N . Then F ′(B′) = F (B′) =
Ker(M ⊗AB′ → N ⊗AB′). Since M ⊗AB′ = M ⊗AA′⊗A′ B′ and similarly for N
we see that F ′ is the kernel of M ⊗A A′ → N ⊗A A′. □

Lemma 46.3.18.06VA Let A→ A′ be a ring map. If F ′ is an adequate functor on AlgA′ ,
then the module-valued functor F : B 7→ F ′(A′ ⊗A B) on AlgA is adequate too.

Proof. Choose an exact sequence 0→ F ′ →M ′ → N ′. Then

F (B) = F ′(A′ ⊗A B)
= Ker(M ′ ⊗A′ (A′ ⊗A B)→ N ′ ⊗A′ (A′ ⊗A B))
= Ker(M ′ ⊗A B → N ′ ⊗A B)

Thus F is the kernel of M → N where M = M ′ and N = N ′ viewed as A-
modules. □

Lemma 46.3.19.06VB Let A = A1× . . .×An be a product of rings. An adequate functor
over A is the same thing as a sequence F1, . . . , Fn of adequate functors Fi over Ai.

Proof. This is true because an A-algebra B is canonically a product B1 × . . .×Bn
and the same thing holds for A-modules. Setting F (B) =

∐
Fi(Bi) gives the

correspondence. Details omitted. □

Lemma 46.3.20.06VH Let A→ A′ be a ring map and let F be a module-valued functor
on AlgA such that

(1) the restriction F ′ of F to the category of A′-algebras is adequate, and
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(2) for any A-algebra B the sequence
0→ F (B)→ F (B ⊗A A′)→ F (B ⊗A A′ ⊗A A′)

is exact.
Then F is adequate.

Proof. The functors B → F (B ⊗A A′) and B 7→ F (B ⊗A A′ ⊗A A′) are adequate,
see Lemmas 46.3.18 and 46.3.17. Hence F as a kernel of a map of adequate functors
is adequate, see Lemma 46.3.11. □

46.4. Higher exts of adequate functors

06Z5 Let A be a ring. In Lemma 46.3.16 we have seen that any extension of adequate
functors in the category of module-valued functors on AlgA is adequate. In this
section we show that the same remains true for higher ext groups.

Lemma 46.4.1.06Z6 Let A be a ring. For every module-valued functor F on AlgA there
exists a morphism Q(F ) → F of module-valued functors on AlgA such that (1)
Q(F ) is adequate and (2) for every adequate functor G the map Hom(G,Q(F ))→
Hom(G,F ) is a bijection.

Proof. Choose a set {Li}i∈I of linearly adequate functors such that every linearly
adequate functor is isomorphic to one of the Li. This is possible. Suppose that we
can find Q(F ) → F with (1) and (2)’ or every i ∈ I the map Hom(Li, Q(F )) →
Hom(Li, F ) is a bijection. Then (2) holds. Namely, combining Lemmas 46.3.6 and
46.3.11 we see that every adequate functor G sits in an exact sequence

K → L→ G→ 0
with K and L direct sums of linearly adequate functors. Hence (2)’ implies that
Hom(L,Q(F )) → Hom(L,F ) and Hom(K,Q(F )) → Hom(K,F ) are bijections,
whence the same thing for G.
Consider the category I whose objects are pairs (i, φ) where i ∈ I and φ : Li → F
is a morphism. A morphism (i, φ) → (i′, φ′) is a map ψ : Li → Li′ such that
φ′ ◦ ψ = φ. Set

Q(F ) = colim(i,φ)∈Ob(I) Li

There is a natural map Q(F ) → F , by Lemma 46.3.12 it is adequate, and by
construction it has property (2)’. □

Lemma 46.4.2.06Z7 Let A be a ring. Denote P the category of module-valued functors
on AlgA and A the category of adequate functors on AlgA. Denote i : A → P the
inclusion functor. Denote Q : P → A the construction of Lemma 46.4.1. Then

(1) i is fully faithful, exact, and its image is a weak Serre subcategory,
(2) P has enough injectives,
(3) the functor Q is a right adjoint to i hence left exact,
(4) Q transforms injectives into injectives,
(5) A has enough injectives.

Proof. This lemma just collects some facts we have already seen so far. Part (1)
is clear from the definitions, the characterization of weak Serre subcategories (see
Homology, Lemma 12.10.3), and Lemmas 46.3.10, 46.3.11, and 46.3.16. Recall that
P is equivalent to the category PMod((Aff/ Spec(A))τ ,O). Hence (2) by Injectives,
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Proposition 19.8.5. Part (3) follows from Lemma 46.4.1 and Categories, Lemma
4.24.5. Parts (4) and (5) follow from Homology, Lemmas 12.29.1 and 12.29.3. □

Let A be a ring. As in Formal Deformation Theory, Section 90.11 given an A-
algebra B and an B-module N we set B[N ] equal to the R-algebra with underlying
B-module B⊕N with multiplication given by (b,m)(b′,m′) = (bb′, bm′+b′m). Note
that this construction is functorial in the pair (B,N) where morphism (B,N) →
(B′, N ′) is given by an A-algebra map B → B′ and an B-module map N → N ′. In
some sense the functor TF of pairs defined in the following lemma is the tangent
space of F . Below we will only consider pairs (B,N) such that B[N ] is an object
of AlgA.

Lemma 46.4.3.06Z8 Let A be a ring. Let F be a module valued functor. For every
B ∈ Ob(AlgA) and B-module N there is a canonical decomposition

F (B[N ]) = F (B)⊕ TF (B,N)

characterized by the following properties
(1) TF (B,N) = Ker(F (B[N ])→ F (B)),
(2) there is a B-module structure TF (B,N) compatible with B[N ]-module

structure on F (B[N ]),
(3) TF is a functor from the category of pairs (B,N),
(4)06Z9 there are canonical maps N ⊗B F (B) → TF (B,N) inducing a transfor-

mation between functors defined on the category of pairs (B,N),
(5) TF (B, 0) = 0 and the map TF (B,N)→ TF (B,N ′) is zero when N → N ′

is the zero map.

Proof. Since B → B[N ] → B is the identity we see that F (B) → F (B[N ]) is
a direct summand whose complement is TF (N,B) as defined in (1). This con-
struction is functorial in the pair (B,N) simply because given a morphism of pairs
(B,N)→ (B′, N ′) we obtain a commutative diagram

B′ // B′[N ′] // B′

B //

OO

B[N ] //

OO

B

OO

in AlgA. The B-module structure comes from the B[N ]-module structure and the
ring map B → B[N ]. The map in (4) is the composition

N ⊗B F (B) −→ B[N ]⊗B[N ] F (B[N ]) −→ F (B[N ])

whose image is contained in TF (B,N). (The first arrow uses the inclusions N →
B[N ] and F (B) → F (B[N ]) and the second arrow is the multiplication map.) If
N = 0, then B = B[N ] hence TF (B, 0) = 0. If N → N ′ is zero then it factors as
N → 0→ N ′ hence the induced map is zero since TF (B, 0) = 0. □

Let A be a ring. Let M be an A-module. Then the module-valued functor M has
tangent space TM given by the rule TM(B,N) = N ⊗A M . In particular, for B
given, the functor N 7→ TM(B,N) is additive and right exact. It turns out this
also holds for injective module-valued functors.

https://stacks.math.columbia.edu/tag/06Z8


46.4. HIGHER EXTS OF ADEQUATE FUNCTORS 3953

Lemma 46.4.4.06ZA Let A be a ring. Let I be an injective object of the category of
module-valued functors. Then for any B ∈ Ob(AlgA) and short exact sequence
0→ N1 → N → N2 → 0 of B-modules the sequence

TI(B,N1)→ TI(B,N)→ TI(B,N2)→ 0

is exact.

Proof. We will use the results of Lemma 46.4.3 without further mention. Denote
h : AlgA → Sets the functor given by h(C) = MorA(B[N ], C). Similarly for h1 and
h2. The map B[N ]→ B[N2] corresponding to the surjection N → N2 is surjective.
It corresponds to a map h2 → h such that h2(C) → h(C) is injective for all A-
algebras C. On the other hand, there are two maps p, q : h→ h1, corresponding to
the zero map N1 → N and the injection N1 → N . Note that

h2 // h
//
// h1

is an equalizer diagram. Denote Oh the module-valued functor C 7→
⊕

h(C) C.
Similarly for Oh1 and Oh2 . Note that

HomP(Oh, F ) = F (B[N ])

where P is the category of module-valued functors on AlgA. We claim there is an
equalizer diagram

Oh2
// Oh

//
// Oh1

in P. Namely, suppose that C ∈ Ob(AlgA) and ξ =
∑
i=1,...,n ci · fi where ci ∈ C

and fi : B[N ]→ C is an element of Oh(C). If p(ξ) = q(ξ), then we see that∑
ci · fi ◦ z =

∑
ci · fi ◦ y

where z, y : B[N1] → B[N ] are the maps z : (b,m1) 7→ (b, 0) and y : (b,m1) 7→
(b,m1). This means that for every i there exists a j such that fj ◦z = fi◦y. Clearly,
this implies that fi(N1) = 0, i.e., fi factors through a unique map f i : B[N2]→ C.
Hence ξ is the image of ξ =

∑
ci ·f i. Since I is injective, it transforms this equalizer

diagram into a coequalizer diagram

I(B[N1]) //
// I(B[N ]) // I(B[N2])

This diagram is compatible with the direct sum decompositions I(B[N ]) = I(B)⊕
TI(B,N) and I(B[Ni]) = I(B) ⊕ TI(B,Ni). The zero map N → N1 induces the
zero map TI(B,N)→ TI(B,N1). Thus we see that the coequalizer property above
means we have an exact sequence TI(B,N1) → TI(B,N) → TI(B,N2) → 0 as
desired. □

Lemma 46.4.5.06ZB Let A be a ring. Let F be a module-valued functor such that for
any B ∈ Ob(AlgA) the functor TF (B,−) on B-modules transforms a short exact
sequence of B-modules into a right exact sequence. Then

(1) TF (B,N1 ⊕N2) = TF (B,N1)⊕ TF (B,N2),
(2) there is a second functorial B-module structure on TF (B,N) defined by

setting x · b = TF (B, b · 1N )(x) for x ∈ TF (B,N) and b ∈ B,
(3)06ZC the canonical map N ⊗B F (B)→ TF (B,N) of Lemma 46.4.3 is B-linear

also with respect to the second B-module structure,

https://stacks.math.columbia.edu/tag/06ZA
https://stacks.math.columbia.edu/tag/06ZB
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(4)06ZD given a finitely presented B-module N there is a canonical isomorphism
TF (B,B) ⊗B N → TF (B,N) where the tensor product uses the second
B-module structure on TF (B,B).

Proof. We will use the results of Lemma 46.4.3 without further mention. The
maps N1 → N1 ⊕N2 and N2 → N1 ⊕N2 give a map TF (B,N1) ⊕ TF (B,N2) →
TF (B,N1⊕N2) which is injective since the maps N1⊕N2 → N1 and N1⊕N2 → N2
induce an inverse. Since TF is right exact we see that TF (B,N1) → TF (B,N1 ⊕
N2)→ TF (B,N2)→ 0 is exact. Hence TF (B,N1)⊕TF (B,N2)→ TF (B,N1⊕N2)
is an isomorphism. This proves (1).

To see (2) the only thing we need to show is that x · (b1 + b2) = x · b1 + x · b2.
(Associativity and additivity are clear.) To see this consider

N
(b1,b2)−−−−→ N ⊕N +−→ N

and apply TF (B,−).

Part (3) follows immediately from the fact that N ⊗B F (B)→ TF (B,N) is func-
torial in the pair (B,N).

Suppose N is a finitely presented B-module. Choose a presentation B⊕m → B⊕n →
N → 0. This gives an exact sequence

TF (B,B⊕m)→ TF (B,B⊕n)→ TF (B,N)→ 0

by right exactness of TF (B,−). By part (1) we can write TF (B,B⊕m) = TF (B,B)⊕m

and TF (B,B⊕n) = TF (B,B)⊕n. Next, suppose that B⊕m → B⊕n is given by the
matrix T = (bij). Then the induced map TF (B,B)⊕m → TF (B,B)⊕n is given by
the matrix with entries TF (B, bij · 1B). This combined with right exactness of ⊗
proves (4). □

Example 46.4.6.06ZE Let F be a module-valued functor as in Lemma 46.4.5. It is not
always the case that the two module structures on TF (B,N) agree. Here is an
example. Suppose A = Fp where p is a prime. Set F (B) = B but with B-module
structure given by b ·x = bpx. Then TF (B,N) = N with B-module structure given
by b · x = bpx for x ∈ N . However, the second B-module structure is given by
x · b = bx. Note that in this case the canonical map N ⊗B F (B) → TF (B,N) is
zero as raising an element n ∈ B[N ] to the pth power is zero.

In the following lemma we will frequently use the observation that if 0→ F → G→
H → 0 is an exact sequence of module-valued functors on AlgA, then for any pair
(B,N) the sequence 0→ TF (B,N)→ TG(B,N)→ TH(B,N)→ 0 is exact. This
follows from the fact that 0→ F (B[N ])→ G(B[N ])→ H(B[N ])→ 0 is exact.

Lemma 46.4.7.06ZF Let A be a ring. For F a module-valued functor on AlgA say (∗)
holds if for all B ∈ Ob(AlgA) the functor TF (B,−) on B-modules transforms a
short exact sequence of B-modules into a right exact sequence. Let 0→ F → G→
H → 0 be a short exact sequence of module-valued functors on AlgA.

(1) If (∗) holds for F,G then (∗) holds for H.
(2) If (∗) holds for F,H then (∗) holds for G.
(3) If H ′ → H is morphism of module-valued functors on AlgA and (∗) holds

for F , G, H, and H ′, then (∗) holds for G×H H ′.

https://stacks.math.columbia.edu/tag/06ZE
https://stacks.math.columbia.edu/tag/06ZF
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Proof. Let B be given. Let 0→ N1 → N2 → N3 → 0 be a short exact sequence of
B-modules. Part (1) follows from a diagram chase in the diagram

0 // TF (B,N1) //

��

TG(B,N1) //

��

TH(B,N1) //

��

0

0 // TF (B,N2) //

��

TG(B,N2) //

��

TH(B,N2) //

��

0

0 // TF (B,N3) //

��

TG(B,N3) //

��

TH(B,N3) // 0

0 0
with exact horizontal rows and exact columns involving TF and TG. To prove part
(2) we do a diagram chase in the diagram

0 // TF (B,N1) //

��

TG(B,N1) //

��

TH(B,N1) //

��

0

0 // TF (B,N2) //

��

TG(B,N2) //

��

TH(B,N2) //

��

0

0 // TF (B,N3) //

��

TG(B,N3) // TH(B,N3) //

��

0

0 0
with exact horizontal rows and exact columns involving TF and TH. Part (3)
follows from part (2) as G×H H ′ sits in the exact sequence 0→ F → G×H H ′ →
H ′ → 0. □

Most of the work in this section was done in order to prove the following key
vanishing result.

Lemma 46.4.8.06ZG Let A be a ring. Let M , P be A-modules with P of finite presen-
tation. Then ExtiP(P ,M) = 0 for i > 0 where P is the category of module-valued
functors on AlgA.

Proof. Choose an injective resolution M → I• in P, see Lemma 46.4.2. By Derived
Categories, Lemma 13.27.2 any element of ExtiP(P ,M) comes from a morphism
φ : P → Ii with di ◦ φ = 0. We will prove that the Yoneda extension

E : 0→M → I0 → . . .→ Ii−1 ×Ker(di) P → P → 0
of P by M associated to φ is trivial, which will prove the lemma by Derived Cate-
gories, Lemma 13.27.5.
For F a module-valued functor on AlgA say (∗) holds if for all B ∈ Ob(AlgA) the
functor TF (B,−) on B-modules transforms a short exact sequence of B-modules
into a right exact sequence. Recall that the module-valued functors M, In, P each
have property (∗), see Lemma 46.4.4 and the remarks preceding it. By splitting 0→

https://stacks.math.columbia.edu/tag/06ZG
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M → I• into short exact sequences we find that each of the functors Im(dn−1) =
Ker(dn) ⊂ In has property (∗) by Lemma 46.4.7 and also that Ii−1 ×Ker(di) P has
property (∗).

Thus we may assume the Yoneda extension is given as

E : 0→M → Fi−1 → . . .→ F0 → P → 0

where each of the module-valued functors Fj has property (∗). Set Gj(B) =
TFj(B,B) viewed as a B-module via the second B-module structure defined in
Lemma 46.4.5. Since TFj is a functor on pairs we see that Gj is a module-
valued functor on AlgA. Moreover, since E is an exact sequence the sequence
Gj+1 → Gj → Gj−1 is exact (see remark preceding Lemma 46.4.7). Observe that
TM(B,B) = M ⊗A B = M(B) and that the two B-module structures agree on
this. Thus we obtain a Yoneda extension

E′ : 0→M → Gi−1 → . . .→ G0 → P → 0

Moreover, the canonical maps

Fj(B) = B ⊗B Fj(B) −→ TFj(B,B) = Gj(B)

of Lemma 46.4.3 (4) are B-linear by Lemma 46.4.5 (3) and functorial in B. Hence
a map

0 // M //

1
��

Fi−1 //

��

. . . // F0 //

��

P //

1
��

0

0 // M // Gi−1 // . . . // G0 // P // 0

of Yoneda extensions. In particular we see that E and E′ have the same class in
ExtiP(P ,M) by the lemma on Yoneda Exts mentioned above. Finally, let N be a
A-module of finite presentation. Then we see that

0→ TM(A,N)→ TFi−1(A,N)→ . . .→ TF0(A,N)→ TP (A,N)→ 0

is exact. By Lemma 46.4.5 (4) with B = A this translates into the exactness of the
sequence of A-modules

0→M ⊗A N → Gi−1(A)⊗A N → . . .→ G0(A)⊗A N → P ⊗A N → 0

Hence the sequence of A-modules 0→ M → Gi−1(A)→ . . .→ G0(A)→ P → 0 is
universally exact, in the sense that it remains exact on tensoring with any finitely
presented A-module N . Let K = Ker(G0(A)→ P ) so that we have exact sequences

0→ K → G0(A)→ P → 0 and G2(A)→ G1(A)→ K → 0

Tensoring the second sequence with N we obtain that K ⊗AN = Coker(G2(A)⊗A
N → G1(A)⊗AN). Exactness of G2(A)⊗AN → G1(A)⊗AN → G0(A)⊗AN then
implies that K ⊗A N → G0(A) ⊗A N is injective. By Algebra, Theorem 10.82.3
this means that the A-module extension 0 → K → G0(A) → P → 0 is exact, and
because P is assumed of finite presentation this means the sequence is split, see
Algebra, Lemma 10.82.4. Any splitting P → G0(A) defines a map P → G0 which
splits the surjection G0 → P . Thus the Yoneda extension E′ is equivalent to the
trivial Yoneda extension and we win. □
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Lemma 46.4.9.06ZH Let A be a ring. Let M be an A-module. Let L be a linearly
adequate functor on AlgA. Then ExtiP(L,M) = 0 for i > 0 where P is the category
of module-valued functors on AlgA.

Proof. Since L is linearly adequate there exists an exact sequence
0→ L→ A⊕m → A⊕n → P → 0

Here P = Coker(A⊕m → A⊕n) is the cokernel of the map of finite free A-modules
which is given by the definition of linearly adequate functors. By Lemma 46.4.8 we
have the vanishing of ExtiP(P ,M) and ExtiP(A,M) for i > 0. Let K = Ker(A⊕n →
P ). By the long exact sequence of Ext groups associated to the exact sequence
0 → K → A⊕n → P → 0 we conclude that ExtiP(K,M) = 0 for i > 0. Repeating
with the sequence 0→ L→ A⊕m → K → 0 we win. □

Lemma 46.4.10.06ZI With notation as in Lemma 46.4.2 we have RpQ(F ) = 0 for all
p > 0 and any adequate functor F .

Proof. Choose an exact sequence 0 → F → M0 → M1. Set M2 = Coker(M0 →
M1) so that 0 → F → M0 → M1 → M2 → 0 is a resolution. By Derived
Categories, Lemma 13.21.3 we obtain a spectral sequence

RpQ(Mq)⇒ Rp+qQ(F )
Since Q(Mq) = Mq it suffices to prove RpQ(M) = 0, p > 0 for any A-module M .
Choose an injective resolution M → I• in the category P. Suppose that RiQ(M)
is nonzero. Then Ker(Q(Ii) → Q(Ii+1)) is strictly bigger than the image of
Q(Ii−1)→ Q(Ii). Hence by Lemma 46.3.6 there exists a linearly adequate functor
L and a map φ : L → Q(Ii) mapping into the kernel of Q(Ii) → Q(Ii+1) which
does not factor through the image of Q(Ii−1)→ Q(Ii). Because Q is a left adjoint
to the inclusion functor the map φ corresponds to a map φ′ : L→ Ii with the same
properties. Thus φ′ gives a nonzero element of ExtiP(L,M) contradicting Lemma
46.4.9. □

46.5. Adequate modules

06VF In Descent, Section 35.8 we have seen that quasi-coherent modules on a scheme S
are the same as quasi-coherent modules on any of the big sites (Sch/S)τ associated
to S. We have seen that there are two issues with this identification:

(1) QCoh(OS) → Mod((Sch/S)τ ,O), F 7→ Fa is not exact in general (De-
scent, Lemma 35.10.2), and

(2) given a quasi-compact and quasi-separated morphism f : X → S the
functor f∗ does not preserve quasi-coherent sheaves on the big sites in
general (Descent, Proposition 35.9.4).

Part (1) means that we cannot define a triangulated subcategory of D(O) consisting
of complexes whose cohomology sheaves are quasi-coherent. Part (2) means that
Rf∗F isn’t a complex with quasi-coherent cohomology sheaves even when F is
quasi-coherent and f is quasi-compact and quasi-separated. Moreover, the examples
given in the proofs of Descent, Lemma 35.10.2 and Descent, Proposition 35.9.4 are
not of a pathological nature.
In this section we discuss a slightly larger category of O-modules on (Sch/S)τ with
contains the quasi-coherent modules, is abelian, and is preserved under f∗ when f

https://stacks.math.columbia.edu/tag/06ZH
https://stacks.math.columbia.edu/tag/06ZI
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is quasi-compact and quasi-separated. To do this, suppose that S is a scheme. Let
F be a presheaf of O-modules on (Sch/S)τ . For any affine object U = Spec(A) of
(Sch/S)τ we can restrict F to (Aff/U)τ to get a presheaf of O-modules on this site.
The corresponding module-valued functor, see Section 46.3, will be denoted

F = FF,A : AlgA −→ Ab, B 7−→ F(Spec(B))
The assignment F 7→ FF,A is an exact functor of abelian categories.

Definition 46.5.1.06VG A sheaf of O-modules F on (Sch/S)τ is adequate if there exists
a τ -covering {Spec(Ai)→ S}i∈I such that FF,Ai is adequate for all i ∈ I.

We will see below that the category of adequate O-modules is independent of the
chosen topology τ .

Lemma 46.5.2.06VI Let S be a scheme. Let F be an adequate O-module on (Sch/S)τ .
For any affine scheme Spec(A) over S the functor FF,A is adequate.

Proof. Let {Spec(Ai) → S}i∈I be a τ -covering such that FF,Ai is adequate for all
i ∈ I. We can find a standard affine τ -covering {Spec(A′

j) → Spec(A)}j=1,...,m
such that Spec(A′

j)→ Spec(A)→ S factors through Spec(Ai(j)) for some i(j) ∈ I.
Then we see that FF,A′

j
is the restriction of FF,Ai(j) to the category of A′

j-algebras.
Hence FF,A′

j
is adequate by Lemma 46.3.17. By Lemma 46.3.19 the sequence FF,A′

j

corresponds to an adequate “product” functor F ′ over A′ = A′
1× . . .×A′

m. As F is
a sheaf (for the Zariski topology) this product functor F ′ is equal to FF,A′ , i.e., is
the restriction of F to A′-algebras. Finally, {Spec(A′)→ Spec(A)} is a τ -covering.
It follows from Lemma 46.3.20 that FF,A is adequate. □

Lemma 46.5.3.06ZJ Let S = Spec(A) be an affine scheme. The category of adequate
O-modules on (Sch/S)τ is equivalent to the category of adequate module-valued
functors on AlgA.

Proof. Given an adequate module F the functor FF,A is adequate by Lemma 46.5.2.
Given an adequate functor F we choose an exact sequence 0→ F →M → N and we
consider the O-module F = Ker(Ma → Na) where Ma denotes the quasi-coherent
O-module on (Sch/S)τ associated to the quasi-coherent sheaf M̃ on S. Note that
F = FF,A, in particular the module F is adequate by definition. We omit the proof
that the constructions define mutually inverse equivalences of categories. □

Lemma 46.5.4.06VJ Let f : T → S be a morphism of schemes. The pullback f∗F of an
adequate O-module F on (Sch/S)τ is an adequate O-module on (Sch/T )τ .

Proof. The pullback map f∗ : Mod((Sch/S)τ ,O) → Mod((Sch/T )τ ,O) is given
by restriction, i.e., f∗F(V ) = F(V ) for any scheme V over T . Hence this lemma
follows immediately from Lemma 46.5.2 and the definition. □

Here is a characterization of the category of adequate O-modules. To understand
the significance, consider a map G → H of quasi-coherent OS-modules on a scheme
S. The cokernel of the associated map Ga → Ha of O-modules is quasi-coherent
because it is equal to (H/G)a. But the kernel of Ga → Ha in general isn’t quasi-
coherent. However, it is adequate.

Lemma 46.5.5.06VK Let S be a scheme. Let F be an O-module on (Sch/S)τ . The
following are equivalent

https://stacks.math.columbia.edu/tag/06VG
https://stacks.math.columbia.edu/tag/06VI
https://stacks.math.columbia.edu/tag/06ZJ
https://stacks.math.columbia.edu/tag/06VJ
https://stacks.math.columbia.edu/tag/06VK
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(1) F is adequate,
(2) there exists an affine open covering S =

⋃
Si and maps of quasi-coherent

OSi-modules Gi → Hi such that F|(Sch/Si)τ is the kernel of Gai → Hai
(3) there exists a τ -covering {Si → S}i∈I and maps of OSi-quasi-coherent

modules Gi → Hi such that F|(Sch/Si)τ is the kernel of Gai → Hai ,
(4) there exists a τ -covering {fi : Si → S}i∈I such that each f∗

i F is adequate,
(5) for any affine scheme U over S the restriction F|(Sch/U)τ is the kernel of

a map Ga → Ha of quasi-coherent OU -modules.

Proof. Let U = Spec(A) be an affine scheme over S. Set F = FF,A. By definition,
the functor F is adequate if and only if there exists a map of A-modules M → N
such that F = Ker(M → N). Combining with Lemmas 46.5.2 and 46.5.3 we see
that (1) and (5) are equivalent.
It is clear that (5) implies (2) and (2) implies (3). If (3) holds then we can refine
the covering {Si → S} such that each Si = Spec(Ai) is affine. Then we see, by the
preliminary remarks of the proof, that FF,Ai is adequate. Thus F is adequate by
definition. Hence (3) implies (1).
Finally, (4) is equivalent to (1) using Lemma 46.5.4 for one direction and that a
composition of τ -coverings is a τ -covering for the other. □

Just like is true for quasi-coherent sheaves the category of adequate modules is
independent of the topology.

Lemma 46.5.6.06VL Let F be an adequate O-module on (Sch/S)τ . For any surjective
flat morphism Spec(B)→ Spec(A) of affines over S the extended Čech complex

0→ F(Spec(A))→ F(Spec(B))→ F(Spec(B ⊗A B))→ . . .

is exact. In particular F satisfies the sheaf condition for fpqc coverings, and is a
sheaf of O-modules on (Sch/S)fppf .

Proof. With A → B as in the lemma let F = FF,A. This functor is adequate by
Lemma 46.5.2. By Lemma 46.3.5 since A → B, A → B ⊗A B, etc are flat we see
that F (B) = F (A)⊗A B, F (B ⊗A B) = F (A)⊗A B ⊗A B, etc. Exactness follows
from Descent, Lemma 35.3.6.
Thus F satisfies the sheaf condition for τ -coverings (in particular Zariski coverings)
and any faithfully flat covering of an affine by an affine. Arguing as in the proofs of
Descent, Lemma 35.5.1 and Descent, Proposition 35.5.2 we conclude that F satisfies
the sheaf condition for all fpqc coverings (made out of objects of (Sch/S)τ ). Details
omitted. □

Lemma 46.5.6 shows in particular that for any pair of topologies τ, τ ′ the collec-
tion of adequate modules for the τ -topology and the τ ′-topology are identical (as
presheaves of modules on the underlying category Sch/S).

Definition 46.5.7.07AH Let S be a scheme. The category of adequate O-modules on
(Sch/S)τ is denoted Adeq(O) or Adeq((Sch/S)τ ,O). If we want to think just
about the abelian category of adequate modules without choosing a topology we
simply write Adeq(S).

Lemma 46.5.8.06VM Let S be a scheme. Let F be an adequate O-module on (Sch/S)τ .
(1) The restriction F|SZar is a quasi-coherent OS-module on the scheme S.

https://stacks.math.columbia.edu/tag/06VL
https://stacks.math.columbia.edu/tag/07AH
https://stacks.math.columbia.edu/tag/06VM
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(2) The restriction F|Sétale is the quasi-coherent module associated to F|SZar .
(3) For any affine scheme U over S we have Hq(U,F) = 0 for all q > 0.
(4) There is a canonical isomorphism

Hq(S,F|SZar ) = Hq((Sch/S)τ ,F).

Proof. By Lemma 46.3.5 and Lemma 46.5.2 we see that for any flat morphism of
affines U → V over S we have F(U) = F(V )⊗O(V )O(U). This works in particular
if U ⊂ V ⊂ S are affine opens of S, hence F|SZar is quasi-coherent. Thus (1) holds.
Let S′ → S be an étale morphism of schemes. Then for U ⊂ S′ affine open mapping
into an affine open V ⊂ S we see that F(U) = F(V )⊗O(V ) O(U) because U → V
is étale, hence flat. Therefore F|S′

Zar
is the pullback of F|SZar . This proves (2).

We are going to apply Cohomology on Sites, Lemma 21.10.9 to the site (Sch/S)τ
with B the set of affine schemes over S and Cov the set of standard affine τ -
coverings. Assumption (3) of the lemma is satisfied by Descent, Lemma 35.9.1 and
Lemma 46.5.6 for the case of a covering by a single affine. Hence we conclude that
Hp(U,F) = 0 for every affine scheme U over S. This proves (3). In exactly the
same way as in the proof of Descent, Proposition 35.9.3 this implies the equality of
cohomologies (4). □

Remark 46.5.9.06VN Let S be a scheme. We have functors u : QCoh(OS) → Adeq(O)
and v : Adeq(O)→ QCoh(OS). Namely, the functor u : F 7→ Fa comes from taking
the associated O-module which is adequate by Lemma 46.5.5. Conversely, the
functor v comes from restriction v : G 7→ G|SZar , see Lemma 46.5.8. Since Fa can be
described as the pullback of F under a morphism of ringed topoi ((Sch/S)τ ,O)→
(SZar,OS), see Descent, Remark 35.8.6 and since restriction is the pushforward we
see that u and v are adjoint as follows

HomOS
(F , vG) = HomO(uF ,G)

where O denotes the structure sheaf on the big site. It is immediate from the
description that the adjunction mapping F → vuF is an isomorphism for all quasi-
coherent sheaves.

Lemma 46.5.10.06VP Let S be a scheme. Let F be a presheaf ofO-modules on (Sch/S)τ .
If for every affine scheme Spec(A) over S the functor FF,A is adequate, then the
sheafification of F is an adequate O-module.

Proof. Let U = Spec(A) be an affine scheme over S. Set F = FF,A. The sheafifi-
cation F# = (F+)+, see Sites, Section 7.10. By construction

(F)+(U) = colimU Ȟ
0(U ,F)

where the colimit is over coverings in the site (Sch/S)τ . Since U is affine it suffices
to take the limit over standard affine τ -coverings U = {Ui → U}i∈I = {Spec(Ai)→
Spec(A)}i∈I of U . Since each A→ Ai and A→ Ai ⊗A Aj is flat we see that

Ȟ0(U ,F) = Ker(
∏

F (A)⊗A Ai →
∏

F (A)⊗A Ai ⊗A Aj)

by Lemma 46.3.5. Since A →
∏
Ai is faithfully flat we see that this always is

canonically isomorphic to F (A) by Descent, Lemma 35.3.6. Thus the presheaf (F)+

has the same value as F on all affine schemes over S. Repeating the argument once
more we deduce the same thing for F# = ((F)+)+. Thus FF,A = FF#,A and we
conclude that F# is adequate. □

https://stacks.math.columbia.edu/tag/06VN
https://stacks.math.columbia.edu/tag/06VP
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Lemma 46.5.11.06VQ Let S be a scheme.
(1) The category Adeq(O) is abelian.
(2) The functor Adeq(O)→ Mod((Sch/S)τ ,O) is exact.
(3) If 0 → F1 → F2 → F3 → 0 is a short exact sequence of O-modules and
F1 and F3 are adequate, then F2 is adequate.

(4) The category Adeq(O) has colimits and Adeq(O) → Mod((Sch/S)τ ,O)
commutes with them.

Proof. Let φ : F → G be a map of adequate O-modules. To prove (1) and (2) it suf-
fices to show that K = Ker(φ) and Q = Coker(φ) computed in Mod((Sch/S)τ ,O)
are adequate. Let U = Spec(A) be an affine scheme over S. Let F = FF,A and
G = FG,A. By Lemmas 46.3.11 and 46.3.10 the kernel K and cokernel Q of the
induced map F → G are adequate functors. Because the kernel is computed on the
level of presheaves, we see that K = FK,A and we conclude K is adequate. To prove
the result for the cokernel, denote Q′ the presheaf cokernel of φ. Then Q = FQ′,A

and Q = (Q′)#. Hence Q is adequate by Lemma 46.5.10.
Let 0 → F1 → F2 → F3 → 0 is a short exact sequence of O-modules and F1 and
F3 are adequate. Let U = Spec(A) be an affine scheme over S. Let Fi = FFi,A.
The sequence of functors

0→ F1 → F2 → F3 → 0
is exact, because for V = Spec(B) affine over U we have H1(V,F1) = 0 by Lemma
46.5.8. Since F1 and F3 are adequate functors by Lemma 46.5.2 we see that F2 is
adequate by Lemma 46.3.16. Thus F2 is adequate.
Let I → Adeq(O), i 7→ Fi be a diagram. Denote F = colimi Fi the colimit
computed in Mod((Sch/S)τ ,O). To prove (4) it suffices to show that F is adequate.
Let F ′ = colimi Fi be the colimit computed in presheaves of O-modules. Then
F = (F ′)#. Let U = Spec(A) be an affine scheme over S. Let Fi = FFi,A. By
Lemma 46.3.12 the functor colimi Fi = FF ′,A is adequate. Lemma 46.5.10 shows
that F is adequate. □

The following lemma tells us that the total direct image Rf∗F of an adequate
module under a quasi-compact and quasi-separated morphism is a complex whose
cohomology sheaves are adequate.

Lemma 46.5.12.06VR Let f : T → S be a quasi-compact and quasi-separated morphism
of schemes. For any adequate OT -module on (Sch/T )τ the pushforward f∗F and
the higher direct images Rif∗F are adequate OS-modules on (Sch/S)τ .

Proof. First we explain how to compute the higher direct images. Choose an injec-
tive resolution F → I•. Then Rif∗F is the ith cohomology sheaf of the complex
f∗I•. Hence Rif∗F is the sheaf associated to the presheaf which associates to an
object U/S of (Sch/S)τ the module

Ker(f∗Ii(U)→ f∗Ii+1(U))
Im(f∗Ii−1(U)→ f∗Ii(U)) = Ker(Ii(U ×S T )→ Ii+1(U ×S T ))

Im(Ii−1(U ×S T )→ Ii(U ×S T ))
= Hi(U ×S T,F)
= Hi((Sch/U ×S T )τ ,F|(Sch/U×ST )τ )
= Hi(U ×S T,F|(U×ST )Zar )

https://stacks.math.columbia.edu/tag/06VQ
https://stacks.math.columbia.edu/tag/06VR
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The first equality by Topologies, Lemma 34.7.12 (and its analogues for other topolo-
gies), the second equality by definition of cohomology of F over an object of
(Sch/T )τ , the third equality by Cohomology on Sites, Lemma 21.7.1, and the last
equality by Lemma 46.5.8. Thus by Lemma 46.5.10 it suffices to prove the claim
stated in the following paragraph.
Let A be a ring. Let T be a scheme quasi-compact and quasi-separated over A.
Let F be an adequate OT -module on (Sch/T )τ . For an A-algebra B set TB =
T ×Spec(A) Spec(B) and denote FB = F|(TB)Zar the restriction of F to the small
Zariski site of TB . (Recall that this is a “usual” quasi-coherent sheaf on the scheme
TB , see Lemma 46.5.8.) Claim: The functor

B 7−→ Hq(TB ,FB)
is adequate. We will prove the lemma by the usual procedure of cutting T into
pieces.
Case I: T is affine. In this case the schemes TB are all affine and Hq(TB ,FB) = 0
for all q ≥ 1. The functor B 7→ H0(TB ,FB) is adequate by Lemma 46.3.18.
Case II: T is separated. Let n be the minimal number of affines needed to cover
T . We argue by induction on n. The base case is Case I. Choose an affine open
covering T = V1 ∪ . . . ∪ Vn. Set V = V1 ∪ . . . ∪ Vn−1 and U = Vn. Observe that

U ∩ V = (V1 ∩ Vn) ∪ . . . ∪ (Vn−1 ∩ Vn)
is also a union of n−1 affine opens as T is separated, see Schemes, Lemma 26.21.7.
Note that for each B the base changes UB , VB and (U ∩ V )B = UB ∩ VB behave in
the same way. Hence we see that for each B we have a long exact sequence
0→ H0(TB ,FB)→ H0(UB ,FB)⊕H0(VB ,FB)→ H0((U∩V )B ,FB)→ H1(TB ,FB)→ . . .

functorial in B, see Cohomology, Lemma 20.8.2. By induction hypothesis the func-
tors B 7→ Hq(UB ,FB), B 7→ Hq(VB ,FB), and B 7→ Hq((U ∩ V )B ,FB) are ade-
quate. Using Lemmas 46.3.11 and 46.3.10 we see that our functor B 7→ Hq(TB ,FB)
sits in the middle of a short exact sequence whose outer terms are adequate. Thus
the claim follows from Lemma 46.3.16.
Case III: General quasi-compact and quasi-separated case. The proof is again by
induction on the number n of affines needed to cover T . The base case n = 1 is
Case I. Choose an affine open covering T = V1 ∪ . . . ∪ Vn. Set V = V1 ∪ . . . ∪ Vn−1
and U = Vn. Note that since T is quasi-separated U ∩ V is a quasi-compact open
of an affine scheme, hence Case II applies to it. The rest of the argument proceeds
in exactly the same manner as in the paragraph above and is omitted. □

46.6. Parasitic adequate modules

06ZK In this section we start comparing adequate modules and quasi-coherent modules
on a scheme S. Recall that there are functors u : QCoh(OS) → Adeq(O) and
v : Adeq(O)→ QCoh(OS) satisfying the adjunction

HomQCoh(OS)(F , vG) = HomAdeq(O)(uF ,G)
and such that F → vuF is an isomorphism for every quasi-coherent sheaf F , see
Remark 46.5.9. Hence u is a fully faithful embedding and we can identify QCoh(OS)
with a full subcategory of Adeq(O). The functor v is exact but u is not left exact
in general. The kernel of v is the subcategory of parasitic adequate modules.
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In Descent, Definition 35.12.1 we give the definition of a parasitic module. For
adequate modules the notion does not depend on the chosen topology.

Lemma 46.6.1.06ZM Let S be a scheme. Let F be an adequate O-module on (Sch/S)τ .
The following are equivalent:

(1) vF = 0,
(2) F is parasitic,
(3) F is parasitic for the τ -topology,
(4) F(U) = 0 for all U ⊂ S open, and
(5) there exists an affine open covering S =

⋃
Ui such that F(Ui) = 0 for all

i.

Proof. The implications (2)⇒ (3)⇒ (4)⇒ (5) are immediate from the definitions.
Assume (5). Suppose that S =

⋃
Ui is an affine open covering such that F(Ui) = 0

for all i. Let V → S be a flat morphism. There exists an affine open covering
V =

⋃
Vj such that each Vj maps into some Ui. As the morphism Vj → S is flat,

also Vj → Ui is flat. Hence the corresponding ring map Ai = O(Ui)→ O(Vj) = Bj
is flat. Thus by Lemma 46.5.2 and Lemma 46.3.5 we see that F(Ui)⊗AiBj → F(Vj)
is an isomorphism. Hence F(Vj) = 0. Since F is a sheaf for the Zariski topology
we conclude that F(V ) = 0. In this way we see that (5) implies (2).
This proves the equivalence of (2), (3), (4), and (5). As (1) is equivalent to (3) (see
Remark 46.5.9) we conclude that all five conditions are equivalent. □

Let S be a scheme. The subcategory of parasitic adequate modules is a Serre
subcategory of Adeq(O). The quotient is the category of quasi-coherent modules.

Lemma 46.6.2.06ZN Let S be a scheme. The subcategory C ⊂ Adeq(O) of parasitic
adequate modules is a Serre subcategory. Moreover, the functor v induces an equiv-
alence of categories

Adeq(O)/C = QCoh(OS).

Proof. The category C is the kernel of the exact functor v : Adeq(O)→ QCoh(OS),
see Lemma 46.6.1. Hence it is a Serre subcategory by Homology, Lemma 12.10.4.
By Homology, Lemma 12.10.6 we obtain an induced exact functor v : Adeq(O)/C →
QCoh(OS). Because u is a right inverse to v we see right away that v is essentially
surjective. We see that v is faithful by Homology, Lemma 12.10.7. Because u is a
right inverse to v we finally conclude that v is fully faithful. □

Lemma 46.6.3.06ZP Let f : T → S be a quasi-compact and quasi-separated morphism
of schemes. For any parasitic adequate OT -module on (Sch/T )τ the pushforward
f∗F and the higher direct images Rif∗F are parasitic adequate OS-modules on
(Sch/S)τ .

Proof. We have already seen in Lemma 46.5.12 that these higher direct images
are adequate. Hence it suffices to show that (Rif∗F)(Ui) = 0 for any τ -covering
{Ui → S} open. And Rif∗F is parasitic by Descent, Lemma 35.12.3. □

46.7. Derived categories of adequate modules, I

06VS Let S be a scheme. We continue the discussion started in Section 46.6. The exact
functor v induces a functor

D(Adeq(O)) −→ D(QCoh(OS))

https://stacks.math.columbia.edu/tag/06ZM
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and similarly for bounded versions.

Lemma 46.7.1.06ZQ Let S be a scheme. Let C ⊂ Adeq(O) denote the full subcategory
consisting of parasitic adequate modules. Then

D(Adeq(O))/DC(Adeq(O)) = D(QCoh(OS))

and similarly for the bounded versions.

Proof. Follows immediately from Derived Categories, Lemma 13.17.3. □

Next, we look for a description the other way around by looking at the functors

K+(QCoh(OS)) −→ K+(Adeq(O)) −→ D+(Adeq(O)) −→ D+(QCoh(OS)).

In some cases the derived category of adequate modules is a localization of the
homotopy category of complexes of quasi-coherent modules at universal quasi-
isomorphisms. Let S be a scheme. A map of complexes φ : F• → G• of quasi-
coherent OS-modules is said to be a universal quasi-isomorphism if for every mor-
phism of schemes f : T → S the pullback f∗φ is a quasi-isomorphism.

Lemma 46.7.2.06ZR Let U = Spec(A) be an affine scheme. The bounded below derived
category D+(Adeq(O)) is the localization of K+(QCoh(OU )) at the multiplicative
subset of universal quasi-isomorphisms.

Proof. If φ : F• → G• is a morphism of complexes of quasi-coherent OU -modules,
then uφ : uF• → uG• is a quasi-isomorphism if and only if φ is a universal quasi-
isomorphism. Hence the collection S of universal quasi-isomorphisms is a saturated
multiplicative system compatible with the triangulated structure by Derived Cat-
egories, Lemma 13.5.4. Hence S−1K+(QCoh(OU )) exists and is a triangulated
category, see Derived Categories, Proposition 13.5.6. We obtain a canonical func-
tor can : S−1K+(QCoh(OU )) → D+(Adeq(O)) by Derived Categories, Lemma
13.5.7.

Note that, almost by definition, every adequate module on U has an embedding into
a quasi-coherent sheaf, see Lemma 46.5.5. Hence by Derived Categories, Lemma
13.15.5 given F• ∈ Ob(K+(Adeq(O))) there exists a quasi-isomorphism F• → uG•

where G• ∈ Ob(K+(QCoh(OU ))). This proves that can is essentially surjective.

Similarly, suppose that F• and G• are bounded below complexes of quasi-coherent
OU -modules. A morphism in D+(Adeq(O)) between these consists of a pair f :
uF• → H• and s : uG• → H• where s is a quasi-isomorphism. Pick a quasi-
isomorphism s′ : H• → uE•. Then we see that s′ ◦ f : F → E• and the univer-
sal quasi-isomorphism s′ ◦ s : G• → E• give a morphism in S−1K+(QCoh(OU ))
mapping to the given morphism. This proves the "fully" part of full faithfulness.
Faithfulness is proved similarly. □

Lemma 46.7.3.06ZS Let U = Spec(A) be an affine scheme. The inclusion functor

Adeq(O)→ Mod((Sch/U)τ ,O)

has a right adjoint A1. Moreover, the adjunction mapping A(F)→ F is an isomor-
phism for every adequate module F .

1This is the “adequator”.

https://stacks.math.columbia.edu/tag/06ZQ
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Proof. By Topologies, Lemma 34.7.11 (and similarly for the other topologies) we
may work with O-modules on (Aff/U)τ . Denote P the category of module-valued
functors on AlgA and A the category of adequate functors on AlgA. Denote i : A →
P the inclusion functor. Denote Q : P → A the construction of Lemma 46.4.1. We
have the commutative diagram

(46.7.3.1)06ZT

Adeq(O)
k
// Mod((Aff/U)τ ,O)

j
// PMod((Aff/U)τ ,O)

A i // P
The left vertical equality is Lemma 46.5.3 and the right vertical equality was ex-
plained in Section 46.3. Define A(F) = Q(j(F)). Since j is fully faithful it follows
immediately that A is a right adjoint of the inclusion functor k. Also, since k is
fully faithful too, the final assertion follows formally. □

The functor A is a right adjoint hence left exact. Since the inclusion functor is
exact, see Lemma 46.5.11 we conclude that A transforms injectives into injectives,
and that the category Adeq(O) has enough injectives, see Homology, Lemma 12.29.3
and Injectives, Theorem 19.8.4. This also follows from the equivalence in (46.7.3.1)
and Lemma 46.4.2.

Lemma 46.7.4.06ZU Let U = Spec(A) be an affine scheme. For any object F of Adeq(O)
we have RpA(F) = 0 for all p > 0 where A is as in Lemma 46.7.3.

Proof. With notation as in the proof of Lemma 46.7.3 choose an injective resolution
k(F) → I• in the category of O-modules on (Aff/U)τ . By Cohomology on Sites,
Lemmas 21.12.2 and Lemma 46.5.8 the complex j(I•) is exact. On the other
hand, each j(In) is an injective object of the category of presheaves of modules by
Cohomology on Sites, Lemma 21.12.1. It follows that RpA(F) = RpQ(j(k(F))).
Hence the result now follows from Lemma 46.4.10. □

Let S be a scheme. By the discussion in Section 46.5 the embedding Adeq(O) ⊂
Mod((Sch/S)τ ,O) exhibits Adeq(O) as a weak Serre subcategory of the category
of all O-modules. Denote

DAdeq(O) ⊂ D(O) = D(Mod((Sch/S)τ ,O))
the triangulated subcategory of complexes whose cohomology sheaves are adequate,
see Derived Categories, Section 13.17. We obtain a canonical functor

D(Adeq(O)) −→ DAdeq(O)
see Derived Categories, Equation (13.17.1.1).

Lemma 46.7.5.06ZV If U = Spec(A) is an affine scheme, then the bounded below version

(46.7.5.1)06VV D+(Adeq(O)) −→ D+
Adeq(O)

of the functor above is an equivalence.

Proof. Let A : Mod(O) → Adeq(O) be the right adjoint to the inclusion functor
constructed in Lemma 46.7.3. Since A is left exact and since Mod(O) has enough
injectives, A has a right derived functor RA : D+

Adeq(O) → D+(Adeq(O)). We
claim that RA is a quasi-inverse to (46.7.5.1). To see this the key fact is that if F is

https://stacks.math.columbia.edu/tag/06ZU
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an adequate module, then the adjunction map F → RA(F) is a quasi-isomorphism
by Lemma 46.7.4.
Namely, to prove the lemma in full it suffices to show:

(1) Given F• ∈ K+(Adeq(O)) the canonical map F• → RA(F•) is a quasi-
isomorphism, and

(2) given G• ∈ K+(Mod(O)) the canonical map RA(G•) → G• is a quasi-
isomorphism.

Both (1) and (2) follow from the key fact via a spectral sequence argument using
one of the spectral sequences of Derived Categories, Lemma 13.21.3. Some details
omitted. □

Lemma 46.7.6.06ZW Let U = Spec(A) be an affine scheme. Let F and G be adequate
O-modules. For any i ≥ 0 the natural map

ExtiAdeq(O)(F ,G) −→ ExtiMod(O)(F ,G)
is an isomorphism.
Proof. By definition these ext groups are computed as hom sets in the derived
category. Hence this follows immediately from Lemma 46.7.5. □

46.8. Pure extensions

06ZX We want to characterize extensions of quasi-coherent sheaves on the big site of an
affine schemes in terms of algebra. To do this we introduce the following notion.
Definition 46.8.1.06ZY Let A be a ring.

(1) An A-module P is said to be pure projective if for every universally
exact sequence 0 → K → M → N → 0 of A-module the sequence
0→ HomA(P,K)→ HomA(P,M)→ HomA(P,N)→ 0 is exact.

(2) An A-module I is said to be pure injective if for every universally ex-
act sequence 0 → K → M → N → 0 of A-module the sequence 0 →
HomA(N, I)→ HomA(M, I)→ HomA(K, I)→ 0 is exact.

Let’s characterize pure projectives.
Lemma 46.8.2.06ZZ Let A be a ring.

(1) A module is pure projective if and only if it is a direct summand of a
direct sum of finitely presented A-modules.

(2) For any module M there exists a universally exact sequence 0 → N →
P →M → 0 with P pure projective.

Proof. First note that a finitely presented A-module is pure projective by Algebra,
Theorem 10.82.3. Hence a direct summand of a direct sum of finitely presented A-
modules is indeed pure projective. Let M be any A-module. Write M = colimi∈I Pi
as a filtered colimit of finitely presented A-modules. Consider the sequence

0→ N →
⊕

Pi →M → 0.

For any finitely presented A-module P the map HomA(P,
⊕
Pi) → HomA(P,M)

is surjective, as any map P → M factors through some Pi. Hence by Algebra,
Theorem 10.82.3 this sequence is universally exact. This proves (2). If now M is
pure projective, then the sequence is split and we see that M is a direct summand
of
⊕
Pi. □

https://stacks.math.columbia.edu/tag/06ZW
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Let’s characterize pure injectives.

Lemma 46.8.3.0700 Let A be a ring. For any A-module M set M∨ = HomZ(M,Q/Z).
(1) For any A-module M the A-module M∨ is pure injective.
(2) An A-module I is pure injective if and only if the map I → (I∨)∨ splits.
(3) For any module M there exists a universally exact sequence 0 → M →

I → N → 0 with I pure injective.

Proof. We will use the properties of the functor M 7→M∨ found in More on Alge-
bra, Section 15.55 without further mention. Part (1) holds because HomA(N,M∨) =
HomZ(N ⊗A M,Q/Z) and because Q/Z is injective in the category of abelian
groups. Hence if I → (I∨)∨ is split, then I is pure injective. We claim that
for any A-module M the evaluation map ev : M → (M∨)∨ is universally injec-
tive. To see this note that ev∨ : ((M∨)∨)∨ → M∨ has a right inverse, namely
ev′ : M∨ → ((M∨)∨)∨. Then for any A-module N applying the exact faithful
functor ∨ to the map N ⊗AM → N ⊗A (M∨)∨ gives

HomA(N, ((M∨)∨)∨) =
(
N ⊗A (M∨)∨

)∨
→
(
N ⊗AM

)∨
= HomA(N,M∨)

which is surjective by the existence of the right inverse. The claim follows. The
claim implies (3) and the necessity of the condition in (2). □

Before we continue we make the following observation which we will use frequently
in the rest of this section.

Lemma 46.8.4.0701 Let A be a ring.
(1) Let L → M → N be a universally exact sequence of A-modules. Let

K = Im(M → N). Then K → N is universally injective.
(2) Any universally exact complex can be split into universally exact short

exact sequences.

Proof. Proof of (1). For any A-module T the sequence L ⊗A T → M ⊗A T →
K⊗AT → 0 is exact by right exactness of ⊗. By assumption the sequence L⊗AT →
M ⊗A T → N ⊗A T is exact. Combined this shows that K ⊗A T → N ⊗A T is
injective.
Part (2) means the following: Suppose that M• is a universally exact complex of
A-modules. Set Ki = Ker(di) ⊂ M i. Then the short exact sequences 0 → Ki →
M i → Ki+1 → 0 are universally exact. This follows immediately from part (1). □

Definition 46.8.5.0702 Let A be a ring. Let M be an A-module.
(1) A pure projective resolution P• →M is a universally exact sequence

. . .→ P1 → P0 →M → 0
with each Pi pure projective.

(2) A pure injective resolution M → I• is a universally exact sequence
0→M → I0 → I1 → . . .

with each Ii pure injective.

These resolutions satisfy the usual uniqueness properties among the class of all
universally exact left or right resolutions.

Lemma 46.8.6.0703 Let A be a ring.

https://stacks.math.columbia.edu/tag/0700
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(1) Any A-module has a pure projective resolution.
Let M → N be a map of A-modules. Let P• →M be a pure projective resolution
and let N• → N be a universally exact resolution.

(2) There exists a map of complexes P• → N• inducing the given map
M = Coker(P1 → P0)→ Coker(N1 → N0) = N

(3) two maps α, β : P• → N• inducing the same map M → N are homotopic.

Proof. Part (1) follows immediately from Lemma 46.8.2. Before we prove (2) and
(3) note that by Lemma 46.8.4 we can split the universally exact complex N• →
N → 0 into universally exact short exact sequences 0 → K0 → N0 → N → 0 and
0→ Ki → Ni → Ki−1 → 0.
Proof of (2). Because P0 is pure projective we can find a map P0 → N0 lifting the
map P0 → M → N . We obtain an induced map P1 → F0 → N0 wich ends up in
K0. Since P1 is pure projective we may lift this to a map P1 → N1. This in turn
induces a map P2 → P1 → N1 which maps to zero into N0, i.e., into K1. Hence we
may lift to get a map P2 → N2. Repeat.
Proof of (3). To show that α, β are homotopic it suffices to show the difference
γ = α− β is homotopic to zero. Note that the image of γ0 : P0 → N0 is contained
in K0. Hence we may lift γ0 to a map h0 : P0 → N1. Consider the map γ′

1 =
γ1 − h0 ◦ dP,1 : P1 → N1. By our choice of h0 we see that the image of γ′

1 is
contained in K1. Since P1 is pure projective may lift γ′

1 to a map h1 : P1 → N2.
At this point we have γ1 = h0 ◦ dF,1 + dN,2 ◦ h1. Repeat. □

Lemma 46.8.7.0704 Let A be a ring.
(1) Any A-module has a pure injective resolution.

Let M → N be a map of A-modules. Let M →M• be a universally exact resolution
and let N → I• be a pure injective resolution.

(2) There exists a map of complexes M• → I• inducing the given map
M = Ker(M0 →M1)→ Ker(I0 → I1) = N

(3) two maps α, β : M• → I• inducing the same map M → N are homotopic.

Proof. This lemma is dual to Lemma 46.8.6. The proof is identical, except one has
to reverse all the arrows. □

Using the material above we can define pure extension groups as follows. Let A be
a ring and let M , N be A-modules. Choose a pure injective resolution N → I•.
By Lemma 46.8.7 the complex

HomA(M, I•)
is well defined up to homotopy. Hence its ith cohomology module is a well defined
invariant of M and N .

Definition 46.8.8.0705 Let A be a ring and let M , N be A-modules. The ith pure
extension module PextiA(M,N) is the ith cohomology module of the complex
HomA(M, I•) where I• is a pure injective resolution of N .

Warning: It is not true that an exact sequence of A-modules gives rise to a long
exact sequence of pure extensions groups. (You need a universally exact sequence
for this.) We collect some facts which are obvious from the material above.

https://stacks.math.columbia.edu/tag/0704
https://stacks.math.columbia.edu/tag/0705


46.9. HIGHER EXTS OF QUASI-COHERENT SHEAVES ON THE BIG SITE 3969

Lemma 46.8.9.0706 Let A be a ring.
(1) PextiA(M,N) = 0 for i > 0 whenever N is pure injective,
(2) PextiA(M,N) = 0 for i > 0 whenever M is pure projective, in particular

if M is an A-module of finite presentation,
(3) PextiA(M,N) is also the ith cohomology module of the complex HomA(P•, N)

where P• is a pure projective resolution of M .

Proof. To see (3) consider the double complex

A•,• = HomA(P•, I
•)

Each of its rows is exact except in degree 0 where its cohomology is HomA(M, Iq).
Each of its columns is exact except in degree 0 where its cohomology is HomA(Pp, N).
Hence the two spectral sequences associated to this complex in Homology, Section
12.25 degenerate, giving the equality. □

46.9. Higher exts of quasi-coherent sheaves on the big site

0707 It turns out that the module-valued functor I associated to a pure injective module
I gives rise to an injective object in the category of adequate functors on AlgA.
Warning: It is not true that a pure projective module gives rise to a projective
object in the category of adequate functors. We do have plenty of projective objects,
namely, the linearly adequate functors.

Lemma 46.9.1.0708 Let A be a ring. Let A be the category of adequate functors on
AlgA. The injective objects of A are exactly the functors I where I is a pure
injective A-module.

Proof. Let I be an injective object of A. Choose an embedding I →M for some A-
module M . As I is injective we see that M = I⊕F for some module-valued functor
F . Then M = I(A) ⊕ F (A) and it follows that I = I(A). Thus we see that any
injective object is of the form I for some A-module I. It is clear that the module I
has to be pure injective since any universally exact sequence 0→M → N → L→ 0
gives rise to an exact sequence 0→M → N → L→ 0 of A.

Finally, suppose that I is a pure injective A-module. Choose an embedding I → J
into an injective object of A (see Lemma 46.4.2). We have seen above that J = I ′

for some A-module I ′ which is pure injective. As I → I ′ is injective the map I → I ′

is universally injective. By assumption on I it splits. Hence I is a summand of
J = I ′ whence an injective object of the category A. □

Let U = Spec(A) be an affine scheme. Let M be an A-module. We will use
the notation Ma to denote the quasi-coherent sheaf of O-modules on (Sch/U)τ
associated to the quasi-coherent sheaf M̃ on U . Now we have all the notation in
place to formulate the following lemma.

Lemma 46.9.2.0709 Let U = Spec(A) be an affine scheme. Let M , N be A-modules.
For all i we have a canonical isomorphism

ExtiMod(O)(Ma, Na) = PextiA(M,N)

functorial in M and N .

https://stacks.math.columbia.edu/tag/0706
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Proof. Let us construct a canonical arrow from right to left. Namely, if N → I•

is a pure injective resolution, then Ma → (I•)a is an exact complex of (adequate)
O-modules. Hence any element of PextiA(M,N) gives rise to a map Na → Ma[i]
in D(O), i.e., an element of the group on the left.

To prove this map is an isomorphism, note that we may replace ExtiMod(O)(Ma, Na)
by ExtiAdeq(O)(Ma, Na), see Lemma 46.7.6. Let A be the category of adequate
functors on AlgA. We have seen that A is equivalent to Adeq(O), see Lemma
46.5.3; see also the proof of Lemma 46.7.3. Hence now it suffices to prove that

ExtiA(M,N) = PextiA(M,N)

However, this is clear from Lemma 46.9.1 as a pure injective resolution N → I•

exactly corresponds to an injective resolution of N in A. □

46.10. Derived categories of adequate modules, II

070T Let S be a scheme. Denote OS the structure sheaf of S and O the structure sheaf
of the big site (Sch/S)τ . In Descent, Remark 35.8.4 we constructed a morphism of
ringed sites

(46.10.0.1)070U f : ((Sch/S)τ ,O) −→ (SZar,OS).

In the previous sections have seen that the functor f∗ : Mod(O)→ Mod(OS) trans-
forms adequate sheaves into quasi-coherent sheaves, and induces an exact func-
tor v : Adeq(O) → QCoh(OS), and in fact that f∗ = v induces an equivalence
Adeq(O)/C → QCoh(OS) where C is the subcategory of parasitic adequate mod-
ules. Moreover, the functor f∗ transforms quasi-coherent modules into adequate
modules, and induces a functor u : QCoh(OS) → Adeq(O) which is a left adjoint
to v.

There is a very similar relationship between DAdeq(O) and DQCoh(S). First we
explain why the category DAdeq(O) is independent of the chosen topology.

Remark 46.10.1.070V Let S be a scheme. Let τ, τ ′ ∈ {Zar, étale, smooth, syntomic, fppf}.
Denote Oτ , resp. Oτ ′ the structure sheaf O viewed as a sheaf on (Sch/S)τ , resp.
(Sch/S)τ ′ . Then DAdeq(Oτ ) and DAdeq(Oτ ′) are canonically isomorphic. This
follows from Cohomology on Sites, Lemma 21.29.1. Namely, assume τ is stronger
than the topology τ ′, let C = (Sch/S)fppf , and let B the collection of affine schemes
over S. Assumptions (1) and (2) we’ve seen above. Assumption (3) is clear and
assumption (4) follows from Lemma 46.5.8.

Remark 46.10.2.070W Let S be a scheme. The morphism f see (46.10.0.1) induces
adjoint functors Rf∗ : DAdeq(O) → DQCoh(S) and Lf∗ : DQCoh(S) → DAdeq(O).
Moreover Rf∗Lf

∗ ∼= idDQCoh(S).

We sketch the proof. By Remark 46.10.1 we may assume the topology τ is the
Zariski topology. We will use the existence of the unbounded total derived functors
Lf∗ and Rf∗ on O-modules and their adjointness, see Cohomology on Sites, Lemma
21.19.1. In this case f∗ is just the restriction to the subcategory SZar of (Sch/S)Zar.
Hence it is clear that Rf∗ = f∗ induces Rf∗ : DAdeq(O) → DQCoh(S). Suppose
that G• is an object of DQCoh(S). We may choose a system K•

1 → K•
2 → . . . of

https://stacks.math.columbia.edu/tag/070V
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bounded above complexes of flat OS-modules whose transition maps are termwise
split injectives and a diagram

K•
1

��

// K•
2

��

// . . .

τ≤1G• // τ≤2G• // . . .

with the properties (1), (2), (3) listed in Derived Categories, Lemma 13.29.1 where
P is the collection of flat OS-modules. Then Lf∗G• is computed by colim f∗K•

n, see
Cohomology on Sites, Lemmas 21.18.1 and 21.18.2 (note that our sites have enough
points by Étale Cohomology, Lemma 59.30.1). We have to see that Hi(Lf∗G•) =
colimHi(f∗K•

n) is adequate for each i. By Lemma 46.5.11 we conclude that it
suffices to show that each Hi(f∗K•

n) is adequate.
The adequacy of Hi(f∗K•

n) is local on S, hence we may assume that S = Spec(A) is
affine. Because S is affine DQCoh(S) = D(QCoh(OS)), see the discussion in Derived
Categories of Schemes, Section 36.3. Hence there exists a quasi-isomorphism F• →
K•
n where F• is a bounded above complex of flat quasi-coherent modules. Then

f∗F• → f∗K•
n is a quasi-isomorphism, and the cohomology sheaves of f∗F• are

adequate.
The final assertion Rf∗Lf

∗ ∼= idDQCoh(S) follows from the explicit description of the
functors above. (In plain English: if F is quasi-coherent and p > 0, then Lpf∗F is
a parasitic adequate module.)

Remark 46.10.3.070X Remark 46.10.2 above implies we have an equivalence of derived
categories

DAdeq(O)/DC(O) −→ DQCoh(S)
where C is the category of parasitic adequate modules. Namely, it is clear that
DC(O) is the kernel of Rf∗, hence a functor as indicated. For any object X of
DAdeq(O) the map Lf∗Rf∗X → X maps to a quasi-isomorphism in DQCoh(S),
hence Lf∗Rf∗X → X is an isomorphism in DAdeq(O)/DC(O). Finally, for X,Y
objects of DAdeq(O) the map

Rf∗ : HomDAdeq(O)/DC(O)(X,Y )→ HomDQCoh(S)(Rf∗X,Rf∗Y )
is bijective as Lf∗ gives an inverse (by the remarks above).
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CHAPTER 47

Dualizing Complexes

08XG 47.1. Introduction

08XH In this chapter we discuss dualizing complexes in commutative algebra. A reference
is [Har66].
We begin with a discussion of essential surjections and essential injections, projec-
tive covers, injective hulls, duality for Artinian rings, and study injective hulls of
residue fields, leading quickly to a proof of Matlis duality. See Sections 47.2, 47.3,
47.4, 47.5, 47.6, and 47.7 and Proposition 47.7.8.
This is followed by three sections discussing local cohomology in great generality,
see Sections 47.8, 47.9, and 47.10. We apply some of this to a discussion of depth
in Section 47.11. In another application we show how, given a finitely generated
ideal I of a ring A, the “I-complete” and “I-torsion” objects of the derived category
of A are equivalent, see Section 47.12. To learn more about local cohomology, for
example the finiteness theorem (which relies on local duality – see below) please
visit Local Cohomology, Section 51.1.
The bulk of this chapter is devoted to duality for a ring map and dualizing com-
plexes. See Sections 47.13, 47.14, 47.15, 47.16, 47.17, 47.18, 47.19, 47.20, 47.21,
47.22, and 47.23. The key definition is that of a dualizing complex ω•

A over a Noe-
therian ring A as an object ω•

A ∈ D+(A) whose cohomology modules Hi(ω•
A) are

finite A-modules, which has finite injective dimension, and is such that the map
A −→ RHomA(ω•

A, ω
•
A)

is a quasi-isomorphism. After establishing some elementary properties of dualizing
complexes, we show a dualizing complex gives rise to a dimension function. Next,
we prove Grothendieck’s local duality theorem. After briefly discussing dualizing
modules and Cohen-Macaulay rings, we introduce Gorenstein rings and we show
many familiar Noetherian rings have dualizing complexes. In a last section we apply
the material to show there is a good theory of Noetherian local rings whose formal
fibres are Gorenstein or local complete intersections.
In the last few sections, we describe an algebraic construction of the “upper shriek
functors” used in algebraic geometry, for example in the book [Har66]. This topic is
continued in the chapter on duality for schemes. See Duality for Schemes, Section
48.1.

47.2. Essential surjections and injections

08XI We will mostly work in categories of modules, but we may as well make the definition
in general.

Definition 47.2.1.08XJ Let A be an abelian category.

3974
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(1) An injection A ⊂ B of A is essential, or we say that B is an essential
extension of A, if every nonzero subobject B′ ⊂ B has nonzero intersection
with A.

(2) A surjection f : A → B of A is essential if for every proper subobject
A′ ⊂ A we have f(A′) ̸= B.

Some lemmas about this notion.
Lemma 47.2.2.08XK Let A be an abelian category.

(1) If A ⊂ B and B ⊂ C are essential extensions, then A ⊂ C is an essential
extension.

(2) If A ⊂ B is an essential extension and C ⊂ B is a subobject, then A∩C ⊂
C is an essential extension.

(3) If A→ B and B → C are essential surjections, then A→ C is an essential
surjection.

(4) Given an essential surjection f : A → B and a surjection A → C with
kernel K, the morphism C → B/f(K) is an essential surjection.

Proof. Omitted. □

Lemma 47.2.3.08XL Let R be a ring. Let M be an R-module. Let E = colimEi be
a filtered colimit of R-modules. Suppose given a compatible system of essential
injections M → Ei of R-modules. Then M → E is an essential injection.
Proof. Immediate from the definitions and the fact that filtered colimits are exact
(Algebra, Lemma 10.8.8). □

Lemma 47.2.4.08XM Let R be a ring. Let M ⊂ N be R-modules. The following are
equivalent

(1) M ⊂ N is an essential extension,
(2) for all x ∈ N nonzero there exists an f ∈ R such that fx ∈M and fx ̸= 0.

Proof. Assume (1) and let x ∈ N be a nonzero element. By (1) we have Rx∩M ̸= 0.
This implies (2).
Assume (2). Let N ′ ⊂ N be a nonzero submodule. Pick x ∈ N ′ nonzero. By (2)
we can find f ∈ R with fx ∈M and fx ̸= 0. Thus N ′ ∩M ̸= 0. □

47.3. Injective modules

08XN Some results about injective modules over rings.
Lemma 47.3.1.08XP Let R be a ring. Any product of injective R-modules is injective.
Proof. Special case of Homology, Lemma 12.27.3. □

Lemma 47.3.2.08XQ Let R→ S be a flat ring map. If E is an injective S-module, then
E is injective as an R-module.
Proof. This is true because HomR(M,E) = HomS(M⊗RS,E) by Algebra, Lemma
10.14.3 and the fact that tensoring with S is exact. □

Lemma 47.3.3.08YV Let R→ S be an epimorphism of rings. Let E be an S-module. If
E is injective as an R-module, then E is an injective S-module.
Proof. This is true because HomR(N,E) = HomS(N,E) for any S-module N , see
Algebra, Lemma 10.107.14. □

https://stacks.math.columbia.edu/tag/08XK
https://stacks.math.columbia.edu/tag/08XL
https://stacks.math.columbia.edu/tag/08XM
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Lemma 47.3.4.08XR Let R → S be a ring map. If E is an injective R-module, then
HomR(S,E) is an injective S-module.

Proof. This is true because HomS(N,HomR(S,E)) = HomR(N,E) by Algebra,
Lemma 10.14.4. □

Lemma 47.3.5.08XS Let R be a ring. Let I be an injective R-module. Let E ⊂ I be a
submodule. The following are equivalent

(1) E is injective, and
(2) for all E ⊂ E′ ⊂ I with E ⊂ E′ essential we have E = E′.

In particular, an R-module is injective if and only if every essential extension is
trivial.

Proof. The final assertion follows from the first and the fact that the category of
R-modules has enough injectives (More on Algebra, Section 15.55).
Assume (1). Let E ⊂ E′ ⊂ I as in (2). Then the map idE : E → E can be
extended to a map α : E′ → E. The kernel of α has to be zero because it intersects
E trivially and E′ is an essential extension. Hence E = E′.
Assume (2). Let M ⊂ N be R-modules and let φ : M → E be an R-module map.
In order to prove (1) we have to show that φ extends to a morphism N → E.
Consider the set S of pairs (M ′, φ′) where M ⊂ M ′ ⊂ N and φ′ : M ′ → E is an
R-module map agreeing with φ on M . We define an ordering on S by the rule
(M ′, φ′) ≤ (M ′′, φ′′) if and only if M ′ ⊂ M ′′ and φ′′|M ′ = φ′. It is clear that we
can take the maximum of a totally ordered subset of S. Hence by Zorn’s lemma we
may assume (M,φ) is a maximal element.
Choose an extension ψ : N → I of φ composed with the inclusion E → I. This is
possible as I is injective. If ψ(N) ⊂ E, then ψ is the desired extension. If ψ(N) is
not contained in E, then by (2) the inclusion E ⊂ E+ψ(N) is not essential. hence
we can find a nonzero submodule K ⊂ E +ψ(N) meeting E in 0. This means that
M ′ = ψ−1(E +K) strictly contains M . Thus we can extend φ to M ′ using

M ′ ψ|M′−−−→ E +K → (E +K)/K = E

This contradicts the maximality of (M,φ). □

Example 47.3.6.08XT Let R be a reduced ring. Let p ⊂ R be a minimal prime so
that K = Rp is a field (Algebra, Lemma 10.25.1). Then K is an injective R-
module. Namely, we have HomR(M,K) = HomK(Mp,K) for any R-module M .
Since localization is an exact functor and taking duals is an exact functor on K-
vector spaces we conclude HomR(−,K) is an exact functor, i.e., K is an injective
R-module.

Lemma 47.3.7.08XV Let R be a Noetherian ring. A direct sum of injective modules is
injective.

Proof. Let Ei be a family of injective modules parametrized by a set I. Set E =⊕
Ei. To show that E is injective we use Injectives, Lemma 19.2.6. Thus let

φ : I → E be a module map from an ideal of R into E. As I is a finite R-module
(because R is Noetherian) we can find finitely many elements i1, . . . , ir ∈ I such
that φ maps into

⊕
j=1,...,r Eij . Then we can extend φ into

⊕
j=1,...,r Eij using the

injectivity of the modules Eij . □

https://stacks.math.columbia.edu/tag/08XR
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Lemma 47.3.8.0A6I Let R be a Noetherian ring. Let S ⊂ R be a multiplicative subset.
If E is an injective R-module, then S−1E is an injective S−1R-module.

Proof. Since R→ S−1R is an epimorphism of rings, it suffices to show that S−1E
is injective as an R-module, see Lemma 47.3.3. To show this we use Injectives,
Lemma 19.2.6. Thus let I ⊂ R be an ideal and let φ : I → S−1E be an R-module
map. As I is a finitely presented R-module (because R is Noetherian) we can
find an f ∈ S and an R-module map I → E such that fφ is the composition
I → E → S−1E (Algebra, Lemma 10.10.2). Then we can extend I → E to a
homomorphism R→ E. Then the composition

R→ E → S−1E
f−1

−−→ S−1E

is the desired extension of φ to R. □

Lemma 47.3.9.08XW Let R be a Noetherian ring. Let I be an injective R-module.
(1) Let f ∈ R. Then E =

⋃
I[fn] = I[f∞] is an injective submodule of I.

(2) Let J ⊂ R be an ideal. Then the J-power torsion submodule I[J∞] is an
injective submodule of I.

Proof. We will use Lemma 47.3.5 to prove (1). Suppose that E ⊂ E′ ⊂ I and that
E′ is an essential extension of E. We will show that E′ = E. If not, then we can
find x ∈ E′ and x ̸∈ E. Let J = {a ∈ R | ax ∈ E}. Since R is Noetherian, we may
write J = (g1, . . . , gt) for some gi ∈ R. By definition E is the set of elements of I
annihilated by powers of f , so we may choose integers ni so that fnigix = 0. Set
n = max{ni}. Then x′ = fnx is an element of E′ not in E and is annihilated by
J . Set J ′ = {a ∈ R | ax′ ∈ E} so J ⊂ J ′. Conversely, we have a ∈ J ′ if and only
if ax′ ∈ E if and only if fmax′ = 0 for some m ≥ 0. But then fmax′ = fm+nax
implies ax ∈ E, i.e., a ∈ J . Hence J = J ′. Thus J = J ′ = Ann(x′), so Rx′∩E = 0.
Hence E′ is not an essential extension of E, a contradiction.

To prove (2) write J = (f1, . . . , ft). Then I[J∞] is equal to

(. . . ((I[f∞
1 ])[f∞

2 ]) . . .)[f∞
t ]

and the result follows from (1) and induction. □

Lemma 47.3.10.0A6J Let A be a Noetherian ring. Let E be an injective A-module.
Then E⊗AA[x] has injective-amplitude [0, 1] as an object of D(A[x]). In particular,
E ⊗A A[x] has finite injective dimension as an A[x]-module.

Proof. Let us write E[x] = E ⊗A A[x]. Consider the short exact sequence of A[x]-
modules

0→ E[x]→ HomA(A[x], E[x])→ HomA(A[x], E[x])→ 0

where the first map sends p ∈ E[x] to f 7→ fp and the second map sends φ to
f 7→ φ(xf) − xφ(f). The second map is surjective because HomA(A[x], E[x]) =∏
n≥0 E[x] as an abelian group and the map sends (en) to (en+1 − xen) which is

surjective. As an A-module we have E[x] ∼=
⊕

n≥0 E which is injective by Lemma
47.3.7. Hence the A[x]-module HomA(A[x], E[x]) is injective by Lemma 47.3.4 and
the proof is complete. □
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47.4. Projective covers

08XX In this section we briefly discuss projective covers.

Definition 47.4.1.08XY Let R be a ring. A surjection P → M of R-modules is said
to be a projective cover, or sometimes a projective envelope, if P is a projective
R-module and P →M is an essential surjection.

Projective covers do not always exist. For example, if k is a field and R = k[x] is
the polynomial ring over k, then the module M = R/(x) does not have a projective
cover. Namely, for any surjection f : P →M with P projective over R, the proper
submodule (x− 1)P surjects onto M . Hence f is not essential.

Lemma 47.4.2.08XZ Let R be a ring and let M be an R-module. If a projective cover
of M exists, then it is unique up to isomorphism.

Proof. Let P → M and P ′ → M be projective covers. Because P is a projective
R-module and P ′ → M is surjective, we can find an R-module map α : P → P ′

compatible with the maps to M . Since P ′ → M is essential, we see that α is
surjective. As P ′ is a projectiveR-module we can choose a direct sum decomposition
P = Ker(α) ⊕ P ′. Since P ′ → M is surjective and since P → M is essential we
conclude that Ker(α) is zero as desired. □

Here is an example where projective covers exist.

Lemma 47.4.3.08Y0 Let (R,m, κ) be a local ring. Any finite R-module has a projective
cover.

Proof. Let M be a finite R-module. Let r = dimκ(M/mM). Choose x1, . . . , xr ∈
M mapping to a basis of M/mM . Consider the map f : R⊕r →M . By Nakayama’s
lemma this is a surjection (Algebra, Lemma 10.20.1). If N ⊂ R⊕r is a proper
submodule, then N/mN → κ⊕r is not surjective (by Nakayama’s lemma again)
hence N/mN →M/mM is not surjective. Thus f is an essential surjection. □

47.5. Injective hulls

08Y1 In this section we briefly discuss injective hulls.

Definition 47.5.1.08Y2 Let R be a ring. A injection M → I of R-modules is said to be
an injective hull if I is a injective R-module and M → I is an essential injection.

Injective hulls always exist.

Lemma 47.5.2.08Y3 Let R be a ring. Any R-module has an injective hull.

Proof. Let M be an R-module. By More on Algebra, Section 15.55 the category of
R-modules has enough injectives. Choose an injection M → I with I an injective
R-module. Consider the set S of submodules M ⊂ E ⊂ I such that E is an essential
extension of M . We order S by inclusion. If {Eα} is a totally ordered subset of S,
then

⋃
Eα is an essential extension of M too (Lemma 47.2.3). Thus we can apply

Zorn’s lemma and find a maximal element E ∈ S. We claim M ⊂ E is an injective
hull, i.e., E is an injective R-module. This follows from Lemma 47.3.5. □

Lemma 47.5.3.08Y4 Let R be a ring. Let M , N be R-modules and let M → E and
N → E′ be injective hulls. Then
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(1) for any R-module map φ : M → N there exists an R-module map ψ :
E → E′ such that

M //

φ

��

E

ψ

��
N // E′

commutes,
(2) if φ is injective, then ψ is injective,
(3) if φ is an essential injection, then ψ is an isomorphism,
(4) if φ is an isomorphism, then ψ is an isomorphism,
(5) if M → I is an embedding of M into an injective R-module, then there is

an isomorphism I ∼= E ⊕ I ′ compatible with the embeddings of M ,
In particular, the injective hull E of M is unique up to isomorphism.

Proof. Part (1) follows from the fact that E′ is an injective R-module. Part (2)
follows as Ker(ψ) ∩M = 0 and E is an essential extension of M . Assume φ is an
essential injection. Then E ∼= ψ(E) ⊂ E′ by (2) which implies E′ = ψ(E) ⊕ E′′

because E is injective. Since E′ is an essential extension of M (Lemma 47.2.2) we
get E′′ = 0. Part (4) is a special case of (3). Assume M → I as in (5). Choose
a map α : E → I extending the map M → I. Arguing as before we see that α is
injective. Thus as before α(E) splits off from I. This proves (5). □

Example 47.5.4.08Y5 Let R be a domain with fraction field K. Then R ⊂ K is an
injective hull of R. Namely, by Example 47.3.6 we see that K is an injective R-
module and by Lemma 47.2.4 we see that R ⊂ K is an essential extension.

Definition 47.5.5.08Y6 An object X of an additive category is called indecomposable if
it is nonzero and if X = Y ⊕ Z, then either Y = 0 or Z = 0.

Lemma 47.5.6.08Y7 Let R be a ring. Let E be an indecomposable injective R-module.
Then

(1) E is the injective hull of any nonzero submodule of E,
(2) the intersection of any two nonzero submodules of E is nonzero,
(3) EndR(E,E) is a noncommutative local ring with maximal ideal those

φ : E → E whose kernel is nonzero, and
(4) the set of zerodivisors on E is a prime ideal p of R and E is an injective

Rp-module.

Proof. Part (1) follows from Lemma 47.5.3. Part (2) follows from part (1) and the
definition of injective hulls.

Proof of (3). Set A = EndR(E,E) and I = {φ ∈ A | Ker(φ) ̸= 0}. The statement
means that I is a two sided ideal and that any φ ∈ A, φ ̸∈ I is invertible. Suppose φ
and ψ are not injective. Then Ker(φ)∩Ker(ψ) is nonzero by (2). Hence φ+ψ ∈ I.
It follows that I is a two sided ideal. If φ ∈ A, φ ̸∈ I, then E ∼= φ(E) ⊂ E is an
injective submodule, hence E = φ(E) because E is indecomposable.

Proof of (4). Consider the ring map R → A and let p ⊂ R be the inverse image
of the maximal ideal I. Then it is clear that p is a prime ideal and that R → A
extends to Rp → A. Thus E is an Rp-module. It follows from Lemma 47.3.3 that
E is injective as an Rp-module. □
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Lemma 47.5.7.08Y8 Let p ⊂ R be a prime of a ring R. Let E be the injective hull of
R/p. Then

(1) E is indecomposable,
(2) E is the injective hull of κ(p),
(3) E is the injective hull of κ(p) over the ring Rp.

Proof. By Lemma 47.2.4 the inclusion R/p ⊂ κ(p) is an essential extension. Then
Lemma 47.5.3 shows (2) holds. For f ∈ R, f ̸∈ p the map f : κ(p) → κ(p) is an
isomorphism hence the map f : E → E is an isomorphism, see Lemma 47.5.3. Thus
E is an Rp-module. It is injective as an Rp-module by Lemma 47.3.3. Finally, let
E′ ⊂ E be a nonzero injective R-submodule. Then J = (R/p) ∩ E′ is nonzero.
After shrinking E′ we may assume that E′ is the injective hull of J (see Lemma
47.5.3 for example). Observe that R/p is an essential extension of J for example
by Lemma 47.2.4. Hence E′ → E is an isomorphism by Lemma 47.5.3 part (3).
Hence E is indecomposable. □

Lemma 47.5.8.08Y9 Let R be a Noetherian ring. Let E be an indecomposable injective
R-module. Then there exists a prime ideal p of R such that E is the injective hull
of κ(p).

Proof. Let p be the prime ideal found in Lemma 47.5.6. Say p = (f1, . . . , fr). Pick
a nonzero element x ∈

⋂
Ker(fi : E → E), see Lemma 47.5.6. Then (Rp)x is a

module isomorphic to κ(p) inside E. We conclude by Lemma 47.5.6. □

Proposition 47.5.9 (Structure of injective modules over Noetherian rings).08YA Let R
be a Noetherian ring. Every injective module is a direct sum of indecomposable
injective modules. Every indecomposable injective module is the injective hull of
the residue field at a prime.

Proof. The second statement is Lemma 47.5.8. For the first statement, let I be
an injective R-module. We will use transfinite recursion to construct Iα ⊂ I for
ordinals α which are direct sums of indecomposable injective R-modules Eβ+1 for
β < α. For α = 0 we let I0 = 0. Suppose given an ordinal α such that Iα has
been constructed. Then Iα is an injective R-module by Lemma 47.3.7. Hence
I ∼= Iα ⊕ I ′. If I ′ = 0 we are done. If not, then I ′ has an associated prime by
Algebra, Lemma 10.63.7. Thus I ′ contains a copy of R/p for some prime p. Hence
I ′ contains an indecomposable submodule E by Lemmas 47.5.3 and 47.5.7. Set
Iα+1 = Iα ⊕ Eα. If α is a limit ordinal and Iβ has been constructed for β < α,
then we set Iα =

⋃
β<α Iβ . Observe that Iα =

⊕
β<αEβ+1. This concludes the

proof. □

47.6. Duality over Artinian local rings

08YW Let (R,m, κ) be an artinian local ring. Recall that this implies R is Noetherian
and that R has finite length as an R-module. Moreover an R-module is finite if
and only if it has finite length. We will use these facts without further mention in
this section. Please see Algebra, Sections 10.52 and 10.53 and Algebra, Proposition
10.60.7 for more details.

Lemma 47.6.1.08YX Let (R,m, κ) be an artinian local ring. Let E be an injective hull
of κ. For every finite R-module M we have

lengthR(M) = lengthR(HomR(M,E))
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In particular, the injective hull E of κ is a finite R-module.

Proof. Because E is an essential extension of κ we have κ = E[m] where E[m]
is the m-torsion in E (notation as in More on Algebra, Section 15.88). Hence
HomR(κ,E) ∼= κ and the equality of lengths holds for M = κ. We prove the dis-
played equality of the lemma by induction on the length of M . If M is nonzero there
exists a surjection M → κ with kernel M ′. Since the functor M 7→ HomR(M,E) is
exact we obtain a short exact sequence

0→ HomR(κ,E)→ HomR(M,E)→ HomR(M ′, E)→ 0.
Additivity of length for this sequence and the sequence 0 → M ′ → M → κ → 0
and the equality for M ′ (induction hypothesis) and κ implies the equality for M .
The final statement of the lemma follows as E = HomR(R,E). □

Lemma 47.6.2.08YY Let (R,m, κ) be an artinian local ring. Let E be an injective hull
of κ. For any finite R-module M the evaluation map

M −→ HomR(HomR(M,E), E)
is an isomorphism. In particular R = HomR(E,E).

Proof. Observe that the displayed arrow is injective. Namely, if x ∈M is a nonzero
element, then there is a nonzero map Rx → κ which we can extend to a map
φ : M → E that doesn’t vanish on x. Since the source and target of the arrow
have the same length by Lemma 47.6.1 we conclude it is an isomorphism. The final
statement follows on taking M = R. □

To state the next lemma, denote ModfgR the category of finite R-modules over a
ring R.

Lemma 47.6.3.08YZ Let (R,m, κ) be an artinian local ring. Let E be an injective
hull of κ. The functor D(−) = HomR(−, E) induces an exact anti-equivalence
ModfgR → ModfgR and D ◦D ∼= id.

Proof. We have seen that D ◦ D = id on ModfgR in Lemma 47.6.2. It follows
immediately that D is an anti-equivalence. □

Lemma 47.6.4.08Z0 Assumptions and notation as in Lemma 47.6.3. Let I ⊂ R be an
ideal and M a finite R-module. Then

D(M [I]) = D(M)/ID(M) and D(M/IM) = D(M)[I]

Proof. Say I = (f1, . . . , ft). Consider the map

M⊕t f1,...,ft−−−−−→M

with cokernel M/IM . Applying the exact functor D we conclude that D(M/IM)
is D(M)[I]. The other case is proved in the same way. □

47.7. Injective hull of the residue field

08Z1 Most of our results will be for Noetherian local rings in this section.

Lemma 47.7.1.08Z2 Let R→ S be a surjective map of local rings with kernel I. Let E
be the injective hull of the residue field of R over R. Then E[I] is the injective hull
of the residue field of S over S.
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Proof. Observe that E[I] = HomR(S,E) as S = R/I. Hence E[I] is an injective
S-module by Lemma 47.3.4. Since E is an essential extension of κ = R/mR it
follows that E[I] is an essential extension of κ as well. The result follows. □

Lemma 47.7.2.08Z3 Let (R,m, κ) be a local ring. Let E be the injective hull of κ.
Let M be a m-power torsion R-module with n = dimκ(M [m]) < ∞. Then M is
isomorphic to a submodule of E⊕n.

Proof. Observe that E⊕n is the injective hull of κ⊕n = M [m]. Thus there is an
R-module map M → E⊕n which is injective on M [m]. Since M is m-power torsion
the inclusion M [m] ⊂ M is an essential extension (for example by Lemma 47.2.4)
we conclude that the kernel of M → E⊕n is zero. □

Lemma 47.7.3.08Z4 Let (R,m, κ) be a Noetherian local ring. Let E be an injective hull
of κ over R. Let En be an injective hull of κ over R/mn. Then E =

⋃
En and

En = E[mn].

Proof. We have En = E[mn] by Lemma 47.7.1. We have E =
⋃
En because

⋃
En =

E[m∞] is an injective R-submodule which contains κ, see Lemma 47.3.9. □

The following lemma tells us the injective hull of the residue field of a Noetherian
local ring only depends on the completion.

Lemma 47.7.4.08Z5 Let R→ S be a flat local homomorphism of local Noetherian rings
such that R/mR ∼= S/mRS. Then the injective hull of the residue field of R is the
injective hull of the residue field of S.

Proof. Note that mRS = mS as the quotient by the former is a field. Set κ =
R/mR = S/mS . Let ER be the injective hull of κ over R. Let ES be the injective
hull of κ over S. Observe that ES is an injective R-module by Lemma 47.3.2.
Choose an extension ER → ES of the identification of residue fields. This map is
an isomorphism by Lemma 47.7.3 because R→ S induces an isomorphism R/mnR →
S/mnS for all n. □

Lemma 47.7.5.08Z6 Let (R,m, κ) be a Noetherian local ring. Let E be an injective hull
of κ over R. Then HomR(E,E) is canonically isomorphic to the completion of R.

Proof. Write E =
⋃
En with En = E[mn] as in Lemma 47.7.3. Any endomorphism

of E preserves this filtration. Hence
HomR(E,E) = lim HomR(En, En)

The lemma follows as HomR(En, En) = HomR/mn(En, En) = R/mn by Lemma
47.6.2. □

Lemma 47.7.6.08Z7 Let (R,m, κ) be a Noetherian local ring. Let E be an injective hull
of κ over R. Then E satisfies the descending chain condition.

Proof. If E ⊃M1 ⊃M2 ⊃ . . . is a sequence of submodules, then
HomR(E,E)→ HomR(M1, E)→ HomR(M2, E)→ . . .

is a sequence of surjections. By Lemma 47.7.5 each of these is a module over
the completion R∧ = HomR(E,E). Since R∧ is Noetherian (Algebra, Lemma
10.97.6) the sequence stabilizes: HomR(Mn, E) = HomR(Mn+1, E) = . . .. Since
E is injective, this can only happen if HomR(Mn/Mn+1, E) is zero. However, if
Mn/Mn+1 is nonzero, then it contains a nonzero element annihilated by m, because
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E is m-power torsion by Lemma 47.7.3. In this case Mn/Mn+1 has a nonzero map
into E, contradicting the assumed vanishing. This finishes the proof. □

Lemma 47.7.7.08Z8 Let (R,m, κ) be a Noetherian local ring. Let E be an injective hull
of κ.

(1) For an R-module M the following are equivalent:
(a) M satisfies the ascending chain condition,
(b) M is a finite R-module, and
(c) there exist n,m and an exact sequence R⊕m → R⊕n →M → 0.

(2) For an R-module M the following are equivalent:
(a) M satisfies the descending chain condition,
(b) M is m-power torsion and dimκ(M [m]) <∞, and
(c) there exist n,m and an exact sequence 0→M → E⊕n → E⊕m.

Proof. We omit the proof of (1).
Let M be an R-module with the descending chain condition. Let x ∈ M . Then
mnx is a descending chain of submodules, hence stabilizes. Thus mnx = mn+1x for
some n. By Nakayama’s lemma (Algebra, Lemma 10.20.1) this implies mnx = 0,
i.e., x is m-power torsion. Since M [m] is a vector space over κ it has to be finite
dimensional in order to have the descending chain condition.
Assume that M is m-power torsion and has a finite dimensional m-torsion sub-
module M [m]. By Lemma 47.7.2 we see that M is a submodule of E⊕n for some
n. Consider the quotient N = E⊕n/M . By Lemma 47.7.6 the module E has the
descending chain condition hence so do E⊕n and N . Therefore N satisfies (2)(a)
which implies N satisfies (2)(b) by the second paragraph of the proof. Thus by
Lemma 47.7.2 again we see that N is a submodule of E⊕m for some m. Thus we
have a short exact sequence 0→M → E⊕n → E⊕m.
Assume we have a short exact sequence 0→M → E⊕n → E⊕m. Since E satisfies
the descending chain condition by Lemma 47.7.6 so does M . □

Proposition 47.7.8 (Matlis duality).08Z9 Let (R,m, κ) be a complete local Noetherian
ring. Let E be an injective hull of κ over R. The functor D(−) = HomR(−, E)
induces an anti-equivalence{

R-modules with the
descending chain condition

}
←→

{
R-modules with the

ascending chain condition

}
and we have D ◦D = id on either side of the equivalence.

Proof. By Lemma 47.7.5 we have R = HomR(E,E) = D(E). Of course we have
E = HomR(R,E) = D(R). Since E is injective the functor D is exact. The result
now follows immediately from the description of the categories in Lemma 47.7.7. □

Remark 47.7.9.0EGL Let (R,m, κ) be a Noetherian local ring. Let E be an injective hull
of κ over R. Here is an addendum to Matlis duality: If N is an m-power torsion
module and M = HomR(N,E) is a finite module over the completion of R, then N
satisfies the descending chain condition. Namely, for any submodules N ′′ ⊂ N ′ ⊂ N
with N ′′ ̸= N ′, we can find an embedding κ ⊂ N ′′/N ′ and hence a nonzero map
N ′ → E annihilating N ′′ which we can extend to a map N → E annihilating N ′′.
Thus N ⊃ N ′ 7→ M ′ = HomR(N/N ′, E) ⊂ M is an inclusion preserving map from
submodules of N to submodules of M , whence the conclusion.
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47.8. Deriving torsion

0BJA Let A be a ring and let I ⊂ A be a finitely generated ideal (if I is not finitely
generated perhaps a different definition should be used). Let Z = V (I) ⊂ Spec(A).
Recall that the category I∞-torsion of I-power torsion modules only depends on
the closed subset Z and not on the choice of the finitely generated ideal I such that
Z = V (I), see More on Algebra, Lemma 15.88.6. In this section we will consider
the functor

H0
I : ModA −→ I∞-torsion, M 7−→M [I∞] =

⋃
M [In]

which sends M to the submodule of I-power torsion.

Let A be a ring and let I be a finitely generated ideal. Note that I∞-torsion is a
Grothendieck abelian category (direct sums exist, filtered colimits are exact, and⊕
A/In is a generator by More on Algebra, Lemma 15.88.2). Hence the derived

category D(I∞-torsion) exists, see Injectives, Remark 19.13.3. Our functor H0
I is

left exact and has a derived extension which we will denote

RΓI : D(A) −→ D(I∞-torsion).

Warning: this functor does not deserve the name local cohomology unless the ring
A is Noetherian. The functors H0

I , RΓI , and the satellites Hp
I only depend on the

closed subset Z ⊂ Spec(A) and not on the choice of the finitely generated ideal I
such that V (I) = Z. However, we insist on using the subscript I for the functors
above as the notation RΓZ is going to be used for a different functor, see (47.9.0.1),
which agrees with the functor RΓI only (as far as we know) in case A is Noetherian
(see Lemma 47.10.1).

Lemma 47.8.1.0A6L Let A be a ring and let I ⊂ A be a finitely generated ideal. The
functor RΓI is right adjoint to the functor D(I∞-torsion)→ D(A).

Proof. This follows from the fact that taking I-power torsion submodules is the
right adjoint to the inclusion functor I∞-torsion→ ModA. See Derived Categories,
Lemma 13.30.3. □

Lemma 47.8.2.0954 Let A be a ring and let I ⊂ A be a finitely generated ideal. For
any object K of D(A) we have

RΓI(K) = hocolim RHomA(A/In,K)

in D(A) and
RqΓI(K) = colimn ExtqA(A/In,K)

as modules for all q ∈ Z.

Proof. Let J• be a K-injective complex representing K. Then

RΓI(K) = J•[I∞] = colim J•[In] = colim HomA(A/In, J•)

where the first equality is the definition of RΓI(K). By Derived Categories, Lemma
13.33.7 we obtain the first displayed equality in the statement of the lemma. The
second displayed equality in the statement of the lemma then follows because
Hq(HomA(A/In, J•)) = ExtqA(A/In,K) and because filtered colimits are exact
in the category of abelian groups. □
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Lemma 47.8.3.0A6M Let A be a ring and let I ⊂ A be a finitely generated ideal. Let
K• be a complex of A-modules such that f : K• → K• is an isomorphism for some
f ∈ I, i.e., K• is a complex of Af -modules. Then RΓI(K•) = 0.

Proof. Namely, in this case the cohomology modules of RΓI(K•) are both f -power
torsion and f acts by automorphisms. Hence the cohomology modules are zero and
hence the object is zero. □

Let A be a ring and I ⊂ A a finitely generated ideal. By More on Algebra,
Lemma 15.88.5 the category of I-power torsion modules is a Serre subcategory of
the category of all A-modules, hence there is a functor

(47.8.3.1)0A6N D(I∞-torsion)→ DI∞-torsion(A)

see Derived Categories, Section 13.17.

Lemma 47.8.4.0A6P Let A be a ring and let I be a finitely generated ideal. Let M and
N be I-power torsion modules.

(1) HomD(A)(M,N) = HomD(I∞-torsion)(M,N),
(2) Ext1

D(A)(M,N) = Ext1
D(I∞-torsion)(M,N),

(3) Ext2
D(I∞-torsion)(M,N)→ Ext2

D(A)(M,N) is not surjective in general,
(4) (47.8.3.1) is not an equivalence in general.

Proof. Parts (1) and (2) follow immediately from the fact that I-power torsion
forms a Serre subcategory of ModA. Part (4) follows from part (3).

For part (3) let A be a ring with an element f ∈ A such that A[f ] contains a
nonzero element x annihilated by f and A contains elements xn with fnxn = x.
Such a ring A exists because we can take

A = Z[f, x, xn]/(fx, fnxn − x)

Given A set I = (f). Then the exact sequence

0→ A[f ]→ A
f−→ A→ A/fA→ 0

defines an element in Ext2
A(A/fA,A[f ]). We claim this element does not come from

an element of Ext2
D(f∞-torsion)(A/fA,A[f ]). Namely, if it did, then there would be

an exact sequence
0→ A[f ]→M → N → A/fA→ 0

where M and N are f -power torsion modules defining the same 2 extension class.
Since A→ A is a complex of free modules and since the 2 extension classes are the
same we would be able to find a map

0 // A[f ] //

��

A //

φ

��

A //

ψ

��

A/fA //

��

0

0 // A[f ] // M // N // A/fA // 0

(some details omitted). Then we could replace M by the image of φ and N by
the image of ψ. Then M would be a cyclic module, hence fnM = 0 for some
n. Considering φ(xn+1) we get a contradiction with the fact that fn+1xn = x is
nonzero in A[f ]. □
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47.9. Local cohomology

0952 Let A be a ring and let I ⊂ A be a finitely generated ideal. Set Z = V (I) ⊂ Spec(A).
We will construct a functor
(47.9.0.1)0A6Q RΓZ : D(A) −→ DI∞-torsion(A).
which is right adjoint to the inclusion functor. For notation see Section 47.8. The
cohomology modules of RΓZ(K) are the local cohomology groups of K with respect
to Z. By Lemma 47.8.4 this functor will in general not be equal to RΓI(−) even
viewed as functors into D(A). In Section 47.10 we will show that if A is Noetherian,
then the two agree.
We will continue the discussion of local cohomology in the chapter on local co-
homology, see Local Cohomology, Section 51.1. For example, there we will show
that RΓZ computes cohomology with support in Z for the associated complex of
quasi-coherent sheaves on Spec(A). See Local Cohomology, Lemma 51.2.1.

Lemma 47.9.1.0A6R Let A be a ring and let I ⊂ A be a finitely generated ideal. There
exists a right adjoint RΓZ (47.9.0.1) to the inclusion functor DI∞-torsion(A) →
D(A). In fact, if I is generated by f1, . . . , fr ∈ A, then we have

RΓZ(K) = (A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )⊗L
A K

functorially in K ∈ D(A).

Proof. Say I = (f1, . . . , fr) is an ideal. Let K• be a complex of A-modules. There
is a canonical map of complexes

(A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr ) −→ A.

from the extended Čech complex to A. Tensoring with K•, taking associated total
complex, we get a map

Tot
(
K• ⊗A (A→

∏
i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )
)
−→ K•

in D(A). We claim the cohomology modules of the complex on the left are I-power
torsion, i.e., the LHS is an object of DI∞-torsion(A). Namely, we have

(A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr ) = colimK(A, fn1 , . . . , fnr )

by More on Algebra, Lemma 15.29.6. Moreover, multiplication by fni on the com-
plex K(A, fn1 , . . . , fnr ) is homotopic to zero by More on Algebra, Lemma 15.28.6.
Since

Hq (LHS) = colimHq(Tot(K• ⊗A K(A, fn1 , . . . , fnr )))
we obtain our claim. On the other hand, if K• is an object of DI∞-torsion(A), then
the complexes K• ⊗A Afi0 ...fip have vanishing cohomology. Hence in this case the
map LHS → K• is an isomorphism in D(A). The construction

RΓZ(K•) = Tot
(
K• ⊗A (A→

∏
i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )
)

is functorial in K• and defines an exact functor D(A) → DI∞-torsion(A) between
triangulated categories. It follows formally from the existence of the natural trans-
formation RΓZ → id given above and the fact that this evaluates to an isomorphism
on K• in the subcategory, that RΓZ is the desired right adjoint. □

https://stacks.math.columbia.edu/tag/0A6R
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Lemma 47.9.2.0BJB Let A → B be a ring homomorphism and let I ⊂ A be a finitely
generated ideal. Set J = IB. Set Z = V (I) and Y = V (J). Then

RΓZ(MA) = RΓY (M)A
functorially in M ∈ D(B). Here (−)A denotes the restriction functors D(B) →
D(A) and DJ∞-torsion(B)→ DI∞-torsion(A).

Proof. This follows from uniqueness of adjoint functors as both RΓZ((−)A) and
RΓY (−)A are right adjoint to the functor DI∞-torsion(A) → D(B), K 7→ K ⊗L

A B.
Alternatively, one can use the description of RΓZ and RΓY in terms of alternating
Čech complexes (Lemma 47.9.1). Namely, if I = (f1, . . . , fr) then J is generated by
the images g1, . . . , gr ∈ B of f1, . . . , fr. Then the statement of the lemma follows
from the existence of a canonical isomorphism

MA ⊗A (A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )

= M ⊗B (B →
∏

i0
Bgi0 →

∏
i0<i1

Bgi0gi1 → . . .→ Bg1...gr )

for any B-module M . □

Lemma 47.9.3.0ALZ Let A → B be a ring homomorphism and let I ⊂ A be a finitely
generated ideal. Set J = IB. Let Z = V (I) and Y = V (J). Then

RΓZ(K)⊗L
A B = RΓY (K ⊗L

A B)
functorially in K ∈ D(A).

Proof. Write I = (f1, . . . , fr). Then J is generated by the images g1, . . . , gr ∈ B of
f1, . . . , fr. Then we have

(A→
∏

Afi0 → . . .→ Af1...fr )⊗A B = (B →
∏

Bgi0 → . . .→ Bg1...gr )

as complexes of B-modules. Represent K by a K-flat complex K• of A-modules.
Since the total complexes associated to

K• ⊗A (A→
∏

Afi0 → . . .→ Af1...fr )⊗A B

and
K• ⊗A B ⊗B (B →

∏
Bgi0 → . . .→ Bg1...gr )

represent the left and right hand side of the displayed formula of the lemma (see
Lemma 47.9.1) we conclude. □

Lemma 47.9.4.0A6S Let A be a ring and let I ⊂ A be a finitely generated ideal. Let
K• be a complex of A-modules such that f : K• → K• is an isomorphism for some
f ∈ I, i.e., K• is a complex of Af -modules. Then RΓZ(K•) = 0.

Proof. Namely, in this case the cohomology modules of RΓZ(K•) are both f -power
torsion and f acts by automorphisms. Hence the cohomology modules are zero and
hence the object is zero. □

Lemma 47.9.5.0ALY Let A be a ring and let I ⊂ A be a finitely generated ideal. For
K,L ∈ D(A) we have

RΓZ(K ⊗L
A L) = K ⊗L

A RΓZ(L) = RΓZ(K)⊗L
A L = RΓZ(K)⊗L

A RΓZ(L)
If K or L is in DI∞-torsion(A) then so is K ⊗L

A L.

https://stacks.math.columbia.edu/tag/0BJB
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https://stacks.math.columbia.edu/tag/0ALY
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Proof. By Lemma 47.9.1 we know that RΓZ is given by C⊗L− for some C ∈ D(A).
Hence, for K,L ∈ D(A) general we have

RΓZ(K ⊗L
A L) = K ⊗L L⊗L

A C = K ⊗L
A RΓZ(L)

The other equalities follow formally from this one. This also implies the last state-
ment of the lemma. □

Lemma 47.9.6.0BJC Let A be a ring and let I, J ⊂ A be finitely generated ideals. Set
Z = V (I) and Y = V (J). Then Z ∩ Y = V (I + J) and RΓY ◦ RΓZ = RΓY ∩Z as
functors D(A)→ D(I+J)∞-torsion(A). For K ∈ D+(A) there is a spectral sequence

Ep,q2 = Hp
Y (Hq

Z(K))⇒ Hp+q
Y ∩Z(K)

as in Derived Categories, Lemma 13.22.2.

Proof. There is a bit of abuse of notation in the lemma as strictly speaking we
cannot compose RΓY and RΓZ . The meaning of the statement is simply that we
are composing RΓZ with the inclusion DI∞-torsion(A)→ D(A) and then with RΓY .
Then the equality RΓY ◦RΓZ = RΓY ∩Z follows from the fact that

DI∞-torsion(A)→ D(A) RΓY−−−→ D(I+J)∞-torsion(A)

is right adjoint to the inclusion D(I+J)∞-torsion(A)→ DI∞-torsion(A). Alternatively
one can prove the formula using Lemma 47.9.1 and the fact that the tensor product
of extended Čech complexes on f1, . . . , fr and g1, . . . , gm is the extended Čech
complex on f1, . . . , fn.g1, . . . , gm. The final assertion follows from this and the
cited lemma. □

The following lemma is the analogue of More on Algebra, Lemma 15.91.24 for
complexes with torsion cohomologies.

Lemma 47.9.7.0AM0 Let A→ B be a flat ring map and let I ⊂ A be a finitely generated
ideal such that A/I = B/IB. Then base change and restriction induce quasi-inverse
equivalences DI∞-torsion(A) = D(IB)∞-torsion(B).

Proof. More precisely the functors are K 7→ K ⊗L
A B for K in DI∞-torsion(A) and

M 7→MA for M in D(IB)∞-torsion(B). The reason this works is that Hi(K⊗L
AB) =

Hi(K) ⊗A B = Hi(K). The first equality holds as A → B is flat and the second
by More on Algebra, Lemma 15.89.2. □

The following lemma was shown for Hom and Ext1 of modules in More on Algebra,
Lemmas 15.89.3 and 15.89.8.

Lemma 47.9.8.05EH Let A→ B be a flat ring map and let I ⊂ A be a finitely generated
ideal such that A/I → B/IB is an isomorphism. For K ∈ DI∞-torsion(A) and
L ∈ D(A) the map

RHomA(K,L) −→ RHomB(K ⊗A B,L⊗A B)

is a quasi-isomorphism. In particular, if M , N are A-modules and M is I-power
torsion, then the canonical map

ExtiA(M,N) −→ ExtiB(M ⊗A B,N ⊗A B)

is an isomorphism for all i.

https://stacks.math.columbia.edu/tag/0BJC
https://stacks.math.columbia.edu/tag/0AM0
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Proof. Let Z = V (I) ⊂ Spec(A) and Y = V (IB) ⊂ Spec(B). Since the cohomology
modules of K are I power torsion, the canonical map RΓZ(L) → L induces an
isomorphism

RHomA(K,RΓZ(L))→ RHomA(K,L)
in D(A). Similarly, the cohomology modules of K ⊗A B are IB power torsion and
we have an isomorphism

RHomB(K ⊗A B,RΓY (L⊗A B))→ RHomB(K ⊗A B,L⊗A B)
in D(B). By Lemma 47.9.3 we have RΓZ(L) ⊗A B = RΓY (L ⊗A B). Hence it
suffices to show that the map

RHomA(K,RΓZ(L))→ RHomB(K ⊗A B,RΓZ(L)⊗A B)
is a quasi-isomorphism. This follows from Lemma 47.9.7. □

47.10. Local cohomology for Noetherian rings

0BJD Let A be a ring and let I ⊂ A be a finitely generated ideal. Set Z = V (I) ⊂ Spec(A).
Recall that (47.8.3.1) is the functor

D(I∞-torsion)→ DI∞-torsion(A)
In fact, there is a natural transformation of functors
(47.10.0.1)0A6U (47.8.3.1) ◦RΓI(−) −→ RΓZ(−)
Namely, given a complex of A-modules K• the canonical map RΓI(K•) → K•

in D(A) factors (uniquely) through RΓZ(K•) as RΓI(K•) has I-power torsion
cohomology modules (see Lemma 47.8.1). In general this map is not an isomorphism
(we’ve seen this in Lemma 47.8.4).

Lemma 47.10.1.0955 Let A be a Noetherian ring and let I ⊂ A be an ideal.
(1) the adjunction RΓI(K)→ K is an isomorphism for K ∈ DI∞-torsion(A),
(2) the functor (47.8.3.1) D(I∞-torsion)→ DI∞-torsion(A) is an equivalence,
(3) the transformation of functors (47.10.0.1) is an isomorphism, in other

words RΓI(K) = RΓZ(K) for K ∈ D(A).

Proof. A formal argument, which we omit, shows that it suffices to prove (1).
Let M be an I-power torsion A-module. Choose an embedding M → J into an
injective A-module. Then J [I∞] is an injective A-module, see Lemma 47.3.9, and
we obtain an embedding M → J [I∞]. Thus every I-power torsion module has
an injective resolution M → J• with Jn also I-power torsion. It follows that
RΓI(M) = M (this is not a triviality and this is not true in general if A is not
Noetherian). Next, suppose that K ∈ D+

I∞-torsion(A). Then the spectral sequence
RqΓI(Hp(K))⇒ Rp+qΓI(K)

(Derived Categories, Lemma 13.21.3) converges and above we have seen that only
the terms with q = 0 are nonzero. Thus we see that RΓI(K) → K is an isomor-
phism.
Suppose K is an arbitrary object of DI∞-torsion(A). We have

RqΓI(K) = colim ExtqA(A/In,K)
by Lemma 47.8.2. Choose f1, . . . , fr ∈ A generating I. Let K•

n = K(A, fn1 , . . . , fnr )
be the Koszul complex with terms in degrees −r, . . . , 0. Since the pro-objects

https://stacks.math.columbia.edu/tag/0955
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{A/In} and {K•
n} in D(A) are the same by More on Algebra, Lemma 15.94.1,

we see that
RqΓI(K) = colim ExtqA(K•

n,K)
Pick any complex K• of A-modules representing K. Since K•

n is a finite complex
of finite free modules we see that

ExtqA(Kn,K) = Hq(Tot((K•
n)∨ ⊗A K•))

where (K•
n)∨ is the dual of the complex K•

n. See More on Algebra, Lemma 15.73.2.
As (K•

n)∨ is a complex of finite free A-modules sitting in degrees 0, . . . , r we see
that the terms of the complex Tot((K•

n)∨ ⊗AK•) are the same as the terms of the
complex Tot((K•

n)∨⊗A τ≥q−r−2K
•) in degrees q− 1 and higher. Hence we see that

ExtqA(Kn,K) = ExtqA(Kn, τ≥q−r−2K)

for all n. It follows that

RqΓI(K) = RqΓI(τ≥q−r−2K) = Hq(τ≥q−r−2K) = Hq(K)

Thus we see that the map RΓI(K)→ K is an isomorphism. □

Lemma 47.10.2.0956 Let A be a Noetherian ring and let I = (f1, . . . , fr) be an ideal of
A. Set Z = V (I) ⊂ Spec(A). There are canonical isomorphisms

RΓI(A)→ (A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )→ RΓZ(A)

in D(A). If M is an A-module, then we have similarly

RΓI(M) ∼= (M →
∏

i0
Mfi0

→
∏

i0<i1
Mfi0fi1

→ . . .→Mf1...fr ) ∼= RΓZ(M)

in D(A).

Proof. This follows from Lemma 47.10.1 and the computation of the functor RΓZ
in Lemma 47.9.1. □

Lemma 47.10.3.0957 If A → B is a homomorphism of Noetherian rings and I ⊂ A is
an ideal, then in D(B) we have

RΓI(A)⊗L
A B = RΓZ(A)⊗L

A B = RΓY (B) = RΓIB(B)

where Y = V (IB) ⊂ Spec(B).

Proof. Combine Lemmas 47.10.2 and 47.9.3. □

47.11. Depth

0AVY In this section we revisit the notion of depth introduced in Algebra, Section 10.72.

Lemma 47.11.1.0AVZ Let A be a Noetherian ring, let I ⊂ A be an ideal, and let M be
a finite A-module such that IM ̸= M . Then the following integers are equal:

(1) depthI(M),
(2) the smallest integer i such that ExtiA(A/I,M) is nonzero, and
(3) the smallest integer i such that Hi

I(M) is nonzero.
Moreover, we have ExtiA(N,M) = 0 for i < depthI(M) for any finite A-module N
annihilated by a power of I.

https://stacks.math.columbia.edu/tag/0956
https://stacks.math.columbia.edu/tag/0957
https://stacks.math.columbia.edu/tag/0AVZ


47.11. DEPTH 3991

Proof. We prove the equality of (1) and (2) by induction on depthI(M) which is
allowed by Algebra, Lemma 10.72.4.
Base case. If depthI(M) = 0, then I is contained in the union of the associated
primes of M (Algebra, Lemma 10.63.9). By prime avoidance (Algebra, Lemma
10.15.2) we see that I ⊂ p for some associated prime p. Hence HomA(A/I,M) is
nonzero. Thus equality holds in this case.
Assume that depthI(M) > 0. Let f ∈ I be a nonzerodivisor on M such that
depthI(M/fM) = depthI(M)− 1. Consider the short exact sequence

0→M →M →M/fM → 0
and the associated long exact sequence for Ext∗

A(A/I,−). Note that ExtiA(A/I,M)
is a finite A/I-module (Algebra, Lemmas 10.71.9 and 10.71.8). Hence we obtain

HomA(A/I,M/fM) = Ext1
A(A/I,M)

and short exact sequences
0→ ExtiA(A/I,M)→ ExtiA(A/I,M/fM)→ Exti+1

A (A/I,M)→ 0
Thus the equality of (1) and (2) by induction.
Observe that depthI(M) = depthIn(M) for all n ≥ 1 for example by Algebra,
Lemma 10.68.9. Hence by the equality of (1) and (2) we see that ExtiA(A/In,M) =
0 for all n and i < depthI(M). Let N be a finite A-module annihilated by a power
of I. Then we can choose a short exact sequence

0→ N ′ → (A/In)⊕m → N → 0
for some n,m ≥ 0. Then HomA(N,M) ⊂ HomA((A/In)⊕m,M) and ExtiA(N,M) ⊂
Exti−1

A (N ′,M) for i < depthI(M). Thus a simply induction argument shows that
the final statement of the lemma holds.
Finally, we prove that (3) is equal to (1) and (2). We haveHp

I (M) = colim ExtpA(A/In,M)
by Lemma 47.8.2. Thus we see that Hi

I(M) = 0 for i < depthI(M). For i =
depthI(M), using the vanishing of Exti−1

A (I/In,M) we see that the map ExtiA(A/I,M)→
Hi
I(M) is injective which proves nonvanishing in the correct degree. □

Lemma 47.11.2.0BUV Let A be a Noetherian ring. Let 0 → N ′ → N → N ′′ → 0 be a
short exact sequence of finite A-modules. Let I ⊂ A be an ideal.

(1) depthI(N) ≥ min{depthI(N ′),depthI(N ′′)}
(2) depthI(N ′′) ≥ min{depthI(N),depthI(N ′)− 1}
(3) depthI(N ′) ≥ min{depthI(N),depthI(N ′′) + 1}

Proof. Assume IN ̸= N , IN ′ ̸= N ′, and IN ′′ ̸= N ′′. Then we can use the
characterization of depth using the Ext groups Exti(A/I,N), see Lemma 47.11.1,
and use the long exact cohomology sequence

0→ HomA(A/I,N ′)→ HomA(A/I,N)→ HomA(A/I,N ′′)
→ Ext1

A(A/I,N ′)→ Ext1
A(A/I,N)→ Ext1

A(A/I,N ′′)→ . . .

from Algebra, Lemma 10.71.6. This argument also works if IN = N because in this
case ExtiA(A/I,N) = 0 for all i. Similarly in case IN ′ ̸= N ′ and/or IN ′′ ̸= N ′′. □

Lemma 47.11.3.0BUW Let A be a Noetherian ring, let I ⊂ A be an ideal, and let M a
finite A-module with IM ̸= M .

https://stacks.math.columbia.edu/tag/0BUV
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(1) If x ∈ I is a nonzerodivisor on M , then depthI(M/xM) = depthI(M)−1.
(2) Any M -regular sequence x1, . . . , xr in I can be extended to an M -regular

sequence in I of length depthI(M).
Proof. Part (2) is a formal consequence of part (1). Let x ∈ I be as in (1). By
the short exact sequence 0 → M → M → M/xM → 0 and Lemma 47.11.2 we see
that depthI(M/xM) ≥ depthI(M) − 1. On the other hand, if x1, . . . , xr ∈ I is a
regular sequence for M/xM , then x, x1, . . . , xr is a regular sequence for M . Hence
(1) holds. □

Lemma 47.11.4.0BUX Let R be a Noetherian local ring. If M is a finite Cohen-Macaulay
R-module and I ⊂ R a nontrivial ideal. Then

depthI(M) = dim(Supp(M))− dim(Supp(M/IM)).
Proof. We will prove this by induction on depthI(M).
If depthI(M) = 0, then I is contained in one of the associated primes p of M
(Algebra, Lemma 10.63.18). Then p ∈ Supp(M/IM), hence dim(Supp(M/IM)) ≥
dim(R/p) = dim(Supp(M)) where equality holds by Algebra, Lemma 10.103.7.
Thus the lemma holds in this case.
If depthI(M) > 0, we pick x ∈ I which is a nonzerodivisor on M . Note that
(M/xM)/I(M/xM) = M/IM . On the other hand we have depthI(M/xM) =
depthI(M) − 1 by Lemma 47.11.3 and dim(Supp(M/xM)) = dim(Supp(M)) − 1
by Algebra, Lemma 10.63.10. Thus the result by induction hypothesis. □

Lemma 47.11.5.0BUY Let R → S be a flat local ring homomorphism of Noetherian
local rings. Denote m ⊂ R the maximal ideal. Let I ⊂ S be an ideal. If S/mS is
Cohen-Macaulay, then

depthI(S) ≥ dim(S/mS)− dim(S/mS + I)
Proof. By Algebra, Lemma 10.99.3 any sequence in S which maps to a regular
sequence in S/mS is a regular sequence in S. Thus it suffices to prove the lemma
in case R is a field. This is a special case of Lemma 47.11.4. □

Lemma 47.11.6.0AW0 Let A be a ring and let I ⊂ A be a finitely generated ideal. Let M
be an A-module. Let Z = V (I). Then H0

I (M) = H0
Z(M). Let N be the common

value and set M ′ = M/N . Then
(1) H0

I (M ′) = 0 and Hp
I (M) = Hp

I (M ′) and Hp
I (N) = 0 for all p > 0,

(2) H0
Z(M ′) = 0 and Hp

Z(M) = Hp
Z(M ′) and Hp

Z(N) = 0 for all p > 0.
Proof. By definition H0

I (M) = M [I∞] is I-power torsion. By Lemma 47.9.1 we see
that

H0
Z(M) = Ker(M −→Mf1 × . . .×Mfr )

if I = (f1, . . . , fr). Thus H0
I (M) ⊂ H0

Z(M) and conversely, if x ∈ H0
Z(M), then

it is annihilated by a feii for some ei ≥ 1 hence annihilated by some power of I.
This proves the first equality and moreover N is I-power torsion. By Lemma 47.8.1
we see that RΓI(N) = N . By Lemma 47.9.1 we see that RΓZ(N) = N . This
proves the higher vanishing of Hp

I (N) and Hp
Z(N) in (1) and (2). The vanishing

of H0
I (M ′) and H0

Z(M ′) follow from the preceding remarks and the fact that M ′ is
I-power torsion free by More on Algebra, Lemma 15.88.4. The equality of higher
cohomologies for M and M ′ follow immediately from the long exact cohomology
sequence. □
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47.12. Torsion versus complete modules

0A6V Let A be a ring and let I be a finitely generated ideal. In this case we can consider
the derived category DI∞-torsion(A) of complexes with I-power torsion cohomology
modules (Section 47.9) and the derived category Dcomp(A, I) of derived complete
complexes (More on Algebra, Section 15.91). In this section we show these cate-
gories are equivalent. A more general statement can be found in [DG02].

Lemma 47.12.1.0A6W Let A be a ring and let I be a finitely generated ideal. Let RΓZ
be as in Lemma 47.9.1. Let ∧ denote derived completion as in More on Algebra,
Lemma 15.91.10. For an object K in D(A) we have

RΓZ(K∧) = RΓZ(K) and (RΓZ(K))∧ = K∧

in D(A).

Proof. Choose f1, . . . , fr ∈ A generating I. Recall that

K∧ = RHomA

(
(A→

∏
Afi0 →

∏
Afi0i1 → . . .→ Af1...fr ),K

)
by More on Algebra, Lemma 15.91.10. Hence the cone C = Cone(K → K∧) is
given by

RHomA

(
(
∏

Afi0 →
∏

Afi0i1 → . . .→ Af1...fr ),K
)

which can be represented by a complex endowed with a finite filtration whose
successive quotients are isomorphic to

RHomA(Afi0 ...fip ,K), p > 0
These complexes vanish on applying RΓZ , see Lemma 47.9.4. Applying RΓZ to
the distinguished triangle K → K∧ → C → K[1] we see that the first formula of
the lemma is correct.
Recall that

RΓZ(K) = K ⊗L (A→
∏

Afi0 →
∏

Afi0i1 → . . .→ Af1...fr )

by Lemma 47.9.1. Hence the cone C = Cone(RΓZ(K)→ K) can be represented by
a complex endowed with a finite filtration whose successive quotients are isomorphic
to

K ⊗A Afi0 ...fip , p > 0
These complexes vanish on applying ∧, see More on Algebra, Lemma 15.91.12.
Applying derived completion to the distinguished triangle RΓZ(K) → K → C →
RΓZ(K)[1] we see that the second formula of the lemma is correct. □

The following result is a special case of a very general phenomenon concerning
admissible subcategories of a triangulated category.

Proposition 47.12.2.0A6X This is a special
case of [PSY14b,
Theorem 1.1].

Let A be a ring and let I ⊂ A be a finitely generated ideal.
The functors RΓZ and ∧ define quasi-inverse equivalences of categories

DI∞-torsion(A)↔ Dcomp(A, I)

Proof. Follows immediately from Lemma 47.12.1. □

The following addendum of the proposition above makes the correspondence on
morphisms more precise.

https://stacks.math.columbia.edu/tag/0A6W
https://stacks.math.columbia.edu/tag/0A6X
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Lemma 47.12.3.0A6Y With notation as in Lemma 47.12.1. For objects K,L in D(A)
there is a canonical isomorphism

RHomA(K∧, L∧) −→ RHomA(RΓZ(K), RΓZ(L))
in D(A).

Proof. Say I = (f1, . . . , fr). Denote C = (A →
∏
Afi → . . . → Af1...fr ) the

alternating Čech complex. Then derived completion is given by RHomA(C,−)
(More on Algebra, Lemma 15.91.10) and local cohomology by C ⊗L − (Lemma
47.9.1). Combining the isomorphism

RHomA(K ⊗L C,L⊗L C) = RHomA(K,RHomA(C,L⊗L C))
(More on Algebra, Lemma 15.73.1) and the map

L→ RHomA(C,L⊗L C)
(More on Algebra, Lemma 15.73.6) we obtain a map

γ : RHomA(K,L) −→ RHomA(K ⊗L C,L⊗L C)
On the other hand, the right hand side is derived complete as it is equal to

RHomA(C,RHomA(K,L⊗L C)).
Thus γ factors through the derived completion of RHomA(K,L) by the universal
property of derived completion. However, the derived completion goes inside the
RHomA by More on Algebra, Lemma 15.91.13 and we obtain the desired map.
To show that the map of the lemma is an isomorphism we may assume that K and
L are derived complete, i.e., K = K∧ and L = L∧. In this case we are looking at
the map

γ : RHomA(K,L) −→ RHomA(RΓZ(K), RΓZ(L))
By Proposition 47.12.2 we know that the cohomology groups of the left and the
right hand side coincide. In other words, we have to check that the map γ sends a
morphism α : K → L in D(A) to the morphism RΓZ(α) : RΓZ(K)→ RΓZ(L). We
omit the verification (hint: note that RΓZ(α) is just the map α⊗ idC : K ⊗L C →
L⊗LC which is almost the same as the construction of the map in More on Algebra,
Lemma 15.73.6). □

Lemma 47.12.4.0EEW Let I and J be ideals in a Noetherian ring A. Let M be a finite
A-module. Set Z = V (J). Consider the derived I-adic completion RΓZ(M)∧ of
local cohomology. Then

(1) we have RΓZ(M)∧ = R limRΓZ(M/InM), and
(2) there are short exact sequences
0→ R1 limHi−1

Z (M/InM)→ Hi(RΓZ(M)∧)→ limHi
Z(M/InM)→ 0

In particular RΓZ(M)∧ has vanishing cohomology in negative degrees.

Proof. Suppose that J = (g1, . . . , gm). Then RΓZ(M) is computed by the complex

M →
∏

Mgj0
→
∏

Mgj0gj1
→ . . .→Mg1g2...gm

by Lemma 47.9.1. By More on Algebra, Lemma 15.94.6 the derived I-adic comple-
tion of this complex is given by the complex

limM/InM →
∏

lim(M/InM)gj0
→ . . .→ lim(M/InM)g1g2...gm

https://stacks.math.columbia.edu/tag/0A6Y
https://stacks.math.columbia.edu/tag/0EEW
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of usual completions. Since RΓZ(M/InM) is computed by the complex M/InM →∏
(M/InM)gj0

→ . . . → (M/InM)g1g2...gm and since the transition maps between
these complexes are surjective, we conclude that (1) holds by More on Algebra,
Lemma 15.87.1. Part (2) then follows from More on Algebra, Lemma 15.87.4. □

Lemma 47.12.5.0EEX With notation and hypotheses as in Lemma 47.12.4 assume A is
I-adically complete. Then

H0(RΓZ(M)∧) = colimH0
V (J′)(M)

where the filtered colimit is over J ′ ⊂ J such that V (J ′) ∩ V (I) = V (J) ∩ V (I).

Proof. Since M is a finite A-module, we have that M is I-adically complete. The
proof of Lemma 47.12.4 shows that

H0(RΓZ(M)∧) = Ker(M∧ →
∏

M∧
gj ) = Ker(M →

∏
M∧
gj )

where on the right hand side we have usual I-adic completion. The kernel Kj of
Mgj → M∧

gj is
⋂
InMgj . By Algebra, Lemma 10.51.5 for every p ∈ V (IAgj ) we

find an f ∈ Agj , f ̸∈ p such that (Kj)f = 0.

Let s ∈ H0(RΓZ(M)∧). By the above we may think of s as an element of M . The
support Z ′ of s intersected withD(gj) is disjoint fromD(gj)∩V (I) by the arguments
above. Thus Z ′ is a closed subset of Spec(A) with Z ′ ∩ V (I) ⊂ V (J). Then
Z ′ ∪ V (J) = V (J ′) for some ideal J ′ ⊂ J with V (J ′) ∩ V (I) ⊂ V (J) and we have
s ∈ H0

V (J′)(M). Conversely, any s ∈ H0
V (J′)(M) with J ′ ⊂ J and V (J ′) ∩ V (I) ⊂

V (J) maps to zero in M∧
gj for all j. This proves the lemma. □

47.13. Trivial duality for a ring map

0A6Z Let A→ B be a ring homomorphism. Consider the functor

HomA(B,−) : ModA −→ ModB , M 7−→ HomA(B,M)

This functor is left exact and has a derived extension RHom(B,−) : D(A)→ D(B).

Lemma 47.13.1.0A70 Let A→ B be a ring homomorphism. The functor RHom(B,−)
constructed above is right adjoint to the restriction functor D(B)→ D(A).

Proof. This is a consequence of the fact that restriction and HomA(B,−) are adjoint
functors by Algebra, Lemma 10.14.4. See Derived Categories, Lemma 13.30.3. □

Lemma 47.13.2.0C0F LetA→ B → C be ring maps. ThenRHom(C,−)◦RHom(B,−) :
D(A)→ D(C) is the functor RHom(C,−) : D(A)→ D(C).

Proof. Follows from uniqueness of right adjoints and Lemma 47.13.1. □

Lemma 47.13.3.0A71 Let φ : A→ B be a ring homomorphism. For K in D(A) we have

φ∗RHom(B,K) = RHomA(B,K)

where φ∗ : D(B)→ D(A) is restriction. In particularRq Hom(B,K) = ExtqA(B,K).

Proof. Choose a K-injective complex I• representing K. Then RHom(B,K) is
represented by the complex HomA(B, I•) of B-modules. Since this complex, as a
complex of A-modules, represents RHomA(B,K) we see that the lemma is true. □

https://stacks.math.columbia.edu/tag/0EEX
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Let A be a Noetherian ring. We will denote
DCoh(A) ⊂ D(A)

the full subcategory consisting of those objects K of D(A) whose cohomology mod-
ules are all finite A-modules. This makes sense by Derived Categories, Section
13.17 because as A is Noetherian, the subcategory of finite A-modules is a Serre
subcategory of ModA.

Lemma 47.13.4.0A72 With notation as above, assume A → B is a finite ring map of
Noetherian rings. Then RHom(B,−) maps D+

Coh(A) into D+
Coh(B).

Proof. We have to show: if K ∈ D+(A) has finite cohomology modules, then
the complex RHom(B,K) has finite cohomology modules too. This follows for
example from Lemma 47.13.3 if we can show the ext modules ExtiA(B,K) are finite
A-modules. Since K is bounded below there is a convergent spectral sequence

ExtpA(B,Hq(K))⇒ Extp+q
A (B,K)

This finishes the proof as the modules ExtpA(B,Hq(K)) are finite by Algebra,
Lemma 10.71.9. □

Remark 47.13.5.0A73 Let A be a ring and let I ⊂ A be an ideal. Set B = A/I. In this
case the functor HomA(B,−) is equal to the functor

ModA −→ ModB , M 7−→M [I]
which sends M to the submodule of I-torsion.

Situation 47.13.6.0BZB Let R → A be a ring map. We will give an alternative con-
struction of RHom(A,−) which will stand us in good stead later in this chapter.
Namely, suppose we have a differential graded algebra (E, d) over R and a quasi-
isomorphism E → A where we view A as a differential graded algebra over R with
zero differential. Then we have commutative diagrams

D(E,d)

$$

D(A)oo

{{
D(R)

and

D(E,d)
−⊗L

EA

// D(A)

D(R)
−⊗L

RE

dd

−⊗L
RA

;;

where the horizontal arrows are equivalences of categories (Differential Graded
Algebra, Lemma 22.37.1). It is clear that the first diagram commutes. The
second diagram commutes because the first one does and our functors are their
left adjoints (Differential Graded Algebra, Example 22.33.6) or because we have
E ⊗L

E A = E ⊗E A and we can use Differential Graded Algebra, Lemma 22.34.1.

Lemma 47.13.7.0BZC In Situation 47.13.6 the functor RHom(A,−) is equal to the
composition of RHom(E,−) : D(R) → D(E,d) and the equivalence − ⊗L

E A :
D(E,d)→ D(A).

Proof. This is true because RHom(E,−) is the right adjoint to − ⊗L
R E, see Dif-

ferential Graded Algebra, Lemma 22.33.5. Hence this functor plays the same role
as the functor RHom(A,−) for the map R → A (Lemma 47.13.1), whence these
functors must correspond via the equivalence −⊗L

E A : D(E,d)→ D(A). □

Lemma 47.13.8.0BZD In Situation 47.13.6 assume that

https://stacks.math.columbia.edu/tag/0A72
https://stacks.math.columbia.edu/tag/0A73
https://stacks.math.columbia.edu/tag/0BZB
https://stacks.math.columbia.edu/tag/0BZC
https://stacks.math.columbia.edu/tag/0BZD
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(1) E viewed as an object of D(R) is compact, and
(2) N = Hom•

R(E•, R) computes RHom(E,R).
Then RHom(E,−) : D(R)→ D(E) is isomorphic to K 7→ K ⊗L

R N .

Proof. Special case of Differential Graded Algebra, Lemma 22.33.9. □

Lemma 47.13.9.0BZE In Situation 47.13.6 assume A is a perfect R-module. Then

RHom(A,−) : D(R)→ D(A)

is given by K 7→ K ⊗L
RM where M = RHom(A,R) ∈ D(A).

Proof. We apply Divided Power Algebra, Lemma 23.6.10 to choose a Tate resolution
(E,d) of A over R. Note that Ei = 0 for i > 0, E0 = R[x1, . . . , xn] is a polynomial
algebra, and Ei is a finite free E0-module for i < 0. It follows that E viewed as a
complex of R-modules is a bounded above complex of free R-modules. We check
the assumptions of Lemma 47.13.8. The first holds because A is perfect (hence
compact by More on Algebra, Proposition 15.78.3) and the second by More on
Algebra, Lemma 15.73.2. From the lemma conclude that K 7→ RHom(E,K) is
isomorphic to K 7→ K ⊗L

R N for some differential graded E-module N . Observe
that

(R⊗R E)⊗L
E A = R⊗E E ⊗E A

in D(A). Hence by Differential Graded Algebra, Lemma 22.34.2 we conclude that
the composition of −⊗L

RN and −⊗L
RA is of the form −⊗RM for some M ∈ D(A).

To finish the proof we apply Lemma 47.13.7. □

Lemma 47.13.10.0BZH Let R → A be a surjective ring map whose kernel I is an
invertible R-module. The functor RHom(A,−) : D(R) → D(A) is isomorphic to
K 7→ K ⊗L

R N [−1] where N is inverse of the invertible A-module I ⊗R A.

Proof. Since A has the finite projective resolution

0→ I → R→ A→ 0

we see that A is a perfect R-module. By Lemma 47.13.9 it suffices to prove that
RHom(A,R) is represented by N [−1] in D(A). This means RHom(A,R) has a
unique nonzero cohomology module, namely N in degree 1. As ModA → ModR
is fully faithful it suffice to prove this after applying the restriction functor i∗ :
D(A)→ D(R). By Lemma 47.13.3 we have

i∗RHom(A,R) = RHomR(A,R)

Using the finite projective resolution above we find that the latter is represented by
the complex R → I⊗−1 with R in degree 0. The map R → I⊗−1 is injective and
the cokernel is N . □

47.14. Base change for trivial duality

0E28 In this section we consider a cocartesian square of rings

A
α
// A′

R

φ

OO

ρ // R′

φ′

OO

https://stacks.math.columbia.edu/tag/0BZE
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In other words, we have A′ = A ⊗R R′. If A and R′ are tor independent over R
then there is a canonical base change map

(47.14.0.1)0E29 RHom(A,K)⊗L
A A

′ −→ RHom(A′,K ⊗L
R R

′)

in D(A′) functorial for K in D(R). Namely, by the adjointness of Lemma 47.13.1
such an arrow is the same thing as a map

φ′
∗
(
RHom(A,K)⊗L

A A
′) −→ K ⊗L

R R
′

in D(R′) where φ′
∗ : D(A′)→ D(R′) is the restriction functor. We may apply More

on Algebra, Lemma 15.61.2 to the left hand side to get that this is the same thing
as a map

φ∗(RHom(A,K))⊗L
R R

′ −→ K ⊗L
R R

′

in D(R′) where φ∗ : D(A)→ D(R) is the restriction functor. For this we can choose
can ⊗L idR′ where can : φ∗(RHom(A,K)) → K is the counit of the adjunction
between RHom(A,−) and φ∗.

Lemma 47.14.1.0E2A In the situation above, the map (47.14.0.1) is an isomorphism if
and only if the map

RHomR(A,K)⊗L
R R

′ −→ RHomR(A,K ⊗L
R R

′)

of More on Algebra, Lemma 15.73.5 is an isomorphism.

Proof. To see that the map is an isomorphism, it suffices to prove it is an isomor-
phism after applying φ′

∗. Applying the functor φ′
∗ to (47.14.0.1) and using that A′ =

A⊗L
R R

′ we obtain the base change map RHomR(A,K)⊗L
R R

′ → RHomR′(A⊗L
R

R′,K⊗L
RR

′) for derived hom of More on Algebra, Equation (15.99.1.1). Unwinding
the left and right hand side exactly as in the proof of More on Algebra, Lemma
15.99.2 and in particular using More on Algebra, Lemma 15.99.1 gives the desired
result. □

Lemma 47.14.2.0BZM Let R→ A and R→ R′ be ring maps and A′ = A⊗RR′. Assume
(1) A is pseudo-coherent as an R-module,
(2) R′ has finite tor dimension as an R-module (for example R→ R′ is flat),
(3) A and R′ are tor independent over R.

Then (47.14.0.1) is an isomorphism for K ∈ D+(R).

Proof. Follows from Lemma 47.14.1 and More on Algebra, Lemma 15.98.3 part
(4). □

Lemma 47.14.3.0BZP Let R→ A and R→ R′ be ring maps and A′ = A⊗RR′. Assume
(1) A is perfect as an R-module,
(2) A and R′ are tor independent over R.

Then (47.14.0.1) is an isomorphism for all K ∈ D(R).

Proof. Follows from Lemma 47.14.1 and More on Algebra, Lemma 15.98.3 part
(1). □
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47.15. Dualizing complexes

0A7A In this section we define dualizing complexes for Noetherian rings.
Definition 47.15.1.0A7B Let A be a Noetherian ring. A dualizing complex is a complex
of A-modules ω•

A such that
(1) ω•

A has finite injective dimension,
(2) Hi(ω•

A) is a finite A-module for all i, and
(3) A→ RHomA(ω•

A, ω
•
A) is a quasi-isomorphism.

This definition takes some time getting used to. It is perhaps a good idea to prove
some of the following lemmas yourself without reading the proofs.
Lemma 47.15.2.0G4H Let A be a Noetherian ring. Let K,L ∈ DCoh(A) and assume L
has finite injective dimension. Then RHomA(K,L) is in DCoh(A).
Proof. Pick an integer n and consider the distinguished triangle

τ≤nK → K → τ≥n+1K → τ≤nK[1]
see Derived Categories, Remark 13.12.4. Since L has finite injective dimension
we see that RHomA(τ≥n+1K,L) has vanishing cohomology in degrees ≥ c− n for
some constant c. Hence, given i, we see that ExtiA(K,L) → ExtiA(τ≤nK,L) is an
isomorphism for some n≫ −i. By Derived Categories of Schemes, Lemma 36.11.5
applied to τ≤nK and L we see conclude that ExtiA(K,L) is a finite A-module for
all i. Hence RHomA(K,L) is indeed an object of DCoh(A). □

Lemma 47.15.3.0A7C Let A be a Noetherian ring. If ω•
A is a dualizing complex, then

the functor
D : K 7−→ RHomA(K,ω•

A)
is an anti-equivalence DCoh(A)→ DCoh(A) which exchanges D+

Coh(A) and D−
Coh(A)

and induces an anti-equivalenceDb
Coh(A)→ Db

Coh(A). MoreoverD◦D is isomorphic
to the identity functor.
Proof. LetK be an object ofDCoh(A). From Lemma 47.15.2 we seeRHomA(K,ω•

A)
is an object of DCoh(A). By More on Algebra, Lemma 15.98.2 and the assumptions
on the dualizing complex we obtain a canonical isomorphism

K = RHomA(ω•
A, ω

•
A)⊗L

A K −→ RHomA(RHomA(K,ω•
A), ω•

A)
Thus our functor has a quasi-inverse and the proof is complete. □

Let R be a ring. Recall that an object L of D(R) is invertible if it is an invertible
object for the symmetric monoidal structure on D(R) given by derived tensor prod-
uct. In More on Algebra, Lemma 15.126.4 we have seen this means L is perfect,
L =

⊕
Hn(L)[−n], this is a finite sum, each Hn(L) is finite projective, and there

is an open covering Spec(R) =
⋃
D(fi) such that L ⊗R Rfi ∼= Rfi [−ni] for some

integers ni.
Lemma 47.15.4.0A7E Let A be a Noetherian ring. Let F : Db

Coh(A)→ Db
Coh(A) be an

A-linear equivalence of categories. Then F (A) is an invertible object of D(A).
Proof. Let m ⊂ A be a maximal ideal with residue field κ. Consider the object
F (κ). Since κ = HomD(A)(κ, κ) we find that all cohomology groups of F (κ) are
annihilated by m. We also see that

ExtiA(κ, κ) = ExtiA(F (κ), F (κ)) = HomD(A)(F (κ), F (κ)[i])

https://stacks.math.columbia.edu/tag/0A7B
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is zero for i < 0. Say Ha(F (κ)) ̸= 0 and Hb(F (κ)) ̸= 0 with a minimal and b
maximal (so in particular a ≤ b). Then there is a nonzero map

F (κ)→ Hb(F (κ))[−b]→ Ha(F (κ))[−b]→ F (κ)[a− b]
in D(A) (nonzero because it induces a nonzero map on cohomology). This proves
that b = a. We conclude that F (κ) = κ[−a].
Let G be a quasi-inverse to our functor F . Arguing as above we find an integer
b such that G(κ) = κ[−b]. On composing we find a + b = 0. Let E be a finite
A-module wich is annihilated by a power of m. Arguing by induction on the length
of E we find that G(E) = E′[−b] for some finite A-module E′ annihilated by a
power of m. Then E[−a] = F (E′). Next, we consider the groups

ExtiA(A,E′) = ExtiA(F (A), F (E′)) = HomD(A)(F (A), E[−a+ i])
The left hand side is nonzero if and only if i = 0 and then we get E′. Applying this
with E = E′ = κ and using Nakayama’s lemma this implies that Hj(F (A))m is zero
for j > a and generated by 1 element for j = a. On the other hand, if Hj(F (A))m is
not zero for some j < a, then there is a map F (A)→ E[−a+ i] for some i < 0 and
some E (More on Algebra, Lemma 15.65.7) which is a contradiction. Thus we see
that F (A)m = M [−a] for some Am-module M generated by 1 element. However,
since

Am = HomD(A)(A,A)m = HomD(A)(F (A), F (A))m = HomAm
(M,M)

we see that M ∼= Am. We conclude that there exists an element f ∈ A, f ̸∈ m such
that F (A)f is isomorphic to Af [−a]. This finishes the proof. □

Lemma 47.15.5.0A7F Let A be a Noetherian ring. If ω•
A and (ω′

A)• are dualizing
complexes, then (ω′

A)• is quasi-isomorphic to ω•
A⊗L

A L for some invertible object L
of D(A).

Proof. By Lemmas 47.15.3 and 47.15.4 the functorK 7→ RHomA(RHomA(K,ω•
A), (ω′

A)•)
maps A to an invertible object L. In other words, there is an isomorphism

L −→ RHomA(ω•
A, (ω′

A)•)
Since L has finite tor dimension, this means that we can apply More on Algebra,
Lemma 15.98.2 to see that

RHomA(ω•
A, (ω′

A)•)⊗L
A K −→ RHomA(RHomA(K,ω•

A), (ω′
A)•)

is an isomorphism for K in Db
Coh(A). In particular, setting K = ω•

A finishes the
proof. □

Lemma 47.15.6.0A7G Let A be a Noetherian ring. Let B = S−1A be a localization. If
ω•
A is a dualizing complex, then ω•

A ⊗A B is a dualizing complex for B.

Proof. Let ω•
A → I• be a quasi-isomorphism with I• a bounded complex of injec-

tives. Then S−1I• is a bounded complex of injective B = S−1A-modules (Lemma
47.3.8) representing ω•

A ⊗A B. Thus ω•
A ⊗A B has finite injective dimension. Since

Hi(ω•
A⊗AB) = Hi(ω•

A)⊗AB by flatness of A→ B we see that ω•
A⊗AB has finite

cohomology modules. Finally, the map
B −→ RHomA(ω•

A ⊗A B,ω•
A ⊗A B)

is a quasi-isomorphism as formation of internal hom commutes with flat base change
in this case, see More on Algebra, Lemma 15.99.2. □

https://stacks.math.columbia.edu/tag/0A7F
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Lemma 47.15.7.0A7H Let A be a Noetherian ring. Let f1, . . . , fn ∈ A generate the unit
ideal. If ω•

A is a complex of A-modules such that (ω•
A)fi is a dualizing complex for

Afi for all i, then ω•
A is a dualizing complex for A.

Proof. Consider the double complex∏
i0

(ω•
A)fi0 →

∏
i0<i1

(ω•
A)fi0fi1 → . . .

The associated total complex is quasi-isomorphic to ω•
A for example by Descent, Re-

mark 35.3.10 or by Derived Categories of Schemes, Lemma 36.9.4. By assumption
the complexes (ω•

A)fi have finite injective dimension as complexes of Afi-modules.
This implies that each of the complexes (ω•

A)fi0 ...fip , p > 0 has finite injective di-
mension over Afi0 ...fip , see Lemma 47.3.8. This in turn implies that each of the
complexes (ω•

A)fi0 ...fip , p > 0 has finite injective dimension over A, see Lemma
47.3.2. Hence ω•

A has finite injective dimension as a complex of A-modules (as it
can be represented by a complex endowed with a finite filtration whose graded parts
have finite injective dimension). Since Hn(ω•

A)fi is a finite Afi module for each i
we see that Hi(ω•

A) is a finite A-module, see Algebra, Lemma 10.23.2. Finally,
the (derived) base change of the map A → RHomA(ω•

A, ω
•
A) to Afi is the map

Afi → RHomA((ω•
A)fi , (ω•

A)fi) by More on Algebra, Lemma 15.99.2. Hence we de-
duce that A→ RHomA(ω•

A, ω
•
A) is an isomorphism and the proof is complete. □

Lemma 47.15.8.0AX0 Let A → B be a finite ring map of Noetherian rings. Let ω•
A be

a dualizing complex. Then RHom(B,ω•
A) is a dualizing complex for B.

Proof. Let ω•
A → I• be a quasi-isomorphism with I• a bounded complex of injec-

tives. Then HomA(B, I•) is a bounded complex of injective B-modules (Lemma
47.3.4) representing RHom(B,ω•

A). Thus RHom(B,ω•
A) has finite injective dimen-

sion. By Lemma 47.13.4 it is an object of DCoh(B). Finally, we compute
HomD(B)(RHom(B,ω•

A), RHom(B,ω•
A)) = HomD(A)(RHom(B,ω•

A), ω•
A) = B

and for n ̸= 0 we compute
HomD(B)(RHom(B,ω•

A), RHom(B,ω•
A)[n]) = HomD(A)(RHom(B,ω•

A), ω•
A[n]) = 0

which proves the last property of a dualizing complex. In the displayed equations,
the first equality holds by Lemma 47.13.1 and the second equality holds by Lemma
47.15.3. □

Lemma 47.15.9.0A7I Let A → B be a surjective homomorphism of Noetherian rings.
Let ω•

A be a dualizing complex. Then RHom(B,ω•
A) is a dualizing complex for B.

Proof. Special case of Lemma 47.15.8. □

Lemma 47.15.10.0A7J Let A be a Noetherian ring. If ω•
A is a dualizing complex, then

ω•
A ⊗A A[x] is a dualizing complex for A[x].

Proof. Set B = A[x] and ω•
B = ω•

A ⊗A B. It follows from Lemma 47.3.10 and
More on Algebra, Lemma 15.69.5 that ω•

B has finite injective dimension. Since
Hi(ω•

B) = Hi(ω•
A) ⊗A B by flatness of A → B we see that ω•

A ⊗A B has finite
cohomology modules. Finally, the map

B −→ RHomB(ω•
B , ω

•
B)

is a quasi-isomorphism as formation of internal hom commutes with flat base change
in this case, see More on Algebra, Lemma 15.99.2. □
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Proposition 47.15.11.0A7K Let A be a Noetherian ring which has a dualizing complex.
Then any A-algebra essentially of finite type over A has a dualizing complex.
Proof. This follows from a combination of Lemmas 47.15.6, 47.15.9, and 47.15.10.

□

Lemma 47.15.12.0A7L Let A be a Noetherian ring. Let ω•
A be a dualizing complex. Let

m ⊂ A be a maximal ideal and set κ = A/m. Then RHomA(κ, ω•
A) ∼= κ[n] for some

n ∈ Z.
Proof. This is true because RHomA(κ, ω•

A) is a dualizing complex over κ (Lemma
47.15.9), because dualizing complexes over κ are unique up to shifts (Lemma
47.15.5), and because κ is a dualizing complex over κ. □

47.16. Dualizing complexes over local rings

0A7M In this section (A,m, κ) will be a Noetherian local ring endowed with a dualizing
complex ω•

A such that the integer n of Lemma 47.15.12 is zero. More precisely,
we assume that RHomA(κ, ω•

A) = κ[0]. In this case we will say that the dualizing
complex is normalized. Observe that a normalized dualizing complex is unique up
to isomorphism and that any other dualizing complex for A is isomorphic to a shift
of a normalized one (Lemma 47.15.5).
Lemma 47.16.1.0AX1 Let (A,m, κ) → (B,m′, κ′) be a finite local map of Noetherian
local rings. Let ω•

A be a normalized dualizing complex. Then ω•
B = RHom(B,ω•

A)
is a normalized dualizing complex for B.
Proof. By Lemma 47.15.8 the complex ω•

B is dualizing for B. We have
RHomB(κ′, ω•

B) = RHomB(κ′, RHom(B,ω•
A)) = RHomA(κ′, ω•

A)
by Lemma 47.13.1. Since κ′ is isomorphic to a finite direct sum of copies of κ as an
A-module and since ω•

A is normalized, we see that this complex only has cohomology
placed in degree 0. Thus ω•

B is a normalized dualizing complex as well. □

Lemma 47.16.2.0A7N Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•

A. Let A→ B be surjective. Then ω•
B = RHomA(B,ω•

A) is a normalized
dualizing complex for B.
Proof. Special case of Lemma 47.16.1. □

Lemma 47.16.3.0A7P Let (A,m, κ) be a Noetherian local ring. Let F be an A-linear
self-equivalence of the category of finite length A-modules. Then F is isomorphic
to the identity functor.
Proof. Since κ is the unique simple object of the category we have F (κ) ∼= κ. Since
our category is abelian, we find that F is exact. Hence F (E) has the same length
as E for all finite length modules E. Since Hom(E, κ) = Hom(F (E), F (κ)) ∼=
Hom(F (E), κ) we conclude from Nakayama’s lemma that E and F (E) have the
same number of generators. Hence F (A/mn) is a cyclic A-module. Pick a generator
e ∈ F (A/mn). Since F is A-linear we conclude that mne = 0. The map A/mn →
F (A/mn) has to be an isomorphism as the lengths are equal. Pick an element

e ∈ limF (A/mn)
which maps to a generator for all n (small argument omitted). Then we obtain
a system of isomorphisms A/mn → F (A/mn) compatible with all A-module maps
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A/mn → A/mn
′ (by A-linearity of F again). Since any finite length module is a

cokernel of a map between direct sums of cyclic modules, we obtain the isomorphism
of the lemma. □

Lemma 47.16.4.0A7Q Let (A,m, κ) be a Noetherian local ring with normalized dualiz-
ing complex ω•

A. Let E be an injective hull of κ. Then there exists a functorial
isomorphism

RHomA(N,ω•
A) = HomA(N,E)[0]

for N running through the finite length A-modules.

Proof. By induction on the length of N we see that RHomA(N,ω•
A) is a module of

finite length sitting in degree 0. Thus RHomA(−, ω•
A) induces an anti-equivalence

on the category of finite length modules. Since the same is true for HomA(−, E)
by Proposition 47.7.8 we see that

N 7−→ HomA(RHomA(N,ω•
A), E)

is an equivalence as in Lemma 47.16.3. Hence it is isomorphic to the identity
functor. Since HomA(−, E) applied twice is the identity (Proposition 47.7.8) we
obtain the statement of the lemma. □

Lemma 47.16.5.0A7U Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•

A. Let M be a finite A-module and let d = dim(Supp(M)). Then
(1) if ExtiA(M,ω•

A) is nonzero, then i ∈ {−d, . . . , 0},
(2) the dimension of the support of ExtiA(M,ω•

A) is at most −i,
(3) depth(M) is the smallest integer δ ≥ 0 such that Ext−δ

A (M,ω•
A) ̸= 0.

Proof. We prove this by induction on d. If d = 0, this follows from Lemma
47.16.4 and Matlis duality (Proposition 47.7.8) which guarantees that HomA(M,E)
is nonzero if M is nonzero.
Assume the result holds for modules with support of dimension < d and that M
has depth > 0. Choose an f ∈ m which is a nonzerodivisor on M and consider the
short exact sequence

0→M →M →M/fM → 0
Since dim(Supp(M/fM)) = d − 1 (Algebra, Lemma 10.63.10) we may apply the
induction hypothesis. Writing Ei = ExtiA(M,ω•

A) and F i = ExtiA(M/fM,ω•
A) we

obtain a long exact sequence

. . .→ F i → Ei
f−→ Ei → F i+1 → . . .

By induction Ei/fEi = 0 for i+1 ̸∈ {−dim(Supp(M/fM)), . . . ,−depth(M/fM)}.
By Nakayama’s lemma (Algebra, Lemma 10.20.1) and Algebra, Lemma 10.72.7 we
conclude Ei = 0 for i ̸∈ {− dim(Supp(M)), . . . ,−depth(M)}. Moreover, in the
boundary case i = −depth(M) we deduce that Ei is nonzero as F i+1 is nonzero by
induction. Since Ei/fEi ⊂ F i+1 we get

dim(Supp(F i+1)) ≥ dim(Supp(Ei/fEi)) ≥ dim(Supp(Ei))− 1
(see lemma used above) we also obtain the dimension estimate (2).
If M has depth 0 and d > 0 we let N = M [m∞] and set M ′ = M/N (compare with
Lemma 47.11.6). Then M ′ has depth > 0 and dim(Supp(M ′)) = d. Thus we know
the result for M ′ and since RHomA(N,ω•

A) = HomA(N,E) (Lemma 47.16.4) the
long exact cohomology sequence of Ext’s implies the result for M . □
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Remark 47.16.6.0BUJ Let (A,m) and ω•
A be as in Lemma 47.16.5. By More on Algebra,

Lemma 15.69.2 we see that ω•
A has injective-amplitude in [−d, 0] because part (3)

of that lemma applies. In particular, for any A-module M (not necessarily finite)
we have ExtiA(M,ω•

A) = 0 for i ̸∈ {−d, . . . , 0}.

Lemma 47.16.7.0B5A Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•

A. Let M be a finite A-module. The following are equivalent
(1) M is Cohen-Macaulay,
(2) ExtiA(M,ω•

A) is nonzero for a single i,
(3) Ext−i

A (M,ω•
A) is zero for i ̸= dim(Supp(M)).

Denote CMd the category of finite Cohen-Macaulay A-modules of depth d. Then
M 7→ Ext−d

A (M,ω•
A) defines an anti-auto-equivalence of CMd.

Proof. We will use the results of Lemma 47.16.5 without further mention. Fix
a finite module M . If M is Cohen-Macaulay, then only Ext−d

A (M,ω•
A) can be

nonzero, hence (1) ⇒ (3). The implication (3) ⇒ (2) is immediate. Assume (2)
and let N = Ext−δ

A (M,ω•
A) be the nonzero Ext where δ = depth(M). Then, since

M [0] = RHomA(RHomA(M,ω•
A), ω•

A) = RHomA(N [δ], ω•
A)

(Lemma 47.15.3) we conclude that M = Ext−δ
A (N,ω•

A). Thus δ ≥ dim(Supp(M)).
However, since we also know that δ ≤ dim(Supp(M)) (Algebra, Lemma 10.72.3)
we conclude that M is Cohen-Macaulay.

To prove the final statement, it suffices to show that N = Ext−d
A (M,ω•

A) is in CMd

for M in CMd. Above we have seen that M [0] = RHomA(N [d], ω•
A) and this proves

the desired result by the equivalence of (1) and (3). □

Lemma 47.16.8.0A7R Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•

A. If dim(A) = 0, then ω•
A
∼= E[0] where E is an injective hull of the

residue field.

Proof. Immediate from Lemma 47.16.4. □

Lemma 47.16.9.0A7S Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex. Let I ⊂ m be an ideal of finite length. Set B = A/I. Then there is a
distinguished triangle

ω•
B → ω•

A → HomA(I, E)[0]→ ω•
B [1]

in D(A) where E is an injective hull of κ and ω•
B is a normalized dualizing complex

for B.

Proof. Use the short exact sequence 0 → I → A → B → 0 and Lemmas 47.16.4
and 47.16.2. □

Lemma 47.16.10.0A7T Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•

A. Let f ∈ m be a nonzerodivisor. Set B = A/(f). Then there is a
distinguished triangle

ω•
B → ω•

A → ω•
A → ω•

B [1]
in D(A) where ω•

B is a normalized dualizing complex for B.

Proof. Use the short exact sequence 0→ A→ A→ B → 0 and Lemma 47.16.2. □
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Lemma 47.16.11.0A7V Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•

A. Let p be a minimal prime of A with dim(A/p) = e. Then Hi(ω•
A)p is

nonzero if and only if i = −e.

Proof. Since Ap has dimension zero, there exists an integer n > 0 such that pnAp

is zero. Set B = A/pn and ω•
B = RHomA(B,ω•

A). Since Bp = Ap we see that

(ω•
B)p = RHomA(B,ω•

A)⊗L
A Ap = RHomAp

(Bp, (ω•
A)p) = (ω•

A)p
The second equality holds by More on Algebra, Lemma 15.99.2. By Lemma 47.16.2
we may replace A by B. After doing so, we see that dim(A) = e. Then we see that
Hi(ω•

A)p can only be nonzero if i = −e by Lemma 47.16.5 parts (1) and (2). On
the other hand, since (ω•

A)p is a dualizing complex for the nonzero ring Ap (Lemma
47.15.6) we see that the remaining module has to be nonzero. □

47.17. Dualizing complexes and dimension functions

0A7W Our results in the local setting have the following consequence: a Noetherian ring
which has a dualizing complex is a universally catenary ring of finite dimension.

Lemma 47.17.1.0A7X Let A be a Noetherian ring. Let p be a minimal prime of A. Then
Hi(ω•

A)p is nonzero for exactly one i.

Proof. The complex ω•
A ⊗A Ap is a dualizing complex for Ap (Lemma 47.15.6).

The dimension of Ap is zero as p is minimal. Hence the result follows from Lemma
47.16.8. □

Let A be a Noetherian ring and let ω•
A be a dualizing complex. Lemma 47.15.12

allows us to define a function
δ = δω•

A
: Spec(A) −→ Z

by mapping p to the integer of Lemma 47.15.12 for the dualizing complex (ω•
A)p

over Ap (Lemma 47.15.6) and the residue field κ(p). To be precise, we define δ(p)
to be the unique integer such that

(ω•
A)p[−δ(p)]

is a normalized dualizing complex over the Noetherian local ring Ap.

Lemma 47.17.2.0A7Y Let A be a Noetherian ring and let ω•
A be a dualizing complex.

Let A→ B be a surjective ring map and let ω•
B = RHom(B,ω•

A) be the dualizing
complex for B of Lemma 47.15.9. Then we have

δω•
B

= δω•
A
|Spec(B)

Proof. This follows from the definition of the functions and Lemma 47.16.2. □

Lemma 47.17.3.0A7Z Let A be a Noetherian ring and let ω•
A be a dualizing complex.

The function δ = δω•
A

defined above is a dimension function (Topology, Definition
5.20.1).

Proof. Let p ⊂ q be an immediate specialization. We have to show that δ(p) =
δ(q) + 1. We may replace A by A/p, the complex ω•

A by ω•
A/p = RHom(A/p, ω•

A),
the prime p by (0), and the prime q by q/p, see Lemma 47.17.2. Thus we may
assume that A is a domain, p = (0), and q is a prime ideal of height 1.

https://stacks.math.columbia.edu/tag/0A7V
https://stacks.math.columbia.edu/tag/0A7X
https://stacks.math.columbia.edu/tag/0A7Y
https://stacks.math.columbia.edu/tag/0A7Z


47.17. DUALIZING COMPLEXES AND DIMENSION FUNCTIONS 4006

Then Hi(ω•
A)(0) is nonzero for exactly one i, say i0, by Lemma 47.17.1. In fact

i0 = −δ((0)) because (ω•
A)(0)[−δ((0))] is a normalized dualizing complex over the

field A(0).
On the other hand (ω•

A)q[−δ(q)] is a normalized dualizing complex for Aq. By
Lemma 47.16.11 we see that

He((ω•
A)q[−δ(q)])(0) = He−δ(q)(ω•

A)(0)

is nonzero only for e = −dim(Aq) = −1. We conclude
−δ((0)) = −1− δ(q)

as desired. □

Lemma 47.17.4.0A80 Let A be a Noetherian ring which has a dualizing complex. Then
A is universally catenary of finite dimension.

Proof. Because Spec(A) has a dimension function by Lemma 47.17.3 it is catenary,
see Topology, Lemma 5.20.2. Hence A is catenary, see Algebra, Lemma 10.105.2.
It follows from Proposition 47.15.11 that A is universally catenary.
Because any dualizing complex ω•

A is in Db
Coh(A) the values of the function δω•

A
in

minimal primes are bounded by Lemma 47.17.1. On the other hand, for a maximal
ideal m with residue field κ the integer i = −δ(m) is the unique integer such that
ExtiA(κ, ω•

A) is nonzero (Lemma 47.15.12). Since ω•
A has finite injective dimension

these values are bounded too. Since the dimension of A is the maximal value of
δ(p) − δ(m) where p ⊂ m are a pair consisting of a minimal prime and a maximal
prime we find that the dimension of Spec(A) is bounded. □

Lemma 47.17.5.0AWE Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•

A. Let d = dim(A) and ωA = H−d(ω•
A). Then

(1) the support of ωA is the union of the irreducible components of Spec(A)
of dimension d,

(2) ωA satisfies (S2), see Algebra, Definition 10.157.1.

Proof. We will use Lemma 47.16.5 without further mention. By Lemma 47.16.11
the support of ωA contains the irreducible components of dimension d. Let p ⊂ A
be a prime. By Lemma 47.17.3 the complex (ω•

A)p[−dim(A/p)] is a normalized
dualizing complex for Ap. Hence if dim(A/p) + dim(Ap) < d, then (ωA)p = 0. This
proves the support of ωA is the union of the irreducible components of dimension
d, because the complement of this union is exactly the primes p of A for which
dim(A/p) + dim(Ap) < d as A is catenary (Lemma 47.17.4). On the other hand, if
dim(A/p) + dim(Ap) = d, then

(ωA)p = H− dim(Ap) ((ω•
A)p[−dim(A/p)])

Hence in order to prove ωA has (S2) it suffices to show that the depth of ωA is at
least min(dim(A), 2). We prove this by induction on dim(A). The case dim(A) = 0
is trivial.
Assume depth(A) > 0. Choose a nonzerodivisor f ∈ m and set B = A/fA. Then
dim(B) = dim(A)−1 and we may apply the induction hypothesis to B. By Lemma
47.16.10 we see that multiplication by f is injective on ωA and we get ωA/fωA ⊂ ωB .
This proves the depth of ωA is at least 1. If dim(A) > 1, then dim(B) > 0 and ωB
has depth > 0. Hence ωA has depth > 1 and we conclude in this case.
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Assume dim(A) > 0 and depth(A) = 0. Let I = A[m∞] and set B = A/I. Then B
has depth ≥ 1 and ωA = ωB by Lemma 47.16.9. Since we proved the result for ωB
above the proof is done. □

47.18. The local duality theorem

0A81 The main result in this section is due to Grothendieck.
Lemma 47.18.1.0A82 Let (A,m, κ) be a Noetherian local ring. Let ω•

A be a normalized
dualizing complex. Let Z = V (m) ⊂ Spec(A). Then E = R0ΓZ(ω•

A) is an injective
hull of κ and RΓZ(ω•

A) = E[0].
Proof. By Lemma 47.10.1 we have RΓm = RΓZ . Thus

RΓZ(ω•
A) = RΓm(ω•

A) = hocolim RHomA(A/mn, ω•
A)

by Lemma 47.8.2. Let E′ be an injective hull of the residue field. By Lemma 47.16.4
we can find isomorphisms

RHomA(A/mn, ω•
A) ∼= HomA(A/mn, E′)[0]

compatible with transition maps. Since E′ =
⋃
E′[mn] = colim HomA(A/mn, E′)

by Lemma 47.7.3 we conclude that E ∼= E′ and that all other cohomology groups
of the complex RΓZ(ω•

A) are zero. □

Remark 47.18.2.0A83 Let (A,m, κ) be a Noetherian local ring with a normalized dual-
izing complex ω•

A. By Lemma 47.18.1 above we see that RΓZ(ω•
A) is an injective

hull of the residue field placed in degree 0. In fact, this gives a “construction” or
“realization” of the injective hull which is slightly more canonical than just picking
any old injective hull. Namely, a normalized dualizing complex is unique up to
isomorphism, with group of automorphisms the group of units of A, whereas an
injective hull of κ is unique up to isomorphism, with group of automorphisms the
group of units of the completion A∧ of A with respect to m.
Here is the main result of this section.
Theorem 47.18.3.0A84 Let (A,m, κ) be a Noetherian local ring. Let ω•

A be a normalized
dualizing complex. Let E be an injective hull of the residue field. Let Z = V (m) ⊂
Spec(A). Denote ∧ derived completion with respect to m. Then

RHomA(K,ω•
A)∧ ∼= RHomA(RΓZ(K), E[0])

for K in D(A).
Proof. Observe that E[0] ∼= RΓZ(ω•

A) by Lemma 47.18.1. By More on Algebra,
Lemma 15.91.13 completion on the left hand side goes inside. Thus we have to
prove

RHomA(K∧, (ω•
A)∧) = RHomA(RΓZ(K), RΓZ(ω•

A))
This follows from the equivalence between Dcomp(A,m) and Dm∞-torsion(A) given
in Proposition 47.12.2. More precisely, it is a special case of Lemma 47.12.3. □

Here is a special case of the theorem above.
Lemma 47.18.4.0AAK Let (A,m, κ) be a Noetherian local ring. Let ω•

A be a normalized
dualizing complex. Let E be an injective hull of the residue field. Let K ∈ DCoh(A).
Then

Ext−i
A (K,ω•

A)∧ = HomA(Hi
m(K), E)

where ∧ denotes m-adic completion.

https://stacks.math.columbia.edu/tag/0A82
https://stacks.math.columbia.edu/tag/0A83
https://stacks.math.columbia.edu/tag/0A84
https://stacks.math.columbia.edu/tag/0AAK


47.20. COHEN-MACAULAY RINGS 4008

Proof. By Lemma 47.15.3 we see that RHomA(K,ω•
A) is an object of DCoh(A). It

follows that the cohomology modules of the derived completion of RHomA(K,ω•
A)

are equal to the usual completions ExtiA(K,ω•
A)∧ by More on Algebra, Lemma

15.94.4. On the other hand, we have RΓm = RΓZ for Z = V (m) by Lemma 47.10.1.
Moreover, the functor HomA(−, E) is exact hence factors through cohomology.
Hence the lemma is consequence of Theorem 47.18.3. □

47.19. Dualizing modules

0DW3 If (A,m, κ) is a Noetherian local ring and ω•
A is a normalized dualizing complex, then

we say the module ωA = H− dim(A)(ω•
A), described in Lemma 47.17.5, is a dualizing

module for A. This module is a canonical module of A. It seems generally agreed
upon to define a canonical module for a Noetherian local ring (A,m, κ) to be a
finite A-module K such that

HomA(K,E) ∼= H
dim(A)
m (A)

where E is an injective hull of the residue field. A dualizing module is canonical
because

HomA(Hdim(A)
m (A), E) = (ωA)∧

by Lemma 47.18.4 and hence applying HomA(−, E) we get
HomA(ωA, E) = HomA((ωA)∧, E)

= HomA(HomA(Hdim(A)
m (A), E), E)

= H
dim(A)
m (A)

the first equality because E is m-power torsion, the second by the above, and the
third by Matlis duality (Proposition 47.7.8). The utility of the definition of a
canonical module given above lies in the fact that it makes sense even if A does not
have a dualizing complex.

47.20. Cohen-Macaulay rings

0DW4 Cohen-Macaulay modules and rings were studied in Algebra, Sections 10.103 and
10.104.

Lemma 47.20.1.0AWR Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•

A. Then depth(A) is equal to the smallest integer δ ≥ 0 such that
H−δ(ω•

A) ̸= 0.

Proof. This follows immediately from Lemma 47.16.5. Here are two other ways to
see that it is true.
First alternative. By Nakayama’s lemma we see that δ is the smallest integer such
that HomA(H−δ(ω•

A), κ) ̸= 0. In other words, it is the smallest integer such that
Ext−δ

A (ω•
A, κ) is nonzero. Using Lemma 47.15.3 and the fact that ω•

A is normalized
this is equal to the smallest integer such that ExtδA(κ,A) is nonzero. This is equal
to the depth of A by Algebra, Lemma 10.72.5.
Second alternative. By the local duality theorem (in the form of Lemma 47.18.4)
δ is the smallest integer such that Hδ

m(A) is nonzero. This is equal to the depth of
A by Lemma 47.11.1. □

https://stacks.math.columbia.edu/tag/0AWR
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Lemma 47.20.2.0AWS Let (A,m, κ) be a Noetherian local ring with normalized dual-
izing complex ω•

A and dualizing module ωA = H− dim(A)(ω•
A). The following are

equivalent
(1) A is Cohen-Macaulay,
(2) ω•

A is concentrated in a single degree, and
(3) ω•

A = ωA[dim(A)].
In this case ωA is a maximal Cohen-Macaulay module.
Proof. Follows immediately from Lemma 47.16.7. □

Lemma 47.20.3.0DW5 Let A be a Noetherian ring. If there exists a finite A-module ωA
such that ωA[0] is a dualizing complex, then A is Cohen-Macaulay.
Proof. We may replace A by the localization at a prime (Lemma 47.15.6 and Alge-
bra, Definition 10.104.6). In this case the result follows immediately from Lemma
47.20.2. □

Lemma 47.20.4.0EHS Let A be a Noetherian ring with dualizing complex ω•
A. Let M

be a finite A-module. Then
U = {p ∈ Spec(A) |Mp is Cohen-Macaulay}

is an open subset of Spec(A) whose intersection with Supp(M) is dense.
Proof. If p is a generic point of Supp(M), then depth(Mp) = dim(Mp) = 0 and
hence p ∈ U . This proves denseness. If p ∈ U , then we see that

RHomA(M,ω•
A)p = RHomAp

(Mp, (ω•
A)p)

has a unique nonzero cohomology module, say in degree i0, by Lemma 47.16.7. Since
RHomA(M,ω•

A) has only a finite number of nonzero cohomology modules Hi and
since each of these is a finite A-module, we can find an f ∈ A, f ̸∈ p such that
(Hi)f = 0 for i ̸= i0. Then RHomA(M,ω•

A)f has a unique nonzero cohomology
module and reversing the arguments just given we find that D(f) ⊂ U . □

Lemma 47.20.5.0EHT Let A be a Noetherian ring. If A has a dualizing complex ω•
A,

then {p ∈ Spec(A) | Ap is Cohen-Macaulay} is a dense open subset of Spec(A).
Proof. Immediate consequence of Lemma 47.20.4 and the definitions. □

47.21. Gorenstein rings

0DW6 So far, the only explicit dualizing complex we’ve seen is κ on κ for a field κ, see
proof of Lemma 47.15.12. By Proposition 47.15.11 this means that any finite type
algebra over a field has a dualizing complex. However, it turns out that there are
Noetherian (local) rings which do not have a dualizing complex. Namely, we have
seen that a ring which has a dualizing complex is universally catenary (Lemma
47.17.4) but there are examples of Noetherian local rings which are not catenary,
see Examples, Section 110.18.
Nonetheless many rings in algebraic geometry have dualizing complexes simply
because they are quotients of Gorenstein rings. This condition is in fact both
necessary and sufficient. That is: a Noetherian ring has a dualizing complex if
and only if it is a quotient of a finite dimensional Gorenstein ring. This is Sharp’s
conjecture ([Sha79]) which can be found as [Kaw02, Corollary 1.4] in the literature.
Returning to our current topic, here is the definition of Gorenstein rings.

https://stacks.math.columbia.edu/tag/0AWS
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Definition 47.21.1.0DW7 Gorenstein rings.
(1) Let A be a Noetherian local ring. We say A is Gorenstein if A[0] is a

dualizing complex for A.
(2) Let A be a Noetherian ring. We say A is Gorenstein if Ap is Gorenstein

for every prime p of A.
This definition makes sense, because if A[0] is a dualizing complex for A, then
S−1A[0] is a dualizing complex for S−1A by Lemma 47.15.6. We will see later that
a finite dimensional Noetherian ring is Gorenstein if it has finite injective dimension
as a module over itself.
Lemma 47.21.2.0DW8 A Gorenstein ring is Cohen-Macaulay.
Proof. Follows from Lemma 47.20.2. □

An example of a Gorenstein ring is a regular ring.
Lemma 47.21.3.0AWX A regular local ring is Gorenstein. A regular ring is Gorenstein.
Proof. Let A be a regular ring of finite dimension d. Then A has finite global
dimension d, see Algebra, Lemma 10.110.8. Hence Extd+1

A (M,A) = 0 for all A-
modules M , see Algebra, Lemma 10.109.8. Thus A has finite injective dimension as
an A-module by More on Algebra, Lemma 15.69.2. It follows that A[0] is a dualizing
complex, hence A is Gorenstein by the remark following the definition. □

Lemma 47.21.4.0DW9 Let A be a Noetherian ring.
(1) If A has a dualizing complex ω•

A, then
(a) A is Gorenstein ⇔ ω•

A is an invertible object of D(A),
(b) Ap is Gorenstein ⇔ (ω•

A)p is an invertible object of D(Ap),
(c) {p ∈ Spec(A) | Ap is Gorenstein} is an open subset.

(2) If A is Gorenstein, then A has a dualizing complex if and only if A[0] is a
dualizing complex.

Proof. For invertible objects of D(A), see More on Algebra, Lemma 15.126.4 and
the discussion in Section 47.15.
By Lemma 47.15.6 for every p the complex (ω•

A)p is a dualizing complex over Ap.
By definition and uniqueness of dualizing complexes (Lemma 47.15.5) we see that
(1)(b) holds.
To see (1)(c) assume that Ap is Gorenstein. Let nx be the unique integer such that
Hnx((ω•

A)p) is nonzero and isomorphic to Ap. Since ω•
A is in Db

Coh(A) there are
finitely many nonzero finite A-modules Hi(ω•

A). Thus there exists some f ∈ A, f ̸∈
p such that only Hnx((ω•

A)f ) is nonzero and generated by 1 element over Af . Since
dualizing complexes are faithful (by definition) we conclude that Af ∼= Hnx((ω•

A)f ).
In this way we see that Aq is Gorenstein for every q ∈ D(f). This proves that the
set in (1)(c) is open.
Proof of (1)(a). The implication ⇐ follows from (1)(b). The implication ⇒ follows
from the discussion in the previous paragraph, where we showed that if Ap is
Gorenstein, then for some f ∈ A, f ̸∈ p the complex (ω•

A)f has only one nonzero
cohomology module which is invertible.
If A[0] is a dualizing complex then A is Gorenstein by part (1). Conversely, we see
that part (1) shows that ω•

A is locally isomorphic to a shift of A. Since being a
dualizing complex is local (Lemma 47.15.7) the result is clear. □

https://stacks.math.columbia.edu/tag/0DW7
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Lemma 47.21.5.0BJI Let (A,m, κ) be a Noetherian local ring. Then A is Gorenstein if
and only if ExtiA(κ,A) is zero for i≫ 0.

Proof. Observe that A[0] is a dualizing complex for A if and only if A has finite
injective dimension as an A-module (follows immediately from Definition 47.15.1).
Thus the lemma follows from More on Algebra, Lemma 15.69.7. □

Lemma 47.21.6.0BJJ Let (A,m, κ) be a Noetherian local ring. Let f ∈ m be a nonze-
rodivisor. Set B = A/(f). Then A is Gorenstein if and only if B is Gorenstein.

Proof. If A is Gorenstein, then B is Gorenstein by Lemma 47.16.10. Conversely,
suppose that B is Gorenstein. Then ExtiB(κ,B) is zero for i≫ 0 (Lemma 47.21.5).
Recall that RHom(B,−) : D(A)→ D(B) is a right adjoint to restriction (Lemma
47.13.1). Hence

RHomA(κ,A) = RHomB(κ,RHom(B,A)) = RHomB(κ,B[1])
The final equality by direct computation or by Lemma 47.13.10. Thus we see that
ExtiA(κ,A) is zero for i≫ 0 and A is Gorenstein (Lemma 47.21.5). □

Lemma 47.21.7.0DWA If A→ B is a local complete intersection homomorphism of rings
and A is a Noetherian Gorenstein ring, then B is a Gorenstein ring.

Proof. By More on Algebra, Definition 15.33.2 we can write B = A[x1, . . . , xn]/I
where I is a Koszul-regular ideal. Observe that a polynomial ring over a Goren-
stein ring A is Gorenstein: reduce to A local and then use Lemmas 47.15.10 and
47.21.4. A Koszul-regular ideal is by definition locally generated by a Koszul-
regular sequence, see More on Algebra, Section 15.32. Looking at local rings of
A[x1, . . . , xn] we see it suffices to show: if R is a Noetherian local Gorenstein ring
and f1, . . . , fc ∈ mR is a Koszul regular sequence, then R/(f1, . . . , fc) is Gorenstein.
This follows from Lemma 47.21.6 and the fact that a Koszul regular sequence in R
is just a regular sequence (More on Algebra, Lemma 15.30.7). □

Lemma 47.21.8.0BJL Let A → B be a flat local homomorphism of Noetherian local
rings. The following are equivalent

(1) B is Gorenstein, and
(2) A and B/mAB are Gorenstein.

Proof. Below we will use without further mention that a local Gorenstein ring has
finite injective dimension as well as Lemma 47.21.5. By More on Algebra, Lemma
15.65.4 we have

ExtiA(κA, A)⊗A B = ExtiB(B/mAB,B)
for all i.
Assume (2). Using that RHom(B/mAB,−) : D(B) → D(B/mAB) is a right
adjoint to restriction (Lemma 47.13.1) we obtain

RHomB(κB , B) = RHomB/mAB(κB , RHom(B/mAB,B))

The cohomology modules ofRHom(B/mAB,B) are the modules ExtiB(B/mAB,B) =
ExtiA(κA, A)⊗AB. Since A is Gorenstein, we conclude only a finite number of these
are nonzero and each is isomorphic to a direct sum of copies of B/mAB. Hence
since B/mAB is Gorenstein we conclude that RHomB(B/mB , B) has only a finite
number of nonzero cohomology modules. Hence B is Gorenstein.

https://stacks.math.columbia.edu/tag/0BJI
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Assume (1). Since B has finite injective dimension, ExtiB(B/mAB,B) is 0 for
i≫ 0. Since A→ B is faithfully flat we conclude that ExtiA(κA, A) is 0 for i≫ 0.
We conclude that A is Gorenstein. This implies that ExtiA(κA, A) is nonzero for
exactly one i, namely for i = dim(A), and Extdim(A)

A (κA, A) ∼= κA (see Lemmas
47.16.1, 47.20.2, and 47.21.2). Thus we see that ExtiB(B/mAB,B) is zero except
for one i, namely i = dim(A) and Extdim(A)

B (B/mAB,B) ∼= B/mAB. Thus B/mAB
is Gorenstein by Lemma 47.16.1. □

Lemma 47.21.9.0EBT Let (A,m, κ) be a Noetherian local Gorenstein ring of dimension d.
Let E be the injective hull of κ. Then TorAi (E, κ) is zero for i ̸= d and TorAd (E, κ) =
κ.

Proof. Since A is Gorenstein ω•
A = A[d] is a normalized dualizing complex for A.

Also E is the only nonzero cohomology module of RΓm(ω•
A) sitting in degree 0, see

Lemma 47.18.1. By Lemma 47.9.5 we have
E ⊗L

A κ = RΓm(ω•
A)⊗L

A κ = RΓm(ω•
A ⊗L

A κ) = RΓm(κ[d]) = κ[d]
and the lemma follows. □

47.22. The ubiquity of dualizing complexes

0DWB Many Noetherian rings have dualizing complexes.

Lemma 47.22.1.0AWD Let A → B be a local homomorphism of Noetherian local rings.
Let ω•

A be a normalized dualizing complex. If A→ B is flat and mAB = mB , then
ω•
A ⊗A B is a normalized dualizing complex for B.

Proof. It is clear that ω•
A⊗AB is in Db

Coh(B). Let κA and κB be the residue fields
of A and B. By More on Algebra, Lemma 15.99.2 we see that

RHomB(κB , ω•
A ⊗A B) = RHomA(κA, ω•

A)⊗A B = κA[0]⊗A B = κB [0]
Thus ω•

A ⊗A B has finite injective dimension by More on Algebra, Lemma 15.69.7.
Finally, we can use the same arguments to see that

RHomB(ω•
A ⊗A B,ω•

A ⊗A B) = RHomA(ω•
A, ω

•
A)⊗A B = A⊗A B = B

as desired. □

Lemma 47.22.2.0DWC Let A → B be a flat map of Noetherian rings. Let I ⊂ A be an
ideal such that A/I = B/IB and such that IB is contained in the Jacobson radical
of B. Let ω•

A be a dualizing complex. Then ω•
A⊗AB is a dualizing complex for B.

Proof. It is clear that ω•
A⊗AB is in Db

Coh(B). By More on Algebra, Lemma 15.99.2
we see that

RHomB(K ⊗A B,ω•
A ⊗A B) = RHomA(K,ω•

A)⊗A B
for any K ∈ Db

Coh(A). For any ideal IB ⊂ J ⊂ B there is a unique ideal I ⊂ J ′ ⊂ A
such that A/J ′⊗AB = B/J . Thus ω•

A⊗AB has finite injective dimension by More
on Algebra, Lemma 15.69.6. Finally, we also have

RHomB(ω•
A ⊗A B,ω•

A ⊗A B) = RHomA(ω•
A, ω

•
A)⊗A B = A⊗A B = B

as desired. □

Lemma 47.22.3.0DWD Let A be a Noetherian ring and let I ⊂ A be an ideal. Let ω•
A be

a dualizing complex.

https://stacks.math.columbia.edu/tag/0EBT
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(1) ω•
A⊗AAh is a dualizing complex on the henselization (Ah, Ih) of the pair

(A, I),
(2) ω•

A ⊗A A∧ is a dualizing complex on the I-adic completion A∧, and
(3) if A is local, then ω•

A ⊗A Ah, resp. ω•
A ⊗A Ash is a dualzing complex on

the henselization, resp. strict henselization of A.
Proof. Immediate from Lemmas 47.22.1 and 47.22.2. See More on Algebra, Sections
15.11, 15.43, and 15.45 and Algebra, Sections 10.96 and 10.97 for information on
completions and henselizations. □

Lemma 47.22.4.0BFR The following types of rings have a dualizing complex:
(1) fields,
(2) Noetherian complete local rings,
(3) Z,
(4) Dedekind domains,
(5) any ring which is obtained from one of the rings above by taking an

algebra essentially of finite type, or by taking an ideal-adic completion, or
by taking a henselization, or by taking a strict henselization.

Proof. Part (5) follows from Proposition 47.15.11 and Lemma 47.22.3. By Lemma
47.21.3 a regular local ring has a dualizing complex. A complete Noetherian local
ring is the quotient of a regular local ring by the Cohen structure theorem (Algebra,
Theorem 10.160.8). Let A be a Dedekind domain. Then every ideal I is a finite
projective A-module (follows from Algebra, Lemma 10.78.2 and the fact that the
local rings of A are discrete valuation ring and hence PIDs). Thus every A-module
has finite injective dimension at most 1 by More on Algebra, Lemma 15.69.2. It
follows easily that A[0] is a dualizing complex. □

47.23. Formal fibres

0BJM This section is a continuation of More on Algebra, Section 15.51. There we saw
there is a (fairly) good theory of Noetherian rings A whose local rings have Cohen-
Macaulay formal fibres. Namely, we proved (1) it suffices to check the formal fibres
of localizations at maximal ideals are Cohen-Macaulay, (2) the property is inherited
by rings of finite type over A, (3) the fibres of A→ A∧ are Cohen-Macaulay for any
completion A∧ of A, and (4) the property is inherited by henselizations of A. See
More on Algebra, Lemma 15.51.4, Proposition 15.51.5, Lemma 15.51.6, and Lemma
15.51.7. Similarly, for Noetherian rings whose local rings have formal fibres which
are geometrically reduced, geometrically normal, (Sn), and geometrically (Rn). In
this section we will see that the same is true for Noetherian rings whose local rings
have formal fibres which are Gorenstein or local complete intersections. This is
relevant to this chapter because a Noetherian ring which has a dualizing complex
is an example.
Lemma 47.23.1.0BJN Properties (A), (B), (C), (D), and (E) of More on Algebra, Section
15.51 hold for P (k → R) =“R is a Gorenstein ring”.
Proof. Since we already know the result holds for Cohen-Macaulay instead of
Gorenstein, we may in each step assume the ring we have is Cohen-Macaulay.
This is not particularly helpful for the proof, but psychologically may be useful.
Part (A). Let K/k be a finitely generated field extension. Let R be a Gorenstein
k-algebra. We can find a global complete intersection A = k[x1, . . . , xn]/(f1, . . . , fc)

https://stacks.math.columbia.edu/tag/0BFR
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over k such that K is isomorphic to the fraction field of A, see Algebra, Lemma
10.158.11. Then R → R ⊗k A is a relative global complete intersection. Hence
R⊗k A is Gorenstein by Lemma 47.21.7. Thus R⊗k K is too as a localization.
Proof of (B). This is clear because a ring is Gorenstein if and only if all of its local
rings are Gorenstein.
Part (C). Let A→ B → C be flat maps of Noetherian rings. Assume the fibres of
A→ B are Gorenstein and B → C is regular. We have to show the fibres of A→ C
are Gorenstein. Clearly, we may assume A = k is a field. Then we may assume
that B → C is a regular local homomorphism of Noetherian local rings. Then B
is Gorenstein and C/mBC is regular, in particular Gorenstein (Lemma 47.21.3).
Then C is Gorenstein by Lemma 47.21.8.
Part (D). This follows from Lemma 47.21.8. Part (E) is immediate as the condition
does not refer to the ground field. □

Lemma 47.23.2.0AWY Let A be a Noetherian local ring. If A has a dualizing complex,
then the formal fibres of A are Gorenstein.
Proof. Let p be a prime of A. The formal fibre of A at p is isomorphic to the formal
fibre of A/p at (0). The quotient A/p has a dualizing complex (Lemma 47.15.9).
Thus it suffices to check the statement when A is a local domain and p = (0).
Let ω•

A be a dualizing complex for A. Then ω•
A ⊗A A∧ is a dualizing complex for

the completion A∧ (Lemma 47.22.1). Then ω•
A ⊗A K is a dualizing complex for

the fraction field K of A (Lemma 47.15.6). Hence ω•
A ⊗A K is isomorphic ot K[n]

for some n ∈ Z. Similarly, we conclude a dualizing complex for the formal fibre
A∧ ⊗A K is

ω•
A ⊗A A∧ ⊗A∧ (A∧ ⊗A K) = (ω•

A ⊗A K)⊗K (A∧ ⊗A K) ∼= (A∧ ⊗A K)[n]
as desired. □

Here is the verification promised in Divided Power Algebra, Remark 23.9.3.
Lemma 47.23.3.0BJP Properties (A), (B), (C), (D), and (E) of More on Algebra, Section
15.51 hold for P (k → R) =“R is a local complete intersection”. See Divided Power
Algebra, Definition 23.8.5.
Proof. Part (A). Let K/k be a finitely generated field extension. Let R be a k-
algebra which is a local complete intersection. We can find a global complete
intersection A = k[x1, . . . , xn]/(f1, . . . , fc) over k such that K is isomorphic to the
fraction field of A, see Algebra, Lemma 10.158.11. Then R→ R⊗k A is a relative
global complete intersection. It follows that R⊗kA is a local complete intersection
by Divided Power Algebra, Lemma 23.8.9.
Proof of (B). This is clear because a ring is a local complete intersection if and only
if all of its local rings are complete intersections.
Part (C). Let A→ B → C be flat maps of Noetherian rings. Assume the fibres of
A→ B are local complete intersections and B → C is regular. We have to show the
fibres of A → C are local complete intersections. Clearly, we may assume A = k
is a field. Then we may assume that B → C is a regular local homomorphism of
Noetherian local rings. Then B is a complete intersection and C/mBC is regular, in
particular a complete intersection (by definition). Then C is a complete intersection
by Divided Power Algebra, Lemma 23.8.9.

https://stacks.math.columbia.edu/tag/0AWY
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Part (D). This follows by the same arguments as in (C) from the other implication
in Divided Power Algebra, Lemma 23.8.9. Part (E) is immediate as the condition
does not refer to the ground field. □

47.24. Upper shriek algebraically

0BZI For a finite type homomorphism R → A of Noetherian rings we will construct a
functor φ! : D(R) → D(A) well defined up to nonunique isomorphism which as
we will see in Duality for Schemes, Remark 48.17.5 agrees up to isomorphism with
the upper shriek functors one encounters in the duality theory for schemes. To
motivate the construction we mention two additional properties:

(1) φ! sends a dualizing complex for R (if it exists) to a dualizing complex for
A, and

(2) ω•
A/R = φ!(R) is a kind of relative dualizing complex: it lies in Db

Coh(A)
and restricts to a dualizing complex on the fibres provided R→ A is flat.

These statemens are Lemmas 47.24.3 and 47.25.2.

Let φ : R→ A be a finite type homomorphism of Noetherian rings. We will define
a functor φ! : D(R)→ D(A) in the following way

(1) If φ : R→ A is surjective we set φ!(K) = RHom(A,K). Here we use the
functor RHom(A,−) : D(R)→ D(A) of Section 47.13, and

(2) in general we choose a surjection ψ : P → A with P = R[x1, . . . , xn] and
we set φ!(K) = ψ!(K⊗L

RP )[n]. Here we use the functor −⊗L
RP : D(R)→

D(P ) of More on Algebra, Section 15.60.
Note the shift [n] by the number of variables in the polynomial ring. This construc-
tion is not canonical and the functor φ! will only be well defined up to a (nonunique)
isomorphism of functors1.

Lemma 47.24.1.0BZJ Let φ : R → A be a finite type homomorphism of Noetherian
rings. The functor φ! is well defined up to isomorphism.

Proof. Suppose that ψ1 : P1 = R[x1, . . . , xn]→ A and ψ2 : P2 = R[y1, . . . , ym]→ A
are two surjections from polynomial rings onto A. Then we get a commutative
diagram

R[x1, . . . , xn, y1, . . . , ym]

xi 7→gi

��

yj 7→fj

// R[x1, . . . , xn]

��
R[y1, . . . , ym] // A

where fj and gi are chosen such that ψ1(fj) = ψ2(yj) and ψ2(gi) = ψ1(xi). By
symmetry it suffices to prove the functors defined using P → A and P [y1, . . . , ym]→
A are isomorphic. By induction we may assume m = 1. This reduces us to the case
discussed in the next paragraph.

Here ψ : P → A is given and χ : P [y]→ A induces ψ on P . Write Q = P [y]. Choose
g ∈ P with ψ(g) = χ(y). Denote π : Q → P the P -algebra map with π(y) = g.

1It is possible to make the construction canonical: use Ωn
P/R

[n] instead of P [n] in the con-
struction and use this in Lemma 47.24.1. The material in this section becomes a lot more involved
if one wants to do this.

https://stacks.math.columbia.edu/tag/0BZJ
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Then χ = ψ ◦π and hence χ! = ψ! ◦π! as both are adjoint to the restriction functor
D(A)→ D(Q) by the material in Section 47.13. Thus

χ! (K ⊗L
R Q

)
[n+ 1] = ψ! (π! (K ⊗L

R Q
)

[1]
)

[n]
Hence it suffices to show that π!(K ⊗L

R Q[1]) = K ⊗L
R P Thus it suffices to show

that the functor π!(−) : D(Q) → D(P ) is isomorphic to K 7→ K ⊗L
Q P [−1]. This

follows from Lemma 47.13.10. □

Lemma 47.24.2.0BZK Let φ : R → A be a finite type homomorphism of Noetherian
rings.

(1) φ! maps D+(R) into D+(A) and D+
Coh(R) into D+

Coh(A).
(2) if φ is perfect, then φ! maps D−(R) into D−(A), D−

Coh(R) into D−
Coh(A),

and Db
Coh(R) into Db

Coh(A).

Proof. Choose a factorization R → P → A as in the definition of φ!. The functor
−⊗L

R : D(R)→ D(P ) preserves the subcategories D+, D+
Coh, D

−, D−
Coh, D

b
Coh. The

functor RHom(A,−) : D(P ) → D(A) preserves D+ and D+
Coh by Lemma 47.13.4.

If R→ A is perfect, then A is perfect as a P -module, see More on Algebra, Lemma
15.82.2. Recall that the restriction of RHom(A,K) to D(P ) is RHomP (A,K). By
More on Algebra, Lemma 15.74.15 we have RHomP (A,K) = E ⊗L

P K for some
perfect E ∈ D(P ). Since we can represent E by a finite complex of finite projective
P -modules it is clear that RHomP (A,K) is in D−(P ), D−

Coh(P ), Db
Coh(P ) as soon

as K is. Since the restriction functor D(A) → D(P ) reflects these subcategories,
the proof is complete. □

Lemma 47.24.3.0BZL Let φ be a finite type homomorphism of Noetherian rings. If ω•
R

is a dualizing complex for R, then φ!(ω•
R) is a dualizing complex for A.

Proof. Follows from Lemmas 47.15.10 and 47.15.9, □

Lemma 47.24.4.0BZN Let R → R′ be a flat homomorphism of Noetherian rings. Let
φ : R → A be a finite type ring map. Let φ′ : R′ → A′ = A ⊗R R′ be the map
induced by φ. Then we have a functorial maps

φ!(K)⊗L
A A

′ −→ (φ′)!(K ⊗L
R R

′)
for K in D(R) which are isomorphisms for K ∈ D+(R).

Proof. Choose a factorization R → P → A where P is a polynomial ring over R.
This gives a corresponding factorization R′ → P ′ → A′ by base change. Since we
have (K ⊗L

R P )⊗L
P P

′ = (K ⊗L
R R

′)⊗L
R′ P ′ by More on Algebra, Lemma 15.60.5 it

suffices to construct maps
RHom(A,K ⊗L

R P [n])⊗L
A A

′ −→ RHom(A′, (K ⊗L
R P [n])⊗L

P P
′)

functorial in K. For this we use the map (47.14.0.1) constructed in Section 47.14
for P,A, P ′, A′. The map is an isomorphism for K ∈ D+(R) by Lemma 47.14.2. □

Lemma 47.24.5.0BZR Let R → R′ be a homomorphism of Noetherian rings. Let φ :
R → A be a perfect ring map (More on Algebra, Definition 15.82.1) such that R′

and A are tor independent over R. Let φ′ : R′ → A′ = A⊗RR′ be the map induced
by φ. Then we have a functorial isomorphism

φ!(K)⊗L
A A

′ = (φ′)!(K ⊗L
R R

′)
for K in D(R).

https://stacks.math.columbia.edu/tag/0BZK
https://stacks.math.columbia.edu/tag/0BZL
https://stacks.math.columbia.edu/tag/0BZN
https://stacks.math.columbia.edu/tag/0BZR
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Proof. We may choose a factorization R → P → A where P is a polynomial ring
over R such that A is a perfect P -module, see More on Algebra, Lemma 15.82.2.
This gives a corresponding factorization R′ → P ′ → A′ by base change. Since we
have (K ⊗L

R P )⊗L
P P

′ = (K ⊗L
R R

′)⊗L
R′ P ′ by More on Algebra, Lemma 15.60.5 it

suffices to construct maps
RHom(A,K ⊗L

R P [n])⊗L
A A

′ −→ RHom(A′, (K ⊗L
R P [n])⊗L

P P
′)

functorial in K. We have
A⊗L

P P
′ = A⊗L

R R
′ = A′

The first equality by More on Algebra, Lemma 15.61.2 applied to R,R′, P, P ′. The
second equality because A and R′ are tor independent over R. Hence A and P ′ are
tor independent over P and we can use the map (47.14.0.1) constructed in Section
47.14 for P,A, P ′, A′ get the desired arrow. By Lemma 47.14.3 to finish the proof
it suffices to prove that A is a perfect P -module which we saw above. □

Lemma 47.24.6.0BZS Let R → R′ be a homomorphism of Noetherian rings. Let φ :
R → A be flat of finite type. Let φ′ : R′ → A′ = A ⊗R R′ be the map induced by
φ. Then we have a functorial isomorphism

φ!(K)⊗L
A A

′ = (φ′)!(K ⊗L
R R

′)
for K in D(R).

Proof. Special case of Lemma 47.24.5 by More on Algebra, Lemma 15.82.4. □

Lemma 47.24.7.0BZT Let A a−→ B
b−→ C be finite type homomorphisms of Noetherian

rings. Then there is a transformation of functors b! ◦ a! → (b ◦ a)! which is an
isomorphism on D+(A).

Proof. Choose a polynomial ring P = A[x1, . . . , xn] over A and a surjection P → B.
Choose elements c1, . . . , cm ∈ C generating C over B. Set Q = P [y1, . . . , ym] and
denote Q′ = Q⊗P B = B[y1, . . . , ym]. Let χ : Q′ → C be the surjection sending yj
to cj . Picture

Q
ψ′
// Q′

χ
// C

A // P
ψ //

OO

B

OO

By Lemma 47.14.2 for M ∈ D(P ) we have an arrow ψ!(M)⊗L
BQ

′ → (ψ′)!(M⊗L
P Q)

which is an isomorphism whenever M is bounded below. Also we have χ! ◦ (ψ′)! =
(χ ◦ ψ′)! as both functors are adjoint to the restriction functor D(C) → D(Q) by
Section 47.13. Then we see

b!(a!(K)) = χ!(ψ!(K ⊗L
A P )[n]⊗L

B Q)[m]
→ χ!((ψ′)!(K ⊗L

A P ⊗L
P Q))[n+m]

= (χ ◦ ψ′)!(K ⊗L
A Q)[n+m]

= (b ◦ a)!(K)
where we have used in addition to the above More on Algebra, Lemma 15.60.5. □

Lemma 47.24.8.0C0G Let φ : R → A be a finite map of Noetherian rings. Then φ! is
isomorphic to the functor RHom(A,−) : D(R)→ D(A) from Section 47.13.

https://stacks.math.columbia.edu/tag/0BZS
https://stacks.math.columbia.edu/tag/0BZT
https://stacks.math.columbia.edu/tag/0C0G
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Proof. Suppose that A is generated by n > 1 elements over R. Then can factor
R→ A as a composition of two finite ring maps where in both steps the number of
generators is < n. Since we have Lemma 47.24.7 and Lemma 47.13.2 we conclude
that it suffices to prove the lemma when A is generated by one element over R.
Since A is finite over R, it follows that A is a quotient of B = R[x]/(f) where f
is a monic polynomial in x (Algebra, Lemma 10.36.3). Again using the lemmas
on composition and the fact that we have agreement for surjections by definition,
we conclude that it suffices to prove the lemma for R → B = R[x]/(f). In this
case, the functor φ! is isomorphic to K 7→ K⊗L

RB; you prove this by using Lemma
47.13.10 for the map R[x] → B (note that the shift in the definition of φ! and in
the lemma add up to zero). For the functor RHom(B,−) : D(R)→ D(B) we can
use Lemma 47.13.9 to see that it suffices to show HomR(B,R) ∼= B as B-modules.
Suppose that f has degree d. Then an R-basis for B is given by 1, x, . . . , xd−1. Let
δi : B → R, i = 0, . . . , d − 1 be the R-linear map which picks off the coefficient of
xi with respect to the given basis. Then δ0, . . . , δd−1 is a basis for HomR(B,R).
Finally, for 0 ≤ i ≤ d− 1 a computation shows that

xiδd−1 = δd−1−i + b1δd−i + . . .+ biδd−1

for some c1, . . . , cd ∈ R2. Hence HomR(B,R) is a principal B-module with genera-
tor δd−1. By looking at ranks we conclude that it is a rank 1 free B-module. □

Lemma 47.24.9.0C0H Let R be a Noetherian ring and let f ∈ R. If φ denotes the map
R → Rf , then φ! is isomorphic to − ⊗L

R Rf . More generally, if φ : R → R′ is a
map such that Spec(R′)→ Spec(R) is an open immersion, then φ! is isomorphic to
−⊗L

R R
′.

Proof. Choose the presentation R→ R[x]→ R[x]/(fx− 1) = Rf and observe that
fx − 1 is a nonzerodivisor in R[x]. Thus we can apply using Lemma 47.13.10 to
compute the functor φ!. Details omitted; note that the shift in the definition of φ!

and in the lemma add up to zero.
In the general case note that R′⊗RR′ = R′. Hence the result follows from the base
change results above. Either Lemma 47.24.4 or Lemma 47.24.5 will do. □

Lemma 47.24.10.0BZU Let φ : R→ A be a perfect homomorphism of Noetherian rings
(for example φ is flat of finite type). Then φ!(K) = K ⊗L

R φ
!(R) for K ∈ D(R).

Proof. (The parenthetical statement follows from More on Algebra, Lemma 15.82.4.)
We can choose a factorization R→ P → A where P is a polynomial ring in n vari-
ables over R and then A is a perfect P -module, see More on Algebra, Lemma
15.82.2. Recall that φ!(K) = RHom(A,K ⊗L

R P [n]). Thus the result follows from
Lemma 47.13.9 and More on Algebra, Lemma 15.60.5. □

Lemma 47.24.11.0E9L Let φ : A → B be a finite type homomorphism of Noetherian
rings. Let ω•

A be a dualizing complex for A. Set ω•
B = φ!(ω•

A). Denote DA(K) =
RHomA(K,ω•

A) for K ∈ DCoh(A) and DB(L) = RHomB(L, ω•
B) for L ∈ DCoh(B).

Then there is a functorial isomorphism
φ!(K) = DB(DA(K)⊗L

A B)
for K ∈ DCoh(A).

2If f = xd + a1xd−1 + . . .+ ad, then c1 = −a1, c2 = a2
1 − a2, c3 = −a3

1 + 2a1a2 − a3, etc.

https://stacks.math.columbia.edu/tag/0C0H
https://stacks.math.columbia.edu/tag/0BZU
https://stacks.math.columbia.edu/tag/0E9L
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Proof. Observe that ω•
B is a dualizing complex for B by Lemma 47.24.3. Let

A → B → C be finite type homomorphisms of Noetherian rings. If the lemma
holds for A→ B and B → C, then the lemma holds for A→ C. This follows from
Lemma 47.24.7 and the fact that DB ◦DB

∼= id by Lemma 47.15.3. Thus it suffices
to prove the lemma in case A → B is a surjection and in the case where B is a
polynomial ring over A.

Assume B = A[x1, . . . , xn]. Since DA ◦DA
∼= id, it suffices to prove DB(K⊗AB) ∼=

DA(K) ⊗A B[n] for K in DCoh(A). Choose a bounded complex I• of injectives
representing ω•

A. Choose a quasi-isomorphism I•⊗AB → J• where J• is a bounded
complex of B-modules. Given a complex K• of A-modules, consider the obvious
map of complexes

Hom•(K•, I•)⊗A B[n] −→ Hom•(K• ⊗A B, J•[n])

The left hand side represents DA(K) ⊗A B[n] and the right hand side represents
DB(K ⊗A B). Thus it suffices to prove this map is a quasi-isomorphism if the
cohomology modules of K• are finite A-modules. Observe that the cohomology of
the complex in degree r (on either side) only depends on finitely many of the Ki.
Thus we may replace K• by a truncation, i.e., we may assume K• represents an
object of D−

Coh(A). Then K• is quasi-isomorphic to a bounded above complex of
finite free A-modules. Therefore we may assume K• is a bounded above complex
of finite free A-modules. In this case it is easy to that the displayed map is an
isomorphism of complexes which finishes the proof in this case.

Assume that A→ B is surjective. Denote i∗ : D(B)→ D(A) the restriction functor
and recall that φ!(−) = RHom(A,−) is a right adjoint to i∗ (Lemma 47.13.1). For
F ∈ D(B) we have

HomB(F,DB(DA(K)⊗L
A B)) = HomB((DA(K)⊗L

A B)⊗L
B F, ω

•
B)

= HomA(DA(K)⊗L
A i∗F, ω

•
A)

= HomA(i∗F,DA(DA(K)))
= HomA(i∗F,K)
= HomB(F,φ!(K))

The first equality follows from More on Algebra, Lemma 15.73.1 and the definition
of DB . The second equality by the adjointness mentioned above and the equality
i∗((DA(K)⊗L

AB)⊗L
BF ) = DA(K)⊗L

A i∗F (More on Algebra, Lemma 15.60.1). The
third equality follows from More on Algebra, Lemma 15.73.1. The fourth because
DA ◦ DA = id. The final equality by adjointness again. Thus the result holds by
the Yoneda lemma. □

47.25. Relative dualizing complexes in the Noetherian case

0E9M Let φ : R→ A be a finite type homomorphism of Noetherian rings. Then we define
the relative dualizing complex of A over R as the object

ω•
A/R = φ!(R)

of D(A). Here φ! is as in Section 47.24. From the material in that section we see
that ω•

A/R is well defined up to (non-unique) isomorphism.
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Lemma 47.25.1.0BZV Let R→ R′ be a homomorphism of Noetherian rings. Let R→ A
be of finite type. Set A′ = A⊗R R′. If

(1) R→ R′ is flat, or
(2) R→ A is flat, or
(3) R→ A is perfect and R′ and A are tor independent over R,

then there is an isomorphism ω•
A/R ⊗

L
A A

′ → ω•
A′/R′ in D(A′).

Proof. Follows from Lemmas 47.24.4, 47.24.6, and 47.24.5 and the definitions. □

Lemma 47.25.2.0BZW Let φ : R→ A be a flat finite type map of Noetherian rings. Then
(1) ω•

A/R is in Db
Coh(A) and R-perfect (More on Algebra, Definition 15.83.1),

(2) A→ RHomA(ω•
A/R, ω

•
A/R) is an isomorphism, and

(3) for every map R → k to a field the base change ω•
A/R ⊗

L
A (A ⊗R k) is a

dualizing complex for A⊗R k.
Proof. Choose R→ P → A as in the definition of φ!. Recall that R→ A is a perfect
ring map (More on Algebra, Lemma 15.82.4) and hence A is perfect as a P -modue
(More on Algebra, Lemma 15.82.2). This shows that ω•

A/R is in Db
Coh(A) by Lemma

47.24.2. To show ω•
A/R is R-perfect it suffices to show it has finite tor dimension

as a complex of R-modules. This is true because ω•
A/R = φ!(R) = RHom(A,P )[n]

maps to RHomP (A,P )[n] in D(P ), which is perfect in D(P ) (More on Algebra,
Lemma 15.74.15), hence has finite tor dimension in D(R) as R → P is flat. This
proves (1).
Proof of (2). The object RHomA(ω•

A/R, ω
•
A/R) of D(A) maps in D(P ) to

RHomP (ω•
A/R, RHom(A,P )[n]) = RHomP (RHomP (A,P )[n], P )[n]

= RHomP (RHomP (A,P ), P )
This is equal to A by the already used More on Algebra, Lemma 15.74.15.
Proof of (3). By Lemma 47.25.1 there is an isomorphism

ω•
A/R ⊗

L
A (A⊗R k) ∼= ω•

A⊗Rk/k

and the right hand side is a dualizing complex by Lemma 47.24.3. □

Lemma 47.25.3.0E0P Let K/k be an extension of fields. Let A be a finite type k-algebra.
Let AK = A⊗kK. If ω•

A is a dualizing complex for A, then ω•
A⊗AAK is a dualizing

complex for AK .
Proof. By the uniqueness of dualizing complexes, it doesn’t matter which dualizing
complex we pick for A; we omit the detailed proof. Denote φ : k → A the algebra
structure. We may take ω•

A = φ!(k[0]) by Lemma 47.24.3. We conclude by Lemma
47.25.2. □

Lemma 47.25.4.0E4B Let φ : R → A be a local complete intersection homomorphism
of Noetherian rings. Then ω•

A/R is an invertible object of D(A) and φ!(K) =
K ⊗L

R ω
•
A/R for all K ∈ D(R).

Proof. Recall that a local complete intersection homomorphism is a perfect ring
map by More on Algebra, Lemma 15.82.6. Hence the final statement holds by
Lemma 47.24.10. By More on Algebra, Definition 15.33.2 we can write A =
R[x1, . . . , xn]/I where I is a Koszul-regular ideal. The construction of φ! in Section

https://stacks.math.columbia.edu/tag/0BZV
https://stacks.math.columbia.edu/tag/0BZW
https://stacks.math.columbia.edu/tag/0E0P
https://stacks.math.columbia.edu/tag/0E4B


47.25. RELATIVE DUALIZING COMPLEXES IN THE NOETHERIAN CASE 4021

47.24 shows that it suffices to show the lemma in case A = R/I where I ⊂ R is
a Koszul-regular ideal. Checking ω•

A/R is invertible in D(A) is local on Spec(A)
by More on Algebra, Lemma 15.126.4. Moreover, formation of ω•

A/R commutes
with localization on R by Lemma 47.24.4. Combining More on Algebra, Definition
15.32.1 and Lemma 15.30.7 and Algebra, Lemma 10.68.6 we can find g1, . . . , gr ∈ R
generating the unit ideal in A such that Igj ⊂ Rgj is generated by a regular se-
quence. Thus we may assume A = R/(f1, . . . , fc) where f1, . . . , fc is a regular
sequence in R. Then we consider the ring maps

R→ R/(f1)→ R/(f1, f2)→ . . .→ R/(f1, . . . , fc) = A

and we use Lemma 47.24.7 (and the final statement already proven) to see that
it suffices to prove the lemma for each step. Finally, in case A = R/(f) for some
nonzerodivisor f we see that the lemma is true since φ!(R) = RHom(A,R) is
invertible by Lemma 47.13.10. □

Lemma 47.25.5.0E4C Let φ : R→ A be a flat finite type homomorphism of Noetherian
rings. The following are equivalent

(1) the fibres A⊗R κ(p) are Gorenstein for all primes p ⊂ R, and
(2) ω•

A/R is an invertible object ofD(A), see More on Algebra, Lemma 15.126.4.

Proof. If (2) holds, then the fibre rings A ⊗R κ(p) have invertible dualizing com-
plexes, and hence are Gorenstein. See Lemmas 47.25.2 and 47.21.4.
For the converse, assume (1). Observe that ω•

A/R is in Db
Coh(A) by Lemma 47.24.2

(since flat finite type homomorphisms of Noetherian rings are perfect, see More on
Algebra, Lemma 15.82.4). Take a prime q ⊂ A lying over p ⊂ R. Then

ω•
A/R ⊗

L
A κ(q) = ω•

A/R ⊗
L
A (A⊗R κ(p))⊗L

(A⊗Rκ(p)) κ(q)
Applying Lemmas 47.25.2 and 47.21.4 and assumption (1) we find that this complex
has 1 nonzero cohomology group which is a 1-dimensional κ(q)-vector space. By
More on Algebra, Lemma 15.77.1 we conclude that (ω•

A/R)f is an invertible object
of D(Af ) for some f ∈ A, f ̸∈ q. This proves (2) holds. □

The following lemma is useful to see how dimension functions change when passing
to a finite type algebra over a Noetherian ring.
Lemma 47.25.6.0E9N Let φ : R → A be a finite type homomorphism of Noetherian
rings. Assume R local and let m ⊂ A be a maximal ideal lying over the maximal
ideal of R. If ω•

R is a normalized dualizing complex for R, then φ!(ω•
R)m is a

normalized dualizing complex for Am.
Proof. We already know that φ!(ω•

R) is a dualizing complex for A, see Lemma
47.24.3. Choose a factorization R → P → A with P = R[x1, . . . , xn] as in the
construction of φ!. If we can prove the lemma for R→ P and the maximal ideal m′

of P corresponding to m, then we obtain the result for R→ A by applying Lemma
47.16.2 to Pm′ → Am or by applying Lemma 47.17.2 to P → A. In the case A =
R[x1, . . . , xn] we see that dim(Am) = dim(R) + n for example by Algebra, Lemma
10.112.7 (combined with Algebra, Lemma 10.114.1 to compute the dimension of
the fibre). The fact that ω•

R is normalized means that i = −dim(R) is the smallest
index such that Hi(ω•

R) is nonzero (follows from Lemmas 47.16.5 and 47.16.11).
Then φ!(ω•

R)m = ω•
R ⊗R Am[n] has its first nonzero cohomology module in degree

−dim(R)− n and therefore is the normalized dualizing complex for Am. □

https://stacks.math.columbia.edu/tag/0E4C
https://stacks.math.columbia.edu/tag/0E9N
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Lemma 47.25.7.0E9P Let R → A be a finite type homomorphism of Noetherian rings.
Let q ⊂ A be a prime ideal lying over p ⊂ R. Then

Hi(ω•
A/R)q ̸= 0⇒ −d ≤ i

where d is the dimension of the fibre of Spec(A)→ Spec(R) over p at the point q.

Proof. Choose a factorization R → P → A with P = R[x1, . . . , xn] as in Section
47.24 so that ω•

A/R = RHom(A,P )[n]. We have to show that RHom(A,P )q has
vanishing cohomology in degrees < n−d. By Lemma 47.13.3 this means we have to
show that ExtiP (P/I, P )r = 0 for i < n−d where r ⊂ P is the prime corresponding
to q and I is the kernel of P → A. We may rewrite this as ExtiPr

(Pr/IPr, Pr) by
More on Algebra, Lemma 15.65.4. Thus we have to show

depthIPr
(Pr) ≥ n− d

by Lemma 47.11.1. By Lemma 47.11.5 we have
depthIPr

(Pr) ≥ dim((P ⊗R κ(p))r)− dim((P/I ⊗R κ(p))r)
The two expressions on the right hand side agree by Algebra, Lemma 10.116.4. □

Lemma 47.25.8.0E9Q Let R → A be a flat finite type homomorphism of Noetherian
rings. Let q ⊂ A be a prime ideal lying over p ⊂ R. Then

Hi(ω•
A/R)q ̸= 0⇒ −d ≤ i ≤ 0

where d is the dimension of the fibre of Spec(A)→ Spec(R) over p at the point q. If
all fibres of Spec(A)→ Spec(R) have dimension ≤ d, then ω•

A/R has tor amplitude
in [−d, 0] as a complex of R-modules.

Proof. The lower bound has been shown in Lemma 47.25.7. Choose a factoriza-
tion R → P → A with P = R[x1, . . . , xn] as in Section 47.24 so that ω•

A/R =
RHom(A,P )[n]. The upper bound means that ExtiP (A,P ) is zero for i > n. This
follows from More on Algebra, Lemma 15.77.5 which shows that A is a perfect
P -module with tor amplitude in [−n, 0].
Proof of the final statement. Let R → R′ be a ring homomorphism of Noetherian
rings. Set A′ = A⊗R R′. Then

ω•
A′/R′ = ω•

A/R ⊗
L
A A

′ = ω•
A/R ⊗

L
R R

′

The first isomorphism by Lemma 47.25.1 and the second, which takes place in
D(R′), by More on Algebra, Lemma 15.61.2. By the first part of the proof (note
that the fibres of Spec(A′) → Spec(R′) have dimension ≤ d) we conclude that
ω•
A/R ⊗

L
R R

′ has cohomology only in degrees [−d, 0]. Taking R′ = R⊕M to be the
square zero thickening of R by a finite R-module M , we see that RHom(A,P )⊗L

RM
has cohomology only in the interval [−d, 0] for any finite R-module M . Since any R-
module is a filtered colimit of finite R-modules and since tensor products commute
with colimits we conclude. □

Lemma 47.25.9.0E9R Let R → A be a finite type homomorphism of Noetherian rings.
Let p ⊂ R be a prime ideal. Assume

(1) Rp is Cohen-Macaulay, and
(2) for any minimal prime q ⊂ A we have trdegκ(R∩q)κ(q) ≤ r.

https://stacks.math.columbia.edu/tag/0E9P
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Then
Hi(ω•

A/R)p ̸= 0⇒ −r ≤ i
and H−r(ω•

A/R)p is (S2) as an Ap-module.

Proof. We may replace R by Rp by Lemma 47.25.1. Thus we may assume R is a
Cohen-Macaulay local ring and we have to show the assertions of the lemma for
the A-modules Hi(ω•

A/R).

Let R∧ be the completion of R. The map R→ R∧ is flat and R∧ is Cohen-Macaulay
(More on Algebra, Lemma 15.43.3). Observe that the minimal primes of A⊗R R∧

lie over minimal primes of A by the flatness of A→ A⊗R R∧ (and going down for
flatness, see Algebra, Lemma 10.39.19). Thus condition (2) holds for the finite type
ring map R∧ → A ⊗R R∧ by Morphisms, Lemma 29.28.3. Appealing to Lemma
47.25.1 once again it suffices to prove the lemma for R∧ → A⊗R R∧. In this way,
using Lemma 47.22.4, we may assume R is a Noetherian local Cohen-Macaulay ring
which has a dualizing complex ω•

R.
Let m ⊂ A be a maximal ideal. It suffices to show that the assertions of the lemma
hold for Hi(ω•

A/R)m. If m does not lie over the maximal ideal of R, then we replace
R by a localization to reduce to this case (small detail omitted).
We may assume ω•

R is normalized. Setting d = dim(R) we see that ω•
R = ωR[d] for

some R-module ωR, see Lemma 47.20.2. Set ω•
A = φ!(ω•

R). By Lemma 47.24.11 we
have

ω•
A/R = RHomA(ωR[d]⊗L

R A,ω
•
A)

By the dimension formula we have dim(Am) ≤ d+r, see Morphisms, Lemma 29.52.2
and use that κ(m) is finite over the residue field of R by the Hilbert Nullstellensatz.
By Lemma 47.25.6 we see that (ω•

A)m is a normalized dualizing complex for Am.
Hence Hi((ω•

A)m) is nonzero only for −d − r ≤ i ≤ 0, see Lemma 47.16.5. Since
ωR[d]⊗L

RA lives in degrees ≤ −d we conclude the vanishing holds. Finally, we also
see that

H−r(ω•
A/R)m = HomA(ωR ⊗R A,H−d−r(ω•

A))m
Since H−d−r(ω•

A)m is (S2) by Lemma 47.17.5 we find that the final statement is
true by More on Algebra, Lemma 15.23.11. □

47.26. More on dualizing complexes

0E49 Some lemmas which don’t fit anywhere else very well.

Lemma 47.26.1.0E4A Let A → B be a faithfully flat map of Noetherian rings. If
K ∈ D(A) and K⊗L

AB is a dualizing complex for B, then K is a dualizing complex
for A.

Proof. Since A→ B is flat we have Hi(K)⊗A B = Hi(K ⊗L
A B). Since K ⊗L

A B is
in Db

Coh(B) we first find that K is in Db(A) and then we see that Hi(K) is a finite
A-module by Algebra, Lemma 10.83.2. Let M be a finite A-module. Then

RHomA(M,K)⊗A B = RHomB(M ⊗A B,K ⊗L
A B)

by More on Algebra, Lemma 15.99.2. Since K ⊗L
A B has finite injective dimension,

say injective-amplitude in [a, b], we see that the right hand side has vanishing coho-
mology in degrees > b. Since A→ B is faithfully flat, we find that RHomA(M,K)
has vanishing cohomology in degrees > b. Thus K has finite injective dimension

https://stacks.math.columbia.edu/tag/0E4A
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by More on Algebra, Lemma 15.69.2. To finish the proof we have to show that
the map A → RHomA(K,K) is an isomorphism. For this we again use More on
Algebra, Lemma 15.99.2 and the fact that B → RHomB(K ⊗L

A B,K ⊗L
A B) is an

isomorphism. □

Lemma 47.26.2.0E4D Let φ : A→ B be a homomorphism of Noetherian rings. Assume
(1) A→ B is syntomic and induces a surjective map on spectra, or
(2) A→ B is a faithfully flat local complete intersection, or
(3) A→ B is faithfully flat of finite type with Gorenstein fibres.

Then K ∈ D(A) is a dualizing complex for A if and only if K ⊗L
A B is a dualizing

complex for B.

Proof. Observe that A→ B satisfies (1) if and only if A→ B satisfies (2) by More
on Algebra, Lemma 15.33.5. Observe that in both (2) and (3) the relative dualzing
complex φ!(A) = ω•

B/A is an invertible object of D(B), see Lemmas 47.25.4 and
47.25.5. Moreover we have φ!(K) = K ⊗L

A ω
•
B/A in both cases, see Lemma 47.24.10

for case (3). Thus φ!(K) is the same as K ⊗L
A B up to tensoring with an invertible

object of D(B). Hence φ!(K) is a dualizing complex for B if and only if K ⊗L
A B

is (as being a dualizing complex is local and invariant under shifts). Thus we see
that if K is dualizing for A, then K ⊗L

AB is dualizing for B by Lemma 47.24.3. To
descend the property, see Lemma 47.26.1. □

Lemma 47.26.3.0E4E Let (A,m, κ)→ (B, n, l) be a flat local homorphism of Noetherian
rings such that n = mB. If E is the injective hull of κ, then E⊗AB is the injective
hull of l.

Proof. Write E =
⋃
En as in Lemma 47.7.3. It suffices to show that En⊗A/mnB/nn

is the injective hull of l over B/n. This reduces us to the case where A and B
are Artinian local. Observe that lengthA(A) = lengthB(B) and lengthA(E) =
lengthB(E⊗AB) by Algebra, Lemma 10.52.13. By Lemma 47.6.1 we have lengthA(E) =
lengthA(A) and lengthB(E′) = lengthB(B) where E′ is the injective hull of l over
B. We conclude lengthB(E′) = lengthB(E ⊗A B). Observe that

diml((E ⊗A B)[n]) = diml(E[m]⊗A B) = dimκ(E[m]) = 1
where we have used flatness of A → B and n = mB. Thus there is an injective
B-module map E ⊗A B → E′ by Lemma 47.7.2. By equality of lengths shown
above this is an isomorphism. □

Lemma 47.26.4.0E4F Let φ : A → B be a flat homorphism of Noetherian rings such
that for all primes q ⊂ B we have pBq = qBq where p = φ−1(q), for example if φ
is étale. If I is an injective A-module, then I ⊗A B is an injective B-module.

Proof. Étale maps satisfy the assumption by Algebra, Lemma 10.143.5. By Lemma
47.3.7 and Proposition 47.5.9 we may assume I is the injective hull of κ(p) for some
prime p ⊂ A. Then I is a module over Ap. It suffices to prove I⊗AB = I⊗Ap

Bp is
injective as a Bp-module, see Lemma 47.3.2. Thus we may assume (A,m, κ) is local
Noetherian and I = E is the injective hull of the residue field κ. Our assumption
implies that the Noetherian ring B/mB is a product of fields (details omitted). Thus
there are finitely many prime ideals m1, . . . ,mn in B lying over m and they are all
maximal ideals. Write E =

⋃
En as in Lemma 47.7.3. Then E⊗AB =

⋃
En⊗AB

and En ⊗A B is a finite B-module with support {m1, . . . ,mn} hence decomposes
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as a product over the localizations at mi. Thus E ⊗A B =
∏

(E ⊗A B)mi . Since
(E ⊗A B)mi = E ⊗A Bmi is the injective hull of the residue field of mi by Lemma
47.26.3 we conclude. □

47.27. Relative dualizing complexes

0E2B For a finite type ring map φ : R → A of Noetherian rings we have the relative
dualizing complex ω•

A/R = φ!(R) considered in Section 47.25. If R is not Noe-
therian, a similarly constructed complex will in general not have good properties.
In this section, we give a definition of a relative dualizing complex for a flat and
finitely presented ring maps R → A of non-Noetherian rings. The definition is
chosen to globalize to flat and finitely presented morphisms of schemes, see Duality
for Schemes, Section 48.28. We will show that relative dualizing complexes exist
(when the definition applies), are unique up to (noncanonical) isomorphism, and
that in the Noetherian case we recover the complex of Section 47.25.
The Noetherian reader may safely skip this section!
Definition 47.27.1.0E2C Let R→ A be a flat ring map of finite presentation. A relative
dualizing complex is an object K ∈ D(A) such that

(1) K is R-perfect (More on Algebra, Definition 15.83.1), and
(2) RHomA⊗RA(A,K ⊗L

A (A⊗R A)) is isomorphic to A.
To understand this definition you may have to read and understand some of the
following lemmas. Lemmas 47.27.3 and 47.27.2 show this definition does not clash
with the definition in Section 47.25.
Lemma 47.27.2.0E2D Let R → A be a flat ring map of finite presentation. Any two
relative dualizing complexes for R→ A are isomorphic.
Proof. Let K and L be two relative dualizing complexes for R → A. Denote
K1 = K ⊗L

A (A ⊗R A) and L2 = (A ⊗R A) ⊗L
A L the derived base changes via the

first and second coprojections A → A ⊗R A. By symmetry the assumption on L2
implies that RHomA⊗RA(A,L2) is isomorphic to A. By More on Algebra, Lemma
15.98.3 part (3) applied twice we have

A⊗L
A⊗RA L2 ∼= RHomA⊗RA(A,K1 ⊗L

A⊗RA L2) ∼= A⊗L
A⊗RA K1

Applying the restriction functor D(A ⊗R A) → D(A) for either coprojection we
obtain the desired result. □

Lemma 47.27.3.0E2E Let φ : R→ A be a flat finite type ring map of Noetherian rings.
Then the relative dualizing complex ω•

A/R = φ!(R) of Section 47.25 is a relative
dualizing complex in the sense of Definition 47.27.1.
Proof. From Lemma 47.25.2 we see that φ!(R) is R-perfect. Denote δ : A⊗RA→ A
the multiplication map and p1, p2 : A→ A⊗R A the coprojections. Then

φ!(R)⊗L
A (A⊗R A) = φ!(R)⊗L

A,p1
(A⊗R A) = p!

2(A)
by Lemma 47.24.4. Recall that RHomA⊗RA(A,φ!(R) ⊗L

A (A ⊗R A)) is the image
of δ!(φ!(R)⊗L

A (A⊗R A)) under the restriction map δ∗ : D(A)→ D(A⊗R A). Use
the definition of δ! from Section 47.24 and Lemma 47.13.3. Since δ!(p!

2(A)) ∼= A by
Lemma 47.24.7 we conclude. □

Lemma 47.27.4.0E2F Let R→ A be a flat ring map of finite presentation. Then
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(1) there exists a relative dualizing complex K in D(A), and
(2) for any ring map R→ R′ setting A′ = A⊗R R′ and K ′ = K ⊗L

A A
′, then

K ′ is a relative dualizing complex for R′ → A′.
Moreover, if

ξ : A −→ K ⊗L
A (A⊗R A)

is a generator for the cyclic module HomD(A⊗RA)(A,K ⊗L
A (A ⊗R A)) then in (2)

the derived base change of ξ by A ⊗R A → A′ ⊗R′ A′ is a generator for the cyclic
module HomD(A′⊗R′A′)(A′,K ′ ⊗L

A′ (A′ ⊗R′ A′))

Proof. We first reduce to the Noetherian case. By Algebra, Lemma 10.168.1 there
exists a finite type Z subalgebra R0 ⊂ R and a flat finite type ring map R0 → A0
such that A = A0 ⊗R0 R. By Lemma 47.27.3 there exists a relative dualizing
complex K0 ∈ D(A0). Thus if we show (2) for K0, then we find that K0⊗L

A0
A is a

dualizing complex for R→ A and that it also satisfies (2) by transitivity of derived
base change. The uniqueness of relative dualizing complexes (Lemma 47.27.2) then
shows that this holds for any relative dualizing complex.

Assume R Noetherian and let K be a relative dualizing complex for R → A.
Given a ring map R → R′ set A′ = A ⊗R R′ and K ′ = K ⊗L

A A
′. To finish the

proof we have to show that K ′ is a relative dualizing complex for R′ → A′. By
More on Algebra, Lemma 15.83.5 we see that K ′ is R′-perfect in all cases. By
Lemmas 47.25.1 and 47.27.3 if R′ is Noetherian, then K ′ is a relative dualizing
complex for R′ → A′ (in either sense). Transitivity of derived tensor product
shows that K ⊗L

A (A⊗R A)⊗L
A⊗RA (A′ ⊗R′ A′) = K ′ ⊗L

A′ (A′ ⊗R′ A′). Flatness of
R → A guarantees that A ⊗L

A⊗RA (A′ ⊗R′ A′) = A′; namely A ⊗R A and R′ are
tor independent over R so we can apply More on Algebra, Lemma 15.61.2. Finally,
A is pseudo-coherent as an A ⊗R A-module by More on Algebra, Lemma 15.82.8.
Thus we have checked all the assumptions of More on Algebra, Lemma 15.83.6. We
find there exists a bounded below complex E• of R-flat finitely presented A⊗R A-
modules such that E•⊗R R′ represents RHomA′⊗R′A′(A′,K ′⊗L

A′ (A′⊗R′ A′)) and
these identifications are compatible with derived base change. Let n ∈ Z, n ̸= 0.
Define Qn by the sequence

En−1 → En → Qn → 0

Since κ(p) is a Noetherian ring, we know that Hn(E• ⊗R κ(p)) = 0, see remarks
above. Chasing diagrams this means that

Qn ⊗R κ(p)→ En+1 ⊗R κ(p)

is injective. Hence for a prime q of A⊗R A lying over p we have Qnq is Rp-flat and
Qnp → En+1

q is Rp-universally injective, see Algebra, Lemma 10.99.1. Since this
holds for all primes, we conclude that Qn is R-flat and Qn → En+1 is R-universally
injective. In particular Hn(E• ⊗R R′) = 0 for any ring map R → R′. Let Z0 =
Ker(E0 → E1). Since there is an exact sequence 0 → Z0 → E0 → E1 → Q1 → 0
we see that Z0 is R-flat and that Z0 ⊗R R′ = Ker(E0 ⊗R R′ → E1 ⊗R R′) for all
R → R′. Then the short exact sequence 0 → Q−1 → Z0 → H0(E•) → 0 shows
that

H0(E• ⊗R R′) = H0(E•)⊗R R′ = A⊗R R′ = A′

as desired. This equality furthermore gives the final assertion of the lemma. □
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Lemma 47.27.5.0E2G Let R→ A be a flat ring map of finite presentation. Let K be a
relative dualizing complex. Then A→ RHomA(K,K) is an isomorphism.

Proof. By Algebra, Lemma 10.168.1 there exists a finite type Z subalgebra R0 ⊂ R
and a flat finite type ring map R0 → A0 such that A = A0 ⊗R0 R. By Lemmas
47.27.2, 47.27.3, and 47.27.4 there exists a relative dualizing complex K0 ∈ D(A0)
and its derived base change is K. This reduces us to the situation discussed in the
next paragraph.
Assume R Noetherian and let K be a relative dualizing complex for R→ A. Given
a ring map R → R′ set A′ = A ⊗R R′ and K ′ = K ⊗L

A A
′. To finish the proof we

show RHomA′(K ′,K ′) = A′. By Lemma 47.25.2 we know this is true whenever R′

is Noetherian. Since a general R′ is a filtered colimit of Noetherian R-algebras, we
find the result holds by More on Algebra, Lemma 15.83.7. □

Lemma 47.27.6.0E2H Let R → A → B be a ring maps which are flat and of finite
presentation. Let KA/R and KB/A be relative dualizing complexes for R→ A and
A→ B. Then K = KA/R ⊗L

A KB/A is a relative dualizing complex for R→ B.

Proof. We will use reduction to the Noetherian case. Namely, by Algebra, Lemma
10.168.1 there exists a finite type Z subalgebra R0 ⊂ R and a flat finite type ring
map R0 → A0 such that A = A0 ⊗R0 R. After increasing R0 and correspondingly
replacing A0 we may assume there is a flat finite type ring map A0 → B0 such that
B = B0 ⊗R0 R (use the same lemma). If we prove the lemma for R0 → A0 → B0,
then the lemma follows by Lemmas 47.27.2, 47.27.3, and 47.27.4. This reduces us
to the situation discussed in the next paragraph.
Assume R is Noetherian and denote φ : R → A and ψ : A → B the given ring
maps. Then KA/R

∼= φ!(R) and KB/A
∼= ψ!(A), see references given above. Then

K = KA/R ⊗L
A KB/A

∼= φ!(R)⊗L
A ψ

!(A) ∼= ψ!(φ!(R)) ∼= (ψ ◦ φ)!(R)
by Lemmas 47.24.10 and 47.24.7. Thus K is a relative dualizing complex for R→
B. □
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CHAPTER 48

Duality for Schemes

0DWE 48.1. Introduction

0DWF This chapter studies relative duality for morphisms of schemes and the dualizing
complex on a scheme. A reference is [Har66].
Dualizing complexes for Noetherian rings were defined and studied in Dualizing
Complexes, Section 47.15 ff. In this chapter we continue this by studying dualizing
complexes on schemes, see Section 48.2.
The bulk of this chapter is devoted to studying the right adjoint of pushforward in
the setting of derived categories of sheaves of modules with quasi-coherent coho-
mology sheaves. See Sections 48.3, 48.4, 48.5, 48.6, 48.7, 48.8, 48.9, 48.11, 48.13,
48.14, and 48.15. Here we follow the papers [Nee96], [LN07], [Lip09], and [Nee14].
We discuss the important and useful upper shriek functors f ! for separated mor-
phisms of finite type between Noetherian schemes in Sections 48.16, 48.17, and
48.18 culminating in the overview Section 48.19.
In Section 48.20 we explain alternative theory of duality and dualizing complexes
when working over a fixed locally Noetherian base endowed with a dualizing com-
plex (this section corresponds to a remark in Hartshorne’s book).
In the remaining sections we give a few applications.
This chapter is continued by the chapter on duality on algebraic spaces, see Duality
for Spaces, Section 86.1.

48.2. Dualizing complexes on schemes

0A85 We define a dualizing complex on a locally Noetherian scheme to be a complex
which affine locally comes from a dualizing complex on the corresponding ring.
This is not completely standard but agrees with all definitions in the literature on
Noetherian schemes of finite dimension.

Lemma 48.2.1.0A86 Let X be a locally Noetherian scheme. Let K be an object of
D(OX). The following are equivalent

(1) For every affine open U = Spec(A) ⊂ X there exists a dualizing complex
ω•
A for A such that K|U is isomorphic to the image of ω•

A by the functor˜: D(A)→ D(OU ).
(2) There is an affine open covering X =

⋃
Ui, Ui = Spec(Ai) such that

for each i there exists a dualizing complex ω•
i for Ai such that K|Ui is

isomorphic to the image of ω•
i by the functor˜: D(Ai)→ D(OUi).

Proof. Assume (2) and let U = Spec(A) be an affine open of X. Since condition (2)
implies that K is in DQCoh(OX) we find an object ω•

A in D(A) whose associated

4030
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complex of quasi-coherent sheaves is isomorphic to K|U , see Derived Categories of
Schemes, Lemma 36.3.5. We will show that ω•

A is a dualizing complex for A which
will finish the proof.
Since X =

⋃
Ui is an open covering, we can find a standard open covering U =

D(f1) ∪ . . . ∪ D(fm) such that each D(fj) is a standard open in one of the affine
opens Ui, see Schemes, Lemma 26.11.5. Say D(fj) = D(gj) for gj ∈ Aij . Then
Afj
∼= (Aij )gj and we have

(ω•
A)fj ∼= (ω•

i )gj
in the derived category by Derived Categories of Schemes, Lemma 36.3.5. By
Dualizing Complexes, Lemma 47.15.6 we find that the complex (ω•

A)fj is a dualizing
complex over Afj for j = 1, . . . ,m. This implies that ω•

A is dualizing by Dualizing
Complexes, Lemma 47.15.7. □

Definition 48.2.2.0A87 Let X be a locally Noetherian scheme. An object K of D(OX) is
called a dualizing complex if K satisfies the equivalent conditions of Lemma 48.2.1.

Please see remarks made at the beginning of this section.

Lemma 48.2.3.0A88 Let A be a Noetherian ring and let X = Spec(A). Let K,L be
objects of D(A). If K ∈ DCoh(A) and L has finite injective dimension, then

RHomOX
(K̃, L̃) = ˜RHomA(K,L)

in D(OX).

Proof. We may assume that L is given by a finite complex I• of injective A-modules.
By induction on the length of I• and compatibility of the constructions with dis-
tinguished triangles, we reduce to the case that L = I[0] where I is an injective
A-module. In this case, Derived Categories of Schemes, Lemma 36.10.8, tells us
that the nth cohomology sheaf of RHomOX

(K̃, L̃) is the sheaf associated to the
presheaf

D(f) 7−→ ExtnAf (K ⊗A Af , I ⊗A Af )
Since A is Noetherian, the Af -module I ⊗A Af is injective (Dualizing Complexes,
Lemma 47.3.8). Hence we see that

ExtnAf (K ⊗A Af , I ⊗A Af ) = HomAf (H−n(K ⊗A Af ), I ⊗A Af )
= HomAf (H−n(K)⊗A Af , I ⊗A Af )
= HomA(H−n(K), I)⊗A Af

The last equality because H−n(K) is a finite A-module, see Algebra, Lemma
10.10.2. This proves that the canonical map

˜RHomA(K,L) −→ RHomOX
(K̃, L̃)

is a quasi-isomorphism in this case and the proof is done. □

Lemma 48.2.4.0G4I Let X be a Noetherian scheme. Let K,L,M ∈ DQCoh(OX). Then
the map

RHom(L,M)⊗L
OX

K −→ RHom(RHom(K,L),M)
of Cohomology, Lemma 20.42.9 is an isomorphism in the following two cases

(1) K ∈ D−
Coh(OX), L ∈ D+

Coh(OX), and M affine locally has finite injective
dimension (see proof), or
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(2) K and L are in DCoh(OX), the object RHom(L,M) has finite tor di-
mension, and L and M affine locally have finite injective dimension (in
particular L and M are bounded).

Proof. Proof of (1). We say M has affine locally finite injective dimension if X
has an open covering by affines U = Spec(A) such that the object of D(A) cor-
responding to M |U (Derived Categories of Schemes, Lemma 36.3.5) has finite in-
jective dimension1. To prove the lemma we may replace X by U , i.e., we may
assume X = Spec(A) for some Noetherian ring A. Observe that RHom(K,L) is
in D+

Coh(OX) by Derived Categories of Schemes, Lemma 36.11.5. Moreover, the
formation of the left and right hand side of the arrow commutes with the func-
tor D(A) → DQCoh(OX) by Lemma 48.2.3 and Derived Categories of Schemes,
Lemma 36.10.8 (to be sure this uses the assumptions on K, L, M and what we just
proved about RHom(K,L)). Then finally the arrow is an isomorphism by More on
Algebra, Lemmas 15.98.1 part (2).
Proof of (2). We argue as above. A small change is that here we get RHom(K,L)
in DCoh(OX) because affine locally (which is allowable by Lemma 48.2.3) we may
appeal to Dualizing Complexes, Lemma 47.15.2. Then we finally conclude by More
on Algebra, Lemma 15.98.2. □

Lemma 48.2.5.0A89 Let K be a dualizing complex on a locally Noetherian scheme
X. Then K is an object of DCoh(OX) and D = RHomOX

(−,K) induces an anti-
equivalence

D : DCoh(OX) −→ DCoh(OX)
which comes equipped with a canonical isomorphism id → D ◦ D. If X is quasi-
compact, then D exchanges D+

Coh(OX) and D−
Coh(OX) and induces an equivalence

Db
Coh(OX)→ Db

Coh(OX).

Proof. Let U ⊂ X be an affine open. Say U = Spec(A) and let ω•
A be a dualizing

complex for A corresponding to K|U as in Lemma 48.2.1. By Lemma 48.2.3 the
diagram

DCoh(A) //

RHomA(−,ω•
A)
��

DCoh(OU )

RHomOX (−,K|U )
��

DCoh(A) // D(OU )
commutes. We conclude that D sends DCoh(OX) into DCoh(OX). Moreover, the
canonical map

L −→ RHomOX
(K,K)⊗L

OX
L −→ RHomOX

(RHomOX
(L,K),K)

(using Cohomology, Lemma 20.42.9 for the second arrow) is an isomorphism for
all L because this is true on affines by Dualizing Complexes, Lemma 47.15.32 and
we have already seen on affines that we recover what happens in algebra. The
statement on boundedness properties of the functor D in the quasi-compact case
also follows from the corresponding statements of Dualizing Complexes, Lemma
47.15.3. □

1This condition is independent of the choice of the affine open cover of the Noetherian scheme
X. Details omitted.

2An alternative is to first show that RHomOX (K,K) = OX by working affine locally and
then use Lemma 48.2.4 part (2) to see the map is an isomorphism.
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Let X be a locally ringed space. Recall that an object L of D(OX) is invertible if
it is an invertible object for the symmetric monoidal structure on D(OX) given by
derived tensor product. In Cohomology, Lemma 20.52.2 we have seen this means
L is perfect and there is an open covering X =

⋃
Ui such that L|Ui ∼= OUi [−ni] for

some integers ni. In this case, the function

x 7→ nx, where nx is the unique integer such that Hnx(Lx) ̸= 0

is locally constant on X. In particular, we have L =
⊕
Hn(L)[−n] which gives a

well defined complex of OX -modules (with zero differentials) representing L.

Lemma 48.2.6.0ATP Let X be a locally Noetherian scheme. If K and K ′ are dualizing
complexes on X, then K ′ is isomorphic to K ⊗L

OX
L for some invertible object L of

D(OX).

Proof. Set
L = RHomOX

(K,K ′)

This is an invertible object of D(OX), because affine locally this is true, see Dualiz-
ing Complexes, Lemma 47.15.5 and its proof. The evaluation map L⊗L

OX
K → K ′

is an isomorphism for the same reason. □

Lemma 48.2.7.0AWF Let X be a locally Noetherian scheme. Let ω•
X be a dualizing

complex on X. Then X is universally catenary and the function X → Z defined by

x 7−→ δ(x) such that ω•
X,x[−δ(x)] is a normalized dualizing complex over OX,x

is a dimension function.

Proof. Immediate from the affine case Dualizing Complexes, Lemma 47.17.3 and
the definitions. □

Lemma 48.2.8.0ECM Let X be a locally Noetherian scheme. Let ω•
X be a dualizing

complex on X with associated dimension function δ. Let F be a coherent OX -
module. Set E i = Ext−i

OX
(F , ω•

X). Then E i is a coherent OX -module and for x ∈ X
we have

(1) E ix is nonzero only for δ(x) ≤ i ≤ δ(x) + dim(Supp(Fx)),
(2) dim(Supp(E i+δ(x)

x )) ≤ i,
(3) depth(Fx) is the smallest integer i ≥ 0 such that E i+δ(x)

x ̸= 0, and
(4) we have x ∈ Supp(

⊕
j≤i Ej)⇔ depthOX,x

(Fx) + δ(x) ≤ i.

Proof. Lemma 48.2.5 tells us that E i is coherent. Choosing an affine neighbourhood
of x and using Derived Categories of Schemes, Lemma 36.10.8 and More on Algebra,
Lemma 15.99.2 part (3) we have

E ix = Ext−i
OX

(F , ω•
X)x = Ext−i

OX,x
(Fx, ω•

X,x) = Extδ(x)−i
OX,x

(Fx, ω•
X,x[−δ(x)])

By construction of δ in Lemma 48.2.7 this reduces parts (1), (2), and (3) to Du-
alizing Complexes, Lemma 47.16.5. Part (4) is a formal consequence of (3) and
(1). □
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48.3. Right adjoint of pushforward

0A9D References for this section and the following are [Nee96], [LN07], [Lip09], and
[Nee14].

Let f : X → Y be a morphism of schemes. In this section we consider the right
adjoint to the functor Rf∗ : DQCoh(OX) → DQCoh(OY ). In the literature, if this
functor exists, then it is sometimes denoted f×. This notation is not universally
accepted and we refrain from using it. We will not use the notation f ! for such a
functor, as this would clash (for general morphisms f) with the notation in [Har66].

Lemma 48.3.1.0A9E This is almost the
same as [Nee96,
Example 4.2].

Let f : X → Y be a morphism between quasi-separated and quasi-
compact schemes. The functor Rf∗ : DQCoh(X)→ DQCoh(Y ) has a right adjoint.

Proof. We will prove a right adjoint exists by verifying the hypotheses of Derived
Categories, Proposition 13.38.2. First off, the categoryDQCoh(OX) has direct sums,
see Derived Categories of Schemes, Lemma 36.3.1. The category DQCoh(OX) is
compactly generated by Derived Categories of Schemes, Theorem 36.15.3. Since
X and Y are quasi-compact and quasi-separated, so is f , see Schemes, Lemmas
26.21.13 and 26.21.14. Hence the functor Rf∗ commutes with direct sums, see
Derived Categories of Schemes, Lemma 36.4.5. This finishes the proof. □

Example 48.3.2.0A9F Let A → B be a ring map. Let Y = Spec(A) and X = Spec(B)
and f : X → Y the morphism corresponding to A→ B. Then Rf∗ : DQCoh(OX)→
DQCoh(OY ) corresponds to restriction D(B)→ D(A) via the equivalences D(B)→
DQCoh(OX) and D(A)→ DQCoh(OY ). Hence the right adjoint corresponds to the
functor K 7−→ RHom(B,K) of Dualizing Complexes, Section 47.13.

Example 48.3.3.0A9G If f : X → Y is a separated finite type morphism of Noetherian
schemes, then the right adjoint of Rf∗ : DQCoh(OX)→ DQCoh(OY ) does not map
DCoh(OY ) into DCoh(OX). Namely, let k be a field and consider the morphism
f : A1

k → Spec(k). By Example 48.3.2 this corresponds to the question of whether
RHom(B,−) maps DCoh(A) into DCoh(B) where A = k and B = k[x]. This is not
true because

RHom(k[x], k) =
(∏

n≥0
k
)

[0]

which is not a finite k[x]-module. Hence a(OY ) does not have coherent cohomology
sheaves.

Example 48.3.4.0A9H If f : X → Y is a proper or even finite morphism of Noetherian
schemes, then the right adjoint of Rf∗ : DQCoh(OX)→ DQCoh(OY ) does not map
D−

QCoh(OY ) into D−
QCoh(OX). Namely, let k be a field, let k[ϵ] be the dual numbers

over k, let X = Spec(k), and let Y = Spec(k[ϵ]). Then Extik[ϵ](k, k) is nonzero for
all i ≥ 0. Hence a(OY ) is not bounded above by Example 48.3.2.

Lemma 48.3.5.0A9I Let f : X → Y be a morphism of quasi-compact and quasi-
separated schemes. Let a : DQCoh(OY )→ DQCoh(OX) be the right adjoint to Rf∗
of Lemma 48.3.1. Then a maps D+

QCoh(OY ) into D+
QCoh(OX). In fact, there exists

an integer N such that Hi(K) = 0 for i ≤ c implies Hi(a(K)) = 0 for i ≤ c−N .

Proof. By Derived Categories of Schemes, Lemma 36.4.1 the functor Rf∗ has fi-
nite cohomological dimension. In other words, there exist an integer N such that

https://stacks.math.columbia.edu/tag/0A9E
https://stacks.math.columbia.edu/tag/0A9F
https://stacks.math.columbia.edu/tag/0A9G
https://stacks.math.columbia.edu/tag/0A9H
https://stacks.math.columbia.edu/tag/0A9I


48.3. RIGHT ADJOINT OF PUSHFORWARD 4035

Hi(Rf∗L) = 0 for i ≥ N + c if Hi(L) = 0 for i ≥ c. Say K ∈ D+
QCoh(OY ) has

Hi(K) = 0 for i ≤ c. Then

HomD(OX)(τ≤c−Na(K), a(K)) = HomD(OY )(Rf∗τ≤c−Na(K),K) = 0

by what we said above. Clearly, this implies that Hi(a(K)) = 0 for i ≤ c−N . □

Let f : X → Y be a morphism of quasi-separated and quasi-compact schemes.
Let a denote the right adjoint to Rf∗ : DQCoh(OX) → DQCoh(OY ). For every
K ∈ DQCoh(OY ) and L ∈ DQCoh(OX) we obtain a canonical map

(48.3.5.1)0B6H Rf∗RHomOX
(L, a(K)) −→ RHomOY

(Rf∗L,K)

Namely, this map is constructed as the composition

Rf∗RHomOX
(L, a(K))→ RHomOY

(Rf∗L,Rf∗a(K))→ RHomOY
(Rf∗L,K)

where the first arrow is Cohomology, Remark 20.42.11 and the second arrow is the
counit Rf∗a(K)→ K of the adjunction.

Lemma 48.3.6.0A9Q Let f : X → Y be a morphism of quasi-compact and quasi-
separated schemes. Let a be the right adjoint to Rf∗ : DQCoh(OX)→ DQCoh(OY ).
Let L ∈ DQCoh(OX) and K ∈ DQCoh(OY ). Then the map (48.3.5.1)

Rf∗RHomOX
(L, a(K)) −→ RHomOY

(Rf∗L,K)

becomes an isomorphism after applying the functor DQY : D(OY )→ DQCoh(OY )
discussed in Derived Categories of Schemes, Section 36.21.

Proof. The statement makes sense asDQY exists by Derived Categories of Schemes,
Lemma 36.21.1. SinceDQY is the right adjoint to the inclusion functorDQCoh(OY )→
D(OY ) to prove the lemma we have to show that for any M ∈ DQCoh(OY ) the
map (48.3.5.1) induces an bijection

HomY (M,Rf∗RHomOX
(L, a(K))) −→ HomY (M,RHomOY

(Rf∗L,K))

To see this we use the following string of equalities

HomY (M,Rf∗RHomOX
(L, a(K))) = HomX(Lf∗M,RHomOX

(L, a(K)))
= HomX(Lf∗M ⊗L

OX
L, a(K))

= HomY (Rf∗(Lf∗M ⊗L
OX

L),K)
= HomY (M ⊗L

OY
Rf∗L,K)

= HomY (M,RHomOY
(Rf∗L,K))

The first equality holds by Cohomology, Lemma 20.28.1. The second equality by
Cohomology, Lemma 20.42.2. The third equality by construction of a. The fourth
equality by Derived Categories of Schemes, Lemma 36.22.1 (this is the important
step). The fifth by Cohomology, Lemma 20.42.2. □

Example 48.3.7.0GEU The statement of Lemma 48.3.6 is not true without applying the
“coherator” DQY . Indeed, suppose Y = Spec(R) and X = A1

R. Take L = OX and
K = OY . The left hand side of the arrow is in DQCoh(OY ) but the right hand side
of the arrow is isomorphic to

∏
n≥0OY which is not quasi-coherent.
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Remark 48.3.8.0GEV In the situation of Lemma 48.3.6 we have
DQY (Rf∗RHomOX

(L, a(K))) = Rf∗DQX(RHomOX
(L, a(K)))

by Derived Categories of Schemes, Lemma 36.21.2. Thus if RHomOX
(L, a(K)) ∈

DQCoh(OX), then we can “erase” the DQY on the left hand side of the arrow.
On the other hand, if we know that RHomOY

(Rf∗L,K) ∈ DQCoh(OY ), then
we can “erase” the DQY from the right hand side of the arrow. If both are
true then we see that (48.3.5.1) is an isomorphism. Combining this with De-
rived Categories of Schemes, Lemma 36.10.8 we see that Rf∗RHomOX

(L, a(K))→
RHomOY

(Rf∗L,K) is an isomorphism if
(1) L and Rf∗L are perfect, or
(2) K is bounded below and L and Rf∗L are pseudo-coherent.

For (2) we use that a(K) is bounded below if K is bounded below, see Lemma
48.3.5.

Example 48.3.9.0GEW Let f : X → Y be a proper morphism of Noetherian schemes,
L ∈ D−

Coh(X) and K ∈ D+
QCoh(OY ). Then the map Rf∗RHomOX

(L, a(K)) →
RHomOY

(Rf∗L,K) is an isomorphism. Namely, the complexes L and Rf∗L are
pseudo-coherent by Derived Categories of Schemes, Lemmas 36.10.3 and 36.11.3
and the discussion in Remark 48.3.8 applies.

Lemma 48.3.10.0B6I Let f : X → Y be a morphism of quasi-separated and quasi-
compact schemes. For all L ∈ DQCoh(OX) and K ∈ DQCoh(OY ) (48.3.5.1) induces
an isomorphism RHomX(L, a(K))→ RHomY (Rf∗L,K) of global derived homs.

Proof. By the construction in Cohomology, Section 20.44 we have
RHomX(L, a(K)) = RΓ(X,RHomOX

(L, a(K))) = RΓ(Y,Rf∗RHomOX
(L, a(K)))

and
RHomY (Rf∗L,K) = RΓ(Y,RHomOY

(Rf∗L,K))
Thus the lemma is a consequence of Lemma 48.3.6. Namely, a map E → E′

in D(OY ) which induces an isomorphism DQY (E) → DQY (E′) induces a quasi-
isomorphism RΓ(Y,E) → RΓ(Y,E′). Indeed we have Hi(Y,E) = ExtiY (OY , E) =
Hom(OY [−i], E) = Hom(OY [−i], DQY (E)) because OY [−i] is in DQCoh(OY ) and
DQY is the right adjoint to the inclusion functor DQCoh(OY )→ D(OY ). □

48.4. Right adjoint of pushforward and restriction to opens

0E4G In this section we study the question to what extend the right adjoint of pushforward
commutes with restriction to open subschemes. This is a base change question, so
let’s first discuss this more generally.
We often want to know whether the right adjoints to pushforward commutes with
base change. Thus we consider a cartesian square

(48.4.0.1)0A9J
X ′

g′
//

f ′

��

X

f

��
Y ′ g // Y

of quasi-compact and quasi-separated schemes. Denote
a : DQCoh(OY )→ DQCoh(OX) and a′ : DQCoh(OY ′)→ DQCoh(OX′)
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the right adjoints to Rf∗ and Rf ′
∗ (Lemma 48.3.1). Consider the base change map

of Cohomology, Remark 20.28.3. It induces a transformation of functors
Lg∗ ◦Rf∗ −→ Rf ′

∗ ◦ L(g′)∗

on derived categories of sheaves with quasi-coherent cohomology. Hence a trans-
formation between the right adjoints in the opposite direction

a ◦Rg∗ ←− Rg′
∗ ◦ a′

Lemma 48.4.1.0A9K In diagram (48.4.0.1) assume that g is flat or more generally that
f and g are Tor independent. Then a ◦Rg∗ ← Rg′

∗ ◦ a′ is an isomorphism.

Proof. In this case the base change map Lg∗ ◦ Rf∗K −→ Rf ′
∗ ◦ L(g′)∗K is an

isomorphism for every K in DQCoh(OX) by Derived Categories of Schemes, Lemma
36.22.5. Thus the corresponding transformation between adjoint functors is an
isomorphism as well. □

Let f : X → Y be a morphism of quasi-compact and quasi-separated schemes. Let
V ⊂ Y be a quasi-compact open subscheme and set U = f−1(V ). This gives a
cartesian square

U
j′
//

f |U
��

X

f

��
V

j // Y

as in (48.4.0.1). By Lemma 48.4.1 the map ξ : a ◦ Rj∗ ← Rj′
∗ ◦ a′ is an isomor-

phism where a and a′ are the right adjoints to Rf∗ and R(f |U )∗. We obtain a
transformation of functors DQCoh(OY )→ DQCoh(OU )

(48.4.1.1)0A9L (j′)∗ ◦ a→ (j′)∗ ◦ a ◦Rj∗ ◦ j∗ ξ−1

−−→ (j′)∗ ◦Rj′
∗ ◦ a′ ◦ j∗ → a′ ◦ j∗

where the first arrow comes from id → Rj∗ ◦ j∗ and the final arrow from the
isomorphism (j′)∗◦Rj′

∗ → id. In particular, we see that (48.4.1.1) is an isomorphism
when evaluated on K if and only if a(K)|U → a(Rj∗(K|V ))|U is an isomorphism.

Example 48.4.2.0A9M There is a finite morphism f : X → Y of Noetherian schemes
such that (48.4.1.1) is not an isomorphism when evaluated on some K ∈ DCoh(OY ).
Namely, let X = Spec(B) → Y = Spec(A) with A = k[x, ϵ] where k is a field and
ϵ2 = 0 and B = k[x] = A/(ϵ). For n ∈ N set Mn = A/(ϵ, xn). Observe that

ExtiA(B,Mn) = Mn, i ≥ 0
because B has the free periodic resolution . . . → A → A → A with maps given
by multiplication by ϵ. Consider the object K =

⊕
Mn[n] =

∏
Mn[n] of DCoh(A)

(equality in D(A) by Derived Categories, Lemmas 13.33.5 and 13.34.2). Then we
see that a(K) corresponds to RHom(B,K) by Example 48.3.2 and

H0(RHom(B,K)) = Ext0
A(B,K) =

∏
n≥1

ExtnA(B.Mn) =
∏

n≥1
Mn

by the above. But this module has elements which are not annihilated by any
power of x, whereas the complex K does have every element of its cohomology
annihilated by a power of x. In other words, for the map (48.4.1.1) with V = D(x)
and U = D(x) and the complex K cannot be an isomorphism because (j′)∗(a(K))
is nonzero and a′(j∗K) is zero.
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Lemma 48.4.3.0A9N Let f : X → Y be a morphism of quasi-compact and quasi-
separated schemes. Let a be the right adjoint to Rf∗ : DQCoh(OX)→ DQCoh(OY ).
Let V ⊂ Y be quasi-compact open with inverse image U ⊂ X.

(1) For everyQ ∈ D+
QCoh(OY ) supported on Y \V the image a(Q) is supported

onX\U if and only if (48.4.1.1) is an isomorphism on allK inD+
QCoh(OY ).

(2) For everyQ ∈ DQCoh(OY ) supported on Y \V the image a(Q) is supported
onX\U if and only if (48.4.1.1) is an isomorphism on allK inDQCoh(OY ).

(3) If a commutes with direct sums, then the equivalent conditions of (1)
imply the equivalent conditions of (2).

Proof. Proof of (1). Let K ∈ D+
QCoh(OY ). Choose a distinguished triangle

K → Rj∗K|V → Q→ K[1]

Observe that Q is in D+
QCoh(OY ) (Derived Categories of Schemes, Lemma 36.4.1)

and is supported on Y \ V (Derived Categories of Schemes, Definition 36.6.1).
Applying a we obtain a distinguished triangle

a(K)→ a(Rj∗K|V )→ a(Q)→ a(K)[1]

on X. If a(Q) is supported on X \ U , then restricting to U the map a(K)|U →
a(Rj∗K|V )|U is an isomorphism, i.e., (48.4.1.1) is an isomorphism on K. The
converse is immediate.

The proof of (2) is exactly the same as the proof of (1).

Proof of (3). Assume the equivalent conditions of (1) hold. Set T = Y \V . We will
use the notation DQCoh,T (OY ) and DQCoh,f−1(T )(OX) to denote complexes whose
cohomology sheaves are supported on T and f−1(T ). Since a commutes with direct
sums, the strictly full, saturated, triangulated subcategory D with objects

{Q ∈ DQCoh,T (OY ) | a(Q) ∈ DQCoh,f−1(T )(OX)}

is preserved by direct sums and hence derived colimits. On the other hand, the
category DQCoh,T (OY ) is generated by a perfect object E (see Derived Categories
of Schemes, Lemma 36.15.4). By assumption we see that E ∈ D. By Derived
Categories, Lemma 13.37.3 every object Q of DQCoh,T (OY ) is a derived colimit of
a system Q1 → Q2 → Q3 → . . . such that the cones of the transition maps are
direct sums of shifts of E. Arguing by induction we see that Qn ∈ D for all n and
finally that Q is in D. Thus the equivalent conditions of (2) hold. □

Lemma 48.4.4.0A9P Let Y be a quasi-compact and quasi-separated scheme. Let f :
X → Y be a proper morphism. If3

(1) f is flat and of finite presentation, or
(2) Y is Noetherian

then the equivalent conditions of Lemma 48.4.3 part (1) hold for all quasi-compact
opens V of Y .

3This proof works for those morphisms of quasi-compact and quasi-separated schemes such
that Rf∗P is pseudo-coherent for all P perfect on X. It follows easily from a theorem of Kiehl
[Kie72] that this holds if f is proper and pseudo-coherent. This is the correct generality for this
lemma and some of the other results in this chapter.
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Proof. Let Q ∈ D+
QCoh(OY ) be supported on Y \V . To get a contradiction, assume

that a(Q) is not supported on X \ U . Then we can find a perfect complex PU on
U and a nonzero map PU → a(Q)|U (follows from Derived Categories of Schemes,
Theorem 36.15.3). Then using Derived Categories of Schemes, Lemma 36.13.10
we may assume there is a perfect complex P on X and a map P → a(Q) whose
restriction to U is nonzero. By definition of a this map is adjoint to a map Rf∗P →
Q.
The complex Rf∗P is pseudo-coherent. In case (1) this follows from Derived
Categories of Schemes, Lemma 36.30.5. In case (2) this follows from Derived
Categories of Schemes, Lemmas 36.11.3 and 36.10.3. Thus we may apply De-
rived Categories of Schemes, Lemma 36.17.5 and get a map I → OY of perfect
complexes whose restriction to V is an isomorphism such that the composition
I ⊗L

OY
Rf∗P → Rf∗P → Q is zero. By Derived Categories of Schemes, Lemma

36.22.1 we have I ⊗L
OY

Rf∗P = Rf∗(Lf∗I ⊗L
OX

P ). We conclude that the compo-
sition

Lf∗I ⊗L
OX

P → P → a(Q)
is zero. However, the restriction to U is the map P |U → a(Q)|U which we assumed
to be nonzero. This contradiction finishes the proof. □

48.5. Right adjoint of pushforward and base change, I

0AA5 The map (48.4.1.1) is a special case of a base change map. Namely, suppose that
we have a cartesian diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of quasi-compact and quasi-separated schemes, i.e., a diagram as in (48.4.0.1).
Assume f and g are Tor independent. Then we can consider the morphism of
functors DQCoh(OY )→ DQCoh(OX′) given by the composition
(48.5.0.1)0AA6 L(g′)∗ ◦ a→ L(g′)∗ ◦ a ◦Rg∗ ◦Lg∗ ← L(g′)∗ ◦Rg′

∗ ◦ a′ ◦Lg∗ → a′ ◦Lg∗

The first arrow comes from the adjunction map id → Rg∗Lg
∗ and the last arrow

from the adjunction map L(g′)∗Rg′
∗ → id. We need the assumption on Tor indepen-

dence to invert the arrow in the middle, see Lemma 48.4.1. Alternatively, we can
think of (48.5.0.1) by adjointness of L(g′)∗ and R(g′)∗ as a natural transformation

a→ a ◦Rg∗ ◦ Lg∗ ← Rg′
∗ ◦ a′ ◦ Lg∗

were again the second arrow is invertible. If M ∈ DQCoh(OX) and K ∈ DQCoh(OY )
then on Yoneda functors this map is given by

HomX(M,a(K)) = HomY (Rf∗M,K)
→ HomY (Rf∗M,Rg∗Lg

∗K)
= HomY ′(Lg∗Rf∗M,Lg∗K)
← HomY ′(Rf ′

∗L(g′)∗M,Lg∗K)
= HomX′(L(g′)∗M,a′(Lg∗K))
= HomX(M,Rg′

∗a
′(Lg∗K))
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(were the arrow pointing left is invertible by the base change theorem given in
Derived Categories of Schemes, Lemma 36.22.5) which makes things a little bit
more explicit.

In this section we first prove that the base change map satisfies some natural com-
patibilities with regards to stacking squares as in Cohomology, Remarks 20.28.4
and 20.28.5 for the usual base change map. We suggest the reader skip the rest of
this section on a first reading.

Lemma 48.5.1.0ATQ Consider a commutative diagram

X ′
k
//

f ′

��

X

f

��
Y ′ l //

g′

��

Y

g

��
Z ′ m // Z

of quasi-compact and quasi-separated schemes where both diagrams are cartesian
and where f and l as well as g and m are Tor independent. Then the maps (48.5.0.1)
for the two squares compose to give the base change map for the outer rectangle
(see proof for a precise statement).

Proof. It follows from the assumptions that g◦f and m are Tor independent (details
omitted), hence the statement makes sense. In this proof we write k∗ in place of
Lk∗ and f∗ instead of Rf∗. Let a, b, and c be the right adjoints of Lemma 48.3.1
for f , g, and g ◦ f and similarly for the primed versions. The arrow corresponding
to the top square is the composition

γtop : k∗ ◦ a→ k∗ ◦ a ◦ l∗ ◦ l∗
ξtop←−− k∗ ◦ k∗ ◦ a′ ◦ l∗ → a′ ◦ l∗

where ξtop : k∗ ◦ a′ → a ◦ l∗ is an isomorphism (hence can be inverted) and is the
arrow “dual” to the base change map l∗ ◦f∗ → f ′

∗ ◦k∗. The outer arrows come from
the canonical maps 1→ l∗ ◦ l∗ and k∗ ◦ k∗ → 1. Similarly for the second square we
have

γbot : l∗ ◦ b→ l∗ ◦ b ◦m∗ ◦m∗ ξbot←−− l∗ ◦ l∗ ◦ b′ ◦m∗ → b′ ◦m∗

For the outer rectangle we get

γrect : k∗ ◦ c→ k∗ ◦ c ◦m∗ ◦m∗ ξrect←−−− k∗ ◦ k∗ ◦ c′ ◦m∗ → c′ ◦m∗

We have (g ◦ f)∗ = g∗ ◦ f∗ and hence c = a ◦ b and similarly c′ = a′ ◦ b′. The
statement of the lemma is that γrect is equal to the composition

k∗ ◦ c = k∗ ◦ a ◦ b γtop−−→ a′ ◦ l∗ ◦ b γbot−−→ a′ ◦ b′ ◦m∗ = c′ ◦m∗

https://stacks.math.columbia.edu/tag/0ATQ
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To see this we contemplate the following diagram:

k∗ ◦ a ◦ b

��

tt

k∗ ◦ a ◦ l∗ ◦ l∗ ◦ b

tt
k∗ ◦ a ◦ b ◦m∗ ◦m∗ // k∗ ◦ a ◦ l∗ ◦ l∗ ◦ b ◦m∗ ◦m∗ k∗ ◦ k∗ ◦ a′ ◦ l∗ ◦ b

ξtop

OO

��tt
k∗ ◦ k∗ ◦ a′ ◦ l∗ ◦ b ◦m∗ ◦m∗

ξtop

OO

**

a′ ◦ l∗ ◦ b

��
k∗ ◦ k∗ ◦ a′ ◦ b′ ◦m∗

ξrect

OO

**

k∗ ◦ k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′ ◦m∗

ξbot

OO

oo

**

a′ ◦ l∗ ◦ b ◦m∗ ◦m∗

a′ ◦ l∗ ◦ l∗ ◦ b′ ◦m∗

ξbot

OO

��
a′ ◦ b′ ◦m∗

Going down the right hand side we have the composition and going down the left
hand side we have γrect. All the quadrilaterals on the right hand side of this diagram
commute by Categories, Lemma 4.28.2 or more simply the discussion preceding
Categories, Definition 4.28.1. Hence we see that it suffices to show the diagram

a ◦ l∗ ◦ l∗ ◦ b ◦m∗ a ◦ b ◦m∗oo

k∗ ◦ a′ ◦ l∗ ◦ b ◦m∗

ξtop

OO

k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′

ξbot

OO

// k∗ ◦ a′ ◦ b′

ξrect

OO

becomes commutative if we invert the arrows ξtop, ξbot, and ξrect (note that this is
different from asking the diagram to be commutative). However, the diagram

a ◦ l∗ ◦ l∗ ◦ b ◦m∗

a ◦ l∗ ◦ l∗ ◦ l∗ ◦ b′

ξbot

55

k∗ ◦ a′ ◦ l∗ ◦ b ◦m∗

ξtop
ii

k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′
ξtop

ii

ξbot

55
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commutes by Categories, Lemma 4.28.2. Since the diagrams

a ◦ l∗ ◦ l∗ ◦ b ◦m∗ a ◦ b ◦moo

a ◦ l∗ ◦ l∗ ◦ l∗ ◦ b′

OO

a ◦ l∗ ◦ b′oo

OO

and

a ◦ l∗ ◦ l∗ ◦ l∗ ◦ b′ // a ◦ l∗ ◦ b′

k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′

OO

// k∗ ◦ a′ ◦ b′

OO

commute (see references cited) and since the composition of l∗ → l∗ ◦ l∗ ◦ l∗ → l∗ is
the identity, we find that it suffices to prove that

k ◦ a′ ◦ b′ ξbot−−→ a ◦ l∗ ◦ b
ξtop−−→ a ◦ b ◦m∗

is equal to ξrect (via the identifications a ◦ b = c and a′ ◦ b′ = c′). This is the
statement dual to Cohomology, Remark 20.28.4 and the proof is complete. □

Lemma 48.5.2.0ATR Consider a commutative diagram

X ′′
g′
//

f ′′

��

X ′
g
//

f ′

��

X

f

��
Y ′′ h′

// Y ′ h // Y

of quasi-compact and quasi-separated schemes where both diagrams are cartesian
and where f and h as well as f ′ and h′ are Tor independent. Then the maps
(48.5.0.1) for the two squares compose to give the base change map for the outer
rectangle (see proof for a precise statement).

Proof. It follows from the assumptions that f and h◦h′ are Tor independent (details
omitted), hence the statement makes sense. In this proof we write g∗ in place of
Lg∗ and f∗ instead of Rf∗. Let a, a′, and a′′ be the right adjoints of Lemma 48.3.1
for f , f ′, and f ′′. The arrow corresponding to the right square is the composition

γright : g∗ ◦ a→ g∗ ◦ a ◦ h∗ ◦ h∗ ξright←−−−− g∗ ◦ g∗ ◦ a′ ◦ h∗ → a′ ◦ h∗

where ξright : g∗ ◦ a′ → a ◦ h∗ is an isomorphism (hence can be inverted) and is the
arrow “dual” to the base change map h∗ ◦ f∗ → f ′

∗ ◦ g∗. The outer arrows come
from the canonical maps 1→ h∗ ◦ h∗ and g∗ ◦ g∗ → 1. Similarly for the left square
we have

γleft : (g′)∗ ◦ a′ → (g′)∗ ◦ a′ ◦ (h′)∗ ◦ (h′)∗ ξleft←−−− (g′)∗ ◦ (g′)∗ ◦ a′′ ◦ (h′)∗ → a′′ ◦ (h′)∗

For the outer rectangle we get

γrect : k∗ ◦ a→ k∗ ◦ a ◦m∗ ◦m∗ ξrect←−−− k∗ ◦ k∗ ◦ a′′ ◦m∗ → a′′ ◦m∗

where k = g ◦ g′ and m = h ◦ h′. We have k∗ = (g′)∗ ◦ g∗ and m∗ = (h′)∗ ◦ h∗. The
statement of the lemma is that γrect is equal to the composition

k∗ ◦ a = (g′)∗ ◦ g∗ ◦ a γright−−−−→ (g′)∗ ◦ a′ ◦ h∗ γleft−−−→ a′′ ◦ (h′)∗ ◦ h∗ = a′′ ◦m∗

https://stacks.math.columbia.edu/tag/0ATR
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To see this we contemplate the following diagram

(g′)∗ ◦ g∗ ◦ a

��

ww

(g′)∗ ◦ g∗ ◦ a ◦ h∗ ◦ h∗

ss
(g′)∗ ◦ g∗ ◦ a ◦ h∗ ◦ (h′)∗ ◦ (h′)∗ ◦ h∗ (g′)∗ ◦ g∗ ◦ g∗ ◦ a′ ◦ h∗

ξright

OO

��ss
(g′)∗ ◦ g∗ ◦ g∗ ◦ a′ ◦ (h′)∗ ◦ (h′)∗ ◦ h∗

ξright

OO

++

(g′)∗ ◦ a′ ◦ h∗

��
(g′)∗ ◦ g∗ ◦ g∗ ◦ (g′)∗ ◦ a′′ ◦ (h′)∗ ◦ h∗

ξleft

OO

''

++

(g′)∗ ◦ a′ ◦ (h′)∗ ◦ (h′)∗ ◦ h∗

(g′)∗ ◦ (g′)∗ ◦ a′′ ◦ (h′)∗ ◦ h∗

ξleft

OO

��
a′′ ◦ (h′)∗ ◦ h∗

Going down the right hand side we have the composition and going down the left
hand side we have γrect. All the quadrilaterals on the right hand side of this diagram
commute by Categories, Lemma 4.28.2 or more simply the discussion preceding
Categories, Definition 4.28.1. Hence we see that it suffices to show that

g∗ ◦ (g′)∗ ◦ a′′ ξleft−−−→ g∗ ◦ a′ ◦ (h′)∗
ξright−−−−→ a ◦ h∗ ◦ (h′)∗

is equal to ξrect. This is the statement dual to Cohomology, Remark 20.28.5 and
the proof is complete. □

Remark 48.5.3.0ATS Consider a commutative diagram

X ′′
k′
//

f ′′

��

X ′
k
//

f ′

��

X

f

��
Y ′′ l′ //

g′′

��

Y ′ l //

g′

��

Y

g

��
Z ′′ m′

// Z ′ m // Z

of quasi-compact and quasi-separated schemes where all squares are cartesian and
where (f, l), (g,m), (f ′, l′), (g′,m′) are Tor independent pairs of maps. Let a, a′,
a′′, b, b′, b′′ be the right adjoints of Lemma 48.3.1 for f , f ′, f ′′, g, g′, g′′. Let us
label the squares of the diagram A, B, C, D as follows

A B
C D

https://stacks.math.columbia.edu/tag/0ATS
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Then the maps (48.5.0.1) for the squares are (where we use k∗ = Lk∗, etc)
γA : (k′)∗ ◦ a′ → a′′ ◦ (l′)∗ γB : k∗ ◦ a→ a′ ◦ l∗
γC : (l′)∗ ◦ b′ → b′′ ◦ (m′)∗ γD : l∗ ◦ b→ b′ ◦m∗

For the 2× 1 and 1× 2 rectangles we have four further base change maps
γA+B : (k ◦ k′)∗ ◦ a→ a′′ ◦ (l ◦ l′)∗

γC+D : (l ◦ l′)∗ ◦ b→ b′′ ◦ (m ◦m′)∗

γA+C : (k′)∗ ◦ (a′ ◦ b′)→ (a′′ ◦ b′′) ◦ (m′)∗

γB+D : k∗ ◦ (a ◦ b)→ (a′ ◦ b′) ◦m∗

By Lemma 48.5.2 we have
γA+B = γA ◦ γB , γC+D = γC ◦ γD

and by Lemma 48.5.1 we have
γA+C = γC ◦ γA, γB+D = γD ◦ γB

Here it would be more correct to write γA+B = (γA ⋆ idl∗) ◦ (id(k′)∗ ⋆ γB) with
notation as in Categories, Section 4.28 and similarly for the others. However, we
continue the abuse of notation used in the proofs of Lemmas 48.5.1 and 48.5.2 of
dropping ⋆ products with identities as one can figure out which ones to add as long
as the source and target of the transformation is known. Having said all of this we
find (a priori) two transformations

(k′)∗ ◦ k∗ ◦ a ◦ b −→ a′′ ◦ b′′ ◦ (m′)∗ ◦m∗

namely
γC ◦ γA ◦ γD ◦ γB = γA+C ◦ γB+D

and
γC ◦ γD ◦ γA ◦ γB = γC+D ◦ γA+B

The point of this remark is to point out that these transformations are equal.
Namely, to see this it suffices to show that

(k′)∗ ◦ a′ ◦ l∗ ◦ b
γD
//

γA

��

(k′)∗ ◦ a′ ◦ b′ ◦m∗

γA

��
a′′ ◦ (l′)∗ ◦ l∗ ◦ b

γD // a′′ ◦ (l′)∗ ◦ b′ ◦m∗

commutes. This is true by Categories, Lemma 4.28.2 or more simply the discussion
preceding Categories, Definition 4.28.1.

48.6. Right adjoint of pushforward and base change, II

0BZF In this section we prove that the base change map of Section 48.5 is an isomorphism
in some cases. We first observe that it suffices to check over affine opens, provided
formation of the right adjoint of pushforward commutes with restriction to opens.

Remark 48.6.1.0E9S Consider a cartesian diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

https://stacks.math.columbia.edu/tag/0E9S
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of quasi-compact and quasi-separated schemes with (g, f) Tor independent. Let
V ⊂ Y and V ′ ⊂ Y ′ be affine opens with g(V ′) ⊂ V . Form the cartesian diagrams

U //

��

X

��
V // Y

and
U ′ //

��

X ′

��
V ′ // Y ′

Assume (48.4.1.1) with respect to K and the first diagram and (48.4.1.1) with
respect to Lg∗K and the second diagram are isomorphisms. Then the restriction
of the base change map (48.5.0.1)

L(g′)∗a(K) −→ a′(Lg∗K)
to U ′ is isomorphic to the base change map (48.5.0.1) for K|V and the cartesian
diagram

U ′ //

��

U

��
V ′ // V

This follows from the fact that (48.4.1.1) is a special case of the base change map
(48.5.0.1) and that the base change maps compose correctly if we stack squares hor-
izontally, see Lemma 48.5.2. Thus in order to check the base change map restricted
to U ′ is an isomorphism it suffices to work with the last diagram.

Lemma 48.6.2.0AA8 In diagram (48.4.0.1) assume
(1) g : Y ′ → Y is a morphism of affine schemes,
(2) f : X → Y is proper, and
(3) f and g are Tor independent.

Then the base change map (48.5.0.1) induces an isomorphism
L(g′)∗a(K) −→ a′(Lg∗K)

in the following cases
(1) for all K ∈ DQCoh(OX) if f is flat of finite presentation,
(2) for all K ∈ DQCoh(OX) if f is perfect and Y Noetherian,
(3) for K ∈ D+

QCoh(OX) if g has finite Tor dimension and Y Noetherian.

Proof. Write Y = Spec(A) and Y ′ = Spec(A′). As a base change of an affine
morphism, the morphism g′ is affine. Let M be a perfect generator for DQCoh(OX),
see Derived Categories of Schemes, Theorem 36.15.3. Then L(g′)∗M is a generator
for DQCoh(OX′), see Derived Categories of Schemes, Remark 36.16.4. Hence it
suffices to show that (48.5.0.1) induces an isomorphism
(48.6.2.1)0E45 RHomX′(L(g′)∗M,L(g′)∗a(K)) −→ RHomX′(L(g′)∗M,a′(Lg∗K))
of global hom complexes, see Cohomology, Section 20.44, as this will imply the cone
of L(g′)∗a(K) → a′(Lg∗K) is zero. The structure of the proof is as follows: we
will first show that these Hom complexes are isomorphic and in the last part of the
proof we will show that the isomorphism is induced by (48.6.2.1).
The left hand side. Because M is perfect, the canonical map

RHomX(M,a(K))⊗L
A A

′ −→ RHomX′(L(g′)∗M,L(g′)∗a(K))

https://stacks.math.columbia.edu/tag/0AA8
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is an isomorphism by Derived Categories of Schemes, Lemma 36.22.6. We can
combine this with the isomorphism RHomY (Rf∗M,K) = RHomX(M,a(K)) of
Lemma 48.3.10 to get that the left hand side equals RHomY (Rf∗M,K)⊗L

A A
′.

The right hand side. Here we first use the isomorphism
RHomX′(L(g′)∗M,a′(Lg∗K)) = RHomY ′(Rf ′

∗L(g′)∗M,Lg∗K)
of Lemma 48.3.10. Then we use the base change map Lg∗Rf∗M → Rf ′

∗L(g′)∗M
is an isomorphism by Derived Categories of Schemes, Lemma 36.22.5. Hence we
may rewrite this as RHomY ′(Lg∗Rf∗M,Lg∗K). Since Y , Y ′ are affine and K,
Rf∗M are in DQCoh(OY ) (Derived Categories of Schemes, Lemma 36.4.1) we have
a canonical map

β : RHomY (Rf∗M,K)⊗L
A A

′ −→ RHomY ′(Lg∗Rf∗M,Lg∗K)
in D(A′). This is the arrow More on Algebra, Equation (15.99.1.1) where we have
used Derived Categories of Schemes, Lemmas 36.3.5 and 36.10.8 to translate back
and forth into algebra.

(1) If f is flat and of finite presentation, the complex Rf∗M is perfect on Y by
Derived Categories of Schemes, Lemma 36.30.4 and β is an isomorphism
by More on Algebra, Lemma 15.99.2 part (1).

(2) If f is perfect and Y Noetherian, the complex Rf∗M is perfect on Y by
More on Morphisms, Lemma 37.61.13 and β is an isomorphism as before.

(3) If g has finite tor dimension and Y is Noetherian, the complex Rf∗M is
pseudo-coherent on Y (Derived Categories of Schemes, Lemmas 36.11.3
and 36.10.3) and β is an isomorphism by More on Algebra, Lemma 15.99.2
part (4).

We conclude that we obtain the same answer as in the previous paragraph.
In the rest of the proof we show that the identifications of the left and right hand side
of (48.6.2.1) given in the second and third paragraph are in fact given by (48.6.2.1).
To make our formulas manageable we will use (−,−)X = RHomX(−,−), use −⊗A′

in stead of −⊗L
A A

′, and we will abbreviate g∗ = Lg∗ and f∗ = Rf∗. Consider the
following commutative diagram

((g′)∗M, (g′)∗a(K))X′

��

(M,a(K))X ⊗A′
α

oo

��

(f∗M,K)Y ⊗A′

��
((g′)∗M, (g′)∗a(g∗g

∗K))X′ (M,a(g∗g
∗K))X ⊗A′

α
oo (f∗M, g∗g

∗K)Y ⊗A′

µ′

''

((g′)∗M, (g′)∗g′
∗a

′(g∗K))X′

OO

��

(M, g′
∗a

′(g∗K))X ⊗A′

OO

α
oo

µ
tt

(f∗M,K)⊗A′

β

��
((g′)∗M,a′(g∗K))X′ (f ′

∗(g′)∗M, g∗K)Y ′ // (g∗f∗M, g∗K)Y ′

The arrows labeled α are the maps from Derived Categories of Schemes, Lemma
36.22.6 for the diagram with corners X ′, X, Y ′, Y . The upper part of the diagram
is commutative as the horizontal arrows are functorial in the entries. The middle
vertical arrows come from the invertible transformation g′

∗ ◦ a′ → a ◦ g∗ of Lemma
48.4.1 and therefore the middle square is commutative. Going down the left hand
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side is (48.6.2.1). The upper horizontal arrows provide the identifications used in the
second paragraph of the proof. The lower horizontal arrows including β provide
the identifications used in the third paragraph of the proof. Given E ∈ D(A),
E′ ∈ D(A′), and c : E → E′ in D(A) we will denote µc : E ⊗ A′ → E′ the map
induced by c and the adjointness of restriction and base change; if c is clear we
write µ = µc, i.e., we drop c from the notation. The map µ in the diagram is of this
form with c given by the identification (M, g′

∗a(g∗K))X = ((g′)∗M,a′(g∗K))X′ ;
the triangle involving µ is commutative by Derived Categories of Schemes, Remark
36.22.7.
Observe that

(M,a(g∗g
∗K))X (f∗M, g∗g

∗K)Y (g∗f∗M, g∗K)Y ′

(M, g′
∗a

′(g∗K))X

OO

((g′)∗M,a′(g∗K))X′ (f ′
∗(g′)∗M, g∗K)Y ′

OO

is commutative by the very definition of the transformation g′
∗ ◦a′ → a◦g∗. Letting

µ′ be as above corresponding to the identification (f∗M, g∗g
∗K)X = (g∗f∗M, g∗K)Y ′ ,

then the hexagon commutes as well. Thus it suffices to show that β is equal to the
composition of (f∗M,K)Y ⊗A′ → (f∗M, g∗g

∗K)X ⊗A′ and µ′. To do this, it suf-
fices to prove the two induced maps (f∗M,K)Y → (g∗f∗M, g∗K)Y ′ are the same.
In other words, it suffices to show the diagram

RHomA(E,K)
induced by β

//

))

RHomA′(E ⊗L
A A

′,K ⊗L
A A

′)

RHomA(E,K ⊗L
A A

′)

44

commutes for all E,K ∈ D(A). Since this is how β is constructed in More on
Algebra, Section 15.99 the proof is complete. □

48.7. Right adjoint of pushforward and trace maps

0AWG Let f : X → Y be a morphism of quasi-compact and quasi-separated schemes.
Let a : DQCoh(OY ) → DQCoh(OX) be the right adjoint as in Lemma 48.3.1. By
Categories, Section 4.24 we obtain a transformation of functors

Trf : Rf∗ ◦ a −→ id
The corresponding map Trf,K : Rf∗a(K) −→ K for K ∈ DQCoh(OY ) is sometimes
called the trace map. This is the map which has the property that the bijection

HomX(L, a(K)) −→ HomY (Rf∗L,K)
for L ∈ DQCoh(OX) which characterizes the right adjoint is given by

φ 7−→ Trf,K ◦Rf∗φ

The map (48.3.5.1)
Rf∗RHomOX

(L, a(K)) −→ RHomOY
(Rf∗L,K)

comes about by composition with Trf,K . Every trace map we are going to consider
in this section will be a special case of this trace map. Before we discuss some
special cases we show that formation of the trace map commutes with base change.
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Lemma 48.7.1 (Trace map and base change).0B6J Suppose we have a diagram (48.4.0.1)
where f and g are tor independent. Then the maps 1 ⋆ Trf : Lg∗ ◦ Rf∗ ◦ a→ Lg∗

and Trf ′ ⋆ 1 : Rf ′
∗ ◦a′ ◦Lg∗ → Lg∗ agree via the base change maps β : Lg∗ ◦Rf∗ →

Rf ′
∗ ◦L(g′)∗ (Cohomology, Remark 20.28.3) and α : L(g′)∗ ◦a→ a′ ◦Lg∗ (48.5.0.1).

More precisely, the diagram

Lg∗ ◦Rf∗ ◦ a

β⋆1
��

1⋆Trf
// Lg∗

Rf ′
∗ ◦ L(g′)∗ ◦ a 1⋆α // Rf ′

∗ ◦ a′ ◦ Lg∗

Trf′⋆1

OO

of transformations of functors commutes.

Proof. In this proof we write f∗ for Rf∗ and g∗ for Lg∗ and we drop ⋆ products
with identities as one can figure out which ones to add as long as the source and
target of the transformation is known. Recall that β : g∗ ◦ f∗ → f ′

∗ ◦ (g′)∗ is an
isomorphism and that α is defined using the isomorphism β∨ : g′

∗ ◦ a′ → a ◦ g∗
which is the adjoint of β, see Lemma 48.4.1 and its proof. First we note that the
top horizontal arrow of the diagram in the lemma is equal to the composition

g∗ ◦ f∗ ◦ a→ g∗ ◦ f∗ ◦ a ◦ g∗ ◦ g∗ → g∗ ◦ g∗ ◦ g∗ → g∗

where the first arrow is the unit for (g∗, g∗), the second arrow is Trf , and the third
arrow is the counit for (g∗, g∗). This is a simple consequence of the fact that the
composition g∗ → g∗ ◦ g∗ ◦ g∗ → g∗ of unit and counit is the identity. Consider the
diagram

g∗ ◦ f∗ ◦ a
β

uu ��

Trf
// g∗

f ′
∗ ◦ (g′)∗ ◦ a

))

g∗ ◦ f∗ ◦ a ◦ g∗ ◦ g∗

β

��

44

g∗ ◦ f∗ ◦ g′
∗ ◦ a′ ◦ g∗β∨

oo

β

��

f ′
∗ ◦ a′ ◦ g∗

Trf′

ii

f ′
∗ ◦ (g′)∗ ◦ a ◦ g∗ ◦ g∗ f ′

∗ ◦ (g′)∗ ◦ g′
∗ ◦ a′ ◦ g∗

55

β∨
oo

In this diagram the two squares commute Categories, Lemma 4.28.2 or more simply
the discussion preceding Categories, Definition 4.28.1. The triangle commutes by
the discussion above. By Categories, Lemma 4.24.8 the square

g∗ ◦ f∗ ◦ g′
∗ ◦ a′

β∨

��

β
// f ′

∗ ◦ (g′)∗ ◦ g′
∗ ◦ a′

��
g∗ ◦ f∗ ◦ a ◦ g∗ // id

commutes which implies the pentagon in the big diagram commutes. Since β and
β∨ are isomorphisms, and since going on the outside of the big diagram equals
Trf ◦ α ◦ β by definition this proves the lemma. □

Let f : X → Y be a morphism of quasi-compact and quasi-separated schemes. Let
a : DQCoh(OY )→ DQCoh(OX) be the right adjoint of Rf∗ as in Lemma 48.3.1. By
Categories, Section 4.24 we obtain a transformation of functors

ηf : id→ a ◦Rf∗

https://stacks.math.columbia.edu/tag/0B6J
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which is called the unit of the adjunction.

Lemma 48.7.2.0B6K Suppose we have a diagram (48.4.0.1) where f and g are tor inde-
pendent. Then the maps 1 ⋆ ηf : L(g′)∗ → L(g′)∗ ◦ a ◦ Rf∗ and ηf ′ ⋆ 1 : L(g′)∗ →
a′ ◦Rf ′

∗ ◦L(g′)∗ agree via the base change maps β : Lg∗ ◦Rf∗ → Rf ′
∗ ◦L(g′)∗ (Co-

homology, Remark 20.28.3) and α : L(g′)∗ ◦a→ a′ ◦Lg∗ (48.5.0.1). More precisely,
the diagram

L(g′)∗
1⋆ηf

//

ηf′⋆1
��

L(g′)∗ ◦ a ◦Rf∗

α

��
a′ ◦Rf ′

∗ ◦ L(g′)∗ a′ ◦ Lg∗ ◦Rf∗
βoo

of transformations of functors commutes.

Proof. This proof is dual to the proof of Lemma 48.7.1. In this proof we write f∗
for Rf∗ and g∗ for Lg∗ and we drop ⋆ products with identities as one can figure out
which ones to add as long as the source and target of the transformation is known.
Recall that β : g∗ ◦f∗ → f ′

∗ ◦(g′)∗ is an isomorphism and that α is defined using the
isomorphism β∨ : g′

∗ ◦ a′ → a ◦ g∗ which is the adjoint of β, see Lemma 48.4.1 and
its proof. First we note that the left vertical arrow of the diagram in the lemma is
equal to the composition

(g′)∗ → (g′)∗ ◦ g′
∗ ◦ (g′)∗ → (g′)∗ ◦ g′

∗ ◦ a′ ◦ f ′
∗ ◦ (g′)∗ → a′ ◦ f ′

∗ ◦ (g′)∗

where the first arrow is the unit for ((g′)∗, g′
∗), the second arrow is ηf ′ , and the

third arrow is the counit for ((g′)∗, g′
∗). This is a simple consequence of the fact

that the composition (g′)∗ → (g′)∗ ◦ (g′)∗ ◦ (g′)∗ → (g′)∗ of unit and counit is the
identity. Consider the diagram

(g′)∗ ◦ a ◦ f∗ // (g′)∗ ◦ a ◦ g∗ ◦ g∗ ◦ f∗
β

tt
(g′)∗

ηf
55

ηf′

��

))

(g′)∗ ◦ a ◦ g∗ ◦ f ′
∗ ◦ (g′)∗ (g′)∗ ◦ g′

∗ ◦ a′ ◦ g∗ ◦ f∗

β∨

OO

β

tt ��
(g′)∗ ◦ g′

∗ ◦ a′ ◦ f ′
∗ ◦ (g′)∗

uu

β∨

OO

a′ ◦ g∗ ◦ f∗

β
rr

a′ ◦ f ′
∗ ◦ (g′)∗

In this diagram the two squares commute Categories, Lemma 4.28.2 or more simply
the discussion preceding Categories, Definition 4.28.1. The triangle commutes by
the discussion above. By the dual of Categories, Lemma 4.24.8 the square

id //

��

g′
∗ ◦ a′ ◦ g∗ ◦ f∗

β

��
g′

∗ ◦ a′ ◦ g∗ ◦ f∗
β∨
// a ◦ g∗ ◦ f ′

∗ ◦ (g′)∗

commutes which implies the pentagon in the big diagram commutes. Since β and
β∨ are isomorphisms, and since going on the outside of the big diagram equals
β ◦ α ◦ ηf by definition this proves the lemma. □

https://stacks.math.columbia.edu/tag/0B6K
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Example 48.7.3.0B6L Let A → B be a ring map. Let Y = Spec(A) and X = Spec(B)
and f : X → Y the morphism corresponding to A → B. As seen in Example
48.3.2 the right adjoint of Rf∗ : DQCoh(OX) → DQCoh(OY ) sends an object K of
D(A) = DQCoh(OY ) to RHom(B,K) in D(B) = DQCoh(OX). The trace map is
the map

Trf,K : RHom(B,K) −→ RHom(A,K) = K

induced by the A-module map A→ B.

48.8. Right adjoint of pushforward and pullback

0B6N Let f : X → Y be a morphism of quasi-compact and quasi-separated schemes. Let
a be the right adjoint of pushforward as in Lemma 48.3.1. For K,L ∈ DQCoh(OY )
there is a canonical map

Lf∗K ⊗L
OX

a(L) −→ a(K ⊗L
OY

L)

Namely, this map is adjoint to a map

Rf∗(Lf∗K ⊗L
OX

a(L)) = K ⊗L
OY

Rf∗(a(L)) −→ K ⊗L
OY

L

(equality by Derived Categories of Schemes, Lemma 36.22.1) for which we use the
trace map Rf∗a(L)→ L. When L = OY we obtain a map

(48.8.0.1)0A9S Lf∗K ⊗L
OX

a(OY ) −→ a(K)

functorial in K and compatible with distinguished triangles.

Lemma 48.8.1.0A9T Let f : X → Y be a morphism of quasi-compact and quasi-
separated schemes. The map Lf∗K ⊗L

OX
a(L) → a(K ⊗L

OY
L) defined above for

K,L ∈ DQCoh(OY ) is an isomorphism if K is perfect. In particular, (48.8.0.1) is
an isomorphism if K is perfect.

Proof. Let K∨ be the “dual” to K, see Cohomology, Lemma 20.50.5. For M ∈
DQCoh(OX) we have

HomD(OY )(Rf∗M,K ⊗L
OY

L) = HomD(OY )(Rf∗M ⊗L
OY

K∨, L)
= HomD(OX)(M ⊗L

OX
Lf∗K∨, a(L))

= HomD(OX)(M,Lf∗K ⊗L
OX

a(L))

Second equality by the definition of a and the projection formula (Cohomology,
Lemma 20.54.3) or the more general Derived Categories of Schemes, Lemma 36.22.1.
Hence the result by the Yoneda lemma. □

Lemma 48.8.2.0B6P Suppose we have a diagram (48.4.0.1) where f and g are tor inde-
pendent. Let K ∈ DQCoh(OY ). The diagram

L(g′)∗(Lf∗K ⊗L
OX

a(OY )) //

��

L(g′)∗a(K)

��
L(f ′)∗Lg∗K ⊗L

OX′ a
′(OY ′) // a′(Lg∗K)

commutes where the horizontal arrows are the maps (48.8.0.1) for K and Lg∗K and
the vertical maps are constructed using Cohomology, Remark 20.28.3 and (48.5.0.1).

https://stacks.math.columbia.edu/tag/0B6L
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Proof. In this proof we will write f∗ for Rf∗ and f∗ for Lf∗, etc, and we will write
⊗ for ⊗L

OX
, etc. Let us write (48.8.0.1) as the composition

f∗K ⊗ a(OY )→ a(f∗(f∗K ⊗ a(OY )))
← a(K ⊗ f∗a(OK))
→ a(K ⊗OY )
→ a(K)

Here the first arrow is the unit ηf , the second arrow is a applied to Cohomology,
Equation (20.54.2.1) which is an isomorphism by Derived Categories of Schemes,
Lemma 36.22.1, the third arrow is a applied to idK ⊗ Trf , and the fourth arrow
is a applied to the isomorphism K ⊗ OY = K. The proof of the lemma consists
in showing that each of these maps gives rise to a commutative square as in the
statement of the lemma. For ηf and Trf this is Lemmas 48.7.2 and 48.7.1. For the
arrow using Cohomology, Equation (20.54.2.1) this is Cohomology, Remark 20.54.5.
For the multiplication map it is clear. This finishes the proof. □

Lemma 48.8.3.0B6Q Let f : X → Y be a proper morphism of Noetherian schemes.
Let V ⊂ Y be an open such that f−1(V ) → V is an isomorphism. Then for
K ∈ D+

QCoh(OY ) the map (48.8.0.1) restricts to an isomorphism over f−1(V ).

Proof. By Lemma 48.4.4 the map (48.4.1.1) is an isomorphism for objects ofD+
QCoh(OY ).

Hence Lemma 48.8.2 tells us the restriction of (48.8.0.1) for K to f−1(V ) is the
map (48.8.0.1) for K|V and f−1(V )→ V . Thus it suffices to show that the map is
an isomorphism when f is the identity morphism. This is clear. □

Lemma 48.8.4.0B6R Let f : X → Y and g : Y → Z be composable morphisms of
quasi-compact and quasi-separated schemes and set h = g ◦ f . Let a, b, c be the
adjoints of Lemma 48.3.1 for f, g, h. For any K ∈ DQCoh(OZ) the diagram

Lf∗(Lg∗K ⊗L
OY

b(OZ))⊗L
OX

a(OY ) // a(Lg∗K ⊗L
OY

b(OZ)) // a(b(K))

Lh∗K ⊗L
OX

Lf∗b(OZ)⊗L
OX

a(OY ) // Lh∗K ⊗L
OX

c(OZ) // c(K)

is commutative where the arrows are (48.8.0.1) and we have used Lh∗ = Lf∗ ◦Lg∗

and c = a ◦ b.
Proof. In this proof we will write f∗ for Rf∗ and f∗ for Lf∗, etc, and we will write
⊗ for ⊗L

OX
, etc. The composition of the top arrows is adjoint to a map

g∗f∗(f∗(g∗K ⊗ b(OZ))⊗ a(OY ))→ K

The left hand side is equal to K ⊗ g∗f∗(f∗b(OZ) ⊗ a(OY )) by Derived Categories
of Schemes, Lemma 36.22.1 and inspection of the definitions shows the map comes
from the map

g∗f∗(f∗b(OZ)⊗ a(OY )) g∗ϵ←−− g∗(b(OZ)⊗ f∗a(OY )) g∗α−−→ g∗(b(OZ)) β−→ OZ
tensored with idK . Here ϵ is the isomorphism from Derived Categories of Schemes,
Lemma 36.22.1 and β comes from the counit map g∗b→ id. Similarly, the composi-
tion of the lower horizontal arrows is adjoint to idK tensored with the composition

g∗f∗(f∗b(OZ)⊗ a(OY )) g∗f∗δ−−−→ g∗f∗(ab(OZ)) g∗γ−−→ g∗(b(OZ)) β−→ OZ

https://stacks.math.columbia.edu/tag/0B6Q
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where γ comes from the counit map f∗a → id and δ is the map whose adjoint is
the composition

f∗(f∗b(OZ)⊗ a(OY )) ϵ←− b(OZ)⊗ f∗a(OY ) α−→ b(OZ)
By general properties of adjoint functors, adjoint maps, and counits (see Categories,
Section 4.24) we have γ ◦ f∗δ = α ◦ ϵ−1 as desired. □

48.9. Right adjoint of pushforward for closed immersions

0A74 Let i : (Z,OZ) → (X,OX) be a morphism of ringed spaces such that i is a home-
omorphism onto a closed subset and such that i♯ : OX → i∗OZ is surjective. (For
example a closed immersion of schemes.) Let I = Ker(i♯). For a sheaf of OX -
modules F the sheaf

HomOX
(i∗OZ ,F)

a sheaf of OX -modules annihilated by I. Hence by Modules, Lemma 17.13.4 there
is a sheaf of OZ-modules, which we will denote Hom(OZ ,F), such that

i∗Hom(OZ ,F) = HomOX
(i∗OZ ,F)

as OX -modules. We spell out what this means.
Lemma 48.9.1.0A75 With notation as above. The functor Hom(OZ ,−) is a right adjoint
to the functor i∗ : Mod(OZ)→ Mod(OX). For V ⊂ Z open we have

Γ(V,Hom(OZ ,F)) = {s ∈ Γ(U,F) | Is = 0}
where U ⊂ X is an open whose intersection with Z is V .
Proof. Let G be a sheaf of OZ-modules. Then

HomOX
(i∗G,F) = Homi∗OZ

(i∗G,HomOX
(i∗OZ ,F)) = HomOZ

(G,Hom(OZ ,F))
The first equality by Modules, Lemma 17.22.3 and the second by the fully faithful-
ness of i∗, see Modules, Lemma 17.13.4. The description of sections is left to the
reader. □

The functor
Mod(OX) −→ Mod(OZ), F 7−→ Hom(OZ ,F)

is left exact and has a derived extension
RHom(OZ ,−) : D(OX)→ D(OZ).

Lemma 48.9.2.0A76 With notation as above. The functor RHom(OZ ,−) is the right
adjoint of the functor Ri∗ : D(OZ)→ D(OX).
Proof. This is a consequence of the fact that i∗ and Hom(OZ ,−) are adjoint func-
tors by Lemma 48.9.1. See Derived Categories, Lemma 13.30.3. □

Lemma 48.9.3.0A77 With notation as above. We have
Ri∗RHom(OZ ,K) = RHomOX

(i∗OZ ,K)
in D(OX) for all K in D(OX).
Proof. This is immediate from the construction of the functor RHom(OZ ,−). □

Lemma 48.9.4.0E2I With notation as above. For M ∈ D(OZ) we have
RHomOX

(Ri∗M,K) = Ri∗RHomOZ
(M,RHom(OZ ,K))

in D(OZ) for all K in D(OX).

https://stacks.math.columbia.edu/tag/0A75
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Proof. This is immediate from the construction of the functor RHom(OZ ,−) and
the fact that if K• is a K-injective complex of OX -modules, then Hom(OZ ,K•) is
a K-injective complex of OZ-modules, see Derived Categories, Lemma 13.31.9. □

Lemma 48.9.5.0A78 Let i : Z → X be a pseudo-coherent closed immersion of schemes
(any closed immersion if X is locally Noetherian). Then

(1) RHom(OZ ,−) maps D+
QCoh(OX) into D+

QCoh(OZ), and
(2) if X = Spec(A) and Z = Spec(B), then the diagram

D+(B) // D+
QCoh(OZ)

D+(A) //

RHom(B,−)

OO

D+
QCoh(OX)

RHom(OZ ,−)

OO

is commutative.

Proof. To explain the parenthetical remark, if X is locally Noetherian, then i is
pseudo-coherent by More on Morphisms, Lemma 37.60.9.
Let K be an object of D+

QCoh(OX). To prove (1), by Morphisms, Lemma 29.4.1 it
suffices to show that i∗ applied to Hn(RHom(OZ ,K)) produces a quasi-coherent
module onX. By Lemma 48.9.3 this means we have to show thatRHomOX

(i∗OZ ,K)
is in DQCoh(OX). Since i is pseudo-coherent the sheaf OZ is a pseudo-coherent
OX -module. Hence the result follows from Derived Categories of Schemes, Lemma
36.10.8.
Assume X = Spec(A) and Z = Spec(B) as in (2). Let I• be a bounded below
complex of injective A-modules representing an object K of D+(A). Then we know
that RHom(B,K) = HomA(B, I•) viewed as a complex of B-modules. Choose a
quasi-isomorphism

Ĩ• −→ I•

where I• is a bounded below complex of injective OX -modules. It follows from the
description of the functor Hom(OZ ,−) in Lemma 48.9.1 that there is a map

HomA(B, I•) −→ Γ(Z,Hom(OZ , I•))

Observe thatHom(OZ , I•) representsRHom(OZ , K̃). Applying the universal prop-
erty of the ˜ functor we obtain a map

˜HomA(B, I•) −→ RHom(OZ , K̃)
in D(OZ). We may check that this map is an isomorphism in D(OZ) after applying
i∗. However, once we apply i∗ we obtain the isomorphism of Derived Categories of
Schemes, Lemma 36.10.8 via the identification of Lemma 48.9.3. □

Lemma 48.9.6.0A79 Let i : Z → X be a closed immersion of schemes. Assume X is a
locally Noetherian. Then RHom(OZ ,−) maps D+

Coh(OX) into D+
Coh(OZ).

Proof. The question is local on X, hence we may assume that X is affine. Say
X = Spec(A) and Z = Spec(B) with A Noetherian and A → B surjective.
In this case, we can apply Lemma 48.9.5 to translate the question into algebra.
The corresponding algebra result is a consequence of Dualizing Complexes, Lemma
47.13.4. □

https://stacks.math.columbia.edu/tag/0A78
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Lemma 48.9.7.0A9X Let X be a quasi-compact and quasi-separated scheme. Let i :
Z → X be a pseudo-coherent closed immersion (if X is Noetherian, then any
closed immersion is pseudo-coherent). Let a : DQCoh(OX) → DQCoh(OZ) be the
right adjoint to Ri∗. Then there is a functorial isomorphism

a(K) = RHom(OZ ,K)
for K ∈ D+

QCoh(OX).
Proof. (The parenthetical statement follows from More on Morphisms, Lemma
37.60.9.) By Lemma 48.9.2 the functor RHom(OZ ,−) is a right adjoint to Ri∗ :
D(OZ)→ D(OX). Moreover, by Lemma 48.9.5 and Lemma 48.3.5 bothRHom(OZ ,−)
and a map D+

QCoh(OX) into D+
QCoh(OZ). Hence we obtain the isomorphism by

uniqueness of adjoint functors. □

Example 48.9.8.0B6M If i : Z → X is closed immersion of Noetherian schemes, then the
diagram

i∗a(K)
Tri,K

// K

i∗RHom(OZ ,K) RHomOX
(i∗OZ ,K) // K

is commutative for K ∈ D+
QCoh(OX). Here the horizontal equality sign is Lemma

48.9.3 and the lower horizontal arrow is induced by the map OX → i∗OZ . The
commutativity of the diagram is a consequence of Lemma 48.9.7.

48.10. Right adjoint of pushforward for closed immersions and base change

0E2J Consider a cartesian diagram of schemes
Z ′

i′
//

g

��

X ′

f

��
Z

i // X

where i is a closed immersion. If Z and X ′ are tor independent over X, then there
is a canonical base change map
(48.10.0.1)0E2K Lg∗RHom(OZ ,K) −→ RHom(OZ′ , Lf∗K)
in D(OZ′) functorial for K in D(OX). Namely, by adjointness of Lemma 48.9.2
such an arrow is the same thing as a map

Ri′∗Lg
∗RHom(OZ ,K) −→ Lf∗K

in D(OX′). By tor independence we have Ri′∗ ◦ Lg∗ = Lf∗ ◦ Ri∗ (see Derived
Categories of Schemes, Lemma 36.22.9). Thus this is the same thing as a map

Lf∗Ri∗RHom(OZ ,K) −→ Lf∗K

For this we can use Lf∗(can) where can : Ri∗RHom(OZ ,K)→ K is the counit of
the adjunction.
Lemma 48.10.1.0E2L In the situation above, the map (48.10.0.1) is an isomorphism if
and only if the base change map

Lf∗RHomOX
(OZ ,K) −→ RHomOX′ (OZ′ , Lf∗K)

of Cohomology, Remark 20.42.13 is an isomorphism.

https://stacks.math.columbia.edu/tag/0A9X
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Proof. The statement makes sense because OZ′ = Lf∗OZ by the assumed tor
independence. Since i′∗ is exact and faithful we see that it suffices to show the map
(48.10.0.1) is an isomorphism after applying Ri′∗. Since Ri′∗ ◦ Lg∗ = Lf∗ ◦ Ri∗ by
the assumed tor indepence and Derived Categories of Schemes, Lemma 36.22.9 we
obtain a map

Lf∗Ri∗RHom(OZ ,K) −→ Ri′∗RHom(OZ′ , Lf∗K)

whose source and target are as in the statement of the lemma by Lemma 48.9.3.
We omit the verification that this is the same map as the one constructed in Co-
homology, Remark 20.42.13. □

Lemma 48.10.2.0E2M In the situation above, assume f is flat and i pseudo-coherent.
Then (48.10.0.1) is an isomorphism for K in D+

QCoh(OX).

Proof. First proof. To prove this map is an isomorphism, we may work locally.
Hence we may assume X, X ′, Z, Z ′ are affine, say corresponding to the rings A,
A′, B, B′. Then B and A′ are tor independent over A. By Lemma 48.10.1 it suffices
to check that

RHomA(B,K)⊗L
A A

′ = RHomA′(B′,K ⊗L
A A

′)

in D(A′) for all K ∈ D+(A). Here we use Derived Categories of Schemes, Lemma
36.10.8 and the fact that B, resp. B′ is pseudo-coherent as an A-module, resp. A′-
module to compare derived hom on the level of rings and schemes. The displayed
equality follows from More on Algebra, Lemma 15.98.3 part (3). See also the
discussion in Dualizing Complexes, Section 47.14.

Second proof4. Let z′ ∈ Z ′ with image z ∈ Z. First show that (48.10.0.1) on stalks
at z′ induces the map

RHom(OZ,z,Kz)⊗L
OZ,x

OZ′,z′ −→ RHom(OZ′,z′ ,Kz ⊗L
OX,z

OX′,z′)

from Dualizing Complexes, Equation (47.14.0.1). Namely, the constructions of
these maps are identical. Then apply Dualizing Complexes, Lemma 47.14.2. □

Lemma 48.10.3.0E2N Let i : Z → X be a pseudo-coherent closed immersion of schemes.
Let M ∈ DQCoh(OX) locally have tor-amplitude in [a,∞). Let K ∈ D+

QCoh(OX).
Then there is a canonical isomorphism

RHom(OZ ,K)⊗L
OZ

Li∗M = RHom(OZ ,K ⊗L
OX

M)

in D(OZ).

Proof. A map from LHS to RHS is the same thing as a map

Ri∗RHom(OZ ,K)⊗L
OX

M −→ K ⊗L
OX

M

by Lemmas 48.9.2 and 48.9.3. For this map we take the counitRi∗RHom(OZ ,K)→
K tensored with idM . To see this map is an isomorphism under the hypotheses
given, translate into algebra using Lemma 48.9.5 and then for example use More
on Algebra, Lemma 15.98.3 part (3). Instead of using Lemma 48.9.5 you can look
at stalks as in the second proof of Lemma 48.10.2. □

4This proof shows it suffices to assume K is in D+(OX).

https://stacks.math.columbia.edu/tag/0E2M
https://stacks.math.columbia.edu/tag/0E2N
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48.11. Right adjoint of pushforward for finite morphisms

0AWZ If i : Z → X is a closed immersion of schemes, then there is a right adjoint
Hom(OZ ,−) to the functor i∗ : Mod(OZ) → Mod(OX) whose derived extension
RHom(OZ ,−) is the right adjoint to Ri∗ : D(OZ)→ D(OX). See Section 48.9. In
the case of a finite morphism f : Y → X this strategy cannot work, as the functor
f∗ : Mod(OY )→ Mod(OX) is not exact in general and hence does not have a right
adjoint. A replacement is to consider the exact functor Mod(f∗OY ) → Mod(OX)
and consider the corresponding right adjoint and its derived extension.
Let f : Y → X be an affine morphism of schemes. For a sheaf of OX -modules F
the sheaf

HomOX
(f∗OY ,F)

is a sheaf of f∗OY -modules. We obtain a functor Mod(OX) → Mod(f∗OY ) which
we will denote Hom(f∗OY ,−).

Lemma 48.11.1.0BUZ With notation as above. The functor Hom(f∗OY ,−) is a right
adjoint to the restriction functor Mod(f∗OY ) → Mod(OX). For an affine open
U ⊂ X we have

Γ(U,Hom(f∗OY ,F)) = HomA(B,F(U))
where A = OX(U) and B = OY (f−1(U)).

Proof. Adjointness follows from Modules, Lemma 17.22.3. As f is affine we see
that f∗OY is the quasi-coherent sheaf corresponding to B viewed as an A-module.
Hence the description of sections over U follows from Schemes, Lemma 26.7.1. □

The functor Hom(f∗OY ,−) is left exact. Let
RHom(f∗OY ,−) : D(OX) −→ D(f∗OY )

be its derived extension.

Lemma 48.11.2.0BV0 With notation as above. The functor RHom(f∗OY ,−) is the right
adjoint of the functor D(f∗OY )→ D(OX).

Proof. Follows from Lemma 48.11.1 and Derived Categories, Lemma 13.30.3. □

Lemma 48.11.3.0BV1 With notation as above. The composition

D(OX) RHom(f∗OY ,−)−−−−−−−−−−−→ D(f∗OY )→ D(OX)
is the functor K 7→ RHomOX

(f∗OY ,K).

Proof. This is immediate from the construction. □

Lemma 48.11.4.0AX2 Let f : Y → X be a finite pseudo-coherent morphism of schemes (a
finite morphism of Noetherian schemes is pseudo-coherent). The functorRHom(f∗OY ,−)
maps D+

QCoh(OX) into D+
QCoh(f∗OY ). If X is quasi-compact and quasi-separated,

then the diagram

D+
QCoh(OX)

a
//

RHom(f∗OY ,−) ''

D+
QCoh(OY )

Φww
D+

QCoh(f∗OY )

https://stacks.math.columbia.edu/tag/0BUZ
https://stacks.math.columbia.edu/tag/0BV0
https://stacks.math.columbia.edu/tag/0BV1
https://stacks.math.columbia.edu/tag/0AX2
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is commutative, where a is the right adjoint of Lemma 48.3.1 for f and Φ is the
equivalence of Derived Categories of Schemes, Lemma 36.5.4.

Proof. (The parenthetical remark follows from More on Morphisms, Lemma 37.60.9.)
Since f is pseudo-coherent, the OX -module f∗OY is pseudo-coherent, see More
on Morphisms, Lemma 37.60.8. Thus RHom(f∗OY ,−) maps D+

QCoh(OX) into
D+

QCoh(f∗OY ), see Derived Categories of Schemes, Lemma 36.10.8. Then Φ ◦ a
and RHom(f∗OY ,−) agree on D+

QCoh(OX) because these functors are both right
adjoint to the restriction functor D+

QCoh(f∗OY ) → D+
QCoh(OX). To see this use

Lemmas 48.3.5 and 48.11.2. □

Remark 48.11.5.0AX3 If f : Y → X is a finite morphism of Noetherian schemes, then
the diagram

Rf∗a(K)
Trf,K

// K

RHomOX
(f∗OY ,K) // K

is commutative for K ∈ D+
QCoh(OX). This follows from Lemma 48.11.4. The lower

horizontal arrow is induced by the map OX → f∗OY and the upper horizontal
arrow is the trace map discussed in Section 48.7.

48.12. Right adjoint of pushforward for proper flat morphisms

0E4H For proper, flat, and finitely presented morphisms of quasi-compact and quasi-
separated schemes the right adjoint of pushforward enjoys some remarkable prop-
erties.

Lemma 48.12.1.0E4I Let Y be a quasi-compact and quasi-separated scheme. Let f :
X → Y be a morphism of schemes which is proper, flat, and of finite presentation.
Let a be the right adjoint for Rf∗ : DQCoh(OX) → DQCoh(OY ) of Lemma 48.3.1.
Then a commutes with direct sums.

Proof. Let P be a perfect object of D(OX). By Derived Categories of Schemes,
Lemma 36.30.4 the complex Rf∗P is perfect on Y . Let Ki be a family of objects
of DQCoh(OY ). Then

HomD(OX)(P, a(
⊕

Ki)) = HomD(OY )(Rf∗P,
⊕

Ki)

=
⊕

HomD(OY )(Rf∗P,Ki)

=
⊕

HomD(OX)(P, a(Ki))

because a perfect object is compact (Derived Categories of Schemes, Proposition
36.17.1). Since DQCoh(OX) has a perfect generator (Derived Categories of Schemes,
Theorem 36.15.3) we conclude that the map

⊕
a(Ki) → a(

⊕
Ki) is an isomor-

phism, i.e., a commutes with direct sums. □

Lemma 48.12.2.0E4J Let Y be a quasi-compact and quasi-separated scheme. Let f :
X → Y be a morphism of schemes which is proper, flat, and of finite presentation.
Let a be the right adjoint for Rf∗ : DQCoh(OX) → DQCoh(OY ) of Lemma 48.3.1.
Then

https://stacks.math.columbia.edu/tag/0AX3
https://stacks.math.columbia.edu/tag/0E4I
https://stacks.math.columbia.edu/tag/0E4J
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(1) for every closed T ⊂ Y if Q ∈ DQCoh(Y ) is supported on T , then a(Q) is
supported on f−1(T ),

(2) for every open V ⊂ Y and any K ∈ DQCoh(OY ) the map (48.4.1.1) is an
isomorphism, and

Proof. This follows from Lemmas 48.4.3, 48.4.4, and 48.12.1. □

Lemma 48.12.3.0E4K Let Y be a quasi-compact and quasi-separated scheme. Let f :
X → Y be a morphism of schemes which is proper, flat, and of finite presentation.
The map (48.8.0.1) is an isomorphism for every object K of DQCoh(OY ).

Proof. By Lemma 48.12.1 we know that a commutes with direct sums. Hence
the collection of objects of DQCoh(OY ) for which (48.8.0.1) is an isomorphism is a
strictly full, saturated, triangulated subcategory of DQCoh(OY ) which is moreover
preserved under taking direct sums. Since DQCoh(OY ) is a module category (De-
rived Categories of Schemes, Theorem 36.18.3) generated by a single perfect object
(Derived Categories of Schemes, Theorem 36.15.3) we can argue as in More on Al-
gebra, Remark 15.59.11 to see that it suffices to prove (48.8.0.1) is an isomorphism
for a single perfect object. However, the result holds for perfect objects, see Lemma
48.8.1. □

The following lemma shows that the base change map (48.5.0.1) is an isomorphism
for proper, flat morphisms of finite presentation. We will see in Example 48.15.2
that this does not remain true for perfect proper morphisms; in that case one has
to make a tor independence condition.

Lemma 48.12.4.0AAB Let g : Y ′ → Y be a morphism of quasi-compact and quasi-
separated schemes. Let f : X → Y be a proper, flat morphism of finite presentation.
Then the base change map (48.5.0.1) is an isomorphism for all K ∈ DQCoh(OY ).

Proof. By Lemma 48.12.2 formation of the functors a and a′ commutes with re-
striction to opens of Y and Y ′. Hence we may assume Y ′ → Y is a morphism of
affine schemes, see Remark 48.6.1. In this case the statement follows from Lemma
48.6.2. □

Remark 48.12.5.0B6S Let Y be a quasi-compact and quasi-separated scheme. Let
f : X → Y be a proper, flat morphism of finite presentation. Let a be the adjoint
of Lemma 48.3.1 for f . In this situation, ω•

X/Y = a(OY ) is sometimes called the
relative dualizing complex. By Lemma 48.12.3 there is a functorial isomorphism
a(K) = Lf∗K ⊗L

OX
ω•
X/Y for K ∈ DQCoh(OY ). Moreover, the trace map

Trf,OY
: Rf∗ω

•
X/Y → OY

of Section 48.7 induces the trace map for all K in DQCoh(OY ). More precisely the
diagram

Rf∗a(K)
Trf,K

// K

Rf∗(Lf∗K ⊗L
OX

ω•
X/Y ) K ⊗L

OY
Rf∗ω

•
X/Y

idK⊗Trf,OY // K

where the equality on the lower right is Derived Categories of Schemes, Lemma
36.22.1. If g : Y ′ → Y is a morphism of quasi-compact and quasi-separated schemes

https://stacks.math.columbia.edu/tag/0E4K
https://stacks.math.columbia.edu/tag/0AAB
https://stacks.math.columbia.edu/tag/0B6S
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and X ′ = Y ′ ×Y X, then by Lemma 48.12.4 we have ω•
X′/Y ′ = L(g′)∗ω•

X/Y where
g′ : X ′ → X is the projection and by Lemma 48.7.1 the trace map

Trf ′,OY ′ : Rf ′
∗ω

•
X′/Y ′ → OY ′

for f ′ : X ′ → Y ′ is the base change of Trf,OY
via the base change isomorphism.

Remark 48.12.6.0G81 Let f : X → Y , ω•
X/Y , and Trf,OY

be as in Remark 48.12.5.
Let K and M be in DQCoh(OX) with M pseudo-coherent (for example perfect).
Suppose given a map K ⊗L

OX
M → ω•

X/Y which corresponds to an isomorphism
K → RHomOX

(M,ω•
X/Y ) via Cohomology, Equation (20.42.0.1). Then the relative

cup product (Cohomology, Remark 20.28.7)

Rf∗K ⊗L
OY

Rf∗M → Rf∗(K ⊗L
OX

M)→ Rf∗ω
•
X/Y

Trf,OY−−−−−→ OY
determines an isomorphismRf∗K → RHomOY

(Rf∗M,OY ). Namely, since ω•
X/Y =

a(OY ) the canonical map (48.3.5.1)
Rf∗RHomOX

(M,ω•
X/Y )→ RHomOY

(Rf∗M,OY )
is an isomorphism by Lemma 48.3.6 and Remark 48.3.8 and the fact that M and
Rf∗M are pseudo-coherent, see Derived Categories of Schemes, Lemma 36.30.5. To
see that the relative cup product induces this isomorphism use the commutativity
of the diagram in Cohomology, Remark 20.42.12.
Lemma 48.12.7.0E4L Let Y be a quasi-compact and quasi-separated scheme. Let f :
X → Y be a morphism of schemes which is proper, flat, and of finite presentation
with relative dualizing complex ω•

X/Y (Remark 48.12.5). Then
(1) ω•

X/Y is a Y -perfect object of D(OX),
(2) Rf∗ω

•
X/Y has vanishing cohomology sheaves in positive degrees,

(3) OX → RHomOX
(ω•
X/Y , ω

•
X/Y ) is an isomorphism.

Proof. In view of the fact that formation of ω•
X/Y commutes with base change (see

Remark 48.12.5), we may and do assume that Y is affine. For a perfect object E
of D(OX) we have

Rf∗(E ⊗L
OX

ω•
X/Y ) = Rf∗RHomOX

(E∨, ω•
X/Y )

= RHomOY
(Rf∗E

∨,OY )
= (Rf∗E

∨)∨

For the first equality, see Cohomology, Lemma 20.50.5. For the second equality, see
Lemma 48.3.6, Remark 48.3.8, and Derived Categories of Schemes, Lemma 36.30.4.
The third equality is the definition of the dual. In particular these references also
show that the outcome is a perfect object of D(OY ). We conclude that ω•

X/Y is
Y -perfect by More on Morphisms, Lemma 37.69.6. This proves (1).
Let M be an object of DQCoh(OY ). Then

HomY (M,Rf∗ω
•
X/Y ) = HomX(Lf∗M,ω•

X/Y )
= HomY (Rf∗Lf

∗M,OY )
= HomY (M ⊗L

OY
Rf∗OX ,OY )

The first equality holds by Cohomology, Lemma 20.28.1. The second equality by
construction of a. The third equality by Derived Categories of Schemes, Lemma

https://stacks.math.columbia.edu/tag/0G81
https://stacks.math.columbia.edu/tag/0E4L
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36.22.1. Recall Rf∗OX is perfect of tor amplitude in [0, N ] for some N , see Derived
Categories of Schemes, Lemma 36.30.4. Thus we can representRf∗OX by a complex
of finite projective modules sitting in degrees [0, N ] (using More on Algebra, Lemma
15.74.2 and the fact that Y is affine). Hence if M = OY [−i] for some i > 0, then
the last group is zero. Since Y is affine we conclude that Hi(Rf∗ω

•
X/Y ) = 0 for

i > 0. This proves (2).
Let E be a perfect object of DQCoh(OX). Then we have

HomX(E,RHomOX
(ω•
X/Y , ω

•
X/Y ) = HomX(E ⊗L

OX
ω•
X/Y , ω

•
X/Y )

= HomY (Rf∗(E ⊗L
OX

ω•
X/Y ),OY )

= HomY (Rf∗(RHomOX
(E∨, ω•

X/Y )),OY )
= HomY (RHomOY

(Rf∗E
∨,OY ),OY )

= RΓ(Y,Rf∗E
∨)

= HomX(E,OX)
The first equality holds by Cohomology, Lemma 20.42.2. The second equality is
the definition of ω•

X/Y . The third equality comes from the construction of the dual
perfect complex E∨, see Cohomology, Lemma 20.50.5. The fourth equality follows
from the equality Rf∗RHomOX

(E∨, ω•
X/Y ) = RHomOY

(Rf∗E
∨,OY ) shown in the

first paragraph of the proof. The fifth equality holds by double duality for perfect
complexes (Cohomology, Lemma 20.50.5) and the fact that Rf∗E is perfect by
Derived Categories of Schemes, Lemma 36.30.4. The last equality is Leray for
f . This string of equalities essentially shows (3) holds by the Yoneda lemma.
Namely, the object RHom(ω•

X/Y , ω
•
X/Y ) is in DQCoh(OX) by Derived Categories

of Schemes, Lemma 36.10.8. Taking E = OX in the above we get a map α : OX →
RHomOX

(ω•
X/Y , ω

•
X/Y ) corresponding to idOX

∈ HomX(OX ,OX). Since all the
isomorphisms above are functorial in E we see that the cone on α is an object C of
DQCoh(OX) such that Hom(E,C) = 0 for all perfect E. Since the perfect objects
generate (Derived Categories of Schemes, Theorem 36.15.3) we conclude that α is
an isomorphism. □

Lemma 48.12.8 (Rigidity).0E2P Let Y be a quasi-compact and quasi-separated scheme.
Let f : X → Y be a proper, flat morphism of finite presentation with relative
dualizing complex ω•

X/Y (Remark 48.12.5). There is a canonical isomorphism

(48.12.8.1)0E2Q OX = c(Lpr∗
1ω

•
X/Y ) = c(Lpr∗

2ω
•
X/Y )

and a canonical isomorphism

(48.12.8.2)0E2R ω•
X/Y = c

(
Lpr∗

1ω
•
X/Y ⊗

L
OX×Y X

Lpr∗
2ω

•
X/Y

)
where c is the right adjoint of Lemma 48.3.1 for the diagonal ∆ : X → X ×Y X.

Proof. Let a be the right adjoint to Rf∗ as in Lemma 48.3.1. Consider the cartesian
square

X ×Y X q
//

p

��

X

f

��
X

f // Y

https://stacks.math.columbia.edu/tag/0E2P
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Let b be the right adjoint for p as in Lemma 48.3.1. Then
ω•
X/Y = c(b(ω•

X/Y ))
= c(Lp∗ω•

X/Y ⊗
L
OX×Y X

b(OX))

= c(Lp∗ω•
X/Y ⊗

L
OX×Y X

Lq∗a(OY ))

= c(Lp∗ω•
X/Y ⊗

L
OX×Y X

Lq∗ω•
X/Y )

as in (48.12.8.2). Explanation as follows:
(1) The first equality holds as id = c ◦ b because idX = p ◦∆.
(2) The second equality holds by Lemma 48.12.3.
(3) The third holds by Lemma 48.12.4 and the fact that OX = Lf∗OY .
(4) The fourth holds because ω•

X/Y = a(OY ).
Equation (48.12.8.1) is proved in exactly the same way. □

Remark 48.12.9.0BRU Lemma 48.12.8 means our relative dualizing complex is rigid in
a sense analogous to the notion introduced in [vdB97]. Namely, since the functor
on the right of (48.12.8.2) is “quadratic” in ω•

X/Y and the functor on the left of
(48.12.8.2) is “linear” this “pins down” the complex ω•

X/Y to some extent. There is
an approach to duality theory using “rigid” (relative) dualizing complexes, see for
example [Nee11], [Yek10], and [YZ09]. We will return to this in Section 48.28.

48.13. Right adjoint of pushforward for perfect proper morphisms

0AA9 The correct generality for this section would be to consider perfect proper mor-
phisms of quasi-compact and quasi-separated schemes, see [LN07].

Lemma 48.13.1.0A9R Let f : X → Y be a perfect proper morphism of Noetherian
schemes. Let a be the right adjoint for Rf∗ : DQCoh(OX)→ DQCoh(OY ) of Lemma
48.3.1. Then a commutes with direct sums.

Proof. Let P be a perfect object of D(OX). By More on Morphisms, Lemma
37.61.13 the complex Rf∗P is perfect on Y . Let Ki be a family of objects of
DQCoh(OY ). Then

HomD(OX)(P, a(
⊕

Ki)) = HomD(OY )(Rf∗P,
⊕

Ki)

=
⊕

HomD(OY )(Rf∗P,Ki)

=
⊕

HomD(OX)(P, a(Ki))

because a perfect object is compact (Derived Categories of Schemes, Proposition
36.17.1). Since DQCoh(OX) has a perfect generator (Derived Categories of Schemes,
Theorem 36.15.3) we conclude that the map

⊕
a(Ki) → a(

⊕
Ki) is an isomor-

phism, i.e., a commutes with direct sums. □

Lemma 48.13.2.0AAA Let f : X → Y be a perfect proper morphism of Noetherian
schemes. Let a be the right adjoint for Rf∗ : DQCoh(OX)→ DQCoh(OY ) of Lemma
48.3.1. Then

(1) for every closed T ⊂ Y if Q ∈ DQCoh(Y ) is supported on T , then a(Q) is
supported on f−1(T ),

(2) for every open V ⊂ Y and any K ∈ DQCoh(OY ) the map (48.4.1.1) is an
isomorphism, and

https://stacks.math.columbia.edu/tag/0BRU
https://stacks.math.columbia.edu/tag/0A9R
https://stacks.math.columbia.edu/tag/0AAA
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Proof. This follows from Lemmas 48.4.3, 48.4.4, and 48.13.1. □

Lemma 48.13.3.0A9U Let f : X → Y be a perfect proper morphism of Noetherian
schemes. The map (48.8.0.1) is an isomorphism for every object K of DQCoh(OY ).

Proof. By Lemma 48.13.1 we know that a commutes with direct sums. Hence
the collection of objects of DQCoh(OY ) for which (48.8.0.1) is an isomorphism is a
strictly full, saturated, triangulated subcategory of DQCoh(OY ) which is moreover
preserved under taking direct sums. Since DQCoh(OY ) is a module category (De-
rived Categories of Schemes, Theorem 36.18.3) generated by a single perfect object
(Derived Categories of Schemes, Theorem 36.15.3) we can argue as in More on Al-
gebra, Remark 15.59.11 to see that it suffices to prove (48.8.0.1) is an isomorphism
for a single perfect object. However, the result holds for perfect objects, see Lemma
48.8.1. □

Lemma 48.13.4.0BZG Let f : X → Y be a perfect proper morphism of Noetherian
schemes. Let g : Y ′ → Y be a morphism with Y ′ Noetherian. If X and Y ′ are tor
independent over Y , then the base change map (48.5.0.1) is an isomorphism for all
K ∈ DQCoh(OY ).

Proof. By Lemma 48.13.2 formation of the functors a and a′ commutes with re-
striction to opens of Y and Y ′. Hence we may assume Y ′ → Y is a morphism of
affine schemes, see Remark 48.6.1. In this case the statement follows from Lemma
48.6.2. □

48.14. Right adjoint of pushforward for effective Cartier divisors

0B4A Let X be a scheme and let i : D → X be the inclusion of an effective Cartier divisor.
Denote N = i∗OX(D) the normal sheaf of i, see Morphisms, Section 29.31 and
Divisors, Section 31.13. Recall that RHom(OD,−) denotes the right adjoint to i∗ :
D(OD) → D(OX) and has the property i∗RHom(OD,−) = RHomOX

(i∗OD,−),
see Section 48.9.

Lemma 48.14.1.0B4B As above, let X be a scheme and let D ⊂ X be an effective Cartier
divisor. There is a canonical isomorphism RHom(OD,OX) = N [−1] in D(OD).

Proof. Equivalently, we are saying that RHom(OD,OX) has a unique nonzero co-
homology sheaf in degree 1 and that this sheaf is isomorphic to N . Since i∗ is
exact and fully faithful, it suffices to prove that i∗RHom(OD,OX) is isomorphic to
i∗N [−1]. We have i∗RHom(OD,OX) = RHomOX

(i∗OD,OX) by Lemma 48.9.3.
We have a resolution

0→ I → OX → i∗OD → 0
where I is the ideal sheaf ofD which we can use to compute. SinceRHomOX

(OX ,OX) =
OX and RHomOX

(I,OX) = OX(D) by a local computation, we see that
RHomOX

(i∗OD,OX) = (OX → OX(D))
where on the right hand side we have OX in degree 0 and OX(D) in degree 1. The
result follows from the short exact sequence

0→ OX → OX(D)→ i∗N → 0
coming from the fact that D is the zero scheme of the canonical section of OX(D)
and from the fact that N = i∗OX(D). □

https://stacks.math.columbia.edu/tag/0A9U
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For every object K of D(OX) there is a canonical map

(48.14.1.1)0B4C Li∗K ⊗L
OD

RHom(OD,OX) −→ RHom(OD,K)

in D(OD) functorial in K and compatible with distinguished triangles. Namely,
this map is adjoint to a map

i∗(Li∗K ⊗L
OD

RHom(OD,OX)) = K ⊗L
OX

RHomOX
(i∗OD,OX) −→ K

where the equality is Cohomology, Lemma 20.54.4 and the arrow comes from the
canonical map RHomOX

(i∗OD,OX)→ OX induced by OX → i∗OD.

If K ∈ DQCoh(OX), then (48.14.1.1) is equal to (48.8.0.1) via the identification
a(K) = RHom(OD,K) of Lemma 48.9.7. If K ∈ DQCoh(OX) and X is Noetherian,
then the following lemma is a special case of Lemma 48.13.3.

Lemma 48.14.2.0AA4 As above, let X be a scheme and let D ⊂ X be an effective Cartier
divisor. Then (48.14.1.1) combined with Lemma 48.14.1 defines an isomorphism

Li∗K ⊗L
OD
N [−1] −→ RHom(OD,K)

functorial in K in D(OX).

Proof. Since i∗ is exact and fully faithful on modules, to prove the map is an
isomorphism, it suffices to show that it is an isomorphism after applying i∗. We
will use the short exact sequences 0 → I → OX → i∗OD → 0 and 0 → OX →
OX(D) → i∗N → 0 used in the proof of Lemma 48.14.1 without further mention.
By Cohomology, Lemma 20.54.4 which was used to define the map (48.14.1.1) the
left hand side becomes

K ⊗L
OX

i∗N [−1] = K ⊗L
OX

(OX → OX(D))

The right hand side becomes

RHomOX
(i∗OD,K) = RHomOX

((I → OX),K)
= RHomOX

((I → OX),OX)⊗L
OX

K

the final equality by Cohomology, Lemma 20.50.5. Since the map comes from the
isomorphism

RHomOX
((I → OX),OX) = (OX → OX(D))

the lemma is clear. □

48.15. Right adjoint of pushforward in examples

0BQV In this section we compute the right adjoint to pushforward in some examples.
The isomorphisms are canonical but only in the weakest possible sense, i.e., we do
not prove or claim that these isomorphisms are compatible with various operations
such as base change and compositions of morphisms. There is a huge literature
on these types of issues; the reader can start with the material in [Har66], [Con00]
(these citations use a different starting point for duality but address the issue of
constructing canonical representatives for relative dualizing complexes) and then
continue looking at works by Joseph Lipman and collaborators.

Lemma 48.15.1.0A9W Let Y be a Noetherian scheme. Let E be a finite locally free
OY -module of rank n+ 1 with determinant L = ∧n+1(E). Let f : X = P(E)→ Y

https://stacks.math.columbia.edu/tag/0AA4
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be the projection. Let a be the right adjoint for Rf∗ : DQCoh(OX)→ DQCoh(OY )
of Lemma 48.3.1. Then there is an isomorphism

c : f∗L(−n− 1)[n] −→ a(OY )
In particular, if E = O⊕n+1

Y , then X = Pn
Y and we obtain a(OY ) = OX(−n−1)[n].

Proof. In (the proof of) Cohomology of Schemes, Lemma 30.8.4 we constructed a
canonical isomorphism

Rnf∗(f∗L(−n− 1)) −→ OY
Moreover, Rf∗(f∗L(−n− 1))[n] = Rnf∗(f∗L(−n− 1)), i.e., the other higher direct
images are zero. Thus we find an isomorphism

Rf∗(f∗L(−n− 1)[n]) −→ OY
This isomorphism determines c as in the statement of the lemma because a is
the right adjoint of Rf∗. By Lemma 48.4.4 construction of the a is local on the
base. In particular, to check that c is an isomorphism, we may work locally on
Y . In other words, we may assume Y is affine and E = O⊕n+1

Y . In this case the
sheaves OX ,OX(−1), . . . ,OX(−n) generate DQCoh(X), see Derived Categories of
Schemes, Lemma 36.16.3. Hence it suffices to show that c : OX(−n−1)[n]→ a(OY )
is transformed into an isomorphism under the functors

Fi,p(−) = HomD(OX)(OX(i), (−)[p])
for i ∈ {−n, . . . , 0} and p ∈ Z. For F0,p this holds by construction of the arrow c!
For i ∈ {−n, . . . ,−1} we have

HomD(OX)(OX(i),OX(−n− 1)[n+ p]) = Hp(X,OX(−n− 1− i)) = 0
by the computation of cohomology of projective space (Cohomology of Schemes,
Lemma 30.8.1) and we have

HomD(OX)(OX(i), a(OY )[p]) = HomD(OY )(Rf∗OX(i),OY [p]) = 0
because Rf∗OX(i) = 0 by the same lemma. Hence the source and the target of
Fi,p(c) vanish and Fi,p(c) is necessarily an isomorphism. This finishes the proof. □

Example 48.15.2.0AAC The base change map (48.5.0.1) is not an isomorphism if f is
perfect proper and g is perfect. Let k be a field. Let Y = A2

k and let f : X → Y
be the blowup of Y in the origin. Denote E ⊂ X the exceptional divisor. Then we
can factor f as

X
i−→ P1

Y
p−→ Y

This gives a factorization a = c ◦ b where a, b, and c are the right adjoints of
Lemma 48.3.1 of Rf∗, Rp∗, and Ri∗. Denote O(n) the Serre twist of the structure
sheaf on P1

Y and denote OX(n) its restriction to X. Note that X ⊂ P1
Y is cut

out by a degree one equation, hence O(X) = O(1). By Lemma 48.15.1 we have
b(OY ) = O(−2)[1]. By Lemma 48.9.7 we have

a(OY ) = c(b(OY )) = c(O(−2)[1]) = RHom(OX ,O(−2)[1]) = OX(−1)
Last equality by Lemma 48.14.2. Let Y ′ = Spec(k) be the origin in Y . The
restriction of a(OY ) to X ′ = E = P1

k is an invertible sheaf of degree −1 placed in
cohomological degree 0. But on the other hand, a′(OSpec(k)) = OE(−2)[1] which is
an invertible sheaf of degree −2 placed in cohomological degree −1, so different. In
this example the hypothesis of Tor indepence in Lemma 48.6.2 is violated.

https://stacks.math.columbia.edu/tag/0AAC
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Lemma 48.15.3.0BQW Let Y be a ringed space. Let I ⊂ OY be a sheaf of ideals.
Set OX = OY /I and N = HomOY

(I/I2,OX). There is a canonical isomorphism
c : N → Ext1

OY
(OX ,OX).

Proof. Consider the canonical short exact sequence
(48.15.3.1)0BQX 0→ I/I2 → OY /I2 → OX → 0
Let U ⊂ X be open and let s ∈ N (U). Then we can pushout (48.15.3.1) via s
to get an extension Es of OX |U by OX |U . This in turn defines a section c(s) of
Ext1

OY
(OX ,OX) over U . See Cohomology, Lemma 20.42.1 and Derived Categories,

Lemma 13.27.6. Conversely, given an extension
0→ OX |U → E → OX |U → 0

of OU -modules, we can find an open covering U =
⋃
Ui and sections ei ∈ E(Ui)

mapping to 1 ∈ OX(Ui). Then ei defines a map OY |Ui → E|Ui whose kernel
contains I2. In this way we see that E|Ui comes from a pushout as above. This
shows that c is surjective. We omit the proof of injectivity. □

Lemma 48.15.4.0BQY Let Y be a ringed space. Let I ⊂ OY be a sheaf of ideals. Set
OX = OY /I. If I is Koszul-regular (Divisors, Definition 31.20.2) then composition
on RHomOY

(OX ,OX) defines isomorphisms

∧i(Ext1
OY

(OX ,OX)) −→ ExtiOY
(OX ,OX)

for all i.

Proof. By composition we mean the map
RHomOY

(OX ,OX)⊗L
OY

RHomOY
(OX ,OX) −→ RHomOY

(OX ,OX)
of Cohomology, Lemma 20.42.5. This induces multiplication maps

ExtaOY
(OX ,OX)⊗OY

ExtbOY
(OX ,OX) −→ Exta+b

OY
(OX ,OX)

Please compare with More on Algebra, Equation (15.63.0.1). The statement of the
lemma means that the induced map

Ext1
OY

(OX ,OX)⊗ . . .⊗ Ext1
OY

(OX ,OX) −→ ExtiOY
(OX ,OX)

factors through the wedge product and then induces an isomorphism. To see this
is true we may work locally on Y . Hence we may assume that we have global sec-
tions f1, . . . , fr of OY which generate I and which form a Koszul regular sequence.
Denote

A = OY ⟨ξ1, . . . , ξr⟩
the sheaf of strictly commutative differential gradedOY -algebras which is a (divided
power) polynomial algebra on ξ1, . . . , ξr in degree −1 over OY with differential d
given by the rule dξi = fi. Let us denote A• the underlying complex of OY -modules
which is the Koszul complex mentioned above. Thus the canonical map A• → OX
is a quasi-isomorphism. We obtain quasi-isomorphisms

RHomOY
(OX ,OX)→ Hom•(A•,A•)→ Hom•(A•,OX)

by Cohomology, Lemma 20.46.9. The differentials of the latter complex are zero,
and hence

ExtiOY
(OX ,OX) ∼= HomOY

(A−i,OX)

https://stacks.math.columbia.edu/tag/0BQW
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For j ∈ {1, . . . , r} let δj : A → A be the derivation of degree 1 with δj(ξi) = δij
(Kronecker delta). A computation shows that δj ◦d = −d ◦ δj which shows that we
get a morphism of complexes.

δj : A• → A•[1].
Whence δj defines a section of the corresponding Ext-sheaf. Another computation
shows that δ1, . . . , δr map to a basis for HomOY

(A−1,OX) over OX . Since it is
clear that δj ◦ δj = 0 and δj ◦ δj′ = −δj′ ◦ δj as endomorphisms of A and hence in
the Ext-sheaves we obtain the statement that our map above factors through the
exterior power. To see we get the desired isomorphism the reader checks that the
elements

δj1 ◦ . . . ◦ δji
for j1 < . . . < ji map to a basis of the sheaf HomOY

(A−i,OX) over OX . □

Lemma 48.15.5.0BQZ Let Y be a ringed space. Let I ⊂ OY be a sheaf of ideals.
Set OX = OY /I and N = HomOY

(I/I2,OX). If I is Koszul-regular (Divisors,
Definition 31.20.2) then

RHomOY
(OX ,OY ) = ∧rN [r]

where r : Y → {1, 2, 3, . . .} sends y to the minimal number of generators of I needed
in a neighbourhood of y.

Proof. We can use Lemmas 48.15.3 and 48.15.4 to see that we have isomorphisms
∧iN → ExtiOY

(OX ,OX) for i ≥ 0. Thus it suffices to show that the map OY → OX
induces an isomorphism

ExtrOY
(OX ,OY ) −→ ExtrOY

(OX ,OX)

and that ExtiOY
(OX ,OY ) is zero for i ̸= r. These statements are local on Y . Thus

we may assume that we have global sections f1, . . . , fr of OY which generate I and
which form a Koszul regular sequence. Let A• be the Koszul complex on f1, . . . , fr
as introduced in the proof of Lemma 48.15.4. Then

RHomOY
(OX ,OY ) = Hom•(A•,OY )

by Cohomology, Lemma 20.46.9. Denote 1 ∈ H0(Hom•(A•,OY )) the identity map
of A0 = OY → OY . With δj as in the proof of Lemma 48.15.4 we get an isomor-
phism of graded OY -modules

OY ⟨δ1, . . . , δr⟩ −→ Hom•(A•,OY )
by mapping δj1 . . . δji to 1 ◦ δj1 ◦ . . . ◦ δji in degree i. Via this isomorphism the
differential on the right hand side induces a differential d on the left hand side. By
our sign rules we have d(1) = −

∑
fjδj . Since δj : A• → A•[1] is a morphism of

complexes, it follows that

d(δj1 . . . δji) = (−
∑

fjδj)δj1 . . . δji

Observe that we have d =
∑
fjδj on the differential graded algebra A. Therefore

the map defined by the rule
1 ◦ δj1 . . . δji 7−→ (δj1 ◦ . . . ◦ δji)(ξ1 . . . ξr)

will define an isomorphism of complexes
Hom•(A•,OY ) −→ A•[−r]

https://stacks.math.columbia.edu/tag/0BQZ
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if r is odd and commuting with differentials up to sign if r is even. In any case
these complexes have isomorphic cohomology, which shows the desired vanishing.
The isomorphism on cohomology in degree r under the map

Hom•(A•,OY ) −→ Hom•(A•,OX)
also follows in a straightforward manner from this. (We observe that our choice
of conventions regarding Koszul complexes does intervene in the definition of the
isomorphism RHomOX

(OX ,OY ) = ∧rN [r].) □

Lemma 48.15.6.0BR0 Let Y be a quasi-compact and quasi-separated scheme. Let i :
X → Y be a Koszul-regular closed immersion. Let a be the right adjoint of Ri∗ :
DQCoh(OX)→ DQCoh(OY ) of Lemma 48.3.1. Then there is an isomorphism

∧rN [−r] −→ a(OY )
where N = HomOX

(CX/Y ,OX) is the normal sheaf of i (Morphisms, Section 29.31)
and r is its rank viewed as a locally constant function on X.

Proof. Recall, from Lemmas 48.9.7 and 48.9.3, that a(OY ) is an object ofDQCoh(OX)
whose pushforward to Y is RHomOY

(i∗OX ,OY ). Thus the result follows from
Lemma 48.15.5. □

Lemma 48.15.7.0BRT Let S be a Noetherian scheme. Let f : X → S be a smooth
proper morphism of relative dimension d. Let a be the right adjoint of Rf∗ :
DQCoh(OX)→ DQCoh(OS) as in Lemma 48.3.1. Then there is an isomorphism

∧dΩX/S [d] −→ a(OS)
in D(OX).

Proof. Set ω•
X/S = a(OS) as in Remark 48.12.5. Let c be the right adjoint of Lemma

48.3.1 for ∆ : X → X ×S X. Because ∆ is the diagonal of a smooth morphism it
is a Koszul-regular immersion, see Divisors, Lemma 31.22.11. In particular, ∆ is a
perfect proper morphism (More on Morphisms, Lemma 37.61.7) and we obtain

OX = c(Lpr∗
1ω

•
X/S)

= L∆∗(Lpr∗
1ω

•
X/S)⊗L

OX
c(OX×SX)

= ω•
X/S ⊗

L
OX

c(OX×SX)
= ω•

X/S ⊗
L
OX
∧d(N∆)[−d]

The first equality is (48.12.8.1) because ω•
X/S = a(OS). The second equality by

Lemma 48.13.3. The third equality because pr1 ◦ ∆ = idX . The fourth equality
by Lemma 48.15.6. Observe that ∧d(N∆) is an invertible OX -module. Hence
∧d(N∆)[−d] is an invertible object ofD(OX) and we conclude that a(OS) = ω•

X/S =
∧d(C∆)[d]. Since the conormal sheaf C∆ of ∆ is ΩX/S by Morphisms, Lemma 29.32.7
the proof is complete. □

48.16. Upper shriek functors

0A9Y In this section, we construct the functors f ! for morphisms between schemes which
are of finite type and separated over a fixed Noetherian base using compactifications.
As is customary in coherent duality, there are a number of diagrams that have to be
shown to be commutative. We suggest the reader, after reading the construction,

https://stacks.math.columbia.edu/tag/0BR0
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skips the verification of the lemmas and continues to the next section where we
discuss properties of the upper shriek functors.

Situation 48.16.1.0F42 Here S is a Noetherian scheme and FTSS is the category whose
(1) objects are schemes X over S such that the structure morphism X → S

is both separated and of finite type, and
(2) morphisms f : X → Y between objects are morphisms of schemes over S.

In Situation 48.16.1 given a morphism f : X → Y in FTSS , we will define an exact
functor

f ! : D+
QCoh(OY )→ D+

QCoh(OX)
of triangulated categories. Namely, we choose a compactification X → X over
Y which is possible by More on Flatness, Theorem 38.33.8 and Lemma 38.32.2.
Denote f : X → Y the structure morphism. Let a : DQCoh(OY )→ DQCoh(OX) be
the right adjoint of Rf∗ constructed in Lemma 48.3.1. Then we set

f !K = a(K)|X
for K ∈ D+

QCoh(OY ). The result is an object of D+
QCoh(OX) by Lemma 48.3.5.

Lemma 48.16.2.0AA0 In Situation 48.16.1 let f : X → Y be a morphism of FTSS .
The functor f ! is, up to canonical isomorphism, independent of the choice of the
compactification.

Proof. The category of compactifications ofX over Y is defined in More on Flatness,
Section 38.32. By More on Flatness, Theorem 38.33.8 and Lemma 38.32.2 it is
nonempty. To every choice of a compactification

j : X → X, f : X → Y

the construction above associates the functor j∗ ◦ a : D+
QCoh(OY ) → D+

QCoh(OX)
where a is the right adjoint of Rf∗ constructed in Lemma 48.3.1.
Suppose given a morphism g : X1 → X2 between compactifications ji : X → Xi

over Y such that g−1(j2(X)) = j1(X)5. Let c be the right adjoint of Lemma 48.3.1
for g. Then c◦a2 = a1 because these functors are adjoint to Rf2,∗◦Rg∗ = R(f2◦g)∗.
By (48.4.1.1) we have a canonical transformation

j∗
1 ◦ c −→ j∗

2

of functors D+
QCoh(OX2

)→ D+
QCoh(OX) which is an isomorphism by Lemma 48.4.4.

The composition
j∗

1 ◦ a1 −→ j∗
1 ◦ c ◦ a2 −→ j∗

2 ◦ a2

is an isomorphism of functors which we will denote by αg.

Consider two compactifications ji : X → Xi, i = 1, 2 of X over Y . By More
on Flatness, Lemma 38.32.1 part (b) we can find a compactification j : X → X
with dense image and morphisms gi : X → Xi of compactifications. By More
on Flatness, Lemma 38.32.1 part (c) we have g−1

i (ji(X)) = j(X). Hence we get
isomorpisms

αgi : j∗ ◦ a −→ j∗
i ◦ ai

5This may fail with our definition of compactification. See More on Flatness, Section 38.32.

https://stacks.math.columbia.edu/tag/0F42
https://stacks.math.columbia.edu/tag/0AA0


48.16. UPPER SHRIEK FUNCTORS 4069

by the previous paragraph. We obtain an isomorphism

αg2 ◦ α−1
g1

: j∗
1 ◦ a1 → j∗

2 ◦ a2

To finish the proof we have to show that these isomorphisms are well defined.
We claim it suffices to show the composition of isomorphisms constructed in the
previous paragraph is another (for a precise statement see the next paragraph).
We suggest the reader check this is true on a napkin, but we will also completely
spell it out in the rest of this paragraph. Namely, consider a second choice of a
compactification j′ : X → X

′ with dense image and morphisms of compactifications
g′
i : X ′ → Xi. By More on Flatness, Lemma 38.32.1 we can find a compactification
j′′ : X → X

′′ with dense image and morphisms of compactifications h : X ′′ → X

and h′ : X ′′ → X
′. We may even assume g1 ◦ h = g′

1 ◦ h′ and g2 ◦ h = g′
2 ◦ h′. The

result of the next paragraph gives

αgi ◦ αh = αgi◦h = αg′
i
◦h′ = αg′

i
◦ αh′

for i = 1, 2. Since these are all isomorphisms of functors we conclude that αg2 ◦
α−1
g1

= αg′
2
◦ α−1

g′
1

as desired.

Suppose given compactifications ji : X → Xi for i = 1, 2, 3. Suppose given
morphisms g : X1 → X2 and h : X2 → X3 of compactifications such that
g−1(j2(X)) = j1(X) and h−1(j2(X)) = j3(X). Let ai be as above. The claim
above means that

αg ◦ αh = αg◦h : j∗
1 ◦ a1 → j∗

3 ◦ a3

Let c, resp. d be the right adjoint of Lemma 48.3.1 for g, resp. h. Then c ◦ a2 = a1
and d ◦ a3 = a2 and there are canonical transformations

j∗
1 ◦ c −→ j∗

2 and j∗
2 ◦ d −→ j∗

3

of functors D+
QCoh(OX2

) → D+
QCoh(OX) and D+

QCoh(OX3
) → D+

QCoh(OX) for the
same reasons as above. Denote e the right adjoint of Lemma 48.3.1 for h◦g. There
is a canonical transformation

j∗
1 ◦ e −→ j∗

3

of functors D+
QCoh(OX3

) → D+
QCoh(OX) given by (48.4.1.1). Spelling things out

we have to show that the composition

αh ◦ αg : j∗
1 ◦ a1 → j∗

1 ◦ c ◦ a2 → j∗
2 ◦ a2 → j∗

2 ◦ d ◦ a3 → j∗
3 ◦ a3

is the same as the composition

αh◦g : j∗
1 ◦ a1 → j∗

1 ◦ e ◦ a3 → j∗
3 ◦ a3

We split this into two parts. The first is to show that the diagram

a1 //

��

c ◦ a2

��
e ◦ a3 // c ◦ d ◦ a3
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commutes where the lower horizontal arrow comes from the identification e = c ◦d.
This is true because the corresponding diagram of total direct image functors

Rf1,∗
//

��

Rg∗ ◦Rf2,∗

��
R(h ◦ g)∗ ◦Rf3,∗

// Rg∗ ◦Rh∗ ◦Rf3,∗

is commutative (insert future reference here). The second part is to show that the
composition

j∗
1 ◦ c ◦ d→ j∗

2 ◦ d→ j∗
3

is equal to the map

j∗
1 ◦ e→ j∗

3

via the identification e = c ◦ d. This was proven in Lemma 48.5.1 (note that in the
current case the morphisms f ′, g′ of that lemma are equal to idX). □

Lemma 48.16.3.0ATX In Situation 48.16.1 let f : X → Y and g : Y → Z be composable
morphisms of FTSS . Then there is a canonical isomorphism (g ◦ f)! → f ! ◦ g!.

Proof. Choose a compactification i : Y → Y of Y over Z. Choose a compactifi-
cation X → X of X over Y . This uses More on Flatness, Theorem 38.33.8 and
Lemma 38.32.2 twice. Let a be the right adjoint of Lemma 48.3.1 for X → Y
and let b be the right adjoint of Lemma 48.3.1 for Y → Z. Then a ◦ b is the
right adjoint of Lemma 48.3.1 for the composition X → Z. Hence g! = i∗ ◦ b and
(g ◦ f)! = (X → X)∗ ◦ a ◦ b. Let U be the inverse image of Y in X so that we get
the commutative diagram

X
j
//

��

U

��

j′
// X

��
Y

i
//

��

Y

��
Z

Let a′ be the right adjoint of Lemma 48.3.1 for U → Y . Then f ! = j∗ ◦ a′. We
obtain

γ : (j′)∗ ◦ a→ a′ ◦ i∗

by (48.4.1.1) and we can use it to define

(g ◦ f)! = (j′ ◦ j)∗ ◦ a ◦ b = j∗ ◦ (j′)∗ ◦ a ◦ b→ j∗ ◦ a′ ◦ i∗ ◦ b = f ! ◦ g!

which is an isomorphism on objects of D+
QCoh(OZ) by Lemma 48.4.4. To finish the

proof we show that this isomorphism is independent of choices made.

https://stacks.math.columbia.edu/tag/0ATX
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Suppose we have two diagrams

X
j1

//

��

U1

��

j′
1

// X1

~~
Y

i1
//

��

Y 1

~~
Z

and

X
j2

//

��

U2

��

j′
2

// X2

~~
Y

i2
//

��

Y 2

~~
Z

We can first choose a compactification i : Y → Y with dense image of Y over Z
which dominates both Y 1 and Y 2, see More on Flatness, Lemma 38.32.1. By More
on Flatness, Lemma 38.32.3 and Categories, Lemmas 4.27.13 and 4.27.14 we can
choose a compactification X → X with dense image of X over Y with morphisms
X → X1 and X → X2 and such that the composition X → Y → Y 1 is equal to the
composition X → X1 → Y 1 and such that the composition X → Y → Y 2 is equal
to the composition X → X2 → Y 2. Thus we see that it suffices to compare the
maps determined by our diagrams when we have a commutative diagram as follows

X
j1

// U1

��

��

j′
1

// X1

��

��

X
j2 //

��

U2

��

j′
2 // X2

��

Y
i1 // Y 1

��
Y

i2 //

��

Y 2

xx
Z

and moreover the compactifications X → X1 and Y → Y 2 have dense image. We
use ai, a′

i, c, and c′ for the right adjoint of Lemma 48.3.1 for Xi → Y i, Ui → Y ,
X1 → X2, and U1 → U2. Each of the squares

X //

��
A

U1

��
X // U2

U2 //

��
B

X2

��
Y // Y 2

U1 //

��
C

X1

��
Y // Y 1

Y //

��
D

Y 1

��
Y // Y 2

X //

��
E

X1

��
X // X2

is cartesian (see More on Flatness, Lemma 38.32.1 part (c) for A, D, E and recall
that Ui is the inverse image of Y by Xi → Y i for B, C) and hence gives rise to a
base change map (48.4.1.1) as follows

γA : j∗
1 ◦ c′ → j∗

2 γB : (j′
2)∗ ◦ a2 → a′

2 ◦ i∗2 γC : (j′
1)∗ ◦ a1 → a′

1 ◦ i∗1
γD : i∗1 ◦ d→ i∗2 γE : (j′

1 ◦ j1)∗ ◦ c→ (j′
2 ◦ j2)∗
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Denote f !
1 = j∗

1 ◦a′
1, f !

2 = j∗
2 ◦a′

2, g!
1 = i∗1◦b1, g!

2 = i∗2◦b2, (g◦f)!
1 = (j′

1◦j1)∗◦a1◦b1,
and (g ◦ f)!

2 = (j′
2 ◦ j2)∗ ◦ a2 ◦ b2. The construction given in the first paragraph of

the proof and in Lemma 48.16.2 uses
(1) γC for the map (g ◦ f)!

1 → f !
1 ◦ g!

1,
(2) γB for the map (g ◦ f)!

2 → f !
2 ◦ g!

2,
(3) γA for the map f !

1 → f !
2,

(4) γD for the map g!
1 → g!

2, and
(5) γE for the map (g ◦ f)!

1 → (g ◦ f)!
2.

We have to show that the diagram

(g ◦ f)!
1 γE

//

γC

��

(g ◦ f)!
2

γB

��
f !

1 ◦ g!
1
γA◦γD // f !

2 ◦ g!
2

is commutative. We will use Lemmas 48.5.1 and 48.5.2 and with (abuse of) notation
as in Remark 48.5.3 (in particular dropping ⋆ products with identity transforma-
tions from the notation). We can write γE = γA ◦ γF where

U1 //

��
F

X1

��
U2 // X2

Thus we see that
γB ◦ γE = γB ◦ γA ◦ γF = γA ◦ γB ◦ γF

the last equality because the two squares A and B only intersect in one point
(similar to the last argument in Remark 48.5.3). Thus it suffices to prove that
γD ◦ γC = γB ◦ γF . Since both of these are equal to the map (48.4.1.1) for the
square

U1 //

��

X1

��
Y // Y 2

we conclude. □

Lemma 48.16.4.0ATY In Situation 48.16.1 the constructions of Lemmas 48.16.2 and
48.16.3 define a pseudo functor from the category FTSS into the 2-category of
categories (see Categories, Definition 4.29.5).

Proof. To show this we have to prove given morphisms f : X → Y , g : Y → Z,
h : Z → T that

(h ◦ g ◦ f)!
γA+B

//

γB+C

��

f ! ◦ (h ◦ g)!

γC

��
(g ◦ f)! ◦ h! γA // f ! ◦ g! ◦ h!

is commutative (for the meaning of the γ’s, see below). To do this we choose a
compactification Z of Z over T , then a compactification Y of Y over Z, and then

https://stacks.math.columbia.edu/tag/0ATY
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a compactification X of X over Y . This uses More on Flatness, Theorem 38.33.8
and Lemma 38.32.2. Let W ⊂ Y be the inverse image of Z under Y → Z and let
U ⊂ V ⊂ X be the inverse images of Y ⊂ W under X → Y . This produces the
following diagram

X

f

��

// U //

��
A

V

��

//

B

X

��
Y

g

��

// Y //

��

W //

��
C

Y

��
Z

h

��

// Z

��

// Z

��

// Z

��
T // T // T // T

Without introducing tons of notation but arguing exactly as in the proof of Lemma
48.16.3 we see that the maps in the first displayed diagram use the maps (48.4.1.1)
for the rectangles A + B, B + C, A, and C as indicated. Since by Lemmas 48.5.1
and 48.5.2 we have γA+B = γA ◦ γB and γB+C = γC ◦ γB we conclude that the
desired equality holds provided γA ◦ γC = γC ◦ γA. This is true because the two
squares A and C only intersect in one point (similar to the last argument in Remark
48.5.3). □

Lemma 48.16.5.0B6T In Situation 48.16.1 let f : X → Y be a morphism of FTSS .
There are canonical maps

µf,K : Lf∗K ⊗L
OX

f !OY −→ f !K

functorial in K in D+
QCoh(OY ). If g : Y → Z is another morphism of FTSS , then

the diagram

Lf∗(Lg∗K ⊗L
OY

g!OZ)⊗L
OX

f !OY µf
// f !(Lg∗K ⊗L

OY
g!OZ)

f !µg

// f !g!K

Lf∗Lg∗K ⊗L
OX

Lf∗g!OZ ⊗L
OX

f !OY
µf // Lf∗Lg∗K ⊗L

OX
f !g!OZ

µg◦f // f !g!K

commutes for all K ∈ D+
QCoh(OZ).

Proof. If f is proper, then f ! = a and we can use (48.8.0.1) and if g is also proper,
then Lemma 48.8.4 proves the commutativity of the diagram (in greater generality).

Let us define the map µf,K . Choose a compactification j : X → X of X over Y .
Since f ! is defined as j∗ ◦ a we obtain µf,K as the restriction of the map (48.8.0.1)

Lf
∗
K ⊗L

O
X
a(OY ) −→ a(K)

to X. To see this is independent of the choice of the compactification we argue as
in the proof of Lemma 48.16.2. We urge the reader to read the proof of that lemma
first.
Assume given a morphism g : X1 → X2 between compactifications ji : X → Xi

over Y such that g−1(j2(X)) = j1(X). Denote c the right adjoint for pushforward

https://stacks.math.columbia.edu/tag/0B6T
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of Lemma 48.3.1 for the morphism g. The maps

Lf
∗
1K ⊗L

O
X
a1(OY ) −→ a1(K) and Lf

∗
2K ⊗L

O
X
a2(OY ) −→ a2(K)

fit into the commutative diagram

Lg∗(Lf∗
2K ⊗L a2(OY ))⊗L c(OX2

)
σ
// c(Lf∗

2K ⊗L a2(OY )) // c(a2(K))

Lf
∗
1K ⊗L Lg∗a2(OY )⊗L c(OX2

) 1⊗τ // Lf
∗
1K ⊗L a1(OY ) // a1(K)

by Lemma 48.8.4. By Lemma 48.8.3 the maps σ and τ restrict to an isomorphism
over X. In fact, we can say more. Recall that in the proof of Lemma 48.16.2 we used
the map (48.4.1.1) γ : j∗

1 ◦c→ j∗
2 to construct our isomorphism αg : j∗

1 ◦a1 → j∗
2 ◦a2.

Pulling back to map σ by j1 we obtain the identity map on j∗
2

(
Lf

∗
2K ⊗L a2(OY )

)
if we identify j∗

1c(OX2
) with OX via j∗

1 ◦ c→ j∗
2 , see Lemma 48.8.2. Similarly, the

map τ : Lg∗a2(OY ) ⊗L c(OX2
) → a1(OY ) = c(a2(OY )) pulls back to the identity

map on j∗
2a2(OY ). We conclude that pulling back by j1 and applying γ wherever

we can we obtain a commutative diagram

j∗
2

(
Lf

∗
2K ⊗L a2(OY )

)
//

��

j∗
2a2(K)

j∗
1Lf

∗
1K ⊗L j∗

2a2(OY ) j∗
1 (Lf∗

1K ⊗L a1(OY )) //1⊗αgoo j∗
1a1(K)

αg

gg

The commutativity of this diagram exactly tells us that the map µf,K constructed
using the compactification X1 is the same as the map µf,K constructed using the
compactification X2 via the identification αg used in the proof of Lemma 48.16.2.
Some categorical arguments exactly as in the proof of Lemma 48.16.2 now show
that µf,K is well defined (small detail omitted).

Having said this, the commutativity of the diagram in the statement of our lemma
follows from the construction of the isomorphism (g ◦ f)! → f ! ◦ g! (first part of the
proof of Lemma 48.16.3 using X → Y → Z) and the result of Lemma 48.8.4 for
X → Y → Z. □

48.17. Properties of upper shriek functors

0ATZ Here are some properties of the upper shriek functors.

Lemma 48.17.1.0AU0 In Situation 48.16.1 let Y be an object of FTSS and let j : X → Y

be an open immersion. Then there is a canonical isomorphism j! = j∗ of functors.

For an étale morphism f : X → Y of FTSS we also have f∗ ∼= f !, see Lemma
48.18.2.

Proof. In this case we may choose X = Y as our compactification. Then the right
adjoint of Lemma 48.3.1 for id : Y → Y is the identity functor and hence j! = j∗

by definition. □

https://stacks.math.columbia.edu/tag/0AU0
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Lemma 48.17.2.0G4J In Situation 48.16.1 let

U
j
//

g

��

X

f

��
V

j′
// Y

be a commutative diagram of FTSS where j and j′ are open immersions. Then
j∗ ◦ f ! = g! ◦ (j′)∗ as functors D+

QCoh(OY )→ D+(OU ).

Proof. Let h = f ◦ j = j′ ◦ g. By Lemma 48.16.3 we have h! = j! ◦ f ! = g! ◦ (j′)!.
By Lemma 48.17.1 we have j! = j∗ and (j′)! = (j′)∗. □

Lemma 48.17.3.0AA1 In Situation 48.16.1 let Y be an object of FTSS and let f :
X = A1

Y → Y be the projection. Then there is a (noncanonical) isomorphism
f !(−) ∼= Lf∗(−)[1] of functors.

Proof. Since X = A1
Y ⊂ P1

Y and since OP1
Y

(−2)|X ∼= OX this follows from Lemmas
48.15.1 and 48.13.3. □

Lemma 48.17.4.0AA2 In Situation 48.16.1 let Y be an object of FTSS and let i :
X → Y be a closed immersion. Then there is a canonical isomorphism i!(−) =
RHom(OX ,−) of functors.

Proof. This is a restatement of Lemma 48.9.7. □

Remark 48.17.5 (Local description upper shriek).0BV2 In Situation 48.16.1 let f : X →
Y be a morphism of FTSS . Using the lemmas above we can compute f ! locally as
follows. Suppose that we are given affine opens

U
j
//

g

��

X

f

��
V

i // Y

Since j! ◦ f ! = g! ◦ i! (Lemma 48.16.3) and since j! and i! are given by restriction
(Lemma 48.17.1) we see that

(f !E)|U = g!(E|V )
for any E ∈ D+

QCoh(OX). Write U = Spec(A) and V = Spec(R) and let φ : R→ A

be the finite type ring map corresponding to g. Choose a presentation A = P/I
where P = R[x1, . . . , xn] is a polynomial algebra in n variables over R. Choose an
object K ∈ D+(R) corresponding to E|V (Derived Categories of Schemes, Lemma
36.3.5). Then we claim that f !E|U corresponds to

φ!(K) = RHom(A,K ⊗L
R P )[n]

where RHom(A,−) : D(P )→ D(A) is the functor of Dualizing Complexes, Section
47.13 and where φ! : D(R)→ D(A) is the functor of Dualizing Complexes, Section
47.24. Namely, the choice of presentation gives a factorization

U → An
V → An−1

V → . . .→ A1
V → V

Applying Lemma 48.17.3 exactly n times we see that (An
V → V )!(E|V ) corresponds

to K⊗L
R P [n]. By Lemmas 48.9.5 and 48.17.4 the last step corresponds to applying

RHom(A,−).

https://stacks.math.columbia.edu/tag/0G4J
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Lemma 48.17.6.0AU1 In Situation 48.16.1 let f : X → Y be a morphism of FTSS . Then
f ! maps D+

Coh(OY ) into D+
Coh(OX).

Proof. The question is local on X hence we may assume that X and Y are affine
schemes. In this case we can factor f : X → Y as

X
i−→ An

Y → An−1
Y → . . .→ A1

Y → Y

where i is a closed immersion. The lemma follows from By Lemmas 48.17.3 and
48.9.6 and Dualizing Complexes, Lemma 47.15.10 and induction. □

Lemma 48.17.7.0AA3 In Situation 48.16.1 let f : X → Y be a morphism of FTSS . If K
is a dualizing complex for Y , then f !K is a dualizing complex for X.

Proof. The question is local on X hence we may assume that X and Y are affine
schemes. In this case we can factor f : X → Y as

X
i−→ An

Y → An−1
Y → . . .→ A1

Y → Y

where i is a closed immersion. By Lemma 48.17.3 and Dualizing Complexes, Lemma
47.15.10 and induction we see that the p!K is a dualizing complex on An

Y where
p : An

Y → Y is the projection. Similarly, by Dualizing Complexes, Lemma 47.15.9
and Lemmas 48.9.5 and 48.17.4 we see that i! transforms dualizing complexes into
dualizing complexes. □

Lemma 48.17.8.0AU2 In Situation 48.16.1 let f : X → Y be a morphism of FTSS . Let K
be a dualizing complex on Y . Set DY (M) = RHomOY

(M,K) for M ∈ DCoh(OY )
and DX(E) = RHomOX

(E, f !K) for E ∈ DCoh(OX). Then there is a canonical
isomorphism

f !M −→ DX(Lf∗DY (M))
for M ∈ D+

Coh(OY ).

Proof. Choose compactification j : X ⊂ X ofX over Y (More on Flatness, Theorem
38.33.8 and Lemma 38.32.2). Let a be the right adjoint of Lemma 48.3.1 for X → Y .
Set DX(E) = RHomO

X
(E, a(K)) for E ∈ DCoh(OX). Since formation of RHom

commutes with restriction to opens and since f ! = j∗ ◦ a we see that it suffices to
prove that there is a canonical isomorphism

a(M) −→ DX(Lf∗
DY (M))

for M ∈ DCoh(OY ). For F ∈ DQCoh(OX) we have

HomX(F,DX(Lf∗
DY (M))) = HomX(F ⊗L

OX
Lf

∗
DY (M), a(K))

= HomY (Rf∗(F ⊗L
OX

Lf
∗
DY (M)),K)

= HomY (Rf∗(F )⊗L
OY

DY (M),K)
= HomY (Rf∗(F ), DY (DY (M)))
= HomY (Rf∗(F ),M)
= HomX(F, a(M))

The first equality by Cohomology, Lemma 20.42.2. The second by definition of a.
The third by Derived Categories of Schemes, Lemma 36.22.1. The fourth equality
by Cohomology, Lemma 20.42.2 and the definition of DY . The fifth equality by
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Lemma 48.2.5. The final equality by definition of a. Hence we see that a(M) =
DX(Lf∗

DY (M)) by Yoneda’s lemma. □

Lemma 48.17.9.0B6U In Situation 48.16.1 let f : X → Y be a morphism of FTSS .
Assume f is perfect (e.g., flat). Then

(a) f ! maps Db
Coh(OY ) into Db

Coh(OX),
(b) the map µf,K : Lf∗K ⊗L

OX
f !OY → f !K of Lemma 48.16.5 is an isomor-

phism for all K ∈ D+
QCoh(OY ).

Proof. (A flat morphism of finite presentation is perfect, see More on Morphisms,
Lemma 37.61.5.) We begin with a series of preliminary remarks.

(1) We already know that f ! sends D+
Coh(OY ) into D+

Coh(OX), see Lemma
48.17.6.

(2) If f is an open immersion, then (a) and (b) are true because we can take
X = Y in the construction of f ! and µf . See also Lemma 48.17.1.

(3) If f is a perfect proper morphism, then (b) is true by Lemma 48.13.3.
(4) If there exists an open covering X =

⋃
Ui and (a) is true for Ui → Y , then

(a) is true for X → Y . Same for (b). This holds because the construction
of f ! and µf commutes with passing to open subschemes.

(5) If g : Y → Z is a second perfect morphism in FTSS and (b) holds for f
and g, then f !g!OZ = Lf∗g!OZ ⊗L

OX
f !OY and (b) holds for g ◦ f by the

commutative diagram of Lemma 48.16.5.
(6) If (a) and (b) hold for both f and g, then (a) and (b) hold for g◦f . Namely,

then f !g!OZ is bounded above (by the previous point) and L(g ◦ f)∗ has
finite cohomological dimension and (a) follows from (b) which we saw
above.

From these points we see it suffices to prove the result in case X is affine. Choose
an immersion X → An

Y (Morphisms, Lemma 29.39.2) which we factor as X → U →
An
Y → Y where X → U is a closed immersion and U ⊂ An

Y is open. Note that
X → U is a perfect closed immersion by More on Morphisms, Lemma 37.61.8. Thus
it suffices to prove the lemma for a perfect closed immersion and for the projection
An
Y → Y .

Let f : X → Y be a perfect closed immersion. We already know (b) holds. Let
K ∈ Db

Coh(OY ). Then f !K = RHom(OX ,K) (Lemma 48.17.4) and f∗f
!K =

RHomOY
(f∗OX ,K). Since f is perfect, the complex f∗OX is perfect and hence

RHomOY
(f∗OX ,K) is bounded above. This proves that (a) holds. Some details

omitted.
Let f : An

Y → Y be the projection. Then (a) holds by repeated application of
Lemma 48.17.3. Finally, (b) is true because it holds for Pn

Y → Y (flat and proper)
and because An

Y ⊂ Pn
Y is an open. □

Lemma 48.17.10.0E9T In Situation 48.16.1 let f : X → Y be a morphism of FTSS . If f is
flat, then f !OY is a Y -perfect object of D(OX) and OX → RHomOX

(f !OY , f !OY )
is an isomorphism.

Proof. Both assertions are local on X. Thus we may assume X and Y are affine.
Then Remark 48.17.5 turns the lemma into an algebra lemma, namely Dualizing
Complexes, Lemma 47.25.2. (Use Derived Categories of Schemes, Lemma 36.35.3
to match the languages.) □

https://stacks.math.columbia.edu/tag/0B6U
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Lemma 48.17.11.0B6V In Situation 48.16.1 let f : X → Y be a morphism of FTSS .
Assume f : X → Y is a local complete intersection morphism. Then

(1) f !OY is an invertible object of D(OX), and
(2) f ! maps perfect complexes to perfect complexes.

Proof. Recall that a local complete intersection morphism is perfect, see More on
Morphisms, Lemma 37.62.4. By Lemma 48.17.9 it suffices to show that f !OY is
an invertible object in D(OX). This question is local on X and Y . Hence we
may assume that X → Y factors as X → An

Y → Y where the first arrow is a
Koszul regular immersion. See More on Morphisms, Section 37.62. The result
holds for An

Y → Y by Lemma 48.17.3. Thus it suffices to prove the lemma when
f is a Koszul regular immersion. Working locally once again we reduce to the
case X = Spec(A) and Y = Spec(B), where A = B/(f1, . . . , fr) for some regular
sequence f1, . . . , fr ∈ B (use that for Noetherian local rings the notion of Koszul
regular and regular are the same, see More on Algebra, Lemma 15.30.7). Thus
X → Y is a composition

X = Xr → Xr−1 → . . .→ X1 → X0 = Y

where each arrow is the inclusion of an effective Cartier divisor. In this way we
reduce to the case of an inclusion of an effective Cartier divisor i : D → X. In this
case i!OX = N [1] by Lemma 48.14.1 and the proof is complete. □

48.18. Base change for upper shriek

0BZX In Situation 48.16.1 let
X ′

g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian diagram in FTSS such that X and Y ′ are Tor independent over Y .
Our setup is currently not sufficient to construct a base change map L(g′)∗ ◦ f ! →
(f ′)! ◦ Lg∗ in this generality. The reason is that in general it will not be possible
to choose a compactification j : X → X over Y such that X and Y ′ are tor
independent over Y and hence our construction of the base change map in Section
48.5 does not apply6.

A partial remedy will be found in Section 48.28. Namely, if the morphism f is
flat, then there is a good notion of a relative dualizing complex and using Lemmas
48.28.9 48.28.6, and 48.17.9 we may construct a canonical base change isomorphism.
If we ever need to use this, we will add precise statements and proofs later in this
chapter.

6The reader who is well versed with derived algebraic geometry will realize this is not a “real”
problem. Namely, taking X′ to be the derived fibre product of X and Y ′ over Y , one can argue
exactly as in the proof of Lemma 48.18.1 to define this map. After all, the Tor independence of
X and Y ′ guarantees that X′ will be an open subscheme of the derived scheme X′.

https://stacks.math.columbia.edu/tag/0B6V
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Lemma 48.18.1.0E9U In Situation 48.16.1 let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian diagram of FTSS with g flat. Then there is an isomorphism L(g′)∗ ◦
f ! → (f ′)! ◦ Lg∗ on D+

QCoh(OY ).

Proof. Namely, because g is flat, for every choice of compactification j : X → X of
X over Y the scheme X is Tor independent of Y ′. Denote j′ : X ′ → X

′ the base
change of j and g′ : X ′ → X the projection. We define the base change map as the
composition

L(g′)∗ ◦ f ! = L(g′)∗ ◦ j∗ ◦ a = (j′)∗ ◦ L(g′)∗ ◦ a −→ (j′)∗ ◦ a′ ◦ Lg∗ = (f ′)! ◦ Lg∗

where the middle arrow is the base change map (48.5.0.1) and a and a′ are the
right adjoints to pushforward of Lemma 48.3.1 for X → Y and X

′ → Y ′. This
construction is independent of the choice of compactification (we will formulate a
precise lemma and prove it, if we ever need this result).

To finish the proof it suffices to show that the base change map L(g′)∗◦a→ a′◦Lg∗ is
an isomorphism on D+

QCoh(OY ). By Lemma 48.4.4 formation of a and a′ commutes
with restriction to affine opens of Y and Y ′. Thus by Remark 48.6.1 we may assume
that Y and Y ′ are affine. Thus the result by Lemma 48.6.2. □

Lemma 48.18.2.0FWI In Situation 48.16.1 let f : X → Y be an étale morphism of FTSS .
Then f ! ∼= f∗ as functors on D+

QCoh(OY ).

Proof. We are going to use that an étale morphism is flat, syntomic, and a local
complete intersection morphism (Morphisms, Lemma 29.36.10 and 29.36.12 and
More on Morphisms, Lemma 37.62.8). By Lemma 48.17.9 it suffices to show f !OY =
OX . By Lemma 48.17.11 we know that f !OY is an invertible module. Consider the
commutative diagram

X ×Y X p2
//

p1

��

X

f

��
X

f // Y

and the diagonal ∆ : X → X×Y X. Since ∆ is an open immersion (by Morphisms,
Lemmas 29.35.13 and 29.36.5), by Lemma 48.17.1 we have ∆! = ∆∗. By Lemma
48.16.3 we have ∆! ◦ p!

1 ◦ f ! = f !. By Lemma 48.18.1 applied to the diagram we
have p!

1OX = p∗
2f

!OY . Hence we conclude

f !OY = ∆!p!
1f

!OY = ∆∗(p∗
1f

!OY ⊗ p!
1OX) = ∆∗(p∗

2f
!OY ⊗ p∗

1f
!OY ) = (f !OY )⊗2

where in the second step we have used Lemma 48.17.9 once more. Thus f !OY = OX
as desired. □

In the rest of this section, we formulate some easy to prove results which would be
consequences of a good theory of the base change map.
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Lemma 48.18.3 (Makeshift base change).0BZY In Situation 48.16.1 let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian diagram of FTSS . Let E ∈ D+
QCoh(OY ) be an object such that Lg∗E

is in D+(OY ). If f is flat, then L(g′)∗f !E and (f ′)!Lg∗E restrict to isomorphic
objects of D(OU ′) for U ′ ⊂ X ′ affine open mapping into affine opens of Y , Y ′, and
X.

Proof. By our assumptions we immediately reduce to the case where X, Y , Y ′, and
X ′ are affine. Say Y = Spec(R), Y ′ = Spec(R′), X = Spec(A), and X ′ = Spec(A′).
Then A′ = A ⊗R R′. Let E correspond to K ∈ D+(R). Denoting φ : R → A
and φ′ : R′ → A′ the given maps we see from Remark 48.17.5 that L(g′)∗f !E
and (f ′)!Lg∗E correspond to φ!(K)⊗L

A A
′ and (φ′)!(K ⊗L

R R
′) where φ! and (φ′)!

are the functors from Dualizing Complexes, Section 47.24. The result follows from
Dualizing Complexes, Lemma 47.24.6. □

Lemma 48.18.4.0BZZ In Situation 48.16.1 let f : X → Y be a morphism of FTSS .
Assume f is flat. Set ω•

X/Y = f !OY in Db
Coh(X). Let y ∈ Y and h : Xy → X the

projection. Then Lh∗ω•
X/Y is a dualizing complex on Xy.

Proof. The complex ω•
X/Y is in Db

Coh by Lemma 48.17.9. Being a dualizing complex
is a local property. Hence by Lemma 48.18.3 it suffices to show that (Xy → y)!Oy
is a dualizing complex on Xy. This follows from Lemma 48.17.7. □

48.19. A duality theory

0AU3 In this section we spell out what kind of a duality theory our very general results
above give for finite type separated schemes over a fixed Noetherian base scheme.
Recall that a dualizing complex on a Noetherian scheme X, is an object of D(OX)
which affine locally gives a dualizing complex for the corresponding rings, see Def-
inition 48.2.2.
Given a Noetherian scheme S denote FTSS the category of schemes which are of
finite type and separated over S. Then:

(1) the functors f ! turn D+
QCoh into a pseudo functor on FTSS ,

(2) if f : X → Y is a proper morphism in FTSS , then f ! is the restriction of
the right adjoint of Rf∗ : DQCoh(OX)→ DQCoh(OY ) to D+

QCoh(OY ) and
there is a canonical isomorphism

Rf∗RHomOX
(K, f !M)→ RHomOY

(Rf∗K,M)
for all K ∈ D−

Coh(OX) and M ∈ D+
QCoh(OY ),

(3) if an object X of FTSS has a dualizing complex ω•
X , then the functor

DX = RHomOX
(−, ω•

X) defines an involution of DCoh(OX) switching
D+

Coh(OX) and D−
Coh(OX) and fixing Db

Coh(OX),
(4) if f : X → Y is a morphism of FTSS and ω•

Y is a dualizing complex on
Y , then
(a) ω•

X = f !ω•
Y is a dualizing complex for X,

https://stacks.math.columbia.edu/tag/0BZY
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(b) f !M = DX(Lf∗DY (M)) canonically for M ∈ D+
Coh(OY ), and

(c) if in addition f is proper then

Rf∗RHomOX
(K,ω•

X) = RHomOY
(Rf∗K,ω

•
Y )

for K in D−
Coh(OX),

(5) if f : X → Y is a closed immersion in FTSS , then f !(−) = RHom(OX ,−),
(6) if f : Y → X is a finite morphism in FTSS , then f∗f

!(−) = RHomOX
(f∗OY ,−),

(7) if f : X → Y is the inclusion of an effective Cartier divisor into an object
of FTSS , then f !(−) = Lf∗(−)⊗OX

OY (−X)[−1],
(8) if f : X → Y is a Koszul regular immersion of codimension c into an

object of FTSS , then f !(−) ∼= Lf∗(−)⊗OX
∧cN [−c], and

(9) if f : X → Y is a smooth proper morphism of relative dimension d in
FTSS , then f !(−) ∼= Lf∗(−)⊗OX

ΩdX/Y [d].
This follows from Lemmas 48.2.5, 48.3.6, 48.9.7, 48.11.4, 48.14.2, 48.15.6, 48.15.7,
48.16.3, 48.16.4, 48.17.4, 48.17.7, 48.17.8, and 48.17.9 and Example 48.3.9. We have
obtained our functors by a very abstract procedure which finally rests on invoking
an existence theorem (Derived Categories, Proposition 13.38.2). This means we
have, in general, no explicit description of the functors f !. This can sometimes be
a problem. But in fact, it is often enough to know the existence of a dualizing
complex and the duality isomorphism to pin down f !.

48.20. Glueing dualizing complexes

0AU5 We will now use glueing of dualizing complexes to get a theory which works for
all finite type schemes over S given a pair (S, ω•

S) as in Situation 48.20.1. This is
similar to [Har66, Remark on page 310].

Situation 48.20.1.0AU4 Here S is a Noetherian scheme and ω•
S is a dualizing complex.

In Situation 48.20.1 letX be a scheme of finite type over S. Let U : X =
⋃
i=1,...,n Ui

be a finite open covering of X by objects of FTSS , see Situation 48.16.1. All
this means is that the morphisms Ui → S are separated (as they are already of
finite type). Every affine scheme of finite type over S is an object of FTSS by
Schemes, Lemma 26.21.13 hence such open coverings certainly exist. Then for
each i, j, k ∈ {1, . . . , n} the morphisms pi : Ui → S, pij : Ui ∩ Uj → S, and
pijk : Ui ∩ Uj ∩ Uk → S are separated and each of these schemes is an object of
FTSS . From such an open covering we obtain

(1) ω•
i = p!

iω
•
S a dualizing complex on Ui, see Section 48.19,

(2) for each i, j a canonical isomorphism φij : ω•
i |Ui∩Uj → ω•

j |Ui∩Uj , and
(3)0AU6 for each i, j, k we have

φik|Ui∩Uj∩Uk = φjk|Ui∩Uj∩Uk ◦ φij |Ui∩Uj∩Uk

in D(OUi∩Uj∩Uk).
Here, in (2) we use that (Ui ∩ Uj → Ui)! is given by restriction (Lemma 48.17.1)
and that we have canonical isomorphisms

(Ui ∩ Uj → Ui)! ◦ p!
i = p!

ij = (Ui ∩ Uj → Uj)! ◦ p!
j

by Lemma 48.16.3 and to get (3) we use that the upper shriek functors form a
pseudo functor by Lemma 48.16.4.

https://stacks.math.columbia.edu/tag/0AU4
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In the situation just described a dualizing complex normalized relative to ω•
S and

U is a pair (K,αi) where K ∈ D(OX) and αi : K|Ui → ω•
i are isomorphisms such

that φij is given by αj |Ui∩Uj ◦ α−1
i |Ui∩Uj . Since being a dualizing complex on a

scheme is a local property we see that dualizing complexes normalized relative to
ω•
S and U are indeed dualizing complexes.

Lemma 48.20.2.0AU7 In Situation 48.20.1 let X be a scheme of finite type over S and
let U be a finite open covering of X by schemes separated over S. If there exists a
dualizing complex normalized relative to ω•

S and U , then it is unique up to unique
isomorphism.

Proof. If (K,αi) and (K ′, α′
i) are two, then we consider L = RHomOX

(K,K ′). By
Lemma 48.2.6 and its proof, this is an invertible object of D(OX). Using αi and
α′
i we obtain an isomorphism

αti ⊗ α′
i : L|Ui −→ RHomOX

(ω•
i , ω

•
i ) = OUi [0]

This already implies that L = H0(L)[0] in D(OX). Moreover, H0(L) is an invertible
sheaf with given trivializations on the opens Ui of X. Finally, the condition that
αj |Ui∩Uj ◦ α−1

i |Ui∩Uj and α′
j |Ui∩Uj ◦ (α′

i)−1|Ui∩Uj both give φij implies that the
transition maps are 1 and we get an isomorphism H0(L) = OX . □

Lemma 48.20.3.0AU8 In Situation 48.20.1 let X be a scheme of finite type over S
and let U , V be two finite open coverings of X by schemes separated over S. If
there exists a dualizing complex normalized relative to ω•

S and U , then there exists
a dualizing complex normalized relative to ω•

S and V and these complexes are
canonically isomorphic.

Proof. It suffices to prove this when U is given by the opens U1, . . . , Un and V by
the opens U1, . . . , Un+m. In fact, we may and do even assume m = 1. To go from a
dualizing complex (K,αi) normalized relative to ω•

S and V to a dualizing complex
normalized relative to ω•

S and U is achieved by forgetting about αi for i = n + 1.
Conversely, let (K,αi) be a dualizing complex normalized relative to ω•

S and U .
To finish the proof we need to construct a map αn+1 : K|Un+1 → ω•

n+1 satisfying
the desired conditions. To do this we observe that Un+1 =

⋃
Ui ∩ Un+1 is an open

covering. It is clear that (K|Un+1 , αi|Ui∩Un+1) is a dualizing complex normalized
relative to ω•

S and the covering Un+1 =
⋃
Ui ∩ Un+1. On the other hand, by

condition (3) the pair (ω•
n+1|Un+1 , φn+1i) is another dualizing complex normalized

relative to ω•
S and the covering Un+1 =

⋃
Ui ∩Un+1. By Lemma 48.20.2 we obtain

a unique isomorphism
αn+1 : K|Un+1 −→ ω•

n+1

compatible with the given local isomorphisms. It is a pleasant exercise to show that
this means it satisfies the required property. □

Lemma 48.20.4.0AU9 In Situation 48.20.1 let X be a scheme of finite type over S and
let U be a finite open covering of X by schemes separated over S. Then there exists
a dualizing complex normalized relative to ω•

S and U .

Proof. Say U : X =
⋃
i=1,...,n Ui. We prove the lemma by induction on n. The

base case n = 1 is immediate. Assume n > 1. Set X ′ = U1 ∪ . . . ∪ Un−1 and
let (K ′, {α′

i}i=1,...,n−1) be a dualizing complex normalized relative to ω•
S and U ′ :

X ′ =
⋃
i=1,...,n−1 Ui. It is clear that (K ′|X′∩Un , α

′
i|Ui∩Un) is a dualizing complex

https://stacks.math.columbia.edu/tag/0AU7
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normalized relative to ω•
S and the covering X ′ ∩ Un =

⋃
i=1,...,n−1 Ui ∩ Un. On the

other hand, by condition (3) the pair (ω•
n|X′∩Un , φni) is another dualizing complex

normalized relative to ω•
S and the covering X ′ ∩ Un =

⋃
i=1,...,n−1 Ui ∩ Un. By

Lemma 48.20.2 we obtain a unique isomorphism

ϵ : K ′|X′∩Un −→ ω•
i |X′∩Un

compatible with the given local isomorphisms. By Cohomology, Lemma 20.45.1 we
obtain K ∈ D(OX) together with isomorphisms β : K|X′ → K ′ and γ : K|Un → ω•

n

such that ϵ = γ|X′∩Un ◦ β|−1
X′∩Un . Then we define

αi = α′
i ◦ β|Ui , i = 1, . . . , n− 1, and αn = γ

We still need to verify that φij is given by αj |Ui∩Uj ◦ α−1
i |Ui∩Uj . For i, j ≤ n − 1

this follows from the corresponding condition for α′
i. For i = j = n it is clear as

well. If i < j = n, then we get

αn|Ui∩Un ◦α−1
i |Ui∩Un = γ|Ui∩Un ◦β−1|Ui∩Un ◦(α′

i)−1|Ui∩Un = ϵ|Ui∩Un ◦(α′
i)−1|Ui∩Un

This is equal to αin exactly because ϵ is the unique map compatible with the maps
α′
i and αni. □

Let (S, ω•
S) be as in Situation 48.20.1. The upshot of the lemmas above is that

given any scheme X of finite type over S, there is a pair (K,αU ) given up to
unique isomorphism, consisting of an object K ∈ D(OX) and isomorphisms αU :
K|U → ω•

U for every open subscheme U ⊂ X which is separated over S. Here
ω•
U = (U → S)!ω•

S is a dualizing complex on U , see Section 48.19. Moreover,
if U : X =

⋃
Ui is a finite open covering by opens which are separated over S,

then (K,αUi) is a dualizing complex normalized relative to ω•
S and U . Namely,

uniqueness up to unique isomorphism by Lemma 48.20.2, existence for one open
covering by Lemma 48.20.4, and the fact that K then works for all open coverings
is Lemma 48.20.3.

Definition 48.20.5.0AUA Let S be a Noetherian scheme and let ω•
S be a dualizing complex

on S. Let X be a scheme of finite type over S. The complex K constructed above
is called the dualizing complex normalized relative to ω•

S and is denoted ω•
X .

As the terminology suggest, a dualizing complex normalized relative to ω•
S is not

just an object of the derived category of X but comes equipped with the local
isomorphisms described above. This does not conflict with setting ω•

X = p!ω•
S

where p : X → S is the structure morphism if X is separated over S. More
generally we have the following sanity check.

Lemma 48.20.6.0AUB Let (S, ω•
S) be as in Situation 48.20.1. Let f : X → Y be a

morphism of finite type schemes over S. Let ω•
X and ω•

Y be dualizing complexes
normalized relative to ω•

S . Then ω•
X is a dualizing complex normalized relative to

ω•
Y .

Proof. This is just a matter of bookkeeping. Choose a finite affine open covering
V : Y =

⋃
Vj . For each j choose a finite affine open covering f−1(Vj) = Uji. Set

U : X =
⋃
Uji. The schemes Vj and Uji are separated over S, hence we have

the upper shriek functors for qj : Vj → S, pji : Uji → S and fji : Uji → Vj and
f ′
ji : Uji → Y . Let (L, βj) be a dualizing complex normalized relative to ω•

S and

https://stacks.math.columbia.edu/tag/0AUA
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V. Let (K, γji) be a dualizing complex normalized relative to ω•
S and U . (In other

words, L = ω•
Y and K = ω•

X .) We can define

αji : K|Uji
γji−−→ p!

jiω
•
S = f !

jiq
!
jω

•
S

f !
jiβ

−1
j−−−−→ f !

ji(L|Vj ) = (f ′
ji)!(L)

To finish the proof we have to show that αji|Uji∩Uj′i′ ◦α
−1
j′i′ |Uji∩Uj′i′ is the canonical

isomorphism (f ′
ji)!(L)|Uji∩Uj′i′ → (f ′

j′i′)!(L)|Uji∩Uj′i′ . This is formal and we omit
the details. □

Lemma 48.20.7.0AUC Let (S, ω•
S) be as in Situation 48.20.1. Let j : X → Y be an open

immersion of schemes of finite type over S. Let ω•
X and ω•

Y be dualizing complexes
normalized relative to ω•

S . Then there is a canonical isomorphism ω•
X = ω•

Y |X .

Proof. Immediate from the construction of normalized dualizing complexes given
just above Definition 48.20.5. □

Lemma 48.20.8.0AUD Let (S, ω•
S) be as in Situation 48.20.1. Let f : X → Y be a proper

morphism of schemes of finite type over S. Let ω•
X and ω•

Y be dualizing complexes
normalized relative to ω•

S . Let a be the right adjoint of Lemma 48.3.1 for f . Then
there is a canonical isomorphism a(ω•

Y ) = ω•
X .

Proof. Let p : X → S and q : Y → S be the structure morphisms. If X and Y
are separated over S, then this follows from the fact that ω•

X = p!ω•
S , ω•

Y = q!ω•
S ,

f ! = a, and f ! ◦ q! = p! (Lemma 48.16.3). In the general case we first use Lemma
48.20.6 to reduce to the case Y = S. In this case X and Y are separated over S
and we’ve just seen the result. □

Let (S, ω•
S) be as in Situation 48.20.1. For a scheme X of finite type over S de-

note ω•
X the dualizing complex for X normalized relative to ω•

S . Define DX(−) =
RHomOX

(−, ω•
X) as in Lemma 48.2.5. Let f : X → Y be a morphism of finite type

schemes over S. Define
f !
new = DX ◦ Lf∗ ◦DY : D+

Coh(OY )→ D+
Coh(OX)

If f : X → Y and g : Y → Z are composable morphisms between schemes of finite
type over S, define

(g ◦ f)!
new = DX ◦ L(g ◦ f)∗ ◦DZ

= DX ◦ Lf∗ ◦ Lg∗ ◦DZ

→ DX ◦ Lf∗ ◦DY ◦DY ◦ Lg∗ ◦DZ

= f !
new ◦ g!

new

where the arrow is defined in Lemma 48.2.5. We collect the results together in the
following lemma.

Lemma 48.20.9.0AUE Let (S, ω•
S) be as in Situation 48.20.1. With f !

new and ω•
X defined

for all (morphisms of) schemes of finite type over S as above:
(1) the functors f !

new and the arrows (g ◦ f)!
new → f !

new ◦ g!
new turn D+

Coh into
a pseudo functor from the category of schemes of finite type over S into
the 2-category of categories,

(2) ω•
X = (X → S)!

newω
•
S ,

(3) the functor DX defines an involution of DCoh(OX) switching D+
Coh(OX)

and D−
Coh(OX) and fixing Db

Coh(OX),

https://stacks.math.columbia.edu/tag/0AUC
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(4) ω•
X = f !

newω
•
Y for f : X → Y a morphism of finite type schemes over S,

(5) f !
newM = DX(Lf∗DY (M)) for M ∈ D+

Coh(OY ), and
(6) if in addition f is proper, then f !

new is isomorphic to the restriction of the
right adjoint of Rf∗ : DQCoh(OX)→ DQCoh(OY ) to D+

Coh(OY ) and there
is a canonical isomorphism

Rf∗RHomOX
(K, f !

newM)→ RHomOY
(Rf∗K,M)

for K ∈ D−
Coh(OX) and M ∈ D+

Coh(OY ), and
Rf∗RHomOX

(K,ω•
X) = RHomOY

(Rf∗K,ω
•
Y )

for K ∈ D−
Coh(OX) and

If X is separated over S, then ω•
X is canonically isomorphic to (X → S)!ω•

S and
if f is a morphism between schemes separated over S, then there is a canonical
isomorphism7 f !

newK = f !K for K in D+
Coh.

Proof. Let f : X → Y , g : Y → Z, h : Z → T be morphisms of schemes of finite
type over S. We have to show that

(h ◦ g ◦ f)!
new

//

��

f !
new ◦ (h ◦ g)!

new

��
(g ◦ f)!

new ◦ h!
new

// f !
new ◦ g!

new ◦ h!
new

is commutative. Let ηY : id→ D2
Y and ηZ : id→ D2

Z be the canonical isomorphisms
of Lemma 48.2.5. Then, using Categories, Lemma 4.28.2, a computation (omitted)
shows that both arrows (h ◦ g ◦ f)!

new → f !
new ◦ g!

new ◦ h!
new are given by

1⋆ηY ⋆1⋆ηZ ⋆1 : DX ◦Lf∗ ◦Lg∗ ◦Lh∗ ◦DT −→ DX ◦Lf∗ ◦D2
Y ◦Lg∗ ◦D2

Z ◦Lh∗ ◦DT

This proves (1). Part (2) is immediate from the definition of (X → S)!
new and the

fact that DS(ω•
S) = OS . Part (3) is Lemma 48.2.5. Part (4) follows by the same

argument as part (2). Part (5) is the definition of f !
new.

Proof of (6). Let a be the right adjoint of Lemma 48.3.1 for the proper morphism
f : X → Y of schemes of finite type over S. The issue is that we do not know X or
Y is separated over S (and in general this won’t be true) hence we cannot imme-
diately apply Lemma 48.17.8 to f over S. To get around this we use the canonical
identification ω•

X = a(ω•
Y ) of Lemma 48.20.8. Hence f !

new is the restriction of a to
D+

Coh(OY ) by Lemma 48.17.8 applied to f : X → Y over the base scheme Y ! The
displayed equalities hold by Example 48.3.9.
The final assertions follow from the construction of normalized dualizing complexes
and the already used Lemma 48.17.8. □

Remark 48.20.10.0BV3 Let S be a Noetherian scheme which has a dualizing complex.
Let f : X → Y be a morphism of schemes of finite type over S. Then the functor

f !
new : D+

Coh(OY )→ D+
Coh(OX)

is independent of the choice of the dualizing complex ω•
S up to canonical isomor-

phism. We sketch the proof. Any second dualizing complex is of the form ω•
S⊗L

OS
L

where L is an invertible object of D(OS), see Lemma 48.2.6. For any separated

7We haven’t checked that these are compatible with the isomorphisms (g ◦ f)! → f ! ◦ g! and
(g ◦ f)!

new → f !
new ◦ g!

new. We will do this here if we need this later.
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morphism p : U → S of finite type we have p!(ω•
S ⊗L

OS
L) = p!(ω•

S) ⊗L
OU

Lp∗L by
Lemma 48.8.1. Hence, if ω•

X and ω•
Y are the dualizing complexes normalized rela-

tive to ω•
S we see that ω•

X⊗L
OX

La∗L and ω•
Y ⊗L

OY
Lb∗L are the dualizing complexes

normalized relative to ω•
S⊗L

OS
L (where a : X → S and b : Y → S are the structure

morphisms). Then the result follows as

RHomOX
(Lf∗RHomOY

(K,ω•
Y ⊗L

OY
Lb∗L), ω•

X ⊗L
OX

La∗L)
= RHomOX

(Lf∗R(HomOY
(K,ω•

Y )⊗L
OY

Lb∗L), ω•
X ⊗L

OX
La∗L)

= RHomOX
(Lf∗RHomOY

(K,ω•
Y )⊗L

OX
La∗L, ω•

X ⊗L
OX

La∗L)
= RHomOX

(Lf∗RHomOY
(K,ω•

Y ), ω•
X)

for K ∈ D+
Coh(OY ). The last equality because La∗L is invertible in D(OX).

Example 48.20.11.0B6X Let S be a Noetherian scheme and let ω•
S be a dualizing com-

plex. Let f : X → Y be a proper morphism of finite type schemes over S. Let
ω•
X and ω•

Y be dualizing complexes normalized relative to ω•
S . In this situation we

have a(ω•
Y ) = ω•

X (Lemma 48.20.8) and hence the trace map (Section 48.7) is a
canonical arrow

Trf : Rf∗ω
•
X −→ ω•

Y

which produces the isomorphisms (Lemma 48.20.9)

HomX(L, ω•
X) = HomY (Rf∗L, ω

•
Y )

and
Rf∗RHomOX

(L, ω•
X) = RHomOY

(Rf∗L, ω
•
Y )

for L in DQCoh(OX).

Remark 48.20.12.0AX4 Let S be a Noetherian scheme and let ω•
S be a dualizing complex.

Let f : X → Y be a finite morphism between schemes of finite type over S. Let
ω•
X and ω•

Y be dualizing complexes normalized relative to ω•
S . Then we have

f∗ω
•
X = RHom(f∗OX , ω•

Y )

in D+
QCoh(f∗OX) by Lemmas 48.11.4 and 48.20.8 and the trace map of Example

48.20.11 is the map

Trf : Rf∗ω
•
X = f∗ω

•
X = RHom(f∗OX , ω•

Y ) −→ ω•
Y

which often goes under the name “evaluation at 1”.

Remark 48.20.13.0B6W Let f : X → Y be a flat proper morphism of finite type schemes
over a pair (S, ω•

S) as in Situation 48.20.1. The relative dualizing complex (Re-
mark 48.12.5) is ω•

X/Y = a(OY ). By Lemma 48.20.8 we have the first canonical
isomorphism in

ω•
X = a(ω•

Y ) = Lf∗ω•
Y ⊗L

OX
ω•
X/Y

in D(OX). The second canonical isomorphism follows from the discussion in Re-
mark 48.12.5.
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48.21. Dimension functions

0BV4 We need a bit more information about how the dimension functions change when
passing to a scheme of finite type over another.

Lemma 48.21.1.0AWL Let S be a Noetherian scheme and let ω•
S be a dualizing complex.

Let X be a scheme of finite type over S and let ω•
X be the dualizing complex

normalized relative to ω•
S . If x ∈ X is a closed point lying over a closed point s of

S, then ω•
X,x is a normalized dualizing complex over OX,x provided that ω•

S,s is a
normalized dualizing complex over OS,s.

Proof. We may replace X by an affine neighbourhood of x, hence we may and
do assume that f : X → S is separated. Then ω•

X = f !ω•
S . We have to show

that RHomOX,x
(κ(x), ω•

X,x) is sitting in degree 0. Let ix : x → X denote the
inclusion morphism which is a closed immersion as x is a closed point. Hence
RHomOX,x

(κ(x), ω•
X,x) represents i!xω•

X by Lemma 48.17.4. Consider the commu-
tative diagram

x
ix
//

π

��

X

f

��
s

is // S

By Morphisms, Lemma 29.20.3 the extension κ(x)/κ(s) is finite and hence π is a
finite morphism. We conclude that

i!xω
•
X = i!xf

!ω•
S = π!i!sω

•
S

Thus if ω•
S,s is a normalized dualizing complex over OS,s, then i!sω

•
S = κ(s)[0] by

the same reasoning as above. We have

Rπ∗(π!(κ(s)[0])) = RHomOs
(Rπ∗(κ(x)[0]), κ(s)[0]) = ˜Homκ(s)(κ(x), κ(s))

The first equality by Example 48.3.9 applied with L = κ(x)[0]. The second equality
holds because π∗ is exact. Thus π!(κ(s)[0]) is supported in degree 0 and we win. □

Lemma 48.21.2.0AWM Let S be a Noetherian scheme and let ω•
S be a dualizing complex.

Let f : X → S be of finite type and let ω•
X be the dualizing complex normalized

relative to ω•
S . For all x ∈ X we have

δX(x)− δS(f(x)) = trdegκ(f(x))(κ(x))

where δS , resp. δX is the dimension function of ω•
S , resp. ω•

X , see Lemma 48.2.7.

Proof. We may replace X by an affine neighbourhood of x. Hence we may and
do assume there is a compactification X ⊂ X over S. Then we may replace X by
X and assume that X is proper over S. We may also assume X is connected by
replacing X by the connected component of X containing x. Next, recall that both
δX and the function x 7→ δS(f(x)) + trdegκ(f(x))(κ(x)) are dimension functions on
X, see Morphisms, Lemma 29.52.3 (and the fact that S is universally catenary by
Lemma 48.2.7). By Topology, Lemma 5.20.3 we see that the difference is locally
constant, hence constant as X is connected. Thus it suffices to prove equality in
any point of X. By Properties, Lemma 28.5.9 the scheme X has a closed point x.
Since X → S is proper the image s of x is closed in S. Thus we may apply Lemma
48.21.1 to conclude. □
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Lemma 48.21.3.0BV5 In Situation 48.16.1 let f : X → Y be a morphism of FTSS . Let
x ∈ X with image y ∈ Y . Then

Hi(f !OY )x ̸= 0⇒ −dimx(Xy) ≤ i.

Proof. Since the statement is local on X we may assume X and Y are affine
schemes. Write X = Spec(A) and Y = Spec(R). Then f !OY corresponds to the
relative dualizing complex ω•

A/R of Dualizing Complexes, Section 47.25 by Remark
48.17.5. Thus the lemma follows from Dualizing Complexes, Lemma 47.25.7. □

Lemma 48.21.4.0BV6 In Situation 48.16.1 let f : X → Y be a morphism of FTSS . Let
x ∈ X with image y ∈ Y . If f is flat, then

Hi(f !OY )x ̸= 0⇒ −dimx(Xy) ≤ i ≤ 0.
In fact, if all fibres of f have dimension ≤ d, then f !OY has tor-amplitude in [−d, 0]
as an object of D(X, f−1OY ).

Proof. Arguing exactly as in the proof of Lemma 48.21.3 this follows from Dualizing
Complexes, Lemma 47.25.8. □

Lemma 48.21.5.0E9V In Situation 48.16.1 let f : X → Y be a morphism of FTSS . Let
x ∈ X with image y ∈ Y . Assume

(1) OY,y is Cohen-Macaulay, and
(2) trdegκ(f(ξ))(κ(ξ)) ≤ r for any generic point ξ of an irreducible component

of X containing x.
Then

Hi(f !OY )x ̸= 0⇒ −r ≤ i
and the stalk H−r(f !OY )x is (S2) as an OX,x-module.

Proof. After replacing X by an open neighbourhood of x, we may assume every
irreducible component of X passes through x. Then arguing exactly as in the proof
of Lemma 48.21.3 this follows from Dualizing Complexes, Lemma 47.25.9. □

Lemma 48.21.6.0BV7 In Situation 48.16.1 let f : X → Y be a morphism of FTSS . If f
is flat and quasi-finite, then

f !OY = ωX/Y [0]
for some coherent OX -module ωX/Y flat over Y .

Proof. Consequence of Lemma 48.21.4 and the fact that the cohomology sheaves
of f !OY are coherent by Lemma 48.17.6. □

Lemma 48.21.7.0BV8 In Situation 48.16.1 let f : X → Y be a morphism of FTSS . If f
is Cohen-Macaulay (More on Morphisms, Definition 37.22.1), then

f !OY = ωX/Y [d]
for some coherent OX -module ωX/Y flat over Y where d is the locally constant
function on X which gives the relative dimension of X over Y .

Proof. The relative dimension d is well defined and locally constant by Morphisms,
Lemma 29.29.4. The cohomology sheaves of f !OY are coherent by Lemma 48.17.6.
We will get flatness of ωX/Y from Lemma 48.21.4 if we can show the other coho-
mology sheaves of f !OY are zero.
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The question is local on X, hence we may assume X and Y are affine and the
morphism has relative dimension d. If d = 0, then the result follows directly from
Lemma 48.21.6. If d > 0, then we may assume there is a factorization

X
g−→ Ad

Y
p−→ Y

with g quasi-finite and flat, see More on Morphisms, Lemma 37.22.8. Then f ! =
g! ◦ p!. By Lemma 48.17.3 we see that p!OY ∼= OAd

Y
[−d]. We conclude by the case

d = 0. □

Remark 48.21.8.0BV9 Let S be a Noetherian scheme endowed with a dualizing complex
ω•
S . In this case Lemmas 48.21.3, 48.21.4, 48.21.6, and 48.21.7 are true for any

morphism f : X → Y of finite type schemes over S but with f ! replaced by f !
new.

This is clear because in each case the proof reduces immediately to the affine case
and then f ! = f !

new by Lemma 48.20.9.

48.22. Dualizing modules

0AWH This section is a continuation of Dualizing Complexes, Section 47.19.
Let X be a Noetherian scheme and let ω•

X be a dualizing complex. Let n ∈ Z be the
smallest integer such that Hn(ω•

X) is nonzero. In other words, −n is the maximal
value of the dimension function associated to ω•

X (Lemma 48.2.7). Sometimes
Hn(ω•

X) is called a dualizing module or dualizing sheaf for X and then it is often
denoted by ωX . We will say “let ωX be a dualizing module” to indicate the above.
Care has to be taken when using dualizing modules ωX on Noetherian schemes X:

(1) the integer n may change when passing from X to an open U of X and
then it won’t be true that ωX |U = ωU ,

(2) the dualizing complex isn’t unique; the dualizing module is only unique
up to tensoring by an invertible module.

The second problem will often be irrelevant because we will work with X of finite
type over a base change S which is endowed with a fixed dualizing complex ω•

S

and ω•
X will be the dualizing complex normalized relative to ω•

S . The first problem
will not occur if X is equidimensional, more precisely, if the dimension function
associated to ω•

X (Lemma 48.2.7) maps every generic point of X to the same integer.

Example 48.22.1.0AWI Say S = Spec(A) with (A,m, κ) a local Noetherian ring, and ω•
S

corresponds to a normalized dualizing complex ω•
A. Then if f : X → S is proper

over S and ω•
X = f !ω•

S the coherent sheaf

ωX = H− dim(X)(ω•
X)

is a dualizing module and is often called the dualizing module of X (with S and
ω•
S being understood). We will see that this has good properties.

Example 48.22.2.0AWJ Say X is an equidimensional scheme of finite type over a field k.
Then it is customary to take ω•

X the dualizing complex normalized relative to k[0]
and to refer to

ωX = H− dim(X)(ω•
X)

as the dualizing module of X. If X is separated over k, then ω•
X = f !OSpec(k) where

f : X → Spec(k) is the structure morphism by Lemma 48.20.9. If X is proper over
k, then this is a special case of Example 48.22.1.
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Lemma 48.22.3.0AWK Let X be a connected Noetherian scheme and let ωX be a dualizing
module on X. The support of ωX is the union of the irreducible components of
maximal dimension with respect to any dimension function and ωX is a coherent
OX -module having property (S2).

Proof. By our conventions discussed above there exists a dualizing complex ω•
X

such that ωX is the leftmost nonvanishing cohomology sheaf. Since X is connected,
any two dimension functions differ by a constant (Topology, Lemma 5.20.3). Hence
we may use the dimension function associated to ω•

X (Lemma 48.2.7). With these
remarks in place, the lemma now follows from Dualizing Complexes, Lemma 47.17.5
and the definitions (in particular Cohomology of Schemes, Definition 30.11.1). □

Lemma 48.22.4.0AWN Let X/A with ω•
X and ωX be as in Example 48.22.1. Then

(1) Hi(ω•
X) ̸= 0⇒ i ∈ {−dim(X), . . . , 0},

(2) the dimension of the support of Hi(ω•
X) is at most −i,

(3) Supp(ωX) is the union of the components of dimension dim(X), and
(4) ωX has property (S2).

Proof. Let δX and δS be the dimension functions associated to ω•
X and ω•

S as in
Lemma 48.21.2. As X is proper over A, every closed subscheme of X contains
a closed point x which maps to the closed point s ∈ S and δX(x) = δS(s) = 0.
Hence δX(ξ) = dim({ξ}) for any point ξ ∈ X. Hence we can check each of the
statements of the lemma by looking at what happens over Spec(OX,x) in which
case the result follows from Dualizing Complexes, Lemmas 47.16.5 and 47.17.5.
Some details omitted. The last two statements can also be deduced from Lemma
48.22.3. □

Lemma 48.22.5.0AWP Let X/A with dualizing module ωX be as in Example 48.22.1.
Let d = dim(Xs) be the dimension of the closed fibre. If dim(X) = d + dim(A),
then the dualizing module ωX represents the functor

F 7−→ HomA(Hd(X,F), ωA)

on the category of coherent OX -modules.

Proof. We have

HomX(F , ωX) = Ext− dim(X)
X (F , ω•

X)
= HomX(F [dim(X)], ω•

X)
= HomX(F [dim(X)], f !(ω•

A))
= HomS(Rf∗F [dim(X)], ω•

A)
= HomA(Hd(X,F), ωA)

The first equality because Hi(ω•
X) = 0 for i < −dim(X), see Lemma 48.22.4

and Derived Categories, Lemma 13.27.3. The second equality is follows from the
definition of Ext groups. The third equality is our choice of ω•

X . The fourth equality
holds because f ! is the right adjoint of Lemma 48.3.1 for f , see Section 48.19. The
final equality holds because Rif∗F is zero for i > d (Cohomology of Schemes,
Lemma 30.20.9) and Hj(ω•

A) is zero for j < −dim(A). □
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48.23. Cohen-Macaulay schemes

0AWQ This section is the continuation of Dualizing Complexes, Section 47.20. Duality
takes a particularly simple form for Cohen-Macaulay schemes.

Lemma 48.23.1.0AWT Let X be a locally Noetherian scheme with dualizing complex ω•
X .

(1) X is Cohen-Macaulay ⇔ ω•
X locally has a unique nonzero cohomology

sheaf,
(2) OX,x is Cohen-Macaulay ⇔ ω•

X,x has a unique nonzero cohomology,
(3) U = {x ∈ X | OX,x is Cohen-Macaulay} is open and Cohen-Macaulay.

If X is connected and Cohen-Macaulay, then there is an integer n and a coherent
Cohen-Macaulay OX -module ωX such that ω•

X = ωX [−n].

Proof. By definition and Dualizing Complexes, Lemma 47.15.6 for every x ∈ X the
complex ω•

X,x is a dualizing complex over OX,x. By Dualizing Complexes, Lemma
47.20.2 we see that (2) holds.
To see (3) assume that OX,x is Cohen-Macaulay. Let nx be the unique integer such
that Hnx(ω•

X,x) is nonzero. For an affine neighbourhood V ⊂ X of x we have ω•
X |V

is in Db
Coh(OV ) hence there are finitely many nonzero coherent modules Hi(ω•

X)|V .
Thus after shrinking V we may assume only Hnx is nonzero, see Modules, Lemma
17.9.5. In this way we see that OX,v is Cohen-Macaulay for every v ∈ V . This
proves that U is open as well as a Cohen-Macaulay scheme.
Proof of (1). The implication ⇐ follows from (2). The implication ⇒ follows from
the discussion in the previous paragraph, where we showed that if OX,x is Cohen-
Macaulay, then in a neighbourhood of x the complex ω•

X has only one nonzero
cohomology sheaf.
Assume X is connected and Cohen-Macaulay. The above shows that the map
x 7→ nx is locally constant. Since X is connected it is constant, say equal to n.
Setting ωX = Hn(ω•

X) we see that the lemma holds because ωX is Cohen-Macaulay
by Dualizing Complexes, Lemma 47.20.2 (and Cohomology of Schemes, Definition
30.11.4). □

Lemma 48.23.2.0AWU Let X be a locally Noetherian scheme. If there exists a coherent
sheaf ωX such that ωX [0] is a dualizing complex on X, then X is a Cohen-Macaulay
scheme.

Proof. This follows immediately from Dualizing Complexes, Lemma 47.20.3 and
our definitions. □

Lemma 48.23.3.0C0Z In Situation 48.16.1 let f : X → Y be a morphism of FTSS . Let
x ∈ X. If f is flat, then the following are equivalent

(1) f is Cohen-Macaulay at x,
(2) f !OY has a unique nonzero cohomology sheaf in a neighbourhood of x.

Proof. One direction of the lemma follows from Lemma 48.21.7. To prove the
converse, we may assume f !OY has a unique nonzero cohomology sheaf. Let y =
f(x). Let ξ1, . . . , ξn ∈ Xy be the generic points of the fibre Xy specializing to x.
Let d1, . . . , dn be the dimensions of the corresponding irreducible components of
Xy. The morphism f : X → Y is Cohen-Macaulay at ηi by More on Morphisms,
Lemma 37.22.7. Hence by Lemma 48.21.7 we see that d1 = . . . = dn. If d denotes
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the common value, then d = dimx(Xy). After shrinking X we may assume all fibres
have dimension at most d (Morphisms, Lemma 29.28.4). Then the only nonzero
cohomology sheaf ω = H−d(f !OY ) is flat over Y by Lemma 48.21.4. Hence, if h :
Xy → X denotes the canonical morphism, then Lh∗(f !OY ) = Lh∗(ω[d]) = (h∗ω)[d]
by Derived Categories of Schemes, Lemma 36.22.8. Thus h∗ω[d] is the dualizing
complex of Xy by Lemma 48.18.4. Hence Xy is Cohen-Macaulay by Lemma 48.23.1.
This proves f is Cohen-Macaulay at x as desired. □

Remark 48.23.4.0C10 In Situation 48.16.1 let f : X → Y be a morphism of FTSS .
Assume f is a Cohen-Macaulay morphism of relative dimension d. Let ωX/Y =
H−d(f !OY ) be the unique nonzero cohomology sheaf of f !OY , see Lemma 48.21.7.
Then there is a canonical isomorphism

f !K = Lf∗K ⊗L
OX

ωX/Y [d]
for K ∈ D+

QCoh(OY ), see Lemma 48.17.9. In particular, if S has a dualizing complex
ω•
S , ω•

Y = (Y → S)!ω•
S , and ω•

X = (X → S)!ω•
S then we have

ω•
X = Lf∗ω•

Y ⊗L
OX

ωX/Y [d]
Thus if further X and Y are connected and Cohen-Macaulay and if ωY and ωX
denote the unique nonzero cohomology sheaves of ω•

Y and ω•
X , then we have

ωX = f∗ωY ⊗OX
ωX/Y .

Similar results hold for X and Y arbitrary finite type schemes over S (i.e., not
necessarily separated over S) with dualizing complexes normalized with respect to
ω•
S as in Section 48.20.

48.24. Gorenstein schemes

0AWV This section is the continuation of Dualizing Complexes, Section 47.21.

Definition 48.24.1.0AWW Let X be a scheme. We say X is Gorenstein if X is locally
Noetherian and OX,x is Gorenstein for all x ∈ X.

This definition makes sense because a Noetherian ring is said to be Gorenstein if
and only if all of its local rings are Gorenstein, see Dualizing Complexes, Definition
47.21.1.

Lemma 48.24.2.0C00 A Gorenstein scheme is Cohen-Macaulay.

Proof. Looking affine locally this follows from the corresponding result in algebra,
namely Dualizing Complexes, Lemma 47.21.2. □

Lemma 48.24.3.0DWG A regular scheme is Gorenstein.

Proof. Looking affine locally this follows from the corresponding result in algebra,
namely Dualizing Complexes, Lemma 47.21.3. □

Lemma 48.24.4.0BFQ Let X be a locally Noetherian scheme.
(1) If X has a dualizing complex ω•

X , then
(a) X is Gorenstein ⇔ ω•

X is an invertible object of D(OX),
(b) OX,x is Gorenstein ⇔ ω•

X,x is an invertible object of D(OX,x),
(c) U = {x ∈ X | OX,x is Gorenstein} is an open Gorenstein subscheme.

(2) If X is Gorenstein, then X has a dualizing complex if and only if OX [0]
is a dualizing complex.
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Proof. Looking affine locally this follows from the corresponding result in algebra,
namely Dualizing Complexes, Lemma 47.21.4. □

Lemma 48.24.5.0BVA If f : Y → X is a local complete intersection morphism with X a
Gorenstein scheme, then Y is Gorenstein.
Proof. By More on Morphisms, Lemma 37.62.5 it suffices to prove the correspond-
ing statement about ring maps. This is Dualizing Complexes, Lemma 47.21.7. □

Lemma 48.24.6.0C01 The property P(S) =“S is Gorenstein” is local in the syntomic
topology.
Proof. Let {Si → S} be a syntomic covering. The scheme S is locally Noetherian
if and only if each Si is Noetherian, see Descent, Lemma 35.16.1. Thus we may
now assume S and Si are locally Noetherian. If S is Gorenstein, then each Si is
Gorenstein by Lemma 48.24.5. Conversely, if each Si is Gorenstein, then for each
point s ∈ S we can pick i and t ∈ Si mapping to s. Then OS,s → OSi,t is a flat local
ring homomorphism with OSi,t Gorenstein. Hence OS,s is Gorenstein by Dualizing
Complexes, Lemma 47.21.8. □

48.25. Gorenstein morphisms

0C02 This section is one in a series. The corresponding sections for normal morphisms,
regular morphisms, and Cohen-Macaulay morphisms can be found in More on Mor-
phisms, Sections 37.20, 37.21, and 37.22.
The following lemma says that it does not make sense to define geometrically Goren-
stein schemes, since these would be the same as Gorenstein schemes.
Lemma 48.25.1.0C03 Let X be a locally Noetherian scheme over the field k. Let k′/k
be a finitely generated field extension. Let x ∈ X be a point, and let x′ ∈ Xk′ be a
point lying over x. Then we have

OX,x is Gorenstein⇔ OXk′ ,x′ is Gorenstein
If X is locally of finite type over k, the same holds for any field extension k′/k.
Proof. In both cases the ring map OX,x → OXk′ ,x′ is a faithfully flat local homo-
morphism of Noetherian local rings. Thus if OXk′ ,x′ is Gorenstein, then so is OX,x
by Dualizing Complexes, Lemma 47.21.8. To go up, we use Dualizing Complexes,
Lemma 47.21.8 as well. Thus we have to show that

OXk′ ,x′/mxOXk′ ,x′ = κ(x)⊗k k′

is Gorenstein. Note that in the first case k → k′ is finitely generated and in the
second case k → κ(x) is finitely generated. Hence this follows as property (A) holds
for Gorenstein, see Dualizing Complexes, Lemma 47.23.1. □

The lemma above guarantees that the following is the correct definition of Goren-
stein morphisms.
Definition 48.25.2.0C04 Let f : X → Y be a morphism of schemes. Assume that all the
fibres Xy are locally Noetherian schemes.

(1) Let x ∈ X, and y = f(x). We say that f is Gorenstein at x if f is flat at
x, and the local ring of the scheme Xy at x is Gorenstein.

(2) We say f is a Gorenstein morphism if f is Gorenstein at every point of
X.

https://stacks.math.columbia.edu/tag/0BVA
https://stacks.math.columbia.edu/tag/0C01
https://stacks.math.columbia.edu/tag/0C03
https://stacks.math.columbia.edu/tag/0C04


48.25. GORENSTEIN MORPHISMS 4094

Here is a translation.

Lemma 48.25.3.0C05 Let f : X → Y be a morphism of schemes. Assume all fibres of f
are locally Noetherian. The following are equivalent

(1) f is Gorenstein, and
(2) f is flat and its fibres are Gorenstein schemes.

Proof. This follows directly from the definitions. □

Lemma 48.25.4.0C06 A Gorenstein morphism is Cohen-Macaulay.

Proof. Follows from Lemma 48.24.2 and the definitions. □

Lemma 48.25.5.0C15 A syntomic morphism is Gorenstein. Equivalently a flat local
complete intersection morphism is Gorenstein.

Proof. Recall that a syntomic morphism is flat and its fibres are local complete
intersections over fields, see Morphisms, Lemma 29.30.11. Since a local complete
intersection over a field is a Gorenstein scheme by Lemma 48.24.5 we conclude.
The properties “syntomic” and “flat and local complete intersection morphism” are
equivalent by More on Morphisms, Lemma 37.62.8. □

Lemma 48.25.6.0C11 Let f : X → Y and g : Y → Z be morphisms. Assume that the
fibres Xy, Yz and Xz of f , g, and g ◦ f are locally Noetherian.

(1) If f is Gorenstein at x and g is Gorenstein at f(x), then g◦f is Gorenstein
at x.

(2) If f and g are Gorenstein, then g ◦ f is Gorenstein.
(3) If g ◦ f is Gorenstein at x and f is flat at x, then f is Gorenstein at x and

g is Gorenstein at f(x).
(4) If g◦f is Gorenstein and f is flat, then f is Gorenstein and g is Gorenstein

at every point in the image of f .

Proof. After translating into algebra this follows from Dualizing Complexes, Lemma
47.21.8. □

Lemma 48.25.7.0C12 Let f : X → Y be a flat morphism of locally Noetherian schemes.
If X is Gorenstein, then f is Gorenstein and OY,f(x) is Gorenstein for all x ∈ X.

Proof. After translating into algebra this follows from Dualizing Complexes, Lemma
47.21.8. □

Lemma 48.25.8.0C07 Let f : X → Y be a morphism of schemes. Assume that all the
fibres Xy are locally Noetherian schemes. Let Y ′ → Y be locally of finite type. Let
f ′ : X ′ → Y ′ be the base change of f . Let x′ ∈ X ′ be a point with image x ∈ X.

(1) If f is Gorenstein at x, then f ′ : X ′ → Y ′ is Gorenstein at x′.
(2) If f is flat at x and f ′ is Gorenstein at x′, then f is Gorenstein at x.
(3) If Y ′ → Y is flat at f ′(x′) and f ′ is Gorenstein at x′, then f is Gorenstein

at x.

Proof. Note that the assumption on Y ′ → Y implies that for y′ ∈ Y ′ mapping to
y ∈ Y the field extension κ(y′)/κ(y) is finitely generated. Hence also all the fibres
X ′
y′ = (Xy)κ(y′) are locally Noetherian, see Varieties, Lemma 33.11.1. Thus the
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lemma makes sense. Set y′ = f ′(x′) and y = f(x). Hence we get the following
commutative diagram of local rings

OX′,x′ OX,xoo

OY ′,y′

OO

OY,yoo

OO

where the upper left corner is a localization of the tensor product of the upper right
and lower left corners over the lower right corner.
Assume f is Gorenstein at x. The flatness of OY,y → OX,x implies the flatness
of OY ′,y′ → OX′,x′ , see Algebra, Lemma 10.100.1. The fact that OX,x/myOX,x is
Gorenstein implies that OX′,x′/my′OX′,x′ is Gorenstein, see Lemma 48.25.1. Hence
we see that f ′ is Gorenstein at x′.
Assume f is flat at x and f ′ is Gorenstein at x′. The fact that OX′,x′/my′OX′,x′

is Gorenstein implies that OX,x/myOX,x is Gorenstein, see Lemma 48.25.1. Hence
we see that f is Gorenstein at x.
Assume Y ′ → Y is flat at y′ and f ′ is Gorenstein at x′. The flatness of OY ′,y′ →
OX′,x′ and OY,y → OY ′,y′ implies the flatness of OY,y → OX,x, see Algebra, Lemma
10.100.1. The fact that OX′,x′/my′OX′,x′ is Gorenstein implies that OX,x/myOX,x
is Gorenstein, see Lemma 48.25.1. Hence we see that f is Gorenstein at x. □

Lemma 48.25.9.0E0Q Let f : X → Y be a morphism of schemes which is flat and locally
of finite type. Then formation of the set {x ∈ X | f is Gorenstein at x} commutes
with arbitrary base change.

Proof. The assumption implies any fibre of f is locally of finite type over a field
and hence locally Noetherian and the same is true for any base change. Thus the
statement makes sense. Looking at fibres we reduce to the following problem: let
X be a scheme locally of finite type over a field k, let K/k be a field extension,
and let xK ∈ XK be a point with image x ∈ X. Problem: show that OXK ,xK is
Gorenstein if and only if OX,x is Gorenstein.
The problem can be solved using a bit of algebra as follows. Choose an affine open
Spec(A) ⊂ X containing x. Say x corresponds to p ⊂ A. With AK = A ⊗k K we
see that Spec(AK) ⊂ XK contains xK . Say xK corresponds to pK ⊂ AK . Let ω•

A

be a dualizing complex for A. By Dualizing Complexes, Lemma 47.25.3 ω•
A⊗AAK

is a dualizing complex for AK . Now we are done because Ap → (AK)pK is a flat
local homomorphism of Noetherian rings and hence (ω•

A)p is an invertible object
of D(Ap) if and only if (ω•

A)p ⊗Ap
(AK)pK is an invertible object of D((AK)pK ).

Some details omitted; hint: look at cohomology modules. □

Lemma 48.25.10.0C08 In Situation 48.16.1 let f : X → Y be a morphism of FTSS . Let
x ∈ X. If f is flat, then the following are equivalent

(1) f is Gorenstein at x,
(2) f !OY is isomorphic to an invertible object in a neighbourhood of x.

In particular, the set of points where f is Gorenstein is open in X.

Proof. Set ω• = f !OY . By Lemma 48.18.4 this is a bounded complex with coherent
cohomology sheaves whose derived restriction Lh∗ω• to the fibre Xy is a dualizing
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complex on Xy. Denote i : x → Xy the inclusion of a point. Then the following
are equivalent

(1) f is Gorenstein at x,
(2) OXy,x is Gorenstein,
(3) Lh∗ω• is invertible in a neighbourhood of x,
(4) Li∗Lh∗ω• has exactly one nonzero cohomology of dimension 1 over κ(x),
(5) L(h◦ i)∗ω• has exactly one nonzero cohomology of dimension 1 over κ(x),
(6) ω• is invertible in a neighbourhood of x.

The equivalence of (1) and (2) is by definition (as f is flat). The equivalence of (2)
and (3) follows from Lemma 48.24.4. The equivalence of (3) and (4) follows from
More on Algebra, Lemma 15.77.1. The equivalence of (4) and (5) holds because
Li∗Lh∗ = L(h ◦ i)∗. The equivalence of (5) and (6) holds by More on Algebra,
Lemma 15.77.1. Thus the lemma is clear. □

Lemma 48.25.11.0C09 Let f : X → S be a morphism of schemes which is flat and
locally of finite presentation. Let x ∈ X with image s ∈ S. Set d = dimx(Xs). The
following are equivalent

(1) f is Gorenstein at x,
(2) there exists an open neighbourhood U ⊂ X of x and a locally quasi-finite

morphism U → Ad
S over S which is Gorenstein at x,

(3) there exists an open neighbourhood U ⊂ X of x and a locally quasi-finite
Gorenstein morphism U → Ad

S over S,
(4) for any S-morphism g : U → Ad

S of an open neighbourhood U ⊂ X of x
we have: g is quasi-finite at x ⇒ g is Gorenstein at x.

In particular, the set of points where f is Gorenstein is open in X.

Proof. Choose affine open U = Spec(A) ⊂ X with x ∈ U and V = Spec(R) ⊂ S
with f(U) ⊂ V . Then R → A is a flat ring map of finite presentation. Let p ⊂ A
be the prime ideal corresponding to x. After replacing A by a principal localization
we may assume there exists a quasi-finite map R[x1, . . . , xd] → A, see Algebra,
Lemma 10.125.2. Thus there exists at least one pair (U, g) consisting of an open
neighbourhood U ⊂ X of x and a locally8 quasi-finite morphism g : U → Ad

S .

Having said this, the lemma translates into the following algebra problem (trans-
lation omitted). Given R → A flat and of finite presentation, a prime p ⊂ A and
φ : R[x1, . . . , xd]→ A quasi-finite at p the following are equivalent

(a) Spec(φ) is Gorenstein at p, and
(b) Spec(A)→ Spec(R) is Gorenstein at p.
(c) Spec(A)→ Spec(R) is Gorenstein in an open neighbourhood of p.

In each case R[x1, . . . , xn]→ A is flat at p hence by openness of flatness (Algebra,
Theorem 10.129.4), we may assume R[x1, . . . , xn] → A is flat (replace A by a
suitable principal localization). By Algebra, Lemma 10.168.1 there exists R0 ⊂ R
and R0[x1, . . . , xn] → A0 such that R0 is of finite type over Z and R0 → A0 is of
finite type and R0[x1, . . . , xn]→ A0 is flat. Note that the set of points where a flat
finite type morphism is Gorenstein commutes with base change by Lemma 48.25.8.
In this way we reduce to the case where R is Noetherian.

8If S is quasi-separated, then g will be quasi-finite.

https://stacks.math.columbia.edu/tag/0C09
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Thus we may assume X and S affine and that we have a factorization of f of the
form

X
g−→ An

S
p−→ S

with g flat and quasi-finite and S Noetherian. Then X and An
S are separated over

S and we have
f !OS = g!p!OS = g!OAn

S
[n]

by know properties of upper shriek functors (Lemmas 48.16.3 and 48.17.3). Hence
the equivalence of (a), (b), and (c) by Lemma 48.25.10. □

Lemma 48.25.12.0C0A The property P(f) =“the fibres of f are locally Noetherian and
f is Gorenstein” is local in the fppf topology on the target and local in the syntomic
topology on the source.

Proof. We have P(f) = P1(f) ∧ P2(f) where P1(f) =“f is flat”, and P2(f) =“the
fibres of f are locally Noetherian and Gorenstein”. We know that P1 is local in
the fppf topology on the source and the target, see Descent, Lemmas 35.23.15 and
35.27.1. Thus we have to deal with P2.

Let f : X → Y be a morphism of schemes. Let {φi : Yi → Y }i∈I be an fppf
covering of Y . Denote fi : Xi → Yi the base change of f by φi. Let i ∈ I and let
yi ∈ Yi be a point. Set y = φi(yi). Note that

Xi,yi = Spec(κ(yi))×Spec(κ(y)) Xy.

and that κ(yi)/κ(y) is a finitely generated field extension. Hence if Xy is locally
Noetherian, then Xi,yi is locally Noetherian, see Varieties, Lemma 33.11.1. And if
in addition Xy is Gorenstein, then Xi,yi is Gorenstein, see Lemma 48.25.1. Thus
P2 is fppf local on the target.

Let {Xi → X} be a syntomic covering of X. Let y ∈ Y . In this case {Xi,y → Xy} is
a syntomic covering of the fibre. Hence the locality of P2 for the syntomic topology
on the source follows from Lemma 48.24.6. □

48.26. More on dualizing complexes

0E4M Some lemmas which don’t fit anywhere else very well.

Lemma 48.26.1.0E4N Let f : X → Y be a morphism of locally Noetherian schemes.
Assume

(1) f is syntomic and surjective, or
(2) f is a surjective flat local complete intersection morphism, or
(3) f is a surjective Gorenstein morphism of finite type.

Then K ∈ DQCoh(OY ) is a dualizing complex on Y if and only if Lf∗K is a
dualizing complex on X.

Proof. Taking affine opens and using Derived Categories of Schemes, Lemma 36.3.5
this translates into Dualizing Complexes, Lemma 47.26.2. □

https://stacks.math.columbia.edu/tag/0C0A
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48.27. Duality for proper schemes over fields

0FVU In this section we work out the consequences of the very general material above on
dualizing complexes and duality for proper schemes over fields.

Lemma 48.27.1.0FVV Let X be a proper scheme over a field k. There exists a dualizing
complex ω•

X with the following properties
(1) Hi(ω•

X) is nonzero only for i ∈ [−dim(X), 0],
(2) ωX = H− dim(X)(ω•

X) is a coherent (S2)-module whose support is the
irreducible components of dimension dim(X),

(3) the dimension of the support of Hi(ω•
X) is at most −i,

(4) for x ∈ X closed the module Hi(ω•
X,x)⊕ . . .⊕H0(ω•

X,x) is nonzero if and
only if depth(OX,x) ≤ −i,

(5) for K ∈ DQCoh(OX) there are functorial isomorphisms9

ExtiX(K,ω•
X) = Homk(H−i(X,K), k)

compatible with shifts and distinguished triangles,
(6) there are functorial isomorphisms Hom(F , ωX) = Homk(Hdim(X)(X,F), k)

for F quasi-coherent on X, and
(7) if X → Spec(k) is smooth of relative dimension d, then ω•

X
∼= ∧dΩX/k[d]

and ωX ∼= ∧dΩX/k.

Proof. Denote f : X → Spec(k) the structure morphism. Let a be the right adjoint
of pushforward of this morphism, see Lemma 48.3.1. Consider the relative dualizing
complex

ω•
X = a(OSpec(k))

Compare with Remark 48.12.5. Since f is proper we have f !(OSpec(k)) = a(OSpec(k))
by definition, see Section 48.16. Applying Lemma 48.17.7 we find that ω•

X is a
dualizing complex. Moreover, we see that ω•

X and ωX are as in Example 48.22.1
and as in Example 48.22.2.
Parts (1), (2), and (3) follow from Lemma 48.22.4.
For a closed point x ∈ X we see that ω•

X,x is a normalized dualizing complex over
OX,x, see Lemma 48.21.1. Part (4) then follows from Dualizing Complexes, Lemma
47.20.1.
Part (5) holds by construction as a is the right adjoint to Rf∗ : DQCoh(OX) →
D(OSpec(k)) = D(k) which we can identify with K 7→ RΓ(X,K). We also use
that the derived category D(k) of k-modules is the same as the category of graded
k-vector spaces.
Part (6) follows from Lemma 48.22.5 for coherent F and in general by unwinding
(5) for K = F [0] and i = − dim(X).
Part (7) follows from Lemma 48.15.7. □

Remark 48.27.2.0FVW Let k, X, and ω•
X be as in Lemma 48.27.1. The identity on the

complex ω•
X corresponds, via the functorial isomorphism in part (5), to a map

t : H0(X,ω•
X) −→ k

9This property characterizes ω•
X in DQCoh(OX) up to unique isomorphism by the Yoneda

lemma. Since ω•
X is in DbCoh(OX) in fact it suffices to consider K ∈ DbCoh(OX).

https://stacks.math.columbia.edu/tag/0FVV
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For an arbitrary K in DQCoh(OX) the identification Hom(K,ω•
X) with H0(X,K)∨

in part (5) corresponds to the pairing
HomX(K,ω•

X)×H0(X,K) −→ k, (α, β) 7−→ t(α(β))
This follows from the functoriality of the isomorphisms in (5). Similarly for any
i ∈ Z we get the pairing

ExtiX(K,ω•
X)×H−i(X,K) −→ k, (α, β) 7−→ t(α(β))

Here we think of α as a morphismK[−i]→ ω•
X and β as an element ofH0(X,K[−i])

in order to define α(β). Observe that if K is general, then we only know that
this pairing is nondegenerate on one side: the pairing induces an isomorphism
of HomX(K,ω•

X), resp. ExtiX(K,ω•
X) with the k-linear dual of H0(X,K), resp.

H−i(X,K) but in general not vice versa. If K is in Db
Coh(OX), then HomX(K,ω•

X),
ExtX(K,ω•

X), H0(X,K), and Hi(X,K) are finite dimensional k-vector spaces (by
Derived Categories of Schemes, Lemmas 36.11.5 and 36.11.4) and the pairings are
perfect in the usual sense.

Remark 48.27.3.0FVX We continue the discussion in Remark 48.27.2 and we use the
same notation k, X, ω•

X , and t. If F is a coherent OX -module we obtain perfect
pairings

⟨−,−⟩ : ExtiX(F , ω•
X)×H−i(X,F) −→ k, (α, β) 7−→ t(α(β))

of finite dimensional k-vector spaces. These pairings satisfy the following (obvious)
functoriality: if φ : F → G is a homomorphism of coherent OX -modules, then we
have

⟨α ◦ φ, β⟩ = ⟨α,φ(β)⟩
for α ∈ ExtiX(G, ω•

X) and β ∈ H−i(X,F). In other words, the k-linear map
ExtiX(G, ω•

X) → ExtiX(F , ω•
X) induced by φ is, via the pairings, the k-linear dual

of the k-linear map H−i(X,F) → H−i(X,G) induced by φ. Formulated in this
manner, this still works if φ is a homomorphism of quasi-coherent OX -modules.

Lemma 48.27.4.0FVY Let k, X, and ω•
X be as in Lemma 48.27.1. Let t : H0(X,ω•

X)→ k
be as in Remark 48.27.2. Let E ∈ D(OX) be perfect. Then the pairings

Hi(X,ω•
X ⊗L

OX
E∨)×H−i(X,E) −→ k, (ξ, η) 7−→ t((1ω•

X
⊗ ϵ)(ξ ∪ η))

are perfect for all i. Here ∪ denotes the cupproduct of Cohomology, Section 20.31
and ϵ : E∨ ⊗L

OX
E → OX is as in Cohomology, Example 20.50.7.

Proof. By replacing E with E[−i] this reduces to the case i = 0. By Cohomology,
Lemma 20.51.2 we see that the pairing is the same as the one discussed in Remark
48.27.2 whence the result by the discussion in that remark. □

Lemma 48.27.5.0FVZ Let X be a proper scheme over a field k which is Cohen-Macaulay
and equidimensional of dimension d. The module ωX of Lemma 48.27.1 has the
following properties

(1) ωX is a dualizing module on X (Section 48.22),
(2) ωX is a coherent Cohen-Macaulay module whose support is X,
(3) there are functorial isomorphisms ExtiX(K,ωX [d]) = Homk(H−i(X,K), k)

compatible with shifts and distinguished triangles for K ∈ DQCoh(X),
(4) there are functorial isomorphisms Extd−i(F , ωX) = Homk(Hi(X,F), k)

for F quasi-coherent on X.
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Proof. It is clear from Lemma 48.27.1 that ωX is a dualizing module (as it is the left
most nonvanishing cohomology sheaf of a dualizing complex). We have ω•

X = ωX [d]
and ωX is Cohen-Macaulay as X is Cohen-Macualay, see Lemma 48.23.1. The other
statements follow from this combined with the corresponding statements of Lemma
48.27.1. □

Remark 48.27.6.0FW0 Let X be a proper Cohen-Macaulay scheme over a field k which
is equidimensional of dimension d. Let ω•

X and ωX be as in Lemma 48.27.1. By
Lemma 48.27.5 we have ω•

X = ωX [d]. Let t : Hd(X,ωX) → k be the map of
Remark 48.27.2. Let E be a finite locally free OX -module with dual E∨. Then we
have perfect pairings

Hi(X,ωX ⊗OX
E∨)×Hd−i(X, E) −→ k, (ξ, η) 7−→ t(1⊗ ϵ)(ξ ∪ η))

where ∪ is the cup-product and ϵ : E∨⊗OX
E → OX is the evaluation map. This is

a special case of Lemma 48.27.4.

Here is a sanity check for the dualizing complex.

Lemma 48.27.7.0FW1 Let X be a proper scheme over a field k. Let ω•
X and ωX be as

in Lemma 48.27.1.
(1) If X → Spec(k) factors as X → Spec(k′)→ Spec(k) for some field k′, then

ω•
X and ωX are as in Lemma 48.27.1 for the morphism X → Spec(k′).

(2) If K/k is a field extension, then the pullback of ω•
X and ωX to the base

change XK are as in Lemma 48.27.1 for the morphism XK → Spec(K).

Proof. Denote f : X → Spec(k) the structure morphism and denote f ′ : X →
Spec(k′) the given factorization. In the proof of Lemma 48.27.1 we took ω•

X =
a(OSpec(k)) where a be is the right adjoint of Lemma 48.3.1 for f . Thus we have to
show a(OSpec(k)) ∼= a′(OSpec(k)) where a′ be is the right adjoint of Lemma 48.3.1
for f ′. Since k′ ⊂ H0(X,OX) we see that k′/k is a finite extension (Cohomology
of Schemes, Lemma 30.19.2). By uniqueness of adjoints we have a = a′ ◦ b where
b is the right adjoint of Lemma 48.3.1 for g : Spec(k′)→ Spec(k). Another way to
say this: we have f ! = (f ′)! ◦ g!. Thus it suffices to show that Homk(k′, k) ∼= k′ as
k′-modules, see Example 48.3.2. This holds because these are k′-vector spaces of
the same dimension (namely dimension 1).
Proof of (2). This holds because we have base change for a by Lemma 48.6.2. See
discussion in Remark 48.12.5. □

48.28. Relative dualizing complexes

0E2S For a proper, flat morphism of finite presentation we have a rigid relative dualizing
complex, see Remark 48.12.5 and Lemma 48.12.8. For a separated and finite type
morphism f : X → Y of Noetherian schemes, we can consider f !OY . In this
section we define relative dualizing complexes for morphisms which are flat and
locally of finite presentation (but not necessarily quasi-separated or quasi-compact)
between schemes (not necessarily locally Noetherian). We show such complexes
exist, are unique up to unique isomorphism, and agree with the cases mentioned
above. Before reading this section, please read Dualizing Complexes, Section 47.27.

Definition 48.28.1.0E2T Let X → S be a morphism of schemes which is flat and locally
of finite presentation. Let W ⊂ X ×S X be any open such that the diagonal
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∆X/S : X → X ×S X factors through a closed immersion ∆ : X → W . A relative
dualizing complex is a pair (K, ξ) consisting of an object K ∈ D(OX) and a map

ξ : ∆∗OX −→ Lpr∗
1K|W

in D(OW ) such that
(1) K is S-perfect (Derived Categories of Schemes, Definition 36.35.1), and
(2) ξ defines an isomorphism of ∆∗OX with RHomOW

(∆∗OX , Lpr∗
1K|W ).

By Lemma 48.9.3 condition (2) is equivalent to the existence of an isomorphism

OX −→ RHom(OX , Lpr∗
1K|W )

in D(OX) whose pushforward via ∆ is equal to ξ. Since RHom(OX , Lpr∗
1K|W )

is independent of the choice of the open W , so is the category of pairs (K, ξ). If
X → S is separated, then we can choose W = X ×S X. We will reduce many of
the arguments to the case of rings using the following lemma.

Lemma 48.28.2.0E2U Let X → S be a morphism of schemes which is flat and locally
of finite presentation. Let (K, ξ) be a relative dualizing complex. Then for any
commutative diagram

Spec(A)

��

// X

��
Spec(R) // S

whose horizontal arrows are open immersions, the restriction of K to Spec(A)
corresponds via Derived Categories of Schemes, Lemma 36.3.5 to a relative dualizing
complex for R→ A in the sense of Dualizing Complexes, Definition 47.27.1.

Proof. Since formation of RHom commutes with restrictions to opens we may as
well assume X = Spec(A) and S = Spec(R). Observe that relatively perfect objects
of D(OX) are pseudo-coherent and hence are in DQCoh(OX) (Derived Categories of
Schemes, Lemma 36.10.1). Thus the statement makes sense. Observe that taking
∆∗, Lpr∗

1, and RHom is compatible with what happens on the algebraic side by
Derived Categories of Schemes, Lemmas 36.3.7, 36.3.8, 36.10.8. For the last one
we observe that Lpr∗

1K is S-perfect (hence bounded below) and that ∆∗OX is
a pseudo-coherent object of D(OW ); translated into algebra this means that A is
pseudo-coherent as an A⊗RA-module which follows from More on Algebra, Lemma
15.82.8 applied to R → A ⊗R A → A. Thus we recover exactly the conditions in
Dualizing Complexes, Definition 47.27.1. □

Lemma 48.28.3.0E2V Let X → S be a morphism of schemes which is flat and locally
of finite presentation. Let (K, ξ) be a relative dualizing complex. Then OX →
RHomOX

(K,K) is an isomorphism.

Proof. Looking affine locally this reduces using Lemma 48.28.2 to the algebraic
case which is Dualizing Complexes, Lemma 47.27.5. □

Lemma 48.28.4.0E2W Let X → S be a morphism of schemes which is flat and locally
of finite presentation. If (K, ξ) and (L, η) are two relative dualizing complexes on
X/S, then there is a unique isomorphism K → L sending ξ to η.

https://stacks.math.columbia.edu/tag/0E2U
https://stacks.math.columbia.edu/tag/0E2V
https://stacks.math.columbia.edu/tag/0E2W


48.28. RELATIVE DUALIZING COMPLEXES 4102

Proof. Let U ⊂ X be an affine open mapping into an affine open of S. Then there is
an isomorphism K|U → L|U by Lemma 48.28.2 and Dualizing Complexes, Lemma
47.27.2. The reader can reuse the argument of that lemma in the schemes case to
obtain a proof in this case. We will instead use a glueing argument.

Suppose we have an isomorphism α : K → L. Then α(ξ) = uη for some invertible
section u ∈ H0(W,∆∗OX) = H0(X,OX). (Because both η and α(ξ) are generators
of an invertible ∆∗OX -module by assumption.) Hence after replacing α by u−1α
we see that α(ξ) = η. Since the automorphism group of K is H0(X,O∗

X) by Lemma
48.28.3 there is at most one such α.

Let B be the collection of affine opens of X which map into an affine open of S. For
each U ∈ B we have a unique isomorphism αU : K|U → L|U mapping ξ to η by the
discussion in the previous two paragraphs. Observe that Exti(K|U ,K|U ) = 0 for
i < 0 and any open U of X by Lemma 48.28.3. By Cohomology, Lemma 20.45.2
applied to id : X → X we get a unique morphism α : K → L agreeing with αU for
all U ∈ B. Then α sends ξ to η as this is true locally. □

Lemma 48.28.5.0E2X Let X → S be a morphism of schemes which is flat and locally of
finite presentation. There exists a relative dualizing complex (K, ξ).

Proof. Let B be the collection of affine opens of X which map into an affine open
of S. For each U we have a relative dualizing complex (KU , ξU ) for U over S.
Namely, choose an affine open V ⊂ S such that U → X → S factors through
V . Write U = Spec(A) and V = Spec(R). By Dualizing Complexes, Lemma
47.27.4 there exists a relative dualizing complex KA ∈ D(A) for R → A. Arguing
backwards through the proof of Lemma 48.28.2 this determines an V -perfect object
KU ∈ D(OU ) and a map

ξ : ∆∗OU → Lpr∗
1KU

in D(OU×V U ). Since being V -perfect is the same as being S-perfect and since
U ×V U = U ×S U we find that (KU , ξU ) is as desired.

If U ′ ⊂ U ⊂ X with U ′, U ∈ B, then we have a unique isomorphism ρUU ′ : KU |U ′ →
KU ′ in D(OU ′) sending ξU |U ′×SU ′ to ξU ′ by Lemma 48.28.4 (note that trivially
the restriction of a relative dualizing complex to an open is a relative dualizing
complex). The uniqueness guarantees that ρUU ′′ = ρVU ′′ ◦ ρUU ′ |U ′′ for U ′′ ⊂ U ′ ⊂ U in
B. Observe that Exti(KU ,KU ) = 0 for i < 0 for U ∈ B by Lemma 48.28.3 applied
to U/S and KU . Thus the BBD glueing lemma (Cohomology, Theorem 20.45.8)
tells us there is a unique solution, namely, an object K ∈ D(OX) and isomorphisms
ρU : K|U → KU such that we have ρUU ′ ◦ ρU |U ′ = ρU ′ for all U ′ ⊂ U , U,U ′ ∈ B.

To finish the proof we have to construct the map

ξ : ∆∗OX −→ Lpr∗
1K|W

in D(OW ) inducing an isomorphism from ∆∗OX to RHomOW
(∆∗OX , Lpr∗

1K|W ).
Since we may change W , we choose W =

⋃
U∈B U ×S U . We can use ρU to get

isomorphisms

RHomOW
(∆∗OX , Lpr∗

1K|W )|U×SU
ρU−−→ RHomOU×SU

(∆∗OU , Lpr∗
1KU )

As W is covered by the opens U ×S U we conclude that the cohomology sheaves
of RHomOW

(∆∗OX , Lpr∗
1K|W ) are zero except in degree 0. Moreover, we obtain

https://stacks.math.columbia.edu/tag/0E2X
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isomorphisms

H0 (U ×S U,RHomOW
(∆∗OX , Lpr∗

1K|W )) ρU−−→ H0
(

(RHomOU×SU
(∆∗OU , Lpr∗

1KU )
)

Let τU in the LHS be an element mapping to ξU under this map. The compati-
bilities between ρUU ′ , ξU , ξU ′ , ρU , and ρU ′ for U ′ ⊂ U ⊂ X open U ′, U ∈ B imply
that τU |U ′×SU ′ = τU ′ . Thus we get a global section τ of the 0th cohomology
sheaf H0(RHomOW

(∆∗OX , Lpr∗
1K|W )). Since the other cohomology sheaves of

RHomOW
(∆∗OX , Lpr∗

1K|W ) are zero, this global section τ determines a morphism
ξ as desired. Since the restriction of ξ to U ×S U gives ξU , we see that it satisfies
the final condition of Definition 48.28.1. □

Lemma 48.28.6.0E2Y Consider a cartesian square

X ′

f ′

��

g′
// X

f

��
S′ g // S

of schemes. Assume X → S is flat and locally of finite presentation. Let (K, ξ) be
a relative dualizing complex for f . Set K ′ = L(g′)∗K. Let ξ′ be the derived base
change of ξ (see proof). Then (K ′, ξ′) is a relative dualizing complex for f ′.

Proof. Consider the cartesian square

X ′

∆X′/S′

��

// X

∆X/S

��
X ′ ×S′ X ′ g

′×g′
// X ×S X

Choose W ⊂ X ×S X open such that ∆X/S factors through a closed immersion
∆ : X → W . Choose W ′ ⊂ X ′ ×S′ X ′ open such that ∆X′/S′ factors through a
closed immersion ∆′ : X → W ′ and such that (g′ × g′)(W ′) ⊂ W . Let us still
denote g′ × g′ : W ′ →W the induced morphism. We have

L(g′ × g′)∗∆∗OX = ∆′
∗OX′ and L(g′ × g′)∗Lpr∗

1K|W = Lpr∗
1K

′|W ′

The first equality holds because X and X ′ ×S′ X ′ are tor independent over X ×S
X (see for example More on Morphisms, Lemma 37.69.1). The second holds by
transitivity of derived pullback (Cohomology, Lemma 20.27.2). Thus ξ′ = L(g′ ×
g′)∗ξ can be viewed as a map

ξ′ : ∆′
∗OX′ −→ Lpr∗

1K
′|W ′

Having said this the proof of the lemma is straightforward. First, K ′ is S′-perfect
by Derived Categories of Schemes, Lemma 36.35.6. To check that ξ′ induces an iso-
morphism of ∆′

∗OX′ to RHomOW ′ (∆′
∗OX′ , Lpr∗

1K
′|W ′) we may work affine locally.

By Lemma 48.28.2 we reduce to the corresponding statement in algebra which is
proven in Dualizing Complexes, Lemma 47.27.4. □

Lemma 48.28.7.0E2Z Let S be a quasi-compact and quasi-separated scheme. Let f :
X → S be a proper, flat morphism of finite presentation. The relative dualizing
complex ω•

X/S of Remark 48.12.5 together with (48.12.8.1) is a relative dualizing
complex in the sense of Definition 48.28.1.

https://stacks.math.columbia.edu/tag/0E2Y
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Proof. In Lemma 48.12.7 we proved that ω•
X/S is S-perfect. Let c be the right

adjoint of Lemma 48.3.1 for the diagonal ∆ : X → X ×S X. Then we can apply
∆∗ to (48.12.8.1) to get an isomorphism

∆∗OX → ∆∗(c(Lpr∗
1ω

•
X/S)) = RHomOX×SX

(∆∗OX , Lpr∗
1ω

•
X/S)

The equality holds by Lemmas 48.9.7 and 48.9.3. This finishes the proof. □

Remark 48.28.8.0E4P Let X → S be a morphism of schemes which is flat, proper, and
of finite presentation. By Lemma 48.28.5 there exists a relative dualizing complex
(ω•
X/S , ξ) in the sense of Definition 48.28.1. Consider any morphism g : S′ → S

where S′ is quasi-compact and quasi-separated (for example an affine open of S).
By Lemma 48.28.6 we see that (L(g′)∗ω•

X/S , L(g′)∗ξ) is a relative dualizing complex
for the base change f ′ : X ′ → S′ in the sense of Definition 48.28.1. Let ω•

X′/S′ be the
relative dualizing complex for X ′ → S′ in the sense of Remark 48.12.5. Combining
Lemmas 48.28.7 and 48.28.4 we see that there is a unique isomorphism

ω•
X′/S′ −→ L(g′)∗ω•

X/S

compatible with (48.12.8.1) and L(g′)∗ξ. These isomorphisms are compatible with
morphisms between quasi-compact and quasi-separated schemes over S and the
base change isomorphisms of Lemma 48.12.4 (if we ever need this compatibility we
will carefully state and prove it here).

Lemma 48.28.9.0E9W In Situation 48.16.1 let f : X → Y be a morphism of FTSS . If
f is flat, then f !OY is (the first component of) a relative dualizing complex for X
over Y in the sense of Definition 48.28.1.

Proof. By Lemma 48.17.10 we have that f !OY is Y -perfect. As f is separated the
diagonal ∆ : X → X×YX is a closed immersion and ∆∗∆!(−) = RHomOX×Y X

(OX ,−),
see Lemmas 48.9.7 and 48.9.3. Hence to finish the proof it suffices to show ∆!(Lpr∗

1f
!(OY )) ∼=

OX where pr1 : X ×Y X → X is the first projection. We have

OX = ∆!pr!
1OX = ∆!pr!

1Lpr∗
2OY = ∆!(Lpr∗

1f
!OY )

where pr2 : X ×Y X → X is the second projection and where we have used the
base change isomorphism pr!

1 ◦ Lpr∗
2 = Lpr∗

1 ◦ f ! of Lemma 48.18.1. □

Lemma 48.28.10.0E30 Let f : Y → X and X → S be morphisms of schemes which
are flat and of finite presentation. Let (K, ξ) and (M,η) be a relative dualizing
complex for X → S and Y → X. Set E = M ⊗L

OY
Lf∗K. Then (E, ζ) is a relative

dualizing complex for Y → S for a suitable ζ.

Proof. Using Lemma 48.28.2 and the algebraic version of this lemma (Dualizing
Complexes, Lemma 47.27.6) we see that E is affine locally the first component of a
relative dualizing complex. In particular we see that E is S-perfect since this may
be checked affine locally, see Derived Categories of Schemes, Lemma 36.35.3.

Let us first prove the existence of ζ in case the morphisms X → S and Y → X
are separated so that ∆X/S , ∆Y/X , and ∆Y/S are closed immersions. Consider the

https://stacks.math.columbia.edu/tag/0E4P
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following diagram

Y Y

f

��
Y

∆Y/X

// Y ×X Y

m

��

δ
//

q

88

Y ×S Y

f×f
��

p

::

X

X
∆X/S // X ×S X

r

;;

where p, q, r are the first projections. By Lemma 48.9.4 we have

RHomOY×SY
(∆Y/S,∗OY , Lp∗E) = Rδ∗

(
RHomOY×XY

(∆Y/X,∗OY , RHom(OY×XY , Lp
∗E))

)
By Lemma 48.10.3 we have

RHom(OY×XY , Lp
∗E) = RHom(OY×XY , L(f × f)∗Lr∗K)⊗L

OY×SY
Lq∗M

By Lemma 48.10.2 we have

RHom(OY×XY , L(f × f)∗Lr∗K) = Lm∗RHom(OX , Lr∗K)

The last expression is isomorphic (via ξ) to Lm∗OX = OY×XY . Hence the expres-
sion preceding is isomorphic to Lq∗M . Hence

RHomOY×SY
(∆Y/S,∗OY , Lp∗E) = Rδ∗

(
RHomOY×XY

(∆Y/X,∗OY , Lq∗M)
)

The material inside the parentheses is isomorphic to ∆Y/X,∗ ∗ OX via η. This
finishes the proof in the separated case.

In the general case we choose an open W ⊂ X×SX such that ∆X/S factors through
a closed immersion ∆ : X → W and we choose an open V ⊂ Y ×X Y such that
∆Y/X factors through a closed immersion ∆′ : Y → V . Finally, choose an open
W ′ ⊂ Y ×S Y whose intersection with Y ×X Y gives V and which maps into W .
Then we consider the diagram

Y Y

f

��
Y

∆′
// V

m

��

δ
//

q

==

W ′

f×f
��

p

==

X

X
∆ // W

r

==

and we use exactly the same argument as before. □

48.29. The fundamental class of an lci morphism

0E9X In this section we will use the computations made in Section 48.15. Thus our result
will suffer from the same kind of non-uniqueness as we have in that section.

Lemma 48.29.1.0E9Y Let X be a locally ringed space. Let

E1
α−→ E0 → F → 0

https://stacks.math.columbia.edu/tag/0E9Y
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be a short exact sequence of OX -modules. Assume E1 and E0 are locally free of
ranks r1, r0. Then there is a canonical map

∧r0−r1F −→ ∧r1(E∨
1 )⊗ ∧r0E0

which is an isomorphism on the stalk at x ∈ X if and only if F is locally free of
rank r0 − r1 in an open neighbourhood of x.

Proof. If r1 > r0 then ∧r0−r1F = 0 by convention and the unique map cannot be
an isomorphism. Thus we may assume r = r0 − r1 ≥ 0. Define the map by the
formula

s1 ∧ . . . ∧ sr 7→ t∨1 ∧ . . . ∧ t∨r1
⊗ α(t1) ∧ . . . ∧ α(tr1) ∧ s̃1 ∧ . . . ∧ s̃r

where t1, . . . , tr1 is a local basis for E1, correspondingly t∨1 , . . . , t∨r1
is the dual basis

for E∨
1 , and s′

i is a local lift of si to a section of E0. We omit the proof that this is
well defined.
If F is locally free of rank r, then it is straightforward to verify that the map is
an isomorphism. Conversely, assume the map is an isomorphism on stalks at x.
Then ∧rFx is invertible. This implies that Fx is generated by at most r elements.
This can only happen if α has rank r modulo mx, i.e., α has maximal rank modulo
mx. This implies that α has maximal rank in a neighbourhood of x and hence F is
locally free of rank r in a neighbourhood as desired. □

Lemma 48.29.2.0E9Z Let Y be a Noetherian scheme. Let f : X → Y be a local complete
intersection morphism which factors as an immersion X → P followed by a proper
smooth morphism P → Y . Let r be the locally constant function on X such that
ωX/Y = H−r(f !OY ) is the unique nonzero cohomology sheaf of f !OY , see Lemma
48.17.11. Then there is a map

∧rΩX/Y −→ ωX/Y

which is an isomorphism on the stalk at a point x if and only if f is smooth at x.

Proof. The assumption implies that X is compactifiable over Y hence f ! is defined,
see Section 48.16. Let j : W → P be an open subscheme such that X → P factors
through a closed immersion i : X → W . Moreover, we have f ! = i! ◦ j! ◦ g! where
g : P → Y is the given morphism. We have g!OY = ∧dΩP/Y [d] by Lemma 48.15.7
where d is the locally constant function giving the relative dimension of P over
Y . We have j! = j∗. We have i!OW = ∧cN [−c] where c is the codimension of X
in W (a locally constant function on X) and where N is the normal sheaf of the
Koszul-regular immersion i, see Lemma 48.15.6. Combining the above we find

f !OY =
(
∧cN ⊗OX

∧dΩP/Y |X
)

[d− c]
where we have also used Lemma 48.17.9. Thus r = d|X − c as locally constant
functions on X. The conormal sheaf of X → P is the module I/I2 where I ⊂ OW
is the ideal sheaf of i, see Morphisms, Section 29.31. Consider the canonical exact
sequence

I/I2 → ΩP/Y |X → ΩX/Y → 0
of Morphisms, Lemma 29.32.15. We obtain our map by an application of Lemma
48.29.1.
If f is smooth at x, then the map is an isomorphism by an application of Lemma
48.29.1 and the fact that ΩX/Y is locally free at x of rank r. Conversely, assume

https://stacks.math.columbia.edu/tag/0E9Z
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that our map is an isomorphism on stalks at x. Then the lemma shows that
ΩX/Y is free of rank r after replacing X by an open neighbourhood of x. On
the other hand, we may also assume that X = Spec(A) and Y = Spec(R) where
A = R[x1, . . . , xn]/(f1, . . . , fm) and where f1, . . . , fm is a Koszul regular sequence
(this follows from the definition of local complete intersection morphisms). Clearly
this implies r = n−m. We conclude that the rank of the matrix of partials ∂fj/∂xi
in the residue field at x is m. Thus after reordering the variables we may assume
the determinant of (∂fj/∂xi)1≤i,j≤m is invertible in an open neighbourhood of x.
It follows that R → A is smooth at this point, see for example Algebra, Example
10.137.8. □

Lemma 48.29.3.0EA0 Let f : X → Y be a morphism of schemes. Let r ≥ 0. Assume
(1) Y is Cohen-Macaulay (Properties, Definition 28.8.1),
(2) f factors as X → P → Y where the first morphism is an immersion and

the second is smooth and proper,
(3) if x ∈ X and dim(OX,x) ≤ 1, then f is Koszul at x (More on Morphisms,

Definition 37.62.2), and
(4) if ξ is a generic point of an irreducible component of X, then we have

trdegκ(f(ξ))κ(ξ) = r.
Then with ωX/Y = H−r(f !OY ) there is a map

∧rΩX/Y −→ ωX/Y

which is an isomorphism on the locus where f is smooth.

Proof. Let U ⊂ X be the open subscheme over which f is a local complete intersec-
tion morphism. Since f has relative dimension r at all generic points by assumption
(4) we see that the locally constant function of Lemma 48.29.2 is constant with value
r and we obtain a map

∧rΩX/Y |U = ∧rΩU/Y −→ ωU/Y = ωX/Y |U
which is an isomorphism in the smooth points of f (this locus is contained in U
because a smooth morphism is a local complete intersection morphism). By Lemma
48.21.5 and the assumption that Y is Cohen-Macaulay the module ωX/Y is (S2).
Since U contains all the points of codimension 1 by condition (3) and using Divisors,
Lemma 31.5.11 we see that j∗ωU/Y = ωX/Y . Hence the map over U extends to X
and the proof is complete. □

48.30. Extension by zero for coherent modules

0G2G The material in this section and the next few can be found in the appendix by
Deligne of [Har66].

In this section j : U → X will be an open immersion of Noetherian schemes. We are
going to consider inverse systems (Kn) in Db

Coh(OX) constructed as follows. Let F•

be a bounded complex of coherent OX -modules. Let I ⊂ OX be a quasi-coherent
sheaf of ideals with V (I) = X \ U . Then we can set

Kn = InF•

More precisely, Kn is the object of Db
Coh(OX) represented by the complex whose

term in degree q is the coherent submodule InFq of Fq. Observe that the maps

https://stacks.math.columbia.edu/tag/0EA0
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. . .→ K3 → K2 → K1 induce isomorphisms on restriction to U . Let us call such a
system a Deligne system.

Lemma 48.30.1.0G2H Let j : U → X be an open immersion of Noetherian schemes.
Let (Kn) be a Deligne system and denote K ∈ Db

Coh(OU ) the value of the constant
system (Kn|U ). Let L be an object of Db

Coh(OX). Then colim HomX(Kn, L) =
HomU (K,L|U ).

Proof. Let L → M → N → L[1] be a distinguished triangle in Db
Coh(OX). Then

we obtain a commutative diagram

. . . // colim HomX(Kn, L) //

��

colim HomX(Kn,M) //

��

colim HomX(Kn, N) //

��

. . .

. . . // HomU (K,L|U ) // HomU (K,M |U ) // HomU (K,N |U ) // . . .

whose rows are exact by Derived Categories, Lemma 13.4.2 and Algebra, Lemma
10.8.8. Hence if the statement of the lemma holds for N [−1], L, N , and L[1] then
it holds for M by the 5-lemma. Thus, using the distinguished triangles for the
canonical truncations of L (see Derived Categories, Remark 13.12.4) we reduce to
the case that L has only one nonzero cohomology sheaf.

Choose a bounded complex F• of coherent OX -modules and a quasi-coherent ideal
I ⊂ OX cutting out X \ U such that Kn is represented by InF•. Using “stupid”
truncations we obtain compatible termwise split short exact sequences of complexes

0→ σ≥a+1InF• → InF• → σ≤aInF• → 0

which in turn correspond to compatible systems of distinguished triangles inDb
Coh(OX).

Arguing as above we reduce to the case where F• has only one nonzero term. This
reduces us to the case discussed in the next paragraph.

Given a coherent OX -module F and a coherent OX -module G we have to show that
the canonical map

colim ExtiX(InF ,G) −→ ExtiU (F|U ,G|U )

is an isomorphism for all i ≥ 0. For i = 0 this is Cohomology of Schemes, Lemma
30.10.5. Assume i > 0.

Injectivity. Let ξ ∈ ExtiX(InF ,G) be an element whose restriction to U is zero.
We have to show there exists an m ≥ n such that the restriction of ξ to ImF =
Im−nInF is zero. After replacing F by InF we may assume n = 0, i.e., we have
ξ ∈ ExtiX(F ,G) whose restriction to U is zero. By Derived Categories of Schemes,
Proposition 36.11.2 we have Db

Coh(OX) = Db(Coh(OX)). Hence we can compute
the Ext group in the abelian category of coherent OX -modules. This implies there
exists an surjection α : F ′′ → F such that ξ ◦ α = 0 (this is where we use that
i > 0). Set F ′ = Ker(α) so that we have a short exact sequence

0→ F ′ → F ′′ → F → 0

It follows that ξ is the image of an element ξ′ ∈ Exti−1
X (F ′,G) whose restriction

to U is in the image of Exti−1
U (F ′′|U ,G|U ) → Exti−1

U (F ′|U ,G|U ). By Artin-Rees
the inverse systems (InF ′) and (InF ′′ ∩ F ′) are pro-isomorphic, see Cohomology
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of Schemes, Lemma 30.10.3. Since we have the compatible system of short exact
sequences

0→ F ′ ∩ InF ′′ → InF ′′ → InF → 0
we obtain a commutativew diagram

colim Exti−1
X (InF ′′,G) //

��

colim Exti−1
X (F ′ ∩ InF ′′,G) //

��

colim ExtiX(InF ,G)

��
Exti−1

U (F ′′|U ,G|U ) // Exti−1
U (F ′|U ,G|U ) // Exti−1

U (F|U ,G|U )

with exact rows. By induction on i and the comment on inverse systems above we
find that the left two vertical arrows are isomorphisms. Now ξ gives an element in
the top right group which is the image of ξ′ in the middle top group, which in turn
maps to an element of the bottom middle group coming from some element in the
left bottom group. We conclude that ξ maps to zero in ExtiX(InF ,G) for some n
as desired.

Surjectivity. Let ξ ∈ ExtiU (F|U ,G|U ). Arguing as above using that i > 0 we can
find an surjection H → F|U of coherent OU -modules such that ξ maps to zero
in ExtiU (H,G|U ). Then we can find a map φ : F ′′ → F of coherent OX -modules
whose restriction to U is H → F|U , see Properties, Lemma 28.22.4. Observe that
the lemma doesn’t guarantee φ is surjective but this won’t matter (it is possible to
pick a surjective φ with a little bit of additional work). Denote F ′ = Ker(φ). The
short exact sequence

0→ F ′|U → F ′′|U → F|U → 0
shows that ξ is the image of ξ′ in Exti−1

U (F ′|U ,G|U ). By induction on i we can find
an n such that ξ′ is the image of some ξ′

n in Exti−1
X (InF ′,G). By Artin-Rees we

can find an m ≥ n such that F ′ ∩ ImF ′′ ⊂ InF ′. Using the short exact sequence

0→ F ′ ∩ ImF ′′ → ImF ′′ → Im Im(φ)→ 0

the image of ξ′
n in Exti−1

X (F ′∩ImF ′′,G) maps by the boundary map to an element
ξm of ExtiX(Im Im(φ),G) which maps to ξ. Since Im(φ) and F agree over U we see
that F/Im Im(φ) is supported on X \ U . Hence there exists an l ≥ m such that
IlF ⊂ Im Im(φ), see Cohomology of Schemes, Lemma 30.10.2. Taking the image
of ξm in ExtiX(IlF ,G) we win. □

Lemma 48.30.2.0G4K The result of Lemma 48.30.1 holds even for L ∈ D+
Coh(OX).

Proof. Namely, if (Kn) is a Deligne system then there exists a b ∈ Z such that
Hi(Kn) = 0 for i > b. Then Hom(Kn, L) = Hom(Kn, τ≤bL) and Hom(K,L) =
Hom(K, τ≤bL). Hence using the result of the lemma for τ≤bL we win. □

Lemma 48.30.3.0G4L Let j : U → X be an open immersion of Noetherian schemes.
(1) Let (Kn) and (Ln) be Deligne systems. Let K and L be the values of

the constant systems (Kn|U ) and (Ln|U ). Given a morphism α : K → L
of D(OU ) there is a unique morphism of pro-systems (Kn) → (Ln) of
Db

Coh(OX) whose restriction to U is α.
(2) GivenK ∈ Db

Coh(OU ) there exists a Deligne system (Kn) such that (Kn|U )
is constant with value K.
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(3) The pro-object (Kn) of Db
Coh(OX) of (2) is unique up to unique isomor-

phism (as a pro-object).

Proof. Part (1) is an immediate consequence of Lemma 48.30.1 and the fact that
morphisms between pro-systems are the same as morphisms between the functors
they corepresent, see Categories, Remark 4.22.7.
Let K be as in (2). We can choose K ′ ∈ Db

Coh(OX) whose restriction to U is
isomorphic to K, see Derived Categories of Schemes, Lemma 36.13.2. By Derived
Categories of Schemes, Proposition 36.11.2 we can represent K ′ by a bounded
complex F• of coherent OX -modules. Choose a quasi-coherent sheaf of ideals I ⊂
OX whose vanishing locus is X \ U (for example choose I to correspond to the
reduced induced subscheme structure on X \U). Then we can set Kn equal to the
object represented by the complex InF• as in the introduction to this section.
Part (3) is immediate from parts (1) and (2). □

Lemma 48.30.4.0G4M Let j : U → X be an open immersion of Noetherian schemes. Let
K → L→M → K[1]

be a distinguished triangle of Db
Coh(OU ). Then there exists an inverse system of

distinguished triangles
Kn → Ln →Mn → Kn[1]

in Db
Coh(OX) such that (Kn), (Ln), (Mn) are Deligne systems and such that the

restriction of these distinguished triangles to U is isomorphic to the distinguished
triangle we started out with.

Proof. Let (Kn) be as in Lemma 48.30.3 part (2). Choose an object L′ of Db
Coh(OX)

whose restriction to U is L (we can do this as the lemma shows). By Lemma 48.30.1
we can find an n and a morphism Kn → L′ on X whose restriction to U is the given
arrow K → L. We conclude there is a morphism K ′ → L′ of Db

Coh(OX) whose
restriction to U is the given arrow K → L.
By Derived Categories of Schemes, Proposition 36.11.2 we can find a morphism
α• : F• → G• of bounded complexes of coherentOX -modules representingK ′ → L′.
Choose a quasi-coherent sheaf of ideals I ⊂ OX whose vanishing locus is X \ U .
Then we let Kn = InF• and Ln = InG•. Observe that α• induces a morphism
of complexes α•

n : InF• → InG•. From the construction of cones in Derived
Categories, Section 13.9 it is clear that

C(αn)• = InC(α•)
and hence we can set Mn = C(αn)•. Namely, we have a compatible system of
distinguished triangles (see discussion in Derived Categories, Section 13.12)

Kn → Ln →Mn → Kn[1]
whose restriction to U is isomorphic to the distinguished triangle we started out
with by axiom TR3 and Derived Categories, Lemma 13.4.3. □

Remark 48.30.5.0G4N Let j : U → X be an open immersion of Noetherian schemes.
Sending K ∈ Db

Coh(OU ) to a Deligne system whose restriction to U is K determines
a functor

Rj! : Db
Coh(OU ) −→ Pro-Db

Coh(OX)
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which is “exact” by Lemma 48.30.4 and which is “left adjoint” to the functor j∗ :
Db

Coh(OX)→ Db
Coh(OU ) by Lemma 48.30.1.

Remark 48.30.6.0G4P Let (An) and (Bn) be inverse systems of a category C. Let us
say a linear-pro-morphism from (An) to (Bn) is given by a compatible family of
morphisms φn : Acn+d → Bn for all n ≥ 1 for some fixed integers c, d ≥ 1. We’ll say
(φn : Acn+d → Bn) and (ψn : Ac′n+d′ → Bn) determine the same morphism if there
exist c′′ ≥ max(c, c′) and d′′ ≥ max(d, d′) such that the two induced morphisms
Ac′′n+d′′ → Bn are the same for all n. It seems likely that Deligne systems (Kn)
with given value on U are well defined up to linear-pro-isomorphisms. If we ever
need this we will carefully formulate and prove this here.

Lemma 48.30.7.0G4Q Let j : U → X be an open immersion of Noetherian schemes. Let
Kn → Ln →Mn → Kn[1]

be an inverse system of distinguished triangles in Db
Coh(OX). If (Kn) and (Mn) are

pro-isomorphic to Deligne systems, then so is (Ln).

Proof. Observe that the systems (Kn|U ) and (Mn|U ) are essentially constant as
they are pro-isomorphic to constant systems. Denote K and M their values. By
Derived Categories, Lemma 13.42.2 we see that the inverse system Ln|U is essen-
tially constant as well. Denote L its value. Let N ∈ Db

Coh(OX). Consider the
commutative diagram
. . . // colim HomX(Mn, N) //

��

colim HomX(Ln, N) //

��

colim HomX(Kn, N) //

��

. . .

. . . // HomU (M,N |U ) // HomU (L,N |U ) // HomU (K,N |U ) // . . .

By Lemma 48.30.1 and the fact that isomorphic ind-systems have the same colimit,
we see that the vertical arrows two to the right and two to the left of the middle one
are isomorphisms. By the 5-lemma we conclude that the middle vertical arrow is an
isomorphism. Now, if (L′

n) is a Deligne system whose restriction to U has constant
value L (which exists by Lemma 48.30.3), then we have colim HomX(L′

n, N) =
HomU (L,N |U ) as well. Hence the pro-systems (Ln) and (L′

n) are pro-isomorphic
by Categories, Remark 4.22.7. □

Lemma 48.30.8.0G4R Let X be a Noetherian scheme. Let I ⊂ OX be a quasi-coherent
sheaf of ideals. Let F• be a complex of coherent OX -modules. Let p ∈ Z. Set
H = Hp(F•) and Hn = Hp(InF•). Then there are canonical OX -module maps

. . .→ H3 → H2 → H1 → H
There exists a c > 0 such that for n ≥ c the image ofHn → H is contained in In−cH
and there is a canonical OX -module map InH → Hn−c such that the compositions

InH → Hn−c → In−2cH and Hn → In−cH → Hn−2c

are the canonical ones. In particular, the inverse systems (Hn) and (InH) are
isomorphic as pro-objects of Mod(OX).

Proof. If X is affine, translated into algebra this is More on Algebra, Lemma
15.101.1. In the general case, argue exactly as in the proof of that lemma re-
placing the reference to Artin-Rees in algebra with a reference to Cohomology of
Schemes, Lemma 30.10.3. Details omitted. □

https://stacks.math.columbia.edu/tag/0G4P
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Lemma 48.30.9.0G4S Let j : U → X be an open immersion of Noetherian schemes.
Let a ≤ b be integers. Let (Kn) be an inverse system of Db

Coh(OX) such that
Hi(Kn) = 0 for i ̸∈ [a, b]. The following are equivalent

(1) (Kn) is pro-isomorphic to a Deligne system,
(2) for every p ∈ Z there exists a coherent OX -module F such that the pro-

systems (Hp(Kn)) and (InF) are pro-isomorphic.

Proof. Assume (1). To prove (2) holds we may assume (Kn) is a Deligne system.
By definition we may choose a bounded complex F• of coherent OX -modules and
a quasi-coherent sheaf of ideals cutting out X \ U such that Kn is represented by
InF•. Thus the result follows from Lemma 48.30.8.

Assume (2). We will prove that (Kn) is as in (1) by induction on b − a. If a = b
then (1) holds essentially by assumption. If a < b then we consider the compatible
system of distinguished triangles

τ≤aKn → Kn → τ≥a+1Kn → (τ≤aKn)[1]

See Derived Categories, Remark 13.12.4. By induction on b−a we know that τ≤aKn

and τ≥a+1Kn are pro-isomorphic to Deligne systems. We conclude by Lemma
48.30.7. □

Lemma 48.30.10.0G4T Let j : U → X be an open immersion of Noetherian schemes.
Let (Kn) be an inverse system in Db

Coh(OX). Let X = W1 ∪ . . . ∪Wr be an open
covering. The following are equivalent

(1) (Kn) is pro-isomorphic to a Deligne system,
(2) for each i the restriction (Kn|Wi

) is pro-isomorphic to a Deligne system
with respect to the open immersion U ∩Wi →Wi.

Proof. By induction on r. If r = 1 then the result is clear. Assume r > 1. Set
V = W1 ∪ . . . ∪Wr−1. By induction we see that (Kn|V ) is a Deligne system. This
reduces us to the discussion in the next paragraph.

Assume X = V ∪W is an open covering and (Kn|W ) and (Kn|V ) are pro-isomorphic
to Deligne systems. We have to show that (Kn) is pro-isomorphic to a Deligne
system. Observe that (Kn|V ∩W ) is pro-isomorphic to a Deligne system (it fol-
lows immediately from the construction of Deligne systems that restrictions to
opens preserves them). In particular the pro-systems (Kn|U∩V ), (Kn|U∩W ), and
(Kn|U∩V ∩W ) are essentially constant. It follows from the distinguished triangles in
Cohomology, Lemma 20.33.2 and Derived Categories, Lemma 13.42.2 that (Kn|U )
is essentially constant. Denote K ∈ Db

Coh(OU ) the value of this system. Let L be

https://stacks.math.columbia.edu/tag/0G4S
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an object of Db
Coh(OX). Consider the diagram

colim Ext−1(Kn|V , L|V )⊕ colim Ext−1(Kn|W , L|W ) //

��

Ext−1(K|U∩V , L|U∩V )⊕ Ext−1(K|U∩W , L|U∩W )

��
colim Ext−1(Kn|V ∩W , L|V ∩W ) //

��

Ext−1(K|U∩V ∩W , L|U∩V ∩W )

��
colim Hom(Kn, L)

��

// Hom(K|U , L|U )

��
colim Hom(Kn|V , L|V )⊕ colim Hom(Kn|W , L|W ) //

��

Hom(K|U∩V , L|U∩V )⊕Hom(K|U∩W , L|U∩W )

��
colim Hom(Kn|V ∩W , L|V ∩W ) // Hom(K|U∩V ∩W , L|U∩V ∩W )

The vertical sequences are exact by Cohomology, Lemma 20.33.3 and the fact that
filtered colimits are exact. All horizontal arrows except for the middle one are
isomorphisms by Lemma 48.30.1 and the fact that pro-isomorphic systems have
the same colimits. Hence the middle one is an isomorphism too by the 5-lemma.
It follows that (Kn) is pro-isomorphic to a Deligne system for K. Namey, if (K ′

n)
is a Deligne system whose restriction to U has constant value K (which exists
by Lemma 48.30.3), then we have colim HomX(K ′

n, L) = HomU (K,L|U ) as well.
Hence the pro-systems (Kn) and (K ′

n) are pro-isomorphic by Categories, Remark
4.22.7. □

Lemma 48.30.11.0G4U Let j : U → X be an open immersion of Noetherian schemes.
Let I ⊂ OX be a quasi-coherent sheaf of ideals with V (I) = X \ U . Let K be in
Db

Coh(OX). Then
K ⊗L

OX
In

is pro-isomorphic to a Deligne system with constant value K|U over U .

Proof. By Lemma 48.30.10 the question is local on X. Thus we may assume X
is the spectrum of a Noetherian ring. In this case the statement follows from the
algebra version which is More on Algebra, Lemma 15.101.6. □

48.31. Preliminaries to compactly supported cohomology

0G4V In Situation 48.16.1 let f : X → Y be a morphism in the category FTSS . Using
the constructions in the previous section, we will construct a functor

Rf! : Db
Coh(OX) −→ Pro-Db

Coh(OY )

which reduces to the functor of Remark 48.30.5 if f is an open immersion and in
general is constructed using a compactification of f . Before we do this, we need
the following lemmas to prove our construction is well defined.

https://stacks.math.columbia.edu/tag/0G4U
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Lemma 48.31.1.0G4W Let f : X → Y be a proper morphism of Noetherian schemes.
Let V ⊂ Y be an open subscheme and set U = f−1(V ). Picture

U
j
//

g

��

X

f

��
V

j′
// Y

Then we have a canonical isomorphismRj′
!◦Rg∗ → Rf∗◦Rj! of functorsDb

Coh(OU )→
Pro-Db

Coh(OY ) where Rj! and Rj′
! are as in Remark 48.30.5.

First proof. Let K be an object of Db
Coh(OU ). Let (Kn) be a Deligne system for

U → X whose restriction to U is constant with value K. Of course this means
that (Kn) represents Rj!K in Pro-Db

Coh(OX). Observe that both Rj′
!Rg∗K and

Rf∗Rj!K restrict to the constant pro-object with value Rg∗K on V . This is
immediate for the first one and for the second one it follows from the fact that
(Rf∗Kn)|V = Rg∗(Kn|U ) = Rg∗K. By the uniqueness of Deligne systems in
Lemma 48.30.3 it suffices to show that (Rf∗Kn) is pro-isomorphic to a Deligne
system. The lemma referenced will also show that the isomorphism we obtain is
functorial.

Proof that (Rf∗Kn) is pro-isomorphic to a Deligne system. First, we observe that
the question is independent of the choice of the Deligne system (Kn) corresponding
to K (by the aforementioned uniqueness). By Lemmas 48.30.4 and 48.30.7 if we
have a distinguished triangle

K → L→M → K[1]

in Db
Coh(OU ) and the result holds for K and M , then the result holds for L. Using

the distinguished triangles of canonical truncations (Derived Categories, Remark
13.12.4) we reduce to the problem studied in the next paragraph.

Let F be a coherent OX -module. Let J ⊂ OY be a quasi-coherent sheaf of ideals
cutting out Y \ V . Denote J nF the image of f∗J n ⊗ F → F . We have to
show that (Rf∗(J nF)) is a Deligne system. By Lemma 48.30.10 the question is
local on Y . Thus we may assume Y = Spec(A) is affine and J corresponds to
an ideal I ⊂ A. By Lemma 48.30.9 it suffices to show that the inverse system of
cohomology modules (Hp(X, InF)) is pro-isomorphic to the inverse system (InM)
for some finite A-module M . This is shown in Cohomology of Schemes, Lemma
30.20.3. □

Second proof. Let K be an object of Db
Coh(OU ). Let L be an object of Db

Coh(OY ).
We will construct a bijection

HomPro-DbCoh(OY )(Rj′
!Rg∗K,L) −→ HomPro-DbCoh(OY )(Rf∗Rj!K,L)

functorial in K and L. Fixing K this will determine an isomorphism of pro-objects
Rf∗Rj!K → Rj′

!Rg∗K by Categories, Remark 4.22.7 and varying K we obtain that
this determines an isomorphism of functors. To actually produce the isomorphism

https://stacks.math.columbia.edu/tag/0G4W
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we use the sequence of functorial equalities
HomPro-DbCoh(OY )(Rj′

!Rg∗K,L) = HomV (Rg∗K,L|V )

= HomU (K, g!(L|V ))
= HomU (K, f !L|U ))
= HomPro-DbCoh(OX)(Rj!K, f

!L)
= HomPro-DbCoh(OY )(Rf∗Rj!K,L)

The first equality is true by Lemma 48.30.1. The second equality is true because g is
proper (as the base change of f to V ) and hence g! is the right adjoint of pushforward
by construction, see Section 48.16. The third equality holds as g!(L|V ) = f !L|U by
Lemma 48.17.2. Since f !L is in D+

Coh(OX) by Lemma 48.17.6 the fourth equality
follows from Lemma 48.30.2. The fifth equality holds again because f ! is the right
adjoint to Rf∗ as f is proper. □

Lemma 48.31.2.0G4X Let j : U → X be an open immersion of Noetherian schemes. Let
j′ : U → X ′ be a compactification of U over X (see proof) and denote f : X ′ → X
the structure morphism. Then we have a canonical isomorphism Rj! → Rf∗◦R(j′)!
of functors Db

Coh(OU ) → Pro-Db
Coh(OX) where Rj! and Rj′

! are as in Remark
48.30.5.

Proof. The fact that X ′ is a compactification of U over X means precisely that
f : X ′ → X is proper, that j′ is an open immersion, and j = f ◦ j′. See More on
Flatness, Section 38.32. If j′(U) = f−1(j(U)), then the lemma follows immediately
from Lemma 48.31.1. If j′(U) ̸= f−1(j(U)), then denote X ′′ ⊂ X ′ the scheme
theoretic closure of j′ : U → X ′ and denote j′′ : U → X ′′ the corresponding open
immersion. Picture

X ′′

f ′

��
X ′

f

��
U

j //

j′
77

j′′

@@

X

By More on Flatness, Lemma 38.32.1 part (c) and the discussion above we have
isomorphisms Rf ′

∗ ◦ Rj′′
! = Rj′

! and R(f ◦ f ′)∗ ◦ Rj′′
! = Rj!. Since R(f ◦ f ′)∗ =

Rf∗ ◦Rf ′
∗ we conclude. □

Remark 48.31.3.0G4Y Let X ⊃ U ⊃ U ′ be open subschemes of a Noetherian scheme X.
Denote j : U → X and j′ : U ′ → X the inclusion morphisms. We claim there is a
canonical map

Rj′
!(K|U ′) −→ Rj!K

functorial for K in Db
Coh(OU ). Namely, by Lemma 48.30.1 we have for any L in

Db
Coh(OX) the map

HomPro-DbCoh(OX)(Rj!K,L) = HomU (K,L|U )
→ HomU ′(K|U ′ , L|U ′)
= HomPro-DbCoh(OX)(Rj′

!(K|U ′), L)

https://stacks.math.columbia.edu/tag/0G4X
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functorial in L and K ′. The functoriality in L shows by Categories, Remark 4.22.7
that we obtain a canonical map Rj′

!(K|U ′)→ Rj!K which is functorial in K by the
functoriality of the arrow above in K.
Here is an explicit construction of this arrow. Namely, suppose that F• is a bounded
complex of coherent OX -modules whose restriction to U represents K in the derived
category. We have seen in the proof of Lemma 48.30.3 that such a complex always
exists. Let I, resp. I ′ be a quasi-coherent sheaf of ideals on X with V (I) = X \U ,
resp. V (I ′) = X \ U ′. After replacing I by I + I ′ we may assume I ′ ⊂ I. By
construction Rj!K, resp. Rj′

!(K|U ′) is represented by the inverse system (Kn), resp.
(K ′

n) of Db
Coh(OX) with

Kn = InF• resp. K ′
n = (I ′)nF•

Clearly the map constructed above is given by the maps K ′
n → Kn coming from

the inclusions (I ′)n ⊂ In.

48.32. Compactly supported cohomology for coherent modules

0G4Z In Situation 48.16.1 given a morphism f : X → Y in FTSS , we will define a functor
Rf! : Db

Coh(OX) −→ Pro-Db
Coh(OY )

Namely, we choose a compactification j : X → X over Y which is possible by More
on Flatness, Theorem 38.33.8 and Lemma 38.32.2. Denote f : X → Y the structure
morphism. Then we set

Rf!K = Rf∗Rj!K

for K ∈ Db
Coh(OX) where Rj! is as in Remark 48.30.5.

Lemma 48.32.1.0G50 The functor Rf! is, up to isomorphism, independent of the choice
of the compactification.

In fact, the functor Rf! will be characterized as a “left adjoint” to f ! which will
determine it up to unique isomorphism.

Proof. Consider the category of compactifications of X over Y , which is cofiltered
according to More on Flatness, Theorem 38.33.8 and Lemmas 38.32.1 and 38.32.2.
To every choice of a compactification

j : X → X, f : X → Y

the construction above associates the functor Rf∗ ◦Rj!. Suppose given a morphism
g : X1 → X2 between compactifications ji : X → Xi over Y . Then we get an
isomorphism

Rf2,∗ ◦Rj2,! = Rf2,∗ ◦Rg∗ ◦ j1,! = Rf1,∗ ◦Rj1,!

using Lemma 48.31.2 in the first equality. In this way we see our functor is inde-
pendent of the choice of compactification up to isomorphism. □

Proposition 48.32.2.0G51 In Situation 48.16.1 let f : X → Y be a morphism of
FTSS . Then the functors Rf! and f ! are adjoint in the following sense: for all
K ∈ Db

Coh(OX) and L ∈ D+
Coh(OY ) we have

HomX(K, f !L) = HomPro-D+
Coh(OY )(Rf!K,L)

bifunctorially in K and L.

https://stacks.math.columbia.edu/tag/0G50
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Proof. Choose a compactification j : X → X over Y and denote f : X → Y the
structure morphism. Then we have

HomX(K, f !L) = HomX(K, j∗f !L)
= HomPro-D+

Coh(O
X

)(Rj!K, f
!L)

= HomPro-D+
Coh(OY )(Rf∗Rj!K,L)

= HomPro-D+
Coh(OY )(Rf!K,L)

The first equality follows immediately from the construction of f ! in Section 48.16.
By Lemma 48.17.6 we have f !L in D+

Coh(OX) hence the second equality follows from
Lemma 48.30.2. Since f is proper the functor f ! is the right adjoint of pushforward
by construction. This is why we have the third equality. The fourth equality holds
because Rf! = Rf∗Rj!. □

Lemma 48.32.3.0G52 In Situation 48.16.1 let f : X → Y be a morphism of FTSS . Let
K → L→M → K[1]

be a distinguished triangle of Db
Coh(OX). Then there exists an inverse system of

distinguished triangles
Kn → Ln →Mn → Kn[1]

in Db
Coh(OY ) such that the pro-systems (Kn), (Ln), and (Mn) give Rf!K, Rf!L,

and Rf!M .

Proof. Choose a compactification j : X → X over Y and denote f : X → Y the
structure morphism. Choose an inverse system of distinguished triangles

Kn → Ln →Mn → Kn[1]
in Db

Coh(OX) as in Lemma 48.30.4 corresponding to the open immersion j and the
given distinguished triangle. Take Kn = Rf∗Kn and similarly for Ln and Mn.
This works by the very definition of Rf!. □

Remark 48.32.4.0G53 Let C be a category. Suppose given an inverse system

. . .
α4−→ (M3,n) α3−→ (M2,n) α2−→ (M1,n)

of inverse systems in the category of pro-objects of C. In other words, the arrows
αi are morphisms of pro-objects. By Categories, Example 4.22.6 we can represent
each αi by a pair (mi, ai) where mi : N → N is an increasing function and ai,n :
Mi,mi(n) →Mi−1,n is a morphism of C making the diagrams

. . . // Mi,mi(3)

ai,3

��

// Mi,mi(2)

ai,2

��

// Mi,mi(1)

ai,1

��
. . . // Mi−1,3 // Mi−1,2 // Mi−1,1

commute. By replacing mi(n) by max(n,mi(n)) and adjusting the morphisms ai(n)
accordingly (as in the example referenced) we may assume that mi(n) ≥ n. In this
situation consider the inverse system

. . .→M4,m4(m3(m2(4))) →M3,m3(m2(3)) →M2,m2(2) →M1,1

with general term
Mk = Mk,mk(mk−1(...(m2(k))...))
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For any object N of C we have
colimi colimn MorC(Mi,n, N) = colimk MorC(Mk, N)

We omit the details. In other words, we see that the inverse system (Mk) has the
property

colimi MorPro-C((Mi,n), N) = MorPro-C((Mk), N)
This property determines the inverse system (Mk) up to pro-isomorphism by the
discussion in Categories, Remark 4.22.7. In this way we can turn certain inverse
systems in Pro-C into pro-objects with countable index categories.

Remark 48.32.5.0G54 In Situation 48.16.1 let f : X → Y and g : Y → Z be composable
morphisms of FTSS . Let us define the composition

Rg! ◦Rf! : Db
Coh(OX) −→ Pro-Db

Coh(OZ)
Namely, by the very construction of Rf! for K in Db

Coh(OX) the output Rf!K is
the pro-isomorphism class of an inverse system (Mn) in Db

Coh(OY ). Then, since
Rg! is constructed similarly, we see that

. . .→ Rg!M3 → Rg!M2 → Rg!M1

is an inverse system of Pro-Db
Coh(OY ). By the discussion in Remark 48.32.4 there is

a unique pro-isomorphism class, which we will denote Rg!Rf!K, of inverse systems
in Db

Coh(OZ) such that
HomPro-DbCoh(OZ)(Rg!Rf!K,L) = colimn HomPro-DbCoh(OZ)(Rg!Mn, L)

We omit the discussion necessary to see that this construction is functorial in K as
it will immediately follow from the next lemma.

Lemma 48.32.6.0G55 In Situation 48.16.1 let f : X → Y and g : Y → Z be composable
morphisms of FTSS . With notation as in Remark 48.32.5 we have Rg! ◦ Rf! =
R(g ◦ f)!.

Proof. By the discussion in Categories, Remark 4.22.7 it suffices to show that we
obtain the same answer if we compute Hom into L in Db

Coh(OZ). To do this we
compute, using the notation in Remark 48.32.5, as follows

HomZ(Rg!Rf!K,L) = colimn HomZ(Rg!Mn, L)
= colimn HomY (Mn, g

!L)
= HomY (Rf!K, g

!L)
= HomX(K, f !g!L)
= HomX(K, (g ◦ f)!L)
= HomZ(R(g ◦ f)!K,L)

The first equality is the definition of Rg!Rf!K. The second equality is Proposition
48.32.2 for g. The third equality is the fact that Rf!K is given by (Mn). The
fourth equality is Proposition 48.32.2 for f . The fifth equality is Lemma 48.16.3.
The sixth is Proposition 48.32.2 for g ◦ f . □

Remark 48.32.7.0G56 In Situation 48.16.1 let f : X → Y be a morphism of FTSS and
let U ⊂ X be an open. Set g = f |U : U → Y . Then there is a canonical morphism

Rg!(K|U ) −→ Rf!K
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functorial in K in Db
Coh(OX) which can be defined in at least 3 ways.

(1) Denote i : U → X the inclusion morphism. We have Rg! = Rf! ◦ Ri! by
Lemma 48.32.6 and we can use Rf! applied to the map Ri!(K|U ) → K
which is a special case of Remark 48.31.3.

(2) Choose a compactification j : X → X of X over Y with structure
morphism f : X → Y . Set j′ = j ◦ i : U → X. We can use that
Rf! = Rf∗ ◦Rj! and Rg! = Rf∗ ◦Rj′

! and we can use Rf∗ applied to the
map Rj′

!(K|U )→ Rj!K of Remark 48.31.3.
(3) We can use

HomPro-DbCoh(OY )(Rf!K,L) = HomX(K, f !L)

→ HomU (K|U , f !L|U )
= HomU (K|U , g!L)
= HomPro-DbCoh(OY )(Rg!(K|U ), L)

functorial in L and K. Here we have used Proposition 48.32.2 twice and
the construction of upper shriek functors which shows that g! = i∗ ◦ f !.
The functoriality in L shows by Categories, Remark 4.22.7 that we obtain
a canonical map Rg!(K|U )→ Rf!K in Pro-Db

Coh(OY ) which is functorial
in K by the functoriality of the arrow above in K.

Each of these three constructions gives the same arrow; we omit the details.

Remark 48.32.8.0G57 Let us generalize the covariance of compactly supported coho-
mology given in Remark 48.32.7 to étale morphisms. Namely, in Situation 48.16.1
suppose given a commutative diagram

U
h

//

g
��

X

f~~
Y

of FTSS with h étale. Then there is a canonical morphism

Rg!(h∗K) −→ Rf!K

functorial in K in Db
Coh(OX). We define this transformation using the sequence of

maps

HomPro-DbCoh(OY )(Rf!K,L) = HomX(K, f !L)

→ HomU (h∗K,h∗(f !L))
= HomU (h∗K,h!f !L)
= HomU (h∗K, g!L)
= HomPro-DbCoh(OY )(Rg!(h∗K), L)

functorial in L and K. Here we have used Proposition 48.32.2 twice, we have used
the equality h∗ = h! of Lemma 48.18.2, and we have used the equality h! ◦ f ! = g!

of Lemma 48.16.3. The functoriality in L shows by Categories, Remark 4.22.7 that
we obtain a canonical map Rg!(h∗K)→ Rf!K in Pro-Db

Coh(OY ) which is functorial
in K by the functoriality of the arrow above in K.

https://stacks.math.columbia.edu/tag/0G57


48.33. DUALITY FOR COMPACTLY SUPPORTED COHOMOLOGY 4120

Remark 48.32.9.0G58 In Remarks 48.32.7 and 48.32.8 we have seen that the construction
of compactly supported cohomology is covariant with respect to open immersions
and étale morphisms. In fact, the correct generality is that given a commutative
diagram

U
h

//

g
��

X

f~~
Y

of FTSS with h flat and quasi-finite there exists a canonical transformation
Rg! ◦ h∗ −→ Rf!

As in Remark 48.32.8 this map can be constructed using a transformation of func-
tors h∗ → h! on D+

Coh(OX). Recall that h!K = h∗K⊗ωU/X where ωU/X = h!OX is
the relative dualizing sheaf of the flat quasi-finite morphism h (see Lemmas 48.17.9
and 48.21.6). Recall that ωU/X is the same as the relative dualizing module which
will be constructed in Discriminants, Remark 49.2.11 by Discriminants, Lemma
49.15.1. Thus we can use the trace element τU/X : OU → ωU/X which will be
constructed in Discriminants, Remark 49.4.7 to define our transformation. If we
ever need this, we will precisely formulate and prove the result here.

48.33. Duality for compactly supported cohomology

0G59 Let k be a field. Let U be a separated scheme of finite type over k. Let K be an
object of Db

Coh(OU ). Let us define the compactly supported cohomology Hi
c(U,K)

of K as follows. Choose an open immersion j : U → X into a scheme proper over k
and a Deligne system (Kn) for j : U → X whose restriction to U is constant with
value K. Then we set

Hi
c(U,K) = limHi(X,Kn)

We view this as a topological k-vector space using the limit topology (see More on
Algebra, Section 15.36). There are several points to make here.
First, this definition is independent of the choice of X and (Kn). Namely, if p :
U → Spec(k) denotes the structure morphism, then we already know that Rp!K =
(RΓ(X,Kn)) is well defined up to pro-isomorphism in D(k) hence so is the limit
defining Hi

c(U,K).
Second, it may seem more natural to use the expression

Hi(R limRΓ(X,Kn)) = RΓ(X,R limKn)
but this would give the same answer: since the k-vector spaces Hj(X,Kn) are finite
dimensional, these inverse systems satisfy Mittag-Leffler and hence R1 lim terms of
Cohomology, Lemma 20.37.1 vanish.
If U ′ ⊂ U is an open subscheme, then there is a canonical map

Hi
c(U ′,K|U ′) −→ Hi

c(U,K)
functorial for K in Db

Coh(OU ). See for example Remark 48.32.7. In fact, using
Remark 48.32.8 we see that more generally such a map exists for an étale morphism
U ′ → U of separated schemes of finite type over k.
If V is a k-vector space then we put a topology on Homk(V, k) as follows: write V =⋃
Vi as the filtered union of its finite dimensional k-subvector spaces and use the

https://stacks.math.columbia.edu/tag/0G58
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limit topology on Homk(V, k) = lim Homk(Vi, k). If dimk V <∞ then the topology
on Homk(V, k) is discrete. More generally, if V = colimn Vn is written as a directed
colimit of finite dimensional vector spaces, then Homk(V, k) = lim Homk(Vn, k) as
topological vector spaces.

Lemma 48.33.1.0G5A Let p : U → Spec(k) be separated of finite type where k is a field.
Let ω•

U/k = p!OSpec(k). There are canonical isomorphisms

Homk(Hi(U,K), k) = H−i
c (U,RHomOU

(K,ω•
U/k))

of topological k-vector spaces functorial for K in Db
Coh(OU ).

Proof. Choose a compactification j : U → X over k. Let I ⊂ OX be a quasi-
coherent ideal sheaf with V (I) = X \U . By Derived Categories of Schemes, Propo-
sition 36.11.2 we may choose M ∈ Db

Coh(OX) with K = M |U . We have

Hi(U,K) = ExtiU (OU ,M |U ) = colim ExtiX(In,M) = colimHi(X,RHomOX
(In,M))

by Lemma 48.30.1. Since In is a coherent OX -module, we have In in D−
Coh(OX),

hence RHomOX
(In,M) is in D+

Coh(OX) by Derived Categories of Schemes, Lemma
36.11.5.
Let ω•

X/k = q!OSpec(k) where q : X → Spec(k) is the structure morphism, see
Section 48.27. We find that

Homk(Hi(X,RHomOX
(In,M)), k)

= Ext−i
X (RHomOX

(In,M), ω•
X/k)

= H−i(X,RHomOX
(RHomOX

(In,M), ω•
X/k))

by Lemma 48.27.1. By Lemma 48.2.4 part (1) the canonical map
RHomOX

(M,ω•
X/k)⊗L

OX
In −→ RHomOX

(RHomOX
(In,M), ω•

X/k)

is an isomorphism. Observe that ω•
U/k = ω•

X/k|U because p! is constructed as q! com-
posed with restriction to U . Hence RHomOX

(M,ω•
X/k) is an object of Db

Coh(OX)
which restricts to RHomOU

(K,ω•
U/k) on U . Hence by Lemma 48.30.11 we conclude

that
limH−i(X,RHomOX

(M,ω•
X/k)⊗L

OX
In)

is an avatar for the right hand side of the equality of the lemma. Combining all the
isomorphisms obtained in this manner we get the isomorphism of the lemma. □

Lemma 48.33.2.0G5B With notation as in Lemma 48.33.1 suppose U ′ ⊂ U is an open
subscheme. Then the diagram

Homk(Hi(U,K), k) // H−i
c (U,RHomOU

(K,ω•
U/k))

Homk(Hi(U ′,K|U ′), k) //

OO

H−i
c (U ′, RHomOU′ (K,ω•

U ′/k))

OO

is commutative. Here the horizontal arrows are the isomorphisms of Lemma 48.33.1,
the vertical arrow on the left is the contragredient to the restriction mapHi(U,K)→
Hi(U ′,K|U ′), and the right vertical arrow is Remark 48.32.7 (see discussion before
the lemma).

https://stacks.math.columbia.edu/tag/0G5A
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Proof. We strongly urge the reader to skip this proof. Choose X and M as in the
proof of Lemma 48.33.1. We are going to drop the subscript OX from RHom and
⊗L. We write

Hi(U,K) = colimHi(X,RHom(In,M))
and

Hi(U ′,K|U ′) = colimHi(X,RHom((I ′)n,M))
as in the proof of Lemma 48.33.1 where we choose I ′ ⊂ I as in the discussion in
Remark 48.31.3 so that the map Hi(U,K)→ Hi(U ′,K|U ′) is induced by the maps
(I ′)n → In. We similarly write

Hi
c(U,RHom(K,ω•

U/k)) = limHi(X,RHom(M,ω•
X/k)⊗L In)

and
Hi
c(U ′, RHom(K|U ′ , ω•

U ′/k)) = limHi(X,RHom(M,ω•
X/k)⊗L (I ′)n)

so that the arrow Hi
c(U ′, RHom(K|U ′ , ω•

U ′/k)) → Hi
c(U,RHom(K,ω•

U/k)) is simi-
larly deduced from the maps (I ′)n → In. The diagrams

RHom(M,ω•
X/k)⊗L In // RHom(RHom(In,M), ω•

X/k)

RHom(M,ω•
X/k)⊗L (I ′)n //

OO

RHom(RHom((I ′)n,M), ω•
X/k)

OO

commute because the construction of the horizontal arrows in Cohomology, Lemma
20.42.9 is functorial in all three entries. Hence we finally come down to the assertion
that the diagrams

Homk(Hi(X,RHom(In,M)), k) // H−i(X,RHom(RHom(In,M), ω•
X/k))

Homk(Hi(X,RHom((I ′)n,M)), k) //

OO

H−i(X,RHom(RHom((I ′)n,M), ω•
X/k))

OO

commute. This is true because the duality isomorphism
Homk(Hi(X,L), k) = Ext−i

X (L, ω•
X/k) = H−i(X,RHom(L, ω•

X/k))

is functorial for L in DQCoh(OX). □

Lemma 48.33.3.0G5C Let X be a proper scheme over a field k. Let K ∈ Db
Coh(OX)

with Hi(K) = 0 for i < 0. Set F = H0(K). Let Z ⊂ X be closed with complement
U = X \ U . Then

H0
c (U,K|U ) ⊂ H0(X,F)

is given by those global sections of F which vanish in an open neighbourhood of Z.

Proof. Consider the map H0
c (U,K|U ) → H0

X(X,K) = H0(X,K) = H0(X,F) of
Remark 48.32.7. To study this we represent K by a bounded complex F• with
F i = 0 for i < 0. Then we have by definition

H0
c (U,K|U ) = limH0(X, InF•) = lim Ker(H0(X, InF0)→ H0(X, InF1))

By Artin-Rees (Cohomology of Schemes, Lemma 30.10.3) this is the same as limH0(X, InF).
Thus the arrow H0

c (U,K|U )→ H0(X,F) is injective and the image consists of those

https://stacks.math.columbia.edu/tag/0G5C
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global sections of F which are contained in the subsheaf InF for any n. The char-
acterization of these as the sections which vanish in a neighbourhood of Z comes
from Krull’s intersection theorem (Algebra, Lemma 10.51.4) by looking at stalks of
F . See discussion in Algebra, Remark 10.51.6 for the case of functions. □

48.34. Lichtenbaum’s theorem

0G5D The theorem below was conjectured by Lichtenbaum and proved by Grothendieck
(see [Har67]). There is a very nice proof of the theorem by Kleiman in [Kle67]. A
generalization of the theorem to the case of cohomology with supports can be found
in [Lyu91]. The most interesting part of the argument is contained in the proof of
the following lemma.

Lemma 48.34.1.0G5E Let U be a variety. Let F be a coherent OU -module. If Hd(U,F)
is nonzero, then dim(U) ≥ d and if equality holds, then U is proper.

Proof. By the Grothendieck’s vanishing result in Cohomology, Proposition 20.20.7
we conclude that dim(U) ≥ d. Assume dim(U) = d. Choose a compactification
U → X such that U is dense in X. (This is possible by More on Flatness, Theorem
38.33.8 and Lemma 38.32.2.) After replacing X by its reduction we find that X is
a proper variety of dimension d and we see that U is proper if and only if U = X.
Set Z = X \ U . We will show that Hd(U,F) is zero if Z is nonempty.

Choose a coherentOX -module G whose restriction to U is F , see Properties, Lemma
28.22.5. Let ω•

X denote the dualizing complex of X as in Section 48.27. Set ω•
U =

ω•
X |U . Then Hd(U,F) is dual to

H−d
c (U,RHomOU

(F , ω•
U ))

by Lemma 48.33.1. By Lemma 48.27.1 we see that the cohomology sheaves of ω•
X

vanish in degrees < −d and H−d(ω•
X) = ωX is a coherent OX -module which is (S2)

and whose support is X. In particular, ωX is torsion free, see Divisors, Lemma
31.11.10. Thus we see that the cohomology sheaf

H−d(RHomOX
(G, ω•

X)) = Hom(G, ωX)

is torsion free, see Divisors, Lemma 31.11.12. Consequently this sheaf has no
nonzero sections vanishing on any nonempty open of X (those would be torsion
sections). Thus it follows from Lemma 48.33.3 that H−d

c (U,RHomOU
(F , ω•

U )) is
zero, and hence Hd(U,F) is zero as desired. □

Theorem 48.34.2.0G5F Let X be a nonempty separated scheme of finite type over a
field k. Let d = dim(X). The following are equivalent

(1) Hd(X,F) = 0 for all coherent OX -modules F on X,
(2) Hd(X,F) = 0 for all quasi-coherent OX -modules F on X, and
(3) no irreducible component X ′ ⊂ X of dimension d is proper over k.

Proof. Assume there exists an irreducible component X ′ ⊂ X (which we view as
an integral closed subscheme) which is proper and has dimension d. Let ωX′ be a
dualizing module of X ′ over k, see Lemma 48.27.1. Then Hd(X ′, ωX′) is nonzero
as it is dual to H0(X ′,OX′) by the lemma. Hence we see that Hd(X,ωX′) =
Hd(X ′, ωX′) is nonzero and we conclude that (1) does not hold. In this way we see
that (1) implies (3).

https://stacks.math.columbia.edu/tag/0G5E
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Let us prove that (3) implies (1). Let F be a coherent OX -module such that
Hd(X,F) is nonzero. Choose a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F
as in Cohomology of Schemes, Lemma 30.12.3. We obtain exact sequences

Hd(X,Fi)→ Hd(X,Fi+1)→ Hd(X,Fi+1/Fi)
Thus for some i ∈ {1, . . . ,m} we find thatHd(X,Fi+1/Fi) is nonzero. By our choice
of the filtration this means that there exists an integral closed subscheme Z ⊂ X
and a nonzero coherent sheaf of ideals I ⊂ OZ such that Hd(Z, I) is nonzero. By
Lemma 48.34.1 we conclude dim(Z) = d and Z is proper over k contradicting (3).
Hence (3) implies (1).
Finally, let us show that (1) and (2) are equivalent for any Noetherian scheme
X. Namely, (2) trivially implies (1). On the other hand, assume (1) and let F
be a quasi-coherent OX -module. Then we can write F = colimFi as the filtered
colimit of its coherent submodules, see Properties, Lemma 28.22.3. Then we have
Hd(X,F) = colimHd(X,Fi) = 0 by Cohomology, Lemma 20.19.1. Thus (2) is
true. □
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CHAPTER 49

Discriminants and Differents

0DWH 49.1. Introduction

0DWI In this chapter we study the different and discriminant of locally quasi-finite mor-
phisms of schemes. A good reference for some of this material is [Kun86].
Given a quasi-finite morphism f : Y → X of Noetherian schemes there is a relative
dualizing module ωY/X . In Section 49.2 we construct this module from scratch,
using Zariski’s main theorem and étale localization methods. The key property is
that given a diagram

Y ′

f ′

��

g′
// Y

f

��
X ′ g // X

with g : X ′ → X flat, Y ′ ⊂ X ′ ×X Y open, and f ′ : Y ′ → X ′ finite, then there is a
canonical isomorphism

f ′
∗(g′)∗ωY/X = HomOX′ (f ′

∗OY ′ ,OX′)
as sheaves of f ′

∗OY ′ -modules. In Section 49.4 we prove that if f is flat, then there is a
canonical global section τY/X ∈ H0(Y, ωY/X) which for every commutative diagram
as above maps (g′)∗τY/X to the trace map of Section 49.3 for the finite locally free
morphism f ′. In Section 49.9 we define the different for a flat quasi-finite morphism
of Noetherian schemes as the annihilator of the cokernel of τY/X : OX → ωY/X .
The main goal of this chapter is to prove that for quasi-finite syntomic1 f the
different agrees with the Kähler different. The Kähler different is the zeroth fitting
ideal of ΩY/X , see Section 49.7. This agreement is not obvious; we use a slick
argument due to Tate, see Section 49.12. On the way we also discuss the Noether
different and the Dedekind different.
Only in the end of this chapter, see Sections 49.15 and 49.16, do we make the link
with the more advanced material on duality for schemes.

49.2. Dualizing modules for quasi-finite ring maps

0BUK Let A→ B be a quasi-finite homomorphism of Noetherian rings. By Zariski’s main
theorem (Algebra, Lemma 10.123.14) there exists a factorization A → B′ → B
with A→ B′ finite and B′ → B inducing an open immersion of spectra. We set
(49.2.0.1)0BSZ ωB/A = HomA(B′, A)⊗B′ B

in this situation. The reader can think of this as a kind of relative dualizing mod-
ule, see Lemmas 49.15.1 and 49.2.12. In this section we will show by elementary

1AKA flat and lci.

4126
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commutative algebra methods that ωB/A is independent of the choice of the factor-
ization and that formation of ωB/A commutes with flat base change. To help prove
the independence of factorizations we compare two given factorizations.

Lemma 49.2.1.0BT0 Let A → B be a quasi-finite ring map. Given two factorizations
A→ B′ → B and A→ B′′ → B with A→ B′ and A→ B′′ finite and Spec(B)→
Spec(B′) and Spec(B)→ Spec(B′′) open immersions, there exists an A-subalgebra
B′′′ ⊂ B finite over A such that Spec(B) → Spec(B′′′) an open immersion and
B′ → B and B′′ → B factor through B′′′.

Proof. Let B′′′ ⊂ B be the A-subalgebra generated by the images of B′ → B and
B′′ → B. As B′ and B′′ are each generated by finitely many elements integral over
A, we see that B′′′ is generated by finitely many elements integral over A and we
conclude that B′′′ is finite over A (Algebra, Lemma 10.36.5). Consider the maps

B = B′ ⊗B′ B → B′′′ ⊗B′ B → B ⊗B′ B = B

The final equality holds because Spec(B) → Spec(B′) is an open immersion (and
hence a monomorphism). The second arrow is injective as B′ → B is flat. Hence
both arrows are isomorphisms. This means that

Spec(B′′′)

��

Spec(B)

��

oo

Spec(B′) Spec(B)oo

is cartesian. Since the base change of an open immersion is an open immersion we
conclude. □

Lemma 49.2.2.0BT1 The module (49.2.0.1) is well defined, i.e., independent of the choice
of the factorization.

Proof. Let B′, B′′, B′′′ be as in Lemma 49.2.1. We obtain a canonical map

ω′′′ = HomA(B′′′, A)⊗B′′′ B −→ HomA(B′, A)⊗B′ B = ω′

and a similar one involving B′′. If we show these maps are isomorphisms then the
lemma is proved. Let g ∈ B′ be an element such that B′

g → Bg is an isomorphism
and hence B′

g → (B′′′)g → Bg are isomorphisms. It suffices to show that (ω′′′)g →
ω′
g is an isomorphism. The kernel and cokernel of the ring map B′ → B′′′ are finite
A-modules and g-power torsion. Hence they are annihilated by a power of g. This
easily implies the result. □

Lemma 49.2.3.0BT2 Let A→ B be a quasi-finite map of Noetherian rings.
(1) If A→ B factors as A→ Af → B for some f ∈ A, then ωB/A = ωB/Af .
(2) If g ∈ B, then (ωB/A)g = ωBg/A.
(3) If f ∈ A, then ωBf/Af = (ωB/A)f .

Proof. Say A → B′ → B is a factorization with A → B′ finite and Spec(B) →
Spec(B′) an open immersion. In case (1) we may use the factorization Af →
B′
f → B to compute ωB/Af and use Algebra, Lemma 10.10.2. In case (2) use the

factorization A→ B′ → Bg to see the result. Part (3) follows from a combination
of (1) and (2). □
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Let A → B be a quasi-finite ring map of Noetherian rings, let A → A1 be an
arbitrary ring map of Noetherian rings, and set B1 = B ⊗A A1. We obtain a
cocartesian diagram

B // B1

A

OO

// A1

OO

Observe that A1 → B1 is quasi-finite as well (Algebra, Lemma 10.122.8). In this
situation we will define a canonical B-linear base change map
(49.2.3.1)0BVB ωB/A −→ ωB1/A1

Namely, we choose a factorization A → B′ → B as in the construction of ωB/A.
Then B′

1 = B′⊗AA1 is finite over A1 and we can use the factorization A1 → B′
1 →

B1 in the construction of ωB1/A1 . Thus we have to construct a map

HomA(B′, A)⊗B′ B −→ HomA1(B′ ⊗A A1, A1)⊗B′
1
B1

Thus it suffices to construct a B′-linear map HomA(B′, A)→ HomA1(B′⊗AA1, A1)
which we will denote φ 7→ φ1. Namely, given an A-linear map φ : B′ → A we let
φ1 be the map such that φ1(b′ ⊗ a1) = φ(b′)a1. This is clearly A1-linear and the
construction is complete.

Lemma 49.2.4.0BVC The base change map (49.2.3.1) is independent of the choice of the
factorization A→ B′ → B. Given ring maps A→ A1 → A2 the composition of the
base change maps for A→ A1 and A1 → A2 is the base change map for A→ A2.

Proof. Omitted. Hint: argue in exactly the same way as in Lemma 49.2.2 using
Lemma 49.2.1. □

Lemma 49.2.5.0BT3 If A→ A1 is flat, then the base change map (49.2.3.1) induces an
isomorphism ωB/A ⊗B B1 → ωB1/A1 .

Proof. Assume that A→ A1 is flat. By construction of ωB/A we may assume that
A → B is finite. Then ωB/A = HomA(B,A) and ωB1/A1 = HomA1(B1, A1). Since
B1 = B ⊗A A1 the result follows from More on Algebra, Lemma 15.65.4. □

Lemma 49.2.6.0BT4 Let A → B → C be quasi-finite homomorphisms of Noetherian
rings. There is a canonical map ωB/A ⊗B ωC/B → ωC/A.

Proof. Choose A→ B′ → B with A→ B′ finite such that Spec(B)→ Spec(B′) is
an open immersion. Then B′ → C is quasi-finite too. Choose B′ → C ′ → C with
B′ → C ′ finite and Spec(C) → Spec(C ′) an open immersion. Then the source of
the arrow is

HomA(B′, A)⊗B′ B ⊗B HomB(B ⊗B′ C ′, B)⊗B⊗B′C′ C

which is equal to
HomA(B′, A)⊗B′ HomB′(C ′, B)⊗C′ C

This indeed comes with a canonical map to HomA(C ′, A) ⊗C′ C = ωC/A coming
from composition HomA(B′, A)×HomB′(C ′, B)→ HomA(C ′, A). □

Lemma 49.2.7.0BT5 Let A → B and A → C be quasi-finite maps of Noetherian rings.
Then ωB×C/A = ωB/A × ωC/A as modules over B × C.
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Proof. Choose factorizations A → B′ → B and A → C ′ → C such that A → B′

and A→ C ′ are finite and such that Spec(B)→ Spec(B′) and Spec(C)→ Spec(C ′)
are open immersions. Then A→ B′×C ′ → B×C is a similar factorization. Using
this factorization to compute ωB×C/A gives the lemma. □

Lemma 49.2.8.0BVD Let A → B be a quasi-finite homomorphism of Noetherian rings.
Then AssB(ωB/A) is the set of primes of B lying over associated primes of A.

Proof. Choose a factorization A → B′ → B with A → B′ finite and B′ → B
inducing an open immersion on spectra. As ωB/A = ωB′/A ⊗B′ B it suffices to
prove the statement for ωB′/A. Thus we may assume A→ B is finite.

Assume p ∈ Ass(A) and q is a prime of B lying over p. Let x ∈ A be an element
whose annihilator is p. Choose a nonzero κ(p) linear map λ : κ(q) → κ(p). Since
A/p ⊂ B/q is a finite extension of rings, there is an f ∈ A, f ̸∈ p such that fλ
maps B/q into A/p. Hence we obtain a nonzero A-linear map

B → B/q→ A/p→ A, b 7→ fλ(b)x

An easy computation shows that this element of ωB/A has annihilator q, whence
q ∈ Ass(ωB/A).

Conversely, suppose that q ⊂ B is a prime ideal lying over a prime p ⊂ A which
is not an associated prime of A. We have to show that q ̸∈ AssB(ωB/A). After
replacing A by Ap and B by Bp we may assume that p is a maximal ideal of A.
This is allowed by Lemma 49.2.5 and Algebra, Lemma 10.63.16. Then there exists
an f ∈ m which is a nonzerodivisor on A. Then f is a nonzerodivisor on ωB/A and
hence q is not an associated prime of this module. □

Lemma 49.2.9.0BVE Let A → B be a flat quasi-finite homomorphism of Noetherian
rings. Then ωB/A is a flat A-module.

Proof. Let q ⊂ B be a prime lying over p ⊂ A. We will show that the localization
ωB/A,q is flat over Ap. This suffices by Algebra, Lemma 10.39.18. By Algebra,
Lemma 10.145.2 we can find an étale ring map A → A′ and a prime ideal p′ ⊂ A′

lying over p such that κ(p′) = κ(p) and such that

B′ = B ⊗A A′ = C ×D

with A′ → C finite and such that the unique prime q′ of B ⊗A A′ lying over q and
p′ corresponds to a prime of C. By Lemma 49.2.5 and Algebra, Lemma 10.100.1 it
suffices to show ωB′/A′,q′ is flat over A′

p′ . Since ωB′/A′ = ωC/A′ ×ωD/A′ by Lemma
49.2.7 this reduces us to the case where B is finite flat over A. In this case B is
finite locally free as an A-module and ωB/A = HomA(B,A) is the dual finite locally
free A-module. □

Lemma 49.2.10.0BVF If A→ B is flat, then the base change map (49.2.3.1) induces an
isomorphism ωB/A ⊗B B1 → ωB1/A1 .

Proof. If A→ B is finite flat, then B is finite locally free as an A-module. In this
case ωB/A = HomA(B,A) is the dual finite locally free A-module and formation of
this module commutes with arbitrary base change which proves the lemma in this
case. In the next paragraph we reduce the general (quasi-finite flat) case to the
finite flat case just discussed.
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Let q1 ⊂ B1 be a prime. We will show that the localization of the map at the prime
q1 is an isomorphism, which suffices by Algebra, Lemma 10.23.1. Let q ⊂ B and
p ⊂ A be the prime ideals lying under q1. By Algebra, Lemma 10.145.2 we can
find an étale ring map A → A′ and a prime ideal p′ ⊂ A′ lying over p such that
κ(p′) = κ(p) and such that

B′ = B ⊗A A′ = C ×D

with A′ → C finite and such that the unique prime q′ of B ⊗A A′ lying over q and
p′ corresponds to a prime of C. Set A′

1 = A′ ⊗A A1 and consider the base change
maps (49.2.3.1) for the ring maps A → A′ → A′

1 and A → A1 → A′
1 as in the

diagram
ωB′/A′ ⊗B′ B′

1
// ωB′

1/A
′
1

ωB/A ⊗B B′
1

//

OO

ωB1/A1 ⊗B1 B
′
1

OO

where B′ = B⊗AA′, B1 = B⊗AA1, and B′
1 = B⊗A (A′⊗AA1). By Lemma 49.2.4

the diagram commutes. By Lemma 49.2.5 the vertical arrows are isomorphisms.
As B1 → B′

1 is étale and hence flat it suffices to prove the top horizontal arrow is
an isomorphism after localizing at a prime q′

1 of B′
1 lying over q (there is such a

prime and use Algebra, Lemma 10.39.17). Thus we may assume that B = C ×D
with A→ C finite and q corresponding to a prime of C. In this case the dualizing
module ωB/A decomposes in a similar fashion (Lemma 49.2.7) which reduces the
question to the finite flat case A→ C handled above. □

Remark 49.2.11.0BVG Let f : Y → X be a locally quasi-finite morphism of locally
Noetherian schemes. It is clear from Lemma 49.2.3 that there is a unique coherent
OY -module ωY/X on Y such that for every pair of affine opens Spec(B) = V ⊂ Y ,
Spec(A) = U ⊂ X with f(V ) ⊂ U there is a canonical isomorphism

H0(V, ωY/X) = ωB/A

and where these isomorphisms are compatible with restriction maps.

Lemma 49.2.12.0C0I Let A → B be a quasi-finite homomorphism of Noetherian
rings. Let ω•

B/A ∈ D(B) be the algebraic relative dualizing complex discussed
in Dualizing Complexes, Section 47.25. Then there is a (nonunique) isomorphism
ωB/A = H0(ω•

B/A).

Proof. Choose a factorization A→ B′ → B where A→ B′ is finite and Spec(B′)→
Spec(B) is an open immersion. Then ω•

B/A = ω•
B′/A ⊗

L
B B′ by Dualizing Com-

plexes, Lemmas 47.24.7 and 47.24.9 and the definition of ω•
B/A. Hence it suffices

to show there is an isomorphism when A → B is finite. In this case we can use
Dualizing Complexes, Lemma 47.24.8 to see that ω•

B/A = RHom(B,A) and hence
H0(ω•

B/A) = HomA(B,A) as desired. □

49.3. Discriminant of a finite locally free morphism

0BVH Let X be a scheme and let F be a finite locally free OX -module. Then there is a
canonical trace map

Trace : HomOX
(F ,F) −→ OX

https://stacks.math.columbia.edu/tag/0BVG
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See Exercises, Exercise 111.22.6. This map has the property that Trace(id) is the
locally constant function on OX corresponding to the rank of F .
Let π : X → Y be a morphism of schemes which is finite locally free. Then there
exists a canonical trace for π which is an OY -linear map

Traceπ : π∗OX −→ OY
sending a local section f of π∗OX to the trace of multiplication by f on π∗OX .
Over affine opens this recovers the construction in Exercises, Exercise 111.22.7.
The composition

OY
π♯−→ π∗OX

Traceπ−−−−→ OY
equals multiplication by the degree of π (which is a locally constant function on
Y ). In analogy with Fields, Section 9.20 we can define the trace pairing

Qπ : π∗OX × π∗OX −→ OY
by the rule (f, g) 7→ Traceπ(fg). We can think of Qπ as a linear map π∗OX →
HomOY

(π∗OX ,OY ) between locally free modules of the same rank, and hence ob-
tain a determinant

det(Qπ) : ∧top(π∗OX) −→ ∧top(π∗OX)⊗−1

or in other words a global section
det(Qπ) ∈ Γ(Y,∧top(π∗OX)⊗−2)

The discriminant of π is by definition the closed subscheme Dπ ⊂ Y cut out by this
global section. Clearly, Dπ is a locally principal closed subscheme of Y .

Lemma 49.3.1.0BJF Let π : X → Y be a morphism of schemes which is finite locally
free. Then π is étale if and only if its discriminant is empty.

Proof. By Morphisms, Lemma 29.36.8 it suffices to check that the fibres of π are
étale. Since the construction of the trace pairing commutes with base change we
reduce to the following question: Let k be a field and let A be a finite dimensional k-
algebra. Show thatA is étale over k if and only if the trace pairingQA/k : A×A→ k,
(a, b) 7→ TraceA/k(ab) is nondegenerate.
Assume QA/k is nondegenerate. If a ∈ A is a nilpotent element, then ab is nilpotent
for all b ∈ A and we conclude that QA/k(a,−) is identically zero. Hence A is
reduced. Then we can write A = K1 × . . . ×Kn as a product where each Ki is a
field (see Algebra, Lemmas 10.53.2, 10.53.6, and 10.25.1). In this case the quadratic
space (A,QA/k) is the orthogonal direct sum of the spaces (Ki, QKi/k). It follows
from Fields, Lemma 9.20.7 that each Ki is separable over k. This means that A is
étale over k by Algebra, Lemma 10.143.4. The converse is proved by reading the
argument backwards. □

49.4. Traces for flat quasi-finite ring maps

0BSY The trace referred to in the title of this section is of a completely different nature
than the trace discussed in Duality for Schemes, Section 48.7. Namely, it is the
trace as discussed in Fields, Section 9.20 and generalized in Exercises, Exercises
111.22.6 and 111.22.7.
Let A→ B be a finite flat map of Noetherian rings. Then B is finite flat as an A-
module and hence finite locally free (Algebra, Lemma 10.78.2). Given b ∈ B we can

https://stacks.math.columbia.edu/tag/0BJF
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consider the trace TraceB/A(b) of the A-linear map B → B given by multiplication
by b on B. By the references above this defines an A-linear map TraceB/A : B → A.
Since ωB/A = HomA(B,A) as A→ B is finite, we see that TraceB/A ∈ ωB/A.
For a general flat quasi-finite ring map we define the notion of a trace as follows.
Definition 49.4.1.0BT6 Let A→ B be a flat quasi-finite map of Noetherian rings. The
trace element is the unique2 element τB/A ∈ ωB/A with the following property:
for any Noetherian A-algebra A1 such that B1 = B ⊗A A1 comes with a product
decomposition B1 = C × D with A1 → C finite the image of τB/A in ωC/A1 is
TraceC/A1 . Here we use the base change map (49.2.3.1) and Lemma 49.2.7 to get
ωB/A → ωB1/A1 → ωC/A1 .
We first prove that trace elements are unique and then we prove that they exist.
Lemma 49.4.2.0BT7 Let A → B be a flat quasi-finite map of Noetherian rings. Then
there is at most one trace element in ωB/A.
Proof. Let q ⊂ B be a prime ideal lying over the prime p ⊂ A. By Algebra, Lemma
10.145.2 we can find an étale ring map A → A1 and a prime ideal p1 ⊂ A1 lying
over p such that κ(p1) = κ(p) and such that

B1 = B ⊗A A1 = C ×D
with A1 → C finite and such that the unique prime q1 of B ⊗A A1 lying over q
and p1 corresponds to a prime of C. Observe that ωC/A1 = ωB/A ⊗B C (combine
Lemmas 49.2.5 and 49.2.7). Since the collection of ring maps B → C obtained in
this manner is a jointly injective family of flat maps and since the image of τB/A in
ωC/A1 is prescribed the uniqueness follows. □

Here is a sanity check.
Lemma 49.4.3.0BT8 Let A → B be a finite flat map of Noetherian rings. Then
TraceB/A ∈ ωB/A is the trace element.
Proof. Suppose we have A→ A1 with A1 Noetherian and a product decomposition
B⊗AA1 = C×D with A1 → C finite. Of course in this case A1 → D is also finite.
Set B1 = B⊗AA1. Since the construction of traces commutes with base change we
see that TraceB/A maps to TraceB1/A1 . Thus the proof is finished by noticing that
TraceB1/A1 = (TraceC/A1 ,TraceD/A1) under the isomorphism ωB1/A1 = ωC/A1 ×
ωD/A1 of Lemma 49.2.7. □

Lemma 49.4.4.0BT9 Let A → B be a flat quasi-finite map of Noetherian rings. Let
τ ∈ ωB/A be a trace element.

(1) If A → A1 is a map with A1 Noetherian, then with B1 = A1 ⊗A B the
image of τ in ωB1/A1 is a trace element.

(2) If A = Rf , then τ is a trace element in ωB/R.
(3) If g ∈ B, then the image of τ in ωBg/A is a trace element.
(4) If B = B1×B2, then τ maps to a trace element in both ωB1/A and ωB2/A.

Proof. Part (1) is a formal consequence of the definition.
Statement (2) makes sense because ωB/R = ωB/A by Lemma 49.2.3. Denote τ ′ the
element τ but viewed as an element of ωB/R. To see that (2) is true suppose that we

2Uniqueness and existence will be justified in Lemmas 49.4.2 and 49.4.6.
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have R→ R1 with R1 Noetherian and a product decomposition B⊗R R1 = C ×D
with R1 → C finite. Then with A1 = (R1)f we see that B ⊗A A1 = C ×D. Since
R1 → C is finite, a fortiori A1 → C is finite. Hence we can use the defining property
of τ to get the corresponding property of τ ′.
Statement (3) makes sense because ωBg/A = (ωB/A)g by Lemma 49.2.3. The proof
is similar to the proof of (2). Suppose we have A→ A1 with A1 Noetherian and a
product decomposition Bg⊗AA1 = C×D with A1 → C finite. Set B1 = B⊗AA1.
Then Spec(C) → Spec(B1) is an open immersion as Bg ⊗A A1 = (B1)g and the
image is closed because B1 → C is finite (as A1 → C is finite). Thus we see that
B1 = C ×D1 and D = (D1)g. Then we can use the defining property of τ to get
the corresponding property for the image of τ in ωBg/A.
Statement (4) makes sense because ωB/A = ωB1/A × ωB2/A by Lemma 49.2.7.
Suppose we have A → A′ with A′ Noetherian and a product decomposition B ⊗A
A′ = C × D with A′ → C finite. Then it is clear that we can refine this product
decomposition into B ⊗A A′ = C1 × C2 × D1 × D2 with A′ → Ci finite such
that Bi ⊗A A′ = Ci × Di. Then we can use the defining property of τ to get
the corresponding property for the image of τ in ωBi/A. This uses the obvious
fact that TraceC/A′ = (TraceC1/A′ ,TraceC2/A′) under the decomposition ωC/A′ =
ωC1/A′ × ωC2/A′ . □

Lemma 49.4.5.0BTA Let A → B be a flat quasi-finite map of Noetherian rings. Let
g1, . . . , gm ∈ B be elements generating the unit ideal. Let τ ∈ ωB/A be an element
whose image in ωBgi/A is a trace element for A→ Bgi . Then τ is a trace element.

Proof. Suppose we have A→ A1 with A1 Noetherian and a product decomposition
B⊗AA1 = C×D with A1 → C finite. We have to show that the image of τ in ωC/A1

is TraceC/A1 . Observe that g1, . . . , gm generate the unit ideal in B1 = B ⊗A A1
and that τ maps to a trace element in ω(B1)gi/A1 by Lemma 49.4.4. Hence we
may replace A by A1 and B by B1 to get to the situation as described in the next
paragraph.
Here we assume that B = C × D with A → C is finite. Let τC be the image of
τ in ωC/A. We have to prove that τC = TraceC/A in ωC/A. By the compatibility
of trace elements with products (Lemma 49.4.4) we see that τC maps to a trace
element in ωCgi/A. Hence, after replacing B by C we may assume that A → B is
finite flat.
Assume A → B is finite flat. In this case TraceB/A is a trace element by Lemma
49.4.3. Hence TraceB/A maps to a trace element in ωBgi/A by Lemma 49.4.4. Since
trace elements are unique (Lemma 49.4.2) we find that TraceB/A and τ map to the
same elements in ωBgi/A = (ωB/A)gi . As g1, . . . , gm generate the unit ideal of B
the map ωB/A →

∏
ωBgi/A is injective and we conclude that τC = TraceB/A as

desired. □

Lemma 49.4.6.0BTB Let A → B be a flat quasi-finite map of Noetherian rings. There
exists a trace element τ ∈ ωB/A.

Proof. Choose a factorization A → B′ → B with A → B′ finite and Spec(B) →
Spec(B′) an open immersion. Let g1, . . . , gn ∈ B′ be elements such that Spec(B) =⋃
D(gi) as opens of Spec(B′). Suppose that we can prove the existence of trace

elements τi for the quasi-finite flat ring maps A→ Bgi . Then for all i, j the elements
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τi and τj map to trace elements of ωBgigj /A by Lemma 49.4.4. By uniqueness of
trace elements (Lemma 49.4.2) they map to the same element. Hence the sheaf
condition for the quasi-coherent module associated to ωB/A (see Algebra, Lemma
10.24.1) produces an element τ ∈ ωB/A. Then τ is a trace element by Lemma
49.4.5. In this way we reduce to the case treated in the next paragraph.

Assume we have A→ B′ finite and g ∈ B′ with B = B′
g flat over A. It is our task

to construct a trace element in ωB/A = HomA(B′, A) ⊗B′ B. Choose a resolution
F1 → F0 → B′ → 0 of B′ by finite free A-modules F0 and F1. Then we have an
exact sequence

0→ HomA(B′, A)→ F∨
0 → F∨

1

where F∨
i = HomA(Fi, A) is the dual finite free module. Similarly we have the

exact sequence

0→ HomA(B′, B′)→ F∨
0 ⊗A B′ → F∨

1 ⊗A B′

The idea of the construction of τ is to use the diagram

B′ µ−→ HomA(B′, B′)← HomA(B′, A)⊗A B′ ev−→ A

where the first arrow sends b′ ∈ B′ to the A-linear operator given by multiplication
by b′ and the last arrow is the evaluation map. The problem is that the middle
arrow, which sends λ′ ⊗ b′ to the map b′′ 7→ λ′(b′′)b′, is not an isomorphism. If B′

is flat over A, the exact sequences above show that it is an isomorphism and the
composition from left to right is the usual trace TraceB′/A. In the general case, we
consider the diagram

HomA(B′, A)⊗A B′ //

��

HomA(B′, A)⊗A B′
g

��
B′

µ
//

22
ψ

77

HomA(B′, B′) // Ker(F∨
0 ⊗A B′

g → F∨
1 ⊗A B′

g)

By flatness of A → B′
g we see that the right vertical arrow is an isomorphism.

Hence we obtain the unadorned dotted arrow. Since B′
g = colim 1

gnB
′, since

colimits commute with tensor products, and since B′ is a finitely presented A-
module we can find an n ≥ 0 and a B′-linear (for right B′-module structure) map
ψ : B′ → HomA(B′, A) ⊗A B′ whose composition with the left vertical arrow is
gnµ. Composing with ev we obtain an element ev ◦ψ ∈ HomA(B′, A). Then we set

τ = (ev ◦ ψ)⊗ g−n ∈ HomA(B′, A)⊗B′ B′
g = ωB′

g/A
= ωB/A

We omit the easy verification that this element does not depend on the choice of n
and ψ above.

Let us prove that τ as constructed in the previous paragraph has the desired prop-
erty in a special case. Namely, say B′ = C ′×D′ and g = (f, h) where A→ C ′ flat,
D′
h is flat, and f is a unit in C ′. To show: τ maps to TraceC′/A in ωC′/A. In this case

we first choose nD and ψD : D′ → HomA(D′, A)⊗AD′ as above for the pair (D′, h)
and we can let ψC : C ′ → HomA(C ′, A)⊗AC ′ = HomA(C ′, C ′) be the map second-
ing c′ ∈ C ′ to multiplication by c′. Then we take n = nD and ψ = (fnDψC , ψD)
and the desired compatibility is clear because TraceC′/A = ev ◦ ψC as remarked
above.
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To prove the desired property in general, suppose given A→ A1 with A1 Noetherian
and a product decomposition B′

g ⊗A A1 = C × D with A1 → C finite. Set B′
1 =

B′ ⊗A A1. Then Spec(C)→ Spec(B′
1) is an open immersion as B′

g ⊗A A1 = (B′
1)g

and the image is closed as B′
1 → C is finite (since A1 → C is finite). Thus

B′
1 = C × D′ and D′

g = D. We conclude that B′
1 = C × D′ and g over A1 are

as in the previous paragraph. Since formation of the displayed diagram above
commutes with base change, the formation of τ commutes with the base change
A → A1 (details omitted; use the resolution F1 ⊗A A1 → F0 ⊗A A1 → B′

1 → 0
to see this). Thus the desired compatibility follows from the result of the previous
paragraph. □

Remark 49.4.7.0BVJ Let f : Y → X be a flat locally quasi-finite morphism of lo-
cally Noetherian schemes. Let ωY/X be as in Remark 49.2.11. It is clear from the
uniqueness, existence, and compatibility with localization of trace elements (Lem-
mas 49.4.2, 49.4.6, and 49.4.4) that there exists a global section

τY/X ∈ Γ(Y, ωY/X)

such that for every pair of affine opens Spec(B) = V ⊂ Y , Spec(A) = U ⊂ X
with f(V ) ⊂ U that element τY/X maps to τB/A under the canonical isomorphism
H0(V, ωY/X) = ωB/A.

Lemma 49.4.8.0C13 Let k be a field and let A be a finite k-algebra. Assume A is local
with residue field k′. The following are equivalent

(1) TraceA/k is nonzero,
(2) τA/k ∈ ωA/k is nonzero, and
(3) k′/k is separable and lengthA(A) is prime to the characteristic of k.

Proof. Conditions (1) and (2) are equivalent by Lemma 49.4.3. Let m ⊂ A. Since
dimk(A) <∞ it is clear that A has finite length over A. Choose a filtration

A = I0 ⊃ m = I1 ⊃ I2 ⊃ . . . In = 0

by ideals such that Ii/Ii+1 ∼= k′ as A-modules. See Algebra, Lemma 10.52.11 which
also shows that n = lengthA(A). If a ∈ m then aIi ⊂ Ii+1 and it is immediate that
TraceA/k(a) = 0. If a ̸∈ m with image λ ∈ k′, then we conclude

TraceA/k(a) =
∑

i=0,...,n−1
Tracek(a : Ii/Ii−1 → Ii/Ii−1) = nTracek′/k(λ)

The proof of the lemma is finished by applying Fields, Lemma 9.20.7. □

49.5. Finite morphisms

0FKW In this section we collect some observations about the constructions in the previous
sections for finite morphisms. Let f : Y → X be a finite morphism of locally
Noetherian schemes. Let ωY/X be as in Remark 49.2.11.

The first remark is that

f∗ωY/X = HomOX
(f∗OY ,OX)

as sheaves of f∗OY -modules. Since f is affine, this formula uniquely characterizes
ωY/X , see Morphisms, Lemma 29.11.6. The formula holds because for Spec(A) =
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U ⊂ X affine open, the inverse image V = f−1(U) is the spectrum of a finite
A-algebra B and hence
H0(U, f∗ωY/X) = H0(V, ωY/X) = ωB/A = HomA(B,A) = H0(U,HomOX

(f∗OY ,OX))
by construction. In particular, we obtain a canonical evaluation map

f∗ωY/X −→ OX
which is given by evaluation at 1 if we think of f∗ωY/X as the sheafHomOX

(f∗OY ,OX).
The second remark is that using the evaluation map we obtain canonical identifi-
cations

HomY (F , f∗G ⊗OY
ωY/X) = HomX(f∗F ,G)

functorially in the quasi-coherent module F on Y and the finite locally free module
G on X. If G = OX this follows immediately from the above and Algebra, Lemma
10.14.4. For general G we can use the same lemma and the isomorphisms

f∗(f∗G ⊗OY
ωY/X) = G ⊗OX

HomOX
(f∗OY ,OX) = HomOX

(f∗OY ,G)
of f∗OY -modules where the first equality is the projection formula (Cohomology,
Lemma 20.54.2). An alternative is to prove the formula affine locally by direct
computation.
The third remark is that if f is in addition flat, then the composition

f∗OY
f∗τY/X−−−−−→ f∗ωY/X −→ OX

is equal to the trace map Tracef discussed in Section 49.3. This follows immediately
by looking over affine opens.
The fourth remark is that if f is flat and X Noetherian, then we obtain

HomY (K,Lf∗M ⊗OY
ωY/X) = HomX(Rf∗K,M)

for any K in DQCoh(OY ) and M in DQCoh(OX). This follows from the material in
Duality for Schemes, Section 48.12, but can be proven directly in this case as follows.
First, if X is affine, then it holds by Dualizing Complexes, Lemmas 47.13.1 and
47.13.93 and Derived Categories of Schemes, Lemma 36.3.5. Then we can use the
induction principle (Cohomology of Schemes, Lemma 30.4.1) and Mayer-Vietoris
(in the form of Cohomology, Lemma 20.33.3) to finish the proof.

49.6. The Noether different

0BVK There are many different differents available in the literature. We list some of them
in this and the next sections; for more information we suggest the reader consult
[Kun86].
Let A→ B be a ring map. Denote

µ : B ⊗A B −→ B, b⊗ b′ 7−→ bb′

the multiplication map. Let I = Ker(µ). It is clear that I is generated by the
elements b ⊗ 1 − 1 ⊗ b for b ∈ B. Hence the annihilator J ⊂ B ⊗A B of I is a
B-module in a canonical manner. The Noether different of B over A is the image

3There is a simpler proof of this lemma in our case.
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of J under the map µ : B ⊗A B → B. Equivalently, the Noether different is the
image of the map

J = HomB⊗AB(B,B ⊗A B) −→ B, φ 7−→ µ(φ(1))
We begin with some obligatory lemmas.

Lemma 49.6.1.0BVL Let A→ Bi, i = 1, 2 be ring maps. Set B = B1 ×B2.
(1) The annihilator J of Ker(B ⊗A B → B) is J1 × J2 where Ji is the anni-

hilator of Ker(Bi ⊗A Bi → Bi).
(2) The Noether different D of B over A is D1×D2, where Di is the Noether

different of Bi over A.

Proof. Omitted. □

Lemma 49.6.2.0BVM Let A → B be a finite type ring map. Let A → A′ be a flat ring
map. Set B′ = B ⊗A A′.

(1) The annihilator J ′ of Ker(B′ ⊗A′ B′ → B′) is J ⊗A A′ where J is the
annihilator of Ker(B ⊗A B → B).

(2) The Noether different D′ of B′ over A′ is DB′, where D is the Noether
different of B over A.

Proof. Choose generators b1, . . . , bn of B as an A-algebra. Then

J = Ker(B ⊗A B
bi⊗1−1⊗bi−−−−−−−→ (B ⊗A B)⊕n)

Hence we see that the formation of J commutes with flat base change. The result
on the Noether different follows immediately from this. □

Lemma 49.6.3.0BVN Let A → B′ → B be ring maps with A → B′ of finite type and
B′ → B inducing an open immersion of spectra.

(1) The annihilator J of Ker(B ⊗A B → B) is J ′ ⊗B′ B where J ′ is the
annihilator of Ker(B′ ⊗A B′ → B′).

(2) The Noether different D of B over A is D′B, where D′ is the Noether
different of B′ over A.

Proof. Write I = Ker(B⊗AB → B) and I ′ = Ker(B′⊗AB′ → B′). As Spec(B)→
Spec(B′) is an open immersion, it follows that B = (B ⊗A B) ⊗B′⊗AB′ B′. Thus
we see that I = I ′(B⊗AB). Since I ′ is finitely generated and B′⊗AB′ → B⊗AB
is flat, we conclude that J = J ′(B ⊗A B), see Algebra, Lemma 10.40.4. Since the
B′ ⊗A B′-module structure of J ′ factors through B′ ⊗A B′ → B′ we conclude that
(1) is true. Part (2) is a consequence of (1). □

Remark 49.6.4.0BVP Let A → B be a quasi-finite homomorphism of Noetherian rings.
Let J be the annihilator of Ker(B ⊗A B → B). There is a canonical B-bilinear
pairing
(49.6.4.1)0BVQ ωB/A × J −→ B

defined as follows. Choose a factorization A → B′ → B with A → B′ finite and
B′ → B inducing an open immersion of spectra. Let J ′ be the annihilator of
Ker(B′ ⊗A B′ → B′). We first define

HomA(B′, A)× J ′ −→ B′, (λ,
∑

bi ⊗ ci) 7−→
∑

λ(bi)ci

https://stacks.math.columbia.edu/tag/0BVL
https://stacks.math.columbia.edu/tag/0BVM
https://stacks.math.columbia.edu/tag/0BVN
https://stacks.math.columbia.edu/tag/0BVP
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This is B′-bilinear exactly because for ξ ∈ J ′ and b ∈ B′ we have (b⊗1)ξ = (1⊗b)ξ.
By Lemma 49.6.3 and the fact that ωB/A = HomA(B′, A)⊗B′ B we can extend this
to a B-bilinear pairing as displayed above.

Lemma 49.6.5.0BVR Let A→ B be a quasi-finite homomorphism of Noetherian rings.
(1) If A→ A′ is a flat map of Noetherian rings, then

ωB/A × J //

��

B

��
ωB′/A′ × J ′ // B′

is commutative where notation as in Lemma 49.6.2 and horizontal arrows
are given by (49.6.4.1).

(2) If B = B1 ×B2, then
ωB/A × J //

��

B

��
ωBi/A × Ji // Bi

is commutative for i = 1, 2 where notation as in Lemma 49.6.1 and hori-
zontal arrows are given by (49.6.4.1).

Proof. Because of the construction of the pairing in Remark 49.6.4 both (1) and (2)
reduce to the case where A → B is finite. Then (1) follows from the fact that the
contraction map HomA(M,A)⊗AM⊗AM →M , λ⊗m⊗m′ 7→ λ(m)m′ commuted
with base change. To see (2) use that J = J1 × J2 is contained in the summands
B1 ⊗A B1 and B2 ⊗A B2 of B ⊗A B. □

Lemma 49.6.6.0BVS Let A → B be a flat quasi-finite homomorphism of Noetherian
rings. The pairing of Remark 49.6.4 induces an isomorphism J → HomB(ωB/A, B).

Proof. We first prove this when A → B is finite and flat. In this case we can
localize on A and assume B is finite free as an A-module. Let b1, . . . , bn be a
basis of B as an A-module and denote b∨

1 , . . . , b
∨
n the dual basis of ωB/A. Note

that
∑
bi ⊗ ci ∈ J maps to the element of HomB(ωB/A, B) which sends b∨

i to ci.
Suppose φ : ωB/A → B is B-linear. Then we claim that ξ =

∑
bi ⊗ φ(b∨

i ) is an
element of J . Namely, the B-linearity of φ exactly implies that (b⊗ 1)ξ = (1⊗ b)ξ
for all b ∈ B. Thus our map has an inverse and it is an isomorphism.
Let q ⊂ B be a prime lying over p ⊂ A. We will show that the localization

Jq −→ HomB(ωB/A,B)q
is an isomorphism. This suffices by Algebra, Lemma 10.23.1. By Algebra, Lemma
10.145.2 we can find an étale ring map A→ A′ and a prime ideal p′ ⊂ A′ lying over
p such that κ(p′) = κ(p) and such that

B′ = B ⊗A A′ = C ×D
with A′ → C finite and such that the unique prime q′ of B ⊗A A′ lying over q and
p′ corresponds to a prime of C. Let J ′ be the annihilator of Ker(B′ ⊗A′ B′ → B′).
By Lemmas 49.2.5, 49.6.2, and 49.6.5 the map J ′ → HomB′(ωB′/A′ , B′) is gotten
by applying the functor −⊗BB′ to the map J → HomB(ωB/A, B). Since Bq → B′

q′

https://stacks.math.columbia.edu/tag/0BVR
https://stacks.math.columbia.edu/tag/0BVS
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is faithfully flat it suffices to prove the result for (A′ → B′, q′). By Lemmas 49.2.7,
49.6.1, and 49.6.5 this reduces us to the case proved in the first paragraph of the
proof. □

Lemma 49.6.7.0BVT Let A → B be a flat quasi-finite homomorphism of Noetherian
rings. The diagram

J //

µ
��

HomB(ωB/A, B)

φ7→φ(τB/A)
xx

B

commutes where the horizontal arrow is the isomorphism of Lemma 49.6.6. Hence
the Noether different of B over A is the image of the map HomB(ωB/A, B)→ B.

Proof. Exactly as in the proof of Lemma 49.6.6 this reduces to the case of a finite
free map A→ B. In this case τB/A = TraceB/A. Choose a basis b1, . . . , bn of B as
an A-module. Let ξ =

∑
bi ⊗ ci ∈ J . Then µ(ξ) =

∑
bici. On the other hand, the

image of ξ in HomB(ωB/A, B) sends TraceB/A to
∑

TraceB/A(bi)ci. Thus we have
to show ∑

bici =
∑

TraceB/A(bi)ci
when ξ =

∑
bi ⊗ ci ∈ J . Write bibj =

∑
k a

k
ijbk for some akij ∈ A. Then the right

hand side is
∑
i,j a

j
ijci. On the other hand, ξ ∈ J implies

(bj ⊗ 1)(
∑

i
bi ⊗ ci) = (1⊗ bj)(

∑
i
bi ⊗ ci)

which implies that bjci =
∑
k a

i
jkck. Thus the left hand side is

∑
i,j a

i
ijcj . Since

akij = akji the equality holds. □

Lemma 49.6.8.0BVU Let A→ B be a finite type ring map. Let D ⊂ B be the Noether
different. Then V (D) is the set of primes q ⊂ B such that A→ B is not unramified
at q.

Proof. Assume A→ B is unramified at q. After replacing B by Bg for some g ∈ B,
g ̸∈ q we may assume A → B is unramified (Algebra, Definition 10.151.1 and
Lemma 49.6.3). In this case ΩB/A = 0. Hence if I = Ker(B ⊗A B → B), then
I/I2 = 0 by Algebra, Lemma 10.131.13. Since A→ B is of finite type, we see that
I is finitely generated. Hence by Nakayama’s lemma (Algebra, Lemma 10.20.1)
there exists an element of the form 1 + i annihilating I. It follows that D = B.
Conversely, assume that D ̸⊂ q. Then after replacing B by a principal localization
as above we may assume D = B. This means there exists an element of the form
1 + i in the annihilator of I. Conversely this implies that I/I2 = ΩB/A is zero and
we conclude. □

49.7. The Kähler different

0BVV Let A → B be a finite type ring map. The Kähler different is the zeroth fitting
ideal of ΩB/A as a B-module. We globalize the definition as follows.

Definition 49.7.1.0BVW Let f : Y → X be a morphism of schemes which is locally of
finite type. The Kähler different is the 0th fitting ideal of ΩY/X .

The Kähler different is a quasi-coherent sheaf of ideals on Y .

https://stacks.math.columbia.edu/tag/0BVT
https://stacks.math.columbia.edu/tag/0BVU
https://stacks.math.columbia.edu/tag/0BVW
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Lemma 49.7.2.0BVX Consider a cartesian diagram of schemes

Y ′

f ′

��

// Y

f

��
X ′ g // X

with f locally of finite type. Let R ⊂ Y , resp. R′ ⊂ Y ′ be the closed subscheme cut
out by the Kähler different of f , resp. f ′. Then Y ′ → Y induces an isomorphism
R′ → R×Y Y ′.

Proof. This is true because ΩY ′/X′ is the pullback of ΩY/X (Morphisms, Lemma
29.32.10) and then we can apply More on Algebra, Lemma 15.8.4. □

Lemma 49.7.3.0BVY Let f : Y → X be a morphism of schemes which is locally of finite
type. Let R ⊂ Y be the closed subscheme defined by the Kähler different. Then
R ⊂ Y is exactly the set of points where f is not unramified.

Proof. This is a copy of Divisors, Lemma 31.10.2. □

Lemma 49.7.4.0BVZ Let A be a ring. Let n ≥ 1 and f1, . . . , fn ∈ A[x1, . . . , xn]. Set
B = A[x1, . . . , xn]/(f1, . . . , fn). The Kähler different of B over A is the ideal of B
generated by det(∂fi/∂xj).

Proof. This is true because ΩB/A has a presentation⊕
i=1,...,n

Bfi
d−→
⊕

j=1,...,n
Bdxj → ΩB/A → 0

by Algebra, Lemma 10.131.9. □

49.8. The Dedekind different

0BW0 Let A → B be a ring map. We say the Dedekind different is defined if A is
Noetherian, A → B is finite, any nonzerodivisor on A is a nonzerodivisor on B,
and K → L is étale where K = Q(A) and L = B⊗AK. Then K ⊂ L is finite étale
and

LB/A = {x ∈ L | TraceL/K(bx) ∈ A for all b ∈ B}
is the Dedekind complementary module. In this situation the Dedekind different is

DB/A = {x ∈ L | xLB/A ⊂ B}

viewed as a B-submodule of L. By Lemma 49.8.1 the Dedekind different is an ideal
of B either if A is normal or if B is flat over A.

Lemma 49.8.1.0BW1 Assume the Dedekind different of A→ B is defined. Consider the
statements

(1) A→ B is flat,
(2) A is a normal ring,
(3) TraceL/K(B) ⊂ A,
(4) 1 ∈ LB/A, and
(5) the Dedekind different DB/A is an ideal of B.

Then we have (1) ⇒ (3), (2) ⇒ (3), (3) ⇔ (4), and (4) ⇒ (5).

https://stacks.math.columbia.edu/tag/0BVX
https://stacks.math.columbia.edu/tag/0BVY
https://stacks.math.columbia.edu/tag/0BVZ
https://stacks.math.columbia.edu/tag/0BW1


49.9. THE DIFFERENT 4141

Proof. The equivalence of (3) and (4) and the implication (4)⇒ (5) are immediate.
If A→ B is flat, then we see that TraceB/A : B → A is defined and that TraceL/K
is the base change. Hence (3) holds.
If A is normal, then A is a finite product of normal domains, hence we reduce to
the case of a normal domain. Then K is the fraction field of A and L =

∏
Li

is a finite product of finite separable field extensions of K. Then TraceL/K(b) =∑
TraceLi/K(bi) where bi ∈ Li is the image of b. Since b is integral over A as B is

finite over A, these traces are in A. This is true because the minimal polynomial of
bi over K has coefficients in A (Algebra, Lemma 10.38.6) and because TraceLi/K(bi)
is an integer multiple of one of these coefficients (Fields, Lemma 9.20.3). □

Lemma 49.8.2.0BW2 If the Dedekind different of A → B is defined, then there is a
canonical isomorphism LB/A → ωB/A.

Proof. Recall that ωB/A = HomA(B,A) as A → B is finite. We send x ∈ LB/A
to the map b 7→ TraceL/K(bx). Conversely, given an A-linear map φ : B → A we
obtain a K-linear map φK : L → K. Since K → L is finite étale, we see that the
trace pairing is nondegenerate (Lemma 49.3.1) and hence there exists a x ∈ L such
that φK(y) = TraceL/K(xy) for all y ∈ L. Then x ∈ LB/A maps to φ in ωB/A. □

Lemma 49.8.3.0BW3 If the Dedekind different of A → B is defined and A → B is flat,
then

(1) the canonical isomorphism LB/A → ωB/A sends 1 ∈ LB/A to the trace
element τB/A ∈ ωB/A, and

(2) the Dedekind different is DB/A = {b ∈ B | bωB/A ⊂ BτB/A}.

Proof. The first assertion follows from the proof of Lemma 49.8.1 and Lemma
49.4.3. The second assertion is immediate from the first and the definitions. □

49.9. The different

0BTC The motivation for the following definition is that it recovers the Dedekind different
in the finite flat case as we will see below.

Definition 49.9.1.0BW4 Let f : Y → X be a flat locally quasi-finite morphism of locally
Noetherian schemes. Let ωY/X be the relative dualizing module and let τY/X ∈
Γ(Y, ωY/X) be the trace element (Remarks 49.2.11 and 49.4.7). The annihilator of

Coker(OY
τY/X−−−→ ωY/X)

is the different of Y/X. It is a coherent ideal Df ⊂ OY .

We will generalize this in Remark 49.14.2 below. Observe that Df is locally gen-
erated by one element if ωY/X is an invertible OY -module. We first state the
agreement with the Dedekind different.

Lemma 49.9.2.0BW5 Let f : Y → X be a flat quasi-finite morphism of Noetherian
schemes. Let V = Spec(B) ⊂ Y , U = Spec(A) ⊂ X be affine open subschemes
with f(V ) ⊂ U . If the Dedekind different of A→ B is defined, then

Df |V = D̃B/A

as coherent ideal sheaves on V .

https://stacks.math.columbia.edu/tag/0BW2
https://stacks.math.columbia.edu/tag/0BW3
https://stacks.math.columbia.edu/tag/0BW4
https://stacks.math.columbia.edu/tag/0BW5
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Proof. This is clear from Lemmas 49.8.1 and 49.8.3. □

Lemma 49.9.3.0BW6 Let f : Y → X be a flat quasi-finite morphism of Noetherian
schemes. Let V = Spec(B) ⊂ Y , U = Spec(A) ⊂ X be affine open subschemes
with f(V ) ⊂ U . If ωY/X |V is invertible, i.e., if ωB/A is an invertible B-module,
then

Df |V = D̃

as coherent ideal sheaves on V where D ⊂ B is the Noether different of B over A.

Proof. Consider the map

HomOY
(ωY/X ,OY ) −→ OY , φ 7−→ φ(τY/X)

The image of this map corresponds to the Noether different on affine opens, see
Lemma 49.6.7. Hence the result follows from the elementary fact that given an
invertible module ω and a global section τ the image of τ : Hom(ω,O) = ω⊗−1 → O
is the same as the annihilator of Coker(τ : O → ω). □

Lemma 49.9.4.0BW7 Consider a cartesian diagram of Noetherian schemes

Y ′

f ′

��

// Y

f

��
X ′ g // X

with f flat and quasi-finite. Let R ⊂ Y , resp. R′ ⊂ Y ′ be the closed subscheme
cut out by the different Df , resp. Df ′ . Then Y ′ → Y induces a bijective closed
immersion R′ → R×Y Y ′. If g is flat or if ωY/X is invertible, then R′ = R×Y Y ′.

Proof. There is an immediate reduction to the case where X, X ′, Y , Y ′ are affine.
In other words, we have a cocartesian diagram of Noetherian rings

B′ Boo

A′

OO

Aoo

OO

with A→ B flat and quasi-finite. The base change map ωB/A⊗BB′ → ωB′/A′ is an
isomorphism (Lemma 49.2.10) and maps the trace element τB/A to the trace element
τB′/A′ (Lemma 49.4.4). Hence the finite B-module Q = Coker(τB/A : B → ωB/A)
satisfies Q ⊗B B′ = Coker(τB′/A′ : B′ → ωB′/A′). Thus DB/AB

′ ⊂ DB′/A′ which
means we obtain the closed immersion R′ → R ×Y Y ′. Since R = Supp(Q) and
R′ = Supp(Q ⊗B B′) (Algebra, Lemma 10.40.5) we see that R′ → R ×Y Y ′ is
bijective by Algebra, Lemma 10.40.6. The equality DB/AB

′ = DB′/A′ holds if
B → B′ is flat, e.g., if A→ A′ is flat, see Algebra, Lemma 10.40.4. Finally, if ωB/A
is invertible, then we can localize and assume ωB/A = Bλ. Writing τB/A = bλ we see
that Q = B/bB and DB/A = bB. The same reasoning over B′ gives DB′/A′ = bB′

and the lemma is proved. □

Lemma 49.9.5.0BW8 Let f : Y → X be a finite flat morphism of Noetherian schemes.
Then Normf : f∗OY → OX maps f∗Df into the ideal sheaf of the discriminant Df .

https://stacks.math.columbia.edu/tag/0BW6
https://stacks.math.columbia.edu/tag/0BW7
https://stacks.math.columbia.edu/tag/0BW8
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Proof. The norm map is constructed in Divisors, Lemma 31.17.6 and the discrim-
inant of f in Section 49.3. The question is affine local, hence we may assume
X = Spec(A), Y = Spec(B) and f given by a finite locally free ring map A → B.
Localizing further we may assume B is finite free as an A-module. Choose a basis
b1, . . . , bn ∈ B for B as an A-module. Denote b∨

1 , . . . , b
∨
n the dual basis of ωB/A =

HomA(B,A) as an A-module. Since the norm of b is the determinant of b : B → B
as an A-linear map, we see that NormB/A(b) = det(b∨

i (bbj)). The discriminant
is the principal closed subscheme of Spec(A) defined by det(TraceB/A(bibj)). If
b ∈ DB/A then there exist ci ∈ B such that b · b∨

i = ci · TraceB/A where we use a
dot to indicate the B-module structure on ωB/A. Write ci =

∑
ailbl. We have

NormB/A(b) = det(b∨
i (bbj))

= det((b · b∨
i )(bj))

= det((ci · TraceB/A)(bj))
= det(TraceB/A(cibj))
= det(ail) det(TraceB/A(blbj))

which proves the lemma. □

Lemma 49.9.6.0BW9 Let f : Y → X be a flat quasi-finite morphism of Noetherian
schemes. The closed subscheme R ⊂ Y defined by the different Df is exactly the
set of points where f is not étale (equivalently not unramified).

Proof. Since f is of finite presentation and flat, we see that it is étale at a point
if and only if it is unramified at that point. Moreover, the formation of the locus
of ramified points commutes with base change. See Morphisms, Section 29.36 and
especially Morphisms, Lemma 29.36.17. By Lemma 49.9.4 the formation of R com-
mutes set theoretically with base change. Hence it suffices to prove the lemma when
X is the spectrum of a field. On the other hand, the construction of (ωY/X , τY/X)
is local on Y . Since Y is a finite discrete space (being quasi-finite over a field), we
may assume Y has a unique point.

Say X = Spec(k) and Y = Spec(B) where k is a field and B is a finite local k-
algebra. If Y → X is étale, then B is a finite separable extension of k, and the
trace element TraceB/k is a basis element of ωB/k by Fields, Lemma 9.20.7. Thus
DB/k = B in this case. Conversely, if DB/k = B, then we see from Lemma 49.9.5
and the fact that the norm of 1 equals 1 that the discriminant is empty. Hence
Y → X is étale by Lemma 49.3.1. □

Lemma 49.9.7.0BWA Let f : Y → X be a flat quasi-finite morphism of Noetherian
schemes. Let R ⊂ Y be the closed subscheme defined by Df .

(1) If ωY/X is invertible, then R is a locally principal closed subscheme of Y .
(2) If ωY/X is invertible and f is finite, then the norm of R is the discriminant

Df of f .
(3) If ωY/X is invertible and f is étale at the associated points of Y , then R is

an effective Cartier divisor and there is an isomorphism OY (R) = ωY/X .

Proof. Proof of (1). We may work locally on Y , hence we may assume ωY/X is free
of rank 1. Say ωY/X = OY λ. Then we can write τY/X = hλ and then we see that
R is defined by h, i.e., R is locally principal.

https://stacks.math.columbia.edu/tag/0BW9
https://stacks.math.columbia.edu/tag/0BWA
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Proof of (2). We may assume Y → X is given by a finite free ring map A → B
and that ωB/A is free of rank 1 as B-module. Choose a B-basis element λ for
ωB/A and write TraceB/A = b · λ for some b ∈ B. Then DB/A = (b) and Df is
cut out by det(TraceB/A(bibj)) where b1, . . . , bn is a basis of B as an A-module.
Let b∨

1 , . . . , b
∨
n be the dual basis. Writing b∨

i = ci · λ we see that c1, . . . , cn is a
basis of B as well. Hence with ci =

∑
ailbl we see that det(ail) is a unit in A.

Clearly, b · b∨
i = ci ·TraceB/A hence we conclude from the computation in the proof

of Lemma 49.9.5 that NormB/A(b) is a unit times det(TraceB/A(bibj)).
Proof of (3). In the notation above we see from Lemma 49.9.6 and the assumption
that h does not vanish in the associated points of Y , which implies that h is a
nonzerodivisor. The canonical isomorphism sends 1 to τY/X , see Divisors, Lemma
31.14.10. □

49.10. Quasi-finite syntomic morphisms

0DWJ This section discusses the fact that a quasi-finite syntomic morphism has an invert-
ible relative dualizing module.

Lemma 49.10.1.0BWE Let f : Y → X be a morphism of schemes. The following are
equivalent

(1) f is locally quasi-finite and syntomic,
(2) f is locally quasi-finite, flat, and a local complete intersection morphism,
(3) f is locally quasi-finite, flat, locally of finite presentation, and the fibres

of f are local complete intersections,
(4) f is locally quasi-finite and for every y ∈ Y there are affine opens y ∈

V = Spec(B) ⊂ Y , U = Spec(A) ⊂ X with f(V ) ⊂ U an integer n and
h, f1, . . . , fn ∈ A[x1, . . . , xn] such thatB = A[x1, . . . , xn, 1/h]/(f1, . . . , fn),

(5) for every y ∈ Y there are affine opens y ∈ V = Spec(B) ⊂ Y , U =
Spec(A) ⊂ X with f(V ) ⊂ U such that A → B is a relative global
complete intersection of the form B = A[x1, . . . , xn]/(f1, . . . , fn),

(6) f is locally quasi-finite, flat, locally of finite presentation, and NLX/Y has
tor-amplitude in [−1, 0], and

(7) f is flat, locally of finite presentation, NLX/Y is perfect of rank 0 with
tor-amplitude in [−1, 0],

Proof. The equivalence of (1) and (2) is More on Morphisms, Lemma 37.62.8. The
equivalence of (1) and (3) is Morphisms, Lemma 29.30.11.
If A → B is as in (4), then B = A[x, x1, . . . , xn]/(xh − 1, f1, . . . , fn] is a relative
global complete intersection by see Algebra, Definition 10.136.5. Thus (4) implies
(5). It is clear that (5) implies (4).
Condition (5) implies (1): by Algebra, Lemma 10.136.13 a relative global complete
intersection is syntomic and the definition of a relative global complete intersec-
tion guarantees that a relative global complete intersection on n variables with n
equations is quasi-finite, see Algebra, Definition 10.136.5 and Lemma 10.122.2.
Either Algebra, Lemma 10.136.15 or Morphisms, Lemma 29.30.10 shows that (1)
implies (5).
More on Morphisms, Lemma 37.62.17 shows that (6) is equivalent to (1). If the
equivalent conditions (1) – (6) hold, then we see that affine locally Y → X is given
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by a relative global complete intersection B = A[x1, . . . , xn]/(f1, . . . , fn) with the
same number of variables as the number of equations. Using this presentation we
see that

NLB/A =
(

(f1, . . . , fn)/(f1, . . . , fn)2 −→
⊕

i=1,...,n
Bdxi

)
By Algebra, Lemma 10.136.12 the module (f1, . . . , fn)/(f1, . . . , fn)2 is free with
generators the congruence classes of the elements f1, . . . , fn. Thus NLB/A has rank
0 and so does NLY/X . In this way we see that (1) – (6) imply (7).

Finally, assume (7). By More on Morphisms, Lemma 37.62.17 we see that f is
syntomic. Thus on suitable affine opens f is given by a relative global complete
intersection A→ B = A[x1, . . . , xn]/(f1, . . . , fm), see Morphisms, Lemma 29.30.10.
Exactly as above we see that NLB/A is a perfect complex of rank n − m. Thus
n = m and we see that (5) holds. This finishes the proof. □

Lemma 49.10.2.0DWK Invertibility of the relative dualizing module.
(1) If A → B is a quasi-finite flat homomorphism of Noetherian rings, then

ωB/A is an invertible B-module if and only if ωB⊗Aκ(p)/κ(p) is an invertible
B ⊗A κ(p)-module for all primes p ⊂ A.

(2) If Y → X is a quasi-finite flat morphism of Noetherian schemes, then
ωY/X is invertible if and only if ωYx/x is invertible for all x ∈ X.

Proof. Proof of (1). As A→ B is flat, the module ωB/A is A-flat, see Lemma 49.2.9.
Thus ωB/A is an invertible B-module if and only if ωB/A ⊗A κ(p) is an invertible
B⊗A κ(p)-module for every prime p ⊂ A, see More on Morphisms, Lemma 37.16.7.
Still using that A → B is flat, we have that formation of ωB/A commutes with
base change, see Lemma 49.2.10. Thus we see that invertibility of the relative
dualizing module, in the presence of flatness, is equivalent to invertibility of the
relative dualizing module for the maps κ(p)→ B ⊗A κ(p).

Part (2) follows from (1) and the fact that affine locally the dualizing modules are
given by their algebraic counterparts, see Remark 49.2.11. □

Lemma 49.10.3.0DWL Let k be a field. Let B = k[x1, . . . , xn]/(f1, . . . , fn) be a global
complete intersection over k of dimension 0. Then ωB/k is invertible.

Proof. By Noether normalization, see Algebra, Lemma 10.115.4 we see that there
exists a finite injection k → B, i.e., dimk(B) < ∞. Hence ωB/k = Homk(B, k) as
a B-module. By Dualizing Complexes, Lemma 47.15.8 we see that RHom(B, k)
is a dualizing complex for B and by Dualizing Complexes, Lemma 47.13.3 we see
that RHom(B, k) is equal to ωB/k placed in degree 0. Thus it suffices to show that
B is Gorenstein (Dualizing Complexes, Lemma 47.21.4). This is true by Dualizing
Complexes, Lemma 47.21.7. □

Lemma 49.10.4.0BWF Let f : Y → X be a morphism of locally Noetherian schemes. If
f satisfies the equivalent conditions of Lemma 49.10.1 then ωY/X is an invertible
OY -module.

Proof. We may assume A → B is a relative global complete intersection of the
form B = A[x1, . . . , xn]/(f1, . . . , fn) and we have to show ωB/A is invertible. This
follows in combining Lemmas 49.10.2 and 49.10.3. □
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Example 49.10.5.0FK8 Let n ≥ 1 and d ≥ 1 be integers. Let T be the set of multi-indices
E = (e1, . . . , en) with ei ≥ 0 and

∑
ei ≤ d. Consider the ring

A = Z[ai,E ; 1 ≤ i ≤ n,E ∈ T ]

In A[x1, . . . , xn] consider the elements fi =
∑
E∈T ai,Ex

E where xE = xe1
1 . . . xenn

as is customary. Consider the A-algebra

B = A[x1, . . . , xn]/(f1, . . . , fn)

Denote Xn,d = Spec(A) and let Yn,d ⊂ Spec(B) be the maximal open subscheme
such that the restriction of the morphism Spec(B) → Spec(A) = Xn,d is quasi-
finite, see Algebra, Lemma 10.123.13.

Lemma 49.10.6.0FK9 With notation as in Example 49.10.5 the schemes Xn,d and Yn,d
are regular and irreducible, the morphism Yn,d → Xn,d is locally quasi-finite and
syntomic, and there is a dense open subscheme V ⊂ Yn,d such that Yn,d → Xn,d

restricts to an étale morphism V → Xn,d.

Proof. The scheme Xn,d is the spectrum of the polynomial ring A. Hence Xn,d is
regular and irreducible. Since we can write

fi = ai,(0,...,0) +
∑

E∈T,E ̸=(0,...,0)
ai,Ex

E

we see that the ring B is isomorphic to the polynomial ring on x1, . . . , xn and the
elements ai,E with E ̸= (0, . . . , 0). Hence Spec(B) is an irreducible and regular
scheme and so is the open Yn,d. The morphism Yn,d → Xn,d is locally quasi-finite
and syntomic by Lemma 49.10.1. To find V it suffices to find a single point where
Yn,d → Xn,d is étale (the locus of points where a morphism is étale is open by
definition). Thus it suffices to find a point of Xn,d where the fibre of Yn,d → Xn,d

is nonempty and étale, see Morphisms, Lemma 29.36.15. We choose the point
corresponding to the ring map χ : A→ Q sending fi to 1 + xdi . Then

B ⊗A,χ Q = Q[x1, . . . , xn]/(xd1 − 1, . . . , xdn − 1)

which is a nonzero étale algebra over Q. □

Lemma 49.10.7.0FKA Let f : Y → X be a morphism of schemes. If f satisfies the
equivalent conditions of Lemma 49.10.1 then for every y ∈ Y there exist n, d and a
commutative diagram

Y

��

V

��

oo // Yn,d

��
X Uoo // Xn,d

where U ⊂ X and V ⊂ Y are open, where Yn,d → Xn,d is as in Example 49.10.5,
and where the square on the right hand side is cartesian.

Proof. By Lemma 49.10.1 we can choose U and V affine so that U = Spec(R) and
V = Spec(S) with S = R[y1, . . . , yn]/(g1, . . . , gn). With notation as in Example
49.10.5 if we pick d large enough, then we can write each gi as gi =

∑
E∈T gi,Ey

E

with gi,E ∈ R. Then the map A → R sending ai,E to gi,E and the map B → S
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sending xi → yi give a cocartesian diagram of rings

S Boo

R

OO

Aoo

OO

which proves the lemma. □

49.11. Finite syntomic morphisms

0FKX This section is the analogue of Section 49.10 for finite syntomic morphisms.

Lemma 49.11.1.0FKY Let f : Y → X be a morphism of schemes. The following are
equivalent

(1) f is finite and syntomic,
(2) f is finite, flat, and a local complete intersection morphism,
(3) f is finite, flat, locally of finite presentation, and the fibres of f are local

complete intersections,
(4) f is finite and for every x ∈ X there is an affine open x ∈ U = Spec(A) ⊂

X an integer n and f1, . . . , fn ∈ A[x1, . . . , xn] such that f−1(U) is isomor-
phic to the spectrum of A[x1, . . . , xn]/(f1, . . . , fn),

(5) f is finite, flat, locally of finite presentation, and NLX/Y has tor-amplitude
in [−1, 0], and

(6) f is finite, flat, locally of finite presentation, and NLX/Y is perfect of rank
0 with tor-amplitude in [−1, 0],

Proof. The equivalence of (1), (2), (3), (5), and (6) and the implication (4) ⇒ (1)
follow immediately from Lemma 49.10.1. Assume the equivalent conditions (1), (2),
(3), (5), (6) hold. Choose a point x ∈ X and an affine open U = Spec(A) of x in X
and say x corresponds to the prime ideal p ⊂ A. Write f−1(U) = Spec(B). Write
B = A[x1, . . . , xn]/I. Since NLB/A is perfect of tor-amplitude in [−1, 0] by (6) we
see that I/I2 is a finite locally free B-module of rank n. Since Bp is semi-local we
see that (I/I2)p is free of rank n, see Algebra, Lemma 10.78.7. Thus after replacing
A by a principal localization at an element not in p we may assume I/I2 is a free
B-module of rank n. Thus by Algebra, Lemma 10.136.6 we can find a presentation
of B over A with the same number of variables as equations. In other words, we
may assume B = A[x1, . . . , xn]/(f1, . . . , fn). This proves (4). □

Example 49.11.2.0FKZ Let d ≥ 1 be an integer. Consider variables alij for 1 ≤ i, j, l ≤ d
and denote

Ad = Z[akij ]/J
where J is the ideal generated by the elements

∑
l a
l
ija

m
lk −

∑
l a
m
il a

l
jk ∀i, j, k,m

akij − akji ∀i, j, k
aji1 − δij ∀i, j

where δij indices the Kronecker delta function. We define an Ad-algebra Bd as
follows: as an Ad-module we set

Bd = Ade1 ⊕ . . .⊕Aded
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The algebra structure is given by Ad → Bd mapping 1 to e1. The multiplication
on Bd is the Ad-bilinar map

m : Bd ×Bd −→ Bd, m(ei, ej) =
∑

akijek

It is straightforward to check that the relations given above exactly force this to be
an Ad-algebra structure. The morphism

πd : Yd = Spec(Bd) −→ Spec(Ad) = Xd

is the “universal” finite free morphism of rank d.
Lemma 49.11.3.0FL0 With notation as in Example 49.11.2 there is an open subscheme
Ud ⊂ Xd with the following property: a morphism of schemes X → Xd factors
through Ud if and only if Yd ×Xd X → X is syntomic.
Proof. Recall that being syntomic is the same thing as being flat and a local com-
plete intersection morphism, see More on Morphisms, Lemma 37.62.8. The set
Wd ⊂ Yd of points where πd is Koszul is open in Yd and its formation commutes
with arbitrary base change, see More on Morphisms, Lemma 37.62.21. Since πd
is finite and hence closed, we see that Z = πd(Yd \ Wd) is closed. Since clearly
Ud = Xd \ Z and since its formation commutes with base change we find that the
lemma is true. □

Lemma 49.11.4.0FL1 With notation as in Example 49.11.2 and Ud as in Lemma 49.11.3
then Ud is smooth over Spec(Z).
Proof. Let us use More on Morphisms, Lemma 37.12.1 to show that Ud → Spec(Z)
is smooth. Namely, suppose that Spec(A) → Ud is a morphism and A′ → A is a
small extension. Then B = A ⊗Ad Bd is a finite free A-algebra which is syntomic
over A (by construction of Ud). By Smoothing Ring Maps, Proposition 16.3.2 there
exists a syntomic ring map A′ → B′ such that B ∼= B′ ⊗A′ A. Set e′

1 = 1 ∈ B′.
For 1 < i ≤ d choose lifts e′

i ∈ B′ of the elements 1 ⊗ ei ∈ A ⊗Ad Bd = B. Then
e′

1, . . . , e
′
d is a basis for B′ over A′ (for example see Algebra, Lemma 10.101.1).

Thus we can write e′
ie

′
j =

∑
αlije

′
l for unique elements αlij ∈ A′ which satisfy the

relations
∑
l α

l
ijα

m
lk =

∑
l α

m
il α

l
jk and αkij = αkji and αji1−δij in A′. This determines

a morphism Spec(A′)→ Xd by sending alij ∈ Ad to αlij ∈ A′. This morphism agrees
with the given morphism Spec(A)→ Ud. Since Spec(A′) and Spec(A) have the same
underlying topological space, we see that we obtain the desired lift Spec(A′)→ Ud
and we conclude that Ud is smooth over Z. □

Lemma 49.11.5.0FL2 With notation as in Example 49.11.2 consider the open subscheme
U ′
d ⊂ Xd over which πd is étale. Then U ′

d is a dense subset of the open Ud of Lemma
49.11.3.
Proof. By exactly the same reasoning as in the proof of Lemma 49.11.3, using
Morphisms, Lemma 29.36.17, there is a maximal open U ′

d ⊂ Xd over which πd is
étale. Moreover, since an étale morphism is syntomic, we see that U ′

d ⊂ Ud. To
finish the proof we have to show that U ′

d ⊂ Ud is dense. Let u : Spec(k)→ Ud be a
morphism where k is a field. Let B = k ⊗Ad Bd as in the proof of Lemma 49.11.4.
We will show there is a local domain A′ with residue field k and a finite syntomic
A′ algebra B′ with B = k ⊗A′ B′ whose generic fibre is étale. Exactly as in the
previous paragraph this will determine a morphism Spec(A′)→ Ud which will map
the generic point into U ′

d and the closed point to u, thereby finishing the proof.
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By Lemma 49.11.1 part (4) we can choose a presentationB = k[x1, . . . , xn]/(f1, . . . , fn).
Let d′ be the maximum total degree of the polynomials f1, . . . , fn. Let Yn,d′ → Xn,d′

be as in Example 49.10.5. By construction there is a morphism u′ : Spec(k)→ Xn,d′

such that
Spec(B) ∼= Yn,d′ ×Xn,d′ ,u′ Spec(k)

Denote A = OhXn,d′ ,u′ the henselization of the local ring of Xn,d′ at the image of u′.
Then we can write

Yn,d′ ×Xn,d′ Spec(A) = Z ⨿W

with Z → Spec(A) finite and W → Spec(A) having empty closed fibre, see Algebra,
Lemma 10.153.3 part (13) or the discussion in More on Morphisms, Section 37.41.
By Lemma 49.10.6 the local ring A is regular (here we also use More on Algebra,
Lemma 15.45.10) and the morphism Z → Spec(A) is étale over the generic point
of Spec(A) (because it is mapped to the generic point of Xd,n′). By construction
Z×Spec(A) Spec(k) ∼= Spec(B). This proves what we want except that the map from
residue field of A to k may not be an isomorphism. By Algebra, Lemma 10.159.1
there exists a flat local ring map A → A′ such that the residue field of A′ is k. If
A′ isn’t a domain, then we choose a minimal prime p ⊂ A′ (which lies over the
unique minimal prime of A by flatness) and we replace A′ by A′/p. Set B′ equal
to the unique A′-algebra such that Z ×Spec(A) Spec(A′) = Spec(B′). This finishes
the proof. □

Remark 49.11.6.0FL3 Let πd : Yd → Xd be as in Example 49.11.2. Let Ud ⊂ Xd

be the maximal open over which Vd = π−1
d (Ud) is finite syntomic as in Lemma

49.11.3. Then it is also true that Vd is smooth over Z. (Of course the morphism
Vd → Ud is not smooth when d ≥ 2.) Arguing as in the proof of Lemma 49.11.4 this
corresponds to the following deformation problem: given a small extension C ′ → C
and a finite syntomic C-algebra B with a section B → C, find a finite syntomic
C ′-algebra B′ and a section B′ → C ′ whose tensor product with C recovers B → C.
By Lemma 49.11.1 we may write B = C[x1, . . . , xn]/(f1, . . . , fn) as a relative global
complete intersection. After a change of coordinates we may assume x1, . . . , xn are
in the kernel of B → C. Then the polynomials fi have vanishing constant terms.
Choose any lifts f ′

i ∈ C ′[x1, . . . , xn] of fi with vanishing constant terms. Then
B′ = C ′[x1, . . . , xn]/(f ′

1, . . . , f
′
n) with section B′ → C ′ sending xi to zero works.

Lemma 49.11.7.0FL4 Let f : Y → X be a morphism of schemes. If f satisfies the
equivalent conditions of Lemma 49.11.1 then for every x ∈ X there exist a d and a
commutative diagram

Y

��

V

��

oo // Vd

��

// Yd

πd

��
X Uoo // Ud // Xd

with the following properties
(1) U ⊂ X is open, x ∈ U , and V = f−1(U),
(2) πd : Yd → Xd is as in Example 49.11.2,
(3) Ud ⊂ Xd is as in Lemma 49.11.3 and Vd = π−1

d (Ud) ⊂ Yd,
(4) where the middle square is cartesian.
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Proof. Choose an affine open neighbourhood U = Spec(A) ⊂ X of x. Write V =
f−1(U) = Spec(B). Then B is a finite locally free A-module and the inclusion
A ⊂ B is a locally direct summand. Thus after shrinking U we can choose a basis
1 = e1, e2, . . . , ed of B as an A-module. Write eiej =

∑
αlijel for unique elements

αlij ∈ A which satisfy the relations
∑
l α

l
ijα

m
lk =

∑
l α

m
il α

l
jk and αkij = αkji and

αji1 − δij in A. This determines a morphism Spec(A)→ Xd by sending alij ∈ Ad to
αlij ∈ A. By construction V ∼= Spec(A)×Xd Yd. By the definition of Ud we see that
Spec(A)→ Xd factors through Ud. This finishes the proof. □

49.12. A formula for the different

0BWB In this section we discuss the material in [MR70, Appendix A] due to Tate. In our
language, this will show that the different is equal to the Kähler different in the
case of a flat, quasi-finite, local complete intersection morphism. First we compute
the Noether different in a special case.

Lemma 49.12.1.0BWC [MR70, Appendix]Let A→ P be a ring map. Let f1, . . . , fn ∈ P be a Koszul regular
sequence. Assume B = P/(f1, . . . , fn) is flat over A. Let g1, . . . , gn ∈ P ⊗A B be a
Koszul regular sequence generating the kernel of the multiplication map P ⊗AB →
B. Write fi⊗1 =

∑
gijgj . Then the annihilator of Ker(B⊗AB → B) is a principal

ideal generated by the image of det(gij).

Proof. The Koszul complex K• = K(P, f1, . . . , fn) is a resolution of B by finite free
P -modules. The Koszul complex M• = K(P ⊗A B, g1, . . . , gn) is a resolution of B
by finite free P ⊗A B-modules. There is a map of complexes

K• −→M•

which in degree 1 is given by the matrix (gij) and in degree n by det(gij). See
More on Algebra, Lemma 15.28.3. As B is a flat A-module, we can view M• as a
complex of flat P -modules (via P → P ⊗A B, p 7→ p⊗ 1). Thus we may use both
complexes to compute TorP∗ (B,B) and it follows that the displayed map defines a
quasi-isomorphism after tensoring with B. It is clear that Hn(K• ⊗P B) = B. On
the other hand, Hn(M• ⊗P B) is the kernel of

B ⊗A B
g1,...,gn−−−−−→ (B ⊗A B)⊕n

Since g1, . . . , gn generate the kernel of B ⊗A B → B this proves the lemma. □

Lemma 49.12.2.0BWD Let A be a ring. Let n ≥ 1 and h, f1, . . . , fn ∈ A[x1, . . . , xn]. Set
B = A[x1, . . . , xn, 1/h]/(f1, . . . , fn). Assume that B is quasi-finite over A. Then

(1) B is flat over A and A→ B is a relative local complete intersection,
(2) the annihilator J of I = Ker(B ⊗A B → B) is free of rank 1 over B,
(3) the Noether different of B over A is generated by det(∂fi/∂xj) in B.

Proof. Note that B = A[x, x1, . . . , xn]/(xh− 1, f1, . . . , fn) is a relative global com-
plete intersection over A, see Algebra, Definition 10.136.5. By Algebra, Lemma
10.136.13 we see that B is flat over A.
Write P ′ = A[x, x1, . . . , xn] and P = P ′/(xh − 1) = A[x1, . . . , xn, 1/g]. Then
we have P ′ → P → B. By More on Algebra, Lemma 15.33.4 we see that xh −
1, f1, . . . , fn is a Koszul regular sequence in P ′. Since xh − 1 is a Koszul regular
sequence of length one in P ′ (by the same lemma for example) we conclude that
f1, . . . , fn is a Koszul regular sequence in P by More on Algebra, Lemma 15.30.14.
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Let gi ∈ P⊗AB be the image of xi⊗1−1⊗xi. Let us use the short hand yi = xi⊗1
and zi = 1⊗ xi in A[x1, . . . , xn]⊗A A[x1, . . . , xn] so that gi is the image of yi − zi.
For a polynomial f ∈ A[x1, . . . , xn] we write f(y) = f ⊗ 1 and f(z) = 1⊗ f in the
above tensor product. Then we have

P ⊗A B/(g1, . . . , gn) =
A[y1, . . . , yn, z1, . . . , zn,

1
h(y)h(z) ]

(f1(z), . . . , fn(z), y1 − z1, . . . , yn − zn)
which is clearly isomorphic to B. Hence by the same arguments as above we find
that f1(z), . . . , fn(z), y1−z1, . . . , yn−zn is a Koszul regular sequence inA[y1, . . . , yn, z1, . . . , zn,

1
h(y)h(z) ].

The sequence f1(z), . . . , fn(z) is a Koszul regular in A[y1, . . . , yn, z1, . . . , zn,
1

h(y)h(z) ]
by flatness of the map

P −→ A[y1, . . . , yn, z1, . . . , zn,
1

h(y)h(z) ], xi 7−→ zi

and More on Algebra, Lemma 15.30.5. By More on Algebra, Lemma 15.30.14 we
conclude that g1, . . . , gn is a regular sequence in P ⊗A B.

At this point we have verified all the assumptions of Lemma 49.12.1 above with
P , f1, . . . , fn, and gi ∈ P ⊗A B as above. In particular the annihilator J of I is
freely generated by one element δ over B. Set fij = ∂fi/∂xj ∈ A[x1, . . . , xn]. An
elementary computation shows that we can write

fi(y) = fi(z1 + g1, . . . , zn + gn) = fi(z) +
∑

j
fij(z)gj +

∑
j,j′

Fijj′gjgj′

for some Fijj′ ∈ A[y1, . . . , yn, z1, . . . , zn]. Taking the image in P ⊗A B the terms
fi(z) map to zero and we obtain

fi ⊗ 1 =
∑

j

(
1⊗ fij +

∑
j′
Fijj′gj′

)
gj

Thus we conclude from Lemma 49.12.1 that δ = det(gij) with gij = 1 ⊗ fij +∑
j′ Fijj′gj′ . Since gj′ maps to zero inB, we conclude that the image of det(∂fi/∂xj)

in B generates the Noether different of B over A. □

Lemma 49.12.3.0BWG Let f : Y → X be a morphism of Noetherian schemes. If f
satisfies the equivalent conditions of Lemma 49.10.1 then the different Df of f is
the Kähler different of f .

Proof. By Lemmas 49.9.3 and 49.10.4 the different of f affine locally is the same as
the Noether different. Then the lemma follows from the computation of the Noether
different and the Kähler different on standard affine pieces done in Lemmas 49.7.4
and 49.12.2. □

Lemma 49.12.4.0BWH Let A be a ring. Let n ≥ 1 and h, f1, . . . , fn ∈ A[x1, . . . , xn]. Set
B = A[x1, . . . , xn, 1/h]/(f1, . . . , fn). Assume that B is quasi-finite over A. Then
there is an isomorphism B → ωB/A mapping det(∂fi/∂xj) to τB/A.

Proof. Let J be the annihilator of Ker(B⊗AB → B). By Lemma 49.12.2 the map
A→ B is flat and J is a free B-module with generator ξ mapping to det(∂fi/∂xj)
in B. Thus the lemma follows from Lemma 49.6.7 and the fact (Lemma 49.10.4)
that ωB/A is an invertible B-module. (Warning: it is necessary to prove ωB/A is
invertible because a finite B-module M such that HomB(M,B) ∼= B need not be
free.) □

https://stacks.math.columbia.edu/tag/0BWG
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Example 49.12.5.0BWI Let A be a Noetherian ring. Let f, h ∈ A[x] such that

B = (A[x]/(f))h = A[x, 1/h]/(f)

is quasi-finite over A. Let f ′ ∈ A[x] be the derivative of f with respect to x. The
ideal D = (f ′) ⊂ B is the Noether different of B over A, is the Kähler different
of B over A, and is the ideal whose associated quasi-coherent sheaf of ideals is the
different of Spec(B) over Spec(A).

Lemma 49.12.6.0BWJ Let S be a Noetherian scheme. Let X, Y be smooth schemes of
relative dimension n over S. Let f : Y → X be a locally quasi-finite morphism over
S. Then f is flat and the closed subscheme R ⊂ Y cut out by the different of f is
the locally principal closed subscheme cut out by

∧n(df) ∈ Γ(Y, (f∗ΩnX/S)⊗−1 ⊗OY
ΩnY/S)

If f is étale at the associated points of Y , then R is an effective Cartier divisor and

f∗ΩnX/S ⊗OY
O(R) = ΩnY/S

as invertible sheaves on Y .

Proof. To prove that f is flat, it suffices to prove Ys → Xs is flat for all s ∈ S (More
on Morphisms, Lemma 37.16.3). Flatness of Ys → Xs follows from Algebra, Lemma
10.128.1. By More on Morphisms, Lemma 37.62.10 the morphism f is a local
complete intersection morphism. Thus the statement on the different follows from
the corresponding statement on the Kähler different by Lemma 49.12.3. Finally,
since we have the exact sequence

f∗ΩX/S
df−→ ΩY/S → ΩY/X → 0

by Morphisms, Lemma 29.32.9 and since ΩX/S and ΩY/S are finite locally free of
rank n (Morphisms, Lemma 29.34.12), the statement for the Kähler different is clear
from the definition of the zeroth fitting ideal. If f is étale at the associated points
of Y , then ∧ndf does not vanish in the associated points of Y , which implies that
the local equation of R is a nonzerodivisor. Hence R is an effective Cartier divisor.
The canonical isomorphism sends 1 to ∧ndf , see Divisors, Lemma 31.14.10. □

49.13. The Tate map

0FKB In this section we produce an isomorphism between the determinant of the relative
cotangent complex and the relative dualizing module for a locally quasi-finite syn-
tomic morphism of locally Noetherian schemes. Following [Gar84, 1.4.4] we dub
the isomorphism the Tate map. Our approach is to avoid doing local calculations
as much as is possible.

Let Y → X be a locally quasi-finite syntomic morphism of schemes. We will use all
the equivalent conditions for this notion given in Lemma 49.10.1 without further
mention in this section. In particular, we see that NLY/X is a perfect object of
D(OY ) with tor-amplitude in [−1, 0]. Thus we have a canonical invertible module
det(NLY/X) on Y and a global section

δ(NLY/X) ∈ Γ(Y, det(NLY/X))

https://stacks.math.columbia.edu/tag/0BWI
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See Derived Categories of Schemes, Lemma 36.39.1. Suppose given a commutative
diagram of schemes

Y ′
b
//

��

Y

��
X ′ // X

whose vertical arrows are locally quasi-finite syntomic and which induces an iso-
morphism of Y ′ with an open of X ′ ×X Y . Then the canonical map

Lb∗ NLY/X −→ NLY ′/X′

is a quasi-isomorphism by More on Morphisms, Lemma 37.13.16. Thus we get a
canonical isomorphism b∗ det(NLY/X) → det(NLY ′/X′) which sends the canoni-
cal section δ(NLY/X) to δ(NLY ′/X′), see Derived Categories of Schemes, Remark
36.39.2.

Remark 49.13.1.0FKC Let Y → X be a locally quasi-finite syntomic morphism of
schemes. What does the pair (det(NLY/X), δ(NLY/X)) look like locally? Choose
affine opens V = Spec(B) ⊂ Y , U = Spec(A) ⊂ X with f(V ) ⊂ U and an integer
n and f1, . . . , fn ∈ A[x1, . . . , xn] such that B = A[x1, . . . , xn]/(f1, . . . , fn). Then

NLB/A =
(

(f1, . . . , fn)/(f1, . . . , fn)2 −→
⊕

i=1,...,n
Bdxi

)
and (f1, . . . , fn)/(f1, . . . , fn)2 is free with generators the classes f i. See proof of
Lemma 49.10.1. Thus det(LB/A) is free on the generator

dx1 ∧ . . . ∧ dxn ⊗ (f1 ∧ . . . ∧ fn)⊗−1

and the section δ(NLB/A) is the element

δ(NLB/A) = det(∂fj/∂xi) · dx1 ∧ . . . ∧ dxn ⊗ (f1 ∧ . . . ∧ fn)⊗−1

by definition.

Let Y → X be a locally quasi-finite syntomic morphism of locally Noetherian
schemes. By Remarks 49.2.11 and 49.4.7 we have a coherent OY -module ωY/X and
a canonical global section

τY/X ∈ Γ(Y, ωY/X)
which affine locally recovers the pair ωB/A, τB/A. By Lemma 49.10.4 the module
ωY/X is invertible. Suppose given a commutative diagram of locally Noetherian
schemes

Y ′
b
//

��

Y

��
X ′ // X

whose vertical arrows are locally quasi-finite syntomic and which induces an iso-
morphism of Y ′ with an open of X ′ ×X Y . Then there is a canonical base change
map

b∗ωY/X −→ ωY ′/X′

which is an isomorphism mapping τY/X to τY ′/X′ . Namely, the base change map
in the affine setting is (49.2.3.1), it is an isomorphism by Lemma 49.2.10, and it
maps τY/X to τY ′/X′ by Lemma 49.4.4 part (1).

https://stacks.math.columbia.edu/tag/0FKC
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Proposition 49.13.2.0FKD There exists a unique rule that to every locally quasi-finite
syntomic morphism of locally Noetherian schemes Y → X assigns an isomorphism

cY/X : det(NLY/X) −→ ωY/X

satisfying the following two properties
(1) the section δ(NLY/X) is mapped to τY/X , and
(2) the rule is compatible with restriction to opens and with base change.

Proof. Let us reformulate the statement of the proposition. Consider the category
C whose objects, denoted Y/X, are locally quasi-finite syntomic morphism Y → X
of locally Noetherian schemes and whose morphisms b/a : Y ′/X ′ → Y/X are
commutative diagrams

Y ′

��

b
// Y

��
X ′ a // X

which induce an isomorphism of Y ′ with an open subscheme of X ′ ×X Y . The
proposition means that for every object Y/X of C we have an isomorphism cY/X :
det(NLY/X)→ ωY/X with cY/X(δ(NLY/X)) = τY/X and for every morphism b/a :
Y ′/X ′ → Y/X of C we have b∗cY/X = cY ′/X′ via the identifications b∗ det(NLY/X) =
det(NLY ′/X′) and b∗ωY/X = ωY ′/X′ described above.
Given Y/X in C and y ∈ Y we can find an affine open V ⊂ Y and U ⊂ X with
f(V ) ⊂ U such that there exists some isomorphism

det(NLY/X)|V −→ ωY/X |V
mapping δ(NLY/X)|V to τY/X |V . This follows from picking affine opens as in
Lemma 49.10.1 part (5), the affine local description of δ(NLY/X) in Remark 49.13.1,
and Lemma 49.12.4. If the annihilator of the section τY/X is zero, then these lo-
cal maps are unique and automatically glue. Hence if the annihilator of τY/X
is zero, then there is a unique isomorphism cY/X : det(NLY/X) → ωY/X with
cY/X(δ(NLY/X)) = τY/X . If b/a : Y ′/X ′ → Y/X is a morphism of C and
the annihilator of τY ′/X′ is zero as well, then b∗cY/X is the unique isomorphism
cY ′/X′ : det(NLY ′/X′) → ωY ′/X′ with cY ′/X′(δ(NLY ′/X′)) = τY ′/X′ . This follows
formally from the fact that b∗δ(NLY/X) = δ(NLY ′/X′) and b∗τY/X = τY ′/X′ .
We can summarize the results of the previous paragraph as follows. Let Cnice ⊂ C
denote the full subcategory of Y/X such that the annihilator of τY/X is zero. Then
we have solved the problem on Cnice. For Y/X in Cnice we continue to denote cY/X
the solution we’ve just found.
Consider morphisms

Y1/X1
b1/a1←−−− Y/X b2/a2−−−→ Y2/X2

in C such that Y1/X1 and Y2/X2 are objects of Cnice. Claim. b∗
1cY1/X1 = b∗

2cY2/X2 .
We will first show that the claim implies the proposition and then we will prove
the claim.
Let d, n ≥ 1 and consider the locally quasi-finite syntomic morphism Yn,d → Xn,d

constructed in Example 49.10.5. Then Yn,d is an irreducible regular scheme and the
morphism Yn,d → Xn,d is locally quasi-finite syntomic and étale over a dense open,
see Lemma 49.10.6. Thus τYn,d/Xn,d is nonzero for example by Lemma 49.9.6. Now

https://stacks.math.columbia.edu/tag/0FKD
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a nonzero section of an invertible module over an irreducible regular scheme has
vanishing annihilator. Thus Yn,d/Xn,d is an object of Cnice.
Let Y/X be an arbitrary object of C. Let y ∈ Y . By Lemma 49.10.7 we can find
n, d ≥ 1 and morphisms

Y/X ← V/U
b/a−−→ Yn,d/Xn,d

of C such that V ⊂ Y and U ⊂ X are open. Thus we can pullback the canonical
morphism cYn,d/Xn,d constructed above by b to V . The claim guarantees these
local isomorphisms glue! Thus we get a well defined global isomorphism cY/X :
det(NLY/X) → ωY/X with cY/X(δ(NLY/X)) = τY/X . If b/a : Y ′/X ′ → Y/X is
a morphism of C, then the claim also implies that the similarly constructed map
cY ′/X′ is the pullback by b of the locally constructed map cY/X . Thus it remains
to prove the claim.
In the rest of the proof we prove the claim. We may pick a point y ∈ Y and prove
the maps agree in an open neighbourhood of y. Thus we may replace Y1, Y2 by
open neighbourhoods of the image of y in Y1 and Y2. Thus we may assume there
are morphisms

Yn1,d1/Xn1,d1 ← Y1/X1 and Y2/X2 → Yn2,d2/Xn2,d2

These are morphisms of Cnice for which we know the desired compatibilities. Thus
we may replace Y1/X1 by Yn1,d1/Xn1,d1 and Y2/X2 by Yn2,d2/Xn2,d2 . This reduces
us to the case that Y1, X1, Y2, X2 are of finite type over Z. (The astute reader will
realize that this step wouldn’t have been necessary if we’d defined Cnice to consist
only of those objects Y/X with Y and X of finite type over Z.)
Assume Y1, X1, Y2, X2 are of finite type over Z. After replacing Y,X, Y1, X1, Y2, X2
by suitable open neighbourhoods of the image of y we may assume Y,X, Y1, X1, Y2, X2
are affine. We may write X = limXλ as a cofiltered limit of affine schemes of finite
type over X1 ×X2. For each λ we get

Y1 ×X1 Xλ and Xλ ×X2 Y2

If we take limits we obtain
limY1 ×X1 Xλ = Y1 ×X1 X ⊃ Y ⊂ X ×X2 Y2 = limXλ ×X2 Y2

By Limits, Lemma 32.4.11 we can find a λ and opens V1,λ ⊂ Y1 ×X1 Xλ and
V2,λ ⊂ Xλ ×X2 Y2 whose base change to X recovers Y (on both sides). After
increasing λ we may assume there is an isomorphism V1,λ → V2,λ whose base
change to X is the identity on Y , see Limits, Lemma 32.10.1. Then we have the
commutative diagram

Y/X

��

b1/a1

yy

b2/a2

%%
Y1/X1 V1,λ/Xλ

oo // Y2/X2

Thus it suffices to prove the claim for the lower row of the diagram and we reduce
to the case discussed in the next paragraph.
Assume Y,X, Y1, X1, Y2, X2 are affine of finite type over Z. Write X = Spec(A),
Xi = Spec(Ai). The ring map A1 → A corresponding to X → X1 is of finite
type and hence we may choose a surjection A1[x1, . . . , xn] → A. Similarly, we
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may choose a surjection A2[y1, . . . , ym] → A. Set X ′
1 = Spec(A1[x1, . . . , xn]) and

X ′
2 = Spec(A2[y1, . . . , ym]). Set Y ′

1 = Y1 ×X1 X
′
1 and Y ′

2 = Y2 ×X2 X
′
2. We get the

following diagram
Y1/X1 ← Y ′

1/X
′
1 ← Y/X → Y ′

2/X
′
2 → Y2/X2

Since X ′
1 → X1 and X ′

2 → X2 are flat, the same is true for Y ′
1 → Y1 and Y ′

2 → Y2.
It follows easily that the annihilators of τY ′

1/X
′
1

and τY ′
2/X

′
2

are zero. Hence Y ′
1/X

′
1

and Y ′
2/X

′
2 are in Cnice. Thus the outer morphisms in the displayed diagram are

morphisms of Cnice for which we know the desired compatibilities. Thus it suffices
to prove the claim for Y ′

1/X
′
1 ← Y/X → Y ′

2/X
′
2. This reduces us to the case

discussed in the next paragraph.
Assume Y,X, Y1, X1, Y2, X2 are affine of finite type over Z and X → X1 and X →
X2 are closed immersions. Consider the open embeddings Y1×X1 X ⊃ Y ⊂ X ×X2

Y2. There is an open neighbourhood V ⊂ Y of y which is a standard open of both
Y1 ×X1 X and X ×X2 Y2. This follows from Schemes, Lemma 26.11.5 applied to
the scheme obtained by glueing Y1 ×X1 X and X ×X2 Y2 along Y ; details omitted.
Since X ×X2 Y2 is a closed subscheme of Y2 we can find a standard open V2 ⊂ Y2
such that V2 ×X2 X = V . Similarly, we can find a standard open V1 ⊂ Y1 such
that V1 ×X1 X = V . After replacing Y, Y1, Y2 by V, V1, V2 we reduce to the case
discussed in the next paragraph.
Assume Y,X, Y1, X1, Y2, X2 are affine of finite type over Z and X → X1 and X →
X2 are closed immersions and Y1 ×X1 X = Y = X ×X2 Y2. Write X = Spec(A),
Xi = Spec(Ai), Y = Spec(B), Yi = Spec(Bi). Then we can consider the affine
schemes

X ′ = Spec(A1 ×A A2) = Spec(A′) and Y ′ = Spec(B1 ×B B2) = Spec(B′)
Observe that X ′ = X1⨿X X2 and Y ′ = Y1⨿Y Y2, see More on Morphisms, Lemma
37.14.1. By More on Algebra, Lemma 15.5.1 the rings A′ and B′ are of finite
type over Z. By More on Algebra, Lemma 15.6.4 we have B′ ⊗A A1 = B1 and
B′ ×A A2 = B2. In particular a fibre of Y ′ → X ′ over a point of X ′ = X1 ⨿X X2
is always equal to either a fibre of Y1 → X1 or a fibre of Y2 → X2. By More on
Algebra, Lemma 15.6.8 the ring map A′ → B′ is flat. Thus by Lemma 49.10.1
part (3) we conclude that Y ′/X ′ is an object of C. Consider now the commutative
diagram

Y/X

b1/a1

zz

b2/a2

$$
Y1/X1

$$

Y2/X2

zz
Y ′/X ′

Now we would be done if Y ′/X ′ is an object of Cnice. Namely, then pulling back
cY ′/X′ around the two sides of the square, we would obtain the desired conclusion.
Now, in fact, it is true that Y ′/X ′ is an object of Cnice4. But it is amusing to
note that we don’t even need this. Namely, the arguments above show that, after

4Namely, the structure sheaf OY ′ is a subsheaf of (Y1 → Y ′)∗OY1 × (Y2 → Y ′)∗OY2 .
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possibly shrinking all of the schemes X,Y,X1, Y1, X2, Y2, X
′, Y ′ we can find some

n, d ≥ 1, and extend the diagram like so:

Y/X

b1/a1

yy

b2/a2

%%
Y1/X1

%%

Y2/X2

yy
Y ′/X ′

��
Yn,d/Xn,d

and then we can use the already given argument by pulling back from cYn,d/Xn,d .
This finishes the proof. □

49.14. A generalization of the different

0BWK In this section we generalize Definition 49.9.1 to take into account all cases of
ring maps A→ B where the Dedekind different is defined and 1 ∈ LB/A. First we
explain the condition “A→ B maps nonzerodivisors to nonzerodivisors and induces
a flat map Q(A)→ Q(A)⊗A B”.

Lemma 49.14.1.0BWL Let A→ B be a map of Noetherian rings. Consider the conditions
(1) nonzerodivisors of A map to nonzerodivisors of B,
(2) (1) holds and Q(A)→ Q(A)⊗A B is flat,
(3) A→ Bq is flat for every q ∈ Ass(B),
(4) (3) holds and A→ Bq is flat for every q lying over an element in Ass(A).

Then we have the following implications

(1) (2)ks

��
(3)

KS

(4)ks

If going up holds for A→ B then (2) and (4) are equivalent.

Proof. The horizontal implications in the diagram are trivial. Let S ⊂ A be the
set of nonzerodivisors so that Q(A) = S−1A and Q(A)⊗A B = S−1B. Recall that
S = A \

⋃
p∈Ass(A) p by Algebra, Lemma 10.63.9. Let q ⊂ B be a prime lying over

p ⊂ A.
Assume (2). If q ∈ Ass(B) then q consists of zerodivisors, hence (1) implies the
same is true for p. Hence p corresponds to a prime of S−1A. Hence A → Bq is
flat by our assumption (2). If q lies over an associated prime p of A, then certainly
p ∈ Spec(S−1A) and the same argument works.
Assume (3). Let f ∈ A be a nonzerodivisor. If f were a zerodivisor on B, then f
is contained in an associated prime q of B. Since A → Bq is flat by assumption,
we conclude that p is an associated prime of A by Algebra, Lemma 10.65.3. This
would imply that f is a zerodivisor on A, a contradiction.

https://stacks.math.columbia.edu/tag/0BWL
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Assume (4) and going up for A→ B. We already know (1) holds. If q corresponds
to a prime of S−1B then p is contained in an associated prime p′ of A. By going
up there exists a prime q′ containing q and lying over p. Then A → Bq′ is flat
by (4). Hence A → Bq is flat as a localization. Thus A → S−1B is flat and so is
S−1A→ S−1B, see Algebra, Lemma 10.39.18. □

Remark 49.14.2.0BWM We can generalize Definition 49.9.1. Suppose that f : Y → X is
a quasi-finite morphism of Noetherian schemes with the following properties

(1) the open V ⊂ Y where f is flat contains Ass(OY ) and f−1(Ass(OX)),
(2) the trace element τV/X comes from a section τ ∈ Γ(Y, ωY/X).

Condition (1) implies that V contains the associated points of ωY/X by Lemma
49.2.8. In particular, τ is unique if it exists (Divisors, Lemma 31.2.8). Given τ
we can define the different Df as the annihilator of Coker(τ : OY → ωY/X). This
agrees with the Dedekind different in many cases (Lemma 49.14.3). However, for
non-flat maps between non-normal rings, this generalization no longer measures
ramification of the morphism, see Example 49.14.4.

Lemma 49.14.3.0BWN Assume the Dedekind different is defined for A → B. Set X =
Spec(A) and Y = Spec(B). The generalization of Remark 49.14.2 applies to the
morphism f : Y → X if and only if 1 ∈ LB/A (e.g., if A is normal, see Lemma
49.8.1). In this case DB/A is an ideal of B and we have

Df = D̃B/A

as coherent ideal sheaves on Y .

Proof. As the Dedekind different for A→ B is defined we can apply Lemma 49.14.1
to see that Y → X satisfies condition (1) of Remark 49.14.2. Recall that there is
a canonical isomorphism c : LB/A → ωB/A, see Lemma 49.8.2. Let K = Q(A) and
L = K⊗AB as above. By construction the map c fits into a commutative diagram

LB/A //

c

��

L

��
ωB/A // HomK(L,K)

where the right vertical arrow sends x ∈ L to the map y 7→ TraceL/K(xy) and the
lower horizontal arrow is the base change map (49.2.3.1) for ωB/A. We can factor
the lower horizontal map as

ωB/A = Γ(Y, ωY/X)→ Γ(V, ωV/X)→ HomK(L,K)

Since all associated points of ωV/X map to associated primes of A (Lemma 49.2.8)
we see that the second map is injective. The element τV/X maps to TraceL/K in
HomK(L,K) by the very definition of trace elements (Definition 49.4.1). Thus τ as
in condition (2) of Remark 49.14.2 exists if and only if 1 ∈ LB/A and then τ = c(1).
In this case, by Lemma 49.8.1 we see that DB/A ⊂ B. Finally, the agreement of Df

with DB/A is immediate from the definitions and the fact τ = c(1) seen above. □

Example 49.14.4.0BWP Let k be a field. Let A = k[x, y]/(xy) and B = k[u, v]/(uv)
and let A → B be given by x 7→ un and y 7→ vm for some n,m ∈ N prime to

https://stacks.math.columbia.edu/tag/0BWM
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the characteristic of k. Then Ax+y → Bx+y is (finite) étale hence we are in the
situation where the Dedekind different is defined. A computation shows that

TraceL/K(1) = (nx+my)/(x+ y), TraceL/K(ui) = 0, TraceL/K(vj) = 0
for 1 ≤ i < n and 1 ≤ j < m. We conclude that 1 ∈ LB/A if and only if n = m.
Moreover, a computation shows that if n = m, then LB/A = B and the Dedekind
different is B as well. In other words, we find that the different of Remark 49.14.2
is defined for Spec(B)→ Spec(A) if and only if n = m, and in this case the different
is the unit ideal. Thus we see that in nonflat cases the nonvanishing of the different
does not guarantee the morphism is étale or unramified.

49.15. Comparison with duality theory

0DWM In this section we compare the elementary algebraic constructions above with the
constructions in the chapter on duality theory for schemes.

Lemma 49.15.1.0BUL Let f : Y → X be a quasi-finite separated morphism of Noetherian
schemes. For every pair of affine opens Spec(B) = V ⊂ Y , Spec(A) = U ⊂ X with
f(V ) ⊂ U there is an isomorphism

H0(V, f !OY ) = ωB/A

where f ! is as in Duality for Schemes, Section 48.16. These isomorphisms are
compatible with restriction maps and define a canonical isomorphism H0(f !OX) =
ωY/X with ωY/X as in Remark 49.2.11. Similarly, if f : Y → X is a quasi-finite mor-
phism of schemes of finite type over a Noetherian base S endowed with a dualizing
complex ω•

S , then H0(f !
newOX) = ωY/X .

Proof. By Zariski’s main theorem we can choose a factorization f = f ′ ◦ j where
j : Y → Y ′ is an open immersion and f ′ : Y ′ → X is a finite morphism, see More on
Morphisms, Lemma 37.43.3. By our construction in Duality for Schemes, Lemma
48.16.2 we have f ! = j∗ ◦ a′ where a′ : DQCoh(OX) → DQCoh(OY ′) is the right
adjoint to Rf ′

∗ of Duality for Schemes, Lemma 48.3.1. By Duality for Schemes,
Lemma 48.11.4 we see that Φ(a′(OX)) = RHom(f ′

∗OY ′ ,OX) in D+
QCoh(f ′

∗OY ′). In
particular a′(OX) has vanishing cohomology sheaves in degrees < 0. The zeroth
cohomology sheaf is determined by the isomorphism

f ′
∗H

0(a′(OX)) = HomOX
(f ′

∗OY ′ ,OX)
as f ′

∗OY ′ -modules via the equivalence of Morphisms, Lemma 29.11.6. Writing
(f ′)−1U = V ′ = Spec(B′), we obtain

H0(V ′, a′(OX)) = HomA(B′, A).
As the zeroth cohomology sheaf of a′(OX) is a quasi-coherent module we find that
the restriction to V is given by ωB/A = HomA(B′, A)⊗B′ B as desired.
The statement about restriction maps signifies that the restriction mappings of
the quasi-coherent OY ′ -module H0(a′(OX)) for opens in Y ′ agrees with the maps
defined in Lemma 49.2.3 for the modules ωB/A via the isomorphisms given above.
This is clear.
Let f : Y → X be a quasi-finite morphism of schemes of finite type over a Noe-
therian base S endowed with a dualizing complex ω•

S . Consider opens V ⊂ Y and
U ⊂ X with f(V ) ⊂ U and V and U separated over S. Denote f |V : V → U the
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restriction of f . By the discussion above and Duality for Schemes, Lemma 48.20.9
there are canonical isomorphisms

H0(f !
newOX)|V = H0((f |V )!OU ) = ωV/U = ωY/X |V

We omit the verification that these isomorphisms glue to a global isomorphism
H0(f !

newOX)→ ωY/X . □

Lemma 49.15.2.0BVI Let f : Y → X be a finite flat morphism of Noetherian schemes.
The map

Tracef : f∗OY −→ OX
of Section 49.3 corresponds to a map OY → f !OX (see proof). Denote τY/X ∈
H0(Y, f !OX) the image of 1. Via the isomorphism H0(f !OX) = ωX/Y of Lemma
49.15.1 this agrees with the construction in Remark 49.4.7.

Proof. The functor f ! is defined in Duality for Schemes, Section 48.16. Since f is
finite (and hence proper), we see that f ! is given by the right adjoint to pushforward
for f . In Duality for Schemes, Section 48.11 we have made this adjoint explicit. In
particular, the object f !OX consists of a single cohomology sheaf placed in degree
0 and for this sheaf we have

f∗f
!OX = HomOX

(f∗OY ,OX)

To see this we use also that f∗OY is finite locally free as f is a finite flat morphism
of Noetherian schemes and hence all higher Ext sheaves are zero. Some details
omitted. Thus finally

Tracef ∈ HomOX
(f∗OY ,OX) = Γ(X, f∗f

!OX) = Γ(Y, f !OX)

On the other hand, we have f !OX = ωY/X by the identification of Lemma 49.15.1.
Thus we now have two elements, namely Tracef and τY/X from Remark 49.4.7 in

Γ(Y, f !OX) = Γ(Y, ωY/X)

and the lemma says these elements are the same.

Let U = Spec(A) ⊂ X be an affine open with inverse image V = Spec(B) ⊂ Y .
Since f is finite, we see that A→ B is finite and hence the ωY/X(V ) = HomA(B,A)
by construction and this isomorphism agrees with the identification of f∗f

!OY with
HomOX

(f∗OY ,OX) discussed above. Hence the agreement of Tracef and τY/X
follows from the fact that τB/A = TraceB/A by Lemma 49.4.3. □

49.16. Quasi-finite Gorenstein morphisms

0C14 This section discusses quasi-finite Gorenstein morphisms.

Lemma 49.16.1.0C16 Let f : Y → X be a quasi-finite morphism of Noetherian schemes.
The following are equivalent

(1) f is Gorenstein,
(2) f is flat and the fibres of f are Gorenstein,
(3) f is flat and ωY/X is invertible (Remark 49.2.11),
(4) for every y ∈ Y there are affine opens y ∈ V = Spec(B) ⊂ Y , U =

Spec(A) ⊂ X with f(V ) ⊂ U such that A → B is flat and ωB/A is an
invertible B-module.
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Proof. Parts (1) and (2) are equivalent by definition. Parts (3) and (4) are equiv-
alent by the construction of ωY/X in Remark 49.2.11. Thus we have to show that
(1)-(2) is equivalent to (3)-(4).
First proof. Working affine locally we can assume f is a separated morphism and
apply Lemma 49.15.1 to see that ωY/X is the zeroth cohomology sheaf of f !OX .
Under both assumptions f is flat and quasi-finite, hence f !OX is isomorphic to
ωY/X [0], see Duality for Schemes, Lemma 48.21.6. Hence the equivalence follows
from Duality for Schemes, Lemma 48.25.10.
Second proof. By Lemma 49.10.2, we see that it suffices to prove the equivalence
of (2) and (3) when X is the spectrum of a field k. Then Y = Spec(B) where B
is a finite k-algebra. In this case ωB/A = ωB/k = Homk(B, k) placed in degree 0
is a dualizing complex for B, see Dualizing Complexes, Lemma 47.15.8. Thus the
equivalence follows from Dualizing Complexes, Lemma 47.21.4. □

Remark 49.16.2.0C17 Let f : Y → X be a quasi-finite Gorenstein morphism of Noether-
ian schemes. Let Df ⊂ OY be the different and let R ⊂ Y be the closed subscheme
cut out by Df . Then we have

(1) Df is a locally principal ideal,
(2) R is a locally principal closed subscheme,
(3) Df is affine locally the same as the Noether different,
(4) formation of R commutes with base change,
(5) if f is finite, then the norm of R is the discriminant of f , and
(6) if f is étale in the associated points of Y , then R is an effective Cartier

divisor and ωY/X = OY (R).
This follows from Lemmas 49.9.3, 49.9.4, and 49.9.7.

Remark 49.16.3.0C18 Let S be a Noetherian scheme endowed with a dualizing complex
ω•
S . Let f : Y → X be a quasi-finite Gorenstein morphism of compactifyable

schemes over S. Assume moreover Y and X Cohen-Macaulay and f étale at the
generic points of Y . Then we can combine Duality for Schemes, Remark 48.23.4
and Remark 49.16.2 to see that we have a canonical isomorphism

ωY = f∗ωX ⊗OY
ωY/X = f∗ωX ⊗OY

OY (R)
of OY -modules. If further f is finite, then the isomorphism OY (R) = ωY/X comes
from the global section τY/X ∈ H0(Y, ωY/X) which corresponds via duality to the
map Tracef : f∗OY → OX , see Lemma 49.15.2.
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CHAPTER 50

de Rham Cohomology

0FK4 50.1. Introduction

0FK5 In this chapter we start with a discussion of the de Rham complex of a morphism
of schemes and we end with a proof that de Rham cohomology defines a Weil
cohomology theory when the base field has characteristic zero.

50.2. The de Rham complex

07HX Let p : X → S be a morphism of schemes. There is a complex
Ω•
X/S = OX/S → Ω1

X/S → Ω2
X/S → . . .

of p−1OS-modules with ΩiX/S = ∧i(ΩX/S) placed in degree i and differential deter-
mined by the rule d(g0dg1 ∧ . . .∧ dgp) = dg0 ∧ dg1 ∧ . . .∧ dgp on local sections. See
Modules, Section 17.30.
Given a commutative diagram

X ′
f
//

��

X

��
S′ // S

of schemes, there are canonical maps of complexes f−1Ω•
X/S → Ω•

X′/S′ and Ω•
X/S →

f∗Ω•
X′/S′ . See Modules, Section 17.30. Linearizing, for every p we obtain a linear

map f∗ΩpX/S → ΩpX′/S′ .
In particular, if f : Y → X be a morphism of schemes over a base scheme S, then
there is a map of complexes

Ω•
X/S −→ f∗Ω•

Y/S

Linearizing, we see that for every p ≥ 0 we obtain a canonical map
ΩpX/S ⊗OX

f∗OY −→ f∗ΩpY/S
Lemma 50.2.1.0FL5 Let

X ′
f
//

��

X

��
S′ // S

be a cartesian diagram of schemes. Then the maps discussed above induce isomor-
phisms f∗ΩpX/S → ΩpX′/S′ .

Proof. Combine Morphisms, Lemma 29.32.10 with the fact that formation of exte-
rior power commutes with base change. □

4164
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Lemma 50.2.2.0FLV Consider a commutative diagram of schemes

X ′
f
//

��

X

��
S′ // S

If X ′ → X and S′ → S are étale, then the maps discussed above induce isomor-
phisms f∗ΩpX/S → ΩpX′/S′ .

Proof. We have ΩS′/S = 0 and ΩX′/X = 0, see for example Morphisms, Lemma
29.36.15. Then by the short exact sequences of Morphisms, Lemmas 29.32.9 and
29.34.16 we see that ΩX′/S′ = ΩX′/S = f∗ΩX/S . Taking exterior powers we con-
clude. □

50.3. de Rham cohomology

0FL6 Let p : X → S be a morphism of schemes. We define the de Rham cohomology of
X over S to be the cohomology groups

Hi
dR(X/S) = Hi(RΓ(X,Ω•

X/S))

Since Ω•
X/S is a complex of p−1OS-modules, these cohomology groups are naturally

modules over H0(S,OS).
Given a commutative diagram

X ′
f
//

��

X

��
S′ // S

of schemes, using the canonical maps of Section 50.2 we obtain pullback maps
f∗ : RΓ(X,Ω•

X/S) −→ RΓ(X ′,Ω•
X′/S′)

and
f∗ : Hi

dR(X/S) −→ Hi
dR(X ′/S′)

These pullbacks satisfy an obvious composition law. In particular, if we work over
a fixed base scheme S, then de Rham cohomology is a contravariant functor on the
category of schemes over S.

Lemma 50.3.1.0FLW Let X → S be a morphism of affine schemes given by the ring map
R→ A. Then RΓ(X,Ω•

X/S) = Ω•
A/R in D(R) and Hi

dR(X/S) = Hi(Ω•
A/R).

Proof. This follows from Cohomology of Schemes, Lemma 30.2.2 and Leray’s acyclic-
ity lemma (Derived Categories, Lemma 13.16.7). □

Lemma 50.3.2.0FLX Let p : X → S be a morphism of schemes. If p is quasi-compact
and quasi-separated, then Rp∗Ω•

X/S is an object of DQCoh(OS).

Proof. There is a spectral sequence with first page Ea,b1 = Rbp∗ΩaX/S converging
to the cohomology of Rp∗Ω•

X/S (see Derived Categories, Lemma 13.21.3). Hence
by Homology, Lemma 12.25.3 it suffices to show that Rbp∗ΩaX/S is quasi-coherent.
This follows from Cohomology of Schemes, Lemma 30.4.5. □
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Lemma 50.3.3.0FLY Let p : X → S be a proper morphism of schemes with S locally
Noetherian. Then Rp∗Ω•

X/S is an object of DCoh(OS).

Proof. In this case by Morphisms, Lemma 29.32.12 the modules ΩiX/S are coherent.
Hence we can use exactly the same argument as in the proof of Lemma 50.3.2 using
Cohomology of Schemes, Proposition 30.19.1. □

Lemma 50.3.4.0FLZ Let A be a Noetherian ring. Let X be a proper scheme over
S = Spec(A). Then Hi

dR(X/S) is a finite A-module for all i.

Proof. This is a special case of Lemma 50.3.3. □

Lemma 50.3.5.0FM0 Let f : X → S be a proper smooth morphism of schemes. Then
Rf∗ΩpX/S , p ≥ 0 and Rf∗Ω•

X/S are perfect objects of D(OS) whose formation
commutes with arbitrary change of base.

Proof. Since f is smooth the modules ΩpX/S are finite locally free OX -modules, see
Morphisms, Lemma 29.34.12. Their formation commutes with arbitrary change
of base by Lemma 50.2.1. Hence Rf∗ΩpX/S is a perfect object of D(OS) whose
formation commutes with abitrary base change, see Derived Categories of Schemes,
Lemma 36.30.4. This proves the first assertion of the lemma.
To prove that Rf∗Ω•

X/S is perfect on S we may work locally on S. Thus we may
assume S is quasi-compact. This means we may assume that ΩnX/S is zero for n
large enough. For every p ≥ 0 we claim that Rf∗σ≥pΩ•

X/S is a perfect object of
D(OS) whose formation commutes with arbitrary change of base. By the above
we see that this is true for p ≫ 0. Suppose the claim holds for p and consider the
distinguished triangle

σ≥pΩ•
X/S → σ≥p−1Ω•

X/S → Ωp−1
X/S [−(p− 1)]→ (σ≥pΩ•

X/S)[1]

in D(f−1OS). Applying the exact functor Rf∗ we obtain a distinguished triangle
in D(OS). Since we have the 2-out-of-3 property for being perfect (Cohomology,
Lemma 20.49.7) we conclude Rf∗σ≥p−1Ω•

X/S is a perfect object of D(OS). Similarly
for the commutation with arbitrary base change. □

50.4. Cup product

0FM1 Consider the maps ΩpX/S × ΩqX/S → Ωp+q
X/S given by (ω, η) 7−→ ω ∧ η. Using the

formula for d given in Section 50.2 and the Leibniz rule for d : OX → ΩX/S we
see that d(ω ∧ η) = d(ω) ∧ η + (−1)deg(ω)ω ∧ d(η). This means that ∧ defines a
morphism
(50.4.0.1)0FM2 ∧ : Tot(Ω•

X/S ⊗p−1OS
Ω•
X/S) −→ Ω•

X/S

of complexes of p−1OS-modules.
Combining the cup product of Cohomology, Section 20.31 with (50.4.0.1) we find a
H0(S,OS)-bilinear cup product map

∪ : Hi
dR(X/S)×Hj

dR(X/S) −→ Hi+j
dR (X/S)

For example, if ω ∈ Γ(X,ΩiX/S) and η ∈ Γ(X,ΩjX/S) are closed, then the cup
product of the de Rham cohomology classes of ω and η is the de Rham cohomology
class of ω ∧ η, see discussion in Cohomology, Section 20.31.
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Given a commutative diagram
X ′

f
//

��

X

��
S′ // S

of schemes, the pullback maps f∗ : RΓ(X,Ω•
X/S) → RΓ(X ′,Ω•

X′/S′) and f∗ :
Hi
dR(X/S) −→ Hi

dR(X ′/S′) are compatible with the cup product defined above.
Lemma 50.4.1.0FM3 Let p : X → S be a morphism of schemes. The cup product on
H∗
dR(X/S) is associative and graded commutative.

Proof. This follows from Cohomology, Lemmas 20.31.5 and 20.31.6 and the fact
that ∧ is associative and graded commutative. □

Remark 50.4.2.0FU6 Let p : X → S be a morphism of schemes. Then we can think
of Ω•

X/S as a sheaf of differential graded p−1OS-algebras, see Differential Graded
Sheaves, Definition 24.12.1. In particular, the discussion in Differential Graded
Sheaves, Section 24.32 applies. For example, this means that for any commutative
diagram

X

p

��

f
// Y

q

��
S

h // T
of schemes there is a canonical relative cup product

µ : Rf∗Ω•
X/S ⊗

L
q−1OT

Rf∗Ω•
X/S −→ Rf∗Ω•

X/S

in D(Y, q−1OT ) which is associative and which on cohomology reproduces the cup
product discussed above.
Remark 50.4.3.0FU7 Let f : X → S be a morphism of schemes. Let ξ ∈ Hn

dR(X/S).
According to the discussion Differential Graded Sheaves, Section 24.32 there exists
a canonical morphism

ξ′ : Ω•
X/S → Ω•

X/S [n]
inD(f−1OS) uniquely characterized by (1) and (2) of the following list of properties:

(1) ξ′ can be lifted to a map in the derived category of right differential graded
Ω•
X/S-modules, and

(2) ξ′(1) = ξ in H0(X,Ω•
X/S [n]) = Hn

dR(X/S),
(3) the map ξ′ sends η ∈ Hm

dR(X/S) to ξ ∪ η in Hn+m
dR (X/S),

(4) the construction of ξ′ commutes with restrictions to opens: for U ⊂ X
open the restriction ξ′|U is the map corresponding to the image ξ|U ∈
Hn
dR(U/S),

(5) for any diagram as in Remark 50.4.2 we obtain a commutative diagram

Rf∗Ω•
X/S ⊗

L
q−1OT

Rf∗Ω•
X/S

ξ′⊗id
��

µ
// Rf∗Ω•

X/S

ξ′

��
Rf∗Ω•

X/S [n]⊗L
q−1OT

Rf∗Ω•
X/S

µ // Rf∗Ω•
X/S [n]

in D(Y, q−1OT ).
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50.5. Hodge cohomology

0FM4 Let p : X → S be a morphism of schemes. We define the Hodge cohomology of X
over S to be the cohomology groups

Hn
Hodge(X/S) =

⊕
n=p+q

Hq(X,ΩpX/S)

viewed as a graded H0(X,OX)-module. The wedge product of forms combined
with the cup product of Cohomology, Section 20.31 defines a H0(X,OX)-bilinear
cup product

∪ : Hi
Hodge(X/S)×Hj

Hodge(X/S) −→ Hi+j
Hodge(X/S)

Of course if ξ ∈ Hq(X,ΩpX/S) and ξ′ ∈ Hq′(X,Ωp
′

X/S) then ξ∪ξ′ ∈ Hq+q′(X,Ωp+p′

X/S ).

Lemma 50.5.1.0FM5 Let p : X → S be a morphism of schemes. The cup product on
H∗
Hodge(X/S) is associative and graded commutative.

Proof. The proof is identical to the proof of Lemma 50.4.1. □

Given a commutative diagram

X ′
f
//

��

X

��
S′ // S

of schemes, there are pullback maps f∗ : Hi
Hodge(X/S) −→ Hi

Hodge(X ′/S′) com-
patible with gradings and with the cup product defined above.

50.6. Two spectral sequences

0FM6 Let p : X → S be a morphism of schemes. Since the category of p−1OS-modules
on X has enough injectives there exist a Cartan-Eilenberg resolution for Ω•

X/S .
See Derived Categories, Lemma 13.21.2. Hence we can apply Derived Categories,
Lemma 13.21.3 to get two spectral sequences both converging to the de Rham
cohomology of X over S.
The first is customarily called the Hodge-to-de Rham spectral sequence. The first
page of this spectral sequence has

Ep,q1 = Hq(X,ΩpX/S)

which are the Hodge cohomology groups of X/S (whence the name). The differ-
ential d1 on this page is given by the maps dp,q1 : Hq(X,ΩpX/S) → Hq(X.Ωp+1

X/S)
induced by the differential d : ΩpX/S → Ωp+1

X/S . Here is a picture

H2(X,OX) //

++

**

H2(X,Ω1
X/S) //

++

H2(X,Ω2
X/S) // H2(X,Ω3

X/S)

H1(X,OX) //

++

H1(X,Ω1
X/S) //

++

H1(X,Ω2
X/S) // H1(X,Ω3

X/S)

H0(X,OX) // H0(X,Ω1
X/S) // H0(X,Ω2

X/S) // H0(X,Ω3
X/S)
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where we have drawn striped arrows to indicate the source and target of the differ-
entials on the E2 page and a dotted arrow for a differential on the E3 page. Looking
in degree 0 we conclude that

H0
dR(X/S) = Ker(d : H0(X,OX)→ H0(X,Ω1

X/S))
Of course, this is also immediately clear from the fact that the de Rham complex
starts in degree 0 with OX → Ω1

X/S .
The second spectral sequence is usually called the conjugate spectral sequence. The
second page of this spectral sequence has

Ep,q2 = Hp(X,Hq(Ω•
X/S)) = Hp(X,Hq)

where Hq = Hq(Ω•
X/S) is the qth cohomology sheaf of the de Rham complex of

X/S. The differentials on this page are given by Ep,q2 → Ep+2,q−1
2 . Here is a

picture

H0(X,H2)

++

))

H1(X,H2)

++

H2(X,H2) H3(X,H2)

H0(X,H1)

++

H1(X,H1)

++

H2(X,H1) H3(X,H1)

H0(X,H0) H1(X,H0) H2(X,H0) H3(X,H0)
Looking in degree 0 we conclude that

H0
dR(X/S) = H0(X,H0)

which is obvious if you think about it. In degree 1 we get an exact sequence
0→ H1(X,H0)→ H1

dR(X/S)→ H0(X,H1)→ H2(X,H0)→ H2
dR(X/S)

It turns out that if X → S is smooth and S lives in characteristic p, then the
sheaves Hq are computable (in terms of a certain sheaves of differentials) and the
conjugate spectral sequence is a valuable tool (insert future reference here).

50.7. The Hodge filtration

0FM7 Let X → S be a morphism of schemes. The Hodge filtration on Hn
dR(X/S) is the fil-

tration induced by the Hodge-to-de Rham spectral sequence (Homology, Definition
12.24.5). To avoid misunderstanding, we explicitly define it as follows.

Definition 50.7.1.0FM8 Let X → S be a morphism of schemes. The Hodge filtration on
Hn
dR(X/S) is the filtration with terms

F pHn
dR(X/S) = Im

(
Hn(X,σ≥pΩ•

X/S) −→ Hn
dR(X/S)

)
where σ≥pΩ•

X/S is as in Homology, Section 12.15.

Of course σ≥pΩ•
X/S is a subcomplex of the relative de Rham complex and we obtain

a filtration
Ω•
X/S = σ≥0Ω•

X/S ⊃ σ≥1Ω•
X/S ⊃ σ≥2Ω•

X/S ⊃ σ≥3Ω•
X/S ⊃ . . .

of the relative de Rham complex with grp(Ω•
X/S) = ΩpX/S [−p]. The spectral se-

quence constructed in Cohomology, Lemma 20.29.1 for Ω•
X/S viewed as a filtered
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complex of sheaves is the same as the Hodge-to-de Rham spectral sequence con-
structed in Section 50.6 by Cohomology, Example 20.29.4. Further the wedge prod-
uct (50.4.0.1) sends Tot(σ≥iΩ•

X/S⊗p−1OS
σ≥jΩ•

X/S) into σ≥i+jΩ•
X/S . Hence we get

commutative diagrams

Hn(X,σ≥jΩ•
X/S))×Hm(X,σ≥jΩ•

X/S)) //

��

Hn+m(X,σ≥i+jΩ•
X/S))

��
Hn
dR(X/S)×Hm

dR(X/S) ∪ // Hn+m
dR (X/S)

In particular we find that
F iHn

dR(X/S) ∪ F jHm
dR(X/S) ⊂ F i+jHn+m

dR (X/S)

50.8. Künneth formula

0FM9 An important feature of de Rham cohomology is that there is a Künneth formula.
Let a : X → S and b : Y → S be morphisms of schemes with the same target.
Let p : X ×S Y → X and q : X ×S Y → Y be the projection morphisms and
f = a ◦ p = b ◦ q. Here is a picture

X ×S Y

p
{{

q
##

f

��

X

a
$$

Y

b
zz

S

In this section, given an OX -module F and an OY -module G let us set
F ⊠ G = p∗F ⊗OX×SY

q∗G

The bifunctor (F ,G) 7→ F ⊠ G on quasi-coherent modules extends to a bifunctor
on quasi-coherent modules and differential operators of finite over over S, see Mor-
phisms, Remark 29.33.3. Since the differentials of the de Rham complexes Ω•

X/S

and Ω•
Y/S are differential operators of order 1 over S by Modules, Lemma 17.30.5.

Thus it makes sense to consider the complex
Tot(Ω•

X/S ⊠ Ω•
Y/S)

Please see the discussion in Derived Categories of Schemes, Section 36.24.

Lemma 50.8.1.0FMA In the situation above there is a canonical isomorphism
Tot(Ω•

X/S ⊠ Ω•
Y/S) −→ Ω•

X×SY/S

of complexes of f−1OS-modules.

Proof. We know that ΩX×SY/S = p∗ΩX/S⊕q∗ΩY/S by Morphisms, Lemma 29.32.11.
Taking exterior powers we obtain

ΩnX×SY/S =
⊕

i+j=n
p∗ΩiX/S ⊗OX×SY

q∗ΩjY/S =
⊕

i+j=n
ΩiX/S ⊠ ΩjY/S

by elementary properties of exterior powers. These identifications determine iso-
morphisms between the terms of the complexes on the left and the right of the
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arrow in the lemma. We omit the verification that these maps are compatible with
differentials. □

Set A = Γ(S,OS). Combining the result of Lemma 50.8.1 with the map Derived
Categories of Schemes, Equation (36.24.0.2) we obtain a cup product

RΓ(X,Ω•
X/S)⊗L

A RΓ(Y,Ω•
Y/S) −→ RΓ(X ×S Y,Ω•

X×SY/S)
On the level of cohomology, using the discussion in More on Algebra, Section 15.63,
we obtain a canonical map

Hi
dR(X/S)⊗A Hj

dR(Y/S) −→ Hi+j
dR (X ×S Y/S), (ξ, ζ) 7−→ p∗ξ ∪ q∗ζ

We note that the construction above indeed proceeds by first pulling back and then
taking the cup product.

Lemma 50.8.2.0FMB Assume X and Y are smooth, quasi-compact, with affine diagonal
over S = Spec(A). Then the map

RΓ(X,Ω•
X/S)⊗L

A RΓ(Y,Ω•
Y/S) −→ RΓ(X ×S Y,Ω•

X×SY/S)

is an isomorphism in D(A).

Proof. By Morphisms, Lemma 29.34.12 the sheaves ΩnX/S and ΩmY/S are finite locally
free OX and OY -modules. On the other hand, X and Y are flat over S (Morphisms,
Lemma 29.34.9) and hence we find that ΩnX/S and ΩmY/S are flat over S. Also,
observe that Ω•

X/S is a locally bounded. Thus the result by Lemma 50.8.1 and
Derived Categories of Schemes, Lemma 36.24.1. □

There is a relative version of the cup product, namely a map
Ra∗Ω•

X/S ⊗
L
OS

Rb∗Ω•
Y/S −→ Rf∗Ω•

X×SY/S

in D(OS). The construction combines Lemma 50.8.1 with the map Derived Cate-
gories of Schemes, Equation (36.24.0.1). The construction shows that this map is
given by the diagram

Ra∗Ω•
X/S ⊗

L
OS

Rb∗Ω•
Y/S

units of adjunction
��

Rf∗(p−1Ω•
X/S)⊗L

OS
Rf∗(q−1Ω•

Y/S) //

relative cup product
��

Rf∗(Ω•
X×SY/S)⊗L

OS
Rf∗(Ω•

X×SY/S)

relative cup product
��

Rf∗(p−1Ω•
X/S ⊗

L
f−1OS

q−1Ω•
Y/S)

from derived to usual
��

// Rf∗(Ω•
X×SY/S ⊗

L
f−1OS

Ω•
X×SY/S)

from derived to usual
��

Rf∗Tot(p−1Ω•
X/S ⊗f−1OS

q−1Ω•
Y/S) //

canonical map
��

Rf∗Tot(Ω•
X×SY/S ⊗f−1OS

Ω•
X×SY/S)

η⊗ω 7→η∧ω

��
Rf∗Tot(Ω•

X/S ⊠ Ω•
Y/S) Rf∗Ω•

X×SY/S

Here the first arrow uses the units id→ Rp∗p
−1 and id→ Rq∗q

−1 of adjunction as
well as the identifications Rf∗p

−1 = Ra∗Rp∗p
−1 and Rf∗q

−1 = Rb∗Rq∗q
−1. The
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second arrow is the relative cup product of Cohomology, Remark 20.28.7. The third
arrow is the map sending a derived tensor product of complexes to the totalization
of the tensor product of complexes. The final equality is Lemma 50.8.1. This
construction recovers on global section the construction given earlier.

Lemma 50.8.3.0FMC Assume X → S and Y → S are smooth and quasi-compact and
the morphisms X → X ×S X and Y → Y ×S Y are affine. Then the relative cup
product

Ra∗Ω•
X/S ⊗

L
OS

Rb∗Ω•
Y/S −→ Rf∗Ω•

X×SY/S

is an isomorphism in D(OS).

Proof. Immediate consequence of Lemma 50.8.2. □

50.9. First Chern class in de Rham cohomology

0FLE Let X → S be a morphism of schemes. There is a map of complexes

d log : O∗
X [−1] −→ Ω•

X/S

which sends the section g ∈ O∗
X(U) to the section d log(g) = g−1dg of Ω1

X/S(U).
Thus we can consider the map

Pic(X) = H1(X,O∗
X) = H2(X,O∗

X [−1]) −→ H2
dR(X/S)

where the first equality is Cohomology, Lemma 20.6.1. The image of the isomor-
phism class of the invertible module L is denoted cdR1 (L) ∈ H2

dR(X/S).

We can also use the map d log : O∗
X → Ω1

X/S to define a Chern class in Hodge
cohomology

cHodge1 : Pic(X) −→ H1(X,Ω1
X/S) ⊂ H2

Hodge(X/S)

These constructions are compatible with pullbacks.

Lemma 50.9.1.0FMD Given a commutative diagram

X ′
f
//

��

X

��
S′ // S

of schemes the diagrams

Pic(X ′)

cdR1
��

Pic(X)

cdR1
��

f∗
oo

H2
dR(X ′/S′) H2

dR(X/S)f∗
oo

Pic(X ′)

cHodge1
��

Pic(X)

cHodge1
��

f∗
oo

H1(X ′,Ω1
X′/S′) H1(X,Ω1

X/S)f∗
oo

commute.

Proof. Omitted. □

Let us “compute” the element cdR1 (L) in Čech cohomology (with sign rules for Čech
differentials as in Cohomology, Section 20.25). Namely, choose an open covering
U : X =

⋃
i∈I Ui such that we have a trivializing section si of L|Ui for all i.
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On the overlaps Ui0i1 = Ui0 ∩ Ui1 we have an invertible function fi0i1 such that
fi0i1 = si1 |Ui0i1 si0 |

−1
Ui0i1

1. Of course we have

fi1i2 |Ui0i1i2 f
−1
i0i2
|Ui0i1i2 fi0i1 |Ui0i1i2 = 1

The cohomology class of L in H1(X,O∗
X) is the image of the Čech cohomology class

of the cocycle {fi0i1} in Č•(U ,O∗
X). Therefore we see that cdR1 (L) is the image of

the cohomology class associated to the Čech cocycle {αi0...ip} in Tot(Č•(U ,Ω•
X/S))

of degree 2 given by
(1) αi0 = 0 in Ω2

X/S(Ui0),
(2) αi0i1 = f−1

i0i1
dfi0i1 in Ω1

X/S(Ui0i1), and
(3) αi0i1i2 = 0 in OX/S(Ui0i1i2).

Suppose we have invertible modules Lk, k = 1, . . . , a each trivialized over Ui for all
i ∈ I giving rise to cocycles fk,i0i1 and αk = {αk,i0...ip} as above. Using the rule in
Cohomology, Section 20.25 we can compute

β = α1 ∪ α2 ∪ . . . ∪ αa

to be given by the cocycle β = {βi0...ip} described as follows
(1) βi0...ip = 0 in Ω2a−p

X/S (Ui0...ip) unless p = a, and
(2) βi0...ia = (−1)a(a−1)/2α1,i0i1 ∧ α2,i1i2 ∧ . . . ∧ αa,ia−1ia in ΩaX/S(Ui0...ia).

Thus this is a cocycle representing cdR1 (L1) ∪ . . . ∪ cdR1 (La) Of course, the same
computation shows that the cocycle {βi0...ia} in Ča(U ,ΩaX/S)) represents the coho-
mology class cHodge1 (L1) ∪ . . . ∪ cHodge1 (La)

Remark 50.9.2.0FME Here is a reformulation of the calculations above in more abstract
terms. Let p : X → S be a morphism of schemes. Let L be an invertible OX -
module. If we view d log as a map

O∗
X [−1]→ σ≥1Ω•

X/S

then using Pic(X) = H1(X,O∗
X) as above we find a cohomology class

γ1(L) ∈ H2(X,σ≥1Ω•
X/S)

The image of γ1(L) under the map σ≥1Ω•
X/S → Ω•

X/S recovers cdR1 (L). In particular
we see that cdR1 (L) ∈ F 1H2

dR(X/S), see Section 50.7. The image of γ1(L) under
the map σ≥1Ω•

X/S → Ω1
X/S [−1] recovers cHodge1 (L). Taking the cup product (see

Section 50.7) we obtain

ξ = γ1(L1) ∪ . . . ∪ γ1(La) ∈ H2a(X,σ≥aΩ•
X/S)

The commutative diagrams in Section 50.7 show that ξ is mapped to cdR1 (L1)∪ . . .∪
cdR1 (La) in H2a

dR(X/S) by the map σ≥aΩ•
X/S → Ω•

X/S . Also, it follows cdR1 (L1)∪. . .∪
cdR1 (La) is contained in F aH2a

dR(X/S). Similarly, the map σ≥aΩ•
X/S → ΩaX/S [−a]

sends ξ to cHodge1 (L1) ∪ . . . ∪ cHodge1 (La) in Ha(X,ΩaX/S).

1The Čech differential of a 0-cycle {ai0} has ai1 − ai0 over Ui0i1 .
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Remark 50.9.3.0FMF Let p : X → S be a morphism of schemes. For i > 0 denote
ΩiX/S,log ⊂ ΩiX/S the abelian subsheaf generated by local sections of the form

d log(u1) ∧ . . . ∧ d log(ui)
where u1, . . . , un are invertible local sections of OX . For i = 0 the subsheaf
Ω0
X/S,log ⊂ OX is the image of Z → OX . For every i ≥ 0 we have a map of

complexes
ΩiX/S,log[−i] −→ Ω•

X/S

because the derivative of a logarithmic form is zero. Moreover, wedging logarithmic
forms gives another, hence we find bilinear maps

∧ : ΩiX/S,log × ΩjX/S,log −→ Ωi+jX/S,log

compatible with (50.4.0.1) and the maps above. Let L be an invertible OX -module.
Using the map of abelian sheaves d log : O∗

X → Ω1
X/S,log and the identification

Pic(X) = H1(X,O∗
X) we find a canonical cohomology class

γ̃1(L) ∈ H1(X,Ω1
X/S,log)

These classes have the following properties
(1) the image of γ̃1(L) under the canonical map Ω1

X/S,log[−1] → σ≥1Ω•
X/S

sends γ̃1(L) to the class γ1(L) ∈ H2(X,σ≥1Ω•
X/S) of Remark 50.9.2,

(2) the image of γ̃1(L) under the canonical map Ω1
X/S,log[−1] → Ω•

X/S sends
γ̃1(L) to cdR1 (L) in H2

dR(X/S),
(3) the image of γ̃1(L) under the canonical map Ω1

X/S,log → Ω1
X/S sends γ̃1(L)

to cHodge1 (L) in H1(X,Ω1
X/S),

(4) the construction of these classes is compatible with pullbacks,
(5) add more here.

50.10. de Rham cohomology of a line bundle

0FU8 A line bundle is a special case of a vector bundle, which in turn is a cone endowed
with some extra structure. To intelligently talk about the de Rham complex of
these, it makes sense to discuss the de Rham complex of a graded ring.

Remark 50.10.1 (de Rham complex of a graded ring).0FU9 Let G be an abelian monoid
written additively with neutral element 0. Let R → A be a ring map and assume
A comes with a grading A =

⊕
g∈GAg by R-modules such that R maps into A0

and Ag ·Ag′ ⊂ Ag+g′ . Then the module of differentials comes with a grading

ΩA/R =
⊕

g∈G
ΩA/R,g

where ΩA/R,g is the R-submodule of ΩA/R generated by a0da1 with ai ∈ Agi such
that g = g0 + g1. Similarly, we obtain

ΩpA/R =
⊕

g∈G
ΩpA/R,g

where ΩpA/R,g is the R-submodule of ΩpA/R generated by a0da1 ∧ . . . ∧ dap with
ai ∈ Agi such that g = g0 + g1 + . . . + gp. Of course the differentials preserve
the grading and the wedge product is compatible with the gradings in the obvious
manner.
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Let f : X → S be a morphism of schemes. Let π : C → X be a cone, see
Constructions, Definition 27.7.2. Recall that this means π is affine and we have a
grading π∗OC =

⊕
n≥0An with A0 = OX . Using the discussion in Remark 50.10.1

over affine opens we find that2

π∗(Ω•
C/S) =

⊕
n≥0

Ω•
C/S,n

is canonically a direct sum of subcomplexes. Moreover, we have a factorization
Ω•
X/S → Ω•

C/S,0 → π∗(Ω•
C/S)

and we know that ω ∧ η ∈ Ωp+q
C/S,n+m if ω ∈ ΩpC/S,n and η ∈ ΩqC/S,m.

Let f : X → S be a morphism of schemes. Let π : L → X be the line bundle
associated to the invertible OX -module L. This means that π is the unique affine
morphism such that

π∗OL =
⊕

n≥0
L⊗n

as OX -algebras. Thus L is a cone over X. By the discussion above we find a
canonical direct sum decomposition

π∗(Ω•
L/S) =

⊕
n≥0

Ω•
L/S,n

compatible with wedge product, compatible with the decomposition of π∗OL above,
and such that ΩX/S maps into the part ΩL/S,0 of degree 0.
There is another case which will be useful to us. Namely, consider the complement3

L⋆ ⊂ L of the zero section o : X → L in our line bundle L. A local computation
shows we have a canonical isomorphism

(L⋆ → X)∗OL⋆ =
⊕

n∈Z
L⊗n

of OX -algebras. The right hand side is a Z-graded quasi-coherent OX -algebra.
Using the discussion in Remark 50.10.1 over affine opens we find that

(L⋆ → X)∗(Ω•
L⋆/S) =

⊕
n∈Z

Ω•
L⋆/S,n

compatible with wedge product, compatible with the decomposition of (L⋆ →
X)∗OL⋆ above, and such that ΩX/S maps into the part ΩL⋆/S,0 of degree 0. The
complex Ω•

L⋆/S,0 will be of particular interest to us.

Lemma 50.10.2.0FUF With notation as above, there is a short exact sequence of com-
plexes

0→ Ω•
X/S → Ω•

L⋆/S,0 → Ω•
X/S [−1]→ 0

Proof. We have constructed the map Ω•
X/S → Ω•

L⋆/S,0 above.

Construction of Res : Ω•
L⋆/S,0 → Ω•

X/S [−1]. Let U ⊂ X be an open and let s ∈ L(U)
and s′ ∈ L⊗−1(U) be sections such that s′s = 1. Then s gives an invertible section
of the sheaf of algebras (L⋆ → X)∗OL⋆ over U with inverse s′ = s−1. Then we
can consider the 1-form d log(s) = s′d(s) which is an element of Ω1

L⋆/S,0(U) by our
construction of the grading on Ω1

L⋆/S . Our computations on affines given below will

2With excuses for the notation!
3The scheme L⋆ is the Gm-torsor over X associated to L. This is why the grading we get

below is a Z-grading, compare with Groupoids, Example 39.12.3 and Lemmas 39.12.4 and 39.12.5.
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show that 1 and d log(s) freely generate Ω•
L⋆/S,0|U as a right module over Ω•

X/S |U .
Thus we can define Res over U by the rule

Res(ω′ + d log(s) ∧ ω) = ω

for all ω′, ω ∈ Ω•
X/S(U). This map is independent of the choice of local generator s

and hence glues to give a global map. Namely, another choice of s would be of the
form gs for some invertible g ∈ OX(U) and we would get d log(gs) = g−1d(g) +
d log(s) from which the independence easily follows. Finally, observe that our rule
for Res is compatible with differentials as d(ω′+d log(s)∧ω) = d(ω′)−d log(s)∧d(ω)
and because the differential on Ω•

X/S [−1] sends ω′ to −d(ω′) by our sign convention
in Homology, Definition 12.14.7.

Local computation. We can cover X by affine opens U ⊂ X such that L|U ∼= OU
which moreover map into an affine open V ⊂ S. Write U = Spec(A), V = Spec(R)
and choose a generator s of L. We find that we have

L⋆ ×X U = Spec(A[s, s−1])

Computing differentials we see that

Ω1
A[s,s−1]/R = A[s, s−1]⊗A Ω1

A/R ⊕A[s, s−1]d log(s)

and therefore taking exterior powers we obtain

ΩpA[s,s−1]/R = A[s, s−1]⊗A ΩpA/R ⊕A[s, s−1]d log(s)⊗A Ωp−1
A/R

Taking degree 0 parts we find

ΩpA[s,s−1]/R,0 = ΩpA/R ⊕ d log(s)⊗A Ωp−1
A/R

and the proof of the lemma is complete. □

Lemma 50.10.3.0FUG The “boundary” map δ : Ω•
X/S → Ω•

X/S [2] in D(X, f−1OS) com-
ing from the short exact sequence in Lemma 50.10.2 is the map of Remark 50.4.3
for ξ = cdR1 (L).

Proof. To be precise we consider the shift

0→ Ω•
X/S [1]→ Ω•

L⋆/S,0[1]→ Ω•
X/S → 0

of the short exact sequence of Lemma 50.10.2. As the degree zero part of a grading
on (L⋆ → X)∗Ω•

L⋆/S we see that Ω•
L⋆/S,0 is a differential graded OX -algebra and

that the map Ω•
X/S → Ω•

L⋆/S,0 is a homomorphism of differential graded OX -
algebras. Hence we may view Ω•

X/S [1] → Ω•
L⋆/S,0[1] as a map of right differential

graded Ω•
X/S-modules on X. The map Res : Ω•

L⋆/S,0[1] → Ω•
X/S is a map of right

differential graded Ω•
X/S-modules since it is locally defined by the rule Res(ω′ +

d log(s)∧ω) = ω, see proof of Lemma 50.10.2. Thus by the discussion in Differential
Graded Sheaves, Section 24.32 we see that δ comes from a map δ′ : Ω•

X/S → Ω•
X/S [2]

in the derived category D(Ω•
X/S ,d) of right differential graded modules over the de

Rham complex. The uniqueness averted in Remark 50.4.3 shows it suffices to prove
that δ(1) = cdR1 (L).
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We claim that there is a commutative diagram

0 // O∗
X

//

d log
��

E //

��

Z

��

// 0

0 // Ω•
X/S [1] // Ω•

L⋆/S,0[1] // Ω•
X/S

// 0

where the top row is a short exact sequence of abelian sheaves whose boundary
map sends 1 to the class of L in H1(X,O∗

X). It suffices to prove the claim by the
compatibility of boundary maps with maps between short exact sequences. We
define E as the sheafification of the rule

U 7−→ {(s, n) | n ∈ Z, s ∈ L⊗n(U) generator}

with group structure given by (s, n) · (t,m) = (s ⊗ t, n + m). The middle vertical
map sends (s, n) to d log(s). This produces a map of short exact sequences because
the map Res : Ω1

L⋆/S,0 → OX constructed in the proof of Lemma 50.10.2 sends
d log(s) to 1 if s is a local generator of L. To calculate the boundary of 1 in
the top row, choose local trivializations si of L over opens Ui as in Section 50.9.
On the overlaps Ui0i1 = Ui0 ∩ Ui1 we have an invertible function fi0i1 such that
fi0i1 = si1 |Ui0i1 si0 |

−1
Ui0i1

and the cohomology class of L is given by the Čech cocycle
{fi0i1}. Then of course we have

(fi0i1 , 0) = (si1 , 1)|Ui0i1 · (si0 , 1)|−1
Ui0i1

as sections of E which finishes the proof. □

Lemma 50.10.4.0FUH With notation as above we have
(1) ΩpL⋆/S,n = ΩpL⋆/S,0 ⊗OX

L⊗n for all n ∈ Z as quasi-coherent OX -modules,
(2) Ω•

X/S = Ω•
L/X,0 as complexes, and

(3) for n > 0 and p ≥ 0 we have ΩpL/X,n = ΩpL⋆/S,n.

Proof. In each case there is a globally defined canonical map which is an isomor-
phism by local calculations which we omit. □

Lemma 50.10.5.0FUI In the situation above, assume there is a morphism S → Spec(Q).
Then Ω•

X/S → π∗Ω•
L/S is a quasi-isomorphism and H∗

dR(X/S) = H∗
dR(L/S).

Proof. Let R be a Q-algebra. Let A be an R-algebra. The affine local statement
is that the map

Ω•
A/R −→ Ω•

A[t]/R

is a quasi-isomorphism of complexes of R-modules. In fact it is a homotopy equiv-
alence with homotopy inverse given by the map sending gω+ g′dt∧ω′ to g(0)ω for
g, g′ ∈ A[t] and ω, ω′ ∈ Ω•

A/R. The homotopy sends gω + g′dt ∧ ω′ to (
∫
g′)ω′ were∫

g′ ∈ A[t] is the polynomial with vanishing constant term whose derivative with
respect to t is g′. Of course, here we use that R contains Q as

∫
tn = (1/n)tn+1. □

Example 50.10.6.0FUJ Lemma 50.10.5 is false in positive characteristic. The de Rham
complex of A1

k = Spec(k[x]) over a field k looks like a direct sum

k ⊕
⊕

n≥1
(k · tn n−→ k · tn−1dt)

https://stacks.math.columbia.edu/tag/0FUH
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Hence if the characteristic of k is p > 0, then we see that both H0
dR(A1

k/k) and
H1
dR(A1

k/k) are infinite dimensional over k.

50.11. de Rham cohomology of projective space

0FMG Let A be a ring. Let n ≥ 1. The structure morphism Pn
A → Spec(A) is a proper

smooth of relative dimension n. It is smooth of relative dimension n and of finite
type as Pn

A has a finite affine open covering by schemes each isomorphic to An
A,

see Constructions, Lemma 27.13.3. It is proper because it is also separated and
universally closed by Constructions, Lemma 27.13.4. Let us denote O and O(d)
the structure sheaf OPn

A
and the Serre twists OPn

A
(d). Let us denote Ω = ΩPn

A
/A

the sheaf of relative differentials and Ωp its exterior powers.

Lemma 50.11.1.0FMH There exists a short exact sequence

0→ Ω→ O(−1)⊕n+1 → O → 0

Proof. To explain this, we recall that Pn
A = Proj(A[T0, . . . , Tn]), and we write

symbolically
O(−1)⊕n+1 =

⊕
j=0,...,n

O(−1)dTj
The first arrow

Ω→
⊕

j=0,...,n
O(−1)dTj

in the short exact sequence above is given on each of the standard opens D+(Ti) =
Spec(A[T0/Ti, . . . , Tn/Ti]) mentioned above by the rule∑

j ̸=i
gjd(Tj/Ti) 7−→

∑
j ̸=i

gj/TidTj − (
∑

j ̸=i
gjTj/T

2
i )dTi

This makes sense because 1/Ti is a section of O(−1) over D+(Ti). The map⊕
j=0,...,n

O(−1)dTj → O

is given by sending dTj to Tj , more precisely, onD+(Ti) we send the section
∑
gjdTj

to
∑
Tjgj . We omit the verification that this produces a short exact sequence. □

Given an integer k ∈ Z and a quasi-coherent OPn
A

-module F denote as usual F(k)
the kth Serre twist of F . See Constructions, Definition 27.10.1.

Lemma 50.11.2.0FUK In the situation above we have the following cohomology groups
(1) Hq(Pn

A,Ωp) = 0 unless 0 ≤ p = q ≤ n,
(2) for 0 ≤ p ≤ n the A-module Hp(Pn

A,Ωp) free of rank 1.
(3) for q > 0, k > 0, and p arbitrary we have Hq(Pn

A,Ωp(k)) = 0, and
(4) add more here.

Proof. We are going to use the results of Cohomology of Schemes, Lemma 30.8.1
without further mention. In particular, the statements are true for Hq(Pn

A,O(k)).
Proof for p = 1. Consider the short exact sequence

0→ Ω→ O(−1)⊕n+1 → O → 0
of Lemma 50.11.1. Since O(−1) has vanishing cohomology in all degrees, this
gives that Hq(Pn

A,Ω) is zero except in degree 1 where it is freely generated by the
boundary of 1 in H0(Pn

A,O).

https://stacks.math.columbia.edu/tag/0FMH
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Assume p > 1. Let us think of the short exact sequence above as defining a 2 step
filtration on O(−1)⊕n+1. The induced filtration on ∧pO(−1)⊕n+1 looks like this

0→ Ωp → ∧p
(
O(−1)⊕n+1)→ Ωp−1 → 0

Observe that ∧pO(−1)⊕n+1 is isomorphic to a direct sum of n+1 choose p copies of
O(−p) and hence has vanishing cohomology in all degrees. By induction hypothesis,
this shows that Hq(Pn

A,Ωp) is zero unless q = p and Hp(Pn
A,Ωp) is free of rank 1

with generator the boundary of the generator in Hp−1(Pn
A,Ωp−1).

Let k > 0. Observe that Ωn = O(−n− 1) for example by the short exact sequence
above for p = n + 1. Hence Ωn(k) has vanishing cohomology in positive degrees.
Using the short exact sequences

0→ Ωp(k)→ ∧p
(
O(−1)⊕n+1) (k)→ Ωp−1(k)→ 0

and descending induction on p we get the vanishing of cohomology of Ωp(k) in
positive degrees for all p. □

Lemma 50.11.3.0FMI We have Hq(Pn
A,Ωp) = 0 unless 0 ≤ p = q ≤ n. For 0 ≤ p ≤ n

the A-module Hp(Pn
A,Ωp) free of rank 1 with basis element cHodge1 (O(1))p.

Proof. We have the vanishing and and freeness by Lemma 50.11.2. For p = 0 it is
certainly true that 1 ∈ H0(Pn

A,O) is a generator.

Proof for p = 1. Consider the short exact sequence

0→ Ω→ O(−1)⊕n+1 → O → 0

of Lemma 50.11.1. In the proof of Lemma 50.11.2 we have seen that the generator
of H1(Pn

A,Ω) is the boundary ξ of 1 ∈ H0(Pn
A,O). As in the proof of Lemma

50.11.1 we will identify O(−1)⊕n+1 with
⊕

j=0,...,nO(−1)dTj . Consider the open
covering

U : Pn
A =

⋃
i=0,...,n

D+(Ti)

We can lift the restriction of the global section 1 of O to Ui = D+(Ti) by the section
T−1
i dTi of

⊕
O(−1)dTj over Ui. Thus the cocyle representing ξ is given by

T−1
i1

dTi1 − T−1
i0

dTi0 = d log(Ti1/Ti0) ∈ Ω(Ui0i1)

On the other hand, for each i the section Ti is a trivializing section of O(1) over Ui.
Hence we see that fi0i1 = Ti1/Ti0 ∈ O∗(Ui0i1) is the cocycle representing O(1) in
Pic(Pn

A), see Section 50.9. Hence cHodge1 (O(1)) is given by the cocycle d log(Ti1/Ti0)
which agrees with what we got for ξ above.

Proof for general p by induction. The base cases p = 0, 1 were handled above.
Assume p > 1. In the proof of Lemma 50.11.2 we have seen that the generator
of Hp(Pn

A,Ωp) is the boundary of cHodge1 (O(1))p−1 in the long exact cohomology
sequence associated to

0→ Ωp → ∧p
(
O(−1)⊕n+1)→ Ωp−1 → 0

By the calculation in Section 50.9 the cohomology class cHodge1 (O(1))p−1 is, up to
a sign, represented by the cocycle with terms

βi0...ip−1 = d log(Ti1/Ti0) ∧ d log(Ti2/Ti1) ∧ . . . ∧ d log(Tip−1/Tip−2)

https://stacks.math.columbia.edu/tag/0FMI
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in Ωp−1(Ui0...ip−1). These βi0...ip−1 can be lifted to the sections β̃i0...ip−1 = T−1
i0

dTi0∧
βi0...ip−1 of ∧p(

⊕
O(−1)dTj) over Ui0...ip−1 . We conclude that the generator of

Hp(Pn
A,Ωp) is given by the cocycle whose components are∑p

a=0
(−1)aβ̃i0...îa...ip = T−1

i1
dTi1 ∧ βi1...ip +

∑p

a=1
(−1)aT−1

i0
dTi0 ∧ βi0...îa...ip

= (T−1
i1

dTi1 − T−1
i0

dTi0) ∧ βi1...ip + T−1
i0

dTi0 ∧ d(β)i0...ip
= d log(Ti1/Ti0) ∧ βi1...ip

viewed as a section of Ωp over Ui0...ip . This is up to sign the same as the cocycle
representing cHodge1 (O(1))p and the proof is complete. □

Lemma 50.11.4.0FMJ For 0 ≤ i ≤ n the de Rham cohomology H2i
dR(Pn

A/A) is a free
A-module of rank 1 with basis element cdR1 (O(1))i. In all other degrees the de
Rham cohomology of Pn

A over A is zero.

Proof. Consider the Hodge-to-de Rham spectral sequence of Section 50.6. By the
computation of the Hodge cohomology of Pn

A over A done in Lemma 50.11.3 we
see that the spectral sequence degenerates on the E1 page. In this way we see that
H2i
dR(Pn

A/A) is a free A-module of rank 1 for 0 ≤ i ≤ n and zero else. Observe that
cdR1 (O(1))i ∈ H2i

dR(Pn
A/A) for i = 0, . . . , n and that for i = n this element is the

image of cHodge1 (L)n by the map of complexes

ΩnPn
A
/A[−n] −→ Ω•

Pn
A
/A

This follows for example from the discussion in Remark 50.9.2 or from the explicit
description of cocycles representing these classes in Section 50.9. The spectral
sequence shows that the induced map

Hn(Pn
A,ΩnPn

A
/A) −→ H2n

dR(Pn
A/A)

is an isomorphism and since cHodge1 (L)n is a generator of of the source (Lemma
50.11.3), we conclude that cdR1 (L)n is a generator of the target. By the A-bilinearity
of the cup products, it follows that also cdR1 (L)i is a generator of H2i

dR(Pn
A/A) for

0 ≤ i ≤ n. □

50.12. The spectral sequence for a smooth morphism

0FMK Consider a commutative diagram of schemes

X
f

//

p
��

Y

q
��

S

where f is a smooth morphism. Then we obtain a locally split short exact sequence

0→ f∗ΩY/S → ΩX/S → ΩX/Y → 0

by Morphisms, Lemma 29.34.16. Let us think of this as a descending filtration F
on ΩX/S with F 0ΩX/S = ΩX/S , F 1ΩX/S = f∗ΩY/S , and F 2ΩX/S = 0. Applying
the functor ∧p we obtain for every p an induced filtration

ΩpX/S = F 0ΩpX/S ⊃ F
1ΩpX/S ⊃ F

2ΩpX/S ⊃ . . . ⊃ F
p+1ΩpX/S = 0

https://stacks.math.columbia.edu/tag/0FMJ
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whose succesive quotients are

grkΩpX/S = F kΩpX/S/F
k+1ΩpX/S = f∗ΩkY/S ⊗OX

Ωp−k
X/Y = f−1ΩkY/S ⊗f−1OY

Ωp−k
X/Y

for k = 0, . . . , p. In fact, the reader can check using the Leibniz rule that F kΩ•
X/S

is a subcomplex of Ω•
X/S . In this way Ω•

X/S has the structure of a filtered complex.
We can also see this by observing that

F kΩ•
X/S = Im

(
∧ : Tot(f−1σ≥kΩ•

Y/S ⊗p−1OS
Ω•
X/S) −→ Ω•

X/S

)
is the image of a map of complexes on X. The filtered complex

Ω•
X/S = F 0Ω•

X/S ⊃ F
1Ω•

X/S ⊃ F
2Ω•

X/S ⊃ . . .

has the following associated graded parts

grkΩ•
X/S = f−1ΩkY/S [−k]⊗f−1OY

Ω•
X/Y

by what was said above.

Lemma 50.12.1.0FMM Let f : X → Y be a quasi-compact, quasi-separated, and smooth
morphism of schemes over a base scheme S. There is a bounded spectral sequence
with first page

Ep,q1 = Hq(ΩpY/S ⊗
L
OY

Rf∗Ω•
X/Y )

converging to Rp+qf∗Ω•
X/S .

Proof. Consider Ω•
X/S as a filtered complex with the filtration introduced above.

The spectral sequence is the spectral sequence of Cohomology, Lemma 20.29.5. By
Derived Categories of Schemes, Lemma 36.23.2 we have

Rf∗grkΩ•
X/S = ΩkY/S [−k]⊗L

OY
Rf∗Ω•

X/Y

and thus we conclude. □

Remark 50.12.2.0FMN In Lemma 50.12.1 consider the cohomology sheaves

HqdR(X/Y ) = Hq(Rf∗Ω•
X/Y ))

If f is proper in addition to being smooth and S is a scheme over Q thenHqdR(X/Y )
is finite locally free (insert future reference here). If we only assume HqdR(X/Y ) are
flat OY -modules, then we obtain (tiny argument omitted)

Ep,q1 = ΩpY/S ⊗OY
HqdR(X/Y )

and the differentials in the spectral sequence are maps

dp,q1 : ΩpY/S ⊗OY
HqdR(X/Y ) −→ Ωp+1

Y/S ⊗OY
HqdR(X/Y )

In particular, for p = 0 we obtain a map d0,q
1 : HqdR(X/Y )→ Ω1

Y/S⊗OY
HqdR(X/Y )

which turns out to be an integrable connection ∇ (insert future reference here) and
the complex

HqdR(X/Y )→ Ω1
Y/S ⊗OY

HqdR(X/Y )→ Ω2
Y/S ⊗OY

HqdR(X/Y )→ . . .

with differentials given by d•,q
1 is the de Rham complex of ∇. The connection ∇ is

known as the Gauss-Manin connection.

https://stacks.math.columbia.edu/tag/0FMM
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50.13. Leray-Hirsch type theorems

0FUL In this section we prove that for a smooth proper morphism one can sometimes
express the de Rham cohomology upstairs in terms of the de Rham cohomology
downstairs.

Lemma 50.13.1.0FMP Let f : X → Y be a smooth proper morphism of schemes. Let N
and n1, . . . , nN ≥ 0 be integers and let ξi ∈ Hni

dR(X/Y ), 1 ≤ i ≤ N . Assume for all
points y ∈ Y the images of ξ1, . . . , ξN in H∗

dR(Xy/y) form a basis over κ(y). Then
the map ⊕N

i=1
OY [−ni] −→ Rf∗Ω•

X/Y

associated to ξ1, . . . , ξN is an isomorphism.

Proof. By Lemma 50.3.5 Rf∗Ω•
X/Y is a perfect object of D(OY ) whose formation

commutes with arbitrary base change. Thus the map of the lemma is a map a :
K → L between perfect objects of D(OY ) whose derived restriction to any point
is an isomorphism by our assumption on fibres. Then the cone C on a is a perfect
object of D(OY ) (Cohomology, Lemma 20.49.7) whose derived restriction to any
point is zero. It follows that C is zero by More on Algebra, Lemma 15.75.6 and a
is an isomorphism. (This also uses Derived Categories of Schemes, Lemmas 36.3.5
and 36.10.7 to translate into algebra.) □

We first prove the main result of this section in the following special case.

Lemma 50.13.2.0FUM Let f : X → Y be a smooth proper morphism of schemes over a
base S. Assume

(1) Y and S are affine, and
(2) there exist integers N and n1, . . . , nN ≥ 0 and ξi ∈ Hni

dR(X/S), 1 ≤ i ≤ N
such that for all points y ∈ Y the images of ξ1, . . . , ξN in H∗

dR(Xy/y) form
a basis over κ(y).

Then the map⊕N

i=1
H∗
dR(Y/S) −→ H∗

dR(X/S), (a1, . . . , aN ) 7−→
∑

ξi ∪ f∗ai

is an isomorphism.

Proof. Say Y = Spec(A) and S = Spec(R). In this case Ω•
A/R computesRΓ(Y,Ω•

Y/S)
by Lemma 50.3.1. Choose a finite affine open covering U : X =

⋃
i∈I Ui. Consider

the complex
K• = Tot(Č•(U ,Ω•

X/S))
as in Cohomology, Section 20.25. Let us collect some facts about this complex most
of which can be found in the reference just given:

(1) K• is a complex of R-modules whose terms are A-modules,
(2) K• represents RΓ(X,Ω•

X/S) in D(R) (Cohomology of Schemes, Lemma
30.2.2 and Cohomology, Lemma 20.25.2),

(3) there is a natural map Ω•
A/R → K• of complexes of R-modules which is

A-linear on terms and induces the pullback map H∗
dR(Y/S)→ H∗

dR(X/S)
on cohomology,

(4) K• has a multiplication denoted ∧ which turns it into a differential graded
R-algebra,

https://stacks.math.columbia.edu/tag/0FMP
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(5) the multiplication on K• induces the cup product on H∗
dR(X/S) (Coho-

mology, Section 20.31),
(6) the filtration F on Ω∗

X/S induces a filtration

K• = F 0K• ⊃ F 1K• ⊃ F 2K• ⊃ . . .

by subcomplexes on K• such that
(a) F kKn ⊂ Kn is an A-submmodule,
(b) F kK• ∧ F lK• ⊂ F k+lK•,
(c) grkK• is a complex of A-modules,
(d) gr0K• = Tot(Č•(U ,Ω•

X/Y )) and represents RΓ(X,Ω•
X/Y ) in D(A),

(e) multiplication induces an isomorphism ΩkA/R[−k]⊗Agr0K• → grkK•

We omit the detailed proofs of these statements; please see discussion leading up
to the construction of the spectral sequence in Lemma 50.12.1.

For every i = 1, . . . , N we choose a cocycle xi ∈ Kni representing ξi. Next, we look
at the map of complexes

x̃ : M• =
⊕

i=1,...,N
Ω•
A/R[−ni] −→ K•

which sends ω in the ith summand to xi ∧ ω. All that remains is to show that this
map is a quasi-isomorphism. We endow M• with the structure of a filtered complex
by the rule

F kM• =
⊕

i=1,...,N
(σ≥kΩ•

A/R)[−ni]

With this choice the map x̃ is a morphism of filtered complexes. Observe that
gr0M• =

⊕
A[−ni] and multiplication induces an isomorphism ΩkA/R[−k] ⊗A

gr0M• → grkM•. By construction and Lemma 50.13.1 we see that

gr0x̃ : gr0M• −→ gr0K•

is an isomorphism in D(A). It follows that for all k ≥ 0 we obtain isomorphisms

grkx̃ : grkM• = ΩkA/R[−k]⊗A gr0M• −→ ΩkA/R[−k]⊗A gr0K• = grkK•

in D(A). Namely, the complex gr0K• = Tot(Č•(U ,Ω•
X/Y )) is K-flat as a complex

of A-modules by Derived Categories of Schemes, Lemma 36.23.3. Hence the tensor
product on the right hand side is the derived tensor product as is true by inspection
on the left hand side. Finally, taking the derived tensor product ΩkA/R[−k]⊗L

A− is
a functor on D(A) and therefore sends isomorphisms to isomorphisms. Arguing by
induction on k we deduce that

x̃ : M•/F kM• → K•/F kK•

is an isomorphism in D(R) since we have the short exact sequences

0→ F kM•/F k+1M• →M•/F k+1M• → grkM• → 0

and similarly for K•. This proves that x̃ is a quasi-isomorphism as the filtrations
are finite in any given degree. □

Proposition 50.13.3.0FMR Let f : X → Y be a smooth proper morphism of schemes over
a base S. Let N and n1, . . . , nN ≥ 0 be integers and let ξi ∈ Hni

dR(X/S), 1 ≤ i ≤ N .

https://stacks.math.columbia.edu/tag/0FMR
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Assume for all points y ∈ Y the images of ξ1, . . . , ξN in H∗
dR(Xy/y) form a basis

over κ(y). The map

ξ̃ =
⊕

ξ̃i[−ni] :
⊕

Ω•
Y/S [−ni] −→ Rf∗Ω•

X/S

(see proof) is an isomorphism in D(Y, (Y → S)−1OS) and correspondingly the map⊕N

i=1
H∗
dR(Y/S) −→ H∗

dR(X/S), (a1, . . . , aN ) 7−→
∑

ξi ∪ f∗ai

is an isomorphism.

Proof. Denote p : X → S and q : Y → S be the structure morphisms. Let
ξ′
i : Ω•

X/S → Ω•
X/S [ni] be the map of Remark 50.4.3 corresponding to ξi. Denote

ξ̃i : Ω•
Y/S → Rf∗Ω•

X/S [ni]
the composition of ξ′

i with the canonical map Ω•
Y/S → Rf∗Ω•

X/S . Using

RΓ(Y,Rf∗Ω•
X/S) = RΓ(X,Ω•

X/S)

on cohomology ξ̃i is the map η 7→ ξi∪f∗η from Hm
dR(Y/S) to Hm+n

dR (X/S). Further,
since the formation of ξ′

i commutes with restrictions to opens, so does the formation
of ξ̃i commute with restriction to opens.
Thus we can consider the map

ξ̃ =
⊕

ξ̃i[−ni] :
⊕

Ω•
Y/S [−ni] −→ Rf∗Ω•

X/S

To prove the lemma it suffices to show that this is an isomorphism in D(Y, q−1OS).
If we could show ξ̃ comes from a map of filtered complexes (with suitable filtrations),
then we could appeal to the spectral sequence of Lemma 50.12.1 to finish the proof.
This takes more work than is necessary and instead our approach will be to reduce
to the affine case (whose proof does in some sense use the spectral sequence).
Indeed, if Y ′ ⊂ Y is is any open with inverse image X ′ ⊂ X, then ξ̃|X′ induces the
map ⊕N

i=1
H∗
dR(Y ′/S) −→ H∗

dR(X ′/S), (a1, . . . , aN ) 7−→
∑

ξi|X′ ∪ f∗ai

on cohomology over Y ′, see discussion above. Thus it suffices to find a basis for
the topology on Y such that the proposition holds for the members of the basis (in
particular we can forget about the map ξ̃ when we do this). This reduces us to the
case where Y and S are affine which is handled by Lemma 50.13.2 and the proof is
complete. □

50.14. Projective space bundle formula

0FMS The title says it all.

Proposition 50.14.1.0FMT Let X → S be a morphism of schemes. Let E be a locally
free OX -module of constant rank r. Consider the morphism p : P = P(E) → X.
Then the map ⊕

i=0,...,r−1
H∗
dR(X/S) −→ H∗

dR(P/S)

given by the rule

(a0, . . . , ar−1) 7−→
∑

i=0,...,r−1
cdR1 (OP (1))i ∪ p∗(ai)
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is an isomorphism.

Proof. Choose an affine open Spec(A) ⊂ X such that E restricts to the trivial
locally free module O⊕r

Spec(A). Then P ×X Spec(A) = Pr−1
A . Thus we see that

p is proper and smooth, see Section 50.11. Moreover, the classes cdR1 (OP (1))i,
i = 0, 1, . . . , r − 1 restricted to a fibre Xy = Pr−1

y freely generate the de Rham
cohomology H∗

dR(Xy/y) over κ(y), see Lemma 50.11.4. Thus we’ve verified the
conditions of Proposition 50.13.3 and we win. □

Remark 50.14.2.0FUN In the situation of Proposition 50.14.1 we get moreover that the
map

ξ̃ :
⊕

t=0,...,r−1
Ω•
X/S [−2t] −→ Rp∗Ω•

P/S

is an isomorphism in D(X, (X → S)−1OX) as follows immediately from the appli-
cation of Proposition 50.13.3. Note that the arrow for t = 0 is simply the canonical
map cP/X : Ω•

X/S → Rp∗Ω•
P/S of Section 50.2. In fact, we can pin down this map

further in this particular case. Namely, consider the canonical map

ξ′ : Ω•
P/S → Ω•

P/S [2]

of Remark 50.4.3 corresponding to cdR1 (OP (1)). Then

ξ′[2(t− 1)] ◦ . . . ◦ ξ′[2] ◦ ξ′ : Ω•
P/S → Ω•

P/S [2t]

is the map of Remark 50.4.3 corresponding to cdR1 (OP (1))t. Tracing through the
choices made in the proof of Proposition 50.13.3 we find the value

ξ̃|Ω•
X/S

[−2t] = Rp∗ξ
′[−2] ◦ . . . ◦Rp∗ξ

′[−2(t− 1)] ◦Rp∗ξ
′[−2t] ◦ cP/X [−2t]

for the restriction of our isomorphism to the summand Ω•
X/S [−2t]. This has the

following simple consequence we will use below: let

M =
⊕

t=1,...,r−1
Ω•
X/S [−2t] and K =

⊕
t=0,...,r−2

Ω•
X/S [−2t]

viewed as subcomplexes of the source of the arrow ξ̃. It follows formally from the
discussion above that

cP/X ⊕ ξ̃|M : Ω•
X/S ⊕M −→ Rp∗Ω•

P/S

is an isomorphism and that the diagram

K

ξ̃|K
��

id
// M [2]

(ξ̃|M )[2]
��

Rp∗Ω•
P/S

Rp∗ξ
′
// Rp∗Ω•

P/S [2]

commutes where id : K → M [2] identifies the summand corresponding to t in the
deomposition of K to the summand corresponding to t+ 1 in the decomposition of
M .
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50.15. Log poles along a divisor

0FMU Let X → S be a morphism of schemes. Let Y ⊂ X be an effective Cartier divisor.
If X étale locally along Y looks like Y ×A1, then there is a canonical short exact
sequence of complexes

0→ Ω•
X/S → Ω•

X/S(log Y )→ Ω•
Y/S [−1]→ 0

having many good properties we will discuss in this section. There is a variant of this
construction where one starts with a normal crossings divisor (Étale Morphisms,
Definition 41.21.1) which we will discuss elsewhere (insert future reference here).

Definition 50.15.1.0FMV Let X → S be a morphism of schemes. Let Y ⊂ X be an
effective Cartier divisor. We say the de Rham complex of log poles is defined for
Y ⊂ X over S if for all y ∈ Y and local equation f ∈ OX,y of Y we have

(1) OX,y → ΩX/S,y, g 7→ gdf is a split injection, and
(2) ΩpX/S,y is f -torsion free for all p.

An easy local calculation shows that it suffices for every y ∈ Y to find one local
equation f for which conditions (1) and (2) hold.

Lemma 50.15.2.0FMW Let X → S be a morphism of schemes. Let Y ⊂ X be an effective
Cartier divisor. Assume the de Rham complex of log poles is defined for Y ⊂ X
over S. There is a canonical short exact sequence of complexes

0→ Ω•
X/S → Ω•

X/S(log Y )→ Ω•
Y/S [−1]→ 0

Proof. Our assumption is that for every y ∈ Y and local equation f ∈ OX,y of Y
we have

ΩX/S,y = OX,ydf ⊕M and ΩpX/S,y = ∧p−1(M)df ⊕ ∧p(M)

for some module M with f -torsion free exterior powers ∧p(M). It follows that
ΩpY/S,y = ∧p(M/fM) = ∧p(M)/f ∧p (M)

Below we will tacitly use these facts. In particular the sheaves ΩpX/S have no
nonzero local sections supported on Y and we have a canonical inclusion

ΩpX/S ⊂ ΩpX/S(Y )

see More on Flatness, Section 38.42. Let U = Spec(A) be an affine open subscheme
such that Y ∩ U = V (f) for some nonzerodivisor f ∈ A. Let us consider the
OU -submodule of ΩpX/S(Y )|U generated by ΩpX/S |U and d log(f) ∧ Ωp−1

X/S where
d log(f) = f−1d(f). This is independent of the choice of f as another generator of
the ideal of Y on U is equal to uf for a unit u ∈ A and we get

d log(uf)− d log(f) = d log(u) = u−1du
which is a section of ΩX/S over U . These local sheaves glue to give a quasi-coherent
submodule

ΩpX/S ⊂ ΩpX/S(log Y ) ⊂ ΩpX/S(Y )
Let us agree to think of ΩpY/S as a quasi-coherent OX -module. There is a unique
surjective OX -linear map

Res : ΩpX/S(log Y )→ Ωp−1
Y/S

https://stacks.math.columbia.edu/tag/0FMV
https://stacks.math.columbia.edu/tag/0FMW


50.15. LOG POLES ALONG A DIVISOR 4187

defined by the rule
Res(η′ + d log(f) ∧ η) = η|Y ∩U

for all opens U as above and all η′ ∈ ΩpX/S(U) and η ∈ Ωp−1
X/S(U). If a form η over

U restricts to zero on Y ∩U , then η = df ∧ η′ + fη′′ for some forms η′ and η′′ over
U . We conclude that we have a short exact sequence

0→ ΩpX/S → ΩpX/S(log Y )→ Ωp−1
Y/S → 0

for all p. We still have to define the differentials ΩpX/S(log Y ) → Ωp+1
X/S(log Y ). On

the subsheaf ΩpX/S we use the differential of the de Rham complex of X over S.
Finally, we define d(d log(f)∧ η) = −d log(f)∧ dη. The sign is forced on us by the
Leibniz rule (on Ω•

X/S) and it is compatible with the differential on Ω•
Y/S [−1] which

is after all −dY/S by our sign convention in Homology, Definition 12.14.7. In this
way we obtain a short exact sequence of complexes as stated in the lemma. □

Definition 50.15.3.0FUA Let X → S be a morphism of schemes. Let Y ⊂ X be an
effective Cartier divisor. Assume the de Rham complex of log poles is defined for
Y ⊂ X over S. Then the complex

Ω•
X/S(log Y )

constructed in Lemma 50.15.2 is the de Rham complex of log poles for Y ⊂ X over
S.

This complex has many good properties.

Lemma 50.15.4.0FUP Let p : X → S be a morphism of schemes. Let Y ⊂ X be an
effective Cartier divisor. Assume the de Rham complex of log poles is defined for
Y ⊂ X over S.

(1) The maps ∧ : ΩpX/S×ΩqX/S → Ωp+q
X/S extend uniquely to OX -bilinear maps

∧ : ΩpX/S(log Y )× ΩqX/S(log Y )→ Ωp+q
X/S(log Y )

satisfying the Leibniz rule d(ω ∧ η) = d(ω) ∧ η + (−1)deg(ω)ω ∧ d(η),
(2) with multiplication as in (1) the map Ω•

X/S → Ω•
X/S(log(Y ) is a homo-

morphism of differential graded OS-algebras,
(3) via the maps in (1) we have ΩpX/S(log Y ) = ∧p(Ω1

X/S(log Y )), and
(4) the map Res : Ω•

X/S(log Y )→ Ω•
Y/S [−1] satisfies

Res(ω ∧ η) = Res(ω) ∧ η|Y
for ω a local section of ΩpX/S(log Y ) and η a local section of ΩqX/S .

Proof. This follows by direct calcuation from the local construction of the complex
in the proof of Lemma 50.15.2. Details omitted. □

Consider a commutative diagram

X ′
f
//

��

X

��
S′ // S

of schemes. Let Y ⊂ X be an effective Cartier divisor whose pullback Y ′ = f∗Y is
defined (Divisors, Definition 31.13.12). Assume the de Rham complex of log poles
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is defined for Y ⊂ X over S and the de Rham complex of log poles is defined for
Y ′ ⊂ X ′ over S′. In this case we obtain a map of short exact sequences of complexes

0 // f−1Ω•
X/S

//

��

f−1Ω•
X/S(log Y ) //

��

f−1Ω•
Y/S [−1] //

��

0

0 // Ω•
X′/S′

// Ω•
X′/S′(log Y ′) // Ω•

Y ′/S′ [−1] // 0

Linearizing, for every p we obtain a linear map f∗ΩpX/S(log Y )→ ΩpX′/S′(log Y ′).

Lemma 50.15.5.0FUQ Let f : X → S be a morphism of schemes. Let Y ⊂ X be an
effective Cartier divisor. Assume the de Rham complex of log poles is defined for
Y ⊂ X over S. Denote

δ : Ω•
Y/S → Ω•

X/S [2]
in D(X, f−1OS) the “boundary” map coming from the short exact sequence in
Lemma 50.15.2. Denote

ξ′ : Ω•
X/S → Ω•

X/S [2]
in D(X, f−1OS) the map of Remark 50.4.3 corresponding to ξ = cdR1 (OX(−Y )).
Denote

ζ ′ : Ω•
Y/S → Ω•

Y/S [2]
in D(Y, f |−1

Y OS) the map of Remark 50.4.3 corresponding to ζ = cdR1 (OX(−Y )|Y ).
Then the diagram

Ω•
X/S

ξ′

��

// Ω•
Y/S

ζ′

��

δ

zz
Ω•
X/S [2] // Ω•

Y/S [2]

is commutative in D(X, f−1OS).

Proof. More precisely, we define δ as the boundary map corresponding to the shifted
short exact sequence

0→ Ω•
X/S [1]→ Ω•

X/S(log Y )[1]→ Ω•
Y/S → 0

It suffices to prove each triangle commutes. Set L = OX(−Y ). Denote π : L→ X
the line bundle with π∗OL =

⊕
n≥0 L⊗n.

Commutativity of the upper left triangle. By Lemma 50.10.3 the map ξ′ is the
boundary map of the triangle given in Lemma 50.10.2. By functoriality it suffices
to prove there exists a morphism of short exact sequences

0 // Ω•
X/S [1] //

��

Ω•
L⋆/S,0[1] //

��

Ω•
X/S

//

��

0

0 // Ω•
X/S [1] // Ω•

X/S(log Y )[1] // Ω•
Y/S

// 0

where the left and right vertical arrows are the obvious ones. We can define the
middle vertical arrow by the rule

ω′ + d log(s) ∧ ω 7−→ ω′ + d log(f) ∧ ω
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where ω′, ω are local sections of Ω•
X/S and where s is a local generator of L and

f ∈ OX(−Y ) is the corresponding section of the ideal sheaf of Y in X. Since the
constructions of the maps in Lemmas 50.10.2 and 50.15.2 match exactly, this works.
Commutativity of the lower right triangle. Denote L the restriction of L to Y . By
Lemma 50.10.3 the map ζ ′ is the boundary map of the triangle given in Lemma
50.10.2 using the line bundle L on Y . By functoriality it suffices to prove there
exists a morphism of short exact sequences

0 // Ω•
X/S [1] //

��

Ω•
X/S(log Y )[1] //

��

Ω•
Y/S

//

��

0

0 // Ω•
Y/S [1] // Ω•

L
⋆
/S,0[1] // Ω•

Y/S
// 0

where the left and right vertical arrows are the obvious ones. We can define the
middle vertical arrow by the rule

ω′ + d log(f) ∧ ω 7−→ ω′|Y + d log(s) ∧ ω|Y
where ω′, ω are local sections of Ω•

X/S and where f is a local generator of OX(−Y )
viewed as a function on X and where s is f |Y viewed as a section of L|Y =
OX(−Y )|Y . Since the constructions of the maps in Lemmas 50.10.2 and 50.15.2
match exactly, this works. □

Lemma 50.15.6.0FMX Let X → S be a morphism of schemes. Let Y ⊂ X be an effective
Cartier divisor. Assume the de Rham complex of log poles is defined for Y ⊂ X
over S. Let b ∈ Hm

dR(X/S) be a de Rham cohomology class whose restriction to Y
is zero. Then cdR1 (OX(Y )) ∪ b = 0 in Hm+2

dR (X/S).

Proof. This follows immediately from Lemma 50.15.5. Namely, we have
cdR1 (OX(Y )) ∪ b = −cdR1 (OX(−Y )) ∪ b = −ξ′(b) = −δ(b|Y ) = 0

as desired. For the second equality, see Remark 50.4.3. □

Lemma 50.15.7.0FMY Let X → T → S be morphisms of schemes. Let Y ⊂ X be an
effective Cartier divisor. If both X → T and Y → T are smooth, then the de Rham
complex of log poles is defined for Y ⊂ X over S.

Proof. Let y ∈ Y be a point. By More on Morphisms, Lemma 37.17.1 there exists
an integer 0 ≥ m and a commutative diagram

Y

��

Voo

��

// Am
T

(a1,...,am)7→(a1,...,am,0)
��

X Uoo π // Am+1
T

where U ⊂ X is open, V = Y ∩ U , π is étale, V = π−1(Am
T ), and y ∈ V . Denote

z ∈ Am
T the image of y. Then we have

ΩpX/S,y = ΩpAm+1
T

/S,z
⊗OAm+1

T
,z
OX,x

by Lemma 50.2.2. Denote x1, . . . , xm+1 the coordinate functions on Am+1
T . Since

the conditions (1) and (2) in Definition 50.15.1 do not depend on the choice of
the local coordinate, it suffices to check the conditions (1) and (2) when f is the
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image of xm+1 by the flat local ring homomorphism OAm+1
T

,z → OX,x. In this way
we see that it suffices to check conditions (1) and (2) for Am

T ⊂ Am+1
T and the

point z. To prove this case we may assume S = Spec(A) and T = Spec(B) are
affine. Let A→ B be the ring map corresponding to the morphism T → S and set
P = B[x1, . . . , xm+1] so that Am+1

T = Spec(B). We have

ΩP/A = ΩB/A ⊗B P ⊕
⊕

j=1,...,m
Pdxj ⊕ Pdxm+1

Hence the map P → ΩP/A, g 7→ gdxm+1 is a split injection and xm+1 is a nonze-
rodivisor on ΩpP/A for all p ≥ 0. Localizing at the prime ideal corresponding to z
finishes the proof. □

Remark 50.15.8.0FMZ Let S be a locally Noetherian scheme. Let X be locally of finite
type over S. Let Y ⊂ X be an effective Cartier divisor. If the map

O∧
X,y −→ O∧

Y,y

has a section for all y ∈ Y , then the de Rham complex of log poles is defined for
Y ⊂ X over S. If we ever need this result we will formulate a precise statement
and add a proof here.

Remark 50.15.9.0FN0 Let S be a locally Noetherian scheme. Let X be locally of finite
type over S. Let Y ⊂ X be an effective Cartier divisor. If for every y ∈ Y we can
find a diagram of schemes over S

X
φ←− U ψ−→ V

with φ étale and ψ|φ−1(Y ) : φ−1(Y ) → V étale, then the de Rham complex of log
poles is defined for Y ⊂ X over S. A special case is when the pair (X,Y ) étale
locally looks like (V ×A1, V × {0}). If we ever need this result we will formulate
a precise statement and add a proof here.

50.16. Calculations

0FUB In this section we calculate some Hodge and de Rham cohomology groups for a
standard blowing up.

We fix a ring R and we set S = Spec(R). Fix integers 0 ≤ m and 1 ≤ n. Consider
the closed immersion

Z = Am
S −→ Am+n

S = X, (a1, . . . , am) 7→ (a1, . . . , am, 0, . . . 0).

We are going to consider the blowing up L of X along the closed subscheme Z.
Write

X = Am+n
S = Spec(A) with A = R[x1, . . . , xm, y1, . . . , yn]

We will consider A = R[x1, . . . , xm, y1, . . . , yn] as a graded R-algebra by setting
deg(xi) = 0 and deg(yj) = 1. With this grading we have

P = Proj(A) = Am
S ×S Pn−1

S = Z ×S Pn−1
S = Pn−1

Z

Observe that the ideal cutting out Z in X is the ideal A+. Hence L is the Proj of
the Rees algebra

A⊕A+ ⊕ (A+)2 ⊕ . . . =
⊕

d≥0
A≥d
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Hence L is an example of the phenomenon studied in more generality in More on
Morphisms, Section 37.51; we will use the observations we made there without
further mention. In particular, we have a commutative diagram

P
0
//

p

��

L
π
//

b
��

P

p

��
Z

i // X // Z

such that π : L→ P is a line bundle over P = Z×S Pn−1
S with zero section 0 whose

image E = 0(P ) ⊂ L is the exceptional divisor of the blowup b.

Lemma 50.16.1.0FUR For a ≥ 0 we have
(1) the map ΩaX/S → b∗ΩaL/S is an isomorphism,
(2) the map ΩaZ/S → p∗ΩaP/S is an isomorphism, and
(3) the mapRb∗ΩaL/S → i∗Rp∗ΩaP/S is an isomorphism on cohomology sheaves

in degree ≥ 1.

Proof. Let us first prove part (2). Since P = Z ×S Pn−1
S we see that

ΩaP/S =
⊕

a=r+s
pr∗

1ΩrZ/S ⊗ pr∗
2ΩsPn−1

S
/S

Recalling that p = pr1 by the projection formula (Cohomology, Lemma 20.54.2) we
obtain

p∗ΩaP/S =
⊕

a=r+s
ΩrZ/S ⊗ pr1,∗pr∗

2ΩsPn−1
S

/S

By the calculations in Section 50.11 and in particular in the proof of Lemma 50.11.3
we have pr1,∗pr∗

2ΩsPn−1
S

/S
= 0 except if s = 0 in which case we get pr1,∗OP = OZ .

This proves (2).
By the material in Section 50.10 and in particular Lemma 50.10.4 we have π∗ΩaL/S =
ΩaP/S⊕

⊕
k≥1 ΩaL/S,k. Since the composition π◦0 in the diagram above is the identity

morphism on P to prove part (3) it suffices to show that ΩaL/S,k has vanishing
higher cohomology for k > 0. By Lemmas 50.10.2 and 50.10.4 there are short exact
sequences

0→ ΩaP/S ⊗OP (k)→ ΩaL/S,k → Ωa−1
P/S ⊗OP (k)→ 0

where Ωa−1
P/S = 0 if a = 0. Since P = Z ×S Pn−1

S we have

ΩaP/S =
⊕

i+j=a
ΩiZ/S ⊠ ΩjPn−1

S
/S

by Lemma 50.8.1. Since ΩiZ/S is free of finite rank we see that it suffices to show
that the higher cohomology of OZ ⊠ ΩjPn−1

S
/S

(k) is zero for k > 0. This follows
from Lemma 50.11.2 applied to P = Z ×S Pn−1

S = Pn−1
Z and the proof of (3) is

complete.
We still have to prove (1). If n = 1, then we are blowing up an effective Cartier
divisor and b is an isomorphism and we have (1). If n > 1, then the composition

Γ(X,ΩaX/S)→ Γ(L,ΩaL/S)→ Γ(L \ E,ΩaL/S) = Γ(X \ Z,ΩaX/S)

is an isomorphism as ΩaX/S is finite free (small detail omitted). Thus the only way
(1) can fail is if there are nonzero elements of Γ(L,ΩaL/S) which vanish outside of
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E = 0(P ). Since L is a line bundle over P with zero section 0 : P → L, it suffices to
show that on a line bundle there are no nonzero sections of a sheaf of differentials
which vanish identically outside the zero section. The reader sees this is true either
(preferably) by a local caculation or by using that ΩL/S,k ⊂ ΩL⋆/S,k (see references
above). □

We suggest the reader skip to the next section at this point.

Lemma 50.16.2.0G5G For a ≥ 0 there are canonical maps

b∗ΩaX/S −→ ΩaL/S −→ b∗ΩaX/S ⊗OL
OL((n− 1)E)

whose composition is induced by the inclusion OL ⊂ OL((n− 1)E).

Proof. The first arrow in the displayed formula is discussed in Section 50.2. To
get the second arrow we have to show that if we view a local section of ΩaL/S as
a “meromorphic section” of b∗ΩaX/S , then it has a pole of order at most n − 1
along E. To see this we work on affine local charts on L. Namely, recall that L is
covered by the spectra of the affine blowup algebras A[ Iyi ] where I = A+ is the ideal
generated by y1, . . . , yn. See Algebra, Section 10.70 and Divisors, Lemma 31.32.2.
By symmetry it is enough to work on the chart corresponding to i = 1. Then

A[ I
y1

] = R[x1, . . . , xm, y1, t2, . . . , tn]

where ti = yi/y1, see More on Algebra, Lemma 15.31.2. Thus the module Ω1
L/S

is over the corresponding affine open freely generated by dx1, . . . ,dxm, dy1, and
dt1, . . . ,dtn. Of course, the first m+ 1 of these generators come from b∗Ω1

X/S and
for the remaining n− 1 we have

dtj = dyj
y1

= 1
y1

dyj −
yj
y2

1
dy1 = dyj − tjdy1

y1

which has a pole of order 1 along E since E is cut out by y1 on this chart. Since
the wedges of a of these elements give a basis of ΩaL/S over this chart, and since
there are at most n− 1 of the dtj involved this finishes the proof. □

Lemma 50.16.3.0G5H Let E = 0(P ) be the exceptional divisor of the blowing up b. For
any locally free OX -module E and 0 ≤ i ≤ n− 1 the map

E −→ Rb∗(b∗E ⊗OL
OL(iE))

is an isomorphism in D(OX).

Proof. By the projection formula it is enough to show this for E = OX , see Coho-
mology, Lemma 20.54.2. Since X is affine it suffices to show that the maps

H0(X,OX)→ H0(L,OL)→ H0(L,OL(iE))

are isomorphisms and that Hj(X,OL(iE)) = 0 for j > 0 and 0 ≤ i ≤ n−1, see Co-
homology of Schemes, Lemma 30.4.6. Since π is affine, we can compute global sec-
tions and cohomology after taking π∗, see Cohomology of Schemes, Lemma 30.2.4.
If n = 1, then L→ X is an isomorphism and i = 0 hence the first statement holds.
If n > 1, then we consider the composition

H0(X,OX)→ H0(L,OL)→ H0(L,OL(iE))→ H0(L \ E,OL) = H0(X \ Z,OX)
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Since H0(X \ Z,OX) = H0(X,OX) in this case as Z has codimension n ≥ 2 in X
(details omitted) we conclude the first statement holds. For the second, recall that
OL(E) = OL(−1), see Divisors, Lemma 31.32.4. Hence we have

π∗OL(iE) = π∗OL(−i) =
⊕

k≥−i
OP (k)

as discussed in More on Morphisms, Section 37.51. Thus we conclude by the van-
ishing of the cohomology of twists of the structure sheaf on P = Pn−1

Z shown in
Cohomology of Schemes, Lemma 30.8.1. □

50.17. Blowing up and de Rham cohomology

0FUC Fix a base scheme S, a smooth morphism X → S, and a closed subscheme Z ⊂ X
which is also smooth over S. Denote b : X ′ → X the blowing up of X along Z.
Denote E ⊂ X ′ the exceptional divisor. Picture

(50.17.0.1)0FUS
E

j
//

p

��

X ′

b

��
Z

i // X

Our goal in this section is to prove that the map b∗ : H∗
dR(X/S) −→ H∗

dR(X ′/S) is
injective (although a lot more can be said).

Lemma 50.17.1.0FUU With notation as in More on Morphisms, Lemma 37.17.3 for a ≥ 0
we have

(1) the map ΩaX/S → b∗ΩaX′/S is an isomorphism,
(2) the map ΩaZ/S → p∗ΩaE/S is an isomorphism,
(3) the map Rb∗ΩaX′/S → i∗Rp∗ΩaE/S is an isomorphism on cohomology

sheaves in degree ≥ 1.

Proof. Let ϵ : X1 → X be a surjective étale morphism. Denote i1 : Z1 → X1,
b1 : X ′

1 → X1, E1 ⊂ X ′
1, and p1 : E1 → Z1 the base changes of the objects

considered in More on Morphisms, Lemma 37.17.3. Observe that i1 is a closed
immersion of schemes smooth over S and that b1 is the blowing up with center Z1
by Divisors, Lemma 31.32.3. Suppose that we can prove (1), (2), and (3) for the
morphisms b1, p1, and i1. Then by Lemma 50.2.2 we obtain that the pullback by ϵ
of the maps in (1), (2), and (3) are isomorphisms. As ϵ is a surjective flat morphism
we conclude. Thus working étale locally, by More on Morphisms, Lemma 37.17.1,
we may assume we are in the situation discussed in Section 50.16. In this case the
lemma is the same as Lemma 50.16.1. □

Lemma 50.17.2.0FUV With notation as in More on Morphisms, Lemma 37.17.3 and
denoting f : X → S the structure morphism there is a canonical distinguished
triangle

Ω•
X/S → Rb∗(Ω•

X′/S)⊕ i∗Ω•
Z/S → i∗Rp∗(Ω•

E/S)→ Ω•
X/S [1]

in D(X, f−1OS) where the four maps
Ω•
X/S → Rb∗(Ω•

X′/S),
Ω•
X/S → i∗Ω•

Z/S ,

Rb∗(Ω•
X′/S) → i∗Rp∗(Ω•

E/S),
i∗Ω•

Z/S → i∗Rp∗(Ω•
E/S)

https://stacks.math.columbia.edu/tag/0FUU
https://stacks.math.columbia.edu/tag/0FUV
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are the canonical ones (Section 50.2), except with sign reversed for one of them.

Proof. Choose a distinguished triangle
C → Rb∗Ω•

X′/S ⊕ i∗Ω•
Z/S → i∗Rp∗Ω•

E/S → C[1]

in D(X, f−1OS). It suffices to show that Ω•
X/S is isomorphic to C in a manner

compatible with the canonical maps. By the axioms of triangulated categories
there exists a map of distinguished triangles

C ′ //

��

b∗Ω•
X′/S ⊕ i∗Ω•

Z/S
//

��

i∗p∗Ω•
E/S

//

��

C ′[1]

��
C // Rb∗Ω•

X′/S ⊕ i∗Ω•
Z/S

// i∗Rp∗Ω•
E/S

// C[1]

By Lemma 50.17.1 part (3) and Derived Categories, Proposition 13.4.23 we con-
clude that C ′ → C is an isomorphism. By Lemma 50.17.1 part (2) the map
i∗Ω•

Z/S → i∗p∗Ω•
E/S is an isomorphism. Thus C ′ = b∗Ω•

X′/S in the derived cate-
gory. Finally we use Lemma 50.17.1 part (1) tells us this is equal to Ω•

X/S . We
omit the verification this is compatible with the canonical maps. □

Proposition 50.17.3.0FUW With notation as in More on Morphisms, Lemma 37.17.3 the
map Ω•

X/S → Rb∗Ω•
X′/S has a splitting in D(X, (X → S)−1OS).

Proof. Consider the triangle constructed in Lemma 50.17.2. We claim that the
map

Rb∗(Ω•
X′/S)⊕ i∗Ω•

Z/S → i∗Rp∗(Ω•
E/S)

has a splitting whose image contains the summand i∗Ω•
Z/S . By Derived Categories,

Lemma 13.4.11 this will show that the first arrow of the triangle has a splitting
which vanishes on the summand i∗Ω•

Z/S which proves the lemma. We will prove the
claim by decomposing Rp∗Ω•

E/S into a direct sum where the first piece corresponds
to Ω•

Z/S and the second piece can be lifted through Rb∗Ω•
X′/S .

Proof of the claim. We may decompose X into open and closed subschemes having
fixed relative dimension to S, see Morphisms, Lemma 29.34.12. Since the derived
category D(X, f−1O)S) correspondingly decomposes as a product of categories, we
may assume X has fixed relative dimension N over S. We may decompose Z =∐
Zm into open and closed subschemes of relative dimension m ≥ 0 over S. The

restriction im : Zm → X of i to Zm is a regular immersion of codimension N −m,
see Divisors, Lemma 31.22.11. Let E =

∐
Em be the corresponding decomposition,

i.e., we set Em = p−1(Zm). If pm : Em → Zm denotes the restriction of p to Em,
then we have a canonical isomorphism

ξ̃m :
⊕

t=0,...,N−m−1
Ω•
Zm/S

[−2t] −→ Rpm,∗Ω•
Em/S

in D(Zm, (Zm → S)−1OS) where in degree 0 we have the canonical map Ω•
Zm/S

→
Rpm,∗Ω•

Em/S
. See Remark 50.14.2. Thus we have an isomorphism

ξ̃ :
⊕

m

⊕
t=0,...,N−m−1

Ω•
Zm/S

[−2t] −→ Rp∗(Ω•
E/S)

in D(Z, (Z → S)−1OS) whose restriction to the summand Ω•
Z/S =

⊕
Ω•
Zm/S

of the
source is the canonical map Ω•

Z/S → Rp∗(Ω•
E/S). Consider the subcomplexes Mm

https://stacks.math.columbia.edu/tag/0FUW
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and Km of the complex
⊕

t=0,...,N−m−1 Ω•
Zm/S

[−2t] introduced in Remark 50.14.2.
We set

M =
⊕

Mm and K =
⊕

Km

We have M = K[−2] and by construction the map
cE/Z ⊕ ξ̃|M : Ω•

Z/S ⊕M −→ Rp∗(Ω•
E/S)

is an isomorphism (see remark referenced above).
Consider the map

δ : Ω•
E/S [−2] −→ Ω•

X′/S

in D(X ′, (X ′ → S)−1OS) of Lemma 50.15.5 with the property that the composition
Ω•
E/S [−2] −→ Ω•

X′/S −→ Ω•
E/S

is the map θ′ of Remark 50.4.3 for cdR1 (OX′(−E))|E) = cdR1 (OE(1)). The final
assertion of Remark 50.14.2 tells us that the diagram

K[−2]

(ξ̃|K)[−2]
��

id
// M

x̃|M
��

Rp∗Ω•
E/S [−2] Rp∗θ

′
// Rp∗Ω•

E/S

commutes. Thus we see that we can obtain the desired splitting of the claim as the
map

Rp∗(Ω•
E/S)

(cE/Z⊕ξ̃|M )−1

−−−−−−−−−→ Ω•
Z/S ⊕M

id⊕id−1

−−−−−→ Ω•
Z/S ⊕K[−2]

id⊕(ξ̃|K)[−2]−−−−−−−−→ Ω•
Z/S ⊕Rp∗Ω•

E/S [−2]
id⊕Rb∗δ−−−−−→ Ω•

Z/S ⊕Rb∗Ω•
X′/S

The relationship between θ′ and δ stated above together with the commutative
diagram involving θ′, ξ̃|K , and ξ̃|M above are exactly what’s needed to show that
this is a section to the canonical map Ω•

Z/S ⊕ Rb∗(Ω•
X′/S) → Rp∗(Ω•

E/S) and the
proof of the claim is complete. □

Lemma 50.17.5 shows that producing the splitting on Hodge cohomology is a good
deal easier than the result of Proposition 50.17.3. We urge the reader to skip ahead
to the next section.

Lemma 50.17.4.0G5I Let i : Z → X be a closed immersion of schemes which is regular
of codimension c. Then ExtqOX

(i∗F , E) = 0 for q < c for E locally free on X and F
any OZ-module.

Proof. By the local to global spectral sequence of Ext it suffices to prove this affine
locally on X. See Cohomology, Section 20.43. Thus we may assume X = Spec(A)
and there exists a regular sequence f1, . . . , fc inA such that Z = Spec(A/(f1, . . . , fc)).
We may assume c ≥ 1. Then we see that f1 : E → E is injective. Since i∗F is an-
nihilated by f1 this shows that the lemma holds for i = 0 and that we have a
surjection

Extq−1
OX

(i∗F , E/f1E) −→ ExtqOX
(i∗F , E)

https://stacks.math.columbia.edu/tag/0G5I
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Thus it suffices to show that the source of this arrow is zero. Next we repeat
this argument: if c ≥ 2 the map f2 : E/f1E → E/f1E is injective. Since i∗F is
annihilated by f2 this shows that the lemma holds for q = 1 and that we have a
surjection

Extq−2
OX

(i∗F , E/f1E + f2E) −→ Extq−1
OX

(i∗F , E/f1E)
Continuing in this fashion the lemma is proved. □

Lemma 50.17.5.0G5J With notation as in More on Morphisms, Lemma 37.17.3 for
a ≥ 0 there is a unique arrow Rb∗ΩaX′/S → ΩaX/S in D(OX) whose composition
with ΩaX/S → Rb∗ΩaX′/S is the identity on ΩaX/S .

Proof. We may decompose X into open and closed subschemes having fixed rela-
tive dimension to S, see Morphisms, Lemma 29.34.12. Since the derived category
D(X, f−1O)S) correspondingly decomposes as a product of categories, we may as-
sume X has fixed relative dimension N over S. We may decompose Z =

∐
Zm into

open and closed subschemes of relative dimension m ≥ 0 over S. The restriction
im : Zm → X of i to Zm is a regular immersion of codimension N−m, see Divisors,
Lemma 31.22.11. Let E =

∐
Em be the corresponding decomposition, i.e., we set

Em = p−1(Zm). We claim that there are natural maps

b∗ΩaX/S → ΩaX′/S → b∗ΩaX/S ⊗OX′ OX′(
∑

(N −m− 1)Em)

whose composition is induced by the inclusion OX′ → OX′(
∑

(N − m − 1)Em).
Namely, in order to prove this, it suffices to show that the cokernel of the first
arrow is locally on X ′ annihilated by a local equation of the effective Cartier divisor∑

(N −m − 1)Em. To see this in turn we can work étale locally on X as in the
proof of Lemma 50.17.1 and apply Lemma 50.16.2. Computing étale locally using
Lemma 50.16.3 we see that the induced composition

ΩaX/S → Rb∗ΩaX′/S → Rb∗

(
b∗ΩaX/S ⊗OX′ OX′(

∑
(N −m− 1)Em)

)
is an isomorphism in D(OX) which is how we obtain the existence of the map in
the lemma.

For uniqueness, it suffices to show that there are no nonzero maps from τ≥1Rb∗ΩX′/S

to ΩaX/S in D(OX). For this it suffices in turn to show that there are no nonzero
maps from Rqb∗ΩX′/s[−q] to ΩaX/S in D(OX) for q ≥ 1 (details omitted). By
Lemma 50.17.1 we see that Rqb∗ΩX′/s

∼= i∗R
qp∗ΩaE/S is the pushforward of a mod-

ule on Z =
∐
Zm. Moreover, observe that the restriction of Rqp∗ΩaE/S to Zm is

nonzero only for q < N − m. Namely, the fibres of Em → Zm have dimension
N −m − 1 and we can apply Limits, Lemma 32.19.2. Thus the desired vanishing
follows from Lemma 50.17.4. □

50.18. Comparing sheaves of differential forms

0FL7 The goal of this section is to compare the sheaves ΩpX/Z and ΩpY/Z when given a
locally quasi-finite syntomic morphism of schemes f : Y → X. The result will be
applied in Section 50.19 to the construction of the trace map on de Rham complexes
if f is finite.

https://stacks.math.columbia.edu/tag/0G5J
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Lemma 50.18.1.0FL8 Let R be a ring and consider a commutative diagram

0 // K0 // L0 // M0 // 0

L−1

∂

OO

M−1

OO

of R-modules with exact top row and M0 and M−1 finite free of the same rank.
Then there are canonical maps

∧i(H0(L•)) −→ ∧i(K0)⊗R det(M•)
whose composition with ∧i(K0) → ∧i(H0(L•)) is equal to multiplication with
δ(M•).

Proof. Say M0 and M−1 are free of rank n. For every i ≥ 0 there is a canonical
surjection

πi : ∧n+i(L0) −→ ∧i(K0)⊗ ∧n(M0)
whose kernel is the submodule generated by wedges l1 ∧ . . . ∧ ln+i such that > i of
the lj are in K0. On the other hand, the exact sequence

L−1 → L0 → H0(L•)→ 0
similarly produces canonical maps

∧i(H0(L•))⊗ ∧n(L−1) −→ ∧n+i(L0)
by sending η ⊗ θ to η̃ ∧ ∂(θ) where η̃ ∈ ∧i(L0) is a lift of η. The composition of
these two maps, combined with the identification ∧n(L−1) = ∧n(M−1) gives a map

∧i(H0(L•))⊗ ∧n(M−1) −→ ∧i(K0)⊗ ∧n(M0)
Since det(M•) = ∧n(M0)⊗(∧n(M−1))⊗−1 this produces a map as in the statement
of the lemma. If η is the image of ω ∈ ∧i(K0), then we see that θ ⊗ η is mapped
to πi(ω ∧ ∂(θ)) = ω ⊗ θ in ∧i(K0)⊗∧n(M0) where θ is the image of θ in ∧n(M0).
Since δ(M•) is simply the determinant of the map M−1 →M0 this proves the last
statement. □

Remark 50.18.2.0FL9 Let A be a ring. Let P = A[x1, . . . , xn]. Let f1, . . . , fn ∈
P and set B = P/(f1, . . . , fn). Assume A → B is quasi-finite. Then B is
a relative global complete intersection over A (Algebra, Definition 10.136.5) and
(f1, . . . , fn)/(f1, . . . , fn)2 is free with generators the classes f i by Algebra, Lemma
10.136.12. Consider the following diagram

ΩA/Z ⊗A B // ΩP/Z ⊗P B // ΩP/A ⊗P B

(f1, . . . , fn)/(f1, . . . , fn)2

OO

(f1, . . . , fn)/(f1, . . . , fn)2

OO

The right column represents NLB/A in D(B) hence has cohomology ΩB/A in degree
0. The top row is the split short exact sequence 0→ ΩA/Z ⊗A B → ΩP/Z ⊗P B →
ΩP/A⊗P B → 0. The middle column has cohomology ΩB/Z in degree 0 by Algebra,
Lemma 10.131.9. Thus by Lemma 50.18.1 we obtain canonical B-module maps

ΩpB/Z −→ ΩpA/Z ⊗A det(NLB/A)

whose composition with ΩpA/Z → ΩpB/Z is multiplication by δ(NLB/A).

https://stacks.math.columbia.edu/tag/0FL8
https://stacks.math.columbia.edu/tag/0FL9
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Lemma 50.18.3.0FLA There exists a unique rule that to every locally quasi-finite syn-
tomic morphism of schemes f : Y → X assigns OY -module maps

cpY/X : ΩpY/Z −→ f∗ΩpX/Z ⊗OY
det(NLY/X)

satisfying the following two properties
(1) the composition with f∗ΩpX/Z → ΩpY/Z is multiplication by δ(NLY/X),

and
(2) the rule is compatible with restriction to opens and with base change.

Proof. This proof is very similar to the proof of Discriminants, Proposition 49.13.2
and we suggest the reader look at that proof first. We fix p ≥ 0 throughout the
proof.
Let us reformulate the statement. Consider the category C whose objects, denoted
Y/X, are locally quasi-finite syntomic morphism f : Y → X of schemes and whose
morphisms b/a : Y ′/X ′ → Y/X are commutative diagrams

Y ′

f ′

��

b
// Y

f

��
X ′ a // X

which induce an isomorphism of Y ′ with an open subscheme of X ′ ×X Y . The
lemma means that for every object Y/X of C we have maps cpY/X with property (1)
and for every morphism b/a : Y ′/X ′ → Y/X of C we have b∗cpY/X = cpY ′/X′ via the
identifications b∗ det(NLY/X) = det(NLY ′/X′) (Discriminants, Section 49.13) and
b∗ΩpY/X = ΩpY ′/X′ (Lemma 50.2.1).

Given Y/X in C and y ∈ Y we can find an affine open V ⊂ Y and U ⊂ X with
f(V ) ⊂ U such that there exists some maps

ΩpY/Z|V −→
(
f∗ΩpX/Z ⊗OY

det(NLY/X)
)
|V

with property (1). This follows from picking affine opens as in Discriminants,
Lemma 49.10.1 part (5) and Remark 50.18.2. If ΩpX/Z is finite locally free and
annihilator of the section δ(NLY/X) is zero, then these local maps are unique and
automatically glue!
Let Cnice ⊂ C denote the full subcategory of Y/X such that

(1) X is of finite type over Z,
(2) ΩX/Z is locally free, and
(3) the annihilator of δ(NLY/X) is zero.

By the remarks in the previous paragraph, we see that for any object Y/X of
Cnice we have a unique map cpY/X satisfying condition (1). If b/a : Y ′/X ′ → Y/X

is a morphism of Cnice, then b∗cpY/X is equal to cpY ′/X′ because b∗δ(NLY/X) =
δ(NLY ′/X′) (see Discriminants, Section 49.13). In other words, we have solved the
problem on the full subcategory Cnice. For Y/X in Cnice we continue to denote
cpY/X the solution we’ve just found.

Consider morphisms
Y1/X1

b1/a1←−−− Y/X b2/a2−−−→ Y2/X2

https://stacks.math.columbia.edu/tag/0FLA
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in C such that Y1/X1 and Y2/X2 are objects of Cnice. Claim. b∗
1c
p
Y1/X1

= b∗
2c
p
Y2/X2

.
We will first show that the claim implies the lemma and then we will prove the
claim.
Let d, n ≥ 1 and consider the locally quasi-finite syntomic morphism Yn,d → Xn,d

constructed in Discriminants, Example 49.10.5. Then Yn,d and Yn,d are irreducible
schemes of finite type and smooth over Z. Namely, Xn,d is a spectrum of a polyno-
mial ring over Z and Yn,d is an open subscheme of such. The morphism Yn,d → Xn,d

is locally quasi-finite syntomic and étale over a dense open, see Discriminants,
Lemma 49.10.6. Thus δ(NLYn,d/Xn,d) is nonzero: for example we have the local
description of δ(NLY/X) in Discriminants, Remark 49.13.1 and we have the lo-
cal description of étale morphisms in Morphisms, Lemma 29.36.15 part (8). Now
a nonzero section of an invertible module over an irreducible regular scheme has
vanishing annihilator. Thus Yn,d/Xn,d is an object of Cnice.
Let Y/X be an arbitrary object of C. Let y ∈ Y . By Discriminants, Lemma 49.10.7
we can find n, d ≥ 1 and morphisms

Y/X ← V/U
b/a−−→ Yn,d/Xn,d

of C such that V ⊂ Y and U ⊂ X are open. Thus we can pullback the canonical
morphism cpYn,d/Xn,d constructed above by b to V . The claim guarantees these local
isomorphisms glue! Thus we get a well defined global maps cpY/X with property
(1). If b/a : Y ′/X ′ → Y/X is a morphism of C, then the claim also implies that
the similarly constructed map cpY ′/X′ is the pullback by b of the locally constructed
map cpY/X . Thus it remains to prove the claim.
In the rest of the proof we prove the claim. We may pick a point y ∈ Y and
prove the maps agree in an open neighbourhood of y. Thus we may replace Y1,
Y2 by open neighbourhoods of the image of y in Y1 and Y2. Thus we may assume
Y,X, Y1, X1, Y2, X2 are affine. We may write X = limXλ as a cofiltered limit of
affine schemes of finite type over X1 ×X2. For each λ we get

Y1 ×X1 Xλ and Xλ ×X2 Y2

If we take limits we obtain
limY1 ×X1 Xλ = Y1 ×X1 X ⊃ Y ⊂ X ×X2 Y2 = limXλ ×X2 Y2

By Limits, Lemma 32.4.11 we can find a λ and opens V1,λ ⊂ Y1 ×X1 Xλ and
V2,λ ⊂ Xλ ×X2 Y2 whose base change to X recovers Y (on both sides). After
increasing λ we may assume there is an isomorphism V1,λ → V2,λ whose base
change to X is the identity on Y , see Limits, Lemma 32.10.1. Then we have the
commutative diagram

Y/X

��

b1/a1

yy

b2/a2

%%
Y1/X1 V1,λ/Xλ

oo // Y2/X2

Thus it suffices to prove the claim for the lower row of the diagram and we reduce
to the case discussed in the next paragraph.
Assume Y,X, Y1, X1, Y2, X2 are affine of finite type over Z. Write X = Spec(A),
Xi = Spec(Ai). The ring map A1 → A corresponding to X → X1 is of finite
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type and hence we may choose a surjection A1[x1, . . . , xn] → A. Similarly, we
may choose a surjection A2[y1, . . . , ym] → A. Set X ′

1 = Spec(A1[x1, . . . , xn]) and
X ′

2 = Spec(A2[y1, . . . , ym]). Observe that ΩX′
1/Z is the direct sum of the pullback

of ΩX1/Z and a finite free module. Similarly for X ′
2. Set Y ′

1 = Y1 ×X1 X
′
1 and

Y ′
2 = Y2 ×X2 X

′
2. We get the following diagram

Y1/X1 ← Y ′
1/X

′
1 ← Y/X → Y ′

2/X
′
2 → Y2/X2

Since X ′
1 → X1 and X ′

2 → X2 are flat, the same is true for Y ′
1 → Y1 and Y ′

2 → Y2.
It follows easily that the annihilators of δ(NLY ′

1/X
′
1
) and δ(NLY ′

2/X
′
2
) are zero.

Hence Y ′
1/X

′
1 and Y ′

2/X
′
2 are in Cnice. Thus the outer morphisms in the displayed

diagram are morphisms of Cnice for which we know the desired compatibilities.
Thus it suffices to prove the claim for Y ′

1/X
′
1 ← Y/X → Y ′

2/X
′
2. This reduces us

to the case discussed in the next paragraph.
Assume Y,X, Y1, X1, Y2, X2 are affine of finite type over Z and X → X1 and X →
X2 are closed immersions. Consider the open embeddings Y1×X1 X ⊃ Y ⊂ X ×X2

Y2. There is an open neighbourhood V ⊂ Y of y which is a standard open of both
Y1 ×X1 X and X ×X2 Y2. This follows from Schemes, Lemma 26.11.5 applied to
the scheme obtained by glueing Y1 ×X1 X and X ×X2 Y2 along Y ; details omitted.
Since X ×X2 Y2 is a closed subscheme of Y2 we can find a standard open V2 ⊂ Y2
such that V2 ×X2 X = V . Similarly, we can find a standard open V1 ⊂ Y1 such
that V1 ×X1 X = V . After replacing Y, Y1, Y2 by V, V1, V2 we reduce to the case
discussed in the next paragraph.
Assume Y,X, Y1, X1, Y2, X2 are affine of finite type over Z and X → X1 and X →
X2 are closed immersions and Y1 ×X1 X = Y = X ×X2 Y2. Write X = Spec(A),
Xi = Spec(Ai), Y = Spec(B), Yi = Spec(Bi). Then we can consider the affine
schemes

X ′ = Spec(A1 ×A A2) = Spec(A′) and Y ′ = Spec(B1 ×B B2) = Spec(B′)
Observe that X ′ = X1⨿X X2 and Y ′ = Y1⨿Y Y2, see More on Morphisms, Lemma
37.14.1. By More on Algebra, Lemma 15.5.1 the rings A′ and B′ are of finite
type over Z. By More on Algebra, Lemma 15.6.4 we have B′ ⊗A A1 = B1 and
B′ ×A A2 = B2. In particular a fibre of Y ′ → X ′ over a point of X ′ = X1 ⨿X X2
is always equal to either a fibre of Y1 → X1 or a fibre of Y2 → X2. By More
on Algebra, Lemma 15.6.8 the ring map A′ → B′ is flat. Thus by Discriminants,
Lemma 49.10.1 part (3) we conclude that Y ′/X ′ is an object of C. Consider now
the commutative diagram

Y/X

b1/a1

zz

b2/a2

$$
Y1/X1

$$

Y2/X2

zz
Y ′/X ′

Now we would be done if Y ′/X ′ is an object of Cnice, but this is almost never the
case. Namely, then pulling back cpY ′/X′ around the two sides of the square, we
would obtain the desired conclusion. To get around the problem that Y ′/X ′ is
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not in Cnice we note the arguments above show that, after possibly shrinking all of
the schemes X,Y,X1, Y1, X2, Y2, X

′, Y ′ we can find some n, d ≥ 1, and extend the
diagram like so:

Y/X

b1/a1

yy

b2/a2

%%
Y1/X1

%%

Y2/X2

yy
Y ′/X ′

��
Yn,d/Xn,d

and then we can use the already given argument by pulling back from cpYn,d/Xn,d .
This finishes the proof. □

50.19. Trace maps on de Rham complexes

0FK6 A reference for some of the material in this section is [Gar84]. Let S be a scheme.
Let f : Y → X be a finite locally free morphism of schemes over S. Then there is a
trace map Tracef : f∗OY → OX , see Discriminants, Section 49.3. In this situation
a trace map on de Rham complexes is a map of complexes

ΘY/X : f∗Ω•
Y/S −→ Ω•

X/S

such that ΘY/X is equal to Tracef in degree 0 and satisfies
ΘY/X(ω ∧ η) = ω ∧ΘY/X(η)

for local sections ω of Ω•
X/S and η of f∗Ω•

Y/S . It is not clear to us whether such a
trace map ΘY/X exists for every finite locally free morphism Y → X; please email
stacks.project@gmail.com if you have a counterexample or a proof.

Example 50.19.1.0FK7 Here is an example where we do not have a trace map on de
Rham complexes. For example, consider the C-algebra B = C[x, y] with action
of G = {±1} given by x 7→ −x and y 7→ −y. The invariants A = BG form a
normal domain of finite type over C generated by x2, xy, y2. We claim that for
the inclusion A ⊂ B there is no reasonable trace map ΩB/C → ΩA/C on 1-forms.
Namely, consider the element ω = xdy ∈ ΩB/C. Since ω is invariant under the
action of G if a “reasonable” trace map exists, then 2ω should be in the image
of ΩA/C → ΩB/C. This is not the case: there is no way to write 2ω as a linear
combination of d(x2), d(xy), and d(y2) even with coefficients in B. This example
contradicts the main theorem in [Zan99].

Lemma 50.19.2.0FLB There exists a unique rule that to every finite syntomic morphism
of schemes f : Y → X assigns OX -module maps

Θp
Y/X : f∗ΩpY/Z −→ ΩpX/Z

satisfying the following properties
(1) the composition with ΩpX/Z ⊗OX

f∗OY → f∗ΩpY/Z is equal to id⊗ Tracef
where Tracef : f∗OY → OX is the map from Discriminants, Section 49.3,

mailto:stacks.project@gmail.com
https://stacks.math.columbia.edu/tag/0FK7
https://stacks.math.columbia.edu/tag/0FLB
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(2) the rule is compatible with base change.

Proof. First, assume that X is locally Noetherian. By Lemma 50.18.3 we have a
canonical map

cpY/X : ΩpY/S −→ f∗ΩpX/S ⊗OY
det(NLY/X)

By Discriminants, Proposition 49.13.2 we have a canonical isomorphism
cY/X : det(NLY/X)→ ωY/X

mapping δ(NLY/X) to τY/X . Combined these maps give
cpY/X ⊗ cY/X : ΩpY/S −→ f∗ΩpX/S ⊗OY

ωY/X

By Discriminants, Section 49.5 this is the same thing as a map
Θp
Y/X : f∗ΩpY/S −→ ΩpX/S

Recall that the relationship between cpY/X ⊗ cY/X and Θp
Y/X uses the evaluation

map f∗ωY/X → OX which sends τY/X to Tracef (1), see Discriminants, Section
49.5. Hence property (1) holds. Property (2) holds for base changes by X ′ → X
with X ′ locally Noetherian because both cpY/X and cY/X are compatible with such
base changes. For f : Y → X finite syntomic and X locally Noetherian, we will
continue to denote Θp

Y/X the solution we’ve just found.
Uniqueness. Suppose that we have a finite syntomic morphism f : Y → X such
that X is smooth over Spec(Z) and f is étale over a dense open of X. We claim
that in this case Θp

Y/X is uniquely determined by property (1). Namely, consider
the maps

ΩpX/Z ⊗OX
f∗OY → f∗ΩpY/Z → ΩpX/Z

The sheaf ΩpX/Z is torsion free (by the assumed smoothness), hence it suffices to
check that the restriction of Θp

Y/X is uniquely determined over the dense open
over which f is étale, i.e., we may assume f is étale. However, if f is étale, then
f∗ΩX/Z = ΩY/Z hence the first arrow in the displayed equation is an isomorphism.
Since we’ve pinned down the composition, this guarantees uniqueness.
Let f : Y → X be a finite syntomic morphism of locally Noetherian schemes. Let
x ∈ X. By Discriminants, Lemma 49.11.7 we can find d ≥ 1 and a commutative
diagram

Y

��

V

��

oo // Vd

��
X Uoo // Ud

such that x ∈ U ⊂ X is open, V = f−1(U) and V = U ×Ud Vd. Thus Θp
Y/X |V is the

pullback of the map Θp
Vd/Ud

. However, by the discussion on uniqueness above and
Discriminants, Lemmas 49.11.4 and 49.11.5 the map Θp

Vd/Ud
is uniquely determined

by the requirement (1). Hence uniqueness holds.
At this point we know that we have existence and uniqueness for all finite syntomic
morphisms Y → X with X locally Noetherian. We could now give an argument
similar to the proof of Lemma 50.18.3 to extend to general X. However, instead
it possible to directly use absolute Noetherian approximation to finish the proof.
Namely, to construct Θp

Y/X it suffices to do so Zariski locally on X (provided we
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also show the uniqueness). Hence we may assume X is affine (small detail omitted).
Then we can write X = limi∈I Xi as the limit over a directed set I of Noetherian
affine schemes. By Algebra, Lemma 10.127.8 we can find 0 ∈ I and a finitely
presented morphism of affines f0 : Y0 → X0 whose base change to X is Y → X.
After increasing 0 we may assume Y0 → X0 is finite and syntomic, see Algebra,
Lemma 10.168.9 and 10.168.3. For i ≥ 0 also the base change fi : Yi = Y0×X0Xi →
Xi is finite syntomic. Then

Γ(X, f∗ΩpY/Z) = Γ(Y,ΩpY/Z) = colimi≥0 Γ(Yi,ΩpYi/Z) = colimi≥0 Γ(Xi, fi,∗ΩpYi/Z)

Hence we can (and are forced to) define Θp
Y/X as the colimit of the maps Θp

Yi/Xi
.

This map is compatible with any cartesian diagram

Y ′ //

��

Y

��
X ′ // X

with X ′ affine as we know this for the case of Noetherian affine schemes by the
arguments given above (small detail omitted; hint: if we also write X ′ = limj∈J X

′
j

then for every i ∈ I there is a j ∈ J and a morphism X ′
j → Xi compatible with the

morphism X ′ → X). This finishes the proof. □

Proposition 50.19.3.0FLC [Gar84]Let f : Y → X be a finite syntomic morphism of schemes.
The maps Θp

Y/X of Lemma 50.19.2 define a map of complexes

ΘY/X : f∗Ω•
Y/Z −→ Ω•

X/Z

with the following properties
(1) in degree 0 we get Tracef : f∗OY → OX , see Discriminants, Section 49.3,
(2) we have ΘY/X(ω ∧ η) = ω ∧ΘY/X(η) for ω in Ω•

X/Z and η in f∗Ω•
Y/Z,

(3) if f is a morphism over a base scheme S, then ΘY/X induces a map of
complexes f∗Ω•

Y/S → Ω•
X/S .

Proof. By Discriminants, Lemma 49.11.7 for every x ∈ X we can find d ≥ 1 and a
commutative diagram

Y

��

V

��

oo // Vd

��

// Yd = Spec(Bd)

��
X Uoo // Ud // Xd = Spec(Ad)

such that x ∈ U ⊂ X is affine open, V = f−1(U) and V = U ×Ud Vd. Write
U = Spec(A) and V = Spec(B) and observe that B = A ⊗Ad Bd and recall that
Bd = Ade1 ⊕ . . . ⊕ Aded. Suppose we have a1, . . . , ar ∈ A and b1, . . . , bs ∈ B.
We may write bj =

∑
aj,led with aj,l ∈ A. Set N = r + sd and consider the

factorizations
V //

��

V ′ = AN × Vd //

��

Vd

��
U // U ′ = AN × Ud // Ud

https://stacks.math.columbia.edu/tag/0FLC
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Here the horizontal lower right arrow is given by the morphism U → Ud (from
the earlier diagram) and the morphism U → AN given by a1, . . . , ar, a1,1, . . . , as,d.
Then we see that the functions a1, . . . , ar are in the image of Γ(U ′,OU ′)→ Γ(U,OU )
and the functions b1, . . . , bs are in the image of Γ(V ′,OV ′) → Γ(V,OV ). In this
way we see that for any finite collection of elements4 of the groups

Γ(V,ΩiY/Z), i = 0, 1, 2, . . . and Γ(U,ΩjX/Z), j = 0, 1, 2, . . .

we can find a factorizations V → V ′ → Vd and U → U ′ → Ud with V ′ = AN × Vd
and U ′ = AN × Ud as above such that these sections are the pullbacks of sections
from

Γ(V ′,ΩiV ′/Z), i = 0, 1, 2, . . . and Γ(U ′,ΩjU ′/Z), j = 0, 1, 2, . . .

The upshot of this is that to check d ◦ΘY/X = ΘY/X ◦ d it suffices to check this is
true for ΘV ′/U ′ . Similarly, for property (2) of the lemma.
By Discriminants, Lemmas 49.11.4 and 49.11.5 the scheme Ud is smooth and the
morphism Vd → Ud is étale over a dense open of Ud. Hence the same is true for the
morphism V ′ → U ′. Since ΩU ′/Z is locally free and hence ΩpU ′/Z is torsion free, it
suffices to check the desired relations after restricting to the open over which V ′ is
finite étale. Then we may check the relations after a surjective étale base change.
Hence we may split the finite étale cover and assume we are looking at a morphism
of the form ∐

i=1,...,d
W −→W

with W smooth over Z. In this case any local properties of our construction are
trivial to check (provided they are true). This finishes the proof of (1) and (2).
Finally, we observe that (3) follows from (2) because ΩY/S is the quotient of ΩY/Z
by the submodule generated by pullbacks of local sections of ΩS/Z. □

Example 50.19.4.0FLD Let A be a ring. Let f = xd +
∑

0≤i<d ad−ix
i ∈ A[x]. Let

B = A[x]/(f). By Proposition 50.19.3 we have a morphism of complexes
ΘB/A : Ω•

B −→ Ω•
A

In particular, if t ∈ B denotes the image of x ∈ A[x] we can consider the elements
ΘB/A(tidt) ∈ Ω1

A, i = 0, . . . , d− 1
What are these elements? By the same principle as used in the proof of Proposition
50.19.3 it suffices to compute this in the universal case, i.e., when A = Z[a1, . . . , ad]
or even when A is replaced by the fraction field Q(a1, . . . , ad). Writing symbolically

f =
∏

i=1,...,d
(x− αi)

we see that over Q(α1, . . . , αd) the algebra B becomes split:

Q(a0, . . . , ad−1)[x]/(f) −→
∏

i=1,...,d
Q(α1, . . . , αd), t 7−→ (α1, . . . , αd)

Thus for example
Θ(dt) =

∑
dαi = −da1

4After all these elements will be finite sums of elements of the form a0da1 ∧ . . . ∧ dai with
a0, . . . , ai ∈ A or finite sums of elements of the form b0db1 ∧ . . . ∧ dbj with b0, . . . , bj ∈ B.

https://stacks.math.columbia.edu/tag/0FLD
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Next, we have
Θ(tdt) =

∑
αidαi = a1da1 − da2

Next, we have

Θ(t2dt) =
∑

α2
i dαi = −a2

1da1 + a1da2 + a2da1 − da3

(modulo calculation error), and so on. This suggests that if f(x) = xd − a then

ΘB/A(tidt) =
{

0 if i = 0, . . . , d− 2
da if i = d− 1

in ΩA. This is true for in this particular case one can do the calculation for the
extension Q(a)[x]/(xd − a) to verify this directly.

Lemma 50.19.5.0FW2 Let p be a prime number. Let X → S be a smooth morphism
of relative dimension d of schemes in characteristic p. The relative Frobenius
FX/S : X → X(p) of X/S (Varieties, Definition 33.36.4) is finite syntomic and
the corresponding map

ΘX/X(p) : FX/S,∗Ω•
X/S → Ω•

X(p)/S

is zero in all degrees except in degree d where it defines a surjection.

Proof. Observe that FX/S is a finite morphism by Varieties, Lemma 33.36.8. To
prove that FX/S is flat, it suffices to show that the morphism FX/S,s : Xs → X

(p)
s

between fibres is flat for all s ∈ S, see More on Morphisms, Theorem 37.16.2.
Flatness of Xs → X

(p)
s follows from Algebra, Lemma 10.128.1 (and the finiteness

already shown). By More on Morphisms, Lemma 37.62.10 the morphism FX/S is a
local complete intersection morphism. Hence FX/S is finite syntomic (see More on
Morphisms, Lemma 37.62.8).

For every point x ∈ X we may choose a commutative diagram

X

��

Uoo

π

��
S Ad

S
oo

where π is étale and x ∈ U is open in X, see Morphisms, Lemma 29.36.20. Observe
that Ad

S → Ad
S , (x1, . . . , xd) 7→ (xp1, . . . , x

p
d) is the relative Frobenius for AdS over

S. The commutative diagram

U

π

��

FX/S

// U (p)

π(p)

��
Ad
S

xi 7→xp
i // Ad

S

of Varieties, Lemma 33.36.5 for π : U → Ad
S is cartesian by Étale Morphisms,

Lemma 41.14.3. Since the construction of Θ is compatible with base change and
since ΩU/S = π∗ΩAd

S
/S (Lemma 50.2.2) we conclude that it suffices to show the

lemma for Ad
S .

https://stacks.math.columbia.edu/tag/0FW2
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Let A be a ring of characteristic p. Consider the unique A-algebra homomorphism
A[y1, . . . , yd] → A[x1, . . . , xd] sending yi to xpi . The arguments above reduce us to
computing the map

Θi : ΩiA[x1,...,xd]/A → ΩiA[y1,...,yd]/A

We urge the reader to do the computation in this case for themselves. As in Example
50.19.4 we may reduce this to computing a formula for Θi in the universal case

Z[y1, . . . , yd]→ Z[x1, . . . , xd], yi 7→ xpi

In turn, we can find the formula for Θi by computing in the complex case, i.e., for
the C-algebra map

C[y1, . . . , yd]→ C[x1, . . . , xd], yi 7→ xpi

We may even invert x1, . . . , xd and y1, . . . , yd. In this case, we have dxi = p−1x−p+1
i dyi.

Hence we see that
Θi(xe1

1 . . . xedd dx1 ∧ . . . ∧ dxi) = p−iΘi(xe1−p+1
1 . . . xei−p+1

i x
ei+1
i+1 . . . xedd dy1 ∧ . . . ∧ dyi)

= p−iTrace(xe1−p+1
1 . . . xei−p+1

i x
ei+1
i+1 . . . xedd )dy1 ∧ . . . ∧ dyi

by the properties of Θi. An elementary computation shows that the trace in
the expression above is zero unless e1, . . . , ei are congruent to −1 modulo p and
ei+1, . . . , ed are divisible by p. Moreover, in this case we obtain

pd−iy
(e1−p+1)/p
1 . . . y

(ei−p+1)/p
i y

ei+1/p
i+1 . . . y

ed/p
d dy1 ∧ . . . ∧ dyi

We conclude that we get zero in characteristic p unless d = i and in this case we
get every possible d-form. □

50.20. Poincaré duality

0FW3 In this section we prove Poincar’e duality for the de Rham cohomology of a proper
smooth scheme over a field. Let us first explain how this works for Hodge cohomol-
ogy.

Lemma 50.20.1.0FW4 Let k be a field. Let X be a nonempty smooth proper scheme
over k equidimensional of dimension d. There exists a k-linear map

t : Hd(X,ΩdX/k) −→ k

unique up to precomposing by multiplication by a unit of H0(X,OX) with the
following property: for all p, q the pairing

Hq(X,ΩpX/k)×Hd−q(X,Ωd−p
X/k) −→ k, (ξ, ξ′) 7−→ t(ξ ∪ ξ′)

is perfect.

Proof. By Duality for Schemes, Lemma 48.27.1 we have ω•
X = ΩdX/k[d]. Since ΩX/k

is locally free of rank d (Morphisms, Lemma 29.34.12) we have
ΩdX/k ⊗OX

(ΩpX/k)∨ ∼= Ωd−p
X/k

Thus we obtain a k-linear map t : Hd(X,ΩdX/k) → k such that the statement is
true by Duality for Schemes, Lemma 48.27.4. In particular the pairing H0(X,OX)×
Hd(X,ΩdX/k)→ k is perfect, which implies that any k-linear map t′ : Hd(X,ΩdX/k)→
k is of the form ξ 7→ t(gξ) for some g ∈ H0(X,OX). Of course, in order for t′ to still
produce a duality between H0(X,OX) and Hd(X,ΩdX/k) we need g to be a unit.

https://stacks.math.columbia.edu/tag/0FW4


50.20. POINCARÉ DUALITY 4207

Denote ⟨−,−⟩p,q the pairing constructed using t and denote ⟨−,−⟩′p,q the pairing
constructed using t′. Clearly we have

⟨ξ, ξ′⟩′p,q = ⟨gξ, ξ′⟩p,q

for ξ ∈ Hq(X,ΩpX/k) and ξ′ ∈ Hd−q(X,Ωd−p
X/k). Since g is a unit, i.e., invertible, we

see that using t′ instead of t we still get perfect pairings for all p, q. □

Lemma 50.20.2.0FW5 Let k be a field. Let X be a smooth proper scheme over k. The
map

d : H0(X,OX)→ H0(X,Ω1
X/k)

is zero.

Proof. Since X is smooth over k it is geometrically reduced over k, see Varieties,
Lemma 33.25.4. Hence H0(X,OX) =

∏
ki is a finite product of finite separable

field extensions ki/k, see Varieties, Lemma 33.9.3. It follows that ΩH0(X,OX)/k =∏
Ωki/k = 0 (see for example Algebra, Lemma 10.158.1). Since the map of the

lemma factors as
H0(X,OX)→ ΩH0(X,OX)/k → H0(X,ΩX/k)

by functoriality of the de Rham complex (see Section 50.2), we conclude. □

Lemma 50.20.3.0FW6 Let k be a field. Let X be a smooth proper scheme over k
equidimensional of dimension d. The map

d : Hd(X,Ωd−1
X/k)→ Hd(X,ΩdX/k)

is zero.

Proof. It is tempting to think this follows from a combination of Lemmas 50.20.2
and 50.20.1. However this doesn’t work because the maps OX → Ω1

X/k and Ωd−1
X/k →

ΩdX/k are not OX -linear and hence we cannot use the functoriality discussed in
Duality for Schemes, Remark 48.27.3 to conclude the map in Lemma 50.20.2 is
dual to the one in this lemma.
We may replace X by a connected component of X. Hence we may assume X is
irreducible. By Varieties, Lemmas 33.25.4 and 33.9.3 we see that k′ = H0(X,OX) is
a finite separable extension k′/k. Since Ωk′/k = 0 (see for example Algebra, Lemma
10.158.1) we see that ΩX/k = ΩX/k′ (see Morphisms, Lemma 29.32.9). Thus we
may replace k by k′ and assume that H0(X,OX) = k.
Assume H0(X,OX) = k. We conclude that dimHd(X,ΩdX/k) = 1 by Lemma
50.20.1. Assume first that the characteristic of k is a prime number p. Denote
FX/k : X → X(p) the relative Frobenius of X over k; please keep in mind the facts
proved about this morphism in Lemma 50.19.5. Consider the commutative diagram

Hd(X,Ωd−1
X/k)

��

// Hd(X(p), FX/k,∗Ωd−1
X/k)

��

Θd−1
// Hd(X(p),Ωd−1

X(p)/k
)

��
Hd(X,ΩdX/k) // Hd(X(p), FX/k,∗ΩdX/k) Θd // Hd(X(p),Ωd

X(p)/k
)

The left two horizontal arrows are isomorphisms as FX/k is finite, see Cohomology
of Schemes, Lemma 30.2.4. The right square commutes as ΘX(p)/X is a morphism

https://stacks.math.columbia.edu/tag/0FW5
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of complexes and Θd−1 is zero. Thus it suffices to show that Θd is nonzero (because
the dimension of the source of the map Θd is 1 by the discussion above). However,
we know that

Θd : FX/k,∗ΩdX/k → ΩdX(p)/k

is surjective and hence surjective after applying the right exact functor Hd(X(p),−)
(right exactness by the vanishing of cohomology beyond d as follows from Coho-
mology, Proposition 20.20.7). Finally, Hd(X(d),Ωd

X(d)/k
) is nonzero for example

because it is dual to H0(X(d),OX(p)) by Lemma 50.20.1 applied to X(p) over k.
This finishes the proof in this case.

Finally, assume the characteristic of k is 0. We can write k as the filtered colimit
of its finite type Z-subalgebras R. For one of these we can find a cartesian diagram
of schemes

X

��

// Y

��
Spec(k) // Spec(R)

such that Y → Spec(R) is smooth of relative dimension d and proper. See Limits,
Lemmas 32.10.1, 32.8.9, 32.18.4, and 32.13.1. The modules M i,j = Hj(Y,ΩiY/R)
are finite R-modules, see Cohomology of Schemes, Lemma 30.19.2. Thus after
replacing R by a localization we may assume all of these modules are finite free.
We have M i,j ⊗R k = Hj(X,ΩiX/k) by flat base change (Cohomology of Schemes,
Lemma 30.5.2). Thus it suffices to show that Md−1,d → Md,d is zero. This is a
map of finite free modules over a domain, hence it suffices to find a dense set of
primes p ⊂ R such that after tensoring with κ(p) we get zero. Since R is of finite
type over Z, we can take the collection of primes p whose residue field has positive
characteristic (details omitted). Observe that

Md−1,d ⊗R κ(p) = Hd(Yκ(p),Ωd−1
Yκ(p)/κ(p))

for example by Limits, Lemma 32.19.2. Similarly for Md,d. Thus we see that
Md−1,d ⊗R κ(p) → Md,d ⊗R κ(p) is zero by the case of positive characteristic
handled above. □

Proposition 50.20.4.0FW7 Let k be a field. Let X be a nonempty smooth proper scheme
over k equidimensional of dimension d. There exists a k-linear map

t : H2d
dR(X/k) −→ k

unique up to precomposing by multiplication by a unit of H0(X,OX) with the
following property: for all i the pairing

Hi
dR(X/k)×H2d−i

dR (X/k) −→ k, (ξ, ξ′) 7−→ t(ξ ∪ ξ′)

is perfect.

Proof. By the Hodge-to-de Rham spectral sequence (Section 50.6), the vanishing
of ΩiX/k for i > d, the vanishing in Cohomology, Proposition 20.20.7 and the re-
sults of Lemmas 50.20.2 and 50.20.3 we see that H0

dR(X/k) = H0(X,OX) and

https://stacks.math.columbia.edu/tag/0FW7
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Hd(X,ΩdX/k) = H2d
dR(X/k). More precisesly, these identifications come from the

maps of complexes

Ω•
X/k → OX [0] and ΩdX/k[−d]→ Ω•

X/k

Let us choose t : H2d
dR(X/k) → k which via this identification corresponds to a t

as in Lemma 50.20.1. Then in any case we see that the pairing displayed in the
lemma is perfect for i = 0.

Denote k the constant sheaf with value k on X. Let us abbreviate Ω• = Ω•
X/k.

Consider the map (50.4.0.1) which in our situation reads

∧ : Tot(Ω• ⊗k Ω•) −→ Ω•

For every integer p = 0, 1, . . . , d this map annihilates the subcomplex Tot(σ>pΩ•⊗k
σ≥d−pΩ•) for degree reasons. Hence we find that the restriction of ∧ to the sub-
complex Tot(Ω• ⊗k σ≥d−pΩ•) factors through a map of complexes

γp : Tot(σ≤pΩ• ⊗k σ≥d−pΩ•) −→ Ω•

Using the same procedure as in Section 50.4 we obtain cup products

Hi(X,σ≤pΩ•)×H2d−i(X,σ≥d−pΩ•) −→ H2d
dR(X,Ω•)

We will prove by induction on p that these cup products via t induce perfect pairings
between Hi(X,σ≤pΩ•) and H2d−i(X,σ≥d−pΩ•). For p = d this is the assertion of
the proposition.

The base case is p = 0. In this case we simply obtain the pairing betweenHi(X,OX)
and Hd−i(X,Ωd) of Lemma 50.20.1 and the result is true.

Induction step. Say we know the result is true for p. Then we consider the distin-
guished triangle

Ωp+1[−p− 1]→ σ≤p+1Ω• → σ≤pΩ• → Ωp+1[−p]

and the distinguished triangle

σ≥d−pΩ• → σ≥d−p−1Ω• → Ωd−p−1[−d+ p+ 1]→ (σ≥d−pΩ•)[1]

Observe that both are distinguished triangles in the homotopy category of com-
plexes of sheaves of k-modules; in particular the maps σ≤pΩ• → Ωp+1[−p] and
Ωd−p−1[−d+p+1]→ (σ≥d−pΩ•)[1] are given by actual maps of complexes, namely
using the differential Ωp → Ωp+1 and the differential Ωd−p−1 → Ωd−p. Consider
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the long exact cohomology sequences associated to these distinguished triangles

Hi−1(X,σ≤pΩ•)

a

��
Hi(X,Ωp+1[−p− 1])

b

��
Hi(X,σ≤p+1Ω•)

c

��
Hi(X,σ≤pΩ•)

d

��
Hi+1(X,Ωp+1[−p− 1])

H2d−i+1(X,σ≥d−pΩ•)

H2d−i(X,Ωd−p−1[−d+ p+ 1])

a′

OO

H2d−i(X,σ≥d−p−1Ω•)

b′

OO

H2d−i(X,σ≥d−pΩ•)

c′

OO

H2d−i−1(X,Ωd−p−1[−d+ p+ 1])

d′

OO

By induction and Lemma 50.20.1 we know that the pairings constructed above
between the k-vectorspaces on the first, second, fourth, and fifth rows are perfect.
By the 5-lemma, in order to show that the pairing between the cohomology groups
in the middle row is perfect, it suffices to show that the pairs (a, a′), (b, b′), (c, c′),
and (d, d′) are compatible with the given pairings (see below).

Let us prove this for the pair (c, c′). Here we observe simply that we have a
commutative diagram

Tot(σ≤pΩ• ⊗k σ≥d−pΩ•)

γp

��

Tot(σ≤p+1Ω• ⊗k σ≥d−pΩ•)oo

��
Ω• Tot(σ≤p+1Ω• ⊗k σ≥d−p−1Ω•)

γp+1oo

Hence if we have α ∈ Hi(X,σ≤p+1Ω•) and β ∈ H2d−i(X,σ≥d−pΩ•) then we get
γp(α ∪ c′(β)) = γp+1(c(α) ∪ β) by functoriality of the cup product.

Similarly for the pair (b, b′) we use the commutative diagram

Tot(σ≤p+1Ω• ⊗k σ≥d−p−1Ω•)

γp+1

��

Tot(Ωp+1[−p− 1]⊗k σ≥d−p−1Ω•)oo

��
Ω• Ωp+1[−p− 1]⊗k Ωd−p−1[−d+ p+ 1]∧oo

and argue in the same manner.

For the pair (d, d′) we use the commutative diagram

Ωp+1[−p]⊗k Ωd−p−1[−d+ p]

��

Tot(σ≤pΩ• ⊗k Ωd−p−1[−d+ p])oo

��
Ω• Tot(σ≤pΩ• ⊗k σ≥d−pΩ•)oo
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and we look at cohomology classes in Hi(X,σ≤pΩ•) and H2d−i(X,Ωd−p−1[−d+p]).
Changing i to i− 1 we get the result for the pair (a, a′) thereby finishing the proof
that our pairings are perfect.
We omit the argument showing the uniqueness of t up to precomposing by multi-
plication by a unit in H0(X,OX). □

50.21. Chern classes

0FW8 The results proved so far suffice to use the discussion in Weil Cohomology Theories,
Section 45.12 to produce Chern classes in de Rham cohomology.

Lemma 50.21.1.0FW9 There is a unique rule which assigns to every quasi-compact and
quasi-separated scheme X a total Chern class

cdR : K0(Vect(X)) −→
∏

i≥0
H2i
dR(X/Z)

with the following properties
(1) we have cdR(α+ β) = cdR(α)cdR(β) for α, β ∈ K0(Vect(X)),
(2) if f : X → X ′ is a morphism of quasi-compact and quasi-separated

schemes, then cdR(f∗α) = f∗cdR(α),
(3) given L ∈ Pic(X) we have cdR([L]) = 1 + cdR1 (L)

The construction can easily be extended to all schemes, but to do so one needs to
slightly upgrade the discussion in Weil Cohomology Theories, Section 45.12.

Proof. We will apply Weil Cohomology Theories, Proposition 45.12.1 to get this.
Let C be the category of all quasi-compact and quasi-separated schemes. This
certainly satisfies conditions (1), (2), and (3) (a), (b), and (c) of Weil Cohomology
Theories, Section 45.12.
As our contravariant functor A from C to the category of graded algebras will send
X to A(X) =

⊕
i≥0 H

2i
dR(X/Z) endowed with its cup product. Functoriality is

discussed in Section 50.3 and the cup product in Section 50.4. For the additive
maps cA1 we take cdR1 constructed in Section 50.9.
In fact, we obtain commutative algebras by Lemma 50.4.1 which shows we have
axiom (1) for A.
To check axiom (2) for A it suffices to check that H∗

dR(X
∐
Y/Z) = H∗

dR(X/Z) ×
H∗
dR(Y/Z). This is a consequence of the fact that de Rham cohomology is con-

structed by taking the cohomology of a sheaf of differential graded algebras (in the
Zariski topology).
Axiom (3) for A is just the statement that taking first Chern classes of invertible
modules is compatible with pullbacks. This follows from the more general Lemma
50.9.1.
Axiom (4) for A is the projective space bundle formula which we proved in Propo-
sition 50.14.1.
Axiom (5). Let X be a quasi-compact and quasi-separated scheme and let E → F
be a surjection of finite locally free OX -modules of ranks r + 1 and r. Denote
i : P ′ = P(F) → P(E) = P the corresponding incusion morphism. This is a
morphism of smooth projective schemes over X which exhibits P ′ as an effective
Cartier divisor on P . Thus by Lemma 50.15.7 the complex of log poles for P ′ ⊂ P

https://stacks.math.columbia.edu/tag/0FW9
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over Z is defined. Hence for a ∈ A(P ) with i∗a = 0 we have a ∪ cA1 (OP (P ′)) = 0
by Lemma 50.15.6. This finishes the proof. □

Remark 50.21.2.0FWA The analogues of Weil Cohomology Theories, Lemmas 45.12.2
(splitting principle) and 45.12.3 (chern classes of tensor products) hold for de Rham
Chern classes on quasi-compact and quasi-separated schemes. This is clear as we’ve
shown in the proof of Lemma 50.21.1 that all the axioms of Weil Cohomology
Theories, Section 45.12 are satisfied.

Working with schemes over Q we can construct a Chern character.

Lemma 50.21.3.0FWB There is a unique rule which assigns to every quasi-compact and
quasi-separated scheme X over Q a “chern character”

chdR : K0(Vect(X)) −→
∏

i≥0
H2i
dR(X/Q)

with the following properties
(1) chdR is a ring map for all X,
(2) if f : X ′ → X is a morphism of quasi-compact and quasi-separated

schemes over Q, then f∗ ◦ chdR = chdR ◦ f∗, and
(3) given L ∈ Pic(X) we have chdR([L]) = exp(cdR1 (L)).

The construction can easily be extended to all schemes over Q, but to do so one
needs to slightly upgrade the discussion in Weil Cohomology Theories, Section
45.12.

Proof. Exactly as in the proof of Lemma 50.21.1 one shows that the category
of quasi-compact and quasi-separated schemes over Q together with the functor
A∗(X) =

⊕
i≥0 H

2i
dR(X/Q) satisfy the axioms of Weil Cohomology Theories, Sec-

tion 45.12. Moreover, in this case A(X) is a Q-algebra for all X. Hence the lemma
follows from Weil Cohomology Theories, Proposition 45.12.4. □

50.22. A Weil cohomology theory

0FWC Let k be a field of characteristic 0. In this section we prove that the functor

X 7−→ H∗
dR(X/k)

defines a Weil cohomology theory over k with coefficients in k as defined in Weil
Cohomology Theories, Definition 45.11.4. We will proceed by checking the construc-
tions earlier in this chapter provide us with data (D0), (D1), and (D2’) satisfying
axioms (A1) – (A9) of Weil Cohomology Theories, Section 45.14.

Throughout the rest of this section we fix the field k of characteristic 0 and we set
F = k. Next, we take the following data

(D0) For our 1-dimensional F vector space F (1) we take F (1) = F = k.
(D1) For our functor H∗ we take the functor sending a smooth projective

scheme X over k to H∗
dR(X/k). Functoriality is discussed in Section 50.3

and the cup product in Section 50.4. We obtain graded commutative
F -algebras by Lemma 50.4.1.

(D2’) For the maps cH1 : Pic(X) → H2(X)(1) we use the de Rham first Chern
class introduced in Section 50.9.

https://stacks.math.columbia.edu/tag/0FWA
https://stacks.math.columbia.edu/tag/0FWB


50.22. A WEIL COHOMOLOGY THEORY 4213

We are going to show axioms (A1) – (A9) hold.

In this paragraph, we are going to reduce the checking of the axioms to the
case where k is algebraically closed by using Weil Cohomology Theories, Lemma
45.14.18. Denote k′ the algebraic closure of k. Set F ′ = k′. We obtain data (D0),
(D1), (D2’) over k′ with coefficient field F ′ in exactly the same way as above. By
Lemma 50.3.5 there are functorial isomorphisms

H2d
dR(X/k)⊗k k′ −→ H2d

dR(Xk′/k′)

for X smooth and projective over k. Moreover, the diagrams

Pic(X)
cdR1

//

��

H2
dR(X/k)

��
Pic(Xk′)

cdR1 // H2
dR(Xk′/k′)

commute by Lemma 50.9.1. This finishes the proof of the reduction.

Assume k is algebraically closed field of characteristic zero. We will show axioms
(A1) – (A9) for the data (D0), (D1), and (D2’) given above.

Axiom (A1). Here we have to check that H∗
dR(X

∐
Y/k) = H∗

dR(X/k)×H∗
dR(Y/k).

This is a consequence of the fact that de Rham cohomology is constructed by taking
the cohomology of a sheaf of differential graded algebras (in the Zariski topology).

Axiom (A2). This is just the statement that taking first Chern classes of invertible
modules is compatible with pullbacks. This follows from the more general Lemma
50.9.1.

Axiom (A3). This follows from the more general Proposition 50.14.1.

Axiom (A4). This follows from the more general Lemma 50.15.6.

Already at this point, using Weil Cohomology Theories, Lemmas 45.14.1 and
45.14.2, we obtain a Chern character and cycle class maps

γ : CH∗(X) −→
⊕

i≥0
H2i
dR(X/k)

for X smooth projective over k which are graded ring homomorphisms compatible
with pullbacks between morphisms f : X → Y of smooth projective schemes over
k.

Axiom (A5). We have H∗
dR(Spec(k)/k) = k = F in degree 0. We have the Kün-

neth formula for the product of two smooth projective k-schemes by Lemma 50.8.2
(observe that the derived tensor products in the statement are harmless as we are
tensoring over the field k).

Axiom (A7). This follows from Proposition 50.17.3.

Axiom (A8). Let X be a smooth projective scheme over k. By the explanatory
text to this axiom in Weil Cohomology Theories, Section 45.14 we see that k′ =
H0(X,OX) is a finite separable k-algebra. It follows that H∗

dR(Spec(k′)/k) = k′ sit-
ting in degree 0 because Ωk′/k = 0. By Lemma 50.20.2 we also have H0

dR(X,OX) =
k′ and we get the axiom.
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Axiom (A6). Let X be a nonempty smooth projective scheme over k which is
equidimensional of dimension d. Denote ∆ : X → X ×Spec(k) X the diagonal
morphism of X over k. We have to show that there exists a k-linear map

λ : H2d
dR(X/k) −→ k

such that (1⊗ λ)γ([∆]) = 1 in H0
dR(X/k). Let us write

γ = γ([∆]) = γ0 + . . .+ γ2d

with γi ∈ Hi
dR(X/k)⊗k H2d−i

dR (X/k) the Künneth components. Our problem is to
show that there is a linear map λ : H2d

dR(X/k) → k such that (1 ⊗ λ)γ0 = 1 in
H0
dR(X/k).

Let X =
∐
Xi be the decomposition of X into connected and hence irreducible

components. Then we have correspondingly ∆ =
∐

∆i with ∆i ⊂ Xi × Xi. It
follows that

γ([∆]) =
∑

γ([∆i])

and moreover γ([∆i]) corresponds to the class of ∆i ⊂ Xi×Xi via the decomposition

H∗
dR(X ×X) =

∏
i,j
H∗
dR(Xi ×Xj)

We omit the details; one way to show this is to use that in CH0(X ×X) we have
idempotents ei,j corresponding to the open and closed subschemes Xi ×Xj and to
use that γ is a ring map which sends ei,j to the corresponding idempotent in the
displayed product decomposition of cohomology. If we can find λi : H2d

dR(Xi/k)→ k
with (1⊗λi)γ([∆i]) = 1 in H0

dR(Xi/k) then taking λ =
∑
λi will solve the problem

for X. Thus we may and do assume X is irreducible.

Proof of Axiom (A6) for X irreducible. Since k is algebraically closed we have
H0
dR(X/k) = k because H0(X,OX) = k as X is a projective variety over an alge-

braically closed field (see Varieties, Lemma 33.9.3 for example). Let x ∈ X be any
closed point. Consider the cartesian diagram

x

��

// X

∆
��

X
x×id // X ×Spec(k) X

Compatibility of γ with pullbacks implies that γ([∆]) maps to γ([x]) in H2d
dR(X/k),

in other words, we have γ0 = 1⊗ γ([x]). We conclude two things from this: (a) the
class γ([x]) is independent of x, (b) it suffices to show the class γ([x]) is nonzero,
and hence (c) it suffices to find any zero cycle α on X such that γ(α) ̸= 0. To do
this we choose a finite morphism

f : X −→ Pd
k

To see such a morphism exist, see Intersection Theory, Section 43.23 and in partic-
ular Lemma 43.23.1. Observe that f is finite syntomic (local complete intersection
morphism by More on Morphisms, Lemma 37.62.10 and flat by Algebra, Lemma
10.128.1). By Proposition 50.19.3 we have a trace map

Θf : f∗Ω•
X/k −→ Ω•

Pd
k
/k
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whose composition with the canonical map
Ω•

Pd
k
/k −→ f∗Ω•

X/k

is multiplication by the degree of f . Hence we see that we get a map
Θ : H2d

dR(X/k)→ H2d
dR(Pd

k/k)
such that Θ ◦ f∗ is multiplication by a positive integer. Hence if we can find a zero
cycle on Pd

k whose class is nonzero, then we conclude by the compatibility of γ with
pullbacks. This is true by Lemma 50.11.4 and this finishes the proof of axiom (A6).
Below we will use the following without further mention. First, by Weil Cohomology
Theories, Remark 45.14.6 the map λX : H2d

dR(X/k) → k is unique. Second, in the
proof of axiom (A6) we have seen that λX(γ([x])) = 1 when X is irreducible, i.e.,
the composition of the cycle class map γ : CHd(X) → H2d

dR(X/k) with λX is the
degree map.
Axiom (A9). Let Y ⊂ X be a nonempty smooth divisor on a nonempty smooth
equidimensional projective scheme X over k of dimension d. We have to show that
the diagram

H2d−2
dR (X/k)

cdR1 (OX(Y ))∩−
//

restriction

��

H2d
dR(X)

λX

��
H2d−2
dR (Y/k) λY // k

commutes where λX and λY are as in axiom (A6). Above we have seen that if
we decompose X =

∐
Xi into connected (equivalently irreducible) components,

then we have correspondingly λX =
∑
λXi . Similarly, if we decompoese Y =

∐
Yj

into connected (equivalently irreducible) components, then we have λY =
∑
λYj .

Moreover, in this case we have OX(Y ) = ⊗jOX(Yj) and hence

cdR1 (OX(Y )) =
∑

j
cdR1 (OX(Yj))

in H2
dR(X/k). A straightforward diagram chase shows that it suffices to prove

the commutativity of the diagram in case X and Y are both irreducible. Then
H2d−2
dR (Y/k) is 1-dimensional as we have Poincar’e duality for Y by Weil Cohomol-

ogy Theories, Lemma 45.14.5. By axiom (A4) the kernel of restriction (left vertical
arrow) is contained in the kernel of cupping with cdR1 (OX(Y )). This means it suf-
fices to find one cohomology class a ∈ H2d−2

dR (X) whose restriction to Y is nonzero
such that we have commutativity in the diagram for a. Take any ample invertible
module L and set

a = cdR1 (L)d−1

Then we know that a|Y = cdR1 (L|Y )d−1 and hence
λY (a|Y ) = deg(c1(L|Y )d−1 ∩ [Y ])

by our description of λY above. This is a positive integer by Chow Homology,
Lemma 42.41.4 combined with Varieties, Lemma 33.45.9. Similarly, we find

λX(cdR1 (OX(Y )) ∩ a) = deg(c1(OX(Y )) ∩ c1(L)d−1 ∩ [X])
Since we know that c1(OX(Y )) ∩ [X] = [Y ] more or less by definition we have an
equality of zero cycles

(Y → X)∗
(
c1(L|Y )d−1 ∩ [Y ]

)
= c1(OX(Y )) ∩ c1(L)d−1 ∩ [X]
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on X. Thus these cycles have the same degree and the proof is complete.

Proposition 50.22.1.0FWD Let k be a field of characteristic zero. The functor that sends
a smooth projective scheme X over k to H∗

dR(X/k) is a Weil cohomology theory in
the sense of Weil Cohomology Theories, Definition 45.11.4.

Proof. In the discussion above we showed that our data (D0), (D1), (D2’) satisfies
axioms (A1) – (A9) of Weil Cohomology Theories, Section 45.14. Hence we conclude
by Weil Cohomology Theories, Proposition 45.14.17.

Please don’t read what follows. In the proof of the assertions we also used Lemmas
50.3.5, 50.9.1, 50.15.6, 50.8.2, 50.20.2, and 50.11.4, Propositions 50.14.1, 50.17.3,
and 50.19.3, Weil Cohomology Theories, Lemmas 45.14.18, 45.14.1, 45.14.2, and
45.14.5, Weil Cohomology Theories, Remark 45.14.6, Varieties, Lemmas 33.9.3
and 33.45.9, Intersection Theory, Section 43.23 and Lemma 43.23.1, More on Mor-
phisms, Lemma 37.62.10, Algebra, Lemma 10.128.1, and Chow Homology, Lemma
42.41.4. □

Remark 50.22.2.0FWE In exactly the same manner as above one can show that Hodge
cohomology X 7→ H∗

Hodge(X/k) equipped with cHodge1 determines a Weil cohomol-
ogy theory. If we ever need this, we will precisely formulate and prove this here.
This leads to the following amusing consequence: If the betti numbers of a Weil
cohomology theory are independent of the chosen Weil cohomology theory (over
our field k of characteristic 0), then the Hodge-to-de Rham spectral sequence de-
generates at E1! Of course, the degeneration of the Hodge-to-de Rham spectral
sequence is known (see for example [DI87] for a marvelous algebraic proof), but it
is by no means an easy result! This suggests that proving the independence of betti
numbers is a hard problem as well and as far as we know is still an open problem.
See Weil Cohomology Theories, Remark 45.11.5 for a related question.

50.23. Gysin maps for closed immersions

0G82 In this section we define the gysin map for closed immersions.

Remark 50.23.1.0G83 Let X → S be a morphism of schemes. Let f1, . . . , fc ∈ Γ(X,OX).
Let Z ⊂ X be the closed subscheme cut out by f1, . . . , fc. Below we will study the
gysin map

(50.23.1.1)0G84 γpf1,...,fc
: ΩpZ/S −→ H

c
Z(Ωp+c

X/S)

defined as follows. Given a local section ω of ΩpZ/S which is the restriction of a
section ω̃ of ΩpX/S we set

γpf1,...,fc
(ω) = cf1,...,fc(ω̃|Z) ∧ df1 ∧ . . . ∧ dfc

where cf1,...,fc : ΩpX/S ⊗ OZ → HcZ(ΩpX/S) is the map constructed in Derived Cat-
egories of Schemes, Remark 36.6.10. This is well defined: given ω we can change
our choice of ω̃ by elements of the form

∑
fiω

′
i +
∑

d(fi) ∧ ω′′
i which are mapped

to zero by the construction.

Lemma 50.23.2.0G85 The gysin map (50.23.1.1) is compatible with the de Rham dif-
ferentials on Ω•

X/S and Ω•
Z/S .

https://stacks.math.columbia.edu/tag/0FWD
https://stacks.math.columbia.edu/tag/0FWE
https://stacks.math.columbia.edu/tag/0G83
https://stacks.math.columbia.edu/tag/0G85
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Proof. This follows from an almost trivial calculation once we correctly interpret
this. First, we recall that the functor HcZ computed on the category of OX -modules
agrees with the similarly defined functor on the category of abelian sheaves on
X, see Cohomology, Lemma 20.34.8. Hence, the differential d : ΩpX/S → Ωp+1

X/S

induces a map HcZ(ΩpX/S)→ HcZ(Ωp+1
X/S). Moreover, the formation of the extended

alternating Čech complex in Derived Categories of Schemes, Remark 36.6.4 works
on the category of abelian sheaves. The map

Coker
(⊕

F1...̂i...c → F1...c

)
−→ i∗HcZ(F)

used in the construction of cf1,...,fc in Derived Categories of Schemes, Remark
36.6.10 is well defined and functorial on the category of all abelian sheaves on X.
Hence we see that the lemma follows from the equality

d
(
ω̃ ∧ df1 ∧ . . . ∧ dfc

f1 . . . fc

)
= d(ω̃) ∧ df1 ∧ . . . ∧ dfc

f1 . . . fc

which is clear. □

Lemma 50.23.3.0G86 Let X → S be a morphism of schemes. Let Z → X be a closed
immersion of finite presentation whose conormal sheaf CZ/X is locally free of rank
c. Then there is a canonical map

γp : ΩpZ/S → H
c
Z(Ωp+c

X/S)

which is locally given by the maps γpf1,...,fc
of Remark 50.23.1.

Proof. The assumptions imply that given x ∈ Z ⊂ X there exists an open neigh-
bourhood U of x such that Z is cut out by c elements f1, . . . , fc ∈ OX(U). Thus it
suffices to show that given f1, . . . , fc and g1, . . . , gc in OX(U) cutting out Z∩U , the
maps γpf1,...,fc

and γpg1,...,gc are the same. To do this, after shrinking U we may as-
sume gj =

∑
ajifi for some aji ∈ OX(U). Then we have cf1,...,fc = det(aji)cg1,...,gc

by Derived Categories of Schemes, Lemma 36.6.12. On the other hand we have
d(g1) ∧ . . . ∧ d(gc) ≡ det(aji)d(f1) ∧ . . . ∧ d(fc) mod (f1, . . . , fc)ΩcX/S

Combining these relations, a straightforward calculation gives the desired equality.
□

Lemma 50.23.4.0G87 Let X → S and i : Z → X be as in Lemma 50.23.3. The gysin
map γp is compatible with the de Rham differentials on Ω•

X/S and Ω•
Z/S .

Proof. We may check this locally and then it follows from Lemma 50.23.2. □

Lemma 50.23.5.0G88 Let X → S and i : Z → X be as in Lemma 50.23.3. Given
α ∈ Hq(X,ΩpX/S) we have γp(α|Z) = i−1α∧γ0(1) in Hq(Z,HcZ(Ωp+c

X/S)). Please see
proof for notation.

Proof. The restriction α|Z is the element of Hq(Z,ΩpZ/S) given by functoriality
for Hodge cohomology. Applying functoriality for cohomology using γp : ΩpZ/S →
HcZ(Ωp+c

X/S) we get get γp(α|Z) in Hq(Z,HcZ(Ωp+c
X/S)). This explains the left hand

side of the formula.
To explain the right hand side, we first pullback by the map of ringed spaces
i : (Z, i−1OX)→ (X,OX) to get the element i−1α ∈ Hq(Z, i−1ΩpX/S). Let γ0(1) ∈

https://stacks.math.columbia.edu/tag/0G86
https://stacks.math.columbia.edu/tag/0G87
https://stacks.math.columbia.edu/tag/0G88
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H0(Z,HcZ(ΩcX/S)) be the image of 1 ∈ H0(Z,OZ) = H0(Z,Ω0
Z/S) by γ0. Using

cup product we obtain an element

i−1α ∪ γ0(1) ∈ Hq+c(Z, i−1ΩpX/S ⊗i−1OX
HcZ(ΩcX/S))

Using Cohomology, Remark 20.34.9 and wedge product there are canonical maps

i−1ΩpX/S ⊗
L
i−1OX

RHZ(ΩcX/S)→ RHZ(ΩpX/S ⊗
L
OX

ΩcX/S)→ RHZ(Ωp+c
X/S)

By Derived Categories of Schemes, Lemma 36.6.8 the objects RHZ(ΩjX/S) have
vanishing cohomology sheaves in degrees > c. Hence on cohomology sheaves in
degree c we obtain a map

i−1ΩpX/S ⊗i−1OX
HcZ(ΩcX/S) −→ HcZ(Ωp+c

X/S)

The expression i−1α ∧ γ0(1) is the image of the cup product i−1α ∪ γ0(1) by the
functoriality of cohomology.

Having explained the content of the formula in this manner, by general properties
of cup products (Cohomology, Section 20.31), it now suffices to prove that the
diagram

i−1ΩpX ⊗ Ω0
Z id⊗γ0

//

��

i−1ΩpX ⊗HcZ(ΩcX)

∧
��

ΩpZ ⊗ Ω0
Z

∧ // ΩpZ
γp // HcZ(Ωp+c

X )

is commutative in the category of sheaves on Z (with obvious abuse of notation).
This boils down to a simple computation for the maps γjf1,...,fc

which we omit; in
fact these maps are chosen exactly such that this works and such that 1 maps to
df1∧...∧dfc
f1...fc

. □

Lemma 50.23.6.0G89 Let c ≥ 0 be a integer. Let

Z ′

h

��

// X ′

g

��

// S′

��
Z // X // S

be a commutative diagram of schemes. Assume
(1) Z → X and Z ′ → X ′ satisfy the assumptions of Lemma 50.23.3,
(2) the left square in the diagram is cartesian, and
(3) h∗CZ/X → CZ′/X′ (Morphisms, Lemma 29.31.3) is an isomorphism.

Then the diagram

h∗ΩpZ/S h−1γp
//

��

OX′ |Z′ ⊗h−1OX |Z h
−1HcZ(Ωp+c

X/S)

��
ΩpZ′/S′

γp // HcZ′(Ωp+c
X′/S′)

is commutative. The left vertical arrow is functoriality of modules of differentials
and the right vertical arrow uses Cohomology, Remark 20.34.12.

https://stacks.math.columbia.edu/tag/0G89
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Proof. More precisely, consider the composition
OX′ |Z′ ⊗L

h−1OX |Z h
−1RHZ(Ωp+c

X/S)→ RHZ′(Lg∗Ωp+c
X/S)

→ RHZ′(g∗Ωp+c
X/S)

→ RHZ′(Ωp+c
X′/S′)

where the first arrow is given by Cohomology, Remark 20.34.12 and the last one by
functoriality of differentials. Since we have the vanishing of cohomology sheaves in
degrees > c by Derived Categories of Schemes, Lemma 36.6.8 this induces the right
vertical arrow. We can check the commutativity locally. Thus we may assume Z
is cut out by f1, . . . , fc ∈ Γ(X,OX). Then Z ′ is cut out by f ′

i = g♯(fi). The maps
cf1,...,fc and cf ′

1,...,f
′
c

fit into the commutative diagram

h∗i∗ΩpX/S h−1cf1,...,fc

//

��

OX′ |Z′ ⊗h−1OX |Z h
−1HcZ(ΩpX/S)

��
(i′)∗ΩpX′/S′

cf′
1,...,f

′
c // HcZ′(ΩpX′/S′)

See Derived Categories of Schemes, Remark 36.6.14. Recall given a p-form ω on Z
we define γp(ω) by choosing (locally on X and Z) a p-form ω̃ on X lifting ω and
taking γp(ω) = cf1,...,fc(ω̃) ∧ df1 ∧ . . . ∧ dfc. Since the form df1 ∧ . . . ∧ dfc pulls
back to df ′

1 ∧ . . . ∧ df ′
c we conclude. □

Remark 50.23.7.0G8A Let X → S, i : Z → X, and c ≥ 0 be as in Lemma 50.23.3.
Let p ≥ 0 and assume that HiZ(Ωp+c

X/S) = 0 for i = 0, . . . , c − 1. This vanishing
holds if X → S is smooth and Z → X is a Koszul regular immersion, see Derived
Categories of Schemes, Lemma 36.6.9. Then we obtain a map

γp,q : Hq(Z,ΩpZ/S) −→ Hq+c(X,Ωp+c
X/S)

by first using γp : ΩpZ/S → HcZ(Ωp+c
X/S) to map into

Hq(Z,HcZ(Ωp+c
X/S)) = Hq(Z,RHZ(Ωp+c

X/S)[c]) = Hq(X, i∗RHZ(Ωp+c
X/S)[c])

and then using the adjunction map i∗RHZ(Ωp+c
X/S) → Ωp+c

X/S to continue on to the
desired Hodge cohomology module.

Lemma 50.23.8.0G8B Let X → S and i : Z → X be as in Lemma 50.23.3. Assume
X → S is smooth and Z → X Koszul regular. The gysin maps γp,q are compatible
with the de Rham differentials on Ω•

X/S and Ω•
Z/S .

Proof. This follows immediately from Lemma 50.23.4. □

Lemma 50.23.9.0G8C Let X → S, i : Z → X, and c ≥ 0 be as in Lemma 50.23.3.
Assume X → S smooth and Z → X Koszul regular. Given α ∈ Hq(X,ΩpX/S) we
have γp,q(α|Z) = α ∪ γ0,0(1) in Hq+c(X,Ωp+c

X/S) with γa,b as in Remark 50.23.7.

Proof. This lemma follows from Lemma 50.23.5 and Cohomology, Lemma 20.34.11.
We suggest the reader skip over the more detailed discussion below.
We will use without further mention that RHZ(ΩjX/S) = HcZ(ΩjX/S)[−c] for all
j as pointed out in Remark 50.23.7. We will also silently use the identifications

https://stacks.math.columbia.edu/tag/0G8A
https://stacks.math.columbia.edu/tag/0G8B
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Hq+c
Z (X,ΩjX/S) = Hq+c(Z,RHZ(ΩjX/S) = Hq(Z,HcZ(ΩjX/S)), see Cohomology,

Lemma 20.34.4 for the first one. With these identifications
(1) γ0(1) ∈ Hc

Z(X,ΩcX/S) maps to γ0,0(1) in Hc(X,ΩcX/S),
(2) the right hand side i−1α ∧ γ0(1) of the equality in Lemma 50.23.5 is the

(image by wedge product of the) cup product of Cohomology, Remark
20.34.10 of the elements α and γ0(1), in other words, the constructions in
the proof of Lemma 50.23.5 and in Cohomology, Remark 20.34.10 match,

(3) by Cohomology, Lemma 20.34.11 this maps to α∪γ0,0(1) inHq+c(X,ΩpX/S⊗
ΩcX/S), and

(4) the left hand side γp(α|Z) of the equality in Lemma 50.23.5 maps to
γp,q(α|Z).

This finishes the proof. □

Lemma 50.23.10.0G8D Let c ≥ 0 and

Z ′

h

��

// X ′

g

��

// S′

��
Z // X // S

satisfy the assumptions of Lemma 50.23.6 and assume in addition that X → S and
X ′ → S′ are smooth and that Z → X and Z ′ → X ′ are Koszul regular immersions.
Then the diagram

Hq(Z,ΩpZ/S)
γp,q

//

��

Hq+c(X,Ωp+c
X/S)

��
Hq(Z ′,ΩpZ′/S′)

γp,q // Hq+c(X ′,Ωp+c
X′/S′)

is commutative where γp,q is as in Remark 50.23.7.

Proof. This follows on combining Lemma 50.23.6 and Cohomology, Lemma 20.34.13.
□

Lemma 50.23.11.0G8E Let k be a field. Let X be an irreducible smooth proper scheme
over k of dimension d. Let Z ⊂ X be the reduced closed subscheme consisting of a
single k-rational point x. Then the image of 1 ∈ k = H0(Z,OZ) = H0(Z,Ω0

Z/k) by
the map H0(Z,Ω0

Z/k)→ Hd(X,ΩdX/k) of Remark 50.23.7 is nonzero.

Proof. The map γ0 : OZ → HdZ(ΩdX/k) = RHZ(ΩdX/k)[d] is adjoint to a map

g0 : i∗OZ −→ ΩdX/k[d]

in D(OX). Recall that ΩdX/k = ωX is a dualizing sheaf for X/k, see Duality for
Schemes, Lemma 48.27.1. Hence the k-linear dual of the map in the statement of
the lemma is the map

H0(X,OX)→ ExtdX(i∗OZ , ωX)
which sends 1 to g0. Thus it suffices to show that g0 is nonzero. This we may do in
any neighbourhood U of the point x. Choose U such that there exist f1, . . . , fd ∈
OX(U) vanishing only at x and generating the maximal ideal mx ⊂ OX,x. We may

https://stacks.math.columbia.edu/tag/0G8D
https://stacks.math.columbia.edu/tag/0G8E
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assume assume U = Spec(R) is affine. Looking over the construction of γ0 we find
that our extension is given by

k → (R→
⊕

i0
Rfi0 →

⊕
i0<i1

Rfi0fi1 → . . .→ Rf1...fr )[d]→ R[d]

where 1 maps to 1/f1 . . . fc under the first map. This is nonzero because 1/f1 . . . fc
is a nonzero element of local cohomology group Hd

(f1,...,fd)(R) in this case, □

50.24. Relative Poincaré duality

0G8F In this section we prove Poincar’e duality for the relative de Rham cohomology of a
proper smooth scheme over a base. We strongly urge the reader to look at Section
50.20 first.

Situation 50.24.1.0G8G Here S is a quasi-compact and quasi-separated scheme and
f : X → S is a proper smooth morphism of schemes all of whose fibres are nonempty
and equidimensional of dimension n.

Lemma 50.24.2.0G8H In Situation 50.24.1 the psuhforward f∗OX is a finite étale OS-
algebra and locally on S we have Rf∗OX = f∗OX ⊕P in D(OS) with P perfect of
tor amplitude in [1,∞). The map d : f∗OX → f∗ΩX/S is zero.

Proof. The first part of the statement follows from Derived Categories of Schemes,
Lemma 36.32.8. Setting S′ = Spec

S
(f∗OX) we get a factorization X → S′ → S

(this is the Stein factorization, see More on Morphisms, Section 37.53, although we
don’t need this) and we see that ΩX/S = ΩX/S′ for example by Morphisms, Lemma
29.32.9 and 29.36.15. This of course implies that d : f∗OX → f∗ΩX/S is zero. □

Lemma 50.24.3.0G8I In Situation 50.24.1 there exists an OS-module map
t : Rf∗ΩnX/S [n] −→ OS

unique up to precomposing by multiplication by a unit of H0(X,OX) with the
following property: for all p the pairing

Rf∗ΩpX/S ⊗
L
OS

Rf∗Ωn−p
X/S [n] −→ OS

given by the relative cup product composed with t is a perfect pairing of perfect
complexes on S.

Proof. Let ω•
X/S be the relative dualizing complex of X over S as in Duality for

Schemes, Remark 48.12.5 and let Rf∗ω
•
X/S → OS be its trace map. By Duality for

Schemes, Lemma 48.15.7 there exists an isomorphism ω•
X/S
∼= ΩnX/S [n] and using

this isomorphism we obtain t. The complexes Rf∗ΩpX/S are perfect by Lemma
50.3.5. Since ΩpX/S is locally free and since ΩpX/S ⊗OX

Ωn−p
X/S → ΩnX/S exhibits an

isomorphism ΩpX/S ∼= HomOX
(Ωn−p

X/S ,ΩnX/S) we see that the pairing induced by the
relative cup product is perfect by Duality for Schemes, Remark 48.12.6.
Uniqueness of t. Choose a distinguished triangle f∗OX → Rf∗OX → P → f∗OX [1].
By Lemma 50.24.2 the object P is perfect of tor amplitude in [1,∞) and the triangle
is locally on S split. Thus RHomOX

(P,OX) is perfect of tor amplitude in (−∞,−1].
Hence duality (above) shows that locally on S we have

Rf∗ΩnX/S [n] ∼= RHomOS
(f∗OX ,OS)⊕RHomOX

(P,OX)

https://stacks.math.columbia.edu/tag/0G8G
https://stacks.math.columbia.edu/tag/0G8H
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50.24. RELATIVE POINCARÉ DUALITY 4222

This shows that Rnf∗ΩnX/S is finite locally free and that we obtain a perfect OS-
bilinear pairing

f∗OX ×Rnf∗ΩnX/S −→ OS
using t. This implies that any OS-linear map t′ : Rnf∗ΩnX/S → OS is of the form
t′ = t ◦ g for some g ∈ Γ(S, f∗OX) = Γ(X,OX). In order for t′ to still determine a
perfect pairing g will have to be a unit. This finishes the proof. □

Lemma 50.24.4.0G8J In Situation 50.24.1 the map d : Rnf∗Ωn−1
X/S → Rnf∗ΩnX/S is zero.

As we mentioned in the proof of Lemma 50.20.3 this lemma is not an easy conse-
quence of Lemmas 50.24.3 and 50.24.2.

Proof in case S is reduced. Assume S is reduced. Observe that d : Rnf∗Ωn−1
X/S →

Rnf∗ΩnX/S is an OS-linear map of (quasi-coherent) OS-modules. The OS-module
Rnf∗ΩnX/S is finite locally free (as the dual of the finite locally free OS-module
f∗OX by Lemmas 50.24.3 and 50.24.2). Since S is reduced it suffices to show that
the stalk of d in every generic point η ∈ S is zero; this follows by looking at sections
over affine opens, using that the target of d is locally free, and Algebra, Lemma
10.25.2 part (2). Since S is reduced we have OS,η = κ(η), see Algebra, Lemma
10.25.1. Thus dη is identified with the map

d : Hn(Xη,Ωn−1
Xη/κ(η)) −→ Hn(Xη,ΩnXη/κ(η))

which is zero by Lemma 50.20.3. □

Proof in the general case. Observe that the question is flat local on S: if S′ → S
is a surjective flat morphism of schemes and the map is zero after pullback to S′,
then the map is zero. Also, formation of the map commutes with base change by
flat morphisms by flat base change (Cohomology of Schemes, Lemma 30.5.2).
Consider the Stein factorization X → S′ → S as in More on Morphisms, Theorem
37.53.5. By Lemma 50.24.2 the morphism π : S′ → S is finite étale. The morphism
f : X → S′ is proper (by the theorem), smooth (by More on Morphisms, Lemma
37.13.12) with geometrically connected fibres by the theorem on Stein factorization.
In the proof of Lemma 50.24.2 we saw that ΩX/S = ΩX/S′ because S′ → S is étale.
Hence Ω•

X/S = Ω•
X/S′ . We have

Rqf∗ΩpX/S = π∗R
qf ′

∗ΩpX/S′

for all p, q by the Leray spectral sequence (Cohomology, Lemma 20.13.8), the fact
that π is finite hence affine, and Cohomology of Schemes, Lemma 30.2.3 (of course
we also use that Rqf ′

∗ΩpX′/S is quasi-coherent). Thus the map of the lemma is π∗

applied to d : Rnf ′
∗Ωn−1

X/S′ → Rnf ′
∗ΩnX/S′ . In other words, in order to prove the

lemma we may replace f : X → S by f ′ : X → S′ to reduce to the case discussed
in the next pargraph.
Assume f has geometrically connected fibres and f∗OX = OS . For every s ∈ S
we can choose an étale neighbourhood (S′, s′) → (S, s) such that the base change
X ′ → S′ of S has a section. See More on Morphisms, Lemma 37.38.6. By the initial
remarks of the proof this reduces us to the case discussed in the next paragraph.
Assume f has geometrically connected fibres, f∗OX = OS , and we have a section
s : S → X of f . We may and do assume S = Spec(A) is affine. The map

https://stacks.math.columbia.edu/tag/0G8J
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s∗ : RΓ(X,OX) → RΓ(S,OS) = A is a splitting of the map A → RΓ(X,OX).
Thus we can write

RΓ(X,OX) = A⊕ P
where P is the “kernel” of s∗. By Lemma 50.24.2 the object P of D(A) is perfect of
tor amplitude in [1, n]. As in the proof of Lemma 50.24.3 we see that Hn(X,ΩnX/S)
is a locally free A-module of rank 1 (and in fact dual to A so free of rank 1 – we
will soon choose a generator but we don’t want to check it is the same generator
nor will it be necessary to do so).
Denote Z ⊂ X the image of s which is a closed subscheme of X by Schemes,
Lemma 26.21.11. Observe that Z → X is a regular (and a fortiori Koszul regular
by Divisors, Lemma 31.21.2) closed immersion by Divisors, Lemma 31.22.8. Of
course Z → X has codimension n. Thus by Remark 50.23.7 we can consider the
map

γ0,0 : H0(Z,Ω0
Z/S) −→ Hn(X,ΩnX/S)

and we set ξ = γ0,0(1) ∈ Hn(X,ΩnX/S).
We claim ξ is a basis element. Namely, since we have base change in top de-
gree (see for example Limits, Lemma 32.19.2) we see that Hn(X,ΩnX/S) ⊗A k =
Hn(Xk,ΩnXk/k) for any ring map A → k. By the compatibility of the construc-
tion of ξ with base change, see Lemma 50.23.10, we see that the image of ξ in
Hn(Xk,ΩnXk/k) is nonzero by Lemma 50.23.11 if k is a field. Thus ξ is a nowhere
vanishing section of an invertible module and hence a generator.
Let θ ∈ Hn(X,Ωn−1

X/S). We have to show that d(θ) is zero in Hn(X,ΩnX/S). We
may write d(θ) = aξ for some a ∈ A as ξ is a basis element. Then we have to show
a = 0.
Consider the closed immersion

∆ : X → X ×S X
This is also a section of a smooth morphism (namely either projection) and hence
a regular and Koszul immersion of codimension n as well. Thus we can consider
the maps

γp,q : Hq(X,ΩpX/S) −→ Hq+n(X ×S X,Ωp+n
X×SX/S)

of Remark 50.23.7. Consider the image
γn−1,n(θ) ∈ H2n(X ×S X,Ω2n−1

X×SX)
By Lemma 50.8.1 we have

Ω2n−1
X×SX = Ωn−1

X/S ⊠ ΩnX/S ⊕ ΩnX/S ⊠ Ωn−1
X/S

By the Künneth formula (either Derived Categories of Schemes, Lemma 36.23.1 or
Derived Categories of Schemes, Lemma 36.23.4) we see that

H2n(X ×S X,Ωn−1
X/S ⊠ ΩnX/S) = Hn(X,Ωn−1

X/S)⊗A Hn(X,ΩnX/S)
and

H2n(X ×S X,ΩnX/S ⊠ Ωn−1
X/S) = Hn(X,ΩnX/S)⊗A Hn(X,Ωn−1

X/S)
Namely, since we are looking in top degree there no higher tor groups that intervene.
Combined with the fact that ξ is a generator this means we can write

γn−1,n(θ) = θ1 ⊗ ξ + ξ ⊗ θ2
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with θ1, θ2 ∈ Hn(X,Ωn−1
X/S). Arguing in exactly the same manner we can write

γn,n(ξ) = bξ ⊗ ξ

inH2n(X×SX,Ω2n
X×SX/S) = Hn(X,ΩnX/S)⊗AHn(X,ΩnX/S) for some b ∈ H0(S,OS).

Claim: θ1 = θ, θ2 = θ, and b = 1. Let us show that the claim implies the desired
result a = 0. Namely, by Lemma 50.23.8 we have

γn,n(d(θ)) = d(γn−1,n(θ))

By our choices above this gives

aξ ⊗ ξ = γn,n(aξ) = d(θ ⊗ ξ + ξ ⊗ θ) = aξ ⊗ ξ + (−1)naξ ⊗ ξ

The right most equality comes from the fact that the map d : Ω2n−1
X⊗SX/S → Ω2n

X×SX/S
by Lemma 50.8.1 is the sum of the differential d ⊠ 1 : Ωn−1

X/S ⊠ ΩnX/S → ΩnX/S ⊠
ΩnX/S and the differential (−1)n1 ⊠ d : ΩnX/S ⊠ Ωn−1

X/S → ΩnX/S ⊠ ΩnX/S . Please see
discussion in Section 50.8 and Derived Categories of Schemes, Section 36.24 for more
information. Since ξ ⊗ ξ is a basis for the rank 1 free A-module Hn(X,ΩnX/S) ⊗A
Hn(X,ΩnX/S) we conclude

a = a+ (−1)na⇒ a = 0

as desired.

In the rest of the proof we prove the claim above. Let us denote η = γ0,0(1) ∈
Hn(X ×S X,ΩnX×SX/S). Since ΩnX×SX/S =

⊕
p+p′=n ΩpX/S ⊠ Ωp

′

X/S we may write

η = η0 + η1 + . . .+ ηn

where ηp is in Hn(X ×S X,ΩpX/S ⊠ Ωn−p
X/S). For p = 0 we can write

Hn(X ×S X,OX ⊠ ΩnX/S) = Hn(RΓ(X,OX)⊗L
A RΓ(X,ΩnX/S))

= A⊗A Hn(X,ΩnX/S)⊕Hn(P ⊗L
A RΓ(X,ΩnX/S))

by our previously given decompositionRΓ(X,OX) = A⊕P . Consider the morphism
(s, id) : X → X ×S X. Then (s, id)−1(∆) = Z scheme theoretically. Hence we see
that (s, id)∗η = ξ by Lemma 50.23.10. This means that

ξ = (s, id)∗η = (s∗ ⊗ id)(η0)

This means exactly that the first component of η0 in the direct sum decomposition
above is ξ. In other words, we can write

η0 = 1⊗ ξ + η′
0

with η′
0 ∈ Hn(P ⊗L

A RΓ(X,ΩnX/S)). In exactly the same manner for p = n we can
write

Hn(X ×S X,ΩnX/S ⊠OX) = Hn(RΓ(X,ΩnX/S)⊗L
A RΓ(X,OX))

= Hn(X,ΩnX/S)⊗A A⊕Hn(RΓ(X,ΩnX/S)⊗L
A P )

and we can write
ηn = ξ ⊗ 1 + η′

n

with η′
n ∈ Hn(RΓ(X,ΩnX/S)⊗L

A P ).
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Observe that pr∗
1θ = θ ⊗ 1 and pr∗

2θ = 1 ⊗ θ are Hodge cohomology classes on
X ×S X which pull back to θ by ∆. Hence by Lemma 50.23.9 we have

θ1 ⊗ ξ + ξ ⊗ θ2 = γn−1,n(θ) = (θ ⊗ 1) ∪ η = (1⊗ θ) ∪ η
in the Hodge cohomology ring of X ×S X over S. In terms of the direct sum
decomposition on the modules of differentials of X ×S X/S we obtain

θ1 ⊗ ξ = (θ ⊗ 1) ∪ η0 and ξ ⊗ θ2 = (1⊗ θ) ∪ ηn
Looking at the formula η0 = 1 ⊗ ξ + η′

0 we found above, we see that to show that
θ1 = θ it suffices to prove that

(θ ⊗ 1) ∪ η′
0 = 0

To do this, observe that cupping with θ ⊗ 1 is given by the action on cohomology
of the map

(P ⊗L
A RΓ(X,ΩnX/S))[−n] θ⊗1−−→ RΓ(X,Ωn−1

X/S)⊗L
A RΓ(X,ΩnX/S)

in the derived category, see Cohomology, Remark 20.31.2. This map is the derived
tensor product of the two maps

θ : P [−n]→ RΓ(X,Ωn−1
X/S) and 1 : RΓ(X,ΩnX/S)→ RΓ(X,ΩnX/S)

by Derived Categories of Schemes, Remark 36.23.5. However, the first of these
is zero in D(A) because it is a map from a perfect complex of tor amplitude in
[n + 1, 2n] to a complex with cohomology only in degrees 0, 1, . . . , n, see More
on Algebra, Lemma 15.76.1. A similar argument works to show the vanishing of
(1⊗ θ) ∪ η′

n. Finally, in exactly the same manner we obtain
bξ ⊗ ξ = γn,n(ξ) = (ξ ⊗ 1) ∪ η0

and we conclude as before by showing that (ξ ⊗ 1)∪ η′
0 = 0 in the same manner as

above. This finishes the proof. □

Proposition 50.24.5.0G8K Let S be a quasi-compact and quasi-separated scheme. Let
f : X → S be a proper smooth morphism of schemes all of whose fibres are
nonempty and equidimensional of dimension n. There exists an OS-module map

t : R2nf∗Ω•
X/S −→ OS

unique up to precomposing by multiplication by a unit of H0(X,OX) with the
following property: the pairing

Rf∗Ω•
X/S ⊗

L
OS

Rf∗Ω•
X/S [2n] −→ OS , (ξ, ξ′) 7−→ t(ξ ∪ ξ′)

is a perfect pairing of perfect complexes on S.

Proof. The proof is exactly the same as the proof of Proposition 50.20.4.
By the relative Hodge-to-de Rham spectral sequence

Ep,q1 = Rqf∗ΩpX/S ⇒ Rp+qf∗Ω•
X/S

(Section 50.6), the vanishing of ΩiX/S for i > n, the vanishing in for example Lim-
its, Lemma 32.19.2 and the results of Lemmas 50.24.2 and 50.24.4 we see that
R0f∗ΩX/S = R0f∗OX and Rnf∗ΩnX/S = R2nf∗Ω•

X/S . More precisesly, these iden-
tifications come from the maps of complexes

Ω•
X/S → OX [0] and ΩnX/S [−n]→ Ω•

X/S

https://stacks.math.columbia.edu/tag/0G8K
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Let us choose t : R2nf∗ΩX/S → OS which via this identification corresponds to a t
as in Lemma 50.24.3.
Let us abbreviate Ω• = Ω•

X/S . Consider the map (50.4.0.1) which in our situation
reads

∧ : Tot(Ω• ⊗f−1OS
Ω•) −→ Ω•

For every integer p = 0, 1, . . . , n this map annihilates the subcomplex Tot(σ>pΩ•⊗f−1OS

σ≥n−pΩ•) for degree reasons. Hence we find that the restriction of ∧ to the sub-
complex Tot(Ω•⊗f−1OS

≥n−p Ω•) factors through a map of complexes
γp : Tot(σ≤pΩ• ⊗f−1OS

σ≥n−pΩ•) −→ Ω•

Using the same procedure as in Section 50.4 we obtain relative cup products
Rf∗σ≤pΩ• ⊗L

OS
Rf∗σ≥n−pΩ• −→ Rf∗Ω•

We will prove by induction on p that these cup products via t induce perfect pairings
between Rf∗σ≤pΩ• and Rf∗σ≥n−pΩ•[2n]. For p = n this is the assertion of the
proposition.
The base case is p = 0. In this case we have
Rf∗σ≤pΩ• = Rf∗OX and Rf∗σ≥n−pΩ•[2n] = Rf∗(Ωn[−n])[2n] = Rf∗Ωn[n]

In this case we simply obtain the pairing between Rf∗OX and Rf∗Ωn[n] of Lemma
50.24.3 and the result is true.
Induction step. Say we know the result is true for p. Then we consider the distin-
guished triangle

Ωp+1[−p− 1]→ σ≤p+1Ω• → σ≤pΩ• → Ωp+1[−p]
and the distinguished triangle

σ≥n−pΩ• → σ≥n−p−1Ω• → Ωn−p−1[−n+ p+ 1]→ (σ≥n−pΩ•)[1]
Observe that both are distinguished triangles in the homotopy category of com-
plexes of sheaves of f−1OS-modules; in particular the maps σ≤pΩ• → Ωp+1[−p]
and Ωn−p−1[−d + p + 1] → (σ≥n−pΩ•)[1] are given by actual maps of complexes,
namely using the differential Ωp → Ωp+1 and the differential Ωn−p−1 → Ωn−p.
Consider the distinguished triangles associated gotten from these distinguished tri-
angles by applying Rf∗

Rf∗σ≤pΩ•

a

��
Rf∗Ωp+1[−p− 1]

b

��
Rf∗σ≤p+1Ω•

c

��
Rf∗σ≤pΩ•

d

��
Rf∗Ωp+1[−p− 1]

Rf∗σ≥n−pΩ•

Rf∗Ωn−p−1[−n+ p+ 1]

a′

OO

Rf∗σ≥n−p−1Ω•

b′

OO

Rf∗σ≥n−pΩ•

c′

OO

Rf∗Ωn−p−1[−n+ p+ 1]

d′

OO
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We will show below that the pairs (a, a′), (b, b′), (c, c′), and (d, d′) are compatible
with the given pairings. This means we obtain a map from the distinguished triangle
on the left to the distuiguished triangle obtained by applying RHom(−,OS) to the
distinguished triangle on the right. By induction and Lemma 50.20.1 we know that
the pairings constructed above between the complexes on the first, second, fourth,
and fifth rows are perfect, i.e., determine isomorphisms after taking duals. By
Derived Categories, Lemma 13.4.3 we conclude the pairing between the complexes
in the middle row is perfect as desired.
Let e : K → K ′ and e′ : M ′ →M be maps of objects of D(OS) and let K⊗L

OS
M →

OS and K ′ ⊗L
OS

M ′ → OS be pairings. Then we say these pairings are compatible
if the diagram

K ′ ⊗L
OS

M ′

��

K ⊗L
OS

M ′
e⊗1
oo

1⊗e′

��
OS K ⊗L

OS
Moo

commutes. This indeed means that the diagram

K //

e

��

RHom(M,OS)

RHom(e′,−)
��

K ′ // RHom(M ′,OS)
commutes and hence is sufficient for our purposes.
Let us prove this for the pair (c, c′). Here we observe simply that we have a
commutative diagram

Tot(σ≤pΩ• ⊗f−1OS
σ≥n−pΩ•)

γp

��

Tot(σ≤p+1Ω• ⊗f−1OS
σ≥n−pΩ•)oo

��
Ω• Tot(σ≤p+1Ω• ⊗f−1OS

σ≥n−p−1Ω•)
γp+1oo

By functoriality of the cup product we obtain commutativity of the desired diagram.
Similarly for the pair (b, b′) we use the commutative diagram

Tot(σ≤p+1Ω• ⊗f−1OS
σ≥n−p−1Ω•)

γp+1

��

Tot(Ωp+1[−p− 1]⊗f−1OS
σ≥n−p−1Ω•)oo

��
Ω• Ωp+1[−p− 1]⊗f−1OS

Ωn−p−1[−n+ p+ 1]∧oo

For the pairs (d, d′) and (a, a′) we use the commutative diagram

Ωp+1[−p]⊗f−1OS
Ωn−p−1[−n+ p]

��

Tot(σ≤pΩ• ⊗f−1OS
Ωn−p−1[−n+ p])oo

��
Ω• Tot(σ≤pΩ• ⊗f−1OS

σ≥n−pΩ•)oo

We omit the argument showing the uniqueness of t up to precomposing by multi-
plication by a unit in H0(X,OX). □
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CHAPTER 51

Local Cohomology

0DWN 51.1. Introduction

0DWP This chapter continues the study of local cohomology. A reference is [Gro68]. The
definition of local cohomology can be found in Dualizing Complexes, Section 47.9.
For Noetherian rings taking local cohomology is the same as deriving a suitable
torsion functor as is shown in Dualizing Complexes, Section 47.10. The relationship
with depth can be found in Dualizing Complexes, Section 47.11.

We discuss finiteness properties of local cohomology leading to a proof of a fairly
general version of Grothendieck’s finiteness theorem, see Theorem 51.11.6 and
Lemma 51.12.1 (higher direct images of coherent modules under open immersions).
Our methods incorporate a few very slick arguments the reader can find in papers
of Faltings, see [Fal78b] and [Fal81].

As applications we offer a discussion of Hartshorne-Lichtenbaum vanishing. We also
discuss the action of Frobenius and of differential operators on local cohomology.

51.2. Generalities

0DWQ The following lemma tells us that the functor RΓZ is related to cohomology with
supports.

Lemma 51.2.1.0A6T Let A be a ring and let I be a finitely generated ideal. Set Z =
V (I) ⊂ X = Spec(A). For K ∈ D(A) corresponding to K̃ ∈ DQCoh(OX) via
Derived Categories of Schemes, Lemma 36.3.5 there is a functorial isomorphism

RΓZ(K) = RΓZ(X, K̃)

where on the left we have Dualizing Complexes, Equation (47.9.0.1) and on the
right we have the functor of Cohomology, Section 20.34.

Proof. By Cohomology, Lemma 20.34.5 there exists a distinguished triangle

RΓZ(X, K̃)→ RΓ(X, K̃)→ RΓ(U, K̃)→ RΓZ(X, K̃)[1]

where U = X \Z. We know that RΓ(X, K̃) = K by Derived Categories of Schemes,
Lemma 36.3.5. Say I = (f1, . . . , fr). Then we obtain a finite affine open covering
U : U = D(f1)∪ . . .∪D(fr). By Derived Categories of Schemes, Lemma 36.9.4 the
alternating Čech complex Tot(Č•

alt(U , K̃•)) computes RΓ(U, K̃) where K• is any
complex of A-modules representing K. Working through the definitions we find

RΓ(U, K̃) = Tot
(
K• ⊗A (

∏
i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )
)

4230
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It is clear that K• = RΓ(X, K̃•) → RΓ(U, K̃•) is induced by the diagonal map
from A into

∏
Afi . Hence we conclude that

RΓZ(X,F•) = Tot
(
K• ⊗A (A→

∏
i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )
)

By Dualizing Complexes, Lemma 47.9.1 this complex computes RΓZ(K) and we
see the lemma holds. □

Lemma 51.2.2.0DWR Let A be a ring and let I ⊂ A be a finitely generated ideal. Set
X = Spec(A), Z = V (I), U = X \ Z, and j : U → X the inclusion morphism. Let
F be a quasi-coherent OU -module. Then

(1) there exists an A-module M such that F is the restriction of M̃ to U ,
(2) given M there is an exact sequence

0→ H0
Z(M)→M → H0(U,F)→ H1

Z(M)→ 0

and isomorphisms Hp(U,F) = Hp+1
Z (M) for p ≥ 1,

(3) we may take M = H0(U,F) in which case we have H0
Z(M) = H1

Z(M) = 0.

Proof. The existence ofM follows from Properties, Lemma 28.22.1 and the fact that
quasi-coherent sheaves on X correspond to A-modules (Schemes, Lemma 26.7.5).
Then we look at the distinguished triangle

RΓZ(X, M̃)→ RΓ(X, M̃)→ RΓ(U, M̃ |U )→ RΓZ(X, M̃)[1]

of Cohomology, Lemma 20.34.5. Since X is affine we have RΓ(X, M̃) = M by
Cohomology of Schemes, Lemma 30.2.2. By our choice of M we have F = M̃ |U
and hence this produces an exact sequence

0→ H0
Z(X, M̃)→M → H0(U,F)→ H1

Z(X, M̃)→ 0

and isomorphisms Hp(U,F) = Hp+1
Z (X, M̃) for p ≥ 1. By Lemma 51.2.1 we

have Hi
Z(M) = Hi

Z(X, M̃) for all i. Thus (1) and (2) do hold. Finally, setting
M ′ = H0(U,F) we see that the kernel and cokernel of M → M ′ are I-power
torsion. Therefore M̃ |U → M̃ ′|U is an isomorphism and we can indeed use M ′ as
predicted in (3). It goes without saying that we obtain zero for both H0

Z(M ′) and
H0
Z(M ′). □

Lemma 51.2.3.0DWS Let I, J ⊂ A be finitely generated ideals of a ring A. If M is an
I-power torsion module, then the canonical map

Hi
V (I)∩V (J)(M)→ Hi

V (J)(M)

is an isomorphism for all i.

Proof. Use the spectral sequence of Dualizing Complexes, Lemma 47.9.6 to reduce
to the statement RΓI(M) = M which is immediate from the construction of local
cohomology in Dualizing Complexes, Section 47.9. □

Lemma 51.2.4.0DWT Let S ⊂ A be a multiplicative set of a ring A. Let M be an A-
module with S−1M = 0. Then colimf∈S H

0
V (f)(M) = M and colimf∈S H

1
V (f)(M) =

0.

https://stacks.math.columbia.edu/tag/0DWR
https://stacks.math.columbia.edu/tag/0DWS
https://stacks.math.columbia.edu/tag/0DWT
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Proof. The statement on H0 follows directly from the definitions. To see the state-
ment on H1 observe that RΓV (f) and H1

V (f) commute with colimits. Hence we may
assume M is annihilated by some f ∈ S. Then H1

V (ff ′)(M) = 0 for all f ′ ∈ S (for
example by Lemma 51.2.3). □

Lemma 51.2.5.0DWU Let I ⊂ A be a finitely generated ideal of a ring A. Let p be a
prime ideal. Let M be an A-module. Let i ≥ 0 be an integer and consider the map

Ψ : colimf∈A,f ̸∈pH
i
V ((I,f))(M) −→ Hi

V (I)(M)

Then
(1) Im(Ψ) is the set of elements which map to zero in Hi

V (I)(M)p,
(2) if Hi−1

V (I)(M)p = 0, then Ψ is injective,
(3) if Hi−1

V (I)(M)p = Hi
V (I)(M)p = 0, then Ψ is an isomorphism.

Proof. For f ∈ A, f ̸∈ p the spectral sequence of Dualizing Complexes, Lemma
47.9.6 degenerates to give short exact sequences

0→ H1
V (f)(Hi−1

V (I)(M))→ Hi
V ((I,f))(M)→ H0

V (f)(Hi
V (I)(M))→ 0

This proves (1) and part (2) follows from this and Lemma 51.2.4. Part (3) is a
formal consequence. □

Lemma 51.2.6.0DWV Let I ⊂ I ′ ⊂ A be finitely generated ideals of a Noetherian ring A.
Let M be an A-module. Let i ≥ 0 be an integer. Consider the map

Ψ : Hi
V (I′)(M)→ Hi

V (I)(M)

The following are true:
(1) if Hi

pAp
(Mp) = 0 for all p ∈ V (I) \ V (I ′), then Ψ is surjective,

(2) if Hi−1
pAp

(Mp) = 0 for all p ∈ V (I) \ V (I ′), then Ψ is injective,
(3) if Hi

pAp
(Mp) = Hi−1

pAp
(Mp) = 0 for all p ∈ V (I) \ V (I ′), then Ψ is an

isomorphism.

Proof. Proof of (1). Let ξ ∈ Hi
V (I)(M). Since A is Noetherian, there exists a

largest ideal I ⊂ I ′′ ⊂ I ′ such that ξ is the image of some ξ′′ ∈ Hi
V (I′′)(M). If

V (I ′′) = V (I ′), then we are done. If not, choose a generic point p ∈ V (I ′′) not in
V (I ′). Then we have Hi

V (I′′)(M)p = Hi
pAp

(Mp) = 0 by assumption. By Lemma
51.2.5 we can increase I ′′ which contradicts maximality.

Proof of (2). Let ξ′ ∈ Hi
V (I′)(M) be in the kernel of Ψ. Since A is Noetherian,

there exists a largest ideal I ⊂ I ′′ ⊂ I ′ such that ξ′ maps to zero in Hi
V (I′′)(M). If

V (I ′′) = V (I ′), then we are done. If not, then choose a generic point p ∈ V (I ′′) not
in V (I ′). Then we have Hi−1

V (I′′)(M)p = Hi−1
pAp

(Mp) = 0 by assumption. By Lemma
51.2.5 we can increase I ′′ which contradicts maximality.

Part (3) is formal from parts (1) and (2). □

https://stacks.math.columbia.edu/tag/0DWU
https://stacks.math.columbia.edu/tag/0DWV
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51.3. Hartshorne’s connectedness lemma

0FIV The title of this section refers to the following result.

Lemma 51.3.1.0BLR [Har62, Proposition
2.1]

Let A be a Noetherian local ring of depth ≥ 2. Then the punctured
spectra of A, Ah, and Ash are connected.

Proof. Let U be the punctured spectrum of A. If U is disconnected then we see
that Γ(U,OU ) has a nontrivial idempotent. But A, being local, does not have a
nontrivial idempotent. Hence A → Γ(U,OU ) is not an isomorphism. By Lemma
51.2.2 we conclude that either H0

m(A) or H1
m(A) is nonzero. Thus depth(A) ≤ 1 by

Dualizing Complexes, Lemma 47.11.1. To see the result for Ah and Ash use More
on Algebra, Lemma 15.45.8. □

Lemma 51.3.2.0FIW [DG67, Corollary
5.10.9]

Let A be a Noetherian local ring which is catenary and (S2). Then
Spec(A) is equidimensional.

Proof. Set X = Spec(A). Say d = dim(A) = dim(X). Inside X consider the
union X1 of the irreducible components of dimension d and the union X2 of the
irreducible components of dimension < d. Of course X = X1 ∪ X2. If X2 = ∅,
then the lemma holds. If not, then Z = X1 ∩X2 is a nonempty closed subset of X
because it contains at least the closed point of X. Hence we can choose a generic
point z ∈ Z of an irreducible component of Z. Recall that the spectrum of OZ,z is
the set of points of X specializing to z. Since z is both contained in an irreducible
component of dimension d and in an irreducible component of dimension < d we
obtain nontrivial specializations x1 ⇝ z and x2 ⇝ z such that the closures of x1
and x2 have different dimensions. Since X is catenary, this can only happen if
at least one of the specializations x1 ⇝ z and x2 ⇝ z is not immediate! Thus
dim(OZ,z) ≥ 2. Therefore depth(OZ,z) ≥ 2 because A is (S2). However, the
punctured spectrum U of OZ,z is disconnected because the closed subsets U ∩X1
and U ∩X2 are disjoint (by our choice of z) and cover U . This is a contradiction
with Lemma 51.3.1 and the proof is complete. □

51.4. Cohomological dimension

0DX6 A quick section about cohomological dimension.

Lemma 51.4.1.0DX7 Let I ⊂ A be a finitely generated ideal of a ring A. Set Y = V (I) ⊂
X = Spec(A). Let d ≥ −1 be an integer. The following are equivalent

(1) Hi
Y (A) = 0 for i > d,

(2) Hi
Y (M) = 0 for i > d for every A-module M , and

(3) if d = −1, then Y = ∅, if d = 0, then Y is open and closed in X, and if
d > 0 then Hi(X \ Y,F) = 0 for i ≥ d for every quasi-coherent OX\Y -
module F .

Proof. Observe that RΓY (−) has finite cohomological dimension by Dualizing Com-
plexes, Lemma 47.9.1 for example. Hence there exists an integer i0 such that
Hi
Y (M) = 0 for all A-modules M and i ≥ i0.

Let us prove that (1) and (2) are equivalent. It is immediate that (2) implies (1).
Assume (1). By descending induction on i > d we will show that Hi

Y (M) = 0 for
all A-modules M . For i ≥ i0 we have seen this above. To do the induction step,
let i0 > i > d. Choose any A-module M and fit it into a short exact sequence

https://stacks.math.columbia.edu/tag/0BLR
https://stacks.math.columbia.edu/tag/0FIW
https://stacks.math.columbia.edu/tag/0DX7
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0→ N → F → M → 0 where F is a free A-module. Since RΓY is a right adjoint,
we see that Hi

Y (−) commutes with direct sums. Hence Hi
Y (F ) = 0 as i > d by

assumption (1). Then we see that Hi
Y (M) = Hi+1

Y (N) = 0 as desired.
Assume d = −1 and (2) holds. Then 0 = H0

Y (A/I) = A/I ⇒ A = I ⇒ Y = ∅.
Thus (3) holds. We omit the proof of the converse.
Assume d = 0 and (2) holds. Set J = H0

I (A) = {x ∈ A | Inx = 0 for some n > 0}.
Then
H1
Y (A) = Coker(A→ Γ(X\Y,OX\Y )) and H1

Y (I) = Coker(I → Γ(X\Y,OX\Y ))
and the kernel of the first map is equal to J . See Lemma 51.2.2. We conclude from
(2) that I(A/J) = A/J . Thus we may pick f ∈ I mapping to 1 in A/J . Then
1 − f ∈ J so In(1 − f) = 0 for some n > 0. Hence fn = fn+1. Then e = fn ∈ I
is an idempotent. Consider the complementary idempotent e′ = 1 − fn ∈ J . For
any element g ∈ I we have gme′ = 0 for some m > 0. Thus I is contained in the
radical of ideal (e) ⊂ I. This means Y = V (I) = V (e) is open and closed in X
as predicted in (3). Conversely, if Y = V (I) is open and closed, then the functor
H0
Y (−) is exact and has vanshing higher derived functors.

If d > 0, then we see immediately from Lemma 51.2.2 that (2) is equivalent to
(3). □

Definition 51.4.2.0DX8 Let I ⊂ A be a finitely generated ideal of a ring A. The smallest
integer d ≥ −1 satisfying the equivalent conditions of Lemma 51.4.1 is called the
cohomological dimension of I in A and is denoted cd(A, I).

Thus we have cd(A, I) = −1 if I = A and cd(A, I) = 0 if I is locally nilpotent or
generated by an idempotent. Observe that cd(A, I) exists by the following lemma.

Lemma 51.4.3.0DX9 Let I ⊂ A be a finitely generated ideal of a ring A. Then
(1) cd(A, I) is at most equal to the number of generators of I,
(2) cd(A, I) ≤ r if there exist f1, . . . , fr ∈ A such that V (f1, . . . , fr) = V (I),
(3) cd(A, I) ≤ c if Spec(A) \ V (I) can be covered by c affine opens.

Proof. The explicit description for RΓY (−) given in Dualizing Complexes, Lemma
47.9.1 shows that (1) is true. We can deduce (2) from (1) using the fact that RΓZ
depends only on the closed subset Z and not on the choice of the finitely generated
ideal I ⊂ A with V (I) = Z. This follows either from the construction of local
cohomology in Dualizing Complexes, Section 47.9 combined with More on Algebra,
Lemma 15.88.6 or it follows from Lemma 51.2.1. To see (3) we use Lemma 51.4.1
and the vanishing result of Cohomology of Schemes, Lemma 30.4.2. □

Lemma 51.4.4.0ECP Let I, J ⊂ A be finitely generated ideals of a ring A. Then cd(A, I+
J) ≤ cd(A, I) + cd(A, J).

Proof. Use the definition and Dualizing Complexes, Lemma 47.9.6. □

Lemma 51.4.5.0DXA Let A→ B be a ring map. Let I ⊂ A be a finitely generated ideal.
Then cd(B, IB) ≤ cd(A, I). If A→ B is faithfully flat, then equality holds.

Proof. Use the definition and Dualizing Complexes, Lemma 47.9.3. □

Lemma 51.4.6.0DXB Let I ⊂ A be a finitely generated ideal of a ring A. Then cd(A, I) =
max cd(Ap, Ip).

https://stacks.math.columbia.edu/tag/0DX8
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Proof. Let Y = V (I) and Y ′ = V (Ip) ⊂ Spec(Ap). Recall that RΓY (A) ⊗A Ap =
RΓY ′(Ap) by Dualizing Complexes, Lemma 47.9.3. Thus we conclude by Algebra,
Lemma 10.23.1. □

Lemma 51.4.7.0DXC Let I ⊂ A be a finitely generated ideal of a ring A. If M is a
finite A-module, then Hi

V (I)(M) = 0 for i > dim(Supp(M)). In particular, we have
cd(A, I) ≤ dim(A).

Proof. We first prove the second statement. Recall that dim(A) denotes the Krull
dimension. By Lemma 51.4.6 we may assume A is local. If V (I) = ∅, then the
result is true. If V (I) ̸= ∅, then dim(Spec(A) \ V (I)) < dim(A) because the closed
point is missing. Observe that U = Spec(A) \ V (I) is a quasi-compact open of
the spectral space Spec(A), hence a spectral space itself. See Algebra, Lemma
10.26.2 and Topology, Lemma 5.23.5. Thus Cohomology, Proposition 20.22.4 im-
plies Hi(U,F) = 0 for i ≥ dim(A) which implies what we want by Lemma 51.4.1.
In the Noetherian case the reader may use Grothendieck’s Cohomology, Proposition
20.20.7.

We will deduce the first statement from the second. Let a be the annihilator of
the finite A-module M . Set B = A/a. Recall that Spec(B) = Supp(M), see
Algebra, Lemma 10.40.5. Set J = IB. Then M is a B-module and Hi

V (I)(M) =
Hi
V (J)(M), see Dualizing Complexes, Lemma 47.9.2. Since cd(B, J) ≤ dim(B) =

dim(Supp(M)) by the first part we conclude. □

Lemma 51.4.8.0DXD Let I ⊂ A be a finitely generated ideal of a ring A. If cd(A, I) = 1
then Spec(A) \ V (I) is nonempty affine.

Proof. This follows from Lemma 51.4.1 and Cohomology of Schemes, Lemma 30.3.1.
□

Lemma 51.4.9.0DXE Let (A,m) be a Noetherian local ring of dimension d. Then Hd
m(A)

is nonzero and cd(A,m) = d.

Proof. By one of the characterizations of dimension, there exists an ideal of def-
inition for A generated by d elements, see Algebra, Proposition 10.60.9. Hence
cd(A,m) ≤ d by Lemma 51.4.3. Thus Hd

m(A) is nonzero if and only if cd(A,m) = d
if and only if cd(A,m) ≥ d.

Let A→ A∧ be the map from A to its completion. Observe that A∧ is a Noetherian
local ring of the same dimension as A with maximal ideal mA∧. See Algebra,
Lemmas 10.97.6, 10.97.4, and 10.97.3 and More on Algebra, Lemma 15.43.1. By
Lemma 51.4.5 it suffices to prove the lemma for A∧.

By the previous paragraph we may assume that A is a complete local ring. Then
A has a normalized dualizing complex ω•

A (Dualizing Complexes, Lemma 47.22.4).
The local duality theorem (in the form of Dualizing Complexes, Lemma 47.18.4)
tells us Hd

m(A) is Matlis dual to Ext−d(A,ω•
A) = H−d(ω•

A) which is nonzero for
example by Dualizing Complexes, Lemma 47.16.11. □

Lemma 51.4.10.0DXF Let (A,m) be a Noetherian local ring. Let I ⊂ A be a proper
ideal. Let p ⊂ A be a prime ideal such that V (p)∩ V (I) = {m}. Then dim(A/p) ≤
cd(A, I).

https://stacks.math.columbia.edu/tag/0DXC
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Proof. By Lemma 51.4.5 we have cd(A, I) ≥ cd(A/p, I(A/p)). Since V (I)∩V (p) =
{m} we have cd(A/p, I(A/p)) = cd(A/p,m/p). By Lemma 51.4.9 this is equal to
dim(A/p). □

Lemma 51.4.11.0EHU Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let b : X ′ →
X = Spec(A) be the blowing up of I. If the fibres of b have dimension ≤ d − 1,
then cd(A, I) ≤ d.

Proof. Set U = X \ V (I). Denote j : U → X ′ the canonical open immersion, see
Divisors, Section 31.32. Since the exceptional divisor is an effective Cartier divisor
(Divisors, Lemma 31.32.4) we see that j is affine, see Divisors, Lemma 31.13.3. Let
F be a quasi-coherent OU -module. Then Rpj∗F = 0 for p > 0, see Cohomology of
Schemes, Lemma 30.2.3. On the other hand, we have Rqb∗(j∗F) = 0 for q ≥ d by
Limits, Lemma 32.19.2. Thus by the Leray spectral sequence (Cohomology, Lemma
20.13.8) we conclude that Rn(b ◦ j)∗F = 0 for n ≥ d. Thus Hn(U,F) = 0 for n ≥ d
(by Cohomology, Lemma 20.13.6). This means that cd(A, I) ≤ d by definition. □

51.5. More general supports

0EEY Let A be a Noetherian ring. Let M be an A-module. Let T ⊂ Spec(A) be a subset
stable under specialization (Topology, Definition 5.19.1). Let us define

H0
T (M) = colimZ⊂T H

0
Z(M)

where the colimit is over the directed partially ordered set of closed subsets Z of
Spec(A) contained in T 1. In other words, an element m of M is in H0

T (M) ⊂M if
and only if the support V (AnnR(m)) of m is contained in T .

Lemma 51.5.1.0EEZ Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable
under specialization. For an A-module M the following are equivalent

(1) H0
T (M) = M , and

(2) Supp(M) ⊂ T .
The category of such A-modules is a Serre subcategory of the category A-modules
closed under direct sums.

Proof. The equivalence holds because the support of an element of M is contained
in the support of M and conversely the support of M is the union of the supports
of its elements. The category of these modules is a Serre subcategory (Homology,
Definition 12.10.1) of ModA by Algebra, Lemma 10.40.9. We omit the proof of the
statement on direct sums. □

Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable under specializa-
tion. Let us denote ModA,T ⊂ ModA the Serre subcategory described in Lemma
51.5.1. Let us denote DT (A) ⊂ D(A) the strictly full saturated triangulated sub-
category of D(A) (Derived Categories, Lemma 13.17.1) consisting of complexes of
A-modules whose cohomology modules are in ModA,T . We obtain functors

D(ModA,T )→ DT (A)→ D(A)
See discussion in Derived Categories, Section 13.17. Denote RH0

T : D(A) →
D(ModA,T ) the right derived extension of H0

T . We will denote
RΓT : D+(A)→ D+

T (A),

1Since T is stable under specialization we have T =
⋃
Z⊂T Z, see Topology, Lemma 5.19.3.

https://stacks.math.columbia.edu/tag/0EHU
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the composition of RH0
T : D+(A) → D+(ModA,T ) with D+(ModA,T ) → D+

T (A).
If the dimension of A is finite2, then we will denote

RΓT : D(A)→ DT (A)

the composition of RH0
T with D(ModA,T )→ DT (A).

Lemma 51.5.2.0EF0 Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset sta-
ble under specialization. The functor RH0

T is the right adjoint to the functor
D(ModA,T )→ D(A).

Proof. This follows from the fact that the functor H0
T (−) is the right adjoint to the

inclusion functor ModA,T → ModA, see Derived Categories, Lemma 13.30.3. □

Lemma 51.5.3.0EF1 Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable
under specialization. For any object K of D(A) we have

Hi(RH0
T (K)) = colimZ⊂T closed H

i
Z(K)

Proof. Let J• be a K-injective complex representing K. By definition RH0
T is

represented by the complex

H0
T (J•) = colimH0

Z(J•)

where the equality follows from our definition ofH0
T . Since filtered colimits are exact

the cohomology of this complex in degree i is colimHi(H0
Z(J•)) = colimHi

Z(K) as
desired. □

Lemma 51.5.4.0EF2 Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable
under specialization. The functor D+(ModA,T )→ D+

T (A) is an equivalence.

Proof. Let M be an object of ModA,T . Choose an embedding M → J into an
injective A-module. By Dualizing Complexes, Proposition 47.5.9 the module J is
a direct sum of injective hulls of residue fields. Let E be an injective hull of the
residue field of p. Since E is p-power torsion we see that H0

T (E) = 0 if p ̸∈ T and
H0
T (E) = E if p ∈ T . Thus H0

T (J) is injective as a direct sum of injective hulls (by
the proposition) and we have an embedding M → H0

T (J). Thus every object M
of ModA,T has an injective resolution M → J• with Jn also in ModA,T . It follows
that RH0

T (M) = M .

Next, suppose that K ∈ D+
T (A). Then the spectral sequence

RqH0
T (Hp(K))⇒ Rp+qH0

T (K)

(Derived Categories, Lemma 13.21.3) converges and above we have seen that only
the terms with q = 0 are nonzero. Thus we see that RH0

T (K) → K is an iso-
morphism. Thus the functor D+(ModA,T )→ D+

T (A) is an equivalence with quasi-
inverse given by RH0

T . □

Lemma 51.5.5.0EF3 Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable
under specialization. If dim(A) < ∞, then functor D(ModA,T ) → DT (A) is an
equivalence.

2If dim(A) =∞ the construction may have unexpected properties on unbounded complexes.

https://stacks.math.columbia.edu/tag/0EF0
https://stacks.math.columbia.edu/tag/0EF1
https://stacks.math.columbia.edu/tag/0EF2
https://stacks.math.columbia.edu/tag/0EF3


51.5. MORE GENERAL SUPPORTS 4238

Proof. Say dim(A) = d. Then we see that Hi
Z(M) = 0 for i > d for every closed

subset Z of Spec(A), see Lemma 51.4.7. By Lemma 51.5.3 we find that H0
T has

bounded cohomological dimension.
Let K ∈ DT (A). We claim that RH0

T (K)→ K is an isomorphism. We know this is
true when K is bounded below, see Lemma 51.5.4. However, since H0

T has bounded
cohomological dimension, we see that the ith cohomology of RH0

T (K) only depends
on τ≥−d+iK and we conclude. Thus D(ModA,T ) → DT (A) is an equivalence with
quasi-inverse RH0

T . □

Remark 51.5.6.0EF4 Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset
stable under specialization. The upshot of the discussion above is that RΓT :
D+(A) → D+

T (A) is the right adjoint to the inclusion functor D+
T (A) → D+(A).

If dim(A) < ∞, then RΓT : D(A) → DT (A) is the right adjoint to the inclusion
functor DT (A)→ D(A). In both cases we have

Hi
T (K) = Hi(RΓT (K)) = RiH0

T (K) = colimZ⊂T closed H
i
Z(K)

This follows by combining Lemmas 51.5.2, 51.5.3, 51.5.4, and 51.5.5.

Lemma 51.5.7.0EF5 Let A → B be a flat homomorphism of Noetherian rings. Let
T ⊂ Spec(A) be a subset stable under specialization. Let T ′ ⊂ Spec(B) be the
inverse image of T . Then the canonical map

RΓT (K)⊗L
A B −→ RΓT ′(K ⊗L

A B)
is an isomorphism for K ∈ D+(A). If A and B have finite dimension, then this is
true for K ∈ D(A).

Proof. From the map RΓT (K) → K we get a map RΓT (K) ⊗L
A B → K ⊗L

A B.
The cohomology modules of RΓT (K)⊗L

A B are supported on T ′ and hence we get
the arrow of the lemma. This arrow is an isomorphism if T is a closed subset of
Spec(A) by Dualizing Complexes, Lemma 47.9.3. Recall that Hi

T (K) is the colimit
of Hi

Z(K) where Z runs over the (directed set of) closed subsets of T , see Lemma
51.5.3. Correspondingly Hi

T ′(K⊗L
AB) = colimHi

Z′(K⊗L
AB) where Z ′ is the inverse

image of Z. Thus the result because ⊗AB commutes with filtered colimits and there
are no higher Tors. □

Lemma 51.5.8.0EF6 Let A be a ring and let T, T ′ ⊂ Spec(A) subsets stable under
specialization. For K ∈ D+(A) there is a spectral sequence

Ep,q2 = Hp
T (Hp

T ′(K))⇒ Hp+q
T∩T ′(K)

as in Derived Categories, Lemma 13.22.2.

Proof. Let E be an object of DT∩T ′(A). Then we have
Hom(E,RΓT (RΓT ′(K))) = Hom(E,RΓT ′(K)) = Hom(E,K)

The first equality by the adjointness property of RΓT and the second by the adjoint-
ness property of RΓT ′ . On the other hand, if J• is a bounded below complex of in-
jectives representingK, thenH0

T ′(J•) is a complex of injective A-modules represent-
ing RΓT ′(K) and hence H0

T (H0
T ′(J•)) is a complex representing RΓT (RΓT ′(K)).

Thus RΓT (RΓT ′(K)) is an object of D+
T∩T ′(A). Combining these two facts we find

that RΓT∩T ′ = RΓT ◦ RΓT ′ . This produces the spectral sequence by the lemma
referenced in the statement. □

https://stacks.math.columbia.edu/tag/0EF4
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Lemma 51.5.9.0EF7 Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable
under specialization. Assume A has finite dimension. Then

RΓT (K) = RΓT (A)⊗L
A K

for K ∈ D(A). For K,L ∈ D(A) we have
RΓT (K ⊗L

A L) = K ⊗L
A RΓT (L) = RΓT (K)⊗L

A L = RΓT (K)⊗L
A RΓT (L)

If K or L is in DT (A) then so is K ⊗L
A L.

Proof. By construction we may represent RΓT (A) by a complex J• in ModA,T .
Thus if we represent K by a K-flat complex K• then we see that RΓT (A)⊗L

A K is
represented by the complex Tot(J•⊗AK•) in ModA,T . Using the map RΓT (A)→ A
we obtain a map RΓT (A) ⊗L

A K → K. Thus by the adjointness property of RΓT
we obtain a canonical map

RΓT (A)⊗L
A K −→ RΓT (K)

factoring the just constructed map. Observe that RΓT commutes with direct sums
in D(A) for example by Lemma 51.5.3, the fact that directed colimits commute with
direct sums, and the fact that usual local cohomology commutes with direct sums
(for example by Dualizing Complexes, Lemma 47.9.1). Thus by More on Algebra,
Remark 15.59.11 it suffices to check the map is an isomorphism for K = A[k] where
k ∈ Z. This is clear.
The final statements follow from the result we’ve just shown by transitivity of
derived tensor products. □

51.6. Filtrations on local cohomology

0EHV Some tricks related to the spectral sequence of Lemma 51.5.8.

Lemma 51.6.1.0EF8 Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable
under specialization. Let T ′ ⊂ T be the set of nonminimal primes in T . Then T ′

is a subset of Spec(A) stable under specialization and for every A-module M there
is an exact sequence

0→ colimZ,f H
1
f (Hi−1

Z (M))→ Hi
T ′(M)→ Hi

T (M)→
⊕

p∈T\T ′
Hi

pAp
(Mp)

where the colimit is over closed subsets Z ⊂ T and f ∈ A with V (f) ∩ Z ⊂ T ′.

Proof. For every Z and f the spectral sequence of Dualizing Complexes, Lemma
47.9.6 degenerates to give short exact sequences

0→ H1
f (Hi−1

Z (M))→ Hi
Z∩V (f)(M)→ H0

f (Hi
Z(M))→ 0

We will use this without further mention below.
Let ξ ∈ Hi

T (M) map to zero in the direct sum. Then we first write ξ as the image
of some ξ′ ∈ Hi

Z(M) for some closed subset Z ⊂ T , see Lemma 51.5.3. Then ξ′

maps to zero in Hi
pAp

(Mp) for every p ∈ Z, p ̸∈ T ′. Since there are finitely many
of these primes, we may choose f ∈ A not contained in any of these such that f
annihilates ξ′. Then ξ′ is the image of some ξ′′ ∈ Hi

Z′(M) where Z ′ = Z ∩ V (f).
By our choice of f we have Z ′ ⊂ T ′ and we get exactness at the penultimate spot.
Let ξ ∈ Hi

T ′(M) map to zero in Hi
T (M). Choose closed subsets Z ′ ⊂ Z with

Z ′ ⊂ T ′ and Z ⊂ T such that ξ comes from ξ′ ∈ Hi
Z′(M) and maps to zero in

Hi
Z(M). Then we can find f ∈ A with V (f) ∩ Z = Z ′ and we conclude. □

https://stacks.math.columbia.edu/tag/0EF7
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Lemma 51.6.2.0EF9 Let A be a Noetherian ring of finite dimension. Let T ⊂ Spec(A)
be a subset stable under specialization. Let {Mn}n≥0 be an inverse system of A-
modules. Let i ≥ 0 be an integer. Assume that for every m there exists an integer
m′(m) ≥ m such that for all p ∈ T the induced map

Hi
pAp

(Mk,p) −→ Hi
pAp

(Mm,p)

is zero for k ≥ m′(m). Let m′′ : N→ N be the 2dim(T )-fold self-composition of m′.
Then the map Hi

T (Mk)→ Hi
T (Mm) is zero for all k ≥ m′′(m).

Proof. We first make a general remark: suppose we have an exact sequence

(An)→ (Bn)→ (Cn)

of inverse systems of abelian groups. Suppose that for every m there exists an
integer m′(m) ≥ m such that

Ak → Am and Ck → Cm

are zero for k ≥ m′(m). Then for k ≥ m′(m′(m)) the map Bk → Bm is zero.

We will prove the lemma by induction on dim(T ) which is finite because dim(A) is
finite. Let T ′ ⊂ T be the set of nonminimal primes in T . Then T ′ is a subset of
Spec(A) stable under specialization and the hypotheses of the lemma apply to T ′.
Since dim(T ′) < dim(T ) we know the lemma holds for T ′. For every A-module M
there is an exact sequence

Hi
T ′(M)→ Hi

T (M)→
⊕

p∈T\T ′
Hi

pAp
(Mp)

by Lemma 51.6.1. Thus we conclude by the initial remark of the proof. □

Lemma 51.6.3.0EFA Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable
under specialization. Let {Mn}n≥0 be an inverse system of A-modules. Let i ≥ 0
be an integer. Assume the dimension of A is finite and that for every m there exists
an integer m′(m) ≥ m such that for all p ∈ T we have

(1) Hi−1
pAp

(Mk,p)→ Hi−1
pAp

(Mm,p) is zero for k ≥ m′(m), and
(2) Hi

pAp
(Mk,p)→ Hi

pAp
(Mm,p) has imageG(p,m) independent of k ≥ m′(m)

and moreover G(p,m) maps injectively into Hi
pAp

(M0,p).
Then there exists an integer m0 such that for every m ≥ m0 there exists an integer
m′′(m) ≥ m such that for k ≥ m′′(m) the image of Hi

T (Mk) → Hi
T (Mm) maps

injectively into Hi
T (Mm0).

Proof. We first make a general remark: suppose we have an exact sequence

(An)→ (Bn)→ (Cn)→ (Dn)

of inverse systems of abelian groups. Suppose that there exists an integer m0 such
that for every m ≥ m0 there exists an integer m′(m) ≥ m such that the maps

Im(Bk → Bm) −→ Bm0 and Im(Dk → Dm) −→ Dm0

are injective for k ≥ m′(m) and Ak → Am is zero for k ≥ m′(m). Then for
m ≥ m′(m0) and k ≥ m′(m′(m)) the map

Im(Ck → Cm)→ Cm′(m0)

https://stacks.math.columbia.edu/tag/0EF9
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is injective. Namely, let c0 ∈ Cm be the image of c3 ∈ Ck and say c0 maps to zero
in Cm′(m0). Picture

Ck → Cm′(m′(m)) → Cm′(m) → Cm → Cm′(m0), c3 7→ c2 7→ c1 7→ c0 7→ 0
We have to show c0 = 0. The image d3 of c3 maps to zero in Cm0 and hence we see
that the image d1 ∈ Dm′(m) is zero. Thus we can choose b1 ∈ Bm′(m) mapping to
the image c1. Since c3 maps to zero in Cm′(m0) we find an element a−1 ∈ Am′(m0)
which maps to the image b−1 ∈ Bm′(m0) of b1. Since a−1 maps to zero in Am0 we
conclude that b1 maps to zero in Bm0 . Thus the image b0 ∈ Bm is zero which of
course implies c0 = 0 as desired.
We will prove the lemma by induction on dim(T ) which is finite because dim(A) is
finite. Let T ′ ⊂ T be the set of nonminimal primes in T . Then T ′ is a subset of
Spec(A) stable under specialization and the hypotheses of the lemma apply to T ′.
Since dim(T ′) < dim(T ) we know the lemma holds for T ′. For every A-module M
there is an exact sequence

0→ colimZ,f H
1
f (Hi−1

Z (M))→ Hi
T ′(M)→ Hi

T (M)→
⊕

p∈T\T ′
Hi

pAp
(Mp)

by Lemma 51.6.1. Thus we conclude by the initial remark of the proof and the fact
that we’ve seen the system of groups{

colimZ,f H
1
f (Hi−1

Z (Mn))
}
n≥0

is pro-zero in Lemma 51.6.2; this uses that the function m′′(m) in that lemma for
Hi−1
Z (M) is independent of Z. □

51.7. Finiteness of local cohomology, I

0AW7 We will follow Faltings approach to finiteness of local cohomology modules, see
[Fal78b] and [Fal81]. Here is a lemma which shows that it suffices to prove local
cohomology modules have an annihilator in order to prove that they are finite
modules.

Lemma 51.7.1.0AW8 [Fal78b, Lemma 3]Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable
under specialization. Let M be a finite A-module. Let n ≥ 0. The following are
equivalent

(1) Hi
T (M) is finite for i ≤ n,

(2) there exists an ideal J ⊂ A with V (J) ⊂ T such that J annihilates Hi
T (M)

for i ≤ n.
If T = V (I) = Z for an ideal I ⊂ A, then these are also equivalent to

(3) there exists an e ≥ 0 such that Ie annihilates Hi
Z(M) for i ≤ n.

Proof. We prove the equivalence of (1) and (2) by induction on n. For n = 0 we
have H0

T (M) ⊂ M is finite. Hence (1) is true. Since H0
T (M) = colimH0

V (J)(M)
with J as in (2) we see that (2) is true. Assume that n > 0.
Assume (1) is true. Recall that Hi

J(M) = Hi
V (J)(M), see Dualizing Complexes,

Lemma 47.10.1. Thus Hi
T (M) = colimHi

J(M) where the colimit is over ideals
J ⊂ A with V (J) ⊂ T , see Lemma 51.5.3. Since Hi

T (M) is finitely generated for
i ≤ n we can find a J ⊂ A as in (2) such that Hi

J(M) → Hi
T (M) is surjective for

i ≤ n. Thus the finite list of generators are J-power torsion elements and we see
that (2) holds with J replaced by some power.
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Assume we have J as in (2). Let N = H0
T (M) and M ′ = M/N . By construction of

RΓT we find that Hi
T (N) = 0 for i > 0 and H0

T (N) = N , see Remark 51.5.6. Thus
we find that H0

T (M ′) = 0 and Hi
T (M ′) = Hi

T (M) for i > 0. We conclude that we
may replace M by M ′. Thus we may assume that H0

T (M) = 0. This means that
the finite set of associated primes of M are not in T . By prime avoidance (Algebra,
Lemma 10.15.2) we can find f ∈ J not contained in any of the associated primes of
M . Then the long exact local cohomology sequence associated to the short exact
sequence

0→M →M →M/fM → 0
turns into short exact sequences

0→ Hi
T (M)→ Hi

T (M/fM)→ Hi+1
T (M)→ 0

for i < n. We conclude that J2 annihilates Hi
T (M/fM) for i < n. By induction

hypothesis we see that Hi
T (M/fM) is finite for i < n. Using the short exact

sequence once more we see that Hi+1
T (M) is finite for i < n as desired.

We omit the proof of the equivalence of (2) and (3) in case T = V (I). □

The following result of Faltings allows us to prove finiteness of local cohomology at
the level of local rings.

Lemma 51.7.2.0AW9 This is a special
case of [Fal81, Satz
1].

Let A be a Noetherian ring, I ⊂ A an ideal, M a finite A-module,
and n ≥ 0 an integer. Let Z = V (I). The following are equivalent

(1) the modules Hi
Z(M) are finite for i ≤ n, and

(2) for all p ∈ Spec(A) the modules Hi
Z(M)p, i ≤ n are finite Ap-modules.

Proof. The implication (1)⇒ (2) is immediate. We prove the converse by induction
on n. The case n = 0 is clear because both (1) and (2) are always true in that case.
Assume n > 0 and that (2) is true. Let N = H0

Z(M) and M ′ = M/N . By Dualizing
Complexes, Lemma 47.11.6 we may replace M by M ′. Thus we may assume that
H0
Z(M) = 0. This means that depthI(M) > 0 (Dualizing Complexes, Lemma

47.11.1). Pick f ∈ I a nonzerodivisor on M and consider the short exact sequence
0→M →M →M/fM → 0

which produces a long exact sequence
0→ H0

Z(M/fM)→ H1
Z(M)→ H1

Z(M)→ H1
Z(M/fM)→ H2

Z(M)→ . . .

and similarly after localization. Thus assumption (2) implies that the modules
Hi
Z(M/fM)p are finite for i < n. Hence by induction assumption Hi

Z(M/fM) are
finite for i < n.
Let p be a prime of A which is associated to Hi

Z(M) for some i ≤ n. Say p is the
annihilator of the element x ∈ Hi

Z(M). Then p ∈ Z, hence f ∈ p. Thus fx = 0
and hence x comes from an element of Hi−1

Z (M/fM) by the boundary map δ in
the long exact sequence above. It follows that p is an associated prime of the finite
module Im(δ). We conclude that Ass(Hi

Z(M)) is finite for i ≤ n, see Algebra,
Lemma 10.63.5.
Recall that

Hi
Z(M) ⊂

∏
p∈Ass(Hi

Z
(M))

Hi
Z(M)p
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by Algebra, Lemma 10.63.19. Since by assumption the modules on the right hand
side are finite and I-power torsion, we can find integers ep,i ≥ 0, i ≤ n, p ∈
Ass(Hi

Z(M)) such that Iep,i annihilates Hi
Z(M)p. We conclude that Ie with e =

max{ep,i} annihilates Hi
Z(M) for i ≤ n. By Lemma 51.7.1 we see that Hi

Z(M) is
finite for i ≤ n. □

Lemma 51.7.3.0BPX Let A be a ring and let J ⊂ I ⊂ A be finitely generated ideals.
Let i ≥ 0 be an integer. Set Z = V (I). If Hi

Z(A) is annihilated by Jn for some n,
then Hi

Z(M) annihilated by Jm for some m = m(M) for every finitely presented
A-module M such that Mf is a finite locally free Af -module for all f ∈ I.

Proof. Consider the annihilator a of Hi
Z(M). Let p ⊂ A with p ̸∈ Z. By assumption

there exists an f ∈ I, f ̸∈ p and an isomorphism φ : A⊕r
f → Mf of Af -modules.

Clearing denominators (and using that M is of finite presentation) we find maps
a : A⊕r −→M and b : M −→ A⊕r

with af = fNφ and bf = fNφ−1 for some N . Moreover we may assume that a ◦ b
and b◦a are equal to multiplication by f2N . Thus we see that Hi

Z(M) is annihilated
by f2NJn, i.e., f2NJn ⊂ a.
As U = Spec(A) \ Z is quasi-compact we can find finitely many f1, . . . , ft and
N1, . . . , Nt such that U =

⋃
D(fj) and f

2Nj
j Jn ⊂ a. Then V (I) = V (f1, . . . , ft)

and since I is finitely generated we conclude IM ⊂ (f1, . . . , ft) for some M . All in
all we see that Jm ⊂ a for m ≫ 0, for example m = M(2N1 + . . . + 2Nt)n will
do. □

Lemma 51.7.4.0BPY Let A be a Noetherian ring. Let I ⊂ A be an ideal. Set Z = V (I).
Let n ≥ 0 be an integer. If Hi

Z(A) is finite for 0 ≤ i ≤ n, then the same is true for
Hi
Z(M), 0 ≤ i ≤ n for any finite A-module M such that Mf is a finite locally free

Af -module for all f ∈ I.

Proof. The assumption that Hi
Z(A) is finite for 0 ≤ i ≤ n implies there exists an

e ≥ 0 such that Ie annihilates Hi
Z(A) for 0 ≤ i ≤ n, see Lemma 51.7.1. Then

Lemma 51.7.3 implies that Hi
Z(M), 0 ≤ i ≤ n is annihilated by Im for some

m = m(M, i). We may take the same m for all 0 ≤ i ≤ n. Then Lemma 51.7.1
implies that Hi

Z(M) is finite for 0 ≤ i ≤ n as desired. □

51.8. Finiteness of pushforwards, I

0BL8 In this section we discuss the easiest nontrivial case of the finiteness theorem,
namely, the finiteness of the first local cohomology or what is equivalent, finite-
ness of j∗F where j : U → X is an open immersion, X is locally Noetherian, and F
is a coherent sheaf on U . Following a method of Kollár ([Kol16b] and [Kol15]) we
find a necessary and sufficient condition, see Proposition 51.8.7. The reader who
is interested in higher direct images or higher local cohomology groups should skip
ahead to Section 51.12 or Section 51.11 (which are developed independently of the
rest of this section).

Lemma 51.8.1.0BJZ Let X be a locally Noetherian scheme. Let j : U → X be the
inclusion of an open subscheme with complement Z. For x ∈ U let ix : Wx → U be
the integral closed subscheme with generic point x. Let F be a coherentOU -module.
The following are equivalent
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(1) for all x ∈ Ass(F) the OX -module j∗ix,∗OWx
is coherent,

(2) j∗F is coherent.

Proof. We first prove that (1) implies (2). Assume (1) holds. The statement is
local on X, hence we may assume X is affine. Then U is quasi-compact, hence
Ass(F) is finite (Divisors, Lemma 31.2.5). Thus we may argue by induction on
the number of associated points. Let x ∈ U be a generic point of an irreducible
component of the support of F . By Divisors, Lemma 31.2.5 we have x ∈ Ass(F).
By our choice of x we have dim(Fx) = 0 as OX,x-module. Hence Fx has finite
length as an OX,x-module (Algebra, Lemma 10.62.3). Thus we may use induction
on this length.
Set G = j∗ix,∗OWx . This is a coherent OX -module by assumption. We have
Gx = κ(x). Choose a nonzero map φx : Fx → κ(x) = Gx. By Cohomology of
Schemes, Lemma 30.9.6 there is an open x ∈ V ⊂ U and a map φV : F|V → G|V
whose stalk at x is φx. Choose f ∈ Γ(X,OX) which does not vanish at x such
that D(f) ⊂ V . By Cohomology of Schemes, Lemma 30.10.5 (for example) we
see that φV extends to fnF → G|U for some n. Precomposing with multiplication
by fn we obtain a map F → G|U whose stalk at x is nonzero. Let F ′ ⊂ F
be the kernel. Note that Ass(F ′) ⊂ Ass(F), see Divisors, Lemma 31.2.4. Since
lengthOX,x

(F ′
x) = lengthOX,x

(Fx) − 1 we may apply the induction hypothesis to
conclude j∗F ′ is coherent. Since G = j∗(G|U ) = j∗ix,∗OWx is coherent, we can
consider the exact sequence

0→ j∗F ′ → j∗F → G
By Schemes, Lemma 26.24.1 the sheaf j∗F is quasi-coherent. Hence the image of
j∗F in j∗(G|U ) is coherent by Cohomology of Schemes, Lemma 30.9.3. Finally, j∗F
is coherent by Cohomology of Schemes, Lemma 30.9.2.
Assume (2) holds. Exactly in the same manner as above we reduce to the case X
affine. We pick x ∈ Ass(F) and we set G = j∗ix,∗OWx

. Then we choose a nonzero
map φx : Gx = κ(x) → Fx which exists exactly because x is an associated point
of F . Arguing exactly as above we may assume φx extends to an OU -module map
φ : G|U → F . Then φ is injective (for example by Divisors, Lemma 31.2.10) and
we find an injective map G = j∗(G|V )→ j∗F . Thus (1) holds. □

Lemma 51.8.2.0BK0 Let A be a Noetherian ring and let I ⊂ A be an ideal. Set
X = Spec(A), Z = V (I), U = X \ Z, and j : U → X the inclusion morphism. Let
F be a coherent OU -module. Then

(1) there exists a finite A-module M such that F is the restriction of M̃ to
U ,

(2) given M there is an exact sequence
0→ H0

Z(M)→M → H0(U,F)→ H1
Z(M)→ 0

and isomorphisms Hp(U,F) = Hp+1
Z (M) for p ≥ 1,

(3) given M and p ≥ 0 the following are equivalent
(a) Rpj∗F is coherent,
(b) Hp(U,F) is a finite A-module,
(c) Hp+1

Z (M) is a finite A-module,
(4) if the equivalent conditions in (3) hold for p = 0, we may takeM = Γ(U,F)

in which case we have H0
Z(M) = H1

Z(M) = 0.
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Proof. By Properties, Lemma 28.22.5 there exists a coherent OX -module F ′ whose
restriction to U is isomorphic to F . Say F ′ corresponds to the finite A-module
M as in (1). Note that Rpj∗F is quasi-coherent (Cohomology of Schemes, Lemma
30.4.5) and corresponds to the A-module Hp(U,F). By Lemma 51.2.1 and the
discussion in Cohomology, Sections 20.21 and 20.34 we obtain an exact sequence

0→ H0
Z(M)→M → H0(U,F)→ H1

Z(M)→ 0

and isomorphismsHp(U,F) = Hp+1
Z (M) for p ≥ 1. Here we use thatHj(X,F ′) = 0

for j > 0 as X is affine and F ′ is quasi-coherent (Cohomology of Schemes, Lemma
30.2.2). This proves (2). Parts (3) and (4) are straightforward from (2); see also
Lemma 51.2.2. □

Lemma 51.8.3.0AWA Let X be a locally Noetherian scheme. Let j : U → X be the
inclusion of an open subscheme with complement Z. Let F be a coherent OU -
module. Assume

(1) X is Nagata,
(2) X is universally catenary, and
(3) for x ∈ Ass(F) and z ∈ Z ∩ {x} we have dim(O{x},z) ≥ 2.

Then j∗F is coherent.

Proof. By Lemma 51.8.1 it suffices to prove j∗ix,∗OWx is coherent for x ∈ Ass(F).
Let π : Y → X be the normalization of X in Spec(κ(x)), see Morphisms, Section
29.54. By Morphisms, Lemma 29.53.14 the morphism π is finite. Since π is finite
G = π∗OY is a coherent OX -module by Cohomology of Schemes, Lemma 30.9.9.
Observe that Wx = U ∩ π(Y ). Thus π|π−1(U) : π−1(U) → U factors through
ix : Wx → U and we obtain a canonical map

ix,∗OWx
−→ (π|π−1(U))∗(Oπ−1(U)) = (π∗OY )|U = G|U

This map is injective (for example by Divisors, Lemma 31.2.10). Hence j∗ix,∗OWx ⊂
j∗G|U and it suffices to show that j∗G|U is coherent.
It remains to prove that j∗(G|U ) is coherent. We claim Divisors, Lemma 31.5.11
applies to

G −→ j∗(G|U )
which finishes the proof. It suffices to show that depth(Gz) ≥ 2 for z ∈ Z. Let
y1, . . . , yn ∈ Y be the points mapping to z. By Algebra, Lemma 10.72.11 it suffices
to show that depth(OY,yi) ≥ 2 for i = 1, . . . , n. If not, then by Properties, Lemma
28.12.5 we see that dim(OY,yi) = 1 for some i. This is impossible by the dimension
formula (Morphisms, Lemma 29.52.1) for π : Y → {x} and assumption (3). □

Lemma 51.8.4.0BK1 Let X be an integral locally Noetherian scheme. Let j : U → X
be the inclusion of a nonempty open subscheme with complement Z. Assume
that for all z ∈ Z and any associated prime p of the completion O∧

X,z we have
dim(O∧

X,z/p) ≥ 2. Then j∗OU is coherent.

Proof. We may assume X is affine. Using Lemmas 51.7.2 and 51.8.2 we reduce to
X = Spec(A) where (A,m) is a Noetherian local domain and m ∈ Z. Then we
can use induction on d = dim(A). (The base case is d = 0, 1 which do not happen
by our assumption on the local rings.) Set V = Spec(A) \ {m}. Observe that the
local rings of V have dimension strictly smaller than d. Repeating the arguments
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for j′ : U → V we and using induction we conclude that j′
∗OU is a coherent OV -

module. Pick a nonzero f ∈ A which vanishes on Z. Since D(f) ∩ V ⊂ U we find
an n such that multiplication by fn on U extends to a map fn : j′

∗OU → OV over
V (for example by Cohomology of Schemes, Lemma 30.10.5). This map is injective
hence there is an injective map

j∗OU = j′′
∗ j

′
∗OU → j′′

∗OV
on X where j′′ : V → X is the inclusion morphism. Hence it suffices to show that
j′′

∗OV is coherent. In other words, we may assume that X is the spectrum of a local
Noetherian domain and that Z consists of the closed point.
Assume X = Spec(A) with (A,m) local and Z = {m}. Let A∧ be the completion
of A. Set X∧ = Spec(A∧), Z∧ = {m∧}, U∧ = X∧ \ Z∧, and F∧ = OU∧ . The
ring A∧ is universally catenary and Nagata (Algebra, Remark 10.160.9 and Lemma
10.162.8). Moreover, condition (3) of Lemma 51.8.3 for X∧, Z∧, U∧,F∧ holds by
assumption! Thus we see that (U∧ → X∧)∗OU∧ is coherent. Since the morphism
c : X∧ → X is flat we conclude that the pullback of j∗OU is (U∧ → X∧)∗OU∧

(Cohomology of Schemes, Lemma 30.5.2). Finally, since c is faithfully flat we
conclude that j∗OU is coherent by Descent, Lemma 35.7.1. □

Remark 51.8.5.0BK2 Let j : U → X be an open immersion of locally Noetherian
schemes. Let x ∈ U . Let ix : Wx → U be the integral closed subscheme with
generic point x and let {x} be the closure in X. Then we have a commutative
diagram

Wx

ix

��

j′
// {x}

i

��
U

j // X

We have j∗ix,∗OWx
= i∗j

′
∗OWx

. As the left vertical arrow is a closed immersion we
see that j∗ix,∗OWx is coherent if and only if j′

∗OWx is coherent.

Remark 51.8.6.0AWC Let X be a locally Noetherian scheme. Let j : U → X be the
inclusion of an open subscheme with complement Z. Let F be a coherent OU -
module. If there exists an x ∈ Ass(F) and z ∈ Z ∩ {x} such that dim(O{x},z) ≤ 1,
then j∗F is not coherent. To prove this we can do a flat base change to the spectrum
of OX,z. Let X ′ = {x}. The assumption implies OX′∩U ⊂ F . Thus it suffices to see
that j∗OX′∩U is not coherent. This is clear because X ′ = {x, z}, hence j∗OX′∩U
corresponds to κ(x) as an OX,z-module which cannot be finite as x is not a closed
point.
In fact, the converse of Lemma 51.8.4 holds true: given an open immersion j :
U → X of integral Noetherian schemes and there exists a z ∈ X \ U and an
associated prime p of the completion O∧

X,z with dim(O∧
X,z/p) = 1, then j∗OU is

not coherent. Namely, you can pass to the local ring, you can enlarge U to the
punctured spectrum, you can pass to the completion, and then the argument above
gives the nonfiniteness.

Proposition 51.8.7 (Kollár).0BK3 See [Kol17] and see
[DG67, IV,
Proposition 7.2.2]
for a special case.

Let j : U → X be an open immersion of locally
Noetherian schemes with complement Z. Let F be a coherent OU -module. The
following are equivalent
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(1) j∗F is coherent,
(2) for x ∈ Ass(F) and z ∈ Z ∩ {x} and any associated prime p of the

completion O∧
{x},z

we have dim(O∧
{x},z

/p) ≥ 2.

Proof. If (2) holds we get (1) by a combination of Lemmas 51.8.1, Remark 51.8.5,
and Lemma 51.8.4. If (2) does not hold, then j∗ix,∗OWx

is not finite for some
x ∈ Ass(F) by the discussion in Remark 51.8.6 (and Remark 51.8.5). Thus j∗F is
not coherent by Lemma 51.8.1. □

Lemma 51.8.8.0BL9 Let A be a Noetherian ring and let I ⊂ A be an ideal. Set Z = V (I).
Let M be a finite A-module. The following are equivalent

(1) H1
Z(M) is a finite A-module, and

(2) for all p ∈ Ass(M), p ̸∈ Z and all q ∈ V (p + I) the completion of (A/p)q
does not have associated primes of dimension 1.

Proof. Follows immediately from Proposition 51.8.7 via Lemma 51.8.2. □

The formulation in the following lemma has the advantage that conditions (1) and
(2) are inherited by schemes of finite type over X. Moreover, this is the form of
finiteness which we will generalize to higher direct images in Section 51.12.

Lemma 51.8.9.0AWB Let X be a locally Noetherian scheme. Let j : U → X be the
inclusion of an open subscheme with complement Z. Let F be a coherent OU -
module. Assume

(1) X is universally catenary,
(2) for every z ∈ Z the formal fibres of OX,z are (S1).

In this situation the following are equivalent
(a) for x ∈ Ass(F) and z ∈ Z ∩ {x} we have dim(O{x},z) ≥ 2, and
(b) j∗F is coherent.

Proof. Let x ∈ Ass(F). By Proposition 51.8.7 it suffices to check that A = O{x},z
satisfies the condition of the proposition on associated primes of its completion if
and only if dim(A) ≥ 2. Observe that A is universally catenary (this is clear) and
that its formal fibres are (S1) as follows from More on Algebra, Lemma 15.51.10
and Proposition 15.51.5. Let p′ ⊂ A∧ be an associated prime. As A → A∧ is flat,
by Algebra, Lemma 10.65.3, we find that p′ lies over (0) ⊂ A. The formal fibre
A∧⊗AF is (S1) where F is the fraction field of A. We conclude that p′ is a minimal
prime, see Algebra, Lemma 10.157.2. Since A is universally catenary it is formally
catenary by More on Algebra, Proposition 15.109.5. Hence dim(A∧/p′) = dim(A)
which proves the equivalence. □

51.9. Depth and dimension

0DWW Some helper lemmas.

Lemma 51.9.1.0DWX Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let M be a
finite A-module. Let p ∈ V (I) be a prime ideal. Assume e = depthIAp

(Mp) < ∞.
Then there exists a nonempty open U ⊂ V (p) such that depthIAq

(Mq) ≥ e for all
q ∈ U .
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Proof. By definition of depth we have IMp ̸= Mp and there exists an Mp-regular
sequence f1, . . . , fe ∈ IAp. After replacing A by a principal localization we may
assume f1, . . . , fe ∈ I form an M -regular sequence, see Algebra, Lemma 10.68.6.
Consider the module M ′ = M/IM . Since p ∈ Supp(M ′) and since the support
of a finite module is closed, we find V (p) ⊂ Supp(M ′). Thus for q ∈ V (p) we get
IMq ̸= Mq. Hence, using that localization is exact, we see that depthIAq

(Mq) ≥ e
for any q ∈ V (I) by definition of depth. □

Lemma 51.9.2.0DWY Let A be a Noetherian ring. Let M be a finite A-module. Let p
be a prime ideal. Assume e = depthAp

(Mp) < ∞. Then there exists a nonempty
open U ⊂ V (p) such that depthAq

(Mq) ≥ e for all q ∈ U and for all but finitely
many q ∈ U we have depthAq

(Mq) > e.

Proof. By definition of depth we have pMp ̸= Mp and there exists an Mp-regular
sequence f1, . . . , fe ∈ pAp. After replacing A by a principal localization we may
assume f1, . . . , fe ∈ p form an M -regular sequence, see Algebra, Lemma 10.68.6.
Consider the module M ′ = M/(f1, . . . , fe)M . Since p ∈ Supp(M ′) and since
the support of a finite module is closed, we find V (p) ⊂ Supp(M ′). Thus for
q ∈ V (p) we get qMq ̸= Mq. Hence, using that localization is exact, we see that
depthAq

(Mq) ≥ e for any q ∈ V (I) by definition of depth. Moreover, as soon as q

is not an associated prime of the module M ′, then the depth goes up. Thus we see
that the final statement holds by Algebra, Lemma 10.63.5. □

Lemma 51.9.3.0ECN Let X be a Noetherian scheme with dualizing complex ω•
X . Let F

be a coherent OX -module. Let k ≥ 0 be an integer. Assume F is (Sk). Then there
is a finite number of points x ∈ X such that

depth(Fx) = k and dim(Supp(Fx)) > k

Proof. We will prove this lemma by induction on k. The base case k = 0 says that
F has a finite number of embedded associated points, which follows from Divisors,
Lemma 31.2.5.
Assume k > 0 and the result holds for all smaller k. We can cover X by finitely
many affine opens, hence we may assume X = Spec(A) is affine. Then F is the
coherent OX -module associated to a finite A-module M which satisfies (Sk). We
will use Algebra, Lemmas 10.63.10 and 10.72.7 without further mention.
Let f ∈ A be a nonzerodivisor on M . Then M/fM has (Sk−1). By induction we
see that there are finitely many primes p ∈ V (f) with depth((M/fM)p) = k − 1
and dim(Supp((M/fM)p)) > k − 1. These are exactly the primes p ∈ V (f) with
depth(Mp) = k and dim(Supp(Mp)) > k. Thus we may replace A by Af and M
by Mf in trying to prove the finiteness statement.
Since M satisfies (Sk) and k > 0 we see that M has no embedded associated
primes (Algebra, Lemma 10.157.2). Thus Ass(M) is the set of generic points of
the support of M . Thus Dualizing Complexes, Lemma 47.20.4 shows the set U =
{q | Mq is Cohen-Macaulay} is an open containing Ass(M). By prime avoidance
(Algebra, Lemma 10.15.2) we can pick f ∈ A with f ̸∈ p for p ∈ Ass(M) such that
D(f) ⊂ U . Then f is a nonzerodivisor on M (Algebra, Lemma 10.63.9). After
replacing A by Af and M by Mf (see above) we find that M is Cohen-Macaulay.
Thus for all q ⊂ A we have dim(Mq) = depth(Mq) and hence the set described in
the lemma is empty and a fortiori finite. □

https://stacks.math.columbia.edu/tag/0DWY
https://stacks.math.columbia.edu/tag/0ECN
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Lemma 51.9.4.0DWZ Let (A,m) be a Noetherian local ring with normalized dualizing
complex ω•

A. Let M be a finite A-module. Set Ei = Ext−i
A (M,ω•

A). Then
(1) Ei is a finite A-module nonzero only for 0 ≤ i ≤ dim(Supp(M)),
(2) dim(Supp(Ei)) ≤ i,
(3) depth(M) is the smallest integer δ ≥ 0 such that Eδ ̸= 0,
(4) p ∈ Supp(E0 ⊕ . . .⊕ Ei)⇔ depthAp

(Mp) + dim(A/p) ≤ i,
(5) the annihilator of Ei is equal to the annihilator of Hi

m(M).

Proof. Parts (1), (2), and (3) are copies of the statements in Dualizing Complexes,
Lemma 47.16.5. For a prime p of A we have that (ω•

A)p[−dim(A/p)] is a normalized
dualzing complex for Ap. See Dualizing Complexes, Lemma 47.17.3. Thus

Eip = Ext−i
A (M,ω•

A)p = Ext−i+dim(A/p)
Ap

(Mp, (ω•
A)p[−dim(A/p)])

is zero for i−dim(A/p) < depthAp
(Mp) and nonzero for i = dim(A/p)+depthAp

(Mp)
by part (3) over Ap. This proves part (4). If E is an injective hull of the residue
field of A, then we have

HomA(Hi
m(M), E) = Ext−i

A (M,ω•
A)∧ = (Ei)∧ = Ei ⊗A A∧

by the local duality theorem (in the form of Dualizing Complexes, Lemma 47.18.4).
Since A → A∧ is faithfully flat, we find (5) is true by Matlis duality (Dualizing
Complexes, Proposition 47.7.8). □

51.10. Annihilators of local cohomology, I

0EFB This section discusses a result due to Faltings, see [Fal78b].

Proposition 51.10.1.0EFC [Fal78b].Let A be a Noetherian ring which has a dualizing complex.
Let T ⊂ T ′ ⊂ Spec(A) be subsets stable under specialization. Let s ≥ 0 an integer.
Let M be a finite A-module. The following are equivalent

(1) there exists an ideal J ⊂ A with V (J) ⊂ T ′ such that J annihilates
Hi
T (M) for i ≤ s, and

(2) for all p ̸∈ T ′, q ∈ T with p ⊂ q we have
depthAp

(Mp) + dim((A/p)q) > s

Proof. Let ω•
A be a dualizing complex. Let δ be its dimension function, see Du-

alizing Complexes, Section 47.17. An important role will be played by the finite
A-modules

Ei = ExtiA(M,ω•
A)

For p ⊂ A we will write Hi
p to denote the local cohomology of an Ap-module with

respect to pAp. Then we see that the pAp-adic completion of

(Ei)p = Extδ(p)+i
Ap

(Mp, (ω•
A)p[−δ(p)])

is Matlis dual to
H

−δ(p)−i
p (Mp)

by Dualizing Complexes, Lemma 47.18.4. In particular we deduce from this the
following fact: an ideal J ⊂ A annihilates (Ei)p if and only if J annihilates
H

−δ(p)−i
p (Mp).

Set Tn = {p ∈ T | δ(p) ≤ n}. As δ is a bounded function, we see that Ta = ∅ for
a≪ 0 and Tb = T for b≫ 0.

https://stacks.math.columbia.edu/tag/0DWZ
https://stacks.math.columbia.edu/tag/0EFC
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Assume (2). Let us prove the existence of J as in (1). We will use a double induction
to do this. For i ≤ s consider the induction hypothesis IHi: Ha

T (M) is annihilated
by some J ⊂ A with V (J) ⊂ T ′ for 0 ≤ a ≤ i. The case IH0 is trivial because
H0
T (M) is a submodule of M and hence finite and hence is annihilated by some

ideal J with V (J) ⊂ T .

Induction step. Assume IHi−1 holds for some 0 < i ≤ s. Pick J ′ with V (J ′) ⊂ T ′

annihilating Ha
T (M) for 0 ≤ a ≤ i− 1 (the induction hypothesis guarantees we can

do this). We will show by descending induction on n that there exists an ideal J
with V (J) ⊂ T ′ such that the associated primes of JHi

T (M) are in Tn. For n≪ 0
this implies JHi

T (M) = 0 (Algebra, Lemma 10.63.7) and hence IHi will hold. The
base case n≫ 0 is trivial because T = Tn in this case and all associated primes of
Hi
T (M) are in T .

Thus we assume given J with the property for n. Let q ∈ Tn. Let Tq ⊂ Spec(Aq) be
the inverse image of T . We have Hj

T (M)q = Hj
Tq

(Mq) by Lemma 51.5.7. Consider
the spectral sequence

Hp
q (Hq

Tq
(Mq))⇒ Hp+q

q (Mq)

of Lemma 51.5.8. Below we will find an ideal J ′′ ⊂ A with V (J ′′) ⊂ T ′ such that
Hi

q(Mq) is annihilated by J ′′ for all q ∈ Tn \ Tn−1. Claim: J(J ′)iJ ′′ will work for
n− 1. Namely, let q ∈ Tn \ Tn−1. The spectral sequence above defines a filtration

E0,i
∞ = E0,i

i+2 ⊂ . . . ⊂ E
0,i
3 ⊂ E0,i

2 = H0
q (Hi

Tq
(Mq))

The module E0,i
∞ is annihilated by J ′′. The subquotients E0,i

j /E0,i
j+1 for i+1 ≥ j ≥ 2

are annihilated by J ′ because the target of d0,i
j is a subquotient of

Hj
q(Hi−j+1

Tq
(Mq)) = Hj

q(Hi−j+1
T (M)q)

and Hi−j+1
T (M)q is annihilated by J ′ by choice of J ′. Finally, by our choice of J we

have JHi
T (M)q ⊂ H0

q (Hi
T (M)q) since the non-closed points of Spec(Aq) have higher

δ values. Thus q cannot be an associated prime of J(J ′)iJ ′′Hi
T (M) as desired.

By our initial remarks we see that J ′′ should annihilate

(E−δ(q)−i)q = (E−n−i)q
for all q ∈ Tn \ Tn−1. But if J ′′ works for one q, then it works for all q in an open
neighbourhood of q as the modules E−n−i are finite. Since every subset of Spec(A)
is Noetherian with the induced topology (Topology, Lemma 5.9.2), we conclude
that it suffices to prove the existence of J ′′ for one q.

Since the ext modules are finite the existence of J ′′ is equivalent to

Supp(E−n−i) ∩ Spec(Aq) ⊂ T ′.

This is equivalent to showing the localization of E−n−i at every p ⊂ q, p ̸∈ T ′ is
zero. Using local duality over Ap we find that we need to prove that

H
i+n−δ(p)
p (Mp) = H

i−dim((A/p)q)
p (Mp)

is zero (this uses that δ is a dimension function). This vanishes by the assumption
in the lemma and i ≤ s and Dualizing Complexes, Lemma 47.11.1.
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To prove the converse implication we assume (2) does not hold and we work back-
wards through the arguments above. First, we pick a q ∈ T , p ⊂ q with p ̸∈ T ′ such
that

i = depthAp
(Mp) + dim((A/p)q) ≤ s

is minimal. Then H
i−dim((A/p)q)
p (Mp) is nonzero by the nonvanishing in Dualizing

Complexes, Lemma 47.11.1. Set n = δ(q). Then there does not exist an ideal
J ⊂ A with V (J) ⊂ T ′ such that J(E−n−i)q = 0. Thus Hi

q(Mq) is not annihilated
by an ideal J ⊂ A with V (J) ⊂ T ′. By minimality of i it follows from the spectral
sequence displayed above that the module Hi

T (M)q is not annihilated by an ideal
J ⊂ A with V (J) ⊂ T ′. Thus Hi

T (M) is not annihilated by an ideal J ⊂ A with
V (J) ⊂ T ′. This finishes the proof of the proposition. □

Lemma 51.10.2.0EFE Let I be an ideal of a Noetherian ring A. Let M be a finite
A-module, let p ⊂ A be a prime ideal, and let s ≥ 0 be an integer. Assume

(1) A has a dualizing complex,
(2) p ̸∈ V (I), and
(3) for all primes p′ ⊂ p and q ∈ V (I) with p′ ⊂ q we have

depthAp′ (Mp′) + dim((A/p′)q) > s

Then there exists an f ∈ A, f ̸∈ p which annihilates Hi
V (I)(M) for i ≤ s.

Proof. Consider the sets
T = V (I) and T ′ =

⋃
f∈A,f ̸∈p

V (f)

These are subsets of Spec(A) stable under specialization. Observe that T ⊂ T ′

and p ̸∈ T ′. Assumption (3) says that hypothesis (2) of Proposition 51.10.1 holds.
Hence we can find J ⊂ A with V (J) ⊂ T ′ such that JHi

V (I)(M) = 0 for i ≤ s.
Choose f ∈ A, f ̸∈ p with V (J) ⊂ V (f). A power of f annihilates Hi

V (I)(M) for
i ≤ s. □

51.11. Finiteness of local cohomology, II

0BJQ We continue the discussion of finiteness of local cohomology started in Section 51.7.
Using Faltings Annihilator Theorem we easily prove the following fundamental
result.

Proposition 51.11.1.0EFD [Fal78b].Let A be a Noetherian ring which has a dualizing complex.
Let T ⊂ Spec(A) be a subset stable under specialization. Let s ≥ 0 an integer. Let
M be a finite A-module. The following are equivalent

(1) Hi
T (M) is a finite A-module for i ≤ s, and

(2) for all p ̸∈ T , q ∈ T with p ⊂ q we have
depthAp

(Mp) + dim((A/p)q) > s

Proof. Formal consequence of Proposition 51.10.1 and Lemma 51.7.1. □

Besides some lemmas for later use, the rest of this section is concerned with the
question to what extend the condition in Proposition 51.11.1 that A has a dualizing
complex can be weakened. The answer is roughly that one has to assume the formal
fibres of A are (Sn) for sufficiently large n.

https://stacks.math.columbia.edu/tag/0EFE
https://stacks.math.columbia.edu/tag/0EFD
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Let A be a Noetherian ring and let I ⊂ A be an ideal. Set X = Spec(A) and
Z = V (I) ⊂ X. Let M be a finite A-module. We define
(51.11.1.1)0BJR sA,I(M) = min{depthAp

(Mp)+dim((A/p)q) | p ∈ X \Z, q ∈ Z, p ⊂ q}

Our conventions on depth are that the depth of 0 is∞ thus we only need to consider
primes p in the support ofM . It will turn out that sA,I(M) is an important invariant
of the situation.

Lemma 51.11.2.0BJS Let A → B be a finite homomorphism of Noetherian rings. Let
I ⊂ A be an ideal and set J = IB. Let M be a finite B-module. If A is universally
catenary, then sB,J(M) = sA,I(M).

Proof. Let p ⊂ q ⊂ A be primes with I ⊂ q and I ̸⊂ p. Since A→ B is finite there
are finitely many primes pi lying over p. By Algebra, Lemma 10.72.11 we have

depth(Mp) = min depth(Mpi)
Let pi ⊂ qij be primes lying over q. By going up for A → B (Algebra, Lemma
10.36.22) there is at least one qij for each i. Then we see that

dim((B/pi)qij ) = dim((A/p)q)
by the dimension formula, see Algebra, Lemma 10.113.1. This implies that the
minimum of the quantities used to define sB,J(M) for the pairs (pi, qij) is equal to
the quantity for the pair (p, q). This proves the lemma. □

Lemma 51.11.3.0EHW Let A be a Noetherian ring which has a dualizing complex. Let I ⊂
A be an ideal. Let M be a finite A-module. Let A′,M ′ be the I-adic completions
of A,M . Let p′ ⊂ q′ be prime ideals of A′ with q′ ∈ V (IA′) lying over p ⊂ q in A.
Then

depthAp′ (M ′
p′) ≥ depthAp

(Mp)
and

depthAp′ (M ′
p′) + dim((A′/p′)q′) = depthAp

(Mp) + dim((A/p)q)

Proof. We have
depth(M ′

p′) = depth(Mp) + depth(A′
p′/pA′

p′) ≥ depth(Mp)
by flatness of A → A′, see Algebra, Lemma 10.163.1. Since the fibres of A → A′

are Cohen-Macaulay (Dualizing Complexes, Lemma 47.23.2 and More on Algebra,
Section 15.51) we see that depth(A′

p′/pA′
p′) = dim(A′

p′/pA′
p′). Thus we obtain

depth(M ′
p′) + dim((A′/p′)q′) = depth(Mp) + dim(A′

p′/pA′
p′) + dim((A′/p′)q′)

= depth(Mp) + dim((A′/pA′)q′)
= depth(Mp) + dim((A/p)q)

Second equality because A′ is catenary and third equality by More on Algebra,
Lemma 15.43.1 as (A/p)q and (A′/pA′)q′ have the same I-adic completions. □

Lemma 51.11.4.0BJT Let A be a universally catenary Noetherian local ring. Let I ⊂ A
be an ideal. Let M be a finite A-module. Then

sA,I(M) ≥ sA∧,I∧(M∧)
If the formal fibres of A are (Sn), then min(n+ 1, sA,I(M)) ≤ sA∧,I∧(M∧).

https://stacks.math.columbia.edu/tag/0BJS
https://stacks.math.columbia.edu/tag/0EHW
https://stacks.math.columbia.edu/tag/0BJT
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Proof. Write X = Spec(A), X∧ = Spec(A∧), Z = V (I) ⊂ X, and Z∧ = V (I∧).
Let p′ ⊂ q′ ⊂ A∧ be primes with p′ ̸∈ Z∧ and q′ ∈ Z∧. Let p ⊂ q be the
corresponding primes of A. Then p ̸∈ Z and q ∈ Z. Picture

p′ // q′ // A∧

p // q // A

OO

Let us write
a = dim(A/p) = dim(A∧/pA∧),
b = dim(A/q) = dim(A∧/qA∧),
a′ = dim(A∧/p′),
b′ = dim(A∧/q′)

Equalities by More on Algebra, Lemma 15.43.1. We also write
p = dim(A∧

p′/pA∧
p′) = dim((A∧/pA∧)p′)

q = dim(A∧
q′/pA∧

q′) = dim((A∧/qA∧)q′)

Since A is universally catenary we see that A∧/pA∧ = (A/p)∧ is equidimensional of
dimension a (More on Algebra, Proposition 15.109.5). Hence a = a′ + p. Similarly
b = b′ +q. By Algebra, Lemma 10.163.1 applied to the flat local ring map Ap → A∧

p′

we have
depth(M∧

p′) = depth(Mp) + depth(A∧
p′/pA∧

p′)
The quantity we are minimizing for sA,I(M) is

s(p, q) = depth(Mp) + dim((A/p)q) = depth(Mp) + a− b

(last equality as A is catenary). The quantity we are minimizing for sA∧,I∧(M∧) is
s(p′, q′) = depth(M∧

p′) + dim((A∧/p′)q′) = depth(M∧
p′) + a′ − b′

(last equality as A∧ is catenary). Now we have enough notation in place to start
the proof.
Let p ⊂ q ⊂ A be primes with p ̸∈ Z and q ∈ Z such that sA,I(M) = s(p, q).
Then we can pick q′ minimal over qA∧ and p′ ⊂ q′ minimal over pA∧ (using going
down for A → A∧). Then we have four primes as above with p = 0 and q = 0.
Moreover, we have depth(A∧

p′/pA∧
p′) = 0 also because p = 0. This means that

s(p′, q′) = s(p, q). Thus we get the first inequality.
Assume that the formal fibres of A are (Sn). Then depth(A∧

p′/pA∧
p′) ≥ min(n, p).

Hence
s(p′, q′) ≥ s(p, q) + q + min(n, p)− p ≥ sA,I(M) + q + min(n, p)− p

Thus the only way we can get in trouble is if p > n. If this happens then
s(p′, q′) = depth(M∧

p′) + dim((A∧/p′)q′)
= depth(Mp) + depth(A∧

p′/pA∧
p′) + dim((A∧/p′)q′)

≥ 0 + n+ 1

because (A∧/p′)q′ has at least two primes. This proves the second inequality. □
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The method of proof of the following lemma works more generally, but the stronger
results one gets will be subsumed in Theorem 51.11.6 below.

Lemma 51.11.5.0BJU This is a special
case of [Fal78b, Satz
1].

Let A be a Gorenstein Noetherian local ring. Let I ⊂ A be an
ideal and set Z = V (I) ⊂ Spec(A). Let M be a finite A-module. Let s = sA,I(M)
as in (51.11.1.1). Then Hi

Z(M) is finite for i < s, but Hs
Z(M) is not finite.

Proof. Since a Gorenstein local ring has a dualizing complex, this is a special case
of Proposition 51.11.1. It would be helpful to have a short proof of this special
case, which will be used in the proof of a general finiteness theorem below. □

Observe that the hypotheses of the following theorem are satisfied by excellent Noe-
therian rings (by definition), by Noetherian rings which have a dualizing complex
(Dualizing Complexes, Lemma 47.17.4 and Dualizing Complexes, Lemma 47.23.2),
and by quotients of regular Noetherian rings.

Theorem 51.11.6.0BJV This is a special
case of [Fal81, Satz
2].

Let A be a Noetherian ring and let I ⊂ A be an ideal. Set
Z = V (I) ⊂ Spec(A). Let M be a finite A-module. Set s = sA,I(M) as in
(51.11.1.1). Assume that

(1) A is universally catenary,
(2) the formal fibres of the local rings of A are Cohen-Macaulay.

Then Hi
Z(M) is finite for 0 ≤ i < s and Hs

Z(M) is not finite.

Proof. By Lemma 51.7.2 we may assume that A is a local ring.
If A is a Noetherian complete local ring, then we can write A as the quotient of
a regular complete local ring B by Cohen’s structure theorem (Algebra, Theorem
10.160.8). Using Lemma 51.11.2 and Dualizing Complexes, Lemma 47.9.2 we reduce
to the case of a regular local ring which is a consequence of Lemma 51.11.5 because
a regular local ring is Gorenstein (Dualizing Complexes, Lemma 47.21.3).
Let A be a Noetherian local ring. Let m be the maximal ideal. We may assume I ⊂
m, otherwise the lemma is trivial. Let A∧ be the completion of A, let Z∧ = V (IA∧),
and let M∧ = M ⊗A A∧ be the completion of M (Algebra, Lemma 10.97.1). Then
Hi
Z(M) ⊗A A∧ = Hi

Z∧(M∧) by Dualizing Complexes, Lemma 47.9.3 and flatness
of A → A∧ (Algebra, Lemma 10.97.2). Hence it suffices to show that Hi

Z∧(M∧)
is finite for i < s and not finite for i = s, see Algebra, Lemma 10.83.2. Since we
know the result is true for A∧ it suffices to show that sA,I(M) = sA∧,I∧(M∧). This
follows from Lemma 51.11.4. □

Remark 51.11.7.0BJW The astute reader will have realized that we can get away with
a slightly weaker condition on the formal fibres of the local rings of A. Namely,
in the situation of Theorem 51.11.6 assume A is universally catenary but make no
assumptions on the formal fibres. Suppose we have an n and we want to prove that
Hi
Z(M) are finite for i ≤ n. Then the exact same proof shows that it suffices that

sA,I(M) > n and that the formal fibres of local rings of A are (Sn). On the other
hand, if we want to show that Hs

Z(M) is not finite where s = sA,I(M), then our
arguments prove this if the formal fibres are (Ss−1).

51.12. Finiteness of pushforwards, II

0BJX This section is the continuation of Section 51.8. In this section we reap the fruits
of the labor done in Section 51.11.

https://stacks.math.columbia.edu/tag/0BJU
https://stacks.math.columbia.edu/tag/0BJV
https://stacks.math.columbia.edu/tag/0BJW
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Lemma 51.12.1.0BJY Let X be a locally Noetherian scheme. Let j : U → X be the
inclusion of an open subscheme with complement Z. Let F be a coherent OU -
module. Let n ≥ 0 be an integer. Assume

(1) X is universally catenary,
(2) for every z ∈ Z the formal fibres of OX,z are (Sn).

In this situation the following are equivalent
(a) for x ∈ Supp(F) and z ∈ Z∩{x} we have depthOX,x

(Fx)+dim(O{x},z) >
n,

(b) Rpj∗F is coherent for 0 ≤ p < n.

Proof. The statement is local on X, hence we may assume X is affine. Say X =
Spec(A) and Z = V (I). Let M be a finite A-module whose associated coherent
OX -module restricts to F over U , see Lemma 51.8.2. This lemma also tells us that
Rpj∗F is coherent if and only if Hp+1

Z (M) is a finite A-module. Observe that the
minimum of the expressions depthOX,x

(Fx)+dim(O{x},z) is the number sA,I(M) of
(51.11.1.1). Having said this the lemma follows from Theorem 51.11.6 as elucidated
by Remark 51.11.7. □

Lemma 51.12.2.0BLT Let X be a locally Noetherian scheme. Let j : U → X be the
inclusion of an open subscheme with complement Z. Let n ≥ 0 be an integer. If
Rpj∗OU is coherent for 0 ≤ p < n, then the same is true for Rpj∗F , 0 ≤ p < n for
any finite locally free OU -module F .

Proof. The question is local on X, hence we may assume X is affine. Say X =
Spec(A) and Z = V (I). Via Lemma 51.8.2 our lemma follows from Lemma 51.7.4.

□

Lemma 51.12.3.0BM5 [BdJ14, Lemma 1.9]Let A be a ring and let J ⊂ I ⊂ A be finitely generated ideals.
Let p ≥ 0 be an integer. Set U = Spec(A) \ V (I). If Hp(U,OU ) is annihilated by
Jn for some n, then Hp(U,F) annihilated by Jm for some m = m(F) for every
finite locally free OU -module F .

Proof. Consider the annihilator a of Hp(U,F). Let u ∈ U . There exists an open
neighbourhood u ∈ U ′ ⊂ U and an isomorphism φ : O⊕r

U ′ → F|U ′ . Pick f ∈ A such
that u ∈ D(f) ⊂ U ′. There exist maps

a : O⊕r
U −→ F and b : F −→ O⊕r

U

whose restriction to D(f) are equal to fNφ and fNφ−1 for some N . Moreover we
may assume that a ◦ b and b ◦ a are equal to multiplication by f2N . This follows
from Properties, Lemma 28.17.3 since U is quasi-compact (I is finitely generated),
separated, and F and O⊕r

U are finitely presented. Thus we see that Hp(U,F) is
annihilated by f2NJn, i.e., f2NJn ⊂ a.
As U is quasi-compact we can find finitely many f1, . . . , ft and N1, . . . , Nt such that
U =

⋃
D(fi) and f2Ni

i Jn ⊂ a. Then V (I) = V (f1, . . . , ft) and since I is finitely
generated we conclude IM ⊂ (f1, . . . , ft) for some M . All in all we see that Jm ⊂ a
for m≫ 0, for example m = M(2N1 + . . .+ 2Nt)n will do. □

51.13. Annihilators of local cohomology, II

0EHX We extend the discussion of annihilators of local cohomology in Section 51.10 to
bounded below complexes with finite cohomology modules.

https://stacks.math.columbia.edu/tag/0BJY
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Definition 51.13.1.0EHY Let I be an ideal of a Noetherian ring A. Let K ∈ D+
Coh(A).

We define the I-depth of K, denoted depthI(K), to be the maximal m ∈ Z ∪ {∞}
such that Hi

I(K) = 0 for all i < m. If A is local with maximal ideal m then we call
depthm(K) simply the depth of K.

This definition does not conflict with Algebra, Definition 10.72.1 by Dualizing Com-
plexes, Lemma 47.11.1.

Proposition 51.13.2.0EHZ Let A be a Noetherian ring which has a dualizing complex.
Let T ⊂ T ′ ⊂ Spec(A) be subsets stable under specialization. Let s ∈ Z. Let K be
an object of D+

Coh(A). The following are equivalent
(1) there exists an ideal J ⊂ A with V (J) ⊂ T ′ such that J annihilates Hi

T (K)
for i ≤ s, and

(2) for all p ̸∈ T ′, q ∈ T with p ⊂ q we have
depthAp

(Kp) + dim((A/p)q) > s

Proof. This lemma is the natural generalization of Proposition 51.10.1 whose proof
the reader should read first. Let ω•

A be a dualizing complex. Let δ be its dimension
function, see Dualizing Complexes, Section 47.17. An important role will be played
by the finite A-modules

Ei = ExtiA(K,ω•
A)

For p ⊂ A we will write Hi
p to denote the local cohomology of an object of D(Ap)

with respect to pAp. Then we see that the pAp-adic completion of

(Ei)p = Extδ(p)+i
Ap

(Kp, (ω•
A)p[−δ(p)])

is Matlis dual to
H

−δ(p)−i
p (Kp)

by Dualizing Complexes, Lemma 47.18.4. In particular we deduce from this the
following fact: an ideal J ⊂ A annihilates (Ei)p if and only if J annihilates
H

−δ(p)−i
p (Kp).

Set Tn = {p ∈ T | δ(p) ≤ n}. As δ is a bounded function, we see that Ta = ∅ for
a≪ 0 and Tb = T for b≫ 0.
Assume (2). Let us prove the existence of J as in (1). We will use a double induction
to do this. For i ≤ s consider the induction hypothesis IHi: Ha

T (K) is annihilated
by some J ⊂ A with V (J) ⊂ T ′ for a ≤ i. The case IHi is trivial for i small enough
because K is bounded below.
Induction step. Assume IHi−1 holds for some i ≤ s. Pick J ′ with V (J ′) ⊂ T ′

annihilating Ha
T (K) for a ≤ i − 1 (the induction hypothesis guarantees we can do

this). We will show by descending induction on n that there exists an ideal J with
V (J) ⊂ T ′ such that the associated primes of JHi

T (K) are in Tn. For n ≪ 0 this
implies JHi

T (K) = 0 (Algebra, Lemma 10.63.7) and hence IHi will hold. The base
case n ≫ 0 is trivial because T = Tn in this case and all associated primes of
Hi
T (K) are in T .

Thus we assume given J with the property for n. Let q ∈ Tn. Let Tq ⊂ Spec(Aq) be
the inverse image of T . We have Hj

T (K)q = Hj
Tq

(Kq) by Lemma 51.5.7. Consider
the spectral sequence

Hp
q (Hq

Tq
(Kq))⇒ Hp+q

q (Kq)

https://stacks.math.columbia.edu/tag/0EHY
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of Lemma 51.5.8. Below we will find an ideal J ′′ ⊂ A with V (J ′′) ⊂ T ′ such that
Hi

q(Kq) is annihilated by J ′′ for all q ∈ Tn \ Tn−1. Claim: J(J ′)iJ ′′ will work for
n− 1. Namely, let q ∈ Tn \ Tn−1. The spectral sequence above defines a filtration

E0,i
∞ = E0,i

i+2 ⊂ . . . ⊂ E
0,i
3 ⊂ E0,i

2 = H0
q (Hi

Tq
(Kq))

The module E0,i
∞ is annihilated by J ′′. The subquotients E0,i

j /E0,i
j+1 for i+1 ≥ j ≥ 2

are annihilated by J ′ because the target of d0,i
j is a subquotient of

Hj
q(Hi−j+1

Tq
(Kq)) = Hj

q(Hi−j+1
T (K)q)

and Hi−j+1
T (K)q is annihilated by J ′ by choice of J ′. Finally, by our choice of J we

have JHi
T (K)q ⊂ H0

q (Hi
T (K)q) since the non-closed points of Spec(Aq) have higher

δ values. Thus q cannot be an associated prime of J(J ′)iJ ′′Hi
T (K) as desired.

By our initial remarks we see that J ′′ should annihilate
(E−δ(q)−i)q = (E−n−i)q

for all q ∈ Tn \ Tn−1. But if J ′′ works for one q, then it works for all q in an open
neighbourhood of q as the modules E−n−i are finite. Since every subset of Spec(A)
is Noetherian with the induced topology (Topology, Lemma 5.9.2), we conclude
that it suffices to prove the existence of J ′′ for one q.
Since the ext modules are finite the existence of J ′′ is equivalent to

Supp(E−n−i) ∩ Spec(Aq) ⊂ T ′.

This is equivalent to showing the localization of E−n−i at every p ⊂ q, p ̸∈ T ′ is
zero. Using local duality over Ap we find that we need to prove that

H
i+n−δ(p)
p (Kp) = H

i−dim((A/p)q)
p (Kp)

is zero (this uses that δ is a dimension function). This vanishes by the assumption
in the lemma and i ≤ s and our definition of depth in Definition 51.13.1.
To prove the converse implication we assume (2) does not hold and we work back-
wards through the arguments above. First, we pick a q ∈ T , p ⊂ q with p ̸∈ T ′ such
that

i = depthAp
(Kp) + dim((A/p)q) ≤ s

is minimal. Then H
i−dim((A/p)q)
p (Kp) is nonzero by the our definition of depth in

Definition 51.13.1. Set n = δ(q). Then there does not exist an ideal J ⊂ A with
V (J) ⊂ T ′ such that J(E−n−i)q = 0. Thus Hi

q(Kq) is not annihilated by an ideal
J ⊂ A with V (J) ⊂ T ′. By minimality of i it follows from the spectral sequence
displayed above that the module Hi

T (K)q is not annihilated by an ideal J ⊂ A with
V (J) ⊂ T ′. Thus Hi

T (K) is not annihilated by an ideal J ⊂ A with V (J) ⊂ T ′.
This finishes the proof of the proposition. □

51.14. Finiteness of local cohomology, III

0EI0 We extend the discussion of finiteness of local cohomology in Sections 51.7 and
51.11 to bounded below complexes with finite cohomology modules.

Lemma 51.14.1.0EI1 Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable
under specialization. Let K be an object of D+

Coh(A). Let n ∈ Z. The following
are equivalent

https://stacks.math.columbia.edu/tag/0EI1
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(1) Hi
T (K) is finite for i ≤ n,

(2) there exists an ideal J ⊂ A with V (J) ⊂ T such that J annihilates Hi
T (K)

for i ≤ n.
If T = V (I) = Z for an ideal I ⊂ A, then these are also equivalent to

(3) there exists an e ≥ 0 such that Ie annihilates Hi
Z(K) for i ≤ n.

Proof. This lemma is the natural generalization of Lemma 51.7.1 whose proof the
reader should read first. Assume (1) is true. Recall that Hi

J(K) = Hi
V (J)(K),

see Dualizing Complexes, Lemma 47.10.1. Thus Hi
T (K) = colimHi

J(K) where the
colimit is over ideals J ⊂ A with V (J) ⊂ T , see Lemma 51.5.3. Since Hi

T (K) is
finitely generated for i ≤ n we can find a J ⊂ A as in (2) such thatHi

J(K)→ Hi
T (K)

is surjective for i ≤ n. Thus the finite list of generators are J-power torsion elements
and we see that (2) holds with J replaced by some power.
Let a ∈ Z be an integer such that Hi(K) = 0 for i < a. We prove (2) ⇒ (1) by
descending induction on a. If a > n, then we have Hi

T (K) = 0 for i ≤ n hence both
(1) and (2) are true and there is nothing to prove.
Assume we have J as in (2). Observe that N = Ha

T (K) = H0
T (Ha(K)) is finite

as a submodule of the finite A-module Ha(K). If n = a we are done; so assume
a < n from now on. By construction of RΓT we find that Hi

T (N) = 0 for i > 0 and
H0
T (N) = N , see Remark 51.5.6. Choose a distinguished triangle

N [−a]→ K → K ′ → N [−a+ 1]
Then we see that Ha

T (K ′) = 0 and Hi
T (K) = Hi

T (K ′) for i > a. We conclude that
we may replace K by K ′. Thus we may assume that Ha

T (K) = 0. This means
that the finite set of associated primes of Ha(K) are not in T . By prime avoidance
(Algebra, Lemma 10.15.2) we can find f ∈ J not contained in any of the associated
primes of Ha(K). Choose a distinguished triangle

L→ K
f−→ K → L[1]

By construction we see that Hi(L) = 0 for i ≤ a. On the other hand we have a
long exact cohomology sequence

0→ Ha+1
T (L)→ Ha+1

T (K) f−→ Ha+1
T (K)→ Ha+2

T (L)→ Ha+2
T (K) f−→ . . .

which breaks into the identification Ha+1
T (L) = Ha+1

T (K) and short exact sequences
0→ Hi−1

T (K)→ Hi
T (L)→ Hi

T (K)→ 0
for i ≤ n since f ∈ J . We conclude that J2 annihilates Hi

T (L) for i ≤ n. By
induction hypothesis applied to L we see that Hi

T (L) is finite for i ≤ n. Using the
short exact sequence once more we see that Hi

T (K) is finite for i ≤ n as desired.
We omit the proof of the equivalence of (2) and (3) in case T = V (I). □

Proposition 51.14.2.0EI2 Let A be a Noetherian ring which has a dualizing complex. Let
T ⊂ Spec(A) be a subset stable under specialization. Let s ∈ Z. Let K ∈ D+

Coh(A).
The following are equivalent

(1) Hi
T (K) is a finite A-module for i ≤ s, and

(2) for all p ̸∈ T , q ∈ T with p ⊂ q we have
depthAp

(Kp) + dim((A/p)q) > s

Proof. Formal consequence of Proposition 51.13.2 and Lemma 51.14.1. □

https://stacks.math.columbia.edu/tag/0EI2
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51.15. Improving coherent modules

0DX2 Similar constructions can be found in [DG67] and more recently in [Kol15] and
[Kol16b].
Lemma 51.15.1.0DX3 Let X be a Noetherian scheme. Let T ⊂ X be a subset stable
under specialization. Let F be a coherent OX -module. Then there is a unique map
F → F ′ of coherent OX -modules such that

(1) F → F ′ is surjective,
(2) Fx → F ′

x is an isomorphism for x ̸∈ T ,
(3) depthOX,x

(F ′
x) ≥ 1 for x ∈ T .

If f : Y → X is a flat morphism with Y Noetherian, then f∗F → f∗F ′ is the
corresponding quotient for f−1(T ) ⊂ Y and f∗F .
Proof. Condition (3) just means that Ass(F ′) ∩ T = ∅. Thus F → F ′ is the
quotient of F by the subsheaf of sections whose support is contained in T . This
proves uniqueness. The statement on pullbacks follows from Divisors, Lemma 31.3.1
and the uniqueness.
Existence of F → F ′. By the uniqueness it suffices to prove the existence and
uniqueness locally on X; small detail omitted. Thus we may assume X = Spec(A)
is affine and F is the coherent module associated to the finite A-module M . Set
M ′ = M/H0

T (M) with H0
T (M) as in Section 51.5. Then Mp = M ′

p for p ̸∈ T which
proves (1). On the other hand, we have H0

T (M) = colimH0
Z(M) where Z runs over

the closed subsets of X contained in T . Thus by Dualizing Complexes, Lemmas
47.11.6 we have H0

T (M ′) = 0, i.e., no associated prime of M ′ is in T . Therefore
depth(M ′

p) ≥ 1 for p ∈ T . □

Lemma 51.15.2.0DX4 Let j : U → X be an open immersion of Noetherian schemes. Let
F be a coherent OX -module. Assume F ′ = j∗(F|U ) is coherent. Then F → F ′ is
the unique map of coherent OX -modules such that

(1) F|U → F ′|U is an isomorphism,
(2) depthOX,x

(F ′
x) ≥ 2 for x ∈ X, x ̸∈ U .

If f : Y → X is a flat morphism with Y Noetherian, then f∗F → f∗F ′ is the
corresponding map for f−1(U) ⊂ Y .
Proof. We have depthOX,x

(F ′
x) ≥ 2 by Divisors, Lemma 31.6.6 part (3). The

uniqueness of F → F ′ follows from Divisors, Lemma 31.5.11. The compatibil-
ity with flat pullbacks follows from flat base change, see Cohomology of Schemes,
Lemma 30.5.2. □

Lemma 51.15.3.0DX5 Let X be a Noetherian scheme. Let Z ⊂ X be a closed subscheme.
Let F be a coherent OX -module. Assume X is universally catenary and the formal
fibres of local rings have (S1). Then there exists a unique map F → F ′′ of coherent
OX -modules such that

(1) Fx → F ′′
x is an isomorphism for x ∈ X \ Z,

(2) Fx → F ′′
x is surjective and depthOX,x

(F ′′
x ) = 1 for x ∈ Z such that there

exists an immediate specialization x′ ⇝ x with x′ ̸∈ Z and x′ ∈ Ass(F),
(3) depthOX,x

(F ′′
x ) ≥ 2 for the remaining x ∈ Z.

If f : Y → X is a Cohen-Macaulay morphism with Y Noetherian, then f∗F →
f∗F ′′ satisfies the same properties with respect to f−1(Z) ⊂ Y .

https://stacks.math.columbia.edu/tag/0DX3
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Proof. Let F → F ′ be the map constructed in Lemma 51.15.1 for the subset Z of
X. Recall that F ′ is the quotient of F by the subsheaf of sections supported on Z.

We first prove uniqueness. Let F → F ′′ be as in the lemma. We get a factorization
F → F ′ → F ′′ since Ass(F ′′) ∩ Z = ∅ by conditions (2) and (3). Let U ⊂ X be a
maximal open subscheme such that F ′|U → F ′′|U is an isomorphism. We see that
U contains all the points as in (2). Then by Divisors, Lemma 31.5.11 we conclude
that F ′′ = j∗(F ′|U ). In this way we get uniqueness (small detail: if we have two of
these F ′′ then we take the intersection of the opens U we get from either).

Proof of existence. Recall that Ass(F ′) = {x1, . . . , xn} is finite and xi ̸∈ Z. Let Yi
be the closure of {xi}. Let Zi,j be the irreducible components of Z ∩ Yi. Observe
that Supp(F ′) ∩ Z =

⋃
Zi,j . Let zi,j ∈ Zi,j be the generic point. Let

di,j = dim(O{xi},zi,j
)

If di,j = 1, then zi,j is one of the points as in (2). Thus we do not need to modify
F ′ at these points. Furthermore, still assuming di,j = 1, using Lemma 51.9.2 we
can find an open neighbourhood zi,j ∈ Vi,j ⊂ X such that depthOX,z

(F ′
z) ≥ 2 for

z ∈ Zi,j ∩ Vi,j , z ̸= zi,j . Set

Z ′ = X \
(
X \ Z ∪

⋃
di,j=1

Vi,j)
)

Denote j′ : X \Z ′ → X. By our choice of Z ′ the assumptions of Lemma 51.8.9 are
satisfied. We conclude by setting F ′′ = j′

∗(F ′|X\Z′) and applying Lemma 51.15.2.

The final statement follows from the formula for the change in depth along a flat
local homomorphism, see Algebra, Lemma 10.163.1 and the assumption on the
fibres of f inherent in f being Cohen-Macaulay. Details omitted. □

Lemma 51.15.4.0EI3 Let X be a Noetherian scheme which locally has a dualizing
complex. Let T ′ ⊂ X be a subset stable under specialization. Let F be a coherent
OX -module. Assume that if x ⇝ x′ is an immediate specialization of points in X
with x′ ∈ T ′ and x ̸∈ T ′, then depth(Fx) ≥ 1. Then there exists a unique map
F → F ′′ of coherent OX -modules such that

(1) Fx → F ′′
x is an isomorphism for x ̸∈ T ′,

(2) depthOX,x
(F ′′

x ) ≥ 2 for x ∈ T ′.
If f : Y → X is a Cohen-Macaulay morphism with Y Noetherian, then f∗F →
f∗F ′′ satisfies the same properties with respect to f−1(T ′) ⊂ Y .

Proof. Let F → F ′ be the quotient of F constructed in Lemma 51.15.1 using T ′.
Recall that F ′ is the quotient of F by the subsheaf of sections supported on T ′.

Proof of uniqueness. Let F → F ′′ be as in the lemma. We get a factorization
F → F ′ → F ′′ since Ass(F ′′) ∩ T ′ = ∅ by condition (2). Let U ⊂ X be a
maximal open subscheme such that F ′|U → F ′′|U is an isomorphism. We see that
U contains all the points of T ′. Then by Divisors, Lemma 31.5.11 we conclude that
F ′′ = j∗(F ′|U ). In this way we get uniqueness (small detail: if we have two of these
F ′′ then we take the intersection of the opens U we get from either).

Proof of existence. We will define

F ′′ = colim j∗(F ′|V )
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where j : V → X runs over the open subschemes such that X \ V ⊂ T ′. Observe
that the colimit is filtered as T ′ is stable under specialization. Each of the maps
F ′ → j∗(F ′|V ) is injective as Ass(F ′) is disjoint from T ′. Thus F ′ → F ′′ is injective.
Suppose X = Spec(A) is affine and F corresponds to the finite A-module M .
Then F ′ corresponds to M ′ = M/H0

T ′(M), see proof of Lemma 51.15.1. Applying
Lemmas 51.2.2 and 51.5.3 we see that F ′′ corresponds to an A-module M ′′ which
fits into the short exact sequence

0→M ′ →M ′′ → H1
T ′(M ′)→ 0

By Proposition 51.11.1 and our condition on immediate specializations in the state-
ment of the lemma we see that M ′′ is a finite A-module. In this way we see that
F ′′ is coherent.
The final statement follows from the formula for the change in depth along a flat
local homomorphism, see Algebra, Lemma 10.163.1 and the assumption on the
fibres of f inherent in f being Cohen-Macaulay. Details omitted. □

Lemma 51.15.5.0EI4 Let X be a Noetherian scheme which locally has a dualizing
complex. Let T ′ ⊂ T ⊂ X be subsets stable under specialization such that if
x⇝ x′ is an immediate specialization of points in X and x′ ∈ T ′, then x ∈ T . Let
F be a coherent OX -module. Then there exists a unique map F → F ′′ of coherent
OX -modules such that

(1) Fx → F ′′
x is an isomorphism for x ̸∈ T ,

(2) Fx → F ′′
x is surjective and depthOX,x

(F ′′
x ) ≥ 1 for x ∈ T , x ̸∈ T ′, and

(3) depthOX,x
(F ′′

x ) ≥ 2 for x ∈ T ′.
If f : Y → X is a Cohen-Macaulay morphism with Y Noetherian, then f∗F →
f∗F ′′ satisfies the same properties with respect to f−1(T ′) ⊂ f−1(T ) ⊂ Y .

Proof. First, let F → F ′ be the quotient of F constructed in Lemma 51.15.1 using
T . Second, let F ′ → F ′′ be the unique map of coherent modules construction in
Lemma 51.15.4 using T ′. Then F → F ′′ is as desired. □

51.16. Hartshorne-Lichtenbaum vanishing

0EB0 This vanishing result is the local analogue of Lichtenbaum’s theorem that the reader
can find in Duality for Schemes, Section 48.34. This and much else besides can be
found in [Har68].

Lemma 51.16.1.0EB1 Let A be a Noetherian ring of dimension d. Let I ⊂ I ′ ⊂ A
be ideals. If I ′ is contained in the Jacobson radical of A and cd(A, I ′) < d, then
cd(A, I) < d.

Proof. By Lemma 51.4.7 we know cd(A, I) ≤ d. We will use Lemma 51.2.6 to show
Hd
V (I′)(A)→ Hd

V (I)(A)
is surjective which will finish the proof. Pick p ∈ V (I) \ V (I ′). By our assumption
on I ′ we see that p is not a maximal ideal of A. Hence dim(Ap) < d. Then
Hd

pAp
(Ap) = 0 by Lemma 51.4.7. □

Lemma 51.16.2.0EB2 Let A be a Noetherian ring of dimension d. Let I ⊂ A be an
ideal. If Hd

V (I)(M) = 0 for some finite A-module whose support contains all the
irreducible components of dimension d, then cd(A, I) < d.
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Proof. By Lemma 51.4.7 we know cd(A, I) ≤ d. Thus for any finite A-module N
we have Hi

V (I)(N) = 0 for i > d. Let us say property P holds for the finite A-
module N if Hd

V (I)(N) = 0. One of our assumptions is that P(M) holds. Observe
that P(N1 ⊕N2)⇔ (P(N1) ∧ P(N2)). Observe that if N → N ′ is surjective, then
P(N)⇒ P(N ′) as we have the vanishing of Hd+1

V (I) (see above). Let p1, . . . , pn be the
minimal primes of A with dim(A/pi) = d. Observe that P(N) holds if the support
of N is disjoint from {p1, . . . , pn} for dimension reasons, see Lemma 51.4.7. For
each i set Mi = M/piM . This is a finite A-module annihilated by pi whose support
is equal to V (pi) (here we use the assumption on the support of M). Finally, if
J ⊂ A is an ideal, then we have P(JMi) as JMi is a quotient of a direct sum of
copies of M . Thus it follows from Cohomology of Schemes, Lemma 30.12.8 that P
holds for every finite A-module. □

Lemma 51.16.3.0EB3 Let A be a Noetherian local ring of dimension d. Let f ∈ A be
an element which is not contained in any minimal prime of dimension d. Then
f : Hd

V (I)(M) → Hd
V (I)(M) is surjective for any finite A-module M and any ideal

I ⊂ A.

Proof. The support of M/fM has dimension < d by our assumption on f . Thus
Hd
V (I)(M/fM) = 0 by Lemma 51.4.7. Thus Hd

V (I)(fM)→ Hd
V (I)(M) is surjective.

Since by Lemma 51.4.7 we know cd(A, I) ≤ d we also see that the surjection
M → fM , x 7→ fx induces a surjection Hd

V (I)(M)→ Hd
V (I)(fM). □

Lemma 51.16.4.0EB4 Let A be a Noetherian local ring with normalized dualizing com-
plex ω•

A. Let I ⊂ A be an ideal. If H0
V (I)(ω•

A) = 0, then cd(A, I) < dim(A).

Proof. Set d = dim(A). Let p1, . . . , pn ⊂ A be the minimal primes of dimension d.
Recall that the finite A-module H−i(ω•

A) is nonzero only for i ∈ {0, . . . , d} and that
the support of H−i(ω•

A) has dimension ≤ i, see Lemma 51.9.4. Set ωA = H−d(ω•
A).

By prime avoidence (Algebra, Lemma 10.15.2) we can find f ∈ A, f ̸∈ pi which
annihilates H−i(ω•

A) for i < d. Consider the distinguished triangle
ωA[d]→ ω•

A → τ≥−d+1ω
•
A → ωA[d+ 1]

See Derived Categories, Remark 13.12.4. By Derived Categories, Lemma 13.12.5
we see that fd induces the zero endomorphism of τ≥−d+1ω

•
A. Using the axioms of

a triangulated category, we find a map
ω•
A → ωA[d]

whose composition with ωA[d]→ ω•
A is multiplication by fd on ωA[d]. Thus we con-

clude that fd annihilatesHd
V (I)(ωA). By Lemma 51.16.3 we conludeHd

V (I)(ωA) = 0.
Then we conclude by Lemma 51.16.2 and the fact that (ωA)pi is nonzero (see for
example Dualizing Complexes, Lemma 47.16.11). □

Lemma 51.16.5.0EB5 Let (A,m) be a complete Noetherian local domain. Let p ⊂ A
be a prime ideal of dimension 1. For every n ≥ 1 there is an m ≥ n such that
p(m) ⊂ pn.

Proof. Recall that the symbolic power p(m) is defined as the kernel ofA→ Ap/p
mAp.

Since localization is exact we conclude that in the short exact sequence
0→ an → A/pn → A/p(n) → 0
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the support of an is contained in {m}. In particular, the inverse system (an) is
Mittag-Leffler as each an is an Artinian A-module. We conclude that the lemma
is equivalent to the requirement that lim an = 0. Let f ∈ lim an. Then f is an
element of A = limA/pn (here we use that A is complete) which maps to zero in
the completion A∧

p of Ap. Since Ap → A∧
p is faithfully flat, we see that f maps to

zero in Ap. Since A is a domain we see that f is zero as desired. □

Proposition 51.16.6.0EB6 [Har68, Theorem
3.1]

Let A be a Noetherian local ring with completion A∧. Let
I ⊂ A be an ideal such that

dimV (IA∧ + p) ≥ 1

for every minimal prime p ⊂ A∧ of dimension dim(A). Then cd(A, I) < dim(A).

Proof. Since A→ A∧ is faithfully flat we have Hd
V (I)(A)⊗AA∧ = Hd

V (IA∧)(A∧) by
Dualizing Complexes, Lemma 47.9.3. Thus we may assume A is complete.

Assume A is complete. Let p1, . . . , pn ⊂ A be the minimal primes of dimension d.
Consider the complete local ring Ai = A/pi. We have Hd

V (I)(Ai) = Hd
V (IAi)(Ai)

by Dualizing Complexes, Lemma 47.9.2. By Lemma 51.16.2 it suffices to prove the
lemma for (Ai, IAi). Thus we may assume A is a complete local domain.

Assume A is a complete local domain. We can choose a prime ideal p ⊃ I with
dim(A/p) = 1. By Lemma 51.16.1 it suffices to prove the lemma for p.

By Lemma 51.16.4 it suffices to show that H0
V (p)(ω•

A) = 0. Recall that

H0
V (p)(ω•

A) = colim Ext0
A(A/pn, ω•

A)

By Lemma 51.16.5 we see that the colimit is the same as

colim Ext0
A(A/p(n), ω•

A)

Since depth(A/p(n)) = 1 we see that these ext groups are zero by Lemma 51.9.4 as
desired. □

Lemma 51.16.7.0EB7 Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal.
Assume A is excellent, normal, and dimV (I) ≥ 1. Then cd(A, I) < dim(A). In
particular, if dim(A) = 2, then Spec(A) \ V (I) is affine.

Proof. By More on Algebra, Lemma 15.52.6 the completion A∧ is normal and hence
a domain. Thus the assumption of Proposition 51.16.6 holds and we conclude. The
statement on affineness follows from Lemma 51.4.8. □

51.17. Frobenius action

0EBU Let p be a prime number. Let A be a ring with p = 0 in A. The Frobenius
endomorphism of A is the map

F : A −→ A, a 7−→ ap

In this section we prove lemmas on modules which have Frobenius actions.

Lemma 51.17.1.0EBV Let p be a prime number. Let (A,m, κ) be a Noetherian local ring
with p = 0 in A. Let M be a finite A-module such that M ⊗A,F A ∼= M . Then M
is finite free.

https://stacks.math.columbia.edu/tag/0EB6
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Proof. Choose a presentation A⊕m → A⊕n → M which induces an isomorphism
κ⊕n → M/mM . Let T = (aij) be the matrix of the map A⊕m → A⊕n. Observe
that aij ∈ m. Applying base change by F , using right exactness of base change, we
get a presentation A⊕m → A⊕n →M where the matrix is T = (apij). Thus we have
a presentation with aij ∈ mp. Repeating this construction we find that for each
e ≥ 1 there exists a presentation with aij ∈ me. This implies the fitting ideals (More
on Algebra, Definition 15.8.3) Fitk(M) for k < n are contained in

⋂
e≥1 m

e. Since
this is zero by Krull’s intersection theorem (Algebra, Lemma 10.51.4) we conclude
that M is free of rank n by More on Algebra, Lemma 15.8.7. □

In this section, we say elements f1, . . . , fr of a ring A are independent if
∑
aifi = 0

implies ai ∈ (f1, . . . , fr). In other words, with I = (f1, . . . , fr) we have I/I2 is free
over A/I with basis f1, . . . , fr.

Lemma 51.17.2.0EBW See [Lec64] and
[Mat70a, Lemma 1
page 299].

Let A be a ring. If f1, . . . , fr−1, frgr are independent, then
f1, . . . , fr are independent.

Proof. Say
∑
aifi = 0. Then

∑
aigrfi = 0. Hence ar ∈ (f1, . . . , fr−1, frgr). Write

ar =
∑
i<r bifi + bfrgr. Then 0 =

∑
i<r(ai + bifr)fi + bf2

r gr. Thus ai + bifr ∈
(f1, . . . , fr−1, frgr) which implies ai ∈ (f1, . . . , fr) as desired. □

Lemma 51.17.3.0EBX See [Lec64] and
[Mat70a, Lemma 2
page 300].

Let A be a ring. If f1, . . . , fr−1, frgr are independent and if the
A-module A/(f1, . . . , fr−1, frgr) has finite length, then

lengthA(A/(f1, . . . , fr−1, frgr))
= lengthA(A/(f1, . . . , fr−1, fr)) + lengthA(A/(f1, . . . , fr−1, gr))

Proof. We claim there is an exact sequence

0→ A/(f1, . . . , fr−1, gr)
fr−→ A/(f1, . . . , fr−1, frgr)→ A/(f1, . . . , fr−1, fr)→ 0

Namely, if afr ∈ (f1, . . . , fr−1, frgr), then
∑
i<r aifi + (a + bgr)fr = 0 for some

b, ai ∈ A. Hence
∑
i<r aigrfi + (a + bgr)grfr = 0 which implies a + bgr ∈

(f1, . . . , fr−1, frgr) which means that a maps to zero in A/(f1, . . . , fr−1, gr). This
proves the claim. To finish use additivity of lengths (Algebra, Lemma 10.52.3). □

Lemma 51.17.4.0EBY See [Lec64] and
[Mat70a, Lemma 3
page 300].

Let (A,m) be a local ring. If m = (x1, . . . , xr) and xe1
1 , . . . , x

er
r

are independent for some ei > 0, then lengthA(A/(xe1
1 , . . . , x

er
r )) = e1 . . . er.

Proof. Use Lemmas 51.17.2 and 51.17.3 and induction. □

Lemma 51.17.5.0EBZ Let φ : A→ B be a flat ring map. If f1, . . . , fr ∈ A are indepen-
dent, then φ(f1), . . . , φ(fr) ∈ B are independent.

Proof. Let I = (f1, . . . , fr) and J = φ(I)B. By flatness we have I/I2⊗AB = J/J2.
Hence freeness of I/I2 over A/I implies freeness of J/J2 over B/J . □

Lemma 51.17.6 (Kunz).0EC0 [Kun69]Let p be a prime number. Let A be a Noetherian ring
with p = 0. The following are equivalent

(1) A is regular, and
(2) F : A→ A, a 7→ ap is flat.

Proof. Observe that Spec(F ) : Spec(A) → Spec(A) is the identity map. Being
regular is defined in terms of the local rings and being flat is something about local

https://stacks.math.columbia.edu/tag/0EBW
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rings, see Algebra, Lemma 10.39.18. Thus we may and do assume A is a Noetherian
local ring with maximal ideal m.
Assume A is regular. Let x1, . . . , xd be a system of parameters for A. Applying
F we find F (x1), . . . , F (xd) = xp1, . . . , x

p
d, which is a system of parameters for A.

Hence F is flat, see Algebra, Lemmas 10.128.1 and 10.106.3.
Conversely, assume F is flat. Write m = (x1, . . . , xr) with r minimal. Then
x1, . . . , xr are independent in the sense defined above. Since F is flat, we see that
xp1, . . . , x

p
r are independent, see Lemma 51.17.5. Hence lengthA(A/(xp1, . . . , xpr)) =

pr by Lemma 51.17.4. Let χ(n) = lengthA(A/mn) and recall that this is a numeri-
cal polynomial of degree dim(A), see Algebra, Proposition 10.60.9. Choose n≫ 0.
Observe that

mpn+pr ⊂ F (mn)A ⊂ mpn

as can be seen by looking at monomials in x1, . . . , xr. We have
A/F (mn)A = A/mn ⊗A,F A

By flatness of F this has length χ(n)lengthA(A/F (m)A) (Algebra, Lemma 10.52.13)
which is equal to prχ(n) by the above. We conclude

χ(pn+ pr) ≥ prχ(n) ≥ χ(pn)
Looking at the leading terms this implies r = dim(A), i.e., A is regular. □

51.18. Structure of certain modules

0EC1 Some results on the structure of certain types of modules over regular local rings.
These types of results and much more can be found in [HS93], [Lyu93], [Lyu97].

Lemma 51.18.1.0EC2 Special case of
[Lyu93, Theorem
2.4]

Let k be a field of characteristic 0. Let d ≥ 1. Let A =
k[[x1, . . . , xd]] with maximal ideal m. Let M be an m-power torsion A-module
endowed with additive operators D1, . . . , Dd satisfying the leibniz rule

Di(fz) = ∂i(f)z + fDi(z)
for f ∈ A and z ∈ M . Here ∂i is differentiation with respect to xi. Then M is
isomorphic to a direct sum of copies of the injective hull E of k.

Proof. Choose a set J and an isomorphism M [m]→
⊕

j∈J k. Since
⊕

j∈J E is in-
jective (Dualizing Complexes, Lemma 47.3.7) we can extend this isomorphism to an
A-module homomorphism φ : M →

⊕
j∈J E. We claim that φ is an isomorphism,

i.e., bijective.
Injective. Let z ∈ M be nonzero. Since M is m-power torsion we can choose an
element f ∈ A such that fz ∈ M [m] and fz ̸= 0. Then φ(fz) = fφ(z) is nonzero,
hence φ(z) is nonzero.
Surjective. Let z ∈M . Then xn1 z = 0 for some n ≥ 0. We will prove that z ∈ x1M
by induction on n. If n = 0, then z = 0 and the result is true. If n > 0, then
applying D1 we find 0 = nxn−1

1 z + xn1D1(z). Hence xn−1
1 (nz + x1D1(z)) = 0. By

induction we get nz+x1D1(z) ∈ x1M . Since n is invertible, we conclude z ∈ x1M .
Thus we see that M is x1-divisible. If φ is not surjective, then we can choose
e ∈

⊕
j∈J E not in M . Arguing as above we may assume me ⊂ M , in particular

x1e ∈M . There exists an element z1 ∈M with x1z1 = x1e. Hence x1(z1 − e) = 0.

https://stacks.math.columbia.edu/tag/0EC2
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Replacing e by e − z1 we may assume e is annihilated by x1. Thus it suffices to
prove that

φ[x1] : M [x1] −→
(⊕

j∈J
E
)

[x1] =
⊕

j∈J
E[x1]

is surjective. If d = 1, this is true by construction of φ. If d > 1, then we observe
that E[x1] is the injective hull of the residue field of k[[x2, . . . , xd]], see Dualizing
Complexes, Lemma 47.7.1. Observe that M [x1] as a module over k[[x2, . . . , xd]] is
m/(x1)-power torsion and comes equipped with operators D2, . . . , Dd satisfying the
displayed Leibniz rule. Thus by induction on d we conclude that φ[x1] is surjective
as desired. □

Lemma 51.18.2.0EC3 Follows from [HS93,
Corollary 3.6] with
a little bit of work.
Also follows directly
from [Lyu97,
Theorem 1.4].

Let p be a prime number. Let (A,m, k) be a regular local ring
with p = 0. Denote F : A → A, a 7→ ap be the Frobenius endomorphism. Let M
be a m-power torsion module such that M ⊗A,F A ∼= M . Then M is isomorphic to
a direct sum of copies of the injective hull E of k.

Proof. Choose a set J and an A-module homorphism φ : M →
⊕

j∈J E which
maps M [m] isomorphically onto (

⊕
j∈J E)[m] =

⊕
j∈J k. We claim that φ is an

isomorphism, i.e., bijective.

Injective. Let z ∈ M be nonzero. Since M is m-power torsion we can choose an
element f ∈ A such that fz ∈ M [m] and fz ̸= 0. Then φ(fz) = fφ(z) is nonzero,
hence φ(z) is nonzero.

Surjective. Recall that F is flat, see Lemma 51.17.6. Let x1, . . . , xd be a minimal
system of generators of m. Denote

Mn = M [xp
n

1 , . . . , xp
n

d ]

the submodule of M consisting of elements killed by xp
n

1 , . . . , xp
n

d . So M0 = M [m]
is a vector space over k. Also M =

⋃
Mn by our assumption that M is m-power

torsion. Since Fn is flat and Fn(xi) = xp
n

i we have

Mn
∼= (M⊗A,FnA)[xp

n

1 , . . . , xp
n

d ] = M [x1, . . . , xd]⊗A,FnA = M0⊗kA/(xp
n

1 , . . . , xp
n

d )

Thus Mn is free over A/(xp
n

1 , . . . , xp
n

d ). A computation shows that every element of
A/(xp

n

1 , . . . , xp
n

d ) annihilated by xp
n−1

1 is divisible by x1; for example you can use
that A/(xp

n

1 , . . . , xp
n

d ) ∼= k[x1, . . . , xd]/(xp
n

1 , . . . , xp
n

d ) by Algebra, Lemma 10.160.10.
Thus the same is true for every element of Mn. Since every element of M is in Mn

for all n ≫ 0 and since every element of M is killed by some power of x1, we
conclude that M is x1-divisible.

Let x = x1. Above we have seen that M is x-divisible. If φ is not surjective, then
we can choose e ∈

⊕
j∈J E not in M . Arguing as above we may assume me ⊂ M ,

in particular xe ∈ M . There exists an element z1 ∈ M with xz1 = xe. Hence
x(z1 − e) = 0. Replacing e by e− z1 we may assume e is annihilated by x. Thus it
suffices to prove that

φ[x] : M [x] −→
(⊕

j∈J
E
)

[x] =
⊕

j∈J
E[x]

is surjective. If d = 1, this is true by construction of φ. If d > 1, then we observe
that E[x] is the injective hull of the residue field of the regular ring A/xA, see

https://stacks.math.columbia.edu/tag/0EC3
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Dualizing Complexes, Lemma 47.7.1. Observe that M [x] as a module over A/xA
is m/(x)-power torsion and we have

M [x]⊗A/xA,F A/xA = M [x]⊗A,F A⊗A A/xA
= (M ⊗A,F A)[xp]⊗A A/xA
∼= M [xp]⊗A A/xA

Argue using flatness of F as before. We claim that M [xp] ⊗A A/xA → M [x],
z ⊗ 1 7→ xp−1z is an isomorphism. This can be seen by proving it for each of
the modules Mn, n > 0 defined above where it follows by the same result for
A/(xp

n

1 , . . . , xp
n

d ) and x = x1. Thus by induction on dim(A) we conclude that φ[x]
is surjective as desired. □

51.19. Additional structure on local cohomology

0EC4 Here is a sample result.

Lemma 51.19.1.0EC5 Let A be a ring. Let I ⊂ A be a finitely generated ideal. Set
Z = V (I). For each derivation θ : A→ A there exists a canonical additive operator
D on the local cohomology modules Hi

Z(A) satisfying the Leibniz rule with respect
to θ.

Proof. Let f1, . . . , fr be elements generating I. Recall that RΓZ(A) is computed
by the complex

A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr

See Dualizing Complexes, Lemma 47.9.1. Since θ extends uniquely to an additive
operator on any localization of A satisfying the Leibniz rule with respect to θ, the
lemma is clear. □

Lemma 51.19.2.0EC6 Let p be a prime number. Let A be a ring with p = 0. Denote
F : A→ A, a 7→ ap the Frobenius endomorphism. Let I ⊂ A be a finitely generated
ideal. Set Z = V (I). There exists an isomorphism RΓZ(A)⊗L

A,F A
∼= RΓZ(A).

Proof. Follows from Dualizing Complexes, Lemma 47.9.3 and the fact that Z =
V (fp1 , . . . , fpr ) if I = (f1, . . . , fr). □

Lemma 51.19.3.0EC7 Let A be a ring. Let V → Spec(A) be quasi-compact, quasi-
separated, and étale. For each derivation θ : A → A there exists a canonical
additive operator D on Hi(V,OV ) satisfying the Leibniz rule with respect to θ.

Proof. If V is separated, then we can argue using an affine open covering V =⋃
j=1,...m Vj . Namely, because V is separated we may write Vj0...jp = Spec(Bj0...jp).

See Schemes, Lemma 26.21.7. Then we find that the A-module Hi(V,OV ) is the
ith cohomology group of the Čech complex∏

Bj0 →
∏

Bj0j1 →
∏

Bj0j1j2 → . . .

See Cohomology of Schemes, Lemma 30.2.6. Each B = Bj0...jp is an étale A-
algebra. Hence ΩB = ΩA⊗AB and we conclude θ extends uniquely to a derivation
θB : B → B. These maps define an endomorphism of the Čech complex and define
the desired operators on the cohomology groups.

https://stacks.math.columbia.edu/tag/0EC5
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In the general case we use a hypercovering of V by affine opens, exactly as in the
first part of the proof of Cohomology of Schemes, Lemma 30.7.3. We omit the
details. □

Remark 51.19.4.0EC8 We can upgrade Lemmas 51.19.1 and 51.19.3 to include higher
order differential operators. If we ever need this we will state and prove a precise
lemma here.

Lemma 51.19.5.0EC9 Let p be a prime number. Let A be a ring with p = 0. Denote F :
A → A, a 7→ ap the Frobenius endomorphism. If V → Spec(A) is quasi-compact,
quasi-separated, and étale, then there exists an isomorphism RΓ(V,OV )⊗L

A,F A
∼=

RΓ(V,OV ).

Proof. Observe that the relative Frobenius morphism
V −→ V ×Spec(A),Spec(F ) Spec(A)

of V over A is an isomorphism, see Étale Morphisms, Lemma 41.14.3. Thus
the lemma follows from cohomology and base change, see Derived Categories of
Schemes, Lemma 36.22.5. Observe that since V is étale over A, it is flat over
A. □

51.20. A bit of uniformity, I

0G9S The main task of this section is to formulate and prove Lemma 51.20.2.

Lemma 51.20.1.0G9T Let R be a ring. Let M →M ′ be a map of R-modules with M of
finite presentation such that TorR1 (M,N)→ TorR1 (M ′, N) is zero for all R-modules
N . Then M →M ′ factors through a free R-module.

Proof. We may choose a map of short exact sequences

0 // K //

��

R⊕r //

��

M //

��

0

0 // K ′ //⊕
i∈I R

// M ′ // 0

whose right vertical arrow is the given map. We can factor this map through the
short exact sequence
(51.20.1.1)0G9U 0→ K ′ → E →M → 0
which is the pushout of the first short exact sequence by K → K ′. By a diagram
chase we see that the assumption in the lemma implies that the boundary map
TorR1 (M,N)→ K ′⊗RN induced by (51.20.1.1) is zero, i.e., the sequence (51.20.1.1)
is universally exact. This implies by Algebra, Lemma 10.82.4 that (51.20.1.1) is
split (this is where we use that M is of finite presentation). Hence the map M →M ′

factors through
⊕

i∈I R and we win. □

Lemma 51.20.2.0G9V Let R be a ring. Let α : M → M ′ be a map of R-modules. Let
P• → M and P ′

• → M ′ be resolutions by projective R-modules. Let e ≥ 0 be an
integer. Consider the following conditions

(1) We can find a map of complexes a• : P• → P ′
• inducing α on cohomology

with ai = 0 for i > e.

https://stacks.math.columbia.edu/tag/0EC8
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https://stacks.math.columbia.edu/tag/0G9T
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(2) We can find a map of complexes a• : P• → P ′
• inducing α on cohomology

with ae+1 = 0.
(3) The map ExtiR(M ′, N) → ExtiR(M,N) is zero for all R-modules N and

i > e.
(4) The map Exte+1

R (M ′, N)→ Exte+1
R (M,N) is zero for all R-modules N .

(5) Let N = Im(P ′
e+1 → P ′

e) and denote ξ ∈ Exte+1
R (M ′, N) the canonical

element (see proof). Then ξ maps to zero in Exte+1
R (M,N).

(6) The map TorRi (M,N) → TorRi (M ′, N) is zero for all R-modules N and
i > e.

(7) The map TorRe+1(M,N)→ TorRe+1(M ′, N) is zero for all R-modules N .
Then we always have the implications

(1)⇔ (2)⇔ (3)⇔ (4)⇔ (5)⇒ (6)⇔ (7)

If M is (−e− 1)-pseudo-coherent (for example if R is Noetherian and M is a finite
R-module), then all conditions are equivalent.

Proof. It is clear that (2) implies (1). If a• is as in (1), then we can consider the
map of complexes a′

• : P• → P ′
• with a′

i = ai for i ≤ e+ 1 and a′
i = 0 for i ≥ e+ 1

to get a map of complexes as in (2). Thus (1) is equivalent to (2).

By the construction of the Ext and Tor functors using resolutions (Algebra, Sections
10.71 and 10.75) we see that (1) and (2) imply all of the other conditions.

It is clear that (3) implies (4) implies (5). Let N be as in (5). The canonical map
ξ̃ : P ′

e+1 → N precomposed with P ′
e+2 → P ′

e+1 is zero. Hence we may consider the
class ξ of ξ̃ in

Exte+1
R (M ′, N) =

Ker(Hom(P ′
e+1, N → Hom(P ′

e+2, N)
Im(Hom(P ′

e, N → Hom(P ′
e+1, N)

Choose a map of complexes a• : P• → P ′
• lifting α, see Derived Categories, Lemma

13.19.6. If ξ maps to zero in Exte+1
R (M ′, N), then we find a map φ : Pe → N such

that ξ̃ ◦ ae+1 = φ ◦ d. Thus we obtain a map of complexes

. . . // Pe+1 //

0
��

Pe //

ae−φ
��

Pe−1 //

ae−1

��

. . .

. . . // P ′
e+1

// P ′
e

// P ′
e−1

// . . .

as in (2). Hence (1) – (5) are equivalent.

The equivalence of (6) and (7) follows from dimension shifting; we omit the details.

Assume M is (−e−1)-pseudo-coherent. (The parenthetical statement in the lemma
follows from More on Algebra, Lemma 15.64.17.) We will show that (7) implies (4)
which finishes the proof. We will use induction on e. The base case is e = 0. Then
M is of finite presentation by More on Algebra, Lemma 15.64.4 and we conclude
from Lemma 51.20.1 that M → M ′ factors through a free module. Of course if
M →M ′ factors through a free module, then ExtiR(M ′, N)→ ExtiR(M,N) is zero
for all i > 0 as desired. Assume e > 0. We may choose a map of short exact
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sequences
0 // K //

��

R⊕r //

��

M //

��

0

0 // K ′ //⊕
i∈I R

// M ′ // 0

whose right vertical arrow is the given map. We obtain TorRi+1(M,N) = TorRi (K,N)
and Exti+1

R (M,N) = ExtiR(K,N) for i ≥ 1 and all R-modules N and similarly for
M ′,K ′. Hence we see that TorRe (K,N) → TorRe (K ′, N) is zero for all R-modules
N . By More on Algebra, Lemma 15.64.2 we see that K is (−e)-pseudo-coherent.
By induction we conclude that Exte(K ′, N)→ Exte(K,N) is zero for all R-modules
N , which gives what we want. □

Lemma 51.20.3.0EH1 Let I be an ideal of a Noetherian ring A. For all n ≥ 1 there exists
an m > n such that the map A/Im → A/In satisfies the equivalent conditions of
Lemma 51.20.2 with e = cd(A, I).

Proof. Let ξ ∈ Exte+1
A (A/In, N) be the element constructed in Lemma 51.20.2 part

(5). Since e = cd(A, I) we have 0 = He+1
Z (N) = He+1

I (N) = colim Exte+1(A/Im, N)
by Dualizing Complexes, Lemmas 47.10.1 and 47.8.2. Thus we may pick m ≥ n
such that ξ maps to zero in Exte+1

A (A/Im, N) as desired. □

51.21. A bit of uniformity, II

0G9W Let I be an ideal of a Noetherian ring A. Let M be a finite A-module. Let
i > 0. By More on Algebra, Lemma 15.27.3 there exists a c = c(A, I,M, i) such
that TorAi (M,A/In) → TorAi (M,A/In−c) is zero for all n ≥ c. In this section, we
discuss some results which show that one sometimes can choose a constant c which
works for all A-modules M simultaneously (and for a range of indices i). This
material is related to uniform Artin-Rees as discussed in [Hun92] and [AHS15].
In Remark 51.21.9 we will apply this to show that various pro-systems related to
derived completion are (or are not) strictly pro-isomorphic.
The following lemma can be significantly strengthened.

Lemma 51.21.1.0G9X Let I be an ideal of a Noetherian ring A. For every m ≥ 0 and
i > 0 there exist a c = c(A, I,m, i) ≥ 0 such that for every A-module M annihilated
by Im the map

TorAi (M,A/In)→ TorAi (M,A/In−c)
is zero for all n ≥ c.

Proof. By induction on i. Base case i = 1. The short exact sequence 0 → In →
A → A/In → 0 determines an injection TorA1 (M,A/In) ⊂ In ⊗AM , see Algebra,
Remark 10.75.9. As M is annihilated by Im we see that the map In ⊗A M →
In−m ⊗AM is zero for n ≥ m. Hence the result holds with c = m.
Induction step. Let i > 1 and assume c works for i−1. By More on Algebra, Lemma
15.27.3 applied to M = A/Im we can choose c′ ≥ 0 such that Tori(A/Im, A/In)→
Tori(A/Im, A/In−c′) is zero for n ≥ c′. Let M be annihilated by Im. Choose a
short exact sequence

0→ S →
⊕

i∈I
A/Im →M → 0

https://stacks.math.columbia.edu/tag/0EH1
https://stacks.math.columbia.edu/tag/0G9X
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The corresponding long exact sequence of tors gives an exact sequence

TorAi (
⊕

i∈I
A/Im, A/In)→ TorAi (M,A/In)→ TorAi−1(S,A/In)

for all integers n ≥ 0. If n ≥ c+c′, then the map TorAi−1(S,A/In)→ TorAi−1(S,A/In−c)
is zero and the map TorAi (A/Im, A/In−c)→ TorAi (A/Im, A/In−c−c′) is zero. Com-
bined with the short exact sequences this implies the result holds for i with constant
c+ c′. □

Lemma 51.21.2.0G9Y Let I = (a1, . . . , at) be an ideal of a Noetherian ring A. Set a = a1
and denote B = A[ Ia ] the affine blowup algebra. There exists a c > 0 such that
TorAi (B,M) is annihilated by Ic for all A-modules M and i ≥ t.

Proof. Recall that B is the quotient of A[x2, . . . , xt]/(a1x2 − a2, . . . , a1xt − at) by
its a1-torsion, see Algebra, Lemma 10.70.6. Let

B• = Koszul complex on a1x2 − a2, . . . , a1xt − at over A[x2, . . . , xt]

viewed as a chain complex sitting in degrees (t−1), . . . , 0. The complex B•[1/a1] is
isomorphic to the Koszul complex on x2 − a2/a1, . . . , xt − at/a1 which is a regular
sequence in A[1/a1][x2, . . . , xt]. Since regular sequences are Koszul regular, we
conclude that the augmentation

ϵ : B• −→ B

is a quasi-isomorphism after inverting a1. Since the homology modules of the cone
C• on ϵ are finite A[x2, . . . , xn]-modules and since C• is bounded, we conclude that
there exists a c ≥ 0 such that ac1 annihilates all of these. By Derived Categories,
Lemma 13.12.5 this implies that, after possibly replacing c by a larger integer, that
ac1 is zero on C• in D(A). The proof is finished once the reader contemplates the
distinguished triangle

B• ⊗L
AM → B ⊗L

AM → C• ⊗L
AM

Namely, the first term is represented by B• ⊗A M which is sitting in homological
degrees (t − 1), . . . , 0 in view of the fact that the terms in the Koszul complex B•
are free (and hence flat) A-modules. Whence TorAi (B,M) = Hi(C• ⊗L

A M) for
i > t− 1 and this is annihilated by ac1. Since ac1B = IcB and since the tor module
is a module over B we conclude. □

For the rest of the discussion in this section we fix a Noetherian ring A and an ideal
I ⊂ A. We denote

p : X → Spec(A)
the blowing up of Spec(A) in the ideal I. In other words, X is the Proj of the Rees
algebra

⊕
n≥0 I

n. By Cohomology of Schemes, Lemmas 30.14.2 and 30.14.3 we can
choose an integer q(A, I) ≥ 0 such that for all q ≥ q(A, I) we haveHi(X,OX(q)) = 0
for i > 0 and H0(X,OX(q)) = Iq.

Lemma 51.21.3.0G9Z In the situation above, for q ≥ q(A, I) and any A-module M we
have

RΓ(X,Lp∗M̃(q)) ∼= M ⊗L
A I

q

in D(A).

https://stacks.math.columbia.edu/tag/0G9Y
https://stacks.math.columbia.edu/tag/0G9Z
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Proof. Choose a free resolution F• →M . Then F̃• is a flat resolution of M̃ . Hence
Lp∗M̃ is given by the complex p∗F̃•. Thus Lp∗M̃(q) is given by the complex
p∗F̃•(q). Since p∗F̃i(q) are right acyclic for Γ(X,−) by our choice of q ≥ q(A, I)
and since we have Γ(X, p∗F̃i(q)) = IqFi by our choice of q ≥ q(A, I), we get that
RΓ(X,Lp∗M̃(q)) is given by the complex with terms IqFi by Derived Categories of
Schemes, Lemma 36.4.3. The result follows as the complex IqF• computes M⊗L

A I
q

by definition. □

Lemma 51.21.4.0GA0 In the situation above, let t be an upper bound on the number
of generators for I. There exists an integer c = c(A, I) ≥ 0 such that for any
A-module M the cohomology sheaves Hj(Lp∗M̃) are annihilated by Ic for j ≤ −t.

Proof. Say I = (a1, . . . , at). The question is affine local on X. For 1 ≤ i ≤ t let
Bi = A[ Iai ] be the affine blowup algebra. Then X has an affine open covering by the
spectra of the rings Bi, see Divisors, Lemma 31.32.2. By the description of derived
pullback given in Derived Categories of Schemes, Lemma 36.3.8 we conclude it
suffices to prove that for each i there exists a c ≥ 0 such that

TorAj (Bi,M)
is annihilated by Ic for j ≥ t. This is Lemma 51.21.2. □

Lemma 51.21.5.0GA1 In the situation above, let t be an upper bound on the number of
generators for I. There exists an integer c = c(A, I) ≥ 0 such that for any A-module
M the tor modules TorAi (M,A/Iq) are annihilated by Ic for i > t and all q ≥ 0.

Proof. Let q(A, I) be as above. For q ≥ q(A, I) we have

RΓ(X,Lp∗M̃(q)) = M ⊗L
A I

q

by Lemma 51.21.3. We have a bounded and convergent spectral sequence

Ha(X,Hb(Lp∗M̃(q)))⇒ TorA−a−b(M, Iq)
by Derived Categories of Schemes, Lemma 36.4.4. Let d be an integer as in Co-
homology of Schemes, Lemma 30.4.4 (actually we can take d = t, see Cohomology
of Schemes, Lemma 30.4.2). Then we see that H−i(X,Lp∗M̃(q)) = TorAi (M, Iq)
has a finite filtration with at most d steps whose graded are subquotients of the
modules

Ha(X,H−i−a(Lp∗M̃)(q)), a = 0, 1, . . . , d− 1
If i ≥ t then all of these modules are annihilated by Ic where c = c(A, I) is as in
Lemma 51.21.4 because the cohomology sheaves H−i−a(Lp∗M̃) are all annihilated
by Ic by the lemma. Hence we see that TorAi (M, Iq) is annihilated by Idc for
q ≥ q(A, I) and i ≥ t. Using the short exact sequence 0 → Iq → A → A/Iq → 0
we find that Tori(M,A/Iq) is annihilated by Idc for q ≥ q(A, I) and i > t. We
conclude that Im with m = max(dc, q(A, I)− 1) annihilates TorAi (M,A/Iq) for all
q ≥ 0 and i > t as desired. □

Lemma 51.21.6.0GA2 Let I be an ideal of a Noetherian ring A. Let t ≥ 0 be an upper
bound on the number of generators of I. There exist N, c ≥ 0 such that the maps

TorAt+1(M,A/In)→ TorAt+1(M,A/In−c)
are zero for any A-module M and all n ≥ N .

https://stacks.math.columbia.edu/tag/0GA0
https://stacks.math.columbia.edu/tag/0GA1
https://stacks.math.columbia.edu/tag/0GA2
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Proof. Let c1 be the constant found in Lemma 51.21.5. Please keep in mind that
this constant c1 works for Tori for all i > t simultaneously.
Say I = (a1, . . . , at). For an A-module M we set

ℓ(M) = #{i | 1 ≤ i ≤ t, ac1
i is zero on M}

This is an element of {0, 1, . . . , t}. We will prove by descending induction on 0 ≤
s ≤ t the following statement Hs: there exist N, c ≥ 0 such that for every module
M with ℓ(M) ≥ s the maps

TorAt+1+i(M,A/In)→ TorAt+1+i(M,A/In−c)
are zero for i = 0, . . . , s for all n ≥ N .
Base case: s = t. If ℓ(M) = t, then M is annihilated by (ac1

1 , . . . , a
c1
t } and hence by

It(c1−1)+1. We conclude from Lemma 51.21.1 that Ht holds by taking c = N to be
the maximum of the integers c(A, I, t(c1−1)+1, t+1), . . . , c(A, I, t(c1−1)+1, 2t+1)
found in the lemma.
Induction step. Say 0 ≤ s < t we have N, c as in Hs+1. Consider a module M with
ℓ(M) = s. Then we can choose an i such that ac1

i is nonzero on M . It follows that
ℓ(M [aci ]) ≥ s+ 1 and ℓ(M/ac1

i M) ≥ s+ 1 and the induction hypothesis applies to
them. Consider the exact sequence

0→M [ac1
i ]→M

a
c1
i−−→M →M/ac1

i M → 0
Denote E ⊂M the image of the middle arrow. Consider the corresponding diagram
of Tor modules

Tori+1(M/ac1
i M,A/Iq)

��
Tori(M [ac1

i ], A/Iq) // Tori(M,A/Iq) //

0

))

Tori(E,A/Iq)

��
Tori(M,A/Iq)

with exact rows and columns (for every q). The south-east arrow is zero by our
choice of c1. We conclude that the module Tori(M,A/Iq) is sandwiched between a
quotient module of Tori(M [ac1

i ], A/Iq) and a submodule of Tori+1(M/ac1
i M,A/Iq).

Hence we conclude Hs holds with N replaced by N + c and c replaced by 2c. Some
details omitted. □

Proposition 51.21.7.0GA3 Let I be an ideal of a Noetherian ring A. Let t ≥ 0 be an
upper bound on the number of generators of I. There exist N, c ≥ 0 such that for
n ≥ N the maps

A/In → A/In−c

satisfy the equivalent conditions of Lemma 51.20.2 with e = t.
Proof. Immediate consequence of Lemmas 51.21.6 and 51.20.2. □

Remark 51.21.8.0GA4 The paper [AHS15] shows, besides many other things, that if A
is local, then Proposition 51.21.7 also holds with e = t replaced by e = dim(A).
Looking at Lemma 51.20.3 it is natural to ask whether Proposition 51.21.7 holds
with e = t replaced with e = cd(A, I). We don’t know.

https://stacks.math.columbia.edu/tag/0GA3
https://stacks.math.columbia.edu/tag/0GA4
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Remark 51.21.9.0GA5 Let I be an ideal of a Noetherian ring A. Say I = (f1, . . . , fr).
Denote K•

n the Koszul complex on fn1 , . . . , f
n
r as in More on Algebra, Situation

15.91.15 and denote Kn ∈ D(A) the corresponding object. Let M• be a bounded
complex of finite A-modules and denote M ∈ D(A) the corresponding object. Con-
sider the following inverse systems in D(A):

(1) M•/InM•, i.e., the complex whose terms are M i/InM i,
(2) M ⊗L

A A/I
n,

(3) M ⊗L
A Kn, and

(4) M ⊗L
P P/J

n (see below).
All of these inverse systems are isomorphic as pro-objects: the isomorphism be-
tween (2) and (3) follows from More on Algebra, Lemma 15.94.1. The isomorphism
between (1) and (2) is given in More on Algebra, Lemma 15.100.3. For the last
one, see below.

However, we can ask if these isomorphisms of pro-systems are “strict”; this termi-
nology and question is related to the discussion in [Qui, pages 61, 62]. Namely,
given a category C we can define a “strict pro-category” whose objects are inverse
systems (Xn) and whose morphisms (Xn) → (Yn) are given by tuples (c, φn) con-
sisting of a c ≥ 0 and morphisms φn : Xn → Yn−c for all n ≥ c satisfying an
obvious compatibility condition and up to a certain equivalence (given essentially
by increasing c). Then we ask whether the above inverse systems are isomorphic in
this strict pro-category.

This clearly cannot be the case for (1) and (3) even when M = A[0]. Namely, the
system H0(Kn) = A/(fn1 , . . . , fnr ) is not strictly pro-isomorphic in the category of
modules to the system A/In in general. For example, if we take A = Z[x1, . . . , xr]
and fi = xi, then H0(Kn) is not annihilated by Ir(n−1).3

It turns out that the results above show that the natural map from (2) to (1)
discussed in More on Algebra, Lemma 15.100.3 is a strict pro-isomorphism. We
will sketch the proof. Using standard arguments involving stupid truncations, we
first reduce to the case where M• is given by a single finite A-module M placed in
degree 0. Pick N, c ≥ 0 as in Proposition 51.21.7. The proposition implies that for
n ≥ N we get factorizations

M ⊗L
A A/I

n → τ≥−t(M ⊗L
A A/I

n)→M ⊗L
A A/I

n−c

of the transition maps in the system (2). On the other hand, by More on Algebra,
Lemma 15.27.3, we can find another constant c′ = c′(M) ≥ 0 such that the maps
TorAi (M,A/In

′)→ Tori(M,A/In
′−c′) are zero for i = 1, 2, . . . , t and n′ ≥ c′. Then

it follows from Derived Categories, Lemma 13.12.5 that the map

τ≥−t(M ⊗L
A A/I

n+tc′
)→ τ≥−t(M ⊗L

A A/I
n)

factors through M⊗L
AA/I

n+tc′ →M/In+tc′
M . Combined with the previous result

we obtain a factorization

M ⊗L
A A/I

n+tc′
→M/In+tc′

M →M ⊗L
A A/I

n−c

3Of course, we can ask whether these pro-systems are isomorphic in a category whose objects
are inverse systems and where maps are given by tuples (r, c, φn) consisting of r ≥ 1, c ≥ 0 and
maps φn : Xrn → Yn−c for n ≥ c.

https://stacks.math.columbia.edu/tag/0GA5
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which gives us what we want. If we ever need this result, we will carefully state it
and provide a detailed proof.
For number (4) suppose we have a Noetherian ring P , a ring homomorphism P → A,
and an ideal J ⊂ P such that I = JA. By More on Algebra, Section 15.60 we get
a functor M ⊗L

P − : D(P ) → D(A) and we get an inverse system M ⊗L
P P/J

n in
D(A) as in (4). If P is Noetherian, then the system in (4) is pro-isomorphic to the
system in (1) because we can compare with Koszul complexes. If P → A is finite,
then the system (4) is strictly pro-isomorphic to the system (2) because the inverse
system A ⊗L

P P/J
n is strictly pro-isomorphic to the inverse system A/In (by the

discussion above) and because we have

M ⊗L
P P/J

n = M ⊗L
A (A⊗L

P P/J
n)

by More on Algebra, Lemma 15.60.1.
A standard example in (4) is to take P = Z[x1, . . . , xr], the map P → A sending
xi to fi, and J = (x1, . . . , xr). In this case one shows that

M ⊗L
P P/J

n = M ⊗L
A[x1,...,xr] A[x1, . . . , xr]/(x1, . . . , xr)n

and we reduce to one of the cases discussed above (although this case is strictly
easier as A[x1, . . . , xr]/(x1, . . . , xr)n has tor dimension at most r for all n and hence
the step using Proposition 51.21.7 can be avoided). This case is discussed in the
proof of [BS13, Proposition 3.5.1].

51.22. A bit of uniformity, III

0GA6 In this section we fix a Noetherian ring A and an ideal I ⊂ A. Our goal is to prove
Lemma 51.22.7 which we will use in a later chapter to solve a lifting problem, see
Algebraization of Formal Spaces, Lemma 88.5.3.
Throughout this section we denote

p : X → Spec(A)
the blowing up of Spec(A) in the ideal I. In other words, X is the Proj of the Rees
algebra

⊕
n≥0 I

n. We also consider the fibre product

Y //

��

X

p

��
Spec(A/I) // Spec(A)

Then Y is the exceptional divisor of the blowup and hence an effective Cartier
divisor on X such that OX(−1) = OX(Y ). Since taking Proj commutes with base
change we have

Y = Proj(
⊕

n≥0
In/In+1) = Proj(S)

where S = GrI(A) =
⊕

n≥0 I
n/In+1.

We denote d = d(S) = d(GrI(A)) = d(
⊕

n≥0 I
n/In+1) the maximum of the dimen-

sions of the fibres of p (and we set it equal to 0 if X = ∅). This is well defined. In
fact, we have

(1) d ≤ t− 1 if I = (a1, . . . , at) since then X ⊂ Pt−1
A , and
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(2) d is also the maximal dimension of the fibres of Proj(S) → Spec(S0)
provided that Y is nonempty and d = 0 if Y = ∅ (equivalently S = 0,
equivalently I = A).

Hence d only depends on the isomorphism class of S = GrI(A). Observe that
Hi(X,F) = 0 for every coherent OX -module F and i > d by Cohomology of
Schemes, Lemmas 30.20.9 and 30.4.6. Of course the same is true for coherent
modules on Y .
We denote d = d(S) = d(GrI(A)) = d(

⊕
n≥0 I

n/In+1) the integer defined as
follows. Note that the algebra S =

⊕
n≥0 I

n/In+1 is a Noetherian graded ring
generated in degree 1 over degree 0. Hence by Cohomology of Schemes, Lemmas
30.14.2 and 30.14.3 we can define q(S) as the smallest integer q(S) ≥ 0 such that for
all q ≥ q(S) we have Hi(Y,OY (q)) = 0 for 1 ≤ i ≤ d and H0(Y,OY (q)) = Iq/Iq+1.
(If S = 0, then q(S) = 0.)
For n ≥ 1 we may consider the effective Cartier divisor nY which we will denote
Yn.

Lemma 51.22.1.0GA7 With q0 = q(S) and d = d(S) as above, we have
(1) for n ≥ 1, q ≥ q0, and i > 0 we have Hi(X,OYn(q)) = 0,
(2) for n ≥ 1 and q ≥ q0 we have H0(X,OYn(q)) = Iq/Iq+n,
(3) for q ≥ q0 and i > 0 we have Hi(X,OX(q)) = 0,
(4) for q ≥ q0 we have H0(X,OX(q)) = Iq.

Proof. If I = A, then X is affine and the statements are trivial. Hence we may and
do assume I ̸= A. Thus Y and X are nonempty schemes.
Let us prove (1) and (2) by induction on n. The base case n = 1 is our definition
of q0 as Y1 = Y . Recall that OX(1) = OX(−Y ). Hence we have a short exact
sequence

0→ OYn(1)→ OYn+1 → OY → 0
Hence for i > 0 we find

Hi(X,OYn(q + 1))→ Hi(X,OYn+1(q))→ Hi(X,OY (q))
and we obtain the desired vanishing of the middle term from the given vanishing
of the outer terms. For i = 0 we obtain a commutative diagram

0 // Iq+1/Iq+1+n

��

// Iq/Iq+1+n

��

// Iq/Iq+1

��

// 0

0 // H0(X,OYn(q + 1)) // H0(X,OYn+1(q)) // H0(Y,OY (q)) // 0

with exact rows for q ≥ q0 (for the bottom row observe that the next term in the
long exact cohomology sequence vanishes for q ≥ q0). Since q ≥ q0 the left and
right vertical arrows are isomorphisms and we conclude the middle one is too.
We omit the proofs of (3) and (4) which are similar. In fact, one can deduce (3)
and (4) from (1) and (2) using the theorem on formal functors (but this would be
overkill). □

Let us introduce a notation: given n ≥ c ≥ 0 an (A,n, c)-module is a finiteA-module
M which is annihilated by In and which as an A/In-module is Ic/In-projective,
see More on Algebra, Section 15.70.

https://stacks.math.columbia.edu/tag/0GA7
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We will use the following abuse of notation: given an A-module M we denote p∗M
the quasi-coherent module gotten by pulling back by p the quasi-coherent module
M̃ on Spec(A) associated to M . For example we have OYn = p∗(A/In). For a short
exact sequence 0→ K → L→M → 0 of A-modules we obtain an exact sequence

p∗K → p∗L→ p∗M → 0
as ˜ is an exact functor and p∗ is a right exact functor.

Lemma 51.22.2.0GA8 Let 0 → K → L → M → 0 be a short exact sequence of A-
modules such that K and L are annihilated by In and M is an (A,n, c)-module.
Then the kernel of p∗K → p∗L is scheme theoretically supported on Yc.

Proof. Let Spec(B) ⊂ X be an affine open. The restriction of the exact sequence
over Spec(B) corresponds to the sequence of B-modules

K ⊗A B → L⊗A B →M ⊗A B → 0
which is isomorphismic to the sequence

K ⊗A/In B/InB → L⊗A/In B/InB →M ⊗A/In B/InB → 0

Hence the kernel of the first map is the image of the module TorA/I
n

1 (M,B/InB).
Recall that the exceptional divisor Y is cut out by IOX . Hence it suffices to show
that TorA/I

n

1 (M,B/InB) is annihilated by Ic. Since multiplication by a ∈ Ic on
M factors through a finite free A/In-module, this is clear. □

We have the canonical map OX → OX(1) which vanishes exactly along Y . Hence
for every coherent OX -module F we always have canonical maps F(q)→ F(q+ n)
for any q ∈ Z and n ≥ 0.

Lemma 51.22.3.0GA9 Let F be a coherent OX -module. Then F is scheme theoretically
supported on Yc if and only if the canonical map F → F(c) is zero.

Proof. This is true because OX → OX(1) vanishes exactly along Y . □

Lemma 51.22.4.0GAA With q0 = q(S) and d = d(S) as above, suppose we have integers
n ≥ c ≥ 0, an (A,n, c)-module M , an index i ∈ {0, 1, . . . , d}, and an integer q.
Then we distinguish the following cases

(1) In the case i = d ≥ 1 and q ≥ q0 we have Hd(X, p∗M(q)) = 0.
(2) In the case i = d− 1 ≥ 1 and q ≥ q0 we have Hd−1(X, p∗M(q)) = 0.
(3) In the case d−1 > i > 0 and q ≥ q0+(d−1−i)c the map Hi(X, p∗M(q))→

Hi(X, p∗M(q − (d− 1− i)c)) is zero.
(4) In the case i = 0, d ∈ {0, 1}, and q ≥ q0, there is a surjection

IqM −→ H0(X, p∗M(q))
(5) In the case i = 0, d > 1, and q ≥ q0 + (d− 1)c the map

H0(X, p∗M(q))→ H0(X, p∗M(q − (d− 1)c))

has image contained in the image of the canonical map Iq−(d−1)cM →
H0(X, p∗M(q − (d− 1)c)).

Proof. Let M be an (A,n, c)-module. Choose a short exact sequence
0→ K → (A/In)⊕r →M → 0

https://stacks.math.columbia.edu/tag/0GA8
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We will use below that K is an (A,n, c)-module, see More on Algebra, Lemma
15.70.6. Consider the corresponding exact sequence

p∗K → (OYn)⊕r → p∗M → 0
We split this into short exact sequences

0→ F → p∗K → G → 0 and 0→ G → (OYn)⊕r → p∗M → 0
By Lemma 51.22.2 the coherent module F is scheme theoretically supported on Yc.
Proof of (1). Assume d > 0. We have to prove Hd(X, p∗M(q)) = 0 for q ≥ q0.
By the vanishing of the cohomology of twists of G in degrees > d and the long
exact cohomology sequence associated to the second short exact sequence above, it
suffices to prove that Hd(X,OYn(q)) = 0. This is true by Lemma 51.22.1.
Proof of (2). Assume d > 1. We have to prove Hd−1(X, p∗M(q)) = 0 for
q ≥ q0. Arguing as in the previous paragraph, we see that it suffices to show that
Hd(X,G(q)) = 0. Using the first short exact sequence and the vanishing of the co-
homology of twists of F in degrees > d we see that it suffices to show Hd(X, p∗K(q))
is zero which is true by (1) and the fact that K is an (A,n, c)-module (see above).
Proof of (3). Let 0 < i < d−1 and assume the statement holds for i+1 except in the
case i = d−2 we have statement (2). Using the long exact sequence of cohomology
associated to the second short exact sequence above we find an injection

Hi(X, p∗M(q − (d− 1− i)c)) ⊂ Hi+1(X,G(q − (d− 1− i)c))
as q−(d−1−i)c ≥ q0 gives the vanishing of Hi(X,OYn(q−(d−1−i)c)) (see above).
Thus it suffices to show that the map Hi+1(X,G(q))→ Hi+1(X,G(q− (d−1− i)c))
is zero. To study this, we consider the maps of exact sequences

Hi+1(X, p∗K(q)) //

��

Hi+1(X,G(q)) //

��ss

Hi+2(X,F(q))

��
Hi+1(X, p∗K(q − c)) //

��

Hi+1(X,G(q − c)) //

��

Hi+2(X,F(q − c))

Hi+1(X, p∗K(q − (d− 1− i)c)) // Hi+1(X,G(q − (d− 1− i)c))

Since F is scheme theoretically supported on Yc we see that the canonical map
G(q)→ G(q−c) factors through p∗K(q−c) by Lemma 51.22.3. This gives the dotted
arrow in the diagram. (In fact, for the proof it suffices to observe that the vertical
arrow on the extreme right is zero in order to get the dotted arrow as a map of sets.)
Thus it suffices to show that Hi+1(X, p∗K(q−c))→ Hi+1(X, p∗K(q−(d−1− i)c))
is zero. If i = d−2, then the source of this arrow is zero by (2) as q− c ≥ q0 and K
is an (A,n, c)-module. If i < d − 2, then as K is an (A,n, c)-module, we get from
the induction hypothesis that the map is indeed zero since q−c−(q−(d−1−i)c) =
(d − 2 − i)c = (d − 1 − (i + 1))c and since q − c ≥ q0 + (d − 1 − (i + 1))c. In this
way we conclude the proof of (3).
Proof of (4). Assume d ∈ {0, 1} and q ≥ q0. Then the first short exact sequence
gives a surjection H1(X, p∗K(q)) → H1(X,G(q)) and the source of this arrow is
zero by case (1). Hence for all q ∈ Z we see that the map

H0(X, (OYn)⊕r(q)) −→ H0(X, p∗M(q))
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is surjective. For q ≥ q0 the source is equal to (Iq/Iq+n)⊕r by Lemma 51.22.1 and
this easily proves the statement.
Proof of (5). Assume d > 1. Arguing as in the proof of (4) we see that it suffices
to show that the image of

H0(X, p∗M(q)) −→ H0(X, p∗M(q − (d− 1)c))
is contained in the image of

H0(X, (OYn)⊕r(q − (d− 1)c)) −→ H0(X, p∗M(q − (d− 1)c))
To show the inclusion above, it suffices to show that for σ ∈ H0(X, p∗M(q)) with
boundary ξ ∈ H1(X,G(q)) the image of ξ in H1(X,G(q − (d − 1)c)) is zero. This
follows by the exact same arguments as in the proof of (3). □

Remark 51.22.5.0GAB Given a pair (M,n) consisting of an integer n ≥ 0 and a finite
A/In-module M we set M∨ = HomA/In(M,A/In). Given a pair (F , n) consisting
of an integer n and a coherent OYn -module F we set

F∨ = HomOYn
(F ,OYn)

Given (M,n) as above, there is a canonical map
can : p∗(M∨) −→ (p∗M)∨

Namely, if we choose a presentation (A/In)⊕s → (A/In)⊕r → M → 0 then we
obtain a presentation O⊕s

Yn
→ O⊕r

Yn
→ p∗M → 0. Taking duals we obtain exact

sequences
0→M∨ → (A/In)⊕r → (A/In)⊕s

and
0→ (p∗M)∨ → O⊕r

Yn
→ O⊕s

Yn

Pulling back the first sequence by p we find the desired map can. The construction
of this map is functorial in the finite A/In-module M . The kernel and cokernel of
can are scheme theoretically supported on Yc ifM is an (A,n, c)-module. Namely, in
that case for a ∈ Ic the map a : M →M factors through a finite free A/In-module
for which can is an isomorphism. Hence a annihilates the kernel and cokernel of
can.

Lemma 51.22.6.0GAC With q0 = q(S) and d = d(S) as above, let M be an (A,n, c)-
module and let φ : M → In/I2n be an A-linear map. Assume n ≥ max(q0 + (1 +
d)c, (2 + d)c) and if d = 0 assume n ≥ q0 + 2c. Then the composition

M
φ−→ In/I2n → In−(1+d)c/I2n−(1+d)c

is of the form
∑
aiψi with ai ∈ Ic and ψi : M → In−(2+d)c/I2n−(2+d)c.

Proof. The case d > 1. Since we have a compatible system of maps p∗(Iq)→ OX(q)
for q ≥ 0 there are canonical maps p∗(Iq/Iq+ν) → OYν (q) for ν ≥ 0. Using this
and pulling back φ we obtain a map

χ : p∗M −→ OYn(n)
such that the composition M → H0(X, p∗M) → H0(X,OYn(n)) is the given ho-
momorphism φ combined with the map In/I2n → H0(X,OYn(n)). Since OYn(n)
is invertible on Yn the linear map χ determines a section

σ ∈ Γ(X, (p∗M)∨(n))

https://stacks.math.columbia.edu/tag/0GAB
https://stacks.math.columbia.edu/tag/0GAC
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with notation as in Remark 51.22.5. The discussion in Remark 51.22.5 shows the
cokernel and kernel of can : p∗(M∨)→ (p∗M)∨ are scheme theoretically supported
on Yc. By Lemma 51.22.3 the map (p∗M)∨(n)→ (p∗M)∨(n− 2c) factors through
p∗(M∨)(n−2c); small detail omitted. Hence the image of σ in Γ(X, (p∗M)∨(n−2c))
comes from an element

σ′ ∈ Γ(X, p∗(M∨)(n− 2c))
By Lemma 51.22.4 part (5), the fact that M∨ is an (A,n, c)-module by More on
Algebra, Lemma 15.70.7, and the fact that n ≥ q0 +(1+d)c so n−2c ≥ q0 +(d−1)c
we see that the image of σ′ in H0(X, p∗M∨(n−(1+d)c)) is the image of an element
τ in In−(1+d)cM∨. Write τ =

∑
aiτi with τi ∈ In−(2+d)cM∨; this makes sense as

n − (2 + d)c ≥ 0. Then τi determines a homomorphism of modules ψi : M →
In−(2+d)c/I2n−(2+d)c using the evaluation map M ⊗M∨ → A/In.
Let us prove that this works4. Pick z ∈M and let us show that φ(z) and

∑
aiψi(z)

have the same image in In−(1+d)c/I2n−(1+d)c. First, the element z determines a map
p∗z : OYn → p∗M whose composition with χ is equal to the map OYn → OYn(n)
corresponding to φ(z) via the map In/I2n → Γ(OYn(n)). Next z and p∗z determine
evaluation maps ez : M∨ → A/In and ep∗z : (p∗M)∨ → OYn . Since χ(p∗z) is the
section corresponding to φ(z) we see that ep∗z(σ) is the section corresponding to
φ(z). Here and below we abuse notation: for a map a : F → G of modules on X
we also denote a : F(t) → F(t) the corresponding map of twisted modules. The
diagram

p∗(M∨)

can

��

p∗ez

// OYn

(p∗M)∨ ep∗z // OYn
commutes by functoriality of the construction can. Hence (p∗ez)(σ′) in Γ(Yn,OYn(n−
2c)) is the section corresponding to the image of φ(z) in In−2c/I2n−2c. The next
step is that σ′ maps to the image of

∑
aiτi in H0(X, p∗M∨(n − (1 + d)c)). This

implies that (p∗ez)(
∑
aiτi) =

∑
aip

∗ez(τi) in Γ(Yn,OYn(n − (1 + d)c)) is the sec-
tion corresponding to the image of φ(z) in In−(1+d)c/I2n−(1+d)c. Recall that ψi is
defined from τi using an evaluation map. Hence if we denote

χi : p∗M −→ OYn(n− (2 + d)c)
the map we get from ψi, then we see by the same reasoning as above that the section
corresponding to ψi(z) is χi(p∗z) = ep∗z(χi) = p∗ez(τi). Hence we conclude that
the image of φ(z) in Γ(Yn,OYn(n − (1 + d)c)) is equal to the image of

∑
aiψi(z).

Since n − (1 + d)c ≥ q0 we have Γ(Yn,OYn(n − (1 + d)c)) = In−(1+d)c/I2n−(1+d)c

by Lemma 51.22.1 and we conclude the desired compatibility is true.
The case d = 1. Here we argue as above that we get

χ : p∗M −→ OYn(n), σ ∈ Γ(X, (p∗M)∨(n)), σ′ ∈ Γ(X, p∗(M∨)(n− 2c)),
and then we use Lemma 51.22.4 part (4) to see that σ′ is the image of some element
τ ∈ In−2cM∨. The rest of the argument is the same.
The case d = 0. Argument is exactly the same as in the case d = 1. □

Lemma 51.22.7.0GAD With d = d(S) and q0 = q(S) as above. Then

4We hope some reader will suggest a less dirty proof of this fact.

https://stacks.math.columbia.edu/tag/0GAD
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(1) for integers n ≥ c ≥ 0 with n ≥ max(q0 + (1 + d)c, (2 + d)c),
(2) for K of D(A/In) with Hi(K) = 0 for i ̸= −1, 0 and Hi(K) finite for

i = −1, 0 such that Ext1
A/Ic(K,N) is annihilated by Ic for all finite A/In-

modules N
the map

Ext1
A/In(K, In/I2n) −→ Ext1

A/In(K, In−(1+d)c/I2n−2(1+d)c)
is zero.
Proof. The case d > 0. Let K−1 → K0 be a complex representing K as in More on
Algebra, Lemma 15.84.5 part (5) with respect to the ideal Ic/In in the ring A/In.
In particular K−1 is Ic/In-projective as multiplication by elements of Ic/In even
factor through K0. By More on Algebra, Lemma 15.84.4 part (1) we have

Ext1
A/In(K, In/I2n) = Coker(HomA/In(K0, In/I2n)→ HomA/In(K−1, In/I2n))

and similarly for other Ext groups. Hence any class ξ in Ext1
A/In(K, In/I2n)

comes from an element φ ∈ HomA/In(K−1, In/I2n). Denote φ′ the image of φ
in HomA/In(K−1, In−(1+d)c/I2n−(1+d)c). By Lemma 51.22.6 we can write φ′ =∑
aiψi with ai ∈ Ic and ψi ∈ HomA/In(M, In−(2+d)c/I2n−(2+d)c). Choose hi :

K0 → K−1 such that aiidK−1 = hi◦d−1
K . Set ψ =

∑
ψi◦hi : K0 → In−(2+d)c/I2n−(2+d)c.

Then φ′ = ψ◦d−1
K and we conclude that ξ already maps to zero in Ext1

A/In(K, In−(1+d)c/I2n−(1+d)c)
and a fortiori in Ext1

A/In(K, In−(1+d)c/I2n−2(1+d)c).
The case d = 05. Let ξ and φ be as above. We consider the diagram

K0

K−1

OO

φ // In/I2n // In−c/I2n−c

Pulling back to X and using the map p∗(In/I2n)→ OYn(n) we find a solid diagram

p∗K0

**
p∗K−1

OO

// OYn(n) // OYn(n− c)

We can cover X by affine opens U = Spec(B) such that there exists an a ∈ I with
the following property: IB = aB and a is a nonzerodivisor on B. Namely, we can
cover X by spectra of affine blowup algebras, see Divisors, Lemma 31.32.2. The
restriction of OYn(n)→ OYn(n−c) to U is isomorphic to the map of quasi-coherent
OU -modules corresponding to the B-module map ac : B/anB → B/anB. Since
ac : K−1 → K−1 factors through K0 we see that the dotted arrow exists over U .
In other words, locally on X we can find the dotted arrow! Now the sheaf of dotted
arrows fitting into the diagram is principal homogeneous under

F = HomOX
(Coker(p∗K−1 → p∗K0),OYn(n− c))

which is a coherent OX -module. Hence the obstruction for finding the dotted
arrow is an element of H1(X,F). This cohomology group is zero as 1 > d = 0,

5The argument given for d > 0 works but gives a slightly weaker result.
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see discussion following the definition of d = d(S). This proves that we can find a
dotted arrow ψ : p∗K0 → OYn(n− c) fitting into the diagram. Since n− c ≥ q0 we
find that ψ induces a map K0 → In−c/I2n−c. Chasing the diagram we conclude
that φ′ = ψ ◦ d−1

K and the proof is finished as before. □
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CHAPTER 52

Algebraic and Formal Geometry

0EI5 52.1. Introduction

0EI6 This chapter continues the study of formal algebraic geometry and in particular
the question of whether a formal object is the completion of an algebraic one. A
fundamental reference is [Gro68]. Here is a list of results we have already discussed
in the Stacks project:

(1) The theorem on formal functions, see Cohomology of Schemes, Section
30.20.

(2) Coherent formal modules, see Cohomology of Schemes, Section 30.23.
(3) Grothendieck’s existence theorem, see Cohomology of Schemes, Sections

30.24, 30.25, and 30.27.
(4) Grothendieck’s algebraization theorem, see Cohomology of Schemes, Sec-

tion 30.28.
(5) Grothendieck’s existence theorem more generally, see More on Flatness,

Sections 38.28 and 38.29.
Let us give an overview of the contents of this chapter.
Let X be a scheme and let I ⊂ OX be a finite type quasi-coherent sheaf of ideals.
Many questions in this chapter have to do with inverse systems (Fn) of quasi-
coherent OX -modules such that Fn = Fn+1/InFn+1. An important special case
is where X is a scheme over a Noetherian ring A and I = IOX for some ideal
I ⊂ A. In Cohomology, Sections 20.35, 20.36, and 20.39 we have some general
results. In this chapter, Sections 52.2 and 52.3 contain results specific to schemes
and quasi-coherent modules. In Section 52.4 we prove that the limit topology on
limHp(X,Fn) is I-adic in case cd(A, I) = 1. One of the themes of this chapter will
be to show that results proven in the principal ideal case I = (f) also hold when
we only assume cd(A, I) = 1.
In Section 52.6 we discuss derived completion of modules on a ringed site (C,O) with
respect to a finite type sheaf of ideals I. This section is the natural continuation
of the theory of derived completion in commutative algebra as described in More
on Algebra, Section 15.91. The first main result is that derived completion exists.
The second main result is that for a morphism f if ringed sites derived completion
commutes with derived pushforward:

(Rf∗K)∧ = Rf∗(K∧)
if the ideal sheaf upstairs is locally generated by sections coming from the ideal
downstairs, see Lemma 52.6.19. We stress that both main results are very elemen-
tary in case the ideals in question are globally finitely generated which will be true
for all applications of this theory in this chapter. The displayed equality is the
“correct” version of the theorem on formal functions, see discussion in Section 52.7.

4284
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Let A be a Noetherian ring and let I, J be two ideals of A. Let M be a finite
A-module. The next topic in this chapter is the map

RΓJ(M) −→ RΓJ(M)∧

from local cohomology of M into the derived I-adic completion of the same. It turns
out that if we impose suitable depth conditions this map becomes an isomorphism
on cohomology in a range of degrees. In Section 52.8 we work essentially in the
generality just mentioned. In Section 52.9 we assume A is a local ring and J = m is
a maximal ideal. We encourage the reader to read this section before the other two
in this part of the chapter. Finally, in Section 52.10 we bootstrap the local case to
obtain stronger results back in the general case.

In the next part of this chapter we use the results on completion of local cohomology
to get a nonexhaustive list of results on cohomology of the completion of coherent
modules. More precisely, let A be a Noetherian ring, let I ⊂ A be an ideal, and let
U ⊂ Spec(A) be an open subscheme. If F is a coherent OU -module, then we may
consider the maps

Hi(U,F) −→ limHi(U,F/InF)
and ask if we get an isomorphism in a certain range of degrees. In Section 52.11
we work out some examples where U is the punctured spectrum of a local ring. In
Section 52.12 we discuss the general case. In Section 52.14 we apply some of the
results obtained to questions of connectedness in algebraic geometry.

The remaining sections of this chapter are devoted to a discussion of algebraization
of coherent formal modules. In other words, given an inverse system of coherent
modules (Fn) on U as above with Fn = Fn+1/I

nFn+1 we ask whether there exists
a coherent OU -module F such that Fn = F/InF for all n. We encourage the
reader to read Section 52.16 for a precise statement of the question, a useful gen-
eral result (Lemma 52.16.10), and a nontrivial application (Lemma 52.16.11). To
prove a result going essentially beyond this case quite a bit more theory has to be
developed. Please see Section 52.22 for the strongest results of this type obtained
in this chapter.

52.2. Formal sections, I

0EH3 We suggest looking at Cohomology, Section 20.35 first.

Lemma 52.2.1.0EI8 Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of
ideals. Let

. . .→ F3 → F2 → F1

be an inverse system of quasi-coherent OX -modules such that Fn = Fn+1/InFn+1.
Set F = limFn. Then

(1) F = R limFn,
(2) for any affine open U ⊂ X we have Hp(U,F) = 0 for p > 0, and
(3) for each p there is a short exact sequence 0 → R1 limHp−1(X,Fn) →

Hp(X,F)→ limHp(X,Fn)→ 0.
If moreover I is of finite type, then

(4) Fn = F/InF , and
(5) InF = limm≥n InFm.

https://stacks.math.columbia.edu/tag/0EI8
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Proof. Parts (1), (2), and (3) are general facts about inverse systems of quasi-
coherent modules with surjective transition maps, see Derived Categories of Schemes,
Lemma 36.3.2 and Cohomology, Lemma 20.37.1. Next, assume I is of finite type.
Let U ⊂ X be affine open. Say U = Spec(A) and I|U corresponds to I ⊂ A. Ob-
serve that I is a finitely generated ideal. By the equivalence of categories between
quasi-coherent OU -modules and A-modules (Schemes, Lemma 26.7.5) we find that
Mn = Fn(U) is an inverse system of A-modules with Mn = Mn+1/I

nMn+1. Thus

M = F(U) = limFn(U) = limMn

is an I-adically complete module with M/InM = Mn by Algebra, Lemma 10.98.2.
This proves (4). Part (5) translates into the statement that limm≥n I

nM/ImM =
InM . Since ImM = Im−n · InM this is just the statement that ImM is I-adically
complete. This follows from Algebra, Lemma 10.96.3 and the fact that M is com-
plete. □

52.3. Formal sections, II

0BLA We suggest looking at Cohomology, Sections 20.36 and 20.39 first.

Lemma 52.3.1.0EH9 Let X be a scheme. Let f ∈ Γ(X,OX). Let

. . .→ F3 → F2 → F1

be an inverse system of quasi-coherent OX -modules. The following are equivalent

(1) for all n ≥ 1 the map f : Fn+1 → Fn+1 factors through Fn+1 → Fn to
give a short exact sequence 0→ Fn → Fn+1 → F1 → 0,

(2) for all n ≥ 1 the map fn : Fn+1 → Fn+1 factors through Fn+1 → F1 to
give a short exact sequence 0→ F1 → Fn+1 → Fn → 0

(3) there exists an OX -module G which is f -divisible such that Fn = G[fn].
(4) there exists an OX -module F which is f -torsion free such that Fn =
F/fnF .

Proof. The equivalence of (1), (2), (3) and the implication (4) ⇒ (1) are proven
in Cohomology, Lemma 20.36.1. Assume (1) holds. Set F = limFn. By Lemma
52.2.1 part (4) we have Fn = F/fnF . Let U ⊂ X be open and s = (sn) ∈ F(U) =
limFn(U). Choose n ≥ 1. If fs = 0, then sn+1 is in the kernel of Fn+1 → Fn
by condition (1). Hence sn = 0. Since n was arbitrary, we see s = 0. Thus F is
f -torsion free. □

Lemma 52.3.2.0BLD Slightly improved
version of [BdJ14,
Lemma 1.6]

Let A be a ring and f ∈ A. Let X be a scheme over A. Let F be
a quasi-coherent OX -module. Assume that F [fn] = Ker(fn : F → F) stabilizes.
Then

RΓ(X, limF/fnF) = RΓ(X,F)∧

https://stacks.math.columbia.edu/tag/0EH9
https://stacks.math.columbia.edu/tag/0BLD
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where the right hand side indicates the derived completion with respect to the ideal
(f) ⊂ A. Consequently, for p ∈ Z we obtain a commutative diagram

0 0

0 // ̂Hp(X,F) //

OO

limHp(X,F/fnF) //

OO

Tf (Hp+1(X,F)) // 0

0 // H0(Hp(X,F)∧) //

OO

Hp(X, limF/fnF) //

OO

Tf (Hp+1(X,F)) // 0

R1 limHp(X,F)[fn]

OO

∼= // R1 limHp−1(X,F/fnF)

OO

0

OO

0

OO

with exact rows and columns where ̂Hp(X,F) = limHp(X,F)/fnHp(X,F) is the
usual f -adic completion and Tf (−) denotes the f -adic Tate module as in More on
Algebra, Example 15.93.5.

Proof. By Lemma 52.2.1 we have limF/fnF = R limF/fnF . Everything else
follows from Cohomology, Example 20.39.3. □

52.4. Formal sections, III

0EI9 In this section we prove Lemma 52.4.5 which (in the setting of Noetherian schemes
and coherent modules) is the analogue of Cohomology, Lemma 20.36.2 in case the
ideal I is not assumed principal but has the property that cd(A, I) = 1.

Lemma 52.4.1.0EIA Let I = (f1, . . . , fr) be an ideal of a Noetherian ringA. If cd(A, I) =
1, then there exist c ≥ 1 and maps φj : Ic → A such that

∑
fjφj : Ic → I is the

inclusion map.

Proof. Since cd(A, I) = 1 the complement U = Spec(A) \ V (I) is affine (Local
Cohomology, Lemma 51.4.8). Say U = Spec(B). Then IB = B and we can write
1 =

∑
j=1,...,r fjbj for some bj ∈ B. By Cohomology of Schemes, Lemma 30.10.5 we

can represent bj by maps φj : Ic → A for some c ≥ 0. Then
∑
fjφj : Ic → I ⊂ A

is the canonical embedding, after possibly replacing c by a larger integer, by the
same lemma. □

Lemma 52.4.2.0EIB Let I = (f1, . . . , fr) be an ideal of a Noetherian ring A with
cd(A, I) = 1. Let c ≥ 1 and φj : Ic → A, j = 1, . . . , r be as in Lemma 52.4.1. Then
there is a unique graded A-algebra map

Φ :
⊕

n≥0
Inc → A[T1, . . . , Tr]

with Φ(g) =
∑
φj(g)Tj for g ∈ Ic. Moreover, the composition of Φ with the map

A[T1, . . . , Tr]→
⊕

n≥0 I
n, Tj 7→ fj is the inclusion map

⊕
n≥0 I

nc →
⊕

n≥0 I
n.

https://stacks.math.columbia.edu/tag/0EIA
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Proof. For each j and m ≥ c the restriction of φj to Im is a map φj : Im → Im−c.
Given j1, . . . , jn ∈ {1, . . . , r} we claim that the composition

φj1 . . . φjn : Inc → I(n−1)c → . . .→ Ic → A

is independent of the order of the indices j1, . . . , jn. Namely, if g = g1 . . . gn with
gi ∈ Ic, then we see that

(φj1 . . . φjn)(g) = φj1(g1) . . . φjn(gn)

is independent of the ordering as multiplication in A is commutative. Thus we can
define Φ by sending g ∈ Inc to

Φ(g) =
∑

e1+...+er=n
(φe1

1 ◦ . . . ◦ φerr )(g)T e1
1 . . . T err

It is straightforward to prove that this is a graded A-algebra homomorphism with
the desired property. Uniqueness is immediate as is the final property. This proves
the lemma. □

Lemma 52.4.3.0EIC Let I = (f1, . . . , fr) be an ideal of a Noetherian ring A with
cd(A, I) = 1. Let c ≥ 1 and φj : Ic → A, j = 1, . . . , r be as in Lemma 52.4.1. Let
A → B be a ring map with B Noetherian and let N be a finite B-module. Then,
after possibly increasing c and adjusting φj accordingly, there is a unique unique
graded B-module map

ΦN :
⊕

n≥0
IncN → N [T1, . . . , Tr]

with ΦN (gx) = Φ(g)x for g ∈ Inc and x ∈ N where Φ is as in Lemma 52.4.2.
The composition of ΦN with the map N [T1, . . . , Tr] →

⊕
n≥0 I

nN , Tj 7→ fj is the
inclusion map

⊕
n≥0 I

ncN →
⊕

n≥0 I
nN .

Proof. The uniqueness is clear from the formula and the uniqueness of Φ in Lemma
52.4.2. Consider the Noetherian A-algebra B′ = B⊕N where N is an ideal of square
zero. To show the existence of ΦN it is enough (via Lemma 52.4.1) to show that
φj extends to a map φ′

j : IcB′ → B′ after possibly increasing c to some c′ (and
replacing φj by the composition of the inclusion Ic′ → Ic with φj). Recall that φj
corresponds to a section

hj ∈ Γ(Spec(A) \ V (I),OSpec(A))

see Cohomology of Schemes, Lemma 30.10.5. (This is in fact how we chose our
φj in the proof of Lemma 52.4.1.) Let us use the same lemma to represent the
pullback

h′
j ∈ Γ(Spec(B′) \ V (IB′),OSpec(B′))

of hj by a B′-linear map φ′
j : Ic′

B′ → B′ for some c′ ≥ c. The agreement with φj
will hold for c′ sufficiently large by a further application of the lemma: namely we
can test agreement on a finite list of generators of Ic′ . Small detail omitted. □

Lemma 52.4.4.0EH6 Let I = (f1, . . . , fr) be an ideal of a Noetherian ring A with
cd(A, I) = 1. Let c ≥ 1 and φj : Ic → A, j = 1, . . . , r be as in Lemma 52.4.1. Let
X be a Noetherian scheme over Spec(A). Let

. . .→ F3 → F2 → F1

https://stacks.math.columbia.edu/tag/0EIC
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be an inverse system of coherent OX -modules such that Fn = Fn+1/I
nFn+1. Set

F = limFn. Then, after possibly increasing c and adjusting φj accordingly, there
exists a unique graded OX -module map

ΦF :
⊕

n≥0
IncF −→ F [T1, . . . , Tr]

with ΦF (gs) = Φ(g)s for g ∈ Inc and s a local section of F where Φ is as in Lemma
52.4.2. The composition of ΦF with the map F [T1, . . . , Tr]→

⊕
n≥0 I

nF , Tj 7→ fj
is the canonical inclusion

⊕
n≥0 I

ncF →
⊕

n≥0 I
nF .

Proof. The uniqueness is immediate from the OX -linearity and the requirement
that ΦF (gs) = Φ(g)s for g ∈ Inc and s a local section of F . Thus we may assume
X = Spec(B) is affine. Observe that (Fn) is an object of the category Coh(X, IOX)
introduced in Cohomology of Schemes, Section 30.23. Let B′ = B∧ be the I-adic
completion of B. By Cohomology of Schemes, Lemma 30.23.1 the object (Fn)
corresponds to a finite B′-module N in the sense that Fn is the coherent module
associated to the finite B-module N/InN . Applying Lemma 52.4.3 to I ⊂ A→ B′

and N we see that, after possibly increasing c and adjusting φj accordingly, we get
unique maps

ΦN :
⊕

n≥0
IncN → N [T1, . . . , Tr]

with the corresponding properties. Note that in degree n we obtain an inverse
system of maps N/ImN →

⊕
e1+...+er=nN/I

m−ncN · T e1
1 . . . T err for m ≥ nc.

Translating back into coherent sheaves we see that ΦN corresponds to a system
of maps

Φnm : IncFm −→
⊕

e1+...+er=n
Fm−nc · T e1

1 . . . T err

for varying m ≥ nc and n ≥ 1. Taking the inverse limit of these maps over m
we obtain ΦF =

⊕
n limm Φnm. Note that limm I

tFm = ItF as can be seen by
evaluating on affines for example, but in fact we don’t need this because it is clear
there is a map ItF → limm I

tFm. □

Lemma 52.4.5.0EH7 Let I be an ideal of a Noetherian ring A. Let X be a Noetherian
scheme over Spec(A). Let

. . .→ F3 → F2 → F1

be an inverse system of coherent OX -modules such that Fn = Fn+1/I
nFn+1. If

cd(A, I) = 1, then for all p ∈ Z the limit topology on limHp(X,Fn) is I-adic.

Proof. First it is clear that It limHp(X,Fn) maps to zero in Hp(X,Ft). Thus the
I-adic topology is finer than the limit topology. For the converse we set F = limFn,
we pick generators f1, . . . , fr of I, we pick c ≥ 1, and we choose ΦF as in Lemma
52.4.4. We will use the results of Lemma 52.2.1 without further mention. In
particular we have a short exact sequence

0→ R1 limHp−1(X,Fn)→ Hp(X,F)→ limHp(X,Fn)→ 0

Thus we can lift any element ξ of limHp(X,Fn) to an element ξ′ ∈ Hp(X,F).
Suppose ξ maps to zero in Hp(X,Fnc) for some n, in other words, suppose ξ is
“small” in the limit topology. We have a short exact sequence

0→ IncF → F → Fnc → 0

https://stacks.math.columbia.edu/tag/0EH7
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and hence the assumption means we can lift ξ′ to an element ξ′′ ∈ Hp(X, IncF).
Applying ΦF we get

ΦF (ξ′′) =
∑

e1+...+er=n
ξ′
e1,...,er · T

e1
1 . . . T err

for some ξ′
e1,...,er ∈ H

p(X,F). Letting ξe1,...,er ∈ limHp(X,Fn) be the images and
using the final assertion of Lemma 52.4.4 we conclude that

ξ =
∑

fe1
1 . . . ferr ξe1,...,er

is in In limHp(X,Fn) as desired. □

Example 52.4.6.0EH8 Let k be a field. Let A = k[x, y][[s, t]]/(xs − yt). Let I = (s, t)
and a = (x, y, s, t). Let X = Spec(A) − V (a) and Fn = OX/InOX . Observe that
the rational function

g = t

x
= s

y

is regular in an open neighbourhood V ⊂ X of V (IOX). Hence every power ge
determines a section ge ∈ M = limH0(X,Fn). Observe that ge → 0 as e → ∞ in
the limit topology on M since ge maps to zero in Fe. On the other hand, ge ̸∈ IM
for any e as the reader can see by computing H0(U,Fn); computation omitted.
Observe that cd(A, I) = 2. Thus the result of Lemma 52.4.5 is sharp.

52.5. Mittag-Leffler conditions

0EFN When taking local cohomology with respect to the maximal ideal of a local Noe-
therian ring, we often get the Mittag-Leffler condition for free. This implies the
same thing is true for higher cohomology groups of an inverse system of coherent
sheaves with surjective transition maps on the puncture spectrum.

Lemma 52.5.1.0DX0 Let (A,m) be a Noetherian local ring.
(1) Let M be a finite A-module. Then the A-module Hi

m(M) satisfies the
descending chain condition for any i.

(2) Let U = Spec(A) \ {m} be the punctured spectrum of A. Let F be a co-
herent OU -module. Then the A-module Hi(U,F) satisfies the descending
chain condition for i > 0.

Proof. We will prove part (1) by induction on the dimension of the support of M .
The statement holds if M = 0, thus we may and do assume M is not zero.
Base case of the induction. If dim(Supp(M)) = 0, then the support of M is {m}
and we see that H0

m(M) = M and Hi
m(M) = 0 for i > 0 as is clear from the

construction of local cohomology, see Dualizing Complexes, Section 47.9. Since M
has finite length (Algebra, Lemma 10.52.8) it has the descending chain condition.
Induction step. Assume dim(Supp(M)) > 0. By the base case the finite module
H0

m(M) ⊂M has the descending chain condition. By Dualizing Complexes, Lemma
47.11.6 we may replace M by M/H0

m(M). Then H0
m(M) = 0, i.e., M has depth

≥ 1, see Dualizing Complexes, Lemma 47.11.1. Choose x ∈ m such that x :
M →M is injective. By Algebra, Lemma 10.63.10 we have dim(Supp(M/xM)) =
dim(Supp(M)) − 1 and the induction hypothesis applies. Pick an index i and
consider the exact sequence

Hi−1
m (M/xM)→ Hi

m(M) x−→ Hi
m(M)

https://stacks.math.columbia.edu/tag/0EH8
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coming from the short exact sequence 0 → M
x−→ M → M/xM → 0. It follows

that the x-torsion Hi
m(M)[x] is a quotient of a module with the descending chain

condition, and hence has the descending chain condition itself. Hence the m-torsion
submodule Hi

m(M)[m] has the descending chain condition (and hence is finite di-
mensional over A/m). Thus we conclude that the m-power torsion module Hi

m(M)
has the descending chain condition by Dualizing Complexes, Lemma 47.7.7.
Part (2) follows from (1) via Local Cohomology, Lemma 51.8.2. □

Lemma 52.5.2.0DX1 Let (A,m) be a Noetherian local ring.
(1) Let (Mn) be an inverse system of finite A-modules. Then the inverse

system Hi
m(Mn) satisfies the Mittag-Leffler condition for any i.

(2) Let U = Spec(A)\{m} be the punctured spectrum of A. Let Fn be an in-
verse system of coherent OU -modules. Then the inverse system Hi(U,Fn)
satisfies the Mittag-Leffler condition for i > 0.

Proof. Follows immediately from Lemma 52.5.1. □

Lemma 52.5.3.0EHB Let (A,m) be a Noetherian local ring. Let (Mn) be an inverse
system of finite A-modules. Let M → limMn be a map where M is a finite A-
module such that for some i the map Hi

m(M) → limHi
m(Mn) is an isomorphism.

Then the inverse system Hi
m(Mn) is essentially constant with value Hi

m(M).

Proof. By Lemma 52.5.2 the inverse system Hi
m(Mn) satisfies the Mittag-Leffler

condition. Let En ⊂ Hi
m(Mn) be the image of Hi

m(Mn′) for n′ ≫ n. Then (En)
is an inverse system with surjective transition maps and Hi

m(M) = limEn. Since
Hi

m(M) has the descending chain condition by Lemma 52.5.1 we find there can
only be a finite number of nontrivial kernels of the surjections Hi

m(M)→ En. Thus
En → En−1 is an isomorphism for all n≫ 0 as desired. □

Lemma 52.5.4.0DXJ Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal. Let
M be a finite A-module. Then

Hi(RΓm(M)∧) = limHi
m(M/InM)

for all i where RΓm(M)∧ denotes the derived I-adic completion.

Proof. Apply Dualizing Complexes, Lemma 47.12.4 and Lemma 52.5.2 to see the
vanishing of the R1 lim terms. □

52.6. Derived completion on a ringed site

0995 We urge the reader to skip this section on a first reading.
The algebra version of this material can be found in More on Algebra, Section
15.91. Let O be a sheaf of rings on a site C. Let f be a global section of O. We
denote Of the sheaf associated to the presheaf of localizations U 7→ O(U)f .

Lemma 52.6.1.0996 Let (C,O) be a ringed site. Let f be a global section of O.
(1) For L,N ∈ D(Of ) we have RHomO(L,N) = RHomOf

(L,N). In partic-
ular the two Of -structures on RHomO(L,N) agree.

(2) For K ∈ D(O) and L ∈ D(Of ) we have
RHomO(L,K) = RHomOf

(L,RHomO(Of ,K))
In particular RHomO(Of , RHomO(Of ,K)) = RHomO(Of ,K).

https://stacks.math.columbia.edu/tag/0DX1
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(3) If g is a second global section of O, then
RHomO(Of , RHomO(Og,K)) = RHomO(Ogf ,K).

Proof. Proof of (1). Let J • be a K-injective complex of Of -modules representing
N . By Cohomology on Sites, Lemma 21.20.10 it follows that J • is a K-injective
complex of O-modules as well. Let F• be a complex of Of -modules representing
L. Then

RHomO(L,N) = RHomO(F•,J •) = RHomOf
(F•,J •)

by Modules on Sites, Lemma 18.11.4 because J • is a K-injective complex of O and
of Of -modules.
Proof of (2). Let I• be a K-injective complex of O-modules representing K. Then
RHomO(Of ,K) is represented by HomO(Of , I•) which is a K-injective complex
of Of -modules and of O-modules by Cohomology on Sites, Lemmas 21.20.11 and
21.20.10. Let F• be a complex of Of -modules representing L. Then

RHomO(L,K) = RHomO(F•, I•) = RHomOf
(F•,HomO(Of , I•))

by Modules on Sites, Lemma 18.27.8 and because HomO(Of , I•) is a K-injective
complex of Of -modules.
Proof of (3). This follows from the fact that RHomO(Og, I•) is K-injective as a
complex ofO-modules and the fact thatHomO(Of ,HomO(Og,H)) = HomO(Ogf ,H)
for all sheaves of O-modules H. □

Let K ∈ D(O). We denote T (K, f) a derived limit (Derived Categories, Definition
13.34.1) of the inverse system

. . .→ K
f−→ K

f−→ K

in D(O).

Lemma 52.6.2.0997 Let (C,O) be a ringed site. Let f be a global section of O. Let
K ∈ D(O). The following are equivalent

(1) RHomO(Of ,K) = 0,
(2) RHomO(L,K) = 0 for all L in D(Of ),
(3) T (K, f) = 0.

Proof. It is clear that (2) implies (1). The implication (1) ⇒ (2) follows from
Lemma 52.6.1. A free resolution of the O-module Of is given by

0→
⊕

n∈N
O →

⊕
n∈N
O → Of → 0

where the first map sends a local section (x0, x1, . . .) to (x0, x1− fx0, x2− fx1, . . .)
and the second map sends (x0, x1, . . .) to x0 + x1/f + x2/f

2 + . . .. Applying
HomO(−, I•) where I• is a K-injective complex of O-modules representing K we
get a short exact sequence of complexes

0→ HomO(Of , I•)→
∏
I• →

∏
I• → 0

because In is an injective O-module. The products are products in D(O), see
Injectives, Lemma 19.13.4. This means that the object T (K, f) is a representative
of RHomO(Of ,K) in D(O). Thus the equivalence of (1) and (3). □

https://stacks.math.columbia.edu/tag/0997
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Lemma 52.6.3.0998 Let (C,O) be a ringed site. Let K ∈ D(O). The rule which
associates to U the set I(U) of sections f ∈ O(U) such that T (K|U , f) = 0 is a
sheaf of ideals in O.

Proof. We will use the results of Lemma 52.6.2 without further mention. If f ∈
I(U), and g ∈ O(U), then OU,gf is an OU,f -module hence RHomO(OU,gf ,K|U ) =
0, hence gf ∈ I(U). Suppose f, g ∈ O(U). Then there is a short exact sequence

0→ OU,f+g → OU,f(f+g) ⊕OU,g(f+g) → OU,gf(f+g) → 0

because f, g generate the unit ideal in O(U)f+g. This follows from Algebra, Lemma
10.24.2 and the easy fact that the last arrow is surjective. Because RHomO(−,K|U )
is an exact functor of triangulated categories the vanishing ofRHomOU

(OU,f(f+g),K|U ),
RHomOU

(OU,g(f+g),K|U ), and RHomOU
(OU,gf(f+g),K|U ), implies the vanishing

of RHomOU
(OU,f+g,K|U ). We omit the verification of the sheaf condition. □

We can make the following definition for any ringed site.

Definition 52.6.4.0999 Let (C,O) be a ringed site. Let I ⊂ O be a sheaf of ideals. Let
K ∈ D(O). We say that K is derived complete with respect to I if for every object
U of C and f ∈ I(U) the object T (K|U , f) of D(OU ) is zero.

It is clear that the full subcategory Dcomp(O) = Dcomp(O, I) ⊂ D(O) consisting
of derived complete objects is a saturated triangulated subcategory, see Derived
Categories, Definitions 13.3.4 and 13.6.1. This subcategory is preserved under
products and homotopy limits in D(O). But it is not preserved under countable
direct sums in general.

Lemma 52.6.5.099A Let (C,O) be a ringed site. Let I ⊂ O be a sheaf of ideals. If
K ∈ D(O) and L ∈ Dcomp(O), then RHomO(K,L) ∈ Dcomp(O).

Proof. Let U be an object of C and let f ∈ I(U). Recall that

HomD(OU )(OU,f , RHomO(K,L)|U ) = HomD(OU )(K|U ⊗L
OU
OU,f , L|U )

by Cohomology on Sites, Lemma 21.35.2. The right hand side is zero by Lemma
52.6.2 and the relationship between internal hom and actual hom, see Cohomol-
ogy on Sites, Lemma 21.35.1. The same vanishing holds for all U ′/U . Thus
the object RHomOU

(OU,f , RHomO(K,L)|U ) of D(OU ) has vanishing 0th coho-
mology sheaf (by locus citatus). Similarly for the other cohomology sheaves, i.e.,
RHomOU

(OU,f , RHomO(K,L)|U ) is zero in D(OU ). By Lemma 52.6.2 we con-
clude. □

Lemma 52.6.6.099C Let C be a site. Let O → O′ be a homomorphism of sheaves of
rings. Let I ⊂ O be a sheaf of ideals. The inverse image of Dcomp(O, I) under the
restriction functor D(O′)→ D(O) is Dcomp(O′, IO′).

Proof. Using Lemma 52.6.3 we see that K ′ ∈ D(O′) is in Dcomp(O′, IO′) if and
only if T (K ′|U , f) is zero for every local section f ∈ I(U). Observe that the
cohomology sheaves of T (K ′|U , f) are computed in the category of abelian sheaves,
so it doesn’t matter whether we think of f as a section of O or take the image of
f as a section of O′. The lemma follows immediately from this and the definition
of derived complete objects. □

https://stacks.math.columbia.edu/tag/0998
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Lemma 52.6.7.099J Let f : (Sh(D),O′) → (Sh(C),O) be a morphism of ringed topoi.
Let I ⊂ O and I ′ ⊂ O′ be sheaves of ideals such that f ♯ sends f−1I into I ′. Then
Rf∗ sends Dcomp(O′, I ′) into Dcomp(O, I).

Proof. We may assume f is given by a morphism of ringed sites corresponding
to a continuous functor C → D (Modules on Sites, Lemma 18.7.2 ). Let U
be an object of C and let g be a section of I over U . We have to show that
HomD(OU )(OU,g, Rf∗K|U ) = 0 whenever K is derived complete with respect to
I ′. Namely, by Cohomology on Sites, Lemma 21.35.1 this, applied to all objects
over U and all shifts of K, will imply that RHomOU

(OU,g, Rf∗K|U ) is zero, which
implies that T (Rf∗K|U , g) is zero (Lemma 52.6.2) which is what we have to show
(Definition 52.6.4). Let V in D be the image of U . Then

HomD(OU )(OU,g, Rf∗K|U ) = HomD(O′
V

)(O′
V,g′ ,K|V ) = 0

where g′ = f ♯(g) ∈ I ′(V ). The second equality because K is derived complete and
the first equality because the derived pullback of OU,g is O′

V,g′ and Cohomology on
Sites, Lemma 21.19.1. □

The following lemma is the simplest case where one has derived completion.

Lemma 52.6.8.099B Let (C,O) be a ringed on a site. Let f1, . . . , fr be global sections
of O. Let I ⊂ O be the ideal sheaf generated by f1, . . . , fr. Then the inclusion
functor Dcomp(O) → D(O) has a left adjoint, i.e., given any object K of D(O)
there exists a map K → K∧ with K∧ in Dcomp(O) such that the map

HomD(O)(K∧, E) −→ HomD(O)(K,E)
is bijective whenever E is in Dcomp(O). In fact we have

K∧ = RHomO(O →
∏

i0
Ofi0 →

∏
i0<i1

Ofi0fi1 → . . .→ Of1...fr ,K)

functorially in K.

Proof. Define K∧ by the last displayed formula of the lemma. There is a map of
complexes

(O →
∏

i0
Ofi0 →

∏
i0<i1

Ofi0fi1 → . . .→ Of1...fr ) −→ O

which induces a map K → K∧. It suffices to prove that K∧ is derived complete
and that K → K∧ is an isomorphism if K is derived complete.
Let f be a global section of O. By Lemma 52.6.1 the object RHomO(Of ,K∧) is
equal to

RHomO((Of →
∏

i0
Offi0 →

∏
i0<i1

Offi0fi1 → . . .→ Off1...fr ),K)

If f = fi for some i, then f1, . . . , fr generate the unit ideal in Of , hence the
extended alternating Čech complex

Of →
∏

i0
Offi0 →

∏
i0<i1

Offi0fi1 → . . .→ Off1...fr

is zero (even homotopic to zero). In this way we see that K∧ is derived complete.
If K is derived complete, then RHomO(Of ,K) is zero for all f = fi0 . . . fip , p ≥ 0.
Thus K → K∧ is an isomorphism in D(O). □

Next we explain why derived completion is a completion.
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Lemma 52.6.9.0A0E Let (C,O) be a ringed on a site. Let f1, . . . , fr be global sections
of O. Let I ⊂ O be the ideal sheaf generated by f1, . . . , fr. Let K ∈ D(O). The
derived completion K∧ of Lemma 52.6.8 is given by the formula

K∧ = R limK ⊗L
O Kn

where Kn = K(O, fn1 , . . . , fnr ) is the Koszul complex on fn1 , . . . , f
n
r over O.

Proof. In More on Algebra, Lemma 15.29.6 we have seen that the extended alter-
nating Čech complex

O →
∏

i0
Ofi0 →

∏
i0<i1

Ofi0fi1 → . . .→ Of1...fr

is a colimit of the Koszul complexes Kn = K(O, fn1 , . . . , fnr ) sitting in degrees
0, . . . , r. Note that Kn is a finite chain complex of finite free O-modules with dual
HomO(Kn,O) = Kn where Kn is the Koszul cochain complex sitting in degrees
−r, . . . , 0 (as usual). By Lemma 52.6.8 the functor E 7→ E∧ is gotten by taking
RHom from the extended alternating Čech complex into E:

E∧ = RHom(colimKn, E)
This is equal to R lim(E ⊗L

O Kn) by Cohomology on Sites, Lemma 21.48.8. □

Lemma 52.6.10.099D There exist a way to construct
(1) for every pair (A, I) consisting of a ring A and a finitely generated ideal

I ⊂ A a complex K(A, I) of A-modules,
(2) a map K(A, I)→ A of complexes of A-modules,
(3) for every ring map A → B and finitely generated ideal I ⊂ A a map of

complexes K(A, I)→ K(B, IB),
such that

(a) for A→ B and I ⊂ A finitely generated the diagram

K(A, I) //

��

A

��
K(B, IB) // B

commutes,
(b) for A→ B → C and I ⊂ A finitely generated the composition of the maps

K(A, I)→ K(B, IB)→ K(C, IC) is the map K(A, I)→ K(C, IC).
(c) forA→ B and a finitely generated ideal I ⊂ A the induced mapK(A, I)⊗L

A

B → K(B, IB) is an isomorphism in D(B), and
(d) if I = (f1, . . . , fr) ⊂ A then there is a commutative diagram

(A→
∏
i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr ) //

��

K(A, I)

��
A

1 // A

in D(A) whose horizontal arrows are isomorphisms.
Proof. Let S be the set of rings A0 of the form A0 = Z[x1, . . . , xn]/J . Every
finite type Z-algebra is isomorphic to an element of S. Let A0 be the category
whose objects are pairs (A0, I0) where A0 ∈ S and I0 ⊂ A0 is an ideal and whose
morphisms (A0, I0)→ (B0, J0) are ring maps φ : A0 → B0 such that J0 = φ(I0)B0.
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Suppose we can construct K(A0, I0) → A0 functorially for objects of A0 having
properties (a), (b), (c), and (d). Then we take

K(A, I) = colimφ:(A0,I0)→(A,I) K(A0, I0)
where the colimit is over ring maps φ : A0 → A such that φ(I0)A = I with (A0, I0)
in A0. A morphism between (A0, I0) → (A, I) and (A′

0, I
′
0) → (A, I) are given by

maps (A0, I0)→ (A′
0, I

′
0) in A0 commuting with maps to A. The category of these

(A0, I0) → (A, I) is filtered (details omitted). Moreover, colimφ:(A0,I0)→(A,I) A0 =
A so that K(A, I) is a complex of A-modules. Finally, given φ : A→ B and I ⊂ A
for every (A0, I0)→ (A, I) in the colimit, the composition (A0, I0)→ (B, IB) lives
in the colimit for (B, IB). In this way we get a map on colimits. Properties (a),
(b), (c), and (d) follow readily from this and the corresponding properties of the
complexes K(A0, I0).
Endow C0 = Aopp0 with the chaotic topology. We equip C0 with the sheaf of rings
O : (A, I) 7→ A. The ideals I fit together to give a sheaf of ideals I ⊂ O. Choose
an injective resolution O → J •. Consider the object

F• =
⋃

n
J •[In]

Let U = (A, I) ∈ Ob(C0). Since the topology in C0 is chaotic, the value J •(U) is
a resolution of A by injective A-modules. Hence the value F•(U) is an object of
D(A) representing the image of RΓI(A) in D(A), see Dualizing Complexes, Section
47.9. Choose a complex of O-modules K• and a commutative diagram

O // J •

K• //

OO

F•

OO

where the horizontal arrows are quasi-isomorphisms. This is possible by the con-
struction of the derived category D(O). Set K(A, I) = K•(U) where U = (A, I).
Properties (a) and (b) are clear and properties (c) and (d) follow from Dualizing
Complexes, Lemmas 47.10.2 and 47.10.3. □

Lemma 52.6.11.099E Let (C,O) be a ringed site. Let I ⊂ O be a finite type sheaf of
ideals. There exists a map K → O in D(O) such that for every U ∈ Ob(C) such
that I|U is generated by f1, . . . , fr ∈ I(U) there is an isomorphism

(OU →
∏

i0
OU,fi0 →

∏
i0<i1

OU,fi0fi1 → . . .→ OU,f1...fr ) −→ K|U

compatible with maps to OU .

Proof. Let C′ ⊂ C be the full subcategory of objects U such that I|U is generated
by finitely many sections. Then C′ → C is a special cocontinuous functor (Sites,
Definition 7.29.2). Hence it suffices to work with C′, see Sites, Lemma 7.29.1. In
other words we may assume that for every object U of C there exists a finitely
generated ideal I ⊂ I(U) such that I|U = Im(I ⊗OU → OU ). We will say that I
generates I|U . Warning: We do not know that I(U) is a finitely generated ideal in
O(U).
Let U be an object and I ⊂ O(U) a finitely generated ideal which generates I|U .
On the category C/U consider the complex of presheaves

K•
U,I : U ′/U 7−→ K(O(U ′), IO(U ′))
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52.6. DERIVED COMPLETION ON A RINGED SITE 4297

with K(−,−) as in Lemma 52.6.10. We claim that the sheafification of this is
independent of the choice of I. Indeed, if I ′ ⊂ O(U) is a finitely generated ideal
which also generates I|U , then there exists a covering {Uj → U} such that IO(Uj) =
I ′O(Uj). (Hint: this works because both I and I ′ are finitely generated and generate
I|U .) Hence K•

U,I and K•
U,I′ are the same for any object lying over one of the Uj .

The statement on sheafifications follows. Denote K•
U the common value.

The independence of choice of I also shows that K•
U |C/U ′ = K•

U ′ whenever we are
given a morphism U ′ → U and hence a localization morphism C/U ′ → C/U . Thus
the complexes K•

U glue to give a single well defined complex K• of O-modules.
The existence of the map K• → O and the quasi-isomorphism of the lemma follow
immediately from the corresponding properties of the complexes K(−,−) in Lemma
52.6.10. □

Proposition 52.6.12.099F Let (C,O) be a ringed site. Let I ⊂ O be a finite type sheaf
of ideals. There exists a left adjoint to the inclusion functor Dcomp(O)→ D(O).

Proof. Let K → O in D(O) be as constructed in Lemma 52.6.11. Let E ∈ D(O).
Then E∧ = RHom(K,E) together with the map E → E∧ will do the job. Namely,
locally on the site C we recover the adjoint of Lemma 52.6.8. This shows that E∧

is always derived complete and that E → E∧ is an isomorphism if E is derived
complete. □

Remark 52.6.13 (Comparison with completion).0CQH Let (C,O) be a ringed site. Let
I ⊂ O be a finite type sheaf of ideals. Let K 7→ K∧ be the derived completion
functor of Proposition 52.6.12. For any n ≥ 1 the object K ⊗L

O O/In is derived
complete as it is annihilated by powers of local sections of I. Hence there is a
canonical factorization

K → K∧ → K ⊗L
O O/In

of the canonical map K → K ⊗L
O O/In. These maps are compatible for varying n

and we obtain a comparison map
K∧ −→ R lim

(
K ⊗L

O O/In
)

The right hand side is more recognizable as a kind of completion. In general this
comparison map is not an isomorphism.

Remark 52.6.14 (Localization and derived completion).0A0F Let (C,O) be a ringed site.
Let I ⊂ O be a finite type sheaf of ideals. Let K 7→ K∧ be the derived completion
functor of Proposition 52.6.12. It follows from the construction in the proof of
the proposition that K∧|U is the derived completion of K|U for any U ∈ Ob(C).
But we can also prove this as follows. From the definition of derived complete
objects it follows that K∧|U is derived complete. Thus we obtain a canonical map
a : (K|U )∧ → K∧|U . On the other hand, if E is a derived complete object of
D(OU ), then Rj∗E is a derived complete object of D(O) by Lemma 52.6.7. Here
j is the localization morphism (Modules on Sites, Section 18.19). Hence we also
obtain a canonical map b : K∧ → Rj∗((K|U )∧). We omit the (formal) verification
that the adjoint of b is the inverse of a.

Remark 52.6.15 (Completed tensor product).099G Let (C,O) be a ringed site. Let
I ⊂ O be a finite type sheaf of ideals. Denote K 7→ K∧ the adjoint of Proposition
52.6.12. Then we set

K ⊗∧
O L = (K ⊗L

O L)∧
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This completed tensor product defines a functorDcomp(O)×Dcomp(O)→ Dcomp(O)
such that we have

HomDcomp(O)(K,RHomO(L,M)) = HomDcomp(O)(K ⊗∧
O L,M)

for K,L,M ∈ Dcomp(O). Note that RHomO(L,M) ∈ Dcomp(O) by Lemma 52.6.5.

Lemma 52.6.16.099H Let C be a site. Assume φ : O → O′ is a flat homomorphism of
sheaves of rings. Let f1, . . . , fr be global sections of O such that O/(f1, . . . , fr) ∼=
O′/(f1, . . . , fr)O′. Then the map of extended alternating Čech complexes

O →
∏
i0
Ofi0 →

∏
i0<i1

Ofi0fi1 → . . .→ Of1...fr

��
O′ →

∏
i0
O′
fi0
→
∏
i0<i1

O′
fi0fi1

→ . . .→ O′
f1...fr

is a quasi-isomorphism.

Proof. Observe that the second complex is the tensor product of the first complex
with O′. We can write the first extended alternating Čech complex as a colimit
of the Koszul complexes Kn = K(O, fn1 , . . . , fnr ), see More on Algebra, Lemma
15.29.6. Hence it suffices to prove Kn → Kn ⊗O O′ is a quasi-isomorphism. Since
O → O′ is flat it suffices to show that Hi → Hi ⊗O O′ is an isomorphism where
Hi is the ith cohomology sheaf Hi = Hi(Kn). These sheaves are annihilated by
fn1 , . . . , f

n
r , see More on Algebra, Lemma 15.28.6. Hence these sheaves are annihi-

lated by (f1, . . . , fr)m for some m ≫ 0. Thus Hi → Hi ⊗O O′ is an isomorphism
by Modules on Sites, Lemma 18.28.16. □

Lemma 52.6.17.099I Let C be a site. Let O → O′ be a homomorphism of sheaves
of rings. Let I ⊂ O be a finite type sheaf of ideals. If O → O′ is flat and
O/I ∼= O′/IO′, then the restriction functor D(O′)→ D(O) induces an equivalence
Dcomp(O′, IO′)→ Dcomp(O, I).

Proof. Lemma 52.6.7 implies restriction r : D(O′) → D(O) sends Dcomp(O′, IO′)
into Dcomp(O, I). We will construct a quasi-inverse E 7→ E′.

Let K → O be the morphism of D(O) constructed in Lemma 52.6.11. Set K ′ =
K⊗L

OO′ in D(O′). Then K ′ → O′ is a map in D(O′) which satisfies the conclusions
of Lemma 52.6.11 with respect to I ′ = IO′. The map K → r(K ′) is a quasi-
isomorphism by Lemma 52.6.16. Now, for E ∈ Dcomp(O, I) we set

E′ = RHomO(r(K ′), E)

viewed as an object in D(O′) using the O′-module structure on K ′. Since E is
derived complete we have E = RHomO(K,E), see proof of Proposition 52.6.12.
On the other hand, since K → r(K ′) is an isomorphism in we see that there is
an isomorphism E → r(E′) in D(O). To finish the proof we have to show that, if
E = r(M ′) for an object M ′ of Dcomp(O′, I ′), then E′ ∼= M ′. To get a map we use

M ′ = RHomO′(O′,M ′)→ RHomO(r(O′), r(M ′))→ RHomO(r(K ′), r(M ′)) = E′

where the second arrow uses the map K ′ → O′. To see that this is an isomorphism,
one shows that r applied to this arrow is the same as the isomorphism E → r(E′)
above. Details omitted. □
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Lemma 52.6.18.099K Let f : (Sh(D),O′)→ (Sh(C),O) be a morphism of ringed topoi.
Let I ⊂ O and I ′ ⊂ O′ be finite type sheaves of ideals such that f ♯ sends f−1I into
I ′. Then Rf∗ sends Dcomp(O′, I ′) into Dcomp(O, I) and has a left adjoint Lf∗

comp

which is Lf∗ followed by derived completion.

Proof. The first statement we have seen in Lemma 52.6.7. Note that the sec-
ond statement makes sense as we have a derived completion functor D(O′) →
Dcomp(O′, I ′) by Proposition 52.6.12. OK, so now let K ∈ Dcomp(O, I) and
M ∈ Dcomp(O′, I ′). Then we have

Hom(K,Rf∗M) = Hom(Lf∗K,M) = Hom(Lf∗
compK,M)

by the universal property of derived completion. □

Lemma 52.6.19.0A0G Generalization of
[BS13, Lemma 6.5.9
(2)]. Compare with
[HLP14, Theorem
6.5] in the setting of
quasi-coherent
modules and
morphisms of
(derived) algebraic
stacks.

Let f : (Sh(D),O′)→ (Sh(C),O) be a morphism of ringed topoi.
Let I ⊂ O be a finite type sheaf of ideals. Let I ′ ⊂ O′ be the ideal gener-
ated by f ♯(f−1I). Then Rf∗ commutes with derived completion, i.e., Rf∗(K∧) =
(Rf∗K)∧.

Proof. By Proposition 52.6.12 the derived completion functors exist. By Lemma
52.6.7 the object Rf∗(K∧) is derived complete, and hence we obtain a canonical
map (Rf∗K)∧ → Rf∗(K∧) by the universal property of derived completion. We
may check this map is an isomorphism locally on C. Thus, since derived completion
commutes with localization (Remark 52.6.14) we may assume that I is generated
by global sections f1, . . . , fr. Then I ′ is generated by gi = f ♯(fi). By Lemma 52.6.9
we have to prove that

R lim
(
Rf∗K ⊗L

O K(O, fn1 , . . . , fnr )
)

= Rf∗
(
R limK ⊗L

O′ K(O′, gn1 , . . . , g
n
r )
)

Because Rf∗ commutes with R lim (Cohomology on Sites, Lemma 21.23.3) it suffices
to prove that

Rf∗K ⊗L
O K(O, fn1 , . . . , fnr ) = Rf∗

(
K ⊗L

O′ K(O′, gn1 , . . . , g
n
r )
)

This follows from the projection formula (Cohomology on Sites, Lemma 21.50.1)
and the fact that Lf∗K(O, fn1 , . . . , fnr ) = K(O′, gn1 , . . . , g

n
r ). □

Lemma 52.6.20.0BLX Let A be a ring and let I ⊂ A be a finitely generated ideal. Let C
be a site and let O be a sheaf of A-algebras. Let F be a sheaf of O-modules. Then
we have

RΓ(C,F)∧ = RΓ(C,F∧)
in D(A) where F∧ is the derived completion of F with respect to IO and on the
left hand wide we have the derived completion with respect to I. This produces
two spectral sequences

Ei,j2 = Hi(Hj(C,F)∧) and Ep,q2 = Hp(C, Hq(F∧))

both converging to H∗(RΓ(C,F)∧) = H∗(C,F∧)

Proof. Apply Lemma 52.6.19 to the morphism of ringed topoi (C,O)→ (pt, A) and
take cohomology to get the first statement. The second spectral sequence is the
second spectral sequence of Derived Categories, Lemma 13.21.3. The first spectral
sequence is the spectral sequence of More on Algebra, Example 15.91.22 applied to
RΓ(C,F)∧. □
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Remark 52.6.21.0CQI Let (C,O) be a ringed site. Let I ⊂ O be a finite type sheaf of
ideals. Let K 7→ K∧ be the derived completion of Proposition 52.6.12. Let U ∈
Ob(C) be an object such that I is generated as an ideal sheaf by f1, . . . , fr ∈ I(U).
Set A = O(U) and I = (f1, . . . , fr) ⊂ A. Warning: it may not be the case that
I = I(U). Then we have

RΓ(U,K∧) = RΓ(U,K)∧

where the right hand side is the derived completion of the object RΓ(U,K) of
D(A) with respect to I. This is true because derived completion commutes with
localization (Remark 52.6.14) and Lemma 52.6.20.

52.7. The theorem on formal functions

0A0H We interrupt the flow of the exposition to talk a little bit about derived completion
in the setting of quasi-coherent modules on schemes and to use this to give a
somewhat different proof of the theorem on formal functions. We give some pointers
to the literature in Remark 52.7.4.
Lemma 52.6.19 is a (very formal) derived version of the theorem on formal functions
(Cohomology of Schemes, Theorem 30.20.5). To make this more explicit, suppose
f : X → S is a morphism of schemes, I ⊂ OS is a quasi-coherent sheaf of ideals of
finite type, and F is a quasi-coherent sheaf on X. Then the lemma says that
(52.7.0.1)0A0I Rf∗(F∧) = (Rf∗F)∧

where F∧ is the derived completion of F with respect to f−1I · OX and the right
hand side is the derived completion of Rf∗F with respect to I. To see that this
gives back the theorem on formal functions we have to do a bit of work.

Lemma 52.7.1.0A0L Let X be a locally Noetherian scheme. Let I ⊂ OX be a quasi-
coherent sheaf of ideals. Let K be a pseudo-coherent object of D(OX) with derived
completion K∧. Then

Hp(U,K∧) = limHp(U,K)/InHp(U,K) = Hp(U,K)∧

for any affine open U ⊂ X where I = I(U) and where on the right we have the
derived completion with respect to I.

Proof. Write U = Spec(A). The ring A is Noetherian and hence I ⊂ A is finitely
generated. Then we have

RΓ(U,K∧) = RΓ(U,K)∧

by Remark 52.6.21. Now RΓ(U,K) is a pseudo-coherent complex of A-modules
(Derived Categories of Schemes, Lemma 36.10.2). By More on Algebra, Lemma
15.94.4 we conclude that the pth cohomology module of RΓ(U,K∧) is equal to the
I-adic completion of Hp(U,K). This proves the first equality. The second (less
important) equality follows immediately from a second application of the lemma
just used. □

Lemma 52.7.2.0A0K Let X be a locally Noetherian scheme. Let I ⊂ OX be a quasi-
coherent sheaf of ideals. Let K be an object of D(OX). Then

(1) the derived completion K∧ is equal to R lim(K ⊗L
OX
OX/In).

Let K is a pseudo-coherent object of D(OX). Then
(2) the cohomology sheaf Hq(K∧) is equal to limHq(K)/InHq(K).
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Let F be a coherent OX -module1. Then
(3) the derived completion F∧ is equal to limF/InF ,
(4) limF/InF = R limF/InF ,
(5) Hp(U,F∧) = 0 for p ̸= 0 for all affine opens U ⊂ X.

Proof. Proof of (1). There is a canonical map
K −→ R lim(K ⊗L

OX
OX/In),

see Remark 52.6.13. Derived completion commutes with passing to open sub-
schemes (Remark 52.6.14). Formation of R lim commutes with passsing to open
subschemes. It follows that to check our map is an isomorphism, we may work
locally. Thus we may assume X = U = Spec(A). Say I = (f1, . . . , fr). Let
Kn = K(A, fn1 , . . . , fnr ) be the Koszul complex. By More on Algebra, Lemma
15.94.1 we have seen that the pro-systems {Kn} and {A/In} of D(A) are isomor-
phic. Using the equivalence D(A) = DQCoh(OX) of Derived Categories of Schemes,
Lemma 36.3.5 we see that the pro-systems {K(OX , fn1 , . . . , fnr )} and {OX/In} are
isomorphic in D(OX). This proves the second equality in

K∧ = R lim
(
K ⊗L

OX
K(OX , fn1 , . . . , fnr )

)
= R lim(K ⊗L

OX
OX/In)

The first equality is Lemma 52.6.9.
Assume K is pseudo-coherent. For U ⊂ X affine open we have Hq(U,K∧) =
limHq(U,K)/In(U)Hq(U,K) by Lemma 52.7.1. As this is true for every U we see
that Hq(K∧) = limHq(K)/InHq(K) as sheaves. This proves (2).
Part (3) is a special case of (2). Parts (4) and (5) follow from Derived Categories
of Schemes, Lemma 36.3.2. □

Lemma 52.7.3.0A0M Let A be a Noetherian ring and let I ⊂ A be an ideal. Let X
be a Noetherian scheme over A. Let F be a coherent OX -module. Assume that
Hp(X,F) is a finite A-module for all p. Then there are short exact sequences

0→ R1 limHp−1(X,F/InF)→ Hp(X,F)∧ → limHp(X,F/InF)→ 0
of A-modules where Hp(X,F)∧ is the usual I-adic completion. If f is proper, then
the R1 lim term is zero.
Proof. Consider the two spectral sequences of Lemma 52.6.20. The first degenerates
by More on Algebra, Lemma 15.94.4. We obtain Hp(X,F)∧ in degree p. This is
where we use the assumption that Hp(X,F) is a finite A-module. The second
degenerates because

F∧ = limF/InF = R limF/InF
is a sheaf by Lemma 52.7.2. We obtain Hp(X, limF/InF) in degree p. Since
RΓ(X,−) commutes with derived limits (Injectives, Lemma 19.13.6) we also get

RΓ(X, limF/InF) = RΓ(X,R limF/InF) = R limRΓ(X,F/InF)
By More on Algebra, Remark 15.87.6 we obtain exact sequences

0→ R1 limHp−1(X,F/InF)→ Hp(X, limF/InF)→ limHp(X,F/InF)→ 0
of A-modules. Combining the above we get the first statement of the lemma.
The vanishing of the R1 lim term follows from Cohomology of Schemes, Lemma
30.20.4. □

1For example Hq(K) for K pseudo-coherent on our locally Noetherian X.
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Remark 52.7.4.0AKL Here are some references to discussions of related material the
literature. It seems that a “derived formal functions theorem” for proper maps
goes back to [Lur04, Theorem 6.3.1]. There is the discussion in [Lur11], especially
Chapter 4 which discusses the affine story, see More on Algebra, Section 15.91.
In [GR13, Section 2.9] one finds a discussion of proper base change and derived
completion using (ind) coherent modules. An analogue of (52.7.0.1) for complexes
of quasi-coherent modules can be found as [HLP14, Theorem 6.5]

52.8. Algebraization of local cohomology, I

0EFF Let A be a Noetherian ring and let I and J be two ideals of A. Let M be a finite
A-module. In this section we study the cohomology groups of the object

RΓJ(M)∧ of D(A)

where ∧ denotes derived I-adic completion. Observe that in Dualizing Complexes,
Lemma 47.12.5 we have shown, if A is complete with respect to I, that there is an
isomorphism

colimH0
Z(M) −→ H0(RΓJ(M)∧)

where the (directed) colimit is over the closed subsets Z = V (J ′) with J ′ ⊂ J and
V (J ′) ∩ V (I) = V (J) ∩ V (I). The union of these closed subsets is

(52.8.0.1)0EFG T = {p ∈ Spec(A) : V (p) ∩ V (I) ⊂ V (J) ∩ V (I)}

This is a subset of Spec(A) stable under specialization. The result above becomes
the statement that

H0
T (M) −→ H0(RΓJ(M)∧)

is an isomorphism provided A is complete with respect to I, see Local Cohomology,
Lemma 51.5.3 and Remark 51.5.6. Our method to extend this isomorphism to
higher cohomology groups rests on the following lemma.

Lemma 52.8.1.0EFH Let I, J be ideals of a Noetherian ring A. Let M be a finite
A-module. Let p ⊂ A be a prime. Let s and d be integers. Assume

(1) A has a dualizing complex,
(2) p ̸∈ V (J) ∩ V (I),
(3) cd(A, I) ≤ d, and
(4) for all primes p′ ⊂ p we have depthAp′ (Mp′) + dim((A/p′)q) > d + s for

all q ∈ V (p′) ∩ V (J) ∩ V (I).
Then there exists an f ∈ A, f ̸∈ p which annihilates Hi(RΓJ(M)∧) for i ≤ s where
∧ indicates I-adic completion.

Proof. We will use that RΓJ = RΓV (J) and similarly for I+J , see Dualizing Com-
plexes, Lemma 47.10.1. Observe that RΓJ(M)∧ = RΓI(RΓJ(M))∧ = RΓI+J(M)∧,
see Dualizing Complexes, Lemmas 47.12.1 and 47.9.6. Thus we may replace J by
I + J and assume I ⊂ J and p ̸∈ V (J). Recall that

RΓJ(M)∧ = RHomA(RΓI(A), RΓJ(M))

by the description of derived completion in More on Algebra, Lemma 15.91.10 com-
bined with the description of local cohomology in Dualizing Complexes, Lemma

https://stacks.math.columbia.edu/tag/0AKL
https://stacks.math.columbia.edu/tag/0EFH
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47.10.2. Assumption (3) means that RΓI(A) has nonzero cohomology only in de-
grees ≤ d. Using the canonical truncations of RΓI(A) we find it suffices to show
that

Exti(N,RΓJ(M))
is annihilated by an f ∈ A, f ̸∈ p for i ≤ s+ d and any A-module N . In turn using
the canonical truncations for RΓJ(M) we see that it suffices to show Hi

J(M) is
annihilated by an f ∈ A, f ̸∈ p for i ≤ s+ d. This follows from Local Cohomology,
Lemma 51.10.2. □

Lemma 52.8.2.0EFI Let I, J be ideals of a Noetherian ring. Let M be a finite A-module.
Let s and d be integers. With T as in (52.8.0.1) assume

(1) A has a dualizing complex,
(2) if p ∈ V (I), then no condition,
(3) if p ̸∈ V (I), p ∈ T , then dim((A/p)q) ≤ d for some q ∈ V (p)∩V (J)∩V (I),
(4) if p ̸∈ V (I), p ̸∈ T , then

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim((A/p)q) > d+ s

for all q ∈ V (p) ∩ V (J) ∩ V (I).
Then there exists an ideal J0 ⊂ J with V (J0) ∩ V (I) = V (J) ∩ V (I) such that for
any J ′ ⊂ J0 with V (J ′) ∩ V (I) = V (J) ∩ V (I) the map

RΓJ′(M) −→ RΓJ0(M)
induces an isomorphism in cohomology in degrees ≤ s and moreover these modules
are annihilated by a power of J0I.

Proof. Let us consider the set
B = {p ̸∈ V (I), p ∈ T, and depth(Mp) ≤ s}

Choose J0 ⊂ J such that V (J0) is the closure of B ∪ V (J).
Claim I: V (J0) ∩ V (I) = V (J) ∩ V (I).
Proof of Claim I. The inclusion ⊃ holds by construction. Let p be a minimal prime
of V (J0). If p ∈ B ∪ V (J), then either p ∈ T or p ∈ V (J) and in both cases
V (p) ∩ V (I) ⊂ V (J) ∩ V (I) as desired. If p ̸∈ B ∪ V (J), then V (p) ∩ B is dense,
hence infinite, and we conclude that depth(Mp) < s by Local Cohomology, Lemma
51.9.2. In fact, let V (p) ∩B = {pλ}λ∈Λ. Pick qλ ∈ V (pλ) ∩ V (J) ∩ V (I) as in (3).
Let δ : Spec(A) → Z be the dimension function associated to a dualizing complex
ω•
A for A. Since Λ is infinite and δ is bounded, there exists an infinite subset Λ′ ⊂ Λ

on which δ(qλ) is constant. For λ ∈ Λ′ we have
depth(Mpλ) + δ(pλ)− δ(qλ) = depth(Mpλ) + dim((A/pλ)qλ) ≤ d+ s

by (3) and the definition of B. By the semi-continuity of the function depth + δ
proved in Duality for Schemes, Lemma 48.2.8 we conclude that

depth(Mp) + dim((A/p)qλ) = depth(Mp) + δ(p)− δ(qλ) ≤ d+ s

Since also p ̸∈ V (I) we read off from (4) that p ∈ T , i.e., V (p)∩V (I) ⊂ V (J)∩V (I).
This finishes the proof of Claim I.
Claim II: Hi

J0
(M) → Hi

J(M) is an isomorphism for i ≤ s and J ′ ⊂ J0 with
V (J ′) ∩ V (I) = V (J) ∩ V (I).

https://stacks.math.columbia.edu/tag/0EFI
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Proof of claim II. Choose p ∈ V (J ′) not in V (J0). It suffices to show that
Hi

pAp
(Mp) = 0 for i ≤ s, see Local Cohomology, Lemma 51.2.6. Observe that

p ∈ T . Hence since p is not in B we see that depth(Mp) > s and the groups vanish
by Dualizing Complexes, Lemma 47.11.1.
Claim III. The final statement of the lemma is true.
By Claim II for i ≤ s we have

Hi
T (M) = Hi

J0
(M) = Hi

J′(M)
for all ideals J ′ ⊂ J0 with V (J ′) ∩ V (I) = V (J) ∩ V (I). See Local Cohomology,
Lemma 51.5.3. Let us check the hypotheses of Local Cohomology, Proposition
51.10.1 for the subsets T ⊂ T ∪ V (I), the module M , and the integer s. We have
to show that given p ⊂ q with p ̸∈ T ∪ V (I) and q ∈ T we have

depthAp
(Mp) + dim((A/p)q) > s

If depth(Mp) ≥ s, then this is true because the dimension of (A/p)q is at least
1. Thus we may assume depth(Mp) < s. If q ∈ V (I), then q ∈ V (J) ∩ V (I)
and the inequality holds by (4). If q ̸∈ V (I), then we can use (3) to pick q′ ∈
V (q) ∩ V (J) ∩ V (I) with dim((A/q)q′) ≤ d. Then assumption (4) gives

depthAp
(Mp) + dim((A/p)q′) > s+ d

Since A is catenary this implies the inequality we want. Applying Local Cohomol-
ogy, Proposition 51.10.1 we find J ′′ ⊂ A with V (J ′′) ⊂ T ∪ V (I) such that J ′′

annihilates Hi
T (M) for i ≤ s. Then we can write V (J ′′) ∪ V (J0) ∪ V (I) = V (J ′I)

for some J ′ ⊂ J0 with V (J ′) ∩ V (I) = V (J) ∩ V (I). Replacing J0 by J ′ the proof
is complete. □

Lemma 52.8.3.0EFJ In Lemma 52.8.2 if instead of the empty condition (2) we assume
(2’) if p ∈ V (I), p ̸∈ V (J) ∩ V (I), then depthAp

(Mp) + dim((A/p)q) > s for
all q ∈ V (p) ∩ V (J) ∩ V (I),

then the conditions also imply that Hi
J0

(M) is a finite A-module for i ≤ s.

Proof. Recall that Hi
J0

(M) = Hi
T (M), see proof of Lemma 52.8.2. Thus it suffices

to check that for p ̸∈ T and q ∈ T with p ⊂ q we have depthAp
(Mp)+dim((A/p)q) >

s, see Local Cohomology, Proposition 51.11.1. Condition (2’) tells us this is true
for p ∈ V (I). Since we know Hi

T (M) is annihilated by a power of IJ0 we know
the condition holds if p ̸∈ V (IJ0) by Local Cohomology, Proposition 51.10.1. This
covers all cases and the proof is complete. □

Lemma 52.8.4.0EFK If in Lemma 52.8.2 we additionally assume
(6) if p ̸∈ V (I), p ∈ T , then depthAp

(Mp) > s,
then Hi

J0
(M) = Hi

J(M) = Hi
J+I(M) for i ≤ s and these modules are annihilated

by a power of I.

Proof. Choose p ∈ V (J) or p ∈ V (J0) but p ̸∈ V (J + I) = V (J0 + I). It suffices to
show that Hi

pAp
(Mp) = 0 for i ≤ s, see Local Cohomology, Lemma 51.2.6. These

groups vanish by condition (6) and Dualizing Complexes, Lemma 47.11.1. The final
statement follows from Local Cohomology, Proposition 51.10.1. □

Lemma 52.8.5.0EFL Let I, J be ideals of a Noetherian ring A. Let M be a finite
A-module. Let s and d be integers. With T as in (52.8.0.1) assume

https://stacks.math.columbia.edu/tag/0EFJ
https://stacks.math.columbia.edu/tag/0EFK
https://stacks.math.columbia.edu/tag/0EFL
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(1) A is I-adically complete and has a dualizing complex,
(2) if p ∈ V (I) no condition,
(3) cd(A, I) ≤ d,
(4) if p ̸∈ V (I), p ̸∈ T then

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim((A/p)q) > d+ s

for all q ∈ V (p) ∩ V (J) ∩ V (I),
(5) if p ̸∈ V (I), p ̸∈ T , V (p)∩V (J)∩V (I) ̸= ∅, and depth(Mp) < s, then one

of the following holds2:
(a) dim(Supp(Mp)) < s+ 23, or
(b) δ(p) > d+ δmax − 1 where δ is a dimension function and δmax is the

maximum of δ on V (J) ∩ V (I), or
(c) depthAp

(Mp) + dim((A/p)q) > d + s + δmax − δmin − 2 for all q ∈
V (p) ∩ V (J) ∩ V (I).

Then there exists an ideal J0 ⊂ J with V (J0) ∩ V (I) = V (J) ∩ V (I) such that for
any J ′ ⊂ J0 with V (J ′) ∩ V (I) = V (J) ∩ V (I) the map

RΓJ′(M) −→ RΓJ(M)∧

induces an isomorphism on cohomology in degrees ≤ s. Here ∧ denotes derived
I-adic completion.

We encourage the reader to read the proof in the local case first (Lemma 52.9.5) as
it explains the structure of the proof without having to deal with all the inequalities.

Proof. For an ideal a ⊂ A we have RΓa = RΓV (a), see Dualizing Complexes,
Lemma 47.10.1. Next, we observe that
RΓJ(M)∧ = RΓI(RΓJ(M))∧ = RΓI+J(M)∧ = RΓI+J′(M)∧ = RΓI(RΓJ′(M))∧ = RΓJ′(M)∧

by Dualizing Complexes, Lemmas 47.9.6 and 47.12.1. This explains how we define
the arrow in the statement of the lemma.
We claim that the hypotheses of Lemma 52.8.2 are implied by our current hypothe-
ses on M . The only thing to verify is hypothesis (3). Thus let p ̸∈ V (I), p ∈ T .
Then V (p) ∩ V (I) is nonempty as I is contained in the Jacobson radical of A (Al-
gebra, Lemma 10.96.6). Since p ∈ T we have V (p) ∩ V (I) = V (p) ∩ V (J) ∩ V (I).
Let q ∈ V (p) ∩ V (I) be the generic point of an irreducible component. We have
cd(Aq, Iq) ≤ d by Local Cohomology, Lemma 51.4.6. We have V (pAq) ∩ V (Iq) =
{qAq} by our choice of q and we conclude dim((A/p)q) ≤ d by Local Cohomology,
Lemma 51.4.10.
Observe that the lemma holds for s < 0. This is not a trivial case because it is not
a priori clear that Hi(RΓJ(M)∧) is zero for i < 0. However, this vanishing was
established in Dualizing Complexes, Lemma 47.12.4. We will prove the lemma by
induction for s ≥ 0.
The lemma for s = 0 follows immediately from the conclusion of Lemma 52.8.2 and
Dualizing Complexes, Lemma 47.12.5.
Assume s > 0 and the lemma has been shown for smaller values of s. Let M ′ ⊂M
be the maximal submodule whose support is contained in V (I) ∪ T . Then M ′ is a

2Our method forces this additional condition. We will return to this (insert future reference).
3For example if M satisfies Serre’s condition (Ss) on the complement of V (I) ∪ T .
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finite A-module whose support is contained in V (J ′) ∪ V (I) for some ideal J ′ ⊂ J
with V (J ′) ∩ V (I) = V (J) ∩ V (I). We claim that

RΓJ′(M ′)→ RΓJ(M ′)∧

is an isomorphism for any choice of J ′. Namely, we can choose a short exact
sequence 0→M1⊕M2 →M ′ → N → 0 with M1 annihilated by a power of J ′, with
M2 annihilated by a power of I, and with N annihilated by a power of I+J ′. Thus
it suffices to show that the claim holds for M1, M2, and N . In the case of M1 we see
that RΓJ′(M1) = M1 and since M1 is a finite A-module and I-adically complete we
have M∧

1 = M1. This proves the claim for M1 by the initial remarks of the proof.
In the case of M2 we see that Hi

J(M2) = Hi
I+J(M) = Hi

I+J′(M) = Hi
J′(M2) are

annihilated by a power of I and hence derived complete. Thus the claim in this
case also. For N we can use either of the arguments just given. Considering the
short exact sequence 0 → M ′ → M → M/M ′ → 0 we see that it suffices to prove
the lemma for M/M ′. Thus we may assume Ass(M) ∩ (V (I) ∪ T ) = ∅.

Let p ∈ Ass(M) be such that V (p) ∩ V (J) ∩ V (I) = ∅. Since I is contained in
the Jacobson radical of A this implies that V (p) ∩ V (J ′) = ∅ for any J ′ ⊂ J with
V (J ′) ∩ V (I) = V (J) ∩ V (I). Thus setting N = H0

p(M) we see that RΓJ(N) =
RΓJ′(N) = 0 for all J ′ ⊂ J with V (J ′) ∩ V (I) = V (J) ∩ V (I). In particular
RΓJ(N)∧ = 0. Thus we may replace M by M/N as this changes the structure of
M only in primes which do not play a role in conditions (4) or (5). Repeating we
may assume that V (p) ∩ V (J) ∩ V (I) ̸= ∅ for all p ∈ Ass(M).

Assume Ass(M)∩(V (I)∪T ) = ∅ and that V (p)∩V (J)∩V (I) ̸= ∅ for all p ∈ Ass(M).
Let p ∈ Ass(M). We want to show that we may apply Lemma 52.8.1. It is in the
verification of this that we will use the supplemental condition (5). Choose p′ ⊂ p
and q′ ⊂ V (p) ∩ V (J) ∩ V (I).

(1) If Mp′ = 0, then depth(Mp′) =∞ and depth(Mp′)+dim((A/p′)q′) > d+s.
(2) If depth(Mp′) < s, then depth(Mp′) + dim((A/p′)q′) > d+ s by (4).

In the remaining cases we have Mp′ ̸= 0 and depth(Mp′) ≥ s. In particular, we see
that p′ is in the support of M and we can choose p′′ ⊂ p′ with p′′ ∈ Ass(M).

(a) Observe that dim((A/p′′)p′) ≥ depth(Mp′) by Algebra, Lemma 10.72.9.
If equality holds, then we have

depth(Mp′) + dim((A/p′)q′) = depth(Mp′′) + dim((A/p′′)q′) > s+ d

by (4) applied to p′′ and we are done. This means we are only in trouble
if dim((A/p′′)p′) > depth(Mp′). This implies that dim(Mp) ≥ s+2. Thus
if (5)(a) holds, then this does not occur.

(b) If (5)(b) holds, then we get

depth(Mp′) + dim((A/p′)q′) ≥ s+ δ(p′)− δ(q′) ≥ s+ 1 + δ(p)− δmax > s+ d

as desired.
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(c) If (5)(c) holds, then we get
depth(Mp′) + dim((A/p′)q′) ≥ s+ δ(p′)− δ(q′)

≥ s+ 1 + δ(p)− δ(q′)
= s+ 1 + δ(p)− δ(q) + δ(q)− δ(q′)
> s+ 1 + (s+ d+ δmax − δmin − 2) + δ(q)− δ(q′)
≥ 2s+ d− 1 ≥ s+ d

as desired. Observe that this argument works because we know that a
prime q ∈ V (p) ∩ V (J) ∩ V (I) exists.

Now we are ready to do the induction step.
Choose an ideal J0 as in Lemma 52.8.2 and an integer t > 0 such that (J0I)t
annihilates Hs

J(M). The assumptions of Lemma 52.8.1 are satisfied for every p ∈
Ass(M) (see previous paragraph). Thus the annihilator a ⊂ A of Hs(RΓJ(M)∧)
is not contained in p for p ∈ Ass(M). Thus we can find an f ∈ a(J0I)t not in any
associated prime of M which is an annihilator of both Hs(RΓJ(M)∧) and Hs

J(M).
Then f is a nonzerodivisor on M and we can consider the short exact sequence

0→M
f−→M →M/fM → 0

Our choice of f shows that we obtain

Hs−1
J′ (M)

��

// Hs−1
J′ (M/fM)

��

// Hs
J′(M)

��

// 0

Hs−1(RΓJ(M)∧) // Hs−1(RΓJ(M/fM)∧) // Hs(RΓJ(M)∧) // 0

for any J ′ ⊂ J0 with V (J ′) ∩ V (I) = V (J) ∩ V (I). Thus if we choose J ′ such that
it works for M and M/fM and s− 1 (possible by induction hypothesis – see next
paragraph), then we conclude that the lemma is true.
To finish the proof we have to show that the module M/fM satisfies the hypotheses
(4) and (5) for s − 1. Thus we let p be a prime in the support of M/fM with
depth((M/fM)p) < s−1 and with V (p)∩V (J)∩V (I) nonempty. Then dim(Mp) =
dim((M/fM)p)+1 and depth(Mp) = depth((M/fM)p)+1. In particular, we know
(4) and (5) hold for p and M with the original value s. The desired inequalities
then follow by inspection. □

Example 52.8.6.0EFM In Lemma 52.8.5 we do not know that the inverse systems
Hi
J(M/InM) satisfy the Mittag-Leffler condition. For example, suppose that A =

Zp[[x, y]], I = (p), J = (p, x), andM = A/(xy−p). Then the image ofH0
J(M/pnM)→

H0
J(M/pM) is the ideal generated by yn in M/pM = A/(p, xy).

52.9. Algebraization of local cohomology, II

0EFP In this section we redo the arguments of Section 52.8 when (A,m) is a local ring
and we take local cohomology RΓm with respect to m. As before our main tool is
the following lemma.

Lemma 52.9.1.0DXK Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal. Let
M be a finite A-module and let p ⊂ A be a prime. Let s and d be integers. Assume

(1) A has a dualizing complex,

https://stacks.math.columbia.edu/tag/0EFM
https://stacks.math.columbia.edu/tag/0DXK


52.9. ALGEBRAIZATION OF LOCAL COHOMOLOGY, II 4308

(2) cd(A, I) ≤ d, and
(3) depthAp

(Mp) + dim(A/p) > d+ s.
Then there exists an f ∈ A \ p which annihilates Hi(RΓm(M)∧) for i ≤ s where ∧

indicates I-adic completion.

Proof. According to Local Cohomology, Lemma 51.9.4 the function
p′ 7−→ depthAp′ (Mp′) + dim(A/p′)

is lower semi-continuous on Spec(A). Thus the value of this function on p′ ⊂ p is
> s + d. Thus our lemma is a special case of Lemma 52.8.1 provided that p ̸= m.
If p = m, then we have Hi

m(M) = 0 for i ≤ s+ d by the relationship between depth
and local cohomology (Dualizing Complexes, Lemma 47.11.1). Thus the argument
given in the proof of Lemma 52.8.1 shows that Hi(RΓm(M)∧) = 0 for i ≤ s in this
(degenerate) case. □

Lemma 52.9.2.0DXM Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal. Let
M be a finite A-module. Let s and d be integers. Assume

(1) A has a dualizing complex,
(2) if p ∈ V (I), then no condition,
(3) if p ̸∈ V (I) and V (p) ∩ V (I) = {m}, then dim(A/p) ≤ d,
(4) if p ̸∈ V (I) and V (p) ∩ V (I) ̸= {m}, then

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim(A/p) > d+ s

Then there exists an ideal J0 ⊂ A with V (J0) ∩ V (I) = {m} such that for any
J ⊂ J0 with V (J) ∩ V (I) = {m} the map

RΓJ(M) −→ RΓJ0(M)
induces an isomorphism in cohomology in degrees ≤ s and moreover these modules
are annihilated by a power of J0I.

Proof. This is a special case of Lemma 52.8.2. □

Lemma 52.9.3.0DXN In Lemma 52.9.2 if instead of the empty condition (2) we assume
(2’) if p ∈ V (I) and p ̸= m, then depthAp

(Mp) + dim(A/p) > s,
then the conditions also imply that Hi

J0
(M) is a finite A-module for i ≤ s.

Proof. This is a special case of Lemma 52.8.3. □

Lemma 52.9.4.0EFQ If in Lemma 52.9.2 we additionally assume
(6) if p ̸∈ V (I) and V (p) ∩ V (I) = {m}, then depthAp

(Mp) > s,
then Hi

J0
(M) = Hi

J(M) = Hi
m(M) for i ≤ s and these modules are annihilated by

a power of I.

Proof. This is a special case of Lemma 52.8.4. □

Lemma 52.9.5.0DXP Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal. Let
M be a finite A-module. Let s and d be integers. Assume

(1) A is I-adically complete and has a dualizing complex,
(2) if p ∈ V (I), no condition,
(3) cd(A, I) ≤ d,

https://stacks.math.columbia.edu/tag/0DXM
https://stacks.math.columbia.edu/tag/0DXN
https://stacks.math.columbia.edu/tag/0EFQ
https://stacks.math.columbia.edu/tag/0DXP
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(4) if p ̸∈ V (I) and V (p) ∩ V (I) ̸= {m} then

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim(A/p) > d+ s

Then there exists an ideal J0 ⊂ A with V (J0) ∩ V (I) = {m} such that for any
J ⊂ J0 with V (J) ∩ V (I) = {m} the map

RΓJ(M) −→ RΓJ(M)∧ = RΓm(M)∧

induces an isomorphism in cohomology in degrees ≤ s. Here ∧ denotes derived
I-adic completion.

Proof. This lemma is a special case of Lemma 52.8.5 since condition (5)(c) is implied
by condition (4) as δmax = δmin = δ(m). We will give the proof of this important
special case as it is somewhat easier (fewer things to check).

There is no difference between RΓa and RΓV (a) in our current situation, see Dual-
izing Complexes, Lemma 47.10.1. Next, we observe that

RΓm(M)∧ = RΓI(RΓJ(M))∧ = RΓJ(M)∧

by Dualizing Complexes, Lemmas 47.9.6 and 47.12.1 which explains the equality
sign in the statement of the lemma.

Observe that the lemma holds for s < 0. This is not a trivial case because it is not
a priori clear that Hs(RΓm(M)∧) is zero for negative s. However, this vanishing
was established in Lemma 52.5.4. We will prove the lemma by induction for s ≥ 0.

The assumptions of Lemma 52.9.2 are satisfied by Local Cohomology, Lemma
51.4.10. The lemma for s = 0 follows from Lemma 52.9.2 and Dualizing Com-
plexes, Lemma 47.12.5.

Assume s > 0 and the lemma holds for smaller values of s. Let M ′ ⊂ M be the
submodule of elements whose support is condained in V (I) ∪ V (J) for some ideal
J with V (J) ∩ V (I) = {m}. Then M ′ is a finite A-module. We claim that

RΓJ(M ′)→ RΓm(M ′)∧

is an isomorphism for any choice of J . Namely, for any such module there is a short
exact sequence 0→M1 ⊕M2 →M ′ → N → 0 with M1 annihilated by a power of
J , with M2 annihilated by a power of I and with N annihilated by a power of m.
In the case of M1 we see that RΓJ(M1) = M1 and since M1 is a finite A-module
and I-adically complete we have M∧

1 = M1. Thus the claim holds for M1. In the
case of M2 we see that Hi

J(M2) is annihilated by a power of I and hence derived
complete. Thus the claim for M2. By the same arguments the claim holds for
N and we conclude that the claim holds. Considering the short exact sequence
0→M ′ →M →M/M ′ → 0 we see that it suffices to prove the lemma for M/M ′.
This we may assume p ∈ Ass(M) implies V (p) ∩ V (I) ̸= {m}, i.e., p is a prime as
in (4).

Choose an ideal J0 as in Lemma 52.9.2 and an integer t > 0 such that (J0I)t
annihilates Hs

J(M). Here J denotes an arbitrary ideal J ⊂ J0 with V (J) ∩ V (I) =
{m}. The assumptions of Lemma 52.9.1 are satisfied for every p ∈ Ass(M) (see
previous paragraph). Thus the annihilator a ⊂ A of Hs(RΓm(M)∧) is not contained
in p for p ∈ Ass(M). Thus we can find an f ∈ a(J0I)t not in any associated prime
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of M which is an annihilator of both Hs(RΓm(M)∧) and Hs
J(M). Then f is a

nonzerodivisor on M and we can consider the short exact sequence

0→M
f−→M →M/fM → 0

Our choice of f shows that we obtain

Hs−1
J (M)

��

// Hs−1
J (M/fM)

��

// Hs
J(M)

��

// 0

Hs−1(RΓm(M)∧) // Hs−1(RΓm(M/fM)∧) // Hs(RΓm(M)∧) // 0

for any J ⊂ J0 with V (J) ∩ V (I) = {m}. Thus if we choose J such that it works
for M and M/fM and s− 1 (possible by induction hypothesis), then we conclude
that the lemma is true. □

52.10. Algebraization of local cohomology, III

0EFT In this section we bootstrap the material in Sections 52.8 and 52.9 to give a stronger
result the following situation.
Situation 52.10.1.0EFU Here A is a Noetherian ring. We have an ideal I ⊂ A, a finite
A-module M , and a subset T ⊂ V (I) stable under specialization. We have integers
s and d. We assume

(1) A has a dualizing complex,
(3) cd(A, I) ≤ d,
(4) given primes p ⊂ r ⊂ q with p ̸∈ V (I), r ∈ V (I) \ T , q ∈ T we have

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim((A/p)q) > d+ s

(6) given q ∈ T denoting A′,m′, I ′,M ′ are the usual I-adic completions of
Aq, qAq, Iq,Mq we have

depth(M ′
p′) > s

for all p′ ∈ Spec(A′) \ V (I ′) with V (p′) ∩ V (I ′) = {m′}.
The following lemma explains why in Situation 52.10.1 it suffices to look at triples
p ⊂ r ⊂ q of primes in (4) even though the actual assumption only involves p and
q.
Lemma 52.10.2.0EID In Situation 52.10.1 let p ⊂ q be primes of A with p ̸∈ V (I) and
q ∈ T . If there does not exist an r ∈ V (I) \ T with p ⊂ r ⊂ q then depth(Mp) > s.
Proof. Choose q′ ∈ T with p ⊂ q′ ⊂ q such that there is no prime in T strictly
in between p and q′. To prove the lemma we may and do replace q by q′. Next,
let p′ ⊂ Aq be the prime corresponding to p. After doing this we obtain that
V (p′)∩V (IAq) = {qAq} because of the nonexistence of a prime r as in the lemma.
Let A′, I ′,m′,M ′ be the I-adic completions of Aq, Iq, qAq,Mq. Since Aq → A′ is
faithfully flat (Algebra, Lemma 10.97.3) we can choose p′′ ⊂ A′ lying over p′ with
dim(A′

p′′/p′A′
p′′) = 0. Then we see that

depth(M ′
p′′) = depth((Mq ⊗Aq

A′)p′′) = depth(Mp ⊗Ap
A′

p′′) = depth(Mp)
by flatness of A→ A′ and our choice of p′′, see Algebra, Lemma 10.163.1. Since p′′

lies over p′ we have V (p′′) ∩ V (I ′) = {m′}. Thus condition (6) in Situation 52.10.1
implies depth(M ′

p′′) > s which finishes the proof. □

https://stacks.math.columbia.edu/tag/0EFU
https://stacks.math.columbia.edu/tag/0EID
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The following tedious lemma explains the relationships between various collections
of conditions one might impose.

Lemma 52.10.3.0EFV In Situation 52.10.1 we have
(E) if T ′ ⊂ T is a smaller specialization stable subset, then A, I, T ′,M satisfies

the assumptions of Situation 52.10.1,
(F) if S ⊂ A is a multiplicative subset, then S−1A,S−1I, T ′, S−1M satisfies

the assumptions of Situation 52.10.1 where T ′ ⊂ V (S−1I) is the inverse
image of T ,

(G) the quadruple A′, I ′, T ′,M ′ satisfies the assumptions of Situation 52.10.1
where A′, I ′,M ′ are the usual I-adic completions of A, I,M and T ′ ⊂
V (I ′) is the inverse image of T .

Let I ⊂ a ⊂ A be an ideal such that V (a) ⊂ T . Then
(A) if I is contained in the Jacobson radical of A, then all hypotheses of

Lemmas 52.8.2 and 52.8.4 are satisfied for A, I, a,M ,
(B) if A is complete with respect to I, then all hypotheses except for possibly

(5) of Lemma 52.8.5 are satisfied for A, I, a,M ,
(C) if A is local with maximal ideal m = a, then all hypotheses of Lemmas

52.9.2 and 52.9.4 hold for A,m, I,M ,
(D) if A is local with maximal ideal m = a and I-adically complete, then all

hypotheses of Lemma 52.9.5 hold for A,m, I,M ,

Proof. Proof of (E). We have to prove assumptions (1), (3), (4), (6) of Situation
52.10.1 hold for A, I, T,M . Shrinking T to T ′ weakens assumption (6) and strength-
ens assumption (4). However, if we have p ⊂ r ⊂ q with p ̸∈ V (I), r ∈ V (I) \ T ′,
q ∈ T ′ as in assumption (4) for A, I, T ′,M , then either we can pick r ∈ V (I) \ T
and condition (4) for A, I, T,M kicks in or we cannot find such an r in which case
we get depth(Mp) > s by Lemma 52.10.2. This proves (4) holds for A, I, T ′,M as
desired.
Proof of (F). This is straightforward and we omit the details.
Proof of (G). We have to prove assumptions (1), (3), (4), (6) of Situation 52.10.1
hold for the I-adic completions A′, I ′, T ′,M ′. Please keep in mind that Spec(A′)→
Spec(A) induces an isomorphism V (I ′)→ V (I).
Assumption (1): The ring A′ has a dualizing complex, see Dualizing Complexes,
Lemma 47.22.4.
Assumption (3): Since I ′ = IA′ this follows from Local Cohomology, Lemma 51.4.5.
Assumption (4): If we have primes p′ ⊂ r′ ⊂ q′ in A′ with p′ ̸∈ V (I ′), r′ ∈ V (I ′)\T ′,
q′ ∈ T ′ then their images p ⊂ r ⊂ q in the spectrum of A satisfy p ̸∈ V (I),
r ∈ V (I) \ T , q ∈ T . Then we have

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim((A/p)q) > d+ s

by assumption (4) forA, I, T,M . We have depth(M ′
p′) ≥ depth(Mp) and depth(M ′

p′)+
dim((A′/p′)q′) = depth(Mp) + dim((A/p)q) by Local Cohomology, Lemma 51.11.3.
Thus assumption (4) holds for A′, I ′, T ′,M ′.
Assumption (6): Let q′ ∈ T ′ lying over the prime q ∈ T . Then A′

q′ and Aq have
isomorphic I-adic completions and similarly for Mq and M ′

q′ . Thus assumption (6)
for A′, I ′, T ′,M ′ is equivalent to assumption (6) for A, I, T,M .

https://stacks.math.columbia.edu/tag/0EFV
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Proof of (A). We have to check conditions (1), (2), (3), (4), and (6) of Lemmas
52.8.2 and 52.8.4 for (A, I, a,M). Warning: the set T in the statement of these
lemmas is not the same as the set T above.
Condition (1): This holds because we have assumed A has a dualizing complex in
Situation 52.10.1.
Condition (2): This is empty.
Condition (3): Let p ⊂ A with V (p) ∩ V (I) ⊂ V (a). Since I is contained in the
Jacobson radical of A we see that V (p) ∩ V (I) ̸= ∅. Let q ∈ V (p) ∩ V (I) be a
generic point. Since cd(Aq, Iq) ≤ d (Local Cohomology, Lemma 51.4.6) and since
V (pAq) ∩ V (Iq) = {qAq} we get dim((A/p)q) ≤ d by Local Cohomology, Lemma
51.4.10 which proves (3).
Condition (4): Suppose p ̸∈ V (I) and q ∈ V (p) ∩ V (a). It suffices to show

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim((A/p)q) > d+ s

If there exists a prime p ⊂ r ⊂ q with r ∈ V (I) \ T , then this follows immediately
from assumption (4) in Situation 52.10.1. If not, then depth(Mp) > s by Lemma
52.10.2.
Condition (6): Let p ̸∈ V (I) with V (p) ∩ V (I) ⊂ V (a). Since I is contained in the
Jacobson radical of A we see that V (p)∩V (I) ̸= ∅. Choose q ∈ V (p)∩V (I) ⊂ V (a).
It is clear there does not exist a prime p ⊂ r ⊂ q with r ∈ V (I) \ T . By Lemma
52.10.2 we have depth(Mp) > s which proves (6).
Proof of (B). We have to check conditions (1), (2), (3), (4) of Lemma 52.8.5. Warn-
ing: the set T in the statement of this lemma is not the same as the set T above.
Condition (1): This holds because A is complete and has a dualizing complex.
Condition (2): This is empty.
Condition (3): This is the same as assumption (3) in Situation 52.10.1.
Condition (4): This is the same as assumption (4) in Lemma 52.8.2 which we proved
in (A).
Proof of (C). This is true because the assumptions in Lemmas 52.9.2 and 52.9.4 are
the same as the assumptions in Lemmas 52.8.2 and 52.8.4 in the local case and we
proved these hold in (A).
Proof of (D). This is true because the assumptions in Lemma 52.9.5 are the same
as the assumptions (1), (2), (3), (4) in Lemma 52.8.5 and we proved these hold in
(B). □

Lemma 52.10.4.0EFR In Situation 52.10.1 assume A is local with maximal ideal m and
T = {m}. Then Hi

m(M)→ limHi
m(M/InM) is an isomorphism for i ≤ s and these

modules are annihilated by a power of I.

Proof. Let A′, I ′,m′,M ′ be the usual I-adic completions of A, I,m,M . Recall that
we have Hi

m(M)⊗AA′ = Hi
m′(M ′) by flatness of A→ A′ and Dualizing Complexes,

Lemma 47.9.3. Since Hi
m(M) is m-power torsion we have Hi

m(M) = Hi
m(M)⊗AA′,

see More on Algebra, Lemma 15.89.3. We conclude that Hi
m(M) = Hi

m′(M ′). The
exact same arguments will show that Hi

m(M/InM) = Hi
m′(M ′/(I ′)nM ′) for all n

and i.

https://stacks.math.columbia.edu/tag/0EFR
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Lemmas 52.9.5, 52.9.2, and 52.9.4 apply to A′,m′, I ′,M ′ by Lemma 52.10.3 parts
(C) and (D). Thus we get an isomorphism

Hi
m′(M ′) −→ Hi(RΓm′(M ′)∧)

for i ≤ s where ∧ is derived I ′-adic completion and these modules are annihilated
by a power of I ′. By Lemma 52.5.4 we obtain isomorphisms

Hi
m′(M ′) −→ limHi

m′(M ′/(I ′)nM ′))
for i ≤ s. Combined with the already established comparison with local cohomology
over A we conclude the lemma is true. □

Lemma 52.10.5.0EFW Let I ⊂ a be ideals of a Noetherian ring A. Let M be a finite
A-module. Let s and d be integers. If we assume

(a) A has a dualizing complex,
(b) cd(A, I) ≤ d,
(c) if p ̸∈ V (I) and q ∈ V (p)∩V (a) then depthAp

(Mp) > s or depthAp
(Mp)+

dim((A/p)q) > d+ s.
Then A, I, V (a),M, s, d are as in Situation 52.10.1.

Proof. We have to show that assumptions (1), (3), (4), and (6) of Situation 52.10.1
hold. It is clear that (a) ⇒ (1), (b) ⇒ (3), and (c) ⇒ (4). To finish the proof in
the next paragraph we show (6) holds.
Let q ∈ V (a). Denote A′, I ′,m′,M ′ the I-adic completions of Aq, Iq, qAq,Mq. Let
p′ ⊂ A′ be a nonmaximal prime with V (p′) ∩ V (I ′) = {m′}. Observe that this
implies dim(A′/p′) ≤ d by Local Cohomology, Lemma 51.4.10. Denote p ⊂ A the
image of p′. We have depth(M ′

p′) ≥ depth(Mp) and depth(M ′
p′) + dim(A′/p′) =

depth(Mp) + dim((A/p)q) by Local Cohomology, Lemma 51.11.3. By assump-
tion (c) either we have depth(M ′

p′) ≥ depth(Mp) > s and we’re done or we have
depth(M ′

p′) + dim(A′/p′) > s+ d which implies depth(M ′
p′) > s because of the al-

ready shown inequality dim(A′/p′) ≤ d. In both cases we obtain what we want. □

Lemma 52.10.6.0EFX In Situation 52.10.1 the inverse systems {Hi
T (InM)}n≥0 are pro-

zero for i ≤ s. Moreover, there exists an integer m0 such that for all m ≥ m0 there
exists an integer m′(m) ≥ m such that for k ≥ m′(m) the image of Hs+1

T (IkM)→
Hs+1
T (ImM) maps injectively to Hs+1

T (Im0M).

Proof. Fix m. Let q ∈ T . By Lemmas 52.10.3 and 52.10.4 we see that
Hi

q(Mq) −→ limHi
q(Mq/I

nMq)
is an isomorphism for i ≤ s. The inverse systems {Hi

q(InMq)}n≥0 and {Hi
q(M/InM)}n≥0

satisfy the Mittag-Leffler condition for all i, see Lemma 52.5.2. Thus looking at the
inverse system of long exact sequences

0→ H0
q (InMq)→ H0

q (Mq)→ H0
q (Mq/I

nMq)→ H1
q (InMq)→ H1

q (Mq)→ . . .

we conclude (some details omitted) that there exists an integer m′(m, q) ≥ m such
that for all k ≥ m′(m, q) the map Hi

q(IkMq)→ Hi
q(ImMq) is zero for i ≤ s and the

image of Hs+1
q (IkMq) → Hs+1

q (ImMq) is independent of k ≥ m′(m, q) and maps
injectively into Hs+1

q (Mq).
Suppose we can show that m′(m, q) can be chosen independently of q ∈ T . Then
the lemma follows immediately from Local Cohomology, Lemmas 51.6.2 and 51.6.3.

https://stacks.math.columbia.edu/tag/0EFW
https://stacks.math.columbia.edu/tag/0EFX
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Let ω•
A be a dualizing complex. Let δ : Spec(A)→ Z be the corresponding dimen-

sion function. Recall that δ attains only a finite number of values, see Dualizing
Complexes, Lemma 47.17.4. Claim: for each d ∈ Z the integer m′(m, q) can be
chosen independently of q ∈ T with δ(q) = d. Clearly the claim implies the lemma
by what we said above.

Pick q ∈ T with δ(q) = d. Consider the ext modules

E(n, j) = ExtjA(InM,ω•
A)

A key feature we will use is that these are finite A-modules. Recall that (ω•
A)q[−d]

is a normalized dualizing complex for Aq by definition of the dimension function
associated to a dualizing complex, see Dualizing Complexes, Section 47.17. The
local duality theorem (Dualizing Complexes, Lemma 47.18.4) tells us that the qAq-
adic completion of E(n,−d − i)q is Matlis dual to Hi

q(InMq). Thus the choice
of m′(m, q) for i ≤ s in the first paragraph tells us that for k ≥ m′(m, q) and
j ≥ −d− s the map

E(m, j)q → E(k, j)q
is zero. Since these modules are finite and nonzero only for a finite number of
possible j (small detail omitted), we can find an open neighbourhood W ⊂ Spec(A)
of q such that

E(m, j)q′ → E(m′(m, q), j)q′

is zero for j ≥ −d−s for all q′ ∈W . Then of course the maps E(m, j)q′ → E(k, j)q′

for k ≥ m′(m, q) are zero as well.

For i = s+ 1 corresponding to j = −d− s− 1 we obtain from local duality and the
results of the first paragraph that

Kk,q = Ker(E(m,−d− s− 1)q → E(k,−d− s− 1)q)

is independent of k ≥ m′(m, q) and that

E(0,−d− s− 1)q → E(m,−d− s− 1)q/Km′(m,q),q

is surjective. For k ≥ m′(m, q) set

Kk = Ker(E(m,−d− s− 1)→ E(k,−d− s− 1))

Since Kk is an increasing sequence of submodules of the finite module E(m,−d−
s − 1) we see that, at the cost of increasing m′(m, q) a little bit, we may assume
Km′(m,q) = Kk for k ≥ m′(m, q). After shrinking W further if necessary, we may
also assume that

E(0,−d− s− 1)q′ → E(m,−d− s− 1)q′/Km′(m,q),q′

is surjective for all q′ ∈W (as before use that these modules are finite and that the
map is surjective after localization at q).

Any subset, in particular Td = {q ∈ T with δ(q) = d}, of the Noetherian topological
space Spec(A) with the endowed topology is Noetherian and hence quasi-compact.
Above we have seen that for every q ∈ Td there is an open neighbourhood W where
m′(m, q) works for all q′ ∈ Td ∩ W . We conclude that we can find an integer
m′(m, d) such that for all q ∈ Td we have

E(m, j)q → E(m′(m, d), j)q
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is zero for j ≥ −d−s and withKm′(m,d) = Ker(E(m,−d−s−1)→ E(m′(m, d),−d−
s− 1)) we have

Km′(m,d),q = Ker(E(m,−d− s− 1)q → E(k,−d− s− 1)q)
for all k ≥ m′(m, d) and the map

E(0,−d− s− 1)q → E(m,−d− s− 1)q/Km′(m,d),q

is surjective. Using the local duality theorem again (in the opposite direction) we
conclude that the claim is correct. This finishes the proof. □

Lemma 52.10.7.0EFY In Situation 52.10.1 there exists an integer m0 ≥ 0 such that
(1) {Hi

T (M/InM)}n≥0 satisfies the Mittag-Leffler condition for i < s.
(2) {Hi

T (Im0M/InM)}n≥m0 satisfies the Mittag-Leffler condition for i ≤ s,
(3) Hi

T (M)→ limHi
T (M/InM) is an isomorphism for i < s,

(4) Hs
T (Im0M)→ limHs

T (Im0M/InM) is an isomorphism for i ≤ s,
(5) Hs

T (M)→ limHs
T (M/InM) is injective with cokernel killed by Im0 , and

(6) R1 limHs
T (M/InM) is killed by Im0 .

Proof. Consider the long exact sequences
0→ H0

T (InM)→ H0
T (M)→ H0

T (M/InM)→ H1
T (InM)→ H1

T (M)→ . . .

Parts (1) and (3) follows easily from this and Lemma 52.10.6.
Let m0 and m′(−) be as in Lemma 52.10.6. For m ≥ m0 consider the long exact
sequence
Hs
T (ImM)→ Hs

T (Im0M)→ Hs
T (Im0M/ImM)→ Hs+1

T (ImM)→ H1
T (Im0M)

Then for k ≥ m′(m) the image of Hs+1
T (IkM)→ Hs+1

T (ImM) maps injectively to
Hs+1
T (Im0M). Hence the image of Hs

T (Im0M/IkM)→ Hs
T (Im0M/ImM) maps to

zero in Hs+1
T (ImM) for all k ≥ m′(m). We conclude that (2) and (4) hold.

Consider the short exact sequences 0 → Im0M → M → M/Im0M → 0 and
0→ Im0M/InM →M/InM →M/Im0M → 0. We obtain a diagram

Hs−1
T (M/Im0M) // limHs

T (Im0M/InM) // limHs
T (M/InM) // Hs

T (M/Im0M)

Hs−1
T (M/Im0M) // Hs

T (Im0M) //

∼=

OO

Hs
T (M) //

OO

Hs
T (M/Im0M)

whose lower row is exact. The top row is also exact (at the middle two spots) by
Homology, Lemma 12.31.4. Part (5) follows.
Write Bn = Hs

T (M/InM). Let An ⊂ Bn be the image of Hs
T (Im0M/InM) →

Hs
T (M/InM). Then (An) satisfies the Mittag-Leffler condition by (2) and Ho-

mology, Lemma 12.31.3. Also Cn = Bn/An is killed by Im0 . Thus R1 limBn ∼=
R1 limCn is killed by Im0 and we get (6). □

Theorem 52.10.8.0EIE In Situation 52.10.1 the inverse system {Hi
T (M/InM)}n≥0 sat-

isfies the Mittag-Leffler condition for i ≤ s, the map
Hi
T (M) −→ limHi

T (M/InM)
is an isomorphism for i ≤ s, and Hi

T (M) is annihilated by a power of I for i ≤ s.

https://stacks.math.columbia.edu/tag/0EFY
https://stacks.math.columbia.edu/tag/0EIE
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Proof. To prove the final assertion of the theorem we apply Local Cohomology,
Proposition 51.10.1 with T ⊂ V (I) ⊂ Spec(A). Namely, suppose that p ̸∈ V (I),
q ∈ T with p ⊂ q. Then either there exists a prime p ⊂ r ⊂ q with r ∈ V (I) \ T
and we get

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim((A/p)q) > d+ s

by (4) in Situation 52.10.1 or there does not exist an r and we get depthAp
(Mp) > s

by Lemma 52.10.2. In all three cases we see that depthAp
(Mp) + dim((A/p)q) > s.

Thus Local Cohomology, Proposition 51.10.1 (2) holds and we find that a power of
I annihilates Hi

T (M) for i ≤ s.
We already know the other two assertions of the theorem hold for i < s by Lemma
52.10.7 and for the module Im0M for i = s and m0 large enough. To finish of the
proof we will show that in fact these assertions for i = s holds for M .
Let M ′ = H0

I (M) and M ′′ = M/M ′ so that we have a short exact sequence
0→M ′ →M →M ′′ → 0

and M ′′ has H0
I (M ′) = 0 by Dualizing Complexes, Lemma 47.11.6. By Artin-Rees

(Algebra, Lemma 10.51.2) we get short exact sequences
0→M ′ →M/InM →M ′′/InM ′′ → 0

for n large enough. Consider the long exact sequences
Hs
T (M ′)→ Hs

T (M/InM)→ Hs
T (M ′′/InM ′′)→ Hs+1

T (M ′)
Now it is a simple matter to see that if we have Mittag-Leffler for the inverse
system {Hs

T (M ′′/InM ′′)}n≥0 then we have Mittag-Leffler for the inverse system
{Hs

T (M/InM)}n≥0. (Note that the ML condition for an inverse system of groups
Gn only depends on the values of the inverse system for sufficiently large n.) More-
over the sequence

Hs
T (M ′)→ limHs

T (M/InM)→ limHs
T (M ′′/InM ′′)→ Hs+1

T (M ′)
is exact because we have ML in the required spots, see Homology, Lemma 12.31.4.
Hence, if Hs

T (M ′′) → limHs
T (M ′′/InM ′′) is an isomorphism, then Hs

T (M) →
limHs

T (M/InM) is an isomorphism too by the five lemma (Homology, Lemma
12.5.20). This reduces us to the case discussed in the next paragraph.
Assume that H0

I (M) = 0. Choose generators f1, . . . , fr of Im0 where m0 is the
integer found for M in Lemma 52.10.7. Then we consider the exact sequence

0→M
f1,...,fr−−−−−→ (Im0M)⊕r → Q→ 0

defining Q. Some observations: the first map is injective exactly because H0
I (M) =

0. The cokernel Q of this injection is a finite A-module such that for every 1 ≤ j ≤ r
we have Qfj ∼= (Mfj )⊕r−1. In particular, for a prime p ⊂ A with p ̸∈ V (I) we have
Qp
∼= (Mp)⊕r−1. Similarly, given q ∈ T and p′ ⊂ A′ = (Aq)∧ not contained in

V (IA′), we have Q′
p′
∼= (M ′

p′)⊕r−1 where Q′ = (Qq)∧ and M ′ = (Mq)∧. Thus
the conditions in Situation 52.10.1 hold for A, I, T,Q. (Observe that Q may have
nonvanishing H0

I (Q) but this won’t matter.)
For any n ≥ 0 we set FnM = M∩In(Im0M)⊕r so that we get short exact sequences

0→ FnM → In(Im0M)⊕r → InQ→ 0
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By Artin-Rees (Algebra, Lemma 10.51.2) there exists a c ≥ 0 such that InM ⊂
FnM ⊂ In−cM for all n ≥ c. Let m0 be the integer and let m′(m) be the function
defined for m ≥ m0 found in Lemma 52.10.6 applied to M . Note that the integer
m0 is the same as our integer m0 chosen above (you don’t need to check this: you
can just take the maximum of the two integers if you like). Finally, by Lemma
52.10.6 applied to Q for every integer m there exists an integer m′′(m) ≥ m such
that Hs

T (IkQ)→ Hs
T (ImQ) is zero for all k ≥ m′′(m).

Fix m ≥ m0. Choose k ≥ m′(m′′(m+ c)). Choose ξ ∈ Hs+1
T (IkM) which maps to

zero in Hs+1
T (M). We want to show that ξ maps to zero in Hs+1

T (ImM). Namely,
this will show that {Hs

T (M/InM)}n≥0 is Mittag-Leffler exactly as in the proof of
Lemma 52.10.7. Picture to help vizualize the argument:

Hs+1
T (IkM) //

��

Hs+1
T (Ik(Im0M)⊕r)

��
Hs
T (Im′′(m+c)Q)

δ
//

��

Hs+1
T (Fm′′(m+c)M) //

��

Hs+1
T (Im′′(m+c)(Im0M)⊕r)

Hs
T (Im+cQ) // Hs+1

T (Fm+cM)

��
Hs+1
T (ImM)

The image of ξ in Hs+1
T (Ik(Im0M)⊕r) maps to zero in Hs+1

T ((Im0M)⊕r) and hence
maps to zero in Hs+1

T (Im′′(m+c)(Im0M)⊕r) by choice of m′(−). Thus the image
ξ′ ∈ Hs+1

T (Fm′′(m+c)M) maps to zero in Hs+1
T (Im′′(m+c)(Im0M)⊕r) and hence

ξ′ = δ(η) for some η ∈ Hs
T (Im′′(m+c)Q). By our choice ofm′′(−) we find that η maps

to zero in Hs
T (Im+cQ). This in turn means that ξ′ maps to zero in Hs+1

T (Fm+cM).
Since Fm+cM ⊂ ImM we conclude.

Finally, we prove the statement on limits. Consider the short exact sequences

0→M/FnM → (Im0M)⊕r/In(Im0M)⊕r → Q/InQ→ 0

We have limHs
T (M/InM) = limHs

T (M/FnM) as these inverse systems are pro-
isomorphic. We obtain a commutative diagram

Hs−1
T (Q) //

��

limHs−1
T (Q/InQ)

��
Hs
T (M) //

��

limHs
T (M/InM)

��
Hs
T ((Im0M)⊕r) //

��

limHs
T ((Im0M)⊕r/In(Im0M)⊕r)

��
Hs
T (Q) // limHs

T (Q/InQ)
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The right column is exact because we have ML in the required spots, see Homol-
ogy, Lemma 12.31.4. The lowest horizontal arrow is injective (!) by part (5) of
Lemma 52.10.7. The horizontal arrow above it is bijective by part (4) of Lemma
52.10.7. The arrows in cohomological degrees ≤ s − 1 are isomorphisms. Thus
we conclude Hs

T (M) → limHs
T (M/InM) is an isomorphism by the five lemma

(Homology, Lemma 12.5.20). This finishes the proof of the theorem. □

Lemma 52.10.9.0EG0 Let I ⊂ a ⊂ A be ideals of a Noetherian ring A and let M be a
finite A-module. Let s and d be integers. Suppose that

(1) A, I, V (a),M satisfy the assumptions of Situation 52.10.1 for s and d, and
(2) A, I, a,M satisfy the conditions of Lemma 52.8.5 for s + 1 and d with

J = a.
Then there exists an ideal J0 ⊂ a with V (J0) ∩ V (I) = V (a) such that for any
J ⊂ J0 with V (J) ∩ V (I) = V (a) the map

Hs+1
J (M) −→ limHs+1

a (M/InM)

is an isomorphism.

Proof. Namely, we have the existence of J0 and the isomorphism Hs+1
J (M) =

Hs+1(RΓa(M)∧) by Lemma 52.8.5, we have a short exact sequence

0→ R1 limHs
a(M/InM)→ Hs+1(RΓa(M)∧)→ limHs+1

a (M/InM)→ 0

by Dualizing Complexes, Lemma 47.12.4, and the module R1 limHs
a(M/InM) is

zero because {Hs
a(M/InM)}n≥0 has Mittag-Leffler by Theorem 52.10.8. □

52.11. Algebraization of formal sections, I

0DXH In this section we study the problem of algebraization of formal sections in the local
case. Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal. Let

X = Spec(A) ⊃ U = Spec(A) \ {m}

and denote Y = V (I) the closed subscheme corresponding to I. Let F be a coherent
OU -module. In this section we consider the limits

limnH
i(U,F/InF)

This is closely related to the cohomology of the pullback of F to the formal com-
pletion of U along Y ; however, since we have not yet introduced formal schemes,
we cannot use this terminology here.

Lemma 52.11.1.0DXI Let U be the punctured spectrum of a Noetherian local ring A.
Let F be a coherent OU -module. Let I ⊂ A be an ideal. Then

Hi(RΓ(U,F)∧) = limHi(U,F/InF)

for all i where RΓ(U,F)∧ denotes the derived I-adic completion.

Proof. By Lemmas 52.6.20 and 52.7.2 we have

RΓ(U,F)∧ = RΓ(U,F∧) = RΓ(U,R limF/InF)

Thus we obtain short exact sequences

0→ R1 limHi−1(U,F/InF)→ Hi(RΓ(U,F)∧)→ limHi(U,F/InF)→ 0

https://stacks.math.columbia.edu/tag/0EG0
https://stacks.math.columbia.edu/tag/0DXI
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by Cohomology, Lemma 20.37.1. The R1 lim terms vanish because the inverse
systems of groups Hi(U,F/InF) satisfy the Mittag-Leffler condition by Lemma
52.5.2. □

Theorem 52.11.2.0DXQ The method of proof
follows roughly the
method of proof of
[Fal79, Theorem 1]
and [Fal80b, Satz 2].
The result is almost
the same as [Ray74,
Theorem 1.1] (affine
complement case)
and [Ray75,
Theorem 3.9]
(complement is
union of few affines).

Let (A,m) be a Noetherian local ring which has a dualizing
complex and is complete with respect to an ideal I. Set X = Spec(A), Y = V (I),
and U = X \ {m}. Let F be a coherent sheaf on U . Assume

(1) cd(A, I) ≤ d, i.e., Hi(X \ Y,G) = 0 for i ≥ d and quasi-coherent G on X,
(2) for any x ∈ X \ Y whose closure {x} in X meets U ∩ Y we have

depthOX,x
(Fx) ≥ s or depthOX,x

(Fx) + dim({x}) > d+ s

Then there exists an open V0 ⊂ U containing U ∩Y such that for any open V ⊂ V0
containing U ∩ Y the map

Hi(V,F)→ limHi(U,F/InF)

is an isomorphism for i < s. If in addition depthOX,x
(Fx) + dim({x}) > s for all

x ∈ U ∩ Y , then these cohomology groups are finite A-modules.

Proof. Choose a finite A-module M such that F is the restriction to U of the
coherent OX -module associated to M , see Local Cohomology, Lemma 51.8.2. Then
the assumptions of Lemma 52.9.5 are satisfied. Pick J0 as in that lemma and set
V0 = X \ V (J0). Then opens V ⊂ V0 containing U ∩ Y correspond 1-to-1 with
ideals J ⊂ J0 with V (J) ∩ V (I) = {m}. Moreover, for such a choice we have a
distinguished triangle

RΓJ(M)→M → RΓ(V,F)→ RΓJ(M)[1]

We similarly have a distinguished triangle

RΓm(M)∧ →M → RΓ(U,F)∧ → RΓm(M)∧[1]

involving derived I-adic completions. The cohomology groups of RΓ(U,F)∧ are
equal to the limits in the statement of the theorem by Lemma 52.11.1. The canon-
ical map between these triangles and some easy arguments show that our theorem
follows from the main Lemma 52.9.5 (note that we have i < s here whereas we have
i ≤ s in the lemma; this is because of the shift). The finiteness of the cohomology
groups (under the additional assumption) follows from Lemma 52.9.3. □

Lemma 52.11.3.0DXR Let (A,m) be a Noetherian local ring which has a dualizing com-
plex and is complete with respect to an ideal I. Set X = Spec(A), Y = V (I), and
U = X \ {m}. Let F be a coherent sheaf on U . Assume for any associated point
x ∈ U of F we have dim({x}) > cd(A, I) + 1 where {x} is the closure in X. Then
the map

colimH0(V,F) −→ limH0(U,F/InF)

is an isomorphism of finite A-modules where the colimit is over opens V ⊂ U
containing U ∩ Y .

Proof. Apply Theorem 52.11.2 with s = 1 (we get finiteness too). □

https://stacks.math.columbia.edu/tag/0DXQ
https://stacks.math.columbia.edu/tag/0DXR
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52.12. Algebraization of formal sections, II

0EG1 It is a bit difficult to succintly state all possible consequences of the results in
Sections 52.8 and 52.10 for cohomology of coherent sheaves on quasi-affine schemes
and their completion with respect to an ideal. This section gives a nonexhaustive list
of applications to H0. The next section contains applications to higher cohomology.

Lemma 52.12.1.0H48 Let I ⊂ a be ideals of a Noetherian ring A. Let 0 → F ′ → F →
F ′′ → 0 be a short exact sequence of coherent modules on U = Spec(A)\V (a). Let
V be the set of open subschemes V ⊂ U containing U ∩ V (I) ordered by reverse
inclusion. Consider the commutative diagram

colimV H
0(V,F ′)

��

// colimV H
0(V,F)

��

// colimV H
0(V,F ′′)

��
limH0(U,F ′/InF ′) // limH0(U,F ′/InF) // limH0(U,F ′/InF ′′)

If the left and right downarrows are isomorphisms so is the middle. If the middle
and left downarrows are isomorphisms, so is the left.

Proof. The sequences in the diagram are exact in the middle and the first arrow is
injective. Thus the final statement follows from an easy diagram chase. For the rest
of the proof we assume the left and right downward arrows are isomorphisms. A
diagram chase shows that the middle downward arrow is injective. All that remains
is to show that it is surjective.

We may choose finite A-modules M and M ′ such that F and F ′ are the restriction
of M̃ and M̃ ′ to U , see Local Cohomology, Lemma 51.8.2. After replacing M ′

by anM ′ for some n ≥ 0 we may assume that F ′ → F corresponds to a module
map M ′ → M , see Cohomology of Schemes, Lemma 30.10.5. After replacing M ′

by the image of M ′ → M and seting M ′′ = M/M ′ we see that our short exact
sequence corresponds to the restriction of the short exact sequence of coherent
modules associated to the short exact sequence 0 → M ′ → M → M ′′ → 0 of
A-modules.

Let ŝ ∈ limH0(U,F/InF) with image ŝ′′ ∈ limH0(U,F ′′/InF ′′). By assumption
we find V ∈ V and a section s′′ ∈ F ′′(V ) mapping to ŝ′′. Let J ⊂ A be an ideal
such that V (J) = Spec(A) \ V . By Cohomology of Schemes, Lemma 30.10.5 after
replacing J by a power, we may assume there is an A-linear map φ : J → M ′′

corresponding to s′′. We fix this choice of J ; in the rest of the proof we will replace
V by a smaller V in V, i.e, we will have V ∩ V (J) = ∅.

Choose a presentation A⊕m → A⊕n → J → 0. Denote g1, . . . , gn ∈ J the images
of the basis vectors of A⊕n, so that J = (g1, . . . , gn). Let A⊕m → A⊕n be given by
the matric (aji) so that

∑
ajigi = 0, j = 1, . . . ,m. Since M →M ′′ is surjective, for

each i we can choose mi ∈M mapping to φ(gi) ∈M ′′. Then the element giŝ−mi of
limH0(U,F/InF) lies in the submodule limH0(U,F ′/InF ′). By assumption after
shrinking V we may assume there are s′

i ∈ F ′(V ), i = 1, . . . , n with s′
i mapping to

giŝ −mi. Set si = s′
i + mi in F(V ). Note that

∑
ajisi maps to

∑
ajigiŝ = 0 by

the map
colimV F(V ′) −→ limH0(U,F/InF)

https://stacks.math.columbia.edu/tag/0H48
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Since this map is injective (see above), we may after shrinking V assume that∑
ajisi = 0 in F(V ) for all j = 1, . . . ,m. Then it follows that we obtain an

A-module map J → F(V ) sending gi to si. By the universal property of J̃ this
A-module map corresponds to an OV -module map J̃ |V → F . However, since
V (J)∩ V = ∅ we have J̃ |V = OV . Thus we have produced a section s ∈ F(V ). We
omit the computation that shows that s maps to ŝ by the map displayed above. □

The following lemma will be superceded by Proposition 52.12.3.

Lemma 52.12.2.0EIF Let I ⊂ a be ideals of a Noetherian ring A. Let F be a coherent
module on U = Spec(A) \ V (a). Assume

(1) A is I-adically complete and has a dualizing complex,
(2) if x ∈ Ass(F), x ̸∈ V (I), {x} ∩ V (I) ̸⊂ V (a), and z ∈ {x} ∩ V (a), then

dim(O{x},z) > cd(A, I) + 1,
(3) one of the following holds:

(a) the restriction of F to U \ V (I) is (S1)
(b) the dimension of V (a) is at most 24.

Then we obtain an isomorphism

colimH0(V,F) −→ limH0(U,F/InF)

where the colimit is over opens V ⊂ U containing U ∩ V (I).

Proof. Choose a finite A-module M such that F is the restriction to U of the
coherent module associated to M , see Local Cohomology, Lemma 51.8.2. Set d =
cd(A, I). Let p be a prime of A not contained in V (I) and let q ∈ V (p) ∩ V (a).
Then either p is not an associated prime of M and hence depth(Mp) ≥ 1 or we have
dim((A/p)q) > d+ 1 by (2). Thus the hypotheses of Lemma 52.8.5 are satisfied for
s = 1 and d; here we use condition (3). Thus we find there exists an ideal J0 ⊂ a
with V (J0) ∩ V (I) = V (a) such that for any J ⊂ J0 with V (J) ∩ V (I) = V (a) the
maps

Hi
J(M) −→ Hi(RΓa(M)∧)

are isomorphisms for i = 0, 1. Consider the morphisms of exact triangles

RΓJ(M)

��

// M //

��

RΓ(V,F)

��

// RΓJ(M)[1]

��
RΓJ(M)∧ // M // RΓ(V,F)∧ // RΓJ(M)∧[1]

RΓa(M)∧ //

OO

M //

OO

RΓ(U,F)∧ //

OO

RΓa(M)∧[1]

OO

where V = Spec(A) \ V (J). Recall that RΓa(M)∧ → RΓJ(M)∧ is an isomorphism
(because a, a+I, and J+I cut out the same closed subscheme, for example see proof
of Lemma 52.8.5). Hence RΓ(U,F)∧ = RΓ(V,F)∧. This produces a commutative

4In the sense that the difference of the maximal and minimal values on V (a) of a dimension
function on Spec(A) is at most 2.

https://stacks.math.columbia.edu/tag/0EIF
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diagram

0 // H0
J(M) //

��

M //

��

// Γ(V,F)

��

// H1
J(M)

��

// 0

0 // H0(RΓJ(M)∧) // M // H0(RΓ(V,F)∧) // H1(RΓJ(M)∧) // 0

0 // H0(RΓa(M)∧) //

OO

M //

OO

H0(RΓ(U,F)∧) //

OO

H1(RΓa(M)∧) //

OO

0

with exact rows and isomorphisms for the lower vertical arrows. Hence we obtain
an isomorphism Γ(V,F) → H0(RΓ(U,F)∧). By Lemmas 52.6.20 and 52.7.2 we
have

RΓ(U,F)∧ = RΓ(U,F∧) = RΓ(U,R limF/InF)
and we find H0(RΓ(U,F)∧) = limH0(U,F/InF) by Cohomology, Lemma 20.37.1.

□

Now we bootstrap the preceding lemma to get rid of condition (3).

Proposition 52.12.3.0EG2 Let I ⊂ a be ideals of a Noetherian ring A. Let F be a
coherent module on U = Spec(A) \ V (a). Assume

(1) A is I-adically complete and has a dualizing complex,
(2) if x ∈ Ass(F), x ̸∈ V (I), {x} ∩ V (I) ̸⊂ V (a), and z ∈ {x} ∩ V (a), then

dim(O{x},z) > cd(A, I) + 1.
Then we obtain an isomorphism

colimH0(V,F) −→ limH0(U,F/InF)

where the colimit is over opens V ⊂ U containing U ∩ V (I).

Proof. Let T ⊂ U be the set of points x with {x} ∩ V (I) ⊂ V (a). Let F → F ′ be
the surjection of coherent modules on U constructed in Local Cohomology, Lemma
51.15.1. Since F → F ′ is an isomorphism over an open V ⊂ U containing U ∩V (I)
it suffices to prove the lemma with F replaced by F ′. Hence we may and do assume
for x ∈ U with {x} ∩ V (I) ⊂ V (a) we have depth(Fx) ≥ 1.

Let V be the set of open subschemes V ⊂ U containing U ∩V (I) ordered by reverse
inclusion. This is a directed set. We first claim that

F(V ) −→ limH0(U,F/InF)

is injective for any V ∈ F (and in particular the map of the lemma is injective).
Namely, an associated point x of F must have {x} ∩ U ∩ Y ̸= ∅ by the previous
paragraph. If y ∈ {x}∩U∩Y then Fx is a localization of Fy and Fy ⊂ limFy/InFy
by Krull’s intersection theorem (Algebra, Lemma 10.51.4). This proves the claim
as a section s ∈ F(V ) in the kernel would have to have empty support, hence would
have to be zero.

Choose a finite A-module M such that F is the restriction of M̃ to U , see Lo-
cal Cohomology, Lemma 51.8.2. We may and do assume that H0

a(M) = 0. Let
Ass(M) \ V (I) = {p1, . . . , pn}. We will prove the lemma by induction on n. After

https://stacks.math.columbia.edu/tag/0EG2
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reordering we may assume that pn is a minimal element of the set {p1, . . . , pn} with
respect to inclusion, i.e, pn is a generic point of the support of M . Set

M ′ = H0
p1...pn−1I(M)

and M ′′ = M/M ′. Let F ′ and F ′′ be the coherent OU -modules corresponding
to M ′ and M ′′. Dualizing Complexes, Lemma 47.11.6 implies that M ′′ has only
one associated prime, namely pn. Hence F ′′ has only one associated point and we
see that condition (3)(a) of Lemma 52.12.2 holds; thus the map colimH0(V,F ′′)→
limH0(U,F ′′/InF ′′) is an isomorphism. On the other hand, since pn ̸∈ V (p1 . . . pn−1I)
we see that pn is not an associated prime of M ′. Hence the induction hypothesis
applies to M ′; note that since F ′ ⊂ F the condition depth(F ′

x) ≥ 1 at points
x with {x} ∩ V (I) ⊂ V (a) holds, see Algebra, Lemma 10.72.6. Thus the map
colimH0(V,F ′) → limH0(U,F ′/InF ′) is an isomorphism too. We conclude by
Lemma 52.12.1. □

Lemma 52.12.4.0EIG Let I ⊂ a be ideals of a Noetherian ring A. Let F be a coherent
module on U = Spec(A) \ V (a). Assume

(1) A is I-adically complete and has a dualizing complex,
(2) if x ∈ Ass(F), x ̸∈ V (I), {x} ∩ V (I) ̸⊂ V (a), and z ∈ V (a) ∩ {x}, then

dim(O{x},z) > cd(A, I) + 1,
(3) for x ∈ U with {x} ∩ V (I) ⊂ V (a) we have depth(Fx) ≥ 2,

Then we obtain an isomorphism
H0(U,F) −→ limH0(U,F/InF)

Proof. Let ŝ ∈ limH0(U,F/InF). By Proposition 52.12.3 we find that ŝ is the
image of an element s ∈ F(V ) for some V ⊂ U open containing U ∩V (I). However,
condition (3) shows that depth(Fx) ≥ 2 for all x ∈ U \ V and hence we find that
F(V ) = F(U) by Divisors, Lemma 31.5.11 and the proof is complete. □

Lemma 52.12.5.0EIH Let A be a Noetherian ring. Let f ∈ a ⊂ A be an element of an
ideal of A. Let M be a finite A-module. Assume

(1) A is f -adically complete,
(2) f is a nonzerodivisor on M ,
(3) H1

a(M/fM) is a finite A-module.
Then with U = Spec(A) \ V (a) the map

colimV Γ(V, M̃) −→ lim Γ(U, M̃/fnM)
is an isomorphism where the colimit is over opens V ⊂ U containing U ∩ V (f).

Proof. Set F = M̃ |U . The finiteness of H1
a(M/fM) implies that H0(U,F/fF)

is finite, see Local Cohomology, Lemma 51.8.2. By Cohomology, Lemma 20.36.3
(which applies as f is a nonzerodivisor on F) we see that N = limH0(U,F/fnF)
is a finite A-module, is f -torsion free, and N/fN ⊂ H0(U,F/fF). On the other
hand, we have a map M → N and a compatible map

M/fM −→ H0(U,F/fF)
For g ∈ a we see that (M/fM)g maps isomorphically to H0(U ∩D(f),F/fF) since
F/fF is the restriction of M̃/fM to U . We conclude that Mg → Ng induces an

https://stacks.math.columbia.edu/tag/0EIG
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isomorphism
Mg/fMg = (M/fM)g → (N/fN)g = Ng/fNg

Since f is a nonzerodivisor on both N and M we conclude that Mg → Ng induces
an isomorphism on f -adic completions which in turn implies Mg → Ng is an iso-
morphism in an open neightbourhood of V (f) ∩D(g). Since g ∈ a was arbitrary,
we conclude that M and N determine isomorphic coherent modules over an open
V as in the statement of the lemma. This finishes the proof. □

Proposition 52.12.6.0H49 Let A be a Noetherian ring. Let f ∈ a ⊂ A be an element of
an ideal of A. Let F be a coherent module on U = Spec(A) \ V (a). Assume

(1) A is f -adically complete and has a dualizing complex,
(2) if x ∈ Ass(F), x ̸∈ V (f), {x} ∩ V (f) ̸⊂ V (a), and z ∈ {x} ∩ V (a), then

dim(O{x},z) > 2.
Then the map

colimV Γ(V,F) −→ lim Γ(U,F/fnF)
is an isomorphism where the colimit is over opens V ⊂ U containing U ∩ V (f).

First proof. Recall that A is universally catenary and with Gorenstein formal fibres,
see Dualizing Complexes, Lemmas 47.23.2 and 47.17.4. Thus we may consider the
map F → F ′ constructed in Local Cohomology, Lemma 51.15.3 for the closed
subset V (f) ∩ U of U . Observe that

(1) The kernel and cokernel of F → F ′ are supported on V (f) ∩ U .
(2) The module F ′ is f -torsion free as its stalks have depth ≥ 1 for all points

of V (f) ∩ U , i.e., F ′ has no associated points in V (f) ∩ U .
(3) If y ∈ V (f) ∩ U is an associated point of F ′/fF ′, then depth(F ′

y) = 1
and hence (by the construction of F ′) there is an immediate specialization
x ⇝ y with x ̸∈ V (f) an associated point of F . It follows that y cannot
have an immediate specialization in Spec(A) to a point z ∈ V (a) by our
assumption (2).

(4) It follows from (3) that H0(U,F ′/fF ′) is a finite A-module, see Local
Cohomology, Lemma 51.12.1.

These observations will allow us to finish the proof.
First, we claim the lemma holds for F ′. Namely, choose a finite A-module M ′ such
that F ′ is the restriction to U of the coherent module associated to M ′, see Local
Cohomology, Lemma 51.8.2. Since F ′ is f -torsion free, we may assume M ′ is f -
torsion free as well. Observation (4) above shows that H1

a(M ′) is a finite A-module,
see Local Cohomology, Lemma 51.8.2. Thus the claim by Lemma 52.12.5.
Second, we observe that the lemma holds trivially for any coherent OU -module
supported on V (f) ∩ U . Let K, resp. G, resp. Q be the kernel, resp. image, resp.
cokernel of the map F → F ′. The short exact sequence 0→ G → F ′ → Q→ 0 and
Lemma 52.12.1 show that the result holds for G. Then we do this again with the
short exact sequence 0→ K → F → G → 0 to finish the proof. □

Second proof. The proposition is a special case of Proposition 52.12.3. □

Lemma 52.12.7.0EII Let A be a Noetherian ring. Let f ∈ a ⊂ A be an element of an
ideal of A. Let M be a finite A-module. Assume

(1) A is f -adically complete,
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(2) H1
a(M) and H2

a(M) are annihilated by a power of f .
Then with U = Spec(A) \ V (a) the map

Γ(U, M̃) −→ lim Γ(U, M̃/fnM)
is an isomorphism.

Proof. We may apply Lemma 52.3.2 to U and F = M̃ |U because F is a Noetherian
object in the category of coherent OU -modules. Since H1(U,F) = H2

a(M) (Local
Cohomology, Lemma 51.8.2) is annihilated by a power of f , we see that its f -adic
Tate module is zero. Hence the lemma shows limH0(U,F/fnF) is equal to the
usual f -adic completion of H0(U,F). Consider the short exact sequence

0→M/H0
a(M)→ H0(U,F)→ H1

a(M)→ 0
of Local Cohomology, Lemma 51.8.2. Since M/H0

a(M) is a finite A-module, it is
complete, see Algebra, Lemma 10.97.1. Since H1

a(M) is killed by a power of f , we
conclude from Algebra, Lemma 10.96.4 that H0(U,F) is complete as well. This
finishes the proof. □

52.13. Algebraization of formal sections, III

0EIJ The next section contains a nonexhaustive list of applications of the material on
completion of local cohomology to higher cohomology of coherent modules on quasi-
affine schemes and their completion with respect to an ideal.

Proposition 52.13.1.0EG4 Let I ⊂ a be ideals of a Noetherian ring A. Let F be a
coherent module on U = Spec(A) \ V (a). Let s ≥ 0. Assume

(1) A is I-adically complete and has a dualizing complex,
(2) if x ∈ U \ V (I) then depth(Fx) > s or

depth(Fx) + dim(O{x},z) > cd(A, I) + s+ 1

for all z ∈ V (a) ∩ {x},
(3) one of the following conditions holds:

(a) the restriction of F to U \ V (I) is (Ss+1), or
(b) the dimension of V (a) is at most 25.

Then the maps
Hi(U,F) −→ limHi(U,F/InF)

are isomorphisms for i < s. Moreover we have an isomorphism
colimHs(V,F) −→ limHs(U,F/InF)

where the colimit is over opens V ⊂ U containing U ∩ V (I).

Proof. We may assume s > 0 as the case s = 0 was done in Proposition 52.12.3.
Choose a finite A-module M such that F is the restriction to U of the coherent
module associated to M , see Local Cohomology, Lemma 51.8.2. Set d = cd(A, I).
Let p be a prime of A not contained in V (I) and let q ∈ V (p) ∩ V (a). Then
either depth(Mp) ≥ s + 1 > s or we have dim((A/p)q) > d + s + 1 by (2). By
Lemma 52.10.5 we conclude that the assumptions of Situation 52.10.1 are satisfied

5In the sense that the difference of the maximal and minimal values on V (a) of a dimension
function on Spec(A) is at most 2.
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for A, I, V (a),M, s, d. On the other hand, the hypotheses of Lemma 52.8.5 are
satisfied for s+ 1 and d; this is where condition (3) is used.
Applying Lemma 52.8.5 we find there exists an ideal J0 ⊂ a with V (J0) ∩ V (I) =
V (a) such that for any J ⊂ J0 with V (J) ∩ V (I) = V (a) the maps

Hi
J(M) −→ Hi(RΓa(M)∧)

is an isomorphism for i ≤ s+ 1.
For i ≤ s the map Hi

a(M) → Hi
J(M) is an isomorphism by Lemmas 52.10.3 and

52.8.4. Using the comparison of cohomology and local cohomology (Local Coho-
mology, Lemma 51.2.2) we deduce Hi(U,F) → Hi(V,F) is an isomorphism for
V = Spec(A) \ V (J) and i < s.
By Theorem 52.10.8 we have Hi

a(M) = limHi
a(M/InM) for i ≤ s. By Lemma

52.10.9 we have Hs+1
a (M) = limHs+1

a (M/InM).
The isomorphism H0(U,F) = H0(V,F) = limH0(U,F/InF) follows from the
above and Proposition 52.12.3. For 0 < i < s we get the desired isomorphisms
Hi(U,F) = Hi(V,F) = limHi(U,F/InF) in the same manner using the relation
between local cohomology and cohomology; it is easier than the case i = 0 because
for i > 0 we have
Hi(U,F) = Hi+1

a (M), Hi(V,F) = Hi+1
J (M), Hi(RΓ(U,F)∧) = Hi+1(RΓa(M)∧)

Similarly for the final statement. □

Lemma 52.13.2.0EKM Let A be a Noetherian ring. Let f ∈ a ⊂ A be an element of an
ideal of A. Let M be a finite A-module. Let s ≥ 0. Assume

(1) A is f -adically complete,
(2) Hi

a(M) is annihilated by a power of f for i ≤ s+ 1.
Then with U = Spec(A) \ V (a) the map

Hi(U, M̃) −→ limHi(U, M̃/fnM)
is an isomorphism for i < s.

Proof. By induction on s. If s = 0, the assertion is empty. If s = 1, then the
result is Lemma 52.12.7. Assume s > 1. By induction it suffices to prove the result
for i = s − 1 ≥ 1. We may apply Lemma 52.3.2 to U and F = M̃ |U because
F is a Noetherian object in the category of coherent OU -modules. Observe that
Hj(U,F) = Hj+1

a (M) for all j by Local Cohomology, Lemma 51.8.2. Thus for
j = s = (s − 1) + 1 this is annihilated by a power of f by assumption. Thus it
follows from Lemma 52.3.2 that limHs−1(U,F/fnF) is the usual f -adic completion
of Hs−1(U,F). Then again using that this module is killed by a power of f we see
that the completion is simply equal to Hs−1(U,F) as desired. □

52.14. Application to connectedness

0ECQ In this section we discuss Grothendieck’s connectedness theorem and variants; the
original version can be found as [Gro68, Exposee XIII, Theorem 2.1]. There is a
version called Faltings’ connectedness theorem in the literature; our guess is that
this refers to [Fal80a, Theorem 6]. Let us state and prove the optimal version for
complete local rings given in [Var09, Theorem 1.6].
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Lemma 52.14.1.0ECR [Var09, Theorem
1.6]

Let (A,m) be a Noetherian complete local ring. Let I be a proper
ideal of A. Set X = Spec(A) and Y = V (I). Denote

(1) d the minimal dimension of an irreducible component of X, and
(2) c the minimal dimension of a closed subset Z ⊂ X such that X \ Z is

disconnected.
Then for Z ⊂ Y closed we have Y \ Z is connected if dim(Z) < min(c, d − 1) −
cd(A, I). In particular, the punctured spectrum of A/I is connected if cd(A, I) <
min(c, d− 1).

Proof. Let us first prove the final assertion. As a first case, if the punctured spec-
trum of A/I is empty, then Local Cohomology, Lemma 51.4.10 shows every ir-
reducible component of X has dimension ≤ cd(A, I) and we get min(c, d − 1) −
cd(A, I) < 0 which implies the lemma holds in this case. Thus we may assume
U ∩ Y is nonempty where U = X \ {m} is the punctured spectrum of A. We may
replace A by its reduction. Observe that A has a dualizing complex (Dualizing
Complexes, Lemma 47.22.4) and that A is complete with respect to I (Algebra,
Lemma 10.96.8). If we assume d−1 > cd(A, I), then we may apply Lemma 52.11.3
to see that

colimH0(V,OV ) −→ limH0(U,OU/InOU )

is an isomorphism where the colimit is over opens V ⊂ U containing U∩Y . If U∩Y
is disconnected, then its nth infinitesimal neighbourhood in U is disconnected for
all n and we find the right hand side has a nontrivial idempotent (here we use that
U ∩ Y is nonempty). Thus we can find a V which is disconnected. Set Z = X \ V .
By Local Cohomology, Lemma 51.4.10 we see that every irreducible component of
Z has dimension ≤ cd(A, I). Hence c ≤ cd(A, I) and this indeed proves the final
statement.

We can deduce the statement of the lemma from what we just proved as follows.
Suppose that Z ⊂ Y closed and Y \Z is disconnected and dim(Z) = e. Recall that
a connected space is nonempty by convention. Hence we conclude either (a) Y = Z
or (b) Y \Z = W1⨿W2 with Wi nonempty, open, and closed in Y \Z. In case (b) we
may pick points wi ∈ Wi which are closed in U , see Morphisms, Lemma 29.16.10.
Then we can find f1, . . . , fe ∈ m such that V (f1, . . . , fe) ∩ Z = {m} and in case
(b) we may assume wi ∈ V (f1, . . . , fe). Namely, we can inductively using prime
avoidance choose fi such that dimV (f1, . . . , fi)∩Z = e−i and such that in case (b)
we have w1, w2 ∈ V (fi). It follows that the punctured spectrum of A/I+(f1, . . . , fe)
is disconnected (small detail omitted). Since cd(A, I + (f1, . . . , fe)) ≤ cd(A, I) + e
by Local Cohomology, Lemmas 51.4.4 and 51.4.3 we conclude that

cd(A, I) + e ≥ min(c, d− 1)

by the first part of the proof. This implies e ≥ min(c, d − 1) − cd(A, I) which is
what we had to show. □

Lemma 52.14.2.0EG5 Let I ⊂ a be ideals of a Noetherian ring A. Assume
(1) A is I-adically complete and has a dualizing complex,
(2) if p ⊂ A is a minimal prime not contained in V (I) and q ∈ V (p) ∩ V (a),

then dim((A/p)q) > cd(A, I) + 1,
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(3) any nonempty open V ⊂ Spec(A) which contains V (I) \ V (a) is con-
nected6.

Then V (I) \ V (a) is either empty or connected.
Proof. We may replace A by its reduction. Then we have the inequality in (2) for
all associated primes of A. By Proposition 52.12.3 we see that

colimH0(V,OV ) = limH0(Tn,OTn)
where the colimit is over the opens V as in (3) and Tn is the nth infinitesimal
neighbourhood of T = V (I)\V (a) in U = Spec(A)\V (a). Thus T is either empty or
connected, since if not, then the right hand side would have a nontrivial idempotent
and we’ve assumed the left hand side does not. Some details omitted. □

Lemma 52.14.3.0EG3 Let A be a Noetherian domain which has a dualizing complex
and which is complete with respect to a nonzero f ∈ A. Let f ∈ a ⊂ A be an
ideal. Assume every irreducible component of Z = V (a) has codimension > 2 in
X = Spec(A), i.e., assume every irreducible component of Z has codimension > 1
in Y = V (f). Then Y \ Z is connected.

Proof. This is a special case of Lemma 52.14.2 (whose proof relies on Proposition
52.12.3). Below we prove it using the easier Proposition 52.12.6.
Set U = X \ Z. By Proposition 52.12.6 we have an isomorphism

colim Γ(V,OV )→ limn Γ(U,OU/fnOU )
where the colimit is over open V ⊂ U containing U ∩ Y . Hence if U ∩ Y is
disconnected, then for some V there exists a nontrivial idempotent in Γ(V,OV ).
This is impossible as V is an integral scheme as X is the spectrum of a domain. □

52.15. The completion functor

0EKN Let X be a Noetherian scheme. Let Y ⊂ X be a closed subscheme with quasi-
coherent sheaf of ideals I ⊂ OX . In this section we consider inverse systems of
coherent OX -modules (Fn) with Fn annihilated by In such that the transition
maps induce isomorphisms Fn+1/I

nFn+1 → Fn. The category of these inverse
systems was denoted

Coh(X, I)
in Cohomology of Schemes, Section 30.23. This category is equivalent to the cate-
gory of coherent modules on the formal completion of X along Y ; however, since we
have not yet introduced formal schemes or coherent modules on them, we cannot
use this terminology here. We are particularly interested in the completion functor

Coh(OX) −→ Coh(X, I), F 7−→ F∧

See Cohomology of Schemes, Equation (30.23.3.1).
Lemma 52.15.1.0EKP Let X be a Noetherian scheme and let Y ⊂ X be a closed sub-
scheme. Let Yn ⊂ X be the nth infinitesimal neighbourhood of Y in X. Consider
the following conditions

(1) X is quasi-affine and Γ(X,OX)→ lim Γ(Yn,OYn) is an isomorphism,
(2) X has an ample invertible module L and Γ(X,L⊗m)→ lim Γ(Yn,L⊗m|Yn)

is an isomorphism for all m≫ 0,
6For example if A is a domain.
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(3) for every finite locally freeOX -module E the map Γ(X, E)→ lim Γ(Yn, E|Yn)
is an isomorphism, and

(4) the completion functor Coh(OX)→ Coh(X, I) is fully faithful on the full
subcategory of finite locally free objects.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4) and (4) ⇒ (3).

Proof. Proof of (3) ⇒ (4). If F and G are finite locally free on X, then considering
H = HomOX

(G,F) and using Cohomology of Schemes, Lemma 30.23.5 we see that
(3) implies (4).

Proof of (2) → (3). Namely, let L be ample on X and suppose that E is a finite
locally free OX -module. We claim we can find a universally exact sequence

0→ E → (L⊗p)⊕r → (L⊗q)⊕s

for some r, s ≥ 0 and 0≪ p≪ q. If this holds, then using the exact sequence

0→ lim Γ(E|Yn)→ lim Γ((L⊗p)⊕r|Yn)→ lim Γ((L⊗q)⊕s|Yn)

and the isomorphisms in (2) we get the isomorphism in (3). To prove the claim,
consider the dual locally free module HomOX

(E ,OX) and apply Properties, Propo-
sition 28.26.13 to find a surjection

(L⊗−p)⊕r −→ HomOX
(E ,OX)

Taking duals we obtain the first map in the exact sequence (it is universally injective
because being a surjection is universal). Repeat with the cokernel to get the second.
Some details omitted.

Proof of (1) ⇒ (2). This is true because if X is quasi-affine then OX is an ample
invertible module, see Properties, Lemma 28.27.1.

We omit the proof of (4) ⇒ (3). □

Given a Noetherian scheme and a quasi-coherent sheaf of ideals I ⊂ OX we will
say an object (Fn) of Coh(X, I) is finite locally free if each Fn is a finite locally
free OX/In-module.

Lemma 52.15.2.0EK2 Let X be a Noetherian scheme and let Y ⊂ X be a closed sub-
scheme with ideal sheaf I ⊂ OX . Let Yn ⊂ X be the nth infinitesimal neighbour-
hood of Y in X. Let V be the set of open subschemes V ⊂ X containing Y ordered
by reverse inclusion.

(1) X is quasi-affine and

colimV Γ(V,OV ) −→ lim Γ(Yn,OYn)

is an isomorphism,
(2) X has an ample invertible module L and

colimV Γ(V,L⊗m) −→ lim Γ(Yn,L⊗m|Yn)

is an isomorphism for all m≫ 0,
(3) for every V ∈ V and every finite locally free OV -module E the map

colimV ′≥V Γ(V ′, E|V ′) −→ lim Γ(Yn, E|Yn)

is an isomorphism, and
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(4) the completion functor
colimV Coh(OV ) −→ Coh(X, I), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects (see
explanation above).

Then (1) ⇒ (2) ⇒ (3) ⇒ (4) and (4) ⇒ (3).

Proof. Observe that V is a directed set, so the colimits are as in Categories, Section
4.19. The rest of the argument is almost exactly the same as the argument in the
proof of Lemma 52.15.1; we urge the reader to skip it.
Proof of (3) ⇒ (4). If F and G are finite locally free on V ∈ V, then considering
H = HomOV

(G,F) and using Cohomology of Schemes, Lemma 30.23.5 we see that
(3) implies (4).
Proof of (2) ⇒ (3). Let L be ample on X and suppose that E is a finite locally free
OV -module for some V ∈ V. We claim we can find a universally exact sequence

0→ E → (L⊗p)⊕r|V → (L⊗q)⊕s|V
for some r, s ≥ 0 and 0 ≪ p ≪ q. If this is true, then the isomorphism in (2) will
imply the isomorphism in (3). To prove the claim, recall that L|V is ample, see
Properties, Lemma 28.26.14. Consider the dual locally free module HomOV

(E ,OV )
and apply Properties, Proposition 28.26.13 to find a surjection

(L⊗−p)⊕r|V −→ HomOV
(E ,OV )

(it is universally injective because being a surjection is universal). Taking duals we
obtain the first map in the exact sequence. Repeat with the cokernel to get the
second. Some details omitted.
Proof of (1) ⇒ (2). This is true because if X is quasi-affine then OX is an ample
invertible module, see Properties, Lemma 28.27.1.
We omit the proof of (4) ⇒ (3). □

Lemma 52.15.3.0EIQ Let X be a Noetherian scheme. Let I ⊂ OX be a quasi-coherent
sheaf of ideals. The functor

Coh(X, I) −→ Pro-QCoh(OX)
is fully faithful, see Categories, Remark 4.22.5.

Proof. Let (Fn) and (Gn) be objects of Coh(X, I). A morphism of pro-objects α
from (Fn) to (Gn) is given by a system of maps αn : Fn′(n) → Gn where N → N,
n 7→ n′(n) is an increasing function. Since Fn = Fn′(n)/InFn′(n) and since Gn is
annihilated by In we see that αn induces a map Fn → Gn. □

Next we add some examples of the kind of fully faithfulness result we will be able
to prove using the work done earlier in this chapter.

Lemma 52.15.4.0EKQ Let I ⊂ a be ideals of a Noetherian ring A. Let U = Spec(A) \
V (a). Assume

(1) A is I-adically complete and has a dualizing complex,
(2) for any associated prime p ⊂ A with p ̸∈ V (I) and V (p) ∩ V (I) ̸⊂ V (a)

and q ∈ V (p) ∩ V (a) we have dim((A/p)q) > cd(A, I) + 1,
(3) for p ⊂ A with p ̸∈ V (I) and V (p)∩V (I) ⊂ V (a) we have depth(Ap) ≥ 2.
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Then the completion functor
Coh(OU ) −→ Coh(U, IOU ), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects.

Proof. By Lemma 52.15.1 it suffices to show that
Γ(U,OU ) = lim Γ(U,OU/InOU )

This follows immediately from Lemma 52.12.4. □

Lemma 52.15.5.0EKS Let A be a Noetherian ring. Let f ∈ a ⊂ A be an element of an
ideal of A. Let U = Spec(A) \ V (a). Assume

(1) A is f -adically complete,
(2) H1

a(A) and H2
a(A) are annihilated by a power of f .

Then the completion functor
Coh(OU ) −→ Coh(U, IOU ), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects.

Proof. By Lemma 52.15.1 it suffices to show that
Γ(U,OU ) = lim Γ(U,OU/InOU )

This follows immediately from Lemma 52.12.7. □

Lemma 52.15.6.0EKT Let A be a Noetherian ring. Let f ∈ a be an element of an ideal
of A. Let U = Spec(A) \ V (a). Assume

(1) A has a dualizing complex and is complete with respect to f ,
(2) for every prime p ⊂ A, f ̸∈ p and q ∈ V (p) ∩ V (a) we have depth(Ap) +

dim((A/p)q) > 2.
Then the completion functor

Coh(OU ) −→ Coh(U, IOU ), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects.

Proof. Follows from Lemma 52.15.5 and Local Cohomology, Proposition 51.10.1.
□

Lemma 52.15.7.0EKU Let I ⊂ a ⊂ A be ideals of a Noetherian ring A. Let U =
Spec(A) \ V (a). Let V be the set of open subschemes of U containing U ∩ V (I)
ordered by reverse inclusion. Assume

(1) A is I-adically complete and has a dualizing complex,
(2) for any associated prime p ⊂ A with I ̸⊂ p and V (p) ∩ V (I) ̸⊂ V (a) and

q ∈ V (p) ∩ V (a) we have dim((A/p)q) > cd(A, I) + 1.
Then the completion functor

colimV Coh(OV ) −→ Coh(U, IOU ), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects.

Proof. By Lemma 52.15.2 it suffices to show that
colimV Γ(V,OV ) = lim Γ(U,OU/InOU )

This follows immediately from Proposition 52.12.3. □
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Lemma 52.15.8.0EKV Let A be a Noetherian ring. Let f ∈ a ⊂ A be an element of an
ideal of A. Let U = Spec(A) \ V (a). Let V be the set of open subschemes of U
containing U ∩ V (f) ordered by reverse inclusion. Assume

(1) A is f -adically complete,
(2) f is a nonzerodivisor,
(3) H1

a(A/fA) is a finite A-module.
Then the completion functor

colimV Coh(OV ) −→ Coh(U, fOU ), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects.

Proof. By Lemma 52.15.2 it suffices to show that
colimV Γ(V,OV ) = lim Γ(U,OU/InOU )

This follows immediately from Lemma 52.12.5. □

Lemma 52.15.9.0EIV Let I ⊂ a ⊂ A be ideals of a Noetherian ring A. Let U =
Spec(A) \ V (a). Let V be the set of open subschemes of U containing U ∩ V (I)
ordered by reverse inclusion. Let F and G be coherent OV -modules for some V ∈ V.
The map

colimV ′≥V HomV (G|V ′ ,F|V ′) −→ HomCoh(U,IOU )(G∧,F∧)
is bijective if the following assumptions hold:

(1) A is I-adically complete and has a dualizing complex,
(2) if x ∈ Ass(F), x ̸∈ V (I), {x} ∩ V (I) ̸⊂ V (a) and z ∈ {x} ∩ V (a), then

dim(O{x},z) > cd(A, I) + 1.

Proof. We may choose coherent OU -modules F ′ and G′ whose restriction to V is F
and G, see Properties, Lemma 28.22.5. We may modify our choice of F ′ to ensure
that Ass(F ′) ⊂ V , see for example Local Cohomology, Lemma 51.15.1. Thus we
may and do replace V by U and F and G by F ′ and G′. Set H = HomOU

(G,F).
This is a coherent OU -module. We have
HomV (G|V ,F|V ) = H0(V,H) and limH0(U,H/InH) = MorCoh(U,IOU )(G∧,F∧)
See Cohomology of Schemes, Lemma 30.23.5. Thus if we can show that the as-
sumptions of Proposition 52.12.3 hold for H, then the proof is complete. This
holds because Ass(H) ⊂ Ass(F). See Cohomology of Schemes, Lemma 30.11.2. □

52.16. Algebraization of coherent formal modules, I

0DXS The essential surjectivity of the completion functor (see below) was studied system-
atically in [Gro68], [Ray75], and [Ray74]. We work in the following affine situation.

Situation 52.16.1.0EHC Here A is a Noetherian ring and I ⊂ a ⊂ A are ideals. We set
X = Spec(A), Y = V (I) = Spec(A/I), and Z = V (a) = Spec(A/a). Furthermore
U = X \ Z.

In this section we try to find conditions that guarantee an object of Coh(U, IOU ) is
in the image of the completion functor Coh(OU )→ Coh(U, IOU ). See Cohomology
of Schemes, Section 30.23 and Section 52.15.

Lemma 52.16.2.0DXT In Situation 52.16.1. Consider an inverse system (Mn) of A-
modules such that
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(1) Mn is a finite A-module,
(2) Mn is annihilated by In,
(3) the kernel and cokernel of Mn+1/I

nMn+1 →Mn are a-power torsion.
Then (M̃n|U ) is in Coh(U, IOU ). Conversely, every object of Coh(U, IOU ) arises in
this manner.

Proof. We omit the verification that (M̃n|U ) is in Coh(U, IOU ). Let (Fn) be an
object of Coh(U, IOU ). By Local Cohomology, Lemma 51.8.2 we see that Fn =
M̃n for some finite A/In-module Mn. After dividing Mn by H0

a(Mn) we may
assume Mn ⊂ H0(U,Fn), see Dualizing Complexes, Lemma 47.11.6 and the already
referenced lemma. After replacing inductively Mn+1 by the inverse image of Mn

under the map Mn+1 → H0(U,Fn+1) → H0(U,Fn), we may assume Mn+1 maps
into Mn. This gives a inverse system (Mn) satisfying (1) and (2) such that Fn =
M̃n. To see that (3) holds, use that Mn+1/I

nMn+1 → Mn is a map of finite A-
modules which induces an isomorphism after applying ˜ and restriction to U (here
we use the first referenced lemma one more time). □

In Situation 52.16.1 we can study the completion functor Cohomology of Schemes,
Equation (30.23.3.1)

(52.16.2.1)0EIK Coh(OU ) −→ Coh(U, IOU ), F 7−→ F∧

If A is I-adically complete, then this functor is fully faithful on suitable subcate-
gories by our earlier work on algebraization of formal sections, see Section 52.15 and
Lemma 52.19.6 for some sample results. Next, let (Fn) be an object of Coh(U, IOU ).
Still assuming A is I-adically complete, we can ask: When is (Fn) in the essential
image of the completion functor displayed above?

Lemma 52.16.3.0EIL In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ). Con-
sider the following conditions:

(1) (Fn) is in the essential image of the functor (52.16.2.1),
(2) (Fn) is the completion of a coherent OU -module,
(3) (Fn) is the completion of a coherent OV -module for U ∩Y ⊂ V ⊂ U open,
(4) (Fn) is the completion of the restriction to U of a coherent OX -module,
(5) (Fn) is the restriction to U of the completion of a coherent OX -module,
(6) there exists an object (Gn) of Coh(X, IOX) whose restriction to U is (Fn).

Then conditions (1), (2), (3), (4), and (5) are equivalent and imply (6). If A is
I-adically complete then condition (6) implies the others.

Proof. Parts (1) and (2) are equivalent, because the completion of a coherent OU -
module F is by definition the image of F under the functor (52.16.2.1). If V ⊂ U
is an open subscheme containing U ∩ Y , then we have

Coh(V, IOV ) = Coh(U, IOU )

since the category of coherent OV -modules supported on V ∩ Y is the same as the
category of coherent OU -modules supported on U∩Y . Thus the completion of a co-
herent OV -module is an object of Coh(U, IOU ). Having said this the equivalence of
(2), (3), (4), and (5) holds because the functors Coh(OX)→ Coh(OU )→ Coh(OV )
are essentially surjective. See Properties, Lemma 28.22.5.
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It is always the case that (5) implies (6). Assume A is I-adically complete. Then
any object of Coh(X, IOX) corresponds to a finite A-module by Cohomology of
Schemes, Lemma 30.23.1. Thus we see that (6) implies (5) in this case. □

Example 52.16.4.0EHE Let k be a field. Let A = k[x, y][[t]] with I = (t) and a = (x, y, t).
Let us use notation as in Situation 52.16.1. Observe that U ∩ Y = (D(x) ∩ Y ) ∪
(D(y)∩ Y ) is an affine open covering. For n ≥ 1 consider the invertible module Ln
of OU/tnOU given by glueing Ax/tnAx and Ay/t

nAy via the invertible element of
Axy/t

nAxy which is the image of any power series of the form

u = 1 + t

xy
+
∑
n≥2

an
tn

(xy)φ(n)

with an ∈ k[x, y] and φ(n) ∈ N. Then (Ln) is an invertible object of Coh(U, IOU )
which is not the completion of a coherent OU -module L. We only sketch the
argument and we omit most of the details. Let y ∈ U ∩ Y . Then the completion of
the stalk Ly would be an invertible module hence Ly is invertible. Thus there would
exist an open V ⊂ U containing U ∩ Y such that L|V is invertible. By Divisors,
Lemma 31.28.3 we find an invertible A-module M with M̃ |V ∼= L|V . However the
ring A is a UFD hence we see M ∼= A which would imply Ln ∼= OU/InOU . Since
L2 ̸∼= OU/I2OU by construction we get a contradiction as desired.

Note that if we take an = 0 for n ≥ 2, then we see that limH0(U,Ln) is nonzero:
in this case we the function x on D(x) and the function x+ t/y on D(y) glue. On
the other hand, if we take an = 1 and φ(n) = 2n or even φ(n) = n2 then the
reader can show that limH0(U,Ln) is zero; this gives another proof that (Ln) is
not algebraizable in this case.

If in Situation 52.16.1 the ring A is not I-adically complete, then Lemma 52.16.3
suggests the correct thing is to ask whether (Fn) is in the essential image of the
restriction functor

Coh(X, IOX) −→ Coh(U, IOU )
However, we can no longer say that this means (Fn) is algebraizable. Thus we
introduce the following terminology.

Definition 52.16.5.0EIM In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ).
We say (Fn) extends to X if there exists an object (Gn) of Coh(X, IOX) whose
restriction to U is isomorphic to (Fn).

This notion is equivalent to being algebraizable over the completion.

Lemma 52.16.6.0EIN In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ). Let
A′, I ′, a′ be the I-adic completions of A, I, a. SetX ′ = Spec(A′) and U ′ = X ′\V (a′).
The following are equivalent

(1) (Fn) extends to X, and
(2) the pullback of (Fn) to U ′ is the completion of a coherent OU ′ -module.

Proof. Recall that A→ A′ is a flat ring map which induces an isomorphism A/I →
A′/I ′. See Algebra, Lemmas 10.97.2 and 10.97.4. Thus X ′ → X is a flat morphism
inducing an isomorphism Y ′ → Y . Thus U ′ → U is a flat morphism which induces
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an isomorphism U ′ ∩ Y ′ → U ∩ Y . This implies that in the commutative diagram

Coh(X ′, IOX′) // Coh(U ′, IOU ′)

Coh(X, IOX)

OO

// Coh(U, IOU )

OO

the vertical functors are equivalences. See Cohomology of Schemes, Lemma 30.23.10.
The lemma follows formally from this and the results of Lemma 52.16.3. □

In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ). To figure out if (Fn)
extends to X it makes sense to look at the A-module
(52.16.6.1)0EHD M = limH0(U,Fn)
Observe that M has a limit topology which is (a priori) coarser than the I-adic
topology since M → H0(U,Fn) annihilates InM . There are canonical maps

M̃ |U → M̃/InM |U → ˜H0(U,Fn)|U → Fn
One could hope that M̃ restricts to a coherent module on U and that (Fn) is the
completion of this module. This is naive because this has almost no chance of
being true if A is not complete. But even if A is I-adically complete this notion
is very difficult to work with. A less naive approach is to consider the following
requirement.

Definition 52.16.7.0EIP In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ). We
say (Fn) canonically extends to X if the the inverse system

{ ˜H0(U,Fn)}n≥1

in QCoh(OX) is pro-isomorphic to an object (Gn) of Coh(X, IOX).

We will see in Lemma 52.16.8 that the condition in Definition 52.16.7 is stronger
than the condition of Definition 52.16.5.

Lemma 52.16.8.0EIR In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ). If (Fn)
canonically extends to X, then

(1) ( ˜H0(U,Fn)) is pro-isomorphic to an object (Gn) of Coh(X, IOX) unique
up to unique isomorphism,

(2) the restriction of (Gn) to U is isomorphic to (Fn), i.e., (Fn) extends to X,
(3) the inverse system {H0(U,Fn)} satisfies the Mittag-Leffler condition, and
(4) the module M in (52.16.6.1) is finite over the I-adic completion of A and

the limit topology on M is the I-adic topology.

Proof. The existence of (Gn) in (1) follows from Definition 52.16.7. The uniqueness
of (Gn) in (1) follows from Lemma 52.15.3. Write Gn = M̃n. Then {Mn} is
an inverse system of finite A-modules with Mn = Mn+1/I

nMn+1. By Definition
52.16.7 the inverse system {H0(U,Fn)} is pro-isomorphic to {Mn}. Hence we see
that the inverse system {H0(U,Fn)} satisfies the Mittag-Leffler condition and that
M = limMn (as topological modules). Thus the properties of M in (4) follow
from Algebra, Lemmas 10.98.2, 10.96.12, and 10.96.3. Since U is quasi-affine the
canonical maps

˜H0(U,Fn)|U → Fn
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are isomorphisms (Properties, Lemma 28.18.2). We conclude that (Gn|U ) and (Fn)
are pro-isomorphic and hence isomorphic by Lemma 52.15.3. □

Lemma 52.16.9.0EIS In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ). Let
A → A′ be a flat ring map. Set X ′ = Spec(A′), let U ′ ⊂ X ′ be the inverse image
of U , and denote g : U ′ → U the induced morphism. Set (F ′

n) = (g∗Fn), see
Cohomology of Schemes, Lemma 30.23.9. If (Fn) canonically extends to X, then
(F ′

n) canonically extends to X ′. Moreover, the extension found in Lemma 52.16.8
for (Fn) pulls back to the extension for (F ′

n).

Proof. Let f : X ′ → X be the induced morphism. We have H0(U ′,F ′
n) =

H0(U,Fn)⊗A A′ by flat base change, see Cohomology of Schemes, Lemma 30.5.2.
Thus if (Gn) in Coh(X, IOX) is pro-isomorphic to ( ˜H0(U,Fn)), then (f∗Gn) is
pro-isomorphic to

(f∗ ˜H0(U,Fn)) = ( ˜H0(U,Fn)⊗A A′) = ( ˜H0(U ′,F ′
n))

This finishes the proof. □

Lemma 52.16.10.0EHH In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ). Let
M be as in (52.16.6.1). Assume

(a) the inverse system H0(U,Fn) has Mittag-Leffler,
(b) the limit topology on M agrees with the I-adic topology, and
(c) the image of M → H0(U,Fn) is a finite A-module for all n.

Then (Fn) extends canonically to X. In particular, if A is I-adically complete, then
(Fn) is the completion of a coherent OU -module.

Proof. Since H0(U,Fn) has the Mittag-Leffler condition and since the limit topol-
ogy on M is the I-adic topology we see that {M/InM} and {H0(U,Fn)} are
pro-isomorphic inverse systems of A-modules. Thus if we set

Gn = M̃/InM

then we see that to verify the condition in Definition 52.16.7 it suffices to show
that M is a finite module over the I-adic completion of A. This follows from the
fact that M/InM is finite by condition (c) and the above and Algebra, Lemma
10.96.12. □

The following is in some sense the most straightforward possible application Lemma
52.16.10 above.

Lemma 52.16.11.0DXW In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ). As-
sume

(1) I = (f) is a principal ideal for a nonzerodivisor f ∈ a,
(2) Fn is a finite locally free OU/fnOU -module,
(3) H1

a(A/fA) and H2
a(A/fA) are finite A-modules.

Then (Fn) extends canonically to X. In particular, if A is complete, then (Fn) is
the completion of a coherent OU -module.

Proof. We will prove this by verifying hypotheses (a), (b), and (c) of Lemma
52.16.10.
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Since Fn is locally free over OU/fnOU we see that we have short exact sequences
0 → Fn → Fn+1 → F1 → 0 for all n. Thus condition (b) holds by Cohomology,
Lemma 20.36.2.

As f is a nonzerodivisor we obtain short exact sequences

0→ A/fnA
f−→ A/fn+1A→ A/fA→ 0

and we have corresponding short exact sequences 0 → Fn → Fn+1 → F1 → 0.
We will use Local Cohomology, Lemma 51.8.2 without further mention. Our as-
sumptions imply that H0(U,OU/fOU ) and H1(U,OU/fOU ) are finite A-modules.
Hence the same thing is true for F1, see Local Cohomology, Lemma 51.12.2. Using
induction and the short exact sequences we find thatH0(U,Fn) are finite A-modules
for all n. In this way we see hypothesis (c) is satisfied.

Finally, asH1(U,F1) is a finite A-module we can apply Cohomology, Lemma 20.36.4
to see hypothesis (a) holds. □

Remark 52.16.12.0EHI In Lemma 52.16.11 if A is universally catenary with Cohen-
Macaulay formal fibres (for example if A has a dualizing complex), then the condi-
tion that H1

a(A/fA) and H2
a(A/fA) are finite A-modules, is equivalent with

depth((A/f)p) + dim((A/p)q) > 2

for all p ∈ V (f)\V (a) and q ∈ V (p)∩V (a) by Local Cohomology, Theorem 51.11.6.

For example, if A/fA is (S2) and if every irreducible component of Z = V (a) has
codimension ≥ 3 in Y = Spec(A/fA), then we get the finiteness of H1

a(A/fA) and
H2

a(A/fA). This should be contrasted with the slightly weaker conditions found in
Lemma 52.20.1 (see also Remark 52.20.2).

52.17. Algebraization of coherent formal modules, II

0EIT We continue the discussion started in Section 52.16. This section can be skipped
on a first reading.

Lemma 52.17.1.0EIU In Situation 52.16.1. Let (Fn)→ (F ′
n) be a morphism of Coh(U, IOU )

whose kernel and cokernel are annihilated by a power of I. Then
(1) (Fn) extends to X if and only if (F ′

n) extends to X, and
(2) (Fn) is the completion of a coherent OU -module if and only if (F ′

n) is.

Proof. Part (2) follows immediately from Cohomology of Schemes, Lemma 30.23.6.
To see part (1), we first use Lemma 52.16.6 to reduce to the case where A is I-
adically complete. However, in that case (1) reduces to (2) by Lemma 52.16.3. □

The following two lemmas where originally used in the proof of Lemma 52.16.10.
We keep them here for the reader who is interested to know what intermediate
results one can obtain.

Lemma 52.17.2.0EHF In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ). If the
inverse system H0(U,Fn) has Mittag-Leffler, then the canonical maps

M̃/InM |U → Fn
are surjective for all n where M is as in (52.16.6.1).
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Proof. Surjectivity may be checked on the stalk at some point y ∈ Y \ Z. If y
corresponds to the prime q ⊂ A, then we can choose f ∈ a, f ̸∈ q. Then it suffices
to show

Mf −→ H0(U,Fn)f = H0(D(f),Fn)

is surjective as D(f) is affine (equality holds by Properties, Lemma 28.17.1). Since
we have the Mittag-Leffler property, we find that

Im(M → H0(U,Fn)) = Im(H0(U,Fm)→ H0(U,Fn))

for some m ≥ n. Using the long exact sequence of cohomology we see that

Coker(H0(U,Fm)→ H0(U,Fn)) ⊂ H1(U,Ker(Fm → Fn))

Since U = X \V (a) this H1 is a-power torsion. Hence after inverting f the cokernel
becomes zero. □

Lemma 52.17.3.0EHG In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ). Let
M be as in (52.16.6.1). Set

Gn = M̃/InM.

If the limit topology on M agrees with the I-adic topology, then Gn|U is a coherent
OU -module and the map of inverse systems

(Gn|U ) −→ (Fn)

is injective in the abelian category Coh(U, IOU ).

Proof. Observe that Gn is a quasi-coherent OX -module annihilated by In and that
Gn+1/I

nGn+1 = Gn. Consider

Mn = Im(M −→ H0(U,Fn))

The assumption says that the inverse systems (Mn) and (M/InM) are isomorphic
as pro-objects of ModA. Pick f ∈ a so D(f) ⊂ U is an affine open. Then we have

(Mn)f ⊂ H0(U,Fn)f = H0(D(f),Fn)

Equality holds by Properties, Lemma 28.17.1. Thus M̃n|U → Fn is injective. It
follows that M̃n|U is a coherent module (Cohomology of Schemes, Lemma 30.9.3).
Since M → M/InM is surjective and factors as Mn′ → M/InM for some n′ ≥ n
we find that Gn|U is coherent as the quotient of a coherent module. Combined with
the initical remarks of the proof we conclude that (Gn|U ) indeed forms an object of
Coh(U, IOU ). Finally, to show the injectivity of the map it suffices to show that

lim(M/InM)f = limH0(D(f),Gn)→ limH0(D(f),Fn)

is injective, see Cohomology of Schemes, Lemmas 30.23.2 and 30.23.1. The injec-
tivity of lim(Mn)f → limH0(D(f),Fn) is clear (see above) and by our remark on
pro-systems we have lim(Mn)f = lim(M/InM)f . This finishes the proof. □
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52.18. A distance function

0EIW Let Y be a Noetherian scheme and let Z ⊂ Y be a closed subset. We define a
function

(52.18.0.1)0EIX δYZ = δZ : Y −→ Z≥0 ∪ {∞}

which measures the “distance” of a point of Y from Z. For an informal discussion,
please see Remark 52.18.3. Let y ∈ Y . We set δZ(y) = ∞ if y is contained in a
connected component of Y which does not meet Z. If y is contained in a connected
component of Y which meets Z, then we can find k ≥ 0 and a system

V0 ⊂W0 ⊃ V1 ⊂W1 ⊃ . . . ⊃ Vk ⊂Wk

of integral closed subschemes of Y such that V0 ⊂ Z and y ∈ Vk is the generic point.
Set ci = codim(Vi,Wi) for i = 0, . . . , k and bi = codim(Vi+1,Wi) for i = 0, . . . , k−1.
For such a system we set

δ(V0,W0, V1, . . . ,Wk) = k + max
i=0,1,...,k

(ci + ci+1 + . . .+ ck − bi − bi+1 − . . .− bk−1)

This is ≥ k as we can take i = k and we have ck ≥ 0. Finally, we set

δZ(y) = min δ(V0,W0, V1, . . . ,Wk)

where the minimum is over all systems of integral closed subschemes of Y as above.

Lemma 52.18.1.0EIY Let Y be a Noetherian scheme and let Z ⊂ Y be a closed subset.
(1) For y ∈ Y we have δZ(y) = 0⇔ y ∈ Z.
(2) The subsets {y ∈ Y | δZ(y) ≤ k} are stable under specialization.
(3) For y ∈ Y and z ∈ {y} ∩ Z we have dim(O{y},z) ≥ δZ(y).
(4) If δ is a dimension function on Y , then δ(y) ≤ δZ(y) + δmax where δmax

is the maximum value of δ on Z.
(5) If Y = Spec(A) is the spectrum of a catenary Noetherian local ring with

maximal ideal m and Z = {m}, then δZ(y) = dim({y}).
(6) Given a pattern of specializations

y′
0

�� ��

y′
1

��

. . . y′
k−1

$$
y0 y1 . . . yk = y

between points of Y with y0 ∈ Z and y′
i ⇝ yi an immediate specialization,

then δZ(yk) ≤ k.
(7) If Y ′ ⊂ Y is an open subscheme, then δY

′

Y ′∩Z(y′) ≥ δYZ (y′) for y′ ∈ Y ′.

Proof. Part (1) is essentially true by definition. Namely, if y ∈ Z, then we can take
k = 0 and V0 = W0 = {y}.

Proof of (2). Let y ⇝ y′ be a nontrivial specialization and let V0 ⊂ W0 ⊃ V1 ⊂
W1 ⊃ . . . ⊂ Wk is a system for y. Here there are two cases. Case I: Vk = Wk,
i.e., ck = 0. In this case we can set V ′

k = W ′
k = {y′}. An easy computation shows

that δ(V0,W0, . . . , V
′
k,W

′
k) ≤ δ(V0,W0, . . . , Vk,Wk) because only bk−1 is changed

into a bigger integer. Case II: Vk ̸= Wk, i.e., ck > 0. Observe that in this case
maxi=0,1,...,k(ci + ci+1 + . . . + ck − bi − bi+1 − . . . − bk−1) > 0. Hence if we set

https://stacks.math.columbia.edu/tag/0EIY


52.18. A DISTANCE FUNCTION 4340

V ′
k+1 = Wk+1 = {y′}, then although k is replaced by k + 1, the maximum now

looks like

max
i=0,1,...,k+1

(ci + ci+1 + . . .+ ck + ck+1 − bi − bi+1 − . . .− bk−1 − bk)

with ck+1 = 0 and bk = codim(Vk+1,Wk) > 0. This is strictly smaller than
maxi=0,1,...,k(ci+ci+1+. . .+ck−bi−bi+1−. . .−bk−1) and hence δ(V0,W0, . . . , V

′
k+1,W

′
k+1) ≤

δ(V0,W0, . . . , Vk,Wk) as desired.

Proof of (3). Given y ∈ Y and z ∈ {y} ∩ Z we get the system

V0 = {z} ⊂W0 = {y}

and c0 = codim(V0,W0) = dim(O{y},z) by Properties, Lemma 28.10.3. Thus we
see that δ(V0,W0) = 0 + c0 = c0 which proves what we want.

Proof of (4). Let δ be a dimension function on Y . Let V0 ⊂W0 ⊃ V1 ⊂W1 ⊃ . . . ⊂
Wk be a system for y. Let y′

i ∈ Wi and yi ∈ Vi be the generic points, so y0 ∈ Z
and yk = y. Then we see that

δ(yi)− δ(yi−1) = δ(y′
i−1)− δ(yi−1)− δ(y′

i−1) + δ(yi) = ci−1 − bi−1

Finally, we have δ(y′
k)− δ(yk−1) = ck. Thus we see that

δ(y)− δ(y0) = c0 + . . .+ ck − b0 − . . .− bk−1

We conclude δ(V0,W0, . . . ,Wk) ≥ k + δ(y)− δ(y0) which proves what we want.

Proof of (5). The function δ(y) = dim({y}) is a dimension function. Hence δ(y) ≤
δZ(y) by part (4). By part (3) we have δZ(y) ≤ δ(y) and we are done.

Proof of (6). Given such a sequence of points, we may assume all the specializations
y′
i ⇝ yi+1 are nontrivial (otherwise we can shorten the chain of specializations).

Then we set Vi = {yi} and Wi = {y′
i} and we compute δ(V0,W1, V1, . . . ,Wk−1) = k

because all the codimensions ci of Vi ⊂ Wi are 1 and all bi > 0. This implies
δZ(y′

k−1) ≤ k as y′
k−1 is the generic point of Wk. Then δZ(y) ≤ k by part (2) as y

is a specialization of yk−1.

Proof of (7). This is clear as their are fewer systems to consider in the computation
of δY ′

Y ′∩Z . □

Lemma 52.18.2.0EIZ Let Y be a universally catenary Noetherian scheme. Let Z ⊂ Y
be a closed subscheme. Let f : Y ′ → Y be a finite type morphism all of whose
fibres have dimension ≤ e. Set Z ′ = f−1(Z). Then

δZ(y) ≤ δZ′(y′) + e− trdegκ(y)(κ(y′))

for y′ ∈ Y ′ with image y ∈ Y .

Proof. If δZ′(y′) = ∞, then there is nothing to prove. If δZ′(y′) < ∞, then we
choose a system of integral closed subschemes

V ′
0 ⊂W ′

0 ⊃ V ′
1 ⊂W ′

1 ⊃ . . . ⊂W ′
k

of Y ′ with V ′
0 ⊂ Z ′ and y′ the generic point ofW ′

k such that δZ′(y′) = δ(V ′
0 ,W

′
0, . . . ,W

′
k).

Denote
V0 ⊂W0 ⊃ V1 ⊂W1 ⊃ . . . ⊂Wk
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the scheme theoretic images of the above schemes in Y . Observe that y is the
generic point of Wk and that V0 ⊂ Z. For each i we look at the diagram

V ′
i

//

��

W ′
i

��

V ′
i+1

oo

��
Vi // Wi Vi+1oo

Denote ni the relative dimension of V ′
i /Vi and mi the relative dimension of W ′

i/Wi;
more precisely these are the transcendence degrees of the corresponding exten-
sions of the function fields. Set ci = codim(Vi,Wi), c′

i = codim(V ′
i ,W

′
i ), bi =

codim(Vi+1,Wi), and b′
i = codim(V ′

i+1,W
′
i ). By the dimension formula we have

ci = c′
i + ni −mi and bi = b′

i + ni+1 −mi

See Morphisms, Lemma 29.52.1. Hence ci − bi = c′
i − b′

i + ni − ni+1. Thus we see
that

ci + ci+1 + . . .+ ck − bi − bi+1 − . . .− bk−1

= c′
i + c′

i+1 + . . .+ c′
k − b′

i − b′
i+1 − . . .− b′

k−1 + ni − nk + ck − c′
k

= c′
i + c′

i+1 + . . .+ c′
k − b′

i − b′
i+1 − . . .− b′

k−1 + ni −mk

Thus we see that
max
i=0,...,k

(ci + ci+1 + . . .+ ck − bi − bi+1 − . . .− bk−1)

= max
i=0,...,k

(c′
i + c′

i+1 + . . .+ c′
k − b′

i − b′
i+1 − . . .− b′

k−1 + ni −mk)

= max
i=0,...,k

(c′
i + c′

i+1 + . . .+ c′
k − b′

i − b′
i+1 − . . .− b′

k−1 + ni)−mk

≤ max
i=0,...,k

(c′
i + c′

i+1 + . . .+ c′
k − b′

i − b′
i+1 − . . .− b′

k−1) + e−mk

Since mk = trdegκ(y)(κ(y′)) we conclude that
δ(V0,W0, . . . ,Wk) ≤ δ(V ′

0 ,W
′
0, . . . ,W

′
k) + e− trdegκ(y)(κ(y′))

as desired. □

Remark 52.18.3.0EJ0 Let Y be a Noetherian scheme and let Z ⊂ Y be a closed subset.
By Lemma 52.18.1 we have

δZ(y) ≤ min

k
∣∣∣∣∣∣

there exist specializations in Y
y0 ← y′

0 → y1 ← y′
1 → . . .← y′

k−1 → yk = y
with y0 ∈ Z and y′

i ⇝ yi immediate


We claim that if Y is of finite type over a field, then equality holds. If we ever
need this result we will formulate a precise result and prove it here. However, in
general if we define δZ by the right hand side of this inequality, then we don’t know
if Lemma 52.18.2 remains true.

Example 52.18.4.0EJ1 Let k be a field and Y = An
k . Denote δ : Y → Z≥0 the usual

dimension function.
(1) If Z = {z} for some closed point z, then

(a) δZ(y) = δ(y) if y ⇝ z and
(b) δZ(y) = δ(y) + 1 if y ̸⇝ z.

(2) If Z is a closed subvariety and W = {y}, then

https://stacks.math.columbia.edu/tag/0EJ0
https://stacks.math.columbia.edu/tag/0EJ1


52.19. ALGEBRAIZATION OF COHERENT FORMAL MODULES, III 4342

(a) δZ(y) = 0 if W ⊂ Z,
(b) δZ(y) = dim(W )− dim(Z) if Z is contained in W ,
(c) δZ(y) = 1 if dim(W ) ≤ dim(Z) and W ̸⊂ Z,
(d) δZ(y) = dim(W )− dim(Z) + 1 if dim(W ) > dim(Z) and Z ̸⊂W .

A generalization of case (1) is if Y is of finite type over a field and Z = {z} is a
closed point. Then δZ(y) = δ(y) + t where t is the minimum length of a chain of
curves connecting z to a closed point of {y}.

52.19. Algebraization of coherent formal modules, III

0EJ2 We continue the discussion started in Sections 52.16 and 52.17. We will use the dis-
tance function of Section 52.18 to formulate a some natural conditions on coherent
formal modules in Situation 52.16.1.
In Situation 52.16.1 given a point y ∈ U ∩Y we can consider the I-adic completion

O∧
X,y = limOX,y/InOX,y

This is a Noetherian local ring complete with respect to IO∧
X,y with maximal ideal

m∧
y , see Algebra, Section 10.97. Let (Fn) be an object of Coh(U, IOU ). Let us

define the “stalk” of (Fn) at y by the formula
F∧
y = limFn,y

This is a finite module over O∧
X,y. See Algebra, Lemmas 10.98.2 and 10.96.12.

Definition 52.19.1.0EJ3 In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ).
Let a, b be integers. Let δYZ be as in (52.18.0.1). We say (Fn) satisfies the (a, b)-
inequalities if for y ∈ U ∩ Y and a prime p ⊂ O∧

X,y with p ̸∈ V (IO∧
X,y)

(1) if V (p) ∩ V (IO∧
X,y) ̸= {m∧

y }, then

depth((F∧
y )p) + δYZ (y) ≥ a or depth((F∧

y )p) + dim(O∧
X,y/p) + δYZ (y) > b

(2) if V (p) ∩ V (IO∧
X,y) = {m∧

y }, then

depth((F∧
y )p) + δYZ (y) > a

We say (Fn) satisfies the strict (a, b)-inequalities if for y ∈ U ∩ Y and a prime
p ⊂ O∧

X,y with p ̸∈ V (IO∧
X,y) we have

depth((F∧
y )p) + δYZ (y) > a or depth((F∧

y )p) + dim(O∧
X,y/p) + δYZ (y) > b

Here are some elementary observations.

Lemma 52.19.2.0EJ4 In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ). Let
a, b be integers.

(1) If (Fn) is annihilated by a power of I, then (Fn) satisfies the (a, b)-
inequalities for any a, b.

(2) If (Fn) satisfies the (a + 1, b)-inequalities, then (Fn) satisfies the strict
(a, b)-inequalities.

If cd(A, I) ≤ d and A has a dualizing complex, then
(3) (Fn) satisfies the (s, s+ d)-inequalities if and only if for all y ∈ U ∩ Y the

tuple O∧
X,y, IO∧

X,y, {m∧
y },F∧

y , s− δYZ (y), d is as in Situation 52.10.1.
(4) If (Fn) satisfies the strict (s, s + d)-inequalities, then (Fn) satisfies the

(s, s+ d)-inequalities.
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Proof. Immediate except for part (4) which is a consequence of Lemma 52.10.5 and
the translation in (3). □

Lemma 52.19.3.0EKW In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ). If
cd(A, I) = 1, then F satisfies the (2, 3)-inequalities if and only if

depth((F∧
y )p) + dim(O∧

X,y/p) + δYZ (y) > 3
for all y ∈ U ∩ Y and p ⊂ O∧

X,y with p ̸∈ V (IO∧
X,y).

Proof. Observe that for a prime p ⊂ O∧
X,y, p ̸∈ V (IO∧

X,y) we have V (p)∩V (IO∧
X,y) =

{m∧
y } ⇔ dim(O∧

X,y/p) = 1 as cd(A, I) = 1. See Local Cohomology, Lemmas
51.4.5 and 51.4.10. OK, consider the three numbers α = depth((F∧

y )p) ≥ 0,
β = dim(O∧

X,y/p) ≥ 1, and γ = δYZ (y) ≥ 1. Then we see Definition 52.19.1 re-
quires

(1) if β > 1, then α+ γ ≥ 2 or α+ β + γ > 3, and
(2) if β = 1, then α+ γ > 2.

It is trivial to see that this is equivalent to α+ β + γ > 3. □

In the rest of this section, which we suggest the reader skip on a first reading, we
will show that, when A is I-adically complete, the category of (Fn) of Coh(U, IOU )
which extend to X and satisfy the strict (1, 1 + cd(A, I))-inequalities is equivalent
to a full subcategory of the category of coherent OU -modules.

Lemma 52.19.4.0EJ5 In Situation 52.16.1 let F be a coherent OU -module and d ≥ 1.
Assume

(1) A is I-adically complete, has a dualizing complex, and cd(A, I) ≤ d,
(2) the completion F∧ of F satisfies the strict (1, 1 + d)-inequalities.

Let x ∈ X be a point. Let W = {x}. If W ∩ Y has an irreducible component
contained in Z and one which is not, then depth(Fx) ≥ 1.

Proof. LetW∩Y = W1∪. . .∪Wn be the decomposition into irreducible components.
By assumption, after renumbering, we can find 0 < m < n such that W1, . . . ,Wm ⊂
Z and Wm+1, . . . ,Wn ̸⊂ Z. We conclude that

W ∩ Y \ ((W1 ∪ . . . ∪Wm) ∩ (Wm+1 ∪ . . . ∪Wn))
is disconnected. By Lemma 52.14.2 we can find 1 ≤ i ≤ m < j ≤ n and z ∈Wi∩Wj

such that dim(OW,z) ≤ d + 1. Choose an immediate specialization y ⇝ z with
y ∈Wj , y ̸∈ Z; existence of y follows from Properties, Lemma 28.6.4. Observe that
δYZ (y) = 1 and dim(OW,y) ≤ d. Let p ⊂ OX,y be the prime corresponding to x. Let
p′ ⊂ O∧

X,y be a minimal prime over pO∧
X,y. Then we have

depth(Fx) = depth((F∧
y )p′) and dim(OW,y) = dim(O∧

X,y/p
′)

See Algebra, Lemma 10.163.1 and Local Cohomology, Lemma 51.11.3. Now we
read off the conclusion from the inequalities given to us. □

Lemma 52.19.5.0EJ6 In Situation 52.16.1 let F be a coherent OU -module and d ≥ 1.
Assume

(1) A is I-adically complete, has a dualizing complex, and cd(A, I) ≤ d,
(2) the completion F∧ of F satisfies the strict (1, 1 + d)-inequalities, and
(3) for x ∈ U with {x} ∩ Y ⊂ Z we have depth(Fx) ≥ 2.

Then H0(U,F)→ limH0(U,F/InF) is an isomorphism.
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Proof. We will prove this by showing that Lemma 52.12.4 applies. Thus we let
x ∈ Ass(F) with x ̸∈ Y . Set W = {x}. By condition (3) we see that W ∩ Y ̸⊂ Z.
By Lemma 52.19.4 we see that no irreducible component of W ∩ Y is contained in
Z. Thus if z ∈W ∩Z, then there is an immediate specialization y ⇝ z, y ∈W ∩Y ,
y ̸∈ Z. For existence of y use Properties, Lemma 28.6.4. Then δYZ (y) = 1 and the
assumption implies that dim(OW,y) > d. Hence dim(OW,z) > 1+d and we win. □

Lemma 52.19.6.0EJ7 In Situation 52.16.1 let F be a coherent OU -module and d ≥ 1.
Assume

(1) A is I-adically complete, has a dualizing complex, and cd(A, I) ≤ d,
(2) the completion F∧ of F satisfies the strict (1, 1 + d)-inequalities, and
(3) for x ∈ U with {x} ∩ Y ⊂ Z we have depth(Fx) ≥ 2.

Then the map
HomU (G,F) −→ HomCoh(U,IOU )(G∧,F∧)

is bijective for every coherent OU -module G.

Proof. Set H = HomOU
(G,F). Using Cohomology of Schemes, Lemma 30.11.2

or More on Algebra, Lemma 15.23.10 we see that the completion of H satisfies
the strict (1, 1 + d)-inequalities and that for x ∈ U with {x} ∩ Y ⊂ Z we have
depth(Hx) ≥ 2. Details omitted. Thus by Lemma 52.19.5 we have

HomU (G,F) = H0(U,H) = limH0(U,H/InH) = MorCoh(U,IOU )(G∧,F∧)

See Cohomology of Schemes, Lemma 30.23.5 for the final equality. □

Lemma 52.19.7.0EJ8 In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ) and
d ≥ 1. Assume

(1) A is I-adically complete, has a dualizing complex, and cd(A, I) ≤ d,
(2) (Fn) is the completion of a coherent OU -module,
(3) (Fn) satisfies the strict (1, 1 + d)-inequalities.

Then there exists a unique coherent OU -module F whose completion is (Fn) such
that for x ∈ U with {x} ∩ Y ⊂ Z we have depth(Fx) ≥ 2.

Proof. Choose a coherent OU -module F whose completion is (Fn). Let T = {x ∈
U | {x} ∩ Y ⊂ Z}. We will construct F by applying Local Cohomology, Lemma
51.15.4 with F and T . Then uniqueness will follow from the mapping property of
Lemma 52.19.6.

Since T is stable under specialization in U the only thing to check is the following.
If x′ ⇝ x is an immediate specialization of points of U with x ∈ T and x′ ̸∈ T , then
depth(Fx′) ≥ 1. Set W = {x} and W ′ = {x′}. Since x′ ̸∈ T we see that W ′ ∩ Y is
not contained in Z. If W ′ ∩ Y contains an irreducible component contained in Z,
then we are done by Lemma 52.19.4. If not, we choose an irreducible component W1
of W ∩ Y and an irreducible component W ′

1 of W ′ ∩ Y with W1 ⊂W ′
1. Let z ∈W1

be the generic point. Let y ⇝ z, y ∈W ′
1 be an immediate specialization with y ̸∈ Z;

existence of y follows fromW ′
1 ̸⊂ Z (see above) and Properties, Lemma 28.6.4. Then

we have the following z ∈ Z, x ⇝ z, x′ ⇝ y ⇝ z, y ∈ Y \ Z, and δYZ (y) = 1. By
Local Cohomology, Lemma 51.4.10 and the fact that z is a generic point of W ∩ Y
we have dim(OW,z) ≤ d. Since x′ ⇝ x is an immediate specialization we have
dim(OW ′,z) ≤ d + 1. Since y ̸= z we conclude dim(OW ′,y) ≤ d. If depth(Fx′) = 0
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then we would get a contradiction with assumption (3); details about passage from
OX,y to its completion omitted. This finishes the proof. □

52.20. Algebraization of coherent formal modules, IV

0EHJ In this section we prove two stronger versions of Lemma 52.16.11 in the local case,
namely, Lemmas 52.20.1 and 52.20.4. Although these lemmas will be obsoleted by
the more general Proposition 52.22.2, their proofs are significantly easier.

Lemma 52.20.1.0DXU In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A is local and a = m is the maximal ideal,
(2) A has a dualizing complex,
(3) I = (f) is a principal ideal for a nonzerodivisor f ∈ m,
(4) Fn is a finite locally free OU/fnOU -module,
(5) if p ∈ V (f) \ {m}, then depth((A/f)p) + dim(A/p) > 1, and
(6) if p ̸∈ V (f) and V (p) ∩ V (f) ̸= {m}, then depth(Ap) + dim(A/p) > 3.

Then (Fn) extends canonically to X. In particular, if A is complete, then (Fn) is
the completion of a coherent OU -module.

Proof. We will prove this by verifying hypotheses (a), (b), and (c) of Lemma
52.16.10.
Since Fn is locally free over OU/fnOU we see that we have short exact sequences
0 → Fn → Fn+1 → F1 → 0 for all n. Thus condition (b) holds by Cohomology,
Lemma 20.36.2.
By induction on n and the short exact sequences 0→ A/fn → A/fn+1 → A/f → 0
we see that the associated primes of A/fnA agree with the associated primes of
A/fA. Since the associated points of Fn correspond to the associated primes of
A/fnA not equal to m by assumption (3), we conclude that Mn = H0(U,Fn) is a
finite A-module by (5) and Local Cohomology, Proposition 51.8.7. Thus hypothesis
(c) holds.
To finish the proof it suffices to show that there exists an n > 1 such that the image
of

H1(U,Fn) −→ H1(U,F1)
has finite length as an A-module. Namely, this will imply hypothesis (a) by Co-
homology, Lemma 20.36.5. The image is independent of n for n large enough
by Lemma 52.5.2. Let ω•

A be a normalized dualizing complex for A. By the lo-
cal duality theorem and Matlis duality (Dualizing Complexes, Lemma 47.18.4 and
Proposition 47.7.8) our claim is equivalent to: the image of

Ext−2
A (M1, ω

•
A)→ Ext−2

A (Mn, ω
•
A)

has finite length for n≫ 1. The modules in question are finite A-modules supported
at V (f). Thus it suffices to show that this map is zero after localization at a prime
q containing f and different from m. Let ω•

Aq
be a normalized dualizing complex

on Aq and recall that ω•
Aq

= (ω•
A)q[dim(A/q)] by Dualizing Complexes, Lemma

47.17.3. Using the local structure of Fn given in (4) we find that it suffices to show
the vanishing of

Ext−2+dim(A/q)
Aq

(Aq/f, ω
•
Aq

)→ Ext−2+dim(A/q)
Aq

(Aq/f
n, ω•

Aq
)
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for n large enough. If dim(A/q) > 3, then this is immediate from Local Cohomology,
Lemma 51.9.4. For the other cases we will use the long exact sequence

. . .
fn−−→ H−1(ω•

Aq
)→ Ext−1

Aq
(Aq/f

n, ω•
Aq

)→ H0(ω•
Aq

) fn−−→ H0(ω•
Aq

)→ Ext0
Aq

(Aq/f
n, ω•

Aq
)→ 0

If dim(A/q) = 2, then H0(ω•
Aq

) = 0 because depth(Aq) ≥ 1 as f is a nonzerodivisor.
Thus the long exact sequence shows the condition is that

fn−1 : H−1(ω•
Aq

)/f → H−1(ω•
Aq

)/fn

is zero. Now H−1(ω•
q) is a finite module supported in the primes p ⊂ Aq such

that depth(Ap) + dim((A/p)q) ≤ 1. Since dim((A/p)q) = dim(A/p) − 2 condition
(6) tells us these primes are contained in V (f). Thus the desired vanishing for n
large enough. Finally, if dim(A/q) = 1, then condition (5) combined with the fact
that f is a nonzerodivisor insures that Aq has depth at least 2. Hence H0(ω•

Aq
) =

H−1(ω•
Aq

) = 0 and the long exact sequence shows the claim is equivalent to the
vanishing of

fn−1 : H−2(ω•
Aq

)/f → H−2(ω•
Aq

)/fn

NowH−2(ω•
q) is a finite module supported in the primes p ⊂ Aq such that depth(Ap)+

dim((A/p)q) ≤ 2. By condition (6) all of these primes are contained in V (f). Thus
the desired vanishing for n large enough. □

Remark 52.20.2.0DXV Let (A,m) be a complete Noetherian normal local domain of
dimension ≥ 4 and let f ∈ m be nonzero. Then assumptions (1), (2), (3), (5), and
(6) of Lemma 52.20.1 are satisfied. Thus vectorbundles on the formal completion of
U along U ∩ V (f) can be algebraized. In Lemma 52.20.4 we will generalize this to
more general coherent formal modules; please also compare with Remark 52.20.7.

Lemma 52.20.3.0EHK In Situation 52.16.1 let (Mn) be an inverse system of A-modules
as in Lemma 52.16.2 and let (Fn) be the corresponding object of Coh(U, IOU ). Let
d ≥ cd(A, I) and s ≥ 0 be integers. With notation as above assume

(1) A is local with maximal ideal m = a,
(2) A has a dualizing complex, and
(3) (Fn) satisfies the (s, s+ d)-inequalities (Definition 52.19.1).

Let E be an injective hull of the residue field of A. Then for i ≤ s there exists a
finite A-module N annihilated by a power of I and for n≫ 0 compatible maps

Hi
m(Mn)→ HomA(N,E)

whose cokernels are finite length A-modules and whose kernels Kn form an inverse
system such that Im(Kn′′ → Kn′) has finite length for n′′ ≫ n′ ≫ 0.

Proof. Let ω•
A be a normalized dualizing complex. Then δYZ = δ is the dimension

function associated with this dualizing complex. Observe that Ext−i
A (Mn, ω

•
A) is a

finite A-module annihilated by In. Fix 0 ≤ i ≤ s. Below we will find n1 > n0 > 0
such that if we set

N = Im(Ext−i
A (Mn0 , ω

•
A)→ Ext−i

A (Mn1 , ω
•
A))

then the kernels of the maps
N → Ext−i

A (Mn, ω
•
A), n ≥ n1

are finite length A-modules and the cokernelsQn form a system such that Im(Qn′ →
Qn′′) has finite length for n′′ ≫ n′ ≫ n1. This is equivalent to the statement that
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the system {Ext−i
A (Mn, ω

•
A)}n≥1 is essentially constant in the quotient of the cate-

gory of finite A-modules modulo the Serre subcategory of finite length A-modules.
By the local duality theorem (Dualizing Complexes, Lemma 47.18.4) and Matlis
duality (Dualizing Complexes, Proposition 47.7.8) we conclude that there are maps

Hi
m(Mn)→ HomA(N,E), n ≥ n1

as in the statement of the lemma.
Pick f ∈ m. Let B = A∧

f be the I-adic completion of the localization Af . Recall
that ω•

Af
= ω•

A ⊗A Af and ω•
B = ω•

A ⊗A B are dualizing complexes (Dualizing
Complexes, Lemma 47.15.6 and 47.22.3). Let M be the finite B-module limMn,f

(compare with discussion in Cohomology of Schemes, Lemma 30.23.1). Then
Ext−i

A (Mn, ω
•
A)f = Ext−i

Af
(Mn,f , ω

•
Af

) = Ext−i
B (M/InM,ω•

B)
Since m can be generated by finitely many f ∈ m it suffices to show that for each
f the system

{Ext−i
B (M/InM,ω•

B)}n≥1

is essentially constant. Some details omitted.
Let q ⊂ IB be a prime ideal. Then q corresponds to a point y ∈ U ∩ Y . Observe
that δ(q) = dim({y}) is also the value of the dimension function associated to
ω•
B (we omit the details; use that ω•

B is gotten from ω•
A by tensoring up with

B). Assumption (3) guarantees via Lemma 52.19.2 that Lemma 52.10.4 applies to
Bq, IBq, qBq,Mq with s replaced by s− δ(y). We obtain that

H
i−δ(q)
qBq

(Mq) = limH
i−δ(q)
qBq

((M/InM)q)
and this module is annihilated by a power of I. By Lemma 52.5.3 we find that the in-
verse systems Hi−δ(q)

qBq
((M/InM)q) are essentially constant with value Hi−δ(q)

qBq
(Mq).

Since (ω•
B)q[−δ(q)] is a normalized dualizing complex on Bq the local duality the-

orem shows that the system
Ext−i

B (M/InM,ω•
B)q

is essentially constant with value Ext−i
B (M,ω•

B)q.
To finish the proof we globalize as in the proof of Lemma 52.10.6; the argument
here is easier because we know the value of our system already. Namely, consider
the maps

αn : Ext−i
B (M/InM,ω•

B) −→ Ext−i
B (M,ω•

B)
for varying n. By the above, for every q we can find an n such that αn is surjective
after localization at q. Since B is Noetherian and Ext−i

B (M,ω•
B) a finite module,

we can find an n such that αn is surjective. For any n such that αn is surjective,
given a prime q ∈ V (IB) we can find an n′ > n such that Ker(αn) maps to zero
in Ext−i(M/In

′
M,ω•

B) at least after localizing at q. Since Ker(αn) is a finite
A-module and since supports of sections are quasi-compact, we can find an n′

such that Ker(αn) maps to zero in Ext−i(M/In
′
M,ω•

B). In this way we see that
Ext−i(M/InM,ω•

B) is essentially constant with value Ext−i(M,ω•
B). This finishes

the proof. □

Here is a more general version of Lemma 52.20.1.

Lemma 52.20.4.0EJ9 In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ). Assume

https://stacks.math.columbia.edu/tag/0EJ9
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(1) A is local and a = m is the maximal ideal,
(2) A has a dualizing complex,
(3) I = (f) is a principal ideal,
(4) (Fn) satisfies the (2, 3)-inequalities.

Then (Fn) extends to X. In particular, if A is I-adically complete, then (Fn) is
the completion of a coherent OU -module.

Proof. Recall that Coh(U, IOU ) is an abelian category, see Cohomology of Schemes,
Lemma 30.23.2. Over affine opens of U the object (Fn) corresponds to a finite
module over a Noetherian ring (Cohomology of Schemes, Lemma 30.23.1). Thus
the kernels of the maps fN : (Fn)→ (Fn) stabilize for N large enough. By Lemmas
52.17.1 and 52.16.3 in order to prove the lemma we may replace (Fn) by the image
of such a map. Thus we may assume f is injective on (Fn). After this replacement
the equivalent conditions of Lemma 52.3.1 hold for the inverse system (Fn) on U .
We will use this without further mention in the rest of the proof.
We will check hypotheses (a), (b), and (c) of Lemma 52.16.10. Hypothesis (b) holds
by Cohomology, Lemma 20.36.2.
Pick a inverse system of modules {Mn} as in Lemma 52.16.2. We may assume
H0

m(Mn) = 0 by replacing Mn by Mn/H
0
m(Mn) if necessary. Then we obtain short

exact sequences
0→Mn → H0(U,Fn)→ H1

m(Mn)→ 0
for all n. Let E be an injective hull of the residue field of A. By Lemma 52.20.3
and our current assumption (4) we can choose, an integer m ≥ 0, finite A-modules
N1 and N2 annihilated by f c for some c ≥ 0 and compatible systems of maps

Hi
m(Mn)→ HomA(Ni, E), i = 1, 2

for n ≥ m with the properties stated in the lemma.
We know that M = limH0(U,Fn) is an A-module whose limit topology is the f -
adic topology. Thus, given n, the module M/fnM is a subquotient of H0(U,FN )
for some N ≫ n. Looking at the information obtained above we see that f cM/fnM
is a finite A-module. Since f is a nonzerodivisor on M we conclude that M/fn−cM
is a finite A-module. In this way we see that hypothesis (c) of Lemma 52.16.10
holds.
Next, we study the module

Ob = limH1(U,Fn) = limH2
m(Mn)

For n ≥ m let Kn be the kernel of the map H2
m(Mn) → HomA(N2, E). Set K =

limKn. We obtain an exact sequence
0→ K → Ob→ HomA(N2, E)

By the above the limit topology on Ob = limH2
m(Mn) is the f -adic topology. Since

N2 is annihilated by f c we conclude the same is true for the limit topology on
K = limKn. Thus K/fK is a subquotient of Kn for n≫ 1. However, since {Kn}
is pro-isomorphic to a inverse system of finite length A-modules (by the conclusion
of Lemma 52.20.3) we conclude that K/fK is a subquotient of a finite length A-
module. It follows that K is a finite A-module, see Algebra, Lemma 10.96.12. (In
fact, we even see that dim(Supp(K)) = 1 but we will not need this.)
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Given n ≥ 1 consider the boundary map

δn : H0(U,Fn) −→ limN H
1(U, fnFN ) f−n

−−−→ Ob

(the second map is an isomorphism) coming from the short exact sequences
0→ fnFN → FN → Fn → 0

For each n set
Pn = Im(H0(U,Fn+m)→ H0(U,Fn))

where m is as above. Observe that {Pn} is an inverse system and that the map f :
Fn → Fn+1 on global sections maps Pn into Pn+1. If p ∈ Pn, then δn(p) ∈ K ⊂ Ob
because δn(p) maps to zero in H1(U, fnFn+m) = H2

m(Mm) and the composition of
δn and Ob→ HomA(N2, E) factors through H2

m(Mm) by our choice of m. Hence⊕
n≥0

Im(Pn → Ob)

is a finite graded A[T ]-module where T acts via multiplication by f . Namely, it
is a graded submodule of K[T ] and K is finite over A. Arguing as in the proof of
Cohomology, Lemma 20.35.17 we find that the inverse system {Pn} satisfies ML.
Since {Pn} is pro-isomorphic to {H0(U,Fn)} we conclude that {H0(U,Fn)} has
ML. Thus hypothesis (a) of Lemma 52.16.10 holds and the proof is complete. □

We can unwind condition of Lemma 52.20.4 as follows.

Lemma 52.20.5.0EJA In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A is local with maximal ideal a = m,
(2) cd(A, I) = 1.

Then (Fn) satisfies the (2, 3)-inequalities if and only if for all y ∈ U ∩ Y with
dim({y}) = 1 and every prime p ⊂ O∧

X,y, p ̸∈ V (IO∧
X,y) we have

depth((F∧
y )p) + dim(O∧

X,y/p) > 2

Proof. We will use Lemma 52.19.3 without further mention. In particular, we see
the condition is necessary. Conversely, suppose the condition is true. Note that
δYZ (y) = dim({y}) by Lemma 52.18.1. Let us write δ for this function. Let y ∈ U∩Y .
If δ(y) > 2, then the inequality of Lemma 52.19.3 holds. Finally, suppose δ(y) = 2.
We have to show that

depth((F∧
y )p) + dim(O∧

X,y/p) > 1
Choose a specialization y ⇝ y′ with δ(y′) = 1. Then there is a ring map O∧

X,y′ →
O∧
X,y which identifies the target with the completion of the localization of O∧

X,y′ at
a prime q with dim(O∧

X,y′/q) = 1. Moreover, we then obtain
F∧
y = F∧

y′ ⊗O∧
X,y′
O∧
X,y

Let p′ ⊂ O∧
X,y′ be the image of p. By Local Cohomology, Lemma 51.11.3 we have

depth((F∧
y )p) + dim(O∧

X,y/p) = depth((F∧
y′)p′) + dim((O∧

X,y/p)p′)
= depth((F∧

y′)p′) + dim(O∧
X,y/p

′)− 1

7Choose homogeneous generators of the form δnj (pj) for the displayed module. Then if
k = max(nj) we find that for n ≥ k and any p ∈ Pn we can find aj ∈ A such that p−

∑
ajf

n−nj pj
is in the kernel of δn and hence in the image of Pn′ for all n′ ≥ n. Thus Im(Pn → Pn−k) =
Im(Pn′ → Pn−k) for all n′ ≥ n.

https://stacks.math.columbia.edu/tag/0EJA
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the last equality because the specialization is immediate. Thus the lemma is prove
by the assumed inequality for y′, p′. □

Lemma 52.20.6.0EJB In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A is local with maximal ideal a = m,
(2) A has a dualizing complex,
(3) cd(A, I) = 1,
(4) for y ∈ U ∩ Y the module F∧

y is finite locally free outside V (IO∧
X,y), for

example if Fn is a finite locally free OU/InOU -module, and
(5) one of the following is true

(a) Af is (S2) and every irreducible component of X not contained in Y
has dimension ≥ 4, or

(b) if p ̸∈ V (f) and V (p)∩V (f) ̸= {m}, then depth(Ap)+dim(A/p) > 3.
Then (Fn) satisfies the (2, 3)-inequalities.

Proof. We will use the criterion of Lemma 52.20.5. Let y ∈ U∩Y with dim({y} = 1
and let p be a prime p ⊂ O∧

X,y with p ̸∈ V (IO∧
X,y). Condition (4) shows that

depth((F∧
y )p) = depth((O∧

X,y)p). Thus we have to prove

depth((O∧
X,y)p) + dim(O∧

X,y/p) > 2

Let p0 ⊂ A be the image of p. Let q ⊂ A be the prime corresponding to y. By
Local Cohomology, Lemma 51.11.3 we have

depth((O∧
X,y)p) + dim(O∧

X,y/p) = depth(Ap0) + dim((A/p0)q)
= depth(Ap0) + dim(A/p0)− 1

If (5)(a) holds, then we get that this is

≥ min(2,dim(Ap0)) + dim(A/p0)− 1

Note that in any case dim(A/p0) ≥ 2. Hence if we get 2 for the minimum, then we
are done. If not we get

dim(Ap0) + dim(A/p0)− 1 ≥ 4− 1

because every component of Spec(A) passing through p0 has dimension ≥ 4. If
(5)(b) holds, then we win immediately. □

Remark 52.20.7.0EJC Let (A,m) be a Noetherian local ring which has a dualizing com-
plex and is complete with respect to f ∈ m. Let (Fn) be an object of Coh(U, fOU )
where U is the punctured spectrum of A. Set Y = V (f) ⊂ X = Spec(A). If for
y ∈ U ∩V (f) closed in U , i.e., with dim({y}) = 1, we assume the O∧

X,y-module F∧
y

satisfies the following two conditions
(1) F∧

y [1/f ] is (S2) as a O∧
X,y[1/f ]-module, and

(2) for p ∈ Ass(F∧
y [1/f ]) we have dim(O∧

X,y/p) ≥ 3.
Then (Fn) is the completion of a coherent module on U . This follows from Lemmas
52.20.4 and 52.20.5.

https://stacks.math.columbia.edu/tag/0EJB
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52.21. Improving coherent formal modules

0EJD Let X be a Noetherian scheme. Let Y ⊂ X be a closed subscheme with quasi-
coherent sheaf of ideals I ⊂ OX . Let (Fn) be an object of Coh(X, I). In this
section we construct maps (Fn) → (F ′

n) similar to the maps constructed in Local
Cohomology, Section 51.15 for coherent modules. For a point y ∈ Y we set

O∧
X,y = limOX,y/Iny , I∧

y = lim Iy/Iny and m∧
y = limmy/Iny

Then O∧
X,y is a Noetherian local ring with maximal ideal m∧

y complete with respect
to I∧

y = IyO∧
X,y. We also set

F∧
y = limFn,y

Then F∧
y is a finite module over O∧

X,y with F∧
y /(I∧

y )nF∧
y = Fn,y for all n, see

Algebra, Lemmas 10.98.2 and 10.96.12.

Lemma 52.21.1.0EJE In the situation above assume X locally has a dualizing complex.
Let T ⊂ Y be a subset stable under specialization. Assume for y ∈ T and for a
nonmaximal prime p ⊂ O∧

X,y with V (p) ∩ V (I∧
y ) = {m∧

y } we have
depth(OX,y)p((F∧

y )p) > 0
Then there exists a canonical map (Fn) → (F ′

n) of inverse systems of coherent
OX -modules with the following properties

(1) for y ∈ T we have depth(F ′
n,y) ≥ 1,

(2) (F ′
n) is isomorphic as a pro-system to an object (Gn) of Coh(X, I),

(3) the induced morphism (Fn)→ (Gn) of Coh(X, I) is surjective with kernel
annihilated by a power of I.

Proof. For every n we let Fn → F ′
n be the surjection constructed in Local Coho-

mology, Lemma 51.15.1. Since this is the quotient of Fn by the subsheaf of sections
supported on T we see that we get canonical maps F ′

n+1 → F ′
n such that we obtain

a map (Fn)→ (F ′
n) of inverse systems of coherent OX -modules. Property (1) holds

by construction.
To prove properties (2) and (3) we may assume that X = Spec(A0) is affine and
A0 has a dualizing complex. Let I0 ⊂ A0 be the ideal corresponding to Y . Let
A, I be the I-adic completions of A0, I0. For later use we observe that A has a
dualizing complex (Dualizing Complexes, Lemma 47.22.4). Let M be the finite A-
module corresponding to (Fn), see Cohomology of Schemes, Lemma 30.23.1. Then
Fn corresponds to Mn = M/InM . Recall that F ′

n corresponds to the quotient
M ′
n = Mn/H

0
T (Mn), see Local Cohomology, Lemma 51.15.1 and its proof.

Set s = 0 and d = cd(A, I). We claim that A, I, T,M, s, d satisfy assumptions
(1), (3), (4), (6) of Situation 52.10.1. Namely, (1) and (3) are immediate from the
above, (4) is the empty condition as s = 0, and (6) is the assumption we made in
the statement of the lemma.
By Theorem 52.10.8 we see that {H0

T (Mn)} is Mittag-Leffler, that limH0
T (Mn) =

H0
T (M), and that H0

T (M) is killed by a power of I. Thus the limit of the short
exact sequences 0→ H0

T (Mn)→Mn →M ′
n → 0 is the short exact sequence

0→ H0
T (M)→M → limM ′

n → 0
SettingM ′ = limM ′

n we find that Gn corresponds to the finiteA0-moduleM ′/InM ′.
To finish the prove we have to show that the canonical map {M ′/InM ′} → {M ′

n} is

https://stacks.math.columbia.edu/tag/0EJE
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a pro-isomorphism. This is equivalent to saying that {H0
T (M)+InM} → {ker(M →

M ′
n)} is a pro-isomorphism. Which in turn says that {H0

T (M)/H0
T (M) ∩ InM} →

{H0
T (Mn)} is a pro-isomorphism. This is true because {H0

T (Mn)} is Mittag-Leffler,
limH0

T (Mn) = H0
T (M), and H0

T (M) is killed by a power of I (so that Artin-Rees
tells us that H0

T (M) ∩ InM = 0 for n large enough). □

Lemma 52.21.2.0EJF In the situation above assume X locally has a dualizing complex.
Let T ′ ⊂ T ⊂ Y be subsets stable under specialization. Let d ≥ 0 be an integer.
Assume

(a) affine locally we have X = Spec(A0) and Y = V (I0) and cd(A0, I0) ≤ d,
(b) for y ∈ T and a nonmaximal prime p ⊂ O∧

X,y with V (p) ∩ V (I∧
y ) = {m∧

y }
we have

depth(OX,y)p((F∧
y )p) > 0

(c) for y ∈ T ′ and for a prime p ⊂ O∧
X,y with p ̸∈ V (I∧

y ) and V (p)∩ V (I∧
y ) ̸=

{m∧
y } we have

depth(OX,y)p((F∧
y )p) ≥ 1 or depth(OX,y)p((F∧

y )p) + dim(O∧
X,y/p) > 1 + d

(d) for y ∈ T ′ and a nonmaximal prime p ⊂ O∧
X,y with V (p)∩V (I∧

y ) = {m∧
y }

we have
depth(OX,y)p((F∧

y )p) > 1
(e) if y ⇝ y′ is an immediate specialization and y′ ∈ T ′, then y ∈ T .

Then there exists a canonical map (Fn) → (F ′′
n) of inverse systems of coherent

OX -modules with the following properties
(1) for y ∈ T we have depth(F ′′

n,y) ≥ 1,
(2) for y′ ∈ T ′ we have depth(F ′′

n,y′) ≥ 2,
(3) (F ′′

n) is isomorphic as a pro-system to an object (Hn) of Coh(X, I),
(4) the induced morphism (Fn)→ (Hn) of Coh(X, I) has kernel and cokernel

annihilated by a power of I.

Proof. As in Lemma 52.21.1 and its proof for every n we let Fn → F ′
n be the

surjection constructed in Local Cohomology, Lemma 51.15.1. Next, we let F ′
n → F ′′

n

be the injection constructed in Local Cohomology, Lemma 51.15.5 and its proof.
The constructions show that we get canonical maps F ′′

n+1 → F ′′
n such that we

obtain maps
(Fn) −→ (F ′

n) −→ (F ′′
n)

of inverse systems of coherent OX -modules. Properties (1) and (2) hold by con-
struction.
To prove properties (3) and (4) we may assume that X = Spec(A0) is affine and
A0 has a dualizing complex. Let I0 ⊂ A0 be the ideal corresponding to Y . Let
A, I be the I-adic completions of A0, I0. For later use we observe that A has a
dualizing complex (Dualizing Complexes, Lemma 47.22.4). Let M be the finite A-
module corresponding to (Fn), see Cohomology of Schemes, Lemma 30.23.1. Then
Fn corresponds to Mn = M/InM . Recall that F ′

n corresponds to the quotient
M ′
n = Mn/H

0
T (Mn). Also, recall that M ′ = limM ′

n is the quotient of M by
H0
T (M) and that {M ′

n} and {M ′/InM ′} are isomorphic as pro-systems. Finally,
we see that F ′′

n corresponds to an extension
0→M ′

n →M ′′
n → H1

T ′(M ′
n)→ 0

https://stacks.math.columbia.edu/tag/0EJF
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see proof of Local Cohomology, Lemma 51.15.5.

Set s = 1. We claim that A, I, T ′,M ′, s, d satisfy assumptions (1), (3), (4), (6) of
Situation 52.10.1. Namely, (1) and (3) are immediate, (4) is implied by (c), and
(6) follows from (d). We omit the details of the verification (c) ⇒ (4).

By Theorem 52.10.8 we see that {H1
T ′(M ′/InM ′)} is Mittag-Leffler, thatH1

T ′(M ′) =
limH1

T ′(M ′/InM ′), and that H1
T ′(M ′) is killed by a power of I. We deduce

{H1
T ′(M ′

n)} is Mittag-Leffler and H1
T ′(M ′) = limH1

T ′(M ′
n). Thus the limit of the

short exact sequences displayed above is the short exact sequence

0→M ′ → limM ′′
n → H1

T ′(M ′)→ 0

Set M ′′ = limM ′′
n . It follows from Local Cohomology, Proposition 51.11.1 that

H1
T ′(M ′) and hence M ′′ are finite A-modules. Thus we find that Hn corresponds

to the finite A0-module M ′′/InM ′′. To finish the prove we have to show that
the canonical map {M ′′/InM ′′} → {M ′′

n} is a pro-isomorphism. Since we al-
ready know that {M ′/InM ′} is pro-isomorphic to {M ′

n} the reader verifies (omit-
ted) this is equivalent to asking {H1

T ′(M ′)/InH1
T ′(M ′)} → {H1

T ′(M ′
n)} to be a

pro-isomorphism. This is true because {H1
T ′(M ′

n)} is Mittag-Leffler, H1
T ′(M ′) =

limH1
T ′(M ′

n), and H1
T ′(M ′) is killed by a power of I. □

Lemma 52.21.3.0EJG In Situation 52.16.1 assume that A has a dualizing complex.
Let d ≥ cd(A, I). Let (Fn) be an object of Coh(U, IOU ). Assume (Fn) satisfies
the (2, 2 + d)-inequalities, see Definition 52.19.1. Then there exists a canonical
map (Fn) → (F ′′

n) of inverse systems of coherent OU -modules with the following
properties

(1) if depth(F ′′
n,y) + δYZ (y) ≥ 3 for all y ∈ U ∩ Y ,

(2) (F ′′
n) is isomorphic as a pro-system to an object (Hn) of Coh(U, IOU ),

(3) the induced morphism (Fn)→ (Hn) of Coh(U, IOU ) has kernel and cok-
ernel annihilated by a power of I,

(4) the modules H0(U,F ′′
n) and H1(U,F ′′

n) are finite A-modules for all n.

Proof. The existence and properties (2), (3), (4) follow immediately from Lemma
52.21.2 applied to U , U ∩ Y , T = {y ∈ U ∩ Y : δYZ (y) ≤ 2}, T ′ = {y ∈ U ∩ Y :
δYZ (y) ≤ 1}, and (Fn). The finiteness of the modules H0(U,F ′′

n) and H1(U,F ′′
n)

follows from Local Cohomology, Lemma 51.12.1 and the elementary properties of
the function δYZ (−) proved in Lemma 52.18.1. □

52.22. Algebraization of coherent formal modules, V

0EJH In this section we prove our most general results on algebraization of coherent
formal modules. We first prove it in case the ideal has cohomological dimension 1.
Then we apply this to a blowup to prove a more general result.

Lemma 52.22.1.0EJI In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A has a dualizing complex and cd(A, I) = 1,
(2) (Fn) is pro-isomorphic to an inverse system (F ′′

n) of coherent OU -modules
such that depth(F ′′

n,y) + δYZ (y) ≥ 3 for all y ∈ U ∩ Y .
Then (Fn) extends canonically to X, see Definition 52.16.7.
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Proof. We will check hypotheses (a), (b), and (c) of Lemma 52.16.10. Before we
start, let us point out that the modules H0(U,F ′′

n) and H1(U,F ′′
n) are finite A-

modules for all n by Local Cohomology, Lemma 51.12.1.
Observe that for each p ≥ 0 the limit topology on limHp(U,Fn) is the I-adic
topology by Lemma 52.4.5. In particular, hypothesis (b) holds.
We know that M = limH0(U,Fn) is an A-module whose limit topology is the I-
adic topology. Thus, given n, the module M/InM is a subquotient of H0(U,FN )
for some N ≫ n. Since the inverse system {H0(U,FN )} is pro-isomorphic to an
inverse system of finite A-modules, namely {H0(U,F ′′

N )}, we conclude that M/InM
is finite. It follows that M is finite, see Algebra, Lemma 10.96.12. In particular
hypothesis (c) holds.
For each n ≥ 0 let us write Obn = limN H

1(U, InFN ). A special case is Ob =
Ob0 = limN H

1(U,FN ). Arguing exactly as in the previous paragraph we find that
Ob is a finite A-module. (In fact, we also know that Ob/IOb is annihilated by a
power of a, but it seems somewhat difficult to use this.)
We set F = limFn, we pick generators f1, . . . , fr of I, we pick c ≥ 1, and we choose
ΦF as in Lemma 52.4.4. We will use the results of Lemma 52.2.1 without further
mention. In particular, for each n ≥ 1 there are maps

δn : H0(U,Fn) −→ H1(U, InF) −→ Obn

The first comes from the short exact sequence 0 → InF → F → Fn → 0 and the
second from InF = lim InFN . We will later use that if δn(s) = 0 for s ∈ H0(U,Fn)
then we can for each n′ ≥ n find s′ ∈ H0(U,Fn′) mapping to s. Observe that there
are commutative diagrams

H0(U,Fnc) //

��

H1(U, IncF)

��

ΦF

**⊕
e1+...+er=nH

1(U,F) · T e1
1 . . . T err

tt
H0(U,Fn) // H1(U, InF)

We conclude that the obstruction map H0(U,Fn) → Obn sends the image of
H0(U,Fnc)→ H0(U,Fn) into the submodule

Ob′
n = Im

(⊕
e1+...+er=n

Ob · T e1
1 . . . T err → Obn

)
where on the summand Ob ·T e1

1 . . . T err we use the map on cohomology coming from
the reductions modulo powers of I of the multiplication map fe1

1 . . . ferr : F → InF .
By construction ⊕

n≥0
Ob′

n

is a finite graded module over the Rees algebra
⊕

n≥0 I
n. For each n we set

Mn = {s ∈ H0(U,Fn) | δn(s) ∈ Ob′
n}

Observe that {Mn} is an inverse system and that fj : Fn → Fn+1 on global
sections maps Mn into Mn+1. By exactly the same argument as in the proof of
Cohomology, Lemma 20.35.1 we find that {Mn} is ML. Namely, because the Rees
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algebra is Noetherian we can choose a finite number of homogeneous generators of
the form δnj (zj) with zj ∈ Mnj for the graded submodule

⊕
n≥0 Im(Mn → Ob′

n).
Then if k = max(nj) we find that for n ≥ k and any z ∈Mn we can find aj ∈ In−nj

such that z −
∑
ajzj is in the kernel of δn and hence in the image of Mn′ for all

n′ ≥ n (because the vanishing of δn means that we can lift z−
∑
ajzj to an element

z′ ∈ H0(U,Fn′c) for all n′ ≥ n and then the image of z′ in H0(U,Fn′) is in Mn′

by what we proved above). Thus Im(Mn → Mn−k) = Im(Mn′ → Mn−k) for all
n′ ≥ n.
Choose n. By the Mittag-Leffler property of {Mn} we just established we can
find an n′ ≥ n such that the image of Mn′ → Mn is the same as the image of
M ′ → Mn. By the above we see that the image of M ′ → Mn contains the image
of H0(U,Fn′c) → H0(U,Fn). Thus we see that {Mn} and {H0(U,Fn)} are pro-
isomorphic. Therefore {H0(U,Fn)} has ML and we finally conclude that hypothesis
(a) holds. This concludes the proof. □

Proposition 52.22.2 (Algebraization in cohomological dimension 1).0EJJ The local case of
this result is [Ray75,
IV Corollaire 2.9].

In Situation
52.16.1 let (Fn) be an object of Coh(U, IOU ). Assume

(1) A has a dualizing complex and cd(A, I) = 1,
(2) (Fn) satisfies the (2, 3)-inequalities, see Definition 52.19.1.

Then (Fn) extends to X. In particular, if A is I-adically complete, then (Fn) is
the completion of a coherent OU -module.

Proof. By Lemma 52.17.1 we may replace (Fn) by the object (Hn) of Coh(U, IOU )
found in Lemma 52.21.3. Thus we may assume that (Fn) is pro-isomorphic to a
inverse system (F ′′

n) with the properties mentioned in Lemma 52.21.3. In Lemma
52.22.1 we proved that (Fn) canonically extends to X. The final statement follows
from Lemma 52.16.8. □

Lemma 52.22.3.0EJK In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A has a dualizing complex,
(2) all fibres of the blowing up b : X ′ → X of I have dimension ≤ d− 1,
(3) one of the following is true

(a) (Fn) satisfies the (d+ 1, d+ 2)-inequalities (Definition 52.19.1), or
(b) for y ∈ U ∩ Y and a prime p ⊂ O∧

X,y with p ̸∈ V (IO∧
X,y) we have

depth((F∧
y )p) + dim(O∧

X,y/p) + δYZ (y) > d+ 2
Then (Fn) extends to X.

Proof. Let Y ′ ⊂ X ′ be the exceptional divisor. Let Z ′ ⊂ Y ′ be the inverse image
of Z ⊂ Y . Then U ′ = X ′ \Z ′ is the inverse image of U . With δY ′

Z′ as in (52.18.0.1)
we set

T ′ = {y′ ∈ Y ′ | δY
′

Z′ (y′) = 1 or 2} ⊂ T = {y′ ∈ Y ′ | δY
′

Z′ (y′) = 1}
These are specialization stable subsets of U ′ ∩ Y ′ = Y ′ \ Z ′. Consider the object
(b|∗U ′Fn) of Coh(U ′, IOU ′), see Cohomology of Schemes, Lemma 30.23.9. For y′ ∈
U ′ ∩ Y ′ let us denote

F∧
y′ = lim(b|∗U ′Fn)y′

the “stalk” of this pullback at y′. We claim that conditions (a), (b), (c), (d), and
(e) of Lemma 52.21.2 hold for the object (b|∗U ′Fn) on U ′ with d replaced by 1 and
the subsets T ′ ⊂ T ⊂ U ′∩Y ′. Condition (a) holds because Y ′ is an effective Cartier

https://stacks.math.columbia.edu/tag/0EJJ
https://stacks.math.columbia.edu/tag/0EJK
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divisor and hence locally cut out by 1 equation. Condition (e) holds by Lemma
52.18.1 parts (1) and (2). To prove (b), (c), and (d) we need some preparation.
Let y′ ∈ U ′ ∩ Y ′ and let p′ ⊂ O∧

X′,y′ be a prime ideal not contained in V (IO∧
X′,y′).

Denote y = b(y′) ∈ U ∩ Y . Choose f ∈ I such that y′ is contained in the spectrum
of the affine blowup algebra A[ If ], see Divisors, Lemma 31.32.2. For any A-algebra
B denote B′ = B[ IBf ] the corresponding affine blowup algebra. Denote I-adic
completion by ∧. By our choice of f we get a ring map (O∧

X,y)′ → O∧
X′,y′ . If we let

q′ ⊂ (O∧
X,y)′ be the inverse image of m∧

y′ , then we see that ((O∧
X,y)′

q′)∧ = O∧
X′,y′ .

Let p ⊂ O∧
X,y be the corresponding prime. At this point we have a commutative

diagram

O∧
X,y

��

// (O∧
X,y)′

α

��

// (O∧
X,y)′

q′

��

β
// O∧

X′,y′

��
O∧
X,y/p

// (O∧
X,y/p)′ // (O∧

X,y/p)′
q′

γ // ((O∧
X,y/p)′

q′)∧

��
O∧
X′,y′/p′

whose vertical arrows are surjective. By More on Algebra, Lemma 15.43.1 and the
dimension formula (Algebra, Lemma 10.113.1) we have

dim(((O∧
X,y/p)′

q′)∧) = dim((O∧
X,y/p)′

q′) = dim(O∧
X,y/p)− trdeg(κ(y′)/κ(y))

Tracing through the definitions of pullbacks, stalks, localizations, and completions
we find

(F∧
y )p ⊗(O∧

X,y
)p (O∧

X′,y′)p′ = (F∧
y′)p′

Details omitted. The ring maps β and γ in the diagram are flat with Gorenstein
(hence Cohen-Macaulay) fibres, as these are completions of rings having a dualizing
complex. See Dualizing Complexes, Lemmas 47.23.1 and 47.23.2 and the discussion
in More on Algebra, Section 15.51. Observe that (O∧

X,y)p = (O∧
X,y)′

p̃ where p̃ is the
kernel of α in the diagram. On the other hand, (O∧

X,y)′
p̃ → (O∧

X′,y′)p′ is flat with
CM fibres by the above. Whence (O∧

X,y)p → (O∧
X′,y′)p′ is flat with CM fibres.

Using Algebra, Lemma 10.163.1 we see that
depth((F∧

y′)p′) = depth((F∧
y )p) + dim(Fr)

where F is the generic formal fibre of (O∧
X,y/p)′

q′ and r is the prime corresponding to
p′. Since (O∧

X,y/p)′
q′ is a universally catenary local domain, its I-adic completion is

equidimensional and (universally) catenary by Ratliff’s theorem (More on Algebra,
Proposition 15.109.5). It then follows that

dim(((O∧
X,y/p)′

q′)∧) = dim(Fr) + dim(O∧
X′,y′/p′)

Combined with Lemma 52.18.2 we get

(52.22.3.1)0EJL

depth((F∧
y′)p′) + δY

′

Z′ (y′)

= depth((F∧
y )p) + dim(Fr) + δY

′

Z′ (y′)
≥ depth((F∧

y )p) + δYZ (y) + dim(Fr) + trdeg(κ(y′)/κ(y))− (d− 1)
= depth((F∧

y )p) + δYZ (y)− (d− 1) + dim(O∧
X,y/p)− dim(O∧

X′,y′/p′)
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Please keep in mind that dim(O∧
X,y/p) ≥ dim(O∧

X′,y′/p′). Rewriting this we get

(52.22.3.2)0EJM
depth((F∧

y′)p′) + dim(O∧
X′,y′/p′) + δY

′

Z′ (y′)
≥ depth((F∧

y )p) + dim(O∧
X,y/p) + δYZ (y)− (d− 1)

This inequality will allow us to check the remaning conditions.
Conditions (b) and (d) of Lemma 52.21.2. Assume V (p′) ∩ V (IO∧

X′,y′) = {m∧
y′}.

This implies that dim(O∧
X′,y′/p′) = 1 because Z ′ is an effective Cartier divisor. The

combination of (b) and (d) is equivalent with

depth((F∧
y′)p′) + δY

′

Z′ (y′) > 2

If (Fn) satisfies the inequalities in (3)(b) then we immediately conclude this is true
by applying (52.22.3.2). If (Fn) satisfies (3)(a), i.e., the (d+ 1, d+ 2)-inequalities,
then we see that in any case
depth((F∧

y )p) + δYZ (y) ≥ d+ 1 or depth((F∧
y )p) + dim(O∧

X,y/p) + δYZ (y) > d+ 2

Looking at (52.22.3.1) and (52.22.3.2) above this gives what we want except possibly
if dim(O∧

X,y/p) = 1. However, if dim(O∧
X,y/p) = 1, then we have V (p)∩V (IO∧

X,y) =
{m∧

y } and we see that actually

depth((F∧
y )p) + δYZ (y) > d+ 1

as (Fn) satisfies the (d+ 1, d+ 2)-inequalities and we conclude again.
Condition (c) of Lemma 52.21.2. Assume V (p′) ∩ V (IO∧

X′,y′) ̸= {m∧
y′}. Then

condition (c) is equivalent to

depth((F∧
y′)p′) + δY

′

Z′ (y′) ≥ 2 or depth((F∧
y′)p′) + dim(O∧

X′,y′/p′) + δY
′

Z′ (y′) > 3

If (Fn) satisfies the inequalities in (3)(b) then we see the second of the two displayed
inequalities holds true by applying (52.22.3.2). If (Fn) satisfies (3)(a), i.e., the (d+
1, d+2)-inequalities, then this follows immediately from (52.22.3.1) and (52.22.3.2).
This finishes the proof of our claim.
Choose (b|∗U ′Fn) → (F ′′

n) and (Hn) in Coh(U ′, IOU ′) as in Lemma 52.21.2. For
any affine open W ⊂ X ′ observe that δW∩Y ′

W∩Z′ (y′) ≥ δY ′

Z′ (y′) by Lemma 52.18.1 part
(7). Hence we see that (Hn|W ) satisfies the assumptions of Lemma 52.22.1. Thus
(Hn|W ) extends canonically to W . Let (GW,n) in Coh(W, IOW ) be the canonical
extension as in Lemma 52.16.8. By Lemma 52.16.9 we see that for W ′ ⊂ W there
is a unique isomorphism

(GW,n|W ′) −→ (GW ′,n)
compatible with the given isomorphisms (GW,n|W∩U ) ∼= (Hn|W∩U ). We conclude
that there exists an object (Gn) of Coh(X ′, IOX′) whose restriction to U is isomor-
phic to (Hn).
If A is I-adically complete we can finish the proof as follows. By Grothedieck’s
existence theorem (Cohomology of Schemes, Lemma 30.24.3) we see that (Gn) is the
completion of a coherent OX′ -module. Then by Cohomology of Schemes, Lemma
30.23.6 we see that (b|∗U ′Fn) is the completion of a coherent OU ′ -module F ′. By
Cohomology of Schemes, Lemma 30.25.3 we see that there is a map

(Fn) −→ ((b|U ′)∗F ′)∧
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whose kernel and cokernel is annihilated by a power of I. Then finally, we win by
applying Lemma 52.17.1.
If A is not complete, then, before starting the proof, we may replace A by its
completion, see Lemma 52.16.6. After completion the assumptions still hold: this
is immediate for condition (3), follows from Dualizing Complexes, Lemma 47.22.4
for condition (1), and from Divisors, Lemma 31.32.3 for condition (2). Thus the
complete case implies the general case. □

Proposition 52.22.4 (Algebraization for ideals with few generators).0EJN In Situation
52.16.1 let (Fn) be an object of Coh(U, IOU ). Assume

(1) A has a dualizing complex,
(2) V (I) = V (f1, . . . , fd) for some d ≥ 1 and f1, . . . , fd ∈ A,
(3) one of the following is true

(a) (Fn) satisfies the (d+ 1, d+ 2)-inequalities (Definition 52.19.1), or
(b) for y ∈ U ∩ Y and a prime p ⊂ O∧

X,y with p ̸∈ V (IO∧
X,y) we have

depth((F∧
y )p) + dim(O∧

X,y/p) + δYZ (y) > d+ 2

Then (Fn) extends to X. In particular, if A is I-adically complete, then (Fn) is
the completion of a coherent OU -module.

Proof. We may assume I = (f1, . . . , fd), see Cohomology of Schemes, Lemma
30.23.11. Then we see that all fibres of the blowup of X in I have dimension
at most d−1. Thus we get the extension from Lemma 52.22.3. The final statement
follows from Lemma 52.16.3. □

Please compare the next lemma with Remarks 52.16.12, 52.20.2, 52.20.7, and
52.23.2.

Lemma 52.22.5.0EJP In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A is a local ring which has a dualizing complex,
(2) all irreducible components of X have the same dimension,
(3) the scheme X \ Y is Cohen-Macaulay,
(4) I is generated by d elements,
(5) dim(X)− dim(Z) > d+ 2, and
(6) for y ∈ U ∩ Y the module F∧

y is finite locally free outside V (IO∧
X,y), for

example if Fn is a finite locally free OU/InOU -module.
Then (Fn) extends to X. In particular if A is I-adically complete, then (Fn) is the
completion of a coherent OU -module.

Proof. We will show that the hypotheses (1), (2), (3)(b) of Proposition 52.22.4 are
satisfied. This is clear for (1) and (2).
Let y ∈ U∩Y and let p be a prime p ⊂ O∧

X,y with p ̸∈ V (IO∧
X,y). The last condition

shows that depth((F∧
y )p) = depth((O∧

X,y)p). Since X \ Y is Cohen-Macaulay we
see that (O∧

X,y)p is Cohen-Macaulay. Thus we see that

depth((F∧
y )p) + dim(O∧

X,y/p) + δYZ (y)
= dim((O∧

X,y)p) + dim(O∧
X,y/p) + δYZ (y)

= dim(O∧
X,y) + δYZ (y)

https://stacks.math.columbia.edu/tag/0EJN
https://stacks.math.columbia.edu/tag/0EJP
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The final equality because OX,y is equidimensional by the second condition. Let
δ(y) = dim({y}). This is a dimension function as A is a catenary local ring. By
Lemma 52.18.1 we have δYZ (y) ≥ δ(y)−dim(Z). Since X is equidimensional we get

dim(O∧
X,y) + δYZ (y) ≥ dim(O∧

X,y) + δ(y)− dim(Z) = dim(X)− dim(Z)
Thus we get the desired inequality and we win. □

Remark 52.22.6.0EJQ We are unable to prove or disprove the analogue of Proposi-
tion 52.22.4 where the assumption that I has d generators is replaced with the
assumption cd(A, I) ≤ d. If you know a proof or have a counter example, please
email stacks.project@gmail.com. Another obvious question is to what extend the
conditions in Proposition 52.22.4 are necessary.

52.23. Algebraization of coherent formal modules, VI

0EJR In this section we add a few more easier to prove cases.

Proposition 52.23.1.0EJS In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ).
Assume

(1) there exist f1, . . . , fd ∈ I such that for y ∈ U ∩ Y the ideal IOX,y is
generated by f1, . . . , fd and f1, . . . , fd form a F∧

y -regular sequence,
(2) H0(U,F1) and H1(U,F1) are finite A-modules.

Then (Fn) extends canonically to X. In particular, if A is complete, then (Fn) is
the completion of a coherent OU -module.

Proof. We will prove this by verifying hypotheses (a), (b), and (c) of Lemma
52.16.10. For every n we have a short exact sequence

0→ InFn+1 → Fn+1 → Fn → 0
Since f1, . . . , fd forms a regular sequence (and hence quasi-regular, see Algebra,
Lemma 10.69.2) on each of the “stalks” F∧

y and since we have IFn = (f1, . . . , fd)Fn
for all n, we find that

InFn+1 =
⊕

e1+...+ed=n
F1 · fe1

1 . . . fedd

by checking on stalks. Using the assumption of finiteness of H0(U,F1) and induc-
tion, we first conclude that Mn = H0(U,Fn) is a finite A-module for all n. In this
way we see that condition (c) of Lemma 52.16.10 holds. We also see that⊕

n≥0
H1(U, InFn+1)

is a finite graded R =
⊕
In/In+1-module. By Cohomology, Lemma 20.35.1 we

conclude that condition (a) of Lemma 52.16.10 is satisfied. Finally, condition (b) of
Lemma 52.16.10 is satisfied because

⊕
H0(U, InFn+1) is a finite graded R-module

and we can apply Cohomology, Lemma 20.35.3. □

Remark 52.23.2.0EJT In the situation of Proposition 52.23.1 if we assume A has a
dualizing complex, then the condition that H0(U,F1) and H1(U,F1) are finite is
equivalent to

depth(F1,y) + dim(O{y},z) > 2

for all y ∈ U ∩ Y and z ∈ Z ∩ {y}. See Local Cohomology, Lemma 51.12.1.
This holds for example if F1 is a finite locally free OU∩Y -module, Y is (S2), and

https://stacks.math.columbia.edu/tag/0EJQ
mailto:stacks.project@gmail.com
https://stacks.math.columbia.edu/tag/0EJS
https://stacks.math.columbia.edu/tag/0EJT
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codim(Z ′, Y ′) ≥ 3 for every pair of irreducible components Y ′ of Y , Z ′ of Z with
Z ′ ⊂ Y ′.

Proposition 52.23.3.0EJU In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ).
Assume there is Noetherian local ring (R,m) and a ring map R→ A such that

(1) I = mA,
(2) for y ∈ U ∩ Y the stalk F∧

y is R-flat,
(3) H0(U,F1) and H1(U,F1) are finite A-modules.

Then (Fn) extends canonically to X. In particular, if A is complete, then (Fn) is
the completion of a coherent OU -module.

Proof. The proof is exactly the same as the proof of Proposition 52.23.1. Namely,
if κ = R/m then for n ≥ 0 there is an isomorphism

InFn+1 ∼= F1 ⊗κ mn/mn+1

and the right hand side is a finite direct sum of copies of F1. This can be checked
by looking at stalks. Everything else is exactly the same. □

Remark 52.23.4.0EJV Proposition 52.23.3 is a local version of [Bar10, Theorem 2.10 (i)].
It is straightforward to deduce the global results from the local one; we will sketch
the argument. Namely, suppose (R,m) is a complete Noetherian local ring and
X → Spec(R) is a proper morphism. For n ≥ 1 set Xn = X ×Spec(R) Spec(R/mn).
Let Z ⊂ X1 be a closed subset of the special fibre. Set U = X \ Z and denote
j : U → X the inclusion morphism. Suppose given an object

(Fn) of Coh(U,mOU )
which is flat over R in the sense that Fn is flat over R/mn for all n. Assume
that j∗F1 and R1j∗F1 are coherent modules. Then affine locally on X we get a
canonical extension of (Fn) by Proposition 52.23.3 and formation of this extension
commutes with localization (by Lemma 52.16.11). Thus we get a canonical global
object (Gn) of Coh(X,mOX) whose restriction of U is (Fn). By Grothendieck’s
existence theorem (Cohomology of Schemes, Proposition 30.25.4) we see there exists
a coherent OX -module G whose completion is (Gn). In this way we see that (Fn)
is algebraizable, i.e., it is the completion of a coherent OU -module.
We add that the coherence of j∗F1 and R1j∗F1 is a condition on the special fibre.
Namely, if we denote j1 : U1 → X1 the special fibre of j : U → X, then we can think
of F1 as a coherent sheaf on U1 and we have j∗F1 = j1,∗F1 and R1j∗F1 = R1j1,∗F1.
Hence for example if X1 is (S2) and irreducible, we have dim(X1)−dim(Z) ≥ 3, and
F1 is a locally free OU1 -module, then j1,∗F1 and R1j1,∗F1 are coherent modules.

52.24. Application to the completion functor

0EKX In this section we just combine some already obtained results in order to conve-
niently reference them. There are many (stronger) results we could state here.

Lemma 52.24.1.0EKY In Situation 52.16.1 assume
(1) A has a dualizing complex and is I-adically complete,
(2) I = (f) generated by a single element,
(3) A is local with maximal ideal a = m,
(4) one of the following is true

(a) Af is (S2) and for p ⊂ A, f ̸∈ p minimal we have dim(A/p) ≥ 4, or

https://stacks.math.columbia.edu/tag/0EJU
https://stacks.math.columbia.edu/tag/0EJV
https://stacks.math.columbia.edu/tag/0EKY
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(b) if p ̸∈ V (f) and V (p)∩V (f) ̸= {m}, then depth(Ap)+dim(A/p) > 3.
Then with U0 = U ∩ V (f) the completion functor

colimU0⊂U ′⊂U open Coh(OU ′) −→ Coh(U, fOU )
is an equivalence on the full subcategories of finite locally free objects.

Proof. It follows from Lemma 52.15.7 that the functor is fully faithful (details
omitted). Let us prove essential surjectivity. Let (Fn) be a finite locally free object
of Coh(U, fOU ). By either Lemma 52.20.4 or Proposition 52.22.2 there exists a
coherent OU -module F such that (Fn) is the completion of F . Namely, for the
application of either result the only thing to check is that (Fn) satisfies the (2, 3)-
inequalities. This is done in Lemma 52.20.6. If y ∈ U0, then the f -adic completion
of the stalk Fy is isomorphic to a finite free module over the f -adic completion
of OU,y. Hence F is finite locally free in an open neighbourhood U ′ of U0. This
finishes the proof. □

Lemma 52.24.2.0EKZ In Situation 52.16.1 assume
(1) I = (f) is principal,
(2) A is f -adically complete,
(3) f is a nonzerodivisor,
(4) H1

a(A/fA) and H2
a(A/fA) are finite A-modules.

Then with U0 = U ∩ V (f) the completion functor
colimU0⊂U ′⊂U open Coh(OU ′) −→ Coh(U, fOU )

is an equivalence on the full subcategories of finite locally free objects.

Proof. The functor is fully faithful by Lemma 52.15.8. Essential surjectivity follows
from Lemma 52.16.11. □

52.25. Coherent triples

0F22 Let (A,m) be a Noetherian local ring. Let f ∈ m be a nonzerodivisor. Set X =
Spec(A), X0 = Spec(A/fA), U = X \ V (m), and U0 = U ∩X0. We say (F ,F0, α)
is a coherent triple if we have

(1) F is a coherent OU -module such that f : F → F is injective,
(2) F0 is a coherent OX0 -module,
(3) α : F/fF → F0|U0 is an isomorphism.

There is an obvious notion of a morphism of coherent triples which turns the col-
lection of all coherent triples into a category.
The category of coherent triples is additive but not abelian. However, it is clear
what a short exact sequence of coherent triples is.
Given two coherent triples (F ,F0, α) and (G,G0, β) it may not be the case that
(F ⊗OU

G,F0 ⊗OX0
G0, α ⊗ β) is a coherent triple8. However, if the stalks Gx are

free for all x ∈ U0, then this does hold.
We will say the coherent triple (G,G0, β) is locally free, resp. invertible if G and
G0 are locally free, resp. invertible modules. In this case tensoring with (G,G0, β)
makes sense (see above) and turns short exact sequences of coherent triples into
short exact sequences of coherent triples.

8Namely, it isn’t necessarily the case that f is injective on F ⊗OU G.
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Lemma 52.25.1.0F23 For any coherent triple (F ,F0, α) there exists a coherent OX -
module F ′ such that f : F ′ → F ′ is injective, an isomorphism α′ : F ′|U → F , and
a map α′

0 : F ′/fF ′ → F0 such that α ◦ (α′ mod f) = α′
0|U0 .

Proof. Choose a finite A-module M such that F is the restriction to U of the co-
herent OX -module associated to M , see Local Cohomology, Lemma 51.8.2. Since
F is f -torsion free, we may replace M by its quotient by f -power torsion. On the
other hand, let M0 = Γ(X0,F0) so that F0 is the coherent OX0-module associated
to the finite A/fA-module M0. By Cohomology of Schemes, Lemma 30.10.5 there
exists an n such that the isomorphism α0 corresponds to an A/fA-module homo-
morphism mnM/fM →M0 (whose kernel and cokernel are annihilated by a power
of m, but we don’t need this). Thus if we take M ′ = mnM and we let F ′ be the
coherent OX -module associated to M ′, then the lemma is clear. □

Let (F ,F0, α) be a coherent triple. Choose F ′, α′, α′
0 as in Lemma 52.25.1. Set

(52.25.1.1)0F24 χ(F ,F0, α) = lengthA(Coker(α′
0))− lengthA(Ker(α′

0))
The expression on the right makes sense as α′

0 is an isomorphism over U0 and hence
its kernel and coherent are coherent modules supported on {m} which therefore have
finite length (Algebra, Lemma 10.62.3).

Lemma 52.25.2.0F25 The quantity χ(F ,F0, α) in (52.25.1.1) does not depend on the
choice of F ′, α′, α′

0 as in Lemma 52.25.1.

Proof. Let F ′, α′, α′
0 and F ′′, α′′, α′′

0 be two such choices. For n > 0 set F ′
n = mnF ′.

By Cohomology of Schemes, Lemma 30.10.5 for some n there exists an OX -module
map F ′

n → F ′′ agreeing with the identification F ′′|U = F ′|U determined by α′ and
α′′. Then the diagram

F ′
n/fF ′

n
//

��

F ′/fF ′

α′
0

��
F ′′/fF ′′ α′′

0 // F0

is commutative after restricting to U0. Hence by Cohomology of Schemes, Lemma
30.10.5 it is commutative after restricting to ml(F ′

n/fF ′
n) for some l > 0. Since

F ′
n+l/fF ′

n+l → F ′
n/fF ′

n factors through ml(F ′
n/fF ′

n) we see that after replacing n
by n+ l the diagram is commutative. In other words, we have found a third choice
F ′′′, α′′′, α′′′

0 such that there are maps F ′′′ → F ′′ and F ′′′ → F ′ over X compatible
with the maps over U and X0. This reduces us to the case discussed in the next
paragraph.
Assume we have a map F ′′ → F ′ over X compatible with α′, α′′ over U and with
α′

0, α
′′
0 over X0. Observe that F ′′ → F ′ is injective as it is an isomorphism over U

and since f : F ′′ → F ′′ is injective. Clearly F ′/F ′′ is supported on {m} hence has
finite length. We have the maps of coherent OX0-modules

F ′′/fF ′′ → F ′/fF ′ α′
0−→ F0

whose composition is α′′
0 and which are isomorphisms over U0. Elementary homo-

logical algebra gives a 6-term exact sequence
0→ Ker(F ′′/fF ′′ → F ′/fF ′)→ Ker(α′′

0)→ Ker(α′
0)→

Coker(F ′′/fF ′′ → F ′/fF ′)→ Coker(α′′
0)→ Coker(α′

0)→ 0
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By additivity of lengths (Algebra, Lemma 10.52.3) we find that it suffices to show
that

lengthA(Coker(F ′′/fF ′′ → F ′/fF ′))− lengthA(Ker(F ′′/fF ′′ → F ′/fF ′)) = 0

This follows from applying the snake lemma to the diagram

0 // F ′′
f
//

��

F ′′ //

��

F ′′/fF ′′ //

��

0

0 // F ′ f // F ′ // F ′/fF ′ // 0

and the fact that F ′/F ′′ has finite length. □

Lemma 52.25.3.0F26 We have χ(G,G0, β) = χ(F ,F0, α) + χ(H,H0, γ) if

0→ (F ,F0, α)→ (G,G0, β)→ (H,H0, γ)→ 0

is a short exact sequence of coherent triples.

Proof. Choose G′, β′, β′
0 as in Lemma 52.25.1 for the triple (G,G0, β). Denote j :

U → X the inclusion morphism. Let F ′ ⊂ G′ be the kernel of the composition

G′ β′

−→ j∗G → j∗H

Observe that H′ = G′/F ′ is a coherent subsheaf of j∗H and hence f : H′ → H′ is
injective. Hence by the snake lemma we obtain a short exact sequence

0→ F ′/fF ′ → G′/fG′ → H′/fH′ → 0

We have isomorphisms α′ : F ′|U → F , β′ : G′|U → G, and γ′ : H′|U → H by
construction. To finish the proof we’ll need to construct maps α′

0 : F ′/fF ′ → F0
and γ′

0 : H′/fH′ → H0 as in Lemma 52.25.1 and fitting into a commutative diagram

0 // F ′/fF ′ //

α′
0
��

G′/fG′ //

β′
0
��

H′/fH′ //

γ′
0
��

0

0 // F0 // G0 // H0 // 0

However, this may not be possible with our initial choice of G′. From the displayed
diagram we see the obstruction is exactly the composition

δ : F ′/fF ′ → G′/fG′ β′
0−→ G0 → H0

Note that the restriction of δ to U0 is zero by our choice of F ′ and H′. Hence by
Cohomology of Schemes, Lemma 30.10.5 there exists an k > 0 such that δ vanishes
on mk · (F ′/fF ′). For n > k set G′

n = mnG′, F ′
n = G′

n ∩ F ′, and H′
n = G′

n/F ′
n.

Observe that β′
0 can be composed with G′

n/fG′
n → G′/fG′ to give a map β′

n,0 :
G′
n/fG′

n → G0 as in Lemma 52.25.1. By Artin-Rees (Algebra, Lemma 10.51.2) we
may choose n such that F ′

n ⊂ mkF ′. As above the maps f : F ′
n → F ′

n, f : G′
n → G′

n,
and f : H′

n → H′
n are injective and as above using the snake lemma we obtain a

short exact sequence

0→ F ′
n/fF ′

n → G′
n/fG′

n → H′
n/fH′

n → 0
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As above we have isomorphisms α′
n : F ′

n|U → F , β′
n : G′

n|U → G, and γ′
n : H′

n|U →
H. We consider the obstruction

δn : F ′
n/fF ′

n → G′
n/fG′

n

β′
n,0−−−→ G0 → H0

as before. However, the commutative diagram

F ′
n/fF ′

n
//

��

G′
n/fG′

n
β′
n,0

//

��

G0 //

��

H0

��
F ′/fF ′ // G′/fG′ β′

0 // G0 // H0

our choice of n and our observation about δ show that δn = 0. This produces the
desired maps α′

n,0 : F ′
n/fF ′

n → F0, and γ′
n,0 : H′

n/fH′
n → H0. OK, so we may

use F ′
n, α

′
n, α

′
n,0, G′

n, β
′
n, β

′
n,0, and H′

n, γ
′
n, γ

′
n,0 to compute χ(F ,F0, α), χ(G,G0, β),

and χ(H,H0, γ). Now finally the lemma follows from an application of the snake
lemma to

0 // F ′
n/fF ′

n
//

��

G′
n/fG′

n
//

��

H′
n/fH′

n
//

��

0

0 // F0 // G0 // H0 // 0

and additivity of lengths (Algebra, Lemma 10.52.3). □

Proposition 52.25.4.0F27 Let (F ,F0, α) be a coherent triple. Let (L,L0, λ) be an
invertible coherent triple. Then the function

Z −→ Z, n 7−→ χ((F ,F0, α)⊗ (L,L0, λ)⊗n)
is a polynomial of degree ≤ dim(Supp(F)).

More precisely, if F = 0, then the function is constant. If F has finite support in
U , then the function is constant. If the support of F in U has dimension 1, i.e., the
closure of the support of F in X has dimension 2, then the function is linear, etc.

Proof. We will prove this by induction on the dimension of the support of F .
The base case is when F = 0. Then either F0 is zero or its support is {m}. In this
case we have

(F ,F0, α)⊗ (L,L0, λ)⊗n = (0,F0 ⊗ L⊗n
0 , 0) ∼= (0,F0, 0)

Thus the function of the lemma is constant with value equal to the length of F0.
Induction step. Assume the support of F is nonempty. Let G0 ⊂ F0 denote the
submodule of sections supported on {m}. Then we get a short exact sequence

0→ (0,G0, 0)→ (F ,F0, α)→ (F ,F0/G0, α)→ 0
This sequence remains exact if we tensor by the invertible coherent triple (L,L0, λ),
see discussion above. Thus by additivity of χ (Lemma 52.25.3) and the base case
explained above, it suffices to prove the induction step for (F ,F0/G0, α). In this
way we see that we may assume m is not an associated point of F0.
Let T = Ass(F)∪Ass(F/fF). Since U is quasi-affine, we can find s ∈ Γ(U,L) which
does not vanish at any u ∈ T , see Properties, Lemma 28.29.7. After multiplying s by
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a suitable element of m we may assume λ(s mod f) = s0|U0 for some s0 ∈ Γ(X0,L0);
details omitted. We obtain a morphism

(s, s0) : (OU ,OX0 , 1) −→ (L,L0, λ)
in the category of coherent triples. Let G = Coker(s : F → F ⊗ L) and G0 =
Coker(s0 : F0 → F0 ⊗ L0). Observe that s0 : F0 → F0 ⊗ L0 is injective as it
is injective on U0 by our choice of s and as m isn’t an associated point of F0. It
follows that there exists an isomorphism β : G/fG → G0|U0 such that we obtain a
short exact sequence

0→ (F ,F0, α)→ (F ,F0, α)⊗ (L,L0, λ)→ (G,G0, β)→ 0
By induction on the dimension of the support we know the proposition holds for
the coherent triple (G,G0, β). Using the additivity of Lemma 52.25.3 we see that

n 7−→ χ((F ,F0, α)⊗ (L,L0, λ)⊗n+1)− χ((F ,F0, α)⊗ (L,L0, λ)⊗n)
is a polynomial. We conclude by a variant of Algebra, Lemma 10.58.5 for functions
defined for all integers (details omitted). □

Lemma 52.25.5.0F28 Assume depth(A) ≥ 3 or equivalently depth(A/fA) ≥ 2. Let
(L,L0, λ) be an invertible coherent triple. Then

χ(L,L0, λ) = lengthA Coker(Γ(U,L)→ Γ(U0,L0))
and in particular this is ≥ 0. Moreover, χ(L,L0, λ) = 0 if and only if L ∼= OU .

Proof. The equivalence of the depth conditions follows from Algebra, Lemma 10.72.7.
By the depth condition we see that Γ(U,OU ) = A and Γ(U0,OU0) = A/fA, see
Dualizing Complexes, Lemma 47.11.1 and Local Cohomology, Lemma 51.8.2. Using
Local Cohomology, Lemma 51.12.2 we find that M = Γ(U,L) is a finite A-module.
This in turn implies depth(M) ≥ 2 for example by part (4) of Local Cohomology,
Lemma 51.8.2 or by Divisors, Lemma 31.6.6. Also, we have L0 ∼= OX0 as X0 is a
local scheme. Hence we also see that M0 = Γ(X0,L0) = Γ(U0,L0|U0) and that this
module is isomorphic to A/fA.

By the above F ′ = M̃ is a coherent OX -module whose restriction to U is isomorphic
to L. The isomorphism λ : L/fL → L0|U0 determines a map M/fM → M0 on
global sections which is an isomorphism over U0. Since depth(M) ≥ 2 we see that
H0

m(M/fM) = 0 and it follows that M/fM →M0 is injective. Thus by definition
χ(L,L0, λ) = lengthA Coker(M/fM →M0)

which gives the first statement of the lemma.
Finally, if this length is 0, then M →M0 is surjective. Hence we can find s ∈M =
Γ(U,L) mapping to a trivializing section of L0. Consider the finite A-modules K,
Q defined by the exact sequence

0→ K → A
s−→M → Q→ 0

The supports of K and Q do not meet U0 because s is nonzero at points of U0.
Using Algebra, Lemma 10.72.6 we see that depth(K) ≥ 2 (observe that As ⊂M has
depth ≥ 1 as a submodule of M). Thus the support of K if nonempty has dimension
≥ 2 by Algebra, Lemma 10.72.3. This contradicts Supp(M) ∩ V (f) ⊂ {m} unless
K = 0. When K = 0 we find that depth(Q) ≥ 2 and we conclude Q = 0 as before.
Hence A ∼= M and L is trivial. □
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52.26. Invertible modules on punctured spectra, I

0F29 In this section we prove some local Lefschetz theorems for the Picard group. Some
of the ideas are taken from [Kol13], [BdJ14], and [Kol16a].
Lemma 52.26.1.0F2A Let (A,m) be a Noetherian local ring. Let f ∈ m be a nonzero-
divisor and assume that depth(A/fA) ≥ 2, or equivalently depth(A) ≥ 3. Let U ,
resp. U0 be the punctured spectrum of A, resp. A/fA. The map

Pic(U)→ Pic(U0)
is injective on torsion.
Proof. Let L be an invertible OU -module. Observe that L maps to 0 in Pic(U0) if
and only if we can extend L to an invertible coherent triple (L,L0, λ) as in Section
52.25. By Proposition 52.25.4 the function

n 7−→ χ((L,L0, λ)⊗n)
is a polynomial. By Lemma 52.25.5 the value of this polynomial is zero if and only
if L⊗n is trivial. Thus if L is torsion, then this polynomial has infinitely many
zeros, hence is identically zero, hence L is trivial. □

Proposition 52.26.2 (Kollár).0F2B [Kol16a, Theorem
1.9]

Let (A,m) be a Noetherian local ring. Let f ∈ m.
Assume

(1) A has a dualizing complex,
(2) f is a nonzerodivisor,
(3) depth(A/fA) ≥ 2, or equivalently depth(A) ≥ 3,
(4) if f ∈ p ⊂ A is a prime ideal with dim(A/p) = 2, then depth(Ap) ≥ 2.

Let U , resp. U0 be the punctured spectrum of A, resp. A/fA. The map
Pic(U)→ Pic(U0)

is injective. Finally, if (1), (2), (3), A is (S2), and dim(A) ≥ 4, then (4) holds.
Proof. Let L be an invertible OU -module. Observe that L maps to 0 in Pic(U0) if
and only if we can extend L to an invertible coherent triple (L,L0, λ) as in Section
52.25. By Proposition 52.25.4 the function

n 7−→ χ((L,L0, λ)⊗n)
is a polynomial P . By Lemma 52.25.5 we have P (n) ≥ 0 for all n ∈ Z with equality
if and only if L⊗n is trivial. In particular P (0) = 0 and P is either identically zero
and we win or P has even degree ≥ 2.
Set M = Γ(U,L) and M0 = Γ(X0,L0) = Γ(U0,L0). Then M is a finite A-module
of depth ≥ 2 and M0 ∼= A/fA, see proof of Lemma 52.25.5. Note that H2

m(M) is
finite A-module by Local Cohomology, Lemma 51.7.4 and the fact that Hi

m(A) = 0
for i = 0, 1, 2 since depth(A) ≥ 3. Consider the short exact sequence

0→M/fM →M0 → Q→ 0
Lemma 52.25.5 tells us Q has finite length equal to χ(L,L0, λ). We obtain Q =
H1

m(M/fM) and Hi
m(M/fM) = Hi

m(M0) ∼= Hi
m(A/fA) for i > 1 from the long

exact sequence of local cohomology associated to the displayed short exact sequence.
Consider the long exact sequence of local cohomology associated to the sequence
0→M →M →M/fM → 0. It starts with

0→ Q→ H2
m(M)→ H2

m(M)→ H2
m(A/fA)
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Using additivity of lengths we see that χ(L,L0, λ) is equal to the length of the
image of H2

m(M)→ H2
m(A/fA).

Let prove the lemma in a special case to elucidate the rest of the proof. Namely,
assume for a moment that H2

m(A/fA) is a finite length module. Then we would
have P (1) ≤ lengthAH2

m(A/fA). The exact same argument applied to L⊗n shows
that P (n) ≤ lengthAH2

m(A/fA) for all n. Thus P cannot have positive degree and
we win. In the rest of the proof we will modify this argument to give a linear upper
bound for P (n) which suffices.

Let us study the map H2
m(M)→ H2

m(M0) ∼= H2
m(A/fA). Choose a normalized du-

alizing complex ω•
A for A. By local duality (Dualizing Complexes, Lemma 47.18.4)

this map is Matlis dual to the map

Ext−2
A (M,ω•

A)←− Ext−2
A (M0, ω

•
A)

whose image therefore has the same (finite) length. The support (if nonempty)
of the finite A-module Ext−2

A (M0, ω
•
A) consists of m and a finite number of primes

p1, . . . , pr containing f with dim(A/pi) = 1. Namely, by Local Cohomology, Lemma
51.9.4 the support is contained in the set of primes p ⊂ A with depthAp

(M0,p) +
dim(A/p) ≤ 2. Thus it suffices to show there is no prime p containing f with
dim(A/p) = 2 and depthAp

(M0,p) = 0. However, because M0,p ∼= (A/fA)p this
would give depth(Ap) = 1 which contradicts assumption (4). Choose a section
t ∈ Γ(U,L⊗−1) which does not vanish in the points p1, . . . , pr, see Properties,
Lemma 28.29.7. Multiplication by t on global sections determines a map t : M → A
which defines an isomorphism Mpi → Api for i = 1, . . . , r. Denote t0 = t|U0 the
corresponding section of Γ(U0,L⊗−1

0 ) which similarly determines a map t0 : M0 →
A/fA compatible with t. We conclude that there is a commutative diagram

Ext−2
A (M,ω•

A) Ext−2
A (M0, ω

•
A)oo

Ext−2
A (A,ω•

A)

t

OO

Ext−2
A (A/fA, ω•

A)oo

t0

OO

It follows that the length of the image of the top horizontal map is at most the
length of Ext−2

A (A/fA, ω•
A) plus the length of the cokernel of t0.

However, if we replace L by Ln for n > 1, then we can use

tn : Mn = Γ(U,L⊗n) −→ Γ(U,OU ) = A

instead of t. This replaces t0 by its nth power. Thus the length of the image of the
map Ext−2

A (Mn, ω
•
A)← Ext−2

A (Mn,0, ω
•
A) is at most the length of Ext−2

A (A/fA, ω•
A)

plus the length of the cokernel of

tn0 : Ext−2
A (A/fA, ω•

A) −→ Ext−2
A (Mn,0, ω

•
A)

Via the isomorphism M0 ∼= A/fA the map t0 becomes g : A/fA → A/fA for
some g ∈ A/fA and via the corresponding isomorphisms Mn,0 ∼= A/fA the map tn0
becomes gn : A/fA → A/fA. Thus the length of the cokernel above is the length
of the quotient of Ext−2

A (A/fA, ω•
A) by gn. Since Ext−2

A (A/fA, ω•
A) is a finite A-

module with support T of dimension 1 and since V (g) ∩ T consists of the closed
point by our choice of t this length grows linearly in n by Algebra, Lemma 10.62.6.
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To finish the proof we prove the final assertion. Assume f ∈ m ⊂ A satisfies (1),
(2), (3), A is (S2), and dim(A) ≥ 4. Condition (1) implies A is catenary, see
Dualizing Complexes, Lemma 47.17.4. Then Spec(A) is equidimensional by Local
Cohomology, Lemma 51.3.2. Thus dim(Ap) + dim(A/p) ≥ 4 for every prime p
of A. Then depth(Ap) ≥ min(2,dim(Ap)) ≥ min(2, 4 − dim(A/p)) and hence (4)
holds. □

Remark 52.26.3.0FIX In SGA2 we find the following result. Let (A,m) be a Noetherian
local ring. Let f ∈ m. Assume A is a quotient of a regular ring, the element f is a
nonzerodivisor, and

(a) if p ⊂ A is a prime ideal with dim(A/p) = 1, then depth(Ap) ≥ 2, and
(b) depth(A/fA) ≥ 3, or equivalently depth(A) ≥ 4.

Let U , resp. U0 be the punctured spectrum of A, resp. A/fA. Then the map
Pic(U)→ Pic(U0)

is injective. This is [Gro68, Exposee XI, Lemma 3.16]9. This result from SGA2
follows from Proposition 52.26.2 because

(1) a quotient of a regular ring has a dualizing complex (see Dualizing Com-
plexes, Lemma 47.21.3 and Proposition 47.15.11), and

(2) if depth(A) ≥ 4 then depth(Ap) ≥ 2 for all primes p with dim(A/p) = 2,
see Algebra, Lemma 10.72.10.

52.27. Invertible modules on punctured spectra, II

0F2C Next we turn to surjectivity in local Lefschetz for the Picard group. First to extend
an invertible module on U0 to an open neighbourhood we have the following simple
criterion.

Lemma 52.27.1.0F2D Let (A,m) be a Noetherian local ring and f ∈ m. Assume
(1) A is f -adically complete,
(2) f is a nonzerodivisor,
(3) H1

m(A/fA) and H2
m(A/fA) are finite A-modules, and

(4) H3
m(A/fA) = 010.

Let U , resp. U0 be the punctured spectrum of A, resp. A/fA. Then
colimU0⊂U ′⊂U open Pic(U ′) −→ Pic(U0)

is surjective.

Proof. Let U0 ⊂ Un ⊂ U be the nth infinitesimal neighbourhood of U0. Observe
that the ideal sheaf of Un in Un+1 is isomorphic to OU0 as U0 ⊂ U is the principal
closed subscheme cut out by the nonzerodivisor f . Hence we have an exact sequence
of abelian groups

Pic(Un+1)→ Pic(Un)→ H2(U0,OU0) = H3
m(A/fA) = 0

see More on Morphisms, Lemma 37.4.1. Thus every invertible OU0-module is the
restriction of an invertible coherent formal module, i.e., an invertible object of
Coh(U, fOU ). We conclude by applying Lemma 52.24.2. □

9Condition (a) follows from condition (b), see Algebra, Lemma 10.72.10.
10Observe that (3) and (4) hold if depth(A/fA) ≥ 4, or equivalently depth(A) ≥ 5.
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Remark 52.27.2.0F2E Let (A,m) be a Noetherian local ring and f ∈ m. The conclusion
of Lemma 52.27.1 holds if we assume

(1) A has a dualizing complex,
(2) A is f -adically complete,
(3) f is a nonzerodivisor,
(4) one of the following is true

(a) Af is (S2) and for p ⊂ A, f ̸∈ p minimal we have dim(A/p) ≥ 4, or
(b) if p ̸∈ V (f) and V (p)∩V (f) ̸= {m}, then depth(Ap)+dim(A/p) > 3.

(5) H3
m(A/fA) = 0.

The proof is exactly the same as the proof of Lemma 52.27.1 using Lemma 52.24.1
instead of Lemma 52.24.2. Two points need to be made here: (a) it seems hard to
find examples where one knows H3

m(A/fA) = 0 without assuming depth(A/fA) ≥
4, and (b) the proof of Lemma 52.24.1 is a good deal harder than the proof of
Lemma 52.24.2.

Lemma 52.27.3.0F2F Let (A,m) be a Noetherian local ring and f ∈ m. Assume
(1) the conditions of Lemma 52.27.1 hold, and
(2) for every maximal ideal p ⊂ Af the punctured spectrum of (Af )p has

trivial Picard group.
Let U , resp. U0 be the punctured spectrum of A, resp. A/fA. Then

Pic(U) −→ Pic(U0)

is surjective.

Proof. Let L0 ∈ Pic(U0). By Lemma 52.27.1 there exists an open U0 ⊂ U ′ ⊂ U
and L′ ∈ Pic(U ′) whose restriction to U0 is L0. Since U ′ ⊃ U0 we see that U \ U ′

consists of points corresponding to prime ideals p1, . . . , pn as in (2). By assumption
we can find invertible modules L′

i on Spec(Api) agreeing with L′ over the punctured
spectrum U ′×USpec(Api) since trivial invertible modules always extend. By Limits,
Lemma 32.20.2 applied n times we see that L′ extends to an invertible module on
U . □

Lemma 52.27.4.0F2G Let (A,m) be a Noetherian local ring of depth ≥ 2. Let A∧ be
its completion. Let U , resp. U∧ be the punctured spectrum of A, resp. A∧. Then
Pic(U)→ Pic(U∧) is injective.

Proof. Let L be an invertible OU -module with pullback L∧ on U∧. We have
H0(U,OU ) = A by our assumption on depth and Dualizing Complexes, Lemma
47.11.1 and Local Cohomology, Lemma 51.8.2. Thus L is trivial if and only if
M = H0(U,L) is isomorphic to A as an A-module. (Details omitted.) Since
A→ A∧ is flat we have M ⊗A A∧ = Γ(U∧,L∧) by flat base change, see Cohomol-
ogy of Schemes, Lemma 30.5.2. Finally, it is easy to see that M ∼= A if and only if
M ⊗A A∧ ∼= A∧. □

Lemma 52.27.5.0F2H Let (A,m) be a regular local ring. Then the Picard group of the
punctured spectrum of A is trivial.

Proof. Combine Divisors, Lemma 31.28.3 with More on Algebra, Lemma 15.121.2.
□
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Now we can bootstrap the earlier results to prove that Picard groups are trivial
for punctured spectra of complete intersections of dimension ≥ 4. Recall that
a Noetherian local ring is called a complete intersection if its completion is the
quotient of a regular local ring by the ideal generated by a regular sequence. See
the discussion in Divided Power Algebra, Section 23.8.

Proposition 52.27.6 (Grothendieck).0F2I Let (A,m) be a Noetherian local ring. If A is
a complete intersection of dimension ≥ 4, then the Picard group of the punctured
spectrum of A is trivial.

Proof. By Lemma 52.27.4 we may assume that A is a complete local ring. By
assumption we can write A = B/(f1, . . . , fr) where B is a complete regular local
ring and f1, . . . , fr is a regular sequence. We will finish the proof by induction on
r. The base case is r = 0 which follows from Lemma 52.27.5.

Assume that A = B/(f1, . . . , fr) and that the proposition holds for r − 1. Set
A′ = B/(f1, . . . , fr−1) and apply Lemma 52.27.3 to fr ∈ A′. This is permissible:

(1) condition (1) of Lemma 52.27.1 holds because our local rings are complete,
(2) condition (2) of Lemma 52.27.1 holds holds as f1, . . . , fr is a regular se-

quence,
(3) condition (3) and (4) of Lemma 52.27.1 hold as A = A′/frA

′ is Cohen-
Macaulay of dimension dim(A) ≥ 4,

(4) condition (2) of Lemma 52.27.3 holds by induction hypothesis as dim((A′
fr

)p) ≥
4 for a maximal prime p of A′

fr
and as (A′

fr
)p = Bq/(f1, . . . , fr−1) for some

prime ideal q ⊂ B and Bq is regular.
This finishes the proof. □

Example 52.27.7.0F2J The dimension bound in Proposition 52.27.6 is sharp. For ex-
ample the Picard group of the punctured spectrum of A = k[[x, y, z, w]]/(xy − zw)
is nontrivial. Namely, the ideal I = (x, z) cuts out an effective Cartier divisor D on
the punctured spectrum U of A as it is easy to see that Ix, Iy, Iz, Iw are invertible
ideals in Ax, Ay, Az, Aw. But on the other hand, A/I has depth ≥ 1 (in fact 2),
hence I has depth ≥ 2 (in fact 3), hence I = Γ(U,OU (−D)). Thus if OU (−D) were
trivial, then we’d have I ∼= Γ(U,OU ) = A which isn’t true as I isn’t generated by
1 element.

Example 52.27.8.0F9L Proposition 52.27.6 cannot be extended to quotients

A = B/(f1, . . . , fr)

where B is regular and dim(B)−r ≥ 4. In other words, the condition that f1, . . . , fr
be a regular sequence is (in general) needed for vanishing of the Picard group of
the punctured spectrum of A. Namely, let k be a field and set

A = k[[a, b, x, y, z, u, v, w]]/(a3, b3, xa2 + yab+ zb2, w2)

Observe that A = A0[w]/(w2) with A0 = k[[a, b, x, y, z, u, v]]/(a3, b3, xa2 + yab +
zb2). We will show below that A0 has depth 2. Denote U the punctured spectrum
of A and U0 the punctured spectrum of A0. Observe there is a short exact sequence
0→ A0 → A→ A0 → 0 where the first arrow is given by multiplication by w. By
More on Morphisms, Lemma 37.4.1 we find that there is an exact sequence

H0(U,O∗
U )→ H0(U0,O∗

U0
)→ H1(U0,OU0)→ Pic(U)
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Since the depth of A0 and hence A is 2 we see that H0(U0,OU0) = A0 and
H0(U,OU ) = A and that H1(U0,OU0) is nonzero, see Dualizing Complexes, Lemma
47.11.1 and Local Cohomology, Lemma 51.2.2. Thus the last arrow displayed above
is nonzero and we conclude that Pic(U) is nonzero.

To show thatA0 has depth 2 it suffices to show thatA1 = k[[a, b, x, y, z]]/(a3, b3, xa2+
yab + zb2) has depth 0. This is true because a2b2 maps to a nonzero element of
A1 which is annihilated by each of the variables a, b, x, y, z. For example ya2b2 =
(yab)(ab) = −(xa2 + zb2)(ab) = −xa3b − yab3 = 0 in A1. The other cases are
similar.

52.28. Application to Lefschetz theorems

0EL0 In this section we discuss the relation between coherent sheaves on a projective
scheme P and coherent modules on formal completion along an ample divisor Q.

Let k be a field. Let P be a proper scheme over k. Let L be an ample invertible
OP -module. Let s ∈ Γ(P,L) be a section11 and let Q = Z(s) be the zero scheme,
see Divisors, Definition 31.14.8. For all n ≥ 1 we denote Qn = Z(sn) the nth
infinitesimal neighbourhood of Q. If F is a coherent OP -module, then we denote
Fn = F|Qn the restriction, i.e., the pullback of F by the closed immersion Qn → P .

Proposition 52.28.1.0EL1 In the situation above assume for all points p ∈ P \Q we have

depth(Fp) + dim({p}) > s

Then the map
Hi(P,F) −→ limHi(Qn,Fn)

is an isomorphism for 0 ≤ i < s.

Proof. We will use More on Morphisms, Lemma 37.51.1 and we will use the notation
used and results found More on Morphisms, Section 37.51 without further mention;
this proof will not make sense without at least understanding the statement of the
lemma. Observe that in our case A =

⊕
m≥0 Γ(P,L⊗m) is a finite type k-algebra

all of whose graded parts are finite dimensional k-vector spaces, see Cohomology of
Schemes, Lemma 30.16.1.

We may and do think of s as an element f ∈ A1 ⊂ A, i.e., a homogeneous element
of degree 1 of A. Denote Y = V (f) ⊂ X the closed subscheme defined by f . Then
U ∩ Y = (π|U )−1(Q) scheme theoretically. Recall the notation FU = π∗F|U =
(π|U )∗F . This is a coherent OU -module. Choose a finite A-module M such that
FU = M̃ |U (for existence see Local Cohomology, Lemma 51.8.2). We claim that
Hi
Z(M) is annihilated by a power of f for i ≤ s+ 1.

To prove the claim we will apply Local Cohomology, Proposition 51.10.1. Translat-
ing into geometry we see that it suffices to prove for u ∈ U , u ̸∈ Y and z ∈ {u} ∩Z
that

depth(FU,u) + dim(O{u},z) > s+ 1
This requires only a small amount of thought.

11We do not require s to be a regular section. Correspondingly, Q is only a locally principal
closed subscheme of P and not necessarily an effective Cartier divisor.
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Observe that Z = Spec(A0) is a finite set of closed points of X because A0 is a
finite dimensional k-algebra. (The reader who would like Z to be a singleton can
replace the finite k-algebra A0 by k; it won’t affect anything else in the proof.)

The morphism π : L → P and its restriction π|U : U → P are smooth of relative
dimension 1. Let u ∈ U , u ̸∈ Y and z ∈ {u}∩Z. Let p = π(u) ∈ P \Q be its image.
Then either u is a generic point of the fibre of π over p or a closed point of the fibre.
If u is a generic point of the fibre, then depth(FU,u) = depth(Fp) and dim({u}) =
dim({p}) + 1. If u is a closed point of the fibre, then depth(FU,u) = depth(Fp) + 1
and dim({u}) = dim({p}). In both cases we have dim({u}) = dim(O{u},z) because
every point of Z is closed. Thus the desired inequality follows from the assumption
in the statement of the lemma.

Let A′ be the f -adic completion of A. So A→ A′ is flat by Algebra, Lemma 10.97.2.
Denote U ′ ⊂ X ′ = Spec(A′) the inverse image of U and similarly for Y ′ and Z ′.
Let F ′ on U ′ be the pullback of FU and let M ′ = M ⊗A A′. By flat base change
for local cohomology (Local Cohomology, Lemma 51.5.7) we have

Hi
Z′(M ′) = Hi

Z(M)⊗A A′

and we find that for i ≤ s+ 1 these are annihilated by a power of f . Consider the
diagram

Hi(U,FU )

vv ��

// limHi(U,FU/fnFU )

Hi(U,FU )⊗A A′ Hi(U ′,F ′) // limHi(U ′,F ′/fnF ′)

The lower horizontal arrow is an isomorphism for i < s by Lemma 52.13.2 and
the torsion property we just proved. The horizontal equal sign is flat base change
(Cohomology of Schemes, Lemma 30.5.2) and the vertical equal sign is because
U ∩ Y and U ′ ∩ Y ′ as well as their nth infinitesimal neighbourhoods are mapped
isomorphically onto each other (as we are completing with respect to f).

Applying More on Morphisms, Equation (37.51.0.2) we have compatible direct sum
decompositions

limHi(U,FU/fnFU ) = lim
(⊕

m∈Z
Hi(Qn,Fn ⊗ L⊗m)

)
and

Hi(U,FU ) =
⊕

m∈Z
Hi(P,F ⊗ L⊗m)

Thus we conclude by Algebra, Lemma 10.98.4. □

Lemma 52.28.2.0EL2 Let k be a field. Let X be a proper scheme over k. Let L be
an ample invertible OX -module. Let s ∈ Γ(X,L). Let Y = Z(s) be the zero
scheme of s with nth infinitesimal neighbourhood Yn = Z(sn). Let F be a coherent
OX -module. Assume that for all x ∈ X \ Y we have

depth(Fx) + dim({x}) > 1

Then Γ(V,F)→ lim Γ(Yn,F|Yn) is an isomorphism for any open subscheme V ⊂ X
containing Y .
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Proof. By Proposition 52.28.1 this is true for V = X. Thus it suffices to show
that the map Γ(V,F) → lim Γ(Yn,F|Yn) is injective. If σ ∈ Γ(V,F) maps to zero,
then its support is disjoint from Y (details omitted; hint: use Krull’s intersection
theorem). Then the closure T ⊂ X of Supp(σ) is disjoint from Y . Whence T
is proper over k (being closed in X) and affine (being closed in the affine scheme
X\Y , see Morphisms, Lemma 29.43.18) and hence finite over k (Morphisms, Lemma
29.44.11). Thus T is a finite set of closed points of X. Thus depth(Fx) ≥ 2 is at
least 1 for x ∈ T by our assumption. We conclude that Γ(V,F) → Γ(V \ T,F) is
injective and σ = 0 as desired. □

Example 52.28.3.0EL3 Let k be a field and let X be a proper variety over k. Let Y ⊂ X
be an effective Cartier divisor such that OX(Y ) is ample and denote Yn its nth
infinitesimal neighbourhood. Let E be a finite locally free OX -module. Here are
some special cases of Proposition 52.28.1.

(1) If X is a curve, we don’t learn anything.
(2) If X is a Cohen-Macaulay (for example normal) surface, then

H0(X, E)→ limH0(Yn, E|Yn)
is an isomorphism.

(3) If X is a Cohen-Macaulay threefold, then
H0(X, E)→ limH0(Yn, E|Yn) and H1(X, E)→ limH1(Yn, E|Yn)

are isomorphisms.
Presumably the pattern is clear. If X is a normal threefold, then we can conclude
the result for H0 but not for H1.

Before we prove the next main result, we need a lemma.

Lemma 52.28.4.0EL4 In Situation 52.16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A is a graded ring, a = A+, and I is a homogeneous ideal,
(2) (Fn) = (M̃n|U ) where (Mn) is an inverse system of graded A-modules,

and
(3) (Fn) extends canonically to X.

Then there is a finite graded A-module N such that
(a) the inverse systems (N/InN) and (Mn) are pro-isomorphic in the category

of graded A-modules modulo A+-power torsion modules, and
(b) (Fn) is the completion of of the coherent module associated to N .

Proof. Let (Gn) be the canonical extension as in Lemma 52.16.8. The grading on
A and Mn determines an action

a : Gm ×X −→ X

of the group scheme Gm on X such that (M̃n) becomes an inverse system of Gm-
equivariant quasi-coherent OX -modules, see Groupoids, Example 39.12.3. Since a
and I are homogeneous ideals the closed subschemes Z, Y and the open subscheme
U are Gm-invariant closed and open subschemes. The restriction (Fn) of (M̃n) is an
inverse system of Gm-equivariant coherent OU -modules. In other words, (Fn) is a
Gm-equivariant coherent formal module, in the sense that there is an isomorphism

α : (a∗Fn) −→ (p∗Fn)
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over Gm × U satisfying a suitable cocycle condition. Since a and p are flat mor-
phisms of affine schemes, by Lemma 52.16.9 we conclude that there exists a unique
isomorphism

β : (a∗Gn) −→ (p∗Gn)
over Gm×X restricting to α on Gm×U . The uniqueness guarantees that β satisfies
the corresponding cocycle condition. In this way each Gn becomes a Gm-equivariant
coherent OX -module in a manner compatible with transition maps.
By Groupoids, Lemma 39.12.5 we see that Gn with its Gm-equivariant structure
corresponds to a graded A-module Nn. The transition maps Nn+1 → Nn are graded
module maps. Note that Nn is a finite A-module and Nn = Nn+1/I

nNn+1 because
(Gn) is an object of Coh(X, IOX). Let N be the finite graded A-module foud in
Algebra, Lemma 10.98.3. Then Nn = N/InN , whence (Gn) is the completion of
the coherent module associated to N , and a fortiori we see that (b) is true.
To see (a) we have to unwind the situation described above a bit more. First,
observe that the kernel and cokernel of Mn → H0(U,Fn) is A+-power torsion (Local
Cohomology, Lemma 51.8.2). Observe that H0(U,Fn) comes with a natural grading
such that these maps and the transition maps of the system are graded A-module
map; for example we can use that (U → X)∗Fn is a Gm-equivariant module on X
and use Groupoids, Lemma 39.12.5. Next, recall that (Nn) and (H0(U,Fn)) are
pro-isomorphic by Definition 52.16.7 and Lemma 52.16.8. We omit the verification
that the maps defining this pro-isomorphism are graded module maps. Thus (Nn)
and (Mn) are pro-isomorphic in the category of graded A-modules modulo A+-
power torsion modules. □

Let k be a field. Let P be a proper scheme over k. Let L be an ample invertible
OP -module. Let s ∈ Γ(P,L) be a section and let Q = Z(s) be the zero scheme,
see Divisors, Definition 31.14.8. Let I ⊂ OP be the ideal sheaf of Q. We will
use Coh(P, I) to denote the category of coherent formal modules introduced in
Cohomology of Schemes, Section 30.23.
Proposition 52.28.5.0EL5 In the situation above let (Fn) be an object of Coh(P, I).
Assume for all q ∈ Q and for all primes p ∈ O∧

P,q, p ̸∈ V (I∧
q ) we have

depth((F∧
q )p) + dim(O∧

P,q/p) + dim({q}) > 2
Then (Fn) is the completion of a coherent OP -module.
Proof. By Cohomology of Schemes, Lemma 30.23.6 to prove the lemma, we may
replace (Fn) by an object differing from it by I-torsion (see below for more pre-
cision). Let T ′ = {q ∈ Q | dim({q}) = 0} and T = {q ∈ Q | dim({q}) ≤ 1}.
The assumption in the proposition is exactly that Q ⊂ P , (Fn), and T ′ ⊂ T ⊂ Q
satisfy the conditions of Lemma 52.21.2 with d = 1; besides trivial manipulations
of inequalities, use that V (p) ∩ V (I∧

y ) = {m∧
y } ⇔ dim(O∧

P,q/p) = 1 as I∧
y is gen-

erated by 1 element. Combining these two remarks, we may replace (Fn) by the
object (Hn) of Coh(P, I) found in Lemma 52.21.2. Thus we may and do assume
(Fn) is pro-isomorphic to an inverse system (F ′′

n) of coherent OP -modules such that
depth(F ′′

n,q) + dim({q}) ≥ 2 for all q ∈ Q.
We will use More on Morphisms, Lemma 37.51.1 and we will use the notation used
and results found More on Morphisms, Section 37.51 without further mention; this
proof will not make sense without at least understanding the statement of the
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lemma. Observe that in our case A =
⊕

m≥0 Γ(P,L⊗m) is a finite type k-algebra
all of whose graded parts are finite dimensional k-vector spaces, see Cohomology of
Schemes, Lemma 30.16.1.
By Cohomology of Schemes, Lemma 30.23.9 the pull back by π|U : U → P is
an object (π|∗UFn) of Coh(U, fOU ) which is pro-isomorphic to the inverse system
(π|∗UF ′′

n) of coherent OU -modules. We claim
depth(π|∗UF ′′

n,y) + δYZ (y) ≥ 3

for all y ∈ U ∩Y . Since all the points of Z are closed, we see that δYZ (y) ≥ dim({y})
for all y ∈ U ∩ Y , see Lemma 52.18.1. Let q ∈ Q be the image of y. Since the
morphism π : U → P is smooth of relative dimension 1 we see that either y is a
closed point of a fibre of π or a generic point. Thus we see that
depth(π∗F ′′

n,y) + δYZ (y) ≥ depth(π∗F ′′
n,y) + dim({y}) = depth(F ′′

n,q) + dim({q}) + 1
because either the depth goes up by 1 or the dimension. This proves the claim.
By Lemma 52.22.1 we conclude that (π|∗UFn) canonically extends to X. Observe
that

Mn = Γ(U, π|∗UFn) =
⊕

m∈Z
Γ(P,Fn ⊗OP

L⊗m)

is canonically a graded A-module, see More on Morphisms, Equation (37.51.0.2).
By Properties, Lemma 28.18.2 we have π|∗UFn = M̃n|U . Thus we may apply Lemma
52.28.4 to find a finite graded A-module N such that (Mn) and (N/InN) are
pro-isomorphic in the category of graded A-modules modulo A+-torsion modules.
Let F be the coherent OP -module associated to N , see Cohomology of Schemes,
Proposition 30.15.3. The same proposition tells us that (F/InF) is pro-isomorphic
to (Fn). Since both are objects of Coh(P, I) we win by Lemma 52.15.3. □

Example 52.28.6.0EL6 Let k be a field and let X be a proper variety over k. Let Y ⊂ X
be an effective Cartier divisor such that OX(Y ) is ample and denote I ⊂ OX the
corresponding sheaf of ideals. Let (En) an object of Coh(X, I) with En finite locally
free. Here are some special cases of Proposition 52.28.5.

(1) If X is a curve or a surface, we don’t learn anything.
(2) If X is a Cohen-Macaulay threefold, then (En) is the completion of a

coherent OX -module E .
(3) More generally, if dim(X) ≥ 3 and X is (S3), then (En) is the completion

of a coherent OX -module E .
Of course, if E exists, then E is finite locally free in an open neighbourhood of Y .

Proposition 52.28.7.0EL7 Let k be a field. Let X be a proper scheme over k. Let L
be an ample invertible OX -module and let s ∈ Γ(X,L). Let Y = Z(s) be the zero
scheme of s and denote I ⊂ OX the corresponding sheaf of ideals. Let V be the set
of open subschemes of X containing Y ordered by reverse inclusion. Assume that
for all x ∈ X \ Y we have

depth(OX,x) + dim({x}) > 2
Then the completion functor

colimV Coh(OV ) −→ Coh(X, I)
is an equivalence on the full subcategories of finite locally free objects.
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Proof. To prove fully faithfulness it suffices to prove that
colimV Γ(V,L⊗m) −→ lim Γ(Yn,L⊗m|Yn)

is an isomorphism for all m, see Lemma 52.15.2. This follows from Lemma 52.28.2.
Essential surjectivity. Let (Fn) be a finite locally free object of Coh(X, I). Then
for y ∈ Y we have F∧

y = limFn,y is is a finite free O∧
X,y-module. Let p ⊂ O∧

X,y be
a prime with p ̸∈ V (I∧

y ). Then p lies over a prime p0 ⊂ OX,y which corresponds
to a specialization x ⇝ y with x ̸∈ Y . By Local Cohomology, Lemma 51.11.3 and
some dimension theory (see Varieties, Section 33.20) we have

depth((O∧
X,y)p) + dim(O∧

X,y/p) = depth(OX,x) + dim({x})− dim({y})
Thus our assumptions imply the assumptions of Proposition 52.28.5 are satisfied
and we find that (Fn) is the completion of a coherent OX -module F . It then
follows that Fy is finite free for all y ∈ Y and hence F is finite locally free in an
open neighbourhood V of Y . This finishes the proof. □
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CHAPTER 53

Algebraic Curves

0BRV 53.1. Introduction

0BRW In this chapter we develop some of the theory of algebraic curves. A reference
covering algebraic curves over the complex numbers is the book [ACGH85].
What we already know. Besides general algebraic geometry, we have already proved
some specific results on algebraic curves. Here is a list.

(1) We have discussed affine opens of and ample invertible sheaves on 1 di-
mensional Noetherian schemes in Varieties, Section 33.38.

(2) We have seen a curve is either affine or projective in Varieties, Section
33.43.

(3) We have discussed degrees of locally free modules on proper curves in
Varieties, Section 33.44.

(4) We have discussed the Picard scheme of a nonsingular projective curve
over an algebraically closed field in Picard Schemes of Curves, Section
44.1.

53.2. Curves and function fields

0BXX In this section we elaborate on the results of Varieties, Section 33.4 in the case of
curves.

Lemma 53.2.1.0BXY Let k be a field. Let X be a curve and Y a proper variety. Let
U ⊂ X be a nonempty open and let f : U → Y be a morphism. If x ∈ X is a
closed point such that OX,x is a discrete valuation ring, then there exist an open
U ⊂ U ′ ⊂ X containing x and a morphism of varieties f ′ : U ′ → Y extending f .

Proof. This is a special case of Morphisms, Lemma 29.42.5. □

Lemma 53.2.2.0BXZ Let k be a field. Let X be a normal curve and Y a proper variety.
The set of rational maps from X to Y is the same as the set of morphisms X → Y .

Proof. A rational map from X to Y can be extended to a morphism X → Y by
Lemma 53.2.1 as every local ring is a discrete valuation ring (for example by Vari-
eties, Lemma 33.43.8). Conversely, if two morphisms f, g : X → Y are equivalent
as rational maps, then f = g by Morphisms, Lemma 29.7.10. □

Lemma 53.2.3.0CCK Let k be a field. Let f : X → Y be a nonconstant morphism of
curves over k. If Y is normal, then f is flat.

Proof. Pick x ∈ X mapping to y ∈ Y . Then OY,y is either a field or a discrete
valuation ring (Varieties, Lemma 33.43.8). Since f is nonconstant it is dominant
(as it must map the generic point of X to the generic point of Y ). This implies that
OY,y → OX,x is injective (Morphisms, Lemma 29.8.7). Hence OX,x is torsion free

4378
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as a OY,y-module and therefore OX,x is flat as a OY,y-module by More on Algebra,
Lemma 15.22.10. □

Lemma 53.2.4.0CCL Let k be a field. Let f : X → Y be a morphism of schemes over k.
Assume

(1) Y is separated over k,
(2) X is proper of dimension ≤ 1 over k,
(3) f(Z) has at least two points for every irreducible component Z ⊂ X of

dimension 1.
Then f is finite.

Proof. The morphism f is proper by Morphisms, Lemma 29.41.7. Thus f(X) is
closed and images of closed points are closed. Let y ∈ Y be the image of a closed
point in X. Then f−1({y}) is a closed subset of X not containing any of the generic
points of irreducible components of dimension 1 by condition (3). It follows that
f−1({y}) is finite. Hence f is finite over an open neighbourhood of y by More
on Morphisms, Lemma 37.44.2 (if Y is Noetherian, then you can use the easier
Cohomology of Schemes, Lemma 30.21.2). Since we’ve seen above that there are
enough of these points y, the proof is complete. □

Lemma 53.2.5.0BY0 Let k be a field. Let X → Y be a morphism of varieties with Y

proper and X a curve. There exists a factorization X → X → Y where X → X is
an open immersion and X is a projective curve.

Proof. This is clear from Lemma 53.2.1 and Varieties, Lemma 33.43.6. □

Here is the main theorem of this section. We will say a morphism f : X → Y of
varieties is constant if the image f(X) consists of a single point y of Y . If this
happens then y is a closed point of Y (since the image of a closed point of X will
be a closed point of Y ).

Theorem 53.2.6.0BY1 Let k be a field. The following categories are canonically equiva-
lent

(1) The category of finitely generated field extensions K/k of transcendence
degree 1.

(2) The category of curves and dominant rational maps.
(3) The category of normal projective curves and nonconstant morphisms.
(4) The category of nonsingular projective curves and nonconstant morphisms.
(5) The category of regular projective curves and nonconstant morphisms.
(6) The category of normal proper curves and nonconstant morphisms.

Proof. The equivalence between categories (1) and (2) is the restriction of the
equivalence of Varieties, Theorem 33.4.1. Namely, a variety is a curve if and only
if its function field has transcendence degree 1, see for example Varieties, Lemma
33.20.3.
The categories in (3), (4), (5), and (6) are the same. First of all, the terms “regular”
and “nonsingular” are synonyms, see Properties, Definition 28.9.1. Being normal
and regular are the same thing for Noetherian 1-dimensional schemes (Properties,
Lemmas 28.9.4 and 28.12.6). See Varieties, Lemma 33.43.8 for the case of curves.
Thus (3) is the same as (5). Finally, (6) is the same as (3) by Varieties, Lemma
33.43.4.

https://stacks.math.columbia.edu/tag/0CCL
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If f : X → Y is a nonconstant morphism of nonsingular projective curves, then
f sends the generic point η of X to the generic point ξ of Y . Hence we obtain a
morphism k(Y ) = OY,ξ → OX,η = k(X) in the category (1). If two morphisms
f, g : X → Y gives the same morphism k(Y ) → k(X), then by the equivalence
between (1) and (2), f and g are equivalent as rational maps, so f = g by Lemma
53.2.2. Conversely, suppose that we have a map k(Y )→ k(X) in the category (1).
Then we obtain a morphism U → Y for some nonempty open U ⊂ X. By Lemma
53.2.1 this extends to all of X and we obtain a morphism in the category (5). Thus
we see that there is a fully faithful functor (5)→(1).
To finish the proof we have to show that every K/k in (1) is the function field of
a normal projective curve. We already know that K = k(X) for some curve X.
After replacing X by its normalization (which is a variety birational to X) we may
assume X is normal (Varieties, Lemma 33.27.1). Then we choose X → X with
X \X = {x1, . . . , xn} as in Varieties, Lemma 33.43.6. Since X is normal and since
each of the local rings OX,xi is normal we conclude that X is a normal projective
curve as desired. (Remark: We can also first compactify using Varieties, Lemma
33.43.5 and then normalize using Varieties, Lemma 33.27.1. Doing it this way we
avoid using the somewhat tricky Morphisms, Lemma 29.53.16.) □

Definition 53.2.7.0BY2 Let k be a field. Let X be a curve. A nonsingular projective
model of X is a pair (Y, φ) where Y is a nonsingular projective curve and φ :
k(X)→ k(Y ) is an isomorphism of function fields.

A nonsingular projective model is determined up to unique isomorphism by Theo-
rem 53.2.6. Thus we often say “the nonsingular projective model”. We usually drop
φ from the notation. Warning: it needn’t be the case that Y is smooth over k but
Lemma 53.2.8 shows this can only happen in positive characteristic.

Lemma 53.2.8.0BY3 Let k be a field. Let X be a curve and let Y be the nonsingular
projective model of X. If k is perfect, then Y is a smooth projective curve.

Proof. See Varieties, Lemma 33.43.8 for example. □

Lemma 53.2.9.0BY4 Let k be a field. Let X be a geometrically irreducible curve over k.
For a field extension K/k denote YK a nonsingular projective model of (XK)red.

(1) If X is proper, then YK is the normalization of XK .
(2) There exists K/k finite purely inseparable such that YK is smooth.
(3) Whenever YK is smooth1 we have H0(YK ,OYK ) = K.
(4) Given a commutative diagram

Ω K ′oo

K

OO

koo

OO

of fields such that YK and YK′ are smooth, then YΩ = (YK)Ω = (YK′)Ω.

Proof. Let X ′ be a nonsingular projective model of X. Then X ′ and X have iso-
morphic nonempty open subschemes. In particular X ′ is geometrically irreducible
as X is (some details omitted). Thus we may assume that X is projective.

1Or even geometrically reduced.

https://stacks.math.columbia.edu/tag/0BY2
https://stacks.math.columbia.edu/tag/0BY3
https://stacks.math.columbia.edu/tag/0BY4


53.3. LINEAR SERIES 4381

Assume X is proper. Then XK is proper and hence the normalization (XK)ν is
proper as a scheme finite over a proper scheme (Varieties, Lemma 33.27.1 and Mor-
phisms, Lemmas 29.44.11 and 29.41.4). On the other hand, XK is irreducible as
X is geometrically irreducible. Hence Xν

K is proper, normal, irreducible, and bira-
tional to (XK)red. This proves (1) because a proper curve is projective (Varieties,
Lemma 33.43.4).
Proof of (2). As X is proper and we have (1), we can apply Varieties, Lemma
33.27.4 to find K/k finite purely inseparable such that YK is geometrically normal.
Then YK is geometrically regular as normal and regular are the same for curves
(Properties, Lemma 28.12.6). Then Y is a smooth variety by Varieties, Lemma
33.12.6.
If YK is geometrically reduced, then YK is geometrically integral (Varieties, Lemma
33.9.2) and we see that H0(YK ,OYK ) = K by Varieties, Lemma 33.26.2. This
proves (3) because a smooth variety is geometrically reduced (even geometrically
regular, see Varieties, Lemma 33.12.6).
If YK is smooth, then for every extension Ω/K the base change (YK)Ω is smooth
over Ω (Morphisms, Lemma 29.34.5). Hence it is clear that YΩ = (YK)Ω. This
proves (4). □

53.3. Linear series

0CCM We deviate from the classical story (see Remark 53.3.6) by defining linear series in
the following manner.
Definition 53.3.1.0CCN Let k be a field. Let X be a proper scheme of dimension ≤ 1 over
k. Let d ≥ 0 and r ≥ 0. A linear series of degree d and dimension r is a pair (L, V )
where L is an invertible OX -module of degree d (Varieties, Definition 33.44.1) and
V ⊂ H0(X,L) is a k-subvector space of dimension r + 1. We will abbreviate this
by saying (L, V ) is a grd on X.
We will mostly use this when X is a nonsingular proper curve. In fact, the definition
above is just one way to generalize the classical definition of a grd. For example,
if X is a proper curve, then one can generalize linear series by allowing L to be a
torsion free coherent OX -module of rank 1. On a nonsingular curve every torsion
free coherent module is locally free, so this agrees with our notion for nonsingular
proper curves.
The following lemma explains the geometric meaning of linear series for proper
nonsingular curves.
Lemma 53.3.2.0CCP Let k be a field. Let X be a nonsingular proper curve over k. Let
(L, V ) be a grd on X. Then there exists a morphism

φ : X −→ Pr
k = Proj(k[T0, . . . , Tr])

of varieties over k and a map α : φ∗OPr
k
(1)→ L such that φ∗T0, . . . , φ

∗Tr are sent
to a basis of V by α.
Proof. Let s0, . . . , sr ∈ V be a k-basis. Since X is nonsingular the image L′ ⊂ L
of the map s0, . . . , sr : O⊕r+1

X → L is an invertible OX -module for example by
Divisors, Lemma 31.11.11. Then we use Constructions, Lemma 27.13.1 to get a
morphism

φ = φ(L′,(s0,...,sr)) : X −→ Pr
k

https://stacks.math.columbia.edu/tag/0CCN
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as in the statement of the lemma. □

Lemma 53.3.3.0CCQ Let k be a field. Let X be a proper scheme of dimension ≤ 1 over
k. If X has a grd, then X has a gsd for all 0 ≤ s ≤ r.

Proof. This is true because a vector space V of dimension r+ 1 over k has a linear
subspace of dimension s+ 1 for all 0 ≤ s ≤ r. □

Lemma 53.3.4.0CCR Let k be a field. Let X be a nonsingular proper curve over k. Let
(L, V ) be a g1

d on X. Then the morphism φ : X → P1
k of Lemma 53.3.2 either

(1) is nonconstant and has degree ≤ d, or
(2) factors through a closed point of P1

k and in this case H0(X,OX) ̸= k.

Proof. By Lemma 53.3.2 we see that L′ = φ∗OP1
k
(1) has a nonzero map L′ → L.

Hence by Varieties, Lemma 33.44.12 we see that 0 ≤ deg(L′) ≤ d. If deg(L′) = 0,
then the same lemma tells us L′ ∼= OX and since we have two linearly independent
sections we find we are in case (2). If deg(L′) > 0 then φ is nonconstant (since the
pullback of an invertible module by a constant morphism is trivial). Hence

deg(L′) = deg(X/P1
k) deg(OP1

k
(1))

by Varieties, Lemma 33.44.11. This finishes the proof as the degree of OP1
k
(1) is

1. □

Lemma 53.3.5.0CCS Let k be a field. Let X be a proper curve over k with H0(X,OX) =
k. If X has a grd, then r ≤ d. If equality holds, then H1(X,OX) = 0, i.e., the genus
of X (Definition 53.8.1) is 0.

Proof. Let (L, V ) be a grd. Since this will only increase r, we may assume V =
H0(X,L). Choose a nonzero element s ∈ V . Then the zero scheme of s is an
effective Cartier divisor D ⊂ X, we have L = OX(D), and we have a short exact
sequence

0→ OX → L → L|D → 0
see Divisors, Lemma 31.14.10 and Remark 31.14.11. By Varieties, Lemma 33.44.9
we have deg(D) = deg(L) = d. Since D is an Artinian scheme we have L|D ∼= OD2.
Thus

dimkH
0(D,L|D) = dimkH

0(D,OD) = deg(D) = d

On the other hand, by assumption dimkH
0(X,OX) = 1 and dimH0(X,L) = r+1.

We conclude that r + 1 ≤ 1 + d, i.e., r ≤ d as in the lemma.
Assume equality holds. Then H0(X,L) → H0(X,L|D) is surjective. If we knew
that H1(X,L) was zero, then we would conclude that H1(X,OX) is zero by the
long exact cohomology sequence and the proof would be complete. Our strategy
will be to replace L by a large power which has vanishing. As L|D is the trivial
invertible module (see above), we can find a section t of L whose restriction of D
generates L|D. Consider the multiplication map

µ : H0(X,L)⊗k H0(X,L) −→ H0(X,L⊗2)
and consider the short exact sequence

0→ L s−→ L⊗2 → L⊗2|D → 0

2In our case this follows from Divisors, Lemma 31.17.1 as D → Spec(k) is finite.

https://stacks.math.columbia.edu/tag/0CCQ
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Since H0(L)→ H0(L|D) is surjective and since t maps to a trivialization of L|D we
see that µ(H0(X,L)⊗ t) gives a subspace of H0(X,L⊗2) surjecting onto the global
sections of L⊗2|D. Thus we see that

dimH0(X,L⊗2) = r + 1 + d = 2r + 1 = deg(L⊗2) + 1

Ok, so L⊗2 has the same property as L, i.e., that the dimension of the space of
global sections is equal to the degree plus one. Since L is ample (Varieties, Lemma
33.44.14) there exists some n0 such that L⊗n has vanishing H1 for all n ≥ n0
(Cohomology of Schemes, Lemma 30.16.1). Thus applying the argument above to
L⊗n with n = 2m for some sufficiently large m we conclude the lemma is true. □

Remark 53.3.6 (Classical definition).0CCT Let X be a smooth projective curve over
an algebraically closed field k. We say two effective Cartier divisors D,D′ ⊂ X
are linearly equivalent if and only if OX(D) ∼= OX(D′) as OX -modules. Since
Pic(X) = Cl(X) (Divisors, Lemma 31.27.7) we see that D and D′ are linearly
equivalent if and only if the Weil divisors associated to D and D′ define the same
element of Cl(X). Given an effective Cartier divisor D ⊂ X of degree d the complete
linear system or complete linear series |D| of D is the set of effective Cartier divisors
E ⊂ X which are linearly equivalent to D. Another way to say it is that |D| is the
set of closed points of the fibre of the morphism

γd : HilbdX/k −→ PicdX/k
(Picard Schemes of Curves, Lemma 44.6.7) over the closed point corresponding to
OX(D). This gives |D| a natural scheme structure and it turns out that |D| ∼= Pm

k

with m+ 1 = h0(OX(D)). In fact, more canonically we have

|D| = P(H0(X,OX(D))∨)

where (−)∨ indicates k-linear dual and P is as in Constructions, Example 27.21.2.
In this language a linear system or a linear series on X is a closed subvariety L ⊂ |D|
which can be cut out by linear equations. If L has dimension r, then L = P(V ∨)
where V ⊂ H0(X,OX(D)) is a linear subspace of dimension r+1. Thus the classical
linear series L ⊂ |D| corresponds to the linear series (OX(D), V ) as defined above.

53.4. Duality

0E31 In this section we work out the consequences of the very general material on du-
alizing complexes and duality for proper 1-dimensional schemes over fields. If you
are interested in the analogous discussion for higher dimension proper schemes over
fields, see Duality for Schemes, Section 48.27.

Lemma 53.4.1.0BS2 Let X be a proper scheme of dimension ≤ 1 over a field k. There
exists a dualizing complex ω•

X with the following properties
(1) Hi(ω•

X) is nonzero only for i = −1, 0,
(2) ωX = H−1(ω•

X) is a coherent Cohen-Macaulay module whose support is
the irreducible components of dimension 1,

(3) for x ∈ X closed, the module H0(ω•
X,x) is nonzero if and only if either

(a) dim(OX,x) = 0 or
(b) dim(OX,x) = 1 and OX,x is not Cohen-Macaulay,

https://stacks.math.columbia.edu/tag/0CCT
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(4) for K ∈ DQCoh(OX) there are functorial isomorphisms3

ExtiX(K,ω•
X) = Homk(H−i(X,K), k)

compatible with shifts and distinguished triangles,
(5) there are functorial isomorphisms Hom(F , ωX) = Homk(H1(X,F), k) for
F quasi-coherent on X,

(6) if X → Spec(k) is smooth of relative dimension 1, then ωX ∼= ΩX/k.

Proof. Denote f : X → Spec(k) the structure morphism. We start with the relative
dualizing complex

ω•
X = ω•

X/k = a(OSpec(k))
as described in Duality for Schemes, Remark 48.12.5. Then property (4) holds by
construction as a is the right adjoint for f∗ : DQCoh(OX) → D(OSpec(k)). Since f
is proper we have f !(OSpec(k)) = a(OSpec(k)) by definition, see Duality for Schemes,
Section 48.16. Hence ω•

X and ωX are as in Duality for Schemes, Example 48.22.1
and as in Duality for Schemes, Example 48.22.2. Parts (1) and (2) follow from
Duality for Schemes, Lemma 48.22.4. For a closed point x ∈ X we see that ω•

X,x is
a normalized dualizing complex over OX,x, see Duality for Schemes, Lemma 48.21.1.
Assertion (3) then follows from Dualizing Complexes, Lemma 47.20.2. Assertion
(5) follows from Duality for Schemes, Lemma 48.22.5 for coherent F and in general
by unwinding (4) for K = F [0] and i = −1. Assertion (6) follows from Duality for
Schemes, Lemma 48.15.7. □

Lemma 53.4.2.0BS3 Let X be a proper scheme over a field k which is Cohen-Macaulay
and equidimensional of dimension 1. The module ωX of Lemma 53.4.1 has the
following properties

(1) ωX is a dualizing module on X (Duality for Schemes, Section 48.22),
(2) ωX is a coherent Cohen-Macaulay module whose support is X,
(3) there are functorial isomorphisms ExtiX(K,ωX [1]) = Homk(H−i(X,K), k)

compatible with shifts for K ∈ DQCoh(X),
(4) there are functorial isomorphisms Ext1+i(F , ωX) = Homk(H−i(X,F), k)

for F quasi-coherent on X.

Proof. Recall from the proof of Lemma 53.4.1 that ωX is as in Duality for Schemes,
Example 48.22.1 and hence is a dualizing module. The other statements follow from
Lemma 53.4.1 and the fact that ω•

X = ωX [1] as X is Cohen-Macualay (Duality for
Schemes, Lemma 48.23.1). □

Remark 53.4.3.0BS4 Let X be a proper scheme of dimension ≤ 1 over a field k. Let ω•
X

and ωX be as in Lemma 53.4.1. If E is a finite locally free OX -module with dual
E∨ then we have canonical isomorphisms

Homk(H−i(X, E), k) = Hi(X, E∨ ⊗L
OX

ω•
X)

This follows from the lemma and Cohomology, Lemma 20.50.5. If X is Cohen-
Macaulay and equidimensional of dimension 1, then we have canonical isomor-
phisms

Homk(H−i(X, E), k) = H1+i(X, E∨ ⊗OX
ωX)

3This property characterizes ω•
X in DQCoh(OX) up to unique isomorphism by the Yoneda

lemma. Since ω•
X is in DbCoh(OX) in fact it suffices to consider K ∈ DbCoh(OX).

https://stacks.math.columbia.edu/tag/0BS3
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by Lemma 53.4.2. In particular if L is an invertible OX -module, then we have
dimkH

0(X,L) = dimkH
1(X,L⊗−1 ⊗OX

ωX)
and

dimkH
1(X,L) = dimkH

0(X,L⊗−1 ⊗OX
ωX)

Here is a sanity check for the dualizing complex.

Lemma 53.4.4.0E32 Let X be a proper scheme of dimension ≤ 1 over a field k. Let ω•
X

and ωX be as in Lemma 53.4.1.
(1) If X → Spec(k) factors as X → Spec(k′) → Spec(k) for some field k′,

then ω•
X and ωX satisfy properties (4), (5), (6) with k replaced with k′.

(2) If K/k is a field extension, then the pullback of ω•
X and ωX to the base

change XK are as in Lemma 53.4.1 for the morphism XK → Spec(K).

Proof. Denote f : X → Spec(k) the structure morphism. Assertion (1) really means
that ω•

X and ωX are as in Lemma 53.4.1 for the morphism f ′ : X → Spec(k′). In
the proof of Lemma 53.4.1 we took ω•

X = a(OSpec(k)) where a be is the right adjoint
of Duality for Schemes, Lemma 48.3.1 for f . Thus we have to show a(OSpec(k)) ∼=
a′(OSpec(k)) where a′ be is the right adjoint of Duality for Schemes, Lemma 48.3.1
for f ′. Since k′ ⊂ H0(X,OX) we see that k′/k is a finite extension (Cohomology of
Schemes, Lemma 30.19.2). By uniqueness of adjoints we have a = a′ ◦ b where b is
the right adjoint of Duality for Schemes, Lemma 48.3.1 for g : Spec(k′)→ Spec(k).
Another way to say this: we have f ! = (f ′)! ◦ g!. Thus it suffices to show that
Homk(k′, k) ∼= k′ as k′-modules, see Duality for Schemes, Example 48.3.2. This
holds because these are k′-vector spaces of the same dimension (namely dimension
1).
Proof of (2). This holds because we have base change for a by Duality for Schemes,
Lemma 48.6.2. See discussion in Duality for Schemes, Remark 48.12.5. □

Lemma 53.4.5.0E33 Let X be a proper scheme of dimension ≤ 1 over a field k. Let
i : Y → X be a closed immersion. Let ω•

X , ωX , ω•
Y , ωY be as in Lemma 53.4.1.

Then
(1) ω•

Y = RHom(OY , ω•
X),

(2) ωY = Hom(OY , ωX) and i∗ωY = HomOX
(i∗OY , ωX).

Proof. Denote g : Y → Spec(k) and f : X → Spec(k) the structure morphisms.
Then g = f ◦ i. Denote a, b, c the right adjoint of Duality for Schemes, Lemma
48.3.1 for f, g, i. Then b = c ◦ a by uniqueness of right adjoints and because
Rg∗ = Rf∗ ◦ Ri∗. In the proof of Lemma 53.4.1 we set ω•

X = a(OSpec(k)) and
ω•
Y = b(OSpec(k)). Hence ω•

Y = c(ω•
X) which implies (1) by Duality for Schemes,

Lemma 48.9.7. Since ωX = H−1(ω•
X) and ωY = H−1(ω•

Y ) we conclude that ωY =
Hom(OY , ωX). This implies i∗ωY = HomOX

(i∗OY , ωX) by Duality for Schemes,
Lemma 48.9.3. □

Lemma 53.4.6.0E34 Let X be a proper scheme over a field k which is Gorenstein,
reduced, and equidimensional of dimension 1. Let i : Y → X be a reduced closed
subscheme equidimensional of dimension 1. Let j : Z → X be the scheme theoretic
closure of X \ Y . Then

(1) Y and Z are Cohen-Macaulay,

https://stacks.math.columbia.edu/tag/0E32
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(2) if I ⊂ OX , resp. J ⊂ OX is the ideal sheaf of Y , resp. Z in X, then

I = i∗I ′ and J = j∗J ′

where I ′ ⊂ OZ , resp. J ′ ⊂ OY is the ideal sheaf of Y ∩ Z in Z, resp. Y ,
(3) ωY = J ′(i∗ωX) and i∗(ωY ) = JωX ,
(4) ωZ = I ′(i∗ωX) and i∗(ωZ) = IωX ,
(5) we have the following short exact sequences

0→ ωX → i∗i
∗ωX ⊕ j∗j

∗ωX → OY ∩Z → 0
0→ i∗ωY → ωX → j∗j

∗ωX → 0
0→ j∗ωZ → ωX → i∗i

∗ωX → 0
0→ i∗ωY ⊕ j∗ωZ → ωX → OY ∩Z → 0

0→ ωY → i∗ωX → OY ∩Z → 0
0→ ωZ → j∗ωX → OY ∩Z → 0

Here ωX , ωY , ωZ are as in Lemma 53.4.1.

Proof. A reduced 1-dimensional Noetherian scheme is Cohen-Macaulay, so (1) is
true. Since X is reduced, we see that X = Y ∪ Z scheme theoretically. With
notation as in Morphisms, Lemma 29.4.6 and by the statement of that lemma we
have a short exact sequence

0→ OX → OY ⊕OZ → OY ∩Z → 0

Since J = Ker(OX → OZ), J ′ = Ker(OY → OY ∩Z), I = Ker(OX → OY ), and
I ′ = Ker(OZ → OY ∩Z) a diagram chase implies (2). Observe that I+J is the ideal
sheaf of Y ∩ Z and that I ∩ J = 0. Hence we have the following exact sequences

0→ OX → OY ⊕OZ → OY ∩Z → 0
0→ J → OX → OZ → 0
0→ I → OX → OY → 0

0→ J ⊕ I → OX → OY ∩Z → 0
0→ J ′ → OY → OY ∩Z → 0
0→ I ′ → OZ → OY ∩Z → 0

Since X is Gorenstein ωX is an invertible OX -module (Duality for Schemes, Lemma
48.24.4). Since Y ∩Z has dimension 0 we have ωX |Y ∩Z ∼= OY ∩Z . Thus if we prove
(3) and (4), then we obtain the short exact sequences of the lemma by tensoring
the above short exact sequence with the invertible module ωX . By symmetry it
suffices to prove (3) and by (2) it suffices to prove i∗(ωY ) = JωX .

We have i∗ωY = HomOX
(i∗OY , ωX) by Lemma 53.4.5. Again using that ωX is

invertible we finally conclude that it suffices to show HomOX
(OX/I,OX) maps

isomorphically to J by evaluation at 1. In other words, that J is the annihilator
of I. This follows from the above. □

53.5. Riemann-Roch

0B5B
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Let k be a field. Let X be a proper scheme of dimension ≤ 1 over k. In Varieties,
Section 33.44 we have defined the degree of a locally free OX -module E of constant
rank by the formula
(53.5.0.1)0BRX deg(E) = χ(X, E)− rank(E)χ(X,OX)
see Varieties, Definition 33.44.1. In the chapter on Chow Homology we defined the
first Chern class of E as an operation on cycles (Chow Homology, Section 42.38)
and we proved that
(53.5.0.2)0BRY deg(E) = deg(c1(E) ∩ [X]1)
see Chow Homology, Lemma 42.41.3. Combining (53.5.0.1) and (53.5.0.2) we obtain
our first version of the Riemann-Roch formula
(53.5.0.3)0BRZ χ(X, E) = deg(c1(E) ∩ [X]1) + rank(E)χ(X,OX)
If L is an invertibleOX -module, then we can also consider the numerical intersection
(L · X) as defined in Varieties, Definition 33.45.3. However, this does not give
anything new as
(53.5.0.4)0BS0 (L ·X) = deg(L)
by Varieties, Lemma 33.45.12. If L is ample, then this integer is positive and is
called the degree
(53.5.0.5)0BS1 degL(X) = (L ·X) = deg(L)
of X with respect to L, see Varieties, Definition 33.45.10.
To obtain a true Riemann-Roch theorem we would like to write χ(X,OX) as the
degree of a canonical zero cycle on X. We refer to [Ful98] for a fully general version
of this. We will use duality to get a formula in the case where X is Gorenstein;
however, in some sense this is a cheat (for example because this method cannot
work in higher dimension).
We first use Lemmas 53.4.1 and 53.4.2 to get a relation between the euler charac-
teristic of OX and the euler characteristic of the dualizing complex or the dualizing
module.

Lemma 53.5.1.0BS5 Let X be a proper scheme of dimension ≤ 1 over a field k. With
ω•
X and ωX as in Lemma 53.4.1 we have

χ(X,OX) = χ(X,ω•
X)

If X is Cohen-Macaulay and equidimensional of dimension 1, then
χ(X,OX) = −χ(X,ωX)

Proof. We define the right hand side of the first formula as follows:

χ(X,ω•
X) =

∑
i∈Z

(−1)i dimkH
i(X,ω•

X)

This is well defined because ω•
X is in Db

Coh(OX), but also because

Hi(X,ω•
X) = Exti(OX , ω•

X) = H−i(X,OX)
which is always finite dimensional and nonzero only if i = 0,−1. This of course
also proves the first formula. The second is a consequence of the first because
ω•
X = ωX [1] in the CM case, see Lemma 53.4.2. □

https://stacks.math.columbia.edu/tag/0BS5
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We will use Lemma 53.5.1 to get the desired formula for χ(X,OX) in the case that
ωX is invertible, i.e., that X is Gorenstein. The statement is that −1/2 of the first
Chern class of ωX capped with the cycle [X]1 associated to X is a natural zero
cycle on X with half-integer coefficients whose degree is χ(X,OX). The occurence
of fractions in the statement of Riemann-Roch cannot be avoided.

Lemma 53.5.2 (Riemann-Roch).0BS6 Let X be a proper scheme over a field k which
is Gorenstein and equidimensional of dimension 1. Let ωX be as in Lemma 53.4.1.
Then

(1) ωX is an invertible OX -module,
(2) deg(ωX) = −2χ(X,OX),
(3) for a locally free OX -module E of constant rank we have

χ(X, E) = deg(E)− 1
2 rank(E) deg(ωX)

and dimk(Hi(X, E)) = dimk(H1−i(X, E∨ ⊗OX
ωX)) for all i ∈ Z.

Nonsingular (normal) curves are Gorenstein, see Duality for Schemes, Lemma
48.24.3.

Proof. Recall that Gorenstein schemes are Cohen-Macaulay (Duality for Schemes,
Lemma 48.24.2) and hence ωX is a dualizing module on X, see Lemma 53.4.2. It
follows more or less from the definition of the Gorenstein property that the dualizing
sheaf is invertible, see Duality for Schemes, Section 48.24. By (53.5.0.3) applied to
ωX we have

χ(X,ωX) = deg(c1(ωX) ∩ [X]1) + χ(X,OX)
Combined with Lemma 53.5.1 this gives

2χ(X,OX) = −deg(c1(ωX) ∩ [X]1) = −deg(ωX)
the second equality by (53.5.0.2). Putting this back into (53.5.0.3) for E gives the
displayed formula of the lemma. The symmetry in dimensions is a consequence of
duality for X, see Remark 53.4.3. □

53.6. Some vanishing results

0B5C This section contains some very weak vanishing results. Please see Section 53.21
for a few more and more interesting results.

Lemma 53.6.1.0BY5 Let k be a field. Let X be a proper scheme over k having dimension
1 and H0(X,OX) = k. Then X is connected, Cohen-Macaulay, and equidimen-
sional of dimension 1.

Proof. Since Γ(X,OX) = k has no nontrivial idempotents, we see that X is con-
nected. This already shows that X is equidimensional of dimension 1 (any irre-
ducible component of dimension 0 would be a connected component). Let I ⊂ OX
be the maximal coherent submodule supported in closed points. Then I exists (Di-
visors, Lemma 31.4.6) and is globally generated (Varieties, Lemma 33.33.3). Since
1 ∈ Γ(X,OX) is not a section of I we conclude that I = 0. Thus X does not have
embedded points (Divisors, Lemma 31.4.6). Thus X has (S1) by Divisors, Lemma
31.4.3. Hence X is Cohen-Macaulay. □

In this section we work in the following situation.

https://stacks.math.columbia.edu/tag/0BS6
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Situation 53.6.2.0B5D Here k is a field, X is a proper scheme over k having dimension
1 and H0(X,OX) = k.
By Lemma 53.6.1 the scheme X is Cohen-Macaulay and equidimensional of di-
mension 1. The dualizing module ωX discussed in Lemmas 53.4.1 and 53.4.2 has
nonvanishing H1 because in fact dimkH

1(X,ωX) = dimkH
0(X,OX) = 1. It turns

out that anything slightly more “positive” than ωX has vanishing H1.
Lemma 53.6.3.0B5E In Situation 53.6.2. Given an exact sequence

ωX → F → Q→ 0
of coherent OX -modules with H1(X,Q) = 0 (for example if dim(Supp(Q)) = 0),
then either H1(X,F) = 0 or F = ωX ⊕Q.
Proof. (The parenthetical statement follows from Cohomology of Schemes, Lemma
30.9.10.) Since H0(X,OX) = k is dual to H1(X,ωX) (see Section 53.5) we see that
dimH1(X,ωX) = 1. The sheaf ωX represents the functor F 7→ Homk(H1(X,F), k)
on the category of coherent OX -modules (Duality for Schemes, Lemma 48.22.5).
Consider an exact sequence as in the statement of the lemma and assume that
H1(X,F) ̸= 0. Since H1(X,Q) = 0 we see that H1(X,ωX) → H1(X,F) is an
isomorphism. By the universal property of ωX stated above, we conclude there
is a map F → ωX whose action on H1 is the inverse of this isomorphism. The
composition ωX → F → ωX is the identity (by the universal property) and the
lemma is proved. □

Lemma 53.6.4.0B62 In Situation 53.6.2. Let L be an invertible OX -module which is
globally generated and not isomorphic to OX . Then H1(X,ωX ⊗ L) = 0.
Proof. By duality as discussed in Section 53.5 we have to show that H0(X,L⊗−1) =
0. If not, then we can choose a global section t of L⊗−1 and a global section s of L
such that st ̸= 0. However, then st is a constant multiple of 1, by our assumption
that H0(X,OX) = k. It follows that L ∼= OX , which is a contradiction. □

Lemma 53.6.5.0B5F In Situation 53.6.2. Given an exact sequence
ωX → F → Q→ 0

of coherent OX -modules with dim(Supp(Q)) = 0 and dimkH
0(X,Q) ≥ 2 and such

that there is no nonzero submodule Q′ ⊂ F such that Q′ → Q is injective. Then
the submodule of F generated by global sections surjects onto Q.
Proof. Let F ′ ⊂ F be the submodule generated by global sections and the image of
ωX → F . Since dimkH

0(X,Q) ≥ 2 and dimkH
1(X,ωX) = dimkH

0(X,OX) = 1,
we see that F ′ → Q is not zero and ωX → F ′ is not an isomorphism. Hence
H1(X,F ′) = 0 by Lemma 53.6.3 and our assumption on F . Consider the short
exact sequence

0→ F ′ → F → Q/ Im(F ′ → Q)→ 0
If the quotient on the right is nonzero, then we obtain a contradiction because then
H0(X,F) is bigger than H0(X,F ′). □

Here is an example global generation statement.
Lemma 53.6.6.0B5G In Situation 53.6.2 assume that X is integral. Let 0 → ωX →
F → Q → 0 be a short exact sequence of coherent OX -modules with F torsion
free, dim(Supp(Q)) = 0, and dimkH

0(X,Q) ≥ 2. Then F is globally generated.

https://stacks.math.columbia.edu/tag/0B5D
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Proof. Consider the submodule F ′ generated by the global sections. By Lemma
53.6.5 we see that F ′ → Q is surjective, in particular F ′ ̸= 0. Since X is a curve,
we see that F ′ ⊂ F is an inclusion of rank 1 sheaves, hence Q′ = F/F ′ is supported
in finitely many points. To get a contradiction, assume that Q′ is nonzero. Then
we see that H1(X,F ′) ̸= 0. Then we get a nonzero map F ′ → ωX by the universal
property (Duality for Schemes, Lemma 48.22.5). The image of the composition
F ′ → ωX → F is generated by global sections, hence is inside of F ′. Thus we get
a nonzero self map F ′ → F ′. Since F ′ is torsion free of rank 1 on a proper curve
this has to be an automorphism (details omitted). But then this implies that F ′ is
contained in ωX ⊂ F contradicting the surjectivity of F ′ → Q. □

Lemma 53.6.7.0B5H In Situation 53.6.2. Let L be a very ample invertible OX -module
with deg(L) ≥ 2. Then ωX ⊗OX

L is globally generated.

Proof. Assume k is algebraically closed. Let x ∈ X be a closed point. Let Ci ⊂ X
be the irreducible components and for each i let xi ∈ Ci be the generic point.
By Varieties, Lemma 33.22.2 we can choose a section s ∈ H0(X,L) such that s
vanishes at x but not at xi for all i. The corresponding module map s : OX → L is
injective with cokernel Q supported in finitely many points and with H0(X,Q) ≥ 2.
Consider the corresponding exact sequence

0→ ωX → ωX ⊗ L → ωX ⊗Q → 0
By Lemma 53.6.5 we see that the module generated by global sections surjects onto
ωX ⊗Q. Since x was arbitrary this proves the lemma. Some details omitted.
We will reduce the case where k is not algebraically closed, to the algebraically
closed field case. We suggest the reader skip the rest of the proof. Choose an
algebraic closure k of k and consider the base change Xk. Let us check that Xk →
Spec(k) is an example of Situation 53.6.2. By flat base change (Cohomology of
Schemes, Lemma 30.5.2) we see that H0(Xk,O) = k. The scheme Xk is proper over
k (Morphisms, Lemma 29.41.5) and equidimensional of dimension 1 (Morphisms,
Lemma 29.28.3). The pullback of ωX toXk is the dualizing module ofXk by Lemma
53.4.4. The pullback of L to Xk is very ample (Morphisms, Lemma 29.38.8). The
degree of the pullback of L to Xk is equal to the degree of L on X (Varieties,
Lemma 33.44.2). Finally, we see that ωX ⊗ L is globally generated if and only if
its base change is so (Varieties, Lemma 33.22.1). In this way we see that the result
follows from the result in the case of an algebraically closed ground field. □

53.7. Very ample invertible sheaves

0E8U An often used criterion for very ampleness of an invertible module L on a scheme
X of finite type over an algebraically closed field is: sections of L separate points
and tangent vectors (Varieties, Section 33.23). Here is another criterion for curves;
please compare with Varieties, Subsection 33.35.6.

Lemma 53.7.1.0E8V Let k be a field. Let X be a proper scheme over k having dimension
1 and H0(X,OX) = k. Let L be an invertible OX -module. Assume

(1) L has a regular global section,
(2) H1(X,L) = 0, and
(3) L is ample.

Then L⊗6 is very ample on X over k.

https://stacks.math.columbia.edu/tag/0B5H
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Proof. Let s be a regular global section of L. Let i : Z = Z(s) → X be the zero
scheme of s, see Divisors, Section 31.14. By condition (3) we see that Z ̸= ∅ (small
detail omitted). Consider the short exact sequence

0→ OX
s−→ L → i∗(L|Z)→ 0

Tensoring with L we obtain
0→ L → L⊗2 → i∗(L⊗2|Z)→ 0

Observe that Z has dimension 0 (Divisors, Lemma 31.13.5) and hence is the spec-
trum of an Artinian ring (Varieties, Lemma 33.20.2) hence L|Z ∼= OZ (Algebra,
Lemma 10.78.7). The short exact sequence also shows that H1(X,L⊗2) = 0 (for
example using Varieties, Lemma 33.33.3 to see vanishing in the spot on the right).
Using induction on n ≥ 1 and the sequence

0→ L⊗n s−→ L⊗n+1 → i∗(L⊗n+1|Z)→ 0
we see that H1(X,L⊗n) = 0 for n > 0 and that there exists a global section tn+1
of L⊗n+1 which gives a trivialization of L⊗n+1|Z ∼= OZ .
Consider the multiplication map
µn : H0(X,L)⊗k H0(X,L⊗n)⊕H0(X,L⊗2)⊗k H0(X,L⊗n−1) −→ H0(X,L⊗n+1)
We claim this is surjective for n ≥ 3. To see this we consider the short exact
sequence

0→ L⊗n s−→ L⊗n+1 → i∗(L⊗n+1|Z)→ 0
The sections of L⊗n+1 coming from the left in this sequence are in the image of
µn. On the other hand, since H0(L⊗2)→ H0(L⊗2|Z) is surjective (see above) and
since tn−1 maps to a trivialization of L⊗n−1|Z we see that µn(H0(X,L⊗2)⊗ tn−1)
gives a subspace of H0(X,L⊗n+1) surjecting onto the global sections of L⊗n+1|Z .
This proves the claim.
From the claim in the previous paragraph we conclude that the graded k-algebra

S =
⊕

n≥0
H0(X,L⊗n)

is generated in degrees 0, 1, 2, 3 over k. Recall that X = Proj(S), see Morphisms,
Lemma 29.43.17. Thus S(6) =

⊕
n S6n is generated in degree 1. This means that

L⊗6 is very ample as desired. □

Lemma 53.7.2.0E8W Let k be a field. Let X be a proper scheme over k having dimension
1 and H0(X,OX) = k. Let L be an invertible OX -module. Assume

(1) L is globally generated,
(2) H1(X,L) = 0, and
(3) L is ample.

Then L⊗2 is very ample on X over k.

Proof. Choose basis s0, . . . , sn of H0(X,L⊗2) over k. By property (1) we see that
L⊗2 is globally generated and we get a morphism

φL⊗2,(s0,...,sn) : X −→ Pn
k

See Constructions, Section 27.13. The lemma asserts that this morphism is a closed
immersion. To check this we may replace k by its algebraic closure, see Descent,
Lemma 35.23.19. Thus we may assume k is algebraically closed.

https://stacks.math.columbia.edu/tag/0E8W
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Assume k is algebraically closed. For each generic point ηi ∈ X let Vi ⊂ H0(X,L)
be the k-subvector space of sections vanishing at ηi. Since L is globally generated,
we see that Vi ̸= H0(X,L). Since X has only a finite number of irreducible com-
ponents and k is infinite, we can find s ∈ H0(X,L) nonvanishing at ηi for all i.
Then s is a regular section of L (because X is Cohen-Macaulay by Lemma 53.6.1
and hence L has no embedded associated points).
In particular, all of the statements given in the proof of Lemma 53.7.1 hold with this
s. Moreover, as L is globally generated, we can find a global section t ∈ H0(X,L)
such that t|Z is nonvanishing (argue as above using the finite number of points of
Z). Then in the proof of Lemma 53.7.1 we can use t to see that additionally the
multiplication map

µn : H0(X,L)⊗k H0(X,L⊗2) −→ H0(X,L⊗3)
is surjective. Thus

S =
⊕

n≥0
H0(X,L⊗n)

is generated in degrees 0, 1, 2 over k. Arguing as in the proof of Lemma 53.7.1 we
find that S(2) =

⊕
n S2n is generated in degree 1. This means that L⊗2 is very

ample as desired. Some details omitted. □

53.8. The genus of a curve

0BY6 If X is a smooth projective geometrically irreducible curve over a field k, then
we’ve previously defined the genus of X as the dimension of H1(X,OX), see Picard
Schemes of Curves, Definition 44.6.3. Observe that H0(X,OX) = k in this case,
see Varieties, Lemma 33.26.2. Let us generalize this as follows.

Definition 53.8.1.0BY7 Let k be a field. Let X be a proper scheme over k having
dimension 1 and H0(X,OX) = k. Then the genus of X is g = dimkH

1(X,OX).

This is sometimes called the arithmetic genus of X. In the literature the arithmetic
genus of a proper curve X over k is sometimes defined as

pa(X) = 1− χ(X,OX) = 1− dimkH
0(X,OX) + dimkH

1(X,OX)
This agrees with our definition when it applies because we assume H0(X,OX) = k.
But note that

(1) pa(X) can be negative, and
(2) pa(X) depends on the base field k and should be written pa(X/k).

For example if k = Q and X = P1
Q(i) then pa(X/Q) = −1 and pa(X/Q(i)) = 0.

The assumption that H0(X,OX) = k in our definition has two consequences. On
the one hand, it means there is no confusion about the base field. On the other
hand, it implies the scheme X is Cohen-Macaulay and equidimensional of dimension
1 (Lemma 53.6.1). If ωX denotes the dualizing module as in Lemmas 53.4.1 and
53.4.2 we see that
(53.8.1.1)0BY8 g = dimkH

1(X,OX) = dimkH
0(X,ωX)

by duality, see Remark 53.4.3.
If X is proper over k of dimension ≤ 1 and H0(X,OX) is not equal to the ground
field k, instead of using the arithmetic genus pa(X) given by the displayed formula
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above we shall use the invariant χ(X,OX). In fact, it is advocated in [Ser55b, page
276] and [Hir95, Introduction] that we should call χ(X,OX) the arithmetic genus.

Lemma 53.8.2.0BY9 Let k′/k be a field extension. Let X be a proper scheme over k
having dimension 1 and H0(X,OX) = k. Then Xk′ is a proper scheme over k′

having dimension 1 and H0(Xk′ ,OXk′ ) = k′. Moreover the genus of Xk′ is equal
to the genus of X.

Proof. The dimension of Xk′ is 1 for example by Morphisms, Lemma 29.28.3. The
morphism Xk′ → Spec(k′) is proper by Morphisms, Lemma 29.41.5. The equality
H0(Xk′ ,OXk′ ) = k′ follows from Cohomology of Schemes, Lemma 30.5.2. The
equality of the genus follows from the same lemma. □

Lemma 53.8.3.0C19 Let k be a field. Let X be a proper scheme over k having dimension
1 and H0(X,OX) = k. If X is Gorenstein, then

deg(ωX) = 2g − 2
where g is the genus of X and ωX is as in Lemma 53.4.1.

Proof. Immediate from Lemma 53.5.2. □

Lemma 53.8.4.0C1A Let X be a smooth proper curve over a field k with H0(X,OX) = k.
Then

dimkH
0(X,ΩX/k) = g and deg(ΩX/k) = 2g − 2

where g is the genus of X.

Proof. By Lemma 53.4.1 we have ΩX/k = ωX . Hence the formulas hold by (53.8.1.1)
and Lemma 53.8.3. □

53.9. Plane curves

0BYA Let k be a field. A plane curve will be a curve X which is isomorphic to a closed
subscheme of P2

k. Often the embedding X → P2
k will be considered given. By

Divisors, Example 31.31.2 a curve is determined by the corresponding homogeneous
ideal

I(X) = Ker
(
k[T0, T2, T2] −→

⊕
Γ(X,OX(n))

)
Recall that in this situation we have

X = Proj(k[T0, T2, T2]/I)
as closed subschemes of P2

k. For more general information on these constructions
we refer the reader to Divisors, Example 31.31.2 and the references therein. It
turns out that I(X) = (F ) for some homogeneous polynomial F ∈ k[T0, T1, T2], see
Lemma 53.9.1. Since X is irreducible, it follows that F is irreducible, see Lemma
53.9.2. Moreover, looking at the short exact sequence

0→ OP2
k
(−d) F−→ OP2

k
→ OX → 0

where d = deg(F ) we find that H0(X,OX) = k and that X has genus (d− 1)(d−
2)/2, see proof of Lemma 53.9.3.
To find smooth plane curves it is easiest to write explicit equations. Let p denote
the characteristic of k. If p does not divide d, then we can take

F = T d0 + T d1 + T d2

https://stacks.math.columbia.edu/tag/0BY9
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The corresponding curve X = V+(F ) is called the Fermat curve of degree d. It is
smooth because on each standard affine piece D+(Ti) we obtain a curve isomorphic
to the affine curve

Spec(k[x, y]/(xd + yd + 1))
The ring map k → k[x, y]/(xd + yd + 1) is smooth by Algebra, Lemma 10.137.16 as
dxd−1 and dyd−1 generate the unit ideal in k[x, y]/(xd + yd + 1). If p|d but p ̸= 3
then you can use the equation

F = T d−1
0 T1 + T d−1

1 T2 + T d−1
2 T0

Namely, on the affine pieces you get x + xd−1y + yd−1 with derivatives 1 − xd−2y
and xd−1−yd−2 whose common zero set (of all three) is empty4. We leave it to the
reader to make examples in characteristic 3.

More generally for any field k and any n and d there exists a smooth hypersurface
of degree d in Pn

k , see for example [Poo05].

Of course, in this way we only find smooth curves whose genus is a triangular
number. To get smooth curves of an arbitrary genus one can look for smooth
curves lying on P1 ×P1 (insert future reference here).

Lemma 53.9.1.0BYB Let Z ⊂ P2
k be a closed subscheme which is equidimensional of

dimension 1 and has no embedded points (equivalently Z is Cohen-Macaulay).
Then the ideal I(Z) ⊂ k[T0, T1, T2] corresponding to Z is principal.

Proof. This is a special case of Divisors, Lemma 31.31.3 (see also Varieties, Lemma
33.34.4). The parenthetical statement follows from the fact that a 1 dimensional
Noetherian scheme is Cohen-Macaulay if and only if it has no embedded points, see
Divisors, Lemma 31.4.4. □

Lemma 53.9.2.0BYC Let Z ⊂ P2
k be as in Lemma 53.9.1 and let I(Z) = (F ) for some

F ∈ k[T0, T1, T2]. Then Z is a curve if and only if F is irreducible.

Proof. If F is reducible, say F = F ′F ′′ then let Z ′ be the closed subscheme of P2
k

defined by F ′. It is clear that Z ′ ⊂ Z and that Z ′ ̸= Z. Since Z ′ has dimension
1 as well, we conclude that either Z is not reduced, or that Z is not irreducible.
Conversely, write Z =

∑
aiDi where Di are the irreducible components of Z, see

Divisors, Lemmas 31.15.8 and 31.15.9. Let Fi ∈ k[T0, T1, T2] be the homogeneous
polynomial generating the ideal of Di. Then it is clear that F and

∏
F aii cut out

the same closed subscheme of P2
k. Hence F = λ

∏
F aii for some λ ∈ k∗ because

both generate the ideal of Z. Thus we see that if F is irreducible, then Z is a prime
divisor, i.e., a curve. □

Lemma 53.9.3.0BYD Let Z ⊂ P2
k be as in Lemma 53.9.1 and let I(Z) = (F ) for some

F ∈ k[T0, T1, T2]. Then H0(Z,OZ) = k and the genus of Z is (d−1)(d−2)/2 where
d = deg(F ).

Proof. Let S = k[T0, T1, T2]. There is an exact sequence of graded modules

0→ S(−d) F−→ S → S/(F )→ 0

4Namely, as xd−1 = yd−2, then 0 = x + xd−1y + yd−1 = x + 2xd−1y. Since x ̸= 0 because
1 = xd−2y we get 0 = 1 + 2xd−2y = 3 which is absurd unless 3 = 0.

https://stacks.math.columbia.edu/tag/0BYB
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Denote i : Z → P2
k the given closed immersion. Applying the exact functor ˜

(Constructions, Lemma 27.8.4) we obtain
0→ OP2

k
(−d)→ OP2

k
→ i∗OZ → 0

because F generates the ideal of Z. Note that the cohomology groups of OP2
k
(−d)

and OP2
k

are given in Cohomology of Schemes, Lemma 30.8.1. On the other hand,
we have Hq(Z,OZ) = Hq(P2

k, i∗OZ) by Cohomology of Schemes, Lemma 30.2.4.
Applying the long exact cohomology sequence we first obtain that

k = H0(P2
k,OP2

k
) −→ H0(Z,OZ)

is an isomorphism and next that the boundary map
H1(Z,OZ) −→ H2(P2

k,OP2
k
(−d)) ∼= k[T0, T1, T2]d−3

is an isomorphism. Since it is easy to see that the dimension of this is (d−1)(d−2)/2
the proof is finished. □

Lemma 53.9.4.0CCU Let Z ⊂ P2
k be as in Lemma 53.9.1 and let I(Z) = (F ) for some

F ∈ k[T0, T1, T2]. If Z → Spec(k) is smooth in at least one point and k is infinite,
then there exists a closed point z ∈ Z contained in the smooth locus such that
κ(z)/k is finite separable of degree at most d.

Proof. Suppose that z′ ∈ Z is a point where Z → Spec(k) is smooth. After
renumbering the coordinates if necessary we may assume z′ is contained in D+(T0).
Set f = F (1, x, y) ∈ k[x, y]. Then Z ∩ D+(X0) is isomorphic to the spectrum of
k[x, y]/(f). Let fx, fy be the partial derivatives of f with respect to x, y. Since z′

is a smooth point of Z/k we see that either fx or fy is nonzero in z′ (see discussion
in Algebra, Section 10.137). After renumbering the coordinates we may assume fy
is not zero at z′. Hence there is a nonempty open subscheme V ⊂ Z∩D+(X0) such
that the projection

p : V −→ Spec(k[x])
is étale. Because the degree of f as a polynomial in y is at most d, we see that the
degrees of the fibres of the projection p are at most d (see discussion in Morphisms,
Section 29.57). Moreover, as p is étale the image of p is an open U ⊂ Spec(k[x]).
Finally, since k is infinite, the set of k-rational points U(k) of U is infinite, in
particular not empty. Pick any t ∈ U(k) and let z ∈ V be a point mapping to t.
Then z works. □

53.10. Curves of genus zero

0C6L Later we will need to know what a proper genus zero curve looks like. It turns
out that a Gorenstein proper genus zero curve is a plane curve of degree 2, i.e., a
conic, see Lemma 53.10.3. A general proper genus zero curve is obtained from a
nonsingular one (over a bigger field) by a pushout procedure, see Lemma 53.10.5.
Since a nonsingular curve is Gorenstein, these two results cover all possible cases.

Lemma 53.10.1.0C6M Let X be a proper curve over a field k with H0(X,OX) = k. If
X has genus 0, then every invertible OX -module L of degree 0 is trivial.

Proof. Namely, we have dimkH
0(X,L) ≥ 0 + 1−0 = 1 by Riemann-Roch (Lemma

53.5.2), hence L has a nonzero section, hence L ∼= OX by Varieties, Lemma 33.44.12.
□

https://stacks.math.columbia.edu/tag/0CCU
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Lemma 53.10.2.0C6T Let X be a proper curve over a field k with H0(X,OX) = k.
Assume X has genus 0. Let L be an invertible OX -module of degree d > 0. Then
we have

(1) dimkH
0(X,L) = d+ 1 and dimkH

1(X,L) = 0,
(2) L is very ample and defines a closed immersion into Pd

k.

Proof. By definition of degree and genus we have

dimkH
0(X,L)− dimkH

1(X,L) = d+ 1

Let s be a nonzero section of L. Then the zero scheme of s is an effective Cartier
divisor D ⊂ X, we have L = OX(D) and we have a short exact sequence

0→ OX → L → L|D → 0

see Divisors, Lemma 31.14.10 and Remark 31.14.11. Since H1(X,OX) = 0 by
assumption, we see that H0(X,L)→ H0(X,L|D) is surjective. As L|D is generated
by global sections (because dim(D) = 0, see Varieties, Lemma 33.33.3) we conclude
that the invertible module L is generated by global sections. In fact, since D is
an Artinian scheme we have L|D ∼= OD5 and hence we can find a section t of L
whose restriction of D generates L|D. The short exact sequence also shows that
H1(X,L) = 0.

For n ≥ 1 consider the multiplication map

µn : H0(X,L)⊗k H0(X,L⊗n) −→ H0(X,L⊗n+1)

We claim this is surjective. To see this we consider the short exact sequence

0→ L⊗n s−→ L⊗n+1 → L⊗n+1|D → 0

The sections of L⊗n+1 coming from the left in this sequence are in the image of
µn. On the other hand, since H0(L) → H0(L|D) is surjective and since tn maps
to a trivialization of L⊗n|D we see that µn(H0(X,L) ⊗ tn) gives a subspace of
H0(X,L⊗n+1) surjecting onto the global sections of L⊗n+1|D. This proves the
claim.

Observe that L is ample by Varieties, Lemma 33.44.14. Hence Morphisms, Lemma
29.43.17 gives an isomorphism

X −→ Proj
(⊕

n≥0
H0(X,L⊗n)

)
Since the maps µn are surjective for all n ≥ 1 we see that the graded algebra on
the right hand side is a quotient of the symmetric algebra on H0(X,L). Choosing
a k-basis s0, . . . , sd of H0(X,L) we see that it is a quotient of a polynomial algebra
in d+ 1 variables. Since quotients of graded rings correspond to closed immersions
of Proj (Constructions, Lemma 27.11.5) we find a closed immersion X → Pd

k. We
omit the verification that this morphism is the morphism of Constructions, Lemma
27.13.1 associated to the sections s0, . . . , sd of L. □

Lemma 53.10.3.0C6N Let X be a proper curve over a field k with H0(X,OX) = k. If
X is Gorenstein and has genus 0, then X is isomorphic to a plane curve of degree
2.

5In our case this follows from Divisors, Lemma 31.17.1 as D → Spec(k) is finite.

https://stacks.math.columbia.edu/tag/0C6T
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Proof. Consider the invertible sheaf L = ω⊗−1
X where ωX is as in Lemma 53.4.1.

Then deg(ωX) = −2 by Lemma 53.8.3 and hence deg(L) = 2. By Lemma 53.10.2
we conclude that choosing a basis s0, s1, s2 of the k-vector space of global sections
of L we obtain a closed immersion

φ(L,(s0,s1,s2)) : X −→ P2
k

Thus X is a plane curve of some degree d. Let F ∈ k[T0, T1, T2]d be its equation
(Lemma 53.9.1). Because the genus of X is 0 we see that d is 1 or 2 (Lemma 53.9.3).
Observe that F restricts to the zero section on φ(X) and hence F (s0, s1, s2) is the
zero section of L⊗2. Because s0, s1, s2 are linearly independent we see that F cannot
be linear, i.e., d = deg(F ) ≥ 2. Thus d = 2 and the proof is complete. □

Proposition 53.10.4 (Characterization of the projective line).0C6U Let k be a field. Let
X be a proper curve over k. The following are equivalent

(1) X ∼= P1
k,

(2) X is smooth and geometrically irreducible over k, X has genus 0, and X
has an invertible module of odd degree,

(3) X is geometrically integral over k, X has genus 0, X is Gorenstein, and
X has an invertible sheaf of odd degree,

(4) H0(X,OX) = k, X has genus 0, X is Gorenstein, and X has an invertible
sheaf of odd degree,

(5) X is geometrically integral over k, X has genus 0, and X has an invertible
OX -module of degree 1,

(6) H0(X,OX) = k, X has genus 0, and X has an invertible OX -module of
degree 1,

(7) H1(X,OX) = 0 and X has an invertible OX -module of degree 1,
(8) H1(X,OX) = 0 and X has closed points x1, . . . , xn such that OX,xi is

normal and gcd([κ(xi) : k]) = 1, and
(9) add more here.

Proof. We will prove that each condition (2) – (8) implies (1) and we omit the
verification that (1) implies (2) – (8).

Assume (2). A smooth scheme over k is geometrically reduced (Varieties, Lemma
33.25.4) and regular (Varieties, Lemma 33.25.3). Hence X is Gorenstein (Duality
for Schemes, Lemma 48.24.3). Thus we reduce to (3).

Assume (3). Since X is geometrically integral over k we have H0(X,OX) = k by
Varieties, Lemma 33.26.2. and we reduce to (4).

Assume (4). Since X is Gorenstein the dualizing module ωX as in Lemma 53.4.1
has degree deg(ωX) = −2 by Lemma 53.8.3. Combined with the assumed existence
of an odd degree invertible module, we conclude there exists an invertible module
of degree 1. In this way we reduce to (6).

Assume (5). Since X is geometrically integral over k we have H0(X,OX) = k by
Varieties, Lemma 33.26.2. and we reduce to (6).

Assume (6). Then X ∼= P1
k by Lemma 53.10.2.

Assume (7). Observe that κ = H0(X,OX) is a field finite over k by Varieties,
Lemma 33.26.2. If d = [κ : k] > 1, then every invertible sheaf has degree divisible
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by d and there cannot be an invertible sheaf of degree 1. Hence d = 1 and we
reduce to case (6).
Assume (8). Observe that κ = H0(X,OX) is a field finite over k by Varieties,
Lemma 33.26.2. Since κ ⊂ κ(xi) we see that k = κ by the assumption on the gcd
of the degrees. The same condition allows us to find integers ai such that 1 =∑
ai[κ(xi) : k]. Because xi defines an effective Cartier divisor on X by Varieties,

Lemma 33.43.8 we can consider the invertible module OX(
∑
aixi). By our choice

of ai the degree of L is 1. Thus X ∼= P1
k by Lemma 53.10.2. □

Lemma 53.10.5.0DJB Let X be a proper curve over a field k with H0(X,OX) = k.
Assume X is singular and has genus 0. Then there exists a diagram

x′

��

// X ′

ν

��

// Spec(k′)

��
x // X // Spec(k)

where
(1) k′/k is a nontrivial finite extension,
(2) X ′ ∼= P1

k′ ,
(3) x′ is a k′-rational point of X ′,
(4) x is a k-rational point of X,
(5) X ′ \ {x′} → X \ {x} is an isomorphism,
(6) 0 → OX → ν∗OX′ → k′/k → 0 is a short exact sequence where k′/k =

κ(x′)/κ(x) indicates the skyscraper sheaf on the point x.
Proof. Let ν : X ′ → X be the normalization of X, see Varieties, Sections 33.27 and
33.41. Since X is singular ν is not an isomorphism. Then k′ = H0(X ′,OX′) is a
finite extension of k (Varieties, Lemma 33.26.2). The short exact sequence

0→ OX → ν∗OX′ → Q→ 0
and the fact that Q is supported in finitely many closed points give us that

(1) H1(X ′,OX′) = 0, i.e., X ′ has genus 0 as a curve over k′,
(2) there is a short exact sequence 0→ k → k′ → H0(X,Q)→ 0.

In particular k′/k is a nontrivial extension.
Next, we consider what is often called the conductor ideal

I = HomOX
(ν∗OX′ ,OX)

This is a quasi-coherent OX -module. We view I as an ideal in OX via the map
φ 7→ φ(1). Thus I(U) is the set of f ∈ OX(U) such that f (ν∗OX′(U)) ⊂ OX(U).
In other words, the condition is that f annihilates Q. In other words, there is a
defining exact sequence

0→ I → OX → HomOX
(Q,Q)

Let U ⊂ X be an affine open containing the support of Q. Then V = Q(U) =
H0(X,Q) is a k-vector space of dimension n−1. The image ofOX(U)→ Homk(V, V )
is a commutative subalgebra, hence has dimension ≤ n−1 over k (this is a property
of commutative subalgebras of matrix algebras; details omitted). We conclude that
we have a short exact sequence

0→ I → OX → A→ 0

https://stacks.math.columbia.edu/tag/0DJB
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where Supp(A) = Supp(Q) and dimkH
0(X,A) ≤ n − 1. On the other hand, the

description I = HomOX
(ν∗OX′ ,OX) provides I with a ν∗OX′ -module structure

such that the inclusion map I → ν∗OX′ is a ν∗OX′ -module map. We conclude that
I = ν∗I ′ for some quasi-coherent sheaf of ideals I ′ ⊂ OX′ , see Morphisms, Lemma
29.11.6. Define A′ as the cokernel:

0→ I ′ → OX′ → A′ → 0
Combining the exact sequences so far we obtain a short exact sequence 0 → A →
ν∗A′ → Q→ 0. Using the estimate above, combined with dimkH

0(X,Q) = n− 1,
gives

dimkH
0(X ′,A′) = dimkH

0(X,A) + dimkH
0(X,Q) ≤ 2n− 2

However, since X ′ is a curve over k′ we see that the left hand side is divisible by
n (Varieties, Lemma 33.44.10). As A and A′ cannot be zero, we conclude that
dimkH

0(X ′,A′) = n which means that I ′ is the ideal sheaf of a k′-rational point
x′. By Proposition 53.10.4 we find X ′ ∼= P1

k′ . Going back to the equalities above,
we conclude that dimkH

0(X,A) = 1. This means that I is the ideal sheaf of a
k-rational point x. Then A = κ(x) = k and A′ = κ(x′) = k′ as skyscraper sheaves.
Comparing the exact sequences given above, this immediately implies the result on
structure sheaves as stated in the lemma. □

Example 53.10.6.0DJC In fact, the situation described in Lemma 53.10.5 occurs for any
nontrivial finite extension k′/k. Namely, we can consider

A = {f ∈ k′[x] | f(0) ∈ k}
The spectrum of A is an affine curve, which we can glue to the spectrum of B = k′[y]
using the isomorphism Ax ∼= By sending x−1 to y. The result is a proper curve
X with H0(X,OX) = k and singular point x corresponding to the maximal ideal
A ∩ (x). The normalization of X is P1

k′ exactly as in the lemma.

53.11. Geometric genus

0BYE If X is a proper and smooth curve over k with H0(X,OX) = k, then
pg(X) = dimkH

0(X,ΩX/k)
is called the geometric genus of X. By Lemma 53.8.4 the geometric genus of
X agrees with the (arithmetic) genus. However, in higher dimensions there is
a difference between the geometric genus and the arithmetic genus, see Remark
53.11.2.
For singular curves, we will define the geometric genus as follows.

Definition 53.11.1.0BYF Let k be a field. Let X be a geometrically irreducible curve
over k. The geometric genus of X is the genus of a smooth projective model of X
possibly defined over an extension field of k as in Lemma 53.2.9.

If k is perfect, then the nonsingular projective model Y of X is smooth (Lemma
53.2.8) and the geometric genus of X is just the genus of Y . But if k is not perfect,
this may not be true. In this case we choose an extension K/k such that the
nonsingular projective model YK of (XK)red is a smooth projective curve and we
define the geometric genus of X to be the genus of YK . This is well defined by
Lemmas 53.2.9 and 53.8.2.
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Remark 53.11.2.0BYG Suppose that X is a d-dimensional proper smooth variety over an
algebraically closed field k. Then the arithmetic genus is often defined as pa(X) =
(−1)d(χ(X,OX) − 1) and the geometric genus as pg(X) = dimkH

0(X,ΩdX/k). In
this situation the arithmetic genus and the geometric genus no longer agree even
though it is still true that ωX ∼= ΩdX/k. For example, if d = 2, then we have

pa(X)− pg(X) = h0(X,OX)− h1(X,OX) + h2(X,OX)− 1− h0(X,Ω2
X/k)

= −h1(X,OX) + h2(X,OX)− h0(X,ωX)
= −h1(X,OX)

where hi(X,F) = dimkH
i(X,F) and where the last equality follows from duality.

Hence for a surface the difference pg(X)− pa(X) is always nonnegative; it is some-
times called the irregularity of the surface. If X = C1 ×C2 is a product of smooth
projective curves of genus g1 and g2, then the irregularity is g1 + g2.

53.12. Riemann-Hurwitz

0C1B Let k be a field. Let f : X → Y be a morphism of smooth curves over k. Then we
obtain a canonical exact sequence

f∗ΩY/k
df−→ ΩX/k −→ ΩX/Y −→ 0

by Morphisms, Lemma 29.32.9. Since X and Y are smooth, the sheaves ΩX/k and
ΩY/k are invertible modules, see Morphisms, Lemma 29.34.12. Assume the first
map is nonzero, i.e., assume f is generically étale, see Lemma 53.12.1. Let R ⊂ X
be the closed subscheme cut out by the different Df of f . By Discriminants, Lemma
49.12.6 this is the same as the vanishing locus of df , it is an effective Cartier divisor,
and we get

f∗ΩY/k ⊗OX
OX(R) = ΩX/k

In particular, if X, Y are projective with k = H0(Y,OY ) = H0(X,OX) and X, Y
have genus gX , gY , then we get the Riemann-Hurwitz formula

2gX − 2 = deg(ΩX/k)
= deg(f∗ΩY/k ⊗OX

OX(R))
= deg(f) deg(ΩY/k) + deg(R)
= deg(f)(2gY − 2) + deg(R)

The first and last equality by Lemma 53.8.4. The second equality by the iso-
morphism of invertible sheaves given above. The third equality by additivity of
degrees (Varieties, Lemma 33.44.7), the formula for the degree of a pullback (Vari-
eties, Lemma 33.44.11), and finally the formula for the degree of OX(R) (Varieties,
Lemma 33.44.9).
To use the Riemann-Hurwitz formula we need to compute deg(R) = dimk Γ(R,OR).
By the structure of zero dimensional schemes over k (see for example Varieties,
Lemma 33.20.2), we see that R is a finite disjoint union of spectra of Artinian local
rings R =

∐
x∈R Spec(OR,x) with each OR,x of finite dimension over k. Thus

deg(R) =
∑

x∈R
dimkOR,x =

∑
x∈R

dx[κ(x) : k]

with
dx = lengthOR,x

OR,x = lengthOX,x
OR,x
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53.12. RIEMANN-HURWITZ 4401

the multiplicity of x in R (see Algebra, Lemma 10.52.12). Let x ∈ X be a closed
point with image y ∈ Y . Looking at stalks we obtain an exact sequence

ΩY/k,y → ΩX/k,x → ΩX/Y,x → 0

Choosing local generators ηx and ηy of the (free rank 1) modules ΩX/k,x and ΩY/k,y
we see that ηy 7→ hηx for some nonzero h ∈ OX,x. By the exact sequence we see
that ΩX/Y,x ∼= OX,x/hOX,x as OX,x-modules. Since the divisor R is cut out by h
(see above) we have OR,x = OX,x/hOX,x. Thus we find the following equalities

dx = lengthOX,x
(OR,x)

= lengthOX,x
(OX,x/hOX,x)

= lengthOX,x
(ΩX/Y,x)

= ordOX,x
(h)

= ordOX,x
(“ηy/ηx”)

The first equality by our definition of dx. The second and third we saw above. The
fourth equality is the definition of ord, see Algebra, Definition 10.121.2. Note that
since OX,x is a discrete valuation ring, the integer ordOX,x

(h) just the valuation of
h. The fifth equality is a mnemonic.

Here is a case where one can “calculate” the multiplicity dx in terms of other
invariants. Namely, if κ(x) is separable over k, then we may choose ηx = ds and
ηy = dt where s and t are uniformizers in OX,x and OY,y (Lemma 53.12.3). Then
t 7→ usex for some unit u ∈ OX,x where ex is the ramification index of the extension
OY,y ⊂ OX,x. Hence we get

ηy = dt = d(usex) = esex−1uds+ sexdu

Writing du = wds for some w ∈ OX,x we see that

“ηy/ηx” = esex−1u+ sexw = (exu+ sw)sex−1

We conclude that the order of vanishing of this is ex − 1 unless the characteristic
of κ(x) is p > 0 and p divides ex in which case the order of vanishing is > ex − 1.

Combining all of the above we find that if k has characteristic zero, then

2gX − 2 = (2gY − 2) deg(f) +
∑

x∈X
(ex − 1)[κ(x) : k]

where ex is the ramification index of OX,x over OY,f(x). This precise formula will
hold if and only if all the ramification is tame, i.e., when the residue field extensions
κ(x)/κ(y) are separable and ex is prime to the characteristic of k, although the
arguments above are insufficient to prove this. We refer the reader to Lemma
53.12.4 and its proof.

Lemma 53.12.1.0C1C Let k be a field. Let f : X → Y be a morphism of smooth curves
over k. The following are equivalent

(1) df : f∗ΩY/k → ΩX/k is nonzero,
(2) ΩX/Y is supported on a proper closed subset of X,
(3) there exists a nonempty open U ⊂ X such that f |U : U → Y is unramified,
(4) there exists a nonempty open U ⊂ X such that f |U : U → Y is étale,
(5) the extension k(X)/k(Y ) of function fields is finite separable.
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Proof. Since X and Y are smooth, the sheaves ΩX/k and ΩY/k are invertible mod-
ules, see Morphisms, Lemma 29.34.12. Using the exact sequence

f∗ΩY/k −→ ΩX/k −→ ΩX/Y −→ 0

of Morphisms, Lemma 29.32.9 we see that (1) and (2) are equivalent and equivalent
to the condition that f∗ΩY/k → ΩX/k is nonzero in the generic point. The equiv-
alence of (2) and (3) follows from Morphisms, Lemma 29.35.2. The equivalence
between (3) and (4) follows from Morphisms, Lemma 29.36.16 and the fact that
flatness is automatic (Lemma 53.2.3). To see the equivalence of (5) and (4) use
Algebra, Lemma 10.140.9. Some details omitted. □

Lemma 53.12.2.0C1D Let f : X → Y be a morphism of smooth proper curves over a field
k which satisfies the equivalent conditions of Lemma 53.12.1. If k = H0(Y,OY ) =
H0(X,OX) and X and Y have genus gX and gY , then

2gX − 2 = (2gY − 2) deg(f) + deg(R)

where R ⊂ X is the effective Cartier divisor cut out by the different of f .

Proof. See discussion above; we used Discriminants, Lemma 49.12.6, Lemma 53.8.4,
and Varieties, Lemmas 33.44.7 and 33.44.11. □

Lemma 53.12.3.0C1E Let X → Spec(k) be smooth of relative dimension 1 at a closed
point x ∈ X. If κ(x) is separable over k, then for any uniformizer s in the discrete
valuation ring OX,x the element ds freely generates ΩX/k,x over OX,x.

Proof. The ring OX,x is a discrete valuation ring by Algebra, Lemma 10.140.3.
Since x is closed κ(x) is finite over k. Hence if κ(x)/k is separable, then any
uniformizer s maps to a nonzero element of ΩX/k,x⊗OX,x

κ(x) by Algebra, Lemma
10.140.4. Since ΩX/k,x is free of rank 1 over OX,x the result follows. □

Lemma 53.12.4.0C1F Notation and assumptions as in Lemma 53.12.2. For a closed
point x ∈ X let dx be the multiplicity of x in R. Then

2gX − 2 = (2gY − 2) deg(f) +
∑

dx[κ(x) : k]

Moreover, we have the following results
(1) dx = lengthOX,x

(ΩX/Y,x),
(2) dx ≥ ex − 1 where ex is the ramification index of OX,x over OY,y,
(3) dx = ex − 1 if and only if OX,x is tamely ramified over OY,y.

Proof. By Lemma 53.12.2 and the discussion above (which used Varieties, Lemma
33.20.2 and Algebra, Lemma 10.52.12) it suffices to prove the results on the multi-
plicity dx of x in R. Part (1) was proved in the discussion above. In the discussion
above we proved (2) and (3) only in the case where κ(x) is separable over k. In
the rest of the proof we give a uniform treatment of (2) and (3) using material on
differents of quasi-finite Gorenstein morphisms.

First, observe that f is a quasi-finite Gorenstein morphism. This is true for example
because f is a flat quasi-finite morphism and X is Gorenstein (see Duality for
Schemes, Lemma 48.25.7) or because it was shown in the proof of Discriminants,
Lemma 49.12.6 (which we used above). Thus ωX/Y is invertible by Discriminants,
Lemma 49.16.1 and the same remains true after replacing X by opens and after
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performing a base change by some Y ′ → Y . We will use this below without further
mention.
Choose affine opens U ⊂ X and V ⊂ Y such that x ∈ U , y ∈ V , f(U) ⊂ V , and x
is the only point of U lying over y. Write U = Spec(A) and V = Spec(B). Then
R ∩ U is the different of f |U : U → V . By Discriminants, Lemma 49.9.4 formation
of the different commutes with arbitrary base change in our case. By our choice of
U and V we have

A⊗B κ(y) = OX,x ⊗OY,y
κ(y) = OX,x/(sex)

where ex is the ramification index as in the statement of the lemma. Let C =
OX,x/(sex) viewed as a finite algebra over κ(y). Let DC/κ(y) be the different of
C over κ(y) in the sense of Discriminants, Definition 49.9.1. It suffices to show:
DC/κ(y) is nonzero if and only if the extension OY,y ⊂ OX,x is tamely ramified and
in the tamely ramified case DC/κ(y) is equal to the ideal generated by sex−1 in C.
Recall that tame ramification means exactly that κ(x)/κ(y) is separable and that
the characteristic of κ(y) does not divide ex. On the other hand, the different of
C/κ(y) is nonzero if and only if τC/κ(y) ∈ ωC/κ(y) is nonzero. Namely, since ωC/κ(y)
is an invertible C-module (as the base change of ωA/B) it is free of rank 1, say with
generator λ. Write τC/κ(y) = hλ for some h ∈ C. Then DC/κ(y) = (h) ⊂ C whence
the claim. By Discriminants, Lemma 49.4.8 we have τC/κ(y) ̸= 0 if and only if
κ(x)/κ(y) is separable and ex is prime to the characteristic. Finally, even if τC/κ(y)
is nonzero, then it is still the case that sτC/κ(y) = 0 because sτC/κ(y) : C → κ(y)
sends c to the trace of the nilpotent operator sc which is zero. Hence sh = 0, hence
h ∈ (sex−1) which proves that DC/κ(y) ⊂ (sex−1) always. Since (sex−1) ⊂ C is the
smallest nonzero ideal, we have proved the final assertion. □

53.13. Inseparable maps

0CCV Some remarks on the behaviour of the genus under inseparable maps.

Lemma 53.13.1.0CCW Let k be a field. Let f : X → Y be a surjective morphism of
curves over k. If X is smooth over k and Y is normal, then Y is smooth over k.

Proof. Let y ∈ Y . Pick x ∈ X mapping to y. By Varieties, Lemma 33.25.9 it
suffices to show that f is flat at x. This follows from Lemma 53.2.3. □

Lemma 53.13.2.0CCX Let k be a field of characteristic p > 0. Let f : X → Y be
a nonconstant morphism of proper nonsingular curves over k. If the extension
k(X)/k(Y ) of function fields is purely inseparable, then there exists a factorization

X = X0 → X1 → . . .→ Xn = Y

such that each Xi is a proper nonsingular curve and Xi → Xi+1 is a degree p
morphism with k(Xi+1) ⊂ k(Xi) inseparable.

Proof. This follows from Theorem 53.2.6 and the fact that a finite purely insepara-
ble extension of fields can always be gotten as a sequence of (inseparable) extensions
of degree p, see Fields, Lemma 9.14.5. □

Lemma 53.13.3.0CCY Let k be a field of characteristic p > 0. Let f : X → Y be
a nonconstant morphism of proper nonsingular curves over k. If X is smooth
and k(Y ) ⊂ k(X) is inseparable of degree p, then there is a unique isomorphism
Y = X(p) such that f is FX/k.
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Proof. The relative frobenius morphism FX/k : X → X(p) is constructed in Vari-
eties, Section 33.36. Observe that X(p) is a smooth proper curve over k as a base
change of X. The morphism FX/k has degree p by Varieties, Lemma 33.36.10.
Thus k(X(p)) and k(Y ) are both subfields of k(X) with [k(X) : k(Y )] = [k(X) :
k(X(p))] = p. To prove the lemma it suffices to show that k(Y ) = k(X(p)) inside
k(X). See Theorem 53.2.6.
Write K = k(X). Consider the map d : K → ΩK/k. It follows from Lemma 53.12.1
that both k(Y ) is contained in the kernel of d. By Varieties, Lemma 33.36.7 we see
that k(X(p)) is in the kernel of d. Since X is a smooth curve we know that ΩK/k
is a vector space of dimension 1 over K. Then More on Algebra, Lemma 15.46.2.
implies that Ker(d) = kKp and that [K : kKp] = p. Thus k(Y ) = kKp = k(X(p))
for reasons of degree. □

Lemma 53.13.4.0CCZ Let k be a field of characteristic p > 0. Let f : X → Y be a
nonconstant morphism of proper nonsingular curves over k. If X is smooth and
k(Y ) ⊂ k(X) is purely inseparable, then there is a unique n ≥ 0 and a unique
isomorphism Y = X(pn) such that f is the n-fold relative Frobenius of X/k.

Proof. The n-fold relative Frobenius ofX/k is defined in Varieties, Remark 33.36.11.
The lemma follows by combining Lemmas 53.13.3 and 53.13.2. □

Lemma 53.13.5.0CD0 Let k be a field of characteristic p > 0. Let f : X → Y be a
nonconstant morphism of proper nonsingular curves over k. Assume

(1) X is smooth,
(2) H0(X,OX) = k,
(3) k(X)/k(Y ) is purely inseparable.

Then Y is smooth, H0(Y,OY ) = k, and the genus of Y is equal to the genus of X.

Proof. By Lemma 53.13.4 we see that Y = X(pn) is the base change of X by
FnSpec(k). Thus Y is smooth and the result on the cohomology and genus follows
from Lemma 53.8.2. □

Example 53.13.6.0CD1 This example will show that the genus can change under a
purely inseparable morphism of nonsingular projective curves. Let k be a field of
characteristic 3. Assume there exists an element a ∈ k which is not a 3rd power.
For example k = F3(a) would work. Let X be the plane curve with homogeneous
equation

F = T 2
1 T0 − T 3

2 + aT 3
0

as in Section 53.9. On the affine piece D+(T0) using coordinates x = T1/T0 and
y = T2/T0 we obtain x2 − y3 + a = 0 which defines a nonsingular affine curve.
Moreover, the point at infinity (0 : 1 : 0) is a smooth point. HenceX is a nonsingular
projective curve of genus 1 (Lemma 53.9.3). On the other hand, consider the
morphism f : X → P1

k which on D+(T0) sends (x, y) to x ∈ A1
k ⊂ P1

k. Then f is
a morphism of proper nonsingular curves over k inducing an inseparable function
field extension of degree p = 3 but the genus of X is 1 and the genus of P1

k is 0.

Proposition 53.13.7.0CD2 Let k be a field of characteristic p > 0. Let f : X → Y be a
nonconstant morphism of proper smooth curves over k. Then we can factor f as

X −→ X(pn) −→ Y
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where X(pn) → Y is a nonconstant morphism of proper smooth curves inducing a
separable field extension k(X(pn))/k(Y ), we have

X(pn) = X ×Spec(k),FnSpec(k)
Spec(k),

and X → X(pn) is the n-fold relative frobenius of X.

Proof. By Fields, Lemma 9.14.6 there is a subextension k(X)/E/k(Y ) such that
k(X)/E is purely inseparable and E/k(Y ) is separable. By Theorem 53.2.6 this
corresponds to a factorization X → Z → Y of f with Z a nonsingular proper curve.
Apply Lemma 53.13.4 to the morphism X → Z to conclude. □

Lemma 53.13.8.0CD3 Let k be a field of characteristic p > 0. Let X be a smooth proper
curve over k. Let (L, V ) be a grd with r ≥ 1. Then one of the following two is true

(1) there exists a g1
d whose corresponding morphism X → P1

k (Lemma 53.3.2)
is generically étale (i.e., is as in Lemma 53.12.1), or

(2) there exists a grd′ on X(p) where d′ ≤ d/p.

Proof. Pick two k-linearly independent elements s, t ∈ V . Then f = s/t is the
rational function defining the morphism X → P1

k corresponding to the linear series
(L, ks+ kt). If this morphism is not generically étale, then f ∈ k(X(p)) by Propo-
sition 53.13.7. Now choose a basis s0, . . . , sr of V and let L′ ⊂ L be the invertible
sheaf generated by s0, . . . , sr. Set fi = si/s0 in k(X). If for each pair (s0, si) we
have fi ∈ k(X(p)), then the morphism

φ = φ(L′,(s0,...,sr) : X −→ Pr
k = Proj(k[T0, . . . , Tr])

factors through X(p) as this is true over the affine open D+(T0) and we can extend
the morphism over the affine part to the whole of the smooth curve X(p) by Lemma
53.2.2. Introducing notation, say we have the factorization

X
FX/k−−−→ X(p) ψ−→ Pr

k

of φ. Then N = ψ∗OP1
k
(1) is an invertible OX(p) -module with L′ = F ∗

X/kN and
with ψ∗T0, . . . , ψ

∗Tr k-linearly independent (as they pullback to s0, . . . , sr on X).
Finally, we have

d = deg(L) ≥ deg(L′) = deg(FX/k) deg(N ) = p deg(N )
as desired. Here we used Varieties, Lemmas 33.44.12, 33.44.11, and 33.36.10. □

Lemma 53.13.9.0CD4 Let k be a field. Let X be a smooth proper curve over k with
H0(X,OX) = k and genus g ≥ 2. Then there exists a closed point x ∈ X with
κ(x)/k separable of degree ≤ 2g − 2.

Proof. Set ω = ΩX/k. By Lemma 53.8.4 this has degree 2g − 2 and has g global
sections. Thus we have a gg−1

2g−2. By the trivial Lemma 53.3.3 there exists a g1
2g−2

and by Lemma 53.3.4 we obtain a morphism
φ : X −→ P1

k

of some degree d ≤ 2g−2. Since φ is flat (Lemma 53.2.3) and finite (Lemma 53.2.4)
it is finite locally free of degree d (Morphisms, Lemma 29.48.2). Pick any rational
point t ∈ P1

k and any point x ∈ X with φ(x) = t. Then
d ≥ [κ(x) : κ(t)] = [κ(x) : k]
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for example by Morphisms, Lemmas 29.57.3 and 29.57.2. Thus if k is perfect (for
example has characteristic zero or is finite) then the lemma is proved. Thus we
reduce to the case discussed in the next paragraph.

Assume that k is an infinite field of characteristic p > 0. As above we will use
that X has a gg−1

2g−2. The smooth proper curve X(p) has the same genus as X.
Hence its genus is > 0. We conclude that X(p) does not have a gg−1

d for any
d ≤ g − 1 by Lemma 53.3.5. Applying Lemma 53.13.8 to our gg−1

2g−2 (and noting
that 2g − 2/p ≤ g − 1) we conclude that possibility (2) does not occur. Hence we
obtain a morphism

φ : X −→ P1
k

which is generically étale (in the sense of the lemma) and has degree ≤ 2g− 2. Let
U ⊂ X be the nonempty open subscheme where φ is étale. Then φ(U) ⊂ P1

k is a
nonempty Zariski open and we can pick a k-rational point t ∈ φ(U) as k is infinite.
Let u ∈ U be a point with φ(u) = t. Then κ(u)/κ(t) is separable (Morphisms,
Lemma 29.36.7), κ(t) = k, and [κ(u) : k] ≤ 2g − 2 as before. □

The following lemma does not really belong in this section but we don’t know a
good place for it elsewhere.

Lemma 53.13.10.0C1G Let X be a smooth curve over a field k. Let x ∈ Xk be a closed
point with image x ∈ X. The ramification index of OX,x ⊂ OX

k
,x is the inseparable

degree of κ(x)/k.

Proof. After shrinking X we may assume there is an étale morphism π : X → A1
k,

see Morphisms, Lemma 29.36.20. Then we can consider the diagram of local rings

OX
k
,x OA1

k
,π(x)oo

OX,x

OO

OA1
k
,π(x)oo

OO

The horizontal arrows have ramification index 1 as they correspond to étale mor-
phisms. Moreover, the extension κ(x)/κ(π(x)) is separable hence κ(x) and κ(π(x))
have the same inseparable degree over k. By multiplicativity of ramification indices
it suffices to prove the result when x is a point of the affine line.

Assume X = A1
k. In this case, the local ring of X at x looks like

OX,x = k[t](P )

where P is an irreducible monic polynomial over k. Then P (t) = Q(tq) for some
separable polynomial Q ∈ k[t], see Fields, Lemma 9.12.1. Observe that κ(x) =
k[t]/(P ) has inseparable degree q over k. On the other hand, over k we can factor
Q(t) =

∏
(t − αi) with αi pairwise distinct. Write αi = βqi for some unique βi ∈

k. Then our point x corresponds to one of the βi and we conclude because the
ramification index of

k[t](P ) −→ k[t](t−βi)
is indeed equal to q as the uniformizer P maps to (t− βi)q times a unit. □
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53.14. Pushouts

0E35 Let k be a field. Consider a solid diagram

Z ′

��

i′
// X ′

a

��
Z

i // X

of schemes over k satisfying
(a) X ′ is separated of finite type over k of dimension ≤ 1,
(b) i : Z ′ → X ′ is a closed immersion,
(c) Z ′ and Z are finite over Spec(k), and
(d) Z ′ → Z is surjective.

In this situation every finite set of points of X ′ are contained in an affine open,
see Varieties, Proposition 33.42.7. Thus the assumptions of More on Morphisms,
Proposition 37.67.3 are satisfied and we obtain the following

(1) the pushout X = Z ⨿Z′ X ′ exists in the category of schemes,
(2) i : Z → X is a closed immersion,
(3) a : X ′ → X is integral surjective,
(4) X → Spec(k) is separated by More on Morphisms, Lemma 37.67.4
(5) X → Spec(k) is of finite type by More on Morphisms, Lemmas 37.67.5,
(6) thus a : X ′ → X is finite by Morphisms, Lemmas 29.44.4 and 29.15.8,
(7) if X ′ → Spec(k) is proper, then X → Spec(k) is proper by Morphisms,

Lemma 29.41.9.
The following lemma can be generalized significantly.

Lemma 53.14.1.0E36 In the situation above, let Z = Spec(k′) where k′ is a field and
Z ′ = Spec(k′

1 × . . . × k′
n) with k′

i/k
′ finite extensions of fields. Let x ∈ X be the

image of Z → X and x′
i ∈ X ′ the image of Spec(k′

i) → X ′. Then we have a fibre
product diagram ∏

i=1,...,n k
′
i

∏
i=1,...,nO∧

X′,x′
i

oo

k′

OO

O∧
X,x

OO

oo

where the horizontal arrows are given by the maps to the residue fields.

Proof. Choose an affine open neighbourhood Spec(A) of x in X. Let Spec(A′) ⊂ X ′

be the inverse image. By construction we have a fibre product diagram∏
i=1,...,n k

′
i A′oo

k′

OO

A

OO

oo

Since everything is finite over A we see that the diagram remains a fibre product
diagram after completion with respect to the maximal ideal m ⊂ A corresponding
to x (Algebra, Lemma 10.97.2). Finally, apply Algebra, Lemma 10.97.8 to identify
the completion of A′. □
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53.15. Glueing and squishing

0C1H Below we will indicate k[ϵ] the algebra of dual numbers over k as defined in Varieties,
Definition 33.16.1.

Lemma 53.15.1.0C1I Let k be an algebraically closed field. Let k ⊂ A be a ring
extension such that A has exactly two k-sub algebras, then either A = k × k or
A = k[ϵ].

Proof. The assumption means k ̸= A and any subring k ⊂ C ⊂ A is equal to either
k or A. Let t ∈ A, t ̸∈ k. Then A is generated by t over k. Hence A = k[x]/I for
some ideal I. If I = (0), then we have the subalgebra k[x2] which is not allowed.
Otherwise I is generated by a monic polynomial P . Write P =

∏d
i=1(t − ai). If

d > 2, then the subalgebra generated by (t−a1)(t−a2) gives a contradiction. Thus
d = 2. If a1 ̸= a2, then A = k × k, if a1 = a2, then A = k[ϵ]. □

Example 53.15.2 (Glueing points).0C1J Let k be an algebraically closed field. Let
f : X ′ → X be a morphism of algebraic k-schemes. We say X is obtained by
glueing a and b in X ′ if the following are true:

(1) a, b ∈ X ′(k) are distinct points which map to the same point x ∈ X(k),
(2) f is finite and f−1(X \ {x})→ X \ {x} is an isomorphism,
(3) there is a short exact sequence

0→ OX → f∗OX′
a−b−−→ x∗k → 0

where arrow on the right sends a local section h of f∗OX′ to the difference
h(a)− h(b) ∈ k.

If this is the case, then there also is a short exact sequence

0→ O∗
X → f∗O∗

X′
ab−1

−−−→ x∗k
∗ → 0

where arrow on the right sends a local section h of f∗O∗
X′ to the multiplicative

difference h(a)h(b)−1 ∈ k∗.

Example 53.15.3 (Squishing a tangent vector).0C1K Let k be an algebraically closed
field. Let f : X ′ → X be a morphism of algebraic k-schemes. We say X is obtained
by squishing the tangent vector ϑ in X ′ if the following are true:

(1) ϑ : Spec(k[ϵ]) → X ′ is a closed immersion over k such that f ◦ ϑ factors
through a point x ∈ X(k),

(2) f is finite and f−1(X \ {x})→ X \ {x} is an isomorphism,
(3) there is a short exact sequence

0→ OX → f∗OX′
ϑ−→ x∗k → 0

where arrow on the right sends a local section h of f∗OX′ to the coefficient
of ϵ in ϑ♯(h) ∈ k[ϵ].

If this is the case, then there also is a short exact sequence

0→ O∗
X → f∗O∗

X′
ϑ−→ x∗k → 0

where arrow on the right sends a local section h of f∗O∗
X′ to d log(ϑ♯(h)) where

d log : k[ϵ]∗ → k is the homomorphism of abelian groups sending a+ bϵ to b/a ∈ k.
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Lemma 53.15.4.0C1L Let k be an algebraically closed field. Let f : X ′ → X be a
finite morphism algebraic k-schemes such that OX ⊂ f∗OX′ and such that f is an
isomorphism away from a finite set of points. Then there is a factorization

X ′ = Xn → Xn−1 → . . .→ X1 → X0 = X

such that each Xi → Xi−1 is either the glueing of two points or the squishing of a
tangent vector (see Examples 53.15.2 and 53.15.3).

Proof. Let U ⊂ X be the maximal open set over which f is an isomorphism. Then
X \U = {x1, . . . , xn} with xi ∈ X(k). We will consider factorizations X ′ → Y → X
of f such that both morphisms are finite and

OX ⊂ g∗OY ⊂ f∗OX′

where g : Y → X is the given morphism. By assumption OX,x → (f∗OX′)x is an
isomorphism onless x = xi for some i. Hence the cokernel

f∗OX′/OX =
⊕
Qi

is a direct sum of skyscraper sheaves Qi supported at x1, . . . , xn. Because the
displayed quotient is a coherent OX -module, we conclude that Qi has finite length
over OX,xi . Hence we can argue by induction on the sum of these lengths, i.e., the
length of the whole cokernel.
If n > 1, then we can define an OX -subalgebra A ⊂ f∗OX′ by taking the inverse
image of Q1. This will give a nontrivial factorization and we win by induction.
Assume n = 1. We abbreviate x = x1. Consider the finite k-algebra extension

A = OX,x ⊂ (f∗OX′)x = B

Note that Q = Q1 is the skyscraper sheaf with value B/A. We have a k-subalgebra
A ⊂ A + mAB ⊂ B. If both inclusions are strict, then we obtain a nontrivial
factorization and we win by induction as above. If A+ mAB = B, then A = B by
Nakayama, then f is an isomorphism and there is nothing to prove. We conclude
that we may assume B = A + mAB. Set C = B/mAB. If C has more than 2
k-subalgebras, then we obtain a subalgebra between A and B by taking the inverse
image in B. Thus we may assume C has exactly 2 k-subalgebras. Thus C = k × k
or C = k[ϵ] by Lemma 53.15.1. In this case f is correspondingly the glueing two
points or the squishing of a tangent vector. □

Lemma 53.15.5.0C1M Let k be an algebraically closed field. If f : X ′ → X is the glueing
of two points a, b as in Example 53.15.2, then there is an exact sequence

k∗ → Pic(X)→ Pic(X ′)→ 0
The first map is zero if a and b are on different connected components of X ′ and
injective if X ′ is proper and a and b are on the same connected component of X ′.

Proof. The map Pic(X)→ Pic(X ′) is surjective by Varieties, Lemma 33.38.7. Using
the short exact sequence

0→ O∗
X → f∗O∗

X′
ab−1

−−−→ x∗k
∗ → 0

we obtain

H0(X ′,O∗
X′) ab−1

−−−→ k∗ → H1(X,O∗
X)→ H1(X, f∗O∗

X′)

https://stacks.math.columbia.edu/tag/0C1L
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We have H1(X, f∗O∗
X′) ⊂ H1(X ′,O∗

X′) (for example by the Leray spectral se-
quence, see Cohomology, Lemma 20.13.4). Hence the kernel of Pic(X) → Pic(X ′)
is the cokernel of ab−1 : H0(X ′,O∗

X′) → k∗. If a and b are on different connected
components of X ′, then ab−1 is surjective. Because k is algebraically closed any
regular function on a reduced connected proper scheme over k comes from an el-
ement of k, see Varieties, Lemma 33.9.3. Thus ab−1 is zero if X ′ is proper and a
and b are on the same connected component. □

Lemma 53.15.6.0C1N Let k be an algebraically closed field. If f : X ′ → X is the
squishing of a tangent vector ϑ as in Example 53.15.3, then there is an exact
sequence

(k,+)→ Pic(X)→ Pic(X ′)→ 0
and the first map is injective if X ′ is proper and reduced.

Proof. The map Pic(X)→ Pic(X ′) is surjective by Varieties, Lemma 33.38.7. Using
the short exact sequence

0→ O∗
X → f∗O∗

X′
ϑ−→ x∗k → 0

of Example 53.15.3 we obtain

H0(X ′,O∗
X′) ϑ−→ k → H1(X,O∗

X)→ H1(X, f∗O∗
X′)

We have H1(X, f∗O∗
X′) ⊂ H1(X ′,O∗

X′) (for example by the Leray spectral se-
quence, see Cohomology, Lemma 20.13.4). Hence the kernel of Pic(X) → Pic(X ′)
is the cokernel of the map ϑ : H0(X ′,O∗

X′) → k. Because k is algebraically closed
any regular function on a reduced connected proper scheme over k comes from
an element of k, see Varieties, Lemma 33.9.3. Thus the final statement of the
lemma. □

53.16. Multicross and nodal singularities

0C1P In this section we discuss the simplest possible curve singularities.

Let k be a field. Consider the complete local k-algebra

(53.16.0.1)0C1U A = {(f1, . . . , fn) ∈ k[[t]]× . . .× k[[t]] | f1(0) = . . . = fn(0)}

In the language introduced in Varieties, Definition 33.40.4 we see that A is a wedge
of n copies of the power series ring in 1 variable over k. Observe that k[[t]]×. . .×k[[t]]
is the integral closure of A in its total ring of fractions. Hence the δ-invariant of A
is n− 1. There is an isomorphism

k[[x1, . . . , xn]]/({xixj}i ̸=j) −→ A

obtained by sending xi to (0, . . . , 0, t, 0, . . . , 0) in A. It follows that dim(A) = 1 and
dimk m/m

2 = n. In particular, A is regular if and only if n = 1.

Lemma 53.16.1.0C1V Let k be a separably closed field. Let A be a 1-dimensional reduced
Nagata local k-algebra with residue field k. Then

δ-invariant A ≥ number of branches of A− 1

If equality holds, then A∧ is as in (53.16.0.1).

https://stacks.math.columbia.edu/tag/0C1N
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Proof. Since the residue field of A is separably closed, the number of branches
of A is equal to the number of geometric branches of A, see More on Algebra,
Definition 15.106.6. The inequality holds by Varieties, Lemma 33.40.6. Assume
equality holds. We may replace A by the completion of A; this does not change
the number of branches or the δ-invariant, see More on Algebra, Lemma 15.108.7
and Varieties, Lemma 33.39.6. Then A is strictly henselian, see Algebra, Lemma
10.153.9. By Varieties, Lemma 33.40.5 we see that A is a wedge of complete discrete
valuation rings. Each of these is isomorphic to k[[t]] by Algebra, Lemma 10.160.10.
Hence A is as in (53.16.0.1). □

Definition 53.16.2.0C1W Let k be an algebraically closed field. Let X be an algebraic
1-dimensional k-scheme. Let x ∈ X be a closed point. We say x defines a multicross
singularity if the completion O∧

X,x is isomorphic to (53.16.0.1) for some n ≥ 2. We
say x is a node, or an ordinary double point, or defines a nodal singularity if n = 2.

These singularities are in some sense the simplest kind of singularities one can have
on a curve over an algebraically closed field.

Lemma 53.16.3.0C1X Let k be an algebraically closed field. Let X be a reduced algebraic
1-dimensional k-scheme. Let x ∈ X. The following are equivalent

(1) x defines a multicross singularity,
(2) the δ-invariant of X at x is the number of branches of X at x minus 1,
(3) there is a sequence of morphisms Un → Un−1 → . . . → U0 = U ⊂ X

where U is an open neighbourhood of x, where Un is nonsingular, and
where each Ui → Ui−1 is the glueing of two points as in Example 53.15.2.

Proof. The equivalence of (1) and (2) is Lemma 53.16.1.

Assume (3). We will argue by descending induction on i that all singularities of Ui
are multicross. This is true for Un as Un has no singular points. If Ui is gotten
from Ui+1 by glueing a, b ∈ Ui+1 to a point c ∈ Ui, then we see that

O∧
Ui,c ⊂ O

∧
Ui+1,a ×O

∧
Ui+1,b

is the set of elements having the same residue classes in k. Thus the number of
branches at c is the sum of the number of branches at a and b, and the δ-invariant
at c is the sum of the δ-invariants at a and b plus 1 (because the displayed inclusion
has codimension 1). This proves that (2) holds as desired.

Assume the equivalent conditions (1) and (2). We may choose an open U ⊂ X
such that x is the only singular point of U . Then we apply Lemma 53.15.4 to the
normalization morphism

Uν = Un → Un−1 → . . .→ U1 → U0 = U

All we have to do is show that in none of the steps we are squishing a tangent
vector. Suppose Ui+1 → Ui is the smallest i such that this is the squishing of a
tangent vector θ at u′ ∈ Ui+1 lying over u ∈ Ui. Arguing as above, we see that ui
is a multicross singularity (because the maps Ui → . . .→ U0 are glueing of pairs of
points). But now the number of branches at u′ and u is the same and the δ-invariant
of Ui at u is 1 bigger than the δ-invariant of Ui+1 at u′. By Lemma 53.16.1 this
implies that u cannot be a multicross singularity which is a contradiction. □

https://stacks.math.columbia.edu/tag/0C1W
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Lemma 53.16.4.0CDZ Let k be an algebraically closed field. Let X be a reduced algebraic
1-dimensional k-scheme. Let x ∈ X be a multicross singularity (Definition 53.16.2).
If X is Gorenstein, then x is a node.

Proof. The map OX,x → O∧
X,x is flat and unramified in the sense that κ(x) =

O∧
X,x/mxO∧

X,x. (See More on Algebra, Section 15.43.) Thus X is Gorenstein implies
OX,x is Gorenstein, implies O∧

X,x is Gorenstein by Dualizing Complexes, Lemma
47.21.8. Thus it suffices to show that the ring A in (53.16.0.1) with n ≥ 2 is
Gorenstein if and only if n = 2.
If n = 2, then A = k[[x, y]]/(xy) is a complete intersection and hence Goren-
stein. For example this follows from Duality for Schemes, Lemma 48.24.5 applied
to k[[x, y]] → A and the fact that the regular local ring k[[x, y]] is Gorenstein by
Dualizing Complexes, Lemma 47.21.3.
Assume n > 2. If A where Gorenstein, then A would be a dualizing complex over
A (Duality for Schemes, Definition 48.24.1). Then RHom(k,A) would be equal to
k[n] for some n ∈ Z, see Dualizing Complexes, Lemma 47.15.12. It would follow
that Ext1

A(k,A) ∼= k or Ext1
A(k,A) = 0 (depending on the value of n; in fact n has

to be −1 but it doesn’t matter to us here). Using the exact sequence
0→ mA → A→ k → 0

we find that
Ext1

A(k,A) = HomA(mA, A)/A
where A → HomA(mA, A) is given by a 7→ (a′ 7→ aa′). Let ei ∈ HomA(mA, A) be
the element that sends (f1, . . . , fn) ∈ mA to (0, . . . , 0, fi, 0, . . . , 0). The reader ver-
ifies easily that e1, . . . , en−1 are k-linearly independent in HomA(mA, A)/A. Thus
dimk Ext1

A(k,A) ≥ n− 1 ≥ 2 which finishes the proof. (Observe that e1 + . . .+ en
is the image of 1 under the map A→ HomA(mA, A).) □

53.17. Torsion in the Picard group

0C1Y In this section we bound the torsion in the Picard group of a 1-dimensional proper
scheme over a field. We will use this in our study of semistable reduction for curves.
There does not seem to be an elementary way to obtain the result of Lemma 53.17.1.
Analyzing the proof there are two key ingredients: (1) there is an abelian variety
classifying degree zero invertible sheaves on a smooth projective curve and (2) the
structure of torsion points on an abelian variety can be determined.

Lemma 53.17.1.0C1Z Let k be an algebraically closed field. LetX be a smooth projective
curve of genus g over k.

(1) If n ≥ 1 is invertible in k, then Pic(X)[n] ∼= (Z/nZ)⊕2g.
(2) If the characteristic of k is p > 0, then there exists an integer 0 ≤ f ≤ g

such that Pic(X)[pm] ∼= (Z/pmZ)⊕f for all m ≥ 1.

Proof. Let Pic0(X) ⊂ Pic(X) denote the subgroup of invertible sheaves of degree
0. In other words, there is a short exact sequence

0→ Pic0(X)→ Pic(X) deg−−→ Z→ 0.
The group Pic0(X) is the k-points of the group scheme Pic0

X/k, see Picard Schemes
of Curves, Lemma 44.6.7. The same lemma tells us that Pic0

X/k is a g-dimensional

https://stacks.math.columbia.edu/tag/0CDZ
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abelian variety over k as defined in Groupoids, Definition 39.9.1. Thus we conclude
by the results of Groupoids, Proposition 39.9.11. □

Lemma 53.17.2.0CDU Let k be a field. Let n be prime to the characteristic of k. Let X
be a smooth proper curve over k with H0(X,OX) = k and of genus g.

(1) If g = 1 then there exists a finite separable extension k′/k such that Xk′

has a k′-rational point and Pic(Xk′)[n] ∼= (Z/nZ)⊕2.
(2) If g ≥ 2 then there exists a finite separable extension k′/k with [k′ : k] ≤

(2g − 2)(n2g)! such that Xk′ has a k′-rational point and Pic(Xk′)[n] ∼=
(Z/nZ)⊕2g.

Proof. Assume g ≥ 2. First we may choose a finite separable extension of degree
at most 2g − 2 such that X acquires a rational point, see Lemma 53.13.9. Thus
we may assume X has a k-rational point x ∈ X(k) but now we have to prove the
lemma with [k′ : k] ≤ (n2g)!. Let k ⊂ ksep ⊂ k be a separable algebraic closure
inside an algebraic closure. By Lemma 53.17.1 we have

Pic(Xk)[n] ∼= (Z/nZ)⊕2g

By Picard Schemes of Curves, Lemma 44.7.2 we conclude that
Pic(Xksep)[n] ∼= (Z/nZ)⊕2g

By Picard Schemes of Curves, Lemma 44.7.2 there is a continuous action
Gal(ksep/k) −→ Aut(Pic(Xksep)[n]

and the lemma is true for the fixed field k′ of the kernel of this map. The kernel is
open because the action is continuous which implies that k′/k is finite. By Galois
theory Gal(k′/k) is the image of the displayed arrow. Since the permutation group
of a set of cardinality n2g has cardinality (n2g)! we conclude by Galois theory that
[k′ : k] ≤ (n2g)!. (Of course this proves the lemma with the bound |GL2g(Z/nZ)|,
but all we want here is that there is some bound.)
If the genus is 1, then there is no upper bound on the degree of a finite separable
field extension over which X acquires a rational point (details omitted). Still, there
is such an extension for example by Varieties, Lemma 33.25.6. The rest of the proof
is the same as in the case of g ≥ 2. □

Proposition 53.17.3.0C20 Let k be an algebraically closed field. Let X be a proper
scheme over k which is reduced, connected, and has dimension 1. Let g be the
genus of X and let ggeom be the sum of the geometric genera of the irreducible
components of X. For any prime ℓ different from the characteristic of k we have

dimFℓ Pic(X)[ℓ] ≤ g + ggeom

and equality holds if and only if all the singularities of X are multicross.

Proof. Let ν : Xν → X be the normalization (Varieties, Lemma 33.41.2). Choose
a factorization

Xν = Xn → Xn−1 → . . .→ X1 → X0 = X

as in Lemma 53.15.4. Let us denote h0
i = dimkH

0(Xi,OXi) and h1
i = dimkH

1(Xi,OXi).
By Lemmas 53.15.5 and 53.15.6 for each n > i ≥ 0 we have one of the following
there possibilities

(1) Xi is obtained by glueing a, b ∈ Xi+1 which are on different connected
components: in this case Pic(Xi) = Pic(Xi+1), h0

i+1 = h0
i + 1, h1

i+1 = h1
i ,

https://stacks.math.columbia.edu/tag/0CDU
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(2) Xi is obtained by glueing a, b ∈ Xi+1 which are on the same connected
component: in this case there is a short exact sequence

0→ k∗ → Pic(Xi)→ Pic(Xi+1)→ 0,
and h0

i+1 = h0
i , h1

i+1 = h1
i − 1,

(3) Xi is obtained by squishing a tangent vector in Xi+1: in this case there
is a short exact sequence

0→ (k,+)→ Pic(Xi)→ Pic(Xi+1)→ 0,
and h0

i+1 = h0
i , h1

i+1 = h1
i − 1.

To prove the statements on dimensions of cohomology groups of the structure sheaf,
use the exact sequences in Examples 53.15.2 and 53.15.3. Since k is algebraically
closed of characteristic prime to ℓ we see that (k,+) and k∗ are ℓ-divisible and with
ℓ-torsion (k,+)[ℓ] = 0 and k∗[ℓ] ∼= Fℓ. Hence

dimFℓ Pic(Xi+1)[ℓ]− dimFℓ Pic(Xi)[ℓ]
is zero, except in case (2) where it is equal to −1. At the end of this process we get
the normalization Xν = Xn which is a disjoint union of smooth projective curves
over k. Hence we have

(1) h1
n = ggeom and

(2) dimFℓ Pic(Xn)[ℓ] = 2ggeom.
The last equality by Lemma 53.17.1. Since g = h1

0 we see that the number of steps
of type (2) and (3) is at most h1

0 − h1
n = g − ggeom. By our comptation of the

differences in ranks we conclude that
dimFℓ Pic(X)[ℓ] ≤ g − ggeom + 2ggeom = g + ggeom

and equality holds if and only if no steps of type (3) occur. This indeed means
that all singularities of X are multicross by Lemma 53.16.3. Conversely, if all the
singularities are multicross, then Lemma 53.16.3 guarantees that we can find a
sequence Xν = Xn → . . . → X0 = X as above such that no steps of type (3)
occur in the sequence and we find equality holds in the lemma (just glue the local
sequences for each point to find one that works for all singular points of x; some
details omitted). □

53.18. Genus versus geometric genus

0CE0 Let k be a field with algebraic closure k. Let X be a proper scheme of dimension
≤ 1 over k. We define ggeom(X/k) to be the sum of the geometric genera of the
irreducible components of Xk which have dimension 1.

Lemma 53.18.1.0CE1 Let k be a field. Let X be a proper scheme of dimension ≤ 1 over
k. Then

ggeom(X/k) =
∑

C⊂X
ggeom(C/k)

where the sum is over irreducible components C ⊂ X of dimension 1.

Proof. This is immediate from the definition and the fact that an irreducible com-
ponent Z of Xk maps onto an irreducible component Z of X (Varieties, Lemma
33.8.10) of the same dimension (Morphisms, Lemma 29.28.3 applied to the generic
point of Z). □

https://stacks.math.columbia.edu/tag/0CE1
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Lemma 53.18.2.0CE2 Let k be a field. Let X be a proper scheme of dimension ≤ 1 over
k. Then

(1) We have ggeom(X/k) = ggeom(Xred/k).
(2) IfX ′ → X is a birational proper morphism, then ggeom(X ′/k) = ggeom(X/k).
(3) IfXν → X is the normalization morphism, then ggeom(Xν/k) = ggeom(X/k).

Proof. Part (1) is immediate from Lemma 53.18.1. If X ′ → X is proper birational,
then it is finite and an isomorphism over a dense open (see Varieties, Lemmas
33.17.2 and 33.17.3). Hence X ′

k
→ Xk is an isomorphism over a dense open.

Thus the irreducible components of X ′
k

and Xk are in bijective correspondence
and the corresponding components have isomorphic function fields. In particular
these components have isomorphic nonsingular projective models and hence have
the same geometric genera. This proves (2). Part (3) follows from (1) and (2) and
the fact that Xν → Xred is birational (Morphisms, Lemma 29.54.7). □

Lemma 53.18.3.0CE3 Let k be a field. Let X be a proper scheme of dimension ≤ 1 over
k. Let f : Y → X be a finite morphism such that there exists a dense open U ⊂ X
over which f is a closed immersion. Then

dimkH
1(X,OX) ≥ dimkH

1(Y,OY )

Proof. Consider the exact sequence
0→ G → OX → f∗OY → F → 0

of coherent sheaves on X. By assumption F is supported in finitely many closed
points and hence has vanishing higher cohomology (Varieties, Lemma 33.33.3). On
the other hand, we have H2(X,G) = 0 by Cohomology, Proposition 20.20.7. It
follows formally that the induced map H1(X,OX) → H1(X, f∗OY ) is surjective.
Since H1(X, f∗OY ) = H1(Y,OY ) (Cohomology of Schemes, Lemma 30.2.4) we
conclude the lemma holds. □

Lemma 53.18.4.0CE4 Let k be a field. Let X be a proper scheme of dimension ≤ 1 over
k. If X ′ → X is a birational proper morphism, then

dimkH
1(X,OX) ≥ dimkH

1(X ′,OX′)
If X is reduced, H0(X,OX)→ H0(X ′,OX′) is surjective, and equality holds, then
X ′ = X.

Proof. If f : X ′ → X is proper birational, then it is finite and an isomorphism over
a dense open (see Varieties, Lemmas 33.17.2 and 33.17.3). Thus the inequality by
Lemma 53.18.3. Assume X is reduced. Then OX → f∗OX′ is injective and we
obtain a short exact sequence

0→ OX → f∗OX′ → F → 0
Under the assumptions given in the second statement, we conclude from the long
exact cohomology sequence that H0(X,F) = 0. Then F = 0 because F is generated
by global sections (Varieties, Lemma 33.33.3). and OX = f∗OX′ . Since f is affine
this implies X = X ′. □

Lemma 53.18.5.0CE5 Let k be a field. Let C be a proper curve over k. Set κ =
H0(C,OC). Then

[κ : k]s dimκH
1(C,OC) ≥ ggeom(C/k)

https://stacks.math.columbia.edu/tag/0CE2
https://stacks.math.columbia.edu/tag/0CE3
https://stacks.math.columbia.edu/tag/0CE4
https://stacks.math.columbia.edu/tag/0CE5


53.19. NODAL CURVES 4416

Proof. Varieties, Lemma 33.26.2 implies κ is a field and a finite extension of k. By
Fields, Lemma 9.14.8 we have [κ : k]s = |Mork(κ, k)| and hence Spec(κ ⊗k k) has
[κ : k]s points each with residue field k. Thus

Ck =
⋃

t∈Spec(κ⊗kk)
Ct

(set theoretic union). Here Ct = C×Spec(κ),tSpec(k) where we view t as a k-algebra
map t : κ→ k. The conclusion is that ggeom(C/k) =

∑
t ggeom(Ct/k) and the sum

is over an index set of size [κ : k]s. We have

H0(Ct,OCt) = k and dimkH
1(Ct,OCt) = dimκH

1(C,OC)

by cohomology and base change (Cohomology of Schemes, Lemma 30.5.2). Ob-
serve that the normalization Cνt is the disjoint union of the nonsingular projective
models of the irreducible components of Ct (Morphisms, Lemma 29.54.6). Hence
dimkH

1(Cνt ,OCνt ) is equal to ggeom(Ct/k). By Lemma 53.18.3 we have

dimkH
1(Ct,OCt) ≥ dimkH

1(Cνt ,OCνt )

and this finishes the proof. □

Lemma 53.18.6.0CE6 Let k be a field. Let X be a proper scheme of dimension ≤ 1 over
k. Let ℓ be a prime number invertible in k. Then

dimFℓ Pic(X)[ℓ] ≤ dimkH
1(X,OX) + ggeom(X/k)

where ggeom(X/k) is as defined above.

Proof. The map Pic(X) → Pic(Xk) is injective by Varieties, Lemma 33.30.3. By
Cohomology of Schemes, Lemma 30.5.2 dimkH

1(X,OX) equals dimkH
1(Xk,OXk).

Hence we may assume k is algebraically closed.

Let Xred be the reduction of X. Then the surjection OX → OXred induces a sur-
jection H1(X,OX)→ H1(X,OXred) because cohomology of quasi-coherent sheaves
vanishes in degrees ≥ 2 by Cohomology, Proposition 20.20.7. Since Xred → X
induces an isomorphism on irreducible components over k and an isomorphism
on ℓ-torsion in Picard groups (Picard Schemes of Curves, Lemma 44.7.2) we may
replace X by Xred. In this way we reduce to Proposition 53.17.3. □

53.19. Nodal curves

0C46 We have already defined ordinary double points over algebraically closed fields, see
Definition 53.16.2. Namely, if x ∈ X is a closed point of a 1-dimensional algebraic
scheme over an algebraically closed field k, then x is an ordinary double point if
and only if

O∧
X,x
∼= k[[x, y]]/(xy)

See discussion following (53.16.0.1) in Section 53.16.

Definition 53.19.1.0C47 Let k be a field. Let X be a 1-dimensional locally algebraic
k-scheme.

(1) We say a closed point x ∈ X is a node, or an ordinary double point, or
defines a nodal singularity if there exists an ordinary double point x ∈ Xk
mapping to x.
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(2) We say the singularities of X are at-worst-nodal if all closed points of X
are either in the smooth locus of the structure morphism X → Spec(k) or
are ordinary double points.

Often a 1-dimensional algebraic scheme X is called a nodal curve if the singularities
of X are at worst nodal. Sometimes a nodal curve is required to be proper. Since
a nodal curve so defined need not be irreducible, this conflicts with our earlier
definition of a curve as a variety of dimension 1.

Lemma 53.19.2.0C48 Let (A,m) be a regular local ring of dimension 2. Let I ⊂ m be
an ideal.

(1) If A/I is reduced, then I = (0), I = m, or I = (f) for some nonzero
f ∈ m.

(2) If A/I has depth 1, then I = (f) for some nonzero f ∈ m.

Proof. Assume I ̸= 0. Write I = (f1, . . . , fr). As A is a UFD (More on Algebra,
Lemma 15.121.2) we can write fi = fgi where f is the gcd of f1, . . . , fr. Thus
the gcd of g1, . . . , gr is 1 which means that there is no height 1 prime ideal over
g1, . . . , gr. Then either (g1, . . . , gr) = A which implies I = (f) or if not, then
dim(A) = 2 implies that V (g1, . . . , gr) = {m}, i.e., m =

√
(g1, . . . , gr).

Assume A/I reduced, i.e., I radical. If f is a unit, then since I is radical we see
that I = m. If f ∈ m, then we see that fn maps to zero in A/I. Hence f ∈ I by
reducedness and we conclude I = (f).

Assume A/I has depth 1. Then m is not an associated prime of A/I. Since the
class of f modulo I is annihilated by g1, . . . , gr, this implies that the class of f is
zero in A/I. Thus I = (f) as desired. □

Let κ be a field and let V be a vector space over κ. We will say q ∈ Sym2
κ(V )

is nondegenerate if the induced κ-linear map V ∨ → V is an isomorphism. If q =∑
i≤j aijxixj for some κ-basis x1, . . . , xn of V , then this means that the determinant

of the matrix 2a11 a12 . . .
a12 2a22 . . .
. . . . . . . . .


is nonzero. This is equivalent to the condition that the partial derivatives of q with
respect to the xi cut out 0 scheme theoretically.

Lemma 53.19.3.0C49 Let k be a field. Let (A,m, κ) be a Noetherian local k-algebra.
The following are equivalent

(1) κ/k is separable, A is reduced, dimκ(m/m2) = 2, and there exists a non-
degenerate q ∈ Sym2

κ(m/m2) which maps to zero in m2/m3,
(2) κ/k is separable, depth(A) = 1, dimκ(m/m2) = 2, and there exists a

nondegenerate q ∈ Sym2
κ(m/m2) which maps to zero in m2/m3,

(3) κ/k is separable, A∧ ∼= κ[[x, y]]/(ax2 + bxy + cy2) as a k-algebra where
ax2 + bxy + cy2 is a nondegenerate quadratic form over κ.

Proof. Assume (3). Then A∧ is reduced because ax2 +bxy+cy2 is either irreducible
or a product of two nonassociated prime elements. Hence A ⊂ A∧ is reduced. It
follows that (1) is true.

https://stacks.math.columbia.edu/tag/0C48
https://stacks.math.columbia.edu/tag/0C49
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Assume (1). Then A cannot be Artinian, since it would not be reduced because
m ̸= (0). Hence dim(A) ≥ 1, hence depth(A) ≥ 1 by Algebra, Lemma 10.157.3. On
the other hand dim(A) = 2 implies A is regular which contradicts the existence of
q by Algebra, Lemma 10.106.1. Thus dim(A) ≤ 1 and we conclude depth(A) = 1
by Algebra, Lemma 10.72.3. It follows that (2) is true.
Assume (2). Since the depth of A is the same as the depth of A∧ (More on Algebra,
Lemma 15.43.2) and since the other conditions are insensitive to completion, we
may assume that A is complete. Choose κ → A as in More on Algebra, Lemma
15.38.3. Since dimκ(m/m2) = 2 we can choose x0, y0 ∈ m which map to a basis.
We obtain a continuous κ-algebra map

κ[[x, y]] −→ A

by the rules x 7→ x0 and y 7→ y0. Let q be the class of ax2
0 + bx0y0 + cy2

0 in
Sym2

κ(m/m2). Write Q(x, y) = ax2 + bxy + cy2 viewed as a polynomial in two
variables. Then we see that

Q(x0, y0) = ax2
0 + bx0y0 + cy2

0 =
∑

i+j=3
aijx

i
0y
j
0

for some aij in A. We want to prove that we can increase the order of vanishing
by changing our choice of x0, y0. Suppose that x1, y1 ∈ m2. Then

Q(x0 + x1, y0 + y1) = Q(x0, y0) + (2ax0 + by0)x1 + (bx0 + 2cy0)y1 mod m4

Nondegeneracy of Q means exactly that 2ax0 + by0 and bx0 + 2cy0 are a κ-basis
for m/m2, see discussion preceding the lemma. Hence we can certainly choose
x1, y1 ∈ m2 such that Q(x0 + x1, y0 + y1) ∈ m4. Continuing in this fashion by
induction we can find xi, yi ∈ mi+1 such that

Q(x0 + x1 + . . .+ xn, y0 + y1 + . . .+ yn) ∈ mn+3

Since A is complete we can set x∞ =
∑
xi and y∞ =

∑
yi and we can consider the

map κ[[x, y]] −→ A sending x to x∞ and y to y∞. This map induces a surjection
κ[[x, y]]/(Q) −→ A by Algebra, Lemma 10.96.1. By Lemma 53.19.2 the kernel of
k[[x, y]] → A is principal. But the kernel cannot contain a proper divisor of Q as
such a divisor would have degree 1 in x, y and this would contradict dim(m/m2) = 2.
Hence Q generates the kernel as desired. □

Lemma 53.19.4.0C4A Let k be a field. Let (A,m, κ) be a Nagata local k-algebra. The
following are equivalent

(1) k → A is as in Lemma 53.19.3,
(2) κ/k is separable, A is reduced of dimension 1, the δ-invariant of A is 1,

and A has 2 geometric branches.
If this holds, then the integral closure A′ of A in its total ring of fractions has either
1 or 2 maximal ideals m′ and the extensions κ(m′)/k are separable.

Proof. In both cases A and A∧ are reduced. In case (2) because the completion
of a reduced local Nagata ring is reduced (More on Algebra, Lemma 15.43.6). In
both cases A and A∧ have dimension 1 (More on Algebra, Lemma 15.43.1). The
δ-invariant and the number of geometric branches of A and A∧ agree by Varieties,
Lemma 33.39.6 and More on Algebra, Lemma 15.108.7. Let A′ be the integral clo-
sure of A in its total ring of fractions as in Varieties, Lemma 33.39.2. By Varieties,
Lemma 33.39.5 we see that A′ ⊗A A∧ plays the same role for A∧. Thus we may
replace A by A∧ and assume A is complete.

https://stacks.math.columbia.edu/tag/0C4A
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Assume (1) holds. It suffices to show that A has two geometric branches and δ-
invariant 1. We may assume A = κ[[x, y]]/(ax2 +bxy+cy2) with q = ax2 +bxy+cy2

nondegenerate. There are two cases.
Case I: q splits over κ. In this case we may after changing coordinates assume that
q = xy. Then we see that

A′ = κ[[x, y]]/(x)× κ[[x, y]]/(y)

Case II: q does not split. In this case c ̸= 0 and nondegenerate means b2− 4ac ̸= 0.
Hence κ′ = κ[t]/(a+ bt+ ct2) is a degree 2 separable extension of κ. Then t = y/x
is integral over A and we conclude that

A′ = κ′[[x]]
with y mapping to tx on the right hand side.
In both cases one verifies by hand that the δ-invariant is 1 and the number of
geometric branches is 2. In this way we see that (1) implies (2). Moreover we
conclude that the final statement of the lemma holds.
Assume (2) holds. More on Algebra, Lemma 15.106.7 implies A′ either has two
maximal ideals or A′ has one maximal ideal and [κ(m′) : κ]s = 2.
Case I: A′ has two maximal ideals m′

1, m′
2 with residue fields κ1, κ2. Since the

δ-invariant is the length of A′/A and since there is a surjection A′/A→ (κ1×κ2)/κ
we see that κ = κ1 = κ2. Since A is complete (and henselian by Algebra, Lemma
10.153.9) and A′ is finite over A we see that A′ = A1 × A2 (by Algebra, Lemma
10.153.4). Since A′ is a normal ring it follows that A1 and A2 are discrete valuation
rings. Hence A1 and A2 are isomorphic to κ[[t]] (as k-algebras) by More on Algebra,
Lemma 15.38.4. Since the δ-invariant is 1 we conclude that A is the wedge of A1
and A2 (Varieties, Definition 33.40.4). It follows easily that A ∼= κ[[x, y]]/(xy).
Case II: A′ has a single maximal ideal m′ with residue field κ′ and [κ′ : κ]s = 2.
Arguing exactly as in Case I we see that [κ′ : κ] = 2 and κ′ is separable over κ.
Since A′ is normal we see that A′ is isomorphic to κ′[[t]] (see reference above). Since
A′/A has length 1 we conclude that

A = {f ∈ κ′[[t]] | f(0) ∈ κ}
Then a simple computation shows that A as in case (1). □

Lemma 53.19.5.0C4B Let k be a field. Let A = k[[x1, . . . , xn]]. Let I = (f1, . . . , fm) ⊂ A
be an ideal. For any r ≥ 0 the ideal in A/I generated by the r × r-minors of the
matrix (∂fj/∂xi) is independent of the choice of the generators of I or the regular
system of parameters x1, . . . , xn of A.

Proof. The “correct” proof of this lemma is to prove that this ideal is the (n− r)th
Fitting ideal of a module of continuous differentials of A/I over k. Here is a direct
proof. If g1, . . . gl is a second set of generators of I, then we can write gs =

∑
asjfj

and we have the equality of matrices
(∂gs/∂xi) = (asj)(∂fj/∂xi) + (∂asj/∂xifj)

The final term is zero in A/I. By the Cauchy-Binet formula we see that the ideal
of minors for the gs is contained in the ideal for the fj . By symmetry these ideals
are the same. If y1, . . . , yn ∈ mA is a second regular system of parameters, then

https://stacks.math.columbia.edu/tag/0C4B
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the matrix (∂yj/∂xi) is invertible and we can use the chain rule for differentiation.
Some details omitted. □

Lemma 53.19.6.0C4C Let k be a field. Let A = k[[x1, . . . , xn]]. Let I = (f1, . . . , fm) ⊂
mA be an ideal. The following are equivalent

(1) k → A/I is as in Lemma 53.19.3,
(2) A/I is reduced and the (n− 1)× (n− 1) minors of the matrix (∂fj/∂xi)

generate I + mA,
(3) depth(A/I) = 1 and the (n− 1)× (n− 1) minors of the matrix (∂fj/∂xi)

generate I + mA.

Proof. By Lemma 53.19.5 we may change our system of coordinates and the choice
of generators during the proof.
If (1) holds, then we may change coordinates such that x1, . . . , xn−2 map to zero
in A/I and A/I = k[[xn−1, xn]]/(ax2

n−1 + bxn−1xn + cx2
n) for some nondegenerate

quadric ax2
n−1 +bxn−1xn+cx2

n. Then we can explicitly compute to show that both
(2) and (3) are true.
Assume the (n−1)×(n−1) minors of the matrix (∂fj/∂xi) generate I+mA. Suppose
that for some i and j the partial derivative ∂fj/∂xi is a unit in A. Then we may
use the system of parameters fj , x1, . . . , xi−1, x̂i, xi+1, . . . , xn and the generators
fj , f1, . . . , fj−1, f̂j , fj+1, . . . , fm of I. Then we get a regular system of parameters
x1, . . . , xn and generators x1, f2, . . . , fm of I. Next, we look for an i ≥ 2 and
j ≥ 2 such that ∂fj/∂xi is a unit in A. If such a pair exists, then we can make
a replacement as above and assume that we have a regular system of parameters
x1, . . . , xn and generators x1, x2, f3, . . . , fm of I. Continuing, in finitely many steps
we reach the situation where we have a regular system of parameters x1, . . . , xn and
generators x1, . . . , xt, ft+1, . . . , fm of I such that ∂fj/∂xi ∈ mA for all i, j ≥ t+ 1.
In this case the matrix of partial derivatives has the following block shape(

It×t ∗
0 mA

)
Hence every (n− 1)× (n− 1)-minor is in mn−1−t

A . Note that I ̸= mA otherwise the
ideal of minors would contain 1. It follows that n − 1 − t ≤ 1 because there is an
element of mA \ m2

A + I (otherwise I = mA by Nakayama). Thus t ≥ n − 2. We
have seen that t ̸= n above and similarly if t = n − 1, then there is an invertible
(n − 1) × (n − 1)-minor which is disallowed as well. Hence t = n − 2. Then A/I
is a quotient of k[[xn−1, xn]] and Lemma 53.19.2 implies in both cases (2) and (3)
that I is generated by x1, . . . , xn−2, f for some f = f(xn−1, xn). In this case the
condition on the minors exactly says that the quadratic term in f is nondegenerate,
i.e., A/I is as in Lemma 53.19.3. □

Lemma 53.19.7.0C4D Let k be a field. Let X be a 1-dimensional algebraic k-scheme.
Let x ∈ X be a closed point. The following are equivalent

(1) x is a node,
(2) k → OX,x is as in Lemma 53.19.3,
(3) any x ∈ Xk mapping to x defines a nodal singularity,
(4) κ(x)/k is separable, OX,x is reduced, and the first Fitting ideal of ΩX/k

generates mx in OX,x,

https://stacks.math.columbia.edu/tag/0C4C
https://stacks.math.columbia.edu/tag/0C4D
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(5) κ(x)/k is separable, depth(OX,x) = 1, and the first Fitting ideal of ΩX/k
generates mx in OX,x,

(6) κ(x)/k is separable and OX,x is reduced, has δ-invariant 1, and has 2
geometric branches.

Proof. First assume that k is algebraically closed. In this case the equivalence of
(1) and (3) is trivial. The equivalence of (1) and (3) with (2) holds because the
only nondegenerate quadric in two variables is xy up to change in coordinates.
The equivalence of (1) and (6) is Lemma 53.16.1. After replacing X by an affine
neighbourhood of x, we may assume there is a closed immersion X → An

k mapping
x to 0. Let f1, . . . , fm ∈ k[x1, . . . , xn] be generators for the ideal I of X in An

k . Then
ΩX/k corresponds to the R = k[x1, . . . , xn]/I-module ΩR/k which has a presentation

R⊕m (∂fj/∂xi)−−−−−−→ R⊕n → ΩR/k → 0
(See Algebra, Sections 10.131 and 10.134.) The first Fitting ideal of ΩR/k is thus
the ideal generated by the (n − 1) × (n − 1)-minors of the matrix (∂fj/∂xi).
Hence (2), (4), (5) are equivalent by Lemma 53.19.6 applied to the completion
of k[x1, . . . , xn]→ R at the maximal ideal (x1, . . . , xn).
Now assume k is an arbitrary field. In cases (2), (4), (5), (6) the residue field κ(x)
is separable over k. Let us show this holds as well in cases (1) and (3). Namely,
let Z ⊂ X be the closed subscheme of X defined by the first Fitting ideal of ΩX/k.
The formation of Z commutes with field extension (Divisors, Lemma 31.10.1). If
(1) or (3) is true, then there exists a point x of Xk such that x is an isolated point
of multiplicity 1 of Zk (as we have the equivalence of the conditions of the lemma
over k). In particular Zx is geometrically reduced at x (because k is algebraically
closed). Hence Z is geometrically reduced at x (Varieties, Lemma 33.6.6). In
particular, Z is reduced at x, hence Z = Spec(κ(x)) in a neighbourhood of x and
κ(x) is geometrically reduced over k. This means that κ(x)/k is separable (Algebra,
Lemma 10.44.1).
The argument of the previous paragraph shows that if (1) or (3) holds, then the first
Fitting ideal of ΩX/k generates mx. Since OX,x → OX

k
,x is flat and since OX

k
,x

is reduced and has depth 1, we see that (4) and (5) hold (use Algebra, Lemmas
10.164.2 and 10.163.2). Conversely, (4) implies (5) by Algebra, Lemma 10.157.3. If
(5) holds, then Z is geometrically reduced at x (because κ(x)/k separable and Z is
x in a neighbourhood). Hence Zk is reduced at any point x of Xk lying over x. In
other words, the first fitting ideal of ΩX

k
/k generates mx in OX

k,x
. Moreover, since

OX,x → OX
k
,x is flat we see that depth(OX

k
,x) = 1 (see reference above). Hence

(5) holds for x ∈ Xk and we conclude that (3) holds (because of the equivalence over
algebraically closed fields). In this way we see that (1), (3), (4), (5) are equivalent.
The equivalence of (2) and (6) follows from Lemma 53.19.4.
Finally, we prove the equivalence of (2) = (6) with (1) = (3) = (4) = (5). First we
note that the geometric number of branches of X at x and the geometric number
of branches of Xk at x are equal by Varieties, Lemma 33.40.2. We conclude from
the information available to us at this point that in all cases this number is equal
to 2. On the other hand, in case (1) it is clear that X is geometrically reduced at
x, and hence

δ-invariant of X at x ≤ δ-invariant of Xk at x
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by Varieties, Lemma 33.39.8. Since in case (1) the right hand side is 1, this forces the
δ-invariant of X at x to be 1 (because if it were zero, then OX,x would be a discrete
valuation ring by Varieties, Lemma 33.39.4 which is unibranch, a contradiction).
Thus (5) holds. Conversely, if (2) = (5) is true, then assumptions (a), (b), (c)
of Varieties, Lemma 33.27.6 hold for x ∈ X by Lemma 53.19.4. Thus Varieties,
Lemma 33.39.9 applies and shows that we have equality in the above displayed
inequality. We conclude that (5) holds for x ∈ Xk and we are back in case (1) by
the equivalence of the conditions over an algebraically closed field. □

Remark 53.19.8 (The quadratic extension associated to a node).0CBT Let k be a field.
Let (A,m, κ) be a Noetherian local k-algebra. Assume that either (A,m, κ) is as in
Lemma 53.19.3, or A is Nagata as in Lemma 53.19.4, or A is complete and as in
Lemma 53.19.6. Then A defines canonically a degree 2 separable κ-algebra κ′ as
follows

(1) let q = ax2 + bxy + cy2 be a nondegenerate quadric as in Lemma 53.19.3
with coordinates x, y chosen such that a ̸= 0 and set κ′ = κ[x]/(ax2 +
bx+ c),

(2) let A′ ⊃ A be the integral closure of A in its total ring of fractions and
set κ′ = A′/mA′, or

(3) let κ′ be the κ-algebra such that Proj(
⊕

n≥0 m
n/mn+1) = Spec(κ′).

The equivalence of (1) and (2) was shown in the proof of Lemma 53.19.4. We omit
the equivalence of this with (3). If X is a locally Noetherian k-scheme and x ∈ X is
a point such that OX,x = A, then (3) shows that Spec(κ′) = Xν ×X Spec(κ) where
ν : Xν → X is the normalization morphism.

Remark 53.19.9 (Trivial quadratic extension).0CBU Let k be a field. Let (A,m, κ) be
as in Remark 53.19.8 and let κ′/κ be the associated separable algebra of degree 2.
Then the following are equivalent

(1) κ′ ∼= κ× κ as κ-algebra,
(2) the form q of Lemma 53.19.3 can be chosen to be xy,
(3) A has two branches,
(4) the extension A′/A of Lemma 53.19.4 has two maximal ideals, and
(5) A∧ ∼= κ[[x, y]]/(xy) as a k-algebra.

The equivalence between these conditions has been shown in the proof of Lemma
53.19.4. If X is a locally Noetherian k-scheme and x ∈ X is a point such that
OX,x = A, then this means exactly that there are two points x1, x2 of the normal-
ization Xν lying over x and that κ(x) = κ(x1) = κ(x2).

Definition 53.19.10.0CBV Let k be a field. Let X be a 1-dimensional algebraic k-scheme.
Let x ∈ X be a closed point. We say x is a split node if x is a node, κ(x) = k, and
the equivalent assertions of Remark 53.19.9 hold for A = OX,x.

We formulate the obligatory lemma stating what we already know about this con-
cept.

Lemma 53.19.11.0CBW Let k be a field. Let X be a 1-dimensional algebraic k-scheme.
Let x ∈ X be a closed point. The following are equivalent

(1) x is a split node,
(2) x is a node and there are exactly two points x1, x2 of the normalization

Xν lying over x with k = κ(x1) = κ(x2),

https://stacks.math.columbia.edu/tag/0CBT
https://stacks.math.columbia.edu/tag/0CBU
https://stacks.math.columbia.edu/tag/0CBV
https://stacks.math.columbia.edu/tag/0CBW
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(3) O∧
X,x
∼= k[[x, y]]/(xy) as a k-algebra, and

(4) add more here.
Proof. This follows from the discussion in Remark 53.19.9 and Lemma 53.19.7. □

Lemma 53.19.12.0C56 Let K/k be an extension of fields. Let X be a locally algebraic
k-scheme of dimension 1. Let y ∈ XK be a point with image x ∈ X. The following
are equivalent

(1) x is a closed point of X and a node, and
(2) y is a closed point of Y and a node.

Proof. If x is a closed point of X, then y is too (look at residue fields). But
conversely, this need not be the case, i.e., it can happen that a closed point of Y
maps to a nonclosed point of X. However, in this case y cannot be a node. Namely,
then X would be geometrically unibranch at x (because x would be a generic point
of X and OX,x would be Artinian and any Artinian local ring is geometrically
unibranch), hence Y is geometrically unibranch at y (Varieties, Lemma 33.40.3),
which means that y cannot be a node by Lemma 53.19.7. Thus we may and do
assume that both x and y are closed points.
Choose algebraic closures k, K and a map k → K extending the given map
k → K. Using the equivalence of (1) and (3) in Lemma 53.19.7 we reduce to
the case where k and K are algebraically closed. In this case we can argue as in the
proof of Lemma 53.19.7 that the geometric number of branches and δ-invariants
of X at x and Y at y are the same. Another argument can be given by choos-
ing an isomorphism k[[x1, . . . , xn]]/(g1, . . . , gm) → O∧

X,x of k-algebras as in Va-
rieties, Lemma 33.21.1. By Varieties, Lemma 33.21.2 this gives an isomorphism
K[[x1, . . . , xn]]/(g1, . . . , gm) → O∧

Y,y of K-algebras. By definition we have to show
that

k[[x1, . . . , xn]]/(g1, . . . , gm) ∼= k[[s, t]]/(st)
if and only if

K[[x1, . . . , xn]]/(g1, . . . , gm) ∼= K[[s, t]]/(st)
We encourage the reader to prove this for themselves. Since k and K are alge-
braically closed fields, this is the same as asking these rings to be as in Lemma
53.19.3. Via Lemma 53.19.6 this translates into a statement about the (n − 1) ×
(n − 1)-minors of the matrix (∂gj/∂xi) which is clearly independent of the field
used. We omit the details. □

Lemma 53.19.13.0C57 Let k be a field. Let X be a locally algebraic k-scheme of
dimension 1. Let Y → X be an étale morphism. Let y ∈ Y be a point with image
x ∈ X. The following are equivalent

(1) x is a closed point of X and a node, and
(2) y is a closed point of Y and a node.

Proof. By Lemma 53.19.12 we may base change to the algebraic closure of k. Then
the residue fields of x and y are k. Hence the map O∧

X,x → O∧
Y,y is an isomorphism

(for example by Étale Morphisms, Lemma 41.11.3 or More on Algebra, Lemma
15.43.9). Thus the lemma is clear. □

Lemma 53.19.14.0CD6 Let k′/k be a finite separable field extension. Let X be a locally
algebraic k′-scheme of dimension 1. Let x ∈ X be a closed point. The following are
equivalent

https://stacks.math.columbia.edu/tag/0C56
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(1) x is a node, and
(2) x is a node when X viewed as a locally algebraic k-scheme.

Proof. Follows immediately from the characterization of nodes in Lemma 53.19.7.
□

Lemma 53.19.15.0C4E Let k be a field. Let X be a locally algebraic k-scheme equidi-
mensional of dimension 1. The following are equivalent

(1) the singularities of X are at-worst-nodal, and
(2) X is a local complete intersection over k and the closed subscheme Z ⊂ X

cut out by the first fitting ideal of ΩX/k is unramified over k.

Proof. We urge the reader to find their own proof of this lemma; what follows is
just putting together earlier results and may hide what is really going on.
Assume (2). Since Z → Spec(k) is quasi-finite (Morphisms, Lemma 29.35.10) we
see that the residue fields of points x ∈ Z are finite over k (as well as separable)
by Morphisms, Lemma 29.20.5. Hence each x ∈ Z is a closed point of X by
Morphisms, Lemma 29.20.2. The local ring OX,x is Cohen-Macaulay by Algebra,
Lemma 10.135.3. Since dim(OX,x) = 1 by dimension theory (Varieties, Section
33.20), we conclude that depth(OX,x)) = 1. Thus x is a node by Lemma 53.19.7.
If x ∈ X, x ̸∈ Z, then X → Spec(k) is smooth at x by Divisors, Lemma 31.10.3.
Assume (1). Under this assumption X is geometrically reduced at every closed
point (see Varieties, Lemma 33.6.6). Hence X → Spec(k) is smooth on a dense
open by Varieties, Lemma 33.25.7. Thus Z is closed and consists of closed points.
By Divisors, Lemma 31.10.3 the morphism X\Z → Spec(k) is smooth. Hence X\Z
is a local complete intersection by Morphisms, Lemma 29.34.7 and the definition of
a local complete intersection in Morphisms, Definition 29.30.1. By Lemma 53.19.7
for every point x ∈ Z the local ring OZ,x is equal to κ(x) and κ(x) is separable over
k. Thus Z → Spec(k) is unramified (Morphisms, Lemma 29.35.11). Finally, Lemma
53.19.7 via part (3) of Lemma 53.19.3, shows that OX,x is a complete intersection
in the sense of Divided Power Algebra, Definition 23.8.5. However, Divided Power
Algebra, Lemma 23.8.8 and Morphisms, Lemma 29.30.9 show that this agrees with
the notion used to define a local complete intersection scheme over a field and the
proof is complete. □

Lemma 53.19.16.0E37 Let k be a field. Let X be a locally algebraic k-scheme equidimen-
sional of dimension 1 whose singularities are at-worst-nodal. Then X is Gorenstein
and geometrically reduced.

Proof. The Gorenstein assertion follows from Lemma 53.19.15 and Duality for
Schemes, Lemma 48.24.5. Or you can use that it suffices to check after passing
to the algebraic closure (Duality for Schemes, Lemma 48.25.1), then use that a
Noetherian local ring is Gorenstein if and only if its completion is so (by Dual-
izing Complexes, Lemma 47.21.8), and then prove that the local rings k[[t]] and
k[[x, y]]/(xy) are Gorenstein by hand.
To see that X is geometrically reduced, it suffices to show that Xk is reduced
(Varieties, Lemmas 33.6.3 and 33.6.4). But Xk is a nodal curve over an algebraically
closed field. Thus the complete local rings of Xk are isomorphic to either k[[t]] or
k[[x, y]]/(xy) which are reduced as desired. □
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Lemma 53.19.17.0E38 Let k be a field. Let X be a locally algebraic k-scheme equidi-
mensional of dimension 1 whose singularities are at-worst-nodal. If Y ⊂ X is a
reduced closed subscheme equidimensional of dimension 1, then

(1) the singularities of Y are at-worst-nodal, and
(2) if Z ⊂ X is the scheme theoretic closure of X \ Y , then

(a) the scheme theoretic intersection Y ∩Z is the disjoint union of spectra
of finite separable extensions of k,

(b) each point of Y ∩ Z is a node of X, and
(c) Y → Spec(k) is smooth at every point of Y ∩ Z.

Proof. Since X and Y are reduced and equidimensional of dimension 1, we see
that Y is the scheme theoretic union of a subset of the irreducible components of
X (in a reduced ring (0) is the intersection of the minimal primes). Let y ∈ Y
be a closed point. If y is in the smooth locus of X → Spec(k), then y is on a
unique irreducible component of X and we see that Y and X agree in an open
neighbourhood of y. Hence Y → Spec(k) is smooth at y. If y is a node of X but
still lies on a unique irreducible component of X, then y is a node on Y by the same
argument. Suppose that y lies on more than 1 irreducible component of X. Since
the number of geometric branches of X at y is 2 by Lemma 53.19.7, there can be at
most 2 irreducible components passing through y by Properties, Lemma 28.15.5. If
Y contains both of these, then again Y = X in an open neighbourhood of y and y
is a node of Y . Finally, assume Y contains only one of the irreducible components.
After replacing X by an open neighbourhood of x we may assume Y is one of the
two irreducble components and Z is the other. By Properties, Lemma 28.15.5 again
we see that X has two branches at y, i.e., the local ring OX,y has two branches and
that these branches come from OY,y and OZ,y. Write O∧

X,y
∼= κ(y)[[u, v]]/(uv) as

in Remark 53.19.9. The field κ(y) is finite separable over k by Lemma 53.19.7 for
example. Thus, after possibly switching the roles of u and v, the completion of the
map OX,y → OY,Y corresponds to κ(y)[[u, v]]/(uv)→ κ(y)[[u]] and the completion
of the map OX,y → OY,Y corresponds to κ(y)[[u, v]]/(uv)→ κ(y)[[v]]. The scheme
theoretic intersection of Y ∩ Z is cut out by the sum of their ideas which in the
completion is (u, v), i.e., the maximal ideal. Thus (2)(a) and (2)(b) are clear.
Finally, (2)(c) holds: the completion of OY,y is regular, hence OY,y is regular (More
on Algebra, Lemma 15.43.4) and κ(y)/k is separable, hence smoothness in an open
neighbourhood by Algebra, Lemma 10.140.5. □

53.20. Families of nodal curves

0C58 In the Stacks project curves are irreducible varieties of dimension 1, but in the
literature a “semi-stable curve” or a “nodal curve” is usually not irreducible and
often assumed to be proper, especially when used in a phrase such as “family of
semistable curves” or “family of nodal curves”, or “nodal family”. Thus it is a bit
difficult for us to choose a terminology which is consistent with the literature as
well as internally consistent. Moreover, we really want to first study the notion
introduced in the following lemma (which is local on the source).

Lemma 53.20.1.0C59 Let f : X → S be a morphism of schemes. The following are
equivalent

(1) f is flat, locally of finite presentation, every nonempty fibre Xs is equidi-
mensional of dimension 1, and Xs has at-worst-nodal singularities, and

https://stacks.math.columbia.edu/tag/0E38
https://stacks.math.columbia.edu/tag/0C59


53.20. FAMILIES OF NODAL CURVES 4426

(2) f is syntomic of relative dimension 1 and the closed subscheme Sing(f) ⊂
X defined by the first Fitting ideal of ΩX/S is unramified over S.

Proof. Recall that the formation of Sing(f) commutes with base change, see Divi-
sors, Lemma 31.10.1. Thus the lemma follows from Lemma 53.19.15, Morphisms,
Lemma 29.30.11, and Morphisms, Lemma 29.35.12. (We also use the trivial Mor-
phisms, Lemmas 29.30.6 and 29.30.7.) □

Definition 53.20.2.0C5A Let f : X → S be a morphism of schemes. We say f is at-
worst-nodal of relative dimension 1 if f satisfies the equivalent conditions of Lemma
53.20.1.

Here are some reasons for the cumbersome terminology6. First, we want to make
sure this notion is not confused with any of the other notions in the literature (see
introduction to this section). Second, we can imagine several generalizations of
this notion to morphisms of higher relative dimension (for example, one can ask
for morphisms which are étale locally compositions of at-worst-nodal morphisms or
one can ask for morphisms whose fibres are higher dimensional but have at worst
ordinary double points).

Lemma 53.20.3.0CD7 A smooth morphism of relative dimension 1 is at-worst-nodal of
relative dimension 1.

Proof. Omitted. □

Lemma 53.20.4.0C5B Let f : X → S be at-worst-nodal of relative dimension 1. Then
the same is true for any base change of f .

Proof. This is true because the base change of a syntomic morphism is syntomic
(Morphisms, Lemma 29.30.4), the base change of a morphism of relative dimension
1 has relative dimension 1 (Morphisms, Lemma 29.29.2), the formation of Sing(f)
commutes with base change (Divisors, Lemma 31.10.1), and the base change of an
unramified morphism is unramified (Morphisms, Lemma 29.35.5). □

The following lemma tells us that we can check whether a morphism is at-worst-
nodal of relative dimension 1 on the fibres.

Lemma 53.20.5.0DSC Let f : X → S be a morphism of schemes which is flat and locally
of finite presentation. Then there is a maximal open subscheme U ⊂ X such that
f |U : U → S is at-worst-nodal of relative dimension 1. Moreover, formation of U
commutes with arbitrary base change.

Proof. By Morphisms, Lemma 29.30.12 we find that there is such an open where f
is syntomic. Hence we may assume that f is a syntomic morphism. In particular f
is a Cohen-Macaulay morphism (Duality for Schemes, Lemmas 48.25.5 and 48.25.4).
Thus X is a disjoint union of open and closed subschemes on which f has given rel-
ative dimension, see Morphisms, Lemma 29.29.4. This decomposition is preserved
by arbitrary base change, see Morphisms, Lemma 29.29.2. Discarding all but one
piece we may assume f is syntomic of relative dimension 1. Let Sing(f) ⊂ X be
the closed subscheem defined by the first fitting ideal of ΩX/S . There is a maximal
open subscheme W ⊂ Sing(f) such that W → S is unramified and its formation

6But please email the maintainer of the Stacks project if you have a better suggestion.
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commutes with base change (Morphisms, Lemma 29.35.15). Since also formation
of Sing(f) commutes with base change (Divisors, Lemma 31.10.1), we see that

U = (X \ Sing(f)) ∪W
is the maximal open subscheme of X such that f |U : U → S is at-worst-nodal of
relative dimension 1 and that formation of U commutes with base change. □

Lemma 53.20.6.0C5C Let f : X → S be at-worst-nodal of relative dimension 1. If
Y → X is an étale morphism, then the composition g : Y → S is at-worst-nodal of
relative dimension 1.

Proof. Observe that g is flat and locally of finite presentation as a composition
of morphisms which are flat and locally of finite presentation (use Morphisms,
Lemmas 29.36.11, 29.36.12, 29.21.3, and 29.25.6). Thus it suffices to prove the
fibres have at-worst-nodal singularities. This follows from Lemma 53.19.13 (and
the fact that the composition of an étale morphism and a smooth morphism is
smooth by Morphisms, Lemmas 29.36.5 and 29.34.4). □

Lemma 53.20.7.0CD8 Let S′ → S be an étale morphism of schemes. Let f : X → S′

be at-worst-nodal of relative dimension 1. Then the composition g : X → S is
at-worst-nodal of relative dimension 1.

Proof. Observe that g is flat and locally of finite presentation as a composition of
morphisms which are flat and locally of finite presentation (use Morphisms, Lemmas
29.36.11, 29.36.12, 29.21.3, and 29.25.6). Thus it suffices to prove the fibres of g have
at-worst-nodal singularities. This follows from Lemma 53.19.14 and the analogous
result for smooth points. □

Lemma 53.20.8.0C5D Let f : X → S be a morphism of schemes. Let {Ui → X} be an
étale covering. The following are equivalent

(1) f is at-worst-nodal of relative dimension 1,
(2) each Ui → S is at-worst-nodal of relative dimension 1.

In other words, being at-worst-nodal of relative dimension 1 is étale local on the
source.

Proof. One direction we have seen in Lemma 53.20.6. For the other direction,
observe that being locally of finite presentation, flat, or to have relative dimension
1 is étale local on the source (Descent, Lemmas 35.28.1, 35.27.1, and 35.33.8).
Taking fibres we reduce to the case where S is the spectrum of a field. In this case
the result follows from Lemma 53.19.13 (and the fact that being smooth is étale
local on the source by Descent, Lemma 35.30.1). □

Lemma 53.20.9.0C5E Let f : X → S be a morphism of schemes. Let {Ui → S} be an
fpqc covering. The following are equivalent

(1) f is at-worst-nodal of relative dimension 1,
(2) each X ×S Ui → Ui is at-worst-nodal of relative dimension 1.

In other words, being at-worst-nodal of relative dimension 1 is fpqc local on the
target.

Proof. One direction we have seen in Lemma 53.20.4. For the other direction,
observe that being locally of finite presentation, flat, or to have relative dimension
1 is fpqc local on the target (Descent, Lemmas 35.23.11, 35.23.15, and Morphisms,
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Lemma 29.28.3). Taking fibres we reduce to the case where S is the spectrum of a
field. In this case the result follows from Lemma 53.19.12 (and the fact that being
smooth is fpqc local on the target by Descent, Lemma 35.23.27). □

Lemma 53.20.10.0C5F Let S = limSi be a limit of a directed system of schemes with
affine transition morphisms. Let 0 ∈ I and let f0 : X0 → Y0 be a morphism of
schemes over S0. Assume S0, X0, Y0 are quasi-compact and quasi-separated. Let
fi : Xi → Yi be the base change of f0 to Si and let f : X → Y be the base change
of f0 to S. If

(1) f is at-worst-nodal of relative dimension 1, and
(2) f0 is locally of finite presentation,

then there exists an i ≥ 0 such that fi is at-worst-nodal of relative dimension 1.

Proof. By Limits, Lemma 32.8.16 there exists an i such that fi is syntomic. Then
Xi =

∐
d≥0 Xi,d is a disjoint union of open and closed subschemes such that

Xi,d → Yi has relative dimension d, see Morphisms, Lemma 29.30.14. Because
of the behaviour of dimensions of fibres under base change given in Morphisms,
Lemma 29.28.3 we see that X → Xi maps into Xi,1. Then there exists an i′ ≥ i
such that Xi′ → Xi maps into Xi,1, see Limits, Lemma 32.4.10. Thus fi′ : Xi′ → Yi′

is syntomic of relative dimension 1 (by Morphisms, Lemma 29.28.3 again). Con-
sider the morphism Sing(fi′) → Yi′ . We know that the base change to Y is an
unramified morphism. Hence by Limits, Lemma 32.8.4 we see that after increasing
i′ the morphism Sing(fi′)→ Yi′ becomes unramified. This finishes the proof. □

Lemma 53.20.11.0CBX Let f : T → S be a morphism of schemes. Let t ∈ T with image
s ∈ S. Assume

(1) f is flat at t,
(2) OS,s is Noetherian,
(3) f is locally of finite type,
(4) t is a split node of the fibre Ts.

Then there exists an h ∈ m∧
s and an isomorphism
O∧
T,t
∼= O∧

S,s[[x, y]]/(xy − h)

of O∧
S,s-algebras.

Proof. We replace S by Spec(OS,s) and T by the base change to Spec(OS,s). Then
T is locally Noetherian and hence OT,t is Noetherian. Set A = O∧

S,s, m = mA, and
B = O∧

T,t. By More on Algebra, Lemma 15.43.8 we see that A → B is flat. Since
OT,t/msOT,t = OTs,t we see that B/mB = O∧

Ts,t
. By assumption (4) and Lemma

53.19.11 we conclude there exist u, v ∈ B/mB such that the map
(A/m)[[x, y]] −→ B/mB, x 7−→ u, x 7−→ v

is surjective with kernel (xy).
Assume we have n ≥ 1 and u, v ∈ B mapping to u, v such that

uv = h+ δ

for some h ∈ A and δ ∈ mnB. We claim that there exist u′, v′ ∈ B with u− u′, v−
v′ ∈ mnB such that

u′v′ = h′ + δ′
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for some h′ ∈ A and δ′ ∈ mn+1B. To see this, write δ =
∑
fibi with fi ∈ mn

and bi ∈ B. Then write bi = ai + ubi,1 + vbi,2 + δi with ai ∈ A, bi,1, bi,2 ∈ B and
δi ∈ mB. This is possible because the residue field of B agrees with the residue
field of A and the images of u and v in B/mB generate the maximal ideal. Then
we set

u′ = u−
∑

bi,2fi, v′ = v −
∑

bi,1fi

and we obtain
u′v′ = h+ δ−

∑
(bi,1u+ bi,2v)fi +

∑
cijfifj = h+

∑
aifi +

∑
fiδi +

∑
cijfifj

for some ci,j ∈ B. Thus we get a formula as above with h′ = h +
∑
aifi and

δ′ =
∑
fiδi +

∑
cijfifj .

Arguing by induction and starting with any lifts u1, v1 ∈ B of u, v the result of
the previous paragraph shows that we find a sequence of elements un, vn ∈ B and
hn ∈ A such that un − un+1 ∈ mnB, vn − vn+1 ∈ mnB, hn − hn+1 ∈ mn, and
such that unvn − hn ∈ mnB. Since A and B are complete we can set u∞ = lim un,
v∞ = lim vn, and h∞ = lim hn, and then we obtain u∞v∞ = h∞ in B. Thus we
have an A-algebra map

A[[x, y]]/(xy − h∞) −→ B

sending x to u∞ and v to v∞. This is a map of flat A-algebras which is an iso-
morphism after dividing by m. It is surjective modulo m and hence surjective by
completeness and Algebra, Lemma 10.96.1. Then we can apply Algebra, Lemma
10.99.1 to conclude it is an isomorphism. □

Consider the morphism of schemes
Spec(Z[u, v, a]/(uv − a)) −→ Spec(Z[a])

The next lemma shows that this morphism is a model for the étale local structure
of a nodal family of curves. If you know a proof of this lemma avoiding the use of
Artin approximation, then please email stacks.project@gmail.com.

Lemma 53.20.12.0CBY Let f : X → S be a morphism of schemes. Assume that f is
at-worst-nodal of relative dimension 1. Let x ∈ X be a point which is a singular
point of the fibre Xs. Then there exists a commutative diagram of schemes

X

��

U //oo

��

W //

��

Spec(Z[u, v, a]/(uv − a))

��
S Voo // Spec(Z[a])

with X ← U , S ← V , and U → W étale morphisms, and with the right hand
square cartesian, such that there exists a point u ∈ U mapping to x in X.

Proof. We first use absolute Noetherian approximation to reduce to the case of
schemes of finite type over Z. The question is local on X and S. Hence we may
assume that X and S are affine. Then we can write S = Spec(R) and write R
as a filtered colimit R = colimRi of finite type Z-algebras. Using Limits, Lemma
32.10.1 we can find an i and a morphism fi : Xi → Spec(Ri) whose base change
to S is f . After increasing i we may assume that fi is at-worst-nodal of relative
dimension 1, see Lemma 53.20.10. The image xi ∈ Xi of x will be a singular point of
its fibre, for example because the formation of Sing(f) commutes with base change
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(Divisors, Lemma 31.10.1). If we can prove the lemma for fi : Xi → Si and xi,
then the lemma follows for f : X → S by base change. Thus we reduce to the case
studied in the next paragraph.

Assume S is of finite type over Z. Let s ∈ S be the image of x. Recall that
κ(x) is a finite separable extension of κ(s), for example because Sing(f) → S is
unramified or because x is a node of the fibre Xs and we can apply Lemma 53.19.7.
Furthermore, let κ′/κ(x) be the degree 2 separable algebra associated to OXs,x in
Remark 53.19.8. By More on Morphisms, Lemma 37.35.2 we can choose an étale
neighbourhood (V, v)→ (S, s) such that the extension κ(v)/κ(s) realizes either the
extension κ(x)/κ(s) in case κ′ ∼= κ(x)×κ(x) or the extension κ′/κ(s) if κ′ is a field.
After replacing X by X ×S V and S by V we reduce to the situation described in
the next paragraph.

Assume S is of finite type over Z and x ∈ Xs is a split node, see Definition 53.19.10.
By Lemma 53.20.11 we see that there exists an OS,s-algebra isomorphism

O∧
X,x
∼= O∧

S,s[[s, t]]/(st− h)

for some h ∈ m∧
s ⊂ O∧

S,s. In other words, if we consider the homomorphism

σ : Z[a] −→ O∧
S,s

sending a to h, then there exists an OS,s-algebra isomorphism

O∧
X,x −→ O∧

Yσ,yσ

where
Yσ = Spec(Z[u, v, t]/(uv − a))×Spec(Z[a]),σ Spec(O∧

S,s)
and yσ is the point of Yσ lying over the closed point of Spec(O∧

S,s) and having coor-
dinates u, v equal to zero. Since OS,s is a G-ring by More on Algebra, Proposition
15.50.12 we may apply More on Morphisms, Lemma 37.39.3 to conclude. □

Lemma 53.20.13.0GKA Let f : X → S be a morphism of schemes. Assume
(1) f is proper,
(2) f is at-worst-nodal of relative dimension 1, and
(3) the geometric fibres of f are connected.

Then (a) f∗OX = OS and this holds after any base change, (b) R1f∗OX is a finite
locally free OS-module whose formation commutes with any base change, and (c)
Rqf∗OX = 0 for q ≥ 2.

Proof. Part (a) follows from Derived Categories of Schemes, Lemma 36.32.6. By
Derived Categories of Schemes, Lemma 36.32.5 locally on S we can write Rf∗OX =
OS ⊕ P where P is perfect of tor amplitude in [1,∞). Recall that formation
of Rf∗OX commutes with arbitrary base change (Derived Categories of Schemes,
Lemma 36.30.4). Thus for s ∈ S we have

Hi(P ⊗L
OS

κ(s)) = Hi(Xs,OXs) for i ≥ 1

This is zero unless i = 1 since Xs is a 1-dimensional Noetherian scheme, see Coho-
mology, Proposition 20.20.7. Then P = H1(P )[−1] and H1(P ) is finite locally free
for example by More on Algebra, Lemma 15.75.6. Since everything is compatible
with base change we conclude. □
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53.21. More vanishing results

0E39 Continuation of Section 53.6.
Lemma 53.21.1.0E3A In Situation 53.6.2 assume X is integral and has genus g. Let L
be an invertible OX -module. Let Z ⊂ X be a 0-dimensional closed subscheme with
ideal sheaf I ⊂ OX . If H1(X, IL) is nonzero, then

deg(L) ≤ 2g − 2 + deg(Z)
with strict inequality unless IL ∼= ωX .
Proof. Any curve, e.g. X, is Cohen-Macaulay. If H1(X, IL) is nonzero, then there
is a nonzero map IL → ωX , see Lemma 53.4.2. Since IL is torsion free, this map is
injective. Since a field is Gorenstein and X is reduced, we find that the Gorenstein
locus U ⊂ X of X is nonempty, see Duality for Schemes, Lemma 48.24.4. This
lemma also tells us that ωX |U is invertible. In this way we see we have a short
exact sequence

0→ IL → ωX → Q→ 0
where the support of Q is zero dimensional. Hence we have

0 ≤ dim Γ(X,Q)
= χ(Q)
= χ(ωX)− χ(IL)
= χ(ωX)− deg(L)− χ(I)
= 2g − 2− deg(L) + deg(Z)

by Lemmas 53.5.1 and 53.5.2, by (53.8.1.1), and by Varieties, Lemmas 33.33.3 and
33.44.5. We have also used that deg(Z) = dimk Γ(Z,OZ) = χ(OZ) and the short
exact sequence 0→ I → OX → OZ → 0. The lemma follows. □

Lemma 53.21.2.0E3B [Lee05, Lemma 2]In Situation 53.6.2 assume X is integral and has genus g. Let L
be an invertible OX -module. Let Z ⊂ X be a 0-dimensional closed subscheme with
ideal sheaf I ⊂ OX . If deg(L) > 2g − 2 + deg(Z), then H1(X, IL) = 0 and one of
the following possibilities occurs

(1) H0(X, IL) ̸= 0, or
(2) g = 0 and deg(L) = deg(Z)− 1.

In case (2) if Z = ∅, then X ∼= P1
k and L corresponds to OP1(−1).

Proof. The vanishing of H1(X, IL) follows from Lemma 53.21.1. If H0(X, IL) = 0,
then χ(IL) = 0. From the short exact sequence 0 → IL → L → OZ → 0 we
conclude deg(L) = g − 1 + deg(Z). Thus g − 1 + deg(Z) > 2g − 2 + deg(Z) which
implies g = 0 hence (2) holds. If Z = ∅ in case (2), then L−1 is an invertible sheaf
of degree 1. This implies there is an isomorphism X → P1

k and L−1 is the pullback
of OP1(1) by Lemma 53.10.2. □

Lemma 53.21.3.0E3C [Lee05, Lemma 3]In Situation 53.6.2 assume X is integral and has genus g. Let L
be an invertible OX -module. If deg(L) ≥ 2g, then L is globally generated.
Proof. Let Z ⊂ X be the closed subscheme cut out by the global sections of L. By
Lemma 53.21.2 we see that Z ̸= X. Let I ⊂ OX be the ideal sheaf cutting out Z.
Consider the short exact sequence

0→ IL → L → OZ → 0
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If Z ̸= ∅, then H1(X, IL) is nonzero as follows from the long exact sequence of
cohomology. By Lemma 53.4.2 this gives a nonzero and hence injective map

IL −→ ωX

In particular, we find an injective map H0(X,L) = H0(X, IL)→ H0(X,ωX). This
is impossible as

dimkH
0(X,L) = dimkH

1(X,L) + deg(L) + 1− g ≥ g + 1
and dimH0(X,ωX) = g by (53.8.1.1). □

Lemma 53.21.4.0E3D In Situation 53.6.2 assume X is integral and has genus g. Let L
be an invertible OX -module. Let Z ⊂ X be a nonempty 0-dimensional closed sub-
scheme. If deg(L) ≥ 2g−1+deg(Z), then L is globally generated and H0(X,L)→
H0(X,L|Z) is surjective.

Proof. Global generation by Lemma 53.21.3. If I ⊂ OX is the ideal sheaf of Z,
then H1(X, IL) = 0 by Lemma 53.21.1. Hence surjectivity. □

Lemma 53.21.5.0H2V In Situation 53.6.2, assume X is geometrically integral over k and
has genus g. Let L be an invertible OX -module. If deg(L) ≥ 2g+ 1, then L is very
ample.

Proof. By Lemma 53.21.3, L is globally generated, and so it determines a morphism
f : X → Pn

k where n = h0(X,L)− 1. To show that L is very ample means to show
that f is a closed immersion. It suffices to check that the base change of f to
an algebraic closure k of k is a closed immersion (Descent, Lemma 35.23.19). So
we may assume that k is algebraically closed; X remains integral, by assumption.
Lemma 53.21.4 gives that for every 0-dimensional closed subscheme Z ⊂ X of
degree 2, the restriction map H0(X,L) → H0(X,L|Z) is surjective. By Varieties,
Lemma 33.23.2, L is very ample. □

Lemma 53.21.6.0E3E Weak version of
[Lee05, Lemma 4]

Let k be a field. Let X be a proper scheme over k which is reduced,
connected, and of dimension 1. Let L be an invertible OX -module. Let Z ⊂ X be a
0-dimensional closed subscheme with ideal sheaf I ⊂ OX . If H1(X, IL) ̸= 0, then
there exists a reduced connected closed subscheme Y ⊂ X of dimension 1 such that

deg(L|Y ) ≤ −2χ(Y,OY ) + deg(Z ∩ Y )
where Z ∩ Y is the scheme theoretic intersection.

Proof. If H1(X, IL) is nonzero, then there is a nonzero map φ : IL → ωX , see
Lemma 53.4.2. Let Y ⊂ X be the union of the irreducible components C of X such
that φ is nonzero in the generic point of C. Then Y is a reduced closed subscheme.
Let J ⊂ OX be the ideal sheaf of Y . Since J IL has no embedded associated
points (as a submodule of L) and as φ is zero in the generic points of the support
of J (by choice of Y and as X is reduced), we find that φ factors as

IL → IL/J IL → ωX

We can view IL/J IL as the pushforward of a coherent sheaf on Y which by
abuse of notation we indicate with the same symbol. Since ωY = Hom(OY , ωX) by
Lemma 53.4.5 we find a map

IL/J IL → ωY
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of OY -modules which is injective in the generic points of Y . Let I ′ ⊂ OY be the
ideal sheaf of Z ∩ Y . There is a map IL/J IL → I ′L|Y whose kernel is supported
in closed points. Since ωY is a Cohen-Macaulay module, the map above factors
through an injective map I ′L|Y → ωY . We see that we get an exact sequence

0→ I ′L|Y → ωY → Q→ 0
of coherent sheaves on Y where Q is supported in dimension 0 (this uses that ωY
is an invertible module in the generic points of Y ). We conclude that
0 ≤ dim Γ(Y,Q) = χ(Q) = χ(ωY )− χ(I ′L) = −2χ(OY )− deg(L|Y ) + deg(Z ∩ Y )
by Lemma 53.5.1 and Varieties, Lemma 33.33.3. If Y is connected, then this proves
the lemma. If not, then we repeat the last part of the argument for one of the
connected components of Y . □

Lemma 53.21.7.0E3F Let k be a field. Let X be a proper scheme over k which is reduced,
connected, and of dimension 1. Let L be an invertible OX -module. Assume that
for every reduced connected closed subscheme Y ⊂ X of dimension 1 we have

deg(L|Y ) ≥ 2 dimkH
1(Y,OY )

Then L is globally generated.

Proof. By induction on the number of irreducible components of X. If X is irre-
ducible, then the lemma holds by Lemma 53.21.3 applied to X viewed as a scheme
over the field k′ = H0(X,OX). Assume X is not irreducible. Before we continue,
if k is finite, then we replace k by a purely transcendental extension K. This is
allowed by Varieties, Lemmas 33.22.1, 33.44.2, 33.6.7, and 33.8.4, Cohomology of
Schemes, Lemma 30.5.2, Lemma 53.4.4 and the elementary fact that K is geomet-
rically integral over k.
Assume that L is not globally generated to get a contradiction. Then we may
choose a coherent ideal sheaf I ⊂ OX such that H0(X, IL) = H0(X,L) and such
that OX/I is nonzero with support of dimension 0. For example, take I the ideal
sheaf of any closed point in the common vanishing locus of the global sections of
L. We consider the short exact sequence

0→ IL → L → L/IL → 0
Since the support of L/IL has dimension 0 we see that L/IL is generated by global
sections (Varieties, Lemma 33.33.3). From the short exact sequence, and the fact
that H0(X, IL) = H0(X,L) we get an injection H0(X,L/IL)→ H1(X, IL).
Recall that the k-vector space H1(X, IL) is dual to Hom(IL, ωX). Choose φ :
IL → ωX . By Lemma 53.21.6 we have H1(X,L) = 0. Hence

dimkH
0(X, IL) = dimkH

0(X,L) = deg(L)+χ(OX) > dimkH
1(X,OX) = dimkH

0(X,ωX)
We conclude that φ is not injective on global sections, in particular φ is not injective.
For every generic point η ∈ X of an irreducible component of X denote Vη ⊂
Hom(IL, ωX) the k-subvector space consisting of those φ which are zero at η.
Since every associated point of IL is a generic point of X, the above shows that
Hom(IL, ωX) =

⋃
Vη. As X has finitely many generic points and k is infinite,

we conclude Hom(IL, ωX) = Vη for some η. Let η ∈ C ⊂ X be the corresponding
irreducible component. Let Y ⊂ X be the union of the other irreducible components
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ofX. Then Y is a nonempty reduced closed subscheme not equal toX. Let J ⊂ OX
be the ideal sheaf of Y . Please keep in mind that the support of J is C.
Let φ : IL → ωX be arbitrary. Since J IL has no embedded associated points (as
a submodule of L) and as φ is zero in the generic point η of the support of J , we
find that φ factors as

IL → IL/J IL → ωX

We can view IL/J IL as the pushforward of a coherent sheaf on Y which by
abuse of notation we indicate with the same symbol. Since ωY = Hom(OY , ωX) by
Lemma 53.4.5 we find a factorization

IL → IL/J IL φ′

−→ ωY → ωX

of φ. Let I ′ ⊂ OY be the image of I ⊂ OX . There is a surjective map IL/J IL →
I ′L|Y whose kernel is supported in closed points. Since ωY is a Cohen-Macaulay
module on Y , the map φ′ factors through a map φ′′ : I ′L|Y → ωY . Thus we have
commutative diagrams

0 // IL //

��

L //

��

L/IL //

��

0

0 // I ′L|Y // L|Y // L|Y /I ′L|Y // 0

and

IL
φ
//

��

ωX

I ′L|Y
φ′′

// ωY

OO

Now we can finish the proof as follows: Since for every φ we have a φ′′ and since
ωX ∈ Coh(OX) represents the functor F 7→ Homk(H1(X,F), k), we find that
H1(X, IL) → H1(Y, I ′L|Y ) is injective. Since the boundary H0(X,L/IL) →
H1(X, IL) is injective, we conclude the composition

H0(X,L/IL)→ H0(X,L|Y /I ′L|Y )→ H1(X, I ′L|Y )
is injective. Since L/IL → L|Y /I ′L|Y is a surjective map of coherent modules
whose supports have dimension 0, we see that the first map H0(X,L/IL) →
H0(X,L|Y /I ′L|Y ) is surjective (and hence bijective). But by induction we have
that L|Y is globally generated (if Y is disconnected this still works of course) and
hence the boundary map

H0(X,L|Y /I ′L|Y )→ H1(X, I ′L|Y )
cannot be injective. This contradiction finishes the proof. □

53.22. Contracting rational tails

0E3G In this section we discuss the simplest possible case of contracting a scheme to
improve positivity properties of its canonical sheaf.

Example 53.22.1 (Contracting a rational tail).0E3H Let k be a field. Let X be a proper
scheme over k having dimension 1 and H0(X,OX) = k. Assume the singularities
of X are at-worst-nodal. A rational tail will be an irreducible component C ⊂ X
(viewed as an integral closed subscheme) with the following properties

(1) X ′ ̸= ∅ where X ′ ⊂ X is the scheme theoretic closure of X \ C,
(2) the scheme theoretic intersection C ∩X ′ is a single reduced point x,
(3) H0(C,OC) maps isomorphically to the residue field of x, and
(4) C has genus zero.
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Since there are at least two irreducible components of X passing through x, we
conclude that x is a node. Set k′ = H0(C,OC) = κ(x). Then k′/k is a finite
separable extension of fields (Lemma 53.19.7). There is a canonical morphism

c : X −→ X ′

inducing the identity on X ′ and mapping C to x ∈ X ′ via the canonical morphism
C → Spec(k′) = x. This follows from Morphisms, Lemma 29.4.6 since X is the
scheme theoretic union of C and X ′ (as X is reduced). Moreover, we claim that

c∗OX = OX′ and R1c∗OX = 0
To see this, denote iC : C → X, iX′ : X ′ → X and ix : x→ X the embeddings and
use the exact sequence

0→ OX → iC,∗OC ⊕ iX′,∗OX′ → ix,∗κ(x)→ 0
of Morphisms, Lemma 29.4.6. Looking at the long exact sequence of higher direct
images, it follows that it suffices to show H0(C,OC) = k′ and H1(C,OC) = 0
which follows from the assumptions. Observe that X ′ is also a proper scheme
over k, of dimension 1 whose singularities are at-worst-nodal (Lemma 53.19.17) has
H0(X ′,OX′) = k, and X ′ has the same genus as X. We will say c : X → X ′ is the
contraction of a rational tail.

Lemma 53.22.2.0E63 Let k be a field. LetX be a proper scheme over k having dimension
1 and H0(X,OX) = k. Assume the singularities of X are at-worst-nodal. Let
C ⊂ X be a rational tail (Example 53.22.1). Then deg(ωX |C) < 0.

Proof. Let X ′ ⊂ X be as in the example. Then we have a short exact sequence
0→ ωC → ωX |C → OC∩X′ → 0

See Lemmas 53.4.6, 53.19.16, and 53.19.17. With k′ as in the example we see that
deg(ωC) = −2[k′ : k] as C ∼= P1

k′ by Proposition 53.10.4 and deg(C ∩X ′) = [k′ : k].
Hence deg(ωX |C) = −[k′ : k] which is negative. □

Lemma 53.22.3.0E3I Let k be a field. LetX be a proper scheme over k having dimension
1 and H0(X,OX) = k. Assume the singularities of X are at-worst-nodal. Let
C ⊂ X be a rational tail (Example 53.22.1). For any field extension K/k the base
change CK ⊂ XK is a finite disjoint union of rational tails.

Proof. Let x ∈ C and k′ = κ(x) be as in the example. Observe that C ∼= P1
k′

by Proposition 53.10.4. Since k′/k is finite separable, we see that k′ ⊗k K =
K ′

1× . . .×K ′
n is a finite product of finite separable extensions K ′

i/K. Set Ci = P1
K′
i

and denote xi ∈ Ci the inverse image of x. Then CK =
∐
Ci and X ′

K ∩Ci = xi as
desired. □

Lemma 53.22.4.0E3J Let k be a field. LetX be a proper scheme over k having dimension
1 and H0(X,OX) = k. Assume the singularities of X are at-worst-nodal. If X does
not have a rational tail (Example 53.22.1), then for every reduced connected closed
subscheme Y ⊂ X, Y ̸= X of dimension 1 we have deg(ωX |Y ) ≥ dimkH

1(Y,OY ).

Proof. Let Y ⊂ X be as in the statement. Then k′ = H0(Y,OY ) is a field and a
finite extension of k and [k′ : k] divides all numerical invariants below associated to
Y and coherent sheaves on Y , see Varieties, Lemma 33.44.10. Let Z ⊂ X be as in
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Lemma 53.4.6. We will use the results of this lemma and of Lemmas 53.19.16 and
53.19.17 without further mention. Then we get a short exact sequence

0→ ωY → ωX |Y → OY ∩Z → 0
See Lemma 53.4.6. We conclude that

deg(ωX |Y ) = deg(Y ∩ Z) + deg(ωY ) = deg(Y ∩ Z)− 2χ(Y,OY )
Hence, if the lemma is false, then

2[k′ : k] > deg(Y ∩ Z) + dimkH
1(Y,OY )

Since Y ∩ Z is nonempty and by the divisiblity mentioned above, this can happen
only if Y ∩Z is a single k′-rational point of the smooth locus of Y and H1(Y,OY ) =
0. If Y is irreducible, then this implies Y is a rational tail. If Y is reducible, then
since deg(ωX |Y ) = −[k′ : k] we find there is some irreducible component C of Y
such that deg(ωX |C) < 0, see Varieties, Lemma 33.44.6. Then the analysis above
applied to C gives that C is a rational tail. □

Lemma 53.22.5.0E3K Let k be a field. LetX be a proper scheme over k having dimension
1 and H0(X,OX) = k. Assume the singularities of X are at-worst-nodal. Assume
X does not have a rational tail (Example 53.22.1). If

(1) the genus of X is 0, then X is isomorphic to an irreducible plane conic
and ω⊗−1

X is very ample,
(2) the genus of X is 1, then ωX ∼= OX ,
(3) the genus of X is ≥ 2, then ω⊗m

X is globally generated for m ≥ 2.

Proof. By Lemma 53.19.16 we find that X is Gorenstein, i.e., ωX is an invertible
OX -module.
If the genus ofX is zero, then deg(ωX) < 0, hence ifX has more than one irreducible
component, we get a contradiction with Lemma 53.22.4. In the irreducible case we
see that X is isomorphic to an irreducible plane conic and ω⊗−1

X is very ample by
Lemma 53.10.3.
If the genus of X is 1, then ωX has a global section and deg(ωX |C) = 0 for all
irreducible components. Namely, deg(ωX |C) ≥ 0 for all irreducible components C
by Lemma 53.22.4, the sum of these numbers is 0 by Lemma 53.8.3, and we can
apply Varieties, Lemma 33.44.6. Then ωX ∼= OX by Varieties, Lemma 33.44.13.
Assume the genus g of X is greater than or equal to 2. If X is irreducible, then
we are done by Lemma 53.21.3. Assume X reducible. By Lemma 53.22.4 the
inequalities of Lemma 53.21.7 hold for every Y ⊂ X as in the statement, except for
Y = X. Analyzing the proof of Lemma 53.21.7 we see that (in the reducible case)
the only inequality used for Y = X are

deg(ω⊗m
X ) > −2χ(OX) and deg(ω⊗m

X ) + χ(OX) > dimkH
1(X,OX)

Since these both hold under the assumption g ≥ 2 and m ≥ 2 we win. □

Lemma 53.22.6.0E3L Let k be a field. Let X be a proper scheme over k of dimension 1
with H0(X,OX) = k. Assume the singularities of X are at-worst-nodal. Consider
a sequence

X = X0 → X1 → . . .→ Xn = X ′

of contractions of rational tails (Example 53.22.1) until none are left. Then

https://stacks.math.columbia.edu/tag/0E3K
https://stacks.math.columbia.edu/tag/0E3L


53.23. CONTRACTING RATIONAL BRIDGES 4437

(1) if the genus of X is 0, then X ′ is an irreducible plane conic,
(2) if the genus of X is 1, then ωX′ ∼= OX ,
(3) if the genus of X is > 1, then ω⊗m

X′ is globally generated for m ≥ 2.
If the genus of X is ≥ 1, then the morphism X → X ′ is independent of choices and
formation of this morphism commutes with base field extensions.

Proof. We proceed by contracting rational tails until there are none left. Then we
see that (1), (2), (3) hold by Lemma 53.22.5.
Uniqueness. To see that f : X → X ′ is independent of the choices made, it
suffices to show: any rational tail C ⊂ X is mapped to a point by X → X ′; some
details omitted. If not, then we can find a section s ∈ Γ(X ′, ω⊗2

X′ ) which does not
vanish in the generic point of the irreducible component f(C). Since in each of the
contractions Xi → Xi+1 we have a section Xi+1 → Xi, there is a section X ′ → X
of f . Then we have an exact sequence

0→ ωX′ → ωX → ωX |X′′ → 0
where X ′′ ⊂ X is the union of the irreducible components contracted by f . See
Lemma 53.4.6. Thus we get a map ω⊗2

X′ → ω⊗2
X and we can take the image of s to get

a section of ω⊗2
X not vanishing in the generic point of C. This is a contradiction with

the fact that the restriction of ωX to a rational tail has negative degree (Lemma
53.22.2).
The statement on base field extensions follows from Lemma 53.22.3. Some details
omitted. □

53.23. Contracting rational bridges

0E7M In this section we discuss the next simplest possible case (after the case discussed
in Section 53.22) of contracting a scheme to improve positivity properties of its
canonical sheaf.

Example 53.23.1 (Contracting a rational bridge).0E3M Let k be a field. Let X be a
proper scheme over k having dimension 1 and H0(X,OX) = k. Assume the singu-
larities of X are at-worst-nodal. A rational bridge will be an irreducible component
C ⊂ X (viewed as an integral closed subscheme) with the following properties

(1) X ′ ̸= ∅ where X ′ ⊂ X is the scheme theoretic closure of X \ C,
(2) the scheme theoretic interesection C ∩ X ′ has degree 2 over H0(C,OC),

and
(3) C has genus zero.

Set k′ = H0(C,OC) and k′′ = H0(C ∩ X ′,OC∩X′). Then k′ is a field (Varieties,
Lemma 33.9.3) and dimk′(k′′) = 2. Since there are at least two irreducible compo-
nents of X passing through each point of C∩X ′, we conclude these points are nodes
of X and smooth points on both C and X ′ (Lemma 53.19.17). Hence k′/k is a finite
separable extension of fields and k′′/k′ is either a degree 2 separable extension of
fields or k′′ = k′ × k′ (Lemma 53.19.7). By Section 53.14 there exists a pushout

C ∩X ′ //

��

X ′

a

��
Spec(k′) // Y
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with many good properties (all of which we will use below without futher mention).
Let y ∈ Y be the image of Spec(k′)→ Y . Then

O∧
Y,y
∼= k′[[s, t]]/(st) or O∧

Y,y
∼= {f ∈ k′′[[s]] : f(0) ∈ k′}

depending on whether C ∩X ′ has 2 or 1 points. This follows from Lemma 53.14.1
and the fact that OX′,p

∼= κ(p)[[t]] for p ∈ C ∩ X ′ by More on Algebra, Lemma
15.38.4. Thus we see that y ∈ Y is a node, see Lemmas 53.19.7 and 53.19.4 and
in particular the discussion of Case II in the proof of (2) ⇒ (1) in Lemma 53.19.4.
Thus the singularities of Y are at-worst-nodal.

We can extend the commutative diagram above to a diagram

C ∩X ′ //

��

X ′

a

��

// X

c
zz

C

{{

oo

Spec(k′) // Y Spec(k′)oo

where the two lower horizontal arrows are the same. Namely, X is the scheme
theoretic union of X ′ and C (thus a pushout by Morphisms, Lemma 29.4.6) and
the morphisms C → Y and X ′ → Y agree on C ∩X ′. Finally, we claim that

c∗OX = OY and R1c∗OX = 0

To see this use the exact sequence

0→ OX → OC ⊕OX′ → OC∩X′ → 0

of Morphisms, Lemma 29.4.6. The long exact sequence of higher direct images is

0→ c∗OX → c∗OC ⊕ c∗OX′ → c∗OC∩X′ → R1c∗OX → R1c∗OC ⊕R1c∗OX′

Since c|X′ = a is affine we see that R1c∗OX′ = 0. Since c|C factors as C →
Spec(k′) → X and since C has genus zero, we find that R1c∗OC = 0. Since
OX′ → OC∩X′ is surjective and since c|X′ is affine, we see that c∗OX′ → c∗OC∩X′

is surjective. This proves that R1c∗OX = 0. Finally, we have OY = c∗OX by the
exact sequence and the description of the structure sheaf of the pushout in More
on Morphisms, Proposition 37.67.3.

All of this means that Y is also a proper scheme over k having dimension 1 and
H0(Y,OY ) = k whose singularities are at-worst-nodal (Lemma 53.19.17) and that
Y has the same genus as X. We will say c : X → Y is the contraction of a rational
bridge.

Lemma 53.23.2.0E64 Let k be a field. LetX be a proper scheme over k having dimension
1 and H0(X,OX) = k. Assume the singularities of X are at-worst-nodal. Let
C ⊂ X be a rational bridge (Example 53.23.1). Then deg(ωX |C) = 0.

Proof. Let X ′ ⊂ X be as in the example. Then we have a short exact sequence

0→ ωC → ωX |C → OC∩X′ → 0

See Lemmas 53.4.6, 53.19.16, and 53.19.17. With k′′/k′/k as in the example we see
that deg(ωC) = −2[k′ : k] as C has genus 0 (Lemma 53.5.2) and deg(C ∩ X ′) =
[k′′ : k] = 2[k′ : k]. Hence deg(ωX |C) = 0. □
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Lemma 53.23.3.0E65 Let k be a field. LetX be a proper scheme over k having dimension
1 and H0(X,OX) = k. Assume the singularities of X are at-worst-nodal. Let
C ⊂ X be a rational bridge (Example 53.23.1). For any field extension K/k the
base change CK ⊂ XK is a finite disjoint union of rational bridges.

Proof. Let k′′/k′/k be as in the example. Since k′/k is finite separable, we see that
k′⊗kK = K ′

1×. . .×K ′
n is a finite product of finite separable extensions K ′

i/K. The
corresponding product decomposition k′′ ⊗k K =

∏
K ′′
i gives degree 2 separable

algebra extensions K ′′
i /K

′
i. Set Ci = CK′

i
. Then CK =

∐
Ci and therefore each Ci

has genus 0 (viewed as a curve over K ′
i), because H1(CK ,OCK ) = 0 by flat base

change. Finally, we have X ′
K ∩Ci = Spec(K ′′

i ) has degree 2 over K ′
i as desired. □

Lemma 53.23.4.0E3N Let c : X → Y be the contraction of a rational bridge (Example
53.23.1). Then c∗ωY ∼= ωX .

Proof. You can prove this by direct computation, but we prefer to use the character-
ization of ωX as the coherent OX -module which represents the functor Coh(OX)→
Sets, F 7→ Homk(H1(X,F), k) = H1(X,F)∨, see Lemma 53.4.2 or Duality for
Schemes, Lemma 48.22.5.
To be precise, denote CY the category whose objects are invertible OY -modules
and whose maps are OY -module homomorphisms. Denote CX the category whose
objects are invertible OX -modules L with L|C ∼= OC and whose maps are OY -
module homomorphisms. We claim that the functor

c∗ : CY → CX
is an equivalence of categories. Namely, by More on Morphisms, Lemma 37.72.8 it
is essentially surjective. Then the projection formula (Cohomology, Lemma 20.54.2)
shows c∗c

∗N = N and hence c∗ is an equivalence with quasi-inverse given by c∗.
We claim ωX is an object of CX . Namely, we have a short exact sequence

0→ ωC → ωX |C → OC∩X′ → 0
See Lemma 53.4.6. Taking degrees we find deg(ωX |C) = 0 (small detail omitted).
Thus ωX |C is trivial by Lemma 53.10.1 and ωX is an object of CX .
Since R1c∗OX = 0 the projection formula shows that R1c∗c

∗N = 0 for N ∈
Ob(CY ). Therefore the Leray spectral sequence (Cohomology, Lemma 20.13.6) the
diagram

CY
c∗

//

H1(Y,−)∨ ""

CX

H1(X,−)∨||
Sets

of categories and functors is commutative. Since ωY ∈ Ob(CY ) represents the
south-east arrow and ωX ∈ Ob(CX) represents the south-east arrow we conclude
by the Yoneda lemma (Categories, Lemma 4.3.5). □

Lemma 53.23.5.0E3P Let k be a field. LetX be a proper scheme over k having dimension
1 and H0(X,OX) = k. Assume

(1) the singularities of X are at-worst-nodal,
(2) X does not have a rational tail (Example 53.22.1),
(3) X does not have a rational bridge (Example 53.23.1),
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(4) the genus g of X is ≥ 2.
Then ωX is ample.

Proof. It suffices to show that deg(ωX |C) > 0 for every irreducible component C
of X, see Varieties, Lemma 33.44.15. If X = C is irreducible, this follows from
g ≥ 2 and Lemma 53.8.3. Otherwise, set k′ = H0(C,OC). This is a field and a
finite extension of k and [k′ : k] divides all numerical invariants below associated to
C and coherent sheaves on C, see Varieties, Lemma 33.44.10. Let X ′ ⊂ X be the
closure of X \ C as in Lemma 53.4.6. We will use the results of this lemma and of
Lemmas 53.19.16 and 53.19.17 without further mention. Then we get a short exact
sequence

0→ ωC → ωX |C → OC∩X′ → 0
See Lemma 53.4.6. We conclude that

deg(ωX |C) = deg(C ∩X ′) + deg(ωC) = deg(C ∩X ′)− 2χ(C,OC)

Hence, if the lemma is false, then

2[k′ : k] ≥ deg(C ∩X ′) + 2 dimkH
1(C,OC)

Since C ∩X ′ is nonempty and by the divisiblity mentioned above, this can happen
only if either

(a) C ∩X ′ is a single k′-rational point of C and H1(C,OC) = 0, and
(b) C ∩X ′ has degree 2 over k′ and H1(C,OC) = 0.

The first possibility means C is a rational tail and the second that C is a rational
bridge. Since both are excluded the proof is complete. □

Lemma 53.23.6.0E3Q Let k be a field. Let X be a proper scheme over k of dimension
1 with H0(X,OX) = k having genus g ≥ 2. Assume the singularities of X are
at-worst-nodal and that X has no rational tails. Consider a sequence

X = X0 → X1 → . . .→ Xn = X ′

of contractions of rational bridges (Example 53.23.1) until none are left. Then ωX′

ample. The morphism X → X ′ is independent of choices and formation of this
morphism commutes with base field extensions.

Proof. We proceed by contracting rational bridges until there are none left. Then
ωX′ is ample by Lemma 53.23.5.

Denote f : X → X ′ the composition. By Lemma 53.23.4 and induction we see
that f∗ωX′ = ωX . We have f∗OX = OX′ because this is true for contraction of a
rational bridge. Thus the projection formula says that f∗f

∗L = L for all invertible
OX′ -modules L. Hence

Γ(X ′, ω⊗m
X′ ) = Γ(X,ω⊗m

X )
for all m. Since X ′ is the Proj of the direct sum of these by Morphisms, Lemma
29.43.17 we conclude that the morphism X → X ′ is completely canonical.

Let K/k be an extension of fields, then ωXK is the pullback of ωX (Lemma 53.4.4)
and we have Γ(X,ω⊗m

X )⊗kK is equal to Γ(XK , ω
⊗m
XK

) by Cohomology of Schemes,
Lemma 30.5.2. Thus formation of f : X → X ′ commutes with base change by K/k
by the arguments given above. Some details omitted. □
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53.24. Contracting to a stable curve

0E7N In this section we combine the contraction morphisms found in Sections 53.22 and
53.23. Namely, suppose that k is a field and let X be a proper scheme over k of
dimension 1 with H0(X,OX) = k having genus g ≥ 2. Assume the singularities
of X are at-worst-nodal. Composing the morphism of Lemma 53.22.6 with the
morphism of Lemma 53.23.6 we get a morphism

c : X −→ Y

such that Y also is a proper scheme over k of dimension 1 whose singularities are
at worst nodal, with k = H0(Y,OY ) and having genus g, such that OY = c∗OX
and R1c∗OX = 0, and such that ωY is ample on Y . Lemma 53.24.2 shows these
conditions in fact characterize this morphism.
Lemma 53.24.1.0E7P Let k be a field. Let c : X → Y be a morphism of proper schemes
over k Assume

(1) OY = c∗OX and R1c∗OX = 0,
(2) X and Y are reduced, Gorenstein, and have dimension 1,
(3) ∃ m ∈ Z with H1(X,ω⊗m

X ) = 0 and ω⊗m
X generated by global sections.

Then c∗ωY ∼= ωX .
Proof. The fibres of c are geometrically connected by More on Morphisms, Theorem
37.53.4. In particular c is surjective. There are finitely many closed points y =
y1, . . . , yr of Y where Xy has dimension 1 and over Y \{y1, . . . , yr} the morphism c
is an isomorphism. Some details omitted; hint: outside of {y1, . . . , yr} the morphism
c is finite, see Cohomology of Schemes, Lemma 30.21.1.
Let us carefully construct a map b : c∗ωY → ωX . Denote f : X → Spec(k) and
g : Y → Spec(k) the structure morphisms. We have f !k = ωX [1] and g!k = ωY [1],
see Lemma 53.4.1 and its proof. Then f ! = c! ◦ g! and hence c!ωY = ωX . Thus
there is a functorial isomorphism

HomD(OX)(F , ωX) −→ HomD(OY )(Rc∗F , ωY )
for coherent OX -modules F by definition of c!7. This isomorphism is induced by
a trace map t : Rc∗ωX → ωY (the counit of the adjunction). By the projection
formula (Cohomology, Lemma 20.54.2) the canonical map a : ωY → Rc∗c

∗ωY is an
isomorphism. Combining the above we see there is a canonical map b : c∗ωY → ωX
such that

t ◦Rc∗(b) = a−1

In particular, if we restrict b to c−1(Y \ {y1, . . . , yr}) then it is an isomorphism
(because it is a map between invertible modules whose composition with another
gives the isomorphism a−1).
Choose m ∈ Z as in (3) consider the map

b⊗m : Γ(Y, ω⊗m
Y ) −→ Γ(X,ω⊗m

X )
This map is injective because Y is reduced and by the last property of b men-
tioned in its construction. By Riemann-Roch (Lemma 53.5.2) we have χ(X,ω⊗m

X ) =
χ(Y, ω⊗m

Y ). Thus
dimk Γ(Y, ω⊗m

Y ) ≥ dimk Γ(X,ω⊗m
X ) = χ(X,ω⊗m

X )

7As the restriction of the right adjoint of Duality for Schemes, Lemma 48.3.1 to D+
QCoh(OY ).
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and we conclude b⊗m induces an isomorphism on global sections. So b⊗m : c∗ω⊗m
Y →

ω⊗m
X is surjective as generators of ω⊗m

X are in the image. Hence b⊗m is an isomor-
phism. Thus b is an isomorphism. □

Lemma 53.24.2.0E7Q Let k be a field. Let X be a proper scheme over k of dimension
1 with H0(X,OX) = k having genus g ≥ 2. Assume the singularities of X are
at-worst-nodal. There is a unique morphism (up to unique isomorphism)

c : X −→ Y

of schemes over k having the following properties:
(1) Y is proper over k, dim(Y ) = 1, the singularities of Y are at-worst-nodal,
(2) OY = c∗OX and R1c∗OX = 0, and
(3) ωY is ample on Y .

Proof. Existence: A morphism with all the properties listed exists by combining
Lemmas 53.22.6 and 53.23.6 as discussed in the introduction to this section. More-
over, we see that it can be written as a composition

X → X1 → X2 . . .→ Xn → Xn+1 → . . .→ Xn+n′

where the first n morphisms are contractions of rational tails and the last n′ mor-
phisms are contractions of rational bridges. Note that property (2) holds for each
contraction of a rational tail (Example 53.22.1) and contraction of a rational bridge
(Example 53.23.1). It is easy to see that this property is inherited by compositions
of morphisms.
Uniqueness: Let c : X → Y be a morphism satisfying conditions (1), (2), and (3).
We will show that there is a unique isomorphism Xn+n′ → Y compatible with the
morphisms X → Xn+n′ and c.
Before we start the proof we make some observations about c. We first observe
that the fibres of c are geometrically connected by More on Morphisms, Theorem
37.53.4. In particular c is surjective. For a closed point y ∈ Y the fibre Xy satisfies

H1(Xy,OXy ) = 0 and H0(Xy,OXy ) = κ(y)
The first equality by More on Morphisms, Lemma 37.72.1 and the second by More
on Morphisms, Lemma 37.72.4. Thus either Xy = x where x is the unique point
of X mapping to y and has the same residue field as y, or Xy is a 1-dimensional
proper scheme over κ(y). Observe that in the second case Xy is Cohen-Macaulay
(Lemma 53.6.1). However, since X is reduced, we see that Xy must be reduced at
all of its generic points (details omitted), and hence Xy is reduced by Properties,
Lemma 28.12.4. It follows that the singularities of Xy are at-worst-nodal (Lemma
53.19.17). Note that the genus of Xy is zero (see above). Finally, there are only a
finite number of points y where the fibre Xy has dimension 1, say {y1, . . . , yr}, and
c−1(Y \ {y1, . . . , yr}) maps isomorphically to Y \ {y1, . . . , yr} by c. Some details
omitted; hint: outside of {y1, . . . , yr} the morphism c is finite, see Cohomology of
Schemes, Lemma 30.21.1.
Let C ⊂ X be a rational tail. We claim that c maps C to a point. Assume that
this is not the case to get a contradiction. Then the image of C is an irreducible
component D ⊂ Y . Recall that H0(C,OC) = k′ is a finite separable extension
of k and that C has a k′-rational point x which is also the unique intersection
of C with the “rest” of X. We conclude from the general discussion above that
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C \ {x} ⊂ c−1(Y \ {y1, . . . , yr}) maps isomorphically to an open V of D. Let
y = c(x) ∈ D. Observe that y is the only point of D meeting the “rest” of Y . If
y ̸∈ {y1, . . . , yr}, then C ∼= D and it is clear that D is a rational tail of Y which is
a contradiction with the ampleness of ωY (Lemma 53.22.2). Thus y ∈ {y1, . . . , yr}
and dim(Xy) = 1. Then x ∈ Xy ∩ C and x is a smooth point of Xy and C
(Lemma 53.19.17). If y ∈ D is a singular point of D, then y is a node and then
Y = D (because there cannot be another component of Y passing through y by
Lemma 53.19.17). Then X = Xy ∪ C which means g = 0 because it is equal to
the genus of Xy by the discussion in Example 53.22.1; a contradiction. If y ∈ D
is a smooth point of D, then C → D is an isomorphism (because the nonsingular
projective model is unique and C and D are birational, see Section 53.2). Then D
is a rational tail of Y which is a contradiction with ampleness of ωY .

Assume n ≥ 1. If C ⊂ X is the rational tail contracted by X → X1, then we see
that C is mapped to a point of Y by the previous paragraph. Hence c : X → Y
factors through X → X1 (because X is the pushout of C and X1, see discussion in
Example 53.22.1). After replacing X by X1 we have decreased n. By induction we
may assume n = 0, i.e., X does not have a rational tail.

Assume n = 0, i.e., X does not have any rational tails. Then ω⊗2
X and ω⊗3

X are
globally generated by Lemma 53.22.5. It follows that H1(X,ω⊗3

X ) = 0 by Lemma
53.6.4. By Lemma 53.24.1 applied with m = 3 we find that c∗ωY ∼= ωX . We also
have that ωX = (X → Xn′)∗ωXn′ by Lemma 53.23.4 and induction. Applying the
projection formula for both c and X → Xn′ we conclude that

Γ(Xn′ , ω⊗m
Xn′ ) = Γ(X,ω⊗m

X ) = Γ(Y, ω⊗m
Y )

for all m. Since Xn′ and Y are the Proj of the direct sum of these by Morphisms,
Lemma 29.43.17 we conclude that there is a canonical isomorphism Xn′ = Y as
desired. We omit the verification that this is the unique isomorphism making the
diagram commute. □

Lemma 53.24.3.0E8X Let k be a field. Let X be a proper scheme over k of dimension
1 with H0(X,OX) = k having genus g ≥ 2. Assume the singularities of X are
at-worst-nodal and ωX is ample. Then ω⊗3

X is very ample and H1(X,ω⊗3
X ) = 0.

Proof. Combining Varieties, Lemma 33.44.15 and Lemmas 53.22.2 and 53.23.2 we
see that X contains no rational tails or bridges. Then we see that ω⊗3

X is globally
generated by Lemma 53.22.6. Choose a k-basis s0, . . . , sn of H0(X,ω⊗3

X ). We get
a morphism

φω⊗3
X
,(s0,...,sn) : X −→ Pn

k

See Constructions, Section 27.13. The lemma asserts that this morphism is a closed
immersion. To check this we may replace k by its algebraic closure, see Descent,
Lemma 35.23.19. Thus we may assume k is algebraically closed.

Assume k is algebraically closed. We will use Varieties, Lemma 33.23.2 to prove
the lemma. Let Z ⊂ X be a closed subscheme of degree 2 over Z with ideal sheaf
I ⊂ OX . We have to show that

H0(X,L)→ H0(Z,L|Z)
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is surjective. Thus it suffices to show that H1(X, IL) = 0. To do this we will use
Lemma 53.21.6. Thus it suffices to show that

3 deg(ωX |Y ) > −2χ(Y,OY ) + deg(Z ∩ Y )
for every reduced connected closed subscheme Y ⊂ X. Since k is algebraically
closed and Y connected and reduced we have H0(Y,OY ) = k (Varieties, Lemma
33.9.3). Hence χ(Y,OY ) = 1− dimH1(Y,OY ). Thus we have to show

3 deg(ωX |Y ) > −2 + 2 dimH1(Y,OY ) + deg(Z ∩ Y )
which is true by Lemma 53.22.4 except possibly if Y = X or if deg(ωX |Y ) = 0.
Since ωX is ample the second possibility does not occur (see first lemma cited in
this proof). Finally, if Y = X we can use Riemann-Roch (Lemma 53.5.2) and the
fact that g ≥ 2 to see that the inquality holds. The same argument with Z = ∅
shows that H1(X,ω⊗3

X ) = 0. □

53.25. Vector fields

0E66 In this section we study the space of vector fields on a curve. Vector fields corre-
spond to infinitesimal automorphisms, see More on Morphisms, Section 37.9, hence
play an important role in moduli theory.
Let k be an algebraically closed field. Let X be a finite type scheme over k. Let
x ∈ X be a closed point. We will say an element D ∈ Derk(OX ,OX) fixes x if
D(I) ⊂ I where I ⊂ OX is the ideal sheaf of x.

Lemma 53.25.1.0E67 Let k be an algebraically closed field. Let X be a smooth, proper,
connected curve over k. Let g be the genus of X.

(1) If g ≥ 2, then Derk(OX ,OX) is zero,
(2) if g = 1 and D ∈ Derk(OX ,OX) is nonzero, then D does not fix any closed

point of X, and
(3) if g = 0 and D ∈ Derk(OX ,OX) is nonzero, then D fixes at most 2 closed

points of X.

Proof. Recall that we have a universal k-derivation d : OX → ΩX/k and hence
D = θ ◦ d for some OX -linear map θ : ΩX/k → OX . Recall that ΩX/k ∼= ωX ,
see Lemma 53.4.1. By Riemann-Roch we have deg(ωX) = 2g − 2 (Lemma 53.5.2).
Thus we see that θ is forced to be zero if g > 1 by Varieties, Lemma 33.44.12. This
proves part (1). If g = 1, then a nonzero θ does not vanish anywhere and if g = 0,
then a nonzero θ vanishes in a divisor of degree 2. Thus parts (2) and (3) follow if
we show that vanishing of θ at a closed point x ∈ X is equivalent to the statement
that D fixes x (as defined above). Let z ∈ OX,x be a uniformizer. Then dz is a
basis element for ΩX,x, see Lemma 53.12.3. Since D(z) = θ(dz) we conclude. □

Lemma 53.25.2.0E68 Let k be an algebraically closed field. Let X be an at-worst-
nodal, proper, connected 1-dimensional scheme over k. Let ν : Xν → X be the
normalization. Let S ⊂ Xν be the set of points where ν is not an isomorphism.
Then

Derk(OX ,OX) = {D′ ∈ Derk(OXν ,OXν ) | D′ fixes every xν ∈ S}

Proof. Let x ∈ X be a node. Let x′, x′′ ∈ Xν be the inverse images of x. (Every
node is a split node since k is algebriacally closed, see Definition 53.19.10 and
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Lemma 53.19.11.) Let u ∈ OXν ,x′ and v ∈ OXν ,x′′ be uniformizers. Observe that
we have an exact sequence

0→ OX,x → OXν ,x′ ×OXν ,x′′ → k → 0
This follows from Lemma 53.16.3. Thus we can view u and v as elements of OX,x
with uv = 0.
LetD ∈ Derk(OX ,OX). Then 0 = D(uv) = vD(u)+uD(v). Since (u) is annihilator
of v in OX,x and vice versa, we see that D(u) ∈ (u) and D(v) ∈ (v). As OXν ,x′ =
k + (u) we conclude that we can extend D to OXν ,x′ and moreover the extension
fixes x′. This produces a D′ in the right hand side of the equality. Conversely, given
a D′ fixing x′ and x′′ we find that D′ preserves the subring OX,x ⊂ OXν ,x′×OXν ,x′′

and this is how we go from right to left in the equality. □

Lemma 53.25.3.0E69 Let k be an algebraically closed field. Let X be an at-worst-nodal,
proper, connected 1-dimensional scheme over k. Assume the genus of X is at least
2 and that X has no rational tails or bridges. Then Derk(OX ,OX) = 0.

Proof. Let D ∈ Derk(OX ,OX). Let Xν be the normalization of X. Let D′ ∈
Derk(OXν ,OXν ) be the element corresponding to D via Lemma 53.25.2. Let C ⊂
Xν be an irreducible component. If the genus of C is > 1, then D′|OC

= 0 by
Lemma 53.25.1 part (1). If the genus of C is 1, then there is at least one closed
point c of C which maps to a node on X (since otherwise X ∼= C would have genus
1). By the correspondence this means that D′|OC

fixes c hence is zero by Lemma
53.25.1 part (2). Finally, if the genus of C is zero, then there are at least 3 pairwise
distinct closed points c1, c2, c3 ∈ C mapping to nodes in X, since otherwise either
X is C with two points glued (two points of C mapping to the same node), or C is a
rational bridge (two points mapping to different nodes of X), or C is a rational tail
(one point mapping to a node of X). These three possibilities are not permitted
since C has genus ≥ 2 and has no rational bridges, or rational tails. Whence D′|OC

fixes c1, c2, c3 hence is zero by Lemma 53.25.1 part (3). □

53.26. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra

(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Differential Graded Sheaves
(25) Hypercoverings

Schemes

(26) Schemes
(27) Constructions of Schemes
(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes

https://stacks.math.columbia.edu/tag/0E69


53.26. OTHER CHAPTERS 4446

(31) Divisors
(32) Limits of Schemes
(33) Varieties
(34) Topologies on Schemes
(35) Descent
(36) Derived Categories of Schemes
(37) More on Morphisms
(38) More on Flatness
(39) Groupoid Schemes
(40) More on Groupoid Schemes
(41) Étale Morphisms of Schemes

Topics in Scheme Theory
(42) Chow Homology
(43) Intersection Theory
(44) Picard Schemes of Curves
(45) Weil Cohomology Theories
(46) Adequate Modules
(47) Dualizing Complexes
(48) Duality for Schemes
(49) Discriminants and Differents
(50) de Rham Cohomology
(51) Local Cohomology
(52) Algebraic and Formal Geome-

try
(53) Algebraic Curves
(54) Resolution of Surfaces
(55) Semistable Reduction
(56) Functors and Morphisms
(57) Derived Categories of Varieties
(58) Fundamental Groups of

Schemes
(59) Étale Cohomology
(60) Crystalline Cohomology
(61) Pro-étale Cohomology
(62) Relative Cycles
(63) More Étale Cohomology
(64) The Trace Formula

Algebraic Spaces
(65) Algebraic Spaces
(66) Properties of Algebraic Spaces
(67) Morphisms of Algebraic Spaces
(68) Decent Algebraic Spaces
(69) Cohomology of Algebraic

Spaces
(70) Limits of Algebraic Spaces
(71) Divisors on Algebraic Spaces
(72) Algebraic Spaces over Fields
(73) Topologies on Algebraic Spaces

(74) Descent and Algebraic Spaces
(75) Derived Categories of Spaces
(76) More on Morphisms of Spaces
(77) Flatness on Algebraic Spaces
(78) Groupoids in Algebraic Spaces
(79) More on Groupoids in Spaces
(80) Bootstrap
(81) Pushouts of Algebraic Spaces

Topics in Geometry
(82) Chow Groups of Spaces
(83) Quotients of Groupoids
(84) More on Cohomology of Spaces
(85) Simplicial Spaces
(86) Duality for Spaces
(87) Formal Algebraic Spaces
(88) Algebraization of Formal

Spaces
(89) Resolution of Surfaces Revis-

ited
Deformation Theory

(90) Formal Deformation Theory
(91) Deformation Theory
(92) The Cotangent Complex
(93) Deformation Problems

Algebraic Stacks
(94) Algebraic Stacks
(95) Examples of Stacks
(96) Sheaves on Algebraic Stacks
(97) Criteria for Representability
(98) Artin’s Axioms
(99) Quot and Hilbert Spaces

(100) Properties of Algebraic Stacks
(101) Morphisms of Algebraic Stacks
(102) Limits of Algebraic Stacks
(103) Cohomology of Algebraic

Stacks
(104) Derived Categories of Stacks
(105) Introducing Algebraic Stacks
(106) More on Morphisms of Stacks
(107) The Geometry of Stacks

Topics in Moduli Theory
(108) Moduli Stacks
(109) Moduli of Curves

Miscellany
(110) Examples
(111) Exercises
(112) Guide to Literature



53.26. OTHER CHAPTERS 4447

(113) Desirables
(114) Coding Style
(115) Obsolete

(116) GNU Free Documentation Li-
cense

(117) Auto Generated Index



CHAPTER 54

Resolution of Surfaces

0ADW 54.1. Introduction

0ADX This chapter discusses resolution of singularities of surfaces following Lipman [Lip78]
and mostly following the exposition of Artin in [Art86]. The main result (Theorem
54.14.5) tells us that a Noetherian 2-dimensional scheme Y has a resolution of sin-
gularities when it has a finite normalization Y ν → Y with finitely many singular
points yi ∈ Y ν and for each i the completion O∧

Y ν ,yi
is normal.

To be sure, if Y is a 2-dimensional scheme of finite type over a quasi-excellent base
ring R (for example a field or a Dedekind domain with fraction field of characteristic
0 such as Z) then the normalization of Y is finite, has finitely many singular points,
and the completions of the local rings are normal. See the discussion in More on
Algebra, Sections 15.47, 15.50, and 15.52 and More on Algebra, Lemma 15.42.2.
Thus such a Y has a resolution of singularities.

A rough outline of the proof is as follows. Let A be a Noetherian local domain of
dimension 2. The steps of the proof are as follows

N replace A by its normalization,
V prove Grauert-Riemenschneider,
B show there is a maximum g of the lengths of H1(X,OX) over all normal

modifications X → Spec(A) and reduce to the case g = 0,
R we say A defines a rational singularity if g = 0 and in this case after a

finite number of blowups we may assume A is Gorenstein and g = 0,
D we say A defines a rational double point if g = 0 and A is Gorenstein and

in this case we explicitly resolve singularities.
Each of these steps needs assumptions on the ring A. We will discuss each of these
in turn.

Ad N: Here we need to assume that A has a finite normalization (this is not auto-
matic). Throughout most of the chapter we will assume that our scheme is Nagata
if we need to know some normalization is finite. However, being Nagata is a slightly
stronger condition than is given to us in the statement of the theorem. A solution
to this (slight) problem would have been to use that our ring A is formally unram-
ified (i.e., its completion is reduced) and to use Lemma 54.11.5. However, the way
our proof works, it turns out it is easier to use Lemma 54.11.6 to lift finiteness of
the normalization over the completion to finiteness of the normalization over A.

Ad V: This is Proposition 54.7.8 and it roughly states that for a normal modification
f : X → Spec(A) one has R1f∗ωX = 0 where ωX is the dualizing module of X/A
(Remark 54.7.7). In fact, by duality the result is equivalent to a statement (Lemma
54.7.6) about the object Rf∗OX in the derived category D(A). Having said this,

4448



54.2. A TRACE MAP IN POSITIVE CHARACTERISTIC 4449

the proof uses the standard fact that components of the special fibre have positive
conormal sheaves (Lemma 54.7.4).
Ad B: This is in some sense the most subtle part of the proof. In the end we only
need to use the output of this step when A is a complete Noetherian local ring,
although the writeup is a bit more general. The terminology is set in Definition
54.8.3. If g (as defined above) is bounded, then a straightforward argument shows
that we can find a normal modification X → Spec(A) such that all singular points
of X are rational singularities, see Lemma 54.8.5. We show that given a finite
extension A ⊂ B, then g is bounded for B if it is bounded for A in the following
two cases: (1) if the fraction field extension is separable, see Lemma 54.8.5 and (2)
if the fraction field extension has degree p, the characteristic is p, and A is regular
and complete, see Lemma 54.8.10.
Ad R: Here we reduce the case g = 0 to the Gorenstein case. A marvellous fact,
which makes everything work, is that the blowing up of a rational surface singularity
is normal, see Lemma 54.9.4.
Ad D: The resolution of rational double points proceeds more or less by hand, see
Section 54.12. A rational double point is a hypersurface singularity (this is true
but we don’t prove it as we don’t need it). The local equation looks like

a11x
2
1 + a12x1x2 + a13x1x3 + a22x

2
2 + a23x2x3 + a33x

2
3 =

∑
aijkxixjxk

Using that the quadratic part cannot be zero because the multiplicity is 2 and
remains 2 after any blowup and the fact that every blowup is normal one quickly
achieves a resolution. One twist is that we do not have an invariant which decreases
every blowup, but we rely on the material on formal arcs from Section 54.10 to
demonstrate that the process stops.
To put everything together some additional work has to be done. The main kink is
that we want to lift a resolution of the completion A∧ to a resolution of Spec(A).
In order to do this we first show that if a resolution exists, then there is a resolution
by normalized blowups (Lemma 54.14.3). A sequence of normalized blowups can be
lifted from the completion by Lemma 54.11.7. We then use this even in the proof
of resolution of complete local rings A because our strategy works by induction on
the degree of a finite inclusion A0 ⊂ A with A0 regular, see Lemma 54.14.4. With
a stronger result in B (such as is proved in Lipman’s paper) this step could be
avoided.

54.2. A trace map in positive characteristic

0ADY Some of the results in this section can be deduced from the much more general
discussion on traces on differential forms in de Rham Cohomology, Section 50.19.
See Remark 54.2.3 for a discussion.
We fix a prime number p. Let R be an Fp-algebra. Given an a ∈ R set S =
R[x]/(xp − a). Define an R-linear map

Trx : ΩS/R −→ ΩR
by the rule

xidx 7−→
{

0 if 0 ≤ i ≤ p− 2,
da if i = p− 1
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This makes sense as ΩS/R is a free R-module with basis xidx, 0 ≤ i ≤ p− 1. The
following lemma implies that the trace map is well defined, i.e., independent of the
choice of the coordinate x.

Lemma 54.2.1.0ADZ Let φ : R[x]/(xp − a)→ R[y]/(yp − b) be an R-algebra homomor-
phism. Then Trx = Try ◦ φ.

Proof. Say φ(x) = λ0 + λ1y + . . . + λp−1y
p−1 with λi ∈ R. The condition that

mapping x to λ0 + λ1y + . . . + λp−1y
p−1 induces an R-algebra homomorphism

R[x]/(xp − a)→ R[y]/(yp − b) is equivalent to the condition that

a = λp0 + λp1b+ . . .+ λpp−1b
p−1

in the ring R. Consider the polynomial ring

Runiv = Fp[b, λ0, . . . , λp−1]

with the element a = λp0 +λp1b+ . . .+λpp−1b
p−1 Consider the universal algebra map

φuniv : Runiv[x]/(xp − a) → Runiv[y]/(yp − b) given by mapping x to λ0 + λ1y +
. . .+ λp−1y

p−1. We obtain a canonical map

Runiv −→ R

sending b, λi to b, λi. By construction we get a commutative diagram

Runiv[x]/(xp − a) //

φuniv

��

R[x]/(xp − a)

φ

��
Runiv[y]/(yp − b) // R[y]/(yp − b)

and the horizontal arrows are compatible with the trace maps. Hence it suffices to
prove the lemma for the map φuniv. Thus we may assume R = Fp[b, λ0, . . . , λp−1]
is a polynomial ring. We will check the lemma holds in this case by evaluating
Try(φ(x)idφ(x)) for i = 0, . . . , p− 1.

The case 0 ≤ i ≤ p− 2. Expand

(λ0 + λ1y + . . .+ λp−1y
p−1)i(λ1 + 2λ2y + . . .+ (p− 1)λp−1y

p−2)

in the ring R[y]/(yp − b). We have to show that the coefficient of yp−1 is zero. For
this it suffices to show that the expression above as a polynomial in y has vanishing
coefficients in front of the powers ypk−1. Then we write our polynomial as

d
(i+ 1)dy (λ0 + λ1y + . . .+ λp−1y

p−1)i+1

and indeed the coefficients of ykp−1 are all zero.

The case i = p− 1. Expand

(λ0 + λ1y + . . .+ λp−1y
p−1)p−1(λ1 + 2λ2y + . . .+ (p− 1)λp−1y

p−2)

in the ring R[y]/(yp − b). To finish the proof we have to show that the coefficient
of yp−1 times db is da. Here we use that R is S/pS where S = Z[b, λ0, . . . , λp−1].
Then the above, as a polynomial in y, is equal to

d
pdy (λ0 + λ1y + . . .+ λp−1y

p−1)p

https://stacks.math.columbia.edu/tag/0ADZ
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Since d
dy (ypk) = pkypk−1 it suffices to understand the coefficients of ypk in the

polynomial (λ0 + λ1y + . . .+ λp−1y
p−1)p modulo p. The sum of these terms gives

λp0 + λp1y
p + . . .+ λpp−1y

p(p−1) mod p

Whence we see that we obtain after applying the operator d
pdy and after reducing

modulo yp − b the value

λp1 + 2λp2b+ . . .+ (p− 1)λp−1b
p−2

for the coefficient of yp−1 we wanted to compute. Now because a = λp0 +λp1b+ . . .+
λpp−1b

p−1 in R we obtain that

da = (λp1 + 2λp2b+ . . .+ (p− 1)λpp−1b
p−2)db

in R. This proves that the coefficient of yp−1 is as desired. □

Lemma 54.2.2.0AX5 Let Fp ⊂ Λ ⊂ R ⊂ S be ring extensions and assume that S is
isomorphic to R[x]/(xp − a) for some a ∈ R. Then there are canonical R-linear
maps

Tr : Ωt+1
S/Λ −→ Ωt+1

R/Λ

for t ≥ 0 such that

η1 ∧ . . . ∧ ηt ∧ xidx 7−→
{

0 if 0 ≤ i ≤ p− 2,
η1 ∧ . . . ∧ ηt ∧ da if i = p− 1

for ηi ∈ ΩR/Λ and such that Tr annihilates the image of S ⊗R Ωt+1
R/Λ → Ωt+1

S/Λ.

Proof. For t = 0 we use the composition

ΩS/Λ → ΩS/R → ΩR → ΩR/Λ

where the second map is Lemma 54.2.1. There is an exact sequence

H1(LS/R) δ−→ ΩR/Λ ⊗R S → ΩS/Λ → ΩS/R → 0

(Algebra, Lemma 10.134.4). The module ΩS/R is free over S with basis dx and
the module H1(LS/R) is free over S with basis xp − a which δ maps to −da⊗ 1 in
ΩR/Λ ⊗R S. In particular, if we set

M = Coker(R→ ΩR/Λ, 1 7→ −da)

then we see that Coker(δ) = M ⊗R S. We obtain a canonical map

Ωt+1
S/Λ → ∧

t
S(Coker(δ))⊗S ΩS/R = ∧tR(M)⊗R ΩS/R

Now, since the image of the map Tr : ΩS/R → ΩR/Λ of Lemma 54.2.1 is contained
in Rda we see that wedging with an element in the image annihilates da. Hence
there is a canonical map

∧tR(M)⊗R ΩS/R → Ωt+1
R/Λ

mapping η1 ∧ . . . ∧ ηt ∧ ω to η1 ∧ . . . ∧ ηt ∧ Tr(ω). □

Remark 54.2.3.0FLF Let Fp ⊂ Λ ⊂ R ⊂ S and Tr be as in Lemma 54.2.2. By de Rham
Cohomology, Proposition 50.19.3 there is a canonical map of complexes

ΘS/R : Ω•
S/Λ −→ Ω•

R/Λ

https://stacks.math.columbia.edu/tag/0AX5
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The computation in de Rham Cohomology, Example 50.19.4 shows that ΘS/R(xidx) =
Trx(xidx) for all i. Since TraceS/R = Θ0

S/R is identically zero and since

ΘS/R(a ∧ b) = a ∧ΘS/R(b)

for a ∈ ΩiR/Λ and b ∈ ΩjS/Λ it follows that Tr = ΘS/R. The advantage of using Tr
is that it is a good deal more elementary to construct.

Lemma 54.2.4.0AX6 Let S be a scheme over Fp. Let f : Y → X be a finite morphism
of Noetherian normal integral schemes over S. Assume

(1) the extension of function fields is purely inseparable of degree p, and
(2) ΩX/S is a coherent OX -module (for example if X is of finite type over S).

For i ≥ 1 there is a canonical map

Tr : f∗ΩiY/S −→ (ΩiX/S)∗∗

whose stalk in the generic point of X recovers the trace map of Lemma 54.2.2.

Proof. The exact sequence f∗ΩX/S → ΩY/S → ΩY/X → 0 shows that ΩY/S and
hence f∗ΩY/S are coherent modules as well. Thus it suffices to prove the trace map
in the generic point extends to stalks at x ∈ X with dim(OX,x) = 1, see Divisors,
Lemma 31.12.14. Thus we reduce to the case discussed in the next paragraph.

Assume X = Spec(A) and Y = Spec(B) with A a discrete valuation ring and B
finite over A. Since the induced extension L/K of fraction fields is purely insepa-
rable, we see that B is local too. Hence B is a discrete valuation ring too. Then
either

(1) B/A has ramification index p and hence B = A[x]/(xp − a) where a ∈ A
is a uniformizer, or

(2) mB = mAB and the residue field B/mAB is purely inseparable of degree
p over κA = A/mA. Choose any x ∈ B whose residue class is not in κA
and then we’ll have B = A[x]/(xp − a) where a ∈ A is a unit.

Let Spec(Λ) ⊂ S be an affine open such that X maps into Spec(Λ). Then we can
apply Lemma 54.2.2 to see that the trace map extends to ΩiB/Λ → ΩiA/Λ for all
i ≥ 1. □

54.3. Quadratic transformations

0AGP In this section we study what happens when we blow up a nonsingular point on a
surface. We hesitate the formally define such a morphism as a quadratic transfor-
mation as on the one hand often other names are used and on the other hand the
phrase “quadratic transformation” is sometimes used with a different meaning.

Lemma 54.3.1.0AGQ Let (A,m, κ) be a regular local ring of dimension 2. Let f : X →
S = Spec(A) be the blowing up of A in m wotj exceptional divisor E. There is a
closed immersion

r : X −→ P1
S

over S such that
(1) r|E : E → P1

κ is an isomorphism,
(2) OX(E) = OX(−1) = r∗OP1(−1), and
(3) CE/X = (r|E)∗OP1(1) and NE/X = (r|E)∗OP1(−1).
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Proof. As A is regular of dimension 2 we can write m = (x, y). Then x and
y placed in degree 1 generate the Rees algebra

⊕
n≥0 m

n over A. Recall that
X = Proj(

⊕
n≥0 m

n), see Divisors, Lemma 31.32.2. Thus the surjection

A[T0, T1] −→
⊕

n≥0
mn, T0 7→ x, T1 7→ y

of graded A-algebras induces a closed immersion r : X → P1
S = Proj(A[T0, T1])

such that OX(1) = r∗OP1
S
(1), see Constructions, Lemma 27.11.5. This proves (2)

because OX(E) = OX(−1) by Divisors, Lemma 31.32.4.
To prove (1) note that(⊕

n≥0
mn
)
⊗A κ =

⊕
n≥0

mn/mn+1 ∼= κ[x, y]

a polynomial algebra, see Algebra, Lemma 10.106.1. This proves that the fibre of
X → S over Spec(κ) is equal to Proj(κ[x, y]) = P1

κ, see Constructions, Lemma
27.11.6. Recall that E is the closed subscheme of X defined by mOX , i.e., E = Xκ.
By our choice of the morphism r we see that r|E in fact produces the identification
of E = Xκ with the special fibre of P1

S → S.
Part (3) follows from (1) and (2) and Divisors, Lemma 31.14.2. □

Lemma 54.3.2.0AGR Let (A,m, κ) be a regular local ring of dimension 2. Let f : X →
S = Spec(A) be the blowing up of A in m. Then X is an irreducible regular scheme.

Proof. Observe that X is integral by Divisors, Lemma 31.32.9 and Algebra, Lemma
10.106.2. To seeX is regular it suffices to check thatOX,x is regular for closed points
x ∈ X, see Properties, Lemma 28.9.2. Let x ∈ X be a closed point. Since f is
proper x maps to m, i.e., x is a point of the exceptional divisor E. Then E is an
effective Cartier divisor and E ∼= P1

κ. Thus if g ∈ mx ⊂ OX,x is a local equation
for E, then OX,x/(g) ∼= OP1

κ,x
. Since P1

κ is covered by two affine opens which are
the spectrum of a polynomial ring over κ, we see that OP1

κ,x
is regular by Algebra,

Lemma 10.114.1. We conclude by Algebra, Lemma 10.106.7. □

Lemma 54.3.3.0C5G Let (A,m, κ) be a regular local ring of dimension 2. Let f : X →
S = Spec(A) be the blowing up of A in m. Then Pic(X) = Z generated by OX(E).

Proof. Recall that E = P1
κ has Picard group Z with generator O(1), see Divisors,

Lemma 31.28.5. By Lemma 54.3.1 the invertible OX -module OX(E) restricts to
O(−1). Hence OX(E) generates an infinite cyclic group in Pic(X). Since A is
regular it is a UFD, see More on Algebra, Lemma 15.121.2. Then the punctured
spectrum U = S \ {m} = X \ E has trivial Picard group, see Divisors, Lemma
31.28.4. Hence for every invertible OX -module L there is an isomorphism s : OU →
L|U . Then s is a regular meromorphic section of L and we see that divL(s) = nE
for some n ∈ Z (Divisors, Definition 31.27.4). By Divisors, Lemma 31.27.6 (and
the fact that X is normal by Lemma 54.3.2) we conclude that L = OX(nE). □

Lemma 54.3.4.0AGS Let (A,m, κ) be a regular local ring of dimension 2. Let f : X →
S = Spec(A) be the blowing up of A in m. Let F be a quasi-coherent OX -module.

(1) Hp(X,F) = 0 for p ̸∈ {0, 1},
(2) H1(X,OX(n)) = 0 for n ≥ −1,
(3) H1(X,F) = 0 if F or F(1) is globally generated,
(4) H0(X,OX(n)) = mmax(0,n),

https://stacks.math.columbia.edu/tag/0AGR
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(5) lengthAH1(X,OX(n)) = −n(−n− 1)/2 if n < 0.

Proof. If m = (x, y), then X is covered by the spectra of the affine blowup algebras
A[mx ] and A[my ] because x and y placed in degree 1 generate the Rees algebra⊕

mn over A. See Divisors, Lemma 31.32.2 and Constructions, Lemma 27.8.9.
Since X is separated by Constructions, Lemma 27.8.8 we see that cohomology of
quasi-coherent sheaves vanishes in degrees ≥ 2 by Cohomology of Schemes, Lemma
30.4.2.
Let i : E → X be the exceptional divisor, see Divisors, Definition 31.32.1. Recall
that OX(−E) = OX(1) is f -relatively ample, see Divisors, Lemma 31.32.4. Hence
we know that H1(X,OX(−nE)) = 0 for some n > 0, see Cohomology of Schemes,
Lemma 30.16.2. Consider the filtration

OX(−nE) ⊂ OX(−(n− 1)E) ⊂ . . . ⊂ OX(−E) ⊂ OX ⊂ OX(E)
The successive quotients are the sheaves

OX(−tE)/OX(−(t+ 1)E) = OX(t)/I(t) = i∗OE(t)
where I = OX(−E) is the ideal sheaf of E. By Lemma 54.3.1 we have E = P1

κ and
OE(1) indeed corresponds to the usual Serre twist of the structure sheaf on P1.
Hence the cohomology of OE(t) vanishes in degree 1 for t ≥ −1, see Cohomology of
Schemes, Lemma 30.8.1. Since this is equal to H1(X, i∗OE(t)) (by Cohomology of
Schemes, Lemma 30.2.4) we find that H1(X,OX(−(t+ 1)E))→ H1(X,OX(−tE))
is surjective for t ≥ −1. Hence

0 = H1(X,OX(−nE)) −→ H1(X,OX(−tE)) = H1(X,OX(t))
is surjective for t ≥ −1 which proves (2).
Let F be globally generated. This means there exists a short exact sequence

0→ G →
⊕

i∈I
OX → F → 0

Note that H1(X,
⊕

i∈I OX) =
⊕

i∈I H
1(X,OX) by Cohomology, Lemma 20.19.1.

By part (2) we have H1(X,OX) = 0. If F(1) is globally generated, then we can
find a surjection

⊕
i∈I OX(−1)→ F and argue in a similar fashion. In other words,

part (3) follows from part (2).
For part (4) we note that for all n large enough we have Γ(X,OX(n)) = mn, see
Cohomology of Schemes, Lemma 30.14.3. If n ≥ 0, then we can use the short exact
sequence

0→ OX(n)→ OX(n− 1)→ i∗OE(n− 1)→ 0
and the vanishing of H1 for the sheaf on the left to get a commutative diagram

0 // mmax(0,n) //

��

mmax(0,n−1) //

��

mmax(0,n)/mmax(0,n−1) //

��

0

0 // Γ(X,OX(n)) // Γ(X,OX(n− 1)) // Γ(E,OE(n− 1)) // 0

with exact rows. In fact, the rows are exact also for n < 0 because in this case the
groups on the right are zero. In the proof of Lemma 54.3.1 we have seen that the
right vertical arrow is an isomorphism (details omitted). Hence if the left vertical
arrow is an isomorphism, so is the middle one. In this way we see that (4) holds
by descending induction on n.
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Finally, we prove (5) by descending induction on n and the sequences
0→ OX(n)→ OX(n− 1)→ i∗OE(n− 1)→ 0

Namely, for n ≥ −1 we already know H1(X,OX(n)) = 0. Since
H1(X, i∗OE(−2)) = H1(E,OE(−2)) = H1(P1

κ,O(−2)) ∼= κ

by Cohomology of Schemes, Lemma 30.8.1 which has length 1 as an A-module, we
conclude from the long exact cohomology sequence that (5) holds for n = −2. And
so on and so forth. □

Lemma 54.3.5.0AGT Let (A,m) be a regular local ring of dimension 2. Let f : X → S =
Spec(A) be the blowing up of A in m. Let mn ⊂ I ⊂ m be an ideal. Let d ≥ 0 be
the largest integer such that

IOX ⊂ OX(−dE)
where E is the exceptional divisor. Set I ′ = IOX(dE) ⊂ OX . Then d > 0, the
sheaf OX/I ′ is supported in finitely many closed points x1, . . . , xr of X, and

lengthA(A/I) > lengthAΓ(X,OX/I ′)

≥
∑

i=1,...,r
lengthOX,xi

(OX,xi/I ′
xi)

Proof. Since I ⊂ m we see that every element of I vanishes on E. Thus we see that
d ≥ 1. On the other hand, since mn ⊂ I we see that d ≤ n. Consider the short
exact sequence

0→ IOX → OX → OX/IOX → 0
Since IOX is globally generated, we see that H1(X, IOX) = 0 by Lemma 54.3.4.
Hence we obtain a surjection A/I → Γ(X,OX/IOX). Consider the short exact
sequence

0→ OX(−dE)/IOX → OX/IOX → OX/OX(−dE)→ 0
By Divisors, Lemma 31.15.8 we see that OX(−dE)/IOX is supported in finitely
many closed points of X. In particular, this coherent sheaf has vanishing higher
cohomology groups (detail omitted). Thus in the following diagram

A/I

��
0 // Γ(X,OX(−dE)/IOX) // Γ(X,OX/IOX) // Γ(X,OX/OX(−dE)) // 0

the bottom row is exact and the vertical arrow surjective. We have
lengthAΓ(X,OX(−dE)/IOX) < lengthA(A/I)

since Γ(X,OX/OX(−dE)) is nonzero. Namely, the image of 1 ∈ Γ(X,OX) is
nonzero as d > 0.
To finish the proof we translate the results above into the statements of the lemma.
Since OX(dE) is invertible we have

OX/I ′ = OX(−dE)/IOX ⊗OX
OX(dE).

Thus OX/I ′ and OX(−dE)/IOX are supported in the same set of finitely many
closed points, say x1, . . . , xr ∈ E ⊂ X. Moreover we obtain
Γ(X,OX(−dE)/IOX) =

⊕
OX(−dE)xi/IOX,xi ∼=

⊕
OX,xi/I ′

xi = Γ(X,OX/I ′)

https://stacks.math.columbia.edu/tag/0AGT
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because an invertible module over a local ring is trivial. Thus we obtain the strict
inequality. We also get the second because

lengthA(OX,xi/I ′
xi) ≥ lengthOX,xi

(OX,xi/I ′
xi)

as is immediate from the definition of length. □

Lemma 54.3.6.0B4L Let (A,m, κ) be a regular local ring of dimension 2. Let f : X →
S = Spec(A) be the blowing up of A in m. Then ΩX/S = i∗ΩE/κ, where i : E → X
is the immersion of the exceptional divisor.

Proof. Writing P1 = P1
S , let r : X → P1 be as in Lemma 54.3.1. Then we have an

exact sequence
CX/P1 → r∗ΩP1/S → ΩX/S → 0

see Morphisms, Lemma 29.32.15. Since ΩP1/S |E = ΩE/κ by Morphisms, Lemma
29.32.10 it suffices to see that the first arrow defines a surjection onto the kernel of
the canonical map r∗ΩP1/S → i∗ΩE/κ. This we can do locally. With notation as
in the proof of Lemma 54.3.1 on an affine open of X the morphism f corresponds
to the ring map

A→ A[t]/(xt− y)
where x, y ∈ m are generators. Thus d(xt− y) = xdt and ydt = t ·xdt which proves
what we want. □

54.4. Dominating by quadratic transformations

0BFS Using the result above we can prove that blowups in points dominate any modifi-
cation of a regular 2 dimensional scheme.

Let X be a scheme. Let x ∈ X be a closed point. As usual, we view i : x =
Spec(κ(x)) → X as a closed subscheme. The blowing up X ′ → X of X at x is
the blowing up of X in the closed subscheme x ⊂ X. Observe that if X is locally
Noetherian, then X ′ → X is projective (in particular proper) by Divisors, Lemma
31.32.13.

Lemma 54.4.1.0AHH Let X be a Noetherian scheme. Let T ⊂ X be a finite set of closed
points x such that OX,x is regular of dimension 2 for x ∈ T . Let I ⊂ OX be a
quasi-coherent sheaf of ideals such that OX/I is supported on T . Then there exists
a sequence

Xn → Xn−1 → . . .→ X1 → X0 = X

where Xi+1 → Xi is the blowing up of Xi at a closed point lying above a point of
T such that IOXn is an invertible ideal sheaf.

Proof. Say T = {x1, . . . , xr}. Denote Ii the stalk of I at xi. Set

ni = lengthOX,xi
(OX,xi/Ii)

This is finite as OX/I is supported on T and hence OX,xi/Ii has support equal to
{mxi} (see Algebra, Lemma 10.62.3). We are going to use induction on

∑
ni. If

ni = 0 for all i, then I = OX and we are done.

Suppose ni > 0. Let X ′ → X be the blowing up of X in xi (see discussion above
the lemma). Since Spec(OX,xi) → X is flat we see that X ′ ×X Spec(OX,xi) is the
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blowup of the ring OX,xi in the maximal ideal, see Divisors, Lemma 31.32.3. Hence
the square in the commutative diagram

Proj(
⊕

d≥0 m
d
xi) //

��

X ′

��
Spec(OX,xi) // X

is cartesian. Let E ⊂ X ′ and E′ ⊂ Proj(
⊕

d≥0 m
d
xi) be the exceptional divisors.

Let d ≥ 1 be the integer found in Lemma 54.3.5 for the ideal Ii ⊂ OX,xi . Since the
horizontal arrows in the diagram are flat, since E′ → E is surjective, and since E′

is the pullback of E, we see that
IOX′ ⊂ OX′(−dE)

(some details omitted). Set I ′ = IOX′(dE) ⊂ OX′ . Then we see that OX′/I ′ is
supported in finitely many closed points T ′ ⊂ |X ′| because this holds over X \ {xi}
and for the pullback to Proj(

⊕
d≥0 m

d
xi). The final assertion of Lemma 54.3.5 tells

us that the sum of the lengths of the stalks OX′,x′/I ′OX′,x′ for x′ lying over xi is
< ni. Hence the sum of the lengths has decreased.
By induction hypothesis, there exists a sequence

X ′
n → . . .→ X ′

1 → X ′

of blowups at closed points lying over T ′ such that I ′OX′
n

is invertible. Since
I ′OX′(−dE) = IOX′ , we see that IOX′

n
= I ′OX′

n
(−d(f ′)−1E) where f ′ : X ′

n →
X ′ is the composition. Note that (f ′)−1E is an effective Cartier divisor by Divisors,
Lemma 31.32.11. Thus we are done by Divisors, Lemma 31.13.7. □

Lemma 54.4.2.0AHI Let X be a Noetherian scheme. Let T ⊂ X be a finite set of closed
points x such that OX,x is a regular local ring of dimension 2. Let f : Y → X be a
proper morphism of schemes which is an isomorphism over U = X \ T . Then there
exists a sequence

Xn → Xn−1 → . . .→ X1 → X0 = X

where Xi+1 → Xi is the blowing up of Xi at a closed point xi lying above a point
of T and a factorization Xn → Y → X of the composition.

Proof. By More on Flatness, Lemma 38.31.4 there exists a U -admissible blowup
X ′ → X which dominates Y → X. Hence we may assume there exists an ideal
sheaf I ⊂ OX such that OX/I is supported on T and such that Y is the blowing
up of X in I. By Lemma 54.4.1 there exists a sequence

Xn → Xn−1 → . . .→ X1 → X0 = X

where Xi+1 → Xi is the blowing up of Xi at a closed point xi lying above a point of
T such that IOXn is an invertible ideal sheaf. By the universal property of blowing
up (Divisors, Lemma 31.32.5) we find the desired factorization. □

Lemma 54.4.3.0C5H Let S be a scheme. Let X be a scheme over S which is regular
and has dimension 2. Let Y be a proper scheme over S. Given an S-rational map
f : U → Y from X to Y there exists a sequence

Xn → Xn−1 → . . .→ X1 → X0 = X

https://stacks.math.columbia.edu/tag/0AHI
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and an S-morphism fn : Xn → Y such that Xi+1 → Xi is the blowing up of Xi at
a closed point not lying over U and fn and f agree.

Proof. We may assume U contains every point of codimension 1, see Morphisms,
Lemma 29.42.5. Hence the complement T ⊂ X of U is a finite set of closed points
whose local rings are regular of dimension 2. Applying Divisors, Lemma 31.36.2
we find a proper morphism p : X ′ → X which is an isomorphism over U and
a morphism f ′ : X ′ → Y agreeing with f over U . Apply Lemma 54.4.2 to the
morphism p : X ′ → X. The composition Xn → X ′ → Y is the desired morphism.

□

54.5. Dominating by normalized blowups

0BBR In this section we prove that a modification of a surface can be dominated by a
sequence of normalized blowups in points.

Definition 54.5.1.0BBS Let X be a scheme such that every quasi-compact open has
finitely many irreducible components. Let x ∈ X be a closed point. The normalized
blowup of X at x is the composition X ′′ → X ′ → X where X ′ → X is the blowup
of X in x and X ′′ → X ′ is the normalization of X ′.

Here the normalization X ′′ → X ′ is defined as the scheme X ′ has an open covering
by opens which have finitely many irreducible components by Divisors, Lemma
31.32.10. See Morphisms, Definition 29.54.1 for the definition of the normalization.
In general the normalized blowing up need not be proper even when X is Noether-
ian. Recall that a scheme is Nagata if it has an open covering by affines which are
spectra of Nagata rings (Properties, Definition 28.13.1).

Lemma 54.5.2.0BFT In Definition 54.5.1 if X is Nagata, then the normalized blowing
up of X at x is normal, Nagata, and proper over X.

Proof. The blowup morphism X ′ → X is proper (as X is locally Noetherian we may
apply Divisors, Lemma 31.32.13). Thus X ′ is Nagata (Morphisms, Lemma 29.18.1).
Therefore the normalization X ′′ → X ′ is finite (Morphisms, Lemma 29.54.10) and
we conclude that X ′′ → X is proper as well (Morphisms, Lemmas 29.44.11 and
29.41.4). It follows that the normalized blowing up is a normal (Morphisms, Lemma
29.54.5) Nagata algebraic space. □

In the following lemma we need to assume X is Noetherian in order to make sure
that it has finitely many irreducible components. Then the properness of f : Y → X
assures that Y has finitely many irreducible components too and it makes sense to
require f to be birational (Morphisms, Definition 29.50.1).

Lemma 54.5.3.0BBT Let X be a scheme which is Noetherian, Nagata, and has dimen-
sion 2. Let f : Y → X be a proper birational morphism. Then there exists a
commutative diagram

Xn
//

��

Xn−1 // . . . // X1 // X0

��
Y // X

where X0 → X is the normalization and where Xi+1 → Xi is the normalized
blowing up of Xi at a closed point.

https://stacks.math.columbia.edu/tag/0BBS
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Proof. We will use the results of Morphisms, Sections 29.18, 29.52, and 29.54 with-
out further mention. We may replace Y by its normalization. Let X0 → X be the
normalization. The morphism Y → X factors through X0. Thus we may assume
that both X and Y are normal.
Assume X and Y are normal. The morphism f : Y → X is an isomorphism over
an open which contains every point of codimension 0 and 1 in Y and every point
of Y over which the fibre is finite, see Varieties, Lemma 33.17.3. Hence there is a
finite set of closed points T ⊂ X such that f is an isomorphism over X \ T . For
each x ∈ T the fibre Yx is a proper geometrically connected scheme of dimension 1
over κ(x), see More on Morphisms, Lemma 37.53.6. Thus

BadCurves(f) = {C ⊂ Y closed | dim(C) = 1, f(C) = a point}
is a finite set. We will prove the lemma by induction on the number of elements of
BadCurves(f). The base case is the case where BadCurves(f) is empty, and in
that case f is an isomorphism.
Fix x ∈ T . Let X ′ → X be the normalized blowup of X at x and let Y ′ be the
normalization of Y ×X X ′. Picture

Y ′
f ′
//

��

X ′

��
Y

f // X

Let x′ ∈ X ′ be a closed point lying over x such that the fibre Y ′
x′ has dimension

≥ 1. Let C ′ ⊂ Y ′ be an irreducible component of Y ′
x′ , i.e., C ′ ∈ BadCurves(f ′).

Since Y ′ → Y ×XX ′ is finite we see that C ′ must map to an irreducible component
C ⊂ Yx. If is clear that C ∈ BadCurves(f). Since Y ′ → Y is birational and
hence an isomorphism over points of codimension 1 in Y , we see that we obtain an
injective map

BadCurves(f ′) −→ BadCurves(f)
Thus it suffices to show that after a finite number of these normalized blowups we
get rid at of at least one of the bad curves, i.e., the displayed map is not surjective.
We will get rid of a bad curve using an argument due to Zariski. Pick C ∈
BadCurves(f) lying over our x. Denote OY,C the local ring of Y at the generic
point of C. Choose an element u ∈ OX,C whose image in the residue field R(C) is
transcendental over κ(x) (we can do this because R(C) has transcendence degree
1 over κ(x) by Varieties, Lemma 33.20.3). We can write u = a/b with a, b ∈ OX,x
as OY,C and OX,x have the same fraction fields. By our choice of u it must be the
case that a, b ∈ mx. Hence

Nu,a,b = min{ordOY,C
(a), ordOY,C

(b)} > 0
Thus we can do descending induction on this integer. Let X ′ → X be the normal-
ized blowing up of x and let Y ′ be the normalization of X ′×X Y as above. We will
show that if C is the image of some bad curve C ′ ⊂ Y ′ lying over x′ ∈ X ′, then
there exists a choice of a′, b′OX′,x′ such that Nu,a′,b′ < Nu,a,b. This will finish the
proof. Namely, since X ′ → X factors through the blowing up, we see that there
exists a nonzero element d ∈ mx′ such that a = a′d and b = b′d (namely, take d
to be the local equation for the exceptional divisor of the blowup). Since Y ′ → Y
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is an isomorphism over an open containing the generic point of C (seen above) we
see that OY ′,C′ = OY,C . Hence

ordOY,C
(a) = ordOY ′,C′ (a′d) = ordOY ′,C′ (a′) + ordOY ′,C′ (d) > ordOY ′,C′ (a′)

Similarly for b and the proof is complete. □

Lemma 54.5.4.0C5I Let S be a scheme. Let X be a scheme over S which is Noetherian,
Nagata, and has dimension 2. Let Y be a proper scheme over S. Given an S-rational
map f : U → Y from X to Y there exists a sequence

Xn → Xn−1 → . . .→ X1 → X0 → X

and an S-morphism fn : Xn → Y such that X0 → X is the normalization, Xi+1 →
Xi is the normalized blowing up of Xi at a closed point, and fn and f agree.

Proof. Applying Divisors, Lemma 31.36.2 we find a proper morphism p : X ′ → X
which is an isomorphism over U and a morphism f ′ : X ′ → Y agreeing with f
over U . Apply Lemma 54.5.3 to the morphism p : X ′ → X. The composition
Xn → X ′ → Y is the desired morphism. □

54.6. Modifying over local rings

0AE1 Let S be a scheme. Let s1, . . . , sn ∈ S be pairwise distinct closed points. Assume
that the open embedding

U = S \ {s1, . . . , sn} −→ S

is quasi-compact. Denote FPS,{s1,...,sn} the category of morphisms f : X → S

of finite presentation which induce an isomorphism f−1(U) → U . Morphisms are
morphisms of schemes over S. For each i set Si = Spec(OS,si) and let Vi = Si\{si}.
Denote FPSi,si the category of morphisms gi : Yi → Si of finite presentation which
induce an isomorphism g−1

i (Vi) → Vi. Morphisms are morphisms over Si. Base
change defines an functor
(54.6.0.1)0BFU F : FPS,{s1,...,sn} −→ FPS1,s1 × . . .× FPSn,sn
To reduce at least some of the problems in this chapter to the case of local rings
we have the following lemma.

Lemma 54.6.1.0BFV The functor F (54.6.0.1) is an equivalence.

Proof. For n = 1 this is Limits, Lemma 32.21.1. For n > 1 the lemma can be
proved in exactly the same way or it can be deduced from it. For example, suppose
that gi : Yi → Si are objects of FPSi,si . Then by the case n = 1 we can find
f ′
i : X ′

i → S of finite presentation which are isomorphisms over S \ {si} and whose
base change to Si is gi. Then we can set

f : X = X ′
1 ×S . . .×S X ′

n → S

This is an object of FPS,{s1,...,sn} whose base change by Si → S recovers gi. Thus
the functor is essentially surjective. We omit the proof of fully faithfulness. □

Lemma 54.6.2.0BFW Let S, si, Si be as in (54.6.0.1). If f : X → S corresponds to
gi : Yi → Si under F , then f is separated, proper, finite, if and only if gi is so for
i = 1, . . . , n.

Proof. Follows from Limits, Lemma 32.21.2. □

https://stacks.math.columbia.edu/tag/0C5I
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Lemma 54.6.3.0BFX Let S, si, Si be as in (54.6.0.1). If f : X → S corresponds to
gi : Yi → Si under F , then Xsi

∼= (Yi)si as schemes over κ(si).

Proof. This is clear. □

Lemma 54.6.4.0BFY Let S, si, Si be as in (54.6.0.1) and assume f : X → S corresponds
to gi : Yi → Si under F . Then there exists a factorization

X = Zm → Zm−1 → . . .→ Z1 → Z0 = S

of f where Zj+1 → Zj is the blowing up of Zj at a closed point zj lying over
{s1, . . . , sn} if and only if for each i there exists a factorization

Yi = Zi,mi → Zi,mi−1 → . . .→ Zi,1 → Zi,0 = Si

of gi where Zi,j+1 → Zi,j is the blowing up of Zi,j at a closed point zi,j lying over
si.

Proof. Let’s start with a sequence of blowups Zm → Zm−1 → . . .→ Z1 → Z0 = S.
The first morphism Z1 → S is given by blowing up one of the si, say s1. Applying F
to Z1 → S we find a blowup Z1,1 → S1 at s1 is the blowing up at s1 and otherwise
Zi,0 = Si for i > 1. In the next step, we either blow up one of the si, i ≥ 2 on Z1 or
we pick a closed point z1 of the fibre of Z1 → S over s1. In the first case it is clear
what to do and in the second case we use that (Z1)s1

∼= (Z1,1)s1 (Lemma 54.6.3) to
get a closed point z1,1 ∈ Z1,1 corresponding to z1. Then we set Z1,2 → Z1,1 equal to
the blowing up in z1,1. Continuing in this manner we construct the factorizations
of each gi.

Conversely, given sequences of blowups Zi,mi → Zi,mi−1 → . . .→ Zi,1 → Zi,0 = Si
we construct the sequence of blowing ups of S in exactly the same manner. □

Here is the analogue of Lemma 54.6.4 for normalized blowups.

Lemma 54.6.5.0BFZ Let S, si, Si be as in (54.6.0.1) and assume f : X → S corresponds
to gi : Yi → Si under F . Assume every quasi-compact open of S has finitely many
irreducible components. Then there exists a factorization

X = Zm → Zm−1 → . . .→ Z1 → Z0 = S

of f where Zj+1 → Zj is the normalized blowing up of Zj at a closed point zj lying
over {x1, . . . , xn} if and only if for each i there exists a factorization

Yi = Zi,mi → Zi,mi−1 → . . .→ Zi,1 → Zi,0 = Si

of gi where Zi,j+1 → Zi,j is the normalized blowing up of Zi,j at a closed point zi,j
lying over si.

Proof. The assumption on S is used to assure us (successively) that the schemes
we are normalizing have locally finitely many irreducible components so that the
statement makes sense. Having said this the lemma follows by the exact same
argument as used to prove Lemma 54.6.4. □

https://stacks.math.columbia.edu/tag/0BFX
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54.7. Vanishing

0AX7 In this section we will often work in the following setting. Recall that a modification
is a proper birational morphism between integral schemes (Morphisms, Definition
29.51.11).

Situation 54.7.1.0AX8 Here (A,m, κ) be a local Noetherian normal domain of dimension
2. Let s be the closed point of S = Spec(A) and U = S \ {s}. Let f : X → S be a
modification. We denote C1, . . . , Cr the irreducible components of the special fibre
Xs of f .

By Varieties, Lemma 33.17.3 the morphism f defines an isomorphism f−1(U)→ U .
The special fibreXs is proper over Spec(κ) and has dimension at most 1 by Varieties,
Lemma 33.19.3. By Stein factorization (More on Morphisms, Lemma 37.53.6) we
have f∗OX = OS and the special fibre Xs is geometrically connected over κ. If Xs

has dimension 0, then f is finite (More on Morphisms, Lemma 37.44.2) and hence
an isomorphism (Morphisms, Lemma 29.54.8). We will discard this uninteresting
case and we conclude that dim(Ci) = 1 for i = 1, . . . , r.

Lemma 54.7.2.0B4M In Situation 54.7.1 there exists a U -admissible blowup X ′ → S
which dominates X.

Proof. This is a special case of More on Flatness, Lemma 38.31.4. □

Lemma 54.7.3.0AX9 In Situation 54.7.1 there exists a nonzero f ∈ m such that for every
i = 1, . . . , r there exist

(1) a closed point xi ∈ Ci with xi ̸∈ Cj for j ̸= i,
(2) a factorization f = gifi of f in OX,xi such that gi ∈ mxi maps to a nonzero

element of OCi,xi .

Proof. We will use the observations made following Situation 54.7.1 without further
mention. Pick a closed point xi ∈ Ci which is not in Cj for j ̸= i. Pick gi ∈ mxi
which maps to a nonzero element of OCi,xi . Since the fraction field of A is the
fraction field of OXi,xi we can write gi = ai/bi for some ai, bi ∈ A. Take f =∏
ai. □

Lemma 54.7.4.0AXA In Situation 54.7.1 assume X is normal. Let Z ⊂ X be a nonempty
effective Cartier divisor such that Z ⊂ Xs set theoretically. Then the conormal
sheaf of Z is not trivial. More precisely, there exists an i such that Ci ⊂ Z and
deg(CZ/X |Ci) > 0.

Proof. We will use the observations made following Situation 54.7.1 without further
mention. Let f be a function as in Lemma 54.7.3. Let ξi ∈ Ci be the generic point.
Let Oi be the local ring of X at ξi. Then Oi is a discrete valuation ring. Let ei
be the valuation of f in Oi, so ei > 0. Let hi ∈ Oi be a local equation for Z and
let di be its valuation. Then di ≥ 0. Choose and fix i with di/ei maximal (then
di > 0 as Z is not empty). Replace f by fdi and Z by eiZ. This is permissible,
by the relation OX(eiZ) = OX(Z)⊗ei , the relation between the conormal sheaf
and OX(Z) (see Divisors, Lemmas 31.14.4 and 31.14.2, and since the degree gets
multiplied by ei, see Varieties, Lemma 33.44.7. Let I be the ideal sheaf of Z so that
CZ/X = I|Z . Consider the image f of f in Γ(Z,OZ). By our choices above we see
that f vanishes in the generic points of irreducible components of Z (these are all
generic points of Cj as Z is contained in the special fibre). On the other hand, Z is
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(S1) by Divisors, Lemma 31.15.6. Thus the scheme Z has no embedded associated
points and we conclude that f = 0 (Divisors, Lemmas 31.4.3 and 31.5.6). Hence f
is a global section of I which generates Iξi by construction. Thus the image si of
f in Γ(Ci, I|Ci) is nonzero. However, our choice of f guarantees that si has a zero
at xi. Hence the degree of I|Ci is > 0 by Varieties, Lemma 33.44.12. □

Lemma 54.7.5.0AXB In Situation 54.7.1 assume X is normal and A Nagata. The map
H1(X,OX) −→ H1(f−1(U),OX)

is injective.
Proof. Let 0→ OX → E → OX → 0 be the extension corresponding to a nontrivial
element ξ of H1(X,OX) (Cohomology, Lemma 20.5.1). Let π : P = P(E) → X
be the projective bundle associated to E . The surjection E → OX defines a section
σ : X → P whose conormal sheaf is isomorphic to OX (Divisors, Lemma 31.31.6).
If the restriction of ξ to f−1(U) is trivial, then we get a map E|f−1(U) → Of−1(U)
splitting the injection OX → E . This defines a second section σ′ : f−1(U) → P
disjoint from σ. Since ξ is nontrivial we conclude that σ′ cannot extend to all
of X and be disjoint from σ. Let X ′ ⊂ P be the scheme theoretic image of σ′

(Morphisms, Definition 29.6.2). Picture

X ′

g
  

// P

π

��
f−1(U)

σ′

;;

// X

σ

VV

The morphism P \σ(X)→ X is affine. If X ′∩σ(X) = ∅, then X ′ → X is both affine
and proper, hence finite (Morphisms, Lemma 29.44.11), hence an isomorphism (as
X is normal, see Morphisms, Lemma 29.54.8). This is impossible as mentioned
above.
Let Xν be the normalization of X ′. Since A is Nagata, we see that Xν → X ′ is
finite (Morphisms, Lemmas 29.54.10 and 29.18.2). Let Z ⊂ Xν be the pullback of
the effective Cartier divisor σ(X) ⊂ P . By the above we see that Z is not empty
and is contained in the closed fibre of Xν → S. Since P → X is smooth, we see
that σ(X) is an effective Cartier divisor (Divisors, Lemma 31.22.8). Hence Z ⊂ Xν

is an effective Cartier divisor too. Since the conormal sheaf of σ(X) in P is OX ,
the conormal sheaf of Z in Xν (which is a priori invertible) is OZ by Morphisms,
Lemma 29.31.4. This is impossible by Lemma 54.7.4 and the proof is complete. □

Lemma 54.7.6.0AXC In Situation 54.7.1 assume X is normal and A Nagata. Then
HomD(A)(κ[−1], Rf∗OX)

is zero. This uses D(A) = DQCoh(OS) to think of Rf∗OX as an object of D(A).
Proof. By adjointness of Rf∗ and Lf∗ such a map is the same thing as a map
α : Lf∗κ[−1]→ OX . Note that

Hi(Lf∗κ[−1]) =

 0 if i > 1
OXs if i = 1

some OXs-module if i ≤ 0
Since Hom(H0(Lf∗κ[−1]),OX) = 0 as OX is torsion free, the spectral sequence for
Ext (Cohomology on Sites, Example 21.32.1) implies that HomD(OX)(Lf∗κ[−1],OX)

https://stacks.math.columbia.edu/tag/0AXB
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is equal to Ext1
OX

(OXs ,OX). We conclude that α : Lf∗κ[−1]→ OX is given by an
extension

0→ OX → E → OXs → 0
By Lemma 54.7.5 the pullback of this extension via the surjection OX → OXs is
zero (since this pullback is clearly split over f−1(U)). Thus 1 ∈ OXs lifts to a global
section s of E . Multiplying s by the ideal sheaf I of Xs we obtain an OX -module
map cs : I → OX . Applying f∗ we obtain an A-linear map f∗cs : m → A. Since
A is a Noetherian normal local domain this map is given by multiplication by an
element a ∈ A. Changing s into s − a we find that s is annihilated by I and the
extension is trivial as desired. □

Remark 54.7.7.0B4R Let X be an integral Noetherian normal scheme of dimension 2.
In this case the following are equivalent

(1) X has a dualizing complex ω•
X ,

(2) there is a coherent OX -module ωX such that ωX [n] is a dualizing complex,
where n can be any integer.

This follows from the fact that X is Cohen-Macaulay (Properties, Lemma 28.12.7)
and Duality for Schemes, Lemma 48.23.1. In this situation we will say that ωX
is a dualizing module in accordance with Duality for Schemes, Section 48.22. In
particular, when A is a Noetherian normal local domain of dimension 2, then we say
A has a dualizing module ωA if the above is true. In this case, if X → Spec(A) is a
normal modification, then X has a dualizing module too, see Duality for Schemes,
Example 48.22.1. In this situation we always denote ωX the dualizing module nor-
malized with respect to ωA, i.e., such that ωX [2] is the dualizing complex normalized
relative to ωA[2]. See Duality for Schemes, Section 48.20.

The Grauert-Riemenschneider vanishing of the next proposition is a formal conse-
quence of Lemma 54.7.6 and the general theory of duality.

Proposition 54.7.8 (Grauert-Riemenschneider).0AXD In Situation 54.7.1 assume
(1) X is a normal scheme,
(2) A is Nagata and has a dualizing complex ω•

A.
Let ωX be the dualizing module of X (Remark 54.7.7). Then R1f∗ωX = 0.

Proof. In this proof we will use the identification D(A) = DQCoh(OS) to identify
quasi-coherent OS-modules with A-modules. Moreover, we may assume that ω•

A

is normalized, see Dualizing Complexes, Section 47.16. Since X is a Noetherian
normal 2-dimensional scheme it is Cohen-Macaulay (Properties, Lemma 28.12.7).
Thus ω•

X = ωX [2] (Duality for Schemes, Lemma 48.23.1 and the normalization
in Duality for Schemes, Example 48.22.1). If the proposition is false, then we
can find a nonzero map R1f∗ωX → κ. In other words we obtain a nonzero map
α : Rf∗ω

•
X → κ[1]. Applying RHomA(−, ω•

A) we get a nonzero map
β : κ[−1] −→ Rf∗OX

which is impossible by Lemma 54.7.6. To see that RHomA(−, ω•
A) does what we

said, first note that
RHomA(κ[1], ω•

A) = RHomA(κ, ω•
A)[−1] = κ[−1]

as ω•
A is normalized and we have

RHomA(Rf∗ω
•
X , ω

•
A) = Rf∗RHomOX

(ω•
X , ω

•
X) = Rf∗OX
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The first equality by Duality for Schemes, Example 48.3.9 and the fact that ω•
X =

f !ω•
A by construction, and the second equality because ω•

X is a dualizing complex
for X (which goes back to Duality for Schemes, Lemma 48.17.7). □

54.8. Boundedness

0AXE In this section we begin the discussion which will lead to a reduction to the case of
rational singularities for 2-dimensional schemes.

Lemma 54.8.1.0AXF Let (A,m, κ) be a Noetherian normal local domain of dimension 2.
Consider a commutative diagram

X ′

f ′
##

g
// X

f{{
Spec(A)

where f and f ′ are modifications as in Situation 54.7.1 and X normal. Then we
have a short exact sequence

0→ H1(X,OX)→ H1(X ′,OX′)→ H0(X,R1g∗OX′)→ 0
Also dim(Supp(R1g∗OX′)) = 0 and R1g∗OX′ is generated by global sections.

Proof. We will use the observations made following Situation 54.7.1 without further
mention. As X is normal and g is dominant and birational, we have g∗OX′ = OX ,
see for example More on Morphisms, Lemma 37.53.6. Since the fibres of g have
dimension ≤ 1, we have Rpg∗OX′ = 0 for p > 1, see for example Cohomology
of Schemes, Lemma 30.20.9. The support of R1g∗OX′ is contained in the set of
points of X where the fibres of g′ have dimension ≥ 1. Thus it is contained in
the set of images of those irreducible components C ′ ⊂ X ′

s which map to points
of Xs which is a finite set of closed points (recall that X ′

s → Xs is a morphism
of proper 1-dimensional schemes over κ). Then R1g∗OX′ is globally generated by
Cohomology of Schemes, Lemma 30.9.10. Using the morphism f : X → S and the
references above we find that Hp(X,F) = 0 for p > 1 for any coherent OX -module
F . Hence the short exact sequence of the lemma is a consequence of the Leray
spectral sequence for g and OX′ , see Cohomology, Lemma 20.13.4. □

Lemma 54.8.2.0AXJ Let (A,m, κ) be a local normal Nagata domain of dimension 2.
Let a ∈ A be nonzero. There exists an integer N such that for every modification
f : X → Spec(A) with X normal the A-module

MX,a = Coker(A −→ H0(Z,OZ))
where Z ⊂ X is cut out by a has length bounded by N .

Proof. By the short exact sequence 0→ OX
a−→ OX → OZ → 0 we see that

(54.8.2.1)0AXK MX,a = H1(X,OX)[a]

Here N [a] = {n ∈ N | an = 0} for an A-module N . Thus if a divides b, then
MX,a ⊂ MX,b. Suppose that for some c ∈ A the modules MX,c have bounded
length. Then for every X we have an exact sequence

0→MX,c →MX,c2 →MX,c

https://stacks.math.columbia.edu/tag/0AXF
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where the second arrow is given by multiplication by c. Hence we see that MX,c2

has bounded length as well. Thus it suffices to find a c ∈ A for which the lemma is
true such that a divides cn for some n > 0. By More on Algebra, Lemma 15.125.6
we may assume A/(a) is a reduced ring.
Assume that A/(a) is reduced. Let A/(a) ⊂ B be the normalization of A/(a) in its
quotient ring. Because A is Nagata, we see that Coker(A→ B) is finite. We claim
the length of this finite module is a bound. To see this, consider f : X → Spec(A)
as in the lemma and let Z ′ ⊂ Z be the scheme theoretic closure of Z ∩ f−1(U).
Then Z ′ → Spec(A/(a)) is finite for example by Varieties, Lemma 33.17.2. Hence
Z ′ = Spec(B′) with A/(a) ⊂ B′ ⊂ B. On the other hand, we claim the map

H0(Z,OZ)→ H0(Z ′,OZ′)
is injective. Namely, if s ∈ H0(Z,OZ) is in the kernel, then the restriction
of s to f−1(U) ∩ Z is zero. Hence the image of s in H1(X,OX) vanishes in
H1(f−1(U),OX). By Lemma 54.7.5 we see that s comes from an element s̃ of
A. But by assumption s̃ maps to zero in B′ which implies that s = 0. Putting
everything together we see that MX,a is a subquotient of B′/A, namely not every
element of B′ extends to a global section of OZ , but in any case the length of MX,a

is bounded by the length of B/A. □

In some cases, resolution of singularities reduces to the case of rational singularities.

Definition 54.8.3.0B4N Let (A,m, κ) be a local normal Nagata domain of dimension 2.
(1) We say A defines a rational singularity if for every normal modification

X → Spec(A) we have H1(X,OX) = 0.
(2) We say that reduction to rational singularities is possible for A if the

length of the A-modules
H1(X,OX)

is bounded for all modifications X → Spec(A) with X normal.

The meaning of the language in (2) is explained by Lemma 54.8.5. The following
lemma says roughly speaking that local rings of modifications of Spec(A) with A
defining a rational singularity also define rational singularities.

Lemma 54.8.4.0BG0 Let (A,m, κ) be a local normal Nagata domain of dimension 2
which defines a rational singularity. Let A ⊂ B be a local extension of domains
with the same fraction field which is essentially of finite type such that dim(B) = 2
and B normal. Then B defines a rational singularity.

Proof. Choose a finite type A-algebra C such that B = Cq for some prime q ⊂ C.
After replacing C by the image of C in B we may assume that C is a domain with
fraction field equal to the fraction field of A. Then we can choose a closed immer-
sion Spec(C) → An

A and take the closure in Pn
A to conclude that B is isomorphic

to OX,x for some closed point x ∈ X of a projective modification X → Spec(A).
(Morphisms, Lemma 29.52.1, shows that κ(x) is finite over κ and then Morphisms,
Lemma 29.20.2 shows that x is a closed point.) Let ν : Xν → X be the normal-
ization. Since A is Nagata the morphism ν is finite (Morphisms, Lemma 29.54.10).
Thus Xν is projective over A by More on Morphisms, Lemma 37.50.2. Since
B = OX,x is normal, we see that OX,x = (ν∗OXν )x. Hence there is a unique
point xν ∈ Xν lying over x and OXν ,xν = OX,x. Thus we may assume X is normal
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and projective over A. Let Y → Spec(OX,x) = Spec(B) be a modification with Y
normal. We have to show that H1(Y,OY ) = 0. By Limits, Lemma 32.21.1 we can
find a morphism of schemes g : X ′ → X which is an isomorphism over X \{x} such
that X ′×X Spec(OX,x) is isomorphic to Y . Then g is a modification as it is proper
by Limits, Lemma 32.21.2. The local ring of X ′ at a point of x′ is either isomorphic
to the local ring of X at g(x′) if g(x′) ̸= x and if g(x′) = x, then the local ring of
X ′ at x′ is isomorphic to the local ring of Y at the corresponding point. Hence we
see that X ′ is normal as both X and Y are normal. Thus H1(X ′,OX′) = 0 by our
assumption on A. By Lemma 54.8.1 we have R1g∗OX′ = 0. Clearly this means
that H1(Y,OY ) = 0 as desired. □

Lemma 54.8.5.0B4P Let (A,m, κ) be a local normal Nagata domain of dimension 2.
If reduction to rational singularities is possible for A, then there exists a finite
sequence of normalized blowups

X = Xn → Xn−1 → . . .→ X1 → X0 = Spec(A)
in closed points such that for any closed point x ∈ X the local ring OX,x defines
a rational singularity. In particular X → Spec(A) is a modification and X is a
normal scheme projective over A.

Proof. We choose a modificationX → Spec(A) withX normal which maximizes the
length of H1(X,OX). By Lemma 54.8.1 for any further modification g : X ′ → X
with X ′ normal we have R1g∗OX′ = 0 and H1(X,OX) = H1(X ′,OX′).
Let x ∈ X be a closed point. We will show that OX,x defines a rational singularity.
Let Y → Spec(OX,x) be a modification with Y normal. We have to show that
H1(Y,OY ) = 0. By Limits, Lemma 32.21.1 we can find a morphism of schemes
g : X ′ → X which is an isomorphism over X \ {x} such that X ′ ×X Spec(OX,x) is
isomorphic to Y . Then g is a modification as it is proper by Limits, Lemma 32.21.2.
The local ring of X ′ at a point of x′ is either isomorphic to the local ring of X at
g(x′) if g(x′) ̸= x and if g(x′) = x, then the local ring of X ′ at x′ is isomorphic
to the local ring of Y at the corresponding point. Hence we see that X ′ is normal
as both X and Y are normal. By maximality we have R1g∗OX′ = 0 (see first
paragraph). Clearly this means that H1(Y,OY ) = 0 as desired.
The conclusion is that we’ve found one normal modification X of Spec(A) such
that the local rings of X at closed points all define rational singularities. Then we
choose a sequence of normalized blowups Xn → . . .→ X1 → Spec(A) such that Xn

dominates X, see Lemma 54.5.3. For a closed point x′ ∈ Xn mapping to x ∈ X we
can apply Lemma 54.8.4 to the ring map OX,x → OXn,x′ to see that OXn,x′ defines
a rational singularity. □

Lemma 54.8.6.0AXL Let A → B be a finite injective local ring map of local normal
Nagata domains of dimension 2. Assume that the induced extension of fraction
fields is separable. If reduction to rational singularities is possible for A then it is
possible for B.

Proof. Let n be the degree of the fraction field extension L/K. Let TraceL/K :
L → K be the trace. Since the extension is finite separable the trace pairing
(h, g) 7→ TraceL/K(fg) is a nondegenerate bilinear form on L over K. See Fields,
Lemma 9.20.7. Pick b1, . . . , bn ∈ B which form a basis of L over K. By the above
d = det(TraceL/K(bibj)) ∈ A is nonzero.
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Let Y → Spec(B) be a modification with Y normal. We can find a U -admissible
blowup X ′ of Spec(A) such that the strict transform Y ′ of Y is finite over X ′, see
More on Flatness, Lemma 38.31.2. Picture

Y ′

��

// Y // Spec(B)

��
X ′ // Spec(A)

After replacing X ′ and Y ′ by their normalizations we may assume that X ′ and Y ′

are normal modifications of Spec(A) and Spec(B). In this way we reduce to the
case where there exists a commutative diagram

Y

π

��

g
// Spec(B)

��
X

f // Spec(A)

with X and Y normal modifications of Spec(A) and Spec(B) and π finite.

The trace map on L over K extends to a map of OX -modules Trace : π∗OY → OX .
Consider the map

Φ : π∗OY −→ O⊕n
X , s 7−→ (Trace(b1s), . . . ,Trace(bns))

This map is injective (because it is injective in the generic point) and there is a
map

O⊕n
X −→ π∗OY , (s1, . . . , sn) 7−→

∑
bisi

whose composition with Φ has matrix Trace(bibj). Hence the cokernel of Φ is
annihilated by d. Thus we see that we have an exact sequence

H0(X,Coker(Φ))→ H1(Y,OY )→ H1(X,OX)⊕n

Since the right hand side is bounded by assumption, it suffices to show that the
d-torsion in H1(Y,OY ) is bounded. This is the content of Lemma 54.8.2 and
(54.8.2.1). □

Lemma 54.8.7.0B4Q Let A be a Nagata regular local ring of dimension 2. Then A
defines a rational singularity.

Proof. (The assumption that A be Nagata is not necessary for this proof, but we’ve
only defined the notion of rational singularity in the case of Nagata 2-dimensional
normal local domains.) Let X → Spec(A) be a modification with X normal. By
Lemma 54.4.2 we can dominate X by a scheme Xn which is the last in a sequence

Xn → Xn−1 → . . .→ X1 → X0 = Spec(A)

of blowing ups in closed points. By Lemma 54.3.2 the schemes Xi are regu-
lar, in particular normal (Algebra, Lemma 10.157.5). By Lemma 54.8.1 we have
H1(X,OX) ⊂ H1(Xn,OXn). Thus it suffices to prove H1(Xn,OXn) = 0. Using
Lemma 54.8.1 again, we see that it suffices to prove R1(Xi → Xi−1)∗OXi = 0 for
i = 1, . . . , n. This follows from Lemma 54.3.4. □
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Lemma 54.8.8.0B4S Let A be a local normal Nagata domain of dimension 2 which has
a dualizing complex ω•

A. If there exists a nonzero d ∈ A such that for all normal
modifications X → Spec(A) the cokernel of the trace map

Γ(X,ωX)→ ωA

is annihilated by d, then reduction to rational singularities is possible for A.

Proof. For X → Spec(A) as in the statement we have to bound H1(X,OX). Let
ωX be the dualizing module of X as in the statement of Grauert-Riemenschneider
(Proposition 54.7.8). The trace map is the map Rf∗ωX → ωA described in Duality
for Schemes, Section 48.7. By Grauert-Riemenschneider we have Rf∗ωX = f∗ωX
thus the trace map indeed produces a map Γ(X,ωX) → ωA. By duality we have
Rf∗ωX = RHomA(Rf∗OX , ωA) (this uses that ωX [2] is the dualizing complex on
X normalized relative to ωA[2], see Duality for Schemes, Lemma 48.20.9 or more
directly Section 48.19 or even more directly Example 48.3.9). The distinguished
triangle

A→ Rf∗OX → R1f∗OX [−1]→ A[1]
is transformed by RHomA(−, ωA) into the short exact sequence

0→ f∗ωX → ωA → Ext2
A(R1f∗OX , ωA)→ 0

(and ExtiA(R1f∗OX , ωA) = 0 for i ̸= 2; this will follow from the discussion below
as well). Since R1f∗OX is supported in {m}, the local duality theorem tells us that

Ext2
A(R1f∗OX , ωA) = Ext0

A(R1f∗OX , ωA[2]) = HomA(R1f∗OX , E)

is the Matlis dual of R1f∗OX (and the other ext groups are zero), see Dualizing
Complexes, Lemma 47.18.4. By the equivalence of categories inherent in Matlis
duality (Dualizing Complexes, Proposition 47.7.8), if R1f∗OX is not annihilated
by d, then neither is the Ext2 above. Hence we see that H1(X,OX) is annihilated
by d. Thus the required boundedness follows from Lemma 54.8.2 and (54.8.2.1). □

Lemma 54.8.9.0B4T Let p be a prime number. Let A be a regular local ring of dimension
2 and characteristic p. Let A0 ⊂ A be a subring such that ΩA/A0 is free of rank
r <∞. Set ωA = ΩrA/A0

. If X → Spec(A) is the result of a sequence of blowups in
closed points, then there exists a map

φX : (ΩrX/ Spec(A0))∗∗ −→ ωX

extending the given identification in the generic point.

Proof. Observe that A is Gorenstein (Dualizing Complexes, Lemma 47.21.3) and
hence the invertible module ωA does indeed serve as a dualizing module. Moreover,
any X as in the lemma has an invertible dualizing module ωX as X is regular (hence
Gorenstein) and proper over A, see Remark 54.7.7 and Lemma 54.3.2. Suppose we
have constructed the map φX : (ΩrX/A0

)∗∗ → ωX and suppose that b : X ′ → X

is a blowup in a closed point. Set ΩrX = (ΩrX/A0
)∗∗ and ΩrX′ = (ΩrX′/A0

)∗∗. Since
ωX′ = b!(ωX) a map ΩrX′ → ωX′ is the same thing as a map Rb∗(ΩrX′)→ ωX . See
discussion in Remark 54.7.7 and Duality for Schemes, Section 48.19. Thus in turn
it suffices to produce a map

Rb∗(ΩrX′) −→ ΩrX
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The sheaves ΩrX′ and ΩrX are invertible, see Divisors, Lemma 31.12.15. Consider
the exact sequence

b∗ΩX/A0 → ΩX′/A0 → ΩX′/X → 0
A local calculation shows that ΩX′/X is isomorphic to an invertible module on the
exceptional divisor E, see Lemma 54.3.6. It follows that either

ΩrX′ ∼= (b∗ΩrX)(E) or ΩrX′ ∼= b∗ΩrX
see Divisors, Lemma 31.15.13. (The second possibility never happens in char-
acteristic zero, but can happen in characteristic p.) In both cases we see that
R1b∗(ΩrX′) = 0 and b∗(ΩrX′) = ΩrX by Lemma 54.3.4. □

Lemma 54.8.10.0B4U Let p be a prime number. Let A be a complete regular local ring
of dimension 2 and characteristic p. Let L/K be a degree p inseparable extension
of the fraction field K of A. Let B ⊂ L be the integral closure of A. Then reduction
to rational singularities is possible for B.

Proof. We have A = k[[x, y]]. Write L = K[x]/(xp− f) for some f ∈ A and denote
g ∈ B the congruence class of x, i.e., the element such that gp = f . By Algebra,
Lemma 10.158.2 we see that df is nonzero in ΩK/Fp . By More on Algebra, Lemma
15.46.5 there exists a subfield kp ⊂ k′ ⊂ k with pe = [k : k′] < ∞ such that df is
nonzero in ΩK/K0 where K0 is the fraction field of A0 = k′[[xp, yp]] ⊂ A. Then

ΩA/A0 = A⊗k Ωk/k′ ⊕Adx⊕Ady

is finite free of rank e+ 2. Set ωA = Ωe+2
A/A0

. Consider the canonical map

Tr : Ωe+2
B/A0

−→ Ωe+2
A/A0

= ωA

of Lemma 54.2.4. By duality this determines a map
c : Ωe+2

B/A0
→ ωB = HomA(B,ωA)

Claim: the cokernel of c is annihilated by a nonzero element of B.
Since df is nonzero in ΩA/A0 we can find η1, . . . , ηe+1 ∈ ΩA/A0 such that θ =
η1∧ . . .∧ ηe+1∧df is nonzero in ωA = Ωe+2

A/A0
. To prove the claim we will construct

elements ωi of Ωe+2
B/A0

, i = 0, . . . , p−1 which are mapped to φi ∈ ωB = HomA(B,ωA)
with φi(gj) = δijθ for j = 0, . . . , p−1. Since {1, g, . . . , gp−1} is a basis for L/K this
proves the claim. We set η = η1∧. . .∧ηe+1 so that θ = η∧df . Set ωi = η∧gp−1−idg.
Then by construction we have

φi(gj) = Tr(gjη ∧ gp−1−idg) = Tr(η ∧ gp−1−i+jdg) = δijθ

by the explicit description of the trace map in Lemma 54.2.2.
Let Y → Spec(B) be a normal modification. Exactly as in the proof of Lemma
54.8.6 we can reduce to the case where Y is finite over a modification X of Spec(A).
By Lemma 54.4.2 we may even assume X → Spec(A) is the result of a sequence of
blowing ups in closed points. Picture:

Y

π

��

g
// Spec(B)

��
X

f // Spec(A)
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We may apply Lemma 54.2.4 to π and we obtain the first arrow in

π∗(Ωe+2
Y/A0

) Tr−→ (Ωe+2
X/A0

)∗∗ φX−−→ ωX

and the second arrow is from Lemma 54.8.9 (because f is a sequence of blowups in
closed points). By duality for the finite morphism π this corresponds to a map

cY : Ωe+2
Y/A0

−→ ωY

extending the map c above. Hence we see that the image of Γ(Y, ωY ) → ωB
contains the image of c. By our claim we see that the cokernel is annihilated by a
fixed nonzero element of B. We conclude by Lemma 54.8.8. □

54.9. Rational singularities

0B4V In this section we reduce from rational singular points to Gorenstein rational sin-
gular points. See [Lip69] and [Mat70b].

Situation 54.9.1.0B4W Here (A,m, κ) be a local normal Nagata domain of dimension
2 which defines a rational singularity. Let s be the closed point of S = Spec(A)
and U = S \ {s}. Let f : X → S be a modification with X normal. We denote
C1, . . . , Cr the irreducible components of the special fibre Xs of f .

Lemma 54.9.2.0B4X In Situation 54.9.1. Let F be a quasi-coherent OX -module. Then
(1) Hp(X,F) = 0 for p ̸∈ {0, 1}, and
(2) H1(X,F) = 0 if F is globally generated.

Proof. Part (1) follows from Cohomology of Schemes, Lemma 30.20.9. If F is
globally generated, then there is a surjection

⊕
i∈I OX → F . By part (1) and

the long exact sequence of cohomology this induces a surjection on H1. Since
H1(X,OX) = 0 as S has a rational singularity, and since H1(X,−) commutes with
direct sums (Cohomology, Lemma 20.19.1) we conclude. □

Lemma 54.9.3.0B4Y In Situation 54.9.1 assume E = Xs is an effective Cartier divisor.
Let I be the ideal sheaf of E. Then H0(X, In) = mn and H1(X, In) = 0.

Proof. We have H0(X,OX) = A, see discussion following Situation 54.7.1. Then
m ⊂ H0(X, I) ⊂ H0(X,OX). The second inclusion is not an equality as Xs ̸= ∅.
Thus H0(X, I) = m. As In = mnOX our Lemma 54.9.2 shows that H1(X, In) = 0.
Choose generators x1, . . . , xµ+1 of m. These define global sections of I which gen-
erate it. Hence a short exact sequence

0→ F → O⊕µ+1
X → I → 0

Then F is a finite locally free OX -module of rank µ and F⊗I is globally generated
by Constructions, Lemma 27.13.9. Hence F⊗In is globally generated for all n ≥ 1.
Thus for n ≥ 2 we can consider the exact sequence

0→ F ⊗ In−1 → (In−1)⊕µ+1 → In → 0
Applying the long exact sequence of cohomology using that H1(X,F ⊗ In−1) = 0
by Lemma 54.9.2 we obtain that every element of H0(X, In) is of the form

∑
xiai

for some ai ∈ H0(X, In−1). This shows that H0(X, In) = mn by induction. □

Lemma 54.9.4.0B4Z In Situation 54.9.1 the blowup of Spec(A) in m is normal.
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Proof. Let X ′ → Spec(A) be the blowup, in other words
X ′ = Proj(A⊕m⊕m2 ⊕ . . .).

is the Proj of the Rees algebra. This in particular shows that X ′ is integral and
that X ′ → Spec(A) is a projective modification. Let X be the normalization of X ′.
Since A is Nagata, we see that ν : X → X ′ is finite (Morphisms, Lemma 29.54.10).
Let E′ ⊂ X ′ be the exceptional divisor and let E ⊂ X be the inverse image. Let
I ′ ⊂ OX′ and I ⊂ OX be their ideal sheaves. Recall that I ′ = OX′(1) (Divisors,
Lemma 31.32.13). Observe that I = ν∗I ′ and that E is an effective Cartier divisor
(Divisors, Lemma 31.13.13). We are trying to show that ν is an isomorphism. As
ν is finite, it suffices to show that OX′ → ν∗OX is an isomorphism. If not, then we
can find an n ≥ 0 such that

H0(X ′, (I ′)n) ̸= H0(X ′, (ν∗OX)⊗ (I ′)n)
for example because we can recover quasi-coherent OX′ -modules from their asso-
ciated graded modules, see Properties, Lemma 28.28.3. By the projection formula
we have

H0(X ′, (ν∗OX)⊗ (I ′)n) = H0(X, ν∗(I ′)n) = H0(X, In) = mn

the last equality by Lemma 54.9.3. On the other hand, there is clearly an injection
mn → H0(X ′, (I ′)n). Since H0(X ′, (I ′)n) is torsion free we conclude equality holds
for all n, hence X = X ′. □

Lemma 54.9.5.0B63 In Situation 54.9.1. Let X be the blowup of Spec(A) in m. Let
E ⊂ X be the exceptional divisor. With OX(1) = I as usual and OE(1) = OX(1)|E
we have

(1) E is a proper Cohen-Macaulay curve over κ.
(2) OE(1) is very ample
(3) deg(OE(1)) ≥ 1 and equality holds only if A is a regular local ring,
(4) H1(E,OE(n)) = 0 for n ≥ 0, and
(5) H0(E,OE(n)) = mn/mn+1 for n ≥ 0.

Proof. Since OX(1) is very ample by construction, we see that its restriction to the
special fibre E is very ample as well. By Lemma 54.9.4 the scheme X is normal.
Then E is Cohen-Macaulay by Divisors, Lemma 31.15.6. Lemma 54.9.3 applies and
we obtain (4) and (5) from the exact sequences

0→ In+1 → In → i∗OE(n)→ 0
and the long exact cohomology sequence. In particular, we see that

deg(OE(1)) = χ(E,OE(1))− χ(E,OE) = dim(m/m2)− 1
by Varieties, Definition 33.44.1. Thus (3) follows as well. □

Lemma 54.9.6.0BBU In Situation 54.9.1 assume A has a dualizing complex ω•
A. With

ωX the dualizing module of X, the trace map H0(X,ωX)→ ωA is an isomorphism
and consequently there is a canonical map f∗ωA → ωX .

Proof. By Grauert-Riemenschneider (Proposition 54.7.8) we see that Rf∗ωX =
f∗ωX . By duality we have a short exact sequence

0→ f∗ωX → ωA → Ext2
A(R1f∗OX , ωA)→ 0
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(for example see proof of Lemma 54.8.8) and since A defines a rational singularity
we obtain f∗ωX = ωA. □

Lemma 54.9.7.0B64 In Situation 54.9.1 assume A has a dualizing complex ω•
A and is

not regular. Let X be the blowup of Spec(A) in m with exceptional divisor E ⊂ X.
Let ωX be the dualizing module of X. Then

(1) ωE = ωX |E ⊗OE(−1),
(2) H1(X,ωX(n)) = 0 for n ≥ 0,
(3) the map f∗ωA → ωX of Lemma 54.9.6 is surjective.

Proof. We will use the results of Lemma 54.9.5 without further mention. Observe
that ωE = ωX |E ⊗ OE(−1) by Duality for Schemes, Lemmas 48.14.2 and 48.9.7.
Thus ωX |E = ωE(1). Consider the short exact sequences

0→ ωX(n+ 1)→ ωX(n)→ i∗ωE(n+ 1)→ 0
By Algebraic Curves, Lemma 53.6.4 we see that H1(E,ωE(n + 1)) = 0 for n ≥ 0.
Thus we see that the maps

. . .→ H1(X,ωX(2))→ H1(X,ωX(1))→ H1(X,ωX)
are surjective. Since H1(X,ωX(n)) is zero for n ≫ 0 (Cohomology of Schemes,
Lemma 30.16.2) we conclude that (2) holds.
By Algebraic Curves, Lemma 53.6.7 we see that ωX |E = ωE ⊗ OE(1) is globally
generated. Since we seen above that H1(X,ωX(1)) = 0 the map H0(X,ωX) →
H0(E,ωX |E) is surjective. We conclude that ωX is globally generated hence (3)
holds because Γ(X,ωX) = ωA is used in Lemma 54.9.6 to define the map. □

Lemma 54.9.8.0BBV Let (A,m, κ) be a local normal Nagata domain of dimension 2
which defines a rational singularity. Assume A has a dualizing complex. Then
there exists a finite sequence of blowups in singular closed points

X = Xn → Xn−1 → . . .→ X1 → X0 = Spec(A)
such that Xi is normal for each i and such that the dualizing sheaf ωX of X is an
invertible OX -module.

Proof. The dualizing module ωA is a finite A-module whose stalk at the generic
point is invertible. Namely, ωA⊗AK is a dualizing module for the fraction field K
of A, hence has rank 1. Thus there exists a blowup b : Y → Spec(A) such that the
strict transform of ωA with respect to b is an invertible OY -module, see Divisors,
Lemma 31.35.3. By Lemma 54.5.3 we can choose a sequence of normalized blowups

Xn → Xn−1 → . . .→ X1 → Spec(A)
such that Xn dominates Y . By Lemma 54.9.4 and arguing by induction each
Xi → Xi−1 is simply a blowing up.
We claim that ωXn is invertible. Since ωXn is a coherent OXn -module, it suffices
to see its stalks are invertible modules. If x ∈ Xn is a regular point, then this
is clear from the fact that regular schemes are Gorenstein (Dualizing Complexes,
Lemma 47.21.3). If x is a singular point of Xn, then each of the images xi ∈ Xi of
x is a singular point (because the blowup of a regular point is regular by Lemma
54.3.2). Consider the canonical map f∗

nωA → ωXn of Lemma 54.9.6. For each i the
morphism Xi+1 → Xi is either a blowup of xi or an isomorphism at xi. Since xi is
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always a singular point, it follows from Lemma 54.9.7 and induction that the maps
f∗
i ωA → ωXi is always surjective on stalks at xi. Hence

(f∗
nωA)x −→ ωXn,x

is surjective. On the other hand, by our choice of b the quotient of f∗
nωA by its

torsion submodule is an invertible module L. Moreover, the dualizing module is
torsion free (Duality for Schemes, Lemma 48.22.3). It follows that Lx ∼= ωXn,x and
the proof is complete. □

54.10. Formal arcs

0BG1 Let X be a locally Noetherian scheme. In this section we say that a formal arc
in X is a morphism a : T → X where T is the spectrum of a complete discrete
valuation ring R whose residue field κ is identified with the residue field of the
image p of the closed point of Spec(R). Let us say that the formal arc a is centered
at p in this case. We say the formal arc T → X is nonsingular if the induced map
mp/m

2
p → mR/m

2
R is surjective.

Let a : T → X, T = Spec(R) be a nonsingular formal arc centered at a closed point
p of X. Assume X is locally Noetherian. Let b : X1 → X be the blowing up of X at
x. Since a is nonsingular, we see that there is an element f ∈ mp which maps to a
uniformizer in R. In particular, we find that the generic point of T maps to a point
of X not equal to p. In other words, with K the fraction field of R, the restriction
of a defines a morphism Spec(K) → X \ {p}. Since the morphism b is proper and
an isomorphism over X \ {x} we can apply the valuative criterion of properness to
obtain a unique morphism a1 making the following diagram commute

T
a1
//

a
  

X1

b

��
X

Let p1 ∈ X1 be the image of the closed point of T . Observe that p1 is a closed
point as it is a κ = κ(p)-rational point on the fibre of X1 → X over x. Since we
have a factorization

OX,x → OX1,p1 → R

we see that a1 is a nonsingular formal arc as well.
We can repeat the process and obtain a sequence of blowing ups

T

a

�� a1 %% a2
**

a3

,,(X, p) (X1, p1)oo (X2, p2)oo (X3, p3)oo . . .oo

This kind of sequence of blowups can be characterized as follows.

Lemma 54.10.1.0BG2 Let X be a locally Noetherian scheme. Let
(X, p) = (X0, p0)← (X1, p1)← (X2, p2)← (X3, p3)← . . .

be a sequence of blowups such that
(1) pi is closed, maps to pi−1, and κ(pi) = κ(pi−1),
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(2) there exists an x1 ∈ mp whose image in mpi , i > 0 defines the exceptional
divisor Ei ⊂ Xi.

Then the sequence is obtained from a nonsingular arc a : T → X as above.

Proof. Let us write On = OXn,pn and O = OX,p. Denote m ⊂ O and mn ⊂ On the
maximal ideals.
We claim that xt1 ̸∈ mt+1

n . Namely, if this were the case, then in the local ring
On+1 the element xt1 would be in the ideal of (t + 1)En+1. This contradicts the
assumption that x1 defines En+1.
For every n choose generators yn,1, . . . , yn,tn for mn. As mnOn+1 = x1On+1 by
assumption (2), we can write yn,i = an,ix1 for some an,i ∈ On+1. Since the map
On → On+1 defines an isomorphism on residue fields by (1) we can choose cn,i ∈ On
having the same residue class as an,i. Then we see that

mn = (x1, zn,1, . . . , zn,tn), zn,i = yn,i − cn,ix1

and the elements zn,i map to elements of m2
n+1 in On+1.

Let us consider
Jn = Ker(O → On/mn+1

n )
We claim that O/Jn has length n+1 and that O/(x1)+Jn equals the residue field.
For n = 0 this is immediate. Assume the statement holds for n. Let f ∈ Jn. Then
in On we have

f = axn+1
1 + xn1A1(zn,i) + xn−1

1 A2(zn,i) + . . .+An+1(zn,i)
for some a ∈ On and some Ai homogeneous of degree i with coefficients in On.
Since O → On identifies residue fields, we may choose a ∈ O (argue as in the
construction of zn,i above). Taking the image in On+1 we see that f and axn+1

1
have the same image modulo mn+2

n+1. Since xn+1
n ̸∈ mn+2

n+1 it follows that Jn/Jn+1
has length 1 and the claim is true.
Consider R = limO/Jn. This is a quotient of the m-adic completion of O hence
it is a complete Noetherian local ring. On the other hand, it is not finite length
and x1 generates the maximal ideal. Thus R is a complete discrete valuation ring.
The map O → R lifts to a local homomorphism On → R for every n. There
are two ways to show this: (1) for every n one can use a similar procedure to
construct On → Rn and then one can show that O → On → Rn factors through an
isomorphism R→ Rn, or (2) one can use Divisors, Lemma 31.32.6 to show that On
is a localization of a repeated affine blowup algebra to explicitly construct a map
On → R. Having said this it is clear that our sequence of blowups comes from the
nonsingular arc a : T = Spec(R)→ X. □

The following lemma is a kind of Néron desingularization lemma.

Lemma 54.10.2.0BG3 Let (A,m, κ) be a Noetherian local domain of dimension 2. Let
A → R be a surjection onto a complete discrete valuation ring. This defines a
nonsingular arc a : T = Spec(R)→ Spec(A). Let

Spec(A) = X0 ← X1 ← X2 ← X3 ← . . .

be the sequence of blowing ups constructed from a. If Ap is a regular local ring
where p = Ker(A→ R), then for some i the scheme Xi is regular at xi.
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Proof. Let x1 ∈ m map to a uniformizer of R. Observe that κ(p) = K is the fraction
field of R. Write p = (x2, . . . , xr) with r minimal. If r = 2, then m = (x1, x2) and A
is regular and the lemma is true. Assume r > 2. After renumbering if necessary, we
may assume that x2 maps to a uniformizer of Ap. Then p/p2 + (x2) is annihilated
by a power of x1. For i > 2 we can find ni ≥ 0 and ai ∈ A such that

xni1 xi − aix2 =
∑

2≤j≤k
ajkxjxk

for some ajk ∈ A. If ni = 0 for some i, then we can remove xi from the list of
generators of p and we win by induction on r. If for some i the element ai is a
unit, then we can remove x2 from the list of generators of p and we win in the same
manner. Thus either ai ∈ p or ai = uix

m1
1 mod p for some m1 > 0 and unit ui ∈ A.

Thus we have either

xni1 xi =
∑

2≤j≤k
ajkxjxk or xni1 xi − uix

mi
1 x2 =

∑
2≤j≤k

ajkxjxk

We will prove that after blowing up the integers ni, mi decrease which will finish
the proof.

Let us see what happens with these equations on the affine blowup algebra A′ =
A[m/x1]. As m = (x1, . . . , xr) we see that A′ is generated over R by yi = xi/x1 for
i ≥ 2. Clearly A → R extends to A′ → R with kernel (y2, . . . , yr). Then we see
that either

xni−1
1 yi =

∑
2≤j≤k

ajkyjyk or xni−1
1 yi − uixm1−1

1 y2 =
∑

2≤j≤k
ajkyjyk

and the proof is complete. □

54.11. Base change to the completion

0BG4 The following simple lemma will turn out to be a useful tool in what follows.

Lemma 54.11.1.0BG5 Let (A,m, κ) be a local ring with finitely generated maximal ideal
m. Let X be a scheme over A. Let Y = X×Spec(A)Spec(A∧) where A∧ is the m-adic
completion of A. For a point q ∈ Y with image p ∈ X lying over the closed point of
Spec(A) the local ring map OX,p → OY,q induces an isomorphism on completions.

Proof. We may assume X is affine. Then we may write X = Spec(B). Let q ⊂
B′ = B ⊗A A∧ be the prime corresponding to q and let p ⊂ B be the prime ideal
corresponding to p. By Algebra, Lemma 10.96.3 we have

B′/(m∧)nB′ = A∧/(m∧)n ⊗A B = A/mn ⊗A B = B/mnB

for all n. Since mB ⊂ p and m∧B′ ⊂ q we see that B/pn and B′/qn are both
quotients of the ring displayed above by the nth power of the same prime ideal.
The lemma follows. □

Lemma 54.11.2.0BG6 Let (A,m, κ) be a Noetherian local ring. Let X → Spec(A) be a
morphism which is locally of finite type. Set Y = X ×Spec(A) Spec(A∧). Let y ∈ Y
with image x ∈ X. Then

(1) if OY,y is regular, then OX,x is regular,
(2) if y is in the closed fibre, then OY,y is regular ⇔ OX,x is regular, and
(3) If X is proper over A, then X is regular if and only if Y is regular.
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Proof. Since A → A∧ is faithfully flat (Algebra, Lemma 10.97.3), we see that
Y → X is flat. Hence (1) by Algebra, Lemma 10.164.4. Lemma 54.11.1 shows the
morphism Y → X induces an isomorphism on complete local rings at points of the
special fibres. Thus (2) by More on Algebra, Lemma 15.43.4. If X is proper over
A, then Y is proper over A∧ (Morphisms, Lemma 29.41.5) and we see every closed
point of X and Y lies in the closed fibre. Thus we see that Y is a regular scheme
if and only if X is so by Properties, Lemma 28.9.2. □

Lemma 54.11.3.0AFK Let (A,m) be a Noetherian local ring with completion A∧. Let
U ⊂ Spec(A) and U∧ ⊂ Spec(A∧) be the punctured spectra. If Y → Spec(A∧) is a
U∧-admissible blowup, then there exists a U -admissible blowup X → Spec(A) such
that Y = X ×Spec(A) Spec(A∧).

Proof. By definition there exists an ideal J ⊂ A∧ such that V (J) = {mA∧} and
such that Y is the blowup of S∧ in the closed subscheme defined by J , see Divisors,
Definition 31.34.1. Since A∧ is Noetherian this implies mnA∧ ⊂ J for some n.
Since A∧/mnA∧ = A/mn we find an ideal mn ⊂ I ⊂ A such that J = IA∧. Let
X → S be the blowup in I. Since A→ A∧ is flat we conclude that the base change
of X is Y by Divisors, Lemma 31.32.3. □

Lemma 54.11.4.0BG7 Let (A,m, κ) be a Nagata local normal domain of dimension 2.
Assume A defines a rational singularity and that the completion A∧ of A is normal.
Then

(1) A∧ defines a rational singularity, and
(2) if X → Spec(A) is the blowing up in m, then for a closed point x ∈ X the

completion OX,x is normal.

Proof. Let Y → Spec(A∧) be a modification with Y normal. We have to show that
H1(Y,OY ) = 0. By Varieties, Lemma 33.17.3 Y → Spec(A∧) is an isomorphism
over the punctured spectrum U∧ = Spec(A∧) \ {m∧}. By Lemma 54.7.2 there
exists a U∧-admissible blowup Y ′ → Spec(A∧) dominating Y . By Lemma 54.11.3
we find there exists a U -admissible blowup X → Spec(A) whose base change to A∧

dominates Y . Since A is Nagata, we can replace X by its normalization after which
X → Spec(A) is a normal modification (but possibly no longer a U -admissible
blowup). Then H1(X,OX) = 0 as A defines a rational singularity. It follows that
H1(X×Spec(A) Spec(A∧),OX×Spec(A)Spec(A∧)) = 0 by flat base change (Cohomology
of Schemes, Lemma 30.5.2 and flatness of A → A∧ by Algebra, Lemma 10.97.2).
We find that H1(Y,OY ) = 0 by Lemma 54.8.1.
Finally, let X → Spec(A) be the blowing up of Spec(A) in m. Then Y = X×Spec(A)
Spec(A∧) is the blowing up of Spec(A∧) in m∧. By Lemma 54.9.4 we see that both
Y and X are normal. On the other hand, A∧ is excellent (More on Algebra,
Proposition 15.52.3) hence every affine open in Y is the spectrum of an excellent
normal domain (More on Algebra, Lemma 15.52.2). Thus for y ∈ Y the ring map
OY,y → O∧

Y,y is regular and by More on Algebra, Lemma 15.42.2 we find that O∧
Y,y

is normal. If x ∈ X is a closed point of the special fibre, then there is a unique
closed point y ∈ Y lying over x. Since OX,x → OY,y induces an isomorphism on
completions (Lemma 54.11.1) we conclude. □

Lemma 54.11.5.0BG8 Let (A,m) be a local Noetherian ring. Let X be a scheme over
A. Assume
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(1) A is analytically unramified (Algebra, Definition 10.162.9),
(2) X is locally of finite type over A, and
(3) X → Spec(A) is étale at the generic points of irreducible components of

X.
Then the normalization of X is finite over X.

Proof. SinceA is analytically unramified it is reduced by Algebra, Lemma 10.162.10.
Since the normalization of X depends only on the reduction of X, we may replace
X by its reduction Xred; note that Xred → X is an isomorphism over the open
U where X → Spec(A) is étale because U is reduced (Descent, Lemma 35.18.1)
hence condition (3) remains true after this replacement. In addition we may and
do assume that X = Spec(B) is affine.
The map

K =
∏

p⊂A minimal
κ(p) −→ K∧ =

∏
p∧⊂A∧ minimal

κ(p∧)

is injective because A → A∧ is faithfully flat (Algebra, Lemma 10.97.3) hence
induces a surjective map between sets of minimal primes (by going down for flat
ring maps, see Algebra, Section 10.41). Both sides are finite products of fields as
our rings are Noetherian. Let L =

∏
q⊂B minimal κ(q). Our assumption (3) implies

that L = B ⊗A K and that K → L is a finite étale ring map (this is true because
A → B is generically finite, for example use Algebra, Lemma 10.122.10 or the
more detailed results in Morphisms, Section 29.51). Since B is reduced we see that
B ⊂ L. This implies that

C = B ⊗A A∧ ⊂ L⊗A A∧ = L⊗K K∧ = M

Then M is the total ring of fractions of C and is a finite product of fields as a finite
separable algebra over K∧. It follows that C is reduced and that its normalization
C ′ is the integral closure of C inM . The normalizationB′ ofB is the integral closure
of B in L. By flatness of A → A∧ we obtain an injective map B′ ⊗A A∧ → M
whose image is contained in C ′. Picture

B′ ⊗A A∧ −→ C ′

As A∧ is Nagata (by Algebra, Lemma 10.162.8), we see that C ′ is finite over
C = B ⊗A A∧ (see Algebra, Lemmas 10.162.8 and 10.162.2). As C is Noetherian,
we conclude that B′⊗AA∧ is finite over C = B⊗AA∧. Therefore by faithfully flat
descent (Algebra, Lemma 10.83.2) we see that B′ is finite over B which is what we
had to show. □

Lemma 54.11.6.0BG9 Let (A,m, κ) be a Noetherian local ring. Let X → Spec(A) be
a morphism which is locally of finite type. Set Y = X ×Spec(A) Spec(A∧). If the
complement of the special fibre in Y is normal, then the normalization Xν → X is
finite and the base change of Xν to Spec(A∧) recovers the normalization of Y .

Proof. There is an immediate reduction to the case where X = Spec(B) is affine
with B a finite type A-algebra. Set C = B ⊗A A∧ so that Y = Spec(C). Since
A → A∧ is faithfully flat, for any prime q ⊂ B there exists a prime r ⊂ C lying
over q. Then Bq → Cr is faithfully flat. Hence if q does not lie over m, then Cr is
normal by assumption on Y and we conclude that Bq is normal by Algebra, Lemma
10.164.3. In this way we see that X is normal away from the special fibre.
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Recall that the complete Noetherian local ring A∧ is Nagata (Algebra, Lemma
10.162.8). Hence the normalization Y ν → Y is finite (Morphisms, Lemma 29.54.10)
and an isomorphism away from the special fibre. Say Y ν = Spec(C ′). Then C → C ′

is finite and an isomorphism away from V (mC). Since B → C is flat and induces
an isomorphism B/mB → C/mC there exists a finite ring map B → B′ whose base
change to C recovers C → C ′. See More on Algebra, Lemma 15.89.16 and Remark
15.89.19. Thus we find a finite morphism X ′ → X which is an isomorphism away
from the special fibre and whose base change recovers Y ν → Y . By the discussion
in the first paragraph we see that X ′ is normal at points not on the special fibre.
For a point x ∈ X ′ on the special fibre we have a corresponding point y ∈ Y ν and a
flat map OX′,x → OY ν ,y. Since OY ν ,y is normal, so is OX′,x, see Algebra, Lemma
10.164.3. Thus X ′ is normal and it follows that it is the normalization of X. □

Lemma 54.11.7.0BGA Let (A,m, κ) be a Noetherian local domain whose completion A∧

is normal. Then given any sequence

Yn → Yn−1 → . . .→ Y1 → Spec(A∧)

of normalized blowups, there exists a sequence of (proper) normalized blowups

Xn → Xn−1 → . . .→ X1 → Spec(A)

whose base change to A∧ recovers the given sequence.

Proof. Given the sequence Yn → . . . → Y1 → Y0 = Spec(A∧) we inductively
construct Xn → . . . → X1 → X0 = Spec(A). The base case is i = 0. Given Xi

whose base change is Yi, let Y ′
i → Yi be the blowing up in the closed point yi ∈ Yi

such that Yi+1 is the normalization of Yi. Since the closed fibres of Yi and Xi are
isomorphic, the point yi corresponds to a closed point xi on the special fibre of Xi.
Let X ′

i → Xi be the blowup of Xi in xi. Then the base change of X ′
i to Spec(A∧)

is isomorphic to Y ′
i . By Lemma 54.11.6 the normalization Xi+1 → X ′

i is finite and
its base change to Spec(A∧) is isomorphic to Yi+1. □

54.12. Rational double points

0BGB In Section 54.9 we argued that resolution of 2-dimensional rational singularities re-
duces to the Gorenstein case. A Gorenstein rational surface singularity is a rational
double point. We will resolve them by explicit computations.

According to the discussion in Examples, Section 110.19 there exists a normal
Noetherian local domain A whose completion is isomorphic to C[[x, y, z]]/(z2). In
this case one could say that A has a rational double point singularity, but on
the other hand, Spec(A) does not have a resolution of singularities. This kind of
behaviour cannot occur if A is a Nagata ring, see Algebra, Lemma 10.162.13.

However, it gets worse as there exists a local normal Nagata domain A whose
completion is C[[x, y, z]]/(yz) and another whose completion is C[[x, y, z]]/(y2−z3).
This is Example 2.5 of [Nis12]. This is why we need to assume the completion of
our ring is normal in this section.

Situation 54.12.1.0BGC Here (A,m, κ) be a Nagata local normal domain of dimension
2 which defines a rational singularity, whose completion is normal, and which is
Gorenstein. We assume A is not regular.
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The arguments in this section will show that repeatedly blowing up singular points
resolves Spec(A) in this situation. We will need the following lemma in the course
of the proof.

Lemma 54.12.2.0BGD Let κ be a field. Let I ⊂ κ[x, y] be an ideal. Let

a+ bx+ cy + dx2 + exy + fy2 ∈ I2

for some a, b, c, d, e, f ∈ k not all zero. If the colength of I in κ[x, y] is > 1, then
a+ bx+ cy + dx2 + exy + fy2 = j(g + hx+ iy)2 for some j, g, h, i ∈ κ.

Proof. Consider the partial derivatives b + 2dx + ey and c + ex + 2fy. By the
Leibniz rules these are contained in I. If one of these is nonzero, then after a linear
change of coordinates, i.e., of the form x 7→ α + βx+ γy and y 7→ δ + ϵx+ ζy, we
may assume that x ∈ I. Then we see that I = (x) or I = (x, F ) with F a monic
polynomial of degree ≥ 2 in y. In the first case the statement is clear. In the second
case observe that we can write any element in I2 in the form

A(x, y)x2 +B(y)xF + C(y)F 2

for some A(x, y) ∈ κ[x, y] and B,C ∈ κ[y]. Thus
a+ bx+ cy + dx2 + exy + fy2 = A(x, y)x2 +B(y)xF + C(y)F 2

and by degree reasons we see that B = C = 0 and A is a constant.
To finish the proof we need to deal with the case that both partial derivatives are
zero. This can only happen in characteristic 2 and then we get

a+ dx2 + fy2 ∈ I2

We may assume f is nonzero (if not, then switch the roles of x and y). After
dividing by f we obtain the case where the characteristic of κ is 2 and

a+ dx2 + y2 ∈ I2

If a and d are squares in κ, then we are done. If not, then there exists a derivation
θ : κ→ κ with θ(a) ̸= 0 or θ(d) ̸= 0, see Algebra, Lemma 10.158.2. We can extend
this to a derivation of κ[x, y] by setting θ(x) = θ(y) = 0. Then we find that

θ(a) + θ(d)x2 ∈ I

The case θ(d) = 0 is absurd. Thus we may assume that α+ x2 ∈ I for some α ∈ κ.
Combining with the above we find that a+ αd+ y2 ∈ I. Hence

J = (α+ x2, a+ αd+ y2) ⊂ I
with codimension at most 2. Observe that J/J2 is free over κ[x, y]/J with basis
α+ x2 and a+ αd+ y2. Thus a+ dx2 + y2 = 1 · (a+ αd+ y2) + d · (α+ x2) ∈ I2

implies that the inclusion J ⊂ I is strict. Thus we find a nonzero element of the
form g + hx + iy + jxy in I. If j = 0, then I contains a linear form and we can
conclude as in the first paragraph. Thus j ̸= 0 and dimκ(I/J) = 1 (otherwise we
could find an element as above in I with j = 0). We conclude that I has the form
(α + x2, β + y2, g + hx + iy + jxy) with j ̸= 0 and has colength 3. In this case
a + dx2 + y2 ∈ I2 is impossible. This can be shown by a direct computation, but
we prefer to argue as follows. Namely, to prove this statement we may assume that
κ is algebraically closed. Then we can do a coordinate change x 7→

√
α + x and

y 7→
√
β+y and assume that I = (x2, y2, g′ +h′x+i′y+jxy) with the same j. Then
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g′ = h′ = i′ = 0 otherwise the colength of I is not 3. Thus we get I = (x2, y2, xy)
and the result is clear. □

Let (A,m, κ) be as in Situation 54.12.1. Let X → Spec(A) be the blowing up of
m in Spec(A). By Lemma 54.9.4 we see that X is normal. All singularities of X
are rational singularities by Lemma 54.8.4. Since ωA = A we see from Lemma
54.9.7 that ωX ∼= OX (see discussion in Remark 54.7.7 for conventions). Thus all
singularities of X are Gorenstein. Moreover, the local rings of X at closed point
have normal completions by Lemma 54.11.4. In other words, by blowing up Spec(A)
we obtain a normal surface X whose singular points are as in Situation 54.12.1. We
will use this below without further mention. (Note: we will see in the course of the
discussion below that there are finitely many of these singular points.)
Let E ⊂ X be the exceptional divisor. We have ωE = OE(−1) by Lemma 54.9.7.
By Lemma 54.9.5 we have κ = H0(E,OE). Thus E is a Gorenstein curve and by
Riemann-Roch as discussed in Algebraic Curves, Section 53.5 we have

χ(E,OE) = 1− g = −(1/2) deg(ωE) = (1/2) deg(OE(1))
where g = dimκH

1(E,OE) ≥ 0. Since deg(OE(1)) is positive by Varieties, Lemma
33.44.15 we find that g = 0 and deg(OE(1)) = 2. It follows that we have

dimκ(mn/mn+1) = 2n+ 1
by Lemma 54.9.5 and Riemann-Roch on E.
Choose x1, x2, x3 ∈ m which map to a basis of m/m2. Because dimκ(m2/m3) = 5
the images of xixj , i ≥ j in this κ-vector space satisfy a relation. In other words,
we can find aij ∈ A, i ≥ j, not all contained in m, such that

a11x
2
1 + a12x1x2 + a13x1x3 + a22x

2
2 + a23x2x3 + a33x

2
3 =

∑
aijkxixjxk

for some aijk ∈ A where i ≤ j ≤ k. Denote a 7→ a the map A→ κ. The quadratic
form q =

∑
aijtitj ∈ κ[t1, t2, t3] is well defined up to multiplication by an element

of κ∗ by our choices. If during the course of our arguments we find that aij = 0 in
κ, then we can subsume the term aijxixj in the right hand side and assume aij = 0;
this operation changes the aijk but not the other ai′j′ .
The blowing up is covered by 3 affine charts corresponding to the “variables”
x1, x2, x3. By symmetry it suffices to study one of the charts. To do this let

A′ = A[m/x1]
be the affine blowup algebra (as in Algebra, Section 10.70). Since x1, x2, x3 generate
m we see that A′ is generated by y2 = x2/x1 and y3 = x3/x1 over A. We will
occasionally use y1 = 1 to simplify formulas. Moreover, looking at our relation
above we find that

a11 + a12y2 + a13y3 + a22y
2
2 + a23y2y3 + a33y

2
3 = x1(

∑
aijkyiyjyk)

in A′. Recall that x1 ∈ A′ defines the exceptional divisor E on our affine open of
X which is therefore scheme theoretically given by

κ[y2, y3]/(a11 + a12y2 + a13y3 + a22y
2
2 + a23y2y3 + a33y

2
3)

In other words, E ⊂ P2
κ = Proj(κ[t1, t2, t3]) is the zero scheme of the quadratic

form q introduced above.
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The quadratic form q is an important invariant of the singularity defined by A. Let
us say we are in case II if q is a square of a linear form times an element of κ∗ and
in case I otherwise. Observe that we are in case II exactly if, after changing our
choice of x1, x2, x3, we have

x2
3 =

∑
aijkxixjxk

in the local ring A.
Let m′ ⊂ A′ be a maximal ideal lying over m with residue field κ′. In other words,
m′ corresponds to a closed point p ∈ E of the exceptional divisor. Recall that the
surjection

κ[y2, y3]→ κ′

has kernel generated by two elements f2, f3 ∈ κ[y2, y3] (see for example Algebra,
Example 10.27.3 or the proof of Algebra, Lemma 10.114.1). Let z2, z3 ∈ A′ map
to f2, f3 in κ[y2, y3]. Then we see that m′ = (x1, z2, z3) because x2 and x3 become
divisible by x1 in A′.
Claim. If X is singular at p, then κ′ = κ or we are in case II. Namely, if A′

m′ is
singular, then dimκ′ m′/(m′)2 = 3 which implies that dimκ′ m′/(m′)2 = 2 where m′

is the maximal ideal of OE,p = OX,p/x1OX,p. This implies that
q(1, y2, y3) = a11 + a12y2 + a13y3 + a22y

2
2 + a23y2y3 + a33y

2
3 ∈ (f2, f3)2

otherwise there would be a relation between the classes of z2 and z3 in m′/(m′)2.
The claim now follows from Lemma 54.12.2.
Resolution in case I. By the claim any singular point of X is κ-rational. Pick such
a singular point p. We may choose our x1, x2, x3 ∈ m such that p lies on the chart
described above and has coordinates y2 = y3 = 0. Since it is a singular point
arguing as in the proof of the claim we find that q(1, y2, y3) ∈ (y2, y3)2. Thus we
can choose a11 = a12 = a13 = 0 and q(t1, t2, t3) = q(t2, t3). It follows that

E = V (q) ⊂ P1
κ

either is the union of two distinct lines meeting at p or is a degree 2 curve with
a unique κ-rational point (small detail omitted; use that q is not a square of a
linear form up to a scalar). In both cases we conclude that X has a unique singular
point p which is κ-rational. We need a bit more information in this case. First,
looking at higher terms in the expression above, we find that a111 = 0 because p is
singular. Then we can write a111 = b111x1 mod (x2, x3) for some b111 ∈ A. Then
the quadratic form at p for the generators x1, y2, y3 of m′ is

q′ = b111t
2
1 + a112t1t2 + a113t1t3 + a22t

2
2 + a23t2t3 + a33t

2
3

We see that E′ = V (q′) intersects the line t1 = 0 in either two points or one point
of degree 2. We conclude that p lies in case I.
Suppose that the blowing up X ′ → X of X at p again has a singular point p′. Then
we see that p′ is a κ-rational point and we can blow up to get X ′′ → X ′. If this
process does not stop we get a sequence of blowings up

Spec(A)← X ← X ′ ← X ′′ ← . . .

We want to show that Lemma 54.10.1 applies to this situation. To do this we
have to say something about the choice of the element x1 of m. Suppose that A
is in case I and that X has a singular point. Then we will say that x1 ∈ m is a
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good coordinate if for any (equivalently some) choice of x2, x3 the quadratic form
q(t1, t2, t3) has the property that q(0, t2, t3) is not a scalar times a square. We
have seen above that a good coordinate exists. If x1 is a good coordinate, then
the singular point p ∈ E of X does not lie on the hypersurface t1 = 0 because
either this does not have a rational point or if it does, then it is not singular on X.
Observe that this is equivalent to the statement that the image of x1 in OX,p cuts
out the exceptional divisor E. Now the computations above show that if x1 is a
good coordinate for A, then x1 ∈ m′OX,p is a good coordinate for p. This of course
uses that the notion of good coordinate does not depend on the choice of x2, x3 used
to do the computation. Hence x1 maps to a good coordinate at p′, p′′, etc. Thus
Lemma 54.10.1 applies and our sequence of blowing ups comes from a nonsingular
arc A → R. Then the map A∧ → R is a surjection. Since the completion of A is
normal, we conclude by Lemma 54.10.2 that after a finite number of blowups

Spec(A∧)← X∧ ← (X ′)∧ ← . . .

the resulting scheme (X(n))∧ is regular. Since (X(n))∧ → X(n) induces isomor-
phisms on complete local rings (Lemma 54.11.1) we conclude that the same is true
for X(n).

Resolution in case II. Here we have

x2
3 =

∑
aijkxixjxk

in A for some choice of generators x1, x2, x3 of m. Then q = t23 and E = 2C where
C is a line. Recall that in A′ we get

y2
3 = x1(

∑
aijkyiyjyk)

Since we know that X is normal, we get a discrete valuation ring OX,ξ at the generic
point ξ of C. The element y3 ∈ A′ maps to a uniformizer of OX,ξ. Since x1 scheme
theoretically cuts out E which is C with multiplicity 2, we see that x1 is a unit
times y2

3 in OX,ξ. Looking at our equality above we conclude that

h(y2) = a111 + a112y2 + a122y
2
2 + a222y

3
2

must be nonzero in the residue field of ξ. Now, suppose that p ∈ C defines a
singular point. Then y3 is zero at p and p must correspond to a zero of h by the
reasoning used in proving the claim above. If h does not have a double zero at
p, then the quadratic form q′ at p is not a square and we conclude that p falls in
case I which we have treated above1. Since the degree of h is 3 we get at most
one singular point p ∈ C falling into case II which is moreover κ-rational. After
changing our choice of x1, x2, x3 we may assume this is the point y2 = y3 = 0.
Then h = a122y

2
2 + a222y

3
2 . Moreover, it still has to be the case that a113 = 0 for

the quadratic form q′ to have the right shape. Thus the local ring OX,p defines a
singularity as in the next paragraph.

1The maximal ideal at p in A′ is generated by y3, x1 and a third element g whose image in
κ[y2] is the prime divisor of h corresponding to p. If this prime divisor doesn’t divide h twice,
then we see that the quadratic form at p looks like

y2
3 − x1((something)x1 + (something)y3 + (unit)g)

and this can never be a square in κ[y3, x1, g].
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The final case we treat is the case where we can choose our generators x1, x2, x3 of
m such that

x2
3 + x1(ax2

2 + bx2x3 + cx2
3) ∈ m4

for some a, b, c ∈ A. This is a subclass of case II. If a = 0, then we can write
a = a1x1 + a2x2 + a3x3 and we get after blowing up

y2
3 + x1(a1x1y

2
2 + a2x1y

3
2 + a3x1y

2
2y3 + by2y3 + cy2

3) = x2
1(
∑

aijklyiyjykyl)

This means that X is not normal2 a contradiction. By the result of the previous
paragraph, if the blowup X has a singular point p which falls in case II, then there
is only one and it is κ-rational. Computing the affine blowup algebras A[ m

x2
] and

A[ m
x3

] the reader easily sees that p cannot be contained the corresponding opens of
X. Thus p is in the spectrum of A[ m

x1
]. Doing the blowing up as before we see that

p must be the point with coordinates y2 = y3 = 0 and the new equation looks like
y2

3 + x1(ay2
2 + by2y3 + cy2

3) ∈ (m′)4

which has the same shape as before and has the property that x1 defines the ex-
ceptional divisor. Thus if the process does not stop we get an infinite sequence of
blowups and on each of these x1 defines the exceptional divisor in the local ring of
the singular point. Thus we can finish the proof using Lemmas 54.10.1 and 54.10.2
and the same reasoning as before.

Lemma 54.12.3.0BGE Let (A,m, κ) be a local normal Nagata domain of dimension
2 which defines a rational singularity, whose completion is normal, and which is
Gorenstein. Then there exists a finite sequence of blowups in singular closed points

Xn → Xn−1 → . . .→ X1 → X0 = Spec(A)
such that Xn is regular and such that each intervening schemes Xi is normal with
finitely many singular points of the same type.

Proof. This is exactly what was proved in the discussion above. □

54.13. Implied properties

0BGF In this section we prove that for a Noetherian integral scheme the existence of a
regular alteration has quite a few consequences. This section should be skipped by
those not interested in “bad” Noetherian rings.

Lemma 54.13.1.0BGG Let Y be a Noetherian integral scheme. Assume there exists an
alteration f : X → Y with X regular. Then the normalization Y ν → Y is finite
and Y has a dense open which is regular.

Proof. It suffices to prove this when Y = Spec(A) where A is a Noetherian domain.
Let B be the integral closure of A in its fraction field. Set C = Γ(X,OX). By
Cohomology of Schemes, Lemma 30.19.2 we see that C is a finite A-module. As X
is normal (Properties, Lemma 28.9.4) we see that C is normal domain (Properties,
Lemma 28.7.9). Thus B ⊂ C and we conclude that B is finite over A as A is
Noetherian.
There exists a nonempty open V ⊂ Y such that f−1V → V is finite, see Morphisms,
Definition 29.51.12. After shrinking V we may assume that f−1V → V is flat

2Namely, the equation shows that you get something singular along the 1-dimensional locus
x1 = y3 = 0 which cannot happen for a normal surface.

https://stacks.math.columbia.edu/tag/0BGE
https://stacks.math.columbia.edu/tag/0BGG
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(Morphisms, Proposition 29.27.1). Thus f−1V → V is faithfully flat. Then V is
regular by Algebra, Lemma 10.164.4. □

Lemma 54.13.2.0BGH Let (A,m) be a local Noetherian ring. Let B ⊂ C be finite A-
algebras. Assume that (a) B is a normal ring, and (b) the m-adic completion C∧

is a normal ring. Then B∧ is a normal ring.

Proof. Consider the commutative diagram

B //

��

C

��
B∧ // C∧

Recall that m-adic completion on the category of finite A-modules is exact because
it is given by tensoring with the flat A-algebra A∧ (Algebra, Lemma 10.97.2). We
will use Serre’s criterion (Algebra, Lemma 10.157.4) to prove that the Noetherian
ring B∧ is normal. Let q ⊂ B∧ be a prime lying over p ⊂ B. If dim(Bp) ≥ 2,
then depth(Bp) ≥ 2 and since Bp → B∧

q is flat we find that depth(B∧
q ) ≥ 2

(Algebra, Lemma 10.163.2). If dim(Bp) ≤ 1, then Bp is either a discrete valuation
ring or a field. In that case Cp is faithfully flat over Bp (because it is finite and
torsion free). Hence B∧

p → C∧
p is faithfully flat and the same holds after localizing

at q. As C∧ and hence any localization is (S2) we conclude that B∧
p is (S2) by

Algebra, Lemma 10.164.5. All in all we find that (S2) holds for B∧. To prove that
B∧ is (R1) we only have to consider primes q ⊂ B∧ with dim(B∧

q ) ≤ 1. Since
dim(B∧

q ) = dim(Bp) + dim(B∧
q /pB

∧
q ) by Algebra, Lemma 10.112.6 we find that

dim(Bp) ≤ 1 and we see that B∧
q → C∧

q is faithfully flat as before. We conclude
using Algebra, Lemma 10.164.6. □

Lemma 54.13.3.0BGI Let (A,m, κ) be a local Noetherian domain. Assume there exists
an alteration f : X → Spec(A) with X regular. Then

(1) there exists a nonzero f ∈ A such that Af is regular,
(2) the integral closure B of A in its fraction field is finite over A,
(3) the m-adic completion of B is a normal ring, i.e., the completions of B at

its maximal ideals are normal domains, and
(4) the generic formal fibre of A is regular.

Proof. Parts (1) and (2) follow from Lemma 54.13.1. We have to redo part of
the proof of that lemma in order to set up notation for the proof of (3). Set
C = Γ(X,OX). By Cohomology of Schemes, Lemma 30.19.2 we see that C is a
finite A-module. As X is normal (Properties, Lemma 28.9.4) we see that C is
normal domain (Properties, Lemma 28.7.9). Thus B ⊂ C and we conclude that
B is finite over A as A is Noetherian. By Lemma 54.13.2 in order to prove (3) it
suffices to show that the m-adic completion C∧ is normal.

By Algebra, Lemma 10.97.8 the completion C∧ is the product of the completions
of C at the prime ideals of C lying over m. There are finitely many of these and
these are the maximal ideals m1, . . . ,mr of C. (The corresponding result for B
explains the final statement of the lemma.) Thus replacing A by Cmi and X by
Xi = X ×Spec(C) Spec(Cmi) we reduce to the case discussed in the next paragraph.
(Note that Γ(Xi,O) = Cmi by Cohomology of Schemes, Lemma 30.5.2.)

https://stacks.math.columbia.edu/tag/0BGH
https://stacks.math.columbia.edu/tag/0BGI
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Here A is a Noetherian local normal domain and f : X → Spec(A) is a regular
alteration with Γ(X,OX) = A. We have to show that the completion A∧ of A is
a normal domain. By Lemma 54.11.2 Y = X ×Spec(A) Spec(A∧) is regular. Since
Γ(Y,OY ) = A∧ by Cohomology of Schemes, Lemma 30.5.2, we conclude that A∧ is
normal as before. Namely, Y is normal by Properties, Lemma 28.9.4. It is connected
because Γ(Y,OY ) = A∧ is local. Hence Y is normal and integral (as connected and
normal implies integral for Noetherian schemes). Thus Γ(Y,OY ) = A∧ is a normal
domain by Properties, Lemma 28.7.9. This proves (3).
Proof of (4). Let η ∈ Spec(A) denote the generic point and denote by a subscript η
the base change to η. Since f is an alteration, the scheme Xη is finite and faithfully
flat over η. Since Y = X ×Spec(A) Spec(A∧) is regular by Lemma 54.11.2 we see
that Yη is regular (as a limit of opens in Y ). Then Yη → Spec(A∧ ⊗A κ(η)) is
finite faithfully flat onto the generic formal fibre. We conclude by Algebra, Lemma
10.164.4. □

54.14. Resolution

0BGJ Here is a definition.

Definition 54.14.1.0BGK Let Y be a Noetherian integral scheme. A resolution of singu-
larities of Y is a modification f : X → Y such that X is regular.

In the case of surfaces we sometimes want a bit more information.

Definition 54.14.2.0BGL Let Y be a 2-dimensional Noetherian integral scheme. We say
Y has a resolution of singularities by normalized blowups if there exists a sequence

Yn → Yn−1 → . . .→ Y1 → Y0 → Y

where
(1) Yi is proper over Y for i = 0, . . . , n,
(2) Y0 → Y is the normalization,
(3) Yi → Yi−1 is a normalized blowup for i = 1, . . . , n, and
(4) Yn is regular.

Observe that condition (1) implies that the normalization Y0 of Y is finite over Y
and that the normalizations used in the normalized blowing ups are finite as well.

Lemma 54.14.3.0BGM Let (A,m, κ) be a Noetherian local ring. Assume A is normal and
has dimension 2. If Spec(A) has a resolution of singularities, then Spec(A) has a
resolution by normalized blowups.

Proof. By Lemma 54.13.3 the completion A∧ of A is normal. By Lemma 54.11.2 we
see that Spec(A∧) has a resolution. By Lemma 54.11.7 any sequence Yn → Yn−1 →
. . . → Spec(A∧) of normalized blowups of comes from a sequence of normalized
blowups Xn → . . . → Spec(A). Moreover if Yn is regular, then Xn is regular by
Lemma 54.11.2. Thus it suffices to prove the lemma in case A is complete.
Assume in addition A is a complete. We will use that A is Nagata (Algebra,
Proposition 10.162.16), excellent (More on Algebra, Proposition 15.52.3), and has
a dualizing complex (Dualizing Complexes, Lemma 47.22.4). Moreover, the same
is true for any ring essentially of finite type over A. If B is a excellent local normal
domain, then the completion B∧ is normal (as B → B∧ is regular and More on

https://stacks.math.columbia.edu/tag/0BGK
https://stacks.math.columbia.edu/tag/0BGL
https://stacks.math.columbia.edu/tag/0BGM
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Algebra, Lemma 15.42.2 applies). We will use this without further mention in the
rest of the proof.

Let X → Spec(A) be a resolution of singularities. Choose a sequence of normalized
blowing ups

Yn → Yn−1 → . . .→ Y1 → Spec(A)
dominating X (Lemma 54.5.3). The morphism Yn → X is an isomorphism away
from finitely many points of X. Hence we can apply Lemma 54.4.2 to find a
sequence of blowing ups

Xm → Xm−1 → . . .→ X

in closed points such that Xm dominates Yn. Diagram

Yn

��

// Spec(A)

Xm
//

==

X

;;

To prove the lemma it suffices to show that a finite number of normalized blowups of
Yn produce a regular scheme. By our diagram above we see that Yn has a resolution
(namely Xm). As Yn is a normal surface this implies that Yn has at most finitely
many singularities y1, . . . , yt (because Xm → Yn is an isomorphism away from the
fibres of dimension 1, see Varieties, Lemma 33.17.3).

Let xa ∈ X be the image of ya. Then OX,xa is regular and hence defines a rational
singularity (Lemma 54.8.7). Apply Lemma 54.8.4 to OX,xa → OYn,ya to see that
OYn,ya defines a rational singularity. By Lemma 54.9.8 there exists a finite sequence
of blowups in singular closed points

Ya,na → Ya,na−1 → . . .→ Spec(OYn,ya)

such that Ya,na is Gorenstein, i.e., has an invertible dualizing module. By (the
essentially trivial) Lemma 54.6.4 with n′ =

∑
na these sequences correspond to a

sequence of blowups
Yn+n′ → Yn+n′−1 → . . .→ Yn

such that Yn+n′ is normal and the local rings of Yn+n′ are Gorenstein. Using the
references given above we can dominate Yn+n′ by a sequence of blowups Xm+m′ →
. . .→ Xm dominating Yn+n′ as in the following

Yn+n′ // Yn

��

// Spec(A)

Xm+m′

::

// Xm
//

>>

X

;;

Thus again Yn+n′ has a finite number of singular points y′
1, . . . , y

′
s, but this time

the singularities are rational double points, more precisely, the local rings OYn+n′ ,y′
b

are as in Lemma 54.12.3. Arguing exactly as above we conclude that the lemma is
true. □

Lemma 54.14.4.0BGN Let (A,m, κ) be a Noetherian complete local ring. Assume A is a
normal domain of dimension 2. Then Spec(A) has a resolution of singularities.

https://stacks.math.columbia.edu/tag/0BGN
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Proof. A Noetherian complete local ring is J-2 (More on Algebra, Proposition
15.48.7), Nagata (Algebra, Proposition 10.162.16), excellent (More on Algebra,
Proposition 15.52.3), and has a dualizing complex (Dualizing Complexes, Lemma
47.22.4). Moreover, the same is true for any ring essentially of finite type over
A. If B is a excellent local normal domain, then the completion B∧ is normal (as
B → B∧ is regular and More on Algebra, Lemma 15.42.2 applies). In other words,
the local rings which we encounter in the rest of the proof will have the required
“excellency” properties required of them.
Choose A0 ⊂ A with A0 a regular complete local ring and A0 → A finite, see
Algebra, Lemma 10.160.11. This induces a finite extension of fraction fields K/K0.
We will argue by induction on [K : K0]. The base case is when the degree is 1 in
which case A0 = A and the result is true.
Suppose there is an intermediate field K0 ⊂ L ⊂ K, K0 ̸= L ̸= K. Let B ⊂ A be
the integral closure of A0 in L. By induction we choose a resolution of singularities
Y → Spec(B). Let X be the normalization of Y ×Spec(B) Spec(A). Picture:

X //

��

Spec(A)

��
Y // Spec(B)

Since A is J-2 the regular locus of X is open. Since X is a normal surface we
conclude that X has at worst finitely many singular points x1, . . . , xn which are
closed points with dim(OX,xi) = 2. For each i let yi ∈ Y be the image. Since
O∧
Y,yi
→ O∧

X,xi
is finite of smaller degree than before we conclude by induction

hypothesis that O∧
X,xi

has resolution of singularities. By Lemma 54.14.3 there is a
sequence

Z∧
i,ni → . . .→ Z∧

i,1 → Spec(O∧
X,xi)

of normalized blowups with Z∧
i,ni

regular. By Lemma 54.11.7 there is a correspond-
ing sequence of normalized blowing ups

Zi,ni → . . .→ Zi,1 → Spec(OX,xi)
Then Zi,ni is a regular scheme by Lemma 54.11.2. By Lemma 54.6.5 we can fit
these normalized blowing ups into a corresponding sequence

Zn → Zn−1 → . . .→ Z1 → X

and of course Zn is regular too (look at the local rings). This proves the induction
step.
Assume there is no intermediate field K0 ⊂ L ⊂ K with K0 ̸= L ̸= K. Then
either K/K0 is separable or the characteristic to K is p and [K : K0] = p. Then
either Lemma 54.8.6 or 54.8.10 implies that reduction to rational singularities is
possible. By Lemma 54.8.5 we conclude that there exists a normal modification
X → Spec(A) such that for every singular point x of X the local ring OX,x defines
a rational singularity. Since A is J-2 we find that X has finitely many singular
points x1, . . . , xn. By Lemma 54.9.8 there exists a finite sequence of blowups in
singular closed points

Xi,ni → Xi,ni−1 → . . .→ Spec(OX,xi)
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such that Xi,ni is Gorenstein, i.e., has an invertible dualizing module. By (the
essentially trivial) Lemma 54.6.4 with n =

∑
na these sequences correspond to a

sequence of blowups
Xn → Xn−1 → . . .→ X

such that Xn is normal and the local rings of Xn are Gorenstein. Again Xn has
a finite number of singular points x′

1, . . . , x
′
s, but this time the singularities are

rational double points, more precisely, the local rings OXn,x′
i

are as in Lemma
54.12.3. Arguing exactly as above we conclude that the lemma is true. □

We finally come to the main theorem of this chapter.

Theorem 54.14.5 (Lipman).0BGP [Lip78, Theorem on
page 151]

Let Y be a two dimensional integral Noetherian
scheme. The following are equivalent

(1) there exists an alteration X → Y with X regular,
(2) there exists a resolution of singularities of Y ,
(3) Y has a resolution of singularities by normalized blowups,
(4) the normalization Y ν → Y is finite, Y ν has finitely many singular points

y1, . . . , ym, and for each yi the completion of OY ν ,yi is normal.

Proof. The implications (3) ⇒ (2) ⇒ (1) are immediate.

Let X → Y be an alteration with X regular. Then Y ν → Y is finite by Lemma
54.13.1. Consider the factorization f : X → Y ν from Morphisms, Lemma 29.54.5.
The morphism f is finite over an open V ⊂ Y ν containing every point of codi-
mension ≤ 1 in Y ν by Varieties, Lemma 33.17.2. Then f is flat over V by Al-
gebra, Lemma 10.128.1 and the fact that a normal local ring of dimension ≤ 2
is Cohen-Macaulay by Serre’s criterion (Algebra, Lemma 10.157.4). Then V is
regular by Algebra, Lemma 10.164.4. As Y ν is Noetherian we conclude that
Y ν \ V = {y1, . . . , ym} is finite. By Lemma 54.13.3 the completion of OY ν ,yi is
normal. In this way we see that (1) ⇒ (4).

Assume (4). We have to prove (3). We may immediately replace Y by its normal-
ization. Let y1, . . . , ym ∈ Y be the singular points. Applying Lemmas 54.14.4 and
54.14.3 we find there exists a finite sequence of normalized blowups

Yi,ni → Yi,ni−1 → . . .→ Spec(O∧
Y,yi)

such that Yi,ni is regular. By Lemma 54.11.7 there is a corresponding sequence of
normalized blowing ups

Xi,ni → . . .→ Xi,1 → Spec(OY,yi)

Then Xi,ni is a regular scheme by Lemma 54.11.2. By Lemma 54.6.5 we can fit
these normalized blowing ups into a corresponding sequence

Xn → Xn−1 → . . .→ X1 → Y

and of course Xn is regular too (look at the local rings). This completes the
proof. □

https://stacks.math.columbia.edu/tag/0BGP
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54.15. Embedded resolution

0BI3 Given a curve on a surface there is a blowing up which turns the curve into a strict
normal crossings divisor. In this section we will use that a one dimensional locally
Noetherian scheme is normal if and only if it is regular (Algebra, Lemma 10.119.7).
We will also use that any point on a locally Noetherian scheme specializes to a
closed point (Properties, Lemma 28.5.9).

Lemma 54.15.1.0BI4 Let Y be a one dimensional integral Noetherian scheme. The
following are equivalent

(1) there exists an alteration X → Y with X regular,
(2) there exists a resolution of singularities of Y ,
(3) there exists a finite sequence Yn → Yn−1 → . . . → Y1 → Y of blowups in

closed points with Yn regular, and
(4) the normalization Y ν → Y is finite.

Proof. The implications (3) ⇒ (2) ⇒ (1) are immediate. The implication (1) ⇒
(4) follows from Lemma 54.13.1. Observe that a normal one dimensional scheme is
regular hence the implication (4) ⇒ (2) is clear as well. Thus it remains to show
that the equivalent conditions (1), (2), and (4) imply (3).
Let f : X → Y be a resolution of singularities. Since the dimension of Y is one we
see that f is finite by Varieties, Lemma 33.17.2. We will construct factorizations

X → . . .→ Y2 → Y1 → Y

where Yi → Yi−1 is a blowing up of a closed point and not an isomorphism as long
as Yi−1 is not regular. Each of these morphisms will be finite (by the same reason
as above) and we will get a corresponding system

f∗OX ⊃ . . . ⊃ f2,∗OY2 ⊃ f1,∗OY1 ⊃ OY
where fi : Yi → Y is the structure morphism. Since Y is Noetherian, this increasing
sequence of coherent submodules must stabilize (Cohomology of Schemes, Lemma
30.10.1) which proves that for some n the scheme Yn is regular as desired. To
construct Yi given Yi−1 we pick a singular closed point yi−1 ∈ Yi−1 and we let Yi →
Yi−1 be the corresponding blowup. Since X is regular of dimension 1 (and hence
the local rings at closed points are discrete valuation rings and in particular PIDs),
the ideal sheaf myi−1 · OX is invertible. By the universal property of blowing up
(Divisors, Lemma 31.32.5) this gives us a factorization X → Yi. Finally, Yi → Yi−1
is not an isomorphism as myi−1 is not an invertible ideal. □

Lemma 54.15.2.0BI5 Let X be a Noetherian scheme. Let Y ⊂ X be an integral closed
subscheme of dimension 1 satisfying the equivalent conditions of Lemma 54.15.1.
Then there exists a finite sequence

Xn → Xn−1 → . . .→ X1 → X

of blowups in closed points such that the strict transform of Y in Xn is a regular
curve.

Proof. Let Yn → Yn−1 → . . .→ Y1 → Y be the sequence of blowups given to us by
Lemma 54.15.1. Let Xn → Xn−1 → . . .→ X1 → X be the corresponding sequence
of blowups of X. This works because the strict transform is the blowup by Divisors,
Lemma 31.33.2. □
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Let X be a locally Noetherian scheme. Let Y, Z ⊂ X be closed subschemes. Let
p ∈ Y ∩ Z be a closed point. Assume that Y is integral of dimension 1 and that
the generic point of Y is not contained in Z. In this situation we can consider the
invariant
(54.15.2.1)0BI6 mp(Y ∩ Z) = lengthOX,p

(OY ∩Z,p)
This is an integer ≥ 1. Namely, if I, J ⊂ OX,p are the ideals corresponding to
Y, Z, then we see that OY ∩Z,p = OX,p/I + J has support equal to {mp} because
we assumed that Y ∩ Z does not contain the unique point of Y specializing to p.
Hence the length is finite by Algebra, Lemma 10.62.3.

Lemma 54.15.3.0BI7 In the situation above let X ′ → X be the blowing up of X in p.
Let Y ′, Z ′ ⊂ X ′ be the strict transforms of Y,Z. If OY,p is regular, then

(1) Y ′ → Y is an isomorphism,
(2) Y ′ meets the exceptional fibre E ⊂ X ′ in one point q and mq(Y ∩E) = 1,
(3) if q ∈ Z ′ too, then mq(Y ∩ Z ′) < mp(Y ∩ Z).

Proof. Since OX,p → OY,p is surjective and OY,p is a discrete valuation ring, we
can pick an element x1 ∈ mp mapping to a uniformizer in OY,p. Choose an affine
open U = Spec(A) containing p such that x1 ∈ A. Let m ⊂ A be the maximal
ideal corresponding to p. Let I, J ⊂ A be the ideals defining Y,Z in Spec(A). After
shrinking U we may assume that m = I+(x1), in other words, that V (x1)∩U∩Y =
{p} scheme theoretically. We conclude that p is an effective Cartier divisor on Y and
since Y ′ is the blowing up of Y in p (Divisors, Lemma 31.33.2) we see that Y ′ → Y
is an isomorphism by Divisors, Lemma 31.32.7. The relationship m = I + (x1)
implies that mn ⊂ I + (xn1 ) hence we can define a map

ψ : A[ m
x1

] −→ A/I

by sending y/xn1 ∈ A[ m
x1

] to the class of a in A/I where a is chosen such that
y ≡ axn1 mod I. Then ψ corresponds to the morphism of Y ∩ U into X ′ over U
given by Y ′ ∼= Y . Since the image of x1 in A[ m

x1
] cuts out the exceptional divisor

we conclude that mq(Y ′, E) = 1. Finally, since J ⊂ m implies that the ideal
J ′ ⊂ A[ m

x1
] certainly contains the elements f/x1 for f ∈ J . Thus if we choose

f ∈ J whose image f in A/I has minimal valuation equal to mp(Y ∩ Z), then we
see that ψ(f/x1) = f/x1 in A/I has valuation one less proving the last part of the
lemma. □

Lemma 54.15.4.0BI8 Let X be a Noetherian scheme. Let Yi ⊂ X, i = 1, . . . , n be an
integral closed subschemes of dimension 1 each satisfying the equivalent conditions
of Lemma 54.15.1. Then there exists a finite sequence

Xn → Xn−1 → . . .→ X1 → X

of blowups in closed points such that the strict transform Y ′
i ⊂ Xn of Yi in Xn are

pairwise disjoint regular curves.

Proof. It follows from Lemma 54.15.2 that we may assume Yi is a regular curve for
i = 1, . . . , n. For every i ̸= j and p ∈ Yi ∩ Yj we have the invariant mp(Yi ∩ Yj)
(54.15.2.1). If the maximum of these numbers is > 1, then we can decrease it
(Lemma 54.15.3) by blowing up in all the points p where the maximum is attained.
If the maximum is 1 then we can separate the curves using the same lemma by
blowing up in all these points p. □
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When our curve is contained on a regular surface we often want to turn it into a
divisor with normal crossings.

Lemma 54.15.5.0BIB Let X be a regular scheme of dimension 2. Let Z ⊂ X be a proper
closed subscheme. There exists a sequence

Xn → . . .→ X1 → X

of blowing ups in closed points such that the inverse image Zn of Z in Xn is an
effective Cartier divisor.

Proof. Let D ⊂ Z be the largest effective Cartier divisor contained in Z. Then
IZ ⊂ ID and the quotient is supported in closed points by Divisors, Lemma 31.15.8.
Thus we can write IZ = IZ′ID where Z ′ ⊂ X is a closed subscheme which set
theoretically consists of finitely many closed points. Applying Lemma 54.4.1 we
find a sequence of blowups as in the statement of our lemma such that IZ′OXn is
invertible. This proves the lemma. □

Lemma 54.15.6.0BIC Let X be a regular scheme of dimension 2. Let Z ⊂ X be a proper
closed subscheme such that every irreducible component Y ⊂ Z of dimension 1
satisfies the equivalent conditions of Lemma 54.15.1. Then there exists a sequence

Xn → . . .→ X1 → X

of blowups in closed points such that the inverse image Zn of Z in Xn is an effective
Cartier divisor supported on a strict normal crossings divisor.

Proof. Let X ′ → X be a blowup in a closed point p. Then the inverse image
Z ′ ⊂ X ′ of Z is supported on the strict transform of Z and the exceptional divisor.
The exceptional divisor is a regular curve (Lemma 54.3.1) and the strict transform
Y ′ of each irreducible component Y is either equal to Y or the blowup of Y at p.
Thus in this process we do not produce additional singular components of dimension
1. Thus it follows from Lemmas 54.15.5 and 54.15.4 that we may assume Z is an
effective Cartier divisor and that all irreducible components Y of Z are regular. (Of
course we cannot assume the irreducible components are pairwise disjoint because
in each blowup of a point of Z we add a new irreducible component to Z, namely
the exceptional divisor.)

Assume Z is an effective Cartier divisor whose irreducible components Yi are regu-
lar. For every i ̸= j and p ∈ Yi∩Yj we have the invariant mp(Yi∩Yj) (54.15.2.1). If
the maximum of these numbers is > 1, then we can decrease it (Lemma 54.15.3) by
blowing up in all the points p where the maximum is attained (note that the “new”
invariants mqi(Y ′

i ∩E) are always 1). If the maximum is 1 then, if p ∈ Y1 ∩ . . .∩Yr
for some r > 2 and not any of the others (for example), then after blowing up p
we see that Y ′

1 , . . . , Y
′
r do not meet in points above p and mqi(Y ′

i , E) = 1 where
Y ′
i ∩E = {qi}. Thus continuing to blowup points where more than 3 of the compo-

nents of Z meet, we reach the situation where for every closed point p ∈ X there is
either (a) no curves Yi passing through p, (b) exactly one curve Yi passing through
p and OYi,p is regular, or (c) exactly two curves Yi, Yj passing through p, the local
rings OYi,p, OYj ,p are regular and mp(Yi∩Yj) = 1. This means that

∑
Yi is a strict

normal crossings divisor on the regular surface X, see Étale Morphisms, Lemma
41.21.2. □
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54.16. Contracting exceptional curves

0C2I Let X be a Noetherian scheme. Let E ⊂ X be a closed subscheme with the following
properties

(1) E is an effective Cartier divisor on X,
(2) there exists a field k and an isomorphism P1

k → E of schemes,
(3) the normal sheaf NE/X pulls back to OP1(−1).

Such a closed subscheme is called an exceptional curve of the first kind.
Let X ′ be a Noetherian scheme and let x ∈ X ′ be a closed point such that OX′,x is
regular of dimension 2. Let b : X → X ′ be the blowing up of X ′ at x. In this case
the exceptional fibre E ⊂ X is an exceptional curve of the first kind. This follows
from Lemma 54.3.1.
Question: Is every exceptional curve of the first kind obtained as the fibre of a
blowing up as above? In other words, does there always exist a proper morphism
of schemes X → X ′ such that E maps to a closed point x ∈ X ′, such that OX′,x is
regular of dimension 2, and such that X is the blowing up of X ′ at x. If true we
say there exists a contraction of E.

Lemma 54.16.1.0C5J Let X be a Noetherian scheme. Let E ⊂ X be an exceptional
curve of the first kind. If a contraction X → X ′ of E exists, then it has the following
universal property: for every morphism φ : X → Y such that φ(E) is a point, there
is a unique factorization X → X ′ → Y of φ.

Proof. Let b : X → X ′ be a contraction of E. As a topological space X ′ is the
quotient of X by the relation identifying all points of E to one point. Namely, b is
proper (Divisors, Lemma 31.32.13 and Morphisms, Lemma 29.43.5) and surjective,
hence defines a submersive map of topological spaces (Topology, Lemma 5.6.5). On
the other hand, the canonical map OX′ → b∗OX is an isomorphism. Namely, this
is clear over the complement of the image point x ∈ X ′ of E and on stalks at x
the map is an isomorphism by part (4) of Lemma 54.3.4. Thus the pair (X ′,OX′)
is constructed from X by taking the quotient as a topological space and endowing
this with b∗OX as structure sheaf.
Given φ we can let φ′ : X ′ → Y be the unique map of topological spaces such that
φ = φ′ ◦ b. Then the map

φ♯ : φ−1OY = b−1((φ′)−1OY )→ OX
is adjoint to a map

(φ′)♯ : (φ′)−1OY → b∗OX = OX′

Then (φ′, (φ′)♯) is a morphism of ringed spaces from X ′ to Y such that we get
the desired factorization. Since φ is a morphism of locally ringed spaces, it follows
that φ′ is too. Namely, the only thing to check is that the map OY,y → OX′,x is
local, where y ∈ Y is the image of E under φ. This is true because an element
f ∈ my pulls back to a function on X which is zero in every point of E hence the
pull back of f to X ′ is a function defined on a neighbourhood of x in X ′ with the
same property. Then it is clear that this function must vanish at x as desired. □

Lemma 54.16.2.0C5K Let X be a Noetherian scheme. Let E ⊂ X be an exceptional
curve of the first kind. If there exists a contraction of E, then it is unique up to
unique isomorphism.
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Proof. This is immediate from the universal property of Lemma 54.16.1. □

Lemma 54.16.3.0C2K Let X be a Noetherian scheme. Let E ⊂ X be an exceptional
curve of the first kind. Let En = nE and denote On its structure sheaf. Then

A = limH0(En,On)
is a complete local Noetherian regular local ring of dimension 2 and Ker(A →
H0(En,On)) is the nth power of its maximal ideal.

Proof. Recall that there exists an isomorphism P1
k → E such that the normal sheaf

of E in X pulls back to O(−1). Then H0(E,OE) = k. We will denote On(iE) the
restriction of the invertible sheaf OX(iE) to En for all n ≥ 1 and i ∈ Z. Recall
that OX(−nE) is the ideal sheaf of En. Hence for d ≥ 0 we obtain a short exact
sequence

0→ OE(−(d+ n)E)→ On+1(−dE)→ On(−dE)→ 0
Since OE(−(d+n)E) = OP1

k
(d+n) the first cohomology group vanishes for all d ≥ 0

and n ≥ 1. We conclude that the transition maps of the system H0(En,On(−dE))
are surjective. For d = 0 we get an inverse system of surjections of rings such that
the kernel of each transition map is a nilpotent ideal. Hence A = limH0(En,On)
is a local ring with residue field k and maximal ideal

lim Ker(H0(En,On)→ H0(E,OE)) = limH0(En,On(−E))
Pick x, y in this kernel mapping to a k-basis of H0(E,OE(−E)) = H0(P1

k,O(1)).
Then xd, xd−1y, . . . , yd are elements of limH0(En,On(−dE)) which map to a basis
of H0(E,OE(−dE)) = H0(P1

k,O(d)). In this way we see that A is separated and
complete with respect to the linear topology defined by the kernels

In = Ker(A −→ H0(En,On))
We have x, y ∈ I1, IdId′ ⊂ Id+d′ and Id/Id+1 is a free k-module on xd, xd−1y, . . . , yd.
We will show that Id = (x, y)d. Namely, if ze ∈ Ie with e ≥ d, then we can write

ze = ae,0x
d + ae,1x

d−1y + . . .+ ae,dy
d + ze+1

where ae,j ∈ (x, y)e−d and ze+1 ∈ Ie+1 by our description of Id/Id+1. Thus starting
with some z = zd ∈ Id we can do this inductively

z =
∑

e≥d

∑
j
ae,jx

d−jyj

with some ae,j ∈ (x, y)e−d. Then aj =
∑
e≥d ae,j exists (by completeness and the

fact that ae,j ∈ Ie−d) and we have z =
∑
ae,jx

d−jyj . Hence Id = (x, y)d. Thus A
is (x, y)-adically complete. Then A is Noetherian by Algebra, Lemma 10.97.5. It
is clear that the dimension is 2 by the description of (x, y)d/(x, y)d+1 and Algebra,
Proposition 10.60.9. Since the maximal ideal is generated by two elements it is
regular. □

Lemma 54.16.4.0C2L Let X be a Noetherian scheme. Let E ⊂ X be an exceptional
curve of the first kind. If there exists a morphism f : X → Y such that

(1) Y is Noetherian,
(2) f is proper,
(3) f maps E to a point y of Y ,
(4) f is quasi-finite at every point not in E,

Then there exists a contraction of E and it is the Stein factorization of f .
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Proof. We apply More on Morphisms, Theorem 37.53.4 to get a Stein factorization
X → X ′ → Y . Then X → X ′ satisfies all the hypotheses of the lemma (some
details omitted). Thus after replacing Y by X ′ we may in addition assume that
f∗OX = OY and that the fibres of f are geometrically connected.

Assume that f∗OX = OY and that the fibres of f are geometrically connected.
Note that y ∈ Y is a closed point as f is closed and E is closed. The restriction
f−1(Y \ {y}) → Y \ {y} of f is a finite morphism (More on Morphisms, Lemma
37.44.1). Hence this restriction is an isomorphism since f∗OX = OY since finite
morphisms are affine. To prove that OY,y is regular of dimension 2 we consider the
isomorphism

O∧
Y,y −→ limH0(X ×Y Spec(OY,y/mny ),O)

of Cohomology of Schemes, Lemma 30.20.7. Let En = nE as in Lemma 54.16.3.
Observe that

En ⊂ X ×Y Spec(OY,y/mny )
because E ⊂ Xy = X ×Y Spec(κ(y)). On the other hand, since E = f−1({y}) set
theoretically (because the fibres of f are geometrically connected), we see that the
scheme theoretic fibre Xy is scheme theoretically contained in En for some n > 0.
Namely, apply Cohomology of Schemes, Lemma 30.10.2 to the coherent OX -module
F = OXy and the ideal sheaf I of E and use that In is the ideal sheaf of En. This
shows that

X ×Y Spec(OY,y/mmy ) ⊂ Enm
Thus the inverse limit displayed above is equal to limH0(En,On) which is a regular
two dimensional local ring by Lemma 54.16.3. Hence OY,y is a two dimensional
regular local ring because its completion is so (More on Algebra, Lemma 15.43.4
and 15.43.1).

We still have to prove that f : X → Y is the blowup b : Y ′ → Y of Y at y. We
encourage the reader to find her own proof. First, we note that Lemma 54.16.3 also
implies that Xy = E scheme theoretically. Since the ideal sheaf of E is invertible,
this shows that f−1my · OX is invertible. Hence we obtain a factorization

X → Y ′ → Y

of the morphism f by the universal property of blowing up, see Divisors, Lemma
31.32.5. Recall that the exceptional fibre of E′ ⊂ Y ′ is an exceptional curve of the
first kind by Lemma 54.3.1. Let g : E → E′ be the induced morphism. Because
for both E′ and E the conormal sheaf is generated by (pullbacks of) a and b,
we see that the canonical map g∗CE′/Y ′ → CE/X (Morphisms, Lemma 29.31.3) is
surjective. Since both are invertible, this map is an isomorphism. Since CE/X has
positive degree, it follows that g cannot be a constant morphism. Hence g has finite
fibres. Hence g is a finite morphism (same reference as above). However, since Y ′

is regular (and hence normal) at all points of E′ and since X → Y ′ is birational
and an isomorphism away from E′, we conclude that X → Y ′ is an isomorphism
by Varieties, Lemma 33.17.3. □

Lemma 54.16.5.0C5L Let b : X → X ′ be the contraction of an exceptional curve of the
first kind E ⊂ X. Then there is a short exact sequence

0→ Pic(X ′)→ Pic(X)→ Z→ 0
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where the first map is pullback by b and the second map sends L to the degree of
L on the exceptional curve E. The sequence is split by the map n 7→ OX(−nE).

Proof. Since E = P1
k we see that the Picard group of E is Z, see Divisors, Lemma

31.28.5. Hence we can think of the last map as L 7→ L|E . The degree of the
restriction of OX(E) to E is −1 by definition of exceptional curves of the first kind.
Combining these remarks we see that it suffices to show that Pic(X ′)→ Pic(X) is
injective with image the invertible sheaves restricting to OE on E.
Given an invertible OX′ -module L′ we claim the map L′ → b∗b

∗L′ is an isomor-
phism. This is clear everywhere except possibly at the image point x ∈ X ′ of
E. To check it is an isomorphism on stalks at x we may replace X ′ by an open
neighbourhood at x and assume L′ is OX′ . Then we have to show that the map
OX′ → b∗OX is an isomorphism. This follows from Lemma 54.3.4 part (4).
Let L be an invertible OX -module with L|E = OE . Then we claim (1) b∗L is
invertible and (2) b∗b∗L → L is an isomorphism. Statements (1) and (2) are clear
over X ′\{x}. Thus it suffices to prove (1) and (2) after base change to Spec(OX′,x).
Computing b∗ commutes with flat base change (Cohomology of Schemes, Lemma
30.5.2) and similarly for b∗ and formation of the adjunction map. But if X ′ is the
spectrum of a regular local ring then L is trivial by the description of the Picard
group in Lemma 54.3.3. Thus the claim is proved.
Combining the claims proved in the previous two paragraphs we see that the map
L 7→ b∗L is an inverse to the map

Pic(X ′) −→ Ker(Pic(X)→ Pic(E))
and the lemma is proved. □

Remark 54.16.6.0C5M Let b : X → X ′ be the contraction of an exceptional curve of the
first kind E ⊂ X. From Lemma 54.16.5 we obtain an identification

Pic(X) = Pic(X ′)⊕ Z
where L corresponds to the pair (L′, n) if and only if L = (b∗L′)(−nE), i.e.,
L(nE) = b∗L′. In fact the proof of Lemma 54.16.5 shows that L′ = b∗L(nE).
Of course the assignment L 7→ L′ is a group homomorphism.

Lemma 54.16.7.0C2J Let X be a Noetherian scheme. Let E ⊂ X be an exceptional
curve of the first kind. Let L be an invertible OX -module. Let n be the integer
such that L|E has degree n viewed as an invertible module on P1. Then

(1) If H1(X,L) = 0 and n ≥ 0, then H1(X,L(iE)) = 0 for 0 ≤ i ≤ n+ 1.
(2) If n ≤ 0, then H1(X,L) ⊂ H1(X,L(E)).

Proof. Observe that L|E = O(n) by Divisors, Lemma 31.28.5. Use induction, the
long exact cohomology sequence associated to the short exact sequence

0→ L → L(E)→ L(E)|E → 0,
and use the fact that H1(P1,O(d)) = 0 for d ≥ −1 and H0(P1,O(d)) = 0 for
d ≤ −1. Some details omitted. □

Lemma 54.16.8.0C2M Let S = Spec(R) be an affine Noetherian scheme. Let X → S be
a proper morphism. Let L be an ample invertible sheaf on X. Let E ⊂ X be an
exceptional curve of the first kind. Then
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(1) there exists a contraction b : X → X ′ of E,
(2) X ′ is proper over S, and
(3) the invertible OX′ -module L′ is ample with L′ as in Remark 54.16.6.

Proof. Let n be the degree of L|E as in Lemma 54.16.7. Observe that n > 0 as L
is ample on E (Varieties, Lemma 33.44.14 and Properties, Lemma 28.26.3). After
replacing L by a power we may assume Hi(X,L⊗e) = 0 for all i > 0 and e > 0,
see Cohomology of Schemes, Lemma 30.17.1. Finally, after replacing L by another
power we may assume there exist global sections t0, . . . , tn of L which define a
closed immersion ψ : X → Pn

S , see Morphisms, Lemma 29.39.4.
Set M = L(nE). Then M|E ∼= OE . Since we have the short exact sequence

0→M(−E)→M→ OE → 0
and since H1(X,M(−E)) is zero (by Lemma 54.16.7 and the fact that n > 0)
we can pick a section sn+1 of M which generates M|E . Finally, denote s0, . . . , sn
the sections of M we get from the sections t0, . . . , tn of L chosen above via L ⊂
L(nE) =M. Combined the sections s0, . . . , sn, sn+1 generate M in every point of
X and therefore define a morphism

φ : X −→ Pn+1
S

over S, see Constructions, Lemma 27.13.1.
Below we will check the conditions of Lemma 54.16.4. Once this is done we see
that the Stein factorization X → X ′ → Pn+1

S of φ is the desired contraction which
proves (1). Moreover, the morphism X ′ → Pn+1

S is finite hence X ′ is proper over
S (Morphisms, Lemmas 29.44.11 and 29.41.4). This proves (2). Observe that X ′

has an ample invertible sheaf. Namely the pullback M′ of OPn+1
S

(1) is ample by
Morphisms, Lemma 29.37.7. Observe that M′ pulls back to M on X (by Con-
structions, Lemma 27.13.1). Finally, M = L(nE). Since in the arguments above
we have replaced the original L by a positive power we conclude that the invert-
ible OX′-module L′ mentioned in (3) of the lemma is ample on X ′ by Properties,
Lemma 28.26.2.
Easy observations: Pn+1

S is Noetherian and φ is proper. Details omitted.
Next, we observe that any point of U = X \E is mapped to the open subscheme W
of Pn+1

S where one of the first n + 1 homogeneous coordinates is nonzero. On the
other hand, any point of E is mapped to a point where the first n+ 1 homogeneous
coordinates are all zero, in particular into the complement of W . Moreover, it is
clear that there is a factorization

U = φ−1(W ) φ|U−−→W
pr−→ Pn

S

of ψ|U where pr is the projection using the first n+ 1 coordinates and ψ : X → Pn
S

is the embedding chosen above. It follows that φ|U : U →W is quasi-finite.
Finally, we consider the map φ|E : E → Pn+1

S . Observe that for any point x ∈ E
the image φ(x) has its first n+ 1 coordinates equal to zero, i.e., the morphism φ|E
factors through the closed subscheme P0

S
∼= S. The morphism E → S = Spec(R)

factors as E → Spec(H0(E,OE))→ Spec(R) by Schemes, Lemma 26.6.4. Since by
assumption H0(E,OE) is a field we conclude that E maps to a point in S ⊂ Pn+1

S

which finishes the proof. □
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Lemma 54.16.9.0C2N Let S be a Noetherian scheme. Let f : X → S be a morphism of
finite type. Let E ⊂ X be an exceptional curve of the first kind which is in a fibre
of f .

(1) If X is projective over S, then there exists a contraction X → X ′ of E
and X ′ is projective over S.

(2) If X is quasi-projective over S, then there exists a contraction X → X ′ of
E and X ′ is quasi-projective over S.

Proof. Both cases follow from Lemma 54.16.8 using standard results on ample
invertible modules and (quasi-)projective morphisms.
Proof of (1). Projectivity of f means that f is proper and there exists an f -ample
invertible module L, see Morphisms, Lemma 29.43.13 and Definition 29.40.1. Let
U ⊂ S be an affine open containing the image of E. By Lemma 54.16.8 there
exists a contraction c : f−1(U) → V ′ of E and an ample invertible module N ′ on
V ′ whose pullback to f−1(U) is equal to L(nE)|f−1(U). Let v ∈ V ′ be the closed
point such that c is the blowing up of v. Then we can glue V ′ and X \ E along
f−1(U) \ E = V ′ \ {v} to get a scheme X ′ over S. The morphisms c and idX\E
glue to a morphism b : X → X ′ which is the contraction of E. The inverse image
of U in X ′ is proper over U . On the other hand, the restriction of X ′ → S to the
complement of the image of v in S is isomorphic to the restriction of X → S to that
open. Hence X ′ → S is proper (as being proper is local on the base by Morphisms,
Lemma 29.41.3). Finally, N ′ and L|X\E restrict to isomorphic invertible modules
over f−1(U)\E = V ′ \{v} and hence glue to an invertible module L′ over X ′. The
restriction of L′ to the inverse image of U in X ′ is ample because this is true for N ′.
For affine opens of S avoiding the image of v, we see that the same is true because
it holds for L. Thus L′ is (X ′ → S)-relatively ample by Morphisms, Lemma 29.37.4
and (1) is proved.
Proof of (2). We can write X as an open subscheme of a scheme X projective over
S by Morphisms, Lemma 29.43.12. By (1) there is a contraction b : X → X

′ and
X

′ is projective over S. Then we let X ′ ⊂ X be the image of X → X
′; this is an

open as b is an isomorphism away from E. Then X → X ′ is the desired contraction.
Note that X ′ is quasi-projective over S as it has an S-relatively ample invertible
module by the construction in the proof of part (1). □

Lemma 54.16.10.0C5N Let S be a Noetherian scheme. Let f : X → S be a separated
morphism of finite type with X regular of dimension 2. Then X is quasi-projective
over S.

Proof. By Chow’s lemma (Cohomology of Schemes, Lemma 30.18.1) there exists a
proper morphism π : X ′ → X which is an isomorphism over a dense open U ⊂ X
such that X ′ → S is H-quasi-projective. By Lemma 54.4.3 there exists a sequence
of blowups in closed points

Xn → . . .→ X1 → X0 = X

and an S-morphism Xn → X ′ extending the rational map U → X ′. Observe
that Xn → X is projective by Divisors, Lemma 31.32.13 and Morphisms, Lemma
29.43.14. This implies that Xn → X ′ is projective by Morphisms, Lemma 29.43.15.
Hence Xn → S is quasi-projective by Morphisms, Lemma 29.40.3 (and the fact
that a projective morphism is quasi-projective, see Morphisms, Lemma 29.43.10).

https://stacks.math.columbia.edu/tag/0C2N
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By Lemma 54.16.9 (and uniqueness of contractions Lemma 54.16.2) we conclude
that Xn−1, . . . , X0 = X are quasi-projective over S as desired. □

Lemma 54.16.11.0C5P Let S be a Noetherian scheme. Let f : X → S be a proper
morphism with X regular of dimension 2. Then X is projective over S.

Proof. This follows from Lemma 54.16.10 and Morphisms, Lemma 29.43.13. □

54.17. Factorization birational maps

0C5Q Proper birational morphisms between nonsingular surfaces are given by sequences
of quadratic transforms.

Lemma 54.17.1.0C5R Let f : X → Y be a proper birational morphism between integral
Noetherian schemes regular of dimension 2. Then f is a sequence of blowups in
closed points.

Proof. Let V ⊂ Y be the maximal open over which f is an isomorphism. Then V
contains all codimension 1 points of V (Varieties, Lemma 33.17.3). Let y ∈ Y be
a closed point not contained in V . Then we want to show that f factors through
the blowup b : Y ′ → Y of Y at y. Namely, if this is true, then at least one (and
in fact exactly one) component of the fibre f−1(y) will map isomorphically onto
the exceptional curve in Y ′ and the number of curves in fibres of X → Y ′ will
be strictly less that the number of curves in fibres of X → Y , so we conclude by
induction. Some details omitted.
By Lemma 54.4.3 we know that there exists a sequence of blowing ups

X ′ = Xn → Xn−1 → . . .→ X1 → X0 = X

in closed points lying over the fibre f−1(y) and a morphism X ′ → Y ′ such that

X ′

f ′

��

// X

f

��
Y ′ // Y

is commutative. We want to show that the morphism X ′ → Y ′ factors through X
and hence we can use induction on n to reduce to the case where X ′ → X is the
blowup of X in a closed point x ∈ X mapping to y.
Let E ⊂ X ′ be the exceptional fibre of the blowing up X ′ → X. If E maps to a
point in Y ′, then we obtain the desired factorization by Lemma 54.16.1. We will
prove that if this is not the case we obtain a contradiction. Namely, if f ′(E) is not
a point, then E′ = f ′(E) must be the exceptional curve in Y ′. Picture

E //

g

��

X ′

f ′

��

// X

f

��
E′ // Y ′ // Y

Arguing as before f ′ is an isomorphism in an open neighbourhood of the generic
point of E′. Hence g : E → E′ is a finite birational morphism. Then the inverse of
g (a rational map) is everywhere defined by Morphisms, Lemma 29.42.5 and g is
an isomorphism. Consider the map

g∗CE′/Y ′ −→ CE/X′
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of Morphisms, Lemma 29.31.3. Since the source and target are invertible modules
of degree 1 on E = E′ = P1

κ and since the map is nonzero (as f ′ is an isomorphism
in the generic point of E) we conclude it is an isomorphism. By Morphisms, Lemma
29.32.18 we conclude that ΩX′/Y ′ |E = 0. This means that f ′ is unramified at every
point of E (Morphisms, Lemma 29.35.14). Hence f ′ is quasi-finite at every point of
E (Morphisms, Lemma 29.35.10). Hence the maximal open V ′ ⊂ Y ′ over which f ′

is an isomorphism contains E′ by Varieties, Lemma 33.17.3. This in turn implies
that the inverse image of y in X ′ is E′. Hence the inverse image of y in X is x.
Hence x ∈ X is in the maximal open over which f is an isomorphism by Varieties,
Lemma 33.17.3. This is a contradiction as we assumed that y is not in this open. □

Lemma 54.17.2.0C5S Let S be a Noetherian scheme. Let X and Y be proper integral
schemes over S which are regular of dimension 2. Then X and Y are S-birational
if and only if there exists a diagram of S-morphisms

X = X0 ← X1 ← . . .← Xn = Ym → . . .→ Y1 → Y0 = Y

where each morphism is a blowup in a closed point.

Proof. Let U ⊂ X be open and let f : U → Y be the given S-rational map
(which is invertible as an S-rational map). By Lemma 54.4.3 we can factor f as
Xn → . . . → X1 → X0 = X and fn : Xn → Y . Since Xn is proper over S and
Y separated over S the morphism fn is proper. Clearly fn is birational. Hence
fn is a composition of contractions by Lemma 54.17.1. We omit the proof of the
converse. □
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CHAPTER 55

Semistable Reduction

0C2P 55.1. Introduction

0C2Q In this chapter we prove the semistable reduction theorem for curves. We will use
the method of Artin and Winters from their paper [AW71].
It turns out that one can prove the semistable reduction theorem for curves without
any results on desingularization. Namely, there is a way to establish the existence
and projectivity of moduli of semistable curves using Geometric Invariant Theory
(GIT) as developed by Mumford, see [MFK94]. This method was championed by
Gieseker who proved the full result in his lecture notes [Gie82]1. This is quite an
amazing feat: it seems somewhat counter intuitive that one can prove such a result
without ever truly studying families of curves over a positive dimensional base.
Historically the first proof of the semistable reduction theorem for curves can be
found in the paper [DM69] by Deligne and Mumford. It proves the theorem by
reducing the problem to the case of Abelian varieties which was already known
at the time thanks to Grothendieck and others, see [GRR72] and [DK73]). The
semistable reduction theorem for abelian varieties uses the theory of Néron models
which in turn rests on a treatment of birational group laws over a base.
The method in the paper by Artin and Winters relies on desingularization of singu-
larities of surfaces to obtain regular models. Given the existence of regular models,
the proof consists in analyzing the possibilities for the special fibre and concluding
using an inequality for torsion in the Picard group of a 1-dimensional scheme over
a field. A similar argument can be found in a paper [Sai87] of Saito who uses étale
cohomology directly and who obtains a stronger result in that he can characterize
semistable reduction in terms of the action of the inertia on ℓ-adic étale cohomology.
A different approach one can use to prove the theorem is to use rigid analytic
geometry techniques. Here we refer the reader to [vdP84] and [AW12].
The paper [Tem10] by Temkin uses valuation theoretic techniques (and proves a lot
more besides); also Appendix A of this paper gives a nice overview of the different
proofs and the relationship with desingularizations of 2 dimensional schemes.
Another overview paper that the reader may wish to consult is [Abb00] written by
Ahmed Abbes.

55.2. Linear algebra

0C5T A couple of lemmas we will use later on.

1Gieseker’s lecture notes are written over an algebraically closed field, but the same method
works over Z.

4502
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Lemma 55.2.1.0C5U [Tau49, Theorem I]Let A = (aij) be a complex n× n matrix.
(1) If |aii| >

∑
j ̸=i |aij | for each i, then det(A) is nonzero.

(2) If there exists a real vector m = (m1, . . . ,mn) with mi > 0 such that
|aiimi| >

∑
j ̸=i |aijmj | for each i, then det(A) is nonzero.

Proof. If A is as in (1) and det(A) = 0, then there is a nonzero vector z with
Az = 0. Choose r with |zr| maximal. Then

|arrzr| = |
∑

k ̸=r
arkzk| ≤

∑
k ̸=r
|ark||zk| ≤ |zr|

∑
k ̸=r
|ark| < |arr||zr|

which is a contradiction. To prove (2) apply (1) to the matrix (aijmj) whose
determinant is m1 . . .mn det(A). □

Lemma 55.2.2.0C5V Let A = (aij) be a real n × n matrix with aij ≥ 0 for i ̸= j. Let
m = (m1, . . . ,mn) be a real vector with mi > 0. For I ⊂ {1, . . . , n} let xI ∈ Rn be
the vector whose ith coordinate is mi if i ∈ I and 0 otherwise. If
(55.2.2.1)0C5W − aiimi ≥

∑
j ̸=i

aijmj

for each i, then Ker(A) is the vector space spanned by the vectors xI such that
(1) aij = 0 for i ∈ I, j ̸∈ I, and
(2) equality holds in (55.2.2.1) for i ∈ I.

Proof. After replacing aij by aijmj we may assume mi = 1 for all i. If I ⊂
{1, . . . , n} such that (1) and (2) are true, then a simple computation shows that xI
is in the kernel of A. Conversely, let x = (x1, . . . , xn) ∈ Rn be a nonzero vector in
the kernel of A. We will show by induction on the number of nonzero coordinates
of x that x is in the span of the vectors xI satisfying (1) and (2). Let I ⊂ {1, . . . , n}
be the set of indices r with |xr| maximal. For r ∈ I we have

|arrxr| = |
∑

k ̸=r
arkxk| ≤

∑
k ̸=r

ark|xk| ≤ |xr|
∑

k ̸=r
ark ≤ |arr||xr|

Thus equality holds everywhere. In particular, we see that ark = 0 if r ∈ I, k ̸∈ I
and equality holds in (55.2.2.1) for r ∈ I. Then we see that we can substract a
suitable multiple of xI from x to decrease the number of nonzero coordinates. □

Lemma 55.2.3.0C5X Let A = (aij) be a symmetric real n × n matrix with aij ≥ 0 for
i ̸= j. Let m = (m1, . . . ,mn) be a real vector with mi > 0. Assume

(1) Am = 0,
(2) there is no proper nonempty subset I ⊂ {1, . . . , n} such that aij = 0 for

i ∈ I and j ̸∈ I.
Then xtAx ≤ 0 with equality if and only if x = qm for some q ∈ R.
First proof. After replacing aij by aijmimj we may assume mi = 1 for all i. Con-
dition (1) means −aii =

∑
j ̸=i aij for all i. Recall that xtAx =

∑
i,j xiaijxj . Then∑

i ̸=j
−aij(xj − xi)2 =

∑
i ̸=j
−aijx2

j + 2aijxixi − aijx2
i

=
∑

j
ajjx

2
j +

∑
i ̸=j

2aijxixi +
∑

j
ajjx

2
i

= 2xtAx
This is clearly ≤ 0. If equality holds, then let I be the set of indices i with xi ̸= x1.
Then aij = 0 for i ∈ I and j ̸∈ I. Thus I = {1, . . . , n} by condition (2) and x is a
multiple of m = (1, . . . , 1). □
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Second proof. The matrix A has real eigenvalues by the spectral theorem. We
claim all the eigenvalues are ≤ 0. Namely, since property (1) means −aiimi =∑
j ̸=i aijmj for all i, we find that the matrix A′ = A − λI for λ > 0 satisfies

|a′
iimi| >

∑
a′
ijmj =

∑
|a′
ijmj | for all i. Hence A′ is invertible by Lemma 55.2.1.

This implies that the symmetric bilinear form xtAy is semi-negative definite, i.e.,
xtAx ≤ 0 for all x. It follows that the kernel of A is equal to the set of vectors
x with xtAx = 0. The description of the kernel in Lemma 55.2.2 gives the final
statement of the lemma. □

Lemma 55.2.4.0C6V Let L be a finite free Z-module endowed with an integral symmetric
bilinear positive definite form ⟨ , ⟩ : L× L → Z. Let A ⊂ L be a submodule with
L/A torsion free. Set B = {b ∈ L | ⟨a, b⟩ = 0, ∀a ∈ A}. Then we have injective
maps

A#/A← L/(A⊕B)→ B#/B

whose cokernels are quotients of L#/L. Here A# = {a′ ∈ A⊗Q | ⟨a, a′⟩ ∈ Z, ∀a ∈
A} and similarly for B and L.

Proof. Observe that L ⊗Q = A ⊗Q ⊕ B ⊗Q because the form is nondegenerate
on A (by positivity). We denote πB : L⊗Q→ B⊗Q the projection. Observe that
πB(x) ∈ B# for x ∈ L because the form is integral. This gives an exact sequence

0→ A→ L
πB−−→ B# → Q→ 0

where Q is the cokernel of L→ B#. Observe that Q is a quotient of L#/L as the
map L# → B# is surjective since it is the Z-linear dual to B → L which is split as
a map of Z-modules. Dividing by A⊕B we get a short exact sequence

0→ L/(A⊕B)→ B#/B → Q→ 0
This proves the lemma. □

Lemma 55.2.5.0C6W Let L0, L1 be a finite free Z-modules endowed with integral sym-
metric bilinear positive definite forms ⟨ , ⟩ : Li × Li → Z. Let d : L0 → L1 and
d∗ : L1 → L0 be adjoint. If ⟨ , ⟩ on L0 is unimodular, then there is an isomorphism

Φ : Coker(d∗d)torsion −→ Im(d)#/ Im(d)
with notation as in Lemma 55.2.4.

Proof. Let x ∈ L0 be an element representing a torsion class in Coker(d∗d). Then
for some a > 0 we can write ax = d∗d(y). For any z ∈ Im(d), say z = d(y′), we
have

⟨(1/a)d(y), z⟩ = ⟨(1/a)d(y),d(y′)⟩ = ⟨x, y′⟩ ∈ Z
Hence (1/a)d(y) ∈ Im(d)#. We define Φ(x) = (1/a)d(y) mod Im(d). We omit the
proof that Φ is well defined, additive, and injective.
To prove Φ is surjective, let z ∈ Im(d)#. Then z defines a linear map L0 → Z by
the rule x 7→ ⟨z,d(x)⟩. Since the pairing on L0 is unimodular by assumption we
can find an x′ ∈ L0 with ⟨x′, x⟩ = ⟨z,d(x)⟩ for all x ∈ L0. In particular, we see that
x′ pairs to zero with Ker(d). Since Im(d∗d) ⊗Q is the orthogonal complement of
Ker(d)⊗Q this means that x′ defines a torsion class in Coker(d∗d). We claim that
Φ(x′) = z. Namely, write ax′ = d∗d(y) for some y ∈ L0 and a > 0. For any x ∈ L0
we get

⟨z,d(x)⟩ = ⟨x′, x⟩ = ⟨(1/a)d∗d(y), x⟩ = ⟨(1/a)d(y),d(x)⟩

https://stacks.math.columbia.edu/tag/0C6V
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Hence z = Φ(x′) and the proof is complete. □

Lemma 55.2.6.0C6X Let A = (aij) be a symmetric n × n integer matrix with aij ≥ 0
for i ̸= j. Let m = (m1, . . . ,mn) be an integer vector with mi > 0. Assume

(1) Am = 0,
(2) there is no proper nonempty subset I ⊂ {1, . . . , n} such that aij = 0 for

i ∈ I and j ̸∈ I.
Let e be the number of pairs (i, j) with i < j and aij > 0. Then for ℓ a prime
number coprime with all aij and mi we have

dimFℓ(Coker(A)[ℓ]) ≤ 1− n+ e

Proof. By Lemma 55.2.3 the rank of A is n− 1. The composition

Z⊕n diag(m1,...,mn)−−−−−−−−−−→ Z⊕n (aij)−−−→ Z⊕n diag(m1,...,mn)−−−−−−−−−−→ Z⊕n

has matrix aijmimj . Since the cokernel of the first and last maps are torsion of
order prime to ℓ by our restriction on ℓ we see that it suffices to prove the lemma
for the matrix with entries aijmimj . Thus we may assume m = (1, . . . , 1).
Assume m = (1, . . . , 1). Set V = {1, . . . , n} and E = {(i, j) | i < j and aij > 0}.
For e = (i, j) ∈ E set ae = aij . Define maps s, t : E → V by setting s(i, j) = i
and t(i, j) = j. Set Z(V ) =

⊕
i∈V Zi and Z(E) =

⊕
e∈E Ze. We define symmetric

positive definite integer valued pairings on Z(V ) and Z(E) by setting
⟨i, i⟩ = 1 for i ∈ V, ⟨e, e⟩ = ae for e ∈ E

and all other pairings zero. Consider the maps

d : Z(V )→ Z(E), i 7−→
∑

e∈E, s(e)=i
e−

∑
e∈E, t(e)=i

e

and
d∗(e) = ae(s(e)− t(e))

A computation shows that
⟨d(x), y⟩ = ⟨x, d∗(y)⟩

in other words, d and d∗ are adjoint. Next we compute

d∗d(i) = d∗(
∑

e∈E, s(e)=i
e−

∑
e∈E, t(e)=i

e)

=
∑

e∈E, s(e)=i
ae(s(e)− t(e))−

∑
e∈E, t(e)=i

ae(s(e)− t(e))

The coefficient of i in d∗d(i) is∑
e∈E, s(e)=i

ae +
∑

e∈E, t(e)=i
ae = −aii

because
∑
j aij = 0 and the coefficient of j ̸= i in d∗d(i) is −aij . Hence Coker(A) =

Coker(d∗d).
Consider the inclusion

Im(d)⊕Ker(d∗) ⊂ Z(E)
The left hand side is an orthogonal direct sum. Clearly Z(E)/Ker(d∗) is torsion
free. We claim Z(E)/ Im(d) is torsion free as well. Namely, say x =

∑
xee ∈ Z(E)

and a > 1 are such that ax = dy for some y =
∑
yii ∈ Z(V ). Then axe =

ys(e)−yt(e). By property (2) we conclude that all yi have the same congruence class

https://stacks.math.columbia.edu/tag/0C6X
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modulo a. Hence we can write y = ay′ + (y1, y1, . . . , y1). Since d(y1, y1, . . . , y1) = 0
we conclude that x = d(y′) which is what we had to show.

Hence we may apply Lemma 55.2.4 to get injective maps

Im(d)#/ Im(d)← Z(E)/(Im(d)⊕Ker(d∗))→ Ker(d∗)#/Ker(d∗)

whose cokernels are annihilated by the product of the ae (which is prime to ℓ).
Since Ker(d∗) is a lattice of rank 1− n+ e we see that the proof is complete if we
prove that there exists an isomorphism

Φ : Mtorsion −→ Im(d)#/ Im(d)

This is proved in Lemma 55.2.5. □

55.3. Numerical types

0C6Y Part of the arguments will involve the combinatorics of the following data structures.

Definition 55.3.1.0C6Z A numerical type T is given by

n,mi, aij , wi, gi

where n ≥ 1 is an integer and mi, aij , wi, gi are integers for 1 ≤ i, j ≤ n subject to
the following conditions

(1) mi > 0, wi > 0, gi ≥ 0,
(2) the matrix A = (aij) is symmetric and aij ≥ 0 for i ̸= j,
(3) there is no proper nonempty subset I ⊂ {1, . . . , n} such that aij = 0 for

i ∈ I, j ̸∈ I,
(4) for each i we have

∑
j aijmj = 0, and

(5) wi|aij .

This is obviously a somewhat annoying type of structure to work with, but it is
exactly what shows up in special fibres of proper regular models of smooth geomet-
rically connected curves. Of course we only care about these types up to reordering
the indices.

Definition 55.3.2.0C70 We say two numerical types n,mi, aij , wi, gi and n′,m′
i, a

′
ij , w

′
i, g

′
i

are equivalent types if there exists a permutation σ of {1, . . . , n} such that mi =
m′
σ(i), aij = a′

σ(i)σ(j), wi = w′
σ(i), and gi = g′

σ(i).

A numerical type has a genus.

Lemma 55.3.3.0C71 Let n,mi, aij , wi, gi be a numerical type. Then the expression

g = 1 +
∑

mi(wi(gi − 1)− 1
2aii)

is an integer.

https://stacks.math.columbia.edu/tag/0C6Z
https://stacks.math.columbia.edu/tag/0C70
https://stacks.math.columbia.edu/tag/0C71


55.3. NUMERICAL TYPES 4507

Proof. To prove g is an integer we have to show that
∑
aiimi is even. This we can

see by computing modulo 2 as follows∑
i
aiimi ≡

∑
i, mi odd

aiimi

≡
∑

i, mi odd

∑
j ̸=i

aijmj

≡
∑

i, mi odd

∑
j ̸=i, mj odd

aijmj

≡
∑

i<j, mi and mj odd
aij(mi +mj)

≡ 0
where we have used that aij = aji and that

∑
j aijmj = 0 for all i. □

Definition 55.3.4.0C72 We say n,mi, aij , wi, gi is a numerical type of genus g if g =
1 +

∑
mi(wi(gi − 1)− 1

2aii) is the integer from Lemma 55.3.3.

We will prove below (Lemma 55.3.14) that the genus is almost always ≥ 0. But
you can have numerical types with negative genus.

Lemma 55.3.5.0C73 Let n,mi, aij , wi, gi be a numerical type of genus g. If n = 1, then
a11 = 0 and g = 1 + m1w1(g1 − 1). Moreover, we can classify all such numerical
types as follows

(1) If g < 0, then g1 = 0 and there are finitely many possible numerical types
of genus g with n = 1 corresponding to factorizations m1w1 = 1− g.

(2) If g = 0, then m1 = 1, w1 = 1, g1 = 0 as in Lemma 55.6.1.
(3) If g = 1, then we conclude g1 = 1 but m1, w1 can be arbitrary positive

integers; this is case (1) of Lemma 55.6.2.
(4) If g > 1, then g1 > 1 and there are finitely many possible numerical types

of genus g with n = 1 corresponding to factorizations m1w1(g1−1) = g−1.

Proof. The lemma proves itself. □

Lemma 55.3.6.0C74 Let n,mi, aij , wi, gi be a numerical type of genus g. If n > 1, then
aii < 0 for all i.

Proof. Lemma 55.2.3 applies to the matrix A. □

Lemma 55.3.7.0C75 Let n,mi, aij , wi, gi be a numerical type of genus g. Assume n > 1.
If i is such that the contribution mi(wi(gi − 1)− 1

2aii) to the genus g is < 0, then
gi = 0 and aii = −wi.

Proof. Follows immediately from Lemma 55.3.6 and wi > 0, gi ≥ 0, and wi|aii. □

Definition 55.3.8.0C76 Let n,mi, aij , wi, gi be a numerical type. We say i is a (−1)-index
if gi = 0 and aii = −wi.

We can “contract” (−1)-indices.

Lemma 55.3.9.0C77 Let n,mi, aij , wi, gi be a numerical type T . Assume n is a (−1)-
index. Then there is a numerical type T ′ given by n′,m′

i, a
′
ij , w

′
i, g

′
i with

(1) n′ = n− 1,
(2) m′

i = mi,
(3) a′

ij = aij − ainajn/ann,

https://stacks.math.columbia.edu/tag/0C72
https://stacks.math.columbia.edu/tag/0C73
https://stacks.math.columbia.edu/tag/0C74
https://stacks.math.columbia.edu/tag/0C75
https://stacks.math.columbia.edu/tag/0C76
https://stacks.math.columbia.edu/tag/0C77
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(4) w′
i = wi/2 if ain/wn even and ain/wi odd and w′

i = wi else,
(5) g′

i = wi
w′
i
(gi − 1) + 1 + a2

in−wnain
2w′

i
wn

.
Moreover, we have g = g′.
Proof. Observe that n > 1 for example by Lemma 55.3.5 and hence n′ ≥ 1. We
check conditions (1) – (5) of Definition 55.3.1 for n′,m′

i, a
′
ij , w

′
i, g

′
i.

Condition (1) is immediate.
Condition (2). Symmetry of A′ = (a′

ij) is immediate and since ann < 0 by Lemma
55.3.6 we see that a′

ij ≥ aij ≥ 0 if i ̸= j.
Condition (3). Suppose that I ⊂ {1, . . . , n − 1} such that a′

ii′ = 0 for i ∈ I and
i′ ∈ {1, . . . , n−1}\I. Then we see that for each i ∈ I and i′ ∈ I ′ we have ainai′n = 0.
Thus either ain = 0 for all i ∈ I and I ⊂ {1, . . . , n} is a contradiction for property
(3) for T , or ai′n = 0 for all i′ ∈ {1, . . . , n − 1} \ I and I ∪ {n} ⊂ {1, . . . , n} is a
contradiction for property (3) of T . Hence (3) holds for T ′.
Condition (4). We compute∑n−1

j=1
a′
ijmj =

∑n−1

j=1
(aijmj −

ainajnmj

ann
) = −ainmn −

ain
ann

(−annmn) = 0

as desired.
Condition (5). We have to show that w′

i divides ainajn/ann. This is clear because
ann = −wn and wn|ajn and wi|ain.
To show that g = g′ we first write

g = 1 +
∑n

i=1
mi(wi(gi − 1)− 1

2aii)

= 1 +
∑n−1

i=1
mi(wi(gi − 1)− 1

2aii)−
1
2mnwn

= 1 +
∑n−1

i=1
mi(wi(gi − 1)− 1

2aii −
1
2ain)

Comparing with the expression for g′ we see that it suffices if

w′
i(g′

i − 1)− 1
2a

′
ii = wi(gi − 1)− 1

2ain −
1
2aii

for i ≤ n− 1. In other words, we have

g′
i = 2wi(gi − 1)− ain − aii + a′

ii + 2w′
i

2w′
i

= wi
w′
i

(gi − 1) + 1 + a2
in − wnain

2w′
iwn

It is elementary to check that this is an integer ≥ 0 if we choose w′
i as in (4). □

Lemma 55.3.10.0C78 Let n,mi, aij , wi, gi be a numerical type. Let e be the number of
pairs (i, j) with i < j and aij > 0. Then the expression gtop = 1− n+ e is ≥ 0.
Proof. If not, then e < n − 1 which means there exists an i such that aij = 0 for
all j ̸= i. This contradicts assumption (3) of Definition 55.3.1. □

Definition 55.3.11.0C79 Let n,mi, aij , wi, gi be a numerical type T . The topological
genus of T is the nonnegative integer gtop = 1− n+ e from Lemma 55.3.10.
We want to bound the genus by the topological genus. However, this will not always
be the case, for example for numerical types with n = 1 as in Lemma 55.3.5. But
it will be true for minimal numerical types which are defined as follows.

https://stacks.math.columbia.edu/tag/0C78
https://stacks.math.columbia.edu/tag/0C79
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Definition 55.3.12.0C7A We say the numerical type n,mi, aij , wi, gi of genus g is minimal
if there does not exist an i with gi = 0 and aii = −wi, in other words, if there does
not exist a (−1)-index.

We will prove that the genus g of a minimal type with n > 1 is greater than or
equal to max(1, gtop).

Lemma 55.3.13.0C7B If n,mi, aij , wi, gi is a minimal numerical type with n > 1, then
g ≥ 1.

Proof. This is true because g = 1+
∑

Φi with Φi = mi(wi(gi−1)− 1
2aii) nonnegative

by Lemma 55.3.7 and the definition of minimal types. □

Lemma 55.3.14.0C7C If n,mi, aij , wi, gi is a minimal numerical type with n > 1, then
g ≥ gtop.

Proof. The reader who is only interested in the case of numerical types associated
to proper regular models can skip this proof as we will reprove this in the geometric
situation later. We can write

gtop = 1− n+ 1
2
∑

aij>0
1 = 1 +

∑
i
(−1 + 1

2
∑

j ̸=i, aij>0
1)

On the other hand, we have

g = 1 +
∑

mi(wi(gi − 1)− 1
2aii)

= 1 +
∑

miwigi −
∑

miwi + 1
2
∑

i ̸=j
aijmj

= 1 +
∑

i
miwi(−1 + gi + 1

2
∑

j ̸=i

aij
wi

)

The first equality is the definition, the second equality uses that
∑
aijmj = 0,

and the last equality uses that uses aij = aji and switching order of summation.
Comparing with the formula for gtop we conclude that the lemma holds if

Ψi = miwi(−1 + gi + 1
2
∑

j ̸=i

aij
wi

)− (−1 + 1
2
∑

j ̸=i, aij>0
1)

is ≥ 0 for each i. However, this may not be the case. Let us analyze for which
indices we can have Ψi < 0. First, observe that

(−1 + gi + 1
2
∑

j ̸=i

aij
wi

) ≥ (−1 + 1
2
∑

j ̸=i, aij>0
1)

because aij/wi is a nonnegative integer. Since miwi is a positive integer we conclude
that Ψi ≥ 0 as soon as either miwi = 1 or the left hand side of the inequality is
≥ 0 which happens if gi > 0, or aij > 0 for at least two indices j, or if there is a j
with aij > wi. Thus

P = {i : Ψi < 0}
is the set of indices i such that miwi > 1, gi = 0, aij > 0 for a unique j, and
aij = wi for this j. Moreover

i ∈ P ⇒ Ψi = 1
2(−miwi + 1)

The strategy of proof is to show that given i ∈ P we can borrow a bit from Ψj

where j is the neighbour of i, i.e., aij > 0. However, this won’t quite work because
j may be an index with Ψj = 0.

https://stacks.math.columbia.edu/tag/0C7A
https://stacks.math.columbia.edu/tag/0C7B
https://stacks.math.columbia.edu/tag/0C7C
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Consider the set
Z = {j : gj = 0 and j has exactly two neighbours i, k with aij = wj = ajk}

For j ∈ Z we have Ψj = 0. We will consider sequences M = (i, j1, . . . , js) where
s ≥ 0, i ∈ P , j1, . . . , js ∈ Z, and aij1 > 0, aj1j2 > 0, . . . , ajs−1js > 0. If our
numerical type consists of two indices which are in P or more generally if our
numerical type consists of two indices which are in P and all other indices in Z,
then gtop = 0 and we win by Lemma 55.3.13. We may and do discard these cases.
Let M = (i, j1, . . . , js) be a maximal sequence and let k be the second neighbour
of js. (If s = 0, then k is the unique neighbour of i.) By maximality k ̸∈ Z and by
what we just said k ̸∈ P . Observe that wi = aij1 = wj1 = aj1j2 = . . . = wjs = ajsk.
Looking at the definition of a numerical type we see that

miaii +mj1wi = 0,
miwi +mj1aj1j1 +mj2wi = 0,

. . . . . .

mjs−1wi +mjsajsjs +mkwi = 0
The first equality implies mj1 ≥ 2mi because the numerical type is minimal. Then
the second equality implies mj2 ≥ 3mi, and so on. In any case, we conclude that
mk ≥ 2mi (including when s = 0).
Let k be an index such that we have a t > 0 and pairwise distinct maximal sequences
M1, . . . ,Mt as above, with Mb = (ib, jb,1, . . . , jb,sb) such that k is a neighbour of
jb,sb for b = 1, . . . , t. We will show that Φj +

∑
b=1,...,t Φib ≥ 0. This will finish

the proof of the lemma by what we said above. Let M be the union of the indices
occurring in Mb, b = 1, . . . , t. We write

Ψk = −
∑

b=1,...,t
Ψib + Ψ′

k

where

Ψ′
k = mkwk

(
−1 + gk + 1

2
∑

b=1,...t
(
akjb,sb
wk

− mibwib
mkwk

) + 1
2
∑

l ̸=k, l ̸∈M

akl
wk

)
−
(
−1 + 1

2
∑

l ̸=k, l ̸∈M, akl>0
1
)

Assume Ψ′
k < 0 to get a contradiction. If the set {l : l ̸= k, l ̸∈ M, akl > 0} is

empty, then {1, . . . , n} = M ∪ {k} and gtop = 0 because e = n− 1 in this case and
the result holds by Lemma 55.3.13. Thus we may assume there is at least one such
l which contributes (1/2)akl/wk ≥ 1/2 to the sum inside the first brackets. For
each b = 1, . . . , t we have

akjb,sb
wk

− mibwib
mkwk

= wib
wk

(1− mib

mk
)

This expression is ≥ 1
2 because mk ≥ 2mib by the previous paragraph and is ≥ 1

if wk < wib . It follows that Ψ′
k < 0 implies gk = 0. If t ≥ 2 or t = 1 and

wk < wi1 , then Ψ′
k ≥ 0 (here we use the existence of an l as shown above) which is

a contradiction too. Thus t = 1 and wk = wi1 . If there at least two nonzero terms
in the sum over l or if there is one such k and akl > wk, then Ψ′

k ≥ 0 as well. The
final possibility is that t = 1 and there is one l with akl = wk. This is disallowed
as this would mean k ∈ Z contradicting the maximality of M1. □
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Lemma 55.3.15.0C7D Let n,mi, aij , wi, gi be a numerical type of genus g. Assume n > 1.
If i is such that the contribution mi(wi(gi − 1) − 1

2aii) to the genus g is 0, then
gi = 0 and aii = −2wi.

Proof. Follows immediately from Lemma 55.3.6 and wi > 0, gi ≥ 0, and wi|aii. □

It turns out that the indices satisfying this relation play an important role in the
structure of minimal numerical types. Hence we give them a name.

Definition 55.3.16.0C7E Let n,mi, aij , wi, gi be a numerical type of genus g. We say i
is a (−2)-index if gi = 0 and aii = −2wi.

Given a minimal numerical type of genus g the (−2)-indices are exactly the indices
which do not contribute a positive number to the genus in the formula

g = 1 +
∑

mi(wi(gi − 1)− 1
2aii)

Thus it will be somewhat tricky to bound the quantities associated with (−2)-
indices as we will see later.

Remark 55.3.17.0C7F Let n,mi, aij , wi, gi be a minimal numerical type with n > 1.
Equality g = gtop can hold in Lemma 55.3.14. For example, if mi = wi = 1 and
gi = 0 for all i and aij ∈ {0, 1} for i < j.

55.4. The Picard group of a numerical type

0C7G Here is the definition.

Definition 55.4.1.0C7H Let n,mi, aij , wi, gi be a numerical type T . The Picard group
of T is the cokernel of the matrix (aij/wi), more precisely

Pic(T ) = Coker
(

Z⊕n → Z⊕n, ei 7→
∑ aij

wj
ej

)
where ei denotes the ith standard basis vector for Z⊕n.

Lemma 55.4.2.0C7I Let n,mi, aij , wi, gi be a numerical type T . The Picard group of
T is a finitely generated abelian group of rank 1.

Proof. If n = 1, then A = (aij) is the zero matrix and the result is clear. For n > 1
the matrix A has rank n − 1 by either Lemma 55.2.2 or Lemma 55.2.3. Of course
the rank is not affected by scaling the rows by 1/wi. This proves the lemma. □

Lemma 55.4.3.0CE7 Let n,mi, aij , wi, gi be a numerical type T . Then Pic(T ) ⊂
Coker(A) where A = (aij).

Proof. Since Pic(T ) is the cokernel of (aij/wi) we see that there is a commutative
diagram

0 // Z⊕n
A

// Z⊕n // Coker(A) // 0

0 // Z⊕n (aij/wi) //

id

OO

Z⊕n //

diag(w1,...,wn)

OO

Pic(T ) //

OO

0

with exact rows. By the snake lemma we conclude that Pic(T ) ⊂ Coker(A). □

https://stacks.math.columbia.edu/tag/0C7D
https://stacks.math.columbia.edu/tag/0C7E
https://stacks.math.columbia.edu/tag/0C7F
https://stacks.math.columbia.edu/tag/0C7H
https://stacks.math.columbia.edu/tag/0C7I
https://stacks.math.columbia.edu/tag/0CE7
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Lemma 55.4.4.0C7J Let n,mi, aij , wi, gi be a numerical type T . Assume n is a (−1)-
index. Let T ′ be the numerical type constructed in Lemma 55.3.9. There exists an
injective map

Pic(T )→ Pic(T ′)
whose cokernel is an elementary abelian 2-group.

Proof. Recall that n′ = n− 1. Let ei, resp., e′
i be the ith basis vector of Z⊕n, resp.

Z⊕n−1. First we denote
q : Z⊕n → Z⊕n−1, en 7→ 0 and ei 7→ e′

i for i ≤ n− 1
and we set

p : Z⊕n → Z⊕n−1, en 7→
∑n−1

j=1

anj
w′
j

e′
j and ei 7→

wi
w′
i

e′
i for i ≤ n− 1

A computation (which we omit) shows there is a commutative diagram

Z⊕n
(aij/wi)

//

q
��

Z⊕n

p
��

Z⊕n′ (a′
ij/w

′
i) // Z⊕n′

Since the cokernel of the top arrow is Pic(T ) and the cokernel of the bottom arrow is
Pic(T ′), we obtain the desired homomorphism of Picard groups. Since wi

w′
i
∈ {1, 2}

we see that the cokernel of Pic(T )→ Pic(T ′) is annihilated by 2 (because 2e′
i is in

the image of p for all i ≤ n − 1). Finally, we show Pic(T ) → Pic(T ′) is injective.
Let L = (l1, . . . , ln) be a representative of an element of Pic(T ) mapping to zero in
Pic(T ′). Since q is surjective, a diagram chase shows that we can assume L is in
the kernel of p. This means that lnani/w′

i+ liwi/w
′
i = 0, i.e., li = −ani/wiln. Thus

L is the image of −lnen under the map (aij/wj) and the lemma is proved. □

Lemma 55.4.5.0C7K Let n,mi, aij , wi, gi be a numerical type T . If the genus g of T is
≤ 0, then Pic(T ) = Z.

Proof. By induction on n. If n = 1, then the assertion is clear. If n > 1, then T is
not minimal by Lemma 55.3.13. After replacing T by an equivalent type we may
assume n is a (−1)-index. By Lemma 55.4.4 we find Pic(T ) ⊂ Pic(T ′). By Lemma
55.3.9 we see that the genus of T ′ is equal to the genus of T and we conclude by
induction. □

55.5. Classification of proper subgraphs

0C7L In this section we assume given a numerical type n,mi, aij , wi, gi of genus g. We
will find a complete list of possible “subgraphs” consisting entirely of (−2)-indices
(Definition 55.3.16) and at the same time we classify all possible minimal numerical
types of genus 1. In other words, in this section we prove Proposition 55.5.17 and
Lemma 55.6.2
Our strategy will be as follows. Let n,mi, aij , wi, gi be a numerical type of genus g.
Let I ⊂ {1, . . . , n} be a subset consisting of (−2)-indices such that there does not
exist a nonempty proper subset J ⊂ I with ajj′ = 0 for j ∈ J , j′ ∈ I \ J . We work
by induction on the cardinality |I| of I. If I = {i} consists of 1 index, then the only
constraints on mi, aii, and wi are wi|aii from Definition 55.3.1 and aii < 0 from
Lemma 55.3.6 and this will serve as our base case. In the induction step we first

https://stacks.math.columbia.edu/tag/0C7J
https://stacks.math.columbia.edu/tag/0C7K
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apply the induction hypothesis to subsets I ′ ⊂ I of size |I ′| < |I|. This will put some
constraints on the possible mi, aij , wi, i, j ∈ I. In particular, since |I ′| < |I| ≤ n it
will follow from

∑
aijmj = 0 and Lemma 55.2.3 that the sub matrices (aij)i,j∈I′ are

negative definite and their determinant will have sign (−1)m. For each possibility
left over we compute the determinant of (aij)i,j∈I . If the determinant has sign
−(−1)|I| then this case can be discarded because Sylvester’s theorem tells us the
matrix (aij)i,j∈I is not negative semi-definite. If the determinant has sign (−1)|I|,
then |I| < n and we (tentatively) conclude this case can occur as a possible proper
subgraph and we list it in one of the lemmas in this section. If the determinant is
0, then we must have |I| = n (by Lemma 55.2.3 again) and g = 0. In these cases we
actually find all possible mi, aij , wi, i, j ∈ I and list them in Lemma 55.6.2. After
completing the argument we obtain all possible minimal numerical types of genus 1
with n > 1 because each of these necessarily consists entirely of (−2)-indices (and
hence will show up in the induction process) by the formula for the genus and the
remarks in the previous section. At the very end of the day the reader can go
through the list of possibilities given in Lemma 55.6.2 to see that all configurations
of proper subgraphs listed in this section as possible do in fact occur already for
numerical types of genus 1.

Suppose that i and j are (−2)-indices with aij > 0. Since the matrix A = (aij) is
semi-negative definite by Lemma 55.2.3 we see that the matrix(

−2wi aij
aij −2wj

)
is negative definite unless n = 2. The case n = 2 can happen: then the determinant
4w1w2−a2

12 is zero. Using that lcm(w1, w2) divides a12 the reader easily finds that
the only possibilities are

(w1, w2, a12) = (w,w, 2w), (w, 4w, 4w), or (4w,w, 4w)

Observe that the case (4w,w, 4w) is obtained from the case (w, 4w, 4w) by switching
the indices i, j. In these cases g = 1. This leads to cases (2) and (3) of Lemma
55.6.2. Assuming n > 2 we see that the determinant 4wiwj − a2

ij of the displayed
matrix is > 0 and we conclude that a2

ij/wiwj < 4. On the other hand, we know
that lcm(wi, wj)|aij and hence a2

ij/wiwj is an integer. Thus a2
ij/wiwj ∈ {1, 2, 3}

and wi|wj or vice versa. This leads to the following possibilities

(w1, w2, a12) = (w,w,w), (w, 2w, 2w), (w, 3w, 3w), (2w,w, 2w), or (3w,w, 3w)

Observe that the case (2w,w, 2w) is obtained from the case (w, 2w, 2w) by switching
the indices i, j and similarly for the cases (3w,w, 3w) and (w, 3w, 3w). The first
three solutions lead to cases (1), (2), and (3) of Lemma 55.5.1. In this lemma we
wrote out the consequences for the integers mi and mj using that

∑
l aklml = 0 for

each k in particular implies aiimi + aijmj ≤ 0 for k = i and aijmi + ajjmj ≤ 0 for
k = j.

Lemma 55.5.1.0C7M Classification of proper subgraphs of the form

• •

If n > 2, then given a pair i, j of (−2)-indices with aij > 0, then up to ordering we
have the m’s, a’s, w’s

https://stacks.math.columbia.edu/tag/0C7M
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(1)0C7N are given by (
m1
m2

)
,

(
−2w w
w −2w

)
,

(
w
w

)
with w arbitrary and 2m1 ≥ m2 and 2m2 ≥ m1, or

(2)0C7P are given by (
m1
m2

)
,

(
−2w 2w
2w −4w

)
,

(
w
2w

)
with w arbitrary and m1 ≥ m2 and 2m2 ≥ m1, or

(3)0C7Q are given by (
m1
m2

)
,

(
−2w 3w
3w −6w

)
,

(
w
3w

)
with w arbitrary and 2m1 ≥ 3m2 and 2m2 ≥ m1.

Proof. See discussion above. □

Suppose that i, j, and k are three (−2)-indices with aij > 0 and ajk > 0. In other
words, the index i “meets” j and j “meets” k. We will use without further mention
that each pair (i, j), (i, k), and (j, k) is as listed in Lemma 55.5.1. Since the matrix
A = (aij) is semi-negative definite by Lemma 55.2.3 we see that the matrix−2wi aij aik

aij −2wj ajk
aik ajk −2wk


is negative definite unless n = 3. The case n = 3 can happen: then the determinant2

of the matrix is zero and we obtain the equation

4 =
a2
ij

wiwj
+

a2
jk

wjwk
+ a2

ik

wiwk
+ aijaikajk

wiwjwk

of integers. The last term on the right in this equation is determined by the others
because (

aijaikajk
wiwjwk

)2
=

a2
ij

wiwj

a2
jk

wjwk

a2
ik

wiwk

Since we have seen above that a2
ij

wiwj
,
a2
jk

wjwk
are in {1, 2, 3} and a2

ik

wiwk
in {0, 1, 2, 3},

we conclude that the only possibilities are

(
a2
ij

wiwj
,
a2
jk

wjwk
,
a2
ik

wiwk
) = (1, 1, 1), (1, 3, 0), (2, 2, 0), or (3, 1, 0)

Observe that the case (3, 1, 0) is obtained from the case (1, 3, 0) by reversing the
order the indices i, j, k. In each of these cases g = 1; the reader can find these
as cases (4), (5), (6), (7), (8), (9) of Lemma 55.6.2 with one case corresponding
to (1, 1, 1), two cases corresponding to (1, 3, 0), and three cases corresponding to
(2, 2, 0). Assuming n > 3 we obtain the inequality

4 >
a2
ij

wiwj
+ a2

ik

wiwk
+

a2
jk

wjwk
+ aijaikajk

wiwjwk

2It is −8wiwjwk + 2a2
ijwk + 2a2

jkwi + 2a2
ikwj + 2aijajkaik.
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of integers. Using the restrictions on the numbers given above we see that the only
possibilities are

(
a2
ij

wiwj
,
a2
jk

wjwk
,
a2
ik

wiwk
) = (1, 1, 0), (1, 2, 0), or (2, 1, 0)

in particular aik = 0 (recall we are assuming aij > 0 and ajk > 0). Observe that
the case (2, 1, 0) is obtained from the case (1, 2, 0) by reversing the ordering of the
indices i, j, k. The first two solutions lead to cases (1), (2), and (3) of Lemma 55.5.2
where we also wrote out the consequences for the integers mi, mj , and mk.
Lemma 55.5.2.0C7R Classification of proper subgraphs of the form

• • •
If n > 3, then given a triple i, j, k of (−2)-indices with at least two aij , aik, ajk
nonzero, then up to ordering we have the m’s, a’s, w’s

(1)0C7S are given bym1
m2
m3

 ,

−2w w 0
w −2w w
0 w −2w

 ,

ww
w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, 2m3 ≥ m2, or

(2)0C7T are given bym1
m2
m3

 ,

−2w w 0
w −2w 2w
0 2w −4w

 ,

 w
w
2w


with 2m1 ≥ m2, 2m2 ≥ m1 + 2m3, 2m3 ≥ m2, or

(3)0C7U are given bym1
m2
m3

 ,

−4w 2w 0
2w −4w 2w
0 2w −2w

 ,

2w
2w
w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, m3 ≥ m2.

Proof. See discussion above. □

Suppose that i, j, k, and l are four (−2)-indices with aij > 0, ajk > 0, and akl > 0.
In other words, the index i “meets” j, j “meets” k, and k “meets” l. Then we see
from Lemma 55.5.2 that aik = ajl = 0. Since the matrix A = (aij) is semi-negative
definite we see that the matrix

−2wi aij 0 ail
aij −2wj ajk 0
0 ajk −2wk akl
ail 0 akl −2wl


is negative definite unless n = 4. The case n = 4 can happen: then the determinant3

of the matrix is zero and we obtain the equation

16+
a2
ij

wiwj

a2
kl

wkwl
+

a2
jk

wjwk

a2
il

wiwl
= 4

a2
ij

wiwj
+4

a2
jk

wjwk
+4 a2

kl

wkwl
+4 a2

il

wiwl
+2aijailajkakl

wiwjwkwl

3It is 16wiwjwkwl − 4a2
ijwkwl − 4a2

jkwiwl − 4a2
klwiwj − 4a2

ilwjwk + a2
ija

2
kl + a2

jka
2
il −

2aijailajkakl.

https://stacks.math.columbia.edu/tag/0C7R
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of nonnegative integers. The last term on the right in this equation is determined
by the others because(

aijailajkakl
wiwjwkwl

)2
=

a2
ij

wiwj

a2
jk

wjwk

a2
kl

wkwl

a2
il

wiwl

Since we have seen above that a2
ij

wiwj
,
a2
jk

wjwk
,
a2
kl

wkwl
are in {1, 2} and a2

il

wiwl
in {0, 1, 2},

we conclude that the only possible solutions are

(
a2
ij

wiwj
,
a2
jk

wjwk
,
a2
kl

wkwl
,
a2
il

wiwl
) = (1, 1, 1, 1) or (2, 1, 2, 0)

and case g = 1; the reader can find these as cases (10), (11), (12), and (13) of
Lemma 55.6.2. Assuming n > 4 we obtain the inequality

16+
a2
ij

wiwj

a2
kl

wkwl
+

a2
jk

wjwk

a2
il

wiwl
> 4

a2
ij

wiwj
+4

a2
jk

wjwk
+4 a2

kl

wkwl
+4 a2

il

wiwl
+2aijailajkakl

wiwjwkwl

of nonnegative integers. Using the restrictions on the numbers given above we see
that the only possibilities are

(
a2
ij

wiwj
,
a2
jk

wjwk
,
a2
kl

wkwl
,
a2
il

wiwl
) = (1, 1, 1, 0), (1, 1, 2, 0), (1, 2, 1, 0), or (2, 1, 1, 0)

in particular ail = 0 (recall that we assumed the other three to be nonzero). Observe
that the case (2, 1, 1, 0) is obtained from the case (1, 1, 2, 0) by reversing the ordering
of the indices i, j, k, l. The first three solutions lead to cases (1), (2), (3), and (4) of
Lemma 55.5.3 where we also wrote out the consequences for the integers mi, mj ,
mk, and ml.

Lemma 55.5.3.0C7V Classification of proper subgraphs of the form

• • • •

If n > 4, then given four (−2)-indices i, j, k, l with aij , ajk, akl nonzero, then up to
ordering we have the m’s, a’s, w’s

(1)0C7W are given by
m1
m2
m3
m4

 ,


−2w w 0 0
w −2w w 0
0 w −2w w
0 0 w −2w

 ,


w
w
w
w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, 2m3 ≥ m2 +m4, and 2m4 ≥ m3, or

(2)0C7X are given by
m1
m2
m3
m4

 ,


−2w w 0 0
w −2w w 0
0 w −2w 2w
0 0 2w −4w

 ,


w
w
w
2w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, 2m3 ≥ m2 + 2m4, and 2m4 ≥ m3, or

https://stacks.math.columbia.edu/tag/0C7V
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(3)0C7Y are given by
m1
m2
m3
m4

 ,


−4w 2w 0 0
2w −4w 2w 0
0 2w −4w 2w
0 0 2w −2w

 ,


2w
2w
2w
w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, 2m3 ≥ m2 +m4, and m4 ≥ m3, or

(4)0C7Z are given by
m1
m2
m3
m4

 ,


−2w w 0 0
w −2w 2w 0
0 2w −4w 2w
0 0 2w −4w

 ,


w
w
2w
2w


with 2m1 ≥ m2, 2m2 ≥ m1 + 2m3, 2m3 ≥ m2 +m4, and 2m4 ≥ m3.

Proof. See discussion above. □

Suppose that i, j, k, and l are four (−2)-indices with aij > 0, aij > 0, and ail > 0.
In other words, the index i “meets” the indices j, k, l. Then we see from Lemma
55.5.2 that ajk = ajl = akl = 0. Since the matrix A = (aij) is semi-negative definite
we see that the matrix 

−2wi aij aik ail
aij −2wj 0 0
aik 0 −2wk 0
ail 0 0 −2wl


is negative definite unless n = 4. The case n = 4 can happen: then the determinant4

of the matrix is zero and we obtain the equation

4 =
a2
ij

wiwj
+ a2

ik

wiwk
+ a2

il

wjwl

of nonnegative integers. Since we have seen above that a2
ij

wiwj
,
a2
ik

wiwk
,
a2
il

wiwl
are in

{1, 2}, we conclude that the only possibilities are up to reordering: 4 = 1 + 1 + 2.
In each of these cases g = 1; the reader can find these as cases (14) and (15) of
Lemma 55.6.2. Assuming n > 4 we obtain the inequality

4 >
a2
ij

wiwj
+ a2

ik

wiwk
+ a2

il

wjwl

of nonnegative integers. This implies that a2
ij

wiwj
= a2

ik

wiwk
= a2

il

wjwl
= 1 and that

wi = wj = wk = wl. This leads to case (1) of Lemma 55.5.4 where we also wrote
out the consequences for the integers mi, mj , mk, and ml.

Lemma 55.5.4.0C80 Classification of proper subgraphs of the form
• • •

•

4It is 16wiwjwkwl − 4a2
ijwkwl − 4a2

ikwjwl − 4a2
ilwjwk.

https://stacks.math.columbia.edu/tag/0C80
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If n > 4, then given four (−2)-indices i, j, k, l with aij , aik, ail nonzero, then up to
ordering we have the m’s, a’s, w’s

(1)0C81 are given by
m1
m2
m3
m4

 ,


−2w w w w
w −2w 0 0
w 0 −2w 0
w 0 0 −2w

 ,


w
w
w
w


with 2m1 ≥ m2 + m3 + m4, 2m2 ≥ m1, 2m3 ≥ m1, 2m4 ≥ m1. Observe
that this implies m1 ≥ max(m2,m3,m4).

Proof. See discussion above. □

Suppose that h, i, j, k, and l are five (−2)-indices with ahi > 0, aij > 0, ajk > 0,
and akl > 0. In other words, the index h “meets” i, i “meets” j, j “meets”
k, and k “meets” l. Then we can apply Lemmas 55.5.2 and 55.5.3 to see that
ahj = ahk = aik = ail = ajl = 0 and that the fractions a2

hi

whwi
,
a2
ij

wiwj
,
a2
jk

wjwk
,
a2
kl

wkwl

are in {1, 2} and the fraction a2
hl

whwl
∈ {0, 1, 2}. Since the matrix A = (aij) is

semi-negative definite we see that the matrix
−2wh ahi 0 0 ahl
ahi −2wi aij 0 0
0 aij −2wj ajk 0
0 0 ajk −2wk akl
ahl 0 0 akl −2wl


is negative definite unless n = 5. The case n = 5 can happen: then the determinant5

of the matrix is zero and we obtain the equation

16 + a2
hi

whwi

a2
jk

wjwk
+ a2

hi

whwi

a2
kl

wkwl
+

a2
ij

wiwj

a2
kl

wkwl
+ a2

hl

whwl

a2
ij

wiwj
+ a2

hl

whwl

a2
jk

wjwk

= 4 a2
hi

whwi
+ 4

a2
ij

wiwj
+ 4

a2
jk

wjwk
+ 4 a2

kl

wkwl
+ 4 a2

hl

whwl
+ ahiaijajkaklahl

whwiwjwkwl

of nonnegative integers. The last term on the right in this equation is determined
by the others because(

ahiaijajkaklahl
whwiwjwkwl

)2
= a2

hi

whwi

a2
ij

wiwj

a2
jk

wjwk

a2
kl

wkwl

a2
hl

whwl

We conclude the only possible solutions are

( a2
hi

whwi
,
a2
ij

wiwj
,
a2
jk

wjwk
,
a2
kl

wkwl
,
a2
hl

whwl
) = (1, 1, 1, 1, 1), (1, 1, 2, 1, 0), (1, 2, 1, 1, 0), or (2, 1, 1, 2, 0)

Observe that the case (1, 2, 1, 1, 0) is obtained from the case (1, 1, 2, 1, 0) by revers-
ing the order of the indices h, i, j, k, l. In these cases g = 1; the reader can find
these as cases (16), (17), (18), (19), (20), and (21) of Lemma 55.6.2 with one case

5It is −32whwiwjwkwl + 8a2
hiwjwkwl + 8a2

ijwhwkwl + 8a2
jkwhwiwl + 8a2

klwhwiwj +
8a2
hlwiwjwk − 2a2

hia
2
jkwl− 2a2

hia
2
klwj − 2a2

ija
2
klwh− 2a2

hla
2
ijwk − 2a2

hla
2
jkwi + 2ahiaijajkaklahl .
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corresponding to (1, 1, 1, 1, 1), two cases corresponding to (1, 1, 2, 1, 0), and three
cases corresponding to (2, 1, 1, 2, 0). Assuming n > 5 we obtain the inequality

16 + a2
hi

whwi

a2
jk

wjwk
+ a2

hi

whwi

a2
kl

wkwl
+

a2
ij

wiwj

a2
kl

wkwl
+ a2

hl

whwl

a2
ij

wiwj
+ a2

hl

whwl

a2
jk

wjwk

> 4 a2
hi

whwi
+ 4

a2
ij

wiwj
+ 4

a2
jk

wjwk
+ 4 a2

kl

wkwl
+ 4 a2

hl

whwl
+ ahiaijajkaklahl

whwiwjwkwl

of nonnegative integers. Using the restrictions on the numbers given above we see
that the only possibilities are

( a2
hi

whwi
,
a2
ij

wiwj
,
a2
jk

wjwk
,
a2
kl

wkwl
,
a2
hl

whwl
) = (1, 1, 1, 1, 0), (1, 1, 1, 2, 0), or (2, 1, 1, 1, 0)

in particular ahl = 0 (recall that we assumed the other four to be nonzero). Observe
that the case (1, 1, 1, 2, 0) is obtained from the case (2, 1, 1, 1, 0) by reversing the
order of the indices h, i, j, k, l. The first two solutions lead to cases (1), (2), and
(3) of Lemma 55.5.5 where we also wrote out the consequences for the integers mh,
mi, mj , mk, and ml.

Lemma 55.5.5.0C82 Classification of proper subgraphs of the form
• • • • •

If n > 5, then given five (−2)-indices h, i, j, k, l with ahi, aij , ajk, akl nonzero, then
up to ordering we have the m’s, a’s, w’s

(1)0C83 are given by
m1
m2
m3
m4
m5

 ,


−2w w 0 0 0
w −2w w 0 0
0 w −2w w 0
0 0 w −2w w
0 0 0 w −2w

 ,


w
w
w
w
w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, 2m3 ≥ m2 +m4, 2m4 ≥ m3 +m5, and
2m5 ≥ m4, or

(2)0C84 are given by
m1
m2
m3
m4
m5

 ,


−2w w 0 0 0
w −2w w 0 0
0 w −2w w 0
0 0 w −2w 2w
0 0 0 2w −4w

 ,


w
w
w
w
2w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, 2m3 ≥ m2 + 2m4, 2m4 ≥ m3 +m5, and
2m5 ≥ m4, or

(3)0C85 are given by
m1
m2
m3
m4
m5

 ,


−4w 2w 0 0 0
2w −4w 2w 0 0
0 2w −4w 2w 0
0 0 2w −4w 2w
0 0 0 2w −2w

 ,


2w
2w
2w
2w
w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, 2m3 ≥ m2 +m4, 2m4 ≥ m3 +m5, and
m4 ≥ m3.

https://stacks.math.columbia.edu/tag/0C82
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Proof. See discussion above. □

Suppose that h, i, j, k, and l are five (−2)-indices with ahi > 0, ahj > 0, ahk > 0,
and ahl > 0. In other words, the index h “meets” the indices i, j, k, l. Then
we see from Lemma 55.5.2 that aij = aik = ail = ajk = ajl = akl = 0 and by
Lemma 55.5.4 that wh = wi = wj = wk = wl = w for some integer w > 0 and
ahi = ahj = ahk = ahl = −2w. The corresponding matrix

−2w w w w w
w −2w 0 0 0
w 0 −2w 0 0
w 0 0 −2w 0
w 0 0 0 −2w


is singular. Hence this can only happen if n = 5 and g = 1. The reader can find
this as case (22) Lemma 55.6.2.

Lemma 55.5.6.0C86 Nonexistence of proper subgraphs of the form
• • •

• •
If n > 5, there do not exist five (−2)-indices h, i, j, k with ahi > 0, ahj > 0,
ahk > 0, and ahl > 0.

Proof. See discussion above. □

Suppose that h, i, j, k, and l are five (−2)-indices with ahi > 0, aij > 0, ajk > 0,
and ajl > 0. In other words, the index h “meets” i and the index j “meets” the
indices i, k, l. Then we see from Lemma 55.5.4 that aik = ail = akl = 0, wi =
wj = wk = wl = w, and aij = ajk = ajl = w for some integer w. Applying Lemma
55.5.3 to the four tuples h, i, j, k and h, i, j, l we see that ahj = ahk = ahl = 0,
that wh = 1

2w, w, or 2w, and that correspondingly ahi = w, w, or 2w. Since A is
semi-negative definite we see that the matrix

−2wh ahi 0 0 0
ahi −2w w 0 0
0 w −2w w w
0 0 w −2w 0
0 0 w 0 −2w


is negative definite unless n = 5. The reader computes that the determinant of the
matrix is 0 when wh = 1

2w or 2w. This leads to cases (23) and (24) of Lemma
55.6.2. For wh = w we obtain case (1) of Lemma 55.5.7.

Lemma 55.5.7.0C87 Classification of proper subgraphs of the form
• • • •

•
If n > 5, then given five (−2)-indices h, i, j, k, l with ahi, aij , ajk, ajl nonzero, then
up to ordering we have the m’s, a’s, w’s

https://stacks.math.columbia.edu/tag/0C86
https://stacks.math.columbia.edu/tag/0C87
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(1)0C88 are given by
m1
m2
m3
m4
m5

 ,


−2w w 0 0 0
w −2w w 0 0
0 w −2w w w
0 0 w −2w 0
0 0 w 0 −2w

 ,


w
w
w
w
w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, 2m3 ≥ m2 +m4 +m5, 2m4 ≥ m3, and
2m5 ≥ m3.

Proof. See discussion above. □

Suppose that t > 5 and i1, . . . , it are t distinct (−2)-indices such that aijij+1 is
nonzero for j = 1, . . . , t−1. We will prove by induction on t that if n = t this leads
to possibilities (25), (26), (27), (28) of Lemma 55.6.2 and if n > t to cases (1), (2),
and (3) of Lemma 55.5.8. First, if ai1it is nonzero, then it is clear from the result
of Lemma 55.5.5 that wi1 = . . . = wit = w and that aijij+1 = w for j = 1, . . . , t− 1
and ai1it = w. Then the vector (1, . . . , 1) is in the kernel of the corresponding t× t
matrix. Thus we must have n = t and we see that the genus is 1 and that we
are in case (25) of Lemma 55.6.2. Thus we may assume ai1it = 0. By induction
hypothesis (or Lemma 55.5.5 if t = 6) we see that aijik = 0 if k > j + 1. Moreover,
we have wi1 = . . . = wit−1 = w for some integer w and wi1 , wit ∈ { 1

2w,w, 2w}.
Moreover, the value of wi1 , resp. wit being 1

2w, w, or 2w implies that the value of
ai1i2 , resp. ait−1it is w, w, or 2w. This gives 9 possibilities. In each case it is easy
to decide what happens:

(1) if (wi1 , wit) = ( 1
2w,

1
2w), then we are in case (27) of Lemma 55.6.2,

(2) if (wi1 , wit) = ( 1
2w,w) or (w, 1

2w) then we are in case (3) of Lemma 55.5.8,
(3) if (wi1 , wit) = ( 1

2w, 2w) or (2w, 1
2w) then we are in case (26) of Lemma

55.6.2,
(4) if (wi1 , wit) = (w,w) then we are in case (1) of Lemma 55.5.8,
(5) if (wi1 , wit) = (w, 2w) or (2w,w) then we are in case (2) of Lemma 55.5.8,

and
(6) if (wi1 , wit) = (2w, 2w) then we are in case (28) of Lemma 55.6.2.

Lemma 55.5.8.0C89 Classification of proper subgraphs of the form
• • • • • •

Let t > 5 and n > t. Then given t distinct (−2)-indices i1, . . . , it such that aijij+1

is nonzero for j = 1, . . . , t − 1, then up to reversing the order of these indices we
have the a’s and w’s

(1)0C8A are given by wi1 = wi2 = . . . = wit = w, aijij+1 = w, and aijik = 0 if
k > j + 1, or

(2)0C8B are given by wi1 = wi2 = . . . = wit−1 = w, wjt = 2w, aijij+1 = w for
j < t− 1, ait−1it = 2w, and aijik = 0 if k > j + 1, or

(3)0C8C are given by wi1 = wi2 = . . . = wit−1 = 2w, wjt = w, aijij+1 = 2w, and
ait−1it = 2w, and aijik = 0 if k > j + 1.

Proof. See discussion above. □

Suppose that t > 4 and i1, . . . , it+1 are t+1 distinct (−2)-indices such that aijij+1 >
0 for j = 1, . . . , t− 1 and such that ajt−1jt+1 > 0. See picture in Lemma 55.5.9. We

https://stacks.math.columbia.edu/tag/0C89
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will prove by induction on t that if n = t+1 this leads to possibilities (29) and (30) of
Lemma 55.6.2 and if n > t+1 to case (1) of Lemma 55.5.9. By induction hypothesis
(or Lemma 55.5.7 in case t = 5) we see that aijik is zero outside of the required
nonvanishing ones for j, k ≥ 2. Moreover, we see that w2 = . . . = wt+1 = w
for some integer w and that the nonvanishing aijik for j, k ≥ 2 are equal to w.
Applying Lemma 55.5.8 (or Lemma 55.5.5 if t = 5) to the sequence i1, . . . , it and
to the sequence i1, . . . , it−1, it+1 we conclude that ai1ij = 0 for j ≥ 3 and that w1
is equal to 1

2w, w, or 2w and that correspondingly ai1i2 is w,w, 2w. This gives 3
possibilities. In each case it is easy to decide what happens:

(1) If w1 = 1
2w, then we are in case (30) of Lemma 55.6.2.

(2) If w1 = w, then we are in case (1) of Lemma 55.5.9.
(3) If w1 = 2w, then we are in case (29) of Lemma 55.6.2.

Lemma 55.5.9.0C8D Classification of proper subgraphs of the form
• • • • •

•
Let t > 4 and n > t + 1. Then given t + 1 distinct (−2)-indices i1, . . . , it+1 such
that aijij+1 is nonzero for j = 1, . . . , t − 1 and ait−1it+1 is nonzero, then we have
the a’s and w’s

(1)0C8E are given by wi1 = wi2 = . . . = wit+1 = w, aijij+1 = w for j = 1, . . . , t− 1,
ait−1it+1 = w and aijik = 0 for other pairs (j, k) with j > k.

Proof. See discussion above. □

Suppose we are given 6 distinct (−2)-indices g, h, i, j, k, l such that agh, ahi, aij , ajk, ail
are nonzero. See picture in Lemma 55.5.10. Then we can apply Lemma 55.5.7 to
see that we must be in the situation of Lemma 55.5.10. Since the determinant is
3w6 > 0 we conclude that in this case it never happens that n = 6!

Lemma 55.5.10.0C8F Classification of proper subgraphs of the form
• • • • •

•
Let n > 6. Then given 6 distinct (−2)-indices i1, . . . , i6 such that a12, a23, a34, a45, a36
are nonzero, then we have the m’s, a’s, and w’s

(1)0C8G are given by
m1
m2
m3
m4
m5
m6

 ,


−2w w 0 0 0 0
w −2w w 0 0 0
0 w −2w w 0 w
0 0 w −2w w 0
0 0 0 w −2w 0
0 0 w 0 0 −2w

 ,


w
w
w
w
w
w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, 2m3 ≥ m2 +m4 +m6, 2m4 ≥ m3 +m5,
2m5 ≥ m3, and 2m6 ≥ m3.

Proof. See discussion above. □

https://stacks.math.columbia.edu/tag/0C8D
https://stacks.math.columbia.edu/tag/0C8F
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Suppose that t ≥ 4 and i0, . . . , it+1 are t+2 distinct (−2)-indices such that aijij+1 >
0 for j = 1, . . . , t−1 and ai0i2 > 0 and ait−1it+1 > 0. See picture in Lemma 55.5.11.
Then we can apply Lemmas 55.5.7 and 55.5.9 to see that all other aijik for j < k
are zero and that wi0 = . . . = wit+1 = w for some integer w and that the required
nonzero off diagonal entries of A are equal to w. A computation shows that the
determinant of the corresponding matrix is zero. Hence n = t + 2 and we are in
case (31) of Lemma 55.6.2.

Lemma 55.5.11.0C8H Nonexistence of proper subgraphs of the form
• • • •

• •

Assume t ≥ 4 and n > t+2. There do not exist t+2 distinct (−2)-indices i0, . . . , it+1
such that aijij+1 > 0 for j = 1, . . . , t− 1 and ai0i2 > 0 and ait−1it+1 > 0.

Proof. See discussion above. □

Suppose we are given 7 distinct (−2)-indices f, g, h, i, j, k, l such that the numbers
afg, agh, aij , ajh, akl, alh are nonzero. See picture in Lemma 55.5.12. Then we can
apply Lemma 55.5.7 to see that the corresponding matrix is

−2w w 0 0 0 0 0
w −2w w 0 0 0 0
0 w −2w 0 w 0 w
0 0 0 −2w w 0 0
0 0 w w −2w 0 0
0 0 0 0 0 −2w w
0 0 w 0 0 w −2w


Since the determinant is 0 we conclude that we must have n = 7 and g = 1 and we
get case (32) of Lemma 55.6.2.

Lemma 55.5.12.0C8I Nonexistence of proper subgraphs of the form
• • • • •

•

•

Assume n > 7. There do not exist 7 distinct (−2)-indices f, g, h, i, j, k, l such that
afg, agh, aij , ajh, akl, alh are nonzero.

Proof. See discussion above. □

Suppose we are given 7 distinct (−2)-indices f, g, h, i, j, k, l such that the numbers
afg, agh, ahi, aij , ajk, ail are nonzero. See picture in Lemma 55.5.13. Then we can
apply Lemmas 55.5.7 and 55.5.9 to see that we must be in the situation of Lemma
55.5.13. Since the determinant is −8w7 > 0 we conclude that in this case it never
happens that n = 7!

https://stacks.math.columbia.edu/tag/0C8H
https://stacks.math.columbia.edu/tag/0C8I
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Lemma 55.5.13.0C8J Classification of proper subgraphs of the form

• • • • • •

•

Let n > 7. Then given 7 distinct (−2)-indices i1, . . . , i7 such that a12, a23, a34, a45, a56, a47
are nonzero, then we have the m’s, a’s, and w’s

(1)0C8K are given by

m1
m2
m3
m4
m5
m6
m7


,



−2w w 0 0 0 0 0
w −2w w 0 0 0 0
0 w −2w w 0 0 0
0 0 w −2w w 0 w
0 0 0 w −2w w 0
0 0 0 0 w −2w 0
0 0 0 w 0 0 −2w


,



w
w
w
w
w
w
w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, 2m3 ≥ m2 +m4, 2m4 ≥ m3 +m5 +m7,
2m5 ≥ m4 +m6, 2m6 ≥ m5, and 2m7 ≥ m4.

Proof. See discussion above. □

Suppose we are given 8 distinct (−2)-indices whose pattern of nonzero entries aij
of the matrix A looks like

• • • • • • •

•

or like
• • • • • • •

•

Arguing exactly as in the proof of Lemma 55.5.13 we see that the first pattern leads
to case (1) in Lemma 55.5.14 and does not lead to a new case in Lemma 55.6.2.
Arguing exactly as in the proof of Lemma 55.5.12 we see that the second pattern
does not occur if n > 8, but leads to case (33) in Lemma 55.6.2 when n = 8.

Lemma 55.5.14.0C8L Classification of proper subgraphs of the form

• • • • • • •

•

Let n > 8. Then given 8 distinct (−2)-indices i1, . . . , i8 such that a12, a23, a34, a45, a56, a65, a57
are nonzero, then we have the m’s, a’s, and w’s

https://stacks.math.columbia.edu/tag/0C8J
https://stacks.math.columbia.edu/tag/0C8L
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(1)0C8M are given by

m1
m2
m3
m4
m5
m6
m7
m8


,



−2w w 0 0 0 0 0 0
w −2w w 0 0 0 0 0
0 w −2w w 0 0 0 0
0 0 w −2w w 0 0 0
0 0 0 w −2w w 0 w
0 0 0 0 w −2w w 0
0 0 0 0 0 w −2w 0
0 0 0 0 w 0 0 −2w


,



w
w
w
w
w
w
w
w


with 2m1 ≥ m2, 2m2 ≥ m1 + m3, 2m3 ≥ m2 + m4, 2m4 ≥ m3 + m5,
2m5 ≥ m4 +m6 +m8, 2m6 ≥ m5 +m7, 2m7 ≥ m6, and 2m8 ≥ m5.

Proof. See discussion above. □

Lemma 55.5.15.0C8N Nonexistence of proper subgraphs of the form
• • • • • • •

•
Assume n > 8. There do not exist 8 distinct (−2)-indices e, f, g, h, i, j, k, l such that
aef , afg, agh, ahi, aij , ajk, alh are nonzero.
Proof. See discussion above. □

Suppose we are given 9 distinct (−2)-indices whose pattern of nonzero entries aij
of the matrix A looks like

• • • • • • • •

•
Arguing exactly as in the proof of Lemma 55.5.12 we see that this pattern does not
occur if n > 9, but leads to case (34) in Lemma 55.6.2 when n = 9.
Lemma 55.5.16.0C8P Nonexistence of proper subgraphs of the form

• • • • • • • •

•
Assume n > 9. There do not exist 9 distinct (−2)-indices d, e, f, g, h, i, j, k, l such
that ade, aef , afg, agh, ahi, aij , ajk, alh are nonzero.
Proof. See discussion above. □

Collecting all the information together we find the following.
Proposition 55.5.17.0C8Q Let n,mi, aij , wi, gi be a numerical type of genus g. Let
I ⊂ {1, . . . , n} be a proper subset of cardinality ≥ 2 consisting of (−2)-indices such
that there does not exist a nonempty proper subset I ′ ⊂ I with ai′i = 0 for i′ ∈ I,
i ∈ I \ I ′. Then up to reordering the mi’s, aij ’s, wi’s for i, j ∈ I are as listed in
Lemmas 55.5.1, 55.5.2, 55.5.3, 55.5.4, 55.5.5, 55.5.7, 55.5.8, 55.5.9, 55.5.10, 55.5.13,
or 55.5.14.

https://stacks.math.columbia.edu/tag/0C8N
https://stacks.math.columbia.edu/tag/0C8P
https://stacks.math.columbia.edu/tag/0C8Q
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Proof. This follows from the discussion above; see discussion at the start of Section
55.5. □

55.6. Classification of minimal type for genus zero and one

0C8R The title of the section explains it all.

Lemma 55.6.1 (Genus zero).0C8S The only minimal numerical type of genus zero is
n = 1, m1 = 1, a11 = 0, w1 = 1, g1 = 0.

Proof. Follows from Lemmas 55.3.13 and 55.3.5. □

Lemma 55.6.2 (Genus one).0C8T The minimal numerical types of genus one are up to
equivalence

(1)0C8U n = 1, a11 = 0, g1 = 1, m1, w1 ≥ 1 arbitrary,
(2)0C8V n = 2, and mi, aij , wi, gi given by(

m
m

)
,

(
−2w 2w
2w −2w

)
,

(
w
w

)
,

(
0
0

)
with w and m arbitrary,

(3)0C8W n = 2, and mi, aij , wi, gi given by(
2m
m

)
,

(
−2w 4w
4w −8w

)
,

(
w
4w

)
,

(
0
0

)
with w and m arbitrary,

(4)0C8X n = 3, and mi, aij , wi, gi given bymm
m

 ,

−2w w w
w −2w w
w w −2w

 ,

ww
w

 ,

0
0
0


with w and m arbitrary,

(5)0C8Y n = 3, and mi, aij , wi, gi given bym
2m
m

 ,

−2w w 0
w −2w 3w
0 3w −6w

 ,

 w
w
3w

 ,

0
0
0


with w and m arbitrary,

(6)0C8Z n = 3, and mi, aij , wi, gi given bym
2m
3m

 ,

−6w 3w 0
3w −6w 3w
0 3w −2w

 ,

3w
3w
w

 ,

0
0
0


with w and m arbitrary,

(7)0C90 n = 3, and mi, aij , wi, gi given by2m
2m
m

 ,

−2w 2w 0
2w −4w 4w
0 4w −8w

 ,

 w
2w
4w

 ,

0
0
0


with w and m arbitrary,

https://stacks.math.columbia.edu/tag/0C8S
https://stacks.math.columbia.edu/tag/0C8T
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(8)0C91 n = 3, and mi, aij , wi, gi given bymm
m

 ,

−2w 2w 0
2w −4w 2w
0 2w −2w

 ,

 w
2w
w

 ,

0
0
0


with w and m arbitrary,

(9)0C92 n = 3, and mi, aij , wi, gi given bym
2m
m

 ,

−4w 2w 0
2w −2w 2w
0 2w −4w

 ,

2w
w
2w

 ,

0
0
0


with w and m arbitrary,

(10)0C93 n = 4, and mi, aij , wi, gi given by
m
m
m
m

 ,


−2w w 0 w
w −2w w 0
0 w −2w w
w 0 w −2w

 ,


w
w
w
w

 ,


0
0
0
0


with w and m arbitrary,

(11)0C94 n = 4, and mi, aij , wi, gi given by
2m
2m
2m
m

 ,


−2w 2w 0 0
2w −4w 2w 0
0 2w −4w 4w
0 0 4w −8w

 ,


w
2w
2w
4w

 ,


0
0
0
0


with w and m arbitrary,

(12)0C95 n = 4, and mi, aij , wi, gi given by
m
m
m
m

 ,


−2w 2w 0 0
2w −4w 2w 0
0 2w −4w 2w
0 0 2w −2w

 ,


w
2w
2w
w

 ,


0
0
0
0


with w and m arbitrary,

(13)0C96 n = 4, and mi, aij , wi, gi given by
m
2m
2m
m

 ,


−4w 2w 0 0
2w −2w w 0
0 w −2w 2w
0 0 2w −4w

 ,


2w
w
w
2w

 ,


0
0
0
0


with w and m arbitrary,

(14)0C97 n = 4, and mi, aij , wi, gi given by
2m
m
m
m

 ,


−2w w w 2w
w −2w 0 0
w 0 −2w 0
2w 0 0 −4w

 ,


w
w
w
2w

 ,


0
0
0
0


with w and m arbitrary,
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(15)0C98 n = 4, and mi, aij , wi, gi given by
2m
m
m
2m

 ,


−4w 2w 2w 2w
2w −4w 0 0
2w 0 −4w 0
2w 0 0 −2w

 ,


2w
2w
2w
w

 ,


0
0
0
0


with w and m arbitrary,

(16)0C99 n = 5, and mi, aij , wi, gi given by
m
m
m
m
m

 ,


−2w w 0 0 w
w −2w w 0 0
0 w −2w w 0
0 0 w −2w w
w 0 0 w −2w

 ,


w
w
w
w
w

 ,


0
0
0
0
0


with w and m arbitrary,

(17)0C9A n = 5, and mi, aij , wi, gi given by
m
2m
3m
2m
m

 ,


−2w w 0 0 0
w −2w w 0 0
0 w −2w 2w 0
0 0 2w −4w 2w
0 0 0 2w −4w

 ,


w
w
w
2w
2w

 ,


0
0
0
0
0


with w and m arbitrary,

(18)0C9B n = 5, and mi, aij , wi, gi given by
m
2m
3m
4m
2m

 ,


−4w 2w 0 0 0
2w −4w 2w 0 0
0 2w −4w 2w 0
0 0 2w −2w w
0 0 0 w −2w

 ,


2w
2w
2w
w
w

 ,


0
0
0
0
0


with w and m arbitrary,

(19)0C9C n = 5, and mi, aij , wi, gi given by
2m
2m
2m
2m
m

 ,


−2w 2w 0 0 0
2w −4w 2w 0 0
0 2w −4w 2w 0
0 0 2w −4w 4w
0 0 0 4w −8w

 ,


w
2w
2w
2w
4w

 ,


0
0
0
0
0


with w and m arbitrary,

(20)0C9D n = 5, and mi, aij , wi, gi given by
m
m
m
m
m

 ,


−2w 2w 0 0 0
2w −4w 2w 0 0
0 2w −4w 2w 0
0 0 2w −4w 2w
0 0 0 2w −2w

 ,


w
2w
2w
2w
w

 ,


0
0
0
0
0


with w and m arbitrary,
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(21)0C9E n = 5, and mi, aij , wi, gi given by
m
2m
2m
2m
m

 ,


−4w 2w 0 0 0
2w −2w w 0 0
0 w −2w w 0
0 0 w −2w 2w
0 0 0 2w −4w

 ,


2w
w
w
w
2w

 ,


0
0
0
0
0


with w and m arbitrary,

(22)0C9F n = 5, and mi, aij , wi, gi given by
2m
m
m
m
m

 ,


−2w w w w w
w −2w 0 0 0
w 0 −2w 0 0
w 0 0 −2w 0
w 0 0 0 −2w

 ,


w
w
w
w
w

 ,


0
0
0
0
0


with w and m arbitrary,

(23)0C9G n = 5, and mi, aij , wi, gi given by
m
2m
2m
m
m

 ,


−4w 2w 0 0 0
2w −2w w 0 0
0 w −2w w w
0 0 w −2w 0
0 0 w 0 −2w

 ,


2w
w
w
w
w

 ,


0
0
0
0
0


with w and m arbitrary,

(24)0C9H n = 5, and mi, aij , wi, gi given by
2m
2m
2m
m
m

 ,


−2w 2w 0 0 0
2w −4w 2w 0 0
0 2w −4w 2w 2w
0 0 2w −4w 0
0 0 2w 0 −4w

 ,


w
2w
2w
2w
2w

 ,


0
0
0
0
0


with w and m arbitrary,

(25)0C9I n ≥ 6 and we have an n-cycle generalizing (16):
(a) m1 = . . . = mn = m,
(b) a12 = . . . = a(n−1)n = w, a1n = w, and for other i < j we have

aij = 0,
(c) w1 = . . . = wn = w

with w and m arbitrary,
(26)0C9J n ≥ 6 and we have a chain generalizing (19):

(a) m1 = . . . = mn−1 = 2m, mn = m,
(b) a12 = . . . = a(n−2)(n−1) = 2w, a(n−1)n = 4w, and for other i < j we

have aij = 0,
(c) w1 = w, w2 = . . . = wn−1 = 2w, wn = 4w

with w and m arbitrary,
(27)0C9K n ≥ 6 and we have a chain generalizing (20):

(a) m1 = . . . = mn = m,
(b) a12 = . . . = a(n−1)n = w, and for other i < j we have aij = 0,
(c) w1 = w, w2 = . . . = wn−1 = 2w, wn = w

with w and m arbitrary,
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(28)0C9L n ≥ 6 and we have a chain generalizing (21):
(a) m1 = w, w2 = . . . = mn−1 = 2m, mn = m,
(b) a12 = 2w, a23 = . . . = a(n−2)(n−1) = w, a(n−1)n = 2w, and for other

i < j we have aij = 0,
(c) w1 = 2w, w2 = . . . = wn−1 = w, wn = 2w

with w and m arbitrary,
(29)0C9M n ≥ 6 and we have a type generalizing (23):

(a) m1 = m, m2 = . . . = mn−3 = 2m, mn−1 = mn = m,
(b) a12 = 2w, a23 = . . . = a(n−2)(n−1) = w, a(n−2)n = w, and for other

i < j we have aij = 0,
(c) w1 = 2w, w2 = . . . = wn = w

with w and m arbitrary,
(30)0C9N n ≥ 6 and we have a type generalizing (24):

(a) m1 = . . . = mn−3 = 2m, mn−1 = mn = m,
(b) a12 = . . . = a(n−2)(n−1) = 2w, a(n−2)n = 2w, and for other i < j we

have aij = 0,
(c) w1 = w, w2 = . . . = wn = 2w

with w and m arbitrary,
(31)0C9P n ≥ 6 and we have a type generalizing (22):

(a) m1 = m2 = m, m3 = . . . = mn−2 = 2m, mn−1 = mn = m,
(b) a13 = w, a23 = . . . = a(n−2)(n−1) = w, a(n−2)n = w, and for other

i < j we have aij = 0,
(c) w1 = . . . = wn = w,

with w and m arbitrary,
(32)0C9Q n = 7, and mi, aij , wi, gi given by



m
2m
3m
m
2m
m
2m


,



−2w w 0 0 0 0 0
w −2w w 0 0 0 0
0 w −2w 0 w 0 w
0 0 0 −2w w 0 0
0 0 w w −2w 0 0
0 0 0 0 0 −2w w
0 0 w 0 0 w −2w


,



w
w
w
w
w
w
w


,



0
0
0
0
0
0
0


with w and m arbitrary,

(33)0C9R n = 8, and mi, aij , wi, gi given by



m
2m
3m
4m
3m
2m
m
2m


,



−2w w 0 0 0 0 0 0
w −2w w 0 0 0 0 0
0 w −2w w 0 0 0 0
0 0 w −2w w 0 0 w
0 0 0 w −2w w 0 0
0 0 0 0 w −2w w 0
0 0 0 0 0 w −2w 0
0 0 0 w 0 0 0 −2w


,



w
w
w
w
w
w
w
w


,



0
0
0
0
0
0
0
0


with w and m arbitrary,
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(34)0C9S n = 9, and mi, aij , wi, gi given by

m
2m
3m
4m
5m
6m
4m
2m
3m


,



−2w w 0 0 0 0 0 0 0
w −2w w 0 0 0 0 0 0
0 w −2w w 0 0 0 0 0
0 0 w −2w w 0 0 0 0
0 0 0 w −2w w 0 0 0
0 0 0 0 w −2w w 0 w
0 0 0 0 0 w −2w w 0
0 0 0 0 0 0 w −2w 0
0 0 0 0 0 w 0 0 −2w


,



w
w
w
w
w
w
w
w
w


,



0
0
0
0
0
0
0
0
0


with w and m arbitrary.

Proof. This is proved in Section 55.5. See discussion at the start of Section 55.5. □

55.7. Bounding invariants of numerical types

0C9T In our proof of semistable reduction for curves we’ll use a bound on Picard groups
of numerical types of genus g which we will prove in this section.

Lemma 55.7.1.0C9U Let n,mi, aij , wi, gi be a numerical type of genus g. Given i, j with
aij > 0 we have miaij ≤ mj |ajj | and miwi ≤ mj |ajj |.

Proof. For every index j we have mjajj +
∑
i ̸=jmiaij = 0. Thus if we have an

upper bound on |ajj | and mj , then we also get an upper bound on the nonzero (and
hence positive) aij as well as mi. Recalling that wi divides aij , the reader easily
sees the lemma is correct. □

Lemma 55.7.2.0C9V Fix g ≥ 2. For every minimal numerical type n,mi, aij , wi, gi of
genus g with n > 1 we have

(1) the set J ⊂ {1, . . . , n} of non-(−2)-indices has at most 2g − 2 elements,
(2) for j ∈ J we have gj < g,
(3) for j ∈ J we have mj |ajj | ≤ 6g − 6, and
(4) for j ∈ J and i ∈ {1, . . . , n} we have miaij ≤ 6g − 6.

Proof. Recall that g = 1 +
∑
mj(wj(gj − 1) − 1

2ajj). For j ∈ J the contribution
mj(wj(gj − 1) − 1

2ajj) to the genus g is > 0 and hence ≥ 1/2. This uses Lemma
55.3.7, Definition 55.3.8, Definition 55.3.12, Lemma 55.3.15, and Definition 55.3.16;
we will use these results without further mention in the following. Thus J has at
most 2(g − 1) elements. This proves (1).
Recall that −aii > 0 for all i by Lemma 55.3.6. Hence for j ∈ J the contribution
mj(wj(gj − 1)− 1

2ajj) to the genus g is > mjwj(gj − 1). Thus
g − 1 > mjwj(gj − 1)⇒ gj < (g − 1)/mjwj + 1

This indeed implies gj < g which proves (2).
For j ∈ J if gj > 0, then the contribution mj(wj(gj − 1) − 1

2ajj) to the genus g
is ≥ − 1

2mjajj and we immediately conclude that mj |ajj | ≤ 2(g − 1). Otherwise
ajj = −kwj for some integer k ≥ 3 (because j ∈ J) and we get

mjwj(−1 + k

2 ) ≤ g − 1⇒ mjwj ≤
2(g − 1)
k − 2

https://stacks.math.columbia.edu/tag/0C9U
https://stacks.math.columbia.edu/tag/0C9V


55.7. BOUNDING INVARIANTS OF NUMERICAL TYPES 4532

Plugging this back into ajj = −kmjwj we obtain

mj |ajj | ≤ 2(g − 1) k

k − 2 ≤ 6(g − 1)

This proves (3).
Part (4) follows from Lemma 55.7.1 and (3). □

Lemma 55.7.3.0C9W Fix g ≥ 2. For every minimal numerical type n,mi, aij , wi, gi of
genus g we have mi|aij | ≤ 768g.

Proof. By Lemma 55.7.1 it suffices to show mi|aii| ≤ 768g for all i. Let J ⊂
{1, . . . , n} be the set of non-(−2)-indices as in Lemma 55.7.2. Observe that J is
nonempty as g ≥ 2. Also mj |ajj | ≤ 6g for j ∈ J by the lemma.
Suppose we have j ∈ J and a sequence i1, . . . , i7 of (−2)-indices such that aji1
and ai1i2 , ai2i3 , ai3i4 , ai4i5 , ai5i6 , and ai6i7 are nonzero. Then we see from Lemma
55.7.1 that mi1wi1 ≤ 6g and mi1aji1 ≤ 6g. Because i1 is a (−2)-index, we have
ai1i1 = −2wi1 and we conclude that mi1 |ai1i1 | ≤ 12g. Repeating the argument we
conclude that mi2wi2 ≤ 12g and mi2ai1i2 ≤ 12g. Then mi2 |ai2i2 | ≤ 24g and so on.
Eventually we conclude that mik |aikik | ≤ 2k(6g) ≤ 768g for k = 1, . . . , 7.
Let I ⊂ {1, . . . , n} \ J be a maximal connected subset. In other words, there does
not exist a nonempty proper subset I ′ ⊂ I such that ai′i = 0 for i′ ∈ I ′ and
i ∈ I \ I ′ and I is maximal with this property. In particular, since a numerical
type is connected by definition, we see that there exists a j ∈ J and i ∈ I with
aij > 0. Looking at the classification of such I in Proposition 55.5.17 and using
the result of the previous paragraph, we see that wi|aii| ≤ 768g for all i ∈ I unless
I is as described in Lemma 55.5.8 or Lemma 55.5.9. Thus we may assume the
nonvanishing of aii′ , i, i′ ∈ I has either the shape

• • • • • •
(which has 3 subcases as detailed in Lemma 55.5.8) or the shape

• • • • • •

•
We will prove the bound holds for the first subcase of Lemma 55.5.8 and leave the
other cases to reader (the argument is almost exactly the same in those cases).
After renumbering we may assume I = {1, . . . , t} ⊂ {1, . . . , n} and there is an
integer w such that

w = w1 = . . . = wt = a12 = . . . = a(t−1)t = −1
2ai1i2 = . . . = −1

2a(t−1)t

The equalities aiimi +
∑
j ̸=i aijmj = 0 imply that we have

2m2 ≥ m1 +m3, . . . , 2mt−1 ≥ mt−2 +mt

Equality holds in 2mi ≥ mi−1 +mi+1 if and only if i does not “meet” any indices
besides i − 1 and i + 1. And if i does meet another index, then this index is in J
(by maximality of I). In particular, the map {1, . . . , t} → Z, i 7→ mi is concave.
Let m = max(mi, i ∈ {1, . . . , t}). Then mi|aii| ≤ 2mw for i ≤ t and our goal is to
show that 2mw ≤ 768g. Let s, resp. s′ in {1, . . . , t} be the smallest, resp. biggest
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index with ms = m = ms′ . By concavity we see that mi = m for s ≤ i ≤ s′.
If s > 1, then we do not have equality in 2ms ≥ ms−1 + ms+1 and we see that
s meets an index from J . In this case 2mw ≤ 12g by the result of the second
paragraph of the proof. Similarly, if s′ < t, then s′ meets an index from J and we
get 2mw ≤ 12g as well. But if s = 1 and s′ = t, then we conclude that aij = 0
for all j ∈ J and i ∈ {2, . . . , t − 1}. But as we’ve seen that there must be a pair
(i, j) ∈ I × J with aij > 0, we conclude that this happens either with i = 1 or with
i = t and we conclude 2mw ≤ 12g in the same manner as before (as m1 = m = mt

in this case). □

Proposition 55.7.4.0C9X Let g ≥ 2. For every numerical type T of genus g and prime
number ℓ > 768g we have

dimFℓ Pic(T )[ℓ] ≤ g
where Pic(T ) is as in Definition 55.4.1. If T is minimal, then we even have

dimFℓ Pic(T )[ℓ] ≤ gtop ≤ g
where gtop as in Definition 55.3.11.

Proof. Say T is given by n,mi, aij , wi, gi. If T is not minimal, then there exists a
(−1)-index. After replacing T by an equivalent type we may assume n is a (−1)-
index. Applying Lemma 55.4.4 we find Pic(T ) ⊂ Pic(T ′) where T ′ is a numerical
type of genus g (Lemma 55.3.9) with n− 1 indices. Thus we conclude by induction
on n provided we prove the lemma for minimal numerical types.
Assume that T is a minimal numerical type of genus ≥ 2. Observe that gtop ≤ g
by Lemma 55.3.14. If A = (aij) then since Pic(T ) ⊂ Coker(A) by Lemma 55.4.3.
Thus it suffices to prove the lemma for Coker(A). By Lemma 55.7.3 we see that
mi|aij | ≤ 768g for all i, j. Hence the result by Lemma 55.2.6. □

55.8. Models

0C2R In this chapter R will be a discrete valuation ring and K will be its fraction field.
If needed we will denote π ∈ R a uniformizer and k = R/(π) its residue field.
Let V be an algebraic K-scheme (Varieties, Definition 33.20.1). A model for V will
mean a flat finite type6 morphism X → Spec(R) endowed with an isomorphism
V → XK = X ×Spec(R) Spec(K). We often will identify V and the generic fibre
XK of X and just write V = XK . The special fibre is Xk = X ×Spec(R) Spec(k).
A morphism of models X → X ′ for V is a morphism X → X ′ of schemes over R
which induces the identity on V .
We will say X is a proper model of V if X is a model of V and the structure
morphism X → Spec(R) is proper. Similarly for separated models, smooth models,
and add more here. We will say X is a regular model of V if X is a model of V
and X is a regular scheme. Similarly for normal models, reduced models, and add
more here.
Let R ⊂ R′ be an extension of discrete valuation rings (More on Algebra, Definition
15.111.1). This induces an extension K ′/K of fraction fields. Given an algebraic

6Occasionally it is useful to allow models to be locally of finite type over R, but we’ll cross
that bridge when we come to it.
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scheme V over K, denote V ′ the base change V ×Spec(K) Spec(K ′). Then there is
a functor

models for V over R −→ models for V ′ over R′

sending X to X ×Spec(R) Spec(R′).

Lemma 55.8.1.0C2S Let V1 → V2 be a closed immersion of algebraic schemes over K.
If X2 is a model for V2, then the scheme theoretic image of V1 → X2 is a model for
V1.

Proof. Using Morphisms, Lemma 29.6.3 and Example 29.6.4 this boils down to the
following algebra statement. Let A1 be a finite type R-algebra flat over R. Let
A1 ⊗R K → B2 be a surjection. Then A2 = A1/Ker(A1 → B2) is a finite type
R-algebra flat over R such that B2 = A2 ⊗R K. We omit the detailed proof; use
More on Algebra, Lemma 15.22.11 to prove that A2 is flat. □

Lemma 55.8.2.0C2T Let X be a model of a geometrically normal variety V over K.
Then the normalization ν : Xν → X is finite and the base change of Xν to the
completion R∧ is the normalization of the base change of X. Moreover, for each
x ∈ Xν the completion of OXν ,x is normal.

Proof. Observe that R∧ is a discrete valuation ring (More on Algebra, Lemma
15.43.5). Set Y = X ×Spec(R) Spec(R∧). Since R∧ is a discrete valuation ring, we
see that

Y \ Yk = Y ×Spec(R∧) Spec(K∧) = V ×Spec(K) Spec(K∧)
where K∧ is the fraction field of R∧. Since V is geometrically normal, we find that
this is a normal scheme. Hence the first part of the lemma follows from Resolution
of Surfaces, Lemma 54.11.6.

To prove the second part we may assume X and Y are normal (by the first part).
If x is in the generic fibre, then OX,x = OV,x is a normal local ring essentially
of finite type over a field. Such a ring is excellent (More on Algebra, Proposition
15.52.3). If x is a point of the special fibre with image y ∈ Y , then O∧

X,x = O∧
Y,y

by Resolution of Surfaces, Lemma 54.11.1. In this case OY,y is a excellent normal
local domain by the same reference as before as R∧ is excellent. If B is a excellent
local normal domain, then the completion B∧ is normal (as B → B∧ is regular and
More on Algebra, Lemma 15.42.2 applies). This finishes the proof. □

Lemma 55.8.3.0C2U Let X be a model of a smooth curve C over K. Then there exists
a resolution of singularities of X and any resolution is a model of C.

Proof. We check condition (4) of Lipman’s theorem (Resolution of Surfaces, Theo-
rem 54.14.5) hold. This is clear from Lemma 55.8.2 except for the statement that
Xν has finitely many singular points. To see this we can use that R is J-2 by
More on Algebra, Proposition 15.48.7 and hence the nonsingular locus is open in
Xν . Since Xν is normal of dimension ≤ 2, the singular points are closed, hence
closedness of the singular locus means there are finitely many of them (as X is
quasi-compact). Observe that any resolution of X is a modification of X (Resolu-
tion of Surfaces, Definition 54.14.1). This will be an isomorphism over the normal
locus of X by Varieties, Lemma 33.17.3. Since the set of normal points includes
C = XK we conclude any resolution is a model of C. □
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Definition 55.8.4.0C2V Let C be a smooth projective curve over K with H0(C,OC) = K.
A minimal model will be a regular, proper model X for C such that X does not
contain an exceptional curve of the first kind (Resolution of Surfaces, Section 54.16).

Really such a thing should be called a minimal regular proper model or even a
relatively minimal regular projective model. But as long as we stick to models over
discrete valuation rings (as we will in this chapter), no confusion should arise.
Minimal models always exist (Proposition 55.8.6) and are unique when the genus
is > 0 (Lemma 55.10.1).

Lemma 55.8.5.0CD9 Let C be a smooth projective curve over K with H0(C,OC) = K.
If X is a regular proper model for C, then there exists a sequence of morphisms

X = Xm → Xm−1 → . . .→ X1 → X0

of proper regular models of C, such that each morphism is a contraction of an
exceptional curve of the first kind, and such that X0 is a minimal model.

Proof. By Resolution of Surfaces, Lemma 54.16.11 we see that X is projective over
R. Hence X has an ample invertible sheaf by More on Morphisms, Lemma 37.50.1
(we will use this below). Let E ⊂ X be an exceptional curve of the first kind. See
Resolution of Surfaces, Section 54.16. By Resolution of Surfaces, Lemma 54.16.8
we can contract E by a morphism X → X ′ such that X ′ is regular and is projective
over R. Clearly, the number of irreducible components of X ′

k is exactly one less
than the number of irreducible components of Xk. Thus we can only perform a
finite number of these contractions until we obtain a minimal model. □

Proposition 55.8.6.0C2W Let C be a smooth projective curve over K with H0(C,OC) =
K. A minimal model exists.

Proof. Choose a closed immersion C → Pn
K . Let X be the scheme theoretic image

of C → Pn
R. Then X → Spec(R) is a projective model of C by Lemma 55.8.1. By

Lemma 55.8.3 there exists a resolution of singularities X ′ → X and X ′ is a model
for C. Then X ′ → Spec(R) is proper as a composition of proper morphisms. Then
we may apply Lemma 55.8.5 to obtain a minimal model. □

55.9. The geometry of a regular model

0C5Y In this section we describe the geometry of a proper regular model X of a smooth
projective curve C over K with H0(C,OC) = K.

Lemma 55.9.1.0C5Z Let X be a regular model of a smooth curve C over K.
(1) the special fibre Xk is an effective Cartier divisor on X,
(2) each irreducible component Ci of Xk is an effective Cartier divisor on X,
(3) Xk =

∑
miCi (sum of effective Cartier divisors) where mi is the multi-

plicity of Ci in Xk,
(4) OX(Xk) ∼= OX .

Proof. Recall that R is a discrete valuation ring with uniformizer π and residue field
k = R/(π). Because X → Spec(R) is flat, the element π is a nonzerodivisor affine
locally on X (see More on Algebra, Lemma 15.22.11). Thus if U = Spec(A) ⊂ X
is an affine open, then

XK ∩ U = Uk = Spec(A⊗R k) = Spec(A/πA)
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and π is a nonzerodivisor in A. Hence Xk = V (π) is an effective Cartier divisor by
Divisors, Lemma 31.13.2. Hence (1) is true.
The discussion above shows that the pair (OX(Xk), 1) is isomorphic to the pair
(OX , π) which proves (4).
By Divisors, Lemma 31.15.11 there exist pairwise distinct integral effective Cartier
divisors Di ⊂ X and integers ai ≥ 0 such that Xk =

∑
aiDi. We can throw out

those divisors Di such that ai = 0. Then it is clear (from the definition of addition
of effective Cartier divisors) that Xk =

⋃
Di set theoretically. Thus Ci = Di are the

irreducible components of Xk which proves (2). Let ξi be the generic point of Ci.
Then OX,ξi is a discrete valuation ring (Divisors, Lemma 31.15.4). The uniformizer
πi ∈ OX,ξi is a local equation for Ci and the image of π is a local equation for Xk.
Since Xk =

∑
aiCi we see that π and πaii generate the same ideal in OX,ξi . On

the other hand, the multiplicity of Ci in Xk is
mi = lengthOCi,ξi

OXk,ξi = lengthOCi,ξi
OX,ξi/(π) = lengthOCi,ξi

OX,ξi/(πaii ) = ai

See Chow Homology, Definition 42.9.2. Thus ai = mi and (3) is proved. □

Lemma 55.9.2.0C60 Let X be a regular model of a smooth curve C over K. Then
(1) X → Spec(R) is a Gorenstein morphism of relative dimension 1,
(2) each of the irreducible components Ci of Xk is Gorenstein.

Proof. Since X → Spec(R) is flat, to prove (1) it suffices to show that the fibres are
Gorenstein (Duality for Schemes, Lemma 48.25.3). The generic fibre is a smooth
curve, which is regular and hence Gorenstein (Duality for Schemes, Lemma 48.24.3).
For the special fibre Xk we use that it is an effective Cartier divisor on a regular
(hence Gorenstein) scheme and hence Gorenstein for example by Dualizing Com-
plexes, Lemma 47.21.6. The curves Ci are Gorenstein by the same argument. □

Situation 55.9.3.0C61 Let R be a discrete valuation ring with fraction field K, residue
field k, and uniformizer π. Let C be a smooth projective curve over K with
H0(C,OC) = K. Let X be a regular proper model of C. Let C1, . . . , Cn be the
irreducible components of the special fibre Xk. Write Xk =

∑
miCi as in Lemma

55.9.1.
Lemma 55.9.4.0C62 In Situation 55.9.3 the special fibre Xk is connected.
Proof. Consequence of More on Morphisms, Lemma 37.53.6. □

Lemma 55.9.5.0C63 In Situation 55.9.3 there is an exact sequence
0→ Z→ Z⊕n → Pic(X)→ Pic(C)→ 0

where the first map sends 1 to (m1, . . . ,mn) and the second maps sends the ith
basis vector to OX(Ci).
Proof. Observe that C ⊂ X is an open subscheme. The restriction map Pic(X)→
Pic(C) is surjective by Divisors, Lemma 31.28.3. Let L be an invertible OX -module
such that there is an isomorphism s : OC → L|C . Then s is a regular meromorphic
section of L and we see that divL(s) =

∑
aiCi for some ai ∈ Z (Divisors, Definition

31.27.4). By Divisors, Lemma 31.27.6 (and the fact that X is normal) we conclude
that L = OX(

∑
aiCi). Finally, suppose that OX(

∑
aiCi) ∼= OX . Then there

exists an element g of the function field of X with divX(g) =
∑
aiCi. In particular

the rational function g has no zeros or poles on the generic fibre C of X. Since C
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is a normal scheme this implies g ∈ H0(C,OC) = K. Thus g = πau for some a ∈ Z
and u ∈ R∗. We conclude that divX(g) = a

∑
miCi and the proof is complete. □

In Situation 55.9.3 for every invertible OX -module L and every i we get an integer
deg(L|Ci) = χ(Ci,L|Ci)− χ(Ci,OCi)

by taking the degree of the restriction of L to Ci relative to the ground field k7 as
in Varieties, Section 33.44.

Lemma 55.9.6.0C64 In Situation 55.9.3 given L an invertible OX -module and a =
(a1, . . . , an) ∈ Z⊕n we define

⟨a,L⟩ =
∑

ai deg(L|Ci)

Then ⟨, ⟩ is bilinear and for b = (b1, . . . , bn) ∈ Z⊕n we have〈
a,OX(

∑
biCi)

〉
=
〈
b,OX(

∑
aiCi)

〉
Proof. Bilinearity is immediate from the definition and Varieties, Lemma 33.44.7.
To prove symmetry it suffices to assume a and b are standard basis vectors in Z⊕n.
Hence it suffices to prove that

deg(OX(Cj)|Ci) = deg(OX(Ci)|Cj )
for all 1 ≤ i, j ≤ n. If i = j there is nothing to prove. If i ̸= j, then the canonical
section 1 of OX(Cj) restricts to a nonzero (hence regular) section of OX(Cj)|Ci
whose zero scheme is exactly Ci ∩ Cj (scheme theoretic intersection). In other
words, Ci ∩ Cj is an effective Cartier divisor on Ci and

deg(OX(Cj)|Ci) = deg(Ci ∩ Cj)
by Varieties, Lemma 33.44.9. By symmetry we obtain the same (!) formula for the
other side and the proof is complete. □

In Situation 55.9.3 it is often convenient to think of Z⊕n as the free abelian group
on the set {C1, . . . , Cn}. We will indicate an element of this group as

∑
aiCi; here

we think of this as a formal sum although equivalently we may (and we sometimes
do) think of such a sum as a Weil divisor on X supported on the special fibre Xk.
Now Lemma 55.9.6 allows us to define a symmetric bilinear form ( · ) on this free
abelian group by the rule

(55.9.6.1)0C65
(∑

aiCi ·
∑

bjCj

)
=
〈
a,OX(

∑
bjCj)

〉
=
〈
b,OX(

∑
aiCi)

〉
We will prove some properties of this bilinear form.

Lemma 55.9.7.0C66 In Situation 55.9.3 the symmetric bilinear form (55.9.6.1) has the
following properties

(1) (Ci · Cj) ≥ 0 if i ̸= j with equality if and only if Ci ∩ Cj = ∅,
(2) (

∑
miCi · Cj) = 0,

(3) there is no nonempty proper subset I ⊂ {1, . . . , n} such that (Ci ·Cj) = 0
for i ∈ I, j ̸∈ I.

(4) (
∑
aiCi ·

∑
aiCi) ≤ 0 with equality if and only if there exists a q ∈ Q

such that ai = qmi for i = 1, . . . , n,
7Observe that it may happen that the field κi = H0(Ci,OCi ) is strictly bigger than k. In

this case every invertible module on Ci has degree (as defined above) divisible by [κi : k].
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Proof. In the proof of Lemma 55.9.6 we saw that (Ci ·Cj) = deg(Ci ∩Cj) if i ̸= j.
This is ≥ 0 and > 0 if and only if Ci ∩ Cj ̸= ∅. This proves (1).
Proof of (2). This is true because by Lemma 55.9.1 the invertible sheaf associated
to
∑
miCi is trivial and the trivial sheaf has degree zero.

Proof of (3). This is expressing the fact that Xk is connected (Lemma 55.9.4) via
the description of the intersection products given in the proof of (1).
Part (4) follows from (1), (2), and (3) by Lemma 55.2.3. □

Lemma 55.9.8.0C67 In Situation 55.9.3 set d = gcd(m1, . . . ,mn) and letD =
∑

(mi/d)Ci
as an effective Cartier divisor. Then OX(D) has order dividing d in Pic(X) and
CD/X an invertible OD-module of order dividing d in Pic(D).

Proof. We have
OX(D)⊗d = OX(dD) = OX(Xk) = OX

by Lemma 55.9.1. We conclude as CD/X is the pullback of OX(−D). □

Lemma 55.9.9.0C68 [AW71, Lemma 2.6]In Situation 55.9.3 let d = gcd(m1, . . . ,mn). Let D =
∑

(mi/d)Ci
as an effective Cartier divisor. Then there exists a sequence of effective Cartier
divisors

(Xk)red = Z0 ⊂ Z1 ⊂ . . . ⊂ Zm = D

such that Zj = Zj−1 + Cij for some ij ∈ {1, . . . , n} for j = 1, . . . ,m and such that
H0(Zj ,OZj ) is a field finite over k for j = 0, . . .m.

Proof. The reduction Dred = (Xk)red =
∑
Ci is connected (Lemma 55.9.4) and

proper over k. Hence H0(Dred,O) is a field and a finite extension of k by Varieties,
Lemma 33.9.3. Thus the result for Z0 = Dred = (Xk)red is true. Suppose that we
have already constructed

(Xk)red = Z0 ⊂ Z1 ⊂ . . . ⊂ Zt ⊂ D
with Zj = Zj−1 + Cij for some ij ∈ {1, . . . , n} for j = 1, . . . , t and such that
H0(Zj ,OZj ) is a field finite over k for j = 0, . . . , t. Write Zt =

∑
aiCi with

1 ≤ ai ≤ mi/d. If ai = mi/d for all i, then Zt = D and the lemma is proved. If
not, then ai < mi/d for some i and it follows that (Zt · Zt) < 0 by Lemma 55.9.7.
This means that (D−Zt ·Zt) > 0 because (D ·Zt) = 0 by the lemma. Thus we can
find an i with ai < mi/d such that (Ci · Zt) > 0. Set Zt+1 = Zt + Ci and it+1 = i.
Consider the short exact sequence

0→ OX(−Zt)|Ci → OZt+1 → OZt → 0
of Divisors, Lemma 31.14.3. By our choice of i we see that OX(−Zt)|Ci is an invert-
ible sheaf of negative degree on the proper curve Ci, hence it has no nonzero global
sections (Varieties, Lemma 33.44.12). We conclude that H0(OZt+1) ⊂ H0(OZt) is
a field (this is clear but also follows from Algebra, Lemma 10.36.18) and a finite
extension of k. Thus we have extended the sequence. Since the process must stop,
for example because t ≤

∑
(mi/d− 1), this finishes the proof. □

Lemma 55.9.10.0C69 [AW71, Lemma 2.6]In Situation 55.9.3 let d = gcd(m1, . . . ,mn). Let D =
∑

(mi/d)Ci
as an effective Cartier divisor on X. Then

1− gC = d[κ : k](1− gD)
where gC is the genus of C, gD is the genus of D, and κ = H0(D,OD).
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Proof. By Lemma 55.9.9 we see that κ is a field and a finite extension of k.
Since also H0(C,OC) = K we see that the genus of C and D are defined (see
Algebraic Curves, Definition 53.8.1) and we have gC = dimK H

1(C,OC) and
gD = dimκH

1(D,OD). By Derived Categories of Schemes, Lemma 36.32.2 we
have

1− gC = χ(C,OC) = χ(Xk,OXk) = dimkH
0(Xk,OXk)− dimkH

1(Xk,OXk)
We claim that

χ(Xk,OXk) = dχ(D,OD)
This will prove the lemma because

χ(D,OD) = dimkH
0(D,OD)− dimkH

1(D,OD) = [κ : k](1− gD)
Observe that Xk = dD as an effective Cartier divisor. To prove the claim we prove
by induction on 1 ≤ r ≤ d that χ(rD,OrD) = rχ(D,OD). The base case r = 1 is
trivial. If 1 ≤ r < d, then we consider the short exact sequence

0→ OX(rD)|D → O(r+1)D → OrD → 0
of Divisors, Lemma 31.14.3. By additivity of Euler characteristics (Varieties, Lemma
33.33.2) it suffices to prove that χ(D,OX(rD)|D) = χ(D,OD). This is true because
OX(rD)|D is a torsion element of Pic(D) (Lemma 55.9.8) and because the degree of
a line bundle is additive (Varieties, Lemma 33.44.7) hence zero for torsion invertible
sheaves. □

Lemma 55.9.11.0C6A In Situation 55.9.3 given a pair of indices i, j such that Ci and Cj
are exceptional curves of the first kind and Ci ∩Cj ̸= ∅, then n = 2, m1 = m2 = 1,
C1 ∼= P1

k, C2 ∼= P1
k, C1 and C2 meet in a k-rational point, and C has genus 0.

Proof. Choose isomorphisms Ci = P1
κi and Cj = P1

κj . The scheme Ci ∩ Cj is a
nonempty effective Cartier divisor in both Ci and Cj . Hence

(Ci · Cj) = deg(Ci ∩ Cj) ≥ max([κi : k], [κj : k])
The first equality was shown in the proof of Lemma 55.9.6. On the other hand, the
self intersection (Ci · Ci) is equal to the degree of OX(Ci) on Ci which is −[κi : k]
as Ci is an exceptional curve of the first kind. Similarly for Cj . By Lemma 55.9.7

0 ≥ (Ci + Cj)2 = −[κi : k] + 2(Ci · Cj)− [κj : k]
This implies that [κi : k] = deg(Ci∩Cj) = [κj : k] and that we have (Ci+Cj)2 = 0.
Looking at the lemma again we conclude that n = 2, {1, 2} = {i, j}, and m1 = m2.
Moreover, the scheme theoretic intersection Ci∩Cj consists of a single point p with
residue field κ and κi → κ ← κj are isomorphisms. Let D = C1 + C2 as effective
Cartier divisor on X. Observe that D is the scheme theoretic union of C1 and C2
(Divisors, Lemma 31.13.10) hence we have a short exact sequence

0→ OD → OC1 ⊕OC2 → Op → 0
by Morphisms, Lemma 29.4.6. Since we know the cohomology of Ci ∼= P1

κ (Coho-
mology of Schemes, Lemma 30.8.1) we conclude from the long exact cohomology
sequence that H0(D,OD) = κ and H1(D,OD) = 0. By Lemma 55.9.10 we conclude

1− gC = d[κ : k](1− 0)
where d = m1 = m2. It follows that gC = 0 and d = m1 = m2 = 1 and κ = k. □
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55.10. Uniqueness of the minimal model

0C9Y If the genus of the generic fibre is positive, then minimal models are unique (Lemma
55.10.1) and consequently have a suitable mapping property (Lemma 55.10.2).

Lemma 55.10.1.0C6B Let C be a smooth projective curve over K with H0(C,OC) = K
and genus > 0. There is a unique minimal model for C.

Proof. We have already proven the hard part of the lemma which is the existence
of a minimal model (whose proof relies on resolution of surface singularities), see
Proposition 55.8.6. To prove uniqueness, suppose that X and Y are two minimal
models. By Resolution of Surfaces, Lemma 54.17.2 there exists a diagram of S-
morphisms

X = X0 ← X1 ← . . .← Xn = Ym → . . .→ Y1 → Y0 = Y

where each morphism is a blowup in a closed point. The exceptional fibre of the
morphism Xn → Xn−1 is an exceptional curve of the first kind E. We claim that
E is contracted to a point under the morphism Xn = Ym → Y . If this is true,
then Xn → Y factors through Xn−1 by Resolution of Surfaces, Lemma 54.16.1. In
this case the morphism Xn−1 → Y is still a sequence of contractions of exceptional
curves by Resolution of Surfaces, Lemma 54.17.1. Hence by induction on n we
conclude. (The base case n = 0 means that there is a sequence of contractions
X = Ym → . . .→ Y1 → Y0 = Y ending with Y . However as X is a minimal model
it contains no exceptional curves of the first kind, hence m = 0 and X = Y .)
Proof of the claim. We will show by induction on m that any exceptional curve of
the first kind E ⊂ Ym is mapped to a point by the morphism Ym → Y . If m = 0
this is clear because Y is a minimal model. If m > 0, then either Ym → Ym−1
contracts E (and we’re done) or the exceptional fibre E′ ⊂ Ym of Ym → Ym−1 is
a second exceptional curve of the first kind. Since both E and E′ are irreducible
components of the special fibre and since gC > 0 by assumption, we conclude that
E∩E′ = ∅ by Lemma 55.9.11. Then the image of E in Ym−1 is an exceptional curve
of the first kind (this is clear because the morphism Ym → Ym−1 is an isomorphism
in a neighbourhood of E). By induction we see that Ym−1 → Y contracts this curve
and the proof is complete. □

Lemma 55.10.2.0C9Z Let C be a smooth projective curve over K with H0(C,OC) = K
and genus > 0. Let X be the minimal model for C (Lemma 55.10.1). Let Y be a
regular proper model for C. Then there is a unique morphism of models Y → X
which is a sequence of contractions of exceptional curves of the first kind.

Proof. The existence and properties of the morphism X → Y follows immediately
from Lemma 55.8.5 and the uniqueness of the minimal model. The morphism
Y → X is unique because C ⊂ Y is scheme theoretically dense and X is separated
(see Morphisms, Lemma 29.7.10). □

Example 55.10.3.0CA0 If the genus of C is 0, then minimal models are indeed nonunique.
Namely, consider the closed subscheme

X ⊂ P2
R

defined by T1T2−πT 2
0 = 0. More preciselyX is defined as Proj(R[T0, T1, T2]/(T1T2−

πT 2
0 )). Then the special fibre Xk is a union of two exceptional curves C1, C2 both

isomorphic to P1
k (exactly as in Lemma 55.9.11). Projection from (0 : 1 : 0) defines
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a morphism X → P1
R contracting C2 and inducing an isomorphism of C1 with

the special fiber of P1
R. Projection from (0 : 0 : 1) defines a morphism X → P1

R

contracting C1 and inducing an isomorphism of C2 with the special fiber of P1
R.

More precisely, these morphisms correspond to the graded R-algebra maps

R[T0, T1] −→ R[T0, T1, T2]/(T1T2 − πT 2
0 )←− R[T0, T2]

In Lemma 55.12.4 we will study this phenomenon.

55.11. A formula for the genus

0CA1 There is one more restriction on the combinatorial structure coming from a proper
regular model.

Lemma 55.11.1.0CA2 In Situation 55.9.3 suppose we have an effective Cartier divisors
D,D′ ⊂ X such that D′ = D + Ci for some i ∈ {1, . . . , n} and D′ ⊂ Xk. Then

χ(Xk,OD′)− χ(Xk,OD) = χ(Xk,OX(−D)|Ci) = −(D · Ci) + χ(Ci,OCi)

Proof. The second equality follows from the definition of the bilinear form ( · ) in
(55.9.6.1) and Lemma 55.9.6. To see the first equality we distinguish two cases.
Namely, if Ci ̸⊂ D, then D′ is the scheme theoretic union of D and Ci (by Divisors,
Lemma 31.13.10) and we get a short exact sequence

0→ OD′ → OD ×OCi → OD∩Ci → 0

by Morphisms, Lemma 29.4.6. Since we also have an exact sequence

0→ OX(−D)|Ci → OCi → OD∩Ci → 0

(Divisors, Remark 31.14.11) we conclude that the claim holds by additivity of euler
characteristics (Varieties, Lemma 33.33.2). On the other hand, if Ci ⊂ D then we
get an exact sequence

0→ OX(−D)|Ci → OD′ → OD → 0

by Divisors, Lemma 31.14.3 and we immediately see the lemma holds. □

Lemma 55.11.2.0CA3 In Situation 55.9.3 we have

gC = 1 +
∑

i=1,...,n
mi

(
[κi : k](gi − 1)− 1

2(Ci · Ci)
)

where κi = H0(Ci,OCi), gi is the genus of Ci, and gC is the genus of C.

Proof. Our basic tool will be Derived Categories of Schemes, Lemma 36.32.2 which
shows that

1− gC = χ(C,OC) = χ(Xk,OXk)
Choose a sequence of effective Cartier divisors

Xk = Dm ⊃ Dm−1 ⊃ . . . ⊃ D1 ⊃ D0 = ∅

such that Dj+1 = Dj+Cij for each j. (It is clear that we can choose such a sequence
by decreasing one nonzero multiplicity of Dj+1 one step at a time.) Applying
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Lemma 55.11.1 starting with χ(OD0) = 0 we get
1− gC = χ(Xk,OXk)

=
∑

j

(
−(Dj · Cij ) + χ(Cij ,OCij )

)
= −

∑
j
(Ci1 + Ci2 + . . .+ Cij−1 · Cij ) +

∑
j
χ(Cij ,OCij )

= −1
2
∑

j ̸=j′
(Cij′ · Cij ) +

∑
miχ(Ci,OCi)

= 1
2
∑

mi(Ci · Ci) +
∑

miχ(Ci,OCi)

Perhaps the last equality deserves some explanation. Namely, since
∑
j Cij =∑

miCi we have (
∑
j Cij ·

∑
j Cij ) = 0 by Lemma 55.9.7. Thus we see that

0 =
∑

j ̸=j′
(Cij′ · Cij ) +

∑
mi(Ci · Ci)

by splitting this product into “nondiagonal” and “diagonal” terms. Note that κi is a
field finite over k by Varieties, Lemma 33.26.2. Hence the genus of Ci is defined and
we have χ(Ci,OCi) = [κi : k](1− gi). Putting everything together and rearranging
terms we get

gC = −1
2
∑

mi(Ci · Ci) +
∑

mi[κi : k](gi − 1) + 1

which is what the lemma says too. □

Lemma 55.11.3.0CA4 In Situation 55.9.3 with κi = H0(Ci,OCi) and gi the genus of Ci
the data

n,mi, (Ci · Cj), [κi : k], gi
is a numerical type of genus equal to the genus of C.

Proof. (In the proof of Lemma 55.11.2 we have seen that the quantities used in the
statement of the lemma are well defined.) We have to verify the conditions (1) –
(5) of Definition 55.3.1.
Condition (1) is immediate.
Condition (2). Symmetry of the matrix (Ci · Cj) follows from Equation (55.9.6.1)
and Lemma 55.9.6. Nonnegativity of (Ci ·Cj) for i ̸= j is part (1) of Lemma 55.9.7.
Condition (3) is part (3) of Lemma 55.9.7.
Condition (4) is part (2) of Lemma 55.9.7.
Condition (5) follows from the fact that (Ci · Cj) is the degree of an invertible
module on Ci which is divisible by [κi : k], see Varieties, Lemma 33.44.10.
The genus formula proved in Lemma 55.11.2 tells us that the numerical type has
the genus as stated, see Definition 55.3.4. □

Definition 55.11.4.0CA5 In Situation 55.9.3 the numerical type associated to X is the
numerical type described in Lemma 55.11.3.

Now we match minimality of the model with minimality of the type.

Lemma 55.11.5.0CA6 In Situation 55.9.3. The following are equivalent
(1) X is a minimal model, and
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(2) the numerical type associated to X is minimal.

Proof. If the numerical type is minimal, then there is no i with gi = 0 and (Ci ·Ci) =
−[κi : k], see Definition 55.3.12. Certainly, this implies that none of the curves Ci
are exceptional curves of the first kind.

Conversely, suppose that the numerical type is not minimal. Then there exists an
i such that gi = 0 and (Ci · Ci) = −[κi : k]. We claim this implies that Ci is an
exceptional curve of the first kind. Namely, the invertible sheaf OX(−Ci)|Ci has
degree −(Ci · Ci) = [κi : k] when Ci is viewed as a proper curve over k, hence has
degree 1 when Ci is viewed as a proper curve over κi. Applying Algebraic Curves,
Proposition 53.10.4 we conclude that Ci ∼= P1

κi as schemes over κi. Since the Picard
group of P1 over a field is Z, we see that the normal sheaf of Ci in X is isomorphic
to OPκi (−1) and the proof is complete. □

Remark 55.11.6.0CA7 Not every numerical type comes from a model for the silly reason
that there exist numerical types whose genus is negative. There exist a minimal
numerical types of positive genus which are not the numerical type associated to a
model (over some dvr) of a smooth projective geometrically irreducible curve (over
the fraction field of the dvr). A simple example is n = 1, m1 = 1, a11 = 0, w1 = 6,
g1 = 1. Namely, in this case the special fibre Xk would not be geometrically
connected because it would live over an extension κ of k of degree 6. This is a
contradiction with the fact that the generic fibre is geometrically connected (see
More on Morphisms, Lemma 37.53.6). Similarly, n = 2, m1 = m2 = 1, −a11 =
−a22 = a12 = a21 = 6, w1 = w2 = 6, g1 = g2 = 1 would be an example for the same
reason (details omitted). But if the gcd of the wi is 1 we do not have an example.

Lemma 55.11.7.0CE8 In Situation 55.9.3 assume C has a K-rational point. Then
(1) Xk has a k-rational point x which is a smooth point of Xk over k,
(2) if x ∈ Ci, then H0(Ci,OCi) = k and mi = 1, and
(3) H0(Xk,OXk) = k and Xk has genus equal to the genus of C.

Proof. Since X → Spec(R) is proper, the K-rational point extends to a morphism
a : Spec(R) → X by the valuative criterion of properness (Morphisms, Lemma
29.42.1). Let x ∈ X be the image under a of the closed point of Spec(R). Then a
corresponds to an R-algebra homomorphism ψ : OX,x → R (see Schemes, Section
26.13). It follows that π ̸∈ m2

x (since the image of π in R is not in m2
R). Hence

OXk,x = OX,x/πOX,x is regular (Algebra, Lemma 10.106.3). Then Xk → Spec(k)
is smooth at x by Algebra, Lemma 10.140.5. It follows that x is contained in a
unique irreducible component Ci of Xk, that OCi,x = OXk,x, and that mi = 1.
The fact that Ci has a k-rational point implies that the field κi = H0(Ci,OCi)
(Varieties, Lemma 33.26.2) is equal to k. This proves (1). We have H0(Xk,OXk) =
k because H0(Xk,OXk) is a field extension of k (Lemma 55.9.9) which maps to
H0(Ci,OCi) = k. The genus equality follows from Lemma 55.9.10. □

Lemma 55.11.8.0CE9 In Situation 55.9.3 assumeX is a minimal model, gcd(m1, . . . ,mn) =
1, and H0((Xk)red,O) = k. Then the map

H1(Xk,OXk)→ H1((Xk)red,O(Xk)red)

is surjective and has a nontrivial kernel as soon as (Xk)red ̸= Xk.
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Proof. By vanishing of cohomology in degrees ≥ 2 over Xk (Cohomology, Proposi-
tion 20.20.7) any surjection of abelian sheaves on Xk induces a surjection on H1.
Consider the sequence

(Xk)red = Z0 ⊂ Z1 ⊂ . . . ⊂ Zm = Xk

of Lemma 55.9.9. Since the field maps H0(Zj ,OZj ) → H0((Xk)red,O(Xk)red) = k

are injective we conclude that H0(Zj ,OZj ) = k for j = 0, . . . ,m. It follows that
H0(Xk,OXk)→ H0(Zm−1,OZm−1) is surjective. Let C = Cim . Then Xk = Zm−1+
C. Let L = OX(−Zm−1)|C . Then L is an invertible OC-module. As in the proof
of Lemma 55.9.9 there is an exact sequence

0→ L → OXk → OZm−1 → 0

of coherent sheaves on Xk. We conclude that we get a short exact sequence

0→ H1(C,L)→ H1(Xk,OXk)→ H1(Zm−1,OZm−1)→ 0

The degree of L on C over k is

(C · −Zm−1) = (C · C −Xk) = (C · C)

Set κ = H0(C,OC) and w = [κ : k]. By definition of the degree of an invertible
sheaf we see that

χ(C,L) = χ(C,OC) + (C · C) = w(1− gC) + (C · C)

where gC is the genus of C. This expression is < 0 as X is minimal and hence C
is not an exceptional curve of the first kind (see proof of Lemma 55.11.5). Thus
dimkH

1(C,L) > 0 which finishes the proof. □

Lemma 55.11.9.0CEA In Situation 55.9.3 assume Xk has a k-rational point x which is
a smooth point of Xk → Spec(k). Then

dimkH
1((Xk)red,O(Xk)red) ≥ gtop + ggeom(Xk/k)

where ggeom is as in Algebraic Curves, Section 53.18 and gtop is the topological genus
(Definition 55.3.11) of the numerical type associated to Xk (Definition 55.11.4).

Proof. We are going to prove the inequality

dimkH
1(D,OD) ≥ gtop(D) + ggeom(D/k)

for all connected reduced effective Cartier divisors D ⊂ (Xk)red containing x by
induction on the number of irreducible components of D. Here gtop(D) = 1−m+e
where m is the number of irreducible components of D and e is the number of
unordered pairs of components of D which meet.

Base case: D has one irreducible component. Then D = Ci is the unique irreducible
component containing x. In this case dimkH

1(D,OD) = gi and gtop(D) = 0. Since
Ci has a k-rational smooth point it is geometrically integral (Varieties, Lemma
33.25.10). It follows that gi is the genus of Ci,k (Algebraic Curves, Lemma 53.8.2).
It also follows that ggeom(D/k) is the genus of the normalization Cν

i,k
of Ci,k.

Applying Algebraic Curves, Lemma 53.18.4 to the normalization morphism Cν
i,k
→

Ci,k we get

(55.11.9.1)0CEB genus of Ci,k ≥ genus of Cν
i,k
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Combining the above we conclude that dimkH
1(D,OD) ≥ gtop(D) + ggeom(D/k)

in this case.
Induction step. Suppose we have D with more than 1 irreducible component. Then
we can write D = Ci+D′ where x ∈ D′ and D′ is still connected. This is an exercise
in graph theory we leave to the reader (hint: let Ci be the component of D which
is farthest from x). We compute how the invariants change. As x ∈ D′ we have
H0(D,OD) = H0(D′,OD′) = k. Looking at the short exact sequence of sheaves

0→ OD → OCi ⊕OD′ → OCi∩D′ → 0
(Morphisms, Lemma 29.4.6) and using additivity of euler characteristics we find

dimkH
1(D,OD)− dimkH

1(D′,OD′) = −χ(OCi) + χ(OCi∩D′)

= wi(gi − 1) +
∑

Cj⊂D′
aij

Here as in Lemma 55.11.3 we set wi = [κi : k], κi = H0(Ci,OCi), gi is the genus of
Ci, and aij = (Ci · Cj). We have

gtop(D)− gtop(D′) = −1 +
∑

Cj⊂D′ meeting Ci
1

We have
ggeom(D/k)− ggeom(D′/k) = ggeom(Ci/k)

by Algebraic Curves, Lemma 53.18.1. Combining these with our induction hypoth-
esis, we conclude that it suffices to show that

wigi − ggeom(Ci/k) +
∑

Cj⊂D′ meets Ci
(aij − 1)− (wi − 1)

is nonnegative. In fact, we have
(55.11.9.2)0CEC wigi ≥ [κi : k]sgi ≥ ggeom(Ci/k)
The second inequality by Algebraic Curves, Lemma 53.18.5. On the other hand,
since wi divides aij (Varieties, Lemma 33.44.10) it is clear that

(55.11.9.3)0CED
∑

Cj⊂D′ meets Ci
(aij − 1)− (wi − 1) ≥ 0

because there is at least one Cj ⊂ D′ which meets Ci. □

Lemma 55.11.10.0CEE If equality holds in Lemma 55.11.9 then
(1) the unique irreducible component of Xk containing x is a smooth projec-

tive geometrically irreducible curve over k,
(2) if C ⊂ Xk is another irreducible component, then κ = H0(C,OC) is a

finite separable extension of k, C has a κ-rational point, and C is smooth
over κ

Proof. Looking over the proof of Lemma 55.11.9 we see that in order to get equality,
the inequalities (55.11.9.1), (55.11.9.2), and (55.11.9.3) have to be equalities.
Let Ci be the irreducible component containing x. Equality in (55.11.9.1) shows
via Algebraic Curves, Lemma 53.18.4 that Cν

i,k
→ Ci,k is an isomorphism. Hence

Ci,k is smooth and part (1) holds.
Next, let Ci ⊂ Xk be another irreducible component. Then we may assume we have
D = D′ + Ci as in the induction step in the proof of Lemma 55.11.9. Equality in
(55.11.9.2) immediately implies that κi/k is finite separable. Equality in (55.11.9.3)
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implies either aij = 1 for some j or that there is a unique Cj ⊂ D′ meeting
Ci and aij = wi. In both cases we find that Ci has a κi-rational point c and
c = Ci ∩ Cj scheme theoretically. Since OX,c is a regular local ring, this implies
that the local equations of Ci and Cj form a regular system of parameters in the
local ring OX,c. Then OCi,c is regular by (Algebra, Lemma 10.106.3). We conclude
that Ci → Spec(κi) is smooth at c (Algebra, Lemma 10.140.5). It follows that Ci
is geometrically integral over κi (Varieties, Lemma 33.25.10). To finish we have to
show that Ci is smooth over κi. Observe that

Ci,k = Ci ×Spec(k) Spec(k) =
∐

κi→k
Ci ×Spec(κi) Spec(k)

where there are [κi : k]-summands. Thus if Ci is not smooth over κi, then each
of these curves is not smooth, then these curves are not normal and the nor-
malization morphism drops the genus (Algebraic Curves, Lemma 53.18.4) which
is disallowed because it would drop the geometric genus of Ci/k contradicting
[κi : k]gi = ggeom(Ci/k). □

55.12. Blowing down exceptional curves

0CEF The following lemma tells us what happens with the intersection numbers when
we contract an exceptional curve of the first kind in a regular proper model. We
put this here mostly to compare with the numerical contractions introduced in
Lemma 55.3.9. We will compare the geometric and numerical contractions in Re-
mark 55.12.3.

Lemma 55.12.1.0C6C In Situation 55.9.3 assume that Cn is an exceptional curve of the
first kind. Let f : X → X ′ be the contraction of Cn. Let C ′

i = f(Ci). Write
X ′
k =

∑
m′
iC

′
i. Then X ′, C ′

i, i = 1, . . . , n′ = n− 1, and m′
i = mi is as in Situation

55.9.3 and we have
(1) for i, j < n we have (C ′

i · C ′
j) = (Ci · Cj)− (Ci · Cn)(Cj · Cn)/(Cn · Cn),

(2) for i < n if Ci ∩ Cn ̸= ∅, then there are maps κi ← κ′
i → κn.

Here κi = H0(Ci,OCi) and κ′
i = H0(C ′

i,OC′
i
).

Proof. By Resolution of Surfaces, Lemma 54.16.8 we can contract Cn by a mor-
phism f : X → X ′ such that X ′ is regular and is projective over R. Thus we see
that X ′ is as in Situation 55.9.3. Let x ∈ X ′ be the image of Cn. Since f defines
an isomorphism X \ Cn → X ′ \ {x} it is clear that m′

i = mi for i < n.

Part (2) of the lemma is immediately clear from the existence of the morphisms
Ci → C ′

i and Cn → x→ C ′
i.

By Divisors, Lemma 31.32.11 the pullback f−1C ′
i is defined. By Divisors, Lemma

31.15.11 we see that f−1C ′
i = Ci + eiCn for some ei ≥ 0. Since OX(Ci + eiCn) =

OX(f−1C ′
i) = f∗OX′(C ′

i) (Divisors, Lemma 31.14.5) and since the pullback of an
invertible sheaf restricts to the trivial invertible sheaf on Cn we see that

0 = degCn(OX(Ci + eiCn)) = (Ci + eiCn · Cn) = (Ci · Cn) + ei(Cn · Cn)

As fj = f |Cj : Cj → Cj is a proper birational morphism of proper curves over
k, we see that degC′

j
(OX′(C ′

i)|C′
j
) is the same as degCj (f∗

jOX′(C ′
i)|C′

j
) (Varieties,
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Lemma 33.44.4). Looking at the commutative diagram

Cj //

fj

��

X

f

��
C ′
j

// X ′

and using Divisors, Lemma 31.14.5 we see that
(C ′

i · C ′
j) = degC′

j
(OX′(C ′

i)|C′
j
) = degCj (OX(Ci + eiCn)) = (Ci + eiCn · Cj)

Plugging in the formula for ei found above we see that (1) holds. □

Remark 55.12.2.0CA8 In the situation of Lemma 55.12.1 we can also say exactly how
the genus gi of Ci and the genus g′

i of C ′
i are related. The formula is

g′
i = wi

w′
i

(gi − 1) + 1 + (Ci · Cn)2 − wn(Ci · Cn)
2w′

iwn

where wi = [κi : k], wn = [κn : k], and w′
i = [κ′

i : k]. To prove this we consider the
short exact sequence

0→ OX′(−C ′
i)→ OX′ → OC′

i
→ 0

and its pullback to X which reads
0→ OX(−C ′

i − eiCn)→ OX → OCi+eiCn → 0
with ei as in the proof of Lemma 55.12.1. Since Rf∗f

∗L = L for any invertible
module L on X ′ (details omitted), we conclude that

Rf∗OCi+eiCn = OC′
i

as complexes of coherent sheaves on X ′
k. Hence both sides have the same Euler

characteristic and this agrees with the Euler characteristic of OCi+eiCn on Xk.
Using the exact sequence

0→ OCi+eiCn → OCi ⊕OeiCn → OCi∩eiCn → 0
and further filtering OeiCn (details omitted) we find

χ(OC′
i
) = χ(OCi)−

(
ei + 1

2

)
(Cn · Cn)− ei(Ci · Cn)

Since ei = −(Ci · Cn)/(Cn · Cn) and (Cn · Cn) = −wn this leads to the formula
stated at the start of this remark. If we ever need this we will formulate this as a
lemma and provide a detailed proof.

Remark 55.12.3.0CA9 Let f : X → X ′ be as in Lemma 55.12.1. Let n,mi, aij , wi, gi
be the numerical type associated to X and let n′,m′

i, a
′
ij , w

′
i, g

′
i be the numerical

type associated to X ′. It is clear from Lemma 55.12.1 and Remark 55.12.2 that
this agrees with the contraction of numerical types in Lemma 55.3.9 except for the
value of w′

i. In the geometric situation w′
i is some positive integer dividing both

wi and wn. In the numerical case we chose w′
i to be the largest possible integer

dividing wi such that g′
i (as given by the formula) is an integer. This works well in

the numerical setting in that it helps compare the Picard groups of the numerical
types, see Lemma 55.4.4 (although only injectivity is every used in the following
and this injectivity works as well for smaller w′

i).
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Lemma 55.12.4.0CDA Let C be a smooth projective curve over K with H0(C,OC) = K
and genus 0. If there is more than one minimal model for C, then the special fibre
of every minimal model is isomorphic to P1

k.

This lemma can be improved to say that the birational transformation between
two nonisomorphic minimal models can be factored as a sequence of elementary
transformations as in Example 55.10.3. If we ever need this, we will precisely
formulate and prove this here.

Proof. Let X be some minimal model of C. The numerical type associated to X
has genus 0 and is minimal (Definition 55.11.4 and Lemma 55.11.5). Hence by
Lemma 55.6.1 we see that Xk is reduced, irreducible, has H0(Xk,OXk) = k, and
has genus 0. Let Y be a second minimal model for C which is not isomorphic to X.
By Resolution of Surfaces, Lemma 54.17.2 there exists a diagram of S-morphisms

X = X0 ← X1 ← . . .← Xn = Ym → . . .→ Y1 → Y0 = Y

where each morphism is a blowup in a closed point. We will prove the lemma by
induction on m. The base case is m = 0; it is true in this case because we assumed
that Y is minimal hence this would mean n = 0, but X is not isomorphic to Y , so
this does not happen, i.e., there is nothing to check.
Before we continue, note that n+ 1 = m+ 1 is equal to the number of irreducible
components of the special fibre of Xn = Ym because both Xk and Yk are irreducible.
Another observation we will use below is that if X ′ → X ′′ is a morphism of regular
proper models for C, then X ′ → X ′′ is an isomorphism over an open set of X ′′

whose complement is a finite set of closed points of the special fibre of X ′′, see
Varieties, Lemma 33.17.3. In fact, any such X ′ → X ′′ is a sequence of blowing
ups in closed points (Resolution of Surfaces, Lemma 54.17.1) and the number of
blowups is the difference in the number of irreducible components of the special
fibres of X ′ and X ′′.
Let Ei ⊂ Yi, m ≥ i ≥ 1 be the curve which is contracted by the morphism Yi →
Yi−1. Let i be the biggest index such that Ei has multiplicity > 1 in the special
fibre of Yi. Then the further blowups Ym → . . . → Yi+1 → Yi are isomorphisms
over Ei since otherwise Ej for some j > i would have multiplicity > 1. Let E ⊂ Ym
be the inverse image of Ei. By what we just said E ⊂ Ym is an exceptional curve
of the first kind. Let Ym → Y ′ be the contraction of E (which exists by Resolution
of Surfaces, Lemma 54.16.9). The morphism Ym → X has to contract E, because
Xk is reduced. Hence there are morphisms Y ′ → Y and Y ′ → X (by Resolution
of Surfaces, Lemma 54.16.1) which are compositions of at most n − 1 = m − 1
contractions of exceptional curves (see discussion above). We win by induction on
m. Upshot: we may assume that the special fibres of all of the curves Xi and Yi
are reduced.
Since the fibres of Xi and Yi are reduced, it has to be the case that the blowups
Xi → Xi−1 and Yi → Yi−1 happen in closed points which are regular points of
the special fibres. Namely, if X ′′ is a regular model for C and if x ∈ X ′′ is a
closed point of the special fibre, and π ∈ m2

x, then the exceptional fibre E of
the blowup X ′ → X ′′ at x has multiplicity at least 2 in the special fibre of X ′

(local computation omitted). Hence OX′′
k
,x = OX′′,x/π is regular (Algebra, Lemma

10.106.3) as claimed. In particular x is a Cartier divisor on the unique irreducible
component Z ′ of X ′′

k it lies on (Varieties, Lemma 33.43.8). It follows that the strict

https://stacks.math.columbia.edu/tag/0CDA
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transform Z ⊂ X ′ of Z ′ maps isomorphically to Z ′ (use Divisors, Lemmas 31.33.2
and 31.32.7). In other words, if an irreducible component Z of Xi is not contracted
under the map Xi → Xj (i > j) then it maps isomorphically to its image.

Now we are ready to prove the lemma. Let E ⊂ Ym be the exceptional curve of the
first kind which is contracted by the morphism Ym → Ym−1. If E is contracted by
the morphism Ym = Xn → X, then there is a factorization Ym−1 → X (Resolution
of Surfaces, Lemma 54.16.1) and moreover Ym−1 → X is a sequence of blowups in
closed points (Resolution of Surfaces, Lemma 54.17.1). In this case we lower m and
we win by induction. Finally, assume that E is not contracted by the morphism
Ym → X. Then E → Xk is surjective as Xk is irreducible and by the above
this means it is an isomorphism. Hence Xk is isomorphic to a projective line as
desired. □

55.13. Picard groups of models

0CAA Assume R,K, k, π, C,X, n,C1, . . . , Cn,m1, . . . ,mn are as in Situation 55.9.3. In
Lemma 55.9.5 we found an exact sequence

0→ Z→ Z⊕n → Pic(X)→ Pic(C)→ 0

We want to use this sequence to study the ℓ-torsion in the Picard groups for suitable
primes ℓ.

Lemma 55.13.1.0CAB In Situation 55.9.3 let d = gcd(m1, . . . ,mn). If L is an invertible
OX -module which

(1) restricts to the trivial invertible module on C, and
(2) has degree 0 on each Ci,

then L⊗d ∼= OX .

Proof. By Lemma 55.9.5 we have L ∼= OX(
∑
aiCi) for some ai ∈ Z. The degree

of L|Cj is
∑
j aj(Ci · Cj). In particular (

∑
aiCi ·

∑
aiCi) = 0. Hence we see

from Lemma 55.9.7 that (a1, . . . , an) = q(m1, . . . ,mn) for some q ∈ Q. Thus
L = OX(lD) for some l ∈ Z where D =

∑
(mi/d)Ci is as in Lemma 55.9.8 and we

conclude. □

Lemma 55.13.2.0CAC In Situation 55.9.3 let T be the numerical type associated to X.
There exists a canonical map

Pic(C)→ Pic(T )

whose kernel is exactly those invertible modules on C which are the restriction of
invertible modules L on X with degCi(L|Ci) = 0 for i = 1, . . . , n.

Proof. Recall that wi = [κi : k] where κi = H0(Ci,OCi)) and recall that the degree
of any invertible module on Ci is divisible by wi (Varieties, Lemma 33.44.10). Thus
we can consider the map

deg
w

: Pic(X)→ Z⊕n, L 7→ (deg(L|C1)
w1

, . . . ,
deg(L|Cn)

wn
)

The image of OX(Cj) under this map is

((Cj · C1)/w1, . . . , (Cj · Cn)/wn) = (a1j/w1, . . . , anj/wn)

https://stacks.math.columbia.edu/tag/0CAB
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which is exactly the image of the jth basis vector under the map (aij/wi) : Z⊕n →
Z⊕n defining the Picard group of T , see Definition 55.4.1. Thus the canonical map
of the lemma comes from the commutative diagram

Z⊕n //

id
��

Pic(X) //

deg
w

��

Pic(C) //

��

0

Z⊕n (aij/wi) // Z⊕n // Pic(T ) // 0

with exact rows (top row by Lemma 55.9.5). The description of the kernel is
clear. □

Lemma 55.13.3.0CAD In Situation 55.9.3 let d = gcd(m1, . . . ,mn) and let T be the
numerical type associated to X. Let h ≥ 1 be an integer prime to d. There exists
an exact sequence

0→ Pic(X)[h]→ Pic(C)[h]→ Pic(T )[h]

Proof. Taking h-torsion in the exact sequence of Lemma 55.9.5 we obtain the ex-
actness of 0 → Pic(X)[h] → Pic(C)[h] because h is prime to d. Using the map
of Lemma 55.13.2 we get a map Pic(C)[h]→ Pic(T )[h] which annihilates elements
of Pic(X)[h]. Conversely, if ξ ∈ Pic(C)[h] maps to zero in Pic(T )[h], then we can
find an invertible OX -module L with deg(L|Ci) = 0 for all i whose restriction to
C is ξ. Then L⊗h is d-torsion by Lemma 55.13.1. Let d′ be an integer such that
dd′ ≡ 1 mod h. Such an integer exists because h and d are coprime. Then L⊗dd′ is
an h-torsion invertible sheaf on X whose restriction to C is ξ. □

Lemma 55.13.4.0CAE In Situation 55.9.3 let h be an integer prime to the characteristic
of k. Then the map

Pic(X)[h] −→ Pic((Xk)red)[h]
is injective.

Proof. Observe that X ×Spec(R) Spec(R/πn) is a finite order thickening of (Xk)red
(this follows for example from Cohomology of Schemes, Lemma 30.10.2). Thus the
canonical map Pic(X ×Spec(R) Spec(R/πn))→ Pic((Xk)red) identifies h torsion by
More on Morphisms, Lemma 37.4.2 and our assumption on h. Thus if L is an
h-torsion invertible sheaf on X which restricts to the trivial sheaf on (Xk)red then
L restricts to the trivial sheaf on X ×Spec(R) Spec(R/πn) for all n. We find

H0(X,L)∧ = limH0(X ×Spec(R) Spec(R/πn),L|X×Spec(R)Spec(R/πn))
∼= limH0(X ×Spec(R) Spec(R/πn),OX×Spec(R)Spec(R/πn))
= R∧

using the theorem on formal functions (Cohomology of Schemes, Theorem 30.20.5)
for the first and last equality and for example More on Algebra, Lemma 15.100.5 for
the middle isomorphism. Since H0(X,L) is a finite R-module and R is a discrete
valuation ring, this means that H0(X,L) is free of rank 1 as an R-module. Let s ∈
H0(X,L) be a basis element. Then tracing back through the isomorphisms above
we see that s|X×Spec(R)Spec(R/πn) is a trivialization for all n. Since the vanishing
locus of s is closed in X and X → Spec(R) is proper we conclude that the vanishing
locus of s is empty as desired. □
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55.14. Semistable reduction

0CDB In this section we carefully define what we mean by semistable reduction.

Example 55.14.1.0CDC Let R be a discrete valuation ring with uniformizer π. Given
n ≥ 0, consider the ring map

R −→ A = R[x, y]/(xy − πn)
Set X = Spec(A) and S = Spec(R). If n = 0, then X → S is smooth. For all
n the morphism X → S is at-worst-nodal of relative dimension 1 as defined in
Algebraic Curves, Section 53.20. If n = 1, then X is regular, but if n > 1, then
X is not regular as (x, y) no longer generate the maximal ideal m = (π, x, y). To
ameliorate the situation in case n > 1 we consider the blowup b : X ′ → X of X in
m. See Divisors, Section 31.32. By construction X ′ is covered by three affine pieces
corresponding to the blowup algebras A[mπ ], A[mx ], and A[my ].

The algebra A[mπ ] has generators x′ = x/π and y′ = y/π and x′y′ = πn−2. Thus
this part of X ′ is the spectrum of R[x′, y′](x′y′ − πn−2).
The algebra A[mx ] has generators x, u = π/x subject to the relation xu − π. Note
that this ring contains y/x = πn/x2 = u2πn−2. Thus this part of X ′ is regular.
By symmetry the case of the algebra A[my ] is the same as the case of A[mx ].

Thus we see that X ′ → S is at-worst-nodal of relative dimension 1 and that X ′ is
regular, except for one point which has an affine open neighbourhood exactly as
above but with n replaced by n− 2. Using induction on n we conclude that there
is a sequence of blowing ups in closed points

X⌊n/2⌋ → . . .→ X1 → X0 = X

such that X⌊n/2⌋ → S is at-worst-nodal of relative dimension 1 and X⌊n/2⌋ is
regular.

Lemma 55.14.2.0CDD Let R be a discrete valuation ring. Let X be a scheme which is
at-worst-nodal of relative dimension 1 over R. Let x ∈ X be a point of the special
fibre of X over R. Then there exists a commutative diagram

X

��

U //

��

oo Spec(A)

yy
Spec(R) Spec(R′)oo

where R ⊂ R′ is an étale extension of discrete valuation rings, the morphism U → X
is étale, the morphism U → Spec(A) is étale, there is a point x′ ∈ U mapping to x,
and

A = R′[u, v]/(uv) or A = R′[u, v]/(uv − πn)
where n ≥ 0 and π ∈ R′ is a uniformizer.

Proof. We have already proved this lemma in much greater generality, see Algebraic
Curves, Lemma 53.20.12. All we have to do here is to translate the statement given
there into the statement given above.
First, if the morphism X → Spec(R) is smooth at x, then we can find an étale
morphism U → A1

R = Spec(R[u]) for some affine open neighbourhood U ⊂ X of x.

https://stacks.math.columbia.edu/tag/0CDC
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This is Morphisms, Lemma 29.36.20. After replacing the coordinate u by u + 1 if
necessary, we may assume that x maps to a point in the standard open D(u) ⊂ A1

R.
Then D(u) = Spec(A) with A = R[u, v]/(uv− 1) and we see that the result is true
in this case.

Next, assume that x is a singular point of the fibre. Then we may apply Algebraic
Curves, Lemma 53.20.12 to get a diagram

X

��

U //oo

��

W //

��

Spec(Z[u, v, a]/(uv − a))

��
Spec(R) Voo // Spec(Z[a])

with all the properties mentioned in the statement of the cited lemma. Let x′ ∈ U
be the point mapping to x promised by the lemma. First we shrink V to an affine
neighbourhood of the image of x′. Say V = Spec(R′). Then R → R′ is étale.
Since R is a discrete valuation ring, we see that R′ is a finite product of quasi-local
Dedekind domains (use More on Algebra, Lemma 15.44.4). Hence (for example
using prime avoidance) we find a standard open D(f) ⊂ V = Spec(R′) containing
the image of x′ such that R′

f is a discrete valuation ring. Replacing R′ by R′
f

we reach the situation where V = Spec(R′) with R ⊂ R′ an étale extension of
discrete valuation rings (extensions of discrete valuation rings are defined in More
on Algebra, Definition 15.111.1).

The morphism V → Spec(Z[a]) is determined by the image h of a in R′. Then
W = Spec(R′[u, v]/(uv−h)). Thus the lemma holds with A = R′[u, v]/(uv−h). If
h = 0 then we clearly obtain the first case mentioned in the lemma. If h ̸= 0 then
we may write h = ϵπn for some n ≥ 0 where ϵ is a unit of R′. Changing coordinates
unew = ϵu and vnew = v we obtain the second isomorphism type of A listed in the
lemma. □

Lemma 55.14.3.0CDE Let R be a discrete valuation ring. Let X be a quasi-compact
scheme which is at-worst-nodal of relative dimension 1 with smooth generic fibre
over R. Then there exists m ≥ 0 and a sequence

Xm → . . .→ X1 → X0 = X

such that
(1) Xi+1 → Xi is the blowing up of a closed point xi where Xi is singular,
(2) Xi → Spec(R) is at-worst-nodal of relative dimension 1,
(3) Xm is regular.

A slightly stronger statement (also true) would be that no matter how you blow up
in singular points you eventually end up with a resolution and all the intermediate
blowups are at-worst-nodal of relative dimension 1 over R.

Proof. Since X is quasi-compact we see that the special fibre Xk is quasi-compact.
Since the singularities of Xk are at-worst-nodal, we see that Xk has a finite number
of nodes and is otherwise smooth over k. As X → Spec(R) is flat with smooth
generic fibre it follows that X is smooth over R except at the finite number of
nodes of Xk (use Morphisms, Lemma 29.34.14). It follows that X is regular at

https://stacks.math.columbia.edu/tag/0CDE
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every point except for possibly the nodes of its special fibre (see Algebra, Lemma
10.163.10). Let x ∈ X be such a node. Choose a diagram

X

��

U //

��

oo Spec(A)

yy
Spec(R) Spec(R′)oo

as in Lemma 55.14.2. Observe that the case A = R′[u, v]/(uv) cannot occur, as this
would mean that the generic fibre of X/R is singular (tiny detail omitted). Thus
A = R′[u, v]/(uv − πn) for some n ≥ 0. Since x is a singular point, we have n ≥ 2,
see discussion in Example 55.14.1.
After shrinking U we may assume there is a unique point u ∈ U mapping to x. Let
w ∈ Spec(A) be the image of u. We may also assume that u is the unique point of
U mapping to w. Since the two horizontal arrows are étale we see that u, viewed
as a closed subscheme of U , is the scheme theoretic inverse image of x ∈ X and the
scheme theoretic inverse image of w ∈ Spec(A). Since blowing up commutes with
flat base change (Divisors, Lemma 31.32.3) we find a commutative diagram

X ′

��

U ′oo

��

// W ′

��
X Uoo // Spec(A)

with cartesian squares where the vertical arrows are the blowing up of x, u, w in
X,U, Spec(A). The scheme W ′ was described in Example 55.14.1. We saw there
that W ′ at-worst-nodal of relative dimension 1 over R′. Thus W ′ is at-worst-nodal
of relative dimension 1 over R (Algebraic Curves, Lemma 53.20.7). Hence U ′ is at-
worst-nodal of relative dimension 1 over R (see Algebraic Curves, Lemma 53.20.8).
Since X ′ → X is an isomorphism over the complement of x, we conclude the same
thing is true of X ′/R (by Algebraic Curves, Lemma 53.20.8 again).
Finally, we need to argue that after doing a finite number of these blowups we arrive
at a regular model Xm. This is rather clear because the “invariant” n decreases by 2
under the blowup described above, see computation in Example 55.14.1. However,
as we want to avoid precisely defining this invariant and establishing its properties,
we in stead argue as follows. If n = 2, then W ′ is regular and hence X ′ is regular at
all points lying over x and we have decreased the number of singular points of X by
1. If n > 2, then the unique singular point w′ of W ′ lying over w has κ(w) = κ(w′).
Hence U ′ has a unique singular point u′ lying over u with κ(u) = κ(u′). Clearly,
this implies that X ′ has a unique singular point x′ lying over x, namely the image
of u′. Thus we can argue exactly as above that we get a commutative diagram

X ′′

��

U ′′oo

��

// W ′′

��
X ′ U ′oo // W ′

with cartesian squares where the vertical arrows are the blowing up of x′, u′, w′ in
X ′, U ′,W ′. Continuing like this we get a compatible sequence of blowups which
stops after ⌊n/2⌋ steps. At the completion of this process the scheme X(⌊n/2⌋) will



55.14. SEMISTABLE REDUCTION 4554

have one fewer singular point than X. Induction on the number of singular points
completes the proof. □

Lemma 55.14.4.0CDF Let R be a discrete valuation ring with fraction field K and residue
field k. Assume X → Spec(R) is at-worst-nodal of relative dimension 1 over R. Let
X → X ′ be the contraction of an exceptional curve E ⊂ X of the first kind. Then
X ′ is at-worst-nodal of relative dimension 1 over R.

Proof. Namely, let x′ ∈ X ′ be the image of E. Then the only issue is to see that
X ′ → Spec(R) is at-worst-nodal of relative dimension 1 in a neighbourhood of x′.
The closed fibre of X → Spec(R) is reduced, hence π ∈ R vanishes to order 1 on
E. This immediately implies that π viewed as an element of mx′ ⊂ OX′,x′ but is
not in m2

x′ . Since OX′,x′ is regular of dimension 2 (by definition of contractions
in Resolution of Surfaces, Section 54.16), this implies that OX′

k
,x′ is regular of

dimension 1 (Algebra, Lemma 10.106.3). On the other hand, the curve E has to
meet at least one other component, say C of the closed fibre Xk. Say x ∈ E ∩ C.
Then x is a node of the special fibre Xk and hence κ(x)/k is finite separable,
see Algebraic Curves, Lemma 53.19.7. Since x 7→ x′ we conclude that κ(x′)/k is
finite separable. By Algebra, Lemma 10.140.5 we conclude that X ′

k → Spec(k) is
smooth in an open neighbourhood of x′. Combined with flatness, this proves that
X ′ → Spec(R) is smooth in a neighbourhood of x′ (Morphisms, Lemma 29.34.14).
This finishes the proof as a smooth morphism of relative dimension 1 is at-worst-
nodal of relative dimension 1 (Algebraic Curves, Lemma 53.20.3). □

Lemma 55.14.5.0CDG Let R be a discrete valuation ring with fraction field K. Let
C be a smooth projective curve over K with H0(C,OC) = K. The following are
equivalent

(1) there exists a proper model of C which is at-worst-nodal of relative di-
mension 1 over R,

(2) there exists a minimal model of C which is at-worst-nodal of relative
dimension 1 over R, and

(3) any minimal model of C is at-worst-nodal of relative dimension 1 over R.

Proof. To make sense out of this statement, recall that a minimal model is defined
as a regular proper model without exceptional curves of the first kind (Definition
55.8.4), that minimal models exist (Proposition 55.8.6), and that minimal models
are unique if the genus of C is > 0 (Lemma 55.10.1). Keeping this in mind the
implications (2) ⇒ (1) and (3) ⇒ (2) are clear.
Assume (1). Let X be a proper model of C which is at-worst-nodal of relative
dimension 1 over R. Applying Lemma 55.14.3 we see that we may assume X is
regular as well. Let

X = Xm → Xm−1 → . . .→ X1 → X0

be as in Lemma 55.8.5. By Lemma 55.14.4 and induction this implies X0 is at-
worst-nodal of relative dimension 1 over R.
To finish the proof we have to show that (2) implies (3). This is clear if the genus
of C is > 0, since then the minimal model is unique (see discussion above). On the
other hand, if the minimal model is not unique, then the morphism X → Spec(R)
is smooth for any minimal model as its special fibre will be isomorphic to P1

k by
Lemma 55.12.4. □
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Definition 55.14.6.0CDH Let R be a discrete valuation ring with fraction field K. Let
C be a smooth projective curve over K with H0(C,OC) = K. We say that C has
semistable reduction if the equivalent conditions of Lemma 55.14.5 are satisfied.

Lemma 55.14.7.0CDI Let R be a discrete valuation ring with fraction field K. Let
C be a smooth projective curve over K with H0(C,OC) = K. The following are
equivalent

(1) there exists a proper smooth model for C,
(2) there exists a minimal model for C which is smooth over R,
(3) any minimal model is smooth over R.

Proof. If X is a smooth proper model, then the special fibre is connected (Lemma
55.9.4) and smooth, hence irreducible. This immediately implies that it is minimal.
Thus (1) implies (2). To finish the proof we have to show that (2) implies (3).
This is clear if the genus of C is > 0, since then the minimal model is unique
(Lemma 55.10.1). On the other hand, if the minimal model is not unique, then the
morphism X → Spec(R) is smooth for any minimal model as its special fibre will
be isomorphic to P1

k by Lemma 55.12.4. □

Definition 55.14.8.0CDJ Let R be a discrete valuation ring with fraction field K. Let
C be a smooth projective curve over K with H0(C,OC) = K. We say that C has
good reduction if the equivalent conditions of Lemma 55.14.7 are satisfied.

55.15. Semistable reduction in genus zero

0CDK In this section we prove the semistable reduction theorem (Theorem 55.18.1) for
genus zero curves.

Let R be a discrete valuation ring with fraction field K. Let C be a smooth
projective curve over K with H0(C,OC) = K. If the genus of C is 0, then C is
isomorphic to a conic, see Algebraic Curves, Lemma 53.10.3. Thus there exists
a finite separable extension K ′/K of degree at most 2 such that C(K ′) ̸= ∅, see
Algebraic Curves, Lemma 53.9.4. Let R′ ⊂ K ′ be the integral closure of R, see
discussion in More on Algebra, Remark 15.111.6. We will show that CK′ has
semistable reduction over R′

m for each maximal ideal m of R′ (of course in the
current case there are at most two such ideals). After replacing R by R′

m and C by
CK′ we reduce to the case discussed in the next paragraph.

In this paragraph R is a discrete valuation ring with fraction field K, C is a smooth
projective curve over K with H0(C,OC) = K, of genus 0, and C has a K-rational
point. In this case C ∼= P1

K by Algebraic Curves, Proposition 53.10.4. Thus we can
use P1

R as a model and we see that C has both good and semistable reduction.

Example 55.15.1.0CDL Let R = R[[π]] and consider the scheme

X = V (T 2
1 + T 2

2 − πT 2
0 ) ⊂ P2

R

The base change of X to C[[π]] is isomorphic to the scheme defined in Example
55.10.3 because we have the factorization T 2

1 + T 2
2 = (T1 + iT2)(T1 − iT2) over C.

Thus X is regular and its special fibre is irreducible yet singular, hence X is the
unique minimal model of its generic fibre (use Lemma 55.12.4). It follows that an
extension is needed even in genus 0.

https://stacks.math.columbia.edu/tag/0CDH
https://stacks.math.columbia.edu/tag/0CDI
https://stacks.math.columbia.edu/tag/0CDJ
https://stacks.math.columbia.edu/tag/0CDL
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55.16. Semistable reduction in genus one

0CEG In this section we prove the semistable reduction theorem (Theorem 55.18.1) for
curves of genus one. We suggest the reader first read the proof in the case of genus
≥ 2 (Section 55.17). We are going to use as much as possible the classification of
minimal numerical types of genus 1 given in Lemma 55.6.2.
Let R be a discrete valuation ring with fraction field K. Let C be a smooth
projective curve over K with H0(C,OC) = K. Assume the genus of C is 1. Choose
a prime ℓ ≥ 7 different from the characteristic of k. Choose a finite separable
extension K ′/K of such that C(K ′) ̸= ∅ and such that Pic(CK′)[ℓ] ∼= (Z/ℓZ)⊕2.
See Algebraic Curves, Lemma 53.17.2. Let R′ ⊂ K ′ be the integral closure of R,
see discussion in More on Algebra, Remark 15.111.6. We may replace R by R′

m for
some maximal ideal m in R′ and C by CK′ . This reduces us to the case discussed
in the next paragraph.
In the rest of this section R is a discrete valuation ring with fraction field K, C
is a smooth projective curve over K with H0(C,OC) = K, with genus 1, having
a K-rational point, and with Pic(C)[ℓ] ∼= (Z/ℓZ)⊕2 for some prime ℓ ≥ 7 different
from the characteristic of k. We will prove that C has semistable reduction.
LetX be a minimal model for C, see Proposition 55.8.6. Let T = (n,mi, (aij), wi, gi)
be the numerical type associated to X (Definition 55.11.4). Then T is a minimal
numerical type (Lemma 55.11.5). As C has a rational point, there exists an i such
that mi = wi = 1 by Lemma 55.11.7. Looking at the classification of minimal
numerical types of genus 1 in Lemma 55.6.2 we see that m = w = 1 and that
cases (3), (6), (7), (9), (11), (13), (15), (18), (19), (21), (24), (26), (28), (30) are
disallowed (because there is no index where both wi and mi is equal to 1). Let e
be the number of pairs (i, j) with i < j and aij > 0. For the remaining cases we
have

(A) e = n− 1 for cases (1), (2), (5), (8), (12), (14), (17), (20), (22), (23), (27),
(29), (31), (32), (33), and (34), and

(B) e = n for cases (4), (10), (16), and (25).
We will argue these cases separately.
Case (A). In this case Pic(T )[ℓ] is trivial (the Picard group of a numerical type
is defined in Section 55.4). The vanishing follows as Pic(T ) ⊂ Coker(A) (Lemma
55.4.3) and Coker(A)[ℓ] = 0 by Lemma 55.2.6 and the fact that ℓ was chosen
relatively prime to aij and mi. By Lemmas 55.13.3 and 55.13.4 we conclude that
there is an embedding

(Z/ℓZ)⊕2 ⊂ Pic((Xk)red)[ℓ].
By Algebraic Curves, Lemma 53.18.6 we obtain

2 ≤ dimkH
1((Xk)red,O(Xk)red) + ggeom((Xk)red/k)

By Algebraic Curves, Lemmas 53.18.1 and 53.18.5 we see that ggeom((Xk)red/k) ≤∑
wigi. The assumptions of Lemma 55.11.8 hold by Lemma 55.11.7 and we con-

clude that we have dimkH
1((Xk)red,O(Xk)red) ≤ g = 1. Combining these we see

2 ≤ 1 +
∑

wigi

Looking at the list we conclude that the numerical type is given by n = 1, w1 =
m1 = g1 = 1. Because we have equality everywhere we see that ggeom(C1/k) = 1.
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On the other hand, we know that C1 has a k-rational point x such that C1 →
Spec(k) is smooth at x. It follows that C1 is geometrically integral (Varieties,
Lemma 33.25.10). Thus ggeom(C1/k) = 1 is both equal to the genus of the normal-
ization of C1,k and the genus of C1,k. It follows that the normalization morphism
Cν

1,k
→ C1,k is an isomorphism (Algebraic Curves, Lemma 53.18.4). We conclude

that C1 is smooth over k as desired.

Case (B). Here we only conclude that there is an embedding

Z/ℓZ ⊂ Pic(Xk)[ℓ]

From the classification of types we see that mi = wi = 1 and gi = 0 for each i. Thus
each Ci is a genus zero curve over k. Moreover, for each i there is a j such that
Ci ∩ Cj is a k-rational point. Then it follows that Ci ∼= P1

k by Algebraic Curves,
Proposition 53.10.4. In particular, since Xk is the scheme theoretic union of the Ci
we see that Xk is the scheme theoretic union of the Ci,k. Hence Xk is a reduced
connected proper scheme of dimension 1 over k with dimkH

1(Xk,OXk) = 1. Also,
by Varieties, Lemma 33.30.3 and the above we still have

dimFℓ(Pic(Xk) ≥ 1

By Algebraic Curves, Proposition 53.17.3 we see that Xk has at only multicross
singularities. But since Xk is Gorenstein (Lemma 55.9.2), so is Xk (Duality for
Schemes, Lemma 48.25.1). We conclude Xk is at-worst-nodal by Algebraic Curves,
Lemma 53.16.4. This finishes the proof in case (B).

Example 55.16.1.0CEH Let k be an algebraically closed field. Let Z be a smooth pro-
jective curve over k of positive genus g. Let n ≥ 1 be an integer prime to the
characteristic of k. Let L be an invertible OZ-module of order n, see Algebraic
Curves, Lemma 53.17.1. Pick an isomorphism φ : L⊗n → OZ . Set R = k[[π]] with
fraction field K = k((π)). Denote ZR the base change of Z to R. Let LR be the
pullback of L to ZR. Consider the finite flat morphism

p : X −→ ZR

such that

p∗OX = Sym∗
OZR

(LR)/(φ− π) = OZR ⊕ LR ⊕ L⊗2
R ⊕ . . .⊕ L

⊗n−1
R

More precisely, if U = Spec(A) ⊂ Z is an affine open such that L|U is trivialized
by a section s with φ(s⊗n) = f (with f a unit), then

p−1(UR) = Spec ((A⊗R R[[π]])[x]/(xn − πf))

The reader verifies that the morphism XK → ZK of generic fibres is finite étale.
Looking at the description of the structure sheaf we see that H0(X,OX) = R and
H0(XK ,OXK ) = K. By Riemann-Hurwitz (Algebraic Curves, Lemma 53.12.4) the
genus of XK is n(g−1)+1. In particular XK has genus 1, if Z has genus 1. On the
other hand, the scheme X is regular by the local equation above and the special
fibre Xk is n times the reduced special fibre as an effective Cartier divisor. It follows
that any finite extension K ′/K over which XK attains semistable reduction has to
ramify with ramification index at least n (some details omitted). Thus there does
not exist a universal bound for the degree of an extension over which a genus 1
curve attains semistable reduction.

https://stacks.math.columbia.edu/tag/0CEH
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55.17. Semistable reduction in genus at least two

0CEI In this section we prove the semistable reduction theorem (Theorem 55.18.1) for
curves of genus ≥ 2. Fix g ≥ 2.

Let R be a discrete valuation ring with fraction field K. Let C be a smooth
projective curve over K with H0(C,OC) = K. Assume the genus of C is g. Choose
a prime ℓ > 768g different from the characteristic of k. Choose a finite separable
extension K ′/K of such that C(K ′) ̸= ∅ and such that Pic(CK′)[ℓ] ∼= (Z/ℓZ)⊕2g.
See Algebraic Curves, Lemma 53.17.2. Let R′ ⊂ K ′ be the integral closure of R,
see discussion in More on Algebra, Remark 15.111.6. We may replace R by R′

m for
some maximal ideal m in R′ and C by CK′ . This reduces us to the case discussed
in the next paragraph.

In the rest of this section R is a discrete valuation ring with fraction field K, C is
a smooth projective curve over K with H0(C,OC) = K, with genus g, having a K-
rational point, and with Pic(C)[ℓ] ∼= (Z/ℓZ)⊕2g for some prime ℓ ≥ 768g different
from the characteristic of k. We will prove that C has semistable reduction.

In the rest of this section we will use without further mention that the conclusions
of Lemma 55.11.7 are true.

LetX be a minimal model for C, see Proposition 55.8.6. Let T = (n,mi, (aij), wi, gi)
be the numerical type associated to X (Definition 55.11.4). Then T is a minimal
numerical type of genus g (Lemma 55.11.5). By Proposition 55.7.4 we have

dimFℓ Pic(T )[ℓ] ≤ gtop
By Lemmas 55.13.3 and 55.13.4 we conclude that there is an embedding

(Z/ℓZ)⊕2g−gtop ⊂ Pic((Xk)red)[ℓ].

By Algebraic Curves, Lemma 53.18.6 we obtain

2g − gtop ≤ dimkH
1((Xk)red,O(Xk)red) + ggeom(Xk/k)

By Lemmas 55.11.8 and 55.11.9 we have

g ≥ dimkH
1((Xk)red,O(Xk)red) ≥ gtop + ggeom(Xk/k)

Elementary number theory tells us that the only way these 3 inequalities can hold
is if they are all equalities. Looking at Lemma 55.11.8 we conclude that mi = 1 for
all i. Looking at Lemma 55.11.10 we conclude that every irreducible component of
Xk is smooth over k.

In particular, since Xk is the scheme theoretic union of its irreducible components
Ci we see that Xk is the scheme theoretic union of the Ci,k. Hence Xk is a reduced
connected proper scheme of dimension 1 over k with dimkH

1(Xk,OXk) = g. Also,
by Varieties, Lemma 33.30.3 and the above we still have

dimFℓ(Pic(Xk)[ℓ]) ≥ 2g − gtop = dimkH
1(Xk,OXk) + ggeom(Xk)

By Algebraic Curves, Proposition 53.17.3 we see that Xk has at only multicross
singularities. But since Xk is Gorenstein (Lemma 55.9.2), so is Xk (Duality for
Schemes, Lemma 48.25.1). We conclude Xk is at-worst-nodal by Algebraic Curves,
Lemma 53.16.4. This finishes the proof.
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55.18. Semistable reduction for curves

0CDM In this section we finish the proof of the theorem. For g ≥ 2 let 768g < ℓ′ < ℓ be
the first two primes > 768g and set
(55.18.0.1)0CEJ Bg = (2g − 2)(ℓ2g)!
The precise form of Bg is unimportant; the point we are trying to make is that it
depends only on g.

Theorem 55.18.1.0CDN [DM69, Corollary
2.7]

Let R be a discrete valuation ring with fraction field K. Let
C be a smooth projective curve over K with H0(C,OC) = K. Then there exists
an extension of discrete valuation rings R ⊂ R′ which induces a finite separable
extension of fraction fields K ′/K such that CK′ has semistable reduction. More
precisely, we have the following

(1) If the genus of C is zero, then there exists a degree 2 separable extension
K ′/K such that CK′ ∼= P1

K′ and hence CK′ is isomorphic to the generic
fibre of the smooth projective scheme P1

R′ over the integral closure R′ of
R in K ′.

(2) If the genus of C is one, then there exists a finite separable extension
K ′/K such that CK′ has semistable reduction over R′

m for every maximal
ideal m of the integral closure R′ of R in K ′. Moreover, the special fibre
of the (unique) minimal model of CK′ over R′

m is either a smooth genus
one curve or a cycle of rational curves.

(3) If the genus g of C is greater than one, then there exists a finite separa-
ble extension K ′/K of degree at most Bg (55.18.0.1) such that CK′ has
semistable reduction over R′

m for every maximal ideal m of the integral
closure R′ of R in K ′.

Proof. For the case of genus zero, see Section 55.15. For the case of genus one,
see Section 55.16. For the case of genus greater than one, see Section 55.17. To
see that we have a bound on the degree [K ′ : K] you can use the bound on the
degree of the extension needed to make all ℓ or ℓ′ torsion visible proved in Algebraic
Curves, Lemma 53.17.2. (The reason for using ℓ and ℓ′ is that we need to avoid the
characteristic of the residue field k.) □

Remark 55.18.2 (Improving the bound).0CEK Results in the literature suggest that one
can improve the bound given in the statement of Theorem 55.18.1. For example,
in [DM69] it is shown that semistable reduction of C and its Jacobian are the
same thing if the residue field is perfect and presumably this is true for general
residue fields as well. For an abelian variety we have semistable reduction if the
action of Galois on the ℓ-torsion is trivial for any ℓ ≥ 3 not equal to the residue
characteristic. Thus we can presumably choose ℓ = 5 in the formula (55.18.0.1) for
Bg (but the proof would take a lot more work; if we ever need this we will make a
precise statement and provide a proof here).
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CHAPTER 56

Functors and Morphisms

0GNG 56.1. Introduction

0GNH Let X and Y be schemes. This chapter circles around the relationship between
functors QCoh(OY ) → QCoh(OX) and morphisms of schemes X → Y . More
broadly speaking we study the relationship between QCoh(OX) and X or, if X
is Noetherian, the relationship between Coh(OX) and X. This relationship was
studied in [Gab62].

56.2. Functors on module categories

0GNI For a ring A let us denote ModfpA the category of finitely presented A-modules.

Lemma 56.2.1.0GNJ Let A be a ring. Let B be a category having filtered colimits. Let
F : ModfpA → B be a functor. Then F extends uniquely to a functor F ′ : ModA → B
which commutes with filtered colimits.

Proof. This follows from Categories, Lemma 4.26.2. To see that the lemma ap-
plies observe that finitely presented A-modules are categorically compact objects
of ModA by Algebra, Lemma 10.11.4. Also, every A-module is a filtered colimit of
finitely presented A-modules by Algebra, Lemma 10.11.3. □

If a category B is additive and has filtered colimits, then B has arbitrary direct
sums: any direct sum can be written as a filtered colimit of finite direct sums.

Lemma 56.2.2.0GNK Let A, B, F be as in Lemma 56.2.1. Assume B is additive and F
is additive. Then F ′ is additive and commutes with arbitrary direct sums.

Proof. To show that F ′ is additive it suffices to show that F ′(M) ⊕ F ′(M ′) →
F ′(M ⊕M ′) is an isomorphism for any A-modules M , M ′, see Homology, Lemma
12.7.1. Write M = colimiMi and M ′ = colimjM

′
j as filtered colimits of finitely

presented A-modules Mi. Then F ′(M) = colimi F (Mi), F ′(M ′) = colimj F (M ′
j),

and

F ′(M ⊕M ′) = F ′(colimi,jMi ⊕M ′
j)

= colimi,j F (Mi ⊕M ′
j)

= colimi,j F (Mi)⊕ F (M ′
j)

= F ′(M)⊕ F ′(M ′)

4562

https://stacks.math.columbia.edu/tag/0GNJ
https://stacks.math.columbia.edu/tag/0GNK
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as desired. To show that F ′ commutes with direct sums, assume we have M =⊕
i∈IMi. Then M = colimI′⊂I finite

⊕
i∈I′ Mi is a filtered colimit. We obtain

F ′(M) = colimI′⊂I finite F
′(
⊕

i∈I′
Mi)

= colimI′⊂I finite
⊕

i∈I′
F ′(Mi)

=
⊕

i∈I
F ′(Mi)

The second equality holds by the additivity of F ′ already shown. □

If a category B is additive, has filtered colimits, and has cokernels, then B has
arbitrary colimits, see discussion above and Categories, Lemma 4.14.12.

Lemma 56.2.3.0GNL Let A, B, F be as in Lemma 56.2.1. Assume B is additive, has
cokernels, and F is right exact. Then F ′ is additive, right exact, and commutes
with arbitrary direct sums.

Proof. Since F is right exact, F commutes with coproducts of pairs, which are
represented by direct sums. Hence F is additive by Homology, Lemma 12.7.1.
Hence F ′ is additive and commutes with direct sums by Lemma 56.2.2. We urge
the reader to prove that F ′ is right exact themselves instead of reading the proof
below.
To show that F ′ is right exact, it suffices to show that F ′ commutes with coequal-
izers, see Categories, Lemma 4.23.3. Now, if a, b : K → L are maps of A-modules,
then the coequalizer of a and b is the cokernel of a − b : K → L. Thus let
K → L→M → 0 be an exact sequence of A-modules. We have to show that in

F ′(K)→ F ′(L)→ F ′(M)→ 0
the second arrow is a cokernel for the first arrow in B (if B were abelian we would say
that the displayed sequence is exact). Write M = colimi∈IMi as a filtered colimit
of finitely presented A-modules, see Algebra, Lemma 10.11.3. Let Li = L×M Mi.
We obtain a system of exact sequences K → Li → Mi → 0 over I. Since colimits
commute with colimits by Categories, Lemma 4.14.10 and since cokernels are a type
of coequalizer, it suffices to show that F ′(Li) → F (Mi) is a cokernel of F ′(K) →
F ′(Li) in B for all i ∈ I. In other words, we may assume M is finitely presented.
Write L = colimi∈I Li as a filtered colimit of finitely presented A-modules with the
property that each Li surjects onto M . Let Ki = K ×L Li. We obtain a system of
short exact sequences Ki → Li →M → 0 over I. Repeating the argument already
given, we reduce to showing F (Li)→ F (Mi) is a cokernel of F ′(K)→ F (Li) in B
for all i ∈ I. In other words, we may assume both L and M are finitely presented
A-modules. In this case the module Ker(L→M) is finite (Algebra, Lemma 10.5.3).
Thus we can write K = colimi∈I Ki as a filtered colimit of finitely presented A-
modules each surjecting onto Ker(L → M). We obtain a system of short exact
sequences Ki → L → M → 0 over I. Repeating the argument already given, we
reduce to showing F (L)→ F (M) is a cokernel of F (Ki)→ F (L) in B for all i ∈ I.
In other words, we may assume K, L, and M are finitely presented A-modules.
This final case follows from the assumption that F is right exact. □

If a category B is additive and has kernels, then B has finite limits. Namely, finite
products are direct sums which exist and the equalizer of a, b : L→M is the kernel

https://stacks.math.columbia.edu/tag/0GNL
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of a − b : K → L which exists. Thus all finite limits exist by Categories, Lemma
4.18.4.

Lemma 56.2.4.0GNM Let A, B, F be as in Lemma 56.2.1. Assume A is a coherent ring
(Algebra, Definition 10.90.1), B is additive, has kernels, filtered colimits commute
with taking kernels, and F is left exact. Then F ′ is additive, left exact, and
commutes with arbitrary direct sums.

Proof. Since A is coherent, the category ModfpA is abelian with same kernels and
cokernels as in ModA, see Algebra, Lemmas 10.90.4 and 10.90.3. Hence all finite
limits exist in ModfpA and Categories, Definition 4.23.1 applies. Since F is left exact,
F commutes with products of pairs, which are represented by direct sums. Hence F
is additive by Homology, Lemma 12.7.1. Hence F ′ is additive and commutes with
direct sums by Lemma 56.2.2. We urge the reader to prove that F ′ is left exact
themselves instead of reading the proof below.

To show that F ′ is left exact, it suffices to show that F ′ commutes with equalizers,
see Categories, Lemma 4.23.2. Now, if a, b : L → M are maps of A-modules, then
the equalizer of a and b is the kernel of a− b : L→M . Thus let 0→ K → L→M
be an exact sequence of A-modules. We have to show that in

0→ F ′(K)→ F ′(L)→ F ′(M)

the arrow F ′(K) → F ′(L) is a kernel for F ′(L) → F ′(M) in B (if B were abelian
we would say that the displayed sequence is exact). Write M = colimi∈IMi as a
filtered colimit of finitely presented A-modules, see Algebra, Lemma 10.11.3. Let
Li = L×M Mi. We obtain a system of exact sequences 0→ K → Li →Mi over I.
Since filtered colimits commute with taking kernels in B by assumption, it suffices
to show that F ′(K) → F ′(Li) is a kernel of F ′(Li) → F (Mi) in B for all i ∈ I.
In other words, we may assume M is finitely presented. Write L = colimi∈I Li
as a filtered colimit of finitely presented A-modules. Let Ki = K ×L Li. We
obtain a system of short exact sequences 0 → Ki → Li → M over I. Repeating
the argument already given, we reduce to showing F ′(Ki) → F (Li) is a kernel of
F (Li)→ F (M) in B for all i ∈ I. In other words, we may assume both L and M are
finitely presented A-modules. Since A is coherent, the A-module K = Ker(L→M)
is of finite presentation as the category of finitely presented A-modules is abelian
(see references given above). In other words, all three modules K, L, and M are
finitely presented A-modules. This final case follows from the assumption that F
is left exact. □

If a category B is additive and has cokernels, then B has finite colimits. Namely,
finite coproducts are direct sums which exist and the coequalizer of a, b : K → L
is the cokernel of a − b : K → L which exists. Thus all finite colimits exist by
Categories, Lemma 4.18.7.

Lemma 56.2.5.0GNN Let A be a ring. Let B be an additive category with cokernels.
There is an equivalence of categories between

(1) the category of functors F : ModfpA → B which are right exact, and
(2) the category of pairs (K,κ) where K ∈ Ob(B) and κ : A→ EndB(K) is a

ring homomorphism
given by the rule sending F to F (A) with its natural A-action.

https://stacks.math.columbia.edu/tag/0GNM
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Proof. Let (K,κ) be as in (2). We will construct a functor F : ModfpA → B such
that F (A) = K endowed with the given A-action κ. Namely, given an integer n ≥ 0
let us set

F (A⊕n) = K⊕n

Given an A-linear map φ : A⊕m → A⊕n with matrix (aij) ∈ Mat(n × m,A) we
define

F (φ) : F (A⊕m) = K⊕m −→ K⊕n = F (A⊕n)
to be the map with matrix (κ(aij)). This defines an additive functor F from the
full subcategory of ModfpA with objects 0, A, A⊕2, . . . to B; we omit the verification.

For each object M of ModfpA choose a presentation

A⊕mM φM−−→ A⊕nM →M → 0
of M as an A-module. Let us use the trivial presentation 0→ A⊕n 1−→ A⊕n → 0 if
M = A⊕n (this isn’t necessary but simplifies the exposition). For each morphism
f : M → N of ModfpA we can choose a commutative diagram

(56.2.5.1)0GNP
A⊕mM

φM
//

ψf
��

A⊕nM //

χf

��

M //

f

��

0

A⊕mN φN // A⊕nN // N // 0

Having made these choices we can define: for an object M of ModfpA we set
F (M) = Coker(F (φM ) : F (A⊕mM )→ F (A⊕nM ))

and for a morphism f : M → N of ModfpA we set
F (f) = the map F (M)→ F (N) induced by F (ψf ) and F (χf ) on cokernels

Note that this rule extends the given functor F on the full subcategory consisting of
the free modules A⊕n. We still have to show that F is a functor, that F is additive,
and that F is right exact.
Let f : M → N be a morphism ModfpA . We claim that the map F (f) defined above
is independent of the choices of ψf and χf in (56.2.5.1). Namely, say

A⊕mM
φM
//

ψ

��

A⊕nM //

χ

��

M //

f

��

0

A⊕mN φN // A⊕nN // N // 0
is also commutative. Denote F (f)′ : F (M)→ F (N) the map induced by F (ψ) and
F (χ). Looking at the commutative diagrams, by elementary commutative algebra
there exists a map ω : A⊕nM → A⊕mN such that χ = χf + φN ◦ ω. Applying F
we find that F (χ) = F (χf ) +F (φN ) ◦F (ω). As F (N) is the cokernel of F (φN ) we
find that the map F (A⊕nM ) → F (M) equalizes F (f) and F (f)′. Since a cokernel
is an epimorphism, we conclude that F (f) = F (f)′.
Let us prove F is a functor. First, observe that F (idM ) = idF (M) because we may
pick the identities for ψf and χf in the diagram above in case f = idM . Second,
suppose we have f : M → N and g : L → M . Then we see that ψ = ψf ◦ ψg and
χ = χf ◦ χg fit into (56.2.5.1) for f ◦ g. Hence these induce the correct map which
exactly says that F (f) ◦ F (g) = F (f ◦ g).
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Let us prove that F is additive. Namely, suppose we have f, g : M → N . Then we
see that ψ = ψf + ψg and χ = χf + χg fit into (56.2.5.1) for f + g. Hence these
induce the correct map which exactly says that F (f) + F (g) = F (f + g).
Finally, let us prove that F is right exact. It suffices to show that F commutes
with coequalizers, see Categories, Lemma 4.23.3. For this, it suffices to prove that
F commutes with cokernels. Let K → L → M → 0 be an exact sequence of
A-modules with K, L, M finitely presented. Since F is an additive functor, this
certainly gives a complex

F (K)→ F (L)→ F (M)→ 0
and we have to show that the second arrow is the cokernel of the first in B. In any
case, we obtain a map Coker(F (K) → F (L)) → F (M). By elementary commuta-
tive algebra there exists a commutative diagram

A⊕mM
φM
//

ψ

��

A⊕nM //

χ

��

M //

1
��

0

K // L // M // 0
Applying F to this diagram and using the construction of F (M) as the cokernel
of F (φM ) we find there exists a map F (M) → Coker(F (K) → F (L)) which is a
right inverse to the map Coker(F (K) → F (L)) → F (M). This first implies that
F (L)→ F (M) is an epimorphism always. Next, the above shows we have

Coker(F (K)→ F (L)) = F (M)⊕ E
where the direct sum decomposition is compatible with both F (M)→ Coker(F (K)→
F (L)) and Coker(F (K) → F (L)) → F (M). However, then the epimorphism
p : F (L) → E becomes zero both after composition with F (K) → F (L) and
after composition with F (AnM ) → F (L). However, since K ⊕ AnM → L is sur-
jective (algebra argument omitted), we conclude that F (K ⊕ AnM ) → F (L) is an
epimorphism (by the above) whence E = 0. This finishes the proof. □

Lemma 56.2.6.0GNQ Let A be a ring. Let B be an additive category with arbitrary
direct sums and cokernels. There is an equivalence of categories between

(1) the category of functors F : ModA → B which are right exact and com-
mute with arbitrary direct sums, and

(2) the category of pairs (K,κ) where K ∈ Ob(B) and κ : A→ EndB(K) is a
ring homomorphism

given by the rule sending F to F (A) with its natural A-action.
Proof. Combine Lemmas 56.2.5 and 56.2.3. □

56.3. Functors between categories of modules

0GNR The following lemma is archetypical of the results in this chapter.
Lemma 56.3.1.0GNS Let A and B be rings. Let F : ModA → ModB be a functor. The
following are equivalent

(1) F is isomorphic to the functor M 7→ M ⊗A K for some A ⊗Z B-module
K,

(2) F is right exact and commutes with all direct sums,
(3) F commutes with all colimits,

https://stacks.math.columbia.edu/tag/0GNQ
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(4) F has a right adjoint G.

Proof. If (1), then (4) as a right adjoint for M 7→ M ⊗A K is N 7→ HomB(K,N),
see Differential Graded Algebra, Lemma 22.30.3. If (4), then (3) by Categories,
Lemma 4.24.5. The implication (3) ⇒ (2) is immediate from the definitions.
Assume (2). We will prove (1). By the discussion in Homology, Section 12.7 the
functor F is additive. Hence F induces a ring map A → EndB(F (M)), a 7→
F (a · idM ) for every A-module M . We conclude that F (M) is an A ⊗Z B-module
functorially in M . Set K = F (A). Define

M ⊗A K = M ⊗A F (A) −→ F (M), m⊗ k 7−→ F (φm)(k)
Here φm : A → M sends a → am. The rule (m, k) 7→ F (φm)(k) is A-bilinear
(and B-linear on the right) as required to obtain the displayed A⊗Z B-linear map.
This construction is functorial in M , hence defines a transformation of functors
− ⊗A K → F (−) which is an isomorphism when evaluated on A. For every A-
module M we can choose an exact sequence⊕

j∈J
A→

⊕
i∈I

A→M → 0

Using the maps constructed above we find a commutative diagram

(
⊕

j∈J A)⊗A K //

��

(
⊕

i∈I A)⊗A K //

��

M ⊗A K //

��

0

F (
⊕

j∈J A) // F (
⊕

i∈I A) // F (M) // 0

The lower row is exact as F is right exact. The upper row is exact as tensor
product with K is right exact. Since F commutes with direct sums the left two
vertical arrows are bijections. Hence we conclude. □

Example 56.3.2.0GNT Let R be a ring. Let A and B be R-algebras. Let K be a
A⊗R B-module. Then we can consider the functor
(56.3.2.1)0GNU F : ModA −→ ModB , M 7−→M ⊗A K
This functor is R-linear, right exact, commutes with arbitrary direct sums, com-
mutes with all colimits, has a right adjoint (Lemma 56.3.1).

Lemma 56.3.3.0GNV LetR be a ring. LetA andB beR-algebras. There is an equivalence
of categories between

(1) the category of R-linear functors F : ModA → ModB which are right
exact and commute with arbitrary direct sums, and

(2) the category ModA⊗RB .
given by sending K to the functor F in (56.3.2.1).

Proof. Let F be an object of the first category. By Lemma 56.3.1 we may assume
F (M) = M ⊗A K functorially in M for some A⊗Z B-module K. The R-linearity
of F immediately implies that the A ⊗Z B-module structure on K comes from a
(unique) A ⊗R B-module structure on K. Thus we see that sending K to F as in
(56.3.2.1) is essentially surjective.
To prove that our functor is fully faithful, we have to show that given A ⊗R B-
modules K and K ′ any transformation t : F → F ′ between the corresponding

https://stacks.math.columbia.edu/tag/0GNT
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functors, comes from a unique φ : K → K ′. Since K = F (A) and K ′ = F ′(A) we
can take φ to be the value tA : F (A)→ F ′(A) of t at A. This maps is A⊗RB-linear
by the definition of the A ⊗ B-module structure on F (A) and F ′(A) given in the
proof of Lemma 56.3.1. □

Remark 56.3.4.0GNW Let R be a ring. Let A, B, C be R-algebras. Let F : ModA →
ModB and F ′ : ModB → ModC be R-linear, right exact functors which commute
with arbitrary direct sums. If by the equivalence of Lemma 56.3.3 the object K
in ModA⊗RB corresponds to F and the object K ′ in ModB⊗RC corresponds to F ′,
then K ⊗B K ′ viewed as an object of ModA⊗RC corresponds to F ′ ◦ F .

Remark 56.3.5.0GNX In the situation of Lemma 56.3.3 suppose that F corresponds to
K. Then F is exact ⇔ K is flat over A.

Remark 56.3.6.0GNY In the situation of Lemma 56.3.3 suppose that F corresponds to K.
Then F sends finite A-modules to finite B-modules ⇔ K is finite as a B-module.

Remark 56.3.7.0GNZ In the situation of Lemma 56.3.3 suppose that F corresponds to
K. Then F sends finitely presented A-modules to finitely presented B-modules ⇔
K is finitely presented as a B-module.

Lemma 56.3.8.0GP0 Let A and B be rings. If
F : ModA −→ ModB

is an equivalence of categories, then there exists an isomorphism A → B of rings
and an invertible B-module L such that F is isomorphic to the functor M 7→
(M ⊗A B)⊗B L.

Proof. Since an equivalence commutes with all colimits, we see that Lemmas 56.3.1
applies. Let K be the A ⊗Z B-module such that F is isomorphic to the functor
M 7→ M ⊗A K. Let K ′ be the B ⊗Z A-module such that a quasi-inverse of F is
isomorphic to the functor N 7→ N ⊗BK ′. By Remark 56.3.4 and Lemma 56.3.3 we
have an isomorphism

ψ : K ⊗B K ′ −→ A

of A⊗Z A-modules. Similarly, we have an isomorphism
ψ′ : K ′ ⊗A K −→ B

of B⊗Z B-modules. Choose an element ξ =
∑
i=1,...,n xi⊗ yi ∈ K ⊗BK ′ such that

ψ(ξ) = 1. Consider the isomorphisms

K
ψ−1⊗idK−−−−−−→ K ⊗B K ′ ⊗A K

idK⊗ψ′

−−−−−→ K

The composition is an isomorphism and given by
k 7−→

∑
xiψ

′(yi ⊗ k)
We conclude this automorphism factors as

K → B⊕n → K

as a map of B-modules. It follows that K is finite projective as a B-module.
We claim that K is invertible as a B-module. This is equivalent to asking the rank
of K as a B-module to have the constant value 1, see More on Algebra, Lemma
15.117.2 and Algebra, Lemma 10.78.2. If not, then there exists a maximal ideal
m ⊂ B such that either (a) K⊗BB/m = 0 or (b) there is a surjection K → (B/m)⊕2

https://stacks.math.columbia.edu/tag/0GNW
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of B-modules. Case (a) is absurd as K ′ ⊗A K ⊗B N = N for all B-modules N .
Case (b) would imply we get a surjection

A = K ⊗B K ′ −→ (B/m⊗B K ′)⊕2

of (right) A-modules. This is impossible as the target is an A-module which needs
at least two generators: B/m⊗BK ′ is nonzero as the image of the nonzero module
B/m under the quasi-inverse of F .
Since K is invertible as a B-module we see that HomB(K,K) = B. Since K = F (A)
the action of A on K defines a ring isomorphism A→ B. The lemma follows. □

Lemma 56.3.9.0GP1 Let R be a ring. Let A and B be R-algebras. If
F : ModA −→ ModB

is an R-linear equivalence of categories, then there exists an isomorphism A→ B of
R-algebras and an invertible B-module L such that F is isomorphic to the functor
M 7→ (M ⊗A B)⊗B L.

Proof. We get A → B and L from Lemma 56.3.8. To finish the proof, we need to
show that the R-linearity of F forces A→ B to be an R-algebra map. We omit the
details. □

Remark 56.3.10.0GP2 Let A and B be rings. Let us endow ModA and ModB with the
usual monoidal structure given by tensor products of modules. Let F : ModA →
ModB be a functor of monoidal categories, see Categories, Definition 4.43.2. Here
are some comments:

(1) Since F (A) is a unit (by our definitions) we have F (A) = B.
(2) We obtain a multiplicative map φ : A→ B by sending a ∈ A to its action

on F (A) = B.
(3) Take A = B and F (M) = M ⊗AM . In this case φ(a) = a2.
(4) If F is additive, then φ is a ring map.
(5) Take A = B = Z and F (M) = M/torsion. Then φ = idZ but F is not

the identity functor.
(6) If F is right exact and commutes with direct sums, then F (M) = M⊗A,φB

by Lemma 56.3.1.
In other words, ring maps A → B are in bijection with isomorphism classes of
functors of monoidal categories ModA → ModB which commute with all colimits.

56.4. Extending functors on categories of modules

0GP3 For a ring A let us denote ModfpA the category of finitely presented A-modules.

Lemma 56.4.1.0GP4 Let A and B be rings. Let F : ModfpA → ModfpB be a functor.
Then F extends uniquely to a functor F ′ : ModA → ModB which commutes with
filtered colimits.

Proof. Special case of Lemma 56.2.1. □

Remark 56.4.2.0GP5 With A, B, F , and F ′ as in Lemma 56.4.1. Observe that the
tensor product of two finitely presented modules is finitely presented, see Algebra,
Lemma 10.12.14. Thus we may endow ModfpA , ModfpB , ModA, and ModB with the
usual monoidal structure given by tensor products of modules. In this case, if F is

https://stacks.math.columbia.edu/tag/0GP1
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a functor of monoidal categories, so is F ′. This follows immediately from the fact
that tensor products of modules commutes with filtered colimits.

Lemma 56.4.3.0GP6 With A, B, F , and F ′ as in Lemma 56.4.1.
(1) If F is additive, then F ′ is additive and commutes with arbitrary direct

sums, and
(2) if F is right exact, then F ′ is right exact.

Proof. Follows from Lemmas 56.2.2 and 56.2.3. □

Remark 56.4.4.0GP7 Combining Remarks 56.3.10 and 56.4.2 and Lemma 56.4.3 we find
the following. Given rings A and B the set of ring maps A→ B is in bijection with
the set of isomorphism classes of functors of monoidal categories ModfpA → ModfpB
which are right exact.

Lemma 56.4.5.0GP8 With A, B, F , and F ′ as in Lemma 56.4.1. Assume A is a coherent
ring (Algebra, Definition 10.90.1). If F is left exact, then F ′ is left exact.

Proof. Special case of Lemma 56.2.4. □

For a ring A let us denote ModfgA the category of finitely generated A-modules
(AKA finite A-modules).

Lemma 56.4.6.0GP9 Let A and B be Noetherian rings. Let F : ModfgA → ModfgB
be a functor. Then F extends uniquely to a functor F ′ : ModA → ModB which
commutes with filtered colimits. If F is additive, then F ′ is additive and commutes
with arbitrary direct sums. If F is exact, left exact, or right exact, so is F ′.

Proof. See Lemmas 56.4.3 and 56.4.5. Also, use the finite A-modules are finitely
presented A-modules, see Algebra, Lemma 10.31.4, and use that Noetherian rings
are coherent, see Algebra, Lemma 10.90.5. □

56.5. Functors between categories of quasi-coherent modules

0FZA In this section we briefly study functors between categories of quasi-coherent mod-
ules.

Example 56.5.1.0FZB Let R be a ring. Let X and Y be schemes over R with X quasi-
compact and quasi-separated. Let K be a quasi-coherent OX×RY -module. Then
we can consider the functor
(56.5.1.1)0FZC F : QCoh(OX) −→ QCoh(OY ), F 7−→ pr2,∗(pr∗

1F ⊗OX×RY
K)

The morphism pr2 is quasi-compact and quasi-separated (Schemes, Lemmas 26.19.3
and 26.21.12). Hence pushforward along this morphism preserves quasi-coherent
modules, see Schemes, Lemma 26.24.1. Moreover, our functor is R-linear and com-
mutes with arbitrary direct sums, see Cohomology of Schemes, Lemma 30.6.1.

The following lemma is a natural generalization of Lemma 56.3.3.

Lemma 56.5.2.0FZD Let R be a ring. Let X and Y be schemes over R with X affine.
There is an equivalence of categories between

(1) the category of R-linear functors F : QCoh(OX)→ QCoh(OY ) which are
right exact and commute with arbitrary direct sums, and

(2) the category QCoh(OX×RY )
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given by sending K to the functor F in (56.5.1.1).

Proof. Let K be an object of QCoh(OX×RY ) and FK the functor (56.5.1.1). By the
discussion in Example 56.5.1 we already know that F is R-linear and commutes
with arbitrary direct sums. Since pr2 : X ×R Y → Y is affine (Morphisms, Lemma
29.11.8) the functor pr2,∗ is exact, see Cohomology of Schemes, Lemma 30.2.3.
Hence F is right exact as well, in other words F is as in (1).
Let F be as in (1). Say X = Spec(A). Consider the quasi-coherent OY -module
G = F (OX). The functor F induces an R-linear map A→ EndOY

(G), a 7→ F (a·id).
Thus G is a sheaf of modules over

A⊗R OY = pr2,∗OX×RY

By Morphisms, Lemma 29.11.6 we find that there is a unique quasi-coherent mod-
ule K on X ×R Y such that F (OX) = G = pr2,∗K compatible with action of
A and OY . Denote FK the functor given by (56.5.1.1). There is an equivalence
ModA → QCoh(OX) sending A to OX , see Schemes, Lemma 26.7.5. Hence we
find an isomorphism F ∼= FK by Lemma 56.2.6 because we have an isomorphism
F (OX) ∼= FK(OX) compatible with A-action by construction.
This shows that the functor sending K to FK is essentially surjective. We omit the
verification of fully faithfulness. □

Remark 56.5.3.0FZE Below we will use that for an affine morphism h : T → S we have
h∗G⊗OS

H = h∗(G⊗OT
h∗H) for G ∈ QCoh(OT ) and H ∈ QCoh(OS). This follows

immediately on translating into algebra.

Lemma 56.5.4.0FZF In Lemma 56.5.2 let F correspond to K in QCoh(OX×RY ). We
have

(1) If f : X ′ → X is an affine morphism, then F ◦ f∗ corresponds to (f ×
idY )∗K.

(2) If g : Y ′ → Y is a flat morphism, then g∗ ◦F corresponds to (idX × g)∗K.
(3) If j : V → Y is an open immersion, then j∗ ◦ F corresponds to K|X×RV .

Proof. Proof of (1). Consider the commutative diagram

X ′ ×R Y
pr′

2

**
f×idY &&

pr′
1

��

X ×R Y pr2
//

pr1

��

Y

X ′ f // X

Let F ′ be a quasi-coherent module on X ′. We have
pr2,∗(pr∗

1f∗F ′ ⊗OX×RY
K) = pr2,∗((f × idY )∗(pr′

1)∗F ′ ⊗OX×RY
K)

= pr2,∗(f × idY )∗

(
(pr′

1)∗F ′ ⊗OX′×RY
(f × idY )∗K)

)
= pr′

2,∗((pr′
1)∗F ′ ⊗OX′×RY

(f × idY )∗K)

Here the first equality is affine base change for the left hand square in the diagram,
see Cohomology of Schemes, Lemma 30.5.1. The second equality hold by Remark

https://stacks.math.columbia.edu/tag/0FZE
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56.5.3. The third equality is functoriality of pushforwards for modules. This proves
(1).

Proof of (2). Consider the commutative diagram

X ×R Y ′
pr′

2

//

idX×g

&&

pr′
1

��

Y ′

g

��
X ×R Y pr2

//

pr1

��

Y

X

We have

g∗pr2,∗(pr∗
1F ⊗OX×RY

K) = pr′
2,∗((idX × g)∗(pr∗

1F ⊗OX×RY
K))

= pr′
2,∗((pr′

1)∗F ⊗OX×RY ′ (idX × g)∗K)

The first equality by flat base change for the square in the diagram, see Cohomology
of Schemes, Lemma 30.5.2. The second equality by functoriality of pullback and
the fact that a pullback of tensor products it the tensor product of the pullbacks.

Part (3) is a special case of (2). □

Lemma 56.5.5.0GPA Let R be a ring. Let X and Y be schemes over R. Assume X
is quasi-compact with affine diagonal. Let F : QCoh(OX) → QCoh(OY ) be an
R-linear, right exact functor which commutes with arbitrary direct sums. Then we
can construct

(1) a quasi-coherent module K on X ×R Y , and
(2) a natural transformation t : F → FK where FK denotes the functor

(56.5.1.1)
such that t : F ◦ f∗ → FK ◦ f∗ is an isomorphism for every morphism f : X ′ → X
whose source is an affine scheme.

Proof. Consider a morphism f ′ : X ′ → X with X ′ affine. Since the diagonal of
X is affine, we see that f ′ is an affine morphism (Morphisms, Lemma 29.11.11).
Thus f ′

∗ : QCoh(OX′) → QCoh(OX) is an R-linear exact functor (Cohomology
of Schemes, Lemma 30.2.3) which commutes with direct sums (Cohomology of
Schemes, Lemma 30.6.1). Thus F ◦ f ′

∗ is an R-linear, right exact functor which
commutes with arbitrary direct sums. Whence F ◦f ′

∗ = FK′ for some K′ on X ′×RY
by Lemma 56.5.2. Moreover, given a morphism f ′′ : X ′′ → X ′ with X ′′ affine we
obtain a canonical identification (f ′′×idY )∗K′ = K′′ by the references already given
combined with Lemma 56.5.4. These identifications satisfy a cocycle condition given
another morphism f ′′′ : X ′′′ → X ′′ which we leave it to the reader to spell out.

Choose an affine open covering X =
⋃
i=1,...,n Ui. Since the diagonal of X is affine,

we see that the intersections Ui0...ip = Ui0 ∩ . . . ∩ Uip are affine. As above the
inclusion morphisms ji0...ip : Ui0...ip → X are affine. Denote Ki0...ip the quasi-
coherent module on Ui0...ip ×R Y corresponding to F ◦ ji0...ip∗ as above. By the
above we obtain identifications

Ki0...ip = Ki0...̂ij ...ip |Ui0...ip×RY

https://stacks.math.columbia.edu/tag/0GPA
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which satisfy the usual compatibilites for glueing. In other words, we obtain a
unique quasi-coherent module K on X ×R Y whose restriction to Ui0...ip ×R Y is
Ki0...ip compatible with the displayed identifications.

Next, we construct the transformation t. Given a quasi-coherent OX -module F de-
note Fi0...ip the restriction of F to Ui0...ip and denote (pr∗

1F⊗K)i0...ip the restriction
of pr∗

1F ⊗K to Ui0...ip ×R Y . Observe that

F (ji0...ip∗Fi0...ip) = pri0...ip,2,∗(pr∗
i0...ip,1Fi0...ip ⊗Ki0...ip)

= pri0...ip,2,∗(pr∗
1F ⊗K)i0...ip

where pri0...ip,2 : Ui0...ip ×R Y → Y is the projection and similarly for the other
projection. Moreover, these identifications are compatible with the displayed iden-
tifications in the previous paragraph. Recall, from Cohomology of Schemes, Lemma
30.7.1 that the relative Čech complex⊕

pri0,2,∗(pr∗
1F⊗K)i0 →

⊕
pri0i1,2,∗(pr∗

1F⊗K)i0i1 →
⊕

pri0i1i2,2,∗(pr∗
1F⊗K)i0i1i2 → . . .

computes Rpr2,∗(pr∗
1F ⊗ K). Hence the cohomology sheaf in degree 0 is FK(F).

Thus we obtain the desired map t : F (F)→ FK(F) by contemplating the following
commutative diagram

F (F) //

��

⊕
F (ji0∗Fi0) //

��

⊕
F (ji0i1∗Fi0i1)

��
0 // FK(F) //⊕pri0,2,∗(pr∗

1F ⊗K)i0 //⊕pri0i1,2,∗(pr∗
1F ⊗K)i0i1

We obtain the top row by applying F to the (exact) complex 0→ F →
⊕
ji0∗Fi0 →⊕

ji0i1∗Fi0i1 (but since F is not exact, the top row is just a complex and not
necessarily exact). The solid vertical arrows are the identifications above. This
does indeed define the dotted arrow as desired. The arrow is functorial in F ; we
omit the details.

We still have to prove the final assertion. Let f : X ′ → X be as in the statement
of the lemma and let K′ be the quasi-coherent module on X ′ ×R Y constructed in
the first paragraph of the proof. If the morphism f : X ′ → X maps into one of the
opens Ui, then the result follows from Lemma 56.5.4 because in this case we know
that Ki = K|Ui×RY pulls back to K. In general, we obtain an affine open covering
X ′ =

⋃
U ′
i with U ′

i = f−1(Ui) and we obtain isomorphisms K′|U ′
i

= f∗
i Ki where

fi : U ′
i → Ui is the induced morphism. These morphisms satisfy the compatibility

conditions needed to glue to an isomorphism K′ = f∗K and we conclude. Some
details omitted. □

Lemma 56.5.6.0FZG In Lemma 56.5.2 or in Lemma 56.5.5 if F is an exact functor, then
the corresponding object K of QCoh(OX×RY ) is flat over X.

Proof. We may assume X is affine, so we are in the case of Lemma 56.5.2. By
Lemma 56.5.4 we may assume Y is affine. In the affine case the statement translates
into Remark 56.3.5. □

Lemma 56.5.7.0FZH Let R be a ring. Let X and Y be schemes over R. Assume X is
quasi-compact with affine diagonal. There is an equivalence of categories between

https://stacks.math.columbia.edu/tag/0FZG
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(1) the category of R-linear exact functors F : QCoh(OX) → QCoh(OY )
which commute with arbitrary direct sums, and

(2) the full subcategory of QCoh(OX×RY ) consisting of K such that
(a) K is flat over X,
(b) for F ∈ QCoh(OX) we have Rqpr2,∗(pr∗

1F ⊗OX×RY
K) = 0 for q > 0.

given by sending K to the functor F in (56.5.1.1).

Proof. Let K be as in (2). The functor F in (56.5.1.1) commutes with direct sums.
Since by (1) (a) the modules K is X-flat, we see that given a short exact sequence
0→ F1 → F2 → F3 → 0 we obtain a short exact sequence

0→ pr∗
1F1 ⊗OX×RY

K → pr∗
1F2 ⊗OX×RY

K → pr∗
1F3 ⊗OX×RY

K → 0

Since by (2)(b) the higher direct image R1pr2,∗ on the first term is zero, we conclude
that 0→ F (F1)→ F (F2)→ F (F3)→ 0 is exact and we see that F is as in (1).
Let F be as in (1). Let K and t : F → FK be as in Lemma 56.5.5. By Lemma
56.5.6 we see that K is flat over X. To finish the proof we have to show that t is an
isomorphism and the statement on higher direct images. Both of these follow from
the fact that the relative Čech complex⊕

pri0,2,∗(pr∗
1F⊗K)i0 →

⊕
pri0i1,2,∗(pr∗

1F⊗K)i0i1 →
⊕

pri0i1i2,2,∗(pr∗
1F⊗K)i0i1i2 → . . .

computes Rpr2,∗(pr∗
1F ⊗ K). Please see proof of Lemma 56.5.5 for notation and

for the reason why this is so. In the proof of Lemma 56.5.5 we also found that this
complex is equal to F applied to the complex⊕

ji0∗Fi0 →
⊕

ji0i1∗Fi0i1 →
⊕

ji0i1i2∗Fi0i1i2 → . . .

This complex is exact except in degree zero with cohomology sheaf equal to F .
Hence since F is an exact functor we conclude F = FK and that (2)(b) holds.
We omit the proof that the construction that sends F to K is functorial and a quasi-
inverse to the functor sending K to the functor FK determined by (56.5.1.1). □

Remark 56.5.8.0GPB Let R be a ring. Let X and Y be schemes over R. Assume X is
quasi-compact with affine diagonal. Lemma 56.5.7 may be generalized as follows:
the functors (56.5.1.1) associated to quasi-coherent modules on X×R Y are exactly
those F : QCoh(OX)→ QCoh(OY ) which have the following properties

(1) F is R-linear and commutes with arbitrary direct sums,
(2) F ◦ j∗ is right exact when j : U → X is the inclusion of an affine open,

and
(3) 0 → F (F) → F (G) → F (H) is exact whenever 0 → F → G → H → 0

is an exact sequence such that for all x ∈ X the sequence on stalks 0 →
Fx → Gx → Hx → 0 is a split short exact sequence.

Namely, these assumptions are enough to get construct a transformation t : F → FK
as in Lemma 56.5.5 and to show that it is an isomorphism. Moreover, properties
(1), (2), and (3) do hold for functors (56.5.1.1). If we ever need this we will carefully
state and prove this here.

Lemma 56.5.9.0GPC Let R be a ring. Let X, Y , Z be schemes over R. Assume X and
Y are quasi-compact and have affine diagonal. Let

F : QCoh(OX)→ QCoh(OY ) and G : QCoh(OY )→ QCoh(OZ)

https://stacks.math.columbia.edu/tag/0GPB
https://stacks.math.columbia.edu/tag/0GPC


56.5. FUNCTORS BETWEEN CATEGORIES OF QUASI-COHERENT MODULES 4575

be R-linear exact functors which commute with arbitrary direct sums. Let K
in QCoh(OX×RY ) and L in QCoh(OY×RZ) be the corresponding “kernels”, see
Lemma 56.5.7. Then G ◦ F corresponds to pr13,∗(pr∗

12K ⊗OX×RY×RZ
pr∗

23L) in
QCoh(OX×RZ).

Proof. Since G ◦ F : QCoh(OX) → QCoh(OZ) is R-linear, exact, and commutes
with arbitrary direct sums, we find by Lemma 56.5.7 that there exists an M in
QCoh(OX×RZ) corresponding toG◦F . On the other hand, denote E = pr13,∗(pr∗

12K⊗
pr∗

23L). Here and in the rest of the proof we omit the subscript from the tensor
products. Let U ⊂ X and W ⊂ Z be affine open subschemes. To prove the lemma,
we will construct an isomorphism

Γ(U ×RW, E) ∼= Γ(U ×RW,M)
compatible with restriction mappings for varying U and W .
First, we observe that

Γ(U ×RW, E) = Γ(U ×R Y ×RW, pr∗
12K ⊗ pr∗

23L)
by construction. Thus we have to show that the same thing is true for M.
Write U = Spec(A) and denote j : U → X the inclusion morphism. Recall from
the construction of M in the proof of Lemma 56.5.2 that

Γ(U ×RW,M) = Γ(W,G(F (j∗OU )))
where the A-module action on the right hand side is given by the action of A on
OU . The correspondence between F and K tells us that F (j∗OU ) = b∗(a∗j∗OU⊗K)
where a : X ×R Y → X and b : X ×R Y → Y are the projection morphisms. Since
j is an affine morphism, we have a∗j∗OU = (j × idY )∗OU×RY by Cohomology of
Schemes, Lemma 30.5.1. Next, we have (j× idY )∗OU×RY ⊗K = (j× idY )∗K|U×RY
by Remark 56.5.3 for example. Putting what we have found together we find

F (j∗OU ) = (U ×R Y → Y )∗K|U×RY

with obvious A-action. (This formula is implicit in the proof of Lemma 56.5.2.)
Applying the functor G we obtain

G(F (j∗OU )) = t∗(s∗((U ×R Y → Y )∗K|U×RY )⊗ L)
where s : Y ×R Z → Y and t : Y ×R Z → Z are the projection morphisms. Again
using affine base change (Cohomology of Schemes, Lemma 30.5.1) but this time for
the square

U ×R Y ×R Z //

��

U ×R Y

��
Y ×R Z // Y

we obtain
s∗((U ×R Y → Y )∗K|U×RY ) = (U ×R Y ×R Z → Y ×R Z)∗pr∗

12K|U×RY×RZ

Using Remark 56.5.3 again we find
(U ×R Y ×R Z → Y ×R Z)∗pr∗

12K|U×RY×RZ ⊗ L
= (U ×R Y ×R Z → Y ×R Z)∗ (pr∗

12K ⊗ pr∗
23L) |U×RY×RZ
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Applying the functor Γ(W, t∗(−)) = Γ(Y ×RW,−) to this we obtain
Γ(U ×RW,M) = Γ(W,G(F (j∗OU )))

= Γ(Y ×RW, (U ×R Y ×R Z → Y ×R Z)∗(pr∗
12K ⊗ pr∗

23L)|U×RY×RZ)
= Γ(U ×R Y ×RW, pr∗

12K ⊗ pr∗
23L)

as desired. We omit the verication that these isomorphisms are compatible with
restriction mappings. □

Lemma 56.5.10.0FZI Let R, X, Y , and K be as in Lemma 56.5.7 part (2). Then for
any scheme T over R we have

Rqpr13,∗(pr∗
12F ⊗OT×RX×RY

pr∗
23K) = 0

for F quasi-coherent on T ×R X and q > 0.

Proof. The question is local on T hence we may assume T is affine. In this case we
can consider the diagram

T ×R X

��

T ×R X ×R Y

��

oo // T ×R Y

��
X X ×R Yoo // Y

whose vertical arrows are affine. In particular the pushforward along T×RY → Y is
faithful and exact (Cohomology of Schemes, Lemma 30.2.3 and Morphisms, Lemma
29.11.6). Chasing around in the diagram using that higher direct images along affine
morphisms vanish (see reference above) we see that it suffices to prove
Rqpr2,∗(pr23,∗(pr∗

12F ⊗OT×RX×RY
pr∗

23K)) = Rqpr2,∗(pr23,∗(pr∗
12F)⊗OX×RY

K))
is zero which is true by assumption on K. The equality holds by Remark 56.5.3. □

Lemma 56.5.11.0FZJ In Lemma 56.5.7 let F and K correspond. If X is separated and
flat over R, then there is a surjection OX ⊠ F (OX)→ K.

Proof. Let ∆ : X → X ×R X be the diagonal morphism and set O∆ = ∆∗OX .
Since ∆ is a closed immersion have a short exact sequence

0→ I → OX×RX → O∆ → 0
Since K is flat over X, the pullback pr∗

23K to X ×R X ×R Y is flat over X ×R X.
We obtain a short exact sequence

0→ pr∗
12I ⊗ pr∗

23K → pr∗
23K → pr∗

12O∆ ⊗ pr∗
23K → 0

on X×RX×RY , see Modules, Lemma 17.20.4. Thus, by Lemma 56.5.10 we obtain
a surjection

pr13,∗(pr∗
23K)→ pr13,∗(pr∗

12O∆ ⊗ pr∗
23K)

By flat base change (Cohomology of Schemes, Lemma 30.5.2) the source of this
arrow is equal to pr∗

2pr2,∗K = OX ⊠F (OX). On the other hand the target is equal
to

pr13,∗(pr∗
12O∆ ⊗ pr∗

23K) = pr13,∗(∆× idY )∗K = K
which finishes the proof. The first equality holds for example by Cohomology,
Lemma 20.54.4 and the fact that pr∗

12O∆ = (∆× idY )∗OX×RY . □

https://stacks.math.columbia.edu/tag/0FZI
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56.6. Gabriel-Rosenberg reconstruction

0GPD The title of this section refers to results like Proposition 56.6.6. Besides Gabriel’s
original paper [Gab62], please consult [Bra18] which has a proof of the result
for quasi-separated schemes and discusses the literature. In this section we will
only prove Gabriel-Rosenberg reconstruction for quasi-compact and quasi-separated
schemes.

Lemma 56.6.1.0GPE Let X be a quasi-compact and quasi-separated scheme. Let F be a
quasi-coherent OX -module. Then F is a categorically compact object of QCoh(OX)
if and only if F is of finite presentation.

Proof. See Categories, Definition 4.26.1 for our notion of categorically compact
objects in a category. If F is of finite presentation then it is categorically compact by
Modules, Lemma 17.22.8. Conversely, any quasi-coherent module F can be written
as a filtered colimit F = colimFi of finitely presented (hence quasi-coherent) OX -
modules, see Properties, Lemma 28.22.7. If F is categorically compact, then we
find some i and a morphism F → Fi which is a right inverse to the given map
Fi → F . We conclude that F is a direct summand of a finitely presented module,
and hence finitely presented itself. □

Lemma 56.6.2.0GPF Let X be an affine scheme. Let F be a finitely presented OX -
module. Let E be a nonzero quasi-coherent OX -module. If Supp(E) ⊂ Supp(F),
then there exists a nonzero map F → E .

Proof. Let us translate the statement into algebra. Let A be a ring. Let M be a
finitely presented A-module. Let N be a nonzero A-module. Assume Supp(N) ⊂
Supp(M). To show: HomA(M,N) is nonzero. We may assume N = A/I is cyclic
(replace N by any nonzero cyclic submodule). Choose a presentation

A⊕m T−→ A⊕n →M → 0
Recall that Supp(M) is cut out by Fit0(M) which is the ideal generated by the n×n
minors of the matrix T . See More on Algebra, Lemma 15.8.4. The assumption
Supp(N) ⊂ Supp(M) now means that the elements of Fit0(M) are nilpotent in
A/I. Consider the exact sequence

0→ HomA(M,A/I)→ (A/I)⊕n T t−→ (A/I)⊕m

We have to show that T t cannot be injective; we urge the reader to find their
own proof of this using the nilpotency of elements of Fit0(M) in A/I. Here is our
proof. Since Fit0(M) is finitely generated, the nilpotency means that the annihilator
J ⊂ A/I of Fit0(M) in A/I is nonzero. To show the non-injectivity of T t we may
localize at a prime. Choosing a suitable prime we may assume A is local and J is still
nonzero. Then T t has a nonzero kernel by More on Algebra, Lemma 15.15.6. □

Lemma 56.6.3.0GPG Let X be a quasi-compact and quasi-separated scheme. Let F be
a finitely presented OX -module. The following two subcategories of QCoh(OX) are
equal

(1) the full subcategory A ⊂ QCoh(OX) whose objects are the quasi-coherent
modules whose support is (set theoretically) contained in Supp(F),

(2) the smallest Serre subcategory B ⊂ QCoh(OX) containing F closed under
extensions and arbitrary direct sums.
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Proof. Observe that the statement makes sense as finitely presented OX -modules
are quasi-coherent. Since A is a Serre subcategory closed under extensions and
direct sums and since F is an object of A we see that B ⊂ A. Thus it remains to
show that A is contained in B.
Let E be an object of A. There exists a maximal submodule E ′ ⊂ E which is in B.
Namely, suppose Ei ⊂ E , i ∈ I is the set of subobjects which are objects of B. Then⊕
Ei is in B and so is

E ′ = Im(
⊕
Ei −→ E)

This is clearly the maximal submodule we were looking for.
Now suppose that we have a nonzero map G → E/E ′ with G in B. Then G′ =
E ×E/E′ G is in B as an extension of E ′ and G. Then the image G′ → E would be
strictly bigger than E ′, contradicting the maximality of E ′. Thus it suffices to show
the claim in the following paragraph.
Let E be an nonzero object of A. We claim that there is a nonzero map G → E with
G in B. We will prove this by induction on the minimal number n of affine opens
Ui of X such that Supp(E) ⊂ U1 ∪ . . . ∪ Un. Set U = Un and denote j : U → X
the inclusion morphism. Denote E ′ = Im(E → j∗E|U ). Then the kernel E ′′ of the
surjection E → E ′ has support contained in U1 ∪ . . .∪Un−1. Thus if E ′′ is nonzero,
then we win. In other words, we may assume that E ⊂ j∗E|U . In particular, we
see that E|U is nonzero. By Lemma 56.6.2 there exists a nonzero map F|U → E|U .
This corresponds to a map

φ : F −→ j∗(E|U )
whose restriction to U is nonzero. Setting G = φ−1(E) we conclude. □

Lemma 56.6.4.0GPH Let X be a quasi-compact and quasi-separated scheme. Let Z ⊂ X
be a closed subset such that U = X \ Z is quasi-compact. Let A ⊂ QCoh(OX)
be the full subcategory whose objects are the quasi-coherent modules supported on
Z. Then the restriction functor QCoh(OX) → QCoh(OU ) induces an equivalence
QCoh(OX)/A ∼= QCoh(OU ).

Proof. By the universal property of the quotient construction (Homology, Lemma
12.10.6) we certainly obtain an induced functor QCoh(OX)/A ∼= QCoh(OU ). De-
note j : U → X the inclusion morphism. Since j is quasi-compact and quasi-
separated we obtain a functor j∗ : QCoh(OU ) → QCoh(OX). The reader shows
that this defines a quasi-inverse; details omitted. □

Lemma 56.6.5.0GPI LetX be a quasi-compact and quasi-separated scheme. If QCoh(OX)
is equivalent to the category of modules over a ring, then X is affine.

Proof. Say F : ModR → QCoh(OX) is an equivalence. Then F = F (R) has the
following properties:

(1) it is a finitely presented OX -module (Lemma 56.6.1),
(2) HomX(F ,−) is exact,
(3) HomX(F ,F) is a commutative ring,
(4) every object of QCoh(OX) is a quotient of a direct sum of copies of F .

Let x ∈ X be a closed point. Consider the surjection
OX → i∗κ(x)

https://stacks.math.columbia.edu/tag/0GPH
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where the target is the pushforward of κ(x) by the inclusion morphism i : x→ X.
We have

HomX(F , i∗κ(x)) = HomOX,x
(Fx, κ(x))

This first by (4) implies that Fx is nonzero. From (2) we deduce that every map
Fx → κ(x) lifts to a map Fx → OX,x (as it even lifts to a global map F → OX).
Since Fx is a finite OX,x-module, this implies that Fx is a (nonzero) finite free
OX,x-module. Then since F is of finite presentation, this implies that F is finite
free of positive rank in an open neighbourhood of x (Modules, Lemma 17.11.6).
Since every closed subset of X contains a closed point (Topology, Lemma 5.12.8)
this implies that F is finite locally free of positive rank. Similarly, the map

HomX(F ,F)→ HomX(F , i∗i∗F) = Homκ(x)(Fx/mxFx,Fx/mxFx)
is surjective. By property (3) we conclude that the rank Fx must be 1. Hence F is
an invertible OX -module. But then we conclude that the functor

H 7−→ Γ(X,H) = HomX(OX ,H) = HomX(F ,H⊗OX
F)

on QCoh(OX) is exact too. This implies that the first Ext group

Ext1
QCoh(OX)(OX ,H) = 0

computed in the abelian category QCoh(OX) vanishes for all H in QCoh(OX).
However, since QCoh(OX) ⊂ Mod(OX) is closed under extensions (Schemes, Sec-
tion 26.24) we see that Ext1 between quasi-coherent modules computed in QCoh(OX)
is the same as computed in Mod(OX). Hence we conclude that

H1(X,H) = Ext1
Mod(OX)(OX ,H) = 0

for all H in QCoh(OX). This implies that X is affine for example by Cohomology
of Schemes, Lemma 30.3.1. □

Proposition 56.6.6.0GPJ Special case of
[Bra18, Theorem
1.2]

Let X and Y be quasi-compact and quasi-separated schemes.
If F : QCoh(OX)→ QCoh(OY ) is an equivalence, then there exists an isomorphism
f : Y → X of schemes and an invertible OY -module L such that F (F) = f∗F ⊗L.

Proof. Of course F is additive, exact, commutes with all limits, commutes with all
colimits, commutes with direct sums, etc. Let U ⊂ X be an affine open subscheme.
Let I ⊂ OX be a finite type quasi-coherent sheaf of ideals such that Z = V (I) is
the complement of U in X, see Properties, Lemma 28.24.1. Then OX/I is a finitely
presented OX -module. Hence G = F (OX/I) is a finitely presented OY -module by
Lemma 56.6.1. Denote T ⊂ Y the support of G and set V = Y \ T . Since G is of
finite presentation, the scheme V is a quasi-compact open of Y . By Lemma 56.6.3
we see that F induces an equivalence between

(1) the full subcategory of QCoh(OX) consisting of modules supported on Z,
and

(2) the full subcategory of QCoh(OY ) consisting of modules supported on T .
By Lemma 56.6.4 we obtain a commutative diagram

QCoh(OX)
F
//

��

QCoh(OY )

��
QCoh(OU ) FU // QCoh(OV )

https://stacks.math.columbia.edu/tag/0GPJ
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where the vertical arrows are the restruction functors and the horizontal arrows are
equivalences. By Lemma 56.6.5 we conclude that V is affine. For the affine case we
have Lemma 56.3.8. Thus we find that there is an isomorphism fU : V → U and
an invertible OV -module LU such that FU is the functor F 7→ f∗

UF ⊗ LU .
The proof can be finished by noticing that the diagrams above satisfy an obvious
compatibility with regards to inclusions of affine open subschemes of X. Thus the
morphisms fU and the invertible modules LU glue. We omit the details. □

56.7. Functors between categories of coherent modules

0FZK The following lemma guarantees that we can use the material on functors between
categories of quasi-coherent modules when we are given a functor between categories
of coherent modules.

Lemma 56.7.1.0FZL Let X and Y be Noetherian schemes. Let F : Coh(OX) →
Coh(OY ) be a functor. Then F extends uniquely to a functor QCoh(OX) →
QCoh(OY ) which commutes with filtered colimits. If F is additive, then its exten-
sion commutes with arbitrary direct sums. If F is exact, left exact, or right exact,
so is its extension.

Proof. The existence and uniqueness of the extension is a general fact, see Cate-
gories, Lemma 4.26.2. To see that the lemma applies observe that coherent mod-
ules are of finite presentation (Modules, Lemma 17.12.2) and hence categorically
compact objects of Mod(OX) by Modules, Lemma 17.22.8. Finally, every quasi-
coherent module is a filtered colimit of coherent ones for example by Properties,
Lemma 28.22.3.
Assume F is additive. If F =

⊕
j∈J Hj with Hj quasi-coherent, then F =

colimJ′⊂J finite
⊕

j∈J′ Hj . Denoting the extension of F also by F we obtain

F (F) = colimJ′⊂J finite F (
⊕

j∈J′
Hj)

= colimJ′⊂J finite
⊕

j∈J′
F (Hj)

=
⊕

j∈J
F (Hj)

Thus F commutes with arbitrary direct sums.
Suppose 0 → F → F ′ → F ′′ → 0 is a short exact sequence of quasi-coherent
OX -modules. Then we write F ′ =

⋃
F ′
i as the union of its coherent submodules,

see Properties, Lemma 28.22.3. Denote F ′′
i ⊂ F ′′ the image of F ′

i and denote
Fi = F ∩F ′

i = Ker(F ′
i → F ′′

i ). Then it is clear that F =
⋃
Fi and F ′′ =

⋃
F ′′
i and

that we have short exact sequences
0→ Fi → F ′

i → F ′′
i → 0

Since the extension commutes with filtered colimits we have F (F) = colimi∈I F (Fi),
F (F ′) = colimi∈I F (F ′

i), and F (F ′′) = colimi∈I F (F ′′
i ). Since filtered colimits are

exact (Modules, Lemma 17.3.2) we conclude that exactness properties of F are
inherited by its extension. □

Lemma 56.7.2.0GPK Let X and Y be Noetherian schemes. Let F : Coh(OX) →
Coh(OY ) be an equivalence of categories. Then there is an isomorphism f : Y → X
and an invertible OY -module L such that F (F) = f∗F ⊗ L.
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Proof. By Lemma 56.7.1 we obtain a unique functor F ′ : QCoh(OX)→ QCoh(OY )
extending F . The same is true for the quasi-inverse of F and by the uniqueness we
conclude that F ′ is an equivalence. By Proposition 56.6.6 we find an isomorphism
f : Y → X and an invertible OY -module L such that F ′(F) = f∗F ⊗ L. Then f
and L work for F as well. □

Remark 56.7.3.0GPL In Lemma 56.7.2 if X and Y are defined over a common base ring
R and F is R-linear, then the isomorphism f will be a morphism of schemes over
R.

Lemma 56.7.4.0FZM Let f : V → X be a quasi-finite separated morphism of Noetherian
schemes. If there exists a coherent OV -module K whose support is V such that
f∗K is coherent and Rqf∗K = 0, then f is finite.

Proof. By Zariski’s main theorem we can find an open immersion j : V → Y over
X with π : Y → X finite, see More on Morphisms, Lemma 37.43.3. Since π is affine
the functor π∗ is exact and faithful on the category of coherent OX -modules. Hence
we see that j∗K is coherent and that Rqj∗K is zero for q > 0. In other words, we
reduce to the case discussed in the next paragraph.

Assume f is an open immersion. We may replace X by the scheme theoretic closure
of V . Assume X \ V is nonempty to get a contradiction. Choose a generic point
ξ ∈ X \V of an irreducible component of X \V . Looking at the situation after base
change by Spec(OX,ξ) → X using flat base change and using Local Cohomology,
Lemma 51.8.2 we reduce to the algebra problem discussed in the next paragraph.

Let (A,m) be a Noetherian local ring. Let M be a finite A-module whose support
is Spec(A). Then Hi

m(M) ̸= 0 for some i. This is true by Dualizing Complexes,
Lemma 47.11.1 and the fact that M is not zero hence has finite depth. □

The next lemma can be generalized to the case where k is a Noetherian ring and
X flat over k (all other assumptions stay the same).

Lemma 56.7.5.0FZN Let k be a field. Let X, Y be finite type schemes over k with X
separated. There is an equivalence of categories between

(1) the category of k-linear exact functors F : Coh(OX)→ Coh(OY ), and
(2) the category of coherent OX×Y -modules K which are flat over X and have

support finite over Y
given by sending K to the restriction of the functor (56.5.1.1) to Coh(OX).

Proof. Let K be as in (2). By Lemma 56.5.7 the functor F given by (56.5.1.1)
is exact and k-linear. Moreover, F sends Coh(OX) into Coh(OY ) for example by
Cohomology of Schemes, Lemma 30.26.10.

Let us construct the quasi-inverse to the construction. Let F be as in (1). By
Lemma 56.7.1 we can extend F to a k-linear exact functor on the categories of
quasi-coherent modules which commutes with arbitrary direct sums. By Lemma
56.5.7 the extension corresponds to a unique quasi-coherent module K, flat over X,
such that Rqpr2,∗(pr∗

1F ⊗OX×Y K) = 0 for q > 0 for all quasi-coherent OX -modules
F . Since F (OX) is a coherent OY -module, we conclude from Lemma 56.5.11 that
K is coherent.

https://stacks.math.columbia.edu/tag/0GPL
https://stacks.math.columbia.edu/tag/0FZM
https://stacks.math.columbia.edu/tag/0FZN
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For a closed point x ∈ X denote Ox the skyscraper sheaf at x with value the residue
field of x. We have

F (Ox) = pr2,∗(pr∗
1Ox ⊗K) = (x× Y → Y )∗(K|x×Y )

Since x × Y → Y is finite, we see that the pushforward along this morphism is
faithful. Hence if y ∈ Y is in the image of the support of K|x×Y , then y is in the
support of F (Ox).
Let Z ⊂ X ×Y be the scheme theoretic support Z of K, see Morphisms, Definition
29.5.5. We first prove that Z → Y is quasi-finite, by proving that its fibres over
closed points are finite. Namely, if the fibre of Z → Y over a closed point y ∈ Y
has dimension > 0, then we can find infinitely many pairwise distinct closed points
x1, x2, . . . in the image of Zy → X. Since we have a surjection OX →

⊕
i=1,...,nOxi

we obtain a surjection
F (OX)→

⊕
i=1,...,n

F (Oxi)

By what we said above, the point y is in the support of each of the coherent modules
F (Oxi). Since F (OX) is a coherent module, this will lead to a contradiction because
the stalk of F (OX) at y will be generated by < n elements if n is large enough.
Hence Z → Y is quasi-finite. Since pr2,∗K is coherent and Rqpr2,∗K = 0 for q > 0
we conclude that Z → Y is finite by Lemma 56.7.4. □

Lemma 56.7.6.0FZP Let f : X → Y be a finite type separated morphism of schemes.
Let F be a finite type quasi-coherent module on X with support finite over Y and
with L = f∗F an invertible OX -module. Then there exists a section s : Y → X
such that F ∼= s∗L.

Proof. Looking affine locally this translates into the following algebra problem.
Let A → B be a ring map and let N be a B-module which is invertible as an
A-module. Then the annihilator J of N in B has the property that A → B/J is
an isomorphism. We omit the details. □

Lemma 56.7.7.0FZQ Let f : X → Y be a finite type separated morphism of schemes
with a section s : Y → X. Let F be a finite type quasi-coherent module on X, set
theoretically supported on s(Y ) with L = f∗F an invertible OX -module. If Y is
reduced, then F ∼= s∗L.

Proof. By Lemma 56.7.6 there exists a section s′ : Y → X such that F = s′
∗L.

Since s′(Y ) and s(Y ) have the same underlying closed subset and since both are
reduced closed subschemes of X, they have to be equal. Hence s = s′ and the
lemma holds. □

Lemma 56.7.8.0FZR Weak version of the
result in [Gab62]
stating that the
category of
quasi-coherent
modules determines
the isomorphism
class of a scheme.

Let k be a field. Let X, Y be finite type schemes over k with
X separated and Y reduced. If there is a k-linear equivalence F : Coh(OX) →
Coh(OY ) of categories, then there is an isomorphism f : Y → X over k and an
invertible OY -module L such that F (F) = f∗F ⊗ L.

Proof using Gabriel-Rosenberg reconstruction. This lemma is a weak form of the
results discussed in Lemma 56.7.2 and Remark 56.7.3. □

Proof not relying on Gabriel-Rosenberg reconstruction. By Lemma 56.7.5 we ob-
tain a coherent OX×Y -module K which is flat over X with support finite over Y
such that F is given by the restriction of the functor (56.5.1.1) to Coh(OX). If

https://stacks.math.columbia.edu/tag/0FZP
https://stacks.math.columbia.edu/tag/0FZQ
https://stacks.math.columbia.edu/tag/0FZR
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we can show that F (OX) is an invertible OY -module, then by Lemma 56.7.6 we
see that K = s∗L for some section s : Y → X × Y of pr2 and some invertible
OY -module L. This will show that F has the form indicated with f = pr1 ◦ s.
Some details omitted.
It remains to show that F (OX) is invertible. We only sketch the proof and we
omit some of the details. For a closed point x ∈ X we denote Ox in Coh(OX) the
skyscraper sheaf at x with value κ(x). First we observe that the only simple objects
of the category Coh(OX) are these skyscraper sheaves Ox. The same is true for
Y . Hence for every closed point y ∈ Y there exists a closed point x ∈ X such that
Oy ∼= F (Ox). Moreover, looking at endomorphisms we find that κ(x) ∼= κ(y) as
finite extensions of k. Then

HomY (F (OX),Oy) ∼= HomY (F (OX), F (Ox)) ∼= HomX(OX ,Ox) ∼= κ(x) ∼= κ(y)
This implies that the stalk of the coherent OY -module F (OX) at y ∈ Y can be
generated by 1 generator (and no less) for each closed point y ∈ Y . It follows
immediately that F (OX) is locally generated by 1 element (and no less) and since
Y is reduced this indeed tells us it is an invertible module. □
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CHAPTER 57

Derived Categories of Varieties

0FY0 57.1. Introduction

0FY1 In this chapter we continue the discussion started in Derived Categories of Schemes,
Section 36.1. We will discuss Fourier-Mukai transforms, first studied by Mukai in
[Muk81]. We will prove Orlov’s theorem on derived equivalences ([Orl97]). We also
discuss the countability of derived equivalence classes proved by Anel and Toën in
[AT09].

A good introduction to this material is the book [Huy06] by Daniel Huybrechts.
Some other papers which helped popularize this topic are

(1) the paper by Bondal and Kapranov, see [BK89]
(2) the paper by Bondal and Orlov, see [BO01]
(3) the paper by Bondal and Van den Bergh, see [BV03]
(4) the papers by Beilinson, see [Bei78] and [Bei84]
(5) the paper by Orlov, see [Orl02]
(6) the paper by Orlov, see [Orl05]
(7) the paper by Rouquier, see [Rou08]
(8) there are many more we could mention here.

57.2. Conventions and notation

0FY2 Let k be a field. A k-linear triangulated category T is a triangulated category (De-
rived Categories, Section 13.3) which is endowed with a k-linear structure (Differen-
tial Graded Algebra, Section 22.24) such that the translation functors [n] : T → T
are k-linear for all n ∈ Z.

Let k be a field. We denote Vectk the category of k-vector spaces. For a k-vector
space V we denote V ∨ the k-linear dual of V , i.e., V ∨ = Homk(V, k).

Let X be a scheme. We denote Dperf (OX) the full subcategory of D(OX) con-
sisting of perfect complexes (Cohomology, Section 20.49). If X is Noetherian then
Dperf (OX) ⊂ Db

Coh(OX), see Derived Categories of Schemes, Lemma 36.11.6. If X
is Noetherian and regular, then Dperf (OX) = Db

Coh(OX), see Derived Categories
of Schemes, Lemma 36.11.8.

Let k be a field. Let X and Y be schemes over k. In this situation we will write
X × Y instead of X ×Spec(k) Y .

Let S be a scheme. Let X, Y be schemes over S. Let F be a OX -module and let
G be a OY -module. We set

F ⊠ G = pr∗
1F ⊗OX×SY

pr∗
2G

4585
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as OX×SY -modules. If K ∈ D(OX) and M ∈ D(OY ) then we set
K ⊠M = Lpr∗

1K ⊗L
OX×SY

Lpr∗
2M

as an object of D(OX×SY ). Thus our notation is potentially ambiguous, but context
should make it clear which of the two is meant.

57.3. Serre functors

0FY3 The material in this section is taken from [BK89].

Lemma 57.3.1.0FY4 Let k be a field. Let T be a k-linear triangulated category such
that dimk HomT (X,Y ) <∞ for all X,Y ∈ Ob(T ). The following are equivalent

(1) there exists a k-linear equivalence S : T → T and k-linear isomorphisms
cX,Y : HomT (X,Y )→ HomT (Y, S(X))∨ functorial in X,Y ∈ Ob(T ),

(2) for every X ∈ Ob(T ) the functor Y 7→ HomT (X,Y )∨ is representable and
the functor Y 7→ HomT (Y,X)∨ is corepresentable.

Proof. Condition (1) implies (2) since given (S, c) and X ∈ Ob(T ) the object S(X)
represents the functor Y 7→ HomT (X,Y )∨ and the object S−1(X) corepresents the
functor Y 7→ HomT (Y,X)∨.
Assume (2). We will repeatedly use the Yoneda lemma, see Categories, Lemma
4.3.5. For everyX denote S(X) the object representing the functor Y 7→ HomT (X,Y )∨.
Given φ : X → X ′, we obtain a unique arrow S(φ) : S(X) → S(X ′) determined
by the corresponding transformation of functors HomT (X,−)∨ → HomT (X ′,−)∨.
Thus S is a functor and we obtain the isomorphisms cX,Y by construction. It
remains to show that S is an equivalence. For every X denote S′(X) the object
corepresenting the functor Y 7→ HomT (Y,X)∨. Arguing as above we find that S′

is a functor. We claim that S′ is quasi-inverse to S. To see this observe that
HomT (X,Y ) = HomT (Y, S(X))∨ = HomT (S′(S(X)), Y )

bifunctorially, i.e., we find S′ ◦ S ∼= idT . Similarly, we have
HomT (Y,X) = HomT (S′(X), Y )∨ = HomT (Y, S(S′(X)))

and we find S ◦ S′ ∼= idT . □

Definition 57.3.2.0FY5 Let k be a field. Let T be a k-linear triangulated category such
that dimk HomT (X,Y ) < ∞ for all X,Y ∈ Ob(T ). We say a Serre functor exists
if the equivalent conditions of Lemma 57.3.1 are satisfied. In this case a Serre
functor is a k-linear equivalence S : T → T endowed with k-linear isomorphisms
cX,Y : HomT (X,Y )→ HomT (Y, S(X))∨ functorial in X,Y ∈ Ob(T ).

Lemma 57.3.3.0FY6 In the situation of Definition 57.3.2. If a Serre functor exists, then
it is unique up to unique isomorphism and it is an exact functor of triangulated
categories.

Proof. Given a Serre functor S the object S(X) represents the functor Y 7→
HomT (X,Y )∨. Thus the object S(X) together with the functorial identification
HomT (X,Y )∨ = HomT (Y, S(X)) is determined up to unique isomorphism by the
Yoneda lemma (Categories, Lemma 4.3.5). Moreover, for φ : X → X ′, the arrow
S(φ) : S(X)→ S(X ′) is uniquely determined by the corresponding transformation
of functors HomT (X,−)∨ → HomT (X ′,−)∨.

https://stacks.math.columbia.edu/tag/0FY4
https://stacks.math.columbia.edu/tag/0FY5
https://stacks.math.columbia.edu/tag/0FY6
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For objects X,Y of T we have
Hom(Y, S(X)[1])∨ = Hom(Y [−1], S(X))∨

= Hom(X,Y [−1])
= Hom(X[1], Y )
= Hom(Y, S(X[1]))∨

By the Yoneda lemma we conclude that there is a unique isomorphism S(X[1])→
S(X)[1] inducing the isomorphism from top left to bottom right. Since each of
the isomorphisms above is functorial in both X and Y we find that this defines an
isomorphism of functors S ◦ [1]→ [1] ◦ S.
Let (A,B,C, f, g, h) be a distinguished triangle in T . We have to show that
the triangle (S(A), S(B), S(C), S(f), S(g), S(h)) is distinguished. Here we use the
canonical isomorphism S(A[1])→ S(A)[1] constructed above to identify the target
S(A[1]) of S(h) with S(A)[1]. We first observe that for any X in T the triangle
(S(A), S(B), S(C), S(f), S(g), S(h)) induces a long exact sequence
. . .→ Hom(X,S(A))→ Hom(X,S(B))→ Hom(X,S(C))→ Hom(X,S(A)[1])→ . . .

of finite dimensional k-vector spaces. Namely, this sequence is k-linear dual of the
sequence

. . .← Hom(A,X)← Hom(B,X)← Hom(C,X)← Hom(A[1], X)← . . .

which is exact by Derived Categories, Lemma 13.4.2. Next, we choose a distin-
guished triangle (S(A), E, S(C), i, p, S(h)) which is possible by axioms TR1 and
TR2. We want to construct the dotted arrow making following diagram commute

S(C)[−1]
S(h[−1])

// S(A)
S(f)
// S(B)

S(g)
// S(C)

S(h)
// S(A)[1]

S(C)[−1]
S(h[−1])// S(A) i // E

p //

φ

OO

S(C)
S(h) // S(A)[1]

Namely, if we have φ, then we claim for any X the resulting map Hom(X,E) →
Hom(X,S(B)) will be an isomorphism of k-vector spaces. Namely, we will obtain
a commutative diagram

Hom(X,S(C)[−1]) // Hom(X,S(A)) // Hom(X,S(B)) // Hom(X,S(C)) // Hom(X,S(A)[1])

Hom(X,S(C)[−1]) // Hom(X,S(A)) // Hom(X,E) //

φ

OO

Hom(X,S(C)) // Hom(X,S(A)[1])

with exact rows (see above) and we can apply the 5 lemma (Homology, Lemma
12.5.20) to see that the middle arrow is an isomorphism. By the Yoneda lemma we
conclude that φ is an isomorphism. To find φ consider the following diagram

Hom(E,S(C)) // Hom(S(A), S(C))

Hom(E,S(B))

OO

// Hom(S(A), S(B))

OO

The elements p and S(f) in positions (0, 1) and (1, 0) define a cohomology class ξ
in the total complex of this double complex. The existence of φ is equivalent to
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whether ξ is zero. If we take k-linear duals of this and we use the defining property
of S we obtain

Hom(C,E)

��

Hom(C, S(A))oo

��
Hom(B,E) Hom(B,S(A))oo

Since both A → B → C and S(A) → E → S(C) are distinguished triangles, we
know by TR3 that given elements α ∈ Hom(C,E) and β ∈ Hom(B,S(A)) map-
ping to the same element in Hom(B,E), there exists an element in Hom(C, S(A))
mapping to both α and β. In other words, the cohomology of the total complex
associated to this double complex is zero in degree 1, i.e., the degree correspond-
ing to Hom(C,E) ⊕ Hom(B,S(A)). Taking duals the same must be true for the
previous one which concludes the proof. □

57.4. Examples of Serre functors

0FY7 The lemma below is the standard example.

Lemma 57.4.1.0FY8 Let k be a field. Let X be a proper scheme over k which is
Gorenstein. Consider the complex ω•

X of Duality for Schemes, Lemmas 48.27.1.
Then the functor

S : Dperf (OX) −→ Dperf (OX), K 7−→ S(K) = ω•
X ⊗L

OX
K

is a Serre functor.

Proof. The statement make sense because dim HomX(K,L) <∞ forK,L ∈ Dperf (OX)
by Derived Categories of Schemes, Lemma 36.11.7. Since X is Gorenstein the dual-
izing complex ω•

X is an invertible object of D(OX), see Duality for Schemes, Lemma
48.24.4. In particular, locally on X the complex ω•

X has one nonzero cohomology
sheaf which is an invertible module, see Cohomology, Lemma 20.52.2. Thus S(K)
lies in Dperf (OX). On the other hand, the invertibility of ω•

X clearly implies that
S is a self-equivalence of Dperf (OX). Finally, we have to find an isomorphism

cK,L : HomX(K,L) −→ HomX(L, ω•
X ⊗L

OX
K)∨

bifunctorially in K,L. To do this we use the canonical isomorphisms

HomX(K,L) = H0(X,L⊗L
OX

K∨)

and
HomX(L, ω•

X ⊗L
OX

K) = H0(X,ω•
X ⊗L

OX
K ⊗L

OX
L∨)

given in Cohomology, Lemma 20.50.5. Since (L⊗L
OX

K∨)∨ = (K∨)∨ ⊗L
OX

L∨ and
since there is a canonical isomorphism K → (K∨)∨ we find these k-vector spaces
are canonically dual by Duality for Schemes, Lemma 48.27.4. This produces the
isomorphisms cK,L. We omit the proof that these isomorphisms are functorial. □

57.5. Characterizing coherent modules

0FY9 This section is in some sense a continuation of the discussion in Derived Categories
of Schemes, Section 36.34 and More on Morphisms, Section 37.69.

https://stacks.math.columbia.edu/tag/0FY8
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Before we can state the result we need some notation. Let k be a field. Let n ≥ 0 be
an integer. Let S = k[X0, . . . , Xn]. For an integer e denote Se ⊂ S the homogeneous
polynomials of degree e. Consider the (noncommutative) k-algebra

R =


S0 S1 S2 . . . . . .
0 S0 S1 . . . . . .
0 0 S0 . . . . . .
. . . . . . . . . . . . . . .
0 . . . . . . . . . S0


(with n+ 1 rows and columns) with obvious multiplication and addition.

Lemma 57.5.1.0FYA With k, n, and R as above, for an object K of D(R) the following
are equivalent

(1)
∑
i∈Z dimkH

i(K) <∞, and
(2) K is a compact object.

Proof. If K is a compact object, then K can be represented by a complex M•

which is finite projective as a graded R-module, see Differential Graded Algebra,
Lemma 22.36.6. Since dimk R < ∞ we conclude

∑
dimkM

i < ∞ and a fortiori∑
dimkH

i(M•) <∞. (One can also easily deduce this implication from the easier
Differential Graded Algebra, Proposition 22.36.4.)
Assume K satisfies (1). Consider the distinguished triangle of trunctions τ≤mK →
K → τ≥m+1K, see Derived Categories, Remark 13.12.4. It is clear that both τ≤mK
and τ≥m+1K satisfy (1). If we can show both are compact, then so is K, see Derived
Categories, Lemma 13.37.2. Hence, arguing on the number of nonzero cohomology
modules of K we may assume Hi(K) is nonzero only for one i. Shifting, we may
assume K is given by the complex consisting of a single finite dimensional R-module
M sitting in degree 0.
Since dimk(M) <∞ we see that M is Artinian as an R-module. Thus it suffices to
show that every simple R-module represents a compact object of D(R). Observe
that

I =


0 S1 S2 . . . . . .
0 0 S1 . . . . . .
0 0 0 . . . . . .
. . . . . . . . . . . . . . .
0 . . . . . . . . . 0


is a nilpotent two sided ideal of R and that R/I is a commutative k-algebra iso-
morphic to a product of n+ 1 copies of k (placed along the diagonal in the matrix,
i.e., R/I can be lifted to a k-subalgebra of R). It follows that R has exactly n+ 1
isomorphism classes of simple modules M0, . . . ,Mn (sitting along the diagonal).
Consider the right R-module Pi of row vectors

Pi =
(
0 . . . 0 S0 . . . Si−1 Si

)
with obvious multiplication Pi×R→ Pi. Then we see that R ∼= P0⊕ . . .⊕Pn as a
right R-module. Since clearly R is a compact object of D(R), we conclude each Pi
is a compact object of D(R). (We of course also conclude each Pi is projective as
an R-module, but this isn’t what we have to show in this proof.) Clearly, P0 = M0
is the first of our simple R-modules. For P1 we have a short exact sequence

0→ P⊕n+1
0 → P1 →M1 → 0

https://stacks.math.columbia.edu/tag/0FYA
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which proves that M1 fits into a distinguished triangle whose other members are
compact objects and hence M1 is a compact object of D(R). More generally, there
exists a short exact sequence

0→ Ci → Pi →Mi → 0
where Ci is a finite dimensional R-module whose simple constituents are isomorphic
toMj for j < i. By induction, we first conclude that Ci determines a compact object
of D(R) whereupon we conclude that Mi does too as desired. □

Lemma 57.5.2.0FYB Let k be a field. Let n ≥ 0. Let K ∈ DQCoh(OPn
k
). The following

are equivalent
(1) K is in Db

Coh(OPn
k
),

(2)
∑
i∈Z dimkH

i(Pn
k , E ⊗L K) <∞ for each perfect object E of D(OPn

k
),

(3)
∑
i∈Z dimk ExtiPn

k
(E,K) <∞ for each perfect object E of D(OPn

k
),

(4)
∑
i∈Z dimkH

i(Pn
k ,K ⊗L OPn

k
(d)) <∞ for d = 0, 1, . . . , n.

Proof. Parts (2) and (3) are equivalent by Cohomology, Lemma 20.50.5. If (1) is
true, then for E perfect the derived tensor product E ⊗L K is in Db

Coh(OPn
k
) and

we see that (2) holds by Derived Categories of Schemes, Lemma 36.11.3. It is clear
that (2) implies (4) as OPn

k
(d) can be viewed as a perfect object of the derived

category of Pn
k . Thus it suffices to prove that (4) implies (1).

Assume (4). Let R be as in Lemma 57.5.1. Let P =
⊕

d=0,...,nOPn
k
(−d). Recall

that R = EndPn
k
(P ) whereas all other self-Exts of P are zero and that P determines

an equivalence −⊗L P : D(R)→ DQCoh(OPn
k
) by Derived Categories of Schemes,

Lemma 36.20.1. Say K corresponds to L in D(R). Then
Hi(L) = ExtiD(R)(R,L)

= ExtiPn
k
(P,K)

= Hi(Pn
k ,K ⊗ P∨)

=
⊕

d=0,...,n
Hi(Pn

k ,K ⊗O(d))

by Differential Graded Algebra, Lemma 22.35.4 (and the fact that − ⊗L P is an
equivalence) and Cohomology, Lemma 20.50.5. Thus our assumption (4) implies
that L satisfies condition (2) of Lemma 57.5.1 and hence is a compact object of
D(R). Therefore K is a compact object of DQCoh(OPn

k
). Thus K is perfect by De-

rived Categories of Schemes, Proposition 36.17.1. Since Dperf (OPn
k
) = Db

Coh(OPn
k
)

by Derived Categories of Schemes, Lemma 36.11.8 we conclude (1) holds. □

Lemma 57.5.3.0FYC Let X be a scheme proper over a field k. Let K ∈ Db
Coh(OX) and

let E in D(OX) be perfect. Then
∑
i∈Z dimk ExtiX(E,K) <∞.

Proof. This follows for example by combining Derived Categories of Schemes, Lem-
mas 36.11.7 and 36.18.2. Alternative proof: combine Derived Categories of Schemes,
Lemmas 36.11.6 and 36.11.3. □

Lemma 57.5.4.0FYD In the projective
case this is [Rou08,
Lemma 7.46] and
implicit in [BV03,
Theorem A.1]

Let X be a proper scheme over a field k. Let K ∈ Ob(DQCoh(OX)).
The following are equivalent

(1) K ∈ Db
Coh(OX), and

(2)
∑
i∈Z dimk ExtiX(E,K) <∞ for all perfect E in D(OX).
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Proof. The implication (1) ⇒ (2) follows from Lemma 57.5.3. The implication (2)
⇒ (1) follows from More on Morphisms, Lemma 37.69.6 (see Derived Categories
of Schemes, Example 36.35.2 for the meaning of a relatively perfect object over a
field); the easier proof in the projective case is in the next paragraph.
Assume (2) and X projective over k. Choose a closed immersion i : X → Pn

k . It
suffices to show that Ri∗K is in Db

Coh(Pn
k ) since a quasi-coherent module F on X

is coherent, resp. zero if and only if i∗F is coherent, resp. zero. For a perfect object
E of D(OPn

k
), Li∗E is a perfect object of D(OX) and

ExtqPn
k
(E,Ri∗K) = ExtqX(Li∗E,K)

Hence by our assumption we see that
∑
q∈Z dimk ExtqPn

k
(E,Ri∗K) < ∞. We con-

clude by Lemma 57.5.2. □

57.6. A representability theorem

0FYE The material in this section is taken from [BV03].
Let T be a k-linear triangulated category. In this section we consider k-linear
cohomological functors H from T to the category of k-vector spaces. This will
mean H is a functor

H : T opp −→ Vectk
which is k-linear such that for any distinguished triangle X → Y → Z in T the
sequence H(Z)→ H(Y )→ H(X) is an exact sequence of k-vector spaces. See De-
rived Categories, Definition 13.3.5 and Differential Graded Algebra, Section 22.24.
Lemma 57.6.1.0FYF Let D be a triangulated category. Let D′ ⊂ D be a full triangulated
subcategory. Let X ∈ Ob(D). The category of arrows E → X with E ∈ Ob(D′) is
filtered.
Proof. We check the conditions of Categories, Definition 4.19.1. The category is
nonempty because it contains 0 → X. If Ei → X, i = 1, 2 are objects, then
E1 ⊕ E2 → X is an object and there are morphisms (Ei → X) → (E1 ⊕ E2 →
X). Finally, suppose that a, b : (E → X) → (E′ → X) are morphisms. Choose
a distinguished triangle E

a−b−−→ E′ → E′′ in D′. By Axiom TR3 we obtain a
morphism of triangles

E
a−b
//

��

E′

��

// E′′

��
0 // X // X

and we find that the resulting arrow (E′ → X)→ (E′′ → X) equalizes a and b. □

Lemma 57.6.2.0FYG [CKN01, Lemma
2.14]

Let k be a field. Let D be a k-linear triangulated category which
has direct sums and is compactly generated. Denote Dc the full subcategory of
compact objects. Let H : Doppc → Vectk be a k-linear cohomological functor such
that dimkH(X) < ∞ for all X ∈ Ob(Dc). Then H is isomorphic to the functor
X 7→ Hom(X,Y ) for some Y ∈ Ob(D).
Proof. We will use Derived Categories, Lemma 13.37.2 without further mention.
Denote G : Dc → Vectk the k-linear homological functor which sends X to H(X)∨.
For any object Y of D we set

G′(Y ) = colimX→Y,X∈Ob(Dc) G(X)

https://stacks.math.columbia.edu/tag/0FYF
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The colimit is filtered by Lemma 57.6.1. We claim that G′ is a k-linear homological
functor, the restriction of G′ to Dc is G, and G′ sends direct sums to direct sums.
Namely, suppose that Y1 → Y2 → Y3 is a distinguished triangle. Let ξ ∈ G′(Y2)
map to zero in G′(Y3). Since the colimit is filtered ξ is represented by some X → Y2
with X ∈ Ob(Dc) and g ∈ G(X). The fact that ξ maps to zero in G′(Y3) means
the composition X → Y2 → Y3 factors as X → X ′ → Y3 with X ′ ∈ Dc and
g mapping to zero in G(X ′). Choose a distinguished triangle X ′′ → X → X ′.
Then X ′′ ∈ Ob(Dc). Since G is homological we find that g is the image of some
g′′ ∈ G′(X ′′). By Axiom TR3 the maps X → Y2 and X ′ → Y3 fit into a morphism
of distinguished triangles (X ′′ → X → X ′) → (Y1 → Y2 → Y3) and we find
that indeed ξ is the image of the element of G′(Y1) represented by X ′′ → Y1 and
g′′ ∈ G(X ′′).
If Y ∈ Ob(Dc), then id : Y → Y is the final object in the category of arrows
X → Y with X ∈ Ob(Dc). Hence we see that G′(Y ) = G(Y ) in this case and the
statement on restriction holds. Let Y =

⊕
i∈I Yi be a direct sum. Let a : X → Y

with X ∈ Ob(Dc) and g ∈ G(X) represent an element ξ of G′(Y ). The morphism
a : X → Y can be uniquely written as a sum of morphisms ai : X → Yi almost all
zero as X is a compact object of D. Let I ′ = {i ∈ I | ai ̸= 0}. Then we can factor
a as the composition

X
(1,...,1)−−−−−→

⊕
i∈I′

X

⊕
i∈I′ ai−−−−−−→

⊕
i∈I

Yi = Y

We conclude that ξ =
∑
i∈I′ ξi is the sum of the images of the elements ξi ∈

G′(Yi) corresponding to ai : X → Yi and g ∈ G(X). Hence
⊕
G′(Yi) → G′(Y ) is

surjective. We omit the (trivial) verification that it is injective.
It follows that the functor Y 7→ G′(Y )∨ is cohomological and sends direct sums to
direct products. Hence by Brown representability, see Derived Categories, Propo-
sition 13.38.2 we conclude that there exists a Y ∈ Ob(D) and an isomorphism
G′(Z)∨ = Hom(Z, Y ) functorially in Z. For X ∈ Ob(Dc) we have G′(X)∨ =
G(X)∨ = (H(X)∨)∨ = H(X) because dimkH(X) < ∞ and the proof is com-
plete. □

Theorem 57.6.3.0FYH In the projective
case this is [BV03,
Theorem A.1]

Let X be a proper scheme over a field k. Let F : Dperf (OX)opp →
Vectk be a k-linear cohomological functor such that∑

n∈Z
dimk F (E[n]) <∞

for all E ∈ Dperf (OX). Then F is isomorphic to a functor of the form E 7→
HomX(E,K) for some K ∈ Db

Coh(OX).

Proof. The derived category DQCoh(OX) has direct sums, is compactly generated,
and Dperf (OX) is the full subcategory of compact objects, see Derived Categories
of Schemes, Lemma 36.3.1, Theorem 36.15.3, and Proposition 36.17.1. By Lemma
57.6.2 we may assume F (E) = HomX(E,K) for some K ∈ Ob(DQCoh(OX)). Then
it follows that K is in Db

Coh(OX) by Lemma 57.5.4. □

Lemma 57.6.4.0H4A Let X be a proper scheme over a field k which is regular. Let
G : Dperf (OX)→ Vectk be a k-linear homological functor such that∑

n∈Z
dimkG(E[n]) <∞

https://stacks.math.columbia.edu/tag/0FYH
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for all E ∈ Dperf (OX). Then G is isomorphic to a functor of the form E 7→
HomX(K,E) for some K ∈ Dperf (OX).

Proof. Consider the contravariant functor E 7→ E∨ onDperf (OX), see Cohomology,
Lemma 20.50.5. This functor is an exact anti-self-equivalence of Dperf (OX). Hence
we may apply Theorem 57.6.3 to the functor F (E) = G(E∨) to findK ∈ Dperf (OX)
such that G(E∨) = HomX(E,K). It follows that G(E) = HomX(E∨,K) =
HomX(K∨, E) and we conclude that taking K∨ works. □

57.7. Existence of adjoints

0FYM As a consequence of the results in the paper of Bondal and van den Bergh we get
the following automatic existence of adjoints.

Lemma 57.7.1.0FYN Let k be a field. Let X and Y be proper schemes over k. If X is
regular, then any k-linear exact functor F : Dperf (OX)→ Dperf (OY ) has an exact
right adjoint and an exact left adjoint.

Proof. If an adjoint exists it is an exact functor by the very general Derived Cate-
gories, Lemma 13.7.1.
Let us prove the existence of a right adjoint. To see existence, it suffices to show
that for M ∈ Dperf (OY ) the contravariant functor K 7→ HomY (F (K),M) is rep-
resentable. This functor is contravariant, k-linear, and cohomological. Hence by
Theorem 57.6.3 it suffices to show that∑

i∈Z
dimk ExtiY (F (K),M) <∞

This follows from Lemma 57.5.3.
For the existence of the left adjoint we argue in the same manner using Lemma
57.6.4 in stead of Theorem 57.6.3. □

57.8. Fourier-Mukai functors

0FYP These functors were first introduced in [Muk81].

Definition 57.8.1.0FYQ Let S be a scheme. Let X and Y be schemes over S. Let
K ∈ D(OX×SY ). The exact functor

ΦK : D(OX) −→ D(OY ), M 7−→ Rpr2,∗(Lpr∗
1M ⊗L

OX×SY
K)

of triangulated categories is called a Fourier-Mukai functor and K is called a
Fourier-Mukai kernel for this functor. Moreover,

(1) if ΦK sends DQCoh(OX) into DQCoh(OY ) then the resulting exact functor
ΦK : DQCoh(OX)→ DQCoh(OY ) is called a Fourier-Mukai functor,

(2) if ΦK sends Dperf (OX) into Dperf (OY ) then the resulting exact functor
ΦK : Dperf (OX)→ Dperf (OY ) is called a Fourier-Mukai functor, and

(3) if X and Y are Noetherian and ΦK sends Db
Coh(OX) into Db

Coh(OY ) then
the resulting exact functor ΦK : Db

Coh(OX) → Db
Coh(OY ) is called a

Fourier-Mukai functor. Similarly for DCoh, D+
Coh, D−

Coh.

Lemma 57.8.2.0FYR Let S be a scheme. Let X and Y be schemes over S. Let K ∈
D(OX×SY ). The corresponding Fourier-Mukai functor ΦK sends DQCoh(OX) into
DQCoh(OY ) if K is in DQCoh(OX×SY ) and X → S is quasi-compact and quasi-
separated.

https://stacks.math.columbia.edu/tag/0FYN
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Proof. This follows from the fact that derived pullback preserves DQCoh (Derived
Categories of Schemes, Lemma 36.3.8), derived tensor products preserve DQCoh
(Derived Categories of Schemes, Lemma 36.3.9), the projection pr2 : X ×S Y → Y
is quasi-compact and quasi-separated (Schemes, Lemmas 26.19.3 and 26.21.12), and
total direct image along a quasi-separated and quasi-compact morphism preserves
DQCoh (Derived Categories of Schemes, Lemma 36.4.1). □

Lemma 57.8.3.0FYS Let S be a scheme. Let X,Y, Z be schemes over S. Assume
X → S, Y → S, and Z → S are quasi-compact and quasi-separated. Let K ∈
DQCoh(OX×SY ). Let K ′ ∈ DQCoh(OY×SZ). Consider the Fourier-Mukai functors
ΦK : DQCoh(OX)→ DQCoh(OY ) and ΦK′ : DQCoh(OY )→ DQCoh(OZ). If X and
Z are tor independent over S and Y → S is flat, then

ΦK′ ◦ ΦK = ΦK′′ : DQCoh(OX) −→ DQCoh(OZ)

where
K ′′ = Rpr13,∗(Lpr∗

12K ⊗L
OX×SY×SZ

Lpr∗
23K

′)

in DQCoh(OX×SZ).

Proof. The statement makes sense by Lemma 57.8.2. We are going to use Derived
Categories of Schemes, Lemmas 36.3.8, 36.3.9, and 36.4.1 and Schemes, Lemmas
26.19.3 and 26.21.12 without further mention. By Derived Categories of Schemes,
Lemma 36.22.4 we see that X ×S Y and Y ×S Z are tor independent over Y . This
means that we have base change for the cartesian diagram

X ×S Y ×S Z

��

// Y ×S Z

pY ZY
��

X ×S Y
pXYY // Y

for complexes with quasi-coherent cohomology sheaves, see Derived Categories of
Schemes, Lemma 36.22.5. Abbreviating p∗ = Lp∗, p∗ = Rp∗ and ⊗ = ⊗L we have
for M ∈ DQCoh(OX) the sequence of equalities

ΦK′(ΦK(M)) = pY ZZ,∗(pY Z,∗Y pXYY,∗ (pXY,∗X M ⊗K)⊗K ′)
= pY ZZ,∗(pr23,∗pr∗

12(pXY,∗X M ⊗K)⊗K ′)
= pY ZZ,∗(pr23,∗(pr∗

1M ⊗ pr∗
12K)⊗K ′)

= pY ZZ,∗(pr23,∗(pr∗
1M ⊗ pr∗

12K ⊗ pr∗
23K

′))
= pr3,∗(pr∗

1M ⊗ pr∗
12K ⊗ pr∗

23K
′)

= pXZZ,∗ pr13,∗(pr∗
1M ⊗ pr∗

12K ⊗ pr∗
23K

′)
= pXZZ,∗ (pXZ,∗X M ⊗ pr13,∗(pr∗

12K ⊗ pr∗
23K

′))

as desired. Here we have used the remark on base change in the second equality
and we have use Derived Categories of Schemes, Lemma 36.22.1 in the 4th and last
equality. □

Lemma 57.8.4.0FYT Let S be a scheme. Let X and Y be schemes over S. Let K ∈
D(OX×SY ). The corresponding Fourier-Mukai functor ΦK sends Dperf (OX) into
Dperf (OY ) if at least one of the following conditions is satisfied:

https://stacks.math.columbia.edu/tag/0FYS
https://stacks.math.columbia.edu/tag/0FYT


57.8. FOURIER-MUKAI FUNCTORS 4595

(1) S is Noetherian, X → S and Y → S are of finite type, K ∈ Db
Coh(OX×SY ),

the support of Hi(K) is proper over Y for all i, and K has finite tor
dimension as an object of D(pr−1

2 OY ),
(2) X → S is of finite presentation and K can be represented by a bounded

complex K• of finitely presented OX×SY -modules, flat over Y , with sup-
port proper over Y ,

(3) X → S is a proper flat morphism of finite presentation and K is perfect,
(4) S is Noetherian, X → S is flat and proper, and K is perfect
(5) X → S is a proper flat morphism of finite presentation and K is Y -perfect,
(6) S is Noetherian, X → S is flat and proper, and K is Y -perfect.

Proof. If M is perfect on X, then Lpr∗
1M is perfect on X ×S Y , see Cohomology,

Lemma 20.49.6. We will use this without further mention below. We will also use
that if X → S is of finite type, or proper, or flat, or of finite presentation, then the
same thing is true for the base change pr2 : X ×S Y → Y , see Morphisms, Lemmas
29.15.4, 29.41.5, 29.25.8, and 29.21.4.
Part (1) follows from Derived Categories of Schemes, Lemma 36.27.1 combined with
Derived Categories of Schemes, Lemma 36.11.6.
Part (2) follows from Derived Categories of Schemes, Lemma 36.30.1.
Part (3) follows from Derived Categories of Schemes, Lemma 36.30.4.
Part (4) follows from part (3) and the fact that a finite type morphism of Noetherian
schemes is of finite presentation by Morphisms, Lemma 29.21.9.
Part (5) follows from Derived Categories of Schemes, Lemma 36.35.10 combined
with Derived Categories of Schemes, Lemma 36.35.5.
Part (6) follows from part (5) in the same way that part (4) follows from part
(3). □

Lemma 57.8.5.0FYU Let S be a Noetherian scheme. Let X and Y be schemes of finite
type over S. Let K ∈ Db

Coh(OX×SY ). The corresponding Fourier-Mukai functor
ΦK sends Db

Coh(OX) into Db
Coh(OY ) if at least one of the following conditions is

satisfied:
(1) the support of Hi(K) is proper over Y for all i, and K has finite tor

dimension as an object of D(pr−1
1 OX),

(2) K can be represented by a bounded complex K• of coherent OX×SY -
modules, flat over X, with support proper over Y ,

(3) the support of Hi(K) is proper over Y for all i and X is a regular scheme,
(4) K is perfect, the support of Hi(K) is proper over Y for all i, and Y → S

is flat.
Furthermore in each case the support condition is automatic if X → S is proper.

Proof. Let M be an object of Db
Coh(OX). In each case we will use Derived Cate-

gories of Schemes, Lemma 36.11.3 to show that
ΦK(M) = Rpr2,∗(Lpr∗

1M ⊗L
OX×SY

K)

is in Db
Coh(OY ). The derived tensor product Lpr∗

1M ⊗L
OX×SY

K is a pseudo-
coherent object of D(OX×SY ) (by Cohomology, Lemma 20.47.3, Derived Categories
of Schemes, Lemma 36.10.3, and Cohomology, Lemma 20.47.5) whence has coherent
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cohomology sheaves (by Derived Categories of Schemes, Lemma 36.10.3 again). In
each case the supports of the cohomology sheaves Hi(Lpr∗

1M ⊗L
OX×SY

K) is proper
over Y as these supports are contained in the union of the supports of the Hi(K).
Hence in each case it suffices to prove that this tensor product is bounded below.

Case (1). By Cohomology, Lemma 20.27.4 we have

Lpr∗
1M ⊗L

OX×SY
K ∼= pr−1

1 M ⊗L
pr−1

1 OX
K

with obvious notation. Hence the assumption on tor dimension and the fact that
M has only a finite number of nonzero cohomology sheaves, implies the bound we
want.

Case (2) follows because here the assumption implies thatK has finite tor dimension
as an object of D(pr−1

1 OX) hence the argument in the previous paragraph applies.

In Case (3) it is also the case that K has finite tor dimension as an object of
D(pr−1

1 OX). Namely, choose affine opens U = Spec(A) and V = Spec(B) of X
and Y mapping into the affine open W = Spec(R) of S. Then K|U×V is given by a
bounded complex of finite A⊗R B-modules M•. Since A is a regular ring of finite
dimension we see that each M i has finite projective dimension as an A-module
(Algebra, Lemma 10.110.8) and hence finite tor dimension as an A-module. Thus
M• has finite tor dimension as a complex of A-modules (More on Algebra, Lemma
15.66.8). Since X × Y is quasi-compact we conclude there exist [a, b] such that for
every point z ∈ X × Y the stalk Kz has tor amplitude in [a, b] over OX,pr1(z). This
implies K has bounded tor dimension as an object of D(pr−1

1 OX), see Cohomology,
Lemma 20.48.5. We conclude as in the previous to paragraphs.

Case (4). With notation as above, the ring map R → B is flat. Hence the ring
map A → A ⊗R B is flat. Hence any projective A ⊗R B-module is A-flat. Thus
any perfect complex of A ⊗R B-modules has finite tor dimension as a complex of
A-modules and we conclude as before. □

Example 57.8.6.0FYV Let X → S be a separated morphism of schemes. Then the
diagonal ∆ : X → X×SX is a closed immersion and hence O∆ = ∆∗OX = R∆∗OX
is a quasi-coherent OX×SX -module of finite type which is flat over X (under either
projection). The Fourier-Mukai functor ΦO∆ is equal to the identity in this case.
Namely, for any M ∈ D(OX) we have

Lpr∗
1M ⊗L

OX×SX
O∆ = Lpr∗

1M ⊗L
OX×SX

R∆∗OX
= R∆∗(L∆∗Lpr∗

1M ⊗L
OX
OX)

= R∆∗(M)

The first equality we discussed above. The second equality is Cohomology, Lemma
20.54.4. The third because pr1◦∆ = idX and we have Cohomology, Lemma 20.27.2.
If we push this to X using Rpr2,∗ we obtain M by Cohomology, Lemma 20.28.2
and the fact that pr2 ◦∆ = idX .

Lemma 57.8.7.0FYW Compare with
discussion in
[Riz17].

Let X → S and Y → S be morphisms of quasi-compact and
quasi-separated schemes. Let Φ : DQCoh(OX) → DQCoh(OY ) be a Fourier-Mukai
functor with pseudo-coherent kernel K ∈ DQCoh(OX×SY ). Let a : DQCoh(OY ) →

https://stacks.math.columbia.edu/tag/0FYV
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DQCoh(OX×SY ) be the right adjoint to Rpr2,∗, see Duality for Schemes, Lemma
48.3.1. Denote

K ′ = (Y ×S X → X ×S Y )∗RHomOX×SY
(K, a(OY )) ∈ DQCoh(OY×SX)

and denote Φ′ : DQCoh(OY ) → DQCoh(OX) the corresponding Fourier-Mukai
transform. There is a canonical map

HomX(M,Φ′(N)) −→ HomY (Φ(M), N)

functorial in M in DQCoh(OX) and N in DQCoh(OY ) which is an isomorphism if
(1) N is perfect, or
(2) K is perfect and X → S is proper flat and of finite presentation.

Proof. By Lemma 57.8.2 we obtain a functor Φ as in the statement. Observe that
a(OY ) is in D+

QCoh(OX×SY ) by Duality for Schemes, Lemma 48.3.5. Hence for K
pseudo-coherent we have K ′ ∈ DQCoh(OY×SX) by Derived Categories of Schemes,
Lemma 36.10.8 we we obtain Φ′ as indicated.

We abbreviate ⊗L = ⊗L
OX×SY

and Hom = RHomOX×SY
. Let M be in DQCoh(OX)

and let N be in DQCoh(OY ). We have

HomY (Φ(M), N) = HomY (Rpr2,∗(Lpr∗
1M ⊗L K), N)

= HomX×SY (Lpr∗
1M ⊗L K, a(N))

= HomX×SY (Lpr∗
1M,RHom(K, a(N)))

= HomX(M,Rpr1,∗RHom(K, a(N)))

where we have used Cohomology, Lemmas 20.42.2 and 20.28.1. There are canonical
maps

Lpr∗
2N ⊗L RHom(K, a(OY )) α−→ RHom(K,Lpr∗

2N ⊗L a(OY )) β−→ RHom(K, a(N))

Here α is Cohomology, Lemma 20.42.6 and β is Duality for Schemes, Equation
(48.8.0.1). Combining all of these arrows we obtain the functorial displayed arrow
in the statement of the lemma.

The arrow α is an isomorphism by Derived Categories of Schemes, Lemma 36.10.9
as soon as either K or N is perfect. The arrow β is an isomorphism if N is perfect
by Duality for Schemes, Lemma 48.8.1 or in general if X → S is flat proper of finite
presentation by Duality for Schemes, Lemma 48.12.3. □

Lemma 57.8.8.0FYX Compare with
discussion in
[Riz17].

Let S be a Noetherian scheme. Let Y → S be a flat proper
Gorenstein morphism and let X → S be a finite type morphism. Denote ω•

Y/S the
relative dualizing complex of Y over S. Let Φ : DQCoh(OX) → DQCoh(OY ) be a
Fourier-Mukai functor with perfect kernel K ∈ DQCoh(OX×SY ). Denote

K ′ = (Y ×S X → X ×S Y )∗(K∨ ⊗L
OX×SY

Lpr∗
2ω

•
Y/S) ∈ DQCoh(OY×SX)

and denote Φ′ : DQCoh(OY ) → DQCoh(OX) the corresponding Fourier-Mukai
transform. There is a canonical isomorphism

HomY (N,Φ(M)) −→ HomX(Φ′(N),M)

functorial in M in DQCoh(OX) and N in DQCoh(OY ).
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Proof. By Lemma 57.8.2 we obtain a functor Φ as in the statement.
Observe that formation of the relative dualizing complex commutes with base
change in our setting, see Duality for Schemes, Remark 48.12.5. Thus Lpr∗

2ω
•
Y/S =

ω•
X×SY/X . Moreover, we observe that ω•

Y/S is an invertible object of the derived
category, see Duality for Schemes, Lemma 48.25.10, and a fortiori perfect.
To actually prove the lemma we’re going to cheat. Namely, we will show that if we
replace the roles of X and Y and K and K ′ then these are as in Lemma 57.8.7 and
we get the result. It is clear that K ′ is perfect as a tensor product of perfect objects
so that the discussion in Lemma 57.8.7 applies to it. To show that the procedure
of Lemma 57.8.7 applied to K ′ on Y ×S X produces a complex isomorphic to K it
suffices (details omitted) to show that

RHom(RHom(K,ω•
X×SY/X), ω•

X×SY/X) = K

This is clear because K is perfect and ω•
X×SY/X is invertible; details omitted. Thus

Lemma 57.8.7 produces a map
HomY (N,Φ(M)) −→ HomX(Φ′(N),M)

functorial in M in DQCoh(OX) and N in DQCoh(OY ) which is an isomorphism
because K ′ is perfect. This finishes the proof. □

Lemma 57.8.9.0FYY Let S be a Noetherian scheme.
(1) For X, Y proper and flat over S and K in Dperf (OX×SY ) we obtain a

Fourier-Mukai functor ΦK : Dperf (OX)→ Dperf (OY ).
(2) ForX, Y , Z proper and flat over S, K ∈ Dperf (OX×SY ), K ′ ∈ Dperf (OY×SZ)

the composition ΦK′◦ΦK : Dperf (OX)→ Dperf (OZ) is equal to ΦK′′ with
K ′′ ∈ Dperf (OX×SZ) computed as in Lemma 57.8.3,

(3) ForX, Y , K, ΦK as in (1) ifX → S is Gorenstein, then ΦK′ : Dperf (OY )→
Dperf (OX) is a right adjoint to ΦK where K ′ ∈ Dperf (OY×SX) is the
pullback of Lpr∗

1ω
•
X/S ⊗

L
OX×SY

K∨ by Y ×S X → X ×S Y .
(4) ForX, Y , K, ΦK as in (1) if Y → S is Gorenstein, then ΦK′′ : Dperf (OY )→

Dperf (OX) is a left adjoint to ΦK where K ′′ ∈ Dperf (OY×SX) is the pull-
back of Lpr∗

2ω
•
Y/S ⊗

L
OX×SY

K∨ by Y ×S X → X ×S Y .

Proof. Part (1) is immediate from Lemma 57.8.4 part (4).
Part (2) follows from Lemma 57.8.3 and the fact thatK ′′ = Rpr13,∗(Lpr∗

12K⊗L
OX×SY×SZ

Lpr∗
23K

′) is perfect for example by Derived Categories of Schemes, Lemma 36.27.4.
The adjointness in part (3) on all complexes with quasi-coherent cohomology sheaves
follows from Lemma 57.8.7 withK ′ equal to the pullback ofRHomOX×SY

(K, a(OY ))
by Y ×S X → X ×S Y where a is the right adjoint to Rpr2,∗ : DQCoh(OX×SY )→
DQCoh(OY ). Denote f : X → S the structure morphism of X. Since f is proper
the functor f ! : D+

QCoh(OS)→ D+
QCoh(OX) is the restriction to D+

QCoh(OS) of the
right adjoint to Rf∗ : DQCoh(OX)→ DQCoh(OS), see Duality for Schemes, Section
48.16. Hence the relative dualizing complex ω•

X/S as defined in Duality for Schemes,
Remark 48.12.5 is equal to ω•

X/S = f !OS . Since formation of the relative dualizing
complex commutes with base change (see Duality for Schemes, Remark 48.12.5) we
see that a(OY ) = Lpr∗

1ω
•
X/S . Thus

RHomOX×SY
(K, a(OY )) ∼= Lpr∗

1ω
•
X/S ⊗

L
OX×SY

K∨
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by Cohomology, Lemma 20.50.5. Finally, since X → S is assumed Gorenstein
the relative dualizing complex is invertible: this follows from Duality for Schemes,
Lemma 48.25.10. We conclude that ω•

X/S is perfect (Cohomology, Lemma 20.52.2)
and henceK ′ is perfect. Therefore ΦK′ does indeed mapDperf (OY ) intoDperf (OX)
which finishes the proof of (3).
The proof of (4) is the same as the proof of (3) except one uses Lemma 57.8.8
instead of Lemma 57.8.7. □

57.9. Resolutions and bounds

0FYZ The diagonal of a smooth proper scheme has a nice resolution.

Lemma 57.9.1.0FZ0 Let R be a Noetherian ring. Let X, Y be finite type schemes over
R having the resolution property. For any coherent OX×RY -module F there exist
a surjection E ⊠ G → F where E is a finite locally free OX -module and G is a finite
locally free OY -module.

Proof. Let U ⊂ X and V ⊂ Y be affine open subschemes. Let I ⊂ OX be the ideal
sheaf of the reduced induced closed subscheme structure on X \ U . Similarly, let
I ′ ⊂ OY be the ideal sheaf of the reduced induced closed subscheme structure on
Y \ V . Then the ideal sheaf

J = Im(pr∗
1I ⊗OX×RY

pr∗
2I ′ → OX×RY )

satisfies V (J ) = X ×R Y \ U ×R V . For any section s ∈ F(U ×R V ) we can find
an integer n > 0 and a map J n → F whose restriction to U ×R V gives s, see
Cohomology of Schemes, Lemma 30.10.5. By assumption we can choose surjections
E → I and G → I ′. These produce corresponding surjections

E ⊠ G → J and E⊗n ⊠ G⊗n → J n

and hence a map E⊗n⊠G⊗n → F whose image contains the section s over U ×R V .
Since we can cover X×RY by a finite number of affine opens of the form U×RV and
since F|U×RV is generated by finitely many sections (Properties, Lemma 28.16.1)
we conclude that there exists a surjection⊕

j=1,...,N
E⊗nj
j ⊠ G⊗nj

j → F

where Ej is finite locally free on X and Gj is finite locally free on Y . Setting
E =

⊕
E⊗nj
j and G =

⊕
G⊗nj
j we conclude that the lemma is true. □

Lemma 57.9.2.0FZ1 Let R be a ring. Let X, Y be quasi-compact and quasi-separated
schemes over R having the resolution property. For any finite type quasi-coherent
OX×RY -module F there exist a surjection E ⊠ G → F where E is a finite locally
free OX -module and G is a finite locally free OY -module.

Proof. Follows from Lemma 57.9.1 by a limit argument. We urge the reader to skip
the proof. Since X×RY is a closed subscheme of X×ZY it is harmless if we replace
R by Z. We can write F as the quotient of a finitely presented OX×RY -module
by Properties, Lemma 28.22.8. Hence we may assume F is of finite presentation.
Next we can write X = limXi with Xi of finite presentation over Z and similarly
Y = limYj , see Limits, Proposition 32.5.4. Then F will descend to Fij on some
Xi×RYj (Limits, Lemma 32.10.2) and so does the property of having the resolution
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https://stacks.math.columbia.edu/tag/0FZ1


57.9. RESOLUTIONS AND BOUNDS 4600

property (Derived Categories of Schemes, Lemma 36.36.9). Then we apply Lemma
57.9.1 to Fij and we pullback. □

Lemma 57.9.3.0FZ2 Let R be a Noetherian ring. Let X be a separated finite type
scheme over R which has the resolution property. Set O∆ = ∆∗(OX) where ∆ :
X → X ×R X is the diagonal of X/k. There exists a resolution

. . .→ E2 ⊠ G2 → E1 ⊠ G1 → E0 ⊠ G0 → O∆ → 0
where each Ei and Gi is a finite locally free OX -module.

Proof. Since X is separated, the diagonal morphism ∆ is a closed immersion and
hence O∆ is a coherent OX×RX -module (Cohomology of Schemes, Lemma 30.9.8).
Thus the lemma follows immediately from Lemma 57.9.1. □

Lemma 57.9.4.0FZ3 Let X be a regular Noetherian scheme of dimension d <∞. Then
(1) for F , G coherent OX -modules we have ExtnX(F ,G) = 0 for n > d, and
(2) for K,L ∈ Db

Coh(OX) and a ∈ Z if Hi(K) = 0 for i < a+d and Hi(L) = 0
for i ≥ a then HomX(K,L) = 0.

Proof. To prove (1) we use the spectral sequence
Hp(X, Extq(F ,G))⇒ Extp+q

X (F ,G)
of Cohomology, Section 20.43. Let x ∈ X. We have

Extq(F ,G)x = ExtqOX,x
(Fx,Gx)

see Cohomology, Lemma 20.51.4 (this also uses that F is pseudo-coherent by De-
rived Categories of Schemes, Lemma 36.10.3). Set dx = dim(OX,x). Since OX,x is
regular the ring OX,x has global dimension dx, see Algebra, Proposition 10.110.1.
Thus ExtqOX,x

(Fx,Gx) is zero for q > dx. It follows that the modules Extq(F ,G)
have support of dimension at most d− q. Hence we have Hp(X, Extq(F ,G)) = 0 for
p > d− q by Cohomology, Proposition 20.20.7. This proves (1).
Proof of (2). We may use induction on the number of nonzero cohomology sheaves
of K and L. The case where these numbers are 0, 1 follows from (1). If the number
of nonzero cohomology sheaves of K is > 1, then we let i ∈ Z be minimal such that
Hi(K) is nonzero. We obtain a distinguished triangle

Hi(K)[−i]→ K → τ≥i+1K

(Derived Categories, Remark 13.12.4) and we get the vanishing of Hom(K,L) from
the vanishing of Hom(Hi(K)[−i], L) and Hom(τ≥i+1K,L) by Derived Categories,
Lemma 13.4.2. Simlarly if L has more than one nonzero cohomology sheaf. □

Lemma 57.9.5.0FZ4 Let X be a regular Noetherian scheme of dimension d < ∞. Let
K ∈ Db

Coh(OX) and a ∈ Z. If Hi(K) = 0 for a < i < a + d, then K = τ≤aK ⊕
τ≥a+dK.

Proof. We have τ≤aK = τ≤a+d−1K by the assumed vanishing of cohomology
sheaves. By Derived Categories, Remark 13.12.4 we have a distinguished trian-
gle

τ≤aK → K → τ≥a+dK
δ−→ (τ≤aK)[1]

By Derived Categories, Lemma 13.4.11 it suffices to show that the morphism δ is
zero. This follows from Lemma 57.9.4. □
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Lemma 57.9.6.0FZ5 Let k be a field. Let X be a quasi-compact separated smooth
scheme over k. There exist finite locally free OX -modules E and G such that

O∆ ∈ ⟨E ⊠ G⟩
in D(OX×X) where the notation is as in Derived Categories, Section 13.36.

Proof. Recall that X is regular by Varieties, Lemma 33.25.3. Hence X has the
resolution property by Derived Categories of Schemes, Lemma 36.36.8. Hence we
may choose a resolution as in Lemma 57.9.3. Say dim(X) = d. Since X × X is
smooth over k it is regular. Hence X × X is a regular Noetherian scheme with
dim(X ×X) = 2d. The object

K = (E2d ⊠ G2d → . . .→ E0 ⊠ G0)
of Dperf (OX×X) has cohomology sheaves O∆ in degree 0 and Ker(E2d ⊠ G2d →
E2d−1⊠G2d−1) in degree −2d and zero in all other degrees. Hence by Lemma 57.9.5
we see that O∆ is a summand of K in Dperf (OX×X). Clearly, the object K is in〈⊕

i=0,...,2d
Ei ⊠ Gi

〉
⊂
〈(⊕

i=0,...,2d
Ei
)
⊠
(⊕

i=0,...,2d
Gi
)〉

which finishes the proof. (The reader may consult Derived Categories, Lemmas
13.36.1 and 13.35.7 to see that our object is contained in this category.) □

Lemma 57.9.7.0FZ6 Let k be a field. Let X be a scheme proper and smooth over k.
Then Dperf (OX) has a strong generator.

Proof. Using Lemma 57.9.6 choose finite locally free OX -modules E and G such that
O∆ ∈ ⟨E ⊠ G⟩ in D(OX×X). We claim that G is a strong generator for Dperf (OX).
With notation as in Derived Categories, Section 13.35 choose m,n ≥ 1 such that

O∆ ∈ smd(add(E ⊠ G[−m,m])⋆n)
This is possible by Derived Categories, Lemma 13.36.2. Let K be an object of
Dperf (OX). Since Lpr∗

1K ⊗L
OX×X

− is an exact functor and since

Lpr∗
1K ⊗L

OX×X
(E ⊠ G) = (K ⊗L

OX
E)⊠ G

we conclude from Derived Categories, Remark 13.35.5 that
Lpr∗

1K ⊗L
OX×X

O∆ ∈ smd(add((K ⊗L
OX
E)⊠ G[−m,m])⋆n)

Applying the exact functor Rpr2,∗ and observing that

Rpr2,∗
(
(K ⊗L

OX
E)⊠ G

)
= RΓ(X,K ⊗L

OX
E)⊗k G

by Derived Categories of Schemes, Lemma 36.22.1 we conclude that
K = Rpr2,∗(Lpr∗

1K ⊗L
OX×X

O∆) ∈ smd(add(RΓ(X,K ⊗L
OX
E)⊗k G[−m,m])⋆n)

The equality follows from the discussion in Example 57.8.6. Since K is perfect,
there exist a ≤ b such that Hi(X,K) is nonzero only for i ∈ [a, b]. Since X is
proper, each Hi(X,K) is finite dimensional. We conclude that the right hand side
is contained in smd(add(G[−m+ a,m+ b])⋆n) which is itself contained in ⟨G⟩n by
one of the references given above. This finishes the proof. □

Lemma 57.9.8.0FZ7 Let k be a field. Let X be a proper smooth scheme over k. There
exists integers m,n ≥ 1 and a finite locally free OX -module G such that every
coherent OX -module is contained in smd(add(G[−m,m])⋆n) with notation as in
Derived Categories, Section 13.35.
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Proof. In the proof of Lemma 57.9.7 we have shown that there exist m′, n ≥ 1 such
that for any coherent OX -module F ,

F ∈ smd(add(G[−m′ + a,m′ + b])⋆n)
for any a ≤ b such that Hi(X,F) is nonzero only for i ∈ [a, b]. Thus we can take
a = 0 and b = dim(X). Taking m = max(m′,m′ + b) finishes the proof. □

The following lemma is the boundedness result referred to in the title of this section.

Lemma 57.9.9.0FZ8 Let k be a field. Let X be a smooth proper scheme over k. Let A
be an abelian category. Let H : Dperf (OX)→ A be a homological functor (Derived
Categories, Definition 13.3.5) such that for all K in Dperf (OX) the object Hi(K)
is nonzero for only a finite number of i ∈ Z. Then there exists an integer m ≥ 1
such that Hi(F) = 0 for any coherent OX -module F and i ̸∈ [−m,m]. Similarly
for cohomological functors.

Proof. Combine Lemma 57.9.8 with Derived Categories, Lemma 13.35.8. □

Lemma 57.9.10.0FZ9 Let k be a field. Let X, Y be finite type schemes over k. Let
K0 → K1 → K2 → . . . be a system of objects of Dperf (OX×Y ) and m ≥ 0 an
integer such that

(1) Hq(Ki) is nonzero only for q ≤ m,
(2) for every coherent OX -module F with dim(Supp(F)) = 0 the object

Rpr2,∗(pr∗
1F ⊗L

OX×Y
Kn)

has vanishing cohomology sheaves in degrees outside [−m,m] ∪ [−m −
n,m − n] and for n > 2m the transition maps induce isomorphisms on
cohomology sheaves in degrees in [−m,m].

Then Kn has vanishing cohomology sheaves in degrees outside [−m,m] ∪ [−m −
n,m−n] and for n > 2m the transition maps induce isomorphisms on cohomology
sheaves in degrees in [−m,m]. Moreover, if X and Y are smooth over k, then for
n large enough we find Kn = K ⊕ Cn in Dperf (OX×Y ) where K has cohomology
only indegrees [−m,m] and Cn only in degrees [−m− n,m− n] and the transition
maps define isomorphisms between various copies of K.

Proof. Let Z be the scheme theoretic support of an F as in (2). Then Z → Spec(k)
is finite, hence Z×Y → Y is finite. It follows that for an object M of DQCoh(OX×Y )
with cohomology sheaves supported on Z×Y we haveHi(Rpr2,∗(M)) = pr2,∗H

i(M)
and the functor pr2,∗ is faithful on quasi-coherent modules supported on Z × Y ;
details omitted. Hence we see that the objects

pr∗
1F ⊗L

OX×Y
Kn

in Dperf (OX×Y ) have vanishing cohomology sheaves outside [−m,m]∪[−m−n,m−
n] and for n > 2m the transition maps induce isomorphisms on cohomology sheaves
in [−m,m]. Let z ∈ X × Y be a closed point mapping to the closed point x ∈ X.
Then we know that

Kn,z ⊗L
OX×Y,z

OX×Y,z/m
t
xOX×Y,z

has nonzero cohomology only in the intervals [−m,m]∪[−m−n,m−n]. We conclude
by More on Algebra, Lemma 15.100.2 that Kn,z only has nonzero cohomology in
degrees [−m,m]∪[−m−n,m−n]. Since this holds for all closed points of X×Y , we
concludeKn only has nonzero cohomology sheaves in degrees [−m,m]∪[−m−n,m−
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n]. In exactly the same way we see that the maps Kn → Kn+1 are isomorphisms
on cohomology sheaves in degrees [−m,m] for n > 2m.
If X and Y are smooth over k, then X × Y is smooth over k and hence regular
by Varieties, Lemma 33.25.3. Thus we will obtain the direct sum decomposition of
Kn as soon as n > 2m + dim(X × Y ) from Lemma 57.9.5. The final statement is
clear from this. □

57.10. Sibling functors

0FZS In this section we prove some categorical result on the following notion.

Definition 57.10.1.0FZT Let A be an abelian category. Let D be a triangulated category.
We say two exact functors of triangulated categories

F, F ′ : Db(A) −→ D
are siblings, or we say F ′ is a sibling of F , if the following two conditions are
satisfied

(1) the functors F ◦ i and F ′ ◦ i are isomorphic where i : A → Db(A) is the
inclusion functor, and

(2) F (K) ∼= F ′(K) for any K in Db(A).

Sometimes the second condition is a consequence of the first.

Lemma 57.10.2.0FZU Let A be an abelian category. Let D be a triangulated category.
Let F, F ′ : Db(A) −→ D be exact functors of triangulated categories. Assume

(1) the functors F ◦ i and F ′ ◦ i are isomorphic where i : A → Db(A) is the
inclusion functor, and

(2) for all X,Y ∈ Ob(A) we have ExtqD(F (X), F (Y )) = 0 for q < 0 (for
example if F is fully faithful).

Then F and F ′ are siblings.

Proof. Let K ∈ Db(A). We will show F (K) is isomorphic to F ′(K). We can
represent K by a bounded complex A• of objects of A. After replacing K by a
translation we may assume Ai = 0 for i > 0. Choose n ≥ 0 such that A−i = 0 for
i > n. The objects

Mi = (A−i → . . .→ A0)[−i], i = 0, . . . , n
form a Postnikov system in Db(A) for the complex A• = A−n → . . . → A0 in
Db(A). See Derived Categories, Example 13.41.2. Since both F and F ′ are exact
functors of triangulated categories both

F (Mi) and F ′(Mi)
form a Postnikov system in D for the complex

F (A−n)→ . . .→ F (A0) = F ′(A−n)→ . . .→ F ′(A0)
Since all negative Exts between these objects vanish by assumption we conclude by
uniqueness of Postnikov systems (Derived Categories, Lemma 13.41.6) that F (K) =
F (Mn[n]) ∼= F ′(Mn[n]) = F ′(K). □

Lemma 57.10.3.0FZV Let F and F ′ be siblings as in Definition 57.10.1. Then
(1) if F is essentially surjective, then F ′ is essentially surjective,
(2) if F is fully faithful, then F ′ is fully faithful.
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Proof. Part (1) is immediate from property (2) for siblings.
Assume F is fully faithful. Denote D′ ⊂ D the essential image of F so that F :
Db(A)→ D′ is an equivalence. Since the functor F ′ factors through D′ by property
(2) for siblings, we can consider the functor H = F−1 ◦ F ′ : Db(A) → Db(A).
Observe that H is a sibling of the identity functor. Since it suffices to prove that
H is fully faithful, we reduce to the problem discussed in the next paragraph.
Set D = Db(A). We have to show a sibling F : D → D of the identity functor is
fully faithful. Denote aX : X → F (X) the functorial isomorphism for X ∈ Ob(A)
given to us by Definition 57.10.1. For any K in D and distinguished triangle
K1 → K2 → K3 of D if the maps

F : Hom(K,Ki[n])→ Hom(F (K), F (Ki[n]))
are isomorphisms for all n ∈ Z and i = 1, 3, then the same is true for i = 2 and all
n ∈ Z. This uses the 5-lemma Homology, Lemma 12.5.20 and Derived Categories,
Lemma 13.4.2; details omitted. Similarly, if the maps

F : Hom(Ki[n],K)→ Hom(F (Ki[n]), F (K))
are isomorphisms for all n ∈ Z and i = 1, 3, then the same is true for i = 2 and all
n ∈ Z. Using the canonical truncations and induction on the number of nonzero
cohomology objects, we see that it is enough to show

F : Extq(X,Y )→ Extq(F (X), F (Y ))
is bijective for all X,Y ∈ Ob(A) and all q ∈ Z. Since F is a sibling of id we have
F (X) ∼= X and F (Y ) ∼= Y hence the right hand side is zero for q < 0. The case
q = 0 is OK by our assumption that F is a sibling of the identity functor. It remains
to prove the cases q > 0.
The case q = 1: Injectivity. An element ξ of Ext1(X,Y ) gives rise to a distinguished
triangle

Y → E → X
ξ−→ Y [1]

Observe that E ∈ Ob(A). Since F is a sibling of the identity functor we obtain a
commutative diagram

E

��

// X

��
F (E) // F (X)

whose vertical arrows are the isomorphisms aE and aX . By TR3 the distinguished
triangle associated to ξ we started with is isomorphic to the distinguished triangle

F (Y )→ F (E)→ F (X) F (ξ)−−−→ F (Y [1]) = F (Y )[1]

Thus ξ = 0 if and only if F (ξ) is zero, i.e., we see that F : Ext1(X,Y ) →
Ext1(F (X), F (Y )) is injective.

The case q = 1: Surjectivity. Let θ be an element of Ext1(F (X), F (Y )). This
defines an extension of F (X) by F (Y ) in A which we may write as F (E) as F is a
sibling of the identity functor. We thus get a distinguished triangle

F (Y ) F (α)−−−→ F (E) F (β)−−−→ F (X) θ−→ F (Y [1]) = F (Y )[1]
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for some morphisms α : Y → E and β : E → X. Since F is a sibling of the identity
functor, the sequence 0→ Y → E → X → 0 is a short exact sequence in A! Hence
we obtain a distinguished triangle

Y
α−→ E

β−→ X
δ−→ Y [1]

for some morphism δ : X → Y [1]. Applying the exact functor F we obtain the
distinguished triangle

F (Y ) F (α)−−−→ F (E) F (β)−−−→ F (X) F (δ)−−−→ F (Y )[1]
Arguing as above, we see that these triangles are isomorphic. Hence there exists a
commutative diagram

F (X)

γ

��

F (δ)
// F (Y [1])

ϵ

��
F (X) θ // F (Y [1])

for some isomorphisms γ, ϵ (we can say more but we won’t need more information).
We may write γ = F (γ′) and ϵ = F (ϵ′). Then we have θ = F (ϵ′ ◦ δ ◦ (γ′)−1) and
we see the surjectivity holds.
The case q > 1: surjectivity. Using Yoneda extensions, see Derived Categories,
Section 13.27, we find that for any element ξ in Extq(F (X), F (Y )) we can find
F (X) = B0, B1, . . . , Bq−1, Bq = F (Y ) ∈ Ob(A) and elements

ξi ∈ Ext1(Bi−1, Bi)
such that ξ is the composition ξq ◦ . . . ◦ ξ1. Write Bi = F (Ai) (of course we have
Ai = Bi but we don’t need to use this) so that

ξi = F (ηi) ∈ Ext1(F (Ai−1), F (Ai)) with ηi ∈ Ext1(Ai−1, Ai)
by surjectivity for q = 1. Then η = ηq ◦ . . . ◦ η1 is an element of Extq(X,Y ) with
F (η) = ξ.
The case q > 1: injectivity. An element ξ of Extq(X,Y ) gives rise to a distinguished
triangle

Y [q − 1]→ E → X
ξ−→ Y [q]

Applying F we obtain a distinguished triangle

F (Y )[q − 1]→ F (E)→ F (X) F (ξ)−−−→ F (Y )[q]
If F (ξ) = 0, then F (E) ∼= F (Y )[q−1]⊕F (X) in D, see Derived Categories, Lemma
13.4.11. Since F is a sibling of the identity functor we have E ∼= F (E) and hence

E ∼= F (E) ∼= F (Y )[q − 1]⊕ F (X) ∼= Y [q − 1]⊕X
In other words, E is isomorphic to the direct sum of its cohomology objects. This
implies that the initial distinguished triangle is split, i.e., ξ = 0. □

Let us make a nonstandard definition. Let A be an abelian category. Let us say A
has enough negative objects if given any X ∈ Ob(A) there exists an object N such
that

(1) there is a surjection N → X and
(2) Hom(X,N) = 0.
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Let us prove a couple of lemmas about this notion in order to help with the proof
of Proposition 57.10.6.
Lemma 57.10.4.0GWF Let A be an abelian category with enough negative objects. Let
X ∈ Db(A). Let b ∈ Z with Hi(X) = 0 for i > b. Then there exists a map N [−b]→
X such that the induced map N → Hb(X) is surjective and Hom(Hb(X), N) = 0.
Proof. Using the truncation functors we can represent X by a complex Aa →
Aa+1 → . . .→ Ab of objects of A. Choose N in A such that there exists a surjection
t : N → Ab and such that Hom(Ab, N) = 0. Then the surjection t defines a map
N [−b]→ X as desired. □

Lemma 57.10.5.0GWG Let A be an abelian category with enough negative objects. Let
f : X → X ′ be a morphism of Db(A). Let b ∈ Z such that Hi(X) = 0 for i > b and
Hi(X ′) = 0 for i ≥ b. Then there exists a map N [−b]→ X such that the induced
map N → Hb(X) is surjective, such that Hom(Hb(X), N) = 0, and such that the
composition N [−b]→ X → X ′ is zero.
Proof. We can represent f by a map f• : A• → B• of bounded complexes of objects
of A, see for example Derived Categories, Lemma 13.11.6. Consider the object

C = Ker(Ab → Ab+1)×Ker(Bb→Bb+1) B
b−1

of A. Since Hb(B•) = 0 we see that C → Hb(A•) is surjective. On the other
hand, the map C → Ab → Bb is the same as the map C → Bb−1 → Bb and
hence the composition C[−b] → X → X ′ is zero. Since A has enough negative
objects, we can find an object N which has a surjection N → C⊕Hb(X) such that
Hom(C⊕Hb(X), N) = 0. Then N together with the map N [−b]→ X is a solution
to the problem posed by the lemma. □

We encourage the reader to read the original [Orl97, Proposition 2.16] for the
marvellous ideas that go into the proof of the following proposition.
Proposition 57.10.6.0FZW [Orl97, Proposition

2.16]; the fact that
we do not need to
assume vanishing of
Extq(N,X) for
q > 0 in the
definition of
negative objects
above is due to
[CS14].

Let F and F ′ be siblings as in Definition 57.10.1. Assume
that F is fully faithful and that A has enough negative objects (see above). Then
F and F ′ are isomorphic functors.
Proof. By part (2) of Definition 57.10.1 the image of the functor F ′ is contained in
the essential image of the functor F . Hence the functor H = F−1 ◦F ′ is a sibling of
the identity functor. This reduces us to the case described in the next paragraph.
Let D = Db(A). We have to show a sibling F : D → D of the identity functor
is isomorphic to the identity functor. Given an object X of D let us say X has
width w = w(X) if w ≥ 0 is minimal such that there exists an integer a ∈ Z with
Hi(X) = 0 for i ̸∈ [a, a + w − 1]. Since F is a sibling of the identity and since
F ◦ [n] = [n] ◦ F we are aready given isomorphisms

cX : X → F (X)
for w(X) ≤ 1 compatible with shifts. Moreover, if X = A[−a] and X ′ = A′[−a] for
some A,A′ ∈ Ob(A) then for any morphism f : X → X ′ the diagram

(57.10.6.1)0FZX

X

cX

��

f
// X ′

cX′

��
F (X)

F (f) // F (X ′)

https://stacks.math.columbia.edu/tag/0GWF
https://stacks.math.columbia.edu/tag/0GWG
https://stacks.math.columbia.edu/tag/0FZW
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is commutative.
Next, let us show that for any morphism f : X → X ′ with w(X), w(X ′) ≤ 1
the diagram (57.10.6.1) commutes. If X or X ′ is zero, this is clear. If not then
we can write X = A[−a] and X ′ = A′[−a′] for unique A,A′ in A and a, a′ ∈ Z.
The case a = a′ was discussed above. If a′ > a, then f = 0 (Derived Categories,
Lemma 13.27.3) and the result is clear. If a′ < a then f corresponds to an element
ξ ∈ Extq(A,A′) with q = a− a′. Using Yoneda extensions, see Derived Categories,
Section 13.27, we can find A = A0, A1, . . . , Aq−1, Aq = A′ ∈ Ob(A) and elements

ξi ∈ Ext1(Ai−1, Ai)
such that ξ is the composition ξq ◦ . . . ◦ ξ1. In other words, setting Xi = Ai[−a+ i]
we obtain morphisms

X = X0
f1−→ X1 → . . .→ Xq−1

fq−→ Xq = X ′

whose compostion is f . Since the commutativity of (57.10.6.1) for f1, . . . , fq implies
it for f , this reduces us to the case q = 1. In this case after shifting we may assume
we have a distinguished triangle

A′ → E → A
f−→ A′[1]

Observe that E is an object of A. Consider the following diagram

E

cE

��

// A

cA

��

f
// A′[1]

cA′ [1]
��

γ

��
ϵ

zz

// E[1]

cE [1]
��

F (E) // F (A)
F (f) // F (A′)[1] // F (E)[1]

whose rows are distinguished triangles. The square on the right commutes already
but we don’t yet know that the middle square does. By the axioms of a triangulated
category we can find a morphism γ which does make the diagram commute. Then
γ − cA′ [1] composed with F (A′)[1]→ F (E)[1] is zero hence we can find ϵ : A′[1]→
F (A) such that γ − cA′ [1] = F (f) ◦ ϵ. However, any arrow A′[1]→ F (A) is zero as
it is a negative ext class between objects of A. Hence γ = cA′ [1] and we conclude
the middle square commutes too which is what we wanted to show.
To finish the proof we are going to argue by induction on w that there exist isomor-
phisms cX : X → F (X) for all X with w(X) ≤ w compatible with all morphisms
between such objects. The base case w = 1 was shown above. Assume we know
the result for some w ≥ 1.
Let X be an object with w(X) = w+1. Pick a ∈ Z with Hi(X) = 0 for i ̸∈ [a, a+w].
Set b = a+w so that Hb(X) is nonzero. Choose N [−b]→ X as in Lemma 57.10.4.
Choose a distinguished diagram

N [−b]→ X → Y → N [−b+ 1]
Computing the long exact cohomology sequence we find w(Y ) ≤ w. Hence by
induction we find the solid arrows in the following diagram

N [−b] //

cN [−b]
��

X //

cN[−b]→X

��

Y //

cY

��

N [−b+ 1]

cN [−b+1]
��

F (N)[−b] // F (X) // F (Y ) // F (N)[−b+ 1]
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We obtain the dotted arrow cN [−b]→X . By Derived Categories, Lemma 13.4.8 the
dotted arrow is unique because Hom(X,F (N)[−b]) ∼= Hom(X,N [−b]) = 0 by our
choice of N . In fact, cN [−b]→X is the unique dotted arrow making the square with
vertices X,Y, F (X), F (Y ) commute.
Let N ′[−b] → X be another map as in Lemma 57.10.4 and let us prove that
cN [−b]→X = cN ′[−b]→X . Observe that the map (N ⊕ N ′)[−b] → X also satisfies
the conditions of Lemma 57.10.4. Thus we may assume N ′[−b] → X factors as
N ′[−b]→ N [−b]→ X for some morphism N ′ → N . Choose distinguished triangles
N [−b] → X → Y → N [−b + 1] and N ′[−b] → X → Y ′ → N ′[−b + 1]. By axiom
TR3 we can find a morphism g : Y ′ → Y which joint with idX and N ′ → N forms
a morphism of triangles. Since we have (57.10.6.1) for g we conclude that

(F (X)→ F (Y )) ◦ cN ′[−b]→X = (F (X)→ F (Y )) ◦ cN [−b]→X

The uniqueness of cN [−b]→X pointed out in the construction above now shows that
cN ′[−b]→X = cN [−b]→X .
Thus we can now define for X of width w + 1 the isomorphism cX : X → F (X) as
the common value of the maps cN [−b]→X where N [−b]→ X is as in Lemma 57.10.4.
To finish the proof, we have to show that the diagrams (57.10.6.1) commute for all
morphisms f : X → X ′ between objects with w(X) ≤ w + 1 and w(X ′) ≤ w + 1.
Choose a ≤ b ≤ a+ w such that Hi(X) = 0 for i ̸∈ [a, b] and a′ ≤ b′ ≤ a′ + w such
that Hi(X ′) = 0 for i ̸∈ [a′, b′]. We will use induction on (b′− a′) + (b− a) to show
the claim. (The base case is when this number is zero which is OK because w ≥ 1.)
We distinguish two cases.
Case I: b′ < b. In this case, by Lemma 57.10.5 we may choose N [−b] → X as
in Lemma 57.10.4 such that the composition N [−b] → X → X ′ is zero. Choose
a distuiguished triangle N [−b] → X → Y → N [−b + 1]. Since N [−b] → X ′ is
zero, we find that f factors as X → Y → X ′. Since Hi(Y ) is nonzero only for
i ∈ [a, b − 1] we see by induction that (57.10.6.1) commutes for Y → X ′. The
diagram (57.10.6.1) commutes for X → Y by construction if w(X) = w+ 1 and by
our first induction hypothesis if w(X) ≤ w. Hence (57.10.6.1) commutes for f .
Case II: b′ ≥ b. In this case we choose N ′[−b′]→ X ′ as in Lemma 57.10.4. We may
also assume that Hom(Hb′(X), N ′) = 0 (this is relevant only if b′ = b), for exam-
ple because we can replace N ′ by an object N ′′ which surjects onto N ′ ⊕Hb′(X)
and such that Hom(N ′ ⊕ Hb′(X), N ′′) = 0. We choose a distinguished triangle
N ′[−b′] → X ′ → Y ′ → N ′[−b′ + 1]. Since Hom(X,X ′) → Hom(X,Y ′) is injec-
tive by our choice of N ′ (details omitted) the same is true for Hom(X,F (X ′)) →
Hom(X,F (Y ′)). Hence it suffices in this case to check that (57.10.6.1) commutes
for the composition X → Y ′ of the morphisms X → X ′ → Y ′. Since Hi(Y ′) is
nonzero only for i ∈ [a′, b′ − 1] we conclude by induction hypothesis. □

57.11. Deducing fully faithfulness

0G23 It will be useful for us to know when a functor is fully faithful we offer the following
variant of [Orl97, Lemma 2.15].

Lemma 57.11.1.0G24 Variant of [Orl97,
Lemma 2.15]

Let F : D → D′ be an exact functor of triangulated categories.
Let S ⊂ Ob(D) be a set of objects. Assume

(1) F has both right and left adjoints,

https://stacks.math.columbia.edu/tag/0G24
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(2) for K ∈ D if Hom(E,K[i]) = 0 for all E ∈ S and i ∈ Z then K = 0,
(3) for K ∈ D if Hom(K,E[i]) = 0 for all E ∈ S and i ∈ Z then K = 0,
(4) the map Hom(E,E′[i])→ Hom(F (E), F (E′)[i]) induced by F is bijective

for all E,E′ ∈ S and i ∈ Z.
Then F is fully faithful.

Proof. Denote Fr and Fl the right and left adjoints of F . For E ∈ S choose a
distinguished triangle

E → Fr(F (E))→ C → E[1]
where the first arrow is the unit of the adjunction. For E′ ∈ S we have

Hom(E′, Fr(F (E))[i]) = Hom(F (E′), F (E)[i]) = Hom(E′, E[i])
The last equality holds by assumption (4). Hence applying the homological functor
Hom(E′,−) (Derived Categories, Lemma 13.4.2) to the distinguished triangle above
we conclude that Hom(E′, C[i]) = 0 for all i ∈ Z and E′ ∈ S. By assumption (2)
we conclude that C = 0 and E = Fr(F (E)).
For K ∈ Ob(D) choose a distinguished triangle

Fl(F (K))→ K → C → Fl(F (K))[1]
where the first arrow is the counit of the adjunction. For E ∈ S we have
Hom(Fl(F (K)), E[i]) = Hom(F (K), F (E)[i]) = Hom(K,Fr(F (E))[i]) = Hom(K,E[i])
where the last equality holds by the result of the first paragraph. Thus we conclude
as before that Hom(C,E[i]) = 0 for all E ∈ S and i ∈ Z. Hence C = 0 by
assumption (3). Thus F is fully faithful by Categories, Lemma 4.24.4. □

Lemma 57.11.2.0G02 Let k be a field. Let X be a scheme of finite type over k which is
regular. Let x ∈ X be a closed point. For a coherent OX -module F supported at
x choose a coherent OX -module F ′ supported at x such that Fx and F ′

x are Matlis
dual. Then there is an isomorphism

HomX(F ,M) = H0(X,M ⊗L
OX
F ′[−dx])

where dx = dim(OX,x) functorial in M in Dperf (OX).

Proof. Since F is supported at x we have
HomX(F ,M) = HomOX,x

(Fx,Mx)
and similarly we have

H0(X,M ⊗L
OX
F ′[−dx]) = TorOX,x

dx
(Mx,F ′

x)
Thus it suffices to show that given a Noetherian regular local ring A of dimension
d and a finite length A-module N , if N ′ is the Matlis dual to N , then there exists
a functorial isomorphism

HomA(N,K) = TorAd (K,N ′)
for K in Dperf (A). We can write the left hand side as H0(RHomA(N,A)⊗L

AK) by
More on Algebra, Lemma 15.74.15 and the fact that N determines a perfect object
of D(A). Hence the formula holds because

RHomA(N,A) = RHomA(N,A[d])[−d] = N ′[−d]

https://stacks.math.columbia.edu/tag/0G02
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by Dualizing Complexes, Lemma 47.16.4 and the fact that A[d] is a normalized du-
alizing complex over A (A is Gorenstein by Dualizing Complexes, Lemma 47.21.3).

□

Lemma 57.11.3.0G03 Let k be a field. Let X be a scheme of finite type over k which is
regular. Let x ∈ X be a closed point and denote Ox the skyscraper sheaf at x with
value κ(x). Let K in Dperf (OX).

(1) If ExtiX(Ox,K) = 0 then there exists an open neighbourhood U of x such
that Hi−dx(K)|U = 0 where dx = dim(OX,x).

(2) If HomX(Ox,K[i]) = 0 for all i ∈ Z, then K is zero in an open neighbour-
hood of x.

(3) If ExtiX(K,Ox) = 0 then there exists an open neighbourhood U of x such
that Hi(K∨)|U = 0.

(4) If HomX(K,Ox[i]) = 0 for all i ∈ Z, then K is zero in an open neighbour-
hood of x.

(5) If Hi(X,K ⊗L
OX
Ox) = 0 then there exists an open neighbourhood U of

x such that Hi(K)|U = 0.
(6) IfHi(X,K⊗L

OX
Ox) = 0 for i ∈ Z thenK is zero in an open neighbourhood

of x.

Proof. Observe that Hi(X,K ⊗L
OX
Ox) is equal to Kx ⊗L

OX,x
κ(x). Hence part (5)

follows from More on Algebra, Lemma 15.76.4. Part (6) follows from part (5). Part
(1) follows from part (5), Lemma 57.11.2, and the fact that the Matlis dual of κ(x)
is κ(x). Part (2) follows from part (1). Part (3) follows from part (5) and the fact
that Exti(K,Ox) = Hi(X,K∨ ⊗L

OX
Ox) by Cohomology, Lemma 20.50.5. Part (4)

follows from part (3) and the fact that K ∼= (K∨)∨ by the lemma just cited. □

Lemma 57.11.4.0GWZ Let X be a Noetherian scheme. Let x ∈ X be a closed point and
denote Ox the skyscraper sheaf at x with value κ(x). Let K in Db

Coh(OX). Let
b ∈ Z. The following are equivalent

(1) Hi(K)x = 0 for all i > b and
(2) HomX(K,Ox[−i]) = 0 for all i > b.

Proof. Consider the complex Kx in Db
Coh(OX,x). There exist an integer bx ∈ Z

such that Kx can be represented by a bounded above complex

. . .→ O⊕nbx−2
X,x → O⊕nbx−1

X,x → O⊕nbx
X,x → 0→ . . .

with O⊕ni
X,x sitting in degree i where all the transition maps are given by matrices

whose coefficients are in mx. See More on Algebra, Lemma 15.75.5. The result
follows easily from this (and the equivalent conditions hold if and only if b ≥ bx). □

Lemma 57.11.5.0G25 Let k be a field. Let X and Y be proper schemes over k. Assume
X is regular. Then a k-linear exact functor F : Dperf (OX) → Dperf (OY ) is fully
faithful if and only if for any closed points x, x′ ∈ X the maps

F : ExtiX(Ox,Ox′) −→ ExtiY (F (Ox), F (Ox′))

are isomorphisms for all i ∈ Z. Here Ox is the skyscraper sheaf at x with value
κ(x).

https://stacks.math.columbia.edu/tag/0G03
https://stacks.math.columbia.edu/tag/0GWZ
https://stacks.math.columbia.edu/tag/0G25
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Proof. By Lemma 57.7.1 the functor F has both a left and a right adjoint. Thus
we may apply the criterion of Lemma 57.11.1 because assumptions (2) and (3) of
that lemma follow from Lemma 57.11.3. □

Lemma 57.11.6.0G26 Email from Noah
Olander of Jun 9,
2020

Let k be a field. Let X be a proper scheme over k which is
regular. Let F : Dperf (OX) → Dperf (OX) be a k-linear exact functor. Assume
for every coherent OX -module F with dim(Supp(F)) = 0 there is an isomorphism
F ∼= F (F). Then F is fully faithful.

Proof. By Lemma 57.11.5 it suffices to show that the maps

F : ExtiX(Ox,Ox′) −→ ExtiX(F (Ox), F (Ox′))

are isomorphisms for all i ∈ Z and all closed points x, x′ ∈ X. By assumption, the
source and the target are isomorphic. If x ̸= x′, then both sides are zero and the
result is true. If x = x′, then it suffices to prove that the map is either injective
or surjective. For i < 0 both sides are zero and the result is true. For i = 0 any
nonzero map α : Ox → Ox of OX -modules is an isomorphism. Hence F (α) is an
isomorphism too and so F (α) is nonzero. Thus the result for i = 0. For i = 1 a
nonzero element ξ in Ext1(Ox,Ox) corresponds to a nonsplit short exact sequence

0→ Ox → F → Ox → 0

Since F (F) ∼= F we see that F (F) is a nonsplit extension of Ox by Ox as well.
Since Ox ∼= F (Ox) is a simple OX -module and F ∼= F (F) has length 2, we see that
in the distinguished triangle

F (Ox)→ F (F)→ F (Ox) F (ξ)−−−→ F (Ox)[1]

the first two arrows must form a short exact sequence which must be isomorphic
to the above short exact sequence and hence is nonsplit. It follows that F (ξ) is
nonzero and we conclude for i = 1. For i > 1 composition of ext classes defines a
surjection

Ext1(F (Ox), F (Ox))⊗ . . .⊗ Ext1(F (Ox), F (Ox)) −→ Exti(F (Ox), F (Ox))

See Duality for Schemes, Lemma 48.15.4. Hence surjectivity in degree 1 implies
surjectivity for i > 0. This finishes the proof. □

57.12. Special functors

0FZY In this section we prove some results on functors of a special type that we will use
later in this chapter.

Definition 57.12.1.0FZZ Let k be a field. Let X, Y be finite type schemes over k. Recall
that Db

Coh(OX) = Db(Coh(OX)) by Derived Categories of Schemes, Proposition
36.11.2. We say two k-linear exact functors

F, F ′ : Db
Coh(OX) = Db(Coh(OX)) −→ Db

Coh(OY )

are siblings, or we say F ′ is a sibling of F if F and F ′ are siblings in the sense
of Definition 57.10.1 with abelian category being Coh(OX). If X is regular then
Dperf (OX) = Db

Coh(OX) by Derived Categories of Schemes, Lemma 36.11.6 and
we use the same terminology for k-linear exact functors F, F ′ : Dperf (OX) →
Dperf (OY ).

https://stacks.math.columbia.edu/tag/0G26
https://stacks.math.columbia.edu/tag/0FZZ
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Lemma 57.12.2.0G00 Let k be a field. Let X, Y be finite type schemes over k with
X separated. Let F : Db

Coh(OX)→ Db
Coh(OY ) be a k-linear exact functor sending

Coh(OX) ⊂ Db
Coh(OX) into Coh(OY ) ⊂ Db

Coh(OY ). Then there exists a Fourier-
Mukai functor F ′ : Db

Coh(OX) → Db
Coh(OY ) whose kernel is a coherent OX×Y -

module K flat over X and with support finite over Y which is a sibling of F .

Proof. Denote H : Coh(OX)→ Coh(OY ) the restriction of F . Since F is an exact
functor of triangulated categories, we see that H is an exact functor of abelian
categories. Of course H is k-linear as F is. By Functors and Morphisms, Lemma
56.7.5 we obtain a coherent OX×Y -module K which is flat over X and has support
finite over Y . Let F ′ be the Fourier-Mukai functor defined using K so that F ′

restricts to H on Coh(OX). The functor F ′ sends Db
Coh(OX) into Db

Coh(OY ) by
Lemma 57.8.5. Observe that F and F ′ satisfy the first and second condition of
Lemma 57.10.2 and hence are siblings. □

Remark 57.12.3.0G01 If F, F ′ : Db
Coh(OX)→ D are siblings, F is fully faithful, and X

is reduced and projective over k then F ∼= F ′; this follows from Proposition 57.10.6
via the argument given in the proof of Theorem 57.13.3. However, in general we do
not know whether siblings are isomorphic. Even in the situation of Lemma 57.12.2
it seems difficult to prove that the siblings F and F ′ are isomorphic functors. If
X is smooth and proper over k and F is fully faithful, then F ∼= F ′ as is shown in
[Ola20]. If you have a proof or a counter example in more general situations, please
email stacks.project@gmail.com.

Lemma 57.12.4.0GX0 Let k be a field. Let X, Y be proper schemes over k. Assume
X is regular. Let F,G : Dperf (OX) → Dperf (OY ) be k-linear exact functors such
that

(1) F (F) ∼= G(F) for any coherent OX -module F with dim(Supp(F)) = 0,
(2) F is fully faithful.

Then the essential image of G is contained in the essential image of F .

Proof. Recall that F and G have both adjoints, see Lemma 57.7.1. In particular the
essential image A ⊂ Dperf (OY ) of F satisfies the equivalent conditions of Derived
Categories, Lemma 13.40.7. We claim that G factors through A. Since A = ⊥(A⊥)
by Derived Categories, Lemma 13.40.7 it suffices to show that HomY (G(M), N) = 0
for all M in Dperf (OX) and N ∈ A⊥. We have

HomY (G(M), N) = HomX(M,Gr(N))

where Gr is the right adjoint to G. Thus it suffices to prove that Gr(N) = 0. Since
G(F) ∼= F (F) for F as in (1) we see that

HomX(F , Gr(N)) = HomY (G(F), N) = HomY (F (F), N) = 0

as N is in the right orthogonal to the essential image A of F . Of course, the same
vanishing holds for HomX(F , Gr(N)[i]) for any i ∈ Z. Thus Gr(N) = 0 by Lemma
57.11.3 and we win. □

Lemma 57.12.5.0G27 Email from Noah
Olander of Jun 8,
2020

Let k be a field. Let X be a proper scheme over k which is
regular. Let F : Dperf (OX) → Dperf (OX) be a k-linear exact functor. Assume
for every coherent OX -module F with dim(Supp(F)) = 0 there is an isomorphism
F ∼= F (F). Then there exists an automorphism f : X → X over k which induces

https://stacks.math.columbia.edu/tag/0G00
https://stacks.math.columbia.edu/tag/0G01
mailto:stacks.project@gmail.com
https://stacks.math.columbia.edu/tag/0GX0
https://stacks.math.columbia.edu/tag/0G27
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the identity on the underlying topological space1 and an invertible OX -module L
such that F and F ′(M) = f∗M ⊗L

OX
L are siblings.

Proof. By Lemma 57.11.6 the functor F is fully faithful. By Lemma 57.12.4 the
essential image of the identity functor is contained in the essential image of F , i.e.,
we see that F is essentially surjective. Thus F is an equivalence. Observe that the
quasi-inverse F−1 satisfies the same assumptions as F .
Let M ∈ Dperf (OX) and say Hi(M) = 0 for i > b. Since F is fully faithful, we see
that

HomX(M,Ox[−i]) = HomX(F (M), F (Ox)[−i]) ∼= HomX(F (M),Ox[−i])
for any i ∈ Z for any closed point x of X. Thus by Lemma 57.11.4 we see that
F (M) has vanishing cohomology sheaves in degrees > b.
Let F be a coherent OX -module. By the above F (F) has nonzero cohomology
sheaves only in degrees ≤ 0. Set G = H0(F (F)). Choose a distinguished triangle

K → F (F)→ G → K[1]
Then K has nonvanishing cohomology sheaves only in degrees ≤ −1. Applying
F−1 we obtain a distinguished triangle

F−1(K)→ F → F−1(G)→ F−1(K ′)[1]
Since F−1(K) has nonvanishing cohomology sheaves only in degrees ≤ −1 (by the
previous paragraph applied to F−1) we see that the arrow F−1(K) → F is zero
(Derived Categories, Lemma 13.27.3). Hence K → F (F) is zero, which implies
that F (F) = G by our choice of the first distinguished triangle.
From the preceding paragraph, we deduce that F preserves Coh(OX) and indeed
defines an equivalence H : Coh(OX) → Coh(OX). By Functors and Morphisms,
Lemma 56.7.8 we get an automorphism f : X → X over k and an invertible OX -
module L such that H(F) = f∗F ⊗ L. Set F ′(M) = f∗M ⊗L

OX
L. Using Lemma

57.10.2 we see that F and F ′ are siblings. To see that f is the identity on the
underlying topological space of X, we use that F (Ox) ∼= Ox and that the support
of Ox is {x}. This finishes the proof. □

Lemma 57.12.6.0G06 Let k be a field. Let X, Y be proper schemes over k. Assume X
regular. Let F,G : Dperf (OX)→ Dperf (OY ) be k-linear exact functors such that

(1) F (F) ∼= G(F) for any coherent OX -module F with dim(Supp(F)) = 0,
(2) F is fully faithful, and
(3) G is a Fourier-Mukai functor whose kernel is in Dperf (OX×Y ).

Then there exists a Fourier-Mukai functor F ′ : Dperf (OX) → Dperf (OY ) whose
kernel is in Dperf (OX×Y ) such that F and F ′ are siblings.

Proof. The essential image of G is contained in the essential image of F by Lemma
57.12.4. Consider the functor H = F−1 ◦G which makes sense as F is fully faithful.
By Lemma 57.12.5 we obtain an automorphism f : X → X and an invertible OX -
module L such that the functor H ′ : K 7→ f∗K ⊗L is a sibling of H. In particular
H is an auto-equivalence by Lemma 57.10.3 and H induces an auto-equivalence
of Coh(OX) (as this is true for its sibling functor H ′). Thus the quasi-inverses
H−1 and (H ′)−1 exist, are siblings (small detail omitted), and (H ′)−1 sends M to

1This often forces f to be the identity, see Varieties, Lemma 33.32.1.

https://stacks.math.columbia.edu/tag/0G06
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(f−1)∗(M ⊗L
OX
L⊗−1) which is a Fourier-Mukai functor (details omitted). Then of

course F = G◦H−1 is a sibling of G◦ (H ′)−1. Since compositions of Fourier-Mukai
functors are Fourier-Mukai by Lemma 57.8.3 we conclude. □

57.13. Fully faithful functors

0G07 Our goal is to prove fully faithful functors between derived categories are siblings
of Fourier-Mukai functors, following [Orl97] and [Bal08].

Situation 57.13.1.0G08 Here k is a field. We have proper smooth schemes X and Y over
k. We have a k-linear, exact, fully faithful functor F : Dperf (OX)→ Dperf (OY ).

Before reading on, it makes sense to read at least some of Derived Categories,
Section 13.41.
Recall that X is regular and hence has the resolution property (Varieties, Lemma
33.25.3 and Derived Categories of Schemes, Lemma 36.36.8). Thus on X ×X we
may choose a resolution

. . .→ E2 ⊠ G2 → E1 ⊠ G1 → E0 ⊠ G0 → O∆ → 0
where each Ei and Gi is a finite locally free OX -module, see Lemma 57.9.3. Using
the complex
(57.13.1.1)0G09 . . .→ E2 ⊠ G2 → E1 ⊠ G1 → E0 ⊠ G0

in Dperf (OX×X) as in Derived Categories, Example 13.41.2 if for each n we denote
Mn = (En ⊠ Gn → . . .→ E0 ⊠ G0)[−n]

we obtain an infinite Postnikov system for the complex (57.13.1.1). This means the
morphisms M0 →M1[1]→M2[2]→ . . . and Mn → En ⊠ Gn and En ⊠ Gn →Mn−1
satisfy certain conditions documented in Derived Categories, Definition 13.41.1. Set

Fn = Ker(En ⊠ Gn → En−1 ⊠ Gn−1)
Observe that since O∆ is flat over X via pr1 the same is true for Fn for all n (this
is a convenient though not essential observation). We have

Hq(Mn[n]) =

O∆ if q = 0
Fn if q = −n
0 if q ̸= 0,−n

Thus for n ≥ dim(X ×X) we have
Mn[n] ∼= O∆ ⊕Fn[n]

in Dperf (OX×X) by Lemma 57.9.5.
We are interested in the complex
(57.13.1.2)0G0A . . .→ E2 ⊠ F (G2)→ E1 ⊠ F (G1)→ E0 ⊠ F (G0)
in Dperf (OX×Y ) as the “totalization” of this complex should give us the kernel of
the Fourier-Mukai functor we are trying to construct. For all i, j ≥ 0 we have

ExtqX×Y (Ei ⊠ F (Gi), Ej ⊠ F (Gj)) =
⊕

p
Extq+p

X (Ei, Ej)⊗k Ext−p
Y (F (Gi), F (Gj))

=
⊕

p
Extq+p

X (Ei, Ej)⊗k Ext−p
X (Gi,Gj)

The second equality holds because F is fully faithful and the first by Derived Cat-
egories of Schemes, Lemma 36.25.1. We find these Extq are zero for q < 0. Hence

https://stacks.math.columbia.edu/tag/0G08
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by Derived Categories, Lemma 13.41.6 we can build an infinite Postnikov system
K0,K1,K2, . . . in Dperf (OX×Y ) for the complex (57.13.1.2). Parallel to what hap-
pens with M0,M1,M2, . . . this means we obtain morphisms K0 → K1[1]→ K2[2]→
. . . and Kn → En ⊠ F (Gn) and En ⊠ F (Gn) → Kn−1 in Dperf (OX×Y ) satisfying
certain conditions documented in Derived Categories, Definition 13.41.1.
Let F be a coherent OX -module whose support has a finite number of points, i.e.,
with dim(Supp(F)) = 0. Consider the exact functor of triangulated categories

Dperf (OX×Y ) −→ Dperf (OY ), N 7−→ Rpr2,∗(pr∗
1F ⊗L

OX×Y
N)

It follows that the objects Rpr2,∗(pr∗
1F ⊗L

OX×Y
Ki) form a Postnikov system for the

complex in Dperf (OY ) with terms
Rpr2,∗((F ⊗ Ei)⊠ F (Gi)) = Γ(X,F ⊗ Ei)⊗k F (Gi) = F (Γ(X,F ⊗ Ei)⊗k Gi)

Here we have used that F ⊗Ei has vanishing higher cohomology as its support has
dimension 0. On the other hand, applying the exact functor

Dperf (OX×X) −→ Dperf (OY ), N 7−→ F (Rpr2,∗(pr∗
1F ⊗L

OX×X
N))

we find that the objects F (Rpr2,∗(pr∗
1F ⊗L

OX×X
Mn)) form a second infinite Post-

nikov system for the complex in Dperf (OY ) with terms
F (Rpr2,∗((F ⊗ Ei)⊠ Gi)) = F (Γ(X,F ⊗ Ei)⊗k Gi)

This is the same as before! By uniqueness of Postnikov systems (Derived Categories,
Lemma 13.41.6) which applies because

ExtqY (F (Γ(X,F ⊗ Ei)⊗k Gi), F (Γ(X,F ⊗ Ej)⊗k Gj)) = 0, q < 0
as F is fully faithful, we find a system of isomorphisms

F (Rpr2,∗(pr∗
1F ⊗L

OX×X
Mn[n])) ∼= Rpr2,∗(pr∗

1F ⊗L
OX×Y

Kn[n])

in Dperf (OY ) compatible with the morphisms in Dperf (OY ) induced by the mor-
phisms

Mn−1[n− 1]→Mn[n] and Kn−1[n− 1]→ Kn[n]
Mn → En ⊠ Gn and Kn → En ⊠ F (Gn)

En ⊠ Gn →Mn−1 and En ⊠ F (Gn)→ Kn−1

which are part of the structure of Postnikov systems. For n sufficiently large we
obtain a direct sum decomposition

F (Rpr2,∗(pr∗
1F ⊗L

OX×X
Mn[n])) = F (F)⊕ F (Rpr2,∗(pr∗

1F ⊗OX×Y Fn))[n]

corresponding to the direct sum decomposition of Mn constructed above (we are
using the flatness of Fn over X via pr1 to write a usual tensor product in the
formula above, but this isn’t essential for the argument). By Lemma 57.9.9 we
find there exists an integer m ≥ 0 such that the first summand in this direct sum
decomposition has nonzero cohomology sheaves only in the interval [−m,m] and
the second summand in this direct sum decomposition has nonzero cohomology
sheaves only in the interval [−m − n,m + dim(X) − n]. We conclude the system
K0 → K1[1] → K2[2] → . . . in Dperf (OX×Y ) satisfies the assumptions of Lemma
57.9.10 after possibly replacing m by a larger integer. We conclude we can write

Kn[n] = K ⊕ Cn



57.13. FULLY FAITHFUL FUNCTORS 4616

for n≫ 0 compatible with transition maps and with Cn having nonzero cohomology
sheaves only in the range [−m − n,m − n]. Denote G the Fourier-Mukai functor
corresponding to K. Putting everything together we find

G(F)⊕Rpr2,∗(pr∗
1F ⊗L

OX×Y
Cn) ∼=

Rpr2,∗(pr∗
1F ⊗L

OX×Y
Kn[n]) ∼=

F (Rpr2,∗(pr∗
1F ⊗L

OX×X
Mn[n])) ∼=

F (F)⊕ F (Rpr2,∗(pr∗
1F ⊗OX×Y Fn))[n]

Looking at the degrees that objects live in we conclude that for n ≫ m we obtain
an isomorphism

F (F) ∼= G(F)
Moreover, recall that this holds for every coherent F on X whose support has
dimension 0.

Lemma 57.13.2.0G0B Let k be a field. Let X and Y be smooth proper schemes over k.
Given a k-linear, exact, fully faithful functor F : Dperf (OX) → Dperf (OY ) there
exists a Fourier-Mukai functor F ′ : Dperf (OX) → Dperf (OY ) whose kernel is in
Dperf (OX×Y ) which is a sibling to F .

Proof. Apply Lemma 57.12.6 to F and the functor G constructed above. □

The following theorem is also true without assuming X is projective, see [Ola20].

Theorem 57.13.3 (Orlov).0G0C [Orl97, Theorem
2.2]; this is shown in
[Ola20] without the
assumption that X
be projective

Let k be a field. Let X and Y be smooth proper
schemes over k with X projective over k. Any k-linear fully faithful exact func-
tor F : Dperf (OX) → Dperf (OY ) is a Fourier-Mukai functor for some kernel in
Dperf (OX×Y ).

Proof. Let F ′ be the Fourier-Mukai functor which is a sibling of F as in Lemma
57.13.2. By Proposition 57.10.6 we have F ∼= F ′ provided we can show that
Coh(OX) has enough negative objects. However, if X = Spec(k) for example,
then this isn’t true. Thus we first decompose X =

∐
Xi into its connected (and

irreducible) components and we argue that it suffices to prove the result for each
of the (fully faithful) composition functors

Fi : Dperf (OXi)→ Dperf (OX)→ Dperf (OY )

Details omitted. Thus we may assume X is irreducible.

The case dim(X) = 0. Here X is the spectrum of a finite (separable) extension
k′/k and hence Dperf (OX) is equivalent to the category of graded k′-vector spaces
such that OX corresponds to the trivial 1-dimensional vector space in degree 0. It
is straightforward to see that any two siblings F, F ′ : Dperf (OX)→ Dperf (OY ) are
isomorphic. Namely, we are given an isomorphism F (OX) ∼= F ′(OX) compatible
the action of the k-algebra k′ = EndDperf (OX)(OX) which extends canonically to
an isomorphism on any graded k′-vector space.

The case dim(X) > 0. Here X is a projective smooth variety of dimension > 1.
Let F be a coherent OX -module. We have to show there exists a coherent module
N such that

(1) there is a surjection N → F and
(2) Hom(F ,N ) = 0.

https://stacks.math.columbia.edu/tag/0G0B
https://stacks.math.columbia.edu/tag/0G0C
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Choose an ample invertible OX -module L. We claim that N = (L⊗n)⊕r will work
for n ≪ 0 and r large enough. Condition (1) follows from Properties, Proposition
28.26.13. Finally, we have

Hom(F ,L⊗n) = H0(X,Hom(F ,L⊗n)) = H0(X,Hom(F ,OX)⊗ L⊗n)

Since the dual Hom(F ,OX) is torsion free, this vanishes for n ≪ 0 by Varieties,
Lemma 33.48.1. This finishes the proof. □

Proposition 57.13.4.0G0D Let k be a field. Let X and Y be smooth proper schemes over
k. If F : Dperf (OX) → Dperf (OY ) is a k-linear exact equivalence of triangulated
categories then there exists a Fourier-Mukai functor F ′ : Dperf (OX)→ Dperf (OY )
whose kernel is in Dperf (OX×Y ) which is an equivalence and a sibling of F .

Proof. The functor F ′ of Lemma 57.13.2 is an equivalence by Lemma 57.10.3. □

Lemma 57.13.5.0G0E Let k be a field. Let X be a smooth proper scheme over k. Let
K ∈ Dperf (OX×X). If the Fourier-Mukai functor ΦK : Dperf (OX) → Dperf (OX)
is isomorphic to the identity functor, then K ∼= ∆∗OX in perf (OX×X).

Proof. Let i be the minimal integer such that the cohomology sheaf Hi(K) is
nonzero. Let E and G be finite locally free OX -modules. Then

Hi(X ×X,K ⊗L
OX×X

(E ⊠ G)) = Hi(X,Rpr2,∗(K ⊗L
OX×X

(E ⊠ G)))
= Hi(X,ΦK(E)⊗L

OX
G)

∼= Hi(X, E ⊗ G)

which is zero if i < 0. On the other hand, we can choose E and G such that there
is a surjection E∨ ⊠ G∨ → Hi(K) by Lemma 57.9.1. In this case the left hand side
of the equalities is nonzero. Hence we conclude that Hi(K) = 0 for i < 0.

Let i be the maximal integer such that Hi(K) is nonzero. The same argument with
E and G support of dimension 0 shows that i ≤ 0. Hence we conclude that K is
given by a single coherent OX×X -module K sitting in degree 0.

Since Rpr2,∗(pr∗
1F ⊗ K) is F , by taking F supported at closed points we see that

the support of K is finite over X via pr2. Since Rpr2,∗(K) ∼= OX we conclude by
Functors and Morphisms, Lemma 56.7.6 that K = s∗OX for some section s : X →
X ×X of the second projection. Then ΦK(M) = f∗M where f = pr1 ◦ s and this
can happen only if s is the diagonal morphism as desired. □

57.14. A category of Fourier-Mukai kernels

0G0F Let S be a scheme. We claim there is a category with
(1) Objects are proper smooth schemes over S.
(2) Morphisms fromX to Y are isomorphism classes of objects ofDperf (OX×SY ).
(3) Composition of the isomorphism class of K ∈ Dperf (OX×SY ) and the

isomorphism class of K ′ in Dperf (OY×SZ) is the isomorphism class of

Rpr13,∗(Lpr∗
12K ⊗L

OX×SY×SZ
Lpr∗

23K
′)

which is in Dperf (OX×SZ) by Derived Categories of Schemes, Lemma
36.30.4.

https://stacks.math.columbia.edu/tag/0G0D
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(4) The identity morphism fromX toX is the isomorphism class of ∆X/S,∗OX
which is in Dperf (OX×SX) by More on Morphisms, Lemma 37.61.12 and
the fact that ∆X/S is a perfect morphism by Divisors, Lemma 31.22.11
and More on Morphisms, Lemma 37.61.7.

Let us check that associativity of composition of morphisms holds; we omit verifying
that the identity morphisms are indeed identities. To see this suppose we have
X,Y, Z,W and c ∈ Dperf (OX×SY ), c′ ∈ Dperf (OY×SZ), and c′′ ∈ Dperf (OZ×SW ).
Then we have

c′′ ◦ (c′ ◦ c) ∼= pr134
14,∗(pr134,∗

13 pr123
13,∗(pr123,∗

12 c⊗ pr123,∗
23 c′)⊗ pr134,∗

34 c′′)
∼= pr134

14,∗(pr1234
134,∗pr1234,∗

123 (pr123,∗
12 c⊗ pr123,∗

23 c′)⊗ pr134,∗
34 c′′)

∼= pr134
14,∗(pr1234

134,∗(pr1234,∗
12 c⊗ pr1234,∗

23 c′)⊗ pr134,∗
34 c′′)

∼= pr134
14,∗pr1234

134,∗((pr1234,∗
12 c⊗ pr1234,∗

23 c′)⊗ pr1234,∗
34 c′′)

∼= pr1234
14,∗ ((pr1234,∗

12 c⊗ pr1234,∗
23 c′)⊗ pr1234,∗

34 c′′)

Here we use the notation

p1234
134 : X×S Y ×SZ×SW → X×SZ×SW and p134

14 : X×SZ×SW → X×SW

the projections and similarly for other indices. We also write pr∗ instead ofRpr∗ and
pr∗ instead of Lpr∗ and we drop all super and sub scripts on ⊗. The first equality is
the definition of the composition. The second equality holds because pr134,∗

13 pr123
13,∗ =

pr1234
134,∗pr1234,∗

123 by base change (Derived Categories of Schemes, Lemma 36.22.5).
The third equality holds because pullbacks compose correctly and pass through
tensor products, see Cohomology, Lemmas 20.27.2 and 20.27.3. The fourth equality
follows from the “projection formula” for p1234

134 , see Derived Categories of Schemes,
Lemma 36.22.1. The fifth equality is that proper pushforward is compatible with
composition, see Cohomology, Lemma 20.28.2. Since tensor product is associative
this concludes the proof of associativity of composition.

Lemma 57.14.1.0G0G Let S′ → S be a morphism of schemes. The rule which sends
(1) a smooth proper scheme X over S to X ′ = S′ ×S X, and
(2) the isomorphism class of an object K of Dperf (OX×SY ) to the isomor-

phism class of L(X ′ ×S′ Y ′ → X ×S Y )∗K in Dperf (OX′×S′Y ′)
is a functor from the category defined for S to the category defined for S′.

Proof. To see this suppose we have X,Y, Z and K ∈ Dperf (OX×SY ) and M ∈
Dperf (OY×SZ). Denote K ′ ∈ Dperf (OX′×S′Y ′) and M ′ ∈ Dperf (OY ′×S′Z′) their
pullbacks as in the statement of the lemma. The diagram

X ′ ×S′ Y ′ ×S′ Z ′ //

pr′
13
��

X ×S Y ×S Z

pr13

��
X ′ ×S′ Z ′ // X ×S Z

is cartesian and pr13 is proper and smooth. By Derived Categories of Schemes,
Lemma 36.30.4 we see that the derived pullback by the lower horizontal arrow of
the composition

Rpr13,∗(Lpr∗
12K ⊗L

OX×SY×SZ
Lpr∗

23M)

https://stacks.math.columbia.edu/tag/0G0G
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indeed is (canonically) isomorphic to
Rpr′

13,∗(L(pr′
12)∗K ′ ⊗L

OX′×
S′Y ′×

S′Z′ L(pr′
23)∗M ′)

as desired. Some details omitted. □

57.15. Relative equivalences

0G0H In this section we prove some lemmas about the following concept.

Definition 57.15.1.0G0I Let S be a scheme. Let X → S and Y → S be smooth
proper morphisms. An object K ∈ Dperf (OX×SY ) is said to be the Fourier-Mukai
kernel of a relative equivalence from X to Y over S if there exist an object K ′ ∈
Dperf (OX×SY ) such that

∆X/S,∗OX ∼= Rpr13,∗(Lpr∗
12K ⊗L

OX×SY×SX
Lpr∗

23K
′)

in D(OX×SX) and
∆Y/S,∗OY ∼= Rpr13,∗(Lpr∗

12K
′ ⊗L

OY×SX×SY
Lpr∗

23K)

in D(OY×SY ). In other words, the isomorphism class of K defines an invertible
arrow in the category defined in Section 57.14.

The language is intentionally cumbersome.

Lemma 57.15.2.0G0J With notation as in Definition 57.15.1 let K be the Fourier-
Mukai kernel of a relative equivalence from X to Y over S. Then the corresponding
Fourier-Mukai functors ΦK : DQCoh(OX)→ DQCoh(OY ) (Lemma 57.8.2) and ΦK :
Dperf (OX)→ Dperf (OY ) (Lemma 57.8.4) are equivalences.

Proof. Immediate from Lemma 57.8.3 and Example 57.8.6. □

Lemma 57.15.3.0G0K With notation as in Definition 57.15.1 let K be the Fourier-Mukai
kernel of a relative equivalence from X to Y over S. Let S1 → S be a morphism
of schemes. Let X1 = S1 ×S X and Y1 = S1 ×S Y . Then the pullback K1 =
L(X1 ×S1 Y1 → X ×S Y )∗K is the Fourier-Mukai kernel of a relative equivalence
from X1 to Y1 over S1.

Proof. Let K ′ ∈ Dperf (OY×SX) be the object assumed to exist in Definition
57.15.1. Denote K ′

1 the pullback of K ′ by Y1 ×S1 X1 → Y ×S X. Then it suf-
fices to prove that we have

∆X1/S1,∗OX ∼= Rpr13,∗(Lpr∗
12K1 ⊗L

OX1×S1Y1×S1X1
Lpr∗

23K
′
1)

in D(OX1×S1X1) and similarly for the other condition. Since

X1 ×S1 Y1 ×S1 X1 //

pr13

��

X ×S Y ×S X

pr13

��
X1 ×S1 X1 // X ×S X

is cartesian it suffices by Derived Categories of Schemes, Lemma 36.30.4 to prove
that

∆X1/S1,∗OX1
∼= L(X1 ×S1 X1 → X ×S X)∗∆X/S,∗OX

This in turn will be true if X and X1×S1 X1 are tor independent over X×SX, see
Derived Categories of Schemes, Lemma 36.22.5. This tor independence can be seen

https://stacks.math.columbia.edu/tag/0G0I
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directly but also follows from the more general More on Morphisms, Lemma 37.69.1
applied to the square with corners X,X,X, S and its base change by S1 → S. □

Lemma 57.15.4.0G0L Let S = limi∈I Si be a limit of a directed system of schemes with
affine transition morphisms gi′i : Si′ → Si. We assume that Si is quasi-compact
and quasi-separated for all i ∈ I. Let 0 ∈ I. Let X0 → S0 and Y0 → S0 be smooth
proper morphisms. We set Xi = Si ×S0 X0 for i ≥ 0 and X = S ×S0 X0 and
similarly for Y0. If K is the Fourier-Mukai kernel of a relative equivalence from X
to Y over S then for some i ≥ 0 there exists a Fourier-Mukai kernel of a relative
equivalence from Xi to Yi over Si.

Proof. Let K ′ ∈ Dperf (OY×SX) be the object assumed to exist in Definition
57.15.1. Since X ×S Y = limXi ×Si Yi there exists an i and objects Ki and
K ′
i in Dperf (OYi×SiXi) whose pullbacks to Y ×S X give K and K ′. See Derived

Categories of Schemes, Lemma 36.29.3. By Derived Categories of Schemes, Lemma
36.30.4 the object

Rpr13,∗(Lpr∗
12Ki ⊗L

OXi×SiYi×SiXi
Lpr∗

23K
′
i)

is perfect and its pullback to X ×S X is equal to
Rpr13,∗(Lpr∗

12K ⊗L
OX×SY×SX

Lpr∗
23K

′) ∼= ∆X/S,∗OX
See proof of Lemma 57.15.3. On the other hand, since Xi → S is smooth and
separated the object

∆i,∗OXi
of D(OXi×SiXi) is also perfect (by More on Morphisms, Lemmas 37.62.18 and
37.61.13) and its pullback to X ×S X is equal to

∆X/S,∗OX
See proof of Lemma 57.15.3. Thus by Derived Categories of Schemes, Lemma
36.29.3 after increasing i we may assume that

∆i,∗OXi ∼= Rpr13,∗(Lpr∗
12Ki ⊗L

OXi×SiYi×SiXi
Lpr∗

23K
′
i)

as desired. The same works for the roles of K and K ′ reversed. □

57.16. No deformations

0G0M The title of this section refers to Lemma 57.16.4

Lemma 57.16.1.0G0N Let (R,m, κ)→ (A, n, λ) be a flat local ring homorphism of local
rings which is essentially of finite presentation. Let f1, . . . , fr ∈ n/mA ⊂ A/mA be
a regular sequence. Let K ∈ D(A). Assume

(1) K is perfect,
(2) K⊗L

AA/mA is isomorphic inD(A/mA) to the Koszul complex on f1, . . . , fr.
ThenK is isomorphic inD(A) to a Koszul complex on a regular sequence f1, . . . , fr ∈
A lifting the given elements f1, . . . , fr. Moreover, A/(f1, . . . , fr) is flat over R.

Proof. Let us use chain complexes in the proof of this lemma. The Koszul complex
K•(f1, . . . , fr) is defined in More on Algebra, Definition 15.28.2. By More on
Algebra, Lemma 15.75.4 we can represent K by a complex

K• : A→ A⊕r → . . .→ A⊕r → A
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whose tensor product with A/mA is equal (!) toK•(f1, . . . , fr). Denote f1, . . . , fr ∈
A the components of the arrow A⊕r → A. These fi are lifts of the f i. By Algebra,
Lemma 10.128.6 f1, . . . , fr form a regular sequence in A and A/(f1, . . . , fr) is flat
over R. Let J = (f1, . . . , fr) ⊂ A. Consider the diagram

K•

!!

φ•
// K•(f1, . . . , fr)

xx
A/J

Since f1, . . . , fr is a regular sequence the south-west arrow is a quasi-isomorphism
(see More on Algebra, Lemma 15.30.2). Hence we can find the dotted arrow making
the diagram commute for example by Algebra, Lemma 10.71.4. Reducing modulo
m we obtain a commutative diagram

K•(f1, . . . , fr)

))

φ•

// K•(f1, . . . , fr)

uu
(A/mA)/(f1, . . . , fr)

by our choice of K•. Thus φ is an isomorphism in the derived category D(A/mA).
It follows that φ⊗L

A/mA λ is an isomorphism. Since f i ∈ n/mA we see that

TorA/mAi (K•(f1, . . . , fr), λ) = Ki(f1, . . . , fr)⊗A/mA λ
Hence φi mod n is invertible. Since A is local this means that φi is an isomorphism
and the proof is complete. □

Lemma 57.16.2.0G0P Let R → S be a finite type flat ring map of Noetherian rings.
Let q ⊂ S be a prime ideal lying over p ⊂ R. Let K ∈ D(S) be perfect. Let
f1, . . . , fr ∈ qSq be a regular sequence such that Sq/(f1, . . . , fr) is flat over R and
such that K ⊗L

S Sq is isomorphic to the Koszul complex on f1, . . . , fr. Then there
exists a g ∈ S, g ̸∈ q such that

(1) f1, . . . , fr are the images of f ′
1, . . . , f

′
r ∈ Sg,

(2) f ′
1, . . . , f

′
r form a regular sequence in Sg,

(3) Sg/(f ′
1, . . . , f

′
r) is flat over R,

(4) K ⊗L
S Sg is isomorphic to the Koszul complex on f1, . . . , fr.

Proof. We can find g ∈ S, g ̸∈ q with property (1) by the definition of localizations.
After replacing g by gg′ for some g′ ∈ S, g′ ̸∈ q we may assume (2) holds, see Al-
gebra, Lemma 10.68.6. By Algebra, Theorem 10.129.4 we find that Sg/(f ′

1, . . . , f
′
r)

is flat over R in an open neighbourhood of q. Hence after once more replacing g by
gg′ for some g′ ∈ S, g′ ̸∈ q we may assume (3) holds as well. Finally, we get (4) for
a further replacement by More on Algebra, Lemma 15.74.17. □

For a generalization of the following lemma, please see More on Morphisms of
Spaces, Lemma 76.49.6.

Lemma 57.16.3.0G0Q Let S be a Noetherian scheme. Let s ∈ S. Let p : X → Y be a
morphism of schemes over S. Assume

(1) Y → S and X → S proper,
(2) X is flat over S,
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(3) Xs → Ys an isomorphism.
Then there exists an open neighbourhood U ⊂ S of s such that the base change
XU → YU is an isomorphism.

Proof. The morphism p is proper by Morphisms, Lemma 29.41.6. By Cohomology
of Schemes, Lemma 30.21.2 there is an open Ys ⊂ V ⊂ Y such that p|p−1(V ) :
p−1(V ) → V is finite. By More on Morphisms, Theorem 37.16.1 there is an open
Xs ⊂ U ⊂ X such that p|U : U → Y is flat. After removing the images of X \ U
and Y \ V (which are closed subsets not containing s) we may assume p is flat
and finite. Then p is open (Morphisms, Lemma 29.25.10) and Ys ⊂ p(X) ⊂ Y
hence after shrinking S we may assume p is surjective. As ps : Xs → Ys is an
isomorphism, the map

p♯ : OY −→ p∗OX
of coherent OY -modules (p is finite) becomes an isomorphism after pullback by i :
Ys → Y (by Cohomology of Schemes, Lemma 30.5.1 for example). By Nakayama’s
lemma, this implies that OY,y → (p∗OX)y is surjective for all y ∈ Ys. Hence there
is an open Ys ⊂ V ⊂ Y such that p♯|V is surjective (Modules, Lemma 17.9.4).
Hence after shrinking S once more we may assume p♯ is surjective which means
that p is a closed immersion (as p is already finite). Thus now p is a surjective flat
closed immersion of Noetherian schemes and hence an isomorphism, see Morphisms,
Section 29.26. □

Lemma 57.16.4.0G0R Let k be a field. Let S be a finite type scheme over k with k-
rational point s. Let Y → S be a smooth proper morphism. Let X = Ys×S → S be
the constant family with fibre Ys. Let K be the Fourier-Mukai kernel of a relative
equivalence from X to Y over S. Assume the restriction

L(Ys ×S Ys → X ×S Y )∗K ∼= ∆Ys/k,∗OYs
in D(OYs×Ys). Then there is an open neighbourhood s ∈ U ⊂ S such that Y |U is
isomorphic to Ys × U over U .

Proof. Denote i : Ys×Ys = Xs×Ys → X ×S Y the natural closed immersion. (We
will write Ys and not Xs for the fibre of X over s from now on.) Let z ∈ Ys × Ys =
(X×S Y )s ⊂ X×S Y be a closed point. As indicated we think of z both as a closed
point of Ys × Ys as well as a closed point of X ×S Y .
Case I: z ̸∈ ∆Ys/k(Ys). Denote Oz the coherent OYs×Ys-module supported at z
whose value is κ(z). Then i∗Oz is the coherent OX×SY -module supported at z
whose value is κ(z). Our assumption means that

K ⊗L
OX×SY

i∗Oz = Li∗K ⊗L
OYs×Ys

Oz = 0

Hence by Lemma 57.11.3 we find an open neighbourhood U(z) ⊂ X×S Y of z such
that K|U(z) = 0. In this case we set Z(z) = ∅ as closed subscheme of U(z).
Case II: z ∈ ∆Ys/k(Ys). Since Ys is smooth over k we know that ∆Ys/k : Ys →
Ys × Ys is a regular immersion, see More on Morphisms, Lemma 37.62.18. Choose
a regular sequence f1, . . . , fr ∈ OYs×Ys,z cutting out the ideal sheaf of ∆Ys/k(Ys).
Since a regular sequence is Koszul-regular (More on Algebra, Lemma 15.30.2) our
assumption means that

Kz ⊗L
OX×SY,z

OYs×Ys,z ∈ D(OYs×Ys,z)
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is represented by the Koszul complex on f1, . . . , fr over OYs×Ys,z. By Lemma
57.16.1 applied to OS,s → OX×SY,z we conclude that Kz ∈ D(OX×SY,z) is repre-
sented by the Koszul complex on a regular sequence f1, . . . , fr ∈ OX×SY,z lifting
the regular sequence f1, . . . , fr such that moreover OX×SY /(f1, . . . , fr) is flat over
OS,s. By some limit arguments (Lemma 57.16.2) we conclude that there exists an
affine open neighbourhood U(z) ⊂ X×SY of z and a closed subscheme Z(z) ⊂ U(z)
such that

(1) Z(z)→ U(z) is a regular closed immersion,
(2) K|U(z) is quasi-isomorphic to OZ(z),
(3) Z(z)→ S is flat,
(4) Z(z)s = ∆Ys/k(Ys) ∩ U(z)s as closed subschemes of U(z)s.

By property (2), for z, z′ ∈ Ys × Ys, we find that Z(z) ∩ U(z′) = Z(z′) ∩ U(z) as
closed subschemes. Hence we obtain an open neighbourhood

U =
⋃

z∈Ys×Ys closed
U(z)

of Ys × Ys in X ×S Y and a closed subscheme Z ⊂ U such that (1) Z → U is
a regular closed immersion, (2) Z → S is flat, and (3) Zs = ∆Ys/k(Ys). Since
X ×S Y → S is proper, after replacing S by an open neighbourhood of s we
may assume U = X ×S Y . Since the projections Zs → Ys and Zs → Xs are
isomorphisms, we conclude that after shrinking S we may assume Z → Y and
Z → X are isomorphisms, see Lemma 57.16.3. This finishes the proof. □

Lemma 57.16.5.0G0S Let k be an algebraically closed field. Let X be a smooth proper
scheme over k. Let f : Y → S be a smooth proper morphism with S of finite type
over k. Let K be the Fourier-Mukai kernel of a relative equivalence from X × S
to Y over S. Then S can be covered by open subschemes U such that there is a
U -isomorphism f−1(U) ∼= Y0 × U for some Y0 proper and smooth over k.

Proof. Choose a closed point s ∈ S. Since k is algebraically closed this is a k-
rational point. Set Y0 = Ys. The restriction K0 of K to X×Y0 is the Fourier-Mukai
kernel of a relative equivalence from X to Y0 over Spec(k) by Lemma 57.15.3. Let
K ′

0 in Dperf (OY0×X) be the object assumed to exist in Definition 57.15.1. Then
K ′

0 is the Fourier-Mukai kernel of a relative equivalence from Y0 to X over Spec(k)
by the symmetry inherent in Definition 57.15.1. Hence by Lemma 57.15.3 we see
that the pullback

M = (Y0 ×X × S → Y0 ×X)∗K ′
0

on (Y0 × S) ×S (X × S) = Y0 × X × S is the Fourier-Mukai kernel of a relative
equivalence from Y0 × S to X × S over S. Now consider the kernel

Knew = Rpr13,∗(Lpr∗
12M ⊗L

O(Y0×S)×S(X×S)×SY
Lpr∗

23K)

on (Y0 × S)×S Y . This is the Fourier-Mukai kernel of a relative equivalence from
Y0 × S to Y over S since it is the composition of two invertible arrows in the
category constructed in Section 57.14. Moreover, this composition passes through
base change (Lemma 57.14.1). Hence we see that the pullback of Knew to ((Y0 ×
S)×S Y )s = Y0 × Y0 is equal to the composition of K0 and K ′

0 and hence equal to
the identity in this category. In other words, we have

L(Y0 × Y0 → (Y0 × S)×S Y )∗Knew
∼= ∆Y0/k,∗OY0
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Thus by Lemma 57.16.4 we conclude that Y → S is isomorphic to Y0 × S in an
open neighbourhood of s. This finishes the proof. □

57.17. Countability

0G0T In this section we prove some elementary lemmas about countability of certain sets.
Let C be a category. In this section we will say that C is countable if

(1) for any X,Y ∈ Ob(C) the set MorC(X,Y ) is countable, and
(2) the set of isomorphism classes of objects of C is countable.

Lemma 57.17.1.0G0U Let R be a countable Noetherian ring. Then the category of
schemes of finite type over R is countable.

Proof. Omitted. □

Lemma 57.17.2.0G0V Let A be a countable abelian category. Then Db(A) is countable.

Proof. It suffices to prove the statement for D(A) as the others are full subcat-
egories of this one. Since every object in D(A) is a complex of objects of A it
is immediate that the set of isomorphism classes of objects of Db(A) is countable.
Moreover, for bounded complexes A• and B• of A it is clear that HomKb(A)(A•, B•)
is countable. We have

HomDb(A)(A•, B•) = colims:(A′)•→A• qis and (A′)• bounded HomKb(A)((A′)•, B•)
by Derived Categories, Lemma 13.11.6. Thus this is a countable set as a countable
colimit of □

Lemma 57.17.3.0G0W Let X be a scheme of finite type over a countable Noetherian
ring. Then the categories Dperf (OX) and Db

Coh(OX) are countable.

Proof. Observe thatX is Noetherian by Morphisms, Lemma 29.15.6. HenceDperf (OX)
is a full subcategory of Db

Coh(OX) by Derived Categories of Schemes, Lemma
36.11.6. Thus it suffices to prove the result for Db

Coh(OX). Recall that Db
Coh(OX) =

Db(Coh(OX)) by Derived Categories of Schemes, Proposition 36.11.2. Hence by
Lemma 57.17.2 it suffices to prove that Coh(OX) is countable. This we omit. □

Lemma 57.17.4.0G0X Let K be an algebraically closed field. Let S be a finite type
scheme over K. Let X → S and Y → S be finite type morphisms. There exists a
countable set I and for i ∈ I a pair (Si → S, hi) with the following properties

(1) Si → S is a morphism of finite type, set Xi = X ×S Si and Yi = Y ×S Si,
(2) hi : Xi → Yi is an isomorphism over Si, and
(3) for any closed point s ∈ S(K) if Xs

∼= Ys over K = κ(s) then s is in the
image of Si → S for some i.

Proof. The field K is the filtered union of its countable subfields. Dually, Spec(K)
is the cofiltered limit of the spectra of the countable subfields of K. Hence Limits,
Lemma 32.10.1 guarantees that we can find a countable subfield k and morphisms
X0 → S0 and Y0 → S0 of schemes of finite type over k such that X → S and Y → S
are the base changes of these.
By Lemma 57.17.1 there is a countable set I and pairs (S0,i → S0, h0,i) such that

(1) S0,i → S0 is a morphism of finite type, set X0,i = X0 ×S0 S0,i and Y0,i =
Y0 ×S0 S0,i,

(2) h0,i : X0,i → Y0,i is an isomorphism over S0,i.
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such that every pair (T → S0, hT ) with T → S0 of finite type and hT : X0×S0 T →
Y0 ×S0 T an isomorphism is isomorphic to one of these. Denote (Si → S, hi) the
base change of (S0,i → S0, h0,i) by Spec(K)→ Spec(k). We claim this works.
Let s ∈ S(K) and let hs : Xs → Ys be an isomorphism over K = κ(s). We can
write K as the filtered union of its finitely generated k-subalgebras. Hence by
Limits, Proposition 32.6.1 and Lemma 32.10.1 we can find such a finitely generated
k-subalgebra K ⊃ A ⊃ k such that

(1) there is a commutative diagram

Spec(K)

s

��

// Spec(A)

s′

��
S // S0

for some morphism s′ : Spec(A)→ S0 over k,
(2) hs is the base change of an isomorphism hs′ : X0 ×S0,s′ Spec(A) →

X0 ×S0,s′ Spec(A) over A.
Of course, then (s′ : Spec(A) → S0, hs′) is isomorphic to the pair (S0,i → S0, h0,i)
for some i ∈ I. This concludes the proof because the commutative diagram in (1)
shows that s is in the image of the base change of s′ to Spec(K). □

Lemma 57.17.5.0G0Y Let K be an algebraically closed field. There exists a countable set
I and for i ∈ I a pair (Si/K,Xi → Si, Yi → Si,Mi) with the following properties

(1) Si is a scheme of finite type over K,
(2) Xi → Si and Yi → Si are proper smooth morphisms of schemes,
(3) Mi ∈ Dperf (OXi×SiYi) is the Fourier-Mukai kernel of a relative equiva-

lence from Xi to Yi over Si, and
(4) for any smooth proper schemes X and Y over K such that there is a K-

linear exact equivalence Dperf (OX) → Dperf (OY ) there exists an i ∈ I
and a s ∈ Si(K) such that X ∼= (Xi)s and Y ∼= (Yi)s.

Proof. Choose a countable subfield k ⊂ K for example the prime field. By Lemmas
57.17.1 and 57.17.3 there exists a countable set of isomorphism classes of systems
over k satisfying parts (1), (2), (3) of the lemma. Thus we can choose a countable
set I and for each i ∈ I such a system

(S0,i/k,X0,i → S0,i, Y0,i → S0,i,M0,i)
over k such that each isomorphism class occurs at least once. Denote (Si/K,Xi →
Si, Yi → Si,Mi) the base change of the displayed system to K. This system has
properties (1), (2), (3), see Lemma 57.15.3. Let us prove property (4).
Consider smooth proper schemes X and Y over K such that there is a K-linear
exact equivalence F : Dperf (OX) → Dperf (OY ). By Proposition 57.13.4 we may
assume that there exists an object M ∈ Dperf (OX×Y ) such that F = ΦM is
the corresponding Fourier-Mukai functor. By Lemma 57.8.9 there is an M ′ in
Dperf (OY×X) such that ΦM ′ is the right adjoint to ΦM . Since ΦM is an equivalence,
this means that ΦM ′ is the quasi-inverse to ΦM . By Lemma 57.8.9 we see that the
Fourier-Mukai functors defined by the objects

A = Rpr13,∗(Lpr∗
12M ⊗L

OX×Y×X
Lpr∗

23M
′)

https://stacks.math.columbia.edu/tag/0G0Y


57.18. COUNTABILITY OF DERIVED EQUIVALENT VARIETIES 4626

in Dperf (OX×X) and

B = Rpr13,∗(Lpr∗
12M

′ ⊗L
OY×X×Y

Lpr∗
23M)

inDperf (OY×Y ) are isomorphic to id : Dperf (OX)→ Dperf (OX) and id : Dperf (OY )→
Dperf (OY ) Hence A ∼= ∆X/K,∗OX and B ∼= ∆Y/K,∗OY by Lemma 57.13.5. Hence
we see that M is the Fourier-Mukai kernel of a relative equivalence from X to Y
over K by definition.
We can write K as the filtered colimit of its finite type k-subalgebras A ⊂ K.
By Limits, Lemma 32.10.1 we can find X0, Y0 of finite type over A whose base
changes to K produces X and Y . By Limits, Lemmas 32.13.1 and 32.8.9 af-
ter enlarging A we may assume X0 and Y0 are smooth and proper over A. By
Lemma 57.15.4 after enlarging A we may assume M is the pullback of some
M0 ∈ Dperf (OX0×Spec(A)Y0) which is the Fourier-Mukai kernel of a relative equiva-
lence from X0 to Y0 over Spec(A). Thus we see that (S0/k,X0 → S0, Y0 → S0,M0)
is isomorphic to (S0,i/k,X0,i → S0,i, Y0,i → S0,i,M0,i) for some i ∈ I. Since
Si = S0,i ×Spec(k) Spec(K) we conclude that (4) is true with s : Spec(K) → Si
induced by the morphism Spec(K)→ Spec(A) ∼= S0,i we get from A ⊂ K. □

57.18. Countability of derived equivalent varieties

0G0Z In this section we prove a result of Anel and Toën, see [AT09].

Definition 57.18.1.0G10 Let k be a field. Let X and Y be smooth projective schemes
over k. We say X and Y are derived equivalent if there exists a k-linear exact
equivalence Dperf (OX)→ Dperf (OY ).

Here is the result

Theorem 57.18.2.0G11 Slight improvement
of [AT09]

Let K be an algebraically closed field. Let X be a smooth proper
scheme over K. There are at most countably many isomorphism classes of smooth
proper schemes Y over K which are derived equivalent to X.

Proof. Choose a countable set I and for i ∈ I systems (Si/K,Xi → Si, Yi → Si,Mi)
satisfying properties (1), (2), (3), and (4) of Lemma 57.17.5. Pick i ∈ I and set
S = Si, X = Xi, Y = Yi, and M = Mi. Clearly it suffice to show that the set of
isomorphism classes of fibres Ys for s ∈ S(K) such that Xs

∼= X is countable. This
we prove in the next paragraph.
Let S be a finite type scheme over K, let X → S and Y → S be proper smooth
morphisms, and let M ∈ Dperf (OX×SY ) be the Fourier-Mukai kernel of a relative
equivalence from X to Y over S. We will show the set of isomorphism classes of
fibres Ys for s ∈ S(K) such that Xs

∼= X is countable. By Lemma 57.17.4 applied
to the families X× S → S and X → S there exists a countable set I and for i ∈ I
a pair (Si → S, hi) with the following properties

(1) Si → S is a morphism of finite type, set Xi = X ×S Si,
(2) hi : X× Si → Xi is an isomorphism over Si, and
(3) for any closed point s ∈ S(K) if X ∼= Xs over K = κ(s) then s is in the

image of Si → S for some i.
Set Yi = Y ×S Si. Denote Mi ∈ Dperf (OXi×SiYi) the pullback of M . By Lemma
57.15.3 Mi is the Fourier-Mukai kernel of a relative equivalence from Xi to Yi
over Si. Since I is countable, by property (3) it suffices to prove that the set of
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isomorphism classes of fibres Yi,s for s ∈ Si(K) is countable. In fact, this number
is finite by Lemma 57.16.5 and the proof is complete. □
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CHAPTER 58

Fundamental Groups of Schemes

0BQ6 58.1. Introduction

0BQ7 In this chapter we discuss Grothendieck’s fundamental group of a scheme and ap-
plications. A foundational reference is [Gro71]. A nice introduction is [Len]. Other
references [Mur67] and [GM71].

58.2. Schemes étale over a point

04JI In this section we describe schemes étale over the spectrum of a field. Before we
state the result we introduce the category of G-sets for a topological group G.

Definition 58.2.1.04JJ Let G be a topological group. A G-set, sometimes called a
discrete G-set, is a set X endowed with a left action a : G×X → X such that a is
continuous when X is given the discrete topology and G×X the product topology.
A morphism of G-sets f : X → Y is simply any G-equivariant map from X to Y .
The category of G-sets is denoted G-Sets.

The condition that a : G×X → X is continuous signifies simply that the stabilizer
of any x ∈ X is open in G. If G is an abstract group G (i.e., a group but not a
topological group) then this agrees with our preceding definition (see for example
Sites, Example 7.6.5) provided we endow G with the discrete topology.
Recall that if L/K is an infinite Galois extension then the Galois group G =
Gal(L/K) comes endowed with a canonical topology, see Fields, Section 9.22.

Lemma 58.2.2.03QR Let K be a field. Let Ksep be a separable closure of K. Consider
the profinite group G = Gal(Ksep/K). The functor

schemes étale over K −→ G-Sets
X/K 7−→ MorSpec(K)(Spec(Ksep), X)

is an equivalence of categories.

Proof. A scheme X over K is étale over K if and only if X ∼=
∐
i∈I Spec(Ki)

with each Ki a finite separable extension of K (Morphisms, Lemma 29.36.7). The
functor of the lemma associates to X the G-set∐

i
HomK(Ki,K

sep)

with its natural left G-action. Each element has an open stabilizer by definition of
the topology on G. Conversely, any G-set S is a disjoint union of its orbits. Say
S =

∐
Si. Pick si ∈ Si and denote Gi ⊂ G its open stabilizer. By Galois theory

(Fields, Theorem 9.22.4) the fields (Ksep)Gi are finite separable field extensions of
K, and hence the scheme ∐

i
Spec((Ksep)Gi)

4629
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is étale over K. This gives an inverse to the functor of the lemma. Some details
omitted. □

Remark 58.2.3.03QS Under the correspondence of Lemma 58.2.2, the coverings in the
small étale site Spec(K)étale of K correspond to surjective families of maps in
G-Sets.

58.3. Galois categories

0BMQ In this section we discuss some of the material the reader can find in [Gro71, Exposé
V, Sections 4, 5, and 6].
Let F : C → Sets be a functor. Recall that by our conventions categories have a
set of objects and for any pair of objects a set of morphisms. There is a canonical
injective map
(58.3.0.1)0BS7 Aut(F ) −→

∏
X∈Ob(C)

Aut(F (X))

For a set E we endow Aut(E) with the compact open topology, see Topology,
Example 5.30.2. Of course this is the discrete topology when E is finite, which is
the case of interest in this section1. We endow Aut(F ) with the topology induced
from the product topology on the right hand side of (58.3.0.1). In particular, the
action maps

Aut(F )× F (X) −→ F (X)
are continuous when F (X) is given the discrete topology because this is true for
the action maps Aut(E) × E → E for any set E. The universal property of our
topology on Aut(F ) is the following: suppose that G is a topological group and
G→ Aut(F ) is a group homomorphism such that the induced actions G×F (X)→
F (X) are continuous for all X ∈ Ob(C) where F (X) has the discrete topology.
Then G→ Aut(F ) is continuous.
The following lemma tells us that the group of automorphisms of a functor to the
category of finite sets is automatically a profinite group.

Lemma 58.3.1.0BMR Let C be a category and let F : C → Sets be a functor. The map
(58.3.0.1) identifies Aut(F ) with a closed subgroup of

∏
X∈Ob(C) Aut(F (X)). In

particular, if F (X) is finite for all X, then Aut(F ) is a profinite group.

Proof. Let ξ = (γX) ∈
∏

Aut(F (X)) be an element not in Aut(F ). Then there ex-
ists a morphism f : X → X ′ of C and an element x ∈ F (X) such that F (f)(γX(x)) ̸=
γX′(F (f)(x)). Consider the open neighbourhood U = {γ ∈ Aut(F (X)) | γ(x) =
γX(x)} of γX and the open neighbourhood U ′ = {γ′ ∈ Aut(F (X ′)) | γ′(F (f)(x)) =
γX′(F (f)(x))}. Then U×U ′×

∏
X′′ ̸=X,X′ Aut(F (X ′′)) is an open neighbourhood of

ξ not meeting Aut(F ). The final statement follows from the fact that
∏

Aut(F (X))
is a profinite space if each F (X) is finite. □

Example 58.3.2.0BMS Let G be a topological group. An important example will be the
forgetful functor
(58.3.2.1)0BMT Finite-G-Sets −→ Sets
where Finite-G-Sets is the full subcategory of G-Sets whose objects are the finite
G-sets. The category G-Sets of G-sets is defined in Definition 58.2.1.

1When we discuss the pro-étale fundamental group the general case will be of interest.
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Let G be a topological group. The profinite completion of G will be the profinite
group

G∧ = limU⊂G open, normal, finite index G/U

with its profinite topology. Observe that the limit is cofiltered as a finite intersection
of open, normal subgroups of finite index is another. The universal property of the
profinite completion is that any continuous map G → H to a profinite group H
factors canonically as G→ G∧ → H.

Lemma 58.3.3.0BMU Let G be a topological group. The automorphism group of the
functor (58.3.2.1) endowed with its profinite topology from Lemma 58.3.1 is the
profinite completion of G.

Proof. Denote FG the functor (58.3.2.1). Any morphism X → Y in Finite-G-Sets
commutes with the action of G. Thus any g ∈ G defines an automorphism of FG and
we obtain a canonical homomorphism G → Aut(FG) of groups. Observe that any
finite G-set X is a finite disjoint union of G-sets of the form G/Hi with canonical
G-action where Hi ⊂ G is an open subgroup of finite index. Then Ui =

⋂
gHig

−1 is
open, normal, and has finite index. Moreover Ui acts trivially on G/Hi hence U =⋂
Ui acts trivially on FG(X). Hence the action G×FG(X)→ FG(X) is continuous.

By the universal property of the topology on Aut(FG) the map G → Aut(FG) is
continuous. By Lemma 58.3.1 and the universal property of profinite completion
there is an induced continuous group homomorphism

G∧ −→ Aut(FG)

Moreover, since G/U acts faithfully on G/U this map is injective. If the image is
dense, then the map is surjective and hence a homeomorphism by Topology, Lemma
5.17.8.

Let γ ∈ Aut(FG) and let X ∈ Ob(C). We will show there is a g ∈ G such that γ
and g induce the same action on FG(X). This will finish the proof. As before we
see that X is a finite disjoint union of G/Hi. With Ui and U as above, the finite
G-set Y = G/U surjects onto G/Hi for all i and hence it suffices to find g ∈ G
such that γ and g induce the same action on FG(G/U) = G/U . Let e ∈ G be the
neutral element and say that γ(eU) = g0U for some g0 ∈ G. For any g1 ∈ G the
morphism

Rg1 : G/U −→ G/U, gU 7−→ gg1U

of Finite-G-Sets commutes with the action of γ. Hence

γ(g1U) = γ(Rg1(eU)) = Rg1(γ(eU)) = Rg1(g0U) = g0g1U

Thus we see that g = g0 works. □

Recall that an exact functor is one which commutes with all finite limits and finite
colimits. In particular such a functor commutes with equalizers, coequalizers, fibred
products, pushouts, etc.

Lemma 58.3.4.0BMV Let G be a topological group. Let F : Finite-G-Sets → Sets be
an exact functor with F (X) finite for all X. Then F is isomorphic to the functor
(58.3.2.1).

https://stacks.math.columbia.edu/tag/0BMU
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Proof. Let X be a nonempty object of Finite-G-Sets. The diagram

X //

��

{∗}

��
{∗} // {∗}

is cocartesian. Hence we conclude that F (X) is nonempty. Let U ⊂ G be an open,
normal subgroup with finite index. Observe that

G/U ×G/U =
∐

gU∈G/U
G/U

where the summand corresponding to gU corresponds to the orbit of (eU, gU) on
the left hand side. Then we see that

F (G/U)× F (G/U) = F (G/U ×G/U) =
∐

gU∈G/U
F (G/U)

Hence |F (G/U)| = |G/U | as F (G/U) is nonempty. Thus we see that

limU⊂G open, normal, finite idex F (G/U)

is nonempty (Categories, Lemma 4.21.7). Pick γ = (γU ) an element in this limit.
Denote FG the functor (58.3.2.1). We can identify FG with the functor

X 7−→ colimU Mor(G/U,X)

where f : G/U → X corresponds to f(eU) ∈ X = FG(X) (details omitted). Hence
the element γ determines a well defined map

t : FG −→ F

Namely, given x ∈ X choose U and f : G/U → X sending eU to x and then
set tX(x) = F (f)(γU ). We will show that t induces a bijective map tG/U :
FG(G/U) → F (G/U) for any U . This implies in a straightforward manner that
t is an isomorphism (details omitted). Since |FG(G/U)| = |F (G/U)| it suffices to
show that tG/U is surjective. The image contains at least one element, namely
tG/U (eU) = F (idG/U )(γU ) = γU . For g ∈ G denote Rg : G/U → G/U right
multiplication. Then set of fixed points of F (Rg) : F (G/U) → F (G/U) is equal
to F (∅) = ∅ if g ̸∈ U because F commutes with equalizers. It follows that if
g1, . . . , g|G/U | is a system of representatives for G/U , then the elements F (Rgi)(γU )
are pairwise distinct and hence fill out F (G/U). Then

tG/U (giU) = F (Rgi)(γU )

and the proof is complete. □

Example 58.3.5.0BMW Let C be a category and let F : C → Sets be a functor such that
F (X) is finite for all X ∈ Ob(C). By Lemma 58.3.1 we see that G = Aut(F ) comes
endowed with the structure of a profinite topological group in a canonical manner.
We obtain a functor

(58.3.5.1)0BMX C −→ Finite-G-Sets, X 7−→ F (X)

where F (X) is endowed with the induced action of G. This action is continuous by
our construction of the topology on Aut(F ).

https://stacks.math.columbia.edu/tag/0BMW
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The purpose of defining Galois categories is to single out those pairs (C, F ) for
which the functor (58.3.5.1) is an equivalence. Our definition of a Galois category
is as follows.

Definition 58.3.6.0BMY Different from the
definition in [Gro71,
Exposé V,
Definition 5.1].
Compare with
[BS13, Definition
7.2.1].

Let C be a category and let F : C → Sets be a functor. The pair
(C, F ) is a Galois category if

(1) C has finite limits and finite colimits,
(2)0BMZ every object of C is a finite (possibly empty) coproduct of connected ob-

jects,
(3) F (X) is finite for all X ∈ Ob(C), and
(4) F reflects isomorphisms2 and is exact3.

Here we say X ∈ Ob(C) is connected if it is not initial and for any monomorphism
Y → X either Y is initial or Y → X is an isomorphism.

Warning: This definition is not the same (although eventually we’ll see it is equiva-
lent) as the definition given in most references. Namely, in [Gro71, Exposé V, Defi-
nition 5.1] a Galois category is defined to be a category equivalent to Finite-G-Sets
for some profinite group G. Then Grothendieck characterizes Galois categories by
a list of axioms (G1) – (G6) which are weaker than our axioms above. The motiva-
tion for our choice is to stress the existence of finite limits and finite colimits and
exactness of the functor F . The price we’ll pay for this later is that we’ll have to
work a bit harder to apply the results of this section.

Lemma 58.3.7.0BN0 Let (C, F ) be a Galois category. Let X → Y ∈ Arrows(C). Then
(1) F is faithful,
(2) X → Y is a monomorphism ⇔ F (X)→ F (Y ) is injective,
(3) X → Y is an epimorphism ⇔ F (X)→ F (Y ) is surjective,
(4) an object A of C is initial if and only if F (A) = ∅,
(5) an object Z of C is final if and only if F (Z) is a singleton,
(6) if X and Y are connected, then X → Y is an epimorphism,
(7)0BN1 if X is connected and a, b : X → Y are two morphisms then a = b as soon

as F (a) and F (b) agree on one element of F (X),
(8) if X =

∐
i=1,...,nXi and Y =

∐
j=1,...,m Yj where Xi, Yj are connected,

then there is map α : {1, . . . , n} → {1, . . . ,m} such that X → Y comes
from a collection of morphisms Xi → Yα(i).

Proof. Proof of (1). Suppose a, b : X → Y with F (a) = F (b). Let E be the
equalizer of a and b. Then F (E) = F (X) and we see that E = X because F
reflects isomorphisms.
Proof of (2). This is true because F turns the morphism X → X ×Y X into the
map F (X)→ F (X)×F (Y ) F (X) and F reflects isomorphisms.
Proof of (3). This is true because F turns the morphism Y ⨿X Y → Y into the
map F (Y )⨿F (X) F (Y )→ F (Y ) and F reflects isomorphisms.
Proof of (4). There exists an initial object A and certainly F (A) = ∅. On the other
hand, if X is an object with F (X) = ∅, then the unique map A → X induces a
bijection F (A)→ F (X) and hence A→ X is an isomorphism.

2Namely, given a morphism f of C if F (f) is an isomorphism, then f is an isomorphism.
3This means that F commutes with finite limits and colimits, see Categories, Section 4.23.

https://stacks.math.columbia.edu/tag/0BMY
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Proof of (5). There exists a final object Z and certainly F (Z) is a singleton. On the
other hand, if X is an object with F (X) a singleton, then the unique map X → Z
induces a bijection F (X)→ F (Z) and hence X → Z is an isomorphism.

Proof of (6). The equalizer E of the two maps Y → Y ⨿X Y is not an initial object
of C because X → Y factors through E and F (X) ̸= ∅. Hence E = Y and we
conclude.

Proof of (7). The equalizer E of a and b comes with a monomorphism E → X and
F (E) ⊂ F (X) is the set of elements where F (a) and F (b) agree. To finish use that
either E is initial or E = X.

Proof of (8). For each i, j we see that Eij = Xi ×Y Yj is either initial or equal to
Xi. Picking s ∈ F (Xi) we see that Eij = Xi if and only if s maps to an element of
F (Yj) ⊂ F (Y ), hence this happens for a unique j = α(i). □

By the lemma above we see that, given a connected object X of a Galois category
(C, F ), the automorphism group Aut(X) has order at most |F (X)|. Namely, given
s ∈ F (X) and g ∈ Aut(X) we see that g(s) = s if and only if g = idX by (7). We
say X is Galois if equality holds. Equivalently, X is Galois if it is connected and
Aut(X) acts transitively on F (X).

Lemma 58.3.8.0BN2 Let (C, F ) be a Galois category. For any connected object X of C
there exists a Galois object Y and a morphism Y → X.

Proof. We will use the results of Lemma 58.3.7 without further mention. Let n =
|F (X)|. Consider Xn endowed with its natural action of Sn. Let

Xn =
∐

t∈T
Zt

be the decomposition into connected objects. Pick a t such that F (Zt) contains
(s1, . . . , sn) with si pairwise distinct. If (s′

1, . . . , s
′
n) ∈ F (Zt) is another element,

then we claim s′
i are pairwise distinct as well. Namely, if not, say s′

i = s′
j , then Zt

is the image of an connected component of Xn−1 under the diagonal morphism

∆ij : Xn−1 −→ Xn

Since morphisms of connected objects are epimorphisms and induce surjections
after applying F it would follow that si = sj which is not the case.

Let G ⊂ Sn be the subgroup of elements with g(Zt) = Zt. Looking at the action
of Sn on

F (X)n = F (Xn) =
∐

t′∈T
F (Zt′)

we see that G = {g ∈ Sn | g(s1, . . . , sn) ∈ F (Zt)}. Now pick a second element
(s′

1, . . . , s
′
n) ∈ F (Zt). Above we have seen that s′

i are pairwise distinct. Thus we
can find a g ∈ Sn with g(s1, . . . , sn) = (s′

1, . . . , s
′
n). In other words, the action of G

on F (Zt) is transitive and the proof is complete. □

Here is a key lemma.

Lemma 58.3.9.0BN3 Compare with
[BS13, Definition
7.2.4].

Let (C, F ) be a Galois category. Let G = Aut(F ) be as in Example
58.3.5. For any connected X in C the action of G on F (X) is transitive.

https://stacks.math.columbia.edu/tag/0BN2
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58.3. GALOIS CATEGORIES 4635

Proof. We will use the results of Lemma 58.3.7 without further mention. Let I be
the set of isomorphism classes of Galois objects in C. For each i ∈ I let Xi be a
representative of the isomorphism class. Choose γi ∈ F (Xi) for each i ∈ I. We
define a partial ordering on I by setting i ≥ i′ if and only if there is a morphism
fii′ : Xi → Xi′ . Given such a morphism we can post-compose by an automorphism
Xi′ → Xi′ to assure that F (fii′)(γi) = γi′ . With this normalization the morphism
fii′ is unique. Observe that I is a directed partially ordered set: (Categories,
Definition 4.21.1) if i1, i2 ∈ I there exists a Galois object Y and a morphism Y →
Xi1 ×Xi2 by Lemma 58.3.8 applied to a connected component of Xi1 ×Xi2 . Then
Y ∼= Xi for some i ∈ I and i ≥ i1, i ≥ I2.
We claim that the functor F is isomorphic to the functor F ′ which sends X to

F ′(X) = colimI MorC(Xi, X)
via the transformation of functors t : F ′ → F defined as follows: given f : Xi → X
we set tX(f) = F (f)(γi). Using (7) we find that tX is injective. To show surjectivity,
let γ ∈ F (X). Then we can immediately reduce to the case where X is connected
by the definition of a Galois category. Then we may assume X is Galois by Lemma
58.3.8. In this case X is isomorphic to Xi for some i and we can choose the
isomorphism Xi → X such that γi maps to γ (by definition of Galois objects). We
conclude that t is an isomorphism.
Set Ai = Aut(Xi). We claim that for i ≥ i′ there is a canonical map hii′ : Ai → Ai′

such that for all a ∈ Ai the diagram
Xi

a

��

fii′
// Xi′

hii′ (a)
��

Xi

fii′ // Xi′

commutes. Namely, just let hii′(a) = a′ : Xi′ → Xi′ be the unique automorphism
such that F (a′)(γi′) = F (fii′ ◦ a)(γi). As before this makes the diagram commute
and moreover the choice is unique. It follows that hi′i′′ ◦ hii′ = hii′′ if i ≥ i′ ≥ i′′.
Since F (Xi)→ F (Xi′) is surjective we see that Ai → Ai′ is surjective. Taking the
inverse limit we obtain a group

A = limI Ai

This is a profinite group since the automorphism groups are finite. The map A→ Ai
is surjective for all i by Categories, Lemma 4.21.7.
Since elements of A act on the inverse system Xi we get an action of A (on the
right) on F ′ by pre-composing. In other words, we get a homomorphism Aopp → G.
Since A→ Ai is surjective we conclude that G acts transitively on F (Xi) for all i.
Since every connected object is dominated by one of the Xi we conclude the lemma
is true. □

Proposition 58.3.10.0BN4 This is a weak
version of [Gro71,
Exposé V]. The
proof is borrowed
from [BS13,
Theorem 7.2.5].

Let (C, F ) be a Galois category. Let G = Aut(F ) be as in
Example 58.3.5. The functor F : C → Finite-G-Sets (58.3.5.1) an equivalence.

Proof. We will use the results of Lemma 58.3.7 without further mention. In par-
ticular we know the functor is faithful. By Lemma 58.3.9 we know that for any
connected X the action of G on F (X) is transitive. Hence F preserves the de-
composition into connected components (existence of which is an axiom of a Galois

https://stacks.math.columbia.edu/tag/0BN4
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category). Let X and Y be objects and let s : F (X) → F (Y ) be a map. Then
the graph Γs ⊂ F (X) × F (Y ) of s is a union of connected components. Hence
there exists a union of connected components Z of X × Y , which comes equipped
with a monomorphism Z → X × Y , with F (Z) = Γs. Since F (Z) → F (X) is
bijective we see that Z → X is an isomorphism and we conclude that s = F (f)
where f : X ∼= Z → Y is the composition. Hence F is fully faithful.

To finish the proof we show that F is essentially surjective. It suffices to show that
G/H is in the essential image for any open subgroup H ⊂ G of finite index. By
definition of the topology on G there exists a finite collection of objects Xi such
that

Ker(G −→
∏

i
Aut(F (Xi)))

is contained in H. We may assume Xi is connected for all i. We can choose a Galois
object Y mapping to a connected component of

∏
Xi using Lemma 58.3.8. Choose

an isomorphism F (Y ) = G/U in G-sets for some open subgroup U ⊂ G. As Y
is Galois, the group Aut(Y ) = AutG-Sets(G/U) acts transitively on F (Y ) = G/U .
This implies that U is normal. Since F (Y ) surjects onto F (Xi) for each i we see
that U ⊂ H. Let M ⊂ Aut(Y ) be the finite subgroup corresponding to

(H/U)opp ⊂ (G/U)opp = AutG-Sets(G/U) = Aut(Y ).

Set X = Y/M , i.e., X is the coequalizer of the arrows m : Y → Y , m ∈ M . Since
F is exact we see that F (X) = G/H and the proof is complete. □

Lemma 58.3.11.0BN5 Let (C, F ) and (C′, F ′) be Galois categories. Let H : C → C′ be
an exact functor. There exists an isomorphism t : F ′ ◦ H → F . The choice of t
determines a continuous homomorphism h : G′ = Aut(F ′) → Aut(F ) = G and a
2-commutative diagram

C
H

//

��

C′

��
Finite-G-Sets h // Finite-G′-Sets

The map h is independent of t up to an inner automorphism of G. Conversely,
given a continuous homomorphism h : G′ → G there is an exact functor H : C → C′

and an isomorphism t recovering h as above.

Proof. By Proposition 58.3.10 and Lemma 58.3.3 we may assume C = Finite-G-Sets
and F is the forgetful functor and similarly for C′. Thus the existence of t follows
from Lemma 58.3.4. The map h comes from transport of structure via t. The
commutativity of the diagram is obvious. Uniqueness of h up to inner conjugation
by an element of G comes from the fact that the choice of t is unique up to an
element of G. The final statement is straightforward. □

58.4. Functors and homomorphisms

0BTQ Let (C, F ), (C′, F ′), (C′′, F ′′) be Galois categories. Set G = Aut(F ), G′ = Aut(F ′),
and G′′ = Aut(F ′′). Let H : C → C′ and H ′ : C′ → C′′ be exact functors. Let
h : G′ → G and h′ : G′′ → G′ be the corresponding continuous homomorphism as

https://stacks.math.columbia.edu/tag/0BN5
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in Lemma 58.3.11. In this section we consider the corresponding 2-commutative
diagram

(58.4.0.1)0BTR
C

H
//

��

C′
H′

//

��

C′′

��
Finite-G-Sets h // Finite-G′-Sets h′

// Finite-G′′-Sets
and we relate exactness properties of the sequence 1 → G′′ → G′ → G → 1 to
properties of the functors H and H ′.
Lemma 58.4.1.0BN6 In diagram (58.4.0.1) the following are equivalent

(1) h : G′ → G is surjective,
(2) H : C → C′ is fully faithful,
(3) if X ∈ Ob(C) is connected, then H(X) is connected,
(4) if X ∈ Ob(C) is connected and there is a morphism ∗′ → H(X) in C′, then

there is a morphism ∗ → X, and
(5) for any object X of C the map MorC(∗, X)→ MorC′(∗′, H(X)) is bijective.

Here ∗ and ∗′ are final objects of C and C′.
Proof. The implications (5) ⇒ (4) and (2) ⇒ (5) are clear.
Assume (3). Let X be a connected object of C and let ∗′ → H(X) be a morphism.
Since H(X) is connected by (3) we see that ∗′ → H(X) is an isomorphism. Hence
the G′-set corresponding to H(X) has exactly one element, which means the G-
set corresponding to X has one element which means X is isomorphic to the final
object of C, in particular there is a map ∗ → X. In this way we see that (3) ⇒ (4).
If (1) is true, then the functor Finite-G-Sets → Finite-G′-Sets is fully faithful: in
this case a map of G-sets commutes with the action of G if and only if it commutes
with the action of G′. Thus (1) ⇒ (2).
If (1) is true, then for a G-set X the G-orbits and G′-orbits agree. Thus (1) ⇒ (3).
To finish the proof it suffices to show that (4) implies (1). If (1) is false, i.e., if h
is not surjective, then there is an open subgroup U ⊂ G containing h(G′) which is
not equal to G. Then the finite G-set M = G/U has a transitive action but G′ has
a fixed point. The object X of C corresponding to M would contradict (3). In this
way we see that (3) ⇒ (1) and the proof is complete. □

Lemma 58.4.2.0BS8 In diagram (58.4.0.1) the following are equivalent
(1) h ◦ h′ is trivial, and
(2) the image of H ′ ◦H consists of objects isomorphic to finite coproducts of

final objects.
Proof. We may replace H and H ′ by the canonical functors Finite-G-Sets →
Finite-G′-Sets → Finite-G′′-Sets determined by h and h′. Then we are saying
that the action of G′′ on every G-set is trivial if and only if the homomorphism
G′′ → G is trivial. This is clear. □

Lemma 58.4.3.0BS9 In diagram (58.4.0.1) the following are equivalent

(1) the sequence G′′ h′

−→ G′ h−→ G → 1 is exact in the following sense: h
is surjective, h ◦ h′ is trivial, and Ker(h) is the smallest closed normal
subgroup containing Im(h′),
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(2) H is fully faithful and an object X ′ of C′ is in the essential image of H
if and only if H ′(X ′) is isomorphic to a finite coproduct of final objects,
and

(3) H is fully faithful, H ◦H ′ sends every object to a finite coproduct of final
objects, and for an object X ′ of C′ such that H ′(X ′) is a finite coproduct
of final objects there exists an object X of C and an epimorphism H(X)→
X ′.

Proof. By Lemmas 58.4.1 and 58.4.2 we may assume that H is fully faithful, h is
surjective, H ′ ◦H maps objects to disjoint unions of the final object, and h ◦ h′ is
trivial. Let N ⊂ G′ be the smallest closed normal subgroup containing the image
of h′. It is clear that N ⊂ Ker(h). We may assume the functors H and H ′ are the
canonical functors Finite-G-Sets→ Finite-G′-Sets→ Finite-G′′-Sets determined by
h and h′.
Suppose that (2) holds. This means that for a finite G′-set X ′ such that G′′ acts
trivially, the action of G′ factors through G. Apply this to X ′ = G′/U ′N where U ′

is a small open subgroup of G′. Then we see that Ker(h) ⊂ U ′N for all U ′. Since
N is closed this implies Ker(h) ⊂ N , i.e., (1) holds.
Suppose that (1) holds. This means that N = Ker(h). Let X ′ be a finite G′-set
such that G′′ acts trivially. This means that Ker(G′ → Aut(X ′)) is a closed normal
subgroup containing Im(h′). Hence N = Ker(h) is contained in it and the G′-action
on X ′ factors through G, i.e., (2) holds.
Suppose that (3) holds. This means that for a finite G′-set X ′ such that G′′ acts
trivially, there is a surjection of G′-sets X → X ′ where X is a G-set. Clearly this
means the action of G′ on X ′ factors through G, i.e., (2) holds.
The implication (2) ⇒ (3) is immediate. This finishes the proof. □

Lemma 58.4.4.0BN7 In diagram (58.4.0.1) the following are equivalent
(1) h′ is injective, and
(2) for every connected object X ′′ of C′′ there exists an object X ′ of C′ and a

diagram
X ′′ ← Y ′′ → H(X ′)

in C′′ where Y ′′ → X ′′ is an epimorphism and Y ′′ → H(X ′) is a monomor-
phism.

Proof. We may replace H ′ by the corresponding functor between the categories of
finite G′-sets and finite G′′-sets.
Assume h′ : G′′ → G′ is injective. Let H ′′ ⊂ G′′ be an open subgroup. Since the
topology on G′′ is the induced topology from G′ there exists an open subgroup
H ′ ⊂ G′ such that (h′)−1(H ′) ⊂ H ′′. Then the desired diagram is

G′′/H ′′ ← G′′/(h′)−1(H ′)→ G′/H ′

Conversely, assume (2) holds for the functor Finite-G′-Sets→ Finite-G′′-Sets. Let
g′′ ∈ Ker(h′). Pick any open subgroup H ′′ ⊂ G′′. By assumption there exists a
finite G′-set X ′ and a diagram

G′′/H ′′ ← Y ′′ → X ′

of G′′-sets with the left arrow surjective and the right arrow injective. Since g′′ is
in the kernel of h′ we see that g′′ acts trivially on X ′. Hence g′′ acts trivially on Y ′′
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and hence trivially on G′′/H ′′. Thus g′′ ∈ H ′′. As this holds for all open subgroups
we conclude that g′′ is the identity element as desired. □

Lemma 58.4.5.0BTS In diagram (58.4.0.1) the following are equivalent
(1) the image of h′ is normal, and
(2) for every connected object X ′ of C′ such that there is a morphism from

the final object of C′′ to H ′(X ′) we have that H ′(X ′) is isomorphic to a
finite coproduct of final objects.

Proof. This translates into the following statement for the continuous group ho-
momorphism h′ : G′′ → G′: the image of h′ is normal if and only if every open
subgroup U ′ ⊂ G′ which contains h′(G′′) also contains every conjugate of h′(G′′).
The result follows easily from this; some details omitted. □

58.5. Finite étale morphisms

0BL6 In this section we prove enough basic results on finite étale morphisms to be able
to construct the étale fundamental group.
Let X be a scheme. We will use the notation FÉtX to denote the category of
schemes finite and étale over X. Thus

(1) an object of FÉtX is a finite étale morphism Y → X with target X, and
(2) a morphism in FÉtX from Y → X to Y ′ → X is a morphism Y → Y ′

making the diagram

Y //

  

Y ′

~~
X

commute.
We will often call an object of FÉtX a finite étale cover of X (even if Y is empty).
It turns out that there is a stack p : FÉt→ Sch over the category of schemes whose
fibre over X is the category FÉtX just defined. See Examples of Stacks, Section
95.6.

Example 58.5.1.0BN8 Let k be an algebraically closed field and X = Spec(k). In this
case FÉtX is equivalent to the category of finite sets. This works more generally
when k is separably algebraically closed. The reason is that a scheme étale over
k is the disjoint union of spectra of fields finite separable over k, see Morphisms,
Lemma 29.36.7.

Lemma 58.5.2.0BN9 Let X be a scheme. The category FÉtX has finite limits and finite
colimits and for any morphism X ′ → X the base change functor FÉtX → FÉtX′ is
exact.

Proof. Finite limits and left exactness. By Categories, Lemma 4.18.4 it suffices to
show that FÉtX has a final object and fibred products. This is clear because the
category of all schemes over X has a final object (namely X) and fibred products.
Also, fibred products of schemes finite étale over X are finite étale over X. More-
over, it is clear that base change commutes with these operations and hence base
change is left exact (Categories, Lemma 4.23.2).
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Finite colimits and right exactness. By Categories, Lemma 4.18.7 it suffices to show
that FÉtX has finite coproducts and coequalizers. Finite coproducts are given by
disjoint unions (the empty coproduct is the empty scheme). Let a, b : Z → Y be
two morphisms of FÉtX . Since Z → X and Y → X are finite étale we can write
Z = Spec(C) and Y = Spec(B) for some finite locally free OX -algebras C and B.
The morphisms a, b induce two maps a♯, b♯ : B → C. Let A = Eq(a♯, b♯) be their
equalizer. If

Spec(A) −→ X

is finite étale, then it is clear that this is the coequalizer (after all we can write
any object of FÉtX as the relative spectrum of a sheaf of OX -algebras). This we
may do after replacing X by the members of an étale covering (Descent, Lemmas
35.23.23 and 35.23.29). Thus by Étale Morphisms, Lemma 41.18.3 we may assume
that Y =

∐
i=1,...,nX and Z =

∐
j=1,...,mX. Then

C =
∏

1≤j≤m
OX and B =

∏
1≤i≤n

OX

After a further replacement by the members of an open covering we may assume
that a, b correspond to maps as, bs : {1, . . . ,m} → {1, . . . , n}, i.e., the summand X
of Z corresponding to the index j maps into the summand X of Y corresponding
to the index as(j), resp. bs(j) under the morphism a, resp. b. Let {1, . . . , n} → T
be the coequalizer of as, bs. Then we see that

A =
∏

t∈T
OX

whose spectrum is certainly finite étale over X. We omit the verification that this
is compatible with base change. Thus base change is a right exact functor. □

Remark 58.5.3.0BNA Let X be a scheme. Consider the natural functors F1 : FÉtX →
Sch and F2 : FÉtX → Sch/X. Then

(1) The functors F1 and F2 commute with finite colimits.
(2) The functor F2 commutes with finite limits,
(3) The functor F1 commutes with connected finite limits, i.e., with equalizers

and fibre products.
The results on limits are immediate from the discussion in the proof of Lemma
58.5.2 and Categories, Lemma 4.16.2. It is clear that F1 and F2 commute with
finite coproducts. By the dual of Categories, Lemma 4.23.2 we need to show that
F1 and F2 commute with coequalizers. In the proof of Lemma 58.5.2 we saw that
coequalizers in FÉtX look étale locally like this∐

j∈J U
a //

b
//
∐
i∈I U

// ∐
t∈Coeq(a,b) U

which is certainly a coequalizer in the category of schemes. Hence the statement
follows from the fact that being a coequalizer is fpqc local as formulated precisely
in Descent, Lemma 35.13.8.

Lemma 58.5.4.0BL7 Let X be a scheme. Given U, V finite étale over X there exists a
scheme W finite étale over X such that

MorX(X,W ) = MorX(U, V )
and such that the same remains true after any base change.
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Proof. By More on Morphisms, Lemma 37.68.4 there exists a scheme W represent-
ing MorX(U, V ). (Use that an étale morphism is locally quasi-finite by Morphisms,
Lemmas 29.36.6 and that a finite morphism is separated.) This scheme clearly sat-
isfies the formula after any base change. To finish the proof we have to show that
W → X is finite étale. This we may do after replacing X by the members of an
étale covering (Descent, Lemmas 35.23.23 and 35.23.6). Thus by Étale Morphisms,
Lemma 41.18.3 we may assume that U =

∐
i=1,...,nX and V =

∐
j=1,...,mX. In

this case W =
∐
α:{1,...,n}→{1,...,m} X by inspection (details omitted) and the proof

is complete. □

Let X be a scheme. A geometric point of X is a morphism Spec(k)→ X where k
is algebraically closed. Such a point is usually denoted x, i.e., by an overlined small
case letter. We often use x to denote the scheme Spec(k) as well as the morphism,
and we use κ(x) to denote k. We say x lies over x to indicate that x ∈ X is the
image of x. We will discuss this further in Étale Cohomology, Section 59.29. Given
x and an étale morphism U → X we can consider

|Ux| : the underlying set of points of the scheme Ux = U ×X x

Since Ux as a scheme over x is a disjoint union of copies of x (Morphisms, Lemma
29.36.7) we can also describe this set as

|Ux| =

commutative
diagrams

x

x ��

u
// U

��
X


The assignment U 7→ |Ux| is a functor which is often denoted Fx.

Lemma 58.5.5.0BNB Let X be a connected scheme. Let x be a geometric point. The
functor

Fx : FÉtX −→ Sets, Y 7−→ |Yx|
defines a Galois category (Definition 58.3.6).

Proof. After identifying FÉtx with the category of finite sets (Example 58.5.1) we
see that our functor Fx is nothing but the base change functor for the morphism
x→ X. Thus we see that FÉtX has finite limits and finite colimits and that Fx is
exact by Lemma 58.5.2. We will also use that finite limits in FÉtX agree with the
corresponding finite limits in the category of schemes over X, see Remark 58.5.3.
If Y ′ → Y is a monomorphism in FÉtX then we see that Y ′ → Y ′ ×Y Y ′ is an
isomorphism, and hence Y ′ → Y is a monomorphism of schemes. It follows that
Y ′ → Y is an open immersion (Étale Morphisms, Theorem 41.14.1). Since Y ′ is
finite over X and Y separated over X, the morphism Y ′ → Y is finite (Morphisms,
Lemma 29.44.14), hence closed (Morphisms, Lemma 29.44.11), hence it is the inclu-
sion of an open and closed subscheme of Y . It follows that Y is a connected objects
of the category FÉtX (as in Definition 58.3.6) if and only if Y is connected as a
scheme. Then it follows from Topology, Lemma 5.7.7 that Y is a finite coproduct
of its connected components both as a scheme and in the sense of Definition 58.3.6.
Let Y → Z be a morphism in FÉtX which induces a bijection Fx(Y ) → Fx(Z).
We have to show that Y → Z is an isomorphism. By the above we may assume Z
is connected. Since Y → Z is finite étale and hence finite locally free it suffices to
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show that Y → Z is finite locally free of degree 1. This is true in a neighbourhood
of any point of Z lying over x and since Z is connected and the degree is locally
constant we conclude. □

58.6. Fundamental groups

0BQ8 In this section we define Grothendieck’s algebraic fundamental group. The following
definition makes sense thanks to Lemma 58.5.5.

Definition 58.6.1.0BNC Let X be a connected scheme. Let x be a geometric point of X.
The fundamental group of X with base point x is the group

π1(X,x) = Aut(Fx)

of automorphisms of the fibre functor Fx : FÉtX → Sets endowed with its canonical
profinite topology from Lemma 58.3.1.

Combining the above with the material from Section 58.3 we obtain the following
theorem.

Theorem 58.6.2.0BND Let X be a connected scheme. Let x be a geometric point of X.
(1) The fibre functor Fx defines an equivalence of categories

FÉtX −→ Finite-π1(X,x)-Sets

(2) Given a second geometric point x′ of X there exists an isomorphism t :
Fx → Fx′ . This gives an isomorphism π1(X,x) → π1(X,x′) compatible
with the equivalences in (1). This isomorphism is independent of t up to
inner conjugation.

(3) Given a morphism f : X → Y of connected schemes denote y = f ◦ x.
There is a canonical continuous homomorphism

f∗ : π1(X,x)→ π1(Y, y)

such that the diagram

FÉtY base change
//

Fy

��

FÉtX
Fx

��
Finite-π1(Y, y)-Sets f∗ // Finite-π1(X,x)-Sets

is commutative.

Proof. Part (1) follows from Lemma 58.5.5 and Proposition 58.3.10. Part (2) is a
special case of Lemma 58.3.11. For part (3) observe that the diagram

FÉtY //

Fy

��

FÉtX
Fx
��

Sets Sets

is commutative (actually commutative, not just 2-commutative) because y = f ◦x.
Hence we can apply Lemma 58.3.11 with the implied transformation of functors to
get (3). □
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Lemma 58.6.3.0BNE Let K be a field and set X = Spec(K). Let K be an algebraic
closure and denote x : Spec(K) → X the corresponding geometric point. Let
Ksep ⊂ K be the separable algebraic closure.

(1) The functor of Lemma 58.2.2 induces an equivalence

FÉtX −→ Finite-Gal(Ksep/K)-Sets.

compatible with Fx and the functor Finite-Gal(Ksep/K)-Sets→ Sets.
(2) This induces a canonical isomorphism

Gal(Ksep/K) −→ π1(X,x)

of profinite topological groups.

Proof. The functor of Lemma 58.2.2 is the same as the functor Fx because for any
Y étale over X we have

MorX(Spec(K), Y ) = MorX(Spec(Ksep), Y )

Namely, as seen in the proof of Lemma 58.2.2 we have Y =
∐
i∈I Spec(Li) with

Li/K finite separable over K. Hence any K-algebra homomorphism Li → K factors
through Ksep. Also, note that Fx(Y ) is finite if and only if I is finite if and only if
Y → X is finite étale. This proves (1).

Part (2) is a formal consequence of (1), Lemma 58.3.11, and Lemma 58.3.3. (Please
also see the remark below.) □

Remark 58.6.4.0BQ9 In the situation of Lemma 58.6.3 let us give a more explicit
construction of the isomorphism Gal(Ksep/K) → π1(X,x) = Aut(Fx). Observe
that Gal(Ksep/K) = Aut(K/K) as K is the perfection of Ksep. Since Fx(Y ) =
MorX(Spec(K), Y ) we may consider the map

Aut(K/K)× Fx(Y )→ Fx(Y ), (σ, y) 7→ σ · y = y ◦ Spec(σ)

This is an action because

στ · y = y ◦ Spec(στ) = y ◦ Spec(τ) ◦ Spec(σ) = σ · (τ · y)

The action is functorial in Y ∈ FÉtX and we obtain the desired map.

58.7. Galois covers of connected schemes

03SF Let X be a connected scheme with geometric point x. Since Fx : FÉtX → Sets
is a Galois category (Lemma 58.5.5) the material in Section 58.3 applies. In this
section we explicity transfer some of the terminology and results to the setting of
schemes and finite étale morphisms.

We will say a finite étale morphism Y → X is a Galois cover if Y defines a Galois
object of FÉtX . For a finite étale morphism Y → X with G = AutX(Y ) the
following are equivalent

(1) Y is a Galois cover of X,
(2) Y is connected and |G| is equal to the degree of Y → X,
(3) Y is connected and G acts transitively on Fx(Y ), and
(4) Y is connected and G acts simply transitively on Fx(Y ).
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This follows immediately from the discussion in Section 58.3.
For any finite étale morphism f : Y → X with Y connected, there is a finite étale
Galois cover Y ′ → X which dominates Y (Lemma 58.3.8).
The Galois objects of FÉtX correspond, via the equivalence

Fx : FÉtX → Finite-π1(X,x)-Sets
of Theorem 58.6.2, with the finite π1(X,x)-Sets of the form G = π1(X,x)/H where
H is a normal open subgroup. Equivalently, if G is a finite group and π1(X,x)→ G
is a continuous surjection, then G viewed as a π1(X,x)-set corresponds to a Galois
covering.
If Yi → X, i = 1, 2 are finite étale Galois covers with Galois groups Gi, then there
exists a finite étale Galois cover Y → X whose Galois group is a subgroup ofG1×G2.
Namely, take the corresponding continuous homomorphisms π1(X,x)→ Gi and let
G be the image of the induced continuous homomorphism π1(X,x)→ G1 ×G2.

58.8. Topological invariance of the fundamental group

0BTT The main result of this section is that a universal homeomorphism of connected
schemes induces an isomorphism on fundamental groups. See Proposition 58.8.4.
Instead of directly proving two schemes have the same fundamental group, we often
prove that their categories of finite étale coverings are the same. This of course
implies that their fundamental groups are equal provided they are connected.

Lemma 58.8.1.0BQA Let f : X → Y be a morphism of quasi-compact and quasi-
separated schemes such that the base change functor FÉtY → FÉtX is an equiva-
lence of categories. In this case

(1) f induces a homeomorphism π0(X)→ π0(Y ),
(2) if X or equivalently Y is connected, then π1(X,x) = π1(Y, y).

Proof. Let Y = Y0 ⨿ Y1 be a decomposition into nonempty open and closed sub-
schemes. We claim that f(X) meets both Yi. Namely, if not, say f(X) ⊂ Y1, then
we can consider the finite étale morphism V = Y1 → Y . This is not an isomorphism
but V ×Y X → X is an isomorphism, which is a contradiction.
Suppose that X = X0 ⨿X1 is a decomposition into open and closed subschemes.
Consider the finite étale morphism U = X1 → X. Then U = X×Y V for some finite
étale morphism V → Y . The degree of the morphism V → Y is locally constant,
hence we obtain a decomposition Y =

∐
d≥0 Yd into open and closed subschemes

such that V → Y has degree d over Yd. Since f−1(Yd) = ∅ for d > 1 we conclude
that Yd = ∅ for d > 1 by the above. And we conclude that f−1(Yi) = Xi for
i = 0, 1.
It follows that f−1 induces a bijection between the set of open and closed sub-
sets of Y and the set of open and closed subsets of X. Note that X and Y are
spectral spaces, see Properties, Lemma 28.2.4. By Topology, Lemma 5.12.10 the
lattice of open and closed subsets of a spectral space determines the set of con-
nected components. Hence π0(X) → π0(Y ) is bijective. Since π0(X) and π0(Y )
are profinite spaces (Topology, Lemma 5.22.5) we conclude that π0(X) → π0(Y )
is a homeomorphism by Topology, Lemma 5.17.8. This proves (1). Part (2) is
immediate. □
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The following lemma tells us that the fundamental group of a henselian pair is the
fundamental group of the closed subset.

Lemma 58.8.2.09ZS Let (A, I) be a henselian pair. Set X = Spec(A) and Z =
Spec(A/I). The functor

FÉtX −→ FÉtZ , U 7−→ U ×X Z

is an equivalence of categories.

Proof. This is a translation of More on Algebra, Lemma 15.13.2. □

The following lemma tells us that the fundamental group of a thickening is the
same as the fundamental group of the original. We will use this in the proof of the
strong proposition concerning universal homeomorphisms below.

Lemma 58.8.3.0BQB Let X ⊂ X ′ be a thickening of schemes. The functor

FÉtX′ −→ FÉtX , U ′ 7−→ U ′ ×X′ X

is an equivalence of categories.

Proof. For a discussion of thickenings see More on Morphisms, Section 37.2. Let
U ′ → X ′ be an étale morphism such that U = U ′ ×X′ X → X is finite étale. Then
U ′ → X ′ is finite étale as well. This follows for example from More on Morphisms,
Lemma 37.3.4. Now, if X ⊂ X ′ is a finite order thickening then this remark
combined with Étale Morphisms, Theorem 41.15.2 proves the lemma. Below we
will prove the lemma for general thickenings, but we suggest the reader skip the
proof.

Let X ′ =
⋃
X ′
i be an affine open covering. Set Xi = X ×X′ X ′

i, X ′
ij = X ′

i ∩ X ′
j ,

Xij = X ×X′ X ′
ij , X ′

ijk = X ′
i ∩ X ′

j ∩ X ′
k, Xijk = X ×X′ X ′

ijk. Suppose that
we can prove the theorem for each of the thickenings Xi ⊂ X ′

i, Xij ⊂ X ′
ij , and

Xijk ⊂ X ′
ijk. Then the result follows for X ⊂ X ′ by relative glueing of schemes,

see Constructions, Section 27.2. Observe that the schemes X ′
i, X ′

ij , X ′
ijk are each

separated as open subschemes of affine schemes. Repeating the argument one more
time we reduce to the case where the schemes X ′

i, X ′
ij , X ′

ijk are affine.

In the affine case we have X ′ = Spec(A′) and X = Spec(A′/I ′) where I ′ is a locally
nilpotent ideal. Then (A′, I ′) is a henselian pair (More on Algebra, Lemma 15.11.2)
and the result follows from Lemma 58.8.2 (which is much easier in this case). □

The “correct” way to prove the following proposition would be to deduce it from
the invariance of the étale site, see Étale Cohomology, Theorem 59.45.2.

Proposition 58.8.4.0BQN Let f : X → Y be a universal homeomorphism of schemes.
Then

FÉtY −→ FÉtX , V 7−→ V ×Y X
is an equivalence. Thus if X and Y are connected, then f induces an isomorphism
π1(X,x)→ π1(Y, y) of fundamental groups.

Proof. Recall that a universal homeomorphism is the same thing as an integral,
universally injective, surjective morphism, see Morphisms, Lemma 29.45.5. In par-
ticular, the diagonal ∆ : X → X ×Y X is a thickening by Morphisms, Lemma
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29.10.2. Thus by Lemma 58.8.3 we see that given a finite étale morphism U → X
there is a unique isomorphism

φ : U ×Y X → X ×Y U
of schemes finite étale over X ×Y X which pulls back under ∆ to id : U → U over
X. Since X → X ×Y X ×Y X is a thickening as well (it is bijective and a closed
immersion) we conclude that (U,φ) is a descent datum relative to X/Y . By Étale
Morphisms, Proposition 41.20.6 we conclude that U = X ×Y V for some V → Y
quasi-compact, separated, and étale. We omit the proof that V → Y is finite
(hints: the morphism U → V is surjective and U → Y is integral). We conclude
that FÉtY → FÉtX is essentially surjective.
Arguing in the same manner as above we see that given V1 → Y and V2 → Y
in FÉtY any morphism a : X ×Y V1 → X ×Y V2 over X is compatible with the
canonical descent data. Thus a descends to a morphism V1 → V2 over Y by Étale
Morphisms, Lemma 41.20.3. □

58.9. Finite étale covers of proper schemes

0BQC In this section we show that the fundamental group of a connected proper scheme
over a henselian local ring is the same as the fundamental group of its special fibre.
We also prove a variant of this result for a henselian pair.
We also show that the fundamental group of a connected proper scheme over an
algebraically closed field k does not change if we replace k by an algebraically closed
extension.
Instead of stating and proving the results in the connected case we prove the results
in general and we leave it to the reader to deduce the result for fundamental groups
using Lemma 58.8.1.

Lemma 58.9.1.0A48 Let A be a henselian local ring. Let X be a proper scheme over A
with closed fibre X0. Then the functor

FÉtX → FÉtX0 , U 7−→ U0 = U ×X X0

is an equivalence of categories.

Proof. The proof given here is an example of applying algebraization and approxi-
mation. We proceed in a number of stages.
Essential surjectivity when A is a complete local Noetherian ring. Let Xn =
X ×Spec(A) Spec(A/mn+1). By Étale Morphisms, Theorem 41.15.2 the inclusions

X0 → X1 → X2 → . . .

induce equivalence of categories between the category of schemes étale over X0 and
the category of schemes étale over Xn. Moreover, if Un → Xn corresponds to a
finite étale morphism U0 → X0, then Un → Xn is finite too, for example by More on
Morphisms, Lemma 37.3.3. In this case the morphism U0 → Spec(A/m) is proper as
X0 is proper over A/m. Thus we may apply Grothendieck’s algebraization theorem
(in the form of Cohomology of Schemes, Lemma 30.28.2) to see that there is a finite
morphism U → X whose restriction to X0 recovers U0. By More on Morphisms,
Lemma 37.12.3 we see that U → X is étale at every point of U0. However, since
every point of U specializes to a point of U0 (as U is proper over A), we conclude
that U → X is étale. In this way we conclude the functor is essentially surjective.
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Fully faithfulness when A is a complete local Noetherian ring. Let U → X and
V → X be finite étale morphisms and let φ0 : U0 → V0 be a morphism over X0.
Look at the morphism

Γφ0 : U0 −→ U0 ×X0 V0

This morphism is both finite étale and a closed immersion. By essential surjectivity
applied to X = U×X V we find a finite étale morphism W → U×X V whose special
fibre is isomorphic to Γφ0 . Consider the projection W → U . It is finite étale and an
isomorphism over U0 by construction. By Étale Morphisms, Lemma 41.14.2W → U
is an isomorphism in an open neighbourhood of U0. Thus it is an isomorphism and
the composition φ : U ∼= W → V is the desired lift of φ0.

Essential surjectivity when A is a henselian local Noetherian G-ring. Let U0 → X0
be a finite étale morphism. Let A∧ be the completion of A with respect to the
maximal ideal. Let X∧ be the base change of X to A∧. By the result above
there exists a finite étale morphism V → X∧ whose special fibre is U0. Write
A∧ = colimAi with A→ Ai of finite type. By Limits, Lemma 32.10.1 there exists
an i and a finitely presented morphism Ui → XAi whose base change to X∧ is
V . After increasing i we may assume that Ui → XAi is finite and étale (Limits,
Lemmas 32.8.3 and 32.8.10). Writing

Ai = A[x1, . . . , xn]/(f1, . . . , fm)

the ring map Ai → A∧ can be reinterpreted as a solution (a1, . . . , an) in A∧ for
the system of equations fj = 0. By Smoothing Ring Maps, Theorem 16.13.1 we
can approximate this solution (to order 11 for example) by a solution (b1, . . . , bn)
in A. Translating back we find an A-algebra map Ai → A which gives the same
closed point as the original map Ai → A∧ (as 11 > 1). The base change U → X of
V → XAi by this ring map will therefore be a finite étale morphism whose special
fibre is isomorphic to U0.

Fully faithfulness when A is a henselian local Noetherian G-ring. This can be
deduced from essential surjectivity in exactly the same manner as was done in the
case that A is complete Noetherian.

General case. Let (A,m) be a henselian local ring. Set S = Spec(A) and denote
s ∈ S the closed point. By Limits, Lemma 32.13.3 we can write X → Spec(A)
as a cofiltered limit of proper morphisms Xi → Si with Si of finite type over Z.
For each i let si ∈ Si be the image of s. Since S = limSi and A = OS,s we have
A = colimOSi,si . The ring Ai = OSi,si is a Noetherian local G-ring (More on
Algebra, Proposition 15.50.12). By More on Algebra, Lemma 15.12.5 we see that
A = colimAhi . By More on Algebra, Lemma 15.50.8 the rings Ahi are G-rings. Thus
we see that A = colimAhi and

X = lim(Xi ×Si Spec(Ahi ))

as schemes. The category of schemes finite étale over X is the limit of the category
of schemes finite étale over Xi ×Si Spec(Ahi ) (by Limits, Lemmas 32.10.1, 32.8.3,
and 32.8.10) The same thing is true for schemes finite étale over X0 = lim(Xi ×Si
si). Thus we formally deduce the result for X/ Spec(A) from the result for the
(Xi ×Si Spec(Ahi ))/ Spec(Ahi ) which we dealt with above. □
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Lemma 58.9.2.0GS2 Let (A, I) be a henselian pair. Let X be a proper scheme over A.
Set X0 = X ×Spec(A) Spec(A/I). Then the functor

FÉtX → FÉtX0 , U 7−→ U0 = U ×X X0

is an equivalence of categories.

Proof. The proof of this lemma is exactly the same as the proof of Lemma 58.9.1.

Essential surjectivity when A is Noetherian and I-adically complete. Let Xn =
X ×Spec(A) Spec(A/In+1). By Étale Morphisms, Theorem 41.15.2 the inclusions

X0 → X1 → X2 → . . .

induce equivalence of categories between the category of schemes étale over X0 and
the category of schemes étale over Xn. Moreover, if Un → Xn corresponds to a
finite étale morphism U0 → X0, then Un → Xn is finite too, for example by More on
Morphisms, Lemma 37.3.3. In this case the morphism U0 → Spec(A/I) is proper as
X0 is proper over A/I. Thus we may apply Grothendieck’s algebraization theorem
(in the form of Cohomology of Schemes, Lemma 30.28.2) to see that there is a finite
morphism U → X whose restriction to X0 recovers U0. By More on Morphisms,
Lemma 37.12.3 we see that U → X is étale at every point of U0. However, since
every point of U specializes to a point of U0 (as U is proper over A), we conclude
that U → X is étale. In this way we conclude the functor is essentially surjective.

Fully faithfulness when A is Noetherian and I-adically complete. Let U → X and
V → X be finite étale morphisms and let φ0 : U0 → V0 be a morphism over X0.
Look at the morphism

Γφ0 : U0 −→ U0 ×X0 V0

This morphism is both finite étale and a closed immersion. By essential surjectivity
applied to X = U×X V we find a finite étale morphism W → U×X V whose special
fibre is isomorphic to Γφ0 . Consider the projection W → U . It is finite étale and an
isomorphism over U0 by construction. By Étale Morphisms, Lemma 41.14.2W → U
is an isomorphism in an open neighbourhood of U0. Thus it is an isomorphism and
the composition φ : U ∼= W → V is the desired lift of φ0.

Essential surjectivity when (A, I) is a henselian pair and A is a Noetherian G-ring.
Let U0 → X0 be a finite étale morphism. Let A∧ be the completion of A with
respect to I. Observe that A∧ is a Noetherian ring which is IA∧-adically complete,
see Algebra, Lemmas 10.97.4 and 10.97.6. Let X∧ be the base change of X to A∧.
By the result above there exists a finite étale morphism V → X∧ whose special
fibre is U0. Write A∧ = colimAi with A → Ai of finite type. By Limits, Lemma
32.10.1 there exists an i and a finitely presented morphism Ui → XAi whose base
change to X∧ is V . After increasing i we may assume that Ui → XAi is finite and
étale (Limits, Lemmas 32.8.3 and 32.8.10). Writing

Ai = A[x1, . . . , xn]/(f1, . . . , fm)

the ring map Ai → A∧ can be reinterpreted as a solution (a1, . . . , an) in A∧ for
the system of equations fj = 0. By Smoothing Ring Maps, Lemma 16.14.1 we
can approximate this solution (to order 11 for example) by a solution (b1, . . . , bn)
in A. Translating back we find an A-algebra map Ai → A which gives the same
closed point as the original map Ai → A∧ (as 11 > 1). The base change U → X of
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V → XAi by this ring map will therefore be a finite étale morphism whose special
fibre is isomorphic to U0.

Fully faithfulness when (A, I is a henselian pair and A is a Noetherian G-ring. This
can be deduced from essential surjectivity in exactly the same manner as was done
in the case that A is complete Noetherian.

General case. Let (A, I) be a henselian pair. Set S = Spec(A) and denote S0 =
Spec(A/I). By Limits, Lemma 32.13.3 we can write X → Spec(A) as a cofiltered
limit of proper morphisms Xi → Si with Si affine and of finite type over Z. Write
Si = Spec(Ai) and denote Ii ⊂ Ai the inverse image of I by the map Ai → A.
Set Si,0 = Spec(Ai/Ii). Since S = limSi we have A = colimAi. Thus we also
have I = colim Ii and A/I = colimAi/Ii. The ring Ai is a Noetherian G-ring
(More on Algebra, Proposition 15.50.12). Denote (Ahi , Ihi ) the henselization of the
pair (Ai, Ii). By More on Algebra, Lemma 15.12.5 we see that A = colimAhi . By
More on Algebra, Lemma 15.50.15 the rings Ahi are G-rings. Thus we see that
A = colimAhi and

X = lim(Xi ×Si Spec(Ahi ))
as schemes. The category of schemes finite étale over X is the limit of the category
of schemes finite étale over Xi ×Si Spec(Ahi ) (by Limits, Lemmas 32.10.1, 32.8.3,
and 32.8.10) The same thing is true for schemes finite étale over X0 = lim(Xi ×Si
Si,0). Thus we formally deduce the result for X/ Spec(A) from the result for the
(Xi ×Si Spec(Ahi ))/ Spec(Ahi ) which we dealt with above. □

Lemma 58.9.3.0A49 Let k′/k be an extension of algebraically closed fields. Let X be a
proper scheme over k. Then the functor

U 7−→ Uk′

is an equivalence of categories between schemes finite étale over X and schemes
finite étale over Xk′ .

Proof. Let us prove the functor is essentially surjective. Let U ′ → Xk′ be a finite
étale morphism. Write k′ = colimAi as a filtered colimit of finite type k-algebras.
By Limits, Lemma 32.10.1 there exists an i and a finitely presented morphism
Ui → XAi whose base change to Xk′ is U ′. After increasing i we may assume
that Ui → XAi is finite and étale (Limits, Lemmas 32.8.3 and 32.8.10). Since k is
algebraically closed we can find a k-valued point t in Spec(Ai). Let U = (Ui)t be the
fibre of Ui over t. Let Ahi be the henselization of (Ai)m where m is the maximal ideal
corresponding to the point t. By Lemma 58.9.1 we see that (Ui)Ah

i
= U ×Spec(Ahi )

as schemes over XAh
i
. Now since Ahi is algebraic over Ai (see for example discussion

in Smoothing Ring Maps, Example 16.13.3) and since k′ is algebraically closed
we can find a ring map Ahi → k′ extending the given inclusion Ai ⊂ k′. Hence
we conclude that U ′ is isomorphic to the base change of U . The proof of fully
faithfulness is exactly the same. □

58.10. Local connectedness

0BQD In this section we ask when π1(U) → π1(X) is surjective for U a dense open of a
scheme X. We will see that this is the case (roughly) when U ∩B is connected for
any small “ball” B around a point x ∈ X \ U .
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Lemma 58.10.1.0BQE Let f : X → Y be a morphism of schemes. If f(X) is dense in Y
then the base change functor FÉtY → FÉtX is faithful.

Proof. Since the category of finite étale coverings has an internal hom (Lemma
58.5.4) it suffices to prove the following: GivenW finite étale over Y and a morphism
s : X → W over X there is at most one section t : Y → W such that s = t ◦ f .
Consider two sections t1, t2 : Y →W such that s = t1◦f = t2◦f . Since the equalizer
of t1 and t2 is closed in Y (Schemes, Lemma 26.21.5) and since f(X) is dense in Y
we see that t1 and t2 agree on Yred. Then it follows that t1 and t2 have the same
image which is an open and closed subscheme of W mapping isomorphically to Y
(Étale Morphisms, Proposition 41.6.1) hence they are equal. □

The condition in the following lemma that the punctured spectrum of the strict
henselization is connected follows for example from the assumption that the local
ring is geometrically unibranch, see More on Algebra, Lemma 15.106.5. There is a
partial converse in Properties, Lemma 28.15.3.

Lemma 58.10.2.0BLQ Let (A,m) be a local ring. Set X = Spec(A) and let U = X \{m}.
If the punctured spectrum of the strict henselization of A is connected, then

FÉtX −→ FÉtU , Y 7−→ Y ×X U

is a fully faithful functor.

Proof. Assume A is strictly henselian. In this case any finite étale cover Y of X
is isomorphic to a finite disjoint union of copies of X. Thus it suffices to prove
that any morphism U → U ⨿ . . . ⨿ U over U , extends uniquely to a morphism
X → X ⨿ . . .⨿X over X. If U is connected (in particular nonempty), then this is
true.

The general case. Since the category of finite étale coverings has an internal hom
(Lemma 58.5.4) it suffices to prove the following: Given Y finite étale over X any
morphism s : U → Y over X extends to a morphism t : X → Y over X. Let Ash
be the strict henselization of A and denote Xsh = Spec(Ash), Ush = U ×X Xsh,
Y sh = Y ×X Xsh. By the first paragraph and our assumption on A, we can extend
the base change ssh : Ush → Y sh of s to tsh : Xsh → Y sh. Set A′ = Ash ⊗A Ash.
Then the two pullbacks t′1, t′2 of tsh to X ′ = Spec(A′) are extensions of the pullback
s′ of s to U ′ = U ×X X ′. As A→ A′ is flat we see that U ′ ⊂ X ′ is (topologically)
dense by going down for A → A′ (Algebra, Lemma 10.39.19). Thus t′1 = t′2 by
Lemma 58.10.1. Hence tsh descends to a morphism t : X → Y for example by
Descent, Lemma 35.13.7. □

In view of Lemma 58.10.2 it is interesting to know when the punctured spectrum of
a ring (and of its strict henselization) is connected. There is a famous lemma due
to Hartshorne which gives a sufficient condition, see Local Cohomology, Lemma
51.3.1.

Lemma 58.10.3.0BQF Let X be a scheme. Let U ⊂ X be a dense open. Assume
(1) the underlying topological space of X is Noetherian, and
(2) for every x ∈ X \U the punctured spectrum of the strict henselization of
OX,x is connected.

Then FÉtX → FétU is fully faithful.
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Proof. Let Y1, Y2 be finite étale over X and let φ : (Y1)U → (Y2)U be a morphism
over U . We have to show that φ lifts uniquely to a morphism Y1 → Y2 over X.
Uniqueness follows from Lemma 58.10.1.
Let x ∈ X \ U be a generic point of an irreducible component of X \ U . Set
V = U ×X Spec(OX,x). By our choice of x this is the punctured spectrum of
Spec(OX,x). By Lemma 58.10.2 we can extend the morphism φV : (Y1)V → (Y2)V
uniquely to a morphism (Y1)Spec(OX,x) → (Y2)Spec(OX,x). By Limits, Lemma 32.20.3
we find an open U ⊂ U ′ containing x and an extension φ′ : (Y1)U ′ → (Y2)U ′ of φ.
Since the underlying topological space of X is Noetherian this finishes the proof by
Noetherian induction on the complement of the open over which φ is defined. □

Lemma 58.10.4.0BSA Let X be a scheme. Let U ⊂ X be a dense open. Assume
(1) U → X is quasi-compact,
(2) every point of X \ U is closed, and
(3) for every x ∈ X \U the punctured spectrum of the strict henselization of
OX,x is connected.

Then FÉtX → FétU is fully faithful.

Proof. Let Y1, Y2 be finite étale over X and let φ : (Y1)U → (Y2)U be a morphism
over U . We have to show that φ lifts uniquely to a morphism Y1 → Y2 over X.
Uniqueness follows from Lemma 58.10.1.
Let x ∈ X \ U . Set V = U ×X Spec(OX,x). Since every point of X \ U is closed
V is the punctured spectrum of Spec(OX,x). By Lemma 58.10.2 we can extend
the morphism φV : (Y1)V → (Y2)V uniquely to a morphism (Y1)Spec(OX,x) →
(Y2)Spec(OX,x). By Limits, Lemma 32.20.3 (this uses that U is retrocompact in X)
we find an open U ⊂ U ′

x containing x and an extension φ′
x : (Y1)U ′

x
→ (Y2)U ′

x
of

φ. Note that given two points x, x′ ∈ X \ U the morphisms φ′
x and φ′

x′ agree over
U ′
x ∩ U ′

x′ as U is dense in that open (Lemma 58.10.1). Thus we can extend φ to⋃
U ′
x = X as desired. □

Lemma 58.10.5.0BQG Let X be a scheme. Let U ⊂ X be a dense open. Assume
(1) every quasi-compact open of X has finitely many irreducible components,
(2) for every x ∈ X \U the punctured spectrum of the strict henselization of
OX,x is connected.

Then FÉtX → FétU is fully faithful.

Proof. Let Y1, Y2 be finite étale over X and let φ : (Y1)U → (Y2)U be a morphism
over U . We have to show that φ lifts uniquely to a morphism Y1 → Y2 over X.
Uniqueness follows from Lemma 58.10.1. We will prove existence by showing that
we can enlarge U if U ̸= X and using Zorn’s lemma to finish the proof.
Let x ∈ X \ U be a generic point of an irreducible component of X \ U . Set V =
U×X Spec(OX,x). By our choice of x this is the punctured spectrum of Spec(OX,x).
By Lemma 58.10.2 we can extend the morphism φV : (Y1)V → (Y2)V (uniquely)
to a morphism (Y1)Spec(OX,x) → (Y2)Spec(OX,x). Choose an affine neighbourhood
W ⊂ X of x. Since U ∩W is dense in W it contains the generic points η1, . . . , ηn
of W . Choose an affine open W ′ ⊂W ∩ U containing η1, . . . , ηn. Set V ′ = W ′ ×X
Spec(OX,x). By Limits, Lemma 32.20.3 applied to x ∈ W ⊃ W ′ we find an open
W ′ ⊂ W ′′ ⊂ W with x ∈ W ′′ and a morphism φ′′ : (Y1)W ′′ → (Y2)W ′′ agreeing
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with φ over W ′. Since W ′ is dense in W ′′∩U , we see by Lemma 58.10.1 that φ and
φ′′ agree over U ∩W ′. Thus φ and φ′′ glue to a morphism φ′ over U ′ = U ∪W ′′

agreeing with φ over U . Observe that x ∈ U ′ so that we’ve extended φ to a strictly
larger open.
Consider the set S of pairs (U ′, φ′) where U ⊂ U ′ and φ′ is an extension of φ.
We endow S with a partial ordering in the obvious manner. If (U ′

i , φ
′
i) is a totally

ordered subset, then it has a maximum (U ′, φ′). Just take U ′ =
⋃
U ′
i and let

φ′ : (Y1)U ′ → (Y2)U ′ be the morphism agreeing with φ′
i over U ′

i . Thus Zorn’s
lemma applies and S has a maximal element. By the argument above we see that
this maximal element is an extension of φ over all of X. □

Lemma 58.10.6.0BSB Let (A,m) be a local ring. Set X = Spec(A) and U = X \ {m}.
Let Ush be the punctured spectrum of the strict henselization Ash of A. Assume
U is quasi-compact and Ush is connected. Then the sequence

π1(Ush, u)→ π1(U, u)→ π1(X,u)→ 1
is exact in the sense of Lemma 58.4.3 part (1).

Proof. The map π1(U)→ π1(X) is surjective by Lemmas 58.10.2 and 58.4.1.
Write Xsh = Spec(Ash). Let Y → X be a finite étale morphism. Then Y sh =
Y ×X Xsh → Xsh is a finite étale morphism. Since Ash is strictly henselian we
see that Y sh is isomorphic to a disjoint union of copies of Xsh. Thus the same is
true for Y ×X Ush. It follows that the composition π1(Ush) → π1(U) → π1(X) is
trivial, see Lemma 58.4.2.
To finish the proof, it suffices according to Lemma 58.4.3 to show the following:
Given a finite étale morphism V → U such that V ×U Ush is a disjoint union of
copies of Ush, we can find a finite étale morphism Y → X with V ∼= Y ×X U over
U . The assumption implies that there exists a finite étale morphism Y sh → Xsh

and an isomorphism V ×U Ush ∼= Y sh ×Xsh Ush. Consider the following diagram

U

��

Ush

��

oo Ush ×U Ush

��

oo
oo

Ush ×U Ush ×U Ush

��

oooo
oo

X Xshoo Xsh ×X Xsh
oo
oo

Xsh ×X Xsh ×X Xsh
oo oo
oo

Since U ⊂ X is quasi-compact by assumption, all the downward arrows are quasi-
compact open immersions. Let ξ ∈ Xsh ×X Xsh be a point not in Ush ×U Ush.
Then ξ lies over the closed point xsh of Xsh. Consider the local ring homomorphism

Ash = OXsh,xsh → OXsh×XXsh,ξ

determined by the first projection Xsh ×X Xsh. This is a filtered colimit of lo-
cal homomorphisms which are localizations étale ring maps. Since Ash is strictly
henselian, we conclude that it is an isomorphism. Since this holds for every ξ in the
complement it follows there are no specializations among these points and hence ev-
ery such ξ is a closed point (you can also prove this directly). As the local ring at ξ
is isomorphic to Ash, it is strictly henselian and has connected punctured spectrum.
Similarly for points ξ of Xsh×XXsh×XXsh not in Ush×U Ush×U Ush. It follows
from Lemma 58.10.4 that pullback along the vertical arrows induce fully faithful
functors on the categories of finite étale schemes. Thus the canonical descent datum

https://stacks.math.columbia.edu/tag/0BSB


58.10. LOCAL CONNECTEDNESS 4653

on V ×U Ush relative to the fpqc covering {Ush → U} translates into a descent
datum for Y sh relative to the fpqc covering {Xsh → X}. Since Y sh → Xsh is finite
hence affine, this descent datum is effective (Descent, Lemma 35.37.1). Thus we
get an affine morphism Y → X and an isomorphism Y ×X Xsh → Y sh compatible
with descent data. By fully faithfulness of descent data (as in Descent, Lemma
35.35.11) we get an isomorphism V → U ×X Y . Finally, Y → X is finite étale as
Y sh → Xsh is, see Descent, Lemmas 35.23.29 and 35.23.23. □

Let X be an irreducible scheme. Let η ∈ X be the generic point. The canonical
morphism η → X induces a canonical map

(58.10.6.1)0BQH Gal(κ(η)sep/κ(η)) = π1(η, η) −→ π1(X, η)

The identification on the left hand side is Lemma 58.6.3.

Lemma 58.10.7.0BQI Let X be an irreducible, geometrically unibranch scheme. For
any nonempty open U ⊂ X the canonical map

π1(U, u) −→ π1(X,u)

is surjective. The map (58.10.6.1) π1(η, η)→ π1(X, η) is surjective as well.

Proof. By Lemma 58.8.3 we may replace X by its reduction. Thus we may assume
that X is an integral scheme. By Lemma 58.4.1 the assertion of the lemma trans-
lates into the statement that the functors FÉtX → FÉtU and FÉtX → FÉtη are
fully faithful.

The result for FÉtX → FÉtU follows from Lemma 58.10.5 and the fact that for a
local ring A which is geometrically unibranch its strict henselization has an irre-
ducible spectrum. See More on Algebra, Lemma 15.106.5.

Observe that the residue field κ(η) = OX,η is the filtered colimit of OX(U) over
U ⊂ X nonempty open affine. Hence FÉtη is the colimit of the categories FÉtU over
such U , see Limits, Lemmas 32.10.1, 32.8.3, and 32.8.10. A formal argument then
shows that fully faithfulness for FÉtX → FÉtη follows from the fully faithfulness
of the functors FÉtX → FÉtU . □

Lemma 58.10.8.0BSC Let X be a scheme. Let x1, . . . , xn ∈ X be a finite number of
closed points such that

(1) U = X \ {x1, . . . , xn} is connected and is a retrocompact open of X, and
(2) for each i the punctured spectrum Ushi of the strict henselization of OX,xi

is connected.
Then the map π1(U)→ π1(X) is surjective and the kernel is the smallest closed nor-
mal subgroup of π1(U) containing the image of π1(Ushi )→ π1(U) for i = 1, . . . , n.

Proof. Surjectivity follows from Lemmas 58.10.4 and 58.4.1. We can consider the
sequence of maps

π1(U)→ . . .→ π1(X \ {x1, x2})→ π1(X \ {x1})→ π1(X)

A group theory argument then shows it suffices to prove the statement on the kernel
in the case n = 1 (details omitted). Write x = x1, Ush = Ush1 , set A = OX,x, and
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let Ash be the strict henselization. Consider the diagram

U

��

Spec(A) \ {m}oo

��

Ush

��

oo

X Spec(A)oo Spec(Ash)oo

By Lemma 58.4.3 we have to show finite étale morphisms V → U which pull back
to trivial coverings of Ush extend to finite étale schemes over X. By Lemma 58.10.6
we know the corresponding statement for finite étale schemes over the punctured
spectrum of A. However, by Limits, Lemma 32.20.1 schemes of finite presentation
over X are the same thing as schemes of finite presentation over U and A glued
over the punctured spectrum of A. This finishes the proof. □

58.11. Fundamental groups of normal schemes

0BQJ Let X be an integral, geometrically unibranch scheme. In the previous section we
have seen that the fundamental group of X is a quotient of the Galois group of the
function field K of X. Since the map is continuous the kernel is a normal closed
subgroup of the Galois group. Hence this kernel corresponds to a Galois extension
M/K by Galois theory (Fields, Theorem 9.22.4). In this section we will determine
M when X is a normal integral scheme.
Let X be an integral normal scheme with function field K. Let L/K be a finite
extension. Consider the normalization Y → X of X in the morphism Spec(L)→ X
as defined in Morphisms, Section 29.53. We will say (in this setting) that X is
unramified in L if Y → X is an unramified morphism of schemes. In Lemma
58.13.4 we will elucidate this condition. Observe that the scheme theoretic fibre of
Y → X over Spec(K) is Spec(L). Hence the field extension L/K is separable if X
is unramified in L, see Morphisms, Lemmas 29.35.11.

Lemma 58.11.1.0BQK In the situation above the following are equivalent
(1) X is unramified in L,
(2) Y → X is étale, and
(3) Y → X is finite étale.

Proof. Observe that Y → X is an integral morphism. In each case the morphism
Y → X is locally of finite type by definition. Hence we find that in each case
Y → X is finite by Morphisms, Lemma 29.44.4. In particular we see that (2) is
equivalent to (3). An étale morphism is unramified, hence (2) implies (1).
Conversely, assume Y → X is unramified. Since a normal scheme is geometrically
unibranch (Properties, Lemma 28.15.2), we see that the morphism Y → X is étale
by More on Morphisms, Lemma 37.37.2. We also give a direct proof in the next
paragraph.
Let x ∈ X. We can choose an étale neighbourhood (U, u)→ (X,x) such that

Y ×X U =
∐

Vj −→ U

is a disjoint union of closed immersions, see Étale Morphisms, Lemma 41.17.3.
Shrinking we may assume U is quasi-compact. Then U has finitely many irre-
ducible components (Descent, Lemma 35.16.3). Since U is normal (Descent, Lemma
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35.18.2) the irreducible components of U are open and closed (Properties, Lemma
28.7.5) and we may assume U is irreducible. Then U is an integral scheme whose
generic point ξ maps to the generic point of X. On the other hand, we know that
Y ×X U is the normalization of U in Spec(L)×X U by More on Morphisms, Lemma
37.19.2. Every point of Spec(L) ×X U maps to ξ. Thus every Vj contains a point
mapping to ξ by Morphisms, Lemma 29.53.9. Thus Vj → U is an isomorphism as
U = {ξ}. Thus Y ×X U → U is étale. By Descent, Lemma 35.23.29 we conclude
that Y → X is étale over the image of U → X (an open neighbourhood of x). □

Lemma 58.11.2.0BQL Let X be a normal integral scheme with function field K. Let
Y → X be a finite étale morphism. If Y is connected, then Y is an integral normal
scheme and Y is the normalization of X in the function field of Y .

Proof. The scheme Y is normal by Descent, Lemma 35.18.2. Since Y → X is flat
every generic point of Y maps to the generic point of X by Morphisms, Lemma
29.25.9. Since Y → X is finite we see that Y has a finite number of irreducible
components. Thus Y is the disjoint union of a finite number of integral normal
schemes by Properties, Lemma 28.7.5. Thus if Y is connected, then Y is an integral
normal scheme.
Let L be the function field of Y and let Y ′ → X be the normalization of X in L. By
Morphisms, Lemma 29.53.4 we obtain a factorization Y ′ → Y → X and Y ′ → Y
is the normalization of Y in L. Since Y is normal it is clear that Y ′ = Y (this can
also be deduced from Morphisms, Lemma 29.54.8). □

Proposition 58.11.3.0BQM Let X be a normal integral scheme with function field K.
Then the canonical map (58.10.6.1)

Gal(Ksep/K) = π1(η, η) −→ π1(X, η)
is identified with the quotient map Gal(Ksep/K) → Gal(M/K) where M ⊂ Ksep

is the union of the finite subextensions L such that X is unramified in L.

Proof. The normal schemeX is geometrically unibranch (Properties, Lemma 28.15.2).
Hence Lemma 58.10.7 applies to X. Thus π1(η, η)→ π1(X, η) is surjective and top
horizontal arrow of the commutative diagram

FÉtX //

��
c

**

FÉtη

��
Finite-π1(X, η)-sets // Finite-Gal(Ksep/K)-sets

is fully faithful. The left vertical arrow is the equivalence of Theorem 58.6.2 and
the right vertical arrow is the equivalence of Lemma 58.6.3. The lower horizontal
arrow is induced by the map of the proposition. By Lemmas 58.11.1 and 58.11.2 we
see that the essential image of c consists of Gal(Ksep/K)-Sets isomorphic to sets
of the form

S = HomK(
∏

i=1,...,n
Li,K

sep) =
∐

i=1,...,n
HomK(Li,Ksep)

with Li/K finite separable such that X is unramified in Li. Thus if M ⊂ Ksep

is as in the statement of the lemma, then Gal(Ksep/M) is exactly the subgroup
of Gal(Ksep/K) acting trivially on every object in the essential image of c. On
the other hand, the essential image of c is exactly the category of S such that
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the Gal(Ksep/K)-action factors through the surjection Gal(Ksep/K) → π1(X, η).
We conclude that Gal(Ksep/M) is the kernel. Hence Gal(Ksep/M) is a normal
subgroup, M/K is Galois, and we have a short exact sequence

1→ Gal(Ksep/M)→ Gal(Ksep/K)→ Gal(M/K)→ 1
by Galois theory (Fields, Theorem 9.22.4 and Lemma 9.22.5). The proof is done.

□

Lemma 58.11.4.0BSM Let (A,m) be a normal local ring. Set X = Spec(A). Let Ash be
the strict henselization of A. Let K and Ksh be the fraction fields of A and Ash.
Then the sequence

π1(Spec(Ksh))→ π1(Spec(K))→ π1(X)→ 1
is exact in the sense of Lemma 58.4.3 part (1).

Proof. Note that Ash is a normal domain, see More on Algebra, Lemma 15.45.6.
The map π1(Spec(K))→ π1(X) is surjective by Proposition 58.11.3.
Write Xsh = Spec(Ash). Let Y → X be a finite étale morphism. Then Y sh =
Y ×X Xsh → Xsh is a finite étale morphism. Since Ash is strictly henselian we see
that Y sh is isomorphic to a disjoint union of copies of Xsh. Thus the same is true
for Y ×X Spec(Ksh). It follows that the composition π1(Spec(Ksh)) → π1(X) is
trivial, see Lemma 58.4.2.
To finish the proof, it suffices according to Lemma 58.4.3 to show the following:
Given a finite étale morphism V → Spec(K) such that V ×Spec(K) Spec(Ksh) is a
disjoint union of copies of Spec(Ksh), we can find a finite étale morphism Y → X
with V ∼= Y ×X Spec(K) over Spec(K). Write V = Spec(L), so L is a finite product
of finite separable extensions of K. Let B ⊂ L be the integral closure of A in L.
If A → B is étale, then we can take Y = Spec(B) and the proof is complete. By
Algebra, Lemma 10.147.4 (and a limit argument we omit) we see that B ⊗A Ash
is the integral closure of Ash in Lsh = L ⊗K Ksh. Our assumption is that Lsh
is a product of copies of Ksh and hence Bsh is a product of copies of Ash. Thus
Ash → Bsh is étale. As A → Ash is faithfully flat it follows that A → B is étale
(Descent, Lemma 35.23.29) as desired. □

58.12. Group actions and integral closure

0BSN In this section we continue the discussion of More on Algebra, Section 15.110. Recall
that a normal local ring is a domain by definition.

Lemma 58.12.1.0BSP Let A be a normal domain whose fraction field K is separably
algebraically closed. Let p ⊂ A be a nonzero prime ideal. Then the residue field
κ(p) is algebraically closed.

Proof. Assume the lemma is not true to get a contradiction. Then there exists a
monic irreducible polynomial P (T ) ∈ κ(p)[T ] of degree d > 1. After replacing P
by adP (a−1T ) for suitable a ∈ A (to clear denominators) we may assume that P
is the image of a monic polynomial Q in A[T ]. Observe that Q is irreducible in
K[T ]. Namely a factorization over K leads to a factorization over A by Algebra,
Lemma 10.38.5 which we could reduce modulo p to get a factorization of P . As K is
separably closed, Q is not a separable polynomial (Fields, Definition 9.12.2). Then
the characteristic of K is p > 0 and Q has vanishing linear term (Fields, Definition
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9.12.2). However, then we can replace Q by Q+ aT where a ∈ p is nonzero to get
a contradiction. □

Lemma 58.12.2.0BSQ A normal local ring with separably closed fraction field is strictly
henselian.

Proof. Let (A,m, κ) be normal local with separably closed fraction field K. If
A = K, then we are done. If not, then the residue field κ is algebraically closed by
Lemma 58.12.1 and it suffices to check that A is henselian. Let f ∈ A[T ] be monic
and let a0 ∈ κ be a root of multiplicity 1 of the reduction f ∈ κ[T ]. Let f =

∏
fi

be the factorization in K[T ]. By Algebra, Lemma 10.38.5 we have fi ∈ A[T ]. Thus
a0 is a root of fi for some i. After replacing f by fi we may assume f is irreducible.
Then, since the derivative f ′ cannot be zero in A[T ] as a0 is a single root, we
conclude that f is linear due to the fact that K is separably algebraically closed.
Thus A is henselian, see Algebra, Definition 10.153.1. □

Lemma 58.12.3.0BSS Let G be a finite group acting on a ring R. Let RG → A be a
ring map. Let q′ ⊂ A⊗RG R be a prime lying over the prime q ⊂ R. Then

Iq = {σ ∈ G | σ(q) = q and σ mod q = idκ(q)}

is equal to
Iq′ = {σ ∈ G | σ(q′) = q′ and σ mod q′ = idκ(q′)}

Proof. Since q is the inverse image of q′ and since κ(q) ⊂ κ(q′), we get Iq′ ⊂ Iq.
Conversely, if σ ∈ Iq, the σ acts trivially on the fibre ring A⊗RG κ(q). Thus σ fixes
all the primes lying over q and induces the identity on their residue fields. □

Lemma 58.12.4.0BST Let G be a finite group acting on a ring R. Let q ⊂ R be a prime.
Set

I = {σ ∈ G | σ(q) = q and σ mod q = idq}
Then RG → RI is étale at RI ∩ q.

Proof. The strategy of the proof is to use étale localization to reduce to the case
where R→ RI is a local isomorphism at RI ∩p. Let RG → A be an étale ring map.
We claim that if the result holds for the action of G on A⊗RG R and some prime
q′ of A⊗RG R lying over q, then the result is true.
To check this, note that since RG → A is flat we have A = (A⊗RGR)G, see More on
Algebra, Lemma 15.110.7. By Lemma 58.12.3 the group I does not change. Then
a second application of More on Algebra, Lemma 15.110.7 shows that A⊗RG RI =
(A⊗RG R)I (because RI → A⊗RG RI is flat). Thus

Spec((A⊗RG R)I)

��

// Spec(RI)

��
Spec(A) // Spec(RG)

is cartesian and the horizontal arrows are étale. Thus if the left vertical arrow is
étale in some open neighbourhood W of (A ⊗RG R)I ∩ q′, then the right vertical
arrow is étale at the points of the (open) image of W in Spec(RI), see Descent,
Lemma 35.14.5. In particular the morphism Spec(RI) → Spec(RG) is étale at
RI ∩ q.
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Let p = RG ∩ q. By More on Algebra, Lemma 15.110.8 the fibre of Spec(R) →
Spec(RG) over p is finite. Moreover the residue field extensions at these points are
algebraic, normal, with finite automorphism groups by More on Algebra, Lemma
15.110.9. Thus we may apply More on Morphisms, Lemma 37.42.1 to the integral
ring map RG → R and the prime p. Combined with the claim above we reduce
to the case where R = A1 × . . . × An with each Ai having a single prime qi lying
over p such that the residue field extensions κ(qi)/κ(p) are purely inseparable. Of
course q is one of these primes, say q = q1.
It may not be the case that G permutes the factors Ai (this would be true if
the spectrum of Ai were connected, for example if RG was local). This we can
fix as follows; we suggest the reader think this through for themselves, perhaps
using idempotents instead of topology. Recall that the product decomposition
gives a corresponding disjoint union decomposition of Spec(R) by open and closed
subsets Ui. Since G is finite, we can refine this covering by a finite disjoint union
decomposition Spec(R) =

∐
j∈JWj by open and closed subsets Wj , such that for

all j ∈ J there exists a j′ ∈ J with σ(Wj) = Wj′ . The union of the Wj not
meeting {q1, . . . , qn} is a closed subset not meeting the fibre over p hence maps to a
closed subset of Spec(RG) not meeting p as Spec(R)→ Spec(RG) is closed. Hence
after replacing RG by a principal localization (permissible by the claim) we may
assume each Wj meets one of the points qi. Then we set Ui = Wj if qi ∈Wj . The
corresponding product decomposition R = A1 × . . .×An is one where G permutes
the factors Ai.
Thus we may assume we have a product decomposition R = A1×. . .×An compatible
with G-action, where each Ai has a single prime qi lying over p and the field
extensions κ(qi)/κ(p) are purely inseparable. Write A′ = A2 × . . .×An so that

R = A1 ×A′

Since q = q1 we find that every σ ∈ I preserves the product decomposition above.
Hence

RI = (A1)I × (A′)I

Observe that I = D = {σ ∈ G | σ(q) = q} because κ(q)/κ(p) is purely inseparable.
Since the action of G on primes over p is transitive (More on Algebra, Lemma
15.110.8) we conclude that, the index of I in G is n and we can write G = eI ⨿
σ2I ⨿ . . .⨿ σnI so that Ai = σi(A1) for i = 2, . . . , n. It follows that

RG = (A1)I .
Thus the map RG → RI is étale at RI ∩ q and the proof is complete. □

The following lemma generalizes More on Algebra, Lemma 15.112.8.

Lemma 58.12.5.0BSU Let A be a normal domain with fraction field K. Let L/K be a
(possibly infinite) Galois extension. Let G = Gal(L/K) and let B be the integral
closure of A in L. Let q ⊂ B. Set

I = {σ ∈ G | σ(q) = q and σ mod q = idκ(q)}

Then (BI)BI∩q is a filtered colimit of étale A-algebras.

Proof. We can write L as the filtered colimit of finite Galois extensions of K. Hence
it suffices to prove this lemma in case L/K is a finite Galois extension, see Algebra,
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Lemma 10.154.3. Since A = BG as A is integrally closed in K = LG the result
follows from Lemma 58.12.4. □

58.13. Ramification theory

0BSD In this section we continue the discussion of More on Algebra, Section 15.112 and
we relate it to our discussion of the fundamental groups of schemes.
Let (A,m, κ) be a normal local ring with fraction field K. Choose a separable alge-
braic closure Ksep. Let Asep be the integral closure of A in Ksep. Choose maximal
ideal msep ⊂ Asep. Let A ⊂ Ah ⊂ Ash be the henselization and strict henseliza-
tion. Observe that Ah and Ash are normal rings as well (More on Algebra, Lemma
15.45.6). Denote Kh and Ksh their fraction fields. Since (Asep)msep is strictly
henselian by Lemma 58.12.2 we can choose an A-algebra map Ash → (Asep)msep .
Namely, first choose a κ-embedding4 κ(msh)→ κ(msep) and then extend (uniquely)
to an A-algebra homomorphism by Algebra, Lemma 10.155.10. We get the following
diagram

Ksep Kshoo Khoo Koo

(Asep)msep

OO

Ash

OO

oo Ah

OO

oo A

OO

oo

We can take the fundamental groups of the spectra of these rings. Of course, since
Ksep, (Asep)msep , and Ash are strictly henselian, for them we obtain trivial groups.
Thus the interesting part is the following

(58.13.0.1)0BSV

π1(Ush) //

1 %%

π1(Uh)

��

// π1(U)

��
π1(Xh) // π1(X)

Here Xh and X are the spectra of Ah and A and Ush, Uh, U are the spectra of
Ksh, Kh, and K. The label 1 means that the map is trivial; this follows as it
factors through the trivial group π1(Xsh). On the other hand, the profinite group
G = Gal(Ksep/K) acts on Asep and we can make the following definitions

D = {σ ∈ G | σ(msep) = msep} ⊃ I = {σ ∈ D | σ mod msep = idκ(msep)}
These groups are sometimes called the decomposition group and the inertia group
especially when A is a discrete valuation ring.
Lemma 58.13.1.0BSW In the situation described above, via the isomorphism π1(U) =
Gal(Ksep/K) the diagram (58.13.0.1) translates into the diagram

I //

1 %%

D

��

// Gal(Ksep/K)

��
Gal(κ(msh)/κ) // Gal(M/K)

where Ksep/M/K is the maximal subextension unramified with respect to A. More-
over, the vertical arrows are surjective, the kernel of the left vertical arrow is I and

4This is possible because κ(msh) is a separable algebraic closure of κ and κ(msep) is an
algebraic closure of κ by Lemma 58.12.1.
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the kernel of the right vertical arrow is the smallest closed normal subgroup of
Gal(Ksep/K) containing I.

Proof. By construction the group D acts on (Asep)msep over A. By the uniqueness
of Ash → (Asep)msep given the map on residue fields (Algebra, Lemma 10.155.10)
we see that the image of Ash → (Asep)msep is contained in ((Asep)msep)I . On
the other hand, Lemma 58.12.5 shows that ((Asep)msep)I is a filtered colimit of
étale extensions of A. Since Ash is the maximal such extension, we conclude that
Ash = ((Asep)msep)I . Hence Ksh = (Ksep)I .
Recall that I is the kernel of a surjective map D → Aut(κ(msep)/κ), see More on
Algebra, Lemma 15.110.10. We have Aut(κ(msep)/κ) = Gal(κ(msh)/κ) as we have
seen above that these fields are the algebraic and separable algebraic closures of
κ. On the other hand, any automorphism of Ash over A is an automorphism of
Ash over Ah by the uniqueness in Algebra, Lemma 10.155.6. Furthermore, Ash is
the colimit of finite étale extensions Ah ⊂ A′ which correspond 1-to-1 with finite
separable extension κ′/κ, see Algebra, Remark 10.155.4. Thus

Aut(Ash/A) = Aut(Ash/Ah) = Gal(κ(msh)/κ)
Let κ′/κ be a finite Galois extension with Galois group G. Let Ah ⊂ A′ be the
finite étale extension corresponding to κ ⊂ κ′ by Algebra, Lemma 10.153.7. Then
it follows that (A′)G = Ah by looking at fraction fields and degrees (small detail
omitted). Taking the colimit we conclude that (Ash)Gal(κ(msh)/κ) = Ah. Combining
all of the above, we find Ah = ((Asep)msep)D. Hence Kh = (Ksep)D.
Since U , Uh, Ush are the spectra of the fields K, Kh, Ksh we see that the top lines
of the diagrams correspond via Lemma 58.6.3. By Lemma 58.8.2 we have π1(Xh) =
Gal(κ(msh)/κ). The exactness of the sequence 1 → I → D → Gal(κ(msh)/κ) → 1
was pointed out above. By Proposition 58.11.3 we see that π1(X) = Gal(M/K).
Finally, the statement on the kernel of Gal(Ksep/K)→ Gal(M/K) = π1(X) follows
from Lemma 58.11.4. This finishes the proof. □

Let X be a normal integral scheme with function field K. Let Ksep be a separable
algebraic closure of K. Let Xsep → X be the normalization of X in Ksep. Since
G = Gal(Ksep/K) acts on Ksep we obtain a right action of G on Xsep. For y ∈ Xsep

define
Dy = {σ ∈ G | σ(y) = y} ⊃ Iy = {σ ∈ D | σ mod my = idκ(y)}

similarly to the above. On the other hand, for x ∈ X let OshX,x be a strict henseliza-
tion, let Ksh

x be the fraction field of OshX,x and choose a K-embedding Ksh
x → Ksep.

Lemma 58.13.2.0BTD Let X be a normal integral scheme with function field K. With
notation as above, the following three subgroups of Gal(Ksep/K) = π1(Spec(K))
are equal

(1) the kernel of the surjection Gal(Ksep/K) −→ π1(X),
(2) the smallest normal closed subgroup containing Iy for all y ∈ Xsep, and
(3) the smallest normal closed subgroup containing Gal(Ksep/Ksh

x ) for all
x ∈ X.

Proof. The equivalence of (2) and (3) follows from Lemma 58.13.1 which tells us
that Iy is conjugate to Gal(Ksep/Ksh

x ) if y lies over x. By Lemma 58.11.4 we see
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that Gal(Ksep/Ksh
x ) maps trivially to π1(Spec(OX,x)) and therefore the subgroup

N ⊂ G = Gal(Ksep/K) of (2) and (3) is contained in the kernel of G −→ π1(X).
To prove the other inclusion, since N is normal, it suffices to prove: given N ⊂
U ⊂ G with U open normal, the quotient map G → G/U factors through π1(X).
In other words, if L/K is the Galois extension corresponding to U , then we have to
show that X is unramified in L (Section 58.11, especially Proposition 58.11.3). It
suffices to do this when X is affine (we do this so we can refer to algebra results in
the rest of the proof). Let Y → X be the normalization of X in L. The inclusion
L ⊂ Ksep induces a morphism π : Xsep → Y . For y ∈ Xsep the inertia group
of π(y) in Gal(L/K) is the image of Iy in Gal(L/K); this follows from More on
Algebra, Lemma 15.110.11. Since N ⊂ U all these inertia groups are trivial. We
conclude that Y → X is étale by applying Lemma 58.12.4. (Alternative: you can
use Lemma 58.11.4 to see that the pullback of Y to Spec(OX,x) is étale for all
x ∈ X and then conclude from there with a bit more work.) □

Example 58.13.3.0BTE Let X be a normal integral Noetherian scheme with function
field K. Purity of branch locus (see below) tells us that if X is regular, then it
suffices in Lemma 58.13.2 to consider the inertia groups I = π1(Spec(Ksh

x )) for
points x of codimension 1 in X. In general this is not enough however. Namely,
let Y = An

k = Spec(k[t1, . . . , tn]) where k is a field not of characteristic 2. Let
G = {±1} be the group of order 2 acting on Y by multiplication on the coordinates.
Set

X = Spec(k[titj , i, j ∈ {1, . . . , n}])
The embedding k[titj ] ⊂ k[t1, . . . , tn] defines a degree 2 morphism Y → X which is
unramified everywhere except over the maximal ideal m = (titj) which is a point
of codimension n in X.

Lemma 58.13.4.0BTF Let X be an integral normal scheme with function field K. Let
L/K be a finite extension. Let Y → X be the normalization of X in L. The
following are equivalent

(1) X is unramified in L as defined in Section 58.11,
(2) Y → X is an unramified morphism of schemes,
(3) Y → X is an étale morphism of schemes,
(4) Y → X is a finite étale morphism of schemes,
(5) for x ∈ X the projection Y ×X Spec(OX,x)→ Spec(OX,x) is unramified,
(6) same as in (5) but with OhX,x,
(7) same as in (5) but with OshX,x,
(8) for x ∈ X the scheme theoretic fibre Yx is étale over x of degree ≥ [L : K].

If L/K is Galois with Galois group G, then these are also equivalent to
(9) for y ∈ Y the group Iy = {g ∈ G | g(y) = y and g mod my = idκ(y)} is

trivial.

Proof. The equivalence of (1) and (2) is the definition of (1). The equivalence of
(2), (3), and (4) is Lemma 58.11.1. It is straightforward to prove that (4) ⇒ (5),
(5) ⇒ (6), (6) ⇒ (7).
Assume (7). Observe that OshX,x is a normal local domain (More on Algebra, Lemma
15.45.6). Let Lsh = L ⊗K Ksh

x where Ksh
x is the fraction field of OshX,x. Then

Lsh =
∏
i=1,...,n Li with Li/K

sh
x finite separable. By Algebra, Lemma 10.147.4
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(and a limit argument we omit) we see that Y ×X Spec(OshX,x) is the integral closure
of Spec(OshX,x) in Lsh. Hence by Lemma 58.11.1 (applied to the factors Li of Lsh)
we see that Y ×X Spec(OshX,x)→ Spec(OshX,x) is finite étale. Looking at the generic
point we see that the degree is equal to [L : K] and hence we see that (8) is true.
Assume (8). Assume that x ∈ X and that the scheme theoretic fibre Yx is étale
over x of degree ≥ [L : K]. Observe that this means that Y has ≥ [L : K] geometric
points lying over x. We will show that Y → X is finite étale over a neighbourhood
of x. This will prove (1) holds. To prove this we may assume X = Spec(R), the
point x corresponds to the prime p ⊂ R, and Y = Spec(S). We apply More on
Morphisms, Lemma 37.42.1 and we find an étale neighbourhood (U, u) → (X,x)
such that Y ×X U = V1 ⨿ . . .⨿ Vm such that Vi has a unique point vi lying over u
with κ(vi)/κ(u) purely inseparable. Shrinking U if necessary we may assume U is
a normal integral scheme with generic point ξ (use Descent, Lemmas 35.16.3 and
35.18.2 and Properties, Lemma 28.7.5). By our remark on geometric points we see
that m ≥ [L : K]. On the other hand, by More on Morphisms, Lemma 37.19.2 we
see that

∐
Vi → U is the normalization of U in Spec(L)×XU . As K ⊂ κ(ξ) is finite

separable, we can write Spec(L)×X U = Spec(
∏
i=1,...,n Li) with Li/κ(ξ) finite and

[L : K] =
∑

[Li : κ(ξ)]. Since Vj is nonempty for each j and m ≥ [L : K] we
conclude that m = n and [Li : κ(ξ)] = 1 for all i. Then Vj → U is an isomorphism
in particular étale, hence Y ×X U → U is étale. By Descent, Lemma 35.23.29 we
conclude that Y → X is étale over the image of U → X (an open neighbourhood
of x).
Assume L/K is Galois and (9) holds. Then Y → X is étale by Lemma 58.12.5. We
omit the proof that (1) implies (9). □

In the case of infinite Galois extensions of discrete valuation rings we can say a
tiny bit more. To do so we introduce the following notation. A subset S ⊂ N of
integers is multiplicativity directed if 1 ∈ S and for n,m ∈ S there exists k ∈ S
with n|k and m|k. Define a partial ordering on S by the rule n ≥S m if and only if
m|n. Given a field κ we obtain an inverse system of finite groups {µn(κ)}n∈S with
transition maps

µn(κ) −→ µm(κ), ζ 7−→ ζn/m

for n ≥S m. Then we can form the profinite group
limn∈S µn(κ)

Observe that the limit is cofiltered (as S is directed). The construction is functorial
in κ. In particular Aut(κ) acts on this profinite group. For example, if S = {1, n},
then this gives µn(κ). If S = {1, ℓ, ℓ2, ℓ3, . . .} for some prime ℓ different from the
characteristic of κ this produces limn µℓn(κ) which is sometimes called the ℓ-adic
Tate module of the multiplicative group of κ (compare with More on Algebra,
Example 15.93.5).

Lemma 58.13.5.0BUA Let A be a discrete valuation ring with fraction field K. Let L/K
be a (possibly infinite) Galois extension. Let B be the integral closure of A in L.
Let m be a maximal ideal of B. Let G = Gal(L/K), D = {σ ∈ G | σ(m) = m}, and
I = {σ ∈ D | σ mod m = idκ(m)}. The decomposition group D fits into a canonical
exact sequence

1→ I → D → Aut(κ(m)/κA)→ 1
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The inertia group I fits into a canonical exact sequence
1→ P → I → It → 1

such that
(1) P is a normal subgroup of D,
(2) P is a pro-p-group if the characteristic of κA is p > 1 and P = {1} if the

characteristic of κA is zero,
(3) there is a multiplicatively directed S ⊂ N such that κ(m) contains a

primitive nth root of unity for each n ∈ S (elements of S are prime to p),
(4) there exists a canonical surjective map

θcan : I → limn∈S µn(κ(m))
whose kernel is P , which satisfies θcan(τστ−1) = τ(θcan(σ)) for τ ∈ D,
σ ∈ I, and which induces an isomorphism It → limn∈S µn(κ(m)).

Proof. This is mostly a reformulation of the results on finite Galois extensions
proved in More on Algebra, Section 15.112. The surjectivity of the map D →
Aut(κ(m)/κ) is More on Algebra, Lemma 15.110.10. This gives the first exact
sequence.
To construct the second short exact sequence let Λ be the set of finite Galois
subextensions, i.e., λ ∈ Λ corresponds to L/Lλ/K. Set Gλ = Gal(Lλ/K). Recall
that Gλ is an inverse system of finite groups with surjective transition maps and
that G = limλ∈Λ Gλ, see Fields, Lemma 9.22.3. We let Bλ be the integral closure
of A in Lλ. Then we set mλ = m ∩ Bλ and we denote Pλ, Iλ, Dλ the wild inertia,
inertia, and decomposition group of mλ, see More on Algebra, Lemma 15.112.5.
For λ ≥ λ′ the restriction defines a commutative diagram

Pλ

��

// Iλ

��

// Dλ

��

// Gλ

��
Pλ′ // Iλ′ // Dλ′ // Gλ′

with surjective vertical maps, see More on Algebra, Lemma 15.112.10.
From the definitions it follows immediately that I = lim Iλ and D = limDλ under
the isomorphism G = limGλ above. Since L = colimLλ we have B = colimBλ and
κ(m) = colim κ(mλ). Since the transition maps of the system Dλ are compatible
with the maps Dλ → Aut(κ(mλ)/κ) (see More on Algebra, Lemma 15.112.10) we
see that the map D → Aut(κ(m)/κ) is the limit of the maps Dλ → Aut(κ(mλ)/κ).
There exist canonical maps

θλ,can : Iλ −→ µnλ(κ(mλ))
where nλ = |Iλ|/|Pλ|, where µnλ(κ(mλ)) has order nλ, such that θλ,can(τστ−1) =
τ(θλ,can(σ)) for τ ∈ Dλ and σ ∈ Iλ, and such that we get commutative diagrams

Iλ
θλ,can

//

��

µnλ(κ(mλ))

(−)nλ/nλ′

��
Iλ′

θλ′,can// µnλ′ (κ(mλ′))

see More on Algebra, Remark 15.112.11.
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Let S ⊂ N be the collection of integers nλ. Since Λ is directed, we see that S is
multiplicatively directed. By the displayed commutative diagrams above we can
take the limits of the maps θλ,can to obtain

θcan : I → limn∈S µn(κ(m)).

This map is continuous (small detail omitted). Since the transition maps of the
system of Iλ are surjective and Λ is directed, the projections I → Iλ are surjective.
For every λ the diagram

I

��

θcan

// limn∈S µn(κ(m))

��
Iλ

θλ,can // µnλ(κ(mλ))

commutes. Hence the image of θcan surjects onto the finite group µnλ(κ(m)) =
µnλ(κ(mλ)) of order nλ (see above). It follows that the image of θcan is dense. On
the other hand θcan is continuous and the source is a profinite group. Hence θcan
is surjective by a topological argument.

The property θcan(τστ−1) = τ(θcan(σ)) for τ ∈ D, σ ∈ I follows from the
corresponding properties of the maps θλ,can and the compatibility of the map
D → Aut(κ(m)) with the maps Dλ → Aut(κ(mλ)). Setting P = Ker(θcan) this
implies that P is a normal subgroup of D. Setting It = I/P we obtain the isomor-
phism It → limn∈S µn(κ(m)) from the surjectivity of θcan.

To finish the proof we show that P = limPλ which proves that P is a pro-p-group.
Recall that the tame inertia group Iλ,t = Iλ/Pλ has order nλ. Since the transition
maps Pλ → Pλ′ are surjective and Λ is directed, we obtain a short exact sequence

1→ limPλ → I → lim Iλ,t → 1

(details omitted). Since for each λ the map θλ,can induces an isomorphism Iλ,t ∼=
µnλ(κ(m)) the desired result follows. □

Lemma 58.13.6.0BUB Let A be a discrete valuation ring with fraction field K. Let
Ksep be a separable closure of K. Let Asep be the integral closure of A in Ksep.
Let msep be a maximal ideal of Asep. Let m = msep ∩ A, let κ = A/m, and let
κ = Asep/msep. Then κ is an algebraic closure of κ. Let G = Gal(Ksep/K),
D = {σ ∈ G | σ(msep) = msep}, and I = {σ ∈ D | σ mod msep = idκ(msep)}. The
decomposition group D fits into a canonical exact sequence

1→ I → D → Gal(κsep/κ)→ 1

where κsep ⊂ κ is the separable closure of κ. The inertia group I fits into a canonical
exact sequence

1→ P → I → It → 1
such that

(1) P is a normal subgroup of D,
(2) P is a pro-p-group if the characteristic of κA is p > 1 and P = {1} if the

characteristic of κA is zero,
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(3) there exists a canonical surjective map

θcan : I → limn prime to p µn(κsep)

whose kernel is P , which satisfies θcan(τστ−1) = τ(θcan(σ)) for τ ∈ D,
σ ∈ I, and which induces an isomorphism It → limn prime to p µn(κsep).

Proof. The field κ is the algebraic closure of κ by Lemma 58.12.1. Most of the
statements immediately follow from the corresponding parts of Lemma 58.13.5.
For example because Aut(κ/κ) = Gal(κsep/κ) we obtain the first sequence. Then
the only other assertion that needs a proof is the fact that with S as in Lemma
58.13.5 the limit limn∈S µn(κ) is equal to limn prime to p µn(κsep). To see this it
suffices to show that every integer n prime to p divides an element of S. Let π ∈ A
be a uniformizer and consider the splitting field L of the polynomial Xn−π. Since
the polynomial is separable we see that L is a finite Galois extension of K. Choose
an embedding L→ Ksep. Observe that if B is the integral closure of A in L, then
the ramification index of A→ Bmsep∩B is divisible by n (because π has an nth root
in B; in fact the ramification index equals n but we do not need this). Then it
follows from the construction of the S in the proof of Lemma 58.13.5 that n divides
an element of S. □

58.14. Geometric and arithmetic fundamental groups

0BTU In this section we work out what happens when comparing the fundamental group
of a scheme X over a field k with the fundamental group of Xk where k is the
algebraic closure of k.

Lemma 58.14.1.0BTV Let I be a directed set. Let Xi be an inverse system of quasi-
compact and quasi-separated schemes over I with affine transition morphisms. Let
X = limXi as in Limits, Section 32.2. Then there is an equivalence of categories

colim FÉtXi = FÉtX
If Xi is connected for all sufficiently large i and x is a geometric point of X, then

π1(X,x) = lim π1(Xi, x)

Proof. The equivalence of categories follows from Limits, Lemmas 32.10.1, 32.8.3,
and 32.8.10. The second statement is formal given the statement on categories. □

Lemma 58.14.2.0BTW Let k be a field with perfection kperf . LetX be a connected scheme
over k. Then Xkperf is connected and π1(Xkperf )→ π1(X) is an isomorphism.

Proof. Special case of topological invariance of the fundamental group. See Propo-
sition 58.8.4. To see that Spec(kperf ) → Spec(k) is a universal homeomorphism
you can use Algebra, Lemma 10.46.10. □

Lemma 58.14.3.0BTX Let k be a field with algebraic closure k. Let X be a quasi-compact
and quasi-separated scheme over k. If the base change Xk is connected, then there
is a short exact sequence

1→ π1(Xk)→ π1(X)→ π1(Spec(k))→ 1

of profinite topological groups.
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Proof. Connected objects of FÉtSpec(k) are of the form Spec(k′) → Spec(k) with
k′/k a finite separable extension. Then XSpec k′ is connected, as the morphism
Xk → XSpec(k′) is surjective and Xk is connected by assumption. Thus π1(X) →
π1(Spec(k)) is surjective by Lemma 58.4.1.
Before we go on, note that we may assume that k is a perfect field. Namely, we
have π1(Xkperf ) = π1(X) and π1(Spec(kperf )) = π1(Spec(k)) by Lemma 58.14.2.
It is clear that the composition of the functors FÉtSpec(k) → FÉtX → FÉtX

k

sends objects to disjoint unions of copies of XSpec(k). Therefore the composition
π1(Xk)→ π1(X)→ π1(Spec(k)) is the trivial homomorphism by Lemma 58.4.2.
Let U → X be a finite étale morphism with U connected. Observe that U×XXk =
Uk. Suppose that Uk → Xk has a section s : Xk → Uk. Then s(Xk) is an open
connected component of Uk. For σ ∈ Gal(k/k) denote sσ the base change of s by
Spec(σ). Since Uk → Xk is finite étale it has only a finite number of sections. Thus

T =
⋃
sσ(Xk)

is a finite union and we see that T is a Gal(k/k)-stable open and closed subset.
By Varieties, Lemma 33.7.10 we see that T is the inverse image of a closed subset
T ⊂ U . Since Uk → U is open (Morphisms, Lemma 29.23.4) we conclude that
T is open as well. As U is connected we see that T = U . Hence Uk is a (finite)
disjoint union of copies of Xk. By Lemma 58.4.5 we conclude that the image of
π1(Xk)→ π1(X) is normal.
Let V → Xk be a finite étale cover. Recall that k is the union of finite separable
extensions of k. By Lemma 58.14.1 we find a finite separable extension k′/k and a
finite étale morphism U → Xk′ such that V = Xk ×Xk′ U = U ×Spec(k′) Spec(k).
Then the composition U → Xk′ → X is finite étale and U ×Spec(k) Spec(k) contains
V = U ×Spec(k′) Spec(k) as an open and closed subscheme. (Because Spec(k) is an
open and closed subscheme of Spec(k′)×Spec(k) Spec(k) via the multiplication map
k′ ⊗k k → k.) By Lemma 58.4.4 we conclude that π1(Xk)→ π1(X) is injective.
Finally, we have to show that for any finite étale morphism U → X such that Uk is
a disjoint union of copies of Xk there is a finite étale morphism V → Spec(k) and a
surjection V ×Spec(k) X → U . See Lemma 58.4.3. Arguing as above using Lemma
58.14.1 we find a finite separable extension k′/k such that there is an isomorphism
Uk′ ∼=

∐
i=1,...,nXk′ . Thus setting V =

∐
i=1,...,n Spec(k′) we conclude. □

58.15. Homotopy exact sequence

0BUM In this section we discuss the following result. Let f : X → S be a flat proper
morphism of finite presentation whose geometric fibres are connected and reduced.
Assume S is connected and let s be a geometric point of S. Then there is an exact
sequence

π1(Xs)→ π1(X)→ π1(S)→ 1
of fundamental groups. See Proposition 58.15.2.
Lemma 58.15.1.0BUN [Gro71, Expose X,

Proposition 1.2, p.
262].

Let f : X → S be a proper morphism of schemes. Let X → S′ →
S be the Stein factorization of f , see More on Morphisms, Theorem 37.53.5. If f is
of finite presentation, flat, with geometrically reduced fibres, then S′ → S is finite
étale.
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Proof. This follows from Derived Categories of Schemes, Lemma 36.32.8 and the
information contained in More on Morphisms, Theorem 37.53.5. □

Proposition 58.15.2.0C0J Let f : X → S be a flat proper morphism of finite presentation
whose geometric fibres are connected and reduced. Assume S is connected and let
s be a geometric point of S. Then there is an exact sequence

π1(Xs)→ π1(X)→ π1(S)→ 1

of fundamental groups.

Proof. Let Y → X be a finite étale morphism. Consider the Stein factorization

Y

��

// X

��
T // S

of Y → S. By Lemma 58.15.1 the morphism T → S is finite étale. In this way we
obtain a functor FÉtX → FÉtS . For any finite étale morphism U → S a morphism
Y → U ×S X over X is the same thing as a morphism Y → U over S and such
a morphism factors uniquely through the Stein factorization, i.e., corresponds to
a unique morphism T → U (by the construction of the Stein factorization as a
relative normalization in More on Morphisms, Lemma 37.53.1 and factorization by
Morphisms, Lemma 29.53.4). Thus we see that the functors FÉtX → FÉtS and
FÉtS → FÉtX are adjoints. Note that the Stein factorization of U ×SX → S is U ,
because the fibres of U ×S X → U are geometrically connected.

By the discussion above and Categories, Lemma 4.24.4 we conclude that FÉtS →
FÉtX is fully faithful, i.e., π1(X)→ π1(S) is surjective (Lemma 58.4.1).

It is immediate that the composition FÉtS → FÉtX → FÉtXs sends any U to a
disjoint union of copies of Xs. Hence π1(Xs)→ π1(X)→ π1(S) is trivial by Lemma
58.4.2.

Let Y → X be a finite étale morphism with Y connected such that Y ×XXs contains
a connected component Z isomorphic to Xs. Consider the Stein factorization T
as above. Let t ∈ Ts be the point corresponding to the fibre Z. Observe that T
is connected (as the image of a connected scheme) and by the surjectivity above
T ×S X is connected. Now consider the factorization

π : Y −→ T ×S X

Let x ∈ Xs be any closed point. Note that κ(t) = κ(s) = κ(x) is an algebraically
closed field. Then the fibre of π over (t, x) consists of a unique point, namely the
unique point z ∈ Z corresponding to x ∈ Xs via the isomorphism Z → Xs. We
conclude that the finite étale morphism π has degree 1 in a neighbourhood of (t, x).
Since T×SX is connected it has degree 1 everywhere and we find that Y ∼= T×SX.
Thus Y ×X Xs splits completely. Combining all of the above we see that Lemmas
58.4.3 and 58.4.5 both apply and the proof is complete. □
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58.16. Specialization maps

0BUP In this section we construct specialization maps. Let f : X → S be a proper
morphism of schemes with geometrically connected fibres. Let s′ ⇝ s be a special-
ization of points in S. Let s and s′ be geometric points lying over s and s′. Then
there is a specialization map

sp : π1(Xs′) −→ π1(Xs)

The construction of this map is as follows. Let A be the strict henselization of
OS,s with respect to κ(s) ⊂ κ(s)sep ⊂ κ(s), see Algebra, Definition 10.155.3. Since
s′ ⇝ s the point s′ corresponds to a point of Spec(OS,s) and hence there is at least
one point (and potentially many points) of Spec(A) over s′ whose residue field is
a separable algebraic extension of κ(s′). Since κ(s′) is algebraically closed we can
choose a morphism φ : s′ → Spec(A) giving rise to a commutative diagram

s′
φ
//

##

Spec(A)

��

soo

{{
S

The specialization map is the composition

π1(Xs′) −→ π1(XA) = π1(Xκ(s)sep) = π1(Xs)

where the first equality is Lemma 58.9.1 and the second follows from Lemmas
58.14.2 and 58.9.3. By construction the specialization map fits into a commutative
diagram

π1(Xs′)
sp

//

$$

π1(Xs)

zz
π1(X)

provided that X is connected. The specialization map depends on the choice of
φ : s′ → Spec(A) above and we will write spφ if we want to indicate this.

Lemma 58.16.1.0C0K Consider a commutative diagram

Y

g

��

// X

f

��
T // S

of schemes where f and g are proper with geometrically connected fibres. Let t′ ⇝ t
be a specialization of points in T and consider a specialization map sp : π1(Yt′)→
π1(Yt) as above. Then there is a commutative diagram

π1(Yt′) sp
//

��

π1(Yt)

��
π1(Xs′) sp // π1(Xs)

of specialization maps where s and s′ are the images of t and t
′.
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Proof. Let B be the strict henselization of OT,t with respect to κ(t) ⊂ κ(t)sep ⊂
κ(t). Pick ψ : t′ → Spec(B) lifting t

′ → T as in the construction of the special-
ization map. Let s and s′ denote the images of t and t′ in S. Let A be the strict
henselization of OS,s with respect to κ(s) ⊂ κ(s)sep ⊂ κ(s). Since κ(s) = κ(t),
by the functoriality of strict henselization (Algebra, Lemma 10.155.10) we obtain
a ring map A→ B fitting into the commutative diagram

t
′

ψ
//

��

Spec(B)

��

// T

��
s′ φ // Spec(A) // S

Here the morphism φ : s′ → Spec(A) is simply taken to be the composition t
′ →

Spec(B)→ Spec(A). Applying base change we obtain a commutative diagram

Yt′
//

��

YB

��
Xs′ // XA

and from the construction of the specialization map the commutativity of this
diagram implies the commutativity of the diagram of the lemma. □

Lemma 58.16.2.0C0L Let f : X → S be a proper morphism with geometrically con-
nected fibres. Let s′′ ⇝ s′ ⇝ s be specializations of points of S. A composi-
tion of specialization maps π1(Xs′′) → π1(Xs′) → π1(Xs) is a specialization map
π1(Xs′′)→ π1(Xs).

Proof. Let OS,s → A be the strict henselization constructed using κ(s)→ κ(s). Let
A→ κ(s′) be the map used to construct the first specialization map. LetOS,s′ → A′

be the strict henselization constructed using κ(s′) ⊂ κ(s′). By functoriality of strict
henselization, there is a map A→ A′ such that the composition with A′ → κ(s′) is
the given map (Algebra, Lemma 10.154.6). Next, let A′ → κ(s′′) be the map used to
construct the second specialization map. Then it is clear that the composition of the
first and second specialization maps is the specialization map π1(Xs′′) → π1(Xs)
constructed using A→ A′ → κ(s′′). □

Let X → S be a proper morphism with geometrically connected fibres. Let R be
a strictly henselian valuation ring with algebraically closed fraction field and let
Spec(R) → S be a morphism. Let η, s ∈ Spec(R) be the generic and closed point.
Then we can consider the specialization map

spR : π1(Xη)→ π1(Xs)
for the base change XR/ Spec(R). Note that this makes sense as both η and s have
algebraically closed residue fields.

Lemma 58.16.3.0C0M Let f : X → S be a proper morphism with geometrically con-
nected fibres. Let s′ ⇝ s be a specialization of points of S and let sp : π1(Xs′) →
π1(Xs) be a specialization map. Then there exists a strictly henselian valuation
ring R over S with algebraically closed fraction field such that sp is isomorphic to
spR defined above.
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Proof. Let OS,s → A be the strict henselization constructed using κ(s) → κ(s).
Let A→ κ(s′) be the map used to construct sp. Let R ⊂ κ(s′) be a valuation ring
with fraction field κ(s′) dominating the image of A. See Algebra, Lemma 10.50.2.
Observe that R is strictly henselian for example by Lemma 58.12.2 and Algebra,
Lemma 10.50.3. Then the lemma is clear. □

Let X → S be a proper morphism with geometrically connected fibres. Let R be
a strictly henselian discrete valuation ring and let Spec(R) → S be a morphism.
Let η, s ∈ Spec(R) be the generic and closed point. Then we can consider the
specialization map

spR : π1(Xη)→ π1(Xs)

for the base change XR/ Spec(R). Note that this makes sense as s has algebraically
closed residue field.

Lemma 58.16.4.0C0N Let f : X → S be a proper morphism with geometrically con-
nected fibres. Let s′ ⇝ s be a specialization of points of S and let sp : π1(Xs′) →
π1(Xs) be a specialization map. If S is Noetherian, then there exists a strictly
henselian discrete valuation ring R over S such that sp is isomorphic to spR defined
above.

Proof. Let OS,s → A be the strict henselization constructed using κ(s)→ κ(s). Let
A→ κ(s′) be the map used to construct sp. Let R ⊂ κ(s′) be a discrete valuation
ring dominating the image of A, see Algebra, Lemma 10.119.13. Choose a diagram
of fields

κ(s) // k

A/mA //

OO

R/mR

OO

with k algebraically closed. Let Rsh be the strict henselization of R constructed
using R → k. Then Rsh is a discrete valuation ring by More on Algebra, Lemma
15.45.11. Denote η, o the generic and closed point of Spec(Rsh). Since the diagram
of schemes

η

��

// Spec(Rsh)

��

Spec(k)

��

oo

s′ // Spec(A) soo

commutes, we obtain a commutative diagram

π1(Xη)

��

sp
Rsh

// π1(Xo)

��
π1(Xs′) sp // Xs

of specialization maps by the construction of these maps. Since the vertical arrows
are isomorphisms (Lemma 58.9.3), this proves the lemma. □

https://stacks.math.columbia.edu/tag/0C0N


58.17. RESTRICTION TO A CLOSED SUBSCHEME 4671

58.17. Restriction to a closed subscheme

0EJW In this section we prove some results about the restriction functor

FÉtX −→ FÉtY , U 7−→ V = U ×X Y

where X is a scheme and Y is a closed subscheme. Using the topological invariance
of the fundamental group, we can relate the study of this functor to the completion
functor on finite locally free modules.

In the following lemmas we use the concept of coherent formal modules defined in
Cohomology of Schemes, Section 30.23. Given a Noetherian scheme and a quasi-
coherent sheaf of ideals I ⊂ OX we will say an object (Fn) of Coh(X, I) is finite
locally free if each Fn is a finite locally free OX/In-module.

Lemma 58.17.1.0EL8 Let X be a Noetherian scheme and let Y ⊂ X be a closed sub-
scheme with ideal sheaf I ⊂ OX . Assume the completion functor

Coh(OX) −→ Coh(X, I), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects (see above).
Then the restriction functor FÉtX → FÉtY is fully faithful.

Proof. Since the category of finite étale coverings has an internal hom (Lemma
58.5.4) it suffices to prove the following: Given U finite étale over X and a morphism
t : Y → U overX there exists a unique section s : X → U such that t = s|Y . Picture

U

f

��
Y //

>>

X

BB

Finding the dotted arrow s is the same thing as finding an OX -algebra map

s♯ : f∗OU −→ OX

which reduces modulo the ideal sheaf of Y to the given algebra map t♯ : f∗OU →
OY . By Lemma 58.8.3 we can lift t uniquely to a compatible system of maps
tn : Yn → U and hence a map

lim t♯n : f∗OU −→ limOYn
of sheaves of algebras on X. Since f∗OU is a finite locally free OX -module, we
conclude that we get a unique OX -module map σ : f∗OU → OX whose completion
is lim t♯n. To see that σ is an algebra homomorphism, we need to check that the
diagram

f∗OU ⊗OX
f∗OU //

σ⊗σ
��

f∗OU

σ

��
OX ⊗OX

OX // OX

commutes. For every n we know this diagram commutes after restricting to Yn, i.e.,
the diagram commutes after applying the completion functor. Hence by faithfulness
of the completion functor we conclude. □
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Lemma 58.17.2.0EL9 Let X be a Noetherian scheme and let Y ⊂ X be a closed sub-
scheme with ideal sheaf I ⊂ OX . Assume the completion functor

Coh(OX) −→ Coh(X, I), F 7−→ F∧

is an equivalence on full subcategories of finite locally free objects (see above). Then
the restriction functor FÉtX → FÉtY is an equivalence.

Proof. The restriction functor is fully faithful by Lemma 58.17.1.
Let U1 → Y be a finite étale morphism. To finish the proof we will show that U1
is in the essential image of the restriction functor.
For n ≥ 1 let Yn be the nth infinitesimal neighbourhood of Y . By Lemma 58.8.3
there is a unique finite étale morphism πn : Un → Yn whose base change to Y = Y1
recovers U1 → Y1. Consider the sheaves Fn = πn,∗OUn . We may and do view Fn as
an OX -module on X wich is locally isomorphic to (OX/fn+1OX)⊕r. This (Fn) is
a finite locally free object of Coh(X, I). By assumption there exists a finite locally
free OX -module F and a compatible system of isomorphisms

F/InF → Fn
of OX -modules.
To construct an algebra structure on F consider the multiplication maps Fn ⊗OX

Fn → Fn coming from the fact that Fn = πn,∗OUn are sheaves of algebras. These
define a map

(F ⊗OX
F)∧ −→ F∧

in the category Coh(X, I). Hence by assumption we may assume there is a map
µ : F ⊗OX

F → F whose restriction to Yn gives the multiplication maps above.
By faithfulness of the functor in the statement of the lemma, we conclude that
µ defines a commutative OX -algebra structure on F compatible with the given
algebra structures on Fn. Setting

U = Spec
X

((F , µ))
we obtain a finite locally free scheme π : U → X whose restriction to Y is isomorphic
to U1. The the discriminant of π is the zero set of the section

det(Qπ) : OX −→ ∧top(π∗OU )⊗−2

constructed in Discriminants, Section 49.3. Since the restriction of this to Yn is an
isomorphism for all n by Discriminants, Lemma 49.3.1 we conclude that it is an
isomorphism. Thus π is étale by Discriminants, Lemma 49.3.1. □

Lemma 58.17.3.0ELA Let X be a Noetherian scheme and let Y ⊂ X be a closed sub-
scheme with ideal sheaf I ⊂ OX . Let V be the set of open subschemes V ⊂ X
containing Y ordered by reverse inclusion. Assume the completion functor

colimV Coh(OV ) −→ Coh(X, I), F 7−→ F∧

defines is fully faithful on the full subcategory of finite locally free objects (see
above). Then the restriction functor colimV FÉtV → FÉtY is fully faithful.

Proof. Observe that V is a directed set, so the colimits are as in Categories, Section
4.19. The rest of the argument is almost exactly the same as the argument in the
proof of Lemma 58.17.1; we urge the reader to skip it.
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Since the category of finite étale coverings has an internal hom (Lemma 58.5.4) it
suffices to prove the following: Given U finite étale over V ∈ V and a morphism
t : Y → U over V there exists a V ′ ≥ V and a morphism s : V ′ → U over V such
that t = s|Y . Picture

U

f

��
Y //

77

V ′

>>

// V
Finding the dotted arrow s is the same thing as finding an OV ′ -algebra map

s♯ : f∗OU |V ′ −→ OV ′

which reduces modulo the ideal sheaf of Y to the given algebra map t♯ : f∗OU →
OY . By Lemma 58.8.3 we can lift t uniquely to a compatible system of maps
tn : Yn → U and hence a map

lim t♯n : f∗OU −→ limOYn
of sheaves of algebras on V . Observe that f∗OU is a finite locally free OV -module.
Hence we get a V ′ ≥ V a map σ : f∗OU |V ′ → OV ′ whose completion is lim t♯n. To
see that σ is an algebra homomorphism, we need to check that the diagram

(f∗OU ⊗OV
f∗OU )|V ′ //

σ⊗σ
��

f∗OU |V ′

σ

��
OV ′ ⊗OV ′ OV ′ // OV ′

commutes. For every n we know this diagram commutes after restricting to Yn, i.e.,
the diagram commutes after applying the completion functor. Hence by faithfulness
of the completion functor we deduce that there exists a V ′′ ≥ V ′ such that σ|V ′′ is
an algebra homomorphism as desired. □

Lemma 58.17.4.0EK1 Let X be a Noetherian scheme and let Y ⊂ X be a closed sub-
scheme with ideal sheaf I ⊂ OX . Let V be the set of open subschemes V ⊂ X
containing Y ordered by reverse inclusion. Assume the completion functor

colimV Coh(OV ) −→ Coh(X, I), F 7−→ F∧

defines an equivalence of the full subcategories of finite locally free objects (see
explanation above). Then the restriction functor

colimV FÉtV → FÉtY
is an equivalence.

Proof. Observe that V is a directed set, so the colimits are as in Categories, Section
4.19. The rest of the argument is almost exactly the same as the argument in the
proof of Lemma 58.17.2; we urge the reader to skip it.
The restriction functor is fully faithful by Lemma 58.17.3.
Let U1 → Y be a finite étale morphism. To finish the proof we will show that U1
is in the essential image of the restriction functor.
For n ≥ 1 let Yn be the nth infinitesimal neighbourhood of Y . By Lemma 58.8.3
there is a unique finite étale morphism πn : Un → Yn whose base change to Y = Y1
recovers U1 → Y1. Consider the sheaves Fn = πn,∗OUn . We may and do view Fn
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as an OX -module on X wich is locally isomorphic to (OX/fn+1OX)⊕r. This (Fn)
is a finite locally free object of Coh(X, I). By assumption there exists a V ∈ V and
a finite locally free OV -module F and a compatible system of isomorphisms

F/InF → Fn
of OV -modules.
To construct an algebra structure on F consider the multiplication maps Fn ⊗OV

Fn → Fn coming from the fact that Fn = πn,∗OUn are sheaves of algebras. These
define a map

(F ⊗OV
F)∧ −→ F∧

in the category Coh(X, I). Hence by assumption after shrinking V we may assume
there is a map µ : F ⊗OV

F → F whose restriction to Yn gives the multiplication
maps above. After possibly shrinking further we may assume µ defines a commu-
tative OV -algebra structure on F compatible with the given algebra structures on
Fn. Setting

U = Spec
V

((F , µ))
we obtain a finite locally free scheme over V whose restriction to Y is isomorphic
to U1. It follows that U → V is étale at all points lying over Y , see More on
Morphisms, Lemma 37.12.3. Thus after shrinking V once more we may assume
U → V is finite étale. This finishes the proof. □

Lemma 58.17.5.0EJX Let X be a scheme and let Y ⊂ X be a closed subscheme. If every
connected component of X meets Y , then the restriction functor FÉtX → FÉtY is
faithful.

Proof. Let a, b : U → U ′ be two morphisms of schemes finite étale over X whose
restriction to Y are the same. The image of a connected component of U is an
connected component of X; this follows from Topology, Lemma 5.7.7 applied to
the restriction of U → X to a connected component of X. Hence the image of
every connected component of U meets Y by assumption. We conclude that a = b
after restriction to each connected component of U by Étale Morphisms, Proposition
41.6.3. Since the equalizer of a and b is an open subscheme of U (as the diagonal
of U ′ over X is open) we conclude. □

Lemma 58.17.6.0EJZ Let X be a Noetherian scheme and let Y ⊂ X be a closed sub-
scheme. Let Yn ⊂ X be the nth infinitesimal neighbourhood of Y in X. Assume
one of the following holds

(1) X is quasi-affine and Γ(X,OX)→ lim Γ(Yn,OYn) is an isomorphism, or
(2) X has an ample invertible module L and Γ(X,L⊗m)→ lim Γ(Yn,L⊗m|Yn)

is an isomorphism for all m≫ 0, or
(3) for every finite locally freeOX -module E the map Γ(X, E)→ lim Γ(Yn, E|Yn)

is an isomorphism.
Then the restriction functor FÉtX → FÉtY is fully faithful.

Proof. This lemma follows formally from Lemma 58.17.1 and Algebraic and Formal
Geometry, Lemma 52.15.1. □

Lemma 58.17.7.0EK0 Let X be a Noetherian scheme and let Y ⊂ X be a closed sub-
scheme. Let Yn ⊂ X be the nth infinitesimal neighbourhood of Y in X. Let V
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be the set of open subschemes V ⊂ X containing Y ordered by reverse inclusion.
Assume one of the following holds

(1) X is quasi-affine and

colimV Γ(V,OV ) −→ lim Γ(Yn,OYn)

is an isomorphism, or
(2) X has an ample invertible module L and

colimV Γ(V,L⊗m) −→ lim Γ(Yn,L⊗m|Yn)

is an isomorphism for all m≫ 0, or
(3) for every V ∈ V and every finite locally free OV -module E the map

colimV ′≥V Γ(V ′, E|V ′) −→ lim Γ(Yn, E|Yn)

is an isomorphism.
Then the functor

colimV FÉtV → FÉtY
is fully faithful.

Proof. This lemma follows formally from Lemma 58.17.3 and Algebraic and Formal
Geometry, Lemma 52.15.2. □

58.18. Pushouts and fundamental groups

0EK3 Here is the main result.

Lemma 58.18.1.0EK4 In More on Morphisms, Situation 37.67.1, for example if Z → Y
and Z → X are closed immersions of schemes, there is an equivalence of categories

FÉtY⨿ZX −→ FÉtY ×FÉtZ FÉtX

Proof. The pushout exists by More on Morphisms, Proposition 37.67.3. The functor
is given by sending a scheme U finite étale over the pushout to the base changes
Y ′ = U ×Y⨿ZX Y and X ′ = U ×Y⨿ZX X and the natural isomorphism Y ′×Y Z →
X ′×XZ over Z. To prove this functor is an equivalence we use More on Morphisms,
Lemma 37.67.7 to construct a quasi-inverse functor. The only thing left to prove
is to show that given a morphism U → Y ⨿Z X which is separated, quasi-finite
and étale such that X ′ → X and Y ′ → Y are finite, then U → Y ⨿Z X is finite.
This can either be deduced from the corresponding algebra fact (More on Algebra,
Lemma 15.6.7) or it can be seen because

X ′ ⨿ Y ′ → U

is surjective and X ′ and Y ′ are proper over Y ⨿Z X (this uses the description of
the pushout in More on Morphisms, Proposition 37.67.3) and then we can apply
Morphisms, Lemma 29.41.10 to conclude that U is proper over Y ⨿Z X. Since a
quasi-finite and proper morphism is finite (More on Morphisms, Lemma 37.44.1)
we win. □

https://stacks.math.columbia.edu/tag/0EK4


58.19. FINITE ÉTALE COVERS OF PUNCTURED SPECTRA, I 4676

58.19. Finite étale covers of punctured spectra, I

0BLE We first prove some results á la Lefschetz.

Situation 58.19.1.0BLF Let (A,m) be a Noetherian local ring and f ∈ m. We set
X = Spec(A) and X0 = Spec(A/fA) and we let U = X \ {m} and U0 = X0 \ {m}
be the punctured spectrum of A and A/fA.

Recall that for a scheme X the category of schemes finite étale over X is denoted
FÉtX , see Section 58.5. In Situation 58.19.1 we will study the base change functors

FÉtX

��

// FÉtU

��
FÉtX0

// FÉtU0

In many case the right vertical arrow is faithful.

Lemma 58.19.2.0BLG In Situation 58.19.1. Assume one of the following holds
(1) dim(A/p) ≥ 2 for every minimal prime p ⊂ A with f ̸∈ p, or
(2) every connected component of U meets U0.

Then
FÉtU −→ FÉtU0 , V 7−→ V0 = V ×U U0

is a faithful functor.

Proof. Case (2) is immediate from Lemma 58.17.5. Assumption (1) implies every
irreducible component of U meets U0, see Algebra, Lemma 10.60.13. Hence (1)
follows from (2). □

Before we prove something more interesting, we need a couple of lemmas.

Lemma 58.19.3.0BLH In Situation 58.19.1. Let V → U be a finite morphism. Let
A∧ be the m-adic completion of A, let X ′ = Spec(A∧) and let U ′ and V ′ be
the base changes of U and V to X ′. If Y ′ → X ′ is a finite morphism such that
V ′ = Y ′×X′ U ′, then there exists a finite morphism Y → X such that V = Y ×X U
and Y ′ = Y ×X X ′.

Proof. This is a straightforward application of More on Algebra, Proposition 15.89.15.
Namely, choose generators f1, . . . , ft of m. For each i write V ×UD(fi) = Spec(Bi).
For 1 ≤ i, j ≤ n we obtain an isomorphism αij : (Bi)fj → (Bj)fi of Afifj -algebras
because the spectrum of both represent V ×U D(fifj). Write Y ′ = Spec(B′). Since
V ×U U ′ = Y ×X′ U ′ we get isomorphisms αi : B′

fi
→ Bi⊗AA∧. A straightforward

argument shows that (B′, Bi, αi, αij) is an object of Glue(A → A∧, f1, . . . , ft),
see More on Algebra, Remark 15.89.10. Applying the proposition cited above
(and using More on Algebra, Remark 15.89.19 to obtain the algebra structure)
we find an A-algebra B such that Can(B) is isomorphic to (B′, Bi, αi, αij). Set-
ting Y = Spec(B) we see that Y → X is a morphism which comes equipped with
compatible isomorphisms V ∼= Y ×X U and Y ′ = Y ×X X ′ as desired. □

Lemma 58.19.4.0BLI In Situation 58.19.1 assume A is henselian or more generally that
(A, (f)) is a henselian pair. Let A∧ be the m-adic completion of A, let X ′ =
Spec(A∧) and let U ′ and U ′

0 be the base changes of U and U0 to X ′. If FÉtU ′ →
FÉtU ′

0
is fully faithful, then FÉtU → FÉtU0 is fully faithful.
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Proof. Assume FÉtU ′ −→ FÉtU ′
0

is a fully faithful. Since X ′ → X is faithfully flat,
it is immediate that the functor V → V0 = V ×U U0 is faithful. Since the category
of finite étale coverings has an internal hom (Lemma 58.5.4) it suffices to prove the
following: Given V finite étale over U we have

MorU (U, V ) = MorU0(U0, V0)

The we assume we have a morphism s0 : U0 → V0 over U0 and we will produce a
morphism s : U → V over U .

By our assumption there does exist a morphism s′ : U ′ → V ′ whose restriction
to V ′

0 is the base change s′
0 of s0. Since V ′ → U ′ is finite étale this means that

V ′ = s′(U ′) ⨿W ′ for some W ′ → U ′ finite and étale. Choose a finite morphism
Z ′ → X ′ such that W ′ = Z ′ ×X′ U ′. This is possible by Zariski’s main theorem
in the form stated in More on Morphisms, Lemma 37.43.3 (small detail omitted).
Then

V ′ = s′(U ′)⨿W ′ −→ X ′ ⨿ Z ′ = Y ′

is an open immersion such that V ′ = Y ′ ×X′ U ′. By Lemma 58.19.3 we can find
Y → X finite such that V = Y ×X U and Y ′ = Y ×X X ′. Write Y = Spec(B) so
that Y ′ = Spec(B ⊗A A∧). Then B ⊗A A∧ has an idempotent e′ corresponding to
the open and closed subscheme X ′ of Y ′ = X ′ ⨿ Z ′.

The case A is henselian (slightly easier). The image e of e′ in B ⊗A κ(m) = B/mB
lifts to an idempotent e of B as A is henselian (because B is a product of local
rings by Algebra, Lemma 10.153.3). Then we see that e maps to e′ by uniqueness
of lifts of idempotents (using that B⊗AA∧ is a product of local rings). Let Y1 ⊂ Y
be the open and closed subscheme corresponding to e. Then Y1 ×X X ′ = s′(X ′)
which implies that Y1 → X is an isomorphism (by faithfully flat descent) and gives
the desired section.

The case where (A, (f)) is a henselian pair. Here we use that s′ is a lift of s′
0.

Namely, let Y0,1 ⊂ Y0 = Y ×X X0 be the closure of s0(U0) ⊂ V0 = Y0 ×X0 U0.
As X ′ → X is flat, the base change Y ′

0,1 ⊂ Y ′
0 is the closure of s′

0(U ′
0) which is

equal to X ′
0 ⊂ Y ′

0 (see Morphisms, Lemma 29.25.16). Since Y ′
0 → Y0 is submersive

(Morphisms, Lemma 29.25.12) we conclude that Y0,1 is open and closed in Y0. Let
e0 ∈ B/fB be the corresponding idempotent. By More on Algebra, Lemma 15.11.6
we can lift e0 to an idempotent e ∈ B. Then we conclude as before. □

In Situation 58.19.1 fully faithfulness of the restriction functor FÉtU −→ FÉtU0

holds under fairly mild assumptions. In particular, the assumptions often do not
imply U is a connected scheme, but the conclusion guarantees that U and U0 have
the same number of connected components.

Lemma 58.19.5.0EK5 In Situation 58.19.1. Assume
(a) A has a dualizing complex,
(b) the pair (A, (f)) is henselian,
(c) one of the following is true

(i) Af is (S2) and every irreducible component of X not contained in
X0 has dimension ≥ 3, or

(ii) for every prime p ⊂ A, f ̸∈ p we have depth(Ap) + dim(A/p) > 2.
Then the restriction functor FÉtU −→ FÉtU0 is fully faithful.
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Proof. Let A′ be the m-adic completion of A. We will show that the hypotheses
remain true for A′. This is clear for conditions (a) and (b). Condition (c)(ii) is
preserved by Local Cohomology, Lemma 51.11.3. Next, assume (c)(i) holds. Since
A is universally catenary (Dualizing Complexes, Lemma 47.17.4) we see that every
irreducible component of Spec(A′) not contained in V (f) has dimension ≥ 3, see
More on Algebra, Proposition 15.109.5. Since A→ A′ is flat with Gorenstein fibres,
the condition that Af is (S2) implies that A′

f is (S2). References used: Dualizing
Complexes, Section 47.23, More on Algebra, Section 15.51, and Algebra, Lemma
10.163.4. Thus by Lemma 58.19.4 we may assume that A is a Noetherian complete
local ring.

Assume A is a complete local ring in addition to the other assumptions. By Lemma
58.17.1 the result follows from Algebraic and Formal Geometry, Lemma 52.15.6. □

Lemma 58.19.6.0BM6 [BdJ14, Corollary
1.11]

In Situation 58.19.1. Assume
(1) H1

m(A) and H2
m(A) are annihilated by a power of f , and

(2) A is henselian or more generally (A, (f)) is a henselian pair.
Then the restriction functor FÉtU −→ FÉtU0 is fully faithful.

Proof. By Lemma 58.19.4 we may assume that A is a Noetherian complete local
ring. (The assumptions carry over; use Dualizing Complexes, Lemma 47.9.3.) By
Lemma 58.17.1 the result follows from Algebraic and Formal Geometry, Lemma
52.15.5. □

Lemma 58.19.7.0BLJ In Situation 58.19.1 assume A has depth ≥ 3 and A is henselian
or more generally (A, (f)) is a henselian pair. Then the restriction functor FÉtU →
FÉtU0 is fully faithful.

Proof. The assumption of depth forces H1
m(A) = H2

m(A) = 0, see Dualizing Com-
plexes, Lemma 47.11.1. Hence Lemma 58.19.6 applies. □

58.20. Purity in local case, I

0BM7 Let (A,m) be a Noetherian local ring. Set X = Spec(A) and let U = X \ {m} be
the punctured spectrum. We say purity holds for (A,m) if the restriction functor

FÉtX −→ FÉtU
is essentially surjective. In this section we try to understand how the question
changes when one passes from X to a hypersurface X0 in X, in other words, we
study a kind of local Lefschetz property for the fundamental groups of punctured
spectra. These results will be useful to proceed by induction on dimension in the
proofs of our main results on local purity, namely, Lemma 58.21.3, Proposition
58.25.3, and Proposition 58.26.4.

Lemma 58.20.1.0BM8 Let (A,m) be a Noetherian local ring. Set X = Spec(A) and let
U = X \ {m}. Let π : Y → X be a finite morphism such that depth(OY,y) ≥ 2 for
all closed points y ∈ Y . Then Y is the spectrum of B = OY (π−1(U)).

Proof. Set V = π−1(U) and denote π′ : V → U the restriction of π. Consider the
OX -module map

π∗OY −→ j∗π
′
∗OV
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where j : U → X is the inclusion morphism. We claim Divisors, Lemma 31.5.11
applies to this map. If so, then B = Γ(Y,OY ) and we see that the lemma holds.
Let x ∈ X be the closed point. It suffices to show that depth((π∗OY )x) ≥ 2. Let
y1, . . . , yn ∈ Y be the points mapping to x. By Algebra, Lemma 10.72.11 it suffices
to show that depth(OY,yi) ≥ 2 for i = 1, . . . , n. Since this is the assumption of the
lemma the proof is complete. □

Lemma 58.20.2.0BLK Let (A,m) be a Noetherian local ring. Set X = Spec(A) and let
U = X \{m}. Let V be finite étale over U . Assume A has depth ≥ 2. The following
are equivalent

(1) V = Y ×X U for some Y → X finite étale,
(2) B = Γ(V,OV ) is finite étale over A.

Proof. Denote π : V → U the given finite étale morphism. Assume Y as in (1)
exists. Let x ∈ X be the point corresponding to m. Let y ∈ Y be a point mapping
to x. We claim that depth(OY,y) ≥ 2. This is true because Y → X is étale and
hence A = OX,x and OY,y have the same depth (Algebra, Lemma 10.163.2). Hence
Lemma 58.20.1 applies and Y = Spec(B).
The implication (2) ⇒ (1) is easier and the details are omitted. □

Lemma 58.20.3.0BM9 Let (A,m) be a Noetherian local ring. Set X = Spec(A) and let
U = X \ {m}. Assume A is normal of dimension ≥ 2. The functor

FÉtU −→
{

finite normal A-algebras B such
that Spec(B)→ X is étale over U

}
, V 7−→ Γ(V,OV )

is an equivalence. Moreover, V = Y ×X U for some Y → X finite étale if and only
if B = Γ(V,OV ) is finite étale over A.

Proof. Observe that depth(A) ≥ 2 because A is normal (Serre’s criterion for nor-
mality, Algebra, Lemma 10.157.4). Thus the final statement follows from Lemma
58.20.2. Given π : V → U finite étale, set B = Γ(V,OV ). If we can show that B is
normal and finite over A, then we obtain the displayed functor. Since there is an
obvious quasi-inverse functor, this is also all that we have to show.
Since A is normal, the scheme V is normal (Descent, Lemma 35.18.2). Hence V is a
finite disjoint union of integral schemes (Properties, Lemma 28.7.6). Thus we may
assume V is integral. In this case the function field L of V (Morphisms, Section
29.49) is a finite separable extension of the fraction field of A (because we get it by
looking at the generic fibre of V → U and using Morphisms, Lemma 29.36.7). By
Algebra, Lemma 10.161.8 the integral closure B′ ⊂ L of A in L is finite over A. By
More on Algebra, Lemma 15.23.20 we see that B′ is a reflexive A-module, which in
turn implies that depthA(B′) ≥ 2 by More on Algebra, Lemma 15.23.18.
Let f ∈ m. Then Bf = Γ(V ×U D(f),OV ) (Properties, Lemma 28.17.1). Hence
B′
f = Bf because Bf is normal (see above), finite over Af with fraction field L.

It follows that V = Spec(B′) ×X U . Then we conclude that B = B′ from Lemma
58.20.1 applied to Spec(B′) → X. This lemma applies because the localizations
B′

m′ of B′ at maximal ideals m′ ⊂ B′ lying over m have depth ≥ 2 by Algebra,
Lemma 10.72.11 and the remark on depth in the preceding paragraph. □

Lemma 58.20.4.0BLL Let (A,m) be a Noetherian local ring. Set X = Spec(A) and let
U = X \ {m}. Let V be finite étale over U . Let A∧ be the m-adic completion of A,
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let X ′ = Spec(A∧) and let U ′ and V ′ be the base changes of U and V to X ′. The
following are equivalent

(1) V = Y ×X U for some Y → X finite étale, and
(2) V ′ = Y ′ ×X′ U ′ for some Y ′ → X ′ finite étale.

Proof. The implication (1) ⇒ (2) follows from taking the base change of a solution
Y → X. Let Y ′ → X ′ be as in (2). By Lemma 58.19.3 we can find Y → X finite
such that V = Y ×X U and Y ′ = Y ×X X ′. By descent we see that Y → X is finite
étale (Algebra, Lemmas 10.83.2 and 10.143.3). This finishes the proof. □

The point of the following two lemmas is that the assumptions do not force A to
have depth ≥ 3. For example if A is a complete normal local domain of dimension
≥ 3 and f ∈ m is nonzero, then the assumptions are satisfied.

Lemma 58.20.5.0EK6 In Situation 58.19.1. Let V be finite étale over U . Assume
(a) A has a dualizing complex,
(b) the pair (A, (f)) is henselian,
(c) one of the following is true

(i) Af is (S2) and every irreducible component of X not contained in
X0 has dimension ≥ 3, or

(ii) for every prime p ⊂ A, f ̸∈ p we have depth(Ap) + dim(A/p) > 2.
(d) V0 = V ×U U0 is equal to Y0 ×X0 U0 for some Y0 → X0 finite étale.

Then V = Y ×X U for some Y → X finite étale.

Proof. We reduce to the complete case using Lemma 58.20.4. (The assumptions
carry over; see proof of Lemma 58.19.5.)
In the complete case we can lift Y0 → X0 to a finite étale morphism Y → X by
More on Algebra, Lemma 15.13.2; observe that (A, fA) is a henselian pair by More
on Algebra, Lemma 15.11.4. Then we can use Lemma 58.19.5 to see that V is
isomorphic to Y ×X U and the proof is complete. □

Lemma 58.20.6.0BLS In Situation 58.19.1. Let V be finite étale over U . Assume
(1) H1

m(A) and H2
m(A) are annihilated by a power of f ,

(2) V0 = V ×U U0 is equal to Y0 ×X0 U0 for some Y0 → X0 finite étale.
Then V = Y ×X U for some Y → X finite étale.

Proof. We reduce to the complete case using Lemma 58.20.4. (The assumptions
carry over; use Dualizing Complexes, Lemma 47.9.3.)
In the complete case we can lift Y0 → X0 to a finite étale morphism Y → X by
More on Algebra, Lemma 15.13.2; observe that (A, fA) is a henselian pair by More
on Algebra, Lemma 15.11.4. Then we can use Lemma 58.19.6 to see that V is
isomorphic to Y ×X U and the proof is complete. □

Lemma 58.20.7.0BLM In Situation 58.19.1. Let V be finite étale over U . Assume
(1) A has depth ≥ 3,
(2) V0 = V ×U U0 is equal to Y0 ×X0 U0 for some Y0 → X0 finite étale.

Then V = Y ×X U for some Y → X finite étale.

Proof. The assumption of depth forces H1
m(A) = H2

m(A) = 0, see Dualizing Com-
plexes, Lemma 47.11.1. Hence Lemma 58.20.6 applies. □
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58.21. Purity of branch locus

0BJE We will use the discriminant of a finite locally free morphism. See Discriminants,
Section 49.3.

Lemma 58.21.1.0BJG Let (A,m) be a Noetherian local ring with dim(A) ≥ 1. Let
f ∈ m. Then there exist a p ∈ V (f) with dim(Ap) = 1.

Proof. By induction on dim(A). If dim(A) = 1, then p = m works. If dim(A) > 1,
then let Z ⊂ Spec(A) be an irreducible component of dimension > 1. Then V (f)∩Z
has dimension > 0 (Algebra, Lemma 10.60.13). Pick a prime q ∈ V (f) ∩ Z, q ̸= m
corresponding to a closed point of the punctured spectrum of A; this is possible
by Properties, Lemma 28.6.4. Then q is not the generic point of Z. Hence 0 <
dim(Aq) < dim(A) and f ∈ qAq. By induction on the dimension we can find
f ∈ p ⊂ Aq with dim((Aq)p) = 1. Then p ∩A works. □

Lemma 58.21.2.0BJH Let f : X → Y be a morphism of locally Noetherian schemes. Let
x ∈ X. Assume

(1) f is flat,
(2) f is quasi-finite at x,
(3) x is not a generic point of an irreducible component of X,
(4) for specializations x′ ⇝ x with dim(OX,x′) = 1 our f is unramified at x′.

Then f is étale at x.

Proof. Observe that the set of points where f is unramified is the same as the set of
points where f is étale and that this set is open. See Morphisms, Definitions 29.35.1
and 29.36.1 and Lemma 29.36.16. To check f is étale at x we may work étale locally
on the base and on the target (Descent, Lemmas 35.23.29 and 35.31.1). Thus we
can apply More on Morphisms, Lemma 37.41.1 and assume that f : X → Y is finite
and that x is the unique point of X lying over y = f(x). Then it follows that f is
finite locally free (Morphisms, Lemma 29.48.2).

Assume f is finite locally free and that x is the unique point of X lying over
y = f(x). By Discriminants, Lemma 49.3.1 we find a locally principal closed
subscheme Dπ ⊂ Y such that y′ ∈ Dπ if and only if there exists an x′ ∈ X with
f(x′) = y′ and f ramified at x′. Thus we have to prove that y ̸∈ Dπ. Assume
y ∈ Dπ to get a contradiction.

By condition (3) we have dim(OX,x) ≥ 1. We have dim(OX,x) = dim(OY,y) by
Algebra, Lemma 10.112.7. By Lemma 58.21.1 we can find y′ ∈ Dπ specializing to
y with dim(OY,y′) = 1. Choose x′ ∈ X with f(x′) = y′ where f is ramified. Since
f is finite it is closed, and hence x′ ⇝ x. We have dim(OX,x′) = dim(OY,y′) = 1 as
before. This contradicts property (4). □

Lemma 58.21.3.0BMA Let (A,m) be a regular local ring of dimension d ≥ 2. Set X =
Spec(A) and U = X \ {m}. Then

(1) the functor FÉtX → FÉtU is essentially surjective, i.e., purity holds for
A,

(2) any finite A → B with B normal which induces a finite étale morphism
on punctured spectra is étale.
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Proof. Recall that a regular local ring is normal by Algebra, Lemma 10.157.5.
Hence (1) and (2) are equivalent by Lemma 58.20.3. We prove the lemma by
induction on d.
The case d = 2. In this case A → B is flat. Namely, we have going down for
A→ B by Algebra, Proposition 10.38.7. Then dim(Bm′) = 2 for all maximal ideals
m′ ⊂ B by Algebra, Lemma 10.112.7. Then Bm′ is Cohen-Macaulay by Algebra,
Lemma 10.157.4. Hence and this is the important step Algebra, Lemma 10.128.1
applies to show A → Bm′ is flat. Then Algebra, Lemma 10.39.18 shows A → B is
flat. Thus we can apply Lemma 58.21.2 (or you can directly argue using the easier
Discriminants, Lemma 49.3.1) to see that A→ B is étale.
The case d ≥ 3. Let V → U be finite étale. Let f ∈ mA, f ̸∈ m2

A. Then A/fA is
a regular local ring of dimension d − 1 ≥ 2, see Algebra, Lemma 10.106.3. Let U0
be the punctured spectrum of A/fA and let V0 = V ×U U0. By Lemma 58.20.7 it
suffices to show that V0 is in the essential image of FÉtSpec(A/fA) → FÉtU0 . This
follows from the induction hypothesis. □

Lemma 58.21.4 (Purity of branch locus).0BMB [Nag59] and [Gro71,
Exp. X, Thm. 3.1]

Let f : X → Y be a morphism of locally
Noetherian schemes. Let x ∈ X and set y = f(x). Assume

(1) OX,x is normal,
(2) OY,y is regular,
(3) f is quasi-finite at x,
(4) dim(OX,x) = dim(OY,y) ≥ 1
(5) for specializations x′ ⇝ x with dim(OX,x′) = 1 our f is unramified at x′.

Then f is étale at x.

Proof. We will prove the lemma by induction on d = dim(OX,x) = dim(OY,y).
An uninteresting case is when d = 1. In that case we are assuming that f is un-
ramified at x and that OY,y is a discrete valuation ring (Algebra, Lemma 10.119.7).
Then OX,x is flat over OY,y (otherwise the map would not be quasi-finite at x) and
we see that f is flat at x. Since flat + unramified is étale we conclude (some details
omitted).
The case d ≥ 2. We will use induction on d to reduce to the case discussed in
Lemma 58.21.3. To check f is étale at x we may work étale locally on the base and
on the target (Descent, Lemmas 35.23.29 and 35.31.1). Thus we can apply More
on Morphisms, Lemma 37.41.1 and assume that f : X → Y is finite and that x is
the unique point of X lying over y. Here we use that étale extensions of local rings
do not change dimension, normality, and regularity, see More on Algebra, Section
15.44 and Étale Morphisms, Section 41.19.
Next, we can base change by Spec(OY,y) and assume that Y is the spectrum of a
regular local ring. It follows that X = Spec(OX,x) as every point of X necessarily
specializes to x.
The ring map OY,y → OX,x is finite and necessarily injective (by equality of dimen-
sions). We conclude we have going down for OY,y → OX,x by Algebra, Proposition
10.38.7 (and the fact that a regular ring is a normal ring by Algebra, Lemma
10.157.5). Pick x′ ∈ X, x′ ̸= x with image y′ = f(x′). Then OX,x′ is normal as a
localization of a normal domain. Similarly, OY,y′ is regular (see Algebra, Lemma
10.110.6). We have dim(OX,x′) = dim(OY,y′) by Algebra, Lemma 10.112.7 (we
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checked going down above). Of course these dimensions are strictly less than d as
x′ ̸= x and by induction on d we conclude that f is étale at x′.
Thus we arrive at the following situation: We have a finite local homomorphism
A → B of Noetherian local rings of dimension d ≥ 2, with A regular, B normal,
which induces a finite étale morphism V → U on punctured spectra. Our goal is
to show that A → B is étale. This follows from Lemma 58.21.3 and the proof is
complete. □

The following lemma is sometimes useful to find the maximal open subset over
which a finite étale morphism extends.

Lemma 58.21.5.0EY6 Let j : U → X be an open immersion of locally Noetherian
schemes such that depth(OX,x) ≥ 2 for x ̸∈ U . Let π : V → U be finite étale. Then

(1) B = j∗π∗OV is a reflexive coherent OX -algebra, set Y = Spec
X

(B),
(2) Y → X is the unique finite morphism such that V = Y ×X U and

depth(OY,y) ≥ 2 for y ∈ Y \ V ,
(3) Y → X is étale at y if and only if Y → X is flat at y, and
(4) Y → X is étale if and only if B is finite locally free as an OX -module.

Moreover, (a) the construction of B and Y → X commutes with base change by
flat morphisms X ′ → X of locally Noetherian schemes, and (b) if V ′ → U ′ is a
finite étale morphism with U ⊂ U ′ ⊂ X open which restricts to V → U over U ,
then there is a unique isomorphism Y ′ ×X U ′ = V ′ over U ′.

Proof. Observe that π∗OV is a finite locally free OU -module, in particular reflexive.
By Divisors, Lemma 31.12.12 the module j∗π∗OV is the unique reflexive coherent
module on X restricting to π∗OV over U . This proves (1).
By construction Y ×X U = V . Since B is coherent, we see that Y → X is
finite. We have depth(Bx) ≥ 2 for x ∈ X \ U by Divisors, Lemma 31.12.11.
Hence depth(OY,y) ≥ 2 for y ∈ Y \ V by Algebra, Lemma 10.72.11. Conversely,
suppose that π′ : Y ′ → X is a finite morphism such that V = Y ′ ×X U and
depth(OY ′,y′) ≥ 2 for y′ ∈ Y ′ \V . Then π′

∗OY ′ restricts to π∗OV over U and satis-
fies depth((π′

∗OY ′)x) ≥ 2 for x ∈ X \U by Algebra, Lemma 10.72.11. Then π′
∗OY ′

is canonically isomorphic to j∗π∗OV for example by Divisors, Lemma 31.5.11. This
proves (2).
If Y → X is étale at y, then Y → X is flat at y. Conversely, suppose that Y → X
is flat at y. If y ∈ V , then Y → X is étale at y. If y ̸∈ V , then we check (1), (2),
(3), and (4) of Lemma 58.21.2 hold to see that Y → X is étale at y. Parts (1) and
(2) are clear and so is (3) since depth(OY,y) ≥ 2. If y′ ⇝ y is a specialization and
dim(OY,y′) = 1, then y′ ∈ V since otherwise the depth of this local ring would be
2 a contradiction by Algebra, Lemma 10.72.3. Hence Y → X is étale at y′ and we
conclude (4) of Lemma 58.21.2 holds too. This finishes the proof of (3).
Part (4) follows from (3) and the fact that ((Y → X)∗OY )x is a flat OX,x-module
if and only if OY,y is a flat OX,x-module for all y ∈ Y mapping to x, see Algebra,
Lemma 10.39.18. Here we also use that a finite flat module over a Noetherian ring
is finite locally free, see Algebra, Lemma 10.78.2 (and Algebra, Lemma 10.31.4).
As to the final assertions of the lemma, part (a) follows from flat base change, see
Cohomology of Schemes, Lemma 30.5.2 and part (b) follows from the uniqueness
in (2) applied to the restriction Y ×X U ′. □

https://stacks.math.columbia.edu/tag/0EY6


58.22. FINITE ÉTALE COVERS OF PUNCTURED SPECTRA, II 4684

Lemma 58.21.6.0EY7 Let j : U → X be an open immersion of Noetherian schemes such
that purity holds for OX,x for all x ̸∈ U . Then

FÉtX −→ FÉtU
is essentially surjective.

Proof. Let V → U be a finite étale morphism. By Noetherian induction it suffices
to extend V → U to a finite étale morphism to a strictly larger open subset of
X. Let x ∈ X \ U be the generic point of an irreducible component of X \ U .
Then the inverse image Ux of U in Spec(OX,x) is the punctured spectrum of OX,x.
By assumption Vx = V ×U Ux is the restriction of a finite étale morphism Yx →
Spec(OX,x) to Ux. By Limits, Lemma 32.20.3 we find an open subscheme U ⊂ U ′ ⊂
X containing x and a morphism V ′ → U ′ of finite presentation whose restriction
to U recovers V → U and whose restriction to Spec(OX,x) recovering Yx. Finally,
the morphism V ′ → U ′ is finite étale after possible shrinking U ′ to a smaller open
by Limits, Lemma 32.20.4. □

58.22. Finite étale covers of punctured spectra, II

0BLU In this section we prove some variants of the material discussed in Section 58.19.
Suppose we have a Noetherian local ring (A,m) and f ∈ m. We set X = Spec(A)
and X0 = Spec(A/fA) and we let U = X \ {m} and U0 = X0 \ {m} be the
punctured spectrum of A and A/fA. All of this is exactly as in Situation 58.19.1.
The difference is that we will consider the restriction functor

colimU0⊂U ′⊂U open FÉtU ′ −→ FÉtU0

In other words, we will not try to lift finite étale coverings of U0 to all of U , but
just to some open neighbourhood U ′ of U0 in U .

Lemma 58.22.1.0BLN In Situation 58.19.1. Let U ′ ⊂ U be open and contain U0. Assume
for p ⊂ A minimal with p ∈ U ′, p ̸∈ U0 we have dim(A/p) ≥ 2. Then

FÉtU ′ −→ FÉtU0 , V ′ 7−→ V0 = V ′ ×U ′ U0

is a faithful functor. Moreover, there exists a U ′ satisfying the assumption and any
smaller open U ′′ ⊂ U ′ containing U0 also satisfies this assumption. In particular,
the restriction functor

colimU0⊂U ′⊂U open FÉtU ′ −→ FÉtU0

is faithful.

Proof. By Algebra, Lemma 10.60.13 we see that V (p) meets U0 for every prime p
of A with dim(A/p) ≥ 2. Thus the displayed functor is faithful for a U as in the
statement by Lemma 58.17.5. To see the existence of such a U ′ note that for p ⊂ A
with p ∈ U , p ̸∈ U0 with dim(A/p) = 1 then p corresponds to a closed point of
U and hence V (p) ∩ U0 = ∅. Thus we can take U ′ to be the complement of the
irreducible components of X which do not meet U0 and have dimension 1. □

Lemma 58.22.2.0DXX In Situation 58.19.1 assume
(1) A has a dualizing complex and is f -adically complete,
(2) every irreducible component of X not contained in X0 has dimension ≥ 3.
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Then the restriction functor
colimU0⊂U ′⊂U open FÉtU ′ −→ FÉtU0

is fully faithful.

Proof. To prove this we may replace A by its reduction by the topological invariance
of the fundamental group, see Lemma 58.8.3. Then the result follows from Lemma
58.17.3 and Algebraic and Formal Geometry, Lemma 52.15.7. □

Lemma 58.22.3.0BLP In Situation 58.19.1 assume
(1) A is f -adically complete,
(2) f is a nonzerodivisor.
(3) H1

m(A/fA) is a finite A-module.
Then the restriction functor

colimU0⊂U ′⊂U open FÉtU ′ −→ FÉtU0

is fully faithful.

Proof. Follows from Lemma 58.17.3 and Algebraic and Formal Geometry, Lemma
52.15.8. □

58.23. Finite étale covers of punctured spectra, III

0EK7 In this section we study when in Situation 58.19.1. the restriction functor
colimU0⊂U ′⊂U open FÉtU ′ −→ FÉtU0

is an equivalence of categories.

Lemma 58.23.1.0DXY In Situation 58.19.1 assume
(1) A has a dualizing complex and is f -adically complete,
(2) one of the following is true

(a) Af is (S2) and every irreducible component of X not contained in
X0 has dimension ≥ 4, or

(b) if p ̸∈ V (f) and V (p)∩V (f) ̸= {m}, then depth(Ap)+dim(A/p) > 3.
Then the restriction functor

colimU0⊂U ′⊂U open FÉtU ′ −→ FÉtU0

is an equivalence.

Proof. This follows from Lemma 58.17.4 and Algebraic and Formal Geometry,
Lemma 52.24.1. □

Lemma 58.23.2.0BLV In Situation 58.19.1 assume
(1) A is f -adically complete,
(2) f is a nonzerodivisor,
(3) H1

m(A/fA) and H2
m(A/fA) are finite A-modules.

Then the restriction functor
colimU0⊂U ′⊂U open FÉtU ′ −→ FÉtU0

is an equivalence.

Proof. This follows from Lemma 58.17.4 and Algebraic and Formal Geometry,
Lemma 52.24.2. □
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Remark 58.23.3.0BLW Let (A,m) be a complete local Noetherian ring and f ∈ m nonzero.
Suppose that Af is (S2) and every irreducible component of Spec(A) has dimension
≥ 4. Then Lemma 58.23.1 tells us that the category

colimU ′⊂U open, U0⊂U category of schemes finite étale over U ′

is equivalent to the category of schemes finite étale over U0. For example this holds
if A is a normal domain of dimension ≥ 4!

58.24. Finite étale covers of punctured spectra, IV

0EK8 Let X,X0, U, U0 be as in Situation 58.19.1. In this section we ask when the restric-
tion functor

FÉtU −→ FÉtU0

is essentially surjective. We will do this by taking results from Section 58.23 and
then filling in the gaps using purity. Recall that we say purity holds for a Noetherian
local ring (A,m) if the restriction functor FÉtX → FÉtU is essentially surjective
where X = Spec(A) and U = X \ {m}.

Lemma 58.24.1.0EK9 In Situation 58.19.1 assume
(1) A has a dualizing complex and is f -adically complete,
(2) one of the following is true

(a) Af is (S2) and every irreducible component of X not contained in
X0 has dimension ≥ 4, or

(b) if p ̸∈ V (f) and V (p)∩V (f) ̸= {m}, then depth(Ap)+dim(A/p) > 3.
(3) for every maximal ideal p ⊂ Af purity holds for (Af )p.

Then the restriction functor FÉtU → FÉtU0 is essentially surjective.

Proof. Let V0 → U0 be a finite étale morphism. By Lemma 58.23.1 there exists an
open U ′ ⊂ U containing U0 and a finite étale morphism V ′ → U whose base change
to U0 is isomorphic to V0 → U0. Since U ′ ⊃ U0 we see that U \U ′ consists of points
corresponding to prime ideals p1, . . . , pn as in (3). By assumption we can find finite
étale morphisms V ′

i → Spec(Api) agreeing with V ′ → U ′ over U ′ ×U Spec(Api).
By Limits, Lemma 32.20.1 applied n times we see that V ′ → U ′ extends to a finite
étale morphism V → U . □

Lemma 58.24.2.0EKA Let (A,m) be a Noetherian local ring. Let f ∈ m. Assume
(1) A is f -adically complete,
(2) f is a nonzerodivisor,
(3) H1

m(A/fA) and H2
m(A/fA) are finite A-modules,

(4) for every maximal ideal p ⊂ Af purity holds for (Af )p.
Then the restriction functor FÉtU → FÉtU0 is essentially surjective.

Proof. The proof is identical to the proof of Lemma 58.24.1 using Lemma 58.23.2
in stead of Lemma 58.23.1. □

58.25. Purity in local case, II

0BPB This section is the continuation of Section 58.20. Recall that we say purity holds for
a Noetherian local ring (A,m) if the restriction functor FÉtX → FÉtU is essentially
surjective where X = Spec(A) and U = X \ {m}.

Lemma 58.25.1.0DXZ Let (A,m) be a Noetherian local ring. Let f ∈ m. Assume
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(1) A has a dualizing complex and is f -adically complete,
(2) one of the following is true

(a) Af is (S2) and every irreducible component of X not contained in
X0 has dimension ≥ 4, or

(b) if p ̸∈ V (f) and V (p)∩V (f) ̸= {m}, then depth(Ap)+dim(A/p) > 3.
(3) for every maximal ideal p ⊂ Af purity holds for (Af )p, and
(4) purity holds for A.

Then purity holds for A/fA.

Proof. Denote X = Spec(A) and U = X \ {m} the punctured spectrum. Similarly
we have X0 = Spec(A/fA) and U0 = X0 \ {m}. Let V0 → U0 be a finite étale
morphism. By Lemma 58.24.1 we find a finite étale morphism V → U whose base
change to U0 is isomorphic to V0 → U0. By assumption (5) we find that V → U
extends to a finite étale morphism Y → X. Then the restriction of Y to X0 is the
desired extension of V0 → U0. □

Lemma 58.25.2.0BPC Let (A,m) be a Noetherian local ring. Let f ∈ m. Assume
(1) A is f -adically complete,
(2) f is a nonzerodivisor,
(3) H1

m(A/fA) and H2
m(A/fA) are finite A-modules,

(4) for every maximal ideal p ⊂ Af purity holds for (Af )p,
(5) purity holds for A.

Then purity holds for A/fA.

Proof. The proof is identical to the proof of Lemma 58.25.1 using Lemma 58.24.2
in stead of Lemma 58.24.1. □

Now we can bootstrap the earlier results to prove that purity holds for complete
intersections of dimension ≥ 3. Recall that a Noetherian local ring is called a
complete intersection if its completion is the quotient of a regular local ring by the
ideal generated by a regular sequence. See the discussion in Divided Power Algebra,
Section 23.8.

Proposition 58.25.3.0BPD Let (A,m) be a Noetherian local ring. If A is a complete
intersection of dimension ≥ 3, then purity holds for A in the sense that any finite
étale cover of the punctured spectrum extends.

Proof. By Lemma 58.20.4 we may assume that A is a complete local ring. By
assumption we can write A = B/(f1, . . . , fr) where B is a complete regular local
ring and f1, . . . , fr is a regular sequence. We will finish the proof by induction on r.
The base case is r = 0 which follows from Lemma 58.21.3 which applies to regular
rings of dimension ≥ 2.
Assume that A = B/(f1, . . . , fr) and that the proposition holds for r − 1. Set
A′ = B/(f1, . . . , fr−1) and apply Lemma 58.25.2 to fr ∈ A′. This is permissible:
condition (1) holds as f1, . . . , fr is a regular sequence, condition (2) holds as B
and hence A′ is complete, condition (3) holds as A = A′/frA

′ is Cohen-Macaulay
of dimension dim(A) ≥ 3, see Dualizing Complexes, Lemma 47.11.1, condition (4)
holds by induction hypothesis as dim((A′

fr
)p) ≥ 3 for a maximal prime p of A′

fr
and

as (A′
fr

)p = Bq/(f1, . . . , fr−1) for some q ⊂ B, condition (5) holds by induction
hypothesis. □
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58.26. Purity in local case, III

0EY8 In this section is a continuation of the discussion in Sections 58.20 and 58.25.

Lemma 58.26.1.0EY9 Let (A,m) be a Noetherian local ring of depth ≥ 2. Let B =
A[[x1, . . . , xd]] with d ≥ 1. Set Y = Spec(B) and Y0 = V (x1, . . . , xd). For any open
subscheme V ⊂ Y with V0 = V ∩ Y0 equal to Y0 \ {mB} the restriction functor

FÉtV −→ FÉtV0

is fully faithful.

Proof. Set I = (x1, . . . , xd). Set X = Spec(A). If we use the map Y → X to
identify Y0 with X, then V0 is identified with the punctured spectrum U of A.
Pushing forward modules by this affine morphism we get

limn Γ(V0,OV /InOV ) = limn Γ(V0,OY /InOY )
= limn Γ(U,OU [x1, . . . , xd]/(x1, . . . , xd)n)
= limnA[x1, . . . , xd]/(x1, . . . , xd)n

= B

Namely, as the depth of A is ≥ 2 we have Γ(U,OU ) = A, see Local Cohomology,
Lemma 51.8.2. Thus for any V ⊂ Y open as in the lemma we get

B = Γ(Y,OY )→ Γ(V,OV )→ limn Γ(V0,OY /InOY ) = B

which implies both arrows are isomorphisms (small detail omitted). By Algebraic
and Formal Geometry, Lemma 52.15.1 we conclude that Coh(OV )→ Coh(V, IOV )
is fully faithful on the full subcategory of finite locally free objects. Thus we con-
clude by Lemma 58.17.1. □

Lemma 58.26.2.0EYA Let (A,m) be a Noetherian local ring of depth ≥ 2. Let B =
A[[x1, . . . , xd]] with d ≥ 1. For any open V ⊂ Y = Spec(B) which contains

(1) any prime q ⊂ B such that q ∩A ̸= m,
(2) the prime mB

the functor FÉtY → FÉtV is an equivalence. In particular purity holds for B.

Proof. A prime q ⊂ B which is not contained in V lies over m. In this case
A→ Bq is a flat local homomorphism and hence depth(Bq) ≥ 2 (Algebra, Lemma
10.163.2). Thus the functor is fully faithful by Lemma 58.10.3 combined with Local
Cohomology, Lemma 51.3.1.
Let W → V be a finite étale morphism. Let B → C be the unique finite ring map
such that Spec(C) → Y is the finite morphism extending W → V constructed in
Lemma 58.21.5. Observe that C = Γ(W,OW ).
Set Y0 = V (x1, . . . , xd) and V0 = V ∩ Y0. Set X = Spec(A). If we use the map
Y → X to identify Y0 with X, then V0 is identified with the punctured spectrum
U of A. Thus we may view W0 = W ×Y Y0 as a finite étale scheme over U . Then

W0 ×U (U ×X Y ) and W ×V (U ×X Y )
are schemes finite étale over U×XY which restrict to isomorphic finite étale schemes
over V0. By Lemma 58.26.1 applied to the open U ×X Y we obtain an isomorphism

W0 ×U (U ×X Y ) −→W ×V (U ×X Y )
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over U ×X Y .
Observe that C0 = Γ(W0,OW0) is a finite A-algebra by Lemma 58.21.5 applied to
W0 → U ⊂ X (exactly as we did for B → C above). Since the construction in
Lemma 58.21.5 is compatible with flat base change and with change of opens, the
isomorphism above induces an isomorphism

Ψ : C −→ C0 ⊗A B
of finite B-algebras. However, we know that Spec(C) → Y is étale at all points
above at least one point of Y lying over m ∈ X. Since Ψ is an isomorphism, we
conclude that Spec(C0) → X is étale above m (small detail omitted). Of course
this means that A→ C0 is finite étale and hence B → C is finite étale. □

Lemma 58.26.3.0EYB Let f : X → S be a morphism of schemes. Let U ⊂ X be an open
subscheme. Assume

(1) f is smooth,
(2) S is Noetherian,
(3) for s ∈ S with depth(OS,s) ≤ 1 we have Xs = Us,
(4) Us ⊂ Xs is dense for all s ∈ S.

Then FÉtX → FÉtU is an equivalence.

Proof. The functor is fully faithful by Lemma 58.10.3 combined with Local Coho-
mology, Lemma 51.3.1 (plus an application of Algebra, Lemma 10.163.2 to check
the depth condition).
Let π : V → U be a finite étale morphism. Let Y → X be the finite morphism
constructed in Lemma 58.21.5. We have to show that Y → X is finite étale. To
show that this is true for all points x ∈ X mapping to a given point s ∈ S we may
perform a base change by a flat morphism S′ → S of Noetherian schemes such that
s is in the image. This follows from the compatibility of the construction in Lemma
58.21.5 with flat base change.
After enlarging U we may assume U ⊂ X is the maximal open over which Y → X
is finite étale. Let Z ⊂ X be the complement of U . To get a contradiction, assume
Z ̸= ∅. Let s ∈ S be a point in the image of Z → S such that no strict generalization
of s is in the image. Then after base change to Spec(OS,s) we see that S = Spec(A)
with (A,m, κ) a local Noetherian ring of depth ≥ 2 and Z contained in the closed
fibre Xs and nowhere dense in Xs. Choose a closed point z ∈ Z. Then κ(z)/κ
is finite (by the Hilbert Nullstellensatz, see Algebra, Theorem 10.34.1). Choose
a finite flat morphism (S′, s′) → (S, s) of local schemes realizing the residue field
extension κ(z)/κ, see Algebra, Lemma 10.159.3. After doing a base change by
S′ → S we reduce to the case where κ(z) = κ.
By More on Morphisms, Lemma 37.38.5 there exists a locally closed subscheme
S′ ⊂ X passing through z such that S′ → S is étale at z. After performing the
base change by S′ → S, we may assume there is a section σ : S → X such that
σ(s) = z. Choose an affine neighbourhood Spec(B) ⊂ X of s. Then A → B
is a smooth ring map which has a section σ : B → A. Denote I = Ker(σ) and
denote B∧ the I-adic completion of B. Then B∧ ∼= A[[x1, . . . , xd]] for some d ≥ 0,
see Algebra, Lemma 10.139.4. Observe that d > 0 since otherwise we see that
X → S is étale at z which would imply that z is a generic point of Xs and hence
z ∈ U by assumption (4). Similarly, if d > 0, then mB∧ maps into U via the
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morphism Spec(B∧)→ X. It suffices prove Y → X is finite étale after base change
to Spec(B∧). Since B → B∧ is flat (Algebra, Lemma 10.97.2) this follows from
Lemma 58.26.2 and the uniqueness in the construction of Y → X. □

Proposition 58.26.4.0EYC Let A → B be a local homomorphism of local Noetherian
rings. Assume A has depth ≥ 2, A → B is formally smooth for the mB-adic
topology, and dim(B) > dim(A). For any open V ⊂ Y = Spec(B) which contains

(1) any prime q ⊂ B such that q ∩A ̸= mA,
(2) the prime mAB

the functor FÉtY → FÉtV is an equivalence. In particular purity holds for B.

Proof. A prime q ⊂ B which is not contained in V lies over mA. In this case
A→ Bq is a flat local homomorphism and hence depth(Bq) ≥ 2 (Algebra, Lemma
10.163.2). Thus the functor is fully faithful by Lemma 58.10.3 combined with Local
Cohomology, Lemma 51.3.1.
Denote A∧ and B∧ the completions of A and B with respect to their maximal
ideals. Observe that the assumptions of the proposition hold for A∧ → B∧, see
More on Algebra, Lemmas 15.43.1, 15.43.2, and 15.37.4. By the uniqueness and
compatibility with flat base change of the construction of Lemma 58.21.5 it suffices
to prove the essential surjectivity for A∧ → B∧ and the inverse image of V (de-
tails omitted; compare with Lemma 58.20.4 for the case where V is the punctured
spectrum). By More on Algebra, Proposition 15.49.2 this means we may assume
A→ B is regular.
Let W → V be a finite étale morphism. By Popescu’s theorem (Smoothing Ring
Maps, Theorem 16.12.1) we can write B = colimBi as a filtered colimit of smooth
A-algebras. We can pick an i and an open Vi ⊂ Spec(Bi) whose inverse image is V
(Limits, Lemma 32.4.11). After increasing i we may assume there is a finite étale
morphism Wi → Vi whose base change to V is W → V , see Limits, Lemmas 32.10.1,
32.8.3, and 32.8.10. We may assume the complement of Vi is contained in the closed
fibre of Spec(Bi)→ Spec(A) as this is true for V (either choose Vi this way or use
the lemma above to show this is true for i large enough). Let η be the generic point
of the closed fibre of Spec(B) → Spec(A). Since η ∈ V , the image of η is in Vi.
Hence after replacing Vi by an affine open neighbourhood of the image of the closed
point of Spec(B), we may assume that the closed fibre of Spec(Bi) → Spec(A) is
irreducible and that its generic point is contained in Vi (details omitted; use that
a scheme smooth over a field is a disjoint union of irreducible schemes). At this
point we may apply Lemma 58.26.3 to see that Wi → Vi extends to a finite étale
morphism Spec(Ci)→ Spec(Bi) and pulling back to Spec(B) we conclude that W
is in the essential image of the functor FÉtY → FÉtV as desired. □

58.27. Lefschetz for the fundamental group

0ELB Of course we have already proven a bunch of results of this type in the local case.
In this section we discuss the projective case.

Proposition 58.27.1.0ELC Let k be a field. Let X be a proper scheme over k. Let L
be an ample invertible OX -module. Let s ∈ Γ(X,L). Let Y = Z(s) be the zero
scheme of s. Assume that for all x ∈ X \ Y we have

depth(OX,x) + dim({x}) > 1
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Then the restriction functor FÉtX → FÉtY is fully faithful. In fact, for any open
subscheme V ⊂ X containing Y the restriction functor FÉtV → FÉtY is fully
faithful.

Proof. The first statement is a formal consequence of Lemma 58.17.6 and Algebraic
and Formal Geometry, Proposition 52.28.1. The second statement follows from
Lemma 58.17.6 and Algebraic and Formal Geometry, Lemma 52.28.2. □

Proposition 58.27.2.0ELD Let k be a field. Let X be a proper scheme over k. Let L
be an ample invertible OX -module. Let s ∈ Γ(X,L). Let Y = Z(s) be the zero
scheme of s. Let V be the set of open subschemes of X containing Y ordered by
reverse inclusion. Assume that for all x ∈ X \ Y we have

depth(OX,x) + dim({x}) > 2
Then the restriction functor

colimV FÉtV → FÉtY
is an equivalence.

Proof. This is a formal consequence of Lemma 58.17.4 and Algebraic and Formal
Geometry, Proposition 52.28.7. □

Proposition 58.27.3.0ELE Let k be a field. Let X be a proper scheme over k. Let L
be an ample invertible OX -module. Let s ∈ Γ(X,L). Let Y = Z(s) be the zero
scheme of s. Assume that for all x ∈ X \ Y we have

depth(OX,x) + dim({x}) > 2
and that for x ∈ X \ Y closed purity holds for OX,x. Then the restriction functor
FÉtX → FÉtY is an equivalence. If X or equivalently Y is connected, then

π1(Y, y)→ π1(X, y)
is an isomorphism for any geometric point y of Y .

Proof. Fully faithfulness holds by Proposition 58.27.1. By Proposition 58.27.2 any
object of FÉtY is isomorphic to the fibre product U ×V Y for some finite étale mor-
phism U → V where V ⊂ X is an open subscheme containing Y . The complement
T = X \ V is5 a finite set of closed points of X \ Y . Say T = {x1, . . . , xn}. By
assumption we can find finite étale morphisms V ′

i → Spec(OX,xi) agreeing with
U → V over V ×X Spec(OX,xi). By Limits, Lemma 32.20.1 applied n times we see
that U → V extends to a finite étale morphism U ′ → X as desired. See Lemma
58.8.1 for the final statement. □

58.28. Purity of ramification locus

0EA1 In this section we discuss the analogue of purity of branch locus for generically
finite morphisms. Apparently, this result is due to Gabber. A special case is van
der Waerden’s purity theorem for the locus where a birational morphism from a
normal variety to a smooth variety is not an isomorphism.

5Namely, T is proper over k (being closed in X) and affine (being closed in the affine scheme
X \ Y , see Morphisms, Lemma 29.43.18) and hence finite over k (Morphisms, Lemma 29.44.11).
Thus T is a finite set of closed points.
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Lemma 58.28.1.0EA2 Let A be a Noetherian normal local domain of dimension 2.
Assume A is Nagata, has a dualizing module ωA, and has a resolution of singularities
f : X → Spec(A). Let ωX be as in Resolution of Surfaces, Remark 54.7.7. If
ωX ∼= OX(E) for some effective Cartier divisor E ⊂ X supported on the exceptional
fibre, then A defines a rational singularity. If f is a minimal resolution, then E = 0.

Proof. There is a trace map Rf∗ωX → ωA, see Duality for Schemes, Section 48.7.
By Grauert-Riemenschneider (Resolution of Surfaces, Proposition 54.7.8) we have
R1f∗ωX = 0. Thus the trace map is a map f∗ωX → ωA. Then we can consider

OSpec(A) = f∗OX → f∗ωX → ωA

where the first map comes from the map OX → OX(E) = ωX which is assumed
to exist in the statement of the lemma. The composition is an isomorphism by
Divisors, Lemma 31.2.11 as it is an isomorphism over the punctured spectrum of
A (by the assumption in the lemma and the fact that f is an isomorphism over
the punctured spectrum) and A and ωA are A-modules of depth 2 (by Algebra,
Lemma 10.157.4 and Dualizing Complexes, Lemma 47.17.5). Hence f∗ωX → ωA
is surjective whence an isomorphism. Thus Rf∗ωX = ωA which by duality im-
plies Rf∗OX = OSpec(A). Whence H1(X,OX) = 0 which implies that A defines
a rational singularity (see discussion in Resolution of Surfaces, Section 54.8 in
particular Lemmas 54.8.7 and 54.8.1). If f is minimal, then E = 0 because the
map f∗ωA → ωX is surjective by a repeated application of Resolution of Surfaces,
Lemma 54.9.7 and ωA ∼= A as we’ve seen above. □

Lemma 58.28.2.0EA3 Let f : X → Spec(A) be a finite type morphism. Let x ∈ X be a
point. Assume

(1) A is an excellent regular local ring,
(2) OX,x is normal of dimension 2,
(3) f is étale outside of {x}.

Then f is étale at x.

Proof. We first replace X by an affine open neighbourhood of x. Observe that OX,x
is an excellent local ring (More on Algebra, Lemma 15.52.2). Thus we can choose
a minimal resolution of singularities W → Spec(OX,x), see Resolution of Surfaces,
Theorem 54.14.5. After possibly replacing X by an affine open neighbourhood of x
we can find a proper morphism b : X ′ → X such that X ′ ×X Spec(OX,x) = W , see
Limits, Lemma 32.20.1. After shrinking X further, we may assume X ′ is regular.
Namely, we know W is regular and X ′ is excellent and the regular locus of the
spectrum of an excellent ring is open. Since W → Spec(OX,x) is projective (as
a sequence of normalized blowing ups), we may assume after shrinking X that
b is projective (details omitted). Let U = X \ {x}. Since W → Spec(OX,x) is
an isomorphism over the punctured spectrum, we may assume b : X ′ → X is an
isomorphism over U . Thus we may and will think of U as an open subscheme of
X ′ as well. Set f ′ = f ◦ b : X ′ → Spec(A).
Since A is regular we see that OY is a dualizing complex for Y . Hence f !OY
is a dualzing complex on X (Duality for Schemes, Lemma 48.17.7). The Cohen-
Macaulay locus of X is open by Duality for Schemes, Lemma 48.23.1 (this can
also be proven using excellency). Since OX,x is Cohen-Macaulay, after shrinking
X we may assume X is Cohen-Macaulay. Observe that an étale morphism is a
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local complete intersection. Thus Duality for Schemes, Lemma 48.29.3 applies with
r = 0 and we get a map

OX −→ ωX/Y = H0(f !OY )

which is an isomorphism over X \ {x}. Since ωX/Y is (S2) by Duality for Schemes,
Lemma 48.21.5 we find this map is an isomorphism by Divisors, Lemma 31.2.11.
This already shows that X and in particular OX,x is Gorenstein.
Set ωX′/Y = H0((f ′)!OY ). Arguing in exactly the same manner as above we
find that (f ′)!OY = ωX′/Y [0] is a dualizing complex for X ′. Since X ′ is regular
the morphism X ′ → Y is a local complete intersection morphism, see More on
Morphisms, Lemma 37.62.11. By Duality for Schemes, Lemma 48.29.2 there exists
a map

OX′ −→ ωX′/Y

which is an isomorphism over U . We conclude ωX′/Y = OX′(E) for some effective
Cartier divisor E ⊂ X ′ disjoint from U .
Since ωX/Y = OY we see that ωX′/Y = b!f !OY = b!OX . Returning to W →
Spec(OX,x) we see that ωW = OW (E|W ). By Lemma 58.28.1 we find E|W = 0.
This means that f ′ : X ′ → Y is étale by (the already used) Duality for Schemes,
Lemma 48.29.2. This immediately finishes the proof, as étaleness of f ′ forces b to
be an isomorphism. □

Lemma 58.28.3 (Purity of ramification locus).0EA4 This result for
complex spaces can
be found on page
170 of [Fis76]. In
general this is
[Zon14, Theorem
2.4] attributed to
Gabber.

Let f : X → Y be a morphism of
locally Noetherian schemes. Let x ∈ X and set y = f(x). Assume

(1) OX,x is normal of dimension ≥ 1,
(2) OY,y is regular,
(3) f is locally of finite type, and
(4) for specializations x′ ⇝ x with dim(OX,x′) = 1 our f is étale at x′.

Then f is étale at x.

Proof. We will prove the lemma by induction on d = dim(OX,x).
An uninteresting case is d = 1 since in that case the morphism f is étale at x by
assumption. Assume d ≥ 2.
We can base change by Spec(OY,y) → Y without affecting the conclusion of the
lemma, see Morphisms, Lemma 29.36.17. Thus we may assume Y = Spec(A) where
A is a regular local ring and y corresponds to the maximal ideal m of A.
Let x′ ⇝ x be a specialization with x′ ̸= x. Then OX,x′ is normal as a localization
of OX,x. If x′ is not a generic point of X, then 1 ≤ dim(OX,x′) < d and we conclude
that f is étale at x′ by induction hypothesis. Thus we may assume that f is étale
at all points specializing to x. Since the set of points where f is étale is open in X
(by definition) we may after replacing X by an open neighbourhood of x assume
that f is étale away from {x}. In particular, we see that f is étale except at points
lying over the closed point y ∈ Y = Spec(A).
Let X ′ = X ×Spec(A) Spec(A∧). Let x′ ∈ X ′ be the unique point lying over x. By
the above we see that X ′ is étale over Spec(A∧) away from the closed fibre and
hence X ′ is normal away from the closed fibre. Since X is normal we conclude
that X ′ is normal by Resolution of Surfaces, Lemma 54.11.6. Then if we can
show X ′ → Spec(A∧) is étale at x′, then f is étale at x (by the aforementioned
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Morphisms, Lemma 29.36.17). Thus we may and do assume A is a regular complete
local ring.
The case d = 2 now follows from Lemma 58.28.2.
Assume d > 2. Let t ∈ m, t ̸∈ m2. Set Y0 = Spec(A/tA) and X0 = X ×Y Y0. Then
X0 → Y0 is étale away from the fibre over the closed point. Since d > 2 we have
dim(OX0,x) = d− 1 is ≥ 2. The normalization X ′

0 → X0 is surjective and finite (as
we’re working over a complete local ring and such rings are Nagata). Let x′ ∈ X ′

0
be a point mapping to x. By induction hypothesis the morphism X ′

0 → Y is étale
at x′. From the inclusions κ(y) ⊂ κ(x) ⊂ κ(x′) we conclude that κ(x) is finite over
κ(y). Hence x is a closed point of the fibre of X → Y over y. But since x is also a
generic point of this fibre, we conclude that f is quasi-finite at x and we reduce to
the case of purity of branch locus, see Lemma 58.21.4. □

58.29. Affineness of complement of ramification locus

0ECA Let f : X → Y be a finite type morphism of Noetherian schemes with X normal
and Y regular. Let V ⊂ X be the maximal open subscheme where f is étale.
The discussion in [DG67, Chapter IV, Section 21.12] suggests that V → X might
be an affine morphism. Observe that if V → X is affine, then we deduce purity
of ramification locus (Lemma 58.28.3) by using Divisors, Lemma 31.16.4. Thus
affineness of V → X is a “strong” form of purity for the ramification locus. In
this section we prove V → X is affine when X and Y are equicharacteristic and
excellent, see Theorem 58.29.3. It seems reasonable to guess the result remains true
for X and Y of mixed characteristic (but still excellent).

Lemma 58.29.1.0ECB Let (A,m) be a regular local ring which contains a field. Let
f : V → Spec(A) be étale and quasi-compact. Assume that m ̸∈ f(V ) and assume
that g : V → Spec(A) \ {m} is affine. Then Hi(V,OV ), i > 0 is isomorphic to a
direct sum of copies of the injective hull of the residue field of A.

Proof. Denote U = Spec(A) \ {m} the punctured spectrum. Thus g : V → U is
affine. We have Hi(V,OV ) = Hi(U, g∗OV ) by Cohomology of Schemes, Lemma
30.2.4. The OU -module g∗OV is quasi-coherent by Schemes, Lemma 26.24.1. For
any quasi-coherent OU -module F the cohomology Hi(U,F), i > 0 is m-power
torsion, see for example Local Cohomology, Lemma 51.2.2. In particular, the A-
modules Hi(V,OV ), i > 0 are m-power torsion. For any flat ring map A → A′ we
have Hi(V,OV )⊗A A′ = Hi(V ′,OV ′) where V ′ = V ×Spec(A) Spec(A′) by flat base
change Cohomology of Schemes, Lemma 30.5.2. If we take A′ to be the completion
of A (flat by More on Algebra, Section 15.43), then we see that

Hi(V,OV ) = Hi(V,OV )⊗A A′ = Hi(V ′,OV ′), for i > 0
The first equality by the torsion property we just proved and More on Algebra,
Lemma 15.89.3. Moreover, the injective hull of the residue field k is the same for
A and A′, see Dualizing Complexes, Lemma 47.7.4. In this way we reduce to the
case A = k[[x1, . . . , xd]], see Algebra, Section 10.160.
Assume the characteristic of k is p > 0. Since F : A → A, a 7→ ap is flat (Local
Cohomology, Lemma 51.17.6) and since V ×Spec(A),Spec(F ) Spec(A) ∼= V as schemes
over Spec(A) by Étale Morphisms, Lemma 41.14.3 the above gives Hi(V,OV )⊗A,F
A ∼= Hi(V,OV ). Thus we get the result by Local Cohomology, Lemma 51.18.2.
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Assume the characteristic of k is 0. By Local Cohomology, Lemma 51.19.3 there
are additive operators Dj , j = 1, . . . , d on Hi(V,OV ) satisfying the Leibniz rule
with respect to ∂j = ∂/∂xj . Thus we get the result by Local Cohomology, Lemma
51.18.1. □

Lemma 58.29.2.0ECC In the situation of Lemma 58.29.1 assume that Hi(V,OV ) = 0 for
i ≥ dim(A)− 1. Then V is affine.

Proof. Let k = A/m. Since V ×Spec(A)Spec(k) = ∅, by cohomology and base change
we have

RΓ(V,OV )⊗L
A k = 0

See Derived Categories of Schemes, Lemma 36.22.5. Thus there is a spectral se-
quence (More on Algebra, Example 15.62.4)

Ep,q2 = Tor−p(k,Hq(V,OV )), dp,q2 : Ep,q2 → Ep+2,q−1
2

and dp,qr : Ep,qr → Ep+r,q−r+1
r converging to zero. By Lemma 58.29.1, Dualizing

Complexes, Lemma 47.21.9, and our assumption Hi(V,OV ) = 0 for i ≥ dim(A)−1
we conclude that there is no nonzero differential entering or leaving the (p, q) =
(0, 0) spot. Thus H0(V,OV ) ⊗A k = 0. This means that if m = (x1, . . . , xd) then
we have an open covering V =

⋃
V ×Spec(A) Spec(Axi) by affine open subschemes

V ×Spec(A) Spec(Axi) (because V is affine over the punctured spectrum of A) such
that x1, . . . , xd generate the unit ideal in Γ(V,OV ). This implies V is affine by
Properties, Lemma 28.27.3. □

Theorem 58.29.3.0ECD Let Y be an excellent regular scheme over a field. Let f : X → Y
be a finite type morphism of schemes with X normal. Let V ⊂ X be the maximal
open subscheme where f is étale. Then the inclusion morphism V → X is affine.

Proof. Let x ∈ X with image y ∈ Y . It suffices to prove that V ∩ W is affine
for some affine open neighbourhood W of x. Since Spec(OX,x) is the limit of the
schemes W , this holds if and only if

Vx = V ×X Spec(OX,x)
is affine (Limits, Lemma 32.4.13). Thus, if the theorem holds for the morphism
X ×Y Spec(OY,y) → Spec(OY,y), then the theorem holds. In particular, we may
assume Y is regular of finite dimension, which allows us to do induction on the
dimension d = dim(Y ). Combining this with the same argument again, we may
assume that Y is local with closed point y and that V ∩(X\f−1({y})→ X\f−1({y})
is affine.
Let x ∈ X be a point lying over y. If x ∈ V , then there is nothing to prove. Observe
that f−1({y}) ∩ V is a finite set of closed points (the fibres of an étale morphism
are discrete). Thus after replacing X by an affine open neighbourhood of x we may
assume y ̸∈ f(V ). We have to prove that V is affine.
Let e(V ) be the maximum i with Hi(V,OV ) ̸= 0. As X is affine the integer e(V ) is
the maximum of the numbers e(Vx) where x ∈ X\V , see Local Cohomology, Lemma
51.4.6 and the characterization of cohomological dimension in Local Cohomology,
Lemma 51.4.1. We have e(Vx) ≤ dim(OX,x) − 1 by Local Cohomology, Lemma
51.4.7. If dim(OX,x) ≥ 2 then purity of ramification locus (Lemma 58.28.3) shows
that Vx is strictly smaller than the punctured spectrum of OX,x. Since OX,x is nor-
mal and excellent, this implies e(Vx) ≤ dim(OX,x)− 2 by Hartshorne-Lichtenbaum
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vanishing (Local Cohomology, Lemma 51.16.7). On the other hand, since X → Y
is of finite type and V ⊂ X is dense (after possibly replacing X by the closure
of V ), we see that dim(OX,x) ≤ d by the dimension formula (Morphisms, Lemma
29.52.1). Whence e(V ) ≤ max(0, d − 2). Thus V is affine by Lemma 58.29.2 if
d ≥ 2. If d = 1 or d = 0, then the punctured spectrum of OY,y is affine and hence
V is affine. □

58.30. Specialization maps in the smooth proper case

0BUQ In this section we discuss the following result. Let f : X → S be a proper smooth
morphism of schemes. Let s ⇝ s′ be a specialization of points in S. Then the
specialization map

sp : π1(Xs) −→ π1(Xs′)
of Section 58.16 is surjective and

(1) if the characteristic of κ(s′) is zero, then it is an isomorphism, or
(2) if the characteristic of κ(s′) is p > 0, then it induces an isomorphism on

maximal prime-to-p quotients.

Lemma 58.30.1.0C0P Let f : X → S be a flat proper morphism with geometrically
connected fibres. Let s′ ⇝ s be a specialization. If Xs is geometrically reduced,
then the specialization map sp : π1(Xs′)→ π1(Xs) is surjective.

Proof. SinceXs is geometrically reduced, we may assume all fibres are geometrically
reduced after possibly shrinking S, see More on Morphisms, Lemma 37.26.7. Let
OS,s → A→ κ(s′) be as in the construction of the specialization map, see Section
58.16. Thus it suffices to show that

π1(Xs′)→ π1(XA)
is surjective. This follows from Proposition 58.15.2 and π1(Spec(A)) = {1}. □

Proposition 58.30.2.0C0Q Let f : X → S be a smooth proper morphism with geometri-
cally connected fibres. Let s′ ⇝ s be a specialization. If the characteristic to κ(s)
is zero, then the specialization map

sp : π1(Xs′)→ π1(Xs)
is an isomorphism.

Proof. The map is surjective by Lemma 58.30.1. Thus we have to show it is injec-
tive.
We may assume S is affine. Then S is a cofiltered limit of affine schemes of finite
type over Z. Hence we can assume X → S is the base change of X0 → S0 where
S0 is the spectrum of a finite type Z-algebra and X0 → S0 is smooth and proper.
See Limits, Lemma 32.10.1, 32.8.9, and 32.13.1. By Lemma 58.16.1 we reduce to
the case where the base is Noetherian.
Applying Lemma 58.16.4 we reduce to the case where the base S is the spectrum of
a strictly henselian discrete valuation ring A and we are looking at the specialization
map over A. Let K be the fraction field of A. Choose an algebraic closure K which
corresponds to a geometric generic point η of Spec(A). For K/L/K finite separable,
let B ⊂ L be the integral closure of A in L. This is a discrete valuation ring by
More on Algebra, Remark 15.111.6.
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Let X → Spec(A) be as in the previous paragraph. To show injectivity of the
specialization map it suffices to prove that every finite étale cover V of Xη is the
base change of a finite étale cover Y → X. Namely, then π1(Xη)→ π1(X) = π1(Xs)
is injective by Lemma 58.4.4.

Given V we can first descend V to V ′ → XKsep by Lemma 58.14.2 and then to
V ′′ → XL by Lemma 58.14.1. Let Z → XB be the normalization of XB in V ′′.
Observe that Z is normal and that ZL = V ′′ as schemes over XL. Hence Z → XB

is finite étale over the generic fibre. The problem is that we do not know that
Z → XB is everywhere étale. Since X → Spec(A) has geometrically connected
smooth fibres, we see that the special fibre Xs is geometrically irreducible. Hence
the special fibre of XB → Spec(B) is irreducible; let ξB be its generic point. Let
ξ1, . . . , ξr be the points of Z mapping to ξB . Our first (and it will turn out only)
problem is now that the extensions

OXB ,ξB ⊂ OZ,ξi

of discrete valuation rings may be ramified. Let ei be the ramification index of
this extension. Note that since the characteristic of κ(s) is zero, the ramification is
tame!

To get rid of the ramification we are going to choose a further finite separable
extensionKsep/L′/L/K such that the ramification index e of the induced extensions
B′/B is divisible by ei. Consider the normalized base change Z ′ of Z with respect
to Spec(B′) → Spec(B), see discussion in More on Morphisms, Section 37.65. Let
ξi,j be the points of Z ′ mapping to ξB′ and to ξi in Z. Then the local rings

OZ′,ξi,j

are localizations of the integral closure of OZ,ξi in L′ ⊗L Fi where Fi is the frac-
tion field of OZ,ξi ; details omitted. Hence Abhyankar’s lemma (More on Algebra,
Lemma 15.114.4) tells us that

OXB′ ,ξB′ ⊂ OZ′,ξi,j

is unramified. We conclude that the morphism Z ′ → XB′ is étale away from
codimension 1. Hence by purity of branch locus (Lemma 58.21.4) we see that
Z ′ → XB′ is finite étale!

However, since the residue field extension induced by A → B′ is trivial (as the
residue field of A is algebraically closed being separably closed of characteristic
zero) we conclude that Z ′ is the base change of a finite étale cover Y → X by
applying Lemma 58.9.1 twice (first to get Y over A, then to prove that the pullback
to B is isomorphic to Z ′). This finishes the proof. □

Let G be a profinite group. Let p be a prime number. The maximal prime-to-p
quotient is by definition

G′ = limU⊂G open, normal, index prime to pG/U

If X is a connected scheme and p is given, then the maximal prime-to-p quotient
of π1(X) is denoted π′

1(X).
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Theorem 58.30.3.0C0R Let f : X → S be a smooth proper morphism with geometrically
connected fibres. Let s′ ⇝ s be a specialization. If the characteristic of κ(s) is p,
then the specialization map

sp : π1(Xs′)→ π1(Xs)
is surjective and induces an isomorphism

π′
1(Xs′) ∼= π′

1(Xs)
of the maximal prime-to-p quotients

Proof. This is proved in exactly the same manner as Proposition 58.30.2 with the
following differences

(1) Given X/A we no longer show that the functor FÉtX → FÉtXη is essen-
tially surjective. We show only that Galois objects whose Galois group
has order prime to p are in the essential image. This will be enough to
conclude the injectivity of π′

1(Xs′) → π′
1(Xs) by exactly the same argu-

ment.
(2) The extensions OXB ,ξB ⊂ OZ,ξi are tamely ramified as the associated

extension of fraction fields is Galois with group of order prime to p. See
More on Algebra, Lemma 15.112.2.

(3) The extension κB/κA is no longer necessarily trivial, but it is purely insep-
arable. Hence the morphism XκB → XκA is a universal homeomorphism
and induces an isomorphism of fundamental groups by Proposition 58.8.4.

□

58.31. Tame ramification

0BSE Let X → Y be a finite étale morphism of schemes of finite type over Z. There are
many ways to define what it means for f to be tamely ramified at ∞. The article
[KS10] discusses to what extent these notions agree.
In this section we discuss a different more elementary question which precedes
the notion of tameness at infinity. Please compare with the (slightly different)
discussion in [GM71]. Assume we are given

(1) a locally Noetherian scheme X,
(2) a dense open U ⊂ X,
(3) a finite étale morphism f : Y → U

such that for every prime divisor Z ⊂ X with Z ∩ U = ∅ the local ring OX,ξ of
X at the generic point ξ of Z is a discrete valuation ring. Setting Kξ equal to the
fraction field of OX,ξ we obtain a cartesian square

Spec(Kξ) //

��

U

��
Spec(OX,ξ) // X

of schemes. In particular, we see that Y ×U Spec(Kξ) is the spectrum of a finite
separable algebra Lξ/Kξ. Then we say Y is unramified over X in codimension
1, resp. Y is tamely ramified over X in codimension 1 if Lξ/Kξ is unramified,
resp. tamely ramified with respect to OX,ξ for every (Z, ξ) as above, see More on
Algebra, Definition 15.111.7. More precisely, we decompose Lξ into a product of
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finite separable field extensions of Kξ and we require each of these to be unramified,
resp. tamely ramified with respect to OX,ξ.

Lemma 58.31.1.0EYD Let X ′ → X be a morphism of locally Noetherian schemes. Let
U ⊂ X be a dense open. Assume

(1) U ′ = f−1(U) is dense open in X ′,
(2) for every prime divisor Z ⊂ X with Z ∩ U = ∅ the local ring OX,ξ of X

at the generic point ξ of Z is a discrete valuation ring,
(3) for every prime divisor Z ′ ⊂ X ′ with Z ′ ∩ U ′ = ∅ the local ring OX′,ξ′ of

X ′ at the generic point ξ′ of Z ′ is a discrete valuation ring,
(4) if ξ′ ∈ X ′ is as in (3), then ξ = f(ξ′) is as in (2).

Then if f : Y → U is finite étale and Y is unramified, resp. tamely ramified over
X in codimension 1, then Y ′ = Y ×X X ′ → U ′ is finite étale and Y ′ is unramified,
resp. tamely ramified over X ′ in codimension 1.

Proof. The only interesting fact in this lemma is the commutative algebra result
given in More on Algebra, Lemma 15.114.9. □

Using the terminology introduced above, we can reformulate our purity results
obtained earlier in the following pleasing manner.

Lemma 58.31.2.0H2W Let X be a locally Noetherian scheme. Let U ⊂ X be open and
dense. Let Y → U be a finite étale morphism. Assume

(1) Y is unramified over X in codimension 1, and
(2) OX,x is regular for all x ∈ X \ U .

Then there exists a finite étale morphism Y ′ → X whose restriction to X \D is Y .

Proof. Let ξ ∈ X \ U be a generic point of an irreducible component of X \ U
of codimension 1. Then OX,ξ is a discrete valuation ring. As in the discussion
above, write Y ×U Spec(Kξ) = Spec(Lξ). Denote Bξ the integral closure of OX,ξ
in Lξ. Our assumption that Y is unramified over X in codimension 1 signifies
that OX,ξ → Bξ is finite étale. Thus we get Yξ → Spec(OX,ξ) finite étale and an
isomorphism

Y ×U Spec(Kξ) ∼= Yξ ×Spec(OX,ξ) Spec(Kξ)
over Spec(Kξ). By Limits, Lemma 32.20.3 we find an open subscheme U ⊂ U ′ ⊂ X
containing ξ and a morphism Y ′ → U ′ of finite presentation whose restriction to U
recovers Y and whose restriction to Spec(OX,ξ) recovers Yξ. Finally, the morphism
Y ′ → U ′ is finite étale after possible shrinking U ′ to a smaller open by Limits,
Lemma 32.20.4. Repeating the argument with the other generic points of X \ U
of codimension 1 we may assume that we have a finite étale morphism Y ′ → U ′

extending Y → U to an open subscheme containing U ′ ⊂ X containing U and all
codimension 1 points of X \ U . We finish by applying Lemma 58.21.6 to Y ′ → U ′.
Namely, all local rings OX,x for x ∈ X \ U ′ are regular and have dim(OX,x) ≥ 2.
Hence we have purity for OX,x by Lemma 58.21.3. □

Lemma 58.31.3.0EYE Let X be a locally Noetherian scheme. Let D ⊂ X be an effective
Cartier divisor such that D is a regular scheme. Let Y → X \D be a finite étale
morphism. If Y is unramified over X in codimension 1, then there exists a finite
étale morphism Y ′ → X whose restriction to X \D is Y .
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Proof. This is a special case of Lemma 58.31.2. First, D is nowhere dense in X
(see discussion in Divisors, Section 31.13) and hence X \D is dense in X. Second,
the ring OX,x is a regular local ring for all x ∈ D by Algebra, Lemma 10.106.7 and
our assumption that OD,x is regular. □

Example 58.31.4 (Standard tamely ramified morphism).0EYF Let A be a Noetherian
ring. Let f ∈ A be a nonzerodivisor such that A/fA is reduced. This implies that
Ap is a discrete valuation ring with uniformizer f for any minimal prime p over f .
Let e ≥ 1 be an integer which is invertible in A. Set

C = A[x]/(xe − f)
Then Spec(C) → Spec(A) is a finite locally free morphism which is étale over the
spectrum of Af . The finite étale morphism

Spec(Cf ) −→ Spec(Af )
is tamely ramified over Spec(A) in codimension 1. The tameness follows immedi-
ately from the characterization of tamely ramified extensions in More on Algebra,
Lemma 15.114.7.

Here is a version of Abhyankar’s lemma for regular divisors.

Lemma 58.31.5 (Abhyankar’s lemma for regular divisor).0EYG Let X be a locally Noe-
therian scheme. Let D ⊂ X be an effective Cartier divisor such that D is a regular
scheme. Let Y → X \D be a finite étale morphism. If Y is tamely ramified over
X in codimension 1, then étale locally on X the morphism Y → X is as given
as a finite disjoint union of standard tamely ramified morphisms as described in
Example 58.31.4.

Proof. Before we start we note that OX,x is a regular local ring for all x ∈ D. This
follows from Algebra, Lemma 10.106.7 and our assumption that OD,x is regular.
Below we will also use that regular rings are normal, see Algebra, Lemma 10.157.5.
To prove the lemma we may work locally on X. Thus we may assume X = Spec(A)
and D ⊂ X is given by a nonzerodivisor f ∈ A. Then Y = Spec(B) as a finite étale
scheme over Af . Let p1, . . . , pr be the minimal primes of A over f . Then Ai = Api

is a discrete valuation ring; denote its fraction field Ki. By assumption

Ki ⊗Af B =
∏

Lij

is a finite product of fields each tamely ramified with respect to Ai. Choose e ≥ 1
sufficiently divisible (namely, divisible by all ramification indices for Lij over Ai as
in More on Algebra, Remark 15.111.6). Warning: at this point we do not know
that e is invertible on A.
Consider the finite free A-algebra

A′ = A[x]/(xe − f)
Observe that f ′ = x is a nonzerodivisor in A′ and that A′/f ′A′ ∼= A/fA is a
regular ring. Set B′ = B ⊗A A′ = B ⊗Af A′

f ′ . By Abhyankar’s lemma (More
on Algebra, Lemma 15.114.4) we see that Spec(B′) is unramified over Spec(A′) in
codimension 1. Namely, by Lemma 58.31.1 we see that Spec(B′) is still at least
tamely ramified over Spec(A′) in codimension 1. But Abhyankar’s lemma tells us
that the ramification indices have all become equal to 1. By Lemma 58.31.3 we
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conclude that Spec(B′)→ Spec(A′
f ′) extends to a finite étale morphism Spec(C)→

Spec(A′).
For a point x ∈ D corresponding to p ∈ V (f) denote Ash a strict henselization
of Ap = OX,x. Observe that Ash and Ash/fAsh = (A/fA)sh (Algebra, Lemma
10.156.4) are regular local rings, see More on Algebra, Lemma 15.45.10. Observe
that A′ has a unique prime p′ lying over p with identical residue field. Thus

(A′)sh = Ash ⊗A A′ = Ash[x]/(xe − f)
is a strictly henselian local ring finite over Ash (Algebra, Lemma 10.156.3). Since f ′

is a nonzerodivisor in (A′)sh and since (A′)sh/f ′(A′)sh = Ash/fAsh is regular, we
conclude that (A′)sh is a regular local ring (see above). Observe that the induced
extension

Q(Ash) ⊂ Q((A′)sh) = Q(Ash)[x]/(xe − f)
of fraction fields has degree e (and not less). Since A′ → C is finite étale we see
that Ash ⊗A C is a finite product of copies of (A′)sh (Algebra, Lemma 10.153.6).
We have the inclusions

Ashf ⊂ Ash ⊗A B ⊂ Ash ⊗A B′ = Ash ⊗A Cf ′

and each of these rings is Noetherian and normal; this follows from Algebra, Lemma
10.163.9 for the ring in the middle. Taking total quotient rings, using the product
decomposition of Ash⊗AC and using Fields, Lemma 9.24.3 we conclude that there
is an isomorphism

Q(Ash)⊗A B ∼=
∏

i∈I
Fi, Fi ∼= Q(Ash)[x]/(xei − f)

of Q(Ash)-algebras for some finite set I and integers ei|e. Since Ash ⊗A B is a
normal ring, it must be the integral closure of Ash in its total quotient ring. We
conclude that we have an isomorphism

Ash ⊗A B ∼=
∏

Ashf [x]/(xei − f)

over Ashf because the algebras Ash[x]/(xei − f) are regular and hence normal. The
discriminant of Ash[x]/(xei − f) over Ash is eeii fei−1 (up to sign; calculation omit-
ted). Since Af → B is finite étale we see that ei must be invertible in Ashf . On the
other hand, since Af → B is tamely ramified over Spec(A) in codimension 1, by
Lemma 58.31.1 the ring map Ashf → Ash ⊗A B is tamely ramified over Spec(Ash)
in codimension 1. This implies ei is nonzero in Ash/fAsh (as it must map to an
invertible element of the fraction field of this domain by definition of tamely rami-
fied extensions). We conclude that V (ei) ⊂ Spec(Ash) has codimension ≥ 2 which
is absurd unless it is empty. In other words, ei is an invertible element of Ash. We
conclude that the pullback of Y to Spec(Ash) is indeed a finite disjoint union of
standard tamely ramified morphisms.
To finish the proof, we write Ash = colimAλ as a filtered colimit of étale A-algebras
Aλ. The isomorphism

Ash ⊗A B ∼=
∏

i∈I
Ashf [x]/(xei − f)

descends to an isomorphism

Aλ ⊗A B ∼=
∏

i∈I
(Aλ)f [x]/(xei − f)
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for suitably large λ. After increasing λ a bit more we may assume ei is invertible
in Aλ. Then Spec(Aλ)→ Spec(A) is the desired étale neighbourhood of x and the
proof is complete. □

Lemma 58.31.6.0EYH In the situation of Lemma 58.31.5 the normalization of X in Y is
a finite locally free morphism π : Y ′ → X such that

(1) the restriction of Y ′ to X \D is isomorphic to Y ,
(2) D′ = π−1(D)red is an effective Cartier divisor on Y ′, and
(3) D′ is a regular scheme.

Moreover, étale locally on X the morphism Y ′ → X is a finite disjoint union of
morphisms

Spec(A[x]/(xe − f))→ Spec(A)
where A is a Noetherian ring, f ∈ A is a nonzerodivisor with A/fA regular, and
e ≥ 1 is invertible in A.
Proof. This is just an addendum to Lemma 58.31.5 and in fact the truth of this
lemma follows almost immediately if you’ve read the proof of that lemma. But we
can also deduce the lemma from the result of Lemma 58.31.5. Namely, taking the
normalization of X in Y commutes with étale base change, see More on Morphisms,
Lemma 37.19.2. Hence we see that we may prove the statements on the local
structure of Y ′ → X étale locally on X. Thus, by Lemma 58.31.5 we may assume
that X = Spec(A) where A is a Noetherian ring, that we have a nonzerodivisor
f ∈ A such that A/fA is regular, and that Y is a finite disjoint union of spectra of
rings Af [x]/(xe − f) where e is invertible in A. We omit the verification that the
integral closure of A in Af [x]/(xe − f) is equal to A′ = A[x]/(xe − f). (To see this
argue that the localizations of A′ at primes lying over (f) are regular.) We omit
the details. □

Lemma 58.31.7.0EYI In the situation of Lemma 58.31.5 let Y ′ → X be as in Lemma
58.31.6. Let R be a discrete valuation ring with fraction field K. Let

t : Spec(R)→ X

be a morphism such that the scheme theoretic inverse image t−1D is the reduced
closed point of Spec(R).

(1) If t|Spec(K) lifts to a point of Y , then we get a lift t′ : Spec(R)→ Y ′ such
that Y ′ → X is étale along t′(Spec(R)).

(2) If Spec(K) ×X Y is isomorphic to a disjoint union of copies of Spec(K),
then Y ′ → X is finite étale over an open neighbourhood of t(Spec(R)).

Proof. By the valuative criterion of properness applied to the finite morphism Y ′ →
X we see that Spec(K)-valued points of Y matching t|Spec(K) as maps into X lift
uniquely to morphisms t′ : Spec(R)→ Y ′. Thus statement (1) make sense.
Choose an étale neighbourhood (U, u) → (X, t(mR)) such that U = Spec(A) and
such that Y ′ ×X U → U has a description as in Lemma 58.31.6 for some f ∈ A.
Then Spec(R) ×X U → Spec(R) is étale and surjective. If R′ denotes the local
ring of Spec(R)×X U lying over the closed point of Spec(R), then R′ is a discrete
valuation ring and R ⊂ R′ is an unramified extension of discrete valuation rings
(More on Algebra, Lemma 15.44.4). The assumption on t signifies that the map
A→ R′ corresponding to

Spec(R′)→ Spec(R)×X U → U
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maps f to a uniformizer π ∈ R′. Now suppose that

Y ′ ×X U =
∐

i∈I
Spec(A[x]/(xei − f))

for some ei ≥ 1. Then we see that
Spec(R′)×U (Y ′ ×X U) =

∐
i∈I

Spec(R′[x]/(xei − π))

The rings R′[x]/(xei − f) are discrete valuation rings (More on Algebra, Lemma
15.114.2) and hence have no map into the fraction field of R′ unless ei = 1.
Proof of (1). In this case the map t′ : Spec(R) → Y ′ base changes to determine
a corresponding map t′′ : Spec(R′) → Y ′ ×X U which must map into a summand
corresponding to i ∈ I with ei = 1 by the discussion above. Thus clearly we see
that Y ′ ×X U → U is étale along the image of t′′. Since being étale is a property
one can check after étale base chamge, this proves (1).
Proof of (2). In this case the assumption implies that ei = 1 for all i ∈ I. Thus
Y ′ ×X U → U is finite étale and we conclude as before. □

Lemma 58.31.8.0EYJ Let S be an integral normal Noetherian scheme with generic point
η. Let f : X → S be a smooth morphism with geometrically connected fibres. Let
σ : S → X be a section of f . Let Z → Xη be a finite étale Galois cover (Section
58.7) with group G of order invertible on S such that Z has a κ(η)-rational point
mapping to σ(η). Then there exists a finite étale Galois cover Y → X with group
G whose restriction to Xη is Z.

Proof. First assume S = Spec(R) is the spectrum of a discrete valuation ring R
with closed point s ∈ S. Then Xs is an effective Cartier divisor in X and Xs is
regular as a scheme smooth over a field. Moreover the generic fibre Xη is the open
subscheme X \ Xs. It follows from More on Algebra, Lemma 15.112.2 and the
assumption on G that Z is tamely ramified over X in codimension 1. Let Z ′ → X
be as in Lemma 58.31.6. Observe that the action of G on Z extends to an action
of G on Z ′. By Lemma 58.31.7 we see that Z ′ → X is finite étale over an open
neighbourhood of σ(y). Since Xs is irreducible, this implies Z → Xη is unramified
over X in codimension 1. Then we get a finite étale morphism Y → X whose
restriction to Xη is Z by Lemma 58.31.3. Of course Y ∼= Z ′ (details omitted; hint:
compute étale locally) and hence Y is a Galois cover with group G.
General case. Let U ⊂ S be a maximal open subscheme such that there exists a
finite étale Galois cover Y → X ×S U with group G whose restriction to Xη is
isomorphic to Z. Assume U ̸= S to get a contradiction. Let s ∈ S \U be a generic
point of an irreducible component of S \ U . Then the inverse image Us of U in
Spec(OS,s) is the punctured spectrum of OS,s. We claim Y ×S Us → X ×S Us is
the restriction of a finite étale Galois cover Y ′

s → X ×S Spec(OS,s) with group G.
Let us first prove the claim produces the desired contradiction. By Limits, Lemma
32.20.3 we find an open subscheme U ⊂ U ′ ⊂ S containing s and a morphism
Y ′′ → U ′ of finite presentation whose restriction to U recovers Y ′ → U and whose
restriction to Spec(OS,s) recovers Y ′

s . Moreover, by the equivalence of categories
given in the lemma, we may assume after shrinking U ′ there is a morphism Y ′′ →
U ′×SX and there is an action of G on Y ′′ over U ′×SX compatible with the given
morphisms and actions after base change to U and Spec(OS,s). After shrinking
U ′ further if necessary, we may assume Y ′′ → U ×S X is finite étale, see Limits,

https://stacks.math.columbia.edu/tag/0EYJ
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Lemma 32.20.4. This means we have found a strictly larger open of S over which
Y extends to a finite étale Galois cover with group G which gives the contradiction
we were looking for.

Proof of the claim. We may and do replace S by Spec(OS,s). Then S = Spec(A)
where (A,m) is a local normal domain. Also U ⊂ S is the punctured spectrum and
we have a finite étale Galois cover Y → X ×S U with group G. If dim(A) = 1,
then we can construct the extension of Y to a Galois covering of X by the first
paragraph of the proof. Thus we may assume dim(A) ≥ 2 and hence depth(A) ≥ 2
as S is normal, see Algebra, Lemma 10.157.4. Since X → S is flat, we conclude
that depth(OX,x) ≥ 2 for every point x ∈ X mapping to s, see Algebra, Lemma
10.163.2. Let

Y ′ −→ X

be the finite morphism constructed in Lemma 58.21.5 using Y → X×S U . Observe
that we obtain a canonical G-action on Y . Thus all that remains is to show that
Y ′ is étale over X. In fact, by Lemma 58.26.3 (for example) it even suffices to show
that Y ′ → X is étale over the (unique) generic point of the fibre Xs. This we do
by a local calculation in a (formal) neighbourhood of σ(s).

Choose an affine open Spec(B) ⊂ X containing σ(s). Then A→ B is a smooth ring
map which has a section σ : B → A. Denote I = Ker(σ) and denote B∧ the I-adic
completion of B. Then B∧ ∼= A[[x1, . . . , xd]] for some d ≥ 0, see Algebra, Lemma
10.139.4. Of course B → B∧ is flat (Algebra, Lemma 10.97.2) and the image of
Spec(B∧)→ X contains the generic point of Xs. Let V ⊂ Spec(B∧) be the inverse
image of U . Consider the finite étale morphism

W = Y ×(X×SU) V −→ V

By the compatibility of the construction of Y ′ with flat base change in Lemma
58.21.5 we find that the base chang Y ′ ×X Spec(B∧) → Spec(B∧) is constructed
from W → V over Spec(B∧) by the procedure in Lemma 58.21.5. Set V0 = V ∩
V (x1, . . . , xd) ⊂ V and W0 = W ×V V0. This is a normal integral scheme which
maps into σ(S) by the morphism Spec(B∧)→ X and in fact is identified with σ(U).
Hence we know that W0 → V0 = U completely decomposes as this is true for its
generic fibre by our assumption on Z → Xη having a κ(η)-rational point lying over
σ(η) (and of course the G-action then implies the whole fibre Zσ(η) is a disjoint
union of copies of the scheme η = Spec(κ(η))). Finally, by Lemma 58.26.1 we have

W0 ×U V ∼= W

This shows that W is a disjoint union of copies of V and hence Y ′ ×X Spec(B∧) is
a disjoint union of copies of Spec(B∧) and the proof is complete. □

Lemma 58.31.9.0EZJ Let S be a quasi-compact and quasi-separated integral normal
scheme with generic point η. Let f : X → S be a quasi-compact and quasi-
separated smooth morphism with geometrically connected fibres. Let σ : S → X
be a section of f . Let Z → Xη be a finite étale Galois cover (Section 58.7) with
group G of order invertible on S such that Z has a κ(η)-rational point mapping
to σ(η). Then there exists a finite étale Galois cover Y → X with group G whose
restriction to Xη is Z.

https://stacks.math.columbia.edu/tag/0EZJ
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Proof. If S is Noetherian, then this is the result of Lemma 58.31.8. The general
case follows from this by a standard limit argument. We strongly urge the reader
to skip the proof.

We can write S = limSi as a directed limit of a system of schemes with affine
transition morphisms and with Si of finite type over Z, see Limits, Proposition
32.5.4. For each i let S → S′

i → Si be the normalization of Si in S, see Morphisms,
Section 29.53. Combining Algebra, Proposition 10.162.16 Morphisms, Lemmas
29.53.15 and 29.53.13 we conclude that S′

i is of finite type over Z, finite over Si,
and that S′

i is an integral normal scheme such that S → S′
i is dominant. By

Morphisms, Lemma 29.53.5 we obtain transition morphisms S′
i′ → S′

i compatible
with the transition morphisms Si′ → Si and with the morphisms with source S.
We claim that S = limS′

i. Proof of claim omitted (hint: look on affine opens over a
chosen affine open in Si for some i to translate this into a straightforward algebra
problem). We conclude that we may write S = limSi as a directed limit of a system
of normal integral schemes Si with affine transition morphisms and with Si of finite
type over Z.

For some i we can find a smooth morphism Xi → Si of finite presentation whose
base change to S is X → S. See Limits, Lemmas 32.10.1 and 32.8.9. After increas-
ing i we may assume the section σ lifts to a section σi : Si → Xi (by the equivalence
of categories in Limits, Lemma 32.10.1). We may replace Xi by the open subscheme
X0
i of it studied in More on Morphisms, Section 37.29 since the image of X → Xi

clearly maps into it (openness by More on Morphisms, Lemma 37.29.6). Thus we
may assume the fibres of Xi → Si are geometrically connected. After increasing i
we may assume |G| is invertible on Si. Let ηi ∈ Si be the generic point. Since Xη

is the limit of the schemes Xi,ηi we can use the exact same arguments to descent
Z → Xη to some finite étale Galois cover Zi → Xi,ηi after possibly increasing i.
See Lemma 58.14.1. After possibly increasing i once more we may assume Zi has a
κ(ηi)-rational point mapping to σi(ηi). Then we apply the lemma in the Noetherian
case and we pullback to X to conclude. □

58.32. Tricks in positive characteristic

0G1E In Piotr Achinger’s paper [Ach17] it is shown that an affine scheme in positive char-
acteristic is always a K(π, 1). In this section we explain the more elementary parts
of [Ach17]. Namely, we show that for a field k of positive characteristic an affine
scheme étale over An

k is actually finite étale over An
k (by a different morphism). We

also show that a closed immersion of connected affine schemes in positive charac-
teristic induces an injective map on étale fundamental groups.

Let k be a field of characteristic p > 0. Let

k[x1, . . . , xn] −→ A

be a surjection of finite type k-algebras whose source is the polynomial algebra on
x1, . . . , xn. Denote I ⊂ k[x1, . . . , xn] the kernel so that we have A = k[x1, . . . , xn]/I.
We do not assume A is nonzero (in other words, we allow the case where A is the
zero ring and I = k[x1, . . . , xn]). Finally, we assume given a finite étale ring map
π : A→ B.
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Suppose given k, n, k[x1, . . . , xn] → A, I, π : A → B. Let C be a k-algebra. Con-
sider commutative diagrams

B

C // C/φ(I)C

τ

OO

k[x1, . . . , xn]

φ

OO

// A

OO
π

cc

where φ is an étale k-algebra map and τ is a surjective k-algebra map. Let C,φ, τ
be given. For any r ≥ 0 and y1, . . . , yr ∈ C which generate C as an algebra over
Im(φ) let s = s(r, y1, . . . , yr) ∈ {0, . . . , r} be the maximal element such that yi is
integral over Im(φ) for 1 ≤ i ≤ s. We define NF (C,φ, τ) to be the minimum value
of r − s = r − s(r, y1, . . . , yr) for all choices of r and y1, . . . , yr as above. Observe
that NF (C,φ, τ) is 0 if and only if φ is finite.

Lemma 58.32.1.0G1F In the situation above, ifNF (C,φ, τ) > 0, then there exist an étale
k-algebra map φ′ and a surjective k-algebra map τ ′ fitting into the commutative
diagram

B

C // C/φ′(I)C

τ ′

OO

k[x1, . . . , xn]

φ′

OO

// A

OO
π

cc

with NF (C,φ′, τ ′) < NF (C,φ, τ).

Proof. Choose r ≥ 0 and y1, . . . , yr ∈ C which generate C over Im(φ) and let
0 ≤ s ≤ r be such that y1, . . . , ys are integral over Im(φ) such that r − s =
NF (C,φ, τ) > 0. Since B is finite over A, the image of ys+1 in B satisfies a monic
polynomial over A. Hence we can find d ≥ 1 and f1, . . . , fd ∈ k[x1, . . . , xn] such
that

z = yds+1 + φ(f1)yd−1
s+1 + . . .+ φ(fd) ∈ J = Ker(C → C/φ(I)C τ−→ B)

Since φ : k[x1, . . . , xn] → C is étale, we can find a nonzero and nonconstant poly-
nomial g ∈ k[T1, . . . , Tn+1] such that

g(φ(x1), . . . , φ(xn), z) = 0 in C

To see this you can use for example that C ⊗φ,k[x1,...,xn] k(x1, . . . , xn) is a finite
product of finite separable field extensions of k(x1, . . . , xn) (see Algebra, Lemmas
10.143.4) and hence z satisfies a monic polynomial over k(x1, . . . , xn). Clearing
denominators we obtain g.

The existence of g and Algebra, Lemma 10.115.2 produce integers e1, e2, . . . , en ≥
1 such that z is integral over the subring C ′ of C generated by t1 = φ(x1) +
zpe1 , . . . , tn = φ(xn) + zpen . Of course, the elements φ(x1), . . . , φ(xn) are also

https://stacks.math.columbia.edu/tag/0G1F
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integral over C ′ as are the elements y1, . . . , ys. Finally, by our choice of z the
element ys+1 is integral over C ′ too.
Consider the ring map

φ′ : k[x1, . . . , xn] −→ C, xi 7−→ ti

with image C ′. Since d(φ(xi)) = d(ti) = d(φ′(xi)) in ΩC/k (and this is where we
use the characteristic of k is p > 0) we conclude that φ′ is étale because φ is étale,
see Algebra, Lemma 10.151.9. Observe that φ′(xi) − φ(xi) = ti − φ(xi) = zpei is
in the kernel J of the map C → C/φ(I)C → B by our choice of z as an element of
J . Hence for f ∈ I the element
φ′(f) = f(t1, . . . , tn) = f(φ(x1) + zpe1 , . . . , φ(xn) + zpen) = φ(f) + element of (z)
is in J as well. In other words, φ′(I)C ⊂ J and we obtain a surjection

τ ′ : C/φ′(I)C −→ C/J ∼= B

of algebras étale over A. Finally, the algebra C is generated by the elements
φ(x1), . . . , φ(xn), y1, . . . , yr over C ′ = Im(φ′) with φ(x1), . . . , φ(xn), y1, . . . , ys+1
integral over C ′ = Im(φ′). Hence NF (C,φ′, τ ′) < r − s = NF (C,φ, τ). This
finishes the proof. □

Lemma 58.32.2.0G1G Let k be a field of characteristic p > 0. Let X → An
k be an étale

morphism with X affine. Then there exists a finite étale morphism X → An
k .

Proof. Write X = Spec(C). Set A = 0 and denote I = k[x1, . . . , xn]. By as-
sumption there exists some étale k-algebra map φ : k[x1, . . . , xn] → C. Denote
τ : C/φ(I)C → 0 the unique surjection. We may choose φ and τ such that
N(C,φ, τ) is minimal. By Lemma 58.32.1 we get N(C,φ, τ) = 0. Hence φ is
finite étale. □

Lemma 58.32.3.0G1H Let k be a field of characteristic p > 0. Let Z ⊂ An
k be a

closed subscheme. Let Y → Z be finite étale. There exists a finite étale morphism
f : U → An

k such that there is an open and closed immersion Y → f−1(Z) over Z.

Proof. Let us turn the problem into algebra. Write An
k = Spec(k[x1, . . . , xn]).

Then Z = Spec(A) where A = k[x1, . . . , xn]/I for some ideal I ⊂ k[x1, . . . , xn].
Write Y = Spec(B) so that Y → Z corresponds to the finite étale k-algebra map
A→ B.
By Algebra, Lemma 10.143.10 there exists an étale ring map

φ : k[x1, . . . , xn]→ C

and a surjective A-algebra map τ : C/φ(I)C → B. (We can even choose C,φ, τ
such that τ is an isomorphism, but we won’t use this). We may choose φ and τ
such that N(C,φ, τ) is minimal. By Lemma 58.32.1 we get N(C,φ, τ) = 0. Hence
φ is finite étale.
Let f : U = Spec(C) → An

k be the finite étale morphism corresponding to φ. The
morphism Y → f−1(Z) = Spec(C/φ(I)C) induced by τ is a closed immersion as τ
is surjective and open as it is an étale morphism by Morphisms, Lemma 29.36.18.
This finishes the proof. □

Here is the main result.

https://stacks.math.columbia.edu/tag/0G1G
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Proposition 58.32.4.0G1I Let p be a prime number. Let i : Z → X be a closed immersion
of connected affine schemes over Fp. For any geometric point z of Z the map

π1(Z, z)→ π1(X, z)
is injective.

Proof. Let Y → Z be a finite étale morphism. It suffices to construct a finite étale
morphism f : U → X such that Y is isomorphic to an open and closed subscheme
of f−1(Z), see Lemma 58.4.4. Write Y = Spec(A) and X = Spec(R) so the closed
immersion Y → X is given by a surjection R→ A. We may write A = colimAi as
the filtered colimit of its Fp-subalgebras of finite type. By Lemma 58.14.1 we can
find an i and a finite étale morphism Yi → Zi = Spec(Ai) such that Y = Z ×Zi Yi.
Choose a surjection Fp[x1, . . . , xn]→ Ai. This determines a closed immersion

Zi = Spec(Ai) −→ Xi = An
Fp = Spec(Fp[x1, . . . , xn])

By the universal property of polynomial algebras and since R→ A is surjective, we
can find a commutative diagram

Fp[x1, . . . , xn] //

��

Ai

��
R // A

of Fp-algebras. Thus we have a commutative diagram

Yi // Zi // Xi

Y

OO

// Z

OO

// X

OO

whose right square is cartesian. Clearly, if we can find fi : Ui → Xi finite étale
such that Yi is isomorphic to an open and closed subscheme of f−1

i (Zi), then the
base change f : U → X of fi by X → Xi is a solution to our problem. Thus we
conclude by applying Lemma 58.32.3 to Yi → Zi → Xi = An

Fp . □
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CHAPTER 59

Étale Cohomology

03N1 59.1. Introduction

03N2 This chapter is the first in a series of chapter on the étale cohomology of schemes.
In this chapter we discuss the very basics of the étale topology and cohomology
of abelian sheaves in this topology. Many of the topics discussed may be safely
skipped on a first reading; please see the advice in the next section as to how to
decide what to skip.
The initial version of this chapter was formed by the notes of the first part of a
course on étale cohomology taught by Johan de Jong at Columbia University in the
Fall of 2009. The original note takers were Thibaut Pugin, Zachary Maddock and
Min Lee. The second part of the course can be found in the chapter on the trace
formula, see The Trace Formula, Section 64.1.

59.2. Which sections to skip on a first reading?

04JG We want to use the material in this chapter for the development of theory related
to algebraic spaces, Deligne-Mumford stacks, algebraic stacks, etc. Thus we have
added some pretty technical material to the original exposition of étale cohomology
for schemes. The reader can recognize this material by the frequency of the word
“topos”, or by discussions related to set theory, or by proofs dealing with very
general properties of morphisms of schemes. Some of these discussions can be
skipped on a first reading.
In particular, we suggest that the reader skip the following sections:

(1) Comparing big and small topoi, Section 59.99.
(2) Recovering morphisms, Section 59.40.
(3) Push and pull, Section 59.41.
(4) Property (A), Section 59.42.
(5) Property (B), Section 59.43.
(6) Property (C), Section 59.44.
(7) Topological invariance of the small étale site, Section 59.45.
(8) Integral universally injective morphisms, Section 59.47.
(9) Big sites and pushforward, Section 59.48.

(10) Exactness of big lower shriek, Section 59.49.
Besides these sections there are some sporadic results that may be skipped that the
reader can recognize by the keywords given above.

59.3. Prologue

03N3 These lectures are about another cohomology theory. The first thing to remark is
that the Zariski topology is not entirely satisfactory. One of the main reasons that

4711
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it fails to give the results that we would want is that if X is a complex variety and
F is a constant sheaf then

Hi(X,F) = 0, for all i > 0.
The reason for that is the following. In an irreducible scheme (a variety in par-
ticular), any two nonempty open subsets meet, and so the restriction mappings of
a constant sheaf are surjective. We say that the sheaf is flasque. In this case, all
higher Čech cohomology groups vanish, and so do all higher Zariski cohomology
groups. In other words, there are “not enough” open sets in the Zariski topology
to detect this higher cohomology.
On the other hand, if X is a smooth projective complex variety, then

H2 dimX
Betti (X(C),Λ) = Λ for Λ = Z, Z/nZ,

where X(C) means the set of complex points of X. This is a feature that would be
nice to replicate in algebraic geometry. In positive characteristic in particular.

59.4. The étale topology

03N4 It is very hard to simply “add” extra open sets to refine the Zariski topology.
One efficient way to define a topology is to consider not only open sets, but also
some schemes that lie over them. To define the étale topology, one considers all
morphisms φ : U → X which are étale. If X is a smooth projective variety over C,
then this means

(1) U is a disjoint union of smooth varieties, and
(2) φ is (analytically) locally an isomorphism.

The word “analytically” refers to the usual (transcendental) topology over C. So
the second condition means that the derivative of φ has full rank everywhere (and
in particular all the components of U have the same dimension as X).
A double cover – loosely defined as a finite degree 2 map between varieties – for
example

Spec(C[t]) −→ Spec(C[t]), t 7−→ t2

will not be an étale morphism if it has a fibre consisting of a single point. In the
example this happens when t = 0. For a finite map between varieties over C to
be étale all the fibers should have the same number of points. Removing the point
t = 0 from the source of the map in the example will make the morphism étale.
But we can remove other points from the source of the morphism also, and the
morphism will still be étale. To consider the étale topology, we have to look at
all such morphisms. Unlike the Zariski topology, these need not be merely open
subsets of X, even though their images always are.

Definition 59.4.1.03N5 A family of morphisms {φi : Ui → X}i∈I is called an étale
covering if each φi is an étale morphism and their images cover X, i.e., X =⋃
i∈I φi(Ui).

This “defines” the étale topology. In other words, we can now say what the sheaves
are. An étale sheaf F of sets (resp. abelian groups, vector spaces, etc) on X is the
data:

(1) for each étale morphism φ : U → X a set (resp. abelian group, vector
space, etc) F(U),

https://stacks.math.columbia.edu/tag/03N5
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(2) for each pair U, U ′ of étale schemes over X, and each morphism U → U ′

over X (which is automatically étale) a restriction map ρU
′

U : F(U ′) →
F(U)

These data have to satisfy the condition that ρUU = id in case of the identity
morphism U → U and that ρU ′

U ◦ρU
′′

U ′ = ρU
′′

U when we have morphisms U → U ′ → U ′′

of schemes étale over X as well as the following sheaf axiom:
(*) for every étale covering {φi : Ui → U}i∈I , the diagram

∅ // F(U) // Πi∈IF(Ui)
//
// Πi,j∈IF(Ui ×U Uj)

is exact in the category of sets (resp. abelian groups, vector spaces, etc).

Remark 59.4.2.03N6 In the last statement, it is essential not to forget the case where i =
j which is in general a highly nontrivial condition (unlike in the Zariski topology).
In fact, frequently important coverings have only one element.

Since the identity is an étale morphism, we can compute the global sections of an
étale sheaf, and cohomology will simply be the corresponding right-derived functors.
In other words, once more theory has been developed and statements have been
made precise, there will be no obstacle to defining cohomology.

59.5. Feats of the étale topology

03N7 For a natural number n ∈ N = {1, 2, 3, 4, . . .} it is true that

H2
étale(P1

C,Z/nZ) = Z/nZ.

More generally, if X is a complex variety, then its étale Betti numbers with coeffi-
cients in a finite field agree with the usual Betti numbers of X(C), i.e.,

dimFq H
2i
étale(X,Fq) = dimFq H

2i
Betti(X(C),Fq).

This is extremely satisfactory. However, these equalities only hold for torsion coef-
ficients, not in general. For integer coefficients, one has

H2
étale(P1

C,Z) = 0.

By contrast H2
Betti(P1(C),Z) = Z as the topological space P1(C) is homeomorphic

to a 2-sphere. There are ways to get back to nontorsion coefficients from torsion
ones by a limit procedure which we will come to shortly.

59.6. A computation

03N8 How do we compute the cohomology of P1
C with coefficients Λ = Z/nZ? We

use Čech cohomology. A covering of P1
C is given by the two standard opens

U0, U1, which are both isomorphic to A1
C, and whose intersection is isomorphic

to A1
C \ {0} = Gm,C. It turns out that the Mayer-Vietoris sequence holds in étale

cohomology. This gives an exact sequence

Hi−1
étale(U0∩U1,Λ)→ Hi

étale(P1
C ,Λ)→ Hi

étale(U0,Λ)⊕Hi
étale(U1,Λ)→ Hi

étale(U0∩U1,Λ).

To get the answer we expect, we would need to show that the direct sum in the
third term vanishes. In fact, it is true that, as for the usual topology,

Hq
étale(A

1
C,Λ) = 0 for q ≥ 1,

https://stacks.math.columbia.edu/tag/03N6
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and
Hq
étale(A

1
C \ {0},Λ) =

{
Λ if q = 1, and
0 for q ≥ 2.

These results are already quite hard (what is an elementary proof?). Let us explain
how we would compute this once the machinery of étale cohomology is at our
disposal.

Higher cohomology. This is taken care of by the following general fact: if X is an
affine curve over C, then

Hq
étale(X,Z/nZ) = 0 for q ≥ 2.

This is proved by considering the generic point of the curve and doing some Galois
cohomology. So we only have to worry about the cohomology in degree 1.

Cohomology in degree 1. We use the following identifications:

H1
étale(X,Z/nZ) =

{
sheaves of sets F on the étale site Xétale endowed with an

action Z/nZ×F → F such that F is a Z/nZ-torsor.

}/
∼=

=
{

morphisms Y → X which are finite étale together
with a free Z/nZ action such that X = Y/(Z/nZ).

}/
∼= .

The first identification is very general (it is true for any cohomology theory on a
site) and has nothing to do with the étale topology. The second identification is
a consequence of descent theory. The last set describes a collection of geometric
objects on which we can get our hands.

The curve A1
C has no nontrivial finite étale covering and hence H1

étale(A1
C,Z/nZ) =

0. This can be seen either topologically or by using the argument in the next
paragraph.

Let us describe the finite étale coverings φ : Y → A1
C \ {0}. It suffices to consider

the case where Y is connected, which we assume. We are going to find out what Y
can be by applying the Riemann-Hurwitz formula (of course this is a bit silly, and
you can go ahead and skip the next section if you like). Say that this morphism is
n to 1, and consider a projective compactification

Y
� � //

φ

��

Ȳ

φ̄

��
A1

C \ {0}
� � // P1

C

Even though φ is étale and does not ramify, φ̄ may ramify at 0 and ∞. Say that
the preimages of 0 are the points y1, . . . , yr with indices of ramification e1, . . . er,
and that the preimages of ∞ are the points y′

1, . . . , y
′
s with indices of ramification

d1, . . . ds. In particular,
∑
ei = n =

∑
dj . Applying the Riemann-Hurwitz formula,

we get
2gY − 2 = −2n+

∑
(ei − 1) +

∑
(dj − 1)

and therefore gY = 0, r = s = 1 and e1 = d1 = n. Hence Y ∼= A1
C \ {0}, and it

is easy to see that φ(z) = λzn for some λ ∈ C∗. After reparametrizing Y we may
assume λ = 1. Thus our covering is given by taking the nth root of the coordinate
on A1

C \ {0}.
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Remember that we need to classify the coverings of A1
C \ {0} together with free

Z/nZ-actions on them. In our case any such action corresponds to an automor-
phism of Y sending z to ζnz, where ζn is a primitive nth root of unity. There are
ϕ(n) such actions (here ϕ(n) means the Euler function). Thus there are exactly
ϕ(n) connected finite étale coverings with a given free Z/nZ-action, each corre-
sponding to a primitive nth root of unity. We leave it to the reader to see that the
disconnected finite étale degree n coverings of A1

C \ {0} with a given free Z/nZ-
action correspond one-to-one with nth roots of 1 which are not primitive. In other
words, this computation shows that

H1
étale(A1

C \ {0},Z/nZ) = Hom(µn(C),Z/nZ) ∼= Z/nZ.
The first identification is canonical, the second isn’t, see Remark 59.69.5. Since the
proof of Riemann-Hurwitz does not use the computation of cohomology, the above
actually constitutes a proof (provided we fill in the details on vanishing, etc).

59.7. Nontorsion coefficients

03N9 To study nontorsion coefficients, one makes the following definition:
Hi
étale(X,Qℓ) :=

(
limnH

i
étale(X,Z/ℓnZ)

)
⊗Zℓ Qℓ.

The symbol limn denote the limit of the system of cohomology groupsHi
étale(X,Z/ℓnZ)

indexed by n, see Categories, Section 4.21. Thus we will need to study systems of
sheaves satisfying some compatibility conditions.

59.8. Sheaf theory

03NA At this point we start talking about sites and sheaves in earnest. There is an
amazing amount of useful abstract material that could fit in the next few sections.
Some of this material is worked out in earlier chapters, such as the chapter on sites,
modules on sites, and cohomology on sites. We try to refrain from adding too much
material here, just enough so the material later in this chapter makes sense.

59.9. Presheaves

03NB A reference for this section is Sites, Section 7.2.

Definition 59.9.1.03NC Let C be a category. A presheaf of sets (respectively, an abelian
presheaf) on C is a functor Copp → Sets (resp. Ab).

Terminology. If U ∈ Ob(C), then elements of F(U) are called sections of F over
U . For φ : V → U in C, the map F(φ) : F(U) → F(V ) is called the restriction
map and is often denoted s 7→ s|V or sometimes s 7→ φ∗s. The notation s|V is
ambiguous since the restriction map depends on φ, but it is a standard abuse of
notation. We also use the notation Γ(U,F) = F(U).
Saying that F is a functor means that if W → V → U are morphisms in C and
s ∈ Γ(U,F) then (s|V )|W = s|W , with the abuse of notation just seen. Moreover,
the restriction mappings corresponding to the identity morphisms idU : U → U are
the identity.
The category of presheaves of sets (respectively of abelian presheaves) on C is de-
noted PSh(C) (resp. PAb(C)). It is the category of functors from Copp to Sets (resp.
Ab), which is to say that the morphisms of presheaves are natural transformations
of functors. We only consider the categories PSh(C) and PAb(C) when the category

https://stacks.math.columbia.edu/tag/03NC
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C is small. (Our convention is that a category is small unless otherwise mentioned,
and if it isn’t small it should be listed in Categories, Remark 4.2.2.)
Example 59.9.2.03ND Given an object X ∈ Ob(C), we consider the functor

hX : Copp −→ Sets
U 7−→ hX(U) = MorC(U,X)

V
φ−→ U 7−→ φ ◦ − : hX(U)→ hX(V ).

It is a presheaf, called the representable presheaf associated to X. It is not true
that representable presheaves are sheaves in every topology on every site.
Lemma 59.9.3 (Yoneda).03NE Let C be a category, and X,Y ∈ Ob(C). There is a
natural bijection

MorC(X,Y ) −→ MorPSh(C)(hX , hY )
ψ 7−→ hψ = ψ ◦ − : hX → hY .

Proof. See Categories, Lemma 4.3.5. □

59.10. Sites

03NF
Definition 59.10.1.03NG Let C be a category. A family of morphisms with fixed target
U = {φi : Ui → U}i∈I is the data of

(1) an object U ∈ C,
(2) a set I (possibly empty), and
(3) for all i ∈ I, a morphism φi : Ui → U of C with target U .

There is a notion of a morphism of families of morphisms with fixed target. A
special case of that is the notion of a refinement. A reference for this material is
Sites, Section 7.8.
Definition 59.10.2.03NH A site1 consists of a category C and a set Cov(C) consisting of
families of morphisms with fixed target called coverings, such that

(1) (isomorphism) if φ : V → U is an isomorphism in C, then {φ : V → U} is
a covering,

(2) (locality) if {φi : Ui → U}i∈I is a covering and for all i ∈ I we are given
a covering {ψij : Uij → Ui}j∈Ii , then

{φi ◦ ψij : Uij → U}(i,j)∈
∏

i∈I
{i}×Ii

is also a covering, and
(3) (base change) if {Ui → U}i∈I is a covering and V → U is a morphism in
C, then
(a) for all i ∈ I the fibre product Ui ×U V exists in C, and
(b) {Ui ×U V → V }i∈I is a covering.

For us the category underlying a site is always “small”, i.e., its collection of objects
form a set, and the collection of coverings of a site is a set as well (as in the
definition above). We will mostly, in this chapter, leave out the arguments that cut
down the collection of objects and coverings to a set. For further discussion, see
Sites, Remark 7.6.3.

1What we call a site is a called a category endowed with a pretopology in [AGV71, Exposé
II, Définition 1.3]. In [Art62] it is called a category with a Grothendieck topology.

https://stacks.math.columbia.edu/tag/03ND
https://stacks.math.columbia.edu/tag/03NE
https://stacks.math.columbia.edu/tag/03NG
https://stacks.math.columbia.edu/tag/03NH
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Example 59.10.3.03NI If X is a topological space, then it has an associated site XZar

defined as follows: the objects of XZar are the open subsets of X, the morphisms
between these are the inclusion mappings, and the coverings are the usual topolog-
ical (surjective) coverings. Observe that if U, V ⊂ W ⊂ X are open subsets then
U ×W V = U ∩ V exists: this category has fiber products. All the verifications are
trivial and everything works as expected.

59.11. Sheaves

03NJ
Definition 59.11.1.03NK A presheaf F of sets (resp. abelian presheaf) on a site C is said
to be a separated presheaf if for all coverings {φi : Ui → U}i∈I ∈ Cov(C) the map

F(U) −→
∏

i∈I
F(Ui)

is injective. Here the map is s 7→ (s|Ui)i∈I . The presheaf F is a sheaf if for all
coverings {φi : Ui → U}i∈I ∈ Cov(C), the diagram

(59.11.1.1)03NL F(U) // ∏
i∈I F(Ui)

//
//
∏
i,j∈I F(Ui ×U Uj),

where the first map is s 7→ (s|Ui)i∈I and the two maps on the right are (si)i∈I 7→
(si|Ui×UUj ) and (si)i∈I 7→ (sj |Ui×UUj ), is an equalizer diagram in the category of
sets (resp. abelian groups).

Remark 59.11.2.03NM For the empty covering (where I = ∅), this implies that F(∅) is an
empty product, which is a final object in the corresponding category (a singleton,
for both Sets and Ab).

Example 59.11.3.03NN Working this out for the site XZar associated to a topological
space, see Example 59.10.3, gives the usual notion of sheaves.

Definition 59.11.4.03NO We denote Sh(C) (resp. Ab(C)) the full subcategory of PSh(C)
(resp. PAb(C)) whose objects are sheaves. This is the category of sheaves of sets
(resp. abelian sheaves) on C.

59.12. The example of G-sets

03NP Let G be a group and define a site TG as follows: the underlying category is the
category of G-sets, i.e., its objects are sets endowed with a left G-action and the
morphisms are equivariant maps; and the coverings of TG are the families {φi :
Ui → U}i∈I satisfying U =

⋃
i∈I φi(Ui).

There is a special object in the site TG, namely the G-set G endowed with its natural
action by left translations. We denote it GG. Observe that there is a natural group
isomorphism

ρ : Gopp −→ AutG-Sets(GG)
g 7−→ (h 7→ hg).

In particular, for any presheaf F , the set F(GG) inherits a G-action via ρ. (Note
that by contravariance of F , the set F(GG) is again a left G-set.) In fact, the
functor

Sh(TG) −→ G-Sets
F 7−→ F(GG)

https://stacks.math.columbia.edu/tag/03NI
https://stacks.math.columbia.edu/tag/03NK
https://stacks.math.columbia.edu/tag/03NM
https://stacks.math.columbia.edu/tag/03NN
https://stacks.math.columbia.edu/tag/03NO
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is an equivalence of categories. Its quasi-inverse is the functor X 7→ hX . Without
giving the complete proof (which can be found in Sites, Section 7.9) let us try to
explain why this is true.

(1) If S is a G-set, we can decompose it into orbits S =
∐
i∈I Oi. The sheaf

axiom for the covering {Oi → S}i∈I says that

F(S) // ∏
i∈I F(Oi)

//
//
∏
i,j∈I F(Oi ×S Oj)

is an equalizer. Observing that fibered products in G-Sets are induced
from fibered products in Sets, and using the fact that F(∅) is a G-
singleton, we get that∏

i,j∈I
F(Oi ×S Oj) =

∏
i∈I
F(Oi)

and the two maps above are in fact the same. Therefore the sheaf axiom
merely says that F(S) =

∏
i∈I F(Oi).

(2) If S is the G-set S = G/H and F is a sheaf on TG, then we claim that
F(G/H) = F(GG)H

and in particular F({∗}) = F(GG)G. To see this, let’s use the sheaf axiom
for the covering {GG→ G/H} of S. We have

GG×G/H GG ∼= G×H
(g1, g2) 7−→ (g1, g

−1
1 g2)

is a disjoint union of copies of GG (as a G-set). Hence the sheaf axiom
reads

F(G/H) // F(GG) //
//
∏
h∈H F(GG)

where the two maps on the right are s 7→ (s)h∈H and s 7→ (hs)h∈H .
Therefore F(G/H) = F(GG)H as claimed.

This doesn’t quite prove the claimed equivalence of categories, but it shows at least
that a sheaf F is entirely determined by its sections over GG. Details (and set
theoretical remarks) can be found in Sites, Section 7.9.

59.13. Sheafification

03NQ
Definition 59.13.1.03NR Let F be a presheaf on the site C and U = {Ui → U} ∈ Cov(C).
We define the zeroth Čech cohomology group of F with respect to U by

Ȟ0(U ,F) =
{

(si)i∈I ∈
∏

i∈I
F(Ui) such that si|Ui×UUj = sj |Ui×UUj

}
.

There is a canonical map F(U) → Ȟ0(U ,F), s 7→ (s|Ui)i∈I . We say that a mor-
phism of coverings from a covering V = {Vj → V }j∈J to U is a triple (χ, α, χj),
where χ : V → U is a morphism, α : J → I is a map of sets, and for all j ∈ J the
morphism χj fits into a commutative diagram

Vj χj
//

��

Uα(j)

��
V

χ // U.

https://stacks.math.columbia.edu/tag/03NR
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Given the data χ, α, {χj}j∈J we define

Ȟ0(U ,F) −→ Ȟ0(V,F)
(si)i∈I 7−→

(
χ∗
j

(
sα(j)

))
j∈J .

We then claim that
(1) the map is well-defined, and
(2) depends only on χ and is independent of the choice of α, {χj}j∈J .

We omit the proof of the first fact. To see part (2), consider another triple (ψ, β, ψj)
with χ = ψ. Then we have the commutative diagram

Vj (χj ,ψj)
//

��

Uα(j) ×U Uβ(j)

xx &&
Uα(j)

''

Uβ(j)

ww
V

χ=ψ // U.

Given a section s ∈ F(U), its image in F(Vj) under the map given by (χ, α, {χj}j∈J)
is χ∗

jsα(j), and its image under the map given by (ψ, β, {ψj}j∈J) is ψ∗
j sβ(j). These

two are equal since by assumption s ∈ Ȟ0(U ,F) and hence both are equal to the
pullback of the common value

sα(j)|Uα(j)×UUβ(j) = sβ(j)|Uα(j)×UUβ(j)

pulled back by the map (χj , ψj) in the diagram.

Theorem 59.13.2.03NS Let C be a site and F a presheaf on C.
(1) The rule

U 7→ F+(U) := colimU covering of U Ȟ
0(U ,F)

is a presheaf. And the colimit is a directed one.
(2) There is a canonical map of presheaves F → F+.
(3) If F is a separated presheaf then F+ is a sheaf and the map in (2) is

injective.
(4) F+ is a separated presheaf.
(5) F# = (F+)+ is a sheaf, and the canonical map induces a functorial iso-

morphism

HomPSh(C)(F ,G) = HomSh(C)(F#,G)

for any G ∈ Sh(C).

Proof. See Sites, Theorem 7.10.10. □

In other words, this means that the natural map F → F# is a left adjoint to the
forgetful functor Sh(C)→ PSh(C).

https://stacks.math.columbia.edu/tag/03NS
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59.14. Cohomology

03NT The following is the basic result that makes it possible to define cohomology for
abelian sheaves on sites.

Theorem 59.14.1.03NU The category of abelian sheaves on a site is an abelian category
which has enough injectives.

Proof. See Modules on Sites, Lemma 18.3.1 and Injectives, Theorem 19.7.4. □

So we can define cohomology as the right-derived functors of the sections functor:
if U ∈ Ob(C) and F ∈ Ab(C),

Hp(U,F) := RpΓ(U,F) = Hp(Γ(U, I•))

where F → I• is an injective resolution. To do this, we should check that the
functor Γ(U,−) is left exact. This is true and is part of why the category Ab(C)
is abelian, see Modules on Sites, Lemma 18.3.1. For more general discussion of
cohomology on sites (including the global sections functor and its right derived
functors), see Cohomology on Sites, Section 21.2.

59.15. The fpqc topology

03NV Before doing étale cohomology we study a bit the fpqc topology, since it works well
for quasi-coherent sheaves.

Definition 59.15.1.03NW Let T be a scheme. An fpqc covering of T is a family {φi :
Ti → T}i∈I such that

(1) each φi is a flat morphism and
⋃
i∈I φi(Ti) = T , and

(2) for each affine open U ⊂ T there exists a finite set K, a map i : K → I
and affine opens Ui(k) ⊂ Ti(k) such that U =

⋃
k∈K φi(k)(Ui(k)).

Remark 59.15.2.03NX The first condition corresponds to fp, which stands for fidèlement
plat, faithfully flat in french, and the second to qc, quasi-compact. The second part
of the first condition is unnecessary when the second condition holds.

Example 59.15.3.03NY Examples of fpqc coverings.
(1) Any Zariski open covering of T is an fpqc covering.
(2) A family {Spec(B)→ Spec(A)} is an fpqc covering if and only if A→ B

is a faithfully flat ring map.
(3) If f : X → Y is flat, surjective and quasi-compact, then {f : X → Y } is

an fpqc covering.
(4) The morphism φ :

∐
x∈A1

k
Spec(OA1

k
,x) → A1

k, where k is a field, is flat
and surjective. It is not quasi-compact, and in fact the family {φ} is not
an fpqc covering.

(5) Write A2
k = Spec(k[x, y]). Denote ix : D(x) → A2

k and iy : D(y) → A2
k

the standard opens. Then the families {ix, iy,Spec(k[[x, y]]) → A2
k} and

{ix, iy,Spec(OA2
k
,0)→ A2

k} are fpqc coverings.

Lemma 59.15.4.03NZ The collection of fpqc coverings on the category of schemes satisfies
the axioms of site.

Proof. See Topologies, Lemma 34.9.7. □

https://stacks.math.columbia.edu/tag/03NU
https://stacks.math.columbia.edu/tag/03NW
https://stacks.math.columbia.edu/tag/03NX
https://stacks.math.columbia.edu/tag/03NY
https://stacks.math.columbia.edu/tag/03NZ
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It seems that this lemma allows us to define the fpqc site of the category of schemes.
However, there is a set theoretical problem that comes up when considering the fpqc
topology, see Topologies, Section 34.9. It comes from our requirement that sites are
“small”, but that no small category of schemes can contain a cofinal system of fpqc
coverings of a given nonempty scheme. Although this does not strictly speaking
prevent us from defining “partial” fpqc sites, it does not seem prudent to do so.
The work-around is to allow the notion of a sheaf for the fpqc topology (see below)
but to prohibit considering the category of all fpqc sheaves.
Definition 59.15.5.03X6 Let S be a scheme. The category of schemes over S is denoted
Sch/S. Consider a functor F : (Sch/S)opp → Sets, in other words a presheaf of
sets. We say F satisfies the sheaf property for the fpqc topology if for every fpqc
covering {Ui → U}i∈I of schemes over S the diagram (59.11.1.1) is an equalizer
diagram.
We similarly say that F satisfies the sheaf property for the Zariski topology if for
every open covering U =

⋃
i∈I Ui the diagram (59.11.1.1) is an equalizer diagram.

See Schemes, Definition 26.15.3. Clearly, this is equivalent to saying that for every
scheme T over S the restriction of F to the opens of T is a (usual) sheaf.
Lemma 59.15.6.03O1 Let F be a presheaf on Sch/S. Then F satisfies the sheaf property
for the fpqc topology if and only if

(1) F satisfies the sheaf property with respect to the Zariski topology, and
(2) for every faithfully flat morphism Spec(B) → Spec(A) of affine schemes

over S, the sheaf axiom holds for the covering {Spec(B) → Spec(A)}.
Namely, this means that
F(Spec(A)) // F(Spec(B)) //

// F(Spec(B ⊗A B))
is an equalizer diagram.

Proof. See Topologies, Lemma 34.9.13. □

An alternative way to think of a presheaf F on Sch/S which satisfies the sheaf
condition for the fpqc topology is as the following data:

(1) for each T/S, a usual (i.e., Zariski) sheaf FT on TZar,
(2) for every map f : T ′ → T over S, a restriction mapping f−1FT → FT ′

such that
(a) the restriction mappings are functorial,
(b) if f : T ′ → T is an open immersion then the restriction mapping f−1FT →
FT ′ is an isomorphism, and

(c) for every faithfully flat morphism Spec(B)→ Spec(A) over S, the diagram

FSpec(A)(Spec(A)) // FSpec(B)(Spec(B)) //
// FSpec(B⊗AB)(Spec(B ⊗A B))

is an equalizer.
Data (1) and (2) and conditions (a), (b) give the data of a presheaf on Sch/S
satisfying the sheaf condition for the Zariski topology. By Lemma 59.15.6 condition
(c) then suffices to get the sheaf condition for the fpqc topology.
Example 59.15.7.03O2 Consider the presheaf

F : (Sch/S)opp −→ Ab
T/S 7−→ Γ(T,ΩT/S).

https://stacks.math.columbia.edu/tag/03X6
https://stacks.math.columbia.edu/tag/03O1
https://stacks.math.columbia.edu/tag/03O2
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The compatibility of differentials with localization implies that F is a sheaf on the
Zariski site. However, it does not satisfy the sheaf condition for the fpqc topology.
Namely, consider the case S = Spec(Fp) and the morphism

φ : V = Spec(Fp[v])→ U = Spec(Fp[u])
given by mapping u to vp. The family {φ} is an fpqc covering, yet the restriction
mapping F(U)→ F(V ) sends the generator du to d(vp) = 0, so it is the zero map,
and the diagram

F(U) 0 // F(V ) //
// F(V ×U V )

is not an equalizer. We will see later that F does in fact give rise to a sheaf on the
étale and smooth sites.

Lemma 59.15.8.03O3 Any representable presheaf on Sch/S satisfies the sheaf condition
for the fpqc topology.

Proof. See Descent, Lemma 35.13.7. □

We will return to this later, since the proof of this fact uses descent for quasi-
coherent sheaves, which we will discuss in the next section. A fancy way of ex-
pressing the lemma is to say that the fpqc topology is weaker than the canonical
topology, or that the fpqc topology is subcanonical. In the setting of sites this is
discussed in Sites, Section 7.12.

Remark 59.15.9.03O4 The fpqc is finer than the Zariski, étale, smooth, syntomic, and
fppf topologies. Hence any presheaf satisfying the sheaf condition for the fpqc
topology will be a sheaf on the Zariski, étale, smooth, syntomic, and fppf sites. In
particular representable presheaves will be sheaves on the étale site of a scheme for
example.

Example 59.15.10.03O5 Let S be a scheme. Consider the additive group scheme Ga,S =
A1
S over S, see Groupoids, Example 39.5.3. The associated representable presheaf

is given by
hGa,S

(T ) = MorS(T,Ga,S) = Γ(T,OT ).
By the above we now know that this is a presheaf of sets which satisfies the sheaf
condition for the fpqc topology. On the other hand, it is clearly a presheaf of rings
as well. Hence we can think of this as a functor

O : (Sch/S)opp −→ Rings
T/S 7−→ Γ(T,OT )

which satisfies the sheaf condition for the fpqc topology. Correspondingly there is
a notion of O-module, and so on and so forth.

59.16. Faithfully flat descent

03O6 In this section we discuss faithfully flat descent for quasi-coherent modules. More
precisely, we will prove quasi-coherent modules satisfy effective descent with respect
to fpqc coverings.

Definition 59.16.1.03O7 Let U = {ti : Ti → T}i∈I be a family of morphisms of schemes
with fixed target. A descent datum for quasi-coherent sheaves with respect to U is
a collection ((Fi)i∈I , (φij)i,j∈I) where

(1) Fi is a quasi-coherent sheaf on Ti, and

https://stacks.math.columbia.edu/tag/03O3
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(2) φij : pr∗
0Fi → pr∗

1Fj is an isomorphism of modules on Ti ×T Tj ,
such that the cocycle condition holds: the diagrams

pr∗
0Fi

pr∗
02φik $$

pr∗
01φij // pr∗

1Fj

pr∗
12φjkzz

pr∗
2Fk

commute on Ti ×T Tj ×T Tk. This descent datum is called effective if there exist
a quasi-coherent sheaf F over T and OTi-module isomorphisms φi : t∗iF ∼= Fi
compatible with the maps φij , namely

φij = pr∗
1(φj) ◦ pr∗

0(φi)−1.

In this and the next section we discuss some ingredients of the proof of the following
theorem, as well as some related material.
Theorem 59.16.2.03O8 If V = {Ti → T}i∈I is an fpqc covering, then all descent data
for quasi-coherent sheaves with respect to V are effective.
Proof. See Descent, Proposition 35.5.2. □

In other words, the fibered category of quasi-coherent sheaves is a stack on the
fpqc site. The proof of the theorem is in two steps. The first one is to realize that
for Zariski coverings this is easy (or well-known) using standard glueing of sheaves
(see Sheaves, Section 6.33) and the locality of quasi-coherence. The second step is
the case of an fpqc covering of the form {Spec(B) → Spec(A)} where A → B is a
faithfully flat ring map. This is a lemma in algebra, which we now present.
Descent of modules. If A→ B is a ring map, we consider the complex

(B/A)• : B → B ⊗A B → B ⊗A B ⊗A B → . . .

where B is in degree 0, B ⊗A B in degree 1, etc, and the maps are given by
b 7→ 1⊗ b− b⊗ 1,

b0 ⊗ b1 7→ 1⊗ b0 ⊗ b1 − b0 ⊗ 1⊗ b1 + b0 ⊗ b1 ⊗ 1,
etc.

Lemma 59.16.3.03O9 If A → B is faithfully flat, then the complex (B/A)• is exact in
positive degrees, and H0((B/A)•) = A.
Proof. See Descent, Lemma 35.3.6. □

Grothendieck proves this in three steps. Firstly, he assumes that the map A → B
has a section, and constructs an explicit homotopy to the complex where A is the
only nonzero term, in degree 0. Secondly, he observes that to prove the result,
it suffices to do so after a faithfully flat base change A → A′, replacing B with
B′ = B ⊗A A′. Thirdly, he applies the faithfully flat base change A→ A′ = B and
remark that the map A′ = B → B′ = B ⊗A B has a natural section.
The same strategy proves the following lemma.
Lemma 59.16.4.03OA If A → B is faithfully flat and M is an A-module, then the
complex (B/A)• ⊗AM is exact in positive degrees, and H0((B/A)• ⊗AM) = M .
Proof. See Descent, Lemma 35.3.6. □
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Definition 59.16.5.03OB Let A → B be a ring map and N a B-module. A descent
datum for N with respect to A→ B is an isomorphism φ : N ⊗A B ∼= B ⊗A N of
B ⊗A B-modules such that the diagram of B ⊗A B ⊗A B-modules

N ⊗A B ⊗A B

φ02 ((

φ01 // B ⊗A N ⊗A B

φ12vv
B ⊗A B ⊗A N

commutes where φ01 = φ⊗ idB and similarly for φ12 and φ02.

If N ′ = B⊗AM for some A-module M, then it has a canonical descent datum given
by the map

φcan : N ′ ⊗A B → B ⊗A N ′

b0 ⊗m⊗ b1 7→ b0 ⊗ b1 ⊗m.

Definition 59.16.6.03OC A descent datum (N,φ) is called effective if there exists an
A-module M such that (N,φ) ∼= (B ⊗A M,φcan), with the obvious notion of iso-
morphism of descent data.

Theorem 59.16.2 is a consequence the following result.

Theorem 59.16.7.03OD If A → B is faithfully flat then descent data with respect to
A→ B are effective.

Proof. See Descent, Proposition 35.3.9. See also Descent, Remark 35.3.11 for an
alternative view of the proof. □

Remarks 59.16.8.03OE The results on descent of modules have several applications:
(1) The exactness of the Čech complex in positive degrees for the covering
{Spec(B)→ Spec(A)} where A→ B is faithfully flat. This will give some
vanishing of cohomology.

(2) If (N,φ) is a descent datum with respect to a faithfully flat map A→ B,
then the corresponding A-module is given by

M = Ker
(
N −→ B ⊗A N
n 7−→ 1⊗ n− φ(n⊗ 1)

)
.

See Descent, Proposition 35.3.9.

59.17. Quasi-coherent sheaves

03OF We can apply the descent of modules to study quasi-coherent sheaves.

Proposition 59.17.1.03OG For any quasi-coherent sheaf F on S the presheaf

Fa : Sch/S → Ab
(f : T → S) 7→ Γ(T, f∗F)

is an O-module which satisfies the sheaf condition for the fpqc topology.

Proof. This is proved in Descent, Lemma 35.8.1. We indicate the proof here. As
established in Lemma 59.15.6, it is enough to check the sheaf property on Zariski
coverings and faithfully flat morphisms of affine schemes. The sheaf property for
Zariski coverings is standard scheme theory, since Γ(U, i∗F) = F(U) when i : U ↪→
S is an open immersion.
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For {Spec(B)→ Spec(A)} with A → B faithfully flat and F|Spec(A) = M̃ this
corresponds to the fact that M = H0 ((B/A)• ⊗AM), i.e., that

0→M → B ⊗AM → B ⊗A B ⊗AM

is exact by Lemma 59.16.4. □

There is an abstract notion of a quasi-coherent sheaf on a ringed site. We briefly
introduce this here. For more information please consult Modules on Sites, Section
18.23. Let C be a category, and let U be an object of C. Then C/U indicates the
category of objects over U , see Categories, Example 4.2.13. If C is a site, then
C/U is a site as well, namely the coverings of V/U are families {Vi/U → V/U}
of morphisms of C/U with fixed target such that {Vi → V } is a covering of C.
Moreover, given any sheaf F on C the restriction F|C/U (defined in the obvious
manner) is a sheaf as well. See Sites, Section 7.25 for details.

Definition 59.17.2.03OH Let C be a ringed site, i.e., a site endowed with a sheaf of rings
O. A sheaf of O-modules F on C is called quasi-coherent if for all U ∈ Ob(C) there
exists a covering {Ui → U}i∈I of C such that the restriction F|C/Ui is isomorphic
to the cokernel of an O-linear map of free O-modules⊕

k∈K
O|C/Ui −→

⊕
l∈L
O|C/Ui .

The direct sum over K is the sheaf associated to the presheaf V 7→
⊕

k∈K O(V )
and similarly for the other.

Although it is useful to be able to give a general definition as above this notion is
not well behaved in general.

Remark 59.17.3.03OI In the case where C has a final object, e.g. S, it suffices to check
the condition of the definition for U = S in the above statement. See Modules on
Sites, Lemma 18.23.3.

Theorem 59.17.4 (Meta theorem on quasi-coherent sheaves).03OJ Let S be a scheme.
Let C be a site. Assume that

(1) the underlying category C is a full subcategory of Sch/S,
(2) any Zariski covering of T ∈ Ob(C) can be refined by a covering of C,
(3) S/S is an object of C,
(4) every covering of C is an fpqc covering of schemes.

Then the presheaf O is a sheaf on C and any quasi-coherent O-module on (C,O) is
of the form Fa for some quasi-coherent sheaf F on S.

Proof. After some formal arguments this is exactly Theorem 59.16.2. Details omit-
ted. In Descent, Proposition 35.8.9 we prove a more precise version of the theorem
for the big Zariski, fppf, étale, smooth, and syntomic sites of S, as well as the small
Zariski and étale sites of S. □

In other words, there is no difference between quasi-coherent modules on the scheme
S and quasi-coherent O-modules on sites C as in the theorem. More precise state-
ments for the big and small sites (Sch/S)fppf , Sétale, etc can be found in Descent,
Sections 35.8, 35.9, and 35.10. In this chapter we will sometimes refer to a “site
as in Theorem 59.17.4” in order to conveniently state results which hold in any of
those situations.
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59.18. Čech cohomology

03OK Our next goal is to use descent theory to show that Hi(C,Fa) = Hi
Zar(S,F) for

all quasi-coherent sheaves F on S, and any site C as in Theorem 59.17.4. To this
end, we introduce Čech cohomology on sites. See [Art62] and Cohomology on Sites,
Sections 21.8, 21.9 and 21.10 for more details.
Definition 59.18.1.03OL Let C be a category, U = {Ui → U}i∈I a family of morphisms
of C with fixed target, and F ∈ PAb(C) an abelian presheaf. We define the Čech
complex Č•(U ,F) by∏

i0∈I
F(Ui0)→

∏
i0,i1∈I

F(Ui0 ×U Ui1)→
∏

i0,i1,i2∈I
F(Ui0 ×U Ui1 ×U Ui2)→ . . .

where the first term is in degree 0, and the maps are the usual ones. Again, it is
essential to allow the case i0 = i1 etc. The Čech cohomology groups are defined by

Ȟp(U ,F) = Hp(Č•(U ,F)).

Lemma 59.18.2.03OM The functor Č•(U ,−) is exact on the category PAb(C).
In other words, if 0→ F1 → F2 → F3 → 0 is a short exact sequence of presheaves
of abelian groups, then

0→ Č• (U ,F1)→ Č•(U ,F2)→ Č•(U ,F3)→ 0
is a short exact sequence of complexes.

Proof. This follows at once from the definition of a short exact sequence of presheaves.
Namely, as the category of abelian presheaves is the category of functors on some
category with values in Ab, it is automatically an abelian category: a sequence
F1 → F2 → F3 is exact in PAb if and only if for all U ∈ Ob(C), the sequence
F1(U)→ F2(U)→ F3(U) is exact in Ab. So the complex above is merely a prod-
uct of short exact sequences in each degree. See also Cohomology on Sites, Lemma
21.9.1. □

This shows that Ȟ•(U ,−) is a δ-functor. We now proceed to show that it is a
universal δ-functor. We thus need to show that it is an effaceable functor. We start
by recalling the Yoneda lemma.
Lemma 59.18.3 (Yoneda Lemma).03ON For any presheaf F on a category C there is a
functorial isomorphism

HomPSh(C)(hU ,F) = F(U).
Proof. See Categories, Lemma 4.3.5. □

Given a set E we denote (in this section) Z[E] the free abelian group on E. In a
formula Z[E] =

⊕
e∈E Z, i.e., Z[E] is a free Z-module having a basis consisting of

the elements of E. Using this notation we introduce the free abelian presheaf on a
presheaf of sets.
Definition 59.18.4.03OO Let C be a category. Given a presheaf of sets G, we define the
free abelian presheaf on G, denoted ZG , by the rule

ZG(U) = Z[G(U)]
for U ∈ Ob(C) with restriction maps induced by the restriction maps of G. In the
special case G = hU we write simply ZU = ZhU .
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The functor G 7→ ZG is left adjoint to the forgetful functor PAb(C) → PSh(C).
Thus, for any presheaf F , there is a canonical isomorphism

HomPAb(C)(ZU ,F) = HomPSh(C)(hU ,F) = F(U)

the last equality by the Yoneda lemma. In particular, we have the following result.

Lemma 59.18.5.03OP The Čech complex Č•(U ,F) can be described explicitly as follows

Č•(U ,F) =

∏
i0∈I

HomPAb(C)(ZUi0 ,F)→
∏

i0,i1∈I
HomPAb(C)(ZUi0 ×UUi1 ,F)→ . . .


= HomPAb(C)

⊕
i0∈I

ZUi0 ←
⊕
i0,i1∈I

ZUi0 ×UUi1 ← . . .

 ,F


Proof. This follows from the formula above. See Cohomology on Sites, Lemma
21.9.3. □

This reduces us to studying only the complex in the first argument of the last Hom.

Lemma 59.18.6.03OQ The complex of abelian presheaves

Z•
U :

⊕
i0∈I

ZUi0 ←
⊕
i0,i1∈I

ZUi0 ×UUi1 ←
⊕

i0,i1,i2∈I
ZUi0 ×UUi1 ×UUi2 ← . . .

is exact in all degrees except 0 in PAb(C).

Proof. For any V ∈ Ob(C) the complex of abelian groups Z•
U (V ) is

Z
[∐

i0∈I MorC(V,Ui0)
]
← Z

[∐
i0,i1∈I MorC(V,Ui0 ×U Ui1)

]
← . . . =⊕

φ:V→U

(
Z
[∐

i0∈I Morφ(V,Ui0)
]
← Z

[∐
i0,i1∈I Morφ(V,Ui0)×Morφ(V,Ui1)

]
← . . .

)
where

Morφ(V,Ui) = {V → Ui such that V → Ui → U equals φ}.
Set Sφ =

∐
i∈I Morφ(V,Ui), so that

Z•
U (V ) =

⊕
φ:V→U

(Z[Sφ]← Z[Sφ × Sφ]← Z[Sφ × Sφ × Sφ]← . . .) .

Thus it suffices to show that for each S = Sφ, the complex

Z[S]← Z[S × S]← Z[S × S × S]← . . .

is exact in negative degrees. To see this, we can give an explicit homotopy. Fix
s ∈ S and define K : n(s0,...,sp) 7→ n(s,s0,...,sp). One easily checks that K is a
nullhomotopy for the operator

δ : η(s0,...,sp) 7→
∑p

i=0
(−1)pη(s0,...,ŝi,...,sp).

See Cohomology on Sites, Lemma 21.9.4 for more details. □

Lemma 59.18.7.03OR Let C be a category. If I is an injective object of PAb(C) and U
is a family of morphisms with fixed target in C, then Ȟp(U , I) = 0 for all p > 0.
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Proof. The Čech complex is the result of applying the functor HomPAb(C)(−, I) to
the complex Z•

U , i.e.,

Ȟp(U , I) = Hp(HomPAb(C)(Z•
U , I)).

But we have just seen that Z•
U is exact in negative degrees, and the functor

HomPAb(C)(−, I) is exact, hence HomPAb(C)(Z•
U , I) is exact in positive degrees. □

Theorem 59.18.8.03OS On PAb(C) the functors Ȟp(U ,−) are the right derived functors
of Ȟ0(U ,−).

Proof. By the Lemma 59.18.7, the functors Ȟp(U ,−) are universal δ-functors since
they are effaceable. So are the right derived functors of Ȟ0(U ,−). Since they agree
in degree 0, they agree by the universal property of universal δ-functors. For more
details see Cohomology on Sites, Lemma 21.9.6. □

Remark 59.18.9.03OT Observe that all of the preceding statements are about presheaves
so we haven’t made use of the topology yet.

59.19. The Čech-to-cohomology spectral sequence

03OU This spectral sequence is fundamental in proving foundational results on cohomol-
ogy of sheaves.

Lemma 59.19.1.03OV The forgetful functor Ab(C)→ PAb(C) transforms injectives into
injectives.

Proof. This is formal using the fact that the forgetful functor has a left adjoint,
namely sheafification, which is an exact functor. For more details see Cohomology
on Sites, Lemma 21.10.1. □

Theorem 59.19.2.03OW Let C be a site. For any covering U = {Ui → U}i∈I of U ∈ Ob(C)
and any abelian sheaf F on C there is a spectral sequence

Ep,q2 = Ȟp(U , Hq(F))⇒ Hp+q(U,F),

where Hq(F) is the abelian presheaf V 7→ Hq(V,F).

Proof. Choose an injective resolution F → I• in Ab(C), and consider the double
complex Č•(U , I•) and the maps

Γ(U, I•) // Č•(U , I•)

Č•(U ,F)

OO

Here the horizontal map is the natural map Γ(U, I•)→ Č0(U , I•) to the left column,
and the vertical map is induced by F → I0 and lands in the bottom row. By
assumption, I• is a complex of injectives in Ab(C), hence by Lemma 59.19.1, it is a
complex of injectives in PAb(C). Thus, the rows of the double complex are exact in
positive degrees (Lemma 59.18.7), and the kernel of Č0(U , I•)→ Č1(U , I•) is equal
to Γ(U, I•), since I• is a complex of sheaves. In particular, the cohomology of the
total complex is the standard cohomology of the global sections functor H0(U,F).
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For the vertical direction, the qth cohomology group of the pth column is∏
i0,...,ip

Hq(Ui0 ×U . . .×U Uip ,F) =
∏

i0,...,ip

Hq(F)(Ui0 ×U . . .×U Uip)

in the entry Ep,q1 . So this is a standard double complex spectral sequence, and
the E2-page is as prescribed. For more details see Cohomology on Sites, Lemma
21.10.6. □

Remark 59.19.3.03OX This is a Grothendieck spectral sequence for the composition of
functors

Ab(C) −→ PAb(C) Ȟ0

−−→ Ab.

59.20. Big and small sites of schemes

03X7 Let S be a scheme. Let τ be one of the topologies we will be discussing. Thus
τ ∈ {fppf, syntomic, smooth, étale, Zariski}. Of course if you are only interested
in the étale topology, then you can simply assume τ = étale throughout. Moreover,
we will discuss étale morphisms, étale coverings, and étale sites in more detail
starting in Section 59.25. In order to proceed with the discussion of cohomology
of quasi-coherent sheaves it is convenient to introduce the big τ -site and in case
τ ∈ {étale, Zariski}, the small τ -site of S. In order to do this we first introduce
the notion of a τ -covering.

Definition 59.20.1.03X8 (See Topologies, Definitions 34.7.1, 34.6.1, 34.5.1, 34.4.1, and
34.3.1.) Let τ ∈ {fppf, syntomic, smooth, étale, Zariski}. A family of morphisms
of schemes {fi : Ti → T}i∈I with fixed target is called a τ -covering if and only if each
fi is flat of finite presentation, syntomic, smooth, étale, resp. an open immersion,
and we have

⋃
fi(Ti) = T .

The class of all τ -coverings satisfies the axioms (1), (2) and (3) of Definition 59.10.2
(our definition of a site), see Topologies, Lemmas 34.7.3, 34.6.3, 34.5.3, 34.4.3, and
34.3.2.

Let us introduce the sites we will be working with. Contrary to what happens in
[AGV71], we do not want to choose a universe. Instead we pick a “partial universe”
(which is a suitably large set as in Sets, Section 3.5), and consider all schemes
contained in this set. Of course we make sure that our favorite base scheme S is
contained in the partial universe. Having picked the underlying category we pick a
suitably large set of τ -coverings which turns this into a site. The details are in the
chapter on topologies on schemes; there is a lot of freedom in the choices made, but
in the end the actual choices made will not affect the étale (or other) cohomology
of S (just as in [AGV71] the actual choice of universe doesn’t matter at the end).
Moreover, the way the material is written the reader who is happy using strongly
inaccessible cardinals (i.e., universes) can do so as a substitute.

Definition 59.20.2.03XB Let S be a scheme. Let τ ∈ {fppf, syntomic, smooth, étale,
Zariski}.

(1) A big τ -site of S is any of the sites (Sch/S)τ constructed as explained
above and in more detail in Topologies, Definitions 34.7.8, 34.6.8, 34.5.8,
34.4.8, and 34.3.7.
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(2) If τ ∈ {étale, Zariski}, then the small τ -site of S is the full subcategory Sτ
of (Sch/S)τ whose objects are schemes T over S whose structure morphism
T → S is étale, resp. an open immersion. A covering in Sτ is a covering
{Ui → U} in (Sch/S)τ such that U is an object of Sτ .

The underlying category of the site (Sch/S)τ has reasonable “closure” properties,
i.e., given a scheme T in it any locally closed subscheme of T is isomorphic to an
object of (Sch/S)τ . Other such closure properties are: closed under fibre products of
schemes, taking countable disjoint unions, taking finite type schemes over a given
scheme, given an affine scheme Spec(R) one can complete, localize, or take the
quotient of R by an ideal while staying inside the category, etc. On the other hand,
for example arbitrary disjoint unions of schemes in (Sch/S)τ will take you outside
of it. Also note that, given an object T of (Sch/S)τ there will exist τ -coverings
{Ti → T}i∈I (as in Definition 59.20.1) which are not coverings in (Sch/S)τ for
example because the schemes Ti are not objects of the category (Sch/S)τ . But
our choice of the sites (Sch/S)τ is such that there always does exist a covering
{Uj → T}j∈J of (Sch/S)τ which refines the covering {Ti → T}i∈I , see Topologies,
Lemmas 34.7.7, 34.6.7, 34.5.7, 34.4.7, and 34.3.6. We will mostly ignore these issues
in this chapter.

If F is a sheaf on (Sch/S)τ or Sτ , then we denote

Hp
τ (U,F), in particular Hp

τ (S,F)

the cohomology groups of F over the object U of the site, see Section 59.14. Thus we
have Hp

fppf (S,F), Hp
syntomic(S,F), Hp

smooth(S,F), Hp
étale(S,F), and Hp

Zar(S,F).
The last two are potentially ambiguous since they might refer to either the big or
small étale or Zariski site. However, this ambiguity is harmless by the following
lemma.

Lemma 59.20.3.03YX Let τ ∈ {étale, Zariski}. If F is an abelian sheaf defined on
(Sch/S)τ , then the cohomology groups of F over S agree with the cohomology
groups of F|Sτ over S.

Proof. By Topologies, Lemmas 34.3.14 and 34.4.14 the functors Sτ → (Sch/S)τ
satisfy the hypotheses of Sites, Lemma 7.21.8. Hence our lemma follows from
Cohomology on Sites, Lemma 21.7.2. □

The category of sheaves on the big or small étale site of S depends only on the
full subcategory of (Sch/S)étale or Sétale consisting of affines and one only needs to
consider the standard étale coverings between them (as defined below). This gives
rise to sites (Aff/S)étale and Saffine,étale, see Topologies, Definition 34.4.8. The
comparison results are proven in Topologies, Lemmas 34.4.11 and 34.4.12. Here is
our definition of standard coverings in some of the topologies we will consider in
this chapter.

Definition 59.20.4.03X9 (See Topologies, Definitions 34.7.5, 34.6.5, 34.5.5, 34.4.5, and
34.3.4.) Let τ ∈ {fppf, syntomic, smooth, étale, Zariski}. Let T be an affine
scheme. A standard τ -covering of T is a family {fj : Uj → T}j=1,...,m with each Uj
is affine, and each fj flat and of finite presentation, standard syntomic, standard
smooth, étale, resp. the immersion of a standard principal open in T and T =⋃
fj(Uj).
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Lemma 59.20.5.03XA Let τ ∈ {fppf, syntomic, smooth, étale, Zariski}. Any τ -covering
of an affine scheme can be refined by a standard τ -covering.

Proof. See Topologies, Lemmas 34.7.4, 34.6.4, 34.5.4, 34.4.4, and 34.3.3. □

For completeness we state and prove the invariance under choice of partial universe
of the cohomology groups we are considering. We will prove invariance of the small
étale topos in Lemma 59.21.2 below. For notation and terminology used in this
lemma we refer to Topologies, Section 34.12.

Lemma 59.20.6.03YY Let τ ∈ {fppf, syntomic, smooth, étale, Zariski}. Let S be a
scheme. Let (Sch/S)τ and (Sch′/S)τ be two big τ -sites of S, and assume that the
first is contained in the second. In this case

(1) for any abelian sheaf F ′ defined on (Sch′/S)τ and any object U of (Sch/S)τ
we have

Hp
τ (U,F ′|(Sch/S)τ ) = Hp

τ (U,F ′)
In words: the cohomology of F ′ over U computed in the bigger site agrees
with the cohomology of F ′ restricted to the smaller site over U .

(2) for any abelian sheaf F on (Sch/S)τ there is an abelian sheaf F ′ on
(Sch/S)′

τ whose restriction to (Sch/S)τ is isomorphic to F .

Proof. By Topologies, Lemma 34.12.2 the inclusion functor (Sch/S)τ → (Sch′/S)τ
satisfies the assumptions of Sites, Lemma 7.21.8. This implies (2) and (1) follows
from Cohomology on Sites, Lemma 21.7.2. □

59.21. The étale topos

04HP A topos is the category of sheaves of sets on a site, see Sites, Definition 7.15.1.
Hence it is customary to refer to the use the phrase “étale topos of a scheme” to
refer to the category of sheaves on the small étale site of a scheme. Here is the
formal definition.

Definition 59.21.1.04HQ Let S be a scheme.
(1) The étale topos, or the small étale topos of S is the category Sh(Sétale)

of sheaves of sets on the small étale site of S.
(2) The Zariski topos, or the small Zariski topos of S is the category Sh(SZar)

of sheaves of sets on the small Zariski site of S.
(3) For τ ∈ {fppf, syntomic, smooth, étale, Zariski} a big τ -topos is the cat-

egory of sheaves of set on a big τ -topos of S.

Note that the small Zariski topos of S is simply the category of sheaves of sets on
the underlying topological space of S, see Topologies, Lemma 34.3.12. Whereas the
small étale topos does not depend on the choices made in the construction of the
small étale site, in general the big topoi do depend on those choices.
It turns out that the big or small étale topos only depends on the full subcategory
of (Sch/S)étale or Sétale consisting of affines, see Topologies, Lemmas 34.4.11 and
34.4.12. We will use this for example in the proof of the following lemma.

Lemma 59.21.2.0958 Let S be a scheme. The étale topos of S is independent (up
to canonical equivalence) of the construction of the small étale site in Definition
59.20.2.
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Proof. We have to show, given two big étale sites Schétale and Sch′
étale containing

S, then Sh(Sétale) ∼= Sh(S′
étale) with obvious notation. By Topologies, Lemma

34.12.1 we may assume Schétale ⊂ Sch′
étale. By Sets, Lemma 3.9.9 any affine

scheme étale over S is isomorphic to an object of both Schétale and Sch′
étale. Thus

the induced functor Saffine,étale → S′
affine,étale is an equivalence. Moreover, it

is clear that both this functor and a quasi-inverse map transform standard étale
coverings into standard étale coverings. Hence the result follows from Topologies,
Lemma 34.4.12. □

59.22. Cohomology of quasi-coherent sheaves

03OY We start with a simple lemma (which holds in greater generality than stated). It
says that the Čech complex of a standard covering is equal to the Čech complex of
an fpqc covering of the form {Spec(B)→ Spec(A)} with A→ B faithfully flat.

Lemma 59.22.1.03OZ Let τ ∈ {fppf, syntomic, smooth, étale, Zariski}. Let S be a
scheme. Let F be an abelian sheaf on (Sch/S)τ , or on Sτ in case τ = étale, and
let U = {Ui → U}i∈I be a standard τ -covering of this site. Let V =

∐
i∈I Ui. Then

(1) V is an affine scheme,
(2) V = {V → U} is an fpqc covering and also a τ -covering unless τ =

Zariski,
(3) the Čech complexes Č•(U ,F) and Č•(V,F) agree.

Proof. The defintion of a standard τ -covering is given in Topologies, Definition
34.3.4, 34.4.5, 34.5.5, 34.6.5, and 34.7.5. By definition each of the schemes Ui is
affine and I is a finite set. Hence V is an affine scheme. It is clear that V → U is
flat and surjective, hence V is an fpqc covering, see Example 59.15.3. Excepting the
Zariski case, the covering V is also a τ -covering, see Topologies, Definition 34.4.1,
34.5.1, 34.6.1, and 34.7.1.
Note that U is a refinement of V and hence there is a map of Čech complexes
Č•(V,F) → Č•(U ,F), see Cohomology on Sites, Equation (21.8.2.1). Next, we
observe that if T =

∐
j∈J Tj is a disjoint union of schemes in the site on which F

is defined then the family of morphisms with fixed target {Tj → T}j∈J is a Zariski
covering, and so

(59.22.1.1)03XC F(T ) = F(
∐

j∈J
Tj) =

∏
j∈J
F(Tj)

by the sheaf condition of F . This implies the map of Čech complexes above is an
isomorphism in each degree because

V ×U . . .×U V =
∐

i0,...ip
Ui0 ×U . . .×U Uip

as schemes. □

Note that Equality (59.22.1.1) is false for a general presheaf. Even for sheaves it
does not hold on any site, since coproducts may not lead to coverings, and may not
be disjoint. But it does for all the usual ones (at least all the ones we will study).

Remark 59.22.2.03P0 In the statement of Lemma 59.22.1 the covering U is a refinement
of V but not the other way around. Coverings of the form {V → U} do not form
an initial subcategory of the category of all coverings of U . Yet it is still true that
we can compute Čech cohomology Ȟn(U,F) (which is defined as the colimit over
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the opposite of the category of coverings U of U of the Čech cohomology groups
of F with respect to U) in terms of the coverings {V → U}. We will formulate a
precise lemma (it only works for sheaves) and add it here if we ever need it.

Lemma 59.22.3 (Locality of cohomology).03P1 Let C be a site, F an abelian sheaf on C,
U an object of C, p > 0 an integer and ξ ∈ Hp(U,F). Then there exists a covering
U = {Ui → U}i∈I of U in C such that ξ|Ui = 0 for all i ∈ I.

Proof. Choose an injective resolution F → I•. Then ξ is represented by a cocycle
ξ̃ ∈ Ip(U) with dp(ξ̃) = 0. By assumption, the sequence Ip−1 → Ip → Ip+1 in
exact in Ab(C), which means that there exists a covering U = {Ui → U}i∈I such
that ξ̃|Ui = dp−1(ξi) for some ξi ∈ Ip−1(Ui). Since the cohomology class ξ|Ui is
represented by the cocycle ξ̃|Ui which is a coboundary, it vanishes. For more details
see Cohomology on Sites, Lemma 21.7.3. □

Theorem 59.22.4.03P2 Let S be a scheme and F a quasi-coherent OS-module. Let C be
either (Sch/S)τ for τ ∈ {fppf, syntomic, smooth, étale, Zariski} or Sétale. Then

Hp(S,F) = Hp
τ (S,Fa)

for all p ≥ 0 where
(1) the left hand side indicates the usual cohomology of the sheaf F on the

underlying topological space of the scheme S, and
(2) the right hand side indicates cohomology of the abelian sheaf Fa (see

Proposition 59.17.1) on the site C.

Proof. We are going to show that Hp(U, f∗F) = Hp
τ (U,Fa) for any object f : U →

S of the site C. The result is true for p = 0 by the sheaf property.
Assume that U is affine. Then we want to prove that Hp

τ (U,Fa) = 0 for all p > 0.
We use induction on p.

p = 1 Pick ξ ∈ H1
τ (U,Fa). By Lemma 59.22.3, there exists an fpqc covering

U = {Ui → U}i∈I such that ξ|Ui = 0 for all i ∈ I. Up to refining U ,
we may assume that U is a standard τ -covering. Applying the spectral
sequence of Theorem 59.19.2, we see that ξ comes from a cohomology
class ξ̌ ∈ Ȟ1(U ,Fa). Consider the covering V = {

∐
i∈I Ui → U}. By

Lemma 59.22.1, Ȟ•(U ,Fa) = Ȟ•(V,Fa). On the other hand, since V is
a covering of the form {Spec(B) → Spec(A)} and f∗F = M̃ for some
A-module M , we see the Čech complex Č•(V,F) is none other than the
complex (B/A)• ⊗AM . Now by Lemma 59.16.4, Hp((B/A)• ⊗AM) = 0
for p > 0, hence ξ̌ = 0 and so ξ = 0.

p > 1 Pick ξ ∈ Hp
τ (U,Fa). By Lemma 59.22.3, there exists an fpqc covering

U = {Ui → U}i∈I such that ξ|Ui = 0 for all i ∈ I. Up to refining U , we may
assume that U is a standard τ -covering. We apply the spectral sequence
of Theorem 59.19.2. Observe that the intersections Ui0 ×U . . .×U Uip are
affine, so that by induction hypothesis the cohomology groups

Ep,q2 = Ȟp(U , Hq(Fa))
vanish for all 0 < q < p. We see that ξ must come from a ξ̌ ∈ Ȟp(U ,Fa).
Replacing U with the covering V containing only one morphism and using
Lemma 59.16.4 again, we see that the Čech cohomology class ξ̌ must be
zero, hence ξ = 0.
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Next, assume that U is separated. Choose an affine open covering U =
⋃
i∈I Ui of

U . The family U = {Ui → U}i∈I is then an fpqc covering, and all the intersections
Ui0×U . . .×UUip are affine since U is separated. So all rows of the spectral sequence
of Theorem 59.19.2 are zero, except the zeroth row. Therefore

Hp
τ (U,Fa) = Ȟp(U ,Fa) = Ȟp(U ,F) = Hp(U,F)

where the last equality results from standard scheme theory, see Cohomology of
Schemes, Lemma 30.2.6.
The general case is technical and (to extend the proof as given here) requires a
discussion about maps of spectral sequences, so we won’t treat it. It follows from
Descent, Proposition 35.9.3 (whose proof takes a slightly different approach) com-
bined with Cohomology on Sites, Lemma 21.7.1. □

Remark 59.22.5.03P3 Comment on Theorem 59.22.4. Since S is a final object in
the category C, the cohomology groups on the right-hand side are merely the
right derived functors of the global sections functor. In fact the proof shows that
Hp(U, f∗F) = Hp

τ (U,Fa) for any object f : U → S of the site C.

59.23. Examples of sheaves

03YZ Let S and τ be as in Section 59.20. We have already seen that any representable
presheaf is a sheaf on (Sch/S)τ or Sτ , see Lemma 59.15.8 and Remark 59.15.9.
Here are some special cases.

Definition 59.23.1.03P4 On any of the sites (Sch/S)τ or Sτ of Section 59.20.
(1) The sheaf T 7→ Γ(T,OT ) is denoted OS , or Ga, or Ga,S if we want to

indicate the base scheme.
(2) Similarly, the sheaf T 7→ Γ(T,O∗

T ) is denoted O∗
S , or Gm, or Gm,S if we

want to indicate the base scheme.
(3) The constant sheaf Z/nZ on any site is the sheafification of the constant

presheaf U 7→ Z/nZ.

The first is a sheaf by Theorem 59.17.4 for example. The second is a sub presheaf of
the first, which is easily seen to be a sheaf itself. The third is a sheaf by definition.
Note that each of these sheaves is representable. The first and second by the schemes
Ga,S and Gm,S , see Groupoids, Section 39.4. The third by the finite étale group
scheme Z/nZS sometimes denoted (Z/nZ)S which is just n copies of S endowed
with the obvious group scheme structure over S, see Groupoids, Example 39.5.6
and the following remark.

Remark 59.23.2.03P5 Let G be an abstract group. On any of the sites (Sch/S)τ or Sτ
of Section 59.20 the sheafification G of the constant presheaf associated to G in the
Zariski topology of the site already gives

Γ(U,G) = {Zariski locally constant maps U → G}
This Zariski sheaf is representable by the group scheme GS according to Groupoids,
Example 39.5.6. By Lemma 59.15.8 any representable presheaf satisfies the sheaf
condition for the τ -topology as well, and hence we conclude that the Zariski sheafi-
fication G above is also the τ -sheafification.

Definition 59.23.3.04HS Let S be a scheme. The structure sheaf of S is the sheaf of
rings OS on any of the sites SZar, Sétale, or (Sch/S)τ discussed above.
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If there is some possible confusion as to which site we are working on then we will
indicate this by using indices. For example we may use OSétale to stress the fact
that we are working on the small étale site of S.

Remark 59.23.4.03P6 In the terminology introduced above a special case of Theorem
59.22.4 is

Hp
fppf (X,Ga) = Hp

étale(X,Ga) = Hp
Zar(X,Ga) = Hp(X,OX)

for all p ≥ 0. Moreover, we could use the notation Hp
fppf (X,OX) to indicate the

cohomology of the structure sheaf on the big fppf site of X.

59.24. Picard groups

03P7 The following theorem is sometimes called “Hilbert 90”.

Theorem 59.24.1.03P8 For any scheme X we have canonical identifications

H1
fppf (X,Gm) = H1

syntomic(X,Gm)
= H1

smooth(X,Gm)
= H1

étale(X,Gm)
= H1

Zar(X,Gm)
= Pic(X)
= H1(X,O∗

X)

Proof. Let τ be one of the topologies considered in Section 59.20. By Cohomology
on Sites, Lemma 21.6.1 we see that H1

τ (X,Gm) = H1
τ (X,O∗

τ ) = Pic(Oτ ) where
Oτ is the structure sheaf of the site (Sch/X)τ . Now an invertible Oτ -module is
a quasi-coherent Oτ -module. By Theorem 59.17.4 or the more precise Descent,
Proposition 35.8.9 we see that Pic(Oτ ) = Pic(X). The last equality is proved in
the same way. □

59.25. The étale site

03P9 At this point we start exploring the étale site of a scheme in more detail. As a first
step we discuss a little the notion of an étale morphism.

59.26. Étale morphisms

03PA For more details, see Morphisms, Section 29.36 for the formal definition and Étale
Morphisms, Sections 41.11, 41.12, 41.13, 41.14, 41.16, and 41.19 for a survey of
interesting properties of étale morphisms.
Recall that an algebra A over an algebraically closed field k is smooth if it is of
finite type and the module of differentials ΩA/k is finite locally free of rank equal
to the dimension. A scheme X over k is smooth over k if it is locally of finite type
and each affine open is the spectrum of a smooth k-algebra. If k is not algebraically
closed then a k-algebra A is a smooth k-algebra if A⊗k k is a smooth k-algebra. A
ring map A→ B is smooth if it is flat, finitely presented, and for all primes p ⊂ A
the fibre ring κ(p) ⊗A B is smooth over the residue field κ(p). More generally, a
morphism of schemes is smooth if it is flat, locally of finite presentation, and the
geometric fibers are smooth.
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For these facts please see Morphisms, Section 29.34. Using this we may define an
étale morphism as follows.

Definition 59.26.1.03PB A morphism of schemes is étale if it is smooth of relative
dimension 0.

In particular, a morphism of schemes X → S is étale if it is smooth and ΩX/S = 0.

Proposition 59.26.2.03PC Facts on étale morphisms.
(1) Let k be a field. A morphism of schemes U → Spec(k) is étale if and only

if U ∼=
∐
i∈I Spec(ki) such that for each i ∈ I the ring ki is a field which

is a finite separable extension of k.
(2) Let φ : U → S be a morphism of schemes. The following conditions are

equivalent:
(a) φ is étale,
(b) φ is locally finitely presented, flat, and all its fibres are étale,
(c) φ is flat, unramified and locally of finite presentation.

(3) A ring map A → B is étale if and only if B ∼= A[x1, . . . , xn]/(f1, . . . , fn)
such that ∆ = det

(
∂fi
∂xj

)
is invertible in B.

(4) The base change of an étale morphism is étale.
(5) Compositions of étale morphisms are étale.
(6) Fibre products and products of étale morphisms are étale.
(7) An étale morphism has relative dimension 0.
(8) Let Y → X be an étale morphism. If X is reduced (respectively regular)

then so is Y .
(9) Étale morphisms are open.

(10) If X → S and Y → S are étale, then any S-morphism X → Y is also
étale.

Proof. We have proved these facts (and more) in the preceding chapters. Here is a
list of references: (1) Morphisms, Lemma 29.36.7. (2) Morphisms, Lemmas 29.36.8
and 29.36.16. (3) Algebra, Lemma 10.143.2. (4) Morphisms, Lemma 29.36.4. (5)
Morphisms, Lemma 29.36.3. (6) Follows formally from (4) and (5). (7) Morphisms,
Lemmas 29.36.6 and 29.29.5. (8) See Algebra, Lemmas 10.163.7 and 10.163.5, see
also more results of this kind in Étale Morphisms, Section 41.19. (9) See Morphisms,
Lemma 29.25.10 and 29.36.12. (10) See Morphisms, Lemma 29.36.18. □

Definition 59.26.3.03PD A ring map A→ B is called standard étale if B ∼= (A[t]/(f))g
with f, g ∈ A[t], with f monic, and df/dt invertible in B.

It is true that a standard étale ring map is étale. Namely, suppose that B =
(A[t]/(f))g with f, g ∈ A[t], with f monic, and df/dt invertible in B. Then A[t]/(f)
is a finite free A-module of rank equal to the degree of the monic polynomial f .
Hence B, as a localization of this free algebra is finitely presented and flat over A.
To finish the proof that B is étale it suffices to show that the fibre rings

κ(p)⊗A B ∼= κ(p)⊗A (A[t]/(f))g ∼= κ(p)[t, 1/g]/(f)

are finite products of finite separable field extensions. Here f, g ∈ κ(p)[t] are the
images of f and g. Let

f = f1 . . . faf
e1
a+1 . . . f

eb
a+b
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be the factorization of f into powers of pairwise distinct irreducible monic factors
f i with e1, . . . , eb > 0. By assumption df/dt is invertible in κ(p)[t, 1/g]. Hence we
see that at least all the f i, i > a are invertible. We conclude that

κ(p)[t, 1/g]/(f) ∼=
∏

i∈I
κ(p)[t]/(f i)

where I ⊂ {1, . . . , a} is the subset of indices i such that f i does not divide g.
Moreover, the image of df/dt in the factor κ(p)[t]/(f i) is clearly equal to a unit
times df i/dt. Hence we conclude that κi = κ(p)[t]/(f i) is a finite field extension
of κ(p) generated by one element whose minimal polynomial is separable, i.e., the
field extension κi/κ(p) is finite separable as desired.

It turns out that any étale ring map is locally standard étale. To formulate this we
introduce the following notation. A ring map A → B is étale at a prime q of B if
there exists h ∈ B, h ̸∈ q such that A→ Bh is étale. Here is the result.

Theorem 59.26.4.03PE A ring map A → B is étale at a prime q if and only if there
exists g ∈ B, g ̸∈ q such that Bg is standard étale over A.

Proof. See Algebra, Proposition 10.144.4. □

59.27. Étale coverings

03PF We recall the definition.

Definition 59.27.1.03PG An étale covering of a scheme U is a family of morphisms of
schemes {φi : Ui → U}i∈I such that

(1) each φi is an étale morphism,
(2) the Ui cover U , i.e., U =

⋃
i∈I φi(Ui).

Lemma 59.27.2.03PH Any étale covering is an fpqc covering.

Proof. (See also Topologies, Lemma 34.9.6.) Let {φi : Ui → U}i∈I be an étale
covering. Since an étale morphism is flat, and the elements of the covering should
cover its target, the property fp (faithfully flat) is satisfied. To check the property
qc (quasi-compact), let V ⊂ U be an affine open, and write φ−1

i (V ) =
⋃
j∈Ji Vij

for some affine opens Vij ⊂ Ui. Since φi is open (as étale morphisms are open),
we see that V =

⋃
i∈I
⋃
j∈Ji φi(Vij) is an open covering of V . Further, since V is

quasi-compact, this covering has a finite refinement. □

So any statement which is true for fpqc coverings remains true a fortiori for étale
coverings. For instance, the étale site is subcanonical.

Definition 59.27.3.03PI (For more details see Section 59.20, or Topologies, Section 34.4.)
Let S be a scheme. The big étale site over S is the site (Sch/S)étale, see Definition
59.20.2. The small étale site over S is the site Sétale, see Definition 59.20.2. We
define similarly the big and small Zariski sites on S, denoted (Sch/S)Zar and SZar.

Loosely speaking the big étale site of S is made up out of schemes over S and
coverings the étale coverings. The small étale site of S is made up out of schemes
étale over S with coverings the étale coverings. Actually any morphism between
objects of Sétale is étale, in virtue of Proposition 59.26.2, hence to check that
{Ui → U}i∈I in Sétale is a covering it suffices to check that

∐
Ui → U is surjective.

https://stacks.math.columbia.edu/tag/03PE
https://stacks.math.columbia.edu/tag/03PG
https://stacks.math.columbia.edu/tag/03PH
https://stacks.math.columbia.edu/tag/03PI


59.28. KUMMER THEORY 4738

The small étale site has fewer objects than the big étale site, it contains only the
“opens” of the étale topology on S. It is a full subcategory of the big étale site,
and its topology is induced from the topology on the big site. Hence it is true that
the restriction functor from the big étale site to the small one is exact and maps
injectives to injectives. This has the following consequence.

Proposition 59.27.4.03PJ Let S be a scheme and F an abelian sheaf on (Sch/S)étale.
Then F|Sétale is a sheaf on Sétale and

Hp
étale(S,F|Sétale) = Hp

étale(S,F)
for all p ≥ 0.

Proof. This is a special case of Lemma 59.20.3. □

In accordance with the general notation introduced in Section 59.20 we write
Hp
étale(S,F) for the above cohomology group.

59.28. Kummer theory

03PK Let n ∈ N and consider the functor µn defined by
Schopp −→ Ab
S 7−→ µn(S) = {t ∈ Γ(S,O∗

S) | tn = 1}.
By Groupoids, Example 39.5.2 this is a representable functor, and the scheme
representing it is denoted µn also. By Lemma 59.15.8 this functor satisfies the sheaf
condition for the fpqc topology (in particular, it also satisfies the sheaf condition
for the étale, Zariski, etc topology).

Lemma 59.28.1.03PL If n ∈ O∗
S then

0→ µn,S → Gm,S
(·)n−−→ Gm,S → 0

is a short exact sequence of sheaves on both the small and big étale site of S.

Proof. By definition the sheaf µn,S is the kernel of the map (·)n. Hence it suffices to
show that the last map is surjective. Let U be a scheme over S. Let f ∈ Gm(U) =
Γ(U,O∗

U ). We need to show that we can find an étale cover of U over the members
of which the restriction of f is an nth power. Set

U ′ = Spec
U

(OU [T ]/(Tn − f)) π−→ U.

(See Constructions, Section 27.3 or 27.4 for a discussion of the relative spectrum.)
Let Spec(A) ⊂ U be an affine open, and say f |Spec(A) corresponds to the unit
a ∈ A∗. Then π−1(Spec(A)) = Spec(B) with B = A[T ]/(Tn − a). The ring map
A → B is finite free of rank n, hence it is faithfully flat, and hence we conclude
that Spec(B) → Spec(A) is surjective. Since this holds for every affine open in
U we conclude that π is surjective. In addition, n and Tn−1 are invertible in B,
so nTn−1 ∈ B∗ and the ring map A → B is standard étale, in particular étale.
Since this holds for every affine open of U we conclude that π is étale. Hence
U = {π : U ′ → U} is an étale covering. Moreover, f |U ′ = (f ′)n where f ′ is the
class of T in Γ(U ′,O∗

U ′), so U has the desired property. □

Remark 59.28.2.03PM Lemma 59.28.1 is false when “étale” is replaced with “Zariski”.
Since the étale topology is coarser than the smooth topology, see Topologies, Lemma
34.5.2 it follows that the sequence is also exact in the smooth topology.

https://stacks.math.columbia.edu/tag/03PJ
https://stacks.math.columbia.edu/tag/03PL
https://stacks.math.columbia.edu/tag/03PM
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By Theorem 59.24.1 and Lemma 59.28.1 and general properties of cohomology we
obtain the long exact cohomology sequence

0 // H0
étale(S, µn,S) // Γ(S,O∗

S)
(·)n // Γ(S,O∗

S)

yy
H1
étale(S, µn,S) // Pic(S)

(·)n // Pic(S)

yy
H2
étale(S, µn,S) // . . .

at least if n is invertible on S. When n is not invertible on S we can apply the
following lemma.

Lemma 59.28.3.040N For any n ∈ N the sequence

0→ µn,S → Gm,S
(·)n−−→ Gm,S → 0

is a short exact sequence of sheaves on the site (Sch/S)fppf and (Sch/S)syntomic.

Proof. By definition the sheaf µn,S is the kernel of the map (·)n. Hence it suffices
to show that the last map is surjective. Since the syntomic topology is weaker than
the fppf topology, see Topologies, Lemma 34.7.2, it suffices to prove this for the
syntomic topology. Let U be a scheme over S. Let f ∈ Gm(U) = Γ(U,O∗

U ). We
need to show that we can find a syntomic cover of U over the members of which
the restriction of f is an nth power. Set

U ′ = Spec
U

(OU [T ]/(Tn − f)) π−→ U.

(See Constructions, Section 27.3 or 27.4 for a discussion of the relative spectrum.)
Let Spec(A) ⊂ U be an affine open, and say f |Spec(A) corresponds to the unit
a ∈ A∗. Then π−1(Spec(A)) = Spec(B) with B = A[T ]/(Tn − a). The ring map
A → B is finite free of rank n, hence it is faithfully flat, and hence we conclude
that Spec(B) → Spec(A) is surjective. Since this holds for every affine open in
U we conclude that π is surjective. In addition, B is a global relative complete
intersection over A, so the ring map A → B is standard syntomic, in particular
syntomic. Since this holds for every affine open of U we conclude that π is syntomic.
Hence U = {π : U ′ → U} is a syntomic covering. Moreover, f |U ′ = (f ′)n where f ′

is the class of T in Γ(U ′,O∗
U ′), so U has the desired property. □

Remark 59.28.4.040O Lemma 59.28.3 is false for the smooth, étale, or Zariski topology.

https://stacks.math.columbia.edu/tag/040N
https://stacks.math.columbia.edu/tag/040O
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By Theorem 59.24.1 and Lemma 59.28.3 and general properties of cohomology we
obtain the long exact cohomology sequence

0 // H0
fppf (S, µn,S) // Γ(S,O∗

S)
(·)n // Γ(S,O∗

S)

yy
H1
fppf (S, µn,S) // Pic(S)

(·)n // Pic(S)

yy
H2
fppf (S, µn,S) // . . .

for any scheme S and any integer n. Of course there is a similar sequence with
syntomic cohomology.
Let n ∈ N and let S be any scheme. There is another more direct way to describe
the first cohomology group with values in µn. Consider pairs (L, α) where L is an
invertible sheaf on S and α : L⊗n → OS is a trivialization of the nth tensor power
of L. Let (L′, α′) be a second such pair. An isomorphism φ : (L, α) → (L′, α′) is
an isomorphism φ : L → L′ of invertible sheaves such that the diagram

L⊗n

φ⊗n

��

α
// OS

1
��

(L′)⊗n α′
// OS

commutes. Thus we have
(59.28.4.1)

040P IsomS((L, α), (L′, α′)) =
{

∅ if they are not isomorphic
H0(S, µn,S) · φ if φ isomorphism of pairs

Moreover, given two pairs (L, α), (L′, α′) the tensor product
(L, α)⊗ (L′, α′) = (L ⊗ L′, α⊗ α′)

is another pair. The pair (OS , 1) is an identity for this tensor product operation,
and an inverse is given by

(L, α)−1 = (L⊗−1, α⊗−1).
Hence the collection of isomorphism classes of pairs forms an abelian group. Note
that

(L, α)⊗n = (L⊗n, α⊗n) α−→ (OS , 1)
is an isomorphism hence every element of this group has order dividing n. We warn
the reader that this group is in general not the n-torsion in Pic(S).

Lemma 59.28.5.040Q Let S be a scheme. There is a canonical identification

H1
étale(S, µn) = group of pairs (L, α) up to isomorphism as above

if n is invertible on S. In general we have
H1
fppf (S, µn) = group of pairs (L, α) up to isomorphism as above.

The same result holds with fppf replaced by syntomic.

https://stacks.math.columbia.edu/tag/040Q
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Proof. We first prove the second isomorphism. Let (L, α) be a pair as above.
Choose an affine open covering S =

⋃
Ui such that L|Ui ∼= OUi . Say si ∈ L(Ui)

is a generator. Then α(s⊗n
i ) = fi ∈ O∗

S(Ui). Writing Ui = Spec(Ai) we see there
exists a global relative complete intersection Ai → Bi = Ai[T ]/(Tn − fi) such that
fi maps to an nth power in Bi. In other words, setting Vi = Spec(Bi) we obtain a
syntomic covering V = {Vi → S}i∈I and trivializations φi : (L, α)|Vi → (OVi , 1).
We will use this result (the existence of the covering V) to associate to this pair a
cohomology class in H1

syntomic(S, µn,S). We give two (equivalent) constructions.

First construction: using Čech cohomology. Over the double overlaps Vi ×S Vj we
have the isomorphism

(OVi×SVj , 1)
pr∗

0φ
−1
i−−−−−→ (L|Vi×SVj , α|Vi×SVj )

pr∗
1φj−−−−→ (OVi×SVj , 1)

of pairs. By (59.28.4.1) this is given by an element ζij ∈ µn(Vi×S Vj). We omit the
verification that these ζij ’s give a 1-cocycle, i.e., give an element (ζi0i1) ∈ Č(V, µn)
with d(ζi0i1) = 0. Thus its class is an element in Ȟ1(V, µn) and by Theorem 59.19.2
it maps to a cohomology class in H1

syntomic(S, µn,S).
Second construction: Using torsors. Consider the presheaf

µn(L, α) : U 7−→ IsomU ((OU , 1), (L, α)|U )
on (Sch/S)syntomic. We may view this as a subpresheaf of HomO(O,L) (internal
hom sheaf, see Modules on Sites, Section 18.27). Since the conditions defining this
subpresheaf are local, we see that it is a sheaf. By (59.28.4.1) this sheaf has a free
action of the sheaf µn,S . Hence the only thing we have to check is that it locally
has sections. This is true because of the existence of the trivializing cover V. Hence
µn(L, α) is a µn,S-torsor and by Cohomology on Sites, Lemma 21.4.3 we obtain a
corresponding element of H1

syntomic(S, µn,S).
Ok, now we have to still show the following

(1) The two constructions give the same cohomology class.
(2) Isomorphic pairs give rise to the same cohomology class.
(3) The cohomology class of (L, α) ⊗ (L′, α′) is the sum of the cohomology

classes of (L, α) and (L′, α′).
(4) If the cohomology class is trivial, then the pair is trivial.
(5) Any element of H1

syntomic(S, µn,S) is the cohomology class of a pair.
We omit the proof of (1). Part (2) is clear from the second construction, since
isomorphic torsors give the same cohomology classes. Part (3) is clear from the
first construction, since the resulting Čech classes add up. Part (4) is clear from
the second construction since a torsor is trivial if and only if it has a global section,
see Cohomology on Sites, Lemma 21.4.2.
Part (5) can be seen as follows (although a direct proof would be preferable). Sup-
pose ξ ∈ H1

syntomic(S, µn,S). Then ξ maps to an element ξ ∈ H1
syntomic(S,Gm,S)

with nξ = 0. By Theorem 59.24.1 we see that ξ corresponds to an invertible sheaf
L whose nth tensor power is isomorphic to OS . Hence there exists a pair (L, α′)
whose cohomology class ξ′ has the same image ξ′ in H1

syntomic(S,Gm,S). Thus it
suffices to show that ξ−ξ′ is the class of a pair. By construction, and the long exact
cohomology sequence above, we see that ξ − ξ′ = ∂(f) for some f ∈ H0(S,O∗

S).
Consider the pair (OS , f). We omit the verification that the cohomology class
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of this pair is ∂(f), which finishes the proof of the first identification (with fppf
replaced with syntomic).

To see the first, note that if n is invertible on S, then the covering V constructed in
the first part of the proof is actually an étale covering (compare with the proof of
Lemma 59.28.1). The rest of the proof is independent of the topology, apart from
the very last argument which uses that the Kummer sequence is exact, i.e., uses
Lemma 59.28.1. □

59.29. Neighborhoods, stalks and points

03PN We can associate to any geometric point of S a stalk functor which is exact. A
map of sheaves on Sétale is an isomorphism if and only if it is an isomorphism on
all these stalks. A complex of abelian sheaves is exact if and only if the complex of
stalks is exact at all geometric points. Altogether this means that the small étale
site of a scheme S has enough points. It also turns out that any point of the small
étale topos of S (an abstract notion) is given by a geometric point. Thus in some
sense the small étale topos of S can be understood in terms of geometric points
and neighbourhoods.

Definition 59.29.1.03PO Let S be a scheme.
(1) A geometric point of S is a morphism Spec(k)→ S where k is algebraically

closed. Such a point is usually denoted s, i.e., by an overlined small
case letter. We often use s to denote the scheme Spec(k) as well as the
morphism, and we use κ(s) to denote k.

(2) We say s lies over s to indicate that s ∈ S is the image of s.
(3) An étale neighborhood of a geometric point s of S is a commutative dia-

gram
U

φ

��
s

s //

ū

??

S

where φ is an étale morphism of schemes. We write (U, u)→ (S, s).
(4) A morphism of étale neighborhoods (U, u) → (U ′, u′) is an S-morphism

h : U → U ′ such that u′ = h ◦ u.

Remark 59.29.2.03PP Since U and U ′ are étale over S, any S-morphism between them
is also étale, see Proposition 59.26.2. In particular all morphisms of étale neighbor-
hoods are étale.

Remark 59.29.3.04HT Let S be a scheme and s ∈ S a point. In More on Morphisms,
Definition 37.35.1 we defined the notion of an étale neighbourhood (U, u)→ (S, s)
of (S, s). If s is a geometric point of S lying over s, then any étale neighbourhood
(U, u) → (S, s) gives rise to an étale neighbourhood (U, u) of (S, s) by taking u ∈
U to be the unique point of U such that u lies over u. Conversely, given an
étale neighbourhood (U, u) of (S, s) the residue field extension κ(u)/κ(s) is finite
separable (see Proposition 59.26.2) and hence we can find an embedding κ(u) ⊂ κ(s)
over κ(s). In other words, we can find a geometric point u of U lying over u such
that (U, u) is an étale neighbourhood of (S, s). We will use these observations to
go between the two types of étale neighbourhoods.

https://stacks.math.columbia.edu/tag/03PO
https://stacks.math.columbia.edu/tag/03PP
https://stacks.math.columbia.edu/tag/04HT
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Lemma 59.29.4.03PQ Let S be a scheme, and let s be a geometric point of S. The
category of étale neighborhoods is cofiltered. More precisely:

(1) Let (Ui, ui)i=1,2 be two étale neighborhoods of s in S. Then there exists a
third étale neighborhood (U, u) and morphisms (U, u)→ (Ui, ui), i = 1, 2.

(2) Let h1, h2 : (U, u) → (U ′, u′) be two morphisms between étale neigh-
borhoods of s. Then there exist an étale neighborhood (U ′′, u′′) and a
morphism h : (U ′′, u′′)→ (U, u) which equalizes h1 and h2, i.e., such that
h1 ◦ h = h2 ◦ h.

Proof. For part (1), consider the fibre product U = U1 ×S U2. It is étale over
both U1 and U2 because étale morphisms are preserved under base change, see
Proposition 59.26.2. The map s → U defined by (u1, u2) gives it the structure of
an étale neighborhood mapping to both U1 and U2. For part (2), define U ′′ as the
fibre product

U ′′ //

��

U

(h1,h2)
��

U ′ ∆ // U ′ ×S U ′.

Since u and u′ agree over S with s, we see that u′′ = (u, u′) is a geometric point
of U ′′. In particular U ′′ ̸= ∅. Moreover, since U ′ is étale over S, so is the fibre
product U ′ ×S U ′ (see Proposition 59.26.2). Hence the vertical arrow (h1, h2) is
étale by Remark 59.29.2 above. Therefore U ′′ is étale over U ′ by base change, and
hence also étale over S (because compositions of étale morphisms are étale). Thus
(U ′′, u′′) is a solution to the problem. □

Lemma 59.29.5.03PR Let S be a scheme. Let s be a geometric point of S. Let (U, u) be
an étale neighborhood of s. Let U = {φi : Ui → U}i∈I be an étale covering. Then
there exist i ∈ I and ui : s → Ui such that φi : (Ui, ui) → (U, u) is a morphism of
étale neighborhoods.

Proof. As U =
⋃
i∈I φi(Ui), the fibre product s×u,U,φi Ui is not empty for some i.

Then look at the cartesian diagram

s×u,U,φi Ui
pr1

��

pr2
// Ui

φi

��
Spec(k) = s

σ

DD

u // U

The projection pr1 is the base change of an étale morphisms so it is étale, see
Proposition 59.26.2. Therefore, s ×u,U,φi Ui is a disjoint union of finite separable
extensions of k, by Proposition 59.26.2. Here s = Spec(k). But k is algebraically
closed, so all these extensions are trivial, and there exists a section σ of pr1. The
composition pr2 ◦ σ gives a map compatible with u. □

Definition 59.29.6.040R Let S be a scheme. Let F be a presheaf on Sétale. Let s be a
geometric point of S. The stalk of F at s is

Fs = colim(U,u) F(U)

where (U, u) runs over all étale neighborhoods of s in S.

https://stacks.math.columbia.edu/tag/03PQ
https://stacks.math.columbia.edu/tag/03PR
https://stacks.math.columbia.edu/tag/040R
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By Lemma 59.29.4, this colimit is over a filtered index category, namely the op-
posite of the category of étale neighbourhoods. In other words, an element of Fs
can be thought of as a triple (U, u, σ) where σ ∈ F(U). Two triples (U, u, σ),
(U ′, u′, σ′) define the same element of the stalk if there exists a third étale neigh-
bourhood (U ′′, u′′) and morphisms of étale neighbourhoods h : (U ′′, u′′) → (U, u),
h′ : (U ′′, u′′)→ (U ′, u′) such that h∗σ = (h′)∗σ′ in F(U ′′). See Categories, Section
4.19.

Lemma 59.29.7.04FM Let S be a scheme. Let s be a geometric point of S. Consider the
functor

u : Sétale −→ Sets,
U 7−→ |Us| = {u such that (U, u) is an étale neighbourhood of s}.

Here |Us| denotes the underlying set of the geometric fibre. Then u defines a point
p of the site Sétale (Sites, Definition 7.32.2) and its associated stalk functor F 7→ Fp
(Sites, Equation 7.32.1.1) is the functor F 7→ Fs defined above.

Proof. In the proof of Lemma 59.29.5 we have seen that the scheme Us is a disjoint
union of schemes isomorphic to s. Thus we can also think of |Us| as the set of
geometric points of U lying over s, i.e., as the collection of morphisms u : s → U
fitting into the diagram of Definition 59.29.1. From this it follows that u(S) is a
singleton, and that u(U ×V W ) = u(U)×u(V ) u(W ) whenever U → V and W → V
are morphisms in Sétale. And, given a covering {Ui → U}i∈I in Sétale we see that∐
u(Ui) → u(U) is surjective by Lemma 59.29.5. Hence Sites, Proposition 7.33.3

applies, so p is a point of the site Sétale. Finally, our functor F 7→ Fs is given by
exactly the same colimit as the functor F 7→ Fp associated to p in Sites, Equation
7.32.1.1 which proves the final assertion. □

Remark 59.29.8.04FN Let S be a scheme and let s : Spec(k)→ S and s′ : Spec(k′)→ S
be two geometric points of S. A morphism a : s→ s′ of geometric points is simply
a morphism a : Spec(k) → Spec(k′) such that s′ ◦ a = s. Given such a morphism
we obtain a functor from the category of étale neighbourhoods of s′ to the category
of étale neighbourhoods of s by the rule (U, u′) 7→ (U, u′ ◦ a). Hence we obtain a
canonical map

Fs′ = colim(U,u′) F(U) −→ colim(U,u) F(U) = Fs
from Categories, Lemma 4.14.8. Using the description of elements of stalks as triples
this maps the element of Fs′ represented by the triple (U, u′, σ) to the element
of Fs represented by the triple (U, u′ ◦ a, σ). Since the functor above is clearly
an equivalence we conclude that this canonical map is an isomorphism of stalk
functors.
Let us make sure we have the map of stalks corresponding to a pointing in the
correct direction. Note that the above means, according to Sites, Definition 7.37.2,
that a defines a morphism a : p → p′ between the points p, p′ of the site Sétale
associated to s, s′ by Lemma 59.29.7. There are more general morphisms of points
(corresponding to specializations of points of S) which we will describe later, and
which will not be isomorphisms, see Section 59.75.

Lemma 59.29.9.03PT Let S be a scheme. Let s be a geometric point of S.
(1) The stalk functor PAb(Sétale)→ Ab, F 7→ Fs is exact.

https://stacks.math.columbia.edu/tag/04FM
https://stacks.math.columbia.edu/tag/04FN
https://stacks.math.columbia.edu/tag/03PT
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(2) We have (F#)s = Fs for any presheaf of sets F on Sétale.
(3) The functor Ab(Sétale)→ Ab, F 7→ Fs is exact.
(4) Similarly the functors PSh(Sétale) → Sets and Sh(Sétale) → Sets given

by the stalk functor F 7→ Fx are exact (see Categories, Definition 4.23.1)
and commute with arbitrary colimits.

Proof. Before we indicate how to prove this by direct arguments we note that the
result follows from the general material in Modules on Sites, Section 18.36. This is
true because F 7→ Fs comes from a point of the small étale site of S, see Lemma
59.29.7. We will only give a direct proof of (1), (2) and (3), and omit a direct proof
of (4).
Exactness as a functor on PAb(Sétale) is formal from the fact that directed colimits
commute with all colimits and with finite limits. The identification of the stalks in
(2) is via the map

κ : Fs −→ (F#)s
induced by the natural morphism F → F#, see Theorem 59.13.2. We claim that
this map is an isomorphism of abelian groups. We will show injectivity and omit
the proof of surjectivity.
Let σ ∈ Fs. There exists an étale neighborhood (U, u) → (S, s) such that σ is the
image of some section s ∈ F(U). If κ(σ) = 0 in (F#)s then there exists a morphism
of étale neighborhoods (U ′, u′)→ (U, u) such that s|U ′ is zero in F#(U ′). It follows
there exists an étale covering {U ′

i → U ′}i∈I such that s|U ′
i

= 0 in F(U ′
i) for all

i. By Lemma 59.29.5 there exist i ∈ I and a morphism u′
i : s → U ′

i such that
(U ′

i , u
′
i) → (U ′, u′) → (U, u) are morphisms of étale neighborhoods. Hence σ = 0

since (U ′
i , u

′
i) → (U, u) is a morphism of étale neighbourhoods such that we have

s|U ′
i

= 0. This proves κ is injective.
To show that the functor Ab(Sétale) → Ab is exact, consider any short exact
sequence in Ab(Sétale): 0→ F → G → H → 0. This gives us the exact sequence of
presheaves

0→ F → G → H → H/pG → 0,
where /p denotes the quotient in PAb(Sétale). Taking stalks at s, we see that
(H/pG)s̄ = (H/G)s̄ = 0, since the sheafification of H/pG is 0. Therefore,

0→ Fs → Gs → Hs → 0 = (H/pG)s
is exact, since taking stalks is exact as a functor from presheaves. □

Theorem 59.29.10.03PU Let S be a scheme. A map a : F → G of sheaves of sets is
injective (resp. surjective) if and only if the map on stalks as : Fs → Gs is injective
(resp. surjective) for all geometric points of S. A sequence of abelian sheaves on
Sétale is exact if and only if it is exact on all stalks at geometric points of S.

Proof. The necessity of exactness on stalks follows from Lemma 59.29.9. For the
converse, it suffices to show that a map of sheaves is surjective (respectively injec-
tive) if and only if it is surjective (respectively injective) on all stalks. We prove
this in the case of surjectivity, and omit the proof in the case of injectivity.
Let α : F → G be a map of sheaves such that Fs → Gs is surjective for all geometric
points. Fix U ∈ Ob(Sétale) and s ∈ G(U). For every u ∈ U choose some u → U
lying over u and an étale neighborhood (Vu, vu) → (U, u) such that s|Vu = α(sVu)

https://stacks.math.columbia.edu/tag/03PU
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for some sVu ∈ F(Vu). This is possible since α is surjective on stalks. Then
{Vu → U}u∈U is an étale covering on which the restrictions of s are in the image
of the map α. Thus, α is surjective, see Sites, Section 7.11. □

Remarks 59.29.11.040S On points of the geometric sites.
(1) Theorem 59.29.10 says that the family of points of Sétale given by the

geometric points of S (Lemma 59.29.7) is conservative, see Sites, Definition
7.38.1. In particular Sétale has enough points.

(2) Suppose F is a sheaf on the big étale site04FP of S. Let T → S be an object
of the big étale site of S, and let t be a geometric point of T . Then we
define Ft as the stalk of the restriction F|Tétale of F to the small étale site
of T . In other words, we can define the stalk of F at any geometric point
of any scheme T/S ∈ Ob((Sch/S)étale).

(3) The big étale site of S also has enough points, by considering all geometric
points of all objects of this site, see (2).

The following lemma should be skipped on a first reading.
Lemma 59.29.12.04HU Let S be a scheme.

(1) Let p be a point of the small étale site Sétale of S given by a functor
u : Sétale → Sets. Then there exists a geometric point s of S such that p
is isomorphic to the point of Sétale associated to s in Lemma 59.29.7.

(2) Let p : Sh(pt)→ Sh(Sétale) be a point of the small étale topos of S. Then
p comes from a geometric point of S, i.e., the stalk functor F 7→ Fp is
isomorphic to a stalk functor as defined in Definition 59.29.6.

Proof. By Sites, Lemma 7.32.7 there is a one to one correspondence between points
of the site and points of the associated topos, hence it suffices to prove (1). By
Sites, Proposition 7.33.3 the functor u has the following properties: (a) u(S) = {∗},
(b) u(U ×V W ) = u(U)×u(V ) u(W ), and (c) if {Ui → U} is an étale covering, then∐
u(Ui)→ u(U) is surjective. In particular, if U ′ ⊂ U is an open subscheme, then

u(U ′) ⊂ u(U). Moreover, by Sites, Lemma 7.32.7 we can write u(U) = p−1(h#
U ), in

other words u(U) is the stalk of the representable sheaf hU . If U = V ⨿W , then
we see that hU = (hV ⨿ hW )# and we get u(U) = u(V )⨿ u(W ) since p−1 is exact.
Consider the restriction of u to SZar. By Sites, Examples 7.33.5 and 7.33.6 there
exists a unique point s ∈ S such that for S′ ⊂ S open we have u(S′) = {∗} if s ∈ S′

and u(S′) = ∅ if s ̸∈ S′. Note that if φ : U → S is an object of Sétale then φ(U) ⊂ S
is open (see Proposition 59.26.2) and {U → φ(U)} is an étale covering. Hence we
conclude that u(U) = ∅ ⇔ s ∈ φ(U).
Pick a geometric point s : s→ S lying over s, see Definition 59.29.1 for customary
abuse of notation. Suppose that φ : U → S is an object of Sétale with U affine.
Note that φ is separated, and that the fibre Us of φ over s is an affine scheme over
Spec(κ(s)) which is the spectrum of a finite product of finite separable extensions
ki of κ(s). Hence we may apply Étale Morphisms, Lemma 41.18.2 to get an étale
neighbourhood (V, v) of (S, s) such that

U ×S V = U1 ⨿ . . .⨿ Un ⨿W
with Ui → V an isomorphism and W having no point lying over v. Thus we
conclude that

u(U)× u(V ) = u(U ×S V ) = u(U1)⨿ . . .⨿ u(Un)⨿ u(W )

https://stacks.math.columbia.edu/tag/040S
https://stacks.math.columbia.edu/tag/04HU
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and of course also u(Ui) = u(V ). After shrinking V a bit we can assume that V
has exactly one point lying over s, and hence W has no point lying over s. By the
above this then gives u(W ) = ∅. Hence we obtain

u(U)× u(V ) = u(U1)⨿ . . .⨿ u(Un) =
∐

i=1,...,n
u(V )

Note that u(V ) ̸= ∅ as s is in the image of V → S. In particular, we see that in
this situation u(U) is a finite set with n elements.

Consider the limit
lim(V,v) u(V )

over the category of étale neighbourhoods (V, v) of s. It is clear that we get the
same value when taking the limit over the subcategory of (V, v) with V affine. By
the previous paragraph (applied with the roles of V and U switched) we see that
in this case u(V ) is always a finite nonempty set. Moreover, the limit is cofiltered,
see Lemma 59.29.4. Hence by Categories, Section 4.20 the limit is nonempty. Pick
an element x from this limit. This means we obtain a xV,v ∈ u(V ) for every étale
neighbourhood (V, v) of (S, s) such that for every morphism of étale neighbourhoods
φ : (V ′, v′)→ (V, v) we have u(φ)(xV ′,v′) = xV,v.

We will use the choice of x to construct a functorial bijective map

c : |Us| −→ u(U)

for U ∈ Ob(Sétale) which will conclude the proof. See Lemma 59.29.7 and its proof
for a description of |Us|. First we claim that it suffices to construct the map for U
affine. We omit the proof of this claim. Assume U → S in Sétale with U affine, and
let u : s→ U be an element of |Us|. Choose a (V, v) such that U ×S V decomposes
as in the third paragraph of the proof. Then the pair (u, v) gives a geometric
point of U ×S V lying over v and determines one of the components Ui of U ×S V .
More precisely, there exists a section σ : V → U ×S V of the projection prU such
that (u, v) = σ ◦ v. Set c(u) = u(prU )(u(σ)(xV,v)) ∈ u(U). We have to check
this is independent of the choice of (V, v). By Lemma 59.29.4 the category of étale
neighbourhoods is cofiltered. Hence it suffice to show that given a morphism of étale
neighbourhood φ : (V ′, v′) → (V, v) and a choice of a section σ′ : V ′ → U ×S V ′

of the projection such that (u, v′) = σ′ ◦ v′ we have u(σ′)(xV ′,v′) = u(σ)(xV,v).
Consider the diagram

V ′

σ′

��

φ
// V

σ

��
U ×S V ′ 1×φ // U ×S V

Now, it may not be the case that this diagram commutes. The reason is that the
schemes V ′ and V may not be connected, and hence the decompositions used to
construct σ′ and σ above may not be unique. But we do know that σ ◦ φ ◦ v′ =
(1× φ) ◦ σ′ ◦ v′ by construction. Hence, since U ×S V is étale over S, there exists
an open neighbourhood V ′′ ⊂ V ′ of v′ such that the diagram does commute when
restricted to V ′′, see Morphisms, Lemma 29.35.17. This means we may extend the
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diagram above to

V ′′ //

σ′|V ′′

��

V ′

σ′

��

φ
// V

σ

��
U ×S V ′′ // U ×S V ′ 1×φ // U ×S V

such that the left square and the outer rectangle commute. Since u is a functor
this implies that xV ′′,v′ maps to the same element in u(U ×S V ) no matter which
route we take through the diagram. On the other hand, it maps to the elements
xV ′,v′ and xV,v in u(V ′) and u(V ). This implies the desired equality u(σ′)(xV ′,v′) =
u(σ)(xV,v).
In a similar manner one proves that the construction c : |Us| → u(U) is functorial
in U ; details omitted. And finally, by the results of the third paragraph it is clear
that the map c is bijective which ends the proof of the lemma. □

59.30. Points in other topologies

06VW In this section we briefly discuss the existence of points for some sites other than
the étale site of a scheme. We refer to Sites, Section 7.38 and Topologies, Section
34.2 ff for the terminology used in this section. All of the geometric sites have
enough points.

Lemma 59.30.1.06VX Let S be a scheme. All of the following sites have enough
points Saffine,Zar, SZar, Saffine,étale, Sétale, (Sch/S)Zar, (Aff/S)Zar, (Sch/S)étale,
(Aff/S)étale, (Sch/S)smooth, (Aff/S)smooth, (Sch/S)syntomic, (Aff/S)syntomic, (Sch/S)fppf ,
and (Aff/S)fppf .

Proof. For each of the big sites the associated topos is equivalent to the topos
defined by the site (Aff/S)τ , see Topologies, Lemmas 34.3.10, 34.4.11, 34.5.9, 34.6.9,
and 34.7.11. The result for the sites (Aff/S)τ follows immediately from Deligne’s
result Sites, Lemma 7.39.4.
The result for SZar is clear. The result for Saffine,Zar follows from Deligne’s result.
The result for Sétale either follows from (the proof of) Theorem 59.29.10 or from
Topologies, Lemma 34.4.12 and Deligne’s result applied to Saffine,étale. □

The lemma above guarantees the existence of points, but it doesn’t tell us what
these points look like. We can explicitly construct some points as follows. Suppose
s : Spec(k) → S is a geometric point with k algebraically closed. Consider the
functor

u : (Sch/S)fppf −→ Sets, u(U) = U(k) = MorS(Spec(k), U).
Note that U 7→ U(k) commutes with finite limits as S(k) = {s} and (U1 ×U
U2)(k) = U1(k) ×U(k) U2(k). Moreover, if {Ui → U} is an fppf covering, then∐
Ui(k)→ U(k) is surjective. By Sites, Proposition 7.33.3 we see that u defines a

point p of (Sch/S)fppf with stalks
Fp = colim(U,x) F(U)

where the colimit is over pairs U → S, x ∈ U(k) as usual. But... this category has
an initial object, namely (Spec(k), id), hence we see that

Fp = F(Spec(k))

https://stacks.math.columbia.edu/tag/06VX
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which isn’t terribly interesting! In fact, in general these points won’t form a con-
servative family of points. A more interesting type of point is described in the
following remark.

Remark 59.30.2.06VY This is discussed in
[Sch14].

Let S = Spec(A) be an affine scheme. Let (p, u) be a point of
the site (Aff/S)fppf , see Sites, Sections 7.32 and 7.33. Let B = Op be the stalk of
the structure sheaf at the point p. Recall that

B = colim(U,x)O(U) = colim(Spec(C),xC) C

where xC ∈ u(Spec(C)). It can happen that Spec(B) is an object of (Aff/S)fppf
and that there is an element xB ∈ u(Spec(B)) mapping to the compatible system
xC . In this case the system of neighbourhoods has an initial object and it follows
that Fp = F(Spec(B)) for any sheaf F on (Aff/S)fppf . It is straightforward to
see that if F 7→ F(Spec(B)) defines a point of Sh((Aff/S)fppf ), then B has to
be a local A-algebra such that for every faithfully flat, finitely presented ring map
B → B′ there is a section B′ → B. Conversely, for any such A-algebra B the
functor F 7→ F(Spec(B)) is the stalk functor of a point. Details omitted. It is not
clear what a general point of the site (Aff/S)fppf looks like.

59.31. Supports of abelian sheaves

04FQ First we talk about supports of local sections.

Lemma 59.31.1.04HV Let S be a scheme. Let F be a subsheaf of the final object of
the étale topos of S (see Sites, Example 7.10.2). Then there exists a unique open
W ⊂ S such that F = hW .

Proof. The condition means that F(U) is a singleton or empty for all φ : U →
S in Ob(Sétale). In particular local sections always glue. If F(U) ̸= ∅, then
F(φ(U)) ̸= ∅ because {φ : U → φ(U)} is a covering. Hence we can take W =⋃
φ:U→S,F(U )̸=∅ φ(U). □

Lemma 59.31.2.04FR Let S be a scheme. Let F be an abelian sheaf on Sétale. Let
σ ∈ F(U) be a local section. There exists an open subset W ⊂ U such that

(1) W ⊂ U is the largest Zariski open subset of U such that σ|W = 0,
(2) for every φ : V → U in Sétale we have

σ|V = 0⇔ φ(V ) ⊂W,
(3) for every geometric point u of U we have

(U, u, σ) = 0 in Fs ⇔ u ∈W
where s = (U → S) ◦ u.

Proof. Since F is a sheaf in the étale topology the restriction of F to UZar is a sheaf
on U in the Zariski topology. Hence there exists a Zariski open W having property
(1), see Modules, Lemma 17.5.2. Let φ : V → U be an arrow of Sétale. Note that
φ(V ) ⊂ U is an open subset and that {V → φ(V )} is an étale covering. Hence if
σ|V = 0, then by the sheaf condition for F we see that σ|φ(V ) = 0. This proves
(2). To prove (3) we have to show that if (U, u, σ) defines the zero element of Fs,
then u ∈ W . This is true because the assumption means there exists a morphism
of étale neighbourhoods (V, v) → (U, u) such that σ|V = 0. Hence by (2) we see
that V → U maps into W , and hence u ∈W . □

https://stacks.math.columbia.edu/tag/06VY
https://stacks.math.columbia.edu/tag/04HV
https://stacks.math.columbia.edu/tag/04FR
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Let S be a scheme. Let s ∈ S. Let F be a sheaf on Sétale. By Remark 59.29.8 the
isomorphism class of the stalk of the sheaf F at a geometric points lying over s is
well defined.

Definition 59.31.3.04FS Let S be a scheme. Let F be an abelian sheaf on Sétale.
(1) The support of F is the set of points s ∈ S such that Fs ̸= 0 for any

(some) geometric point s lying over s.
(2) Let σ ∈ F(U) be a section. The support of σ is the closed subset U \W ,

where W ⊂ U is the largest open subset of U on which σ restricts to zero
(see Lemma 59.31.2).

In general the support of an abelian sheaf is not closed. For example, suppose that
S = Spec(A1

C). Let it : Spec(C)→ S be the inclusion of the point t ∈ C. We will
see later that Ft = it,∗(Z/2Z) is an abelian sheaf whose support is exactly {t}, see
Section 59.46. Then ⊕

n∈N
Fn

is an abelian sheaf with support {1, 2, 3, . . .} ⊂ S. This is true because taking stalks
commutes with colimits, see Lemma 59.29.9. Thus an example of an abelian sheaf
whose support is not closed. Here are some basic facts on supports of sheaves and
sections.

Lemma 59.31.4.04FT Let S be a scheme. Let F be an abelian sheaf on Sétale. Let
U ∈ Ob(Sétale) and σ ∈ F(U).

(1) The support of σ is closed in U .
(2) The support of σ + σ′ is contained in the union of the supports of σ, σ′ ∈
F(U).

(3) If φ : F → G is a map of abelian sheaves on Sétale, then the support of
φ(σ) is contained in the support of σ ∈ F(U).

(4) The support of F is the union of the images of the supports of all local
sections of F .

(5) If F → G is surjective then the support of G is a subset of the support of
F .

(6) If F → G is injective then the support of F is a subset of the support of
G.

Proof. Part (1) holds by definition. Parts (2) and (3) hold because they holds for
the restriction of F and G to UZar, see Modules, Lemma 17.5.2. Part (4) is a direct
consequence of Lemma 59.31.2 part (3). Parts (5) and (6) follow from the other
parts. □

Lemma 59.31.5.04FU The support of a sheaf of rings on Sétale is closed.

Proof. This is true because (according to our conventions) a ring is 0 if and only
if 1 = 0, and hence the support of a sheaf of rings is the support of the unit
section. □

59.32. Henselian rings

03QD We begin by stating a theorem which has already been used many times in the
Stacks project. There are many versions of this result; here we just state the
algebraic version.

https://stacks.math.columbia.edu/tag/04FS
https://stacks.math.columbia.edu/tag/04FT
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Theorem 59.32.1.03QE Let A → B be finite type ring map and p ⊂ A a prime ideal.
Then there exist an étale ring map A→ A′ and a prime p′ ⊂ A′ lying over p such
that

(1) κ(p) = κ(p′),
(2) B ⊗A A′ = B1 × . . .×Br × C,
(3) A′ → Bi is finite and there exists a unique prime qi ⊂ Bi lying over p′,

and
(4) all irreducible components of the fibre Spec(C⊗A′ κ(p′)) of C over p′ have

dimension at least 1.

Proof. See Algebra, Lemma 10.145.3, or see [GD67, Théorème 18.12.1]. For a slew
of versions in terms of morphisms of schemes, see More on Morphisms, Section
37.41. □

Recall Hensel’s lemma. There are many versions of this lemma. Here are two:
(f) if f ∈ Zp[T ] monic and f mod p = g0h0 with gcd(g0, h0) = 1 then f

factors as f = gh with ḡ = g0 and h̄ = h0,
(r) if f ∈ Zp[T ], monic a0 ∈ Fp, f̄(a0) = 0 but f̄ ′(a0) ̸= 0 then there exists

a ∈ Zp with f(a) = 0 and ā = a0.
Both versions are true (we will see this later). The first version asks for lifts of
factorizations into coprime parts, and the second version asks for lifts of simple
roots modulo the maximal ideal. It turns out that requiring these conditions for a
general local ring are equivalent, and are equivalent to many other conditions. We
use the root lifting property as the definition of a henselian local ring as it is often
the easiest one to check.

Definition 59.32.2.03QF (See Algebra, Definition 10.153.1.) A local ring (R,m, κ) is
called henselian if for all f ∈ R[T ] monic, for all a0 ∈ κ such that f̄(a0) = 0 and
f̄ ′(a0) ̸= 0, there exists an a ∈ R such that f(a) = 0 and a mod m = a0.

A good example of henselian local rings to keep in mind is complete local rings.
Recall (Algebra, Definition 10.160.1) that a complete local ring is a local ring (R,m)
such that R ∼= limnR/m

n, i.e., it is complete and separated for the m-adic topology.

Theorem 59.32.3.03QG Complete local rings are henselian.

Proof. Newton’s method. See Algebra, Lemma 10.153.9. □

Theorem 59.32.4.03QH Let (R,m, κ) be a local ring. The following are equivalent:
(1) R is henselian,
(2) for any f ∈ R[T ] and any factorization f̄ = g0h0 in κ[T ] with gcd(g0, h0) =

1, there exists a factorization f = gh in R[T ] with ḡ = g0 and h̄ = h0,
(3) any finite R-algebra S is isomorphic to a finite product of local rings finite

over R,
(4) any finite type R-algebra A is isomorphic to a product A ∼= A′×C where

A′ ∼= A1 × . . . × Ar is a product of finite local R-algebras and all the
irreducible components of C ⊗R κ have dimension at least 1,

(5) if A is an étale R-algebra and n is a maximal ideal of A lying over m such
that κ ∼= A/n, then there exists an isomorphism φ : A ∼= R×A′ such that
φ(n) = m×A′ ⊂ R×A′.

https://stacks.math.columbia.edu/tag/03QE
https://stacks.math.columbia.edu/tag/03QF
https://stacks.math.columbia.edu/tag/03QG
https://stacks.math.columbia.edu/tag/03QH
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Proof. This is just a subset of the results from Algebra, Lemma 10.153.3. Note
that part (5) above corresponds to part (8) of Algebra, Lemma 10.153.3 but is
formulated slightly differently. □

Lemma 59.32.5.03QJ If R is henselian and A is a finite R-algebra, then A is a finite
product of henselian local rings.

Proof. See Algebra, Lemma 10.153.4. □

Definition 59.32.6.03QK A local ring R is called strictly henselian if it is henselian and
its residue field is separably closed.

Example 59.32.7.03QI In the case R = C[[t]], the étale R-algebras are finite products
of the trivial extension R→ R and the extensions R→ R[X,X−1]/(Xn − t). The
latter ones factor through the open D(t) ⊂ Spec(R), so any étale covering can be
refined by the covering {id : Spec(R) → Spec(R)}. We will see below that this is
a somewhat general fact on étale coverings of spectra of henselian rings. This will
show that higher étale cohomology of the spectrum of a strictly henselian ring is
zero.

Theorem 59.32.8.03QL Let (R,m, κ) be a local ring and κ ⊂ κsep a separable algebraic
closure. There exist canonical flat local ring maps R→ Rh → Rsh where

(1) Rh, Rsh are filtered colimits of étale R-algebras,
(2) Rh is henselian, Rsh is strictly henselian,
(3) mRh (resp. mRsh) is the maximal ideal of Rh (resp. Rsh), and
(4) κ = Rh/mRh, and κsep = Rsh/mRsh as extensions of κ.

Proof. The structure of Rh and Rsh is described in Algebra, Lemmas 10.155.1 and
10.155.2. □

The rings constructed in Theorem 59.32.8 are called respectively the henselization
and the strict henselization of the local ring R, see Algebra, Definition 10.155.3.
Many of the properties of R are reflected in its (strict) henselization, see More on
Algebra, Section 15.45.

59.33. Stalks of the structure sheaf

04HW In this section we identify the stalk of the structure sheaf at a geometric point with
the strict henselization of the local ring at the corresponding “usual” point.

Lemma 59.33.1.04HX Let S be a scheme. Let s be a geometric point of S lying over
s ∈ S. Let κ = κ(s) and let κ ⊂ κsep ⊂ κ(s) denote the separable algebraic closure
of κ in κ(s). Then there is a canonical identification

(OS,s)sh ∼= (OS)s
where the left hand side is the strict henselization of the local ring OS,s as described
in Theorem 59.32.8 and right hand side is the stalk of the structure sheaf OS on
Sétale at the geometric point s.

Proof. Let Spec(A) ⊂ S be an affine neighbourhood of s. Let p ⊂ A be the
prime ideal corresponding to s. With these choices we have canonical isomorphisms
OS,s = Ap and κ(s) = κ(p). Thus we have κ(p) ⊂ κsep ⊂ κ(s). Recall that

(OS)s = colim(U,u)O(U)

https://stacks.math.columbia.edu/tag/03QJ
https://stacks.math.columbia.edu/tag/03QK
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where the limit is over the étale neighbourhoods of (S, s). A cofinal system is given
by those étale neighbourhoods (U, u) such that U is affine and U → S factors
through Spec(A). In other words, we see that

(OS)s = colim(B,q,ϕ) B

where the colimit is over étale A-algebras B endowed with a prime q lying over p
and a κ(p)-algebra map ϕ : κ(q) → κ(s). Note that since κ(q) is finite separable
over κ(p) the image of ϕ is contained in κsep. Via these translations the result of
the lemma is equivalent to the result of Algebra, Lemma 10.155.11. □

Definition 59.33.2.03PS Let S be a scheme. Let s be a geometric point of S lying over
the point s ∈ S.

(1) The étale local ring of S at s is the stalk of the structure sheaf OS on
Sétale at s. We sometimes call this the strict henselization of OS,s relative
to the geometric point s. Notation used: OshS,s.

(2) The henselization of OS,s is the henselization of the local ring of S at s.
See Algebra, Definition 10.155.3, and Theorem 59.32.8. Notation: OhS,s.

(3) The strict henselization of S at s is the scheme Spec(OshS,s).
(4) The henselization of S at s is the scheme Spec(OhS,s).

Let f : T → S be a morphism of schemes. Let t be a geometric point of T with
image s in S. Let t ∈ T and s ∈ S be their images. Then we obtain a canonical
commutative diagram

Spec(OhT,t) //

��

Spec(Osh
T,t

) //

��

T

f

��
Spec(OhS,s) // Spec(OshS,s) // S

of henselizations and strict henselizations of T and S. You can prove this by
choosing affine neighbourhoods of t and s and using the functoriality of (strict)
henselizations given by Algebra, Lemmas 10.155.8 and 10.155.12.

Lemma 59.33.3.04HY Let S be a scheme. Let s ∈ S. Then we have

OhS,s = colim(U,u)O(U)

where the colimit is over the filtered category of étale neighbourhoods (U, u) of
(S, s) such that κ(s) = κ(u).

Proof. This lemma is a copy of More on Morphisms, Lemma 37.35.5. □

Remark 59.33.4.03QM Let S be a scheme. Let s ∈ S. If S is locally Noetherian then
OhS,s is also Noetherian and it has the same completion:

ÔS,s ∼= ÔhS,s.

In particular, OS,s ⊂ OhS,s ⊂ ÔS,s. The henselization of OS,s is in general much
smaller than its completion and inherits many of its properties. For example, if
OS,s is reduced, then so is OhS,s, but this is not true for the completion in general.
Insert future references here.

https://stacks.math.columbia.edu/tag/03PS
https://stacks.math.columbia.edu/tag/04HY
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Lemma 59.33.5.04HZ Let S be a scheme. The small étale site Sétale endowed with its
structure sheaf OS is a locally ringed site, see Modules on Sites, Definition 18.40.4.

Proof. This follows because the stalks (OS)s = OshS,s are local, and because Sétale
has enough points, see Lemma 59.33.1, Theorem 59.29.10, and Remarks 59.29.11.
See Modules on Sites, Lemmas 18.40.2 and 18.40.3 for the fact that this implies the
small étale site is locally ringed. □

59.34. Functoriality of small étale topos

04I0 So far we haven’t yet discussed the functoriality of the étale site, in other words
what happens when given a morphism of schemes. A precise formal discussion can
be found in Topologies, Section 34.4. In this and the next sections we discuss this
material briefly specifically in the setting of small étale sites.

Let f : X → Y be a morphism of schemes. We obtain a functor

(59.34.0.1)04I1 u : Yétale −→ Xétale, V/Y 7−→ X ×Y V/X.

This functor has the following important properties
(1) u(final object) = final object,
(2) u preserves fibre products,
(3) if {Vj → V } is a covering in Yétale, then {u(Vj)→ u(V )} is a covering in

Xétale.
Each of these is easy to check (omitted). As a consequence we obtain what is called
a morphism of sites

fsmall : Xétale −→ Yétale,

see Sites, Definition 7.14.1 and Sites, Proposition 7.14.7. It is not necessary to know
about the abstract notion in detail in order to work with étale sheaves and étale co-
homology. It usually suffices to know that there are functors fsmall,∗ (pushforward)
and f−1

small (pullback) on étale sheaves, and to know some of their simple properties.
We will discuss these properties in the next sections, but we will sometimes refer
to the more abstract material for proofs since that is often the natural setting to
prove them.

59.35. Direct images

03PV Let us define the pushforward of a presheaf.

Definition 59.35.1.03PW Let f : X → Y be a morphism of schemes. Let F a presheaf of
sets on Xétale. The direct image, or pushforward of F (under f) is

f∗F : Y oppétale −→ Sets, (V/Y ) 7−→ F(X ×Y V/X).

We sometimes write f∗ = fsmall,∗ to distinguish from other direct image functors
(such as usual Zariski pushforward or fbig,∗).

This is a well-defined étale presheaf since the base change of an étale morphism is
again étale. A more categorical way of saying this is that f∗F is the composition
of functors F ◦ u where u is as in Equation (59.34.0.1). This makes it clear that
the construction is functorial in the presheaf F and hence we obtain a functor

f∗ = fsmall,∗ : PSh(Xétale) −→ PSh(Yétale)

https://stacks.math.columbia.edu/tag/04HZ
https://stacks.math.columbia.edu/tag/03PW
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Note that if F is a presheaf of abelian groups, then f∗F is also a presheaf of abelian
groups and we obtain

f∗ = fsmall,∗ : PAb(Xétale) −→ PAb(Yétale)
as before (i.e., defined by exactly the same rule).

Remark 59.35.2.03PX We claim that the direct image of a sheaf is a sheaf. Namely,
if {Vj → V } is an étale covering in Yétale then {X ×Y Vj → X ×Y V } is an étale
covering in Xétale. Hence the sheaf condition for F with respect to {X ×Y Vi →
X ×Y V } is equivalent to the sheaf condition for f∗F with respect to {Vi → V }.
Thus if F is a sheaf, so is f∗F .

Definition 59.35.3.03PY Let f : X → Y be a morphism of schemes. Let F a sheaf of
sets on Xétale. The direct image, or pushforward of F (under f) is

f∗F : Y oppétale −→ Sets, (V/Y ) 7−→ F(X ×Y V/X)
which is a sheaf by Remark 59.35.2. We sometimes write f∗ = fsmall,∗ to distinguish
from other direct image functors (such as usual Zariski pushforward or fbig,∗).

The exact same discussion as above applies and we obtain functors
f∗ = fsmall,∗ : Sh(Xétale) −→ Sh(Yétale)

and
f∗ = fsmall,∗ : Ab(Xétale) −→ Ab(Yétale)

called direct image again.
The functor f∗ on abelian sheaves is left exact. (See Homology, Section 12.7 for
what it means for a functor between abelian categories to be left exact.) Namely,
if 0 → F1 → F2 → F3 is exact on Xétale, then for every U/X ∈ Ob(Xétale) the
sequence of abelian groups 0→ F1(U)→ F2(U)→ F3(U) is exact. Hence for every
V/Y ∈ Ob(Yétale) the sequence of abelian groups 0 → f∗F1(V ) → f∗F2(V ) →
f∗F3(V ) is exact, because this is the previous sequence with U = X ×Y V .

Definition 59.35.4.04I2 Let f : X → Y be a morphism of schemes. The right derived
functors {Rpf∗}p≥1 of f∗ : Ab(Xétale)→ Ab(Yétale) are called higher direct images.

The higher direct images and their derived category variants are discussed in more
detail in (insert future reference here).

59.36. Inverse image

03PZ In this section we briefly discuss pullback of sheaves on the small étale sites. The
precise construction of this is in Topologies, Section 34.4.

Definition 59.36.1.03Q0 Let f : X → Y be a morphism of schemes. The inverse image,
or pullback2 functors are the functors

f−1 = f−1
small : Sh(Yétale) −→ Sh(Xétale)

and
f−1 = f−1

small : Ab(Yétale) −→ Ab(Xétale)

2We use the notation f−1 for pullbacks of sheaves of sets or sheaves of abelian groups, and
we reserve f∗ for pullbacks of sheaves of modules via a morphism of ringed sites/topoi.
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which are left adjoint to f∗ = fsmall,∗. Thus f−1 is characterized by the fact that
HomSh(Xétale)(f−1G,F) = HomSh(Yétale)(G, f∗F)

functorially, for any F ∈ Sh(Xétale) and G ∈ Sh(Yétale). We similarly have
HomAb(Xétale)(f−1G,F) = HomAb(Yétale)(G, f∗F)

for F ∈ Ab(Xétale) and G ∈ Ab(Yétale).

It is not trivial that such an adjoint exists. On the other hand, it exists in a fairly
general setting, see Remark 59.36.3 below. The general machinery shows that f−1G
is the sheaf associated to the presheaf
(59.36.1.1)04I3 U/X 7−→ colimU→X×Y V G(V/Y )
where the colimit is over the category of pairs (V/Y, φ : U/X → X ×Y V/X). To
see this apply Sites, Proposition 7.14.7 to the functor u of Equation (59.34.0.1)
and use the description of us = (up )# in Sites, Sections 7.13 and 7.5. We will
occasionally use this formula for the pullback in order to prove some of its basic
properties.

Lemma 59.36.2.03Q1 Let f : X → Y be a morphism of schemes.
(1) The functor f−1 : Ab(Yétale)→ Ab(Xétale) is exact.
(2) The functor f−1 : Sh(Yétale)→ Sh(Xétale) is exact, i.e., it commutes with

finite limits and colimits, see Categories, Definition 4.23.1.
(3) Let x→ X be a geometric point. Let G be a sheaf on Yétale. Then there

is a canonical identification
(f−1G)x = Gy.

where y = f ◦ x.
(4) For any V → Y étale we have f−1hV = hX×Y V .

Proof. The exactness of f−1 on sheaves of sets is a consequence of Sites, Proposition
7.14.7 applied to our functor u of Equation (59.34.0.1). In fact the exactness of
pullback is part of the definition of a morphism of topoi (or sites if you like). Thus
we see (2) holds. It implies part (1) since given an abelian sheaf G on Yétale the
underlying sheaf of sets of f−1F is the same as f−1 of the underlying sheaf of sets
of F , see Sites, Section 7.44. See also Modules on Sites, Lemma 18.31.2. In the
literature (1) and (2) are sometimes deduced from (3) via Theorem 59.29.10.
Part (3) is a general fact about stalks of pullbacks, see Sites, Lemma 7.34.2. We
will also prove (3) directly as follows. Note that by Lemma 59.29.9 taking stalks
commutes with sheafification. Now recall that f−1G is the sheaf associated to the
presheaf

U −→ colimU→X×Y V G(V ),
see Equation (59.36.1.1). Thus we have

(f−1G)x = colim(U,u) f
−1G(U)

= colim(U,u) colima:U→X×Y V G(V )
= colim(V,v) G(V )
= Gy

in the third equality the pair (U, u) and the map a : U → X ×Y V corresponds to
the pair (V, a ◦ u).

https://stacks.math.columbia.edu/tag/03Q1
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Part (4) can be proved in a similar manner by identifying the colimits which de-
fine f−1hV . Or you can use Yoneda’s lemma (Categories, Lemma 4.3.5) and the
functorial equalities

MorSh(Xétale)(f−1hV ,F) = MorSh(Yétale)(hV , f∗F) = f∗F(V ) = F(X ×Y V )
combined with the fact that representable presheaves are sheaves. See also Sites,
Lemma 7.13.5 for a completely general result. □

The pair of functors (f∗, f
−1) define a morphism of small étale topoi

fsmall : Sh(Xétale) −→ Sh(Yétale)
Many generalities on cohomology of sheaves hold for topoi and morphisms of topoi.
We will try to point out when results are general and when they are specific to the
étale topos.

Remark 59.36.3.03Q2 More generally, let C1, C2 be sites, and assume they have final
objects and fibre products. Let u : C2 → C1 be a functor satisfying:

(1) if {Vi → V } is a covering of C2, then {u(Vi) → u(V )} is a covering of C1
(we say that u is continuous), and

(2) u commutes with finite limits (i.e., u is left exact, i.e., u preserves fibre
products and final objects).

Then one can define f∗ : Sh(C1)→ Sh(C2) by f∗F(V ) = F(u(V )). Moreover, there
exists an exact functor f−1 which is left adjoint to f∗, see Sites, Definition 7.14.1
and Proposition 7.14.7. Warning: It is not enough to require simply that u is
continuous and commutes with fibre products in order to get a morphism of topoi.

59.37. Functoriality of big topoi

04DI Given a morphism of schemes f : X → Y there are a whole host of morphisms of
topoi associated to f , see Topologies, Section 34.11 for a list. Perhaps the most
used ones are the morphisms of topoi

fbig = fbig,τ : Sh((Sch/X)τ ) −→ Sh((Sch/Y )τ )
where τ ∈ {Zariski, étale, smooth, syntomic, fppf}. These each correspond to a
continuous functor

(Sch/Y )τ −→ (Sch/X)τ , V/Y 7−→ X ×Y V/X
which preserves final objects, fibre products and covering, and hence defines a
morphism of sites

fbig : (Sch/X)τ −→ (Sch/Y )τ .
See Topologies, Sections 34.3, 34.4, 34.5, 34.6, and 34.7. In particular, pushforward
along fbig is given by the rule

(fbig,∗F)(V/Y ) = F(X ×Y V/X)
It turns out that these morphisms of topoi have an inverse image functor f−1

big which
is very easy to describe. Namely, we have

(f−1
bigG)(U/X) = G(U/Y )

where the structure morphism of U/Y is the composition of the structure morphism
U → X with f , see Topologies, Lemmas 34.3.16, 34.4.16, 34.5.10, 34.6.10, and
34.7.12.
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59.38. Functoriality and sheaves of modules

04I4 In this section we are going to reformulate some of the material explained in Descent,
Sections 35.8, 35.9, and 35.10 in the setting of étale topologies. Let f : X → Y be
a morphism of schemes. We have seen above, see Sections 59.34, 59.35, and 59.36
that this induces a morphism fsmall of small étale sites. In Descent, Remark 35.8.4
we have seen that f also induces a natural map

f ♯small : OYétale −→ fsmall,∗OXétale

of sheaves of rings on Yétale such that (fsmall, f ♯small) is a morphism of ringed sites.
See Modules on Sites, Definition 18.6.1 for the definition of a morphism of ringed
sites. Let us just recall here that f ♯small is defined by the compatible system of
maps

pr♯V : O(V ) −→ O(X ×Y V )
for V varying over the objects of Yétale.

It is clear that this construction is compatible with compositions of morphisms of
schemes. More precisely, if f : X → Y and g : Y → Z are morphisms of schemes,
then we have

(gsmall, g♯small) ◦ (fsmall, f ♯small) = ((g ◦ f)small, (g ◦ f)♯small)

as morphisms of ringed topoi. Moreover, by Modules on Sites, Definition 18.13.1
we see that given a morphism f : X → Y of schemes we get well defined pullback
and direct image functors

f∗
small : Mod(OYétale) −→ Mod(OXétale),

fsmall,∗ : Mod(OXétale) −→ Mod(OYétale)

which are adjoint in the usual way. If g : Y → Z is another morphism of schemes,
then we have (g ◦ f)∗

small = f∗
small ◦ g∗

small and (g ◦ f)small,∗ = gsmall,∗ ◦ fsmall,∗
because of what we said about compositions.

There is quite a bit of difference between the category of all OX modules on X and
the category between all OXétale -modules on Xétale. But the results of Descent,
Sections 35.8, 35.9, and 35.10 tell us that there is not much difference between
considering quasi-coherent modules on S and quasi-coherent modules on Sétale.
(We have already seen this in Theorem 59.17.4 for example.) In particular, if
f : X → Y is any morphism of schemes, then the pullback functors f∗

small and f∗

match for quasi-coherent sheaves, see Descent, Proposition 35.9.4. Moreover, the
same is true for pushforward provided f is quasi-compact and quasi-separated, see
Descent, Lemma 35.9.5.

A few words about functoriality of the structure sheaf on big sites. Let f : X → Y
be a morphism of schemes. Choose any of the topologies τ ∈ {Zariski, étale,
smooth, syntomic, fppf}. Then the morphism fbig : (Sch/X)τ → (Sch/Y )τ be-
comes a morphism of ringed sites by a map

f ♯big : OY −→ fbig,∗OX

see Descent, Remark 35.8.4. In fact it is given by the same construction as in the
case of small sites explained above.
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59.39. Comparing topologies

09XL In this section we start studying what happens when you compare sheaves with
respect to different topologies.

Lemma 59.39.1.09XM Let S be a scheme. Let F be a sheaf of sets on Sétale. Let
s, t ∈ F(S). Then there exists an open W ⊂ S characterized by the following
property: A morphism f : T → S factors through W if and only if s|T = t|T
(restriction is pullback by fsmall).

Proof. Consider the presheaf which assigns to U ∈ Ob(Sétale) the empty set if
s|U ̸= t|U and a singleton else. It is clear that this is a subsheaf of the final object
of Sh(Sétale). By Lemma 59.31.1 we find an open W ⊂ S representing this presheaf.
For a geometric point x of S we see that x ∈W if and only if the stalks of s and t
at x agree. By the description of stalks of pullbacks in Lemma 59.36.2 we see that
W has the desired property. □

Lemma 59.39.2.09XN Let S be a scheme. Let τ ∈ {Zariski, étale}. Consider the
morphism

πS : (Sch/S)τ −→ Sτ

of Topologies, Lemma 34.3.14 or 34.4.14. Let F be a sheaf on Sτ . Then π−1
S F is

given by the rule
(π−1
S F)(T ) = Γ(Tτ , f−1

smallF)
where f : T → S. Moreover, π−1

S F satisfies the sheaf condition with respect to
fpqc coverings.

Proof. Observe that we have a morphism if : Sh(Tτ ) → Sh(Sch/S)τ ) such that
πS ◦ if = fsmall as morphisms Tτ → Sτ , see Topologies, Lemmas 34.3.13, 34.3.17,
34.4.13, and 34.4.17. Since pullback is transitive we see that i−1

f π−1
S F = f−1

smallF
as desired.
Let {gi : Ti → T}i∈I be an fpqc covering. The final statement means the following:
Given a sheaf G on Tτ and given sections si ∈ Γ(Ti, g−1

i,smallG) whose pullbacks to
Ti ×T Tj agree, there is a unique section s of G over T whose pullback to Ti agrees
with si.
Let V → T be an object of Tτ and let t ∈ G(V ). For every i there is a largest open
Wi ⊂ Ti ×T V such that the pullbacks of si and t agree as sections of the pullback
of G to Wi ⊂ Ti×T V , see Lemma 59.39.1. Because si and sj agree over Ti×T Tj we
find that Wi and Wj pullback to the same open over Ti ×T Tj ×T V . By Descent,
Lemma 35.13.6 we find an open W ⊂ V whose inverse image to Ti ×T V recovers
Wi.
By construction of g−1

i,smallG there exists a τ -covering {Tij → Ti}j∈Ji , for each
j an open immersion or étale morphism Vij → T , a section tij ∈ G(Vij), and
commutative diagrams

Tij //

��

Vij

��
Ti // T

such that si|Tij is the pullback of tij . In other words, after replacing the covering
{Ti → T} by {Tij → T} we may assume there are factorizations Ti → Vi → T with
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Vi ∈ Ob(Tτ ) and sections ti ∈ G(Vi) pulling back to si over Ti. By the result of
the previous paragraph we find opens Wi ⊂ Vi such that ti|Wi “agrees with” every
sj over Tj ×T Wi. Note that Ti → Vi factors through Wi. Hence {Wi → T} is a
τ -covering and the lemma is proven. □

Lemma 59.39.3.0A3H Let S be a scheme. Let f : T → S be a morphism such that
(1) f is flat and quasi-compact, and
(2) the geometric fibres of f are connected.

Let F be a sheaf on Sétale. Then Γ(S,F) = Γ(T, f−1
smallF).

Proof. There is a canonical map Γ(S,F) → Γ(T, f−1
smallF). Since f is surjective

(because its fibres are connected) we see that this map is injective.

To show that the map is surjective, let α ∈ Γ(T, f−1
smallF). Since {T → S} is an

fpqc covering we can use Lemma 59.39.2 to see that suffices to prove that α pulls
back to the same section over T ×S T by the two projections. Let s → S be a
geometric point. It suffices to show the agreement holds over (T ×S T )s as every
geometric point of T ×S T is contained in one of these geometric fibres. In other
words, we are trying to show that α|Ts pulls back to the same section over

(T ×S T )s = Ts ×s Ts
by the two projections to Ts. However, since F|Ts is the pullback of F|s it is a
constant sheaf with value Fs. Since Ts is connected by assumption, any section of
a constant sheaf is constant. Hence α|Ts corresponds to an element of Fs. Thus
the two pullbacks to (T ×S T )s both correspond to this same element and we
conclude. □

Here is a version of Lemma 59.39.3 where we do not assume that the morphism is
flat.

Lemma 59.39.4.0EZK Let S be a scheme. Let f : X → S be a morphism such that
(1) f is submersive, and
(2) the geometric fibres of f are connected.

Let F be a sheaf on Sétale. Then Γ(S,F) = Γ(X, f−1
smallF).

Proof. There is a canonical map Γ(S,F) → Γ(X, f−1
smallF). Since f is surjective

(because its fibres are connected) we see that this map is injective.

To show that the map is surjective, let τ ∈ Γ(X, f−1
smallF). It suffices to find an étale

covering {Ui → S} and sections σi ∈ F(Ui) such that σi pulls back to τ |X×SUi .
Namely, the injectivity shown above guarantees that σi and σj restrict to the same
section of F over Ui ×S Uj . Thus we obtain a unique section σ ∈ F(S) which
restricts to σi over Ui. Then the pullback of σ to X is τ because this is true locally.
Let x be a geometric point of X with image s in S. Consider the image of τ in the
stalk

(f−1
smallF)x = Fs

See Lemma 59.36.2. We can find an étale neighbourhood U → S of s and a section
σ ∈ F(U) mapping to this image in the stalk. Thus after replacing S by U and
X by X ×S U we may assume there exits a section σ of F over S whose image in
(f−1
smallF)x is the same as τ .
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By Lemma 59.39.1 there exists a maximal open W ⊂ X such that f−1
smallσ and τ

agree over W and the formation of W commutes with further pullback. Observe
that the pullback of F to the geometric fibre Xs is the pullback of Fs viewed as
a sheaf on s by Xs → s. Hence we see that τ and σ give sections of the constant
sheaf with value Fs on Xs which agree in one point. Since Xs is connected by
assumption, we conclude that W contains Xs. The same argument for different
geometric fibres shows that W contains every fibre it meets. Since f is submersive,
we conclude that W is the inverse image of an open neighbourhood of s in S. This
finishes the proof. □

Lemma 59.39.5.0A3I Let K/k be an extension of fields with k separably algebraically
closed. Let S be a scheme over k. Denote p : SK = S ×Spec(k) Spec(K) → S the
projection. Let F be a sheaf on Sétale. Then Γ(S,F) = Γ(SK , p−1

smallF).

Proof. Follows from Lemma 59.39.3. Namely, it is clear that p is flat and quasi-
compact as the base change of Spec(K) → Spec(k). On the other hand, if s :
Spec(L) → S is a geometric point, then the fibre of p over s is the spectrum of
K ⊗k L which is irreducible hence connected by Algebra, Lemma 10.47.2. □

59.40. Recovering morphisms

04JH In this section we prove that the rule which associates to a scheme its locally ringed
small étale topos is fully faithful in a suitable sense, see Theorem 59.40.5.

Lemma 59.40.1.04I5 Let f : X → Y be a morphism of schemes. The morphism of
ringed sites (fsmall, f ♯small) associated to f is a morphism of locally ringed sites, see
Modules on Sites, Definition 18.40.9.

Proof. Note that the assertion makes sense since we have seen that (Xétale,OXétale)
and (Yétale,OYétale) are locally ringed sites, see Lemma 59.33.5. Moreover, we
know that Xétale has enough points, see Theorem 59.29.10 and Remarks 59.29.11.
Hence it suffices to prove that (fsmall, f ♯small) satisfies condition (3) of Modules on
Sites, Lemma 18.40.8. To see this take a point p of Xétale. By Lemma 59.29.12 p
corresponds to a geometric point x of X. By Lemma 59.36.2 the point q = fsmall◦p
corresponds to the geometric point y = f ◦ x of Y . Hence the assertion we have to
prove is that the induced map of stalks

(OY )y −→ (OX)x

is a local ring map. Suppose that a ∈ (OY )y is an element of the left hand side
which maps to an element of the maximal ideal of the right hand side. Suppose
that a is the equivalence class of a triple (V, v, a) with V → Y étale, v : x → V

over Y , and a ∈ O(V ). It maps to the equivalence class of (X ×Y V, x× v,pr♯V (a))
in the local ring (OX)x. But it is clear that being in the maximal ideal means that
pulling back pr♯V (a) to an element of κ(x) gives zero. Hence also pulling back a to
κ(x) is zero. Which means that a lies in the maximal ideal of (OY )y. □

Lemma 59.40.2.04IJ Let X, Y be schemes. Let f : X → Y be a morphism of schemes.
Let t be a 2-morphism from (fsmall, f ♯small) to itself, see Modules on Sites, Definition
18.8.1. Then t = id.
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Proof. This means that t : f−1
small → f−1

small is a transformation of functors such
that the diagram

f−1
smallOY

f♯
small $$

f−1
smallOYt

oo

f♯
smallzz

OX

is commutative. Suppose V → Y is étale with V affine. By Morphisms, Lemma
29.39.2 we may choose an immersion i : V → An

Y over Y . In terms of sheaves this
means that i induces an injection hi : hV →

∏
j=1,...,nOY of sheaves. The base

change i′ of i to X is an immersion (Schemes, Lemma 26.18.2). Hence i′ : X×Y V →
An
X is an immersion, which in turn means that hi′ : hX×Y V →

∏
j=1,...,nOX is an

injection of sheaves. Via the identification f−1
smallhV = hX×Y V of Lemma 59.36.2

the map hi′ is equal to

f−1
smallhV

f−1hi // ∏
j=1,...,n f

−1
smallOY

∏
f♯

// ∏
j=1,...,nOX

(verification omitted). This means that the map t : f−1
smallhV → f−1

smallhV fits into
the commutative diagram

f−1
smallhV

f−1hi //

t

��

∏
j=1,...,n f

−1
smallOY

∏
f♯

//∏
t

��

∏
j=1,...,nOX

id
��

f−1
smallhV

f−1hi // ∏
j=1,...,n f

−1
smallOY

∏
f♯

// ∏
j=1,...,nOX

The commutativity of the right square holds by our assumption on t explained
above. Since the composition of the horizontal arrows is injective by the discussion
above we conclude that the left vertical arrow is the identity map as well. Any
sheaf of sets on Yétale admits a surjection from a (huge) coproduct of sheaves of
the form hV with V affine (combine Topologies, Lemma 34.4.12 with Sites, Lemma
7.12.5). Thus we conclude that t : f−1

small → f−1
small is the identity transformation as

desired. □

Lemma 59.40.3.04LW Let X, Y be schemes. Any two morphisms a, b : X → Y of
schemes for which there exists a 2-isomorphism (asmall, a♯small) ∼= (bsmall, b♯small) in
the 2-category of ringed topoi are equal.

Proof. Let us argue this carefuly since it is a bit confusing. Let t : a−1
small → b−1

small

be the 2-isomorphism. Consider any open V ⊂ Y . Note that hV is a subsheaf
of the final sheaf ∗. Thus both a−1

smallhV = ha−1(V ) and b−1
smallhV = hb−1(V ) are

subsheaves of the final sheaf. Thus the isomorphism

t : a−1
smallhV = ha−1(V ) → b−1

smallhV = hb−1(V )

has to be the identity, and a−1(V ) = b−1(V ). It follows that a and b are equal on
underlying topological spaces. Next, take a section f ∈ OY (V ). This determines
and is determined by a map of sheaves of sets f : hV → OY . Pull this back and
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apply t to get a commutative diagram

hb−1(V ) b−1
smallhV

b−1
small

(f)
��

a−1
smallhV

a−1
small

(f)
��

t
oo ha−1(V )

b−1
smallOY

b♯ $$

a−1
smallOYt

oo

a♯zz
OX

where the triangle is commutative by definition of a 2-isomorphism in Modules on
Sites, Section 18.8. Above we have seen that the composition of the top horizontal
arrows comes from the identity a−1(V ) = b−1(V ). Thus the commutativity of the
diagram tells us that a♯small(f) = b♯small(f) in OX(a−1(V )) = OX(b−1(V )). Since
this holds for every open V and every f ∈ OY (V ) we conclude that a = b as
morphisms of schemes. □

Lemma 59.40.4.04I6 Let X, Y be affine schemes. Let

(g, g#) : (Sh(Xétale),OX) −→ (Sh(Yétale),OY )
be a morphism of locally ringed topoi. Then there exists a unique morphism of
schemes f : X → Y such that (g, g#) is 2-isomorphic to (fsmall, f ♯small), see Modules
on Sites, Definition 18.8.1.
Proof. In this proof we write OX for the structure sheaf of the small étale site
Xétale, and similarly for OY . Say Y = Spec(B) and X = Spec(A). Since B =
Γ(Yétale,OY ), A = Γ(Xétale,OX) we see that g♯ induces a ring map φ : B → A.
Let f = Spec(φ) : X → Y be the corresponding morphism of affine schemes. We
will show this f does the job.
Let V → Y be an affine scheme étale over Y . Thus we may write V = Spec(C)
with C an étale B-algebra. We can write

C = B[x1, . . . , xn]/(P1, . . . , Pn)
with Pi polynomials such that ∆ = det(∂Pi/∂xj) is invertible in C, see for example
Algebra, Lemma 10.143.2. If T is a scheme over Y , then a T -valued point of V
is given by n sections of Γ(T,OT ) which satisfy the polynomial equations P1 =
0, . . . , Pn = 0. In other words, the sheaf hV on Yétale is the equalizer of the two
maps ∏

i=1,...,nOY
a //

b
//
∏
j=1,...,nOY

where b(h1, . . . , hn) = 0 and a(h1, . . . , hn) = (P1(h1, . . . , hn), . . . , Pn(h1, . . . , hn)).
Since g−1 is exact we conclude that the top row of the following solid commutative
diagram is an equalizer diagram as well:

g−1hV //

��

∏
i=1,...,n g

−1OY
g−1a //

g−1b

//∏
g♯

��

∏
j=1,...,n g

−1OY∏
g♯

��
hX×Y V

// ∏
i=1,...,nOX

a′
//

b′
//
∏
j=1,...,nOX

https://stacks.math.columbia.edu/tag/04I6
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Here b′ is the zero map and a′ is the map defined by the images P ′
i = φ(Pi) ∈

A[x1, . . . , xn] via the same rule a′(h1, . . . , hn) = (P ′
1(h1, . . . , hn), . . . , P ′

n(h1, . . . , hn)).
that a was defined by. The commutativity of the diagram follows from the fact that
φ = g♯ on global sections. The lower row is an equalizer diagram also, by exactly
the same arguments as before since X ×Y V is the affine scheme Spec(A ⊗B C)
and A ⊗B C = A[x1, . . . , xn]/(P ′

1, . . . , P
′
n). Thus we obtain a unique dotted arrow

g−1hV → hX×Y V fitting into the diagram
We claim that the map of sheaves g−1hV → hX×Y V is an isomorphism. Since the
small étale site of X has enough points (Theorem 59.29.10) it suffices to prove this
on stalks. Hence let x be a geometric point of X, and denote p the associate point
of the small étale topos of X. Set q = g ◦ p. This is a point of the small étale topos
of Y . By Lemma 59.29.12 we see that q corresponds to a geometric point y of Y .
Consider the map of stalks

(g♯)p : (OY )y = OY,q = (g−1OY )p −→ OX,p = (OX)x
Since (g, g♯) is a morphism of locally ringed topoi (g♯)p is a local ring homomor-
phism of strictly henselian local rings. Applying localization to the big commuta-
tive diagram above and Algebra, Lemma 10.153.12 we conclude that (g−1hV )p →
(hX×Y V )p is an isomorphism as desired.
We claim that the isomorphisms g−1hV → hX×Y V are functorial. Namely, suppose
that V1 → V2 is a morphism of affine schemes étale over Y . Write Vi = Spec(Ci)
with

Ci = B[xi,1, . . . , xi,ni ]/(Pi,1, . . . , Pi,ni)
The morphism V1 → V2 is given by a B-algebra map C2 → C1 which in turn is
given by some polynomials Qj ∈ B[x1,1, . . . , x1,n1 ] for j = 1, . . . , n2. Then it is an
easy matter to show that the diagram of sheaves

hV1

��

// ∏
i=1,...,n1

OY

Q1,...,Qn2

��
hV2

// ∏
i=1,...,n2

OY

is commutative, and pulling back toXétale we obtain the solid commutative diagram

g−1hV1

��

++

// ∏
i=1,...,n1

g−1OY

g♯

��

Q1,...,Qn2

++
g−1hV2

��

// ∏
i=1,...,n2

g−1OY

g♯

��

hX×Y V1
//

++

∏
i=1,...,n1

OX
Q′

1,...,Q
′
n2

++
hX×Y V2

// ∏
i=1,...,n2

OX

where Q′
j ∈ A[x1,1, . . . , x1,n1 ] is the image of Qj via φ. Since the dotted arrows

exist, make the two squares commute, and the horizontal arrows are injective we
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see that the whole diagram commutes. This proves functoriality (and also that the
construction of g−1hV → hX×Y V is independent of the choice of the presentation,
although we strictly speaking do not need to show this).
At this point we are able to show that fsmall,∗ ∼= g∗. Namely, let F be a sheaf on
Xétale. For every V ∈ Ob(Xétale) affine we have

(g∗F)(V ) = MorSh(Yétale)(hV , g∗F)
= MorSh(Xétale)(g−1hV ,F)
= MorSh(Xétale)(hX×Y V ,F)
= F(X ×Y V )
= fsmall,∗F(V )

where in the third equality we use the isomorphism g−1hV ∼= hX×Y V constructed
above. These isomorphisms are clearly functorial in F and functorial in V as
the isomorphisms g−1hV ∼= hX×Y V are functorial. Now any sheaf on Yétale is
determined by the restriction to the subcategory of affine schemes (Topologies,
Lemma 34.4.12), and hence we obtain an isomorphism of functors fsmall,∗ ∼= g∗ as
desired.
Finally, we have to check that, via the isomorphism fsmall,∗ ∼= g∗ above, the maps
f ♯small and g♯ agree. By construction this is already the case for the global sections of
OY , i.e., for the elements of B. We only need to check the result on sections over an
affine V étale over Y (by Topologies, Lemma 34.4.12 again). Writing V = Spec(C),
C = B[xi]/(Pj) as before it suffices to check that the coordinate functions xi are
mapped to the same sections of OX over X ×Y V . And this is exactly what it
means that the diagram

g−1hV //

��

∏
i=1,...,n g

−1OY∏
g♯

��
hX×Y V

// ∏
i=1,...,nOX

commutes. Thus the lemma is proved. □

Here is a version for general schemes.

Theorem 59.40.5.04I7 Let X, Y be schemes. Let

(g, g#) : (Sh(Xétale),OX) −→ (Sh(Yétale),OY )
be a morphism of locally ringed topoi. Then there exists a unique morphism of
schemes f : X → Y such that (g, g#) is isomorphic to (fsmall, f ♯small). In other
words, the construction

Sch −→ Locally ringed topoi, X −→ (Xétale,OX)
is fully faithful (morphisms up to 2-isomorphisms on the right hand side).

Proof. You can prove this theorem by carefuly adjusting the arguments of the proof
of Lemma 59.40.4 to the global setting. However, we want to indicate how we can
glue the result of that lemma to get a global morphism due to the rigidity provided
by the result of Lemma 59.40.2. Unfortunately, this is a bit messy.

https://stacks.math.columbia.edu/tag/04I7
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Let us prove existence when Y is affine. In this case choose an affine open covering
X =

⋃
Ui. For each i the inclusion morphism ji : Ui → X induces a morphism

of locally ringed topoi (ji,small, j♯i,small) : (Sh(Ui,étale),OUi)→ (Sh(Xétale),OX) by
Lemma 59.40.1. We can compose this with (g, g♯) to obtain a morphism of locally
ringed topoi

(g, g♯) ◦ (ji,small, j♯i,small) : (Sh(Ui,étale),OUi)→ (Sh(Yétale),OY )
see Modules on Sites, Lemma 18.40.10. By Lemma 59.40.4 there exists a unique
morphism of schemes fi : Ui → Y and a 2-isomorphism

ti : (fi,small, f ♯i,small) −→ (g, g♯) ◦ (ji,small, j♯i,small).
Set Ui,i′ = Ui ∩ Ui′ , and denote ji,i′ : Ui,i′ → Ui the inclusion morphism. Since we
have ji ◦ ji,i′ = ji′ ◦ ji′,i we see that

(g, g♯) ◦ (ji,small, j♯i,small) ◦ (ji,i′,small, j♯i,i′,small) =

(g, g♯) ◦ (ji′,small, j♯i′,small) ◦ (ji′,i,small, j♯i′,i,small)

Hence by uniqueness (see Lemma 59.40.3) we conclude that fi ◦ ji,i′ = fi′ ◦ ji′,i, in
other words the morphisms of schemes fi = f ◦ ji are the restrictions of a global
morphism of schemes f : X → Y . Consider the diagram of 2-isomorphisms (where
we drop the components ♯ to ease the notation)

g ◦ ji,small ◦ ji,i′,small
ti⋆idj

i,i′,small// fsmall ◦ ji,small ◦ ji,i′,small

g ◦ ji′,small ◦ ji′,i,small
ti′⋆idj

i′,i,small// fsmall ◦ ji′,small ◦ ji′,i,small

The notation ⋆ indicates horizontal composition, see Categories, Definition 4.29.1
in general and Sites, Section 7.36 for our particular case. By the result of Lemma
59.40.2 this diagram commutes. Hence for any sheaf G on Yétale the isomorphisms
ti : f−1

smallG|Ui → g−1G|Ui agree over Ui,i′ and we obtain a global isomorphism
t : f−1

smallG → g−1G. It is clear that this isomorphism is functorial in G and is
compatible with the maps f ♯small and g♯ (because it is compatible with these maps
locally). This proves the theorem in case Y is affine.
In the general case, let V ⊂ Y be an affine open. Then hV is a subsheaf of the final
sheaf ∗ on Yétale. As g is exact we see that g−1hV is a subsheaf of the final sheaf on
Xétale. Hence by Lemma 59.31.1 there exists an open subscheme W ⊂ X such that
g−1hV = hW . By Modules on Sites, Lemma 18.40.12 there exists a commutative
diagram of morphisms of locally ringed topoi

(Sh(Wétale),OW ) //

g′

��

(Sh(Xétale),OX)

g

��
(Sh(Vétale),OV ) // (Sh(Yétale),OY )

where the horizontal arrows are the localization morphisms (induced by the inclu-
sion morphisms V → Y and W → X) and where g′ is induced from g. By the
result of the preceding paragraph we obtain a morphism of schemes f ′ : W → V
and a 2-isomorphism t : (f ′

small, (f ′
small)♯) → (g′, (g′)♯). Exactly as before these
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morphisms f ′ (for varying affine opens V ⊂ Y ) agree on overlaps by uniqueness,
so we get a morphism f : X → Y . Moreover, the 2-isomorphisms t are compat-
ible on overlaps by Lemma 59.40.2 again and we obtain a global 2-isomorphism
(fsmall, (fsmall)♯)→ (g, (g)♯). as desired. Some details omitted. □

59.41. Push and pull

04C6 Let f : X → Y be a morphism of schemes. Here is a list of conditions we will
consider in the following:

(A) For every étale morphism U → X and u ∈ U there exist an étale morphism
V → Y and a disjoint union decomposition X ×Y V = W ⨿W ′ and a
morphism h : W → U over X with u in the image of h.

(B) For every V → Y étale, and every étale covering {Ui → X ×Y V } there
exists an étale covering {Vj → V } such that for each j we have X×Y Vj =∐
Wij where Wij → X ×Y V factors through Ui → X ×Y V for some i.

(C) For every U → X étale, there exists a V → Y étale and a surjective
morphism X ×Y V → U over X.

It turns out that each of these properties has meaning in terms of the behaviour of
the functor fsmall,∗. We will work this out in the next few sections.

59.42. Property (A)

04DJ Please see Section 59.41 for the definition of property (A).

Lemma 59.42.1.04DK Let f : X → Y be a morphism of schemes. Assume (A).
(1) fsmall,∗ : Ab(Xétale)→ Ab(Yétale) reflects injections and surjections,
(2) f−1

smallfsmall,∗F → F is surjective for any abelian sheaf F on Xétale,
(3) fsmall,∗ : Ab(Xétale)→ Ab(Yétale) is faithful.

Proof. Let F be an abelian sheaf on Xétale. Let U be an object of Xétale. By
assumption we can find a covering {Wi → U} in Xétale such that each Wi is an
open and closed subscheme of X ×Y Vi for some object Vi of Yétale. The sheaf
condition shows that

F(U) ⊂
∏
F(Wi)

and that F(Wi) is a direct summand of F(X ×Y Vi) = fsmall,∗F(Vi). Hence it is
clear that fsmall,∗ reflects injections.
Next, suppose that a : G → F is a map of abelian sheaves such that fsmall,∗a is
surjective. Let s ∈ F(U) with U as above. With Wi, Vi as above we see that
it suffices to show that s|Wi

is étale locally the image of a section of G under
a. Since F(Wi) is a direct summand of F(X ×Y Vi) it suffices to show that for
any V ∈ Ob(Yétale) any element s ∈ F(X ×Y V ) is étale locally on X ×Y V the
image of a section of G under a. Since F(X ×Y V ) = fsmall,∗F(V ) we see by
assumption that there exists a covering {Vj → V } such that s is the image of
sj ∈ fsmall,∗G(Vj) = G(X ×Y Vj). This proves fsmall,∗ reflects surjections.
Parts (2), (3) follow formally from part (1), see Modules on Sites, Lemma 18.15.1.

□

Lemma 59.42.2.04DL Let f : X → Y be a separated locally quasi-finite morphism of
schemes. Then property (A) above holds.

https://stacks.math.columbia.edu/tag/04DK
https://stacks.math.columbia.edu/tag/04DL


59.42. PROPERTY (A) 4768

Proof. Let U → X be an étale morphism and u ∈ U . The geometric statement (A)
reduces directly to the case where U and Y are affine schemes. Denote x ∈ X and
y ∈ Y the images of u. Since X → Y is locally quasi-finite, and U → X is locally
quasi-finite (see Morphisms, Lemma 29.36.6) we see that U → Y is locally quasi-
finite (see Morphisms, Lemma 29.20.12). Moreover both X → Y and U → Y are
separated. Thus More on Morphisms, Lemma 37.41.5 applies to both morphisms.
This means we may pick an étale neighbourhood (V, v)→ (Y, y) such that

X ×Y V = W ⨿R, U ×Y V = W ′ ⨿R′

and points w ∈W , w′ ∈W ′ such that
(1) W , R are open and closed in X ×Y V ,
(2) W ′, R′ are open and closed in U ×Y V ,
(3) W → V and W ′ → V are finite,
(4) w, w′ map to v,
(5) κ(v) ⊂ κ(w) and κ(v) ⊂ κ(w′) are purely inseparable, and
(6) no other point of W or W ′ maps to v.

Here is a commutative diagram

U

��

U ×Y Voo

��

W ′ ⨿R′

��

oo

X

��

X ×Y Voo

��

W ⨿Roo

Y Voo

After shrinking V we may assume that W ′ maps into W : just remove the image the
inverse image of R in W ′; this is a closed set (as W ′ → V is finite) not containing
v. Then W ′ → W is finite because both W → V and W ′ → V are finite. Hence
W ′ → W is finite étale, and there is exactly one point in the fibre over w with
κ(w) = κ(w′). Hence W ′ → W is an isomorphism in an open neighbourhood W ◦

of w, see Étale Morphisms, Lemma 41.14.2. Since W → V is finite the image of
W \W ◦ is a closed subset T of V not containing v. Thus after replacing V by
V \ T we may assume that W ′ → W is an isomorphism. Now the decomposition
X ×Y V = W ⨿R and the morphism W → U are as desired and we win. □

Lemma 59.42.3.04DM Let f : X → Y be an integral morphism of schemes. Then
property (A) holds.

Proof. Let U → X be étale, and let u ∈ U be a point. We have to find V → Y étale,
a disjoint union decomposition X ×Y V = W ⨿W ′ and an X-morphism W → U
with u in the image. We may shrink U and Y and assume U and Y are affine. In
this case also X is affine, since an integral morphism is affine by definition. Write
Y = Spec(A), X = Spec(B) and U = Spec(C). Then A → B is an integral ring
map, and B → C is an étale ring map. By Algebra, Lemma 10.143.3 we can find a
finite A-subalgebra B′ ⊂ B and an étale ring map B′ → C ′ such that C = B⊗B′C ′.
Thus the question reduces to the étale morphism U ′ = Spec(C ′)→ X ′ = Spec(B′)
over the finite morphism X ′ → Y . In this case the result follows from Lemma
59.42.2. □

https://stacks.math.columbia.edu/tag/04DM
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Lemma 59.42.4.04C9 Let f : X → Y be a morphism of schemes. Denote fsmall :
Sh(Xétale) → Sh(Yétale) the associated morphism of small étale topoi. Assume at
least one of the following

(1) f is integral, or
(2) f is separated and locally quasi-finite.

Then the functor fsmall,∗ : Ab(Xétale)→ Ab(Yétale) has the following properties
(1) the map f−1

smallfsmall,∗F → F is always surjective,
(2) fsmall,∗ is faithful, and
(3) fsmall,∗ reflects injections and surjections.

Proof. Combine Lemmas 59.42.2, 59.42.3, and 59.42.1. □

59.43. Property (B)

04DN Please see Section 59.41 for the definition of property (B).

Lemma 59.43.1.04DO Let f : X → Y be a morphism of schemes. Assume (B) holds.
Then the functor fsmall,∗ : Sh(Xétale) → Sh(Yétale) transforms surjections into
surjections.

Proof. This follows from Sites, Lemma 7.41.2. □

Lemma 59.43.2.04DP Let f : X → Y be a morphism of schemes. Suppose
(1) V → Y is an étale morphism of schemes,
(2) {Ui → X ×Y V } is an étale covering, and
(3) v ∈ V is a point.

Assume that for any such data there exists an étale neighbourhood (V ′, v′)→ (V, v),
a disjoint union decomposition X ×Y V ′ =

∐
W ′
i , and morphisms W ′

i → Ui over
X ×Y V . Then property (B) holds.

Proof. Omitted. □

Lemma 59.43.3.04DQ Let f : X → Y be a finite morphism of schemes. Then property
(B) holds.

Proof. Consider V → Y étale, {Ui → X ×Y V } an étale covering, and v ∈ V . We
have to find a V ′ → V and decomposition and maps as in Lemma 59.43.2. We may
shrink V and Y , hence we may assume that V and Y are affine. Since X is finite
over Y , this also implies that X is affine. During the proof we may (finitely often)
replace (V, v) by an étale neighbourhood (V ′, v′) and correspondingly the covering
{Ui → X ×Y V } by {V ′ ×V Ui → X ×Y V ′}.
Since X ×Y V → V is finite there exist finitely many (pairwise distinct) points
x1, . . . , xn ∈ X ×Y V mapping to v. We may apply More on Morphisms, Lemma
37.41.5 to X ×Y V → V and the points x1, . . . , xn lying over v and find an étale
neighbourhood (V ′, v′)→ (V, v) such that

X ×Y V ′ = R ⨿
∐

Ta

with Ta → V ′ finite with exactly one point pa lying over v′ and moreover κ(v′) ⊂
κ(pa) purely inseparable, and such that R → V ′ has empty fibre over v′. Because
X → Y is finite, also R → V ′ is finite. Hence after shrinking V ′ we may assume
that R = ∅. Thus we may assume that X ×Y V = X1 ⨿ . . .⨿Xn with exactly one

https://stacks.math.columbia.edu/tag/04C9
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point xl ∈ Xl lying over v with moreover κ(v) ⊂ κ(xl) purely inseparable. Note
that this property is preserved under refinement of the étale neighbourhood (V, v).

For each l choose an il and a point ul ∈ Uil mapping to xl. Now we apply property
(A) for the finite morphism X ×Y V → V and the étale morphisms Uil → X ×Y V
and the points ul. This is permissible by Lemma 59.42.3 This gives produces an
étale neighbourhood (V ′, v′)→ (V, v) and decompositions

X ×Y V ′ = Wl ⨿Rl

and X-morphisms al : Wl → Uil whose image contains uil . Here is a picture:

Uil

��
Wl

22

// Wl ⨿Rl X ×Y V ′ //

��

X ×Y V //

��

X

��
V ′ // V // Y

After replacing (V, v) by (V ′, v′) we conclude that each xl is contained in an open
and closed neighbourhood Wl such that the inclusion morphism Wl → X ×Y V
factors through Ui → X ×Y V for some i. Replacing Wl by Wl ∩ Xl we see
that these open and closed sets are disjoint and moreover that {x1, . . . , xn} ⊂
W1 ∪ . . . ∪Wn. Since X ×Y V → V is finite we may shrink V and assume that
X ×Y V = W1 ⨿ . . .⨿Wn as desired. □

Lemma 59.43.4.04DR Let f : X → Y be an integral morphism of schemes. Then
property (B) holds.

Proof. Consider V → Y étale, {Ui → X ×Y V } an étale covering, and v ∈ V . We
have to find a V ′ → V and decomposition and maps as in Lemma 59.43.2. We
may shrink V and Y , hence we may assume that V and Y are affine. Since X is
integral over Y , this also implies that X and X ×Y V are affine. We may refine the
covering {Ui → X ×Y V }, and hence we may assume that {Ui → X ×Y V }i=1,...,n
is a standard étale covering. Write Y = Spec(A), X = Spec(B), V = Spec(C), and
Ui = Spec(Bi). Then A→ B is an integral ring map, and B ⊗A C → Bi are étale
ring maps. By Algebra, Lemma 10.143.3 we can find a finite A-subalgebra B′ ⊂ B
and an étale ring map B′ ⊗A C → B′

i for i = 1, . . . , n such that Bi = B ⊗B′ B′
i.

Thus the question reduces to the étale covering {Spec(B′
i) → X ′ ×Y V }i=1,...,n

with X ′ = Spec(B′) finite over Y . In this case the result follows from Lemma
59.43.3. □

Lemma 59.43.5.04C2 Let f : X → Y be a morphism of schemes. Assume f is integral
(for example finite). Then

(1) fsmall,∗ transforms surjections into surjections (on sheaves of sets and on
abelian sheaves),

(2) f−1
smallfsmall,∗F → F is surjective for any abelian sheaf F on Xétale,

(3) fsmall,∗ : Ab(Xétale) → Ab(Yétale) is faithful and reflects injections and
surjections, and

(4) fsmall,∗ : Ab(Xétale)→ Ab(Yétale) is exact.

https://stacks.math.columbia.edu/tag/04DR
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Proof. Parts (2), (3) we have seen in Lemma 59.42.4. Part (1) follows from Lemmas
59.43.4 and 59.43.1. Part (4) is a consequence of part (1), see Modules on Sites,
Lemma 18.15.2. □

59.44. Property (C)

04DS Please see Section 59.41 for the definition of property (C).

Lemma 59.44.1.04DT Let f : X → Y be a morphism of schemes. Assume (C) holds.
Then the functor fsmall,∗ : Sh(Xétale) → Sh(Yétale) reflects injections and surjec-
tions.

Proof. Follows from Sites, Lemma 7.41.4. We omit the verification that property
(C) implies that the functor Yétale → Xétale, V 7→ X×Y V satisfies the assumption
of Sites, Lemma 7.41.4. □

Remark 59.44.2.04DU Property (C) holds if f : X → Y is an open immersion. Namely,
if U ∈ Ob(Xétale), then we can view U also as an object of Yétale and U ×Y X = U .
Hence property (C) does not imply that fsmall,∗ is exact as this is not the case for
open immersions (in general).

Lemma 59.44.3.04DV Let f : X → Y be a morphism of schemes. Assume that for any
V → Y étale we have that

(1) X ×Y V → V has property (C), and
(2) X ×Y V → V is closed.

Then the functor Yétale → Xétale, V 7→ X ×Y V is almost cocontinuous, see Sites,
Definition 7.42.3.

Proof. Let V → Y be an object of Yétale and let {Ui → X×Y V }i∈I be a covering of
Xétale. By assumption (1) for each i we can find an étale morphism hi : Vi → V and
a surjective morphism X ×Y Vi → Ui over X ×Y V . Note that

⋃
hi(Vi) ⊂ V is an

open set containing the closed set Z = Im(X×Y V → V ). Let h0 : V0 = V \Z → V
be the open immersion. It is clear that {Vi → V }i∈I∪{0} is an étale covering
such that for each i ∈ I ∪ {0} we have either Vi ×Y X = ∅ (namely if i = 0), or
Vi ×Y X → V ×Y X factors through Ui → X ×Y V (if i ̸= 0). Hence the functor
Yétale → Xétale is almost cocontinuous. □

Lemma 59.44.4.04DW Let f : X → Y be an integral morphism of schemes which defines
a homeomorphism of X with a closed subset of Y . Then property (C) holds.

Proof. Let g : U → X be an étale morphism. We need to find an object V → Y
of Yétale and a surjective morphism X ×Y V → U over X. Suppose that for every
u ∈ U we can find an object Vu → Y of Yétale and a morphism hu : X ×Y Vu → U
over X with u ∈ Im(hu). Then we can take V =

∐
Vu and h =

∐
hu and we win.

Hence given a point u ∈ U we find a pair (Vu, hu) as above. To do this we may
shrink U and assume that U is affine. In this case g : U → X is locally quasi-finite.
Let g−1(g({u})) = {u, u2, . . . , un}. Since there are no specializations ui ⇝ u we
may replace U by an affine neighbourhood so that g−1(g({u})) = {u}.
The image g(U) ⊂ X is open, hence f(g(U)) is locally closed in Y . Choose an open
V ⊂ Y such that f(g(U)) = f(X) ∩ V . It follows that g factors through X ×Y V
and that the resulting {U → X ×Y V } is an étale covering. Since f has property
(B) , see Lemma 59.43.4, we see that there exists an étale covering {Vj → V } such

https://stacks.math.columbia.edu/tag/04DT
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that X ×Y Vj → X ×Y V factor through U . This implies that V ′ =
∐
Vj is étale

over Y and that there is a morphism h : X ×Y V ′ → U whose image surjects onto
g(U). Since u is the only point in its fibre it must be in the image of h and we
win. □

We urge the reader to think of the following lemma as a way station3 on the jour-
ney towards the ultimate truth regarding fsmall,∗ for integral universally injective
morphisms.

Lemma 59.44.5.04DX Let f : X → Y be a morphism of schemes. Assume that f is
universally injective and integral (for example a closed immersion). Then

(1) fsmall,∗ : Sh(Xétale)→ Sh(Yétale) reflects injections and surjections,
(2) fsmall,∗ : Sh(Xétale) → Sh(Yétale) commutes with pushouts and coequal-

izers (and more generally finite connected colimits),
(3) fsmall,∗ transforms surjections into surjections (on sheaves of sets and on

abelian sheaves),
(4) the map f−1

smallfsmall,∗F → F is surjective for any sheaf (of sets or of
abelian groups) F on Xétale,

(5) the functor fsmall,∗ is faithful (on sheaves of sets and on abelian sheaves),
(6) fsmall,∗ : Ab(Xétale)→ Ab(Yétale) is exact, and
(7) the functor Yétale → Xétale, V 7→ X ×Y V is almost cocontinuous.

Proof. By Lemmas 59.42.3, 59.43.4 and 59.44.4 we know that the morphism f has
properties (A), (B), and (C). Moreover, by Lemma 59.44.3 we know that the functor
Yétale → Xétale is almost cocontinuous. Now we have

(1) property (C) implies (1) by Lemma 59.44.1,
(2) almost continuous implies (2) by Sites, Lemma 7.42.6,
(3) property (B) implies (3) by Lemma 59.43.1.

Properties (4), (5), and (6) follow formally from the first three, see Sites, Lemma
7.41.1 and Modules on Sites, Lemma 18.15.2. Property (7) we saw above. □

59.45. Topological invariance of the small étale site

04DY In the following theorem we show that the small étale site is a topological invariant
in the following sense: If f : X → Y is a morphism of schemes which is a universal
homeomorphism, then Xétale

∼= Yétale as sites. This improves the result of Étale
Morphisms, Theorem 41.15.2. We first prove the result for morphisms and then we
state the result for categories.

Theorem 59.45.1.0BTY Let X and Y be two schemes over a base scheme S. Let S′ → S
be a universal homeomorphism. Denote X ′ (resp. Y ′) the base change to S′. If X
is étale over S, then the map

MorS(Y,X) −→ MorS′(Y ′, X ′)
is bijective.

Proof. After base changing via Y → S, we may assume that Y = S. Thus we may
and do assume both X and Y are étale over S. In other words, the theorem states
that the base change functor is a fully faithful functor from the category of schemes
étale over S to the category of schemes étale over S′.

3A way station is a place where people stop to eat and rest when they are on a long journey.
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Consider the forgetful functor

(59.45.1.1)0BTZ descent data (X ′, φ′) relative to S′/S
with X ′ étale over S′ −→ schemes X ′ étale over S′

We claim this functor is an equivalence. On the other hand, the functor

(59.45.1.2)0BU0 schemes X étale over S −→ descent data (X ′, φ′) relative to S′/S
with X ′ étale over S′

is fully faithful by Étale Morphisms, Lemma 41.20.3. Thus the claim implies the
theorem.
Proof of the claim. Recall that a universal homeomorphism is the same thing as an
integral, universally injective, surjective morphism, see Morphisms, Lemma 29.45.5.
In particular, the diagonal ∆ : S′ → S′×S S′ is a thickening by Morphisms, Lemma
29.10.2. Thus by Étale Morphisms, Theorem 41.15.1 we see that given X ′ → S′

étale there is a unique isomorphism
φ′ : X ′ ×S S′ → S′ ×S X ′

of schemes étale over S′ ×S S′ which pulls back under ∆ to id : X ′ → X ′ over
S′. Since S′ → S′ ×S S′ ×S S′ is a thickening as well (it is bijective and a closed
immersion) we conclude that (X ′, φ′) is a descent datum relative to S′/S. The
canonical nature of the construction of φ′ shows that it is compatible with mor-
phisms between schemes étale over S′. In other words, we obtain a quasi-inverse
X ′ 7→ (X ′, φ′) of the functor (59.45.1.1). This proves the claim and finishes the
proof of the theorem. □

Theorem 59.45.2.04DZ [DG67, IV Theorem
18.1.2]

Let f : X → Y be a morphism of schemes. Assume f is
integral, universally injective and surjective (i.e., f is a universal homeomorphism,
see Morphisms, Lemma 29.45.5). The functor

V 7−→ VX = X ×Y V
defines an equivalence of categories

{schemes V étale over Y } ↔ {schemes U étale over X}

We give two proofs. The first uses effectivity of descent for quasi-compact, sepa-
rated, étale morphisms relative to surjective integral morphisms. The second uses
the material on properties (A), (B), and (C) discussed earlier in the chapter.

First proof. By Theorem 59.45.1 we see that the functor is fully faithful. It remains
to show that the functor is essentially surjective. Let U → X be an étale morphism
of schemes.
Suppose that the result holds if U and Y are affine. In that case, we choose an
affine open covering U =

⋃
Ui such that each Ui maps into an affine open of

Y . By assumption (affine case) we can find étale morphisms Vi → Y such that
X ×Y Vi ∼= Ui as schemes over X. Let Vi,i′ ⊂ Vi be the open subscheme whose
underlying topological space corresponds to Ui∩Ui′ . Because we have isomorphisms

X ×Y Vi,i′ ∼= Ui ∩ Ui′ ∼= X ×Y Vi′,i
as schemes over X we see by fully faithfulness that we obtain isomorphisms θi,i′ :
Vi,i′ → Vi′,i of schemes over Y . We omit the verification that these isomorphisms
satisfy the cocycle condition of Schemes, Section 26.14. Applying Schemes, Lemma

https://stacks.math.columbia.edu/tag/04DZ
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26.14.2 we obtain a scheme V → Y by glueing the schemes Vi along the identifica-
tions θi,i′ . It is clear that V → Y is étale and X ×Y V ∼= U by construction.

Thus it suffices to show the lemma in case U and Y are affine. Recall that in the
proof of Theorem 59.45.1 we showed that U comes with a unique descent datum
(U,φ) relative to X/Y . By Étale Morphisms, Proposition 41.20.6 (which applies
because U → X is quasi-compact and separated as well as étale by our reduction
to the affine case) there exists an étale morphism V → Y such that X ×Y V ∼= U
and the proof is complete. □

Second proof. By Theorem 59.45.1 we see that the functor is fully faithful. It
remains to show that the functor is essentially surjective. Let U → X be an étale
morphism of schemes.

Suppose that the result holds if U and Y are affine. In that case, we choose an
affine open covering U =

⋃
Ui such that each Ui maps into an affine open of

Y . By assumption (affine case) we can find étale morphisms Vi → Y such that
X ×Y Vi ∼= Ui as schemes over X. Let Vi,i′ ⊂ Vi be the open subscheme whose
underlying topological space corresponds to Ui∩Ui′ . Because we have isomorphisms

X ×Y Vi,i′ ∼= Ui ∩ Ui′ ∼= X ×Y Vi′,i
as schemes over X we see by fully faithfulness that we obtain isomorphisms θi,i′ :
Vi,i′ → Vi′,i of schemes over Y . We omit the verification that these isomorphisms
satisfy the cocycle condition of Schemes, Section 26.14. Applying Schemes, Lemma
26.14.2 we obtain a scheme V → Y by glueing the schemes Vi along the identifica-
tions θi,i′ . It is clear that V → Y is étale and X ×Y V ∼= U by construction.

Thus it suffices to prove that the functor

(59.45.2.1)04E0 {affine schemes V étale over Y } ↔ {affine schemes U étale over X}

is essentially surjective when X and Y are affine.

Let U → X be an affine scheme étale over X. We have to find V → Y étale (and
affine) such that X×Y V is isomorphic to U over X. Note that an étale morphism of
affines has universally bounded fibres, see Morphisms, Lemmas 29.36.6 and 29.57.9.
Hence we can do induction on the integer n bounding the degree of the fibres of
U → X. See Morphisms, Lemma 29.57.8 for a description of this integer in the
case of an étale morphism. If n = 1, then U → X is an open immersion (see Étale
Morphisms, Theorem 41.14.1), and the result is clear. Assume n > 1.

By Lemma 59.44.4 there exists an étale morphism of schemes W → Y and a
surjective morphism WX → U over X. As U is quasi-compact we may replace W
by a disjoint union of finitely many affine opens of W , hence we may assume that
W is affine as well. Here is a diagram

U

��

U ×Y Woo

��

WX ⨿R

X

��

WX
oo

��
Y Woo
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The disjoint union decomposition arises because by construction the étale morphism
of affine schemes U ×Y W → WX has a section. OK, and now we see that the
morphism R→ X ×Y W is an étale morphism of affine schemes whose fibres have
degree universally bounded by n − 1. Hence by induction assumption there exists
a scheme V ′ →W étale such that R ∼= WX ×W V ′. Taking V ′′ = W ⨿V ′ we find a
scheme V ′′ étale over W whose base change to WX is isomorphic to U ×Y W over
X ×Y W .
At this point we can use descent to find V over Y whose base change to X is
isomorphic to U over X. Namely, by the fully faithfulness of the functor (59.45.2.1)
corresponding to the universal homeomorphism X ×Y (W ×Y W ) → (W ×Y W )
there exists a unique isomorphism φ : V ′′ ×Y W → W ×Y V ′′ whose base change
to X ×Y (W ×Y W ) is the canonical descent datum for U ×Y W over X ×Y W .
In particular φ satisfies the cocycle condition. Hence by Descent, Lemma 35.37.1
we see that φ is effective (recall that all schemes above are affine). Thus we obtain
V → Y and an isomorphism V ′′ ∼= W ×Y V such that the canonical descent datum
on W ×Y V/W/Y agrees with φ. Note that V → Y is étale, by Descent, Lemma
35.23.29. Moreover, there is an isomorphism VX ∼= U which comes from descending
the isomorphism
VX ×XWX = X×Y V ×Y W = (X×Y W )×W (W ×Y V ) ∼= WX ×W V ′′ ∼= U ×Y W
which we have by construction. Some details omitted. □

Remark 59.45.3.05YX In the situation of Theorem 59.45.2 it is also true that V 7→ VX
induces an equivalence between those étale morphisms V → Y with V affine and
those étale morphisms U → X with U affine. This follows for example from Limits,
Proposition 32.11.2.

Proposition 59.45.4 (Topological invariance of étale cohomology).03SI Let X0 → X be
a universal homeomorphism of schemes (for example the closed immersion defined
by a nilpotent sheaf of ideals). Then

(1) the étale sites Xétale and (X0)étale are isomorphic,
(2) the étale topoi Sh(Xétale) and Sh((X0)étale) are equivalent, and
(3) Hq

étale(X,F) = Hq
étale(X0,F|X0) for all q and for any abelian sheaf F on

Xétale.

Proof. The equivalence of categoriesXétale → (X0)étale is given by Theorem 59.45.2.
We omit the proof that under this equivalence the étale coverings correspond. Hence
(1) holds. Parts (2) and (3) follow formally from (1). □

59.46. Closed immersions and pushforward

04E1 Before stating and proving Proposition 59.46.4 in its correct generality we briefly
state and prove it for closed immersions. Namely, some of the preceding arguments
are quite a bit easier to follow in the case of a closed immersion and so we repeat
them here in their simplified form.
In the rest of this section i : Z → X is a closed immersion. The functor

Sch/X −→ Sch/Z, U 7−→ UZ = Z ×X U

will be denoted U 7→ UZ as indicated. Since being a closed immersion is preserved
under arbitrary base change the scheme UZ is a closed subscheme of U .

https://stacks.math.columbia.edu/tag/05YX
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Lemma 59.46.1.04FV Let i : Z → X be a closed immersion of schemes. Let U,U ′ be
schemes étale over X. Let h : UZ → U ′

Z be a morphism over Z. Then there exists
a diagram

U W
aoo b // U ′

such that aZ : WZ → UZ is an isomorphism and h = bZ ◦ (aZ)−1.

Proof. Consider the scheme M = U ×X U ′. The graph Γh ⊂ MZ of h is open.
This is true for example as Γh is the image of a section of the étale morphism
pr1,Z : MZ → UZ , see Étale Morphisms, Proposition 41.6.1. Hence there exists an
open subscheme W ⊂ M whose intersection with the closed subset MZ is Γh. Set
a = pr1|W and b = pr2|W . □

Lemma 59.46.2.04FW Let i : Z → X be a closed immersion of schemes. Let V → Z be an
étale morphism of schemes. There exist étale morphisms Ui → X and morphisms
Ui,Z → V such that {Ui,Z → V } is a Zariski covering of V .

Proof. Since we only have to find a Zariski covering of V consisting of schemes of the
form UZ with U étale over X, we may Zariski localize on X and V . Hence we may
assume X and V affine. In the affine case this is Algebra, Lemma 10.143.10. □

If x : Spec(k) → X is a geometric point of X, then either x factors (uniquely)
through the closed subscheme Z, or Zx = ∅. If x factors through Z we say that x is
a geometric point of Z (because it is) and we use the notation “x ∈ Z” to indicate
this.

Lemma 59.46.3.04FX Let i : Z → X be a closed immersion of schemes. Let G be a sheaf
of sets on Zétale. Let x be a geometric point of X. Then

(ismall,∗G)x =
{
∗ if x ̸∈ Z
Gx if x ∈ Z

where ∗ denotes a singleton set.

Proof. Note that ismall,∗G|Uétale = ∗ is the final object in the category of étale
sheaves on U , i.e., the sheaf which associates a singleton set to each scheme étale
over U . This explains the value of (ismall,∗G)x if x ̸∈ Z.
Next, suppose that x ∈ Z. Note that

(ismall,∗G)x = colim(U,u) G(UZ)
and on the other hand

Gx = colim(V,v) G(V ).
Let C1 = {(U, u)}opp be the opposite of the category of étale neighbourhoods of x in
X, and let C2 = {(V, v)}opp be the opposite of the category of étale neighbourhoods
of x in Z. The canonical map

Gx −→ (ismall,∗G)x
corresponds to the functor F : C1 → C2, F (U, u) = (UZ , x). Now Lemmas 59.46.2
and 59.46.1 imply that C1 is cofinal in C2, see Categories, Definition 4.17.1. Hence it
follows that the displayed arrow is an isomorphism, see Categories, Lemma 4.17.2.

□

Proposition 59.46.4.04CA Let i : Z → X be a closed immersion of schemes.

https://stacks.math.columbia.edu/tag/04FV
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(1) The functor

ismall,∗ : Sh(Zétale) −→ Sh(Xétale)

is fully faithful and its essential image is those sheaves of sets F on Xétale

whose restriction to X \ Z is isomorphic to ∗, and
(2) the functor

ismall,∗ : Ab(Zétale) −→ Ab(Xétale)

is fully faithful and its essential image is those abelian sheaves on Xétale

whose support is contained in Z.
In both cases i−1

small is a left inverse to the functor ismall,∗.

Proof. Let’s discuss the case of sheaves of sets. For any sheaf G on Z the morphism
i−1
smallismall,∗G → G is an isomorphism by Lemma 59.46.3 (and Theorem 59.29.10).

This implies formally that ismall,∗ is fully faithful, see Sites, Lemma 7.41.1. It is
clear that ismall,∗G|Uétale ∼= ∗ where U = X \ Z. Conversely, suppose that F is a
sheaf of sets on X such that F|Uétale ∼= ∗. Consider the adjunction mapping

F −→ ismall,∗i
−1
smallF

Combining Lemmas 59.46.3 and 59.36.2 we see that it is an isomorphism. This
finishes the proof of (1). The proof of (2) is identical. □

59.47. Integral universally injective morphisms

04FY Here is the general version of Proposition 59.46.4.

Proposition 59.47.1.04FZ Let f : X → Y be a morphism of schemes which is integral
and universally injective.

(1) The functor

fsmall,∗ : Sh(Xétale) −→ Sh(Yétale)

is fully faithful and its essential image is those sheaves of sets F on Yétale
whose restriction to Y \ f(X) is isomorphic to ∗, and

(2) the functor

fsmall,∗ : Ab(Xétale) −→ Ab(Yétale)

is fully faithful and its essential image is those abelian sheaves on Yétale
whose support is contained in f(X).

In both cases f−1
small is a left inverse to the functor fsmall,∗.

Proof. We may factor f as

X
h // Z

i // Y

where h is integral, universally injective and surjective and i : Z → Y is a closed
immersion. Apply Proposition 59.46.4 to i and apply Theorem 59.45.2 to h. □

https://stacks.math.columbia.edu/tag/04FZ
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59.48. Big sites and pushforward

04E2 In this section we prove some technical results on fbig,∗ for certain types of mor-
phisms of schemes.

Lemma 59.48.1.04C7 Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let f : X → Y

be a monomorphism of schemes. Then the canonical map f−1
big fbig,∗F → F is an

isomorphism for any sheaf F on (Sch/X)τ .

Proof. In this case the functor (Sch/X)τ → (Sch/Y )τ is continuous, cocontinuous
and fully faithful. Hence the result follows from Sites, Lemma 7.21.7. □

Remark 59.48.2.04C8 In the situation of Lemma 59.48.1 it is true that the canonical
map F → f−1

big fbig!F is an isomorphism for any sheaf of sets F on (Sch/X)τ . The
proof is the same. This also holds for sheaves of abelian groups. However, note
that the functor fbig! for sheaves of abelian groups is defined in Modules on Sites,
Section 18.16 and is in general different from fbig! on sheaves of sets. The result
for sheaves of abelian groups follows from Modules on Sites, Lemma 18.16.4.

Lemma 59.48.3.04E3 Let f : X → Y be a closed immersion of schemes. Let U → X be
a syntomic (resp. smooth, resp. étale) morphism. Then there exist syntomic (resp.
smooth, resp. étale) morphisms Vi → Y and morphisms Vi ×Y X → U such that
{Vi ×Y X → U} is a Zariski covering of U .

Proof. Let us prove the lemma when τ = syntomic. The question is local on
U . Thus we may assume that U is an affine scheme mapping into an affine of Y .
Hence we reduce to proving the following case: Y = Spec(A), X = Spec(A/I),
and U = Spec(B), where A/I → B be a syntomic ring map. By Algebra, Lemma
10.136.18 we can find elements gi ∈ B such that Bgi = Ai/IAi for certain syntomic
ring maps A→ Ai. This proves the lemma in the syntomic case. The proof of the
smooth case is the same except it uses Algebra, Lemma 10.137.20. In the étale case
use Algebra, Lemma 10.143.10. □

Lemma 59.48.4.04E4 Let f : X → Y be a closed immersion of schemes. Let {Ui → X}
be a syntomic (resp. smooth, resp. étale) covering. There exists a syntomic (resp.
smooth, resp. étale) covering {Vj → Y } such that for each j, either Vj ×Y X = ∅,
or the morphism Vj ×Y X → X factors through Ui for some i.

Proof. For each i we can choose syntomic (resp. smooth, resp. étale) morphisms
gij : Vij → Y and morphisms Vij×Y X → Ui over X, such that {Vij×Y X → Ui} are
Zariski coverings, see Lemma 59.48.3. This in particular implies that

⋃
ij gij(Vij)

contains the closed subset f(X). Hence the family of syntomic (resp. smooth, resp.
étale) maps gij together with the open immersion Y \ f(X)→ Y forms the desired
syntomic (resp. smooth, resp. étale) covering of Y . □

Lemma 59.48.5.04C3 Let f : X → Y be a closed immersion of schemes. Let τ ∈
{syntomic, smooth, étale}. The functor V 7→ X ×Y V defines an almost cocontin-
uous functor (see Sites, Definition 7.42.3) (Sch/Y )τ → (Sch/X)τ between big τ
sites.

Proof. We have to show the following: given a morphism V → Y and any syntomic
(resp. smooth, resp. étale) covering {Ui → X ×Y V }, there exists a smooth (resp.
smooth, resp. étale) covering {Vj → V } such that for each j, either X ×Y Vj is

https://stacks.math.columbia.edu/tag/04C7
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empty, or X ×Y Vj → Z ×Y V factors through one of the Ui. This follows on
applying Lemma 59.48.4 above to the closed immersion X ×Y V → V . □

Lemma 59.48.6.04C4 Let f : X → Y be a closed immersion of schemes. Let τ ∈
{syntomic, smooth, étale}.

(1) The pushforward fbig,∗ : Sh((Sch/X)τ ) → Sh((Sch/Y )τ ) commutes with
coequalizers and pushouts.

(2) The pushforward fbig,∗ : Ab((Sch/X)τ )→ Ab((Sch/Y )τ ) is exact.

Proof. This follows from Sites, Lemma 7.42.6, Modules on Sites, Lemma 18.15.3,
and Lemma 59.48.5 above. □

Remark 59.48.7.04C5 In Lemma 59.48.6 the case τ = fppf is missing. The reason is
that given a ring A, an ideal I and a faithfully flat, finitely presented ring map
A/I → B, there is no reason to think that one can find any flat finitely presented
ring map A→ B with B/IB ̸= 0 such that A/I → B/IB factors through B. Hence
the proof of Lemma 59.48.5 does not work for the fppf topology. In fact it is likely
false that fbig,∗ : Ab((Sch/X)fppf )→ Ab((Sch/Y )fppf ) is exact when f is a closed
immersion. If you know an example, please email stacks.project@gmail.com.

59.49. Exactness of big lower shriek

04CB This is just the following technical result. Note that the functor fbig! has nothing
whatsoever to do with cohomology with compact support in general.

Lemma 59.49.1.04CC Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let f : X → Y
be a morphism of schemes. Let

fbig : Sh((Sch/X)τ ) −→ Sh((Sch/Y )τ )
be the corresponding morphism of topoi as in Topologies, Lemma 34.3.16, 34.4.16,
34.5.10, 34.6.10, or 34.7.12.

(1) The functor f−1
big : Ab((Sch/Y )τ )→ Ab((Sch/X)τ ) has a left adjoint
fbig! : Ab((Sch/X)τ )→ Ab((Sch/Y )τ )

which is exact.
(2) The functor f∗

big : Mod((Sch/Y )τ ,O) → Mod((Sch/X)τ ,O) has a left
adjoint

fbig! : Mod((Sch/X)τ ,O)→ Mod((Sch/Y )τ ,O)
which is exact.

Moreover, the two functors fbig! agree on underlying sheaves of abelian groups.

Proof. Recall that fbig is the morphism of topoi associated to the continuous and
cocontinuous functor u : (Sch/X)τ → (Sch/Y )τ , U/X 7→ U/Y . Moreover, we have
f−1
bigO = O. Hence the existence of fbig! follows from Modules on Sites, Lemma

18.16.2, respectively Modules on Sites, Lemma 18.41.1. Note that if U is an object
of (Sch/X)τ then the functor u induces an equivalence of categories

u′ : (Sch/X)τ/U −→ (Sch/Y )τ/U
because both sides of the arrow are equal to (Sch/U)τ . Hence the agreement of
fbig! on underlying abelian sheaves follows from the discussion in Modules on Sites,
Remark 18.41.2. The exactness of fbig! follows from Modules on Sites, Lemma
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18.16.3 as the functor u above which commutes with fibre products and equalizers.
□

Next, we prove a technical lemma that will be useful later when comparing sheaves
of modules on different sites associated to algebraic stacks.

Lemma 59.49.2.07AJ LetX be a scheme. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}.
Let C1 ⊂ C2 ⊂ (Sch/X)τ be full subcategories with the following properties:

(1) For an object U/X of Ct,
(a) if {Ui → U} is a covering of (Sch/X)τ , then Ui/X is an object of Ct,
(b) U ×A1/X is an object of Ct.

(2) X/X is an object of Ct.
We endow Ct with the structure of a site whose coverings are exactly those coverings
{Ui → U} of (Sch/X)τ with U ∈ Ob(Ct). Then

(a) The functor C1 → C2 is fully faithful, continuous, and cocontinuous.
Denote g : Sh(C1) → Sh(C2) the corresponding morphism of topoi. Denote Ot the
restriction of O to Ct. Denote g! the functor of Modules on Sites, Definition 18.16.1.

(b) The canonical map g!O1 → O2 is an isomorphism.

Proof. Assertion (a) is immediate from the definitions. In this proof all schemes
are schemes over X and all morphisms of schemes are morphisms of schemes over
X. Note that g−1 is given by restriction, so that for an object U of C1 we have
O1(U) = O2(U) = O(U). Recall that g!O1 is the sheaf associated to the presheaf
gp!O1 which associates to V in C2 the group

colimV→U O(U)
where U runs over the objects of C1 and the colimit is taken in the category of
abelian groups. Below we will use frequently that if

V → U → U ′

are morphisms with U,U ′ ∈ Ob(C1) and if f ′ ∈ O(U ′) restricts to f ∈ O(U),
then (V → U, f) and (V → U ′, f ′) define the same element of the colimit. Also,
g!O1 → O2 maps the element (V → U, f) simply to the pullback of f to V .
Surjectivity. Let V be a scheme and let h ∈ O(V ). Then we obtain a morphism
V → X ×A1 induced by h and the structure morphism V → X. Writing A1 =
Spec(Z[x]) we see the element x ∈ O(X ×A1) pulls back to h. Since X ×A1 is an
object of C1 by assumptions (1)(b) and (2) we obtain the desired surjectivity.
Injectivity. Let V be a scheme. Let s =

∑
i=1,...,n(V → Ui, fi) be an element of the

colimit displayed above. For any i we can use the morphism fi : Ui → X×A1 to see
that (V → Ui, fi) defines the same element of the colimit as (fi : V → X ×A1, x).
Then we can consider

f1 × . . .× fn : V → X ×An

and we see that s is equivalent in the colimit to∑
i=1,...,n

(f1×. . .×fn : V → X×An, xi) = (f1×. . .×fn : V → X×An, x1+. . .+xn)

Now, if x1 + . . .+ xn restricts to zero on V , then we see that f1 × . . .× fn factors
through X ×An−1 = V (x1 + . . . + xn). Hence we see that s is equivalent to zero
in the colimit. □

https://stacks.math.columbia.edu/tag/07AJ
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59.50. Étale cohomology

03Q3 In the following sections we prove some basic results on étale cohomology. Here is
an example of something we know for cohomology of topological spaces which also
holds for étale cohomology.

Lemma 59.50.1 (Mayer-Vietoris for étale cohomology).0A50 Let X be a scheme. Sup-
pose that X = U ∪ V is a union of two opens. For any abelian sheaf F on Xétale

there exists a long exact cohomology sequence

0→ H0
étale(X,F)→ H0

étale(U,F)⊕H0
étale(V,F)→ H0

étale(U ∩ V,F)
→ H1

étale(X,F)→ H1
étale(U,F)⊕H1

étale(V,F)→ H1
étale(U ∩ V,F)→ . . .

This long exact sequence is functorial in F .

Proof. Observe that if I is an injective abelian sheaf, then

0→ I(X)→ I(U)⊕ I(V )→ I(U ∩ V )→ 0

is exact. This is true in the first and middle spots as I is a sheaf. It is true on
the right, because I(U)→ I(U ∩ V ) is surjective by Cohomology on Sites, Lemma
21.12.6. Another way to prove it would be to show that the cokernel of the map
I(U)⊕ I(V )→ I(U ∩ V ) is the first Čech cohomology group of I with respect to
the covering X = U ∪ V which vanishes by Lemmas 59.18.7 and 59.19.1. Thus, if
F → I• is an injective resolution, then

0→ I•(X)→ I•(U)⊕ I•(V )→ I•(U ∩ V )→ 0

is a short exact sequence of complexes and the associated long exact cohomology
sequence is the sequence of the statement of the lemma. □

Lemma 59.50.2 (Relative Mayer-Vietoris).0EYK Let f : X → Y be a morphism of
schemes. Suppose that X = U ∪ V is a union of two open subschemes. Denote
a = f |U : U → Y , b = f |V : V → Y , and c = f |U∩V : U ∩ V → Y . For every
abelian sheaf F on Xétale there exists a long exact sequence

0→ f∗F → a∗(F|U )⊕ b∗(F|V )→ c∗(F|U∩V )→ R1f∗F → . . .

on Yétale. This long exact sequence is functorial in F .

Proof. Let F → I• be an injective resolution of F on Xétale. We claim that we get
a short exact sequence of complexes

0→ f∗I• → a∗I•|U ⊕ b∗I•|V → c∗I•|U∩V → 0.

Namely, for any W in Yétale, and for any n ≥ 0 the corresponding sequence of
groups of sections over W

0→ In(W ×Y X)→ In(W ×Y U)⊕ In(W ×Y V )→ In(W ×Y (U ∩ V ))→ 0

was shown to be short exact in the proof of Lemma 59.50.1. The lemma follows by
taking cohomology sheaves and using the fact that I•|U is an injective resolution
of F|U and similarly for I•|V , I•|U∩V . □
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59.51. Colimits

03Q4 We recall that if (Fi, φii′) is a diagram of sheaves on a site C its colimit (in the
category of sheaves) is the sheafification of the presheaf U 7→ colimi Fi(U). See
Sites, Lemma 7.10.13. If the system is directed, U is a quasi-compact object of
C which has a cofinal system of coverings by quasi-compact objects, then F(U) =
colimFi(U), see Sites, Lemma 7.17.7. See Cohomology on Sites, Lemma 21.16.1
for a result dealing with higher cohomology groups of colimits of abelian sheaves.
In Cohomology on Sites, Lemma 21.16.5 we generalize this result to a system of
sheaves on an inverse system of sites. Here is the corresponding notion in the case
of a system of étale sheaves living on an inverse system of schemes.
Definition 59.51.1.0EZL Let I be a preordered set. Let (Xi, fi′i) be an inverse system
of schemes over I. A system (Fi, φi′i) of sheaves on (Xi, fi′i) is given by

(1) a sheaf Fi on (Xi)étale for all i ∈ I,
(2) for i′ ≥ i a map φi′i : f−1

i′i Fi → Fi′ of sheaves on (Xi′)étale
such that φi′′i = φi′′i′ ◦ f−1

i′′i′φi′i whenever i′′ ≥ i′ ≥ i.
In the situation of Definition 59.51.1, assume I is a directed set and the transition
morphisms fi′i affine. Let X = limXi be the limit in the category of schemes, see
Limits, Section 32.2. Denote fi : X → Xi the projection morphisms and consider
the maps

f−1
i Fi = f−1

i′ f−1
i′i Fi

f−1
i′
φi′i−−−−−→ f−1

i′ Fi′
This turns f−1

i Fi into a system of sheaves on Xétale over I (it is a good exercise to
check this). We often want to know whether there is an isomorphism

Hq
étale(X, colim f−1

i Fi) = colimHq
étale(Xi,Fi)

It will turn out this is true if Xi is quasi-compact and quasi-separated for all i, see
Theorem 59.51.3.
Lemma 59.51.2.0EYL Let I be a directed set. Let (Xi, fi′i) be an inverse system of
schemes over I with affine transition morphisms. Let X = limi∈I Xi. With notation
as in Topologies, Lemma 34.4.12 we have

Xaffine,étale = colim(Xi)affine,étale
as sites in the sense of Sites, Lemma 7.18.2.
Proof. Let us first prove this whenX andXi are quasi-compact and quasi-separated
for all i (as this is true in all cases of interest). In this case any object ofXaffine,étale,
resp. (Xi)affine,étale is of finite presentation over X. Moreover, the category of
schemes of finite presentation over X is the colimit of the categories of schemes of
finite presentation over Xi, see Limits, Lemma 32.10.1. The same holds for the
subcategories of affine objects étale over X by Limits, Lemmas 32.4.13 and 32.8.10.
Finally, if {U j → U} is a covering of Xaffine,étale and if U ji → Ui is morphism of
affine schemes étale over Xi whose base change to X is U j → U , then we see that
the base change of {U ji → Ui} to some Xi′ is a covering for i′ large enough, see
Limits, Lemma 32.8.15.
In the general case, let U be an object of Xaffine,étale. Then U → X is étale
and separated (as U is separated) but in general not quasi-compact. Still, U → X
is locally of finite presentation and hence by Limits, Lemma 32.10.5 there exists

https://stacks.math.columbia.edu/tag/0EZL
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an i, a quasi-compact and quasi-separated scheme Ui, and a morphism Ui → Xi

which is locally of finite presentation whose base change to X is U → X. Then
U = limi′≥i Ui′ where Ui′ = Ui ×Xi Xi′ . After increasing i we may assume Ui is
affine, see Limits, Lemma 32.4.13. To check that Ui → Xi is étale for i sufficiently
large, choose a finite affine open covering Ui = Ui,1 ∪ . . . ∪ Ui,m such that Ui,j →
Ui → Xi maps into an affine open Wi,j ⊂ Xi. Then we can apply Limits, Lemma
32.8.10 to see that Ui,j → Wi,j is étale after possibly increasing i. In this way we
see that the functor colim(Xi)affine,étale → Xaffine,étale is essentially surjective.
Fully faithfulness follows directly from the already used Limits, Lemma 32.10.5.
The statement on coverings is proved in exactly the same manner as done in the
first paragraph of the proof. □

Using the above we get the following general result on colimits and cohomology.

Theorem 59.51.3.09YQ Let X = limi∈I Xi be a limit of a directed system of schemes
with affine transition morphisms fi′i : Xi′ → Xi. We assume that Xi is quasi-
compact and quasi-separated for all i ∈ I. Let (Fi, φi′i) be a system of abelian
sheaves on (Xi, fi′i). Denote fi : X → Xi the projection and set F = colim f−1

i Fi.
Then

colimi∈I H
p
étale(Xi,Fi) = Hp

étale(X,F).
for all p ≥ 0.

Proof. By Topologies, Lemma 34.4.12 we can compute the cohomology of F on
Xaffine,étale. Thus the result by a combination of Lemma 59.51.2 and Cohomology
on Sites, Lemma 21.16.5. □

The following two results are special cases of the theorem above.

Lemma 59.51.4.03Q5 Let X be a quasi-compact and quasi-separated scheme. Let I be
a directed set. Let (Fi, φij) be a system of abelian sheaves on Xétale over I. Then

colimi∈I H
p
étale(X,Fi) = Hp

étale(X, colimi∈I Fi).

Proof. This is a special case of Theorem 59.51.3. We also sketch a direct proof. We
prove it for all X at the same time, by induction on p.

(1) For any quasi-compact and quasi-separated scheme X and any étale cov-
ering U of X, show that there exists a refinement V = {Vj → X}j∈J
with J finite and each Vj quasi-compact and quasi-separated such that all
Vj0 ×X . . .×X Vjp are also quasi-compact and quasi-separated.

(2) Using the previous step and the definition of colimits in the category of
sheaves, show that the theorem holds for p = 0 and all X.

(3) Using the locality of cohomology (Lemma 59.22.3), the Čech-to-cohomology
spectral sequence (Theorem 59.19.2) and the fact that the induction hy-
pothesis applies to all Vj0 ×X . . .×X Vjp in the above situation, prove the
induction step p→ p+ 1.

□

Lemma 59.51.5.03Q6 Let A be a ring, (I,≤) a directed set and (Bi, φij) a system
of A-algebras. Set B = colimi∈I Bi. Let X → Spec(A) be a quasi-compact and
quasi-separated morphism of schemes. Let F an abelian sheaf on Xétale. Denote

https://stacks.math.columbia.edu/tag/09YQ
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Yi = X ×Spec(A) Spec(Bi), Y = X ×Spec(A) Spec(B), Gi = (Yi → X)−1F and
G = (Y → X)−1F . Then

Hp
étale(Y,G) = colimi∈I H

p
étale(Yi,Gi).

Proof. This is a special case of Theorem 59.51.3. We also outline a direct proof as
follows.

(1) Given V → Y étale with V quasi-compact and quasi-separated, there exist
i ∈ I and Vi → Yi such that V = Vi ×Yi Y . If all the schemes considered
were affine, this would correspond to the following algebra statement: if
B = colimBi and B → C is étale, then there exist i ∈ I and Bi → Ci
étale such that C ∼= B⊗BiCi. This is proved in Algebra, Lemma 10.143.3.

(2) In the situation of (1) show that G(V ) = colimi′≥i Gi′(Vi′) where Vi′ is the
base change of Vi to Yi′ .

(3) By (1), we see that for every étale covering V = {Vj → Y }j∈J with J
finite and the Vjs quasi-compact and quasi-separated, there exists i ∈ I
and an étale covering Vi = {Vij → Yi}j∈J such that V ∼= Vi ×Yi Y .

(4) Show that (2) and (3) imply
Ȟ∗(V,G) = colimi∈I Ȟ

∗(Vi,Gi).
(5) Cleverly use the Čech-to-cohomology spectral sequence (Theorem 59.19.2).

□

Lemma 59.51.6.03Q8 Let f : X → Y be a morphism of schemes and F ∈ Ab(Xétale).
Then Rpf∗F is the sheaf associated to the presheaf

(V → Y ) 7−→ Hp
étale(X ×Y V,F|X×Y V ).

More generally, for K ∈ D(Xétale) we have that Rpf∗K is the sheaf associated to
the presheaf

(V → Y ) 7−→ Hp
étale(X ×Y V,K|X×Y V ).

Proof. This lemma is valid for topological spaces, and the proof in this case is
the same. See Cohomology on Sites, Lemma 21.7.4 for the case of a sheaf and
see Cohomology on Sites, Lemma 21.20.3 for the case of a complex of abelian
sheaves. □

Lemma 59.51.7.09Z1 Let S be a scheme. Let X = limi∈I Xi be a limit of a directed
system of schemes over S with affine transition morphisms fi′i : Xi′ → Xi. We
assume the structure morphisms gi : Xi → S and g : X → S are quasi-compact and
quasi-separated. Let (Fi, φi′i) be a system of abelian sheaves on (Xi, fi′i). Denote
fi : X → Xi the projection and set F = colim f−1

i Fi. Then
colimi∈I R

pgi,∗Fi = Rpg∗F
for all p ≥ 0.

Proof. Recall (Lemma 59.51.6) that Rpgi,∗Fi is the sheaf associated to the presheaf
U 7→ Hp

étale(U×SXi,Fi) and similarly for Rpg∗F . Moreover, the colimit of a system
of sheaves is the sheafification of the colimit on the level of presheaves. Note that
every object of Sétale has a covering by quasi-compact and quasi-separated objects
(e.g., affine schemes). Moreover, if U is a quasi-compact and quasi-separated object,
then we have

colimHp
étale(U ×S Xi,Fi) = Hp

étale(U ×S X,F)

https://stacks.math.columbia.edu/tag/03Q8
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by Theorem 59.51.3. Thus the lemma follows. □

Lemma 59.51.8.0EYM Let I be a directed set. Let gi : Xi → Si be an inverse system of
morphisms of schemes over I. Assume gi is quasi-compact and quasi-separated and
for i′ ≥ i the transition morphisms fi′i : Xi′ → Xi and hi′i : Si′ → Si are affine.
Let g : X → S be the limit of the morphisms gi, see Limits, Section 32.2. Denote
fi : X → Xi and hi : S → Si the projections. Let (Fi, φi′i) be a system of sheaves
on (Xi, fi′i). Set F = colim f−1

i Fi. Then

Rpg∗F = colimi∈I h
−1
i Rpgi,∗Fi

for all p ≥ 0.

Proof. How is the map of the lemma constructed? For i′ ≥ i we have a commutative
diagram

X
fi′
//

g

��

Xi′
fi′i

//

gi′

��

Xi

gi

��
S

hi′ // Si′
hi′i // Si

If we combine the base change map h−1
i′i Rgi,∗Fi → Rgi′,∗f

−1
i′i Fi (Cohomology on

Sites, Lemma 21.15.1 or Remark 21.19.3) with the map Rgi′,∗φi′i, then we obtain
ψi′i : h−1

i′i R
pgi,∗Fi → Rpgi′,∗Fi′ . Similarly, using the left square in the diagram we

obtain maps ψi : h−1
i Rpgi,∗Fi → Rpg∗F . The maps h−1

i′ ψi′i and ψi are the maps
used in the statement of the lemma. For this to make sense, we have to check that
ψi′′i = ψi′′i′ ◦ h−1

i′′i′ψi′i and ψi′ ◦ h−1
i′ ψi′i = ψi; this follows from Cohomology on

Sites, Remark 21.19.5.

Proof of the equality. First proof using dimension shifting4. For any U affine and
étale over X by Theorem 59.51.3 we have

g∗F(U) = H0(U ×S X,F) = colimH0(Ui ×Si Xi,Fi) = colim gi,∗Fi(Ui)

where the colimit is over i large enough such that there exists an i and Ui affine étale
over Si whose base change is U over S (see Lemma 59.51.2). The right hand side
is equal to (colim h−1

i gi,∗Fi)(U) by Sites, Lemma 7.18.4. This proves the lemma
for p = 0. If (Gi, φi′i) is a system with G = colim f−1

i Gi such that Gi is an injective
abelian sheaf on Xi for all i, then for any U affine and étale over X by Theorem
59.51.3 we have

Hp(U ×S X,G) = colimHp(Ui ×Si Xi,Gi) = 0

for p > 0 (same colimit as before). Hence Rpg∗G = 0 and we get the result for p > 0
for such a system. In general we may choose a short exact sequence of systems

0→ (Fi, φi′i)→ (Gi, φi′i)→ (Qi, φi′i)→ 0

where (Gi, φi′i) is as above, see Cohomology on Sites, Lemma 21.16.4. By induction
the lemma holds for p− 1 and by the above we have vanishing for p and (Gi, φi′i).
Hence the result for p and (Fi, φi′i) by the long exact sequence of cohomology.

4You can also use this method to produce the maps in the lemma.
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Second proof. Recall that Saffine,étale = colim(Si)affine,étale, see Lemma 59.51.2.
Thus if U is an object of Saffine,étale, then we can write U = Ui ×Si S for some i
and some Ui in (Si)affine,étale and

(colimi∈I h
−1
i Rpgi,∗Fi)(U) = colimi′≥i(Rpgi′,∗Fi′)(Ui ×Si Si′)

by Sites, Lemma 7.18.4 and the construction of the transition maps in the system
described above. Since Rpgi′,∗Fi′ is the sheaf associated to the presheaf Ui′ 7→
Hp(Ui′ ×Si′ Xi′ ,Fi′) and since Rpg∗F is the sheaf associated to the presheaf U 7→
Hp(U ×S X,F) (Lemma 59.51.6) we obtain a canonical commutative diagram

colimi′≥iH
p(Ui ×Si Xi′ ,Fi′) //

��

colimi′≥i(Rpgi′,∗Fi′)(Ui ×Si Si′)

��
Hp(U ×S X,F) // Rpg∗F(U)

Observe that the left hand vertical arrow is an isomorphism by Theorem 59.51.3.
We’re trying to show that the right hand vertical arrow is an isomorphism. However,
we already know that the source and target of this arrow are sheaves on Saffine,étale.
Hence it suffices to show: (1) an element in the target, locally comes from an
element in the source and (2) an element in the source which maps to zero in the
target locally vanishes. Part (1) follows immediately from the above and the fact
that the lower horizontal arrow comes from a map of presheaves which becomes an
isomorphism after sheafification. For part (2), say ξ ∈ colimi′≥i(Rpgi′,∗Fi′)(Ui ×Si
Si′) is in the kernel. Choose an i′ ≥ i and ξi′ ∈ (Rpgi′,∗Fi′)(Ui×Si Si′) representing
ξ. Choose a standard étale covering {Ui′,k → Ui ×Si Si′}k=1,...,m such that ξi′ |Ui′,k
comes from ξi′,k ∈ Hp(Ui′,k ×Si′ Xi′ ,Fi′). Since it is enough to prove that ξ dies
locally, we may replace U by the members of the étale covering {Ui′,k ×Si′ S →
U = Ui ×Si S}. After this replacement we see that ξ is the image of an element
ξ′ of the group colimi′≥iH

p(Ui ×Si Xi′ ,Fi′) in the diagram above. Since ξ′ maps
to zero in Rpg∗F(U) we can do another replacement and assume that ξ′ maps to
zero in Hp(U ×S X,F). However, since the left vertical arrow is an isomorphism
we then conclude ξ′ = 0 hence ξ = 0 as desired. □

Lemma 59.51.9.0EYN Let X = limi∈I Xi be a directed limit of schemes with affine
transition morphisms fi′i and projection morphisms fi : X → Xi. Let F be a sheaf
on Xétale. Then

(1) there are canonical maps φi′i : f−1
i′i fi,∗F → fi′,∗F such that (fi,∗F , φi′i)

is a system of sheaves on (Xi, fi′i) as in Definition 59.51.1, and
(2) F = colim f−1

i fi,∗F .

Proof. Via Topologies, Lemma 34.4.12 and Lemma 59.51.2 this is a special case of
Sites, Lemma 7.18.5. □

Lemma 59.51.10.0DV2 Let I be a directed set. Let gi : Xi → Si be an inverse system
of morphisms of schemes over I. Assume gi is quasi-compact and quasi-separated
and for i′ ≥ i the transition morphisms Xi′ → Xi and Si′ → Si are affine. Let
g : X → S be the limit of the morphisms gi, see Limits, Section 32.2. Denote
fi : X → Xi and hi : S → Si the projections. Let F be an abelian sheaf on X.
Then we have

Rpg∗F = colimi∈I h
−1
i Rpgi,∗(fi,∗F)
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Proof. Formal combination of Lemmas 59.51.8 and 59.51.9. □

59.52. Colimits and complexes

0GIR In this section we discuss taking cohomology of systems of complexes in various
settings, continuing the discussion for sheaves started in Section 59.51. We strongly
urge the reader not to read this section unless absolutely necessary.

Lemma 59.52.1.0EZM Let X = limi∈I Xi be a limit of a directed system of schemes
with affine transition morphisms fi′i : Xi′ → Xi. We assume that Xi is quasi-
compact and quasi-separated for all i ∈ I. Let F•

i be a complex of abelian sheaves
on Xi,étale. Let φi′i : f−1

i′i F•
i → F•

i′ be a map of complexes on Xi,étale such that
φi′′i = φi′′i′ ◦ f−1

i′′i′φi′i whenever i′′ ≥ i′ ≥ i. Assume there is an integer a such that
Fni = 0 for n < a and all i ∈ I. Then we have

Hp
étale(X, colim f−1

i F
•
i ) = colimHp

étale(Xi,F•
i )

where fi : X → Xi is the projection.

Proof. This is a consequence of Theorem 59.51.3. Set F• = colim f−1
i F•

i . The
theorem tells us that

colimi∈I H
p
étale(Xi,Fni ) = Hp

étale(X,F
n)

for all n, p ∈ Z. Let us use the spectral sequences

Es,t1,i = Ht
étale(Xi,Fsi )⇒ Hs+t

étale(Xi,F•
i )

and
Es,t1 = Ht

étale(X,Fs)⇒ Hs+t
étale(X,F

•)
of Derived Categories, Lemma 13.21.3. Since Fni = 0 for n < a (with a independent
of i) we see that only a fixed finite number of terms Es,t1,i (independent of i) and
Es,t1 contribute to Hq

étale(Xi,F•
i ) and Hq

étale(X,F•) and Es,t1 = colimEs,ti,i . This
implies what we want. Some details omitted. (There is an alternative argument
using “stupid” truncations of complexes which avoids using spectral sequences.) □

Lemma 59.52.2.0GIS Let X be a quasi-compact and quasi-sepated scheme. Let Ki ∈
D(Xétale), i ∈ I be a family of objects. Assume given a ∈ Z such that Hn(Ki) = 0
for n < a and i ∈ I. Then RΓ(X,

⊕
iKi) =

⊕
iRΓ(X,Ki).

Proof. We have to show that Hp(X,
⊕

iKi) =
⊕

iH
p(X,Ki) for all p ∈ Z. Choose

complexes F•
i representing Ki such that Fni = 0 for n < a. The direct sum of

the complexes F•
i represents the object

⊕
Ki by Injectives, Lemma 19.13.4. Since⊕

F• is the filtered colimit of the finite direct sums, the result follows from Lemma
59.52.1. □

Lemma 59.52.3.0GIT Let S be a scheme. Let X = limi∈I Xi be a limit of a directed
system of schemes over S with affine transition morphisms fi′i : Xi′ → Xi. We
assume that Xi is quasi-compact and quasi-separated for all i ∈ I. Let K ∈
D+(Sétale). Then

colimi∈I H
p
étale(Xi,K|Xi) = Hp

étale(X,K|X).

for all p ∈ Z where K|Xi and K|X are the pullbacks of K to Xi and X.
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Proof. We may represent K by a bounded below complex G• of abelian sheaves on
Sétale. Say Gn = 0 for n < a. Denote F•

i and F• the pullbacks of this complex
of Xi and X. These complexes represent the objects K|Xi and K|X and we have
F• = colim f−1

i F•
i termwise. Hence the lemma follows from Lemma 59.52.1. □

Lemma 59.52.4.0GIU Let I, gi : Xi → Si, g : X → S, fi, gi, hi be as in Lemma 59.51.8.
Let 0 ∈ I and K0 ∈ D+(X0,étale). For i ≥ 0 denote Ki the pullback of K0 to Xi.
Denote K the pullback of K to X. Then

Rpg∗K = colimi≥0 h
−1
i Rpgi,∗Ki

for all p ∈ Z.

Proof. Fix an integer p0 ∈ Z. Let a be an integer such that Hj(K0) = 0 for
j < a. We will prove the formula holds for all p ≤ p0 by descending induction on
a. If a > p0, then we see that the left and right hand side of the formula are zero
for p ≤ p0 by trivial vanishing, see Derived Categories, Lemma 13.16.1. Assume
a ≤ p0. Consider the distinguished triangle

Ha(K0)[−a]→ K0 → τ≥a+1K0

Pulling back this distinguished triangle to Xi and X gives compatible distinguished
triangles for Ki and K. For p ≤ p0 we consider the commutative diagram

colimi≥0 h
−1
i Rp−1gi,∗(τ≥a+1Ki) α

//

��

Rp−1g∗(τ≥a+1K)

��
colimi≥0 h

−1
i Rpgi,∗(Ha(Ki)[−a])

β
//

��

Rpg∗(Ha(K)[−a])

��
colimi≥0 h

−1
i Rpgi,∗Ki γ

//

��

Rpg∗K

��
colimi≥0 R

pgi,∗τ≥a+1Ki
δ

//

��

Rpg∗τ≥a+1K

��
colimi≥0 R

p+1gi,∗(Ha(Ki)[−a]) ϵ // Rp+1g∗(Ha(K)[−a])

with exact columns. The arrows β and ϵ are isomorphisms by Lemma 59.51.8.
The arrows α and δ are isomorphisms by induction hypothesis. Hence γ is an
isomorphism as desired. □

Lemma 59.52.5.0GIV Let I, gi : Xi → Si, g : X → S, fii′ , fi, gi, hi be as in Lemma
59.51.8. Let F•

i be a complex of abelian sheaves on Xi,étale. Let φi′i : f−1
i′i F•

i →
F•
i′ be a map of complexes on Xi,étale such that φi′′i = φi′′i′ ◦ f−1

i′′i′φi′i whenever
i′′ ≥ i′ ≥ i. Assume there is an integer a such that Fni = 0 for n < a and all i ∈ I.
Then

Rpg∗(colim f−1
i F

•
i ) = colimi≥0 h

−1
i Rpgi,∗F•

i

for all p ∈ Z.

https://stacks.math.columbia.edu/tag/0GIU
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Proof. This is a consequence of Lemma 59.51.8. Set F• = colim f−1
i F•

i . The
lemma tells us that

colimi∈I h
−1
i Rpgi,∗Fni = Rpg∗Fn

for all n, p ∈ Z. Let us use the spectral sequences
Es,t1,i = Rtgi,∗Fsi ⇒ Rs+tgi,∗F•

i

and
Es,t1 = Rtg∗Fs ⇒ Rs+tg∗F•

of Derived Categories, Lemma 13.21.3. Since Fni = 0 for n < a (with a independent
of i) we see that only a fixed finite number of terms Es,t1,i (independent of i) and
Es,t1 contribute and Es,t1 = colimEs,ti,i . This implies what we want. Some details
omitted. (There is an alternative argument using “stupid” truncations of complexes
which avoids using spectral sequences.) □

Lemma 59.52.6.0GIW Let f : X → Y be a quasi-compact and quasi-sepated morphism
of schemes. Let Ki ∈ D(Xétale), i ∈ I be a family of objects. Assume given a ∈ Z
such that Hn(Ki) = 0 for n < a and i ∈ I. Then Rf∗(

⊕
iKi) =

⊕
iRf∗Ki.

Proof. We have to show that Rpf∗(
⊕

iKi) =
⊕

iR
pf∗Ki for all p ∈ Z. Choose

complexes F•
i representing Ki such that Fni = 0 for n < a. The direct sum of

the complexes F•
i represents the object

⊕
Ki by Injectives, Lemma 19.13.4. Since⊕

F• is the filtered colimit of the finite direct sums, the result follows from Lemma
59.52.5. □

59.53. Stalks of higher direct images

03Q7 The stalks of higher direct images can often be computed as follows.

Theorem 59.53.1.03Q9 Let f : X → S be a quasi-compact and quasi-separated mor-
phism of schemes, F an abelian sheaf on Xétale, and s a geometric point of S lying
over s ∈ S. Then

(Rnf∗F)s = Hn
étale(X ×S Spec(OshS,s), p−1F)

where p : X ×S Spec(OshS,s)→ X is the projection. For K ∈ D+(Xétale) and n ∈ Z
we have

(Rnf∗K)s = Hn
étale(X ×S Spec(OshS,s), p−1K)

In fact, we have
(Rf∗K)s = RΓétale(X ×S Spec(OshS,s), p−1K)

in D+(Ab).

Proof. Let I be the category of étale neighborhoods of s on S. By Lemma 59.51.6
we have

(Rnf∗F)s = colim(V,v)∈Iopp H
n
étale(X ×S V,F|X×SV ).

We may replace I by the initial subcategory consisting of affine étale neighbour-
hoods of s. Observe that

Spec(OshS,s) = lim(V,v)∈I V

by Lemma 59.33.1 and Limits, Lemma 32.2.1. Since fibre products commute with
limits we also obtain

X ×S Spec(OshS,s) = lim(V,v)∈I X ×S V

https://stacks.math.columbia.edu/tag/0GIW
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We conclude by Lemma 59.51.5. For the second variant, use the same argument
using Lemma 59.52.3 instead of Lemma 59.51.5.
To see that the last statement is true, it suffices to produce a map (Rf∗K)s →
RΓétale(X ×S Spec(OshS,s), p−1K) in D+(Ab) which realizes the ismorphisms on
cohomology groups in degree n above for all n. To do this, choose a bounded below
complex J • of injective abelian sheaves on Xétale representing K. The complex
f∗J • represents Rf∗K. Thus the complex

(f∗J •)s = colim(V,v)∈Iopp(f∗J •)(V )
represents (Rf∗K)s. For each V we have maps

(f∗J •)(V ) = Γ(X ×S V,J •) −→ Γ(X ×S Spec(OshS,s), p−1J •)

and the target complex represents RΓétale(X ×S Spec(OshS,s), p−1K) in D+(Ab).
Taking the colimit of these maps we obtain the result. □

Remark 59.53.2.0GIX Let f : X → S be a morphism of schemes. Let K ∈ D(Xétale).
Let s be a geometric point of S. There are always canonical maps

(Rf∗K)s −→ RΓ(X ×S Spec(OshS,s), p−1K) −→ RΓ(Xs,K|Xs)

where p : X ×S Spec(OshS,s)→ X is the projection. Namely, consider the commuta-
tive diagram

Xs
//

fs

��

X ×S Spec(OshS,s) p
//

f ′

��

X

f

��
s

i // Spec(OshS,s)
j // S

We have the base change maps
i−1Rf ′

∗(p−1K)→ Rfs,∗(K|Xs) and j−1Rf∗K → Rf ′
∗(p−1K)

(Cohomology on Sites, Remark 21.19.3) for the two squares in this diagram. Tak-
ing global sections we obtain the desired maps. By Cohomology on Sites, Re-
mark 21.19.5 the composition of these two maps is the usual (base change) map
(Rf∗K)s → RΓ(Xs,K|Xs).

59.54. The Leray spectral sequence

03QA
Lemma 59.54.1.03QB Let f : X → Y be a morphism and I an injective object of
Ab(Xétale). Let V ∈ Ob(Yétale). Then

(1) for any covering V = {Vj → V }j∈J we have Ȟp(V, f∗I) = 0 for all p > 0,
(2) f∗I is acyclic for the functor Γ(V,−), and
(3) if g : Y → Z, then f∗I is acyclic for g∗.

Proof. Observe that Č•(V, f∗I) = Č•(V ×Y X, I) which has vanishing higher coho-
mology groups by Lemma 59.18.7. This proves (1). The second statement follows
as a sheaf which has vanishing higher Čech cohomology groups for any covering has
vanishing higher cohomology groups. This a wonderful exercise in using the Čech-
to-cohomology spectral sequence, but see Cohomology on Sites, Lemma 21.10.9 for
details and a more precise and general statement. Part (3) is a consequence of (2)
and the description of Rpg∗ in Lemma 59.51.6. □

https://stacks.math.columbia.edu/tag/0GIX
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Using the formalism of Grothendieck spectral sequences, this gives the following.

Proposition 59.54.2 (Leray spectral sequence).03QC Let f : X → Y be a morphism of
schemes and F an étale sheaf on X. Then there is a spectral sequence

Ep,q2 = Hp
étale(Y,R

qf∗F)⇒ Hp+q
étale(X,F).

Proof. See Lemma 59.54.1 and see Derived Categories, Section 13.22. □

59.55. Vanishing of finite higher direct images

03QN The next goal is to prove that the higher direct images of a finite morphism of
schemes vanish.

Lemma 59.55.1.03QO Let R be a strictly henselian local ring. Set S = Spec(R) and let
s be its closed point. Then the global sections functor Γ(S,−) : Ab(Sétale) → Ab
is exact. In fact we have Γ(S,F) = Fs for any sheaf of sets F . In particular

∀p ≥ 1, Hp
étale(S,F) = 0

for all F ∈ Ab(Sétale).

Proof. If we show that Γ(S,F) = Fs then Γ(S,−) is exact as the stalk functor is
exact. Let (U, u) be an étale neighbourhood of s. Pick an affine open neighborhood
Spec(A) of u in U . Then R→ A is étale and κ(s) = κ(u). By Theorem 59.32.4 we
see that A ∼= R×A′ as an R-algebra compatible with maps to κ(s) = κ(u). Hence
we get a section

Spec(A) // U

��
S

cc

It follows that in the system of étale neighbourhoods of s the identity map (S, s)→
(S, s) is cofinal. Hence Γ(S,F) = Fs. The final statement of the lemma follows
as the higher derived functors of an exact functor are zero, see Derived Categories,
Lemma 13.16.9. □

Proposition 59.55.2.03QP Let f : X → Y be a finite morphism of schemes.
(1) For any geometric point y : Spec(k)→ Y we have

(f∗F)y =
∏

x:Spec(k)→X, f(x)=y
Fx.

for F in Sh(Xétale) and

(f∗F)y =
⊕

x:Spec(k)→X, f(x)=y
Fx.

for F in Ab(Xétale).
(2) For any q ≥ 1 we have Rqf∗F = 0 for F in Ab(Xétale).

Proof. Let Xsh
y denote the fiber product X ×Y Spec(OshY,y). By Theorem 59.53.1

the stalk of Rqf∗F at y is computed by Hq
étale(Xsh

y ,F). Since f is finite, Xsh
ȳ is

finite over Spec(OshY,y), thus Xsh
ȳ = Spec(A) for some ring A finite over OshY,ȳ. Since

the latter is strictly henselian, Lemma 59.32.5 implies that A is a finite product
of henselian local rings A = A1 × . . . × Ar. Since the residue field of OshY,y is
separably closed the same is true for each Ai. Hence Ai is strictly henselian. This
implies that Xsh

y =
∐r
i=1 Spec(Ai). The vanishing of Lemma 59.55.1 implies that

https://stacks.math.columbia.edu/tag/03QC
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(Rqf∗F)y = 0 for q > 0 which implies (2) by Theorem 59.29.10. Part (1) follows
from the corresponding statement of Lemma 59.55.1. □

Lemma 59.55.3.0959 Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of schemes with f a finite morphism. For any sheaf of sets F on Xétale we have
f ′

∗(g′)−1F = g−1f∗F .

Proof. In great generality there is a pullback map g−1f∗F → f ′
∗(g′)−1F , see Sites,

Section 7.45. It suffices to check on stalks (Theorem 59.29.10). Let y′ : Spec(k)→
Y ′ be a geometric point. We have

(f ′
∗(g′)−1F)y′ =

∏
x′:Spec(k)→X′, f ′◦x′=y′

((g′)−1F)x′

=
∏

x′:Spec(k)→X′, f ′◦x′=y′
Fg′◦x′

=
∏

x:Spec(k)→X, f◦x=g◦y′
Fx

= (f∗F)g◦y′

= (g−1f∗F)y′

The first equality by Proposition 59.55.2. The second equality by Lemma 59.36.2.
The third equality holds because the diagram is a cartesian square and hence the
map

{x′ : Spec(k)→ X ′, f ′ ◦ x′ = y′} −→ {x : Spec(k)→ X, f ◦ x = g ◦ y′}

sending x′ to g′ ◦x′ is a bijection. The fourth equality by Proposition 59.55.2. The
fifth equality by Lemma 59.36.2. □

Lemma 59.55.4.0EYP Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of schemes with f an integral morphism. For any sheaf of sets F on Xétale we have
f ′

∗(g′)−1F = g−1f∗F .

Proof. The question is local on Y and hence we may assume Y is affine. Then we
can write X = limXi with fi : Xi → Y finite (this is easy in the affine case, but see
Limits, Lemma 32.7.3 for a reference). Denote pi′i : Xi′ → Xi the transition mor-
phisms and pi : X → Xi the projections. Setting Fi = pi,∗F we obtain from Lemma
59.51.9 a system (Fi, φi′i) with F = colim p−1

i Fi. We get f∗F = colim fi,∗Fi from
Lemma 59.51.7. Set X ′

i = Y ′ ×Y Xi with projections f ′
i and g′

i. Then X ′ = limX ′
i

https://stacks.math.columbia.edu/tag/0959
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as limits commute with limits. Denote p′
i : X ′ → X ′

i the projections. We have
g−1f∗F = g−1 colim fi,∗Fi

= colim g−1fi,∗Fi
= colim f ′

i,∗(g′
i)−1Fi

= f ′
∗(colim(p′

i)−1(g′
i)−1Fi)

= f ′
∗(colim(g′)−1p−1

i Fi)
= f ′

∗(g′)−1 colim p−1
i Fi

= f ′
∗(g′)−1F

as desired. For the first equality see above. For the second use that pullback
commutes with colimits. For the third use the finite case, see Lemma 59.55.3. For
the fourth use Lemma 59.51.7. For the fifth use that g′

i◦p′
i = pi◦g′. For the sixth use

that pullback commutes with colimits. For the seventh use F = colim p−1
i Fi. □

The following lemma is a case of cohomological descent dealing with étale sheaves
and finite surjective morphisms. We will significantly generalize this result once we
prove the proper base change theorem.

Lemma 59.55.5.09Z2 Let f : X → Y be a surjective finite morphism of schemes. Set
fn : Xn → Y equal to the (n+1)-fold fibre product of X over Y . For F ∈ Ab(Yétale)
set Fn = fn,∗f

−1
n F . There is an exact sequence

0→ F → F0 → F1 → F2 → . . .

on Xétale. Moreover, there is a spectral sequence
Ep,q1 = Hq

étale(Xp, f
−1
p F)

converging to Hp+q(Yétale,F). This spectral sequence is functorial in F .

Proof. If we prove the first statement of the lemma, then we obtain a spectral
sequence with Ep,q1 = Hq

étale(Y,F) converging to Hp+q(Yétale,F), see Derived Cat-
egories, Lemma 13.21.3. On the other hand, since Rifp,∗f

−1
p F = 0 for i > 0

(Proposition 59.55.2) we get
Hq
étale(Xp, f

−1
p F) = Hq

étale(Y, fp,∗f
−1
p F) = Hq

étale(Y,Fp)
by Proposition 59.54.2 and we get the spectral sequence of the lemma.
To prove the first statement of the lemma, observe that Xn forms a simplicial
scheme over Y , see Simplicial, Example 14.3.5. Observe moreover, that for each of
the projections dj : Xn+1 → Xn there is a map d−1

j f−1
n F → f−1

n+1F . These maps
induce maps

δj : Fn → Fn+1

for j = 0, . . . , n + 1. We use the alternating sum of these maps to define the
differentials Fn → Fn+1. Similarly, there is a canonical augmentation F → F0,
namely this is just the canonical map F → f∗f

−1F . To check that this sequence
of sheaves is an exact complex it suffices to check on stalks at geometric points
(Theorem 59.29.10). Thus we let y : Spec(k) → Y be a geometric point. Let
E = {x : Spec(k) → X | f(x) = y}. Then E is a finite nonempty set and we see
that

(Fn)y =
⊕

e∈En+1
Fy

https://stacks.math.columbia.edu/tag/09Z2
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by Proposition 59.55.2 and Lemma 59.36.2. Thus we have to see that given an
abelian group M the sequence

0→M →
⊕

e∈E
M →

⊕
e∈E2

M → . . .

is exact. Here the first map is the diagonal map and the map
⊕

e∈En+1 M →⊕
e∈En+2 M is the alternating sum of the maps induced by the (n+ 2) projections

En+2 → En+1. This can be shown directly or deduced by applying Simplicial,
Lemma 14.26.9 to the map E → {∗}. □

Remark 59.55.6.09Z3 In the situation of Lemma 59.55.5 if G is a sheaf of sets on Yétale,
then we have

Γ(Y,G) = Equalizer( Γ(X0, f
−1
0 G) //

// Γ(X1, f
−1
1 G) )

This is proved in exactly the same way, by showing that the sheaf G is the equalizer
of the two maps f0,∗f

−1
0 G → f1,∗f

−1
1 G.

59.56. Galois action on stalks

03QW In this section we define an action of the absolute Galois group of a residue field of
a point s of S on the stalk functor at any geometric point lying over s.
Galois action on stalks. Let S be a scheme. Let s be a geometric point of S. Let
σ ∈ Aut(κ(s)/κ(s)). Define an action of σ on the stalk Fs of a sheaf F as follows

(59.56.0.1)04JK Fs −→ Fs
(U, u, t) 7−→ (U, u ◦ Spec(σ), t).

where we use the description of elements of the stalk in terms of triples as in
the discussion following Definition 59.29.6. This is a left action, since if σi ∈
Aut(κ(s)/κ(s)) then

σ1 · (σ2 · (U, u, t)) = σ1 · (U, u ◦ Spec(σ2), t)
= (U, u ◦ Spec(σ2) ◦ Spec(σ1), t)
= (U, u ◦ Spec(σ1 ◦ σ2), t)
= (σ1 ◦ σ2) · (U, u, t)

It is clear that this action is functorial in the sheaf F . We note that we could have
defined this action by referring directly to Remark 59.29.8.

Definition 59.56.1.03QX Let S be a scheme. Let s be a geometric point lying over the
point s of S. Let κ(s) ⊂ κ(s)sep ⊂ κ(s) denote the separable algebraic closure of
κ(s) in the algebraically closed field κ(s).

(1) In this situation the absolute Galois group of κ(s) is Gal(κ(s)sep/κ(s)).
It is sometimes denoted Galκ(s).

(2) The geometric point s is called algebraic if κ(s) ⊂ κ(s) is an algebraic
closure of κ(s).

Example 59.56.2.03QY The geometric point Spec(C)→ Spec(Q) is not algebraic.

Let κ(s) ⊂ κ(s)sep ⊂ κ(s) be as in the definition. Note that as κ(s) is algebraically
closed the map

Aut(κ(s)/κ(s)) −→ Gal(κ(s)sep/κ(s)) = Galκ(s)

https://stacks.math.columbia.edu/tag/09Z3
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is surjective. Suppose (U, u) is an étale neighbourhood of s, and say u lies over the
point u of U . Since U → S is étale, the residue field extension κ(u)/κ(s) is finite
separable. This implies the following

(1) If σ ∈ Aut(κ(s)/κ(s)sep) then σ acts trivially on Fs.
(2) More precisely, the action of Aut(κ(s)/κ(s)) determines and is determined

by an action of the absolute Galois group Galκ(s) on Fs.
(3) Given (U, u, t) representing an element ξ of Fs any element of Gal(κ(s)sep/K)

acts trivially, where κ(s) ⊂ K ⊂ κ(s)sep is the image of u♯ : κ(u)→ κ(s).
Altogether we see that Fs becomes a Galκ(s)-set (see Fundamental Groups, Defini-
tion 58.2.1). Hence we may think of the stalk functor as a functor

Sh(Sétale) −→ Galκ(s)-Sets, F 7−→ Fs
and from now on we usually do think about the stalk functor in this way.

Theorem 59.56.3.03QT Let S = Spec(K) with K a field. Let s be a geometric point
of S. Let G = Galκ(s) denote the absolute Galois group. Taking stalks induces an
equivalence of categories

Sh(Sétale) −→ G-Sets, F 7−→ Fs.

Proof. Let us construct the inverse to this functor. In Fundamental Groups, Lemma
58.2.2 we have seen that given a G-set M there exists an étale morphism X →
Spec(K) such that MorK(Spec(Ksep), X) is isomorphic to M as a G-set. Consider
the sheaf F on Spec(K)étale defined by the rule U 7→ MorK(U,X). This is a sheaf as
the étale topology is subcanonical. Then we see that Fs = MorK(Spec(Ksep), X) =
M as G-sets (details omitted). This gives the inverse of the functor and we win. □

Remark 59.56.4.04JL Another way to state the conclusion of Theorem 59.56.3 and
Fundamental Groups, Lemma 58.2.2 is to say that every sheaf on Spec(K)étale is
representable by a scheme X étale over Spec(K). This does not mean that every
sheaf is representable in the sense of Sites, Definition 7.12.3. The reason is that in
our construction of Spec(K)étale we chose a sufficiently large set of schemes étale
over Spec(K), whereas sheaves on Spec(K)étale form a proper class.

Lemma 59.56.5.04JM Assumptions and notations as in Theorem 59.56.3. There is a
functorial bijection

Γ(S,F) = (Fs)G

Proof. We can prove this using formal arguments and the result of Theorem 59.56.3
as follows. Given a sheaf F corresponding to the G-set M = Fs we have

Γ(S,F) = MorSh(Sétale)(hSpec(K),F)
= MorG-Sets({∗},M)
= MG

Here the first identification is explained in Sites, Sections 7.2 and 7.12, the second
results from Theorem 59.56.3 and the third is clear. We will also give a direct
proof5.
Suppose that t ∈ Γ(S,F) is a global section. Then the triple (S, s, t) defines an
element of Fs which is clearly invariant under the action of G. Conversely, suppose

5For the doubting Thomases out there.
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that (U, u, t) defines an element of Fs which is invariant. Then we may shrink U and
assume U = Spec(L) for some finite separable field extension of K, see Proposition
59.26.2. In this case the map F(U) → Fs is injective, because for any morphism
of étale neighbourhoods (U ′, u′) → (U, u) the restriction map F(U) → F(U ′) is
injective since U ′ → U is a covering of Sétale. After enlarging L a bit we may
assume K ⊂ L is a finite Galois extension. At this point we use that

Spec(L)×Spec(K) Spec(L) =
∐

σ∈Gal(L/K)
Spec(L)

where the maps Spec(L) → Spec(L ⊗K L) come from the ring maps a ⊗ b 7→
aσ(b). Hence we see that the condition that (U, u, t) is invariant under all of G
implies that t ∈ F(Spec(L)) maps to the same element of F(Spec(L) ×Spec(K)
Spec(L)) via restriction by either projection (this uses the injectivity mentioned
above; details omitted). Hence the sheaf condition of F for the étale covering
{Spec(L)→ Spec(K)} kicks in and we conclude that t comes from a unique section
of F over Spec(K). □

Remark 59.56.6.04JN Let S be a scheme and let s : Spec(k)→ S be a geometric point
of S. By definition this means that k is algebraically closed. In particular the
absolute Galois group of k is trivial. Hence by Theorem 59.56.3 the category of
sheaves on Spec(k)étale is equivalent to the category of sets. The equivalence is
given by taking sections over Spec(k). This finally provides us with an alternative
definition of the stalk functor. Namely, the functor

Sh(Sétale) −→ Sets, F 7−→ Fs
is isomorphic to the functor

Sh(Sétale) −→ Sh(Spec(k)étale) = Sets, F 7−→ s∗F
To prove this rigorously one can use Lemma 59.36.2 part (3) with f = s. Moreover,
having said this the general case of Lemma 59.36.2 part (3) follows from functoriality
of pullbacks.

59.57. Group cohomology

0A2H In the following, if we write Hi(G,M) we will mean that G is a topological group
and M a discrete G-module with continuous G-action and Hi(G,−) is the ith right
derived functor on the category ModG of such G-modules, see Definitions 59.57.1
and 59.57.2. This includes the case of an abstract group G, which simply means
that G is viewed as a topological group with the discrete topology.
When the module has a nondiscrete topology, we will use the notation Hi

cont(G,M)
to indicate the continuous cohomology groups introduced in [Tat76], see Section
59.58.

Definition 59.57.1.04JP Let G be a topological group.
(1) A G-module, sometimes called a discrete G-module, is an abelian group

M endowed with a left action a : G×M →M by group homomorphisms
such that a is continuous when M is given the discrete topology.

(2) A morphism of G-modules f : M → N is a G-equivariant homomorphism
from M to N .

(3) The category of G-modules is denoted ModG.
Let R be a ring.

https://stacks.math.columbia.edu/tag/04JN
https://stacks.math.columbia.edu/tag/04JP
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(1) An R-G-module is an R-moduleM endowed with a left action a : G×M →
M by R-linear maps such that a is continuous when M is given the discrete
topology.

(2) A morphism of R-G-modules f : M → N is a G-equivariant R-module
map from M to N .

(3) The category of R-G-modules is denoted ModR,G.

The condition that a : G×M → M is continuous is equivalent with the condition
that the stabilizer of any x ∈ M is open in G. If G is an abstract group then this
corresponds to the notion of an abelian group endowed with a G-action provided
we endow G with the discrete topology. Observe that ModZ,G = ModG.
The category ModG has enough injectives, see Injectives, Lemma 19.3.1. Consider
the left exact functor

ModG −→ Ab, M 7−→MG = {x ∈M | g · x = x ∀g ∈ G}

We sometimes denote MG = H0(G,M) and sometimes we write MG = ΓG(M).
This functor has a total right derived functor RΓG(M) and ith right derived functor
RiΓG(M) = Hi(G,M) for any i ≥ 0.
The same construction works for H0(G,−) : ModR,G → ModR. We will see in
Lemma 59.57.3 that this agrees with the cohomology of the underlying G-module.

Definition 59.57.2.04JR Let G be a topological group. Let M be a discrete G-module
with continuous G-action. In other words, M is an object of the category ModG
introduced in Definition 59.57.1.

(1) The right derived functors Hi(G,M) of H0(G,M) on the category ModG
are called the continuous group cohomology groups of M .

(2) If G is an abstract group endowed with the discrete topology then the
Hi(G,M) are called the group cohomology groups of M .

(3) If G is a Galois group, then the groups Hi(G,M) are called the Galois
cohomology groups of M .

(4) If G is the absolute Galois group of a field K, then the groups Hi(G,M)
are sometimes called the Galois cohomology groups of K with coefficients
in M . In this case we sometimes write Hi(K,M) instead of Hi(G,M).

Lemma 59.57.3.0DVD Let G be a topological group. Let R be a ring. For every i ≥ 0
the diagram

ModR,G
Hi(G,−)

//

��

ModR

��
ModG

Hi(G,−) // Ab
whose vertical arrows are the forgetful functors is commutative.

Proof. Let us denote the forgetful functor F : ModR,G → ModG. Then F has a
left adjoint H : ModG → ModR,G given by H(M) = M ⊗Z R. Observe that every
object of ModG is a quotient of a direct sum of modules of the form Z[G/U ] where
U ⊂ G is an open subgroup. Here Z[G/U ] denotes the G-modules of finite Z-linear
combinations of right U congruence classes in G endowed with left G-action. Thus
every bounded above complex in ModG is quasi-isomorphic to a bounded above
complex in ModG whose underlying terms are flat Z-modules (Derived Categories,

https://stacks.math.columbia.edu/tag/04JR
https://stacks.math.columbia.edu/tag/0DVD
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Lemma 13.15.4). Thus it is clear that LH exists on D−(ModG) and is computed
by evaluating H on any complex whose terms are flat Z-modules; this follows from
Derived Categories, Lemma 13.15.7 and Proposition 13.16.8. We conclude from
Derived Categories, Lemma 13.30.2 that

Exti(Z, F (M)) = Exti(R,M)
for M in ModR,G. Observe that H0(G,−) = Hom(Z,−) on ModG where Z denotes
the G-module with trivial action. Hence Hi(G,−) = Exti(Z,−) on ModG. Sim-
ilarly we have Hi(G,−) = Exti(R,−) on ModR,G. Combining everything we see
that the lemma is true. □

Lemma 59.57.4.0DVE Let G be a topological group. Let R be a ring. Let M , N
be R-G-modules. If M is finite projective as an R-module, then Exti(M,N) =
Hi(G,M∨ ⊗R N) (for notation see proof).

Proof. The module M∨ = HomR(M,R) endowed with the contragredient action of
G. Namely (g ·λ)(m) = λ(g−1 ·m) for g ∈ G, λ ∈M∨, m ∈M . The action of G on
M∨⊗RN is the diagonal one, i.e., given by g · (λ⊗n) = g ·λ⊗g ·n. Note that for a
third R-G-module E we have Hom(E,M∨⊗RN) = Hom(M⊗RE,N). Namely, this
is true on the level of R-modules by Algebra, Lemmas 10.12.8 and 10.78.9 and the
definitions of G-actions are chosen such that it remains true for R-G-modules. It
follows that M∨⊗RN is an injective R-G-module if N is an injective R-G-module.
Hence if N → N• is an injective resolution, then M∨ ⊗R N → M∨ ⊗R N• is an
injective resolution. Then

Hom(M,N•) = Hom(R,M∨ ⊗R N•) = (M∨ ⊗R N•)G

Since the left hand side computes Exti(M,N) and the right hand side computes
Hi(G,M∨ ⊗R N) the proof is complete. □

Lemma 59.57.5.0DVF Let G be a topological group. Let k be a field. Let V be
a k-G-module. If G is topologically finitely generated and dimk(V ) < ∞, then
dimkH

1(G,V ) <∞.

Proof. Let g1, . . . , gr ∈ G be elements which topologically generate G, i.e., this
means that the subgroup generated by g1, . . . , gr is dense. By Lemma 59.57.4 we
see that H1(G,V ) is the k-vector space of extensions

0→ V → E → k → 0
of k-G-modules. Choose e ∈ E mapping to 1 ∈ k. Write

gi · e = vi + e

for some vi ∈ V . This is possible because gi · 1 = 1. We claim that the list
of elements v1, . . . , vr ∈ V determine the isomorphism class of the extension E.
Once we prove this the lemma follows as this means that our Ext vector space is
isomorphic to a subquotient of the k-vector space V ⊕r; some details omitted. Since
E is an object of the category defined in Definition 59.57.1 we know there is an
open subgroup U such that u · e = e for all u ∈ U . Now pick any g ∈ G. Then gU
contains a word w in the elements g1, . . . , gr. Say gu = w. Since the element w · e
is determined by v1, . . . , vr, we see that g · e = (gu) · e = w · e is too. □

Lemma 59.57.6.0DV3 Let G be a profinite topological group. Then
(1) Hi(G,M) is torsion for i > 0 and any G-module M , and

https://stacks.math.columbia.edu/tag/0DVE
https://stacks.math.columbia.edu/tag/0DVF
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(2) Hi(G,M) = 0 if M is a Q-vector space.

Proof. Proof of (1). By dimension shifting we see that it suffices to show that
H1(G,M) is torsion for every G-module M . Choose an exact sequence 0→ M →
I → N → 0 with I an injective object of the category of G-modules. Then any
element of H1(G,M) is the image of an element y ∈ NG. Choose x ∈ I mapping
to y. The stabilizer U ⊂ G of x is open, hence has finite index r. Let g1, . . . , gr ∈ G
be a system of representatives for G/U . Then

∑
gi(x) is an invariant element of I

which maps to ry. Thus r kills the element of H1(G,M) we started with. Part (2)
follows as then Hi(G,M) is both a Q-vector space and torsion. □

59.58. Tate’s continuous cohomology

0DVG Tate’s continuous cohomology ([Tat76]) is defined by the complex of continuous
inhomogeneous cochains. We can define this when M is an arbitrary topologi-
cal abelian group endowed with a continuous G-action. Namely, we consider the
complex

C•
cont(G,M) : M → Mapscont(G,M)→ Mapscont(G×G,M)→ . . .

where the boundary map is defined for n ≥ 1 by the rule

d(f)(g1, . . . , gn+1) = g1(f(g2, . . . , gn+1))

+
∑

j=1,...,n
(−1)jf(g1, . . . , gjgj+1, . . . , gn+1)

+ (−1)n+1f(g1, . . . , gn)

and for n = 0 sends m ∈M to the map g 7→ g(m)−m. We define

Hi
cont(G,M) = Hi(C•

cont(G,M))

Since the terms of the complex involve continuous maps from G and self products
of G into the topological module M , it is not clear that this turns a short exact
sequence of topological modules into a long exact cohomology sequence. Another
difficulty is that the category of topological abelian groups isn’t an abelian category!

However, a short exact sequence of discrete G-modules does give rise to a short
exact sequence of complexes of continuous cochains and hence a long exact coho-
mology sequence of continuous cohomology groups Hi

cont(G,−). Therefore, on the
category ModG of Definition 59.57.1 the functors Hi

cont(G,M) form a cohomological
δ-functor as defined in Homology, Section 12.12. Since the cohomology Hi(G,M)
of Definition 59.57.2 is a universal δ-functor (Derived Categories, Lemma 13.16.6)
we obtain canonical maps

Hi(G,M) −→ Hi
cont(G,M)

forM ∈ ModG. It is known that these maps are isomorphisms whenG is an abstract
group (i.e., G has the discrete topology) or when G is a profinite group (insert future
reference here). If you know an example showing this map is not an isomorphism for
a topological group G and M ∈ Ob(ModG) please email stacks.project@gmail.com.

mailto:stacks.project@gmail.com
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59.59. Cohomology of a point

03QQ As a consequence of the discussion in the preceding sections we obtain the equiva-
lence of étale cohomology of the spectrum of a field with Galois cohomology.

Lemma 59.59.1.04JQ Let S = Spec(K) with K a field. Let s be a geometric point of
S. Let G = Galκ(s) denote the absolute Galois group. The stalk functor induces
an equivalence of categories

Ab(Sétale) −→ ModG, F 7−→ Fs.

Proof. In Theorem 59.56.3 we have seen the equivalence between sheaves of sets
and G-sets. The current lemma follows formally from this as an abelian sheaf is
just a sheaf of sets endowed with a commutative group law, and a G-module is just
a G-set endowed with a commutative group law. □

Lemma 59.59.2.03QU Notation and assumptions as in Lemma 59.59.1. Let F be an
abelian sheaf on Spec(K)étale which corresponds to the G-module M . Then

(1) in D(Ab) we have a canonical isomorphism RΓ(S,F) = RΓG(M),
(2) H0

étale(S,F) = MG, and
(3) Hq

étale(S,F) = Hq(G,M).

Proof. Combine Lemma 59.59.1 with Lemma 59.56.5. □

Example 59.59.3.03QV Sheaves on Spec(K)étale. Let G = Gal(Ksep/K) be the absolute
Galois group of K.

(1) The constant sheaf Z/nZ corresponds to the module Z/nZ with trivial
G-action,

(2) the sheaf Gm|Spec(K)étale corresponds to (Ksep)∗ with its G-action,
(3) the sheaf Ga|Spec(Ksep) corresponds to (Ksep,+) with its G-action, and
(4) the sheaf µn|Spec(Ksep) corresponds to µn(Ksep) with its G-action.

By Remark 59.23.4 and Theorem 59.24.1 we have the following identifications for
cohomology groups:

H0
étale(Sétale,Gm) = Γ(S,O∗

S)
H1
étale(Sétale,Gm) = H1

Zar(S,O∗
S) = Pic(S)

Hi
étale(Sétale,Ga) = Hi

Zar(S,OS)
Also, for any quasi-coherent sheaf F on Sétale we have

Hi(Sétale,F) = Hi
Zar(S,F),

see Theorem 59.22.4. In particular, this gives the following sequence of equalities
0 = Pic(Spec(K)) = H1

étale(Spec(K)étale,Gm) = H1(G, (Ksep)∗)
which is none other than Hilbert’s 90 theorem. Similarly, for i ≥ 1,

0 = Hi(Spec(K),O) = Hi
étale(Spec(K)étale,Ga) = Hi(G,Ksep)

where the Ksep indicates Ksep as a Galois module with addition as group law. In
this way we may consider the work we have done so far as a complicated way of
computing Galois cohomology groups.

The following result is a curiosity and should be skipped on a first reading.

https://stacks.math.columbia.edu/tag/04JQ
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Lemma 59.59.4.0D1W Let R be a local ring of dimension 0. Let S = Spec(R). Then
every OS-module on Sétale is quasi-coherent.

Proof. Let F be an OS-module on Sétale. We have to show that F is determined
by the R-module M = Γ(S,F). More precisely, if π : X → S is étale we have to
show that Γ(X,F) = Γ(X,π∗M̃).
Let m ⊂ R be the maximal ideal and let κ be the residue field. By Algebra, Lemma
10.153.10 the local ring R is henselian. If X → S is étale, then the underlying
topological space of X is discrete by Morphisms, Lemma 29.36.7 and hence X is a
disjoint union of affine schemes each having one point. Moreover, if X = Spec(A)
is affine and has one point, then R→ A is finite étale by Algebra, Lemma 10.153.5.
We have to show that Γ(X,F) = M ⊗R A in this case.
The functor A 7→ A/mA defines an equivalence of the category of finite étale
R-algebras with the category of finite separable κ-algebras by Algebra, Lemma
10.153.7. Let us first consider the case where A/mA is a Galois extension of κ with
Galois group G. For each σ ∈ G let σ : A→ A denote the corresponding automor-
phism of A over R. Let N = Γ(X,F). Then Spec(σ) : X → X is an automorphism
over S and hence pullback by this defines a map σ : N → N which is a σ-linear
map: σ(an) = σ(a)σ(n) for a ∈ A and n ∈ N . We will apply Galois descent to
the quasi-coherent module Ñ on X endowed with the isomorphisms coming from
the action on σ on N . See Descent, Lemma 35.6.2. This lemma tells us there is an
isomorphism N = NG ⊗R A. On the other hand, it is clear that NG = M by the
sheaf property for F . Thus the required isomorphism holds.
The general case (with A local and finite étale over R) is deduced from the Galois
case as follows. Choose A → B finite étale such that B is local with residue field
Galois over κ. Let G = Aut(B/R) = Gal(κB/κ). Let H ⊂ G be the Galois
group corresponding to the Galois extension κB/κA. Then as above one shows that
Γ(X,F) = Γ(Spec(B),F)H . By the result for Galois extensions (used twice) we
get

Γ(X,F) = (M ⊗R B)H = M ⊗R A
as desired. □

59.60. Cohomology of curves

03R0 The next task at hand is to compute the étale cohomology of a smooth curve over
an algebraically closed field with torsion coefficients, and in particular show that
it vanishes in degree at least 3. To prove this, we will compute cohomology at the
generic point, which amounts to some Galois cohomology.

59.61. Brauer groups

03R1 Brauer groups of fields are defined using finite central simple algebras. In this sec-
tion we review the relevant facts about Brauer groups, most of which are discussed
in the chapter Brauer Groups, Section 11.1. For other references, see [Ser62], [Ser97]
or [Wei48].

Theorem 59.61.1.03R2 Let K be a field. For a unital, associative (not necessarily
commutative) K-algebra A the following are equivalent

(1) A is finite central simple K-algebra,

https://stacks.math.columbia.edu/tag/0D1W
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(2) A is a finite dimensional K-vector space, K is the center of A, and A has
no nontrivial two-sided ideal,

(3) there exists d ≥ 1 such that A⊗K K̄ ∼= Mat(d× d, K̄),
(4) there exists d ≥ 1 such that A⊗K Ksep ∼= Mat(d× d,Ksep),
(5) there exist d ≥ 1 and a finite Galois extension K ′/K such that A⊗KK ′ ∼=

Mat(d× d,K ′),
(6) there exist n ≥ 1 and a finite central skew field D over K such that

A ∼= Mat(n× n,D).
The integer d is called the degree of A.

Proof. This is a copy of Brauer Groups, Lemma 11.8.6. □

Lemma 59.61.2.03R4 Let A be a finite central simple algebra over K. Then

A⊗K Aopp −→ EndK(A)
a⊗ a′ 7−→ (x 7→ axa′)

is an isomorphism of algebras over K.

Proof. See Brauer Groups, Lemma 11.4.10. □

Definition 59.61.3.03R3 Two finite central simple algebras A1 and A2 over K are called
similar, or equivalent if there exist m,n ≥ 1 such that Mat(n× n,A1) ∼= Mat(m×
m,A2). We write A1 ∼ A2.

By Brauer Groups, Lemma 11.5.1 this is an equivalence relation.

Definition 59.61.4.03R5 Let K be a field. The Brauer group of K is the set Br(K) of
similarity classes of finite central simple algebras over K, endowed with the group
law induced by tensor product (over K). The class of A in Br(K) is denoted by
[A]. The neutral element is [K] = [Mat(d× d,K)] for any d ≥ 1.

The previous lemma implies that inverses exist and that −[A] = [Aopp]. The Brauer
group of a field is always torsion. In fact, we will see that [A] has order dividing
deg(A) for any finite central simple algebra A (see Lemma 59.62.2). In general
the Brauer group is not finitely generated, for example the Brauer group of a non-
Archimedean local field is Q/Z. The Brauer group of C(x, y) is uncountable.

Lemma 59.61.5.03R6 Let K be a field and let Ksep be a separable algebraic closure.
Then the set of isomorphism classes of central simple algebras of degree d over K
is in bijection with the non-abelian cohomology H1(Gal(Ksep/K),PGLd(Ksep)).

Sketch of proof. The Skolem-Noether theorem (see Brauer Groups, Theorem 11.6.1)
implies that for any field L the group AutL-Algebras(Matd(L)) equals PGLd(L). By
Theorem 59.61.1, we see that central simple algebras of degree d correspond to forms
of the K-algebra Matd(K). Combined we see that isomorphism classes of degree d
central simple algebras correspond to elements of H1(Gal(Ksep/K),PGLd(Ksep)).
For more details on twisting, see for example [Sil86]. □

If A is a finite central simple algebra of degree d over a field K, we denote ξA the
corresponding cohomology class in H1(Gal(Ksep/K),PGLd(Ksep)). Consider the
short exact sequence

1→ (Ksep)∗ → GLd(Ksep)→ PGLd(Ksep)→ 1,

https://stacks.math.columbia.edu/tag/03R4
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which gives rise to a long exact cohomology sequence (up to degree 2) with cobound-
ary map

δd : H1(Gal(Ksep/K),PGLd(Ksep)) −→ H2(Gal(Ksep/K), (Ksep)∗).
Explicitly, this is given as follows: if ξ is a cohomology class represented by the
1-cocycle (gσ), then δd(ξ) is the class of the 2-cocycle
(59.61.5.1)0A2I (σ, τ) 7−→ g̃−1

σ g̃στσ(g̃−1
τ ) ∈ (Ksep)∗

where g̃σ ∈ GLd(Ksep) is a lift of gσ. Using this we can make explicit the map
δ : Br(K) −→ H2(Gal(Ksep/K), (Ksep)∗), [A] 7−→ δdegA(ξA)

as follows. AssumeA has degree d overK. Choose an isomorphism φ : Matd(Ksep)→
A ⊗K Ksep. For σ ∈ Gal(Ksep/K) choose an element g̃σ ∈ GLd(Ksep) such that
φ−1 ◦ σ(φ) is equal to the map x 7→ g̃σxg̃

−1
σ . The class in H2 is defined by the two

cocycle (59.61.5.1).

Theorem 59.61.6.03R7 Let K be a field with separable algebraic closure Ksep. The map
δ : Br(K)→ H2(Gal(Ksep/K), (Ksep)∗) defined above is a group isomorphism.

Sketch of proof. To prove that δ defines a group homomorphism, i.e., that δ(A⊗K
B) = δ(A) + δ(B), one computes directly with cocycles.
Injectivity of δ. In the abelian case (d = 1), one has the identification

H1(Gal(Ksep/K),GLd(Ksep)) = H1
étale(Spec(K),GLd(O))

the latter of which is trivial by fpqc descent. If this were true in the non-abelian
case, this would readily imply injectivity of δ. (See [Del77].) Rather, to prove this,
one can reinterpret δ([A]) as the obstruction to the existence of a K-vector space V
with a left A-module structure and such that dimK V = degA. In the case where
V exists, one has A ∼= EndK(V ).
For surjectivity, pick a cohomology class ξ ∈ H2(Gal(Ksep/K), (Ksep)∗), then there
exists a finite Galois extension Ksep/K ′/K such that ξ is the image of some ξ′ ∈
H2(Gal(K ′|K), (K ′)∗). Then write down an explicit central simple algebra over K
using the data K ′, ξ′. □

59.62. The Brauer group of a scheme

0A2J Let S be a scheme. An OS-algebra A is called Azumaya if it is étale locally a
matrix algebra, i.e., if there exists an étale covering U = {φi : Ui → S}i∈I such
that φ∗

iA ∼= Matdi(OUi) for some di ≥ 1. Two such A and B are called equivalent
if there exist finite locally free OS-modules F and G which have positive rank at
every s ∈ S such that

A⊗OS
HomOS

(F ,F) ∼= B ⊗OS
HomOS

(G,G)
as OS-algebras. The Brauer group of S is the set Br(S) of equivalence classes of
Azumaya OS-algebras with the operation induced by tensor product (over OS).

Lemma 59.62.1.0A2K Let S be a scheme. Let F and G be finite locally free sheaves
of OS-modules of positive rank. If there exists an isomorphism HomOS

(F ,F) ∼=
HomOS

(G,G) of OS-algebras, then there exists an invertible sheaf L on S such that
F ⊗OS

L ∼= G and such that this isomorphism induces the given isomorphism of
endomorphism algebras.

https://stacks.math.columbia.edu/tag/03R7
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Proof. Fix an isomorphism HomOS
(F ,F) → HomOS

(G,G). Consider the sheaf
L ⊂ Hom(F ,G) generated as an OS-module by the local isomorphisms φ : F → G
such that conjugation by φ is the given isomorphism of endomorphism algebras. A
local calculation (reducing to the case that F and G are finite free and S is affine)
shows that L is invertible. Another local calculation shows that the evaluation map

F ⊗OS
L −→ G

is an isomorphism. □

The argument given in the proof of the following lemma can be found in [Sal81].

Lemma 59.62.2.0A2L Argument taken
from [Sal81].

Let S be a scheme. Let A be an Azumaya algebra which is locally
free of rank d2 over S. Then the class of A in the Brauer group of S is annihilated
by d.

Proof. Choose an étale covering {Ui → S} and choose isomorphisms A|Ui →
Hom(Fi,Fi) for some locally free OUi-modules Fi of rank d. (We may assume
Fi is free.) Consider the composition

pi : F⊗d
i → ∧d(Fi)→ F⊗d

i

The first arrow is the usual projection and the second arrow is the isomorphism of
the top exterior power of Fi with the submodule of sections of F⊗d

i which transform
according to the sign character under the action of the symmetric group on d
letters. Then p2

i = d!pi and the rank of pi is 1. Using the given isomorphism
A|Ui → Hom(Fi,Fi) and the canonical isomorphism

Hom(Fi,Fi)⊗d = Hom(F⊗d
i ,F⊗d

i )
we may think of pi as a section ofA⊗d over Ui. We claim that pi|Ui×SUj = pj |Ui×SUj
as sections of A⊗d. Namely, applying Lemma 59.62.1 we obtain an invertible sheaf
Lij and a canonical isomorphism

Fi|Ui×SUj ⊗ Lij −→ Fj |Ui×SUj .

Using this isomorphism we see that pi maps to pj . Since A⊗d is a sheaf on Sétale
(Proposition 59.17.1) we find a canonical global section p ∈ Γ(S,A⊗d). A local
calculation shows that

H = Im(A⊗d → A⊗d, f 7→ fp)
is a locally free module of rank dd and that (left) multiplication by A⊗d induces an
isomorphism A⊗d → Hom(H,H). In other words, A⊗d is the trivial element of the
Brauer group of S as desired. □

In this setting, the analogue of the isomorphism δ of Theorem 59.61.6 is a map
δS : Br(S)→ H2

étale(S,Gm).
It is true that δS is injective. If S is quasi-compact or connected, then Br(S) is
a torsion group, so in this case the image of δS is contained in the cohomological
Brauer group of S

Br′(S) := H2
étale(S,Gm)torsion.

So if S is quasi-compact or connected, there is an inclusion Br(S) ⊂ Br′(S). This
is not always an equality: there exists a nonseparated singular surface S for which
Br(S) ⊂ Br′(S) is a strict inclusion. If S is quasi-projective, then Br(S) = Br′(S).

https://stacks.math.columbia.edu/tag/0A2L
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However, it is not known whether this holds for a smooth proper variety over C,
say.

59.63. The Artin-Schreier sequence

0A3J Let p be a prime number. Let S be a scheme in characteristic p. The Artin-Schreier
sequence is the short exact sequence

0 −→ Z/pZ
S
−→ Ga,S

F−1−−−→ Ga,S −→ 0
where F − 1 is the map x 7→ xp − x.

Lemma 59.63.1.0A3K Let p be a prime. Let S be a scheme of characteristic p.
(1) If S is affine, then Hq

étale(S,Z/pZ) = 0 for all q ≥ 2.
(2) If S is a quasi-compact and quasi-separated scheme of dimension d, then

Hq
étale(S,Z/pZ) = 0 for all q ≥ 2 + d.

Proof. Recall that the étale cohomology of the structure sheaf is equal to its coho-
mology on the underlying topological space (Theorem 59.22.4). The first statement
follows from the Artin-Schreier exact sequence and the vanishing of cohomology of
the structure sheaf on an affine scheme (Cohomology of Schemes, Lemma 30.2.2).
The second statement follows by the same argument from the vanishing of Coho-
mology, Proposition 20.22.4 and the fact that S is a spectral space (Properties,
Lemma 28.2.4). □

Lemma 59.63.2.0A3L Let k be an algebraically closed field of characteristic p > 0. Let
V be a finite dimensional k-vector space. Let F : V → V be a frobenius linear
map, i.e., an additive map such that F (λv) = λpF (v) for all λ ∈ k and v ∈ V .
Then F − 1 : V → V is surjective with kernel a finite dimensional Fp-vector space
of dimension ≤ dimk(V ).

Proof. If F = 0, then the statement holds. If we have a filtration of V by F -stable
subvector spaces such that the statement holds for each graded piece, then it holds
for (V, F ). Combining these two remarks we may assume the kernel of F is zero.
Choose a basis v1, . . . , vn of V and write F (vi) =

∑
aijvj . Observe that v =

∑
λivi

is in the kernel if and only if
∑
λpi aijvj = 0. Since k is algebraically closed this

implies the matrix (aij) is invertible. Let (bij) be its inverse. Then to see that
F − 1 is surjective we pick w =

∑
µivi ∈ V and we try to solve

(F − 1)(
∑

λivi) =
∑

λpi aijvj −
∑

λjvj =
∑

µjvj

This is equivalent to ∑
λpjvj −

∑
bijλivj =

∑
bijµivj

in other words
λpj −

∑
bijλi =

∑
bijµi, j = 1, . . . ,dim(V ).

The algebra
A = k[x1, . . . , xn]/(xpj −

∑
bijxi −

∑
bijµi)

is standard smooth over k (Algebra, Definition 10.137.6) because the matrix (bij)
is invertible and the partial derivatives of xpj are zero. A basis of A over k is the set
of monomials xe1

1 . . . xenn with ei < p, hence dimk(A) = pn. Since k is algebraically

https://stacks.math.columbia.edu/tag/0A3K
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closed we see that Spec(A) has exactly pn points. It follows that F − 1 is surjective
and every fibre has pn points, i.e., the kernel of F−1 is a group with pn elements. □

Lemma 59.63.3.0A3M Let X be a separated scheme of finite type over a field k. Let F
be a coherent sheaf of OX -modules. Then dimkH

d(X,F) <∞ where d = dim(X).

Proof. We will prove this by induction on d. The case d = 0 holds because
in that case X is the spectrum of a finite dimensional k-algebra A (Varieties,
Lemma 33.20.2) and every coherent sheaf F corresponds to a finite A-module
M = H0(X,F) which has dimkM <∞.
Assume d > 0 and the result has been shown for separated schemes of finite type of
dimension < d. The scheme X is Noetherian. Consider the property P of coherent
sheaves on X defined by the rule

P(F)⇔ dimkH
d(X,F) <∞

We are going to use the result of Cohomology of Schemes, Lemma 30.12.4 to prove
that P holds for every coherent sheaf on X.
Let

0→ F1 → F → F2 → 0
be a short exact sequence of coherent sheaves on X. Consider the long exact
sequence of cohomology

Hd(X,F1)→ Hd(X,F)→ Hd(X,F2)
Thus if P holds for F1 and F2, then it holds for F .
Let Z ⊂ X be an integral closed subscheme. Let I be a coherent sheaf of ideals
on Z. To finish the proof we have to show that Hd(X, i∗I) = Hd(Z, I) is finite
dimensional. If dim(Z) < d, then the result holds because the cohomology group
will be zero (Cohomology, Proposition 20.20.7). In this way we reduce to the
situation discussed in the following paragraph.
Assume X is a variety of dimension d and F = I is a coherent ideal sheaf. In this
case we have a short exact sequence

0→ I → OX → i∗OZ → 0
where i : Z → X is the closed subscheme defined by I. By induction hypothesis
we see that Hd−1(Z,OZ) = Hd−1(X, i∗OZ) is finite dimensional. Thus we see that
it suffices to prove the result for the structure sheaf.
We can apply Chow’s lemma (Cohomology of Schemes, Lemma 30.18.1) to the
morphism X → Spec(k). Thus we get a diagram

X

g
""

X ′

g′

��

π
oo

i
// Pn

k

{{
Spec(k)

as in the statement of Chow’s lemma. Also, let U ⊂ X be the dense open subscheme
such that π−1(U)→ U is an isomorphism. We may assume X ′ is a variety as well,
see Cohomology of Schemes, Remark 30.18.2. The morphism i′ = (i, π) : X ′ → Pn

X

is a closed immersion (loc. cit.). Hence
L = i∗OPn

k
(1) ∼= (i′)∗OPn

X
(1)

https://stacks.math.columbia.edu/tag/0A3M
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is π-relatively ample (for example by Morphisms, Lemma 29.39.7). Hence by Coho-
mology of Schemes, Lemma 30.16.2 there exists an n ≥ 0 such that Rpπ∗L⊗n = 0
for all p > 0. Set G = π∗L⊗n. Choose any nonzero global section s of L⊗n. Since
G = π∗L⊗n, the section s corresponds to section of G, i.e., a map OX → G. Since
s|U ̸= 0 as X ′ is a variety and L invertible, we see that OX |U → G|U is nonzero.
As G|U = L⊗n|π−1(U) is invertible we conclude that we have a short exact sequence

0→ OX → G → Q→ 0
where Q is coherent and supported on a proper closed subscheme of X. Ar-
guing as before using our induction hypothesis, we see that it suffices to prove
dimHd(X,G) <∞.
By the Leray spectral sequence (Cohomology, Lemma 20.13.6) we see thatHd(X,G) =
Hd(X ′,L⊗n). Let X ′ ⊂ Pn

k be the closure of X ′. Then X
′ is a projective variety

of dimension d over k and X ′ ⊂ X
′ is a dense open. The invertible sheaf L is the

restriction of O
X

′(n) to X. By Cohomology, Proposition 20.22.4 the map

Hd(X ′
,O

X
′(n)) −→ Hd(X ′,L⊗n)

is surjective. Since the cohomology group on the left has finite dimension by Co-
homology of Schemes, Lemma 30.14.1 the proof is complete. □

Lemma 59.63.4.0A3N Let X be separated of finite type over an algebraically closed field
k of characteristic p > 0. Then Hq

étale(X,Z/pZ) = 0 for q ≥ dim(X) + 1.

Proof. Let d = dim(X). By the vanishing established in Lemma 59.63.1 it suffices
to show that Hd+1

étale(X,Z/pZ) = 0. By Lemma 59.63.3 we see that Hd(X,OX)
is a finite dimensional k-vector space. Hence the long exact cohomology sequence
associated to the Artin-Schreier sequence ends with

Hd(X,OX) F−1−−−→ Hd(X,OX)→ Hd+1
étale(X,Z/pZ)→ 0

By Lemma 59.63.2 the map F − 1 in this sequence is surjective. This proves the
lemma. □

Lemma 59.63.5.0A3P Let X be a proper scheme over an algebraically closed field k of
characteristic p > 0. Then

(1) Hq
étale(X,Z/pZ) is a finite Z/pZ-module for all q, and

(2) Hq
étale(X,Z/pZ) → Hq

étale(Xk′ ,Z/pZ)) is an isomorphism if k′/k is an
extension of algebraically closed fields.

Proof. By Cohomology of Schemes, Lemma 30.19.2) and the comparison of coho-
mology of Theorem 59.22.4 the cohomology groups Hq

étale(X,Ga) = Hq(X,OX)
are finite dimensional k-vector spaces. Hence by Lemma 59.63.2 the long exact
cohomology sequence associated to the Artin-Schreier sequence, splits into short
exact sequences

0→ Hq
étale(X,Z/pZ)→ Hq(X,OX) F−1−−−→ Hq(X,OX)→ 0

and moreover the Fp-dimension of the cohomology groups Hq
étale(X,Z/pZ) is equal

to the k-dimension of the vector space Hq(X,OX). This proves the first state-
ment. The second statement follows as Hq(X,OX) ⊗k k′ → Hq(Xk′ ,OXk′ ) is an
isomorphism by flat base change (Cohomology of Schemes, Lemma 30.5.2). □

https://stacks.math.columbia.edu/tag/0A3N
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59.64. Locally constant sheaves

09Y8 This section is the analogue of Modules on Sites, Section 18.43 for the étale site.

Definition 59.64.1.03RU Let X be a scheme. Let F be a sheaf of sets on Xétale.
(1) Let E be a set. We say F is the constant sheaf with value E if F is the

sheafification of the presheaf U 7→ E. Notation: EX or E.
(2) We say F is a constant sheaf if it is isomorphic to a sheaf as in (1).
(3) We say F is locally constant if there exists a covering {Ui → X} such that
F|Ui is a constant sheaf.

(4) We say that F is finite locally constant if it is locally constant and the
values are finite sets.

Let F be a sheaf of abelian groups on Xétale.
(1) Let A be an abelian group. We say F is the constant sheaf with value A

if F is the sheafification of the presheaf U 7→ A. Notation: AX or A.
(2) We say F is a constant sheaf if it is isomorphic as an abelian sheaf to a

sheaf as in (1).
(3) We say F is locally constant if there exists a covering {Ui → X} such that
F|Ui is a constant sheaf.

(4) We say that F is finite locally constant if it is locally constant and the
values are finite abelian groups.

Let Λ be a ring. Let F be a sheaf of Λ-modules on Xétale.
(1) Let M be a Λ-module. We say F is the constant sheaf with value M if F

is the sheafification of the presheaf U 7→M . Notation: MX or M .
(2) We say F is a constant sheaf if it is isomorphic as a sheaf of Λ-modules

to a sheaf as in (1).
(3) We say F is locally constant if there exists a covering {Ui → X} such that
F|Ui is a constant sheaf.

Lemma 59.64.2.095A Let f : X → Y be a morphism of schemes. If G is a locally
constant sheaf of sets, abelian groups, or Λ-modules on Yétale, the same is true for
f−1G on Xétale.

Proof. Holds for any morphism of topoi, see Modules on Sites, Lemma 18.43.2. □

Lemma 59.64.3.095B Let f : X → Y be a finite étale morphism of schemes. If F is
a (finite) locally constant sheaf of sets, (finite) locally constant sheaf of abelian
groups, or (finite type) locally constant sheaf of Λ-modules on Xétale, the same is
true for f∗F on Yétale.

Proof. The construction of f∗ commutes with étale localization. A finite étale
morphism is locally isomorphic to a disjoint union of isomorphisms, see Étale Mor-
phisms, Lemma 41.18.3. Thus the lemma says that if Fi, i = 1, . . . , n are (finite)
locally constant sheaves of sets, then

∏
i=1,...,n Fi is too. This is clear. Similarly

for sheaves of abelian groups and modules. □

Lemma 59.64.4.03RV Let X be a scheme and F a sheaf of sets on Xétale. Then the
following are equivalent

(1) F is finite locally constant, and
(2) F = hU for some finite étale morphism U → X.

https://stacks.math.columbia.edu/tag/03RU
https://stacks.math.columbia.edu/tag/095A
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Proof. A finite étale morphism is locally isomorphic to a disjoint union of isomor-
phisms, see Étale Morphisms, Lemma 41.18.3. Thus (2) implies (1). Conversely, if
F is finite locally constant, then there exists an étale covering {Xi → X} such that
F|Xi is representable by Ui → Xi finite étale. Arguing exactly as in the proof of
Descent, Lemma 35.39.1 we obtain a descent datum for schemes (Ui, φij) relative
to {Xi → X} (details omitted). This descent datum is effective for example by
Descent, Lemma 35.37.1 and the resulting morphism of schemes U → X is finite
étale by Descent, Lemmas 35.23.23 and 35.23.29. □

Lemma 59.64.5.095C Let X be a scheme.
(1) Let φ : F → G be a map of locally constant sheaves of sets on Xétale. If
F is finite locally constant, there exists an étale covering {Ui → X} such
that φ|Ui is the map of constant sheaves associated to a map of sets.

(2) Let φ : F → G be a map of locally constant sheaves of abelian groups
on Xétale. If F is finite locally constant, there exists an étale covering
{Ui → X} such that φ|Ui is the map of constant abelian sheaves associated
to a map of abelian groups.

(3) Let Λ be a ring. Let φ : F → G be a map of locally constant sheaves of Λ-
modules on Xétale. If F is of finite type, then there exists an étale covering
{Ui → X} such that φ|Ui is the map of constant sheaves of Λ-modules
associated to a map of Λ-modules.

Proof. This holds on any site, see Modules on Sites, Lemma 18.43.3. □

Lemma 59.64.6.03RX Let X be a scheme.
(1) The category of finite locally constant sheaves of sets is closed under finite

limits and colimits inside Sh(Xétale).
(2) The category of finite locally constant abelian sheaves is a weak Serre

subcategory of Ab(Xétale).
(3) Let Λ be a Noetherian ring. The category of finite type, locally con-

stant sheaves of Λ-modules on Xétale is a weak Serre subcategory of
Mod(Xétale,Λ).

Proof. This holds on any site, see Modules on Sites, Lemma 18.43.5. □

Lemma 59.64.7.095D Let X be a scheme. Let Λ be a ring. The tensor product of
two locally constant sheaves of Λ-modules on Xétale is a locally constant sheaf of
Λ-modules.

Proof. This holds on any site, see Modules on Sites, Lemma 18.43.6. □

Lemma 59.64.8.09BF Let X be a connected scheme. Let Λ be a ring and let F be a
locally constant sheaf of Λ-modules. Then there exists a Λ-module M and an étale
covering {Ui → X} such that F|Ui ∼= M |Ui .

Proof. Choose an étale covering {Ui → X} such that F|Ui is constant, say F|Ui ∼=
MiUi

. Observe that Ui ×X Uj is empty if Mi is not isomorphic to Mj . For each
Λ-module M let IM = {i ∈ I |Mi

∼= M}. As étale morphisms are open we see that
UM =

⋃
i∈IM Im(Ui → X) is an open subset of X. Then X =

∐
UM is a disjoint

open covering of X. As X is connected only one UM is nonempty and the lemma
follows. □

https://stacks.math.columbia.edu/tag/095C
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59.65. Locally constant sheaves and the fundamental group

0DV4 We can relate locally constant sheaves to the fundamental group of a scheme in
some cases.
Lemma 59.65.1.0DV5 Let X be a connected scheme. Let x be a geometric point of X.

(1) There is an equivalence of categories{
finite locally constant

sheaves of sets on Xétale

}
←→

{
finite π1(X,x)-sets

}
(2) There is an equivalence of categories{

finite locally constant
sheaves of abelian groups on Xétale

}
←→

{
finite π1(X,x)-modules

}
(3) Let Λ be a finite ring. There is an equivalence of categories{
finite type, locally constant

sheaves of Λ-modules on Xétale

}
←→

{
finite π1(X,x)-modules endowed

with commuting Λ-module structure

}
Proof. We observe that π1(X,x) is a profinite topological group, see Fundamental
Groups, Definition 58.6.1. The left hand categories are defined in Section 59.64.
The notation used in the right hand categories is taken from Fundamental Groups,
Definition 58.2.1 for sets and Definition 59.57.1 for abelian groups. This explains
the notation.
Assertion (1) follows from Lemma 59.64.4 and Fundamental Groups, Theorem
58.6.2. Parts (2) and (3) follow immediately from this by endowing the underlying
(sheaves of) sets with additional structure. For example, a finite locally constant
sheaf of abelian groups on Xétale is the same thing as a finite locally constant sheaf
of sets F together with a map + : F × F → F satisfying the usual axioms. The
equivalence in (1) sends products to products and hence sends + to an addition on
the corresponding finite π1(X,x)-set. Since π1(X,x)-modules are the same thing
as π1(X,x)-sets with a compatible abelian group structure we obtain (2). Part (3)
is proved in exactly the same way. □

Lemma 59.65.2.0GIY Let X be an irreducible, geometrically unibranch scheme. Let x
be a geometric point of X. Let Λ be a ring. There is an equivalence of categories{

finite type, locally constant
sheaves of Λ-modules on Xétale

}
←→

{
finite Λ-modules M endowed

with a continuous π1(X,x)-action

}
Proof. The proof given in Lemma 59.65.1 does not work as a finite Λ-module M
may not have a finite underlying set.
Let ν : Xν → X be the normalization morphism. By Morphisms, Lemma 29.54.11
this is a universal homeomorphism. By Fundamental Groups, Proposition 58.8.4
this induces an isomorphism π1(Xν , x) → π1(X,x) and by Theorem 59.45.2 we
get an equivalence of category between finite type, locally constant Λ-modules on
Xétale and on Xν

étale. This reduces us to the case where X is an integral normal
scheme.
Assume X is an integral normal scheme. Let η ∈ X be the generic point. Let η be
a geometric point lying over η. By Fundamental Groups, Proposition 58.11.3 have
a continuous surjection

Gal(κ(η)sep/κ(η)) = π1(η, η) −→ π1(X, η)

https://stacks.math.columbia.edu/tag/0DV5
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whose kernel is described in Fundamental Groups, Lemma 58.13.2. Let F be a
finite type, locally constant sheaf of Λ-modules on Xétale. Let M = Fη be the stalk
of F at η. We obtain a continuous action of Gal(κ(η)sep/κ(η)) on M by Section
59.56. Our goal is to show that this action factors through the displayed surjection.
Since F is of finite type, M is a finite Λ-module. Since F is locally constant, for
every x ∈ X the restriction of F to Spec(OshX,x) is constant. Hence the action of
Gal(Ksep/Ksh

x ) (with notation as in Fundamental Groups, Lemma 58.13.2) on M
is trivial. We conclude we have the factorization as desired.
On the other hand, suppose we have a finite Λ-module M with a continuous action
of π1(X, η). We are going to construct an F such that M ∼= Fη as Λ[π1(X, η)]-
modules. Choose generators m1, . . . ,mr ∈ M . Since the action of π1(X, η) on M
is continuous, for each i there exists an open subgroup Ni of the profinite group
π1(X, η) such that every γ ∈ Hi fixes mi. We conclude that every element of the
open subgroup H =

⋂
i=1,...,rHi fixes every element of M . After shrinking H we

may assume H is an open normal subgroup of π1(X, η). Set G = π1(X, η)/H. Let
f : Y → X be the corresponding Galois finite étale G-cover. We can view f∗Z as a
sheaf of Z[G]-modules on Xétale. Then we just take

F = f∗Z⊗Z[G] M

We leave it to the reader to compute Fη. We also omit the verification that this
construction is the inverse to the construction in the previous paragraph. □

Remark 59.65.3.0DV6 The equivalences of Lemmas 59.65.1 and 59.65.2 are compatible
with pullbacks. For example, suppose f : Y → X is a morphism of connected
schemes. Let y be geometric point of Y and set x = f(y). Then the diagram

finite locally constant sheaves of sets on Yétale // finite π1(Y, y)-sets

finite locally constant sheaves of sets on Xétale
//

f−1

OO

finite π1(X,x)-sets

OO

is commutative, where the vertical arrow on the right comes from the continuous
homomorphism π1(Y, y) → π1(X,x) induced by f . This follows immediately from
the commutative diagram in Fundamental Groups, Theorem 58.6.2. A similar result
holds for the other cases.

59.66. Méthode de la trace

03SH A reference for this section is [AGV71, Exposé IX, §5]. The material here will be
used in the proof of Lemma 59.83.9 below.
Let f : Y → X be an étale morphism of schemes. There is a sequence

f!, f
−1, f∗

of adjoint functors between Ab(Xétale) and Ab(Yétale). The functor f! is discussed in
Section 59.70. The adjunction map id→ f∗f

−1 is called restriction. The adjunction
map f!f

−1 → id is often called the trace map. If f is finite étale, then f∗ = f!
(Lemma 59.70.7) and we can view this as a map f∗f

−1 → id.

Definition 59.66.1.03SE Let f : Y → X be a finite étale morphism of schemes. The
map f∗f

−1 → id described above and explicitly below is called the trace.

https://stacks.math.columbia.edu/tag/0DV6
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Let f : Y → X be a finite étale morphism of schemes. The trace map is character-
ized by the following two properties:

(1) it commutes with étale localization on X and
(2) if Y =

∐d
i=1 X then the trace map is the sum map f∗f

−1F = F⊕d → F .
By Étale Morphisms, Lemma 41.18.3 every finite étale morphism f : Y → X is
étale locally on X of the form given in (2) for some integer d ≥ 0. Hence we
can define the trace map using the characterization given; in particular we do not
need to know about the existence of f! and the agreement of f! with f∗ in order to
construct the trace map. This description shows that if f has constant degree d,
then the composition

F res−−→ f∗f
−1F trace−−−→ F

is multiplication by d. The “méthode de la trace” is the following observation: if F
is an abelian sheaf on Xétale such that multiplication by d on F is an isomorphism,
then the map

Hn
étale(X,F) −→ Hn

étale(Y, f−1F)
is injective. Namely, we have

Hn
étale(Y, f−1F) = Hn

étale(X, f∗f
−1F)

by the vanishing of the higher direct images (Proposition 59.55.2) and the Leray
spectral sequence (Proposition 59.54.2). Thus we can consider the maps

Hn
étale(X,F)→ Hn

étale(Y, f−1F) = Hn
étale(X, f∗f

−1F) trace−−−→ Hn
étale(X,F)

and the composition is an isomorphism (under our assumption on F and f). In
particular, if Hq

étale(Y, f−1F) = 0 then Hq
étale(X,F) = 0 as well. Indeed, mul-

tiplication by d induces an isomorphism on Hq
étale(X,F) which factors through

Hq
étale(Y, f−1F) = 0.

This is often combined with the following.

Lemma 59.66.2.0A3R Let S be a connected scheme. Let ℓ be a prime number. Let F
be a finite type, locally constant sheaf of Fℓ-vector spaces on Sétale. Then there
exists a finite étale morphism f : T → S of degree prime to ℓ such that f−1F has
a finite filtration whose successive quotients are Z/ℓZ

T
.

Proof. Choose a geometric point s of S. Via the equivalence of Lemma 59.65.1 the
sheaf F corresponds to a finite dimensional Fℓ-vector space V with a continuous
π1(S, s)-action. Let G ⊂ Aut(V ) be the image of the homomorphism ρ : π1(S, s)→
Aut(V ) giving the action. Observe that G is finite. The surjective continuous
homomorphism ρ : π1(S, s) → G corresponds to a Galois object Y → S of FÉtS
with automorphism group G = Aut(Y/S), see Fundamental Groups, Section 58.7.
Let H ⊂ G be an ℓ-Sylow subgroup. We claim that T = Y/H → S works. Namely,
let t ∈ T be a geometric point over s. The image of π1(T, t)→ π1(S, s) is (ρ)−1(H)
as follows from the functorial nature of fundamental groups. Hence the action of
π1(T, t) on V corresponding to f−1F is through the map π1(T, t)→ H, see Remark
59.65.3. As H is a finite ℓ-group, the irreducible constituents of the representation
ρ|π1(T,t) are each trivial of rank 1 (this is a simple lemma on representation theory
of finite groups; insert future reference here). Via the equivalence of Lemma 59.65.1
this means f−1F is a successive extension of constant sheaves with value Z/ℓZ

T
.

https://stacks.math.columbia.edu/tag/0A3R
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Moreover the degree of T = Y/H → S is prime to ℓ as it is equal to the index of H
in G. □

Lemma 59.66.3.0GIZ Let Λ be a Noetherian ring. Let ℓ be a prime number and n ≥ 1.
Let H be a finite ℓ-group. Let M be a finite Λ[H]-module annihilated by ℓn. Then
there is a finite filtration 0 = M0 ⊂M1 ⊂ . . . ⊂Mt = M by Λ[H]-submodules such
that H acts trivially on Mi+1/Mi for all i = 0, . . . , t− 1.

Proof. Omitted. Hint: Show that the augmentation ideal m of the noncommutative
ring Z/ℓnZ[H] is nilpotent. □

Lemma 59.66.4.0GJ0 Let S be an irreducible, geometrically unibranch scheme. Let ℓ
be a prime number and n ≥ 1. Let Λ be a Noetherian ring. Let F be a finite type,
locally constant sheaf of Λ-modules on Sétale which is annihilated by ℓn. Then
there exists a finite étale morphism f : T → S of degree prime to ℓ such that f−1F
has a finite filtration whose successive quotients are of the form MT for some finite
Λ-modules M .

Proof. Choose a geometric point s of S. Via the equivalence of Lemma 59.65.2 the
sheaf F corresponds to a finite Λ-module M with a continuous π1(S, s)-action. Let
G ⊂ Aut(V ) be the image of the homomorphism ρ : π1(S, s)→ Aut(M) giving the
action. Observe that G is finite as M is a finite Λ-module (see proof of Lemma
59.65.2). The surjective continuous homomorphism ρ : π1(S, s) → G corresponds
to a Galois object Y → S of FÉtS with automorphism group G = Aut(Y/S), see
Fundamental Groups, Section 58.7. Let H ⊂ G be an ℓ-Sylow subgroup. We claim
that T = Y/H → S works. Namely, let t ∈ T be a geometric point over s. The
image of π1(T, t) → π1(S, s) is (ρ)−1(H) as follows from the functorial nature of
fundamental groups. Hence the action of π1(T, t) on M corresponding to f−1F is
through the map π1(T, t) → H, see Remark 59.65.3. Let 0 = M0 ⊂ M1 ⊂ . . . ⊂
Mt = M be as in Lemma 59.66.3. This induces a filtration 0 = F0 ⊂ F1 ⊂ . . . ⊂
Ft = f−1F such that the successive quotients are constant with value Mi+1/Mi.
Finally, the degree of T = Y/H → S is prime to ℓ as it is equal to the index of H
in G. □

59.67. Galois cohomology

0A2M In this section we prove a result on Galois cohomology (Proposition 59.67.4) using
étale cohomology and the trick from Section 59.66. This will allow us to prove
vanishing of higher étale cohomology groups over the spectrum of a field.

Lemma 59.67.1.0DV7 Let ℓ be a prime number and n an integer > 0. Let S be a quasi-
compact and quasi-separated scheme. Let X = limi∈I Xi be the limit of a directed
system of S-schemes each Xi → S being finite étale of constant degree relatively
prime to ℓ. The following are equivalent:

(1) there exists an ℓ-power torsion sheaf G on S such that Hn
étale(S,G) ̸= 0

and
(2) there exists an ℓ-power torsion sheaf F on X such that Hn

étale(X,F) ̸= 0.
In fact, given G we can take F = g−1F and given F we can take G = g∗F .

Proof. Let g : X → S and gi : Xi → S denote the structure morphisms. Fix an
ℓ-power torsion sheaf G on S with Hn

étale(S,G) ̸= 0. The system given by Gi = g−1
i G

https://stacks.math.columbia.edu/tag/0GIZ
https://stacks.math.columbia.edu/tag/0GJ0
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satisify the conditions of Theorem 59.51.3 with colimit sheaf given by g−1G. This
tells us that:

colimi∈I H
n
étale(Xi, g

−1
i G) = Hn

étale(X,G)
By virtue of the gi being finite étale morphism of degree prime to ℓ we can apply
“la méthode de la trace” and we find the maps

Hn
étale(S,G)→ Hn

étale(Xi, g
−1
i G)

are all injective (and compatible with the transition maps). See Section 59.66.
Thus, the colimit is non-zero, i.e., Hn(X, g−1G) ̸= 0, giving us the desired result
with F = g−1G.

Conversely, suppose given an ℓ-power torsion sheaf F on X with Hn
étale(X,F) ̸= 0.

We note that since the gi are finite morphisms the higher direct images vanish
(Proposition 59.55.2). Then, by applying Lemma 59.51.7 we may also conclude the
same for g. The vanishing of the higher direct images tells us that Hn

étale(X,F) =
Hn(S, g∗F) ̸= 0 by Leray (Proposition 59.54.2) giving us what we want with G =
g∗F . □

Lemma 59.67.2.0DV8 Let ℓ be a prime number and n an integer > 0. Let K be a
field with G = Gal(Ksep/K) and let H ⊂ G be a maximal pro-ℓ subgroup with
L/K being the corresponding field extension. Then Hn

étale(Spec(K),F) = 0 for all
ℓ-power torsion F if and only if Hn

étale(Spec(L),Z/ℓZ) = 0.

Proof. Write L =
⋃
Li as the union of its finite subextensions over K. Our choice

of H implies that [Li : K] is prime to ℓ. Thus Spec(L) = limi∈I Spec(Li) as in
Lemma 59.67.1. Thus we may replace K by L and assume that the absolute Galois
group G of K is a profinite pro-ℓ group.

AssumeHn(Spec(K),Z/ℓZ) = 0. Let F be an ℓ-power torsion sheaf on Spec(K)étale.
We will show that Hn

étale(Spec(K),F) = 0. By the correspondence specified in
Lemma 59.59.1 our sheaf F corresponds to an ℓ-power torsion G-module M . Any
finite set of elements x1, . . . , xm ∈ M must be fixed by an open subgroup U by
continuity. Let M ′ be the module spanned by the orbits of x1, . . . , xm. This is a
finite abelian ℓ-group as each xi is killed by a power of ℓ and the orbits are finite.
Since M is the filtered colimit of these submodules M ′, we see that F is the filtered
colimit of the corresponding subsheaves F ′ ⊂ F . Applying Theorem 59.51.3 to this
colimit, we reduce to the case where F is a finite locally constant sheaf.

Let M be a finite abelian ℓ-group with a continuous action of the profinite pro-ℓ
group G. Then there is a G-invariant filtration

0 = M0 ⊂M1 ⊂ . . . ⊂Mr = M

such that Mi+1/Mi
∼= Z/ℓZ with trivial G-action (this is a simple lemma on rep-

resentation theory of finite groups; insert future reference here). Thus the corre-
sponding sheaf F has a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fr = F

with successive quotients isomorphic to Z/ℓZ. Thus by induction and the long
exact cohomology sequence we conclude. □

https://stacks.math.columbia.edu/tag/0DV8
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Lemma 59.67.3.0DV9 Let ℓ be a prime number and n an integer > 0. Let K be a field
with G = Gal(Ksep/K) and let H ⊂ G be a maximal pro-ℓ subgroup with L/K
being the corresponding field extension. Then Hq

étale(Spec(K),F) = 0 for q ≥ n
and all ℓ-torsion sheaves F if and only if Hn

étale(Spec(L),Z/ℓZ) = 0.

Proof. The forward direction is trivial, so we need only prove the reverse direction.
We proceed by induction on q. The case of q = n is Lemma 59.67.2. Now let F
be an ℓ-power torsion sheaf on Spec(K). Let f : Spec(Ksep) → Spec(K) be the
inclusion of a geometric point. Then consider the exact sequence:

0→ F res−−→ f∗f
−1F → f∗f

−1F/F → 0
Note that Ksep may be written as the filtered colimit of finite separable extensions.
Thus f is the limit of a directed system of finite étale morphisms. We may, as was
seen in the proof of Lemma 59.67.1, conclude that f has vanishing higher direct
images. Thus, we may express the higher cohomology of f∗f

−1F as the higher
cohomology on the geometric point which clearly vanishes. Hence, as everything
here is still ℓ-torsion, we may use the inductive hypothesis in conjunction with the
long-exact cohomology sequence to conclude the result for q + 1. □

Proposition 59.67.4.03R8 [Ser97, Chapter II,
Section 3,
Proposition 5]

Let K be a field with separable algebraic closure Ksep. As-
sume that for any finite extension K ′ of K we have Br(K ′) = 0. Then

(1) Hq(Gal(Ksep/K), (Ksep)∗) = 0 for all q ≥ 1, and
(2) Hq(Gal(Ksep/K),M) = 0 for any torsion Gal(Ksep/K)-module M and

any q ≥ 2,

Proof. Set p = char(K). By Lemma 59.59.2, Theorem 59.61.6, and Example 59.59.3
the proposition is equivalent to showing that if H2(Spec(K ′),Gm|Spec(K′)étale) = 0
for all finite extensions K ′/K then:

• Hq(Spec(K),Gm|Spec(K)étale) = 0 for all q ≥ 1, and
• Hq(Spec(K),F) = 0 for any torsion sheaf F and any q ≥ 2.

We prove the second part first. Since F is a torsion sheaf, we may use the ℓ-primary
decomposition as well as the compatibility of cohomology with colimits (i.e, direct
sums, see Theorem 59.51.3) to reduce to showing Hq(Spec(K),F) = 0, q ≥ 2 for
all ℓ-power torsion sheaves for every prime ℓ. This allows us to analyze each prime
individually.
Suppose that ℓ ̸= p. For any extension K ′/K consider the Kummer sequence
(Lemma 59.28.1)

0→ µℓ,SpecK′ → Gm,SpecK′
(·)ℓ−−→ Gm,SpecK′ → 0

Since Hq(SpecK ′,Gm|Spec(K′)étale) = 0 for q = 2 by assumption and for q = 1 by
Theorem 59.24.1 combined with Pic(K) = (0). Thus, by the long-exact cohomology
sequence we may conclude that H2(SpecK ′, µℓ) = 0 for any separable K ′/K. Now
let H be a maximal pro-ℓ subgroup of the absolute Galois group of K and let L
be the corresponding extension. We can write L as the colimit of finite extensions,
applying Theorem 59.51.3 to this colimit we see that H2(Spec(L), µℓ) = 0. Now µℓ
must be the constant sheaf. If it weren’t, that would imply there exists a Galois
extension of degree relatively prime to ℓ of L which is not true by definition of L
(namely, the extension one gets by adjoining the ℓth roots of unity to L). Hence,
via Lemma 59.67.3, we conclude the result for ℓ ̸= p.

https://stacks.math.columbia.edu/tag/0DV9
https://stacks.math.columbia.edu/tag/03R8


59.67. GALOIS COHOMOLOGY 4816

Now suppose that ℓ = p. We consider the Artin-Schrier exact sequence (Section
59.63)

0 −→ Z/pZ
SpecK

−→ Ga,SpecK
F−1−−−→ Ga,SpecK −→ 0

where F − 1 is the map x 7→ xp − x. Then note that the higher Cohomology of
Ga,SpecK vanishes, by Remark 59.23.4 and the vanishing of the higher cohomology
of the structure sheaf of an affine scheme (Cohomology of Schemes, Lemma 30.2.2).
Note this can be applied to any field of characteristic p. In particular, we can apply
it to the field extension L defined by a maximal pro-p subgroup H. This allows us
to conclude Hn(SpecL,Z/pZ

SpecL
) = 0 for n ≥ 2, from which the result follows

for ℓ = p, by Lemma 59.67.3.
To finish the proof we still have to show that Hq(Gal(Ksep/K), (Ksep)∗) = 0 for
all q ≥ 1. Set G = Gal(Ksep/K) and set M = (Ksep)∗ viewed as a G-module. We
have already shown (above) that H1(G,M) = 0 and H2(G,M) = 0. Consider the
exact sequence

0→ A→M →M ⊗Q→ B → 0
of G-modules. By the above we have Hi(G,A) = 0 and Hi(G,B) = 0 for i > 1 since
A and B are torsion G-modules. By Lemma 59.57.6 we have Hi(G,M ⊗Q) = 0
for i > 0. It is a pleasant exercise to see that this implies that Hi(G,M) = 0 also
for i ≥ 3. □

Definition 59.67.5.03R9 A field K is called Cr if for every 0 < dr < n and every
f ∈ K[T1, . . . , Tn] homogeneous of degree d, there exist α = (α1, . . . , αn), αi ∈ K
not all zero, such that f(α) = 0. Such an α is called a nontrivial solution of f .

Example 59.67.6.03RA An algebraically closed field is Cr.

In fact, we have the following simple lemma.

Lemma 59.67.7.03RB Let k be an algebraically closed field. Let f1, . . . , fs ∈ k[T1, . . . , Tn]
be homogeneous polynomials of degree d1, . . . , ds with di > 0. If s < n, then
f1 = . . . = fs = 0 have a common nontrivial solution.

Proof. This follows from dimension theory, for example in the form of Varieties,
Lemma 33.34.2 applied s− 1 times. □

The following result computes the Brauer group of C1 fields.

Theorem 59.67.8.03RC Let K be a C1 field. Then Br(K) = 0.

Proof. Let D be a finite dimensional division algebra over K with center K. We
have seen that

D ⊗K Ksep ∼= Matd(Ksep)
uniquely up to inner isomorphism. Hence the determinant det : Matd(Ksep) →
Ksep is Galois invariant and descends to a homogeneous degree d map

det = Nred : D −→ K

called the reduced norm. Since K is C1, if d > 1, then there exists a nonzero
x ∈ D with Nred(x) = 0. This clearly implies that x is not invertible, which is a
contradiction. Hence Br(K) = 0. □

Definition 59.67.9.03RE Let k be a field. A variety is separated, integral scheme of finite
type over k. A curve is a variety of dimension 1.

https://stacks.math.columbia.edu/tag/03R9
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Theorem 59.67.10 (Tsen’s theorem).03RD The function field of a variety of dimension
r over an algebraically closed field k is Cr.

Proof. For projective space one can show directly that the field k(x1, . . . , xr) is Cr
(exercise).

General case. Without loss of generality, we may assumeX to be projective. Let f ∈
k(X)[T1, . . . , Tn]d with 0 < dr < n. Say the coefficients of f are in Γ(X,OX(H))
for some ample H ⊂ X. Let α = (α1, . . . , αn) with αi ∈ Γ(X,OX(eH)). Then
f(α) ∈ Γ(X,OX((de + 1)H)). Consider the system of equations f(α) = 0. Then
by asymptotic Riemann-Roch (Varieties, Proposition 33.45.13) there exists a c > 0
such that

• the number of variables is ndimk Γ(X,OX(eH)) ∼ nerc, and
• the number of equations is dimk Γ(X,OX((de+ 1)H)) ∼ (de+ 1)rc.

Since n > dr, there are more variables than equations. The equations are homoge-
neous hence there is a solution by Lemma 59.67.7. □

Lemma 59.67.11.03RF Let C be a curve over an algebraically closed field k. Then the
Brauer group of the function field of C is zero: Br(k(C)) = 0.

Proof. This is clear from Tsen’s theorem, Theorem 59.67.10 and Theorem 59.67.8.
□

Lemma 59.67.12.03RG Let k be an algebraically closed field and K/k a field extension
of transcendence degree 1. Then for all q ≥ 1, Hq

étale(Spec(K),Gm) = 0.

Proof. Recall that Hq
étale(Spec(K),Gm) = Hq(Gal(Ksep/K), (Ksep)∗) by Lemma

59.59.2. Thus by Proposition 59.67.4 it suffices to show that if K ′/K is a finite field
extension, then Br(K ′) = 0. Now observe that K ′ = colimK ′′, where K ′′ runs over
the finitely generated subextensions of k contained in K ′ of transcendence degree
1. Note that Br(K ′) = colim Br(K ′′) which reduces us to a finitely generated field
extension K ′′/k of transcendence degree 1. Such a field is the function field of a
curve over k, hence has trivial Brauer group by Lemma 59.67.11. □

59.68. Higher vanishing for the multiplicative group

03RH In this section, we fix an algebraically closed field k and a smooth curve X over
k. We denote ix : x ↪→ X the inclusion of a closed point of X and j : η ↪→ X the
inclusion of the generic point. We also denote X0 the set of closed points of X.

Theorem 59.68.1 (The Fundamental Exact Sequence).03RI There is a short exact se-
quence of étale sheaves on X

0 −→ Gm,X −→ j∗Gm,η −→
⊕

x∈X0
ix∗Z −→ 0.

Proof. Let φ : U → X be an étale morphism. Then by properties of étale mor-
phisms (Proposition 59.26.2), U =

∐
i Ui where each Ui is a smooth curve mapping

to X. The above sequence for U is a product of the corresponding sequences for
each Ui, so it suffices to treat the case where U is connected, hence irreducible. In
this case, there is a well known exact sequence

1 −→ Γ(U,O∗
U ) −→ k(U)∗ −→

⊕
y∈U0

Zy.

https://stacks.math.columbia.edu/tag/03RD
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This amounts to a sequence

0 −→ Γ(U,O∗
U ) −→ Γ(η ×X U,O∗

η×XU ) −→
⊕

x∈X0
Γ(x×X U,Z)

which, unfolding definitions, is nothing but a sequence

0 −→ Gm(U) −→ j∗Gm,η(U) −→
(⊕

x∈X0
ix∗Z

)
(U).

This defines the maps in the Fundamental Exact Sequence and shows it is exact
except possibly at the last step. To see surjectivity, let us recall that if U is a
nonsingular curve and D is a divisor on U , then there exists a Zariski open covering
{Uj → U} of U such that D|Uj = div(fj) for some fj ∈ k(U)∗. □

Lemma 59.68.2.03RJ For any q ≥ 1, Rqj∗Gm,η = 0.

Proof. We need to show that (Rqj∗Gm,η)x̄ = 0 for every geometric point x̄ of X.
Assume that x̄ lies over a closed point x of X. Let Spec(A) be an affine open
neighbourhood of x in X, and K the fraction field of A. Then

Spec(OshX,x̄)×X η = Spec(OshX,x̄ ⊗A K).

The ring OshX,x̄ ⊗A K is a localization of the discrete valuation ring OshX,x̄, so it is
either OshX,x̄ again, or its fraction field Ksh

x̄ . But since some local uniformizer gets
inverted, it must be the latter. Hence

(Rqj∗Gm,η)(X,x̄) = Hq
étale(SpecKsh

x̄ ,Gm).

Now recall that OshX,x̄ = colim(U,ū)→x̄O(U) = colimA⊂B B where A → B is étale,
hence Ksh

x̄ is an algebraic extension of K = k(X), and we may apply Lemma
59.67.12 to get the vanishing.
Assume that x̄ = η̄ lies over the generic point η of X (in fact, this case is superflu-
ous). Then OshX,η̄ = κ(η)sep and thus

(Rqj∗Gm,η)η̄ = Hq
étale(Spec(κ(η)sep)×X η,Gm)

= Hq
étale(Spec(κ(η)sep),Gm)

= 0 for q ≥ 1
since the corresponding Galois group is trivial. □

Lemma 59.68.3.03RK For all p ≥ 1, Hp
étale(X, j∗Gm,η) = 0.

Proof. The Leray spectral sequence reads
Ep,q2 = Hp

étale(X,R
qj∗Gm,η)⇒ Hp+q

étale(η,Gm,η),
which vanishes for p+ q ≥ 1 by Lemma 59.67.12. Taking q = 0, we get the desired
vanishing. □

Lemma 59.68.4.03RL For all q ≥ 1, Hq
étale(X,

⊕
x∈X0

ix∗Z) = 0.

Proof. For X quasi-compact and quasi-separated, cohomology commutes with col-
imits, so it suffices to show the vanishing of Hq

étale(X, ix∗Z). But then the inclusion
ix of a closed point is finite so Rpix∗Z = 0 for all p ≥ 1 by Proposition 59.55.2.
Applying the Leray spectral sequence, we see that Hq

étale(X, ix∗Z) = Hq
étale(x,Z).

Finally, since x is the spectrum of an algebraically closed field, all higher cohomol-
ogy on x vanishes. □

https://stacks.math.columbia.edu/tag/03RJ
https://stacks.math.columbia.edu/tag/03RK
https://stacks.math.columbia.edu/tag/03RL


59.69. PICARD GROUPS OF CURVES 4819

Concluding this series of lemmata, we get the following result.

Theorem 59.68.5.03RM Let X be a smooth curve over an algebraically closed field. Then

Hq
étale(X,Gm) = 0 for all q ≥ 2.

Proof. See discussion above. □

We also get the cohomology long exact sequence

0→ H0
étale(X,Gm)→ H0

étale(X, j∗Gmη)→ H0
étale(X,

⊕
ix∗Z)→ H1

étale(X,Gm)→ 0

although this is the familiar

0→ H0
Zar(X,O∗

X)→ k(X)∗ → Div(X)→ Pic(X)→ 0.

59.69. Picard groups of curves

03RN Our next step is to use the Kummer sequence to deduce some information about
the cohomology group of a curve with finite coefficients. In order to get vanishing
in the long exact sequence, we review some facts about Picard groups.

Let X be a smooth projective curve over an algebraically closed field k. Let g =
dimkH

1(X,OX) be the genus of X. There exists a short exact sequence

0→ Pic0(X)→ Pic(X) deg−−→ Z→ 0.

The abelian group Pic0(X) can be identified with Pic0(X) = Pic0
X/k(k), i.e., the

k-valued points of an abelian variety Pic0
X/k over k of dimension g. Consequently,

if n ∈ k∗ then Pic0(X)[n] ∼= (Z/nZ)2g as abelian groups. See Picard Schemes
of Curves, Section 44.6 and Groupoids, Section 39.9. This key fact, namely the
description of the torsion in the Picard group of a smooth projective curve over an
algebraically closed field does not appear to have an elementary proof.

Lemma 59.69.1.03RQ Let X be a smooth projective curve of genus g over an alge-
braically closed field k and let n ≥ 1 be invertible in k. Then there are canonical
identifications

Hq
étale(X,µn) =


µn(k) if q = 0,

Pic0(X)[n] if q = 1,
Z/nZ if q = 2,

0 if q ≥ 3.

Since µn ∼= Z/nZ, this gives (noncanonical) identifications

Hq
étale(X,Z/nZ) ∼=


Z/nZ if q = 0,

(Z/nZ)2g if q = 1,
Z/nZ if q = 2,

0 if q ≥ 3.

Proof. Theorems 59.24.1 and 59.68.5 determine the étale cohomology of Gm on X
in terms of the Picard group of X. The Kummer sequence 0 → µn,X → Gm,X →

https://stacks.math.columbia.edu/tag/03RM
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Gm,X → 0 (Lemma 59.28.1) then gives us the long exact cohomology sequence

0 // µn(k) // k∗ (·)n // k∗

zz
H1
étale(X,µn) // Pic(X)

(·)n // Pic(X)

zz
H2
étale(X,µn) // 0 // 0 . . .

The nth power map k∗ → k∗ is surjective since k is algebraically closed. So we need
to compute the kernel and cokernel of the map n : Pic(X)→ Pic(X). Consider the
commutative diagram with exact rows

0 // Pic0(X) //

(·)n
����

Pic(X)
deg
//

(·)n

��

Z //� _

n

��

0

0 // Pic0(X) // Pic(X) deg // Z // 0

The group Pic0(X) is the k-points of the group scheme Pic0
X/k, see Picard Schemes

of Curves, Lemma 44.6.7. The same lemma tells us that Pic0
X/k is a g-dimensional

abelian variety over k as defined in Groupoids, Definition 39.9.1. Hence the left
vertical map is surjective by Groupoids, Proposition 39.9.11. Applying the snake
lemma gives canonical identifications as stated in the lemma.
To get the noncanonical identifications of the lemma we need to show the kernel of
n : Pic0(X)→ Pic0(X) is isomorphic to (Z/nZ)⊕2g. This is also part of Groupoids,
Proposition 39.9.11. □

Lemma 59.69.2.0AMB Let π : X → Y be a nonconstant morphism of smooth projective
curves over an algebraically closed field k and let n ≥ 1 be invertible in k. The map

π∗ : H2
étale(Y, µn) −→ H2

étale(X,µn)
is given by multiplication by the degree of π.

Proof. Observe that the statement makes sense as we have identified both coho-
mology groups H2

étale(Y, µn) and H2
étale(X,µn) with Z/nZ in Lemma 59.69.1. In

fact, if L is a line bundle of degree 1 on Y with class [L] ∈ H1
étale(Y,Gm), then

the coboundary of [L] is the generator of H2
étale(Y, µn). Here the coboundary is the

coboundary of the long exact sequence of cohomology associated to the Kummer
sequence. Thus the result of the lemma follows from the fact that the degree of the
line bundle π∗L on X is deg(π). Some details omitted. □

Lemma 59.69.3.03RR Let X be an affine smooth curve over an algebraically closed field
k and n ∈ k∗. Let X ⊂ X be a smooth projective compactification (Varieties,
Remark 33.43.9). Let g be the genus of X and let r be the number of points of
X \X. Then

(1) H0
étale(X,µn) = µn(k);

(2) H1
étale(X,µn) ∼= (Z/nZ)2g+r−1, and

(3) Hq
étale(X,µn) = 0 for all q ≥ 2.

https://stacks.math.columbia.edu/tag/0AMB
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Proof. Write X = X − {x1, . . . , xr}. Then Pic(X) = Pic(X)/R, where R is the
subgroup generated by OX(xi), 1 ≤ i ≤ r. Since r ≥ 1, we see that Pic0(X) →
Pic(X) is surjective, hence Pic(X) is divisible (see discussion in proof of Lemma
59.69.1). Applying the Kummer sequence, we get (1) and (3). For (2), recall that

H1
étale(X,µn) = {(L, α)|L ∈ Pic(X), α : L⊗n → OX}/ ∼=

= {(L̄, D, ᾱ)}/R̃

where L̄ ∈ Pic0(X), D is a divisor on X supported on {x1, . . . , xr} and ᾱ :
L̄⊗n ∼= OX̄(D) is an isomorphism. Note that D must have degree 0. Further
R̃ is the subgroup of triples of the form (OX(D′), nD′, 1⊗n) where D′ is supported
on {x1, . . . , xr} and has degree 0. Thus, we get an exact sequence

0 −→ H1
étale(X,µn) −→ H1

étale(X,µn) −→
r⊕
i=1

Z/nZ
∑
−−−→ Z/nZ −→ 0

where the middle map sends the class of a triple (L̄, D, ᾱ) with D =
∑r
i=1 ai(xi)

to the r-tuple (ai)ri=1. It now suffices to use Lemma 59.69.1 to count ranks. □

Remark 59.69.4.03RS The “natural” way to prove the previous corollary is to excise X
from X̄. This is possible, we just haven’t developed that theory.

Remark 59.69.5.0A44 Let k be an algebraically closed field. Let n be an integer prime
to the characteristic of k. Recall that

Gm,k = A1
k \ {0} = P1

k \ {0,∞}
We claim there is a canonical isomorphism

H1
étale(Gm,k, µn) = Z/nZ

What does this mean? This means there is an element 1k in H1
étale(Gm,k, µn) such

that for every morphism Spec(k′)→ Spec(k) the pullback map on étale cohomology
for the map Gm,k′ → Gm,k maps 1k to 1k′ . (In particular this element is fixed under
all automorphisms of k.) To see this, consider the µn,Z-torsor Gm,Z → Gm,Z,
x 7→ xn. By the identification of torsors with first cohomology, this pulls back
to give our canonical elements 1k. Twisting back we see that there are canonical
identifications

H1
étale(Gm,k,Z/nZ) = Hom(µn(k),Z/nZ),

i.e., these isomorphisms are compatible with respect to maps of algebraically closed
fields, in particular with respect to automorphisms of k.

59.70. Extension by zero

03S2 The general material in Modules on Sites, Section 18.19 allows us to make the
following definition.

Definition 59.70.1.03S3 Let j : U → X be an étale morphism of schemes.
(1) The restriction functor j−1 : Sh(Xétale) → Sh(Uétale) has a left adjoint

jSh! : Sh(Uétale)→ Sh(Xétale).
(2) The restriction functor j−1 : Ab(Xétale) → Ab(Uétale) has a left adjoint

which is denoted j! : Ab(Uétale) → Ab(Xétale) and called extension by
zero.
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(3) Let Λ be a ring. The restriction functor j−1 : Mod(Xétale,Λ)→ Mod(Uétale,Λ)
has a left adjoint which is denoted j! : Mod(Uétale,Λ) → Mod(Xétale,Λ)
and called extension by zero.

If F is an abelian sheaf on Xétale, then j!F ̸= jSh! F in general. On the other hand
j! for sheaves of Λ-modules agrees with j! on underlying abelian sheaves (Mod-
ules on Sites, Remark 18.19.6). The functor j! is characterized by the functorial
isomorphism

HomX(j!F ,G) = HomU (F , j−1G)
for all F ∈ Ab(Uétale) and G ∈ Ab(Xétale). Similarly for sheaves of Λ-modules.

To describe the functors in Definition 59.70.1 more explicitly, recall that j−1 is just
the restriction via the functor Uétale → Xétale. In other words, j−1G(U ′) = G(U ′)
for U ′ étale over U . On the other hand, for F ∈ Ab(Uétale) we consider the presheaf

(59.70.1.1)0F4K jp!F : Xétale −→ Ab, V 7−→
⊕

V→U
F(V → U)

Then j!F is the sheafification of jp!F . This is proven in Modules on Sites, Lemma
18.19.2; more generally see the discussion in Modules on Sites, Sections 18.19 and
18.16.

Exercise 59.70.2.03S4 Prove directly that the functor j! defined as the sheafification of
the functor jp! given in (59.70.1.1) is a left adjoint to j−1.

Proposition 59.70.3.03S5 Let j : U → X be an étale morphism of schemes. Let F in
Ab(Uétale). If x : Spec(k)→ X is a geometric point of X, then

(j!F)x =
⊕

u:Spec(k)→U, j(u)=x
Fū.

In particular, j! is an exact functor.

Proof. Exactness of j! is very general, see Modules on Sites, Lemma 18.19.3. Of
course it does also follow from the description of stalks. The formula for the stalk
follows from Modules on Sites, Lemma 18.38.1 and the description of points of the
small étale site in terms of geometric points, see Lemma 59.29.12.

For later use we note that the isomorphism

(j!F)x = (jp!F)x
= colim(V,v) jp!F(V )

= colim(V,v)
⊕

φ:V→U
F(V φ−→ U)

→
⊕

u:Spec(k)→U, j(u)=x
Fū.

constructed in Modules on Sites, Lemma 18.38.1 sends (V, v, φ, s) to the class of s
in the stalk of F at u = φ(v). □

Lemma 59.70.4.0F70 Let j : U → X be an open immersion of schemes. For any abelian
sheaf F on Uétale, the adjunction mappings j−1j∗F → F and F → j−1j!F are
isomorphisms. In fact, j!F is the unique abelian sheaf on Xétale whose restriction
to U is F and whose stalks at geometric points of X \ U are zero.
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Proof. We encourage the reader to prove the first statement by working through the
definitions, but here we just use that it is a special case of the very general Modules
on Sites, Lemma 18.19.8. For the second statement, observe that if G is an abelian
sheaf on Xétale whose restriction to U is F , then we obtain by adjointness a map
j!F → G. This map is then an isomorphism at stalks of geometric points of U by
Proposition 59.70.3. Thus if G has vanishing stalks at geometric points of X \ U ,
then j!F → G is an isomorphism by Theorem 59.29.10. □

Lemma 59.70.5 (Extension by zero commutes with base change).03S6 Let f : Y → X
be a morphism of schemes. Let j : V → X be an étale morphism. Consider the
fibre product

V ′ = Y ×X V

f ′

��

j′
// Y

f

��
V

j // X

Then we have j′
!f

′−1 = f−1j! on abelian sheaves and on sheaves of modules.

Proof. This is true because j′
!f

′−1 is left adjoint to f ′
∗(j′)−1 and f−1j! is left adjoint

to j−1f∗. Further f ′
∗(j′)−1 = j−1f∗ because f∗ commutes with étale localization (by

construction). In fact, the lemma holds very generally in the setting of a morphism
of sites, see Modules on Sites, Lemma 18.20.1. □

Lemma 59.70.6.0F4L Let j : U → X be separated and étale. Then there is a functorial
injective map j!F → j∗F on abelian sheaves and sheaves of Λ-modules.

Proof. We prove this in the case of abelian sheaves. Let us construct a canonical
map

jp!F → j∗F
of abelian presheaves on Xétale for any abelian sheaf F on Uétale where jp! is as
in (59.70.1.1). Sheafification of this map will be the desired map j!F → j∗F .
Evaluating both sides on V → X étale we obtain

jp!F(V ) =
⊕

φ:V→U
F(V φ−→ U) and j∗F(V ) = F(V ×X U)

For each φ we have an open and closed immersion
Γφ = (1, φ) : V −→ V ×X U

over U . It is open as it is a morphism between schemes étale over U and it is closed
as it is a section of a scheme separated over V (Schemes, Lemma 26.21.11). Thus
for a section sφ ∈ F(V φ−→ U) there exists a unique section s′

φ in F(V ×X U) which
pulls back to sφ by Γφ and which restricts to zero on the complement of the image
of Γφ.
To show that our map is injective suppose that

∑
i=1,...,n sφi is an element of

jp!F(V ) in the formula above maps to zero in j∗F(V ). Our task is to show that∑
i=1,...,n sφi restricts to zero on the members of an étale covering of V . Looking

at all pairwise equalizers (which are open and closed in V ) of the morphisms φi :
V → U and working locally on V , we may assume the images of the morphisms
Γφ1 , . . . ,Γφn are pairwise disjoint. Since our assumption is that

∑
i=1,...,n s

′
φi = 0

we then immediately conclude that s′
φi = 0 for each i (by the disjointness of the

supports of these sections), whence sφi = 0 for all i as desired. □
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Lemma 59.70.7.03S7 Let j : U → X be finite and étale. Then the map j! → j∗ of
Lemma 59.70.6 is an isomorphism on abelian sheaves and sheaves of Λ-modules.

Proof. It suffices to check j!F → j∗F is an isomorphism étale locally on X. Thus we
may assume U → X is a finite disjoint union of isomorphisms, see Étale Morphisms,
Lemma 41.18.3. We omit the proof in this case. □

Lemma 59.70.8.095L Let X be a scheme. Let Z ⊂ X be a closed subscheme and let
U ⊂ X be the complement. Denote i : Z → X and j : U → X the inclusion
morphisms. For every abelian sheaf F on Xétale there is a canonical short exact
sequence

0→ j!j
−1F → F → i∗i

−1F → 0
on Xétale.

Proof. We obtain the maps by the adjointness properties of the functors involved.
For a geometric point x in X we have either x ∈ U in which case the map on the
left hand side is an isomorphism on stalks and the stalk of i∗i−1F is zero or x ∈ Z
in which case the map on the right hand side is an isomorphism on stalks and
the stalk of j!j

−1F is zero. Here we have used the description of stalks of Lemma
59.46.3 and Proposition 59.70.3. □

Lemma 59.70.9.0GJ1 Consider a cartesian diagram of schemes

U

g

��

j′
// X

f

��
V

j // Y

where f is finite, g is étale, and j is an open immersion. Then f∗ ◦ j′
! = j! ◦ g∗ as

functors Ab(Uétale)→ Ab(Yétale).

Proof. Let F be an object of Ab(Uétale). Let y be a geometric point of Y not
contained in the open V . Then

(f∗j
′
!F)y =

⊕
x, f(x)=y

(j′
!F)x = 0

by Proposition 59.55.2 and because the stalk of j′
!F at x ̸∈ U are zero by Lemma

59.70.4. On the other hand, we have
j−1f∗j

′
!F = g∗(j′)−1j′

!F = g∗F
by Lemmas 59.55.3 and Lemma 59.70.4. Hence by the characterization of j! in
Lemma 59.70.4 we see that f∗j

′
!F = j!g∗F . We omit the verification that this

identification is functorial in F . □

59.71. Constructible sheaves

05BE Let X be a scheme. A constructible locally closed subscheme of X is a locally closed
subscheme T ⊂ X such that the underlying topological space of T is a constructible
subset of X. If T, T ′ ⊂ X are locally closed subschemes with the same underlying
topological space, then Tétale ∼= T ′

étale by the topological invariance of the étale
site (Theorem 59.45.2). Thus in the following definition we may assume our locally
closed subschemes are reduced.

Definition 59.71.1.03RW Let X be a scheme.
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(1) A sheaf of sets on Xétale is constructible if for every affine open U ⊂ X
there exists a finite decomposition of U into constructible locally closed
subschemes U =

∐
i Ui such that F|Ui is finite locally constant for all i.

(2) A sheaf of abelian groups on Xétale is constructible if for every affine open
U ⊂ X there exists a finite decomposition of U into constructible locally
closed subschemes U =

∐
i Ui such that F|Ui is finite locally constant for

all i.
(3) Let Λ be a Noetherian ring. A sheaf of Λ-modules on Xétale is con-

structible if for every affine open U ⊂ X there exists a finite decompo-
sition of U into constructible locally closed subschemes U =

∐
i Ui such

that F|Ui is of finite type and locally constant for all i.

It seems that this is the accepted definition. An alternative, which lends itself more
readily to generalizations beyond the étale site of a scheme, would have been to
define constructible sheaves by starting with hU , jU !Z/nZ, and jU !Λ where U runs
over all quasi-compact and quasi-separated objects of Xétale, and then take the
smallest full subcategory of Sh(Xétale), Ab(Xétale), and Mod(Xétale,Λ) containing
these and closed under finite limits and colimits. It follows from Lemma 59.71.6
and Lemmas 59.73.5, 59.73.7, and 59.73.6 that this produces the same category if
X is quasi-compact and quasi-separated. In general this does not produce the same
category however.

A disjoint union decomposition U =
∐
Ui of a scheme by locally closed subschemes

will be called a partition of U (compare with Topology, Section 5.28).

Lemma 59.71.2.095E Let X be a quasi-compact and quasi-separated scheme. Let F be
a sheaf of sets on Xétale. The following are equivalent

(1) F is constructible,
(2) there exists an open covering X =

⋃
Ui such that F|Ui is constructible,

and
(3) there exists a partition X =

⋃
Xi by constructible locally closed sub-

schemes such that F|Xi is finite locally constant.
A similar statement holds for abelian sheaves and sheaves of Λ-modules if Λ is
Noetherian.

Proof. It is clear that (1) implies (2).

Assume (2). For every x ∈ X we can find an i and an affine open neighbourhood
Vx ⊂ Ui of x. Hence we can find a finite affine open covering X =

⋃
Vj such that for

each j there exists a finite decomposition Vj =
∐
Vj,k by locally closed constructible

subsets such that F|Vj,k is finite locally constant. By Topology, Lemma 5.15.5 each
Vj,k is constructible as a subset of X. By Topology, Lemma 5.28.7 we can find
a finite stratification X =

∐
Xl with constructible locally closed strata such that

each Vj,k is a union of Xl. Thus (3) holds.

Assume (3) holds. Let U ⊂ X be an affine open. Then U ∩Xi is a constructible
locally closed subset of U (for example by Properties, Lemma 28.2.1) and U =∐
U ∩Xi is a partition of U as in Definition 59.71.1. Thus (1) holds. □

Lemma 59.71.3.09YR Let X be a quasi-compact and quasi-separated scheme. Let F be
a sheaf of sets, abelian groups, Λ-modules (with Λ Noetherian) on Xétale. If there
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exist constructible locally closed subschemes Ti ⊂ X such that (a) X =
⋃
Tj and

(b) F|Tj is constructible, then F is constructible.

Proof. First, we can assume the covering is finite as X is quasi-compact in the
spectral topology (Topology, Lemma 5.23.2 and Properties, Lemma 28.2.4). Ob-
serve that each Ti is a quasi-compact and quasi-separated scheme in its own right
(because it is constructible in X; details omitted). Thus we can find a finite par-
tition Ti =

∐
Ti,j into locally closed constructible parts of Ti such that F|Ti,j is

finite locally constant (Lemma 59.71.2). By Topology, Lemma 5.15.12 we see that
Ti,j is a constructible locally closed subscheme of X. Then we can apply Topology,
Lemma 5.28.7 to X =

⋃
Ti,j to find the desired partition of X. □

Lemma 59.71.4.095F Let X be a scheme. Checking constructibility of a sheaf of sets,
abelian groups, Λ-modules (with Λ Noetherian) can be done Zariski locally on X.

Proof. The statement means if X =
⋃
Ui is an open covering such that F|Ui is

constructible, then F is constructible. If U ⊂ X is affine open, then U =
⋃
U ∩ Ui

and F|U∩Ui is constructible (it is trivial that the restriction of a constructible
sheaf to an open is constructible). It follows from Lemma 59.71.2 that F|U is
constructible, i.e., a suitable partition of U exists. □

Lemma 59.71.5.095G Let f : X → Y be a morphism of schemes. If F is a constructible
sheaf of sets, abelian groups, or Λ-modules (with Λ Noetherian) on Yétale, the same
is true for f−1F on Xétale.

Proof. By Lemma 59.71.4 this reduces to the case where X and Y are affine. By
Lemma 59.71.2 it suffices to find a finite partition of X by constructible locally
closed subschemes such that f−1F is finite locally constant on each of them. To
find it we just pull back the partition of Y adapted to F and use Lemma 59.64.2. □

Lemma 59.71.6.03RZ Let X be a scheme.
(1) The category of constructible sheaves of sets is closed under finite limits

and colimits inside Sh(Xétale).
(2) The category of constructible abelian sheaves is a weak Serre subcategory

of Ab(Xétale).
(3) Let Λ be a Noetherian ring. The category of constructible sheaves of

Λ-modules on Xétale is a weak Serre subcategory of Mod(Xétale,Λ).

Proof. We prove (3). We will use the criterion of Homology, Lemma 12.10.3. Sup-
pose that φ : F → G is a map of constructible sheaves of Λ-modules. We have
to show that K = Ker(φ) and Q = Coker(φ) are constructible. Similarly, suppose
that 0→ F → E → G → 0 is a short exact sequence of sheaves of Λ-modules with
F , G constructible. We have to show that E is constructible. In both cases we can
replace X with the members of an affine open covering. Hence we may assume X
is affine. Then we may further replace X by the members of a finite partition of X
by constructible locally closed subschemes on which F and G are of finite type and
locally constant. Thus we may apply Lemma 59.64.6 to conclude.

The proofs of (1) and (2) are very similar and are omitted. □

Lemma 59.71.7.09YS Let X be a quasi-compact and quasi-separated scheme.
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(1) Let F → G be a map of constructible sheaves of sets on Xétale. Then the
set of points x ∈ X where Fx → Gx is surjective, resp. injective, resp. is
isomorphic to a given map of sets, is constructible in X.

(2) Let F be a constructible abelian sheaf on Xétale. The support of F is
constructible.

(3) Let Λ be a Noetherian ring. Let F be a constructible sheaf of Λ-modules
on Xétale. The support of F is constructible.

Proof. Proof of (1). Let X =
∐
Xi be a partition of X by locally closed con-

structible subschemes such that both F and G are finite locally constant over the
parts (use Lemma 59.71.2 for both F and G and choose a common refinement).
Then apply Lemma 59.64.5 to the restriction of the map to each part.
The proof of (2) and (3) is omitted. □

The following lemma will turn out to be very useful later on. It roughly says that
the category of constructible sheaves has a kind of weak “Noetherian” property.

Lemma 59.71.8.095P Let X be a quasi-compact and quasi-separated scheme. Let F =
colimi∈I Fi be a filtered colimit of sheaves of sets, abelian sheaves, or sheaves of
modules.

(1) If F and Fi are constructible sheaves of sets, then the ind-object Fi is
essentially constant with value F .

(2) If F and Fi are constructible sheaves of abelian groups, then the ind-object
Fi is essentially constant with value F .

(3) Let Λ be a Noetherian ring. If F and Fi are constructible sheaves of
Λ-modules, then the ind-object Fi is essentially constant with value F .

Proof. Proof of (1). We will use without further mention that finite limits and
colimits of constructible sheaves are constructible (Lemma 59.64.6). For each i let
Ti ⊂ X be the set of points x ∈ X where Fi,x → Fx is not surjective. Because Fi
and F are constructible Ti is a constructible subset of X (Lemma 59.71.7). Since
the stalks of F are finite and since F = colimi∈I Fi we see that for all x ∈ X we have
x ̸∈ Ti for i large enough. Since X is a spectral space by Properties, Lemma 28.2.4
the constructible topology on X is quasi-compact by Topology, Lemma 5.23.2. Thus
Ti = ∅ for i large enough. Thus Fi → F is surjective for i large enough. Assume
now that Fi → F is surjective for all i. Choose i ∈ I. For i′ ≥ i denote Si′ ⊂ X the
set of points x such that the number of elements in Im(Fi,x → Fx) is equal to the
number of elements in Im(Fi,x → Fi′,x). Because Fi, Fi′ and F are constructible
Si′ is a constructible subset of X (details omitted; hint: use Lemma 59.71.7). Since
the stalks of Fi and F are finite and since F = colimi′≥i Fi′ we see that for all
x ∈ X we have x ̸∈ Si′ for i′ large enough. By the same argument as above we can
find a large i′ such that Si′ = ∅. Thus Fi → Fi′ factors through F as desired.
Proof of (2). Observe that a constructible abelian sheaf is a constructible sheaf of
sets. Thus case (2) follows from (1).
Proof of (3). We will use without further mention that the category of constructible
sheaves of Λ-modules is abelian (Lemma 59.64.6). For each i let Qi be the cokernel
of the map Fi → F . The support Ti of Qi is a constructible subset of X as Qi is
constructible (Lemma 59.71.7). Since the stalks of F are finite Λ-modules and since
F = colimi∈I Fi we see that for all x ∈ X we have x ̸∈ Ti for i large enough. Since
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X is a spectral space by Properties, Lemma 28.2.4 the constructible topology on X
is quasi-compact by Topology, Lemma 5.23.2. Thus Ti = ∅ for i large enough. This
proves the first assertion. For the second, assume now that Fi → F is surjective
for all i. Choose i ∈ I. For i′ ≥ i denote Ki′ the image of Ker(Fi → F) in Fi′ .
The support Si′ of Ki′ is a constructible subset of X as Ki′ is constructible. Since
the stalks of Ker(Fi → F) are finite Λ-modules and since F = colimi′≥i Fi′ we see
that for all x ∈ X we have x ̸∈ Si′ for i′ large enough. By the same argument as
above we can find a large i′ such that Si′ = ∅. Thus Fi → Fi′ factors through F
as desired. □

Lemma 59.71.9.095I Let X be a scheme. Let Λ be a Noetherian ring. The tensor
product of two constructible sheaves of Λ-modules on Xétale is a constructible sheaf
of Λ-modules.
Proof. The question immediately reduces to the case where X is affine. Since
any two partitions of X with constructible locally closed strata have a common
refinement of the same type and since pullbacks commute with tensor product we
reduce to Lemma 59.64.7. □

Lemma 59.71.10.0GKB Let Λ→ Λ′ be a homomorphism of Noetherian rings. Let X be
a scheme. Let F be a constructible sheaf of Λ-modules on Xétale. Then F ⊗Λ Λ′ is
a constructible sheaf of Λ′-modules.
Proof. Omitted. Hint: affine locally you can use the same stratification. □

59.72. Auxiliary lemmas on morphisms

095J Some lemmas that are useful for proving functoriality properties of constructible
sheaves.
Lemma 59.72.1.03S0 Let U → X be an étale morphism of quasi-compact and quasi-
separated schemes (for example an étale morphism of Noetherian schemes). Then
there exists a partition X =

∐
iXi by constructible locally closed subschemes such

that Xi ×X U → Xi is finite étale for all i.
Proof. If U → X is separated, then this is More on Morphisms, Lemma 37.45.4. In
general, we may assume X is affine. Choose a finite affine open covering U =

⋃
Uj .

Apply the previous case to all the morphisms Uj → X and Uj ∩ Uj′ → X and
choose a common refinement X =

∐
Xi of the resulting partitions. After refining

the partition further we may assume Xi affine as well. Fix i and set V = U ×X Xi.
The morphisms Vj = Uj ×X Xi → Xi and Vjj′ = (Uj ∩ Uj′)×X Xi → Xi are finite
étale. Hence Vj and Vjj′ are affine schemes and Vjj′ ⊂ Vj is closed as well as open
(since Vjj′ → Xi is proper, so Morphisms, Lemma 29.41.7 applies). Then V =

⋃
Vj

is separated because O(Vj) → O(Vjj′) is surjective, see Schemes, Lemma 26.21.7.
Thus the previous case applies to V → Xi and we can further refine the partition
if needed (it actually isn’t but we don’t need this). □

In the Noetherian case one can prove the preceding lemma by Noetherian induction
and the following amusing lemma.
Lemma 59.72.2.03S1 Let f : X → Y be a morphism of schemes which is quasi-compact,
quasi-separated, and locally of finite type. If η is a generic point of an irreducible
component of Y such that f−1(η) is finite, then there exists an open V ⊂ Y
containing η such that f−1(V )→ V is finite.
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Proof. This is Morphisms, Lemma 29.51.1. □

The statement of the following lemma can be strengthened a bit.

Lemma 59.72.3.095K Let f : Y → X be a quasi-finite and finitely presented morphism
of affine schemes.

(1) There exists a surjective morphism of affine schemes X ′ → X and a closed
subscheme Z ′ ⊂ Y ′ = X ′ ×X Y such that
(a) Z ′ ⊂ Y ′ is a thickening, and
(b) Z ′ → X ′ is a finite étale morphism.

(2) There exists a finite partition X =
∐
Xi by locally closed, constructible,

affine strata, and surjective finite locally free morphisms X ′
i → Xi such

that the reduction of Y ′
i = X ′

i×XY → X ′
i is isomorphic to

∐ni
j=1(X ′

i)red →
(X ′

i)red for some ni.

Proof. Setting X ′ =
∐
X ′
i we see that (2) implies (1). Write X = Spec(A) and

Y = Spec(B). Write A as a filtered colimit of finite type Z-algebras Ai. Since B
is an A-algebra of finite presentation, we see that there exists 0 ∈ I and a finite
type ring map A0 → B0 such that B = colimBi with Bi = Ai⊗A0 B0, see Algebra,
Lemma 10.127.8. For i sufficiently large we see that Ai → Bi is quasi-finite, see
Limits, Lemma 32.18.2. Thus we reduce to the case of finite type algebras over Z,
in particular we reduce to the Noetherian case. (Details omitted.)

Assume X and Y Noetherian. In this case any locally closed subset of X is con-
structible. By Lemma 59.72.2 and Noetherian induction we see that there is a
finite partition X =

∐
Xi of X by locally closed strata such that Y ×X Xi → Xi

is finite. We can refine this partition to get affine strata. Thus after replacing X
by X ′ =

∐
Xi we may assume Y → X is finite.

Assume X and Y Noetherian and Y → X finite. Suppose that we can prove (2)
after base change by a surjective, flat, quasi-finite morphism U → X. Thus we
have a partition U =

∐
Ui and finite locally free morphisms U ′

i → Ui such that
U ′
i ×X Y → U ′

i is isomorphic to
∐ni
j=1(U ′

i)red → (U ′
i)red for some ni. Then, by the

argument in the previous paragraph, we can find a partition X =
∐
Xj with locally

closed affine strata such that Xj ×X Ui → Xj is finite for all i, j. By Morphisms,
Lemma 29.48.2 each Xj ×X Ui → Xj is finite locally free. Hence Xj ×X U ′

i → Xj

is finite locally free (Morphisms, Lemma 29.48.3). It follows that X =
∐
Xj and

X ′
j =

∐
iXj ×X U ′

i is a solution for Y → X. Thus it suffices to prove the result (in
the Noetherian case) after a surjective flat quasi-finite base change.

Applying Morphisms, Lemma 29.48.6 we see we may assume that Y is a closed
subscheme of an affine scheme Z which is (set theoretically) a finite union Z =⋃
i∈I Zi of closed subschemes mapping isomorphically to X. In this case we will

find a finite partition of X =
∐
Xj with affine locally closed strata that works

(in other words X ′
j = Xj). Set Ti = Y ∩ Zi. This is a closed subscheme of X.

As X is Noetherian we can find a finite partition of X =
∐
Xj by affine locally

closed subschemes, such that each Xj ×X Ti is (set theoretically) a union of strata
Xj ×X Zi. Replacing X by Xj we see that we may assume I = I1⨿ I2 with Zi ⊂ Y
for i ∈ I1 and Zi ∩ Y = ∅ for i ∈ I2. Replacing Z by

⋃
i∈I1

Zi we see that we may
assume Y = Z. Finally, we can replace X again by the members of a partition as
above such that for every i, i′ ⊂ I the intersection Zi ∩ Zi′ is either empty or (set
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theoretically) equal to Zi and Zi′ . This clearly means that Y is (set theoretically)
equal to a disjoint union of the Zi which is what we wanted to show. □

59.73. More on constructible sheaves

095M Let Λ be a Noetherian ring. Let X be a scheme. We often consider Xétale as a
ringed site with sheaf of rings Λ. In case of abelian sheaves we often take Λ = Z/nZ
for a suitable integer n.

Lemma 59.73.1.03S8 Let j : U → X be an étale morphism of quasi-compact and
quasi-separated schemes.

(1) The sheaf hU is a constructible sheaf of sets.
(2) The sheaf j!M is a constructible abelian sheaf for a finite abelian group

M .
(3) If Λ is a Noetherian ring and M is a finite Λ-module, then j!M is a

constructible sheaf of Λ-modules on Xétale.

Proof. By Lemma 59.72.1 there is a partition
∐
iXi such that πi : j−1(Xi)→ Xi is

finite étale. The restriction of hU to Xi is hj−1(Xi) which is finite locally constant
by Lemma 59.64.4. For cases (2) and (3) we note that

j!(M)|Xi = πi!(M) = πi∗(M)
by Lemmas 59.70.5 and 59.70.7. Thus it suffices to show the lemma for π : Y → X
finite étale. This is Lemma 59.64.3. □

Lemma 59.73.2.03SA Let X be a quasi-compact and quasi-separated scheme.
(1) Let F be a sheaf of sets on Xétale. Then F is a filtered colimit of con-

structible sheaves of sets.
(2) Let F be a torsion abelian sheaf on Xétale. Then F is a filtered colimit of

constructible abelian sheaves.
(3) Let Λ be a Noetherian ring and F a sheaf of Λ-modules on Xétale. Then
F is a filtered colimit of constructible sheaves of Λ-modules.

Proof. Let B be the collection of quasi-compact and quasi-separated objects of
Xétale. By Modules on Sites, Lemma 18.30.7 any sheaf of sets is a filtered colimit
of sheaves of the form

Coequalizer
( ∐

j=1,...,m hVj
//
//
∐
i=1,...,n hUi

)
with Vj and Ui quasi-compact and quasi-separated objects of Xétale. By Lemmas
59.73.1 and 59.71.6 these coequalizers are constructible. This proves (1).
Let Λ be a Noetherian ring. By Modules on Sites, Lemma 18.30.7 Λ-modules F is
a filtered colimit of modules of the form

Coker
(⊕

j=1,...,m
jVj !ΛVj −→

⊕
i=1,...,n

jUi!ΛUi
)

with Vj and Ui quasi-compact and quasi-separated objects of Xétale. By Lemmas
59.73.1 and 59.71.6 these cokernels are constructible. This proves (3).
Proof of (2). First write F =

⋃
F [n] where F [n] is the n-torsion subsheaf. Then

we can view F [n] as a sheaf of Z/nZ-modules and apply (3). □

Lemma 59.73.3.095Q Let f : X → Y be a surjective morphism of quasi-compact and
quasi-separated schemes.
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(1) Let F be a sheaf of sets on Yétale. Then F is constructible if and only if
f−1F is constructible.

(2) Let F be an abelian sheaf on Yétale. Then F is constructible if and only
if f−1F is constructible.

(3) Let Λ be a Noetherian ring. Let F be sheaf of Λ-modules on Yétale. Then
F is constructible if and only if f−1F is constructible.

Proof. One implication follows from Lemma 59.71.5. For the converse, assume
f−1F is constructible. Write F = colimFi as a filtered colimit of constructible
sheaves (of sets, abelian groups, or modules) using Lemma 59.73.2. Since f−1 is
a left adjoint it commutes with colimits (Categories, Lemma 4.24.5) and we see
that f−1F = colim f−1Fi. By Lemma 59.71.8 we see that f−1Fi → f−1F is
surjective for all i large enough. Since f is surjective we conclude (by looking at
stalks using Lemma 59.36.2 and Theorem 59.29.10) that Fi → F is surjective for
all i large enough. Thus F is the quotient of a constructible sheaf G. Applying
the argument once more to G ×F G or the kernel of G → F we conclude using that
f−1 is exact and that the category of constructible sheaves (of sets, abelian groups,
or modules) is preserved under finite (co)limits or (co)kernels inside Sh(Yétale),
Sh(Xétale), Ab(Yétale), Ab(Xétale), Mod(Yétale,Λ), and Mod(Xétale,Λ), see Lemma
59.71.6. □

Lemma 59.73.4.095H Let f : X → Y be a finite étale morphism of schemes. Let Λ be a
Noetherian ring. If F is a constructible sheaf of sets, constructible sheaf of abelian
groups, or constructible sheaf of Λ-modules on Xétale, the same is true for f∗F on
Yétale.

Proof. By Lemma 59.71.4 it suffices to check this Zariski locally on Y and by Lemma
59.73.3 we may replace Y by an étale cover (the construction of f∗ commutes with
étale localization). A finite étale morphism is étale locally isomorphic to a disjoint
union of isomorphisms, see Étale Morphisms, Lemma 41.18.3. Thus, in the case of
sheaves of sets, the lemma says that if Fi, i = 1, . . . , n are constructible sheaves of
sets, then

∏
i=1,...,n Fi is too. This is clear. Similarly for sheaves of abelian groups

and modules. □

Lemma 59.73.5.09Y9 Let X be a quasi-compact and quasi-separated scheme. The cate-
gory of constructible sheaves of sets is the full subcategory of Sh(Xétale) consisting
of sheaves F which are coequalizers

F1
//
// F0 // F

such that Fi, i = 0, 1 is a finite coproduct of sheaves of the form hU with U a
quasi-compact and quasi-separated object of Xétale.

Proof. In the proof of Lemma 59.73.2 we have seen that sheaves of this form are
constructible. For the converse, suppose that for every constructible sheaf of sets
F we can find a surjection F0 → F with F0 as in the lemma. Then we find our
surjection F1 → F0 ×F F0 because the latter is constructible by Lemma 59.71.6.

By Topology, Lemma 5.28.7 we may choose a finite stratification X =
∐
i∈I Xi

such that F is finite locally constant on each stratum. We will prove the result by
induction on the cardinality of I. Let i ∈ I be a minimal element in the partial
ordering of I. Then Xi ⊂ X is closed. By induction, there exist finitely many
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quasi-compact and quasi-separated objects Uα of (X \ Xi)étale and a surjective
map

∐
hUα → F|X\Xi . These determine a map∐

hUα → F

which is surjective after restricting to X \ Xi. By Lemma 59.64.4 we see that
F|Xi = hV for some scheme V finite étale over Xi. Let v be a geometric point
of V lying over x ∈ Xi. We may think of v as an element of the stalk Fx = Vx.
Thus we can find an étale neighbourhood (U, u) of x and a section s ∈ F(U) whose
stalk at x gives v. Thinking of s as a map s : hU → F , restricting to Xi we obtain
a morphism s|Xi : U ×X Xi → V over Xi which maps u to v. Since V is quasi-
compact (finite over the closed subscheme Xi of the quasi-compact scheme X) a
finite number s(1), . . . , s(m) of these sections of F over U (1), . . . , U (m) will determine
a jointly surjective map ∐

s(j)|Xi :
∐

U (j) ×X Xi −→ V

Then we obtain the surjection∐
hUα ⨿

∐
hU(j) → F

as desired. □

Lemma 59.73.6.095N Let X be a quasi-compact and quasi-separated scheme. Let Λ be
a Noetherian ring. The category of constructible sheaves of Λ-modules is exactly
the category of modules of the form

Coker
(⊕

j=1,...,m
jVj !ΛVj −→

⊕
i=1,...,n

jUi!ΛUi
)

with Vj and Ui quasi-compact and quasi-separated objects of Xétale. In fact, we
can even assume Ui and Vj affine.

Proof. In the proof of Lemma 59.73.2 we have seen modules of this form are con-
structible. Since the category of constructible modules is abelian (Lemma 59.71.6)
it suffices to prove that given a constructible module F there is a surjection⊕

i=1,...,n
jUi!ΛUi −→ F

for some affine objects Ui in Xétale. By Modules on Sites, Lemma 18.30.7 there is
a surjection

Ψ :
⊕

i∈I
jUi!ΛUi −→ F

with Ui affine and the direct sum over a possibly infinite index set I. For every
finite subset I ′ ⊂ I set

TI′ = Supp(Coker(
⊕

i∈I′
jUi!ΛUi −→ F))

By the very definition of constructible sheaves, the set TI′ is a constructible subset
of X. We want to show that TI′ = ∅ for some I ′. Since every stalk Fx is a finite
type Λ-module and since Ψ is surjective, for every x ∈ X there is an I ′ such that
x ̸∈ TI′ . In other words we have ∅ =

⋂
I′⊂I finite TI′ . Since X is a spectral space

by Properties, Lemma 28.2.4 the constructible topology on X is quasi-compact by
Topology, Lemma 5.23.2. Thus TI′ = ∅ for some I ′ ⊂ I finite as desired. □

https://stacks.math.columbia.edu/tag/095N


59.73. MORE ON CONSTRUCTIBLE SHEAVES 4833

Lemma 59.73.7.09YT Let X be a quasi-compact and quasi-separated scheme. The
category of constructible abelian sheaves is exactly the category of abelian sheaves
of the form

Coker
(⊕

j=1,...,m
jVj !Z/mjZ

Vj
−→

⊕
i=1,...,n

jUi!Z/niZUi
)

with Vj and Ui quasi-compact and quasi-separated objects of Xétale and mj , ni
positive integers. In fact, we can even assume Ui and Vj affine.

Proof. This follows from Lemma 59.73.6 applied with Λ = Z/nZ and the fact that,
since X is quasi-compact, every constructible abelian sheaf is annihilated by some
positive integer n (details omitted). □

Lemma 59.73.8.09Z4 Let X be a quasi-compact and quasi-separated scheme. Let Λ be
a Noetherian ring. Let F be a constructible sheaf of sets, abelian groups, or Λ-
modules on Xétale. Let G = colimGi be a filtered colimit of sheaves of sets, abelian
groups, or Λ-modules. Then

Mor(F ,G) = colim Mor(F ,Gi)

in the category of sheaves of sets, abelian groups, or Λ-modules on Xétale.

Proof. The case of sheaves of sets. By Lemma 59.73.5 it suffices to prove the lemma
for hU where U is a quasi-compact and quasi-separated object of Xétale. Recall that
Mor(hU ,G) = G(U). Hence the result follows from Sites, Lemma 7.17.7.

In the case of abelian sheaves or sheaves of modules, the result follows in the same
way using Lemmas 59.73.7 and 59.73.6. For the case of abelian sheaves, we add
that Mor(jU !Z/nZ,G) is equal to the n-torsion elements of G(U). □

Lemma 59.73.9.095R Let f : X → Y be a finite and finitely presented morphism of
schemes. Let Λ be a Noetherian ring. If F is a constructible sheaf of sets, abelian
groups, or Λ-modules on Xétale, then f∗F is too.

Proof. It suffices to prove this when X and Y are affine by Lemma 59.71.4. By
Lemmas 59.55.3 and 59.73.3 we may base change to any affine scheme surjective
over X. By Lemma 59.72.3 this reduces us to the case of a finite étale morphism
(because a thickening leads to an equivalence of étale topoi and even small étale
sites, see Theorem 59.45.2). The finite étale case is Lemma 59.73.4. □

Lemma 59.73.10.09YU Let X = limi∈I Xi be a limit of a directed system of schemes
with affine transition morphisms. We assume that Xi is quasi-compact and quasi-
separated for all i ∈ I.

(1) The category of constructible sheaves of sets on Xétale is the colimit of
the categories of constructible sheaves of sets on (Xi)étale.

(2) The category of constructible abelian sheaves on Xétale is the colimit of
the categories of constructible abelian sheaves on (Xi)étale.

(3) Let Λ be a Noetherian ring. The category of constructible sheaves of Λ-
modules on Xétale is the colimit of the categories of constructible sheaves
of Λ-modules on (Xi)étale.

Proof. Proof of (1). Denote fi : X → Xi the projection maps. There are 3 parts to
the proof corresponding to “faithful”, “fully faithful”, and “essentially surjective”.
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Faithful. Choose 0 ∈ I and let F0, G0 be constructible sheaves on X0. Suppose that
a, b : F0 → G0 are maps such that f−1

0 a = f−1
0 b. Let E ⊂ X0 be the set of points

x ∈ X0 such that ax = bx. By Lemma 59.71.7 the subset E ⊂ X0 is constructible.
By assumption X → X0 maps into E. By Limits, Lemma 32.4.10 we find an i ≥ 0
such that Xi → X0 maps into E. Hence f−1

i0 a = f−1
i0 b.

Fully faithful. Choose 0 ∈ I and let F0, G0 be constructible sheaves on X0. Suppose
that a : f−1

0 F0 → f−1
0 G0 is a map. We claim there is an i and a map ai : f−1

i0 F0 →
f−1
i0 G0 which pulls back to a on X. By Lemma 59.73.5 we can replace F0 by a finite

coproduct of sheaves represented by quasi-compact and quasi-separated objects of
(X0)étale. Thus we have to show: If U0 → X0 is such an object of (X0)étale, then

f−1
0 G(U) = colimi≥0 f

−1
i0 G(Ui)

where U = X ×X0 U0 and Ui = Xi ×X0 U0. This is a special case of Theorem
59.51.3.

Essentially surjective. We have to show every constructible F on X is isomorphic
to f−1

i F for some constructible Fi on Xi. Applying Lemma 59.73.5 and using the
results of the previous two paragraphs, we see that it suffices to prove this for hU
for some quasi-compact and quasi-separated object U of Xétale. In this case we
have to show that U is the base change of a quasi-compact and quasi-separated
scheme étale over Xi for some i. This follows from Limits, Lemmas 32.10.1 and
32.8.10.

Proof of (3). The argument is very similar to the argument for sheaves of sets, but
using Lemma 59.73.6 instead of Lemma 59.73.5. Details omitted. Part (2) follows
from part (3) because every constructible abelian sheaf over a quasi-compact scheme
is a constructible sheaf of Z/nZ-modules for some n. □

Lemma 59.73.11.0GL2 Let X = limi∈I Xi be a limit of a directed system of schemes
with affine transition morphisms. We assume that Xi is quasi-compact and quasi-
separated for all i ∈ I.

(1) The category of finite locally constant sheaves on Xétale is the colimit of
the categories of finite locally constant sheaves on (Xi)étale.

(2) The category of finite locally constant abelian sheaves on Xétale is the col-
imit of the categories of finite locally constant abelian sheaves on (Xi)étale.

(3) Let Λ be a Noetherian ring. The category of finite type, locally constant
sheaves of Λ-modules on Xétale is the colimit of the categories of finite
type, locally constant sheaves of Λ-modules on (Xi)étale.

Proof. By Lemma 59.73.10 the functor in each case is fully faithful. By the same
lemma, all we have to show to finish the proof in case (1) is the following: given a
constructible sheaf Fi on Xi whose pullback F to X is finite locally constant, there
exists an i′ ≥ i such that the pullback Fi′ of Fi to Xi′ is finite locally constant. By
assumption there exists an étale covering U = {Uj → X}j∈J such that F|Uj ∼= Sj
for some finite set Sj . We may assume Uj is affine for all j ∈ J . Since X is
quasi-compact, we may assume J finite. By Lemma 59.51.2 we can find an i′ ≥ i
and an étale covering Ui′ = {Ui′,j → Xi′}j∈J whose base change to X is U . Then
Fi′ |Ui′,j and Sj are constructible sheaves on (Ui′,j)étale whose pullbacks to Uj are
isomorphic. Hence after increasing i′ we get that Fi′ |Ui′,j and Sj are isomorphic.

https://stacks.math.columbia.edu/tag/0GL2


59.73. MORE ON CONSTRUCTIBLE SHEAVES 4835

Thus Fi′ is finite locally constant. The proof in cases (2) and (3) is exactly the
same. □

Lemma 59.73.12.09BG Let X be an irreducible scheme with generic point η.
(1) Let S′ ⊂ S be an inclusion of sets. If we have S′ ⊂ G ⊂ S in Sh(Xétale)

and S′ = Gη, then G = S′.
(2) Let A′ ⊂ A be an inclusion of abelian groups. If we have A′ ⊂ G ⊂ A in

Ab(Xétale) and A′ = Gη, then G = A′.
(3) Let M ′ ⊂ M be an inclusion of modules over a ring Λ. If we have M ′ ⊂
G ⊂M in Mod(Xétale,Λ) and M ′ = Gη, then G = M ′.

Proof. This is true because for every étale morphism U → X with U ̸= ∅ the point
η is in the image. □

Lemma 59.73.13.09Z5 Let X be an integral normal scheme with function field K. Let
E be a set.

(1) Let g : Spec(K)→ X be the inclusion of the generic point. Then g∗E = E.
(2) Let j : U → X be the inclusion of a nonempty open. Then j∗E = E.

Proof. Proof of (1). Let x ∈ X be a point. Let OshX,x be a strict henselization of
OX,x. By More on Algebra, Lemma 15.45.6 we see that OshX,x is a normal domain.
Hence Spec(K) ×X Spec(OshX,x) is irreducible. It follows that the stalk (g∗Ex is
equal to E, see Theorem 59.53.1.

Proof of (2). Since g factors through j there is a map j∗E → g∗E. This map is
injective because for every scheme V étale over X the set Spec(K) ×X V is dense
in U ×X V . On the other hand, we have a map E → j∗E and we conclude. □

Lemma 59.73.14.0F0M Let X be a quasi-compact and quasi-separated scheme. Let
η ∈ X be a generic point of an irreducible component of X.

(1) Let F be a torsion abelian sheaf on Xétale whose stalk Fη is zero. Then
F = colimFi is a filtered colimit of constructible abelian sheaves Fi such
that for each i the support of Fi is contained in a closed subscheme not
containing η.

(2) Let Λ be a Noetherian ring and F a sheaf of Λ-modules on Xétale whose
stalk Fη is zero. Then F = colimFi is a filtered colimit of constructible
sheaves of Λ-modules Fi such that for each i the support of Fi is contained
in a closed subscheme not containing η.

Proof. Proof of (1). We can write F = colimi∈I Fi with Fi constructible abelian
by Lemma 59.73.2. Choose i ∈ I. Since F|η is zero by assumption, we see that
there exists an i′(i) ≥ i such that Fi|η → Fi′(i)|η is zero, see Lemma 59.71.8.
Then Gi = Im(Fi → Fi′(i)) is a constructible abelian sheaf (Lemma 59.71.6) whose
stalk at η is zero. Hence the support Ei of Gi is a constructible subset of X not
containing η. Since η is a generic point of an irreducible component of X, we see
that η ̸∈ Zi = Ei by Topology, Lemma 5.15.15. Define a new directed set I ′ by
using the set I with ordering defined by the rule i1 is bigger or equal to i2 if and
only if i1 ≥ i′(i2). Then the sheaves Gi form a system over I ′ with colimit F and
the proof is complete.

The proof in case (2) is exactly the same and we omit it. □
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59.74. Constructible sheaves on Noetherian schemes

03RY If X is a Noetherian scheme then any locally closed subset is a constructible locally
closed subset (Topology, Lemma 5.16.1). Hence an abelian sheaf F on Xétale is
constructible if and only if there exists a finite partition X =

∐
Xi such that F|Xi is

finite locally constant. (By convention a partition of a topological space has locally
closed parts, see Topology, Section 5.28.) In other words, we can omit the adjective
“constructible” in Definition 59.71.1. Actually, the category of constructible sheaves
on Noetherian schemes has some additional properties which we will catalogue in
this section.

Proposition 59.74.1.09BH Let X be a Noetherian scheme. Let Λ be a Noetherian ring.
(1) Any sub or quotient sheaf of a constructible sheaf of sets is constructible.
(2) The category of constructible abelian sheaves on Xétale is a (strong) Serre

subcategory of Ab(Xétale). In particular, every sub and quotient sheaf of
a constructible abelian sheaf on Xétale is constructible.

(3) The category of constructible sheaves of Λ-modules on Xétale is a (strong)
Serre subcategory of Mod(Xétale,Λ). In particular, every submodule and
quotient module of a constructible sheaf of Λ-modules on Xétale is con-
structible.

Proof. Proof of (1). Let G ⊂ F with F a constructible sheaf of sets on Xétale.
Let η ∈ X be a generic point of an irreducible component of X. By Noetherian
induction it suffices to find an open neighbourhood U of η such that G|U is locally
constant. To do this we may replace X by an étale neighbourhood of η. Hence we
may assume F is constant and X is irreducible.
Say F = S for some finite set S. Then S′ = Gη ⊂ S say S′ = {s1, . . . , st}. Pick an
étale neighbourhood (U, u) of η and sections σ1, . . . , σt ∈ G(U) which map to si in
Gη ⊂ S. Since σi maps to an element si ∈ S′ ⊂ S = Γ(X,F) we see that the two
pullbacks of σi to U ×X U are the same as sections of G. By the sheaf condition
for G we find that σi comes from a section of G over the open Im(U → X) of X.
Shrinking X we may assume S′ ⊂ G ⊂ S. Then we see that S′ = G by Lemma
59.73.12.
Let F → Q be a surjection with F a constructible sheaf of sets on Xétale. Then
set G = F ×Q F . By the first part of the proof we see that G is constructible as a
subsheaf of F×F . This in turn implies that Q is constructible, see Lemma 59.71.6.
Proof of (3). we already know that constructible sheaves of modules form a weak
Serre subcategory, see Lemma 59.71.6. Thus it suffices to show the statement on
submodules.
Let G ⊂ F be a submodule of a constructible sheaf of Λ-modules on Xétale. Let η ∈
X be a generic point of an irreducible component of X. By Noetherian induction it
suffices to find an open neighbourhood U of η such that G|U is locally constant. To
do this we may replace X by an étale neighbourhood of η. Hence we may assume
F is constant and X is irreducible.
Say F = M for some finite Λ-module M . Then M ′ = Gη ⊂ M . Pick finitely
many elements s1, . . . , st generating M ′ as a Λ-module. (This is possible as Λ is
Noetherian and M is finite.) Pick an étale neighbourhood (U, u) of η and sections
σ1, . . . , σt ∈ G(U) which map to si in Gη ⊂ M . Since σi maps to an element
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si ∈ M ′ ⊂ M = Γ(X,F) we see that the two pullbacks of σi to U ×X U are the
same as sections of G. By the sheaf condition for G we find that σi comes from
a section of G over the open Im(U → X) of X. Shrinking X we may assume
M ′ ⊂ G ⊂M . Then we see that M ′ = G by Lemma 59.73.12.
Proof of (2). This follows in the usual manner from (3). Details omitted. □

The following lemma tells us that every object of the abelian category of con-
structible sheaves on X is “Noetherian”, i.e., satisfies a.c.c. for subobjects.

Lemma 59.74.2.09YV Let X be a Noetherian scheme. Let Λ be a Noetherian ring.
Consider inclusions

F1 ⊂ F2 ⊂ F3 ⊂ . . . ⊂ F
in the category of sheaves of sets, abelian groups, or Λ-modules. If F is con-
structible, then for some n we have Fn = Fn+1 = Fn+2 = . . ..

Proof. By Proposition 59.74.1 we see that Fi and colimFi are constructible. Then
the lemma follows from Lemma 59.71.8. □

Lemma 59.74.3.09Z6 Let X be a Noetherian scheme.
(1) Let F be a constructible sheaf of sets on Xétale. There exist an injective

map of sheaves
F −→

∏
i=1,...,n

fi,∗Ei

where fi : Yi → X is a finite morphism and Ei is a finite set.
(2) Let F be a constructible abelian sheaf on Xétale. There exist an injective

map of abelian sheaves

F −→
⊕

i=1,...,n
fi,∗Mi

where fi : Yi → X is a finite morphism and Mi is a finite abelian group.
(3) Let Λ be a Noetherian ring. Let F be a constructible sheaf of Λ-modules

on Xétale. There exist an injective map of sheaves of modules

F −→
⊕

i=1,...,n
fi,∗Mi

where fi : Yi → X is a finite morphism and Mi is a finite Λ-module.
Moreover, we may assume each Yi is irreducible, reduced, maps onto an irreducible
and reduced closed subscheme Zi ⊂ X such that Yi → Zi is finite étale over a
nonempty open of Zi.

Proof. Proof of (1). Because we have the ascending chain condition for subsheaves
of F (Lemma 59.74.2), it suffices to show that for every point x ∈ X we can
find a map φ : F → f∗E where f : Y → X is finite and E is a finite set such
that φx : Fx → (f∗S)x is injective. (This argument can be avoided by picking a
partition of X as in Lemma 59.71.2 and constructing a Yi → X for each irreducible
component of each part.) Let Z ⊂ X be the induced reduced scheme structure
(Schemes, Definition 26.12.5) on {x}. Since F is constructible, there is a finite
separable extension K/κ(x) such that F|Spec(K) is the constant sheaf with value
E for some finite set E. Let Y → Z be the normalization of Z in Spec(K).
By Morphisms, Lemma 29.53.13 we see that Y is a normal integral scheme. As
K/κ(x) is a finite extension, it is clear that K is the function field of Y . Denote
g : Spec(K) → Y the inclusion. The map F|Spec(K) → E is adjoint to a map
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F|Y → g∗E = E (Lemma 59.73.13). This in turn is adjoint to a map φ : F → f∗E.
Observe that the stalk of φ at a geometric point x is injective: we may take a lift
y ∈ Y of x and the commutative diagram

Fx

��

(F|Y )y

(f∗E)x // Ey

proves the injectivity. We are not yet done, however, as the morphism f : Y → Z
is integral but in general not finite6.
To fix the problem stated in the last sentence of the previous paragraph, we write
Y = limi∈I Yi with Yi irreducible, integral, and finite over Z. Namely, apply Prop-
erties, Lemma 28.22.13 to f∗OY viewed as a sheaf of OZ-algebras and apply the
functor Spec

Z
. Then f∗E = colim fi,∗E by Lemma 59.51.7. By Lemma 59.73.8 the

map F → f∗E factors through fi,∗E for some i. Since Yi → Z is a finite morphism
of integral schemes and since the function field extension induced by this morphism
is finite separable, we see that the morphism is finite étale over a nonempty open of
Z (use Algebra, Lemma 10.140.9; details omitted). This finishes the proof of (1).
The proofs of (2) and (3) are identical to the proof of (1). □

In the following lemma we use a standard trick to reduce a very general statement
to the Noetherian case.

Lemma 59.74.4.09Z7 [AGV71, Exposee
IX, Proposition
2.14]

Let X be a quasi-compact and quasi-separated scheme.
(1) Let F be a constructible sheaf of sets on Xétale. There exist an injective

map of sheaves
F −→

∏
i=1,...,n

fi,∗Ei

where fi : Yi → X is a finite and finitely presented morphism and Ei is a
finite set.

(2) Let F be a constructible abelian sheaf on Xétale. There exist an injective
map of abelian sheaves

F −→
⊕

i=1,...,n
fi,∗Mi

where fi : Yi → X is a finite and finitely presented morphism and Mi is a
finite abelian group.

(3) Let Λ be a Noetherian ring. Let F be a constructible sheaf of Λ-modules
on Xétale. There exist an injective map of sheaves of modules

F −→
⊕

i=1,...,n
fi,∗Mi

where fi : Yi → X is a finite and finitely presented morphism and Mi is a
finite Λ-module.

Proof. We will reduce this lemma to the Noetherian case by absolute Noetherian
approximation. Namely, by Limits, Proposition 32.5.4 we can write X = limt∈T Xt

with each Xt of finite type over Spec(Z) and with affine transition morphisms. By
Lemma 59.73.10 the category of constructible sheaves (of sets, abelian groups, or

6If X is a Nagata scheme, for example of finite type over a field, then Y → Z is finite.
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Λ-modules) on Xétale is the colimit of the corresponding categories for Xt. Thus
our constructible sheaf F is the pullback of a similar constructible sheaf Ft over
Xt for some t. Then we apply the Noetherian case (Lemma 59.74.3) to find an
injection

Ft −→
∏

i=1,...,n
fi,∗Ei or Ft −→

⊕
i=1,...,n

fi,∗Mi

over Xt for some finite morphisms fi : Yi → Xt. Since Xt is Noetherian the
morphisms fi are of finite presentation. Since pullback is exact and since formation
of fi,∗ commutes with base change (Lemma 59.55.3), we conclude. □

Lemma 59.74.5.0F0N Let X be a Noetherian scheme. Let E ⊂ X be a subset closed
under specialization.

(1) Let F be a torsion abelian sheaf on Xétale whose support is contained in
E. Then F = colimFi is a filtered colimit of constructible abelian sheaves
Fi such that for each i the support of Fi is contained in a closed subset
contained in E.

(2) Let Λ be a Noetherian ring and F a sheaf of Λ-modules on Xétale whose
support is contained in E. Then F = colimFi is a filtered colimit of
constructible sheaves of Λ-modules Fi such that for each i the support of
Fi is contained in a closed subset contained in E.

Proof. Proof of (1). We can write F = colimi∈I Fi with Fi constructible abelian
by Lemma 59.73.2. By Proposition 59.74.1 the image F ′

i ⊂ F of the map Fi → F
is constructible. Thus F = colimF ′

i and the support of F ′
i is contained in E. Since

the support of F ′
i is constructible (by our definition of constructible sheaves), we

see that its closure is also contained in E, see for example Topology, Lemma 5.23.6.

The proof in case (2) is exactly the same and we omit it. □

59.75. Specializations and étale sheaves

0GJ2 Topological picture: Let X be a topological space and let x′ ⇝ x be a specialization
of points in X. Then every open neighbourhood of x contains x′. Hence for any
sheaf F on X there is a specialization map

sp : Fx −→ Fx′

of stalks sending the equivalence class of the pair (U, s) in Fx to the equivalence
class of the pair (U, s) in Fx′ ; see Sheaves, Section 6.11 for the description of stalks
in terms of equivalence classes of pairs. Of course this map is functorial in F , i.e.,
sp is a transformation of functors.

For sheaves in the étale topology we can mimick this construction, see [AGV71,
Exposee VII, 7.7, page 397]. To do this suppose we have a scheme S, a geometric
point s of S, and a geometric point t of Spec(OshS,s). For any sheaf F on Sétale we
will construct the specialization map

sp : Fs −→ Ft
Here we have abused language: instead of writing Ft we should write Fp(t) where
p : Spec(OshS,s)→ S is the canonical morphism. Recall that

Fs = colim(U,u) F(U)
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where the colimit is over all étale neighbourhoods (U, u) of (S, s), see Section 59.29.
Since OshS,s is the stalk of the structure sheaf, we find for every étale neighbourhood
(U, u) of (S, s) a canonical map OU,u → OshS,s. Hence we get a unique factorization

Spec(OshS,s)→ U → S

If v denotes the image of t in U , then we see that (U, v) is an étale neighbourhood of
(S, t). This construction defines a functor from the category of étale neighbourhoods
of (S, s) to the category of étale neighbourhoods of (S, t). Thus we may define the
map sp : Fs → Ft by sending the equivalence class of (U, u, σ) where σ ∈ F(U) to
the equivalence class of (U, v, σ).

Let K ∈ D(Sétale). With s and t as above we have the specialization map

sp : Ks −→ Kt in D(Ab)

Namely, if K is represented by the complex F• of abelian sheaves, then we simply
that the map

Ks = F•
s −→ F•

t
= Kt

which is termwise given by the specialization maps for sheaves constructed above.
This is independent of the choice of complex representing K by the exactness of
the stalk functors (i.e., taking stalks of complexes is well defined on the derived
category).

Clearly the construction is functorial in the sheaf F on Sétale. If we think of the
stalk functors as morphisms of topoi s, t : Sets→ Sh(Sétale), then we may think of
sp as a 2-morphism

Sets
t ,,

s

22�� sp Sh(Sétale)

of topoi.

Remark 59.75.1 (Alternative description of sp).0GJ3 Let S, s, and t be as above.
Another way to describe the specialization map is to use that

Fs = Γ(Spec(OshS,s), p−1F) and Ft = Γ(t, t−1
p−1F)

The first equality follows from Theorem 59.53.1 applied to idS : S → S and the
second equality follows from Lemma 59.36.2. Then we can think of sp as the map

sp : Fs = Γ(Spec(OshS,s), p−1F) pullback by t−−−−−−−−→ Γ(t, t−1
p−1F) = Ft

Remark 59.75.2 (Yet another description of sp).0GJ4 Let S, s, and t be as above.
Another alternative is to use the unique morphism

c : Spec(Osh
S,t

) −→ Spec(OshS,s)

over S which is compatible with the given morphism t → Spec(OshS,s) and the
morphism t → Spec(Osh

t,t
). The uniqueness and existence of the displayed arrow

follows from Algebra, Lemma 10.154.6 applied to OS,s, OshS,t, and OshS,s → κ(t). We
obtain

sp : Fs = Γ(Spec(OshS,s),F) pullback by c−−−−−−−−→ Γ(Spec(Osh
S,t

),F) = Ft
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(with obvious notational conventions). In fact this procedure also works for objects
K in D(Sétale): the specialization map for K is equal to the map

sp : Ks = RΓ(Spec(OshS,s),K) pullback by c−−−−−−−−→ RΓ(Spec(Osh
S,t

),K) = Kt

The equality signs are valid as taking global sections over the striclty henselian
schemes Spec(OshS,s) and Spec(Osh

S,t
) is exact (and the same as taking stalks at s

and t) and hence no subtleties related to the fact that K may be unbounded arise.
Remark 59.75.3 (Lifting specializations).0GJ5 Let S be a scheme and let t ⇝ s be a
specialization of point on S. Choose geometric points t and s lying over t and s.
Since t corresponds to a point of Spec(OS,s) by Schemes, Lemma 26.13.2 and since
OS,s → OshS,s is faithfully flat, we can find a point t′ ∈ Spec(OshS,s) mapping to t. As
Spec(OshS,s) is a limit of schemes étale over S we see that κ(t′)/κ(t) is a separable
algebraic extension (usually not finite of course). Since κ(t) is algebraically closed,
we can choose an embedding κ(t′) → κ(t) as extensions of κ(t). This choice gives
us a commutative diagram

t

��

// Spec(OshS,s)

��

soo

��
t // S soo

of points and geometric points. Thus if t⇝ s we can always “lift” t to a geometric
point of the strict henselization of S at s and get specialization maps as above.
Lemma 59.75.4.0GJ6 Let g : S′ → S be a morphism of schemes. Let F be a sheaf
on Sétale. Let s′ be a geometric point of S′, and let t′ be a geometric point of
Spec(OshS′,s′). Denote s = g(s′) and t = h(t′) where h : Spec(OshS′,s′) → Spec(OshS,s)
is the canonical morphism. For any sheaf F on Sétale the specialization map

sp : (f−1F)s′ −→ (f−1F)t′
is equal to the specialization map sp : Fs → Ft via the identifications (f−1F)s′ =
Fs and (f−1F)t′ = Ft of Lemma 59.36.2.
Proof. Omitted. □

Lemma 59.75.5.0GJ7 Let S be a scheme such that every quasi-compact open of S
has finite number of irreducible components (for example if S has a Noetherian
underlying topological space, or if S is locally Noetherian). Let F be a sheaf of sets
on Sétale. The following are equivalent

(1) F is finite locally constant, and
(2) all stalks of F are finite sets and all specialization maps sp : Fs → Ft are

bijective.
Proof. Assume (2). Let s be a geometric point of S lying over s ∈ S. In order to
prove (1) we have to find an étale neighbourhood (U, u) of (S, s) such that F|U is
constant. We may and do assume S is affine.
Since Fs is finite, we can choose (U, u), n ≥ 0, and pairwise distinct elements
σ1, . . . , σn ∈ F(U) such that {σ1, . . . , σn} ⊂ F(U) maps bijectively to Fs via the
map F(U)→ Fs. Consider the map

φ : {1, . . . , n} −→ F|U
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on Uétale defined by σ1, . . . , σn. This map is a bijection on stalks at u by construc-
tion. Let us consider the subset

E = {u′ ∈ U | φu′ is bijective} ⊂ U
Here u′ is any geometric point of U lying over u′ (the condition is independent of
the choice by Remark 59.29.8). The image u ∈ U of u is in E. By our assumption
on the specialization maps for F , by Remark 59.75.3, and by Lemma 59.75.4 we see
that E is closed under specializations and generalizations in the topological space
U .
After shrinking U we may assume U is affine too. By Descent, Lemma 35.16.3
we see that U has a finite number of irreducible components. After removing
the irreducible components which do not pass through u, we may assume every
irreducible component of U passes through u. Since U is a sober topological space
it follows that E = U and we conclude that φ is an isomorphism by Theorem
59.29.10. Thus (1) follows.
We omit the proof that (1) implies (2). □

Lemma 59.75.6.0GKC Let S be a scheme such that every quasi-compact open of S
has finite number of irreducible components (for example if S has a Noetherian
underlying topological space, or if S is locally Noetherian). Let Λ be a Noetherian
ring. Let F be a sheaf of Λ-modules on Sétale. The following are equivalent

(1) F is a finite type, locally constant sheaf of Λ-modules, and
(2) all stalks of F are finite Λ-modules and all specialization maps sp : Fs →
Ft are bijective.

Proof. The proof of this lemma is the same as the proof of Lemma 59.75.5. Assume
(2). Let s be a geometric point of S lying over s ∈ S. In order to prove (1) we have
to find an étale neighbourhood (U, u) of (S, s) such that F|U is constant. We may
and do assume S is affine.
Since M = Fs is a finite Λ-module and Λ is Noetherian, we can choose a presenta-
tion

Λ⊕m A−→ Λ⊕n →M → 0
for some matrix A = (aji) with coefficients in Λ. We can choose (U, u) and elements
σ1, . . . , σn ∈ F(U) such that

∑
ajiσi = 0 in F(U) and such that the images of σi

in Fs = M are the images of the standard basis element of Λn in the presentation
of M given above. Consider the map

φ : M −→ F|U
on Uétale defined by σ1, . . . , σn. This map is a bijection on stalks at u by construc-
tion. Let us consider the subset

E = {u′ ∈ U | φu′ is bijective} ⊂ U
Here u′ is any geometric point of U lying over u′ (the condition is independent of
the choice by Remark 59.29.8). The image u ∈ U of u is in E. By our assumption
on the specialization maps for F , by Remark 59.75.3, and by Lemma 59.75.4 we see
that E is closed under specializations and generalizations in the topological space
U .
After shrinking U we may assume U is affine too. By Descent, Lemma 35.16.3
we see that U has a finite number of irreducible components. After removing
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the irreducible components which do not pass through u, we may assume every
irreducible component of U passes through u. Since U is a sober topological space
it follows that E = U and we conclude that φ is an isomorphism by Theorem
59.29.10. Thus (1) follows.
We omit the proof that (1) implies (2). □

Lemma 59.75.7.0GJ8 Let f : X → S be a quasi-compact and quasi-separated morphism
of schemes. Let K ∈ D+(Xétale). Let s be a geometric point of S and let t be a
geometric point of Spec(OshS,s). We have a commutative diagram

(Rf∗K)s sp
// (Rf∗K)t

RΓ(X ×S Spec(OshS,s),K) // RΓ(X ×S Spec(Osh
S,t

),K)

where the bottom horizontal arrow arises as pullback by the morphism idX × c
where c : Spec(Osh

S,t
)→ Spec(Osh

S,S
) is the morphism introduced in Remark 59.75.2.

The vertical arrows are given by Theorem 59.53.1.

Proof. This follows immediately from the description of sp in Remark 59.75.2. □

Remark 59.75.8.0GJ9 Let f : X → S be a morphism of schemes. Let K ∈ D(Xétale).
Let s be a geometric point of S and let t be a geometric point of Spec(OshS,s). Let
c be as in Remark 59.75.2. We can always make a commutative diagram

(Rf∗K)s //

sp

��

RΓ(X ×S Spec(OshS,s),K) //

(idX×c)−1

��

RΓ(Xs,K)

(Rf∗K)t // RΓ(X ×S Spec(Osh
S,t

),K) // RΓ(Xt,K)

where the horizontal arrows are those of Remark 59.53.2. In general there won’t
be a vertical map on the right between the cohomologies of K on the fibres fitting
into this diagram, even in the case of Lemma 59.75.7.

59.76. Complexes with constructible cohomology

095V Let Λ be a ring. Denote D(Xétale,Λ) the derived category of sheaves of Λ-modules
on Xétale. We denote by Db(Xétale,Λ) (respectively D+, D−) the full subcategory
of bounded (resp. above, below) complexes in D(Xétale,Λ).

Definition 59.76.1.095W Let X be a scheme. Let Λ be a Noetherian ring. We denote
Dc(Xétale,Λ) the full subcategory of D(Xétale,Λ) of complexes whose cohomology
sheaves are constructible sheaves of Λ-modules.

This definition makes sense by Lemma 59.71.6 and Derived Categories, Section
13.17. Thus we see that Dc(Xétale,Λ) is a strictly full, saturated triangulated
subcategory of D(Xétale,Λ).

Lemma 59.76.2.095X Let Λ be a Noetherian ring. If j : U → X is an étale morphism
of schemes, then

(1) K|U ∈ Dc(Uétale,Λ) if K ∈ Dc(Xétale,Λ), and
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(2) j!M ∈ Dc(Xétale,Λ) if M ∈ Dc(Uétale,Λ) and the morphism j is quasi-
compact and quasi-separated.

Proof. The first assertion is clear. The second follows from the fact that j! is exact
and Lemma 59.73.1. □

Lemma 59.76.3.095Y Let Λ be a Noetherian ring. Let f : X → Y be a morphism of
schemes. If K ∈ Dc(Yétale,Λ) then Lf∗K ∈ Dc(Xétale,Λ).

Proof. This follows as f−1 = f∗ is exact and Lemma 59.71.5. □

Lemma 59.76.4.095Z Let X be a quasi-compact and quasi-separated scheme. Let Λ be a
Noetherian ring. Let K ∈ D(Xétale,Λ) and b ∈ Z such that Hb(K) is constructible.
Then there exist a sheaf F which is a finite direct sum of jU !Λ with U ∈ Ob(Xétale)
affine and a map F [−b]→ K in D(Xétale,Λ) inducing a surjection F → Hb(K).

Proof. Represent K by a complex K• of sheaves of Λ-modules. Consider the sur-
jection

Ker(Kb → Kb+1) −→ Hb(K)
By Modules on Sites, Lemma 18.30.6 we may choose a surjection

⊕
i∈I jUi!Λ →

Ker(Kb → Kb+1) with Ui affine. For I ′ ⊂ I finite, denote HI′ ⊂ Hb(K) the image
of
⊕

i∈I′ jUi!Λ. By Lemma 59.71.8 we see that HI′ = Hb(K) for some I ′ ⊂ I finite.
The lemma follows taking F =

⊕
i∈I′ jUi!Λ. □

Lemma 59.76.5.0960 Let X be a quasi-compact and quasi-separated scheme. Let Λ be
a Noetherian ring. Let K ∈ D−(Xétale,Λ). Then the following are equivalent

(1) K is in Dc(Xétale,Λ),
(2) K can be represented by a bounded above complex whose terms are finite

direct sums of jU !Λ with U ∈ Ob(Xétale) affine,
(3) K can be represented by a bounded above complex of flat constructible

sheaves of Λ-modules.

Proof. It is clear that (2) implies (3) and that (3) implies (1). Assume K is in
D−
c (Xétale,Λ). Say Hi(K) = 0 for i > b. By induction on a we will construct

a complex Fa → . . . → Fb such that each F i is a finite direct sum of jU !Λ with
U ∈ Ob(Xétale) affine and a map F• → K which induces an isomorphismHi(F•)→
Hi(K) for i > a and a surjection Ha(F•) → Ha(K). For a = b this can be done
by Lemma 59.76.4. Given such a datum choose a distinguished triangle

F• → K → L→ F•[1]

Then we see that Hi(L) = 0 for i ≥ a. Choose Fa−1[−a + 1] → L as in Lemma
59.76.4. The composition Fa−1[−a+ 1]→ L→ F• corresponds to a map Fa−1 →
Fa such that the composition with Fa → Fa+1 is zero. By TR4 we obtain a map

(Fa−1 → . . .→ Fb)→ K

in D(Xétale,Λ). This finishes the induction step and the proof of the lemma. □

Lemma 59.76.6.0961 Let X be a scheme. Let Λ be a Noetherian ring. Let K,L ∈
D−
c (Xétale,Λ). Then K ⊗L

Λ L is in D−
c (Xétale,Λ).

Proof. This follows from Lemmas 59.76.5 and 59.71.9. □
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59.77. Tor finite with constructible cohomology

0F4M Let X be a scheme and let Λ be a Noetherian ring. An often used subcategory
of the derived category Dc(Xétale,Λ) defined in Section 59.76 is the full subcate-
gory consisting of objects having (locally) finite tor dimension. Here is the formal
definition.

Definition 59.77.1.03TQ Let X be a scheme. Let Λ be a Noetherian ring. We denote
Dctf (Xétale,Λ) the full subcategory of Dc(Xétale,Λ) consisting of objects having
locally finite tor dimension.

This is a strictly full, saturated triangulated subcategory of Dc(Xétale,Λ) and
D(Xétale,Λ). By our conventions, see Cohomology on Sites, Definition 21.46.1,
we see that

Dctf (Xétale,Λ) ⊂ Db
c(Xétale,Λ) ⊂ Db(Xétale,Λ)

if X is quasi-compact. A good way to think about objects of Dctf (Xétale,Λ) is
given in Lemma 59.77.3.

Remark 59.77.2.03TS Objects in the derived category Dctf (Xétale,Λ) in some sense
have better global properties than the perfect objects in D(OX). Namely, it can
happen that a complex of OX -modules is locally quasi-isomorphic to a finite com-
plex of finite locally free OX -modules, without being globally quasi-isomorphic to
a bounded complex of locally free OX -modules. The following lemma shows this
does not happen for Dctf on a Noetherian scheme.

Lemma 59.77.3.03TT Let Λ be a Noetherian ring. Let X be a quasi-compact and
quasi-separated scheme. Let K ∈ D(Xétale,Λ). The following are equivalent

(1) K ∈ Dctf (Xétale,Λ), and
(2) K can be represented by a finite complex of constructible flat sheaves of

Λ-modules.
In fact, if K has tor amplitude in [a, b] then we can represent K by a complex
Fa → . . .→ Fb with Fp a constructible flat sheaf of Λ-modules.

Proof. It is clear that a finite complex of constructible flat sheaves of Λ-modules
has finite tor dimension. It is also clear that it is an object of Dc(Xétale,Λ). Thus
we see that (2) implies (1).
Assume (1). Choose a, b ∈ Z such that Hi(K ⊗L

Λ G) = 0 if i ̸∈ [a, b] for all sheaves
of Λ-modules G. We will prove the final assertion holds by induction on b − a. If
a = b, then K = Ha(K)[−a] is a flat constructible sheaf and the result holds. Next,
assume b > a. Represent K by a complex K• of sheaves of Λ-modules. Consider
the surjection

Ker(Kb → Kb+1) −→ Hb(K)
By Lemma 59.73.6 we can find finitely many affine schemes Ui étale over X and
a surjection

⊕
jUi!ΛUi → Hb(K). After replacing Ui by standard étale coverings

{Uij → Ui} we may assume this surjection lifts to a map F =
⊕
jUi!ΛUi →

Ker(Kb → Kb+1). This map determines a distinguished triangle
F [−b]→ K → L→ F [−b+ 1]

in D(Xétale,Λ). Since Dctf (Xétale,Λ) is a triangulated subcategory we see that L is
in it too. In fact L has tor amplitude in [a, b−1] as F surjects onto Hb(K) (details
omitted). By induction hypothesis we can find a finite complex Fa → . . .→ Fb−1
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of flat constructible sheaves of Λ-modules representing L. The map L→ F [−b+ 1]
corresponds to a map Fb → F annihilating the image of Fb−1 → Fb. Then it
follows from axiom TR3 that K is represented by the complex

Fa → . . .→ Fb−1 → Fb

which finishes the proof. □

Remark 59.77.4.03TR Let Λ be a Noetherian ring. Let X be a scheme. For a bounded
complex K• of constructible flat Λ-modules on Xétale each stalk Kp

x is a finite
projective Λ-module. Hence the stalks of the complex are perfect complexes of
Λ-modules.

Lemma 59.77.5.0962 Let Λ be a Noetherian ring. If j : U → X is an étale morphism
of schemes, then

(1) K|U ∈ Dctf (Uétale,Λ) if K ∈ Dctf (Xétale,Λ), and
(2) j!M ∈ Dctf (Xétale,Λ) if M ∈ Dctf (Uétale,Λ) and the morphism j is quasi-

compact and quasi-separated.

Proof. Perhaps the easiest way to prove this lemma is to reduce to the case where
X is affine and then apply Lemma 59.77.3 to translate it into a statement about
finite complexes of flat constructible sheaves of Λ-modules where the result follows
from Lemma 59.73.1. □

Lemma 59.77.6.0963 Let Λ be a Noetherian ring. Let f : X → Y be a morphism of
schemes. If K ∈ Dctf (Yétale,Λ) then Lf∗K ∈ Dctf (Xétale,Λ).

Proof. Apply Lemma 59.77.3 to reduce this to a question about finite complexes of
flat constructible sheaves of Λ-modules. Then the statement follows as f−1 = f∗ is
exact and Lemma 59.71.5. □

Lemma 59.77.7.09BI Let X be a connected scheme. Let Λ be a Noetherian ring. Let
K ∈ Dctf (Xétale,Λ) have locally constant cohomology sheaves. Then there exists a
finite complex of finite projective Λ-modules M• and an étale covering {Ui → X}
such that K|Ui ∼= M•|Ui in D(Ui,étale,Λ).

Proof. Choose an étale covering {Ui → X} such that K|Ui is constant, say K|Ui ∼=
M•
i Ui

for some finite complex of finite Λ-modules M•
i . See Cohomology on Sites,

Lemma 21.53.1. Observe that Ui×X Uj is empty if M•
i is not isomorphic to M•

j in
D(Λ). For each complex of Λ-modules M• let IM• = {i ∈ I |M•

i
∼= M• in D(Λ)}.

As étale morphisms are open we see that UM• =
⋃
i∈IM• Im(Ui → X) is an open

subset of X. Then X =
∐
UM• is a disjoint open covering of X. As X is connected

only one UM• is nonempty. As K is in Dctf (Xétale,Λ) we see that M• is a perfect
complex of Λ-modules, see More on Algebra, Lemma 15.74.2. Hence we may assume
M• is a finite complex of finite projective Λ-modules. □

59.78. Torsion sheaves

0DDB A brief section on torsion abelian sheaves and their étale cohomology. Let C be
a site. We have shown in Cohomology on Sites, Lemma 21.19.8 that any object
in D(C) whose cohomology sheaves are torsion sheaves, can be represented by a
complex all of whose terms are torsion.

Lemma 59.78.1.0DDC Let X be a quasi-compact and quasi-separated scheme.
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(1) If F is a torsion abelian sheaf on Xétale, then Hn
étale(X,F) is a torsion

abelian group for all n.
(2) If K in D+(Xétale) has torsion cohomology sheaves, then Hn

étale(X,K) is
a torsion abelian group for all n.

Proof. To prove (1) we write F =
⋃
F [n] where F [d] is the d-torsion subsheaf. By

Lemma 59.51.4 we have Hn
étale(X,F) = colimHn

étale(X,F [d]). This proves (1) as
Hn
étale(X,F [d]) is annihilated by d.

To prove (2) we can use the spectral sequence Ep,q2 = Hp
étale(X,Hq(K)) converging

toHn
étale(X,K) (Derived Categories, Lemma 13.21.3) and the result for sheaves. □

Lemma 59.78.2.0DDD Let f : X → Y be a quasi-compact and quasi-separated morphism
of schemes.

(1) If F is a torsion abelian sheaf on Xétale, then Rnf∗F is a torsion abelian
sheaf on Yétale for all n.

(2) If K in D+(Xétale) has torsion cohomology sheaves, then Rf∗K is an ob-
ject of D+(Yétale) whose cohomology sheaves are torsion abelian sheaves.

Proof. Proof of (1). Recall that Rnf∗F is the sheaf associated to the presheaf
V 7→ Hn

étale(X ×Y V,F) on Yétale. See Cohomology on Sites, Lemma 21.7.4. If we
choose V affine, then X ×Y V is quasi-compact and quasi-separated because f is,
hence we can apply Lemma 59.78.1 to see that Hn

étale(X ×Y V,F) is torsion.
Proof of (2). Recall that Rnf∗K is the sheaf associated to the presheaf V 7→
Hn
étale(X ×Y V,K) on Yétale. See Cohomology on Sites, Lemma 21.20.6. If we

choose V affine, then X ×Y V is quasi-compact and quasi-separated because f is,
hence we can apply Lemma 59.78.1 to see that Hn

étale(X ×Y V,K) is torsion. □

59.79. Cohomology with support in a closed subscheme

09XP Let X be a scheme and let Z ⊂ X be a closed subscheme. Let F be an abelian
sheaf on Xétale. We let

ΓZ(X,F) = {s ∈ F(X) | Supp(s) ⊂ Z}
be the sections with support in Z (Definition 59.31.3). This is a left exact functor
which is not exact in general. Hence we obtain a derived functor

RΓZ(X,−) : D(Xétale) −→ D(Ab)
and cohomology groups with support in Z defined by Hq

Z(X,F) = RqΓZ(X,F).
Let I be an injective abelian sheaf on Xétale. Let U = X \Z. Then the restriction
map I(X)→ I(U) is surjective (Cohomology on Sites, Lemma 21.12.6) with kernel
ΓZ(X, I). It immediately follows that for K ∈ D(Xétale) there is a distinguished
triangle

RΓZ(X,K)→ RΓ(X,K)→ RΓ(U,K)→ RΓZ(X,K)[1]
in D(Ab). As a consequence we obtain a long exact cohomology sequence

. . .→ Hi
Z(X,K)→ Hi(X,K)→ Hi(U,K)→ Hi+1

Z (X,K)→ . . .

for any K in D(Xétale).
For an abelian sheaf F on Xétale we can consider the subsheaf of sections with
support in Z, denoted HZ(F), defined by the rule

HZ(F)(U) = {s ∈ F(U) | Supp(s) ⊂ U ×X Z}
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Here we use the support of a section from Definition 59.31.3. Using the equivalence
of Proposition 59.46.4 we may view HZ(F) as an abelian sheaf on Zétale. Thus we
obtain a functor

Ab(Xétale) −→ Ab(Zétale), F 7−→ HZ(F)

which is left exact, but in general not exact.

Lemma 59.79.1.09XQ Let i : Z → X be a closed immersion of schemes. Let I be
an injective abelian sheaf on Xétale. Then HZ(I) is an injective abelian sheaf on
Zétale.

Proof. Observe that for any abelian sheaf G on Zétale we have

HomZ(G,HZ(F)) = HomX(i∗G,F)

because after all any section of i∗G has support in Z. Since i∗ is exact (Section 59.46)
and as I is injective on Xétale we conclude that HZ(I) is injective on Zétale. □

Denote
RHZ : D(Xétale) −→ D(Zétale)

the derived functor. We set HqZ(F) = RqHZ(F) so that H0
Z(F) = HZ(F). By the

lemma above we have a Grothendieck spectral sequence

Ep,q2 = Hp(Z,HqZ(F))⇒ Hp+q
Z (X,F)

Lemma 59.79.2.09XR Let i : Z → X be a closed immersion of schemes. Let G be an
injective abelian sheaf on Zétale. Then HpZ(i∗G) = 0 for p > 0.

Proof. This is true because the functor i∗ is exact and transforms injective abelian
sheaves into injective abelian sheaves (Cohomology on Sites, Lemma 21.14.2). □

Lemma 59.79.3.0A45 Let i : Z → X be a closed immersion of schemes. Let j : U → X
be the inclusion of the complement of Z. Let F be an abelian sheaf on Xétale.
There is a distinguished triangle

i∗RHZ(F)→ F → Rj∗(F|U )→ i∗RHZ(F)[1]

in D(Xétale). This produces an exact sequence

0→ i∗HZ(F)→ F → j∗(F|U )→ i∗H1
Z(F)→ 0

and isomorphisms Rpj∗(F|U ) ∼= i∗Hp+1
Z (F) for p ≥ 1.

Proof. To get the distinguished triangle, choose an injective resolution F → I•.
Then we obtain a short exact sequence of complexes

0→ i∗HZ(I•)→ I• → j∗(I•|U )→ 0

by the discussion above. Thus the distinguished triangle by Derived Categories,
Section 13.12. □

Let X be a scheme and let Z ⊂ X be a closed subscheme. We denote DZ(Xétale) the
strictly full saturated triangulated subcategory of D(Xétale) consisting of complexes
whose cohomology sheaves are supported on Z. Note that DZ(Xétale) only depends
on the underlying closed subset of X.
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Lemma 59.79.4.0AEG Let i : Z → X be a closed immersion of schemes. The map
Rismall,∗ = ismall,∗ : D(Zétale) → D(Xétale) induces an equivalence D(Zétale) →
DZ(Xétale) with quasi-inverse

i−1
small|DZ(Xétale) = RHZ |DZ(Xétale)

Proof. Recall that i−1
small and ismall,∗ is an adjoint pair of exact functors such that

i−1
smallismall,∗ is isomorphic to the identify functor on abelian sheaves. See Propo-

sition 59.46.4 and Lemma 59.36.2. Thus ismall,∗ : D(Zétale) → DZ(Xétale) is fully
faithful and i−1

small determines a left inverse. On the other hand, suppose that K
is an object of DZ(Xétale) and consider the adjunction map K → ismall,∗i

−1
smallK.

Using exactness of ismall,∗ and i−1
small this induces the adjunction maps Hn(K) →

ismall,∗i
−1
smallH

n(K) on cohomology sheaves. Since these cohomology sheaves are
supported on Z we see these adjunction maps are isomorphisms and we conclude
that D(Zétale)→ DZ(Xétale) is an equivalence.
To finish the proof we have to show that RHZ(K) = i−1

smallK if K is an object of
DZ(Xétale). To do this we can use that K = ismall,∗i

−1
smallK as we’ve just proved

this is the case. Then we can choose a K-injective representative I• for i−1
smallK.

Since ismall,∗ is the right adjoint to the exact functor i−1
small, the complex ismall,∗I•

is K-injective (Derived Categories, Lemma 13.31.9). We see that RHZ(K) is com-
puted by HZ(ismall,∗I•) = I• as desired. □

Lemma 59.79.5.0A46 Let X be a scheme. Let Z ⊂ X be a closed subscheme. Let F be
a quasi-coherent OX -module and denote Fa the associated quasi-coherent sheaf on
the small étale site of X (Proposition 59.17.1). Then

(1) Hq
Z(X,F) agrees with Hq

Z(Xétale,Fa),
(2) if the complement of Z is retrocompact in X, then i∗HqZ(Fa) is a quasi-

coherent sheaf of OX -modules equal to (i∗HqZ(F))a.

Proof. Let j : U → X be the inclusion of the complement of Z. The statement (1)
on cohomology groups follows from the long exact sequences for cohomology with
supports and the agreements Hq(Xétale,Fa) = Hq(X,F) and Hq(Uétale,Fa) =
Hq(U,F), see Theorem 59.22.4. If j : U → X is a quasi-compact morphism, i.e.,
if U ⊂ X is retrocompact, then Rqj∗ transforms quasi-coherent sheaves into quasi-
coherent sheaves (Cohomology of Schemes, Lemma 30.4.5) and commutes with
taking associated sheaf on étale sites (Descent, Lemma 35.9.5). We conclude by
applying Lemma 59.79.3. □

59.80. Schemes with strictly henselian local rings

0EZN In this section we collect some results about the étale cohomology of schemes whose
local rings are strictly henselian. For example, here is a fun generalization of Lemma
59.55.1.

Lemma 59.80.1.09AX Let S be a scheme all of whose local rings are strictly henselian.
Then for any abelian sheaf F on Sétale we have Hi(Sétale,F) = Hi(SZar,F).

Proof. Let ϵ : Sétale → SZar be the morphism of sites given by the inclusion functor.
The Zariski sheaf Rpϵ∗F is the sheaf associated to the presheaf U 7→ Hp

étale(U,F).
Thus the stalk at x ∈ X is colimHp

étale(U,F) = Hp
étale(Spec(OX,x),Gx) where Gx

denotes the pullback of F to Spec(OX,x), see Lemma 59.51.5. Thus the higher
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direct images of Rpϵ∗F are zero by Lemma 59.55.1 and we conclude by the Leray
spectral sequence. □

Lemma 59.80.2.0GY0 Let R be a ring all of whose local rings are strictly henselian. Let
F be a sheaf on Spec(R)étale. Assume that for all f, g ∈ R the kernel of

H1
étale(D(f + g),F) −→ H1

étale(D(f(f + g)),F)⊕H1
étale(D(g(f + g)),F)

is zero. Then Hq
étale(Spec(R),F) = 0 for q > 0.

Proof. By Lemma 59.80.1 we see that étale cohomology of F agrees with Zariski
cohomology on any open of Spec(R). We will prove by induction on i the statement:
for h ∈ R we have Hq

étale(D(h),F) = 0 for 1 ≤ q ≤ i. The base case i = 0 is trivial.
Assume i ≥ 1.

Let ξ ∈ Hq
étale(D(h),F) for some 1 ≤ q ≤ i and h ∈ R. If q < i then we are

done by induction, so we assume q = i. After replacing R by Rh we may assume
ξ ∈ Hi

étale(Spec(R),F); some details omitted. Let I ⊂ R be the set of elements
f ∈ R such that ξ|D(f) = 0. Since ξ is Zariski locally trivial, it follows that for
every prime p of R there exists an f ∈ I with f ̸∈ p. Thus if we can show that I is
an ideal, then 1 ∈ I and we’re done. It is clear that f ∈ I, r ∈ R implies rf ∈ I.
Thus we assume that f, g ∈ I and we show that f + g ∈ I. If q = i = 1, then this is
exactly the assumption of the lemma! Whence the result for i = 1. For q = i > 1,
note that

D(f + g) = D(f(f + g)) ∪D(g(f + g))
By Mayer-Vietoris (Cohomology, Lemma 20.8.2 which applies as étale cohomol-
ogy on open subschemes of Spec(R) equals Zariski cohomology) we have an exact
sequence

Hi−1
étale(D(fg(f + g)),F)

��
Hi
étale(D(f + g),F)

��
Hi
étale(D(f(f + g)),F)⊕Hi

étale(D(g(f + g)),F)
and the result follows as the first group is zero by induction. □

Lemma 59.80.3.09AY Let S be an affine scheme such that (1) all points are closed, and
(2) all residue fields are separably algebraically closed. Then for any abelian sheaf
F on Sétale we have Hi(Sétale,F) = 0 for i > 0.

Proof. Condition (1) implies that the underlying topological space of S is profinite,
see Algebra, Lemma 10.26.5. Thus the higher cohomology groups of an abelian sheaf
on the topological space S (i.e., Zariski cohomology) is trivial, see Cohomology,
Lemma 20.22.3. The local rings are strictly henselian by Algebra, Lemma 10.153.10.
Thus étale cohomology of S is computed by Zariski cohomology by Lemma 59.80.1
and the proof is done. □

The spectrum of an absolutely integrally closed ring is an example of a scheme all
of whose local rings are strictly henselian, see More on Algebra, Lemma 15.14.7. It
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turns out that normal domains with separably closed fraction fields have an even
stronger property as explained in the following lemma.

Lemma 59.80.4.09Z9 Let X be an integral normal scheme with separably closed function
field.

(1) A separated étale morphism U → X is a disjoint union of open immer-
sions.

(2) All local rings of X are strictly henselian.

Proof. Let R be a normal domain whose fraction field is separably algebraically
closed. Let R → A be an étale ring map. Then A ⊗R K is as a K-algebra a
finite product

∏
i=1,...,nK of copies of K. Let ei, i = 1, . . . , n be the corresponding

idempotents of A ⊗R K. Since A is normal (Algebra, Lemma 10.163.9) the idem-
potents ei are in A (Algebra, Lemma 10.37.12). Hence A =

∏
Aei and we may

assume A ⊗R K = K. Since A ⊂ A ⊗R K = K (by flatness of R → A and since
R ⊂ K) we conclude that A is a domain. By the same argument we conclude that
A⊗RA ⊂ (A⊗RA)⊗RK = K. It follows that the map A⊗RA→ A is injective as
well as surjective. Thus R→ A defines an open immersion by Morphisms, Lemma
29.10.2 and Étale Morphisms, Theorem 41.14.1.

Let f : U → X be a separated étale morphism. Let η ∈ X be the generic point and
let f−1({η}) = {ξi}i∈I . The result of the previous paragraph shows the following:
For any affine open U ′ ⊂ U whose image in X is contained in an affine we have
U ′ =

∐
i∈I U

′
i where U ′

i is the set of point of U ′ which are specializations of ξi.
Moreover, the morphism U ′

i → X is an open immersion. It follows that Ui =
{ξi} is an open and closed subscheme of U and that Ui → X is locally on the
source an isomorphism. By Morphisms, Lemma 29.49.7 the fact that Ui → X is
separated, implies that Ui → X is injective and we conclude that Ui → X is an
open immersion, i.e., (1) holds.

Part (2) follows from part (1) and the description of the strict henselization of OX,x
as the local ring at x on the étale site of X (Lemma 59.33.1). It can also be proved
directly, see Fundamental Groups, Lemma 58.12.2. □

Lemma 59.80.5.0EZP Let f : X → Y be a morphism of schemes where X is an integral
normal scheme with separably closed function field. Then Rqf∗M = 0 for q > 0
and any abelian group M .

Proof. Recall that Rqf∗M is the sheaf associated to the presheaf V 7→ Hq
étale(V ×Y

X,M) on Yétale, see Lemma 59.51.6. If V is affine, then V ×Y X → X is separated
and étale. Hence V ×Y X =

∐
Ui is a disjoint union of open subschemes Ui of

X, see Lemma 59.80.4. By Lemma 59.80.1 we see that Hq
étale(Ui,M) is equal to

Hq
Zar(Ui,M). This vanishes by Cohomology, Lemma 20.20.2. □

Lemma 59.80.6.09ZA Let X be an affine integral normal scheme with separably closed
function field. Let Z ⊂ X be a closed subscheme. Let V → Z be an étale morphism
with V affine. Then V is a finite disjoint union of open subschemes of Z. If V → Z
is surjective and finite étale, then V → Z has a section.

Proof. By Algebra, Lemma 10.143.10 we can lift V to an affine scheme U étale over
X. Apply Lemma 59.80.4 to U → X to get the first statement.
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The final statement is a consequence of the first. Let V =
∐
i=1,...,n Vi be a finite

decomposition into open and closed subschemes with Vi → Z an open immersion.
As V → Z is finite we see that Vi → Z is also closed. Let Ui ⊂ Z be the image.
Then we have a decomposition into open and closed subschemes

Z =
∐

(A,B)

⋂
i∈A

Ui ∩
⋂

i∈B
U ci

where the disjoint union is over {1, . . . , n} = A ⨿ B where A has at least one
element. Each of the strata is contained in a single Ui and we find our section. □

Lemma 59.80.7.09ZB Let X be a normal integral affine scheme with separably closed
function field. Let Z ⊂ X be a closed subscheme. For any finite abelian group M
we have H1

étale(Z,M) = 0.

Proof. By Cohomology on Sites, Lemma 21.4.3 an element of H1
étale(Z,M) corre-

sponds to a M -torsor F on Zétale. Such a torsor is clearly a finite locally constant
sheaf. Hence F is representable by a scheme V finite étale over Z, Lemma 59.64.4.
Of course V → Z is surjective as a torsor is locally trivial. Since V → Z has a
section by Lemma 59.80.6 we are done. □

Lemma 59.80.8.09ZC Let X be a normal integral affine scheme with separably closed
function field. Let Z ⊂ X be a closed subscheme. For any finite abelian group M
we have Hq

étale(Z,M) = 0 for q ≥ 1.

Proof. Write X = Spec(R) and Z = Spec(R′) so that we have a surjection of rings
R→ R′. All local rings of R′ are strictly henselian by Lemma 59.80.4 and Algebra,
Lemma 10.156.4. Furthermore, we see that for any f ′ ∈ R′ there is a surjection
Rf → R′

f ′ where f ∈ R is a lift of f ′. Since Rf is a normal domain with separably
closed fraction field we see that H1

étale(D(f ′),M) = 0 by Lemma 59.80.7. Thus we
may apply Lemma 59.80.2 to Z = Spec(R′) to conclude. □

Lemma 59.80.9.09ZD Let X be an affine scheme.
(1) There exists an integral surjective morphism X ′ → X such that for every

closed subscheme Z ′ ⊂ X ′, every finite abelian group M , and every q ≥ 1
we have Hq

étale(Z ′,M) = 0.
(2) For any closed subscheme Z ⊂ X, finite abelian group M , q ≥ 1, and

ξ ∈ Hq
étale(Z,M) there exists a finite surjective morphism X ′ → X of

finite presentation such that ξ pulls back to zero in Hq
étale(X ′ ×X Z,M).

Proof. Write X = Spec(A). Write A = Z[xi]/J for some ideal J . Let R be the
integral closure of Z[xi] in an algebraic closure of the fraction field of Z[xi]. Let
A′ = R/JR and set X ′ = Spec(A′). This gives an example as in (1) by Lemma
59.80.8.

Proof of (2). Let X ′ → X be the integral surjective morphism we found above.
Certainly, ξ maps to zero in Hq

étale(X ′ ×X Z,M). We may write X ′ as a limit
X ′ = limX ′

i of schemes finite and of finite presentation over X; this is easy to do in
our current affine case, but it is a special case of the more general Limits, Lemma
32.7.3. By Lemma 59.51.5 we see that ξ maps to zero in Hq

étale(X ′
i ×X Z,M) for

some i large enough. □
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59.81. Absolutely integrally closed vanishing

0GY1 Recall that we say a ring R is absolutely integrally closed if every monic polynomial
over R has a root in R (More on Algebra, Definition 15.14.1). In this section we
prove that the étale cohomology of Spec(R) with coefficients in a finite torsion
group vanishes in positive degrees (Proposition 59.81.5) thereby slightly improving
the earlier Lemma 59.80.8. We suggest the reader skip this section.

Lemma 59.81.1.0GY2 Let A be a ring. Let a, b ∈ A such that aA+bA = A and a mod bA
is a root of unity. Then there exists a monogenic extension A ⊂ B and an element
y ∈ B such that u = a− by is a unit.

Proof. Say an ≡ 1 mod bA. In particular ai is a unit modulo bmA for all i,m ≥ 1.
We claim there exist a1, . . . , an ∈ A such that

1 = an + a1a
n−1b+ a2a

n−2b2 + . . .+ anb
n

Namely, since 1−an ∈ bA we can find an element a1 ∈ A such that 1−an−a1a
n−1b ∈

b2A using the unit property of an−1 modulo bA. Next, we can find an element
a2 ∈ A such that 1−an−a1a

n−1b−a2a
n−2b2 ∈ b3A. And so on. Eventually we find

a1, . . . , an−1 ∈ A such that 1− (an+a1a
n−1b+a2a

n−2b2 + . . .+an−1ab
n−1) ∈ bnA.

This allows us to find an ∈ A such that the displayed equality holds.

With a1, . . . , an as above we claim that setting

B = A[y]/(yn + a1y
n−1 + a2y

n−2 + . . .+ an)

works. Namely, suppose that q ⊂ B is a prime ideal lying over p ⊂ A. To get
a contradiction assume u = a − by is in q. If b ∈ p then a ̸∈ p as aA + bA = A
and hence u is not in q. Thus we may assume b ̸∈ p, i.e., b ̸∈ q. This implies that
y mod q is equal to a/b mod q. However, then we obtain

0 = yn+a1y
n−1+a2y

n−2+. . .+an = b−n(an+a1a
n−1b+a2a

n−2b2+. . .+anbn) = b−n

a contradiction. This finishes the proof. □

In order to explain the proof we need to introduce some group schemes. Fix a prime
number ℓ. Let

A = Z[ζ] = Z[x]/(xℓ−1 + xℓ−2 + . . .+ 1)
In other words A is the monogenic extension of Z generated by a primitive ℓth root
of unity ζ. We set

π = ζ − 1
A calculation (omitted) shows that ℓ is divisible by πℓ−1 in A. Our first group
scheme over A is

G = Spec(A[s, 1
πs+ 1])

with group law given by the comultiplication

µ : A[s, 1
πs+ 1] −→ A[s, 1

πs+ 1]⊗A A[s, 1
πs+ 1], s 7−→ πs⊗ s+ s⊗ 1 + 1⊗ s

With this choice we have

µ(πs+ 1) = (πs+ 1)⊗ (πs+ 1)

https://stacks.math.columbia.edu/tag/0GY2
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and hence we indeed have an A-algebra map as indicated. We omit the verification
that this indeed defines a group law. Our second group scheme over A is

H = Spec(A[t, 1
πℓt+ 1])

with group law given by the comultiplication

µ : A[t, 1
πℓt+ 1] −→ A[t, 1

πℓt+ 1]⊗A A[t, 1
πℓt+ 1], t 7−→ πℓt⊗ t+ t⊗ 1 + 1⊗ t

The same verification as before shows that this defines a group law. Next, we
observe that the polynomial

Φ(s) = (πs+ 1)ℓ − 1
πℓ

is in A[s] and of degree ℓ and monic in s. Namely, the coefficicient of si for 0 < i < ℓ

is equal to
(
ℓ
i

)
πi−ℓ and since πℓ−1 divides ℓ in A this is an element of A. We obtain

a ring map
A[t, 1

πℓt+ 1] −→ A[s, 1
πs+ 1], t 7−→ Φ(s)

which the reader easily verifies is compatible with the comultiplications. Thus we
get a morphism of group schemes

f : G→ H

The following lemma in particular shows that this morphism is faithfully flat (in
fact we will see that it is finite étale surjective).

Lemma 59.81.2.0GY3 We have

A[s, 1
πs+ 1] =

(
A[t, 1

πℓt+ 1]
)

[s]/(Φ(s)− t)

In particular, the Hopf algebra of G is a monogenic extension of the Hopf algebra
of H.

Proof. Follows from the discussion above and the shape of Φ(s). In particular, note
that using Φ(s) = t the element 1

πℓt+1 becomes the element 1
(πs+1)ℓ . □

Next, let us compute the kernel of f . Since the origin of H is given by t = 0 in H
we see that the kernel of f is given by Φ(s) = 0. Now observe that the A-valued
points σ0, . . . , σℓ−1 of G given by

σi : s = ζi − 1
π

= ζi − 1
ζ − 1 = ζi−1 + ζi−2 + . . .+ 1, i = 0, 1, . . . , ℓ− 1

are certainly contained in Ker(f). Moreover, these are all pairwise distinct in all
fibres of G → Spec(A). Also, the reader computes that σi +G σj = σi+j mod ℓ.
Hence we find a closed immersion of group schemes

Z/ℓZ
A
−→ Ker(f)

sending i to σi. However, by construction Ker(f) is finite flat over Spec(A) of degree
ℓ. Hence we conclude that this map is an isomorphism. All in all we conclude that
we have a short exact sequence
(59.81.2.1)0GY4 0→ Z/ℓZ

A
→ G→ H → 0

of group schemes over A.

https://stacks.math.columbia.edu/tag/0GY3
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Lemma 59.81.3.0GY5 Let R be an A-algebra which is absolutely integrally closed. Then
G(R)→ H(R) is surjective.

Proof. Let h ∈ H(R) correspond to the A-algebra map A[t, 1
πℓt+1 ] → R sending t

to a ∈ A. Since Φ(s) is monic we can find b ∈ A with Φ(b) = a. By Lemma 59.81.2
sending s to b we obtain a unique A-algebra map A[s, 1

πs+1 ]→ R compatible with
the map A[t, 1

πℓt+1 ]→ R above. This in turn corresponds to an element g ∈ G(R)
mapping to h ∈ H(R). □

Lemma 59.81.4.0GY6 Let R be an A-algebra which is absolutely integrally closed. Let
I, J ⊂ R be ideals with I+J = R. There exists a g ∈ G(R) such that g mod I = σ0
and g mod J = σ1.

Proof. Choose x ∈ I such that x ≡ 1 mod J . We may and do replace I by xR and
J by (x− 1)R. Then we are looking for an s ∈ R such that

(1) 1 + πs is a unit,
(2) s ≡ 0 mod xR, and
(3) s ≡ 1 mod (x− 1)R.

The last two conditions say that s = x + x(x − 1)y for some y ∈ R. The first
condition says that 1 +πs = 1 +πx+πx(x− 1)y needs to be a unit of R. However,
note that 1 + πx and πx(x− 1) generate the unit ideal of R and that 1 + πx is an
ℓth root of 1 modulo πx(x− 1)7. Thus we win by Lemma 59.81.1 and the fact that
R is absolutely integrally closed. □

Proposition 59.81.5.0GY7 Let R be an absolutely integrally closed ring. Let M be a
finite abelian group. Then Hi

étale(Spec(R),M) = 0 for i > 0.

Proof. Since any finite abelian group has a finite filtration whose subquotients are
cyclic of prime order, we may assume M = Z/ℓZ where ℓ is a prime number.
Observe that all local rings of R are strictly henselian, see More on Algebra, Lemma
15.14.7. Furthermore, any localization of R is also absolutely integrally closed by
More on Algebra, Lemma 15.14.3. Thus Lemma 59.80.2 tells us it suffices to show
that the kernel of
H1
étale(D(f + g),Z/ℓZ) −→ H1

étale(D(f(f + g)),Z/ℓZ)⊕H1
étale(D(g(f + g)),Z/ℓZ)

is zero for any f, g ∈ R. After replacing R by Rf+g we reduce to the following claim:
given ξ ∈ H1

étale(Spec(R),Z/ℓZ) and an affine open covering Spec(R) = U ∪V such
that ξ|U and ξ|V are trivial, then ξ = 0.
Let A = Z[ζ] as above. Since Z ⊂ A is monogenic, we can find a ring map A→ R.
From now on we think of R as an A-algebra and we think of Spec(R) as a scheme
over Spec(A). If we base change the short exact sequence (59.81.2.1) to Spec(R)
and take étale cohomology we obtain

G(R)→ H(R)→ H1
étale(Spec(R),Z/ℓZ)→ H1

étale(Spec(R), G)
Please keep this in mind during the rest of the proof.
Let τ ∈ Γ(U∩V,Z/ℓZ) be a section whose boundary in the Mayer-Vietoris sequence
(Lemma 59.50.1) gives ξ. For i = 0, 1, . . . , ℓ − 1 let Ai ⊂ U ∩ V be the open and

7Because 1 + πx is congruent to 1 modulo π, congruent to 1 modulo x, and congruent to
1 + π = ζ modulo x− 1 and because we have (π) ∩ (x) ∩ (x− 1) = (πx(x− 1)) in A[x].
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closed subset where τ has the value i mod ℓ. Thus we have a finite disjoint union
decomposition

U ∩ V = A0 ⨿ . . .⨿Aℓ−1

such that τ is constant on each Ai. For i = 0, 1, . . . , ℓ − 1 denote τi ∈ H0(U ∩
V,Z/ℓZ) the element which is equal to 1 on Ai and equal to 0 on Aj for j ̸= i.
Then τ is a sum of multiples of the τi8. Hence it suffices to show that the cohomology
class corresponding to τi is trivial. This reduces us to the case where τ takes only
two distinct values, namely 1 and 0.
Assume τ takes only the values 1 and 0. Write

U ∩ V = A⨿B
where A is the locus where τ = 0 and B is the locus where τ = 1. Then A and B
are disjoint closed subsets. Denote A and B the closures of A and B in Spec(R).
Then we have a “banana”: namely we have

A ∩B = Z1 ⨿ Z2

with Z1 ⊂ U and Z2 ⊂ V disjoint closed subsets. Set T1 = Spec(R) \ V and
T2 = Spec(R) \ U . Observe that Z1 ⊂ T1 ⊂ U , Z2 ⊂ T2 ⊂ V , and T1 ∩ T2 = ∅.
Topologically we can write

Spec(R) = A ∪B ∪ T1 ∪ T2

We suggest drawing a picture to visualize this. In order to prove that ξ is zero,
we may and do replace R by its reduction (Proposition 59.45.4). Below, we think
of A, A, B, B, T1, T2 as reduced closed subschemes of Spec(R). Next, as scheme
structures on Z1 and Z2 we use

Z1 = A ∩ (B ∪ T1) and Z2 = A ∩ (B ∪ T2)
(scheme theoretic unions and intersections as in Morphisms, Definition 29.4.4).
DenoteX theG-torsor over Spec(R) corresponding to the image of ξ inH1(Spec(R), G).
If X is trivial, then ξ comes from an element h ∈ H(R) (see exact sequence of coho-
mology above). However, then by Lemma 59.81.3 the element h lifts to an element
of G(R) and we conclude ξ = 0 as desired. Thus our goal is to prove that X is
trivial.
Recall that the embedding Z/ℓZ → G(R) sends i mod ℓ to σi ∈ G(R). Observe
that A is the spectrum of an absolutely integrally closed ring (namely a qotient of
R). By Lemma 59.81.4 we can find g ∈ G(A) with g|A∩Z1

= σ0 and g|A∩Z2
= σ1

(scheme theoretically). Then we can define
(1) g1 ∈ G(U) which is g on A ∩ U , which is σ0 on B ∩ U , and σ0 on T1, and
(2) g2 ∈ G(V ) which is g on A ∩ V , which is σ1 on B ∩ V , and σ1 on T2.

Namely, to find g1 as in (1) we glue the section σ0 on Ω = (B ∪ T1) ∩ U to
the restriction of the section g on Ω′ = A ∩ U . Note that U = Ω ∪ Ω′ (scheme
theoretically) because U is reduced and Ω ∩Ω′ = Z1 (scheme theoretically) by our
choice of Z1. Hence by Morphisms, Lemma 29.4.6 we have that U is the pushout
of Ω and Ω′ along Z1. Thus we can find g1. Similarly for the existence of g2 in (2).
Then we have

τ = g2|A∪B − g1|A∪B (addition in group law)

8Modulo calculation errors we have τ =
∑

iτi.
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and we see that X is trivial thereby finishing the proof. □

59.82. Affine analog of proper base change

09Z8 In this section we discuss a result by Ofer Gabber, see [Gab94]. This was also
proved by Roland Huber, see [Hub93b]. We have already done some of the work
needed for Gabber’s proof in Section 59.80.

Lemma 59.82.1.09ZE Let X be an affine scheme. Let F be a torsion abelian sheaf on
Xétale. Let Z ⊂ X be a closed subscheme. Let ξ ∈ Hq

étale(Z,F|Z) for some q > 0.
Then there exists an injective map F → F ′ of torsion abelian sheaves on Xétale

such that the image of ξ in Hq
étale(Z,F ′|Z) is zero.

Proof. By Lemmas 59.73.2 and 59.51.4 we can find a map G → F with G a con-
structible abelian sheaf and ξ coming from an element ζ of Hq

étale(Z,G|Z). Suppose
we can find an injective map G → G′ of torsion abelian sheaves on Xétale such that
the image of ζ in Hq

étale(Z,G′|Z) is zero. Then we can take F ′ to be the pushout
F ′ = G′ ⨿G F

and we conclude the result of the lemma holds. (Observe that restriction to Z is
exact, so commutes with finite limits and colimits and moreover it commutes with
arbitrary colimits as a left adjoint to pushforward.) Thus we may assume F is
constructible.
Assume F is constructible. By Lemma 59.74.4 it suffices to prove the result when
F is of the form f∗M where M is a finite abelian group and f : Y → X is a finite
morphism of finite presentation (such sheaves are still constructible by Lemma
59.73.9 but we won’t need this). Since formation of f∗ commutes with any base
change (Lemma 59.55.3) we see that the restriction of f∗M to Z is equal to the
pushforward of M via Y ×X Z → Z. By the Leray spectral sequence (Proposition
59.54.2) and vanishing of higher direct images (Proposition 59.55.2), we find

Hq
étale(Z, f∗M |Z) = Hq

étale(Y ×X Z,M).
By Lemma 59.80.9 we can find a finite surjective morphism Y ′ → Y of finite
presentation such that ξ maps to zero in Hq(Y ′ ×X Z,M). Denoting f ′ : Y ′ → X
the composition Y ′ → Y → X we claim the map

f∗M −→ f ′
∗M

is injective which finishes the proof by what was said above. To see the desired
injectivity we can look at stalks. Namely, if x : Spec(k)→ X is a geometric point,
then

(f∗M)x =
⊕

f(y)=x
M

by Proposition 59.55.2 and similarly for the other sheaf. Since Y ′ → Y is surjective
and finite we see that the induced map on geometric points lifting x is surjective
too and we conclude. □

The lemma above will take care of higher cohomology groups in Gabber’s result.
The following lemma will be used to deal with global sections.

Lemma 59.82.2.09ZF Let X be a quasi-compact and quasi-separated scheme. Let i :
Z → X be a closed immersion. Assume that

(1) for any sheaf F on XZar the map Γ(X,F)→ Γ(Z, i−1F) is bijective, and

https://stacks.math.columbia.edu/tag/09ZE
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(2) for any finite morphism X ′ → X assumption (1) holds for Z×XX ′ → X ′.
Then for any sheaf F on Xétale we have Γ(X,F) = Γ(Z, i−1

smallF).

Proof. Let F be a sheaf on Xétale. There is a canonical (base change) map
i−1(F|XZar ) −→ (i−1

smallF)|ZZar
of sheaves on ZZar. We will show this map is injective by looking at stalks. The
stalk on the left hand side at z ∈ Z is the stalk of F|XZar at z. The stalk on the right
hand side is the colimit over all elementary étale neighbourhoods (U, u) → (X, z)
such that U×XZ → Z has a section over a neighbourhood of z. As étale morphisms
are open, the image of U → X is an open neighbourhood U0 of z in X. The map
F(U0) → F(U) is injective by the sheaf condition for F with respect to the étale
covering U → U0. Taking the colimit over all U and U0 we obtain injectivity on
stalks.
It follows from this and assumption (1) that the map Γ(X,F) → Γ(Z, i−1

smallF) is
injective. By (2) the same thing is true on all X ′ finite over X.
Let s ∈ Γ(Z, i−1

smallF). By construction of i−1
smallF there exists an étale covering

{Vj → Z}, étale morphisms Uj → X, sections sj ∈ F(Uj) and morphisms Vj → Uj
over X such that s|Vj is the pullback of sj . Observe that every nonempty closed
subscheme T ⊂ X meets Z by assumption (1) applied to the sheaf (T → X)∗Z
for example. Thus we see that

∐
Uj → X is surjective. By More on Morphisms,

Lemma 37.45.7 we can find a finite surjective morphism X ′ → X such that X ′ → X
Zariski locally factors through

∐
Uj → X. It follows that s|Z′ Zariski locally

comes from a section of F|X′ . In other words, s|Z′ comes from t′ ∈ Γ(X ′,F|X′) by
assumption (2). By injectivity we conclude that the two pullbacks of t′ to X ′×XX ′

are the same (after all this is true for the pullbacks of s to Z ′ ×Z Z ′). Hence we
conclude t′ comes from a section of F over X by Remark 59.55.6. □

Lemma 59.82.3.0CAM Let Z ⊂ X be a closed subset of a topological space X. Assume
(1) X is a spectral space (Topology, Definition 5.23.1), and
(2) for x ∈ X the intersection Z ∩{x} is connected (in particular nonempty).

If Z = Z1⨿Z2 with Zi closed in Z, then there exists a decomposition X = X1⨿X2
with Xi closed in X and Zi = Z ∩Xi.

Proof. Observe that Zi is quasi-compact. Hence the set of points Wi specializing to
Zi is closed in the constructible topology by Topology, Lemma 5.24.7. Assumption
(2) implies that X = W1 ⨿W2. Let x ∈ W1. By Topology, Lemma 5.23.6 part (1)
there exists a specialization x1 ⇝ x with x1 ∈ W1. Thus {x} ⊂ {x1} and we see
that x ∈W1. In other words, setting Xi = Wi does the job. □

Lemma 59.82.4.09ZG Let Z ⊂ X be a closed subset of a topological space X. Assume
(1) X is a spectral space (Topology, Definition 5.23.1), and
(2) for x ∈ X the intersection Z ∩{x} is connected (in particular nonempty).

Then for any sheaf F on X we have Γ(X,F) = Γ(Z,F|Z).

Proof. If x⇝ x′ is a specialization of points, then there is a canonical map Fx′ →
Fx compatible with sections over opens and functorial in F . Since every point of
X specializes to a point of Z it follows that Γ(X,F)→ Γ(Z,F|Z) is injective. The
difficult part is to show that it is surjective.

https://stacks.math.columbia.edu/tag/0CAM
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Denote B be the set of all quasi-compact opens of X. Write F as a filtered colimit
F = colimFi where each Fi is as in Modules, Equation (17.19.2.1). See Modules,
Lemma 17.19.2. Then F|Z = colimFi|Z as restriction to Z is a left adjoint (Cat-
egories, Lemma 4.24.5 and Sheaves, Lemma 6.21.8). By Sheaves, Lemma 6.29.1
the functors Γ(X,−) and Γ(Z,−) commute with filtered colimits. Hence we may
assume our sheaf F is as in Modules, Equation (17.19.2.1).
Suppose that we have an embedding F ⊂ G. Then we have

Γ(X,F) = Γ(Z,F|Z) ∩ Γ(X,G)
where the intersection takes place in Γ(Z,G|Z). This follows from the first remark
of the proof because we can check whether a global section of G is in F by looking
at the stalks and because every point of X specializes to a point of Z.
By Modules, Lemma 17.19.4 there is an injection F →

∏
(Zi → X)∗Si where

the product is finite, Zi ⊂ X is closed, and Si is finite. Thus it suffices to prove
surjectivity for the sheaves (Zi → X)∗Si. Observe that

Γ(X, (Zi → X)∗Si) = Γ(Zi, Si) and Γ(X, (Zi → X)∗Si|Z) = Γ(Z ∩ Zi, Si)
Moreover, conditions (1) and (2) are inherited by Zi; this is clear for (2) and follows
from Topology, Lemma 5.23.5 for (1). Thus it suffices to prove the lemma in the
case of a (finite) constant sheaf. This case is a restatement of Lemma 59.82.3 which
finishes the proof. □

Example 59.82.5.0CAF Lemma 59.82.4 is false if X is not spectral. Here is an example:
Let Y be a T1 topological space, and y ∈ Y a non-open point. Let X = Y ⨿ {x},
endowed with the topology whose closed sets are ∅, {y}, and all F ⨿ {x}, where F
is a closed subset of Y . Then Z = {x, y} is a closed subset of X, which satisfies
assumption (2) of Lemma 59.82.4. But X is connected, while Z is not. The
conclusion of the lemma thus fails for the constant sheaf with value {0, 1} on X.

Lemma 59.82.6.09ZH Let (A, I) be a henselian pair. Set X = Spec(A) and Z =
Spec(A/I). For any sheaf F on Xétale we have Γ(X,F) = Γ(Z,F|Z).

Proof. Recall that the spectrum of any ring is a spectral space, see Algebra, Lemma
10.26.2. By More on Algebra, Lemma 15.11.16 we see that {x}∩Z is connected for
every x ∈ X. By Lemma 59.82.4 we see that the statement is true for sheaves on
XZar. For any finite morphism X ′ → X we have X ′ = Spec(A′) and Z ×X X ′ =
Spec(A′/IA′) with (A′, IA′) a henselian pair, see More on Algebra, Lemma 15.11.8
and we get the same statement for sheaves on (X ′)Zar. Thus we can apply Lemma
59.82.2 to conclude. □

Finally, we can state and prove Gabber’s theorem.

Theorem 59.82.7 (Gabber).09ZI Let (A, I) be a henselian pair. Set X = Spec(A) and
Z = Spec(A/I). For any torsion abelian sheaf F on Xétale we have Hq

étale(X,F) =
Hq
étale(Z,F|Z).

Proof. The result holds for q = 0 by Lemma 59.82.6. Let q ≥ 1. Suppose the result
has been shown in all degrees < q. Let F be a torsion abelian sheaf. Let F → F ′

be an injective map of torsion abelian sheaves (to be chosen later) with cokernel Q
so that we have the short exact sequence

0→ F → F ′ → Q→ 0

https://stacks.math.columbia.edu/tag/0CAF
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of torsion abelian sheaves on Xétale. This gives a map of long exact cohomology
sequences over X and Z part of which looks like

Hq−1
étale(X,F ′)

��

// Hq−1
étale(X,Q)

��

// Hq
étale(X,F)

��

// Hq
étale(X,F ′)

��
Hq−1
étale(Z,F ′|Z) // Hq−1

étale(Z,Q|Z) // Hq
étale(Z,F|Z) // Hq

étale(Z,F ′|Z)

Using this commutative diagram of abelian groups with exact rows we will finish
the proof.

Injectivity for F . Let ξ be a nonzero element of Hq
étale(X,F). By Lemma 59.82.1

applied with Z = X (!) we can find F ⊂ F ′ such that ξ maps to zero to the right.
Then ξ is the image of an element of Hq−1

étale(X,Q) and bijectivity for q − 1 implies
ξ does not map to zero in Hq

étale(Z,F|Z).

Surjectivity for F . Let ξ be an element of Hq
étale(Z,F|Z). By Lemma 59.82.1

applied with Z = Z we can find F ⊂ F ′ such that ξ maps to zero to the right.
Then ξ is the image of an element of Hq−1

étale(Z,Q|Z) and bijectivity for q−1 implies
ξ is in the image of the vertical map. □

Lemma 59.82.8.0A51 Let X be a scheme with affine diagonal which can be covered by
n + 1 affine opens. Let Z ⊂ X be a closed subscheme. Let A be a torsion sheaf
of rings on Xétale and let I be an injective sheaf of A-modules on Xétale. Then
Hq
étale(Z, I|Z) = 0 for q > n.

Proof. We will prove this by induction on n. If n = 0, then X is affine. Say
X = Spec(A) and Z = Spec(A/I). Let Ah be the filtered colimit of étale A-algebras
B such that A/I → B/IB is an isomorphism. Then (Ah, IAh) is a henselian pair
and A/I = Ah/IAh, see More on Algebra, Lemma 15.12.1 and its proof. Set
Xh = Spec(Ah). By Theorem 59.82.7 we see that

Hq
étale(Z, I|Z) = Hq

étale(X
h, I|Xh)

By Theorem 59.51.3 we have

Hq
étale(X

h, I|Xh) = colimA→B H
q
étale(Spec(B), I|Spec(B))

where the colimit is over theA-algebrasB as above. Since the morphisms Spec(B)→
Spec(A) are étale, the restriction I|Spec(B) is an injective sheaf of A|Spec(B)-modules
(Cohomology on Sites, Lemma 21.7.1). Thus the cohomology groups on the right
are zero and we get the result in this case.

Induction step. We can use Mayer-Vietoris to do the induction step. Namely,
suppose that X = U ∪ V where U is a union of n affine opens and V is affine.
Then, using that the diagonal of X is affine, we see that U ∩ V is the union of n
affine opens. Mayer-Vietoris gives an exact sequence

Hq−1
étale(U ∩ V ∩Z, I|Z)→ Hq

étale(Z, I|Z)→ Hq
étale(U ∩Z, I|Z)⊕Hq

étale(V ∩Z, I|Z)

and by our induction hypothesis we obtain vanishing for q > n as desired. □

https://stacks.math.columbia.edu/tag/0A51
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59.83. Cohomology of torsion sheaves on curves

03SB The goal of this section is to prove the basic finiteness and vanishing results for
cohomology of torsion sheaves on curves, see Theorem 59.83.10. In Section 59.84
we will discuss constructible sheaves of torsion modules over a Noetherian ring.

Situation 59.83.1.0A52 Here k is an algebraically closed field, X is a separated, finite
type scheme of dimension ≤ 1 over k, and F is a torsion abelian sheaf on Xétale.

In Situation 59.83.1 we want to prove the following statements
(1)0A53 Hq

étale(X,F) = 0 for q > 2,
(2)0A54 Hq

étale(X,F) = 0 for q > 1 if X is affine,
(3)0A55 Hq

étale(X,F) = 0 for q > 1 if p = char(k) > 0 and F is p-power torsion,
(4)0A56 Hq

étale(X,F) is finite if F is constructible and torsion prime to char(k),
(5)0A57 Hq

étale(X,F) is finite if X is proper and F constructible,
(6)0A58 Hq

étale(X,F) → Hq
étale(Xk′ ,F|Xk′ ) is an isomorphism for any extension

k′/k of algebraically closed fields if F is torsion prime to char(k),
(7)0A59 Hq

étale(X,F) → Hq
étale(Xk′ ,F|Xk′ ) is an isomorphism for any extension

k′/k of algebraically closed fields if X is proper,
(8)0A5A H2

étale(X,F)→ H2
étale(U,F) is surjective for all U ⊂ X open.

Given any Situation 59.83.1 we will say that “statements (1) – (8) hold” if those
statements that apply to the given situation are true. We start the proof with the
following consequence of our computation of cohomology with constant coefficients.

Lemma 59.83.2.0A5B In Situation 59.83.1 assume X is smooth and F = Z/ℓZ for some
prime number ℓ. Then statements (1) – (8) hold for F .

Proof. Since X is smooth, we see that X is a finite disjoint union of smooth curves.
Hence we may assume X is a smooth curve.
Case I: ℓ different from the characteristic of k. This case follows from Lemma 59.69.1
(projective case) and Lemma 59.69.3 (affine case). Statement (6) on cohomology
and extension of algebraically closed ground field follows from the fact that the
genus g and the number of “punctures” r do not change when passing from k to k′.
Statement (8) follows as H2

étale(U,F) is zero as soon as U ̸= X, because then U is
affine (Varieties, Lemmas 33.43.2 and 33.43.10).
Case II: ℓ is equal to the characteristic of k. Vanishing by Lemma 59.63.4. State-
ments (5) and (7) follow from Lemma 59.63.5. □

Remark 59.83.3 (Invariance under extension of algebraically closed ground field).
0A47 Let k be an algebraically closed field of characteristic p > 0. In Section 59.63 we

have seen that there is an exact sequence
k[x]→ k[x]→ H1

étale(A1
k,Z/pZ)→ 0

where the first arrow maps f(x) to fp− f . A set of representatives for the cokernel
is formed by the polynomials ∑

p ̸|n
λnx

n

with λn ∈ k. (If k is not algebraically closed you have to add some constants to
this as well.) In particular when k′/k is an algebraically closed extension, then the
map

H1
étale(A1

k,Z/pZ)→ H1
étale(A1

k′ ,Z/pZ)

https://stacks.math.columbia.edu/tag/0A52
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is not an isomorphism in general. In particular, the map π1(A1
k′)→ π1(A1

k) between
étale fundamental groups (insert future reference here) is not an isomorphism either.
Thus the étale homotopy type of the affine line depends on the algebraically closed
ground field. From Lemma 59.83.2 above we see that this is a phenomenon which
only happens in characteristic p with p-power torsion coefficients.

Lemma 59.83.4.0A5C Let k be an algebraically closed field. Let X be a separated finite
type scheme over k of dimension ≤ 1. Let 0→ F1 → F → F2 → 0 be a short exact
sequence of torsion abelian sheaves on X. If statements (1) – (8) hold for F1 and
F2, then they hold for F .

Proof. This is mostly immediate from the definitions and the long exact sequence
of cohomology. Also observe that F is constructible (resp. of torsion prime to the
characteristic of k) if and only if both F1 and F2 are constructible (resp. of torsion
prime to the characteristic of k). See Proposition 59.74.1. Some details omitted. □

Lemma 59.83.5.0A5D Let k be an algebraically closed field. Let f : X → Y be a finite
morphism of separated finite type schemes over k of dimension ≤ 1. Let F be a
torsion abelian sheaf on X. If statements (1) – (8) hold for F , then they hold for
f∗F .

Proof. Namely, we have Hq
étale(X,F) = Hq

étale(Y, f∗F) by the vanishing of Rqf∗
for q > 0 (Proposition 59.55.2) and the Leray spectral sequence (Cohomology on
Sites, Lemma 21.14.6). For (8) use that formation of f∗ commutes with arbitrary
base change (Lemma 59.55.3). □

Lemma 59.83.6.0GJA In Situation 59.83.1 assume F constructible. Let j : X ′ → X be
the inclusion of a dense open subscheme. Then statements (1) – (8) hold for F if
and only if they hold for j!j

−1F .

Proof. Since X ′ is dense, we see that Z = X \X ′ has dimension 0 and hence is a
finite set Z = {x1, . . . , xn} of k-rational points. Consider the short exact sequence

0→ j!j
−1F → F → i∗i

−1F → 0
of Lemma 59.70.8. Observe that Hq

étale(X, i∗i−1F) = Hq
étale(Z, i∗F). Namely,

i : Z → X is a closed immersion, hence finite, hence we have the vanishing of Rqi∗
for q > 0 by Proposition 59.55.2, and hence the equality follows from the Leray
spectral sequence (Cohomology on Sites, Lemma 21.14.6). Since Z is a disjoint
union of spectra of algebraically closed fields, we conclude that Hq

étale(Z, i∗F) = 0
for q > 0 and

H0
étale(Z, i−1F) =

⊕
i=1,...,n

Fxi
which is finite as Fxi is finite due to the assumption that F is constructible. The
long exact cohomology sequence gives an exact sequence
0→ H0

étale(X, j!j
−1F)→ H0

étale(X,F)→ H0
étale(Z, i−1F)→ H1

étale(X, j!j
−1F)→ H1

étale(X,F)→ 0
and isomorphisms Hq

étale(X, j!j
−1F)→ Hq

étale(X,F) for q > 1.
At this point it is easy to deduce each of (1) – (8) holds for F if and only if it
holds for j!j

−1F . We make a few small remarks to help the reader: (a) if F is
torsion prime to the characteristic of k, then so is j!j

−1F , (b) the sheaf j!j
−1F

is constructible, (c) we have H0
étale(Z, i−1F) = H0

étale(Zk′ , i−1F|Zk′ ), and (d) if
U ⊂ X is an open, then U ′ = U ∩X ′ is dense in U . □

https://stacks.math.columbia.edu/tag/0A5C
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Lemma 59.83.7.03SG In Situation 59.83.1 assume X is smooth. Let j : U → X an open
immersion. Let ℓ be a prime number. Let F = j!Z/ℓZ. Then statements (1) – (8)
hold for F .

Proof. Since X is smooth, it is a disjoint union of smooth curves and hence we may
assume X is a curve (i.e., irreducible). Then either U = ∅ and there is nothing to
prove or U ⊂ X is dense. In this case the lemma follows from Lemmas 59.83.2 and
59.83.6. □

Lemma 59.83.8.0A3Q In Situation 59.83.1 assume X reduced. Let j : U → X an open
immersion. Let ℓ be a prime number and F = j!Z/ℓZ. Then statements (1) – (8)
hold for F .

Proof. The difference with Lemma 59.83.7 is that here we do not assume X is
smooth. Let ν : Xν → X be the normalization morphism. Then ν is finite
(Varieties, Lemma 33.27.1) and Xν is smooth (Varieties, Lemma 33.43.8). Let
jν : Uν → Xν be the inverse image of U . By Lemma 59.83.7 the result holds for
jν! Z/ℓZ. By Lemma 59.83.5 the result holds for ν∗j

ν
! Z/ℓZ. In general it won’t

be true that ν∗j
ν
! Z/ℓZ is equal to j!Z/ℓZ but we can work around this as follows.

As X is reduced the morphism ν : Xν → X is an isomorphism over a dense open
j′ : X ′ → X (Varieties, Lemma 33.27.1). Over this open we have agreement

(j′)−1(ν∗j
ν
! Z/ℓZ) = (j′)−1(j!Z/ℓZ)

Using Lemma 59.83.6 twice for j′ : X ′ → X and the sheaves above we conclude. □

Lemma 59.83.9.03SD In Situation 59.83.1 assume X reduced. Let j : U → X an open
immersion with U connected. Let ℓ be a prime number. Let G a finite locally
constant sheaf of Fℓ-vector spaces on U . Let F = j!G. Then statements (1) – (8)
hold for F .

Proof. Let f : V → U be a finite étale morphism of degree prime to ℓ as in Lemma
59.66.2. The discussion in Section 59.66 gives maps

G → f∗f
−1G → G

whose composition is an isomorphism. Hence it suffices to prove the lemma with
F = j!f∗f

−1G. By Zariski’s Main theorem (More on Morphisms, Lemma 37.43.3)
we can choose a diagram

V
j′
//

f

��

Y

f
��

U
j // X

with f : Y → X finite and j′ an open immersion with dense image. We may replace
Y by its reduction (this does not change V as V is reduced being étale over U).
Since f is finite and V dense in Y we have V = U ×X Y . By Lemma 59.70.9 we
have

j!f∗f
−1G = f∗j

′
!f

−1G
By Lemma 59.83.5 it suffices to consider j′

!f
−1G. The existence of the filtration

given by Lemma 59.66.2, the fact that j′
! is exact, and Lemma 59.83.4 reduces us

to the case F = j′
!Z/ℓZ which is Lemma 59.83.8. □

https://stacks.math.columbia.edu/tag/03SG
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Theorem 59.83.10.03SC If k is an algebraically closed field, X is a separated, finite type
scheme of dimension ≤ 1 over k, and F is a torsion abelian sheaf on Xétale, then

(1) Hq
étale(X,F) = 0 for q > 2,

(2) Hq
étale(X,F) = 0 for q > 1 if X is affine,

(3) Hq
étale(X,F) = 0 for q > 1 if p = char(k) > 0 and F is p-power torsion,

(4) Hq
étale(X,F) is finite if F is constructible and torsion prime to char(k),

(5) Hq
étale(X,F) is finite if X is proper and F constructible,

(6) Hq
étale(X,F) → Hq

étale(Xk′ ,F|Xk′ ) is an isomorphism for any extension
k′/k of algebraically closed fields if F is torsion prime to char(k),

(7) Hq
étale(X,F) → Hq

étale(Xk′ ,F|Xk′ ) is an isomorphism for any extension
k′/k of algebraically closed fields if X is proper,

(8) H2
étale(X,F)→ H2

étale(U,F) is surjective for all U ⊂ X open.

Proof. The theorem says that in Situation 59.83.1 statements (1) – (8) hold. Our
first step is to replace X by its reduction, which is permissible by Proposition
59.45.4. By Lemma 59.73.2 we can write F as a filtered colimit of constructible
abelian sheaves. Taking cohomology commutes with colimits, see Lemma 59.51.4.
Moreover, pullback via Xk′ → X commutes with colimits as a left adjoint. Thus it
suffices to prove the statements for a constructible sheaf.
In this paragraph we use Lemma 59.83.4 without further mention. Writing F =
F1⊕ . . .⊕Fr where Fi is ℓi-primary for some prime ℓi, we may assume that ℓn kills
F for some prime ℓ. Now consider the exact sequence

0→ F [ℓ]→ F → F/F [ℓ]→ 0.
Thus we see that it suffices to assume that F is ℓ-torsion. This means that F is a
constructible sheaf of Fℓ-vector spaces for some prime number ℓ.
By definition this means there is a dense open U ⊂ X such that F|U is finite
locally constant sheaf of Fℓ-vector spaces. Since dim(X) ≤ 1 we may assume, after
shrinking U , that U = U1 ⨿ . . .⨿Un is a disjoint union of irreducible schemes (just
remove the closed points which lie in the intersections of ≥ 2 components of U). By
Lemma 59.83.6 we reduce to the case F = j!G where G is a finite locally constant
sheaf of Fℓ-vector spaces on U .
Since we chose U = U1 ⨿ . . .⨿ Un with Ui irreducible we have

j!G = j1!(G|U1)⊕ . . .⊕ jn!(G|Un)
where ji : Ui → X is the inclusion morphism. The case of ji!(G|Ui) is handled in
Lemma 59.83.9. □

Theorem 59.83.11.03RT Let X be a finite type, dimension 1 scheme over an algebraically
closed field k. Let F be a torsion sheaf on Xétale. Then

Hq
étale(X,F) = 0, ∀q ≥ 3.

If X affine then also H2
étale(X,F) = 0.

Proof. If X is separated, this follows immediately from the more precise Theorem
59.83.10. If X is nonseparated, choose an affine open covering X = X1 ∪ . . . ∪Xn.
By induction on n we may assume the vanishing holds over U = X1 ∪ . . . ∪Xn−1.
Then Mayer-Vietoris (Lemma 59.50.1) gives

H2
étale(U,F)⊕H2

étale(Xn,F)→ H2
étale(U ∩Xn,F)→ H3

étale(X,F)→ 0

https://stacks.math.columbia.edu/tag/03SC
https://stacks.math.columbia.edu/tag/03RT


59.84. COHOMOLOGY OF TORSION MODULES ON CURVES 4865

However, since U ∩ Xn is an open of an affine scheme and hence affine by our
dimension assumption, the group H2

étale(U ∩Xn,F) vanishes by Theorem 59.83.10.
□

Lemma 59.83.12.0A5E Let k′/k be an extension of separably closed fields. Let X be a
proper scheme over k of dimension ≤ 1. Let F be a torsion abelian sheaf on X.
Then the map Hq

étale(X,F)→ Hq
étale(Xk′ ,F|Xk′ ) is an isomorphism for q ≥ 0.

Proof. We have seen this for algebraically closed fields in Theorem 59.83.10. Given
k ⊂ k′ as in the statement of the lemma we can choose a diagram

k′ // k
′

k

OO

// k

OO

where k ⊂ k and k′ ⊂ k
′ are the algebraic closures. Since k and k′ are separably

closed the field extensions k/k and k
′
/k′ are algebraic and purely inseparable. In

this case the morphisms Xk → X and X
k

′ → Xk′ are universal homeomorphisms.
Thus the cohomology of F may be computed on Xk and the cohomology of F|Xk′

may be computed on X
k

′ , see Proposition 59.45.4. Hence we deduce the general
case from the case of algebraically closed fields. □

59.84. Cohomology of torsion modules on curves

0GJB In this section we repeat the arguments of Section 59.83 for constructible sheaves
of modules over a Noetherian ring which are torsion. We start with the most
interesting step.

Lemma 59.84.1.0GJC Let Λ be a Noetherian ring, let M be a finite Λ-module which is
annihilated by an integer n > 0, let k be an algebraically closed field, and let X be
a separated, finite type scheme of dimension ≤ 1 over k. Then

(1) Hq
étale(X,M) is a finite Λ-module if n is prime to char(k),

(2) Hq
étale(X,M) is a finite Λ-module if X is proper.

Proof. If n = ℓn′ for some prime number ℓ, then we get a short exact sequence
0 → M [ℓ] → M → M ′ → 0 of finite Λ-modules and M ′ is annihilated by n′. This
produces a corresponding short exact sequence of constant sheaves, which in turn
gives rise to an exact sequence of cohomology modules

Hq
étale(X,M [n])→ Hq

étale(X,M)→ Hq
étale(X,M

′)
Thus, if we can show the result in case M is annihilated by a prime number, then
by induction on n we win.
Let ℓ be a prime number such that ℓ annihilates M . Then we can replace Λ by the
Fℓ-algebra Λ/ℓΛ. Namely, the cohomology of F as a sheaf of Λ-modules is the same
as the cohomology of F as a sheaf of Λ/ℓΛ-modules, for example by Cohomology
on Sites, Lemma 21.12.4.
Assume ℓ be a prime number such that ℓ annihilates M and Λ. Let us reduce to
the case where M is a finite free Λ-module. Namely, choose a short exact sequence

0→ N → Λ⊕m →M → 0

https://stacks.math.columbia.edu/tag/0A5E
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This determines an exact sequence

Hq
étale(X,Λ

⊕m)→ Hq
étale(X,M)→ Hq+1

étale(X,N)

By descending induction on q we get the result for M if we know the result for
Λ⊕m. Here we use that we know that our cohomology groups vanish in degrees > 2
by Theorem 59.83.10.

Let ℓ be a prime number and assume that ℓ annihilates Λ. It remains to show that
the cohomology groups Hq

étale(X,Λ) are finite Λ-modules. We will use a trick to
show this; the “correct” argument uses a coefficient theorem which we will show
later. Choose a basis Λ =

⊕
i∈I Fℓei such that e0 = 1 for some 0 ∈ I. The choice

of this basis determines an isomorphism

Λ =
⊕

Fℓei

of sheaves on Xétale. Thus we see that

Hq
étale(X,Λ) = Hq

étale(X,
⊕

Fℓei) =
⊕

Hq
étale(X,Fℓ)ei

since taking cohomology over X commutes with direct sums by Theorem 59.51.3 (or
Lemma 59.51.4 or Lemma 59.52.2). Since we already know that Hq

étale(X,Fℓ) is a
finite dimensional Fℓ-vector space (by Theorem 59.83.10), we see that Hq

étale(X,Λ)
is free over Λ of the same rank. Namely, given a basis ξ1, . . . , ξm of Hq

étale(X,Fℓ)
we see that ξ1e0, . . . , ξme0 form a Λ-basis for Hq

étale(X,Λ). □

Lemma 59.84.2.0GJD Let Λ be a Noetherian ring, let k be an algebraically closed field,
let f : X → Y be a finite morphism of separated finite type schemes over k of
dimension ≤ 1, and let F be a sheaf of Λ-modules on Xétale. If Hq

étale(X,F) is a
finite Λ-module, then so is Hq

étale(Y, f∗F).

Proof. Namely, we have Hq
étale(X,F) = Hq

étale(Y, f∗F) by the vanishing of Rqf∗
for q > 0 (Proposition 59.55.2) and the Leray spectral sequence (Cohomology on
Sites, Lemma 21.14.6). □

Lemma 59.84.3.0GJE Let Λ be a Noetherian ring, let k be an algebraically closed field,
let X be a separated finite type scheme over k of dimension ≤ 1, let F be a
constructible sheaf of Λ-modules on Xétale, and let j : X ′ → X be the inclusion
of a dense open subscheme. Then Hq

étale(X,F) is a finite Λ-module if and only if
Hq
étale(X, j!j

−1F) is a finite Λ-module.

Proof. Since X ′ is dense, we see that Z = X \X ′ has dimension 0 and hence is a
finite set Z = {x1, . . . , xn} of k-rational points. Consider the short exact sequence

0→ j!j
−1F → F → i∗i

−1F → 0

of Lemma 59.70.8. Observe that Hq
étale(X, i∗i−1F) = Hq

étale(Z, i∗F). Namely,
i : Z → X is a closed immersion, hence finite, hence we have the vanishing of Rqi∗
for q > 0 by Proposition 59.55.2, and hence the equality follows from the Leray
spectral sequence (Cohomology on Sites, Lemma 21.14.6). Since Z is a disjoint
union of spectra of algebraically closed fields, we conclude that Hq

étale(Z, i∗F) = 0
for q > 0 and

H0
étale(Z, i−1F) =

⊕
i=1,...,n

Fxi
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which is a finite Λ-module Fxi is finite due to the assumption that F is a con-
structible sheaf of Λ-modules. The long exact cohomology sequence gives an exact
sequence
0→ H0

étale(X, j!j
−1F)→ H0

étale(X,F)→ H0
étale(Z, i−1F)→ H1

étale(X, j!j
−1F)→ H1

étale(X,F)→ 0
and isomorphisms H0

étale(X, j!j
−1F)→ H0

étale(X,F) for q > 1. The lemma follows
easily from this. □

Lemma 59.84.4.0GJF Let Λ be a Noetherian ring, let M be a finite Λ-module which is
annihilated by an integer n > 0, let k be an algebraically closed field, let X be a
separated, finite type scheme of dimension ≤ 1 over k, and let j : U → X be an
open immersion. Then

(1) Hq
étale(X, j!M) is a finite Λ-module if n is prime to char(k),

(2) Hq
étale(X, j!M) is a finite Λ-module if X is proper.

Proof. Since dim(X) ≤ 1 there is an open V ⊂ X which is disjoint from U such
that X ′ = U ∪ V is dense open in X (details omitted). If j′ : X ′ → X denotes the
inclusion morphism, then we see that j!M is a direct summand of j′

!M . Hence it
suffices to prove the lemma in case U is open and dense in X. This case follows
from Lemmas 59.84.3 and 59.84.1. □

Lemma 59.84.5.0GJG Let Λ be a Noetherian ring, let k be an algebraically closed
field, let X be a separated finite type scheme over k of dimension ≤ 1, and let
0 → F1 → F → F2 → 0 be a short exact sequence of sheaves of Λ-modules on
Xétale. If Hq

étale(X,Fi), i = 1, 2 are finite Λ-modules then Hq
étale(X,F) is a finite

Λ-module.
Proof. Immediate from the long exact sequence of cohomology. □

Lemma 59.84.6.0GJH Let Λ be a Noetherian ring, let k be an algebraically closed field,
let X be a separated, finite type scheme of dimension ≤ 1 over k, let j : U → X be
an open immersion with U connected, let ℓ be a prime number, let n > 0, and let
G be a finite type, locally constant sheaf of Λ-modules on Uétale annihilated by ℓn.
Then

(1) Hq
étale(X, j!G) is a finite Λ-module if ℓ is prime to char(k),

(2) Hq
étale(X, j!G) is a finite Λ-module if X is proper.

Proof. Let f : V → U be a finite étale morphism of degree prime to ℓ as in Lemma
59.66.4. The discussion in Section 59.66 gives maps

G → f∗f
−1G → G

whose composition is an isomorphism. Hence it suffices to prove the finiteness
of Hq

étale(X, j!f∗f
−1G). By Zariski’s Main theorem (More on Morphisms, Lemma

37.43.3) we can choose a diagram
V

j′
//

f

��

Y

f
��

U
j // X

with f : Y → X finite and j′ an open immersion with dense image. Since f is finite
and V dense in Y we have V = U ×X Y . By Lemma 59.70.9 we have

j!f∗f
−1G = f∗j

′
!f

−1G
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By Lemma 59.84.2 it suffices to consider j′
!f

−1G. The existence of the filtration
given by Lemma 59.66.4, the fact that j′

! is exact, and Lemma 59.84.5 reduces us
to the case F = j′

!M for a finite Λ-module M which is Lemma 59.84.4. □

Theorem 59.84.7.0GJI Let Λ be a Noetherian ring, let k be an algebraically closed field,
let X be a separated, finite type scheme of dimension ≤ 1 over k, and let F be a
constructible sheaf of Λ-modules on Xétale which is torsion. Then

(1)0GJJ Hq
étale(X,F) is a finite Λ-module if F is torsion prime to char(k),

(2)0GJK Hq
étale(X,F) is a finite Λ-module if X is proper.

Proof. without further mention. Write F = F1 ⊕ . . .⊕ Fr where Fi is annihilated
by ℓnii for some prime ℓi and integer ni > 0. By Lemma 59.84.5 it suffices to prove
the theorem for Fi. Thus we may and do assume that ℓn kills F for some prime ℓ
and integer n > 0.
Since F is constructible as a sheaf of Λ-modules, there is a dense open U ⊂ X such
that F|U is a finite type, locally constant sheaf of Λ-modules. Since dim(X) ≤ 1
we may assume, after shrinking U , that U = U1 ⨿ . . . ⨿ Un is a disjoint union of
irreducible schemes (just remove the closed points which lie in the intersections of
≥ 2 components of U). By Lemma 59.84.3 we reduce to the case F = j!G where G
is a finite type, locally constant sheaf of Λ-modules on U (and annihilated by ℓn).
Since we chose U = U1 ⨿ . . .⨿ Un with Ui irreducible we have

j!G = j1!(G|U1)⊕ . . .⊕ jn!(G|Un)
where ji : Ui → X is the inclusion morphism. The case of ji!(G|Ui) is handled in
Lemma 59.84.6. □

59.85. First cohomology of proper schemes

0A5F In Fundamental Groups, Section 58.9 we have seen, in some sense, that taking
R1f∗G commutes with base change if f : X → Y is a proper morphism and G is
a finite group (not necessarily commutative). In this section we deduce a useful
consequence of these results.

Lemma 59.85.1.0A5G Let A be a henselian local ring. Let X be a proper scheme over
A with closed fibre X0. Let M be a finite abelian group. Then H1

étale(X,M) =
H1
étale(X0,M).

Proof. By Cohomology on Sites, Lemma 21.4.3 an element of H1
étale(X,M) corre-

sponds to a M -torsor F on Xétale. Such a torsor is clearly a finite locally constant
sheaf. Hence F is representable by a scheme V finite étale over X, Lemma 59.64.4.
Conversely, a scheme V finite étale over X with an M -action which turns it into an
M -torsor over X gives rise to a cohomology class. The same translation between
cohomology classes over X0 and torsors finite étale over X0 holds. Thus the lemma
is a consequence of the equivalence of categories of Fundamental Groups, Lemma
58.9.1. □

The following technical lemma is a key ingredient in the proof of the proper base
change theorem. The argument works word for word for any proper scheme over
A whose special fibre has dimension ≤ 1, but in fact the conclusion will be a
consequence of the proper base change theorem and we only need this particular
version in its proof.

https://stacks.math.columbia.edu/tag/0GJI
https://stacks.math.columbia.edu/tag/0A5G
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Lemma 59.85.2.0A5H Let A be a henselian local ring. Let X = P1
A. Let X0 ⊂ X be the

closed fibre. Let ℓ be a prime number. Let I be an injective sheaf of Z/ℓZ-modules
on Xétale. Then Hq

étale(X0, I|X0) = 0 for q > 0.

Proof. Observe thatX is a separated scheme which can be covered by 2 affine opens.
Hence for q > 1 this follows from Gabber’s affine variant of the proper base change
theorem, see Lemma 59.82.8. Thus we may assume q = 1. Let ξ ∈ H1

étale(X0, I|X0).
Goal: show that ξ is 0. By Lemmas 59.73.2 and 59.51.4 we can find a map F → I
with F a constructible sheaf of Z/ℓZ-modules and ξ coming from an element ζ of
H1
étale(X0,F|X0). Suppose we have an injective map F → F ′ of sheaves of Z/ℓZ-

modules on Xétale. Since I is injective we can extend the given map F → I to a
map F ′ → I. In this situation we may replace F by F ′ and ζ by the image of ζ in
H1
étale(X0,F ′|X0). Also, if F = F1⊕F2 is a direct sum, then we may replace F by
Fi and ζ by the image of ζ in H1

étale(X0,Fi|X0).

By Lemma 59.74.4 and the remarks above we may assume F is of the form f∗M
where M is a finite Z/ℓZ-module and f : Y → X is a finite morphism of finite
presentation (such sheaves are still constructible by Lemma 59.73.9 but we won’t
need this). Since formation of f∗ commutes with any base change (Lemma 59.55.3)
we see that the restriction of f∗M to X0 is equal to the pushforward of M via
the induced morphism Y0 → X0 of special fibres. By the Leray spectral sequence
(Proposition 59.54.2) and vanishing of higher direct images (Proposition 59.55.2),
we find

H1
étale(X0, f∗M |X0) = H1

étale(Y0,M).

Since Y → Spec(A) is proper we can use Lemma 59.85.1 to see that theH1
étale(Y0,M)

is equal to H1
étale(Y,M). Thus we see that our cohomology class ζ lifts to a coho-

mology class
ζ̃ ∈ H1

étale(Y,M) = H1
étale(X, f∗M)

However, ζ̃ maps to zero in H1
étale(X, I) as I is injective and by commutativity of

H1
étale(X, f∗M) //

��

H1
étale(X, I)

��
H1
étale(X0, (f∗M)|X0) // H1

étale(X0, I|X0)

we conclude that the image ξ of ζ is zero as well. □

59.86. Preliminaries on base change

0EZQ If you are interested in either the smooth base change theorem or the proper base
change theorem, you should skip directly to the corresponding sections. In this
section and the next few sections we consider commutative diagrams

X

f

��

Y
h
oo

e

��
S T

goo

https://stacks.math.columbia.edu/tag/0A5H
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of schemes; we usually assume this diagram is cartesian, i.e., Y = X ×S T . A
commutative diagram as above gives rise to a commutative diagram

Xétale

fsmall

��

Yétale

esmall

��

hsmall

oo

Sétale Tétale
gsmalloo

of small étale sites. Let us use the notation
f−1 = f−1

small, g∗ = gsmall,∗, e−1 = e−1
small, and h∗ = hsmall,∗.

By Sites, Section 7.45 we get a base change or pullback map
f−1g∗F −→ h∗e

−1F

for a sheaf F on Tétale. If F is an abelian sheaf on Tétale, then we get a derived
base change map

f−1Rg∗F −→ Rh∗e
−1F

see Cohomology on Sites, Lemma 21.15.1. Finally, if K is an arbitrary object of
D(Tétale) there is a base change map

f−1Rg∗K −→ Rh∗e
−1K

see Cohomology on Sites, Remark 21.19.3.

Lemma 59.86.1.0EZR Consider a cartesian diagram of schemes

X

f

��

Y
h
oo

e

��
S T

goo

Let {Ui → X} be an étale covering such that Ui → S factors as Ui → Vi → S with
Vi → S étale and consider the cartesian diagrams

Ui

fi

��

Ui ×X Y
hi

oo

ei

��
Vi Vi ×S T

gioo

Let F be a sheaf on Tétale. Let K in D(Tétale). Set Ki = K|Vi×ST and Fi =
F|Vi×ST .

(1) If f−1
i gi,∗Fi = hi,∗e

−1
i Fi for all i, then f−1g∗F = h∗e

−1F .
(2) If f−1

i Rgi,∗Ki = Rhi,∗e
−1
i Ki for all i, then f−1Rg∗K = Rh∗e

−1K.
(3) If F is an abelian sheaf and f−1

i Rqgi,∗Fi = Rqhi,∗e
−1
i Fi for all i, then

f−1Rqg∗F = Rqh∗e
−1F .

Proof. Proof of (1). First we observe that

(f−1g∗F)|Ui = f−1
i (g∗F|Vi) = f−1

i gi,∗Fi
The first equality because Ui → X → S is equal to Ui → Vi → S and the second
equality because g∗F|Vi = gi,∗Fi by Sites, Lemma 7.28.2. Similarly we have

(h∗e
−1F)|Ui = hi,∗(e−1F|Ui×XY ) = hi,∗e

−1
i Fi

https://stacks.math.columbia.edu/tag/0EZR
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Thus if the base change maps f−1
i gi,∗Fi → hi,∗e

−1
i Fi are isomorphisms for all i,

then the base change map f−1g∗F → h∗e
−1F restricts to an isomorphism over Ui

for all i and we conclude it is an isomorphism as {Ui → X} is an étale covering.

For the other two statements we replace the appeal to Sites, Lemma 7.28.2 by an
appeal to Cohomology on Sites, Lemma 21.20.4. □

Lemma 59.86.2.0EZS Consider a tower of cartesian diagrams of schemes

W

i

��

Z
j
oo

k
��

X

f

��

Y
h
oo

e

��
S T

goo

Let K in D(Tétale). If

f−1Rg∗K → Rh∗e
−1K and i−1Rh∗e

−1K → Rj∗k
−1e−1K

are isomorphisms, then (f ◦ i)−1Rg∗K → Rj∗(e ◦ k)−1K is an isomorphism. Simi-
larly, if F is an abelian sheaf on Tétale and if

f−1Rqg∗F → Rqh∗e
−1F and i−1Rqh∗e

−1F → Rqj∗k
−1e−1F

are isomorphisms, then (f ◦ i)−1Rqg∗F → Rqj∗(e ◦ k)−1F is an isomorphism.

Proof. This is formal, provided one checks that the composition of these base change
maps is the base change maps for the outer rectangle, see Cohomology on Sites,
Remark 21.19.5. □

Lemma 59.86.3.0EZT Let I be a directed set. Consider an inverse system of cartesian
diagrams of schemes

Xi

fi

��

Yi
hi

oo

ei

��
Si Ti

gioo

with affine transition morphisms and with gi quasi-compact and quasi-separated.
Set X = limXi, S = limSi, T = limTi and Y = limYi to obtain the cartesian
diagram

X

f

��

Y
h
oo

e

��
S T

goo

Let (Fi, φi′i) be a system of sheaves on (Ti) as in Definition 59.51.1. Set F =
colim p−1

i Fi on T where pi : T → Ti is the projection. Then we have the following
(1) If f−1

i gi,∗Fi = hi,∗e
−1
i Fi for all i, then f−1g∗F = h∗e

−1F .
(2) If Fi is an abelian sheaf for all i and f−1

i Rqgi,∗Fi = Rqhi,∗e
−1
i Fi for all i,

then f−1Rqg∗F = Rqh∗e
−1F .

https://stacks.math.columbia.edu/tag/0EZS
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Proof. We prove (2) and we omit the proof of (1). We will use without further men-
tion that pullback of sheaves commutes with colimits as it is a left adjoint. Observe
that hi is quasi-compact and quasi-separated as a base change of gi. Denoting qi :
Y → Yi the projections, observe that e−1F = colim e−1p−1

i Fi = colim q−1
i e−1

i Fi.
By Lemma 59.51.8 this gives

Rqh∗e
−1F = colim r−1

i Rqhi,∗e
−1
i Fi

where ri : X → Xi is the projection. Similarly, we have

f−1Rg∗F = f−1 colim s−1
i Rqgi,∗Fi = colim r−1

i f−1
i Rqgi,∗Fi

where si : S → Si is the projection. The lemma follows. □

Lemma 59.86.4.0GJL Let I, Xi, Yi, Si, Ti, fi, hi, ei, gi, X, Y , S, T , f , h, e, g be as in
the statement of Lemma 59.86.3. Let 0 ∈ I and let K0 ∈ D+(T0,étale). For i ∈ I,
i ≥ 0 denote Ki the pullback of K0 to Ti. Denote K the pullback of K0 to T . If
f−1
i Rgi,∗Ki = Rhi,∗e

−1
i Ki for all i ≥ 0, then f−1Rg∗K = Rh∗e

−1K.

Proof. It suffices to show that the base change map f−1Rg∗K → Rh∗e
−1K induces

an isomorphism on cohomology sheaves. In other words, we have to show that
f−1Rpg∗K → Rph∗e

−1K is an isomorphism for all p ∈ Z if we are given that
f−1
i Rpgi,∗Ki → Rphi,∗e

−1
i Ki is an isomorphism for all i ≥ 0 and p ∈ Z. At this

point we can argue exactly as in the proof of Lemma 59.86.3 replacing reference to
Lemma 59.51.8 by a reference to Lemma 59.52.4. □

Lemma 59.86.5.0EZU Consider a cartesian diagram of schemes

X

f

��

Y
h
oo

e

��
S T

goo

where g : T → S is quasi-compact and quasi-separated. Let F be an abelian sheaf
on Tétale. Let q ≥ 0. The following are equivalent

(1) For every geometric point x of X with image s = f(x) we have

Hq(Spec(OshX,x)×S T,F) = Hq(Spec(OshS,s)×S T,F)

(2) f−1Rqg∗F → Rqh∗e
−1F is an isomorphism.

Proof. Since Y = X×S T we have Spec(OshX,x)×X Y = Spec(OshX,x)×S T . Thus the
map in (1) is the map of stalks at x for the map in (2) by Theorem 59.53.1 (and
Lemma 59.36.2). Thus the result by Theorem 59.29.10. □

Lemma 59.86.6.0EZV Let f : X → S be a morphism of schemes. Let x be a geometric
point of X with image s in S. Let Spec(K)→ Spec(OshS,s) be a morphism with K a
separably closed field. Let F be an abelian sheaf on Spec(K)étale. Let q ≥ 0. The
following are equivalent

(1) Hq(Spec(OshX,x)×S Spec(K),F) = Hq(Spec(OshS,s)×S Spec(K),F)
(2) Hq(Spec(OshX,x)×Spec(Osh

S,s
) Spec(K),F) = Hq(Spec(K),F)

https://stacks.math.columbia.edu/tag/0GJL
https://stacks.math.columbia.edu/tag/0EZU
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Proof. Observe that Spec(K)×S Spec(OshS,s) is the spectrum of a filtered colimit of
étale algebras over K. Since K is separably closed, each étale K-algebra is a finite
product of copies of K. Thus we can write

Spec(K)×S Spec(OshS,s) = limi∈I
∐

a∈Ai
Spec(K)

as a cofiltered limit where each term is a disjoint union of copies of Spec(K) over
a finite set Ai. Note that Ai is nonempty as we are given Spec(K) → Spec(OshS,s).
It follows that

Spec(OshX,x)×S Spec(K) = Spec(OshX,x)×Spec(Osh
S,s

)
(
Spec(OshS,s)×S Spec(K)

)
= limi∈I

∐
a∈Ai

Spec(OshX,x)×Spec(Osh
S,s

) Spec(K)

Since taking cohomology in our setting commutes with limits of schemes (Theorem
59.51.3) we conclude. □

59.87. Base change for pushforward

0EZW This section is preliminary and should be skipped on a first reading. In this section
we discuss for what morphisms f : X → S we have f−1g∗ = h∗e

−1 on all sheaves
(of sets) for every cartesian diagram

X

f

��

Y
h
oo

e

��
S T

goo

with g quasi-compact and quasi-separated.
Lemma 59.87.1.0EZX Consider the cartesian diagram of schemes

X

f

��

Y
h
oo

e

��
S T

goo

Assume that f is flat and every object U of Xétale has a covering {Ui → U} such
that Ui → S factors as Ui → Vi → S with Vi → S étale and Ui → Vi quasi-compact
with geometrically connected fibres. Then for any sheaf F of sets on Tétale we have
f−1g∗F = h∗e

−1F .
Proof. Let U → X be an étale morphism such that U → S factors as U → V → S
with V → S étale and U → V quasi-compact with geometrically connected fibres.
Observe that U → V is flat (More on Flatness, Lemma 38.2.3). We claim that

f−1g∗F(U) = g∗F(V )
= F(V ×S T )
= e−1F(U ×X Y )
= h∗e

−1F(U)
Namely, thinking of U as an object of Xétale and V as an object of Sétale we see
that the first equality follows from Lemma 59.39.39. Thinking of V ×S T as an

9Strictly speaking, we are also using that the restriction of f−1g∗F to Uétale is the pullback
via U → V of the restriction of g∗F to Vétale. See Sites, Lemma 7.28.2.

https://stacks.math.columbia.edu/tag/0EZX
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object of Tétale the second equality follows from the definition of g∗. Observe that
U ×X Y = U ×S T (because Y = X ×S T ) and hence U ×X Y → V ×S T has
geometrically connected fibres as a base change of U → V . Thinking of U ×X Y as
an object of Yétale, we see that the third equality follows from Lemma 59.39.3 as
before. Finally, the fourth equality follows from the definition of h∗.
Since by assumption every object of Xétale has an étale covering to which the
argument of the previous paragraph applies we see that the lemma is true. □

Lemma 59.87.2.0EYS Consider a cartesian diagram of schemes

X

f

��

Y
h
oo

e

��
S T

goo

where f is flat and locally of finite presentation with geometrically reduced fibres.
Then f−1g∗F = h∗e

−1F for any sheaf F on Tétale.

Proof. Combine Lemma 59.87.1 with More on Morphisms, Lemma 37.46.3. □

Lemma 59.87.3.0EZY Consider the cartesian diagrams of schemes

X

f

��

Y
h
oo

e

��
S T

goo

Assume that S is the spectrum of a separably closed field. Then f−1g∗F = h∗e
−1F

for any sheaf F on Tétale.

Proof. We may work locally on X. Hence we may assume X is affine. Then we
can write X as a cofiltered limit of affine schemes of finite type over S. By Lemma
59.86.3 we may assume that X is of finite type over S. Then Lemma 59.87.1 applies
because any scheme of finite type over a separably closed field is a finite disjoint
union of connected and geometrically connected schemes (see Varieties, Lemma
33.7.6). □

Lemma 59.87.4.0EZZ Consider a cartesian diagram of schemes

X

f

��

Y
h
oo

e

��
S T

goo

Assume that
(1) f is flat and open,
(2) the residue fields of S are separably algebraically closed,
(3) given an étale morphism U → X with U affine we can write U as a finite

disjoint union of open subschemes of X (for example if X is a normal
integral scheme with separably closed function field),

(4) any nonempty open of a fibre Xs of f is connected (for example if Xs is
irreducible or empty).

Then for any sheaf F of sets on Tétale we have f−1g∗F = h∗e
−1F .

https://stacks.math.columbia.edu/tag/0EYS
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Proof. Omitted. Hint: the assumptions almost trivially imply the condition of
Lemma 59.87.1. The for example in part (3) follows from Lemma 59.80.4. □

The following lemma doesn’t really belong here but there does not seem to be a
good place for it anywhere.

Lemma 59.87.5.0EYR Let f : X → S be a morphism of schemes which is flat and locally
of finite presentation with geometrically reduced fibres. Then f−1 : Sh(Sétale) →
Sh(Xétale) commutes with products.

Proof. Let I be a set and let Gi be a sheaf on Sétale for i ∈ I. Let U → X be an
étale morphism such that U → S factors as U → V → S with V → S étale and
U → V flat of finite presentation with geometrically connected fibres. Then we
have

f−1(
∏
Gi)(U) = (

∏
Gi)(V )

=
∏
Gi(V )

=
∏

f−1Gi(U)

= (
∏

f−1Gi)(U)

where we have used Lemma 59.39.3 in the first and third equality (we are also using
that the restriction of f−1G to Uétale is the pullback via U → V of the restriction
of G to Vétale, see Sites, Lemma 7.28.2). By More on Morphisms, Lemma 37.46.3
every object U of Xétale has an étale covering {Ui → U} such that the discussion
in the previous paragraph applies to Ui. The lemma follows. □

Lemma 59.87.6.0F00 Let f : X → S be a flat morphism of schemes such that for every
geometric point x of X the map

OshS,f(x) −→ O
sh
X,x

has geometrically connected fibres. Then for every cartesian diagram of schemes

X

f

��

Y
h
oo

e

��
S T

goo

with g quasi-compact and quasi-separated we have f−1g∗F = h∗e
−1F for any sheaf

F of sets on Tétale.

Proof. It suffices to check equality on stalks, see Theorem 59.29.10. By Theorem
59.53.1 we have

(h∗e
−1F)x = Γ(Spec(OshX,x)×X Y, e−1F)

and we have similarly
(f−1g−1

∗ F)x = (g−1
∗ F)f(x) = Γ(Spec(OshS,f(x))×S T,F)

These sets are equal by an application of Lemma 59.39.3 to the morphism
Spec(OshX,x)×X Y −→ Spec(OshS,f(x))×S T

which is a base change of Spec(OshX,x)→ Spec(OshS,f(x)) because Y = X ×S T . □

https://stacks.math.columbia.edu/tag/0EYR
https://stacks.math.columbia.edu/tag/0F00
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59.88. Base change for higher direct images

0F01 This section is the analogue of Section 59.87 for higher direct images. This section
is preliminary and should be skipped on a first reading.

Remark 59.88.1.0F02 Let f : X → S be a morphism of schemes. Let n be an integer.
We will say BC(f, n, q0) is true if for every commutative diagram

X

f

��

X ′oo

f ′

��

Y
h
oo

e

��
S S′oo T

goo

with X ′ = X ×S S′ and Y = X ′ ×S′ T and g quasi-compact and quasi-separated,
and every abelian sheaf F on Tétale annihilated by n the base change map

(f ′)−1Rqg∗F −→ Rqh∗e
−1F

is an isomorphism for q ≤ q0.

Lemma 59.88.2.0F03 With f : X → S and n as in Remark 59.88.1 assume for some
q ≥ 1 we have BC(f, n, q − 1). Then for every commutative diagram

X

f

��

X ′oo

f ′

��

Y
h
oo

e

��
S S′oo T

goo

with X ′ = X ×S S′ and Y = X ′ ×S′ T and g quasi-compact and quasi-separated,
and every abelian sheaf F on Tétale annihilated by n

(1) the base change map (f ′)−1Rqg∗F → Rqh∗e
−1F is injective,

(2) if F ⊂ G where G on Tétale is annihilated by n, then

Coker
(
(f ′)−1Rqg∗F → Rqh∗e

−1F
)
⊂ Coker

(
(f ′)−1Rqg∗G → Rqh∗e

−1G
)

(3) if in (2) the sheaf G is an injective sheaf of Z/nZ-modules, then

Coker
(
(f ′)−1Rqg∗F → Rqh∗e

−1F
)
⊂ Rqh∗e

−1G

Proof. Choose a short exact sequence 0→ F → I → Q → 0 where I is an injective
sheaf of Z/nZ-modules. Consider the induced diagram

(f ′)−1Rq−1g∗I

∼=
��

// (f ′)−1Rq−1g∗Q

∼=
��

// (f ′)−1Rqg∗F

��

// 0

��
Rq−1h∗e

−1I // Rq−1h∗e
−1Q // Rqh∗e

−1F // Rqh∗e
−1I

with exact rows. We have the zero in the right upper corner as I is injective. The
left two vertical arrows are isomorphisms by BC(f, n, q−1). We conclude that part
(1) holds. The above also shows that

Coker
(
(f ′)−1Rqg∗F → Rqh∗e

−1F
)
⊂ Rqh∗e

−1I

hence part (3) holds. To prove (2) choose F ⊂ G ⊂ I. □

https://stacks.math.columbia.edu/tag/0F02
https://stacks.math.columbia.edu/tag/0F03
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Lemma 59.88.3.0F04 With f : X → S and n as in Remark 59.88.1 assume for some
q ≥ 1 we have BC(f, n, q − 1). Consider commutative diagrams

X

f

��

X ′

f ′

��

oo Y
h
oo

e

��

Y ′
π′
oo

e′

��
S S′oo T

goo T ′πoo

and
X ′

f ′

��

Y ′
h′=h◦π′

oo

e′

��
S′ T ′g′=g◦πoo

where all squares are cartesian, g quasi-compact and quasi-separated, and π is
integral surjective. Let F be an abelian sheaf on Tétale annihilated by n and set
F ′ = π−1F . If the base change map

(f ′)−1Rqg′
∗F ′ −→ Rqh′

∗(e′)−1F ′

is an isomorphism, then the base change map (f ′)−1Rqg∗F → Rqh∗e
−1F is an

isomorphism.

Proof. Observe that F → π∗π
−1F ′ is injective as π is surjective (check on stalks).

Thus by Lemma 59.88.2 we see that it suffices to show that the base change map
(f ′)−1Rqg∗π∗F ′ −→ Rqh∗e

−1π∗F ′

is an isomorphism. This follows from the assumption because we have Rqg∗π∗F ′ =
Rqg′

∗F ′, we have e−1π∗F ′ = π′
∗(e′)−1F ′, and we haveRqh∗π

′
∗(e′)−1F ′ = Rqh′

∗(e′)−1F ′.
This follows from Lemmas 59.55.4 and 59.43.5 and the relative leray spectral se-
quence (Cohomology on Sites, Lemma 21.14.7). □

Lemma 59.88.4.0F05 With f : X → S and n as in Remark 59.88.1 assume for some
q ≥ 1 we have BC(f, n, q − 1). Consider commutative diagrams

X

f

��

X ′

f ′

��

oo X ′′
π′
oo

f ′′

��

Y
h′
oo

e

��
S S′oo S′′πoo T

g′
oo

and
X ′

f ′

��

Y
h=h′◦π′

oo

e

��
S′ T

g=g′◦πoo

where all squares are cartesian, g′ quasi-compact and quasi-separated, and π is
integral. Let F be an abelian sheaf on Tétale annihilated by n. If the base change
map

(f ′)−1Rqg∗F −→ Rqh∗e
−1F

is an isomorphism, then the base change map (f ′′)−1Rqg′
∗F → Rqh′

∗e
−1F is an

isomorphism.

Proof. Since π and π′ are integral we have Rπ∗ = π∗ and Rπ′
∗ = π′

∗, see Lemma
59.43.5. We also have (f ′)−1π∗ = π′

∗(f ′′)−1. Thus we see that π′
∗(f ′′)−1Rqg′

∗F =
(f ′)−1Rqg∗F and π′

∗R
qh′

∗e
−1F = Rqh∗e

−1F . Thus the assumption means that our
map becomes an isomorphism after applying the functor π′

∗. Hence we see that it
is an isomorphism by Lemma 59.43.5. □

Lemma 59.88.5.0F06 Let T be a quasi-compact and quasi-separated scheme. Let P be
a property for quasi-compact and quasi-separated schemes over T . Assume

(1) If T ′′ → T ′ is a thickening of quasi-compact and quasi-separated schemes
over T , then P (T ′′) if and only if P (T ′).

(2) If T ′ = limTi is a limit of an inverse system of quasi-compact and quasi-
separated schemes over T with affine transition morphisms and P (Ti)
holds for all i, then P (T ′) holds.

https://stacks.math.columbia.edu/tag/0F04
https://stacks.math.columbia.edu/tag/0F05
https://stacks.math.columbia.edu/tag/0F06
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(3) If Z ⊂ T ′ is a closed subscheme with quasi-compact complement V ⊂ T ′

and P (T ′) holds, then either P (V ) or P (Z) holds.
Then P (T ) implies P (Spec(K)) for some morphism Spec(K) → T where K is a
field.

Proof. Consider the set T of closed subschemes T ′ ⊂ T such that P (T ′). By
assumption (2) this set has a minimal element, say T ′. By assumption (1) we see
that T ′ is reduced. Let η ∈ T ′ be the generic point of an irreducible component of
T ′. Then η = Spec(K) for some field K and η = limV where the limit is over the
affine open subschemes V ⊂ T ′ containing η. By assumption (3) and the minimality
of T ′ we see that P (V ) holds for all these V . Hence P (η) by (2) and the proof is
complete. □

Lemma 59.88.6.0F07 With f : X → S and n as in Remark 59.88.1 assume for some
q ≥ 1 we have that BC(f, n, q− 1) is true, but BC(f, n, q) is not. Then there exist
a commutative diagram

X

f

��

X ′

f ′

��

oo Y
h

oo

e

��
S S′oo Spec(K)goo

where X ′ = X ×S S′, Y = X ′ ×S′ Spec(K), K is a field, and F is an abelian
sheaf on Spec(K) annihilated by n such that (f ′)−1Rqg∗F → Rqh∗e

−1F is not an
isomorphism.

Proof. Choose a commutative diagram

X

f

��

X ′oo

f ′

��

Y
h
oo

e

��
S S′oo T

goo

with X ′ = X ×S S′ and Y = X ′ ×S′ T and g quasi-compact and quasi-separated,
and an abelian sheaf F on Tétale annihilated by n such that the base change map
(f ′)−1Rqg∗F → Rqh∗e

−1F is not an isomorphism. Of course we may and do
replace S′ by an affine open of S′; this implies that T is quasi-compact and quasi-
separated. By Lemma 59.88.2 we see (f ′)−1Rqg∗F → Rqh∗e

−1F is injective. Pick
a geometric point x of X ′ and an element ξ of (Rqh∗q

−1F)x which is not in the
image of the map ((f ′)−1Rqg∗F)x → (Rqh∗e

−1F)x.

Consider a morphism π : T ′ → T with T ′ quasi-compact and quasi-separated and
denote F ′ = π−1F . Denote π′ : Y ′ = Y ×T T ′ → Y the base change of π and
e′ : Y ′ → T ′ the base change of e. Picture

X ′

f ′

��

Y
h
oo

e

��

Y ′
π′
oo

e′

��
S′ T

goo T ′πoo

and
X ′

f ′

��

Y ′
h′=h◦π′

oo

e′

��
S′ T ′g′=g◦πoo

https://stacks.math.columbia.edu/tag/0F07
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Using pullback maps we obtain a canonical commutative diagram

(f ′)−1Rqg∗F //

��

(f ′)−1Rqg′
∗F ′

��
Rqh∗e

−1F // Rqh′
∗(e′)−1F ′

of abelian sheaves on X ′. Let P (T ′) be the property
• The image ξ′ of ξ in (Rh′

∗(e′)−1F ′)x is not in the image of the map
(f−1Rqg′

∗F ′)x → (Rqh′
∗(e′)−1F ′)x.

We claim that hypotheses (1), (2), and (3) of Lemma 59.88.5 hold for P which
proves our lemma.
Condition (1) of Lemma 59.88.5 holds for P because the étale topology of a scheme
and a thickening of the scheme is the same. See Proposition 59.45.4.
Suppose that I is a directed set and that Ti is an inverse system over I of quasi-
compact and quasi-separated schemes over T with affine transition morphisms. Set
T ′ = limTi. Denote F ′ and Fi the pullback of F to T ′, resp. Ti. Consider the
diagrams

X

f ′

��

Y
h
oo

e

��

Yi
π′
i

oo

ei

��
S T

goo Ti
πioo

and

X

f ′

��

Yi
hi=h◦π′

i

oo

ei

��
S Ti

gi=g◦πioo

as in the previous paragraph. It is clear that F ′ on T ′ is the colimit of the pullbacks
of Fi to T ′ and that (e′)−1F ′ is the colimit of the pullbacks of e−1

i Fi to Y ′. By
Lemma 59.51.8 we have
Rqh′

∗(e′)−1F ′ = colimRqhi,∗e
−1
i Fi and (f ′)−1Rqg′

∗F ′ = colim(f ′)−1Rqgi,∗Fi
It follows that if P (Ti) is true for all i, then P (T ′) holds. Thus condition (2) of
Lemma 59.88.5 holds for P .
The most interesting is condition (3) of Lemma 59.88.5. Assume T ′ is a quasi-
compact and quasi-separated scheme over T such that P (T ′) is true. Let Z ⊂ T ′

be a closed subscheme with complement V ⊂ T ′ quasi-compact. Consider the
diagram

Y ′ ×T ′ Z

eZ

��

i′
// Y ′

e′

��

Y ′ ×T ′ V
j′

oo

eV

��
Z

i // T ′ V
joo

Choose an injective map j−1F ′ → J where J is an injective sheaf of Z/nZ-modules
on V . Looking at stalks we see that the map

F ′ → G = j∗J ⊕ i∗i−1F ′

is injective. Thus ξ′ maps to a nonzero element of
Coker

(
((f ′)−1Rqg′

∗G)x → (Rqh′
∗(e′)−1G)x

)
=

Coker
(
((f ′)−1Rqg′

∗j∗J )x → (Rqh′
∗(e′)−1j∗J )x

)
⊕

Coker
(
((f ′)−1Rqg′

∗i∗i
−1F ′)x → (Rqh′

∗(e′)−1i∗i
−1F ′)x

)
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by part (2) of Lemma 59.88.2. If ξ′ does not map to zero in the second summand,
then we use

(f ′)−1Rqg′
∗i∗i

−1F ′ = (f ′)−1Rq(g′ ◦ i)∗i
−1F ′

(because Ri∗ = i∗ by Proposition 59.55.2) and

Rqh′
∗(e′)−1i∗i

−1F = Rqh′
∗i

′
∗e

−1
Z i−1F = Rq(h′ ◦ i′)∗e

−1
Z i−1F ′

(first equality by Lemma 59.55.3 and the second because Ri′∗ = i′∗ by Proposition
59.55.2) to we see that we have P (Z). Finally, suppose ξ′ does not map to zero in
the first summand. We have

(e′)−1j∗J = j′
∗e

−1
V J and Raj′

∗e
−1
V J = 0, a = 1, . . . , q − 1

by BC(f, n, q − 1) applied to the diagram

X

f

��

Y ′oo

e′

��

Y
j′
oo

eV

��
S T ′oo V

joo

and the fact that J is injective. By the relative Leray spectral sequence for h′ ◦ j′

(Cohomology on Sites, Lemma 21.14.7) we deduce that

Rqh′
∗(e′)−1j∗J = Rqh′

∗j
′
∗e

−1
V J −→ Rq(h′ ◦ j′)∗e

−1
V J

is injective. Thus ξ maps to a nonzero element of (Rq(h′ ◦ j′)∗e
−1
V J )x. Applying

part (3) of Lemma 59.88.2 to the injection j−1F ′ → J we conclude that P (V )
holds. □

Lemma 59.88.7.0F08 With f : X → S and n as in Remark 59.88.1 assume for some
q ≥ 1 we have that BC(f, n, q− 1) is true, but BC(f, n, q) is not. Then there exist
a commutative diagram

X

f

��

X ′

��

oo Y
h

oo

��
S S′oo Spec(K)oo

with both squares cartesian, where
(1) S′ is affine, integral, and normal with algebraically closed function field,
(2) K is algebraically closed and Spec(K) → S′ is dominant (in other words

K is an extension of the function field of S′)
and there exists an integer d|n such that Rqh∗(Z/dZ) is nonzero.

Conversely, nonvanishing of Rqh∗(Z/dZ) in the lemma implies BC(f, n, q) isn’t
true as Lemma 59.80.5 shows that Rq(Spec(K)→ S′)∗Z/dZ = 0.

Proof. First choose a diagram and F as in Lemma 59.88.6. We may and do assume
S′ is affine (this is obvious, but see proof of the lemma in case of doubt). By
Lemma 59.88.3 we may assume K is algebraically closed. Then F corresponds to
a Z/nZ-module. Such a modules is a direct sum of copies of Z/dZ for varying d|n
hence we may assume F is constant with value Z/dZ. By Lemma 59.88.4 we may
replace S′ by the normalization of S′ in Spec(K) which finishes the proof. □

https://stacks.math.columbia.edu/tag/0F08
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59.89. Smooth base change

0EYQ In this section we prove the smooth base change theorem.

Lemma 59.89.1.0EYT Let K/k be an extension of fields. Let X be a smooth affine curve
over k with a rational point x ∈ X(k). Let F be an abelian sheaf on Spec(K)
annihilated by an integer n invertible in k. Let q > 0 and

ξ ∈ Hq(XK , (XK → Spec(K))−1F)

There exist
(1) finite extensions K ′/K and k′/k with k′ ⊂ K ′,
(2) a finite étale Galois cover Z → Xk′ with group G

such that the order of G divides a power of n, such that Z → Xk′ is split over xk′ ,
and such that ξ dies in Hq(ZK′ , (ZK′ → Spec(K))−1F).

Proof. For q > 1 we know that ξ dies in Hq(XK , (XK → Spec(K))−1F) (Theorem
59.83.10). By Lemma 59.51.5 we see that this means there is a finite extension
K ′/K such that ξ dies in Hq(XK′ , (XK′ → Spec(K))−1F). Thus we can take
k′ = k and Z = X in this case.

Assume q = 1. Recall that F corresponds to a discrete module M with continuous
GalK-action, see Lemma 59.59.1. Since M is n-torsion, it is the uninon of finite
GalK-stable subgroups. Thus we reduce to the case where M is a finite abelian
group annihilated by n, see Lemma 59.51.4. After replacing K by a finite extension
we may assume that the action of GalK on M is trivial. Thus we may assume
F = M is the constant sheaf with value a finite abelian group M annihilated by n.

We can write M as a direct sum of cyclic groups. Any two finite étale Galois
coverings whose Galois groups have order invertible in k, can be dominated by
a third one whose Galois group has order invertible in k (Fundamental Groups,
Section 58.7). Thus it suffices to prove the lemma when M = Z/dZ where d|n.

Assume M = Z/dZ where d|n. In this case ξ = ξ|X
K

is an element of

H1(Xk,Z/dZ) = H1(XK ,Z/dZ)

See Theorem 59.83.10. This group classifies Z/dZ-torsors, see Cohomology on Sites,
Lemma 21.4.3. The torsor corresponding to ξ (viewed as a sheaf on Xk,étale) in turn
gives rise to a finite étale morphism T → Xk endowed an action of Z/dZ transitive
on the fibre of T over xk, see Lemma 59.64.4. Choose a connected component
T ′ ⊂ T (if ξ has order d, then T is already connected). Then T ′ → Xk is a
finite étale Galois cover whose Galois group is a subgroup G ⊂ Z/dZ (small detail
omitted). Moreover the element ξ maps to zero under the map H1(Xk,Z/dZ) →
H1(T ′,Z/dZ) as this is one of the defining properties of T .

Next, we use a limit argument to choose a finite extension k′/k contained in k such
that T ′ → Xk descends to a finite étale Galois cover Z → Xk′ with group G. See
Limits, Lemmas 32.10.1, 32.8.3, and 32.8.10. After increasing k′ we may assume
that Z splits over xk′ . The image of ξ in H1(ZK ,Z/dZ) is zero by construction.
Thus by Lemma 59.51.5 we can find a finite subextension K/K ′/K containing k′

such that ξ dies in H1(ZK′ ,Z/dZ) and this finishes the proof. □

https://stacks.math.columbia.edu/tag/0EYT
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Theorem 59.89.2 (Smooth base change).0EYU Consider a cartesian diagram of schemes

X

f

��

Y
h
oo

e

��
S T

goo

where f is smooth and g quasi-compact and quasi-separated. Then
f−1Rqg∗F = Rqh∗e

−1F
for any q and any abelian sheaf F on Tétale all of whose stalks at geometric points
are torsion of orders invertible on S.

First proof of smooth base change. This proof is very long but more direct (using
less general theory) than the second proof given below.
The theorem is local on Xétale. More precisely, suppose we have U → X étale such
that U → S factors as U → V → S with V → S étale. Then we can consider the
cartesian square

U

f ′

��

U ×X Y
h′

oo

e′

��
V V ×S T

g′
oo

and setting F ′ = F|V×ST we have f−1Rqg∗F|U = (f ′)−1Rqg′
∗F ′ andRqh∗e

−1F|U =
Rqh′

∗(e′)−1F ′ (as follows from the compatibility of localization with morphisms of
sites, see Sites, Lemma 7.28.2 and and Cohomology on Sites, Lemma 21.20.4).
Thus it suffices to produce an étale covering of X by U → X and factorizations
U → V → S as above such that the theorem holds for the diagram with f ′, h′, g′,
e′.
By the local structure of smooth morphisms, see Morphisms, Lemma 29.36.20, we
may assume X and S are affine and X → S factors through an étale morphism
X → Ad

S . If we have a tower of cartesian diagrams

W

i

��

Z
j
oo

k
��

X

f

��

Y
h
oo

e

��
S T

goo

and the theorem holds for the bottom and top squares, then the theorem holds for
the outer rectangle; this is formal. Writing X → S as the composition

X → Ad−1
S → Ad−2

S → . . .→ A1
S → S

we conclude that it suffices to prove the theorem when X and S are affine and
X → S has relative dimension 1.
For every n ≥ 1 invertible on S, let F [n] be the subsheaf of sections of F annihilated
by n. Then F = colimF [n] by our assumption on the stalks of F . The functors e−1

and f−1 commute with colimits as they are left adjoints. The functors Rqh∗ and
Rqg∗ commute with filtered colimits by Lemma 59.51.7. Thus it suffices to prove

https://stacks.math.columbia.edu/tag/0EYU
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the theorem for F [n]. From now on we fix an integer n, we work with sheaves of
Z/nZ-modules and we assume S is a scheme over Spec(Z[1/n]).

Next, we reduce to the case where T is affine. Since g is quasi-compact and quasi-
separate and S is affine, the scheme T is quasi-compact and quasi-separated. Thus
we can use the induction principle of Cohomology of Schemes, Lemma 30.4.1. Hence
it suffices to show that if T = W ∪W ′ is an open covering and the theorem holds
for the squares

X

��

e−1(W )
i

oo

��
S W

aoo

X

��

e−1(W ′)
j

oo

��
S W ′boo

X

��

e−1(W ∩W ′)
k
oo

��
S W ∩W ′coo

then the theorem holds for the original diagram. To see this we consider the diagram

f−1Rq−1c∗F|W∩W ′

∼=
��

// f−1Rqg∗F

��

// f−1Rqa∗F|W ⊕ f−1Rqb∗F|W ′

∼=
��

Rqk∗e
−1F|e−1(W∩W ′) // Rqh∗e

−1F // Rqi∗e−1F|e−1(W ) ⊕Rqj∗e
−1F|e−1(W ′)

whose rows are the long exact sequences of Lemma 59.50.2. Thus the 5-lemma
gives the desired conclusion.

Summarizing, we may assume S, X, T , and Y affine, F is n torsion, X → S is
smooth of relative dimension 1, and S is a scheme over Z[1/n]. We will prove the
theorem by induction on q. The base case q = 0 is handled by Lemma 59.87.2.
Assume q > 0 and the theorem holds for all smaller degrees. Choose a short exact
sequence 0 → F → I → Q → 0 where I is an injective sheaf of Z/nZ-modules.
Consider the induced diagram

f−1Rq−1g∗I

∼=
��

// f−1Rq−1g∗Q

∼=
��

// f−1Rqg∗F

��

// 0

��
Rq−1h∗e

−1I // Rq−1h∗e
−1Q // Rqh∗e

−1F // Rqh∗e
−1I

with exact rows. We have the zero in the right upper corner as I is injective. The
left two vertical arrows are isomorphisms by induction hypothesis. Thus it suffices
to prove that Rqh∗e

−1I = 0.

Write S = Spec(A) and T = Spec(B) and say the morphism T → S is given by the
ring map A → B. We can write A → B = colimi∈I(Ai → Bi) as a filtered colimit
of maps of rings of finite type over Z[1/n] (see Algebra, Lemma 10.127.14). For
i ∈ I we set Si = Spec(Ai) and Ti = Spec(Bi). For i large enough we can find a
smooth morphism Xi → Si of relative dimension 1 such that X = Xi ×Si S, see
Limits, Lemmas 32.10.1, 32.8.9, and 32.18.4. Set Yi = Xi ×Si Ti to get squares

Xi

fi

��

Yi
hi

oo

ei

��
Si Ti

gioo
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Observe that Ii = (T → Ti)∗I is an injective sheaf of Z/nZ-modules on Ti, see
Cohomology on Sites, Lemma 21.14.2. We have I = colim(T → Ti)−1Ii by Lemma
59.51.9. Pulling back by e we get e−1I = colim(Y → Yi)−1e−1

i Ii. By Lemma
59.51.8 applied to the system of morphisms Yi → Xi with limit Y → X we have

Rqh∗e
−1I = colim(X → Xi)−1Rqhi,∗e

−1
i Ii

This reduces us to the case where T and S are affine of finite type over Z[1/n].
Summarizing, we have an integer q ≥ 1 such that the theorem holds in degrees < q,
the schemes S and T affine of finite type type over Z[1/n], we have X → S smooth
of relative dimension 1 with X affine, and I is an injective sheaf of Z/nZ-modules
and we have to show that Rqh∗e

−1I = 0. We will do this by induction on dim(T ).
The base case is T = ∅, i.e., dim(T ) < 0. If you don’t like this, you can take as
your base case the case dim(T ) = 0. In this case T → S is finite (in fact even
T → Spec(Z[1/n]) is finite as the target is Jacobson; details omitted), so h is finite
too and hence has vanishing higher direct images (see references below).
Assume dim(T ) = d ≥ 0 and we know the result for all situations where T has lower
dimension. Pick U affine and étale over X and a section ξ of Rqh∗q

−1I over U . We
have to show that ξ is zero. Of course, we may replace X by U (and correspondingly
Y by U ×X Y ) and assume ξ ∈ H0(X,Rqh∗e

−1I). Moreover, since Rqh∗e
−1I is

a sheaf, it suffices to prove that ξ is zero locally on X. Hence we may replace X
by the members of an étale covering. In particular, using Lemma 59.51.6 we may
assume that ξ is the image of an element ξ̃ ∈ Hq(Y, e−1I). In terms of ξ̃ our task
is to show that ξ̃ dies in Hq(Ui ×X Y, e−1I) for some étale covering {Ui → X}.
By More on Morphisms, Lemma 37.38.8 we may assume that X → S factors as
X → V → S where V → S is étale and X → V is a smooth morphism of affine
schemes of relative dimension 1, has a section, and has geometrically connected
fibres. Observe that dim(V ×S T ) ≤ dim(T ) = d for example by More on Algebra,
Lemma 15.44.2. Hence we may then replace S by V and T by V ×S T (exactly as
in the discussion in the first paragraph of the proof). Thus we may assume X → S
is smooth of relative dimension 1, geometrically connected fibres, and has a section
σ : S → X.
Let π : T ′ → T be a finite surjective morphism. We will use below that dim(T ′) ≤
dim(T ) = d, see Algebra, Lemma 10.112.3. Choose an injective map π−1I → I ′

into an injective sheaf of Z/nZ-modules. Then I → π∗I ′ is injective and hence
has a splitting (as I is an injective sheaf of Z/nZ-modules). Denote π′ : Y ′ =
Y ×T T ′ → Y the base change of π and e′ : Y ′ → T ′ the base change of e. Picture

X

f

��

Y
h
oo

e

��

Y ′
π′
oo

e′

��
S T

goo T ′πoo

By Proposition 59.55.2 and Lemma 59.55.3 we have Rπ′
∗(e′)−1I ′ = e−1π∗I ′. Thus

by the Leray spectral sequence (Cohomology on Sites, Lemma 21.14.5) we have
Hq(Y ′, (e′)−1I ′) = Hq(Y, e−1π∗I ′) ⊃ Hq(Y, e−1I)

and this remains true after base change by any U → X étale. Thus we may replace
T by T ′, I by I ′ and ξ̃ by its image in Hq(Y ′, (e′)−1I ′).
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Suppose we have a factorization T → S′ → S where π : S′ → S is finite. Setting
X ′ = S′ ×S X we can consider the induced diagram

X

f

��

X ′
π′
oo

f ′

��

Y
h′
oo

e

��
S S′πoo T

goo

Since π′ has vanishing higher direct images we see that Rqh∗e
−1I = π′

∗R
qh′

∗e
−1I

by the Leray spectral sequence. Hence H0(X,Rqh∗e
−1I) = H0(X ′, Rqh′

∗e
−1I).

Thus ξ is zero if and only if the corresponding section of Rqh′
∗e

−1I is zero10. Thus
we may replace S by S′ and X by X ′. Observe that σ : S → X base changes to
σ′ : S′ → X ′ and hence after this replacement it is still true that X → S has a
section σ and geometrically connected fibres.
We will use that S and T are Nagata schemes, see Algebra, Proposition 10.162.16
which will guarantee that various normalizations are finite, see Morphisms, Lemmas
29.53.15 and 29.54.10. In particular, we may first replace T by its normalization
and then replace S by the normalization of S in T . Then T → S is a disjoint
union of dominant morphisms of integral normal schemes, see Morphisms, Lemma
29.53.13. Clearly we may argue one connnected component at a time, hence we
may assume T → S is a dominant morphism of integral normal schemes.
Let s ∈ S and t ∈ T be the generic points. By Lemma 59.89.1 there exist finite
field extensions K/κ(t) and k/κ(s) such that k is contained in K and a finite étale
Galois covering Z → Xk with Galois group G of order dividing a power of n split
over σ(Spec(k)) such that ξ̃ maps to zero in Hq(ZK , e−1I|ZK ). Let T ′ → T be
the normalization of T in Spec(K) and let S′ → S be the normalization of S in
Spec(k). Then we obtain a commutative diagram

S′

��

T ′oo

��
S Too

whose vertical arrows are finite. By the arguments given above we may and do
replace S and T by S′ and T ′ (and correspondingly X by X ×S S′ and Y by
Y ×T T ′). After this replacement we conclude we have a finite étale Galois covering
Z → Xs of the generic fibre of X → S with Galois group G of order dividing a power
of n split over σ(s) such that ξ̃ maps to zero in Hq(Zt, (Zt → Y )−1e−1I). Here
Zt = Z×S t = Z×st = Z×XsYt. Since n is invertible on S, by Fundamental Groups,
Lemma 58.31.8 we can find a finite étale morphism U → X whose restriction to Xs

is Z.
At this point we replace X by U and Y by U ×X Y . After this replacement it
may no longer be the case that the fibres of X → S are geometrically connected
(there still is a section but we won’t use this), but what we gain is that after this

10This step can also be seen another way. Namely, we have to show that there is an étale
covering {Ui → X} such that ξ̃ dies in Hq(Ui×X Y, e−1I). However, if we prove there is an étale
covering {U ′

j → X′} such that ξ̃ dies in Hq(U ′
i ×X′ Y, e−1I), then by property (B) for X′ → X

(Lemma 59.43.3) there exists an étale covering {Ui → X} such that Ui ×X X′ is a disjoint union
of schemes over X′ each of which factors through U ′

j for some j. Thus we see that ξ̃ dies in
Hq(Ui ×X Y, e−1I) as desired.
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replacement ξ̃ maps to zero in Hq(Yt, e−1I), i.e., ξ̃ restricts to zero on the generic
fibre of Y → T .
Recall that t is the spectrum of the function field of T , i.e., as a scheme t is the
limit of the nonempty affine open subschemes of T . By Lemma 59.51.5 we conclude
there exists a nonempty open subscheme V ⊂ T such that ξ̃ maps to zero in
Hq(Y ×T V, e−1I|Y×TV ).
Denote Z = T \ V . Consider the diagram

Y ×T Z

eZ

��

i′
// Y

e

��

Y ×T V
j′

oo

eV

��
Z

i // T V
joo

Choose an injection i−1I → I ′ into an injective sheaf of Z/nZ-modules on Z.
Looking at stalks we see that the map

I → j∗I|V ⊕ i∗I ′

is injective and hence splits as I is an injective sheaf of Z/nZ-modules. Thus it
suffices to show that ξ̃ maps to zero in

Hq(Y, e−1j∗I|V )⊕Hq(Y, e−1i∗I ′)
at least after replacing X by the members of an étale covering. Observe that

e−1j∗I|V = j′
∗e

−1
V I|V , e−1i∗I ′ = i′∗e

−1
Z I

′

By induction hypothesis on q we see that
Raj′

∗e
−1
V I|V = 0, a = 1, . . . , q − 1

By the Leray spectral sequence for j′ and the vanishing above it follows that
Hq(Y, j′

∗(e−1
V I|V )) −→ Hq(Y ×T V, e−1

V IV ) = Hq(Y ×T V, e−1I|Y×TV )

is injective. Thus the vanishing of the image of ξ̃ in the first summand above because
we know ξ̃ vanishes in Hq(Y ×T V, e−1I|Y×TV ). Since dim(Z) < dim(T ) = d by
induction the image of ξ̃ in the second summand

Hq(Y, e−1i∗I ′) = Hq(Y, i′∗e−1
Z I

′) = Hq(Y ×T Z, e−1
Z I

′)
dies after replacing X by the members of a suitable étale covering. This finishes
the proof of the smooth base change theorem. □

Second proof of smooth base change. This proof is the same as the longer first
proof; it is shorter only in that we have split out the arguments used in a number
of lemmas.
The case of q = 0 is Lemma 59.87.2. Thus we may assume q > 0 and the result is
true for all smaller degrees.
For every n ≥ 1 invertible on S, let F [n] be the subsheaf of sections of F annihilated
by n. Then F = colimF [n] by our assumption on the stalks of F . The functors
e−1 and f−1 commute with colimits as they are left adjoints. The functors Rqh∗
and Rqg∗ commute with filtered colimits by Lemma 59.51.7. Thus it suffices to
prove the theorem for F [n]. From now on we fix an integer n invertible on S and
we work with sheaves of Z/nZ-modules.
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By Lemma 59.86.1 the question is étale local on X and S. By the local structure of
smooth morphisms, see Morphisms, Lemma 29.36.20, we may assume X and S are
affine and X → S factors through an étale morphism X → Ad

S . Writing X → S as
the composition

X → Ad−1
S → Ad−2

S → . . .→ A1
S → S

we conclude from Lemma 59.86.2 that it suffices to prove the theorem when X and
S are affine and X → S has relative dimension 1.

By Lemma 59.88.7 it suffices to show that Rqh∗Z/dZ = 0 for d|n whenever we have
a cartesian diagram

X

��

Y

��

h
oo

S Spec(K)oo

where X → S is affine and smooth of relative dimension 1, S is the spectrum of a
normal domain A with algebraically closed fraction field L, and K/L is an extension
of algebraically closed fields.

Recall that Rqh∗Z/dZ is the sheaf associated to the presheaf

U 7−→ Hq(U ×X Y,Z/dZ) = Hq(U ×S Spec(K),Z/dZ)

on Xétale (Lemma 59.51.6). Thus it suffices to show: given U and ξ ∈ Hq(U ×S
Spec(K),Z/dZ) there exists an étale covering {Ui → U} such that ξ dies in
Hq(Ui ×S Spec(K),Z/dZ).

Of course we may take U affine. Then U ×S Spec(K) is a (smooth) affine curve
over K and hence we have vanishing for q > 1 by Theorem 59.83.10.

Final case: q = 1. We may replace U by the members of an étale covering as in
More on Morphisms, Lemma 37.38.8. Then U → S factors as U → V → S where
U → V has geometrically connected fibres, U , V are affine, V → S is étale, and
there is a section σ : V → U . By Lemma 59.80.4 we see that V is isomorphic to a
(finite) disjoint union of (affine) open subschemes of S. Clearly we may replace S
by one of these and X by the corresponding component of U . Thus we may assume
X → S has geometrically connected fibres, has a section σ, and ξ ∈ H1(Y,Z/dZ).
Since K and L are algebraically closed we have

H1(XL,Z/dZ) = H1(Y,Z/dZ)

See Lemma 59.83.12. Thus there is a finite étale Galois covering Z → XL with
Galois group G ⊂ Z/dZ which annihilates ξ. You can either see this by looking at
the statement or proof of Lemma 59.89.1 or by using directly that ξ corresponds to
a Z/dZ-torsor over XL. Finally, by Fundamental Groups, Lemma 58.31.9 we find
a (necessarily surjective) finite étale morphism X ′ → X whose restriction to XL is
Z → XL. Since ξ dies in X ′

K this finishes the proof. □

The following immediate consquence of the smooth base change theorem is what is
often used in practice.
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Lemma 59.89.3.0F09 Let S be a scheme. Let S′ = limSi be a directed inverse limit
of schemes Si smooth over S with affine transition morphisms. Let f : X → S be
quasi-compact and quasi-separated and form the fibre square

X ′

f ′

��

g′
// X

f

��
S′ g // S

Then
g−1Rf∗E = R(f ′)∗(g′)−1E

for any E ∈ D+(Xétale) whose cohomology sheaves Hq(E) have stalks which are
torsion of orders invertible on S.

Proof. Consider the spectral sequences

Ep,q2 = Rpf∗H
q(E) and E′p,q

2 = Rpf ′
∗H

q((g′)−1E) = Rpf ′
∗(g′)−1Hq(E)

converging to Rnf∗E and Rnf ′
∗(g′)−1E. These spectral sequences are constructed

in Derived Categories, Lemma 13.21.3. Combining the smooth base change theorem
(Theorem 59.89.2) with Lemma 59.86.3 we see that

g−1Rpf∗H
q(E) = Rp(f ′)∗(g′)−1Hq(E)

Combining all of the above we get the lemma. □

59.90. Applications of smooth base change

0F0A In this section we discuss some more or less immediate consequences of the smooth
base change theorem.

Lemma 59.90.1.0F1C Let L/K be an extension of fields. Let g : T → S be a quasi-
compact and quasi-separated morphism of schemes over K. Denote gL : TL → SL
the base change of g to Spec(L). Let E ∈ D+(Tétale) have cohomology sheaves
whose stalks are torsion of orders invertible in K. Let EL be the pullback of E to
(TL)étale. Then RgL,∗EL is the pullback of Rg∗E to SL.

Proof. If L/K is separable, then L is a filtered colimit of smooth K-algebras,
see Algebra, Lemma 10.158.11. Thus the lemma in this case follows immedi-
ately from Lemma 59.89.3. In the general case, let K ′ and L′ be the perfect
closures (Algebra, Definition 10.45.5) of K and L. Then Spec(K ′) → Spec(K)
and Spec(L′) → Spec(L) are universal homeomorphisms as K ′/K and L′/L are
purely inseparable (see Algebra, Lemma 10.46.7). Thus we have (TK′)étale = Tétale,
(SK′)étale = Sétale, (TL′)étale = (TL)étale, and (SL′)étale = (SL)étale by the topo-
logical invariance of étale cohomology, see Proposition 59.45.4. This reduces the
lemma to the case of the field extension L′/K ′ which is separable (by definition of
perfect fields, see Algebra, Definition 10.45.1). □

Lemma 59.90.2.0F0B Let K/k be an extension of separably closed fields. Let X be
a quasi-compact and quasi-separated scheme over k. Let E ∈ D+(Xétale) have
cohomology sheaves whose stalks are torsion of orders invertible in k. Then

(1) the maps Hq
étale(X,E)→ Hq

étale(XK , E|XK ) are isomorphisms, and
(2) E → R(XK → X)∗E|XK is an isomorphism.

https://stacks.math.columbia.edu/tag/0F09
https://stacks.math.columbia.edu/tag/0F1C
https://stacks.math.columbia.edu/tag/0F0B
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Proof. Proof of (1). First let k and K be the algebraic closures of k and K. The
morphisms Spec(k) → Spec(k) and Spec(K) → Spec(K) are universal homeomor-
phisms as k/k and K/K are purely inseparable (see Algebra, Lemma 10.46.7). Thus
Hq
étale(X,F) = Hq

étale(Xk,FXk) by the topological invariance of étale cohomology,
see Proposition 59.45.4. Similarly for XK and XK . Thus we may assume k and K
are algebraically closed. In this case K is a limit of smooth k-algebras, see Algebra,
Lemma 10.158.11. We conclude our lemma is a special case of Theorem 59.89.2 as
reformulated in Lemma 59.89.3.
Proof of (2). For any quasi-compact and quasi-separated U in Xétale the above
shows that the restriction of the map E → R(XK → X)∗E|XK determines an
isomorphism on cohomology. Since every object of Xétale has an étale covering by
such U this proves the desired statement. □

Lemma 59.90.3.0F1D With f : X → S and n as in Remark 59.88.1 assume n is invertible
on S and that for some q ≥ 1 we have that BC(f, n, q − 1) is true, but BC(f, n, q)
is not. Then there exist a commutative diagram

X

f

��

X ′

��

oo Y
h

oo

��
S S′oo Spec(K)oo

with both squares cartesian, where S′ is affine, integral, and normal with alge-
braically closed function fieldK and there exists an integer d|n such thatRqh∗(Z/dZ)
is nonzero.

Proof. First choose a diagram and F as in Lemma 59.88.7. We may and do assume
S′ is affine (this is obvious, but see proof of the lemma in case of doubt). Let K ′

be the function field of S′ and let Y ′ = X ′ ×S′ Spec(K ′) to get the diagram

X

f

��

X ′

��

oo Y ′
h′

oo

��

Yoo

��
S S′oo Spec(K ′)oo Spec(K)oo

By Lemma 59.90.2 the total direct image R(Y → Y ′)∗Z/dZ is isomorphic to Z/dZ
in D(Y ′

étale); here we use that n is invertible on S. Thus Rh′
∗Z/dZ = Rh∗Z/dZ by

the relative Leray spectral sequence. This finishes the proof. □

59.91. The proper base change theorem

095S The proper base change theorem is stated and proved in this section. Our approach
follows roughly the proof in [AGV71, XII, Theorem 5.1] using Gabber’s ideas (from
the affine case) to slightly simplify the arguments.

Lemma 59.91.1.0A0B Let (A, I) be a henselian pair. Let f : X → Spec(A) be a proper
morphism of schemes. Let Z = X ×Spec(A) Spec(A/I). For any sheaf F on the
topological space associated to X we have Γ(X,F) = Γ(Z,F|Z).

Proof. We will use Lemma 59.82.4 to prove this. First observe that the underlying
topological space of X is spectral by Properties, Lemma 28.2.4. Let Y ⊂ X be an
irreducible closed subscheme. To finish the proof we show that Y ∩Z = Y ×Spec(A)

https://stacks.math.columbia.edu/tag/0F1D
https://stacks.math.columbia.edu/tag/0A0B
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Spec(A/I) is connected. Replacing X by Y we may assume that X is irreducible
and we have to show that Z is connected. Let X → Spec(B) → Spec(A) be the
Stein factorization of f (More on Morphisms, Theorem 37.53.5). Then A → B is
integral and (B, IB) is a henselian pair (More on Algebra, Lemma 15.11.8). Thus
we may assume the fibres of X → Spec(A) are geometrically connected. On the
other hand, the image T ⊂ Spec(A) of f is irreducible and closed as X is proper
over A. Hence T ∩ V (I) is connected by More on Algebra, Lemma 15.11.16. Now
Y ×Spec(A) Spec(A/I)→ T ∩ V (I) is a surjective closed map with connected fibres.
The result now follows from Topology, Lemma 5.7.5. □

Lemma 59.91.2.0A0C Let (A, I) be a henselian pair. Let f : X → Spec(A) be a proper
morphism of schemes. Let i : Z → X be the closed immersion of X ×Spec(A)
Spec(A/I) into X. For any sheaf F on Xétale we have Γ(X,F) = Γ(Z, i−1

smallF).

Proof. This follows from Lemma 59.82.2 and 59.91.1 and the fact that any scheme
finite over X is proper over Spec(A). □

Lemma 59.91.3.0A3S Let A be a henselian local ring. Let f : X → Spec(A) be a proper
morphism of schemes. Let X0 ⊂ X be the fibre of f over the closed point. For any
sheaf F on Xétale we have Γ(X,F) = Γ(X0,F|X0).

Proof. This is a special case of Lemma 59.91.2. □

Let f : X → S be a morphism of schemes. Let s : Spec(k) → S be a geometric
point. The fibre of f at s is the scheme Xs = Spec(k) ×s,S X viewed as a scheme
over Spec(k). If F is a sheaf on Xétale, then denote Fs = p−1

smallF the pullback of
F to (Xs)étale. In the following we will consider the set

Γ(Xs,Fs)

Let s ∈ S be the image point of s. Let κ(s)sep be the separable algebraic closure of
κ(s) in k as in Definition 59.56.1. By Lemma 59.39.5 pullback defines a bijection

Γ(Xκ(s)sep , p
−1
sepF) −→ Γ(Xs,Fs)

where psep : Xκ(s)sep = Spec(κ(s)sep)×S X → X is the projection.

Lemma 59.91.4.0A3T Let f : X → S be a proper morphism of schemes. Let s→ S be
a geometric point. For any sheaf F on Xétale the canonical map

(f∗F)s −→ Γ(Xs,Fs)

is bijective.

Proof. By Theorem 59.53.1 (for sheaves of sets) we have

(f∗F)s = Γ(X ×S Spec(OshS,s), p−1
smallF)

where p : X ×S Spec(OshS,s) → X is the projection. Since the residue field of the
strictly henselian local ring OshS,s is κ(s)sep we conclude from the discussion above
the lemma and Lemma 59.91.3. □

Lemma 59.91.5.0A3U Let f : X → Y be a proper morphism of schemes. Let g : Y ′ → Y
be a morphism of schemes. Set X ′ = Y ′ ×Y X with projections f ′ : X ′ → Y ′ and
g′ : X ′ → X. Let F be any sheaf on Xétale. Then g−1f∗F = f ′

∗(g′)−1F .

https://stacks.math.columbia.edu/tag/0A0C
https://stacks.math.columbia.edu/tag/0A3S
https://stacks.math.columbia.edu/tag/0A3T
https://stacks.math.columbia.edu/tag/0A3U
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Proof. There is a canonical map g−1f∗F → f ′
∗(g′)−1F . Namely, it is adjoint to the

map
f∗F −→ g∗f

′
∗(g′)−1F = f∗g

′
∗(g′)−1F

which is f∗ applied to the canonical map F → g′
∗(g′)−1F . To check this map is an

isomorphism we can compute what happens on stalks. Let y′ : Spec(k)→ Y ′ be a
geometric point with image y in Y . By Lemma 59.91.4 the stalks are Γ(X ′

y′ ,Fy′)
and Γ(Xy,Fy) respectively. Here the sheaves Fy and Fy′ are the pullbacks of F
by the projections Xy → X and X ′

y′ → X. Thus we see that the groups agree by
Lemma 59.39.5. We omit the verification that this isomorphism is compatible with
our map. □

At this point we start discussing the proper base change theorem. To do so we
introduce some notation. consider a commutative diagram

(59.91.5.1)0A29
X ′

g′
//

f ′

��

X

f

��
Y ′ g // Y

of morphisms of schemes. Then we obtain a commutative diagram of sites

X ′
étale g′

small

//

f ′
small

��

Xétale

fsmall

��
Y ′
étale

gsmall // Yétale

For any object E of D(Xétale) we obtain a canonical base change map

(59.91.5.2)0A2A g−1
smallRfsmall,∗E −→ Rf ′

small,∗(g′
small)−1E

in D(Y ′
étale). See Cohomology on Sites, Remark 21.19.3 where we use the constant

sheaf Z as our sheaf of rings. We will usually omit the subscripts small in this
formula. For example, if E = F [0] where F is an abelian sheaf on Xétale, the base
change map is a map
(59.91.5.3)0A4A g−1Rf∗F −→ Rf ′

∗(g′)−1F

in D(Y ′
étale).

The map (59.91.5.2) has no chance of being an isomorphism in the generality given
above. The goal is to show it is an isomorphism if the diagram (59.91.5.1) is
cartesian, f : X → Y proper, the cohomology sheaves of E are torsion, and E is
bounded below. To study this question we introduce the following terminology. Let
us say that cohomology commutes with base change for f : X → Y if (59.91.5.3)
is an isomorphism for every diagram (59.91.5.1) where X ′ = Y ′ ×Y X and every
torsion abelian sheaf F .

Lemma 59.91.6.0A4B Let f : X → Y be a proper morphism of schemes. The following
are equivalent

(1) cohomology commutes with base change for f (see above),
(2) for every prime number ℓ and every injective sheaf of Z/ℓZ-modules I on

Xétale and every diagram (59.91.5.1) where X ′ = Y ′ ×Y X the sheaves
Rqf ′

∗(g′)−1I are zero for q > 0.

https://stacks.math.columbia.edu/tag/0A4B
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Proof. It is clear that (1) implies (2). Conversely, assume (2) and let F be a
torsion abelian sheaf on Xétale. Let Y ′ → Y be a morphism of schemes and let
X ′ = Y ′ ×Y X with projections g′ : X ′ → X and f ′ : X ′ → Y ′ as in diagram
(59.91.5.1). We want to show the maps of sheaves

g−1Rqf∗F −→ Rqf ′
∗(g′)−1F

are isomorphisms for all q ≥ 0.
For every n ≥ 1, let F [n] be the subsheaf of sections of F annihilated by n. Then
F = colimF [n]. The functors g−1 and (g′)−1 commute with arbitrary colimits (as
left adjoints). Taking higher direct images along f or f ′ commutes with filtered
colimits by Lemma 59.51.7. Hence we see that
g−1Rqf∗F = colim g−1Rqf∗F [n] and Rqf ′

∗(g′)−1F = colimRqf ′
∗(g′)−1F [n]

Thus it suffices to prove the result in case F is annihilated by a positive integer n.
If n = ℓn′ for some prime number ℓ, then we obtain a short exact sequence

0→ F [ℓ]→ F → F/F [ℓ]→ 0
Observe that F/F [ℓ] is annihilated by n′. Moreover, if the result holds for both
F [ℓ] and F/F [ℓ], then the result holds by the long exact sequence of higher direct
images (and the 5 lemma). In this way we reduce to the case that F is annihilated
by a prime number ℓ.
Assume F is annihilated by a prime number ℓ. Choose an injective resolution
F → I• in D(Xétale,Z/ℓZ). Applying assumption (2) and Leray’s acyclicity lemma
(Derived Categories, Lemma 13.16.7) we see that

f ′
∗(g′)−1I•

computes Rf ′
∗(g′)−1F . We conclude by applying Lemma 59.91.5. □

Lemma 59.91.7.0A4C Let f : X → Y and g : Y → Z be proper morphisms of schemes.
Assume

(1) cohomology commutes with base change for f ,
(2) cohomology commutes with base change for g ◦ f , and
(3) f is surjective.

Then cohomology commutes with base change for g.

Proof. We will use the equivalence of Lemma 59.91.6 without further mention.
Let ℓ be a prime number. Let I be an injective sheaf of Z/ℓZ-modules on Yétale.
Choose an injective map of sheaves f−1I → J where J is an injective sheaf of
Z/ℓZ-modules on Zétale. Since f is surjective the map I → f∗J is injective (look
at stalks in geometric points). Since I is injective we see that I is a direct summand
of f∗J . Thus it suffices to prove the desired vanishing for f∗J .
Let Z ′ → Z be a morphism of schemes and set Y ′ = Z ′×Z Y and X ′ = Z ′×Z X =
Y ′×YX. Denote a : X ′ → X, b : Y ′ → Y , and c : Z ′ → Z the projections. Similarly
for f ′ : X ′ → Y ′ and g′ : Y ′ → Z ′. By Lemma 59.91.5 we have b−1f∗J = f ′

∗a
−1J .

On the other hand, we know that Rqf ′
∗a

−1J and Rq(g′ ◦ f ′)∗a
−1J are zero for

q > 0. Using the spectral sequence (Cohomology on Sites, Lemma 21.14.7)
Rpg′

∗R
qf ′

∗a
−1J ⇒ Rp+q(g′ ◦ f ′)∗a

−1J
we conclude that Rpg′

∗(b−1f∗J ) = Rpg′
∗(f ′

∗a
−1J ) = 0 for p > 0 as desired. □

https://stacks.math.columbia.edu/tag/0A4C
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Lemma 59.91.8.0A4D Let f : X → Y and g : Y → Z be proper morphisms of schemes.
Assume

(1) cohomology commutes with base change for f , and
(2) cohomology commutes with base change for g.

Then cohomology commutes with base change for g ◦ f .

Proof. We will use the equivalence of Lemma 59.91.6 without further mention. Let
ℓ be a prime number. Let I be an injective sheaf of Z/ℓZ-modules on Xétale. Then
f∗I is an injective sheaf of Z/ℓZ-modules on Yétale (Cohomology on Sites, Lemma
21.14.2). The result follows formally from this, but we will also spell it out.

Let Z ′ → Z be a morphism of schemes and set Y ′ = Z ′×Z Y and X ′ = Z ′×Z X =
Y ′×YX. Denote a : X ′ → X, b : Y ′ → Y , and c : Z ′ → Z the projections. Similarly
for f ′ : X ′ → Y ′ and g′ : Y ′ → Z ′. By Lemma 59.91.5 we have b−1f∗I = f ′

∗a
−1I.

On the other hand, we know that Rqf ′
∗a

−1I and Rq(g′)∗b
−1f∗I are zero for q > 0.

Using the spectral sequence (Cohomology on Sites, Lemma 21.14.7)

Rpg′
∗R

qf ′
∗a

−1I ⇒ Rp+q(g′ ◦ f ′)∗a
−1I

we conclude that Rp(g′ ◦ f ′)∗a
−1I = 0 for p > 0 as desired. □

Lemma 59.91.9.0A4E Let f : X → Y be a finite morphism of schemes. Then cohomology
commutes with base change for f .

Proof. Observe that a finite morphism is proper, see Morphisms, Lemma 29.44.11.
Moreover, the base change of a finite morphism is finite, see Morphisms, Lemma
29.44.6. Thus the result follows from Lemma 59.91.6 combined with Proposition
59.55.2. □

Lemma 59.91.10.0A4F To prove that cohomology commutes with base change for every
proper morphism of schemes it suffices to prove it holds for the morphism P1

S → S
for every scheme S.

Proof. Let f : X → Y be a proper morphism of schemes. Let Y =
⋃
Yi be an

affine open covering and set Xi = f−1(Yi). If we can prove cohomology commutes
with base change for Xi → Yi, then cohomology commutes with base change for
f . Namely, the formation of the higher direct images commutes with Zariski (and
even étale) localization on the base, see Lemma 59.51.6. Thus we may assume Y
is affine.

Let Y be an affine scheme and let X → Y be a proper morphism. By Chow’s
lemma there exists a commutative diagram

X

  

X ′

��

π
oo // Pn

Y

}}
Y

where X ′ → Pn
Y is an immersion, and π : X ′ → X is proper and surjective, see

Limits, Lemma 32.12.1. Since X → Y is proper, we find that X ′ → Y is proper
(Morphisms, Lemma 29.41.4). Hence X ′ → Pn

Y is a closed immersion (Morphisms,
Lemma 29.41.7). It follows that X ′ → X ×Y Pn

Y = Pn
X is a closed immersion (as

an immersion with closed image).

https://stacks.math.columbia.edu/tag/0A4D
https://stacks.math.columbia.edu/tag/0A4E
https://stacks.math.columbia.edu/tag/0A4F


59.91. THE PROPER BASE CHANGE THEOREM 4894

By Lemma 59.91.7 it suffices to prove cohomology commutes with base change for
π and X ′ → Y . These morphisms both factor as a closed immersion followed by
a projection Pn

S → S (for some S). By Lemma 59.91.9 the result holds for closed
immersions (as closed immersions are finite). By Lemma 59.91.8 it suffices to prove
the result for projections Pn

S → S.

For every n ≥ 1 there is a finite surjective morphism

P1
S ×S . . .×S P1

S −→ Pn
S

given on coordinates by

((x1 : y1), (x2 : y2), . . . , (xn : yn)) 7−→ (F0 : . . . : Fn)

where F0, . . . , Fn in x1, . . . , yn are the polynomials with integer coefficients such
that ∏

(xit+ yi) = F0t
n + F1t

n−1 + . . .+ Fn

Applying Lemmas 59.91.7, 59.91.9, and 59.91.8 one more time we conclude that
the lemma is true. □

Theorem 59.91.11.095T Let f : X → Y be a proper morphism of schemes. Let g :
Y ′ → Y be a morphism of schemes. Set X ′ = Y ′ ×Y X and consider the cartesian
diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

Let F be an abelian torsion sheaf on Xétale. Then the base change map

g−1Rf∗F −→ Rf ′
∗(g′)−1F

is an isomorphism.

Proof. In the terminology introduced above, this means that cohomology commutes
with base change for every proper morphism of schemes. By Lemma 59.91.10 it
suffices to prove that cohomology commutes with base change for the morphism
P1
S → S for every scheme S.

Let S be the spectrum of a strictly henselian local ring with closed point s. Set
X = P1

S and X0 = Xs = P1
s. Let F be a sheaf of Z/ℓZ-modules on Xétale. The

key to our proof is that

Hq
étale(X,F) = Hq

étale(X0,F|X0).

Namely, choose a resolution F → I• by injective sheaves of Z/ℓZ-modules. Then
I•|X0 is a resolution of F|X0 by right H0

étale(X0,−)-acyclic objects, see Lemma
59.85.2. Leray’s acyclicity lemma tells us the right hand side is computed by the
complex H0

étale(X0, I•|X0) which is equal to H0
étale(X, I•) by Lemma 59.91.3. This

complex computes the left hand side.

Assume S is general and F is a sheaf of Z/ℓZ-modules on Xétale. Let s : Spec(k)→
S be a geometric point of S lying over s ∈ S. We have

(Rqf∗F)s = Hq
étale(P

1
Osh
S,s

,F|P1
Osh
S,s

) = Hq
étale(P

1
κ(s)sep ,F|P1

κ(s)sep
)
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where κ(s)sep is the residue field of OshS,s, i.e., the separable algebraic closure of
κ(s) in k. The first equality by Theorem 59.53.1 and the second equality by the
displayed formula in the previous paragraph.
Finally, consider any morphism of schemes g : T → S where S and F are as above.
Set f ′ : P1

T → T the projection and let g′ : P1
T → P1

S the morphism induced by g.
Consider the base change map

g−1Rqf∗F −→ Rqf ′
∗(g′)−1F

Let t be a geometric point of T with image s = g(t). By our discussion above the
map on stalks at t is the map

Hq
étale(P

1
κ(s)sep ,F|P1

κ(s)sep
) −→ Hq

étale(P
1
κ(t)sep ,F|P1

κ(t)sep
)

Since κ(s)sep ⊂ κ(t)sep this map is an isomorphism by Lemma 59.83.12.
This proves cohomology commutes with base change for P1

S → S and sheaves of
Z/ℓZ-modules. In particular, for an injective sheaf of Z/ℓZ-modules the higher
direct images of any base change are zero. In other words, condition (2) of Lemma
59.91.6 holds and the proof is complete. □

Lemma 59.91.12.0DDE Let f : X → Y be a proper morphism of schemes. Let g : Y ′ → Y
be a morphism of schemes. Set X ′ = Y ′ ×Y X and denote f ′ : X ′ → Y ′ and
g′ : X ′ → X the projections. Let E ∈ D+(Xétale) have torsion cohomology sheaves.
Then the base change map (59.91.5.2) g−1Rf∗E → Rf ′

∗(g′)−1E is an isomorphism.

Proof. This is a simple consequence of the proper base change theorem (Theorem
59.91.11) using the spectral sequences

Ep,q2 = Rpf∗H
q(E) and E′p,q

2 = Rpf ′
∗(g′)−1Hq(E)

converging to Rnf∗E and Rnf ′
∗(g′)−1E. The spectral sequences are constructed in

Derived Categories, Lemma 13.21.3. Some details omitted. □

Lemma 59.91.13.0DDF Let f : X → Y be a proper morphism of schemes. Let y → Y
be a geometric point.

(1) For a torsion abelian sheaf F onXétale we have (Rnf∗F)y = Hn
étale(Xy,Fy).

(2) For E ∈ D+(Xétale) with torsion cohomology sheaves we have (Rnf∗E)y =
Hn
étale(Xy, E|Xy ).

Proof. In the statement, Fy denotes the pullback of F to the scheme theoretic
fibre Xy = y×Y X. Since pulling back by y → Y produces the stalk of F , the first
statement of the lemma is a special case of Theorem 59.91.11. The second one is a
special case of Lemma 59.91.12. □

59.92. Applications of proper base change

0A5I In this section we discuss some more or less immediate consequences of the proper
base change theorem.

Lemma 59.92.1.0DDG Let K/k be an extension of separably closed fields. Let X be a
proper scheme over k. Let F be a torsion abelian sheaf on Xétale. Then the map
Hq
étale(X,F)→ Hq

étale(XK ,F|XK ) is an isomorphism for q ≥ 0.

Proof. Looking at stalks we see that this is a special case of Theorem 59.91.11. □
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Lemma 59.92.2.095U Let f : X → Y be a proper morphism of schemes all of whose
fibres have dimension ≤ n. Then for any abelian torsion sheaf F on Xétale we have
Rqf∗F = 0 for q > 2n.

Proof. We will prove this by induction on n for all proper morphisms.
If n = 0, then f is a finite morphism (More on Morphisms, Lemma 37.44.1) and
the result is true by Proposition 59.55.2.
If n > 0, then using Lemma 59.91.13 we see that it suffices to proveHi

étale(X,F) = 0
for i > 2n and X a proper scheme, dim(X) ≤ n over an algebraically closed field k
and F is a torsion abelian sheaf on X.
If n = 1 this follows from Theorem 59.83.11. Assume n > 1. By Proposition 59.45.4
we may replace X by its reduction. Let ν : Xν → X be the normalization. This is
a surjective birational finite morphism (see Varieties, Lemma 33.27.1) and hence an
isomorphism over a dense open U ⊂ X (Morphisms, Lemma 29.50.5). Then we see
that c : F → ν∗ν

−1F is injective (as ν is surjective) and an isomorphism over U .
Denote i : Z → X the inclusion of the complement of U . Since U is dense in X we
have dim(Z) < dim(X) = n. By Proposition 59.46.4 have Coker(c) = i∗G for some
abelian torsion sheaf G on Zétale. Then Hq

étale(X,Coker(c)) = Hq
étale(Z,F) (by

Proposition 59.55.2 and the Leray spectral sequence) and by induction hypothesis
we conclude that the cokernel of c has cohomology in degrees ≤ 2(n− 1). Thus it
suffices to prove the result for ν∗ν

−1F . As ν is finite this reduces us to showing that
Hi
étale(Xν , ν−1F) is zero for i > 2n. This case is treated in the next paragraph.

Assume X is integral normal proper scheme over k of dimension n. Choose a
nonconstant rational function f on X. The graph X ′ ⊂ X × P1

k of f sits into a
diagram

X
b←− X ′ f−→ P1

k

Observe that b is an isomorphism over an open subscheme U ⊂ X whose comple-
ment is a closed subscheme Z ⊂ X of codimension ≥ 2. Namely, U is the domain
of definition of f which contains all codimension 1 points of X, see Morphisms,
Lemmas 29.49.9 and 29.42.5 (combined with Serre’s criterion for normality, see
Properties, Lemma 28.12.5). Moreover the fibres of b have dimension ≤ 1 (as closed
subschemes of P1). Hence Rib∗b

−1F is nonzero only if i ∈ {0, 1, 2} by induction.
Choose a distinguished triangle

F → Rb∗b
−1F → Q→ F [1]

Using that F → b∗b
−1F is injective as before and using what we just said, we

see that Q has nonzero cohomology sheaves only in degrees 0, 1, 2 sitting on Z.
Moreover, these cohomology sheaves are torsion by Lemma 59.78.2. By induction
we see that Hi(X,Q) is zero for i > 2 + 2 dim(Z) ≤ 2 + 2(n − 2) = 2n − 2. Thus
it suffices to prove that Hi(X ′, b−1F) = 0 for i > 2n. At this point we use the
morphism

f : X ′ → P1
k

whose fibres have dimension < n. Hence by induction we see that Rif∗b
−1F = 0

for i > 2(n− 1). We conclude by the Leray spectral seqence
Hi(P1

k, R
jf∗b

−1F)⇒ Hi+j(X ′, b−1F)
and the fact that dim(P1

k) = 1. □
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When working with mod n coefficients we can do proper base change for unbounded
complexes.

Lemma 59.92.3.0F0C Let f : X → Y be a proper morphism of schemes. Let g : Y ′ → Y
be a morphism of schemes. Set X ′ = Y ′ ×Y X and denote f ′ : X ′ → Y ′ and
g′ : X ′ → X the projections. Let n ≥ 1 be an integer. Let E ∈ D(Xétale,Z/nZ).
Then the base change map (59.91.5.2) g−1Rf∗E → Rf ′

∗(g′)−1E is an isomorphism.

Proof. It is enough to prove this when Y and Y ′ are quasi-compact. By Morphisms,
Lemma 29.28.5 we see that the dimension of the fibres of f : X → Y and f ′ : X ′ →
Y ′ are bounded. Thus Lemma 59.92.2 implies that

f∗ : Mod(Xétale,Z/nZ) −→ Mod(Yétale,Z/nZ)
and

f ′
∗ : Mod(X ′

étale,Z/nZ) −→ Mod(Y ′
étale,Z/nZ)

have finite cohomological dimension in the sense of Derived Categories, Lemma
13.32.2. Choose a K-injective complex I• of Z/nZ-modules each of whose terms
In is an injective sheaf of Z/nZ-modules representing E. See Injectives, Theorem
19.12.6. By the usual proper base change theorem we find that Rqf ′

∗(g′)−1In = 0
for q > 0, see Theorem 59.91.11. Hence we conclude by Derived Categories, Lemma
13.32.2 that we may compute Rf ′

∗(g′)−1E by the complex f ′
∗(g′)−1I•. Another

application of the usual proper base change theorem shows that this is equal to
g−1f∗I• as desired. □

Lemma 59.92.4.0F0E Let X be a quasi-compact and quasi-separated scheme. Let E ∈
D+(Xétale) and K ∈ D+(Z). Then

RΓ(X,E ⊗L
Z K) = RΓ(X,E)⊗L

Z K

Proof. Say Hi(E) = 0 for i ≥ a and Hj(K) = 0 for j ≥ b. We may represent K by
a bounded below complex K• of torsion free Z-modules. (Choose a K-flat complex
L• representing K and then take K• = τ≥b−1L

•. This works because Z has global
dimension 1. See More on Algebra, Lemma 15.66.2.) We may represent E by a
bounded below complex E•. Then E ⊗L

Z K is represented by
Tot(E• ⊗Z K

•)
Using distinguished triangles

σ≥−b+n+1K
• → K• → σ≤−b+nK

•

and the trivial vanishing
Hn(X,Tot(E• ⊗Z σ≥−a+n+1K

•) = 0
and

Hn(RΓ(X,E)⊗L
Z σ≥−a+n+1K

•) = 0
we reduce to the case where K• is a bounded complex of flat Z-modules. Repeating
the argument we reduce to the case where K• is equal to a single flat Z-module
sitting in some degree. Next, using the stupid trunctions for E• we reduce in
exactly the same manner to the case where E• is a single abelian sheaf sitting in
some degree. Thus it suffices to show that

Hn(X, E ⊗Z M) = Hn(X, E)⊗Z M
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when M is a flat Z-module and E is an abelian sheaf on X. In this case we write
M is a filtered colimit of finite free Z-modules (Lazard’s theorem, see Algebra,
Theorem 10.81.4). By Theorem 59.51.3 this reduces us to the case of finite free
Z-module M in which case the result is trivially true. □

Lemma 59.92.5.0F0F Let f : X → Y be a proper morphism of schemes. Let E ∈
D+(Xétale) have torsion cohomology sheaves. Let K ∈ D+(Yétale). Then

Rf∗E ⊗L
Z K = Rf∗(E ⊗L

Z f
−1K)

in D+(Yétale).

Proof. There is a canonical map from left to right by Cohomology on Sites, Section
21.50. We will check the equality on stalks. Recall that computing derived tensor
products commutes with pullbacks. See Cohomology on Sites, Lemma 21.18.4.
Thus we have

(E ⊗L
Z f

−1K)x = Ex ⊗L
Z Ky

where y is the image of x in Y . Since Z has global dimension 1 we see that this
complex has vanishing cohomology in degree < −1 + a + b if Hi(E) = 0 for i ≥ a
and Hj(K) = 0 for j ≥ b. Moreover, since Hi(E) is a torsion abelian sheaf for each
i, the same is true for the cohomology sheaves of the complex E⊗L

ZK. Namely, we
have

(E ⊗L
Z f

−1K)⊗L
Z Q = (E ⊗L

Z Q)⊗L
Q (f−1K ⊗L

Z Q)
which is zero in the derived category. In this way we see that Lemma 59.91.13
applies to both sides to see that it suffices to show

RΓ(Xy, E|Xy ⊗
L
Z (Xy → y)−1Ky) = RΓ(Xy, E|Xy )⊗L

Z Ky

This is shown in Lemma 59.92.4. □

59.93. Local acyclicity

0GJM In this section we deduce local acyclicity of smooth morphisms from the smooth
base change theorem. In SGA 4 or SGA 4.5 the authors first prove a version of
local acyclicity for smooth morphisms and then deduce the smooth base change
theorem.
We will use the formulation of local acyclicity given by Deligne [Del77, Definition
2.12, page 242]. Let f : X → S be a morphism of schemes. Let x be a geometric
point of X with image s = f(x) in S. Let t be a geometric point of Spec(OshS,s).
We obtain a commutative diagram

Fx,t = t×Spec(Osh
S,s

) Spec(OshX,x) //

��

Spec(OshX,x) //

��

X

��
t // Spec(OshS,s) // S

The scheme Fx,t is called a variety of vanishing cycles of f at x. Let K be an
object of D(Xétale). For any morphism of schemes g : Y → X we write RΓ(Y,K)
instead of RΓ(Yétale, g−1

smallK). Since OshX,x is strictly henselian we have Kx =
RΓ(Spec(OshX,x),K). Thus we obtain a canonical map

(59.93.0.1)0GJN αK,x,t : Kx −→ RΓ(Fx,t,K)
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by pulling back cohomology along Fx,t → Spec(OshX,x).

Definition 59.93.1.0GJP [Del77, Definition
2.12, page 242] and
[Del77, Definition
(1.3), page 54]

Let f : X → S be a morphism of schemes. Let K be an object
of D(Xétale).

(1) Let x be a geometric point of X with image s = f(x). We say f is locally
acyclic at x relative to K if for every geometric point t of Spec(OshS,s) the
map (59.93.0.1) is an isomorphism11.

(2) We say f is locally acyclic relative to K if f is locally acyclic at x relative
to K for every geometric point x of X.

(3) We say f is universally locally acyclic relative to K if for any morphism
S′ → S of schemes the base change f ′ : X ′ → S′ is locally acyclic relative
to the pullback of K to X ′.

(4) We say f is locally acyclic if for all geometric points x of X and any integer
n prime to the characteristic of κ(x), the morphism f is locally acyclic at
x relative to the constant sheaf with value Z/nZ.

(5) We say f is universally locally acyclic if for any morphism S′ → S of
schemes the base change f ′ : X ′ → S′ is locally acyclic.

Let M be an abelian group. Then local acyclicity of f : X → S with respect to the
constant sheaf M boils down to the requirement that

Hq(Fx,t,M) =
{
M if q = 0
0 if q ̸= 0

for any geometric point x of X and any geometric point t of Spec(OshS,f(x)). In this
way we see that being locally acyclic corresponds to the vanishing of the higher
cohomology groups of the geometric fibres Fx,t of the maps between the strict
henselizations at x and s.
Proposition 59.93.2.0GJQ Let f : X → S be a smooth morphism of schemes. Then f is
universally locally acyclic.
Proof. Since the base change of a smooth morphism is smooth, it suffices to show
that smooth morphisms are locally acyclic. Let x be a geometric point of X with
image s = f(x). Let t be a geometric point of Spec(OshS,f(x)). Since we are trying to
prove a property of the ring map OshS,s → OshX,x (see discussion following Definition
59.93.1) we may and do replace f : X → S by the base change X ×S Spec(OshS,s)→
Spec(OshS,s). Thus we may and do assume that S is the spectrum of a strictly
henselian local ring and that s lies over the closed point of S.
We will apply Lemma 59.86.5 to the diagram

X

f

��

Xth
oo

e

��
S t

goo

and the sheaf F = M where M = Z/nZ for some integer n prime to the character-
istic of the residue field of x. We know that the map f−1Rqg∗F → Rqh∗e

−1F is
an isomorphism by smooth base change, see Theorem 59.89.2 (the assumption on

11We do not assume t is an algebraic geometric point of Spec(Osh
S,s

). Often using Lemma
59.90.2 one may reduce to this case.
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torsion holds by our choice of n). Thus Lemma 59.86.5 gives us the middle equality
in

Hq(Fx,t,M) = Hq(Spec(OshX,x)×S t,M) = Hq(Spec(OshS,s)×S t,M) = Hq(t,M)

For the outer two equalities we use that S = Spec(OshS,s). Since t is the spectrum
of a separably closed field we conclude that

Hq(Fx,t,M) =
{
M if q = 0
0 if q ̸= 0

which is what we had to show (see discussion following Definition 59.93.1). □

Lemma 59.93.3.0GJR Let f : X → S be a morphism of schemes. Let F be a locally
constant abelian sheaf on Xétale such that for every geometric point x of X the
abelian group Fx is a torsion group all of whose elements have order prime to the
characteristic of the residue field of x. If f is locally acyclic, then f is locally acyclic
relative to F .

Proof. Namely, let x be a geometric point of X. Since F is locally constant we
see that the restriction of F to Spec(OshX,x) is isomorphic to the constant sheaf M
with M = Fx. By assumption we can write M = colimMi as a filtered colimit of
finite abelian groups Mi of order prime to the characteristic of the residue field of
x. Consider a geometric point t of Spec(OshS,f(x)). Since Fx,t is affine, we have

Hq(Fx,t,M) = colimHq(Fx,t,Mi)

by Lemma 59.51.4. For each i we can write Mi =
⊕

Z/ni,jZ as a finite direct sum
for some integers ni,j prime to the characteristic of the residue field of x. Since f
is locally acyclic we see that

Hq(Fx,t,Z/ni,jZ) =
{

Z/ni,jZ if q = 0
0 if q ̸= 0

See discussion following Definition 59.93.1. Taking the direct sums and the colimit
we conclude that

Hq(Fx,t,M) =
{
M if q = 0
0 if q ̸= 0

and we win. □

Lemma 59.93.4.0GJS Let
X ′

g′
//

f ′

��

X

f

��
S′ g // S

be a cartesian diagram of schemes. Let K be an object of D(Xétale). Let x′ be a
geometric point of X ′ with image x in X. If

(1) f is locally acyclic at x relative to K and
(2) g is locally quasi-finite, or S′ = limSi is a directed inverse limit of schemes

locally quasi-finite over S with affine transition morphisms, or g : S′ → S
is integral,

then f ′ locally acyclic at x′ relative to (g′)−1K.
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Proof. Denote s′ and s the images of x′ and x in S′ and S. Let t′ be a geometric
point of the spectrum of Spec(OshS′,s′) and denote t the image in Spec(OshS,s). By
Algebra, Lemma 10.156.6 and our assumptions on g we have

OshX,x ⊗Osh
S,s
OshS′,s′ −→ OshX′,x′

is an isomorphism. Since by our conventions κ(t) = κ(t′) we conclude that

Fx′,t
′ = Spec

(
OshX′,x′ ⊗Osh

S′,s′
κ(t′)

)
= Spec

(
OshX,x ⊗Osh

S,s
κ(t)

)
= Fx,t

In other words, the varieties of vanishing cycles of f ′ at x′ are examples of varieties
of vanishing cycles of f at x. The lemma follows immediately from this and the
definitions. □

59.94. The cospecialization map

0GJT Let f : X → S be a morphism of schemes. Let x be a geometric point of X with
image s = f(x) in S. Let t be a geometric point of Spec(OshS,s). Let K ∈ D(Xétale).
For any morphism g : Y → X of schemes we write K|Y instead of g−1

smallK and
RΓ(Y,K) instead of RΓ(Yétale, g−1

smallK). We claim that if
(1) K is bounded below, i.e., K ∈ D+(Xétale),
(2) f is locally acyclic relative to K

then there is a cospecialization map
cosp : RΓ(Xt,K) −→ RΓ(Xs,K)

which will be closely related to the specialization map considered in Section 59.75
and especially Remark 59.75.8.
To construct the map we consider the morphisms

Xt
h−→ X ×S Spec(OshS,s)

i←− Xs

The unit of the adjunction between h−1 and Rh∗ gives a map
βK,s,t : K|X×SSpec(Osh

S,s
) −→ Rh∗(K|X

t
)

in D((X ×S Spec(OshS,s))étale). Lemma 59.94.1 below shows that the pullback
i−1βK,s,t is an isomorphism under the assumptions above. Thus we can define
the cospecialization map as the composition

RΓ(Xt,K) = RΓ(X ×S Spec(OshS,s), Rh∗(K|X
t
))

i−1

−−→ RΓ(Xs, i
−1Rh∗(K|X

t
))

(i−1β
K,s,t

)−1

−−−−−−−−−→ RΓ(Xs, i
−1(K|X×SSpec(Osh

S,s
)))

= RΓ(Xs,K)

Lemma 59.94.1.0GJU The map i−1βK,s,t is an isomorphism.

Proof. The construction of the maps h, i, βK,s,t only depends on the base change of
X and K to Spec(OshS,s). Thus we may and do assume that S is a strictly henselian
scheme with closed point s. Observe that the local acyclicity of f relative to K is
preserved by this base change (for example by Lemma 59.93.4 or just directly by
comparing strictly henselian rings in this very special case).

https://stacks.math.columbia.edu/tag/0GJU
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Let x be a geometric point of Xs. Or equivalently, let x be a geometric point whose
image by f is s. Let us compute the stalk of i−1βK,s,t at x. First, we have

(i−1βK,s,t)x = (βK,s,t)x
since pullback preserves stalks, see Lemma 59.36.2. Since we are in the situation
S = Spec(OshS,s) we see that h : Xt → X has the property that Xt×X Spec(OshX,x) =
Fx,t. Thus we see that

(βK,s,t)x : Kx −→ Rh∗(K|X
t
)x = RΓ(Fx,t,K)

where the equal sign is Theorem 59.53.1. It follows that the map (βK,s,t)x is none
other than the map αK,x,t used in Definition 59.93.1. The result follows as we may
check whether a map is an isomorphism in stalks by Theorem 59.29.10. □

The cospecialization map when it exists is trying to be the inverse of the special-
ization map.

Lemma 59.94.2.0GJV In the situation above, if in addition f is quasi-compact and
quasi-separated, then the diagram

(Rf∗K)s //

sp

��

RΓ(Xs,K)

(Rf∗K)t // RΓ(Xt,K)

cosp

OO

is commutative.

Proof. As in the proof of Lemma 59.94.1 we may replace S by Spec(OshS,s). Then
our maps simplify to h : Xt → X, i : Xs → X, and βK,s,t : K → Rh∗(K|X

t
).

Using that (Rf∗K)s = RΓ(X,K) by Theorem 59.53.1 the composition of sp with
the base change map (Rf∗K)t → RΓ(Xt,K) is just pullback of cohomology along
h. This is the same as the map

RΓ(X,K)
β
K,s,t−−−−→ RΓ(X,Rh∗(K|X

t
)) = RΓ(Xt,K)

Now the map cosp first inverts the = sign in this displayed formula, then pulls
back along i, and finally applies the inverse of i−1βK,s,t. Hence we get the desired
commutativity. □

Lemma 59.94.3.0GJW Let f : X → S be a morphism of schemes. Let K ∈ D(Xétale).
Assume

(1) K is bounded below, i.e., K ∈ D+(Xétale),
(2) f is locally acyclic relative to K,
(3) f is proper, and
(4) K has torsion cohomology sheaves.

Then for every geometric point s of S and every geometric point t of Spec(OshS,s)
both the specialization map sp : (Rf∗K)s → (Rf∗K)t and the cospecialization map
cosp : RΓ(Xt,K)→ RΓ(Xs,K) are isomorphisms.

Proof. By the proper base change theorem (in the form of Lemma 59.91.13) we
have (Rf∗K)s = RΓ(Xs,K) and similarly for t. The “correct” proof would be
to show that the argument in Lemma 59.94.2 shows that sp and cosp are inverse

https://stacks.math.columbia.edu/tag/0GJV
https://stacks.math.columbia.edu/tag/0GJW
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isomorphisms in this case. Instead we will show directly that cosp is an isomor-
phism. From the discussion above we see that cosp is an isomorphism if and only
if pullback by i

RΓ(X ×S Spec(OshS,s), Rh∗(K|X
t
)) −→ RΓ(Xs, i

−1Rh∗(K|X
t
))

is an isomorphism in D+(Ab). This is true by the proper base change theorem
for the proper morphism f ′ : X ×S Spec(OshS,s) → Spec(OshS,s) by the morphism
s → Spec(OshS,s) and the complex K ′ = Rh∗(K|X

t
). The complex K ′ is bounded

below and has torsion cohomology sheaves by Lemma 59.78.2. Since Spec(OshS,s)
is strictly henselian with s lying over the closed point, we see that the source
of the displayed arrow equals (Rf ′

∗K
′)s and the target equals RΓ(Xs,K

′) and the
displayed map is an isomorphism by the already used Lemma 59.91.13. Thus we see
that three out of the four arrows in the diagram of Lemma 59.94.2 are isomorphisms
and we conclude. □

Lemma 59.94.4.0GKD Let f : X → S be a morphism of schemes. Let F be an abelian
sheaf on Xétale. Assume

(1) f is smooth and proper
(2) F is locally constant, and
(3) Fx is a torsion group all of whose elements have order prime to the residue

characteristic of x for every geometric point x of X.
Then for every geometric point s of S and every geometric point t of Spec(OshS,s)
the specialization map sp : (Rf∗F)s → (Rf∗F)t is an isomorphism.

Proof. This follows from Lemmas 59.94.3 and 59.93.3 and Proposition 59.93.2. □

59.95. Cohomological dimension

0F0P We can deduce some bounds on the cohomological dimension of schemes and on
the cohomological dimension of fields using the results in Section 59.83 and one,
seemingly innocuous, application of the proper base change theorem (in the proof
of Proposition 59.95.6).

Definition 59.95.1.0F0Q Let X be a quasi-compact and quasi-separated scheme. The
cohomological dimension of X is the smallest element

cd(X) ∈ {0, 1, 2, . . .} ∪ {∞}
such that for any abelian torsion sheaf F on Xétale we have Hi

étale(X,F) = 0 for
i > cd(X). If X = Spec(A) we sometimes call this the cohomological dimension of
A.

If the scheme is in characteristic p, then we often can obtain sharper bounds for the
vanishing of cohomology of p-power torsion sheaves. We will address this elsewhere
(insert future reference here).

Lemma 59.95.2.0F0R Let X = limXi be a directed limit of a system of quasi-compact
and quasi-separated schemes with affine transition morphisms. Then cd(X) ≤
max cd(Xi).

Proof. Denote fi : X → Xi the projections. Let F be an abelian torsion sheaf on
Xétale. Then we have F = lim f−1

i fi,∗F by Lemma 59.51.9. Thus Hq
étale(X,F) =

colimHq
étale(Xi, fi,∗F) by Theorem 59.51.3. The lemma follows. □

https://stacks.math.columbia.edu/tag/0GKD
https://stacks.math.columbia.edu/tag/0F0Q
https://stacks.math.columbia.edu/tag/0F0R
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Lemma 59.95.3.0F0S Let K be a field. Let X be a 1-dimensional affine scheme of finite
type over K. Then cd(X) ≤ 1 + cd(K).

Proof. Let F be an abelian torsion sheaf on Xétale. Consider the Leray spectral
sequence for the morphism f : X → Spec(K). We obtain

Ep,q2 = Hp(Spec(K), Rqf∗F)

converging to Hp+q
étale(X,F). The stalk of Rqf∗F at a geometric point Spec(K) →

Spec(K) is the cohomology of the pullback of F to XK . Hence it vanishes in degrees
≥ 2 by Theorem 59.83.10. □

Lemma 59.95.4.0F0T Let L/K be a field extension. Then we have cd(L) ≤ cd(K) +
trdegK(L).

Proof. If trdegK(L) = ∞, then this is clear. If not then we can find a sequence
of extensions L = Lr/Lr−1/ . . . /L1/L0 = K such that trdegLi(Li+1) = 1 and
r = trdegK(L). Hence it suffices to prove the lemma in the case that r = 1. In this
case we can write L = colimAi as a filtered colimit of its finite type K-subalgebras.
By Lemma 59.95.2 it suffices to prove that cd(Ai) ≤ 1 + cd(K). This follows from
Lemma 59.95.3. □

Lemma 59.95.5.0F0U Let K be a field. Let X be a scheme of finite type over K. Let
x ∈ X. Set a = trdegK(κ(x)) and d = dimx(X). Then there is a map

K(t1, . . . , ta)sep −→ OshX,x
such that

(1) the residue field ofOshX,x is a purely inseparable extension ofK(t1, . . . , ta)sep,
(2) OshX,x is a filtered colimit of finite type K(t1, . . . , ta)sep-algebras of dimen-

sion ≤ d− a.

Proof. We may assumeX is affine. By Noether normalization, after possibly shrink-
ing X again, we can choose a finite morphism π : X → Ad

K , see Algebra, Lemma
10.115.5. Since κ(x) is a finite extension of the residue field of π(x), this residue
field has transcendence degree a over K as well. Thus we can find a finite morphism
π′ : Ad

K → Ad
K such that π′(π(x)) corresponds to the generic point of the linear

subspace Aa
K ⊂ Ad

K given by setting the last d−a coordinates equal to zero. Hence
the composition

X
π′◦π−−−→ Ad

K
p−→ Aa

K

of π′ ◦ π and the projection p onto the first a coordinates maps x to the generic
point η ∈ Aa

K . The induced map

K(t1, . . . , ta)sep = OshAa
k
,η −→ OshX,x

on étale local rings satisfies (1) since it is clear that the residue field of OshX,x
is an algebraic extension of the separably closed field K(t1, . . . , ta)sep. On the
other hand, if X = Spec(B), then OshX,x = colimBj is a filtered colimit of étale
B-algebras Bj . Observe that Bj is quasi-finite over K[t1, . . . , td] as B is finite
over K[t1, . . . , td]. We may similarly write K(t1, . . . , ta)sep = colimAi as a filtered
colimit of étale K[t1, . . . , ta]-algebras. For every i we can find an j such that

https://stacks.math.columbia.edu/tag/0F0S
https://stacks.math.columbia.edu/tag/0F0T
https://stacks.math.columbia.edu/tag/0F0U
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Ai → K(t1, . . . , ta)sep → OshX,x factors through a map ψi,j : Ai → Bj . Then Bj is
quasi-finite over Ai[ta+1, . . . , td]. Hence

Bi,j = Bj ⊗ψi,j ,Ai K(t1, . . . , ta)sep

has dimension ≤ d − a as it is quasi-finite over K(t1, . . . , ta)sep[ta+1, . . . , td]. The
proof of (2) is now finished as OshX,x is a filtered colimit12 of the algebras Bi,j . Some
details omitted. □

Proposition 59.95.6.0F0V Let K be a field. Let X be an affine scheme of finite type
over K. Then we have cd(X) ≤ dim(X) + cd(K).

Proof. We will prove this by induction on dim(X). Let F be an abelian torsion
sheaf on Xétale.
The case dim(X) = 0. In this case the structure morphism f : X → Spec(K)
is finite. Hence we see that Rif∗F = 0 for i > 0, see Proposition 59.55.2. Thus
Hi
étale(X,F) = Hi

étale(Spec(K), f∗F) by the Leray spectral sequence for f (Coho-
mology on Sites, Lemma 21.14.5) and the result is clear.
The case dim(X) = 1. This is Lemma 59.95.3.
Assume d = dim(X) > 1 and the proposition holds for finite type affine schemes
of dimension < d over fields. By Noether normalization, see for example Varieties,
Lemma 33.18.2, there exists a finite morphism f : X → Ad

K . Recall that Rif∗F = 0
for i > 0 by Proposition 59.55.2. By the Leray spectral sequence for f (Cohomology
on Sites, Lemma 21.14.5) we conclude that it suffices to prove the result for π∗F
on Ad

K .
Interlude I. Let j : X → Y be an open immersion of smooth d-dimensional varieties
over K (not necessarily affine) whose complement is the support of an effective
Cartier divisor D. The sheaves Rqj∗F for q > 0 are supported on D. We claim
that (Rqj∗F)y = 0 for a = trdegK(κ(y)) > d− q. Namely, by Theorem 59.53.1 we
have

(Rqj∗F)y = Hq(Spec(OshY,y)×Y X,F)
Choose a local equation f ∈ my = OY,y for D. Then we have

Spec(OshY,y)×Y X = Spec(OshY,y[1/f ])
Using Lemma 59.95.5 we get an embedding

K(t1, . . . , ta)sep(x) = K(t1, . . . , ta)sep[x](x)[1/x] −→ OshY,y[1/f ]
Since the transcendence degree over K of the fraction field of OshY,y is d, we see that
OshY,y[1/f ] is a filtered colimit of (d − a − 1)-dimensional finite type algebras over
the field K(t1, . . . , ta)sep(x) which itself has cohomological dimension 1 by Lemma
59.95.4. Thus by induction hypothesis and Lemma 59.95.2 we obtain the desired
vanishing.
Interlude II. Let Z be a smooth variety over K of dimension d − 1. Let Ea ⊂ Z
be the set of points z ∈ Z with trdegK(κ(z)) ≤ a. Observe that Ea is closed under

12Let R be a ring. Let A = colimi∈I Ai be a filtered colimit of finitely presented R-algebras.
Let B = colimj∈J Bj be a filtered colimit of R-algebras. Let A→ B be an R-algebra map. Assume
that for all i ∈ I there is a j ∈ J and an R-algebra map ψi,j : Ai → Bj . Say (i′, j′, ψi′,j′ ) ≥
(i, j, ψi,j) if i′ ≥ i, j′ ≥ j, and ψi,j and ψi′,j′ are compatible. Then the collection of triples forms
a directed set and B = colimBj ⊗ψi,jAi A.

https://stacks.math.columbia.edu/tag/0F0V
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specialization, see Varieties, Lemma 33.20.3. Suppose that G is a torsion abelian
sheaf on Z whose support is contained in Ea. Then we claim that Hb

étale(Z,G) = 0
for b > a+cd(K). Namely, we can write G = colimGi with Gi a torsion abelian sheaf
supported on a closed subscheme Zi contained in Ea, see Lemma 59.74.5. Then
the induction hypothesis kicks in to imply the desired vanishing for Gi13. Finally,
we conclude by Theorem 59.51.3.

Consider the commutative diagram

Ad
K

f ""

j
// P1

K ×K Ad−1
K

g
xx

Ad−1
K

Observe that j is an open immersion of smooth d-dimensional varieties whose com-
plement is an effective Cartier divisor D. Thus we may use the results obtained in
interlude I. We are going to study the relative Leray spectral sequence

Ep,q2 = Rpg∗R
qj∗F ⇒ Rp+qf∗F

Since Rqj∗F for q > 0 is supported on D and since g|D : D → Ad−1
K is an isomor-

phism, we find Rpg∗R
qj∗F = 0 for p > 0 and q > 0. Moreover, we have Rqj∗F = 0

for q > d. On the other hand, g is a proper morphism of relative dimension 1.
Hence by Lemma 59.92.2 we see that Rpg∗j∗F = 0 for p > 2. Thus the E2-page of
the spectral sequence looks like this

g∗R
dj∗F 0 0
. . . . . . . . .

g∗R
2j∗F 0 0

g∗R
1j∗F 0 0

g∗j∗F R1g∗j∗F R2g∗j∗F

We conclude that Rqf∗F = g∗R
qj∗F for q > 2. By interlude I we see that the

support of Rqf∗F for q > 2 is contained in the set of points of Ad−1
K whose residue

field has transcendence degree ≤ d− q. By interlude II

Hp(Ad−1
K , Rqf∗F) = 0 for p > d− q + cd(K) and q > 2

On the other hand, by Theorem 59.53.1 we have R2f∗Fη = H2(A1
η,F) = 0 (van-

ishing by the case of dimension 1) where η is the generic point of Ad−1
K . Hence by

interlude II again we see

Hp(Ad−1
K , R2f∗F) = 0 for p > d− 2 + cd(K)

Finally, we have

Hp(Ad−1
K , Rqf∗F) = 0 for p > d− 1 + cd(K) and q = 0, 1

by induction hypothesis. Combining everything we just said with the Leray spectral
sequence Hp(Ad−1

K , Rqf∗F)⇒ Hp+q(Ad
K ,F) we conclude. □

13Here we first use Proposition 59.46.4 to write Gi as the pushforward of a sheaf on Zi, the
induction hypothesis gives the vanishing for this sheaf on Zi, and the Leray spectral sequence for
Zi → Z gives the vanishing for Gi.
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Lemma 59.95.7.0F0W Let K be a field. Let X be an affine scheme of finite type over K.
Let Ea ⊂ X be the set of points x ∈ X with trdegK(κ(x)) ≤ a. Let F be an abelian
torsion sheaf on Xétale whose support is contained in Ea. Then Hb

étale(X,F) = 0
for b > a+ cd(K).

Proof. We can write F = colimFi with Fi a torsion abelian sheaf supported on a
closed subscheme Zi contained in Ea, see Lemma 59.74.5. Then Proposition 59.95.6
gives the desired vanishing for Fi. Details omitted; hints: first use Proposition
59.46.4 to write Fi as the pushforward of a sheaf on Zi, use the vanishing for this
sheaf on Zi, and use the Leray spectral sequence for Zi → Z to get the vanishing
for Fi. Finally, we conclude by Theorem 59.51.3. □

Lemma 59.95.8.0F0X Let f : X → Y be an affine morphism of schemes of finite type
over a field K. Let Ea(X) be the set of points x ∈ X with trdegK(κ(x)) ≤ a. Let
F be an abelian torsion sheaf on Xétale whose support is contained in Ea. Then
Rqf∗F has support contained in Ea−q(Y ).

Proof. The question is local on Y hence we can assume Y is affine. Then X is
affine too and we can choose a diagram

X

f

��

i
// An+m

K

pr

��
Y

j // An
K

where the horizontal arrows are closed immersions and the vertical arrow on the
right is the projection (details omitted). Then j∗R

qf∗F = Rqpr∗i∗F by the van-
ishing of the higher direct images of i and j, see Proposition 59.55.2. Moreover,
the description of the stalks of j∗ in the proposition shows that it suffices to prove
the vanishing for j∗R

qf∗F . Thus we may assume f is the projection morphism
pr : An+m

K → An
K and an abelian torsion sheaf F on An+m

K satisfying the assump-
tion in the statement of the lemma.
Let y be a point in An

K . By Theorem 59.53.1 we have
(Rqpr∗F)y = Hq(An+m

K ×An
K

Spec(OshY,y),F) = Hq(Am
Osh
Y,y
,F)

Say b = trdegK(κ(y)). From Lemma 59.95.5 we get an embedding
L = K(t1, . . . , tb)sep −→ OshY,y

Write OshY,y = colimBi as the filtered colimit of finite type L-subalgebras Bi ⊂ OshY,y
containing the ring K[T1, . . . , Tn] of regular functions on An

K . Then we get
Am

Osh
Y,y

= lim Am
Bi

If z ∈ Am
Bi

is a point in the support of F , then the image x of z in Am+n
K sat-

isfies trdegK(κ(x)) ≤ a by our assumption on F in the lemma. Since OshY,y is a
filtered colimit of étale algebras over K[T1, . . . , Tn] and since Bi ⊂ OshY,y we see that
κ(z)/κ(x) is algebraic (some details omitted). Then trdegK(κ(z)) ≤ a and hence
trdegL(κ(z)) ≤ a− b. By Lemma 59.95.7 we see that

Hq(Am
Bi ,F) = 0 for q > a− b

Thus by Theorem 59.51.3 we get (Rf∗F)y = 0 for q > a− b as desired. □

https://stacks.math.columbia.edu/tag/0F0W
https://stacks.math.columbia.edu/tag/0F0X
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59.96. Finite cohomological dimension

0F0Y We continue the discussion started in Section 59.95.
Definition 59.96.1.0F0Z Let f : X → Y be a quasi-compact and quasi-separated mor-
phism of schemes. The cohomological dimension of f is the smallest element

cd(f) ∈ {0, 1, 2, . . .} ∪ {∞}
such that for any abelian torsion sheaf F on Xétale we have Rif∗F = 0 for i > cd(f).
Lemma 59.96.2.0F10 Let K be a field.

(1) If f : X → Y is a morphism of finite type schemes over K, then cd(f) <
∞.

(2) If cd(K) <∞, then cd(X) <∞ for any finite type scheme X over K.
Proof. Proof of (1). We may assume Y is affine. We will use the induction principle
of Cohomology of Schemes, Lemma 30.4.1 to prove this. If X is affine too, then
the result holds by Lemma 59.95.8. Thus it suffices to show that if X = U ∪V and
the result is true for U → Y , V → Y , and U ∩ V → Y , then it is true for f . This
follows from the relative Mayer-Vietoris sequence, see Lemma 59.50.2.
Proof of (2). We will use the induction principle of Cohomology of Schemes, Lemma
30.4.1 to prove this. If X is affine, then the result holds by Proposition 59.95.6.
Thus it suffices to show that if X = U ∪ V and the result is true for U , V , and
U ∩ V , then it is true for X. This follows from the Mayer-Vietoris sequence, see
Lemma 59.50.1. □

Lemma 59.96.3.0F11 Cohomology and direct sums. Let n ≥ 1 be an integer.
(1) Let f : X → Y be a quasi-compact and quasi-separated morphism of

schemes with cd(f) <∞. Then the functor
Rf∗ : D(Xétale,Z/nZ) −→ D(Yétale,Z/nZ)

commutes with direct sums.
(2) Let X be a quasi-compact and quasi-separated scheme with cd(X) <∞.

Then the functor
RΓ(X,−) : D(Xétale,Z/nZ) −→ D(Z/nZ)

commutes with direct sums.
Proof. Proof of (1). Since cd(f) <∞ we see that

f∗ : Mod(Xétale,Z/nZ) −→ Mod(Yétale,Z/nZ)
has finite cohomological dimension in the sense of Derived Categories, Lemma
13.32.2. Let I be a set and for i ∈ I let Ei be an object of D(Xétale,Z/nZ).
Choose a K-injective complex I•

i of Z/nZ-modules each of whose terms Ini is an
injective sheaf of Z/nZ-modules representing Ei. See Injectives, Theorem 19.12.6.
Then

⊕
Ei is represented by the complex

⊕
I•
i (termwise direct sum), see Injec-

tives, Lemma 19.13.4. By Lemma 59.51.7 we have
Rqf∗(

⊕
Ini ) =

⊕
Rqf∗(Ini ) = 0

for q > 0 and any n. Hence we conclude by Derived Categories, Lemma 13.32.2
that we may compute Rf∗(

⊕
Ei) by the complex

f∗(
⊕
I•
i ) =

⊕
f∗(I•

i )

https://stacks.math.columbia.edu/tag/0F0Z
https://stacks.math.columbia.edu/tag/0F10
https://stacks.math.columbia.edu/tag/0F11
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(equality again by Lemma 59.51.7) which represents
⊕
Rf∗Ei by the already used

Injectives, Lemma 19.13.4.
Proof of (2). This is identical to the proof of (1) and we omit it. □

Lemma 59.96.4.0F0D Let f : X → Y be a proper morphism of schemes. Let n ≥ 1 be
an integer. Then the functor

Rf∗ : D(Xétale,Z/nZ) −→ D(Yétale,Z/nZ)
commutes with direct sums.

Proof. It is enough to prove this when Y is quasi-compact. By Morphisms, Lemma
29.28.5 we see that the dimension of the fibres of f : X → Y is bounded. Thus
Lemma 59.92.2 implies that cd(f) <∞. Hence the result by Lemma 59.96.3. □

Lemma 59.96.5.0F12 Let X be a quasi-compact and quasi-separated scheme such that
cd(X) <∞. Let Λ be a torsion ring. Let E ∈ D(Xétale,Λ) and K ∈ D(Λ). Then

RΓ(X,E ⊗L
Λ K) = RΓ(X,E)⊗L

Λ K

Proof. There is a canonical map from left to right by Cohomology on Sites, Section
21.50. Let T (K) be the property that the statement of the lemma holds for K ∈
D(Λ). We will check conditions (1), (2), and (3) of More on Algebra, Remark
15.59.11 hold for T to conclude. Property (1) holds because both sides of the
equality commute with direct sums, see Lemma 59.96.3. Property (2) holds because
we are comparing exact functors between triangulated categories and we can use
Derived Categories, Lemma 13.4.3. Property (3) says the lemma holds when K =
Λ[k] for any shift k ∈ Z and this is obvious. □

Lemma 59.96.6.0F0G Let f : X → Y be a proper morphism of schemes. Let Λ be a
torsion ring. Let E ∈ D(Xétale,Λ) and K ∈ D(Yétale,Λ). Then

Rf∗E ⊗L
Λ K = Rf∗(E ⊗L

Λ f
−1K)

in D(Yétale,Λ).

Proof. There is a canonical map from left to right by Cohomology on Sites, Section
21.50. We will check the equality on stalks at y. By the proper base change (in
the form of Lemma 59.92.3 where Y ′ = y) this reduces to the case where Y is the
spectrum of an algebraically closed field. This is shown in Lemma 59.96.5 where
we use that cd(X) <∞ by Lemma 59.92.2. □

59.97. Künneth in étale cohomology

0F13 We first prove a Künneth formula in case one of the factors is proper. Then we
use this formula to prove a base change property for open immersions. This then
gives a “base change by morphisms towards spectra of fields” (akin to smooth base
change). Finally we use this to get a more general Künneth formula.

Remark 59.97.1.0F1E Consider a cartesian diagram in the category of schemes:

X ×S Y

p

��

q
//

c
##

Y

g

��
X

f // S

https://stacks.math.columbia.edu/tag/0F0D
https://stacks.math.columbia.edu/tag/0F12
https://stacks.math.columbia.edu/tag/0F0G
https://stacks.math.columbia.edu/tag/0F1E
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Let Λ be a ring and let E ∈ D(Xétale,Λ) and K ∈ D(Yétale,Λ). Then there is a
canonical map

Rf∗E ⊗L
Λ Rg∗K −→ Rc∗(p−1E ⊗L

Λ q
−1K)

For example we can define this using the canonical maps Rf∗E → Rc∗p
−1E and

Rg∗K → Rc∗q
−1K and the relative cup product defined in Cohomology on Sites,

Remark 21.19.7. Or you can use the adjoint to the map
c−1(Rf∗E ⊗L

Λ Rg∗K) = p−1f−1Rf∗E ⊗L
Λ q

−1g−1Rg∗K → p−1E ⊗L
Λ q

−1K

which uses the adjunction maps f−1Rf∗E → E and g−1Rg∗K → K.

Lemma 59.97.2.0F14 Let k be a separably closed field. Let X be a proper scheme over
k. Let Y be a quasi-compact and quasi-separated scheme over k.

(1) If E ∈ D+(Xétale) has torsion cohomology sheaves and K ∈ D+(Yétale),
then
RΓ(X ×Spec(k) Y,pr−1

1 E ⊗L
Z pr−1

2 K) = RΓ(X,E)⊗L
Z RΓ(Y,K)

(2) If n ≥ 1 is an integer, Y is of finite type over k, E ∈ D(Xétale,Z/nZ),
and K ∈ D(Yétale,Z/nZ), then

RΓ(X ×Spec(k) Y,pr−1
1 E ⊗L

Z/nZ pr−1
2 K) = RΓ(X,E)⊗L

Z/nZ RΓ(Y,K)

Proof. Proof of (1). By Lemma 59.92.5 we have

Rpr2,∗(pr−1
1 E ⊗L

Z pr−1
2 K) = Rpr2,∗(pr−1

1 E)⊗L
Z K

By proper base change (in the form of Lemma 59.91.12) this is equal to the object

RΓ(X,E)⊗L
Z K

of D(Yétale). Taking RΓ(Y,−) on this object reproduces the left hand side of the
equality in (1) by the Leray spectral sequence for pr2. Thus we conclude by Lemma
59.92.4.
Proof of (2). This is exactly the same as the proof of (1) except that we use Lemmas
59.96.6, 59.92.3, and 59.96.5 as well as cd(Y ) <∞ by Lemma 59.96.2. □

Lemma 59.97.3.0F1F Let K be a separably closed field. Let X be a scheme of finite
type over K. Let F be an abelian sheaf on Xétale whose support is contained in
the set of closed points of X. Then Hq(X,F) = 0 for q > 0 and F is globally
generated.

Proof. (If F is torsion, then the vanishing follows immediately from Lemma 59.95.7.)
By Lemma 59.74.5 we can write F as a filtered colimit of constructible sheaves Fi of
Z-modules whose supports Zi ⊂ X are finite sets of closed points. By Proposition
59.46.4 such a sheaf is of the form (Zi → X)∗Gi where Gi is a sheaf on Zi. As K
is separably closed, the scheme Zi is a finite disjoint union of spectra of separably
closed fields. Recall that Hq(Zi,Gi) = Hq(X,Fi) by the Leray spectral sequence
for Zi → X and vanising of higher direct images for this morphism (Proposition
59.55.2). By Lemmas 59.59.1 and 59.59.2 we see that Hq(Zi,Gi) is zero for q > 0
and that H0(Zi,Gi) generates Gi. We conclude the vanishing of Hq(X,Fi) for
q > 0 and that Fi is generated by global sections. By Theorem 59.51.3 we see that
Hq(X,F) = 0 for q > 0. The proof is now done because a filtered colimit of globally
generated sheaves of abelian groups is globally generated (details omitted). □

https://stacks.math.columbia.edu/tag/0F14
https://stacks.math.columbia.edu/tag/0F1F


59.97. KÜNNETH IN ÉTALE COHOMOLOGY 4911

Lemma 59.97.4.0F1G Let K be a separably closed field. Let X be a scheme of finite
type over K. Let Q ∈ D(Xétale). Assume that Qx is nonzero only if x is a closed
point of X. Then

Q = 0⇔ Hi(X,Q) = 0 for all i

Proof. The implication from left to right is trivial. Thus we need to prove the
reverse implication.
Assume Q is bounded below; this cases suffices for almost all applications. If Q is
not zero, then we can look at the smallest i such that the cohomology sheaf Hi(Q)
is nonzero. By Lemma 59.97.3 we have Hi(X,Q) = H0(X,Hi(Q)) ̸= 0 and we
conclude.
General case. Let B ⊂ Ob(Xétale) be the quasi-compact objects. By Lemma
59.97.3 the assumptions of Cohomology on Sites, Lemma 21.23.11 are satisfied. We
conclude that Hq(U,Q) = H0(U,Hq(Q)) for all U ∈ B. In particular, this holds
for U = X. Thus the conclusion by Lemma 59.97.3 as Q is zero in D(Xétale) if and
only if Hq(Q) is zero for all q. □

Lemma 59.97.5.0F1H Let K be a field. Let j : U → X be an open immersion of
schemes of finite type over K. Let Y be a scheme of finite type over K. Consider
the diagram

Y ×Spec(K) X

q

��

Y ×Spec(K) U
h
oo

p

��
X U

joo

Then the base change map q−1Rj∗F → Rh∗p
−1F is an isomorphism for F an

abelian sheaf on Uétale whose stalks are torsion of orders invertible in K.

Proof. Write F = colimF [n] where the colimit is over the multiplicative system of
integers invertible in K. Since cohomology commutes with filtered colimits in our
situation (for a precise reference see Lemma 59.86.3), it suffices to prove the lemma
for F [n]. Thus we may assume F is a sheaf of Z/nZ-modules for some n invertible
in K (we will use this at the very end of the proof). In the proof we use the short
hand X ×K Y for the fibre product over Spec(K). We will prove the lemma by
induction on dim(X) + dim(Y ). The lemma is trivial if dim(X) ≤ 0, since in this
case U is an open and closed subscheme of X. Choose a point z ∈ X ×K Y . We
will show the stalk at z is an isomorphism.
Suppose that z 7→ x ∈ X and assume trdegK(κ(x)) > 0. Set X ′ = Spec(OshX,x) and
denote U ′ ⊂ X ′ the inverse image of U . Consider the base change

Y ×K X ′

q′

��

Y ×K U ′
h′
oo

p′

��
X ′ U ′j′
oo

of our diagram by X ′ → X. Observe that X ′ → X is a filtered colimit of étale
morphisms. By smooth base change in the form of Lemma 59.89.3 the pullback of
q−1Rj∗F → Rh∗p

−1F to X ′ to Y ×K X ′ is the map (q′)−1Rj′
∗F ′ → Rj′

∗(p′)−1F ′

where F ′ is the pullback of F to U ′. (In this step it would suffice to use étale
base change which is an essentially trivial result.) So it suffices to show that

https://stacks.math.columbia.edu/tag/0F1G
https://stacks.math.columbia.edu/tag/0F1H
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(q′)−1Rj′
∗F ′ → Rj′

∗(p′)−1F ′ is an isomorphism in order to prove that our origi-
nal map is an isomorphism on stalks at z. By Lemma 59.95.5 there is a separably
closed field L/K such that X ′ = limXi with Xi affine of finite type over L and
dim(Xi) < dim(X). For i large enough there exists an open Ui ⊂ Xi restricting to
U ′ in X ′. We may apply the induction hypothesis to the diagram

Y ×K Xi

qi

��

Y ×K Ui
hi

oo

pi

��
Xi Ui

jioo

equal to

YL ×L Xi

qi

��

YL ×L Ui
hi

oo

pi

��
Xi Ui

jioo

over the field L and the pullback of F to these diagrams. By Lemma 59.86.3 we
conclude that the map (q′)−1Rj′

∗F ′ → Rj′
∗(p′)−1F is an isomorphism.

Suppose that z 7→ y ∈ Y and assume trdegK(κ(y)) > 0. Let Y ′ = Spec(OshX,x). By
Lemma 59.95.5 there is a separably closed field L/K such that Y ′ = limYi with Yi
affine of finite type over L and dim(Yi) < dim(Y ). In particular Y ′ is a scheme over
L. Denote with a subscript L the base change from schemes over K to schemes
over L. Consider the commutative diagrams

Y ′ ×K X

f

��

Y ′ ×K U
h′
oo

f ′

��
Y ×K X

q

��

Y ×K U
h

oo

p

��
X U

joo

and

Y ′ ×L XL

q′

��

Y ′ ×L UL
h′
oo

p′

��
XL

��

UL
jL

oo

��
X U

joo

and observe the top and bottom rows are the same on the left and the right. By
smooth base change we see that f−1Rh∗p

−1F = Rh′
∗(f ′)−1p−1F (similarly to the

previous paragraph). By smooth base change for Spec(L) → Spec(K) (Lemma
59.90.1) we see that RjL,∗FL is the pullback of Rj∗F to XL. Combining these two
observations, we conclude that it suffices to prove the base change map for the upper
square in the diagram on the right is an isomorphism in order to prove that our
original map is an isomorphism on stalks at z14. Then using that Y ′ = limYi and
argueing exactly as in the previous paragraph we see that the induction hypothesis
forces our map over Y ′ ×K X to be an isomorphism.
Thus any counter example with dim(X) + dim(Y ) minimal would only have noni-
somorphisms q−1Rj∗F → Rh∗p

−1F on stalks at closed points of X ×K Y (because
a point z of X ×K Y is a closed point if and only if both the image of z in X
and in Y are closed). Since it is enough to prove the isomorphism locally, we may
assume X and Y are affine. However, then we can choose an open dense immersion
Y → Y ′ with Y ′ projective. (Choose a closed immersion Y → An

K and let Y ′ be
the scheme theoretic closure of Y in Pn

K .) Then dim(Y ′) = dim(Y ) and hence we
get a “minimal” counter example with Y projective over K. In the next paragraph
we show that this can’t happen.
Consider a diagram as in the statement of the lemma such that q−1Rj∗F →
Rh∗p

−1F is an isomorphism at all non-closed points of X ×K Y and such that

14Here we use that a “vertical composition” of base change maps is a base change map as
explained in Cohomology on Sites, Remark 21.19.4.
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Y is projective. The restriction of the map to (X ×K Y )Ksep is the corresponding
map for the diagram of the lemma base changed to Ksep. Thus we may and do
assume K is separably algebraically closed. Choose a distinguished triangle

q−1Rj∗F → Rh∗p
−1F → Q→ (q−1Rj∗F)[1]

in D((X ×K Y )étale). Since Q is supported in closed points we see that it suffices
to prove Hi(X ×K Y,Q) = 0 for all i, see Lemma 59.97.4. Thus it suffices to prove
that q−1Rj∗F → Rh∗p

−1F induces an isomorphism on cohomology. Recall that F
is annihilated by n invertible in K. By the Künneth formula of Lemma 59.97.2 we
have

RΓ(X ×K Y, q−1Rj∗F) = RΓ(X,Rj∗F)⊗L
Z/nZ RΓ(Y,Z/nZ)

= RΓ(U,F)⊗L
Z/nZ RΓ(Y,Z/nZ)

and

RΓ(X ×K Y,Rh∗p
−1F) = RΓ(U ×K Y, p−1F) = RΓ(U,F)⊗L

Z/nZ RΓ(Y,Z/nZ)

This finishes the proof. □

Lemma 59.97.6.0F1I Let K be a field. For any commutative diagram

X

��

X ′oo

f ′

��

Y
h
oo

e

��
Spec(K) S′oo T

goo

of schemes over K with X ′ = X×Spec(K)S
′ and Y = X ′×S′ T and g quasi-compact

and quasi-separated, and every abelian sheaf F on Tétale whose stalks are torsion
of orders invertible in K the base change map

(f ′)−1Rg∗F −→ Rh∗e
−1F

is an isomorphism.

Proof. The question is local on X, hence we may assume X is affine. By Limits,
Lemma 32.7.2 we can write X = limXi as a cofiltered limit with affine transition
morphisms of schemes Xi of finite type over K. Denote X ′

i = Xi ×Spec(K) S
′

and Yi = X ′
i ×S′ T . By Lemma 59.86.3 it suffices to prove the statement for the

squares with corners Xi, Yi, Si, Ti. Thus we may assume X is of finite type over K.
Similarly, we may write F = colimF [n] where the colimit is over the multiplicative
system of integers invertible in K. The same lemma used above reduces us to the
case where F is a sheaf of Z/nZ-modules for some n invertible in K.

We may replace K by its algebraic closure K. Namely, formation of direct image
commutes with base change to K according to Lemma 59.90.1 (works for both g and
h). And it suffices to prove the agreement after restriction to X ′

K
. Next, we may

replace X by its reduction as we have the topological invariance of étale cohomology,
see Proposition 59.45.4. After this replacement the morphism X → Spec(K) is flat,
finite presentation, with geometrically reduced fibres and the same is true for any
base change, in particular for X ′ → S′. Hence (f ′)−1g∗F → Rh∗e

−1F is an
isomorphism by Lemma 59.87.2.

https://stacks.math.columbia.edu/tag/0F1I
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At this point we may apply Lemma 59.90.3 to see that it suffices to prove: given a
commutative diagram

X

f

��

X ′

��

oo Y
h

oo

��
Spec(K) S′oo Spec(L)oo

with both squares cartesian, where S′ is affine, integral, and normal with alge-
braically closed function field K, then Rqh∗(Z/dZ) is zero for q > 0 and d|n.
Observe that this vanishing is equivalent to the statement that

(f ′)−1Rq(Spec(L)→ S′)∗Z/dZ −→ Rqh∗Z/dZ
is an isomorphism, because the left hand side is zero for example by Lemma 59.80.5.
Write S′ = Spec(B) so that L is the fraction field of B. Write B =

⋃
i∈I Bi as the

union of its finite type K-subalgebras Bi. Let J be the set of pairs (i, g) where i ∈ I
and g ∈ Bi nonzero with ordering (i′, g′) ≥ (i, g) if and only if i′ ≥ i and g maps to
an invertible element of (Bi′)g′ . Then L = colim(i,g)∈J(Bi)g. For j = (i, g) ∈ J set
Sj = Spec(Bi) and Uj = Spec((Bi)g). Then

X ′

��

Y
h

oo

��
S′ Spec(L)oo

is the colimit of

X ×K Sj

��

X ×K Uj
hj

oo

��
Sj Ujoo

Thus we may apply Lemma 59.86.3 to see that it suffices to prove base change holds
in the diagrams on the right which is what we proved in Lemma 59.97.5. □

Lemma 59.97.7.0F1J Let K be a field. Let n ≥ 1 be invertible in K. Consider a
commutative diagram

X

��

X ′
p

oo

f ′

��

Y
h
oo

e

��
Spec(K) S′oo T

goo

of schemes with X ′ = X ×Spec(K) S
′ and Y = X ′ ×S′ T and g quasi-compact and

quasi-separated. The canonical map
p−1E ⊗L

Z/nZ (f ′)−1Rg∗F −→ Rh∗(h−1p−1E ⊗L
Z/nZ e

−1F )

is an isomorphism if E in D+(Xétale,Z/nZ) has tor amplitude in [a,∞] for some
a ∈ Z and F in D+(Tétale,Z/nZ).

Proof. This lemma is a generalization of Lemma 59.97.6 to objects of the derived
category; the assertion of our lemma is true because in Lemma 59.97.6 the scheme
X over K is arbitrary. We strongly urge the reader to skip the laborious proof
(alternative: read only the last paragraph).
We may represent E by a bounded below K-flat complex E• consisting of flat Z/nZ-
modules. See Cohomology on Sites, Lemma 21.46.4. Choose an integer b such that
Hi(F ) = 0 for i < b. Choose a large integer N and consider the short exact
sequence

0→ σ≥N+1E• → E• → σ≤NE• → 0

https://stacks.math.columbia.edu/tag/0F1J
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of stupid truncations. This produces a distinguished triangle E′′ → E → E′ →
E′′[1] in D(Xétale,Z/nZ). For fixed F both sides of the arrow in the statement of
the lemma are exact functors in E. Observe that

p−1E′′ ⊗L
Z/nZ (f ′)−1Rg∗F and Rh∗(h−1p−1E′′ ⊗L

Z/nZ e
−1F )

are sitting in degrees ≥ N + b. Hence, if we can prove the lemma for the object E′,
then we see that the lemma holds in degrees ≤ N + b and we will conclude. Some
details omitted. Thus we may assume E is represented by a bounded complex of
flat Z/nZ-modules. Doing another argument of the same nature, we may assume
E is given by a single flat Z/nZ-module E .

Next, we use the same arguments for the variable F to reduce to the case where F
is given by a single sheaf of Z/nZ-modules F . Say F is annihilated by an integer
m|n. If ℓ is a prime number dividing m and m > ℓ, then we can look at the short
exact sequence 0→ F [ℓ]→ F → F/F [ℓ]→ 0 and reduce to smaller m. This finally
reduces us to the case where F is annihilated by a prime number ℓ dividing n. In
this case observe that

p−1E ⊗L
Z/nZ (f ′)−1Rg∗F = p−1(E/ℓE)⊗L

Fℓ (f ′)−1Rg∗F

by the flatness of E . Similarly for the other term. This reduces us to the case where
we are working with sheaves of Fℓ-vector spaces which is discussed

Assume ℓ is a prime number invertible in K. Assume E , F are sheaves of Fℓ-vector
spaces on Xétale and Tétale. We want to show that

p−1E ⊗Fℓ (f ′)−1Rqg∗F −→ Rqh∗(h−1p−1E ⊗Fℓ e
−1F)

is an isomorphism for every q ≥ 0. This question is local on X hence we may
assume X is affine. We can write E as a filtered colimit of constructible sheaves
of Fℓ-vector spaces on Xétale, see Lemma 59.73.2. Since tensor products commute
with filtered colimits and since higher direct images do too (Lemma 59.51.7) we
may assume E is a constructible sheaf of Fℓ-vector spaces on Xétale. Then we can
choose an integer m and finite and finitely presented morphisms πi : Xi → X,
i = 1, . . . ,m such that there is an injective map

E →
⊕

i=1,...,m
πi,∗Fℓ

See Lemma 59.74.4. Observe that the direct sum is a constructible sheaf as well
(Lemma 59.73.9). Thus the cokernel is constructible too (Lemma 59.71.6). By
dimension shifting, i.e., induction on q, on the category of constructible sheaves
of Fℓ-vector spaces on Xétale, it suffices to prove the result for the sheaves πi,∗Fℓ
(details omitted; hint: start with proving injectivity for q = 0 for all constructible
E). To prove this case we extend the diagram of the lemma to

Xi

πi

��

X ′
ipi

oo

π′
i

��

Yi
hi

oo

ρi

��
X

��

X ′
p

oo

f ′

��

Y
h
oo

e

��
Spec(K) S′oo T

goo
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with all squares cartesian. In the equations below we are going to use that Rπi,∗ =
πi,∗ and similarly for π′

i, ρi, we are going to use the Leray spectral sequence, we
are going to use Lemma 59.55.3, and we are going to use Lemma 59.96.6 (although
this lemma is almost trivial for finite morphisms) for πi, π′

i, ρi. Doing so we see
that

p−1πi,∗Fℓ ⊗Fℓ (f ′)−1Rqg∗F = π′
i,∗Fℓ ⊗Fℓ (f ′)−1Rqg∗F

= π′
i,∗((π′

i)−1(f ′)−1Rqg∗F)

Similarly, we have

Rqh∗(h−1p−1πi,∗Fℓ ⊗Fℓ e
−1F) = Rqh∗(ρi,∗Fℓ ⊗Fℓ e

−1F)
= Rqh∗(ρ−1

i e−1F)
= π′

i,∗R
qhi,∗ρ

−1
i e−1F)

Simce Rqhi,∗ρ−1
i e−1F = (π′

i)−1(f ′)−1Rqg∗F by Lemma 59.97.6 we conclude. □

Lemma 59.97.8.0F1N Let K be a field. Let n ≥ 1 be invertible in K. Consider a
commutative diagram

X

��

X ′
p

oo

f ′

��

Y
h
oo

e

��
Spec(K) S′oo T

goo

of schemes of finite type over K with X ′ = X ×Spec(K) S
′ and Y = X ′ ×S′ T . The

canonical map

p−1E ⊗L
Z/nZ (f ′)−1Rg∗F −→ Rh∗(h−1p−1E ⊗L

Z/nZ e
−1F )

is an isomorphism for E in D(Xétale,Z/nZ) and F in D(Tétale,Z/nZ).

Proof. We will reduce this to Lemma 59.97.7 using that our functors commute
with direct sums. We suggest the reader skip the proof. Recall that derived tensor
product commutes with direct sums. Recall that (derived) pullback commutes with
direct sums. Recall that Rh∗ and Rg∗ commute with direct sums, see Lemmas
59.96.2 and 59.96.3 (this is where we use our schemes are of finite type over K).

To finish the proof we can argue as follows. First we write E = hocolimτ≤NE. Since
our functors commute with direct sums, they commute with homotopy colimits.
Hence it suffices to prove the lemma for E bounded above. Similarly for F we may
assume F is bounded above. Then we can represent E by a bounded above complex
E• of sheaves of Z/nZ-modules. Then

E• = colim σ≥−NE•

(stupid truncations). Thus we may assume E• is a bounded complex of sheaves of
Z/nZ-modules. For F we choose a bounded above complex of flat(!) sheaves of
Z/nZ-modules. Then we reduce to the case where F is represented by a bounded
complex of flat sheaves of Z/nZ-modules. At this point Lemma 59.97.7 kicks in
and we conclude. □

https://stacks.math.columbia.edu/tag/0F1N
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Lemma 59.97.9.0F1P Let k be a separably closed field. Let X and Y be finite type
schemes over k. Let n ≥ 1 be an integer invertible in k. Then for E ∈ D(Xétale,Z/nZ)
and K ∈ D(Yétale,Z/nZ) we have

RΓ(X ×Spec(k) Y, pr−1
1 E ⊗L

Z/nZ pr−1
2 K) = RΓ(X,E)⊗L

Z/nZ RΓ(Y,K)

Proof. By Lemma 59.97.8 we have

Rpr1,∗(pr−1
1 E ⊗L

Z/nZ pr−1
2 K) = E ⊗L

Z/nZ RΓ(Y,K)

We conclude by Lemma 59.96.5 which we may use because cd(X) <∞ by Lemma
59.96.2. □

59.98. Comparing chaotic and Zariski topologies

0F1K When constructing the structure sheaf of an affine scheme, we first construct the
values on affine opens, and then we extend to all opens. A similar construction is
often useful for constructing complexes of abelian groups on a scheme X. Recall
that Xaffine,Zar denotes the category of affine opens of X with topology given
by standard Zariski coverings, see Topologies, Definition 34.3.7. We remind the
reader that the topos of Xaffine,Zar is the small Zariski topos of X, see Topologies,
Lemma 34.3.11. In this section we denote Xaffine the same underlying category
with the chaotic topology, i.e., such that sheaves agree with presheaves. We obtain
a morphisms of sites

ϵ : Xaffine,Zar −→ Xaffine

as in Cohomology on Sites, Section 21.27.

Lemma 59.98.1.0F1L In the situation above let K be an object of D+(Xaffine). Then
K is in the essential image of the (fully faithful) functor Rϵ∗;D(Xaffine,Zar) →
D(Xaffine) if and only if the following two conditions hold

(1) RΓ(∅,K) is zero in D(Ab), and
(2) if U = V ∪W with U, V,W ⊂ X affine open and V,W ⊂ U standard open

(Algebra, Definition 10.17.3), then the map cKU,V,W,V ∩W of Cohomology
on Sites, Lemma 21.26.1 is a quasi-isomorphism.

Proof. (The functor Rϵ∗ is fully faithful by the discussion in Cohomology on Sites,
Section 21.27.) Except for a snafu having to do with the empty set, this follows
from the very general Cohomology on Sites, Lemma 21.29.2 whose hypotheses hold
by Schemes, Lemma 26.11.7 and Cohomology on Sites, Lemma 21.29.3.

To get around the snafu, denote Xaffine,almost−chaotic the site where the empty
object ∅ has two coverings, namely, {∅ → ∅} and the empty covering (see Sites,
Example 7.6.4 for a discussion). Then we have morphisms of sites

Xaffine,Zar → Xaffine,almost−chaotic → Xaffine

The argument above works for the first arrow. Then we leave it to the reader to
see that an object K of D+(Xaffine) is in the essential image of the (fully faithful)
functor D(Xaffine,almost−chaotic) → D(Xaffine) if and only if RΓ(∅,K) is zero in
D(Ab). □

https://stacks.math.columbia.edu/tag/0F1P
https://stacks.math.columbia.edu/tag/0F1L
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59.99. Comparing big and small topoi

0757 Let S be a scheme. In Topologies, Lemma 34.4.14 we have introduced comparison
morphisms πS : (Sch/S)étale → Sétale and iS : Sh(Sétale) → Sh((Sch/S)étale)
with πS ◦ iS = id and πS,∗ = i−1

S . More generally, if f : T → S is an object of
(Sch/S)étale, then there is a morphism if : Sh(Tétale)→ Sh((Sch/S)étale) such that
fsmall = πS ◦ if , see Topologies, Lemmas 34.4.13 and 34.4.17. In Descent, Remark
35.8.4 we have extended these to a morphism of ringed sites

πS : ((Sch/S)étale,O)→ (Sétale,OS)

and morphisms of ringed topoi

iS : (Sh(Sétale),OS)→ (Sh((Sch/S)étale),O)

and

if : (Sh(Tétale),OT )→ (Sh((Sch/S)étale,O))

Note that the restriction i−1
S = πS,∗ (see Topologies, Definition 34.4.15) transforms

O into OS . Similarly, i−1
f transforms O into OT . See Descent, Remark 35.8.4.

Hence i∗SF = i−1
S F and i∗fF = i−1

f F for any O-module F on (Sch/S)étale. In
particular i∗S and i∗f are exact functors. The functor i∗S is often denoted F 7→ F|Sétale
(and this does not conflict with the notation in Topologies, Definition 34.4.15).

Lemma 59.99.1.0758 Let S be a scheme. Let T be an object of (Sch/S)étale.
(1) If I is injective in Ab((Sch/S)étale), then

(a) i−1
f I is injective in Ab(Tétale),

(b) I|Sétale is injective in Ab(Sétale),
(2) If I• is a K-injective complex in Ab((Sch/S)étale), then

(a) i−1
f I• is a K-injective complex in Ab(Tétale),

(b) I•|Sétale is a K-injective complex in Ab(Sétale),
The corresponding statements for modules do not hold.

Proof. Parts (1)(b) and (2)(b) follow formally from the fact that the restriction
functor πS,∗ = i−1

S is a right adjoint of the exact functor π−1
S , see Homology,

Lemma 12.29.1 and Derived Categories, Lemma 13.31.9.

Parts (1)(a) and (2)(a) can be seen in two ways. First proof: We can use that i−1
f is

a right adjoint of the exact functor if,!. This functor is constructed in Topologies,
Lemma 34.4.13 for sheaves of sets and for abelian sheaves in Modules on Sites,
Lemma 18.16.2. It is shown in Modules on Sites, Lemma 18.16.3 that it is exact.
Second proof. We can use that if = iT ◦ fbig as is shown in Topologies, Lemma
34.4.17. Since fbig is a localization, we see that pullback by it preserves injectives
and K-injectives, see Cohomology on Sites, Lemmas 21.7.1 and 21.20.1. Then we
apply the already proved parts (1)(b) and (2)(b) to the functor i−1

T to conclude.

Let S = Spec(Z) and consider the map 2 : OS → OS . This is an injective map
of OS-modules on Sétale. However, the pullback π∗

S(2) : O → O is not injective
as we see by evaluating on Spec(F2). Now choose an injection α : O → I into an

https://stacks.math.columbia.edu/tag/0758
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injective O-module I on (Sch/S)étale. Then consider the diagram

OS

2
��

α|Sétale
// I|Sétale

OS

77

Then the dotted arrow cannot exist in the category of OS-modules because it would
mean (by adjunction) that the injective map α factors through the noninjective map
π∗
S(2) which cannot be the case. Thus I|Sétale is not an injective OS-module. □

Let f : T → S be a morphism of schemes. The commutative diagram of Topologies,
Lemma 34.4.17 (3) leads to a commutative diagram of ringed sites

(Tétale,OT )

fsmall

��

((Sch/T )étale,O)

fbig

��

πT
oo

(Sétale,OS) ((Sch/S)étale,O)πSoo

as one easily sees by writing out the definitions of f ♯small, f
♯
big, π

♯
S , and π♯T . In

particular this means that

(59.99.1.1)0759 (fbig,∗F)|Sétale = fsmall,∗(F|Tétale)

for any sheaf F on (Sch/T )étale and if F is a sheaf of O-modules, then (59.99.1.1)
is an isomorphism of OS-modules on Sétale.

Lemma 59.99.2.075A Let f : T → S be a morphism of schemes.
(1) For K in D((Sch/T )étale) we have (Rfbig,∗K)|Sétale = Rfsmall,∗(K|Tétale)

in D(Sétale).
(2) ForK inD((Sch/T )étale,O) we have (Rfbig,∗K)|Sétale = Rfsmall,∗(K|Tétale)

in D(Mod(Sétale,OS)).
More generally, let g : S′ → S be an object of (Sch/S)étale. Consider the fibre
product

T ′
g′
//

f ′

��

T

f

��
S′ g // S

Then
(3) For K in D((Sch/T )étale) we have i−1

g (Rfbig,∗K) = Rf ′
small,∗(i−1

g′ K) in
D(S′

étale).
(4) For K in D((Sch/T )étale,O) we have i∗g(Rfbig,∗K) = Rf ′

small,∗(i∗g′K) in
D(Mod(S′

étale,OS′)).
(5) For K in D((Sch/T )étale) we have g−1

big(Rfbig,∗K) = Rf ′
big,∗((g′

big)−1K) in
D((Sch/S′)étale).

(6) For K in D((Sch/T )étale,O) we have g∗
big(Rfbig,∗K) = Rf ′

big,∗((g′
big)∗K)

in D(Mod(S′
étale,OS′)).

Proof. Part (1) follows from Lemma 59.99.1 and (59.99.1.1) on choosing a K-
injective complex of abelian sheaves representing K.

https://stacks.math.columbia.edu/tag/075A
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Part (3) follows from Lemma 59.99.1 and Topologies, Lemma 34.4.19 on choosing
a K-injective complex of abelian sheaves representing K.
Part (5) is Cohomology on Sites, Lemma 21.21.1.
Part (6) is Cohomology on Sites, Lemma 21.21.2.
Part (2) can be proved as follows. Above we have seen that πS ◦ fbig = fsmall ◦ πT
as morphisms of ringed sites. Hence we obtain RπS,∗ ◦Rfbig,∗ = Rfsmall,∗ ◦RπT,∗
by Cohomology on Sites, Lemma 21.19.2. Since the restriction functors πS,∗ and
πT,∗ are exact, we conclude.
Part (4) follows from part (6) and part (2) applied to f ′ : T ′ → S′. □

Let S be a scheme and let H be an abelian sheaf on (Sch/S)étale. Recall that
Hn
étale(U,H) denotes the cohomology of H over an object U of (Sch/S)étale.

Lemma 59.99.3.0DDH Let f : T → S be a morphism of schemes. Then
(1) For K in D(Sétale) we have Hn

étale(S, π
−1
S K) = Hn(Sétale,K).

(2) For K in D(Sétale,OS) we have Hn
étale(S,Lπ∗

SK) = Hn(Sétale,K).
(3) For K in D(Sétale) we have Hn

étale(T, π
−1
S K) = Hn(Tétale, f−1

smallK).
(4) For K in D(Sétale,OS) we have Hn

étale(T, Lπ∗
SK) = Hn(Tétale, Lf∗

smallK).
(5) For M in D((Sch/S)étale) we have Hn

étale(T,M) = Hn(Tétale, i−1
f M).

(6) For M in D((Sch/S)étale,O) we have Hn
étale(T,M) = Hn(Tétale, i∗fM).

Proof. To prove (5) represent M by a K-injective complex of abelian sheaves and
apply Lemma 59.99.1 and work out the definitions. Part (3) follows from this as
i−1
f π−1

S = f−1
small. Part (1) is a special case of (3).

Part (6) follows from the very general Cohomology on Sites, Lemma 21.37.5. Then
part (4) follows because Lf∗

small = i∗f ◦ Lπ∗
S . Part (2) is a special case of (4). □

Lemma 59.99.4.0DDI Let S be a scheme. For K ∈ D(Sétale) the map

K −→ RπS,∗π
−1
S K

is an isomorphism.

Proof. This is true because both π−1
S and πS,∗ = i−1

S are exact functors and the
composition πS,∗ ◦ π−1

S is the identity functor. □

Lemma 59.99.5.0DDJ Let f : T → S be a proper morphism of schemes. Then we have
(1) π−1

S ◦ fsmall,∗ = fbig,∗ ◦ π−1
T as functors Sh(Tétale)→ Sh((Sch/S)étale),

(2) π−1
S Rfsmall,∗K = Rfbig,∗π

−1
T K for K in D+(Tétale) whose cohomology

sheaves are torsion,
(3) π−1

S Rfsmall,∗K = Rfbig,∗π
−1
T K for K in D(Tétale,Z/nZ), and

(4) π−1
S Rfsmall,∗K = Rfbig,∗π

−1
T K for all K in D(Tétale) if f is finite.

Proof. Proof of (1). Let F be a sheaf on Tétale. Let g : S′ → S be an object of
(Sch/S)étale. Consider the fibre product

T ′
f ′
//

g′

��

S′

g

��
T

f // S

https://stacks.math.columbia.edu/tag/0DDH
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Then we have
(fbig,∗π−1

T F)(S′) = (π−1
T F)(T ′) = ((g′

small)−1F)(T ′) = (f ′
small,∗(g′

small)−1F)(S′)
the second equality by Lemma 59.39.2. On the other hand

(π−1
S fsmall,∗F)(S′) = (g−1

smallfsmall,∗F)(S′)
again by Lemma 59.39.2. Hence by proper base change for sheaves of sets (Lemma
59.91.5) we conclude the two sets are canonically isomorphic. The isomorphism is
compatible with restriction mappings and defines an isomorphism π−1

S fsmall,∗F =
fbig,∗π

−1
T F . Thus an isomorphism of functors π−1

S ◦ fsmall,∗ = fbig,∗ ◦ π−1
T .

Proof of (2). There is a canonical base change map π−1
S Rfsmall,∗K → Rfbig,∗π

−1
T K

for any K in D(Tétale), see Cohomology on Sites, Remark 21.19.3. To prove it
is an isomorphism, it suffices to prove the pull back of the base change map by
ig : Sh(S′

étale) → Sh((Sch/S)étale) is an isomorphism for any object g : S′ → S of
(Sch/S)étale. Let T ′, g′, f ′ be as in the previous paragraph. The pullback of the
base change map is

g−1
smallRfsmall,∗K = i−1

g π−1
S Rfsmall,∗K

→ i−1
g Rfbig,∗π

−1
T K

= Rf ′
small,∗(i−1

g′ π
−1
T K)

= Rf ′
small,∗((g′

small)−1K)
where we have used πS◦ig = gsmall, πT ◦ig′ = g′

small, and Lemma 59.99.2. This map
is an isomorphism by the proper base change theorem (Lemma 59.91.12) provided
K is bounded below and the cohomology sheaves of K are torsion.
The proof of part (3) is the same as the proof of part (2), except we use Lemma
59.92.3 instead of Lemma 59.91.12.
Proof of (4). If f is finite, then the functors fsmall,∗ and fbig,∗ are exact. This
follows from Proposition 59.55.2 for fsmall. Since any base change f ′ of f is finite
too, we conclude from Lemma 59.99.2 part (3) that fbig,∗ is exact too (as the higher
derived functors are zero). Thus this case follows from part (1). □

59.100. Comparing fppf and étale topologies

0DDK A model for this section is the section on the comparison of the usual topology and
the qc topology on locally compact topological spaces as discussed in Cohomology
on Sites, Section 21.31. We first review some material from Topologies, Sections
34.11 and 34.4.
Let S be a scheme and let (Sch/S)fppf be an fppf site. On the same underlying
category we have a second topology, namely the étale topology, and hence a second
site (Sch/S)étale. The identity functor (Sch/S)étale → (Sch/S)fppf is continuous
and defines a morphism of sites

ϵS : (Sch/S)fppf −→ (Sch/S)étale
See Cohomology on Sites, Section 21.27. Please note that ϵS,∗ is the identity func-
tor on underlying presheaves and that ϵ−1

S associates to an étale sheaf the fppf
sheafification. Let Sétale be the small étale site. There is a morphism of sites

πS : (Sch/S)étale −→ Sétale
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given by the continuous functor Sétale → (Sch/S)étale, U 7→ U . Namely, Sétale has
fibre products and a final object and the functor above commutes with these and
Sites, Proposition 7.14.7 applies.

Lemma 59.100.1.0DDL With notation as above. Let F be a sheaf on Sétale. The rule

(Sch/S)fppf −→ Sets, (f : X → S) 7−→ Γ(X, f−1
smallF)

is a sheaf and a fortiori a sheaf on (Sch/S)étale. In fact this sheaf is equal to π−1
S F

on (Sch/S)étale and ϵ−1
S π−1

S F on (Sch/S)fppf .

Proof. The statement about the étale topology is the content of Lemma 59.39.2.
To finish the proof it suffices to show that π−1

S F is a sheaf for the fppf topology.
This is shown in Lemma 59.39.2 as well. □

In the situation of Lemma 59.100.1 the composition of ϵS and πS and the equality
determine a morphism of sites

aS : (Sch/S)fppf −→ Sétale

Lemma 59.100.2.0DDM With notation as above. Let f : X → Y be a morphism of
(Sch/S)fppf . Then there are commutative diagrams of topoi

Sh((Sch/X)fppf )
fbig,fppf

//

ϵX

��

Sh((Sch/Y )fppf )

ϵY

��
Sh((Sch/X)étale)

fbig,étale // Sh((Sch/Y )étale)

and
Sh((Sch/X)fppf )

fbig,fppf

//

aX

��

Sh((Sch/Y )fppf )

aY

��
Sh(Xétale)

fsmall // Sh(Yétale)
with aX = πX ◦ ϵX and aY = πX ◦ ϵX .

Proof. The commutativity of the diagrams follows from the discussion in Topolo-
gies, Section 34.11. □

Lemma 59.100.3.0DDN In Lemma 59.100.2 if f is proper, then we have a−1
Y ◦ fsmall,∗ =

fbig,fppf,∗ ◦ a−1
X .

Proof. You can prove this by repeating the proof of Lemma 59.99.5 part (1); we
will instead deduce the result from this. As ϵY,∗ is the identity functor on un-
derlying presheaves, it reflects isomorphisms. The description in Lemma 59.100.1
shows that ϵY,∗ ◦ a−1

Y = π−1
Y and similarly for X. To show that the canonical map

a−1
Y fsmall,∗F → fbig,fppf,∗a

−1
X F is an isomorphism, it suffices to show that

π−1
Y fsmall,∗F = ϵY,∗a

−1
Y fsmall,∗F

→ ϵY,∗fbig,fppf,∗a
−1
X F

= fbig,étale,∗ϵX,∗a
−1
X F

= fbig,étale,∗π
−1
X F

is an isomorphism. This is part (1) of Lemma 59.99.5. □

https://stacks.math.columbia.edu/tag/0DDL
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Lemma 59.100.4.0DEU In Lemma 59.100.2 assume f is flat, locally of finite presentation,
and surjective. Then the functor

Sh(Yétale) −→
{

(G,H, α)
∣∣∣∣G ∈ Sh(Xétale), H ∈ Sh((Sch/Y )fppf ),
α : a−1

X G → f−1
big,fppfH an isomorphism

}
sending F to (f−1

smallF , a
−1
Y F , can) is an equivalence.

Proof. The functor a−1
X is fully faithful (as aX,∗a−1

X = id by Lemma 59.100.1).
Hence the forgetful functor (G,H, α) 7→ H identifies the category of triples with a
full subcategory of Sh((Sch/Y )fppf ). Moreover, the functor a−1

Y is fully faithful,
hence the functor in the lemma is fully faithful as well.
Suppose that we have an étale covering {Yi → Y }. Let fi : Xi → Yi be the base
change of f . Denote fij = fi × fj : Xi ×X Xj → Yi ×Y Yj . Claim: if the lemma is
true for fi and fij for all i, j, then the lemma is true for f . To see this, note that the
given étale covering determines an étale covering of the final object in each of the
four sites Yétale, Xétale, (Sch/Y )fppf , (Sch/X)fppf . Thus the category of sheaves is
equivalent to the category of glueing data for this covering (Sites, Lemma 7.26.5)
in each of the four cases. A huge commutative diagram of categories then finishes
the proof of the claim. We omit the details. The claim shows that we may work
étale locally on Y .
Note that {X → Y } is an fppf covering. Working étale locally on Y , we may assume
there exists a morphism s : X ′ → X such that the composition f ′ = f ◦ s : X ′ → Y
is surjective finite locally free, see More on Morphisms, Lemma 37.48.1. Claim: if
the lemma is true for f ′, then it is true for f . Namely, given a triple (G,H, α) for
f , we can pullback by s to get a triple (s−1

smallG,H, s
−1
big,fppfα) for f ′. A solution for

this triple gives a sheaf F on Yétale with a−1
Y F = H. By the first paragraph of the

proof this means the triple is in the essential image. This reduces us to the case
described in the next paragraph.
Assume f is surjective finite locally free. Let (G,H, α) be a triple. In this case
consider the triple

(G1,H1, α1) = (f−1
smallfsmall,∗G, fbig,fppf,∗f

−1
big,fppfH, α1)

where α1 comes from the identifications
a−1
X f−1

smallfsmall,∗G = f−1
big,fppfa

−1
Y fsmall,∗G

= f−1
big,fppffbig,fppf,∗a

−1
X G

→ f−1
big,fppffbig,fppf,∗f

−1
big,fppfH

where the third equality is Lemma 59.100.3 and the arrow is given by α. This triple
is in the image of our functor because F1 = fsmall,∗F is a solution (to see this use
Lemma 59.100.3 again; details omitted). There is a canonical map of triples

(G,H, α)→ (G1,H1, α1)
which uses the unit id → fbig,fppf,∗f

−1
big,fppf on the second entry (it is enough to

prescribe morphisms on the second entry by the first paragraph of the proof). Since
{f : X → Y } is an fppf covering the map H → H1 is injective (details omitted).
Set

G2 = G1 ⨿G G1 H2 = H1 ⨿H H1

https://stacks.math.columbia.edu/tag/0DEU
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and let α2 be the induced isomorphism (pullback functors are exact, so this makes
sense). Then H is the equalizer of the two maps H1 → H2. Repeating the argu-
ments above for the triple (G2,H2, α2) we find an injective morphism of triples

(G2,H2, α2)→ (G3,H3, α3)
such that this last triple is in the image of our functor. Say it corresponds to F3
in Sh(Yétale). By fully faithfulness we obtain two maps F1 → F3 and we can let F
be the equalizer of these two maps. By exactness of the pullback functors involved
we find that a−1

Y F = H as desired. □

Lemma 59.100.5.0F0H Consider the comparison morphism ϵ : (Sch/S)fppf → (Sch/S)étale.
Let P denote the class of finite morphisms of schemes. For X in (Sch/S)étale de-
note A′

X ⊂ Ab((Sch/X)étale) the full subcategory consisting of sheaves of the form
π−1
X F with F in Ab(Xétale). Then Cohomology on Sites, Properties (1), (2), (3),

(4), and (5) of Cohomology on Sites, Situation 21.30.1 hold.

Proof. We first show that A′
X ⊂ Ab((Sch/X)étale) is a weak Serre subcategory by

checking conditions (1), (2), (3), and (4) of Homology, Lemma 12.10.3. Parts
(1), (2), (3) are immediate as π−1

X is exact and fully faithful for example by
Lemma 59.99.4. If 0 → π−1

X F → G → π−1
X F ′ → 0 is a short exact sequence in

Ab((Sch/X)étale) then 0 → F → πX,∗G → F ′ → 0 is exact by Lemma 59.99.4.
Hence G = π−1

X πX,∗G is in A′
X which checks the final condition.

Cohomology on Sites, Property (1) holds by the existence of fibre products of
schemes and the fact that the base change of a finite morphism of schemes is a
finite morphism of schemes, see Morphisms, Lemma 29.44.6.
Cohomology on Sites, Property (2) follows from the commutative diagram (3) in
Topologies, Lemma 34.4.17.
Cohomology on Sites, Property (3) is Lemma 59.100.1.
Cohomology on Sites, Property (4) holds by Lemma 59.99.5 part (4).
Cohomology on Sites, Property (5) is implied by More on Morphisms, Lemma
37.48.1. □

Lemma 59.100.6.0DDS With notation as above.
(1) For X ∈ Ob((Sch/S)fppf ) and an abelian sheaf F on Xétale we have

ϵX,∗a
−1
X F = π−1

X F and RiϵX,∗(a−1
X F) = 0 for i > 0.

(2) For a finite morphism f : X → Y in (Sch/S)fppf and abelian sheaf F on
X we have a−1

Y (Rifsmall,∗F) = Rifbig,fppf,∗(a−1
X F) for all i.

(3) For a scheme X and K in D+(Xétale) the map π−1
X K → RϵX,∗(a−1

X K) is
an isomorphism.

(4) For a finite morphism f : X → Y of schemes and K in D+(Xétale) we
have a−1

Y (Rfsmall,∗K) = Rfbig,fppf,∗(a−1
X K).

(5) For a proper morphism f : X → Y of schemes and K in D+(Xétale) with
torsion cohomology sheaves we have a−1

Y (Rfsmall,∗K) = Rfbig,fppf,∗(a−1
X K).

Proof. By Lemma 59.100.5 the lemmas in Cohomology on Sites, Section 21.30 all
apply to our current setting. To translate the results observe that the category AX
of Cohomology on Sites, Lemma 21.30.2 is the essential image of a−1

X : Ab(Xétale)→
Ab((Sch/X)fppf ).

https://stacks.math.columbia.edu/tag/0F0H
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Part (1) is equivalent to (Vn) for all n which holds by Cohomology on Sites, Lemma
21.30.8.

Part (2) follows by applying ϵ−1
Y to the conclusion of Cohomology on Sites, Lemma

21.30.3.

Part (3) follows from Cohomology on Sites, Lemma 21.30.8 part (1) because π−1
X K

is in D+
A′
X

((Sch/X)étale) and a−1
X = ϵ−1

X ◦ a
−1
X .

Part (4) follows from Cohomology on Sites, Lemma 21.30.8 part (2) for the same
reason.

Part (5). We use that

RϵY,∗Rfbig,fppf,∗a
−1
X K = Rfbig,étale,∗RϵX,∗a

−1
X K

= Rfbig,étale,∗π
−1
X K

= π−1
Y Rfsmall,∗K

= RϵY,∗a
−1
Y Rfsmall,∗K

The first equality by the commutative diagram in Lemma 59.100.2 and Cohomology
on Sites, Lemma 21.19.2. The second equality is (3). The third is Lemma 59.99.5
part (2). The fourth is (3) again. Thus the base change map a−1

Y (Rfsmall,∗K) →
Rfbig,fppf,∗(a−1

X K) induces an isomorphism

RϵY,∗a
−1
Y Rfsmall,∗K → RϵY,∗Rfbig,fppf,∗a

−1
X K

The proof is finished by the following remark: a map α : a−1
Y L → M with L in

D+(Yétale) and M in D+((Sch/Y )fppf ) such that RϵY,∗α is an isomorphism, is an
isomorphism. Namely, we show by induction on i that Hi(α) is an isomorphism.
This is true for all sufficiently small i. If it holds for i ≤ i0, then we see that
RjϵY,∗H

i(M) = 0 for j > 0 and i ≤ i0 by (1) because Hi(M) = a−1
Y Hi(L) in this

range. Hence ϵY,∗Hi0+1(M) = Hi0+1(RϵY,∗M) by a spectral sequence argument.
Thus ϵY,∗Hi0+1(M) = π−1

Y Hi0+1(L) = ϵY,∗a
−1
Y Hi0+1(L). This implies Hi0+1(α) is

an isomorphism (because ϵY,∗ reflects isomorphisms as it is the identity on under-
lying presheaves) as desired. □

Lemma 59.100.7.0DDT Let X be a scheme. For K ∈ D+(Xétale) the map

K −→ RaX,∗a
−1
X K

is an isomorphism with aX : Sh((Sch/X)fppf )→ Sh(Xétale) as above.

Proof. We first reduce the statement to the case where K is given by a single
abelian sheaf. Namely, represent K by a bounded below complex F•. By the case
of a sheaf we see that Fn = aX,∗a

−1
X Fn and that the sheaves RqaX,∗a−1

X Fn are
zero for q > 0. By Leray’s acyclicity lemma (Derived Categories, Lemma 13.16.7)
applied to a−1

X F• and the functor aX,∗ we conclude. From now on assume K = F .

By Lemma 59.100.1 we have aX,∗a−1
X F = F . Thus it suffices to show thatRqaX,∗a−1

X F =
0 for q > 0. For this we can use aX = ϵX ◦ πX and the Leray spectral se-
quence (Cohomology on Sites, Lemma 21.14.7). By Lemma 59.100.6 we have
RiϵX,∗(a−1

X F) = 0 for i > 0 and ϵX,∗a
−1
X F = π−1

X F . By Lemma 59.99.4 we have
RjπX,∗(π−1

X F) = 0 for j > 0. This concludes the proof. □

https://stacks.math.columbia.edu/tag/0DDT
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Lemma 59.100.8.0DDU For a scheme X and aX : Sh((Sch/X)fppf ) → Sh(Xétale) as
above:

(1) Hq(Xétale,F) = Hq
fppf (X, a−1

X F) for an abelian sheaf F on Xétale,
(2) Hq(Xétale,K) = Hq

fppf (X, a−1
X K) for K ∈ D+(Xétale).

Example: if A is an abelian group, then Hq
étale(X,A) = Hq

fppf (X,A).
Proof. This follows from Lemma 59.100.7 by Cohomology on Sites, Remark 21.14.4.

□

59.101. Comparing fppf and étale topologies: modules

0DEV We continue the discussion in Section 59.100 but in this section we briefly discuss
what happens for sheaves of modules.
Let S be a scheme. The morphisms of sites ϵS , πS , and their composition aS
introduced in Section 59.100 have natural enhancements to morphisms of ringed
sites. The first is written as

ϵS : ((Sch/S)fppf ,O) −→ ((Sch/S)étale,O)
Note that we can use the same symbol for the structure sheaf as indeed the sheaves
have the same underlying presheaf. The second is

πS : ((Sch/S)étale,O) −→ (Sétale,OS)
The third is the morphism

aS : ((Sch/S)fppf ,O) −→ (Sétale,OS)
We already know that the category of quasi-coherent modules on the scheme S is
the same as the category of quasi-coherent modules on (Sétale,OS), see Descent,
Proposition 35.8.9. Since we are interested in stating a comparison between étale
and fppf cohomology, we will in the rest of this section think of quasi-coherent
sheaves in terms of the small étale site. Let us review what we already know about
quasi-coherent modules on these sites.
Lemma 59.101.1.0DEW Let S be a scheme. Let F be a quasi-coherent OS-module on
Sétale.

(1) The rule
Fa : (Sch/S)étale −→ Ab, (f : T → S) 7−→ Γ(T, f∗

smallF)
satisfies the sheaf condition for fppf and a fortiori étale coverings,

(2) Fa = π∗
SF on (Sch/S)étale,

(3) Fa = a∗
SF on (Sch/S)fppf ,

(4) the rule F 7→ Fa defines an equivalence between quasi-coherent OS-
modules and quasi-coherent modules on ((Sch/S)étale,O),

(5) the rule F 7→ Fa defines an equivalence between quasi-coherent OS-
modules and quasi-coherent modules on ((Sch/S)fppf ,O),

(6) we have ϵS,∗a∗
SF = π∗

SF and aS,∗a
∗
SF = F ,

(7) we have RiϵS,∗(a∗
SF) = 0 and RiaS,∗(a∗

SF) = 0 for i > 0.
Proof. We urge the reader to find their own proof of these results based on the
material in Descent, Sections 35.8, 35.9, and 35.10.
We first explain why the notation in this lemma is consistent with our earlier use of
the notation Fa in Sections 59.17 and 59.22 and in Descent, Section 35.8. Namely,

https://stacks.math.columbia.edu/tag/0DDU
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we know by Descent, Proposition 35.8.9 that there exists a quasi-coherent module
F0 on the scheme S (in other words on the small Zariski site) such that F is the
restriction of the rule

Fa0 : (Sch/S)étale −→ Ab, (f : T → S) 7−→ Γ(T, f∗F)
to the subcategory Sétale ⊂ (Sch/S)étale where here f∗ denotes usual pullback of
sheaves of modules on schemes. Since Fa0 is pullback by the morphism of ringed
sites

((Sch/S)étale,O) −→ (SZar,OSZar )
by Descent, Remark 35.8.6 it follows immediately (from composition of pullbacks)
that Fa = Fa0 . This proves the sheaf property even for fpqc coverings by Descent,
Lemma 35.8.1 (see also Proposition 59.17.1). Then (2) and (3) follow again by
Descent, Remark 35.8.6 and (4) and (5) follow from Descent, Proposition 35.8.9
(see also the meta result Theorem 59.17.4).
Part (6) is immediate from the description of the sheaf Fa = π∗

SF = a∗
SF .

For any abelian H on (Sch/S)fppf the higher direct image RpϵS,∗H is the sheaf
associated to the presheaf U 7→ Hp

fppf (U,H) on (Sch/S)étale. See Cohomology on
Sites, Lemma 21.7.4. Hence to prove RpϵS,∗a

∗
SF = RpϵS,∗Fa = 0 for p > 0 it

suffices to show that any scheme U over S has an étale covering {Ui → U}i∈I such
that Hp

fppf (Ui,Fa) = 0 for p > 0. If we take an open covering by affines, then
the required vanishing follows from comparison with usual cohomology (Descent,
Proposition 35.9.3 or Theorem 59.22.4) and the vanishing of cohomology of quasi-
coherent sheaves on affine schemes afforded by Cohomology of Schemes, Lemma
30.2.2.
To show that RpaS,∗a−1

S F = RpaS,∗Fa = 0 for p > 0 we argue in exactly the same
manner. This finishes the proof. □

Lemma 59.101.2.0DEX Let S be a scheme. For F a quasi-coherent OS-module on Sétale
the maps

π∗
SF −→ RϵS,∗(a∗

SF) and F −→ RaS,∗(a∗
SF)

are isomorphisms with aS : Sh((Sch/S)fppf )→ Sh(Sétale) as above.

Proof. This is an immediate consequence of parts (6) and (7) of Lemma 59.101.1.
□

Lemma 59.101.3.0H0U Let S = Spec(A) be an affine scheme. Let M• be a complex of
A-modules. Consider the complex F• of presheaves of O-modules on (Aff/S)fppf
given by the rule

(U/S) = (Spec(B)/ Spec(A)) 7−→M• ⊗A B
Then this is a complex of modules and the canonical map

M• −→ RΓ((Aff/S)fppf ,F•)
is a quasi-isomorphism.

Proof. Each Fn is a sheaf of modules as it agrees with the restriction of the module
Gn = (M̃n)a of Lemma 59.101.1 to (Aff/S)fppf ⊂ (Sch/S)fppf . Since this inclusion
defines an equivalence of ringed topoi (Topologies, Lemma 34.7.11), we have

RΓ((Aff/S)fppf ,F•) = RΓ((Sch/S)fppf ,G•)

https://stacks.math.columbia.edu/tag/0DEX
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We observe that M• = RΓ(S, M̃•) for example by Derived Categories of Schemes,
Lemma 36.3.5. Hence we are trying to show the comparison map

RΓ(S, M̃•) −→ RΓ((Sch/S)fppf , (M̃•)a)

is an isomorphism. If M• is bounded below, then this holds by Descent, Proposition
35.9.3 and the first spectral sequence of Derived Categories, Lemma 13.21.3. For
the general case, let us write M• = limM•

n with M•
n = τ≥−nM

•. Whence the
system Mp

n is eventually constant with value Mp. We claim that

(M̃•)a = R lim(M̃•
n)a

Namely, it suffices to show that the natural map from left to right induces an
isomorphism on cohomology over any affine object U = Spec(B) of (Sch/S)fppf .
For i ∈ Z and n > |i| we have

Hi(U, (M̃•
n)a) = Hi(τ≥−nM

• ⊗A B) = Hi(M• ⊗A B)

The first equality holds by the bounded below case treated above. Thus we see
from Cohomology on Sites, Lemma 21.23.2 that the claim holds. Then we finally
get

RΓ((Sch/S)fppf , (M̃•)a) = RΓ((Sch/S)fppf , R lim(M̃•
n)a)

= R limRΓ((Sch/S)fppf , (M̃•
n)a)

= R limM•
n

= M•

as desired. The second equality holds because R lim commutes with RΓ, see Coho-
mology on Sites, Lemma 21.23.2. □

59.102. Comparing ph and étale topologies

0DDV A model for this section is the section on the comparison of the usual topology and
the qc topology on locally compact topological spaces as discussed in Cohomology
on Sites, Section 21.31. We first review some material from Topologies, Sections
34.11 and 34.4.

Let S be a scheme and let (Sch/S)ph be a ph site. On the same underlying category
we have a second topology, namely the étale topology, and hence a second site
(Sch/S)étale. The identity functor (Sch/S)étale → (Sch/S)ph is continuous (by
More on Morphisms, Lemma 37.48.7 and Topologies, Lemma 34.7.2) and defines a
morphism of sites

ϵS : (Sch/S)ph −→ (Sch/S)étale
See Cohomology on Sites, Section 21.27. Please note that ϵS,∗ is the identity functor
on underlying presheaves and that ϵ−1

S associates to an étale sheaf the ph sheafifi-
cation. Let Sétale be the small étale site. There is a morphism of sites

πS : (Sch/S)étale −→ Sétale

given by the continuous functor Sétale → (Sch/S)étale, U 7→ U . Namely, Sétale has
fibre products and a final object and the functor above commutes with these and
Sites, Proposition 7.14.7 applies.



59.102. COMPARING PH AND ÉTALE TOPOLOGIES 4929

Lemma 59.102.1.0DDW With notation as above. Let F be a sheaf on Sétale. The rule
(Sch/S)ph −→ Sets, (f : X → S) 7−→ Γ(X, f−1

smallF)
is a sheaf and a fortiori a sheaf on (Sch/S)étale. In fact this sheaf is equal to π−1

S F
on (Sch/S)étale and ϵ−1

S π−1
S F on (Sch/S)ph.

Proof. The statement about the étale topology is the content of Lemma 59.39.2.
To finish the proof it suffices to show that π−1

S F is a sheaf for the ph topology.
By Topologies, Lemma 34.8.15 it suffices to show that given a proper surjective
morphism V → U of schemes over S we have an equalizer diagram

(π−1
S F)(U) // (π−1

S F)(V ) //
// (π−1

S F)(V ×U V )

Set G = π−1
S F|Uétale . Consider the commutative diagram

V ×U V //

g
##��

V

f

��
V

f // U

We have
(π−1
S F)(V ) = Γ(V, f−1G) = Γ(U, f∗f

−1G)
where we use f∗ and f−1 to denote functorialities between small étale sites. Second,
we have

(π−1
S F)(V ×U V ) = Γ(V ×U V, g−1G) = Γ(U, g∗g

−1G)
The two maps in the equalizer diagram come from the two maps

f∗f
−1G −→ g∗g

−1G
Thus it suffices to prove G is the equalizer of these two maps of sheaves. Let u be a
geometric point of U . Set Ω = Gu. Taking stalks at u by Lemma 59.91.4 we obtain
the two maps

H0(Vu,Ω) −→ H0((V ×U V )u,Ω) = H0(Vu ×u Vu,Ω)
where Ω indicates the constant sheaf with value Ω. Of course these maps are the
pullback by the projection maps. Then it is clear that the sections coming from
pullback by projection onto the first factor are constant on the fibres of the first
projection, and sections coming from pullback by projection onto the first factor
are constant on the fibres of the first projection. The sections in the intersection of
the images of these pullback maps are constant on all of Vu ×u Vu, i.e., these come
from elements of Ω as desired. □

In the situation of Lemma 59.102.1 the composition of ϵS and πS and the equality
determine a morphism of sites

aS : (Sch/S)ph −→ Sétale

Lemma 59.102.2.0DDX With notation as above. Let f : X → Y be a morphism of
(Sch/S)ph. Then there are commutative diagrams of topoi

Sh((Sch/X)ph)
fbig,ph

//

ϵX

��

Sh((Sch/Y )ph)

ϵY

��
Sh((Sch/X)étale)

fbig,étale // Sh((Sch/Y )étale)

https://stacks.math.columbia.edu/tag/0DDW
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and
Sh((Sch/X)ph)

fbig,ph

//

aX

��

Sh((Sch/Y )ph)

aY

��
Sh(Xétale)

fsmall // Sh(Yétale)
with aX = πX ◦ ϵX and aY = πX ◦ ϵX .
Proof. The commutativity of the diagrams follows from the discussion in Topolo-
gies, Section 34.11. □

Lemma 59.102.3.0DDY In Lemma 59.102.2 if f is proper, then we have a−1
Y ◦ fsmall,∗ =

fbig,ph,∗ ◦ a−1
X .

Proof. You can prove this by repeating the proof of Lemma 59.99.5 part (1); we
will instead deduce the result from this. As ϵY,∗ is the identity functor on un-
derlying presheaves, it reflects isomorphisms. The description in Lemma 59.102.1
shows that ϵY,∗ ◦ a−1

Y = π−1
Y and similarly for X. To show that the canonical map

a−1
Y fsmall,∗F → fbig,ph,∗a

−1
X F is an isomorphism, it suffices to show that

π−1
Y fsmall,∗F = ϵY,∗a

−1
Y fsmall,∗F

→ ϵY,∗fbig,ph,∗a
−1
X F

= fbig,étale,∗ϵX,∗a
−1
X F

= fbig,étale,∗π
−1
X F

is an isomorphism. This is part (1) of Lemma 59.99.5. □

Lemma 59.102.4.0F0I Consider the comparison morphism ϵ : (Sch/S)ph → (Sch/S)étale.
Let P denote the class of proper morphisms of schemes. For X in (Sch/S)étale de-
note A′

X ⊂ Ab((Sch/X)étale) the full subcategory consisting of sheaves of the form
π−1
X F where F is a torsion abelian sheaf on Xétale Then Cohomology on Sites,

Properties (1), (2), (3), (4), and (5) of Cohomology on Sites, Situation 21.30.1
hold.
Proof. We first show that A′

X ⊂ Ab((Sch/X)étale) is a weak Serre subcategory by
checking conditions (1), (2), (3), and (4) of Homology, Lemma 12.10.3. Parts
(1), (2), (3) are immediate as π−1

X is exact and fully faithful for example by
Lemma 59.99.4. If 0 → π−1

X F → G → π−1
X F ′ → 0 is a short exact sequence in

Ab((Sch/X)étale) then 0 → F → πX,∗G → F ′ → 0 is exact by Lemma 59.99.4.
In particular we see that πX,∗G is an abelian torsion sheaf on Xétale. Hence
G = π−1

X πX,∗G is in A′
X which checks the final condition.

Cohomology on Sites, Property (1) holds by the existence of fibre products of
schemes and the fact that the base change of a proper morphism of schemes is a
proper morphism of schemes, see Morphisms, Lemma 29.41.5.
Cohomology on Sites, Property (2) follows from the commutative diagram (3) in
Topologies, Lemma 34.4.17.
Cohomology on Sites, Property (3) is Lemma 59.102.1.
Cohomology on Sites, Property (4) holds by Lemma 59.99.5 part (2) and the fact
that RifsmallF is torsion if F is an abelian torsion sheaf on Xétale, see Lemma
59.78.2.
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https://stacks.math.columbia.edu/tag/0F0I


59.102. COMPARING PH AND ÉTALE TOPOLOGIES 4931

Cohomology on Sites, Property (5) follows from More on Morphisms, Lemma
37.48.1 combined with the fact that a finite morphism is proper and a surjective
proper morphism defines a ph covering, see Topologies, Lemma 34.8.6. □

Lemma 59.102.5.0DE4 With notation as above.
(1) For X ∈ Ob((Sch/S)ph) and an abelian torsion sheaf F on Xétale we have

ϵX,∗a
−1
X F = π−1

X F and RiϵX,∗(a−1
X F) = 0 for i > 0.

(2) For a proper morphism f : X → Y in (Sch/S)ph and abelian torsion sheaf
F on X we have a−1

Y (Rifsmall,∗F) = Rifbig,ph,∗(a−1
X F) for all i.

(3) For a scheme X and K in D+(Xétale) with torsion cohomology sheaves
the map π−1

X K → RϵX,∗(a−1
X K) is an isomorphism.

(4) For a proper morphism f : X → Y of schemes and K in D+(Xétale) with
torsion cohomology sheaves we have a−1

Y (Rfsmall,∗K) = Rfbig,ph,∗(a−1
X K).

Proof. By Lemma 59.102.4 the lemmas in Cohomology on Sites, Section 21.30 all
apply to our current setting. To translate the results observe that the category AX
of Cohomology on Sites, Lemma 21.30.2 is the full subcategory of Ab((Sch/X)ph)
consisting of sheaves of the form a−1

X F where F is an abelian torsion sheaf on
Xétale.
Part (1) is equivalent to (Vn) for all n which holds by Cohomology on Sites, Lemma
21.30.8.
Part (2) follows by applying ϵ−1

Y to the conclusion of Cohomology on Sites, Lemma
21.30.3.
Part (3) follows from Cohomology on Sites, Lemma 21.30.8 part (1) because π−1

X K

is in D+
A′
X

((Sch/X)étale) and a−1
X = ϵ−1

X ◦ a
−1
X .

Part (4) follows from Cohomology on Sites, Lemma 21.30.8 part (2) for the same
reason. □

Lemma 59.102.6.0DE5 LetX be a scheme. ForK ∈ D+(Xétale) with torsion cohomology
sheaves the map

K −→ RaX,∗a
−1
X K

is an isomorphism with aX : Sh((Sch/X)ph)→ Sh(Xétale) as above.

Proof. We first reduce the statement to the case where K is given by a single
abelian sheaf. Namely, represent K by a bounded below complex F• of torsion
abelian sheaves. This is possible by Cohomology on Sites, Lemma 21.19.8. By the
case of a sheaf we see that Fn = aX,∗a

−1
X Fn and that the sheaves RqaX,∗a−1

X Fn are
zero for q > 0. By Leray’s acyclicity lemma (Derived Categories, Lemma 13.16.7)
applied to a−1

X F• and the functor aX,∗ we conclude. From now on assume K = F
where F is a torsion abelian sheaf.
By Lemma 59.102.1 we have aX,∗a−1

X F = F . Thus it suffices to show thatRqaX,∗a−1
X F =

0 for q > 0. For this we can use aX = ϵX ◦ πX and the Leray spectral se-
quence (Cohomology on Sites, Lemma 21.14.7). By Lemma 59.102.5 we have
RiϵX,∗(a−1

X F) = 0 for i > 0 and ϵX,∗a
−1
X F = π−1

X F . By Lemma 59.99.4 we have
RjπX,∗(π−1

X F) = 0 for j > 0. This concludes the proof. □

Lemma 59.102.7.0DE6 For a scheme X and aX : Sh((Sch/X)ph)→ Sh(Xétale) as above:
(1) Hq(Xétale,F) = Hq

ph(X, a−1
X F) for a torsion abelian sheaf F on Xétale,
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(2) Hq(Xétale,K) = Hq
ph(X, a−1

X K) for K ∈ D+(Xétale) with torsion coho-
mology sheaves.

Example: if A is a torsion abelian group, then Hq
étale(X,A) = Hq

ph(X,A).

Proof. This follows from Lemma 59.102.6 by Cohomology on Sites, Remark 21.14.4.
□

59.103. Comparing h and étale topologies

0EW7 A model for this section is the section on the comparison of the usual topology and
the qc topology on locally compact topological spaces as discussed in Cohomology
on Sites, Section 21.31. Moreover, this section is almost word for word the same as
the section comparing the ph and étale topologies. We first review some material
from Topologies, Sections 34.11 and 34.4 and More on Flatness, Section 38.34.
Let S be a scheme and let (Sch/S)h be an h site. On the same underlying category
we have a second topology, namely the étale topology, and hence a second site
(Sch/S)étale. The identity functor (Sch/S)étale → (Sch/S)h is continuous (by
More on Flatness, Lemma 38.34.6 and Topologies, Lemma 34.7.2) and defines a
morphism of sites

ϵS : (Sch/S)h −→ (Sch/S)étale
See Cohomology on Sites, Section 21.27. Please note that ϵS,∗ is the identity functor
on underlying presheaves and that ϵ−1

S associates to an étale sheaf the h sheafifica-
tion. Let Sétale be the small étale site. There is a morphism of sites

πS : (Sch/S)étale −→ Sétale

given by the continuous functor Sétale → (Sch/S)étale, U 7→ U . Namely, Sétale has
fibre products and a final object and the functor above commutes with these and
Sites, Proposition 7.14.7 applies.

Lemma 59.103.1.0EW8 With notation as above. Let F be a sheaf on Sétale. The rule

(Sch/S)h −→ Sets, (f : X → S) 7−→ Γ(X, f−1
smallF)

is a sheaf and a fortiori a sheaf on (Sch/S)étale. In fact this sheaf is equal to π−1
S F

on (Sch/S)étale and ϵ−1
S π−1

S F on (Sch/S)h.

Proof. The statement about the étale topology is the content of Lemma 59.39.2. To
finish the proof it suffices to show that π−1

S F is a sheaf for the h topology. However,
in Lemma 59.102.1 we have shown that π−1

S F is a sheaf even in the stronger ph
topology. □

In the situation of Lemma 59.103.1 the composition of ϵS and πS and the equality
determine a morphism of sites

aS : (Sch/S)h −→ Sétale

Lemma 59.103.2.0EW9 With notation as above. Let f : X → Y be a morphism of
(Sch/S)h. Then there are commutative diagrams of topoi

Sh((Sch/X)h)
fbig,h

//

ϵX

��

Sh((Sch/Y )h)

ϵY

��
Sh((Sch/X)étale)

fbig,étale // Sh((Sch/Y )étale)
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and
Sh((Sch/X)h)

fbig,h

//

aX

��

Sh((Sch/Y )h)

aY

��
Sh(Xétale)

fsmall // Sh(Yétale)

with aX = πX ◦ ϵX and aY = πX ◦ ϵX .

Proof. The commutativity of the diagrams follows similarly to what was said in
Topologies, Section 34.11. □

Lemma 59.103.3.0EWA In Lemma 59.103.2 if f is proper, then we have a−1
Y ◦ fsmall,∗ =

fbig,h,∗ ◦ a−1
X .

Proof. You can prove this by repeating the proof of Lemma 59.99.5 part (1); we
will instead deduce the result from this. As ϵY,∗ is the identity functor on un-
derlying presheaves, it reflects isomorphisms. The description in Lemma 59.103.1
shows that ϵY,∗ ◦ a−1

Y = π−1
Y and similarly for X. To show that the canonical map

a−1
Y fsmall,∗F → fbig,h,∗a

−1
X F is an isomorphism, it suffices to show that

π−1
Y fsmall,∗F = ϵY,∗a

−1
Y fsmall,∗F

→ ϵY,∗fbig,h,∗a
−1
X F

= fbig,étale,∗ϵX,∗a
−1
X F

= fbig,étale,∗π
−1
X F

is an isomorphism. This is part (1) of Lemma 59.99.5. □

Lemma 59.103.4.0F0J Consider the comparison morphism ϵ : (Sch/S)h → (Sch/S)étale.
Let P denote the class of proper morphisms. For X in (Sch/S)étale denote A′

X ⊂
Ab((Sch/X)étale) the full subcategory consisting of sheaves of the form π−1

X F where
F is a torsion abelian sheaf on Xétale Then Cohomology on Sites, Properties (1),
(2), (3), (4), and (5) of Cohomology on Sites, Situation 21.30.1 hold.

Proof. We first show that A′
X ⊂ Ab((Sch/X)étale) is a weak Serre subcategory by

checking conditions (1), (2), (3), and (4) of Homology, Lemma 12.10.3. Parts
(1), (2), (3) are immediate as π−1

X is exact and fully faithful for example by
Lemma 59.99.4. If 0 → π−1

X F → G → π−1
X F ′ → 0 is a short exact sequence in

Ab((Sch/X)étale) then 0 → F → πX,∗G → F ′ → 0 is exact by Lemma 59.99.4.
In particular we see that πX,∗G is an abelian torsion sheaf on Xétale. Hence
G = π−1

X πX,∗G is in A′
X which checks the final condition.

Cohomology on Sites, Property (1) holds by the existence of fibre products of
schemes, the fact that the base change of a proper morphism of schemes is a proper
morphism of schemes, see Morphisms, Lemma 29.41.5, and the fact that the base
change of a morphism of finite presentation is a morphism of finite presentation,
see Morphisms, Lemma 29.21.4.

Cohomology on Sites, Property (2) follows from the commutative diagram (3) in
Topologies, Lemma 34.4.17.

Cohomology on Sites, Property (3) is Lemma 59.103.1.
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Cohomology on Sites, Property (4) holds by Lemma 59.99.5 part (2) and the fact
that RifsmallF is torsion if F is an abelian torsion sheaf on Xétale, see Lemma
59.78.2.
Cohomology on Sites, Property (5) is implied by More on Morphisms, Lemma
37.48.1 combined with the fact that a surjective finite locally free morphism is
surjective, proper, and of finite presentation and hence defines a h-covering by
More on Flatness, Lemma 38.34.7. □

Lemma 59.103.5.0EWF With notation as above.
(1) For X ∈ Ob((Sch/S)h) and an abelian torsion sheaf F on Xétale we have

ϵX,∗a
−1
X F = π−1

X F and RiϵX,∗(a−1
X F) = 0 for i > 0.

(2) For a proper morphism f : X → Y in (Sch/S)h and abelian torsion sheaf
F on X we have a−1

Y (Rifsmall,∗F) = Rifbig,h,∗(a−1
X F) for all i.

(3) For a scheme X and K in D+(Xétale) with torsion cohomology sheaves
the map π−1

X K → RϵX,∗(a−1
X K) is an isomorphism.

(4) For a proper morphism f : X → Y of schemes and K in D+(Xétale) with
torsion cohomology sheaves we have a−1

Y (Rfsmall,∗K) = Rfbig,h,∗(a−1
X K).

Proof. By Lemma 59.103.4 the lemmas in Cohomology on Sites, Section 21.30 all
apply to our current setting. To translate the results observe that the category AX
of Cohomology on Sites, Lemma 21.30.2 is the full subcategory of Ab((Sch/X)h)
consisting of sheaves of the form a−1

X F where F is an abelian torsion sheaf on
Xétale.
Part (1) is equivalent to (Vn) for all n which holds by Cohomology on Sites, Lemma
21.30.8.
Part (2) follows by applying ϵ−1

Y to the conclusion of Cohomology on Sites, Lemma
21.30.3.
Part (3) follows from Cohomology on Sites, Lemma 21.30.8 part (1) because π−1

X K

is in D+
A′
X

((Sch/X)étale) and a−1
X = ϵ−1

X ◦ a
−1
X .

Part (4) follows from Cohomology on Sites, Lemma 21.30.8 part (2) for the same
reason. □

Lemma 59.103.6.0EWG LetX be a scheme. ForK ∈ D+(Xétale) with torsion cohomology
sheaves the map

K −→ RaX,∗a
−1
X K

is an isomorphism with aX : Sh((Sch/X)h)→ Sh(Xétale) as above.

Proof. We first reduce the statement to the case where K is given by a single
abelian sheaf. Namely, represent K by a bounded below complex F• of torsion
abelian sheaves. This is possible by Cohomology on Sites, Lemma 21.19.8. By the
case of a sheaf we see that Fn = aX,∗a

−1
X Fn and that the sheaves RqaX,∗a−1

X Fn are
zero for q > 0. By Leray’s acyclicity lemma (Derived Categories, Lemma 13.16.7)
applied to a−1

X F• and the functor aX,∗ we conclude. From now on assume K = F
where F is a torsion abelian sheaf.
By Lemma 59.103.1 we have aX,∗a−1

X F = F . Thus it suffices to show thatRqaX,∗a−1
X F =

0 for q > 0. For this we can use aX = ϵX ◦ πX and the Leray spectral se-
quence (Cohomology on Sites, Lemma 21.14.7). By Lemma 59.103.5 we have
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RiϵX,∗(a−1
X F) = 0 for i > 0 and ϵX,∗a

−1
X F = π−1

X F . By Lemma 59.99.4 we have
RjπX,∗(π−1

X F) = 0 for j > 0. This concludes the proof. □

Lemma 59.103.7.0EWH For a scheme X and aX : Sh((Sch/X)h)→ Sh(Xétale) as above:
(1) Hq(Xétale,F) = Hq

h(X, a−1
X F) for a torsion abelian sheaf F on Xétale,

(2) Hq(Xétale,K) = Hq
h(X, a−1

X K) for K ∈ D+(Xétale) with torsion cohomol-
ogy sheaves.

Example: if A is a torsion abelian group, then Hq
étale(X,A) = Hq

h(X,A).

Proof. This follows from Lemma 59.103.6 by Cohomology on Sites, Remark 21.14.4.
□

59.104. Descending étale sheaves

0GEX We prove that étale sheaves “glue” in the fppf and h topology and related results.
We have already shown the following related results

(1) Lemma 59.39.2 tells us that a sheaf on the small étale site of a scheme S
determines a sheaf on the big étale site of S satisfying the sheaf condition
for fpqc coverings (and a fortiori for Zariski, étale, smooth, syntomic, and
fppf coverings),

(2) Lemma 59.100.1 is a restatement of the previous point for the fppf topol-
ogy,

(3) Lemma 59.102.1 proves the same for the ph topology,
(4) Lemma 59.103.1 proves the same for the h topology,
(5) Lemma 59.100.4 is a version of fppf descent for étale sheaves, and
(6) Remark 59.55.6 tells us that we have descent of étale sheaves for finite

surjective morphisms (we will clarify and strengthen this below).
In the chapter on simplicial spaces we will prove some additional results on this,
see for example Simplicial Spaces, Sections 85.33 and 85.36.

In order to conveniently express our results we need some notation. Let U = {fi :
Xi → X} be a family of morphisms of schemes with fixed target. A descent datum
for étale sheaves with respect to U is a family ((Fi)i∈I , (φij)i,j∈I) where

(1) Fi is in Sh(Xi,étale), and
(2) φij : pr−1

0,smallFi −→ pr−1
1,smallFj is an isomorphism in Sh((Xi×XXj)étale)

such that the cocycle condition holds: the diagrams

pr−1
0,smallFi

pr−1
02,smallφik &&

pr−1
01,smallφij // pr−1

1,smallFj

pr−1
12,smallφjkxx

pr−1
2,smallFk

commute in Sh((Xi ×X Xj ×X Xk)étale). There is an obvious notion of mor-
phisms of descent data and we obtain a category of descent data. A descent datum
((Fi)i∈I , (φij)i,j∈I) is called effective if there exist a F in Sh(Xétale) and isomor-
phisms φi : f−1

i,smallF → Fi in Sh(Xi,étale) compatible with the φij , i.e., such that

φij = pr−1
1,small(φj) ◦ pr−1

0,small(φ
−1
i )
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Another way to say this is the following. Given an object F of Sh(Xétale) we obtain
the canonical descent datum (f−1

i,smallFi, cij) where cij is the canonical isomorphism

cij : pr−1
0,smallf

−1
i,smallF −→ pr−1

1,smallf
−1
j,smallF

The descent datum ((Fi)i∈I , (φij)i,j∈I) is effective if and only if it is isomorphic to
the canonical descent datum associated to some F in Sh(Xétale).
If the family consists of a single morphism {X → Y }, then we think of a descent
datum as a pair (F , φ) where F is an object of Sh(Xétale) and φ is an isomorphism

pr−1
0,smallF −→ pr−1

1,smallF

in Sh((X ×Y X)étale) such that the cocycle condition holds:

pr−1
0,smallF

pr−1
02,smallφ &&

pr−1
01,smallφ // pr−1

1,smallF

pr−1
12,smallφxx

pr−1
2,smallF

commutes in Sh((X ×Y X ×Y X)étale). There is a notion of morphisms of descent
data and effectivity exactly as before.
We first prove effective descent for surjective integral morphisms.

Lemma 59.104.1.0GEY Let f : X → Y be a morphism of schemes which has a section.
Then the functor

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }

sending G in Sh(Yétale) to the canonical descent datum is an equivalence of cate-
gories.

Proof. This is formal and depends only on functoriality of the pullback functors.
We omit the details. Hint: If s : Y → X is a section, then a quasi-inverse is the
functor sending (F , φ) to s−1

smallF . □

Lemma 59.104.2.0GEZ Let f : X → Y be a surjective integral morphism of schemes.
The functor

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }

is an equivalence of categories.

Proof. In this proof we drop the subscript small from our pullback and pushforward
functors. Denote X1 = X ×Y X and denote f1 : X1 → Y the morphism f ◦ pr0 =
f ◦ pr1. Let (F , φ) be a descent datum for {X → Y }. Let us set F1 = pr−1

0 F . We
may think of φ as defining an isomorphism F1 → pr−1

1 F . We claim that the rule
which sends a descent datum (F , φ) to the sheaf

G = Equalizer
(
f∗F

//
// f1,∗F1

)
is a quasi-inverse to the functor in the statement of the lemma. The first of the two
arrows comes from the map

f∗F → f∗pr0,∗pr−1
0 F = f1,∗F1

https://stacks.math.columbia.edu/tag/0GEY
https://stacks.math.columbia.edu/tag/0GEZ


59.104. DESCENDING ÉTALE SHEAVES 4937

and the second arrow comes from the map

f∗F → f∗pr1,∗pr−1
1 F

φ←− f∗pr0,∗pr−1
0 F = f1,∗F1

where the arrow pointing left is invertible. To prove this works we have to show
that the canonical map f−1G → F is an isomorphism; details omitted. In order
to prove this it suffices to check after pulling back by any collection of morphisms
Spec(k) → Y where k is an algebraically closed field. Namely, the corresponing
base changes Xk → X are jointly surjective and we can check whether a map of
sheaves on Xétale is an isomorphism by looking at stalks on geometric points, see
Theorem 59.29.10. By Lemma 59.55.4 the construction of G from the descent datum
(F , φ) commutes with any base change. Thus we may assume Y is the spectrum of
an algebraically closed point (note that base change preserves the properties of the
morphism f , see Morphisms, Lemma 29.9.4 and 29.44.6). In this case the morphism
X → Y has a section, so we know that the functor is an equivalence by Lemma
59.104.1. However, the reader may show that the functor is an equivalence if and
only if the construction above is a quasi-inverse; details omitted. This finishes the
proof. □

Lemma 59.104.3.0GF0 Let f : X → Y be a surjective proper morphism of schemes.
The functor

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }
is an equivalence of categories.

Proof. The exact same proof as given in Lemma 59.104.2 works, except the appeal
to Lemma 59.55.4 should be replaced by an appeal to Lemma 59.91.5. □

Lemma 59.104.4.0GF1 Let f : X → Y be a morphism of schemes. Let Z → Y be a
surjective integral morphism of schemes or a surjective proper morphism of schemes.
If the functors

Sh(Zétale) −→ descent data for étale sheaves wrt {X ×Y Z → Z}
and
Sh((Z×Y Z)étale) −→ descent data for étale sheaves wrt {X×Y (Z×Y Z)→ Z×Y Z}
are equivalences of categories, then

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }
is an equivalence.

Proof. Formal consequence of the definitions and Lemmas 59.104.2 and 59.104.3.
Details omitted. □

Lemma 59.104.5.0GF2 Let f : X → Y be a morphism of schemes which is surjective,
flat, locally of finite presentation. The functor

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }
is an equivalence of categories.

Proof. Exactly as in the proof of Lemma 59.104.2 we claim a quasi-inverse is given
by the functor sending (F , φ) to

G = Equalizer
(
f∗F

//
// f1,∗F1

)
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and in order to prove this it suffices to show that f−1G → F is an isomorphism.
This we may check locally, hence we may and do assume Y is affine. Then we can
find a finite surjective morphism Z → Y such that there exists an open covering
Z =

⋃
Wi such that Wi → Y factors through X. See More on Morphisms, Lemma

37.48.6. Applying Lemma 59.104.4 we see that it suffices to prove the lemma after
replacing Y by Z and Z ×Y Z and f by its base change. Thus we may assume
f has sections Zariski locally. Of course, using that the problem is local on Y we
reduce to the case where we have a section which is Lemma 59.104.1. □

Lemma 59.104.6.0GF3 Let {fi : Xi → X} be an fppf covering of schemes. The functor
Sh(Xétale) −→ descent data for étale sheaves wrt {fi : Xi → X}

is an equivalence of categories.

Proof. We have Lemma 59.104.5 for the morphism f :
∐
Xi → X. Then a formal

argument shows that descent data for f are the same thing as descent data for the
covering, compare with Descent, Lemma 35.34.5. Details omitted. □

Lemma 59.104.7.0GF4 Let f : X ′ → X be a proper morphism of schemes. Let i : Z → X
be a closed immersion. Set E = Z ×X X ′. Picture

E

g

��

j
// X ′

f

��
Z

i // X

If f is an isomorphism over X \ Z, then the functor
Sh(Xétale) −→ Sh(X ′

étale)×Sh(Eétale) Sh(Zétale)
is an equivalence of categories.

Proof. We will work with the 2-fibre product category as constructed in Cate-
gories, Example 4.31.3. The functor sends F to the triple (f−1F , i−1F , c) where
c : j−1f−1F → g−1i−1F is the canonical isomorphism. We will construct a quasi-
inverse functor. Let (F ′,G, α) be an object of the right hand side of the arrow. We
obtain an isomorphism

i−1f∗F ′ = g∗j
−1F ′ g∗α−−→ g∗g

−1G
The first equality is Lemma 59.91.5. Using this we obtain maps i∗G → i∗g∗g

−1G
and f ′

∗F ′ → i∗g∗g
−1G. We set

F = f∗F ′ ×i∗g∗g−1G i∗G
and we claim that F is an object of the left hand side of the arrow whose image in
the right hand side is isomorphic to the triple we started out with. Let us compute
the stalk of F at a geometric point x of X.
If x is not in Z, then on the one hand x comes from a unique geometric point x′ of
X ′ and F ′

x′ = (f∗F ′)x and on the other hand we have (i∗G)x and (i∗g∗g
−1G)x are

singletons. Hence we see that Fx equals F ′
x′ .

If x is in Z, i.e., x is the image of a geometric point z of Z, then we obtain
(i∗G)x = Gz and

(i∗g∗g
−1G)x = (g∗g

−1G)z = Γ(Ez, g−1G|Ez )
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(by the proper base change for pushforward used above) and similarly
(f∗F ′)x = Γ(X ′

x,F ′|X′
x
)

Since we have the identification Ez = X ′
x and since α defines an isomorphism

between the sheaves F ′|X′
x

and g−1G|Ez we conclude that we get
Fx = Gz

in this case.
To finish the proof, we observe that there are canonical maps i−1F → G and
f−1F → F ′ compatible with α which on stalks produce the isomorphisms we saw
above. We omit the careful construction of these maps. □

Lemma 59.104.8.0GF5 Let S be a scheme. Then the category fibred in groupoids
p : S −→ (Sch/S)h

whose fibre category over U is the category Sh(Uétale) of sheaves on the small étale
site of U is a stack in groupoids.

Proof. To prove the lemma we will check conditions (1), (2), and (3) of More on
Flatness, Lemma 38.37.13.
Condition (1) holds because we have glueing for sheaves (and Zariski coverings are
étale coverings). See Sites, Lemma 7.26.4.
To see condition (2), suppose that f : X → Y is a surjective, flat, proper morphism
of finite presentation over S with Y affine. Then we have descent for {X → Y } by
either Lemma 59.104.5 or Lemma 59.104.3.
Condition (3) follows immediately from the more general Lemma 59.104.7. □

59.105. Blow up squares and étale cohomology

0EW4 Blow up squares are introduced in More on Flatness, Section 38.36. Using the
proper base change theorem we can see that we have a Mayer-Vietoris type result
for blow up squares.

Lemma 59.105.1.0EW5 Let X be a scheme and let Z ⊂ X be a closed subscheme cut
out by a quasi-coherent ideal of finite type. Consider the corresponding blow up
square

E

π

��

j
// X ′

b

��
Z

i // X

For K ∈ D+(Xétale) with torsion cohomology sheaves we have a distinguished
triangle

K → Ri∗(K|Z)⊕Rb∗(K|X′)→ Rc∗(K|E)→ K[1]
in D(Xétale) where c = i ◦ π = b ◦ j.

Proof. The notation K|X′ stands for b−1
smallK. Choose a bounded below complex

F• of abelian sheaves representing K. Observe that i∗(F•|Z) represents Ri∗(K|Z)
because i∗ is exact (Proposition 59.55.2). Choose a quasi-isomorphism b−1

smallF• →
I• where I• is a bounded below complex of injective abelian sheaves on X ′

étale.
This map is adjoint to a map F• → b∗(I•) and b∗(I•) represents Rb∗(K|X′). We
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have π∗(I•|E) = (b∗I•)|Z by Lemma 59.91.5 and by Lemma 59.91.12 this complex
represents Rπ∗(K|E). Hence the map

Ri∗(K|Z)⊕Rb∗(K|X′)→ Rc∗(K|E)
is represented by the surjective map of bounded below complexes

i∗(F•|Z)⊕ b∗(I•)→ i∗ (b∗(I•)|Z)
To get our distinguished triangle it suffices to show that the canonical map F• →
i∗(F•|Z) ⊕ b∗(I•) maps quasi-isomorphically onto the kernel of the map of com-
plexes displayed above (namely a short exact sequence of complexes determines
a distinguished triangle in the derived category, see Derived Categories, Section
13.12). We may check this on stalks at a geometric point x of X. If x is not in
Z, then X ′ → X is an isomorphism over an open neighbourhood of x. Thus, if x′

denotes the corresponding geometric point of X ′ in this case, then we have to show
that

F•
x → I•

x′

is a quasi-isomorphism. This is true by our choice of I•. If x is in Z, then b(I•)x →
i∗ (b∗(I•)|Z)x is an isomorphism of complexes of abelian groups. Hence the kernel
is equal to i∗(F•|Z)x = F•

x as desired. □

Lemma 59.105.2.0EW3 Let X be a scheme and let K ∈ D+(Xétale) have torsion coho-
mology sheaves. Let Z ⊂ X be a closed subscheme cut out by a quasi-coherent
ideal of finite type. Consider the corresponding blow up square

E

��

// X ′

b

��
Z // X

Then there is a canonical long exact sequence
Hp
étale(X,K)→ Hp

étale(X
′,K|X′)⊕Hp

étale(Z,K|Z)→ Hp
étale(E,K|E)→ Hp+1

étale(X,K)

First proof. This follows immediately from Lemma 59.105.1 and the fact that
RΓ(X,Rb∗(K|X′)) = RΓ(X ′,K|X′)

(see Cohomology on Sites, Section 21.14) and similarly for the others. □

Second proof. By Lemma 59.102.7 these cohomology groups are the cohomology of
X,X ′, E, Z with values in some complex of abelian sheaves on the site (Sch/X)ph.
(Namely, the object a−1

X K of the derived category, see Lemma 59.102.1 above and
recall that K|X′ = b−1

smallK.) By More on Flatness, Lemma 38.36.1 the ph sheafifi-
cation of the diagram of representable presheaves is cocartesian. Thus the lemma
follows from the very general Cohomology on Sites, Lemma 21.26.3 applied to the
site (Sch/X)ph and the commutative diagram of the lemma. □

Lemma 59.105.3.0EW6 Let X be a scheme and let Z ⊂ X be a closed subscheme cut
out by a quasi-coherent ideal of finite type. Consider the corresponding blow up
square

E

π

��

j
// X ′

b

��
Z

i // X
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Suppose given
(1) an object K ′ of D+(X ′

étale) with torsion cohomology sheaves,
(2) an object L of D+(Zétale) with torsion cohomology sheaves, and
(3) an isomorphism γ : K ′|E → L|E .

Then there exists an object K of D+(Xétale) and isomorphisms f : K|X′ → K ′,
g : K|Z → L such that γ = g|E ◦ f−1|E . Moreover, given

(1) an object M of D+(Xétale) with torsion cohomology sheaves,
(2) a morphism α : K ′ →M |X′ of D(X ′

étale),
(3) a morphism β : L→M |Z of D(Zétale),

such that
α|E = β|E ◦ γ.

Then there exists a morphism M → K in D(Xétale) whose restriction to X ′ is a◦f
and whose restriction to Z is b ◦ g.

Proof. If K exists, then Lemma 59.105.1 tells us a distinguished triangle that it fits
in. Thus we simply choose a distinguished triangle

K → Ri∗(L)⊕Rb∗(K ′)→ Rc∗(L|E)→ K[1]
where c = i ◦ π = b ◦ j. Here the map Ri∗(L) → Rc∗(L|E) is Ri∗ applied to
the adjunction mapping E → Rπ∗(L|E). The map Rb∗(K ′) → Rc∗(L|E) is the
composition of the canonical map Rb∗(K ′) → Rc∗(K ′|E)) = R and Rc∗(γ). The
maps g and f of the statement of the lemma are the adjoints of these maps. If we
restrict this distinguished triangle to Z then the map Rb∗(K)→ Rc∗(L|E) becomes
an isomorphism by the base change theorem (Lemma 59.91.12) and hence the map
g : K|Z → L is an isomorphism. Looking at the distinguished triangle we see
that f : K|X′ → K ′ is an isomorphism over X ′ \ E = X \ Z. Moreover, we have
γ ◦ f |E = g|E by construction. Then since γ and g are isomorphisms we conclude
that f induces isomorphisms on stalks at geometric points of E as well. Thus f is
an isomorphism.
For the final statement, we may replace K ′ by K|X′ , L by K|Z , and γ by the
canonical identification. Observe that α and β induce a commutative square

K //

��

Ri∗(K|Z)⊕Rb∗(K|X′) //

β⊕α
��

Rc∗(K|E) //

α|E
��

K[1]

��
M // Ri∗(M |Z)⊕Rb∗(M |X′) // Rc∗(M |E) // M [1]

Thus by the axioms of a derived category we get a dotted arrow producing a
morphism of distinguished triangles. □

59.106. Almost blow up squares and the h topology

0EWL In this section we continue the discussion in More on Flatness, Section 38.37. For
the convenience of the reader we recall that an almost blow up square is a commu-
tative diagram

(59.106.0.1)0EWM
E

��

// X ′

b

��
Z // X
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of schemes satisfying the following conditions:
(1) Z → X is a closed immersion of finite presentation,
(2) E = b−1(Z) is a locally principal closed subscheme of X ′,
(3) b is proper and of finite presentation,
(4) the closed subscheme X ′′ ⊂ X ′ cut out by the quasi-coherent ideal of

sections of OX′ supported on E (Properties, Lemma 28.24.5) is the blow
up of X in Z.

It follows that the morphism b induces an isomorphism X ′ \ E → X \ Z.
We are going to give a criterion for “h sheafiness” for objects in the derived category
of the big fppf site (Sch/S)fppf of a scheme S. On the same underlying category we
have a second topology, namely the h topology (More on Flatness, Section 38.34).
Recall that fppf coverings are h coverings (More on Flatness, Lemma 38.34.6).
Hence we may consider the morphism

ϵ : (Sch/S)h −→ (Sch/S)fppf
See Cohomology on Sites, Section 21.27. In particular, we have a fully faithful
functor

Rϵ∗ : D((Sch/S)h) −→ D((Sch/S)fppf )
and we can ask: what is the essential image of this functor?
Lemma 59.106.1.0EWN With notation as above, if K is in the essential image of Rϵ∗, then
the maps cKX,Z,X′,E of Cohomology on Sites, Lemma 21.26.1 are quasi-isomorphisms.

Proof. Denote # sheafification in the h topology. We have seen in More on Flatness,
Lemma 38.37.7 that h#

X = h#
Z ⨿h#

E
h#
X′ . On the other hand, the map h#

E → h#
X′

is injective as E → X ′ is a monomorphism. Thus this lemma is a special case
of Cohomology on Sites, Lemma 21.29.3 (which itself is a formal consequence of
Cohomology on Sites, Lemma 21.26.3). □

Proposition 59.106.2.0EWQ Let K be an object of D+((Sch/S)fppf ). Then K is in the
essential image of Rϵ∗ : D((Sch/S)h)→ D((Sch/S)fppf ) if and only if cKX,X′,Z,E is
a quasi-isomorphism for every almost blow up square (59.106.0.1) in (Sch/S)h with
X affine.
Proof. We prove this by applying Cohomology on Sites, Lemma 21.29.2 whose
hypotheses hold by Lemma 59.106.1 and More on Flatness, Proposition 38.37.9. □

Lemma 59.106.3.0EWR Let K be an object of D+((Sch/S)fppf ). Then K is in the
essential image of Rϵ∗ : D((Sch/S)h) → D((Sch/S)fppf ) if and only if cKX,X′,Z,E

is a quasi-isomorphism for every almost blow up square as in More on Flatness,
Examples 38.37.10 and 38.37.11.
Proof. We prove this by applying Cohomology on Sites, Lemma 21.29.2 whose
hypotheses hold by Lemma 59.106.1 and More on Flatness, Lemma 38.37.12 □

59.107. Cohomology of the structure sheaf in the h topology

0EWS Let p be a prime number. Let (C,O) be a ringed site with pO = 0. Then we set
colimF O equal to the colimit in the category of sheaves of rings of the system

O F−→ O F−→ O F−→ . . .

where F : O → O, f 7→ fp is the Frobenius endomorphism.

https://stacks.math.columbia.edu/tag/0EWN
https://stacks.math.columbia.edu/tag/0EWQ
https://stacks.math.columbia.edu/tag/0EWR
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Lemma 59.107.1.0EWT Let p be a prime number. Let S be a scheme over Fp. Consider
the sheaf Operf = colimF O on (Sch/S)fppf . Then Operf is in the essential image
of Rϵ∗ : D((Sch/S)h)→ D((Sch/S)fppf ).

Proof. We prove this using the criterion of Lemma 59.106.3. Before check the condi-
tions, we note that for a quasi-compact and quasi-separated objectX of (Sch/S)fppf
we have

Hi
fppf (X,Operf ) = colimF H

i
fppf (X,O)

See Cohomology on Sites, Lemma 21.16.1. We will also use that Hi
fppf (X,O) =

Hi(X,O), see Descent, Proposition 35.9.3.
Let A, f, J be as in More on Flatness, Example 38.37.10 and consider the associated
almost blow up square. Since X, X ′, Z, E are affine, we have no higher cohomology
of O. Hence we only have to check that

0→ Operf (X)→ Operf (X ′)⊕Operf (Z)→ Operf (E)→ 0
is a short exact sequence. This was shown in (the proof of) More on Flatness,
Lemma 38.38.2.
Let X,X ′, Z,E be as in More on Flatness, Example 38.37.11. Since X and Z are
affine we have Hp(X,OX) = Hp(Z,OX) = 0 for p > 0. By More on Flatness,
Lemma 38.38.1 we have Hp(X ′,OX′) = 0 for p > 0. Since E = P1

Z and Z is affine
we also have Hp(E,OE) = 0 for p > 0. As in the previous paragraph we reduce to
checking that

0→ Operf (X)→ Operf (X ′)⊕Operf (Z)→ Operf (E)→ 0
is a short exact sequence. This was shown in (the proof of) More on Flatness,
Lemma 38.38.2. □

Proposition 59.107.2.0EWU Let p be a prime number. Let S be a quasi-compact and
quasi-separated scheme over Fp. Then

Hi((Sch/S)h,Oh) = colimF H
i(S,O)

Here on the left hand side by Oh we mean the h sheafification of the structure
sheaf.

Proof. This is just a reformulation of Lemma 59.107.1. Recall that Oh = Operf =
colimF O, see More on Flatness, Lemma 38.38.7. By Lemma 59.107.1 we see that
Operf viewed as an object of D((Sch/S)fppf ) is of the form Rϵ∗K for some K ∈
D((Sch/S)h). Then K = ϵ−1Operf which is actually equal to Operf because Operf
is an h sheaf. See Cohomology on Sites, Section 21.27. Hence Rϵ∗Operf = Operf
(with apologies for the confusing notation). Thus the lemma now follows from
Leray

RΓh(S,Operf ) = RΓfppf (S,Rϵ∗Operf ) = RΓfppf (S,Operf )
and the fact that

Hi
fppf (S,Operf ) = Hi

fppf (S, colimF O) = colimF H
i
fppf (S,O)

as S is quasi-compact and quasi-separated (see proof of Lemma 59.107.1). □

https://stacks.math.columbia.edu/tag/0EWT
https://stacks.math.columbia.edu/tag/0EWU
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CHAPTER 60

Crystalline Cohomology

07GI 60.1. Introduction

07GJ This chapter is based on a lecture series given by Johan de Jong held in 2012 at
Columbia University. The goals of this chapter are to give a quick introduction to
crystalline cohomology. A reference is the book [Ber74].

We have moved the more elementary purely algebraic discussion of divided power
rings to a preliminary chapter as it is also useful in discussing Tate resolutions in
commutative algebra. Please see Divided Power Algebra, Section 23.1.

60.2. Divided power envelope

07H7 The construction of the following lemma will be dubbed the divided power envelope.
It will play an important role later.

Lemma 60.2.1.07H8 Let (A, I, γ) be a divided power ring. Let A → B be a ring map.
Let J ⊂ B be an ideal with IB ⊂ J . There exists a homomorphism of divided
power rings

(A, I, γ) −→ (D, J̄, γ̄)
such that

Hom(A,I,γ)((D, J̄, γ̄), (C,K, δ)) = Hom(A,I)((B, J), (C,K))

functorially in the divided power algebra (C,K, δ) over (A, I, γ). Here the LHS is
morphisms of divided power rings over (A, I, γ) and the RHS is morphisms of (ring,
ideal) pairs over (A, I).

Proof. Denote C the category of divided power rings (C,K, δ). Consider the functor
F : C −→ Sets defined by

F (C,K, δ) =
{

(φ,ψ)
∣∣∣∣ φ : (A, I, γ)→ (C,K, δ) homomorphism of divided power rings
ψ : (B, J)→ (C,K) an A-algebra homomorphism with ψ(J) ⊂ K

}
We will show that Divided Power Algebra, Lemma 23.3.3 applies to this functor
which will prove the lemma. Suppose that (φ,ψ) ∈ F (C,K, δ). Let C ′ ⊂ C be the
subring generated by φ(A), ψ(B), and δn(ψ(f)) for all f ∈ J . Let K ′ ⊂ K ∩C ′ be
the ideal of C ′ generated by φ(I) and δn(ψ(f)) for f ∈ J . Then (C ′,K ′, δ|K′) is a
divided power ring and C ′ has cardinality bounded by the cardinal κ = |A|⊗ |B|ℵ0 .
Moreover, φ factors as A → C ′ → C and ψ factors as B → C ′ → C. This proves
assumption (1) of Divided Power Algebra, Lemma 23.3.3 holds. Assumption (2) is
clear as limits in the category of divided power rings commute with the forgetful
functor (C,K, δ) 7→ (C,K), see Divided Power Algebra, Lemma 23.3.2 and its
proof. □

4946
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Definition 60.2.2.07H9 Let (A, I, γ) be a divided power ring. Let A → B be a ring
map. Let J ⊂ B be an ideal with IB ⊂ J . The divided power algebra (D, J̄, γ̄)
constructed in Lemma 60.2.1 is called the divided power envelope of J in B relative
to (A, I, γ) and is denoted DB(J) or DB,γ(J).

Let (A, I, γ)→ (C,K, δ) be a homomorphism of divided power rings. The universal
property of DB,γ(J) = (D, J̄, γ̄) is

ring maps B → C
which map J into K ←→

divided power homomorphisms
(D, J̄, γ̄)→ (C,K, δ)

and the correspondence is given by precomposing with the map B → D which
corresponds to idD. Here are some properties of (D, J̄, γ̄) which follow directly
from the universal property. There are A-algebra maps

(60.2.2.1)07HA B −→ D −→ B/J

The first arrow maps J into J̄ and J̄ is the kernel of the second arrow. The elements
γ̄n(x) where n > 0 and x is an element in the image of J → D generate J̄ as an
ideal in D and generate D as a B-algebra.

Lemma 60.2.3.07HB Let (A, I, γ) be a divided power ring. Let φ : B′ → B be a
surjection of A-algebras with kernel K. Let IB ⊂ J ⊂ B be an ideal. Let J ′ ⊂
B′ be the inverse image of J . Write DB′,γ(J ′) = (D′, J̄ ′, γ̄). Then DB,γ(J) =
(D′/K ′, J̄ ′/K ′, γ̄) where K ′ is the ideal generated by the elements γ̄n(k) for n ≥ 1
and k ∈ K.

Proof. Write DB,γ(J) = (D, J̄, γ̄). The universal property of D′ gives us a homo-
morphism D′ → D of divided power algebras. As B′ → B and J ′ → J are surjec-
tive, we see that D′ → D is surjective (see remarks above). It is clear that γ̄n(k) is
in the kernel for n ≥ 1 and k ∈ K, i.e., we obtain a homomorphism D′/K ′ → D.
Conversely, there exists a divided power structure on J̄ ′/K ′ ⊂ D′/K ′, see Divided
Power Algebra, Lemma 23.4.3. Hence the universal property of D gives an inverse
D → D′/K ′ and we win. □

In the situation of Definition 60.2.2 we can choose a surjection P → B where P
is a polynomial algebra over A and let J ′ ⊂ P be the inverse image of J . The
previous lemma describes DB,γ(J) in terms of DP,γ(J ′). Note that γ extends to a
divided power structure γ′ on IP by Divided Power Algebra, Lemma 23.4.2. Hence
DP,γ(J ′) = DP,γ′(J ′) is an example of a special case of divided power envelopes we
describe in the following lemma.

Lemma 60.2.4.07HC Let (B, I, γ) be a divided power algebra. Let I ⊂ J ⊂ B be
an ideal. Let (D, J̄, γ̄) be the divided power envelope of J relative to γ. Choose
elements ft ∈ J , t ∈ T such that J = I + (ft). Then there exists a surjection

Ψ : B⟨xt⟩ −→ D

of divided power rings mapping xt to the image of ft in D. The kernel of Ψ is
generated by the elements xt − ft and all

δn

(∑
rtxt − r0

)
whenever

∑
rtft = r0 in B for some rt ∈ B, r0 ∈ I.

https://stacks.math.columbia.edu/tag/07H9
https://stacks.math.columbia.edu/tag/07HB
https://stacks.math.columbia.edu/tag/07HC
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Proof. In the statement of the lemma we think of B⟨xt⟩ as a divided power ring
with ideal J ′ = IB⟨xt⟩+B⟨xt⟩+, see Divided Power Algebra, Remark 23.5.2. The
existence of Ψ follows from the universal property of divided power polynomial
rings. Surjectivity of Ψ follows from the fact that its image is a divided power
subring of D, hence equal to D by the universal property of D. It is clear that
xt − ft is in the kernel. Set

R = {(r0, rt) ∈ I ⊕
⊕

t∈T
B |

∑
rtft = r0 in B}

If (r0, rt) ∈ R then it is clear that
∑
rtxt− r0 is in the kernel. As Ψ is a homomor-

phism of divided power rings and
∑
rtxt − r0 ∈ J ′ it follows that δn(

∑
rtxt − r0)

is in the kernel as well. Let K ⊂ B⟨xt⟩ be the ideal generated by xt − ft and the
elements δn(

∑
rtxt − r0) for (r0, rt) ∈ R. To show that K = Ker(Ψ) it suffices to

show that δ extends to B⟨xt⟩/K. Namely, if so the universal property of D gives a
map D → B⟨xt⟩/K inverse to Ψ. Hence we have to show that K ∩ J ′ is preserved
by δn, see Divided Power Algebra, Lemma 23.4.3. Let K ′ ⊂ B⟨xt⟩ be the ideal
generated by the elements

(1) δm(
∑
rtxt − r0) where m > 0 and (r0, rt) ∈ R,

(2) x
[m]
t′ (xt − ft) where m > 0 and t′, t ∈ I.

We claim that K ′ = K ∩J ′. The claim proves that K ∩J ′ is preserved by δn, n > 0
by the criterion of Divided Power Algebra, Lemma 23.4.3 (2)(c) and a computation
of δn of the elements listed which we leave to the reader. To prove the claim note
that K ′ ⊂ K ∩ J ′. Conversely, if h ∈ K ∩ J ′ then, modulo K ′ we can write

h =
∑

rt(xt − ft)

for some rt ∈ B. As h ∈ K ∩ J ′ ⊂ J ′ we see that r0 =
∑
rtft ∈ I. Hence

(r0, rt) ∈ R and we see that
h =

∑
rtxt − r0

is in K ′ as desired. □

Lemma 60.2.5.07KE Let (A, I, γ) be a divided power ring. Let B be an A-algebra and
IB ⊂ J ⊂ B an ideal. Let xi be a set of variables. Then

DB[xi],γ(JB[xi] + (xi)) = DB,γ(J)⟨xi⟩

Proof. One possible proof is to deduce this from Lemma 60.2.4 as any relation
between xi in B[xi] is trivial. On the other hand, the lemma follows from the uni-
versal property of the divided power polynomial algebra and the universal property
of divided power envelopes. □

Conditions (1) and (2) of the following lemma hold if B → B′ is flat at all primes
of V (IB′) ⊂ Spec(B′) and is very closely related to that condition, see Algebra,
Lemma 10.99.8. It in particular says that taking the divided power envelope com-
mutes with localization.

Lemma 60.2.6.07HD Let (A, I, γ) be a divided power ring. Let B → B′ be a homomor-
phism of A-algebras. Assume that

(1) B/IB → B′/IB′ is flat, and
(2) TorB1 (B′, B/IB) = 0.

https://stacks.math.columbia.edu/tag/07KE
https://stacks.math.columbia.edu/tag/07HD
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Then for any ideal IB ⊂ J ⊂ B the canonical map
DB(J)⊗B B′ −→ DB′(JB′)

is an isomorphism.

Proof. Set D = DB(J) and denote J̄ ⊂ D its divided power ideal with divided
power structure γ̄. The universal property of D produces a B-algebra map D →
DB′(JB′), whence a map as in the lemma. It suffices to show that the divided
powers γ̄ extend to D ⊗B B′ since then the universal property of DB′(JB′) will
produce a map DB′(JB′)→ D ⊗B B′ inverse to the one in the lemma.
Choose a surjection P → B′ where P is a polynomial algebra over B. In particular
B → P is flat, hence D → D ⊗B P is flat by Algebra, Lemma 10.39.7. Then γ̄
extends to D ⊗B P by Divided Power Algebra, Lemma 23.4.2; we will denote this
extension γ̄ also. Set a = Ker(P → B′) so that we have the short exact sequence

0→ a→ P → B′ → 0
Thus TorB1 (B′, B/IB) = 0 implies that a ∩ IP = Ia. Now we have the following
commutative diagram

B/J ⊗B a
β
// B/J ⊗B P // B/J ⊗B B′

D ⊗B a
α //

OO

D ⊗B P //

OO

D ⊗B B′

OO

J̄ ⊗B a //

OO

J̄ ⊗B P //

OO

J̄ ⊗B B′

OO

This diagram is exact even with 0’s added at the top and the right. We have to
show the divided powers on the ideal J̄ ⊗B P preserve the ideal Im(α) ∩ J̄ ⊗B P ,
see Divided Power Algebra, Lemma 23.4.3. Consider the exact sequence

0→ a/Ia→ P/IP → B′/IB′ → 0
(which uses that a ∩ IP = Ia as seen above). As B′/IB′ is flat over B/IB this
sequence remains exact after applying B/J⊗B/IB−, see Algebra, Lemma 10.39.12.
Hence

Ker(B/J ⊗B/IB a/Ia→ B/J ⊗B/IB P/IP ) = Ker(a/Ja→ P/JP )

is zero. Thus β is injective. It follows that Im(α) ∩ J̄ ⊗B P is the image of J̄ ⊗ a.
Now if f ∈ J̄ and a ∈ a, then γ̄n(f ⊗ a) = γ̄n(f)⊗ an hence the result is clear. □

The following lemma is a special case of [dJ95, Proposition 2.1.7] which in turn is
a generalization of [Ber74, Proposition 2.8.2].

Lemma 60.2.7.07HE Let (B, I, γ) → (B′, I ′, γ′) be a homomorphism of divided power
rings. Let I ⊂ J ⊂ B and I ′ ⊂ J ′ ⊂ B′ be ideals. Assume

(1) B/I → B′/I ′ is flat, and
(2) J ′ = JB′ + I ′.

Then the canonical map
DB,γ(J)⊗B B′ −→ DB′,γ′(J ′)

is an isomorphism.

https://stacks.math.columbia.edu/tag/07HE
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Proof. Set D = DB,γ(J). Choose elements ft ∈ J which generate J/I. Set R =
{(r0, rt) ∈ I ⊕

⊕
t∈T B |

∑
rtft = r0 in B} as in the proof of Lemma 60.2.4. This

lemma shows that
D = B⟨xt⟩/K

where K is generated by the elements xt − ft and δn(
∑
rtxt − r0) for (r0, rt) ∈ R.

Thus we see that

(60.2.7.1)07HF D ⊗B B′ = B′⟨xt⟩/K ′

where K ′ is generated by the images in B′⟨xt⟩ of the generators of K listed above.
Let f ′

t ∈ B′ be the image of ft. By assumption (1) we see that the elements f ′
t ∈ J ′

generate J ′/I ′ and we see that xt − f ′
t ∈ K ′. Set

R′ = {(r′
0, r

′
t) ∈ I ′ ⊕

⊕
t∈T

B′ |
∑

r′
tf

′
t = r′

0 in B′}

To finish the proof we have to show that δ′
n(
∑
r′
txt − r′

0) ∈ K ′ for (r′
0, r

′
t) ∈ R′,

because then the presentation (60.2.7.1) of D⊗B B′ is identical to the presentation
ofDB′,γ′(J ′) obtain in Lemma 60.2.4 from the generators f ′

t . Suppose that (r′
0, r

′
t) ∈

R′. Then
∑
r′
tf

′
t = 0 in B′/I ′. As B/I → B′/I ′ is flat by assumption (1) we can

apply the equational criterion of flatness (Algebra, Lemma 10.39.11) to see that
there exist an m > 0 and rjt ∈ B and cj ∈ B′, j = 1, . . . ,m such that

rj0 =
∑

t
rjtft ∈ I for j = 1, . . . ,m

and
i′t = r′

t −
∑

j
cjrjt ∈ I ′ for all t

Note that this also implies that r′
0 =

∑
t i

′
tft +

∑
j cjrj0. Then we have

δ′
n(
∑

t
r′
txt − r′

0) = δ′
n(
∑

t
i′txt +

∑
t,j
cjrjtxt −

∑
t
i′tft −

∑
j
cjrj0)

= δ′
n(
∑

t
i′t(xt − ft) +

∑
j
cj(
∑

t
rjtxt − rj0))

Since δn(a+b) =
∑
m=0,...,n δm(a)δn−m(b) and since δm(

∑
i′t(xt−ft)) is in the ideal

generated by xt−ft ∈ K ′ for m > 0, it suffices to prove that δn(
∑
cj(
∑
rjtxt−rj0))

is in K ′. For this we use

δn(
∑

j
cj(
∑

t
rjtxt−rj0)) =

∑
cn1

1 . . . cnmm δn1(
∑

r1txt−r10) . . . δnm(
∑

rmtxt−rm0)

where the sum is over n1 + . . .+ nm = n. This proves what we want. □

60.3. Some explicit divided power thickenings

07HG The constructions in this section will help us to define the connection on a crystal
in modules on the crystalline site.

Lemma 60.3.1.07HH Let (A, I, γ) be a divided power ring. Let M be an A-module. Let
B = A⊕M as an A-algebra where M is an ideal of square zero and set J = I⊕M .
Set

δn(x+ z) = γn(x) + γn−1(x)z
for x ∈ I and z ∈ M . Then δ is a divided power structure and A → B is a
homomorphism of divided power rings from (A, I, γ) to (B, J, δ).

https://stacks.math.columbia.edu/tag/07HH
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Proof. We have to check conditions (1) – (5) of Divided Power Algebra, Definition
23.2.1. We will prove this directly for this case, but please see the proof of the next
lemma for a method which avoids calculations. Conditions (1) and (3) are clear.
Condition (2) follows from
δn(x+ z)δm(x+ z) = (γn(x) + γn−1(x)z)(γm(x) + γm−1(x)z)

= γn(x)γm(x) + γn(x)γm−1(x)z + γn−1(x)γm(x)z

= (n+m)!
n!m! γn+m(x) +

(
(n+m− 1)!
n!(m− 1)! + (n+m− 1)!

(n− 1)!m!

)
γn+m−1(x)z

= (n+m)!
n!m! δn+m(x+ z)

Condition (5) follows from
δn(δm(x+ z)) = δn(γm(x) + γm−1(x)z)

= γn(γm(x)) + γn−1(γm(x))γm−1(x)z

= (nm)!
n!(m!)n γnm(x) + ((n− 1)m)!

(n− 1)!(m!)n−1 γ(n−1)m(x)γm−1(x)z

= (nm)!
n!(m!)n (γnm(x) + γnm−1(x)z)

by elementary number theory. To prove (4) we have to see that
δn(x+ x′ + z + z′) = γn(x+ x′) + γn−1(x+ x′)(z + z′)

is equal to ∑n

i=0
(γi(x) + γi−1(x)z)(γn−i(x′) + γn−i−1(x′)z′)

This follows easily on collecting the coefficients of 1, z, and z′ and using condition
(4) for γ. □

Lemma 60.3.2.07HI Let (A, I, γ) be a divided power ring. Let M , N be A-modules.
Let q : M ×M → N be an A-bilinear map. Let B = A⊕M ⊕N as an A-algebra
with multiplication

(x, z, w) · (x′, z′, w′) = (xx′, xz′ + x′z, xw′ + x′w + q(z, z′) + q(z′, z))
and set J = I ⊕M ⊕N . Set

δn(x, z, w) = (γn(x), γn−1(x)z, γn−1(x)w + γn−2(x)q(z, z))
for (x, z, w) ∈ J . Then δ is a divided power structure and A → B is a homomor-
phism of divided power rings from (A, I, γ) to (B, J, δ).

Proof. Suppose we want to prove that property (4) of Divided Power Algebra,
Definition 23.2.1 is satisfied. Pick (x, z, w) and (x′, z′, w′) in J . Pick a map

A0 = Z⟨s, s′⟩ −→ A, s 7−→ x, s′ 7−→ x′

which is possible by the universal property of divided power polynomial rings. Set
M0 = A0 ⊕ A0 and N0 = A0 ⊕ A0 ⊕M0 ⊗A0 M0. Let q0 : M0 ×M0 → N0 be the
obvious map. Define M0 →M as the A0-linear map which sends the basis vectors
of M0 to z and z′. Define N0 → N as the A0 linear map which sends the first two
basis vectors of N0 to w and w′ and uses M0⊗A0 M0 →M ⊗AM

q−→ N on the last
summand. Then we see that it suffices to prove the identity (4) for the situation
(A0,M0, N0, q0). Similarly for the other identities. This reduces us to the case of a

https://stacks.math.columbia.edu/tag/07HI
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Z-torsion free ring A and A-torsion free modules. In this case all we have to do is
show that

n!δn(x, z, w) = (x, z, w)n

in the ring A, see Divided Power Algebra, Lemma 23.2.2. To see this note that
(x, z, w)2 = (x2, 2xz, 2xw + 2q(z, z))

and by induction
(x, z, w)n = (xn, nxn−1z, nxn−1w + n(n− 1)xn−2q(z, z))

On the other hand,
n!δn(x, z, w) = (n!γn(x), n!γn−1(x)z, n!γn−1(x)w + n!γn−2(x)q(z, z))

which matches. This finishes the proof. □

60.4. Compatibility

07HJ This section isn’t required reading; it explains how our discussion fits with that of
[Ber74]. Consider the following technical notion.

Definition 60.4.1.07HK Let (A, I, γ) and (B, J, δ) be divided power rings. Let A→ B be
a ring map. We say δ is compatible with γ if there exists a divided power structure
γ̄ on J + IB such that

(A, I, γ)→ (B, J + IB, γ̄) and (B, J, δ)→ (B, J + IB, γ̄)
are homomorphisms of divided power rings.

Let p be a prime number. Let (A, I, γ) be a divided power ring. Let A → C be
a ring map with p nilpotent in C. Assume that γ extends to IC (see Divided
Power Algebra, Lemma 23.4.2). In this situation, the (big affine) crystalline site
of Spec(C) over Spec(A) as defined in [Ber74] is the opposite of the category of
systems

(B, J, δ, A→ B,C → B/J)
where

(1) (B, J, δ) is a divided power ring with p nilpotent in B,
(2) δ is compatible with γ, and
(3) the diagram

B // B/J

A

OO

// C

OO

is commutative.
The conditions “γ extends to C and δ compatible with γ” are used in [Ber74] to
ensure that the crystalline cohomology of Spec(C) is the same as the crystalline
cohomology of Spec(C/IC). We will avoid this issue by working exclusively with C
such that IC = 01. In this case, for a system (B, J, δ, A→ B,C → B/J) as above,
the commutativity of the displayed diagram above implies IB ⊂ J and compatibil-
ity is equivalent to the condition that (A, I, γ) → (B, J, δ) is a homomorphism of
divided power rings.

1Of course there will be a price to pay.

https://stacks.math.columbia.edu/tag/07HK
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60.5. Affine crystalline site

07HL In this section we discuss the algebraic variant of the crystalline site. Our basic
situation in which we discuss this material will be as follows.

Situation 60.5.1.07MD Here p is a prime number, (A, I, γ) is a divided power ring such
that A is a Z(p)-algebra, and A→ C is a ring map such that IC = 0 and such that
p is nilpotent in C.

Usually the prime number p will be contained in the divided power ideal I.

Definition 60.5.2.07HM In Situation 60.5.1.
(1) A divided power thickening of C over (A, I, γ) is a homomorphism of

divided power algebras (A, I, γ)→ (B, J, δ) such that p is nilpotent in B
and a ring map C → B/J such that

B // B/J

C

OO

A

OO

// A/I

OO

is commutative.
(2) A homomorphism of divided power thickenings

(B, J, δ, C → B/J) −→ (B′, J ′, δ′, C → B′/J ′)

is a homomorphism φ : B → B′ of divided power A-algebras such that
C → B/J → B′/J ′ is the given map C → B′/J ′.

(3) We denote CRIS(C/A, I, γ) or simply CRIS(C/A) the category of divided
power thickenings of C over (A, I, γ).

(4) We denote Cris(C/A, I, γ) or simply Cris(C/A) the full subcategory con-
sisting of (B, J, δ, C → B/J) such that C → B/J is an isomorphism. We
often denote such an object (B → C, δ) with J = Ker(B → C) being
understood.

Note that for a divided power thickening (B, J, δ) as above the ideal J is locally
nilpotent, see Divided Power Algebra, Lemma 23.2.6. There is a canonical functor

(60.5.2.1)07KF CRIS(C/A) −→ C-algebras, (B, J, δ) 7−→ B/J

This category does not have equalizers or fibre products in general. It also doesn’t
have an initial object (= empty colimit) in general.

Lemma 60.5.3.07HN In Situation 60.5.1.
(1) CRIS(C/A) has finite products (but not infinite ones),
(2) CRIS(C/A) has all finite nonempty colimits and (60.5.2.1) commutes with

these, and
(3) Cris(C/A) has all finite nonempty colimits and Cris(C/A)→ CRIS(C/A)

commutes with them.

https://stacks.math.columbia.edu/tag/07MD
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Proof. The empty product, i.e., the final object in the category of divided power
thickenings of C over (A, I, γ), is the zero ring viewed as an A-algebra endowed with
the zero ideal and the unique divided powers on the zero ideal and finally endowed
with the unique homomorphism of C to the zero ring. If (Bt, Jt, δt)t∈T is a family
of objects of CRIS(C/A) then we can form the product (

∏
tBt,

∏
t Jt,

∏
t δt) as in

Divided Power Algebra, Lemma 23.3.2. The map C →
∏
Bt/

∏
Jt =

∏
Bt/Jt is

clear. However, we are only guaranteed that p is nilpotent in
∏
tBt if T is finite.

Given two objects (B, J, γ) and (B′, J ′, γ′) of CRIS(C/A) we can form a cocartesian
diagram

(B, J, δ) // (B′′, J ′′, δ′′)

(A, I, γ) //

OO

(B′, J ′, δ′)

OO

in the category of divided power rings. Then we see that we have

B′′/J ′′ = B/J ⊗A/I B′/J ′ ←− C ⊗A/I C

see Divided Power Algebra, Remark 23.3.5. Denote J ′′ ⊂ K ⊂ B′′ the ideal such
that

B′′/J ′′ // B′′/K

C ⊗A/I C //

OO

C

OO

is a pushout, i.e., B′′/K ∼= B/J ⊗C B′/J ′. Let DB′′(K) = (D, K̄, δ̄) be the divided
power envelope of K in B′′ relative to (B′′, J ′′, δ′′). Then it is easily verified that
(D, K̄, δ̄) is a coproduct of (B, J, δ) and (B′, J ′, δ′) in CRIS(C/A).

Next, we come to coequalizers. Let α, β : (B, J, δ) → (B′, J ′, δ′) be morphisms of
CRIS(C/A). Consider B′′ = B′/(α(b) − β(b)). Let J ′′ ⊂ B′′ be the image of J ′.
Let DB′′(J ′′) = (D, J̄, δ̄) be the divided power envelope of J ′′ in B′′ relative to
(B′, J ′, δ′). Then it is easily verified that (D, J̄, δ̄) is the coequalizer of (B, J, δ) and
(B′, J ′, δ′) in CRIS(C/A).

By Categories, Lemma 4.18.6 we have all finite nonempty colimits in CRIS(C/A).
The constructions above shows that (60.5.2.1) commutes with them. This formally
implies part (3) as Cris(C/A) is the fibre category of (60.5.2.1) over C. □

Remark 60.5.4.07KH In Situation 60.5.1 we denote Cris∧(C/A) the category whose
objects are pairs (B → C, δ) such that

(1) B is a p-adically complete A-algebra,
(2) B → C is a surjection of A-algebras,
(3) δ is a divided power structure on Ker(B → C),
(4) A→ B is a homomorphism of divided power rings.

Morphisms are defined as in Definition 60.5.2. Then Cris(C/A) ⊂ Cris∧(C/A) is
the full subcategory consisting of those B such that p is nilpotent in B. Conversely,
any object (B → C, δ) of Cris∧(C/A) is equal to the limit

(B → C, δ) = lime(B/peB → C, δ)

https://stacks.math.columbia.edu/tag/07KH
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where for e ≫ 0 the object (B/peB → C, δ) lies in Cris(C/A), see Divided Power
Algebra, Lemma 23.4.5. In particular, we see that Cris∧(C/A) is a full subcategory
of the category of pro-objects of Cris(C/A), see Categories, Remark 4.22.5.

Lemma 60.5.5.07KG In Situation 60.5.1. Let P → C be a surjection of A-algebras with
kernel J . Write DP,γ(J) = (D, J̄, γ̄). Let (D∧, J∧, γ̄∧) be the p-adic completion of
D, see Divided Power Algebra, Lemma 23.4.5. For every e ≥ 1 set Pe = P/peP
and Je ⊂ Pe the image of J and write DPe,γ(Je) = (De, J̄e, γ̄). Then for all e large
enough we have

(1) peD ⊂ J̄ and peD∧ ⊂ J̄∧ are preserved by divided powers,
(2) D∧/peD∧ = D/peD = De as divided power rings,
(3) (De, J̄e, γ̄) is an object of Cris(C/A),
(4) (D∧, J̄∧, γ̄∧) is equal to lime(De, J̄e, γ̄), and
(5) (D∧, J̄∧, γ̄∧) is an object of Cris∧(C/A).

Proof. Part (1) follows from Divided Power Algebra, Lemma 23.4.5. It is a general
property of p-adic completion that D/peD = D∧/peD∧. Since D/peD is a divided
power ring and since P → D/peD factors through Pe, the universal property of De

produces a map De → D/peD. Conversely, the universal property of D produces
a map D → De which factors through D/peD. We omit the verification that these
maps are mutually inverse. This proves (2). If e is large enough, then peC = 0,
hence we see (3) holds. Part (4) follows from Divided Power Algebra, Lemma
23.4.5. Part (5) is clear from the definitions. □

Lemma 60.5.6.07HP In Situation 60.5.1. Let P be a polynomial algebra over A and let
P → C be a surjection of A-algebras with kernel J . With (De, J̄e, γ̄) as in Lemma
60.5.5: for every object (B, JB , δ) of CRIS(C/A) there exists an e and a morphism
De → B of CRIS(C/A).

Proof. We can find an A-algebra homomorphism P → B lifting the map C →
B/JB . By our definition of CRIS(C/A) we see that peB = 0 for some e hence
P → B factors as P → Pe → B. By the universal property of the divided power
envelope we conclude that Pe → B factors through De. □

Lemma 60.5.7.07KI In Situation 60.5.1. Let P be a polynomial algebra over A and let
P → C be a surjection of A-algebras with kernel J . Let (D, J̄, γ̄) be the p-adic
completion of DP,γ(J). For every object (B → C, δ) of Cris∧(C/A) there exists a
morphism D → B of Cris∧(C/A).

Proof. We can find an A-algebra homomorphism P → B compatible with maps to
C. By our definition of Cris(C/A) we see that P → B factors as P → DP,γ(J)→ B.
As B is p-adically complete we can factor this map through D. □

60.6. Module of differentials

07HQ In this section we develop a theory of modules of differentials for divided power
rings.

Definition 60.6.1.07HR Let A be a ring. Let (B, J, δ) be a divided power ring. Let
A→ B be a ring map. Let M be an B-module. A divided power A-derivation into

https://stacks.math.columbia.edu/tag/07KG
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M is a map θ : B → M which is additive, annihilates the elements of A, satisfies
the Leibniz rule θ(bb′) = bθ(b′) + b′θ(b) and satisfies

θ(δn(x)) = δn−1(x)θ(x)
for all n ≥ 1 and all x ∈ J .
In the situation of the definition, just as in the case of usual derivations, there exists
a universal divided power A-derivation

dB/A,δ : B → ΩB/A,δ
such that any divided power A-derivation θ : B → M is equal to θ = ξ ◦ dB/A,δ
for some unique B-linear map ξ : ΩB/A,δ → M . If (A, I, γ) → (B, J, δ) is a
homomorphism of divided power rings, then we can forget the divided powers on
A and consider the divided power derivations of B over A. Here are some basic
properties of the universal module of (divided power) differentials.
Lemma 60.6.2.07HS Let A be a ring. Let (B, J, δ) be a divided power ring and A→ B
a ring map.

(1) Consider B[x] with divided power ideal (JB[x], δ′) where δ′ is the exten-
sion of δ to B[x]. Then

ΩB[x]/A,δ′ = ΩB/A,δ ⊗B B[x]⊕B[x]dx.
(2) Consider B⟨x⟩ with divided power ideal (JB⟨x⟩+B⟨x⟩+, δ′). Then

ΩB⟨x⟩/A,δ′ = ΩB/A,δ ⊗B B⟨x⟩ ⊕B⟨x⟩dx.
(3) Let K ⊂ J be an ideal preserved by δn for all n > 0. Set B′ = B/K

and denote δ′ the induced divided power on J/K. Then ΩB′/A,δ′ is the
quotient of ΩB/A,δ⊗BB′ by the B′-submodule generated by dk for k ∈ K.

Proof. These are proved directly from the construction of ΩB/A,δ as the free B-
module on the elements db modulo the relations

(1) d(b+ b′) = db+ db′, b, b′ ∈ B,
(2) da = 0, a ∈ A,
(3) d(bb′) = bdb′ + b′db, b, b′ ∈ B,
(4) dδn(f) = δn−1(f)df , f ∈ J , n > 1.

Note that the last relation explains why we get “the same” answer for the divided
power polynomial algebra and the usual polynomial algebra: in the first case x is
an element of the divided power ideal and hence dx[n] = x[n−1]dx. □

Let (A, I, γ) be a divided power ring. In this setting the correct version of the
powers of I is given by the divided powers

I [n] = ideal generated by γe1(x1) . . . γet(xt) with
∑

ej ≥ n and xj ∈ I.

Of course we have In ⊂ I [n]. Note that I [1] = I. Sometimes we also set I [0] = A.
Lemma 60.6.3.07HT Let (A, I, γ) → (B, J, δ) be a homomorphism of divided power
rings. Let (B(1), J(1), δ(1)) be the coproduct of (B, J, δ) with itself over (A, I, γ),
i.e., such that

(B, J, δ) // (B(1), J(1), δ(1))

(A, I, γ) //

OO

(B, J, δ)

OO
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is cocartesian. Denote K = Ker(B(1) → B). Then K ∩ J(1) ⊂ J(1) is preserved
by the divided power structure and

ΩB/A,δ = K/
(
K2 + (K ∩ J(1))[2]

)
canonically.

Proof. The fact that K ∩ J(1) ⊂ J(1) is preserved by the divided power structure
follows from the fact that B(1)→ B is a homomorphism of divided power rings.

Recall that K/K2 has a canonical B-module structure. Denote s0, s1 : B → B(1)
the two coprojections and consider the map d : B → K/K2 + (K ∩ J(1))[2] given
by b 7→ s1(b) − s0(b). It is clear that d is additive, annihilates A, and satisfies the
Leibniz rule. We claim that d is a divided power A-derivation. Let x ∈ J . Set
y = s1(x) and z = s0(x). Denote δ the divided power structure on J(1). We have
to show that δn(y)− δn(z) = δn−1(y)(y − z) modulo K2 + (K ∩ J(1))[2] for n ≥ 1.
The equality holds for n = 1. Assume n > 1. Note that δi(y−z) lies in (K∩J(1))[2]

for i > 1. Calculating modulo K2 + (K ∩ J(1))[2] we have

δn(z) = δn(z − y + y) =
∑n

i=0
δi(z − y)δn−i(y) = δn−1(y)δ1(z − y) + δn(y)

This proves the desired equality.

Let M be a B-module. Let θ : B → M be a divided power A-derivation. Set
D = B ⊕M where M is an ideal of square zero. Define a divided power structure
on J ⊕M ⊂ D by setting δn(x + m) = δn(x) + δn−1(x)m for n > 1, see Lemma
60.3.1. There are two divided power algebra homomorphisms B → D: the first is
given by the inclusion and the second by the map b 7→ b + θ(b). Hence we get a
canonical homomorphism B(1)→ D of divided power algebras over (A, I, γ). This
induces a map K →M which annihilates K2 (as M is an ideal of square zero) and
(K∩J(1))[2] as M [2] = 0. The composition B → K/K2 +(K∩J(1))[2] →M equals
θ by construction. It follows that d is a universal divided power A-derivation and
we win. □

Remark 60.6.4.07HU Let A → B be a ring map and let (J, δ) be a divided power
structure on B. The universal module ΩB/A,δ comes with a little bit of extra
structure, namely the B-submodule N of ΩB/A,δ generated by dB/A,δ(J). In terms
of the isomorphism given in Lemma 60.6.3 this corresponds to the image of K∩J(1)
in ΩB/A,δ. Consider the A-algebra D = B ⊕ Ω1

B/A,δ with ideal J̄ = J ⊕ N and
divided powers δ̄ as in the proof of the lemma. Then (D, J̄, δ̄) is a divided power ring
and the two maps B → D given by b 7→ b and b 7→ b+dB/A,δ(b) are homomorphisms
of divided power rings over A. Moreover, N is the smallest submodule of ΩB/A,δ
such that this is true.

Lemma 60.6.5.07HV In Situation 60.5.1. Let (B, J, δ) be an object of CRIS(C/A). Let
(B(1), J(1), δ(1)) be the coproduct of (B, J, δ) with itself in CRIS(C/A). Denote
K = Ker(B(1) → B). Then K ∩ J(1) ⊂ J(1) is preserved by the divided power
structure and

ΩB/A,δ = K/
(
K2 + (K ∩ J(1))[2]

)
canonically.
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Proof. Word for word the same as the proof of Lemma 60.6.3. The only point
that has to be checked is that the divided power ring D = B ⊕M is an object of
CRIS(C/A) and that the two maps B → C are morphisms of CRIS(C/A). Since
D/(J ⊕M) = B/J we can use C → B/J to view D as an object of CRIS(C/A)
and the statement on morphisms is clear from the construction. □

Lemma 60.6.6.07HW Let (A, I, γ) be a divided power ring. Let A → B be a ring map
and let IB ⊂ J ⊂ B be an ideal. Let DB,γ(J) = (D, J̄, γ̄) be the divided power
envelope. Then we have

ΩD/A,γ̄ = ΩB/A ⊗B D
First proof. Let M be a D-module. We claim that an A-derivation ϑ : B → M is
the same thing as a divided power A-derivation θ : D →M . The claim implies the
statement by the Yoneda lemma.
Consider the square zero thickening D⊕M of D. There is a divided power structure
δ on J̄⊕M if we set the higher divided power operations zero on M . In other words,
we set δn(x+m) = γ̄n(x)+ γ̄n−1(x)m for any x ∈ J̄ and m ∈M , see Lemma 60.3.1.
Consider the A-algebra map B → D ⊕M whose first component is given by the
map B → D and whose second component is ϑ. By the universal property we get a
corresponding homomorphism D → D⊕M of divided power algebras whose second
component is the divided power A-derivation θ corresponding to ϑ. □

Second proof. We will prove this first when B is flat over A. In this case γ extends
to a divided power structure γ′ on IB, see Divided Power Algebra, Lemma 23.4.2.
Hence D = DB,γ′(J) is equal to a quotient of the divided power ring (D′, J ′, δ)
whereD′ = B⟨xt⟩ and J ′ = IB⟨xt⟩+B⟨xt⟩+ by the elements xt−ft and δn(

∑
rtxt−

r0), see Lemma 60.2.4 for notation and explanation. Write d : D′ → ΩD′/A,δ for
the universal derivation. Note that

ΩD′/A,δ = ΩB/A ⊗B D′ ⊕
⊕

D′dxt,
see Lemma 60.6.2. We conclude that ΩD/A,γ̄ is the quotient of ΩD′/A,δ⊗D′D by the
submodule generated by d applied to the generators of the kernel of D′ → D listed
above, see Lemma 60.6.2. Since d(xt− ft) = −dft + dxt we see that we have dxt =
dft in the quotient. In particular we see that ΩB/A ⊗B D → ΩD/A,γ is surjective
with kernel given by the images of d applied to the elements δn(

∑
rtxt − r0).

However, given a relation
∑
rtft − r0 = 0 in B with rt ∈ B and r0 ∈ IB we see

that
dδn(

∑
rtxt − r0) = δn−1(

∑
rtxt − r0)d(

∑
rtxt − r0)

= δn−1(
∑

rtxt − r0)
(∑

rtd(xt − ft) +
∑

(xt − ft)drt
)

because
∑
rtft− r0 = 0 in B. Hence this is already zero in ΩB/A⊗AD and we win

in the case that B is flat over A.
In the general case we write B as a quotient of a polynomial ring P → B and let
J ′ ⊂ P be the inverse image of J . Then D = D′/K ′ with notation as in Lemma
60.2.3. By the case handled in the first paragraph of the proof we have ΩD′/A,γ̄′ =
ΩP/A⊗PD′. Then ΩD/A,γ̄ is the quotient of ΩP/A⊗PD by the submodule generated
by dγ̄′

n(k) where k is an element of the kernel of P → B, see Lemma 60.6.2 and
the description of K ′ from Lemma 60.2.3. Since dγ̄′

n(k) = γ̄′
n−1(k)dk we see again

that it suffices to divided by the submodule generated by dk with k ∈ Ker(P → B)

https://stacks.math.columbia.edu/tag/07HW
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and since ΩB/A is the quotient of ΩP/A ⊗A B by these elements (Algebra, Lemma
10.131.9) we win. □

Remark 60.6.7.07HZ Let A→ B be a ring map and let (J, δ) be a divided power structure
on B. Set ΩiB/A,δ = ∧iBΩB/A,δ where ΩB/A,δ is the target of the universal divided
power A-derivation d = dB/A : B → ΩB/A,δ. Note that ΩB/A,δ is the quotient
of ΩB/A by the B-submodule generated by the elements dδn(x) − δn−1(x)dx for
x ∈ J . We claim Algebra, Lemma 10.132.1 applies. To see this it suffices to verify
the elements dδn(x)− δn−1(x)dx of ΩB are mapped to zero in Ω2

B/A,δ. We observe
that

d(δn−1(x)) ∧ dx = δn−2(x)dx ∧ dx = 0
in Ω2

B/A,δ as desired. Hence we obtain a divided power de Rham complex

Ω0
B/A,δ → Ω1

B/A,δ → Ω2
B/A,δ → . . .

which will play an important role in the sequel.

Remark 60.6.8.07I0 Let A→ B be a ring map. Let ΩB/A → Ω be a quotient satisfying
the assumptions of Algebra, Lemma 10.132.1. Let M be a B-module. A connection
is an additive map

∇ : M −→M ⊗B Ω
such that ∇(bm) = b∇(m) + m ⊗ db for b ∈ B and m ∈ M . In this situation we
can define maps

∇ : M ⊗B Ωi −→M ⊗B Ωi+1

by the rule ∇(m⊗ ω) = ∇(m) ∧ ω +m⊗ dω. This works because if b ∈ B, then
∇(bm⊗ ω)−∇(m⊗ bω) = ∇(bm) ∧ ω + bm⊗ dω −∇(m) ∧ bω −m⊗ d(bω)

= b∇(m) ∧ ω +m⊗ db ∧ ω + bm⊗ dω
− b∇(m) ∧ ω − bm⊗ d(ω)−m⊗ db ∧ ω = 0

As is customary we say the connection is integrable if and only if the composition

M
∇−→M ⊗B Ω1 ∇−→M ⊗B Ω2

is zero. In this case we obtain a complex

M
∇−→M ⊗B Ω1 ∇−→M ⊗B Ω2 ∇−→M ⊗B Ω3 ∇−→M ⊗B Ω4 → . . .

which is called the de Rham complex of the connection.

Remark 60.6.9.07KJ Consider a commutative diagram of rings

B
φ
// B′

A

OO

// A′

OO

Let ΩB/A → Ω and ΩB′/A′ → Ω′ be quotients satisfying the assumptions of Algebra,
Lemma 10.132.1. Assume there is a map φ : Ω→ Ω′ which fits into a commutative
diagram

ΩB/A //

��

ΩB′/A′

��
Ω φ // Ω′

https://stacks.math.columbia.edu/tag/07HZ
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where the top horizontal arrow is the canonical map ΩB/A → ΩB′/A′ induced by
φ : B → B′. In this situation, given any pair (M,∇) where M is a B-module and
∇ : M →M ⊗B Ω is a connection we obtain a base change (M ⊗B B′,∇′) where

∇′ : M ⊗B B′ −→ (M ⊗B B′)⊗B′ Ω′ = M ⊗B Ω′

is defined by the rule

∇′(m⊗ b′) =
∑

mi ⊗ b′dφ(bi) +m⊗ db′

if ∇(m) =
∑
mi ⊗ dbi. If ∇ is integrable, then so is ∇′, and in this case there is a

canonical map of de Rham complexes (Remark 60.6.8)

(60.6.9.1)07PY M ⊗B Ω• −→ (M ⊗B B′)⊗B′ (Ω′)• = M ⊗B (Ω′)•

which maps m⊗ η to m⊗ φ(η).

Lemma 60.6.10.07KK Let A → B be a ring map and let (J, δ) be a divided power
structure on B. Let p be a prime number. Assume that A is a Z(p)-algebra and
that p is nilpotent in B/J . Then we have

lime ΩBe/A,δ̄ = lime ΩB/A,δ/peΩB/A,δ = lime ΩB∧/A,δ∧/peΩB∧/A,δ∧

see proof for notation and explanation.

Proof. By Divided Power Algebra, Lemma 23.4.5 we see that δ extends to Be =
B/peB for all sufficiently large e. Hence the first limit make sense. The lemma also
produces a divided power structure δ∧ on the completion B∧ = limeBe, hence the
last limit makes sense. By Lemma 60.6.2 and the fact that dpe = 0 (always) we see
that the surjection ΩB/A,δ → ΩBe/A,δ̄ has kernel peΩB/A,δ. Similarly for the kernel
of ΩB∧/A,δ∧ → ΩBe/A,δ̄. Hence the lemma is clear. □

60.7. Divided power schemes

07I1 Some remarks on how to globalize the previous notions.

Definition 60.7.1.07I2 Let C be a site. Let O be a sheaf of rings on C. Let I ⊂ O be a
sheaf of ideals. A divided power structure γ on I is a sequence of maps γn : I → I,
n ≥ 1 such that for any object U of C the triple

(O(U), I(U), γ)

is a divided power ring.

To be sure this applies in particular to sheaves of rings on topological spaces. But
it’s good to be a little bit more general as the structure sheaf of the crystalline
site lives on a... site! A triple (C, I, γ) as in the definition above is sometimes
called a divided power topos in this chapter. Given a second (C′, I ′, γ′) and given
a morphism of ringed topoi (f, f ♯) : (Sh(C),O) → (Sh(C′),O′) we say that (f, f ♯)
induces a morphism of divided power topoi if f ♯(f−1I ′) ⊂ I and the diagrams

f−1I ′

f−1γ′
n

��

f♯
// I

γn

��
f−1I ′ f♯ // I

https://stacks.math.columbia.edu/tag/07KK
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are commutative for all n ≥ 1. If f comes from a morphism of sites induced by a
functor u : C′ → C then this just means that

(O′(U ′), I ′(U ′), γ′) −→ (O(u(U ′)), I(u(U ′)), γ)
is a homomorphism of divided power rings for all U ′ ∈ Ob(C′).
In the case of schemes we require the divided power ideal to be quasi-coherent. But
apart from this the definition is exactly the same as in the case of topoi. Here it is.

Definition 60.7.2.07I3 A divided power scheme is a triple (S, I, γ) where S is a scheme,
I is a quasi-coherent sheaf of ideals, and γ is a divided power structure on I. A
morphism of divided power schemes (S, I, γ)→ (S′, I ′, γ′) is a morphism of schemes
f : S → S′ such that f−1I ′OS ⊂ I and such that

(OS′(U ′), I ′(U ′), γ′) −→ (OS(f−1U ′), I(f−1U ′), γ)
is a homomorphism of divided power rings for all U ′ ⊂ S′ open.

Recall that there is a 1-to-1 correspondence between quasi-coherent sheaves of ideals
and closed immersions, see Morphisms, Section 29.2. Thus given a divided power
scheme (T,J , γ) we get a canonical closed immersion U → T defined by J . Con-
versely, given a closed immersion U → T and a divided power structure γ on the
sheaf of ideals J associated to U → T we obtain a divided power scheme (T,J , γ).
In many situations we only want to consider such triples (U, T, γ) when the mor-
phism U → T is a thickening, see More on Morphisms, Definition 37.2.1.

Definition 60.7.3.07I4 A triple (U, T, γ) as above is called a divided power thickening
if U → T is a thickening.

Fibre products of divided power schemes exist when one of the three is a divided
power thickening. Here is a formal statement.

Lemma 60.7.4.07ME Let (U ′, T ′, δ′) → (S′
0, S

′, γ′) and (S0, S, γ) → (S′
0, S

′, γ′) be mor-
phisms of divided power schemes. If (U ′, T ′, δ′) is a divided power thickening, then
there exists a divided power scheme (T0, T, δ) and

T //

��

T ′

��
S // S′

which is a cartesian diagram in the category of divided power schemes.

Proof. Omitted. Hints: If T exists, then T0 = S0 ×S′
0
U ′ (argue as in Divided

Power Algebra, Remark 23.3.5). Since T ′ is a divided power thickening, we see
that T (if it exists) will be a divided power thickening too. Hence we can define T
as the scheme with underlying topological space the underlying topological space
of T0 = S0 ×S′

0
U ′ and as structure sheaf on affine pieces the ring given by Lemma

60.5.3. □

We make the following observation. Suppose that (U, T, γ) is triple as above. As-
sume that T is a scheme over Z(p) and that p is locally nilpotent on U . Then

(1) p locally nilpotent on T ⇔ U → T is a thickening (see Divided Power
Algebra, Lemma 23.2.6), and

https://stacks.math.columbia.edu/tag/07I3
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(2) peOT is locally on T preserved by γ for e≫ 0 (see Divided Power Algebra,
Lemma 23.4.5).

This suggest that good results on divided power thickenings will be available under
the following hypotheses.
Situation 60.7.5.07MF Here p is a prime number and (S, I, γ) is a divided power scheme
over Z(p). We set S0 = V (I) ⊂ S. Finally, X → S0 is a morphism of schemes such
that p is locally nilpotent on X.
It is in this situation that we will define the big and small crystalline sites.

60.8. The big crystalline site

07I5 We first define the big site. Given a divided power scheme (S, I, γ) we say (T,J , δ)
is a divided power scheme over (S, I, γ) if T comes endowed with a morphism T → S
of divided power schemes. Similarly, we say a divided power thickening (U, T, δ)
is a divided power thickening over (S, I, γ) if T comes endowed with a morphism
T → S of divided power schemes.
Definition 60.8.1.07I6 In Situation 60.7.5.

(1) A divided power thickening of X relative to (S, I, γ) is given by a divided
power thickening (U, T, δ) over (S, I, γ) and an S-morphism U → X.

(2) A morphism of divided power thickenings of X relative to (S, I, γ) is
defined in the obvious manner.

The category of divided power thickenings of X relative to (S, I, γ) is denoted
CRIS(X/S, I, γ) or simply CRIS(X/S).
For any (U, T, δ) in CRIS(X/S) we have that p is locally nilpotent on T , see dis-
cussion preceding Situation 60.7.5. A good way to visualize all the data associated
to (U, T, δ) is the commutative diagram

T

��

Uoo

��
X

��
S S0oo

where S0 = V (I) ⊂ S. Morphisms of CRIS(X/S) can be similarly visualized as
huge commutative diagrams. In particular, there is a canonical forgetful functor
(60.8.1.1)07I7 CRIS(X/S) −→ Sch/X, (U, T, δ) 7−→ U

as well as its one sided inverse (and left adjoint)
(60.8.1.2)07I8 Sch/X −→ CRIS(X/S), U 7−→ (U,U, ∅)
which is sometimes useful.
Lemma 60.8.2.07I9 In Situation 60.7.5. The category CRIS(X/S) has all finite nonempty
limits, in particular products of pairs and fibre products. The functor (60.8.1.1)
commutes with limits.
Proof. Omitted. Hint: See Lemma 60.5.3 for the affine case. See also Divided
Power Algebra, Remark 23.3.5. □

https://stacks.math.columbia.edu/tag/07MF
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Lemma 60.8.3.07IA In Situation 60.7.5. Let

(U3, T3, δ3)

��

// (U2, T2, δ2)

��
(U1, T1, δ1) // (U, T, δ)

be a fibre square in the category of divided power thickenings of X relative to
(S, I, γ). If T2 → T is flat and U2 = T2 ×T U , then T3 = T1 ×T T2 (as schemes).

Proof. This is true because a divided power structure extends uniquely along a flat
ring map. See Divided Power Algebra, Lemma 23.4.2. □

The lemma above means that the base change of a flat morphism of divided power
thickenings is another flat morphism, and in fact is the “usual” base change of the
morphism. This implies that the following definition makes sense.

Definition 60.8.4.07IB In Situation 60.7.5.
(1) A family of morphisms {(Ui, Ti, δi)→ (U, T, δ)} of divided power thicken-

ings of X/S is a Zariski, étale, smooth, syntomic, or fppf covering if and
only if
(a) Ui = U ×T Ti for all i and
(b) {Ti → T} is a Zariski, étale, smooth, syntomic, or fppf covering.

(2) The big crystalline site of X over (S, I, γ), is the category CRIS(X/S)
endowed with the Zariski topology.

(3) The topos of sheaves on CRIS(X/S) is denoted (X/S)CRIS or sometimes
(X/S, I, γ)CRIS

2.

There are some obvious functorialities concerning these topoi.

Remark 60.8.5 (Functoriality).07IC Let p be a prime number. Let (S, I, γ)→ (S′, I ′, γ′)
be a morphism of divided power schemes over Z(p). Set S0 = V (I) and S′

0 = V (I ′).
Let

X
f
//

��

Y

��
S0 // S′

0

be a commutative diagram of morphisms of schemes and assume p is locally nilpo-
tent on X and Y . Then we get a continuous and cocontinuous functor

CRIS(X/S) −→ CRIS(Y/S′)

by letting (U, T, δ) correspond to (U, T, δ) with U → X → Y as the S′-morphism
from U to Y . Hence we get a morphism of topoi

fCRIS : (X/S)CRIS −→ (Y/S′)CRIS

see Sites, Section 7.21.

2This clashes with our convention to denote the topos associated to a site C by Sh(C).
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Remark 60.8.6 (Comparison with Zariski site).07ID In Situation 60.7.5. The functor
(60.8.1.1) is cocontinuous (details omitted) and commutes with products and fibred
products (Lemma 60.8.2). Hence we obtain a morphism of topoi

UX/S : (X/S)CRIS −→ Sh((Sch/X)Zar)

from the big crystalline topos of X/S to the big Zariski topos of X. See Sites,
Section 7.21.

Remark 60.8.7 (Structure morphism).07IE In Situation 60.7.5. Consider the closed
subscheme S0 = V (I) ⊂ S. If we assume that p is locally nilpotent on S0 (which is
always the case in practice) then we obtain a situation as in Definition 60.8.1 with
S0 instead of X. Hence we get a site CRIS(S0/S). If f : X → S0 is the structure
morphism of X over S, then we get a commutative diagram of morphisms of ringed
topoi

(X/S)CRIS
fCRIS

//

UX/S

��

(S0/S)CRIS

US0/S

��
Sh((Sch/X)Zar)

fbig // Sh((Sch/S0)Zar)

))
Sh((Sch/S)Zar)

by Remark 60.8.5. We think of the composition (X/S)CRIS → Sh((Sch/S)Zar) as
the structure morphism of the big crystalline site. Even if p is not locally nilpotent
on S0 the structure morphism

(X/S)CRIS −→ Sh((Sch/S)Zar)

is defined as we can take the lower route through the diagram above. Thus it is
the morphism of topoi corresponding to the cocontinuous functor CRIS(X/S) →
(Sch/S)Zar given by the rule (U, T, δ)/S 7→ U/S, see Sites, Section 7.21.

Remark 60.8.8 (Compatibilities).07MG The morphisms defined above satisfy numer-
ous compatibilities. For example, in the situation of Remark 60.8.5 we obtain a
commutative diagram of ringed topoi

(X/S)CRIS

��

// (Y/S′)CRIS

��
Sh((Sch/S)Zar) // Sh((Sch/S′)Zar)

where the vertical arrows are the structure morphisms.

60.9. The crystalline site

07IF Since (60.8.1.1) commutes with products and fibre products, we see that looking at
those (U, T, δ) such that U → X is an open immersion defines a full subcategory
preserved under fibre products (and more generally finite nonempty limits). Hence
the following definition makes sense.

Definition 60.9.1.07IG In Situation 60.7.5.
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(1) The (small) crystalline site of X over (S, I, γ), denoted Cris(X/S, I, γ)
or simply Cris(X/S) is the full subcategory of CRIS(X/S) consisting of
those (U, T, δ) in CRIS(X/S) such that U → X is an open immersion. It
comes endowed with the Zariski topology.

(2) The topos of sheaves on Cris(X/S) is denoted (X/S)cris or sometimes
(X/S, I, γ)cris

3.

For any (U, T, δ) in Cris(X/S) the morphism U → X defines an object of the small
Zariski site XZar of X. Hence a canonical forgetful functor
(60.9.1.1)07IH Cris(X/S) −→ XZar, (U, T, δ) 7−→ U

and a left adjoint
(60.9.1.2)07II XZar −→ Cris(X/S), U 7−→ (U,U, ∅)
which is sometimes useful.
We can compare the small and big crystalline sites, just like we can compare the
small and big Zariski sites of a scheme, see Topologies, Lemma 34.3.14.

Lemma 60.9.2.07IJ Assumptions as in Definition 60.8.1. The inclusion functor
Cris(X/S)→ CRIS(X/S)

commutes with finite nonempty limits, is fully faithful, continuous, and cocontinu-
ous. There are morphisms of topoi

(X/S)cris
i−→ (X/S)CRIS

π−→ (X/S)cris

whose composition is the identity and of which the first is induced by the inclusion
functor. Moreover, π∗ = i−1.

Proof. For the first assertion see Lemma 60.8.2. This gives us a morphism of topoi
i : (X/S)cris → (X/S)CRIS and a left adjoint i! such that i−1i! = i−1i∗ = id, see
Sites, Lemmas 7.21.5, 7.21.6, and 7.21.7. We claim that i! is exact. If this is true,
then we can define π by the rules π−1 = i! and π∗ = i−1 and everything is clear.
To prove the claim, note that we already know that i! is right exact and preserves
fibre products (see references given). Hence it suffices to show that i!∗ = ∗ where
∗ indicates the final object in the category of sheaves of sets. To see this it suffices
to produce a set of objects (Ui, Ti, δi), i ∈ I of Cris(X/S) such that∐

i∈I
h(Ui,Ti,δi) → ∗

is surjective in (X/S)CRIS (details omitted; hint: use that Cris(X/S) has products
and that the functor Cris(X/S)→ CRIS(X/S) commutes with them). In the affine
case this follows from Lemma 60.5.6. We omit the proof in general. □

Remark 60.9.3 (Functoriality).07IK Let p be a prime number. Let (S, I, γ)→ (S′, I ′, γ′)
be a morphism of divided power schemes over Z(p). Let

X
f
//

��

Y

��
S0 // S′

0

3This clashes with our convention to denote the topos associated to a site C by Sh(C).
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be a commutative diagram of morphisms of schemes and assume p is locally nilpo-
tent on X and Y . By analogy with Topologies, Lemma 34.3.17 we define

fcris : (X/S)cris −→ (Y/S′)cris

by the formula fcris = πY ◦ fCRIS ◦ iX where iX and πY are as in Lemma 60.9.2 for
X and Y and where fCRIS is as in Remark 60.8.5.

Remark 60.9.4 (Comparison with Zariski site).07IL In Situation 60.7.5. The functor
(60.9.1.1) is continuous, cocontinuous, and commutes with products and fibred
products. Hence we obtain a morphism of topoi

uX/S : (X/S)cris −→ Sh(XZar)

relating the small crystalline topos of X/S with the small Zariski topos of X. See
Sites, Section 7.21.

Lemma 60.9.5.07KL In Situation 60.7.5. Let X ′ ⊂ X and S′ ⊂ S be open subschemes
such that X ′ maps into S′. Then there is a fully faithful functor Cris(X ′/S′) →
Cris(X/S) which gives rise to a morphism of topoi fitting into the commutative
diagram

(X ′/S′)cris //

uX′/S′

��

(X/S)cris

uX/S

��
Sh(X ′

Zar) // Sh(XZar)

Moreover, this diagram is an example of localization of morphisms of topoi as in
Sites, Lemma 7.31.1.

Proof. The fully faithful functor comes from thinking of objects of Cris(X ′/S′) as
divided power thickenings (U, T, δ) of X where U → X factors through X ′ ⊂ X
(since then automatically T → S will factor through S′). This functor is clearly co-
continuous hence we obtain a morphism of topoi as indicated. Let hX′ ∈ Sh(XZar)
be the representable sheaf associated to X ′ viewed as an object of XZar. It is clear
that Sh(X ′

Zar) is the localization Sh(XZar)/hX′ . On the other hand, the cate-
gory Cris(X/S)/u−1

X/ShX′ (see Sites, Lemma 7.30.3) is canonically identified with
Cris(X ′/S′) by the functor above. This finishes the proof. □

Remark 60.9.6 (Structure morphism).07IM In Situation 60.7.5. Consider the closed
subscheme S0 = V (I) ⊂ S. If we assume that p is locally nilpotent on S0 (which is
always the case in practice) then we obtain a situation as in Definition 60.8.1 with
S0 instead of X. Hence we get a site Cris(S0/S). If f : X → S0 is the structure
morphism of X over S, then we get a commutative diagram of ringed topoi

(X/S)cris
fcris

//

uX/S

��

(S0/S)cris

uS0/S

��
Sh(XZar)

fsmall // Sh(S0,Zar)

&&
Sh(SZar)
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see Remark 60.9.3. We think of the composition (X/S)cris → Sh(SZar) as the
structure morphism of the crystalline site. Even if p is not locally nilpotent on S0
the structure morphism

τX/S : (X/S)cris −→ Sh(SZar)

is defined as we can take the lower route through the diagram above.

Remark 60.9.7 (Compatibilities).07MH The morphisms defined above satisfy numer-
ous compatibilities. For example, in the situation of Remark 60.9.3 we obtain a
commutative diagram of ringed topoi

(X/S)cris

��

// (Y/S′)cris

��
Sh((Sch/S)Zar) // Sh((Sch/S′)Zar)

where the vertical arrows are the structure morphisms.

60.10. Sheaves on the crystalline site

07IN Notation and assumptions as in Situation 60.7.5. In order to discuss the small and
big crystalline sites of X/S simultaneously in this section we let

C = CRIS(X/S) or C = Cris(X/S).

A sheaf F on C gives rise to a restriction FT for every object (U, T, δ) of C. Namely,
FT is the Zariski sheaf on the scheme T defined by the rule

FT (W ) = F(U ∩W,W, δ|W )

for W ⊂ T is open. Moreover, if f : T → T ′ is a morphism between objects (U, T, δ)
and (U ′, T ′, δ′) of C, then there is a canonical comparison map

(60.10.0.1)07IP cf : f−1FT ′ −→ FT .

Namely, if W ′ ⊂ T ′ is open then f induces a morphism

f |f−1W ′ : (U ∩ f−1(W ′), f−1W ′, δ|f−1W ′) −→ (U ′ ∩W ′,W ′, δ|W ′)

of C, hence we can use the restriction mapping (f |f−1W ′)∗ of F to define a map
FT ′(W ′) → FT (f−1W ′). These maps are clearly compatible with further restric-
tion, hence define an f -map from FT ′ to FT (see Sheaves, Section 6.21 and especially
Sheaves, Definition 6.21.7). Thus a map cf as in (60.10.0.1). Note that if f is an
open immersion, then cf is an isomorphism, because in that case FT is just the
restriction of FT ′ to T .

Conversely, given Zariski sheaves FT for every object (U, T, δ) of C and comparison
maps cf as above which (a) are isomorphisms for open immersions, and (b) satisfy
a suitable cocycle condition, we obtain a sheaf on C. This is proved exactly as in
Topologies, Lemma 34.3.20.

The structure sheaf on C is the sheaf OX/S defined by the rule

OX/S : (U, T, δ) 7−→ Γ(T,OT )

https://stacks.math.columbia.edu/tag/07MH
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This is a sheaf by the definition of coverings in C. Suppose that F is a sheaf ofOX/S-
modules. In this case the comparison mappings (60.10.0.1) define a comparison
map

(60.10.0.2)07IQ cf : f∗FT ′ −→ FT
of OT -modules.

Another type of example comes by starting with a sheaf G on (Sch/X)Zar or XZar

(depending on whether C = CRIS(X/S) or C = Cris(X/S)). Then G defined by the
rule

G : (U, T, δ) 7−→ G(U)
is a sheaf on C. In particular, if we take G = Ga = OX , then we obtain

Ga : (U, T, δ) 7−→ Γ(U,OU )

There is a surjective map of sheaves OX/S → Ga defined by the canonical maps
Γ(T,OT )→ Γ(U,OU ) for objects (U, T, δ). The kernel of this map is denoted JX/S ,
hence a short exact sequence

0→ JX/S → OX/S → Ga → 0

Note that JX/S comes equipped with a canonical divided power structure. After
all, for each object (U, T, δ) the third component δ is a divided power structure on
the kernel of OT → OU . Hence the (big) crystalline topos is a divided power topos.

60.11. Crystals in modules

07IR It turns out that a crystal is a very general gadget. However, the definition may
be a bit hard to parse, so we first give the definition in the case of modules on the
crystalline sites.

Definition 60.11.1.07IS In Situation 60.7.5. Let C = CRIS(X/S) or C = Cris(X/S).
Let F be a sheaf of OX/S-modules on C.

(1) We say F is locally quasi-coherent if for every object (U, T, δ) of C the
restriction FT is a quasi-coherent OT -module.

(2) We say F is quasi-coherent if it is quasi-coherent in the sense of Modules
on Sites, Definition 18.23.1.

(3) We say F is a crystal inOX/S-modules if all the comparison maps (60.10.0.2)
are isomorphisms.

It turns out that we can relate these notions as follows.

Lemma 60.11.2.07IT With notation X/S, I, γ, C,F as in Definition 60.11.1. The fol-
lowing are equivalent

(1) F is quasi-coherent, and
(2) F is locally quasi-coherent and a crystal in OX/S-modules.

Proof. Assume (1). Let f : (U ′, T ′, δ′) → (U, T, δ) be an object of C. We have
to prove (a) FT is a quasi-coherent OT -module and (b) cf : f∗FT → FT ′ is an
isomorphism. The assumption means that we can find a covering {(Ti, Ui, δi) →
(T,U, δ)} and for each i the restriction of F to C/(Ti, Ui, δi) has a global pre-
sentation. Since it suffices to prove (a) and (b) Zariski locally, we may replace

https://stacks.math.columbia.edu/tag/07IS
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f : (T ′, U ′, δ′) → (T,U, δ) by the base change to (Ti, Ui, δi) and assume that F
restricted to C/(T,U, δ) has a global presentation⊕

j∈J
OX/S |C/(U,T,δ) −→

⊕
i∈I
OX/S |C/(U,T,δ) −→ F|C/(U,T,δ) −→ 0

It is clear that this gives a presentation⊕
j∈J
OT −→

⊕
i∈I
OT −→ FT −→ 0

and hence (a) holds. Moreover, the presentation restricts to T ′ to give a similar
presentation of FT ′ , whence (b) holds.
Assume (2). Let (U, T, δ) be an object of C. We have to find a covering of (U, T, δ)
such that F has a global presentation when we restrict to the localization of C at
the members of the covering. Thus we may assume that T is affine. In this case we
can choose a presentation⊕

j∈J
OT −→

⊕
i∈I
OT −→ FT −→ 0

as FT is assumed to be a quasi-coherent OT -module. Then by the crystal property
of F we see that this pulls back to a presentation of FT ′ for any morphism f :
(U ′, T ′, δ′)→ (U, T, δ) of C. Thus the desired presentation of F|C/(U,T,δ). □

Definition 60.11.3.07IU If F satisfies the equivalent conditions of Lemma 60.11.2, then
we say that F is a crystal in quasi-coherent modules. We say that F is a crystal in
finite locally free modules if, in addition, F is finite locally free.

Of course, as Lemma 60.11.2 shows, this notation is somewhat heavy since a quasi-
coherent module is always a crystal. But it is standard terminology in the literature.

Remark 60.11.4.07IV To formulate the general notion of a crystal we use the language
of stacks and strongly cartesian morphisms, see Stacks, Definition 8.4.1 and Cate-
gories, Definition 4.33.1. In Situation 60.7.5 let p : C → Cris(X/S) be a stack. A
crystal in objects of C on X relative to S is a cartesian section σ : Cris(X/S)→ C,
i.e., a functor σ such that p ◦σ = id and such that σ(f) is strongly cartesian for all
morphisms f of Cris(X/S). Similarly for the big crystalline site.

60.12. Sheaf of differentials

07IW In this section we will stick with the (small) crystalline site as it seems more natural.
We globalize Definition 60.6.1 as follows.

Definition 60.12.1.07IX In Situation 60.7.5 let F be a sheaf of OX/S-modules on
Cris(X/S). An S-derivation D : OX/S → F is a map of sheaves such that for
every object (U, T, δ) of Cris(X/S) the map

D : Γ(T,OT ) −→ Γ(T,F)
is a divided power Γ(V,OV )-derivation where V ⊂ S is any open such that T → S
factors through V .

This means that D is additive, satisfies the Leibniz rule, annihilates functions com-
ing from S, and satisfies D(f [n]) = f [n−1]D(f) for a local section f of the divided
power ideal JX/S . This is a special case of a very general notion which we now
describe.

https://stacks.math.columbia.edu/tag/07IU
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Please compare the following discussion with Modules on Sites, Section 18.33. Let
C be a site, let A → B be a map of sheaves of rings on C, let J ⊂ B be a sheaf of
ideals, let δ be a divided power structure on J , and let F be a sheaf of B-modules.
Then there is a notion of a divided power A-derivation D : B → F . This means
that D is A-linear, satisfies the Leibniz rule, and satisfies D(δn(x)) = δn−1(x)D(x)
for local sections x of J . In this situation there exists a universal divided power
A-derivation

dB/A,δ : B −→ ΩB/A,δ

Moreover, dB/A,δ is the composition

B −→ ΩB/A −→ ΩB/A,δ

where the first map is the universal derivation constructed in the proof of Modules
on Sites, Lemma 18.33.2 and the second arrow is the quotient by the submodule
generated by the local sections dB/A(δn(x))− δn−1(x)dB/A(x).

We translate this into a relative notion as follows. Suppose (f, f ♯) : (Sh(C),O) →
(Sh(C′),O′) is a morphism of ringed topoi, J ⊂ O a sheaf of ideals, δ a divided
power structure on J , and F a sheaf of O-modules. In this situation we say
D : O → F is a divided power O′-derivation if D is a divided power f−1O′-
derivation as defined above. Moreover, we write

ΩO/O′,δ = ΩO/f−1O′,δ

which is the receptacle of the universal divided power O′-derivation.

Applying this to the structure morphism

(X/S)Cris −→ Sh(SZar)

(see Remark 60.9.6) we recover the notion of Definition 60.12.1 above. In particular,
there is a universal divided power derivation

dX/S : OX/S → ΩX/S
Note that we omit from the notation the decoration indicating the module of dif-
ferentials is compatible with divided powers (it seems unlikely anybody would ever
consider the usual module of differentials of the structure sheaf on the crystalline
site).

Lemma 60.12.2.07IY Let (T,J , δ) be a divided power scheme. Let T → S be a mor-
phism of schemes. The quotient ΩT/S → ΩT/S,δ described above is a quasi-coherent
OT -module. For W ⊂ T affine open mapping into V ⊂ S affine open we have

Γ(W,ΩT/S,δ) = ΩΓ(W,OW )/Γ(V,OV ),δ

where the right hand side is as constructed in Section 60.6.

Proof. Omitted. □

Lemma 60.12.3.07IZ In Situation 60.7.5. For (U, T, δ) in Cris(X/S) the restriction
(ΩX/S)T to T is ΩT/S,δ and the restriction dX/S |T is equal to dT/S,δ.

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/07IY
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Lemma 60.12.4.07J0 In Situation 60.7.5. For any affine object (U, T, δ) of Cris(X/S)
mapping into an affine open V ⊂ S we have

Γ((U, T, δ),ΩX/S) = ΩΓ(T,OT )/Γ(V,OV ),δ

where the right hand side is as constructed in Section 60.6.

Proof. Combine Lemmas 60.12.2 and 60.12.3. □

Lemma 60.12.5.07J1 In Situation 60.7.5. Let (U, T, δ) be an object of Cris(X/S). Let
(U(1), T (1), δ(1)) = (U, T, δ)× (U, T, δ)

in Cris(X/S). Let K ⊂ OT (1) be the quasi-coherent sheaf of ideals corresponding
to the closed immersion ∆ : T → T (1). Then K ⊂ JT (1) is preserved by the divided
structure on JT (1) and we have

(ΩX/S)T = K/K[2]

Proof. Note that U = U(1) as U → X is an open immersion and as (60.9.1.1)
commutes with products. Hence we see that K ⊂ JT (1). Given this fact the lemma
follows by working affine locally on T and using Lemmas 60.12.4 and 60.6.5. □

It turns out that ΩX/S is not a crystal in quasi-coherent OX/S-modules. But it
does satisfy two closely related properties (compare with Lemma 60.11.2).

Lemma 60.12.6.07KM In Situation 60.7.5. The sheaf of differentials ΩX/S has the fol-
lowing two properties:

(1) ΩX/S is locally quasi-coherent, and
(2) for any morphism (U, T, δ) → (U ′, T ′, δ′) of Cris(X/S) where f : T → T ′

is a closed immersion the map cf : f∗(ΩX/S)T ′ → (ΩX/S)T is surjective.

Proof. Part (1) follows from a combination of Lemmas 60.12.2 and 60.12.3. Part
(2) follows from the fact that (ΩX/S)T = ΩT/S,δ is a quotient of ΩT/S and that
f∗ΩT ′/S → ΩT/S is surjective. □

60.13. Two universal thickenings

07KN The constructions in this section will help us define a connection on a crystal
in modules on the crystalline site. In some sense the constructions here are the
“sheafified, universal” versions of the constructions in Section 60.3.

Remark 60.13.1.07J2 In Situation 60.7.5. Let (U, T, δ) be an object of Cris(X/S).
Write ΩT/S,δ = (ΩX/S)T , see Lemma 60.12.3. We explicitly describe a first order
thickening T ′ of T . Namely, set

OT ′ = OT ⊕ ΩT/S,δ
with algebra structure such that ΩT/S,δ is an ideal of square zero. Let J ⊂ OT be
the ideal sheaf of the closed immersion U → T . Set J ′ = J ⊕ ΩT/S,δ. Define a
divided power structure on J ′ by setting

δ′
n(f, ω) = (δn(f), δn−1(f)ω),

see Lemma 60.3.1. There are two ring maps
p0, p1 : OT → OT ′

The first is given by f 7→ (f, 0) and the second by f 7→ (f, dT/S,δf). Note that
both are compatible with the divided power structures on J and J ′ and so is the

https://stacks.math.columbia.edu/tag/07J0
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quotient map OT ′ → OT . Thus we get an object (U, T ′, δ′) of Cris(X/S) and a
commutative diagram

T

id

~~
i
��

id

  
T T ′p0oo p1 // T

of Cris(X/S) such that i is a first order thickening whose ideal sheaf is identified
with ΩT/S,δ and such that p∗

1 − p∗
0 : OT → OT ′ is identified with the universal

derivation dT/S,δ composed with the inclusion ΩT/S,δ → OT ′ .

Remark 60.13.2.07J3 In Situation 60.7.5. Let (U, T, δ) be an object of Cris(X/S). Write
ΩT/S,δ = (ΩX/S)T , see Lemma 60.12.3. We also write Ω2

T/S,δ for its second exterior
power. We explicitly describe a second order thickening T ′′ of T . Namely, set

OT ′′ = OT ⊕ ΩT/S,δ ⊕ ΩT/S,δ ⊕ Ω2
T/S,δ

with algebra structure defined in the following way

(f, ω1, ω2, η)·(f ′, ω′
1, ω

′
2, η

′) = (ff ′, fω′
1+f ′ω1, fω

′
2+f ′ω2, fη

′+f ′η+ω1∧ω′
2+ω′

1∧ω2).

Let J ⊂ OT be the ideal sheaf of the closed immersion U → T . Let J ′′ be
the inverse image of J under the projection OT ′′ → OT . Define a divided power
structure on J ′′ by setting

δ′′
n(f, ω1, ω2, η) = (δn(f), δn−1(f)ω1, δn−1(f)ω2, δn−1(f)η + δn−2(f)ω1 ∧ ω2)

see Lemma 60.3.2. There are three ring maps q0, q1, q2 : OT → OT ′′ given by

q0(f) = (f, 0, 0, 0),
q1(f) = (f, df, 0, 0),
q2(f) = (f, df, df, 0)

where d = dT/S,δ. Note that all three are compatible with the divided power
structures on J and J ′′. There are three ring maps q01, q12, q02 : OT ′ → OT ′′

where OT ′ is as in Remark 60.13.1. Namely, set

q01(f, ω) = (f, ω, 0, 0),
q12(f, ω) = (f, df, ω,dω),
q02(f, ω) = (f, ω, ω, 0)

These are also compatible with the given divided power structures. Let’s do the
verifications for q12: Note that q12 is a ring homomorphism as

q12(f, ω)q12(g, η) = (f, df, ω,dω)(g,dg, η, dη)
= (fg, fdg + gdf, fη + gω, fdη + gdω + df ∧ η + dg ∧ ω)
= q12(fg, fη + gω) = q12((f, ω)(g, η))

Note that q12 is compatible with divided powers because

δ′′
n(q12(f, ω)) = δ′′

n((f, df, ω,dω))
= (δn(f), δn−1(f)df, δn−1(f)ω, δn−1(f)dω + δn−2(f)d(f) ∧ ω)
= q12((δn(f), δn−1(f)ω)) = q12(δ′

n(f, ω))

https://stacks.math.columbia.edu/tag/07J3
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The verifications for q01 and q02 are easier. Note that q0 = q01 ◦ p0, q1 = q01 ◦ p1,
q1 = q12 ◦ p0, q2 = q12 ◦ p1, q0 = q02 ◦ p0, and q2 = q02 ◦ p1. Thus (U, T ′′, δ′′) is an
object of Cris(X/S) and we get morphisms

T ′′
//
//
//
T ′ //

// T

of Cris(X/S) satisfying the relations described above. In applications we will use
qi : T ′′ → T and qij : T ′′ → T ′ to denote the morphisms associated to the ring
maps described above.

60.14. The de Rham complex

07J4 In Situation 60.7.5. Working on the (small) crystalline site, we define ΩiX/S =
∧iOX/S

ΩX/S for i ≥ 0. The universal S-derivation dX/S gives rise to the de Rham
complex

OX/S → Ω1
X/S → Ω2

X/S → . . .

on Cris(X/S), see Lemma 60.12.4 and Remark 60.6.7.

60.15. Connections

07J5 In Situation 60.7.5. Given an OX/S-module F on Cris(X/S) a connection is a map
of abelian sheaves

∇ : F −→ F ⊗OX/S
ΩX/S

such that ∇(fs) = f∇(s) + s⊗ df for local sections s, f of F and OX/S . Given a
connection there are canonical maps ∇ : F ⊗OX/S

ΩiX/S −→ F ⊗OX/S
Ωi+1
X/S defined

by the rule ∇(s⊗ω) = ∇(s)∧ω+s⊗dω as in Remark 60.6.8. We say the connection
is integrable if ∇ ◦∇ = 0. If ∇ is integrable we obtain the de Rham complex

F → F ⊗OX/S
Ω1
X/S → F ⊗OX/S

Ω2
X/S → . . .

on Cris(X/S). It turns out that any crystal in OX/S-modules comes equipped with
a canonical integrable connection.

Lemma 60.15.1.07J6 In Situation 60.7.5. Let F be a crystal in OX/S-modules on
Cris(X/S). Then F comes equipped with a canonical integrable connection.

Proof. Say (U, T, δ) is an object of Cris(X/S). Let (U, T ′, δ′) be the infinitesimal
thickening of T by (ΩX/S)T = ΩT/S,δ constructed in Remark 60.13.1. It comes
with projections p0, p1 : T ′ → T and a diagonal i : T → T ′. By assumption we get
isomorphisms

p∗
0FT

c0−→ FT ′
c1←− p∗

1FT
of OT ′ -modules. Pulling c = c−1

1 ◦ c0 back to T by i we obtain the identity map
of FT . Hence if s ∈ Γ(T,FT ) then ∇(s) = p∗

1s− c(p∗
0s) is a section of p∗

1FT which
vanishes on pulling back by i. Hence ∇(s) is a section of

FT ⊗OT
ΩT/S,δ

because this is the kernel of p∗
1FT → FT as OT ′ = OT ⊕ ΩT/S,δ by construction.

It is easily verified that ∇(fs) = f∇(s) + s ⊗ d(f) using the description of d in
Remark 60.13.1.
The collection of maps

∇ : Γ(T,FT )→ Γ(T,FT ⊗OT
ΩT/S,δ)

https://stacks.math.columbia.edu/tag/07J6
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so obtained is functorial in T because the construction of T ′ is functorial in T .
Hence we obtain a connection.
To show that the connection is integrable we consider the object (U, T ′′, δ′′) con-
structed in Remark 60.13.2. Because F is a sheaf we see that

q∗
0FT q∗

01c
//

q∗
02c ##

q∗
1FT

q∗
12c{{

q∗
2FT

is a commutative diagram of OT ′′-modules. For s ∈ Γ(T,FT ) we have c(p∗
0s) =

p∗
1s−∇(s). Write ∇(s) =

∑
p∗

1si · ωi where si is a local section of FT and ωi is a
local section of ΩT/S,δ. We think of ωi as a local section of the structure sheaf of
OT ′ and hence we write product instead of tensor product. On the one hand

q∗
12c ◦ q∗

01c(q∗
0s) = q∗

12c(q∗
1s−

∑
q∗

1si · q∗
01ωi)

= q∗
2s−

∑
q∗

2si · q∗
12ωi −

∑
q∗

2si · q∗
01ωi +

∑
q∗

12∇(si) · q∗
01ωi

and on the other hand
q∗

02c(q∗
0s) = q∗

2s−
∑

q∗
2si · q∗

02ωi.

From the formulae of Remark 60.13.2 we see that q∗
01ωi + q∗

12ωi − q∗
02ωi = dωi.

Hence the difference of the two expressions above is∑
q∗

2si · dωi −
∑

q∗
12∇(si) · q∗

01ωi

Note that q∗
12ω · q∗

01ω
′ = ω′ ∧ ω = −ω ∧ ω′ by the definition of the multiplication

on OT ′′ . Thus the expression above is ∇2(s) viewed as a section of the subsheaf
FT ⊗ Ω2

T/S,δ of q∗
2F . Hence we get the integrability condition. □

60.16. Cosimplicial algebra

07KP This section should be moved somewhere else. A cosimplicial ring is a cosimplicial
object in the category of rings. Given a ring R, a cosimplicial R-algebra is a cosim-
plicial object in the category of R-algebras. A cosimplicial ideal in a cosimplicial
ring A∗ is given by an ideal In ⊂ An for all n such that A(f)(In) ⊂ Im for all
f : [n]→ [m] in ∆.
Let A∗ be a cosimplicial ring. Let C be the category of pairs (A,M) where A is a
ring and M is a module over A. A morphism (A,M)→ (A′,M ′) consists of a ring
map A→ A′ and an A-module map M →M ′ where M ′ is viewed as an A-module
via A→ A′ and the A′-module structure on M ′. Having said this we can define a
cosimplicial module M∗ over A∗ as a cosimplicial object (A∗,M∗) of C whose first
entry is equal to A∗. A homomorphism φ∗ : M∗ → N∗ of cosimplicial modules
over A∗ is a morphism (A∗,M∗)→ (A∗, N∗) of cosimplicial objects in C whose first
component is 1A∗ .
A homotopy between homomorphisms φ∗, ψ∗ : M∗ → N∗ of cosimplicial modules
over A∗ is a homotopy between the associated maps (A∗,M∗) → (A∗, N∗) whose
first component is the trivial homotopy (dual to Simplicial, Example 14.26.3). We
spell out what this means. Such a homotopy is a homotopy

h : M∗ −→ Hom(∆[1], N∗)
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between φ∗ and ψ∗ as homomorphisms of cosimplicial abelian groups such that for
each n the map hn : Mn →

∏
α∈∆[1]n Nn is An-linear. The following lemma is a

version of Simplicial, Lemma 14.28.4 for cosimplicial modules.

Lemma 60.16.1.07KQ Let A∗ be a cosimplicial ring. Let φ∗, ψ∗ : K∗ → M∗ be homo-
morphisms of cosimplicial A∗-modules.

(1)07KR If φ∗ and ψ∗ are homotopic, then

φ∗ ⊗ 1, ψ∗ ⊗ 1 : K∗ ⊗A∗ L∗ −→M∗ ⊗A∗ L∗

are homotopic for any cosimplicial A∗-module L∗.
(2)07KS If φ∗ and ψ∗ are homotopic, then

∧i(φ∗),∧i(ψ∗) : ∧i(K∗) −→ ∧i(M∗)

are homotopic.
(3)07KT If φ∗ and ψ∗ are homotopic, and A∗ → B∗ is a homomorphism of cosim-

plicial rings, then

φ∗ ⊗ 1, ψ∗ ⊗ 1 : K∗ ⊗A∗ B∗ −→M∗ ⊗A∗ B∗

are homotopic as homomorphisms of cosimplicial B∗-modules.
(4)07KU If I∗ ⊂ A∗ is a cosimplicial ideal, then the induced maps

φ∧
∗ , ψ

∧
∗ : K∧

∗ −→M∧
∗

between completions are homotopic.
(5) Add more here as needed, for example symmetric powers.

Proof. Let h : M∗ −→ Hom(∆[1], N∗) be the given homotopy. In degree n we have

hn = (hn,α) : Kn −→
∏

α∈∆[1]n
Kn

see Simplicial, Section 14.28. In order for a collection of hn,α to form a homotopy,
it is necessary and sufficient if for every f : [n]→ [m] we have

hm,α ◦M∗(f) = N∗(f) ◦ hn,α◦f

see Simplicial, Equation (14.28.1.1). We also should have that ψn = hn,0:[n]→[1]
and φn = hn,1:[n]→[1].

In each of the cases of the lemma we can produce the corresponding maps. Case
(1). We can use the homotopy h⊗ 1 defined in degree n by setting

(h⊗ 1)n,α = hn,α ⊗ 1Ln : Kn ⊗An Ln −→Mn ⊗An Ln.

Case (2). We can use the homotopy ∧ih defined in degree n by setting

∧i(h)n,α = ∧i(hn,α) : ∧An(Kn) −→ ∧iAn(Mn).

Case (3). We can use the homotopy h⊗ 1 defined in degree n by setting

(h⊗ 1)n,α = hn,α ⊗ 1 : Kn ⊗An Bn −→Mn ⊗An Bn.

Case (4). We can use the homotopy h∧ defined in degree n by setting

(h∧)n,α = h∧
n,α : K∧

n −→M∧
n .

This works because each hn,α is An-linear. □

https://stacks.math.columbia.edu/tag/07KQ
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60.17. Crystals in quasi-coherent modules

07J7 In Situation 60.5.1. Set X = Spec(C) and S = Spec(A). We are going to classify
crystals in quasi-coherent modules on Cris(X/S). Before we do so we fix some
notation.

Choose a polynomial ring P = A[xi] over A and a surjection P → C of A-algebras
with kernel J = Ker(P → C). Set

(60.17.0.1)07J8 D = limeDP,γ(J)/peDP,γ(J)

for the p-adically completed divided power envelope. This ring comes with a divided
power ideal J̄ and divided power structure γ̄, see Lemma 60.5.5. Set De = D/peD
and denote J̄e the image of J̄ in De. We will use the short hand

(60.17.0.2)07J9 ΩD = lime ΩDe/A,γ̄ = lime ΩD/A,γ̄/peΩD/A,γ̄
for the p-adic completion of the module of divided power differentials, see Lemma
60.6.10. It is also the p-adic completion of ΩDP,γ(J)/A,γ̄ which is free on dxi, see
Lemma 60.6.6. Hence any element of ΩD can be written uniquely as a sum

∑
fidxi

with for all e only finitely many fi not in peD. Moreover, the maps dDe/A,γ̄ : De →
ΩDe/A,γ̄ fit together to define a divided power A-derivation

(60.17.0.3)07JA d : D −→ ΩD
on p-adic completions.

We will also need the “products Spec(D(n)) of Spec(D)”, see Proposition 60.21.1
and its proof for an explanation. Formally these are defined as follows. For n ≥ 0
let J(n) = Ker(P ⊗A . . . ⊗A P → C) where the tensor product has n + 1 factors.
We set

(60.17.0.4)07JF D(n) = limeDP⊗A...⊗AP,γ(J(n))/peDP⊗A...⊗AP,γ(J(n))

equal to the p-adic completion of the divided power envelope. We denote J̄(n)
its divided power ideal and γ̄(n) its divided powers. We also introduce D(n)e =
D(n)/peD(n) as well as the p-adically completed module of differentials

(60.17.0.5)07L0 ΩD(n) = lime ΩD(n)e/A,γ̄ = lime ΩD(n)/A,γ̄/p
eΩD(n)/A,γ̄

and derivation

(60.17.0.6)07L1 d : D(n) −→ ΩD(n)

Of course we have D = D(0). Note that the rings D(0), D(1), D(2), . . . form a
cosimplicial object in the category of divided power rings.

Lemma 60.17.1.07L2 Let D and D(n) be as in (60.17.0.1) and (60.17.0.4). The copro-
jection P → P ⊗A . . .⊗A P , f 7→ f ⊗ 1⊗ . . .⊗ 1 induces an isomorphism

(60.17.1.1)07L3 D(n) = limeD⟨ξi(j)⟩/peD⟨ξi(j)⟩

of algebras over D with

ξi(j) = xi ⊗ 1⊗ . . .⊗ 1− 1⊗ . . .⊗ 1⊗ xi ⊗ 1⊗ . . .⊗ 1

for j = 1, . . . , n where the second xi is placed in the j + 1st slot; recall that D(n)
is constructed starting with the n+ 1-fold tensor product of P over A.

https://stacks.math.columbia.edu/tag/07L2
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Proof. We have
P ⊗A . . .⊗A P = P [ξi(j)]

and J(n) is generated by J and the elements ξi(j). Hence the lemma follows from
Lemma 60.2.5. □

Lemma 60.17.2.07L4 Let D and D(n) be as in (60.17.0.1) and (60.17.0.4). Then
(D, J̄, γ̄) and (D(n), J̄(n), γ̄(n)) are objects of Cris∧(C/A), see Remark 60.5.4, and

D(n) =
∐

j=0,...,n
D

in Cris∧(C/A).

Proof. The first assertion is clear. For the second, if (B → C, δ) is an object of
Cris∧(C/A), then we have

MorCris∧(C/A)(D,B) = HomA((P, J), (B,Ker(B → C)))
and similarly for D(n) replacing (P, J) by (P ⊗A . . .⊗A P, J(n)). The property on
coproducts follows as P ⊗A . . .⊗A P is a coproduct. □

In the lemma below we will consider pairs (M,∇) satisfying the following conditions
(1)07JB M is a p-adically complete D-module,
(2)07JC ∇ : M →M ⊗∧

D ΩD is a connection, i.e., ∇(fm) = m⊗ df + f∇(m),
(3)07JD ∇ is integrable (see Remark 60.6.8), and
(4)07JE ∇ is topologically quasi-nilpotent: If we write ∇(m) =

∑
θi(m)dxi for

some operators θi : M → M , then for any m ∈ M there are only finitely
many pairs (i, k) such that θki (m) ̸∈ pM .

The operators θi are sometimes denoted ∇∂/∂xi in the literature. In the following
lemma we construct a functor from crystals in quasi-coherent modules on Cris(X/S)
to the category of such pairs. We will show this functor is an equivalence in Propo-
sition 60.17.4.

Lemma 60.17.3.07JG In the situation above there is a functor
crystals in quasi-coherent
OX/S-modules on Cris(X/S) −→

pairs (M,∇) satisfying
(1), (2), (3), and (4)

Proof. Let F be a crystal in quasi-coherent modules on X/S. Set Te = Spec(De)
so that (X,Te, γ̄) is an object of Cris(X/S) for e≫ 0. We have morphisms

(X,Te, γ̄)→ (X,Te+1, γ̄)→ . . .

which are closed immersions. We set
M = lime Γ((X,Te, γ̄),F) = lime Γ(Te,FTe) = limeMe

Note that since F is locally quasi-coherent we have FTe = M̃e. Since F is a crystal
we have Me = Me+1/p

eMe+1. Hence we see that Me = M/peM and that M is
p-adically complete, see Algebra, Lemma 10.98.2.
By Lemma 60.15.1 we know that F comes endowed with a canonical integrable
connection ∇ : F → F ⊗ ΩX/S . If we evaluate this connection on the objects Te
constructed above we obtain a canonical integrable connection

∇ : M −→M ⊗∧
D ΩD

To see that this is topologically nilpotent we work out what this means.

https://stacks.math.columbia.edu/tag/07L4
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Now we can do the same procedure for the rings D(n). This produces a p-adically
complete D(n)-module M(n). Again using the crystal property of F we obtain
isomorphisms

M ⊗∧
D,p0

D(1)→M(1)←M ⊗∧
D,p1

D(1)
compare with the proof of Lemma 60.15.1. Denote c the composition from left to
right. Pick m ∈ M . Write ξi = xi ⊗ 1 − 1 ⊗ xi. Using (60.17.1.1) we can write
uniquely

c(m⊗ 1) =
∑

K
θK(m)⊗

∏
ξ

[ki]
i

for some θK(m) ∈M where the sum is over multi-indices K = (ki) with ki ≥ 0 and∑
ki < ∞. Set θi = θK where K has a 1 in the ith spot and zeros elsewhere. We

have
∇(m) =

∑
θi(m)dxi.

as can be seen by comparing with the definition of∇. Namely, the defining equation
is p∗

1m = ∇(m)− c(p∗
0m) in Lemma 60.15.1 but the sign works out because in the

Stacks project we consistently use df = p1(f) − p0(f) modulo the ideal of the
diagonal squared, and hence ξi = xi⊗ 1− 1⊗ xi maps to −dxi modulo the ideal of
the diagonal squared.

Denote qi : D → D(2) and qij : D(1) → D(2) the coprojections corresponding to
the indices i, j. As in the last paragraph of the proof of Lemma 60.15.1 we see that

q∗
02c = q∗

12c ◦ q∗
01c.

This means that∑
K′′

θK′′(m)⊗
∏

ζ ′′
i

[k′′
i ] =

∑
K′,K

θK′(θK(m))⊗
∏

ζ ′
i
[k′
i]
∏

ζ
[ki]
i

in M ⊗∧
D,q2

D(2) where

ζi = xi ⊗ 1⊗ 1− 1⊗ xi ⊗ 1,
ζ ′
i = 1⊗ xi ⊗ 1− 1⊗ 1⊗ xi,

ζ ′′
i = xi ⊗ 1⊗ 1− 1⊗ 1⊗ xi.

In particular ζ ′′
i = ζi + ζ ′

i and we have that D(2) is the p-adic completion of the
divided power polynomial ring in ζi, ζ ′

i over q2(D), see Lemma 60.17.1. Comparing
coefficients in the expression above it follows immediately that θi ◦ θj = θj ◦ θi (this
provides an alternative proof of the integrability of ∇) and that

θK(m) = (
∏

θkii )(m).

In particular, as the sum expressing c(m ⊗ 1) above has to converge p-adically we
conclude that for each i and each m ∈M only a finite number of θki (m) are allowed
to be nonzero modulo p. □

Proposition 60.17.4.07JH The functor

crystals in quasi-coherent
OX/S-modules on Cris(X/S) −→

pairs (M,∇) satisfying
(1), (2), (3), and (4)

of Lemma 60.17.3 is an equivalence of categories.
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Proof. Let (M,∇) be given. We are going to construct a crystal in quasi-coherent
modules F . Write ∇(m) =

∑
θi(m)dxi. Then θi ◦ θj = θj ◦ θi and we can set

θK(m) = (
∏
θkii )(m) for any multi-index K = (ki) with ki ≥ 0 and

∑
ki <∞.

Let (U, T, δ) be any object of Cris(X/S) with T affine. Say T = Spec(B) and the
ideal of U → T is JB ⊂ B. By Lemma 60.5.6 there exists an integer e and a
morphism

f : (U, T, δ) −→ (X,Te, γ̄)
where Te = Spec(De) as in the proof of Lemma 60.17.3. Choose such an e and f ;
denote f : D → B also the corresponding divided power A-algebra map. We will
set FT equal to the quasi-coherent sheaf of OT -modules associated to the B-module

M ⊗D,f B.
However, we have to show that this is independent of the choice of f . Suppose that
g : D → B is a second such morphism. Since f and g are morphisms in Cris(X/S)
we see that the image of f − g : D → B is contained in the divided power ideal JB .
Write ξi = f(xi) − g(xi) ∈ JB . By analogy with the proof of Lemma 60.17.3 we
define an isomorphism

cf,g : M ⊗D,f B −→M ⊗D,g B
by the formula

m⊗ 1 7−→
∑

K
θK(m)⊗

∏
ξ

[ki]
i

which makes sense by our remarks above and the fact that ∇ is topologically quasi-
nilpotent (so the sum is finite!). A computation shows that

cg,h ◦ cf,g = cf,h

if given a third morphism h : (U, T, δ) −→ (X,Te, γ̄). It is also true that cf,f =
1. Hence these maps are all isomorphisms and we see that the module FT is
independent of the choice of f .
If a : (U ′, T ′, δ′) → (U, T, δ) is a morphism of affine objects of Cris(X/S), then
choosing f ′ = f◦a it is clear that there exists a canonical isomorphism a∗FT → FT ′ .
We omit the verification that this map is independent of the choice of f . Using
these maps as the restriction maps it is clear that we obtain a crystal in quasi-
coherent modules on the full subcategory of Cris(X/S) consisting of affine objects.
We omit the proof that this extends to a crystal on all of Cris(X/S). We also omit
the proof that this procedure is a functor and that it is quasi-inverse to the functor
constructed in Lemma 60.17.3. □

Lemma 60.17.5.07L5 In Situation 60.5.1. Let A→ P ′ → C be ring maps with A→ P ′

smooth and P ′ → C surjective with kernel J ′. Let D′ be the p-adic completion of
DP ′,γ(J ′). There are homomorphisms of divided power A-algebras

a : D −→ D′, b : D′ −→ D

compatible with the maps D → C and D′ → C such that a ◦ b = idD′ . These maps
induce an equivalence of categories of pairs (M,∇) satisfying (1), (2), (3), and (4)
over D and pairs (M ′,∇′) satisfying (1), (2), (3), and (4)4 over D′. In particular,
the equivalence of categories of Proposition 60.17.4 also holds for the corresponding
functor towards pairs over D′.

4This condition is tricky to formulate for (M ′,∇′) over D′. See proof.
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Proof. First, suppose that P ′ = A[y1, . . . , ym] is a polynomial algebra over A. In
this case, we can find ring maps P → P ′ and P ′ → P compatible with the maps to
C which induce maps a : D → D′ and b : D′ → D as in the lemma. Using completed
base change along a and b we obtain functors between the categories of modules with
connection satisfying properties (1), (2), (3), and (4) simply because these these
categories are equivalent to the category of quasi-coherent crystals by Proposition
60.17.4 (and this equivalence is compatible with the base change operation as shown
in the proof of the proposition).
Proof for general smooth P ′. By the first paragraph of the proof we may assume
P = A[y1, . . . , ym] which gives us a surjection P → P ′ compatible with the map
to C. Hence we obtain a surjective map a : D → D′ by functoriality of divided
power envelopes and completion. Pick e large enough so that De is a divided power
thickening of C over A. Then De → C is a surjection whose kernel is locally
nilpotent, see Divided Power Algebra, Lemma 23.2.6. Setting D′

e = D′/peD′ we
see that the kernel of De → D′

e is locally nilpotent. Hence by Algebra, Lemma
10.138.17 we can find a lift βe : P ′ → De of the map P ′ → D′

e. Note that
De+i+1 → De+i ×D′

e+i
D′
e+i+1 is surjective with square zero kernel for any i ≥ 0

because pe+iD → pe+iD′ is surjective. Applying the usual lifting property (Algebra,
Proposition 10.138.13) successively to the diagrams

P ′ // De+i ×D′
e+i

D′
e+i+1

A

OO

// De+i+1

OO

we see that we can find an A-algebra map β : P ′ → D whose composition with a is
the given map P ′ → D′. By the universal property of the divided power envelope
we obtain a map DP ′,γ(J ′)→ D. As D is p-adically complete we obtain b : D′ → D
such that a ◦ b = idD′ .
Consider the base change functors

F : (M,∇) 7−→ (M ⊗∧
D,a D

′,∇′) and G : (M ′,∇′) 7−→ (M ′ ⊗∧
D′,b D,∇)

on modules with connections satisfying (1), (2), and (3). See Remark 60.6.9. Since
a ◦ b = idD′ we see that F ◦G is the identity functor. Let us say that (M ′,∇′) has
property (4) if this is true for G(M ′,∇′). A formal argument now shows that to
finish the proof it suffices to show that G(F (M,∇)) is isomorphic to (M,∇) in the
case that (M,∇) satisfies all four conditions (1), (2), (3), and (4). For this we use
the functorial isomorphism

cidD,b◦a : M ⊗D,idD D −→M ⊗D,b◦a D
of the proof of Proposition 60.17.4 (which requires the topological quasi-nilpotency
of ∇ which we have assumed). It remains to prove that this map is horizontal, i.e.,
compatible with connections, which we omit.
The last statement of the proof now follows. □

Remark 60.17.6.07L6 The equivalence of Proposition 60.17.4 holds if we start with
a surjection P → C where P/A satisfies the strong lifting property of Algebra,
Lemma 10.138.17. To prove this we can argue as in the proof of Lemma 60.17.5.
(Details will be added here if we ever need this.) Presumably there is also a direct
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proof of this result, but the advantage of using polynomial rings is that the rings
D(n) are p-adic completions of divided power polynomial rings and the algebra is
simplified.

60.18. General remarks on cohomology

07JI In this section we do a bit of work to translate the cohomology of modules on the
cristalline site of an affine scheme into an algebraic question.

Lemma 60.18.1.07JJ In Situation 60.7.5. Let F be a locally quasi-coherent OX/S-
module on Cris(X/S). Then we have

Hp((U, T, δ),F) = 0
for all p > 0 and all (U, T, δ) with T or U affine.

Proof. As U → T is a thickening we see that U is affine if and only if T is affine, see
Limits, Lemma 32.11.1. Having said this, let us apply Cohomology on Sites, Lemma
21.10.9 to the collection B of affine objects (U, T, δ) and the collection Cov of affine
open coverings U = {(Ui, Ti, δi)→ (U, T, δ)}. The Čech complex Č∗(U ,F) for such
a covering is simply the Čech complex of the quasi-coherent OT -module FT (here
we are using the assumption that F is locally quasi-coherent) with respect to the
affine open covering {Ti → T} of the affine scheme T . Hence the Čech cohomology
is zero by Cohomology of Schemes, Lemma 30.2.6 and 30.2.2. Thus the hypothesis
of Cohomology on Sites, Lemma 21.10.9 are satisfied and we win. □

Lemma 60.18.2.07JK In Situation 60.7.5. Assume moreover X and S are affine schemes.
Consider the full subcategory C ⊂ Cris(X/S) consisting of divided power thicken-
ings (X,T, δ) endowed with the chaotic topology (see Sites, Example 7.6.6). For
any locally quasi-coherent OX/S-module F we have

RΓ(C,F|C) = RΓ(Cris(X/S),F)

Proof. Denote AffineCris(X/S) the fully subcategory of Cris(X/S) consisting of
those objects (U, T, δ) with U and T affine. We turn this into a site by saying a
family of morphisms {(Ui, Ti, δi)→ (U, T, δ)}i∈I of AffineCris(X/S) is a covering if
and only if it is a covering of Cris(X/S). With this definition the inclusion functor

AffineCris(X/S) −→ Cris(X/S)
is a special cocontinuous functor as defined in Sites, Definition 7.29.2. The proof
of this is exactly the same as the proof of Topologies, Lemma 34.3.10. Thus we
see that the topos of sheaves on Cris(X/S) is the same as the topos of sheaves on
AffineCris(X/S) via restriction by the displayed inclusion functor. Therefore we
have to prove the corresponding statement for the inclusion C ⊂ AffineCris(X/S).
We will use without further mention that C and AffineCris(X/S) have products
and fibre products (details omitted, see Lemma 60.8.2). The inclusion functor
u : C → AffineCris(X/S) is fully faithful, continuous, and commutes with products
and fibre products. We claim it defines a morphism of ringed sites

f : (AffineCris(X/S),OX/S) −→ (Sh(C),OX/S |C)
To see this we will use Sites, Lemma 7.14.6. Note that C has fibre products and
u commutes with them so the categories Iu(U,T,δ) are disjoint unions of directed
categories (by Sites, Lemma 7.5.1 and Categories, Lemma 4.19.8). Hence it suffices

https://stacks.math.columbia.edu/tag/07JJ
https://stacks.math.columbia.edu/tag/07JK


60.18. GENERAL REMARKS ON COHOMOLOGY 4982

to show that Iu(U,T,δ) is connected. Nonempty follows from Lemma 60.5.6: since U
and T are affine that lemma says there is at least one object (X,T ′, δ′) of C and
a morphism (U, T, δ) → (X,T ′, δ′) of divided power thickenings. Connectedness
follows from the fact that C has products and that u commutes with them (compare
with the proof of Sites, Lemma 7.5.2).

Note that f∗F = F|C . Hence the lemma follows if Rpf∗F = 0 for p > 0, see
Cohomology on Sites, Lemma 21.14.6. By Cohomology on Sites, Lemma 21.7.4 it
suffices to show that Hp(AffineCris(X/S)/(X,T, δ),F) = 0 for all (X,T, δ). This
follows from Lemma 60.18.1 because the topos of the site AffineCris(X/S)/(X,T, δ)
is equivalent to the topos of the site Cris(X/S)/(X,T, δ) used in the lemma. □

Lemma 60.18.3.07JL In Situation 60.5.1. Set C = (Cris(C/A))opp and C∧ = (Cris∧(C/A))opp
endowed with the chaotic topology, see Remark 60.5.4 for notation. There is a mor-
phism of topoi

g : Sh(C) −→ Sh(C∧)
such that if F is a sheaf of abelian groups on C, then

Rpg∗F(B → C, δ) =

 lime F(Be → C, δ) if p = 0
R1 lime F(Be → C, δ) if p = 1

0 else

where Be = B/peB for e≫ 0.

Proof. Any functor between categories defines a morphism between chaotic topoi
in the same direction, for example because such a functor can be considered as a
cocontinuous functor between sites, see Sites, Section 7.21. Proof of the description
of g∗F is omitted. Note that in the statement we take (Be → C, δ) is an object of
Cris(C/A) only for e large enough. Let I be an injective abelian sheaf on C. Then
the transition maps

I(Be → C, δ)← I(Be+1 → C, δ)
are surjective as the morphisms

(Be → C, δ) −→ (Be+1 → C, δ)

are monomorphisms in the category C. Hence for an injective abelian sheaf both
sides of the displayed formula of the lemma agree. Taking an injective resolution
of F one easily obtains the result (sheaves are presheaves, so exactness is measured
on the level of groups of sections over objects). □

Lemma 60.18.4.07JM Let C be a category endowed with the chaotic topology. Let X be
an object of C such that every object of C has a morphism towards X. Assume that
C has products of pairs. Then for every abelian sheaf F on C the total cohomology
RΓ(C,F) is represented by the complex

F(X)→ F(X ×X)→ F(X ×X ×X)→ . . .

associated to the cosimplicial abelian group [n] 7→ F(Xn).

Proof. Note that Hq(Xp,F) = 0 for all q > 0 as any presheaf is a sheaf on C. The
assumption on X is that hX → ∗ is surjective. Using that Hq(X,F) = Hq(hX ,F)
and Hq(C,F) = Hq(∗,F) we see that our statement is a special case of Cohomology
on Sites, Lemma 21.13.2. □
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60.19. Cosimplicial preparations

07JP In this section we compare crystalline cohomology with de Rham cohomology. We
follow [BdJ11].

Example 60.19.1.07L7 Suppose that A∗ is any cosimplicial ring. Consider the cosim-
plicial module M∗ defined by the rule

Mn =
⊕

i=0,...,n
Anei

For a map f : [n] → [m] define M∗(f) : Mn → Mm to be the unique A∗(f)-linear
map which maps ei to ef(i). We claim the identity on M∗ is homotopic to 0.
Namely, a homotopy is given by a map of cosimplicial modules

h : M∗ −→ Hom(∆[1],M∗)

see Section 60.16. For j ∈ {0, . . . , n + 1} we let αnj : [n] → [1] be the map de-
fined by αnj (i) = 0 ⇔ i < j. Then ∆[1]n = {αn0 , . . . , αnn+1} and correspondingly
Hom(∆[1],M∗)n =

∏
j=0,...,n+1 Mn, see Simplicial, Sections 14.26 and 14.28. In-

stead of using this product representation, we think of an element in Hom(∆[1],M∗)n
as a function ∆[1]n →Mn. Using this notation, we define h in degree n by the rule

hn(ei)(αnj ) =
{
ei if i < j
0 else

We first check h is a morphism of cosimplicial modules. Namely, for f : [n]→ [m]
we will show that

(60.19.1.1)07L8 hm ◦M∗(f) = Hom(∆[1],M∗)(f) ◦ hn
The left hand side of (60.19.1.1) evaluated at ei and then in turn evaluated at αmj
is

hm(ef(i))(αmj ) =
{
ef(i) if f(i) < j

0 else
Note that αmj ◦ f = αnj′ where 0 ≤ j′ ≤ n+ 1 is the unique index such that f(i) < j

if and only if i < j′. Thus the right hand side of (60.19.1.1) evaluated at ei and
then in turn evaluated at αmj is

M∗(f)(hn(ei)(αmj ◦ f) = M∗(f)(hn(ei)(αnj′)) =
{
ef(i) if i < j′

0 else

It follows from our description of j′ that the two answers are equal. Hence h is
a map of cosimplicial modules. Let 0 : ∆[0] → ∆[1] and 1 : ∆[0] → ∆[1] be
the obvious maps, and denote ev0, ev1 : Hom(∆[1],M∗) → M∗ the corresponding
evaluation maps. The reader verifies readily that the compositions

ev0 ◦ h, ev1 ◦ h : M∗ −→M∗

are 0 and 1 respectively, whence h is the desired homotopy between 0 and 1.

Lemma 60.19.2.07L9 With notation as in (60.17.0.5) the complex

ΩD(0) → ΩD(1) → ΩD(2) → . . .

is homotopic to zero as a D(∗)-cosimplicial module.
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Proof. We are going to use the principle of Simplicial, Lemma 14.28.4 and more
specifically Lemma 60.16.1 which tells us that homotopic maps between (co)simplicial
objects are transformed by any functor into homotopic maps. The complex of the
lemma is equal to the p-adic completion of the base change of the cosimplicial
module

M∗ =
(
ΩP/A → ΩP⊗AP/A → ΩP⊗AP⊗AP/A → . . .

)
via the cosimplicial ring map P ⊗A . . . ⊗A P → D(n). This follows from Lemma
60.6.6, see comments following (60.17.0.2). Hence it suffices to show that the cosim-
plicial module M∗ is homotopic to zero (uses base change and p-adic completion).
We can even assume A = Z and P = Z[{xi}i∈I ] as we can use base change with
Z→ A. In this case P⊗n+1 is the polynomial algebra on the elements

xi(e) = 1⊗ . . .⊗ xi ⊗ . . .⊗ 1

with xi in the eth slot. The modules of the complex are free on the generators
dxi(e). Note that if f : [n]→ [m] is a map then we see that

M∗(f)(dxi(e)) = dxi(f(e))

Hence we see that M∗ is a direct sum over I of copies of the module studied in
Example 60.19.1 and we win. □

Lemma 60.19.3.07LA With notation as in (60.17.0.4) and (60.17.0.5), given any cosim-
plicial module M∗ over D(∗) and i > 0 the cosimplicial module

M0 ⊗∧
D(0) ΩiD(0) →M1 ⊗∧

D(1) ΩiD(1) →M2 ⊗∧
D(2) ΩiD(2) → . . .

is homotopic to zero, where ΩiD(n) is the p-adic completion of the ith exterior power
of ΩD(n).

Proof. By Lemma 60.19.2 the endomorphisms 0 and 1 of ΩD(∗) are homotopic. If
we apply the functor ∧i we see that the same is true for the cosimplicial module
∧iΩD(∗), see Lemma 60.16.1. Another application of the same lemma shows the
p-adic completion ΩiD(∗) is homotopy equivalent to zero. Tensoring with M∗ we
see that M∗ ⊗D(∗) ΩiD(∗) is homotopic to zero, see Lemma 60.16.1 again. A final
application of the p-adic completion functor finishes the proof. □

60.20. Divided power Poincaré lemma

07LB Just the simplest possible version.

Lemma 60.20.1.07LC Let A be a ring. Let P = A⟨xi⟩ be a divided power polynomial
ring over A. For any A-module M the complex

0→M →M ⊗A P →M ⊗A Ω1
P/A,δ →M ⊗A Ω2

P/A,δ → . . .

is exact. Let D be the p-adic completion of P . Let ΩiD be the p-adic completion
of the ith exterior power of ΩD/A,δ. For any p-adically complete A-module M the
complex

0→M →M ⊗∧
A D →M ⊗∧

A Ω1
D →M ⊗∧

A Ω2
D → . . .

is exact.

https://stacks.math.columbia.edu/tag/07LA
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Proof. It suffices to show that the complex
E : (0→ A→ P → Ω1

P/A,δ → Ω2
P/A,δ → . . .)

is homotopy equivalent to zero as a complex of A-modules. For every multi-index
K = (ki) we can consider the subcomplex E(K) which in degree j consists of⊕

I={i1,...,ij}⊂Supp(K)
A
∏

i̸∈I
x

[ki]
i

∏
i∈I

x
[ki−1]
i dxi1 ∧ . . . ∧ dxij

Since E =
⊕
E(K) we see that it suffices to prove each of the complexes E(K) is

homotopic to zero. If K = 0, then E(K) : (A→ A) is homotopic to zero. If K has
nonempty (finite) support S, then the complex E(K) is isomorphic to the complex

0→ A→
⊕

s∈S
A→ ∧2(

⊕
s∈S

A)→ . . .→ ∧#S(
⊕

s∈S
A)→ 0

which is homotopic to zero, for example by More on Algebra, Lemma 15.28.5. □

An alternative (more direct) approach to the following lemma is explained in Ex-
ample 60.25.2.

Lemma 60.20.2.07LD Let A be a ring. Let (B, I, δ) be a divided power ring. Let
P = B⟨xi⟩ be a divided power polynomial ring over B with divided power ideal
J = IP + B⟨xi⟩+ as usual. Let M be a B-module endowed with an integrable
connection ∇ : M →M ⊗B Ω1

B/A,δ. Then the map of de Rham complexes

M ⊗B Ω∗
B/A,δ −→M ⊗P Ω∗

P/A,δ

is a quasi-isomorphism. Let D, resp. D′ be the p-adic completion of B, resp. P
and let ΩiD, resp. ΩiD′ be the p-adic completion of ΩiB/A,δ, resp. ΩiP/A,δ. Let M
be a p-adically complete D-module endowed with an integral connection ∇ : M →
M ⊗∧

D Ω1
D. Then the map of de Rham complexes

M ⊗∧
D Ω∗

D −→M ⊗∧
D Ω∗

D′

is a quasi-isomorphism.

Proof. Consider the decreasing filtration F ∗ on Ω∗
B/A,δ given by the subcomplexes

F i(Ω∗
B/A,δ) = σ≥iΩ∗

B/A,δ. See Homology, Section 12.15. This induces a decreasing
filtration F ∗ on Ω∗

P/A,δ by setting

F i(Ω∗
P/A,δ) = F i(Ω∗

B/A,δ) ∧ Ω∗
P/A,δ.

We have a split short exact sequence
0→ Ω1

B/A,δ ⊗B P → Ω1
P/A,δ → Ω1

P/B,δ → 0

and the last module is free on dxi. It follows from this that F i(Ω∗
P/A,δ)→ Ω∗

P/A,δ

is a termwise split injection and that
griF (Ω∗

P/A,δ) = ΩiB/A,δ ⊗B Ω∗
P/B,δ

as complexes. Thus we can define a filtration F ∗ on M ⊗B Ω∗
B/A,δ by setting

F i(M ⊗B Ω∗
P/A,δ) = M ⊗B F i(Ω∗

P/A,δ)
and we have

griF (M ⊗B Ω∗
P/A,δ) = M ⊗B ΩiB/A,δ ⊗B Ω∗

P/B,δ

as complexes. By Lemma 60.20.1 each of these complexes is quasi-isomorphic to
M ⊗B ΩiB/A,δ placed in degree 0. Hence we see that the first displayed map of

https://stacks.math.columbia.edu/tag/07LD
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the lemma is a morphism of filtered complexes which induces a quasi-isomorphism
on graded pieces. This implies that it is a quasi-isomorphism, for example by the
spectral sequence associated to a filtered complex, see Homology, Section 12.24.

The proof of the second quasi-isomorphism is exactly the same. □

60.21. Cohomology in the affine case

07LE Let’s go back to the situation studied in Section 60.17. We start with (A, I, γ)
and A/I → C and set X = Spec(C) and S = Spec(A). Then we choose a poly-
nomial ring P over A and a surjection P → C with kernel J . We obtain D and
D(n) see (60.17.0.1) and (60.17.0.4). Set T (n)e = Spec(D(n)/peD(n)) so that
(X,T (n)e, δ(n)) is an object of Cris(X/S). Let F be a sheaf of OX/S-modules and
set

M(n) = lime Γ((X,T (n)e, δ(n)),F)
for n = 0, 1, 2, 3, . . .. This forms a cosimplicial module over the cosimplicial ring
D(0), D(1), D(2), . . ..

Proposition 60.21.1.07JN With notations as above assume that
(1) F is locally quasi-coherent, and
(2) for any morphism (U, T, δ) → (U ′, T ′, δ′) of Cris(X/S) where f : T → T ′

is a closed immersion the map cf : f∗FT ′ → FT is surjective.
Then the complex

M(0)→M(1)→M(2)→ . . .

computes RΓ(Cris(X/S),F).

Proof. Using assumption (1) and Lemma 60.18.2 we see that RΓ(Cris(X/S),F) is
isomorphic to RΓ(C,F). Note that the categories C used in Lemmas 60.18.2 and
60.18.3 agree. Let f : T → T ′ be a closed immersion as in (2). Surjectivity of
cf : f∗FT ′ → FT is equivalent to surjectivity of FT ′ → f∗FT . Hence, if F satisfies
(1) and (2), then we obtain a short exact sequence

0→ K → FT ′ → f∗FT → 0

of quasi-coherent OT ′ -modules on T ′, see Schemes, Section 26.24 and in particular
Lemma 26.24.1. Thus, if T ′ is affine, then we conclude that the restriction map
F(U ′, T ′, δ′)→ F(U, T, δ) is surjective by the vanishing of H1(T ′,K), see Cohomol-
ogy of Schemes, Lemma 30.2.2. Hence the transition maps of the inverse systems in
Lemma 60.18.3 are surjective. We conclude that Rpg∗(F|C) = 0 for all p ≥ 1 where
g is as in Lemma 60.18.3. The object D of the category C∧ satisfies the assumption
of Lemma 60.18.4 by Lemma 60.5.7 with

D × . . .×D = D(n)

in C because D(n) is the n + 1-fold coproduct of D in Cris∧(C/A), see Lemma
60.17.2. Thus we win. □

Lemma 60.21.2.07LF Assumptions and notation as in Proposition 60.21.1. Then

Hj(Cris(X/S),F ⊗OX/S
ΩiX/S) = 0

for all i > 0 and all j ≥ 0.

https://stacks.math.columbia.edu/tag/07JN
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Proof. Using Lemma 60.12.6 it follows that H = F ⊗OX/S
ΩiX/S also satisfies as-

sumptions (1) and (2) of Proposition 60.21.1. WriteM(n)e = Γ((X,T (n)e, δ(n)),F)
so that M(n) = limeM(n)e. Then

lime Γ((X,T (n)e, δ(n)),H) = limeM(n)e ⊗D(n)e ΩD(n)/p
eΩD(n)

= limeM(n)e ⊗D(n) ΩD(n)

By Lemma 60.19.3 the cosimplicial modules
M(0)e ⊗D(0) ΩiD(0) →M(1)e ⊗D(1) ΩiD(1) →M(2)e ⊗D(2) ΩiD(2) → . . .

are homotopic to zero. Because the transition maps M(n)e+1 →M(n)e are surjec-
tive, we see that the inverse limit of the associated complexes are acyclic5. Hence
the vanishing of cohomology of H by Proposition 60.21.1. □

Proposition 60.21.3.07LG Assumptions as in Proposition 60.21.1 but now assume that
F is a crystal in quasi-coherent modules. Let (M,∇) be the corresponding module
with connection over D, see Proposition 60.17.4. Then the complex

M ⊗∧
D Ω∗

D

computes RΓ(Cris(X/S),F).
Proof. We will prove this using the two spectral sequences associated to the double
complex K∗,∗ with terms

Ka,b = M ⊗∧
D ΩaD(b)

What do we know so far? Well, Lemma 60.19.3 tells us that each columnKa,∗, a > 0
is acyclic. Proposition 60.21.1 tells us that the first column K0,∗ is quasi-isomorphic
to RΓ(Cris(X/S),F). Hence the first spectral sequence associated to the double
complex shows that there is a canonical quasi-isomorphism of RΓ(Cris(X/S),F)
with Tot(K∗,∗).
Next, let’s consider the rows K∗,b. By Lemma 60.17.1 each of the b + 1 maps
D → D(b) presents D(b) as the p-adic completion of a divided power polynomial
algebra over D. Hence Lemma 60.20.2 shows that the map

M ⊗∧
D Ω∗

D −→M ⊗∧
D(b) Ω∗

D(b) = K∗,b

is a quasi-isomorphism. Note that each of these maps defines the same map on
cohomology (and even the same map in the derived category) as the inverse is
given by the co-diagonal map D(b)→ D (corresponding to the multiplication map
P ⊗A . . . ⊗A P → P ). Hence if we look at the E1 page of the second spectral
sequence we obtain

Ea,b1 = Ha(M ⊗∧
D Ω∗

D)
with differentials

Ea,01
0−→ Ea,11

1−→ Ea,21
0−→ Ea,31

1−→ . . .

as each of these is the alternation sum of the given identifications Ha(M ⊗∧
DΩ∗

D) =
Ea,01 = Ea,11 = . . .. Thus we see that the E2 page is equal Ha(M ⊗∧

D Ω∗
D) on the

first row and zero elsewhere. It follows that the identification of M ⊗∧
D Ω∗

D with
the first row induces a quasi-isomorphism of M ⊗∧

D Ω∗
D with Tot(K∗,∗). □

5Actually, they are even homotopic to zero as the homotopies fit together, but we don’t need
this. The reason for this roundabout argument is that the limit limeM(n)e ⊗D(n) Ωi

D(n) isn’t
the p-adic completion of M(n)⊗D(n) Ωi

D(n) as with the assumptions of the lemma we don’t know
that M(n)e = M(n)e+1/peM(n)e+1. If F is a crystal then this does hold.

https://stacks.math.columbia.edu/tag/07LG
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Lemma 60.21.4.07LH Assumptions as in Proposition 60.21.3. Let A→ P ′ → C be ring
maps with A → P ′ smooth and P ′ → C surjective with kernel J ′. Let D′ be the
p-adic completion of DP ′,γ(J ′). Let (M ′,∇′) be the pair over D′ corresponding to
F , see Lemma 60.17.5. Then the complex

M ′ ⊗∧
D′ Ω∗

D′

computes RΓ(Cris(X/S),F).

Proof. Choose a : D → D′ and b : D′ → D as in Lemma 60.17.5. Note that the
base change M = M ′ ⊗D′,b D with its connection ∇ corresponds to F . Hence we
know that M ⊗∧

D Ω∗
D computes the crystalline cohomology of F , see Proposition

60.21.3. Hence it suffices to show that the base change maps (induced by a and b)
M ′ ⊗∧

D′ Ω∗
D′ −→M ⊗∧

D Ω∗
D and M ⊗∧

D Ω∗
D −→M ′ ⊗∧

D′ Ω∗
D′

are quasi-isomorphisms. Since a ◦ b = idD′ we see that the composition one way
around is the identity on the complex M ′ ⊗∧

D′ Ω∗
D′ . Hence it suffices to show that

the map
M ⊗∧

D Ω∗
D −→M ⊗∧

D Ω∗
D

induced by b ◦ a : D → D is a quasi-isomorphism. (Note that we have the same
complex on both sides as M = M ′ ⊗∧

D′,b D, hence M ⊗∧
D,b◦a D = M ′ ⊗∧

D′,b◦a◦b
D = M ′ ⊗∧

D′,b D = M .) In fact, we claim that for any divided power A-algebra
homomorphism ρ : D → D compatible with the augmentation to C the induced
map M ⊗∧

D Ω∗
D →M ⊗∧

D,ρ Ω∗
D is a quasi-isomorphism.

Write ρ(xi) = xi + zi. The elements zi are in the divided power ideal of D because
ρ is compatible with the augmentation to C. Hence we can factor the map ρ as a
composition

D
σ−→ D⟨ξi⟩∧

τ−→ D

where the first map is given by xi 7→ xi + ξi and the second map is the divided
power D-algebra map which maps ξi to zi. (This uses the universal properties of
polynomial algebra, divided power polynomial algebras, divided power envelopes,
and p-adic completion.) Note that there exists an automorphism α of D⟨ξi⟩∧ with
α(xi) = xi − ξi and α(ξi) = ξi. Applying Lemma 60.20.2 to α ◦ σ (which maps
xi to xi) and using that α is an isomorphism we conclude that σ induces a quasi-
isomorphism of M ⊗∧

D Ω∗
D with M ⊗∧

D,σ Ω∗
D⟨xi⟩∧ . On the other hand the map τ

has as a left inverse the map D → D⟨xi⟩∧, xi 7→ xi and we conclude (using Lemma
60.20.2 once more) that τ induces a quasi-isomorphism of M ⊗∧

D,σ Ω∗
D⟨xi⟩∧ with

M ⊗∧
D,τ◦σ Ω∗

D. Composing these two quasi-isomorphisms we obtain that ρ induces
a quasi-isomorphism M ⊗∧

D Ω∗
D →M ⊗∧

D,ρ Ω∗
D as desired. □

60.22. Two counter examples

07LI Before we turn to some of the successes of crystalline cohomology, let us give two
examples which explain why crystalline cohomology does not work very well if the
schemes in question are either not proper over the base, or singular. The first
example can be found in [BO83].

Example 60.22.1.07LJ Let A = Zp with divided power ideal (p) endowed with its unique
divided powers γ. Let C = Fp[x, y]/(x2, xy, y2). We choose the presentation

C = P/J = Zp[x, y]/(x2, xy, y2, p)

https://stacks.math.columbia.edu/tag/07LH
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Let D = DP,γ(J)∧ with divided power ideal (J̄ , γ̄) as in Section 60.17. We will
denote x, y also the images of x and y in D. Consider the element

τ = γ̄p(x2)γ̄p(y2)− γ̄p(xy)2 ∈ D
We note that pτ = 0 as

p!γ̄p(x2)γ̄p(y2) = x2pγ̄p(y2) = γ̄p(x2y2) = xpypγ̄p(xy) = p!γ̄p(xy)2

in D. We also note that dτ = 0 in ΩD as
d(γ̄p(x2)γ̄p(y2)) = γ̄p−1(x2)γ̄p(y2)dx2 + γ̄p(x2)γ̄p−1(y2)dy2

= 2xγ̄p−1(x2)γ̄p(y2)dx+ 2yγ̄p(x2)γ̄p−1(y2)dy
= 2/(p− 1)!(x2p−1γ̄p(y2)dx+ y2p−1γ̄p(x2)dy)
= 2/(p− 1)!(xp−1γ̄p(xy2)dx+ yp−1γ̄p(x2y)dy)
= 2/(p− 1)!(xp−1ypγ̄p(xy)dx+ xpyp−1γ̄p(xy)dy)
= 2γ̄p−1(xy)γ̄p(xy)(ydx+ xdy)
= d(γ̄p(xy)2)

Finally, we claim that τ ̸= 0 in D. To see this it suffices to produce an object
(B → Fp[x, y]/(x2, xy, y2), δ) of Cris(C/S) such that τ does not map to zero in B.
To do this take

B = Fp[x, y, u, v]/(x3, x2y, xy2, y3, xu, yu, xv, yv, u2, v2)
with the obvious surjection to C. Let K = Ker(B → C) and consider the map

δp : K −→ K, ax2 + bxy + cy2 + du+ ev + fuv 7−→ apu+ cpv

One checks this satisfies the assumptions (1), (2), (3) of Divided Power Algebra,
Lemma 23.5.3 and hence defines a divided power structure. Moreover, we see that
τ maps to uv which is not zero in B. Set X = Spec(C) and S = Spec(A). We draw
the following conclusions

(1) H0(Cris(X/S),OX/S) has p-torsion, and
(2) pulling back by Frobenius F ∗ : H0(Cris(X/S),OX/S)→ H0(Cris(X/S),OX/S)

is not injective.
Namely, τ defines a nonzero torsion element of H0(Cris(X/S),OX/S) by Proposi-
tion 60.21.3. Similarly, F ∗(τ) = σ(τ) where σ : D → D is the map induced by
any lift of Frobenius on P . If we choose σ(x) = xp and σ(y) = yp, then an easy
computation shows that F ∗(τ) = 0.

The next example shows that even for affine n-space crystalline cohomology does
not give the correct thing.

Example 60.22.2.07LK Let A = Zp with divided power ideal (p) endowed with its unique
divided powers γ. Let C = Fp[x1, . . . , xr]. We choose the presentation

C = P/J = P/pP with P = Zp[x1, . . . , xr]
Note that pP has divided powers by Divided Power Algebra, Lemma 23.4.2. Hence
setting D = P∧ with divided power ideal (p) we obtain a situation as in Section
60.17. We conclude that RΓ(Cris(X/S),OX/S) is represented by the complex

D → Ω1
D → Ω2

D → . . .→ ΩrD
see Proposition 60.21.3. Assuming r > 0 we conclude the following

https://stacks.math.columbia.edu/tag/07LK
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(1) The cristalline cohomology of the cristalline structure sheaf of X = Ar
Fp

over S = Spec(Zp) is zero except in degrees 0, . . . , r.
(2) We have H0(Cris(X/S),OX/S) = Zp.
(3) The cohomology group Hr(Cris(X/S),OX/S) is infinite and is not a tor-

sion abelian group.
(4) The cohomology group Hr(Cris(X/S),OX/S) is not separated for the p-

adic topology.
While the first two statements are reasonable, parts (3) and (4) are disconcerting!
The truth of these statements follows immediately from working out what the
complex displayed above looks like. Let’s just do this in case r = 1. Then we are
just looking at the two term complex of p-adically complete modules

d : D =
(⊕

n≥0
Zpxn

)∧
−→ Ω1

D =
(⊕

n≥1
Zpxn−1dx

)∧

The map is given by diag(0, 1, 2, 3, 4, . . .) except that the first summand is missing
on the right hand side. Now it is clear that

⊕
n>0 Zp/nZp is a subgroup of the

cokernel, hence the cokernel is infinite. In fact, the element

ω =
∑

e>0
pexp

2e−1dx

is clearly not a torsion element of the cokernel. But it gets worse. Namely, consider
the element

η =
∑

e>0
pexp

e−1dx

For every t > 0 the element η is congruent to
∑
e>t p

exp
e−1dx modulo the image of

d which is divisible by pt. But η is not in the image of d because it would have to
be the image of a +

∑
e>0 x

pe for some a ∈ Zp which is not an element of the left
hand side. In fact, pNη is similarly not in the image of d for any integer N . This
implies that η “generates” a copy of Qp inside of H1

cris(A1
Fp/ Spec(Zp)).

60.23. Applications

07LL In this section we collect some applications of the material in the previous sections.

Proposition 60.23.1.07LM In Situation 60.7.5. Let F be a crystal in quasi-coherent
modules on Cris(X/S). The truncation map of complexes

(F → F ⊗OX/S
Ω1
X/S → F ⊗OX/S

Ω2
X/S → . . .) −→ F [0],

while not a quasi-isomorphism, becomes a quasi-isomorphism after applyingRuX/S,∗.
In fact, for any i > 0, we have

RuX/S,∗(F ⊗OX/S
ΩiX/S) = 0.

Proof. By Lemma 60.15.1 we get a de Rham complex as indicated in the lemma.
We abbreviate H = F ⊗ ΩiX/S . Let X ′ ⊂ X be an affine open subscheme which
maps into an affine open subscheme S′ ⊂ S. Then

(RuX/S,∗H)|X′
Zar

= RuX′/S′,∗(H|Cris(X′/S′)),
see Lemma 60.9.5. Thus Lemma 60.21.2 shows that RuX/S,∗H is a complex of
sheaves on XZar whose cohomology on any affine open is trivial. As X has a
basis for its topology consisting of affine opens this implies that RuX/S,∗H is quasi-
isomorphic to zero. □
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Remark 60.23.2.07LN The proof of Proposition 60.23.1 shows that the conclusion

RuX/S,∗(F ⊗OX/S
ΩiX/S) = 0

for i > 0 is true for any OX/S-module F which satisfies conditions (1) and (2) of
Proposition 60.21.1. This applies to the following non-crystals: ΩiX/S for all i, and
any sheaf of the form F , where F is a quasi-coherent OX -module. In particular, it
applies to the sheafOX = Ga. But note that we need something like Lemma 60.15.1
to produce a de Rham complex which requires F to be a crystal. Hence (currently)
the collection of sheaves of modules for which the full statement of Proposition
60.23.1 holds is exactly the category of crystals in quasi-coherent modules.

In Situation 60.7.5. Let F be a crystal in quasi-coherent modules on Cris(X/S).
Let (U, T, δ) be an object of Cris(X/S). Proposition 60.23.1 allows us to construct
a canonical map
(60.23.2.1)07LP RΓ(Cris(X/S),F) −→ RΓ(T,FT ⊗OT

Ω∗
T/S,δ)

Namely, we have RΓ(Cris(X/S),F) = RΓ(Cris(X/S),F ⊗ Ω∗
X/S), we can restrict

global cohomology classes to T , and ΩX/S restricts to ΩT/S,δ by Lemma 60.12.3.

60.24. Some further results

07MI In this section we mention some results whose proof is missing. We will formulate
these as a series of remarks and we will convert them into actual lemmas and
propositions only when we add detailed proofs.

Remark 60.24.1 (Higher direct images).07MJ Let p be a prime number. Let (S, I, γ)→
(S′, I ′, γ′) be a morphism of divided power schemes over Z(p). Let

X
f
//

��

X ′

��
S0 // S′

0

be a commutative diagram of morphisms of schemes and assume p is locally nilpo-
tent on X and X ′. Let F be an OX/S-module on Cris(X/S). Then Rfcris,∗F can
be computed as follows.
Given an object (U ′, T ′, δ′) of Cris(X ′/S′) set U = X ×X′ U ′ = f−1(U ′) (an open
subscheme of X). Denote (T0, T, δ) the divided power scheme over S such that

T //

��

T ′

��
S // S′

is cartesian in the category of divided power schemes, see Lemma 60.7.4. There is
an induced morphism U → T0 and we obtain a morphism (U/T )cris → (X/S)cris,
see Remark 60.9.3. Let FU be the pullback of F . Let τU/T : (U/T )cris → TZar be
the structure morphism. Then we have
(60.24.1.1)07MK (Rfcris,∗F)T ′ = R(T → T ′)∗

(
RτU/T,∗FU

)
where the left hand side is the restriction (see Section 60.10).

https://stacks.math.columbia.edu/tag/07LN
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Hints: First, show that Cris(U/T ) is the localization (in the sense of Sites, Lemma
7.30.3) of Cris(X/S) at the sheaf of sets f−1

crish(U ′,T ′,δ′). Next, reduce the statement
to the case where F is an injective module and pushforward of modules using
that the pullback of an injective OX/S-module is an injective OU/T -module on
Cris(U/T ). Finally, check the result holds for plain pushforward.

Remark 60.24.2 (Mayer-Vietoris).07ML In the situation of Remark 60.24.1 suppose we
have an open covering X = X ′ ∪X ′′. Denote X ′′′ = X ′ ∩X ′′. Let f ′, f ′′, and f ′′

be the restriction of f to X ′, X ′′, and X ′′′. Moreover, let F ′, F ′′, and F ′′′ be the
restriction of F to the crystalline sites of X ′, X ′′, and X ′′′. Then there exists a
distinguished triangle

Rfcris,∗F −→ Rf ′
cris,∗F ′ ⊕Rf ′′

cris,∗F ′′ −→ Rf ′′′
cris,∗F ′′′ −→ Rfcris,∗F [1]

in D(OX′/S′).
Hints: This is a formal consequence of the fact that the subcategories Cris(X ′/S),
Cris(X ′′/S), Cris(X ′′′/S) correspond to open subobjects of the final sheaf on Cris(X/S)
and that the last is the intersection of the first two.

Remark 60.24.3 (Čech complex).07MM Let p be a prime number. Let (A, I, γ) be a
divided power ring with A a Z(p)-algebra. Set S = Spec(A) and S0 = Spec(A/I).
Let X be a separated6 scheme over S0 such that p is locally nilpotent on X. Let F
be a crystal in quasi-coherent OX/S-modules.
Choose an affine open covering X =

⋃
λ∈Λ Uλ of X. Write Uλ = Spec(Cλ). Choose

a polynomial algebra Pλ over A and a surjection Pλ → Cλ. Having fixed these
choices we can construct a Čech complex which computes RΓ(Cris(X/S),F).
Given n ≥ 0 and λ0, . . . , λn ∈ Λ write Uλ0...λn = Uλ0 ∩ . . . ∩ Uλn . This is an affine
scheme by assumption. Write Uλ0...λn = Spec(Cλ0...λn). Set

Pλ0...λn = Pλ0 ⊗A . . .⊗A Pλn
which comes with a canonical surjection onto Cλ0...λn . Denote the kernel Jλ0...λn

and set Dλ0...λn the p-adically completed divided power envelope of Jλ0...λn in
Pλ0...λn relative to γ. Let Mλ0...λn be the Pλ0...λn -module corresponding to the
restriction of F to Cris(Uλ0...λn/S) via Proposition 60.17.4. By construction we
obtain a cosimplicial divided power ring D(∗) having in degree n the ring

D(n) =
∏

λ0...λn
Dλ0...λn

(use that divided power envelopes are functorial and the trivial cosimplicial struc-
ture on the ring P (∗) defined similarly). Since Mλ0...λn is the “value” of F on the
objects Spec(Dλ0...λn) we see that M(∗) defined by the rule

M(n) =
∏

λ0...λn
Mλ0...λn

forms a cosimplicial D(∗)-module. Now we claim that we have
RΓ(Cris(X/S),F) = s(M(∗))

Here s(−) denotes the cochain complex associated to a cosimplicial module (see
Simplicial, Section 14.25).

6This assumption is not strictly necessary, as using hypercoverings the construction of the
remark can be extended to the general case.

https://stacks.math.columbia.edu/tag/07ML
https://stacks.math.columbia.edu/tag/07MM


60.24. SOME FURTHER RESULTS 4993

Hints: The proof of this is similar to the proof of Proposition 60.21.1 (in particular
the result holds for any module satisfying the assumptions of that proposition).

Remark 60.24.4 (Alternating Čech complex).07MN Let p be a prime number. Let
(A, I, γ) be a divided power ring with A a Z(p)-algebra. Set S = Spec(A) and
S0 = Spec(A/I). Let X be a separated quasi-compact scheme over S0 such that p
is locally nilpotent on X. Let F be a crystal in quasi-coherent OX/S-modules.

Choose a finite affine open covering X =
⋃
λ∈Λ Uλ of X and a total ordering on Λ.

Write Uλ = Spec(Cλ). Choose a polynomial algebra Pλ over A and a surjection
Pλ → Cλ. Having fixed these choices we can construct an alternating Čech complex
which computes RΓ(Cris(X/S),F).

We are going to use the notation introduced in Remark 60.24.3. Denote Ωλ0...λn the
p-adically completed module of differentials of Dλ0...λn over A compatible with the
divided power structure. Let ∇ be the integrable connection on Mλ0...λn coming
from Proposition 60.17.4. Consider the double complex M•,• with terms

Mn,m =
⊕

λ0<...<λn
Mλ0...λn ⊗∧

Dλ0...λn
ΩmDλ0...λn

.

For the differential d1 (increasing n) we use the usual Čech differential and for the
differential d2 we use the connection, i.e., the differential of the de Rham complex.
We claim that

RΓ(Cris(X/S),F) = Tot(M•,•)
Here Tot(−) denotes the total complex associated to a double complex, see Homol-
ogy, Definition 12.18.3.

Hints: We have

RΓ(Cris(X/S),F) = RΓ(Cris(X/S),F ⊗OX/S
Ω•
X/S)

by Proposition 60.23.1. The right hand side of the formula is simply the alternating
Čech complex for the covering X =

⋃
λ∈Λ Uλ (which induces an open covering of the

final sheaf of Cris(X/S)) and the complex F ⊗OX/S
Ω•
X/S , see Proposition 60.21.3.

Now the result follows from a general result in cohomology on sites, namely that the
alternating Čech complex computes the cohomology provided it gives the correct
answer on all the pieces (insert future reference here).

Remark 60.24.5 (Quasi-coherence).07MP In the situation of Remark 60.24.1 assume that
S → S′ is quasi-compact and quasi-separated and that X → S0 is quasi-compact
and quasi-separated. Then for a crystal in quasi-coherent OX/S-modules F the
sheaves Rifcris,∗F are locally quasi-coherent.

Hints: We have to show that the restrictions to T ′ are quasi-coherent OT ′ -modules,
where (U ′, T ′, δ′) is any object of Cris(X ′/S′). It suffices to do this when T ′ is affine.
We use the formula (60.24.1.1), the fact that T → T ′ is quasi-compact and quasi-
separated (as T is affine over the base change of T ′ by S → S′), and Cohomology of
Schemes, Lemma 30.4.5 to see that it suffices to show that the sheaves RiτU/T,∗FU
are quasi-coherent. Note that U → T0 is also quasi-compact and quasi-separated,
see Schemes, Lemmas 26.21.14 and 26.21.14.

This reduces us to proving that RiτX/S,∗F is quasi-coherent on S in the case that
p locally nilpotent on S. Here τX/S is the structure morphism, see Remark 60.9.6.

https://stacks.math.columbia.edu/tag/07MN
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We may work locally on S, hence we may assume S affine (see Lemma 60.9.5). In-
duction on the number of affines covering X and Mayer-Vietoris (Remark 60.24.2)
reduces the question to the case where X is also affine (as in the proof of Coho-
mology of Schemes, Lemma 30.4.5). Say X = Spec(C) and S = Spec(A) so that
(A, I, γ) and A → C are as in Situation 60.5.1. Choose a polynomial algebra P
over A and a surjection P → C as in Section 60.17. Let (M,∇) be the module
corresponding to F , see Proposition 60.17.4. Applying Proposition 60.21.3 we see
that RΓ(Cris(X/S),F) is represented by M ⊗D Ω∗

D. Note that completion isn’t
necessary as p is nilpotent in A! We have to show that this is compatible with
taking principal opens in S = Spec(A). Suppose that g ∈ A. Then we conclude
that similarly RΓ(Cris(Xg/Sg),F) is computed by Mg ⊗Dg Ω∗

Dg
(again this uses

that p-adic completion isn’t necessary). Hence we conclude because localization is
an exact functor on A-modules.

Remark 60.24.6 (Boundedness).07MQ In the situation of Remark 60.24.1 assume that
S → S′ is quasi-compact and quasi-separated and that X → S0 is of finite type
and quasi-separated. Then there exists an integer i0 such that for any crystal in
quasi-coherent OX/S-modules F we have Rifcris,∗F = 0 for all i > i0.
Hints: Arguing as in Remark 60.24.5 (using Cohomology of Schemes, Lemma 30.4.5)
we reduce to proving that Hi(Cris(X/S),F) = 0 for i ≫ 0 in the situation of
Proposition 60.21.3 when C is a finite type algebra over A. This is clear as we can
choose a finite polynomial algebra and we see that ΩiD = 0 for i≫ 0.

Remark 60.24.7 (Specific boundedness).07MR In Situation 60.7.5 let F be a crystal
in quasi-coherent OX/S-modules. Assume that S0 has a unique point and that
X → S0 is of finite presentation.

(1) If dimX = d andX/S0 has embedding dimension e, thenHi(Cris(X/S),F) =
0 for i > d+ e.

(2) If X is separated and can be covered by q affines, and X/S0 has embedding
dimension e, then Hi(Cris(X/S),F) = 0 for i > q + e.

Hints: In case (1) we can use that
Hi(Cris(X/S),F) = Hi(XZar, RuX/S,∗F)

and that RuX/S,∗F is locally calculated by a de Rham complex constructed using an
embedding of X into a smooth scheme of dimension e over S (see Lemma 60.21.4).
These de Rham complexes are zero in all degrees > e. Hence (1) follows from
Cohomology, Proposition 20.20.7. In case (2) we use the alternating Čech complex
(see Remark 60.24.4) to reduce to the case X affine. In the affine case we prove the
result using the de Rham complex associated to an embedding of X into a smooth
scheme of dimension e over S (it takes some work to construct such a thing).

Remark 60.24.8 (Base change map).07MS In the situation of Remark 60.24.1 assume
S = Spec(A) and S′ = Spec(A′) are affine. Let F ′ be an OX′/S′ -module. Let F be
the pullback of F ′. Then there is a canonical base change map

L(S′ → S)∗RτX′/S′,∗F ′ −→ RτX/S,∗F

where τX/S and τX′/S′ are the structure morphisms, see Remark 60.9.6. On global
sections this gives a base change map
(60.24.8.1)07MT RΓ(Cris(X ′/S′),F ′)⊗L

A′ A −→ RΓ(Cris(X/S),F)

https://stacks.math.columbia.edu/tag/07MQ
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in D(A).
Hint: Compose the very general base change map of Cohomology on Sites, Remark
21.19.3 with the canonical map Lf∗

crisF ′ → f∗
crisF ′ = F .

Remark 60.24.9 (Base change isomorphism).07MU The map (60.24.8.1) is an isomor-
phism provided all of the following conditions are satisfied:

(1) p is nilpotent in A′,
(2) F ′ is a crystal in quasi-coherent OX′/S′ -modules,
(3) X ′ → S′

0 is a quasi-compact, quasi-separated morphism,
(4) X = X ′ ×S′

0
S0,

(5) F ′ is a flat OX′/S′ -module,
(6) X ′ → S′

0 is a local complete intersection morphism (see More on Mor-
phisms, Definition 37.62.2; this holds for example if X ′ → S′

0 is syntomic
or smooth),

(7) X ′ and S0 are Tor independent over S′
0 (see More on Algebra, Definition

15.61.1; this holds for example if either S0 → S′
0 or X ′ → S′

0 is flat).
Hints: Condition (1) means that in the arguments below p-adic completion does
nothing and can be ignored. Using condition (3) and Mayer Vietoris (see Re-
mark 60.24.2) this reduces to the case where X ′ is affine. In fact by condition
(6), after shrinking further, we can assume that X ′ = Spec(C ′) and we are given
a presentation C ′ = A′/I ′[x1, . . . , xn]/(f̄ ′

1, . . . , f̄
′
c) where f̄ ′

1, . . . , f̄
′
c is a Koszul-

regular sequence in A′/I ′. (This means that smooth locally f̄ ′
1, . . . , f̄

′
c forms a

regular sequence, see More on Algebra, Lemma 15.30.17.) We choose a lift of
f̄ ′
i to an element f ′

i ∈ A′[x1, . . . , xn]. By (4) we see that X = Spec(C) with
C = A/I[x1, . . . , xn]/(f̄1, . . . , f̄c) where fi ∈ A[x1, . . . , xn] is the image of f ′

i . By
property (7) we see that f̄1, . . . , f̄c is a Koszul-regular sequence in A/I[x1, . . . , xn].
The divided power envelope of I ′A′[x1, . . . , xn] + (f ′

1, . . . , f
′
c) in A′[x1, . . . , xn] rela-

tive to γ′ is
D′ = A′[x1, . . . , xn]⟨ξ1, . . . , ξc⟩/(ξi − f ′

i)
see Lemma 60.2.4. Then you check that ξ1 − f ′

1, . . . , ξn − f ′
n is a Koszul-regular

sequence in the ring A′[x1, . . . , xn]⟨ξ1, . . . , ξc⟩. Similarly the divided power envelope
of IA[x1, . . . , xn] + (f1, . . . , fc) in A[x1, . . . , xn] relative to γ is

D = A[x1, . . . , xn]⟨ξ1, . . . , ξc⟩/(ξi − fi)
and ξ1−f1, . . . , ξn−fn is a Koszul-regular sequence in the ringA[x1, . . . , xn]⟨ξ1, . . . , ξc⟩.
It follows that D′ ⊗L

A′ A = D. Condition (2) implies F ′ corresponds to a pair
(M ′,∇) consisting of a D′-module with connection, see Proposition 60.17.4. Then
M = M ′ ⊗D′ D corresponds to the pullback F . By assumption (5) we see that M ′

is a flat D′-module, hence
M = M ′ ⊗D′ D = M ′ ⊗D′ D′ ⊗L

A′ A = M ′ ⊗L
A′ A

Since the modules of differentials ΩD′ and ΩD (as defined in Section 60.17) are free
D′-modules on the same generators we see that

M ⊗D Ω•
D = M ′ ⊗D′ Ω•

D′ ⊗D′ D = M ′ ⊗D′ Ω•
D′ ⊗L

A′ A

which proves what we want by Proposition 60.21.3.

Remark 60.24.10 (Rlim).07MV Let p be a prime number. Let (A, I, γ) be a divided
power ring with A an algebra over Z(p) with p nilpotent in A/I. Set S = Spec(A)
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and S0 = Spec(A/I). Let X be a scheme over S0 with p locally nilpotent on X.
Let F be any OX/S-module. For e ≫ 0 we have (pe) ⊂ I is preserved by γ, see
Divided Power Algebra, Lemma 23.4.5. Set Se = Spec(A/peA) for e ≫ 0. Then
Cris(X/Se) is a full subcategory of Cris(X/S) and we denote Fe the restriction of
F to Cris(X/Se). Then

RΓ(Cris(X/S),F) = R limeRΓ(Cris(X/Se),Fe)

Hints: Suffices to prove this for F injective. In this case the sheaves Fe are injective
modules too, the transition maps Γ(Fe+1) → Γ(Fe) are surjective, and we have
Γ(F) = lime Γ(Fe) because any object of Cris(X/S) is locally an object of one of
the categories Cris(X/Se) by definition of Cris(X/S).

Remark 60.24.11 (Comparison).07MW Let p be a prime number. Let (A, I, γ) be a
divided power ring with p nilpotent in A. Set S = Spec(A) and S0 = Spec(A/I).
Let Y be a smooth scheme over S and set X = Y ×S S0. Let F be a crystal in
quasi-coherent OX/S-modules. Then

(1) γ extends to a divided power structure on the ideal of X in Y so that
(X,Y, γ) is an object of Cris(X/S),

(2) the restriction FY (see Section 60.10) comes endowed with a canonical
integrable connection ∇ : FY → FY ⊗OY

ΩY/S , and
(3) we have

RΓ(Cris(X/S),F) = RΓ(Y,FY ⊗OY
Ω•
Y/S)

in D(A).
Hints: See Divided Power Algebra, Lemma 23.4.2 for (1). See Lemma 60.15.1 for
(2). For Part (3) note that there is a map, see (60.23.2.1). This map is an isomor-
phism when X is affine, see Lemma 60.21.4. This shows that RuX/S,∗F and FY ⊗
Ω•
Y/S are quasi-isomorphic as complexes on YZar = XZar. SinceRΓ(Cris(X/S),F) =

RΓ(XZar, RuX/S,∗F) the result follows.

Remark 60.24.12 (Perfectness).07MX Let p be a prime number. Let (A, I, γ) be a divided
power ring with p nilpotent in A. Set S = Spec(A) and S0 = Spec(A/I). Let X
be a proper smooth scheme over S0. Let F be a crystal in finite locally free quasi-
coherent OX/S-modules. Then RΓ(Cris(X/S),F) is a perfect object of D(A).
Hints: By Remark 60.24.9 we have

RΓ(Cris(X/S),F)⊗L
A A/I

∼= RΓ(Cris(X/S0),F|Cris(X/S0))
By Remark 60.24.11 we have

RΓ(Cris(X/S0),F|Cris(X/S0)) = RΓ(X,FX ⊗ Ω•
X/S0

)
Using the stupid filtration on the de Rham complex we see that the last displayed
complex is perfect in D(A/I) as soon as the complexes

RΓ(X,FX ⊗ ΩqX/S0
)

are perfect complexes in D(A/I), see More on Algebra, Lemma 15.74.4. This is
true by standard arguments in coherent cohomology using that FX ⊗ ΩqX/S0

is a
finite locally free sheaf and X → S0 is proper and flat (insert future reference here).
Applying More on Algebra, Lemma 15.78.4 we see that

RΓ(Cris(X/S),F)⊗L
A A/I

n
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is a perfect object of D(A/In) for all n. This isn’t quite enough unless A is Noether-
ian. Namely, even though I is locally nilpotent by our assumption that p is nilpo-
tent, see Divided Power Algebra, Lemma 23.2.6, we cannot conclude that In = 0 for
some n. A counter example is Fp⟨x⟩. To prove it in general when F = OX/S the
argument of https://math.columbia.edu/~dejong/wordpress/?p=2227 works.
When the coefficients F are non-trivial the argument of [Fal99] seems to be as
follows. Reduce to the case pA = 0 by More on Algebra, Lemma 15.78.4. In this
case the Frobenius map A → A, a 7→ ap factors as A → A/I

φ−→ A (as xp = 0
for x ∈ I). Set X(1) = X ⊗A/I,φ A. The absolute Frobenius morphism of X fac-
tors through a morphism FX : X → X(1) (a kind of relative Frobenius). Affine
locally if X = Spec(C) then X(1) = Spec(C ⊗A/I,φ A) and FX corresponds to
C ⊗A/I,φ A→ C, c⊗ a 7→ cpa. This defines morphisms of ringed topoi

(X/S)cris
(FX)cris−−−−−→ (X(1)/S)cris

u
X(1)/S−−−−−→ Sh(X(1)

Zar)

whose composition is denoted FrobX . One then shows that RFrobX,∗F is repre-
sentable by a perfect complex of OX(1)-modules(!) by a local calculation.

Remark 60.24.13 (Complete perfectness).07MY Let p be a prime number. Let (A, I, γ)
be a divided power ring with A a p-adically complete ring and p nilpotent in A/I.
Set S = Spec(A) and S0 = Spec(A/I). Let X be a proper smooth scheme over
S0. Let F be a crystal in finite locally free quasi-coherent OX/S-modules. Then
RΓ(Cris(X/S),F) is a perfect object of D(A).

Hints: We know that K = RΓ(Cris(X/S),F) is the derived limit K = R limKe of
the cohomologies over A/peA, see Remark 60.24.10. Each Ke is a perfect complex
of D(A/peA) by Remark 60.24.12. Since A is p-adically complete the result follows
from More on Algebra, Lemma 15.97.4.

Remark 60.24.14 (Complete comparison).07MZ Let p be a prime number. Let (A, I, γ) be
a divided power ring with A a Noetherian p-adically complete ring and p nilpotent
in A/I. Set S = Spec(A) and S0 = Spec(A/I). Let Y be a proper smooth scheme
over S and set X = Y ×S S0. Let F be a finite type crystal in quasi-coherent
OX/S-modules. Then

(1) there exists a coherentOY -module FY endowed with integrable connection

∇ : FY −→ FY ⊗OY
ΩY/S

such that FY /peFY is the module with connection over A/peA found in
Remark 60.24.11, and

(2) we have

RΓ(Cris(X/S),F) = RΓ(Y,FY ⊗OY
Ω•
Y/S)

in D(A).
Hints: The existence of FY is Grothendieck’s existence theorem (insert future ref-
erence here). The isomorphism of cohomologies follows as both sides are computed
as R lim of the versions modulo pe (see Remark 60.24.10 for the left hand side; use
the theorem on formal functions, see Cohomology of Schemes, Theorem 30.20.5 for
the right hand side). Each of the versions modulo pe are isomorphic by Remark
60.24.11.
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60.25. Pulling back along purely inseparable maps

07PZ By an αp-cover we mean a morphism of the form
X ′ = Spec(C[z]/(zp − c)) −→ Spec(C) = X

where C is an Fp-algebra and c ∈ C. Equivalently, X ′ is an αp-torsor over X.
An iterated αp-cover7 is a morphism of schemes in characteristic p which is locally
on the target a composition of finitely many αp-covers. In this section we prove
that pullback along such a morphism induces a quasi-isomorphism on crystalline
cohomology after inverting the prime p. In fact, we prove a precise version of this
result. We begin with a preliminary lemma whose formulation needs some notation.
Assume we have a ring map B → B′ and quotients ΩB → Ω and ΩB′ → Ω′

satisfying the assumptions of Remark 60.6.9. Thus (60.6.9.1) provides a canonical
map of complexes

c•
M : M ⊗B Ω• −→M ⊗B (Ω′)•

for all B-modules M endowed with integrable connection ∇ : M →M ⊗B ΩB .
Suppose we have a ∈ B, z ∈ B′, and a map θ : B′ → B′ satisfying the following
assumptions

(1)07Q0 d(a) = 0,
(2)07Q1 Ω′ = B′⊗BΩ⊕B′dz; we write d(f) = d1(f)+∂z(f)dz with d1(f) ∈ B′⊗Ω

and ∂z(f) ∈ B′ for all f ∈ B′,
(3)07Q2 θ : B′ → B′ is B-linear,
(4)07Q3 ∂z ◦ θ = a,
(5)07Q4 B → B′ is universally injective (and hence Ω→ Ω′ is injective),
(6)07Q5 af − θ(∂z(f)) ∈ B for all f ∈ B′,
(7)07Q6 (θ⊗1)(d1(f))−d1(θ(f)) ∈ Ω for all f ∈ B′ where θ⊗1 : B′⊗Ω→ B′⊗Ω

These conditions are not logically independent. For example, assumption (4) im-
plies that ∂z(af − θ(∂z(f))) = 0. Hence if the image of B → B′ is the collection of
elements annihilated by ∂z, then (6) follows. A similar argument can be made for
condition (7).
Lemma 60.25.1.07Q7 In the situation above there exists a map of complexes

e•
M : M ⊗B (Ω′)• −→M ⊗B Ω•

such that c•
M ◦ e•

M and e•
M ◦ c•

M are homotopic to multiplication by a.
Proof. In this proof all tensor products are over B. Assumption (2) implies that

M ⊗ (Ω′)i = (B′ ⊗M ⊗ Ωi)⊕ (B′dz ⊗M ⊗ Ωi−1)
for all i ≥ 0. A collection of additive generators for M⊗(Ω′)i is formed by elements
of the form fω and elements of the form fdz ∧ η where f ∈ B′, ω ∈ M ⊗ Ωi, and
η ∈M ⊗ Ωi−1.
For f ∈ B′ we write

ϵ(f) = af − θ(∂z(f)) and ϵ′(f) = (θ ⊗ 1)(d1(f))− d1(θ(f))
so that ϵ(f) ∈ B and ϵ′(f) ∈ Ω by assumptions (6) and (7). We define e•

M by the
rules eiM (fω) = ϵ(f)ω and eiM (fdz ∧ η) = ϵ′(f) ∧ η. We will see below that the
collection of maps eiM is a map of complexes.

7This is nonstandard notation.

https://stacks.math.columbia.edu/tag/07Q7
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We define
hi : M ⊗B (Ω′)i −→M ⊗B (Ω′)i−1

by the rules hi(fω) = 0 and hi(fdz ∧ η) = θ(f)η for elements as above. We claim
that

d ◦ h+ h ◦ d = a− c•
M ◦ e•

M

Note that multiplication by a is a map of complexes by (1). Hence, since c•
M is an

injective map of complexes by assumption (5), we conclude that e•
M is a map of

complexes. To prove the claim we compute
(d ◦ h+ h ◦ d)(fω) = h (d(f) ∧ ω + f∇(ω))

= θ(∂z(f))ω
= afω − ϵ(f)ω
= afω − ciM (eiM (fω))

The second equality because dz does not occur in ∇(ω) and the third equality by
assumption (6). Similarly, we have
(d ◦ h+ h ◦ d)(fdz ∧ η) = d(θ(f)η) + h (d(f) ∧ dz ∧ η − fdz ∧∇(η))

= d(θ(f)) ∧ η + θ(f)∇(η)− (θ ⊗ 1)(d1(f)) ∧ η − θ(f)∇(η)
= d1(θ(f)) ∧ η + ∂z(θ(f))dz ∧ η − (θ ⊗ 1)(d1(f)) ∧ η
= afdz ∧ η − ϵ′(f) ∧ η
= afdz ∧ η − ciM (eiM (fdz ∧ η))

The second equality because d(f) ∧ dz ∧ η = −dz ∧ d1(f) ∧ η. The fourth equality
by assumption (4). On the other hand it is immediate from the definitions that
eiM (ciM (ω)) = ϵ(1)ω = aω. This proves the lemma. □

Example 60.25.2.07Q8 A standard example of the situation above occurs when B′ =
B⟨z⟩ is the divided power polynomial ring over a divided power ring (B, J, δ) with
divided powers δ′ on J ′ = B′

+ + JB′ ⊂ B′. Namely, we take Ω = ΩB,δ and
Ω′ = ΩB′,δ′ . In this case we can take a = 1 and

θ(
∑

bmz
[m]) =

∑
bmz

[m+1]

Note that
f − θ(∂z(f)) = f(0)

equals the constant term. It follows that in this case Lemma 60.25.1 recovers the
crystalline Poincaré lemma (Lemma 60.20.2).

Lemma 60.25.3.07N1 In Situation 60.5.1. Assume D and ΩD are as in (60.17.0.1) and
(60.17.0.2). Let λ ∈ D. Let D′ be the p-adic completion of

D[z]⟨ξ⟩/(ξ − (zp − λ))
and let ΩD′ be the p-adic completion of the module of divided power differentials of
D′ over A. For any pair (M,∇) over D satisfying (1), (2), (3), and (4) the canonical
map of complexes (60.6.9.1)

c•
M : M ⊗∧

D Ω•
D −→M ⊗∧

D Ω•
D′

has the following property: There exists a map e•
M in the opposite direction such

that both c•
M ◦ e•

M and e•
M ◦ c•

M are homotopic to multiplication by p.

https://stacks.math.columbia.edu/tag/07Q8
https://stacks.math.columbia.edu/tag/07N1


60.25. PULLING BACK ALONG PURELY INSEPARABLE MAPS 5000

Proof. We will prove this using Lemma 60.25.1 with a = p. Thus we have to
find θ : D′ → D′ and prove (1), (2), (3), (4), (5), (6), (7). We first collect some
information about the rings D and D′ and the modules ΩD and ΩD′ .

Writing
D[z]⟨ξ⟩/(ξ − (zp − λ)) = D⟨ξ⟩[z]/(zp − ξ − λ)

we see that D′ is the p-adic completion of the free D-module⊕
i=0,...,p−1

⊕
n≥0

ziξ[n]D

where ξ[0] = 1. It follows that D → D′ has a continuous D-linear section, in
particular D → D′ is universally injective, i.e., (5) holds. We think of D′ as a
divided power algebra over A with divided power ideal J ′ = JD′ + (ξ). Then D′ is
also the p-adic completion of the divided power envelope of the ideal generated by
zp − λ in D, see Lemma 60.2.4. Hence

ΩD′ = ΩD ⊗∧
D D′ ⊕D′dz

by Lemma 60.6.6. This proves (2). Note that (1) is obvious.

At this point we construct θ. (We wrote a PARI/gp script theta.gp verifying some
of the formulas in this proof which can be found in the scripts subdirectory of the
Stacks project.) Before we do so we compute the derivative of the elements ziξ[n].
We have dzi = izi−1dz. For n ≥ 1 we have

dξ[n] = ξ[n−1]dξ = −ξ[n−1]dλ+ pzp−1ξ[n−1]dz

because ξ = zp − λ. For 0 < i < p and n ≥ 1 we have

d(ziξ[n]) = izi−1ξ[n]dz + ziξ[n−1]dξ
= izi−1ξ[n]dz + ziξ[n−1]d(zp − λ)
= −ziξ[n−1]dλ+ (izi−1ξ[n] + pzi+p−1ξ[n−1])dz
= −ziξ[n−1]dλ+ (izi−1ξ[n] + pzi−1(ξ + λ)ξ[n−1])dz
= −ziξ[n−1]dλ+ ((i+ pn)zi−1ξ[n] + pλzi−1ξ[n−1])dz

the last equality because ξξ[n−1] = nξ[n]. Thus we see that

∂z(zi) = izi−1

∂z(ξ[n]) = pzp−1ξ[n−1]

∂z(ziξ[n]) = (i+ pn)zi−1ξ[n] + pλzi−1ξ[n−1]

Motivated by these formulas we define θ by the rules

θ(zj) = p z
j+1

j+1 j = 0, . . . p− 1,
θ(zp−1ξ[m]) = ξ[m+1] m ≥ 1,
θ(zjξ[m]) = pzj+1ξ[m]−θ(pλzjξ[m−1])

(j+1+pm) 0 ≤ j < p− 1,m ≥ 1

where in the last line we use induction on m to define our choice of θ. Working this
out we get (for 0 ≤ j < p− 1 and 1 ≤ m)

θ(zjξ[m]) = pzj+1ξ[m]

(j+1+pm) −
p2λzj+1ξ[m−1]

(j+1+pm)(j+1+p(m−1)) + . . .+ (−1)mpm+1λmzj+1

(j+1+pm)...(j+1)
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although we will not use this expression below. It is clear that θ extends uniquely
to a p-adically continuous D-linear map on D′. By construction we have (3) and
(4). It remains to prove (6) and (7).
Proof of (6) and (7). As θ is D-linear and continuous it suffices to prove that
p− θ ◦∂z, resp. (θ⊗ 1) ◦d1−d1 ◦ θ gives an element of D, resp. ΩD when evaluated
on the elements ziξ[n]8. Set D0 = Z(p)[λ] and D′

0 = Z(p)[z, λ]⟨ξ⟩/(ξ − zp + λ).
Observe that each of the expressions above is an element of D′

0 or ΩD′
0
. Hence it

suffices to prove the result in the case of D0 → D′
0. Note that D0 and D′

0 are torsion
free rings and that D0 ⊗Q = Q[λ] and D′

0 ⊗Q = Q[z, λ]. Hence D0 ⊂ D′
0 is the

subring of elements annihilated by ∂z and (6) follows from (4), see the discussion
directly preceding Lemma 60.25.1. Similarly, we have d1(f) = ∂λ(f)dλ hence

((θ ⊗ 1) ◦ d1 − d1 ◦ θ) (f) = (θ(∂λ(f))− ∂λ(θ(f))) dλ
Applying ∂z to the coefficient we obtain

∂z (θ(∂λ(f))− ∂λ(θ(f))) = p∂λ(f)− ∂z(∂λ(θ(f)))
= p∂λ(f)− ∂λ(∂z(θ(f)))
= p∂λ(f)− ∂λ(pf) = 0

whence the coefficient does not depend on z as desired. This finishes the proof of
the lemma. □

Note that an iterated αp-cover X ′ → X (as defined in the introduction to this
section) is finite locally free. Hence if X is connected the degree of X ′ → X is
constant and is a power of p.

Lemma 60.25.4.07Q9 Let p be a prime number. Let (S, I, γ) be a divided power scheme
over Z(p) with p ∈ I. We set S0 = V (I) ⊂ S. Let f : X ′ → X be an iterated
αp-cover of schemes over S0 with constant degree q. Let F be any crystal in quasi-
coherent sheaves on X and set F ′ = f∗

crisF . In the distinguished triangle
RuX/S,∗F −→ f∗RuX′/S,∗F ′ −→ E −→ RuX/S,∗F [1]

the object E has cohomology sheaves annihilated by q.

Proof. Note thatX ′ → X is a homeomorphism hence we can identify the underlying
topological spaces of X and X ′. The question is clearly local on X, hence we may
assume X, X ′, and S affine and X ′ → X given as a composition

X ′ = Xn → Xn−1 → Xn−2 → . . .→ X0 = X

where each morphism Xi+1 → Xi is an αp-cover. Denote Fi the pullback of F to
Xi. It suffices to prove that each of the maps

RΓ(Cris(Xi/S),Fi) −→ RΓ(Cris(Xi+1/S),Fi+1)
fits into a triangle whose third member has cohomology groups annihilated by p.
(This uses axiom TR4 for the triangulated category D(X). Details omitted.)
Hence we may assume that S = Spec(A), X = Spec(C), X ′ = Spec(C ′) and
C ′ = C[z]/(zp − c) for some c ∈ C. Choose a polynomial algebra P over A and
a surjection P → C. Let D be the p-adically completed divided power envelop

8This can be done by direct computation: It turns out that p − θ ◦ ∂z evaluated on ziξ[n]

gives zero except for 1 which is mapped to p and ξ which is mapped to −pλ. It turns out that
(θ ⊗ 1) ◦ d1 − d1 ◦ θ evaluated on ziξ[n] gives zero except for zp−1ξ which is mapped to −λ.

https://stacks.math.columbia.edu/tag/07Q9
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of Ker(P → C) in P as in (60.17.0.1). Set P ′ = P [z] with surjection P ′ → C ′

mapping z to the class of z in C ′. Choose a lift λ ∈ D of c ∈ C. Then we see
that the p-adically completed divided power envelope D′ of Ker(P ′ → C ′) in P ′ is
isomorphic to the p-adic completion of D[z]⟨ξ⟩/(ξ−(zp−λ)), see Lemma 60.25.3 and
its proof. Thus we see that the result follows from this lemma by the computation
of cohomology of crystals in quasi-coherent modules in Proposition 60.21.3. □

The bound in the following lemma is probably not optimal.

Lemma 60.25.5.07QA With notations and assumptions as in Lemma 60.25.4 the map

f∗ : Hi(Cris(X/S),F) −→ Hi(Cris(X ′/S),F ′)
has kernel and cokernel annihilated by qi+1.

Proof. This follows from the fact that E has nonzero cohomology sheaves in degrees
−1 and up, so that the spectral sequence Ha(Hb(E))⇒ Ha+b(E) converges. This
combined with the long exact cohomology sequence associated to a distinguished
triangle gives the bound. □

In Situation 60.7.5 assume that p ∈ I. Set
X(1) = X ×S0,FS0

S0.

Denote FX/S0 : X → X(1) the relative Frobenius morphism.

Lemma 60.25.6.07QB In the situation above, assume that X → S0 is smooth of relative
dimension d. Then FX/S0 is an iterated αp-cover of degree pd. Hence Lemmas
60.25.4 and 60.25.5 apply to this situation. In particular, for any crystal in quasi-
coherent modules G on Cris(X(1)/S) the map

F ∗
X/S0

: Hi(Cris(X(1)/S),G) −→ Hi(Cris(X/S), F ∗
X/S0,crisG)

has kernel and cokernel annihilated by pd(i+1).

Proof. It suffices to prove the first statement. To see this we may assume that X
is étale over Ad

S0
, see Morphisms, Lemma 29.36.20. Denote φ : X → Ad

S0
this étale

morphism. In this case the relative Frobenius of X/S0 fits into a diagram

X

��

// X(1)

��
Ad
S0

// Ad
S0

where the lower horizontal arrow is the relative frobenius morphism of Ad
S0

over
S0. This is the morphism which raises all the coordinates to the pth power, hence
it is an iterated αp-cover. The proof is finished by observing that the diagram is a
fibre square, see Étale Morphisms, Lemma 41.14.3. □

60.26. Frobenius action on crystalline cohomology

07N0 In this section we prove that Frobenius pullback induces a quasi-isomorphism on
crystalline cohomology after inverting the prime p. But in order to even formulate
this we need to work in a special situation.

Situation 60.26.1.07N2 In Situation 60.7.5 assume the following

https://stacks.math.columbia.edu/tag/07QA
https://stacks.math.columbia.edu/tag/07QB
https://stacks.math.columbia.edu/tag/07N2
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(1) S = Spec(A) for some divided power ring (A, I, γ) with p ∈ I,
(2) there is given a homomorphism of divided power rings σ : A → A such

that σ(x) = xp mod pA for all x ∈ A.

In Situation 60.26.1 the morphism Spec(σ) : S → S is a lift of the absolute Frobe-
nius FS0 : S0 → S0 and since the diagram

X

��

FX

// X

��
S0

FS0 // S0

is commutative where FX : X → X is the absolute Frobenius morphism of X. Thus
we obtain a morphism of crystalline topoi

(FX)cris : (X/S)cris −→ (X/S)cris

see Remark 60.9.3. Here is the terminology concerning F -crystals following the
notation of Saavedra, see [SR72].

Definition 60.26.2.07N3 In Situation 60.26.1 an F -crystal on X/S (relative to σ) is a
pair (E , FE) given by a crystal in finite locally free OX/S-modules E together with
a map

FE : (FX)∗
crisE −→ E

An F -crystal is called nondegenerate if there exists an integer i ≥ 0 a map V : E →
(FX)∗

crisE such that V ◦ FE = piid.

Remark 60.26.3.07N4 Let (E , F ) be an F -crystal as in Definition 60.26.2. In the liter-
ature the nondegeneracy condition is often part of the definition of an F -crystal.
Moreover, often it is also assumed that F ◦V = pnid. What is needed for the result
below is that there exists an integer j ≥ 0 such that Ker(F ) and Coker(F ) are killed
by pj . If the rank of E is bounded (for example if X is quasi-compact), then both
of these conditions follow from the nondegeneracy condition as formulated in the
definition. Namely, suppose R is a ring, r ≥ 1 is an integer and K,L ∈ Mat(r×r,R)
are matrices with KL = pi1r×r. Then det(K) det(L) = pri. Let L′ be the adjugate
matrix of L, i.e., L′L = LL′ = det(L). Set K ′ = priK and j = ri + i. Then we
have K ′L = pj1r×r as KL = pi and

LK ′ = LK det(L) det(M) = LKLL′ det(M) = LpiL′ det(M) = pj1r×r

It follows that if V is as in Definition 60.26.2 then setting V ′ = pNV where N >
i · rank(E) we get V ′ ◦ F = pN+i and F ◦ V ′ = pN+i.

Theorem 60.26.4.07N5 In Situation 60.26.1 let (E , FE) be a nondegenerate F -crystal.
Assume A is a p-adically complete Noetherian ring and that X → S0 is proper
smooth. Then the canonical map

FE ◦ (FX)∗
cris : RΓ(Cris(X/S), E)⊗L

A,σ A −→ RΓ(Cris(X/S), E)

becomes an isomorphism after inverting p.

Proof. We first write the arrow as a composition of three arrows. Namely, set

X(1) = X ×S0,FS0
S0

https://stacks.math.columbia.edu/tag/07N3
https://stacks.math.columbia.edu/tag/07N4
https://stacks.math.columbia.edu/tag/07N5
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and denote FX/S0 : X → X(1) the relative Frobenius morphism. Denote E(1) the
base change of E by Spec(σ), in other words the pullback of E to Cris(X(1)/S) by
the morphism of crystalline topoi associated to the commutative diagram

X(1) //

��

X

��
S

Spec(σ) // S

Then we have the base change map
(60.26.4.1)07QC RΓ(Cris(X/S), E)⊗L

A,σ A −→ RΓ(Cris(X(1)/S), E(1))

see Remark 60.24.8. Note that the composition of FX/S0 : X → X(1) with the
projection X(1) → X is the absolute Frobenius morphism FX . Hence we see that
F ∗
X/S0
E(1) = (FX)∗

crisE . Thus pullback by FX/S0 is a map

(60.26.4.2)07N6 F ∗
X/S0

: RΓ(Cris(X(1)/S), E(1)) −→ RΓ(Cris(X/S), (FX)∗
crisE)

Finally we can use FE to get a map
(60.26.4.3)07QD RΓ(Cris(X/S), (FX)∗

crisE) −→ RΓ(Cris(X/S), E)
The map of the theorem is the composition of the three maps (60.26.4.1), (60.26.4.2),
and (60.26.4.3) above. The first is a quasi-isomorphism modulo all powers of p by
Remark 60.24.9. Hence it is a quasi-isomorphism since the complexes involved are
perfect in D(A) see Remark 60.24.13. The third map is a quasi-isomorphism after
inverting p simply because FE has an inverse up to a power of p, see Remark 60.26.3.
Finally, the second is an isomorphism after inverting p by Lemma 60.25.6. □
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CHAPTER 61

Pro-étale Cohomology

0965 61.1. Introduction

0966 The material in this chapter and more can be found in the preprint [BS13].
The goal of this chapter is to introduce the pro-étale topology and to develop the
basic theory of cohomology of abelian sheaves in this topology. A secondary goal
is to show how using the pro-étale topology simplifies the introduction of ℓ-adic
cohomology in algebraic geometry.
Here is a brief overview of the history of ℓ-adic étale cohomology as we have un-
derstood it. In [Gro77, Exposés V and VI] Grothendieck et al developed a theory
for dealing with ℓ-adic sheaves as inverse systems of sheaves of Z/ℓnZ-modules. In
his second paper on the Weil conjectures ([Del80]) Deligne introduced a derived
category of ℓ-adic sheaves as a certain 2-limit of categories of complexes of sheaves
of Z/ℓnZ-modules on the étale site of a scheme X. This approach is used in the
paper by Beilinson, Bernstein, and Deligne ([BBD82]) as the basis for their beauti-
ful theory of perverse sheaves. In a paper entitled “Continuous Étale Cohomology”
([Jan88]) Uwe Jannsen discusses an important variant of the cohomology of a ℓ-
adic sheaf on a variety over a field. His paper is followed up by a paper of Torsten
Ekedahl ([Eke90]) who discusses the adic formalism needed to work comfortably
with derived categories defined as limits.
It turns out that, working with the pro-étale site of a scheme, one can avoid some of
the technicalities these authors encountered. This comes at the expense of having
to work with non-Noetherian schemes, even when one is only interested in working
with ℓ-adic sheaves and cohomology of such on varieties over an algebraically closed
field.
A very important and remarkable feature of the (small) pro-étale site of a scheme
is that it has enough quasi-compact w-contractible objects. The existence of these
objects implies a number of useful and (perhaps) unusual consequences for the
derived category of abelian sheaves and for inverse systems of sheaves. This is
exactly the feature that will allow us to handle the intricacies of working with
ℓ-adic sheaves, but as we will see it has a number of other benefits as well.

61.2. Some topology

0967 Some preliminaries. We have defined spectral spaces and spectral maps of spectral
spaces in Topology, Section 5.23. The spectrum of a ring is a spectral space, see
Algebra, Lemma 10.26.2.

Lemma 61.2.1.0968 Let X be a spectral space. Let X0 ⊂ X be the set of closed points.
The following are equivalent

5006
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(1) Every open covering of X can be refined by a finite disjoint union decom-
position X =

∐
Ui with Ui open and closed in X.

(2) The composition X0 → X → π0(X) is bijective.
Moreover, if X0 is closed in X and every point of X specializes to a unique point
of X0, then these conditions are satisfied.

Proof. We will use without further mention that X0 is quasi-compact (Topology,
Lemma 5.12.9) and π0(X) is profinite (Topology, Lemma 5.23.9). Picture

X0

f ""

// X

π

��
π0(X)

If (2) holds, the continuous bijective map f : X0 → π0(X) is a homeomorphism
by Topology, Lemma 5.17.8. Given an open covering X =

⋃
Ui, we get an open

covering π0(X) =
⋃
f(X0 ∩ Ui). By Topology, Lemma 5.22.4 we can find a finite

open covering of the form π0(X) =
∐
Vj which refines this covering. Since X0 →

π0(X) is bijective each connected component ofX has a unique closed point, whence
is equal to the set of points specializing to this closed point. Hence π−1(Vj) is the
set of points specializing to the points of f−1(Vj). Now, if f−1(Vj) ⊂ X0 ∩ Ui ⊂
Ui, then it follows that π−1(Vj) ⊂ Ui (because the open set Ui is closed under
generalizations). In this way we see that the open covering X =

∐
π−1(Vj) refines

the covering we started out with. In this way we see that (2) implies (1).
Assume (1). Let x, y ∈ X be closed points. Then we have the open covering
X = (X \ {x}) ∪ (X \ {y}). It follows from (1) that there exists a disjoint union
decomposition X = U ⨿ V with U and V open (and closed) and x ∈ U and y ∈ V .
In particular we see that every connected component of X has at most one closed
point. By Topology, Lemma 5.12.8 every connected component (being closed) also
does have a closed point. Thus X0 → π0(X) is bijective. In this way we see that
(1) implies (2).
Assume X0 is closed in X and every point specializes to a unique point of X0.
Then X0 is a spectral space (Topology, Lemma 5.23.5) consisting of closed points,
hence profinite (Topology, Lemma 5.23.8). Let x, y ∈ X0 be distinct. By Topology,
Lemma 5.22.4 we can find a disjoint union decomposition X0 = U0⨿V0 with U0 and
V0 open and closed and x ∈ U0 and y ∈ V0. Let U ⊂ X, resp. V ⊂ X be the set of
points specializing to U0, resp. V0. Observe that X = U ⨿V . By Topology, Lemma
5.24.7 we see that U is an intersection of quasi-compact open subsets. Hence U
is closed in the constructible topology. Since U is closed under specialization, we
see that U is closed by Topology, Lemma 5.23.6. By symmetry V is closed and
hence U and V are both open and closed. This proves that x, y are not in the same
connected component of X. In other words, X0 → π0(X) is injective. The map is
also surjective by Topology, Lemma 5.12.8 and the fact that connected components
are closed. In this way we see that the final condition implies (2). □

Example 61.2.2.0969 Let T be a profinite space. Let t ∈ T be a point and assume that
T \{t} is not quasi-compact. Let X = T ×{0, 1}. Consider the topology on X with
a subbase given by the sets U × {0, 1} for U ⊂ T open, X \ {(t, 0)}, and U × {1}
for U ⊂ T open with t ̸∈ U . The set of closed points of X is X0 = T × {0} and

https://stacks.math.columbia.edu/tag/0969


61.2. SOME TOPOLOGY 5008

(t, 1) is in the closure of X0. Moreover, X0 → π0(X) is a bijection. This example
shows that conditions (1) and (2) of Lemma 61.2.1 do no imply the set of closed
points is closed.

It turns out it is more convenient to work with spectral spaces which have the
slightly stronger property mentioned in the final statement of Lemma 61.2.1. We
give this property a name.

Definition 61.2.3.096A A spectral space X is w-local if the set of closed points X0 is
closed and every point of X specializes to a unique closed point. A continuous map
f : X → Y of w-local spaces is w-local if it is spectral and maps any closed point
of X to a closed point of Y .

We have seen in the proof of Lemma 61.2.1 that in this case X0 → π0(X) is a
homeomorphism and that X0 ∼= π0(X) is a profinite space. Moreover, a connected
component of X is exactly the set of points specializing to a given x ∈ X0.

Lemma 61.2.4.096B Let X be a w-local spectral space. If Y ⊂ X is closed, then Y is
w-local.

Proof. The subset Y0 ⊂ Y of closed points is closed because Y0 = X0 ∩Y . Since X
is w-local, every y ∈ Y specializes to a unique point of X0. This specialization is
in Y , and hence also in Y0, because {y} ⊂ Y . In conclusion, Y is w-local. □

Lemma 61.2.5.096C Let X be a spectral space. Let

Y //

��

T

��
X // π0(X)

be a cartesian diagram in the category of topological spaces with T profinite. Then
Y is spectral and T = π0(Y ). If moreover X is w-local, then Y is w-local, Y → X
is w-local, and the set of closed points of Y is the inverse image of the set of closed
points of X.

Proof. Note that Y is a closed subspace of X × T as π0(X) is a profinite space
hence Hausdorff (use Topology, Lemmas 5.23.9 and 5.3.4). Since X × T is spectral
(Topology, Lemma 5.23.10) it follows that Y is spectral (Topology, Lemma 5.23.5).
Let Y → π0(Y ) → T be the canonical factorization (Topology, Lemma 5.7.9). It
is clear that π0(Y ) → T is surjective. The fibres of Y → T are homeomorphic
to the fibres of X → π0(X). Hence these fibres are connected. It follows that
π0(Y ) → T is injective. We conclude that π0(Y ) → T is a homeomorphism by
Topology, Lemma 5.17.8.
Next, assume that X is w-local and let X0 ⊂ X be the set of closed points. The
inverse image Y0 ⊂ Y of X0 in Y maps bijectively onto T as X0 → π0(X) is a
bijection by Lemma 61.2.1. Moreover, Y0 is quasi-compact as a closed subset of
the spectral space Y . Hence Y0 → π0(Y ) = T is a homeomorphism by Topology,
Lemma 5.17.8. It follows that all points of Y0 are closed in Y . Conversely, if y ∈ Y
is a closed point, then it is closed in the fibre of Y → π0(Y ) = T and hence its
image x in X is closed in the (homeomorphic) fibre of X → π0(X). This implies
x ∈ X0 and hence y ∈ Y0. Thus Y0 is the collection of closed points of Y and for

https://stacks.math.columbia.edu/tag/096A
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each y ∈ Y0 the set of generalizations of y is the fibre of Y → π0(Y ). The lemma
follows. □

61.3. Local isomorphisms

096D We start with a definition.

Definition 61.3.1.096E Let φ : A→ B be a ring map.
(1) We say A → B is a local isomorphism if for every prime q ⊂ B there

exists a g ∈ B, g ̸∈ q such that A → Bg induces an open immersion
Spec(Bg)→ Spec(A).

(2) We say A→ B identifies local rings if for every prime q ⊂ B the canonical
map Aφ−1(q) → Bq is an isomorphism.

We list some elementary properties.

Lemma 61.3.2.096F Let A → B and A → A′ be ring maps. Let B′ = B ⊗A A′ be the
base change of B.

(1) If A→ B is a local isomorphism, then A′ → B′ is a local isomorphism.
(2) If A→ B identifies local rings, then A′ → B′ identifies local rings.

Proof. Omitted. □

Lemma 61.3.3.096G Let A→ B and B → C be ring maps.
(1) If A → B and B → C are local isomorphisms, then A → C is a local

isomorphism.
(2) If A → B and B → C identify local rings, then A → C identifies local

rings.

Proof. Omitted. □

Lemma 61.3.4.096H Let A be a ring. Let B → C be an A-algebra homomorphism.
(1) If A → B and A → C are local isomorphisms, then B → C is a local

isomorphism.
(2) If A → B and A → C identify local rings, then B → C identifies local

rings.

Proof. Omitted. □

Lemma 61.3.5.096I Let A→ B be a local isomorphism. Then
(1) A→ B is étale,
(2) A→ B identifies local rings,
(3) A→ B is quasi-finite.

Proof. Omitted. □

Lemma 61.3.6.096J Let A → B be a local isomorphism. Then there exist n ≥ 0,
g1, . . . , gn ∈ B, f1, . . . , fn ∈ A such that (g1, . . . , gn) = B and Afi

∼= Bgi .

Proof. Omitted. □

Lemma 61.3.7.096K Let p : (Y,OY ) → (X,OX) and q : (Z,OZ) → (X,OX) be mor-
phisms of locally ringed spaces. If OY = p−1OX , then

MorLRS/(X,OX)((Z,OZ), (Y,OY )) −→ MorTop/X(Z, Y ), (f, f ♯) 7−→ f

https://stacks.math.columbia.edu/tag/096E
https://stacks.math.columbia.edu/tag/096F
https://stacks.math.columbia.edu/tag/096G
https://stacks.math.columbia.edu/tag/096H
https://stacks.math.columbia.edu/tag/096I
https://stacks.math.columbia.edu/tag/096J
https://stacks.math.columbia.edu/tag/096K
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is bijective. Here LRS/(X,OX) is the category of locally ringed spaces over X and
Top/X is the category of topological spaces over X.
Proof. This is immediate from the definitions. □

Lemma 61.3.8.096L Let A be a ring. Set X = Spec(A). The functor
B 7−→ Spec(B)

from the category of A-algebras B such that A → B identifies local rings to the
category of topological spaces over X is fully faithful.
Proof. This follows from Lemma 61.3.7 and the fact that if A→ B identifies local
rings, then the pullback of the structure sheaf of Spec(A) via p : Spec(B)→ Spec(A)
is equal to the structure sheaf of Spec(B). □

61.4. Ind-Zariski algebra

096M We start with a definition; please see Remark 61.6.9 for a comparison with the
corresponding definition of the article [BS13].
Definition 61.4.1.096N A ring map A→ B is said to be ind-Zariski if B can be written
as a filtered colimit B = colimBi with each A→ Bi a local isomorphism.
An example of an Ind-Zariski map is a localization A→ S−1A, see Algebra, Lemma
10.9.9. The category of ind-Zariski algebras is closed under several natural opera-
tions.
Lemma 61.4.2.096P Let A → B and A → A′ be ring maps. Let B′ = B ⊗A A′ be the
base change of B. If A→ B is ind-Zariski, then A′ → B′ is ind-Zariski.
Proof. Omitted. □

Lemma 61.4.3.096Q Let A → B and B → C be ring maps. If A → B and B → C are
ind-Zariski, then A→ C is ind-Zariski.
Proof. Omitted. □

Lemma 61.4.4.096R Let A be a ring. Let B → C be an A-algebra homomorphism. If
A→ B and A→ C are ind-Zariski, then B → C is ind-Zariski.
Proof. Omitted. □

Lemma 61.4.5.096S A filtered colimit of ind-Zariski A-algebras is ind-Zariski over A.
Proof. Omitted. □

Lemma 61.4.6.096T Let A→ B be ind-Zariski. Then A→ B identifies local rings,
Proof. Omitted. □

61.5. Constructing w-local affine schemes

096U An affine scheme X is called w-local if its underlying topological space is w-local
(Definition 61.2.3). It turns out given any ring A there is a canonical faithfully
flat ind-Zariski ring map A → Aw such that Spec(Aw) is w-local. The key to
constructing Aw is the following simple lemma.
Lemma 61.5.1.096V Let A be a ring. Set X = Spec(A). Let Z ⊂ X be a locally closed
subscheme which is of the form D(f)∩V (I) for some f ∈ A and ideal I ⊂ A. Then

https://stacks.math.columbia.edu/tag/096L
https://stacks.math.columbia.edu/tag/096N
https://stacks.math.columbia.edu/tag/096P
https://stacks.math.columbia.edu/tag/096Q
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(1) there exists a multiplicative subset S ⊂ A such that Spec(S−1A) maps by
a homeomorphism to the set of points of X specializing to Z,

(2) the A-algebra A∼
Z = S−1A depends only on the underlying locally closed

subset Z ⊂ X,
(3) Z is a closed subscheme of Spec(A∼

Z ),
If A→ A′ is a ring map and Z ′ ⊂ X ′ = Spec(A′) is a locally closed subscheme of the
same form which maps into Z, then there is a unique A-algebra map A∼

Z → (A′)∼
Z′ .

Proof. Let S ⊂ A be the multiplicative set of elements which map to invertible
elements of Γ(Z,OZ) = (A/I)f . If p is a prime of A which does not specialize to
Z, then p generates the unit ideal in (A/I)f . Hence we can write fn = g + h for
some n ≥ 0, g ∈ p, h ∈ I. Then g ∈ S and we see that p is not in the spectrum of
S−1A. Conversely, if p does specialize to Z, say p ⊂ q ⊃ I with f ̸∈ q, then we see
that S−1A maps to Aq and hence p is in the spectrum of S−1A. This proves (1).
The isomorphism class of the localization S−1A depends only on the corresponding
subset Spec(S−1A) ⊂ Spec(A), whence (2) holds. By construction S−1A maps
surjectively onto (A/I)f , hence (3). The final statement follows as the multiplicative
subset S′ ⊂ A′ corresponding to Z ′ contains the image of the multiplicative subset
S. □

Let A be a ring. Let E ⊂ A be a finite subset. We get a stratification of X =
Spec(A) into locally closed subschemes by looking at the vanishing behaviour of the
elements of E. More precisely, given a disjoint union decomposition E = E′ ⨿ E′′

we set
(61.5.1.1)

096W Z(E′, E′′) =
⋂

f∈E′
D(f) ∩

⋂
f∈E′′

V (f) = D(
∏

f∈E′
f) ∩ V (

∑
f∈E′′

fA)

The points of Z(E′, E′′) are exactly those x ∈ X such that f ∈ E′ maps to a
nonzero element in κ(x) and f ∈ E′′ maps to zero in κ(x). Thus it is clear that

(61.5.1.2)096X X =
∐

E=E′⨿E′′
Z(E′, E′′)

set theoretically. Observe that each stratum is constructible.

Lemma 61.5.2.096Y Let X = Spec(A) as above. Given any finite stratification X =∐
Ti by constructible subsets, there exists a finite subset E ⊂ A such that the

stratification (61.5.1.2) refines X =
∐
Ti.

Proof. We may write Ti =
⋃
j Ui,j∩V ci,j as a finite union for some Ui,j and Vi,j quasi-

compact open in X. Then we may write Ui,j =
⋃
D(fi,j,k) and Vi,j =

⋃
D(gi,j,l).

Then we set E = {fi,j,k} ∪ {gi,j,l}. This does the job, because the stratification
(61.5.1.2) is the one whose strata are labeled by the vanishing pattern of the ele-
ments of E which clearly refines the given stratification. □

We continue the discussion. Given a finite subset E ⊂ A we set
(61.5.2.1)096Z AE =

∏
E=E′⨿E′′

A∼
Z(E′,E′′)

with notation as in Lemma 61.5.1. This makes sense because (61.5.1.1) shows that
each Z(E′, E′′) has the correct shape. We take the spectrum of this ring and denote
it
(61.5.2.2)0970 XE = Spec(AE) =

∐
E=E′⨿E′′

XE′,E′′

https://stacks.math.columbia.edu/tag/096Y
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with XE′,E′′ = Spec(A∼
Z(E′,E′′)). Note that

(61.5.2.3)0971 ZE =
∐

E=E′⨿E′′
Z(E′, E′′) −→ XE

is a closed subscheme. By construction the closed subscheme ZE contains all the
closed points of the affine scheme XE as every point of XE′,E′′ specializes to a point
of Z(E′, E′′).
Let I(A) be the partially ordered set of all finite subsets of A. This is a directed
partially ordered set. For E1 ⊂ E2 there is a canonical transition mapAE1 → AE2 of
A-algebras. Namely, given a decomposition E2 = E′

2⨿E′′
2 we set E′

1 = E1∩E′
2 and

E′′
1 = E1∩E′′

2 . Then observe that Z(E′
1, E

′′
1 ) ⊂ Z(E′

2, E
′′
2 ) hence a unique A-algebra

map A∼
Z(E′

1,E
′′
1 ) → A∼

Z(E′
2,E

′′
2 ) by Lemma 61.5.1. Using these maps collectively we

obtain the desired ring map AE1 → AE2 . Observe that the corresponding map of
affine schemes
(61.5.2.4)0972 XE2 −→ XE1

maps ZE2 into ZE1 . By uniqueness we obtain a system of A-algebras over I(A) and
we set
(61.5.2.5)0973 Aw = colimE∈I(A) AE

This A-algebra is ind-Zariski and faithfully flat over A. Finally, we set Xw =
Spec(Aw) and endow it with the closed subscheme Z = limE∈I(A) ZE . In a formula

(61.5.2.6)0974 Xw = limE∈I(A) XE ⊃ Z = limE∈I(A) ZE

Lemma 61.5.3.0975 Let X = Spec(A) be an affine scheme. With A → Aw, Xw =
Spec(Aw), and Z ⊂ Xw as above.

(1) A→ Aw is ind-Zariski and faithfully flat,
(2) Xw → X induces a bijection Z → X,
(3) Z is the set of closed points of Xw,
(4) Z is a reduced scheme, and
(5) every point of Xw specializes to a unique point of Z.

In particular, Xw is w-local (Definition 61.2.3).

Proof. The map A→ Aw is ind-Zariski by construction. For every E the morphism
ZE → X is a bijection, hence (2). As Z ⊂ Xw we conclude Xw → X is surjective
and A→ Aw is faithfully flat by Algebra, Lemma 10.39.16. This proves (1).
Suppose that y ∈ Xw, y ̸∈ Z. Then there exists an E such that the image of y in
XE is not contained in ZE . Then for all E ⊂ E′ also y maps to an element of XE′

not contained in ZE′ . Let TE′ ⊂ XE′ be the reduced closed subscheme which is
the closure of the image of y. It is clear that T = limE⊂E′ TE′ is the closure of y in
Xw. For every E ⊂ E′ the scheme TE′ ∩ ZE′ is nonempty by construction of XE′ .
Hence limTE′ ∩ ZE′ is nonempty and we conclude that T ∩ Z is nonempty. Thus
y is not a closed point. It follows that every closed point of Xw is in Z.
Suppose that y ∈ Xw specializes to z, z′ ∈ Z. We will show that z = z′ which will
finish the proof of (3) and will imply (5). Let x, x′ ∈ X be the images of z and z′.
Since Z → X is bijective it suffices to show that x = x′. If x ̸= x′, then there exists
an f ∈ A such that x ∈ D(f) and x′ ∈ V (f) (or vice versa). Set E = {f} so that

XE = Spec(Af )⨿ Spec(A∼
V (f))

https://stacks.math.columbia.edu/tag/0975
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Then we see that z and z′ map xE and x′
E which are in different parts of the

given decomposition of XE above. But then it impossible for xE and x′
E to be

specializations of a common point. This is the desired contradiction.
Recall that given a finite subset E ⊂ A we have ZE is a disjoint union of the locally
closed subschemes Z(E′, E′′) each isomorphic to the spectrum of (A/I)f where I is
the ideal generated by E′′ and f the product of the elements of E′. Any nilpotent
element b of (A/I)f is the class of g/fn for some g ∈ A. Then setting E′ = E ∪{g}
the reader verifies that b is pulls back to zero under the transition map ZE′ → ZE
of the system. This proves (4). □

Remark 61.5.4.0976 Let A be a ring. Let κ be an infinite cardinal bigger or equal
than the cardinality of A. Then the cardinality of Aw (Lemma 61.5.3) is at most
κ. Namely, each AE has cardinality at most κ and the set of finite subsets of A
has cardinality at most κ as well. Thus the result follows as κ ⊗ κ = κ, see Sets,
Section 3.6.

Lemma 61.5.5 (Universal property of the construction).0977 Let A be a ring. Let
A→ Aw be the ring map constructed in Lemma 61.5.3. For any ring map A→ B
such that Spec(B) is w-local, there is a unique factorization A → Aw → B such
that Spec(B)→ Spec(Aw) is w-local.

Proof. Denote Y = Spec(B) and Y0 ⊂ Y the set of closed points. Denote f : Y → X
the given morphism. Recall that Y0 is profinite, in particular every constructible
subset of Y0 is open and closed. Let E ⊂ A be a finite subset. Recall that
Aw = colimAE and that the set of closed points of Spec(Aw) is the limit of
the closed subsets ZE ⊂ XE = Spec(AE). Thus it suffices to show there is a
unique factorization A → AE → B such that Y → XE maps Y0 into ZE . Since
ZE → X = Spec(A) is bijective, and since the strata Z(E′, E′′) are constructible
we see that

Y0 =
∐

f−1(Z(E′, E′′)) ∩ Y0

is a disjoint union decomposition into open and closed subsets. As Y0 = π0(Y )
we obtain a corresponding decomposition of Y into open and closed pieces. Thus
it suffices to construct the factorization in case f(Y0) ⊂ Z(E′, E′′) for some de-
composition E = E′ ⨿ E′′. In this case f(Y ) is contained in the set of points of
X specializing to Z(E′, E′′) which is homeomorphic to XE′,E′′ . Thus we obtain a
unique continuous map Y → XE′,E′′ over X. By Lemma 61.3.7 this corresponds to
a unique morphism of schemes Y → XE′,E′′ over X. This finishes the proof. □

Recall that the spectrum of a ring is profinite if and only if every point is closed.
There are in fact a whole slew of equivalent conditions that imply this. See Algebra,
Lemma 10.26.5 or Topology, Lemma 5.23.8.

Lemma 61.5.6.0978 Let A be a ring such that Spec(A) is profinite. Let A → B be a
ring map. Then Spec(B) is profinite in each of the following cases:

(1) if q, q′ ⊂ B lie over the same prime of A, then neither q ⊂ q′, nor q′ ⊂ q,
(2) A→ B induces algebraic extensions of residue fields,
(3) A→ B is a local isomorphism,
(4) A→ B identifies local rings,
(5) A→ B is weakly étale,
(6) A→ B is quasi-finite,

https://stacks.math.columbia.edu/tag/0976
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(7) A→ B is unramified,
(8) A→ B is étale,
(9) B is a filtered colimit of A-algebras as in (1) – (8),

(10) etc.

Proof. By the references mentioned above (Algebra, Lemma 10.26.5 or Topology,
Lemma 5.23.8) there are no specializations between distinct points of Spec(A) and
Spec(B) is profinite if and only if there are no specializations between distinct points
of Spec(B). These specializations can only happen in the fibres of Spec(B) →
Spec(A). In this way we see that (1) is true.
The assumption in (2) implies all primes of B are maximal by Algebra, Lemma
10.35.9. Thus (2) holds. If A → B is a local isomorphism or identifies local rings,
then the residue field extensions are trivial, so (3) and (4) follow from (2). If A→ B
is weakly étale, then More on Algebra, Lemma 15.104.17 tells us it induces separable
algebraic residue field extensions, so (5) follows from (2). If A → B is quasi-
finite, then the fibres are finite discrete topological spaces. Hence (6) follows from
(1). Hence (3) follows from (1). Cases (7) and (8) follow from this as unramified
and étale ring map are quasi-finite (Algebra, Lemmas 10.151.6 and 10.143.6). If
B = colimBi is a filtered colimit of A-algebras, then Spec(B) = lim Spec(Bi) in the
category of topological spaces by Limits, Lemma 32.4.2. Hence if each Spec(Bi) is
profinite, so is Spec(B) by Topology, Lemma 5.22.3. This proves (9). □

Lemma 61.5.7.0979 Let A be a ring. Let V (I) ⊂ Spec(A) be a closed subset which is a
profinite topological space. Then there exists an ind-Zariski ring map A→ B such
that Spec(B) is w-local, the set of closed points is V (IB), and A/I ∼= B/IB.

Proof. Let A → Aw and Z ⊂ Y = Spec(Aw) as in Lemma 61.5.3. Let T ⊂ Z
be the inverse image of V (I). Then T → V (I) is a homeomorphism by Topology,
Lemma 5.17.8. Let B = (Aw)∼

T , see Lemma 61.5.1. It is clear that B is w-local
with closed points V (IB). The ring map A/I → B/IB is ind-Zariski and induces a
homeomorphism on underlying topological spaces. Hence it is an isomorphism by
Lemma 61.3.8. □

Lemma 61.5.8.097A Let A be a ring such that X = Spec(A) is w-local. Let I ⊂ A be
the radical ideal cutting out the set X0 of closed points in X. Let A→ B be a ring
map inducing algebraic extensions on residue fields at primes. Then

(1) every point of Z = V (IB) is a closed point of Spec(B),
(2) there exists an ind-Zariski ring map B → C such that

(a) B/IB → C/IC is an isomorphism,
(b) the space Y = Spec(C) is w-local,
(c) the induced map p : Y → X is w-local, and
(d) p−1(X0) is the set of closed points of Y .

Proof. By Lemma 61.5.6 applied to A/I → B/IB all points of Z = V (IB) =
Spec(B/IB) are closed, in fact Spec(B/IB) is a profinite space. To finish the proof
we apply Lemma 61.5.7 to IB ⊂ B. □

61.6. Identifying local rings versus ind-Zariski

097B An ind-Zariski ring map A→ B identifies local rings (Lemma 61.4.6). The converse
does not hold (Examples, Section 110.45). However, it turns out that there is a kind
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of structure theorem for ring maps which identify local rings in terms of ind-Zariski
ring maps, see Proposition 61.6.6.
Let A be a ring. Let X = Spec(A). The space of connected components π0(X) is
a profinite space by Topology, Lemma 5.23.9 (and Algebra, Lemma 10.26.2).

Lemma 61.6.1.097C Let A be a ring. Let X = Spec(A). Let T ⊂ π0(X) be a closed
subset. There exists a surjective ind-Zariski ring map A→ B such that Spec(B)→
Spec(A) induces a homeomorphism of Spec(B) with the inverse image of T in X.

Proof. Let Z ⊂ X be the inverse image of T . Then Z is the intersection Z =
⋂
Zα

of the open and closed subsets of X containing Z, see Topology, Lemma 5.12.12.
For each α we have Zα = Spec(Aα) where A → Aα is a local isomorphism (a
localization at an idempotent). Setting B = colimAα proves the lemma. □

Lemma 61.6.2.097D Let A be a ring and let X = Spec(A). Let T be a profinite space
and let T → π0(X) be a continuous map. There exists an ind-Zariski ring map
A→ B such that with Y = Spec(B) the diagram

Y //

��

π0(Y )

��
X // π0(X)

is cartesian in the category of topological spaces and such that π0(Y ) = T as spaces
over π0(X).

Proof. Namely, write T = limTi as the limit of an inverse system finite discrete
spaces over a directed set (see Topology, Lemma 5.22.2). For each i let Zi =
Im(T → π0(X)×Ti). This is a closed subset. Observe that X ×Ti is the spectrum
of Ai =

∏
t∈Ti A and that A→ Ai is a local isomorphism. By Lemma 61.6.1 we see

that Zi ⊂ π0(X × Ti) = π0(X) × Ti corresponds to a surjection Ai → Bi which is
ind-Zariski such that Spec(Bi) = X ×π0(X) Zi as subsets of X × Ti. The transition
maps Ti → Ti′ induce maps Zi → Zi′ and X×π0(X)Zi → X×π0(X)Zi′ . Hence ring
maps Bi′ → Bi (Lemmas 61.3.8 and 61.4.6). Set B = colimBi. Because T = limZi
we have X ×π0(X) T = limX ×π0(X) Zi and hence Y = Spec(B) = lim Spec(Bi) fits
into the cartesian diagram

Y //

��

T

��
X // π0(X)

of topological spaces. By Lemma 61.2.5 we conclude that T = π0(Y ). □

Example 61.6.3.09BJ Let k be a field. Let T be a profinite topological space. There
exists an ind-Zariski ring map k → A such that Spec(A) is homeomorphic to T .
Namely, just apply Lemma 61.6.2 to T → π0(Spec(k)) = {∗}. In fact, in this case
we have

A = colim Map(Ti, k)
whenever we write T = limTi as a filtered limit with each Ti finite.

Lemma 61.6.4.097E Let A→ B be ring map such that
(1) A→ B identifies local rings,
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(2) the topological spaces Spec(B), Spec(A) are w-local,
(3) Spec(B)→ Spec(A) is w-local, and
(4) π0(Spec(B))→ π0(Spec(A)) is bijective.

Then A→ B is an isomorphism

Proof. Let X0 ⊂ X = Spec(A) and Y0 ⊂ Y = Spec(B) be the sets of closed points.
By assumption Y0 maps into X0 and the induced map Y0 → X0 is a bijection.
As a space Spec(A) is the disjoint union of the spectra of the local rings of A at
closed points. Similarly for B. Hence X → Y is a bijection. Since A → B is flat
we have going down (Algebra, Lemma 10.39.19). Thus Algebra, Lemma 10.41.11
shows for any prime q ⊂ B lying over p ⊂ A we have Bq = Bp. Since Bq = Ap by
assumption, we see that Ap = Bp for all primes p of A. Thus A = B by Algebra,
Lemma 10.23.1. □

Lemma 61.6.5.097F Let A→ B be ring map such that
(1) A→ B identifies local rings,
(2) the topological spaces Spec(B), Spec(A) are w-local, and
(3) Spec(B)→ Spec(A) is w-local.

Then A→ B is ind-Zariski.

Proof. Set X = Spec(A) and Y = Spec(B). Let X0 ⊂ X and Y0 ⊂ Y be the set of
closed points. Let A→ A′ be the ind-Zariski morphism of affine schemes such that
with X ′ = Spec(A′) the diagram

X ′ //

��

π0(X ′)

��
X // π0(X)

is cartesian in the category of topological spaces and such that π0(X ′) = π0(Y ) as
spaces over π0(X), see Lemma 61.6.2. By Lemma 61.2.5 we see that X ′ is w-local
and the set of closed points X ′

0 ⊂ X ′ is the inverse image of X0.
We obtain a continuous map Y → X ′ of underlying topological spaces over X iden-
tifying π0(Y ) with π0(X ′). By Lemma 61.3.8 (and Lemma 61.4.6) this corresponds
to a morphism of affine schemes Y → X ′ over X. Since Y → X maps Y0 into X0
we see that Y → X ′ maps Y0 into X ′

0, i.e., Y → X ′ is w-local. By Lemma 61.6.4
we see that Y ∼= X ′ and we win. □

The following proposition is a warm up for the type of result we will prove later.

Proposition 61.6.6.097G Let A → B be a ring map which identifies local rings. Then
there exists a faithfully flat, ind-Zariski ring map B → B′ such that A → B′ is
ind-Zariski.

Proof. Let A → Aw, resp. B → Bw be the faithfully flat, ind-Zariski ring map
constructed in Lemma 61.5.3 for A, resp. B. Since Spec(Bw) is w-local, there
exists a unique factorization A → Aw → Bw such that Spec(Bw) → Spec(Aw) is
w-local by Lemma 61.5.5. Note that Aw → Bw identifies local rings, see Lemma
61.3.4. By Lemma 61.6.5 this means Aw → Bw is ind-Zariski. Since B → Bw is
faithfully flat, ind-Zariski (Lemma 61.5.3) and the composition A → B → Bw is
ind-Zariski (Lemma 61.4.3) the proposition is proved. □
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The proposition above allows us to characterize the affine, weakly contractible ob-
jects in the pro-Zariski site of an affine scheme.

Lemma 61.6.7.09AZ Let A be a ring. The following are equivalent

(1) every faithfully flat ring map A→ B identifying local rings has a retrac-
tion,

(2) every faithfully flat ind-Zariski ring map A→ B has a retraction, and
(3) A satisfies

(a) Spec(A) is w-local, and
(b) π0(Spec(A)) is extremally disconnected.

Proof. The equivalence of (1) and (2) follows immediately from Proposition 61.6.6.

Assume (3)(a) and (3)(b). Let A → B be faithfully flat and ind-Zariski. We will
use without further mention the fact that a flat map A→ B is faithfully flat if and
only if every closed point of Spec(A) is in the image of Spec(B) → Spec(A). We
will show that A→ B has a retraction.

Let I ⊂ A be an ideal such that V (I) ⊂ Spec(A) is the set of closed points of
Spec(A). We may replace B by the ring C constructed in Lemma 61.5.8 for A→ B
and I ⊂ A. Thus we may assume Spec(B) is w-local such that the set of closed
points of Spec(B) is V (IB).

Assume Spec(B) is w-local and the set of closed points of Spec(B) is V (IB). Choose
a continuous section to the surjective continuous map V (IB)→ V (I). This is pos-
sible as V (I) ∼= π0(Spec(A)) is extremally disconnected, see Topology, Proposition
5.26.6. The image is a closed subspace T ⊂ π0(Spec(B)) ∼= V (IB) mapping home-
omorphically onto π0(A). Replacing B by the ind-Zariski quotient ring constructed
in Lemma 61.6.1 we see that we may assume π0(Spec(B))→ π0(Spec(A)) is bijec-
tive. At this point A→ B is an isomorphism by Lemma 61.6.4.

Assume (1) or equivalently (2). Let A→ Aw be the ring map constructed in Lemma
61.5.3. By (1) there is a retraction Aw → A. Thus Spec(A) is homeomorphic
to a closed subset of Spec(Aw). By Lemma 61.2.4 we see (3)(a) holds. Finally,
let T → π0(A) be a surjective map with T an extremally disconnected, quasi-
compact, Hausdorff topological space (Topology, Lemma 5.26.9). Choose A → B
as in Lemma 61.6.2 adapted to T → π0(Spec(A)). By (1) there is a retraction
B → A. Thus we see that T = π0(Spec(B))→ π0(Spec(A)) has a section. A formal
categorical argument, using Topology, Proposition 5.26.6, implies that π0(Spec(A))
is extremally disconnected. □

Lemma 61.6.8.09B0 Let A be a ring. There exists a faithfully flat, ind-Zariski ring map
A→ B such that B satisfies the equivalent conditions of Lemma 61.6.7.

Proof. We first apply Lemma 61.5.3 to see that we may assume that Spec(A) is w-
local. Choose an extremally disconnected space T and a surjective continuous map
T → π0(Spec(A)), see Topology, Lemma 5.26.9. Note that T is profinite. Apply
Lemma 61.6.2 to find an ind-Zariski ring map A → B such that π0(Spec(B)) →

https://stacks.math.columbia.edu/tag/09AZ
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π0(Spec(A)) realizes T → π0(Spec(A)) and such that

Spec(B) //

��

π0(Spec(B))

��
Spec(A) // π0(Spec(A))

is cartesian in the category of topological spaces. Note that Spec(B) is w-local,
that Spec(B)→ Spec(A) is w-local, and that the set of closed points of Spec(B) is
the inverse image of the set of closed points of Spec(A), see Lemma 61.2.5. Thus
condition (3) of Lemma 61.6.7 holds for B. □

Remark 61.6.9.0A0D In each of Lemmas 61.6.1, 61.6.2, Proposition 61.6.6, and Lemma
61.6.8 we find an ind-Zariski ring map with some properties. In the paper [BS13]
the authors use the notion of an ind-(Zariski localization) which is a filtered colimit
of finite products of principal localizations. It is possible to replace ind-Zariski by
ind-(Zariski localization) in each of the results listed above. However, we do not
need this and the notion of an ind-Zariski homomorphism of rings as defined here
has slightly better formal properties. Moreover, the notion of an ind-Zariski ring
map is the natural analogue of the notion of an ind-étale ring map defined in the
next section.

61.7. Ind-étale algebra

097H We start with a definition.

Definition 61.7.1.097I A ring map A → B is said to be ind-étale if B can be written
as a filtered colimit of étale A-algebras.

The category of ind-étale algebras is closed under a number of natural operations.

Lemma 61.7.2.097J Let A → B and A → A′ be ring maps. Let B′ = B ⊗A A′ be the
base change of B. If A→ B is ind-étale, then A′ → B′ is ind-étale.

Proof. This is Algebra, Lemma 10.154.1. □

Lemma 61.7.3.097K Let A → B and B → C be ring maps. If A → B and B → C are
ind-étale, then A→ C is ind-étale.

Proof. This is Algebra, Lemma 10.154.2. □

Lemma 61.7.4.097L A filtered colimit of ind-étale A-algebras is ind-étale over A.

Proof. This is Algebra, Lemma 10.154.3. □

Lemma 61.7.5.097M Let A be a ring. Let B → C be an A-algebra map of ind-étale
A-algebras. Then C is an ind-étale B-algebra.

Proof. This is Algebra, Lemma 10.154.5. □

Lemma 61.7.6.097N Let A → B be ind-étale. Then A → B is weakly étale (More on
Algebra, Definition 15.104.1).

Proof. This follows from More on Algebra, Lemma 15.104.14. □
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Lemma 61.7.7.097P Let A be a ring and let I ⊂ A be an ideal. The base change functor

ind-étale A-algebras −→ ind-étale A/I-algebras, C 7−→ C/IC

has a fully faithful right adjoint v. In particular, given an ind-étale A/I-algebra C
there exists an ind-étale A-algebra C = v(C) such that C = C/IC.

Proof. Let C be an ind-étale A/I-algebra. Consider the category C of factorizations
A → B → C where A → B is étale. (We ignore some set theoretical issues in this
proof.) We will show that this category is directed and that C = colimC B is an
ind-étale A-algebra such that C = C/IC.

We first prove that C is directed (Categories, Definition 4.19.1). The category is
nonempty as A→ A→ C is an object. Suppose that A→ B → C and A→ B′ → C
are two objects of C. Then A → B ⊗A B′ → C is another (use Algebra, Lemma
10.143.3). Suppose that f, g : B → B′ are two maps between objects A→ B → C
and A → B′ → C of C. Then a coequalizer is A → B′ ⊗f,B,g B′ → C. This is
an object of C by Algebra, Lemmas 10.143.3 and 10.143.8. Thus the category C is
directed.

Write C = colimBi as a filtered colimit with Bi étale over A/I. For every i there
exists A → Bi étale with Bi = Bi/IBi, see Algebra, Lemma 10.143.10. Thus
C → C is surjective. Since C/IC → C is ind-étale (Lemma 61.7.5) we see that it
is flat. Hence C is a localization of C/IC at some multiplicative subset S ⊂ C/IC
(Algebra, Lemma 10.108.2). Take an f ∈ C mapping to an element of S ⊂ C/IC.
Choose A → B → C in C and g ∈ B mapping to f in the colimit. Then we see
that A → Bg → C is an object of C as well. Thus f is an invertible element of C.
It follows that C/IC = C.

Next, we claim that for an ind-étale algebra D over A we have

MorA(D,C) = MorA/I(D/ID,C)

Namely, let D/ID → C be an A/I-algebra map. Write D = colimi∈I Di as a
colimit over a directed set I with Di étale over A. By choice of C we obtain a
transformation I → C and hence a map D → C compatible with maps to C.
Whence the claim.

It follows that the functor v defined by the rule

C 7−→ v(C) = colimA→B→C B

is a right adjoint to the base change functor u as required by the lemma. The
functor v is fully faithful because u◦v = id by construction, see Categories, Lemma
4.24.4. □

61.8. Constructing ind-étale algebras

097Q Let A be a ring. Recall that any étale ring map A→ B is isomorphic to a standard
smooth ring map of relative dimension 0. Such a ring map is of the form

A −→ A[x1, . . . , xn]/(f1, . . . , fn)

where the determinant of the n×n-matrix with entries ∂fi/∂xj is invertible in the
quotient ring. See Algebra, Lemma 10.143.2.
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Let S(A) be the set of all faithfully flat1 standard smooth A-algebras of relative
dimension 0. Let I(A) be the partially ordered (by inclusion) set of finite subsets
E of S(A). Note that I(A) is a directed partially ordered set. For E = {A →
B1, . . . , A→ Bn} set

BE = B1 ⊗A . . .⊗A Bn
Observe that BE is a faithfully flat étale A-algebra. For E ⊂ E′, there is a canonical
transition map BE → BE′ of étale A-algebras. Namely, say E = {A→ B1, . . . , A→
Bn} and E′ = {A → B1, . . . , A → Bn+m} then BE → BE′ sends b1 ⊗ . . . ⊗ bn to
the element b1 ⊗ . . .⊗ bn ⊗ 1⊗ . . .⊗ 1 of BE′ . This construction defines a system
of faithfully flat étale A-algebras over I(A) and we set

T (A) = colimE∈I(A) BE

Observe that T (A) is a faithfully flat ind-étaleA-algebra (Algebra, Lemma 10.39.20).
By construction given any faithfully flat étale A-algebra B there is a (non-unique)
A-algebra map B → T (A). Namely, pick some (A → B0) ∈ S(A) and an isomor-
phism B ∼= B0. Then the canonical coprojection

B → B0 → T (A) = colimE∈I(A) BE

is the desired map.

Lemma 61.8.1.097R Given a ring A there exists a faithfully flat ind-étale A-algebra C
such that every faithfully flat étale ring map C → B has a retraction.

Proof. Set T 1(A) = T (A) and Tn+1(A) = T (Tn(A)). Let
C = colimTn(A)

This algebra is faithfully flat over each Tn(A) and in particular over A, see Algebra,
Lemma 10.39.20. Moreover, C is ind-étale over A by Lemma 61.7.4. If C → B
is étale, then there exists an n and an étale ring map Tn(A) → B′ such that
B = C ⊗Tn(A) B

′, see Algebra, Lemma 10.143.3. If C → B is faithfully flat, then
Spec(B)→ Spec(C)→ Spec(Tn(A)) is surjective, hence Spec(B′)→ Spec(Tn(A))
is surjective. In other words, Tn(A) → B′ is faithfully flat. By our construction,
there is a Tn(A)-algebra map B′ → Tn+1(A). This induces a C-algebra map
B → C which finishes the proof. □

Remark 61.8.2.097S Let A be a ring. Let κ be an infinite cardinal bigger or equal than
the cardinality of A. Then the cardinality of T (A) is at most κ. Namely, each BE
has cardinality at most κ and the index set I(A) has cardinality at most κ as well.
Thus the result follows as κ⊗ κ = κ, see Sets, Section 3.6. It follows that the ring
constructed in the proof of Lemma 61.8.1 has cardinality at most κ as well.

Remark 61.8.3.097T The construction A 7→ T (A) is functorial in the following sense: If
A→ A′ is a ring map, then we can construct a commutative diagram

A //

��

T (A)

��
A′ // T (A′)

1In the presence of flatness, e.g., for smooth or étale ring maps, this just means that the
induced map on spectra is surjective. See Algebra, Lemma 10.39.16.

https://stacks.math.columbia.edu/tag/097R
https://stacks.math.columbia.edu/tag/097S
https://stacks.math.columbia.edu/tag/097T


61.8. CONSTRUCTING IND-ÉTALE ALGEBRAS 5021

Namely, given (A → A[x1, . . . , xn]/(f1, . . . , fn)) in S(A) we can use the ring map
φ : A → A′ to obtain a corresponding element (A′ → A′[x1, . . . , xn]/(fφ1 , . . . , fφn ))
of S(A′) where fφ means the polynomial obtained by applying φ to the coefficients
of the polynomial f . Moreover, there is a commutative diagram

A //

��

A[x1, . . . , xn]/(f1, . . . , fn)

��
A′ // A′[x1, . . . , xn]/(fφ1 , . . . , fφn )

which is a in the category of rings. For E ⊂ S(A) finite, set E′ = φ(E) and
define BE → BE′ in the obvious manner. Taking the colimit gives the desired map
T (A)→ T (A′), see Categories, Lemma 4.14.8.

Lemma 61.8.4.097U Let A be a ring such that every faithfully flat étale ring map A→ B
has a retraction. Then the same is true for every quotient ring A/I.

Proof. Let A/I → B be faithfully flat étale. By Algebra, Lemma 10.143.10 we can
write B = B/IB for some étale ring map A → B′. The image U of Spec(B) →
Spec(A) is open and contains V (I). Hence the complement Z = Spec(A) \ U is
quasi-compact and disjoint from V (I). Hence Z ⊂ D(f1) ∪ . . . ∪ D(fr) for some
r ≥ 0 and fi ∈ I. Then A→ B′ = B×

∏
Afi is faithfully flat étale and B = B′/IB′.

Hence the retraction B′ → A to A→ B′, induces a retraction to A/I → B. □

Lemma 61.8.5.097V Let A be a ring such that every faithfully flat étale ring map A→ B
has a retraction. Then every local ring of A at a maximal ideal is strictly henselian.

Proof. Let m be a maximal ideal of A. Let A → B be an étale ring map and let
q ⊂ B be a prime lying over m. By the description of the strict henselization Ashm
in Algebra, Lemma 10.155.11 it suffices to show that Am = Bq. Note that there are
finitely many primes q = q1, q2, . . . , qn lying over m and there are no specializations
between them as an étale ring map is quasi-finite, see Algebra, Lemma 10.143.6.
Thus qi is a maximal ideal and we can find g ∈ q2 ∩ . . . ∩ qn, g ̸∈ q (Algebra,
Lemma 10.15.2). After replacing B by Bg we see that q is the only prime of B
lying over m. The image U ⊂ Spec(A) of Spec(B) → Spec(A) is open (Algebra,
Proposition 10.41.8). Thus the complement Spec(A) \ U is closed and we can find
f ∈ A, f ̸∈ p such that Spec(A) = U ∪ D(f). The ring map A → B × Af is
faithfully flat and étale, hence has a retraction σ : B × Af → A by assumption on
A. Observe that σ is étale, hence flat as a map between étale A-algebras (Algebra,
Lemma 10.143.8). Since q is the only prime of B × Af lying over A we find that
Ap → Bq has a retraction which is also flat. Thus Ap → Bq → Ap are flat local
ring maps whose composition is the identity. Since a flat local homomorphism of
local rings is injective we conclude these maps are isomorphisms as desired. □

Lemma 61.8.6.097W Let A be a ring such that every faithfully flat étale ring map
A→ B has a retraction. Let Z ⊂ Spec(A) be a closed subscheme. Let A→ A∼

Z be
as constructed in Lemma 61.5.1. Then every faithfully flat étale ring map A∼

Z → C
has a retraction.

Proof. There exists an étale ring map A → B′ such that C = B′ ⊗A A∼
Z as A∼

Z -
algebras. The image U ′ ⊂ Spec(A) of Spec(B′) → Spec(A) is open and contains
V (I), hence we can find f ∈ I such that Spec(A) = U ′ ∪D(f). Then A→ B′×Af
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is étale and faithfully flat. By assumption there is a retraction B′ × Af → A.
Localizing we obtain the desired retraction C → A∼

Z . □

Lemma 61.8.7.097X Let A→ B be a ring map inducing algebraic extensions on residue
fields. There exists a commutative diagram

B // D

A //

OO

C

OO

with the following properties:
(1) A→ C is faithfully flat and ind-étale,
(2) B → D is faithfully flat and ind-étale,
(3) Spec(C) is w-local,
(4) Spec(D) is w-local,
(5) Spec(D)→ Spec(C) is w-local,
(6) the set of closed points of Spec(D) is the inverse image of the set of closed

points of Spec(C),
(7) the set of closed points of Spec(C) surjects onto Spec(A),
(8) the set of closed points of Spec(D) surjects onto Spec(B),
(9) for m ⊂ C maximal the local ring Cm is strictly henselian.

Proof. There is a faithfully flat, ind-Zariski ring map A→ A′ such that Spec(A′) is
w-local and such that the set of closed points of Spec(A′) maps onto Spec(A), see
Lemma 61.5.3. Let I ⊂ A′ be the ideal such that V (I) is the set of closed points of
Spec(A′). Choose A′ → C ′ as in Lemma 61.8.1. Note that the local rings C ′

m′ at
maximal ideals m′ ⊂ C ′ are strictly henselian by Lemma 61.8.5. We apply Lemma
61.5.8 to A′ → C ′ and I ⊂ A′ to get C ′ → C with C ′/IC ′ ∼= C/IC. Note that
since A′ → C ′ is faithfully flat, Spec(C ′/IC ′) surjects onto the set of closed points
of A′ and in particular onto Spec(A). Moreover, as V (IC) ⊂ Spec(C) is the set of
closed points of C and C ′ → C is ind-Zariski (and identifies local rings) we obtain
properties (1), (3), (7), and (9).
Denote J ⊂ C the ideal such that V (J) is the set of closed points of Spec(C). Set
D′ = B ⊗A C. The ring map C → D′ induces algebraic residue field extensions.
Keep in mind that since V (J) → Spec(A) is surjective the map T = V (JD) →
Spec(B) is surjective too. Apply Lemma 61.5.8 to C → D′ and J ⊂ C to get
D′ → D with D′/JD′ ∼= D/JD. All of the remaining properties given in the
lemma are immediate from the results of Lemma 61.5.8. □

61.9. Weakly étale versus pro-étale

097Y Recall that a ring homomorphism A → B is weakly étale if A → B is flat and
B ⊗A B → B is flat. We have proved some properties of such ring maps in More
on Algebra, Section 15.104. In particular, if A → B is a local homomorphism,
and A is a strictly henselian local rings, then A = B, see More on Algebra, Theo-
rem 15.104.24. Using this theorem and the work we’ve done above we obtain the
following structure theorem for weakly étale ring maps.

Proposition 61.9.1.097Z Let A → B be a weakly étale ring map. Then there exists a
faithfully flat, ind-étale ring map B → B′ such that A→ B′ is ind-étale.

https://stacks.math.columbia.edu/tag/097X
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Proof. The ring map A → B induces (separable) algebraic extensions of residue
fields, see More on Algebra, Lemma 15.104.17. Thus we may apply Lemma 61.8.7
and choose a diagram

B // D

A //

OO

C

OO

with the properties as listed in the lemma. Note that C → D is weakly étale by
More on Algebra, Lemma 15.104.11. Pick a maximal ideal m ⊂ D. By construction
this lies over a maximal ideal m′ ⊂ C. By More on Algebra, Theorem 15.104.24
the ring map Cm′ → Dm is an isomorphism. As every point of Spec(C) specializes
to a closed point we conclude that C → D identifies local rings. Thus Proposition
61.6.6 applies to the ring map C → D. Pick D → D′ faithfully flat and ind-Zariski
such that C → D′ is ind-Zariski. Then B → D′ is a solution to the problem posed
in the proposition. □

61.10. The V topology and the pro-h topology

0EVM The V topology was introduced in Topologies, Section 34.10. The h topology was
introduced in More on Flatness, Section 38.34. A kind of intermediate topology,
namely the ph topology, was introduced in Topologies, Section 34.8.

Given a topology τ on a suitable category C of schemes, we can introduce a “pro-
τ topology” on C as follows. Recall that for X in C we use hX to denote the
representable presheaf associated to X. Let us temporarily say a morphism X → Y
of C is a τ -cover2 if the τ -sheafification of hX → hY is surjective. Then we can define
the pro-τ topology as the coarsest topology such that

(1) the pro-τ topology is finer than the τ topology, and
(2) X → Y is a pro-τ -cover if Y is affine and X = limXλ is a directed limit

of affine schemes Xλ over Y such that hXλ → hY is a τ -cover for all λ.
We use this pedantic formulation because we do not want to specify a choice of pro-τ
coverings: for different τ different choices of collections of coverings are suitable. For
example, in Section 61.12 we will see that in order to define the pro-étale topology
looking at families of weakly étale morphisms with some finiteness property works
well. More generally, the proposed construction given in this paragraph is meant
mainly to motivate the results in this section and we will never implicitly define a
pro-τ topology using this method.

The following lemma tells us that the pro-V topology is equal to the V topology.

Lemma 61.10.1.0EVN Let Y be an affine scheme. Let X = limXi be a directed limit of
affine schemes over Y . The following are equivalent

(1) {X → Y } is a standard V covering (Topologies, Definition 34.10.1), and
(2) {Xi → Y } is a standard V covering for all i.

2This should not be confused with the notion of a covering. For example if τ = étale, any
morphism X → Y which has a section is a τ -covering. But our definition of étale coverings
{Vi → Y }i∈I forces each Vi → Y to be étale.

https://stacks.math.columbia.edu/tag/0EVN
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Proof. A singleton {X → Y } is a standard V covering if and only if given a mor-
phism g : Spec(V ) → Y there is an extension of valuation rings V ⊂ W and a
commutative diagram

Spec(W ) //

��

X

��
Spec(V ) g // Y

Thus (1) ⇒ (2) is immediate from the definition. Conversely, assume (2) and let
g : Spec(V ) → Y as above be given. Write Spec(V ) ×Y Xi = Spec(Ai). Since
{Xi → Y } is a standard V covering, we may choose a valuation ring Wi and a
ring map Ai → Wi such that the composition V → Ai → Wi is an extension of
valuation rings. In particular, the quotient A′

i of Ai by its V -torsion is a faitfhully
flat V -algebra. Flatness by More on Algebra, Lemma 15.22.10 and surjectivity on
spectra because Ai →Wi factors through A′

i. Thus

A = colimA′
i

is a faithfully flat V -algebra (Algebra, Lemma 10.39.20). Since {Spec(A)→ Spec(V )}
is a standard fpqc cover, it is a standard V cover (Topologies, Lemma 34.10.2) and
hence we can choose Spec(W ) → Spec(A) such that V → W is an extension
of valuation rings. Since we can compose with the morphism Spec(A) → X =
Spec(colimAi) the proof is complete. □

The following lemma tells us that the pro-h topology is equal to the pro-ph topology
is equal to the V topology.

Lemma 61.10.2.0EVP Let X → Y be a morphism of affine schemes. The following are
equivalent

(1) {X → Y } is a standard V covering (Topologies, Definition 34.10.1),
(2) X = limXi is a directed limit of affine schemes over Y such that {Xi → Y }

is a ph covering for each i, and
(3) X = limXi is a directed limit of affine schemes over Y such that {Xi → Y }

is an h covering for each i.

Proof. Proof of (2)⇒ (1). Recall that a V covering given by a single arrow between
affines is a standard V covering, see Topologies, Definition 34.10.7 and Lemma
34.10.6. Recall that any ph covering is a V covering, see Topologies, Lemma
34.10.10. Hence if X = limXi as in (2), then {Xi → Y } is a standard V cov-
ering for each i. Thus by Lemma 61.10.1 we see that (1) is true.

Proof of (3) ⇒ (2). This is clear because an h covering is always a ph covering, see
More on Flatness, Definition 38.34.2.

Proof of (1) ⇒ (3). This is the interesting direction, but the interesting content in
this proof is hidden in More on Flatness, Lemma 38.34.1. Write X = Spec(A) and
Y = Spec(R). We can write A = colimAi with Ai of finite presentation over R,
see Algebra, Lemma 10.127.2. Set Xi = Spec(Ai). Then {Xi → Y } is a standard
V covering for all i by (1) and Topologies, Lemma 34.10.6. Hence {Xi → Y } is an
h covering by More on Flatness, Definition 38.34.2. This finishes the proof. □

https://stacks.math.columbia.edu/tag/0EVP
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The following lemma tells us, roughly speaking, that an h sheaf which is limit
preserving satisfies the sheaf condition for V coverings. Please also compare with
Remark 61.10.4.

Lemma 61.10.3.0EVQ Let S be a scheme. Let F be a contravariant functor defined on
the category of all schemes over S. If

(1) F satisfies the sheaf property for the h topology, and
(2) F is limit preserving (Limits, Remark 32.6.2),

then F satisfies the sheaf property for the V topology.

Proof. We will prove this by verifying (1) and (2’) of Topologies, Lemma 34.10.12.
The sheaf property for Zariski coverings follows from the fact that F has the sheaf
property for all h coverings. Finally, suppose that X → Y is a morphism of affine
schemes over S such that {X → Y } is a V covering. By Lemma 61.10.2 we can
write X = limXi as a directed limit of affine schemes over Y such that {Xi → Y }
is an h covering for each i. We obtain

Equalizer( F (X) //
// F (X ×Y X) )

= Equalizer( colimF (Xi)
//
// colimF (Xi ×Y Xi) )

= colim Equalizer( F (Xi)
//
// F (Xi ×Y Xi) )

= colimF (Y ) = F (Y )
which is what we wanted to show. The first equality because F is limit preserving
and X = limXi and X×Y X = limXi×Y Xi. The second equality because filtered
colimits are exact. The third equality because F satisfies the sheaf property for h
coverings. □

Remark 61.10.4.0EVR Let S be a scheme contained in a big site Schh. Let F be a
sheaf of sets on (Sch/S)h such that F (T ) = colimF (Ti) whenever T = limTi is a
directed limit of affine schemes in (Sch/S)h. In this situation F extends uniquely
to a contravariant functor F ′ on the category of all schemes over S such that (a) F ′

satisfies the sheaf property for the h topology and (b) F ′ is limit preserving. See
More on Flatness, Lemma 38.35.4. In this situation Lemma 61.10.3 tells us that F ′

satisfies the sheaf property for the V topology.

61.11. Constructing w-contractible covers

0980 In this section we construct w-contractible covers of affine schemes.

Definition 61.11.1.0981 Let A be a ring. We say A is w-contractible if every faithfully
flat weakly étale ring map A→ B has a retraction.

We remark that by Proposition 61.9.1 an equivalent definition would be to ask that
every faithfully flat, ind-étale ring map A → B has a retraction. Here is a key
observation that will allow us to construct w-contractible rings.

Lemma 61.11.2.0982 Let A be a ring. The following are equivalent
(1) A is w-contractible,
(2) every faithfully flat, ind-étale ring map A→ B has a retraction, and
(3) A satisfies

(a) Spec(A) is w-local,

https://stacks.math.columbia.edu/tag/0EVQ
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(b) π0(Spec(A)) is extremally disconnected, and
(c) for every maximal ideal m ⊂ A the local ring Am is strictly henselian.

Proof. The equivalence of (1) and (2) follows immediately from Proposition 61.9.1.
Assume (3)(a), (3)(b), and (3)(c). Let A→ B be faithfully flat and ind-étale. We
will use without further mention the fact that a flat map A → B is faithfully flat
if and only if every closed point of Spec(A) is in the image of Spec(B)→ Spec(A)
We will show that A→ B has a retraction.
Let I ⊂ A be an ideal such that V (I) ⊂ Spec(A) is the set of closed points of
Spec(A). We may replace B by the ring C constructed in Lemma 61.5.8 for A→ B
and I ⊂ A. Thus we may assume Spec(B) is w-local such that the set of closed
points of Spec(B) is V (IB). In this case A→ B identifies local rings by condition
(3)(c) as it suffices to check this at maximal ideals of B which lie over maximal
ideals of A. Thus A→ B has a retraction by Lemma 61.6.7.
Assume (1) or equivalently (2). We have (3)(c) by Lemma 61.8.5. Properties (3)(a)
and (3)(b) follow from Lemma 61.6.7. □

Proposition 61.11.3.0983 For every ring A there exists a faithfully flat, ind-étale ring
map A→ D such that D is w-contractible.

Proof. Applying Lemma 61.8.7 to idA : A → A we find a faithfully flat, ind-étale
ring map A→ C such that C is w-local and such that every local ring at a maximal
ideal of C is strictly henselian. Choose an extremally disconnected space T and a
surjective continuous map T → π0(Spec(C)), see Topology, Lemma 5.26.9. Note
that T is profinite. Apply Lemma 61.6.2 to find an ind-Zariski ring map C → D
such that π0(Spec(D))→ π0(Spec(C)) realizes T → π0(Spec(C)) and such that

Spec(D) //

��

π0(Spec(D))

��
Spec(C) // π0(Spec(C))

is cartesian in the category of topological spaces. Note that Spec(D) is w-local,
that Spec(D)→ Spec(C) is w-local, and that the set of closed points of Spec(D) is
the inverse image of the set of closed points of Spec(C), see Lemma 61.2.5. Thus it
is still true that the local rings of D at its maximal ideals are strictly henselian (as
they are isomorphic to the local rings at the corresponding maximal ideals of C).
It follows from Lemma 61.11.2 that D is w-contractible. □

Remark 61.11.4.0984 Let A be a ring. Let κ be an infinite cardinal bigger or equal than
the cardinality of A. Then the cardinality of the ring D constructed in Proposition
61.11.3 is at most

κ222κ

.

Namely, the ring map A→ D is constructed as a composition
A→ Aw = A′ → C ′ → C → D.

Here the first three steps of the construction are carried out in the first paragraph of
the proof of Lemma 61.8.7. For the first step we have |Aw| ≤ κ by Remark 61.5.4.
We have |C ′| ≤ κ by Remark 61.8.2. Then |C| ≤ κ because C is a localization of
(C ′)w (it is constructed from C ′ by an application of Lemma 61.5.7 in the proof
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of Lemma 61.5.8). Thus C has at most 2κ maximal ideals. Finally, the ring map
C → D identifies local rings and the cardinality of the set of maximal ideals of D
is at most 222κ by Topology, Remark 5.26.10. Since D ⊂

∏
m⊂DDm we see that D

has at most the size displayed above.

Lemma 61.11.5.0985 Let A → B be a quasi-finite and finitely presented ring map. If
the residue fields of A are separably algebraically closed and Spec(A) is Hausdorff
and extremally disconnected, then Spec(B) is extremally disconnected.

Proof. Set X = Spec(A) and Y = Spec(B). Choose a finite partition X =
∐
Xi

and X ′
i → Xi as in Étale Cohomology, Lemma 59.72.3. The map of topological

spaces
∐
Xi → X (where the source is the disjoint union in the category of topo-

logical spaces) has a section by Topology, Proposition 5.26.6. Hence we see that X
is topologically the disjoint union of the strata Xi. Thus we may replace X by the
Xi and assume there exists a surjective finite locally free morphism X ′ → X such
that (X ′×X Y )red is isomorphic to a finite disjoint union of copies of X ′

red. Picture∐
i=1,...,rX

′ //

��

Y

��
X ′ // X

The assumption on the residue fields of A implies that this diagram is a fibre product
diagram on underlying sets of points (details omitted). Since X is extremally
disconnected and X ′ is Hausdorff (Lemma 61.5.6), the continuous map X ′ → X
has a continuous section σ. Then

∐
i=1,...,r σ(X) → Y is a bijective continuous

map. By Topology, Lemma 5.17.8 we see that it is a homeomorphism and the
proof is done. □

Lemma 61.11.6.0986 Let A → B be a finite and finitely presented ring map. If A is
w-contractible, so is B.

Proof. We will use the criterion of Lemma 61.11.2. Set X = Spec(A) and Y =
Spec(B) and denote f : Y → X the induced morphism. As f : Y → X is a
finite morphism, we see that the set of closed points Y0 of Y is the inverse image
of the set of closed points X0 of X. Let y ∈ Y with image x ∈ X. Then x
specializes to a unique closed point x0 ∈ X. Say f−1({x0}) = {y1, . . . , yn} with
yi closed in Y . Since R = OX,x0 is strictly henselian and since f is finite, we
see that Y ×f,X Spec(R) is equal to

∐
i=1,...,n Spec(Ri) where each Ri is a local

ring finite over R whose maximal ideal corresponds to yi, see Algebra, Lemma
10.153.3 part (10). Then y is a point of exactly one of these Spec(Ri) and we
see that y specializes to exactly one of the yi. In other words, every point of Y
specializes to a unique point of Y0. Thus Y is w-local. For every y ∈ Y0 with image
x ∈ X0 we see that OY,y is strictly henselian by Algebra, Lemma 10.153.4 applied
to OX,x → B ⊗A OX,x. It remains to show that Y0 is extremally disconnected. To
do this we look at X0 ×X Y → X0 where X0 ⊂ X is the reduced induced scheme
structure. Note that the underlying topological space of X0 ×X Y agrees with Y0.
Now the desired result follows from Lemma 61.11.5. □

Lemma 61.11.7.0987 Let A be a ring. Let Z ⊂ Spec(A) be a closed subset of the form
Z = V (f1, . . . , fr). Set B = A∼

Z , see Lemma 61.5.1. If A is w-contractible, so is B.
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Proof. Let A∼
Z → B be a weakly étale faithfully flat ring map. Consider the ring

map
A −→ Af1 × . . .×Afr ×B

this is faithful flat and weakly étale. If A is w-contractible, then there is a retraction
σ. Consider the morphism

Spec(A∼
Z )→ Spec(A) Spec(σ)−−−−−→

∐
Spec(Afi)⨿ Spec(B)

Every point of Z ⊂ Spec(A∼
Z ) maps into the component Spec(B). Since every point

of Spec(A∼
Z ) specializes to a point of Z we find a morphism Spec(A∼

Z ) → Spec(B)
as desired. □

61.12. The pro-étale site

0988 In this section we only discuss the actual definition and construction of the var-
ious pro-étale sites and the morphisms between them. The existence of weakly
contractible objects will be done in Section 61.13.
The pro-étale topology is a bit like the fpqc topology (see Topologies, Section 34.9)
in that the topos of sheaves on the small pro-étale site of a scheme depends on the
choice of the underlying category of schemes. Thus we cannot speak of the pro-étale
topos of a scheme. However, it will be true that the cohomology groups of a sheaf
are unchanged if we enlarge our underlying category of schemes, see Section 61.31.
We will define pro-étale coverings using weakly étale morphisms of schemes, see
More on Morphisms, Section 37.64. The reason is that, on the one hand, it is
somewhat awkward to define the notion of a pro-étale morphism of schemes, and
on the other, Proposition 61.9.1 assures us that we obtain the same sheaves3 with
the definition that follows.

Definition 61.12.1.0989 Let T be a scheme. A pro-étale covering of T is a family of
morphisms {fi : Ti → T}i∈I of schemes such that each fi is weakly-étale and such
that for every affine open U ⊂ T there exists n ≥ 0, a map a : {1, . . . , n} → I and
affine opens Vj ⊂ Ta(j), j = 1, . . . , n with

⋃n
j=1 fa(j)(Vj) = U .

To be sure this condition implies that T =
⋃
fi(Ti). Here is a lemma that will allow

us to recognize pro-étale coverings. It will also allow us to reduce many lemmas
about pro-étale coverings to the corresponding results for fpqc coverings.

Lemma 61.12.2.098A Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms
of schemes with target T . The following are equivalent

(1) {fi : Ti → T}i∈I is a pro-étale covering,
(2) each fi is weakly étale and {fi : Ti → T}i∈I is an fpqc covering,
(3) each fi is weakly étale and for every affine open U ⊂ T there exist

quasi-compact opens Ui ⊂ Ti which are almost all empty, such that
U =

⋃
fi(Ui),

(4) each fi is weakly étale and there exists an affine open covering T =⋃
α∈A Uα and for each α ∈ A there exist iα,1, . . . , iα,n(α) ∈ I and quasi-

compact opens Uα,j ⊂ Tiα,j such that Uα =
⋃
j=1,...,n(α) fiα,j (Uα,j).

If T is quasi-separated, these are also equivalent to

3To be precise the pro-étale topology we obtain using our choice of coverings is the same as
the one gotten from the general procedure explained in Section 61.10 starting with τ = étale.
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(5) each fi is weakly étale, and for every t ∈ T there exist i1, . . . , in ∈ I
and quasi-compact opens Uj ⊂ Tij such that

⋃
j=1,...,n fij (Uj) is a (not

necessarily open) neighbourhood of t in T .

Proof. The equivalence of (1) and (2) is immediate from the definitions. Hence the
lemma follows from Topologies, Lemma 34.9.2. □

Lemma 61.12.3.098B Any étale covering and any Zariski covering is a pro-étale covering.

Proof. This follows from the corresponding result for fpqc coverings (Topologies,
Lemma 34.9.6), Lemma 61.12.2, and the fact that an étale morphism is a weakly
étale morphism, see More on Morphisms, Lemma 37.64.9. □

Lemma 61.12.4.098C Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is a pro-étale covering of T .
(2) If {Ti → T}i∈I is a pro-étale covering and for each i we have a pro-étale

covering {Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a pro-étale covering.
(3) If {Ti → T}i∈I is a pro-étale covering and T ′ → T is a morphism of

schemes then {T ′ ×T Ti → T ′}i∈I is a pro-étale covering.

Proof. This follows from the fact that composition and base changes of weakly étale
morphisms are weakly étale (More on Morphisms, Lemmas 37.64.5 and 37.64.6),
Lemma 61.12.2, and the corresponding results for fpqc coverings, see Topologies,
Lemma 34.9.7. □

Lemma 61.12.5.098D Let T be an affine scheme. Let {Ti → T}i∈I be a pro-étale
covering of T . Then there exists a pro-étale covering {Uj → T}j=1,...,n which is a
refinement of {Ti → T}i∈I such that each Uj is an affine scheme. Moreover, we
may choose each Uj to be open affine in one of the Ti.

Proof. This follows directly from the definition. □

Thus we define the corresponding standard coverings of affines as follows.

Definition 61.12.6.098E Let T be an affine scheme. A standard pro-étale covering of T
is a family {fi : Ti → T}i=1,...,n where each Tj is affine, each fi is weakly étale, and
T =

⋃
fi(Ti).

We follow the general outline given in Topologies, Section 34.2 for constructing
the big pro-étale site we will be working with. However, because we need a bit
larger rings to accommodate for the size of certain constructions we modify the
constructions slightly.

Definition 61.12.7.098G A big pro-étale site is any site Schpro-étale as in Sites, Definition
7.6.2 constructed as follows:

(1) Choose any set of schemes S0, and any set of pro-étale coverings Cov0
among these schemes.

(2) Change the function Bound of Sets, Equation (3.9.1.1) into

Bound(κ) = max{κ222κ

, κℵ0 , κ+}.

(3) As underlying category take any category Schα constructed as in Sets,
Lemma 3.9.2 starting with the set S0 and the function Bound.
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(4) Choose any set of coverings as in Sets, Lemma 3.11.1 starting with the
category Schα and the class of pro-étale coverings, and the set Cov0 chosen
above.

See the remarks following Topologies, Definition 34.3.5 for motivation and expla-
nation regarding the definition of big sites.
It will turn out, see Lemma 61.31.1, that the topology on a big pro-étale site
Schpro-étale is in some sense induced from the pro-étale topology on the category of
all schemes.

Definition 61.12.8.098K Let S be a scheme. Let Schpro-étale be a big pro-étale site
containing S.

(1) The big pro-étale site of S, denoted (Sch/S)pro-étale, is the site Schpro-étale/S
introduced in Sites, Section 7.25.

(2) The small pro-étale site of S, which we denote Spro-étale, is the full subcat-
egory of (Sch/S)pro-étale whose objects are those U/S such that U → S
is weakly étale. A covering of Spro-étale is any covering {Ui → U} of
(Sch/S)pro-étale with U ∈ Ob(Spro-étale).

(3) The big affine pro-étale site of S, denoted (Aff/S)pro-étale, is the full sub-
category of (Sch/S)pro-étale whose objects are affine U/S. A covering of
(Aff/S)pro-étale is any covering {Ui → U} of (Sch/S)pro-étale which is a
standard pro-étale covering.

It is not completely clear that the small pro-étale site and the big affine pro-étale
site are sites. We check this now.

Lemma 61.12.9.098L Let S be a scheme. Let Schpro-étale be a big pro-étale site con-
taining S. Both Spro-étale and (Aff/S)pro-étale are sites.

Proof. Let us show that Spro-étale is a site. It is a category with a given set of
families of morphisms with fixed target. Thus we have to show properties (1), (2)
and (3) of Sites, Definition 7.6.2. Since (Sch/S)pro-étale is a site, it suffices to prove
that given any covering {Ui → U} of (Sch/S)pro-étale with U ∈ Ob(Spro-étale) we
also have Ui ∈ Ob(Spro-étale). This follows from the definitions as the composition
of weakly étale morphisms is weakly étale.
To show that (Aff/S)pro-étale is a site, reasoning as above, it suffices to show that
the collection of standard pro-étale coverings of affines satisfies properties (1), (2)
and (3) of Sites, Definition 7.6.2. This follows from Lemma 61.12.2 and the corre-
sponding result for standard fpqc coverings (Topologies, Lemma 34.9.10). □

Lemma 61.12.10.098M Let S be a scheme. Let Schpro-étale be a big pro-étale site
containing S. Let Sch be the category of all schemes.

(1) The categories Schpro-étale, (Sch/S)pro-étale, Spro-étale, and (Aff/S)pro-étale
have fibre products agreeing with fibre products in Sch.

(2) The categories Schpro-étale, (Sch/S)pro-étale, Spro-étale have equalizers agree-
ing with equalizers in Sch.

(3) The categories (Sch/S)pro-étale, and Spro-étale both have a final object,
namely S/S.

(4) The category Schpro-étale has a final object agreeing with the final object
of Sch, namely Spec(Z).
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Proof. The category Schpro-étale contains Spec(Z) and is closed under products and
fibre products by construction, see Sets, Lemma 3.9.9. Suppose we have U → S,
V → U , W → U morphisms of schemes with U, V,W ∈ Ob(Schpro-étale). The fibre
product V ×U W in Schpro-étale is a fibre product in Sch and is the fibre product
of V/S with W/S over U/S in the category of all schemes over S, and hence also
a fibre product in (Sch/S)pro-étale. This proves the result for (Sch/S)pro-étale. If
U → S, V → U and W → U are weakly étale then so is V ×UW → S (see More on
Morphisms, Section 37.64) and hence we get fibre products for Spro-étale. If U, V,W
are affine, so is V ×U W and hence we get fibre products for (Aff/S)pro-étale.

Let a, b : U → V be two morphisms in Schpro-étale. In this case the equalizer of a
and b (in the category of schemes) is

V ×∆V/ Spec(Z),V×Spec(Z)V,(a,b) (U ×Spec(Z) U)

which is an object of Schpro-étale by what we saw above. Thus Schpro-étale has
equalizers. If a and b are morphisms over S, then the equalizer (in the category of
schemes) is also given by

V ×∆V/S ,V×SV,(a,b) (U ×S U)

hence we see that (Sch/S)pro-étale has equalizers. Moreover, if U and V are weakly-
étale over S, then so is the equalizer above as a fibre product of schemes weakly
étale over S. Thus Spro-étale has equalizers. The statements on final objects is
clear. □

Next, we check that the big affine pro-étale site defines the same topos as the big
pro-étale site.

Lemma 61.12.11.098N Let S be a scheme. Let Schpro-étale be a big pro-étale site
containing S. The functor (Aff/S)pro-étale → (Sch/S)pro-étale is a special cocontin-
uous functor. Hence it induces an equivalence of topoi from Sh((Aff/S)pro-étale) to
Sh((Sch/S)pro-étale).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Definition
7.29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 7.29.1. Denote
the inclusion functor u : (Aff/S)pro-étale → (Sch/S)pro-étale. Being cocontinuous
just means that any pro-étale covering of T/S, T affine, can be refined by a standard
pro-étale covering of T . This is the content of Lemma 61.12.5. Hence (1) holds.
We see u is continuous simply because a standard pro-étale covering is a pro-étale
covering. Hence (2) holds. Parts (3) and (4) follow immediately from the fact that
u is fully faithful. And finally condition (5) follows from the fact that every scheme
has an affine open covering. □

Lemma 61.12.12.098P Let Schpro-étale be a big pro-étale site. Let f : T → S be a
morphism in Schpro-étale. The functor Tpro-étale → (Sch/S)pro-étale is cocontinuous
and induces a morphism of topoi

if : Sh(Tpro-étale) −→ Sh((Sch/S)pro-étale)

For a sheaf G on (Sch/S)pro-étale we have the formula (i−1
f G)(U/T ) = G(U/S). The

functor i−1
f also has a left adjoint if,! which commutes with fibre products and

equalizers.
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Proof. Denote the functor u : Tpro-étale → (Sch/S)pro-étale. In other words, given
a weakly étale morphism j : U → T corresponding to an object of Tpro-étale we
set u(U → T ) = (f ◦ j : U → S). This functor commutes with fibre products, see
Lemma 61.12.10. Moreover, Tpro-étale has equalizers and u commutes with them by
Lemma 61.12.10. It is clearly cocontinuous. It is also continuous as u transforms
coverings to coverings and commutes with fibre products. Hence the lemma follows
from Sites, Lemmas 7.21.5 and 7.21.6. □

Lemma 61.12.13.098Q Let S be a scheme. Let Schpro-étale be a big pro-étale site contain-
ing S. The inclusion functor Spro-étale → (Sch/S)pro-étale satisfies the hypotheses
of Sites, Lemma 7.21.8 and hence induces a morphism of sites

πS : (Sch/S)pro-étale −→ Spro-étale

and a morphism of topoi
iS : Sh(Spro-étale) −→ Sh((Sch/S)pro-étale)

such that πS ◦ iS = id. Moreover, iS = iidS with iidS as in Lemma 61.12.12. In
particular the functor i−1

S = πS,∗ is described by the rule i−1
S (G)(U/S) = G(U/S).

Proof. In this case the functor u : Spro-étale → (Sch/S)pro-étale, in addition to the
properties seen in the proof of Lemma 61.12.12 above, also is fully faithful and
transforms the final object into the final object. The lemma follows from Sites,
Lemma 7.21.8. □

Definition 61.12.14.098R In the situation of Lemma 61.12.13 the functor i−1
S = πS,∗ is

often called the restriction to the small pro-étale site, and for a sheaf F on the big
pro-étale site we denote F|Spro-étale this restriction.

With this notation in place we have for a sheaf F on the big site and a sheaf G on
the big site that

MorSh(Spro-étale)(F|Spro-étale ,G) = MorSh((Sch/S)pro-étale)(F , iS,∗G)
MorSh(Spro-étale)(G,F|Spro-étale) = MorSh((Sch/S)pro-étale)(π−1

S G,F)

Moreover, we have (iS,∗G)|Spro-étale = G and we have (π−1
S G)|Spro-étale = G.

Lemma 61.12.15.098S Let Schpro-étale be a big pro-étale site. Let f : T → S be a
morphism in Schpro-étale. The functor

u : (Sch/T )pro-étale −→ (Sch/S)pro-étale, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint
v : (Sch/S)pro-étale −→ (Sch/T )pro-étale, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi
fbig : Sh((Sch/T )pro-étale) −→ Sh((Sch/S)pro-étale)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers (details omitted; compare with proof of Lemma 61.12.12).
Hence Sites, Lemmas 7.21.5 and 7.21.6 apply and we deduce the formula for f−1

big

and the existence of fbig!. Moreover, the functor v is a right adjoint because given

https://stacks.math.columbia.edu/tag/098Q
https://stacks.math.columbia.edu/tag/098R
https://stacks.math.columbia.edu/tag/098S


61.12. THE PRO-ÉTALE SITE 5033

U/T and V/S we have MorS(u(U), V ) = MorT (U, V ×S T ) as desired. Thus we
may apply Sites, Lemmas 7.22.1 and 7.22.2 to get the formula for fbig,∗. □

Lemma 61.12.16.098T Let Schpro-étale be a big pro-étale site. Let f : T → S be a
morphism in Schpro-étale.

(1) We have if = fbig ◦ iT with if as in Lemma 61.12.12 and iT as in Lemma
61.12.13.

(2) The functor Spro-étale → Tpro-étale, (U → S) 7→ (U ×S T → T ) is continu-
ous and induces a morphism of topoi

fsmall : Sh(Tpro-étale) −→ Sh(Spro-étale).
We have fsmall,∗(F)(U/S) = F(U ×S T/T ).

(3) We have a commutative diagram of morphisms of sites

Tpro-étale

fsmall

��

(Sch/T )pro-étale

fbig

��

πT
oo

Spro-étale (Sch/S)pro-étale
πSoo

so that fsmall ◦ πT = πS ◦ fbig as morphisms of topoi.
(4) We have fsmall = πS ◦ fbig ◦ iT = πS ◦ if .

Proof. The equality if = fbig ◦ iT follows from the equality i−1
f = i−1

T ◦ f
−1
big which

is clear from the descriptions of these functors above. Thus we see (1).
The functor u : Spro-étale → Tpro-étale, u(U → S) = (U ×S T → T ) transforms
coverings into coverings and commutes with fibre products, see Lemmas 61.12.4
and 61.12.10. Moreover, both Spro-étale, Tpro-étale have final objects, namely S/S
and T/T and u(S/S) = T/T . Hence by Sites, Proposition 7.14.7 the functor u
corresponds to a morphism of sites Tpro-étale → Spro-étale. This in turn gives rise to
the morphism of topoi, see Sites, Lemma 7.15.2. The description of the pushforward
is clear from these references.
Part (3) follows because πS and πT are given by the inclusion functors and fsmall
and fbig by the base change functors U 7→ U ×S T .
Statement (4) follows from (3) by precomposing with iT . □

In the situation of the lemma, using the terminology of Definition 61.12.14 we have:
for F a sheaf on the big pro-étale site of T
(61.12.16.1)0F60 (fbig,∗F)|Spro-étale = fsmall,∗(F|Tpro-étale),
This equality is clear from the commutativity of the diagram of sites of the lemma,
since restriction to the small pro-étale site of T , resp. S is given by πT,∗, resp. πS,∗.
A similar formula involving pullbacks and restrictions is false.

Lemma 61.12.17.098U Given schemes X, Y , Y in Schpro-étale and morphisms f : X →
Y , g : Y → Z we have gbig ◦ fbig = (g ◦ f)big and gsmall ◦ fsmall = (g ◦ f)small.

Proof. This follows from the simple description of pushforward and pullback for the
functors on the big sites from Lemma 61.12.15. For the functors on the small sites
this follows from the description of the pushforward functors in Lemma 61.12.16.

□
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Lemma 61.12.18.0F61 Let Schpro-étale be a big pro-étale site. Consider a cartesian
diagram

T ′
g′
//

f ′

��

T

f

��
S′ g // S

in Schpro-étale. Then i−1
g ◦fbig,∗ = f ′

small,∗◦(ig′)−1 and g−1
big◦fbig,∗ = f ′

big,∗◦(g′
big)−1.

Proof. Since the diagram is cartesian, we have for U ′/S′ that U ′×S′ T ′ = U ′×S T .
Hence both i−1

g ◦ fbig,∗ and f ′
small,∗ ◦ (ig′)−1 send a sheaf F on (Sch/T )pro-étale to

the sheaf U ′ 7→ F(U ′ ×S′ T ′) on S′
pro-étale (use Lemmas 61.12.12 and 61.12.15).

The second equality can be proved in the same manner or can be deduced from the
very general Sites, Lemma 7.28.1. □

We can think about a sheaf on the big pro-étale site of S as a collection of sheaves
on the small pro-étale site on schemes over S.
Lemma 61.12.19.098V Let S be a scheme contained in a big pro-étale site Schpro-étale.
A sheaf F on the big pro-étale site (Sch/S)pro-étale is given by the following data:

(1) for every T/S ∈ Ob((Sch/S)pro-étale) a sheaf FT on Tpro-étale,
(2) for every f : T ′ → T in (Sch/S)pro-étale a map cf : f−1

smallFT → FT ′ .
These data are subject to the following conditions:

(a) given any f : T ′ → T and g : T ′′ → T ′ in (Sch/S)pro-étale the composition
cg ◦ g−1

smallcf is equal to cf◦g, and
(b) if f : T ′ → T in (Sch/S)pro-étale is weakly étale then cf is an isomorphism.

Proof. Identical to the proof of Topologies, Lemma 34.4.20. □

Lemma 61.12.20.098W Let S be a scheme. Let Saffine,pro-étale denote the full subcate-
gory of Spro-étale consisting of affine objects. A covering of Saffine,pro-étale will be
a standard pro-étale covering, see Definition 61.12.6. Then restriction

F 7−→ F|Saffine,étale
defines an equivalence of topoi Sh(Spro-étale) ∼= Sh(Saffine,pro-étale).
Proof. This you can show directly from the definitions, and is a good exercise. But
it also follows immediately from Sites, Lemma 7.29.1 by checking that the inclusion
functor Saffine,pro-étale → Spro-étale is a special cocontinuous functor (see Sites,
Definition 7.29.2). □

Lemma 61.12.21.098X Let S be an affine scheme. Let Sapp denote the full subcategory
of Spro-étale consisting of affine objects U such that O(S) → O(U) is ind-étale. A
covering of Sapp will be a standard pro-étale covering, see Definition 61.12.6. Then
restriction

F 7−→ F|Sapp
defines an equivalence of topoi Sh(Spro-étale) ∼= Sh(Sapp).
Proof. By Lemma 61.12.20 we may replace Spro-étale by Saffine,pro-étale. The
lemma follows from Sites, Lemma 7.29.1 by checking that the inclusion functor
Sapp → Saffine,pro-étale is a special cocontinuous functor, see Sites, Definition
7.29.2. The conditions of Sites, Lemma 7.29.1 follow immediately from the def-
inition and the facts (a) any object U of Saffine,pro-étale has a covering {V → U}
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with V ind-étale over X (Proposition 61.9.1) and (b) the functor u is fully faith-
ful. □

Lemma 61.12.22.098Z Let S be a scheme. The topology on each of the pro-étale
sites Schpro-étale, Spro-étale, (Sch/S)pro-étale, Saffine,pro-étale, and (Aff/S)pro-étale
is subcanonical.

Proof. Combine Lemma 61.12.2 and Descent, Lemma 35.13.7. □

61.13. Weakly contractible objects

0F4N In this section we prove the key fact that our pro-étale sites contain many weakly
contractible objects. In fact, the proof of Lemma 61.13.3 is the reason for the shape
of the function Bound in Definition 61.12.7 (although for readers who are ignoring
set theoretical questions, this information is without content).
We first express the notion of w-contractible rings in terms of pro-étale coverings.

Lemma 61.13.1.098F Let T = Spec(A) be an affine scheme. The following are equivalent
(1) A is w-contractible, and
(2) every pro-étale covering of T can be refined by a Zariski covering of the

form T =
∐
i=1,...,n Ui.

Proof. Assume A is w-contractible. By Lemma 61.12.5 it suffices to prove we can
refine every standard pro-étale covering {fi : Ti → T}i=1,...,n by a Zariski covering
of T . The morphism

∐
Ti → T is a surjective weakly étale morphism of affine

schemes. Hence by Definition 61.11.1 there exists a morphism σ : T →
∐
Ti over

T . Then the Zariski covering T =
∐
σ−1(Ti) refines {fi : Ti → T}.

Conversely, assume (2). IfA→ B is faithfully flat and weakly étale, then {Spec(B)→
T} is a pro-étale covering. Hence there exists a Zariski covering T =

∐
Ui and mor-

phisms Ui → Spec(B) over T . Since T =
∐
Ui we obtain T → Spec(B), i.e., an

A-algebra map B → A. This means A is w-contractible. □

Lemma 61.13.2.098H Let Schpro-étale be a big pro-étale site as in Definition 61.12.7.
Let T = Spec(A) be an affine object of Schpro-étale. The following are equivalent

(1) A is w-contractible,
(2) T is a weakly contractible (Sites, Definition 7.40.2) object of Schpro-étale,

and
(3) every pro-étale covering of T can be refined by a Zariski covering of the

form T =
∐
i=1,...,n Ui.

Proof. We have seen the equivalence of (1) and (3) in Lemma 61.13.1.
Assume (3) and let F → G be a surjection of sheaves on Schpro-étale. Let s ∈ G(T ).
To prove (2) we will show that s is in the image of F(T ) → G(T ). We can find
a covering {Ti → T} of Schpro-étale such that s lifts to a section of F over Ti
(Sites, Definition 7.11.1). By (3) we may assume we have a finite covering T =∐
j=1,...,m Uj by open and closed subsets and we have tj ∈ F(Uj) mapping to s|Uj .

Since Zariski coverings are coverings in Schpro-étale (Lemma 61.12.3) we conclude
that F(T ) =

∏
F(Uj). Thus t = (t1, . . . , tm) ∈ F(T ) is a section mapping to s.

Assume (2). Let A→ D be as in Proposition 61.11.3. Then {V → T} is a covering
of Schpro-étale. (Note that V = Spec(D) is an object of Schpro-étale by Remark
61.11.4 combined with our choice of the function Bound in Definition 61.12.7 and
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the computation of the size of affine schemes in Sets, Lemma 3.9.5.) Since the
topology on Schpro-étale is subcanonical (Lemma 61.12.22) we see that hV → hT
is a surjective map of sheaves (Sites, Lemma 7.12.4). Since T is assumed weakly
contractible, we see that there is an element f ∈ hV (T ) = Mor(T, V ) whose image
in hT (T ) is idT . Thus A → D has a retraction σ : D → A. Now if A → B
is faithfully flat and weakly étale, then D → D ⊗A B has the same properties,
hence there is a retraction D ⊗A B → D and combined with σ we get a retraction
B → D ⊗A B → D → A of A→ B. Thus A is w-contractible and (1) holds. □

Lemma 61.13.3.098I Let Schpro-étale be a big pro-étale site as in Definition 61.12.7.
For every object T of Schpro-étale there exists a covering {Ti → T} in Schpro-étale
with each Ti affine and the spectrum of a w-contractible ring. In particular, Ti is
weakly contractible in Schpro-étale.

Proof. For those readers who do not care about set-theoretical issues this lemma is a
trivial consequence of Lemma 61.13.2 and Proposition 61.11.3. Here are the details.
Choose an affine open covering T =

⋃
Ui. Write Ui = Spec(Ai). Choose faithfully

flat, ind-étale ring maps Ai → Di such that Di is w-contractible as in Proposition
61.11.3. The family of morphisms {Spec(Di) → T} is a pro-étale covering. If we
can show that Spec(Di) is isomorphic to an object, say Ti, of Schpro-étale, then
{Ti → T} will be combinatorially equivalent to a covering of Schpro-étale by the
construction of Schpro-étale in Definition 61.12.7 and more precisely the application
of Sets, Lemma 3.11.1 in the last step. To prove Spec(Di) is isomorphic to an object
of Schpro-étale, it suffices to prove that |Di| ≤ Bound(size(T )) by the construction of
Schpro-étale in Definition 61.12.7 and more precisely the application of Sets, Lemma
3.9.2 in step (3). Since |Ai| ≤ size(Ui) ≤ size(T ) by Sets, Lemmas 3.9.4 and 3.9.7
we get |Di| ≤ κ222κ

where κ = size(T ) by Remark 61.11.4. Thus by our choice of
the function Bound in Definition 61.12.7 we win. □

Lemma 61.13.4.0990 Let S be a scheme. The pro-étale sites Spro-étale, (Sch/S)pro-étale,
Saffine,pro-étale, and (Aff/S)pro-étale and if S is affine Sapp have enough (affine)
quasi-compact, weakly contractible objects, see Sites, Definition 7.40.2.

Proof. Follows immediately from Lemma 61.13.3. □

Lemma 61.13.5.0F4P Let S be a scheme. The pro-étale sites Schpro-étale, Spro-étale,
(Sch/S)pro-étale have the following property: for any object U there exists a covering
{V → U} with V a weakly contractible object. If U is quasi-compact, then we may
choose V affine and weakly contractible.

Proof. Suppose that V =
∐
j∈J Vj is an object of (Sch/S)pro-étale which is the dis-

joint union of weakly contractible objects Vj . Since a disjoint union decomposition
is a pro-étale covering we see that F(V ) =

∏
j∈J F(Vj) for any pro-étale sheaf

F . Let F → G be a surjective map of sheaves of sets. Since Vj is weakly con-
tractible, the map F(Vj) → G(Vj) is surjective, see Sites, Definition 7.40.2. Thus
F(V )→ G(V ) is surjective as a product of surjective maps of sets and we conclude
that V is weakly contractible.
Choose a covering {Ui → U}i∈I with Ui affine and weakly contractible as in Lemma
61.13.3. Take V =

∐
i∈I Ui (there is a set theoretic issue here which we will address

below). Then {V → U} is the desired pro-étale covering by a weakly contractible
object (to check it is a covering use Lemma 61.12.2). If U is quasi-compact, then it
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follows immediately from Lemma 61.12.2 that we can choose a finite subset I ′ ⊂ I
such that {Ui → U}i∈I′ is still a covering and then {

∐
i∈I′ Ui → U} is the desired

covering by an affine and weakly contractible object.

In this paragraph, which we urge the reader to skip, we address set theoretic prob-
lems. In order to know that the disjoint union lies in our partial universe, we need to
bound the cardinality of the index set I. It is seen immediately from the construc-
tion of the covering {Ui → U}i∈I in the proof of Lemma 61.13.3 that |I| ≤ size(U)
where the size of a scheme is as defined in Sets, Section 3.9. Moreover, for each
i we have size(Ui) ≤ Bound(size(U)); this follows for the bound of the cardinal-
ity of Γ(Ui,OUi) in the proof of Lemma 61.13.3 and Sets, Lemma 3.9.4. Thus
size(

∐
i∈I Ui)) ≤ Bound(size(U)) by Sets, Lemma 3.9.5. Hence by construction of

the big pro-étale site through Sets, Lemma 3.9.2 we see that
∐
i∈I Ui is isomorphic

to an object of our site and the proof is complete. □

61.14. Weakly contractible hypercoverings

09A0 The results of Section 61.13 leads to the existence of hypercoverings made up out
weakly contractible objects.

Lemma 61.14.1.09A1 Let X be a scheme.
(1) For every object U of Xpro-étale there exists a hypercovering K of U in

Xpro-étale such that each term Kn consists of a single weakly contractible
object of Xpro-étale covering U .

(2) For every quasi-compact and quasi-separated object U of Xpro-étale there
exists a hypercoveringK of U inXpro-étale such that each termKn consists
of a single affine and weakly contractible object of Xpro-étale covering U .

Proof. Let B ⊂ Ob(Xpro-étale) be the set of weakly contractible objects ofXpro-étale.
Every object T of Xpro-étale has a covering {Ti → T}i∈I with I finite and Ti ∈ B
by Lemma 61.13.5. By Hypercoverings, Lemma 25.12.6 we get a hypercovering
K of U such that Kn = {Un,i}i∈In with In finite and Un,i weakly contractible.
Then we can replace K by the hypercovering of U given by {Un} in degree n where
Un =

∐
i∈In Un,i This is allowed by Hypercoverings, Remark 25.12.9.

Let Xqcqs,pro-étale ⊂ Xpro-étale be the full subcategory consisting of quasi-compact
and quasi-separated objects. A covering of Xqcqs,pro-étale will be a finite pro-étale
covering. Then Xqcqs,pro-étale is a site, has fibre products, and the inclusion func-
tor Xqcqs,pro-étale → Xpro-étale is continuous and commutes with fibre products.
In particular, if K is a hypercovering of an object U in Xqcqs,pro-étale then K
is a hypercovering of U in Xpro-étale by Hypercoverings, Lemma 25.12.5. Let
B ⊂ Ob(Xqcqs,pro-étale) be the set of affine and weakly contractible objects. By
Lemma 61.13.3 and the fact that finite unions of affines are affine, for every ob-
ject U of Xqcqs,pro-étale there exists a covering {V → U} of Xqcqs,pro-étale with
V ∈ B. By Hypercoverings, Lemma 25.12.6 we get a hypercovering K of U such
that Kn = {Un,i}i∈In with In finite and Un,i affine and weakly contractible. Then
we can replace K by the hypercovering of U given by {Un} in degree n where
Un =

∐
i∈In Un,i. This is allowed by Hypercoverings, Remark 25.12.9. □

In the following lemma we use the Čech complex s(F(K)) associated to a hyper-
covering K in a site. See Hypercoverings, Section 25.5. If K is a hypercovering of
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U and Kn = {Un → U}, then the Čech complex looks like this:
s(F(K)) = (F(U0)→ F(U1)→ F(U2)→ . . .)

where s(F(Un)) is placed in cohomological degree n.

Lemma 61.14.2.09A2 Let X be a scheme. Let E ∈ D+(Xpro-étale) be represented by
a bounded below complex E• of abelian sheaves. Let K be a hypercovering of
U ∈ Ob(Xpro-étale) with Kn = {Un → U} where Un is a weakly contractible object
of Xpro-étale. Then

RΓ(U,E) = Tot(s(E•(K)))
in D(Ab).

Proof. If E is an abelian sheaf on Xpro-étale, then the spectral sequence of Hyper-
coverings, Lemma 25.5.3 implies that

RΓ(Xpro-étale, E) = s(E(K))
because the higher cohomology groups of any sheaf over Un vanish, see Cohomology
on Sites, Lemma 21.51.1.
If E• is bounded below, then we can choose an injective resolution E• → I• and
consider the map of complexes

Tot(s(E•(K))) −→ Tot(s(I•(K)))
For every n the map E•(Un) → I•(Un) is a quasi-isomorphism because taking
sections over Un is exact. Hence the displayed map is a quasi-isomorphism by one
of the spectral sequences of Homology, Lemma 12.25.3. Using the result of the first
paragraph we see that for every p the complex s(Ip(K)) is acyclic in degrees n > 0
and computes Ip(U) in degree 0. Thus the other spectral sequence of Homology,
Lemma 12.25.3 shows Tot(s(I•(K))) computes RΓ(U,E) = I•(U). □

Lemma 61.14.3.09A3 Let X be a quasi-compact and quasi-separated scheme. The func-
tor RΓ(X,−) : D+(Xpro-étale)→ D(Ab) commutes with direct sums and homotopy
colimits.

Proof. The statement means the following: Suppose we have a family of objects Ei
ofD+(Xpro-étale) such that

⊕
Ei is an object ofD+(Xpro-étale). ThenRΓ(X,

⊕
Ei) =⊕

RΓ(X,Ei). To see this choose a hypercovering K of X with Kn = {Un → X}
where Un is an affine and weakly contractible scheme, see Lemma 61.14.1. Let N be
an integer such that Hp(Ei) = 0 for p < N . Choose a complex of abelian sheaves E•

i

representing Ei with Epi = 0 for p < N . The termwise direct sum
⊕
E•
i represents⊕

Ei in D(Xpro-étale), see Injectives, Lemma 19.13.4. By Lemma 61.14.2 we have

RΓ(X,
⊕

Ei) = Tot(s((
⊕
E•
i )(K)))

and
RΓ(X,Ei) = Tot(s(E•

i (K)))
Since each Un is quasi-compact we see that

Tot(s((
⊕
E•
i )(K))) =

⊕
Tot(s(E•

i (K)))

by Modules on Sites, Lemma 18.30.3. The statement on homotopy colimits is a
formal consequence of the fact that RΓ is an exact functor of triangulated categories
and the fact (just proved) that it commutes with direct sums. □

https://stacks.math.columbia.edu/tag/09A2
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Remark 61.14.4.09A4 Let X be a scheme. Because Xpro-étale has enough weakly con-
tractible objects for all K in D(Xpro-étale) we have K = R lim τ≥−nK by Cohomol-
ogy on Sites, Proposition 21.51.2. Since RΓ commutes with R lim by Injectives,
Lemma 19.13.6 we see that

RΓ(X,K) = R limRΓ(X, τ≥−nK)

in D(Ab). This will sometimes allow us to extend results from bounded below
complexes to all complexes.

61.15. Compact generation

0994 In this section we prove that various derived categories associated to our pro-étale
sites are compactly generated as defined in Derived Categories, Definition 13.37.5.

Lemma 61.15.1.0F4Q Let S be a scheme. Let Λ be a ring.
(1) D(Spro-étale) is compactly generated,
(2) D(Spro-étale,Λ) is compactly generated,
(3) D(Spro-étale,A) is compactly generated for any sheaf of ringsA on Spro-étale,
(4) D((Sch/S)pro-étale) is compactly generated,
(5) D((Sch/S)pro-étale,Λ) is compactly generated, and
(6) D((Sch/S)pro-étale,A) is compactly generated for any sheaf of rings A on

(Sch/S)pro-étale,

Proof. Proof of (3). Let U be an affine object of Spro-étale which is weakly con-
tractible. Then jU !AU is a compact object of the derived category D(Spro-étale,A),
see Cohomology on Sites, Lemma 21.52.6. Choose a set I and for each i ∈ I an
affine weakly contractible object Ui of Spro-étale such that every affine weakly con-
tractible object of Spro-étale is isomorphic to one of the Ui. This is possible because
Ob(Spro-étale) is a set. To finish the proof of (3) it suffices to show that

⊕
jUi,!AUi

is a generator of D(Spro-étale,A), see Derived Categories, Definition 13.36.3. To
see this, let K be a nonzero object of D(Spro-étale,A). Then there exists an object
T of our site Spro-étale and a nonzero element ξ of Hn(K)(T ). In other words,
ξ is a nonzero section of the nth cohomology sheaf of K. We may assume K is
represented by a complex K• of sheaves of A-modules and ξ is the class of a section
s ∈ Kn(T ) with d(s) = 0. Namely, ξ is locally represented as the class of a section
(so you get the result after replacing T by a member of a covering of T ). Next,
we choose a covering {Tj → T}j∈J as in Lemma 61.13.3. Since Hn(K) is a sheaf,
we see that for some j the restriction ξ|Tj remains nonzero. Thus s|Tj defines a
nonzero map jTj ,!ATj → K in D(Spro-étale,A). Since Tj ∼= Ui for some i ∈ I we
conclude.

The exact same argument works for the big pro-étale site of S. □

61.16. Comparing topologies

0F62 This section is the analogue of Étale Cohomology, Section 59.39.

Lemma 61.16.1.0F63 Let X be a scheme. Let F be a presheaf of sets on Xpro-étale
which sends finite disjoint unions to products. Then F#(W ) = F(W ) if W is an
affine weakly contractible object of Xpro-étale.

https://stacks.math.columbia.edu/tag/09A4
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Proof. Recall that F# is equal to (F+)+, see Sites, Theorem 7.10.10, where F+

is the presheaf which sends an object U of Xpro-étale to colimH0(U ,F) where the
colimit is over all pro-étale coverings U of U . Thus it suffices to prove that (a) F+

sends finite disjoint unions to products and (b) sends W to F(W ). If U = U1⨿U2,
then given a pro-étale covering U = {fj : Vj → U} of U we obtain pro-étale
coverings Ui = {f−1

j (Ui)→ Ui} and we clearly have

H0(U ,F) = H0(U1,F)×H0(U2,F)
because F sends finite disjoint unions to products (this includes the condition that
F sends the empty scheme to the singleton). This proves (a). Finally, any pro-
étale covering of W can be refined by a finite disjoint union decomposition W =
W1 ⨿ . . .Wn by Lemma 61.13.2. Hence F+(W ) = F(W ) exactly because the value
of F on W is the product of the values of F on the Wj . This proves (b). □

Lemma 61.16.2.0F64 Let f : X → Y be a morphism of schemes. Let F be a sheaf of
sets on Xpro-étale. If W is an affine weakly contractible object of Xpro-étale, then

f−1
smallF(W ) = colimW→V F(V )

where the colimit is over morphisms W → V over Y with V ∈ Ypro-étale.

Proof. Recall that f−1
smallF is the sheaf associated to the presheaf

upF : U 7→ colimU→V F(V )
on Xétale, see Sites, Sections 7.14 and 7.13; we’ve surpressed from the notation
that the colimit is over the opposite of the category {U → V, V ∈ Ypro-étale}. By
Lemma 61.16.1 it suffices to prove that upF sends finite disjoint unions to products.
Suppose that U = U1⨿U2 is a disjoint union of open and closed subschemes. There
is a functor
{U1 → V1} × {U2 → V2} −→ {U → V }, (U1 → V1, U2 → V2) 7−→ (U → V1 ⨿ V2)
which is initial (Categories, Definition 4.17.3). Hence the corresponding functor on
opposite categories is cofinal and by Categories, Lemma 4.17.2 we see that upF on
U is the colimit of the values F(V1 ⨿ V2) over the product category. Since F is a
sheaf it sends disjoint unions to products and we conclude upF does too. □

Lemma 61.16.3.0F65 Let S be a scheme. Consider the morphism
πS : (Sch/S)pro-étale −→ Spro-étale

of Lemma 61.12.13. Let F be a sheaf on Spro-étale. Then π−1
S F is given by the rule

(π−1
S F)(T ) = Γ(Tpro-étale, f

−1
smallF)

where f : T → S. Moreover, π−1
S F satisfies the sheaf condition with respect to

fpqc coverings.

Proof. Observe that we have a morphism if : Sh(Tpro-étale) → Sh(Sch/S)pro-étale)
such that πS ◦if = fsmall as morphisms Tpro-étale → Spro-étale, see Lemma 61.12.12.
Since pullback is transitive we see that i−1

f π−1
S F = f−1

smallF as desired.
Let {gi : Ti → T}i∈I be an fpqc covering. The final statement means the following:
Given a sheaf G on Tpro-étale and given sections si ∈ Γ(Ti, g−1

i,smallG) whose pullbacks
to Ti×T Tj agree, there is a unique section s of G over T whose pullback to Ti agrees
with si. We will prove this statement when T is affine and the covering is given by

https://stacks.math.columbia.edu/tag/0F64
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a single surjective flat morphism T ′ → T of affines and omit the reduction of the
general case to this case.
Let g : T ′ → T be a surjective flat morphism of affines and let s′ ∈ g−1

smallG(T ′)
be a section with pr∗

0s
′ = pr∗

1s
′ on T ′ ×T T ′. Choose a surjective weakly étale

morphism W → T ′ with W affine and weakly contractible, see Lemma 61.13.5.
By Lemma 61.16.2 the restriction s′|W is an element of colimW→U G(U). Choose
ϕ : W → U0 and s0 ∈ G(U0) corresponding to s′. Choose a surjective weakly
étale morphism V → W ×T W with V affine and weakly contractible. Denote
a, b : V → W the induced morphisms. Since a∗(s′|W ) = b∗(s′|W ) and since the
category {V → U,U ∈ Tpro-étale} is cofiltered (this is clear but see Sites, Lemma
7.14.6 if in doubt), we see that the two morphisms ϕ ◦ a, ϕ ◦ b : V → U0 have to be
equal. By the results in Descent, Section 35.13 (especially Descent, Lemma 35.13.7)
it follows there is a unique morphism T → U0 such that ϕ is the composition of
this morphism with the structure morphism W → T (small detail omitted). Then
we can let s be the pullback of s0 by this morphism. We omit the verification that
s pulls back to s′ on T ′. □

61.17. Comparing big and small topoi

0F66 This section is the analogue of Étale Cohomology, Section 59.99. In the following
we will often denote F 7→ F|Spro-étale the pullback functor i−1

S corresponding to the
morphism of topoi iS : Sh(Spro-étale)→ Sh((Sch/S)pro-étale) of Lemma 61.12.13.

Lemma 61.17.1.0F67 Let S be a scheme. Let T be an object of (Sch/S)pro-étale.
(1) If I is injective in Ab((Sch/S)pro-étale), then

(a) i−1
f I is injective in Ab(Tpro-étale),

(b) I|Spro-étale is injective in Ab(Spro-étale),
(2) If I• is a K-injective complex in Ab((Sch/S)pro-étale), then

(a) i−1
f I• is a K-injective complex in Ab(Tpro-étale),

(b) I•|Spro-étale is a K-injective complex in Ab(Spro-étale),

Proof. Proof of (1)(a) and (2)(a): i−1
f is a right adjoint of an exact functor if,!.

Namely, recall that if corresponds to a cocontinuous functor u : Tpro-étale →
(Sch/S)pro-étale which is continuous and commutes with fibre products and equal-
izers, see Lemma 61.12.12 and its proof. Hence we obtain if,! by Modules on Sites,
Lemma 18.16.2. It is shown in Modules on Sites, Lemma 18.16.3 that it is exact.
Then we conclude (1)(a) and (2)(a) hold by Homology, Lemma 12.29.1 and Derived
Categories, Lemma 13.31.9.
Parts (1)(b) and (2)(b) are special cases of (1)(a) and (2)(a) as iS = iidS . □

Lemma 61.17.2.0F68 Let f : T → S be a morphism of schemes. ForK inD((Sch/T )pro-étale)
we have

(Rfbig,∗K)|Spro-étale = Rfsmall,∗(K|Tpro-étale)
in D(Spro-étale). More generally, let S′ ∈ Ob((Sch/S)pro-étale) with structure mor-
phism g : S′ → S. Consider the fibre product

T ′
g′
//

f ′

��

T

f

��
S′ g // S

https://stacks.math.columbia.edu/tag/0F67
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Then for K in D((Sch/T )pro-étale) we have

i−1
g (Rfbig,∗K) = Rf ′

small,∗(i−1
g′ K)

in D(S′
pro-étale) and

g−1
big(Rfbig,∗K) = Rf ′

big,∗((g′
big)−1K)

in D((Sch/S′)pro-étale).

Proof. The first equality follows from Lemma 61.17.1 and (61.12.16.1) on choosing
a K-injective complex of abelian sheaves representing K. The second equality fol-
lows from Lemma 61.17.1 and Lemma 61.12.18 on choosing a K-injective complex
of abelian sheaves representing K. The third equality follows similarly from Co-
homology on Sites, Lemmas 21.7.1 and 21.20.1 and Lemma 61.12.18 on choosing a
K-injective complex of abelian sheaves representing K. □

Let S be a scheme and let H be an abelian sheaf on (Sch/S)pro-étale. Recall that
Hn
pro-étale(U,H) denotes the cohomology of H over an object U of (Sch/S)pro-étale.

Lemma 61.17.3.0F69 Let f : T → S be a morphism of schemes. For K in D(Spro-étale)
we have

Hn
pro-étale(S, π−1

S K) = Hn(Spro-étale,K)
and

Hn
pro-étale(T, π−1

S K) = Hn(Tpro-étale, f
−1
smallK).

For M in D((Sch/S)pro-étale) we have

Hn
pro-étale(T,M) = Hn(Tpro-étale, i

−1
f M).

Proof. To prove the last equality represent M by a K-injective complex of abelian
sheaves and apply Lemma 61.17.1 and work out the definitions. The second equality
follows from this as i−1

f ◦ π
−1
S = f−1

small. The first equality is a special case of the
second one. □

Lemma 61.17.4.0F6A Let S be a scheme. For K ∈ D(Spro-étale) the map

K −→ RπS,∗π
−1
S K

is an isomorphism.

Proof. This is true because both π−1
S and πS,∗ = i−1

S are exact functors and the
composition πS,∗ ◦ π−1

S is the identity functor. □

61.18. Points of the pro-étale site

0991 We first apply Deligne’s criterion to show that there are enough points.

Lemma 61.18.1.0992 Let S be a scheme. The pro-étale sites Schpro-étale, Spro-étale,
(Sch/S)pro-étale, Saffine,pro-étale, and (Aff/S)pro-étale have enough points.

Proof. The big pro-étale topos of S is equivalent to the topos defined by (Aff/S)pro-étale,
see Lemma 61.12.11. The topos of sheaves on Spro-étale is equivalent to the topos as-
sociated to Saffine,pro-étale, see Lemma 61.12.20. The result for the sites (Aff/S)pro-étale
and Saffine,pro-étale follows immediately from Deligne’s result Sites, Lemma 7.39.4.
The case Schpro-étale is handled because it is equal to (Sch/ Spec(Z))pro-étale. □
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Let S be a scheme. Let s : Spec(k)→ S be a geometric point. We define a pro-étale
neighbourhood of s to be a commutative diagram

Spec(k)
u
//

s
##

U

��
S

with U → S weakly étale.

Lemma 61.18.2.0F6B Let S be a scheme and let s : Spec(k)→ S be a geometric point.
The category of pro-étale neighbourhoods of s is cofiltered.

Proof. The proof is identitical to the proof of Étale Cohomology, Lemma 59.29.4
but using the corresponding facts about weakly étale morphisms proven in More
on Morphisms, Lemmas 37.64.5, 37.64.6, and 37.64.13. □

Lemma 61.18.3.0F6C Let S be a scheme. Let s be a geometric point of S. Let U =
{φi : Si → S}i∈I be a pro-étale covering. Then there exist i ∈ I and geometric
point si of Si mapping to s.

Proof. Immediate from the fact that
∐
φi is surjective and that residue field exten-

sions induced by weakly étale morphisms are separable algebraic (see for example
More on Morphisms, Lemma 37.64.11. □

Let S be a scheme and let s be a geometric point of S. For F in Sh(Spro-étale)
define the stalk of F at s by the formula

Fs = colim(U,u) F(U)
where the colimit is over all pro-étale neighbourhoods (U, u) of s with U ∈ Ob(Spro-étale).
It follows from the two lemmas above that the functor

Spro-étaleSets, U 7−→ {u geometric point of U mapping to s}
defines a point of the site Spro-étale, see Sites, Definition 7.32.2 and Lemma 7.33.1.
Hence the functor F 7→ Fs defines a point of the topos Sh(Spro-étale), see Sites, Def-
inition 7.32.1 and Lemma 7.32.7. In particular this functor is exact and commutes
with arbitrary colimits. In fact, this functor has another description.

Lemma 61.18.4.0993 In the situation above the scheme Spec(OshS,s) is an object of
Xpro-étale and there is a canonical isomorphism

F(Spec(OshS,s)) = Fs
functorial in F .

Proof. The first statement is clear from the construction of the strict henselization
as a filtered colimit of étale algebras over S, or by the characterization of weakly
étale morphisms of More on Morphisms, Lemma 37.64.11. The second statement
follows as by Olivier’s theorem (More on Algebra, Theorem 15.104.24) the scheme
Spec(OshS,s) is an initial object of the category of pro-étale neighbourhoods of s. □

Contrary to the situation with the étale topos of S it is not true that every point
of Sh(Spro-étale) is of this form, and it is not true that the collection of points
associated to geometric points is conservative. Namely, suppose that S = Spec(k)
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where k is an algebraically closed field. Let A be a nonzero abelian group. Consider
the sheaf F on Spro-étale defined by the

F(U) = {functions U → A}
{locally constant functions}

for U affine and by sheafification in general, see Example 61.19.12. Then F(U) = 0
if U = S = Spec(k) but in general F is not zero. Namely, Spro-étale contains affine
objects with infinitely many points. For example, let E = limEn be an inverse limit
of finite sets with surjective transition maps, e.g., E = Zp = lim Z/pnZ. The scheme
U = Spec(colim Map(En, k)) is an object of Spro-étale because colim Map(En, k) is
weakly étale (even ind-Zariski) over k. Thus F(U) is nonzero as there exist maps
E → A which aren’t locally constant. Thus F is a nonzero abelian sheaf whose
stalk at the unique geometric point of S is zero. Since we know that Spro-étale has
enough points, we conclude there must be a point of the pro-étale site which does
not come from the construction explained above.
The replacement for arguments using points, is to use affine weakly contractible ob-
jects. First, there are enough affine weakly contractible objects by Lemma 61.13.4.
Second, if W ∈ Ob(Spro-étale) is affine weakly contractible, then the functor

Sh(Spro-étale) −→ Sets, F 7−→ F(W )
is an exact functor Sh(Spro-étale) → Sets which commutes with all limits. The
functor

Ab(Spro-étale) −→ Ab, F 7−→ F(W )
is exact and commutes with direct sums (as W is quasi-compact, see Sites, Lemma
7.17.7), hence commutes with all limits and colimits. Moreover, we can check
exactness of a complex of abelian sheaves by evaluation at these affine weakly
contractible objects of Spro-étale, see Cohomology on Sites, Proposition 21.51.2.
A final remark is that the functor F 7→ F(W ) for W affine weakly contractible
in general isn’t a stalk functor of a point of Spro-étale because it doesn’t preserve
coproducts of sheaves of sets if W is disconnected. And in fact, W is disconnected
as soon as W has more than 1 closed point, i.e., when W is not the spectrum of a
strictly henselian local ring (which is the special case discussed above).

61.19. Comparison with the étale site

099R Let X be a scheme. With suitable choices of sites4 the functor u : Xétale →
Xpro-étale sending U/X to U/X defines a morphism of sites

ϵ : Xpro-étale −→ Xétale

This follows from Sites, Proposition 7.14.7.

Lemma 61.19.1.0GLZ With notation as above. Let F be a sheaf on Xétale. The rule

Xpro-étale −→ Sets, (f : Y → X) 7−→ Γ(Yétale, f−1
étaleF)

4Choose a big pro-étale site Schpro-étale containing X as in Definition 61.12.7. Then let
Schétale be the site having the same underlying category as Schpro-étale but whose coverings are
exactly those pro-étale coverings which are also étale coverings. With these choices let Xétale and
Xpro-étale be the subcategories defined in Definition 61.12.8 and Topologies, Definition 34.4.8.
Compare with Topologies, Remark 34.11.1.
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is a sheaf and is equal to ϵ−1F . Here fétale : Yétale → Xétale is the morphism of
small étale sites constructed in Étale Cohomology, Section 59.34.

Proof. By Lemma 61.12.2 any pro-étale covering is an fpqc covering. Hence the
formula defines a sheaf on Xpro-étale by Étale Cohomology, Lemma 59.39.2. Let
a : Sh(Xétale)→ Sh(Xpro-étale) be the functor sending F to the sheaf given by the
formula in the lemma. To show that a = ϵ−1 it suffices to show that a is a left
adjoint to ϵ∗.

Let G be an object of Sh(Xpro-étale). Recall that ϵ∗G is simply given by the restric-
tion of G to the full subcategory Xétale. Let f : Y → X be an object of Xpro-étale.
We view Yétale as a subcategory of Xpro-étale. The restriction maps of the sheaf G
define a map

ϵ∗G = G|Xétale −→ fétale,∗(G|Yétale)
Namely, for U in Xétale the value of fétale,∗(G|Yétale) on U is G(Y ×X U) and there
is a restriction map G(U)→ G(Y ×X U). By adjunction this determines a map

f−1
étale(ϵ∗G)→ G|Yétale

Putting these together for all f : Y → X in Xpro-étale we obtain a canonical map
a(ϵ∗G)→ G.

Let F be an object of Sh(Xétale). It is immediately clear that F = ϵ∗a(F).

We claim the maps F → ϵ∗a(F) and a(ϵ∗G) → G are the unit and counit of the
adjunction (see Categories, Section 4.24). To see this it suffices to show that the
corresponding maps

MorSh(Xpro-étale)(a(F),G)→ MorSh(Xétale)(F , ϵ−1G)

and
MorSh(Xétale)(F , ϵ−1G)→ MorSh(Xpro-étale)(a(F),G)

are mutually inverse. We omit the detailed verification. □

Lemma 61.19.2.099T Let X be a scheme. For every sheaf F on Xétale the adjunction
map F → ϵ∗ϵ

−1F is an isomorphism, i.e., ϵ−1F(U) = F(U) for U in Xétale.

Proof. Follows immediately from the description of ϵ−1 in Lemma 61.19.1. □

Lemma 61.19.3.099S Let X be a scheme. Let Y = limYi be the limit of a directed
inverse system of quasi-compact and quasi-separated objects of Xpro-étale with affine
transition morphisms. For any sheaf F on Xétale we have

ϵ−1F(Y ) = colim ϵ−1F(Yi)

Moreover, if Yi is in Xétale we have ϵ−1F(Y ) = colimF(Yi).

Proof. By the description of ϵ−1F in Lemma 61.19.1, the displayed formula is a
special case of Étale Cohomology, Theorem 59.51.3. (When X, Y , and the Yi are
all affine, see the easier to parse Étale Cohomology, Lemma 59.51.5.) The final
statement follows immediately from this and Lemma 61.19.2. □

Lemma 61.19.4.099U Let X be an affine scheme. For injective abelian sheaf I on Xétale

we have Hp(Xpro-étale, ϵ
−1I) = 0 for p > 0.
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Proof. We are going to use Cohomology on Sites, Lemma 21.10.9 to prove this. Let
B ⊂ Ob(Xpro-étale) be the set of affine objects U of Xpro-étale such that O(X) →
O(U) is ind-étale. Let Cov be the set of pro-étale coverings {Ui → U}i=1,...,n with
U ∈ B such that O(U) → O(Ui) is ind-étale for i = 1, . . . , n. Properties (1) and
(2) of Cohomology on Sites, Lemma 21.10.9 hold for B and Cov by Lemmas 61.7.3,
61.7.2, and 61.12.5 and Proposition 61.9.1.
To check condition (3) suppose that U = {Ui → U}i=1,...,n is an element of Cov.
We have to show that the higher Cech cohomology groups of ϵ−1I with respect
to U are zero. First we write Ui = lima∈Ai Ui,a as a directed inverse limit with
Ui,a → U étale and Ui,a affine. We think of A1 × . . . × An as a direct set with
ordering (a1, . . . , an) ≥ (a′

1, . . . , a
′
n) if and only if ai ≥ a′

i for i = 1, . . . , n. Observe
that U(a1,...,an) = {Ui,ai → U}i=1,...,n is an étale covering for all a1, . . . , an ∈
A1 × . . .×An. Observe that
Ui0×U Ui1×U . . .×U Uip = lim(a1,...,an)∈A1×...×An Ui0,ai0 ×U Ui1,ai1 ×U . . .×U Uip,aip
for all i0, . . . , ip ∈ {1, . . . , n} because limits commute with fibred products. Hence
by Lemma 61.19.3 and exactness of filtered colimits we have

Ȟp(U , ϵ−1I) = colim Ȟp(U(a1,...,an), ϵ
−1I)

Thus it suffices to prove the vanishing for étale coverings of U !
Let U = {Ui → U}i=1,...,n be an étale covering with Ui affine. Write U = limb∈B Ub
as a directed inverse limit with Ub affine and Ub → X étale. By Limits, Lemmas
32.10.1, 32.4.13, and 32.8.10 we can choose a b0 ∈ B such that for i = 1, . . . , n there
is an étale morphism Ui,b0 → Ub0 of affines such that Ui = U ×Ub0

Ui,b0 . Set Ui,b =
Ub ×Ub0

Ui,b0 for b ≥ b0. For b large enough the family Ub = {Ui,b → Ub}i=1,...,n is
an étale covering, see Limits, Lemma 32.8.15. Exactly as before we find that

Ȟp(U , ϵ−1I) = colim Ȟp(Ub, ϵ−1I) = colim Ȟp(Ub, I)
the final equality by Lemma 61.19.2. Since each of the Čech complexes on the right
hand side is acyclic in positive degrees (Cohomology on Sites, Lemma 21.10.2) it
follows that the one on the left is too. This proves condition (3) of Cohomology on
Sites, Lemma 21.10.9. Since X ∈ B the lemma follows. □

Lemma 61.19.5.099V Let X be a scheme.
(1) For an abelian sheaf F on Xétale we have Rϵ∗(ϵ−1F) = F .
(2) For K ∈ D+(Xétale) the map K → Rϵ∗ϵ

−1K is an isomorphism.

Proof. Let I be an injective abelian sheaf on Xétale. Recall that Rqϵ∗(ϵ−1I) is the
sheaf associated to U 7→ Hq(Upro-étale, ϵ

−1I), see Cohomology on Sites, Lemma
21.7.4. By Lemma 61.19.4 we see that this is zero for q > 0 and U affine and étale
over X. Since every object of Xétale has a covering by affine objects, it follows that
Rqϵ∗(ϵ−1I) = 0 for q > 0.
Let K ∈ D+(Xétale). Choose a bounded below complex I• of injective abelian
sheaves on Xétale representing K. Then ϵ−1K is represented by ϵ−1I•. By Leray’s
acyclicity lemma (Derived Categories, Lemma 13.16.7) we see that Rϵ∗ϵ−1K is
represented by ϵ∗ϵ−1I•. By Lemma 61.19.2 we conclude that Rϵ∗ϵ−1I• = I• and
the proof of (2) is complete. Part (1) is a special case of (2). □

Lemma 61.19.6.099W Let X be a scheme.

https://stacks.math.columbia.edu/tag/099V
https://stacks.math.columbia.edu/tag/099W
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(1) For an abelian sheaf F on Xétale we have
Hi(Xétale,F) = Hi(Xpro-étale, ϵ

−1F)
for all i.

(2) For K ∈ D+(Xétale) we have
RΓ(Xétale,K) = RΓ(Xpro-étale, ϵ

−1K)

Proof. Immediate consequence of Lemma 61.19.5 and the Leray spectral sequence
(Cohomology on Sites, Lemma 21.14.6). □

Lemma 61.19.7.099X Let X be a scheme. Let G be a sheaf of (possibly noncommutative)
groups on Xétale. We have

H1(Xétale,G) = H1(Xpro-étale, ϵ
−1G)

where H1 is defined as the set of isomorphism classes of torsors (see Cohomology
on Sites, Section 21.4).

Proof. Since the functor ϵ−1 is fully faithful by Lemma 61.19.2 it is clear that
the map H1(Xétale,G) → H1(Xpro-étale, ϵ

−1G) is injective. To show surjectivity it
suffices to show that any ϵ−1G-torsor F is étale locally trivial. To do this we may
assume that X is affine. Thus we reduce to proving surjectivity for X affine.
Choose a covering {U → X} with (a) U affine, (b) O(X) → O(U) ind-étale,
and (c) F(U) nonempty. We can do this by Proposition 61.9.1 and the fact that
standard pro-étale coverings of X are cofinal among all pro-étale coverings of X
(Lemma 61.12.5). Write U = limUi as a limit of affine schemes étale over X. Pick
s ∈ F(U). Let g ∈ ϵ−1G(U ×X U) be the unique section such that g · pr∗

1s = pr∗
2s

in F(U ×X U). Then g satisfies the cocycle condition
pr∗

12g · pr∗
23g = pr∗

13g

in ϵ−1G(U ×X U ×X U). By Lemma 61.19.3 we have
ϵ−1G(U ×X U) = colimG(Ui ×X Ui)

and
ϵ−1G(U ×X U ×X U) = colimG(Ui ×X Ui ×X Ui)

hence we can find an i and an element gi ∈ G(Ui ×X Ui) mapping to g satisfying
the cocycle condition. The cocycle gi then defines a torsor for G on Xétale whose
pullback is isomorphic to F by construction. Some details omitted (namely, the
relationship between torsors and 1-cocycles which should be added to the chapter
on cohomology on sites). □

Lemma 61.19.8.09B1 Let X be a scheme. Let Λ be a ring.
(1) The essential image of the fully faithful functor ϵ−1 : Mod(Xétale,Λ) →

Mod(Xpro-étale,Λ) is a weak Serre subcategory C.
(2) The functor ϵ−1 defines an equivalence of categories of D+(Xétale,Λ) with

D+
C (Xpro-étale,Λ) with question inverse given by Rϵ∗.

Proof. To prove (1) we will prove conditions (1) – (4) of Homology, Lemma 12.10.3.
Since ϵ−1 is fully faithful (Lemma 61.19.2) and exact, everything is clear except for
condition (4). However, if

0→ ϵ−1F1 → G → ϵ−1F2 → 0

https://stacks.math.columbia.edu/tag/099X
https://stacks.math.columbia.edu/tag/09B1
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is a short exact sequence of sheaves of Λ-modules on Xpro-étale, then we get
0→ ϵ∗ϵ

−1F1 → ϵ∗G → ϵ∗ϵ
−1F2 → R1ϵ∗ϵ

−1F1

which by Lemma 61.19.5 is the same as a short exact sequence
0→ F1 → ϵ∗G → F2 → 0

Pulling pack we find that G = ϵ−1ϵ∗G. This proves (1).
Part (2) follows from part (1) and Cohomology on Sites, Lemma 21.28.5. □

Let Λ be a ring. In Modules on Sites, Section 18.43 we have defined the notion of
a locally constant sheaf of Λ-modules on a site. If M is a Λ-module, then M is of
finite presentation as a sheaf of Λ-modules if and only if M is a finitely presented
Λ-module, see Modules on Sites, Lemma 18.42.5.

Lemma 61.19.9.099Y Let X be a scheme. Let Λ be a ring. The functor ϵ−1 defines an
equivalence of categorieslocally constant sheaves

of Λ-modules on Xétale

of finite presentation

←→
 locally constant sheaves

of Λ-modules on Xpro-étale
of finite presentation


Proof. Let F be a locally constant sheaf of Λ-modules on Xpro-étale of finite pre-
sentation. Choose a pro-étale covering {Ui → X} such that F|Ui is constant, say
F|Ui ∼= MiUi

. Observe that Ui ×X Uj is empty if Mi is not isomorphic to Mj . For
each Λ-module M let IM = {i ∈ I | Mi

∼= M}. As pro-étale coverings are fpqc
coverings and by Descent, Lemma 35.13.6 we see that UM =

⋃
i∈IM Im(Ui → X) is

an open subset of X. Then X =
∐
UM is a disjoint open covering of X. We may

replace X by UM for some M and assume that Mi = M for all i.
Consider the sheaf I = Isom(M,F). This sheaf is a torsor for G = Isom(M,M).
By Modules on Sites, Lemma 18.43.4 we have G = G where G = IsomΛ(M,M).
Since torsors for the étale topology and the pro-étale topology agree by Lemma
61.19.7 it follows that I has sections étale locally on X. Thus F is étale locally a
constant sheaf which is what we had to show. □

Lemma 61.19.10.099Z LetX be a scheme. Let Λ be a Noetherian ring. LetDflc(Xétale,Λ),
resp.Dflc(Xpro-étale,Λ) be the full subcategory ofD(Xétale,Λ), resp.D(Xpro-étale,Λ)
consisting of those complexes whose cohomology sheaves are locally constant sheaves
of Λ-modules of finite type. Then

ϵ−1 : D+
flc(Xétale,Λ) −→ D+

flc(Xpro-étale,Λ)
is an equivalence of categories.

Proof. The categories Dflc(Xétale,Λ) and Dflc(Xpro-étale,Λ) are strictly full, satu-
rated, triangulated subcategories of D(Xétale,Λ) and D(Xpro-étale,Λ) by Modules
on Sites, Lemma 18.43.5 and Derived Categories, Section 13.17. The statement of
the lemma follows by combining Lemmas 61.19.8 and 61.19.9. □

Lemma 61.19.11.09B2 Let X be a scheme. Let Λ be a Noetherian ring. Let K be an
object of D(Xpro-étale,Λ). Set Kn = K ⊗L

Λ Λ/In. If K1 is
(1) in the essential image of ϵ−1 : D(Xétale,Λ/I)→ D(Xpro-étale,Λ/I), and
(2) has tor amplitude in [a,∞) for some a ∈ Z,

then (1) and (2) hold for Kn as an object of D(Xpro-étale,Λ/In).

https://stacks.math.columbia.edu/tag/099Y
https://stacks.math.columbia.edu/tag/099Z
https://stacks.math.columbia.edu/tag/09B2
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Proof. Assertion (2) for Kn follows from the more general Cohomology on Sites,
Lemma 21.46.9. Assertion (1) for Kn follows by induction on n from the distin-
guished triangles

K ⊗L
Λ I

n/In+1 → Kn+1 → Kn → K ⊗L
Λ I

n/In+1[1]

and the isomorphism

K ⊗L
Λ I

n/In+1 = K1 ⊗L
Λ/I I

n/In+1

and the fact proven in Lemma 61.19.8 that the essential image of ϵ−1 is a triangu-
lated subcategory of D+(Xpro-étale,Λ/In). □

Example 61.19.12.0F6D Let X be a scheme. Let A be an abelian group. Denote
fun(−, A) the sheaf on Xpro-étale which maps U to the set of all maps U → A (of
sets of points). Consider the sequence of sheaves

0→ A→ fun(−, A)→ F → 0

on Xpro-étale. Since the constant sheaf is the pullback from the final topos we see
that A = ϵ−1A. However, if A has more than one element, then neither fun(−, A)
nor F are pulled back from the étale site of X. To work out the values of F in
some cases, assume that all points of X are closed with separably closed residue
fields and U is affine. Then all points of U are closed with separably closed residue
fields and we have

H1
pro-étale(U,A) = H1

étale(U,A) = 0

by Lemma 61.19.6 and Étale Cohomology, Lemma 59.80.3. Hence in this case we
have

F(U) = fun(U,A)/A(U)

61.20. Derived completion in the constant Noetherian case

099L We continue the discussion started in Algebraic and Formal Geometry, Section 52.6;
we assume the reader has read at least some of that section.

Let C be a site. Let Λ be a Noetherian ring and let I ⊂ Λ be an ideal. Recall from
Modules on Sites, Lemma 18.42.4 that

Λ∧ = lim Λ/In

is a flat Λ-algebra and that the map Λ → Λ∧ identifies quotients by I. Hence
Algebraic and Formal Geometry, Lemma 52.6.17 tells us that

Dcomp(C,Λ) = Dcomp(C,Λ∧)

In particular the cohomology sheaves Hi(K) of an object K of Dcomp(C,Λ) are
sheaves of Λ∧-modules. For notational convenience we often work with Dcomp(C,Λ).

Lemma 61.20.1.099M Let C be a site. Let Λ be a Noetherian ring and let I ⊂ Λ be an
ideal. The left adjoint to the inclusion functor Dcomp(C,Λ)→ D(C,Λ) of Algebraic
and Formal Geometry, Proposition 52.6.12 sends K to

K∧ = R lim(K ⊗L
Λ Λ/In)

In particular, K is derived complete if and only if K = R lim(K ⊗L
Λ Λ/In).

https://stacks.math.columbia.edu/tag/0F6D
https://stacks.math.columbia.edu/tag/099M
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Proof. Choose generators f1, . . . , fr of I. By Algebraic and Formal Geometry,
Lemma 52.6.9 we have

K∧ = R lim(K ⊗L
Λ Kn)

where Kn = K(Λ, fn1 , . . . , fnr ). In More on Algebra, Lemma 15.94.1 we have seen
that the pro-systems {Kn} and {Λ/In} of D(Λ) are isomorphic. Thus the lemma
follows. □

Lemma 61.20.2.099N Let Λ be a Noetherian ring. Let I ⊂ Λ be an ideal. Let f :
Sh(D)→ Sh(C) be a morphism of topoi. Then

(1) Rf∗ sends Dcomp(D,Λ) into Dcomp(C,Λ),
(2) the map Rf∗ : Dcomp(D,Λ) → Dcomp(C,Λ) has a left adjoint Lf∗

comp :
Dcomp(C,Λ)→ Dcomp(D,Λ) which is Lf∗ followed by derived completion,

(3) Rf∗ commutes with derived completion,
(4) for K in Dcomp(D,Λ) we have Rf∗K = R limRf∗(K ⊗L

Λ Λ/In).
(5) for M in Dcomp(C,Λ) we have Lf∗

compM = R limLf∗(M ⊗L
Λ Λ/In).

Proof. We have seen (1) and (2) in Algebraic and Formal Geometry, Lemma 52.6.18.
Part (3) follows from Algebraic and Formal Geometry, Lemma 52.6.19. For (4) let
K be derived complete. Then

Rf∗K = Rf∗(R limK ⊗L
Λ Λ/In) = R limRf∗(K ⊗L

Λ Λ/In)

the first equality by Lemma 61.20.1 and the second because Rf∗ commutes with
R lim (Cohomology on Sites, Lemma 21.23.3). This proves (4). To prove (5), by
Lemma 61.20.1 we have

Lf∗
compM = R lim(Lf∗M ⊗L

Λ Λ/In)

Since Lf∗ commutes with derived tensor product by Cohomology on Sites, Lemma
21.18.4 and since Lf∗Λ/In = Λ/In we get (5). □

61.21. Derived completion and weakly contractible objects

099P We continue the discussion in Section 61.20. In this section we will see how the
existence of weakly contractible objects simplifies the study of derived complete
modules.

Let C be a site. Let Λ be a Noetherian ring. Let I ⊂ Λ be an ideal. Although the
general theory concerning Dcomp(C,Λ) is quite satisfactory it is hard to explicitly
give examples of derived complete complexes. We know that

(1) every object M of D(C,Λ/In) restricts to a derived complete object of
D(C,Λ), and

(2) for every K ∈ D(C,Λ) the derived completion K∧ = R lim(K ⊗L
Λ Λ/In)

is derived complete.
The first type of objects are trivially complete and perhaps not interesting. The
problem with (2) is that derived completion in general is somewhat mysterious, even
in case K = Λ. Namely, by definition of homotopy limits there is a distinguished
triangle

R lim(Λ/In)→
∏

Λ/In →
∏

Λ/In → R lim(Λ/In)[1]

https://stacks.math.columbia.edu/tag/099N
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in D(C,Λ) where the products are in D(C,Λ). These are computed by taking
products of injective resolutions (Injectives, Lemma 19.13.4), so we see that the
sheaf Hp(

∏
Λ/In) is the sheafification of the presheaf

U 7−→
∏

Hp(U,Λ/In).

As an explicit example, if X = Spec(C[t, t−1]), C = Xétale, Λ = Z, I = (2), and
p = 1, then we get the sheafification of the presheaf

U 7→
∏

H1(Uétale,Z/2nZ)

for U étale over X. Note that H1(Xétale,Z/mZ) is cyclic of order m with generator
αm given by the finite étale Z/mZ-covering given by the equation t = sm (see Étale
Cohomology, Section 59.6). Then the section

α = (α2n) ∈
∏

H1(Xétale,Z/2nZ)

of the presheaf above does not restrict to zero on any nonempty étale scheme over
X, whence the sheaf associated to the presheaf is not zero.
However, on the pro-étale site this phenomenon does not occur. The reason is
that we have enough (quasi-compact) weakly contractible objects. In the following
proposition we collect some results about derived completion in the Noetherian con-
stant case for sites having enough weakly contractible objects (see Sites, Definition
7.40.2).

Proposition 61.21.1.099Q Let C be a site. Assume C has enough weakly contractible
objects. Let Λ be a Noetherian ring. Let I ⊂ Λ be an ideal.

(1) The category of derived complete sheaves Λ-modules is a weak Serre sub-
category of Mod(C,Λ).

(2) A sheaf F of Λ-modules satisfies F = limF/InF if and only if F is derived
complete and

⋂
InF = 0.

(3) The sheaf Λ∧ is derived complete.
(4) If . . .→ F3 → F2 → F1 is an inverse system of derived complete sheaves

of Λ-modules, then limFn is derived complete.
(5) An object K ∈ D(C,Λ) is derived complete if and only if each cohomology

sheaf Hp(K) is derived complete.
(6) An object K ∈ Dcomp(C,Λ) is bounded above if and only if K ⊗L

Λ Λ/I is
bounded above.

(7) An object K ∈ Dcomp(C,Λ) is bounded if K ⊗L
Λ Λ/I has finite tor dimen-

sion.

Proof. Let B ⊂ Ob(C) be a subset such that every U ∈ B is weakly contractible
and every object of C has a covering by elements of B. We will use the results
of Cohomology on Sites, Lemma 21.51.1 and Proposition 21.51.2 without further
mention.
Recall that R lim commutes with RΓ(U,−), see Injectives, Lemma 19.13.6. Let
f ∈ I. Recall that T (K, f) is the homotopy limit of the system

. . .
f−→ K

f−→ K
f−→ K

in D(C,Λ). Thus
RΓ(U, T (K, f)) = T (RΓ(U,K), f).

https://stacks.math.columbia.edu/tag/099Q
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Since we can test isomorphisms of maps between objects of D(C,Λ) by evaluating
at U ∈ B we conclude an object K of D(C,Λ) is derived complete if and only if for
every U ∈ B the object RΓ(U,K) is derived complete as an object of D(Λ).
The remark above implies that items (1), (5) follow from the corresponding results
for modules over rings, see More on Algebra, Lemmas 15.91.1 and 15.91.6. In
the same way (2) can be deduced from More on Algebra, Proposition 15.91.5 as
(InF)(U) = In · F(U) for U ∈ B (by exactness of evaluating at U).
Proof of (4). The homotopy limit R limFn is in Dcomp(X,Λ) (see discussion fol-
lowing Algebraic and Formal Geometry, Definition 52.6.4). By part (5) just proved
we conclude that limFn = H0(R limFn) is derived complete. Part (3) is a special
case of (4).
Proof of (6) and (7). Follows from Lemma 61.20.1 and Cohomology on Sites,
Lemma 21.46.9 and the computation of homotopy limits in Cohomology on Sites,
Proposition 21.51.2. □

61.22. Cohomology of a point

09B3 Let Λ be a Noetherian ring complete with respect to an ideal I ⊂ Λ. Let k be a
field. In this section we “compute”

Hi(Spec(k)pro-étale,Λ∧)
where Λ∧ = limm Λ/Im as before. Let ksep be a separable algebraic closure of k.
Then

U = {Spec(ksep)→ Spec(k)}
is a pro-étale covering of Spec(k). We will use the Čech to cohomology spectral
sequence with respect to this covering. Set U0 = Spec(ksep) and

Un = Spec(ksep)×Spec(k) Spec(ksep)×Spec(k) . . .×Spec(k) Spec(ksep)
= Spec(ksep ⊗k ksep ⊗k . . .⊗k ksep)

(n+ 1 factors). Note that the underlying topological space |U0| of U0 is a singleton
and for n ≥ 1 we have

|Un| = G× . . .×G (n factors)
as profinite spaces where G = Gal(ksep/k). Namely, every point of Un has residue
field ksep and we identify (σ1, . . . , σn) with the point corresponding to the surjection
ksep ⊗k ksep ⊗k . . .⊗k ksep −→ ksep, λ0 ⊗ λ1 ⊗ . . . λn 7−→ λ0σ1(λ1) . . . σn(λn)

Then we compute
RΓ((Un)pro-étale,Λ∧) = R limmRΓ((Un)pro-étale,Λ/Im)

= R limmRΓ((Un)étale,Λ/Im)
= limmH

0(Un,Λ/Im)
= Mapscont(G× . . .×G,Λ)

The first equality because RΓ commutes with derived limits and as Λ∧ is the derived
limit of the sheaves Λ/Im by Proposition 61.21.1. The second equality by Lemma
61.19.6. The third equality by Étale Cohomology, Lemma 59.80.3. The fourth
equality uses Étale Cohomology, Remark 59.23.2 to identify sections of the constant
sheaf Λ/Im. Then it uses the fact that Λ is complete with respect to I and hence
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equal to limm Λ/Im as a topological space, to see that limm Mapcont(G,Λ/Im) =
Mapcont(G,Λ) and similarly for higher powers of G. At this point Cohomology on
Sites, Lemmas 21.10.3 and 21.10.7 tell us that

Λ→ Mapscont(G,Λ)→ Mapscont(G×G,Λ)→ . . .

computes the pro-étale cohomology. In other words, we see that
Hi(Spec(k)pro-étale,Λ∧) = Hi

cont(G,Λ)

where the right hand side is Tate’s continuous cohomology, see Étale Cohomology,
Section 59.58. Of course, this is as it should be.

Lemma 61.22.1.09B4 Let k be a field. Let G = Gal(ksep/k) be its absolute Galois
group. Further,

(1) let M be a profinite abelian group with a continuous G-action, or
(2) let Λ be a Noetherian ring and I ⊂ Λ an ideal an let M be an I-adically

complete Λ-module with continuous G-action.
Then there is a canonical sheaf M∧ on Spec(k)pro-étale associated to M such that

Hi(Spec(k),M∧) = Hi
cont(G,M)

as abelian groups or Λ-modules.

Proof. Proof in case (2). SetMn = M/InM . ThenM = limMn asM is assumed I-
adically complete. Since the action ofG is continuous we get continuous actions ofG
on Mn. By Étale Cohomology, Theorem 59.56.3 this action corresponds to a (locally
constant) sheaf Mn of Λ/In-modules on Spec(k)étale. Pull back to Spec(k)pro-étale
by the comparison morphism ϵ and take the limit

M∧ = lim ϵ−1Mn

to get the sheaf promised in the lemma. Exactly the same argument as given in
the introduction of this section gives the comparison with Tate’s continuous Galois
cohomology. □

61.23. Functoriality of the pro-étale site

09A5 Let f : X → Y be a morphism of schemes. The functor Ypro-étale → Xpro-étale,
V 7→ X ×Y V induces a morphism of sites fpro-étale : Xpro-étale → Ypro-étale, see
Sites, Proposition 7.14.7. In fact, we obtain a commutative diagram of morphisms
of sites

Xpro-étale ϵ
//

fpro-étale

��

Xétale

fétale

��
Ypro-étale

ϵ // Yétale

where ϵ is as in Section 61.19. In particular we have ϵ−1f−1
étale = f−1

pro-étaleϵ
−1. Here

is the corresponding result for pushforward.

Lemma 61.23.1.09A6 Let f : X → Y be a morphism of schemes.
(1) Let F be a sheaf of sets on Xétale. Then we have fpro-étale,∗ϵ

−1F =
ϵ−1fétale,∗F .

(2) Let F be an abelian sheaf on Xétale. Then we have Rfpro-étale,∗ϵ
−1F =

ϵ−1Rfétale,∗F .

https://stacks.math.columbia.edu/tag/09B4
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Proof. Proof of (1). Let F be a sheaf of sets on Xétale. There is a canonical
map ϵ−1fétale,∗F → fpro-étale,∗ϵ

−1F , see Sites, Section 7.45. To show it is an
isomorphism we may work (Zariski) locally on Y , hence we may assume Y is affine.
In this case every object of Ypro-étale has a covering by objects V = limVi which
are limits of affine schemes Vi étale over Y (by Proposition 61.9.1 for example).
Evaluating the map ϵ−1fétale,∗F → fpro-étale,∗ϵ

−1F on V we obtain a map
colim Γ(X ×Y Vi,F) −→ Γ(X ×Y V, ϵ∗F).

see Lemma 61.19.3 for the left hand side. By Lemma 61.19.3 we have
Γ(X ×Y V, ϵ∗F) = Γ(X ×Y V,F)

Hence the result holds by Étale Cohomology, Lemma 59.51.5.
Proof of (2). Arguing in exactly the same manner as above we see that it suffices
to show that

colimHi
étale(X ×Y Vi,F) −→ Hi

étale(X ×Y V,F)

which follows once more from Étale Cohomology, Lemma 59.51.5. □

61.24. Finite morphisms and pro-étale sites

09A7 It is not clear that a finite morphism of schemes determines an exact pushforward
on abelian pro-étale sheaves.

Lemma 61.24.1.09A8 Let f : Z → X be a finite morphism of schemes which is locally
of finite presentation. Then fpro-étale,∗ : Ab(Zpro-étale)→ Ab(Xpro-étale) is exact.

Proof. The prove this we may work (Zariski) locally on X and assume that X
is affine, say X = Spec(A). Then Z = Spec(B) for some finite A-algebra B of
finite presentation. The construction in the proof of Proposition 61.11.3 produces
a faithfully flat, ind-étale ring map A → D with D w-contractible. We may check
exactness of a sequence of sheaves by evaluating on U = Spec(D) be such an object.
Then fpro-étale,∗F evaluated at U is equal to F evaluated at V = Spec(D ⊗A B).
Since D ⊗A B is w-contractible by Lemma 61.11.6 evaluation at V is exact. □

61.25. Closed immersions and pro-étale sites

09A9 It is not clear (and likely false) that a closed immersion of schemes determines an
exact pushforward on abelian pro-étale sheaves.

Lemma 61.25.1.09BK Let i : Z → X be a closed immersion morphism of affine schemes.
Denote Xapp and Zapp the sites introduced in Lemma 61.12.21. The base change
functor

u : Xapp → Zapp, U 7−→ u(U) = U ×X Z

is continuous and has a fully faithful left adjoint v. For V in Zapp the morphism
V → v(V ) is a closed immersion identifying V with u(v(V )) = v(V ) ×X Z and
every point of v(V ) specializes to a point of V . The functor v is cocontinuous and
sends coverings to coverings.

Proof. The existence of the adjoint follows immediately from Lemma 61.7.7 and
the definitions. It is clear that u is continuous from the definition of coverings in
Xapp.
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Write X = Spec(A) and Z = Spec(A/I). Let V = Spec(C) be an object of Zapp
and let v(V ) = Spec(C). We have seen in the statement of Lemma 61.7.7 that
V equals v(V ) ×X Z = Spec(C/IC). Any g ∈ C which maps to an invertible
element of C/IC = C is invertible in C. Namely, we have the A-algebra maps
C → Cg → C/IC and by adjointness we obtain an C-algebra map Cg → C. Thus
every point of v(V ) specializes to a point of V .
Suppose that {Vi → V } is a covering in Zapp. Then {v(Vi) → v(V )} is a finite
family of morphisms of Zapp such that every point of V ⊂ v(V ) is in the image
of one of the maps v(Vi) → v(V ). As the morphisms v(Vi) → v(V ) are flat (since
they are weakly étale) we conclude that {v(Vi)→ v(V )} is jointly surjective. This
proves that v sends coverings to coverings.
Let V be an object of Zapp and let {Ui → v(V )} be a covering in Xapp. Then we
see that {u(Ui) → u(v(V )) = V } is a covering of Zapp. By adjointness we obtain
morphisms v(u(Ui)) → Ui. Thus the family {v(u(Ui)) → v(V )} refines the given
covering and we conclude that v is cocontinuous. □

Lemma 61.25.2.09BL Let Z → X be a closed immersion morphism of affine schemes.
The corresponding morphism of topoi i = ipro-étale is equal to the morphism of
topoi associated to the fully faithful cocontinuous functor v : Zapp → Xapp of
Lemma 61.25.1. It follows that

(1) i−1F is the sheaf associated to the presheaf V 7→ F(v(V )),
(2) for a weakly contractible object V of Zapp we have i−1F(V ) = F(v(V )),
(3) i−1 : Sh(Xpro-étale)→ Sh(Zpro-étale) has a left adjoint iSh! ,
(4) i−1 : Ab(Xpro-étale)→ Ab(Zpro-étale) has a left adjoint i!,
(5) id→ i−1iSh! , id→ i−1i!, and i−1i∗ → id are isomorphisms, and
(6) i∗, iSh! and i! are fully faithful.

Proof. By Lemma 61.12.21 we may describe ipro-étale in terms of the morphism of
sites u : Xapp → Zapp, V 7→ V ×X Z. The first statement of the lemma follows
from Sites, Lemma 7.22.2 (but with the roles of u and v reversed).
Proof of (1). By the description of i as the morphism of topoi associated to v this
holds by the construction, see Sites, Lemma 7.21.1.
Proof of (2). Since the functor v sends coverings to coverings by Lemma 61.25.1 we
see that the presheaf G : V 7→ F(v(V )) is a separated presheaf (Sites, Definition
7.10.9). Hence the sheafification of G is G+, see Sites, Theorem 7.10.10. Next, let V
be a weakly contractible object of Zapp. Let V = {Vi → V }i=1,...,n be any covering
in Zapp. Set V ′ = {

∐
Vi → V }. Since v commutes with finite disjoint unions (as

a left adjoint or by the construction) and since F sends finite disjoint unions into
products, we see that

H0(V,G) = H0(V ′,G)
(notation as in Sites, Section 7.10; compare with Étale Cohomology, Lemma 59.22.1).
Thus we may assume the covering is given by a single morphism, like so {V ′ → V }.
Since V is weakly contractible, this covering can be refined by the trivial covering
{V → V }. It therefore follows that the value of G+ = i−1F on V is simply F(v(V ))
and (2) is proved.
Proof of (3). Every object of Zapp has a covering by weakly contractible objects
(Lemma 61.13.4). By the above we see that we would have iSh! hV = hv(V ) for V
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weakly contractible if iSh! existed. The existence of iSh! then follows from Sites,
Lemma 7.24.1.
Proof of (4). Existence of i! follows in the same way by setting i!ZV = Zv(V ) for V
weakly contractible in Zapp, using similar for direct sums, and applying Homology,
Lemma 12.29.6. Details omitted.
Proof of (5). Let V be a contractible object of Zapp. Then i−1iSh! hV = i−1hv(V ) =
hu(v(V )) = hV . (It is a general fact that i−1hU = hu(U).) Since the sheaves hV for V
contractible generate Sh(Zapp) (Sites, Lemma 7.12.5) we conclude id→ i−1iSh! is an
isomorphism. Similarly for the map id→ i−1i!. Then (i−1i∗H)(V ) = i∗H(v(V )) =
H(u(v(V ))) = H(V ) and we find that i−1i∗ → id is an isomorphism.
The fully faithfulness statements of (6) now follow from Categories, Lemma 4.24.4.

□

Lemma 61.25.3.09AA Let i : Z → X be a closed immersion of schemes. Then
(1) i−1

pro-étale commutes with limits,
(2) ipro-étale,∗ is fully faithful, and
(3) i−1

pro-étaleipro-étale,∗ ∼= idSh(Zpro-étale).

Proof. Assertions (2) and (3) are equivalent by Sites, Lemma 7.41.1. Parts (1) and
(3) are (Zariski) local on X, hence we may assume that X is affine. In this case
the result follows from Lemma 61.25.2. □

Lemma 61.25.4.09AB Let i : Z → X be an integral universally injective and surjective
morphism of schemes. Then ipro-étale,∗ and i−1

pro-étale are quasi-inverse equivalences
of categories of pro-étale topoi.

Proof. There is an immediate reduction to the case that X is affine. Then Z is
affine too. Set A = O(X) and B = O(Z). Then the categories of étale algebras
over A and B are equivalent, see Étale Cohomology, Theorem 59.45.2 and Remark
59.45.3. Thus the categories of ind-étale algebras over A and B are equivalent. In
other words the categories Xapp and Zapp of Lemma 61.12.21 are equivalent. We
omit the verification that this equivalence sends coverings to coverings and vice
versa. Thus the result as Lemma 61.12.21 tells us the pro-étale topos is the topos
of sheaves on Xapp. □

Lemma 61.25.5.09AC Let i : Z → X be a closed immersion of schemes. Let U → X be
an object of Xpro-étale such that

(1) U is affine and weakly contractible, and
(2) every point of U specializes to a point of U ×X Z.

Then i−1
pro-étaleF(U ×X Z) = F(U) for all abelian sheaves on Xpro-étale.

Proof. Since pullback commutes with restriction, we may replace X by U . Thus
we may assume that X is affine and weakly contractible and that every point of
X specializes to a point of Z. By Lemma 61.25.2 part (1) it suffices to show that
v(Z) = X in this case. Thus we have to show: If A is a w-contractible ring, I ⊂ A
an ideal contained in the Jacobson radical of A and A→ B → A/I is a factorization
with A → B ind-étale, then there is a unique retraction B → A compatible with
maps to A/I. Observe that B/IB = A/I × R as A/I-algebras. After replacing
B by a localization we may assume B/IB = A/I. Note that Spec(B) → Spec(A)
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is surjective as the image contains V (I) and hence all closed points and is closed
under specialization. Since A is w-contractible there is a retraction B → A. Since
B/IB = A/I this retraction is compatible with the map to A/I. We omit the proof
of uniqueness (hint: use that A and B have isomorphic local rings at maximal ideals
of A). □

Lemma 61.25.6.09BM Let i : Z → X be a closed immersion of schemes. If X \ i(Z) is a
retrocompact open of X, then ipro-étale,∗ is exact.

Proof. The question is local on X hence we may assume X is affine. Say X =
Spec(A) and Z = Spec(A/I). There exist f1, . . . , fr ∈ I such that Z = V (f1, . . . , fr)
set theoretically, see Algebra, Lemma 10.29.1. By Lemma 61.25.4 we may assume
that Z = Spec(A/(f1, . . . , fr)). In this case the functor ipro-étale,∗ is exact by
Lemma 61.24.1. □

61.26. Extension by zero

09AD The general material in Modules on Sites, Section 18.19 allows us to make the
following definition.

Definition 61.26.1.09AE Let j : U → X be a weakly étale morphism of schemes.
(1) The restriction functor j−1 : Sh(Xpro-étale) → Sh(Upro-étale) has a left

adjoint jSh! : Sh(Xpro-étale)→ Sh(Upro-étale).
(2) The restriction functor j−1 : Ab(Xpro-étale) → Ab(Upro-étale) has a left

adjoint which is denoted j! : Ab(Upro-étale) → Ab(Xpro-étale) and called
extension by zero.

(3) Let Λ be a ring. The functor j−1 : Mod(Xpro-étale,Λ)→ Mod(Upro-étale,Λ)
has a left adjoint j! : Mod(Upro-étale,Λ) → Mod(Xpro-étale,Λ) and called
extension by zero.

As usual we compare this to what happens in the étale case.

Lemma 61.26.2.09AF Let j : U → X be an étale morphism of schemes. Let G be an
abelian sheaf on Uétale. Then ϵ−1j!G = j!ϵ

−1G as sheaves on Xpro-étale.

Proof. This is true because both are left adjoints to jpro-étale,∗ϵ
−1 = ϵ−1jétale,∗, see

Lemma 61.23.1. □

Lemma 61.26.3.09AG Let j : U → X be a weakly étale morphism of schemes. Let
i : Z → X be a closed immersion such that U ×X Z = ∅. Let V → X be an affine
object of Xpro-étale such that every point of V specializes to a point of VZ = Z×XV .
Then j!F(V ) = 0 for all abelian sheaves on Upro-étale.

Proof. Let {Vi → V } be a pro-étale covering. The lemma follows if we can refine
this covering to a covering where the members have no morphisms into U over X
(see construction of j! in Modules on Sites, Section 18.19). First refine the covering
to get a finite covering with Vi affine. For each i let Vi = Spec(Ai) and let Zi ⊂ Vi
be the inverse image of Z. Set Wi = Spec(A∼

i,Zi
) with notation as in Lemma 61.5.1.

Then
∐
Wi → V is weakly étale and the image contains all points of VZ . Hence

the image contains all points of V by our assumption on specializations. Thus
{Wi → V } is a pro-étale covering refining the given one. But each point in Wi

specializes to a point lying over Z, hence there are no morphisms Wi → U over
X. □
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Lemma 61.26.4.09BN Let j : U → X be an open immersion of schemes. Then id ∼= j−1j!
and j−1j∗ ∼= id and the functors j! and j∗ are fully faithful.

Proof. See Modules on Sites, Lemma 18.19.8 (and Sites, Lemma 7.27.4 for the case
of sheaves of sets) and Categories, Lemma 4.24.4. □

Here is the relationship between extension by zero and restriction to the comple-
mentary closed subscheme.

Lemma 61.26.5.09AH Let X be a scheme. Let Z ⊂ X be a closed subscheme and let
U ⊂ X be the complement. Denote i : Z → X and j : U → X the inclusion
morphisms. Assume that j is a quasi-compact morphism. For every abelian sheaf
on Xpro-étale there is a canonical short exact sequence

0→ j!j
−1F → F → i∗i

−1F → 0

on Xpro-étale where all the functors are for the pro-étale topology.

Proof. We obtain the maps by the adjointness properties of the functors involved.
It suffices to show that Xpro-étale has enough objects (Sites, Definition 7.40.2) on
which the sequence evaluates to a short exact sequence. Let V = Spec(A) be an
affine object of Xpro-étale such that A is w-contractible (there are enough objects
of this type). Then V ×X Z is cut out by an ideal I ⊂ A. The assumption that j
is quasi-compact implies there exist f1, . . . , fr ∈ I such that V (I) = V (f1, . . . , fr).
We obtain a faithfully flat, ind-Zariski ring map

A −→ Af1 × . . .×Afr ×A∼
V (I)

with A∼
V (I) as in Lemma 61.5.1. Since Vi = Spec(Afi) → X factors through U we

have
j!j

−1F(Vi) = F(Vi) and i∗i
−1F(Vi) = 0

On the other hand, for the scheme V ∼ = Spec(A∼
V (I)) we have

j!j
−1F(V ∼) = 0 and F(V ∼) = i∗i

−1F(V ∼)

the first equality by Lemma 61.26.3 and the second by Lemmas 61.25.5 and 61.11.7.
Thus the sequence evaluates to an exact sequence on Spec(Af1 × . . .×Afr ×A∼

V (I))
and the lemma is proved. □

Lemma 61.26.6.09BP Let j : U → X be a quasi-compact open immersion morphism of
schemes. The functor j! : Ab(Upro-étale)→ Ab(Xpro-étale) commutes with limits.

Proof. Since j! is exact it suffices to show that j! commutes with products. The
question is local on X, hence we may assume X affine. Let G be an abelian sheaf
on Upro-étale. We have j−1j∗G = G. Hence applying the exact sequence of Lemma
61.26.5 we get

0→ j!G → j∗G → i∗i
−1j∗G → 0

where i : Z → X is the inclusion of the reduced induced scheme structure on
the complement Z = X \ U . The functors j∗ and i∗ commute with products as
right adjoints. The functor i−1 commutes with products by Lemma 61.25.3. Hence
j! does because on the pro-étale site products are exact (Cohomology on Sites,
Proposition 21.51.2). □
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61.27. Constructible sheaves on the pro-étale site

09AI We stick to constructible sheaves of Λ-modules for a Noetherian ring. In the future
we intend to discuss constructible sheaves of sets, groups, etc.

Definition 61.27.1.09AJ Let X be a scheme. Let Λ be a Noetherian ring. A sheaf of
Λ-modules on Xpro-étale is constructible if for every affine open U ⊂ X there exists
a finite decomposition of U into constructible locally closed subschemes U =

∐
i Ui

such that F|Ui is of finite type and locally constant for all i.

Again this does not give anything “new”.

Lemma 61.27.2.09AK Let X be a scheme. Let Λ be a Noetherian ring. The functor ϵ−1

defines an equivalence of categories{
constructible sheaves of

Λ-modules on Xétale

}
←→

{
constructible sheaves of
Λ-modules on Xpro-étale

}
between constructible sheaves of Λ-modules on Xétale and constructible sheaves of
Λ-modules on Xpro-étale.

Proof. By Lemma 61.19.2 the functor ϵ−1 is fully faithful and commutes with pull-
back (restriction) to the strata. Hence ϵ−1 of a constructible étale sheaf is a con-
structible pro-étale sheaf. To finish the proof let F be a constructible sheaf of
Λ-modules on Xpro-étale as in Definition 61.27.1. There is a canonical map

ϵ−1ϵ∗F −→ F

We will show this map is an isomorphism. This will prove that F is in the essential
image of ϵ−1 and finish the proof (details omitted).
To prove this we may assume that X is affine. In this case we have a finite partition
X =

∐
iXi by constructible locally closed strata such that F|Xi is locally constant

of finite type. Let U ⊂ X be one of the open strata in the partition and let Z ⊂ X
be the reduced induced structure on the complement. By Lemma 61.26.5 we have
a short exact sequence

0→ j!j
−1F → F → i∗i

−1F → 0
on Xpro-étale. Functoriality gives a commutative diagram

0 // ϵ−1ϵ∗j!j
−1F //

��

ϵ−1ϵ∗F //

��

ϵ−1ϵ∗i∗i
−1F //

��

0

0 // j!j
−1F // F // i∗i−1F // 0

By induction on the length of the partition we know that on the one hand ϵ−1ϵ∗i
−1F →

i−1F and ϵ−1ϵ∗j
−1F → j−1F are isomorphisms and on the other that i−1F = ϵ−1A

and j−1F = ϵ−1B for some constructible sheaves of Λ-modules A on Zétale and B
on Uétale. Then

ϵ−1ϵ∗j!j
−1F = ϵ−1ϵ∗j!ϵ

−1B = ϵ−1ϵ∗ϵ
−1j!B = ϵ−1j!B = j!ϵ

−1B = j!j
−1F

the second equality by Lemma 61.26.2, the third equality by Lemma 61.19.2, and
the fourth equality by Lemma 61.26.2 again. Similarly, we have

ϵ−1ϵ∗i∗i
−1F = ϵ−1ϵ∗i∗ϵ

−1A = ϵ−1ϵ∗ϵ
−1i∗A = ϵ−1i∗A = i∗ϵ

−1A = i∗i
−1F
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this time using Lemma 61.23.1. By the five lemma we conclude the vertical map
in the middle of the big diagram is an isomorphism. □

Lemma 61.27.3.09B5 Let X be a scheme. Let Λ be a Noetherian ring. The category
of constructible sheaves of Λ-modules on Xpro-étale is a weak Serre subcategory of
Mod(Xpro-étale,Λ).

Proof. This is a formal consequence of Lemmas 61.27.2 and 61.19.8 and the result
for the étale site (Étale Cohomology, Lemma 59.71.6). □

Lemma 61.27.4.09AL Let X be a scheme. Let Λ be a Noetherian ring. Let Dc(Xétale,Λ),
resp. Dc(Xpro-étale,Λ) be the full subcategory of D(Xétale,Λ), resp. D(Xpro-étale,Λ)
consisting of those complexes whose cohomology sheaves are constructible sheaves
of Λ-modules. Then

ϵ−1 : D+
c (Xétale,Λ) −→ D+

c (Xpro-étale,Λ)
is an equivalence of categories.

Proof. The categories Dc(Xétale,Λ) and Dc(Xpro-étale,Λ) are strictly full, satu-
rated, triangulated subcategories of D(Xétale,Λ) and D(Xpro-étale,Λ) by Étale Co-
homology, Lemma 59.71.6 and Lemma 61.27.3 and Derived Categories, Section
13.17. The statement of the lemma follows by combining Lemmas 61.19.8 and
61.27.2. □

Lemma 61.27.5.09BQ Let X be a scheme. Let Λ be a Noetherian ring. Let K,L ∈
D−
c (Xpro-étale,Λ). Then K ⊗L

Λ L is in D−
c (Xpro-étale,Λ).

Proof. Note that Hi(K⊗L
ΛL) is the same as Hi(τ≥i−1K⊗L

Λ τ≥i−1L). Thus we may
assume K and L are bounded. In this case we can apply Lemma 61.27.4 to reduce
to the case of the étale site, see Étale Cohomology, Lemma 59.76.6. □

Lemma 61.27.6.09BR Let X be a scheme. Let Λ be a Noetherian ring. Let K be an
object of D(Xpro-étale,Λ). Set Kn = K ⊗L

Λ Λ/In. If K1 is in D−
c (Xpro-étale,Λ/I),

then Kn is in D−
c (Xpro-étale,Λ/In) for all n.

Proof. Consider the distinguished triangles
K ⊗L

Λ I
n/In+1 → Kn+1 → Kn → K ⊗L

Λ I
n/In+1[1]

and the isomorphisms
K ⊗L

Λ I
n/In+1 = K1 ⊗L

Λ/I I
n/In+1

By Lemma 61.27.5 we see that this tensor product has constructible cohomology
sheaves (and vanishing when K1 has vanishing cohomology). Hence by induction
on n using Lemma 61.27.3 we see that each Kn has constructible cohomology
sheaves. □

61.28. Constructible adic sheaves

09BS In this section we define the notion of a constructible Λ-sheaf as well as some
variants.

Definition 61.28.1.09BT Let Λ be a Noetherian ring and let I ⊂ Λ be an ideal. Let X
be a scheme. Let F be a sheaf of Λ-modules on Xpro-étale.
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(1) We say F is a constructible Λ-sheaf if F = limF/InF and each F/InF
is a constructible sheaf of Λ/In-modules.

(2) If F is a constructible Λ-sheaf, then we say F is lisse if each F/InF is
locally constant.

(3) We say F is adic lisse5 if there exists a I-adically complete Λ-module M
with M/IM finite such that F is locally isomorphic to

M∧ = limM/InM.

(4) We say F is adic constructible6 if for every affine open U ⊂ X there exists
a decomposition U =

∐
Ui into constructible locally closed subschemes

such that F|Ui is adic lisse.
The definition of a constructible Λ-sheaf is equivalent to the one in [Gro77, Exposé
VI, Definition 1.1.1] when Λ = Zℓ and I = (ℓ). It is clear that we have the
implications

lisse adic +3

��

adic constructible

��
lisse constructible Λ-sheaf +3 constructible Λ-sheaf

The vertical arrows can be inverted in some cases (see Lemmas 61.28.2 and 61.28.5).
In general neither the category of adic constructible sheaves nor the category of
constructible Λ-sheaves is closed under kernels and cokernels.
Namely, let X be an affine scheme whose underlying topological space |X| is home-
omorphic to Λ = Zℓ, see Example 61.6.3. Denote f : |X| → Zℓ = Λ a homeomor-
phism. We can think of f as a section of Λ∧ over X and multiplication by f then
defines a two term complex

Λ∧ f−→ Λ∧

on Xpro-étale. The sheaf Λ∧ is adic lisse. However, the cokernel of the map above,
is not adic constructible, as the isomorphism type of the stalks of this cokernel
attains infinitely many values: Z/ℓnZ and Zℓ. The cokernel is a constructible
Zℓ-sheaf. However, the kernel is not even a constructible Zℓ-sheaf as it is zero a
non-quasi-compact open but not zero.
Lemma 61.28.2.09BU Let X be a Noetherian scheme. Let Λ be a Noetherian ring and let
I ⊂ Λ be an ideal. Let F be a constructible Λ-sheaf on Xpro-étale. Then there exists
a finite partition X =

∐
Xi by locally closed subschemes such that the restriction

F|Xi is lisse.
Proof. Let R =

⊕
In/In+1. Observe that R is a Noetherian ring. Since each of

the sheaves F/InF is a constructible sheaf of Λ/InΛ-modules also InF/In+1F is a
constructible sheaf of Λ/I-modules and hence the pullback of a constructible sheaf
Gn on Xétale by Lemma 61.27.2. Set G =

⊕
Gn. This is a sheaf of R-modules on

Xétale and the map
G0 ⊗Λ/I R −→ G

is surjective because the maps
F/IF ⊗ In/In+1 → InF/In+1F

5This may be nonstandard notation.
6This may be nonstandard notation.
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are surjective. Hence G is a constructible sheaf of R-modules by Étale Cohomology,
Proposition 59.74.1. Choose a partition X =

∐
Xi such that G|Xi is a locally

constant sheaf of R-modules of finite type (Étale Cohomology, Lemma 59.71.2).
We claim this is a partition as in the lemma. Namely, replacing X by Xi we may
assume G is locally constant. It follows that each of the sheaves InF/In+1F is
locally constant. Using the short exact sequences

0→ InF/In+1F → F/In+1F → F/InF → 0
induction and Modules on Sites, Lemma 18.43.5 the lemma follows. □

Lemma 61.28.3.09BV Let X be a weakly contractible affine scheme. Let Λ be a Noe-
therian ring and I ⊂ Λ be an ideal. Let F be a sheaf of Λ-modules on Xpro-étale
such that

(1) F = limF/InF ,
(2) F/InF is a constant sheaf of Λ/In-modules,
(3) F/IF is of finite type.

Then F ∼= M∧ where M is a finite Λ∧-module.

Proof. Pick a Λ/In-module Mn such that F/InF ∼= Mn. Since we have the sur-
jections F/In+1F → F/InF we conclude that there exist surjections Mn+1 →Mn

inducing isomorphisms Mn+1/I
nMn+1 →Mn. Fix a choice of such surjections and

set M = limMn. Then M is an I-adically complete Λ-module with M/InM = Mn,
see Algebra, Lemma 10.98.2. Since M1 is a finite type Λ-module (Modules on Sites,
Lemma 18.42.5) we see that M is a finite Λ∧-module. Consider the sheaves

In = Isom(Mn,F/InF)
on Xpro-étale. Modding out by In defines a transition map

In+1 −→ In
By our choice of Mn the sheaf In is a torsor under

Isom(Mn,Mn) = IsomΛ(Mn,Mn)
(Modules on Sites, Lemma 18.43.4) since F/InF is (étale) locally isomorphic to
Mn. It follows from More on Algebra, Lemma 15.100.4 that the system of sheaves
(In) is Mittag-Leffler. For each n let I ′

n ⊂ In be the image of IN → In for all
N ≫ n. Then

. . .→ I ′
3 → I ′

2 → I ′
1 → ∗

is a sequence of sheaves of sets on Xpro-étale with surjective transition maps. Since
∗(X) is a singleton (not empty) and since evaluating at X transforms surjective
maps of sheaves of sets into surjections of sets, we can pick s ∈ lim I ′

n(X). The
sections define isomorphisms M∧ → limF/InF = F and the proof is done. □

Lemma 61.28.4.09BW Let X be a connected scheme. Let Λ be a Noetherian ring and
let I ⊂ Λ be an ideal. If F is a lisse constructible Λ-sheaf on Xpro-étale, then F is
adic lisse.

Proof. By Lemma 61.19.9 we have F/InF = ϵ−1Gn for some locally constant sheaf
Gn of Λ/In-modules. By Étale Cohomology, Lemma 59.64.8 there exists a finite
Λ/In-module Mn such that Gn is locally isomorphic to Mn. Choose a covering
{Wt → X}t∈T with each Wt affine and weakly contractible. Then F|Wt satisfies the
assumptions of Lemma 61.28.3 and hence F|Wt

∼= Nt
∧ for some finite Λ∧-module

https://stacks.math.columbia.edu/tag/09BV
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Nt. Note that Nt/InNt ∼= Mn for all t and n. Hence Nt ∼= Nt′ for all t, t′ ∈ T , see
More on Algebra, Lemma 15.100.5. This proves that F is adic lisse. □

Lemma 61.28.5.09BX Let X be a Noetherian scheme. Let Λ be a Noetherian ring and
let I ⊂ Λ be an ideal. Let F be a constructible Λ-sheaf on Xpro-étale. Then F is
adic constructible.

Proof. This is a consequence of Lemmas 61.28.2 and 61.28.4, the fact that a Noe-
therian scheme is locally connected (Topology, Lemma 5.9.6), and the definitions.

□

It will be useful to identify the constructible Λ-sheaves inside the category of derived
complete sheaves of Λ-modules. It turns out that the naive analogue of More on
Algebra, Lemma 15.94.5 is wrong in this setting. However, here is the analogue of
More on Algebra, Lemma 15.91.7.

Lemma 61.28.6.09BY Let X be a scheme. Let Λ be a ring and let I ⊂ Λ be a finitely
generated ideal. Let F be a sheaf of Λ-modules on Xpro-étale. If F is derived
complete and F/IF = 0, then F = 0.

Proof. Assume that F/IF is zero. Let I = (f1, . . . , fr). Let i < r be the largest
integer such that G = F/(f1, . . . , fi)F is nonzero. If i does not exist, then F = 0
which is what we want to show. Then G is derived complete as a cokernel of a map
between derived complete modules, see Proposition 61.21.1. By our choice of i we
have that fi+1 : G → G is surjective. Hence

lim(. . .→ G fi+1−−−→ G fi+1−−−→ G)

is nonzero, contradicting the derived completeness of G. □

Lemma 61.28.7.09BZ Let X be a weakly contractible affine scheme. Let Λ be a Noether-
ian ring and let I ⊂ Λ be an ideal. Let F be a derived complete sheaf of Λ-modules
on Xpro-étale with F/IF a locally constant sheaf of Λ/I-modules of finite type.
Then there exists an integer t and a surjective map

(Λ∧)⊕t → F

Proof. Since X is weakly contractible, there exists a finite disjoint open covering
X =

∐
Ui such that F/IF|Ui is isomorphic to the constant sheaf associated to a

finite Λ/I-module Mi. Choose finitely many generators mij of Mi. We can find
sections sij ∈ F(X) restricting to mij viewed as a section of F/IF over Ui. Let t
be the total number of sij . Then we obtain a map

α : Λ⊕t −→ F

which is surjective modulo I by construction. By Lemma 61.20.1 the derived com-
pletion of Λ⊕t is the sheaf (Λ∧)⊕t. Since F is derived complete we see that α factors
through a map

α∧ : (Λ∧)⊕t −→ F
Then Q = Coker(α∧) is a derived complete sheaf of Λ-modules by Proposition
61.21.1. By construction Q/IQ = 0. It follows from Lemma 61.28.6 that Q = 0
which is what we wanted to show. □

https://stacks.math.columbia.edu/tag/09BX
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61.29. A suitable derived category

09C0 Let X be a scheme. It will turn out that for many schemes X a suitable derived
category of ℓ-adic sheaves can be gotten by considering the derived complete objects
K of D(Xpro-étale,Λ) with the property that K⊗L

Λ Fℓ is bounded with constructible
cohomology sheaves. Here is the general definition.

Definition 61.29.1.09C1 Let Λ be a Noetherian ring and let I ⊂ Λ be an ideal. Let X
be a scheme. An object K of D(Xpro-étale,Λ) is called constructible if

(1) K is derived complete with respect to I,
(2) K ⊗L

Λ Λ/I has constructible cohomology sheaves and locally has finite tor
dimension.

We denote Dcons(X,Λ) the full subcategory of constructible K in D(Xpro-étale,Λ).

Recall that with our conventions a complex of finite tor dimension is bounded
(Cohomology on Sites, Definition 21.46.1). In fact, let’s collect everything proved
so far in a lemma.

Lemma 61.29.2.09C2 In the situation above suppose K is in Dcons(X,Λ) and X is
quasi-compact. Set Kn = K ⊗L

Λ Λ/In. There exist a, b such that
(1) K = R limKn and Hi(K) = 0 for i ̸∈ [a, b],
(2) each Kn has tor amplitude in [a, b],
(3) each Kn has constructible cohomology sheaves,
(4) each Kn = ϵ−1Ln for some Ln ∈ Dctf (Xétale,Λ/In) (Étale Cohomology,

Definition 59.77.1).

Proof. By definition of local having finite tor dimension, we can find a, b such that
K1 has tor amplitude in [a, b]. Part (2) follows from Cohomology on Sites, Lemma
21.46.9. Then (1) follows as K is derived complete by the description of limits in
Cohomology on Sites, Proposition 21.51.2 and the fact that Hb(Kn+1)→ Hb(Kn)
is surjective as Kn = Kn+1⊗L

Λ Λ/In. Part (3) follows from Lemma 61.27.6, Part (4)
follows from Lemma 61.27.4 and the fact that Ln has finite tor dimension because
Kn does (small argument omitted). □

Lemma 61.29.3.09C3 Let X be a weakly contractible affine scheme. Let Λ be a Noe-
therian ring and let I ⊂ Λ be an ideal. Let K be an object of Dcons(X,Λ) such
that the cohomology sheaves of K ⊗L

Λ Λ/I are locally constant. Then there exists
a finite disjoint open covering X =

∐
Ui and for each i a finite collection of finite

projective Λ∧-modules Ma, . . . ,Mb such that K|Ui is represented by a complex

(Ma)∧ → . . .→ (M b)∧

in D(Ui,pro-étale,Λ) for some maps of sheaves of Λ-modules (M i)∧ → (M i+1)∧.

Proof. We freely use the results of Lemma 61.29.2. Choose a, b as in that lemma.
We will prove the lemma by induction on b− a. Let F = Hb(K). Note that F is a
derived complete sheaf of Λ-modules by Proposition 61.21.1. Moreover F/IF is a
locally constant sheaf of Λ/I-modules of finite type. Apply Lemma 61.28.7 to get
a surjection ρ : (Λ∧)⊕t → F .
If a = b, then K = F [−b]. In this case we see that

F ⊗L
Λ Λ/I = F/IF

https://stacks.math.columbia.edu/tag/09C1
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As X is weakly contractible and F/IF locally constant, we can find a finite disjoint
union decomposition X =

∐
Ui by affine opens Ui and Λ/I-modules M i such that

F/IF restricts to M i on Ui. After refining the covering we may assume the map

ρ|Ui mod I : Λ/I⊕t −→M i

is equal to αi for some surjective module map αi : Λ/I⊕t → M i, see Modules on
Sites, Lemma 18.43.3. Note that each M i is a finite Λ/I-module. Since F/IF has
tor amplitude in [0, 0] we conclude that M i is a flat Λ/I-module. Hence M i is finite
projective (Algebra, Lemma 10.78.2). Hence we can find a projector pi : (Λ/I)⊕t →
(Λ/I)⊕t whose image maps isomorphically to M i under the map αi. We can lift
pi to a projector pi : (Λ∧)⊕t → (Λ∧)⊕t7. Then Mi = Im(pi) is a finite I-adically
complete Λ∧-module with Mi/IMi = M i. Over Ui consider the maps

Mi
∧ → (Λ∧)⊕t → F|Ui

By construction the composition induces an isomorphism modulo I. The source
and target are derived complete, hence so are the cokernel Q and the kernel K. We
have Q/IQ = 0 by construction hence Q is zero by Lemma 61.28.6. Then

0→ K/IK →M i → F/IF → 0
is exact by the vanishing of Tor1 see at the start of this paragraph; also use that
Λ∧/IΛ∧ by Modules on Sites, Lemma 18.42.4 to see that Mi

∧/IMi
∧ = M i. Hence

K/IK = 0 by construction and we conclude that K = 0 as before. This proves the
result in case a = b.
If b > a, then we lift the map ρ to a map

ρ̃ : (Λ∧)⊕t[−b] −→ K

in D(Xpro-étale,Λ). This is possible as we can think of K as a complex of Λ∧-
modules by discussion in the introduction to Section 61.20 and because Xpro-étale
is weakly contractible hence there is no obstruction to lifting the elements ρ(es) ∈
H0(X,F) to elements of Hb(X,K). Fitting ρ̃ into a distinguished triangle

(Λ∧)⊕t[−b]→ K → L→ (Λ∧)⊕t[−b+ 1]
we see that L is an object of Dcons(X,Λ) such that L ⊗L

Λ Λ/I has tor amplitude
contained in [a, b− 1] (details omitted). By induction we can describe L locally as
stated in the lemma, say L is isomorphic to

(Ma)∧ → . . .→ (M b−1)∧

The map L → (Λ∧)⊕t[−b + 1] corresponds to a map (M b−1)∧ → (Λ∧)⊕t which
allows us to extend the complex by one. The corresponding complex is isomorphic
to K in the derived category by the properties of triangulated categories. This
finishes the proof. □

Motivated by what happens for constructible Λ-sheaves we introduce the following
notion.

Definition 61.29.4.09C4 Let X be a scheme. Let Λ be a Noetherian ring and let I ⊂ Λ
be an ideal. Let K ∈ D(Xpro-étale,Λ).

7Proof: by Algebra, Lemma 10.32.7 we can lift pi to a compatible system of projectors
pi,n : (Λ/In)⊕t → (Λ/In)⊕t and then we set pi = lim pi,n which works because Λ∧ = lim Λ/In.
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(1) We say K is adic lisse8 if there exists a finite complex of finite projective
Λ∧-modules M• such that K is locally isomorphic to

Ma∧ → . . .→M b∧

(2) We say K is adic constructible9 if for every affine open U ⊂ X there exists
a decomposition U =

∐
Ui into constructible locally closed subschemes

such that K|Ui is adic lisse.

The difference between the local structure obtained in Lemma 61.29.3 and the
structure of an adic lisse complex is that the maps M i∧ → M i+1∧ in Lemma
61.29.3 need not be constant, whereas in the definition above they are required to
be constant.

Lemma 61.29.5.09C5 Let X be a weakly contractible affine scheme. Let Λ be a Noe-
therian ring and let I ⊂ Λ be an ideal. Let K be an object of Dcons(X,Λ) such that
K ⊗L

Λ Λ/In is isomorphic in D(Xpro-étale,Λ/In) to a complex of constant sheaves
of Λ/In-modules. Then

H0(X,K ⊗L
Λ Λ/In)

has the Mittag-Leffler condition.

Proof. Say K ⊗L
Λ Λ/In is isomorphic to En for some object En of D(Λ/In). Since

K ⊗L
Λ Λ/I has finite tor dimension and has finite type cohomology sheaves we see

that E1 is perfect (see More on Algebra, Lemma 15.74.2). The transition maps
K ⊗L

Λ Λ/In+1 → K ⊗L
Λ Λ/In

locally come from (possibly many distinct) maps of complexes En+1 → En in
D(Λ/In+1) see Cohomology on Sites, Lemma 21.53.3. For each n choose one such
map and observe that it induces an isomorphism En+1 ⊗L

Λ/In+1 Λ/In → En in
D(Λ/In). By More on Algebra, Lemma 15.97.4 we can find a finite complex M•

of finite projective Λ∧-modules and isomorphisms M•/InM• → En in D(Λ/In)
compatible with the transition maps.
Now observe that for each finite collection of indices n > m > k the triple of maps

H0(X,K ⊗L
Λ Λ/In)→ H0(X,K ⊗L

Λ Λ/Im)→ H0(X,K ⊗L
Λ Λ/Ik)

is isomorphic to
H0(X,M•/InM•)→ H0(X,M•/ImM•)→ H0(X,M•/IkM•)

Namely, choose any isomorphism
M•/InM• → K ⊗L

Λ Λ/In

induces similar isomorphisms module Im and Ik and we see that the assertion is
true. Thus to prove the lemma it suffices to show that the systemH0(X,M•/InM•)
has Mittag-Leffler. Since taking sections over X is exact, it suffices to prove that
the system of Λ-modules

H0(M•/InM•)
has Mittag-Leffler. Set A = Λ∧ and consider the spectral sequence

TorA−p(Hq(M•), A/InA)⇒ Hp+q(M•/InM•)

8This may be nonstandard notation
9This may be nonstandard notation.
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By More on Algebra, Lemma 15.27.3 the pro-systems {TorA−p(Hq(M•), A/InA)}
are zero for p > 0. Thus the pro-system {H0(M•/InM•)} is equal to the pro-
system {H0(M•)/InH0(M•)} and the lemma is proved. □

Lemma 61.29.6.09C6 Let X be a connected scheme. Let Λ be a Noetherian ring and let
I ⊂ Λ be an ideal. If K is in Dcons(X,Λ) such that K ⊗Λ Λ/I has locally constant
cohomology sheaves, then K is adic lisse (Definition 61.29.4).

Proof. Write Kn = K ⊗L
Λ Λ/In. We will use the results of Lemma 61.29.2 without

further mention. By Cohomology on Sites, Lemma 21.53.5 we see that Kn has
locally constant cohomology sheaves for all n. We have Kn = ϵ−1Ln some Ln
in Dctf (Xétale,Λ/In) with locally constant cohomology sheaves. By Étale Coho-
mology, Lemma 59.77.7 there exist perfect Mn ∈ D(Λ/In) such that Ln is étale
locally isomorphic to Mn. The maps Ln+1 → Ln corresponding to Kn+1 → Kn

induces isomorphisms Ln+1 ⊗L
Λ/In+1 Λ/In → Ln. Looking locally on X we con-

clude that there exist maps Mn+1 → Mn in D(Λ/In+1) inducing isomorphisms
Mn+1⊗Λ/In+1 Λ/In →Mn, see Cohomology on Sites, Lemma 21.53.3. Fix a choice
of such maps. By More on Algebra, Lemma 15.97.4 we can find a finite complex M•

of finite projective Λ∧-modules and isomorphisms M•/InM• → Mn in D(Λ/In)
compatible with the transition maps. To finish the proof we will show that K is
locally isomorphic to

M•∧ = limM•/InM• = R limM•/InM•

Let E• be the dual complex to M•, see More on Algebra, Lemma 15.74.15 and its
proof. Consider the objects

Hn = RHomΛ/In(M•/InM•,Kn) = E•/InE• ⊗L
Λ/In Kn

of D(Xpro-étale,Λ/In). Modding out by In defines a transition map Hn+1 → Hn.
Set H = R limHn. Then H is an object of Dcons(X,Λ) (details omitted) with
H ⊗L

Λ Λ/In = Hn. Choose a covering {Wt → X}t∈T with each Wt affine and
weakly contractible. By our choice of M• we see that

Hn|Wt
∼= RHomΛ/In(M•/InM•,M•/InM•)
= Tot(E•/InE• ⊗Λ/In M

•/InM•)

Thus we may apply Lemma 61.29.5 to H = R limHn. We conclude the system
H0(Wt, Hn) satisfies Mittag-Leffler. Since for all n ≫ 1 there is an element of
H0(Wt, Hn) which maps to an isomorphism in

H0(Wt, H1) = Hom(M•/IM•,K1)
we find an element (φt,n) in the inverse limit which produces an isomorphism mod
I. Then

R limφt,n : M•∧|Wt = R limM•/InM•|Wt −→ R limKn|Wt = K|Wt

is an isomorphism. This finishes the proof. □

Proposition 61.29.7.09C7 Let X be a Noetherian scheme. Let Λ be a Noetherian ring
and let I ⊂ Λ be an ideal. Let K be an object of Dcons(X,Λ). Then K is adic
constructible (Definition 61.29.4).

Proof. This is a consequence of Lemma 61.29.6 and the fact that a Noetherian
scheme is locally connected (Topology, Lemma 5.9.6), and the definitions. □
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61.30. Proper base change

09C8 In this section we explain how to prove the proper base change theorem for derived
complete objects on the pro-étale site using the proper base change theorem for
étale cohomology following the general theme that we use the pro-étale topology
only to deal with “limit issues” and we use results proved for the étale topology to
handle everything else.

Theorem 61.30.1.09C9 Let f : X → Y be a proper morphism of schemes. Let g : Y ′ → Y
be a morphism of schemes giving rise to the base change diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

Let Λ be a Noetherian ring and let I ⊂ Λ be an ideal such that Λ/I is torsion. Let
K be an object of D(Xpro-étale) such that

(1) K is derived complete, and
(2) K⊗L

ΛΛ/In is bounded below with cohomology sheaves coming fromXétale,
(3) Λ/In is a perfect Λ-module10.

Then the base change map
Lg∗

compRf∗K −→ Rf ′
∗L(g′)∗

compK

is an isomorphism.

Proof. We omit the construction of the base change map (this uses only formal
properties of derived pushforward and completed derived pullback, compare with
Cohomology on Sites, Remark 21.19.3). Write Kn = K ⊗L

Λ Λ/In. By Lemma
61.20.1 we have K = R limKn because K is derived complete. By Lemmas 61.20.2
and 61.20.1 we can unwind the left hand side

Lg∗
compRf∗K = R limLg∗(Rf∗K)⊗L

Λ Λ/In = R limLg∗Rf∗Kn

the last equality because Λ/In is a perfect module and the projection formula
(Cohomology on Sites, Lemma 21.50.1). Using Lemma 61.20.2 we can unwind the
right hand side

Rf ′
∗L(g′)∗

compK = Rf ′
∗R limL(g′)∗Kn = R limRf ′

∗L(g′)∗Kn

the last equality because Rf ′
∗ commutes with R lim (Cohomology on Sites, Lemma

21.23.3). Thus it suffices to show the maps
Lg∗Rf∗Kn −→ Rf ′

∗L(g′)∗Kn

are isomorphisms. By Lemma 61.19.8 and our second condition we can write Kn =
ϵ−1Ln for some Ln ∈ D+(Xétale,Λ/In). By Lemma 61.23.1 and the fact that ϵ−1

commutes with pullbacks we obtain
Lg∗Rf∗Kn = Lg∗Rf∗ϵ

∗Ln = Lg∗ϵ−1Rf∗Ln = ϵ−1Lg∗Rf∗Ln

and
Rf ′

∗L(g′)∗Kn = Rf ′
∗L(g′)∗ϵ−1Ln = Rf ′

∗ϵ
−1L(g′)∗Ln = ϵ−1Rf ′

∗L(g′)∗Ln

10This assumption can be removed if K is a constructible complex, see [BS13].
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(this also uses that Ln is bounded below). Finally, by the proper base change
theorem for étale cohomology (Étale Cohomology, Theorem 59.91.11) we have

Lg∗Rf∗Ln = Rf ′
∗L(g′)∗Ln

(again using that Ln is bounded below) and the theorem is proved. □

61.31. Change of partial universe

0F4R We advise the reader to skip this section: here we show that cohomology of sheaves
in the pro-étale topology is independent of the choice of partial universe. Namely,
the functor g∗ of Lemma 61.31.2 below is an embedding of small pro-étale topoi
which does not change cohomology. For big pro-étale sites we have Lemmas 61.31.3
and 61.31.4 saying essentially the same thing.
But first, as promised in Section 61.12 we prove that the topology on a big pro-
étale site Schpro-étale is in some sense induced from the pro-étale topology on the
category of all schemes.

Lemma 61.31.1.098J Let Schpro-étale be a big pro-étale site as in Definition 61.12.7.
Let T ∈ Ob(Schpro-étale). Let {Ti → T}i∈I be an arbitrary pro-étale covering of
T . There exists a covering {Uj → T}j∈J of T in the site Schpro-étale which refines
{Ti → T}i∈I .

Proof. Namely, we first let {Vk → T} be a covering as in Lemma 61.13.3. Then
the pro-étale coverings {Ti ×T Vk → Vk} can be refined by a finite disjoint open
covering Vk = Vk,1⨿ . . .⨿Vk,nk , see Lemma 61.13.1. Then {Vk,i → T} is a covering
of Schpro-étale which refines {Ti → T}i∈I . □

We first state and prove the comparison for the small pro-étale sites. Note that we
are not claiming that the small pro-étale topos of a scheme is independent of the
choice of partial universe; this isn’t true in contrast with the case of the small étale
topos (Étale Cohomology, Lemma 59.21.2).

Lemma 61.31.2.098Y Let S be a scheme. Let Spro-étale ⊂ S′
pro-étale be two small pro-

étale sites of S as constructed in Definition 61.12.8. Then the inclusion functor
satisfies the assumptions of Sites, Lemma 7.21.8. Hence there exist morphisms of
topoi

Sh(Spro-étale)
g // Sh(S′

pro-étale)
f // Sh(Spro-étale)

whose composition is isomorphic to the identity and with f∗ = g−1. Moreover,
(1) for F ′ ∈ Ab(S′

pro-étale) we have Hp(S′
pro-étale,F ′) = Hp(Spro-étale, g

−1F ′),
(2) for F ∈ Ab(Spro-étale) we have

Hp(Spro-étale,F) = Hp(S′
pro-étale, g∗F) = Hp(S′

pro-étale, f
−1F).

Proof. The inclusion functor is fully faithful and continuous. We have seen that
Spro-étale and S′

pro-étale have fibre products and final objects and that our functor
commutes with these (Lemma 61.12.10). It follows from Lemma 61.31.1 that the
inclusion functor is cocontinuous. Hence the existence of f and g follows from Sites,
Lemma 7.21.8. The equality in (1) is Cohomology on Sites, Lemma 21.7.2. Part
(2) follows from (1) as F = g−1g∗F = g−1f−1F . □

Next, we prove a corresponding result for the big pro-étale topoi.
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Lemma 61.31.3.0F4S Suppose given big sites Schpro-étale and Sch′
pro-étale as in Definition

61.12.7. Assume that Schpro-étale is contained in Sch′
pro-étale. The inclusion functor

Schpro-étale → Sch′
pro-étale satisfies the assumptions of Sites, Lemma 7.21.8. There

are morphisms of topoi
g : Sh(Schpro-étale) −→ Sh(Sch′

pro-étale)
f : Sh(Sch′

pro-étale) −→ Sh(Schpro-étale)
such that f ◦ g ∼= id. For any object S of Schpro-étale the inclusion functor
(Sch/S)pro-étale → (Sch′/S)pro-étale satisfies the assumptions of Sites, Lemma 7.21.8
also. Hence similarly we obtain morphisms

g : Sh((Sch/S)pro-étale) −→ Sh((Sch′/S)pro-étale)
f : Sh((Sch′/S)pro-étale) −→ Sh((Sch/S)pro-étale)

with f ◦ g ∼= id.

Proof. Assumptions (b), (c), and (e) of Sites, Lemma 7.21.8 are immediate for
the functors Schpro-étale → Sch′

pro-étale and (Sch/S)pro-étale → (Sch′/S)pro-étale.
Property (a) holds by Lemma 61.31.1. Property (d) holds because fibre products in
the categories Schpro-étale, Sch′

pro-étale exist and are compatible with fibre products
in the category of schemes. □

Lemma 61.31.4.0F4T Let S be a scheme. Let (Sch/S)pro-étale and (Sch′/S)pro-étale
be two big pro-étale sites of S as in Definition 61.12.8. Assume that the first is
contained in the second. In this case

(1) for any abelian sheaf F ′ defined on (Sch′/S)pro-étale and any object U of
(Sch/S)pro-étale we have

Hp(U,F ′|(Sch/S)pro-étale) = Hp(U,F ′)
In words: the cohomology of F ′ over U computed in the bigger site agrees
with the cohomology of F ′ restricted to the smaller site over U .

(2) for any abelian sheaf F on (Sch/S)pro-étale there is an abelian sheaf F ′ on
(Sch/S)′

pro-étale whose restriction to (Sch/S)pro-étale is isomorphic to F .

Proof. By Lemma 61.31.3 the inclusion functor (Sch/S)pro-étale → (Sch′/S)pro-étale
satisfies the assumptions of Sites, Lemma 7.21.8. This implies (2) and (1) follows
from Cohomology on Sites, Lemma 21.7.2. □

61.32. Other chapters

Preliminaries
(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra

(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites

https://stacks.math.columbia.edu/tag/0F4S
https://stacks.math.columbia.edu/tag/0F4T


61.32. OTHER CHAPTERS 5071

(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Differential Graded Sheaves
(25) Hypercoverings

Schemes
(26) Schemes
(27) Constructions of Schemes
(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes
(31) Divisors
(32) Limits of Schemes
(33) Varieties
(34) Topologies on Schemes
(35) Descent
(36) Derived Categories of Schemes
(37) More on Morphisms
(38) More on Flatness
(39) Groupoid Schemes
(40) More on Groupoid Schemes
(41) Étale Morphisms of Schemes

Topics in Scheme Theory
(42) Chow Homology
(43) Intersection Theory
(44) Picard Schemes of Curves
(45) Weil Cohomology Theories
(46) Adequate Modules
(47) Dualizing Complexes
(48) Duality for Schemes
(49) Discriminants and Differents
(50) de Rham Cohomology
(51) Local Cohomology
(52) Algebraic and Formal Geome-

try
(53) Algebraic Curves
(54) Resolution of Surfaces
(55) Semistable Reduction
(56) Functors and Morphisms
(57) Derived Categories of Varieties
(58) Fundamental Groups of

Schemes
(59) Étale Cohomology
(60) Crystalline Cohomology
(61) Pro-étale Cohomology
(62) Relative Cycles
(63) More Étale Cohomology
(64) The Trace Formula

Algebraic Spaces
(65) Algebraic Spaces
(66) Properties of Algebraic Spaces
(67) Morphisms of Algebraic Spaces
(68) Decent Algebraic Spaces
(69) Cohomology of Algebraic

Spaces
(70) Limits of Algebraic Spaces
(71) Divisors on Algebraic Spaces
(72) Algebraic Spaces over Fields
(73) Topologies on Algebraic Spaces
(74) Descent and Algebraic Spaces
(75) Derived Categories of Spaces
(76) More on Morphisms of Spaces
(77) Flatness on Algebraic Spaces
(78) Groupoids in Algebraic Spaces
(79) More on Groupoids in Spaces
(80) Bootstrap
(81) Pushouts of Algebraic Spaces

Topics in Geometry
(82) Chow Groups of Spaces
(83) Quotients of Groupoids
(84) More on Cohomology of Spaces
(85) Simplicial Spaces
(86) Duality for Spaces
(87) Formal Algebraic Spaces
(88) Algebraization of Formal

Spaces
(89) Resolution of Surfaces Revis-

ited
Deformation Theory

(90) Formal Deformation Theory
(91) Deformation Theory
(92) The Cotangent Complex
(93) Deformation Problems

Algebraic Stacks
(94) Algebraic Stacks
(95) Examples of Stacks
(96) Sheaves on Algebraic Stacks
(97) Criteria for Representability
(98) Artin’s Axioms
(99) Quot and Hilbert Spaces

(100) Properties of Algebraic Stacks
(101) Morphisms of Algebraic Stacks
(102) Limits of Algebraic Stacks
(103) Cohomology of Algebraic

Stacks



61.32. OTHER CHAPTERS 5072

(104) Derived Categories of Stacks
(105) Introducing Algebraic Stacks
(106) More on Morphisms of Stacks
(107) The Geometry of Stacks

Topics in Moduli Theory
(108) Moduli Stacks
(109) Moduli of Curves

Miscellany

(110) Examples
(111) Exercises
(112) Guide to Literature
(113) Desirables
(114) Coding Style
(115) Obsolete
(116) GNU Free Documentation Li-

cense
(117) Auto Generated Index



CHAPTER 62

Relative Cycles

0H4B 62.1. Introduction

0H4C A foundational reference is [SV00].

In this chapter we only define what are called the universally integral relative cycles
in [SV00]. This choice makes the theory somewhat simpler to develop than in the
original, but of course we also lose something.

Fix a morphism X → S of finite type between Noetherian schemes. A family α of
r-cycles on fibres of X/S is simply a collection α = (αs)s∈S where αs ∈ Zr(Xs). It
is immediately clear how to base change g∗α of α along any morphism g : S′ → S.
Then we say α is a relative r-cycle on X/S if α is compatible with specializations,
i.e., for any morphism g : S′ → S where S′ is the spectrum of a discrete valuation
ring, we require the generic fibre of g∗α to specialize to the closed fibre of g∗α. See
Section 62.6.

62.2. Conventions and notation

0H4D Please consult the chapter on Chow Homology and Chern Classes for our conven-
tions and notation regarding cycles on schemes locally of finite type over a fixed
Noetherian base, see Chow Homology, Section 42.7 ff.

In particular, if X is locally of finite type over a field k, then Zr(X) denotes the
group of cycles of dimension r, see Chow Homology, Example 42.7.2 and Section
42.8. Given an integral closed subscheme Z ⊂ X with dim(Z) = r we have [Z] ∈
Zr(X) and if X is quasi-compact, then Zr(X) is free abelian on these classes.

62.3. Cycles relative to fields

0H4E Let k be a field. Let X be a locally algebraic scheme over k. Let r ≥ 0 be an
integer. In this setting we have the group Zr(X) of r-cycles on X, see Section 62.2.

Base change. For any field extension k′/k there is a base change map Zr(X) →
Zr(Xk′), see Chow Homology, Section 42.67. Namely, given an integral closed
subscheme Z ⊂ X of dimension r we send [Z] ∈ Zr(X) to the r-cycle [Zk′ ]r ∈
Zr(Xk′) associated to the closed subscheme Zk′ ⊂ Xk′ (of course in general Zk′ is
neither irreducible nor reduced). The base change map Zr(X)→ Zr(Xk′) is always
injective.

Lemma 62.3.1.0H4F Let K/k be a field extension. Let Z be an integral locally algebraic
scheme over k. The multiplicity mZ′,ZK of an irreducible component Z ′ ⊂ ZK is 1
or a power of the characteristic of k.

5073
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Proof. If the characteristic of k is zero, then k is perfect and the multiplicity is
always 1 since XK is reduced by Varieties, Lemma 33.6.4. Assume the characteristic
of k is p > 0. Let L be the function field of Z. Since Z is locally algebraic over k, the
field extension L/k is finitely generated. The ring K ⊗k L is Noetherian (Algebra,
Lemma 10.31.8). Translated into algebra, we have to show that the length of the
artinian local ring (K ⊗k L)q is a power of p for every minimal prime ideal q.
Let L′/L be a finite purely inseparable extension, say of degree pn. Then K⊗kL ⊂
K ⊗k L′ is a finite free ring map of degree pn which induces a homeomorphism on
spectra and purely inseparable residue field extensions. Hence for every minimal
prime q as above there is a unique minimal prime q′ ⊂ K ⊗k L′ lying over it and

pnlength((K ⊗k L)q) = [κ(q′) : κ(q)]length((K ⊗k L′)q′)

by Algebra, Lemma 10.52.12 applied to M = (K ⊗k L′)q′ ∼= (K ⊗k L)⊕pn
q . Since

[κ(q′) : κ(q)] is a power of p we conclude that it suffices to prove the statement for
L′ and q′.
By the previous paragraph and Algebra, Lemma 10.45.3 we may assume that we
have a subfield L/k′/k such that L/k′ is separable and k′/k is finite purely in-
separable. Then K ⊗k k′ is an Artinian local ring. The argument of the preced-
ing paragraph (applied to L = k and L′ = k′) shows that length(K ⊗k k′) is a
power of p. Since L/k′ is the localization of a smooth k′-algebra (Algebra, Lemma
10.158.10). Hence S = (K ⊗k L)q is the localization of a smooth R = K ⊗k k′-
algebra at a minimal prime. Thus R → S is a flat local homomorphism of Ar-
tinian local rings and mRS = mS . It follows from Algebra, Lemma 10.52.13 that
length(K ⊗k k′) = length(R) = length(S) = length((K ⊗k L)q) and the proof is
finished. □

Lemma 62.3.2.0H4G Let k be a field of characteristic p > 0 with perfect closure kperf .
Let X be an algebraic scheme over k. Let r ≥ 0 be an integer. The cokernel of the
injective map Zr(X)→ Zr(Xkperf ) is a p-power torsion module (More on Algebra,
Definition 15.88.1).

Proof. Since X is quasi-compact, the abelian group Zr(X) is free with basis given
by the integral closed subschemes of dimension r. Similarly for Zr(Xkperf ). Since
Xkperf → X is a homeomorphism, it follows that Zr(X) → Zr(Xkperf ) is injective
with torsion cokernel. Every element in the cokernel is p-power torsion by Lemma
62.3.1. □

62.4. Specialization of cycles

0H4H Let R be a discrete valuation ring with fraction field K and residue field κ. Let X
be a scheme locally of finite type over R. Let r ≥ 0. There is a specialization map

spX/R : Zr(XK) −→ Zr(Xκ)
defined as follows. For an integral closed subscheme Z ⊂ XK of dimension r we
denote Z the scheme theoretic image of Z → X. Then we let spX/R be the unique
Z-linear map such that

spX/R([Z]) = [Zκ]r
We briefly discuss why this is well defined. First, observe that the morphism XK →
X is quasi-compact and hence the morphism Z → X is quasi-compact. Thus
taking the scheme theoretic image of Z → X commutes with flat base change by

https://stacks.math.columbia.edu/tag/0H4G
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Morphisms, Lemma 29.25.16. In particular, base changing back to XK we see that
Z = ZK . Since Z is integral, of course Z is integral too and in fact is equal to the
unique integral closed subscheme whose generic point is the (image of the) generic
point of Z. It follows from Varieties, Lemma 33.19.2 that Zκ is equidimensional of
dimension r.

Lemma 62.4.1.0H4I Let R be a discrete valuation ring with fraction field K and
residue field κ. Let X be a scheme locally of finite type over R. Let r ≥ 0.
Let F be a coherent OX -module flat over R. Assume dim(Supp(FK)) ≤ r. Then
dim(Supp(Fκ)) ≤ r and

spX/R([FK ]r) = [Fκ]r

Proof. The statement on dimension follows from More on Morphisms, Lemma
37.18.4. Let x be a generic point of an integral closed subscheme Z ⊂ Xκ of
dimension r. To finish the proof we wil show that the coefficient of [Z] in the left
(L) and right hand side (R) of equality are the same.

Let A = OX,x and M = Fx. Observe that M is a finite A-module flat over R. Let
π ∈ R be a uniformizer so that A/πA = OXκ,x. By Chow Homology, Lemma 42.3.2
we have ∑

i
lengthA(A/(π, qi))lengthAqi

(Mqi) = lengthA(M/πM)

where the sum is over the minimal primes qi in the support of M . Since π is a
nonzerodivisor on M we see that π ̸∈ qi and hence these primes correspond to those
generic points yi ∈ XK of the support of FK which specialize to our chosen x ∈ Xκ.
Thus the left hand side is the coefficient of [Z] in (L). Of course lengthA(M/πM)
is the coefficient of [Z] in (R). This finishes the proof. □

Lemma 62.4.2.0H4J Let R be a discrete valuation ring with fraction field K and residue
field κ. Let X be a scheme locally of finite type over R. Let r ≥ 0. Let W ⊂ X be
a closed subscheme flat over R. Assume dim(WK) ≤ r. Then dim(Wκ) ≤ r and

spX/R([WK ]r) = [Wκ]r

Proof. Taking F = OW this is a special case of Lemma 62.4.1. See Chow Homology,
Lemma 42.10.3. □

Lemma 62.4.3.0H4K Let R′/R be an extension of discrete valuation rings inducing
fraction field extension K ′/K and residue field extension κ′/κ (More on Algebra,
Definition 15.111.1). Let X be locally of finite type over R. Denote X ′ = XR′ .
Then the diagram

Zr(X ′
K′) spX′/R′

// Zr(X ′
κ′)

Zr(XK)
spX/R //

OO

Zr(Xκ)

OO

commutes where r ≥ 0 and the vertical arrows are base change maps.

Proof. Observe that X ′
K′ = XK′ = XK ×Spec(K) Spec(K ′) and similarly for closed

fibres, so that the vertical arrows indeed make sense (see Section 62.3). Now if
Z ⊂ XK is an integral closed subscheme with scheme theoretic image Z ⊂ X,

https://stacks.math.columbia.edu/tag/0H4I
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then we see that ZK′ ⊂ XK′ is a closed subscheme with scheme theoretic image
ZR′ ⊂ XR′ . The base change of [Z] is [ZK′ ]r = [ZK′ ]r by definition. We have

spX/R([Z]) = [Zκ]r and spX′/R′([ZK′ ]r) = [(ZR′)κ′ ]r
by Lemma 62.4.1. Since (ZR′)κ′ = (Zκ)κ′ we conclude. □

Lemma 62.4.4.0H4L Let R be a discrete valuation ring with fraction field K and residue
field κ. Let X be a scheme locally of finite type over R. Let f : X ′ → X be a
morphism which is locally of finite type, flat, and of relative dimension e. Then the
diagram

Zr+e(X ′
K)

spX′/R
// Zr+e(X ′

κ)

Zr(XK)
spX/R //

OO

Zr(Xκ)

OO

commutes where r ≥ 0 and the vertical arrows are given by flat pullback.

Proof. Let Z ⊂ X be an integral closed subscheme dominating R. By the construc-
tion of spX/R we have spX/R([ZK ]) = [Zκ]r and this characterizes the specialization
map. Set Z ′ = f−1(Z) = X ′ ×X Z. Since R is a valuation ring, Z is flat over R.
Hence Z ′ is flat over R and spX′/R([Z ′

K ]r+e) = [Z ′
κ]r+e by Lemma 62.4.2. Since by

Chow Homology, Lemma 42.14.4 we have f∗
K [ZK ] = [Z ′

K ]r+e and f∗
κ [Zκ]r = [Z ′

κ]r+e
we win. □

Lemma 62.4.5.0H4M Let R be a discrete valuation ring with fraction field K and residue
field κ. Let f : X → Y be a proper morphism of schemes locally of finite type over
R. Then the diagram

Zr(XK)
spX/R

//

��

Zr(Xκ)

��
Zr(YK)

spY/R // Zr(Yκ)

commutes where r ≥ 0 and the vertical arrows are given by proper pushforward.

Proof. Let Z ⊂ X be an integral closed subscheme dominating R. By the construc-
tion of spX/R we have spX/R([ZK ]) = [Zκ]r and this characterizes the specialization
map. Set Z ′ = f(Z) ⊂ Y . Then Z ′ is an integral closed subscheme of Y dominating
R. Thus spY/R([Z ′

K ]) = [Z ′
κ]r.

We can think of [Z] as an element of Zr+1(X). By definition we have f∗[Z] = 0 if
dim(Z ′) < r+ 1 and f∗[Z] = d[Z ′] if Z → Z ′ is generically finite of degree d. Since
proper pushforward commutes with flat pullback by YK → Y (Chow Homology,
Lemma 42.15.1) we see that correspondingly fK,∗[ZK ] = 0 or fK,∗[ZK ] = d[Z ′

K ].
Let us apply Chow Homology, Lemma 42.29.8 to the commutative diagram

Xκ

��

i
// X

��
Yκ

j // Y

We obtain that fκ,∗[Zκ]r = 0 or fκ,∗[Zκ] = d[Z ′
κ]r because clearly i∗[Z] = [Zk]r

and j∗[Z ′] = [Z ′
κ]r. Putting everything together we conclude. □
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62.5. Families of cycles on fibres

0H4N Let f : X → S be a morphism of schemes which is locally of finite type. Let r ≥ 0
be an integer. A family α of r-cycles on fibres of X/S is a family

α = (αs)s∈S

indexed by the points s of the scheme S where αs ∈ Zr(Xs) is an r cycle on the
scheme theoretic fibre Xs of f at s. There are various constructions we can perform
on families of r-cycles on fibres.
Base change. Let

X ′ //

��

X

f

��
S′ g // S

be a catesian square of morphisms of schemes with f locally of finite type. Let
r ≥ 0 be an integer. Given a family α of r-cycles on fibres of X/S we define the
base change g∗α of α to be the family

g∗α = (α′
s′)s′∈S′

where α′
s′ ∈ Zr(X ′

s′) is the base change of the cycle αs with s′ = g(s) as in Section
62.3 via the identitification X ′

s′ = Xs ×Spec(κ(s)) Spec(κ(s′)) of scheme theoretic
fibres.
Restriction. Let f : X → S be a morphism of schemes which is locally of finite
type. Let r ≥ 0 be an integer. Let U ⊂ X and V ⊂ S be open subschemes
with f(U) ⊂ V . Given a family α of r-cycles on fibres of X/S we can define the
restriction α|U of α to be the family of r-cycles on fibres of U/V

α|U = (αs|Us)s∈V

of restrictions to scheme theoretic fibres.
Flat pullback. Let X → S be a morphism of schemes which is locally of finite type.
Let r, e ≥ 0 be integers. Let f : X ′ → X be a flat morphism, locally of finite type,
and of relative dimension e. Given a family α of r-cycles on fibres of X/S we define
the flat pullback f∗α of α to be the family of (r + e)-cycles on fibres

f∗α = (f∗
sαs)s∈S

where f∗
sαs ∈ Zr+e(X ′

s) is the flat pullback of the cycle αs in Zr(Xs) by the flat
morphism fs : X ′

s → Xs of relative dimension e of scheme theoretic fibres.
Proper pushforward. Let

X
f

//

��

Y

��
S

be a commutative diagram of morphisms of schemes with X and Y locally of finite
type over S and f proper. Let r ≥ 0 be an integer. Given a family α of r-cycles
on fibres of X/S we define the proper pushforward f∗α of α to be the family of
r-cycles on fibres of Y/S by

f∗α = (fs,∗αs)s∈S
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where fs,∗αs ∈ Zr(Ys) is the proper pushforward of the cycle αs in Zr(Xs) by the
proper morphism fs : Xs → Ys of scheme theoretic fibres.
Lemma 62.5.1.0H4P We have the following compatibilities between the operations above:
(1) base change is functorial, (2) restriction is a combination of base change and
(a special case of) flat pullback, (3) flat pullback commutes with base change, (4)
flat pullback is functorial, (5) proper pushforward commutes with base change, (6)
proper pushforward is functorial, and (7) proper pushforward commutes with flat
pullback.
Proof. Each of these compatibilities follows directly from the corresponding results
proved in the chapter on Chow homology applied to the fibres over S of the schemes
in question. We omit the precise statements and the detailed proofs. Here are some
references. Part (1): Chow Homology, Lemma 42.67.9. Part (2): Obvious. Part
(3): Chow Homology, Lemma 42.67.5. Part (4): Chow Homology, Lemma 42.14.3.
Part (5): Chow Homology, Lemma 42.67.6. Part (6): Chow Homology, Lemma
42.12.2. Part (7): Chow Homology, Lemma 42.15.1. □

Example 62.5.2.0H4Q Let f : X → S be a morphism of schemes which is locally of finite
type. Let r ≥ 0 be an integer. Let F be a quasi-coherent OX -module of finite type.
For s ∈ S denote Fs the pullback of F to Xs. Assume dim(Supp(Fs)) ≤ r for all
s ∈ S. Then we can associate to F the family [F/X/S]r of r-cycles on fibres of
X/S defined by the formula

[F/X/S]r = ([Fs]r)s∈S

where [Fs]r is given by Chow Homology, Definition 42.10.2.
Lemma 62.5.3.0H4R The construction in Example 62.5.2 is compatible with base change,
restriction, and flat pullback.
Proof. See Chow Homology, Lemmas 42.67.3 and 42.14.4. □

Example 62.5.4.0H4S Let f : X → S be a morphism of schemes which is locally of finite
type. Let r ≥ 0 be an integer. Let Z ⊂ X be a closed subscheme. For s ∈ S denote
Zs the inverse image of Z in Xs or equivalently the scheme theoretic fibre of Z at
s viewed as a closed subscheme of Xs. Assume dim(Zs) ≤ r for all s ∈ S. Then we
can associate to Z the family [Z/X/S]r of r-cycles on fibres of X/S defined by the
formula

[Z/X/S]r = ([Zs]r)s∈S

where [Zs]r is given by Chow Homology, Definition 42.9.2.
Lemma 62.5.5.0H4T The construction in Example 62.5.4 is compatible with base change,
restriction, and flat pullback.
Proof. Taking F = (Z → X)∗OZ this is a special case of Lemma 62.5.3. See Chow
Homology, Lemma 42.10.3. □

Remark 62.5.6 (Support).0H4U Let f : X → S be a morphism of schemes which is
locally of finite type. Let r ≥ 0 be an integer. Let α be a family of r-cycles on
fibres of X/S. We define the support of α to be

Supp(α) =
⋃

s∈S
Supp(αs) ⊂ X

Here Supp(αs) ⊂ Xs is the support of the cycle αs, see Chow Homology, Definition
42.8.3. The support Supp(α) is rarely a closed subset of X.
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Lemma 62.5.7.0H4V Taking the support as in Remark 62.5.6 is compatible with base
change, restriction, and flat pullback.

Proof. Omitted. □

Lemma 62.5.8.0H4W Let f : X → S be a morphism of schemes which is locally of finite
type. Let r ≥ 0 be an integer. Let g : S′ → S be a surjective morphism of schemes.
Set S′′ = S′ ×S S′ and let f ′ : X ′ → S′ and f ′′ : X ′′ → S′′ be the base changes of
f . Let x ∈ X with trdegκ(f(x))(κ(x)) = r.

(1) There exists an x′ ∈ X ′ mapping to x with trdegκ(f ′(x′))(κ(x′)) = r.
(2) If x′

1, x
′
2 ∈ X ′ are both as in (1), then there exists an x′′ ∈ X ′′ with

trdegκ(f ′′(x′′))(κ(x′′)) = r and pri(x′′) = x′
i.

Proof. Part (1) is Morphisms, Lemma 29.28.3. Let x′
1, x

′
2 be as in (2). Then since

X ′′ = X ′ ×X X ′ we see that there exists a x′′ ∈ X ′′ mapping to both x′
1 and x′

2
(see for example Descent, Lemma 35.13.1). Denote s′′ ∈ S′′, s′

i ∈ S′, and s ∈ S the
images of x′′, x′

i, and x. Denote k = κ(s) and let Z ⊂ Xk be the integral closed
subscheme whose generic point is x. Then x′

i is a generic point of an irreducible
component of Zκ(s′

i
). Let Z ′′ ⊂ Zκ(s′′) be an irreducible component containing x′′.

Denote ξ′′ ∈ Z ′′ the generic point. Since ξ′′ ⇝ x′′ we see that ξ′′ must also map to
x′
i under the two projections. On the other hand, we see that trdegκ(s′′)(κ(ξ′′)) = r

because it is a generic point of an irreducible component of the base change of
Z. □

Lemma 62.5.9.0H4X Let f : X → S be a morphism of schemes which is locally of finite
type. Let r ≥ 0 be an integer. Let g : S′ → S be a morphism of schemes and
X ′ = S′ ×S X. Assume that for every s ∈ S there exists a point s′ ∈ S′ with
g(s′) = s and such that κ(s′)/κ(s) is a separable extension of fields. Then

(1) For families α1 and α2 of r-cycles on fibres of X/S if g∗α1 = g∗α2, then
α1 = α2.

(2) Given a family α′ of r-cycles on fibres of X ′/S′ if pr∗
1α

′ = pr∗
2α

′ as families
of r-cycles on fibres of (S′ ×S S′)×S X/(S′ ×S S′), then there is a unique
family α of r-cycles on fibres of X/S such that g∗α = α′.

Proof. Part (1) follows from the injectivity of the base change map discussed in
Section 62.3. (This argument works as long as S′ → S is surjective.)
Let α′ be as in (2). Denote α′′ = pr∗

1α
′ = pr∗

2α
′ the common value.

Let (X/S)(r) be the set of x ∈ X with trdegκ(f(x))(κ(x)) = r and similarly de-
fine (X ′/S′)(r) and (X ′′/S′′)(r) Taking coefficients, we may think of α′ and α′′ as
functions α′ : (X ′/S′)(r) → Z and α′′ : (X ′′/S′′)(r) → Z. Given a function

φ : (X/S)(r) → Z

we define g∗φ : (X ′/S′)(r) → Z by analogy with our base change operation. Namely,
say x′ ∈ (X ′/S′)(r) maps to x ∈ X, s′ ∈ S′, and s ∈ Z. Denote Z ′ ⊂ X ′

s′ and
Z ⊂ Xs the integral closed subschemes with generic points x′ and x. Note that
dim(Z ′) = r. If dim(Z) < r, then we set (g∗φ)(x′) = 0. If dim(Z) = r, then Z ′

is an irreducible component of Zs′ and hence has a multiplicity mZ′,Zs′ . Call this
m(x′, g). Then we define

(g∗φ)(x′) = m(x′, g)φ(x)
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Note that the coefficients m(x′, g) are always positive integers (see for example
Lemma 62.3.1). We similarly have base change maps

pr∗
1,pr∗

2 : Map((X ′/S′)(r),Z) −→ Map((X ′′/S′′)(r),Z)

It follows from the associativity of base change that we have pr∗
1 ◦ g∗ = pr∗

2 ◦ g∗

(small detail omitted). To be explicity, in terms of the maps of sets this equality
just means that for x′′ ∈ (X ′′/S′′)(r) we have

m(x′′,pr1)m(pr1(x′′), g) = m(x′′,pr2)m(pr2(x′′), g)

provided that pr1(x′′) and pr2(x′′) are in (X ′′/S′′)(r). By Lemma 62.5.8 and an
elementary argument1 using the previous displayed equation, it follows that there
exists a unique map

α : (X/S)(r) → Q
such that g∗α = α′. To finish the proof it suffices to show that α has integer
values (small detail omitted: one needs to see that α determines a locally finite
sum on each fibre which follows from the corresponding fact for α′). Given any
x ∈ (X/S)(r) with image s ∈ S we can pick a point s′ ∈ S′ such that κ(s′)/κ(s)
is separable. Then we may choose x′ ∈ (X ′/S′)(r) mapping to s and x and we see
that m(x′, g) = 1 because Zs′ is reduced in this case. Whence α(x) = α′(x′) is an
integer. □

Lemma 62.5.10.0H4Y Let g : S′ → S be a bijective morphism of schemes which induces
isomorphisms of residue fields. Let f : X → S be locally of finite type. Set
X ′ = S′ ×S X. Let r ≥ 0. Then base change by g determines a bijection between
the group of families of r-cycles on fibres of X/S and the group of families of r-cycles
on fibres of X ′/S′.

Proof. Omitted. □

62.6. Relative cycles

0H4Z Here is the definition we will work with; see Section 62.15 for a comparison with
the definitions in [SV00].

Definition 62.6.1.0H50 Let S be a locally Noetherian scheme. Let f : X → S be a
morphism of schemes which is locally of finite type. Let r ≥ 0 be an integer. A
relative r-cycle on X/S is a family α of r-cycles on fibres of X/S such that for every
morphism g : S′ → S where S′ is the spectrum of a discrete valuation ring we have

spX′/S′(αη) = α0

where spX′/S′ is as in Section 62.4 and αη (resp. α0) is the value of the base change
g∗α of α at the generic (resp. closed) point of S′. The group of all relative r-cycles
on X/S is denoted z(X/S, r).

Lemma 62.6.2.0H51 Let α be a relative r-cycle on X/S as in Definition 62.6.1. Then
any restriction, base change, flat pullback, or proper pushforward of α is a relative
r-cycle.

1Given x ∈ (X/S)(r) pick x′ ∈ (X′/S′)(r) mapping to x and set α(x) = α′(x′)/m(x′, g).
This is well defined by the formula and the lemma.
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Proof. For flat pullback use Lemma 62.4.4. Restriction is a special case of flat
pullback. To see it holds for base change use that base change is transitive. For
proper pushforward use Lemma 62.4.5. □

Lemma 62.6.3.0H52 Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r ≥ 0 be an integer. Let α be a family
of r-cycles on fibres of X/S. Let {gi : Si → S} be a h covering (More on Flatness,
Definition 38.34.2). Then α is a relative r-cycle if and only if each base change g∗

i α
is a relative r-cycle.

Proof. If α is a relative r-cycle, then each base change g∗
i α is a relative r-cycle

by Lemma 62.6.2. Assume each g∗
i α is a relative r-cycle. Let g : S′ → S be a

morphism where S′ is the spectrum of a discrete valuation ring. After replacing S
by S′, X by X ′ = X ×S S′, and α by α′ = g∗α and using that the base change of
a h covering is a h covering (More on Flatness, Lemma 38.34.9) we reduce to the
problem studied in the next paragraph.
Assume S is the spectrum of a discrete valuation ring with closed point 0 and
generic point η. We have to show that spX/S(αη) = α0. Since a h covering is a V
covering (by definition), there is an i and a specialization s′ ⇝ s of points of Si with
gi(s′) = η and gi(s) = 0, see Topologies, Lemma 34.10.13. By Properties, Lemma
28.5.10 we can find a morphism h : S′ → Si from the spectrum S′ of a discrete
valuation ring which maps the generic point η′ to s′ and maps the closed point
0′ to s. Denote α′ = h∗g∗

i α. By assumption we have spX′/S′(α′
η′) = α′

0′ . Since
g = gi ◦ h : S′ → S is the morphism of schemes induced by an extension of discrete
valuation rings we conclude that spX/S and spX′/S′ are compatible with base change
maps on the fibres, see Lemma 62.4.3. We conclude that spX/S(αη) = α0 because
the base change map Zr(X0)→ Zr(X ′

0′) is injective as discussed in Section 62.3. □

Lemma 62.6.4.0H53 Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r, e ≥ 0 be integers. Let α be a family
of r-cycles on fibres of X/S. Let {fi : Xi → X} be a jointly surjective family of flat
morphisms, locally of finite type, and of relative dimension e. Then α is a relative
r-cycle if and only if each flat pullback f∗

i α is a relative r-cycle.

Proof. If α is a relative r-cycle, then each pull back f∗
i α is a relative r-cycle by

Lemma 62.6.2. Assume each f∗
i α is a relative r-cycle. Let g : S′ → S be a morphism

where S′ is the spectrum of a discrete valuation ring. After replacing S by S′, X
by X ′ = X ×S S′, and α by α′ = g∗α we reduce to the problem studied in the next
paragraph.
Assume S is the spectrum of a discrete valuation ring with closed point 0 and
generic point η. We have to show that spX/S(αη) = α0. Denote fi,0 : Xi,0 → X0
the base change of fi to the closed point of S. Similarly for fi,η. Observe that

f∗
i,0spX/S(αη) = spXi/S(f∗

i,ηαη) = f∗
i,0α0

Namely, the first equality holds by Lemma 62.4.4 and the second by assumption.
Since the family of maps f∗

i,0 : Zr(X0) → Zr(Xi,0) is jointly injective (due to the
fact that fi,0 is jointly surjective), we conclude what we want. □

Lemma 62.6.5.0H54 Let S be a locally Noetherian scheme. Let i : X → Y be a closed
immersion of schemes locally of finite type over S. Let r ≥ 0. Let α be a family of
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r-cycles on fibres of X/S. Then α is a relative r-cycle on X/S if and only if i∗α is
a relative r-cycle on Y/S.

Proof. Since base change commutes with i∗ (Lemma 62.5.1) it suffices to prove the
following: if S is the spectrum of a discrete valuation ring with generic point η and
closed point 0, then spX/S(αη) = α0 if and only if spY/S(iη,∗αη) = i0,∗α0. This
is true because i0,∗ : Zr(X0) → Zr(Y0) is injective and because i0,∗spX/S(αη) =
spY/S(iη,∗αη) by Lemma 62.4.5. □

The following lemma will be strengthened in Lemma 62.6.12.

Lemma 62.6.6.0H55 Let f : X → S be a morphism of schemes. Assume S is locally
Noetherian and f locally of finite type. Let r ≥ 0. Let α and β be relative r-cycles
on X/S. The following are equivalent

(1) α = β, and
(2) αη = βη for any generic point η ∈ S of an irreducible component of S.

Proof. The implication (1) ⇒ (2) is immediate. Assume (2). For every s ∈ S we
can find an η as in (2) which specializes to s. By Properties, Lemma 28.5.10 we
can find a morphism g : S′ → S from the spectrum S′ of a discrete valuation ring
which maps the generic point η′ to η and maps the closed point 0 to s. Then αs
and βs are elements of Zr(Xs) which base change to the same element of Zr(X0′),
namely spXS′/S′(αη′) where αη′ is the base change of αη. Since the base change map
Zr(Xs)→ Zr(X0′) is injective as discussed in Section 62.3 we conclude αs = βs. □

Lemma 62.6.7.0H56 In the situation of Example 62.5.2 assume S is locally Noetherian
and F is flat over S in dimensions ≥ r (More on Flatness, Definition 38.20.10).
Then [F/X/S]r is a relative r-cycle on X/S.

Proof. By More on Flatness, Lemma 38.20.9 the hypothesis on F is preserved by
any base change. Also, formation of [F/X/S]r is compatible with any base change
by Lemma 62.5.3. Since the condition of being compatible with specializations
is checked after base change to the spectrum of a discrete valuation ring, this
reduces us to the case where S is the spectrum of a valuation ring. In this case
the set U = {x ∈ X | F flat at x over S} is open in X by More on Flatness,
Lemma 38.13.11. Since the complement of U in X has fibres of dimension < r over
S by assumption, we see that restriction along the inclusion U ⊂ X induces an
isomorphism on the groups of r-cycles on fibres after any base change, compatible
with specialization maps and with formation of the relative cycle associated to F .
Thus it suffices to show compability with specializations for [F|U/U/S]r. Since F|U
is flat over S, this follows from Lemma 62.4.1 and the definitions. □

Lemma 62.6.8.0H57 In the situation of Example 62.5.4 assume S is locally Noetherian
and Z is flat over S in dimensions ≥ r. Then [Z/X/S]r is a relative r-cycle on
X/S.

Proof. The assumption means that OZ is flat over S in dimensions ≥ r. Thus
applying Lemma 62.6.7 with F = (Z → X)∗OZ we conclude. □

Let S be a locally Noetherian scheme. Let f : X → S be a morphism which is of
finite type. Let r ≥ 0. Denote Hilb(X/S, r) the set of closed subschemes Z ⊂ X
such that Z → S is flat and of relative dimension ≤ r. By Lemma 62.6.8 for each
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Z ∈ Hilb(X/S, r) we have an element [Z/X/S]r ∈ z(X/S, r). Thus we obtain a
group homomorphism

(62.6.8.1)0H58 free abelian group on Hilb(X/S, r) −→ z(X/S, r)

sending
∑
ni[Zi] to

∑
ni[Zi/X/S]r. A key feature of relative r-cycles is that they

are locally (on X and S in suitable topologies) in the image of this map.

Lemma 62.6.9.0H59 Let f : X → S be a finite type morphism of schemes with S
Noetherian. Let r ≥ 0. Let α be a relative r-cycle on X/S. Then there is a
proper, completely decomposed (More on Morphisms, Definition 37.78.1) morphism
g : S′ → S such that g∗α is in the image of (62.6.8.1).

Proof. By Noetherian induction, we may assume the result holds for the pullback
of α by any closed immersion g : S′ → S which is not an isomorphism.

Let S1 ⊂ S be an irreducible component (viewed as an integral closed subscheme).
Let S2 ⊂ S be the closure of the complement of S′ (viewed as a reduced closed
subscheme). If S2 ̸= ∅, then the result holds for the pullback of α by S1 → S
and S2 → S. If g1 : S′

1 → S1 and g2 : S′
2 → S2 are the corresponding completely

decomposed proper morphisms, then S′ = S′
1⨿S′

2 → S is a completely decomposed
proper morphism and we see the result holds for S2 . Thus we may assume S′ → S
is bijective and we reduce to the case described in the next paragraph.

Assume S is integral. Let η ∈ S be the generic point and let K = κ(η) be the
function field of S. Then αη is an r-cycle on XK . Write αη =

∑
ni[Yi]. Taking the

closure of Yi we obtain integral closed subschemes Zi ⊂ X whose base change to
η is Yi. By generic flatness (for example Morphisms, Proposition 29.27.1), we see
that Zi is flat over a nonempty open U of S for each i. Applying More on Flatness,
Lemma 38.31.1 we can find a U -admissible blowing up g : S′ → S such that the
strict transform Z ′

i ⊂ XS′ of Zi is flat over S′. Then β =
∑
ni[Z ′

i/XS′/S′]r is in
the image of (62.6.8.1) and β = g∗α by Lemma 62.6.6.

However, this does not finish the proof as S′ → S may not be completely decom-
posed. This is easily fixed: denoting T ⊂ S the complement of U (viewed as a
closed subscheme), by Noetherian induction we can find a completely decomposed
proper morphism T ′ → T such that (T ′ → S)∗α is in the image of (62.6.8.1). Then
S′ ⨿ T ′ → S does the job. □

Lemma 62.6.10.0H5A Let f : X → S be a finite type morphism of schemes with S the
spectrum of a discrete valuation ring. Let r ≥ 0. Then (62.6.8.1) is surjective.

Proof. This of course follows from Lemma 62.6.9 but we can also see it directly as
follows. Say α is a relative r-cycle on X/S. Write αη =

∑
ni[Zi] (the sum is finite).

Denote Zi ⊂ X the closure of Zi as in Section 62.4. Then α =
∑
ni[Zi/X/S]. □

Lemma 62.6.11.0H5B Let f : X → S be a morphism of schemes. Let r ≥ 0. Assume S
locally Noetherian and f smooth of relative dimension r. Let α ∈ z(X/S, r). Then
the support of α is open and closed in X (see proof for a more precise result).

2Namely, any closed subscheme of S′
1 ×S X flat and of relative dimension ≤ r over S′

1 may
be viewed as a closed subscheme of S′ ×S X flat and of relative dimension ≤ r over S′.
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Proof. Let x ∈ X with image s ∈ S. Since f is smooth, there is a unique irreducible
component Z(x) of Xs which contains x. Then dim(Z(x)) = r. Let nx be the
coefficient of Z(x) in the cycle αs. We will show the function x 7→ nx is locally
constant on X.

Let g : S′ → S be a morphism of locally Noetherian schemes. Let X ′ be the base
change of X and let α′ = g∗α be the base change of α. Let x′ ∈ X ′ map to s′ ∈ S′,
x ∈ X, and s ∈ S. We claim nx′ = nx. Namely, since Z(x) is smooth over κ(s)
we see that Z(x) ×Spec(κ(s)) Spec(κ(s′)) is reduced. Since Z(x′) is an irreducible
component of this scheme, we see that the coefficient nx′ of Z(x′) in α′

s′ is the same
as the coefficient nx of Z(x) in αs by the definition of base change in Section 62.3
thereby proving the claim.

Since X is locally Noetherian, to show that x 7→ nx is locally constant, it suffices
to show: if x′ ⇝ x is a specialization in X, then nx′ = nx. Choose a morphism
S′ → X where S′ is the spectrum of a discrete valuation ring mapping the generic
point η to x′ and the closed point 0 to x. See Properties, Lemma 28.5.10. Then
the base change X ′ → S′ of f by S′ → S has a section σ : S′ → X ′ such that
σ(η) ⇝ σ(0) is a specialization of points of X ′ mapping to x′ ⇝ x in X. Thus we
reduce to the claim in the next paragraph.

Let S be the spectrum of a discrete valuation ring with generic point η and closed
point 0 and we have a section σ : S → X. Claim: nσ(η) = nσ(0). By the discussion
in More on Morphisms, Section 37.29 and especially More on Morphisms, Lemma
37.29.6 after replacing X by an open subscheme, we may assume the fibres of
X → S are connected. Since these fibres are smooth, they are irreducible. Then
we see that αη = n[Xη] with n = nσ(η) and the relation spX/S(αη) = α0 implies
α0 = n[X0], i.e., nσ(0) = n as desired. □

Lemma 62.6.12.0H5C Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r ≥ 0 and α, β ∈ z(X/S, r). The set
E = {s ∈ S : αs = βs} is closed in S.

Proof. The question is local on S, thus we may assume S is affine. Let X =
⋃
Ui

be an affine open covering. Let Ei = {s ∈ S : αs|Ui,s = βs|Ui,s}. Then E =
⋂
Ei.

Hence it suffices to prove the lemma for Ui → S and the restriction of α and β to
Ui. This reduces us to the case discussed in the next paragraph.

Assume X and S are quasi-compact. Set γ = α − β. Then E = {s ∈ S : γs = 0}.
By Lemma 62.6.8 there exists a jointly surjective finite family of proper morphisms
{gi : Si → S} such that g∗

i γ is in the image of (62.6.8.1). Observe that Ei = g−1
i (E)

is the set of point t ∈ Si such that (g∗
i γ)t = 0. If Ei is closed for all i, then

E =
⋃
gi(Ei) is closed as well. This reduces us to the case discussed in the next

paragraph.

Assume X and S are quasi-compact and γ =
∑
ni[Zi/X/S]r for a finite number

of closed subschemes Zi ⊂ X flat and of relative dimension ≤ r over S. Set
X ′ =

⋃
Zi (scheme theoretic union). Then i : X ′ → X is a closed immersion and

X ′ has relative dimension ≤ r over S. Also γ = i∗γ
′ where γ′ =

∑
ni[Zi/X ′/S]r.

Since clearly E = E′ = {s ∈ S : γ′
s = 0} we reduce to the case discussed in the

next paragraph.
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Assume X has relative dimension ≤ r over S. Let s ∈ S, s ̸∈ E. We will show
that there exists an open neighbourhood V ⊂ S of s such that E ∩ V is empty.
The assumption s ̸∈ E means there exists an integral closed subscheme Z ⊂ Xs of
dimension r such that the coefficient n of [Z] in γs is nonzero. Let x ∈ Z be the
generic point. Since dim(Z) = r we see that x is a generic point of an irreducible
component (namely Z) of Xs. Thus after replacing X by an open neighbourhood
of x, we may assume that Z is the only irreducible component of Xs. In particular,
we have γs = n[Z].
At this point we apply More on Morphisms, Lemma 37.47.1 and we obtain a diagram

X

��

X ′
g

oo

π

��

x_

��

x′�oo
_

��
Y

h

��

y_

��
S S s s

with all the properties listed there. Let γ′ = g∗γ be the flat pullback. Note that
E ⊂ E′ = {s ∈ S : γ′

s = 0} and that s ̸∈ E′ because the coefficient of Z ′ in γ′
s is

nonzero, where Z ′ ⊂ X ′
s is the closure of x′. Similarly, set γ′′ = π∗γ

′. Then we
have E′ ⊂ E′′ = {s ∈ S : γ′′

s = 0} and s ̸∈ E′′ because the coefficient of Z ′′ in γ′′
s

is nonzero, where Z ′′ ⊂ Ys is the closure of y. By Lemma 62.6.11 and openess of
Y → S we see that an open neighbourhood of s is disjoint from E′′ and the proof
is complete. □

Lemma 62.6.13.0H5D Let S = limi∈I Si be the limit of a directed inverse system of
Noetherian schemes with affine transition morphisms. Let 0 ∈ I and let X0 → S0
be a finite type morphism of schemes. For i ≥ 0 set Xi = Si ×S0 X0 and set
X = S ×S0 X0. If S is Noetherian too, then

z(X/S, r) = colimi≥0 z(Xi/Si, r)
where the transition maps are given by base change of relative r-cycles.

Proof. Suppose that i ≥ 0 and αi, βi ∈ z(Xi/Si, r) map to the same element of
z(X/S, r). Then S → Si maps into the closed subset E ⊂ Si of Lemma 62.6.12.
Hence for some j ≥ i the morphism Sj → Si maps into E, see Limits, Lemma
32.4.10. It follows that the base change of αi and βi to Sj agree. Thus the map is
injective.
Let α ∈ z(X/S, r). Applying Lemma 62.6.9 a completely decomposed proper mor-
phism g : S′ → S such that g∗α is in the image of (62.6.8.1). Set X ′ = S′ ×S X.
We write g∗α =

∑
na[Za/X ′/S′]r for some Za ⊂ X ′ closed subscheme flat and of

relative dimension ≤ r over S′.
Now we bring the machinery of Limits, Section 32.10 ff to bear. We can find an
i ≥ 0 such that there exist

(1) a completely decomposed proper morphism gi : S′
i → Si whose base

change to S is g : S′ → S,
(2) setting X ′

i = S′
i ×Si Xi closed subschemes Zai ⊂ X ′

i flat and of relative
dimension ≤ r over S′

i whose base change to S′ is Za.
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To do this one uses Limits, Lemmas 32.10.1, 32.8.5, 32.8.7, 32.13.1, and 32.18.1
and More on Morphisms, Lemma 37.78.5. Consider α′

i =
∑
na[Zai/X ′

i/S
′
i]r ∈

z(X ′
i/S

′
i, r). The image of α′

i in z(X ′/S′, r) agrees with the base change g∗α by
construction.

Set S′′
i = S′

i×Si S′
i and X ′′

i = S′′
i ×SiXi and set S′′ = S′×S S′ and X ′′ = S′′×SX.

We denote pr1,pr2 : S′′ → S′ and pr1,pr2 : S′′
i → S′

i the projections. The two
base changes pr∗

1α
′
i and pr∗

1α
′
i map to the same element of z(X ′′/S′′, r) because

pr∗
1g

∗α = pr∗
1g

∗α. Hence after increasing i we may assume that pr∗
1α

′
i = pr∗

1α
′
i by

the first paragraph of the proof. By Lemma 62.5.9 we obtain a unique family αi
of r-cycles on fibres of Xi/Si with g∗

i αi = α′
i (this uses that S′

i → Si is completely
decomposed). By Lemma 62.6.3 we see that αi ∈ z(Xi/Si, r). The uniqueness
in Lemma 62.5.9 implies that the image of αi in z(X/S, r) is α and the proof is
complete. □

Lemma 62.6.14.0H5E Let S be a locally Noetherian scheme. Let i : X → X ′ be a
thickening of schemes locally of finite type over S. Let r ≥ 0. Then i∗ : z(X/S, r)→
z(X ′/S, r) is a bijection.

Proof. Since is : Xs → X ′
s is a thickening it is clear that i∗ induces a bijection

between families of r-cycles on the fibres of X/S and families of r-cycles on the fibres
of X ′/S. Also, given a family α of r-cycles on the fibres of X/S α ∈ z(X/S, r) ⇔
i∗α ∈ z(X ′/S, r) by Lemma 62.6.5. The lemma follows. □

Lemma 62.6.15.0H5F Let S be a locally Noetherian scheme. Let X be a scheme locally
of finite type over S. Let r ≥ 0. Let U ⊂ X be an open such that X \U has relative
dimension < r over S, i.e., dim(Xs \Us) < r for all s ∈ S. Then restriction defines
a bijection z(X/S, r)→ z(U/S, r).

Proof. Since Zr(Xs)→ Zr(Us) is a bijection by the dimension assumption, we see
that restriction induces a bijection between families of r-cycles on the fibres of X/S
and families of r-cycles on the fibres of U/S. These restriction maps Zr(Xs) →
Zr(Us) are compatible with base change and with specializations, see Lemma 62.5.1
and 62.4.4. The lemma follows easily from this; details omitted. □

Lemma 62.6.16.0H5G Let g : S′ → S be a universal homeomorphism of locally Noether-
ian schemes which induces isomorphisms of residue fields. Let f : X → S be locally
of finite type. Set X ′ = S′ ×S X. Let r ≥ 0. Then base change by g determines a
bijection z(X/S, r)→ z(X ′/S′, r).

Proof. By Lemma 62.5.10 we have a bijection between the group of families of r-
cycles on fibres of X/S and the group of families of r-cycles on fibres of X ′/S′.
Say α is a families of r-cycles on fibres of X/S and α′ = g∗α is the base change.
If R is a discrete valuation ring, then any morphism h : Spec(R) → S factors
as g ◦ h′ for some unique morphism h′ : Spec(R) → S′. Namely, the morphism
S′ ×S Spec(R) → Spec(R) is a univeral homomorphism inducing bijections on
residue fields, and hence has a section (for example because R is a seminormal
ring, see Morphisms, Section 29.47). Thus the condition that α is compatible with
specializations (i.e., is a relative r-cycle) is equivalent to the condition that α′ is
compatible with specializations. □
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62.7. Equidimensional relative cycles

0H5H Here is the definition.

Definition 62.7.1.0H5I Let f : X → S be a morphism of schemes. Assume S is locally
Noetherian and f is locally of finite type. Let r ≥ 0 be an integer. We say a relative
r-cycle α on X/S equidimensional if the support of α (Remark 62.5.6) is contained
in a closed subset W ⊂ X whose relative dimension over S is ≤ r. The group of all
equidimensional relative r-cycles on X/S is denoted zequi(X/S, r).

Example 62.7.2.0H5J [SV00, Example
3.1.9]

There exist relative r-cycles which are not equidimensional. Namely,
let k be a field and let X = Spec(k[x, y, t]) over S = Spec(k[x, y]). Let s be a point
of S and denote a, b ∈ κ(s) the images of x and y. Consider the family α of 0-cycles
on X/S defined by

(1) αs = 0 if b = 0 and otherwise
(2) αs = [p] − [q] where p, resp. q is the κ(s)-rational point of Spec(κ(s)[t])

with t = a/b, resp. t = (a+ b2)/b.
We leave it to the reader to show that this is compatible with specializations; the
idea is that a/b and (a + b2)/b = a/b + b limit to the same point in P1 over the
residue field of any valuation v on κ(s) with v(b) > 0. On the other hand, the
closure of the support of α containes the whole fibre over (0, 0).

Lemma 62.7.3.0H5K Let f : X → S be a morphism of schemes. Assume S is locally
Noetherian and f is locally of finite type. Let r ≥ 0 be an integer. Let α be a
relative r-cycle on X/S. If α is equidimensional, then any restriction, base change,
or flat pullback of α is equidimensional.

Proof. Omitted. □

Lemma 62.7.4.0H5L Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r ≥ 0 be an integer. Let α be a relative
r-cycle on X/S. Then to check that α is equidimensional we may work Zariski
locally on X and S.

Proof. Namely, the condition that α is equidimensional just means that the closure
of the support of α has relative dimension ≤ r over S. Since taking closures
commutes with restriction to opens, the lemma follows (small detail omitted). □

Lemma 62.7.5.0H5M Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r ≥ 0 be an integer. Let α be a relative
r-cycle on X/S. Let {gi : Si → S} be an fppf covering. Then α is equidimensional
if and only if each base change g∗

i α is equidimensional.

Proof. If α is equidimensional, then each g∗
i α is too by Lemma 62.7.3. Assume each

g∗
i α is equidimensional. Denote W the closure of Supp(α) in X. Since gi : Si → S

is universally open (being flat and locally of finite presentation), so is the morphism
fi : Xi = Si ×S X → X. Denote αi = g∗

i α. We have Supp(αi) = f−1
i (Supp(α))

by Lemma 62.5.7. Since fi is open, we see that Wi = f−1
i (W ) is the closure of

Supp(αi). Hence by assumption the morphism Wi → Si has relative dimension
≤ r. By Morphisms, Lemma 29.28.3 (and the fact that the morphisms Si → S are
jointly surjective) we conclude that W → S has relative dimension ≤ r. □
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Lemma 62.7.6.0H5N Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r, e ≥ 0 be integers. Let α be a relative
r-cycle on X/S. Let {fi : Xi → X} be a jointly surjective family of flat morphisms,
locally of finite type, and of relative dimension e. Then α is equidimensional if and
only if each flat pullback f∗

i α is equidimensional.

Proof. Omitted. Hint: As in the proof of Lemma 62.7.5 one shows that the inverse
image by fi of the closure W of the support of α is the closure Wi of the support
of f∗

i α. Then W → S has relative dimension ≤ r holds if Wi → S has relative
dimension ≤ r + e for all i. □

Let S be a locally Noetherian scheme. Let f : X → S be a locally quasi-finite
morphism of schemes. Then we have z(X/S, 0) = zequi(X/S, 0) and z(X/S, r) = 0
for r > 0. Given α ∈ z(X/S, 0) let us define a map

wα : X −→ Z, x 7→ α(x)[κ(x) : κ(s)]i where s = f(x)

Here α(x) denotes the coefficient of x in the 0-cycle αs on the fibre Xs and [K : k]i
denotes the inseparable degree of a finite field extension. The following lemma
shows that this map is a weighting of f (More on Morphisms, Definition 37.75.2)
and that every weighting is of this form up to taking a multiple.

Lemma 62.7.7.0H5P Let S be a locally Noetherian scheme. Let f : X → S be a locally
quasi-finite morphism of schemes. Let α ∈ z(X/S, 0). The map wα : X → Z
constructed above is a weighting. Conversely, if X is quasi-compact, then given a
weighting w : X → Z there exists an integer n > 0 such that nw = wα for some
α ∈ z(X/S, 0). Finally, the integer n may be chosen to be a power of the prime p
if S is a scheme over Fp.

Proof. First, let us show that the construction is compatible with base change: if
g : S′ → S is a morphism of locally Noetherian schemes, then wg∗α = wα ◦g′ where
g′ : X ′ → X is the projection X ′ = S′ ×S X → X. Namely, let x′ ∈ X ′ with
images s′, s, x in S′, S,X. Then the coefficient of [x′] in the base change of [x] by
κ(s′)/κ(s) is the length of the local ring (κ(s′) ⊗κ(s) κ(x))q. Here q is the prime
ideal corresponding to x′. Thus compatibility with base change follows if

[κ(x) : κ(s)]i = length((κ(s′)⊗κ(s) κ(x))q)[κ(x′) : κ(s′)]i
Let k/κ(s′) be an algebraically closure. Choose a prime p ⊂ k⊗κ(s) κ(x) lying over
q. Suppose we can show that

[κ(x) : κ(s)]i = length((k⊗κ(s)κ(x))p) and [κ(x′) : κ(s′)]i = length((k⊗κ(s′)κ(x′))p)

Then we win because

length((κ(s′)⊗κ(s) κ(x))q)length((k ⊗κ(s′) κ(x′))p) = length((k ⊗κ(s) κ(x))p)

by Algebra, Lemma 10.52.13 and flatness of κ(s′) ⊗κ(s) κ(x) → k ⊗κ(s) κ(x). To
show the two equalities, it suffices to prove the first. Let κ(x)/κ/κ(s) be the subfield
constructed in Fields, Lemma 9.14.6. Then we see that

k ⊗κ(s) κ(x) =
∏

σ:κ→k
k ⊗σ,κ κ(x)

and each of the factors is local of degree [κ(x) : κ] = [κ(x) : κ(s)]i as desired.
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Let α ∈ z(X/S, 0) and choose a diagram

X

f

��

U
h
oo

π

��
Y V

goo

as in More on Morphisms, Definition 37.75.2. Denote β ∈ z(U/V, 0) the restriction
of the base change g∗α. By the compatibility with base change above we have
wβ = wα ◦h and it suffices to show that

∫
π
wβ is locally constant on V . Next, note

that (∫
π

wβ

)
(v) =

∑
u∈U,π(u)=v

β(u)[κ(u) : κ(v)]i[κ(u) : κ(v)]s

=
∑

u∈U,π(u)=v
β(u)[κ(u) : κ(v)]

This last expression is the coefficient of v in π∗β ∈ z(V/V, 0). By Lemma 62.6.11
this function is locally constand on V .

Conversely, let w : X → S be a weighting and X quasi-compact. Choose a suffi-
ciently divisible integer n. Let α be the family of 0-cycles on fibres of X/S such
that for s ∈ S we have

αs =
∑

f(x)=s

nw(x)
[κ(x) : κ(s)]i

[x]

as a zero cycle on Xs. This makes sense since the fibres of f are universally bounded
(Morphisms, Lemma 29.57.9) hence we can find n such that the right hand side is
an integer for all s ∈ S. The final statement of the lemma also follows, provided
we show α is a relative 0-cycle. To do this we have to show that α is compatible
with specializations along discrete valuation rings. By the first paragraph of the
proof our construction is compatible with base change (small detail omitted; it
is the “inverse” construction we are discussing here). Also, the base change of a
weighting is a weighting, see More on Morphisms, Lemma 37.75.3. Thus we reduce
to the problem studied in the next paragraph.

Assume S is the spectrum of a discrete valuation ring with generic point η and
closed point 0. Let w : X → S be a weighting with X quasi-finite over S. Let α be
the family of 0-cycles on fibres of X/S constructed in the previous paragraph (for
a suitable n). We have to show that spX/S(αη) = α0. Let β ∈ z(X/S, 0) be the
relative 0-cycle on X/S with βη = αη and β0 = spX/S(αη). Then w′ = wβ − nw :
X → Z is a weighting (using the result above) and zero in the points of X which
map to η. Now it is easy to see that a weighting which is zero on all points of X
mapping to η has to be zero; details omitted. Hence w′ = 0, i.e., wβ = nw, hence
α = β as desired. □

62.8. Effective relative cycles

0H5Q Here is the definition.

Definition 62.8.1.0H5R Let f : X → S be a morphism of schemes. Assume S is locally
Noetherian and f is locally of finite type. Let r ≥ 0 be an integer. We say a relative
r-cycle α on X/S effective if αs is an effective cycle (Chow Homology, Definition

https://stacks.math.columbia.edu/tag/0H5R


62.8. EFFECTIVE RELATIVE CYCLES 5090

42.8.4) for all s ∈ S. The monoid of all effective relative r-cycles on X/S is denoted
zeff (X/S, r).
Below we will show that an effective relative cycle is equidimensional, see Lemma
62.8.7.
Lemma 62.8.2.0H5S Let f : X → S be a morphism of schemes. Assume S is locally
Noetherian and f is locally of finite type. Let r ≥ 0 be an integer. Let α be a
relative r-cycle on X/S. If α is effective, then any restriction, base change, flat
pullback, or proper pushforward of α is effective.
Proof. Omitted. □

Lemma 62.8.3.0H5T Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r ≥ 0 be an integer. Let α be a relative
r-cycle on X/S. Then to check that α is effective we may work Zariski locally on
X and S.
Proof. Omitted. □

Lemma 62.8.4.0H5U Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r ≥ 0 be an integer. Let α be a relative
r-cycle on X/S. Let g : S′ → S be a surjective morphism. Then α is effective if
and only if the base change g∗α is effective.
Proof. Omitted. □

Lemma 62.8.5.0H5V Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r, e ≥ 0 be integers. Let α be a relative
r-cycle on X/S. Let {fi : Xi → X} be a jointly surjective family of flat morphisms,
locally of finite type, and of relative dimension e. Then α is effective if and only if
each flat pullback f∗

i α is effective.
Proof. Omitted. □

Lemma 62.8.6.0H5W Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r, e ≥ 0 be integers. Let α be a relative
r-cycle on X/S. If α is effective, then Supp(α) is closed in X.
Proof. Let g : S′ → S be the inclusion of an irreducible component viewed as an
integral closed subscheme. By Lemmas 62.8.2 and 62.5.7 it suffices to show that
the support of the base change g∗α is closed in S′ ×S S. Thus we may assume S is
an integral scheme with generic point η. We will show that Supp(α) is the closure
of Supp(αη). To do this, pick any s ∈ S. We can find a morphism g : S′ → S
where S′ is the spectrum of a discrete valuation ring mapping the generic point
η′ ∈ S′ to η and the closed point 0 ∈ S′ to s, see Properties, Lemma 28.5.10. Then
it suffices to prove that the support of g∗α is equal to the closure of Supp((gα)η′).
This reduces us to the case discussed in the next paragraph.
Here S is the spectrum of a discrete valuation ring with generic point η and closed
point 0. We have to show that Supp(α) is the closure of Supp(αη). Since α is
effective we may write αη =

∑
ni[Zi] with ni > 0 and Zi ⊂ Xη integral closed of

dimension r. Since α0 = spX/S(αη) we know that α0 =
∑
ni[Zi,0]r where Zi is

the closure of Zi. By Varieties, Lemma 33.19.2 we see that Zi,0 is equidimensional
of dimension r. Since ni > 0 we conclude that Supp(α0) is equal to the union of
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the Zi,0 which is the fibre over 0 of
⋃
Zi which in turn is the closure of

⋃
Zi as

desired. □

Lemma 62.8.7.0H5X Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r, e ≥ 0 be integers. Let α be a relative
r-cycle on X/S. If α is effective, then α is equidimensional.

Proof. Assume α is effective. By Lemma 62.8.6 the support Supp(α) is closed in
X. Thus α is equidimensional as the fibres of Supp(α)→ S are the supports of the
cycles αs and hence have dimension r. □

Remark 62.8.8.0H5Y Let f : X → S be a morphism of schemes with S locally Noetherian
and f locally of finite type. We can ask if the contravariant functor

schemes S′ locally
of finite type over S −→ zeff (X ′/S′, r) where X ′ = S′ ×S X

is representable. Since z(X ′/S′, r) = z(X ′
red/S

′
red, r) this cannot be true (we leave

it to the reader to make an actual counter example). A better question would be if
we can find a subcategory of the left hand side on which the functor is representable.
Lemma 62.6.16 suggests we should restrict at least to the category of seminormal
schemes over S.

If S/ Spec(Q) is Nagata and f is a projective morphism, then it turns out that
S′ 7→ zeff (X ′/S′, r) is representable on the category of seminormal S′. Roughly
speaking this is the content of [Kol96, Theorem 3.21].

If S has points of positive characteristic, then this no longer works even if we replace
seminormality with weak normality; a locally Noetherian scheme T is weakly normal
if any birational universal homeomorphism T ′ → T has a section. An example is
to consider 0-cycles of degree 2 on X = A2

k over S = Spec(k) where k is a field of
characteristic 2. Namely, over W = X ×S X we have a canonical relative 0-cycle
α ∈ zeff (XW /W, 0): for w = (x1, x2) ∈W = X2 we have the cycle αw = [x1]+[x2].
This cycle is invariant under the involution σ : W →W switching the factors. Since
W is smooth (hence normal, hence weakly normal), if z(−/−, r) was representable
by M on the category of weakly normal schemes of finite type over k we would get a
σ-invariant morphism fromW toM . This in turn would define a morphism from the
quotient scheme Sym2

S(X) = W/⟨σ⟩ to M . Since Sym2
S(X) is normal, we would by

the moduli property of M obtain a relative 0-cycle β on X ×S Sym2
S(X)/Sym2

S(X)
whose pullback to W is α. However, there is no such cycle β. Namely, writing
X = Spec(k[u, v]) the scheme Sym2

S(X) is the spectrum of

k[u1 + u2, u1u2, v1 + v2, v1v2, u1v1 + u2v2] ⊂ k[u1, u2, v1, v2]

The image of the diagonal u1 = u2, v1 = v2 in Sym2
S(X) is the closed subscheme

V = Spec(k[u2
1, v

2
1 ]); here we use that the characteristic of k is 2. Looking at the

generic point η of V , the cycle βη would be a zero cycle of degree 2 on A2
k(u2

1,v
2
1)

whose pullback to A2
k(u1,u2) whould be 2[the point with coordinates(u1, v2)]. This

is clearly impossible.

The discussion above does not contradict [Kol96, Theorem 4.13] as the Chow variety
in that theorem only coarsely represents a functor (in fact 2 distinct functors,
only one of which agrees with ours for projective X as one can see with some
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work). Similarly, in [SV00, Section 4.4] it is shown that for projective X/S the h-
sheafification of the presheaf S′ 7→ zeff (S′×SX/S′, r) is equal to the h-sheafification
of a representable functor.

Remark 62.8.9.0H5Z Let f : X → S be a morphism of schemes. Let r ≥ 0. Let Z ⊂ X
be a closed subscheme. Assume

(1) S is Noetherian and geometrically unibranch,
(2) f is of finite type, and
(3) Z → S has relative dimension ≤ r.

Then for all sufficiently divisible integers n ≥ 1 there exists a unique effective
relative r-cycle α on X/S such that αη = n[Zη]r for every generic point η of S.
This is a reformulation of [SV00, Theorem 3.4.2]. If we ever need this result, we
will precisely state and prove it here.

62.9. Proper relative cycles

0H60 In our setting, the following is probably the correct definition.

Definition 62.9.1.0H61 Let f : X → S be a morphism of schemes. Assume S is locally
Noetherian and f is locally of finite type. Let r ≥ 0 be an integer. We say a
relative r-cycle α on X/S is a proper relative cycle if the support of α (Remark
62.5.6) is contained in a closed subset W ⊂ X proper over S (Cohomology of
Schemes, Definition 30.26.2). The group of all proper relative r-cycles on X/S is
denoted c(X/S, r).

By Cohomology of Schemes, Lemma 30.26.3 this just means that the closure of the
support is proper over the base. To see that these form a group, use Cohomology
of Schemes, Lemma 30.26.6.

Lemma 62.9.2.0H62 Let f : X → S be a morphism of schemes. Assume S is locally
Noetherian and f is locally of finite type. Let r ≥ 0 be an integer. Let α be a
relative r-cycle on X/S. If α is proper, then any base change α is proper.

Proof. Omitted. □

Lemma 62.9.3.0H63 Let f : X → S be a morphism of schemes. Assume S locally
Noetherian and f locally of finite type. Let r ≥ 0 be an integer. Let α be a relative
r-cycle on X/S. Let {gi : Si → S} be a h covering. Then α is proper if and only if
each base change g∗

i α is proper.

Proof. If α is proper, then each g∗
i α is too by Lemma 62.9.2. Assume each g∗

i α
is proper. To prove that α is proper, it clearly suffices to work affine locally on
S. Thus we may and do assume that S is affine. Then we can refine our covering
{Si → S} by a family {Tj → S} where g : T → S is a proper surjective morphism
and T =

⋃
Tj is an open covering. It follows that β = g∗α is proper on Y = T×SX

over T . By Lemma 62.5.7 we find that the support of β is the inverse image of
the support of α by the morphism f : Y → X. Hence the closure W ⊂ Y of
f−1Supp(α) is proper over T . Since the morphism T → S is proper, it follows
that W is proper over S. Then by Cohomology of Schemes, Lemma 30.26.5 the
image f(W ) ⊂ X is a closed subset proper over S. Since f(W ) contains Supp(α)
we conclude α is proper. □
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62.10. Proper and equidimensional relative cycles

0H64 Let f : X → S be a morphism of schemes. Assume S is locally Noetherian and f is
locally of finite type. Let r ≥ 0 be an integer. We say a relative r-cycle α on X/S is
a proper and equidimensional relative cycle if α is both equidimensional (Definition
62.7.1) and proper (Definition 62.9.1). The group of all proper, equidimensional
relative r-cycles on X/S is denoted cequi(X/S, r).
Similarly we say a relative r-cycle α on X/S is a proper and effective relative cycle
if α is both effective (Definition 62.8.1) and proper (Definition 62.9.1). The monoid
of all proper, effective relative r-cycles on X/S is denoted ceff (X/S, r). Observe
that these are equidimensional by Lemma 62.8.7.
Thus we have the following diagram of inclusion maps

ceff (X/S, r) //

��

cequi(X/S, r) //

��

c(X/S, r)

��
zeff (X/S, r) // zequi(X/S, r) // z(X/S, r)

62.11. Action on cycles

0H65 Let S be a locally Noetherian, universally catenary scheme endowed with a dimen-
sion function δ, see Chow Homology, Section 42.7. Let X → Y be a morphism of
schemes over S, both locally of finite type over S. Let r ≥ 0. Finally, let α be a
family of r-cycles on fibres of X/Y . For e ∈ Z we will construct an operation

α ∩ − : Ze(Y ) −→ Zr+e(X)
Namely, given β ∈ Ze(Y ) write β =

∑
ni[Zi] where Zi ⊂ Y is an integral closed

subscheme of δ-dimension e and the family Zi is locally finite in the scheme Y . Let
yi ∈ Zi be the generic point. Write αyi =

∑
mij [Vij ]. Thus Vij ⊂ Xyi is an integral

closed subscheme of dimension r and the family Vij is locally finite in the scheme
Xyi . Then we set

α ∩ β =
∑

nimij [V ij ] ∈ Zr+e(X)

Here V ij ⊂ X is the scheme theoretic image of the morphism Vij → Xyi → X

or equivalently, V ij ⊂ X is an integral closed subscheme mapping dominantly to
Zi ⊂ Y whose generic fibre is Vij . It follows readily that dimδ(V ij) = r+e and that
the family of closed subschemes V ij ⊂ X is locally finite (we omit the verifications).
Hence α ∩ β is indeed an element of Zr+e(X).

Lemma 62.11.1.0H66 The construction above is bilinear, i.e., we have (α1 + α2) ∩ β =
α1 ∩ β + α2 ∩ β and α ∩ (β1 + β2) = α ∩ β1 + α ∩ β2.

Proof. Omitted. □

Lemma 62.11.2.0H67 If U ⊂ X and V ⊂ Y are open and f(U) ⊂ V , then (α ∩ β)|U is
equal to α|U ∩ β|V .

Proof. Immediate from the explict description of α ∩ β given above. □

Lemma 62.11.3.0H68 Forming α∩β is compatible with flat base change and flat pullback
(see proof for elucidation).

https://stacks.math.columbia.edu/tag/0H66
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Proof. Let (S, δ), (S′, δ′), g : S′ → S, and c ∈ Z be as in Chow Homology, Situation
42.67.1. Let X → Y be a morphism of schemes locally of finite type over S. Denote
X ′ → Y ′ the base change of X → Y by g. Let α be a family of r-cycles on the
fibres of X/Y . Let β ∈ Ze(Y ). Denote α′ the base change of α by Y ′ → Y . Denote
β′ = g∗β ∈ Ze+c(Y ′) the pullback of β by g, see Chow Homology, Section 42.67.
Compatibility with base change means α′ ∩ β′ is the base change of α ∩ β.

Proof of compatibility with base change. Since we are proving an equality of cycles
on X ′, we may work locally on Y , see Lemma 62.11.2. Thus we may assume Y is
affine. In particular β is a finite linear combination of prime cycles. Since − ∩ −
is linear in the second variable (Lemma 62.11.1), it suffices to prove the equality
when β = [Z] for some integral closed subscheme Z ⊂ Y of δ-dimension e.

Let y ∈ Z be the generic point. Write αy =
∑
mj [Vj ]. Let V j be the closure of Vj

in X. Then we have
α ∩ β =

∑
mj [V j ]

The base change of β is β′ =
∑

[Z ×S S′]e+c as a cycle on Y ′ = Y ×S S′. Let
Z ′
a ⊂ Z ×S S′ be the irreducible components, denote y′

a ∈ Z ′
a their generic points,

and denote na the multiplicity of Z ′
a in Z ×S S′. We have

β′ =
∑

[Z ×S S′]e+c =
∑

na[Z ′
a]

We have α′
y′
a

=
∑
mj [Vj,κ(y′

a)]r because α′ is the base change of α by Y ′ → Y . Let
V ′
jab ⊂ Vj,κ(y′

a) be the irreducible components and denote mjab the multiplicity of
V ′
jab in Vj,κ(y′

a). We have

α′
y′
a

=
∑

mj [Vj,κ(y′
a)]r =

∑
mjmjab[V ′

jab]

Thus we we have
α′ ∩ β′ =

∑
namjmjab[V

′
jab]

where V ′
jab is the closure of V ′

jab in X ′. Thus to prove the desired equality it suffices
to prove

(1) the irreducible components of V j ×S S′ are the schemes V ′
jab and

(2) the multiplicity of V ′
jab in V j ×S S′ is equal to namjab.

Note that Vj → V j is a birational morphism of integral schemes. The morphisms
Vj ×S S′ → Vj and V j ×S S′ → V j are flat and hence map generic points of
irreducible components to the (unique) generic points of Vj and V j . It follows
that Vj ×S S′ → V j ×S S′ is a birational morphisms hence induces a bijection
on irreducible components and identifies their multiplicities. This means that it
suffices to prove that the irreducible components of Vj ×S S′ are the schemes V ′

jab

and the multiplicity of V ′
jab in Vj ×S S′ is equal to namjab. However, then we are

just saying that the diagram

Zr(Vj) // Zr+c(Vj ×S S′)

Z0(Spec(κ(y))) //

OO

Zc(Spec(κ(y))×S S′)

OO
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is commutative where the horizontal arrows are base change by Spec(κ(y))×S S′ →
Spec(κ(y)) and the vertical arrows are flat pullback. This was shown in Chow
Homology, Lemma 42.67.5.

The statement in the lemma on flat pullback means the following. Let (S, δ),
X → Y , α, and β be as in the constuction of α ∩ β above. Let Y ′ → Y be a flat
morphism, locally of finite type, and of relative dimension c. Then we can let α′ be
the base change of α by Y ′ → Y and β′ the flat pullback of β. Compatibility with
flat pullback means α′ ∩ β′ is the flat pullback of α ∩ β by X ×Y Y ′ → Y . This is
actually a special case of the discussion above if we set S = Y and S′ = Y ′. □

Lemma 62.11.4.0H69 Let (S, δ) and f : X → Y be as above. Let F be a coherent OX -
module with dim(Supp(Fy)) ≤ r for all y ∈ Y . Let G be a coherent OY -module
with dimδ(Supp(G)) ≤ e. Set α = [F/X/Y ]r (Example 62.5.2) and β = [G]e (Chow
Homology, Definition 42.10.2). If F is flat over Y , then α ∩ β = [F ⊗OX

f∗G]r+e.

Proof. Observe that

Supp(F ⊗OX
f∗G) = Supp(F) ∩ f−1Supp(G) =

⋃
y∈Supp(G)

Supp(Fy)

It follows that this is a closed subset of δ-dimension ≤ r+e. Whence the expression
[F ⊗OX

f∗G]r+e makes sense.

We will use the notation β =
∑
ni[Zi], yi ∈ Zi, αyi =

∑
mij [Vij ], and V ij in-

troduced in the construction of α ∩ β. Since β = [G]e we see that the Zi are the
irreducible components of Supp(G) which have δ-dimension e. Similarly, the Vij are
the irreducible components of Supp(Fyi) having dimension r. It follows from this
and the equation in the first paragraph that V ij are the irreducible components
of Supp(F ⊗OX

f∗G) having δ-dimension r + e. Thus to prove the lemma it now
suffices to show that

lengthOX,ξij
((F ⊗OX

f∗G)ξij ) = lengthOXyi
,ξij

((Fyi)ξij ) · lengthOY,yi
(Gyi)

By the first paragraph of the proof the left hand side is equal to the lenth of the
B = OX,ξij -module

Gyi ⊗OY,yi
Fξij = M ⊗A N

Here M = Gyi is a finite length A = OY,yi-module and N = Fξij is a finite B-
module such that N/mAN has finite length. Since F is flat over Y the module N
is A-flat. The right hand side of the formula is equal to

lengthB(N/mAN) · lengthA(M)

Thus the right and left hand side of the formula are additive in M (use flatness of
N over A). Thus it suffices to prove the formula with M = κA is the residue field
in which case it is immediate. □

Lemma 62.11.5.0H6A Let (S, δ) and f : X → Y be as above. Let Z ⊂ X be a closed
subscheme of relative dimension ≤ r over Y . Set α = [Z/X/Y ]r (Example 62.5.4).
Let W ⊂ Y be a closed subscheme of δ-dimension ≤ e. Set β = [W ]e (Chow
Homology, Definition 42.9.2). If Z is flat over Y , then α ∩ β = [Z ×Y W ]r+e.

Proof. This is a special case of Lemma 62.11.4 if we take F = OZ and F = OW . □

https://stacks.math.columbia.edu/tag/0H69
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Lemma 62.11.6.0H6B Let (S, δ) be as above. Let

X ′
f
//

��

X

��
Y ′ g // Y

be a cartesian diagram of schemes locally of finite type over S with g proper. Let
r, e ≥ 0. Let α be a family of r-cycles on the fibres of X/Y . Let β′ ∈ Ze(Y ′). Then
we have f∗(g∗α ∩ β′) = α ∩ g∗β

′.

Proof. Since we are proving an equality of cycles on X, we may work locally on Y ,
see Lemma 62.11.2. Thus we may assume Y is affine. Thus Y ′ is quasi-compact. In
particular β′ is a finite linear combination of prime cycles. Since −∩− is linear in
the second variable (Lemma 62.11.1), it suffices to prove the equality when β′ = [Z ′]
for some integral closed subscheme Z ′ ⊂ Y ′ of δ-dimension e. Set Z = g(Z ′). This
is an integral closed subscheme of Y of δ-dimension ≤ e. For simplicity we are going
to assume Z has δ-dimension equal to e and leave the other case (which is easier)
to the reader. Let y ∈ Z and y′ ∈ Z ′ be the generic points. Write αy =

∑
mj [Vj ]

with Vj ⊂ Xy integral closed subschemes of dimension r.
Assume first g is a closed immersion. Then g∗β

′ = [Z] and (g∗α)y′ =
∑
nj [Vj ];

this makes sense because Vj is contained in the closed subscheme X ′
y′ of Xy. Thus

in this case the equality is obvious: in both cases we obtain
∑
mj [V j ] where V j is

the closure of Vj in the closed subscheme X ′ ⊂ X.
Back to the general case with β′ = [Z ′] as above. Set W = Z ×X Y and W ′ =
Z ′ ×X′ Y ′. Consider the cartesian squares

W //

��

X

��
Z // Y

W ′ //

��

X ′

��
Z ′ // Y ′

W ′ //

��

W

��
Z ′ // Z

Since we know the result for the first two squares with by the previous paragraph,
a formal argument shows that it suffices to prove the result for the last square and
the element β′ = [Z ′] ∈ Ze(Z ′). This reduces us to the case discussed in the next
paragraph.
Assume Y ′ → Y is a generically finite morphism of integral schemes of δ-dimension
e and β′ = [Y ′]. In this case both f∗(g∗α ∩ β′) and α ∩ g∗β

′ are cycles which can
be written as a sum of prime cycles dominant over Y . Thus we may replace Y by a
nonempty open subscheme in order to check the equality. After such a replacement
we may assume g is finite and flat, say of degree d ≥ 1. Of course, this means that
g∗β

′ = g∗[Y ′] = d[Y ]. Also β′ = [Y ′] = g∗[Y ]. Hence
f∗(g∗α ∩ β′) = f∗(g∗α ∩ g∗[Y ]) = f∗f

∗(α ∩ [Y ]) = d(α ∩ [Y ]) = α ∩ g∗β
′)

as desired. The second equality is Lemma 62.11.3 and the third equality is Chow
Homology, Lemma 42.15.2. □

62.12. Action on chow groups

0H6C When α is a relative r-cycle, the operation α ∩ − of Section 62.11 factors through
rational equivalence and defines a bivariant class.

https://stacks.math.columbia.edu/tag/0H6B
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Lemma 62.12.1.0H6D Let (S, δ) be as in Section 62.11. Let f : X ′ → X be a proper
morphism of schemes locally of finite type over S. Let (L, s, i : D → X) be as in
Chow Homology, Definition 42.29.1. Form the diagram

D′

g

��

i′
// X ′

f

��
D

i // X

as in Chow Homology, Remark 42.29.7. If L|D ∼= OD, then i∗f∗α
′ = g∗(i′)∗α′ in

Zk(D) for any α′ ∈ Zk+1(X ′).
Proof. The statement makes sense as all operations are defined on the level of
cycles, see Chow Homology, Remark 42.29.6 for the gysin maps. Suppose α = [W ′]
for some integral closed subscheme W ′ ⊂ X ′. Let W = f(W ′) ⊂ X. In case
W ′ ̸⊂ D′, then W ̸⊂ D and we see that

[W ′ ∩D′]k = divL′|W ′ (s′|W ′) and [W ∩D]k = divL|W (s|W )
and hence f∗ of the first cycle equals the second cycle by Chow Homology, Lemma
42.26.3. Hence the equality holds as cycles. In case W ′ ⊂ D′, then W ⊂ D and
both sides are zero by construction. □

Lemma 62.12.2.0H6E Let (S, δ) be as in Section 62.11. Let X → Y be a morphism of
schemes locally of finite type over S. Let r ≥ 0 and let α ∈ z(X/Y, r) be a relative
r-cycle on X/Y . Let (L, s, i : D → Y ) be as in Chow Homology, Definition 42.29.1.
Form the cartesian diagram

E

��

j
// X

��
D

i // Y

See Chow Homology, Remark 42.29.7. If L|D ∼= OD, then for e ∈ Z the diagram

Ze(D)
i∗α∩−

// Ze+r(E)

Ze+1(Y )

i∗

OO

α∩− // Zr+e+1(X)

j∗

OO

commutes where the vertical arrows i∗ and j∗ are the gysin maps on cycles as in
Chow Homology, Remark 42.29.6.
Proof. Preliminary remark. Suppose that g : Y ′ → Y is an envelope (Chow
Homology, Definition 42.22.1). Denote D′, i′, E′, j′, X ′, α′ the base changes of
D, i, E, j,X, α by g and denote f : X ′ → X the projection. Assume the lemma
holds for D′, i′, E′, j′, X ′, Y ′, α′. Then, if β′ ∈ Ze+1(Y ′), we have

i∗α ∩ i∗g∗β
′ = i∗α ∩ f∗(i′)∗β′

= f∗(f∗i∗α ∩ (i′)∗β′)
= f∗((i′)∗α′ ∩ (i′)∗β′)
= f∗((j′)∗(α′ ∩ β′))
= j∗(f∗(f∗α ∩ β′))
= j∗(α ∩ g∗β

′)

https://stacks.math.columbia.edu/tag/0H6D
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Here the first equality is Lemma 62.12.1, the second equality is Lemma 62.11.6, the
third equality is the definition of α′, the fourth equality is the assumption that our
lemma holds for D′, i′, E′, j′, X ′, α′, the fifth equality is Lemma 62.12.1, and the
sixth equality is Lemma 62.11.6. Thus we see that our lemma holds for the image
of g∗ : Ze+1(Y ′)→ Ze(Y ). However, since g is completely decomposed this map is
surjective and we conclude the lemma holds for D, i, E, j,X, Y, α.
Let β ∈ Ze+1(Y ). We have to show that (D → Y )∗α∩ i∗β = j∗(α∩β) as cycles on
E. This question is local on E hence we can replace X and Y by open subschemes.
(This uses that formation of the operators i∗, j∗, α ∩ − and (D → Y )∗α ∩ −
commute with localization. This is obvious for the gysin maps and follows from
Lemma 62.11.2 for the others.) Thus we may assume that X and Y are affine and
we reduce to the case discussed in the next paragraph.
Assume X and Y are quasi-compact. By the first paragraph of the proof and
Lemma 62.6.9 we may in addition assume that α is in the image of (62.6.8.1). By
linearity of the operations in question, we may assume that α = [Z/X/Y ]r for some
closed subscheme Z ⊂ X which is flat and of relative dimension ≤ r over Y . Also,
as Y is quasi-compact, the cycle β is a finite linear combination of prime cycles.
Since the operations in question are linear, it suffices to prove the equality when
β = [W ] for some integral closed subscheme W ⊂ Y of δ-dimension e+ 1.
If W ⊂ D, then on the one hand i∗[W ] = 0 and on the other hand α ∩ [W ] is
supported on E so also j∗(α ∩ [W ]) = 0. Thus the equality holds in this case.
Say W ̸⊂ D. Then i∗[W ] = [D∩W ]e. Note that the pullback i∗α of α = [Z/X/Y ]r
by i is [(E∩Z)/E/D]r and that (E∩Z) = E×Y Z = D×Y Z is flat over D. Hence
by Lemma 62.11.5 used twice we have
i∗α ∩ i∗[W ] = [(E ∩ Z)×D (D ∩W )]r+e = [E ∩ (Z ×Y W )]r+e = j∗(α ∩ [W ])

as desired. □

Proposition 62.12.3.0H6F Let (S, δ) be as in Section 62.11. Let X → Y be a morphism
of schemes locally of finite type over S. Let r ≥ 0 and let α ∈ z(X/Y, r) be a
relative r-cycle on X/Y . The rule that to every morphism g : Y ′ → Y locally of
finite type and every e ∈ Z associates the operation

g∗α ∩ − : Ze(Y ′)→ Zr+e(X ′)
where X ′ = Y ′×Y X factors through rational equivalence to define a bivariant class
c(α) ∈ A−r(X → Y ).

Proof. The operation factors through rational equivalence by Lemma 62.12.2 and
Chow Homology, Lemma 42.35.1. The resulting operation on chow groups is a
bivariant class by Chow Homology, Lemma 42.35.2 and Lemmas 62.11.6, 62.11.3,
and 62.12.2. □

Remark 62.12.4.0H6G Let (S, δ) be as in Section 62.11. Let X → Y be a morphism
of schemes locally of finite type over S. Let r ≥ 0. Let c be a rule that to every
morphism g : Y ′ → Y locally of finite type and every e ∈ Z associates an operation

c ∩ − : Ze(Y ′)→ Zr+e(X ′)
compatible with proper pushforward, flat pullback, and gysin maps as in Lemma
62.12.2. Then we claim there is a relative r-cycle α on X/Y such that c∩ = g∗α∩−

https://stacks.math.columbia.edu/tag/0H6F
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for every g as above. If we ever need this, we will carefully state and prove this
here.

62.13. Composition of families of cycles on fibres

0H6H Let X → Y → S be morphisms of schemes, both locally of finite type. Let r, e ≥ 0.
Let α be a family of r-cycles on fibres of X/Y and let β be a family of e-cycles on
fibres of Y/S. Then we obtain a family of of (r + e)-cycles α ◦ β on the fibres of
X/S by setting

(α ◦ β)s = (Ys → Y )∗α ∩ βs
More precisely, the expression (Ys → Y )∗α denotes the base change of α by Ys → Y
to a family of r-cycles on the fibres of Xs/Ys and the operation −∩− was defined
and studied in Section 62.113.
Lemma 62.13.1.0H6I The construction above is bilinear, i.e., we have (α1 +α2) ◦ βα1 ◦
β + α1 ◦ β and α ◦ (β1 + β2) = α ◦ β1 + α ◦ β2.
Proof. Omitted. Hint: on fibres the construction is bilinear by Lemma 62.11.1. □

Lemma 62.13.2.0H6J If U ⊂ X and V ⊂ Y are open and f(U) ⊂ V , then (α ◦ β)|U is
equal to α|U ◦ β|V .
Proof. Omitted. Hint: on fibres use Lemma 62.11.2. □

Lemma 62.13.3.0H6K The formation of α ◦ β is compatible with base change.
Proof. Let g : S′ → S be a morphism of schemes. Denote X ′ → Y ′ the base change
of X → Y by g. Denote α′ the base change of α with respect to Y ′ → Y . Denote
β′ the base change of β with respect to S′ → S. The assertion means that α′ ◦ β′

is the base change of α ◦ β by g : S′ → S.
Let s′ ∈ S′ be a point with image s ∈ S. Then

(α′ ◦ β′)s′ = (Y ′
s′ → Y ′)∗α′ ∩ β′

s′

We observe that
(Y ′
s′ → Y ′)∗α′ = (Y ′

s′ → Y ′)∗(Y ′ → Y )∗α = (Y ′
s′ → Ys)∗(Ys → Y )∗α

and that β′
s′ is the base change of βs by s′ = Spec(κ(s′))→ Spec(κ(s)) = s. Hence

the result follows from Lemma 62.11.3 applied to (Ys → Y )∗α, βs, Xs → Ys → s,
and base change by s′ → s. □

Lemma 62.13.4.0H6L Let f : X → Y and Y → S be morphisms of schemes, both locally
of finite type. Let r, e ≥ 0. Let F be a quasi-coherentOX -module of finite type, with
dim(Supp(Fy)) ≤ r for all y ∈ Y . Let G be a quasi-coherent OY -module of finite
type, with dim(Supp(Gs)) ≤ e for all s ∈ S. If α = [F/X/Y ]r and β = [G/Y/S]e
(Example 62.5.2) and F is flat over Y , then α ◦ β = [F ⊗OX

f∗G/X/S]r+e.
Proof. First we observe that F ⊗OX

f∗G is a quasi-coherent OX -module of finite
type. Let s ∈ S. Observe that

(F ⊗OX
f∗G)s = Fs ⊗OXs

f∗
s Gs

by right exactness of tensor products. Moreover Fs is flat over Ys as a base change
of a flat module. Thus the equality (α ◦ β)s = [(F ⊗OX

f∗G)s]r+e follows from
Lemma 62.11.4. □

3To be sure, we use s = Spec(κ(s)) as the base scheme with δ(s) = 0.
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Lemma 62.13.5.0H6M Let f : X → Y and Y → S be morphisms of schemes, both locally
of finite type. Let r, e ≥ 0. Let Z ⊂ X be a closed subscheme of relative dimension
≤ r over Y . Let W ⊂ Y be a closed subscheme of relative dimension ≤ e over S.
If α = [Z/X/Y ]r and β = [W/Y/S]e (Example 62.5.4) and Z is flat over Y , then
α ◦ β = [Z ×Y W/X/S]r+e.

Proof. This is a special case of Lemma 62.13.4 if we take F = OZ and F = OW . □

Lemma 62.13.6.0H6N Let S be a scheme. Let

X ′
f
//

��

X

��
Y ′ g // Y

be a cartesian diagram of schemes locally of finite type over S with g proper. Let
r, e ≥ 0. Let α be a family of r-cycles on the fibres of X/Y . Let β′ be a family of
e-cycles on the fibres of Y ′/S. Then we have f∗(g∗(α) ◦ β′) = α ◦ g∗β

′.

Proof. Unwinding the definitions, this follows from Lemma 62.11.6. □

Lemma 62.13.7.0H6P Let (S, δ) be as in Chow Homology, Situation 42.7.1. Let X →
Y → Z be morphisms of schemes locally of finite type over S. Let r, s, e ≥ 0. Then

(α ◦ β) ∩ γ = α ∩ (β ∩ γ) in Zr+s+e(X)
where α is a family of r-cycles on fibres of X/Y , β is a family of s-cycles on fibres
of Y/Z, and γ ∈ Ze(Z).

Proof. Since we are proving an equality of cycles on X, we may work locally on
Z, see Lemma 62.11.2. Thus we may assume Z is affine. In particular γ is a finite
linear combination of prime cycles. Since − ∩ − is linear in the second variable
(Lemma 62.11.1), it suffices to prove the equality when γ = [W ] for some integral
closed subscheme W ⊂ Z of δ-dimension e.
Let z ∈W be the generic point. Write βz =

∑
mj [Vj ] in Zs(Yz). Then β∩γ is equal

to
∑
mj [V j ] where V j ⊂ Y is an integral closed subscheme mapped by Y → Z

into W with generic fibre Vj . Let yj ∈ Vj be the generic point. We may and do
view also as the generic point of V j (mapping to z in W ). Write αyj =

∑
njk[Wjk]

in Zr(Xyj ). Then α ∩ (β ∩ γ) is equal to∑
mjnjk[W jk]

where W jk ⊂ X is an integral closed subscheme mapped by X → Y into V j with
generic fibre Wjk.
On the other hand, let us consider

(α ◦ β)z = (Yz → Y )∗α ∩ βz = (Yz → Y )∗α ∩ (
∑

mj [Vj ])

By the construction of − ∩− this is equal to the cycle∑
mjnjk[(W jk)z]

on Xz. Thus by definition we obtain

(α ◦ β) ∩ [W ] =
∑

mjnjk[W̃jk]

https://stacks.math.columbia.edu/tag/0H6M
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where W̃jk ⊂ X is an integral closed subscheme which is mapped by X → Z into
W with generic fibre (W jk)z. Clearly, we must have W̃jk = W jk and the proof is
complete. □

62.14. Composition of relative cycles

0H6Q Let S be a locally Noetherian scheme. Let X → Y be a morphism of schemes
locally of finite type over S. We are going to define a map

z(X/Y, r)⊗Z z(Y/S, e) −→ z(X/S, r + e), α⊗ β 7−→ α ◦ β

using the construction in Section 62.13. We already know the construction is bi-
linear (Lemma 62.13.1) hence we obtain the displayed arrow once we show the
following.

Lemma 62.14.1.0H6R If α and β are relative cycles, then so is α ◦ β.

Proof. The formation of α ◦ β is compatible with base change by Lemma 62.13.3.
Thus we may assume S is the spectrum of a discrete valuation ring with generic
point η and closed point 0 and we have to show that spX/S((α ◦ β)η) = (α ◦ β)0.
Since we are trying to prove an equality of cycles, we may work locally on Y and X
(this uses Lemmas 62.13.2 and 62.4.4 to see that the constructions commute with
restriction). Thus we may assume X and Y are affine. By Lemma 62.6.9 we can
find a completely decomposed proper morphism g : Y ′ → Y such that g∗α is in the
image of (62.6.8.1).

Since the family of morphisms gη : Y ′
η → Yη is completely decomposed, we can find

β′
η ∈ Ze(Y ′

η) such that βη =
∑
gη,∗β

′
η, see Chow Homology, Lemma 42.22.4. Set

β′
0 = spY ′/S(β′

η) so that β′ = (β′
η, β

′
0) is a relative e-cycle on Y ′/S. Then g∗β

′ and
β are relative e-cycles on Y/S (Lemma 62.6.2) which have the same value at η and
hence are equal (Lemma 62.6.6). By linearity (Lemma 62.13.1) it suffices to show
that α ◦ g∗β

′ is a relative (r + e)-cycle.

Set X ′ = X ×Y Y ′ and denote f : X ′ → X the projection. By Lemma 62.13.6 we
see that α ◦ g∗β

′ = f∗(g∗α ◦ β′). By Lemma 62.6.2 it suffices to show that g∗α ◦ β′

is a relative (r + e)-cycle. Using Lemma 62.6.10 and bilinearity this reduces us to
the case discussed in the next paragraph.

Assume α = [Z/X/Y ]r and β = [W/Y/S] where Z ⊂ X is a closed subscheme flat
and of relative dimension ≤ r over Y and W ⊂ Y is a closed subscheme flat and of
relative dimension ≤ e over S. By Lemma 62.13.5 we see that

α ◦ β = [Z ×X W/X/S]r+e

and Z ×X W ⊂ X is a closed subscheme flat over S of relative dimension ≤ r + e.
This is a relative (r + e)-cycle by Lemma 62.6.8. □

Lemma 62.14.2.0H6S Let f : X → Y and g : Y → S be a morphisms of schemes.
Assume S locally Noetherian, g locally of finite type and flat of relative dimension
e ≥ 0, and f locally of finite type and flat of relative dimension r ≥ 0. Then
[X/X/Y ]r ◦ [Y/Y/S]e = [X/X/S]r+e in z(X/S, r + e).

Proof. Special case of Lemma 62.13.5. □

https://stacks.math.columbia.edu/tag/0H6R
https://stacks.math.columbia.edu/tag/0H6S
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62.15. Comparison with Suslin and Voevodsky

0H6T We have tried to use the same notation as in [SV00], except that our notation for
cycles is taken from Chow Homology, Section 42.8 ff. Here is a comparison:

(1) In [SV00, Section 3.1] there is a notion of a “relative cycle”, of a “rel-
ative cycle of dimension r”, and of a “equidimensional relative cycle of
dimension r”. There is no corresponding notion in this chapter. Con-
sequently, the groups Cycl(X/S, r), Cyclequi(X/S, r), PropCycl(X/S, r),
and PropCyclequi(X/S, r), have no counter parts in this chapter.

(2) On the bottom of [SV00, page 36] the groups z(X/S, r), c(X/S, r), zequi(X/S, r),
cequi(X/S, r) are defined. These agree with our notions when S is sepa-
rated Noetherian and X → S is separated and of finite type.

(3) In [SV00] the symbol z(X/S, r) is sometimes used for the presheaf S′ 7→
z(S′×SX/S′, r) on the category of schemes of finite type over S. Similarly
for c(X/S, r), zequi(X/S, r), and cequi(X/S, r).

(4) Base change, flat pullback, and proper pushforward as defined in [SV00]
agrees with ours when both apply.

(5) For α ∈ z(X/S, r) the operation α ∩ − : Ze(S) → Ze+r(X) defined in
Section 62.11 agrees with the operation Cor(α,−) in [SV00, Section 3.7]
when both are defined.

(6) ForX → Y → S the composition law z(X/Y, r)⊗Zz(Y/S, e) −→ z(X/S, r+
e) defined in Section 62.14 agrees with the opration CorX/Y (−,−) in
[SV00, Corollary 3.7.5].

62.16. Relative cycles in the non-Noetherian case

0H6U We urge the reader to skip this section.

Let f : X → S be a morphism of schemes of finite presentation. Let r ≥ 0. Denote
Hilb(X/S, r) the set of closed subschemes Z ⊂ X such that Z → S is flat, of finite
presentation, and of relative dimension ≤ r. We consider the group homomorphism

(62.16.0.1)0H6V free abelian group
on Hilb(X/S, r) −→

families of r-cycles
on fibres of X/S

sending
∑
ni[Zi] to

∑
ni[Zi/X/S]r.

Lemma 62.16.1.0H6W Let S be a quasi-compact and quasi-separated scheme. Let f :
X → S be a morphism of finite presentation. Let r ≥ 0 and let α be a family of
r-cycles on fibres of X/S. The following are equivalent

(1) there exists a cartesian diagram

X //

��

X0

��
S // S0

where X0 → S0 is a finite type morphism of Noetherian schemes and
α0 ∈ z(X0/S0, r) such that α is the base change of α0 by S → S0

(2) there exists a completely decomposed proper morphism g : S′ → S of
finite presentation such that g∗α is in the image of (62.16.0.1).

https://stacks.math.columbia.edu/tag/0H6W
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Proof. Let a diagram and α0 ∈ z(X0/S0, r) as in (1) be given. By Lemma 62.6.9
there exists a proper surjective morphism g0 : S′

0 → S0 such that g∗
0α0 is in the

image of (62.16.0.1). Namely, since S′
0 is Noetherian, every closed subscheme of

S′
0 ×S0 X0 is of finite presentation over S′

0. Setting S′ = S ×S0 S
′
0 and using base

change by S′ → S′
0 we see that (2) holds.

Conversely, assume that (2) holds. Choose a surjective proper morphism g : S′ → S
of finite presentation such that g∗α is in the image of (62.16.0.1). Set X ′ = S′×SX.
Write g∗α =

∑
na[Za/X ′/S′]r for some Za ⊂ X ′ closed subscheme flat, of finite

presentation, and of relative dimension ≤ r over S′.
Write S = limSi as a directed limit with affine transition morphisms with Si of
finite type over Z, see Limits, Proposition 32.5.4. We can find an i large enough
such that there exist

(1) a completely decomposed proper morphism gi : S′
i → Si whose base

change to S is g : S′ → S,
(2) setting X ′

i = S′
i ×Si Xi closed subschemes Zai ⊂ X ′

i flat and of relative
dimension ≤ r over S′

i whose base change to S′ is Za.
To do this one uses Limits, Lemmas 32.10.1, 32.8.5, 32.8.7, 32.8.15, 32.13.1, and
32.18.1 and and More on Morphisms, Lemma 37.78.5. Consider α′

i =
∑
na[Zai/X ′

i/Si]r ∈
z(X ′

i/S
′
i, r). The base change of α′

i to a family of r-cycles on fibres of X ′/S′ agrees
with the base change g∗α by construction.
Set S′′

i = S′
i×Si S′

i and X ′′
i = S′′

i ×SiXi and set S′′ = S′×S S′ and X ′′ = S′′×SX.
We denote pr1,pr2 : S′′ → S′ and pr1,pr2 : S′′

i → S′
i the projections. The relative

r-cycles pr∗
1α

′
i and pr∗

1α
′
i on X ′′

i /S
′′
i base change to the same family of r-cycles on

fibres of X ′′/S′′ because pr∗
1g

∗α = pr∗
1g

∗α. Hence the morphism S′′ → S′′
i maps

into E = {s ∈ S′′
i : (pr∗

1α
′
i)s = (pr∗

1α
′
i)s}. By Lemma 62.6.12 this is a closed subset.

Since S′′ = limi′≥i S
′′
i′ we see from Limits, Lemma 32.4.10 that for some i′ ≥ i the

morphism S′′
i′ → S′′

i maps into E. Therefore, after replacing i by i′, we may assume
that pr∗

1α
′
i = pr∗

1α
′
i. By Lemma 62.5.9 we obtain a unique family αi of r-cycles on

fibres of Xi/Si with g∗
i αi = α′

i (this uses that S′
i → Si is completely decomposed).

By Lemma 62.6.3 we see that αi ∈ z(Xi/Si, r). The uniqueness in Lemma 62.5.9
implies that the base change of αi is α and we see (1) holds. □

Discussion. If f : X → S, r, and α are as in Lemma 62.16.1, then it makes sense
to say that α is a relative r-cycle on X/S if the equivalent conditions (1) and (2)
of Lemma 62.16.1 hold. This definition has many good properties; for example it
doesn’t conflict with the earlier definition in case S is Noetherian and most of the
results of Section 62.6 generalize to this setting.
We may still generalize further as follows. Assume S is arbitrary and f : X → S is
locally of finite presentation. Let r ≥ 0 and let α be a family of r-cycles α on fibres
of X/S. Then α is an relative r-cycle on X/S if for U ⊂ X and V ⊂ S affine open
with f(U) ⊂ V the restriction α|U is a relative r-cycle on U/V as defined in the
previous paragraph. Again many of the earlier results generalize to this setting.
If we ever need these generalizations we will carefully state and prove them here.
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CHAPTER 63

More Étale Cohomology

0F4U 63.1. Introduction

0F4V This chapter is the second in a series of chapter on the étale cohomology of schemes.
To read the first chapter, please visit Étale Cohomology, Section 59.1.

The split with the previous chapter is roughly speaking that anything concerning
“shriek functors” (cohomology with compact support and its right adjoint) and
anything using this material goes into this chapter.

63.2. Growing sections

0F71 In this section we discuss results of the following type.

Lemma 63.2.1.0F6F Let X be a scheme. Let F be an abelian sheaf on Xétale. Let
φ : U ′ → U be a morphism of Xétale. Let Z ′ ⊂ U ′ be a closed subscheme such that
Z ′ → U ′ → U is a closed immersion with image Z ⊂ U . Then there is a canonical
bijection

{s ∈ F(U) | Supp(s) ⊂ Z} = {s′ ∈ F(U ′) | Supp(s′) ⊂ Z ′}

which is given by restriction if φ−1(Z) = Z ′.

Proof. Consider the closed subscheme Z ′′ = φ−1(Z) of U ′. Then Z ′ ⊂ Z ′′ is closed
because Z ′ is closed in U ′. On the other hand, Z ′ → Z ′′ is an étale morphism (as
a morphism between schemes étale over Z) and hence open. Thus Z ′′ = Z ′ ⨿ T for
some closed subset T . The open covering U ′ = (U ′ \ T ) ∪ (U ′ \ Z ′) shows that

{s′ ∈ F(U ′) | Supp(s′) ⊂ Z ′} = {s′ ∈ F(U ′ \ T ) | Supp(s′) ⊂ Z ′}

and the étale covering {U ′ \ T → U,U \ Z → U} shows that

{s ∈ F(U) | Supp(s) ⊂ Z} = {s′ ∈ F(U ′ \ T ) | Supp(s′) ⊂ Z ′}

This finishes the proof. □

Lemma 63.2.2.0F6G Let X be a scheme. Let Z ⊂ X be a locally closed subscheme. Let
F be an abelian sheaf on Xétale. Given U,U ′ ⊂ X open containing Z as a closed
subscheme, there is a canonical bijection

{s ∈ F(U) | Supp(s) ⊂ Z} = {s ∈ F(U ′) | Supp(s) ⊂ Z}

which is given by restriction if U ′ ⊂ U .

Proof. Since Z is a closed subscheme of U ∩U ′, it suffices to prove the lemma when
U ′ ⊂ U . Then it is a special case of Lemma 63.2.1. □

5106
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Let us introduce a bit of nonstandard notation which will stand us in good stead
later. Namely, in the situation of Lemma 63.2.2 above, let us denote

HZ(F) = {s ∈ F(U) | Supp(s) ⊂ Z}
where U ⊂ X is any choice of open subscheme containing Z as a closed subscheme.
The reader who is troubled by the lack of precision this entails may choose U =
X \ ∂Z where ∂Z = Z \ Z is the “boundary” of Z in X. However, in many of the
arguments below the flexibility of choosing different opens will play a role. Here
are some properties of this construction:

(1)0F6H If Z ⊂ Z ′ are locally closed subschemes of X and Z is closed in Z ′, then
there is a natural injective map

HZ(F)→ HZ′(F).
(2)0F6I If f : Y → X is a morphism of schemes and Z ⊂ X is a locally closed sub-

scheme, then there is a natural pullback map f∗ : HZ(F)→ Hf−1Z(f−1F).
It will be convenient to extend our notation to the following situation: suppose that
we have W ∈ Xétale and a locally closed subscheme Z ⊂W . Then we will denote

HZ(F) = {s ∈ F(U) | Supp(s) ⊂ Z} = HZ(F|Wétale
)

where U ⊂W is any choice of open subscheme containing Z as a closed subscheme,
exactly as above1.

63.3. Sections with compact support

0F4W A reference for this section is [AGV71, Exposee XVII, Section 6]. Let f : X → Y
be a morphism of schemes which is separated and locally of finite type. In this
section we define a functor f! : Ab(Xétale)→ Ab(Yétale) by taking f!F ⊂ f∗F to be
the subsheaf of sections which have proper support relative to Y (suitably defined).
Warning: The functor f! is the zeroth cohomology sheaf of a functor Rf! on the
derived category (insert future reference), but Rf! is not the derived functor of f!.

Lemma 63.3.1.0F4X Let f : X → Y be a morphism of schemes which is locally of finite
type. Let F be an abelian sheaf on Xétale. The rule
Yétale −→ Ab, V 7−→ {s ∈ f∗F(V ) = F(XV ) | Supp(s) ⊂ XV is proper over V }

is an abelian subsheaf of f∗F .

Warning: This sheaf isn’t the “correct one” if f is not separated.

Proof. Recall that the support of a section is closed (Étale Cohomology, Lemma
59.31.4) hence the material in Cohomology of Schemes, Section 30.26 applies. By
the lemma above and Cohomology of Schemes, Lemma 30.26.6 we find that our
subset of f∗F(V ) is a subgroup. By Cohomology of Schemes, Lemma 30.26.4
we see that our rule defines a sub presheaf. Finally, suppose that we have s ∈
f∗F(V ) and an étale covering {Vi → V } such that s|Vi has support proper over Vi.
Observe that the support of s|Vi is the inverse image of the support of s|V (use the
characterization of the support in terms of stalks and Étale Cohomology, Lemma
59.36.2). Whence the support of s is proper over V by Descent, Lemma 35.25.5.
This proves that our rule satisfies the sheaf condition. □

1In fact, Lemma 63.2.1 shows, given Z over X which is isomorphic to a locally closed sub-
scheme of some object W of Xétale, that the choice of W is irrelevant.

https://stacks.math.columbia.edu/tag/0F4X
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Lemma 63.3.2.0F4Y Let j : U → X be a separated étale morphism. Let F be an abelian
sheaf on Uétale. The image of the injective map j!F → j∗F of Étale Cohomology,
Lemma 59.70.6 is the subsheaf of Lemma 63.3.1.

An alternative would be to move this lemma later and prove this using the descrition
of the stalks of both sheaves.

Proof. The construction of j!F → j∗F in the proof of Étale Cohomology, Lemma
59.70.6 is via the construction of a map jp!F → j∗F of presheaves whose image is
clearly contained in the subsheaf of Lemma 63.3.1. Hence since j!F is the sheafifi-
cation of jp!F we conclude the image of j!F → j∗F is contained in this subsheaf.
Conversely, let s ∈ j∗F(V ) have support Z proper over V . Then Z → V is finite
with closed image Z ′ ⊂ V , see More on Morphisms, Lemma 37.44.1. The restriction
of s to V \Z ′ is zero and the zero section is contained in the image of j!F → j∗F . On
the other hand, if v ∈ Z ′, then we can find an étale neighbourhood (V ′, v′)→ (V, v)
such that we have a decomposition UV ′ = W ⨿ U ′

1 ⨿ . . .⨿ U ′
n into open and closed

subschemes with U ′
i → V ′ an isomorphism and with TV ′ ⊂ U ′

1⨿ . . .⨿U ′
n, see Étale

Morphisms, Lemma 41.18.2. Inverting the isomorphisms U ′
i → V ′ we obtain n

morphisms φ′
i : V ′ → U and sections s′

i over V ′ by pulling back s. Then the section∑
(φ′
i, s

′
i) of jp!F over V ′, see formula for jp!F(V ′) in proof of Étale Cohomology,

Lemma 59.70.6, maps to the restriction of s to V ′ by construction. We conclude
that s is étale locally in the image of j!F → j∗F and the proof is complete. □

Definition 63.3.3.0F4Z Let f : X → Y be a morphism of schemes which is separated
(!) and locally of finite type. Let F be an abelian sheaf on Xétale. The subsheaf
f!F ⊂ f∗F constructed in Lemma 63.3.1 is called the direct image with compact
support.

By Lemma 63.3.2 this does not conflict with Étale Cohomology, Definition 59.70.1
as we have agreement when both definitions apply. Here is a sanity check.

Lemma 63.3.4.0F51 Let f : X → Y be a proper morphism of schemes. Then f! = f∗.

Proof. Immediate from the construction of f!. □

A very useful observation is the following.

Remark 63.3.5 (Covariance with respect to open embeddings).0F53 Let f : X → Y be
morphism of schemes which is separated and locally of finite type. Let F be an
abelian sheaf on Xétale. Let X ′ ⊂ X be an open subscheme. Denote f ′ : X ′ → Y
the restriction of f . There is a canonical injective map

f ′
! (F|X′) −→ f!F

Namely, let V ∈ Yétale and consider a section s′ ∈ f ′
∗(F|X′)(V ) = F(X ′×Y V ) with

support Z ′ proper over V . Then Z ′ is closed in X×Y V as well, see Cohomology of
Schemes, Lemma 30.26.5. Thus there is a unique section s ∈ F(X×Y V ) = f∗F(V )
whose restriction to X ′×Y V is s′ and whose restriction to X ×Y V \Z ′ is zero, see
Lemma 63.2.2. This construction is compatible with restriction maps and hence
induces the desired map of sheaves f ′

! (F|X′) → f!F which is clearly injective. By

https://stacks.math.columbia.edu/tag/0F4Y
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construction we obtain a commutative diagram

f ′
! (F|X′) //

��

f!F

��
f ′

∗(F|X′) f∗Foo

functorial in F . It is clear that for X ′′ ⊂ X ′ open with f ′′ = f |X′′ : X ′′ → Y the
composition of the canonical maps f ′′

! F|X′′ → f ′
!F|X′ → f!F just constructed is

the canonical map f ′′
! F|X′′ → f!F .

Lemma 63.3.6.0F52 Let Y be a scheme. Let j : X → X be an open immersion of
schemes over Y with X proper over Y . Denote f : X → Y and f : X → Y the
structure morphisms. For F ∈ Ab(Xétale) there is a canonical isomorphism (see
proof)

f!F −→ f !j!F
As we have f ! = f∗ by Lemma 63.3.4 we obtain f∗◦j! = f! as functors Ab(Xétale)→
Ab(Yétale).

Proof. We have (j!F)|X = F , see Étale Cohomology, Lemma 59.70.4. Thus the
displayed arrow is the injective map f!(G|X)→ f !G of Remark 63.3.5 for G = j!F .
The explicit nature of this map implies that it now suffices to show: if V ∈ Yétale
and s ∈ f !G(V ) = f∗G(V ) = G(XV ) is a section, then the support of s is contained
in the open XV ⊂ XV . This is immediate from the fact that the stalks of G are
zero at geometric points of X \X. □

We want to relate the stalks of f!F to sections with compact support on fibres. In
order to state this, we need a definition.

Definition 63.3.7.0F72 Let X be a separated scheme locally of finite type over a field k.
Let F be an abelian sheaf on Xétale. We let H0

c (X,F) ⊂ H0(X,F) be the set of
sections whose support is proper over k. Elements of H0

c (X,F) are called sections
with compact support.

Warning: This definition isn’t the “correct one” if X isn’t separated over k.

Lemma 63.3.8.0F73 Let X be a proper scheme over a field k. Then H0
c (X,F) =

H0(X,F).

Proof. Immediate from the construction of H0
c . □

Remark 63.3.9 (Open embeddings and compactly supported sections).0F74 Let X be
a separated scheme locally of finite type over a field k. Let F be an abelian sheaf
on Xétale. Exactly as in Remark 63.3.5 for X ′ ⊂ X open there is an injective map

H0
c (X ′,F|X′) −→ H0

c (X,F)
and these maps turn H0

c into a “cosheaf” on the Zariski site of X.

Lemma 63.3.10.0F75 Let k be a field. Let j : X → X be an open immersion of schemes
over k with X proper over k. For F ∈ Ab(Xétale) there is a canonical isomorphism
(see proof)

H0
c (X,F) −→ H0

c (X, j!F) = H0(X, j!F)
where we have the equality on the right by Lemma 63.3.8.

https://stacks.math.columbia.edu/tag/0F52
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Proof. We have (j!F)|X = F , see Étale Cohomology, Lemma 59.70.4. Thus the
displayed arrow is the injective map H0

c (X,G|X) → H0
c (X,G) of Remark 63.3.9

for G = j!F . The explicit nature of this map implies that it now suffices to show:
if s ∈ H0(X,G) is a section, then the support of s is contained in the open X.
This is immediate from the fact that the stalks of G are zero at geometric points of
X \X. □

Lemma 63.3.11.0F76 Let f : X → Y be a morphism of schemes which is separated
and locally of finite type. Let F be an abelian sheaf on Xétale. Then there is a
canonical isomorphism

(f!F)y −→ H0
c (Xy,F|Xy )

for any geometric point y : Spec(k)→ Y .

Proof. Recall that (f∗F)y = colim f∗F(V ) where the colimit is over the étale neigh-
bourhoods (V, v) of y. If s ∈ f∗F(V ) = F(XV ), then we can pullback s to a section
of F over (XV )v = Xy. Thus we obtain a canonical map

cy : (f∗F)y −→ H0(Xy,F|Xy )
We claim that this map induces a bijection between the subgroups (f!F)y and
H0
c (Xy,F|Xy ). The claim implies the lemma, but is a little bit more precise in that

it describes the identification of the lemma as given by pullbacks of sections of F
to the geometric fibre of f .
Observe that any element s ∈ (f!F)y ⊂ (f∗F)y is mapped by cy to an element of
H0
c (Xy,F|Xy ) ⊂ H0(Xy,F|Xy ). This is true because taking the support of a section

commutes with pullback and because properness is preserved by base change. This
at least produces the map in the statement of the lemma. To prove that it is an
isomorphism we may work Zariski locally on Y and hence we may and do assume
Y is affine.
An observation that we will use below is that given an open subscheme X ′ ⊂ X
and if f ′ = f |X′ , then we obtain a commutative diagram

(f ′
! (F|X′))y //

��

H0
c (X ′

y,F|X′
y
)

��
(f!F)y // H0

c (Xy,F|Xy )

where the horizontal arrows are the maps constructed above and the vertical ar-
rows are given in Remarks 63.3.5 and 63.3.9. The reason is that given an étale
neighbourhood (V, v) of y and a section s ∈ f∗F(V ) = F(XV ) whose support Z
happens to be contained in X ′

V and is proper over V , so that s gives rise to an ele-
ment of both (f ′

! (F|X′))y and (f!F)y which correspond via the vertical arrow of the
diagram, then these elements are mapped via the horizontal arrows to the pullback
s|Xy of s to Xy whose support Zy is contained in X ′

y and hence this restriction
gives rise to a compatible pair of elements of H0

c (X ′
y,F|X′

y
) and H0

c (Xy,F|Xy ).

Suppose s ∈ (f!F)y maps to zero in H0
c (Xy,F|Xy ). Say s corresponds to s ∈

f∗F(V ) = F(XV ) with support Z proper over V . We may assume that V is affine
and hence Z is quasi-compact. Then we may choose a quasi-compact open X ′ ⊂ X
containing the image of Z. Then Z is contained in X ′

V and hence s is the image of

https://stacks.math.columbia.edu/tag/0F76
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an element s′ ∈ f ′
! (F|X′)(V ) where f ′ = f |X′ as in the previous paragraph. Then s′

maps to zero in H0
c (X ′

y,F|X′
y
). Hence in order to prove injectivity, we may replace

X by X ′, i.e., we may assume X is quasi-compact. We will prove this case below.
Suppose that t ∈ H0

c (Xy,F|Xy ). Then the support of t is contained in a quasi-
compact open subscheme W ⊂ Xy. Hence we can find a quasi-compact open
subscheme X ′ ⊂ X such that X ′

y contains W . Then it is clear that t is contained in
the image of the injective map H0

c (X ′
y,F|X′

y
)→ H0

c (Xy,F|Xy ). Hence in order to
show surjectivity, we may replace X by X ′, i.e., we may assume X is quasi-compact.
We will prove this case below.
In this last paragraph of the proof we prove the lemma in case X is quasi-compact
and Y is affine. By More on Flatness, Theorem 38.33.8 there exists a compactifi-
cation j : X → X over Y . Set G = j!F so that F = G|X by Étale Cohomology,
Lemma 59.70.4. By the disussion above we get a commutative diagram

(f!F)y //

��

H0
c (Xy,F|Xy )

��
(f !G)y // H0

c (Xy,G|Xy )

By Lemmas 63.3.6 and 63.3.10 the vertical maps are isomorphisms. This reduces
us to the case of the proper morphism X → Y . For a proper morphism our
map is an isomorphism by Lemmas 63.3.4 and 63.3.8 and proper base change for
pushforwards, see Étale Cohomology, Lemma 59.91.4. □

Lemma 63.3.12.0F55 Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of schemes with f separated and locally of finite type. For any abelian sheaf F on
Xétale we have f ′

! (g′)−1F = g−1f!F .

Proof. In great generality there is a pullback map g−1f∗F → f ′
∗(g′)−1F , see Sites,

Section 7.45. We claim that this map sends g−1f!F into the subsheaf f ′
! (g′)−1F

and induces the isomorphism in the lemma.
Choose a geometric point y′ : Spec(k)→ Y ′ and denote y = g ◦ y′ the image in Y .
There is a commutative diagram

(f∗F)y //

��

H0(Xy,F|Xy )

��
(f ′

∗(g′)−1F)y′ // H0(X ′
y′ , (g′)−1F|X′

y′
)

where the horizontal maps were used in the proof of Lemma 63.3.11 and the vertical
maps are the pullback maps above. The diagram commutes because each of the
four maps in question is given by pulling back local sections along a morphism of
schemes and the underlying diagram of morphisms of schemes commutes. Since the

https://stacks.math.columbia.edu/tag/0F55
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diagram in the statement of the lemma is cartesian we have X ′
y′ = Xy. Hence by

Lemma 63.3.11 and its proof we obtain a commutative diagram

(f∗F)y //

��

H0(Xy,F|Xy )

��

(f!F)y //

��

gg

H0
c (Xy,F|Xy )

��

55

(f ′
! (g′)−1F)y′ //

ww

H0
c (X ′

y′ , (g′)−1F|X′
y′

)

))
(f ′

∗(g′)−1F)y′ // H0(X ′
y′ , (g′)−1F|X′

y′
)

where the horizontal arrows of the inner square are isomorphisms and the two right
vertical arrows are equalities. Also, the se, sw, ne, nw arrows are injective. It follows
that there is a unique bijective dotted arrow fitting into the diagram. We conclude
that g−1f!F ⊂ g−1f∗F → f ′

∗(g′)−1F is mapped into the subsheaf f ′
! (g′)−1F ⊂

f ′
∗(g′)−1F because this is true on stalks, see Étale Cohomology, Theorem 59.29.10.

The same theorem then implies that the induced map is an isomorphism and the
proof is complete. □

Lemma 63.3.13.0F50 Let f : X → Y and g : Y → Z be composable morphisms of
schemes which are separated and locally of finite type. Let F be an abelian sheaf
on Xétale. Then g!f!F = (g ◦ f)!F as subsheaves of (g ◦ f)∗F .

Proof. We strongly urge the reader to prove this for themselves. Let W ∈ Zétale
and s ∈ (g ◦f)∗F(W ) = F(XW ). Denote T ⊂ XW the support of s; this is a closed
subset. Observe that s is a section of (g ◦ f)!F if and only if T is proper over W .
We have f!F ⊂ f∗F and hence g!f!F ⊂ g!f∗F ⊂ g∗f∗F . On the other hand, s is a
section of g!f!F if and only if (a) T is proper over YW and (b) the support T ′ of
s viewed as section of f!F is proper over W . If (a) holds, then the image of T in
YW is closed and since f!F ⊂ f∗F we see that T ′ ⊂ YW is the image of T (details
omitted; look at stalks).

The conclusion is that we have to show a closed subset T ⊂ XW is proper over W if
and only if T is proper over YW and the image of T in YW is proper over W . Let us
endow T with the reduced induced closed subscheme structure. If T is proper over
W , then T → YW is proper by Morphisms, Lemma 29.41.7 and the image of T in
YW is proper over W by Cohomology of Schemes, Lemma 30.26.5. Conversely, if T
is proper over YW and the image of T in YW is proper over W , then the morphism
T →W is proper as a composition of proper morphisms (here we endow the closed
image of T in YW with its reduced induced scheme structure to turn the question
into one about morphisms of schemes), see Morphisms, Lemma 29.41.4. □

Remark 63.3.14.0F77 The isomorphisms between functors constructed above satisfy the
following two properties:

https://stacks.math.columbia.edu/tag/0F50
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(1) Let f : X → Y , g : Y → Z, and h : Z → T be composable morphisms of
schemes which are separated and locally of finite type. Then the diagram

(h ◦ g ◦ f)! //

��

(h ◦ g)! ◦ f!

��
h! ◦ (g ◦ f)! // h! ◦ g! ◦ f!

commutes where the arrows are those of Lemma 63.3.13.
(2) Suppose that we have a diagram of schemes

X ′

f ′

��

c
// X

f

��
Y ′

g′

��

b
// Y

g

��
Z ′ a // Z

with both squares cartesian and f and g separated and locally of finite
type. Then the diagram

a−1 ◦ (g ◦ f)!

��

// (g′ ◦ f ′)! ◦ c−1

��
a−1 ◦ g! ◦ f! // g′

! ◦ b−1 ◦ f! // g′
! ◦ f ′

! ◦ c−1

commutes where the horizontal arrows are those of Lemma 63.3.12 the
arrows are those of Lemma 63.3.13.

Part (1) holds true because we have a similar commutative diagram for pushfor-
wards. Part (2) holds by the very general compatibility of base change maps for
pushforwards (Sites, Remark 7.45.3) and the fact that the isomorphisms in Lemmas
63.3.12 and 63.3.13 are constructed using the corresponding maps fo pushforwards.

Lemma 63.3.15.0F54 Let f : X → Y be morphism of schemes which is separated and
locally of finite type. Let X =

⋃
i∈I Xi be an open covering such that for all i, j ∈ I

there exists a k with Xi ∪Xj ⊂ Xk. Denote fi : Xi → Y the restriction of f . Then

f!F = colimi∈I fi,!(F|Xi)

functorially in F ∈ Ab(Xétale) where the transition maps are the ones constructed
in Remark 63.3.5.

Proof. It suffices to show that the canonical map from right to left is a bijection
when evaluated on a quasi-compact object V of Yétale. Observe that the colimit on
the right hand side is directed and has injective transition maps. Thus we can use
Sites, Lemma 7.17.7 to evaluate the colimit. Hence, the statement comes down to
the observation that a closed subset Z ⊂ XV proper over V is quasi-compact and
hence is contained in Xi,V for some i. □

Lemma 63.3.16.0F56 Let f : X → Y be a morphism of schemes which is separated and
locally of finite type. Then functor f! commutes with direct sums.

https://stacks.math.columbia.edu/tag/0F54
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Proof. Let F =
⊕
Fi. To show that the map

⊕
f!Fi → f!F is an isomorphism,

it suffices to show that these sheaves have the same sections over a quasi-compact
object V of Yétale. Replacing Y by V it suffices to show H0(Y, f!F) ⊂ H0(X,F) is
equal to

⊕
H0(Y, f!Fi) ⊂

⊕
H0(X,Fi) ⊂ H0(X,

⊕
Fi). In this case, by writing X

as the union of its quasi-compact opens and using Lemma 63.3.15 we reduce to the
case where X is quasi-compact as well. Then H0(X,F) =

⊕
H0(X,Fi) by Étale

Cohomology, Theorem 59.51.3. Looking at supports of sections the reader easily
concludes. □

Lemma 63.3.17.0F57 Let f : X → Y be a morphism of schemes which is separated and
locally quasi-finite. Then

(1) for F in Ab(Xétale) and a geometric point y : Spec(k)→ Y we have

(f!F)y =
⊕

f(x)=y
Fx

functorially in F , and
(2) the functor f! is exact.

Proof. The functor f! is left exact by construction. Right exactness may be checked
on stalks (Étale Cohomology, Theorem 59.29.10). Thus it suffices to prove part (1).
Let y : Spec(k)→ Y be a geometric point. The scheme Xy has a discrete underlying
topological space (Morphisms, Lemma 29.20.8) and all the residue fields at the
points are equal to k (as finite extensions of k). Hence {x : Spec(k)→ X : f(x) = y}
is equal to the set of points of Xy. Thus the computation of the stalk follows from
the more general Lemma 63.3.11. □

63.4. Sections with finite support

0F6E In this section we extend the construction of Section 63.3 to not necessarily sepa-
rated locally quasi-finite morphisms.
Let f : X → Y be a locally quasi-finite morphism of schemes. Let F be an abelian
sheaf on Xétale. Given V in Yétale denote XV = X ×Y V the base change. We are
going to consider the group of finite formal sums

(63.4.0.1)0F6J s =
∑

i=1,...,n
(Zi, si)

where Zi ⊂ XV is a locally closed subscheme such that the morphism Zi → V is
finite2 and where si ∈ HZi(F). Here, as in Section 63.2, we set

HZi(F) = {si ∈ F(Ui) | Supp(si) ⊂ Zi}
where Ui ⊂ XV is an open subscheme containing Zi as a closed subscheme. We are
going to consider these formal sums modulo the following relations

(1)0F6K (Z, s) + (Z, s′) = (Z, s+ s′),
(2)0F6L (Z, s) = (Z ′, s) if Z ⊂ Z ′.

Observe that the second relation makes sense: since Z → V is finite and Z ′ → V is
separated, the inclusion Z → Z ′ is closed and we can use the map discussed in (1).
Let us denote fp!F(V ) the quotient of the abelian group of formal sums (63.4.0.1)
by these relations. The first relation tells us that fp!F(V ) is a quotient of the direct

2Since f is locally quasi-finite, the morphism Zi → V is finite if and only if it is proper.

https://stacks.math.columbia.edu/tag/0F57
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sum of the abelian groups HZ(F) over all locally closed subschemes Z ⊂ XV finite
over V . The second relation tells us that we are really taking the colimit

(63.4.0.2)0F6M fp!F(V ) = colimZ HZ(F)

This formula will be a convenient abstract way to think about our construction.

Next, we observe that there is a natural way to turn this construction into a presheaf
fp!F of abelian groups on Yétale. Namely, given V ′ → V in Yétale we obtain the base
change morphism XV ′ → XV . If Z ⊂ XV is a locally closed subscheme finite over
V , then the scheme theoretic inverse image Z ′ ⊂ XV ′ is finite over V ′. Moreover, if
U ⊂ XV is an open such that Z is closed in U , then the inverse image U ′ ⊂ XV ′ is
an open such that Z ′ is closed in U ′. Hence the restriction mapping F(U)→ F(U ′)
of F sends HZ(F) into HZ′(F); this is a special case of the functoriality discussed
in (2) above. Clearly, these maps are compatible with inclusions Z1 ⊂ Z2 of such
locally closed subschemes of XV and we obtain a map

fp!F(V ) = colimZ HZ(F) −→ colimZ′ HZ′(F) = fp!F(V ′)

These maps indeed turn fp!F into a presheaf of abelian groups on Yétale. We omit
the details.

A final observation is that the construction of fp!F is functorial in F in Ab(Xétale).
We conclude that given a locally quasi-finite morphism f : X → Y we have con-
structed a functor

fp! : Ab(Xétale) −→ PAb(Yétale)
from the category of abelian sheaves on Xétale to the category of abelian presheaves
on Yétale. Before we define f! as the sheafification of this functor, let us check that
it agrees with the construction in Section 63.3 and with the construction in Étale
Cohomology, Section 59.70 when both apply.

Lemma 63.4.1.0F6N Let f : X → Y be a separated and locally quasi-finite morphism
of schemes. Functorially in F ∈ Ab(Xétale) there is a canonical isomorphism(!)

fp!F −→ f!F

of abelian presheaves which identifies the sheaf f!F of Definition 63.3.3 with the
presheaf fp!F constructed above.

Proof. Let V be an object of Yétale. If Z ⊂ XV is locally closed and finite over
V , then, since f is separated, we see that the morphism Z → XV is a closed
immersion. Moreover, if Zi, i = 1, . . . , n are closed subschemes of XV finite over
V , then Z1 ∪ . . .∪Zn (scheme theoretic union) is a closed subscheme finite over V .
Hence in this case the colimit (63.4.0.2) defining fp!F(V ) is directed and we find
that f!pF(V ) is simply equal to the set of sections of F(XV ) whose support is finite
over V . Since any closed subset of XV which is proper over V is actually finite over
V (as f is locally quasi-finite) we conclude that this is equal to f!F(V ) by its very
definition. □

Lemma 63.4.2.0F6P Let f : X → Y be a morphism of schemes which is locally quasi-
finite. Let y : Spec(k) → Y be a geometric point. Functorially in F in Ab(Xétale)
we have

(fp!F)y =
⊕

f(x)=y
Fx

https://stacks.math.columbia.edu/tag/0F6N
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Proof. Recall that the stalk at y of a presheaf is defined by the usual colimit
over étale neighbourhoods (V, v) of y, see Étale Cohomology, Definition 59.29.6.
Accordingly suppose s =

∑
i=1,...,n(Zi, si) as in (63.4.0.1) is an element of fp!F(V )

where (V, v) is an étale neighbourhood of y. Then since
Xy = (XV )v ⊃ Zi,v

and since si is a section of F on an open neighbourhood of Zi in XV we can send
s to ∑

i=1,...,n

∑
x∈Zi,v

(class of si in Fx) ∈
⊕

f(x)=y
Fx

We omit the verification that this is compatible with restriction maps and that the
relations (1) (Z, s) + (Z, s′)− (Z, s+ s′) and (2) (Z, s)− (Z ′, s) if Z ⊂ Z ′ are sent
to zero. Thus we obtain a map

(fp!F)y −→
⊕

f(x)=y
Fx

Let us prove this arrow is surjective. For this it suffices to pick an x with f(x) = y
and prove that an element s in the summand Fx is in the image. Let s correspond
to the element s ∈ F(U) where (U, u) is an étale neighbourhood of x. Since f is
locally quasi-finite, the morphism U → Y is locally quasi-finite too. By More on
Morphisms, Lemma 37.41.3 we can find an étale neighbourhood (V, v) of y, an open
subscheme

W ⊂ U ×Y V,
and a geometric point w mapping to u and v such that W → V is finite and w is
the only geometric point of W mapping to v. (We omit the translation between
the language of geometric points we are currently using and the language of points
and residue field extensions used in the statement of the lemma.) Observe that
W → XV = X ×Y V is étale. Choose an affine open neighbourhood W ′ ⊂ XV of
the image w′ of w. Since w is the only point of W over v and since W → V is
closed, after replacing V by an open neighbourhood of v, we may assume W → XV

maps into W ′. Then W → W ′ is finite and étale and there is a unique geometric
point w of W lying over w′. It follows that W →W ′ is an open immersion over an
open neighbourhood of w′ in W ′, see Étale Morphisms, Lemma 41.14.2. Shrinking
V and W ′ we may assume W → W ′ is an isomorphism. Thus s may be viewed as
a section s′ of F over the open subscheme W ′ ⊂ XV which is finite over V . Hence
by definition (W ′, s′) defines an element of jp!F(V ) which maps to s as desired.
Let us prove the arrow is injective. To do this, let s =

∑
i=1,...,n(Zi, si) as in

(63.4.0.1) be an element of fp!F(V ) where (V, v) is an étale neighbourhood of y.
Assume s maps to zero under the map constructed above. First, after replacing
(V, v) by an étale neighbourhood of itself, we may assume there exist decompositions
Zi = Zi,1 ⨿ . . . ⨿ Zi,mi into open and closed subschemes such that each Zi,j has
exactly one geometric point over v. Say under the obvious direct sum decomposition

HZi(F) =
⊕

HZi,j (F)

the element si corresponds to
∑
si,j . We may use relations (1) and (2) to replace

s by
∑
i=1,...,n

∑
j=1,...,mi(Zi,j , si,j). In other words, we may assume Zi has a

unique geometric point lying over v. Let x1, . . . , xm be the geometric points of X
over y corresponding to the geometric points of our Zi over v; note that for one
j ∈ {1, . . . ,m} there may be multiple indices i for which xj corresponds to a point
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of Zi. By More on Morphisms, Lemma 37.41.3 applied to both XV → V after
replacing (V, v) by an étale neighbourhood of itself we may assume there exist open
subschemes

Wj ⊂ X ×Y V, j = 1, . . . ,m
and a geometric point wj of Wj mapping to xj and v such that Wj → V is finite
and wj is the only geometric point of Wj mapping to v. After shrinking V we may
assume Zi ⊂ Wj for some j and we have the map HZi(F) → HWj

(F). Thus by
the relation (2) we see that our element is equivalent to an element of the form∑

j=1,...,m
(Wj , tj)

for some tj ∈ HWj (F). Clearly, this element is mapped simply to the class of tj in
the summand Fxj . Since s maps to zero, we find that tj maps to zero in Fxj . This
implies that tj restricts to zero on an open neighbourhood of wj in Wj , see Étale
Cohomology, Lemma 59.31.2. Shrinking V once more we obtain tj = 0 for all j as
desired. □

Lemma 63.4.3.0F6Q Let f = j : U → X be an étale of schemes. Denote jp! the con-
struction of Étale Cohomology, Equation (59.70.1.1) and denote fp! the construction
above. Functorially in F ∈ Ab(Xétale) there is a canonical map

jp!F −→ fp!F

of abelian presheaves which identifies the sheaf j!F = (jp!F)# of Étale Cohomology,
Definition 59.70.1 with (fp!F)#.

Proof. Please read the proof of Étale Cohomology, Lemma 59.70.6 before reading
the proof of this lemma. Let V be an object of Xétale. Recall that

jp!F(V ) =
⊕

φ:V→U
F(V φ−→ U)

Given φ we obtain an open subscheme Zφ ⊂ UV = U ×X V , namely, the image of
the graph of φ. Via φ we obtain an isomorphism V → Zφ over U and we can think
of an element

sφ ∈ F(V φ−→ U) = F(Zφ) = HZφ(F)
as a section of F over Zφ. Since Zφ ⊂ UV is open, we actually have HZφ(F) =
F(Zφ) and we can think of sφ as an element of HZφ(F). Having said this, our map
jp!F → fp!F is defined by the rule∑

i=1,...,n
sφi 7−→

∑
i=1,...,n

(Zφi , sφi)

with right hand side a sum as in (63.4.0.1). We omit the verification that this is
compatible with restriction mappings and functorial in F .

To finish the proof, we claim that given a geometric point y : Spec(k)→ Y there is
a commutative diagram

(jp!F)y //

��

⊕
j(x)=y Fx

(fp!F)y //⊕
f(x)=y Fx

https://stacks.math.columbia.edu/tag/0F6Q
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where the top horizontal arrow is constructed in the proof of Étale Cohomology,
Proposition 59.70.3, the bottom horizontal arrow is constructed in the proof of
Lemma 63.4.2, the right vertical arrow is the obvious equality, and the left veritical
arrow is the map defined in the previous paragraph on stalks. The claim follows in
a straightforward manner from the explicit description of all of the arrows involved
here and in the references given. Since the horizontal arrows are isomorphisms
we conclude so is the left vertical arrow. Hence we find that our map induces an
isomorphism on sheafifications by Étale Cohomology, Theorem 59.29.10. □

Definition 63.4.4.0F6R Let f : X → Y be a locally quasi-finite morphism of schemes.
We define the direct image with compact support to be the functor

f! : Ab(Xétale) −→ Ab(Yétale)
defined by the formula f!F = (fp!F)#, i.e., f!F is the sheafification of the presheaf
fp!F constructed above.

By Lemma 63.4.1 this does not conflict with Definition 63.3.3 (when both defini-
tions apply) and by Lemma 63.4.3 this does not conflict with Étale Cohomology,
Definition 59.70.1 (when both definitions apply).

Lemma 63.4.5.0F5F Let f : X → Y be a locally quasi-finite morphism of schemes.
Then

(1) for F in Ab(Xétale) and a geometric point y : Spec(k)→ Y we have

(f!F)y =
⊕

f(x)=y
Fx

functorially in F , and
(2) the functor f! : Ab(Xétale) → Ab(Yétale) is exact and commutes with

direct sums.

Proof. The formula for the stalks is immediate (and in fact equivalent) to Lemma
63.4.2. The exactness of the functor follows immediately from this and the fact that
exactness may be checked on stalks, see Étale Cohomology, Theorem 59.29.10. □

Remark 63.4.6 (Covariance with respect to open embeddings).0F6S Let f : X → Y be
locally quasi-finite morphism of schemes. Let F be an abelian sheaf on Xétale. Let
X ′ ⊂ X be an open subscheme and denote f ′ : X ′ → Y the restriction of f . We
claim there is a canonical map

f ′
! (F|X′) −→ f!F

Namely, this map will be the sheafification of a canonical map
f ′
p!(F|X′)→ fp!F

constructed as follows. Let V ∈ Yétale and consider a section s′ =
∑
i=1,...,n(Z ′

i, s
′
i)

as in (63.4.0.1) defining an element of f ′
p!(F|X′)(V ). Then Z ′

i ⊂ X ′
V may also be

viewed as a locally closed subscheme of XV and we have HZ′
i
(F|X′) = HZ′

i
(F).

We will map s′ to the exact same sum s =
∑
i=1,...,n(Z ′

i, s
′
i) but now viewed as an

element of fp!F(V ). We omit the verification that this construction is compatible
with restriction mappings and functorial in F . This construction has the following
properties:

(1) The maps f ′
p!F ′ → fp!F and f ′

!F ′ → f!F are compatible with the descrip-
tion of stalks given in Lemmas 63.4.2 and 63.4.5.

https://stacks.math.columbia.edu/tag/0F6R
https://stacks.math.columbia.edu/tag/0F5F
https://stacks.math.columbia.edu/tag/0F6S
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(2) If f is separated, then the map f ′
p!F ′ → fp!F is the same as the map

constructed in Remark 63.3.5 via the isomorphism in Lemma 63.4.1.
(3) If X ′′ ⊂ X ′ is another open, then the composition of f ′′

p!(F|X′′) →
f ′
p!(F|X′)→ fp!F is the map f ′′

p!(F|X′′)→ fp!F for the inclusion X ′′ ⊂ X.
Sheafifying we conclude the same holds true for f ′′

! (F|X′′)→ f ′
! (F|X′)→

f!F .
(4) The map f ′

!F ′ → f!F is injective because we can check this on stalks.
All of these statements are easily proven by representing elements as finite sums as
above and considering what happens to these elements.

Lemma 63.4.7.0F5H Let f : X → Y be a locally quasi-finite morphism of schemes. Let
X =

⋃
i∈I Xi be an open covering. Then there exists an exact complex

. . .→
⊕

i0,i1,i2
fi0i1i2,!F|Xi0i1i2 →

⊕
i0,i1

fi0i1,!F|Xi0i1 →
⊕

i0
fi0,!F|Xi0 → f!F → 0

functorial in F ∈ Ab(Xétale), see proof for details.

Proof. Here as usual we set Xi0...ip = Xi0 ∩ . . . ∩ Xip and we denote fi0...ip the
restriction of f to Xi0...ip . The maps in the complex are the maps constructed in
Remark 63.4.6 with sign rules as in the Čech complex. Exactness follows easily
from the description of stalks in Lemma 63.4.5. Details omitted. □

Remark 63.4.8 (Alternative construction).0F5I Lemma 63.4.7 gives an alternative con-
struction of the functor f! for locally quasi-finite morphisms f . Namely, given a
locally quasi-finite morphism f : X → Y of schemes we can choose an open covering
X =

⋃
i∈I Xi such that each fi : Xi → Y is separated. For example choose an affine

open covering of X. Then we can define f!F as the cokernel of the penultimate
map of the complex of the lemma, i.e.,

f!F = Coker
(⊕

i0,i1
fi0i1,!F|Xi0i1 →

⊕
i0
fi0,!F|Xi0

)
where we can use the construction of fi0,! and fi0i1,! in Section 63.3 because the
morphisms fi0 and fi0i1 are separated. One can then compute the stalks of f! (using
the separated case, namely Lemma 63.3.17) and obtain the result of Lemma 63.4.5.
Having done so all the other results of this section can be deduced from this as well.

Remark 63.4.9.0F78 Let g : Y ′ → Y be a morphism of schemes. For an abelian presheaf
G′ on Y ′

étale let us denote g∗G′ the presheaf V 7→ G′(Y ′ ×Y V ). If α : G → g∗G′

is a map of abelian presheaves on Yétale, then there is a unique map α# : G# →
g∗((G′)#) of abelian sheaves on Yétale such that the diagram

G

��

α
// g∗G′

��
G# α#

// g∗((G′)#)

is commutative where the vertical maps come from the canonical maps G → G#

and G′ → (G′)#. If α′ : g−1G# → (G′)# is the map adjoint to α#, then for a
geometric point y′ : Spec(k)→ Y ′ with image y = g ◦ y′ in Y , the map

α′
y′ : Gy = (G#)y = (g−1G#)y′ −→ (G′)#

y′ = G′
y′

https://stacks.math.columbia.edu/tag/0F5H
https://stacks.math.columbia.edu/tag/0F5I
https://stacks.math.columbia.edu/tag/0F78
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is given by mapping the class in the stalk of a section s of G over an étale neigh-
bourhood (V, v) to the class of the section α(s) in g∗G′(V ) = G′(Y ′ ×Y V ) over the
étale neighbourhood (Y ′ ×Y V, (y′, v)) in the stalk of G′ at y′.

Lemma 63.4.10.0F5J Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of schemes with f locally quasi-finite. There is an isomorphism g−1f!F → f ′
! (g′)−1F

functorial for F in Ab(Xétale) which is compatible with the descriptions of stalks
given in Lemma 63.4.5 (see proof for the precise statement).

Proof. With conventions as in Remark 63.4.9 we will explicitly construct a map
c : fp!F −→ g∗f

′
p!(g′)−1F

of abelian presheaves on Yétale. By the discussion in Remark 63.4.9 this will deter-
mine a canonical map g−1f!F → f ′

! (g′)−1F . Finally, we will show this map induces
isomorphisms on stalks and conclude by Étale Cohomology, Theorem 59.29.10.
Construction of the map c. Let V ∈ Yétale and consider a section s =

∑
i=1,...,n(Zi, si)

as in (63.4.0.1) defining an element of fp!F(V ). The value of g∗f
′
p!(g′)−1F at V

is f ′
p!(g′)−1F(V ′) where V ′ = V ×Y Y ′. Denote Z ′

i ⊂ X ′
V ′ the base change of

Zi to V ′. By (2) there is a pullback map HZi(F) → HZ′
i
((g′)−1F). Denoting

s′
i ∈ HZ′

i
((g′)−1F) the image of si under pullback, we set c(s) =

∑
i=1,...,n(Z ′

i, s
′
i)

as in (63.4.0.1) defining an element of f ′
p!(g′)−1F(V ′). We omit the verification

that this construction is compatible the relations (1) and (2) and compatible with
restriction mappings. The construction is clearly functorial in F .
Let y′ : Spec(k) → Y ′ be a geometric point with image y = g ◦ y′ in Y . Observe
that X ′

y′ = Xy by transitivity of fibre products. Hence g′ produces a bijection
{f ′(x′) = y′} → {f(x) = y} and if x′ maps to x, then ((g′)−1F)x′ = Fx by Étale
Cohomology, Lemma 59.36.2. Now we claim that the diagram

(g−1f!F)y′

��

(f!F)y //

xx

⊕
f(x)=y Fx

��
(f ′

! (g′)−1F)y′ //⊕
f ′(x′)=y′(g′)−1Fx′

commutes where the horizontal arrows are given in the proof of Lemma 63.4.2 and
where the right vertical arrow is an equality by what we just said above. The
southwest arrow is described in Remark 63.4.9 as the pullback map, i.e., simply
given by our construction c above. Then the simple description of the image of a
sum

∑
(Zi, zi) in the stalk at x given in the proof of Lemma 63.4.2 immediately

shows the diagram commutes. This finishes the proof of the lemma. □

Lemma 63.4.11.0F79 Let f ′ : X → Y ′ and g : Y ′ → Y be composable morphisms of
schemes with f ′ and f = g ◦ f ′ locally quasi-finite and g separated and locally of
finite type. Then there is a canonical isomorphism of functors g! ◦ f ′

! = f!. This
isomorphism is compatible with

https://stacks.math.columbia.edu/tag/0F5J
https://stacks.math.columbia.edu/tag/0F79
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(a) covariance with respect to open embeddings as in Remarks 63.3.5 and
63.4.6,

(b) the base change isomorphisms of Lemmas 63.4.10 and 63.3.12, and
(c) equal to the isomorphism of Lemma 63.3.13 via the identifications of

Lemma 63.4.1 in case f ′ is separated.

Proof. Let F be an abelian sheaf on Xétale. With conventions as in Remark 63.4.9
we will explicitly construct a map

c : fp!F −→ g∗f
′
p!F

of abelian presheaves on Yétale. By the discussion in Remark 63.4.9 this will de-
termine a canonical map c# : f!F → g∗f

′
!F . We will show that c# has image

contained in the subsheaf g!f
′
!F , thereby obtaining a map c′ : f!F → g!f

′
!F . Next,

we will prove (a), (b), and (c) that. Finally, part (b) will allow us to show that c′

is an isomorphism.

Construction of the map c. Let V ∈ Yétale and let s =
∑

(Zi, si) be a sum as
in (63.4.0.1) defining an element of fp!F(V ). Recall that Zi ⊂ XV = X ×Y V
is a locally closed subscheme finite over V . Setting V ′ = Y ′ ×Y V we get XV ′ =
X×Y ′ V ′ = XV . Hence Zi ⊂ XV ′ is locally closed and Zi is finite over V ′ because g
is separated (Morphisms, Lemma 29.44.14). Hence we may set c(s) =

∑
(Zi, si) but

now viewed as an element of f ′
p!F(V ′) = (g∗f

′
p!F)(V ). The construction is clearly

compatible with relations (1) and (2) and compatible with restriction mappings
and hence we obtain the map c.

Observe that in the discussion above our section c(s) =
∑

(Zi, si) of f ′
!F over V ′

restricts to zero on V ′ \Im(
∐
Zi → V ′). Since Im(

∐
Zi → V ′) is proper over V (for

example by Morphisms, Lemma 29.41.10) we conclude that c(s) defines a section
of g!f

′
!F ⊂ g∗f

′
!F over V . Since every local section of f!F locally comes from a

local section of fp!F we conclude that the image of c# is contained in g!f
′
!F . Thus

we obtain an induced map c′ : f!F → g!f
′
!F factoring c# as predicted in the first

paragraph of the proof.

Proof of (a). Let Y ′
1 ⊂ Y ′ be an open subscheme and set X1 = (f ′)−1(W ′). We

obtain a diagram

X1

f ′
1
��

a
//

f1

��

X

f ′

��
f

��

Y ′
1

g1

��

b′
// Y ′

g

��
Y Y
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where the horizontal arrows are open immersions. Then our claim is that the
diagram

f1,!F|X1
c′

1

//

��

g1,!f
′
1,!F|X1

g1,!(f ′
!F)|Y ′

1

��
f!F

c′
// g!f

′
!F // g∗f

′
!F

commutes where the left vertical arrow is Remark 63.4.6 and the right vertical
arrow is Remark 63.3.5. The equality sign in the diagram comes about because
f ′

1 is the restriction of f ′ to Y ′
1 and our construction of f ′

! is local on the base.
Finally, to prove the commutativity we choose an object V of Yétale and a formal
sum s1 =

∑
(Z1,i, s1,i) as in (63.4.0.1) defining an element of f1,p!F|X1(V ). Recall

this means Z1,i ⊂ X1×Y V is locally closed finite over V and s1,i ∈ HZ1,i(F). Then
we chase this section across the maps involved, but we only need to show we end up
with the same element of g∗f

′
!F(V ) = f ′

!F(Y ′ ×Y V ). Going around both sides of
the diagram the reader immediately sees we end up with the element

∑
(Z1,i, s1,i)

where now Z1,i is viewed as a locally closed subscheme of X×Y ′ (Y ′×Y V ) = X×Y V
finite over Y ′ ×Y V .
Proof of (b). Let b : Y1 → Y be a morphism of schemes. Let us form the commu-
tative diagram

X1

f ′
1
��

a
//

f1

��

X

f ′

��
f

��

Y ′
1

g1

��

b′
// Y ′

g

��
Y1

b // Y

with cartesian squares. We claim that our construction is compatible with the base
change maps of Lemmas 63.4.10 and 63.3.12, i.e., that the top rectangle of the
diagram

b−1f!F //

b−1c′

��

f1,!a
−1F

c′
1
��

b−1g!f
′
!F //

��

g1,!(b′)−1f ′
!F //

��

g1,!f
′
1,!a

−1F

��
b−1g∗f

′
!F // g1,∗(b′)−1f ′

!F // g1,∗f
′
1,!a

−1F

commutes. The verification of this is completely routine and we urge the reader
to skip it. Since the arrows going from the middle row down to the bottom row
are injective, it suffices to show that the outer diagram commutes. To show this it
suffices to take a local section of b−1f!F and show we end up with the same local
section of g1,∗f

′
1,!a

−1F going around either way. However, in fact it suffices to check
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this for local sections which are of the the pullback by b of a section s =
∑

(Zi, si) of
fp!F(V ) as above (since such pullbacks generate the abelian sheaf b−1f!F). Denote
V1, V ′

1 , and Z1,i the base change of V , V ′ = Y ′ ×Y V , Zi by Y1 → Y . Recall
that Zi is a locally closed subscheme of XV = XV ′ and hence Z1,i is a locally
closed subscheme of (X1)V1 = (X1)V ′

1
. Then b−1c′ sends the pullback of s to the

pullback of the local section c(s)
∑

(Zi, si) viewed as an element of f ′
p!F(V ′) =

(g∗f
′
p!F)(V ). The composition of the bottom two base change maps simply maps

this to
∑

(Zi,1, s1,i) viewed as an element of f ′
1,p!a

−1F(V ′
1) = g1,∗f

′
1,p!a

−1F(V1). On
the other hand, the base change map at the top of the diagram sends the pullback
of s to

∑
(Z1,i, s1,i) viewed as an element of f1,!a

−1F(V1). Then finally c′
1 by its

very construction does indeed map this to
∑

(Zi,1, s1,i) viewed as an element of
f ′

1,p!a
−1F(V ′

1) = g1,∗f
′
1,p!a

−1F(V1) and the commutativity has been verified.

Proof of (c). This follows from comparing the definitions for both maps; we omit
the details.

To finish the proof it suffices to show that the pullback of c′ via any geometric
point y : Spec(k) → Y is an isomorphism. Namely, pulling back by y is the same
thing as taking stalks and y (Étale Cohomology, Remark 59.56.6) and hence we can
invoke Étale Cohomology, Theorem 59.29.10. By the compatibility (b) just shown,
we conclude that we may assume Y is the spectrum of k and we have to show that
c′ is an isomorphism. To do this it suffices to show that the induced map⊕

x∈X
Fx = H0(Y, f!F) −→ H0(Y, g!f

′
!F) = H0

c (Y ′, f ′
!F)

is an isomorphism. The equalities hold by Lemmas 63.4.5 and 63.3.11. Recall that
X is a disjoint union of spectra of Artinian local rings with residue field k, see
Varieties, Lemma 33.20.2. Since the left and right hand side commute with direct
sums (details omitted) we may assume that F is a skyscraper sheaf x∗A supported
at some x ∈ X. Then f ′

!F is the skyscraper sheaf at the image y′ of x in Y by
Lemma 63.4.5. In this case it is obvious that our construction produces the identity
map A→ H0

c (Y ′, y′
∗A) = A as desired. □

Lemma 63.4.12.0F6T Let f : X → Y and g : Y → Z be composable locally quasi-finite
morphisms of schemes. Then there is a canonical isomorphism of functors

(g ◦ f)! −→ g! ◦ f!

These isomorphisms satisfy the following properties:
(1) If f and g are separated, then the isomorphism agrees with Lemma 63.3.13.
(2) If g is separated, then the isomorphism agrees with Lemma 63.4.11.
(3) For a geometric point z : Spec(k)→ Z the diagram

((g ◦ f)!F)z

��

//⊕
g(f(x))=z Fx

(g!f!F)z //⊕
g(y)=z(f!F)y //⊕

g(f(x))=z Fx

is commutative where the horizontal arrows are given by Lemma 63.4.5.

https://stacks.math.columbia.edu/tag/0F6T
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(4) Let h : Z → T be a third locally quasi-finite morphism of schemes. Then
the diagram

(h ◦ g ◦ f)! //

��

(h ◦ g)! ◦ f!

��
h! ◦ (g ◦ f)! // h! ◦ g! ◦ f!

commutes.
(5) Suppose that we have a diagram of schemes

X ′

f ′

��

c
// X

f

��
Y ′

g′

��

b
// Y

g

��
Z ′ a // Z

with both squares cartesian and f and g locally quasi-finite. Then the
diagram

a−1 ◦ (g ◦ f)!

��

// (g′ ◦ f ′)! ◦ c−1

��
a−1 ◦ g! ◦ f! // g′

! ◦ b−1 ◦ f! // g′
! ◦ f ′

! ◦ c−1

commutes where the horizontal arrows are those of Lemma 63.4.10.

Proof. If f and g are separated, then this is a special case of Lemma 63.3.13. If g
is separated, then this is a special case of Lemma 63.4.11 which moreover agrees
with the case where f and g are separated.
Construction in the general case. Choose an open covering Y =

⋃
Yi such that the

restriction gi : Yi → Z of g is separated. Set Xi = f−1(Yi) and denote fi : Xi → Yi
the restriction of f . Also denote h = g ◦ f and hi : Xi → Z the restriction of h.
Consider the following diagram⊕

i0,i1
hi0i1,!F|Xi0i1 //

��

⊕
i0
hi0,!F|Xi0 //

��

h!F //

��

0

⊕
i0,i1

gi0i1,!fi0i1,!F|Xi0i1 //

��

⊕
i0
gi0,!fi0,!F|Xi0

��⊕
i0,i1

gi0i1,!(f!F)|Yi0i1 //⊕
i0
gi0,!(f!F)|Yi0 // g!f!F // 0

By Lemma 63.4.7 the top and bottom row in the diagram are exact. By Lemma
63.4.11 the top left square commutes. The vertical arrows in the lower left square
come about because (f!F)|Yi0i1 = fi0i1,!F|Xi0i1 and (f!F)|Yi0 = fi0,!F|Xi0 as the
construction of f! is local on the base. Moreover, these equalities are (of course)
compatible with the identifications ((f!F)|Yi0 )|Yi0i1 = (f!F)|Yi0i1 and (fi0,!F|Xi0 )|Yi0i1 =
fi0i1,!F|Xi0i1 which are used (together with the covariance for open embeddings for
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Yi0i1 ⊂ Yi0) to define the horizontal maps of the lower left square. Thus this square
commutes as well. In this way we conclude there is a unique dotted arrow as
indicated in the diagram and moreover this arrow is an isomorphism.

Proof of properties (1) – (5). Fix the open covering Y =
⋃
Yi. Observe that if

Y → Z happens to be separated, then we get a dotted arrow fitting into the huge
diagram above by using the map of Lemma 63.4.11 (by the very properties of that
lemma). This proves (2) and hence also (1) by the compatibility of the maps of
Lemma 63.4.11 and Lemma 63.3.13. Next, for any scheme Z ′ over Z, we obtain
the compatibility in (5) for the map (g′ ◦ f ′)! → g′

! ◦ f ′
! constructed using the open

covering Y ′ =
⋃
b−1(Yi). This is clear from the corresponding compatibility of the

maps constructed in Lemma 63.4.11. In particular, we can consider a geometric
point z : Spec(k)→ Z. Since Xz → Yz → Spec(k) are separated maps, we find that
the base change of (g ◦ f)!F → g!f!F by z is equal to the map of Lemma 63.3.13.
The reader then immediately sees that we obtain property (3). Of course, property
(3) guarantees that our transformation of functors (g◦f)! → g!◦f! constructed using
the open covering Y =

⋃
Yi doesn’t depend on the choice of this open covering.

Finally, property (4) follows by looking at what happens on stalks using the already
proven property (3). □

63.5. Weightings and trace maps for locally quasi-finite morphisms

0GKE A reference for this section is [AGV71, Exposee XVII, Proposition 6.2.5].

Let f : X → Y be a locally quasi-finite morphism of schemes. Let w : X → Z be
a weighting of f , see More on Morphisms, Definition 37.75.2. Let F be an abelian
sheaf on Yétale. In this section we will show that there exists map

Trf,w,F : f!f
−1F −→ F

of abelian sheaves on Yétale characterized by the following property: on stalks at a
geometric point y of Y we obtain the map⊕

f(x)=y
w(x) : (f!f

−1F)y =
⊕

f(x)=y
Fy −→ Fy

Here as indicated the arrow is given by multiplication by the integer w(x) on the
summand corresponding to x. The equality on the left of the arrow follows from
Lemma 63.4.5 combined with Étale Cohomology, Lemma 59.36.2.

If the morphism f : X → Y is flat, locally quasi-finite, and locally of finite pre-
sentation, then there exists a canonical weighting and we obtain a canonical trace
map whose formation is compatible with base change, see Example 63.5.5. If Y is
a locally Noetherian unibranch scheme and f : X → Y is locally quasi-finite, then
we can also define a (natural) weighting for f and we have trace maps in this case
as well, see Example 63.5.7.

Lemma 63.5.1.0GKF Let f : X → Y be a locally quasi-finite morphism of schemes.
Let Λ be a ring. Let F be a sheaf of Λ-modules on Xétale and let G be a sheaf of
Λ-modues on Yétale. There is a canonical isomorphism

can : f!F ⊗Λ G −→ f!(F ⊗Λ f
−1G)

of sheaves of Λ-modules on Yétale.

https://stacks.math.columbia.edu/tag/0GKF


63.5. WEIGHTINGS AND TRACE MAPS FOR LOCALLY QUASI-FINITE MORPHISMS5126

Proof. Recall that f!F = (fp!F)# by Definition 63.4.4 where fp!F is the presheaf
constructed in Section 63.4. Thus in order to construct the arrow it suffices to
construct a map

fp!F ⊗p,Λ G −→ fp!(F ⊗Λ f
−1G)

of presheaves on Yétale. Here the symbol ⊗p,Λ denotes the presheaf tensor product,
see Modules on Sites, Section 18.26. Let V be an object of Yétale. Recall that
fp!F(V ) = colimZ HZ(F) and fp!(F ⊗Λ f

−1G)(V ) = colimZ HZ(F ⊗Λ f
−1G)

See Section 63.4. Our map will be defined on pure tensors by the rule
(Z, s)⊗ t 7−→ (Z, s⊗ f−1t)

(for notation see below) and extended by linearity to all of (fp!F ⊗p,Λ G)(V ) =
fp!F(V )⊗Λ G(V ). Here the notation used is as follows

(1) Z ⊂ XV is a locally closed subscheme finite over V ,
(2) s ∈ HZ(F) which means that s ∈ F(U) with Supp(s) ⊂ Z for some

U ⊂ XV open such that Z ⊂ U is closed, and
(3) t ∈ G(V ) with image f−1t ∈ f−1G(U).

Since the support of s ∈ F(U) is contained in Z it is clear that the support of
s ⊗ f−1t is contained in Z as well. Thus considering the pair (Z, s ⊗ f−1t) makes
sense. It is immediate that the construction commutes with the transition maps
in the colimit colimZ HZ(F) and that it is compatible with restriction mappings.
Finally, it is equally clear that the construction is compatible with the identifications
of stalks of f! in Lemma 63.4.5. In other words, the map can we’ve produced on
stalks at a geometric point y fits into a commutative diagram

(f!F ⊗Λ G)y cany
//

��

f!(F ⊗Λ f
−1G)y

��
(
⊕
Fx)⊗Λ Gy //⊕(Fx ⊗Λ Gy)

where the direct sums are over the geometric points x lying over y, where the vertical
arrows are the identifications of Lemma 63.4.5, and where the lower horizontal arrow
is the obvious isomorphism. We conclude that can is an isomorphism as desired. □

Lemma 63.5.2.0GKG Let f : X → Y be a locally quasi-finite morphism of schemes. Let
w : X → Z be a weighting of f . For any abelian sheaf F on Y there exists a unique
trace map Trf,w,F : f!f

−1F → F having the prescribed behaviour on stalks.

Proof. By Lemma 63.5.1 we have an identification f!f
−1F = f!Z ⊗ F compatible

with the description of stalks of these sheaves at geometric points. Hence it suffices
to produce the map

Trf,w,Z : f!Z −→ Z
having the prescribed behaviour on stalks. By Definition 63.4.4 we have f!Z =
(fp!Z)# where fp!Z is the presheaf constructed in Section 63.4. Thus it suffices to
construct a map

fp!Z −→ Z
of presheaves on Yétale. Let V be an object of Yétale. Recall from Section 63.4 that

fp!Z(V ) = colimZ HZ(Z)

https://stacks.math.columbia.edu/tag/0GKG
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Here the colimit is over the (partially ordered) collection of locally closed sub-
schemes Z ⊂ XV which are finite over V . For each such Z we will define a map

HZ(Z) −→ Z(V )

compatible with the maps defining the colimit.

Let Z ⊂ XV be locally closed and finite over V . Choose an open U ⊂ XV containing
Z as a closed subset. An element s of HZ(Z) is a section s ∈ Z(U) whose support
is contained in Z. Let Un ⊂ U be the open and closed subset where the value of s
is n ∈ Z. By the support condition we see that Z ∩ Un = Un for n ̸= 0. Hence for
n ̸= 0, the open Un is also closed in Z (as the complement of all the others) and
we conclude that Un → V is finite as Z is finite over V . By the very definition of
a weighting this means the function

∫
Un→V

w|Un is locally constant on V and we
may view it as an element of Z(V ). Our construction sends (Z, s) to the element∑

n∈Z, n ̸=0
n

(∫
Un→V

w|Un
)

∈ Z(V )

The sum is locally finite on V and hence makes sense; details omitted (in the whole
discussion the reader may first choose affine opens and make sure all the schemes
occuring in the argument are quasi-compact so the sum is finite). We omit the
verification that this construction is compatible with the maps in the colimit and
with the restriction mappings defining fp!Z.

Let y be a geometric point of Y lying over the point y ∈ Y . Taking stalks at y the
construction above determines a map

(f!Z)y =
⊕

f(x)=y
Z −→ Z = Zy

To finish the proof we will show this map is given by multiplication by w(x) on
the summand corresponding to x. Namely, pick x lying over y. We can find an
étale neighbourhood (V, v) → (Y, y) such that XV contains an open U finite over
V such that only the geometric point x is in U and not the other geometric points
of X lifting y. This follows from More on Morphisms, Lemma 37.41.3; some details
omitted. Then (U, 1) defines a section of f!Z over V which maps to 1 in the
summand corresponding to x and zero in the other summands (see proof of Lemma
63.4.2) and our construction above sends (U, 1) to

∫
U→V

w|U which is constant with
value w(x) in a neighbourhood of v as desired. □

Lemma 63.5.3.0GKH Let f : X → Y be a locally quasi-finite morphism of schemes.
Let w : X → Z be a weighting of f . The trace maps constructed above have the
following properties:

(1) Trf,w,F is functorial in F ,
(2) Trf,w,F is compatible with arbitrary base change,
(3) given a ring Λ and K in D(Yétale,Λ) we obtain Trf,w,K : f!f

−1K → K
functorial in K and compatible with arbitrary base change.

Proof. Part (1) either follows from the construction of the trace map in the proof
of Lemma 63.5.2 or more simply because the characterization of the map forces it

https://stacks.math.columbia.edu/tag/0GKH
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to be true on all stalks. Let
X ′

g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian diagram of schemes. Then the function w′ = w ◦ g′ : X ′ → Z is a
weighting of f ′ by More on Morphisms, Lemma 37.75.3. Statement (2) means that
the diagram

g−1f!f
−1F

g−1Trf,w,F
// g−1F

f ′
! (f ′)−1g−1F

Trf′,w′,g−1F // g−1F

is commutative where the left vertical equality is given by

g−1f!f
−1F = f ′

! (g′)−1f−1F = f ′
! (f ′)−1g−1F

with first equality sign given by Lemma 63.4.10 (base change for lower shriek). The
commutativity of this diagram follows from the characterization of the action of
our trace maps on stalks and the fact that the base change map of Lemma 63.4.10
respects the descriptions of stalks.

Given parts (1) and (2), part (3) follows as the functors f−1 : D(Yétale,Λ) →
D(Xétale,Λ) and f! : D(Xétale,Λ) → D(Yétale,Λ) are obtained by applying f−1

and f! to any complexes of modules representing the objects in question. □

Lemma 63.5.4.0GL3 Let f : X → Y and g : Y → Z be locally quasi-finite morphisms.
Let wf : X → Z be a weighting of f and let wg : Y → Z be a weighting of g. For
K ∈ D(Zétale,Λ) the composition

(g ◦ f)!(g ◦ f)−1K = g!f!f
−1g−1K

g!Trf,wf ,g−1K
−−−−−−−−−→ g!g

−1K
Trg,wg,K−−−−−−→ K

is equal to Trg◦f,wg◦f ,K where wg◦f (x) = wf (x)wg(f(x)).

Proof. We have (g◦f)! = g!◦f! by Lemma 63.4.12. In More on Morphisms, Lemma
37.75.5 we have seen that wg◦f is a weighting for g◦f so the statement makes sense.
To check equality compute on stalks. Details omitted. □

Example 63.5.5 (Trace for flat quasi-finite).0GKI Let f : X → Y be a morphism of
schemes which is flat, locally quasi-finite, and locally of finite presentation. Then
we obtain a canonical positive weighting w : X → Z by setting

w(x) = lengthOX,x
(OX,x/mf(x)OX,x)[κ(x) : κ(f(x))]i

See More on Morphisms, Lemma 37.75.7. Thus by Lemmas 63.5.2 and 63.5.3 for f
we obtain trace maps

Trf,K : f!f
−1K −→ K

functorial for K in D(Yétale,Λ) and compatible with arbitrary base change. Note
that any base change f ′ : X ′ → Y ′ of f satisfies the same properties and that w
restricts to the canonical weighting for f ′.

https://stacks.math.columbia.edu/tag/0GL3
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Remark 63.5.6.0GL4 Let j : U → X be an étale morphism of schemes. Then the trace
map Tr : j!j

−1K → K of Example 63.5.5 is equal to the counit for the adjunction
between j! and j−1. We already used the terminology “trace” for this counit in
Étale Cohomology, Section 59.66.

Example 63.5.7 (Trace for quasi-finite over normal).0GKJ Let Y be a geometrically
unibranch and locally Noetherian scheme, for example Y could be a normal variety.
Let f : X → Y be a locally quasi-finite morphism of schemes. Then there exists a
positive weighting w : X → Z for f which is roughly defined by sending x to the
“generic separable degree” of OshX,x over OshY,f(x). See More on Morphisms, Lemma
37.75.8. Thus by Lemmas 63.5.2 and 63.5.3 for f and w we obtain trace maps

Trf,w,K : f!f
−1K −→ K

functorial for K in D(Yétale,Λ) and compatible with arbitrary base change. How-
ever, in this case, given a base change f ′ : X ′ → Y ′ of f the restriction of w to X ′

in general does not have a “natural” interpretation in terms of the morphism f ′.

63.6. Upper shriek for locally quasi-finite morphisms

0F58 For a locally quasi-finite morphism f : X → Y of schemes, the functor f! :
Ab(Xétale) → Ab(Yétale) commutes with direct sums and is exact, see Lemma
63.4.5. This suggests that it has a right adjoint which we will denote f !.
Warning: This functor is the non-derived version!

Lemma 63.6.1.0F59 Let f : X → Y be a locally quasi-finite morphism of schemes.
(1) The functor f! : Ab(Xétale)→ Ab(Yétale) has a right adjoint f ! : Ab(Yétale)→

Ab(Xétale).
(2) We have f !(y∗A) =

∏
f(x)=y x∗A.

(3) If Λ is a ring, then the functor f! : Mod(Xétale,Λ) → Mod(Yétale,Λ) has
a right adjoint f ! : Mod(Yétale,Λ)→ Mod(Xétale,Λ) which agrees with f !

on underlying abelian sheaves.

Proof. Proof of (1). Let E ⊂ Ob(Ab(Yétale)) be the class consisting of products of
skyscraper sheaves. We claim that

(a) every G in Ab(Yétale) is a subsheaf of an element of E, and
(b) for every G ∈ E there exists an objectH of Ab(Xétale) such that Hom(f!F ,G) =

Hom(F ,H) functorially in F .
Once the claim has been verified, the dual of Homology, Lemma 12.29.6 produces
the adjoint functor f !.
Part (a) is true because we can map G to the sheaf

∏
y∗Gy where the product is

over all geometric points of Y . This is an injection by Étale Cohomology, Theorem
59.29.10. (This is the first step in the Godement resolution when done in the setting
of abelian sheaves on topological spaces.)
Part (b) and part (2) of the lemma can be seen as follows. Suppose that G =

∏
y∗Ay

for some abelian groups Ay. Then

Hom(f!F ,G) =
∏

Hom(f!F , y∗Ay)

Thus it suffices to find abelian sheaves Hy on Xétale representing the functors
F 7→ Hom(f!F , y∗Ay) and to take H =

∏
Hy. This reduces us to the case H = y∗A

https://stacks.math.columbia.edu/tag/0GL4
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for some fixed geometric point y : Spec(k) → Y and some fixed abelian group A.
We claim that in this case H =

∏
f(x)=y x∗A works. This will finish the proof of

parts (1) and (2) of the lemma. Namely, we have

Hom(f!F , y∗A) = HomAb((f!F)y, A) = HomAb(
⊕

f(x)=y
Fx, A)

by the description of stalks in Lemma 63.4.5 on the one hand and on the other
hand we have

Hom(F ,H) =
∏

f(x)=y
Hom(F , x∗A) =

∏
f(x)=y

HomAb(Fx, A)

We leave it to the reader to identify these as functors of F .
Proof of part (3). Observe that an object Mod(Xétale,Λ) is the same thing as an
object F of Ab(Xétale) together with a map Λ → End(F). Hence the functors f!
and f ! in (1) define functors f! and f ! as in (3). A straightforward computation
shows that they are adjoints. □

Lemma 63.6.2.0F5A Let j : U → X be an étale morphism. Then j! = j−1.

Proof. This is true because j! as defined in Section 63.4 agrees with j! as defined in
Étale Cohomology, Section 59.70, see Lemma 63.4.3. Finally, in Étale Cohomology,
Section 59.70 the functor j! is defined as the left adjoint of j−1 and hence we
conclude by uniqueness of adjoint functors. □

Lemma 63.6.3.0F5B Let f : X → Y and g : Y → Z be separated and locally quasi-finite
morphisms. There is a canonical isomorphism (g ◦ f)! → f ! ◦ g!. Given a third
locally quasi-finite morphism h : Z → T the diagram

(h ◦ g ◦ f)! //

��

f ! ◦ (h ◦ g)!

��
(g ◦ f)! ◦ h! // f ! ◦ g! ◦ h!

commutes.

Proof. By uniqueness of adjoint functors, this immediately translates into the cor-
responding (dual) statement for the functors f!. See Lemma 63.4.12. □

Lemma 63.6.4.0F5C Let j : U → X and j′ : V → U be étale morphisms. The
isomorphism (j ◦ j′)−1 = (j′)−1 ◦ j−1 and the isomorphism (j ◦ j′)! = (j′)! ◦ j! of
Lemma 63.6.3 agree via the isomorphism of Lemma 63.6.2.

Proof. Omitted. □

Lemma 63.6.5.0F6U Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of schemes with f locally quasi-finite. For any abelian sheaf F on Y ′
étale we have

(g′)∗(f ′)!F = f !g∗F .

https://stacks.math.columbia.edu/tag/0F5A
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Proof. By uniqueness of adjoint functors, this follows from the corresponding (dual)
statement for the functors f!. See Lemma 63.4.10. □

Remark 63.6.6.0F5L The material in this section can be generalized to sheaves of pointed
sets. Namely, for a site C denote Sh∗(C) the category of sheaves of pointed sets.
The constructions in this and the preceding section apply, mutatis mutandis, to
sheaves of pointed sets. Thus given a locally quasi-finite morphism f : X → Y of
schemes we obtain an adjoint pair of functors

f! : Sh∗(Xétale) −→ Sh∗(Yétale) and f ! : Sh∗(Yétale) −→ Sh∗(Xétale)

such that for every geometric point y of Y there are isomorphisms

(f!F)y =
∐

f(x)=y
Fx

(coproduct taken in the category of pointed sets) functorial in F ∈ Sh∗(Xétale) and
isomorphisms

f !(y∗S) =
∏

f(x)=y
x∗S

functorial in the pointed set S. If F : Ab(Xétale)→ Sh∗(Xétale) and F : Ab(Yétale)→
Sh∗(Yétale) denote the forgetful functors, compatibility between the constructions
will guarantee the existence of canonical maps

f!F (F) −→ F (f!F)

functorial in F ∈ Ab(Xétale) and

F (f !G) −→ f !F (G)

functorial in G ∈ Ab(Yétale) which produce the obvious maps on stalks, resp.
skyscraper sheaves. In fact, the transformation F ◦ f ! → f ! ◦ F is an isomorphism
(because f ! commutes with products).

63.7. Derived upper shriek for locally quasi-finite morphisms

0F5M We can take the derived versions of the functors in Section 63.6 and obtain the
following.

Lemma 63.7.1.0F5N Let f : X → Y be a locally quasi-finite morphism of schemes.
Let Λ be a ring. The functors f! and f ! of Definition 63.4.4 and Lemma 63.6.1
induce adjoint functors f! : D(Xétale,Λ) → D(Yétale,Λ) and Rf ! : D(Yétale,Λ) →
D(Xétale,Λ) on derived categories.

In the separated case the functor f! is defined in Section 63.3.

Proof. This follows immediately from Derived Categories, Lemma 13.30.3, the fact
that f! is exact (Lemma 63.4.5) and hence Lf! = f! and the fact that we have
enough K-injective complexes of Λ-modules on Yétale so that Rf ! is defined. □

Remark 63.7.2.0GJX Let f : X → Y be a locally quasi-finite morphism of schemes. Let
Λ be a ring. The functor f! : D(Xétale,Λ) → D(Yétale,Λ) of Lemma 63.7.1 sends
complexes with torsion cohomology sheaves to complexes with torsion cohomology
sheaves. This is immediate from the description of the stalks of f!, see Lemma
63.4.5.

https://stacks.math.columbia.edu/tag/0F5L
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Lemma 63.7.3.0GKK Let X be a scheme. Let X = U ∪V with U and V open. Let Λ be
a ring. Let K ∈ D(Xétale,Λ). There is a distinguished triangle

jU∩V !K|U∩V → jU !K|U ⊕ jV !K|V → K → jU∩V !K|U∩V [1]
in D(Xétale,Λ) with obvious notation.

Proof. Since the restriction functors and the lower shriek functors we use are exact,
it suffices to show for any abelian sheaf F on Xétale the sequence

0→ jU∩V !F|U∩V → jU !F|U ⊕ jV !F|V → F → 0
is exact. This can be seen by looking at stalks. □

Lemma 63.7.4.0GKL Let X be a scheme. Let Z ⊂ X be a closed subscheme and let
U ⊂ X be the complement. Denote i : Z → X and j : U → X the inclusion
morphisms. Let Λ be a ring. Let K ∈ D(Xétale,Λ). There is a distinguished
triangle

j!j
−1K → K → i∗i

−1K → j!j
−1K[1]

in D(Xétale,Λ).

Proof. Immediate consequence of Étale Cohomology, Lemma 59.70.8 and the fact
that the functors j!, j−1, i∗, i−1 are exact and hence their derived versions are
computed by applying these functors to any complex of sheaves representing K. □

63.8. Preliminaries to derived lower shriek via compactifications

0F7A In this section we prove some lemmas on the existence of certain natural isomor-
phisms of functors which follow immediately from proper base change.

Lemma 63.8.1.0F7B Consider a commutative diagram of schemes

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

with f and f ′ proper and g and g′ separated and locally quasi-finite. Let Λ be a
ring. Functorially in K ∈ D(X ′

étale,Λ) there is a canonical map
g!Rf

′
∗K −→ Rf∗(g′

!K)
in D(Yétale,Λ). This map is an isomorphism if (a) K is bounded below and has
torsion cohomology sheaves, or (b) Λ is a torsion ring.

Proof. Represent K by a K-injective complex J • of sheaves of Λ-modules on X ′
étale.

Choose a quasi-isomorphism g′
!J • → I• to a K-injective complex I• of sheaves of

Λ-modules on Xétale. Then we can consider the map
g!f

′
∗J • = g!f

′
!J • = f!g

′
!J • = f∗g

′
!J • → f∗I•

where the first and third equality come from Lemma 63.3.4 and the second equality
comes from Lemma 63.3.13 which tells us that both g! ◦ f ′

! and f! ◦ g′
! are equal to

(g ◦ f ′)! = (f ◦ g′)! as subsheaves of (g ◦ f ′)∗ = (f ◦ g′)∗.
Assume Λ is torsion, i.e., we are in case (b). With notation as above, it suffices
to show that f∗g

′
!J • → f∗I• is an isomorphism. The question is local on Y .

Hence we may assume that the dimension of fibres of f is bounded, see Morphisms,

https://stacks.math.columbia.edu/tag/0GKK
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Lemma 29.28.5. Then we see that Rf∗ has finite cohomological dimension, see
Étale Cohomology, Lemma 59.92.2. Hence by Derived Categories, Lemma 13.32.2,
if we show that Rqf∗(g′

!J ) = 0 for q > 0 and any injective sheaf of Λ-modules J
on X ′

étale, then the result follows.
The stalk of Rqf∗(g′

!J ) at a geometric point y is equal to Hq(Xy, (g′
!J )|Xy ) by

Étale Cohomology, Lemma 59.91.13. Since formation of g′
! commutes with base

change (Lemma 63.3.12) this is equal to
Hq(Xy, g

′
y,!(J |X′

y
))

where g′
y : X ′

y → Xy is the induced morphism between geometric fibres. Since
Y ′ → Y is locally quasi-finite, we see that X ′

y is a disjoint union of the fibres X ′
y′

at geometric points y′ of Y ′ lying over y. Denote g′
y′ : X ′

y′ → Xy the restriction of
g′
y to X ′

y′ . Thus the previous cohomology group is equal to

Hq(Xy,
⊕

y′/y
g′
y′,!(J |X′

y′
))

for example by Lemma 63.3.15 (but it is also obvious from the definition of g′
y,! in

Section 63.3). Since taking étale cohomology over Xy commutes with direct sums
(Étale Cohomology, Theorem 59.51.3) we conclude it suffices to show that

Hq(Xy, g
′
y′,!(J |X′

y′
))

is zero. Observe that gy′ : X ′
y′ → Xy is a morphism between proper scheme over y

and hence is proper itself. As it is locally quasi-finite as well we conclude that gy′

is finite. Thus we see that g′
y′,! = g′

y′,∗ = Rg′
y′,∗. By Leray we conlude that we have

to show
Hq(X ′

y′ ,J |X′
y′

)

is zero. As Λ is torsion, this follows from proper base change (Étale Cohomology,
Lemma 59.91.13) as the higher direct images of J under f ′ are zero.
Proof in case (a). We will deduce this from case (b) by standard arguments. We
will show that the induced map g!R

pf ′
∗K → Rpf∗(g′

!K) is an isomorphism for all
p ∈ Z. Fix an integer p0 ∈ Z. Let a be an integer such that Hj(K) = 0 for j < a.
We will prove g!R

pf ′
∗K → Rpf∗(g′

!K) is an isomorphism for p ≤ p0 by descending
induction on a. If a > p0, then we see that the left and right hand side of the map
are zero for p ≤ p0 by trivial vanishing, see Derived Categories, Lemma 13.16.1 (and
use that g! and g′

! are exact functors). Assume a ≤ p0. Consider the distinguished
triangle

Ha(K)[−a]→ K → τ≥a+1K

By induction we have the result for τ≥a+1K. In the next paragraph, we will prove
the result for Ha(K)[−a]. Then five lemma applied to the map between long exact
sequence of cohomology sheaves associated to the map of distinguished triangles

g!Rf
′
∗(Ha(K)[−a])

��

// g!Rf
′
∗K //

��

g!Rf
′
∗τ≥a+1K

��
Rf∗(g′

!(Ha(K)[−a])) // Rf∗(g′
!K) // Rf∗(g′

!τ|geqa+1K)

gives the result for K. Some details omitted.
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Let F be a torsion abelian sheaf on X ′
étale. To finish the proof we show that

g!Rf
′
∗F → Rpf∗(g′

!F) is an isomorphism for all p. We can write F =
⋃
F [n] where

F [n] = Ker(n : F → F). We have the isomorphism for F [n] by case (b). Since
the functors g!, g′

! , Rpf∗, Rpf ′
∗ commute with filtered colimits (follows from Lemma

63.3.17 and Étale Cohomology, Lemma 59.51.8) the proof is complete. □

Lemma 63.8.2.0F7C Consider a commutative diagram of schemes

X ′
k
//

f ′

��

X

f

��
Y ′

l
//

g′

��

Y

g

��
Z ′ m // Z

with f , f ′, g and g′ proper and k, l, and m separated and locally quasi-finite.
Then the isomorphisms of Lemma 63.8.1 for the two squares compose to give the
isomorphism for the outer rectangle (see proof for a precise statement).

Proof. The statement means that if we write R(g◦f)∗ = Rg∗◦Rf∗ and R(g′◦f ′)∗ =
Rg′

∗◦Rf ′
∗, then the isomorphism m!◦Rg′

∗◦Rf ′
∗ → Rg∗◦Rf∗◦k! of the outer rectangle

is equal to the composition
m! ◦Rg′

∗ ◦Rf ′
∗ → Rg∗ ◦ l! ◦Rf ′

∗ → Rg∗ ◦Rf∗ ◦ k!

of the two maps of the squares in the diagram. To prove this choose a K-injective
complex J • of Λ-modules on X ′

étale and a quasi-isomorphism k!J • → I• to a K-
injective complex I• of Λ-modules on Xétale. The proof of Lemma 63.8.1 shows
that the canonical map

a : l!f ′
∗J • → f∗I•

is a quasi-isomorphism and this quasi-isomorphism produces the second arrow on
applying Rg∗. By Cohomology on Sites, Lemma 21.20.10 the complex f∗I•, resp.
f ′

∗J • is a K-injective complex of Λ-modules on Yétale, resp. Y ′
étale. (Using this is

cheating and could be avoided.) In particular, the same reasoning gives that the
canonical map

b : m!g
′
∗f

′
∗J • → g∗f∗I•

is a quasi-isomorphism and this quasi-isomorphism represents the first arrow. Fi-
nally, the proof of Lemma 63.8.1 show that g∗l!f

′
!J • represents Rg∗(l!f ′

∗J •) because
f ′

∗J • is K-injective. Hence Rg∗(a) = g∗(a) and the composition g∗(a)◦b is the arrow
of Lemma 63.8.1 for the rectangle. □

Lemma 63.8.3.0F7D Consider a commutative diagram of schemes

X ′′
g′
//

f ′′

��

X ′
g
//

f ′

��

X

f

��
Y ′′ h′

// Y ′ h // Y

with f , f ′, and f ′′ proper and g, g′, h, and h′ separated and locally quasi-finite.
Then the isomorphisms of Lemma 63.8.1 for the two squares compose to give the
isomorphism for the outer rectangle (see proof for a precise statement).

https://stacks.math.columbia.edu/tag/0F7C
https://stacks.math.columbia.edu/tag/0F7D
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Proof. The statement means that if we write (h ◦h′)! = h! ◦h′
! and (g ◦ g′)! = g! ◦ g′

!
using the equalities of Lemma 63.3.13, then the isomorphism h! ◦ h′

! ◦ Rf ′′
∗ →

Rf∗ ◦ g! ◦ g′
! of the outer rectangle is equal to the composition

h! ◦ h′
! ◦Rf ′′

∗ → h! ◦Rf ′
∗ ◦ g′

! → Rf∗ ◦ g! ◦ g′
!

of the two maps of the squares in the diagram. To prove this choose a K-injective
complex I• of Λ-modules on X ′′

étale and a quasi-isomorphism g′
!I• → J • to a K-

injective complex J • of Λ-modules on X ′
étale. Next, choose a quasi-isomorphism

g!J • → K• to a K-injective complex K• of Λ-modules on Xétale. The proof of
Lemma 63.8.1 shows that the canonical maps

h′
!f

′′
∗ I• → f ′

∗J • and h!f
′
∗J • → f∗K•

are quasi-isomorphisms and these quasi-isomorphisms define the first and second
arrow above. Since g! is an exact functor (Lemma 63.3.17) we find that g!g

′
!I• → K•

is a quasi-ismorphism and hence the canonical map
h!h

′
!f

′′
∗ I• → f∗K•

is a quasi-isomorphism and represents the map for the outer rectangle in the derived
category. Clearly this map is the composition of the other two and the proof is
complete. □

Remark 63.8.4.0F7E Consider a commutative diagram

X ′′
k′
//

f ′′

��

X ′
k
//

f ′

��

X

f

��
Y ′′ l′ //

g′′

��

Y ′ l //

g′

��

Y

g

��
Z ′′ m′

// Z ′ m // Z

of schemes whose vertical arrows are proper and whose horizontal arrows are sepa-
rated and locally quasi-finite. Let us label the squares of the diagram A, B, C, D
as follows

A B
C D

Then the maps of Lemma 63.8.1 for the squares are (where we use Rf∗ = f∗, etc)
γA : l′! ◦ f ′′

∗ → f ′
∗ ◦ k′

! γB : l! ◦ f ′
∗ → f∗ ◦ k!

γC : m′
! ◦ g′′

∗ → g′
∗ ◦ l′! γD : m! ◦ g′

∗ → g∗ ◦ l!
For the 2× 1 and 1× 2 rectangles we have four further maps

γA+B : (l ◦ l′)! ◦ f ′′
∗ → f∗ ◦ (k ◦ k′)∗

γC+D : (m ◦m′)! ◦ g′′
∗ → g∗ ◦ (l ◦ l′)!

γA+C : m′
! ◦ (g′′ ◦ f ′′)∗ → (g′ ◦ f ′)∗ ◦ k′

!
γB+D : m! ◦ (g′ ◦ f ′)∗ → (g ◦ f)∗ ◦ k!

By Lemma 63.8.3 we have
γA+B = γB ◦ γA, γC+D = γD ◦ γC

and by Lemma 63.8.2 we have
γA+C = γA ◦ γC , γB+D = γB ◦ γD

https://stacks.math.columbia.edu/tag/0F7E
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Here it would be more correct to write γA+B = (γB ⋆ idk′
!
)◦ (idl! ⋆γA) with notation

as in Categories, Section 4.28 and similarly for the others. Having said all of this
we find (a priori) two transformations

m! ◦m′
! ◦ g′′

∗ ◦ f ′′
∗ −→ g∗ ◦ f∗ ◦ k! ◦ k′

!

namely
γB ◦ γD ◦ γA ◦ γC = γB+D ◦ γA+C

and
γB ◦ γA ◦ γD ◦ γC = γA+B ◦ γC+D

The point of this remark is to point out that these transformations are equal.
Namely, to see this it suffices to show that

m! ◦ g′
∗ ◦ l′! ◦ f ′′

∗ γD
//

γA

��

g∗ ◦ l! ◦ l′! ◦ f ′′
∗

γA

��
m! ◦ g′

∗ ◦ f ′
∗ ◦ k′

!
γD // g∗ ◦ l! ◦ f ′

∗ ◦ k′
!

commutes. This is true because the squares A and D meet in only one point, more
precisely by Categories, Lemma 4.28.2 or more simply the discussion preceding
Categories, Definition 4.28.1.

Lemma 63.8.5.0F7F Let b : Y1 → Y be a morphism of schemes. Consider a commutative
diagram of schemes

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

and let

X ′
1

g′
1

//

f ′
1
��

X1

f1

��
Y ′

1
g1 // Y1

be the base change by b. Assume f and f ′ proper and g and g′ separated and locally
quasi-finite. For a ring Λ and K in D(X ′

étale,Λ) there is commutative diagram

b−1g!Rf
′
∗K

��

// g1,!(b′)−1Rf ′
∗K // g1,!Rf

′
1,∗(a′)−1K

��
b−1Rf∗g

′
!K

// Rf1,∗a
−1g′

!K
// Rf1,∗g

′
1,!(a′)−1K

in D(Y1,étale,Λ) where a : X1 → X, a′ : X ′
1 → X ′, b′ : Y ′

1 → Y ′ are the projections,
the vertical maps are the arrows of Lemma 63.8.1 and the horizontal arrows are
the base change map (from Étale Cohomology, Section 59.86) and the base change
map of Lemma 63.3.12.

Proof. Represent K by a K-injective complex J • of sheaves of Λ-modules on X ′
étale.

Choose a quasi-isomorphism g′
!J • → I• to a K-injective complex I• of sheaves of

Λ-modules on Xétale. The proof of Lemma 63.8.1 constructs g!Rf
′
∗K → Rf∗g

′
!K as

g!f
′
∗J • = g!f

′
!J • = f!g

′
!J • = f∗g

′
!J • → f∗I•

https://stacks.math.columbia.edu/tag/0F7F
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Choose a quasi-isomorphism (a′)−1J • → J •
1 to a K-injective complex J •

1 of sheaves
of Λ-modules on X ′

1,étale. Then we can pick a diagram of complexes

g′
1,!J •

1
// I•

1

g′
1,!(a′)−1J •

OO

a−1g′
!J • // a−1I•

OO

commuting up to homotopy where all arrows are quasi-isomorphisms, the equality
comes from Lemma 63.3.4, and I•

1 is a K-injective complex of sheaves of Λ-modules
on X1,étale. The map g1,!Rf

′
1,∗(a′)−1K → Rf1,∗g

′
1,!(a′)−1K is given by

g1,!f
′
1,∗J •

1 = g1,!f
′
1,!J •

1 = f1,!g
′
1,!J •

1 = f1,∗g
′
1,!J •

1 → f1,∗I•
1

The identifications across the 3 equal signs in both arrows are compatible with
pullback maps, i.e., the diagram

b−1g!f
′
∗J • // g1,!(b′)−1f ′

∗J • // g1,!f
′
1,∗(a′)−1J •

b−1f∗g
′
!J • // f1,∗a

−1g′
!J • // f1,∗g

′
1,!(a′)−1J •

of complexes of abelian sheaves commutes. To show this it is enough to show
the diagram commutes with g!, g1,!, g

′
! , g

′
1,! replaced by g∗, g1,∗, g

′
∗, g

′
1,∗ (because the

shriek functors are defined as subfunctors of the ∗ functors and the base change
maps are defined in a manner compatible with this, see proof of Lemma 63.3.12).
For this new diagram the commutativity follows from the compatibility of pullback
maps with horizontal and vertical stacking of diagrams, see Sites, Remarks 7.45.3
and 7.45.4 so that going around the diagram in either direction is the pullback map
for the base change of f ◦ g′ = g ◦ f ′ by b. Since of course

g1,!f
′
1,∗(a′)−1J • // g1,!f

′
1,∗J •

1

f1,∗g
′
1,!(a′)−1J • // f1,∗g

′
1,!J •

1

commutes, to finish the proof it suffices to show that

b−1f∗g
′
!J • //

��

f1,∗a
−1g′

!J • //

��

f1,∗g
′
1,!(a′)−1J • // f1,∗g

′
1,!J •

1

��
b−1f∗I• // f1,∗a

−1I• // f1,∗I•
1

commutes in the derived category, which holds by our choice of maps earlier. □

Lemma 63.8.6.0F7G Consider a commutative diagram of schemes

X
f
//

g
  

Y

h
��
Z

https://stacks.math.columbia.edu/tag/0F7G
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with f and g locally quasi-finite and h proper. Let Λ be a ring. Funtorially in
K ∈ D(Xétale,Λ) there is a canonical map

g!K −→ Rh∗(f!K)
in D(Zétale,Λ). This map is an isomorphism if (a) K is bounded below and has
torsion cohomology sheaves, or (b) Λ is a torsion ring.

Proof. This is a special case of Lemma 63.8.1 if f and g are separated. We urge
the reader to skip the proof in the general case as we’ll mainly use the case where
f and g are separated.
Represent K by a complex K• of sheaves of Λ-modules on Xétale. Choose a quasi-
isomorphism f!K• → I• into a K-injective complex I• of sheaves of Λ-modules on
Yétale. Consider the map

g!K• = h!f!K• = h∗f!K• −→ h∗I•

where the equalities are Lemmas 63.4.11 and 63.3.4. This map of complexes deter-
mines the map g!K → Rh∗(f!K) of the statement of the lemma.
Assume Λ is torsion, i.e., we are in case (b). To check the map is an isomorphism
we may work locally on Z. Hence we may assume that the dimension of fibres
of h is bounded, see Morphisms, Lemma 29.28.5. Then we see that Rh∗ has finite
cohomological dimension, see Étale Cohomology, Lemma 59.92.2. Hence by Derived
Categories, Lemma 13.32.2, if we show that Rqh∗(f!F) = 0 for q > 0 and any sheaf
F of Λ-modules on Xétale, then h∗f!K• → h∗I• is a quasi-isomorphism.
Observe that G = f!F is a sheaf of Λ-modules on Y whose stalks are nonzero only
at points y ∈ Y such that κ(y)/κ(h(y)) is a finite extension. This follows from the
description of stalks of f!F in Lemma 63.4.5 and the fact that both f and g are
locally quasi-finite. Hence by the proper base change theorem (Étale Cohomology,
Lemma 59.91.13) it suffices to show that Hq(Yz,H) = 0 where H is a sheaf on the
proper scheme Yz over κ(z) whose support is contained in the set of closed points.
Thus the required vanishing by Étale Cohomology, Lemma 59.97.3.
Case (a) follows from case (b) by the exact same argument as used in the proof of
Lemma 63.8.1 (using Lemma 63.4.5 instead of Lemma 63.3.17). □

63.9. Derived lower shriek via compactifications

0F7H Let f : X → Y be a finite type separated morphism of schemes with Y quasi-
compact and quasi-separated. Choose a compactification j : X → X over Y , see
More on Flatness, Theorem 38.33.8. Let Λ be a ring. Denote D+

tors(Xétale,Λ) the
strictly full saturated triangulated subcategory of D(Xétale,Λ) consisting of objects
K which are bounded below and whose cohomology sheaves are torsion. We will
consider the functor

Rf! = Rf∗ ◦ j! : D+
tors(Xétale,Λ) −→ D+

tors(Yétale,Λ)
where f : X → Y is the structure morphism. This makes sense: the functor
j! sends D+

tors(Xétale,Λ) into D+
tors(X étale,Λ) by Remark 63.7.2 and Rf∗ sends

D+
tors(X étale,Λ) into D+

tors(Yétale,Λ) by Étale Cohomology, Lemma 59.78.2. If Λ is
a torsion ring, then we define

Rf! = Rf∗ ◦ j! : D(Xétale,Λ) −→ D(Yétale,Λ)
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Here is the obligatory lemma.

Lemma 63.9.1.0F7I Let f : X → Y be a finite type separated morphism of quasi-
compact and quasi-separated schemes. The functors Rf! constructed above are, up
to canonical isomorphism, independent of the choice of the compactification.

Proof. We will prove this for the functor Rf! : D(Xétale,Λ)→ D(Yétale,Λ) when Λ
is a torsion ring; the case of the functor Rf! : D+

tors(Xétale,Λ)→ D+
tors(Yétale,Λ) is

proved in exactly the same way.

Consider the category of compactifications ofX over Y , which is cofiltered according
to More on Flatness, Theorem 38.33.8 and Lemmas 38.32.1 and 38.32.2. To every
choice of a compactification

j : X → X, f : X → Y

the construction above associates the functor Rf∗◦j! : D(Xétale,Λ)→ D(Yétale,Λ).
Let’s be a little more explicit. Given a complex K• of sheaves of Λ-modules on
Xétale, we choose a quasi-isomorphism j!K• → I• into a K-injective complex of
sheaves of Λ-modules on X étale. Then our functor sends K• to f∗I•.

Suppose given a morphism g : X1 → X2 between compactifications ji : X → Xi

over Y . Then we get an isomorphism

Rf2,∗ ◦ j2,! = Rf2,∗ ◦Rg∗ ◦ j1,! = Rf1,∗ ◦ j1,!

using Lemma 63.8.6 in the first equality.

To finish the proof, since the category of compactifications of X over Y is cofiltered,
it suffices to show compositions of morphisms of compactifications of X over Y are
turned into compositions of isomorphisms of functors3. To do this, suppose that
j3 : X → X3 is a third compactification and that h : X2 → X3 is a morphism of
compactifications. Then we have to show that the composition

Rf3,∗ ◦ j3,! = Rf3,∗ ◦Rh∗ ◦ j2,! = Rf2,∗ ◦ j2,! = Rf2,∗ ◦Rg∗ ◦ j1,! = Rf1,∗ ◦ j1,!

is equal to the isomorphism of functors constructed using simply j3, g ◦ h, and j1.
A calculation shows that it suffices to prove that the composition of the maps

j3,! → Rh∗ ◦ j2,! → Rh∗ ◦Rg∗ ◦ j1,!

of Lemma 63.8.6 agrees with the corresponding map j3,! → R(h ◦ g)∗ ◦ j1,! via the
identification R(h◦g)∗ = Rh∗◦Rg∗. Since the map of Lemma 63.8.6 is a special case
of the map of Lemma 63.8.1 (as j1 and j2 are separated) this follows immediately
from Lemma 63.8.2. □

Lemma 63.9.2.0F7J Let f : X → Y and g : Y → Z be separated morphisms of finite
type of quasi-compact and quasi-separated schemes. Then there is a canonical
isomorphism Rg! ◦Rf! → R(g ◦ f)!.

Proof. Choose a compactification i : Y → Y of Y over Z. Choose a compactifi-
cation X → X of X over Y . This uses More on Flatness, Theorem 38.33.8 and

3Namely, if α, β : F → G are morphisms of functors and γ : G → H is an isomorphism of
functors such that γ ◦ α = γ ◦ β, then we conclude α = β.

https://stacks.math.columbia.edu/tag/0F7I
https://stacks.math.columbia.edu/tag/0F7J
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Lemma 38.32.2 twice. Let U be the inverse image of Y in X so that we get the
commutative diagram

X
j
//

f

��

U

f ′
��

j′
// X

f��
Y

i
//

g

��

Y

g��
Z

Then we have

R(g ◦ f)! = R(g ◦ f)∗ ◦ (j′ ◦ j)!

= Rg∗ ◦Rf∗ ◦ j′
! ◦ j!

= Rg∗ ◦ i! ◦Rf ′
∗ ◦ j!

= Rg! ◦Rf!

The first equality is the definition of R(g ◦ f)!. The second equality uses the iden-
tifications R(g ◦ f)∗ = Rg∗ ◦ Rf∗ and (j′ ◦ j)! = j′

! ◦ j! of Lemma 63.3.13. The
identification i! ◦ Rf ′

∗ → Rf∗ ◦ j! used in the third equality is Lemma 63.8.1. The
final fourth equality is the definition of Rg! and Rf!. To finish the proof we show
that this isomorphism is independent of choices made.

Suppose we have two diagrams

X
j1

//

��

U1

f1��

j′
1

// X1

f1~~
Y

i1
//

��

Y 1

g1~~
Z

and

X
j2

//

��

U2

f2��

j′
2

// X2

f2~~
Y

i2
//

��

Y 2

g2~~
Z

We can first choose a compactification i : Y → Y of Y over Z which dominates both
Y 1 and Y 2, see More on Flatness, Lemma 38.32.1. By More on Flatness, Lemma
38.32.3 and Categories, Lemmas 4.27.13 and 4.27.14 we can choose a compactifica-
tion X → X of X over Y with morphisms X → X1 and X → X2 and such that the
composition X → Y → Y 1 is equal to the composition X → X1 → Y 1 and such
that the composition X → Y → Y 2 is equal to the composition X → X2 → Y 2.
Thus we see that it suffices to compare the maps determined by our diagrams when
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we have a commutative diagram as follows

X
j1

// U1

h′

��

��

j′
1

// X1

h
��

��

X
j2 //

��

U2

��

j′
2 // X2

��

Y
i1 // Y 1

k
��

Y
i2 //

��

Y 2

xx
Z

Each of the squares

X
j1

//

id
��

A

U1

h′

��
X

j2 // U2

U2
j′

2

//

f2

��
B

X2

f2
��

Y
i2 // Y 2

U1
j′

1

//

f1

��
C

X1

f1
��

Y
i1 // Y 1

Y
i1
//

id
��

D

Y 1

k
��

Y
i2 // Y 2

X
j′

1◦j1

//

id
��

E

X1

h
��

X
j2 // X2

gives rise to an isomorphism as follows
γA : j2,! → Rh′

∗ ◦ j1,!

γB : i2,! ◦Rf2,∗ → Rf2,∗ ◦ j′
2,!

γC : i1,! ◦Rf1,∗ → Rf1,∗ ◦ j′
1,!

γD : i2,! → Rk∗ ◦ i1,!
γE : j2,! → Rh∗ ◦ (j′

1 ◦ j1)!

by applying the map from Lemma 63.8.1 (which is the same as the map in Lemma
63.8.6 in case the left vertical arrow is the identity). Let us write

F1 = Rf1,∗ ◦ j1,!

F2 = Rf2,∗ ◦ j2,!

G1 = Rg1,∗ ◦ i1,!
G2 = Rg2,∗ ◦ i2,!
C1 = R(g1 ◦ f1)∗ ◦ (j′

1 ◦ j1)!

C2 = R(g2 ◦ f2)∗ ◦ (j′
2 ◦ j2)!

The construction given in the first paragraph of the proof and in Lemma 63.9.1
uses

(1) γC for the map G1 ◦ F1 → C1,
(2) γB for the map G2 ◦ F2 → C2,
(3) γA for the map F2 → F1,
(4) γD for the map G2 → G1, and
(5) γE for the map C2 → C1.
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This implies that we have to show that the diagram

C2 γE
// C1

G2 ◦ F2
γD◦γA //

γB

OO

G1 ◦ F1

γC

OO

is commutative. We will use Lemmas 63.8.2 and 63.8.3 and with (abuse of) notation
as in Remark 63.8.4 (in particular dropping ⋆ products with identity transforma-
tions from the notation). We can write γE = γF ◦ γA where

U1
j′

1

//

h′

��
F

X1

h
��

U2
j′

2 // X2

Thus we see that

γE ◦ γB = γF ◦ γA ◦ γB = γF ◦ γB ◦ γA

the last equality because the two squares A and B only intersect in one point
(similar to the last argument in Remark 63.8.4). Thus it suffices to prove that
γC ◦ γD = γF ◦ γB . Since both of these are equal to the map for the square

U1 //

��

X1

��
Y // Y 2

we conclude. □

Lemma 63.9.3.0F7K Let f : X → Y , g : Y → Z, h : Z → T be separated morphisms of
finite type of quasi-compact and quasi-separated schemes. Then the diagram

Rh! ◦Rg! ◦Rf! γC
//

γA

��

R(h ◦ g)! ◦Rf!

γA+B

��
Rh! ◦R(g ◦ f)!

γB+C // R(h ◦ g ◦ f)!

of isomorphisms of Lemma 63.9.2 commutes (for the meaning of the γ’s see proof).

Proof. To do this we choose a compactification Z of Z over T , then a compactifica-
tion Y of Y over Z, and then a compactification X of X over Y . This uses More on
Flatness, Theorem 38.33.8 and Lemma 38.32.2. Let W ⊂ Y be the inverse image
of Z under Y → Z and let U ⊂ V ⊂ X be the inverse images of Y ⊂ W under

https://stacks.math.columbia.edu/tag/0F7K
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X → Y . This produces the following diagram

X

f

��

// U //

��
A

V

��

//

B

X

��
Y

g

��

// Y //

��

W //

��
C

Y

��
Z

h

��

// Z

��

// Z

��

// Z

��
T // T // T // T

Without introducing tons of notation but arguing exactly as in the proof of Lemma
63.9.2 we see that the maps in the first displayed diagram use the maps of Lemma
63.8.1 for the rectangles A + B, B + C, A, and C as indicated in the diagram in
the statement of the lemma. Since by Lemmas 63.8.2 and 63.8.3 we have γA+B =
γB ◦ γA and γB+C = γB ◦ γC we conclude that the desired equality holds provided
γA ◦ γC = γC ◦ γA. This is true because the two squares A and C only intersect in
one point (similar to the last argument in Remark 63.8.4). □

Lemma 63.9.4.0F7L Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of quasi-compact and quasi-separated schemes with f separated and of finite type.
Then there is a canonical isomorphism

g−1 ◦Rf! → Rf ′
! ◦ (g′)−1

Moreover, these isomorphisms are compatible with the isomorphisms of Lemma
63.9.2.

Proof. Choose a compactification j : X → X over Y and denote f : X → Y the
structure morphism. Let j′ : X ′ → X

′ and f
′ : X ′ → Y ′ denote the base changes

of j and f . Since Rf! = Rf∗ ◦ j! and Rf ′
! = Rf

′
∗ ◦ j′

! the isomorphism can be
constructed via

g−1 ◦Rf∗ ◦ j! → Rf
′
∗ ◦ (g′)−1 ◦ j! → Rf

′
∗ ◦ j′

! ◦ (g′)−1

where the first arrow is the isomorphism given to us by the proper base change
theorem (Étale Cohomology, Lemma 59.91.12 in the bounded below torsion case
and Étale Cohomology, Lemma 59.92.3 in the case that Λ is torsion) and the second
arrow is the isomorphism of Lemma 63.3.12.
To finish the proof we have to show two things: first we have to show that the
isomorphism of functors so obtained does not depend on the choice of the compact-
ification and second we have to show that if we vertically stack two base change
diagrams as in the lemma, then these base change isomorphisms are compatible
with the isomorphisms of Lemma 63.9.2. A straightforward argument which we
omit shows that both follow if we can show that the isomorphisms

https://stacks.math.columbia.edu/tag/0F7L
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(1) Rg∗ ◦Rf∗ = R(g ◦ f)∗ for f : X → Y and g : Y → Z proper,
(2) g! ◦ f! = (g ◦ f)! for f : X → Y and g : Y → Z separated and quasi-finite,

and
(3) g!◦Rf ′

∗ = Rf∗◦g′
! for f : X → Y and f ′ : X ′ → Y ′ proper and g : Y ′ → Y

and g′ : X ′ → X separated and quasi-finite with f ◦ g′ = g ◦ f ′

are compatible with base change. This holds for (1) by Cohomology on Sites,
Remark 21.19.4, for (2) by Remark 63.3.14, and (3) by Lemma 63.8.5. □

Remark 63.9.5.0H6X Let f : X → Y be a finite type separated morphism of schemes
with Y quasi-compact and quasi-separated. Below we will construct a map

Rf!K −→ Rf∗K

functorial for K in D+
tors(Xétale,Λ) or D(Xétale,Λ) if Λ is torsion. This transfor-

mation of functors in both cases is compatible with
(1) the isomorphism Rg! ◦Rf! → R(g ◦ f)! of Lemma 63.9.2 and the isomor-

phism Rg∗ ◦ Rf∗ → R(g ◦ f)∗ of Cohomology on Sites, Lemma 21.19.2
and

(2) the isomorphism g−1 ◦Rf! → Rf ′
! ◦ (g′)−1 of Lemma 63.9.4 and the base

change map of Cohomology on Sites, Remark 21.19.3.
Namely, choose a compactification j : X → X over Y and denote f : X → Y
the structure morphism. Since Rf! = Rf∗ ◦ j! and Rf∗ = Rf∗ ◦ Rj∗ it suffices
to construct a transformation of functors j! → Rj∗. For this we use the canonical
transformation j! → j∗ of Étale Cohomology, Lemma 59.70.6. We omit the proof
that the resulting transformation is independent of the choice of compactification
and we omit the proof of the compatibilities (1) and (2).

63.10. Properties of derived lower shriek

0G28 Here are some properties of derived lower shriek.

Lemma 63.10.1.0G29 Let f : X → Y be a finite type separated morphism of quasi-
compact and quasi-separated schemes. Let Λ be a ring.

(1) Let Ki ∈ D+
tors(Xétale,Λ), i ∈ I be a family of objects. Assume given

a ∈ Z such that Hn(Ki) = 0 for n < a and i ∈ I. Then Rf!(
⊕

iKi) =⊕
iRf!Ki.

(2) If Λ is torsion, then the functor Rf! : D(Xétale,Λ) → D(Yétale,Λ) com-
mutes with direct sums.

Proof. By construction it suffices to prove this when f is an open immersion and
when f is a proper morphism. For any open immersion j : U → X of schemes, the
functor j! : D(Uétale) → D(Xétale) is a left adjoint to pullback j−1 : D(Xétale) →
D(Uétale) and hence commutes with direct sums, see Cohomology on Sites, Lemma
21.20.8. In the proper case we have Rf! = Rf∗ and we get the result from Étale
Cohomology, Lemma 59.52.6 in the bounded belo case and from Étale Cohomology,
Lemma 59.96.4 in the case that our coefficient ring Λ is a torsion ring. □

Lemma 63.10.2.0G2A Let f : X → Y be a finite type separated morphism of quasi-
compact and quasi-separated schemes. Let Λ be a ring. The functors Rf! con-
structed in Section 63.9 are bounded in the following sense: There exists an integer
N such that for E ∈ D+

tors(Xétale,Λ) or E ∈ D(Xétale,Λ) if Λ is torsion, we have
(1) Hi(Rf!(τ≤aE)→ Hi(Rf!(E)) is an isomorphism for i ≤ a,

https://stacks.math.columbia.edu/tag/0H6X
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(2) Hi(Rf!(E))→ Hi(Rf!(τ≥b−NE)) is an isomorphism for i ≥ b,
(3) if Hi(E) = 0 for i ̸∈ [a, b] for some −∞ ≤ a ≤ b ≤ ∞, then Hi(Rf!(E)) =

0 for i ̸∈ [a, b+N ].

Proof. Assume Λ is torsion and consider the functorRf! : D(Xétale,Λ)→ D(Yétale,Λ).
By construction it suffices to prove this when f is an open immersion and when f
is a proper morphism. For any open immersion j : U → X of schemes, the functor
j! : D(Uétale) → D(Xétale) is exact and hence the statement holds with N = 0 in
this case. If f is proper then Rf! = Rf∗, i.e., it is a right derived functor. Hence
the bound on the left by Derived Categories, Lemma 13.16.1. Moreover in this
case f∗ : Mod(Xétale,Λ) → Mod(Yétale,Λ) has bounded cohomological dimension
by Morphisms, Lemma 29.28.5 and Étale Cohomology, Lemma 59.92.2. Thus we
conclude by Derived Categories, Lemma 13.32.2.

Next, assume Λ is arbitrary and let us consider the functor Rf! : D+
tors(Xétale,Λ)→

D+
tors(Yétale,Λ). Again we immediately reduce to the case where f is proper and

Rf! = Rf∗. Again part (1) is immediate. To show part (3) we can use induction
on b− a, the distinguished triangles of trunctions, and Étale Cohomology, Lemma
59.92.2. Part (2) follows from (3). Details omitted. □

Lemma 63.10.3.0GKM Let f : X → Y be a quasi-finite separated morphism of quasi-
compact and quasi-separated schemes. Then the functors Rf! constructed in Sec-
tion 63.9 agree with the restriction of the functor f! : D(Xétale,Λ) → D(Yétale,Λ)
constructed in Section 63.7 to their common domains of definition.

Proof. By Zariski’s main theorem (More on Morphisms, Lemma 37.43.3) we can
find an open immersion j : X → X and a finite morphism f : X → Y with f = f ◦j.
By construction we have Rf! = Rf∗ ◦ j!. Since f is finite, we have Rf∗ = f∗ by
Étale Cohomology, Proposition 59.55.2. The lemma follows because f∗ ◦ j! = f! for
example by Lemma 63.3.6. □

Lemma 63.10.4.0GKN Let f : X → Y be a finite type separated morphism of quasi-
compact and quasi-separated schemes. Let U and V be quasi-compact opens of X
such that X = U ∪ V . Denote a : U → Y , b : V → Y and c : U ∩ V → Y the
restrictions of f . Let Λ be a ring. For K in D+

tors(Xétale,Λ) or K ∈ D(Xétale,Λ) if
Λ is torsion, we have a distinguished triangle

Rc!(K|U∩V )→ Ra!(K|U )⊕Rb!(K|V )→ Rf!K → Rc!(K|U∩V )[1]

in D(Yétale,Λ).

Proof. This follows from Lemma 63.7.3, the fact that Rf! ◦RjU ! = Ra! by Lemma
63.9.2, and the fact that RjU ! = jU ! by Lemma 63.10.3. □

Lemma 63.10.5.0GKP Let f : X → Y be a finite type separated morphism of quasi-
compact and quasi-separated schemes. Let U be a quasi-compact open of X with
complement Z ⊂ X. Denote g : U → Y and h : Z → Y the restrictions of f . Let
Λ be a ring. For K in D+

tors(Xétale,Λ) or K ∈ D(Xétale,Λ) if Λ is torsion, we have
a distinguished triangle

Rg!(K|U )→ Rf!K → Rh!(K|Z)→ Rg!(K|U )[1]

in D(Yétale,Λ).

https://stacks.math.columbia.edu/tag/0GKM
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Proof. This follows from Lemma 63.7.4, the fact thatRf!◦Rj! = Rg! andRf!◦Ri! by
Lemma 63.9.2, and the fact that Rj! = j! and Ri! = i! = i∗ by Lemma 63.10.3. □

Lemma 63.10.6.0GKQ Let f ′ : X ′ → Y be a finite type separated morphism of quasi-
compact and quasi-separated schemes. Let i : X → X ′ be a thickening and denote
f = f ′ ◦ i. Let Λ be a ring. For K ′ in D+

tors(X ′
étale,Λ) or K ′ ∈ D(X ′

étale,Λ) if Λ is
torsion, we have Rf!i

−1K ′ = Rf ′
!K

′.

Proof. This is true because i−1 and i∗ = i! inverse equivalences of categories by
the topological invariance of the small étale topos (Étale Cohomology, Theorem
59.45.2) and we can apply Lemma 63.9.2. □

Lemma 63.10.7.0GL5 Let f : X → Y be a separated finite type morphism of quasi-
compact and quasi-separated schemes. Let Λ be a torsion ring. Let E ∈ D(Xétale,Λ)
and K ∈ D(Yétale,Λ). Then

Rf!E ⊗L
Λ K = Rf!(E ⊗L

Λ f
−1K)

in D(Yétale,Λ).

Proof. Choose j : X → X and f : X → Y as in the construction of Rf!. We have
j!E ⊗L

Λ f
−1
K = j!(E ⊗L

Λ f
−1K) by Cohomology on Sites, Lemma 21.20.9. Then

we get the result by applying Étale Cohomology, Lemma 59.96.6 and using that
f−1 = j−1 ◦ f−1 and Rf! = Rf∗j!. □

Remark 63.10.8.0GL6 Let Λ1 → Λ2 be a homomorphism of torsion rings. Let f : X → Y
be a separated finite type morphism of quasi-compact and quasi-separated schemes.
The diagram

D(Xétale,Λ2)
res
//

Rf!

��

D(Xétale,Λ1)

Rf!

��
D(Yétale,Λ2) res // D(Yétale,Λ1)

commutes where res is the “restriction” functor which turns a Λ2-module into a
Λ1-module using the given ring map. Writing Rf! = Rf∗ ◦ j! for a factorization
f = f ◦ j as in Section 63.9, we see that the result holds for j! by inspection and for
Rf∗ by Cohomology on Sites, Lemma 21.20.7. On the other hand, also the diagram

D(Xétale,Λ1)
−⊗L

Λ1
Λ2

//

Rf!

��

D(Xétale,Λ2)

Rf!

��
D(Yétale,Λ1)

−⊗L
Λ1

Λ2
// D(Yétale,Λ2)

is commutative as follows from Lemma 63.10.7.

Remark 63.10.9.0GL7 Let f : X → Y be a separated finite type morphism of quasi-
compact and quasi-separated schemes. Let Λ be a torsion coefficient ring and let
K and L be objects of D(Xétale,Λ). We claim there is a canonical map

α : Rf∗RHomΛ(K,L) −→ RHomΛ(Rf!K,Rf!L)
functorial in K and L. Namely, choose j : X → X and f : X → Y as in the
construction of Rf!. We first define a map

β : Rj∗RHomΛ(K,L) −→ RHomΛ(j!K, j!L)

https://stacks.math.columbia.edu/tag/0GKQ
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By the construction of internal hom in the derived category, this is the same thing
as defining a map

β′ : Rj∗RHomΛ(K,L)⊗L
Λ j!K −→ j!L

See Cohomology on Sites, Section 21.35. The source of β′ is equal to
j!
(
RHomΛ(K,L)⊗L

Λ K
)

by Cohomology on Sites, Lemma 21.20.9. Hence we can set β′ = j!β
′′ where

β′′ : RHomΛ(K,L) ⊗L
Λ K → L corresponds to the identity on RHomΛ(K,L) via

the universal property of internal hom mentioned above. By Cohomology on Sites,
Remark 21.35.10 we have a canonical map

γ : Rf∗RHomΛ(j!K, j!L) −→ RHomΛ(Rf∗j!K,Rf∗j!L)
Since Rf! = Rf∗j! and Rf∗ = Rf∗Rj∗ (by Leray) we obtain the desired map
α = γ ◦Rf∗β.

63.11. Derived upper shriek

0G2B We obtain Rf ! by a Brown representability theorem.
Lemma 63.11.1.0G2C Let f : X → Y be a finite type separated morphism of quasi-
compact and quasi-separated schemes. Let Λ be a torsion coefficient ring. The
functor Rf! : D(Xétale,Λ) → D(Yétale,Λ) has a right adjoint Rf ! : D(Yétale,Λ) →
D(Xétale,Λ).
Proof. This follows from Injectives, Proposition 19.15.2 and Lemma 63.10.1 above.

□

Lemma 63.11.2.0GL8 Let f : X → Y be a separated quasi-finite morphism of quasi-
compact and quasi-separated schemes. Let Λ be a torsion coefficient ring. The
functor Rf ! : D(Yétale,Λ) → D(Xétale,Λ) of Lemma 63.11.1 is the same as the
functor Rf ! of Lemma 63.7.1.
Proof. Follows from uniqueness of adjoints as Rf! = f! by Lemma 63.10.3. □

Lemma 63.11.3.0GL9 Let j : U → X be a separated étale morphism of quasi-compact
and quasi-separated schemes. Let Λ be a torsion coefficient ring. The functor
Rj! : D(Xétale,Λ)→ D(Uétale,Λ) is equal to j−1.
Proof. This is true because both Rj! and j−1 are right adjoints to Rj! = j!. See
for example Lemmas 63.11.2 and 63.6.2. □

Lemma 63.11.4.0GLA Let f : X → Y be a finite type separated morphism of quasi-
compact and quasi-separated schemes. Let Λ be a torsion ring. The functor Rf !

sends D+(Yétale,Λ) into D+(Xétale,Λ). More precisely, there exists an integer
N ≥ 0 such that if K ∈ D(Yétale,Λ) has Hi(K) = 0 for i < a then Hi(Rf !K) = 0
for i < a−N .
Proof. Let N be the integer found in Lemma 63.10.2. By construction, for K ∈
D(Yétale,Λ) and L ∈∈ D(Xétale,Λ) we have HomX(L,Rf !K) = HomY (Rf!L,K).
Suppose Hi(K) = 0 for i < a. Then we take L = τ≤a−N−1Rf

!K. By Lemma
63.10.2 the complex Rf!L has vanishing cohomology sheaves in degrees ≤ a − 1.
Hence HomY (Rf!L,K) = 0 by Derived Categories, Lemma 13.27.3. Hence the
canonical map τ≤a−N−1Rf

!K → Rf !K is zero which implies Hi(Rf !K) = 0 for
i ≤ a−N − 1. □
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Let f : X → Y be a separated finite type morphism of quasi-separated and quasi-
compact schemes. Let Λ be a torsion coefficient ring. For every K ∈ D(Yétale,Λ)
and L ∈ D(Xétale,Λ) we obtain a canonical map

(63.11.4.1)0GLB Rf∗RHomΛ(L,Rf !K) −→ RHomΛ(Rf!L,K)

Namely, this map is constructed as the composition

Rf∗RHomΛ(L,Rf !K)→ RHomΛ(Rf!L,Rf!Rf
!K)→ RHomΛ(Rf!L,K)

where the first arrow is Remark 63.10.9 and the second arrow is the counitRf!Rf
!K →

K of the adjunction.

Lemma 63.11.5.0GLC Let f : X → Y be a separated finite type morphism of quasi-
compact and quasi-separated schemes. Let Λ be a torsion ring. For every K ∈
D(Yétale,Λ) and L ∈ D(Xétale,Λ) the map (63.11.4.1)

Rf∗RHomΛ(L,Rf !K) −→ RHomΛ(Rf!L,K)

is an isomorphism.

Proof. To prove the lemma we have to show that for any M ∈ D(Yétale,Λ) the map
(63.11.4.1) induces an bijection

HomY (M,Rf∗RHomΛ(L,Rf !K)) −→ HomY (M,RHomΛ(Rf!L,K))

To see this we use the following string of equalities

HomY (M,Rf∗RHomΛ(L,Rf !K)) = HomX(f−1M,RHomΛ(L,Rf !K))
= HomX(f−1M ⊗L

Λ L,Rf
!K)

= HomY (Rf!(f−1M ⊗L
Λ L),K)

= HomY (M ⊗L
Λ Rf!L,K)

= HomY (M,RHomΛ(Rf!L,K))

The first equality holds by Cohomology on Sites, Lemma 21.19.1. The second equal-
ity by Cohomology on Sites, Lemma 21.35.2. The third equality by construction of
Rf !. The fourth equality by Lemma 63.10.7 (this is the important step). The fifth
by Cohomology on Sites, Lemma 21.35.2. □

Lemma 63.11.6.0GLD Let f : X → Y be a separated finite type morphism of quasi-
separated and quasi-compact schemes. Let Λ be a torsion ring. For every K ∈
D(Yétale,Λ) and L ∈ D(Xétale,Λ) the map (63.11.4.1) induces an isomorphism

RHomX(L,Rf !K) −→ RHomY (Rf!L,K)

of global derived homs.

Proof. By the construction in Cohomology on Sites, Section 21.36 we have

RHomX(L,Rf !K) = RΓ(X,RHomΛ(L,Rf !K)) = RΓ(Y,Rf∗RHomΛ(L,Rf !K))

(the second equality by Leray) and

RHomY (Rf!L,K) = RΓ(Y,RHomΛ(Rf!L,K))

Thus the lemma is a consequence of Lemma 63.11.5. □
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Lemma 63.11.7.0GLE Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of quasi-compact and quasi-separated schemes with f separated and of finite type.
Then we have Rf ! ◦Rg∗ = Rg′

∗ ◦R(f ′)!.
Proof. By uniqueness of adjoint functors this follows from base change for derived
lower shriek: we have g−1 ◦Rf! = Rf ′

! ◦ (g′)−1 by Lemma 63.9.4. □

Remark 63.11.8.0GLF Let Λ1 → Λ2 be a homomorphism of torsion rings. Let f : X → Y
be a separated finite type morphism of quasi-compact and quasi-separated schemes.
The diagram

D(Xétale,Λ2)
res
// D(Xétale,Λ1)

D(Yétale,Λ2) res //

Rf !

OO

D(Yétale,Λ1)

Rf !

OO

commutes where res is the “restriction” functor which turns a Λ2-module into a Λ1-
module using the given ring map. This holds by uniquenss of adjoints, the second
commutative diagram of Remark 63.10.8 and because we have

HomΛ2(K1 ⊗L
Λ1

Λ2,K2) = HomΛ1(K1, res(K2))
This equality either for objects living over Xétale or on Yétale is a very special case
of Cohomology on Sites, Lemma 21.19.1.

63.12. Compactly supported cohomology

0GJY Let k be a field. Let Λ be a ring. Let X be a separated scheme of finite type
over k with structure morphism f : X → Spec(k). In Section 63.9 we have
defined the functor Rf! : D+

tors(Xétale,Λ) → D+
tors(Spec(k),Λ) and the functor

Rf! : D(Xétale,Λ) → D(Spec(k),Λ) if Λ is a torsion ring. Composing with the
global sections functor on Spec(k) we obtain what we will call the compactly sup-
ported cohomology.
Definition 63.12.1.0GJZ Let X be a separated scheme of finite type over a field k. Let
Λ be a ring. Let K be an object of D+

tors(Xétale,Λ) or of D(Xétale,Λ) in case Λ is
torsion. The cohomology of K with compact support or the compactly supported
cohomology of K is

RΓc(X,K) = RΓ(Spec(k), Rf!K)
where f : X → Spec(k) is the structure morphism. We will write Hi

c(X,K) =
Hi(RΓc(X,K)).
We will check that this definition doesn’t conflict with Definition 63.3.7 by Lemma
63.12.3. The utility of this definition lies in the following result.
Lemma 63.12.2.0GK0 Let f : X → Y be a finite type separated morphism of schemes
with Y quasi-compact and quasi-separated. Let K be an object of D+

tors(Xétale,Λ)
or of D(Xétale,Λ) in case Λ is torsion. Then there is a canonical isomorphism

(Rf!K)y −→ RΓc(Xy,K|Xy )
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in D(Λ) for any geometric point y : Spec(k)→ Y .

Proof. Immediate consequence of Lemma 63.9.4 and the definitions. □

Lemma 63.12.3.0GK1 Let X be a separated scheme of finite type over a field k. If F
is a torsion abelian sheaf, then the abelian group H0

c (X,F) defined in Definition
63.3.7 agrees with the abelian group H0

c (X,F) defined in Definition 63.12.1.

Proof. Choose a compactification j : X → X over k. In both cases the group is
defined as H0(X, j!F). This is true for the first version by Lemma 63.3.10 and for
the second version by construction. □

Lemma 63.12.4.0GKR Let k be an algebraically closed field. Let X be a separated scheme
of finite type type over k of dimension ≤ 1. Let Λ be a Noetherian ring. Let F
be a constructible sheaf of Λ-modules on X which is torsion. Then Hq

c (X,F) is a
finite Λ-module.

Proof. This is a consequence of Étale Cohomology, Theorem 59.84.7. Namely,
choose a compactification j : X → X. After replacing X by the scheme theo-
retic closure of X, we see that we may assume dim(X) ≤ 1. Then Hq

c (X,F) =
Hq(X, j!F) and the theorem applies. □

Remark 63.12.5 (Covariance of compactly supported cohomology).0GKS Let k be a field.
Let f : X → Y be a morphism of separated schemes of finite type over k. If X, Y ,
and f satisfies one of the following conditions

(1) f is étale, or
(2) f is flat and quasi-finite, or
(3) f is quasi-finite and Y is geometrically unibranch, or
(4) f is quasi-finite and there exists a weighting w : X → Z of f

then compactly supported cohomology is covariant with respect to f . More pre-
cisely, let Λ be a ring. Let K be an object of D+

tors(Yétale,Λ) or of D(Yétale,Λ) in
case Λ is torsion. Under one of the assumptions (1) – (4) there is a canonical map

Trf,w,K : f!f
−1K −→ K

See Section 63.5 for the existence of the trace map and Examples 63.5.5 and 63.5.7
for cases (2) and (3). If p : X → Spec(k) and q : Y → Spec(k) denote the structure
morphisms, then we have Rq!◦f! = Rp! by Lemma 63.9.2 and the fact that Rf! = f!
for the quasi-finite separated morphism f by Lemma 63.10.3. Hence we can look
at the map

RΓc(X, f−1K) = RΓ(Spec(k), Rp!f
−1K)

= RΓ(Spec(k), Rq!f!f
−1K)

Rq!Trf,w,K−−−−−−−→ RΓ(Spec(k), Rq!K)
= RΓc(Y,K)

In particular, if Λ is a torsion ring, then we obtain an arrow

Trf : RΓc(X,Λ) −→ RΓc(Y,Λ)

This map has lots of additional properties, for example it is compatible with taking
ground field extensions.

https://stacks.math.columbia.edu/tag/0GK1
https://stacks.math.columbia.edu/tag/0GKR
https://stacks.math.columbia.edu/tag/0GKS


63.13. A CONSTRUCTIBILITY RESULT 5151

63.13. A constructibility result

0GKT We “compute” the cohomology of a smooth projective family of curves with constant
coefficients.

Lemma 63.13.1.0GKU Let p be a prime number. Let S be a scheme over Fp. Let E be a
finite locally free OS-module viewed as an OS-module on Sétale. Let F : E → E be
a homomorphism of abelian sheaves on Sétale such that F (ae) = apF (e) for local
sections a, e of OS , E on Sétale. Then

Coker(F − 1 : E → E)

is zero and
Ker(F − 1 : E → E)

is a constructible abelian sheaf on Sétale.

This lemma is a generalization of Étale Cohomology, Lemma 59.63.2.

Proof. We may assume S = Spec(A) where A is an Fp-algebra and that E is the
quasi-coherent module associated to the free A-module Ae1 ⊕ . . .⊕Aen. We write
F (ei) =

∑
aijej .

Surjectivity of F − 1. It suffices to show that any element
∑
aiei, ai ∈ A is in the

image of F − 1 after replacing A by a faithfully flat étale extension. Observe that

F (
∑

xiei)−
∑

xiei =
∑

xpi aijej −
∑

xiei

Consider the A-algebra

A′ = A[x1, . . . , xn]/(ai + xi −
∑

j
ajix

p
j )

A computation shows that dxi is zero in ΩA′/A and hence ΩA′/A = 0. Since A′ is of
finite type over A, this implies that Spec(A′) → Spec(A) is unramified and hence
is quasi-finite. Since A′ is generated by n elements and cut out by n equations,
we conclude that A′ is a global relative complete intersection over A. Thus A′ is
flat over A and we conclude that A → A′ is étale (as a flat and unramified ring
map). Finally, the reader can show that A → A′ is faithfully flat by verifying
directly that all geometric fibres of Spec(A′) → Spec(A) are nonempty, however
this also follows from Étale Cohomology, Lemma 59.63.2. Finally, the element∑
xiei ∈ A′e1 ⊕ . . .⊕A′en maps to

∑
aiei by F − 1.

Constructibility of the kernel. The calculations above show that Ker(F − 1) is
represented by the scheme

Spec(A[x1, . . . , xn]/(xi −
∑

j
ajix

p
j ))

over S = Spec(A). Since this is a scheme affine and étale over S we obtain the
result from Étale Cohomology, Lemma 59.73.1. □

Lemma 63.13.2.0GKV Let f : X → S be a proper smooth morphism of schemes with
geometrically connected fibres of dimension 1. Let ℓ be a prime number. Then
Rqf∗Z/ℓZ is a constructible.

https://stacks.math.columbia.edu/tag/0GKU
https://stacks.math.columbia.edu/tag/0GKV


63.13. A CONSTRUCTIBILITY RESULT 5152

Proof. We may assume S is affine. Say S = Spec(A). Then, if we write A =
⋃
Ai

as the union of its finite type Z-subalgebras, we can find an i and a morphism
fi : Xi → Si = Spec(Ai) of finite type whose base change to S is f : X → S, see
Limits, Lemma 32.10.1. After increasing i we may assume fi : Xi → Si is smooth,
proper, and of relative dimension 1, see Limits, Lemmas 32.13.1 32.8.9, and 32.18.4.
By More on Morphisms, Lemma 37.53.8 we obtain an open subscheme Ui ⊂ Si such
that the fibres of fi : Xi → Si over Ui are geometrically connected. Then S → Si
maps into Ui. We may replace X → S by fi : f−1

i (Ui) → Ui to reduce to the case
discussed in the next paragraph.
Assume S is Noetherian. We may write S = U ∪ Z where U is the open sub-
scheme defined by the nonvanishing of ℓ and Z = V (ℓ) ⊂ S. Since the formation
of Rqf∗Z/ℓZ commutes with arbtrary base change (Étale Cohomology, Theorem
59.91.11), it suffices to prove the result over U and over Z. Thus we reduce to the
following two cases: (a) ℓ is invertible on S and (b) ℓ is zero on S.
Case (a). We claim that in this case the sheaves Rqf∗Z/ℓZ are finite locally con-
stant on S. First, by proper base change (in the form of Étale Cohomology, Lemma
59.91.13) and by finiteness (Étale Cohomology, Theorem 59.83.10) we see that the
stalks of Rqf∗Z/ℓZ are finite. By Étale Cohomology, Lemma 59.94.4 all specializa-
tion maps are isomorphisms. We conclude the claim holds by Étale Cohomology,
Lemma 59.75.6.
Case (b). Here ℓ = p is a prime and S is a scheme over Spec(Fp). By the same
references as above we already know that the stalks of Rqf∗Z/pZ are finite and zero
for q ≥ 2. It follows from Étale Cohomology, Lemma 59.39.3 that f∗Z/pZ = Z/pZ.
It remains to prove that R1f∗Z/pZ is constructible. Consider the Artin-Schreyer
sequence

0→ Z/pZ→ OX
F−1−−−→ OX → 0

See Étale Cohomology, Section 59.63. Recall that f∗OX = OS and R1f∗OX is a
finite locally free OS-module of rank equal to the genera of the fibres of X → S,
see Algebraic Curves, Lemma 53.20.13. We conclude that we have a short exact
sequence
0→ Coker(F−1 : OS → OS)→ R1f∗Z/pZ→ Ker(F−1 : R1f∗OX → R1f∗OX)→ 0
Applying Lemma 63.13.1 we win. □

Lemma 63.13.3.0GKW Let f : X → S be a proper smooth morphism of schemes with ge-
ometrically connected fibres of dimension 1. Let Λ be a Noetherian ring. Let M be
a finite Λ-module annihilated by an integer n > 0. Then Rqf∗M is a constructible
sheaf of Λ-modules on S.

Proof. If n = ℓn′ for some prime number ℓ, then we get a short exact sequence
0 → M [ℓ] → M → M ′ → 0 of finite Λ-modules and M ′ is annihilated by n′. This
produces a corresponding short exact sequence of constant sheaves, which in turn
gives rise to an exact sequence

Rq−1f∗M
′ → Rqf∗M [n]→ Rqf∗M → Rqf∗M

′ → Rq+1f∗M [n]
Thus, if we can show the result in case M is annihilated by a prime number, then
by induction on n we win by Étale Cohomology, Lemma 59.71.6.

https://stacks.math.columbia.edu/tag/0GKW
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Let ℓ be a prime number such that ℓ annihilates M . Then we can replace Λ by
the Fℓ-algebra Λ/ℓΛ. Namely, the sheaf Rqf∗M where M is viewed as a sheaf of
Λ-modules is the same as the sheaf Rqf∗M computed by viewing M as a sheaf of
Λ/ℓΛ-modules, see Cohomology on Sites, Lemma 21.20.7.
Assume ℓ be a prime number such that ℓ annihilates M and Λ. Let us reduce to
the case where M is a finite free Λ-module. Namely, choose a resolution

. . .→ Λ⊕m2 → Λ⊕m1 → Λ⊕m0 →M → 0
Recall that f∗ has finite cohomological dimension on sheaves of Λ-modules, see
Étale Cohomology, Lemma 59.92.2 and Derived Categories, Lemma 13.32.2. Thus
we see that Rqf∗M is the qth cohomology sheaf of the object

Rf∗(Λ⊕ma → . . .→ Λ⊕m0)
in D(Sétale,Λ) for some integer a large enough. Using the first spectral sequence
of Derived Categories, Lemma 13.21.3 (or alternatively using an argument with
truncations) we conclude that it suffices to prove that Rqf∗Λ) is constructible.
At this point we can finally use that

(Rf∗Z/ℓZ)⊗L
Z/ℓZ Λ = Rf∗Λ

by Étale Cohomology, Lemma 59.96.6. Since any module over the field Z/ℓZ is flat
we obtain

(Rqf∗Z/ℓZ)⊗Z/ℓZ Λ = Rqf∗Λ
Hence it suffices to prove the result for Rqf∗Z/ℓZ by Étale Cohomology, Lemma
59.71.10. This case is Lemma 63.13.2. □

63.14. Complexes with constructible cohomology

0GK2 We continue the discussion started in Étale Cohomology, Section 59.76. In partic-
ular, for a scheme X and a Noetherian ring Λ we denote Dc(Xétale,Λ) the strictly
full saturated triangulated subcategory of D(Xétale,Λ) consisting of objects whose
cohomology sheaves are constructible sheaves of Λ-modules.

Lemma 63.14.1.0GK3 Let f : X → Y be a morphism of schemes which is locally quasi-
finite and of finite presentation. The functor f! : D(Xétale,Λ) → D(Yétale,Λ) of
Lemma 63.7.1 sends Dc(Xétale,Λ) into Dc(Yétale,Λ).

Proof. Since the functor f! is exact, it suffices to show that f!F is constructible
for any constructible sheaf F of Λ-modules on Xétale. The question is local on Y
and hence we may and do assume Y is affine. Then X is quasi-compact and quasi-
separated, see Morphisms, Definition 29.21.1. Say X =

⋃
i=1,...,nXi is a finite affine

open covering. By Lemma 63.4.7 we see that it suffices to show that fi,!F|Xi and
fii′,!F|Xi∩Xi′ are constructible where fi : Xi → Y and fii′ : Xi ∩ Xi′ → Y are
the restrictions of f . Since Xi and Xi ∩Xi′ are quasi-compact and separated this
means we may assume f is separated. By Zariski’s main theorem (in the form of
More on Morphisms, Lemma 37.43.4) we can choose a factorization f = g ◦ j where
j : X → X ′ is an open immersion and g : X ′ → Y is finite and of finite presentation.
Then f! = g! ◦ j! by Lemma 63.3.13. By Étale Cohomology, Lemma 59.73.1 we see
that j!F is constructible on X ′. The morphism g is finite hence g! = g∗ by Lemma
63.3.4. Thus f!F = g!j!F = g∗j!F is constructible by Étale Cohomology, Lemma
59.73.9. □

https://stacks.math.columbia.edu/tag/0GK3
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Lemma 63.14.2.0GKX Let S be a Noetherian affine scheme of finite dimension. Let
f : X → S be a separated, affine, smooth morphism of relative dimension 1. Let Λ
be a Noetherian ring which is torsion. Let M be a finite Λ-module. Then Rf!M
has constructible cohomology sheaves.

Proof. We will prove the result by induction on d = dim(S).
Base case. If d = 0, then the only thing to show is that the stalks of Rqf!M are finite
Λ-modules. If s is a geometric point of S, then we have (Rqf!M)s = Hq

c (Xs,M)
by Lemma 63.12.2. This is a finite Λ-module by Lemma 63.12.4.
Induction step. It suffices to find a dense open U ⊂ S such that Rf!M |U has
constructible cohomology sheaves. Namely, the restriction of Rf!M to the comple-
ment S \ U will have constructible cohomology sheaves by induction and the fact
that formation of Rf!M commutes with all base change (Lemma 63.9.4). In fact,
let η ∈ S be a generic point of an irreducible component of S. Then it suffices
to find an open neighbourhood U of η such that the restriction of Rf!M to U is
constructible. This is what we will do in the next paragraph.
Given a generic point η ∈ S we choose a diagram

Y 1 ⨿ . . .⨿ Y n

((

Y1 ⨿ . . .⨿ Yn ν
//

��

j
oo XV

//

��

XU
//

��

X

f

��
T1 ⨿ . . .⨿ Tn // V // U // S

as in More on Morphisms, Lemma 37.56.1. We will show that Rf!M |U is con-
structible. First, since V → U is finite and surjective, it suffices to show that
the pullback to V is constructible, see Étale Cohomology, Lemma 59.73.3. Since
formation of Rf! commutes with base change, we see that it suffices to show that
R(XV → V )!M is constructible. Let W ⊂ XV be the open subscheme given to us
by More on Morphisms, Lemma 37.56.1 part (4). Let Z ⊂ XV be the reduced in-
duced scheme structure on the complement of W in XV . Then the fibres of Z → V
have dimension 0 (as W is dense in the fibres) and hence Z → V is quasi-finite.
From the distinguished triangle

R(W → V )!M → R(XV → V )!M → R(Z → V )!M → . . .

of Lemma 63.10.5 and from Lemma 63.14.1 we conclude that it suffices to show
that R(W → V )!M has constructible cohomology sheaves. Next, we have

R(W → V )!M = R(ν−1(W )→ V )!M

because the morphism ν : ν−1(W )→W is a thickening and we may apply Lemma
63.10.6. Next, we let Z ′ ⊂

∐
Y i denote the complement of the open j(ν−1(W )).

Again Z ′ → V is quasi-finite. Again use the distinguished triangle

R(ν−1(W )→ V )!M → R(
∐

Y i → V )!M → R(Z ′ → V )!M → . . .

to conclude that it suffices to prove

R(
∐

Y i → V )!M =
⊕

i
R(Y i → V )!M =

⊕
i
R(Ti → V )!R(Y i → Ti)!M

has constructible cohomology sheaves (second equality by Lemma 63.9.2). The
result for R(Y i → Ti)!M is Lemma 63.13.3 and we win because Ti → V is finite
étale and we can apply Lemma 63.14.1. □

https://stacks.math.columbia.edu/tag/0GKX
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Lemma 63.14.3.0GKY Let Y be a Noetherian affine scheme of finite dimension. Let
Λ be a Noetherian ring which is torsion. Let F be a finite type, locally constant
sheaf of Λ-modules on an open subscheme U ⊂ A1

Y . Then Rf!F has constructible
cohomology sheaves where f : U → Y is the structure morphism.

Proof. We may decompose Λ as a product Λ = Λ1× . . .×Λr where Λi is ℓi-primary
for some prime ℓi. Thus we may assume there exists a prime ℓ and an integer n > 0
such that ℓn annihilates Λ (and hence F).
Since U is Noetherian, we see that U has finitely many connected components.
Thus we may assume U is connected. Let g : U ′ → U be the finite étale cov-
ering constructed in Étale Cohomology, Lemma 59.66.4. The discussion in Étale
Cohomology, Section 59.66 gives maps

F → g∗g
−1F → F

whose composition is an isomorphism. Hence it suffices to prove the result for
g∗g

−1F . On the other hand, we have Rf!g∗g
−1F = R(f ◦ g)!g

−1F by Lemma
63.9.2. Since g−1F has a finite filtration by constant sheaves of Λ-modules of the
form M for some finite Λ-module M (by our choice of g) this reduces us to the case
proved in Lemma 63.14.2. □

Lemma 63.14.4.0GKZ Let Y be an affine scheme. Let Λ be a Noetherian ring. Let F
be a constructible sheaf of Λ-modules on A1

Y which is torsion. Then Rf!F has
constructible cohomology sheaves where f : A1

Y → Y is the structure morphism.

Proof. Say F is annihilated by n > 0. Then we can replace Λ by Λ/nΛ without
changing Rf!F . Thus we may and do assume Λ is a torsion ring.
Say Y = Spec(R). Then, if we write R =

⋃
Ri as the union of its finite type Z-

subalgebras, we can find an i such that F is the pullback of a constructible sheaf of
Λ-modules on A1

Ri
, see Étale Cohomology, Lemma 59.73.10. Hence we may assume

Y is a Noetherian scheme of finite dimension.
Assume Y is a Noetherian scheme of finite dimension d = dim(Y ) and Λ is torsion.
We will prove the result by induction on d.
Base case. If d = 0, then the only thing to show is that the stalks of Rqf!F are finite
Λ-modules. If y is a geometric point of Y , then we have (Rqf!F)y = Hq

c (Xy,F) by
Lemma 63.12.2. This is a finite Λ-module by Lemma 63.12.4.
Induction step. It suffices to find a dense open V ⊂ Y such that Rf!F|V has con-
structible cohomology sheaves. Namely, the restriction of Rf!F to the complement
Y \ V will have constructible cohomology sheaves by induction and the fact that
formation of Rf!F commutes with all base change (Lemma 63.9.4). By definition
of constructible sheaves of Λ-modules, there is a dense open subscheme U ⊂ A1

Y

such that F|U is a finite type, locally constant sheaf of Λ-modules. Denote Z ⊂ A1
Y

the complement (viewed as a reduced closed subscheme). Note that U contains all
the generic points of the fibres of A1

Y → Y over the generic points ξ1, . . . , ξn of the
irreducible components of Y . Hence Z → Y has finite fibres over ξ1, . . . , ξn. After
replacing Y by a dense open (which is allowed), we may assume Z → Y is finite, see
Morphisms, Lemma 29.51.1. By the distinguished triangle of Lemma 63.10.5 and
the result for Z → Y (Lemma 63.14.1) we reduce to showing that R(U → Y )!F
has constructible cohomology sheaves. This is Lemma 63.14.3. □
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Theorem 63.14.5.0GL0 Let f : X → Y be a separated morphism of finite presentation
of quasi-compact and quasi-separated schemes. Let Λ be a Noetherian ring. Let
K be an object of D+

tors,c(Xétale,Λ) or of Dc(Xétale,Λ) in case Λ is torsion. Then
Rf!K has constructible cohomology sheaves, i.e., Rf!K is in D+

tors,c(Yétale,Λ) or in
Dc(Yétale,Λ) in case Λ is torsion.

Proof. The question is local on Y hence we may and do assume Y is affine. By
the induction principle and Lemma 63.10.4 we reduce to the case where X is also
affine.
Assume X and Y are affine. Since X is of finite presentation, we can choose a closed
immersion i : X → An

Y which is of finite presentation. If p : An
Y → Y denotes the

structure morphism, then we see that Rf! = Rp!◦Ri! by Lemma 63.9.2. By Lemma
63.14.1 we have the result for Ri! = i!. Hence we may assume f is the projection
morphism An

Y → Y . Since we can view f as the composition
X = An

Y → An−1
Y → An−2

S → . . .→ A1
Y → Y

we may assume n = 1.
Assume Y is affine and X = A1

Y . Since Rf! has finite cohomological dimension
(Lemma 63.10.2) we may assume K is bounded below. Using the first spectral
sequence of Derived Categories, Lemma 13.21.3 (or alternatively using an argument
with truncations), we reduce to showing the result of Lemma 63.14.4. □

63.15. Applications

0GLG In this section we give some applications of Theorem 63.14.5.

Lemma 63.15.1.0GLH Let k be an algebraically closed field. Let X be a finite type
separated scheme over k. Let Λ be a Noetherian ring. Let K be an object of
D+
tors,c(Xétale,Λ) or of Dc(Xétale,Λ) in case Λ is torsion. Then Hi

c(X,K) is a finite
Λ-module for all i ∈ Z.

Proof. Immediate consequence of Theorem 63.14.5 and the definition of compactly
supported cohomology in Section 63.12. □

Proposition 63.15.2.0GLI Let f : X → S be a smooth proper morphism of schemes. Let
Λ be a Noetherian ring. Let F be a finite type, locally constant sheaf of Λ-modules
on Xétale such that for every geometric point x of X the stalk Fx is annihilated by
an integer n > 0 prime to the residue characteristic of x. Then Rif∗F is a finite
type, locally constant sheaf of Λ-modules on Sétale for all i ∈ Z.

Proof. The question is local on S and hence we may assume S is affine. For a point
x of X denote nx ≥ 1 the smallest integer annihilating Fx for some (equivalently
any) geometric point x of X lying over x. Since X is quasi-compact (being proper
over affine) there exists a finite étale covering {Uj → X}j=1,...,m such that F|Uj
is constant. Since Uj → X is open, we conclude that the function x 7→ nx is
locally constant and takes finitely many values. Accordingly we obtain a finite
decomposition X = X1 ⨿ . . . ⨿ XN into open and closed subschemes such that
nx = n if and only if x ∈ Xn. Then it suffices to prove the lemma for the induced
morphisms Xn → S and the restriction of F to Xn. Thus we may and do assume
there exists an integer n > 0 such that F is annihilated by n and such that n is
prime to the residue characteristics of all residue fields of X.
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Since f is smooth and proper the image f(X) ⊂ S is open and closed. Hence we
may replace S by f(X) and assume f(X) = S. In particular, we see that we may
assume n is invertible in the ring defining the affine scheme S.
In this paragraph we reduce to the case where S is Noetherian. Write S = Spec(A)
for some Z[1/n]-algebra A. Write A =

⋃
Ai as the union of its finite type Z[1/n]-

subalgebras. We can find an i and a morphism fi : Xi → Si = Spec(Ai) of
finite type whose base change to S is f : X → S, see Limits, Lemma 32.10.1.
After increasing i we may assume fi : Xi → Si is smooth and proper, see Limits,
Lemmas 32.13.1 32.8.9, and 32.18.4. By Étale Cohomology, Lemma 59.73.11 we
see that there exists an i and a finite type, locally constant sheaf of Λ-modules Fi
whose pullback to X is isomorphic to F . As F is annihilated by n, we may replace
Fi by Ker(n : Fi → Fi) and assume the same thing is true for Fi. This reduces us
to the case discussed in the next paragraph.
Assume we have an integer n ≥ 1, the base scheme S is Noetherian and lives
over Z[1/n], and F is n-torsion. By Theorem 63.14.5 the sheaves Rif∗F are
constructible sheaves of Λ-modules. By Étale Cohomology, Lemma 59.94.3 the
specialization maps of Rif∗F are always isomorphisms. We conclude by Étale
Cohomology, Lemma 59.75.6. □

63.16. More on derived upper shriek

0GLJ Let Λ be a torsion ring. Consider a commutative diagram

U
j

//

g
��

U ′

g′
~~

Y

of quasi-compact and quasi-separated schemes with g and g′ separated and of finite
type and with j étale. This induces a canonical map

Rg!Λ −→ Rg′
!Λ

in D(Yétale,Λ). Namely, by Lemmas 63.9.2 and 63.10.3 we have Rg! = Rg′
! ◦ j!.

On the other hand, since j! is left adjoint to j−1 we have the counit Trj : j!Λ =
j!j

−1Λ → Λ; we also call this the trace map for j, see Remark 63.5.6. The map
above is constructed as the composition

Rg!Λ = Rg′
!j!Λ

Rg′
! Trj−−−−→ Rg′

!Λ
Given a second étale morphism j′ : U ′ → U ′′ for some g′′ : U ′′ → Y separated and
of finite type the composition

Rg!Λ −→ Rg′
!Λ −→ Rg′′

! Λ
of the maps for j and j′ is equal to the map Rg!Λ −→ Rg′′

! Λ constructed for j′ ◦ j.
This follows from the corresponding statement on trace maps, see Lemma 63.5.4
for a more general case.
Let f : X → Y be a separated finite type morphism of quasi-compact and quasi-
separated schemes. Then we obtain a functor

Xaffine,étale −→
{

schemes separated of finite type over Y
with étale morphisms between them

}
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Thus the construction above determines a functor Xopp
affine,étale → D(Yétale,Λ)

sending U to R(U → Y )!Λ.

Lemma 63.16.1.0GLK Let f : X → Y be a separated finite type morphism of quasi-
compact and quasi-separated schemes. Let Λ be a torsion ring. LetK ∈ D(Yétale,Λ).
For n ∈ Z the cohomology sheaf Hn(Rf !K) restricted to Xaffine,étale is the sheaf
associated to the presheaf

U 7−→ HomY (R(U → Y )!Λ,K[n])
See discussion above for the functorial nature of R(U → Y )!Λ.

Proof. Let j : U → X be an object of Xaffine,étale and set g = f ◦ j. Recall that
HomX(j!Λ,M [n]) = Hn(U,M) for any M in D(Xétale,Λ). Then Hn(Rf !K) is the
sheaf associated to the presheaf
U 7→ Hn(U,Rf !K) = HomX(j!Λ, Rf !K[n]) = HomY (Rf!j!Λ,K[n] = HomY (Rg!Λ,K[n])
We omit the verification that the transition maps are given by the transition maps
between the objects Rg!Λ = R(U → Y )!Λ we constructed above. □
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CHAPTER 64

The Trace Formula

0F5P 64.1. Introduction

0F5Q These are the notes of the second part of a course on étale cohomology taught
by Johan de Jong at Columbia University in the Fall of 2009. The original note
takers were Thibaut Pugin, Zachary Maddock and Min Lee. Over time we will
add references to background material in the rest of the Stacks project and provide
rigorous proofs of all the statements.

64.2. The trace formula

03SJ A typical course in étale cohomology would normally state and prove the proper
and smooth base change theorems, purity and Poincaré duality. All of these can be
found in [Del77, Arcata]. Instead, we are going to study the trace formula for the
frobenius, following the account of Deligne in [Del77, Rapport]. We will only look
at dimension 1, but using proper base change this is enough for the general case.
Since all the cohomology groups considered will be étale, we drop the subscript
étale. Let us now describe the formula we are after. Let X be a finite type scheme
of dimension 1 over a finite field k, ℓ a prime number and F a constructible, flat
Z/ℓnZ sheaf. Then

(64.2.0.1)03SK
∑

x∈X(k)
Tr(Frob|Fx̄) =

∑2

i=0
(−1)iTr(π∗

X |Hi
c(X ⊗k k̄,F))

as elements of Z/ℓnZ. As we will see, this formulation is slightly wrong as stated.
Let us nevertheless describe the symbols that occur therein.

64.3. Frobenii

03SL In this section we will prove a “baffling” theorem. A topological analogue of the
baffling theorem is the following.

Exercise 64.3.1.03SO Let X be a topological space and g : X → X a continuous map
such that g−1(U) = U for all opens U of X. Then g induces the identity on
cohomology on X (for any coefficients).

We now turn to the statement for the étale site.

Lemma 64.3.2.03SP Let X be a scheme and g : X → X a morphism. Assume that for
all φ : U → X étale, there is an isomorphism

U

φ
��

∼ // U ×φ,X,g X

pr2
yy

X

5160
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functorial in U . Then g induces the identity on cohomology (for any sheaf).

Proof. The proof is formal and without difficulty. □

Please see Varieties, Section 33.36 for a discussion of different variants of the Frobe-
nius morphism.

Theorem 64.3.3 (The Baffling Theorem).03SN Let X be a scheme in characteristic p > 0.
Then the absolute frobenius induces (by pullback) the trivial map on cohomology,
i.e., for all integers j ≥ 0,

F ∗
X : Hj(X,Z/nZ) −→ Hj(X,Z/nZ)

is the identity.

This theorem is purely formal. It is a good idea, however, to review how to compute
the pullback of a cohomology class. Let us simply say that in the case where
cohomology agrees with Čech cohomology, it suffices to pull back (using the fiber
products on a site) the Čech cocycles. The general case is quite technical, see
Hypercoverings, Theorem 25.10.1. To prove the theorem, we merely verify that the
assumption of Lemma 64.3.2 holds for the frobenius.

Proof of Theorem 64.3.3. We need to verify the existence of a functorial isomor-
phism as above. For an étale morphism φ : U → X, consider the diagram

U

%%

FU

$$

φ

&&

U ×φ,X,FX X pr1
//

pr2

��

U

φ

��
X

FX // X.

The dotted arrow is an étale morphism and a universal homeomorphism, so it is an
isomorphism. See Étale Morphisms, Lemma 41.14.3. □

Definition 64.3.4.03SQ Let k be a finite field with q = pf elements. Let X be a scheme
over k. The geometric frobenius of X is the morphism πX : X → X over Spec(k)
which equals F fX .

Since πX is a morphism over k, we can base change it to any scheme over k. In
particular we can base change it to the algebraic closure k̄ and get a morphism
πX : Xk̄ → Xk̄. Using πX also for this base change should not be confusing as Xk̄

does not have a geometric frobenius of its own.

Lemma 64.3.5.03SR Let F be a sheaf on Xétale. Then there are canonical isomorphisms
π−1
X F ∼= F and F ∼= πX∗F .

This is false for the fppf site.

Proof. Let φ : U → X be étale. Recall that πX∗F(U) = F(U ×φ,X,πX X). Since
πX = F fX , it follows from the proof of Theorem 64.3.3 that there is a functorial

https://stacks.math.columbia.edu/tag/03SN
https://stacks.math.columbia.edu/tag/03SQ
https://stacks.math.columbia.edu/tag/03SR
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isomorphism
U

φ
��

γU
// U ×φ,X,πX X

pr2
yy

X

where γU = (φ, F fU ). Now we define an isomorphism
F(U) −→ πX∗F(U) = F(U ×φ,X,πX X)

by taking the restriction map of F along γ−1
U . The other isomorphism is analogous.

□

Remark 64.3.6.03SS It may or may not be the case that F fU equals πU .

We continue discussion cohomology of sheaves on our scheme X over the finite field
k with q = pf elements. Fix an algebraic closure k̄ of k and write Gk = Gal(k̄/k)
for the absolute Galois group of k. Let F be an abelian sheaf on Xétale. We will
define a left Gk-module structure cohomology group Hj(Xk̄,F|Xk̄) as follows: if
σ ∈ Gk, the diagram

Xk̄

  

Spec(σ)×idX // Xk̄

~~
X

commutes. Thus we can set, for ξ ∈ Hj(Xk̄,F|Xk̄)

σ · ξ := (Spec(σ)× idX)∗ξ ∈ Hj(Xk̄, (Spec(σ)× idX)−1F|Xk̄) = Hj(Xk̄,F|Xk̄),
where the last equality follows from the commutativity of the previous diagram.
This endows the latter group with the structure of a Gk-module.

Lemma 64.3.7.03ST In the situation above denote α : X → Spec(k) the structure
morphism. Consider the stalk (Rjα∗F)Spec(k̄) endowed with its natural Galois
action as in Étale Cohomology, Section 59.56. Then the identification

(Rjα∗F)Spec(k̄)
∼= Hj(Xk̄,F|Xk̄)

from Étale Cohomology, Theorem 59.53.1 is an isomorphism of Gk-modules.

A similar result holds comparing (Rjα!F)Spec(k̄) with Hj
c (Xk̄,F|Xk̄).

Proof. Omitted. □

Definition 64.3.8.03SU The arithmetic frobenius is the map frobk : k̄ → k̄, x 7→ xq of
Gk.

Theorem 64.3.9.03SV Let F be an abelian sheaf on Xétale. Then for all j ≥ 0, frobk
acts on the cohomology group Hj(Xk̄,F|Xk̄) as the inverse of the map π∗

X .

The map π∗
X is defined by the composition

Hj(Xk̄,F|Xk̄)
πX

∗
k̄−−−→ Hj(Xk̄, (π−1

X F)|Xk̄) ∼= Hj(Xk̄,F|Xk̄).

where the last isomorphism comes from the canonical isomorphism π−1
X F ∼= F of

Lemma 64.3.5.

https://stacks.math.columbia.edu/tag/03SS
https://stacks.math.columbia.edu/tag/03ST
https://stacks.math.columbia.edu/tag/03SU
https://stacks.math.columbia.edu/tag/03SV
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Proof. The composition Xk̄

Spec(frobk)−−−−−−−→ Xk̄
πX−−→ Xk̄ is equal to F fXk̄ , hence the

result follows from the baffling theorem suitably generalized to nontrivial coeffi-
cients. Note that the previous composition commutes in the sense that F fXk̄ =
πX ◦ Spec(frobk) = Spec(frobk) ◦ πX . □

Definition 64.3.10.03SW If x ∈ X(k) is a rational point and x̄ : Spec(k̄) → X the
geometric point lying over x, we let πx : Fx̄ → Fx̄ denote the action by frob−1

k and
call it the geometric frobenius1

We can now make a more precise statement (albeit a false one) of the trace formula
(64.2.0.1). Let X be a finite type scheme of dimension 1 over a finite field k, ℓ a
prime number and F a constructible, flat Z/ℓnZ sheaf. Then

(64.3.10.1)03SX
∑

x∈X(k)
Tr(πx|Fx̄) =

∑2

i=0
(−1)iTr(π∗

X |Hi
c(Xk̄,F))

as elements of Z/ℓnZ. The reason this equation is wrong is that the trace in the
right-hand side does not make sense for the kind of sheaves considered. Before
addressing this issue, we try to motivate the appearance of the geometric frobenius
(apart from the fact that it is a natural morphism!).

Let us consider the case where X = P1
k and F = Z/ℓZ. For any point, the Galois

module Fx̄ is trivial, hence for any morphism φ acting on Fx̄, the left-hand side is∑
x∈X(k)

Tr(φ|Fx̄) = #P1
k(k) = q + 1.

Now P1
k is proper, so compactly supported cohomology equals standard cohomol-

ogy, and so for a morphism π : P1
k → P1

k, the right-hand side equals

Tr(π∗|H0(P1
k̄
,Z/ℓZ)) + Tr(π∗|H2(P1

k̄
,Z/ℓZ)).

The Galois module H0(P1
k̄
,Z/ℓZ) = Z/ℓZ is trivial, since the pullback of the

identity is the identity. Hence the first trace is 1, regardless of π. For the second
trace, we need to compute the pullback π∗ : H2(P1

k̄
,Z/ℓZ)) for a map π : P1

k̄
→ P1

k̄
.

This is a good exercise and the answer is multiplication by the degree of π (for a
proof see Étale Cohomology, Lemma 59.69.2). In other words, this works as in
the familiar situation of complex cohomology. In particular, if π is the geometric
frobenius we get

Tr(π∗
X |H2(P1

k̄
,Z/ℓZ)) = q

and if π is the arithmetic frobenius then we get

Tr(frob∗
k|H2(P1

k̄
,Z/ℓZ)) = q−1.

The latter option is clearly wrong.

Remark 64.3.11.03SY The computation of the degrees can be done by lifting (in some
obvious sense) to characteristic 0 and considering the situation with complex coef-
ficients. This method almost never works, since lifting is in general impossible for
schemes which are not projective space.

1This notation is not standard. This operator is denoted Fx in [Del77]. We will likely change
this notation in the future.

https://stacks.math.columbia.edu/tag/03SW
https://stacks.math.columbia.edu/tag/03SY
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The question remains as to why we have to consider compactly supported coho-
mology. In fact, in view of Poincaré duality, it is not strictly necessary for smooth
varieties, but it involves adding in certain powers of q. For example, let us consider
the case where X = A1

k and F = Z/ℓZ. The action on stalks is again trivial, so we
only need look at the action on cohomology. But then π∗

X acts as the identity on
H0(A1

k̄
,Z/ℓZ) and as multiplication by q on H2

c (A1
k̄
,Z/ℓZ).

64.4. Traces

03SZ We now explain how to take the trace of an endomorphism of a module over a
noncommutative ring. Fix a finite ring Λ with cardinality prime to p. Typically,
Λ is the group ring (Z/ℓnZ)[G] for some finite group G. By convention, all the
Λ-modules considered will be left Λ-modules.
We introduce the following notation: We set Λ♮ to be the quotient of Λ by its
additive subgroup generated by the commutators (i.e., the elements of the form
ab− ba, a, b ∈ Λ). Note that Λ♮ is not a ring.
For instance, the module (Z/ℓnZ)[G]♮ is the dual of the class functions, so

(Z/ℓnZ)[G]♮ =
⊕

conjugacy classes of G
Z/ℓnZ.

For a free Λ-module, we have EndΛ(Λ⊕m) = Matn(Λ). Note that since the modules
are left modules, representation of endomorphism by matrices is a right action: if
a ∈ End(Λ⊕m) has matrix A and v ∈ Λ, then a(v) = vA.
Definition 64.4.1.03T0 The trace of the endomorphism a is the sum of the diagonal
entries of a matrix representing it. This defines an additive map Tr : EndΛ(Λ⊕m)→
Λ♮.
Exercise 64.4.2.03T1 Given maps

Λ⊕m a−→ Λ⊕n and Λ⊕n b−→ Λ⊕m

show that Tr(ab) = Tr(ba).
We extend the definition of the trace to a finite projective Λ-module P and an
endomorphism φ of P as follows. Write P as the summand of a free Λ-module, i.e.,
consider maps P a−→ Λ⊕n b−→ P with

(1) Λ⊕n = Im(a)⊕Ker(b); and
(2) b ◦ a = idP .

Then we set Tr(φ) = Tr(aφb). It is easy to check that this is well-defined, using
the previous exercise.

64.5. Why derived categories?

03T2 With this definition of the trace, let us now discuss another issue with the formula as
stated. Let C be a smooth projective curve over k. Then there is a correspondence
between finite locally constant sheaves F on Cétale whose stalks are isomorphic
to (Z/ℓnZ)⊕m on the one hand, and continuous representations ρ : π1(C, c̄) →
GLm(Z/ℓnZ)) (for some fixed choice of c̄) on the other hand. We denote Fρ the
sheaf corresponding to ρ. Then H2(Ck̄,Fρ) is the group of coinvariants for the
action of ρ(π1(C, c̄)) on (Z/ℓnZ)⊕m, and there is a short exact sequence

0 −→ π1(Ck̄, c̄) −→ π1(C, c̄) −→ Gk −→ 0.

https://stacks.math.columbia.edu/tag/03T0
https://stacks.math.columbia.edu/tag/03T1
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For instance, let Z = Zσ act on Z/ℓ2Z via σ(x) = (1 + ℓ)x. The coinvariants are
(Z/ℓ2Z)σ = Z/ℓZ, which is not a flat Z/ℓ2Z-module. Hence we cannot take the
trace of some action on H2(Ck̄,Fρ), at least not in the sense of the previous section.
In fact, our goal is to consider a trace formula for ℓ-adic coefficients. But Qℓ =
Zℓ[1/ℓ] and Zℓ = lim Z/ℓnZ, and even for a flat Z/ℓnZ sheaf, the individual coho-
mology groups may not be flat, so we cannot compute traces. One possible remedy
is consider the total derived complex RΓ(Ck̄,Fρ) in the derived category D(Z/ℓnZ)
and show that it is a perfect object, which means that it is quasi-isomorphic to a
finite complex of finite free module. For such complexes, we can define the trace,
but this will require an account of derived categories.

64.6. Derived categories

03T3 To set up notation, let A be an abelian category. Let Comp(A) be the abelian
category of complexes in A. Let K(A) be the category of complexes up to homo-
topy, with objects equal to complexes in A and morphisms equal to homotopy
classes of morphisms of complexes. This is not an abelian category. Loosely
speaking, D(A) is defined to be the category obtained by inverting all quasi-
isomorphisms in Comp(A) or, equivalently, in K(A). Moreover, we can define
Comp+(A),K+(A), D+(A) analogously using only bounded below complexes. Sim-
ilarly, we can define Comp−(A),K−(A), D−(A) using bounded above complexes,
and we can define Compb(A),Kb(A), Db(A) using bounded complexes.

Remark 64.6.1.03T4 Notes on derived categories.
(1) There are some set-theoretical problems when A is somewhat arbitrary,

which we will happily disregard.
(2) The categories K(A) and D(A) are endowed with the structure of a tri-

angulated category.
(3) The categories Comp(A) and K(A) can also be defined when A is an

additive category.

The homology functorHi : Comp(A)→ A taking a complexK• 7→ Hi(K•) extends
to functors Hi : K(A)→ A and Hi : D(A)→ A.

Lemma 64.6.2.03T5 An object E ofD(A) is contained inD+(A) if and only ifHi(E) = 0
for all i≪ 0. Similar statements hold for D− and D+.

Proof. Hint: use truncation functors. See Derived Categories, Lemma 13.11.5. □

Lemma 64.6.3.03T6 Morphisms between objects in the derived category.
(1) Let I• ∈ Comp+(A) with In injective for all n ∈ Z. Then

HomD(A)(K•, I•) = HomK(A)(K•, I•).
(2) Let P • ∈ Comp−(A) with Pn is projective for all n ∈ Z. Then

HomD(A)(P •,K•) = HomK(A)(P •,K•).
(3) If A has enough injectives and I ⊂ A is the additive subcategory of

injectives, then D+(A) ∼= K+(I) (as triangulated categories).
(4) If A has enough projectives and P ⊂ A is the additive subcategory of

projectives, then D−(A) ∼= K−(P).

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/03T4
https://stacks.math.columbia.edu/tag/03T5
https://stacks.math.columbia.edu/tag/03T6
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Definition 64.6.4.03T7 Let F : A → B be a left exact functor and assume that A has
enough injectives. We define the total right derived functor of F as the functor
RF : D+(A)→ D+(B) fitting into the diagram

D+(A) RF // D+(B)

K+(I)

OO

F // K+(B).

OO

This is possible since the left vertical arrow is invertible by the previous lemma.
Similarly, let G : A → B be a right exact functor and assume that A has enough
projectives. We define the total left derived functor of G as the functor LG :
D−(A)→ D−(B) fitting into the diagram

D−(A) LG // D−(B)

K−(P)

OO

G // K−(B).

OO

This is possible since the left vertical arrow is invertible by the previous lemma.

Remark 64.6.5.03T8 In these cases, it is true that RiF (K•) = Hi(RF (K•)), where the
left hand side is defined to be ith homology of the complex F (K•).

64.7. Filtered derived category

03T9 It turns out we have to do it all again and build the filtered derived category also.

Definition 64.7.1.03TA Let A be an abelian category.
(1) Let Fil(A) be the category of filtered objects (A,F ) of A, where F is a

filtration of the form
A ⊃ . . . ⊃ FnA ⊃ Fn+1A ⊃ . . . ⊃ 0.

This is an additive category.
(2) We denote Filf (A) the full subcategory of Fil(A) whose objects (A,F )

have finite filtration. This is also an additive category.
(3) An object I ∈ Filf (A) is called filtered injective (respectively projective)

provided that grp(I) = grpF (I) = F pI/F p+1I is injective (resp. projective)
in A for all p.

(4) The category of complexes Comp(Filf (A)) ⊃ Comp+(Filf (A)) and its
homotopy category K(Filf (A)) ⊃ K+(Filf (A)) are defined as before.

(5) A morphism α : K• → L• of complexes in Comp(Filf (A)) is called a
filtered quasi-isomorphism provided that

grp(α) : grp(K•)→ grp(L•)
is a quasi-isomorphism for all p ∈ Z.

(6) We defineDF (A) (resp. DF+(A)) by inverting the filtered quasi-isomorphisms
in K(Filf (A)) (resp. K+(Filf (A))).

Lemma 64.7.2.03TB If A has enough injectives, then DF+(A) ∼= K+(I), where I
is the full additive subcategory of Filf (A) consisting of filtered injective objects.

https://stacks.math.columbia.edu/tag/03T7
https://stacks.math.columbia.edu/tag/03T8
https://stacks.math.columbia.edu/tag/03TA
https://stacks.math.columbia.edu/tag/03TB
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Similarly, if A has enough projectives, then DF−(A) ∼= K+(P), where P is the full
additive subcategory of Filf (A) consisting of filtered projective objects.

Proof. Omitted. □

64.8. Filtered derived functors

03TC And then there are the filtered derived functors.

Definition 64.8.1.03TD Let T : A → B be a left exact functor and assume that A has
enough injectives. Define RT : DF+(A)→ DF+(B) to fit in the diagram

DF+(A) RT // DF+(B)

K+(I)

OO

T // K+(Filf (B)).

OO

This is well-defined by the previous lemma. Let G : A → B be a right exact functor
and assume that A has enough projectives. Define LG : DF+(A) → DF+(B) to
fit in the diagram

DF−(A) LG // DF−(B)

K−(P)

OO

G // K−(Filf (B)).

OO

Again, this is well-defined by the previous lemma. The functors RT , resp. LG, are
called the filtered derived functor of T , resp. G.

Proposition 64.8.2.03TE In the situation above, we have

grp ◦RT = RT ◦ grp

where the RT on the left is the filtered derived functor while the one on the right
is the total derived functor. That is, there is a commuting diagram

DF+(A) RT //

grp

��

DF+(B)

grp

��
D+(A) RT // D+(B).

Proof. Omitted. □

Given K• ∈ DF+(B), we get a spectral sequence

Ep,q1 = Hp+q(grpK•)⇒ Hp+q(forget filt(K•)).

64.9. Application of filtered complexes

03TF Let A be an abelian category with enough injectives, and 0→ L→M → N → 0 a
short exact sequence in A. Consider M̃ ∈ Filf (A) to be M along with the filtration
defined by

F 1M = L, FnM = M for n ≤ 0, and FnM = 0 for n ≥ 2.

https://stacks.math.columbia.edu/tag/03TD
https://stacks.math.columbia.edu/tag/03TE
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By definition, we have

forget filt(M̃) = M, gr0(M̃) = N, gr1(M̃) = L

and grn(M̃) = 0 for all other n ̸= 0, 1. Let T : A → B be a left exact functor.
Assume thatA has enough injectives. Then RT (M̃) ∈ DF+(B) is a filtered complex
with

grp(RT (M̃)) qis=

 0 if p ̸= 0, 1,
RT (N) if p = 0,
RT (L) if p = 1.

and forget filt(RT (M̃)) qis= RT (M). The spectral sequence applied to RT (M̃) gives

Ep,q1 = Rp+qT (grp(M̃))⇒ Rp+qT (forget filt(M̃)).

Unwinding the spectral sequence gives us the long exact sequence

0 // T (L) // T (M) // T (N)

{{
R1T (L) // R1T (M) // . . .

This will be used as follows. Let X/k be a scheme of finite type. Let F be a flat
constructible Z/ℓnZ-module. Then we want to show that the trace

Tr(π∗
X |RΓc(Xk̄,F)) ∈ Z/ℓnZ

is additive on short exact sequences. To see this, it will not be enough to work with
RΓc(Xk̄,−) ∈ D+(Z/ℓnZ), but we will have to use the filtered derived category.

64.10. Perfectness

03TG Let Λ be a (possibly noncommutative) ring, ModΛ the category of left Λ-modules,
K(Λ) = K(ModΛ) its homotopy category, and D(Λ) = D(ModΛ) the derived
category.

Definition 64.10.1.03TH We denote by Kperf (Λ) the category whose objects are bounded
complexes of finite projective Λ-modules, and whose morphisms are morphisms of
complexes up to homotopy. The functor Kperf (Λ)→ D(Λ) is fully faithful (Derived
Categories, Lemma 13.19.8). Denote Dperf (Λ) its essential image. An object of
D(Λ) is called perfect if it is in Dperf (Λ).

Proposition 64.10.2.03TI Let K ∈ Dperf (Λ) and f ∈ EndD(Λ)(K). Then the trace
Tr(f) ∈ Λ♮ is well defined.

Proof. We will use Derived Categories, Lemma 13.19.8 without further mention
in this proof. Let P • be a bounded complex of finite projective Λ-modules and
let α : P • → K be an isomorphism in D(Λ). Then α−1 ◦ f ◦ α corresponds to a
morphism of complexes f• : P • → P • well defined up to homotopy. Set

Tr(f) =
∑
i

(−1)iTr(f i : P i → P i) ∈ Λ♮.

https://stacks.math.columbia.edu/tag/03TH
https://stacks.math.columbia.edu/tag/03TI
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Given P • and α, this is independent of the choice of f•. Namely, any other choice
is of the form f̃• = f• + dh+ hd for some hi : P i → P i−1(i ∈ Z). But

Tr(dh) =
∑
i

(−1)iTr(P i dh−→ P i)

=
∑
i

(−1)iTr(P i−1 hd−→ P i−1)

= −
∑
i

(−1)i−1Tr(P i−1 hd−→ P i−1)

= −Tr(hd)
and so

∑
i(−1)iTr((dh+hd)|P i) = 0. Furthermore, this is independent of the choice

of (P •, α): suppose (Q•, β) is another choice. The compositions

Q• β−→ K
α−1

−−→ P • and P • α−→ K
β−1

−−→ Q•

are representable by morphisms of complexes γ•
1 and γ•

2 respectively, such that
γ•

1 ◦γ•
2 is homotopic to the identity. Thus, the morphism of complexes γ•

2 ◦f• ◦γ•
1 :

Q• → Q• represents the morphism β−1 ◦ f ◦ β in D(Λ). Now
Tr(γ•

2 ◦ f• ◦ γ•
1 |Q•) = Tr(γ•

1 ◦ γ•
2 ◦ f•|P•)

= Tr(f•|P•)
by the fact that γ•

1 ◦ γ•
2 is homotopic to the identity and the independence of the

choice of f• we saw above. □

64.11. Filtrations and perfect complexes

03TJ We now present a filtered version of the category of perfect complexes. An object
(M,F ) of Filf (ModΛ) is called filtered finite projective if for all p, grpF (M) is finite
and projective. We then consider the homotopy category KFperf(Λ) of bounded
complexes of filtered finite projective objects of Filf (ModΛ). We have a diagram of
categories

KF (Λ) ⊃ KFperf(Λ)
↓ ↓

DF (Λ) ⊃ DFperf(Λ)
where the vertical functor on the right is fully faithful and the category DFperf(Λ)
is its essential image, as before.

Lemma 64.11.1 (Additivity).03TK Let K ∈ DFperf(Λ) and f ∈ EndDF (K). Then

Tr(f |K) =
∑

p∈Z
Tr(f |grpK).

Proof. By Proposition 64.10.2, we may assume we have a bounded complex P • of fil-
tered finite projectives of Filf (ModΛ) and a map f• : P • → P • in Comp(Filf (ModΛ)).
So the lemma follows from the following result, which proof is left to the reader. □

Lemma 64.11.2.03TL Let P ∈ Filf (ModΛ) be filtered finite projective, and f : P → P

an endomorphism in Filf (ModΛ). Then

Tr(f |P ) =
∑

p
Tr(f |grp(P )).

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/03TK
https://stacks.math.columbia.edu/tag/03TL
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64.12. Characterizing perfect objects

03TM For the commutative case see More on Algebra, Sections 15.64, 15.66, and 15.74.

Definition 64.12.1.03TN Let Λ be a (possibly noncommutative) ring. An object K ∈
D(Λ) has finite Tor-dimension if there exist a, b ∈ Z such that for any right Λ-
module N , we have Hi(N ⊗L

Λ K) = 0 for all i ̸∈ [a, b].

This in particular means that K ∈ Db(Λ) as we see by taking N = Λ.

Lemma 64.12.2.03TO Let Λ be a left Noetherian ring and K ∈ D(Λ). Then K is perfect
if and only if the two following conditions hold:

(1) K has finite Tor-dimension, and
(2) for all i ∈ Z, Hi(K) is a finite Λ-module.

Proof. See More on Algebra, Lemma 15.74.2 for the proof in the commutative
case. □

The reader is strongly urged to try and prove this. The proof relies on the fact that
a finite module on a finitely left-presented ring is flat if and only if it is projective.

Remark 64.12.3.03TP A variant of this lemma is to consider a Noetherian scheme X
and the category Dperf (OX) of complexes which are locally quasi-isomorphic to a
finite complex of finite locally free OX -modules. Objects K of Dperf (OX) can be
characterized by having coherent cohomology sheaves and bounded tor dimension.

64.13. Cohomology of nice complexes

0964 The following is a special case of a more general result about compactly supported
cohomology of objects of Dctf (X,Λ).

Proposition 64.13.1.03TV Let X be a projective curve over a field k, Λ a finite ring and
K ∈ Dctf (X,Λ). Then RΓ(Xk̄,K) ∈ Dperf (Λ).

Sketch of proof. The first step is to show:
(1) The cohomology of RΓ(Xk̄,K) is bounded.

Consider the spectral sequence
Hi(Xk̄, H

j(K))⇒ Hi+j(RΓ(Xk̄,K)).

Since K is bounded and Λ is finite, the sheaves Hj(K) are torsion. Moreover,
Xk̄ has finite cohomological dimension, so the left-hand side is nonzero for finitely
many i and j only. Therefore, so is the right-hand side.

(2) The cohomology groups Hi+j(RΓ(Xk̄,K)) are finite.
Since the sheaves Hj(K) are constructible, the groups Hi(Xk̄, H

j(K)) are finite
(Étale Cohomology, Section 59.83) so it follows by the spectral sequence again.

(3) RΓ(Xk̄,K) has finite Tor-dimension.
Let N be a right Λ-module (in fact, since Λ is finite, it suffices to assume that N
is finite). By the projection formula (change of module),

N ⊗L
Λ RΓ(Xk̄,K) = RΓ(Xk̄, N ⊗

L
Λ K).

Therefore,
Hi(N ⊗L

Λ RΓ(Xk̄,K)) = Hi(RΓ(Xk̄, N ⊗
L
Λ K)).

https://stacks.math.columbia.edu/tag/03TN
https://stacks.math.columbia.edu/tag/03TO
https://stacks.math.columbia.edu/tag/03TP
https://stacks.math.columbia.edu/tag/03TV
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Now consider the spectral sequence

Hi(Xk̄, H
j(N ⊗L

Λ K))⇒ Hi+j(RΓ(Xk̄, N ⊗
L
Λ K)).

Since K has finite Tor-dimension, Hj(N ⊗L
Λ K) vanishes universally for j small

enough, and the left-hand side vanishes whenever i < 0. Therefore RΓ(Xk̄,K) has
finite Tor-dimension, as claimed. So it is a perfect complex by Lemma 64.12.2. □

64.14. Lefschetz numbers

03TW The fact that the total cohomology of a constructible complex of finite tor dimension
is a perfect complex is the key technical reason why cohomology behaves well, and
allows us to define rigorously the traces occurring in the trace formula.

Definition 64.14.1.03TX Let Λ be a finite ring, X a projective curve over a finite field k
and K ∈ Dctf (X,Λ) (for instance K = Λ). There is a canonical map cK : π−1

X K →
K, and its base change cK |Xk̄ induces an action denoted π∗

X on the perfect complex
RΓ(Xk̄,K|Xk̄). The global Lefschetz number of K is the trace Tr(π∗

X |RΓ(Xk̄,K)) of
that action. It is an element of Λ♮.

Definition 64.14.2.03TY With Λ, X, k,K as in Definition 64.14.1. Since K ∈ Dctf (X,Λ),
for any geometric point x̄ of X, the complex Kx̄ is a perfect complex (in Dperf (Λ)).
As we have seen in Section 64.3, the Frobenius πX acts on Kx̄. The local Lefschetz
number of K is the sum ∑

x∈X(k)
Tr(πX |Kx)

which is again an element of Λ♮.

At last, we can formulate precisely the trace formula.

Theorem 64.14.3 (Lefschetz Trace Formula).03TZ Let X be a projective curve over
a finite field k, Λ a finite ring and K ∈ Dctf (X,Λ). Then the global and local
Lefschetz numbers of K are equal, i.e.,

(64.14.3.1)03U0 Tr(π∗
X |RΓ(Xk̄,K)) =

∑
x∈X(k)

Tr(πX |Kx̄)

in Λ♮.

Proof. See discussion below. □

We will use, rather than prove, the trace formula. Nevertheless, we will give quite
a few details of the proof of the theorem as given in [Del77] (some of the things
that are not adequately explained are listed in Section 64.21).

We only stated the formula for curves, and in some weak sense it is a consequence
of the following result.

Theorem 64.14.4 (Weil).03U1 Let C be a nonsingular projective curve over an alge-
braically closed field k, and φ : C → C a k-endomorphism of C distinct from the
identity. Let V (φ) = ∆C · Γφ, where ∆C is the diagonal, Γφ is the graph of φ, and
the intersection number is taken on C × C. Let J = Pic0

C/k be the jacobian of C
and denote φ∗ : J → J the action induced by φ by taking pullbacks. Then

V (φ) = 1− TrJ(φ∗) + degφ.

https://stacks.math.columbia.edu/tag/03TX
https://stacks.math.columbia.edu/tag/03TY
https://stacks.math.columbia.edu/tag/03TZ
https://stacks.math.columbia.edu/tag/03U1


64.14. LEFSCHETZ NUMBERS 5172

Proof. The number V (φ) is the number of fixed points of φ, it is equal to

V (φ) =
∑

c∈|C|:φ(c)=c
mFix(φ)(c)

where mFix(φ)(c) is the multiplicity of c as a fixed point of φ, namely the order or
vanishing of the image of a local uniformizer under φ− idC . Proofs of this theorem
can be found in [Lan02] and [Wei48]. □

Example 64.14.5.03U2 Let C = E be an elliptic curve and φ = [n] be multiplication
by n. Then φ∗ = φt is multiplication by n on the jacobian, so it has trace 2n and
degree n2. On the other hand, the fixed points of φ are the points p ∈ E such that
np = p, which is the (n−1)-torsion, which has cardinality (n−1)2. So the theorem
reads

(n− 1)2 = 1− 2n+ n2.

Jacobians. We now discuss without proofs the correspondence between a curve and
its jacobian which is used in Weil’s proof. Let C be a nonsingular projective curve
over an algebraically closed field k and choose a base point c0 ∈ C(k). Denote by
A1(C × C) (or Pic(C × C), or CaCl(C × C)) the abelian group of codimension 1
divisors of C × C. Then

A1(C × C) = pr∗
1(A1(C))⊕ pr∗

2(A1(C))⊕R

where

R = {Z ∈ A1(C × C) | Z|C×{c0} ∼rat 0 and Z|{c0}×C ∼rat 0}.

In other words, R is the subgroup of line bundles which pull back to the trivial one
under either projection. Then there is a canonical isomorphism of abelian groups
R ∼= End(J) which maps a divisor Z in R to the endomorphism

J → J
[OC(D)] 7→ (pr1|Z)∗(pr2|Z)∗(D).

https://stacks.math.columbia.edu/tag/03U2
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The aforementioned correspondence is the following. We denote by σ the automor-
phism of C × C that switches the factors.

End(J) R

composition of α, β pr13∗(pr12
∗(α) ◦ pr23

∗(β))

idJ ∆C − {c0} × C − C × {c0}

φ∗ Γφ − C × {φ(c0)} −
∑
φ(c)=c0

{c} × C

the trace form
α, β 7→ Tr(αβ) α, β 7→ −

∫
C×C α.σ

∗β

the Rosati involution
α 7→ α† α 7→ σ∗α

positivity of Rosati
Tr(αα†) > 0

Hodge index theorem on C × C
−
∫
C×C ασ

∗α > 0.

In fact, in light of the Kunneth formula, the subgroup R corresponds to the 1, 1
hodge classes in H1(C)⊗H1(C).

Weil’s proof. Using this correspondence, we can prove the trace formula. We have

V (φ) =
∫
C×C

Γφ.∆

=
∫
C×C

Γφ. (∆C − {c0} × C − C × {c0}) +
∫
C×C

Γφ. ({c0} × C + C × {c0}) .

Now, on the one hand∫
C×C

Γφ. ({c0} × C + C × {c0}) = 1 + degφ

and on the other hand, since R is the orthogonal of the ample divisor {c0} × C +
C × {c0},∫

C×C
Γφ. (∆C − {c0} × C − C × {c0})

=
∫
C×C

Γφ − C × {φ(c0)} −
∑

φ(c)=c0

{c} × C

 . (∆C − {c0} × C − C × {c0})

= −TrJ(φ∗ ◦ idJ).

Recapitulating, we have

V (φ) = 1− TrJ(φ∗) + degφ

which is the trace formula.
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Lemma 64.14.6.03U3 Consider the situation of Theorem 64.14.4 and let ℓ be a prime
number invertible in k. Then∑2

i=0
(−1)iTr(φ∗|Hi(C,Z/ℓnZ)) = V (φ) mod ℓn.

Sketch of proof. Observe first that the assumption makes sense becauseHi(C,Z/ℓnZ)
is a free Z/ℓnZ-module for all i. The trace of φ∗ on the 0th degree cohomology is
1. The choice of a primitive ℓnth root of unity in k gives an isomorphism

Hi(C,Z/ℓnZ) ∼= Hi(C, µℓn)

compatibly with the action of the geometric Frobenius. On the other hand, H1(C, µℓn) =
J [ℓn]. Therefore,

Tr(φ∗|H1(C,Z/ℓnZ))) = TrJ(φ∗) mod ℓn

= TrZ/ℓnZ(φ∗ : J [ℓn]→ J [ℓn]).
Moreover, H2(C, µℓn) = Pic(C)/ℓn Pic(C) ∼= Z/ℓnZ where φ∗ is multiplication by
degφ. Hence

Tr(φ∗|H2(C,Z/ℓnZ)) = degφ.
Thus we have

2∑
i=0

(−1)iTr(φ∗|Hi(C,Z/ℓnZ)) = 1− TrJ(φ∗) + degφ mod ℓn

and the corollary follows from Theorem 64.14.4. □

An alternative way to prove this corollary is to show that
X 7→ H∗(X,Qℓ) = Qℓ ⊗ limnH

∗(X,Z/ℓnZ)
defines a Weil cohomology theory on smooth projective varieties over k. Then the
trace formula

V (φ) =
2∑
i=0

(−1)iTr(φ∗|Hi(C,Qℓ))

is a formal consequence of the axioms (it’s an exercise in linear algebra, the proof
is the same as in the topological case).

64.15. Preliminaries and sorites

03U4 Notation: We fix the notation for this section. We denote by A a commutative
ring, Λ a (possibly noncommutative) ring with a ring map A→ Λ which image lies
in the center of Λ. We let G be a finite group, Γ a monoid extension of G by N,
meaning that there is an exact sequence

1→ G→ Γ̃→ Z→ 1
and Γ consists of those elements of Γ̃ which image is nonnegative. Finally, we let
P be an A[Γ]-module which is finite and projective as an A[G]-module, and M a
Λ[Γ]-module which is finite and projective as a Λ-module.
Our goal is to compute the trace of 1 ∈ N acting over Λ on the coinvariants of G
on P ⊗AM , that is, the number

TrΛ (1; (P ⊗AM)G) ∈ Λ♮.
The element 1 ∈ N will correspond to the Frobenius.

https://stacks.math.columbia.edu/tag/03U3
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Lemma 64.15.1.03U5 Let e ∈ G denote the neutral element. The map
Λ[G] −→ Λ♮∑
λg · g 7−→ λe

factors through Λ[G]♮. We denote ε : Λ[G]♮ → Λ♮ the induced map.

Proof. We have to show the map annihilates commutators. One has(∑
λgg
)(∑

µgg
)
−
(∑

µgg
)(∑

λgg
)

=
∑
g

( ∑
g1g2=g

λg1µg2 − µg1λg2

)
g

The coefficient of e is∑
g

(
λgµg−1 − µgλg−1

)
=
∑
g

(
λgµg−1 − µg−1λg

)
which is a sum of commutators, hence it zero in Λ♮. □

Definition 64.15.2.03U6 Let f : P → P be an endomorphism of a finite projective
Λ[G]-module P . We define

TrGΛ (f ;P ) := ε
(
TrΛ[G](f ;P )

)
to be the G-trace of f on P .

Lemma 64.15.3.03U7 Let f : P → P be an endomorphism of the finite projective
Λ[G]-module P . Then

TrΛ(f ;P ) = #G · TrGΛ (f ;P ).

Proof. By additivity, reduce to the case P = Λ[G]. In that case, f is given by
right multiplication by some element

∑
λg · g of Λ[G]. In the basis (g)g∈G, the

matrix of f has coefficient λg−1
2 g1

in the (g1, g2) position. In particular, all diagonal
coefficients are λe, and there are #G such coefficients. □

Lemma 64.15.4.03U8 The map A→ Λ defines an A-module structure on Λ♮.

Proof. This is clear. □

Lemma 64.15.5.03U9 Let P be a finite projective A[G]-module and M a Λ[G]-module,
finite projective as a Λ-module. Then P ⊗AM is a finite projective Λ[G]-module,
for the structure induced by the diagonal action of G.

Note that P ⊗A M is naturally a Λ-module since M is. Explicitly, together with
the diagonal action this reads(∑

λgg
)

(p⊗m) =
∑

gp⊗ λggm.

Proof. For any Λ[G]-module N one has
HomΛ[G] (P ⊗AM,N) = HomA[G] (P,HomΛ(M,N))

where the G-action on HomΛ(M,N) is given by (g · φ)(m) = gφ(g−1m). Now
it suffices to observe that the right-hand side is a composition of exact functors,
because of the projectivity of P and M . □

Lemma 64.15.6.03UA With assumptions as in Lemma 64.15.5, let u ∈ EndA[G](P ) and
v ∈ EndΛ[G](M). Then

TrGΛ (u⊗ v;P ⊗AM) = TrGA(u;P ) · TrΛ(v;M).

https://stacks.math.columbia.edu/tag/03U5
https://stacks.math.columbia.edu/tag/03U6
https://stacks.math.columbia.edu/tag/03U7
https://stacks.math.columbia.edu/tag/03U8
https://stacks.math.columbia.edu/tag/03U9
https://stacks.math.columbia.edu/tag/03UA
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Sketch of proof. Reduce to the case P = A[G]. In that case, u is right multipli-
cation by some element a =

∑
agg of A[G], which we write u = Ra. There is an

isomorphism of Λ[G]-modules

φ : A[G]⊗AM ∼= (A[G]⊗AM)′

g ⊗m 7−→ g ⊗ g−1m

where (A[G]⊗AM)′ has the module structure given by the left G-action, together
with the Λ-linearity on M . This transport of structure changes u⊗v into

∑
g agRg⊗

g−1v. In other words,

φ ◦ (u⊗ v) ◦ φ−1 =
∑
g

agRg ⊗ g−1v.

Working out explicitly both sides of the equation, we have to show

TrGΛ

(∑
g

agRg ⊗ g−1v

)
= ae · TrΛ(v;M).

This is done by showing that

TrGΛ
(
agRg ⊗ g−1v

)
=
{

0 if g ̸= e
aeTrΛ (v;M) if g = e

by reducing to M = Λ. □

Notation: Consider the monoid extension 1 → G → Γ → N → 1 and let γ ∈ Γ.
Then we write Zγ = {g ∈ G|gγ = γg}.

Lemma 64.15.7.03UB Let P be a Λ[Γ]-module, finite and projective as a Λ[G]-module,
and γ ∈ Γ. Then

TrΛ(γ, P ) = #Zγ · TrZγΛ (γ, P ) .

Proof. This follows readily from Lemma 64.15.3. □

Lemma 64.15.8.03UC Let P be an A[Γ]-module, finite projective as A[G]-module. Let
M be a Λ[Γ]-module, finite projective as a Λ-module. Then

TrZγΛ (γ, P ⊗AM) = TrZγA (γ, P ) · TrΛ(γ,M).

Proof. This follows directly from Lemma 64.15.6. □

Lemma 64.15.9.03UD Let P be a Λ[Γ]-module, finite projective as Λ[G]-module. Then
the coinvariants PG = Λ⊗Λ[G] P form a finite projective Λ-module, endowed with
an action of Γ/G = N. Moreover, we have

TrΛ(1;PG) =
∑′

γ 7→1
TrZγΛ (γ, P )

where
∑′
γ 7→1 means taking the sum over the G-conjugacy classes in Γ.

Sketch of proof. We first prove this after multiplying by #G.

#G · TrΛ(1;PG) = TrΛ(
∑

γ 7→1
γ, PG) = TrΛ(

∑
γ 7→1

γ, P )

https://stacks.math.columbia.edu/tag/03UB
https://stacks.math.columbia.edu/tag/03UC
https://stacks.math.columbia.edu/tag/03UD
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where the second equality follows by considering the commutative triangle

PG

a
  

PGc
oo

P

b

>>

where a is the canonical inclusion, b the canonical surjection and c =
∑
γ 7→1 γ.

Then we have
(
∑

γ 7→1
γ)|P = a ◦ c ◦ b and (

∑
γ 7→1

γ)|PG = b ◦ a ◦ c

hence they have the same trace. We then have

#G · TrΛ(1;PG) =
∑
γ 7→1

′ #G
#Zγ

TrΛ(γ, P ) = #G
∑
γ 7→1

′
TrZγΛ (γ, P ).

To finish the proof, reduce to case Λ torsion-free by some universality argument.
See [Del77] for details. □

Remark 64.15.10.03UE Let us try to illustrate the content of the formula of Lemma
64.15.8. Suppose that Λ, viewed as a trivial Γ-module, admits a finite resolution
0→ Pr → . . .→ P1 → P0 → Λ→ 0 by some Λ[Γ]-modules Pi which are finite and
projective as Λ[G]-modules. In that case

H∗ ((P•)G) = TorΛ[G]
∗ (Λ,Λ) = H∗(G,Λ)

and
TrZγΛ (γ, P•) = 1

#Zγ
TrΛ(γ, P•) = 1

#Zγ
Tr(γ,Λ) = 1

#Zγ
.

Therefore, Lemma 64.15.8 says

TrΛ(1, PG) = Tr
(
1|H∗(G,Λ)

)
=
∑
γ 7→1

′ 1
#Zγ

.

This can be interpreted as a point count on the stack BG. If Λ = Fℓ with ℓ prime
to #G, then H∗(G,Λ) is Fℓ in degree 0 (and 0 in other degrees) and the formula
reads

1 =
∑

σ-conjugacy
classes⟨γ⟩

1
#Zγ

mod ℓ.

This is in some sense a “trivial” trace formula for G. Later we will see that
(64.14.3.1) can in some cases be viewed as a highly nontrivial trace formula for
a certain type of group, see Section 64.30.

64.16. Proof of the trace formula

03UF
Theorem 64.16.1.03UG Let k be a finite field and X a finite type, separated scheme of
dimension at most 1 over k. Let Λ be a finite ring whose cardinality is prime to
that of k, and K ∈ Dctf (X,Λ). Then

(64.16.1.1)03UH Tr(π∗
X |RΓc(Xk̄,K)) =

∑
x∈X(k)

Tr(πx|Kx̄)

in Λ♮.

https://stacks.math.columbia.edu/tag/03UE
https://stacks.math.columbia.edu/tag/03UG
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Please see Remark 64.16.2 for some remarks on the statement. Notation: For short,
we write

T ′(X,K) =
∑

x∈X(k)
Tr(πx|Kx̄)

for the right-hand side of (64.16.1.1) and
T ′′(X,K) = Tr(π∗

x|RΓc(Xk̄,K))
for the left-hand side.

Proof of Theorem 64.16.1. The proof proceeds in a number of steps.
Step 1. Let j : U ↪→ X be an open immersion with complement Y = X − U
and i : Y ↪→ X. Then T ′′(X,K) = T ′′(U , j−1K) + T ′′(Y, i−1K) and T ′(X,K) =
T ′(U , j−1K) + T ′(Y, i−1K).
This is clear for T ′. For T ′′ use the exact sequence

0→ j!j
−1K → K → i∗i

−1K → 0

to get a filtration on K. This gives rise to an object K̃ ∈ DF (X,Λ) whose graded
pieces are j!j

−1K and i∗i
−1K, both of which lie in Dctf (X,Λ). Then, by filtered

derived abstract nonsense (INSERT REFERENCE), RΓc(Xk̄,K) ∈ DFperf (Λ),
and it comes equipped with π∗

x in DFperf (Λ). By the discussion of traces on filtered
complexes (INSERT REFERENCE) we get

Tr(π∗
X |RΓc(Xk̄,K)) = Tr(π∗

X |RΓc(Xk̄,j!j−1K)) + Tr(π∗
X |RΓc(Xk̄,i∗i−1K))

= T ′′(U, i−1K) + T ′′(Y, i−1K).
Step 2. The theorem holds if dimX ≤ 0.
Indeed, in that case

RΓc(Xk̄,K) = RΓ(Xk̄,K) = Γ(Xk̄,K) =
⊕

x̄∈Xk̄
Kx̄ ← πX ∗ .

Since the fixed points of πX : Xk̄ → Xk̄ are exactly the points x̄ ∈ Xk̄ which lie
over a k-rational point x ∈ X(k) we get

Tr
(
π∗
X |RΓc(Xk̄,K)

)
=
∑

x∈X(k)
Tr(πx̄|Kx̄).

Step 3. It suffices to prove the equality T ′(U ,F) = T ′′(U ,F) in the case where
• U is a smooth irreducible affine curve over k,
• U(k) = ∅,
• K = F is a finite locally constant sheaf of Λ-modules on U whose stalk(s)

are finite projective Λ-modules, and
• Λ is killed by a power of a prime ℓ and ℓ ∈ k∗.

Indeed, because of Step 2, we can throw out any finite set of points. But we have
only finitely many rational points, so we may assume there are none2. We may
assume that U is smooth irreducible and affine by passing to irreducible components
and throwing away the bad points if necessary. The assumptions of F come from
unwinding the definition of Dctf (X,Λ) and those on Λ from considering its primary
decomposition.

2At this point, there should be an evil laugh in the background.
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For the remainder of the proof, we consider the situation
V

f

��

// Y

f̄
��

U // X

where U is as above, f is a finite étale Galois covering, V is connected and the hori-
zontal arrows are projective completions. Denoting G = Aut(V|U), we also assume
(as we may) that f−1F = M is constant, where the module M = Γ(V, f−1F) is a
Λ[G]-module which is finite and projective over Λ. This corresponds to the trivial
monoid extension

1→ G→ Γ = G×N→ N→ 1.
In that context, using the reductions above, we need to show that T ′′(U ,F) = 0.
Step 4. There is a natural action of G on f∗f

−1F and the trace map f∗f
−1F → F

defines an isomorphism
(f∗f

−1F)⊗Λ[G] Λ = (f∗f
−1F)G ∼= F .

To prove this, simply unwind everything at a geometric point.
Step 5. Let A = Z/ℓnZ with n ≫ 0. Then f∗f

−1F ∼= (f∗A) ⊗AM with diagonal
G-action.
Step 6. There is a canonical isomorphism (f∗A⊗AM)⊗Λ[G] Λ ∼= F .
In fact, this is a derived tensor product, because of the projectivity assumption on
F .
Step 7. There is a canonical isomorphism

RΓc(Uk̄,F) = (RΓc(Uk̄, f∗A)⊗L
AM)⊗L

Λ[G] Λ,
compatible with the action of π∗

U .
This comes from the universal coefficient theorem, i.e., the fact that RΓc commutes
with ⊗L, and the flatness of F as a Λ-module.
We have

Tr(π∗
U |RΓc(Uk̄,F)) =

∑
g∈G

′
TrZgΛ

(
(g, π∗

U )|RΓc(Uk̄,f∗A)⊗L
A
M

)
=

∑
g∈G

′
TrZgA ((g, π∗

U )|RΓc(Uk̄,f∗A)) · TrΛ(g|M )

where Γ acts on RΓc(Uk̄,F) by G and (e, 1) acts via π∗
U . So the monoidal extension

is given by Γ = G×N→ N, γ 7→ 1. The first equality follows from Lemma 64.15.9
and the second from Lemma 64.15.8.
Step 8. It suffices to show that TrZgA ((g, π∗

U )|RΓc(Uk̄,f∗A)) ∈ A maps to zero in Λ.
Recall that

#Zg · TrZgA ((g, π∗
U )|RΓc(Uk̄,f∗A)) = TrA((g, π∗

U )|RΓc(Uk̄,f∗A))
= TrA((g−1πV)∗|RΓc(Vk̄,A)).

The first equality is Lemma 64.15.7, the second is the Leray spectral sequence,
using the finiteness of f and the fact that we are only taking traces over A. Now
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since A = Z/ℓnZ with n ≫ 0 and #Zg = ℓa for some (fixed) a, it suffices to show
the following result.
Step 9. We have TrA((g−1πV)∗|RΓc(V,A)) = 0 in A.
By additivity again, we have

TrA((g−1πV)∗|RΓc(Vk̄A)) + TrA((g−1πV)∗|RΓc(Y−V)k̄,A))
= TrA((g−1πY )∗|RΓ(Yk̄,A))

The latter trace is the number of fixed points of g−1πY on Y , by Weil’s trace
formula Theorem 64.14.4. Moreover, by the 0-dimensional case already proven in
step 2,

TrA((g−1πV)∗|RΓc(Y−V)k̄,A))
is the number of fixed points of g−1πY on (Y − V)k̄. Therefore,

TrA((g−1πV)∗|RΓc(Vk̄,A))

is the number of fixed points of g−1πY on Vk̄. But there are no such points: if
ȳ ∈ Yk̄ is fixed under g−1πY , then f̄(ȳ) ∈ Xk̄ is fixed under πX . But U has no
k-rational point, so we must have f̄(ȳ) ∈ (X − U)k̄ and so ȳ /∈ Vk̄, a contradiction.
This finishes the proof. □

Remark 64.16.2.03UI Remarks on Theorem 64.16.1.
(1) This formula holds in any dimension. By a dévissage lemma (which uses

proper base change etc.) it reduces to the current statement – in that
generality.

(2) The complex RΓc(Xk̄,K) is defined by choosing an open immersion j :
X ↪→ X̄ with X̄ projective over k of dimension at most 1 and setting

RΓc(Xk̄,K) := RΓ(X̄k̄, j!K).
This is independent of the choice of X̄ follows from (insert reference here).
We define Hi

c(Xk̄,K) to be the ith cohomology group of RΓc(Xk̄,K).

Remark 64.16.3.03UJ Even though all we did are reductions and mostly algebra, the
trace formula Theorem 64.16.1 is much stronger than Weil’s geometric trace formula
(Theorem 64.14.4) because it applies to coefficient systems (sheaves), not merely
constant coefficients.

64.17. Applications

03UK OK, having indicated the proof of the trace formula, let’s try to use it for something.

64.18. On l-adic sheaves

03UL
Definition 64.18.1.03UM Let X be a Noetherian scheme. A Zℓ-sheaf on X, or simply an
ℓ-adic sheaf F is an inverse system {Fn}n≥1 where

(1) Fn is a constructible Z/ℓnZ-module on Xétale, and
(2) the transition maps Fn+1 → Fn induce isomorphisms Fn+1 ⊗Z/ℓn+1Z

Z/ℓnZ ∼= Fn.
We say that F is lisse if each Fn is locally constant. A morphism of such is merely
a morphism of inverse systems.

https://stacks.math.columbia.edu/tag/03UI
https://stacks.math.columbia.edu/tag/03UJ
https://stacks.math.columbia.edu/tag/03UM
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Lemma 64.18.2.03UN Let {Gn}n≥1 be an inverse system of constructible Z/ℓnZ-modules.
Suppose that for all k ≥ 1, the maps

Gn+1/ℓ
kGn+1 → Gn/ℓkGn

are isomorphisms for all n≫ 0 (where the bound possibly depends on k). In other
words, assume that the system {Gn/ℓkGn}n≥1 is eventually constant, and call Fk
the corresponding sheaf. Then the system {Fk}k≥1 forms a Zℓ-sheaf on X.

Proof. The proof is obvious. □

Lemma 64.18.3.03UO The category of Zℓ-sheaves on X is abelian.

Proof. Let Φ = {φn}n≥1 : {Fn} → {Gn} be a morphism of Zℓ-sheaves. Set

Coker(Φ) =
{

Coker
(
Fn

φn−−→ Gn
)}

n≥1

and Ker(Φ) is the result of Lemma 64.18.2 applied to the inverse system ⋂
m≥n

Im (Ker(φm)→ Ker(φn))


n≥1

.

That this defines an abelian category is left to the reader. □

Example 64.18.4.03UP Let X = Spec(C) and Φ : Zℓ → Zℓ be multiplication by ℓ. More
precisely,

Φ =
{

Z/ℓnZ ℓ−→ Z/ℓnZ
}
n≥1

.

To compute the kernel, we consider the inverse system

. . .→ Z/ℓZ 0−→ Z/ℓZ 0−→ Z/ℓZ.
Since the images are always zero, Ker(Φ) is zero as a system.

Remark 64.18.5.03UQ If F = {Fn}n≥1 is a Zℓ-sheaf on X and x̄ is a geometric point then
Mn = {Fn,x̄} is an inverse system of finite Z/ℓnZ-modules such that Mn+1 →Mn

is surjective and Mn = Mn+1/ℓ
nMn+1. It follows that

M = limnMn = limFn,x̄
is a finite Zℓ-module. Indeed, M/ℓM = M1 is finite over Fℓ, so by Nakayama M is
finite over Zℓ. Therefore, M ∼= Z⊕r

ℓ ⊕⊕ti=1Zℓ/ℓeiZℓ for some r, t ≥ 0, ei ≥ 1. The
module M = Fx̄ is called the stalk of F at x̄.

Definition 64.18.6.03UR A Zℓ-sheaf F is torsion if ℓn : F → F is the zero map for
some n. The abelian category of Qℓ-sheaves on X is the quotient of the abelian
category of Zℓ-sheaves by the Serre subcategory of torsion sheaves. In other words,
its objects are Zℓ-sheaves on X, and if F ,G are two such, then

HomQℓ
(F ,G) = HomZℓ (F ,G)⊗Zℓ Qℓ.

We denote by F 7→ F ⊗Qℓ the quotient functor (right adjoint to the inclusion). If
F = F ′ ⊗Qℓ where F ′ is a Zℓ-sheaf and x̄ is a geometric point, then the stalk of
F at x̄ is Fx̄ = F ′

x̄ ⊗Qℓ.

Remark 64.18.7.03US Since a Zℓ-sheaf is only defined on a Noetherian scheme, it is
torsion if and only if its stalks are torsion.

https://stacks.math.columbia.edu/tag/03UN
https://stacks.math.columbia.edu/tag/03UO
https://stacks.math.columbia.edu/tag/03UP
https://stacks.math.columbia.edu/tag/03UQ
https://stacks.math.columbia.edu/tag/03UR
https://stacks.math.columbia.edu/tag/03US
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Definition 64.18.8.03UT If X is a separated scheme of finite type over an algebraically
closed field k and F = {Fn}n≥1 is a Zℓ-sheaf on X, then we define

Hi(X,F) := limnH
i(X,Fn) and Hi

c(X,F) := limnH
i
c(X,Fn).

If F = F ′ ⊗Qℓ for a Zℓ-sheaf F ′ then we set
Hi
c(X,F) := Hi

c(X,F ′)⊗Zℓ Qℓ.

We call these the ℓ-adic cohomology of X with coefficients F .

64.19. L-functions

03UU
Definition 64.19.1.03UV Let X be a scheme of finite type over a finite field k. Let Λ
be a finite ring of order prime to the characteristic of k and F a constructible flat
Λ-module on Xétale. Then we set

L(X,F) :=
∏

x∈|X|
det(1− π∗

xT
deg x|Fx̄)−1 ∈ Λ[[T ]]

where |X| is the set of closed points of X, deg x = [κ(x) : k] and x̄ is a geometric
point lying over x. This definition clearly generalizes to the case where F is replaced
by a K ∈ Dctf (X,Λ). We call this the L-function of F .

Remark 64.19.2.03UW Intuitively, T should be thought of as T = tf where pf = #k.
The definitions are then independent of the size of the ground field.

Definition 64.19.3.03UX Now assume that F is a Qℓ-sheaf on X. In this case we define

L(X,F) :=
∏

x∈|X|
det(1− π∗

xT
deg x|Fx̄)−1 ∈ Qℓ[[T ]].

Note that this product converges since there are finitely many points of a given
degree. We call this the L-function of F .

64.20. Cohomological interpretation

03UY This is how Grothendieck interpreted the L-function.

Theorem 64.20.1 (Finite Coefficients).03UZ Let X be a scheme of finite type over a
finite field k. Let Λ be a finite ring of order prime to the characteristic of k and F
a constructible flat Λ-module on Xétale. Then

L(X,F) = det(1− π∗
X T |RΓc(Xk̄,F))−1 ∈ Λ[[T ]].

Proof. Omitted. □

Thus far, we don’t even know whether each cohomology group Hi
c(Xk̄,F) is free.

Theorem 64.20.2 (Adic sheaves).03V0 Let X be a scheme of finite type over a finite
field k, and F a Qℓ-sheaf on X. Then

L(X,F) =
∏

i
det(1− π∗

XT |Hic(Xk̄,F))(−1)i+1
∈ Qℓ[[T ]].

Proof. This is sketched below. □

Remark 64.20.3.03V1 Since we have only developed some theory of traces and not of
determinants, Theorem 64.20.1 is harder to prove than Theorem 64.20.2. We will
only prove the latter, for the former see [Del77]. Observe also that there is no
version of this theorem more general for Zℓ coefficients since there is no ℓ-torsion.

https://stacks.math.columbia.edu/tag/03UT
https://stacks.math.columbia.edu/tag/03UV
https://stacks.math.columbia.edu/tag/03UW
https://stacks.math.columbia.edu/tag/03UX
https://stacks.math.columbia.edu/tag/03UZ
https://stacks.math.columbia.edu/tag/03V0
https://stacks.math.columbia.edu/tag/03V1
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We reduce the proof of Theorem 64.20.2 to a trace formula. Since Qℓ has charac-
teristic 0, it suffices to prove the equality after taking logarithmic derivatives. More
precisely, we apply T d

dT log to both sides. We have on the one hand

T
d

dT
logL(X,F) = T

d

dT
log

∏
x∈|X|

det(1− π∗
xT

deg x|Fx̄)−1

=
∑
x∈|X|

T
d

dT
log(det(1− π∗

xT
deg x|Fx̄)−1)

=
∑
x∈|X|

deg x
∑
n≥1

Tr((πnx )∗|Fx̄)Tn deg x

where the last equality results from the formula

T
d

dT
log
(

det (1− fT |M )−1
)

=
∑
n≥1

Tr(fn|M )Tn

which holds for any commutative ring Λ and any endomorphism f of a finite pro-
jective Λ-module M . On the other hand, we have

T
d

dT
log
(∏

i
det(1− π∗

XT |Hic(Xk̄,F))(−1)i+1
)

=
∑

i
(−1)i

∑
n≥1

Tr
(
(πnX)∗|Hic(Xk̄,F)

)
Tn

by the same formula again. Now, comparing powers of T and using the Mobius
inversion formula, we see that Theorem 64.20.2 is a consequence of the following
equality ∑

d|n

d
∑
x∈|X|

deg x=d

Tr((πn/dX )∗|Fx̄) =
∑
i

(−1)iTr((πnX)∗|Hic(Xk̄,F)).

Writing kn for the degree n extension of k, Xn = X×Spec kSpec(kn) and nF = F|Xn ,
this boils down to∑

x∈Xn(kn)

Tr(π∗
X |nFx̄) =

∑
i

(−1)iTr((πnX)∗|Hic((Xn)k̄,nF))

which is a consequence of Theorem 64.20.5.

Theorem 64.20.4.03V3 Let X/k be as above, let Λ be a finite ring with #Λ ∈ k∗ and
K ∈ Dctf (X,Λ). Then RΓc(Xk̄,K) ∈ Dperf (Λ) and∑

x∈X(k)

Tr (πx|Kx̄) = Tr
(
π∗
X |RΓc(Xk̄,K)

)
.

Proof. Note that we have already proved this (REFERENCE) when dimX ≤ 1.
The general case follows easily from that case together with the proper base change
theorem. □

Theorem 64.20.5.03V2 Let X be a separated scheme of finite type over a finite field k

and F be a Qℓ-sheaf on X. Then dimQℓ
Hi
c(Xk̄,F) is finite for all i, and is nonzero

for 0 ≤ i ≤ 2 dimX only. Furthermore, we have∑
x∈X(k)

Tr (πx|Fx̄) =
∑
i

(−1)iTr
(
π∗
X |Hic(Xk̄,F)

)
.

https://stacks.math.columbia.edu/tag/03V3
https://stacks.math.columbia.edu/tag/03V2
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Proof. We explain how to deduce this from Theorem 64.20.4. We first use some
étale cohomology arguments to reduce the proof to an algebraic statement which
we subsequently prove.
Let F be as in the theorem. We can write F as F ′ ⊗ Qℓ where F ′ = {F ′

n} is
a Zℓ-sheaf without torsion, i.e., ℓ : F ′ → F ′ has trivial kernel in the category
of Zℓ-sheaves. Then each F ′

n is a flat constructible Z/ℓnZ-module on Xétale, so
F ′
n ∈ Dctf (X,Z/ℓnZ) and F ′

n+1⊗L
Z/ℓn+1Z Z/ℓnZ = F ′

n. Note that the last equality
holds also for standard (non-derived) tensor product, since F ′

n is flat (it is the same
equality). Therefore,

(1) the complex Kn = RΓc (Xk̄,F ′
n) is perfect, and it is endowed with an

endomorphism πn : Kn → Kn in D(Z/ℓnZ),
(2) there are identifications

Kn+1 ⊗L
Z/ℓn+1Z Z/ℓnZ = Kn

in Dperf (Z/ℓnZ), compatible with the endomorphisms πn+1 and πn (see
[Del77, Rapport 4.12]),

(3) the equality Tr (π∗
X |Kn) =

∑
x∈X(k) Tr

(
πx|(F ′

n)x̄
)

holds, and
(4) for each x ∈ X(k), the elements Tr(πx|F ′

n,x̄
) ∈ Z/ℓnZ form an element of

Zℓ which is equal to Tr(πx|Fx̄) ∈ Qℓ.
It thus suffices to prove the following algebra lemma. □

Lemma 64.20.6.03V4 Suppose we have Kn ∈ Dperf (Z/ℓnZ), πn : Kn → Kn and
isomorphisms φn : Kn+1 ⊗L

Z/ℓn+1Z Z/ℓnZ → Kn compatible with πn+1 and πn.
Then

(1) the elements tn = Tr(πn|Kn) ∈ Z/ℓnZ form an element t∞ = {tn} of Zℓ,
(2) the Zℓ-module Hi

∞ = limnH
i(kn) is finite and is nonzero for finitely many

i only, and
(3) the operators Hi(πn) : Hi(Kn) → Hi(Kn) are compatible and define

πi∞ : Hi
∞ → Hi

∞ satisfying∑
(−1)iTr(πi∞|Hi∞⊗ZℓQℓ

) = t∞.

Proof. Since Z/ℓnZ is a local ring and Kn is perfect, each Kn can be represented
by a finite complex K•

n of finite free Z/ℓnZ-modules such that the map Kp
n → Kp+1

n

has image contained in ℓKp+1
n . It is a fact that such a complex is unique up to

isomorphism. Moreover πn can be represented by a morphism of complexes π•
n :

K•
n → K•

n (which is unique up to homotopy). By the same token the isomorphism
φn : Kn+1 ⊗L

Z/ℓn+1Z Z/ℓnZ→ Kn is represented by a map of complexes

φ•
n : K•

n+1 ⊗Z/ℓn+1Z Z/ℓnZ→ K•
n.

In fact, φ•
n is an isomorphism of complexes, thus we see that

• there exist a, b ∈ Z independent of n such that Ki
n = 0 for all i /∈ [a, b],

and
• the rank of Ki

n is independent of n.
Therefore, the module Ki

∞ = limn{Ki
n, φ

i
n} is a finite free Zℓ-module and K•

∞ is
a finite complex of finite free Zℓ-modules. By induction on the number of nonzero
terms, one can prove that Hi (K•

∞) = limnH
i (K•

n) (this is not true for unbounded
complexes). We conclude that Hi

∞ = Hi (K•
∞) is a finite Zℓ-module. This proves

https://stacks.math.columbia.edu/tag/03V4


64.22. EXAMPLES OF L-FUNCTIONS 5185

ii. To prove the remainder of the lemma, we need to overcome the possible non-
commutativity of the diagrams

K•
n+1

π•
n+1

��

φ•
n // K•

n

π•
n

��
K•
n+1

φ•
n

// K•
n.

However, this diagram does commute in the derived category, hence it commutes up
to homotopy. We inductively replace π•

n for n ≥ 2 by homotopic maps of complexes
making these diagrams commute. Namely, if hi : Ki

n+1 → Ki−1
n is a homotopy, i.e.,

π•
n ◦ φ•

n − φ•
n ◦ π•

n+1 = dh+ hd,

then we choose h̃i : Ki
n+1 → Ki−1

n+1 lifting hi. This is possible because Ki
n+1 free

and Ki−1
n+1 → Ki−1

n is surjective. Then replace π•
n by π̃•

n defined by

π̃•
n+1 = π•

n+1 + dh̃+ h̃d.

With this choice of {π•
n}, the above diagrams commute, and the maps fit together

to define an endomorphism π•
∞ = limn π

•
n of K•

∞. Then part i is clear: the elements
tn =

∑
(−1)iTr

(
πin|Ki

n

)
fit into an element t∞ of Zℓ. Moreover

t∞ =
∑

(−1)iTrZℓ(πi∞|Ki
∞

)

=
∑

(−1)iTrQℓ
(πi∞|Ki

∞⊗ZℓQℓ
)

=
∑

(−1)iTr(π∞|Hi(K•
∞⊗Qℓ))

where the last equality follows from the fact that Qℓ is a field, so the complex
K•

∞ ⊗Qℓ is quasi-isomorphic to its cohomology Hi(K•
∞ ⊗Qℓ). The latter is also

equal to Hi(K•
∞) ⊗Z Qℓ = Hi

∞ ⊗Qℓ, which finishes the proof of the lemma, and
also that of Theorem 64.20.5. □

64.21. List of things which we should add above

03V5 What did we skip the proof of in the lectures so far:
(1) curves and their Jacobians,
(2) proper base change theorem,
(3) inadequate discussion of RΓc,
(4) more generally, given f : X → S finite type, separated S quasi-projective,

discussion of Rf! on étale sheaves.
(5) discussion of ⊗L

(6) discussion of why RΓc commutes with ⊗L

64.22. Examples of L-functions

03V6 We use Theorem 64.20.2 for curves to give examples of L-functions
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64.23. Constant sheaves

03V7 Let k be a finite field, X a smooth, geometrically irreducible curve over k and
F = Qℓ the constant sheaf. If x̄ is a geometric point of X, the Galois module
Fx̄ = Qℓ is trivial, so

det(1− π∗
x T

deg x|Fx̄)−1 = 1
1− T deg x .

Applying Theorem 64.20.2, we get

L(X,F) =
2∏
i=0

det(1− π∗
XT |Hic(Xk̄,Qℓ))(−1)i+1

=
det(1− π∗

XT |H1
c (Xk̄,Qℓ))

det(1− π∗
XT |H0

c (Xk̄,Qℓ)) · det(1− π∗
XT |H2

c (Xk̄,Qℓ))
.

To compute the latter, we distinguish two cases.
Projective case. Assume that X is projective, so Hi

c(Xk̄,Qℓ) = Hi(Xk̄,Qℓ), and
we have

Hi(Xk̄,Qℓ) =


Qℓ π∗

X = 1 if i = 0,
Q2g
ℓ π∗

X =? if i = 1,
Qℓ π∗

X = q if i = 2.
The identification of the action of π∗

X on H2 comes from Étale Cohomology, Lemma
59.69.2 and the fact that the degree of πX is q = #(k). We do not know much about
the action of π∗

X on the degree 1 cohomology. Let us call α1, . . . , α2g its eigenvalues
in Q̄ℓ. Putting everything together, Theorem 64.20.2 yields the equality∏

x∈|X|

1
1− T deg x =

det(1− π∗
XT |H1(Xk̄,Qℓ))

(1− T )(1− qT ) = (1− α1T ) . . . (1− α2gT )
(1− T )(1− qT )

from which we deduce the following result.

Lemma 64.23.1.03V8 Let X be a smooth, projective, geometrically irreducible curve
over a finite field k. Then

(1) the L-function L(X,Qℓ) is a rational function,
(2) the eigenvalues α1, . . . , α2g of π∗

X on H1(Xk̄,Qℓ) are algebraic integers
independent of ℓ,

(3) the number of rational points of X on kn, where [kn : k] = n, is

#X(kn) = 1−
∑2g

i=1
αni + qn,

(4) for each i, |αi| < q.

Proof. Part (3) is Theorem 64.20.5 applied to F = Qℓ on X ⊗ kn. For part (4),
use the following result. □

Exercise 64.23.2.03V9 Let α1, . . . , αn ∈ C. Then for any conic sector containing the
positive real axis of the form Cε = {z ∈ C | | arg z| < ε} with ε > 0, there exists
an integer k ≥ 1 such that αk1 , . . . , αkn ∈ Cε.

Then prove that |αi| ≤ q for all i. Then, use elementary considerations on complex
numbers to prove (as in the proof of the prime number theorem) that |αi| < q. In
fact, the Riemann hypothesis says that for all |αi| = √q for all i. We will come
back to this later.

https://stacks.math.columbia.edu/tag/03V8
https://stacks.math.columbia.edu/tag/03V9
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Affine case. Assume now that X is affine, say X = X̄−{x1, . . . , xn} where j : X ↪→
X̄ is a projective nonsingular completion. Then H0

c (Xk̄,Qℓ) = 0 and H2
c (Xk̄,Qℓ) =

H2(X̄k̄,Qℓ) so Theorem 64.20.2 reads

L(X,Qℓ) =
∏
x∈|X|

1
1− T deg x =

det(1− π∗
XT |H1

c (Xk̄,Qℓ))
1− qT .

On the other hand, the previous case gives

L(X,Qℓ) = L(X̄,Qℓ)
n∏
i=1

(
1− T deg xi

)
=

∏n
i=1(1− T deg xi)

∏2g
j=1(1− αjT )

(1− T )(1− qT ) .

Therefore, we see that dimH1
c (Xk̄,Qℓ) = 2g+

∑n
i=1 deg(xi)−1, and the eigenvalues

α1, . . . , α2g of π∗
X̄

acting on the degree 1 cohomology are roots of unity. More
precisely, each xi gives a complete set of deg(xi)th roots of unity, and one occurrence
of 1 is omitted. To see this directly using coherent sheaves, consider the short exact
sequence on X̄

0→ j!Qℓ → Qℓ →
n⊕
i=1

Qℓ,xi → 0.

The long exact cohomology sequence reads

0→ Qℓ →
n⊕
i=1

Q⊕ deg xi
ℓ → H1

c (Xk̄,Qℓ)→ H1
c (X̄k̄,Qℓ)→ 0

where the action of Frobenius on
⊕n

i=1 Q⊕ deg xi
ℓ is by cyclic permutation of each

term; and H2
c (Xk̄,Qℓ) = H2

c (X̄k̄,Qℓ).

64.24. The Legendre family

03VA Let k be a finite field of odd characteristic, X = Spec(k[λ, 1
λ(λ−1) ]), and consider

the family of elliptic curves f : E → X on P2
X whose affine equation is y2 =

x(x − 1)(x − λ). We set F = Rf1
∗ Qℓ =

{
R1f∗Z/ℓnZ

}
n≥1 ⊗Qℓ. In this situation,

the following is true
• for each n ≥ 1, the sheaf R1f∗(Z/ℓnZ) is finite locally constant – in fact,

it is free of rank 2 over Z/ℓnZ,
• the system {R1f∗Z/ℓnZ}n≥1 is a lisse ℓ-adic sheaf, and
• for all x ∈ |X|, det(1 − πx T deg x|Fx̄) = (1 − αxT

deg x)(1 − βxT
deg x)

where αx, βx are the eigenvalues of the geometric frobenius of Ex acting
on H1(Ex̄,Qℓ).

Note that Ex is only defined over κ(x) and not over k. The proof of these facts uses
the proper base change theorem and the local acyclicity of smooth morphisms. For
details, see [Del77]. It follows that

L(E/X) := L(X,F) =
∏
x∈|X|

1
(1− αxT deg x)(1− βxT deg x) .
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Applying Theorem 64.20.2 we get

L(E/X) =
2∏
i=0

det
(
1− π∗

XT |Hic(Xk̄,F)
)(−1)i+1

,

and we see in particular that this is a rational function. Furthermore, it is relatively
easy to show that H0

c (Xk̄,F) = H2
c (Xk̄,F) = 0, so we merely have

L(E/X) = det(1− π∗
XT |H1

c (X,F)).
To compute this determinant explicitly, consider the Leray spectral sequence for
the proper morphism f : E → X over Qℓ, namely

Hi
c(Xk̄, R

jf∗Qℓ)⇒ Hi+j
c (Ek̄,Qℓ)

which degenerates. We have f∗Qℓ = Qℓ and R1f∗Qℓ = F . The sheaf R2f∗Qℓ =
Qℓ(−1) is the Tate twist of Qℓ, i.e., it is the sheaf Qℓ where the Galois action is
given by multiplication by #κ(x) on the stalk at x̄. It follows that, for all n ≥ 1,

#E(kn) =
∑

i
(−1)iTr(πnE

∗|Hic(Ek̄,Qℓ))

=
∑

i,j
(−1)i+jTr(πnX

∗|Hic(Xk̄,Rjf∗Qℓ))

= (qn − 2) + Tr(πnX
∗|H1

c (Xk̄,F)) + qn(qn − 2)
= q2n − qn − 2 + Tr(πnX

∗|H1
c (Xk̄,F))

where the first equality follows from Theorem 64.20.5, the second one from the Leray
spectral sequence and the third one by writing down the higher direct images of
Qℓ under f . Alternatively, we could write

#E(kn) =
∑

x∈X(kn)

#Ex(kn)

and use the trace formula for each curve. We can also find the number of kn-rational
points simply by counting. The zero section contributes qn− 2 points (we omit the
points where λ = 0, 1) hence

#E(kn) = qn − 2 + #{y2 = x(x− 1)(x− λ), λ ̸= 0, 1}.
Now we have

#{y2 = x(x− 1)(x− λ), λ ̸= 0, 1}

= #{y2 = x(x− 1)(x− λ) in A3} −#{y2 = x2(x− 1)} −#{y2 = x(x− 1)2}

= #{λ = −y2

x(x−1) + x, x ̸= 0, 1}+ #{y2 = x(x− 1)(x− λ), x = 0, 1} − 2(qn − εn)

= qn(qn − 2) + 2qn − 2(qn − εn)

= q2n − 2qn + 2εn
where εn = 1 if −1 is a square in kn, 0 otherwise, i.e.,

εn = 1
2

(
1 +

(
−1
kn

))
= 1

2

(
1 + (−1)

qn−1
2

)
.

Thus #E(kn) = q2n− qn− 2 + 2εn. Comparing with the previous formula, we find

Tr(πnX
∗|H1

c (Xk̄,F)) = 2εn = 1 + (−1)
qn−1

2 ,
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which implies, by elementary algebra of complex numbers, that if −1 is a square
in k∗

n, then dimH1
c (Xk̄,F) = 2 and the eigenvalues are 1 and 1. Therefore, in that

case we have
L(E/X) = (1− T )2.

64.25. Exponential sums

03VB A standard problem in number theory is to evaluate sums of the form

Sa,b(p) =
∑

x∈Fp−{0,1}

e
2πixa(x−1)b

p .

In our context, this can be interpreted as a cohomological sum as follows. Consider
the base scheme S = Spec(Fp[x, 1

x(x−1) ]) and the affine curve f : X → P1−{0, 1,∞}
over S given by the equation yp−1 = xa(x− 1)b. This is a finite étale Galois cover
with group F∗

p and there is a splitting

f∗(Q̄∗
ℓ ) =

⊕
χ:F∗

p→Q̄∗
ℓ

Fχ

where χ varies over the characters of F∗
p and Fχ is a rank 1 lisse Qℓ-sheaf on which

F∗
p acts via χ on stalks. We get a corresponding decomposition

H1
c (Xk̄,Qℓ) =

⊕
χ

H1(P1
k̄
− {0, 1,∞},Fχ)

and the cohomological interpretation of the exponential sum is given by the trace
formula applied to Fχ over P1 − {0, 1,∞} for some suitable χ. It reads

Sa,b(p) = −Tr(π∗
X |H1(P1

k̄
−{0,1,∞},Fχ)).

The general yoga of Weil suggests that there should be some cancellation in the
sum. Applying (roughly) the Riemann-Hurwitz formula, we see that

2gX − 2 ≈ −2(p− 1) + 3(p− 2) ≈ p
so gX ≈ p/2, which also suggests that the χ-pieces are small.

64.26. Trace formula in terms of fundamental groups

03VC In the following sections we reformulate the trace formula completely in terms of
the fundamental group of a curve, except if the curve happens to be P1.

64.27. Fundamental groups

03VD This material is discussed in more detail in the chapter on fundamental groups. See
Fundamental Groups, Section 58.1. Let X be a connected scheme and let x → X
be a geometric point. Consider the functor

Fx : finite étale
schemes over X −→ finite sets

Y/X 7−→ Fx(Y ) =
{

geom points y
of Y lying over x

}
= Yx

Set
π1(X,x) = Aut(Fx) = set of automorphisms of the functor Fx

Note that for every finite étale Y → X there is an action
π1(X,x)× Fx(Y )→ Fx(Y )
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Definition 64.27.1.03VE A subgroup of the form Stab(y ∈ Fx(Y )) ⊂ π1(X,x) is called
open.

Theorem 64.27.2 (Grothendieck).03VF Let X be a connected scheme.
(1) There is a topology on π1(X,x) such that the open subgroups form a

fundamental system of open nbhds of e ∈ π1(X,x).
(2) With topology of (1) the group π1(X,x) is a profinite group.
(3) The functor

schemes finite
étale over X → finite discrete continuous

π1(X,x)-sets
Y/X 7→ Fx(Y ) with its natural action

is an equivalence of categories.

Proof. See [Gro71]. □

Proposition 64.27.3.03VG Let X be an integral normal Noetherian scheme. Let y → X
be an algebraic geometric point lying over the generic point η ∈ X. Then

πx(X, η) = Gal(M/κ(η))
(κ(η), function field of X) where

κ(η) ⊃M ⊃ κ(η) = k(X)
is the max sub-extension such that for every finite sub extension M ⊃ L ⊃ κ(η)
the normalization of X in L is finite étale over X.

Proof. Omitted. □

Change of base point. For any x1, x2 geom. points of X there exists an isom. of
fibre functions

Fx1
∼= Fx2

(This is a path from x1 to x2.) Conjugation by this path gives isom
π1(X,x1) ∼= π1(X,x2)

well defined up to inner actions.
Functoriality. For any morphism X1 → X2 of connected schemes any x ∈ X1 there
is a canonical map

π1(X1, x)→ π1(X2, x)
(Why? because the fibre functor ...)
Base field. Let X be a variety over a field k. Then we get

π1(X,x)→ π1(Spec(k), x) =prop Gal(ksep/k)
This map is surjective if and only if X is geometrically connected over k. So in the
geometrically connected case we get s.e.s. of profinite groups

1→ π1(Xk, x)→ π1(X,x)→ Gal(ksep/k)→ 1
(π1(Xk, x): geometric fundamental group of X, π1(X,x): arithmetic fundamental
group of X)
Comparison. If X is a variety over C then

π1(X,x) = profinite completion of π1(X(C)( usual topology), x)
(have x ∈ X(C))

https://stacks.math.columbia.edu/tag/03VE
https://stacks.math.columbia.edu/tag/03VF
https://stacks.math.columbia.edu/tag/03VG
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Frobenii. X variety over k, #k <∞. For any x ∈ X closed point, let
Fx ∈ π1(x, x) = Gal(κ(x)sep/κ(x))

be the geometric frobenius. Let η be an alg. geom. gen. pt. Then

π1(X, η)←∼= π1(X,x) functoriality
←

π1(x, x)

Easy fact:
π1(X, η) →deg π1(Spec(k), η)∗ = Gal(ksep/k)

||
Ẑ · FSpec(k)

Fx 7→ deg(x) · FSpec(k)

Recall: deg(x) = [κ(x) : k]
Fundamental groups and lisse sheaves. Let X be a connected scheme, x geom. pt.
There are equivalences of categories
(Λ finite ring) fin. loc. const. sheaves of

Λ-modules of Xétale ↔ finite (discrete) Λ-modules
with continuous π1(X,x)-action

(ℓ a prime) lisse ℓ-adic
sheaves ↔ finitely generated Zℓ-modules M with continuous

π1(X,x)-action where we use ℓ-adic topology on M

In particular lisse Ql-sheaves correspond to continuous homomorphisms
π1(X,x)→ GLr(Ql), r ≥ 0

Notation: A module with action (M,ρ) corresponds to the sheaf Fρ.
Trace formulas. X variety over k, #k <∞.

(1) Λ finite ring (#Λ,#k) = 1
ρ : π1(X,x)→ GLr(Λ)

continuous. For every n ≥ 1 we have

∑
d|n

d

 ∑
x∈|X|,

deg(x)=d

Tr(ρ(Fn/dx ))

 = Tr
(

(πnx )∗|RΓc(X
k
,Fρ)

)
(2) l ̸= char(k) prime, ρ : π1(X,x)→ GLr(Ql). For any n ≥ 1

∑
d|n

d

 ∑
x∈|X|

deg(x)=d

Tr
(
ρ(Fn/dx )

) =
2 dimX∑
i=0

(−1)iTr
(
π∗
X |Hic(X

k
,Fρ)

)
Weil conjectures. (Deligne-Weil I, 1974) X smooth proj. over k, #k = q, then the
eigenvalues of π∗

X on Hi(Xk,Ql) are algebraic integers α with |α| = q1/2.
Deligne’s conjectures. (almost completely proved by Lafforgue + . . .) Let X be a
normal variety over k finite

ρ : π1(X,x) −→ GLr(Ql)
continuous. Assume: ρ irreducible det(ρ) of finite order. Then

(1) there exists a number field E such that for all x ∈ |X|(closed points) the
char. poly of ρ(Fx) has coefficients in E.

(2) for any x ∈ |X| the eigenvalues αx,i, i = 1, . . . , r of ρ(Fx) have complex
absolute value 1. (these are algebraic numbers not necessary integers)
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(3) for every finite place λ( not dividing p), of E (maybe after enlarging E a
bit) there exists

ρλ : π1(X,x)→ GLr(Eλ)

compatible with ρ. (some char. polys of Fx’s)

Theorem 64.27.4 (Deligne, Weil II).03VH For a sheaf Fρ with ρ satisfying the conclusions
of the conjecture above then the eigenvalues of π∗

X on Hi
c(Xk,Fρ) are algebraic

numbers α with absolute values

|α| = qw/2, for w ∈ Z, w ≤ i

Moreover, if X smooth and proj. then w = i.

Proof. See [Del80]. □

64.28. Profinite groups, cohomology and homology

03VI Let G be a profinite group.

Cohomology. Consider the category of discrete modules with continuous G-action.
This category has enough injectives and we can define

Hi(G,M) = RiH0(G,M) = Ri(M 7→MG)

Also there is a derived version RH0(G,−).

Homology. Consider the category of compact abelian groups with continuous G-
action. This category has enough projectives and we can define

Hi(G,M) = LiH0(G,M) = Li(M 7→MG)

and there is also a derived version.

Trivial duality. The functor M 7→M∧ = Homcont(M,S1) exchanges the categories
above and

Hi(G,M)∧ = Hi(G,M∧)
Moreover, this functor maps torsion discrete G-modules to profinite continuous
G-modules and vice versa, and if M is either a discrete or profinite continuous
G-module, then M∧ = Hom(M,Q/Z).

Notes on Homology.
(1) If we look at Λ-modules for a finite ring Λ then we can identify

Hi(G,M) = Tor
Λ[[G]]
i (M,Λ)

where Λ[[G]] is the limit of the group algebras of the finite quotients of G.
(2) If G is a normal subgroup of Γ, and Γ is also profinite then

• H0(G,−): discrete Γ-module→ discrete Γ/G-modules
• H0(G,−): compact Γ-modules → compact Γ/G-modules

and hence the profinite group Γ/G acts on the cohomology groups of G
with values in a Γ-module. In other words, there are derived functors

RH0(G,−) : D+(discrete Γ-modules) −→ D+(discrete Γ/G-modules)

and similarly for LH0(G,−).

https://stacks.math.columbia.edu/tag/03VH
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64.29. Cohomology of curves, revisited

03VJ Let k be a field, X be geometrically connected, smooth curve over k. We have the
fundamental short exact sequence

1→ π1(Xk, η)→ π1(X, η)→ Gal(k
sep

/k)→ 1
If Λ is a finite ring with #Λ ∈ k∗ and M a finite Λ-module, and we are given

ρ : π1(X, η)→ AutΛ(M)
continuous, then Fρ denotes the associated sheaf on Xétale.

Lemma 64.29.1.03VK There is a canonical isomorphism
H2
c (Xk,Fρ) = (M)π1(X

k
,η)(−1)

as Gal(ksep/k)-modules.

Here the subscript π1(X
k
,η) indicates co-invariants, and (−1) indicates the Tate twist

i.e., σ ∈ Gal(ksep/k) acts via
χcycl(σ)−1.σ on RHS

where
χcycl : Gal(k

sep

/k)→
∏

l ̸=char(k)
Z∗
l

is the cyclotomic character.
Reformulation (Deligne, Weil II, page 338). For any finite locally constant sheaf F
on X there is a maximal quotient F → F ′′ with F ′′/Xk a constant sheaf, hence

F ′′ = (X → Spec(k))−1F ′′

where F ′′ is a sheaf Spec(k), i.e., a Gal(ksep/k)-module. Then
H2
c (Xk,F)→ H2

c (Xk,F
′′)→ F ′′(−1)

is an isomorphism.

Proof of Lemma 64.29.1. Let Y →φ X be the finite étale Galois covering corre-
sponding to Ker(ρ) ⊂ π1(X, η). So

Aut(Y/X) = Ind(ρ)
is Galois group. Then φ∗Fρ = MY and

φ∗φ
∗Fρ → Fρ

which gives
H2
c (Xk, φ∗φ

∗Fρ)→ H2
c (Xk,Fρ)

= H2
c (Yk, φ

∗Fρ)
= H2

c (Yk,M) = ⊕ irred. comp. of
Y
k

M

Im(ρ)→ H2
c (Yk,M) = ⊕ irred. comp. of

Y
k

M →Im(ρ)equivalent H
2
c (Xk,Fρ)→

trivial Im(ρ)
action

irreducible curve C/k, H2
c (C,M) = M .

Since
set of irreducible
components of Yk

= Im(ρ)
Im(ρ|π1(X

k
,η))

https://stacks.math.columbia.edu/tag/03VK
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We conclude that H2
c (Xk,Fρ) is a quotient of Mπ1(X

k
,η). On the other hand, there

is a surjection

Fρ → F ′′ = sheaf on X associated to
(M)π1(X

k
,η) ← π1(X, η)

H2
c (Xk,Fρ)→Mπ1(X

k
,η)

The twist in Galois action comes from the fact that H2
c (Xk, µn) =can Z/nZ. □

Remark 64.29.2.03VL Thus we conclude that if X is also projective then we have func-
torially in the representation ρ the identifications

H0(Xk,Fρ) = Mπ1(X
k
,η)

and
H2
c (Xk,Fρ) = Mπ1(X

k
,η)(−1)

Of course if X is not projective, then H0
c (Xk,Fρ) = 0.

Proposition 64.29.3.03VM Let X/k as before but Xk ̸= P1
k

The functors (M,ρ) 7→
H2−i
c (Xk,Fρ) are the left derived functor of (M,ρ) 7→ H2

c (Xk,Fρ) so

H2−i
c (Xk,Fρ) = Hi(π1(Xk, η),M)(−1)

Moreover, there is a derived version, namely

RΓc(Xk,Fρ) = LH0(π1(Xk, η),M(−1)) = M(−1)⊗L
Λ[[π1(X

k
,η)]] Λ

in D(Λ[[Ẑ]]). Similarly, the functors (M,ρ) 7→ Hi(Xk,Fρ) are the right derived
functor of (M,ρ) 7→Mπ1(X

k
,η) so

Hi(Xk,Fρ) = Hi(π1(Xk, η),M)

Moreover, in this case there is a derived version too.

Proof. (Idea) Show both sides are universal δ-functors. □

Remark 64.29.4.03VN By the proposition and Trivial duality then you get

H2−i
c (Xk,Fρ)×H

i(Xk,F
∧
ρ (1))→ Q/Z

a perfect pairing. If X is projective then this is Poincare duality.

64.30. Abstract trace formula

03VO Suppose given an extension of profinite groups,

1→ G→ Γ deg−−→ Ẑ→ 1

We say Γ has an abstract trace formula if and only if there exist
(1) an integer q ≥ 1, and
(2) for every d ≥ 1 a finite set Sd and for each x ∈ Sd a conjugacy class Fx ∈ Γ

with deg(Fx) = d

such that the following hold
(1) for all ℓ not dividing q have cdℓ(G) <∞, and

https://stacks.math.columbia.edu/tag/03VL
https://stacks.math.columbia.edu/tag/03VM
https://stacks.math.columbia.edu/tag/03VN
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(2) for all finite rings Λ with q ∈ Λ∗, for all finite projective Λ-modules M
with continuous Γ-action, for all n > 0 we have∑

d|n
d
(∑

x∈Sd
Tr(Fn/dx |M )

)
= qnTr(Fn|M⊗L

Λ[[G]]Λ
)

in Λ♮.
Here M ⊗L

Λ[[G]] Λ = LH0(G,M) denotes derived homology, and F = 1 in Γ/G = Ẑ.

Remark 64.30.1.03VP Here are some observations concerning this notion.
(1) If modeling projective curves then we can use cohomology and we don’t

need factor qn.
(2) The only examples I know are Γ = π1(X, η) where X is smooth, geometri-

cally irreducible and K(π, 1) over finite field. In this case q = (#k)dimX .
Modulo the proposition, we proved this for curves in this course.

(3) Given the integer q then the sets Sd are uniquely determined. (You can
multiple q by an integer m and then replace Sd by md copies of Sd without
changing the formula.)

Example 64.30.2.03VQ Fix an integer q ≥ 1

1 → G = Ẑ(q) → Γ → Ẑ → 1
=
∏
l ̸|q Zl F 7→ 1

with FxF−1 = ux, u ∈ (Ẑ(q))∗. Just using the trivial modules Z/mZ we see

qn − (qu)n ≡
∑

d|n
d#Sd

in Z/mZ for all (m, q) = 1 (up to u → u−1) this implies qu = a ∈ Z and |a| < q.
The special case a = 1 does occur with

Γ = πt1(Gm,Fp , η), #S1 = q − 1, and #S2 = (q2 − 1)− (q − 1)
2

64.31. Automorphic forms and sheaves

03VR References: See especially the amazing papers [Dri83], [Dri84] and [Dri80] by Drin-
feld.
Unramified cusp forms. Let k be a finite field of characteristic p. Let X geomet-
rically irreducible projective smooth curve over k. Set K = k(X) equal to the
function field of X. Let v be a place of K which is the same thing as a closed point
x ∈ X. Let Kv be the completion of K at v, which is the same thing as the fraction
field of the completion of the local ring of X at x. Denote Ov ⊂ Kv the ring of
integers. We further set

O =
∏

v
Ov ⊂ A =

′∏
v

Kv

and we let Λ be any ring with p invertible in Λ.
Definition 64.31.1.03VS An unramified cusp form on GL2(A) with values in Λ3 is a
function

f : GL2(A)→ Λ
such that

3This is likely nonstandard notation.

https://stacks.math.columbia.edu/tag/03VP
https://stacks.math.columbia.edu/tag/03VQ
https://stacks.math.columbia.edu/tag/03VS
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(1) f(xγ) = f(x) for all x ∈ GL2(A) and all γ ∈ GL2(K)
(2) f(ux) = f(x) for all x ∈ GL2(A) and all u ∈ GL2(O)
(3) for all x ∈ GL2(A),∫

A mod K

f

(
x

(
1 z
0 1

))
dz = 0

see [dJ01, Section 4.1] for an explanation of how to make sense out of this
for a general ring Λ in which p is invertible.

Hecke Operators. For v a place of K and f an unramified cusp form we set

Tv(f)(x) =
∫
g∈Mv

f(g−1x)dg,

and
Uv(f)(x) = f

((
π−1
v 0
0 π−1

v

)
x

)
Notations used: here πv ∈ Ov is a uniformizer

Mv = {h ∈Mat(2× 2, Ov)|deth = πvO
∗
v}

and dg = is the Haar measure on GL2(Kv) with
∫

GL2(Ov) dg = 1. Explicitly we
have

Tv(f)(x) = f

((
π−1
v 0
0 1

)
x

)
+

qv∑
i=1

f

((
1 0

−π−1
v λi π−1

v

)
x

)
with λi ∈ Ov a set of representatives of Ov/(πv) = κv, qv = #κv.
Eigenforms. An eigenform f is an unramified cusp form such that some value of f
is a unit and Tvf = tvf and Uvf = uvf for some (uniquely determined) tv, uv ∈ Λ.

Theorem 64.31.2.03VT Given an eigenform f with values in Ql and eigenvalues uv ∈ Z∗
l

then there exists
ρ : π1(X)→ GL2(E)

continuous, absolutely irreducible where E is a finite extension of Qℓ contained in
Ql such that tv = Tr(ρ(Fv)), and uv = q−1

v det (ρ(Fv)) for all places v.

Proof. See [Dri80]. □

Theorem 64.31.3.03VU Suppose Ql ⊂ E finite, and
ρ : π1(X)→ GL2(E)

absolutely irreducible, continuous. Then there exists an eigenform f with values
in Ql whose eigenvalues tv, uv satisfy the equalities tv = Tr(ρ(Fv)) and uv =
q−1
v det(ρ(Fv)).

Proof. See [Dri83]. □

Remark 64.31.4.03VV We now have, thanks to Lafforgue and many other mathemati-
cians, complete theorems like this two above for GLn and allowing ramification! In
other words, the full global Langlands correspondence for GLn is known for func-
tion fields of curves over finite fields. At the same time this does not mean there
aren’t a lot of interesting questions left to answer about the fundamental groups of
curves over finite fields, as we shall see below.

https://stacks.math.columbia.edu/tag/03VT
https://stacks.math.columbia.edu/tag/03VU
https://stacks.math.columbia.edu/tag/03VV
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Central character. If f is an eigenform then
χf : O∗\A∗/K∗ → Λ∗

(1, . . . , πv, 1, . . . , 1) 7→ u−1
v

is called the central character. If corresponds to the determinant of ρ via normal-
izations as above. Set

C(Λ) =
{

unr. cusp forms f with coefficients in Λ
such that Uvf = φ−1

v f∀v

}
Proposition 64.31.5.03VW If Λ is Noetherian then C(Λ) is a finitely generated Λ-module.
Moreover, if Λ is a field with prime subfield F ⊂ Λ then

C(Λ) = (C(F))⊗F Λ
compatibly with Tv acting.

Proof. See [dJ01, Proposition 4.7]. □

This proposition trivially implies the following lemma.

Lemma 64.31.6.03VX Algebraicity of eigenvalues. If Λ is a field then the eigenvalues tv
for f ∈ C(Λ) are algebraic over the prime subfield F ⊂ Λ.

Proof. Follows from Proposition 64.31.5. □

Combining all of the above we can do the following very useful trick.

Lemma 64.31.7.03VY Switching l. Let E be a number field. Start with
ρ : π1(X)→ SL2(Eλ)

absolutely irreducible continuous, where λ is a place of E not lying above p. Then
for any second place λ′ of E not lying above p there exists a finite extension E′

λ′

and a absolutely irreducible continuous representation
ρ′ : π1(X)→ SL2(E′

λ′)
which is compatible with ρ in the sense that the characteristic polynomials of all
Frobenii are the same.

Note how this is an instance of Deligne’s conjecture!

Proof. To prove the switching lemma use Theorem 64.31.3 to obtain f ∈ C(Ql)
eigenform ass. to ρ. Next, use Proposition 64.31.5 to see that we may choose
f ∈ C(E′) with E ⊂ E′ finite. Next we may complete E′ to see that we get
f ∈ C(E′

λ′) eigenform with E′
λ′ a finite extension of Eλ′ . And finally we use

Theorem 64.31.2 to obtain ρ′ : π1(X)→ SL2(E′
λ′) abs. irred. and continuous after

perhaps enlarging E′
λ′ a bit again. □

Speculation: If for a (topological) ring Λ we have(
ρ : π1(X)→ SL2(Λ)

abs irred

)
↔ eigen forms in C(Λ)

then all eigenvalues of ρ(Fv) algebraic (won’t work in an easy way if Λ is a finite
ring. Based on the speculation that the Langlands correspondence works more
generally than just over fields one arrives at the following conjecture.

https://stacks.math.columbia.edu/tag/03VW
https://stacks.math.columbia.edu/tag/03VX
https://stacks.math.columbia.edu/tag/03VY
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Conjecture. (See [dJ01]) For any continuous
ρ : π1(X)→ GLn(Fl[[t]])

we have #ρ(π1(Xk)) <∞.

A rephrasing in the language of sheaves: "For any lisse sheaf of Fl((t))-modules the
geom monodromy is finite."

Theorem 64.31.8.03VZ The Conjecture holds if n ≤ 2.

Proof. See [dJ01]. □

Theorem 64.31.9.03W0 Conjecture holds if l > 2n modulo some unproven things.

Proof. See [Gai07]. □

It turns out the conjecture is useful for something. See work of Drinfeld on Kashi-
wara’s conjectures. But there is also the much more down to earth application as
follows.

Theorem 64.31.10.03W1 (See [dJ01, Theorem 3.5]) Suppose
ρ0 : π1(X)→ GLn(Fl)

is a continuous, l ̸= p. Assume
(1) Conj. holds for X,
(2) ρ0|π1(X

k
) abs. irred., and

(3) l does not divide n.
Then the universal deformation ring Runiv of ρ0 is finite flat over Zl.

Explanation: There is a representation ρuniv : π1(X) → GLn(Runiv) (Univ. Defo
ring) Runiv loc. complete, residue field Fl and (Runiv → Fl) ◦ ρuniv ∼= ρ0. And
given any R → Fl, R local complete and ρ : π1(X) → GLn(R) then there exists
ψ : Runiv → R such that ψ ◦ ρuniv ∼= ρ. The theorem says that the morphism

Spec(Runiv) −→ Spec(Zl)
is finite and flat. In particular, such a ρ0 lifts to a ρ : π1(X)→ GLn(Ql).
Notes:

(1) The theorem on deformations is easy.
(2) Any result towards the conjecture seems hard.
(3) It would be interesting to have more conjectures on π1(X)!

64.32. Counting points

03W2 Let X be a smooth, geometrically irreducible, projective curve over k and q = #k.
The trace formula gives: there exists algebraic integers w1, . . . , w2g such that

#X(kn) = qn −
∑2gX

i=1
wni + 1.

If σ ∈ Aut(X) then for all i, there exists j such that σ(wi) = wj .
Riemann-Hypothesis. For all i we have |ωi| =

√
q.

This was formulated by Emil Artin, in 1924, for hyperelliptic curves. Proved by
Weil 1940. Weil gave two proofs

• using intersection theory on X ×X, using the Hodge index theorem, and

https://stacks.math.columbia.edu/tag/03VZ
https://stacks.math.columbia.edu/tag/03W0
https://stacks.math.columbia.edu/tag/03W1
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• using the Jacobian of X.
There is another proof whose initial idea is due to Stephanov, and which was given
by Bombieri: it uses the function field k(X) and its Frobenius operator (1969). The
starting point is that given f ∈ k(X) one observes that fq−f is a rational function
which vanishes in all the Fq-rational points of X, and that one can try to use this
idea to give an upper bound for the number of points.

64.33. Precise form of Chebotarev

03W3 As a first application let us prove a precise form of Chebotarev for a finite étale
Galois covering of curves. Let φ : Y → X be a finite étale Galois covering with
group G. This corresponds to a homomorphism

π1(X) −→ G = Aut(Y/X)

Assume Yk = irreducible. If C ⊂ G is a conjugacy class then for all n > 0, we have

|#{x ∈ X(kn) | Fx ∈ C} −
#C
#G ·#X(kn)| ≤ (#C)(2g − 2)

√
qn

(Warning: Please check the coefficient #C on the right hand side carefuly before
using.)

Sketch. Write

φ∗(Ql) = ⊕
π∈ĜFπ

where Ĝ is the set of isomorphism classes of irred representations of G over Ql. For
π ∈ Ĝ let χπ : G→ Ql be the character of π. Then

H∗(Yk,Ql) = ⊕
π∈ĜH

∗(Yk,Ql)π =(φ finite ) ⊕π∈ĜH
∗(Xk,Fπ)

If π ̸= 1 then we have

H0(Xk,Fπ) = H2(Xk,Fπ) = 0, dimH1(Xk,Fπ) = (2gX − 2)d2
π

(can get this from trace formula for acting on ...) and we see that

|
∑

x∈X(kn)

χπ(Fx)| ≤ (2gX − 2)d2
π

√
qn

Write 1C =
∑
π aπχπ, then aπ = ⟨1C , χπ⟩, and a1 = ⟨1C , χ1⟩ = #C

#G where

⟨f, h⟩ = 1
#G

∑
g∈G

f(g)h(g)

Thus we have the relation

#C
#G = ||1C ||2 =

∑
|aπ|2
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Final step:

# {x ∈ X(kn) | Fx ∈ C} =
∑

x∈X(kn)

1C(x)

=
∑

x∈X(kn)

∑
π

aπχπ(Fx)

= #C
#G#X(kn)︸ ︷︷ ︸
term for π=1

+
∑
π ̸=1

aπ
∑

x∈X(kn)

χπ(Fx)

︸ ︷︷ ︸
error term (to be bounded by E)

We can bound the error term by

|E| ≤
∑
π∈Ĝ,
π ̸=1

|aπ|(2g − 2)d2
π

√
qn

≤
∑
π ̸=1

#C
#G (2gX − 2)d3

π

√
qn

By Weil’s conjecture, #X(kn) ∼ qn. □

64.34. How many primes decompose completely?

03W4 This section gives a second application of the Riemann Hypothesis for curves over
a finite field. For number theorists it may be nice to look at the paper by Ihara,
entitled “How many primes decompose completely in an infinite unramified Galois
extension of a global field?”, see [Iha83]. Consider the fundamental exact sequence

1→ π1(Xk)→ π1(X) deg−−→ Ẑ→ 1

Proposition 64.34.1.03W5 There exists a finite set x1, . . . , xn of closed points of X
such that set of all frobenius elements corresponding to these points topologically
generate π1(X).

Another way to state this is: There exist x1, . . . , xn ∈ |X| such that the smallest
normal closed subgroup Γ of π1(X) containing 1 frobenius element for each xi is
all of π1(X). i.e., Γ = π1(X).

Proof. Pick N ≫ 0 and let

{x1, . . . , xn} = set of all closed points of
X of degree ≤ N over k

Let Γ ⊂ π1(X) be as in the variant statement for these points. Assume Γ ̸= π1(X).
Then we can pick a normal open subgroup U of π1(X) containing Γ with U ̸= π1(X).
By R.H. for X our set of points will have some xi1 of degree N , some xi2 of degree
N − 1. This shows deg : Γ → Ẑ is surjective and so the same holds for U . This
exactly means if Y → X is the finite étale Galois covering corresponding to U , then
Yk irreducible. Set G = Aut(Y/X). Picture

Y →G X, G = π1(X)/U
By construction all points of X of degree ≤ N , split completely in Y . So, in
particular

#Y (kN ) ≥ (#G)#X(kN )

https://stacks.math.columbia.edu/tag/03W5
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Use R.H. on both sides. So you get
qN + 1 + 2gY qN/2 ≥ #G#X(kN ) ≥ #G(qN + 1− 2gXqN/2)

Since 2gY − 2 = (#G)(2gX − 2), this means

qN + 1 + (#G)(2gX − 1) + 1)qN/2 ≥ #G(qN + 1− 2gXqN/2)
Thus we see that G has to be the trivial group if N is large enough. □

Weird Question. Set WX = deg−1(Z) ⊂ π1(X). Is it true that for some finite set
of closed points x1, . . . , xn of X the set of all frobenii corresponding to these points
algebraically generate WX?
By a Baire category argument this translates into the same question for all Frobenii.

64.35. How many points are there really?

03W6 If the genus of the curve is large relative to q, then the main term in the formula
#X(k) = q−

∑
ωi + 1 is not q but the second term

∑
ωi which can (a priori) have

size about 2gX
√
q. In the paper [VD83] the authors Drinfeld and Vladut show that

this maximum is (as predicted by Ihara earlier) actually at most about g√q.
Fix q and let k be a field with k elements. Set

A(q) = lim sup
gX→∞

#X(k)
gX

where X runs over geometrically irreducible smooth projective curves over k. With
this definition we have the following results:

• RH ⇒ A(q) ≤ 2√q
• Ihara ⇒ A(q) ≤

√
2q

• DV ⇒ A(q) ≤ √q − 1 (actually this is sharp if q is a square)

Proof. Given X let w1, . . . , w2g and g = gX be as before. Set αi = wi√
q , so |αi| = 1.

If αi occurs then αi = α−1
i also occurs. Then

N = #X(k) ≤ X(kr) = qr + 1− (
∑
i

αri )qr/2

Rewriting we see that for every r ≥ 1

−
∑
i

αri ≥ Nq−r/2 − qr/2 − q−r/2

Observe that

0 ≤ |αni + αn−1
i + . . .+ αi + 1|2 = (n+ 1) +

n∑
j=1

(n+ 1− j)(αji + α−j
i )

So

2g(n+ 1) ≥ −
∑
i

 n∑
j=1

(n+ 1− j)(αji + α−j
i )


= −

n∑
j=1

(n+ 1− j)
(∑

i

αji +
∑
i

α−j
i

)
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Take half of this to get

g(n+ 1) ≥ −
n∑
j=1

(n+ 1− j)(
∑
i

αji )

≥ N
n∑
j=1

(n+ 1− j)q−j/2 −
n∑
j=1

(n+ 1− j)(qj/2 + q−j/2)

This gives

N

g
≤

 n∑
j=1

n+ 1− j
n+ 1 q−j/2

−1

·

1 + 1
g

n∑
j=1

n+ 1− j
n+ 1 (qj/2 + q−j/2)


Fix n let g →∞

A(q) ≤

 n∑
j=1

n+ 1− j
n+ 1 q−j/2

−1

So

A(q) ≤ limn→∞(. . .) =

 ∞∑
j=1

q−j/2

−1

= √q − 1

□
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CHAPTER 65

Algebraic Spaces

025R 65.1. Introduction

025S Algebraic spaces were first introduced by Michael Artin, see [Art69b], [Art70],
[Art73], [Art71b], [Art71a], [Art69a], [Art69c], and [Art74]. Some of the foun-
dational material was developed jointly with Knutson, who produced the book
[Knu71]. Artin defined (see [Art69c, Definition 1.3]) an algebraic space as a sheaf
for the étale topology which is locally in the étale topology representable. In most
of Artin’s work the categories of schemes considered are schemes locally of finite
type over a fixed excellent Noetherian base.

Our definition is slightly different from Artin’s original definition. Namely, our al-
gebraic spaces are sheaves for the fppf topology whose diagonal is representable and
which have an étale “cover” by a scheme. Working with the fppf topology instead
of the étale topology is just a technical point and scarcely makes any difference; we
will show in Bootstrap, Section 80.12 that we would have gotten the same category
of algebraic spaces if we had worked with the étale topology. In that same chapter
we will prove that the condition on the diagonal can in some sense be removed, see
Bootstrap, Section 80.6.

After defining algebraic spaces we make some foundational observations. The main
result in this chapter is that with our definitions an algebraic space is the same
thing as an étale equivalence relation, see the discussion in Section 65.9 and The-
orem 65.10.5. The analogue of this theorem in Artin’s setting is [Art69c, Theorem
1.5], or [Knu71, Proposition II.1.7]. In other words, the sheaf defined by an étale
equivalence relation has a representable diagonal. It follows that our definition
agrees with Artin’s original definition in a broad sense. It also means that one
can give examples of algebraic spaces by simply writing down an étale equivalence
relation.

In Section 65.13 we introduce various separation axioms on algebraic spaces that
we have found in the literature. Finally in Section 65.14 we give some weird and
not so weird examples of algebraic spaces.

65.2. General remarks

025T We work in a suitable big fppf site Schfppf as in Topologies, Definition 34.7.6. So,
if not explicitly stated otherwise all schemes will be objects of Schfppf . In Section
65.15 we discuss what changes if you change the big fppf site.

We will always work relative to a base S contained in Schfppf . And we will then
work with the big fppf site (Sch/S)fppf , see Topologies, Definition 34.7.8. The
absolute case can be recovered by taking S = Spec(Z).

5205
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If U, T are schemes over S, then we denote U(T ) for the set of T -valued points over
S. In a formula: U(T ) = MorS(T,U).
Note that any fpqc covering is a universal effective epimorphism, see Descent,
Lemma 35.13.7. Hence the topology on Schfppf is weaker than the canonical topol-
ogy and all representable presheaves are sheaves.

65.3. Representable morphisms of presheaves

025U Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf → Sets. Let
a : F → G be a representable transformation of functors, see Categories, Definition
4.8.2. This means that for every U ∈ Ob((Sch/S)fppf ) and any ξ ∈ G(U) the
fiber product hU ×ξ,G F is representable. Choose a representing object Vξ and an
isomorphism hVξ → hU ×GF . By the Yoneda lemma, see Categories, Lemma 4.3.5,
the projection hVξ → hU ×G F → hU comes from a unique morphism of schemes
aξ : Vξ → U . Suggestively we could represent this by the diagram

Vξ //

aξ

��

hVξ

��

// F

a

��
U // hU

ξ // G

where the squiggly arrows represent the Yoneda embedding. Here are some lemmas
about this notion that work in great generality.

Lemma 65.3.1.02W9 Let S be a scheme contained in Schfppf and let X, Y be objects
of (Sch/S)fppf . Let f : X → Y be a morphism of schemes. Then

hf : hX −→ hY

is a representable transformation of functors.

Proof. This is formal and relies only on the fact that the category (Sch/S)fppf has
fibre products. □

Lemma 65.3.2.02WA Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : G→ H be representable transformations of functors. Then

b ◦ a : F −→ H

is a representable transformation of functors.

Proof. This is entirely formal and works in any category. □

Lemma 65.3.3.02WB Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G be a representable transformation of functors. Let b : H → G
be any transformation of functors. Consider the fibre product diagram

H ×b,G,a F
b′
//

a′

��

F

a

��
H

b // G

Then the base change a′ is a representable transformation of functors.

Proof. This is entirely formal and works in any category. □

https://stacks.math.columbia.edu/tag/02W9
https://stacks.math.columbia.edu/tag/02WA
https://stacks.math.columbia.edu/tag/02WB
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Lemma 65.3.4.02WC Let S be a scheme contained in Schfppf . Let Fi, Gi : (Sch/S)oppfppf →
Sets, i = 1, 2. Let ai : Fi → Gi, i = 1, 2 be representable transformations of func-
tors. Then

a1 × a2 : F1 × F2 −→ G1 ×G2

is a representable transformation of functors.

Proof. Write a1 × a2 as the composition F1 × F2 → G1 × F2 → G1 ×G2. The first
arrow is the base change of a1 by the map G1 × F2 → G1, and the second arrow is
the base change of a2 by the map G1 × G2 → G2. Hence this lemma is a formal
consequence of Lemmas 65.3.2 and 65.3.3. □

Lemma 65.3.5.02WD Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets. Let a : F → G be a representable transformation of functors. If G is a sheaf,
then so is F .

Proof. Let {φi : Ti → T} be a covering of the site (Sch/S)fppf . Let si ∈ F (Ti)
which satisfy the sheaf condition. Then σi = a(si) ∈ G(Ti) satisfy the sheaf
condition also. Hence there exists a unique σ ∈ G(T ) such that σi = σ|Ti . By
assumption F ′ = hT ×σ,G,a F is a representable presheaf and hence (see remarks in
Section 65.2) a sheaf. Note that (φi, si) ∈ F ′(Ti) satisfy the sheaf condition also,
and hence come from some unique (idT , s) ∈ F ′(T ). Clearly s is the section of F
we are looking for. □

Lemma 65.3.6.05L9 Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets. Let a : F → G be a representable transformation of functors. Then ∆F/G :
F → F ×G F is representable.

Proof. Let U ∈ Ob((Sch/S)fppf ). Let ξ = (ξ1, ξ2) ∈ (F ×G F )(U). Set ξ′ =
a(ξ1) = a(ξ2) ∈ G(U). By assumption there exist a scheme V and a morphism
V → U representing the fibre product hU ×ξ′,GF . In particular, the elements ξ1, ξ2
give morphisms f1, f2 : U → V over U . Because V represents the fibre product
hU ×ξ′,G F and because ξ′ = a ◦ ξ1 = a ◦ ξ2 we see that if g : U ′ → U is a morphism
then

g∗ξ1 = g∗ξ2 ⇔ f1 ◦ g = f2 ◦ g.
In other words, we see that hU ×ξ,F×GF F is represented by V ×∆,V×V,(f1,f2) U
which is a scheme. □

65.4. Lists of useful properties of morphisms of schemes

02WE For ease of reference we list in the following remarks the properties of morphisms
which possess some of the properties required of them in later results.

Remark 65.4.1.02WF Here is a list of properties/types of morphisms which are stable
under arbitrary base change:

(1) closed, open, and locally closed immersions, see Schemes, Lemma 26.18.2,
(2) quasi-compact, see Schemes, Lemma 26.19.3,
(3) universally closed, see Schemes, Definition 26.20.1,
(4) (quasi-)separated, see Schemes, Lemma 26.21.12,
(5) monomorphism, see Schemes, Lemma 26.23.5
(6) surjective, see Morphisms, Lemma 29.9.4,
(7) universally injective, see Morphisms, Lemma 29.10.2,
(8) affine, see Morphisms, Lemma 29.11.8,

https://stacks.math.columbia.edu/tag/02WC
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(9) quasi-affine, see Morphisms, Lemma 29.13.5,
(10) (locally) of finite type, see Morphisms, Lemma 29.15.4,
(11) (locally) quasi-finite, see Morphisms, Lemma 29.20.13,
(12) (locally) of finite presentation, see Morphisms, Lemma 29.21.4,
(13) locally of finite type of relative dimension d, see Morphisms, Lemma

29.29.2,
(14) universally open, see Morphisms, Definition 29.23.1,
(15) flat, see Morphisms, Lemma 29.25.8,
(16) syntomic, see Morphisms, Lemma 29.30.4,
(17) smooth, see Morphisms, Lemma 29.34.5,
(18) unramified (resp. G-unramified), see Morphisms, Lemma 29.35.5,
(19) étale, see Morphisms, Lemma 29.36.4,
(20) proper, see Morphisms, Lemma 29.41.5,
(21) H-projective, see Morphisms, Lemma 29.43.8,
(22) (locally) projective, see Morphisms, Lemma 29.43.9,
(23) finite or integral, see Morphisms, Lemma 29.44.6,
(24) finite locally free, see Morphisms, Lemma 29.48.4,
(25) universally submersive, see Morphisms, Lemma 29.24.2,
(26) universal homeomorphism, see Morphisms, Lemma 29.45.2.

Add more as needed.

Remark 65.4.2.02WG Of the properties of morphisms which are stable under base change
(as listed in Remark 65.4.1) the following are also stable under compositions:

(1) closed, open and locally closed immersions, see Schemes, Lemma 26.24.3,
(2) quasi-compact, see Schemes, Lemma 26.19.4,
(3) universally closed, see Morphisms, Lemma 29.41.4,
(4) (quasi-)separated, see Schemes, Lemma 26.21.12,
(5) monomorphism, see Schemes, Lemma 26.23.4,
(6) surjective, see Morphisms, Lemma 29.9.2,
(7) universally injective, see Morphisms, Lemma 29.10.5,
(8) affine, see Morphisms, Lemma 29.11.7,
(9) quasi-affine, see Morphisms, Lemma 29.13.4,

(10) (locally) of finite type, see Morphisms, Lemma 29.15.3,
(11) (locally) quasi-finite, see Morphisms, Lemma 29.20.12,
(12) (locally) of finite presentation, see Morphisms, Lemma 29.21.3,
(13) universally open, see Morphisms, Lemma 29.23.3,
(14) flat, see Morphisms, Lemma 29.25.6,
(15) syntomic, see Morphisms, Lemma 29.30.3,
(16) smooth, see Morphisms, Lemma 29.34.4,
(17) unramified (resp. G-unramified), see Morphisms, Lemma 29.35.4,
(18) étale, see Morphisms, Lemma 29.36.3,
(19) proper, see Morphisms, Lemma 29.41.4,
(20) H-projective, see Morphisms, Lemma 29.43.7,
(21) finite or integral, see Morphisms, Lemma 29.44.5,
(22) finite locally free, see Morphisms, Lemma 29.48.3,
(23) universally submersive, see Morphisms, Lemma 29.24.3,
(24) universal homeomorphism, see Morphisms, Lemma 29.45.3.

Add more as needed.

https://stacks.math.columbia.edu/tag/02WG
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Remark 65.4.3.02WH Of the properties mentioned which are stable under base change
(as listed in Remark 65.4.1) the following are also fpqc local on the base (and a
fortiori fppf local on the base):

(1) for immersions we have this for
(a) closed immersions, see Descent, Lemma 35.23.19,
(b) open immersions, see Descent, Lemma 35.23.16, and
(c) quasi-compact immersions, see Descent, Lemma 35.23.21,

(2) quasi-compact, see Descent, Lemma 35.23.1,
(3) universally closed, see Descent, Lemma 35.23.3,
(4) (quasi-)separated, see Descent, Lemmas 35.23.2, and 35.23.6,
(5) monomorphism, see Descent, Lemma 35.23.31,
(6) surjective, see Descent, Lemma 35.23.7,
(7) universally injective, see Descent, Lemma 35.23.8,
(8) affine, see Descent, Lemma 35.23.18,
(9) quasi-affine, see Descent, Lemma 35.23.20,

(10) (locally) of finite type, see Descent, Lemmas 35.23.10, and 35.23.12,
(11) (locally) quasi-finite, see Descent, Lemma 35.23.24,
(12) (locally) of finite presentation, see Descent, Lemmas 35.23.11, and 35.23.13,
(13) locally of finite type of relative dimension d, see Descent, Lemma 35.23.25,
(14) universally open, see Descent, Lemma 35.23.4,
(15) flat, see Descent, Lemma 35.23.15,
(16) syntomic, see Descent, Lemma 35.23.26,
(17) smooth, see Descent, Lemma 35.23.27,
(18) unramified (resp. G-unramified), see Descent, Lemma 35.23.28,
(19) étale, see Descent, Lemma 35.23.29,
(20) proper, see Descent, Lemma 35.23.14,
(21) finite or integral, see Descent, Lemma 35.23.23,
(22) finite locally free, see Descent, Lemma 35.23.30,
(23) universally submersive, see Descent, Lemma 35.23.5,
(24) universal homeomorphism, see Descent, Lemma 35.23.9.

Note that the property of being an “immersion” may not be fpqc local on the base,
but in Descent, Lemma 35.24.1 we proved that it is fppf local on the base.

65.5. Properties of representable morphisms of presheaves

02WI Here is the definition that makes this work.

Definition 65.5.1.025V With S, and a : F → G representable as above. Let P be a
property of morphisms of schemes which

(1) is preserved under any base change, see Schemes, Definition 26.18.3, and
(2) is fppf local on the base, see Descent, Definition 35.22.1.

In this case we say that a has property P if for every U ∈ Ob((Sch/S)fppf ) and
any ξ ∈ G(U) the resulting morphism of schemes Vξ → U has property P.

It is important to note that we will only use this definition for properties of mor-
phisms that are stable under base change, and local in the fppf topology on the
base. This is not because the definition doesn’t make sense otherwise; rather it is
because we may want to give a different definition which is better suited to the
property we have in mind.

https://stacks.math.columbia.edu/tag/02WH
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Remark 65.5.2.02YN Consider the property P =“surjective”. In this case there could be
some ambiguity if we say “let F → G be a surjective map”. Namely, we could mean
the notion defined in Definition 65.5.1 above, or we could mean a surjective map
of presheaves, see Sites, Definition 7.3.1, or, if both F and G are sheaves, we could
mean a surjective map of sheaves, see Sites, Definition 7.11.1. If not mentioned
otherwise when discussing morphisms of algebraic spaces we will always mean the
first. See Lemma 65.5.9 for a case where surjectivity implies surjectivity as a map
of sheaves.

Here is a sanity check.

Lemma 65.5.3.02WJ Let S, X, Y be objects of Schfppf . Let f : X → Y be a morphism
of schemes. Let P be as in Definition 65.5.1. Then hX −→ hY has property P if
and only if f has property P.

Proof. Note that the lemma makes sense by Lemma 65.3.1. Proof omitted. □

Lemma 65.5.4.02WK Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let P be a property as in Definition 65.5.1 which is stable under composition.
Let a : F → G, b : G→ H be representable transformations of functors. If a and b
have property P so does b ◦ a : F −→ H.

Proof. Note that the lemma makes sense by Lemma 65.3.2. Proof omitted. □

Lemma 65.5.5.02WL Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let P be a property as in Definition 65.5.1. Let a : F → G be a representable
transformations of functors. Let b : H → G be any transformation of functors.
Consider the fibre product diagram

H ×b,G,a F
b′
//

a′

��

F

a

��
H

b // G

If a has property P then also the base change a′ has property P.

Proof. Note that the lemma makes sense by Lemma 65.3.3. Proof omitted. □

Lemma 65.5.6.03KD Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let P be a property as in Definition 65.5.1. Let a : F → G be a representable
transformations of functors. Let b : H → G be any transformation of functors.
Consider the fibre product diagram

H ×b,G,a F
b′
//

a′

��

F

a

��
H

b // G

Assume that b induces a surjective map of fppf sheaves H# → G#. In this case, if
a′ has property P, then also a has property P.

Proof. First we remark that by Lemma 65.3.3 the transformation a′ is repre-
sentable. Let U ∈ Ob((Sch/S)fppf ), and let ξ ∈ G(U). By assumption there
exists an fppf covering {Ui → U}i∈I and elements ξi ∈ H(Ui) mapping to ξ|U via

https://stacks.math.columbia.edu/tag/02YN
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b. From general category theory it follows that for each i we have a fibre product
diagram

Ui ×ξi,H,a′ (H ×b,G,a F ) //

��

U ×ξ,G,a F

��
Ui // U

By assumption the left vertical arrow is a morphism of schemes which has property
P. Since P is local in the fppf topology this implies that also the right vertical
arrow has property P as desired. □

Lemma 65.5.7.02WM Let S be a scheme contained in Schfppf . Let Fi, Gi : (Sch/S)oppfppf →
Sets, i = 1, 2. Let ai : Fi → Gi, i = 1, 2 be representable transformations of func-
tors. Let P be a property as in Definition 65.5.1 which is stable under composition.
If a1 and a2 have property P so does a1 × a2 : F1 × F2 −→ G1 ×G2.

Proof. Note that the lemma makes sense by Lemma 65.3.4. Proof omitted. □

Lemma 65.5.8.02YO Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets. Let a : F → G be a representable transformation of functors. Let P, P ′

be properties as in Definition 65.5.1. Suppose that for any morphism of schemes
f : X → Y we have P(f)⇒ P ′(f). If a has property P then a has property P ′.

Proof. Formal. □

Lemma 65.5.9.05VM Let S be a scheme. Let F,G : (Sch/S)oppfppf → Sets be sheaves.
Let a : F → G be representable, flat, locally of finite presentation, and surjective.
Then a : F → G is surjective as a map of sheaves.

Proof. Let T be a scheme over S and let g : T → G be a T -valued point of G. By
assumption T ′ = F ×G T is (representable by) a scheme and the morphism T ′ → T
is a flat, locally of finite presentation, and surjective. Hence {T ′ → T} is an fppf
covering such that g|T ′ ∈ G(T ′) comes from an element of F (T ′), namely the map
T ′ → F . This proves the map is surjective as a map of sheaves, see Sites, Definition
7.11.1. □

Here is a characterization of those functors for which the diagonal is representable.

Lemma 65.5.10.025W Let S be a scheme contained in Schfppf . Let F be a presheaf of
sets on (Sch/S)fppf . The following are equivalent:

(1) the diagonal F → F × F is representable,
(2) for U ∈ Ob((Sch/S)fppf ) and any a ∈ F (U) the map a : hU → F is

representable,
(3) for every pair U, V ∈ Ob((Sch/S)fppf ) and any a ∈ F (U), b ∈ F (V ) the

fibre product hU ×a,F,b hV is representable.

Proof. This is completely formal, see Categories, Lemma 4.8.4. It depends only on
the fact that the category (Sch/S)fppf has products of pairs of objects and fibre
products, see Topologies, Lemma 34.7.10. □

In the situation of the lemma, for any morphism ξ : hU → F as in the lemma, it
makes sense to say that ξ has property P, for any property as in Definition 65.5.1.
In particular this holds for P = “surjective” and P = “étale”, see Remark 65.4.3
above. We will use this remark in the definition of algebraic spaces below.

https://stacks.math.columbia.edu/tag/02WM
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Lemma 65.5.11.0CB7 Let S be a scheme contained in Schfppf . Let F be a presheaf
of sets on (Sch/S)fppf . Let P be a property as in Definition 65.5.1. If for every
U, V ∈ Ob((Sch/S)fppf ) and a ∈ F (U), b ∈ F (V ) we have

(1) hU ×a,F,b hV is representable, say by the scheme W , and
(2) the morphism W → U ×S V corresponding to hU ×a,F,b hV → hU × hV

has property P,
then ∆ : F → F × F is representable and has property P.

Proof. Observe that ∆ is representable by Lemma 65.5.10. We can formulate con-
dition (2) as saying that the transformation hU ×a,F,b hV → hU×SV has property
P, see Lemma 65.5.3. Consider T ∈ Ob((Sch/S)fppf ) and (a, b) ∈ (F × F )(T ).
Observe that we have the commutative diagram

F ×∆,F×F,(a,b) hT

��

// hT

∆T/S

��
hT ×a,F,b hT //

��

hT×ST

(a,b)
��

F
∆ // F × F

both of whose squares are cartesian. In this way we see that the morphism F ×F×F
hT → hT is the base change of a morphism having property P by ∆T/S . Since P
is preserved under base change this finishes the proof. □

65.6. Algebraic spaces

025X Here is the definition.

Definition 65.6.1.025Y Let S be a scheme contained in Schfppf . An algebraic space
over S is a presheaf

F : (Sch/S)oppfppf −→ Sets
with the following properties

(1) The presheaf F is a sheaf.
(2) The diagonal morphism F → F × F is representable.
(3) There exists a scheme U ∈ Ob((Sch/S)fppf ) and a map hU → F which is

surjective, and étale.

There are two differences with the “usual” definition, for example the definition in
Knutson’s book [Knu71].
The first is that we require F to be a sheaf in the fppf topology. One reason
for doing this is that many natural examples of algebraic spaces satisfy the sheaf
condition for the fppf coverings (and even for fpqc coverings). Also, one of the
reasons that algebraic spaces have been so useful is via Michael Artin’s results on
algebraic spaces. Built into his method is a condition which guarantees the result
is locally of finite presentation over S. Combined it somehow seems to us that the
fppf topology is the natural topology to work with. In the end the category of
algebraic spaces ends up being the same. See Bootstrap, Section 80.12.
The second is that we only require the diagonal map for F to be representable,
whereas in [Knu71] it is required that it also be quasi-compact. If F = hU for some

https://stacks.math.columbia.edu/tag/0CB7
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scheme U over S this corresponds to the condition that U be quasi-separated. Our
point of view is to try to prove a certain number of the results that follow only
assuming that the diagonal of F be representable, and simply add an additional
hypothesis wherever this is necessary. In any case it has the pleasing consequence
that the following lemma is true.

Lemma 65.6.2.025Z A scheme is an algebraic space. More precisely, given a scheme
T ∈ Ob((Sch/S)fppf ) the representable functor hT is an algebraic space.

Proof. The functor hT is a sheaf by our remarks in Section 65.2. The diagonal
hT → hT × hT = hT×T is representable because (Sch/S)fppf has fibre products.
The identity map hT → hT is surjective étale. □

Definition 65.6.3.0260 Let F , F ′ be algebraic spaces over S. A morphism f : F → F ′

of algebraic spaces over S is a transformation of functors from F to F ′.

The category of algebraic spaces over S contains the category (Sch/S)fppf as a
full subcategory via the Yoneda embedding T/S 7→ hT . From now on we no longer
distinguish between a scheme T/S and the algebraic space it represents. Thus when
we say “Let f : T → F be a morphism from the scheme T to the algebraic space
F”, we mean that T ∈ Ob((Sch/S)fppf ), that F is an algebraic space over S, and
that f : hT → F is a morphism of algebraic spaces over S.

65.7. Fibre products of algebraic spaces

04T8 The category of algebraic spaces over S has both products and fibre products.

Lemma 65.7.1.02X0 Let S be a scheme contained in Schfppf . Let F,G be algebraic
spaces over S. Then F ×G is an algebraic space, and is a product in the category
of algebraic spaces over S.

Proof. It is clear that H = F×G is a sheaf. The diagonal of H is simply the product
of the diagonals of F and G. Hence it is representable by Lemma 65.3.4. Finally, if
U → F and V → G are surjective étale morphisms, with U, V ∈ Ob((Sch/S)fppf ),
then U × V → F ×G is surjective étale by Lemma 65.5.7. □

Lemma 65.7.2.04T9 Let S be a scheme contained in Schfppf . Let H be a sheaf on
(Sch/S)fppf whose diagonal is representable. Let F,G be algebraic spaces over S.
Let F → H, G→ H be maps of sheaves. Then F ×H G is an algebraic space.

Proof. We check the 3 conditions of Definition 65.6.1. A fibre product of sheaves
is a sheaf, hence F ×H G is a sheaf. The diagonal of F ×H G is the left vertical
arrow in

F ×H G //

∆
��

F ×G

∆F×∆G

��
(F × F )×(H×H) (G×G) // (F × F )× (G×G)

which is cartesian. Hence ∆ is representable as the base change of the morphism
on the right which is representable, see Lemmas 65.3.4 and 65.3.3. Finally, let
U, V ∈ Ob((Sch/S)fppf ) and a : U → F , b : V → G be surjective and étale. As
∆H is representable, we see that U ×H V is a scheme. The morphism

U ×H V −→ F ×H G

https://stacks.math.columbia.edu/tag/025Z
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is surjective and étale as a composition of the base changes U ×H V → U ×H G
and U ×H G→ F ×H G of the étale surjective morphisms U → F and V → G, see
Lemmas 65.3.2 and 65.3.3. This proves the last condition of Definition 65.6.1 holds
and we conclude that F ×H G is an algebraic space. □

Lemma 65.7.3.02X2 Let S be a scheme contained in Schfppf . Let F → H, G→ H be
morphisms of algebraic spaces over S. Then F ×H G is an algebraic space, and is
a fibre product in the category of algebraic spaces over S.

Proof. It follows from the stronger Lemma 65.7.2 that F ×H G is an algebraic
space. It is clear that F ×H G is a fibre product in the category of algebraic spaces
over S since that is a full subcategory of the category of (pre)sheaves of sets on
(Sch/S)fppf . □

65.8. Glueing algebraic spaces

02WN In this section we really start abusing notation and not distinguish between schemes
and the spaces they represent.

Lemma 65.8.1.0F15 Let S ∈ Ob(Schfppf ). Let F and G be sheaves on (Sch/S)oppfppf

and denote F ⨿G the coproduct in the category of sheaves. The map F → F ⨿G
is representable by open and closed immersions.

Proof. Let U be a scheme and let ξ ∈ (F ⨿ G)(U). Recall the coproduct in the
category of sheaves is the sheafification of the coproduct presheaf (Sites, Lemma
7.10.13). Thus there exists an fppf covering {gi : Ui → U}i∈I and a disjoint union
decomposition I = I ′⨿ I ′′ such that Ui → U → F ⨿G factors through F , resp. G if
and only if i ∈ I ′, resp. i ∈ I ′′. Since F and G have empty intersection in F ⨿G we
conclude that Ui ×U Uj is empty if i ∈ I ′ and j ∈ I ′′. Hence U ′ =

⋃
i∈I′ gi(Ui) and

U ′′ =
⋃
i∈I′′ gi(Ui) are disjoint open (Morphisms, Lemma 29.25.10) subschemes of

U with U = U ′ ⨿ U ′′. We omit the verification that U ′ = U ×F⨿G F . □

Lemma 65.8.2.02WO Let S ∈ Ob(Schfppf ). Let U ∈ Ob((Sch/S)fppf ). Given a set I
and sheaves Fi on Ob((Sch/S)fppf ), if U ∼=

∐
i∈I Fi as sheaves, then each Fi is

representable by an open and closed subscheme Ui and U ∼=
∐
Ui as schemes.

Proof. By Lemma 65.8.1 the map Fi → U is representable by open and closed
immersions. Hence Fi is representable by an open and closed subscheme Ui of U .
We have U =

∐
Ui because we have U ∼=

∐
Fi as sheaves and we can test the

equality on points. □

Lemma 65.8.3.02WP Let S ∈ Ob(Schfppf ). Let F be an algebraic space over S. Given
a set I and sheaves Fi on Ob((Sch/S)fppf ), if F ∼=

∐
i∈I Fi as sheaves, then each

Fi is an algebraic space over S.

Proof. The representability of F → F × F implies that each diagonal morphism
Fi → Fi × Fi is representable (immediate from the definitions and the fact that
F ×(F×F ) (Fi×Fi) = Fi). Choose a scheme U in (Sch/S)fppf and a surjective étale
morphism U → F (this exist by hypothesis). The base change U ×F Fi → Fi is
surjective and étale by Lemma 65.5.5. On the other hand, U ×F Fi is a scheme by
Lemma 65.8.1. Thus we have verified all the conditions in Definition 65.6.1 and Fi
is an algebraic space. □

https://stacks.math.columbia.edu/tag/02X2
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The condition on the size of I and the Fi in the following lemma may be ignored
by those not worried about set theoretic questions.
Lemma 65.8.4.02WQ Let S ∈ Ob(Schfppf ). Suppose given a set I and algebraic spaces
Fi, i ∈ I. Then F =

∐
i∈I Fi is an algebraic space provided I, and the Fi are

not too “large”: for example if we can choose surjective étale morphisms Ui → Fi
such that

∐
i∈I Ui is isomorphic to an object of (Sch/S)fppf , then F is an algebraic

space.
Proof. By construction F is a sheaf. We omit the verification that the diagonal
morphism of F is representable. Finally, if U is an object of (Sch/S)fppf isomorphic
to
∐
i∈I Ui then it is straightforward to verify that the resulting map U →

∐
Fi is

surjective and étale. □

Here is the analogue of Schemes, Lemma 26.15.4.
Lemma 65.8.5.02WR Let S ∈ Ob(Schfppf ). Let F be a presheaf of sets on (Sch/S)fppf .
Assume

(1) F is a sheaf,
(2) there exists an index set I and subfunctors Fi ⊂ F such that

(a) each Fi is an algebraic space,
(b) each Fi → F is representable,
(c) each Fi → F is an open immersion (see Definition 65.5.1),
(d) the map

∐
Fi → F is surjective as a map of sheaves, and

(e)
∐
Fi is an algebraic space (set theoretic condition, see Lemma 65.8.4).

Then F is an algebraic space.
Proof. Let T be an object of (Sch/S)fppf . Let T → F be a morphism. By as-
sumption (2)(b) and (2)(c) the fibre product Fi ×F T is representable by an open
subscheme Vi ⊂ T . It follows that (

∐
Fi)×F T is represented by the scheme

∐
Vi

over T . By assumption (2)(d) there exists an fppf covering {Tj → T}j∈J such that
Tj → T → F factors through Fi, i = i(j). Hence Tj → T factors through the open
subscheme Vi(j) ⊂ T . Since {Tj → T} is jointly surjective, it follows that T =

⋃
Vi

is an open covering. In particular, the transformation of functors
∐
Fi → F is

representable and surjective in the sense of Definition 65.5.1 (see Remark 65.5.2 for
a discussion).
Next, let T ′ → F be a second morphism from an object in (Sch/S)fppf . Write as
above T ′ =

⋃
V ′
i with V ′

i = T ′ ×F Fi. To show that the diagonal F → F × F
is representable we have to show that G = T ×F T ′ is representable, see Lemma
65.5.10. Consider the subfunctors Gi = G ×F Fi. Note that Gi = Vi ×Fi V ′

i ,
and hence is representable as Fi is an algebraic space. By the above the Gi form a
Zariski covering of G. Hence by Schemes, Lemma 26.15.4 we see G is representable.
Choose a scheme U ∈ Ob((Sch/S)fppf ) and a surjective étale morphism U →

∐
Fi

(this exists by hypothesis). We may write U =
∐
Ui with Ui the inverse image of

Fi, see Lemma 65.8.2. We claim that U → F is surjective and étale. Surjectivity
follows as

∐
Fi → F is surjective (see first paragraph of the proof) by applying

Lemma 65.5.4. Consider the fibre product U ×F T where T → F is as above. We
have to show that U ×F T → T is étale. Since U ×F T =

∐
Ui ×F T it suffices

to show each Ui ×F T → T is étale. Since Ui ×F T = Ui ×Fi Vi this follows from
the fact that Ui → Fi is étale and Vi → T is an open immersion (and Morphisms,
Lemmas 29.36.9 and 29.36.3). □

https://stacks.math.columbia.edu/tag/02WQ
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65.9. Presentations of algebraic spaces

0261 Given an algebraic space we can find a “presentation” of it.

Lemma 65.9.1.0262 Let F be an algebraic space over S. Let f : U → F be a surjective
étale morphism from a scheme to F . Set R = U ×F U . Then

(1) j : R→ U×SU defines an equivalence relation on U over S (see Groupoids,
Definition 39.3.1).

(2) the morphisms s, t : R→ U are étale, and
(3) the diagram

R
//
// U // F

is a coequalizer diagram in Sh((Sch/S)fppf ).

Proof. Let T/S be an object of (Sch/S)fppf . Then R(T ) = {(a, b) ∈ U(T )×U(T ) |
f ◦ a = f ◦ b} which defines an equivalence relation on U(T ). The morphisms
s, t : R→ U are étale because the morphism U → F is étale.
To prove (3) we first show that U → F is a surjection of sheaves, see Sites, Definition
7.11.1. Let ξ ∈ F (T ) with T as above. Let V = T ×ξ,F,f U . By assumption V
is a scheme and V → T is surjective étale. Hence {V → T} is a covering for the
fppf topology. Since ξ|V factors through U by construction we conclude U → F is
surjective. Surjectivity implies that F is the coequalizer of the diagram by Sites,
Lemma 7.11.3. □

This lemma suggests the following definitions.

Definition 65.9.2.02WS Let S be a scheme. Let U be a scheme over S. An étale
equivalence relation on U over S is an equivalence relation j : R → U ×S U such
that s, t : R→ U are étale morphisms of schemes.

Definition 65.9.3.0263 Let F be an algebraic space over S. A presentation of F is
given by a scheme U over S and an étale equivalence relation R on U over S, and
a surjective étale morphism U → F such that R = U ×F U .

Equivalently we could ask for the existence of an isomorphism
U/R ∼= F

where the quotient U/R is as defined in Groupoids, Section 39.20. To construct
algebraic spaces we will study the converse question, namely, for which equivalence
relations the quotient sheaf U/R is an algebraic space. It will finally turn out this
is always the case if R is an étale equivalence relation on U over S, see Theorem
65.10.5.

65.10. Algebraic spaces and equivalence relations

0264 Suppose given a scheme U over S and an étale equivalence relation R on U over S.
We would like to show this defines an algebraic space. We will produce a series of
lemmas that prove the quotient sheaf U/R (see Groupoids, Definition 39.20.1) has
all the properties required of it in Definition 65.6.1.

Lemma 65.10.1.02WT Let S be a scheme. Let U be a scheme over S. Let j = (s, t) :
R→ U ×S U be an étale equivalence relation on U over S. Let U ′ → U be an étale
morphism. Let R′ be the restriction of R to U ′, see Groupoids, Definition 39.3.3.
Then j′ : R′ → U ′ ×S U ′ is an étale equivalence relation also.

https://stacks.math.columbia.edu/tag/0262
https://stacks.math.columbia.edu/tag/02WS
https://stacks.math.columbia.edu/tag/0263
https://stacks.math.columbia.edu/tag/02WT
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Proof. It is clear from the description of s′, t′ in Groupoids, Lemma 39.18.1 that
s′, t′ : R′ → U ′ are étale as compositions of base changes of étale morphisms (see
Morphisms, Lemma 29.36.4 and 29.36.3). □

We will often use the following lemma to find open subspaces of algebraic spaces.
A slight improvement (with more general hypotheses) of this lemma is Bootstrap,
Lemma 80.7.1.

Lemma 65.10.2.02WU Let S be a scheme. Let U be a scheme over S. Let j = (s, t) :
R→ U ×S U be a pre-relation. Let g : U ′ → U be a morphism. Assume

(1) j is an equivalence relation,
(2) s, t : R→ U are surjective, flat and locally of finite presentation,
(3) g is flat and locally of finite presentation.

Let R′ = R|U ′ be the restriction of R to U ′. Then U ′/R′ → U/R is representable,
and is an open immersion.

Proof. By Groupoids, Lemma 39.3.2 the morphism j′ = (s′, t′) : R′ → U ′ ×S U ′

defines an equivalence relation. Since g is flat and locally of finite presentation
we see that g is universally open as well (Morphisms, Lemma 29.25.10). For the
same reason s, t are universally open as well. Let W 1 = g(U ′) ⊂ U , and let
W = t(s−1(W 1)). Then W 1 and W are open in U . Moreover, as j is an equivalence
relation we have t(s−1(W )) = W (see Groupoids, Lemma 39.19.2 for example).

By Groupoids, Lemma 39.20.5 the map of sheaves F ′ = U ′/R′ → F = U/R is
injective. Let a : T → F be a morphism from a scheme into U/R. We have to show
that T ×F F ′ is representable by an open subscheme of T .

The morphism a is given by the following data: an fppf covering {φj : Tj → T}j∈J
of T and morphisms aj : Tj → U such that the maps

aj × aj′ : Tj ×T Tj′ −→ U ×S U

factor through j : R→ U ×S U via some (unique) maps rjj′ : Tj ×T Tj′ → R. The
system (aj) corresponds to a in the sense that the diagrams

Tj aj
//

��

U

��
T

a // F

commute.

Consider the open subsets Wj = a−1
j (W ) ⊂ Tj . Since t(s−1(W )) = W we see that

Wj ×T Tj′ = r−1
jj′ (t−1(W )) = r−1

jj′ (s−1(W )) = Tj ×T Wj′ .

By Descent, Lemma 35.13.6 this means there exists an open WT ⊂ T such that
φ−1
j (WT ) = Wj for all j ∈ J . We claim that WT → T represents T ×F F ′ → T .

First, let us show that WT → T → F is an element of F ′(WT ). Since {Wj →
WT }j∈J is an fppf covering of WT , it is enough to show that each Wj → U → F
is an element of F ′(Wj) (as F ′ is a sheaf for the fppf topology). Consider the

https://stacks.math.columbia.edu/tag/02WU
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commutative diagram

W ′
j

//

��

##

U ′

g

��
s−1(W 1)

s
//

t

��

W 1

��
Wj

aj |Wj // W // F

where W ′
j = Wj ×W s−1(W 1) ×W 1 U ′. Since t and g are surjective, flat and

locally of finite presentation, so is W ′
j → Wj . Hence the restriction of the element

Wj → U → F to W ′
j is an element of F ′ as desired.

Suppose that f : T ′ → T is a morphism of schemes such that a|T ′ ∈ F ′(T ′). We
have to show that f factors through the open WT . Since {T ′ ×T Tj → T ′} is
an fppf covering of T ′ it is enough to show each T ′ ×T Tj → T factors through
WT . Hence we may assume f factors as φj ◦ fj : T ′ → Tj → T for some j. In
this case the condition a|T ′ ∈ F ′(T ′) means that there exists some fppf covering
{ψi : T ′

i → T ′}i∈I and some morphisms bi : T ′
i → U ′ such that

T ′
i bi

//

fj◦ψi
��

U ′
g
// U

��
Tj

aj // U // F

is commutative. This commutativity means that there exists a morphism r′
i : T ′

i →
R such that t◦r′

i = aj ◦fj ◦ψi, and s◦r′
i = g◦bi. This implies that Im(fj ◦ψi) ⊂Wj

and we win. □

The following lemma is not completely trivial although it looks like it should be
trivial.

Lemma 65.10.3.02WV Let S be a scheme. Let U be a scheme over S. Let j = (s, t) :
R→ U ×S U be an étale equivalence relation on U over S. If the quotient U/R is
an algebraic space, then U → U/R is étale and surjective. Hence (U,R,U → U/R)
is a presentation of the algebraic space U/R.

Proof. Denote c : U → U/R the morphism in question. Let T be a scheme and let
a : T → U/R be a morphism. We have to show that the morphism (of schemes)
π : T ×a,U/R,c U → T is étale and surjective. The morphism a corresponds to
an fppf covering {φi : Ti → T} and morphisms ai : Ti → U such that ai × ai′ :
Ti ×T Ti′ → U ×S U factors through R, and such that c ◦ ai = a ◦ φi. Hence

Ti ×φi,T T ×a,U/R,c U = Ti ×c◦ai,U/R,c U = Ti ×ai,U U ×c,U/R,c U = Ti ×ai,U,t R.

Since t is étale and surjective we conclude that the base change of π to Ti is surjective
and étale. Since the property of being surjective and étale is local on the base in
the fpqc topology (see Remark 65.4.3) we win. □

Lemma 65.10.4.0265 Let S be a scheme. Let U be a scheme over S. Let j = (s, t) :
R → U ×S U be an étale equivalence relation on U over S. Assume that U is

https://stacks.math.columbia.edu/tag/02WV
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affine. Then the quotient F = U/R is an algebraic space, and U → F is étale and
surjective.

Proof. Since j : R → U ×S U is a monomorphism we see that j is separated (see
Schemes, Lemma 26.23.3). Since U is affine we see that U ×S U (which comes
equipped with a monomorphism into the affine scheme U ×U) is separated. Hence
we see that R is separated. In particular the morphisms s, t are separated as well
as étale.
Since the composition R→ U×SU → U is locally of finite type we conclude that j is
locally of finite type (see Morphisms, Lemma 29.15.8). As j is also a monomorphism
it has finite fibres and we see that j is locally quasi-finite by Morphisms, Lemma
29.20.7. Altogether we see that j is separated and locally quasi-finite.
Our first step is to show that the quotient map c : U → F is representable. Consider
a scheme T and a morphism a : T → F . We have to show that the sheaf G =
T ×a,F,c U is representable. As seen in the proofs of Lemmas 65.10.2 and 65.10.3
there exists an fppf covering {φi : Ti → T}i∈I and morphisms ai : Ti → U such
that ai× ai′ : Ti×T Ti′ → U ×S U factors through R, and such that c ◦ ai = a ◦φi.
As in the proof of Lemma 65.10.3 we see that

Ti ×φi,T G = Ti ×φi,T T ×a,U/R,c U
= Ti ×c◦ai,U/R,c U
= Ti ×ai,U U ×c,U/R,c U
= Ti ×ai,U,t R

Since t is separated and étale, and in particular separated and locally quasi-finite
(by Morphisms, Lemmas 29.35.10 and 29.36.16) we see that the restriction of G
to each Ti is representable by a morphism of schemes Xi → Ti which is separated
and locally quasi-finite. By Descent, Lemma 35.39.1 we obtain a descent datum
(Xi, φii′) relative to the fppf-covering {Ti → T}. Since each Xi → Ti is separated
and locally quasi-finite we see by More on Morphisms, Lemma 37.57.1 that this
descent datum is effective. Hence by Descent, Lemma 35.39.1 (2) we conclude that
G is representable as desired.
The second step of the proof is to show that U → F is surjective and étale. This
is clear from the above since in the first step above we saw that G = T ×a,F,c U is
a scheme over T which base changes to schemes Xi → Ti which are surjective and
étale. Thus G → T is surjective and étale (see Remark 65.4.3). Alternatively one
can reread the proof of Lemma 65.10.3 in the current situation.
The third and final step is to show that the diagonal map F → F × F is repre-
sentable. We first observe that the diagram

R //

j

��

F

∆
��

U ×S U // F × F

is a fibre product square. By Lemma 65.3.4 the morphism U ×S U → F × F
is representable (note that hU × hU = hU×SU ). Moreover, by Lemma 65.5.7 the
morphism U ×S U → F × F is surjective and étale (note also that étale and
surjective occur in the lists of Remarks 65.4.3 and 65.4.2). It follows either from
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Lemma 65.3.3 and the diagram above, or by writing R → F as R → U → F and
Lemmas 65.3.1 and 65.3.2 that R→ F is representable as well. Let T be a scheme
and let a : T → F × F be a morphism. We have to show that G = T ×a,F×F,∆ F
is representable. By what was said above the morphism (of schemes)

T ′ = (U ×S U)×F×F,a T −→ T

is surjective and étale. Hence {T ′ → T} is an étale covering of T . Note also that
T ′ ×T G = T ′ ×U×SU,j R

as can be seen contemplating the following cube
R //

��

F

��

T ′ ×T G //

��

88

G

��

<<

U ×S U // F × F

T ′ //

88

T

<<

Hence we see that the restriction of G to T ′ is representable by a scheme X, and
moreover that the morphism X → T ′ is a base change of the morphism j. Hence
X → T ′ is separated and locally quasi-finite (see second paragraph of the proof).
By Descent, Lemma 35.39.1 we obtain a descent datum (X,φ) relative to the fppf-
covering {T ′ → T}. Since X → T ′ is separated and locally quasi-finite we see by
More on Morphisms, Lemma 37.57.1 that this descent datum is effective. Hence by
Descent, Lemma 35.39.1 (2) we conclude that G is representable as desired. □

Theorem 65.10.5.02WW Let S be a scheme. Let U be a scheme over S. Let j = (s, t) :
R → U ×S U be an étale equivalence relation on U over S. Then the quotient
U/R is an algebraic space, and U → U/R is étale and surjective, in other words
(U,R,U → U/R) is a presentation of U/R.

Proof. By Lemma 65.10.3 it suffices to prove that U/R is an algebraic space. Let
U ′ → U be a surjective, étale morphism. Then {U ′ → U} is in particular an fppf
covering. Let R′ be the restriction of R to U ′, see Groupoids, Definition 39.3.3.
According to Groupoids, Lemma 39.20.6 we see that U/R ∼= U ′/R′. By Lemma
65.10.1 R′ is an étale equivalence relation on U ′. Thus we may replace U by U ′.
We apply the previous remark to U ′ =

∐
Ui, where U =

⋃
Ui is an affine open

covering of U . Hence we may and do assume that U =
∐
Ui where each Ui is an

affine scheme.
Consider the restriction Ri ofR to Ui. By Lemma 65.10.1 this is an étale equivalence
relation. Set Fi = Ui/Ri and F = U/R. It is clear that

∐
Fi → F is surjective. By

Lemma 65.10.2 each Fi → F is representable, and an open immersion. By Lemma
65.10.4 applied to (Ui, Ri) we see that Fi is an algebraic space. Then by Lemma
65.10.3 we see that Ui → Fi is étale and surjective. From Lemma 65.8.4 it follows
that

∐
Fi is an algebraic space. Finally, we have verified all hypotheses of Lemma

65.8.5 and it follows that F = U/R is an algebraic space. □

https://stacks.math.columbia.edu/tag/02WW
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65.11. Algebraic spaces, retrofitted

02WX We start building our arsenal of lemmas dealing with algebraic spaces. The first
result says that in Definition 65.6.1 we can weaken the condition on the diagonal
as follows.

Lemma 65.11.1.0BGQ Let S be a scheme contained in Schfppf . Let F be a sheaf on
(Sch/S)fppf such that there exists U ∈ Ob((Sch/S)fppf ) and a map U → F which
is representable, surjective, and étale. Then F is an algebraic space.

Proof. Set R = U ×F U . This is a scheme as U → F is assumed representable.
The projections s, t : R → U are étale as U → F is assumed étale. The map
j = (t, s) : R → U ×S U is a monomorphism and an equivalence relation as
R = U ×F U . By Theorem 65.10.5 the quotient sheaf F ′ = U/R is an algebraic
space and U → F ′ is surjective and étale. Again since R = U ×F U we obtain a
canonical factorization U → F ′ → F and F ′ → F is an injective map of sheaves.
On the other hand, U → F is surjective as a map of sheaves by Lemma 65.5.9.
Thus F ′ → F is also surjective and we conclude F ′ = F is an algebraic space. □

Lemma 65.11.2.0BGR Let S be a scheme contained in Schfppf . Let G be an algebraic
space over S, let F be a sheaf on (Sch/S)fppf , and let G → F be a representable
transformation of functors which is surjective and étale. Then F is an algebraic
space.

Proof. Pick a scheme U and a surjective étale morphism U → G. Since G is an
algebraic space U → G is representable. Hence the composition U → G → F is
representable, surjective, and étale. See Lemmas 65.3.2 and 65.5.4. Thus F is an
algebraic space by Lemma 65.11.1. □

Lemma 65.11.3.02WY Let S be a scheme contained in Schfppf . Let F be an algebraic
space over S. Let G → F be a representable transformation of functors. Then G
is an algebraic space.

Proof. By Lemma 65.3.5 we see that G is a sheaf. The diagram

G×F G //

��

F

∆F

��
G×G // F × F

is cartesian. Hence we see that G ×F G → G × G is representable by Lemma
65.3.3. By Lemma 65.3.6 we see that G → G ×F G is representable. Hence ∆G :
G → G × G is representable as a composition of representable transformations,
see Lemma 65.3.2. Finally, let U be an object of (Sch/S)fppf and let U → F be
surjective and étale. By assumption U ×F G is representable by a scheme U ′. By
Lemma 65.5.5 the morphism U ′ → G is surjective and étale. This verifies the final
condition of Definition 65.6.1 and we win. □

Lemma 65.11.4.02WZ Let S be a scheme contained in Schfppf . Let F , G be algebraic
spaces over S. Let G→ F be a representable morphism. Let U ∈ Ob((Sch/S)fppf ),
and q : U → F surjective and étale. Set V = G×F U . Finally, let P be a property
of morphisms of schemes as in Definition 65.5.1. Then G → F has property P if
and only if V → U has property P.

https://stacks.math.columbia.edu/tag/0BGQ
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Proof. (This lemma follows from Lemmas 65.5.5 and 65.5.6, but we give a direct
proof here also.) It is clear from the definitions that if G→ F has property P, then
V → U has property P. Conversely, assume V → U has property P. Let T → F
be a morphism from a scheme to F . Let T ′ = T ×F G which is a scheme since
G → F is representable. We have to show that T ′ → T has property P. Consider
the commutative diagram of schemes

V

��

T ×F V

��

oo // T ×F G

��

T ′

U T ×F Uoo // T

where both squares are fibre product squares. Hence we conclude the middle arrow
has property P as a base change of V → U . Finally, {T ×F U → T} is a fppf
covering as it is surjective étale, and hence we conclude that T ′ → T has property
P as it is local on the base in the fppf topology. □

Lemma 65.11.5.03I2 Let S be a scheme contained in Schfppf . Let G → F be a
transformation of presheaves on (Sch/S)fppf . Let P be a property of morphisms
of schemes. Assume

(1) P is preserved under any base change, fppf local on the base, and mor-
phisms of type P satisfy descent for fppf coverings, see Descent, Definition
35.36.1,

(2) G is a sheaf,
(3) F is an algebraic space,
(4) there exists a U ∈ Ob((Sch/S)fppf ) and a surjective étale morphism U →

F such that V = G×F U is representable, and
(5) V → U has P.

Then G is an algebraic space, G→ F is representable and has property P.

Proof. Let R = U ×F U , and denote t, s : R → U the projection morphisms as
usual. Let T be a scheme and let T → F be a morphism. Then U ×F T → T is
surjective étale, hence {U ×F T → T} is a covering for the étale topology. Consider

W = G×F (U ×F T ) = V ×F T = V ×U (U ×F T ).

It is a scheme since F is an algebraic space. The morphism W → U ×F T has
property P since it is a base change of V → U . There is an isomorphism

W ×T (U ×F T ) = (G×F (U ×F T ))×T (U ×F T )
= (U ×F T )×T (G×F (U ×F T ))
= (U ×F T )×T W

over (U ×F T ) ×T (U ×F T ). The middle equality maps ((g, (u1, t)), (u2, t)) to
((u1, t), (g, (u2, t))). This defines a descent datum for W/U ×F T/T , see Descent,
Definition 35.34.1. This follows from Descent, Lemma 35.39.1. Namely we have a
sheafG×FT , whose base change to U×FT is represented byW and the isomorphism
above is the one from the proof of Descent, Lemma 35.39.1. By assumption on P
the descent datum above is representable. Hence by the last statement of Descent,
Lemma 35.39.1 we see that G×F T is representable. This proves that G→ F is a
representable transformation of functors.

https://stacks.math.columbia.edu/tag/03I2
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As G→ F is representable, we see that G is an algebraic space by Lemma 65.11.3.
The fact that G→ F has property P now follows from Lemma 65.11.4. □

Lemma 65.11.6.02X1 Let S be a scheme contained in Schfppf . Let F,G be algebraic
spaces over S. Let a : F → G be a morphism. Given any V ∈ Ob((Sch/S)fppf )
and a surjective étale morphism q : V → G there exists a U ∈ Ob((Sch/S)fppf )
and a commutative diagram

U

p

��

α
// V

q

��
F

a // G

with p surjective and étale.

Proof. First choose W ∈ Ob((Sch/S)fppf ) with surjective étale morphism W → F .
Next, put U = W×GV . Since G is an algebraic space we see that U is isomorphic to
an object of (Sch/S)fppf . As q is surjective étale, we see that U →W is surjective
étale (see Lemma 65.5.5). Thus U → F is surjective étale as a composition of
surjective étale morphisms (see Lemma 65.5.4). □

65.12. Immersions and Zariski coverings of algebraic spaces

02YT At this point an interesting phenomenon occurs. We have already defined the notion
of an open immersion of algebraic spaces (through Definition 65.5.1) but we have
yet to define the notion of a point1. Thus the Zariski topology of an algebraic space
has already been defined, but there is no space yet!
Perhaps superfluously we formally introduce immersions as follows.

Definition 65.12.1.02YU Let S ∈ Ob(Schfppf ) be a scheme. Let F be an algebraic space
over S.

(1) A morphism of algebraic spaces over S is called an open immersion if it
is representable, and an open immersion in the sense of Definition 65.5.1.

(2) An open subspace of F is a subfunctor F ′ ⊂ F such that F ′ is an algebraic
space and F ′ → F is an open immersion.

(3) A morphism of algebraic spaces over S is called a closed immersion if it
is representable, and a closed immersion in the sense of Definition 65.5.1.

(4) A closed subspace of F is a subfunctor F ′ ⊂ F such that F ′ is an algebraic
space and F ′ → F is a closed immersion.

(5) A morphism of algebraic spaces over S is called an immersion if it is
representable, and an immersion in the sense of Definition 65.5.1.

(6) A locally closed subspace of F is a subfunctor F ′ ⊂ F such that F ′ is an
algebraic space and F ′ → F is an immersion.

We note that these definitions make sense since an immersion is in particular a
monomorphism (see Schemes, Lemma 26.23.8 and Lemma 65.5.8), and hence the
image of an immersion G → F of algebraic spaces is a subfunctor F ′ ⊂ F which
is (canonically) isomorphic to G. Thus some of the discussion of Schemes, Section
26.10 carries over to the setting of algebraic spaces.

1We will associate a topological space to an algebraic space in Properties of Spaces, Section
66.4, and its opens will correspond exactly to the open subspaces defined below.
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Lemma 65.12.2.02YV Let S ∈ Ob(Schfppf ) be a scheme. A composition of (closed, resp.
open) immersions of algebraic spaces over S is a (closed, resp. open) immersion of
algebraic spaces over S.

Proof. See Lemma 65.5.4 and Remarks 65.4.3 (see very last line of that remark)
and 65.4.2. □

Lemma 65.12.3.02YW Let S ∈ Ob(Schfppf ) be a scheme. A base change of a (closed,
resp. open) immersion of algebraic spaces over S is a (closed, resp. open) immersion
of algebraic spaces over S.

Proof. See Lemma 65.5.5 and Remark 65.4.3 (see very last line of that remark). □

Lemma 65.12.4.02YX Let S ∈ Ob(Schfppf ) be a scheme. Let F be an algebraic space
over S. Let F1, F2 be locally closed subspaces of F . If F1 ⊂ F2 as subfunctors of F ,
then F1 is a locally closed subspace of F2. Similarly for closed and open subspaces.

Proof. Let T → F2 be a morphism with T a scheme. Since F2 → F is a monomor-
phism, we see that T ×F2 F1 = T ×F F1. The lemma follows formally from this. □

Let us formally define the notion of a Zariski open covering of algebraic spaces.
Note that in Lemma 65.8.5 we have already encountered such open coverings as a
method for constructing algebraic spaces.

Definition 65.12.5.02YY Let S ∈ Ob(Schfppf ) be a scheme. Let F be an algebraic space
over S. A Zariski covering {Fi ⊂ F}i∈I of F is given by a set I and a collection of
open subspaces Fi ⊂ F such that

∐
Fi → F is a surjective map of sheaves.

Note that if T is a schemes, and a : T → F is a morphism, then each of the fibre
products T ×F Fi is identified with an open subscheme Ti ⊂ T . The final condition
of the definition signifies exactly that T =

⋃
i∈I Ti.

It is clear that the collection FZar of open subspaces of F is a set (as (Sch/S)fppf
is a site, hence a set). Moreover, we can turn FZar into a category by letting the
morphisms be inclusions of subfunctors (which are automatically open immersions
by Lemma 65.12.4). Finally, Definition 65.12.5 provides the notion of a Zariski
covering {Fi → F ′}i∈I in the category FZar. Hence, just as in the case of a
topological space (see Sites, Example 7.6.4) by suitably choosing a set of coverings
we may obtain a Zariski site of the algebraic space F .

Definition 65.12.6.02YZ Let S ∈ Ob(Schfppf ) be a scheme. Let F be an algebraic
space over S. A small Zariski site FZar of an algebraic space F is one of the sites
described above.

Hence this gives a notion of what it means for something to be true Zariski locally
on an algebraic space, which is how we will use this notion. In general the Zariski
topology is not fine enough for our purposes. For example we can consider the
category of Zariski sheaves on an algebraic space. It will turn out that this is not
the correct thing to consider, even for quasi-coherent sheaves. One only gets the
desired result when using the étale or fppf site of F to define quasi-coherent sheaves.
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65.13. Separation conditions on algebraic spaces

02X3 A separation condition on an algebraic space F is a condition on the diagonal
morphism F → F×F . Let us first list the properties the diagonal has automatically.
Since the diagonal is representable by definition the following lemma makes sense
(through Definition 65.5.1).

Lemma 65.13.1.02X4 Let S be a scheme contained in Schfppf . Let F be an algebraic
space over S. Let ∆ : F → F × F be the diagonal morphism. Then

(1) ∆ is locally of finite type,
(2) ∆ is a monomorphism,
(3) ∆ is separated, and
(4) ∆ is locally quasi-finite.

Proof. Let F = U/R be a presentation of F . As in the proof of Lemma 65.10.4 the
diagram

R //

j

��

F

∆
��

U ×S U // F × F

is cartesian. Hence according to Lemma 65.11.4 it suffices to show that j has the
properties listed in the lemma. (Note that each of the properties (1) – (4) occur
in the lists of Remarks 65.4.1 and 65.4.3.) Since j is an equivalence relation it is
a monomorphism. Hence it is separated by Schemes, Lemma 26.23.3. As R is an
étale equivalence relation we see that s, t : R → U are étale. Hence s, t are locally
of finite type. Then it follows from Morphisms, Lemma 29.15.8 that j is locally of
finite type. Finally, as it is a monomorphism its fibres are finite. Thus we conclude
that it is locally quasi-finite by Morphisms, Lemma 29.20.7. □

Here are some common types of separation conditions, relative to the base scheme
S. There is also an absolute notion of these conditions which we will discuss in
Properties of Spaces, Section 66.3. Moreover, we will discuss separation conditions
for a morphism of algebraic spaces in Morphisms of Spaces, Section 67.4.

Definition 65.13.2.02X5 Let S be a scheme contained in Schfppf . Let F be an algebraic
space over S. Let ∆ : F → F × F be the diagonal morphism.

(1) We say F is separated over S if ∆ is a closed immersion.
(2) We say F is locally separated over S2 if ∆ is an immersion.
(3) We say F is quasi-separated over S if ∆ is quasi-compact.
(4) We say F is Zariski locally quasi-separated over S3 if there exists a Zariski

covering F =
⋃
i∈I Fi such that each Fi is quasi-separated.

Note that if the diagonal is quasi-compact (when F is separated or quasi-separated)
then the diagonal is actually quasi-finite and separated, hence quasi-affine (by More
on Morphisms, Lemma 37.43.2).

2In the literature this often refers to quasi-separated and locally separated algebraic spaces.
3This definition was suggested by B. Conrad.
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65.14. Examples of algebraic spaces

02Z0 In this section we construct some examples of algebraic spaces. Some of these were
suggested by B. Conrad. Since we do not yet have a lot of theory at our disposal
the discussion is a bit awkward in some places.

Example 65.14.1.02Z1 Let k be a field of characteristic ̸= 2. Let U = A1
k. Set

j : R = ∆⨿ Γ −→ U ×k U

where ∆ = {(x, x) | x ∈ A1
k} and Γ = {(x,−x) | x ∈ A1

k, x ̸= 0}. It is clear that
s, t : R → U are étale, and hence j is an étale equivalence relation. The quotient
X = U/R is an algebraic space by Theorem 65.10.5. Since R is quasi-compact
we see that X is quasi-separated. On the other hand, X is not locally separated
because the morphism j is not an immersion.

Example 65.14.2.03FN Let k be a field. Let k′/k be a degree 2 Galois extension with
Gal(k′/k) = {1, σ}. Let S = Spec(k[x]) and U = Spec(k′[x]). Note that

U ×S U = Spec((k′ ⊗k k′)[x]) = ∆(U)⨿∆′(U)

where ∆′ = (1, σ) : U → U ×S U . Take

R = ∆(U)⨿∆′(U \ {0U})

where 0U ∈ U denotes the k′-rational point whose x-coordinate is zero. It is easy
to see that R is an étale equivalence relation on U over S and hence X = U/R is
an algebraic space by Theorem 65.10.5. Here are some properties of X (some of
which will not make sense until later):

(1) X → S is an isomorphism over S \ {0S},
(2) the morphism X → S is étale (see Properties of Spaces, Definition 66.16.2)
(3) the fibre 0X of X → S over 0S is isomorphic to Spec(k′) = 0U ,
(4) X is not a scheme because if it were, then OX,0X would be a local domain

(O,m, κ) with fraction field k(x), with x ∈ m and residue field κ = k′

which is impossible,
(5) X is not separated, but it is locally separated and quasi-separated,
(6) there exists a surjective, finite, étale morphism S′ → S such that the

base change X ′ = S′×SX is a scheme (namely, if we base change to S′ =
Spec(k′[x]) then U splits into two copies of S′ and X ′ becomes isomorphic
to the affine line with 0 doubled, see Schemes, Example 26.14.3), and

(7) if we think ofX as a finite type algebraic space over Spec(k), then similarly
the base change Xk′ is a scheme but X is not a scheme.

In particular, this gives an example of a descent datum for schemes relative to the
covering {Spec(k′)→ Spec(k)} which is not effective.

See also Examples, Lemma 110.65.1, which shows that descent data need not be
effective even for a projective morphism of schemes. That example gives a smooth
separated algebraic space of dimension 3 over C which is not a scheme.

We will use the following lemma as a convenient way to construct algebraic spaces
as quotients of schemes by free group actions.

Lemma 65.14.3.02Z2 Let U → S be a morphism of Schfppf . Let G be an abstract
group. Let G→ AutS(U) be a group homomorphism. Assume
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(*) if u ∈ U is a point, and g(u) = u for some non-identity element g ∈ G,
then g induces a nontrivial automorphism of κ(u).

Then
j : R =

∐
g∈G

U −→ U ×S U, (g, x) 7−→ (g(x), x)
is an étale equivalence relation and hence

F = U/R

is an algebraic space by Theorem 65.10.5.
Proof. In the statement of the lemma the symbol AutS(U) denotes the group of
automorphisms of U over S. Assume (∗) holds. Let us show that

j : R =
∐

g∈G
U −→ U ×S U, (g, x) 7−→ (g(x), x)

is a monomorphism. This signifies that if T is a nonempty scheme, and h : T → U is
a T -valued point such that g◦h = g′◦h then g = g′. Suppose T ̸= ∅, h : T → U and
g◦h = g′◦h. Let t ∈ T . Consider the composition Spec(κ(t))→ Spec(κ(h(t)))→ U .
Then we conclude that g−1 ◦g′ fixes u = h(t) and acts as the identity on its residue
field. Hence g = g′ by (∗).
Thus if (∗) holds we see that j is a relation (see Groupoids, Definition 39.3.1).
Moreover, it is an equivalence relation since on T -valued points for a connected
scheme T we see that R(T ) = G × U(T ) → U(T ) × U(T ) (recall that we always
work over S). Moreover, the morphisms s, t : R→ U are étale since R is a disjoint
product of copies of U . This proves that j : R → U ×S U is an étale equivalence
relation. □

Given a scheme U and an action of a group G on U we say the action of G on U is
free if condition (∗) of Lemma 65.14.3 holds. This is equivalent to the notion of a free
action of the constant group scheme GS on U as defined in Groupoids, Definition
39.10.2. The lemma can be interpreted as saying that quotients of schemes by free
actions of groups exist in the category of algebraic spaces.
Definition 65.14.4.02Z3 Notation U → S, G, R as in Lemma 65.14.3. If the action of G
on U satisfies (∗) we say G acts freely on the scheme U . In this case the algebraic
space U/R is denoted U/G and is called the quotient of U by G.
This notation is consistent with the notation U/G introduced in Groupoids, Defini-
tion 39.20.1. We will later make sense of the quotient as an algebraic stack without
any assumptions on the action whatsoever; when we do this we will use the notation
[U/G]. Before we discuss the examples we prove some more lemmas to facilitate
the discussion. Here is a lemma discussing the various separation conditions for
this quotient when G is finite.
Lemma 65.14.5.02Z4 Notation and assumptions as in Lemma 65.14.3. Assume G is
finite. Then

(1) if U → S is quasi-separated, then U/G is quasi-separated over S, and
(2) if U → S is separated, then U/G is separated over S.

Proof. In the proof of Lemma 65.13.1 we saw that it suffices to prove the corre-
sponding properties for the morphism j : R→ U×SU . If U → S is quasi-separated,
then for every affine open V ⊂ U which maps into an affine of S the opens g(V )∩V
are quasi-compact. It follows that j is quasi-compact. If U → S is separated, the
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diagonal ∆U/S is a closed immersion. Hence j : R→ U ×S U is a finite coproduct
of closed immersions with disjoint images. Hence j is a closed immersion. □

Lemma 65.14.6.02Z5 Notation and assumptions as in Lemma 65.14.3. If Spec(k) →
U/G is a morphism, then there exist

(1) a finite Galois extension k′/k,
(2) a finite subgroup H ⊂ G,
(3) an isomorphism H → Gal(k′/k), and
(4) an H-equivariant morphism Spec(k′)→ U .

Conversely, such data determine a morphism Spec(k)→ U/G.

Proof. Consider the fibre product V = Spec(k)×U/G U . Here is a diagram

V //

��

U

��
Spec(k) // U/G

Then V is a nonempty scheme étale over Spec(k) and hence is a disjoint union
V =

∐
i∈I Spec(ki) of spectra of fields ki finite separable over k (Morphisms, Lemma

29.36.7). We have
V ×Spec(k) V = (Spec(k)×U/G U)×Spec(k) (Spec(k)×U/G U)

= Spec(k)×U/G U ×U/G U
= Spec(k)×U/G U ×G
= V ×G

The action of G on U induces an action of a : G× V → V . The displayed equality
means that G×V → V ×Spec(k)V , (g, v) 7→ (a(g, v), v) is an isomorphism. In partic-
ular we see that for every i we have an isomorphism Hi×Spec(ki)→ Spec(ki⊗k ki)
where Hi ⊂ G is the subgroup of elements fixing i ∈ I. Thus Hi is finite and is the
Galois group of ki/k. We omit the converse construction. □

It follows from this lemma for example that if k′/k is a finite Galois extension, then
Spec(k′)/Gal(k′/k) ∼= Spec(k). What happens if the extension is infinite? Here is
an example.

Example 65.14.7.02Z6 Let S = Spec(Q). Let U = Spec(Q). Let G = Gal(Q/Q) with
obvious action on U . Then by construction property (∗) of Lemma 65.14.3 holds
and we obtain an algebraic space

X = Spec(Q)/G −→ S = Spec(Q).
Of course this is totally ridiculous as an approximation of S! Namely, by the Artin-
Schreier theorem, see [Jac64, Theorem 17, page 316], the only finite subgroups
of Gal(Q/Q) are {1} and the conjugates of the order two group Gal(Q/Q ∩ R).
Hence, if Spec(k)→ X is a morphism with k algebraic over Q, then it follows from
Lemma 65.14.6 and the theorem just mentioned that either k is Q or isomorphic
to Q ∩R.

What is wrong with the example above is that the Galois group comes equipped
with a topology, and this should somehow be part of any construction of a quotient
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of Spec(Q). The following example is much more reasonable in my opinion and
may actually occur in “nature”.

Example 65.14.8.02Z7 Let k be a field of characteristic zero. Let U = A1
k and let

G = Z. As action we take n(x) = x + n, i.e., the action of Z on the affine line by
translation. The only fixed point is the generic point and it is clearly the case that
Z injects into the automorphism group of the field k(x). (This is where we use the
characteristic zero assumption.) Consider the morphism

γ : Spec(k(x)) −→ X = A1
k/Z

of the generic point of the affine line into the quotient. We claim that this morphism
does not factor through any monomorphism Spec(L)→ X of the spectrum of a field
to X. (Contrary to what happens for schemes, see Schemes, Section 26.13.) In fact,
since Z does not have any nontrivial finite subgroups we see from Lemma 65.14.6
that for any such factorization k(x) = L. Finally, γ is not a monomorphism since

Spec(k(x))×γ,X,γ Spec(k(x)) ∼= Spec(k(x))× Z.

This example suggests that in order to define points of an algebraic space X we
should consider equivalence classes of morphisms from spectra of fields into X and
not the set of monomorphisms from spectra of fields.

We finish with a truly awful example.

Example 65.14.9.02Z8 Let k be a field. Let A =
∏
n∈N k be the infinite product. Set

U = Spec(A) seen as a scheme over S = Spec(k). Note that the projection maps
prn : A→ k define open and closed immersions fn : S → U . Set

R = U ⨿
∐

(n,m)∈N2, n ̸=m
S

with morphism j equal to ∆U/S on the component U and j = (fn, fm) on the
component S corresponding to (n,m). It is clear from the remark above that s, t
are étale. It is also clear that j is an equivalence relation. Hence we obtain an
algebraic space

X = U/R.

To see what this means we specialize to the case where the field k is finite with q
elements. Let us first discuss the topological space |U | associated to the scheme
U a little bit. All elements of A satisfy xq = x. Hence every residue field of A is
isomorphic to k, and all points of U are closed. But the topology on U isn’t the
discrete topology. Let un ∈ |U | be the point corresponding to fn. As mentioned
above the points un are the open points (and hence isolated). This implies there
have to be other points since we know U is quasi-compact, see Algebra, Lemma
10.17.10 (hence not equal to an infinite discrete set). Another way to see this is
because the (proper) ideal

I = {x = (xn) ∈ A | all but a finite number of xn are zero}

is contained in a maximal ideal. Note also that every element x of A is of the form
x = ue where u is a unit and e is an idempotent. Hence a basis for the topology
of A consists of open and closed subsets (see Algebra, Lemma 10.21.1.) So the
topology on |U | is totally disconnected, but nontrivial. Finally, note that {un} is
dense in |U |.
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We will later define a topological space |X| associated to X, see Properties of
Spaces, Section 66.4. What can we say about |X|? It turns out that the map
|U | → |X| is surjective and continuous. All the points un map to the same point
x0 of |X|, and none of the other points get identified. Since {un} is dense in |U |
we conclude that the closure of x0 in |X| is |X|. In other words |X| is irreducible
and x0 is a generic point of |X|. This seems bizarre since also x0 is the image of a
section S → X of the structure morphism X → S (and in the case of schemes this
would imply it was a closed point, see Morphisms, Lemma 29.20.2).

Whatever you think is actually going on in this example, it certainly shows that
some care has to be exercised when defining irreducible components, connectedness,
etc of algebraic spaces.

65.15. Change of big site

03FO In this section we briefly discuss what happens when we change big sites. The
upshot is that we can always enlarge the big site at will, hence we may assume any
set of schemes we want to consider is contained in the big fppf site over which we
consider our algebraic space. Here is a precise statement of the result.

Lemma 65.15.1.03FP Suppose given big sites Schfppf and Sch′
fppf . Assume that Schfppf

is contained in Sch′
fppf , see Topologies, Section 34.12. Let S be an object of Schfppf .

Let
g : Sh((Sch/S)fppf ) −→ Sh((Sch′/S)fppf ),
f : Sh((Sch′/S)fppf ) −→ Sh((Sch/S)fppf )

be the morphisms of topoi of Topologies, Lemma 34.12.2. Let F be a sheaf of sets
on (Sch/S)fppf . Then

(1) if F is representable by a scheme X ∈ Ob((Sch/S)fppf ) over S, then f−1F
is representable too, in fact it is representable by the same scheme X, now
viewed as an object of (Sch′/S)fppf , and

(2) if F is an algebraic space over S, then f−1F is an algebraic space over S
also.

Proof. Let X ∈ Ob((Sch/S)fppf ). Let us write hX for the representable sheaf on
(Sch/S)fppf associated to X, and h′

X for the representable sheaf on (Sch′/S)fppf
associated to X. By the description of f−1 in Topologies, Section 34.12 we see that
f−1hX = h′

X . This proves (1).
Next, suppose that F is an algebraic space over S. By Lemma 65.9.1 this means
that F = hU/hR for some étale equivalence relation R → U ×S U in (Sch/S)fppf .
Since f−1 is an exact functor we conclude that f−1F = h′

U/h
′
R. Hence f−1F is an

algebraic space over S by Theorem 65.10.5. □

Note that this lemma is purely set theoretical and has virtually no content. More-
over, it is not true (in general) that the restriction of an algebraic space over the
bigger site is an algebraic space over the smaller site (simply by reasons of cardi-
nality). Hence we can only ever use a simple lemma of this kind to enlarge the base
category and never to shrink it.

Lemma 65.15.2.04W1 Suppose Schfppf is contained in Sch′
fppf . Let S be an object of

Schfppf . Denote Spaces/S the category of algebraic spaces over S defined using

https://stacks.math.columbia.edu/tag/03FP
https://stacks.math.columbia.edu/tag/04W1


65.15. CHANGE OF BIG SITE 5231

Schfppf . Similarly, denote Spaces′/S the category of algebraic spaces over S defined
using Sch′

fppf . The construction of Lemma 65.15.1 defines a fully faithful functor
Spaces/S −→ Spaces′/S

whose essential image consists of those X ′ ∈ Ob(Spaces′/S) such that there exist
U,R ∈ Ob((Sch/S)fppf )4 and morphisms

U −→ X ′ and R −→ U ×X′ U

in Sh((Sch′/S)fppf ) which are surjective as maps of sheaves (for example if the
displayed morphisms are surjective and étale).

Proof. In Sites, Lemma 7.21.8 we have seen that the functor f−1 : Sh((Sch/S)fppf )→
Sh((Sch′/S)fppf ) is fully faithful (see discussion in Topologies, Section 34.12).
Hence we see that the displayed functor of the lemma is fully faithful.
Suppose that X ′ ∈ Ob(Spaces′/S) such that there exists U ∈ Ob((Sch/S)fppf )
and a map U → X ′ in Sh((Sch′/S)fppf ) which is surjective as a map of sheaves.
Let U ′ → X ′ be a surjective étale morphism with U ′ ∈ Ob((Sch′/S)fppf ). Let
κ = size(U), see Sets, Section 3.9. Then U has an affine open covering U =

⋃
i∈I Ui

with |I| ≤ κ. Observe that U ′×X′ U → U is étale and surjective. For each i we can
pick a quasi-compact open U ′

i ⊂ U ′ such that U ′
i×X′ Ui → Ui is surjective (because

the scheme U ′×X′ Ui is the union of the Zariski opens W ×X′ Ui for W ⊂ U ′ affine
and because U ′×X′ Ui → Ui is étale hence open). Then

∐
i∈I U

′
i → X is surjective

étale because of our assumption that U → X and hence
∐
Ui → X is a surjection

of sheaves (details omitted). Because U ′
i ×X′ U → U ′

i is a surjection of sheaves and
because U ′

i is quasi-compact, we can find a quasi-compact open Wi ⊂ U ′
i×X′U such

that Wi → U ′
i is surjective as a map of sheaves (details omitted). Then Wi → U

is étale and we conclude that size(Wi) ≤ size(U), see Sets, Lemma 3.9.7. By Sets,
Lemma 3.9.11 we conclude that size(U ′

i) ≤ size(U). Hence
∐
i∈I U

′
i is isomorphic

to an object of (Sch/S)fppf by Sets, Lemma 3.9.5.
Now let X ′, U → X ′ and R → U ×X′ U be as in the statement of the lemma. In
the previous paragraph we have seen that we can find U ′ ∈ Ob((Sch/S)fppf ) and a
surjective étale morphism U ′ → X ′ in Sh((Sch′/S)fppf ). Then U ′×X′ U → U ′ is a
surjection of sheaves, i.e., we can find an fppf covering {U ′

i → U ′} such that U ′
i → U ′

factors through U ′×X′ U → U ′. By Sets, Lemma 3.9.12 we can find Ũ → U ′ which
is surjective, flat, and locally of finite presentation, with size(Ũ) ≤ size(U ′), such
that Ũ → U ′ factors through U ′ ×X′ U → U ′. Then we consider

U ′ ×X′ U ′

��

Ũ ×X′ Ũoo

��

// U ×X′ U

��
U ′ ×S U ′ Ũ ×S Ũoo // U ×S U

The squares are cartesian. We know the objects of the bottom row are represented
by objects of (Sch/S)fppf . By the result of the argument of the previous paragraph,

4Requiring the existence of R is necessary because of our choice of the function Bound in
Sets, Equation (3.9.1.1). The size of the fibre product U ×X′ U can grow faster than Bound in
terms of the size of U . We can illustrate this by setting S = Spec(A), U = Spec(A[xi, i ∈ I]) and
R =

∐
(λi)∈AI Spec(A[xi, yi]/(xi − λiyi)). In this case the size of R grows like κκ where κ is the

size of U .
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the same is true for U ×X′ U (as we have the surjection of sheaves R→ U ×X′ U by
assumption). Since (Sch/S)fppf is closed under fibre products (by construction),
we see that Ũ ×X′ Ũ is represented by an object of (Sch/S)fppf . Finally, the map
Ũ ×X′ Ũ → U ′ ×X′ U ′ is a surjection of fppf sheaves as Ũ → U ′ is so. Thus
we can once more apply the result of the previous paragraph to conclude that
R′ = U ′ ×X′ U ′ is represented by an object of (Sch/S)fppf . At this point Lemma
65.9.1 and Theorem 65.10.5 imply that X = hU ′/hR′ is an object of Spaces/S such
that f−1X ∼= X ′ as desired. □

65.16. Change of base scheme

03I3 In this section we briefly discuss what happens when we change base schemes. The
upshot is that given a morphism S → S′ of base schemes, any algebraic space over S
can be viewed as an algebraic space over S′. And, given an algebraic space F ′ over
S′ there is a base change F ′

S which is an algebraic space over S. We explain only
what happens in case S → S′ is a morphism of the big fppf site under consideration,
if only S or S′ is contained in the big site, then one first enlarges the big site as in
Section 65.15.

Lemma 65.16.1.03I4 Suppose given a big site Schfppf . Let g : S → S′ be morphism
of Schfppf . Let j : (Sch/S)fppf → (Sch/S′)fppf be the corresponding localization
functor. Let F be a sheaf of sets on (Sch/S)fppf . Then

(1) for a scheme T ′ over S′ we have j!F (T ′/S′) =
∐
φ:T ′→S F (T ′ φ−→ S),

(2) if F is representable by a scheme X ∈ Ob((Sch/S)fppf ), then j!F is
representable by j(X) which is X viewed as a scheme over S′, and

(3) if F is an algebraic space over S, then j!F is an algebraic space over S′,
and if F = U/R is a presentation, then j!F = j(U)/j(R) is a presentation.

Let F ′ be a sheaf of sets on (Sch/S′)fppf . Then
(4) for a scheme T over S we have j−1F ′(T/S) = F ′(T/S′),
(5) if F ′ is representable by a scheme X ′ ∈ Ob((Sch/S′)fppf ), then j−1F ′ is

representable, namely by X ′
S = S ×S′ X ′, and

(6) if F ′ is an algebraic space, then j−1F ′ is an algebraic space, and if F ′ =
U ′/R′ is a presentation, then j−1F ′ = U ′

S/R
′
S is a presentation.

Proof. The functors j!, j∗ and j−1 are defined in Sites, Lemma 7.25.8 where it is
also shown that j = jS/S′ is the localization of (Sch/S′)fppf at the object S/S′.
Hence all of the material on localization functors is available for j. The formula in
(1) is Sites, Lemma 7.27.1. By definition j! is the left adjoint to restriction j−1,
hence j! is right exact. By Sites, Lemma 7.25.5 it also commutes with fibre products
and equalizers. By Sites, Lemma 7.25.3 we see that j!hX = hj(X) hence (2) holds.
If F is an algebraic space over S, then we can write F = U/R (Lemma 65.9.1) and
we get

j!F = j(U)/j(R)
because j! being right exact commutes with coequalizers, and moreover j(R) =
j(U)×j!F j(U) as j! commutes with fibre products. Since the morphisms j(s), j(t) :
j(R)→ j(U) are simply the morphisms s, t : R → U (but viewed as morphisms of
schemes over S′), they are still étale. Thus (j(U), j(R), s, t) is an étale equivalence
relation. Hence by Theorem 65.10.5 we conclude that j!F is an algebraic space.

https://stacks.math.columbia.edu/tag/03I4
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Proof of (4), (5), and (6). The description of j−1 is in Sites, Section 7.25. The
restriction of the representable sheaf associated to X ′/S′ is the representable sheaf
associated to X ′

S = S ×S′ Y ′ by Sites, Lemma 7.27.2. The restriction functor
j−1 is exact, hence j−1F ′ = U ′

S/R
′
S . Again by exactness the sheaf R′

S is still
an equivalence relation on U ′

S . Finally the two maps R′
S → U ′

S are étale as base
changes of the étale morphisms R′ → U ′. Hence j−1F ′ = U ′

S/R
′
S is an algebraic

space by Theorem 65.10.5 and we win. □

Note how the presentation j!F = j(U)/j(R) is just the presentation of F but viewed
as a presentation by schemes over S′. Hence the following definition makes sense.
Definition 65.16.2.03I5 Let Schfppf be a big fppf site. Let S → S′ be a morphism of
this site.

(1) If F ′ is an algebraic space over S′, then the base change of F ′ to S is the
algebraic space j−1F ′ described in Lemma 65.16.1. We denote it F ′

S .
(2) If F is an algebraic space over S, then F viewed as an algebraic space

over S′ is the algebraic space j!F over S′ described in Lemma 65.16.1. We
often simply denote this F ; if not then we will write j!F .

The algebraic space j!F comes equipped with a canonical morphism j!F → S of
algebraic spaces over S′. This is true simply because the sheaf j!F maps to hS (see
for example the explicit description in Lemma 65.16.1). In fact, in Sites, Lemma
7.25.4 we have seen that the category of sheaves on (Sch/S)fppf is equivalent to
the category of pairs (F ′,F ′ → hS) consisting of a sheaf on (Sch/S′)fppf and
a map of sheaves F ′ → hS . The equivalence assigns to the sheaf F the pair
(j!F , j!F → hS). This, combined with the above, leads to the following result for
categories of algebraic spaces.
Lemma 65.16.3.04SG Let Schfppf be a big fppf site. Let S → S′ be a morphism of this
site. The construction above give an equivalence of categories{

category of algebraic
spaces over S

}
↔

 category of pairs (F ′, F ′ → S) consisting
of an algebraic space F ′ over S′ and a

morphism F ′ → S of algebraic spaces over S′


Proof. Let F be an algebraic space over S. The functor from left to right assigns
the pair (j!F, j!F → S) ot F which is an object of the right hand side by Lemma
65.16.1. Since this defines an equivalence of categories of sheaves by Sites, Lemma
7.25.4 to finish the proof it suffices to show: if F is a sheaf and j!F is an algebraic
space, then F is an algebraic space. To do this, write j!F = U ′/R′ as in Lemma
65.9.1 with U ′, R′ ∈ Ob((Sch/S′)fppf ). Then the compositions U ′ → j!F → S and
R′ → j!F → S are morphisms of schemes over S′. Denote U,R the corresponding
objects of (Sch/S)fppf . The two morphisms R′ → U ′ are morphisms over S and
hence correspond to morphisms R→ U . Since these are simply the same morphisms
(but viewed over S) we see that we get an étale equivalence relation over S. As
j! defines an equivalence of categories of sheaves (see reference above) we see that
F = U/R and by Theorem 65.10.5 we see that F is an algebraic space. □

The following lemma is a slight rephrasing of the above.
Lemma 65.16.4.04SH Let Schfppf be a big fppf site. Let S → S′ be a morphism of this
site. Let F ′ be a sheaf on (Sch/S′)fppf . The following are equivalent:

(1) The restriction F ′|(Sch/S)fppf is an algebraic space over S, and

https://stacks.math.columbia.edu/tag/03I5
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(2) the sheaf hS × F ′ is an algebraic space over S′.

Proof. The restriction and the product match under the equivalence of categories
of Sites, Lemma 7.25.4 so that Lemma 65.16.3 above gives the result. □

We finish this section with a lemma on a compatibility.

Lemma 65.16.5.03I6 Let Schfppf be a big fppf site. Let S → S′ be a morphism of
this site. Let F be an algebraic space over S. Let T be a scheme over S and let
f : T → F be a morphism over S. Let f ′ : T ′ → F ′ be the morphism over S′ we
get from f by applying the equivalence of categories described in Lemma 65.16.3.
For any property P as in Definition 65.5.1 we have P(f ′)⇔ P(f).

Proof. Suppose that U is a scheme over S, and U → F is a surjective étale mor-
phism. Denote U ′ the scheme U viewed as a scheme over S′. In Lemma 65.16.1 we
have seen that U ′ → F ′ is surjective étale. Since

j(T ×f,F U) = T ′ ×f ′,F ′ U ′

the morphism of schemes T ×f,F U → U is identified with the morphism of schemes
T ′×f ′,F ′U ′ → U ′. It is the same morphism, just viewed over different base schemes.
Hence the lemma follows from Lemma 65.11.4. □
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CHAPTER 66

Properties of Algebraic Spaces

03BO 66.1. Introduction

03BP Please see Spaces, Section 65.1 for a brief introduction to algebraic spaces, and
please read some of that chapter for our basic definitions and conventions con-
cerning algebraic spaces. In this chapter we start introducing some basic notions
and properties of algebraic spaces. A fundamental reference for the case of quasi-
separated algebraic spaces is [Knu71].
The discussion is somewhat awkward at times since we made the design decision
to first talk about properties of algebraic spaces by themselves, and only later
about properties of morphisms of algebraic spaces. We make an exception for this
rule regarding étale morphisms of algebraic spaces, which we introduce in Section
66.16. But until that section whenever we say a morphism has a certain property,
it automatically means the source of the morphism is a scheme (or perhaps the
morphism is representable).
Some of the material in the chapter (especially regarding points) will be improved
upon in the chapter on decent algebraic spaces.

66.2. Conventions

03BQ The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.
Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X × X. The reason is that we want to avoid
confusion when changing base schemes, as in Spaces, Section 65.16.

66.3. Separation axioms

03BR In this section we collect all the “absolute” separation conditions of algebraic spaces.
Since in our language any algebraic space is an algebraic space over some definite
base scheme, any absolute property ofX over S corresponds to a conditions imposed
on X viewed as an algebraic space over Spec(Z). Here is the precise formulation.
Definition 66.3.1.03BS (Compare Spaces, Definition 65.13.2.) Consider a big fppf site
Schfppf = (Sch/Spec(Z))fppf . Let X be an algebraic space over Spec(Z). Let
∆ : X → X ×X be the diagonal morphism.

(1) We say X is separated if ∆ is a closed immersion.
(2) We say X is locally separated1 if ∆ is an immersion.

1In the literature this often refers to quasi-separated and locally separated algebraic spaces.

5236
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(3) We say X is quasi-separated if ∆ is quasi-compact.
(4) We say X is Zariski locally quasi-separated2 if there exists a Zariski cov-

ering X =
⋃
i∈I Xi (see Spaces, Definition 65.12.5) such that each Xi is

quasi-separated.
Let S is a scheme contained in Schfppf , and let X be an algebraic space over
S. Then we say X is separated, locally separated, quasi-separated, or Zariski
locally quasi-separated if X viewed as an algebraic space over Spec(Z) (see Spaces,
Definition 65.16.2) has the corresponding property.

It is true that an algebraic space X over S which is separated (in the absolute
sense above) is separated over S (and similarly for the other absolute separation
properties above). This will be discussed in great detail in Morphisms of Spaces,
Section 67.4. We will see in Lemma 66.6.6 that being Zariski locally separated is
independent of the base scheme (hence equivalent to the absolute notion).

Lemma 66.3.2.03DY Let S be a scheme. Let X be an algebraic space over S. We have
the following implications among the separation axioms of Definition 66.3.1:

(1) separated implies all the others,
(2) quasi-separated implies Zariski locally quasi-separated.

Proof. Omitted. □

Lemma 66.3.3.0AHR Let S be a scheme. Let X be an algebraic space over S. The
following are equivalent

(1) X is a quasi-separated algebraic space,
(2) for U → X, V → X with U , V quasi-compact schemes the fibre product

U ×X V is quasi-compact,
(3) for U → X, V → X with U , V affine the fibre product U ×X V is quasi-

compact.

Proof. Using Spaces, Lemma 65.16.3 we see that we may assume S = Spec(Z).
Since U ×X V = X×X×X (U ×V ) and since U ×V is quasi-compact if U and V are
so, we see that (1) implies (2). It is clear that (2) implies (3). Assume (3). Choose
a scheme W and a surjective étale morphism W → X. Then W ×W → X ×X is
surjective étale. Hence it suffices to show that

j : W ×X W = X ×(X×X) (W ×W )→W ×W
is quasi-compact, see Spaces, Lemma 65.5.6. If U ⊂ W and V ⊂ W are affine
opens, then j−1(U × V ) = U ×X V is quasi-compact by assumption. Since the
affine opens U × V form an affine open covering of W × W (Schemes, Lemma
26.17.4) we conclude by Schemes, Lemma 26.19.2. □

Lemma 66.3.4.0AHS Let S be a scheme. Let X be an algebraic space over S. The
following are equivalent

(1) X is a separated algebraic space,
(2) for U → X, V → X with U , V affine the fibre product U ×X V is affine

and
O(U)⊗Z O(V ) −→ O(U ×X V )

is surjective.
2This notion was suggested by B. Conrad.
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Proof. Using Spaces, Lemma 65.16.3 we see that we may assume S = Spec(Z).
Since U ×X V = X ×X×X (U × V ) and since U × V is affine if U and V are so, we
see that (1) implies (2). Assume (2). Choose a scheme W and a surjective étale
morphism W → X. Then W ×W → X ×X is surjective étale. Hence it suffices to
show that

j : W ×X W = X ×(X×X) (W ×W )→W ×W

is a closed immersion, see Spaces, Lemma 65.5.6. If U ⊂ W and V ⊂ W are
affine opens, then j−1(U × V ) = U ×X V is affine by assumption and the map
U ×X V → U × V is a closed immersion because the corresponding ring map is
surjective. Since the affine opens U × V form an affine open covering of W ×W
(Schemes, Lemma 26.17.4) we conclude by Morphisms, Lemma 29.2.1. □

66.4. Points of algebraic spaces

03BT As is clear from Spaces, Example 65.14.8 a point of an algebraic space should not
be defined as a monomorphism from the spectrum of a field. Instead we define
them as equivalence classes of morphisms of spectra of fields exactly as explained
in Schemes, Section 26.13.

Let S be a scheme. Let F be a presheaf on (Sch/S)fppf . Let K be a field. Consider
a morphism

Spec(K) −→ F.

By the Yoneda Lemma this is given by an element p ∈ F (Spec(K)). We say that
two such pairs (Spec(K), p) and (Spec(L), q) are equivalent if there exists a third
field Ω and a commutative diagram

Spec(Ω) //

��

Spec(L)

q

��
Spec(K) p // F.

In other words, there are field extensions K → Ω and L → Ω such that p and q
map to the same element of F (Spec(Ω)). We omit the verification that this defines
an equivalence relation.

Definition 66.4.1.03BU Let S be a scheme. Let X be an algebraic space over S. A point
of X is an equivalence class of morphisms from spectra of fields into X. The set of
points of X is denoted |X|.

Note that if f : X → Y is a morphism of algebraic spaces over S, then there is an
induced map |f | : |X| → |Y | which maps a representative x : Spec(K)→ X to the
representative f ◦ x : Spec(K)→ Y .

Lemma 66.4.2.03BV Let S be a scheme. Let X be a scheme over S. The points of X as
a scheme are in canonical 1-1 correspondence with the points of X as an algebraic
space.

Proof. This is Schemes, Lemma 26.13.3. □

https://stacks.math.columbia.edu/tag/03BU
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Lemma 66.4.3.03H4 Let S be a scheme. Let

Z ×Y X //

��

X

��
Z // Y

be a cartesian diagram of algebraic spaces over S. Then the map of sets of points
|Z ×Y X| −→ |Z| ×|Y | |X|

is surjective.

Proof. Namely, suppose given fieldsK, L and morphisms Spec(K)→ X, Spec(L)→
Z, then the assumption that they agree as elements of |Y | means that there is a
common extension M/K and M/L such that Spec(M)→ Spec(K)→ X → Y and
Spec(M)→ Spec(L)→ Z → Y agree. And this is exactly the condition which says
you get a morphism Spec(M)→ Z ×Y X. □

Lemma 66.4.4.03H5 Let S be a scheme. Let X be an algebraic space over S. Let
f : T → X be a morphism from a scheme to X. The following are equivalent

(1) f : T → X is surjective (according to Spaces, Definition 65.5.1), and
(2) |f | : |T | → |X| is surjective.

Proof. Assume (1). Let x : Spec(K) → X be a morphism from the spectrum of a
field into X. By assumption the morphism of schemes Spec(K)×X T → Spec(K) is
surjective. Hence there exists a field extension K ′/K and a morphism Spec(K ′)→
Spec(K)×X T such that the left square in the diagram

Spec(K ′) //

��

Spec(K)×X T

��

// T

��
Spec(K) Spec(K) x // X

is commutative. This shows that |f | : |T | → |X| is surjective.
Assume (2). Let Z → X be a morphism where Z is a scheme. We have to show
that the morphism of schemes Z ×X T → T is surjective, i.e., that |Z ×X T | → |Z|
is surjective. This follows from (2) and Lemma 66.4.3. □

Lemma 66.4.5.03BW Let S be a scheme. Let X be an algebraic space over S. Let
X = U/R be a presentation of X, see Spaces, Definition 65.9.3. Then the image
of |R| → |U | × |U | is an equivalence relation and |X| is the quotient of |U | by this
equivalence relation.

Proof. The assumption means that U is a scheme, p : U → X is a surjective, étale
morphism, R = U ×X U is a scheme and defines an étale equivalence relation on
U such that X = U/R as sheaves. By Lemma 66.4.4 we see that |U | → |X| is
surjective. By Lemma 66.4.3 the map

|R| −→ |U | ×|X| |U |

is surjective. Hence the image of |R| → |U |×|U | is exactly the set of pairs (u1, u2) ∈
|U | × |U | such that u1 and u2 have the same image in |X|. Combining these two
statements we get the result of the lemma. □
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Lemma 66.4.6.03BX Let S be a scheme. There exists a unique topology on the sets of
points of algebraic spaces over S with the following properties:

(1) if X is a scheme over S, then the topology on |X| is the usual one (via
the identification of Lemma 66.4.2),

(2) for every morphism of algebraic spaces X → Y over S the map |X| → |Y |
is continuous, and

(3) for every étale morphism U → X with U a scheme the map of topological
spaces |U | → |X| is continuous and open.

Proof. Let X be an algebraic space over S. Let p : U → X be a surjective étale
morphism where U is a scheme over S. We define W ⊂ |X| is open if and only
if |p|−1(W ) is an open subset of |U |. This is a topology on |X| (it is the quotient
topology on |X|, see Topology, Lemma 5.6.2).

Let us prove that the topology is independent of the choice of the presentation.
To do this it suffices to show that if U ′ is a scheme, and U ′ → X is an étale
morphism, then the map |U ′| → |X| (with topology on |X| defined using U → X
as above) is open and continuous; which in addition will prove that (3) holds. Set
U ′′ = U ×X U ′, so that we have the commutative diagram

U ′′ //

��

U ′

��
U // X

As U → X and U ′ → X are étale we see that both U ′′ → U and U ′′ → U ′ are
étale morphisms of schemes. Moreover, U ′′ → U ′ is surjective. Hence we get a
commutative diagram of maps of sets

|U ′′| //

��

|U ′|

��
|U | // |X|

The lower horizontal arrow is surjective (see Lemma 66.4.4 or Lemma 66.4.5) and
continuous by definition of the topology on |X|. The top horizontal arrow is surjec-
tive, continuous, and open by Morphisms, Lemma 29.36.13. The left vertical arrow
is continuous and open (by Morphisms, Lemma 29.36.13 again.) Hence it follows
formally that the right vertical arrow is continuous and open.

To finish the proof we prove (2). Let a : X → Y be a morphism of algebraic spaces.
According to Spaces, Lemma 65.11.6 we can find a diagram

U

p

��

α
// V

q

��
X

a // Y

https://stacks.math.columbia.edu/tag/03BX
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where U and V are schemes, and p and q are surjective and étale. This gives rise
to the diagram

|U |

p

��

α
// |V |

q

��
|X| a // |Y |

where all but the lower horizontal arrows are known to be continuous and the two
vertical arrows are surjective and open. It follows that the lower horizontal arrow
is continuous as desired. □

Definition 66.4.7.03BY Let S be a scheme. Let X be an algebraic space over S. The
underlying topological space of X is the set of points |X| endowed with the topology
constructed in Lemma 66.4.6.
It turns out that this topological space carries the same information as the small
Zariski site XZar of Spaces, Definition 65.12.6.
Lemma 66.4.8.03BZ Let S be a scheme. Let X be an algebraic space over S.

(1) The rule X ′ 7→ |X ′| defines an inclusion preserving bijection between
open subspaces X ′ (see Spaces, Definition 65.12.1) of X, and opens of the
topological space |X|.

(2) A family {Xi ⊂ X}i∈I of open subspaces of X is a Zariski covering (see
Spaces, Definition 65.12.5) if and only if |X| =

⋃
|Xi|.

In other words, the small Zariski site XZar of X is canonically identified with a site
associated to the topological space |X| (see Sites, Example 7.6.4).
Proof. In order to prove (1) let us construct the inverse of the rule. Namely,
suppose that W ⊂ |X| is open. Choose a presentation X = U/R corresponding to
the surjective étale map p : U → X and étale maps s, t : R → U . By construction
we see that |p|−1(W ) is an open of U . Denote W ′ ⊂ U the corresponding open
subscheme. It is clear that R′ = s−1(W ′) = t−1(W ′) is a Zariski open of R
which defines an étale equivalence relation on W ′. By Spaces, Lemma 65.10.2 the
morphism X ′ = W ′/R′ → X is an open immersion. Hence X ′ is an algebraic space
by Spaces, Lemma 65.11.3. By construction |X ′| = W , i.e., X ′ is a subspace of X
corresponding to W . Thus (1) is proved.
To prove (2), note that if {Xi ⊂ X}i∈I is a collection of open subspaces, then it is a
Zariski covering if and only if the U =

⋃
U ×XXi is an open covering. This follows

from the definition of a Zariski covering and the fact that the morphism U → X is
surjective as a map of presheaves on (Sch/S)fppf . On the other hand, we see that
|X| =

⋃
|Xi| if and only if U =

⋃
U ×X Xi by Lemma 66.4.5 (and the fact that

the projections U ×X Xi → Xi are surjective and étale). Thus the equivalence of
(2) follows. □

Lemma 66.4.9.03IE Let S be a scheme. Let X, Y be algebraic spaces over S. Let
X ′ ⊂ X be an open subspace. Let f : Y → X be a morphism of algebraic spaces
over S. Then f factors through X ′ if and only if |f | : |Y | → |X| factors through
|X ′| ⊂ |X|.
Proof. By Spaces, Lemma 65.12.3 we see that Y ′ = Y ×X X ′ → Y is an open
immersion. If |f |(|Y |) ⊂ |X ′|, then clearly |Y ′| = |Y |. Hence Y ′ = Y by Lemma
66.4.8. □
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Lemma 66.4.10.06NF Let S be a scheme. Let X be an algebraic spaces over S. Let
U be a scheme and let f : U → X be an étale morphism. Let X ′ ⊂ X be the
open subspace corresponding to the open |f |(|U |) ⊂ |X| via Lemma 66.4.8. Then f
factors through a surjective étale morphism f ′ : U → X ′. Moreover, if R = U×XU ,
then R = U ×X′ U and X ′ has the presentation X ′ = U/R.
Proof. The existence of the factorization follows from Lemma 66.4.9. The mor-
phism f ′ is surjective according to Lemma 66.4.4. To see f ′ is étale, suppose that
T → X ′ is a morphism where T is a scheme. Then T ×X U = T ×X′ U as X ′ → X
is a monomorphism of sheaves. Thus the projection T ×X′ U → T is étale as we
assumed f étale. We have U ×X U = U ×X′ U as X ′ → X is a monomorphism.
Then X ′ = U/R follows from Spaces, Lemma 65.9.1. □

Lemma 66.4.11.0H2X Let S be a scheme. Let X be an algebraic space over S. Let
p : Spec(K) → X and q : Spec(L) → X be morphisms where K and L are fields.
Assume p and q determine the same point of |X| and p is a monomorphism. Then
q factors uniquely through p.
Proof. Since p and q define the same point of |X|, we see that the scheme

Y = Spec(K)×p,X,q Spec(L)
is nonempty. Since the base change of a monomorphism is a monomorphism this
means that the projection morphism Y → Spec(L) is a monomorphism. Hence
Y = Spec(L), see Schemes, Lemma 26.23.11. We conclude that q factors through
p. Uniqueness comes from the fact that p is a monomorphism. □

Lemma 66.4.12.03E1 Let S be a scheme. Let X be an algebraic space over S. Consider
the map

{Spec(k)→ X monomorphism where k is a field} −→ |X|
This map is injective.
Proof. This follows from Lemma 66.4.11. □

We will see in Decent Spaces, Lemma 68.11.1 that the map of Lemma 66.4.12 is a
bijection when X is decent.

66.5. Quasi-compact spaces

03E2
Definition 66.5.1.03E3 Let S be a scheme. Let X be an algebraic space over S. We
say X is quasi-compact if there exists a surjective étale morphism U → X with U
quasi-compact.
Lemma 66.5.2.03E4 Let S be a scheme. Let X be an algebraic space over S. Then X
is quasi-compact if and only if |X| is quasi-compact.
Proof. Choose a scheme U and an étale surjective morphism U → X. We will
use Lemma 66.4.4. If U is quasi-compact, then since |U | → |X| is surjective we
conclude that |X| is quasi-compact. If |X| is quasi-compact, then since |U | → |X|
is open we see that there exists a quasi-compact open U ′ ⊂ U such that |U ′| → |X|
is surjective (and still étale). Hence we win. □

Lemma 66.5.3.040T A finite disjoint union of quasi-compact algebraic spaces is a quasi-
compact algebraic space.
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Proof. This is clear from Lemma 66.5.2 and the corresponding topological fact. □

Example 66.5.4.03IO The space A1
Q/Z is a quasi-compact algebraic space.

Lemma 66.5.5.04NN Let S be a scheme. Let X be an algebraic space over S. Every
point of |X| has a fundamental system of open quasi-compact neighbourhoods. In
particular |X| is locally quasi-compact in the sense of Topology, Definition 5.13.1.

Proof. This follows formally from the fact that there exists a scheme U and a
surjective, open, continuous map U → |X| of topological spaces. To be a bit more
precise, if u ∈ U maps to x ∈ |X|, then the images of the affine neighbourhoods of
u will give a fundamental system of quasi-compact open neighbourhoods of x. □

66.6. Special coverings

03FW In this section we collect some straightforward lemmas on the existence of étale
surjective coverings of algebraic spaces.

Lemma 66.6.1.03FX Let S be a scheme. Let X be an algebraic space over S. There
exists a surjective étale morphism U → X where U is a disjoint union of affine
schemes. We may in addition assume each of these affines maps into an affine open
of S.

Proof. Let V → X be a surjective étale morphism. Let V =
⋃
i∈I Vi be a Zariski

open covering such that each Vi maps into an affine open of S. Then set U =
∐
i∈I Vi

with induced morphism U → V → X. This is étale and surjective as a composition
of étale and surjective representable transformations of functors (via the general
principle Spaces, Lemma 65.5.4 and Morphisms, Lemmas 29.9.2 and 29.36.3). □

Lemma 66.6.2.03FY Let S be a scheme. LetX be an algebraic space over S. There exists
a Zariski covering X =

⋃
Xi such that each algebraic space Xi has a surjective étale

covering by an affine scheme. We may in addition assume each Xi maps into an
affine open of S.

Proof. By Lemma 66.6.1 we can find a surjective étale morphism U =
∐
Ui → X,

with Ui affine and mapping into an affine open of S. Let Xi ⊂ X be the open
subspace of X such that Ui → X factors through an étale surjective morphism
Ui → Xi, see Lemma 66.4.10. Since U =

⋃
Ui we see that X =

⋃
Xi. As Ui → Xi

is surjective it follows that Xi → S maps into an affine open of S. □

Lemma 66.6.3.03H6 Let S be a scheme. Let X be an algebraic space over S. Then X
is quasi-compact if and only if there exists an étale surjective morphism U → X
with U an affine scheme.

Proof. If there exists an étale surjective morphism U → X with U affine then X
is quasi-compact by Definition 66.5.1. Conversely, if X is quasi-compact, then |X|
is quasi-compact. Let U =

∐
i∈I Ui be a disjoint union of affine schemes with an

étale and surjective map φ : U → X (Lemma 66.6.1). Then |X| =
⋃
φ(|Ui|) and

by quasi-compactness there is a finite subset i1, . . . , in such that |X| =
⋃
φ(|Uij |).

Hence Ui1 ∪ . . .∪Uin is an affine scheme with a finite surjective morphism towards
X. □

The following lemma will be obsoleted by the discussion of separated morphisms in
the chapter on morphisms of algebraic spaces.
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Lemma 66.6.4.03FZ Let S be a scheme. Let X be an algebraic space over S. Let U be
a separated scheme and U → X étale. Then U → X is separated, and R = U ×X U
is a separated scheme.

Proof. Let X ′ ⊂ X be the open subscheme such that U → X factors through
an étale surjection U → X ′, see Lemma 66.4.10. If U → X ′ is separated, then
so is U → X, see Spaces, Lemma 65.5.4 (as the open immersion X ′ → X is
separated by Spaces, Lemma 65.5.8 and Schemes, Lemma 26.23.8). Moreover,
since U ×X′ U = U ×X U it suffices to prove the result after replacing X by X ′,
i.e., we may assume U → X surjective. Consider the commutative diagram

R = U ×X U //

��

U

��
U // X

In the proof of Spaces, Lemma 65.13.1 we have seen that j : R → U ×S U is
separated. The morphism of schemes U → S is separated as U is a separated
scheme, see Schemes, Lemma 26.21.13. Hence U ×S U → U is separated as a base
change, see Schemes, Lemma 26.21.12. Hence the scheme U ×S U is separated (by
the same lemma). Since j is separated we see in the same way that R is separated.
Hence R → U is a separated morphism (by Schemes, Lemma 26.21.13 again).
Thus by Spaces, Lemma 65.11.4 and the diagram above we conclude that U → X
is separated. □

Lemma 66.6.5.07S4 Let S be a scheme. Let X be an algebraic space over S. If there
exists a quasi-separated scheme U and a surjective étale morphism U → X such that
either of the projections U ×X U → U is quasi-compact, then X is quasi-separated.

Proof. We may think of X as an algebraic space over Z. Consider the cartesian
diagram

U ×X U //

j

��

X

∆
��

U × U // X ×X
Since U is quasi-separated the projection U ×U → U is quasi-separated (as a base
change of a quasi-separated morphism of schemes, see Schemes, Lemma 26.21.12).
Hence the assumption in the lemma implies j is quasi-compact by Schemes, Lemma
26.21.14. By Spaces, Lemma 65.11.4 we see that ∆ is quasi-compact as desired. □

Lemma 66.6.6.03W7 Let S be a scheme. Let X be an algebraic space over S. The
following are equivalent

(1) X is Zariski locally quasi-separated over S,
(2) X is Zariski locally quasi-separated,
(3) there exists a Zariski open covering X =

⋃
Xi such that for each i there

exists an affine scheme Ui and a quasi-compact surjective étale morphism
Ui → Xi, and

(4) there exists a Zariski open covering X =
⋃
Xi such that for each i there

exists an affine scheme Ui which maps into an affine open of S and a
quasi-compact surjective étale morphism Ui → Xi.
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Proof. Assume Ui → Xi ⊂ X are as in (3). To prove (4) choose for each i a finite
affine open covering Ui = Ui1 ∪ . . . ∪ Uini such that each Uij maps into an affine
open of S. The compositions Uij → Ui → Xi are étale and quasi-compact (see
Spaces, Lemma 65.5.4). Let Xij ⊂ Xi be the open subspace corresponding to the
image of |Uij | → |Xi|, see Lemma 66.4.10. Note that Uij → Xij is quasi-compact as
Xij ⊂ Xi is a monomorphism and as Uij → X is quasi-compact. Then X =

⋃
Xij

is a covering as in (4). The implication (4) ⇒ (3) is immediate.
Assume (4). To show that X is Zariski locally quasi-separated over S it suffices
to show that Xi is quasi-separated over S. Hence we may assume there exists an
affine scheme U mapping into an affine open of S and a quasi-compact surjective
étale morphism U → X. Consider the fibre product square

U ×X U //

��

U ×S U

��
X

∆X/S // X ×S X

The right vertical arrow is surjective étale (see Spaces, Lemma 65.5.7) and U ×S U
is affine (as U maps into an affine open of S, see Schemes, Section 26.17), and
U ×X U is quasi-compact because the projection U ×X U → U is quasi-compact
as a base change of U → X. It follows from Spaces, Lemma 65.11.4 that ∆X/S is
quasi-compact as desired.
Assume (1). To prove (3) there is an immediate reduction to the case where X
is quasi-separated over S. By Lemma 66.6.2 we can find a Zariski open covering
X =

⋃
Xi such that each Xi maps into an affine open of S, and such that there

exist affine schemes Ui and surjective étale morphisms Ui → Xi. Since Ui → S
maps into an affine open of S we see that Ui ×S Ui is affine, see Schemes, Section
26.17. As X is quasi-separated over S, the morphisms

Ri = Ui ×Xi Ui = Ui ×X Ui −→ Ui ×S Ui
as base changes of ∆X/S are quasi-compact. Hence we conclude that Ri is a quasi-
compact scheme. This in turn implies that each projection Ri → Ui is quasi-
compact. Hence, applying Spaces, Lemma 65.11.4 to the covering Ui → Xi and the
morphism Ui → Xi we conclude that the morphisms Ui → Xi are quasi-compact
as desired.
At this point we see that (1), (3), and (4) are equivalent. Since (3) does not refer
to the base scheme we conclude that these are also equivalent with (2). □

The following lemma will turn out to be quite useful.

Lemma 66.6.7.03IJ Let S be a scheme. Let X be an algebraic space over S. Let U
be a scheme. Let φ : U → X be an étale morphism such that the projections
R = U ×X U → U are quasi-compact; for example if φ is quasi-compact. Then the
fibres of

|U | → |X| and |R| → |X|
are finite.

Proof. Denote R = U×XU , and s, t : R→ U the projections. Let u ∈ U be a point,
and let x ∈ |X| be its image. The fibre of |U | → |X| over x is equal to s(t−1({u})) by
Lemma 66.4.3, and the fibre of |R| → |X| over x is t−1(s(t−1({u}))). Since t : R→
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U is étale and quasi-compact, it has finite fibres (as its fibres are disjoint unions
of spectra of fields by Morphisms, Lemma 29.36.7 and quasi-compact). Hence we
win. □

66.7. Properties of Spaces defined by properties of schemes

03E5 Any étale local property of schemes gives rise to a corresponding property of alge-
braic spaces via the following lemma.
Lemma 66.7.1.03E8 Let S be a scheme. Let X be an algebraic space over S. Let P be
a property of schemes which is local in the étale topology, see Descent, Definition
35.15.1. The following are equivalent

(1) for some scheme U and surjective étale morphism U → X the scheme U
has property P, and

(2) for every scheme U and every étale morphism U → X the scheme U has
property P.

If X is representable this is equivalent to P(X).
Proof. The implication (2)⇒ (1) is immediate. For the converse, choose a surjective
étale morphism U → X with U a scheme that has P and let V be an étaleX-scheme.
Then U ×X V → V is an étale surjection of schemes, so V inherits P from U ×X
V , which in turn inherits P from U (see discussion following Descent, Definition
35.15.1). The last claim is clear from (1) and Descent, Definition 35.15.1. □

Definition 66.7.2.03E6 Let P be a property of schemes which is local in the étale
topology. Let S be a scheme. Let X be an algebraic space over S. We say X has
property P if any of the equivalent conditions of Lemma 66.7.1 hold.
Remark 66.7.3.03E7 Here is a list of properties which are local for the étale topology
(keep in mind that the fpqc, fppf, syntomic, and smooth topologies are stronger
than the étale topology):

(1) locally Noetherian, see Descent, Lemma 35.16.1,
(2) Jacobson, see Descent, Lemma 35.16.2,
(3) locally Noetherian and (Sk), see Descent, Lemma 35.17.1,
(4) Cohen-Macaulay, see Descent, Lemma 35.17.2,
(5) Gorenstein, see Duality for Schemes, Lemma 48.24.6,
(6) reduced, see Descent, Lemma 35.18.1,
(7) normal, see Descent, Lemma 35.18.2,
(8) locally Noetherian and (Rk), see Descent, Lemma 35.18.3,
(9) regular, see Descent, Lemma 35.18.4,

(10) Nagata, see Descent, Lemma 35.18.5.
Any étale local property of germs of schemes gives rise to a corresponding property
of algebraic spaces. Here is the obligatory lemma.
Lemma 66.7.4.04N2 Let P be a property of germs of schemes which is étale local, see
Descent, Definition 35.21.1. Let S be a scheme. Let X be an algebraic space over
S. Let x ∈ |X| be a point of X. Consider étale morphisms a : U → X where U is
a scheme. The following are equivalent

(1) for any U → X as above and u ∈ U with a(u) = x we have P(U, u), and
(2) for some U → X as above and u ∈ U with a(u) = x we have P(U, u).

If X is representable, then this is equivalent to P(X,x).
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Proof. Omitted. □

Definition 66.7.5.04RC Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. Let P be a property of germs of schemes which is étale local. We say X
has property P at x if any of the equivalent conditions of Lemma 66.7.4 hold.

Remark 66.7.6.0BBL Let P be a property of local rings. Assume that for any étale ring
map A → B and q is a prime of B lying over the prime p of A, then P (Ap) ⇔
P (Bq). Then we obtain an étale local property of germs (U, u) of schemes by setting
P(U, u) = P (OU,u). In this situation we will use the terminology “the local ring of
X at x has P” to mean X has property P at x. Here is a list of such properties P :

(1) Noetherian, see More on Algebra, Lemma 15.44.1,
(2) dimension d, see More on Algebra, Lemma 15.44.2,
(3) regular, see More on Algebra, Lemma 15.44.3,
(4) discrete valuation ring, follows from (2), (3), and Algebra, Lemma 10.119.7,
(5) reduced, see More on Algebra, Lemma 15.45.4,
(6) normal, see More on Algebra, Lemma 15.45.6,
(7) Noetherian and depth k, see More on Algebra, Lemma 15.45.8,
(8) Noetherian and Cohen-Macaulay, see More on Algebra, Lemma 15.45.9,
(9) Noetherian and Gorenstein, see Dualizing Complexes, Lemma 47.21.8.

There are more properties for which this holds, for example G-ring and Nagata. If
we every need these we will add them here as well as references to detailed proofs
of the corresponding algebra facts.

66.8. Constructible sets

0ECS
Lemma 66.8.1.0ECT Let S be a scheme. Let X be an algebraic space over S. Let
E ⊂ |X| be a subset. The following are equivalent

(1) for every étale morphism U → X where U is a scheme the inverse image
of E in U is a locally constructible subset of U ,

(2) for every étale morphism U → X where U is an affine scheme the inverse
image of E in U is a constructible subset of U ,

(3) for some surjective étale morphism U → X where U is a scheme the
inverse image of E in U is a locally constructible subset of U .

Proof. By Properties, Lemma 28.2.1 we see that (1) and (2) are equivalent. It is
immediate that (1) implies (3). Thus we assume we have a surjective étale morphism
φ : U → X where U is a scheme such that φ−1(E) is locally constructible. Let
φ′ : U ′ → X be another étale morphism where U ′ is a scheme. Then we have

E′′ = pr−1
1 (φ−1(E)) = pr−1

2 ((φ′)−1(E))

where pr1 : U ×X U ′ → U and pr2 : U ×X U ′ → U ′ are the projections. By
Morphisms, Lemma 29.22.1 we see that E′′ is locally constructible in U ×X U ′. Let
W ′ ⊂ U ′ be an affine open. Since pr2 is étale and hence open, we can choose a
quasi-compact open W ′′ ⊂ U×XU ′ with pr2(W ′′) = W ′. Then pr2|W ′′ : W ′′ →W ′

is quasi-compact. We have W ′ ∩ (φ′)−1(E) = pr2(E′′ ∩W ′′) as φ is surjective, see
Lemma 66.4.3. Thus W ′ ∩ (φ′)−1(E) = pr2(E′′ ∩W ′′) is locally constructible by
Morphisms, Theorem 29.22.3 as desired. □
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Definition 66.8.2.0ECU Let S be a scheme. Let X be an algebraic space over S. Let
E ⊂ |X| be a subset. We say E is étale locally constructible if the equivalent
conditions of Lemma 66.8.1 are satisfied.

Of course, if X is representable, i.e., X is a scheme, then this just means E is a
locally constructible subset of the underlying topological space.

66.9. Dimension at a point

04N3 We can use Descent, Lemma 35.21.2 to define the dimension of an algebraic space
X at a point x. This will give us a different notion than the topological one (i.e.,
the dimension of |X| at x).

Definition 66.9.1.04N5 Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X| be a point of X. We define the dimension of X at x to be the element
dimx(X) ∈ {0, 1, 2, . . . ,∞} such that dimx(X) = dimu(U) for any (equivalently
some) pair (a : U → X,u) consisting of an étale morphism a : U → X from a
scheme to X and a point u ∈ U with a(u) = x. See Definition 66.7.5, Lemma
66.7.4, and Descent, Lemma 35.21.2.

Warning: It is not the case that dimx(X) = dimx(|X|) in general. A counter
example is the algebraic space X of Spaces, Example 65.14.9. Namely, let x ∈ |X|
be a point not equal to the generic point x0 of |X|. Then we have dimx(X) = 0 but
dimx(|X|) = 1. In particular, the dimension of X (as defined below) is different
from the dimension of |X|.

Definition 66.9.2.04N6 Let S be a scheme. Let X be an algebraic space over S. The
dimension dim(X) of X is defined by the rule

dim(X) = supx∈|X| dimx(X)

By Properties, Lemma 28.10.2 we see that this is the usual notion if X is a scheme.
There is another integer that measures the dimension of a scheme at a point, namely
the dimension of the local ring. This invariant is compatible with étale morphisms
also, see Section 66.10.

66.10. Dimension of local rings

04N7 The dimension of the local ring of an algebraic space is a well defined concept.

Lemma 66.10.1.0BAM Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X| be a point. Let d ∈ {0, 1, 2, . . . ,∞}. The following are equivalent

(1) for some scheme U and étale morphism a : U → X and point u ∈ U with
a(u) = x we have dim(OU,u) = d,

(2) for any scheme U , any étale morphism a : U → X, and any point u ∈ U
with a(u) = x we have dim(OU,u) = d.

If X is a scheme, this is equivalent to dim(OX,x) = d.

Proof. Combine Lemma 66.7.4 and Descent, Lemma 35.21.3. □

Definition 66.10.2.04NA Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X| be a point. The dimension of the local ring of X at x is the element
d ∈ {0, 1, 2, . . . ,∞} satisfying the equivalent conditions of Lemma 66.10.1. In this
case we will also say x is a point of codimension d on X.
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Besides the lemma below we also point the reader to Lemmas 66.22.4 and 66.22.5.

Lemma 66.10.3.0BAN Let S be a scheme. Let X be an algebraic space over S. The
following quantities are equal:

(1) The dimension of X.
(2) The supremum of the dimensions of the local rings of X.
(3) The supremum of dimx(X) for x ∈ |X|.

Proof. The numbers in (1) and (3) are equal by Definition 66.9.2. Let U → X be a
surjective étale morphism from a scheme U . The supremum of dimx(X) for x ∈ |X|
is the same as the supremum of dimu(U) for points u of U by definition. This is
the same as the supremum of dim(OU,u) by Properties, Lemma 28.10.2. This in
turn is the same as (2) by definition. □

66.11. Generic points

0BAP Let T be a topological space. According to the second edition of EGA I, a maximal
point of T is a generic point of an irreducible component of T . If T = |X| is the
topological space associated to an algebraic space X, there are at least two notions
of maximal points: we can look at maximal points of T viewed as a topological
space, or we can look at images of maximal points of U where U → X is an étale
morphism and U is a scheme. The second notion corresponds to the set of points of
codimension 0 (Lemma 66.11.1). The codimension 0 points are easier to work with
for general algebraic spaces; the two notions agree for quasi-separated and more
generally decent algebraic spaces (Decent Spaces, Lemma 68.20.1).

Lemma 66.11.1.0BAQ Let S be a scheme and let X be an algebraic space over S. Let
x ∈ |X|. Consider étale morphisms a : U → X where U is a scheme. The following
are equivalent

(1) x is a point of codimension 0 on X,
(2) for some U → X as above and u ∈ U with a(u) = x, the point u is the

generic point of an irreducible component of U , and
(3) for any U → X as above and any u ∈ U mapping to x, the point u is the

generic point of an irreducible component of U .
If X is representable, this is equivalent to x being a generic point of an irreducible
component of |X|.

Proof. Observe that a point u of a scheme U is a generic point of an irreducible
component of U if and only if dim(OU,u) = 0 (Properties, Lemma 28.10.4). Hence
this follows from the definition of the codimension of a point on X (Definition
66.10.2). □

Lemma 66.11.2.0BAR Let S be a scheme and let X be an algebraic space over S. The
set of codimension 0 points of X is dense in |X|.

Proof. If U is a scheme, then the set of generic points of irreducible components
is dense in U (holds for any quasi-sober topological space). Thus if U → X is a
surjective étale morphism, then the set of codimension 0 points of X is the image
of a dense subset of |U | (Lemma 66.11.1). Since |X| has the quotient topology for
|U | → |X| we conclude. □
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66.12. Reduced spaces

03IP We have already defined reduced algebraic spaces in Section 66.7. Here we just
prove some simple lemmas regarding reduced algebraic spaces.

Lemma 66.12.1.0ABJ Let S be a scheme. Let Z → X be an immersion of algebraic
spaces. Then |Z| → |X| is a homeomorphism of |Z| onto a locally closed subset of
|X|.

Proof. Let U be a scheme and U → X a surjective étale morphism. Then Z ×X
U → U is an immersion of schemes, hence gives a homeomorphism of |Z ×X U |
with a locally closed subset T ′ of |U |. By Lemma 66.4.3 the subset T ′ is the
inverse image of the image T of |Z| → |X|. The map |Z| → |X| is injective
because the transformation of functors Z → X is injective, see Spaces, Section
65.12. By Topology, Lemma 5.6.4 we see that T is locally closed in |X|. Moreover,
the continuous map |Z| → T is a homeomorphism as the map |Z ×X U | → T ′ is a
homeomorphism and |Z ×Y U | → |Z| is submersive. □

The following lemma will help us construct (locally) closed subspaces.

Lemma 66.12.2.07TW Let S be a scheme. Let j : R → U ×S U be an étale equivalence
relation. LetX = U/R be the associated algebraic space (Spaces, Theorem 65.10.5).
There is a canonical bijection
R-invariant locally closed subschemes Z ′ of U ↔ locally closed subspaces Z of X

Moreover, if Z → X is closed (resp. open) if and only if Z ′ → U is closed (resp.
open).

Proof. Denote φ : U → X the canonical map. The bijection sends Z → X to
Z ′ = Z ×X U → U . It is immediate from the definition that Z ′ → U is an
immersion, resp. closed immersion, resp. open immersion if Z → X is so. It is also
clear that Z ′ is R-invariant (see Groupoids, Definition 39.19.1).
Conversely, assume that Z ′ → U is an immersion which is R-invariant. Let R′ be
the restriction of R to Z ′, see Groupoids, Definition 39.18.2. Since R′ = R×s,UZ ′ =
Z ′×U,tR in this case we see that R′ is an étale equivalence relation on Z ′. By Spaces,
Theorem 65.10.5 we see Z = Z ′/R′ is an algebraic space. By construction we have
U×XZ = Z ′, so U×XZ → Z is an immersion. Note that the property “immersion”
is preserved under base change and fppf local on the base (see Spaces, Section 65.4).
Moreover, immersions are separated and locally quasi-finite (see Schemes, Lemma
26.23.8 and Morphisms, Lemma 29.20.16). Hence by More on Morphisms, Lemma
37.57.1 immersions satisfy descent for fppf covering. This means all the hypotheses
of Spaces, Lemma 65.11.5 are satisfied for Z → X, P =“immersion”, and the étale
surjective morphism U → X. We conclude that Z → X is representable and an
immersion, which is the definition of a subspace (see Spaces, Definition 65.12.1).
It is clear that these constructions are inverse to each other and we win. □

Lemma 66.12.3.03IQ Let S be a scheme. Let X be an algebraic space over S. Let
T ⊂ |X| be a closed subset. There exists a unique closed subspace Z ⊂ X with the
following properties: (a) we have |Z| = T , and (b) Z is reduced.

Proof. Let U → X be a surjective étale morphism, where U is a scheme. Set
R = U ×X U , so that X = U/R, see Spaces, Lemma 65.9.1. As usual we denote
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s, t : R → U the two projection morphisms. By Lemma 66.4.5 we see that T
corresponds to a closed subset T ′ ⊂ |U | such that s−1(T ′) = t−1(T ′). Let Z ′ ⊂ U
be the reduced induced scheme structure on T ′. In this case the fibre products
Z ′×U,tR and Z ′×U,sR are closed subschemes of R (Schemes, Lemma 26.18.2) which
are étale over Z ′ (Morphisms, Lemma 29.36.4), and hence reduced (because being
reduced is local in the étale topology, see Remark 66.7.3). Since they have the same
underlying topological space (see above) we conclude that Z ′ ×U,t R = Z ′ ×U,s R.
Thus we can apply Lemma 66.12.2 to obtain a closed subspace Z ⊂ X whose
pullback to U is Z ′. By construction |Z| = T and Z is reduced. This proves
existence. We omit the proof of uniqueness. □

Lemma 66.12.4.03JJ Let S be a scheme. Let X, Y be algebraic spaces over S. Let
Z ⊂ X be a closed subspace. Assume Y is reduced. A morphism f : Y → X factors
through Z if and only if f(|Y |) ⊂ |Z|.

Proof. Assume f(|Y |) ⊂ |Z|. Choose a diagram

V

b
��

h
// U

a

��
Y

f // X

where U , V are schemes, and the vertical arrows are surjective and étale. The
scheme V is reduced, see Lemma 66.7.1. Hence h factors through a−1(Z) by
Schemes, Lemma 26.12.7. So a ◦h factors through Z. As Z ⊂ X is a subsheaf, and
V → Y is a surjection of sheaves on (Sch/S)fppf we conclude that X → Y factors
through Z. □

Definition 66.12.5.047X Let S be a scheme, and let X be an algebraic space over S.
Let Z ⊂ |X| be a closed subset. An algebraic space structure on Z is given by a
closed subspace Z ′ of X with |Z ′| equal to Z. The reduced induced algebraic space
structure on Z is the one constructed in Lemma 66.12.3. The reduction Xred of X
is the reduced induced algebraic space structure on |X|.

66.13. The schematic locus

03JG Every algebraic space has a largest open subspace which is a scheme; this is more
or less clear but we also write out the proof below. Of course this subspace may
be empty, for example if X = A1

Q/Z (the universal counter example). On the
other hand, if X is for example quasi-separated, then this largest open subscheme
is actually dense in X!

Lemma 66.13.1.03JH Let S be a scheme. Let X be an algebraic space over S. There
exists a largest open subspace X ′ ⊂ X which is a scheme.

Proof. Let U → X be an étale surjective morphism, where U is a scheme. Let
R = U ×X U . The open subspaces of X correspond 1 − 1 with open subschemes
of U which are R-invariant. Hence there is a set of them. Let Xi, i ∈ I be the
set of open subspaces of X which are schemes, i.e., are representable. Consider the
open subspace X ′ ⊂ X whose underlying set of points is the open

⋃
|Xi| of |X|.

By Lemma 66.4.4 we see that ∐
Xi −→ X ′
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is a surjective map of sheaves on (Sch/S)fppf . But since each Xi → X ′ is repre-
sentable by open immersions we see that in fact the map is surjective in the Zariski
topology. Namely, if T → X ′ is a morphism from a scheme into X ′, then Xi×X′ T
is an open subscheme of T . Hence we can apply Schemes, Lemma 26.15.4 to see
that X ′ is a scheme. □

In the rest of this section we say that an open subspace X ′ of an algebraic space
X is dense if the corresponding open subset |X ′| ⊂ |X| is dense.
Lemma 66.13.2.0BAS Let S be a scheme. Let X be an algebraic space over S. If there
exists a finite, étale, surjective morphism U → X where U is a quasi-separated
scheme, then there exists a dense open subspace X ′ of X which is a scheme. More
precisely, every point x ∈ |X| of codimension 0 in X is contained in X ′.
Proof. Let X ′ ⊂ X be the maximal open subspace which is a scheme (Lemma
66.13.1). Let x ∈ |X| be a point of codimension 0 on X. By Lemma 66.11.2
it suffices to show x ∈ X ′. Let U → X be as in the statement of the lemma.
Write R = U ×X U and denote s, t : R → U the projections as usual. Note
that s, t are surjective, finite and étale. By Lemma 66.6.7 the fibre of |U | → |X|
over x is finite, say {η1, . . . , ηn}. By Lemma 66.11.1 each ηi is the generic point
of an irreducible component of U . By Properties, Lemma 28.29.1 we can find
an affine open W ⊂ U containing {η1, . . . , ηn} (this is where we use that U is
quasi-separated). By Groupoids, Lemma 39.24.1 we may assume that W is R-
invariant. Since W ⊂ U is an R-invariant affine open, the restriction RW of R to W
equals RW = s−1(W ) = t−1(W ) (see Groupoids, Definition 39.19.1 and discussion
following it). In particular the maps RW →W are finite étale also. It follows that
RW is affine. Thus we see that W/RW is a scheme, by Groupoids, Proposition
39.23.9. On the other hand, W/RW is an open subspace of X by Spaces, Lemma
65.10.2 and it contains x by construction. □

We will improve the following proposition to the case of decent algebraic spaces in
Decent Spaces, Theorem 68.10.2.
Proposition 66.13.3.06NH Let S be a scheme. Let X be an algebraic space over S. If X
is Zariski locally quasi-separated (for example if X is quasi-separated), then there
exists a dense open subspace X ′ of X which is a scheme. More precisely, every
point x ∈ |X| of codimension 0 on X is contained in X ′.
Proof. The question is local on X by Lemma 66.13.1. Thus by Lemma 66.6.6 we
may assume that there exists an affine scheme U and a surjective, quasi-compact,
étale morphism U → X. Moreover U → X is separated (Lemma 66.6.4). Set R =
U ×X U and denote s, t : R→ U the projections as usual. Then s, t are surjective,
quasi-compact, separated, and étale. Hence s, t are also quasi-finite and have finite
fibres (Morphisms, Lemmas 29.36.6, 29.20.9, and 29.20.10). By Morphisms, Lemma
29.51.1 for every η ∈ U which is the generic point of an irreducible component of U ,
there exists an open neighbourhood V ⊂ U of η such that s−1(V )→ V is finite. By
Descent, Lemma 35.23.23 being finite is fpqc (and in particular étale) local on the
target. Hence we may apply More on Groupoids, Lemma 40.6.4 which says that the
largest open W ⊂ U over which s is finite is R-invariant. By the above W contains
every generic point of an irreducible component of U . The restriction RW of R to W
equals RW = s−1(W ) = t−1(W ) (see Groupoids, Definition 39.19.1 and discussion
following it). By construction sW , tW : RW → W are finite étale. Consider the
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open subspace X ′ = W/RW ⊂ X (see Spaces, Lemma 65.10.2). By construction
the inclusion map X ′ → X induces a bijection on points of codimension 0. This
reduces us to Lemma 66.13.2. □

66.14. Obtaining a scheme

07S5 We have used in the previous section that the quotient U/R of an affine scheme U
by an equivalence relation R is a scheme if the morphisms s, t : R → U are finite
étale. This is a special case of the following result.

Proposition 66.14.1.07S6 Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme
over S. Assume

(1) s, t : R→ U finite locally free,
(2) j = (t, s) is an equivalence, and
(3) for a dense set of points u ∈ U the R-equivalence class t(s−1({u})) is

contained in an affine open of U .
Then there exists a finite locally free morphism U → M of schemes over S such
that R = U ×M U and such that M represents the quotient sheaf U/R in the fppf
topology.

Proof. By assumption (3) and Groupoids, Lemma 39.24.1 we can find an open
covering U =

⋃
Ui such that each Ui is an R-invariant affine open of U . Set

Ri = R|Ui . Consider the fppf sheaves F = U/R and Fi = Ui/Ri. By Spaces,
Lemma 65.10.2 the morphisms Fi → F are representable and open immersions. By
Groupoids, Proposition 39.23.9 the sheaves Fi are representable by affine schemes.
If T is a scheme and T → F is a morphism, then Vi = Fi ×F T is open in T
and we claim that T =

⋃
Vi. Namely, fppf locally on T we can lift T → F to a

morphism f : T → U and in that case f−1(Ui) ⊂ Vi. Hence we conclude that F is
representable by a scheme, see Schemes, Lemma 26.15.4. □

For example, if U is isomorphic to a locally closed subscheme of an affine scheme or
isomorphic to a locally closed subscheme of Proj(A) for some graded ring A, then
the third assumption holds by Properties, Lemma 28.29.5. In particular we can
apply this to free actions of finite groups and finite group schemes on quasi-affine
or quasi-projective schemes. For example, the quotient X/G of a quasi-projective
variety X by a free action of a finite group G is a scheme. Here is a detailed
statement.

Lemma 66.14.2.07S7 Let S be a scheme. Let G → S be a group scheme. Let X → S
be a morphism of schemes. Let a : G×S X → X be an action. Assume that

(1) G→ S is finite locally free,
(2) the action a is free,
(3) X → S is affine, or quasi-affine, or projective, or quasi-projective, or X is

isomorphic to an open subscheme of an affine scheme, or X is isomorphic
to an open subscheme of Proj(A) for some graded ring A, or G → S is
radicial.

Then the fppf quotient sheaf X/G is a scheme and X → X/G is an fppf G-torsor.

Proof. We first show that X/G is a scheme. Since the action is free the morphism
j = (a,pr) : G ×S X → X ×S X is a monomorphism and hence an equivalence
relation, see Groupoids, Lemma 39.10.3. The maps s, t : G ×S X → X are finite
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locally free as we’ve assumed that G→ S is finite locally free. To conclude it now
suffices to prove the last assumption of Proposition 66.14.1 holds. Since the action
of G is over S it suffices to prove that any finite set of points in a fibre of X → S
is contained in an affine open of X. If X is isomorphic to an open subscheme of an
affine scheme or isomorphic to an open subscheme of Proj(A) for some graded ring
A this follows from Properties, Lemma 28.29.5. If X → S is affine, or quasi-affine,
or projective, or quasi-projective, we may replace S by an affine open and we get
back to the case we just dealt with. If G→ S is radicial, then the orbits of points
on X under the action of G are singletons and the condition trivially holds. Some
details omitted.
To see that X → X/G is an fppf G-torsor (Groupoids, Definition 39.11.3) we have
to show that G ×S X → X ×X/G X is an isomorphism and that X → X/G fppf
locally has sections. The second part is clear from the fact that X → X/G is
surjective as a map of fppf sheaves (by construction). The first part follows from
the isomorphism R = U ×M U in the conclusion of Proposition 66.14.1 (note that
R = G×S X in our case). □

Lemma 66.14.3.0BBM Notation and assumptions as in Proposition 66.14.1. Then
(1) if U is quasi-separated over S, then U/R is quasi-separated over S,
(2) if U is quasi-separated, then U/R is quasi-separated,
(3) if U is separated over S, then U/R is separated over S,
(4) if U is separated, then U/R is separated, and
(5) add more here.

Similar results hold in the setting of Lemma 66.14.2.

Proof. Since M represents the quotient sheaf we have a cartesian diagram

R
j
//

��

U ×S U

��
M // M ×S M

of schemes. Since U ×S U →M ×S M is surjective finite locally free, to show that
M →M ×S M is quasi-compact, resp. a closed immersion, it suffices to show that
j : R → U ×S U is quasi-compact, resp. a closed immersion, see Descent, Lemmas
35.23.1 and 35.23.19. Since j : R → U ×S U is a morphism over U and since R is
finite over U , we see that j is quasi-compact as soon as the projection U ×S U → U
is quasi-separated (Schemes, Lemma 26.21.14). Since j is a monomorphism and
locally of finite type, we see that j is a closed immersion as soon as it is proper
(Étale Morphisms, Lemma 41.7.2) which will be the case as soon as the projection
U ×S U → U is separated (Morphisms, Lemma 29.41.7). This proves (1) and (3).
To prove (2) and (4) we replace S by Spec(Z), see Definition 66.3.1. Since Lemma
66.14.2 is proved through an application of Proposition 66.14.1 the final statement
is clear too. □

66.15. Points on quasi-separated spaces

06NI Points can behave very badly on algebraic spaces in the generality introduced in
the Stacks project. However, for quasi-separated spaces their behaviour is mostly
like the behaviour of points on schemes. We prove a few results on this in this
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section; the chapter on decent spaces contains many more results on this, see for
example Decent Spaces, Section 68.12.

Lemma 66.15.1.06NJ Let S be a scheme. Let X be a Zariski locally quasi-separated
algebraic space over S. Then the topological space |X| is sober (see Topology,
Definition 5.8.6).

Proof. Combining Topology, Lemma 5.8.8 and Lemma 66.6.6 we see that we may
assume that there exists an affine scheme U and a surjective, quasi-compact, étale
morphism U → X. Set R = U ×X U with projection maps s, t : R→ U . Applying
Lemma 66.6.7 we see that the fibres of s, t are finite. It follows all the assumptions
of Topology, Lemma 5.19.8 are met, and we conclude that |X| is Kolmogorov3.

It remains to show that every irreducible closed subset T ⊂ |X| has a generic
point. By Lemma 66.12.3 there exists a closed subspace Z ⊂ X with |Z| = |T |.
Note that U ×X Z → Z is a quasi-compact, surjective, étale morphism from an
affine scheme to Z, hence Z is Zariski locally quasi-separated by Lemma 66.6.6. By
Proposition 66.13.3 we see that there exists an open dense subspace Z ′ ⊂ Z which
is a scheme. This means that |Z ′| ⊂ T is open dense. Hence the topological space
|Z ′| is irreducible, which means that Z ′ is an irreducible scheme. By Schemes,
Lemma 26.11.1 we conclude that |Z ′| is the closure of a single point η ∈ |Z ′| ⊂ T

and hence also T = {η}, and we win. □

Lemma 66.15.2.0A4G Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. The topological space |X| is a spectral space.

Proof. By Topology, Definition 5.23.1 we have to check that |X| is sober, quasi-
compact, has a basis of quasi-compact opens, and the intersection of any two quasi-
compact opens is quasi-compact. By Lemma 66.15.1 we see that |X| is sober. By
Lemma 66.5.2 we see that |X| is quasi-compact. By Lemma 66.6.3 there exists an
affine scheme U and a surjective étale morphism f : U → X. Since |f | : |U | → |X| is
open and continuous and since |U | has a basis of quasi-compact opens, we conclude
that |X| has a basis of quasi-compact opens. Finally, suppose that A,B ⊂ |X|
are quasi-compact open. Then A = |X ′| and B = |X ′′| for some open subspaces
X ′, X ′′ ⊂ X (Lemma 66.4.8) and we can choose affine schemes V and W and
surjective étale morphisms V → X ′ and W → X ′′ (Lemma 66.6.3). Then A ∩B is
the image of |V ×X W | → |X| (Lemma 66.4.3). Since V ×X W is quasi-compact
as X is quasi-separated (Lemma 66.3.3) we conclude that A ∩ B is quasi-compact
and the proof is finished. □

The following lemma can be used to prove that an algebraic space is isomorphic to
the spectrum of a field.

Lemma 66.15.3.03DZ Let S be a scheme. Let k be a field. Let X be an algebraic space
over S and assume that there exists a surjective étale morphism Spec(k) → X. If
X is quasi-separated, then X ∼= Spec(k′) where k/k′ is a finite separable extension.

3Actually we use here also Schemes, Lemma 26.11.1 (soberness schemes), Morphisms, Lem-
mas 29.36.12 and 29.25.9 (generalizations lift along étale morphisms), Lemma 66.4.5 (points on
an algebraic space in terms of a presentation), and Lemma 66.4.6 (openness quotient map).
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Proof. Set R = Spec(k)×X Spec(k), so that we have a fibre product diagram

R
s

//

t

��

Spec(k)

��
Spec(k) // X

By Spaces, Lemma 65.9.1 we know X = Spec(k)/R is the quotient sheaf. Because
Spec(k) → X is étale, the morphisms s and t are étale. Hence R =

∐
i∈I Spec(ki)

is a disjoint union of spectra of fields, and both s and t induce finite separable field
extensions s, t : k ⊂ ki, see Morphisms, Lemma 29.36.7. Because

R = Spec(k)×X Spec(k) = (Spec(k)×S Spec(k))×X×SX,∆ X

and since ∆ is quasi-compact by assumption we conclude that R → Spec(k) ×S
Spec(k) is quasi-compact. Hence R is quasi-compact as Spec(k) ×S Spec(k) is
affine. We conclude that I is finite. This implies that s and t are finite locally free
morphisms. Hence by Groupoids, Proposition 39.23.9 we conclude that Spec(k)/R
is represented by Spec(k′), with k′ ⊂ k finite locally free where

k′ = {x ∈ k | si(x) = ti(x) for all i ∈ I}
It is easy to see that k′ is a field. □

Remark 66.15.4.03E0 Lemma 66.15.3 holds for decent algebraic spaces, see Decent
Spaces, Lemma 68.12.8. In fact a decent algebraic space with one point is a scheme,
see Decent Spaces, Lemma 68.14.2. This also holds when X is locally separated,
because a locally separated algebraic space is decent, see Decent Spaces, Lemma
68.15.2.

66.16. Étale morphisms of algebraic spaces

03FQ This section really belongs in the chapter on morphisms of algebraic spaces, but
we need the notion of an algebraic space étale over another in order to define
the small étale site of an algebraic space. Thus we need to do some preliminary
work on étale morphisms from schemes to algebraic spaces, and étale morphisms
between algebraic spaces. For more about étale morphisms of algebraic spaces, see
Morphisms of Spaces, Section 67.39.

Lemma 66.16.1.03EC Let S be a scheme. Let X be an algebraic space over S. Let U ,
U ′ be schemes over S.

(1) If U → U ′ is an étale morphism of schemes, and if U ′ → X is an étale mor-
phism from U ′ to X, then the composition U → X is an étale morphism
from U to X.

(2) If φ : U → X and φ′ : U ′ → X are étale morphisms towards X, and if
χ : U → U ′ is a morphism of schemes such that φ = φ′ ◦ χ, then χ is an
étale morphism of schemes.

(3) If χ : U → U ′ is a surjective étale morphism of schemes and φ′ : U ′ → X
is a morphism such that φ = φ′ ◦ χ is étale, then φ′ is étale.

Proof. Recall that our definition of an étale morphism from a scheme into an al-
gebraic space comes from Spaces, Definition 65.5.1 via the fact that any morphism
from a scheme into an algebraic space is representable.
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Part (1) of the lemma follows from this, the fact that étale morphisms are preserved
under composition (Morphisms, Lemma 29.36.3) and Spaces, Lemmas 65.5.4 and
65.5.3 (which are formal).
To prove part (2) choose a scheme W over S and a surjective étale morphism
W → X. Consider the base change χW : W ×X U → W ×X U ′ of χ. As W ×X U
and W ×X U ′ are étale over W , we conclude that χW is étale, by Morphisms,
Lemma 29.36.18. On the other hand, in the commutative diagram

W ×X U //

��

W ×X U ′

��
U // U ′

the two vertical arrows are étale and surjective. Hence by Descent, Lemma 35.14.4
we conclude that U → U ′ is étale.
To prove part (3) choose a scheme W over S and a morphism W → X. As above
we consider the diagram

W ×X U //

��

W ×X U ′

��

// W

��
U // U ′ // X

Now we know that W ×X U → W ×X U ′ is surjective étale (as a base change of
U → U ′) and that W ×X U →W is étale. Thus W ×X U ′ →W is étale by Descent,
Lemma 35.14.4. By definition this means that φ′ is étale. □

Definition 66.16.2.03FR Let S be a scheme. A morphism f : X → Y between algebraic
spaces over S is called étale if and only if for every étale morphism φ : U → X
where U is a scheme, the composition f ◦ φ is étale also.
If X and Y are schemes, then this agree with the usual notion of an étale morphism
of schemes. In fact, whenever X → Y is a representable morphism of algebraic
spaces, then this agrees with the notion defined via Spaces, Definition 65.5.1. This
follows by combining Lemma 66.16.3 below and Spaces, Lemma 65.11.4.
Lemma 66.16.3.03FS Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is étale,
(2) there exists a surjective étale morphism φ : U → X, where U is a scheme,

such that the composition f◦φ is étale (as a morphism of algebraic spaces),
(3) there exists a surjective étale morphism ψ : V → Y , where V is a scheme,

such that the base change V ×XY → V is étale (as a morphism of algebraic
spaces),

(4) there exists a commutative diagram
U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and the left vertical
arrow is surjective such that the horizontal arrow is étale.

https://stacks.math.columbia.edu/tag/03FR
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Proof. Let us prove that (4) implies (1). Assume a diagram as in (4) given. Let
W → X be an étale morphism with W a scheme. Then we see that W ×X U → U
is étale. Hence W ×X U → V is étale as the composition of the étale morphisms of
schemes W ×X U → U and U → V . Therefore W ×X U → Y is étale by Lemma
66.16.1 (1). Since also the projection W ×X U → W is surjective and étale, we
conclude from Lemma 66.16.1 (3) that W → Y is étale.
Let us prove that (1) implies (4). Assume (1). Choose a commutative diagram

U

��

// V

��
X // Y

where U → X and V → Y are surjective and étale, see Spaces, Lemma 65.11.6. By
assumption the morphism U → Y is étale, and hence U → V is étale by Lemma
66.16.1 (2).
We omit the proof that (2) and (3) are also equivalent to (1). □

Lemma 66.16.4.03FT The composition of two étale morphisms of algebraic spaces is
étale.
Proof. This is immediate from the definition. □

Lemma 66.16.5.03FU The base change of an étale morphism of algebraic spaces by any
morphism of algebraic spaces is étale.
Proof. Let X → Y be an étale morphism of algebraic spaces over S. Let Z → Y
be a morphism of algebraic spaces. Choose a scheme U and a surjective étale
morphism U → X. Choose a scheme W and a surjective étale morphism W → Z.
Then U → Y is étale, hence in the diagram

W ×Y U

��

// W

��
Z ×Y X // Z

the top horizontal arrow is étale. Moreover, the left vertical arrow is surjective and
étale (verification omitted). Hence we conclude that the lower horizontal arrow is
étale by Lemma 66.16.3. □

Lemma 66.16.6.03FV Let S be a scheme. Let X,Y, Z be algebraic spaces. Let g : X →
Z, h : Y → Z be étale morphisms and let f : X → Y be a morphism such that
h ◦ f = g. Then f is étale.
Proof. Choose a commutative diagram

U

��

χ
// V

��
X // Y

where U → X and V → Y are surjective and étale, see Spaces, Lemma 65.11.6.
By assumption the morphisms φ : U → X → Z and ψ : V → Y → Z are étale.
Moreover, ψ ◦χ = φ by our assumption on f, g, h. Hence U → V is étale by Lemma
66.16.1 part (2). □

https://stacks.math.columbia.edu/tag/03FT
https://stacks.math.columbia.edu/tag/03FU
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Lemma 66.16.7.03IR Let S be a scheme. If X → Y is an étale morphism of algebraic
spaces over S, then the associated map |X| → |Y | of topological spaces is open.
Proof. This is clear from the diagram in Lemma 66.16.3 and Lemma 66.4.6. □

Finally, here is a fun lemma. It is not true that an algebraic space with an étale
morphism towards a scheme is a scheme, see Spaces, Example 65.14.2. But it is
true if the target is the spectrum of a field.
Lemma 66.16.8.03KX Let S be a scheme. Let X → Spec(k) be étale morphism over S,
where k is a field. Then X is a scheme.
Proof. Let U be an affine scheme, and let U → X be an étale morphism. By
Definition 66.16.2 we see that U → Spec(k) is an étale morphism. Hence U =∐
i=1,...,n Spec(ki) is a finite disjoint union of spectra of finite separable extensions

ki of k, see Morphisms, Lemma 29.36.7. The R = U ×X U → U ×Spec(k) U is a
monomorphism and U ×Spec(k) U is also a finite disjoint union of spectra of finite
separable extensions of k. Hence by Schemes, Lemma 26.23.11 we see that R is
similarly a finite disjoint union of spectra of finite separable extensions of k. This
U and R are affine and both projections R→ U are finite locally free. Hence U/R
is a scheme by Groupoids, Proposition 39.23.9. By Spaces, Lemma 65.10.2 it is also
an open subspace of X. By Lemma 66.13.1 we conclude that X is a scheme. □

66.17. Spaces and fpqc coverings

03W8 Let S be a scheme. An algebraic space over S is defined as a sheaf in the fppf
topology with additional properties. Hence it is not immediately clear that it
satisfies the sheaf property for the fpqc topology (see Topologies, Definition 34.9.12).
In this section we give Gabber’s argument showing this is true. However, when we
say that the algebraic space X satisfies the sheaf property for the fpqc topology we
really only consider fpqc coverings {fi : Ti → T}i∈I such that T, Ti are objects of
the big site (Sch/S)fppf (as per our conventions, see Section 66.2).
Proposition 66.17.1 (Gabber).0APL Let S be a scheme. Let X be an algebraic space
over S. Then X satisfies the sheaf property for the fpqc topology.
Proof. Since X is a sheaf for the Zariski topology it suffices to show the following.
Given a surjective flat morphism of affines f : T ′ → T we have: X(T ) is the
equalizer of the two maps X(T ′) → X(T ′ ×T T ′). See Topologies, Lemma 34.9.13
(there is a little argument omitted here because the lemma cited is formulated for
functors defined on the category of all schemes).
Let a, b : T → X be two morphisms such that a ◦ f = b ◦ f . We have to show a = b.
Consider the fibre product

E = X ×∆X/S ,X×SX,(a,b) T.

By Spaces, Lemma 65.13.1 the morphism ∆X/S is a representable monomorphism.
Hence E → T is a monomorphism of schemes. Our assumption that a ◦ f = b ◦ f
implies that T ′ → T factors (uniquely) through E. Consider the commutative
diagram

T ′ ×T E //

��

E

��
T ′ //

:: ;;

T

https://stacks.math.columbia.edu/tag/03IR
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Since the projection T ′×T E → T ′ is a monomorphism with a section we conclude it
is an isomorphism. Hence we conclude that E → T is an isomorphism by Descent,
Lemma 35.23.17. This means a = b as desired.

Next, let c : T ′ → X be a morphism such that the two compositions T ′ ×T T ′ →
T ′ → X are the same. We have to find a morphism a : T → X whose composition
with T ′ → T is c. Choose an affine scheme U and an étale morphism U → X such
that the image of |U | → |X| contains the image of |c| : |T ′| → |X|. This is possible
by Lemmas 66.4.6 and 66.6.1, the fact that a finite disjoint union of affines is affine,
and the fact that |T ′| is quasi-compact (small argument omitted). Since U → X is
separated (Lemma 66.6.4), we see that

V = U ×X,c T ′ −→ T ′

is a surjective, étale, separated morphism of schemes (to see that it is surjective
use Lemma 66.4.3 and our choice of U → X). The fact that c ◦ pr0 = c ◦ pr1 means
that we obtain a descent datum on V/T ′/T (Descent, Definition 35.34.1) because

V ×T ′ (T ′ ×T T ′) = U ×X,c◦pr0 (T ′ ×T T ′)
= (T ′ ×T T ′)×c◦pr1,X U

= (T ′ ×T T ′)×T ′ V

The morphism V → T ′ is ind-quasi-affine by More on Morphisms, Lemma 37.66.8
(because étale morphisms are locally quasi-finite, see Morphisms, Lemma 29.36.6).
By More on Groupoids, Lemma 40.15.3 the descent datum is effective. Say W → T
is a morphism such that there is an isomorphism α : T ′×TW → V compatible with
the given descent datum on V and the canonical descent datum on T ′×T W . Then
W → T is surjective and étale (Descent, Lemmas 35.23.7 and 35.23.29). Consider
the composition

b′ : T ′ ×T W −→ V = U ×X,c T ′ −→ U

The two compositions b′ ◦ (pr0, 1), b′ ◦ (pr1, 1) : (T ′ ×T T ′)×T W → T ′ ×T W → U
agree by our choice of α and the corresponding property of c (computation omitted).
Hence b′ descends to a morphism b : W → U by Descent, Lemma 35.13.7. The
diagram

T ′ ×T W //

��

W
b
// U

��
T ′ c // X

is commutative. What this means is that we have proved the existence of a étale
locally on T , i.e., we have an a′ : W → X. However, since we have proved unique-
ness in the first paragraph, we find that this étale local solution satisfies the glueing
condition, i.e., we have pr∗

0a
′ = pr∗

1a
′ as elements of X(W ×T W ). Since X is an

étale sheaf we find a unique a ∈ X(T ) restricting to a′ on W . □

66.18. The étale site of an algebraic space

03EB In this section we define the small étale site of an algebraic space. This is the
analogue of the small étale site Sétale of a scheme. Lemma 66.16.1 implies that in
the definition below any morphism between objects of the étale site of X is étale,
and that any scheme étale over an object of Xétale is also an object of Xétale.
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Definition 66.18.1.03ED Let S be a scheme. Let Schfppf be a big fppf site containing S,
and let Schétale be the corresponding big étale site (i.e., having the same underlying
category). Let X be an algebraic space over S. The small étale site Xétale of X is
defined as follows:

(1) An object of Xétale is a morphism φ : U → X where U ∈ Ob((Sch/S)étale)
is a scheme and φ is an étale morphism,

(2) a morphism (φ : U → X) → (φ′ : U ′ → X) is given by a morphism of
schemes χ : U → U ′ such that φ = φ′ ◦ χ, and

(3) a family of morphisms {(Ui → X)→ (U → X)}i∈I of Xétale is a covering
if and only if {Ui → U}i∈I is a covering of (Sch/S)étale.

A consequence of our choice is that the étale site of an algebraic space in general
does not have a final object! On the other hand, if X happens to be a scheme, then
the definition above agrees with Topologies, Definition 34.4.8.

The above is our default site, but there are a couple of variants which we will also
use. Namely, we can consider all algebraic spaces U which are étale over X and
this produces the site Xspaces,étale we define below or we can consider all affine
schemes U which are étale over X and this produces the site Xaffine,étale we define
below. The first of these two notions is used when discussing functoriality of the
small étale site, see Lemma 66.18.8.

Definition 66.18.2.03G0 Let S be a scheme. Let Schfppf be a big fppf site containing S,
and let Schétale be the corresponding big étale site (i.e., having the same underlying
category). Let X be an algebraic space over S. The site Xspaces,étale of X is defined
as follows:

(1) An object ofXspaces,étale is a morphism φ : U → X where U is an algebraic
space over S and φ is an étale morphism of algebraic spaces over S,

(2) a morphism (φ : U → X) → (φ′ : U ′ → X) of Xspaces,étale is given by a
morphism of algebraic spaces χ : U → U ′ such that φ = φ′ ◦ χ, and

(3) a family of morphisms {φi : (Ui → X)→ (U → X)}i∈I of Xspaces,étale is
a covering if and only if |U | =

⋃
φi(|Ui|).

As usual we choose a set of coverings of this type, including at least the coverings
in Xétale, as in Sets, Lemma 3.11.1 to turn Xspaces,étale into a site.

Since the identity morphism of X is étale it is clear that Xspaces,étale does have a
final object. Let us show right away that the corresponding topos equals the small
étale topos of X.

Lemma 66.18.3.03G1 The functor

Xétale −→ Xspaces,étale, U/X 7−→ U/X

is a special cocontinuous functor (Sites, Definition 7.29.2) and hence induces an
equivalence of topoi Sh(Xétale)→ Sh(Xspaces,étale).

Proof. We have to show that the functor satisfies the assumptions (1) – (5) of Sites,
Lemma 7.29.1. It is clear that the functor is continuous and cocontinuous, which
proves assumptions (1) and (2). Assumptions (3) and (4) hold simply because
the functor is fully faithful. Assumption (5) holds, because an algebraic space by
definition has a covering by a scheme. □

https://stacks.math.columbia.edu/tag/03ED
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Remark 66.18.4.03H7 Let us explain the meaning of Lemma 66.18.3. Let S be a scheme,
and let X be an algebraic space over S. Let F be a sheaf on the small étale site
Xétale of X. The lemma says that there exists a unique sheaf F ′ on Xspaces,étale

which restricts back to F on the subcategory Xétale. If U → X is an étale morphism
of algebraic spaces, then how do we compute F ′(U)? Well, by definition of an
algebraic space there exists a scheme U ′ and a surjective étale morphism U ′ → U .
Then {U ′ → U} is a covering in Xspaces,étale and hence we get an equalizer diagram

F ′(U) // F(U ′) //
// F(U ′ ×U U ′).

Note that U ′ ×U U ′ is a scheme, and hence we may write F and not F ′. Thus we
see how to compute F ′ when given the sheaf F .

Definition 66.18.5.0H01 Let S be a scheme. Let Schfppf be a big fppf site containing S,
and let Schétale be the corresponding big étale site (i.e., having the same underlying
category). Let X be an algebraic space over S. The site Xaffine,étale of X is defined
as follows:

(1) An object ofXaffine,étale is a morphism φ : U → X where U ∈ Ob((Sch/S)étale)
is an affine scheme and φ is an étale morphism,

(2) a morphism (φ : U → X) → (φ′ : U ′ → X) of Xaffine,étale is given by a
morphism of schemes χ : U → U ′ such that φ = φ′ ◦ χ, and

(3) a family of morphisms {φi : (Ui → X) → (U → X)}i∈I of Xaffine,étale

is a covering if and only if {Ui → U} is a standard étale covering, see
Topologies, Definition 34.4.5.

As usual we choose a set of coverings of this type, as in Sets, Lemma 3.11.1 to turn
Xaffine,étale into a site.

Lemma 66.18.6.04JS Let S be a scheme. Let X be an algebraic space over S. The
functor Xaffine,étale → Xétale is special cocontinuous and induces an equivalence
of topoi from Sh(Xaffine,étale) to Sh(Xétale).

Proof. Omitted. Hint: compare with the proof of Topologies, Lemma 34.4.11. □

Definition 66.18.7.04JT Let S be a scheme. Let X be an algebraic space over S. The
étale topos of X, or more precisely the small étale topos of X is the category
Sh(Xétale) of sheaves of sets on Xétale.

By Lemma 66.18.3 we have Sh(Xétale) = Sh(Xspaces,étale), so we can also think of
this as the category of sheaves of sets on Xspaces,étale. Similarly, by Lemma 66.18.6
we see that Sh(Xétale) = Sh(Xaffine,étale). It turns out that the topos is functorial
with respect to morphisms of algebraic spaces. Here is a precise statement.

Lemma 66.18.8.03G2 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) The continuous functor
Yspaces,étale −→ Xspaces,étale, V 7−→ X ×Y V

induces a morphism of sites
fspaces,étale : Xspaces,étale → Yspaces,étale.

(2) The rule f 7→ fspaces,étale is compatible with compositions, in other words
(f ◦ g)spaces,étale = fspaces,étale ◦ gspaces,étale (see Sites, Definition 7.14.5).

https://stacks.math.columbia.edu/tag/03H7
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(3) The morphism of topoi associated to fspaces,étale induces, via Lemma
66.18.3, a morphism of topoi fsmall : Sh(Xétale)→ Sh(Yétale) whose con-
struction is compatible with compositions.

(4) If f is a representable morphism of algebraic spaces, then fsmall comes
from a morphism of sites Xétale → Yétale, corresponding to the continuous
functor V 7→ X ×Y V .

Proof. Let us show that the functor described in (1) satisfies the assumptions of
Sites, Proposition 7.14.7. Thus we have to show that Yspaces,étale has a final object
(namely Y ) and that the functor transforms this into a final object in Xspaces,étale

(namely X). This is clear as X ×Y Y = X in any category. Next, we have to show
that Yspaces,étale has fibre products. This is true since the category of algebraic
spaces has fibre products, and since V ×Y V ′ is étale over Y if V and V ′ are étale
over Y (see Lemmas 66.16.4 and 66.16.5 above). OK, so the proposition applies
and we see that we get a morphism of sites as described in (1).
Part (2) you get by unwinding the definitions. Part (3) is clear by using the equiv-
alences for X and Y from Lemma 66.18.3 above. Part (4) follows, because if f is
representable, then the functors above fit into a commutative diagram

Xétale
// Xspaces,étale

Yétale //

OO

Yspaces,étale

OO

of categories. □

We can do a little bit better than the lemma above in describing the relationship
between sheaves on X and sheaves on Y . Namely, we can formulate this in turns
of f -maps, compare Sheaves, Definition 6.21.7, as follows.

Definition 66.18.9.03G3 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a sheaf of sets on Xétale and let G be a sheaf of sets
on Yétale. An f -map φ : G → F is a collection of maps φ(U,V,g) : G(V ) → F(U)
indexed by commutative diagrams

U

g

��

// X

f

��
V // Y

where U ∈ Xétale, V ∈ Yétale such that whenever given an extended diagram

U ′ //

g′

��

U

g

��

// X

f

��
V ′ // V // Y

with V ′ → V and U ′ → U étale morphisms of schemes the diagram

G(V )
φ(U,V,g)

//

restriction of G
��

F(U)

restriction of F
��

G(V ′)
φ(U′,V ′,g′) // F(U ′)

https://stacks.math.columbia.edu/tag/03G3
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commutes.

Lemma 66.18.10.03G4 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a sheaf of sets on Xétale and let G be a sheaf of sets on
Yétale. There are canonical bijections between the following three sets:

(1) The set of maps G → fsmall,∗F .
(2) The set of maps f−1

smallG → F .
(3) The set of f -maps φ : G → F .

Proof. Note that (1) and (2) are the same because the functors fsmall,∗ and f−1
small

are a pair of adjoint functors. Suppose that α : f−1
smallG → F is a map of sheaves

on Yétale. Let a diagram
U

g

��

jU
// X

f

��
V

jV // Y

as in Definition 66.18.9 be given. By the commutativity of the diagram we also get
a map g−1

small(jV )−1G → (jU )−1F (compare Sites, Section 7.25 for the description
of the localization functors). Hence we certainly get a map φ(V,U,g) : G(V ) =
(jV )−1G(V ) → (jU )−1F(U) = F(U). We omit the verification that this rule is
compatible with further restrictions and defines an f -map from G to F .

Conversely, suppose that we are given an f -map φ = (φ(U,V,g)). Let G′ (resp. F ′)
denote the extension of G (resp. F) to Yspaces,étale (resp. Xspaces,étale), see Lemma
66.18.3. Then we have to construct a map of sheaves

G′ −→ (fspaces,étale)∗F ′

To do this, let V → Y be an étale morphism of algebraic spaces. We have to
construct a map of sets

G′(V )→ F ′(X ×Y V )
Choose an étale surjective morphism V ′ → V with V ′ a scheme, and after that
choose an étale surjective morphism U ′ → X ×U V ′ with U ′ a scheme. We get a
morphism of schemes g′ : U ′ → V ′ and also a morphism of schemes

g′′ : U ′ ×X×Y V U
′ −→ V ′ ×V V ′

Consider the following diagram

F ′(X ×Y V ) // F(U ′) //
// F(U ′ ×X×Y V U

′)

G′(X ×Y V ) //

OO

G(V ′) //
//

φ(U′,V ′,g′)

OO

G(V ′ ×V V ′)

φ(U′′,V ′′,g′′)

OO

The compatibility of the maps φ... with restriction shows that the two right squares
commute. The definition of coverings in Xspaces,étale shows that the horizontal rows
are equalizer diagrams. Hence we get the dotted arrow. We leave it to the reader
to show that these arrows are compatible with the restriction mappings. □

If the morphism of algebraic spaces X → Y is étale, then the morphism of topoi
Sh(Xétale)→ Sh(Yétale) is a localization. Here is a statement.

https://stacks.math.columbia.edu/tag/03G4
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Lemma 66.18.11.03LP Let S be a scheme, and let f : X → Y be a morphism of algebraic
spaces over S. Assume f is étale. In this case there is a functor

j : Xétale → Yétale, (φ : U → X) 7→ (f ◦ φ : U → Y )
which is cocontinuous. The morphism of topoi fsmall is the morphism of topoi
associated to j, see Sites, Lemma 7.21.1. Moreover, j is continuous as well, hence
Sites, Lemma 7.21.5 applies. In particular f−1

smallG(U) = G(jU) for all sheaves G on
Yétale.
Proof. Note that by our very definition of an étale morphism of algebraic spaces
(Definition 66.16.2) it is indeed the case that the rule given defines a functor j
as indicated. It is clear that j is cocontinuous and continuous, simply because a
covering {Ui → U} of j(φ : U → X) in Yétale is the same thing as a covering of
(φ : U → X) in Xétale. It remains to show that j induces the same morphism of
topoi as fsmall. To see this we consider the diagram

Xétale
//

j

��

Xspaces,étale

jspaces

��
Yétale // Yspaces,étale

v:V 7→X×Y V

UU

of categories. Here the functor jspaces is the obvious extension of j to the category
Xspaces,étale. Thus the inner square is commutative. In fact jspaces can be iden-
tified with the localization functor jX : Yspaces,étale/X → Yspaces,étale discussed in
Sites, Section 7.25. Hence, by Sites, Lemma 7.27.2 the cocontinuous functor jspaces
and the functor v of the diagram induce the same morphism of topoi. By Sites,
Lemma 7.21.2 the commutativity of the inner square (consisting of cocontinuous
functors between sites) gives a commutative diagram of associated morphisms of
topoi. Hence, by the construction of fsmall in Lemma 66.18.8 we win. □

The lemma above says that the pullback of G via an étale morphism f : X → Y of
algebraic spaces is simply the restriction of G to the category Xétale. We will often
use the short hand
(66.18.11.1)03LQ G|Xétale = f−1

smallG
to indicate this. Note that the functor j : Xétale → Yétale of the lemma in this
situation is faithful, but not fully faithful in general. We will discuss this in a more
technical fashion in Section 66.27.
Lemma 66.18.12.03LR Let S be a scheme. Let

X ′ //

f ′

��

X

f

��
Y ′ g // Y

be a cartesian square of algebraic spaces over S. Let F be a sheaf on Xétale. If g
is étale, then

(1) f ′
small,∗(F|X′) = (fsmall,∗F)|Y ′ in Sh(Y ′

étale)4, and
(2) if F is an abelian sheaf, then Rif ′

small,∗(F|X′) = (Rifsmall,∗F)|Y ′ .
4Also (f ′)−1

small
(G|Y ′ ) = (f−1

small
G)|X′ because of commutativity of the diagram and

(66.18.11.1)

https://stacks.math.columbia.edu/tag/03LP
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Proof. Consider the following diagram of functors

X ′
spaces,étale j

// Xspaces,étale

Y ′
spaces,étale

j //

V ′ 7→V ′×Y ′X′

OO

Yspaces,étale

V 7→V×YX

OO

The horizontal arrows are localizations and the vertical arrows induce morphisms
of sites. Hence the last statement of Sites, Lemma 7.28.1 gives (1). To see (2) apply
(1) to an injective resolution of F and use that restriction is exact and preserves
injectives (see Cohomology on Sites, Lemma 21.7.1). □

The following lemma says that you can think of a sheaf on the small étale site of
an algebraic space as a compatible collection of sheaves on the small étale sites of
schemes étale over the space. Please note that all the comparison mappings cf in
the lemma are isomorphisms, which is compatible with Topologies, Lemma 34.4.20
and the fact that all morphisms between objects of Xétale are étale.

Lemma 66.18.13.03LS Let S be a scheme. Let X be an algebraic space over S. A sheaf
F on Xétale is given by the following data:

(1) for every U ∈ Ob(Xétale) a sheaf FU on Uétale,
(2) for every f : U ′ → U in Xétale an isomorphism cf : f−1

smallFU → FU ′ .
These data are subject to the condition that given any f : U ′ → U and g : U ′′ → U ′

in Xétale the composition cg ◦ g−1
smallcf is equal to cf◦g.

Proof. We may interpret g−1
small as in Lemma 66.18.11. Then the lemma follows

from a general fact about sites, see Sites, Lemma 7.26.6. □

Let S be a scheme. Let X be an algebraic space over S. Let X = U/R be a
presentation of X coming from any surjective étale morphism φ : U → X, see
Spaces, Definition 65.9.3. In particular, we obtain a groupoid (U,R, s, t, c, e, i) such
that j = (t, s) : R→ U ×S U , see Groupoids, Lemma 39.13.3.

Lemma 66.18.14.05YY With S, φ : U → X, and (U,R, s, t, c, e, i) as above. For any sheaf
F on Xétale the sheaf5 G = φ−1F comes equipped with a canonical isomorphism

α : t−1G −→ s−1G
such that the diagram

pr−1
1 t−1G

pr−1
1 α

// pr−1
1 s−1G

pr−1
0 s−1G c−1s−1G

pr−1
0 t−1G

pr−1
0 α

ff

c−1t−1G
c−1α

99

is a commutative. The functor F 7→ (G, α) defines an equivalence of categories
between sheaves on Xétale and pairs (G, α) as above.

5In this lemma and its proof we write simply φ−1 instead of φ−1
small

and similarly for all the
other pullbacks.

https://stacks.math.columbia.edu/tag/03LS
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First proof of Lemma 66.18.14. Let C = Xspaces,étale. By Lemma 66.18.11 and
its proof we have Uspaces,étale = C/U and the pullback functor φ−1 is just the
restriction functor. Moreover, {U → X} is a covering of the site C and R = U×XU .
The isomorphism α is just the canonical identification(

F|C/U
)
|C/U×XU =

(
F|C/U

)
|C/U×XU

and the commutativity of the diagram is the cocycle condition for glueing data.
Hence this lemma is a special case of glueing of sheaves, see Sites, Section 7.26. □

Second proof of Lemma 66.18.14. The existence of α comes from the fact that φ ◦
t = φ ◦ s and that pullback is functorial in the morphism, see Lemma 66.18.8. In
exactly the same way, i.e., by functoriality of pullback, we see that the isomorphism
α fits into the commutative diagram. The construction F 7→ (φ−1F , α) is clearly
functorial in the sheaf F . Hence we obtain the functor.
Conversely, suppose that (G, α) is a pair. Let V → X be an object of Xétale. In this
case the morphism V ′ = U ×X V → V is a surjective étale morphism of schemes,
and hence {V ′ → V } is an étale covering of V . Set G′ = (V ′ → V )−1G. Since
R = U ×X U with t = pr0 and s = pr0 we see that V ′ ×V V ′ = R ×X V with
projection maps s′, t′ : V ′ ×V V ′ → V ′ equal to the pullbacks of t and s. Hence α
pulls back to an isomorphism α′ : (t′)−1G′ → (s′)−1G′. Having said this we simply
define

F(V ) Equalizer(G(V ′) //
// G(V ′ ×V V ′).

We omit the verification that this defines a sheaf. To see that G(V ) = F(V ) if
there exists a morphism V → U note that in this case the equalizer is H0({V ′ →
V },G) = G(V ). □

66.19. Points of the small étale site

04JU This section is the analogue of Étale Cohomology, Section 59.29.

Definition 66.19.1.0486 Let S be a scheme. Let X be an algebraic space over S.
(1) A geometric point of X is a morphism x : Spec(k) → X, where k is an

algebraically closed field. We often abuse notation and write x = Spec(k).
(2) For every geometric point x we have the corresponding “image” point

x ∈ |X|. We say that x is a geometric point lying over x.

It turns out that we can take stalks of sheaves on Xétale at geometric points exactly
in the same way as was done in the case of the small étale site of a scheme. In order
to do this we define the notion of an étale neighbourhood as follows.

Definition 66.19.2.04JV Let S be a scheme. Let X be an algebraic space over S. Let x
be a geometric point of X.

(1) An étale neighborhood of x of X is a commutative diagram

U

φ

��
x̄

x̄ //

ū

??

X

where φ is an étale morphism of algebraic spaces over S. We will use the
notation φ : (U, u)→ (X,x) to indicate this situation.

https://stacks.math.columbia.edu/tag/0486
https://stacks.math.columbia.edu/tag/04JV
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(2) A morphism of étale neighborhoods (U, u) → (U ′, u′) is an X-morphism
h : U → U ′ such that u′ = h ◦ u.

Note that we allow U to be an algebraic space. When we take stalks of a sheaf
on Xétale we have to restrict to those U which are in Xétale, and so in this case
we will only consider the case where U is a scheme. Alternately we can work with
the site Xspace,étale and consider all étale neighbourhoods. And there won’t be any
difference because of the last assertion in the following lemma.

Lemma 66.19.3.04JW Let S be a scheme. Let X be an algebraic space over S. Let x
be a geometric point of X. The category of étale neighborhoods is cofiltered. More
precisely:

(1) Let (Ui, ui)i=1,2 be two étale neighborhoods of x in X. Then there exists a
third étale neighborhood (U, u) and morphisms (U, u)→ (Ui, ui), i = 1, 2.

(2) Let h1, h2 : (U, u) → (U ′, u′) be two morphisms between étale neigh-
borhoods of s. Then there exist an étale neighborhood (U ′′, u′′) and a
morphism h : (U ′′, u′′)→ (U, u) which equalizes h1 and h2, i.e., such that
h1 ◦ h = h2 ◦ h.

Moreover, given any étale neighbourhood (U, u)→ (X,x) there exists a morphism
of étale neighbourhoods (U ′, u′)→ (U, u) where U ′ is a scheme.

Proof. For part (1), consider the fibre product U = U1 ×X U2. It is étale over
both U1 and U2 because étale morphisms are preserved under base change and
composition, see Lemmas 66.16.5 and 66.16.4. The map u→ U defined by (u1, u2)
gives it the structure of an étale neighborhood mapping to both U1 and U2.

For part (2), define U ′′ as the fibre product

U ′′ //

��

U

(h1,h2)
��

U ′ ∆ // U ′ ×X U ′.

Since u and u′ agree over X with x, we see that u′′ = (u, u′) is a geometric point
of U ′′. In particular U ′′ ̸= ∅. Moreover, since U ′ is étale over X, so is the fibre
product U ′×X U ′ (as seen above in the case of U1×X U2). Hence the vertical arrow
(h1, h2) is étale by Lemma 66.16.6. Therefore U ′′ is étale over U ′ by base change,
and hence also étale over X (because compositions of étale morphisms are étale).
Thus (U ′′, u′′) is a solution to the problem posed by (2).

To see the final assertion, choose any surjective étale morphism U ′ → U where U ′

is a scheme. Then U ′×U u is a scheme surjective and étale over u = Spec(k) with k
algebraically closed. It follows (see Morphisms, Lemma 29.36.7) that U ′ ×U u→ u
has a section which gives us the desired u′. □

Lemma 66.19.4.05VN Let S be a scheme. Let X be an algebraic space over S. Let
x : Spec(k)→ X be a geometric point of X lying over x ∈ |X|. Let φ : U → X be
an étale morphism of algebraic spaces and let u ∈ |U | with φ(u) = x. Then there
exists a geometric point u : Spec(k)→ U lying over u with x = φ ◦ u.

Proof. Choose an affine scheme U ′ with u′ ∈ U ′ and an étale morphism U ′ → U
which maps u′ to u. If we can prove the lemma for (U ′, u′)→ (X,x) then the lemma

https://stacks.math.columbia.edu/tag/04JW
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follows. Hence we may assume that U is a scheme, in particular that U → X is
representable. Then look at the cartesian diagram

Spec(k)×x,X,φ U

pr1

��

pr2
// U

φ

��
Spec(k) x // X

The projection pr1 is the base change of an étale morphisms so it is étale, see
Lemma 66.16.5. Therefore, the scheme Spec(k)×x,X,φU is a disjoint union of finite
separable extensions of k, see Morphisms, Lemma 29.36.7. But k is algebraically
closed, so all these extensions are trivial, so Spec(k) ×x,X,φ U is a disjoint union
of copies of Spec(k) and each of these corresponds to a geometric point u with
φ ◦ u = x. By Lemma 66.4.3 the map

|Spec(k)×x,X,φ U | −→ |Spec(k)| ×|X| |U |
is surjective, hence we can pick u to lie over u. □

Lemma 66.19.5.04JX Let S be a scheme. Let X be an algebraic space over S. Let x be a
geometric point of X. Let (U, u) an étale neighborhood of x. Let {φi : Ui → U}i∈I
be an étale covering in Xspaces,étale. Then there exist i ∈ I and ui : x → Ui such
that φi : (Ui, ui)→ (U, u) is a morphism of étale neighborhoods.

Proof. Let u ∈ |U | be the image of u. As |U | =
⋃
i∈I φi(|Ui|) there exists an i and

a point ui ∈ Ui mapping to x. Apply Lemma 66.19.4 to (Ui, ui)→ (U, u) and u to
get the desired geometric point. □

Definition 66.19.6.04JY Let S be a scheme. Let X be an algebraic space over S. Let
F be a presheaf on Xétale. Let x be a geometric point of X. The stalk of F at x is

Fx̄ = colim(U,u) F(U)
where (U, u) runs over all étale neighborhoods of x in X with U ∈ Ob(Xétale).

By Lemma 66.19.3, this colimit is over a filtered index category, namely the opposite
of the category of étale neighborhoods in Xétale. More precisely Lemma 66.19.3
says the opposite of the category of all étale neighbourhoods is filtered, and the full
subcategory of those which are in Xétale is a cofinal subcategory hence also filtered.
This means an element of Fx can be thought of as a triple (U, u, σ) where U ∈
Ob(Xétale) and σ ∈ F(U). Two triples (U, u, σ), (U ′, u′, σ′) define the same element
of the stalk if there exists a third étale neighbourhood (U ′′, u′′), U ′′ ∈ Ob(Xétale)
and morphisms of étale neighbourhoods h : (U ′′, u′′) → (U, u), h′ : (U ′′, u′′) →
(U ′, u′) such that h∗σ = (h′)∗σ′ in F(U ′′). See Categories, Section 4.19.
This also implies that if F ′ is the sheaf on Xspaces,étale corresponding to F on
Xétale, then
(66.19.6.1)04JZ Fx = colim(U,u) F ′(U)
where now the colimit is over all the étale neighbourhoods of x. We will often jump
between the point of view of using Xétale and Xspaces,étale without further mention.
In particular this means that if F is a presheaf of abelian groups, rings, etc then
Fx is an abelian group, ring, etc simply by the usual way of defining the group
structure on a directed colimit of abelian groups, rings, etc.

https://stacks.math.columbia.edu/tag/04JX
https://stacks.math.columbia.edu/tag/04JY
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Lemma 66.19.7.04K0 Let S be a scheme. Let X be an algebraic space over S. Let x be
a geometric point of X. Consider the functor

u : Xétale −→ Sets, U 7−→ |Ux|

Then u defines a point p of the siteXétale (Sites, Definition 7.32.2) and its associated
stalk functor F 7→ Fp (Sites, Equation 7.32.1.1) is the functor F 7→ Fx defined
above.

Proof. In the proof of Lemma 66.19.5 we have seen that the scheme Ux is a disjoint
union of schemes isomorphic to x. Thus we can also think of |Ux| as the set of
geometric points of U lying over x, i.e., as the collection of morphisms u : x → U
fitting into the diagram of Definition 66.19.2. From this it follows that u(X) is a
singleton, and that u(U ×V W ) = u(U)×u(V ) u(W ) whenever U → V and W → V
are morphisms in Xétale. And, given a covering {Ui → U}i∈I in Xétale we see that∐
u(Ui) → u(U) is surjective by Lemma 66.19.5. Hence Sites, Proposition 7.33.3

applies, so p is a point of the site Xétale. Finally, the our functor F 7→ Fs is given by
exactly the same colimit as the functor F 7→ Fp associated to p in Sites, Equation
7.32.1.1 which proves the final assertion. □

Lemma 66.19.8.04K1 Let S be a scheme. Let X be an algebraic space over S. Let x be
a geometric point of X.

(1) The stalk functor PAb(Xétale)→ Ab, F 7→ Fx is exact.
(2) We have (F#)x = Fx for any presheaf of sets F on Xétale.
(3) The functor Ab(Xétale)→ Ab, F 7→ Fx is exact.
(4) Similarly the functors PSh(Xétale) → Sets and Sh(Xétale) → Sets given

by the stalk functor F 7→ Fx are exact (see Categories, Definition 4.23.1)
and commute with arbitrary colimits.

Proof. This result follows from the general material in Modules on Sites, Section
18.36. This is true because F 7→ Fx comes from a point of the small étale site of
X, see Lemma 66.19.7. See the proof of Étale Cohomology, Lemma 59.29.9 for a
direct proof of some of these statements in the setting of the small étale site of a
scheme. □

We will see below that the stalk functor F 7→ Fx is really the pullback along the
morphism x. In that sense the following lemma is a generalization of the lemma
above.

Lemma 66.19.9.04K2 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) The functor f−1
small : Ab(Yétale)→ Ab(Xétale) is exact.

(2) The functor f−1
small : Sh(Yétale) → Sh(Xétale) is exact, i.e., it commutes

with finite limits and colimits, see Categories, Definition 4.23.1.
(3) For any étale morphism V → Y of algebraic spaces we have f−1

smallhV =
hX×Y V .

(4) Let x→ X be a geometric point. Let G be a sheaf on Yétale. Then there
is a canonical identification

(f−1
smallG)x = Gy.

where y = f ◦ x.

https://stacks.math.columbia.edu/tag/04K0
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Proof. Recall that fsmall is defined via fspaces,small in Lemma 66.18.8. Parts (1),
(2) and (3) are general consequences of the fact that fspaces,étale : Xspaces,étale →
Yspaces,étale is a morphism of sites, see Sites, Definition 7.14.1 for (2), Modules on
Sites, Lemma 18.31.2 for (1), and Sites, Lemma 7.13.5 for (3).
Proof of (4). This statement is a special case of Sites, Lemma 7.34.2 via Lemma
66.19.7. We also provide a direct proof. Note that by Lemma 66.19.8. taking stalks
commutes with sheafification. Let G′ be the sheaf on Yspaces,étale whose restriction
to Yétale is G. Recall that f−1

spaces,étaleG′ is the sheaf associated to the presheaf

U −→ colimU→X×Y V G′(V ),
see Sites, Sections 7.13 and 7.5. Thus we have

(f−1
spaces,étaleG

′)x = colim(U,u) f
−1
spaces,étaleG

′(U)
= colim(U,u) colima:U→X×Y V G′(V )
= colim(V,v) G′(V )
= G′

y

in the third equality the pair (U, u) and the map a : U → X ×Y V corresponds to
the pair (V, a ◦ u). Since the stalk of G′ (resp. f−1

spaces,étaleG′) agrees with the stalk
of G (resp. f−1

smallG), see Equation (66.19.6.1) the result follows. □

Remark 66.19.10.04K3 This remark is the analogue of Étale Cohomology, Remark
59.56.6. Let S be a scheme. Let X be an algebraic space over S. Let x : Spec(k)→
X be a geometric point of X. By Étale Cohomology, Theorem 59.56.3 the category
of sheaves on Spec(k)étale is equivalent to the category of sets (by taking a sheaf to
its global sections). Hence it follows from Lemma 66.19.9 part (4) applied to the
morphism x that the functor

Sh(Xétale) −→ Sets, F 7−→ Fx
is isomorphic to the functor

Sh(Xétale) −→ Sh(Spec(k)étale) = Sets, F 7−→ x∗F
Hence we may view the stalk functors as pullback functors along geometric mor-
phisms (and not just some abstract morphisms of topoi as in the result of Lemma
66.19.7).

Remark 66.19.11.04K4 Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. We claim that for any pair of geometric points x and x′ lying over x the
stalk functors are isomorphic. By definition of |X| we can find a third geometric
point x′′ so that there exists a commutative diagram

x′′ //

��

x′′

  

x′

x′

��
x

x // X.

Since the stalk functor F 7→ Fx is given by pullback along the morphism x (and
similarly for the others) we conclude by functoriality of pullbacks.

The following theorem says that the small étale site of an algebraic space has enough
points.

https://stacks.math.columbia.edu/tag/04K3
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Theorem 66.19.12.04K5 Let S be a scheme. Let X be an algebraic space over S. A
map a : F → G of sheaves of sets is injective (resp. surjective) if and only if the
map on stalks ax : Fx → Gx is injective (resp. surjective) for all geometric points
of X. A sequence of abelian sheaves on Xétale is exact if and only if it is exact on
all stalks at geometric points of S.
Proof. We know the theorem is true if X is a scheme, see Étale Cohomology,
Theorem 59.29.10. Choose a surjective étale morphism f : U → X where U is a
scheme. Since {U → X} is a covering (in Xspaces,étale) we can check whether a map
of sheaves is injective, or surjective by restricting to U . Now if u : Spec(k)→ U is
a geometric point of U , then (F|U )u = Fx where x = f ◦ u. (This is clear from the
colimits defining the stalks at u and x, but it also follows from Lemma 66.19.9.)
Hence the result for U implies the result for X and we win. □

The following lemma should be skipped on a first reading.
Lemma 66.19.13.04K6 Let S be a scheme. Let X be an algebraic space over S. Let
p : Sh(pt)→ Sh(Xétale) be a point of the small étale topos of X. Then there exists
a geometric point x of X such that the stalk functor F 7→ Fp is isomorphic to the
stalk functor F 7→ Fx.
Proof. By Sites, Lemma 7.32.7 there is a one to one correspondence between points
of the site and points of the associated topos. Hence we may assume that p is
given by a functor u : Xétale → Sets which defines a point of the site Xétale. Let
U ∈ Ob(Xétale) be an object whose structure morphism j : U → X is surjective.
Note that hU is a sheaf which surjects onto the final sheaf. Since taking stalks
is exact we see that (hU )p = u(U) is not empty (use Sites, Lemma 7.32.3). Pick
x ∈ u(U). By Sites, Lemma 7.35.1 we obtain a point q : Sh(pt) → Sh(Uétale) such
that p = jsmall◦q, so that Fp = (F|U )q functorially. By Étale Cohomology, Lemma
59.29.12 there is a geometric point u of U and a functorial isomorphism Gq = Gu
for G ∈ Sh(Uétale). Set x = j ◦ u. Then we see that Fx ∼= (F|U )u functorially in F
on Xétale by Lemma 66.19.9 and we win. □

66.20. Supports of abelian sheaves

04K7 First we talk about supports of local sections.
Lemma 66.20.1.04K8 Let S be a scheme. Let X be an algebraic space over S. Let F
be a subsheaf of the final object of the étale topos of X (see Sites, Example 7.10.2).
Then there exists a unique open W ⊂ X such that F = hW .
Proof. The condition means that F(U) is a singleton or empty for all φ : U →
X in Ob(Xspaces,étale). In particular local sections always glue. If F(U) ̸= ∅,
then F(φ(U)) ̸= ∅ because φ(U) ⊂ X is an open subspace (Lemma 66.16.7) and
{φ : U → φ(U)} is a covering in Xspaces,étale. Take W =

⋃
φ:U→S,F(U )̸=∅ φ(U) to

conclude. □

Lemma 66.20.2.04K9 Let S be a scheme. Let X be an algebraic space over S. Let F
be an abelian sheaf on Xspaces,étale. Let σ ∈ F(U) be a local section. There exists
an open subspace W ⊂ U such that

(1) W ⊂ U is the largest open subspace of U such that σ|W = 0,
(2) for every φ : V → U in Xétale we have

σ|V = 0⇔ φ(V ) ⊂W,

https://stacks.math.columbia.edu/tag/04K5
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(3) for every geometric point u of U we have
(U, u, σ) = 0 in Fs ⇔ u ∈W

where s = (U → S) ◦ u.

Proof. Since F is a sheaf in the étale topology the restriction of F to UZar is a
sheaf on U in the Zariski topology. Hence there exists a Zariski open W having
property (1), see Modules, Lemma 17.5.2. Let φ : V → U be an arrow of Xétale.
Note that φ(V ) ⊂ U is an open subspace (Lemma 66.16.7) and that {V → φ(V )}
is an étale covering. Hence if σ|V = 0, then by the sheaf condition for F we see
that σ|φ(V ) = 0. This proves (2). To prove (3) we have to show that if (U, u, σ)
defines the zero element of Fs, then u ∈ W . This is true because the assumption
means there exists a morphism of étale neighbourhoods (V, v) → (U, u) such that
σ|V = 0. Hence by (2) we see that V → U maps into W , and hence u ∈W . □

Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|. Let F be
a sheaf on Xétale. By Remark 66.19.11 the isomorphism class of the stalk of the
sheaf F at a geometric points lying over x is well defined.

Definition 66.20.3.04KA Let S be a scheme. Let X be an algebraic space over S. Let
F be an abelian sheaf on Xétale.

(1) The support of F is the set of points x ∈ |X| such that Fx ̸= 0 for any
(some) geometric point x lying over x.

(2) Let σ ∈ F(U) be a section. The support of σ is the closed subset U \W ,
where W ⊂ U is the largest open subset of U on which σ restricts to zero
(see Lemma 66.20.2).

Lemma 66.20.4.04KB Let S be a scheme. Let X be an algebraic space over S. Let F
be an abelian sheaf on Xétale. Let U ∈ Ob(Xétale) and σ ∈ F(U).

(1) The support of σ is closed in |X|.
(2) The support of σ + σ′ is contained in the union of the supports of σ, σ′ ∈
F(X).

(3) If φ : F → G is a map of abelian sheaves on Xétale, then the support of
φ(σ) is contained in the support of σ ∈ F(U).

(4) The support of F is the union of the images of the supports of all local
sections of F .

(5) If F → G is surjective then the support of G is a subset of the support of
F .

(6) If F → G is injective then the support of F is a subset of the support of
G.

Proof. Part (1) holds by definition. Parts (2) and (3) hold because they holds for
the restriction of F and G to UZar, see Modules, Lemma 17.5.2. Part (4) is a direct
consequence of Lemma 66.20.2 part (3). Parts (5) and (6) follow from the other
parts. □

Lemma 66.20.5.04KC The support of a sheaf of rings on the small étale site of an
algebraic space is closed.

Proof. This is true because (according to our conventions) a ring is 0 if and only
if 1 = 0, and hence the support of a sheaf of rings is the support of the unit
section. □

https://stacks.math.columbia.edu/tag/04KA
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66.21. The structure sheaf of an algebraic space

04KD The structure sheaf of an algebraic space is the sheaf of rings of the following lemma.

Lemma 66.21.1.03G6 Let S be a scheme. Let X be an algebraic space over S. The rule
U 7→ Γ(U,OU ) defines a sheaf of rings on Xétale.

Proof. Immediate from the definition of a covering and Descent, Lemma 35.8.1. □

Definition 66.21.2.03G7 Let S be a scheme. Let X be an algebraic space over S. The
structure sheaf of X is the sheaf of rings OX on the small étale site Xétale described
in Lemma 66.21.1.

According to Lemma 66.18.13 the sheaf OX corresponds to a system of étale sheaves
(OX)U for U ranging through the objects of Xétale. It is clear from the proof of
that lemma and our definition that we have simply (OX)U = OU where OU is the
structure sheaf of Uétale as introduced in Descent, Definition 35.8.2. In particular,
if X is a scheme we recover the sheaf OX on the small étale site of X.
Via the equivalence Sh(Xétale) = Sh(Xspaces,étale) of Lemma 66.18.3 we may also
think of OX as a sheaf of rings on Xspaces,étale. It is explained in Remark 66.18.4
how to compute OX(Y ), and in particular OX(X), when Y → X is an object of
Xspaces,étale.

Lemma 66.21.3.03G8 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then there is a canonical map f ♯ : f−1

smallOY → OX such that

(fsmall, f ♯) : (Sh(Xétale),OX) −→ (Sh(Yétale),OY )
is a morphism of ringed topoi. Furthermore,

(1) The construction f 7→ (fsmall, f ♯) is compatible with compositions.
(2) If f is a morphism of schemes, then f ♯ is the map described in Descent,

Remark 35.8.4.

Proof. By Lemma 66.18.10 it suffices to give an f -map from OY to OX . In other
words, for every commutative diagram

U

g

��

// X

f

��
V // Y

where U ∈ Xétale, V ∈ Yétale we have to give a map of rings (f ♯)(U,V,g) : Γ(V,OV )→
Γ(U,OU ). Of course we just take (f ♯)(U,V,g) = g♯. It is clear that this is compatible
with restriction mappings and hence indeed gives an f -map. We omit checking
compatibility with compositions and agreement with the construction in Descent,
Remark 35.8.4. □

Lemma 66.21.4.0BGS Let S be a scheme. Let X be an algebraic space over S. The
following are equivalent

(1) X is reduced,
(2) for every x ∈ |X| the local ring of X at x is reduced (Remark 66.7.6).

In this case Γ(X,OX) is a reduced ring and if f ∈ Γ(X,OX) has X = V (f), then
f = 0.
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Proof. The equivalence of (1) and (2) follows from Properties, Lemma 28.3.2 ap-
plied to affine schemes étale over X. The final statements follow the cited lemma
and fact that Γ(X,OX) is a subring of Γ(U,OU ) for some reduced scheme U étale
over X. □

66.22. Stalks of the structure sheaf

04KE This section is the analogue of Étale Cohomology, Section 59.33.

Lemma 66.22.1.04KF Let S be a scheme. Let X be an algebraic space over S. Let x
be a geometric point of X. Let (U, u) be an étale neighbourhood of x where U is a
scheme. Then we have

OX,x = OU,u = OshU,u
where the left hand side is the stalk of the structure sheaf of X, and the right hand
side is the strict henselization of the local ring of U at the point u at which u is
centered.

Proof. We know that the structure sheaf OU on Uétale is the restriction of the
structure sheaf of X. Hence the first equality follows from Lemma 66.19.9 part (4).
The second equality is explained in Étale Cohomology, Lemma 59.33.1. □

Definition 66.22.2.04KG Let S be a scheme. Let X be an algebraic space over S. Let x
be a geometric point of X lying over the point x ∈ |X|.

(1) The étale local ring of X at x is the stalk of the structure sheaf OX on
Xétale at x. Notation: OX,x.

(2) The strict henselization of X at x is the scheme Spec(OX,x).

The isomorphism type of the strict henselization of X at x (as a scheme over X)
depends only on the point x ∈ |X| and not on the choice of the geometric point
lying over x, see Remark 66.19.11.

Lemma 66.22.3.04KH Let S be a scheme. Let X be an algebraic space over S. The
small étale site Xétale endowed with its structure sheaf OX is a locally ringed site,
see Modules on Sites, Definition 18.40.4.

Proof. This follows because the stalksOX,x are local, and because Sétale has enough
points, see Lemmas 66.22.1 and Theorem 66.19.12. See Modules on Sites, Lemma
18.40.2 and 18.40.3 for the fact that this implies the small étale site is locally
ringed. □

Lemma 66.22.4.04N9 Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X| be a point. Let d ∈ {0, 1, 2, . . . ,∞}. The following are equivalent

(1) the dimension of the local ring of X at x (Definition 66.10.2) is d,
(2) dim(OX,x) = d for some geometric point x lying over x, and
(3) dim(OX,x) = d for any geometric point x lying over x.

Proof. The equivalence of (2) and (3) follows from the fact that the isomorphism
type of OX,x only depends on x ∈ |X|, see Remark 66.19.11. Using Lemma 66.22.1
the equivalence of (1) and (2)+(3) comes down to the following statement: Given
any local ring R we have dim(R) = dim(Rsh). This is More on Algebra, Lemma
15.45.7. □

https://stacks.math.columbia.edu/tag/04KF
https://stacks.math.columbia.edu/tag/04KG
https://stacks.math.columbia.edu/tag/04KH
https://stacks.math.columbia.edu/tag/04N9


66.23. LOCAL IRREDUCIBILITY 5276

Lemma 66.22.5.0A4H Let S be a scheme. Let f : X → Y be an étale morphism of
algebraic spaces over S. Let x ∈ X. Then (1) dimx(X) = dimf(x)(Y ) and (2) the
dimension of the local ring of X at x equals the dimension of the local ring of Y at
f(x). If f is surjective, then (3) dim(X) = dim(Y ).

Proof. Choose a scheme U and a point u ∈ U and an étale morphism U → X which
maps u to x. Then the composition U → Y is also étale and maps u to f(x). Thus
the statements (1) and (2) follow as the relevant integers are defined in terms of
the behaviour of the scheme U at u. See Definition 66.9.1 for (1). Part (3) is an
immediate consequence of (1), see Definition 66.9.2. □

Lemma 66.22.6.0E01 Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X| be a point. The following are equivalent

(1) the local ring of X at x is reduced (Remark 66.7.6),
(2) OX,x is reduced for some geometric point x lying over x, and
(3) OX,x is reduced for any geometric point x lying over x.

Proof. The equivalence of (2) and (3) follows from the fact that the isomorphism
type of OX,x only depends on x ∈ |X|, see Remark 66.19.11. Using Lemma 66.22.1
the equivalence of (1) and (2)+(3) comes down to the following statement: a local
ring is reduced if and only if its strict henselization is reduced. This is More on
Algebra, Lemma 15.45.4. □

66.23. Local irreducibility

06DJ A point on an algebraic space has a well defined étale local ring, which corresponds
to the strict henselization of the local ring in the case of a scheme. In general we
cannot see how many irreducible components of a scheme or an algebraic space pass
through the given point from the étale local ring. We can only count the number
of geometric branches.

Lemma 66.23.1.06DK Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X| be a point. The following are equivalent

(1) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
the local ring OU,u has a unique minimal prime,

(2) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
there is a unique irreducible component of U through u,

(3) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
the local ring OU,u is unibranch,

(4) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
the local ring OU,u is geometrically unibranch,

(5) OX,x has a unique minimal prime for any geometric point x lying over x.

Proof. The equivalence of (1) and (2) follows from the fact that irreducible com-
ponents of U passing through u are in 1-1 correspondence with minimal primes of
the local ring of U at u. Let a : U → X and u ∈ U be as in (1). Then OX,x is
the strict henselization of OU,u by Lemma 66.22.1. In particular (4) and (5) are
equivalent by More on Algebra, Lemma 15.106.5. The equivalence of (2), (3), and
(4) follows from More on Morphisms, Lemma 37.36.2. □

Definition 66.23.2.06DL Let S be a scheme. Let X be an algebraic space over S.
Let x ∈ |X|. We say that X is geometrically unibranch at x if the equivalent
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conditions of Lemma 66.23.1 hold. We say that X is geometrically unibranch if X
is geometrically unibranch at every x ∈ |X|.
This is consistent with the definition for schemes (Properties, Definition 28.15.1).
Lemma 66.23.3.0DQ3 Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X| be a point. Let n ∈ {1, 2, . . .} be an integer. The following are equivalent

(1) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
the number of minimal primes of the local ring OU,u is ≤ n and for at
least one choice of U, a, u it is n,

(2) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
the number irreducible components of U passing through u is ≤ n and for
at least one choice of U, a, u it is n,

(3) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
the number of branches of U at u is ≤ n and for at least one choice of
U, a, u it is n,

(4) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
the number of geometric branches of U at u is n, and

(5) the number of minimal prime ideals of OX,x is n.
Proof. The equivalence of (1) and (2) follows from the fact that irreducible com-
ponents of U passing through u are in 1-1 correspondence with minimal primes of
the local ring of U at u. Let a : U → X and u ∈ U be as in (1). Then OX,x
is the strict henselization of OU,u by Lemma 66.22.1. Recall that the (geometric)
number of branches of U at u is the number of minimal prime ideals of the (strict)
henselization of OU,u. In particular (4) and (5) are equivalent. The equivalence of
(2), (3), and (4) follows from More on Morphisms, Lemma 37.36.2. □

Definition 66.23.4.0DQ4 Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. The number of geometric branches of X at x is either n ∈ N if the
equivalent conditions of Lemma 66.23.3 hold, or else ∞.

66.24. Noetherian spaces

03E9 We have already defined locally Noetherian algebraic spaces in Section 66.7.
Definition 66.24.1.03EA Let S be a scheme. Let X be an algebraic space over S. We
say X is Noetherian if X is quasi-compact, quasi-separated and locally Noetherian.
Note that a Noetherian algebraic space X is not just quasi-compact and locally
Noetherian, but also quasi-separated. This does not conflict with the definition
of a Noetherian scheme, as a locally Noetherian scheme is quasi-separated, see
Properties, Lemma 28.5.4. This does not hold for algebraic spaces. Namely, X =
A1
k/Z, see Spaces, Example 65.14.8 is locally Noetherian and quasi-compact but

not quasi-separated (hence not Noetherian according to our definitions).
A consequence of the choice made above is that an algebraic space of finite type over
a Noetherian algebraic space is not automatically Noetherian, i.e., the analogue
of Morphisms, Lemma 29.15.6 does not hold. The correct statement is that an
algebraic space of finite presentation over a Noetherian algebraic space is Noetherian
(see Morphisms of Spaces, Lemma 67.28.6).
A Noetherian algebraic space X is very close to being a scheme. In the rest of this
section we collect some lemmas to illustrate this.
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Lemma 66.24.2.04ZF Let S be a scheme. Let X be an algebraic space over S.
(1) If X is locally Noetherian then |X| is a locally Noetherian topological

space.
(2) If X is quasi-compact and locally Noetherian, then |X| is a Noetherian

topological space.

Proof. Assume X is locally Noetherian. Choose a scheme U and a surjective étale
morphism U → X. As X is locally Noetherian we see that U is locally Noetherian.
By Properties, Lemma 28.5.5 this means that |U | is a locally Noetherian topological
space. Since |U | → |X| is open and surjective we conclude that |X| is locally
Noetherian by Topology, Lemma 5.9.3. This proves (1). If X is quasi-compact and
locally Noetherian, then |X| is quasi-compact and locally Noetherian. Hence |X|
is Noetherian by Topology, Lemma 5.12.14. □

Lemma 66.24.3.04ZG Let S be a scheme. Let X be an algebraic space over S. If X is
Noetherian, then |X| is a sober Noetherian topological space.

Proof. A quasi-separated algebraic space has an underlying sober topological space,
see Lemma 66.15.1. It is Noetherian by Lemma 66.24.2. □

Lemma 66.24.4.08AH Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let x be a geometric point of X. Then OX,x is a Noetherian local ring.

Proof. Choose an étale neighbourhood (U, u) of x where U is a scheme. Then
OX,x is the strict henselization of the local ring of U at u, see Lemma 66.22.1. By
our definition of Noetherian spaces the scheme U is locally Noetherian. Hence we
conclude by More on Algebra, Lemma 15.45.3. □

66.25. Regular algebraic spaces

06LP We have already defined regular algebraic spaces in Section 66.7.

Lemma 66.25.1.06LQ Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. The following are equivalent

(1) X is regular, and
(2) every étale local ring OX,x is regular.

Proof. Let U be a scheme and let U → X be a surjective étale morphism. By
assumption U is locally Noetherian. Moreover, every étale local ring OX,x is the
strict henselization of a local ring on U and conversely, see Lemma 66.22.1. Thus by
More on Algebra, Lemma 15.45.10 we see that (2) is equivalent to every local ring
of U being regular, i.e., U being a regular scheme (see Properties, Lemma 28.9.2).
This equivalent to (1) by Definition 66.7.2. □

We can use Descent, Lemma 35.21.4 to define what it means for an algebraic space
X to be regular at a point x.

Definition 66.25.2.0AH9 Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X| be a point. We say X is regular at x if OU,u is a regular local ring for any
(equivalently some) pair (a : U → X,u) consisting of an étale morphism a : U → X
from a scheme to X and a point u ∈ U with a(u) = x.

See Definition 66.7.5, Lemma 66.7.4, and Descent, Lemma 35.21.4.
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Lemma 66.25.3.0AHA Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X| be a point. The following are equivalent

(1) X is regular at x, and
(2) the étale local ring OX,x is regular for any (equivalently some) geometric

point x lying over x.

Proof. Let U be a scheme, u ∈ U a point, and let a : U → X be an étale morphism
mapping u to x. For any geometric point x of X lying over x, the étale local ring
OX,x is the strict henselization of a local ring on U at u, see Lemma 66.22.1. Thus
we conclude by More on Algebra, Lemma 15.45.10. □

Lemma 66.25.4.0BGT A regular algebraic space is normal.

Proof. This follows from the definitions and the case of schemes See Properties,
Lemma 28.9.4. □

66.26. Sheaves of modules on algebraic spaces

03LT If X is an algebraic space, then a sheaf of modules on X is a sheaf of OX -modules
on the small étale site of X where OX is the structure sheaf of X. The category of
sheaves of modules is denoted Mod(OX).
Given a morphism f : X → Y of algebraic spaces, by Lemma 66.21.3 we get a
morphism of ringed topoi and hence by Modules on Sites, Definition 18.13.1 we get
well defined pullback and direct image functors
(66.26.0.1)03LU f∗ : Mod(OY ) −→ Mod(OX), f∗ : Mod(OX) −→ Mod(OY )
which are adjoint in the usual way. If g : Y → Z is another morphism of algebraic
spaces over S, then we have (g ◦ f)∗ = f∗ ◦ g∗ and (g ◦ f)∗ = g∗ ◦ f∗ simply because
the morphisms of ringed topoi compose in the corresponding way (by the lemma).

Lemma 66.26.1.03LV Let S be a scheme. Let f : X → Y be an étale morphism of
algebraic spaces over S. Then f−1OY = OX , and f∗G = f−1

smallG for any sheaf of
OY -modules G. In particular, f∗ : Mod(OY )→ Mod(OX) is exact.

Proof. By the description of inverse image in Lemma 66.18.11 and the definition of
the structure sheaves it is clear that f−1

smallOY = OX . Since the pullback
f∗G = f−1

smallG ⊗f−1
small

OY
OX

by definition we conclude that f∗G = f−1
smallG. The exactness is clear because f−1

small

is exact, as fsmall is a morphism of topoi. □

We continue our abuse of notation introduced in Equation (66.18.11.1) by writing
(66.26.1.1)03LW G|Xétale = f∗G = f−1

smallG
in the situation of the lemma above. We will discuss this in a more technical fashion
in Section 66.27.

Lemma 66.26.2.03LX Let S be a scheme. Let

X ′ //

f ′

��

X

f

��
Y ′ g // Y
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be a cartesian square of algebraic spaces over S. Let F ∈ Mod(OX). If g is étale,
then f ′

∗(F|X′) = (f∗F)|Y ′ 6 and Rif ′
∗(F|X′) = (Rif∗F)|Y ′ in Mod(OY ′).

Proof. This is a reformulation of Lemma 66.18.12 in the case of modules. □

Lemma 66.26.3.03LY Let S be a scheme. Let X be an algebraic space over S. A sheaf
F of OX -modules is given by the following data:

(1) for every U ∈ Ob(Xétale) a sheaf FU of OU -modules on Uétale,
(2) for every f : U ′ → U in Xétale an isomorphism cf : f∗

smallFU → FU ′ .
These data are subject to the condition that given any f : U ′ → U and g : U ′′ → U ′

in Xétale the composition cg ◦ g∗
smallcf is equal to cf◦g.

Proof. Combine Lemmas 66.26.1 and 66.18.13, and use the fact that any morphism
between objects of Xétale is an étale morphism of schemes. □

66.27. Étale localization

04LX Reading this section should be avoided at all cost.
Let X → Y be an étale morphism of algebraic spaces. Then X is an object of
Yspaces,étale and it is immediate from the definitions, see also the proof of Lemma
66.18.11, that
(66.27.0.1)04LY Xspaces,étale = Yspaces,étale/X

where the right hand side is the localization of the site Yspaces,étale at the object
X, see Sites, Definition 7.25.1. Moreover, this identification is compatible with the
structure sheaves by Lemma 66.26.1. Hence the ringed site (Xspaces,étale,OX) is
identified with the localization of the ringed site (Yspaces,étale,OY ) at the object
X:
(66.27.0.2)04LZ (Xspaces,étale,OX) = (Yspaces,étale/X,OY |Yspaces,étale/X)
The localization of a ringed site used on the right hand side is defined in Modules
on Sites, Definition 18.19.1.
Assume now X → Y is an étale morphism of algebraic spaces and X is a scheme.
Then X is an object of Yétale and it follows that
(66.27.0.3)04M0 Xétale = Yétale/X

and
(66.27.0.4)04M1 (Xétale,OX) = (Yétale/X,OY |Yétale/X)
as above.
Finally, if X → Y is an étale morphism of algebraic spaces and X is an affine
scheme, then X is an object of Yaffine,étale and
(66.27.0.5)04M2 Xaffine,étale = Yaffine,étale/X

and
(66.27.0.6)04M3 (Xaffine,étale,OX) = (Yaffine,étale/X,OY |Yaffine,étale/X)
as above.
Next, we show that these localizations are compatible with morphisms.

6Also (f ′)∗(G|Y ′ ) = (f∗G)|X′ by commutativity of the diagram and (66.26.1.1)
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Lemma 66.27.1.04M4 Let S be a scheme. Let

U

p

��

g
// V

q

��
X

f // Y

be a commutative diagram of algebraic spaces over S with p and q étale. Via the
identifications (66.27.0.2) for U → X and V → Y the morphism of ringed topoi

(gspaces,étale, g♯) : (Sh(Uspaces,étale),OU ) −→ (Sh(Vspaces,étale),OV )

is 2-isomorphic to the morphism (fspaces,étale,c, f ♯c ) constructed in Modules on Sites,
Lemma 18.20.2 starting with the morphism of ringed sites (fspaces,étale, f ♯) and the
map c : U → V ×Y X corresponding to g.

Proof. The morphism (fspaces,étale,c, f ♯c ) is defined as a composition f ′ ◦ j of a
localization and a base change map. Similarly g is a composition U → V ×Y X → V .
Hence it suffices to prove the lemma in the following two cases: (1) f = id, and (2)
U = X ×Y V . In case (1) the morphism g : U → V is étale, see Lemma 66.16.6.
Hence (gspaces,étale, g♯) is a localization morphism by the discussion surrounding
Equations (66.27.0.1) and (66.27.0.2) which is exactly the content of the lemma
in this case. In case (2) the morphism gspaces,étale comes from the morphism of
ringed sites given by the functor Vspaces,étale → Uspaces,étale, V ′/V 7→ V ′ ×V U/U
which is also what the morphism f ′ is defined by, see Sites, Lemma 7.28.1. We
omit the verification that (f ′)♯ = g♯ in this case (both are the restriction of f ♯ to
Uspaces,étale). □

Lemma 66.27.2.04M5 Same notation and assumptions as in Lemma 66.27.1 except that
we also assume U and V are schemes. Via the identifications (66.27.0.4) for U → X
and V → Y the morphism of ringed topoi

(gsmall, g♯) : (Sh(Uétale),OU ) −→ (Sh(Vétale),OV )

is 2-isomorphic to the morphism (fsmall,s, f ♯s) constructed in Modules on Sites,
Lemma 18.22.3 starting with (fsmall, f ♯) and the map s : hU → f−1

smallhV corre-
sponding to g.

Proof. Note that (gsmall, g♯) is 2-isomorphic as a morphism of ringed topoi to the
morphism of ringed topoi associated to the morphism of ringed sites (gspaces,étale, g♯).
Hence we conclude by Lemma 66.27.1 and Modules on Sites, Lemma 18.22.4. □

Finally, we discuss the relationship between sheaves of sets on the small étale site
Yétale of an algebraic space Y and algebraic spaces étale over Y . Let S be a scheme
and let Y be an algebraic space over S. Let F be an object of Sh(Yétale). Consider
the functor

X : (Sch/S)oppfppf −→ Sets
defined by the rule

X(T ) = {(y, s) | y : T → Y is a morphism over S and s ∈ Γ(T, y−1
smallF)}

Given a morphism g : T ′ → T the restriction map sends (y, s) to (y ◦ g, g−1
smalls).

This makes sense as ysmall ◦ gsmall = (y ◦ g)small by Lemma 66.18.8.
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Lemma 66.27.3.0GF6 Let S be a scheme and let Y be an algebraic space over S. Let
F be a sheaf of sets on Yétale. Provided a set theoretic condition is satisfied (see
proof) the functor X associated to F above is an algebraic space and there is an
étale morphism f : X → Y of algebraic spaces such that F = fsmall,∗∗ where ∗ is
the final object of the category Sh(Xétale) (constant sheaf with value a singleton).

Proof. Let us prove that X is a sheaf for the fppf topology. Namely, suppose that
{gi : Ti → T} is a covering of (Sch/S)fppf and (yi, si) ∈ X(Ti) satisfy the glueing
condition, i.e., the restriction of (yi, si) and (yj , sj) to Ti ×T Tj agree. Then since
Y is a sheaf for the fppf topology, we see that the yi give rise to a unique morphism
y : T → Y such that yi = y ◦ gi. Then we see that y−1

i,smallF = g−1
i,smally

−1
smallF .

Hence the sections si glue uniquely to a section of y−1
smallF by Étale Cohomology,

Lemma 59.39.2.

The construction that sends F ∈ Ob(Sh(Yétale)) to X ∈ Ob((Sch/S)fppf ) preserves
finite limits and all colimits since each of the functors y−1

small have this property. Of
course, if V ∈ Ob(Yétale), then the construction sends the representable sheaf hV
on Yétale to the representable functor represented by V .

By Sites, Lemma 7.12.5 we can find a set I, for each i ∈ I an object Vi of Yétale
and a surjective map of sheaves ∐

hVi −→ F

on Yétale. The set theoretic condition we need is that the index set I is not too
large7. Then V =

∐
Vi is an object of (Sch/S)fppf and therefore an object of Yétale

and we have a surjective map hV → F .

Observe that the product of hV with itself in Sh(Yétale) is hV×Y V . Consider the
fibre product

hV ×F hV ⊂ hV×Y V

There is an open subscheme R of V ×Y V such that hV ×F hV = hR, see Lemma
66.20.1 (small detail omitted). By the Yoneda lemma we obtain two morphisms
s, t : R→ V in Yétale and we find a coequalizer diagram

hR
//
// hV // F

in Sh(Yétale). Of course the morphisms s, t are étale and define an étale equivalence
relation (t, s) : R→ V ×S V .

By the discussion in the preceding two paragraphs we find a coequalizer diagram

R
//
// V // X

in (Sch/S)fppf . Thus X = V/R is an algebraic space by Spaces, Theorem 65.10.5.
The other statements follow readily from this; details omitted. □

7It suffices if the supremum of the cardinalities of the stalks of F at geometric points of Y is
bounded by the size of some object of (Sch/S)fppf .

https://stacks.math.columbia.edu/tag/0GF6
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66.28. Recovering morphisms

04KI In this section we prove that the rule which associates to an algebraic space its
locally ringed small étale topos is fully faithful in a suitable sense, see Theorem
66.28.4.

Lemma 66.28.1.04KJ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The morphism of ringed topoi (fsmall, f ♯) associated to f is a
morphism of locally ringed topoi, see Modules on Sites, Definition 18.40.9.

Proof. Note that the assertion makes sense since we have seen that (Xétale,OXétale)
and (Yétale,OYétale) are locally ringed sites, see Lemma 66.22.3. Moreover, we know
that Xétale has enough points, see Theorem 66.19.12. Hence it suffices to prove that
(fsmall, f ♯) satisfies condition (3) of Modules on Sites, Lemma 18.40.8. To see this
take a point p of Xétale. By Lemma 66.19.13 p corresponds to a geometric point
x of X. By Lemma 66.19.9 the point q = fsmall ◦ p corresponds to the geometric
point y = f ◦x of Y . Hence the assertion we have to prove is that the induced map
of étale local rings

OY,y −→ OX,x

is a local ring map. You can prove this directly, but instead we deduce it from the
corresponding result for schemes. To do this choose a commutative diagram

U

��

ψ
// V

��
X // Y

where U and V are schemes, and the vertical arrows are surjective étale (see Spaces,
Lemma 65.11.6). Choose a lift u : x → U (possible by Lemma 66.19.5). Set
v = ψ ◦ u. We obtain a commutative diagram of étale local rings

OU,u OV,voo

OX,x

OO

OY,y.oo

OO

By Étale Cohomology, Lemma 59.40.1 the top horizontal arrow is a local ring map.
Finally by Lemma 66.22.1 the vertical arrows are isomorphisms. Hence we win. □

Lemma 66.28.2.04KK Let S be a scheme. Let X, Y be algebraic spaces over S. Let
f : X → Y be a morphism of algebraic spaces over S. Let t be a 2-morphism from
(fsmall, f ♯) to itself, see Modules on Sites, Definition 18.8.1. Then t = id.

Proof. Let X ′, resp. Y ′ be X viewed as an algebraic space over Spec(Z), see Spaces,
Definition 65.16.2. It is clear from the construction that (Xsmall,O) is equal to
(X ′

small,O) and similarly for Y . Hence we may work with X ′ and Y ′. In other
words we may assume that S = Spec(Z).

https://stacks.math.columbia.edu/tag/04KJ
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Assume S = Spec(Z), f : X → Y and t are as in the lemma. This means that
t : f−1

small → f−1
small is a transformation of functors such that the diagram

f−1
smallOY

f♯ $$

f−1
smallOYt

oo

f♯zz
OX

is commutative. Suppose V → Y is étale with V affine. Write V = Spec(B).
Choose generators bj ∈ B, j ∈ J for B as a Z-algebra. Set T = Spec(Z[{xj}j∈J ]).
In the following we will use that MorSch(U, T ) =

∏
j∈J Γ(U,OU ) for any scheme U

without further mention. The surjective ring map Z[xj ]→ B, xj 7→ bj corresponds
to a closed immersion V → T . We obtain a monomorphism

i : V −→ TY = T × Y

of algebraic spaces over Y . In terms of sheaves on Yétale the morphism i induces an
injection hi : hV →

∏
j∈J OY of sheaves. The base change i′ : X×Y V → TX of i to

X is a monomorphism too (Spaces, Lemma 65.5.5). Hence i′ : X ×Y V → TX is a
monomorphism, which in turn means that hi′ : hX×Y V →

∏
j∈J OX is an injection

of sheaves. Via the identification f−1
smallhV = hX×Y V of Lemma 66.19.9 the map

hi′ is equal to

f−1
smallhV

f−1hi // ∏
j∈J f

−1
smallOY

∏
f♯

// ∏
j∈J OX

(verification omitted). This means that the map t : f−1
smallhV → f−1

smallhV fits into
the commutative diagram

f−1
smallhV

f−1hi //

t

��

∏
j∈J f

−1
smallOY

∏
f♯

//∏
t

��

∏
j∈J OX

id
��

f−1
smallhV

f−1hi // ∏
j∈J f

−1
smallOY

∏
f♯

// ∏
j∈J OX

The commutativity of the right square holds by our assumption on t explained
above. Since the composition of the horizontal arrows is injective by the discussion
above we conclude that the left vertical arrow is the identity map as well. Any
sheaf of sets on Yétale admits a surjection from a (huge) coproduct of sheaves of the
form hV with V affine (combine Lemma 66.18.6 with Sites, Lemma 7.12.5). Thus
we conclude that t : f−1

small → f−1
small is the identity transformation as desired. □

Lemma 66.28.3.04M6 Let S be a scheme. Let X, Y be algebraic spaces over S. Any
two morphisms a, b : X → Y of algebraic spaces over S for which there exists a
2-isomorphism (asmall, a♯) ∼= (bsmall, b♯) in the 2-category of ringed topoi are equal.

Proof. Let t : a−1
small → b−1

small be the 2-isomorphism. We may equivalently think
of t as a transformation t : a−1

spaces,étale → b−1
spaces,étale since there is not difference

between sheaves on Xétale and sheaves on Xspaces,étale. Choose a commutative

https://stacks.math.columbia.edu/tag/04M6
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diagram
U

p

��

α
// V

q

��
X

a // Y
where U and V are schemes, and p and q are surjective étale. Consider the diagram

hU α
// a−1
spaces,étalehV

t

��
hU // b−1

spaces,étalehV

Since the sheaf b−1
spaces,étalehV is isomorphic to hV×Y,bX we see that the dotted arrow

comes from a morphism of schemes β : U → V fitting into a commutative diagram
U

p

��

β
// V

q

��
X

b // Y

We claim that there exists a sequence of 2-isomorphisms
(αsmall, α♯) ∼= (αspaces,étale, α♯)

∼= (aspaces,étale,c, a♯c)
∼= (bspaces,étale,d, b♯d)
∼= (βspaces,étale, β♯)
∼= (βsmall, β♯)

The first and the last 2-isomorphisms come from the identifications between sheaves
on Uspaces,étale and sheaves on Uétale and similarly for V . The second and fourth
2-isomorphisms are those of Lemma 66.27.1 with c : U → X ×a,Y V induced by α
and d : U → X ×b,Y V induced by β. The middle 2-isomorphism comes from the
transformation t. Namely, the functor a−1

spaces,étale,c corresponds to the functor

(H → hV ) 7−→ (a−1
spaces,étaleH×a−1

spaces,étale
hV ,α

hU → hU )

and similarly for b−1
spaces,étale,d, see Sites, Lemma 7.28.3. This uses the identification

of sheaves on Yspaces,étale/V as arrows (H → hV ) in Sh(Yspaces,étale) and similarly
for U/X, see Sites, Lemma 7.25.4. Via this identification the structure sheaf OV
corresponds to the pair (OY ×hV → hV ) and similarly for OU , see Modules on Sites,
Lemma 18.21.3. Since t switches α and β we see that t induces an isomorphism

t : a−1
spaces,étaleH×a−1

spaces,étale
hV ,α

hU −→ b−1
spaces,étaleH×b−1

spaces,étale
hV ,β

hU

over hU functorially in (H → hV ). Also, t is compatible with a♯c and b♯d as t is
compatible with a♯ and b♯ by our description of the structure sheaves OU and
OV above. Hence, the morphisms of ringed topoi (αsmall, α♯) and (βsmall, β♯) are
2-isomorphic. By Étale Cohomology, Lemma 59.40.3 we conclude α = β! Since
p : U → X is a surjection of sheaves it follows that a = b. □

Here is the main result of this section.
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Theorem 66.28.4.04KL Let X, Y be algebraic spaces over Spec(Z). Let

(g, g♯) : (Sh(Xétale),OX) −→ (Sh(Yétale),OY )

be a morphism of locally ringed topoi. Then there exists a unique morphism of
algebraic spaces f : X → Y such that (g, g♯) is isomorphic to (fsmall, f ♯). In other
words, the construction

Spaces/Spec(Z) −→ Locally ringed topoi, X −→ (Xétale,OX)

is fully faithful (morphisms up to 2-isomorphisms on the right hand side).

Proof. The uniqueness we have seen in Lemma 66.28.3. Thus it suffices to prove
existence. In this proof we will freely use the identifications of Equation (66.27.0.4)
as well as the result of Lemma 66.27.2.

Let U ∈ Ob(Xétale), let V ∈ Ob(Yétale) and let s ∈ g−1hV (U) be a section. We
may think of s as a map of sheaves s : hU → g−1hV . By Modules on Sites, Lemma
18.22.3 we obtain a commutative diagram of morphisms of ringed topoi

(Sh(Xétale/U),OU )
(j,j♯)

//

(gs,g♯s)
��

(Sh(Xétale),OX)

(g,g♯)
��

(Sh(Vétale),OV ) // (Sh(Yétale),OY ).

By Étale Cohomology, Theorem 59.40.5 we obtain a unique morphism of schemes
fs : U → V such that (gs, g♯s) is 2-isomorphic to (fs,small, f ♯s). The construction
(U, V, s)⇝ fs just explained satisfies the following functoriality property: Suppose
given morphisms a : U ′ → U in Xétale and b : V ′ → V in Yétale and a map
s′ : hU ′ → g−1hV ′ such that the diagram

hU ′

a

��

s′
// g−1hV ′

g−1b

��
hU

s // g−1hV

commutes. Then the diagram

U ′
fs′
//

a

��

u(V ′)

u(b)
��

U
fs // u(V )

of schemes commutes. The reason this is true is that the same condition holds for
the morphisms (gs, g♯s) constructed in Modules on Sites, Lemma 18.22.3 and the
uniqueness in Étale Cohomology, Theorem 59.40.5.

The problem is to glue the morphisms fs to a morphism of algebraic spaces. To
do this first choose a scheme V and a surjective étale morphism V → Y . This
means that hV → ∗ is surjective and hence g−1hV → ∗ is surjective too. This
means there exists a scheme U and a surjective étale morphism U → X and a
morphism s : hU → g−1hV . Next, set R = V ×Y V and R′ = U ×X U . Then
we get g−1hR = g−1hV × g−1hV as g−1 is exact. Thus s induces a morphism

https://stacks.math.columbia.edu/tag/04KL
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s × s : hR′ → g−1hR. Applying the constructions above we see that we get a
commutative diagram of morphisms of schemes

R′

����

fs×s

// R

����
U

fs // V

Since we have X = U/R′ and Y = V/R (see Spaces, Lemma 65.9.1) we conclude
that this diagram defines a morphism of algebraic spaces f : X → Y fitting into
an obvious commutative diagram. Now we still have to show that (fsmall, f ♯) is
2-isomorphic to (g, g♯). Let tV : f−1

s,small → g−1
s and tR : f−1

s×s,small → g−1
s×s be the

2-isomorphisms which are given to us by the construction above. Let G be a sheaf
on Yétale. Then we see that tV defines an isomorphism

f−1
smallG|Uétale = f−1

s,smallG|Vétale
tV−→ g−1

s G|Vétale = g−1G|Uétale .

Moreover, this isomorphism pulled back to R′ via either projection R′ → U is the
isomorphism

f−1
smallG|R′

étale
= f−1

s×s,smallG|Rétale
tR−→ g−1

s×sG|Rétale = g−1G|R′
étale

.

Since {U → X} is a covering in the site Xspaces,étale this means the first displayed
isomorphism descends to an isomorphism t : f−1

smallG → g−1G of sheaves (small
detail omitted). The isomorphism is functorial in G since tV and tR are transfor-
mations of functors. Finally, t is compatible with f ♯ and g♯ as tV and tR are (some
details omitted). This finishes the proof of the theorem. □

Lemma 66.28.5.05YZ Let X, Y be algebraic spaces over Z. If

(g, g♯) : (Sh(Xétale),OX) −→ (Sh(Yétale),OY )
is an isomorphism of ringed topoi, then there exists a unique morphism f : X → Y
of algebraic spaces such that (g, g♯) is isomorphic to (fsmall, f ♯) and moreover f is
an isomorphism of algebraic spaces.

Proof. By Theorem 66.28.4 it suffices to show that (g, g♯) is a morphism of locally
ringed topoi. By Modules on Sites, Lemma 18.40.8 (and since the site Xétale has
enough points) it suffices to check that the map OY,q → OX,p induced by g♯ is a
local ring map where q = f ◦p and p is any point of Xétale. As it is an isomorphism
this is clear. □

66.29. Quasi-coherent sheaves on algebraic spaces

03G5 In Descent, Sections 35.8, 35.9, and 35.10 we have seen that for a scheme U , there
is no difference between a quasi-coherent OU -module on U , or a quasi-coherent
O-module on the small étale site of U . Hence the following definition is compatible
with our original notion of a quasi-coherent sheaf on a scheme (Schemes, Section
26.24), when applied to a representable algebraic space.

Definition 66.29.1.03G9 Let S be a scheme. Let X be an algebraic space over S. A quasi-
coherent OX -module is a quasi-coherent module on the ringed site (Xétale,OX) in
the sense of Modules on Sites, Definition 18.23.1. The category of quasi-coherent
sheaves on X is denoted QCoh(OX).

https://stacks.math.columbia.edu/tag/05YZ
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Note that as being quasi-coherent is an intrinsic notion (see Modules on Sites,
Lemma 18.23.2) this is equivalent to saying that the corresponding OX -module on
Xspaces,étale is quasi-coherent.
As usual, quasi-coherent sheaves behave well with respect to pullback.

Lemma 66.29.2.03GA Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The pullback functor f∗ : Mod(OY ) → Mod(OX) preserves quasi-
coherent sheaves.

Proof. This is a general fact, see Modules on Sites, Lemma 18.23.4. □

Note that this pullback functor agrees with the usual pullback functor between
quasi-coherent sheaves of modules if X and Y happen to be schemes, see De-
scent, Proposition 35.9.4. Here is the obligatory lemma comparing this with quasi-
coherent sheaves on the objects of the small étale site of X.

Lemma 66.29.3.03LZ Let S be a scheme. Let X be an algebraic space over S. A
quasi-coherent OX -module F is given by the following data:

(1) for every U ∈ Ob(Xétale) a quasi-coherent OU -module FU on Uétale,
(2) for every f : U ′ → U in Xétale an isomorphism cf : f∗

smallFU → FU ′ .
These data are subject to the condition that given any f : U ′ → U and g : U ′′ → U ′

in Xétale the composition cg ◦ g∗
smallcf is equal to cf◦g.

Proof. Combine Lemmas 66.29.2 and 66.26.3. □

Lemma 66.29.4.05VP Let S be a scheme. Let X be an algebraic space over S. Let F
be a quasi-coherent OX -module. Let x ∈ |X| be a point and let x be a geometric
point lying over x. Finally, let φ : (U, u)→ (X,x) be an étale neighbourhood where
U is a scheme. Then

(φ∗F)u ⊗OU,u
OX,x = Fx

where u ∈ U is the image of u.

Proof. Note that OX,x = OshU,u by Lemma 66.22.1 hence the tensor product makes
sense. Moreover, from Definition 66.19.6 it is clear that

Fu = colim(φ∗F)u
where the colimit is over φ : (U, u) → (X,x) as in the lemma. Hence there is a
canonical map from left to right in the statement of the lemma. We have a similar
colimit description for OX,x and by Lemma 66.29.3 we have

((φ′)∗F)u′ = (φ∗F)u ⊗OU,u
OU ′,u′

whenever (U ′, u′) → (U, u) is a morphism of étale neighbourhoods. To complete
the proof we use that ⊗ commutes with colimits. □

Lemma 66.29.5.05VQ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let G be a quasi-coherent OY -module. Let x be a geometric point
of X and let y = f ◦ x be the image in Y . Then there is a canonical isomorphism

(f∗G)x = Gy ⊗OY,y
OX,x

of the stalk of the pullback with the tensor product of the stalk with the local ring
of X at x.

https://stacks.math.columbia.edu/tag/03GA
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Proof. Since f∗G = f−1
smallG⊗f−1

small
OY
OX this follows from the description of stalks

of pullbacks in Lemma 66.19.9 and the fact that taking stalks commutes with tensor
products. A more direct way to see this is as follows. Choose a commutative
diagram

U

p

��

α
// V

q

��
X

a // Y

where U and V are schemes, and p and q are surjective étale. By Lemma 66.19.4
we can choose a geometric point u of U such that x = p ◦ u. Set v = α ◦ u. Then
we see that

(f∗G)x = (p∗f∗G)u ⊗OU,u
OX,x

= (α∗q∗G)u ⊗OU,u
OX,x

= (q∗G)v ⊗OV,v
OU,u ⊗OU,u

OX,x
= (q∗G)v ⊗OV,v

OX,x
= (q∗G)v ⊗OV,v

OY,y ⊗OY,y
OX,x

= Gy ⊗OY,y
OX,x

Here we have used Lemma 66.29.4 (twice) and the corresponding result for pullbacks
of quasi-coherent sheaves on schemes, see Sheaves, Lemma 6.26.4. □

Lemma 66.29.6.03M0 Let S be a scheme. Let X be an algebraic space over S. Let F
be a sheaf of OX -modules. The following are equivalent

(1) F is a quasi-coherent OX -module,
(2) there exists an étale morphism f : Y → X of algebraic spaces over S with
|f | : |Y | → |X| surjective such that f∗F is quasi-coherent on Y ,

(3) there exists a scheme U and a surjective étale morphism φ : U → X such
that φ∗F is a quasi-coherent OU -module, and

(4) for every affine scheme U and étale morphism φ : U → X the restriction
φ∗F is a quasi-coherent OU -module.

Proof. It is clear that (1) implies (2) by considering idX . Assume f : Y → X is as
in (2), and let V → Y be a surjective étale morphism from a scheme towards Y .
Then the composition V → X is surjective étale as well and by Lemma 66.29.2 the
pullback of F to V is quasi-coherent as well. Hence we see that (2) implies (3).

Let U → X be as in (3). Let us use the abuse of notation introduced in Equation
(66.26.1.1). As F|Uétale is quasi-coherent there exists an étale covering {Ui → U}
such that F|Ui,étale has a global presentation, see Modules on Sites, Definition
18.17.1 and Lemma 18.23.3. Let V → X be an object of Xétale. Since U → X
is surjective and étale, the family of maps {Ui ×X V → V } is an étale covering
of V . Via the morphisms Ui ×X V → Ui we can restrict the global presentations
of F|Ui,étale to get a global presentation of F|(Ui×XV )étale Hence the sheaf F on
Xétale satisfies the condition of Modules on Sites, Definition 18.23.1 and hence is
quasi-coherent.

The equivalence of (3) and (4) comes from the fact that any scheme has an affine
open covering. □

https://stacks.math.columbia.edu/tag/03M0
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Lemma 66.29.7.03M1 Let S be a scheme. Let X be an algebraic space over S. The
category QCoh(OX) of quasi-coherent sheaves on X has the following properties:

(1) Any direct sum of quasi-coherent sheaves is quasi-coherent.
(2) Any colimit of quasi-coherent sheaves is quasi-coherent.
(3) The kernel and cokernel of a morphism of quasi-coherent sheaves is quasi-

coherent.
(4) Given a short exact sequence of OX -modules 0→ F1 → F2 → F3 → 0 if

two out of three are quasi-coherent so is the third.
(5) Given two quasi-coherentOX -modules the tensor product is quasi-coherent.
(6) Given two quasi-coherent OX -modules F , G such that F is of finite presen-

tation (see Section 66.30), then the internal hom HomOX
(F ,G) is quasi-

coherent.
Proof. If X is a scheme, then this is Descent, Lemma 35.10.3. We will reduce the
lemma to this case by étale localization.
Choose a scheme U and a surjective étale morphism φ : U → X. Our notation
will be that Mod(OU ) = Mod(Uétale,OU ) and QCoh(OU ) = QCoh(Uétale,OU ); in
other words, even though U is a scheme we think of quasi-coherent modules on U
as modules on the small étale site of U . By Lemma 66.29.2 we have a commutative
diagram

QCoh(OX)
φ∗
//

��

QCoh(OU )

��
Mod(OX) φ∗

// Mod(OU )
The bottom horizontal arrow is the restriction functor (66.26.1.1) G 7→ G|Uétale .
This functor has both a left adjoint and a right adjoint, see Modules on Sites,
Section 18.19, hence commutes with all limits and colimits. Moreover, we know
that an object of Mod(OX) is in QCoh(OX) if and only if its restriction to U is in
QCoh(OU ), see Lemma 66.29.6. With these preliminaries out of the way we can
start the proof.
Proof of (1). Let Fi, i ∈ I be a family of quasi-coherent OX -modules. By the
discussion above we have (⊕

Fi
)
|Uétale =

⊕
Fi|Uétale

Each of the modules Fi|Uétale is quasi-coherent. Hence the direct sum is quasi-
coherent by the case of schemes. Hence

⊕
Fi is quasi-coherent as a module re-

stricting to a quasi-coherent module on U .
Proof of (2). Let I → QCoh(OX), i 7→ Fi be a diagram. Then

(colimFi)|Uétale = colimFi|Uétale
by the discussion above and we conclude in the same manner.
Proof of (3). Let a : F → F ′ be an arrow of QCoh(OX). Then we have Ker(a)|Uétale =
Ker(a|Uétale) and Coker(a)|Uétale = Coker(a|Uétale) and we conclude in the same
manner.
Proof of (4). The restriction 0 → F1|Uétale → F2|Uétale → F3|Uétale → 0 is short
exact. Hence we have the 2-out-of-3 property for this sequence and we conclude as
before.

https://stacks.math.columbia.edu/tag/03M1
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Proof of (5). Let F and G be in QCoh(OX). Then we have
(F ⊗OX

G)Uétale = F|Uétale ⊗OU
G|Uétale

and we conclude as before.
Proof of (6). Let F and G be in QCoh(OX) with F of finite presentation. We have

HomOX
(F ,G)|Uétale = HomOU

(F|Uétale ,G|Uétale)
Namely, restriction is a localization, see Section 66.27, especially formula (66.27.0.4))
and formation of internal hom commutes with localization, see Modules on Sites,
Lemma 18.27.2. Thus we conclude as before. □

It is in general not the case that the pushforward of a quasi-coherent sheaf along
a morphism of algebraic spaces is quasi-coherent. We will return to this issue in
Morphisms of Spaces, Section 67.11.

66.30. Properties of modules

05VR In Modules on Sites, Sections 18.17, 18.23, and Definition 18.28.1 we have defined
a number of intrinsic properties of modules of O-module on any ringed topos. If X
is an algebraic space, we will apply these notions freely to modules on the ringed
site (Xétale,OX), or equivalently on the ringed site (Xspaces,étale,OX).
Global properties P:

(a) free,
(b) finite free,
(c) generated by global sections,
(d) generated by finitely many global sections,
(e) having a global presentation, and
(f) having a global finite presentation.

Local properties P:
(g) locally free,
(f) finite locally free,
(h) locally generated by sections,
(i) locally generated by r sections,
(j) finite type,
(k) quasi-coherent (see Section 66.29),
(l) of finite presentation,

(m) coherent, and
(n) flat.

Here are some results which follow immediately from the definitions:
(1) In each case, except for P =“coherent”, the property is preserved under

pullback, see Modules on Sites, Lemmas 18.17.2, 18.23.4, and 18.39.1.
(2) Each of the properties above (including coherent) are preserved under

pullbacks by étale morphisms of algebraic spaces (because in this case
pullback is given by restriction, see Lemma 66.18.11).

(3) Assume f : Y → X is a surjective étale morphism of algebraic spaces. For
each of the local properties (g) – (m), the fact that f∗F has P implies
that F has P. This follows as {Y → X} is a covering in Xspaces,étale and
Modules on Sites, Lemma 18.23.3.
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(4) If X is a scheme, F is a quasi-coherent module on Xétale, and P any
property except “coherent” or “locally free”, then P for F on Xétale is
equivalent to the corresponding property for F|XZar , i.e., it corresponds
to P for F when we think of it as a quasi-coherent sheaf on the scheme
X. See Descent, Lemma 35.8.10.

(5) If X is a locally Noetherian scheme, F is a quasi-coherent module on
Xétale, then F is coherent on Xétale if and only if F|XZar is coherent, i.e.,
it corresponds to the usual notion of a coherent sheaf on the scheme X
being coherent. See Descent, Lemma 35.8.10.

66.31. Locally projective modules

060P Recall that in Properties, Section 28.21 we defined the notion of a locally projective
quasi-coherent module.

Lemma 66.31.1.060Q Let S be a scheme. Let X be an algebraic space over S. Let F
be a quasi-coherent OX -module. The following are equivalent

(1) for some scheme U and surjective étale morphism U → X the restriction
F|U is locally projective on U , and

(2) for any scheme U and any étale morphism U → X the restriction F|U is
locally projective on U .

Proof. Let U → X be as in (1) and let V → X be étale where V is a scheme. Then
{U ×X V → V } is an fppf covering of schemes. Hence if F|U is locally projective,
then F|U×XV is locally projective (see Properties, Lemma 28.21.3) and hence F|V
is locally projective, see Descent, Lemma 35.7.7. □

Definition 66.31.2.060R Let S be a scheme. Let X be an algebraic space over S. Let
F be a quasi-coherent OX -module. We say F is locally projective if the equivalent
conditions of Lemma 66.31.1 are satisfied.

Lemma 66.31.3.060S Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let G be a quasi-coherent OY -module. If G is locally projective on
Y , then f∗G is locally projective on X.

Proof. Choose a surjective étale morphism V → Y with V a scheme. Choose a
surjective étale morphism U → V ×Y X with U a scheme. Denote ψ : U → V the
induced morphism. Then

f∗G|U = ψ∗(G|V )
Hence the lemma follows from the definition and the result in the case of schemes,
see Properties, Lemma 28.21.3. □

66.32. Quasi-coherent sheaves and presentations

03M2 Let S be a scheme. Let X be an algebraic space over S. Let X = U/R be a
presentation of X coming from any surjective étale morphism φ : U → X, see
Spaces, Definition 65.9.3. In particular, we obtain a groupoid (U,R, s, t, c), such
that j = (t, s) : R → U ×S U , see Groupoids, Lemma 39.13.3. In Groupoids,
Definition 39.14.1 we have the defined the notion of a quasi-coherent sheaf on an
arbitrary groupoid. With these notions in place we have the following observation.

https://stacks.math.columbia.edu/tag/060Q
https://stacks.math.columbia.edu/tag/060R
https://stacks.math.columbia.edu/tag/060S
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Proposition 66.32.1.03M3 With S, φ : U → X, and (U,R, s, t, c) as above. For any
quasi-coherent OX -module F the sheaf φ∗F comes equipped with a canonical iso-
morphism

α : t∗φ∗F −→ s∗φ∗F

which satisfies the conditions of Groupoids, Definition 39.14.1 and therefore defines
a quasi-coherent sheaf on (U,R, s, t, c). The functor F 7→ (φ∗F , α) defines an
equivalence of categories

Quasi-coherent
OX -modules ←→

Quasi-coherent modules
on (U,R, s, t, c)

Proof. In the statement of the proposition, and in this proof we think of a quasi-
coherent sheaf on a scheme as a quasi-coherent sheaf on the small étale site of that
scheme. This is permissible by the results of Descent, Sections 35.8, 35.9, and 35.10.

The existence of α comes from the fact that φ ◦ t = φ ◦ s and that pullback
is functorial in the morphism, see discussion surrounding Equation (66.26.0.1). In
exactly the same way, i.e., by functoriality of pullback, we see that the isomorphism
α satisfies condition (1) of Groupoids, Definition 39.14.1. To see condition (2) of the
definition it suffices to see that α is an isomorphism which is clear. The construction
F 7→ (φ∗F , α) is clearly functorial in the quasi-coherent sheaf F . Hence we obtain
the functor from left to right in the displayed formula of the lemma.

Conversely, suppose that (F , α) is a quasi-coherent sheaf on (U,R, s, t, c). Let
V → X be an object of Xétale. In this case the morphism V ′ = U ×X V → V is a
surjective étale morphism of schemes, and hence {V ′ → V } is an étale covering of
V . Moreover, the quasi-coherent sheaf F pulls back to a quasi-coherent sheaf F ′ on
V ′. Since R = U ×X U with t = pr0 and s = pr0 we see that V ′ ×V V ′ = R ×X V
with projection maps V ′ ×V V ′ → V ′ equal to the pullbacks of t and s. Hence
α pulls back to an isomorphism α′ : pr∗

0F ′ → pr∗
1F ′, and the pair (F ′, α′) is a

descend datum for quasi-coherent sheaves with respect to {V ′ → V }. By Descent,
Proposition 35.5.2 this descent datum is effective, and we obtain a quasi-coherent
OV -module FV on Vétale. To see that this gives a quasi-coherent sheaf on Xétale

we have to show (by Lemma 66.29.3) that for any morphism f : V1 → V2 in Xétale

there is a canonical isomorphism cf : FV1 → FV2 compatible with compositions
of morphisms. We omit the verification. We also omit the verification that this
defines a functor from the category on the right to the category on the left which
is inverse to the functor described above. □

Proposition 66.32.2.077V Let S be a scheme. Let X be an algebraic space over S.
(1) The category QCoh(OX) is a Grothendieck abelian category. Conse-

quently, QCoh(OX) has enough injectives and all limits.
(2) The inclusion functor QCoh(OX)→ Mod(OX) has a right adjoint8

Q : Mod(OX) −→ QCoh(OX)

such that for every quasi-coherent sheaf F the adjunction mappingQ(F)→
F is an isomorphism.

8This functor is sometimes called the coherator.

https://stacks.math.columbia.edu/tag/03M3
https://stacks.math.columbia.edu/tag/077V
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Proof. This proof is a repeat of the proof in the case of schemes, see Properties,
Proposition 28.23.4. We advise the reader to read that proof first.

Part (1) means QCoh(OX) (a) has all colimits, (b) filtered colimits are exact,
and (c) has a generator, see Injectives, Section 19.10. By Lemma 66.29.7 colimits
in QCoh(OX) exist and agree with colimits in Mod(OX). By Modules on Sites,
Lemma 18.14.2 filtered colimits are exact. Hence (a) and (b) hold.

To construct a generator, choose a presentation X = U/R so that (U,R, s, t, c) is an
étale groupoid scheme and in particular s and t are flat morphisms of schemes. Pick
a cardinal κ as in Groupoids, Lemma 39.15.7. Pick a collection (Et, αt)t∈T of κ-
generated quasi-coherent modules on (U,R, s, t, c) as in Groupoids, Lemma 39.15.6.
Let Ft be the quasi-coherent module on X which corresponds to the quasi-coherent
module (Et, αt) via the equivalence of categories of Proposition 66.32.1. Then we
see that every quasi-coherent module H is the directed colimit of its quasi-coherent
submodules which are isomorphic to one of the Ft. Thus

⊕
t Ft is a generator of

QCoh(OX) and we conclude that (c) holds. The assertions on limits and injectives
hold in any Grothendieck abelian category, see Injectives, Theorem 19.11.7 and
Lemma 19.13.2.

Proof of (2). To construct Q we use the following general procedure. Given an
object F of Mod(OX) we consider the functor

QCoh(OX)opp −→ Sets, G 7−→ HomX(G,F)

This functor transforms colimits into limits, hence is representable, see Injectives,
Lemma 19.13.1. Thus there exists a quasi-coherent sheaf Q(F) and a functorial
isomorphism HomX(G,F) = HomX(G, Q(F)) for G in QCoh(OX). By the Yoneda
lemma (Categories, Lemma 4.3.5) the construction F ⇝ Q(F) is functorial in
F . By construction Q is a right adjoint to the inclusion functor. The fact that
Q(F)→ F is an isomorphism when F is quasi-coherent is a formal consequence of
the fact that the inclusion functor QCoh(OX)→ Mod(OX) is fully faithful. □

66.33. Morphisms towards schemes

05Z0 Here is the analogue of Schemes, Lemma 26.6.4.

Lemma 66.33.1.05Z1 Let X be an algebraic space over Z. Let T be an affine scheme.
The map

Mor(X,T ) −→ Hom(Γ(T,OT ),Γ(X,OX))

which maps f to f ♯ (on global sections) is bijective.

Proof. We construct the inverse of the map. Let φ : Γ(T,OT ) → Γ(X,OX) be
a ring map. Choose a presentation X = U/R, see Spaces, Definition 65.9.3. By
Schemes, Lemma 26.6.4 the composition

Γ(T,OT )→ Γ(X,OX)→ Γ(U,OU )

corresponds to a unique morphism of schemes g : U → T . By the same lemma the
two compositions R → U → T are equal. Hence we obtain a morphism f : X =

https://stacks.math.columbia.edu/tag/05Z1
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U/R→ T such that U → X → T equals g. By construction the diagram

Γ(U,OU ) Γ(X,OX)oo

Γ(T,OT )
g♯

ff
φ f♯

OO

commutes. Hence f ♯ equals φ because U → X is an étale covering and OX is a
sheaf on Xétale. The uniqueness of f follows from the uniqueness of g. □

66.34. Quotients by free actions

071R Let S be a scheme. Let X be an algebraic space over S. Let G be an abstract
group. Let a : G → Aut(X) be a homomorphism, i.e., a is an action of G on X.
We will say the action is free if for every scheme T over S the map

G×X(T ) −→ X(T )

is free. (We cannot use a criterion as in Spaces, Lemma 65.14.3 because points
may not have well defined residue fields.) In case the action is free we’re going to
construct the quotient X/G as an algebraic space. This is a special case of the
general Bootstrap, Lemma 80.11.7 that we will prove later.

Lemma 66.34.1.071S Let S be a scheme. Let X be an algebraic space over S. Let G
be an abstract group with a free action on X. Then the quotient sheaf X/G is an
algebraic space.

Proof. The statement means that the sheaf F associated to the presheaf

T 7−→ X(T )/G

is an algebraic space. To see this we will construct a presentation. Namely, choose
a scheme U and a surjective étale morphism φ : U → X. Set V =

∐
g∈G U and set

ψ : V → X equal to a(g) ◦ φ on the component corresponding to g ∈ G. Let G act
on V by permuting the components, i.e., g0 ∈ G maps the component corresponding
to g to the component corresponding to g0g via the identity morphism of U . Then
ψ is a G-equivariant morphism, i.e., we reduce to the case dealt with in the next
paragraph.

Assume that there exists a G-action on U and that U → X is surjective, étale
and G-equivariant. In this case there is an induced action of G on R = U ×X U
compatible with the projection mappings t, s : R→ U . Now we claim that

X/G = U/
∐

g∈G
R

where the map
j :
∐

g∈G
R −→ U ×S U

is given by (r, g) 7→ (t(r), g(s(r))). Note that j is a monomorphism: If (t(r), g(s(r))) =
(t(r′), g′(s(r′))), then t(r) = t(r′), hence r and r′ have the same image in X under
both s and t, hence g = g′ (as G acts freely on X), hence s(r) = s(r′), hence r = r′

(as R is an equivalence relation on U). Moreover j is an equivalence relation (de-
tails omitted). Both projections

∐
g∈GR→ U are étale, as s and t are étale. Thus

https://stacks.math.columbia.edu/tag/071S
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j is an étale equivalence relation and U/
∐
g∈GR is an algebraic space by Spaces,

Theorem 65.10.5. There is a map
U/
∐

g∈G
R −→ X/G

induced by the map U → X. We omit the proof that it is an isomorphism of
sheaves. □
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CHAPTER 67

Morphisms of Algebraic Spaces

03H8 67.1. Introduction

03H9 In this chapter we introduce some types of morphisms of algebraic spaces. A refer-
ence is [Knu71].
The goal is to extend the definition of each of the types of morphisms of schemes
defined in the chapters on schemes, and on morphisms of schemes to the category
of algebraic spaces. Each case is slightly different and it seems best to treat them
all separately.

67.2. Conventions

040V The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.
Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

67.3. Properties of representable morphisms

03HA Let S be a scheme. Let f : X → Y be a representable morphism of algebraic
spaces. In Spaces, Section 65.5 we defined what it means for f to have property P
in case P is a property of morphisms of schemes which

(1) is preserved under any base change, see Schemes, Definition 26.18.3, and
(2) is fppf local on the base, see Descent, Definition 35.22.1.

Namely, in this case we say f has property P if and only if for every scheme U and
any morphism U → Y the morphism of schemes X ×Y U → U has property P.
According to the lists in Spaces, Section 65.4 this applies to the following prop-
erties: (1)(a) closed immersions, (1)(b) open immersions, (1)(c) quasi-compact
immersions, (2) quasi-compact, (3) universally-closed, (4) (quasi-)separated, (5)
monomorphism, (6) surjective, (7) universally injective, (8) affine, (9) quasi-affine,
(10) (locally) of finite type, (11) (locally) quasi-finite, (12) (locally) of finite pre-
sentation, (13) locally of finite type of relative dimension d, (14) universally open,
(15) flat, (16) syntomic, (17) smooth, (18) unramified (resp. G-unramified), (19)
étale, (20) proper, (21) finite or integral, (22) finite locally free, (23) universally
submersive, (24) universal homeomorphism, and (25) immersion.
In this chapter we will redefine these notions for not necessarily representable mor-
phisms of algebraic spaces. Whenever we do this we will make sure that the new
definition agrees with the old one, in order to avoid ambiguity.

5298
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Note that the definition above applies whenever X is a scheme, since a morphism
from a scheme to an algebraic space is representable. And in particular it applies
when both X and Y are schemes. In Spaces, Lemma 65.5.3 we have seen that in
this case the definitions match, and no ambiguity arise.
Furthermore, in Spaces, Lemma 65.5.5 we have seen that the property of repre-
sentable morphisms of algebraic spaces so defined is stable under arbitrary base
change by a morphism of algebraic spaces. And finally, in Spaces, Lemmas 65.5.4
and 65.5.7 we have seen that if P is stable under compositions, which holds for the
properties (1)(a), (1)(b), (1)(c), (2) – (25), except (13) above, then taking products
of representable morphisms preserves property P and compositions of representable
morphisms preserves property P.
We will use these facts below, and whenever we do we will simply refer to this
section as a reference.

67.4. Separation axioms

03HJ It makes sense to list some a priori properties of the diagonal of a morphism of
algebraic spaces.

Lemma 67.4.1.03HK Let S be a scheme contained in Schfppf . Let f : X → Y be a
morphism of algebraic spaces over S. Let ∆X/Y : X → X ×Y X be the diagonal
morphism. Then

(1) ∆X/Y is representable,
(2) ∆X/Y is locally of finite type,
(3) ∆X/Y is a monomorphism,
(4) ∆X/Y is separated, and
(5) ∆X/Y is locally quasi-finite.

Proof. We are going to use the fact that ∆X/S is representable (by definition of
an algebraic space) and that it satisfies properties (2) – (5), see Spaces, Lemma
65.13.1. Note that we have a factorization

X −→ X ×Y X −→ X ×S X

of the diagonal ∆X/S : X → X×SX. Since X×Y X → X×SX is a monomorphism,
and since ∆X/S is representable, it follows formally that ∆X/Y is representable. In
particular, the rest of the statements now make sense, see Section 67.3.
Choose a surjective étale morphism U → X, with U a scheme. Consider the
diagram

R = U ×X U //

��

U ×Y U

��

// U ×S U

��
X // X ×Y X // X ×S X

Both squares are cartesian, hence so is the outer rectangle. The top row consists of
schemes, and the vertical arrows are surjective étale morphisms. By Spaces, Lemma
65.11.4 the properties (2) – (5) for ∆X/Y are equivalent to those of R→ U×Y U . In
the proof of Spaces, Lemma 65.13.1 we have seen that R→ U ×S U has properties
(2) – (5). The morphism U ×Y U → U ×S U is a monomorphism of schemes. These
facts imply that R→ U ×Y U have properties (2) – (5).

https://stacks.math.columbia.edu/tag/03HK
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Namely: For (3), note that R → U ×Y U is a monomorphism as the composition
R→ U×SU is a monomorphism. For (2), note that R→ U×Y U is locally of finite
type, as the composition R→ U ×S U is locally of finite type (Morphisms, Lemma
29.15.8). A monomorphism which is locally of finite type is locally quasi-finite be-
cause it has finite fibres (Morphisms, Lemma 29.20.7), hence (5). A monomorphism
is separated (Schemes, Lemma 26.23.3), hence (4). □

Definition 67.4.2.03HL Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let ∆X/Y : X → X ×Y X be the diagonal morphism.

(1) We say f is separated if ∆X/Y is a closed immersion.
(2) We say f is locally separated1 if ∆X/Y is an immersion.
(3) We say f is quasi-separated if ∆X/Y is quasi-compact.

This definition makes sense since ∆X/Y is representable, and hence we know what
it means for it to have one of the properties described in the definition. We will see
below (Lemma 67.4.13) that this definition matches the ones we already have for
morphisms of schemes and representable morphisms.
Lemma 67.4.3.03KK Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is separated, then f is locally separated and f is quasi-separated.
Proof. This is true, via the general principle Spaces, Lemma 65.5.8, because a
closed immersion of schemes is an immersion and is quasi-compact. □

Lemma 67.4.4.03KL All of the separation axioms listed in Definition 67.4.2 are stable
under base change.
Proof. Let f : X → Y and Y ′ → Y be morphisms of algebraic spaces. Let f ′ :
X ′ → Y ′ be the base change of f by Y ′ → Y . Then ∆X′/Y ′ is the base change
of ∆X/Y by the morphism X ′ ×Y ′ X ′ → X ×Y X. By the results of Section 67.3
each of the properties of the diagonal used in Definition 67.4.2 is stable under base
change. Hence the lemma is true. □

Lemma 67.4.5.03KN Let S be a scheme. Let f : X → Z, g : Y → Z and Z → T be
morphisms of algebraic spaces over S. Consider the induced morphism i : X×ZY →
X ×T Y . Then

(1) i is representable, locally of finite type, locally quasi-finite, separated and
a monomorphism,

(2) if Z → T is locally separated, then i is an immersion,
(3) if Z → T is separated, then i is a closed immersion, and
(4) if Z → T is quasi-separated, then i is quasi-compact.

Proof. By general category theory the following diagram
X ×Z Y

i
//

��

X ×T Y

��
Z

∆Z/T //// Z ×T Z
is a fibre product diagram. Hence i is the base change of the diagonal morphism
∆Z/T . Thus the lemma follows from Lemma 67.4.1, and the material in Section
67.3. □

1In the literature this term often refers to quasi-separated and locally separated morphisms.

https://stacks.math.columbia.edu/tag/03HL
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Lemma 67.4.6.03KO Let S be a scheme. Let T be an algebraic space over S. Let
g : X → Y be a morphism of algebraic spaces over T . Consider the graph i : X →
X ×T Y of g. Then

(1) i is representable, locally of finite type, locally quasi-finite, separated and
a monomorphism,

(2) if Y → T is locally separated, then i is an immersion,
(3) if Y → T is separated, then i is a closed immersion, and
(4) if Y → T is quasi-separated, then i is quasi-compact.

Proof. This is a special case of Lemma 67.4.5 applied to the morphism X = X ×Y
Y → X ×T Y . □

Lemma 67.4.7.03KP Let S be a scheme. Let f : X → T be a morphism of algebraic
spaces over S. Let s : T → X be a section of f (in a formula f ◦ s = idT ). Then

(1) s is representable, locally of finite type, locally quasi-finite, separated and
a monomorphism,

(2) if f is locally separated, then s is an immersion,
(3) if f is separated, then s is a closed immersion, and
(4) if f is quasi-separated, then s is quasi-compact.

Proof. This is a special case of Lemma 67.4.6 applied to g = s so the morphism
i = s : T → T ×T X. □

Lemma 67.4.8.03KQ All of the separation axioms listed in Definition 67.4.2 are stable
under composition of morphisms.

Proof. Let f : X → Y and g : Y → Z be morphisms of algebraic spaces to which
the axiom in question applies. The diagonal ∆X/Z is the composition

X −→ X ×Y X −→ X ×Z X.

Our separation axiom is defined by requiring the diagonal to have some property
P. By Lemma 67.4.5 above we see that the second arrow also has this property.
Hence the lemma follows since the composition of (representable) morphisms with
property P also is a morphism with property P, see Section 67.3. □

Lemma 67.4.9.04ZH Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) If Y is separated and f is separated, then X is separated.
(2) If Y is quasi-separated and f is quasi-separated, thenX is quasi-separated.
(3) If Y is locally separated and f is locally separated, then X is locally

separated.
(4) If Y is separated over S and f is separated, then X is separated over S.
(5) If Y is quasi-separated over S and f is quasi-separated, then X is quasi-

separated over S.
(6) If Y is locally separated over S and f is locally separated, then X is locally

separated over S.

Proof. Parts (4), (5), and (6) follow immediately from Lemma 67.4.8 and Spaces,
Definition 65.13.2. Parts (1), (2), and (3) reduce to parts (4), (5), and (6) by
thinking of X and Y as algebraic spaces over Spec(Z), see Properties of Spaces,
Definition 66.3.1. □
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Lemma 67.4.10.03KR Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of algebraic spaces over S.

(1) If g ◦ f is separated then so is f .
(2) If g ◦ f is locally separated then so is f .
(3) If g ◦ f is quasi-separated then so is f .

Proof. Consider the factorization
X → X ×Y X → X ×Z X

of the diagonal morphism of g◦f . In any case the last morphism is a monomorphism.
Hence for any scheme T and morphism T → X ×Y X we have the equality

X ×(X×YX) T = X ×(X×ZX) T.

Hence the result is clear. □

Lemma 67.4.11.04ZI Let S be a scheme. Let X be an algebraic space over S.
(1) If X is separated then X is separated over S.
(2) If X is locally separated then X is locally separated over S.
(3) If X is quasi-separated then X is quasi-separated over S.

Let f : X → Y be a morphism of algebraic spaces over S.
(4) If X is separated over S then f is separated.
(5) If X is locally separated over S then f is locally separated.
(6) If X is quasi-separated over S then f is quasi-separated.

Proof. Parts (4), (5), and (6) follow immediately from Lemma 67.4.10 and Spaces,
Definition 65.13.2. Parts (1), (2), and (3) follow from parts (4), (5), and (6) by
thinking of X and Y as algebraic spaces over Spec(Z), see Properties of Spaces,
Definition 66.3.1. □

Lemma 67.4.12.03KM Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let P be any of the separation axioms of Definition 67.4.2. The
following are equivalent

(1) f is P,
(2) for every scheme Z and morphism Z → Y the base change Z ×Y X → Z

of f is P,
(3) for every affine scheme Z and every morphism Z → Y the base change

Z ×Y X → Z of f is P,
(4) for every affine scheme Z and every morphism Z → Y the algebraic space

Z ×Y X is P (see Properties of Spaces, Definition 66.3.1),
(5) there exists a scheme V and a surjective étale morphism V → Y such that

the base change V ×Y X → V has P, and
(6) there exists a Zariski covering Y =

⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi has P.

Proof. We will repeatedly use Lemma 67.4.4 without further mention. In particular,
it is clear that (1) implies (2) and (2) implies (3).
Let us prove that (3) and (4) are equivalent. Note that if Z is an affine scheme,
then the morphism Z → Spec(Z) is a separated morphism as a morphism of al-
gebraic spaces over Spec(Z). If Z ×Y X → Z is P, then Z ×Y X → Spec(Z) is
P as a composition (see Lemma 67.4.8). Hence the algebraic space Z ×Y X is P.
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Conversely, if the algebraic space Z ×Y X is P, then Z ×Y X → Spec(Z) is P, and
hence by Lemma 67.4.10 we see that Z ×Y X → Z is P.

Let us prove that (3) implies (5). Assume (3). Let V be a scheme and let V → Y
be étale surjective. We have to show that V ×Y X → V has property P. In other
words, we have to show that the morphism

V ×Y X −→ (V ×Y X)×V (V ×Y X) = V ×Y X ×Y X

has the corresponding property (i.e., is a closed immersion, immersion, or quasi-
compact). Let V =

⋃
Vj be an affine open covering of V . By assumption we know

that each of the morphisms

Vj ×Y X −→ Vj ×Y X ×Y X

does have the corresponding property. Since being a closed immersion, immersion,
quasi-compact immersion, or quasi-compact is Zariski local on the target, and since
the Vj cover V we get the desired conclusion.

Let us prove that (5) implies (1). Let V → Y be as in (5). Then we have the fibre
product diagram

V ×Y X //

��

X

��
V ×Y X ×Y X // X ×Y X

By assumption the left vertical arrow is a closed immersion, immersion, quasi-
compact immersion, or quasi-compact. It follows from Spaces, Lemma 65.5.6 that
also the right vertical arrow is a closed immersion, immersion, quasi-compact im-
mersion, or quasi-compact.

It is clear that (1) implies (6) by taking the covering Y = Y . Assume Y =
⋃
Yi is

as in (6). Choose schemes Vi and surjective étale morphisms Vi → Yi. Note that
the morphisms Vi ×Y X → Vi have P as they are base changes of the morphisms
f−1(Yi) → Yi. Set V =

∐
Vi. Then V → Y is a morphism as in (5) (details

omitted). Hence (6) implies (5) and we are done. □

Lemma 67.4.13.03KY Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S.

(1) The morphism f is locally separated.
(2) The morphism f is (quasi-)separated in the sense of Definition 67.4.2

above if and only if f is (quasi-)separated in the sense of Section 67.3.
In particular, if f : X → Y is a morphism of schemes over S, then f is (quasi-
)separated in the sense of Definition 67.4.2 if and only if f is (quasi-)separated as
a morphism of schemes.

Proof. This is the equivalence of (1) and (2) of Lemma 67.4.12 combined with
the fact that any morphism of schemes is locally separated, see Schemes, Lemma
26.21.2. □
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67.5. Surjective morphisms

03MC We have already defined in Section 67.3 what it means for a representable morphism
of algebraic spaces to be surjective.

Lemma 67.5.1.03MD Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. Then f is surjective (in the sense of Section 67.3) if and
only if |f | : |X| → |Y | is surjective.

Proof. Namely, if f : X → Y is representable, then it is surjective if and only if for
every scheme T and every morphism T → Y the base change fT : T ×Y X → T of f
is a surjective morphism of schemes, in other words, if and only if |fT | is surjective.
By Properties of Spaces, Lemma 66.4.3 the map |T ×Y X| → |T | ×|Y | |X| is always
surjective. Hence |fT | : |T ×Y X| → |T | is surjective if |f | : |X| → |Y | is surjective.
Conversely, if |fT | is surjective for every T → Y as above, then by taking T to be
the spectrum of a field we conclude that |X| → |Y | is surjective. □

This clears the way for the following definition.

Definition 67.5.2.03ME Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is surjective if the map |f | : |X| → |Y | of associated
topological spaces is surjective.

Lemma 67.5.3.03MF Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is surjective,
(2) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is surjective,
(3) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is surjective,
(4) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is a surjective morphism,
(5) there exists a scheme U and a surjective étale morphism φ : U → X such

that the composition f ◦ φ is surjective,
(6) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are surjective étale such
that the top horizontal arrow is surjective, and

(7) there exists a Zariski covering Y =
⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is surjective.

Proof. Omitted. □

Lemma 67.5.4.03MG The composition of surjective morphisms is surjective.

Proof. This is immediate from the definition. □

Lemma 67.5.5.03MH The base change of a surjective morphism is surjective.

Proof. Follows immediately from Properties of Spaces, Lemma 66.4.3. □
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67.6. Open morphisms

03Z0 For a representable morphism of algebraic spaces we have already defined (in Section
67.3) what it means to be universally open. Hence before we give the natural
definition we check that it agrees with this in the representable case.

Lemma 67.6.1.03Z1 Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. The following are equivalent

(1) f is universally open (in the sense of Section 67.3), and
(2) for every morphism of algebraic spaces Z → Y the morphism of topological

spaces |Z ×Y X| → |Z| is open.

Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a surjective
étale morphism V → Y . By assumption the morphism of schemes V ×Y X → V is
universally open. By Properties of Spaces, Section 66.4 in the commutative diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover
|V ×Y X| −→ |V | ×|Z| |Z ×Y X|

is surjective. Hence as the left vertical arrow is open it follows that the right vertical
arrow is open. This proves (2). The implication (2) ⇒ (1) is immediate from the
definitions. □

Thus we may use the following natural definition.

Definition 67.6.2.03Z2 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is open if the map of topological spaces |f | : |X| → |Y | is open.
(2) We say f is universally open if for every morphism of algebraic spaces

Z → Y the morphism of topological spaces
|Z ×Y X| → |Z|

is open, i.e., the base change Z ×Y X → Z is open.

Note that an étale morphism of algebraic spaces is universally open, see Properties
of Spaces, Definition 66.16.2 and Lemmas 66.16.7 and 66.16.5.

Lemma 67.6.3.03Z3 The base change of a universally open morphism of algebraic spaces
by any morphism of algebraic spaces is universally open.

Proof. This is immediate from the definition. □

Lemma 67.6.4.03Z4 The composition of a pair of (universally) open morphisms of
algebraic spaces is (universally) open.

Proof. Omitted. □

Lemma 67.6.5.03Z5 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f is universally open,
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(2) for every scheme Z and every morphism Z → Y the projection |Z×Y X| →
|Z| is open,

(3) for every affine scheme Z and every morphism Z → Y the projection
|Z ×Y X| → |Z| is open, and

(4) there exists a scheme V and a surjective étale morphism V → Y such that
V ×Y X → V is a universally open morphism of algebraic spaces, and

(5) there exists a Zariski covering Y =
⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is universally open.
Proof. We omit the proof that (1) implies (2), and that (2) implies (3).
Assume (3). Choose a surjective étale morphism V → Y . We are going to show
that V ×Y X → V is a universally open morphism of algebraic spaces. Let Z → V
be a morphism from an algebraic space to V . Let W → Z be a surjective étale
morphism where W =

∐
Wi is a disjoint union of affine schemes, see Properties of

Spaces, Lemma 66.6.1. Then we have the following commutative diagram∐
i |Wi ×Y X|

��

|W ×Y X| //

��

|Z ×Y X|

��

|Z ×V (V ×Y X)|

vv∐
|Wi| |W | // |Z|

We have to show the south-east arrow is open. The middle horizontal arrows are
surjective and open (Properties of Spaces, Lemma 66.16.7). By assumption (3),
and the fact that Wi is affine we see that the left vertical arrows are open. Hence
it follows that the right vertical arrow is open.
Assume V → Y is as in (4). We will show that f is universally open. Let Z → Y
be a morphism of algebraic spaces. Consider the diagram

|(V ×Y Z)×V (V ×Y X)|

))

|V ×Y X| //

��

|Z ×Y X|

��
|V ×Y Z| // |Z|

The south-west arrow is open by assumption. The horizontal arrows are surjective
and open because the corresponding morphisms of algebraic spaces are étale (see
Properties of Spaces, Lemma 66.16.7). It follows that the right vertical arrow is
open.
Of course (1) implies (5) by taking the covering Y = Y . Assume Y =

⋃
Yi is as in

(5). Then for any Z → Y we get a corresponding Zariski covering Z =
⋃
Zi such

that the base change of f to Zi is open. By a simple topological argument this
implies that Z ×Y X → Z is open. Hence (1) holds. □

Lemma 67.6.6.06DN Let S be a scheme. Let p : X → Spec(k) be a morphism of algebraic
spaces over S where k is a field. Then p : X → Spec(k) is universally open.
Proof. Choose a scheme U and a surjective étale morphism U → X. The com-
position U → Spec(k) is universally open (as a morphism of schemes) by Mor-
phisms, Lemma 29.23.4. Let Z → Spec(k) be a morphism of schemes. Then
U ×Spec(k) Z → X ×Spec(k) Z is surjective, see Lemma 67.5.5. Hence the first of the
maps

|U ×Spec(k) Z| → |X ×Spec(k) Z| → |Z|
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is surjective. Since the composition is open by the above we conclude that the
second map is open as well. Whence p is universally open by Lemma 67.6.5. □

67.7. Submersive morphisms

0411 For a representable morphism of algebraic spaces we have already defined (in Section
67.3) what it means to be universally submersive. Hence before we give the natural
definition we check that it agrees with this in the representable case.

Lemma 67.7.1.0CFQ Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. The following are equivalent

(1) f is universally submersive (in the sense of Section 67.3), and
(2) for every morphism of algebraic spaces Z → Y the morphism of topological

spaces |Z ×Y X| → |Z| is submersive.

Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a surjective
étale morphism V → Y . By assumption the morphism of schemes V ×Y X → V is
universally submersive. By Properties of Spaces, Section 66.4 in the commutative
diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover
|V ×Y X| −→ |V | ×|Z| |Z ×Y X|

is surjective. Hence as the left vertical arrow is submersive it follows that the
right vertical arrow is submersive. This proves (2). The implication (2) ⇒ (1) is
immediate from the definitions. □

Thus we may use the following natural definition.

Definition 67.7.2.0412 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is submersive2 if the continuous map |X| → |Y | is submersive,
see Topology, Definition 5.6.3.

(2) We say f is universally submersive if for every morphism of algebraic
spaces Y ′ → Y the base change Y ′ ×Y X → Y ′ is submersive.

We note that a submersive morphism is in particular surjective.

Lemma 67.7.3.0CFR The base change of a universally submersive morphism of algebraic
spaces by any morphism of algebraic spaces is universally submersive.

Proof. This is immediate from the definition. □

Lemma 67.7.4.0CFS The composition of a pair of (universally) submersive morphisms
of algebraic spaces is (universally) submersive.

Proof. Omitted. □

2This is very different from the notion of a submersion of differential manifolds.
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67.8. Quasi-compact morphisms

03HC By Section 67.3 we know what it means for a representable morphism of algebraic
spaces to be quasi-compact. In order to formulate the definition for a general
morphism of algebraic spaces we make the following observation.

Lemma 67.8.1.03HD Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. The following are equivalent:

(1) f is quasi-compact (in the sense of Section 67.3), and
(2) for every quasi-compact algebraic space Z and any morphism Z → Y the

algebraic space Z ×Y X is quasi-compact.

Proof. Assume (1), and let Z → Y be a morphism of algebraic spaces with Z quasi-
compact. By Properties of Spaces, Definition 66.5.1 there exists a quasi-compact
scheme U and a surjective étale morphism U → Z. Since f is representable and
quasi-compact we see by definition that U ×Y X is a scheme, and that U ×Y X →
U is quasi-compact. Hence U ×Y X is a quasi-compact scheme. The morphism
U ×Y X → Z ×Y X is étale and surjective (as the base change of the representable
étale and surjective morphism U → Z, see Section 67.3). Hence by definition
Z ×Y X is quasi-compact.
Assume (2). Let Z → Y be a morphism, where Z is a scheme. We have to
show that p : Z ×Y X → Z is quasi-compact. Let U ⊂ Z be affine open. Then
p−1(U) = U ×Y Z and the scheme U ×Y Z is quasi-compact by assumption (2).
Hence p is quasi-compact, see Schemes, Section 26.19. □

This motivates the following definition.

Definition 67.8.2.03HE Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is quasi-compact if for every quasi-compact algebraic space
Z and morphism Z → Y the fibre product Z ×Y X is quasi-compact.

By Lemma 67.8.1 above this agrees with the already existing notion for repre-
sentable morphisms of algebraic spaces.

Lemma 67.8.3.0EMK Let S be a scheme. If f : X → Y is a quasi-compact morphism
of algebraic spaces over S, then the underlying map |f | : |X| → |Y | of topological
space is quasi-compact.

Proof. Let V ⊂ |Y | be quasi-compact open. By Properties of Spaces, Lemma 66.4.8
there is an open subspace Y ′ ⊂ Y with V = |Y ′|. Then Y ′ is a quasi-compact
algebraic space by Properties of Spaces, Lemma 66.5.2 and hence X ′ = Y ′×Y X is
a quasi-compact algebraic space by Definition 67.8.2. On the other hand, X ′ ⊂ X
is an open subspace (Spaces, Lemma 65.12.3) and |X ′| = |f |−1(|X ′|) = |f |−1(V )
by Properties of Spaces, Lemma 66.4.3. We conclude using Properties of Spaces,
Lemma 66.5.2 again that |X ′| is a quasi-compact open of |X| as desired. □

Lemma 67.8.4.03HF The base change of a quasi-compact morphism of algebraic spaces
by any morphism of algebraic spaces is quasi-compact.

Proof. Omitted. Hint: Transitivity of fibre products. □

Lemma 67.8.5.03HG The composition of a pair of quasi-compact morphisms of algebraic
spaces is quasi-compact.
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Proof. Omitted. Hint: Transitivity of fibre products. □

Lemma 67.8.6.040W Let S be a scheme.
(1) If X → Y is a surjective morphism of algebraic spaces over S, and X is

quasi-compact then Y is quasi-compact.
(2) If

X
f

//

p
  

Y

q
��

Z

is a commutative diagram of morphisms of algebraic spaces over S and f
is surjective and p is quasi-compact, then q is quasi-compact.

Proof. Assume X is quasi-compact and X → Y is surjective. By Definition 67.5.2
the map |X| → |Y | is surjective, hence we see Y is quasi-compact by Properties of
Spaces, Lemma 66.5.2 and the topological fact that the image of a quasi-compact
space under a continuous map is quasi-compact, see Topology, Lemma 5.12.7. Let
f, p, q be as in (2). Let T → Z be a morphism whose source is a quasi-compact
algebraic space. By assumption T ×Z X is quasi-compact. By Lemma 67.5.5 the
morphism T ×Z X → T ×Z Y is surjective. Hence by part (1) we see T ×Z Y is
quasi-compact too. Thus q is quasi-compact. □

Lemma 67.8.7.04ZJ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let g : Y ′ → Y be a universally open and surjective morphism of
algebraic spaces such that the base change f ′ : X ′ → Y ′ is quasi-compact. Then f
is quasi-compact.

Proof. Let Z → Y be a morphism of algebraic spaces with Z quasi-compact. As g
is universally open and surjective, we see that Y ′×Y Z → Z is open and surjective.
As every point of |Y ′ ×Y Z| has a fundamental system of quasi-compact open
neighbourhoods (see Properties of Spaces, Lemma 66.5.5) we can find a quasi-
compact open W ⊂ |Y ′ ×Y Z| which surjects onto Z. Denote f ′′ : W ×Y X → W
the base change of f ′ by W → Y ′. By assumption W ×Y X is quasi-compact. As
W → Z is surjective we see that W ×Y X → Z ×Y X is surjective. Hence Z ×Y X
is quasi-compact by Lemma 67.8.6. Thus f is quasi-compact. □

Lemma 67.8.8.03KG Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is quasi-compact,
(2) for every scheme Z and any morphism Z → Y the morphism of algebraic

spaces Z ×Y X → Z is quasi-compact,
(3) for every affine scheme Z and any morphism Z → Y the algebraic space

Z ×Y X is quasi-compact,
(4) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is a quasi-compact morphism of algebraic spaces, and
(5) there exists a surjective étale morphism Y ′ → Y of algebraic spaces such

that Y ′×Y X → Y ′ is a quasi-compact morphism of algebraic spaces, and
(6) there exists a Zariski covering Y =

⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is quasi-compact.
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Proof. We will use Lemma 67.8.4 without further mention. It is clear that (1)
implies (2) and that (2) implies (3). Assume (3). Let Z be a quasi-compact algebraic
space over S, and let Z → Y be a morphism. By Properties of Spaces, Lemma
66.6.3 there exists an affine scheme U and a surjective étale morphism U → Z.
Then U ×Y X → Z ×Y X is a surjective morphism of algebraic spaces, see Lemma
67.5.5. By assumption |U ×Y X| is quasi-compact. It surjects onto |Z×Y X|, hence
we conclude that |Z ×Y X| is quasi-compact, see Topology, Lemma 5.12.7. This
proves that (3) implies (1).
The implications (1) ⇒ (4), (4) ⇒ (5) are clear. The implication (5) ⇒ (1) follows
from Lemma 67.8.7 and the fact that an étale morphism of algebraic spaces is
universally open (see discussion following Definition 67.6.2).
Of course (1) implies (6) by taking the covering Y = Y . Assume Y =

⋃
Yi is as

in (6). Let Z be affine and let Z → Y be a morphism. Then there exists a finite
standard affine covering Z = Z1 ∪ . . . ∪ Zn such that each Zj → Y factors through
Yij for some ij . Hence the algebraic space

Zj ×Y X = Zj ×Yij f
−1(Yij )

is quasi-compact. Since Z ×Y X =
⋃
j=1,...,n Zj ×Y X is a Zariski covering we see

that |Z ×Y X| =
⋃
j=1,...,n |Zj ×Y X| (see Properties of Spaces, Lemma 66.4.8) is

a finite union of quasi-compact spaces, hence quasi-compact. Thus we see that (6)
implies (3). □

The following (and the next) lemma guarantees in particular that a morphism
X → Spec(A) is quasi-compact as soon as X is a quasi-compact algebraic space

Lemma 67.8.9.03KS Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of algebraic spaces over S. If g ◦ f is quasi-compact and g is quasi-separated then
f is quasi-compact.

Proof. This is true because f equals the composition (1, f) : X → X ×Z Y → Y .
The first map is quasi-compact by Lemma 67.4.7 because it is a section of the quasi-
separated morphism X ×Z Y → X (a base change of g, see Lemma 67.4.4). The
second map is quasi-compact as it is the base change of f , see Lemma 67.8.4. And
compositions of quasi-compact morphisms are quasi-compact, see Lemma 67.8.5.

□

Lemma 67.8.10.073B Let f : X → Y be a morphism of algebraic spaces over a scheme
S.

(1) If X is quasi-compact and Y is quasi-separated, then f is quasi-compact.
(2) If X is quasi-compact and quasi-separated and Y is quasi-separated, then

f is quasi-compact and quasi-separated.
(3) A fibre product of quasi-compact and quasi-separated algebraic spaces is

quasi-compact and quasi-separated.

Proof. Part (1) follows from Lemma 67.8.9 with Z = S = Spec(Z). Part (2) follows
from (1) and Lemma 67.4.10. For (3) let X → Y and Z → Y be morphisms of quasi-
compact and quasi-separated algebraic spaces. Then X×Y Z → Z is quasi-compact
and quasi-separated as a base change of X → Y using (2) and Lemmas 67.8.4 and
67.4.4. Hence X ×Y Z is quasi-compact and quasi-separated as an algebraic space
quasi-compact and quasi-separated over Z, see Lemmas 67.4.9 and 67.8.5. □
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67.9. Universally closed morphisms

03HH For a representable morphism of algebraic spaces we have already defined (in Section
67.3) what it means to be universally closed. Hence before we give the natural
definition we check that it agrees with this in the representable case.

Lemma 67.9.1.03XD Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. The following are equivalent

(1) f is universally closed (in the sense of Section 67.3), and
(2) for every morphism of algebraic spaces Z → Y the morphism of topological

spaces |Z ×Y X| → |Z| is closed.

Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a surjective
étale morphism V → Y . By assumption the morphism of schemes V ×Y X → V
is universally closed. By Properties of Spaces, Section 66.4 in the commutative
diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover
|V ×Y X| −→ |V | ×|Z| |Z ×Y X|

is surjective. Hence as the left vertical arrow is closed it follows that the right
vertical arrow is closed. This proves (2). The implication (2) ⇒ (1) is immediate
from the definitions. □

Thus we may use the following natural definition.

Definition 67.9.2.03HI Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is closed if the map of topological spaces |X| → |Y | is closed.
(2) We say f is universally closed if for every morphism of algebraic spaces

Z → Y the morphism of topological spaces
|Z ×Y X| → |Z|

is closed, i.e., the base change Z ×Y X → Z is closed.

Lemma 67.9.3.03IS The base change of a universally closed morphism of algebraic
spaces by any morphism of algebraic spaces is universally closed.

Proof. This is immediate from the definition. □

Lemma 67.9.4.03IU The composition of a pair of (universally) closed morphisms of
algebraic spaces is (universally) closed.

Proof. Omitted. □

Lemma 67.9.5.03IT Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f is universally closed,
(2) for every scheme Z and every morphism Z → Y the projection |Z×Y X| →
|Z| is closed,

https://stacks.math.columbia.edu/tag/03XD
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(3) for every affine scheme Z and every morphism Z → Y the projection
|Z ×Y X| → |Z| is closed,

(4) there exists a scheme V and a surjective étale morphism V → Y such that
V ×Y X → V is a universally closed morphism of algebraic spaces, and

(5) there exists a Zariski covering Y =
⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is universally closed.

Proof. We omit the proof that (1) implies (2), and that (2) implies (3).

Assume (3). Choose a surjective étale morphism V → Y . We are going to show
that V ×Y X → V is a universally closed morphism of algebraic spaces. Let Z → V
be a morphism from an algebraic space to V . Let W → Z be a surjective étale
morphism where W =

∐
Wi is a disjoint union of affine schemes, see Properties of

Spaces, Lemma 66.6.1. Then we have the following commutative diagram∐
i |Wi ×Y X|

��

|W ×Y X| //

��

|Z ×Y X|

��

|Z ×V (V ×Y X)|

vv∐
|Wi| |W | // |Z|

We have to show the south-east arrow is closed. The middle horizontal arrows are
surjective and open (Properties of Spaces, Lemma 66.16.7). By assumption (3),
and the fact that Wi is affine we see that the left vertical arrows are closed. Hence
it follows that the right vertical arrow is closed.

Assume (4). We will show that f is universally closed. Let Z → Y be a morphism
of algebraic spaces. Consider the diagram

|(V ×Y Z)×V (V ×Y X)|

))

|V ×Y X| //

��

|Z ×Y X|

��
|V ×Y Z| // |Z|

The south-west arrow is closed by assumption. The horizontal arrows are surjective
and open because the corresponding morphisms of algebraic spaces are étale (see
Properties of Spaces, Lemma 66.16.7). It follows that the right vertical arrow is
closed.

Of course (1) implies (5) by taking the covering Y = Y . Assume Y =
⋃
Yi is as in

(5). Then for any Z → Y we get a corresponding Zariski covering Z =
⋃
Zi such

that the base change of f to Zi is closed. By a simple topological argument this
implies that Z ×Y X → Z is closed. Hence (1) holds. □

Example 67.9.6.03IV Strange example of a universally closed morphism. Let Q ⊂ k be
a field of characteristic zero. Let X = A1

k/Z as in Spaces, Example 65.14.8. We
claim the structure morphism p : X → Spec(k) is universally closed. Namely, if
Z/k is a scheme, and T ⊂ |X ×k Z| is closed, then T corresponds to a Z-invariant
closed subset of T ′ ⊂ |A1 × Z|. It is easy to see that this implies that T ′ is the
inverse image of a subset T ′′ of Z. By Morphisms, Lemma 29.25.12 we have that
T ′′ ⊂ Z is closed. Of course T ′′ is the image of T . Hence p is universally closed by
Lemma 67.9.5.

https://stacks.math.columbia.edu/tag/03IV
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Lemma 67.9.7.04XW Let S be a scheme. A universally closed morphism of algebraic
spaces over S is quasi-compact.

Proof. This proof is a repeat of the proof in the case of schemes, see Morphisms,
Lemma 29.41.8. Let f : X → Y be a morphism of algebraic spaces over S. Assume
that f is not quasi-compact. Our goal is to show that f is not universally closed.
By Lemma 67.8.8 there exists an affine scheme Z and a morphism Z → Y such
that Z×Y X → Z is not quasi-compact. To achieve our goal it suffices to show that
Z ×Y X → Z is not universally closed, hence we may assume that Y = Spec(B)
for some ring B.

Write X =
⋃
i∈I Xi where the Xi are quasi-compact open subspaces of X. For

example, choose a surjective étale morphism U → X where U is a scheme, choose
an affine open covering U =

⋃
Ui and let Xi ⊂ X be the image of Ui. We will

use later that the morphisms Xi → Y are quasi-compact, see Lemma 67.8.9. Let
T = Spec(B[ai; i ∈ I]). Let Ti = D(ai) ⊂ T . Let Z ⊂ T ×Y X be the reduced
closed subspace whose underlying closed set of points is |T ×Y Z| \

⋃
i∈I |Ti×Y Xi|,

see Properties of Spaces, Lemma 66.12.3. (Note that Ti×Y Xi is an open subspace
of T ×Y X as Ti → T and Xi → X are open immersions, see Spaces, Lemmas
65.12.3 and 65.12.2.) Here is a diagram

Z //

##

T ×Y X

fT
��

q
// X

f

��
T

p // Y

It suffices to prove that the image fT (|Z|) is not closed in |T |.

We claim there exists a point y ∈ Y such that there is no affine open neighborhood
V of y in Y such that XV is quasi-compact. If not then we can cover Y with
finitely many such V and for each V the morphism YV → V is quasi-compact by
Lemma 67.8.9 and then Lemma 67.8.8 implies f quasi-compact, a contradiction.
Fix a y ∈ Y as in the claim.

Let t ∈ T be the point lying over y with κ(t) = κ(y) such that ai = 1 in κ(t) for all
i. Suppose z ∈ |Z| with fT (z) = t. Then q(t) ∈ Xi for some i. Hence fT (z) ̸∈ Ti
by construction of Z, which contradicts the fact that t ∈ Ti by construction. Hence
we see that t ∈ |T | \ fT (|Z|).

Assume fT (|Z|) is closed in |T |. Then there exists an element g ∈ B[ai; i ∈ I] with
fT (|Z|) ⊂ V (g) but t ̸∈ V (g). Hence the image of g in κ(t) is nonzero. In particular
some coefficient of g has nonzero image in κ(y). Hence this coefficient is invertible
on some affine open neighborhood V of y. Let J be the finite set of j ∈ I such
that the variable aj appears in g. Since XV is not quasi-compact and each Xi,V

is quasi-compact, we may choose a point x ∈ |XV | \
⋃
j∈J |Xj,V |. In other words,

x ∈ |X| \
⋃
j∈J |Xj | and x lies above some v ∈ V . Since g has a coefficient that is

invertible on V , we can find a point t′ ∈ T lying above v such that t′ ̸∈ V (g) and
t′ ∈ V (ai) for all i /∈ J . This is true because V (ai; i ∈ I\J) = Spec(B[aj ; j ∈ J ]) and
the set of points of this scheme lying over v is bijective with Spec(κ(v)[aj ; j ∈ J ])
and g restricts to a nonzero element of this polynomial ring by construction. In
other words t′ ̸∈ Ti for each i ̸∈ J . By Properties of Spaces, Lemma 66.4.3 we can
find a point z of X ×Y T mapping to x ∈ X and to t′ ∈ T . Since x ̸∈ |Xj | for j ∈ J

https://stacks.math.columbia.edu/tag/04XW
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and t′ ̸∈ Ti for i ∈ I \ J we see that z ∈ |Z|. On the other hand fT (z) = t′ ̸∈ V (g)
which contradicts fT (Z) ⊂ V (g). Thus the assumption “fT (|Z|) closed” is wrong
and we conclude indeed that fT is not closed as desired. □

The target of a separated algebraic space under a surjective universally closed
morphism is separated.

Lemma 67.9.8.05Z2 Let S be a scheme. Let B be an algebraic space over S. Let
f : X → Y be a surjective universally closed morphism of algebraic spaces over B.

(1) If X is quasi-separated, then Y is quasi-separated.
(2) If X is separated, then Y is separated.
(3) If X is quasi-separated over B, then Y is quasi-separated over B.
(4) If X is separated over B, then Y is separated over B.

Proof. Parts (1) and (2) are a consequence of (3) and (4) for S = B = Spec(Z)
(see Properties of Spaces, Definition 66.3.1). Consider the commutative diagram

X

��

∆X/B

// X ×B X

��
Y

∆Y/B // Y ×B Y

The left vertical arrow is surjective (i.e., universally surjective). The right vertical
arrow is universally closed as a composition of the universally closed morphisms
X ×BX → X ×B Y → Y ×B Y . Hence it is also quasi-compact, see Lemma 67.9.7.

Assume X is quasi-separated over B, i.e., ∆X/B is quasi-compact. Then if Z is
quasi-compact and Z → Y ×B Y is a morphism, then Z ×Y×BY X → Z ×Y×BY Y
is surjective and Z×Y×BY X is quasi-compact by our remarks above. We conclude
that ∆Y/B is quasi-compact, i.e., Y is quasi-separated over B.

Assume X is separated over B, i.e., ∆X/B is a closed immersion. Then if Z is affine,
and Z → Y ×B Y is a morphism, then Z×Y×BY X → Z×Y×BY Y is surjective and
Z ×Y×BY X → Z is universally closed by our remarks above. We conclude that
∆Y/B is universally closed. It follows that ∆Y/B is representable, locally of finite
type, a monomorphism (see Lemma 67.4.1) and universally closed, hence a closed
immersion, see Étale Morphisms, Lemma 41.7.2 (and also the abstract principle
Spaces, Lemma 65.5.8). Thus Y is separated over B. □

67.10. Monomorphisms

042K A representable morphism X → Y of algebraic spaces is a monomorphism according
to Section 67.3 if for every scheme Z and morphism Z → Y the morphism Z ×Y
X → Z is representable by a monomorphism of schemes. This means exactly
that Z ×Y X → Z is an injective map of sheaves on (Sch/S)fppf . Since this is
supposed to hold for all Z and all maps Z → Y this is in turn equivalent to the
map X → Y being an injective map of sheaves on (Sch/S)fppf . Thus we may define
a monomorphism of a (possibly nonrepresentable3) morphism of algebraic spaces
as follows.

3We do not know whether any monomorphism of algebraic spaces is representable. For a
discussion see More on Morphisms of Spaces, Section 76.4.

https://stacks.math.columbia.edu/tag/05Z2
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Definition 67.10.1.042L Let S be a scheme. A morphism of algebraic spaces over S is
called a monomorphism if it is an injective map of sheaves, i.e., a monomorphism
in the category of sheaves on (Sch/S)fppf .
The following lemma shows that this also means that it is a monomorphism in the
category of algebraic spaces over S.
Lemma 67.10.2.042M Let S be a scheme. Let j : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) j is a monomorphism (as in Definition 67.10.1),
(2) j is a monomorphism in the category of algebraic spaces over S, and
(3) the diagonal morphism ∆X/Y : X → X ×Y X is an isomorphism.

Proof. Note that X ×Y X is both the fibre product in the category of sheaves on
(Sch/S)fppf and the fibre product in the category of algebraic spaces over S, see
Spaces, Lemma 65.7.3. The equivalence of (1) and (3) is a general characteriza-
tion of injective maps of sheaves on any site. The equivalence of (2) and (3) is a
characterization of monomorphisms in any category with fibre products. □

Lemma 67.10.3.042N A monomorphism of algebraic spaces is separated.
Proof. This is true because an isomorphism is a closed immersion, and Lemma
67.10.2 above. □

Lemma 67.10.4.042O A composition of monomorphisms is a monomorphism.
Proof. True because a composition of injective sheaf maps is injective. □

Lemma 67.10.5.042P The base change of a monomorphism is a monomorphism.
Proof. This is a general fact about fibre products in a category of sheaves. □

Lemma 67.10.6.042Q Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f is a monomorphism,
(2) for every scheme Z and morphism Z → Y the base change Z ×Y X → Z

of f is a monomorphism,
(3) for every affine scheme Z and every morphism Z → Y the base change

Z ×Y X → Z of f is a monomorphism,
(4) there exists a scheme V and a surjective étale morphism V → Y such that

the base change V ×Y X → V is a monomorphism, and
(5) there exists a Zariski covering Y =

⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is a monomorphism.
Proof. We will use without further mention that a base change of a monomorphism
is a monomorphism, see Lemma 67.10.5. In particular it is clear that (1) ⇒ (2)
⇒ (3) ⇒ (4) (by taking V to be a disjoint union of affine schemes étale over Y ,
see Properties of Spaces, Lemma 66.6.1). Let V be a scheme, and let V → Y be
a surjective étale morphism. If V ×Y X → V is a monomorphism, then it follows
that X → Y is a monomorphism. Namely, given any cartesian diagram of sheaves

F
a
//

b

��

G

c

��
H d // I

F = H×I G
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if c is a surjection of sheaves, and a is injective, then also d is injective. Thus (4)
implies (1). Proof of the equivalence of (5) and (1) is omitted. □

Lemma 67.10.7.042R An immersion of algebraic spaces is a monomorphism. In partic-
ular, any immersion is separated.

Proof. Let f : X → Y be an immersion of algebraic spaces. For any morphism
Z → Y with Z representable the base change Z ×Y X → Z is an immersion
of schemes, hence a monomorphism, see Schemes, Lemma 26.23.8. Hence f is
representable, and a monomorphism. □

We will improve on the following lemma in Decent Spaces, Lemma 68.19.1.

Lemma 67.10.8.06MG Let S be a scheme. Let k be a field and let Z → Spec(k) be a
monomorphism of algebraic spaces over S. Then either Z = ∅ or Z = Spec(k).

Proof. By Lemmas 67.10.3 and 67.4.9 we see that Z is a separated algebraic space.
Hence there exists an open dense subspace Z ′ ⊂ Z which is a scheme, see Properties
of Spaces, Proposition 66.13.3. By Schemes, Lemma 26.23.11 we see that either
Z ′ = ∅ or Z ′ ∼= Spec(k). In the first case we conclude that Z = ∅ and in the second
case we conclude that Z ′ = Z = Spec(k) as Z → Spec(k) is a monomorphism which
is an isomorphism over Z ′. □

Lemma 67.10.9.06RV Let S be a scheme. If X → Y is a monomorphism of algebraic
spaces over S, then |X| → |Y | is injective.

Proof. Immediate from the definitions. □

67.11. Pushforward of quasi-coherent sheaves

03M7 We first prove a simple lemma that relates pushforward of sheaves of modules for a
morphism of algebraic spaces to pushforward of sheaves of modules for a morphism
of schemes.

Lemma 67.11.1.03M8 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let U → X be a surjective étale morphism from a scheme to X. Set
R = U ×X U and denote t, s : R → U the projection morphisms as usual. Denote
a : U → Y and b : R → Y the induced morphisms. For any object F of Mod(OX)
there exists an exact sequence

0→ f∗F → a∗(F|U )→ b∗(F|R)
where the second arrow is the difference t∗ − s∗.

Proof. We denote F also its extension to a sheaf of modules on Xspaces,étale, see
Properties of Spaces, Remark 66.18.4. Let V → Y be an object of Yétale. Then
V ×Y X is an object of Xspaces,étale, and by definition f∗F(V ) = F(V ×Y X). Since
U → X is surjective étale, we see that {V ×Y U → V ×Y X} is a covering. Also,
we have (V ×Y U)×X (V ×Y U) = V ×Y R. Hence, by the sheaf condition of F on
Xspaces,étale we have a short exact sequence

0→ F(V ×Y X)→ F(V ×Y U)→ F(V ×Y R)
where the second arrow is the difference of restricting via t or s. This exact sequence
is functorial in V and hence we obtain the lemma. □

https://stacks.math.columbia.edu/tag/042R
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Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-separated mor-
phism of representable algebraic spaces X and Y over S. By Descent, Proposition
35.9.4 the functor f∗ : QCoh(OX) → QCoh(OY ) agrees with the usual functor if
we think of X and Y as schemes.

More generally, suppose f : X → Y is a representable, quasi-compact, and quasi-
separated morphism of algebraic spaces over S. Let V be a scheme and let V → Y
be an étale surjective morphism. Let U = V ×Y X and let f ′ : U → V be the base
change of f . Then for any quasi-coherent OX -module F we have

(67.11.1.1)04CF f ′
∗(F|U ) = (f∗F)|V ,

see Properties of Spaces, Lemma 66.26.2. And because f ′ : U → V is a quasi-
compact and quasi-separated morphism of schemes, by the remark of the preceding
paragraph we may compute f ′

∗(F|U ) by thinking of F|U as a quasi-coherent sheaf
on the scheme U , and f ′ as a morphism of schemes. We will frequently use this
without further mention.

The next level of generality is to consider an arbitrary quasi-compact and quasi-
separated morphism of algebraic spaces.

Lemma 67.11.2.03M9 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is quasi-compact and quasi-separated, then f∗ transforms quasi-
coherent OX -modules into quasi-coherent OY -modules.

Proof. Let F be a quasi-coherent sheaf on X. We have to show that f∗F is a
quasi-coherent sheaf on Y . For this it suffices to show that for any affine scheme
V and étale morphism V → Y the restriction of f∗F to V is quasi-coherent, see
Properties of Spaces, Lemma 66.29.6. Let f ′ : V ×Y X → V be the base change of
f by V → Y . Note that f ′ is also quasi-compact and quasi-separated, see Lemmas
67.8.4 and 67.4.4. By (67.11.1.1) we know that the restriction of f∗F to V is f ′

∗ of
the restriction of F to V ×Y X. Hence we may replace f by f ′, and assume that
Y is an affine scheme.

Assume Y is an affine scheme. Since f is quasi-compact we see that X is quasi-
compact. Thus we may choose an affine scheme U and a surjective étale morphism
U → X, see Properties of Spaces, Lemma 66.6.3. By Lemma 67.11.1 we get an
exact sequence

0→ f∗F → a∗(F|U )→ b∗(F|R).

where R = U ×X U . As X → Y is quasi-separated we see that R → U ×Y U is a
quasi-compact monomorphism. This implies that R is a quasi-compact separated
scheme (as U and Y are affine at this point). Hence a : U → Y and b : R → Y
are quasi-compact and quasi-separated morphisms of schemes. Thus by Descent,
Proposition 35.9.4 the sheaves a∗(F|U ) and b∗(F|R) are quasi-coherent (see also
the discussion preceding this lemma). This implies that f∗F is a kernel of quasi-
coherent modules, and hence itself quasi-coherent, see Properties of Spaces, Lemma
66.29.7. □

Higher direct images are discussed in Cohomology of Spaces, Section 69.3.

https://stacks.math.columbia.edu/tag/03M9
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67.12. Immersions

03HB Open, closed and locally closed immersions of algebraic spaces were defined in
Spaces, Section 65.12. Namely, a morphism of algebraic spaces is a closed immer-
sion (resp. open immersion, resp. immersion) if it is representable and a closed
immersion (resp. open immersion, resp. immersion) in the sense of Section 67.3.

In particular these types of morphisms are stable under base change and composi-
tions of morphisms in the category of algebraic spaces over S, see Spaces, Lemmas
65.12.2 and 65.12.3.

Lemma 67.12.1.03M4 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is a closed immersion (resp. open immersion, resp. immersion),
(2) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is a closed immersion (resp. open immersion, resp. immersion),
(3) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is a closed immersion (resp. open immersion, resp. immersion),
(4) there exists a scheme V and a surjective étale morphism V → Y such

that V ×Y X → V is a closed immersion (resp. open immersion, resp.
immersion), and

(5) there exists a Zariski covering Y =
⋃
Yi such that each of the morphisms

f−1(Yi) → Yi is a closed immersion (resp. open immersion, resp. immer-
sion).

Proof. Using that a base change of a closed immersion (resp. open immersion, resp.
immersion) is another one it is clear that (1) implies (2) and (2) implies (3). Also
(3) implies (4) since we can take V to be a disjoint union of affines, see Properties
of Spaces, Lemma 66.6.1.

Assume V → Y is as in (4). Let P be the property closed immersion (resp. open
immersion, resp. immersion) of morphisms of schemes. Note that property P is
preserved under any base change and fppf local on the base (see Section 67.3).
Moreover, morphisms of type P are separated and locally quasi-finite (in each of
the three cases, see Schemes, Lemma 26.23.8, and Morphisms, Lemma 29.20.16).
Hence by More on Morphisms, Lemma 37.57.1 the morphisms of type P satisfy
descent for fppf covering. Thus Spaces, Lemma 65.11.5 applies and we see that
X → Y is representable and has property P, in other words (1) holds.

The equivalence of (1) and (5) follows from the fact that P is Zariski local on the
target (since we saw above that P is in fact fppf local on the target). □

Lemma 67.12.2.0AGC Let S be a scheme. Let Z → Y → X be morphisms of algebraic
spaces over S.

(1) If Z → X is representable, locally of finite type, locally quasi-finite, sep-
arated, and a monomorphism, then Z → Y is representable, locally of
finite type, locally quasi-finite, separated, and a monomorphism.

(2) If Z → X is an immersion and Y → X is locally separated, then Z → Y
is an immersion.

(3) If Z → X is a closed immersion and Y → X is separated, then Z → Y is
a closed immersion.

https://stacks.math.columbia.edu/tag/03M4
https://stacks.math.columbia.edu/tag/0AGC


67.12. IMMERSIONS 5319

Proof. In each case the proof is to contemplate the commutative diagram
Z //

##

Y ×X Z //

��

Z

��
Y // X

where the composition of the top horizontal arrows is the identity. Let us prove (1).
The first horizontal arrow is a section of Y ×X Z → Z, whence representable, lo-
cally of finite type, locally quasi-finite, separated, and a monomorphism by Lemma
67.4.7. The arrow Y ×X Z → Y is a base change of Z → X hence is repre-
sentable, locally of finite type, locally quasi-finite, separated, and a monomorphism
(as each of these properties of morphisms of schemes is stable under base change,
see Spaces, Remark 65.4.1). Hence the same is true for the composition (as each of
these properties of morphisms of schemes is stable under composition, see Spaces,
Remark 65.4.2). This proves (1). The other results are proved in exactly the same
manner. □

Lemma 67.12.3.04CD Let S be a scheme. Let i : Z → X be an immersion of algebraic
spaces over S. Then |i| : |Z| → |X| is a homeomorphism onto a locally closed
subset, and i is a closed immersion if and only if the image |i|(|Z|) ⊂ |X| is a closed
subset.

Proof. The first statement is Properties of Spaces, Lemma 66.12.1. Let U be a
scheme and let U → X be a surjective étale morphism. By assumption T = U×XZ
is a scheme and the morphism j : T → U is an immersion of schemes. By Lemma
67.12.1 the morphism i is a closed immersion if and only if j is a closed immersion.
By Schemes, Lemma 26.10.4 this is true if and only if j(T ) is closed in U . However,
the subset j(T ) ⊂ U is the inverse image of |i|(|Z|) ⊂ |X|, see Properties of Spaces,
Lemma 66.4.3. This finishes the proof. □

Remark 67.12.4.04CE Let S be a scheme. Let i : Z → X be an immersion of algebraic
spaces over S. Since i is a monomorphism we may think of |Z| as a subset of |X|; in
the rest of this remark we do so. Let ∂|Z| be the boundary of |Z| in the topological
space |X|. In a formula

∂|Z| = |Z| \ |Z|.
Let ∂Z be the reduced closed subspace of X with |∂Z| = ∂|Z| obtained by taking
the reduced induced closed subspace structure, see Properties of Spaces, Definition
66.12.5. By construction we see that |Z| is closed in |X| \ |∂Z| = |X \∂Z|. Hence it
is true that any immersion of algebraic spaces can be factored as a closed immersion
followed by an open immersion (but not the other way in general, see Morphisms,
Example 29.3.4).

Remark 67.12.5.06EC Let S be a scheme. Let X be an algebraic space over S. Let
T ⊂ |X| be a locally closed subset. Let ∂T be the boundary of T in the topological
space |X|. In a formula

∂T = T \ T.
Let U ⊂ X be the open subspace of X with |U | = |X| \ ∂T , see Properties of
Spaces, Lemma 66.4.8. Let Z be the reduced closed subspace of U with |Z| = T
obtained by taking the reduced induced closed subspace structure, see Properties
of Spaces, Definition 66.12.5. By construction Z → U is a closed immersion of
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algebraic spaces and U → X is an open immersion, hence Z → X is an immersion
of algebraic spaces over S (see Spaces, Lemma 65.12.2). Note that Z is a reduced
algebraic space and that |Z| = T as subsets of |X|. We sometimes say Z is the
reduced induced subspace structure on T .

Lemma 67.12.6.081U Let S be a scheme. Let Z → X be an immersion of algebraic spaces
over S. Assume Z → X is quasi-compact. There exists a factorization Z → Z → X
where Z → Z is an open immersion and Z → X is a closed immersion.

Proof. Let U be a scheme and let U → X be surjective étale. As usual denote
R = U ×X U with projections s, t : R → U . Set T = Z ×U X. Let T ⊂ U be
the scheme theoretic image of T → U . Note that s−1T = t−1T as taking scheme
theoretic images of quasi-compact morphisms commute with flat base change, see
Morphisms, Lemma 29.25.16. Hence we obtain a closed subspace Z ⊂ X whose
pullback to U is T , see Properties of Spaces, Lemma 66.12.2. By Morphisms,
Lemma 29.7.7 the morphism T → T is an open immersion. It follows that Z → Z
is an open immersion and we win. □

67.13. Closed immersions

03MA In this section we elucidate some of the results obtained previously on immersions
of algebraic spaces. See Spaces, Section 65.12 and Section 67.12 in this chapter.
This section is the analogue of Morphisms, Section 29.2 for algebraic spaces.

Lemma 67.13.1.03MB Let S be a scheme. Let X be an algebraic space over S. For every
closed immersion i : Z → X the sheaf i∗OZ is a quasi-coherent OX -module, the
map i♯ : OX → i∗OZ is surjective and its kernel is a quasi-coherent sheaf of ideals.
The rule Z 7→ Ker(OX → i∗OZ) defines an inclusion reversing bijection

closed subspaces
Z ⊂ X −→ quasi-coherent sheaves

of ideals I ⊂ OX
Moreover, given a closed subscheme Z corresponding to the quasi-coherent sheaf of
ideals I ⊂ OX a morphism of algebraic spaces h : Y → X factors through Z if and
only if the map h∗I → h∗OX = OY is zero.

Proof. Let U → X be a surjective étale morphism whose source is a scheme. Con-
sider the diagram

U ×X Z //

i′

��

Z

i

��
U // X

By Lemma 67.12.1 we see that i is a closed immersion if and only if i′ is a closed
immersion. By Properties of Spaces, Lemma 66.26.2 we see that i′∗OU×XZ is the
restriction of i∗OZ to U . Hence the assertions on OX → i∗OZ are equivalent to the
corresponding assertions on OU → i′∗OU×XZ . And since i′ is a closed immersion of
schemes, these results follow from Morphisms, Lemma 29.2.1.
Let us prove that given a quasi-coherent sheaf of ideals I ⊂ OX the formula

Z(T ) = {h : T → X | h∗I → OT is zero}
defines a closed subspace of X. It is clearly a subfunctor of X. To show that Z → X
is representable by closed immersions, let φ : U → X be a morphism from a scheme
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towards X. Then Z ×X U is represented by the analogous subfunctor of U corre-
sponding to the sheaf of ideals Im(φ∗I → OU ). By Properties of Spaces, Lemma
66.29.2 the OU -module φ∗I is quasi-coherent on U , and hence Im(φ∗I → OU ) is a
quasi-coherent sheaf of ideals on U . By Schemes, Lemma 26.4.6 we conclude that
Z ×X U is represented by the closed subscheme of U associated to Im(φ∗I → OU ).
Thus Z is a closed subspace of X.
In the formula for Z above the inputs T are schemes since algebraic spaces are
sheaves on (Sch/S)fppf . We omit the verification that the same formula remains
true if T is an algebraic space. □

Definition 67.13.2.083Q Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Let Z ⊂ X be a closed subspace. The inverse image f−1(Z) of the
closed subspace Z is the closed subspace Z ×X Y of Y .

This definition makes sense by Lemma 67.12.1. If I ⊂ OX is the quasi-coherent
sheaf of ideals corresponding to Z via Lemma 67.13.1 then f−1IOY = Im(f∗I →
OY ) is the sheaf of ideals corresponding to f−1(Z).

Lemma 67.13.3.04CG A closed immersion of algebraic spaces is quasi-compact.

Proof. This follows from Schemes, Lemma 26.19.5 by general principles, see Spaces,
Lemma 65.5.8. □

Lemma 67.13.4.04CH A closed immersion of algebraic spaces is separated.

Proof. This follows from Schemes, Lemma 26.23.8 by general principles, see Spaces,
Lemma 65.5.8. □

Lemma 67.13.5.04E5 Let S be a scheme. Let i : Z → X be a closed immersion of
algebraic spaces over S.

(1) The functor
ismall,∗ : Sh(Zétale) −→ Sh(Xétale)

is fully faithful and its essential image is those sheaves of sets F on Xétale

whose restriction to X \ Z is isomorphic to ∗, and
(2) the functor

ismall,∗ : Ab(Zétale) −→ Ab(Xétale)
is fully faithful and its essential image is those abelian sheaves on Xétale

whose support is contained in |Z|.
In both cases i−1

small is a left inverse to the functor ismall,∗.

Proof. Let U be a scheme and let U → X be surjective étale. Set V = Z ×X U .
Then V is a scheme and i′ : V → U is a closed immersion of schemes. By Properties
of Spaces, Lemma 66.18.12 for any sheaf G on Z we have

(i−1
smallismall,∗G)|V = (i′)−1

smalli
′
small,∗(G|V )

By Étale Cohomology, Proposition 59.46.4 the map (i′)−1
smalli

′
small,∗(G|V )→ G|V is

an isomorphism. Since V → Z is surjective and étale this implies that i−1
smallismall,∗G →

G is an isomorphism. This clearly implies that ismall,∗ is fully faithful, see Sites,
Lemma 7.41.1. To prove the statement on the essential image, consider a sheaf of
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sets F on Xétale whose restriction to X \ Z is isomorphic to ∗. As in the proof of
Étale Cohomology, Proposition 59.46.4 we consider the adjunction mapping

F −→ ismall,∗i
−1
smallF .

As in the first part we see that the restriction of this map to U is an isomorphism
by the corresponding result for the case of schemes. Since U is an étale covering of
X we conclude it is an isomorphism. □

Lemma 67.13.6.0DK1 Let S be a scheme. Let i : Z → X be a closed immersion of
algebraic spaces over S. Let z be a geometric point of Z with image x in X. Then
(ismall,∗F)z = Fx for any sheaf F on Zétale.

Proof. Choose an étale neighbourhood (U, u) of x. Then the stalk (ismall,∗F)z is
the stalk of ismall,∗F|U at u. By Properties of Spaces, Lemma 66.18.12 we may
replace X by U and Z by Z ×X U . Then Z → X is a closed immersion of schemes
and the result is Étale Cohomology, Lemma 59.46.3. □

The following lemma holds more generally in the setting of a closed immersion of
topoi (insert future reference here).

Lemma 67.13.7.04G0 Let S be a scheme. Let i : Z → X be a closed immersion of
algebraic spaces over S. Let A be a sheaf of rings on Xétale. Let B be a sheaf of
rings on Zétale. Let φ : A → ismall,∗B be a homomorphism of sheaves of rings so
that we obtain a morphism of ringed topoi

f : (Sh(Zétale),B) −→ (Sh(Xétale),A).
For a sheaf of A-modules F and a sheaf of B-modules G the canonical map

F ⊗A f∗G −→ f∗(f∗F ⊗B G).
is an isomorphism.

Proof. The map is the map adjoint to the map
f∗F ⊗B f

∗f∗G = f∗(F ⊗A f∗G) −→ f∗F ⊗B G

coming from id : f∗F → f∗F and the adjunction map f∗f∗G → G. To see this
map is an isomorphism, we may check on stalks (Properties of Spaces, Theorem
66.19.12). Let z : Spec(k) → Z be a geometric point with image x = i ◦ z :
Spec(k)→ X. Working out what our maps does on stalks, we see that we have to
show

Fx ⊗Ax
Gz = (Fx ⊗Ax

Bz)⊗Bz Gz
which holds true. Here we have used that taking tensor products commutes with
taking stalks, the behaviour of stalks under pullback Properties of Spaces, Lemma
66.19.9, and the behaviour of stalks under pushforward along a closed immersion
Lemma 67.13.6. □

67.14. Closed immersions and quasi-coherent sheaves

04CI This section is the analogue of Morphisms, Section 29.4.

Lemma 67.14.1.04CJ Let S be a scheme. Let i : Z → X be a closed immersion of
algebraic spaces over S. Let I ⊂ OX be the quasi-coherent sheaf of ideals cutting
out Z.
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(1) For any OX -module F the adjunction map F → i∗i
∗F induces an isomor-

phism F/IF ∼= i∗i
∗F .

(2) The functor i∗ is a left inverse to i∗, i.e., for any OZ-module G the ad-
junction map i∗i∗G → G is an isomorphism.

(3) The functor

i∗ : QCoh(OZ) −→ QCoh(OX)

is exact, fully faithful, with essential image those quasi-coherent OX -
modules F such that IF = 0.

Proof. During this proof we work exclusively with sheaves on the small étale sites,
and we use i∗, i−1, . . . to denote pushforward and pullback of sheaves of abelian
groups instead of ismall,∗, i−1

small.

Let F be anOX -module. By Lemma 67.13.7 applied withA = OX and G = B = OZ
we see that i∗i∗F = F ⊗OX

OZ . By Lemma 67.13.1 we see that we have a short
exact sequence

0→ I → OX → i∗OZ → 0
It follows from properties of the tensor product that F ⊗OX

i∗OZ = F/IF . This
proves (1) (except that we omit the verification that the map is induced by the
adjunction mapping).

Let G be any OZ-module. By Lemma 67.13.5 we see that i−1i∗G = G. Hence
to prove (2) we have to show that the canonical map G ⊗i−1OX

OZ → G is an
isomorphism. This follows from general properties of tensor products if we can
show that i−1OX → OZ is surjective. By Lemma 67.13.5 it suffices to prove that
i∗i

−1OX → i∗OZ is surjective. Since the surjective map OX → i∗OZ factors
through this map we see that (2) holds.

Finally we prove the most interesting part of the lemma, namely part (3). A closed
immersion is quasi-compact and separated, see Lemmas 67.13.3 and 67.13.4. Hence
Lemma 67.11.2 applies and the pushforward of a quasi-coherent sheaf on Z is indeed
a quasi-coherent sheaf on X. Thus we obtain our functor iQCoh∗ : QCoh(OZ) →
QCoh(OX). It is clear from part (2) that iQCoh∗ is fully faithful since it has a left
inverse, namely i∗.

Now we turn to the description of the essential image of the functor i∗. It is clear
that I(i∗G) = 0 for any OZ-module, since I is the kernel of the map OX → i∗OZ
which is the map we use to put an OX -module structure on i∗G. Next, suppose that
F is any quasi-coherent OX -module such that IF = 0. Then we see that F is an
i∗OZ-module because i∗OZ = OX/I. Hence in particular its support is contained
in |Z|. We apply Lemma 67.13.5 to see that F ∼= i∗G for some OZ-module G. The
only small detail left over is to see why G is quasi-coherent. This is true because
G ∼= i∗F by part (2) and Properties of Spaces, Lemma 66.29.2. □

Let i : Z → X be a closed immersion of algebraic spaces. Because of the lemma
above we often, by abuse of notation, denote F the sheaf i∗F on X.

Lemma 67.14.2.04CK Let S be a scheme. Let X be an algebraic space over S. Let
F be a quasi-coherent OX -module. Let G ⊂ F be a OX -submodule. There exists
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a unique quasi-coherent OX -submodule G′ ⊂ G with the following property: For
every quasi-coherent OX -module H the map

HomOX
(H,G′) −→ HomOX

(H,G)
is bijective. In particular G′ is the largest quasi-coherent OX -submodule of F
contained in G.
Proof. Let Ga, a ∈ A be the set of quasi-coherent OX -submodules contained in G.
Then the image G′ of ⊕

a∈A
Ga −→ F

is quasi-coherent as the image of a map of quasi-coherent sheaves on X is quasi-
coherent and since a direct sum of quasi-coherent sheaves is quasi-coherent, see
Properties of Spaces, Lemma 66.29.7. The module G′ is contained in G. Hence this
is the largest quasi-coherent OX -module contained in G.
To prove the formula, let H be a quasi-coherent OX -module and let α : H → G be
an OX -module map. The image of the composition H → G → F is quasi-coherent
as the image of a map of quasi-coherent sheaves. Hence it is contained in G′. Hence
α factors through G′ as desired. □

Lemma 67.14.3.04CL Let S be a scheme. Let i : Z → X be a closed immersion of
algebraic spaces over S. There is a functor4 i! : QCoh(OX)→ QCoh(OZ) which is
a right adjoint to i∗. (Compare Modules, Lemma 17.6.3.)
Proof. Given quasi-coherent OX -module G we consider the subsheaf HZ(G) of G
of local sections annihilated by I. By Lemma 67.14.2 there is a canonical largest
quasi-coherent OX -submodule HZ(G)′. By construction we have

HomOX
(i∗F ,HZ(G)′) = HomOX

(i∗F ,G)
for any quasi-coherent OZ-module F . Hence we can set i!G = i∗(HZ(G)′). Details
omitted. □

Using the 1-to-1 corresponding between quasi-coherent sheaves of ideals and closed
subspaces (see Lemma 67.13.1) we can define scheme theoretic intersections and
unions of closed subschemes.
Definition 67.14.4.0CYZ Let S be a scheme. Let X be an algebraic space over S.
Let Z, Y ⊂ X be closed subspaces corresponding to quasi-coherent ideal sheaves
I,J ⊂ OX . The scheme theoretic intersection of Z and Y is the closed subspace
of X cut out by I + J . Then scheme theoretic union of Z and Y is the closed
subspace of X cut out by I ∩ J .
It is clear that formation of scheme theoretic intersection commutes with étale
localization and the same is true for scheme theoretic union.
Lemma 67.14.5.0CZ0 Let S be a scheme. Let X be an algebraic space over S. Let
Z, Y ⊂ X be closed subspaces. Let Z ∩ Y be the scheme theoretic intersection of
Z and Y . Then Z ∩ Y → Z and Z ∩ Y → Y are closed immersions and

Z ∩ Y //

��

Z

��
Y // X

4This is likely nonstandard notation.
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is a cartesian diagram of algebraic spaces over S, i.e., Z ∩ Y = Z ×X Y .

Proof. The morphisms Z ∩ Y → Z and Z ∩ Y → Y are closed immersions by
Lemma 67.13.1. Since formation of the scheme theoretic intersection commutes
with étale localization we conclude the diagram is cartesian by the case of schemes.
See Morphisms, Lemma 29.4.5. □

Lemma 67.14.6.0CZ1 Let S be a scheme. Let X be an algebraic space over S. Let
Y,Z ⊂ X be closed subspaces. Let Y ∪ Z be the scheme theoretic union of Y and
Z. Let Y ∩ Z be the scheme theoretic intersection of Y and Z. Then Y → Y ∪ Z
and Z → Y ∪ Z are closed immersions, there is a short exact sequence

0→ OY ∪Z → OY ×OZ → OY ∩Z → 0

of OZ-modules, and the diagram

Y ∩ Z //

��

Y

��
Z // Y ∪ Z

is cocartesian in the category of algebraic spaces over S, i.e., Y ∪ Z = Y ⨿Y ∩Z Z.

Proof. The morphisms Y → Y ∪Z and Z → Y ∪Z are closed immersions by Lemma
67.13.1. In the short exact sequence we use the equivalence of Lemma 67.14.1 to
think of quasi-coherent modules on closed subspaces of X as quasi-coherent modules
on X. For the first map in the sequence we use the canonical maps OY ∪Z → OY
and OY ∪Z → OZ and for the second map we use the canonical map OY → OY ∩Z
and the negative of the canonical map OZ → OY ∩Z . Then to check exactness we
may work étale locally and deduce exactness from the case of schemes (Morphisms,
Lemma 29.4.6).

To show the diagram is cocartesian, suppose we are given an algebraic space T over
S and morphisms f : Y → T , g : Z → T agreeing as morphisms Y ∩Z → T . Goal:
Show there exists a unique morphism h : Y ∪ Z → T agreeing with f and g. To
construct h we may work étale locally on Y ∪Z (as Y ∪Z is an étale sheaf being an
algebraic space). Hence we may assume that X is a scheme. In this case we know
that Y ∪ Z is the pushout of Y and Z along Y ∩ Z in the category of schemes by
Morphisms, Lemma 29.4.6. Choose a scheme T ′ and a surjective étale morphism
T ′ → T . Set Y ′ = T ′×T,f Y and Z ′ = T ′×T,g Z. Then Y ′ and Z ′ are schemes and
we have a canonical isomorphism φ : Y ′ ×Y (Y ∩ Z)→ Z ′ ×Z (Y ∩ Z) of schemes.
By More on Morphisms, Lemma 37.67.8 the pushout W ′ = Y ′ ⨿Y ′×Y (Y ∩Z),φ Z

′

exists in the category of schemes. The morphism W ′ → Y ∪ Z is étale by More on
Morphisms, Lemma 37.67.9. It is surjective as Y ′ → Y and Z ′ → Z are surjective.
The morphisms f ′ : Y ′ → T ′ and g′ : Z ′ → T ′ glue to a unique morphism of
schemes h′ : W ′ → T ′. By uniqueness the composition W ′ → T ′ → T descends to
the desired morphism h : Y ∪ Z → T . Some details omitted. □

67.15. Supports of modules

07TX In this section we collect some elementary results on supports of quasi-coherent
modules on algebraic spaces. Let X be an algebraic space. The support of an
abelian sheaf on Xétale has been defined in Properties of Spaces, Section 66.20. We
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use the same definition for supports of modules. The following lemma tells us this
agrees with the notion as defined for quasi-coherent modules on schemes.

Lemma 67.15.1.07TY Let S be a scheme. Let X be an algebraic space over S. Let F
be a quasi-coherent OX -module. Let U be a scheme and let φ : U → X be an étale
morphism. Then

Supp(φ∗F) = |φ|−1(Supp(F))
where the left hand side is the support of φ∗F as a quasi-coherent module on the
scheme U .

Proof. Let u ∈ U be a (usual) point and let x be a geometric point lying over u.
By Properties of Spaces, Lemma 66.29.4 we have (φ∗F)u ⊗OU,u

OX,x = Fx. Since
OU,u → OX,x is the strict henselization by Properties of Spaces, Lemma 66.22.1 we
see that it is faithfully flat (see More on Algebra, Lemma 15.45.1). Thus we see
that (φ∗F)u = 0 if and only if Fx = 0. This proves the lemma. □

For finite type quasi-coherent modules the support is closed, can be checked on
fibres, and commutes with base change.

Lemma 67.15.2.07TZ Let S be a scheme. Let X be an algebraic space over S. Let F
be a finite type quasi-coherent OX -module. Then

(1) The support of F is closed.
(2) For a geometric point x lying over x ∈ |X| we have

x ∈ Supp(F)⇔ Fx ̸= 0⇔ Fx ⊗OX,x
κ(x) ̸= 0.

(3) For any morphism of algebraic spaces f : Y → X the pullback f∗F is of
finite type as well and we have Supp(f∗F) = f−1(Supp(F)).

Proof. Choose a scheme U and a surjective étale morphism φ : U → X. By Lemma
67.15.1 the inverse image of the support of F is the support of φ∗F which is closed
by Morphisms, Lemma 29.5.3. Thus (1) follows from the definition of the topology
on |X|.
The first equivalence in (2) is the definition of support. The second equivalence
follows from Nakayama’s lemma, see Algebra, Lemma 10.20.1.
Let f : Y → X be as in (3). Note that f∗F is of finite type by Properties of Spaces,
Section 66.30. For the final assertion, let y be a geometric point of Y mapping to
the geometric point x on X. Recall that

(f∗F)y = Fx ⊗OX,x
OY,y,

see Properties of Spaces, Lemma 66.29.5. Hence (f∗F)y ⊗ κ(y) is nonzero if and
only if Fx ⊗ κ(x) is nonzero. By (2) this implies x ∈ Supp(F) if and only if
y ∈ Supp(f∗F), which is the content of assertion (3). □

Our next task is to show that the scheme theoretic support of a finite type quasi-
coherent module (see Morphisms, Definition 29.5.5) also makes sense for finite type
quasi-coherent modules on algebraic spaces.

Lemma 67.15.3.07U0 Let S be a scheme. Let X be an algebraic space over S. Let F be
a finite type quasi-coherent OX -module. There exists a smallest closed subspace
i : Z → X such that there exists a quasi-coherent OZ-module G with i∗G ∼= F .
Moreover:
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(1) If U is a scheme and φ : U → X is an étale morphism then Z ×X U is the
scheme theoretic support of φ∗F .

(2) The quasi-coherent sheaf G is unique up to unique isomorphism.
(3) The quasi-coherent sheaf G is of finite type.
(4) The support of G and of F is |Z|.

Proof. Choose a scheme U and a surjective étale morphism φ : U → X. Let
R = U×X U with projections s, t : R→ U . Let i′ : Z ′ → U be the scheme theoretic
support of φ∗F and let G′ be the (unique up to unique isomorphism) finite type
quasi-coherent OZ′ -module with i′∗G′ = φ∗F , see Morphisms, Lemma 29.5.4. As
s∗φ∗F = t∗φ∗F we see that R′ = s−1Z ′ = t−1Z ′ as closed subschemes of R by
Morphisms, Lemma 29.25.14. Thus we may apply Properties of Spaces, Lemma
66.12.2 to find a closed subspace i : Z → X whose pullback to U is Z ′. Writing
s′, t′ : R′ → Z ′ the projections and j′ : R′ → R the given closed immersion, we see
that

j′
∗(s′)∗G′ = s∗i′∗G′ = s∗φ∗F = t∗φ∗F = t∗i′∗G′ = j′

∗(t′)∗G′

(the first and the last equality by Cohomology of Schemes, Lemma 30.5.2). Hence
the uniqueness of Morphisms, Lemma 29.25.14 applied to R′ → R gives an isomor-
phism α : (t′)∗G′ → (s′)∗G′ compatible with the canonical isomorphism t∗φ∗F =
s∗φ∗F via j′

∗. Clearly α satisfies the cocycle condition, hence we may apply Prop-
erties of Spaces, Proposition 66.32.1 to obtain a quasi-coherent module G on Z
whose restriction to Z ′ is G′ compatible with α. Again using the equivalence of the
proposition mentioned above (this time for X) we conclude that i∗G ∼= F .
This proves existence. The other properties of the lemma follow by comparing with
the result for schemes using Lemma 67.15.1. Detailed proofs omitted. □

Definition 67.15.4.07U1 Let S be a scheme. Let X be an algebraic space over S. Let
F be a finite type quasi-coherent OX -module. The scheme theoretic support of F
is the closed subspace Z ⊂ X constructed in Lemma 67.15.3.

In this situation we often think of F as a quasi-coherent sheaf of finite type on Z
(via the equivalence of categories of Lemma 67.14.1).

67.16. Scheme theoretic image

082W Caution: Some of the material in this section is ultra-general and behaves differently
from what you might expect.

Lemma 67.16.1.082X Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. There exists a closed subspace Z ⊂ Y such that f factors through
Z and such that for any other closed subspace Z ′ ⊂ Y such that f factors through
Z ′ we have Z ⊂ Z ′.

Proof. Let I = Ker(OY → f∗OX). If I is quasi-coherent then we just take Z
to be the closed subscheme determined by I, see Lemma 67.13.1. In general the
lemma requires us to show that there exists a largest quasi-coherent sheaf of ideals
I ′ contained in I. This follows from Lemma 67.14.2. □

Suppose that in the situation of Lemma 67.16.1 above X and Y are representable.
Then the closed subspace Z ⊂ Y found in the lemma agrees with the closed sub-
scheme Z ⊂ Y found in Morphisms, Lemma 29.6.1. The reason is that closed
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subspaces (or subschemes) are in a inclusion reversing correspondence with quasi-
coherent ideal sheaves on Xétale and X. As the category of quasi-coherent modules
on Xétale and X are the same (Properties of Spaces, Section 66.29) we conclude.
Thus the following definition agrees with the earlier definition for morphisms of
schemes.

Definition 67.16.2.082Y Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The scheme theoretic image of f is the smallest closed subspace
Z ⊂ Y through which f factors, see Lemma 67.16.1 above.

We often just denote f : X → Z the factorization of f . If the morphism f is not
quasi-compact, then (in general) the construction of the scheme theoretic image
does not commute with restriction to open subspaces of Y .

Lemma 67.16.3.082Z Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let Z ⊂ Y be the scheme theoretic image of f . If f is quasi-compact
then

(1) the sheaf of ideals I = Ker(OY → f∗OX) is quasi-coherent,
(2) the scheme theoretic image Z is the closed subspace corresponding to I,
(3) for any étale morphism V → Y the scheme theoretic image of X×Y V → V

is equal to Z ×Y V , and
(4) the image |f |(|X|) ⊂ |Z| is a dense subset of |Z|.

Proof. To prove (3) it suffices to prove (1) and (2) since the formation of I commutes
with étale localization. If (1) holds then in the proof of Lemma 67.16.1 we showed
(2). Let us prove that I is quasi-coherent. Since the property of being quasi-
coherent is étale local we may assume Y is an affine scheme. As f is quasi-compact,
we can find an affine scheme U and a surjective étale morphism U → X. Denote
f ′ the composition U → X → Y . Then f∗OX is a subsheaf of f ′

∗OU , and hence
I = Ker(OY → OX′). By Lemma 67.11.2 the sheaf f ′

∗OU is quasi-coherent on Y .
Hence I is quasi-coherent as a kernel of a map between coherent modules. Finally,
part (4) follows from parts (1), (2), and (3) as the ideal I will be the unit ideal in
any point of |Y | which is not contained in the closure of |f |(|X|). □

Lemma 67.16.4.0830 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume X is reduced. Then

(1) the scheme theoretic image Z of f is the reduced induced algebraic space
structure on |f |(|X|), and

(2) for any étale morphism V → Y the scheme theoretic image of X×Y V → V
is equal to Z ×Y V .

Proof. Part (1) is true because the reduced induced algebraic space structure on
|f |(|X|) is the smallest closed subspace of Y through which f factors, see Properties
of Spaces, Lemma 66.12.4. Part (2) follows from (1), the fact that |V | → |Y | is
open, and the fact that being reduced is preserved under étale localization. □

Lemma 67.16.5.089B Let S be a scheme. Let f : X → Y be a quasi-compact morphism
of algebraic spaces over S. Let Z be the scheme theoretic image of f . Let z ∈ |Z|.
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There exists a valuation ring A with fraction field K and a commutative diagram
Spec(K) //

��

X

����
Spec(A) // Z // Y

such that the closed point of Spec(A) maps to z.
Proof. Choose an affine scheme V with a point z′ ∈ V and an étale morphism
V → Y mapping z′ to z. Let Z ′ ⊂ V be the scheme theoretic image of X×Y V → V .
By Lemma 67.16.3 we have Z ′ = Z ×Y V . Thus z′ ∈ Z ′. Since f is quasi-compact
and V is affine we see that X ×Y V is quasi-compact. Hence there exists an affine
scheme W and a surjective étale morphism W → X×Y V . Then Z ′ ⊂ V is also the
scheme theoretic image of W → V . By Morphisms, Lemma 29.6.5 we can choose a
diagram

Spec(K) //

��

W //

��

X ×Y V

��

// X

��
Spec(A) // Z ′ // V // Y

such that the closed point of Spec(A) maps to z′. Composing with Z ′ → Z and
W → X ×Y V → X we obtain a solution. □

Lemma 67.16.6.0CP2 Let S be a scheme. Let

X1

��

f1

// Y1

��
X2

f2 // Y2

be a commutative diagram of algebraic spaces over S. Let Zi ⊂ Yi, i = 1, 2 be the
scheme theoretic image of fi. Then the morphism Y1 → Y2 induces a morphism
Z1 → Z2 and a commutative diagram

X1 //

��

Z1

��

// Y1

��
X2 // Z2 // Y2

Proof. The scheme theoretic inverse image of Z2 in Y1 is a closed subspace of Y1
through which f1 factors. Hence Z1 is contained in this. This proves the lemma. □

Lemma 67.16.7.0CP3 Let S be a scheme. Let f : X → Y be a separated morphism
of algebraic spaces over S. Let V ⊂ Y be an open subspace such that V → Y is
quasi-compact. Let s : V → X be a morphism such that f ◦ s = idV . Let Y ′ be
the scheme theoretic image of s. Then Y ′ → Y is an isomorphism over V .
Proof. By Lemma 67.8.9 the morphism s : V → X is quasi-compact. Hence the
construction of the scheme theoretic image Y ′ of s commutes with restriction to
opens by Lemma 67.16.3. In particular, we see that Y ′ ∩ f−1(V ) is the scheme
theoretic image of a section of the separated morphism f−1(V ) → V . Since a
section of a separated morphism is a closed immersion (Lemma 67.4.7), we conclude
that Y ′ ∩ f−1(V )→ V is an isomorphism as desired. □
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67.17. Scheme theoretic closure and density

0831 This section is the analogue of Morphisms, Section 29.7.

Lemma 67.17.1.0832 Let S be a scheme. Let W ⊂ S be a scheme theoretically dense
open subscheme (Morphisms, Definition 29.7.1). Let f : X → S be a morphism of
schemes which is flat, locally of finite presentation, and locally quasi-finite. Then
f−1(W ) is scheme theoretically dense in X.

Proof. We will use the characterization of Morphisms, Lemma 29.7.5. Assume
V ⊂ X is an open and g ∈ Γ(V,OV ) is a function which restricts to zero on
f−1(W ) ∩ V . We have to show that g = 0. Assume g ̸= 0 to get a contradiction.
By More on Morphisms, Lemma 37.45.6 we may shrink V , find an open U ⊂ S
fitting into a commutative diagram

V //

π

��

X

f

��
U // S,

a quasi-coherent subsheaf F ⊂ OU , an integer r > 0, and an injective OU -module
map F⊕r → π∗OV whose image contains g|V . Say (g1, . . . , gr) ∈ Γ(U,F⊕r) maps
to g. Then we see that gi|W∩U = 0 because g|f−1W∩V = 0. Hence gi = 0 because
F ⊂ OU and W is scheme theoretically dense in S. This implies g = 0 which is the
desired contradiction. □

Lemma 67.17.2.0833 Let S be a scheme. Let X be an algebraic space over S. Let
U ⊂ X be an open subspace. The following are equivalent

(1) for every étale morphism φ : V → X (of algebraic spaces) the scheme
theoretic closure of φ−1(U) in V is equal to V ,

(2) there exists a scheme V and a surjective étale morphism φ : V → X such
that the scheme theoretic closure of φ−1(U) in V is equal to V ,

Proof. Observe that if V → V ′ is a morphism of algebraic spaces étale over X, and
Z ⊂ V , resp. Z ′ ⊂ V ′ is the scheme theoretic closure of U ×X V , resp. U ×X V ′

in V , resp. V ′, then Z maps into Z ′. Thus if V → V ′ is surjective and étale then
Z = V implies Z ′ = V ′. Next, note that an étale morphism is flat, locally of finite
presentation, and locally quasi-finite (see Morphisms, Section 29.36). Thus Lemma
67.17.1 implies that if V and V ′ are schemes, then Z ′ = V ′ implies Z = V . A formal
argument using that every algebraic space has an étale covering by a scheme shows
that (1) and (2) are equivalent. □

It follows from Lemma 67.17.2 that the following definition is compatible with the
definition in the case of schemes.

Definition 67.17.3.0834 Let S be a scheme. Let X be an algebraic space over S. Let
U ⊂ X be an open subspace.

(1) The scheme theoretic image of the morphism U → X is called the scheme
theoretic closure of U in X.

(2) We say U is scheme theoretically dense in X if the equivalent conditions
of Lemma 67.17.2 are satisfied.
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With this definition it is not the case that U is scheme theoretically dense in X
if and only if the scheme theoretic closure of U is X. This is somewhat inelegant.
But with suitable finiteness conditions we will see that it does hold.

Lemma 67.17.4.0835 Let S be a scheme. Let X be an algebraic space over S. Let
U ⊂ X be an open subspace. If U → X is quasi-compact, then U is scheme
theoretically dense in X if and only if the scheme theoretic closure of U in X is X.

Proof. Follows from Lemma 67.16.3 part (3). □

Lemma 67.17.5.0836 Let S be a scheme. Let j : U → X be an open immersion of
algebraic spaces over S. Then U is scheme theoretically dense in X if and only if
OX → j∗OU is injective.

Proof. If OX → j∗OU is injective, then the same is true when restricted to any
algebraic space V étale over X. Hence the scheme theoretic closure of U ×X V in V
is equal to V , see proof of Lemma 67.16.1. Conversely, assume the scheme theoretic
closure of U ×X V is equal to V for all V étale over X. Suppose that OX → j∗OU
is not injective. Then we can find an affine, say V = Spec(A), étale over X and
a nonzero element f ∈ A such that f maps to zero in Γ(V ×X U,O). In this case
the scheme theoretic closure of V ×X U in V is clearly contained in Spec(A/(f)) a
contradiction. □

Lemma 67.17.6.0837 Let S be a scheme. Let X be an algebraic space over S. If U , V
are scheme theoretically dense open subspaces of X, then so is U ∩ V .

Proof. Let W → X be any étale morphism. Consider the map O(W )→ O(W ×X
V ) → O(W ×X (V ∩ U)). By Lemma 67.17.5 both maps are injective. Hence the
composite is injective. Hence by Lemma 67.17.5 U∩V is scheme theoretically dense
in X. □

Lemma 67.17.7.088G Let S be a scheme. Let h : Z → X be an immersion of algebraic
spaces over S. Assume either Z → X is quasi-compact or Z is reduced. Let
Z ⊂ X be the scheme theoretic image of h. Then the morphism Z → Z is an open
immersion which identifies Z with a scheme theoretically dense open subspace of
Z. Moreover, Z is topologically dense in Z.

Proof. In both cases the formation of Z commutes with étale localization, see Lem-
mas 67.16.3 and 67.16.4. Hence this lemma follows from the case of schemes, see
Morphisms, Lemma 29.7.7. □

Lemma 67.17.8.084N Let S be a scheme. Let B be an algebraic space over S. Let
f, g : X → Y be morphisms of algebraic spaces over B. Let U ⊂ X be an open
subspace such that f |U = g|U . If the scheme theoretic closure of U in X is X and
Y → B is separated, then f = g.

Proof. As Y → B is separated the fibre product Y ×∆,Y×BY,(f,g) X is a closed
subspace Z ⊂ X. As f |U = g|U we see that U ⊂ Z. Hence Z = X as U is assumed
scheme theoretically dense in X. □

67.18. Dominant morphisms

0ABK We copy the definition of a dominant morphism of schemes to get the notion of a
dominant morphism of algebraic spaces. We caution the reader that this definition
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is not well behaved unless the morphism is quasi-compact and the algebraic spaces
satisfy some separation axioms.

Definition 67.18.1.0ABL Let S be a scheme. A morphism f : X → Y of algebraic spaces
over S is called dominant if the image of |f | : |X| → |Y | is dense in |Y |.

67.19. Universally injective morphisms

03MT We have already defined in Section 67.3 what it means for a representable morphism
of algebraic spaces to be universally injective. For a field K over S (recall this means
that we are given a structure morphism Spec(K) → S) and an algebraic space X
over S we write X(K) = MorS(Spec(K), X). We first translate the condition for
representable morphisms into a condition on the functor of points.

Lemma 67.19.1.03MU Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. Then f is universally injective (in the sense of Section
67.3) if and only if for all fields K the map X(K)→ Y (K) is injective.

Proof. We are going to use Morphisms, Lemma 29.10.2 without further mention.
Suppose that f is universally injective. Then for any field K and any morphism
Spec(K) → Y the morphism of schemes Spec(K) ×Y X → Spec(K) is universally
injective. Hence there exists at most one section of the morphism Spec(K)×Y X →
Spec(K). Hence the map X(K)→ Y (K) is injective. Conversely, suppose that for
every field K the map X(K)→ Y (K) is injective. Let T → Y be a morphism from
a scheme into Y , and consider the base change fT : T ×Y X → T . For any field K
we have

(T ×Y X)(K) = T (K)×Y (K) X(K)

by definition of the fibre product, and hence the injectivity of X(K)→ Y (K) guar-
antees the injectivity of (T ×Y X)(K)→ T (K) which means that fT is universally
injective as desired. □

Next, we translate the property that the transformation between field valued points
is injective into something more geometric.

Lemma 67.19.2.040X Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) the map X(K)→ Y (K) is injective for every field K over S
(2) for every morphism Y ′ → Y of algebraic spaces over S the induced map
|Y ′ ×Y X| → |Y ′| is injective, and

(3) the diagonal morphism X → X ×Y X is surjective.

Proof. Assume (1). Let g : Y ′ → Y be a morphism of algebraic spaces, and denote
f ′ : Y ′ ×Y X → Y ′ the base change of f . Let Ki, i = 1, 2 be fields and let
φi : Spec(Ki) → Y ′ ×Y X be morphisms such that f ′ ◦ φ1 and f ′ ◦ φ2 define the
same element of |Y ′|. By definition this means there exists a field Ω and embeddings
αi : Ki ⊂ Ω such that the two morphisms f ′ ◦ φi ◦ αi : Spec(Ω) → Y ′ are equal.
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Here is the corresponding commutative diagram

Spec(Ω)

..

α1

&&

α2
// Spec(K2)

φ2

&&
Spec(K1) φ1 // Y ′ ×Y X

f ′

��

g′
// X

f

��
Y ′ g // Y.

In particular the compositions g ◦ f ′ ◦ φi ◦ αi are equal. By assumption (1) this
implies that the morphism g′ ◦ φi ◦ αi are equal, where g′ : Y ′ ×Y X → X is the
projection. By the universal property of the fibre product we conclude that the
morphisms φi ◦αi : Spec(Ω)→ Y ′×Y X are equal. In other words φ1 and φ2 define
the same point of Y ′ ×Y X. We conclude that (2) holds.

Assume (2). Let K be a field over S, and let a, b : Spec(K)→ X be two morphisms
such that f ◦a = f ◦b. Denote c : Spec(K)→ Y the common value. By assumption
|Spec(K)×c,Y X| → |Spec(K)| is injective. This means there exists a field Ω and
embeddings αi : K → Ω such that

Spec(Ω)
α1

//

α2

��

Spec(K)

a

��
Spec(K) b // Spec(K)×c,Y X

is commutative. Composing with the projection to Spec(K) we see that α1 = α2.
Denote the common value α. Then we see that {α : Spec(Ω) → Spec(K)} is a
fpqc covering of Spec(K) such that the two morphisms a, b become equal on the
members of the covering. By Properties of Spaces, Proposition 66.17.1 we conclude
that a = b. We conclude that (1) holds.

Assume (3). Let x, x′ ∈ |X| be a pair of points such that f(x) = f(x′) in |Y |. By
Properties of Spaces, Lemma 66.4.3 we see there exists a x′′ ∈ |X ×Y X| whose
projections are x and x′. By assumption and Properties of Spaces, Lemma 66.4.4
there exists a x′′′ ∈ |X| with ∆X/Y (x′′′) = x′′. Thus x = x′. In other words f is
injective. Since condition (3) is stable under base change we see that f satisfies (2).

Assume (2). Then in particular |X ×Y X| → |X| is injective which implies imme-
diately that |∆X/Y | : |X| → |X ×Y X| is surjective, which implies that ∆X/Y is
surjective by Properties of Spaces, Lemma 66.4.4. □

By the two lemmas above the following definition does not conflict with the already
defined notion of a universally injective representable morphism of algebraic spaces.

Definition 67.19.3.03MV Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is universally injective if for every morphism Y ′ → Y the
induced map |Y ′ ×Y X| → |Y ′| is injective.

To be sure this means that any or all of the equivalent conditions of Lemma 67.19.2
hold.
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Remark 67.19.4.05VS A universally injective morphism of schemes is separated, see
Morphisms, Lemma 29.10.3. This is not the case for morphisms of algebraic spaces.
Namely, the algebraic space X = A1

k/{x ∼ −x | x ̸= 0} constructed in Spaces,
Example 65.14.1 comes equipped with a morphism X → A1

k which maps the point
with coordinate x to the point with coordinate x2. This is an isomorphism away
from 0, and there is a unique point of X lying above 0. As X isn’t separated this
is a universally injective morphism of algebraic spaces which is not separated.

Lemma 67.19.5.03MW The base change of a universally injective morphism is universally
injective.

Proof. Omitted. Hint: This is formal. □

Lemma 67.19.6.03MX Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is universally injective,
(2) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is universally injective,
(3) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is universally injective,
(4) there exists a scheme Z and a surjective morphism Z → Y such that

Z ×Y X → Z is universally injective, and
(5) there exists a Zariski covering Y =

⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is universally injective.

Proof. We will use that being universally injective is preserved under base change
(Lemma 67.19.5) without further mention in this proof. It is clear that (1) ⇒ (2)
⇒ (3) ⇒ (4).
Assume g : Z → Y as in (4). Let y : Spec(K) → Y be a morphism from the
spectrum of a field into Y . By assumption we can find an extension field α : K ⊂ K ′

and a morphism z : Spec(K ′) → Z such that y ◦ α = g ◦ z (with obvious abuse
of notation). By assumption the morphism Z ×Y X → Z is universally injective,
hence there is at most one lift of g ◦z : Spec(K ′)→ Y to a morphism into X. Since
{α : Spec(K ′) → Spec(K)} is a fpqc covering this implies there is at most one lift
of y : Spec(K) → Y to a morphism into X, see Properties of Spaces, Proposition
66.17.1. Thus we see that (1) holds.
We omit the verification that (5) is equivalent to (1). □

Lemma 67.19.7.03MY A composition of universally injective morphisms is universally
injective.

Proof. Omitted. □

67.20. Affine morphisms

03WD We have already defined in Section 67.3 what it means for a representable morphism
of algebraic spaces to be affine.

Lemma 67.20.1.03WE Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. Then f is affine (in the sense of Section 67.3) if and only
if for all affine schemes Z and morphisms Z → Y the scheme X ×Y Z is affine.

https://stacks.math.columbia.edu/tag/05VS
https://stacks.math.columbia.edu/tag/03MW
https://stacks.math.columbia.edu/tag/03MX
https://stacks.math.columbia.edu/tag/03MY
https://stacks.math.columbia.edu/tag/03WE


67.20. AFFINE MORPHISMS 5335

Proof. This follows directly from the definition of an affine morphism of schemes
(Morphisms, Definition 29.11.1). □

This clears the way for the following definition.

Definition 67.20.2.03WF Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is affine if for every affine scheme Z and morphism Z → Y
the algebraic space X ×Y Z is representable by an affine scheme.

Lemma 67.20.3.03WG Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is representable and affine,
(2) f is affine,
(3) for every affine scheme V and étale morphism V → Y the scheme X×Y V

is affine,
(4) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is affine, and
(5) there exists a Zariski covering Y =

⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is affine.

Proof. It is clear that (1) implies (2), that (2) implies (3), and that (3) implies (4)
by taking V to be a disjoint union of affines étale over Y , see Properties of Spaces,
Lemma 66.6.1. Assume V → Y is as in (4). Then for every affine open W of V
we see that W ×Y X is an affine open of V ×Y X. Hence by Properties of Spaces,
Lemma 66.13.1 we conclude that V ×Y X is a scheme. Moreover the morphism
V ×Y X → V is affine. This means we can apply Spaces, Lemma 65.11.5 because
the class of affine morphisms satisfies all the required properties (see Morphisms,
Lemmas 29.11.8 and Descent, Lemmas 35.23.18 and 35.37.1). The conclusion of
applying this lemma is that f is representable and affine, i.e., (1) holds.
The equivalence of (1) and (5) follows from the fact that being affine is Zariski local
on the target (the reference above shows that being affine is in fact fpqc local on
the target). □

Lemma 67.20.4.03WH The composition of affine morphisms is affine.

Proof. Omitted. Hint: Transitivity of fibre products. □

Lemma 67.20.5.03WI The base change of an affine morphism is affine.

Proof. Omitted. Hint: Transitivity of fibre products. □

Lemma 67.20.6.07U2 A closed immersion is affine.

Proof. Follows immediately from the corresponding statement for morphisms of
schemes, see Morphisms, Lemma 29.11.9. □

Lemma 67.20.7.081V Let S be a scheme. Let X be an algebraic space over S. There is
an anti-equivalence of categories

algebraic spaces
affine over X ←→ quasi-coherent sheaves

of OX -algebras
which associates to f : Y → X the sheaf f∗OY . Moreover, this equivalence is
compatible with arbitrary base change.
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Proof. This lemma is the analogue of Morphisms, Lemma 29.11.5. LetA be a quasi-
coherent sheaf of OX -algebras. We will construct an affine morphism of algebraic
spaces π : Y = Spec

X
(A) → X with π∗OY ∼= A. To do this, choose a scheme U

and a surjective étale morphism φ : U → X. As usual denote R = U ×X U with
projections s, t : R→ U . Denote ψ : R→ X the composition ψ = φ ◦ s = φ ◦ t. By
the aforementioned lemma there exists an affine morphisms of schemes π0 : V → U
and π1 : W → R with π0,∗OV ∼= φ∗A and π1,∗OW ∼= ψ∗A. Since the construction
is compatible with base change there exist morphisms s′, t′ : W → V such that the
diagrams

W
s′
//

��

V

��
R

s // U

and
W

t′
//

��

V

��
R

t // U

are cartesian. It follows that s′, t′ are étale. It is a formal consequence of the above
that (t′, s′) : W → V ×S V is a monomorphism. We omit the verification that
W → V ×S V is an equivalence relation (hint: think about the pullback of A to
U×XU×XU = R×s,U,tR). The quotient sheaf Y = V/W is an algebraic space, see
Spaces, Theorem 65.10.5. By Groupoids, Lemma 39.20.7 we see that Y ×X U ∼= V .
Hence Y → X is affine by Lemma 67.20.3. Finally, the isomorphism of

(Y ×X U → U)∗OY×XU = π0,∗OV ∼= φ∗A
is compatible with glueing isomorphisms, whence (Y → X)∗OY ∼= A by Properties
of Spaces, Proposition 66.32.1. We omit the verification that this construction is
compatible with base change. □

Definition 67.20.8.081W Let S be a scheme. Let X be an algebraic space over S. Let
A be a quasi-coherent sheaf of OX -algebras. The relative spectrum of A over
X, or simply the spectrum of A over X is the affine morphism Spec(A) → X
corresponding to A under the equivalence of categories of Lemma 67.20.7.

Forming the relative spectrum commutes with arbitrary base change.

Remark 67.20.9.081X Let S be a scheme. Let f : Y → X be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. Then f has a canonical
factorization

Y −→ Spec
X

(f∗OY ) −→ X

This makes sense because f∗OY is quasi-coherent by Lemma 67.11.2. The morphism
Y → Spec

X
(f∗OY ) comes from the canonical OY -algebra map f∗f∗OY → OY

which corresponds to a canonical morphism Y → Y ×X Spec
X

(f∗OY ) over Y (see
Lemma 67.20.7) whence a factorization of f as above.

Lemma 67.20.10.08AI Let S be a scheme. Let f : Y → X be an affine morphism
of algebraic spaces over S. Let A = f∗OY . The functor F 7→ f∗F induces an
equivalence of categories{

category of quasi-coherent
OY -modules

}
−→

{
category of quasi-coherent

A-modules

}
Moreover, an A-module is quasi-coherent as an OX -module if and only if it is
quasi-coherent as an A-module.

Proof. Omitted. □
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Lemma 67.20.11.08GB Let S be a scheme. Let B be an algebraic space over S. Suppose
g : X → Y is a morphism of algebraic spaces over B.

(1) If X is affine over B and ∆ : Y → Y ×B Y is affine, then g is affine.
(2) If X is affine over B and Y is separated over B, then g is affine.
(3) A morphism from an affine scheme to an algebraic space with affine diag-

onal over Z (as in Properties of Spaces, Definition 66.3.1) is affine.
(4) A morphism from an affine scheme to a separated algebraic space is affine.

Proof. Proof of (1). The base change X×BY → Y is affine by Lemma 67.20.5. The
morphism (1, g) : X → X×BY is the base change of Y → Y ×BY by the morphism
X×B Y → Y ×B Y . Hence it is affine by Lemma 67.20.5. The composition of affine
morphisms is affine (see Lemma 67.20.4) and (1) follows. Part (2) follows from (1)
as a closed immersion is affine (see Lemma 67.20.6) and Y/B separated means ∆
is a closed immersion. Parts (3) and (4) are special cases of (1) and (2). □

Lemma 67.20.12.09TF Let S be a scheme. Let X be a quasi-separated algebraic space
over S. Let A be an Artinian ring. Any morphism Spec(A)→ X is affine.

Proof. Let U → X be an étale morphism with U affine. To prove the lemma we have
to show that Spec(A)×XU is affine, see Lemma 67.20.3. Since X is quasi-separated
the scheme Spec(A) ×X U is quasi-compact. Moreover, the projection morphism
Spec(A) ×X U → Spec(A) is étale. Hence this morphism has finite discrete fibers
and moreover the topology on Spec(A) is discrete. Thus Spec(A)×X U is a scheme
whose underlying topological space is a finite discrete set. We are done by Schemes,
Lemma 26.11.8. □

67.21. Quasi-affine morphisms

03WJ We have already defined in Section 67.3 what it means for a representable morphism
of algebraic spaces to be quasi-affine.

Lemma 67.21.1.03WK Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. Then f is quasi-affine (in the sense of Section 67.3) if
and only if for all affine schemes Z and morphisms Z → Y the scheme X ×Y Z is
quasi-affine.

Proof. This follows directly from the definition of a quasi-affine morphism of schemes
(Morphisms, Definition 29.13.1). □

This clears the way for the following definition.

Definition 67.21.2.03WL Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is quasi-affine if for every affine scheme Z and morphism
Z → Y the algebraic space X ×Y Z is representable by a quasi-affine scheme.

Lemma 67.21.3.03WM Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is representable and quasi-affine,
(2) f is quasi-affine,
(3) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is quasi-affine, and
(4) there exists a Zariski covering Y =

⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is quasi-affine.
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Proof. It is clear that (1) implies (2) and that (2) implies (3) by taking V to
be a disjoint union of affines étale over Y , see Properties of Spaces, Lemma 66.6.1.
Assume V → Y is as in (3). Then for every affine open W of V we see that W×Y X
is a quasi-affine open of V ×Y X. Hence by Properties of Spaces, Lemma 66.13.1
we conclude that V ×Y X is a scheme. Moreover the morphism V ×Y X → V is
quasi-affine. This means we can apply Spaces, Lemma 65.11.5 because the class of
quasi-affine morphisms satisfies all the required properties (see Morphisms, Lemmas
29.13.5 and Descent, Lemmas 35.23.20 and 35.38.1). The conclusion of applying
this lemma is that f is representable and quasi-affine, i.e., (1) holds.
The equivalence of (1) and (4) follows from the fact that being quasi-affine is Zariski
local on the target (the reference above shows that being quasi-affine is in fact fpqc
local on the target). □

Lemma 67.21.4.03WN The composition of quasi-affine morphisms is quasi-affine.
Proof. Omitted. □

Lemma 67.21.5.03WO The base change of a quasi-affine morphism is quasi-affine.
Proof. Omitted. □

Lemma 67.21.6.086S Let S be a scheme. A quasi-compact and quasi-separated mor-
phism of algebraic spaces f : Y → X is quasi-affine if and only if the canonical
factorization Y → Spec

X
(f∗OY ) (Remark 67.20.9) is an open immersion.

Proof. Let U → X be a surjective morphism where U is a scheme. Since we
may check whether f is quasi-affine after base change to U (Lemma 67.21.3), since
f∗OY |V is equal to (Y ×X U → U)∗OY×XU (Properties of Spaces, Lemma 66.26.2),
and since formation of relative spectrum commutes with base change (Lemma
67.20.7), we see that the assertion reduces to the case that X is a scheme. If X is
a scheme and either f is quasi-affine or Y → Spec

X
(f∗OY ) is an open immersion,

then Y is a scheme as well. Thus we reduce to Morphisms, Lemma 29.13.3. □

67.22. Types of morphisms étale local on source-and-target

03MI Given a property of morphisms of schemes which is étale local on the source-and-
target, see Descent, Definition 35.32.3 we may use it to define a corresponding
property of morphisms of algebraic spaces, namely by imposing either of the equiv-
alent conditions of the lemma below.
Lemma 67.22.1.03MJ Let P be a property of morphisms of schemes which is étale local
on the source-and-target. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S. Consider commutative diagrams

U

a

��

h
// V

b
��

X
f // Y

where U and V are schemes and the vertical arrows are étale. The following are
equivalent

(1) for any diagram as above the morphism h has property P, and
(2) for some diagram as above with a : U → X surjective the morphism h has

property P.
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If X and Y are representable, then this is also equivalent to f (as a morphism of
schemes) having property P. If P is also preserved under any base change, and
fppf local on the base, then for representable morphisms f this is also equivalent
to f having property P in the sense of Section 67.3.

Proof. Let us prove the equivalence of (1) and (2). The implication (1) ⇒ (2) is
immediate (taking into account Spaces, Lemma 65.11.6). Assume

U

��

h
// V

��
X

f // Y

U ′

��

h′
// V ′

��
X

f // Y

are two diagrams as in the lemma. Assume U → X is surjective and h has property
P. To show that (2) implies (1) we have to prove that h′ has P. To do this consider
the diagram

U

h

��

U ×X U ′oo

(h,h′)
��

// U ′

h′

��
V V ×Y V ′oo // V ′

By Descent, Lemma 35.32.5 we see that h has P implies (h, h′) has P and since
U ×X U ′ → U ′ is surjective this implies (by the same lemma) that h′ has P.

If X and Y are representable, then Descent, Lemma 35.32.5 applies which shows
that (1) and (2) are equivalent to f having P.

Finally, suppose f is representable, and U, V, a, b, h are as in part (2) of the lemma,
and that P is preserved under arbitrary base change. We have to show that for
any scheme Z and morphism Z → X the base change Z ×Y X → Z has property
P. Consider the diagram

Z ×Y U

��

// Z ×Y V

��
Z ×Y X // Z

Note that the top horizontal arrow is a base change of h and hence has property P.
The left vertical arrow is étale and surjective and the right vertical arrow is étale.
Thus Descent, Lemma 35.32.5 once again kicks in and shows that Z ×Y X → Z
has property P. □

Definition 67.22.2.04RD Let S be a scheme. Let P be a property of morphisms of schemes
which is étale local on the source-and-target. We say a morphism f : X → Y of
algebraic spaces over S has property P if the equivalent conditions of Lemma 67.22.1
hold.

Here are a couple of obvious remarks.

Remark 67.22.3.0AML Let S be a scheme. Let P be a property of morphisms of schemes
which is étale local on the source-and-target. Suppose that moreover P is stable un-
der compositions. Then the class of morphisms of algebraic spaces having property
P is stable under composition.
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Remark 67.22.4.0AMM Let S be a scheme. Let P be a property of morphisms of schemes
which is étale local on the source-and-target. Suppose that moreover P is stable
under base change. Then the class of morphisms of algebraic spaces having property
P is stable under base change.

Given a property of morphisms of germs of schemes which is étale local on the
source-and-target, see Descent, Definition 35.33.1 we may use it to define a corre-
sponding property of morphisms of algebraic spaces at a point, namely by imposing
either of the equivalent conditions of the lemma below.

Lemma 67.22.5.04NC Let Q be a property of morphisms of germs which is étale local
on the source-and-target. Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S. Let x ∈ |X| be a point of X. Consider the diagrams

U

a

��

h
// V

b
��

X
f // Y

u

��

// v

��
x // y

where U and V are schemes, a, b are étale, and u, v, x, y are points of the corre-
sponding spaces. The following are equivalent

(1) for any diagram as above we have Q((U, u)→ (V, v)), and
(2) for some diagram as above we have Q((U, u)→ (V, v)).

If X and Y are representable, then this is also equivalent to Q((X,x)→ (Y, y)).

Proof. Omitted. Hint: Very similar to the proof of Lemma 67.22.1. □

Definition 67.22.6.04RE Let Q be a property of morphisms of germs of schemes which
is étale local on the source-and-target. Let S be a scheme. Given a morphism
f : X → Y of algebraic spaces over S and a point x ∈ |X| we say that f has
property Q at x if the equivalent conditions of Lemma 67.22.5 hold.

The following lemma should not be used blindly to go from a property of morphisms
to a property of morphisms at a point. For example if P is the property of being
flat, then the property Q in the following lemma means “f is flat in an open
neighbourhood of x” which is not the same as “f is flat at x”.

Lemma 67.22.7.04RF Let P be a property of morphisms of schemes which is étale
local on the source-and-target. Consider the property Q of morphisms of germs
associated to P in Descent, Lemma 35.33.2. Then

(1) Q is étale local on the source-and-target.
(2) given a morphism of algebraic spaces f : X → Y and x ∈ |X| the following

are equivalent
(a) f has Q at x, and
(b) there is an open neighbourhood X ′ ⊂ X of x such that X ′ → Y has
P.

(3) given a morphism of algebraic spaces f : X → Y the following are equiv-
alent:
(a) f has P,
(b) for every x ∈ |X| the morphism f has Q at x.

Proof. See Descent, Lemma 35.33.2 for (1). The implication (1)(a)⇒ (2)(b) follows
on letting X ′ = a(U) ⊂ X given a diagram as in Lemma 67.22.5. The implication
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(2)(b) ⇒ (1)(a) is clear. The equivalence of (3)(a) and (3)(b) follows from the
corresponding result for morphisms of schemes, see Descent, Lemma 35.33.3. □

Remark 67.22.8.04RG We will apply Lemma 67.22.7 above to all cases listed in Descent,
Remark 35.32.7 except “flat”. In each case we will do this by defining f to have
property P at x if f has P in a neighbourhood of x.

67.23. Morphisms of finite type

03XE The property “locally of finite type” of morphisms of schemes is étale local on
the source-and-target, see Descent, Remark 35.32.7. It is also stable under base
change and fpqc local on the target, see Morphisms, Lemma 29.15.4, and Descent,
Lemmas 35.23.10. Hence, by Lemma 67.22.1 above, we may define what it means
for a morphism of algebraic spaces to be locally of finite type as follows and it
agrees with the already existing notion defined in Section 67.3 when the morphism
is representable.

Definition 67.23.1.03XF Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f locally of finite type if the equivalent conditions of Lemma
67.22.1 hold with P = locally of finite type.

(2) Let x ∈ |X|. We say f is of finite type at x if there exists an open
neighbourhood X ′ ⊂ X of x such that f |X′ : X ′ → Y is locally of finite
type.

(3) We say f is of finite type if it is locally of finite type and quasi-compact.

Consider the algebraic space A1
k/Z of Spaces, Example 65.14.8. The morphism

A1
k/Z→ Spec(k) is of finite type.

Lemma 67.23.2.03XG The composition of finite type morphisms is of finite type. The
same holds for locally of finite type.

Proof. See Remark 67.22.3 and Morphisms, Lemma 29.15.3. □

Lemma 67.23.3.03XH A base change of a finite type morphism is finite type. The same
holds for locally of finite type.

Proof. See Remark 67.22.4 and Morphisms, Lemma 29.15.4. □

Lemma 67.23.4.040Y Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is locally of finite type,
(2) for every x ∈ |X| the morphism f is of finite type at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is locally of finite type,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is locally of finite type,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is locally of finite type,
(6) there exists a scheme U and a surjective étale morphism φ : U → X such

that the composition f ◦ φ is locally of finite type,
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(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is locally of finite type,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, U → X is surjective,
and the top horizontal arrow is locally of finite type, and

(9) there exist Zariski coverings Y =
⋃
i∈I Yi, and f−1(Yi) =

⋃
Xij such that

each morphism Xij → Yi is locally of finite type.

Proof. Each of the conditions (2), (3), (4), (5), (6), (7), and (9) imply condition
(8) in a straightforward manner. For example, if (5) holds, then we can choose a
scheme V which is a disjoint union of affines and a surjective morphism V → Y
(see Properties of Spaces, Lemma 66.6.1). Then V ×Y X → V is locally of finite
type by (5). Choose a scheme U and a surjective étale morphism U → V ×Y X.
Then U → V is locally of finite type by Lemma 67.23.2. Hence (8) is true.
The conditions (1), (7), and (8) are equivalent by definition.
To finish the proof, we show that (1) implies all of the conditions (2), (3), (4), (5),
(6), and (9). For (2) this is immediate. For (3), (4), (5), and (9) this follows from
the fact that being locally of finite type is preserved under base change, see Lemma
67.23.3. For (6) we can take U = X and we’re done. □

Lemma 67.23.5.04ZK Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally of finite type and Y is locally Noetherian, then X is
locally Noetherian.

Proof. Let
U

��

// V

��
X // Y

be a commutative diagram where U , V are schemes and the vertical arrows are
surjective étale. If f is locally of finite type, then U → V is locally of finite
type. If Y is locally Noetherian, then V is locally Noetherian. By Morphisms,
Lemma 29.15.6 we see that U is locally Noetherian, which means that X is locally
Noetherian. □

Lemma 67.23.6.0462 Let S be a scheme. Let f : X → Y , g : Y → Z be morphisms of
algebraic spaces over S. If g ◦ f : X → Z is locally of finite type, then f : X → Y
is locally of finite type.
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Proof. We can find a diagram
U //

��

V //

��

W

��
X // Y // Z

where U , V , W are schemes, the vertical arrows are étale and surjective, see Spaces,
Lemma 65.11.6. At this point we can use Lemma 67.23.4 and Morphisms, Lemma
29.15.8 to conclude. □

Lemma 67.23.7.06ED An immersion is locally of finite type.

Proof. Follows from the general principle Spaces, Lemma 65.5.8 and Morphisms,
Lemmas 29.15.5. □

67.24. Points and geometric points

0485 In this section we make some remarks on points and geometric points (see Properties
of Spaces, Definition 66.19.1). One way to think about a geometric point of X is
to consider a geometric point s : Spec(k)→ S of S and a lift of s to a morphism x
into X. Here is a diagram

Spec(k)
x
//

s
##

X

��
S.

We often say “let k be an algebraically closed field over S” to indicate that Spec(k)
comes equipped with a morphism Spec(k)→ S. In this situation we write

X(k) = MorS(Spec(k), X) = {x ∈ X lying over s}
for the set of k-valued points of X. In this case the map X(k) → |X| maps into
the subset |Xs| ⊂ |X|. Here Xs = Spec(κ(s)) ×S X, where s ∈ S is the point
corresponding to s. As Spec(κ(s)) → S is a monomorphism, also the base change
Xs → X is a monomorphism, and |Xs| is indeed a subset of |X|.

Lemma 67.24.1.0487 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type. The following are equivalent:

(1) f is surjective, and
(2) for every algebraically closed field k over S the induced map X(k)→ Y (k)

is surjective.

Proof. Choose a diagram
U

��

// V

��
X // Y

with U , V schemes over S and vertical arrows surjective and étale, see Spaces,
Lemma 65.11.6. Since f is locally of finite type we see that U → V is locally of
finite type.
Assume (1) and let y ∈ Y (k). Then U → Y is surjective and locally of finite type
by Lemmas 67.5.4 and 67.23.2. Let Z = U ×Y,y Spec(k). This is a scheme. The
projection Z → Spec(k) is surjective and locally of finite type by Lemmas 67.5.5
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and 67.23.3. It follows from Varieties, Lemma 33.14.1 that Z has a k valued point
z. The image x ∈ X(k) of z maps to y as desired.

Assume (2). By Properties of Spaces, Lemma 66.4.4 it suffices to show that |X| →
|Y | is surjective. Let y ∈ |Y |. Choose a u ∈ U mapping to y. Let k ⊃ κ(u) be
an algebraic closure. Denote u ∈ U(k) the corresponding point and y ∈ Y (k) its
image. By assumption there exists a x ∈ X(k) mapping to y. Then it is clear that
the image x ∈ |X| of x maps to y. □

In order to state the next lemma we introduce the following notation. Given a
scheme T we denote

λ(T ) = sup{ℵ0, |κ(t)|; t ∈ T}.
In words λ(T ) is the smallest infinite cardinal bounding all the cardinalities of
residue fields ot T . Note that if R is a ring then the cardinality of any residue
field κ(p) of R is bounded by the cardinality of R (details omitted). This implies
that λ(T ) ≤ size(T ) where size(T ) is the size of the scheme T as introduced in
Sets, Section 3.9. If L/K is a finitely generated field extension then |K| ≤ |L| ≤
max{ℵ0, |K|}. It follows that if T ′ → T is a morphism of schemes which is locally
of finite type then λ(T ′) ≤ λ(T ), and if T ′ → T is also surjective then equality
holds. Next, suppose that S is a scheme and that X is an algebraic space over S.
In this case we define

λ(X) := λ(U)
where U is any scheme over S which has a surjective étale morphism towards X.
The reason that this is independent of the choice of U is that given a pair of such
schemes U and U ′ the fibre product U ×X U ′ is a scheme which admits a surjective
étale morphism to both U and U ′, whence λ(U) = λ(U ×X U ′) = λ(U ′) by the
discussion above.

Lemma 67.24.2.0488 Let S be a scheme. Let X, Y be algebraic spaces over S.
(1) As k ranges over all algebraically closed fields over S the collection of

geometric points y ∈ Y (k) cover all of |Y |.
(2) As k ranges over all algebraically closed fields over S with |k| ≥ λ(Y ) and
|k| > λ(X) the geometric points y ∈ Y (k) cover all of |Y |.

(3) For any geometric point s : Spec(k)→ S where k has cardinality > λ(X)
the map

X(k) −→ |Xs|

is surjective.
(4) Let X → Y be a morphism of algebraic spaces over S. For any geometric

point s : Spec(k)→ S where k has cardinality > λ(X) the map

X(k) −→ |X| ×|Y | Y (k)

is surjective.
(5) Let X → Y be a morphism of algebraic spaces over S. The following are

equivalent:
(a) the map X → Y is surjective,
(b) for all algebraically closed fields k over S with |k| > λ(X), and |k| ≥

λ(Y ) the map X(k)→ Y (k) is surjective.
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Proof. To prove part (1) choose a surjective étale morphism V → Y where V is
a scheme. For each v ∈ V choose an algebraic closure κ(v) ⊂ kv. Consider the
morphisms x : Spec(kv)→ V → Y . By construction of |Y | these cover |Y |.
To prove part (2) we will use the following two facts whose proofs we omit: (i)
If K is a field and K is algebraic closure then |K| ≤ max{ℵ0, |K|}. (ii) For any
algebraically closed field k and any cardinal ℵ, ℵ ≥ |k| there exists an extension of
algebraically closed fields k′/k with |k′| = ℵ. Now we set ℵ = max{λ(X), λ(Y )}+.
Here λ+ > λ indicates the next bigger cardinal, see Sets, Section 3.6. Now (i)
implies that the fields ku constructed in the first paragraph of the proof all have
cardinality bounded by λ(X). Hence by (ii) we can find extensions ku ⊂ k′

u such
that |k′

u| = ℵ. The morphisms x′ : Spec(k′
u) → X cover |X| as desired. To really

finish the proof of (2) we need to show that the schemes Spec(k′
u) are (isomorphic

to) objects of Schfppf because our conventions are that all schemes are objects of
Schfppf ; the rest of this paragraph should be skipped by anyone who is not inter-
ested in set theoretical considerations. By construction there exists an object T of
Schfppf such that λ(X) and λ(Y ) are bounded by size(T ). By our construction of
the category Schfppf in Topologies, Definitions 34.7.6 as the category Schα con-
structed in Sets, Lemma 3.9.2 we see that any scheme whose size is ≤ size(T )+ is
isomorphic to an object of Schfppf . See the expression for the function Bound in
Sets, Equation (3.9.1.1). Since ℵ ≤ size(T )+ we conclude.
The notation Xs in part (3) means the fibre product Spec(κ(s))×SX, where s ∈ S is
the point corresponding to s. Hence part (2) follows from (4) with Y = Spec(κ(s)).
Let us prove (4). Let X → Y be a morphism of algebraic spaces over S. Let k be an
algebraically closed field over S of cardinality > λ(X). Let y ∈ Y (k) and x ∈ |X|
which map to the same element y of |Y |. We have to find x ∈ X(k) mapping to x
and y. Choose a commutative diagram

U

��

// V

��
X // Y

with U , V schemes over S and vertical arrows surjective and étale, see Spaces,
Lemma 65.11.6. Choose a u ∈ |U | which maps to x, and denote v ∈ |V | the
image. We will think of u = Spec(κ(u)) and v = Spec(κ(v)) as schemes. Note that
V ×Y Spec(k) is a scheme étale over k. Hence it is a disjoint union of spectra of
finite separable extensions of k, see Morphisms, Lemma 29.36.7. As v maps to y
we see that v×Y Spec(k) is a nonempty scheme. As v → V is a monomorphism, we
see that v×Y Spec(k)→ V ×Y Spec(k) is a monomorphism. Hence v×Y Spec(k) is
a disjoint union of spectra of finite separable extensions of k, by Schemes, Lemma
26.23.11. We conclude that the morphism v ×Y Spec(k) → Spec(k) has a section,
i.e., we can find a morphism v : Spec(k) → V lying over v and over y. Finally we
consider the scheme

u×V,v Spec(k) = Spec(κ(u)⊗κ(v) k)
where κ(v)→ k is the field map defining the morphism v. Since the cardinality of k
is larger than the cardinality of κ(u) by assumption we may apply Algebra, Lemma
10.35.12 to see that any maximal ideal m ⊂ κ(u) ⊗κ(v) k has a residue field which
is algebraic over k and hence equal to k. Such a maximal ideal will hence produce
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a morphism u : Spec(k) → U lying over u and mapping to v. The composition
Spec(k) → U → X will be the desired geometric point x ∈ X(k). This concludes
the proof of part (4).
Part (5) is a formal consequence of parts (2) and (4) and Properties of Spaces,
Lemma 66.4.4. □

67.25. Points of finite type

06EE Let S be a scheme. Let X be an algebraic space over S. A finite type point
x ∈ |X| is a point which can be represented by a morphism Spec(k)→ X which is
locally of finite type. Finite type points are a suitable replacement of closed points
for algebraic spaces and algebraic stacks. There are always “enough of them” for
example.

Lemma 67.25.1.06EF Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. The following are equivalent:

(1) There exists a morphism Spec(k)→ X which is locally of finite type and
represents x.

(2) There exists a scheme U , a closed point u ∈ U , and an étale morphism
φ : U → X such that φ(u) = x.

Proof. Let u ∈ U and U → X be as in (2). Then Spec(κ(u))→ U is of finite type,
and U → X is representable and locally of finite type (by the general principle
Spaces, Lemma 65.5.8 and Morphisms, Lemmas 29.36.11 and 29.21.8). Hence we
see (1) holds by Lemma 67.23.2.
Conversely, assume Spec(k) → X is locally of finite type and represents x. Let
U → X be a surjective étale morphism where U is a scheme. By assumption
U×XSpec(k)→ U is locally of finite type. Pick a finite type point v of U×XSpec(k)
(there exists at least one, see Morphisms, Lemma 29.16.4). By Morphisms, Lemma
29.16.5 the image u ∈ U of v is a finite type point of U . Hence by Morphisms,
Lemma 29.16.4 after shrinking U we may assume that u is a closed point of U , i.e.,
(2) holds. □

Definition 67.25.2.06EG Let S be a scheme. Let X be an algebraic space over S. We
say a point x ∈ |X| is a finite type point5 if the equivalent conditions of Lemma
67.25.1 are satisfied. We denote Xft-pts the set of finite type points of X.

We can describe the set of finite type points as follows.

Lemma 67.25.3.06EH Let S be a scheme. Let X be an algebraic space over S. We have

Xft-pts =
⋃

φ:U→X étale
|φ|(U0)

where U0 is the set of closed points of U . Here we may let U range over all schemes
étale over X or over all affine schemes étale over X.

Proof. Immediate from Lemma 67.25.1. □

Lemma 67.25.4.06EI Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally of finite type, then f(Xft-pts) ⊂ Yft-pts.

5This is a slight abuse of language as it would perhaps be more correct to say “locally finite
type point”.
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Proof. Take x ∈ Xft-pts. Represent x by a locally finite type morphism x :
Spec(k) → X. Then f ◦ x is locally of finite type by Lemma 67.23.2. Hence
f(x) ∈ Yft-pts. □

Lemma 67.25.5.06EJ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally of finite type and surjective, then f(Xft-pts) = Yft-pts.

Proof. We have f(Xft-pts) ⊂ Yft-pts by Lemma 67.25.4. Let y ∈ |Y | be a finite type
point. Represent y by a morphism Spec(k)→ Y which is locally of finite type. As
f is surjective the algebraic space Xk = Spec(k) ×Y X is nonempty, therefore has
a finite type point x ∈ |Xk| by Lemma 67.25.3. Now Xk → X is a morphism which
is locally of finite type as a base change of Spec(k) → Y (Lemma 67.23.3). Hence
the image of x in X is a finite type point by Lemma 67.25.4 which maps to y by
construction. □

Lemma 67.25.6.06EK Let S be a scheme. Let X be an algebraic space over S. For any
locally closed subset T ⊂ |X| we have

T ̸= ∅ ⇒ T ∩Xft-pts ̸= ∅.
In particular, for any closed subset T ⊂ |X| we see that T ∩Xft-pts is dense in T .

Proof. Let i : Z → X be the reduced induce subspace structure on T , see Remark
67.12.5. Any immersion is locally of finite type, see Lemma 67.23.7. Hence by
Lemma 67.25.4 we see Zft-pts ⊂ Xft-pts ∩T . Finally, any nonempty affine scheme U
with an étale morphism towards Z has at least one closed point. Hence Z has at
least one finite type point by Lemma 67.25.3. The lemma follows. □

Here is another, more technical, characterization of a finite type point on an alge-
braic space.

Lemma 67.25.7.06EL Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. The following are equivalent:

(1) x is a finite type point,
(2) there exists an algebraic space Z whose underlying topological space |Z|

is a singleton, and a morphism f : Z → X which is locally of finite type
such that {x} = |f |(|Z|), and

(3) there exists an algebraic space Z and a morphism f : Z → X with the
following properties:
(a) there is a surjective étale morphism z : Spec(k) → Z where k is a

field,
(b) f is locally of finite type,
(c) f is a monomorphism, and
(d) x = f(z).

Proof. Assume x is a finite type point. Choose an affine scheme U , a closed point
u ∈ U , and an étale morphism φ : U → X with φ(u) = x, see Lemma 67.25.3.
Set u = Spec(κ(u)) as usual. The projection morphisms u ×X u → u are the
compositions

u×X u→ u×X U → u×X X = u

where the first arrow is a closed immersion (a base change of u→ U) and the second
arrow is étale (a base change of the étale morphism U → X). Hence u ×X U is a
disjoint union of spectra of finite separable extensions of k (see Morphisms, Lemma
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29.36.7) and therefore the closed subscheme u ×X u is a disjoint union of finite
separable extension of k, i.e., u×X u→ u is étale. By Spaces, Theorem 65.10.5 we
see that Z = u/u×X u is an algebraic space. By construction the diagram

u

��

// U

��
Z // X

is commutative with étale vertical arrows. Hence Z → X is locally of finite type
(see Lemma 67.23.4). By construction the morphism Z → X is a monomorphism
and the image of z is x. Thus (3) holds.
It is clear that (3) implies (2). If (2) holds then x is a finite type point of X by
Lemma 67.25.4 (and Lemma 67.25.6 to see that Zft-pts is nonempty, i.e., the unique
point of Z is a finite type point of Z). □

67.26. Nagata spaces

0BAT See Properties of Spaces, Section 66.7 for the definition of a Nagata algebraic space.
Lemma 67.26.1.0BAU Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If Y is Nagata and f locally of finite type then X is Nagata.
Proof. Let V be a scheme and let V → Y be a surjective étale morphism. Let U
be a scheme and let U → X ×Y V be a surjective étale morphism. If Y is Nagata,
then V is a Nagata scheme. If X → Y is locally of finite type, then U → V is
locally of finite type. Hence V is a Nagata scheme by Morphisms, Lemma 29.18.1.
Then X is Nagata by definition. □

Lemma 67.26.2.0BAV The following types of algebraic spaces are Nagata.
(1) Any algebraic space locally of finite type over a Nagata scheme.
(2) Any algebraic space locally of finite type over a field.
(3) Any algebraic space locally of finite type over a Noetherian complete local

ring.
(4) Any algebraic space locally of finite type over Z.
(5) Any algebraic space locally of finite type over a Dedekind ring of charac-

teristic zero.
(6) And so on.

Proof. The first property holds by Lemma 67.26.1. Thus the others hold as well,
see Morphisms, Lemma 29.18.2. □

67.27. Quasi-finite morphisms

03XI The property “locally quasi-finite” of morphisms of schemes is étale local on the
source-and-target, see Descent, Remark 35.32.7. It is also stable under base change
and fpqc local on the target, see Morphisms, Lemma 29.20.13, and Descent, Lemma
35.23.24. Hence, by Lemma 67.22.1 above, we may define what it means for a
morphism of algebraic spaces to be locally quasi-finite as follows and it agrees
with the already existing notion defined in Section 67.3 when the morphism is
representable.
Definition 67.27.1.03XJ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.
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(1) We say f is locally quasi-finite if the equivalent conditions of Lemma
67.22.1 hold with P = locally quasi-finite.

(2) Let x ∈ |X|. We say f is quasi-finite at x if there exists an open neigh-
bourhood X ′ ⊂ X of x such that f |X′ : X ′ → Y is locally quasi-finite.

(3) A morphism of algebraic spaces f : X → Y is quasi-finite if it is locally
quasi-finite and quasi-compact.

The last part is compatible with the notion of quasi-finiteness for morphisms of
schemes by Morphisms, Lemma 29.20.9.

Lemma 67.27.2.0ABM Let S be a scheme. Let f : X → Y and g : Y ′ → Y be morphisms
of algebraic spaces over S. Denote f ′ : X ′ → Y ′ the base change of f by g. Denote
g′ : X ′ → X the projection. Assume f is locally of finite type. Let W ⊂ |X|, resp.
W ′ ⊂ |X ′| be the set of points where f , resp. f ′ is quasi-finite.

(1) W ⊂ |X| and W ′ ⊂ |X ′| are open,
(2) W ′ = (g′)−1(W ), i.e., formation of the locus where f is quasi-finite com-

mutes with base change,
(3) the base change of a locally quasi-finite morphism is locally quasi-finite,

and
(4) the base change of a quasi-finite morphism is quasi-finite.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Choose a
scheme U and a surjective étale morphism U → V ×Y X. Choose a scheme V ′ and
a surjective étale morphism V ′ → Y ′ ×Y V . Set U ′ = V ′ ×V U so that U ′ → X ′ is
a surjective étale morphism as well. Picture

U ′

��

// U

��
V ′ // V

lying over
X ′

��

// X

��
Y ′ // Y

Choose u ∈ |U | with image x ∈ |X|. The property of being "locally quasi-finite" is
étale local on the source-and-target, see Descent, Remark 35.32.7. Hence Lemmas
67.22.5 and 67.22.7 apply and we see that f : X → Y is quasi-finite at x if and
only if U → V is quasi-finite at u. Similarly for f ′ : X ′ → Y ′ and the morphism
U ′ → V ′. Hence parts (1), (2), and (3) reduce to Morphisms, Lemmas 29.20.13
and 29.56.2. Part (4) follows from (3) and Lemma 67.8.4. □

Lemma 67.27.3.03XK The composition of quasi-finite morphisms is quasi-finite. The
same holds for locally quasi-finite.

Proof. See Remark 67.22.3 and Morphisms, Lemma 29.20.12. □

Lemma 67.27.4.03XL A base change of a quasi-finite morphism is quasi-finite. The same
holds for locally quasi-finite.

Proof. Immediate consequence of Lemma 67.27.2. □

The following lemma characterizes locally quasi-finite morphisms as those mor-
phisms which are locally of finite type and have “discrete fibres”. However, this is
not the same thing as asking |X| → |Y | to have discrete fibres as the discussion in
Examples, Section 110.50 shows.
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Lemma 67.27.5.06RW Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces. Assume f is locally of finite type. The following are equivalent

(1) f is locally quasi-finite,
(2) for every morphism Spec(k) → Y where k is a field the space |Xk| is

discrete. Here Xk = Spec(k)×Y X.

Proof. Assume f is locally quasi-finite. Let Spec(k) → Y be as in (2). Choose a
surjective étale morphism U → X where U is a scheme. Then Uk = Spec(k)×Y U →
Xk is an étale morphism of algebraic spaces by Properties of Spaces, Lemma 66.16.5.
By Lemma 67.27.4 we see that Xk → Spec(k) is locally quasi-finite. By definition
this means that Uk → Spec(k) is locally quasi-finite. Hence |Uk| is discrete by
Morphisms, Lemma 29.20.8. Since |Uk| → |Xk| is surjective and open we conclude
that |Xk| is discrete.

Conversely, assume (2). Choose a surjective étale morphism V → Y where V is a
scheme. Choose a surjective étale morphism U → V ×Y X where U is a scheme.
Note that U → V is locally of finite type as f is locally of finite type. Picture

U //

##

X ×Y V

��

// V

��
X // Y

If f is not locally quasi-finite then U → V is not locally quasi-finite. Hence there
exists a specialization u ⇝ u′ for some u, u′ ∈ U lying over the same point v ∈ V ,
see Morphisms, Lemma 29.20.6. We claim that u, u′ do not have the same image in
Xv = Spec(κ(v))×Y X which will contradict the assumption that |Xv| is discrete as
desired. Let d = trdegκ(v)(κ(u)) and d′ = trdegκ(v)(κ(u′)). Then we see that d > d′

by Morphisms, Lemma 29.28.7. Note that Uv (the fibre of U → V over v) is the fibre
product of U and Xv over X×Y V , hence Uv → Xv is étale (as a base change of the
étale morphism U → X ×Y V ). If u, u′ ∈ Uv map to the same element of |Xv| then
there exists a point r ∈ Rv = Uv×Xv Uv with t(r) = u and s(r) = u′, see Properties
of Spaces, Lemma 66.4.3. Note that s, t : Rv → Uv are étale morphisms of schemes
over κ(v), hence κ(u) ⊂ κ(r) ⊃ κ(u′) are finite separable extensions of fields over
κ(v) (see Morphisms, Lemma 29.36.7). We conclude that the transcendence degrees
are equal. This contradiction finishes the proof. □

Lemma 67.27.6.040Z Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is locally quasi-finite,
(2) for every x ∈ |X| the morphism f is quasi-finite at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is locally quasi-finite,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is locally quasi-finite,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is locally quasi-finite,
(6) there exists a scheme U and a surjective étale morphism φ : U → X such

that the composition f ◦ φ is locally quasi-finite,
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(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is locally quasi-finite,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is
surjective such that the top horizontal arrow is locally quasi-finite, and

(9) there exist Zariski coverings Y =
⋃
i∈I Yi, and f−1(Yi) =

⋃
Xij such that

each morphism Xij → Yi is locally quasi-finite.

Proof. Omitted. □

Lemma 67.27.7.03XM An immersion is locally quasi-finite.

Proof. Omitted. □

Lemma 67.27.8.03XN Let S be a scheme. Let X → Y → Z be morphisms of algebraic
spaces over S. If X → Z is locally quasi-finite, then X → Y is locally quasi-finite.

Proof. Choose a commutative diagram

U

��

// V

��

// W

��
X // Y // Z

with vertical arrows étale and surjective. (See Spaces, Lemma 65.11.6.) Apply
Morphisms, Lemma 29.20.17 to the top row. □

Lemma 67.27.9.0ABN Let S be a scheme. Let f : X → Y be a finite type morphism of
algebraic spaces over S. Let y ∈ |Y |. There are at most finitely many points of |X|
lying over y at which f is quasi-finite.

Proof. Choose a field k and a morphism Spec(k) → Y in the equivalence class
determined by y. The fibre Xk = Spec(k)×Y X is an algebraic space of finite type
over a field, in particular quasi-compact. The map |Xk| → |X| surjects onto the
fibre of |X| → |Y | over y (Properties of Spaces, Lemma 66.4.3). Moreover, the
set of points where Xk → Spec(k) is quasi-finite maps onto the set of points lying
over y where f is quasi-finite by Lemma 67.27.2. Choose an affine scheme U and
a surjective étale morphism U → Xk (Properties of Spaces, Lemma 66.6.3). Then
U → Spec(k) is a morphism of finite type and there are at most a finite number of
points where this morphism is quasi-finite, see Morphisms, Lemma 29.20.14. Since
Xk → Spec(k) is quasi-finite at a point x′ if and only if it is the image of a point
of U where U → Spec(k) is quasi-finite, we conclude. □
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Lemma 67.27.10.0463 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally of finite type and a monomorphism, then f is separated
and locally quasi-finite.

Proof. A monomorphism is separated, see Lemma 67.10.3. By Lemma 67.27.6 it
suffices to prove the lemma after performing a base change by Z → Y with Z affine.
Hence we may assume that Y is an affine scheme. Choose an affine scheme U and
an étale morphism U → X. Since X → Y is locally of finite type the morphism
of affine schemes U → Y is of finite type. Since X → Y is a monomorphism we
have U ×X U = U ×Y U . In particular the maps U ×Y U → U are étale. Let
y ∈ Y . Then either Uy is empty, or Spec(κ(u)) ×Spec(κ(y)) Uy is isomorphic to the
fibre of U ×Y U → U over u for some u ∈ U lying over y. This implies that the
fibres of U → Y are finite discrete sets (as U ×Y U → U is an étale morphism of
affine schemes, see Morphisms, Lemma 29.36.7). Hence U → Y is quasi-finite, see
Morphisms, Lemma 29.20.6. As U → X was an arbitrary étale morphism with U
affine this implies that X → Y is locally quasi-finite. □

67.28. Morphisms of finite presentation

03XO The property “locally of finite presentation” of morphisms of schemes is étale local
on the source-and-target, see Descent, Remark 35.32.7. It is also stable under base
change and fpqc local on the target, see Morphisms, Lemma 29.21.4, and Descent,
Lemma 35.23.11. Hence, by Lemma 67.22.1 above, we may define what it means for
a morphism of algebraic spaces to be locally of finite presentation as follows and it
agrees with the already existing notion defined in Section 67.3 when the morphism
is representable.

Definition 67.28.1.03XP Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is locally of finite presentation if the equivalent conditions of
Lemma 67.22.1 hold with P =“locally of finite presentation”.

(2) Let x ∈ |X|. We say f is of finite presentation at x if there exists an open
neighbourhood X ′ ⊂ X of x such that f |X′ : X ′ → Y is locally of finite
presentation6.

(3) A morphism of algebraic spaces f : X → Y is of finite presentation if it is
locally of finite presentation, quasi-compact and quasi-separated.

Note that a morphism of finite presentation is not just a quasi-compact morphism
which is locally of finite presentation.

Lemma 67.28.2.03XQ The composition of morphisms of finite presentation is of finite
presentation. The same holds for locally of finite presentation.

Proof. See Remark 67.22.3 and Morphisms, Lemma 29.21.3. Also use the result for
quasi-compact and for quasi-separated morphisms (Lemmas 67.8.5 and 67.4.8). □

Lemma 67.28.3.03XR A base change of a morphism of finite presentation is of finite
presentation. The same holds for locally of finite presentation.

6It seems awkward to use “locally of finite presentation at x”, but the current terminology
may be misleading in the sense that “of finite presentation at x” does not mean that there is an
open neighbourhood X′ ⊂ X such that f |X′ is of finite presentation.
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Proof. See Remark 67.22.4 and Morphisms, Lemma 29.21.4. Also use the result for
quasi-compact and for quasi-separated morphisms (Lemmas 67.8.4 and 67.4.4). □

Lemma 67.28.4.0410 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is locally of finite presentation,
(2) for every x ∈ |X| the morphism f is of finite presentation at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is locally of finite presentation,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is locally of finite presentation,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is locally of finite presentation,
(6) there exists a scheme U and a surjective étale morphism φ : U → X such

that the composition f ◦ φ is locally of finite presentation,
(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is locally of finite presentation,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is sur-
jective such that the top horizontal arrow is locally of finite presentation,
and

(9) there exist Zariski coverings Y =
⋃
i∈I Yi, and f−1(Yi) =

⋃
Xij such that

each morphism Xij → Yi is locally of finite presentation.

Proof. Omitted. □

Lemma 67.28.5.0464 A morphism which is locally of finite presentation is locally of
finite type. A morphism of finite presentation is of finite type.

Proof. Let f : X → Y be a morphism of algebraic spaces which is locally of finite
presentation. This means there exists a diagram as in Lemma 67.22.1 with h locally
of finite presentation and surjective vertical arrow a. By Morphisms, Lemma 29.21.8
h is locally of finite type. Hence X → Y is locally of finite type by definition. If
f is of finite presentation then it is quasi-compact and it follows that f is of finite
type. □

Lemma 67.28.6.04ZL Let S be a scheme. Let f : X → Y be a morphism of alge-
braic spaces over S. If f is of finite presentation and Y is Noetherian, then X is
Noetherian.
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Proof. Assume f is of finite presentation and Y Noetherian. By Lemmas 67.28.5
and 67.23.5 we see that X is locally Noetherian. As f is quasi-compact and Y
is quasi-compact we see that X is quasi-compact. As f is of finite presentation
it is quasi-separated (see Definition 67.28.1) and as Y is Noetherian it is quasi-
separated (see Properties of Spaces, Definition 66.24.1). Hence X is quasi-separated
by Lemma 67.4.9. Hence we have checked all three conditions of Properties of
Spaces, Definition 66.24.1 and we win. □

Lemma 67.28.7.06G4 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) If Y is locally Noetherian and f locally of finite type then f is locally of
finite presentation.

(2) If Y is locally Noetherian and f of finite type and quasi-separated then f
is of finite presentation.

Proof. Assume f : X → Y locally of finite type and Y locally Noetherian. This
means there exists a diagram as in Lemma 67.22.1 with h locally of finite type and
surjective vertical arrow a. By Morphisms, Lemma 29.21.9 h is locally of finite
presentation. Hence X → Y is locally of finite presentation by definition. This
proves (1). If f is of finite type and quasi-separated then it is also quasi-compact
and quasi-separated and (2) follows immediately. □

Lemma 67.28.8.06G5 Let S be a scheme. Let Y be an algebraic space over S which is
quasi-compact and quasi-separated. If X is of finite presentation over Y , then X
is quasi-compact and quasi-separated.

Proof. Omitted. □

Lemma 67.28.9.05WT Let S be a scheme. Let f : X → Y and Y → Z be morphisms
of algebraic spaces over S. If X is locally of finite presentation over Z, and Y is
locally of finite type over Z, then f is locally of finite presentation.

Proof. Choose a scheme W and a surjective étale morphism W → Z. Then choose
a scheme V and a surjective étale morphism V →W×Z Y . Finally choose a scheme
U and a surjective étale morphism U → V ×Y X. By definition U is locally of finite
presentation over W and V is locally of finite type over W . By Morphisms, Lemma
29.21.11 the morphism U → V is locally of finite presentation. Hence f is locally
of finite presentation. □

Lemma 67.28.10.084P Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S with diagonal ∆ : X → X ×Y X. If f is locally of finite type then
∆ is locally of finite presentation. If f is quasi-separated and locally of finite type,
then ∆ is of finite presentation.

Proof. Note that ∆ is a morphism over X (via the second projection X×Y X → X).
Assume f is locally of finite type. Note that X is of finite presentation over X and
X×Y X is of finite type over X (by Lemma 67.23.3). Thus the first statement holds
by Lemma 67.28.9. The second statement follows from the first, the definitions, and
the fact that a diagonal morphism is separated (Lemma 67.4.1). □

Lemma 67.28.11.06CN An open immersion of algebraic spaces is locally of finite presen-
tation.
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Proof. An open immersion is by definition representable, hence we can use the
general principle Spaces, Lemma 65.5.8 and Morphisms, Lemma 29.21.5. □

Lemma 67.28.12.084Q A closed immersion i : Z → X is of finite presentation if and
only if the associated quasi-coherent sheaf of ideals I = Ker(OX → i∗OZ) is of
finite type (as an OX -module).

Proof. Let U be a scheme and let U → X be a surjective étale morphism. By
Lemma 67.28.4 we see that i′ : Z ×X U → U is of finite presentation if and only
if i is. By Properties of Spaces, Section 66.30 we see that I is of finite type if and
only if I|U = Ker(OU → i′∗OZ×XU ) is. Hence the result follows from the case of
schemes, see Morphisms, Lemma 29.21.7. □

67.29. Constructible sets

0ECV This section is the continuation of Properties of Spaces, Section 66.8.

Lemma 67.29.1.0ECW Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let E ⊂ |Y | be a subset. If E is étale locally constructible in Y ,
then f−1(E) is étale locally constructible in X.

Proof. Choose a scheme V and a surjective étale morphism φ : V → Y . Choose a
scheme U and a surjective étale morphism U → V ×Y X. Then U → X is surjective
étale and the inverse image of f−1(E) in U is the inverse image of φ−1(E) by
U → V . Thus the lemma follows from the case of schemes for U → V (Morphisms,
Lemma 29.22.1) and the definition (Properties of Spaces, Definition 66.8.2). □

Theorem 67.29.2 (Chevalley’s Theorem).0ECX Let S be a scheme. Let f : X → Y be
a morphism of algebraic spaces over S. Assume f is quasi-compact and locally of
finite presentation. Then the image of every étale locally constructible subset of
|X| is an étale locally constructible subset of |Y |.

Proof. Let E ⊂ |X| be étale locally constructible. Let V → Y be an étale morphism
with V affine. It suffices to show that the inverse image of f(E) in V is constructible,
see Properties of Spaces, Definition 66.8.2. Since f is quasi-compact V ×Y X is a
quasi-compact algebraic space. Choose an affine scheme U and a surjective étale
morphism U → V ×Y X (Properties of Spaces, Lemma 66.6.3). By Properties of
Spaces, Lemma 66.4.3 the inverse image of f(E) in V is the image under U → V
of the inverse image of E in U . Thus the result follows from the case of schemes,
see Morphisms, Lemma 29.22.2. □

67.30. Flat morphisms

03MK The property “flat” of morphisms of schemes is étale local on the source-and-target,
see Descent, Remark 35.32.7. It is also stable under base change and fpqc local on
the target, see Morphisms, Lemma 29.25.8 and Descent, Lemma 35.23.15. Hence,
by Lemma 67.22.1 above, we may define the notion of a flat morphism of algebraic
spaces as follows and it agrees with the already existing notion defined in Section
67.3 when the morphism is representable.

Definition 67.30.1.03ML Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is flat if the equivalent conditions of Lemma 67.22.1 with P =“flat”.
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(2) Let x ∈ |X|. We say f is flat at x if the equivalent conditions of Lemma
67.22.5 hold with Q =“induced map local rings is flat”.

Note that the second part makes sense by Descent, Lemma 35.33.4.

We do a quick sanity check.

Lemma 67.30.2.08EW Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then f is flat if and only if f is flat at all points of |X|.

Proof. Choose a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

where U and V are schemes, the vertical arrows are étale, and a is surjective. By
definition f is flat if and only if h is flat (Definition 67.22.2). By definition f is flat
at x ∈ |X| if and only if h is flat at some (equivalently any) u ∈ U which maps
to x (Definition 67.22.6). Thus the lemma follows from the fact that a morphism
of schemes is flat if and only if it is flat at all points of the source (Morphisms,
Definition 29.25.1). □

Lemma 67.30.3.03MN The composition of flat morphisms is flat.

Proof. See Remark 67.22.3 and Morphisms, Lemma 29.25.6. □

Lemma 67.30.4.03MO The base change of a flat morphism is flat.

Proof. See Remark 67.22.4 and Morphisms, Lemma 29.25.8. □

Lemma 67.30.5.03MM Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is flat,
(2) for every x ∈ |X| the morphism f is flat at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is flat,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is flat,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is flat,
(6) there exists a scheme U and a surjective étale morphism φ : U → X such

that the composition f ◦ φ is flat,
(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is flat,
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(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is
surjective such that the top horizontal arrow is flat, and

(9) there exists a Zariski coverings Y =
⋃
Yi and f−1(Yi) =

⋃
Xij such that

each morphism Xij → Yi is flat.

Proof. Omitted. □

Lemma 67.30.6.042S A flat morphism locally of finite presentation is universally open.

Proof. Let f : X → Y be a flat morphism locally of finite presentation of algebraic
spaces over S. Choose a diagram

U
α
//

��

V

��
X // Y

where U and V are schemes and the vertical arrows are surjective and étale, see
Spaces, Lemma 65.11.6. By Lemmas 67.30.5 and 67.28.4 the morphism α is flat
and locally of finite presentation. Hence by Morphisms, Lemma 29.25.10 we see
that α is universally open. Hence X → Y is universally open according to Lemma
67.6.5. □

Lemma 67.30.7.0413 Let S be a scheme. Let f : X → Y be a flat, quasi-compact,
surjective morphism of algebraic spaces over S. A subset T ⊂ |Y | is open (resp.
closed) if and only f−1(|T |) is open (resp. closed) in |X|. In other words f is
submersive, and in fact universally submersive.

Proof. Choose affine schemes Vi and étale morphisms Vi → Y such that V =∐
Vi → Y is surjective, see Properties of Spaces, Lemma 66.6.1. For each i the

algebraic space Vi ×Y X is quasi-compact. Hence we can find an affine scheme Ui
and a surjective étale morphism Ui → Vi ×Y X, see Properties of Spaces, Lemma
66.6.3. Then the composition Ui → Vi ×Y X → Vi is a surjective, flat morphism of
affines. Of course then U =

∐
Ui → X is surjective and étale and U = V ×Y X.

Moreover, the morphism U → V is the disjoint union of the morphisms Ui → Vi.
Hence U → V is surjective, quasi-compact and flat. Consider the diagram

U //

��

X

��
V // Y

By definition of the topology on |Y | the set T is closed (resp. open) if and only
if g−1(T ) ⊂ |V | is closed (resp. open). The same holds for f−1(T ) and its in-
verse image in |U |. Since U → V is quasi-compact, surjective, and flat we win by
Morphisms, Lemma 29.25.12. □
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Lemma 67.30.8.04NG Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let x be a geometric point of X lying over the point x ∈ |X|. Let
y = f ◦ x. The following are equivalent

(1) f is flat at x, and
(2) the map on étale local rings OY,y → OX,x is flat.

Proof. Choose a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

where U and V are schemes, a, b are étale, and u ∈ U mapping to x. We can find
a geometric point u : Spec(k) → U lying over u with x = a ◦ u, see Properties of
Spaces, Lemma 66.19.4. Set v = h ◦ u with image v ∈ V . We know that

OX,x = OshU,u and OY,y = OshV,v
see Properties of Spaces, Lemma 66.22.1. We obtain a commutative diagram

OU,u // OX,x

OV,v

OO

// OY,y

OO

of local rings with flat horizontal arrows. We have to show that the left vertical
arrow is flat if and only if the right vertical arrow is. Algebra, Lemma 10.39.9 tells
us OU,u is flat over OV,v if and only if OX,x is flat over OV,v. Hence the result
follows from More on Flatness, Lemma 38.2.5. □

Lemma 67.30.9.073C Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then f is flat if and only if the morphism of sites (fsmall, f ♯) :
(Xétale,OX)→ (Yétale,OY ) associated to f is flat.

Proof. Flatness of (fsmall, f ♯) is defined in terms of flatness of OX as a f−1
smallOY -

module. This can be checked at stalks, see Modules on Sites, Lemma 18.39.3 and
Properties of Spaces, Theorem 66.19.12. But we’ve already seen that flatness of f
can be checked on stalks, see Lemma 67.30.8. □

Lemma 67.30.10.089C Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Let F be a finite type quasi-coherent OX -module with scheme
theoretic support Z ⊂ X. If f is flat, then f−1(Z) is the scheme theoretic support
of f∗F .

Proof. Using the characterization of the scheme theoretic support as given in Lemma
67.15.3 and using the characterization of flat morphisms in terms of étale coverings
in Lemma 67.30.5 we reduce to the case of schemes which is Morphisms, Lemma
29.25.14. □

Lemma 67.30.11.089D Let S be a scheme. Let f : X → Y be a flat morphism of
algebraic spaces over S. Let V → Y be a quasi-compact open immersion. If V is
scheme theoretically dense in Y , then f−1V is scheme theoretically dense in X.
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Proof. Using the characterization of scheme theoretically dense opens in Lemma
67.17.2 and using the characterization of flat morphisms in terms of étale coverings
in Lemma 67.30.5 we reduce to the case of schemes which is Morphisms, Lemma
29.25.15. □

Lemma 67.30.12.089E Let S be a scheme. Let f : X → Y be a flat morphism of
algebraic spaces over S. Let g : V → Y be a quasi-compact morphism of algebraic
spaces. Let Z ⊂ Y be the scheme theoretic image of g and let Z ′ ⊂ X be the
scheme theoretic image of the base change V ×Y X → X. Then Z ′ = f−1Z.

Proof. Let Y ′ → Y be a surjective étale morphism such that Y ′ is a disjoint union
of affine schemes (Properties of Spaces, Lemma 66.6.1). Let X ′ → X ×Y Y ′ be a
surjective étale morphism such that X ′ is a disjoint union of affine schemes. By
Lemma 67.30.5 the morphism X ′ → Y ′ is flat. Set V ′ = V ×Y Y ′. By Lemma
67.16.3 the inverse image of Z in Y ′ is the scheme theoretic image of V ′ → Y ′ and
the inverse image of Z ′ in X ′ is the scheme theoretic image of V ′ ×Y ′ X ′ → X ′.
Since X ′ → X is surjective étale, it suffices to prove the result in the case of the
morphisms X ′ → Y ′ and V ′ → Y ′. Thus we may assume X and Y are affine
schemes. In this case V is a quasi-compact algebraic space. Choose an affine
scheme W and a surjective étale morphism W → V (Properties of Spaces, Lemma
66.6.3). It is clear that the scheme theoretic image of V → Y agrees with the scheme
theoretic image of W → Y and similarly for V ×Y X → Y and W ×Y X → X.
Thus we reduce to the case of schemes which is Morphisms, Lemma 29.25.16. □

67.31. Flat modules

05VT In this section we define what it means for a module to be flat at a point. To do
this we will use the notion of the stalk of a sheaf on the small étale site Xétale of
an algebraic space, see Properties of Spaces, Definition 66.19.6.

Lemma 67.31.1.05VU Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf on X. Let x ∈ |X|. The following
are equivalent

(1) for some commutative diagram

U

a

��

h
// V

b
��

X
f // Y

where U and V are schemes, a, b are étale, and u ∈ U mapping to x the
module a∗F is flat at u over V ,

(2) the stalk Fx is flat over the étale local ring OY,y where x is any geometric
point lying over x and y = f ◦ x.

Proof. During this proof we fix a geometric proof x : Spec(k) → X over x and we
denote y = f ◦x its image in Y . Given a diagram as in (1) we can find a geometric
point u : Spec(k)→ U lying over u with x = a◦u, see Properties of Spaces, Lemma
66.19.4. Set v = h ◦ u with image v ∈ V . We know that

OX,x = OshU,u and OY,y = OshV,v
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see Properties of Spaces, Lemma 66.22.1. We obtain a commutative diagram
OU,u // OX,x

OV,v

OO

// OY,y

OO

of local rings. Finally, we have
Fx = (φ∗F)u ⊗OU,u

OX,x
by Properties of Spaces, Lemma 66.29.4. Thus Algebra, Lemma 10.39.9 tells us
(φ∗F)u is flat over OV,v if and only if Fx is flat over OV,v. Hence the result follows
from More on Flatness, Lemma 38.2.5. □

Definition 67.31.2.05VV Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf on X.

(1) Let x ∈ |X|. We say F is flat at x over Y if the equivalent conditions of
Lemma 67.31.1 hold.

(2) We say F is flat over Y if F is flat over Y at all x ∈ |X|.

Having defined this we have the obligatory base change lemma. This lemma implies
that formation of the flat locus of a quasi-coherent sheaf commutes with flat base
change.

Lemma 67.31.3.05VW Let S be a scheme. Let

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

be a cartesian diagram of algebraic spaces over S. Let x′ ∈ |X ′| with image x ∈ |X|.
Let F be a quasi-coherent sheaf on X and denote F ′ = (g′)∗F .

(1) If F is flat at x over Y then F ′ is flat at x′ over Y ′.
(2) If g is flat at f ′(x′) and F ′ is flat at x′ over Y ′, then F is flat at x over Y .

In particular, if F is flat over Y , then F ′ is flat over Y ′.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Choose a
scheme U and a surjective étale morphism U → V ×Y X. Choose a scheme V ′

and a surjective étale morphism V ′ → V ×Y Y ′. Then U ′ = V ′ ×V U is a scheme
endowed with a surjective étale morphism U ′ = V ′ ×V U → Y ′ ×Y X = X ′. Pick
u′ ∈ U ′ mapping to x′ ∈ |X ′|. Then we can check flatness of F ′ at x′ over Y ′ in
terms of flatness of F ′|U ′ at u′ over V ′. Hence the lemma follows from More on
Morphisms, Lemma 37.15.2. □

The following lemma discusses “composition” of flat morphisms in terms of modules.
It also shows that flatness satisfies a kind of top down descent.

Lemma 67.31.4.05VX Let S be a scheme. Let X → Y → Z be morphisms of algebraic
spaces over S. Let F be a quasi-coherent sheaf on X. Let x ∈ |X| with image
y ∈ |Y |.

(1) If F is flat at x over Y and Y is flat at y over Z, then F is flat at x over
Z.
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(2) Let x : Spec(K)→ X be a representative of x. If
(a) F is flat at x over Y ,
(b) x∗F ̸= 0, and
(c) F is flat at x over Z,

then Y is flat at y over Z.
(3) Let x be a geometric point of X lying over x with image y in Y . If Fx is

a faithfully flat OY,y-module and F is flat at x over Z, then Y is flat at y
over Z.

Proof. Pick x and y as in part (3) and denote z the induced geometric point of
Z. Via the characterization of flatness in Lemmas 67.31.1 and 67.30.8 the lemma
reduces to a purely algebraic question on the local ring map OZ,z → OY,y and
the module Fx. Part (1) follows from Algebra, Lemma 10.39.4. We remark that
condition (2)(b) guarantees that Fx/myFx is nonzero. Hence (2)(a) + (2)(b) imply
that Fx is a faithfully flat OY,y-module, see Algebra, Lemma 10.39.15. Thus (2) is
a special case of (3). Finally, (3) follows from Algebra, Lemma 10.39.10. □

Sometimes the base change happens “up on top”. Here is a precise statement.

Lemma 67.31.5.05VY Let S be a scheme. Let f : X → Y , g : Y → Z be morphisms of
algebraic spaces over S. Let G be a quasi-coherent sheaf on Y . Let x ∈ |X| with
image y ∈ |Y |. If f is flat at x, then

G flat over Z at y ⇔ f∗G flat over Z at x.
In particular: If f is surjective and flat, then G is flat over Z, if and only if f∗G is
flat over Z.

Proof. Pick a geometric point x of X and denote y the image in Y and z the
image in Z. Via the characterization of flatness in Lemmas 67.31.1 and 67.30.8 and
the description of the stalk of f∗G at x of Properties of Spaces, Lemma 66.29.5
the lemma reduces to a purely algebraic question on the local ring maps OZ,z →
OY,y → OX,x and the module Gy. This algebraic statement is Algebra, Lemma
10.39.9. □

Lemma 67.31.6.0CVU Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module. Assume f locally finite pre-
sentation, F of finite type, X = Supp(F), and F flat over Y . Then f is universally
open.

Proof. Choose a surjective étale morphism φ : V → Y where V is a scheme. Choose
a surjective étale morphism U → V ×Y X where U is a scheme. Then it suffices to
prove the lemma for U → V and the quasi-coherent OV -module φ∗F . Hence this
lemma follows from the case of schemes, see Morphisms, Lemma 29.25.11. □

67.32. Generic flatness

06QR This section is the analogue of Morphisms, Section 29.27.

Proposition 67.32.1.06QS Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf of OX -modules. Assume

(1) Y is reduced,
(2) f is of finite type, and
(3) F is a finite type OX -module.
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Then there exists an open dense subspace W ⊂ Y such that the base change
XW → W of f is flat, locally of finite presentation, and quasi-compact and such
that F|XW is flat over W and of finite presentation over OXW .

Proof. Let V be a scheme and let V → Y be a surjective étale morphism. Let
XV = V ×Y X and let FV be the restriction of F to XV . Suppose that the result
holds for the morphism XV → V and the sheaf FV . Then there exists an open
subscheme V ′ ⊂ V such that XV ′ → V ′ is flat and of finite presentation and FV ′

is an OXV ′ -module of finite presentation flat over V ′. Let W ⊂ Y be the image
of the étale morphism V ′ → Y , see Properties of Spaces, Lemma 66.4.10. Then
V ′ →W is a surjective étale morphism, hence we see that XW →W is flat, locally
of finite presentation, and quasi-compact by Lemmas 67.28.4, 67.30.5, and 67.8.8.
By the discussion in Properties of Spaces, Section 66.30 we see that FW is of finite
presentation as a OXW -module and by Lemma 67.31.3 we see that FW is flat over
W . This argument reduces the proposition to the case where Y is a scheme.
Suppose we can prove the proposition when Y is an affine scheme. Let f : X → Y
be a finite type morphism of algebraic spaces over S with Y a scheme, and let
F be a finite type, quasi-coherent OX -module. Choose an affine open covering
Y =

⋃
Vj . By assumption we can find dense open Wj ⊂ Vj such that XWj

→ Wj

is flat, locally of finite presentation, and quasi-compact and such that F|XWj is flat
over Wj and of finite presentation as an OXWj -module. In this situation we simply
take W =

⋃
Wj and we win. Hence we reduce the proposition to the case where Y

is an affine scheme.
Let Y be an affine scheme over S, let f : X → Y be a finite type morphism of
algebraic spaces over S, and let F be a finite type, quasi-coherent OX -module.
Since f is of finite type it is quasi-compact, hence X is quasi-compact. Thus we
can find an affine scheme U and a surjective étale morphism U → X, see Properties
of Spaces, Lemma 66.6.3. Note that U → Y is of finite type (this is what it means
for f to be of finite type in this case). Hence we can apply Morphisms, Proposition
29.27.2 to see that there exists a dense open W ⊂ Y such that UW →W is flat and
of finite presentation and such that F|UW is flat over W and of finite presentation
as an OUW -module. According to our definitions this means that the base change
XW → W of f is flat, locally of finite presentation, and quasi-compact and F|XW
is flat over W and of finite presentation over OXW . □

We cannot improve the result of the lemma above to requiring XW → W to be of
finite presentation as A1

Q/Z → Spec(Q) gives a counter example. The problem is
that the diagonal morphism ∆X/Y may not be quasi-compact, i.e., f may not be
quasi-separated. Clearly, this is also the only problem.

Proposition 67.32.2.06QT Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf of OX -modules. Assume

(1) Y is reduced,
(2) f is quasi-separated,
(3) f is of finite type, and
(4) F is a finite type OX -module.

Then there exists an open dense subspace W ⊂ Y such that the base change
XW →W of f is flat and of finite presentation and such that F|XW is flat over W
and of finite presentation over OXW .
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Proof. This follows immediately from Proposition 67.32.1 and the fact that “of
finite presentation” = “locally of finite presentation” + “quasi-compact” + “quasi-
separated”. □

67.33. Relative dimension

04NH In this section we define the relative dimension of a morphism of algebraic spaces
at a point, and some closely related properties.

Definition 67.33.1.04NM Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let x ∈ |X|. Let d, r ∈ {0, 1, 2, . . . ,∞}.

(1) We say the dimension of the local ring of the fibre of f at x is d if the
equivalent conditions of Lemma 67.22.5 hold for the property Pd described
in Descent, Lemma 35.33.6.

(2) We say the transcendence degree of x/f(x) is r if the equivalent conditions
of Lemma 67.22.5 hold for the property Pr described in Descent, Lemma
35.33.7.

(3) We say f has relative dimension d at x if the equivalent conditions of
Lemma 67.22.5 hold for the property Pd described in Descent, Lemma
35.33.8.

Let us spell out what this means. Namely, choose some diagrams
U

a

��

h
// V

b
��

X
f // Y

u

��

// v

��
x // y

as in Lemma 67.22.5. Then we have
relative dimension of f at x = dimu(Uv)

dimension of local ring of the fibre of f at x = dim(OUv,u)
transcendence degree of x/f(x) = trdegκ(v)(κ(u))

Note that if Y = Spec(k) is the spectrum of a field, then the relative dimension
of X/Y at x is the same as dimx(X), the transcendence degree of x/f(x) is the
transcendence degree over k, and the dimension of the local ring of the fibre of f
at x is just the dimension of the local ring at x, i.e., the relative notions become
absolute notions in that case.

Definition 67.33.2.06LR Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let d ∈ {0, 1, 2, . . .}.

(1) We say f has relative dimension ≤ d if f has relative dimension ≤ d at
all x ∈ |X|.

(2) We say f has relative dimension d if f has relative dimension d at all
x ∈ |X|.

Having relative dimension equal to d means roughly speaking that all nonempty
fibres are equidimensional of dimension d.

Lemma 67.33.3.06RX Let S be a scheme. Let X → Y → Z be morphisms of algebraic
spaces over S. Let x ∈ |X| and let y ∈ |Y |, z ∈ |Z| be the images. Assume X → Y
is locally quasi-finite and Y → Z locally of finite type. Then the transcendence
degree of x/z is equal to the transcendence degree of y/z.
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Proof. We can choose commutative diagrams
U

��

// V

��

// W

��
X // Y // Z

u

��

// v

��

// w

��
x // y // z

where U, V,W are schemes and the vertical arrows are étale. By definition the
morphism U → V is locally quasi-finite which implies that κ(v) ⊂ κ(u) is finite, see
Morphisms, Lemma 29.20.5. Hence the result is clear. □

Lemma 67.33.4.0ECY Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally of finite type, Y is Jacobson (Properties of Spaces,
Remark 66.7.3), and x ∈ |X| is a finite type point of X, then the transcendence
degree of x/f(x) is 0.
Proof. Choose a scheme V and a surjective étale morphism V → Y . Choose a
scheme U and a surjective étale morphism U → X ×Y V . By Lemma 67.25.5
we can find a finite type point u ∈ U mapping to x. After shrinking U we may
assume u ∈ U is closed (Morphisms, Lemma 29.16.4). Let v ∈ V be the image of
u. By Morphisms, Lemma 29.16.8 the extension κ(u)/κ(v) is finite. This finishes
the proof. □

Lemma 67.33.5.0AFH Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian algebraic spaces over S which is flat, locally of finite type and of relative
dimension d. For every point x in |X| with image y in |Y | we have dimx(X) =
dimy(Y ) + d.
Proof. By definition of the dimension of an algebraic space at a point (Properties
of Spaces, Definition 66.9.1) and by definition of having relative dimension d, this
reduces to the corresponding statement for schemes (Morphisms, Lemma 29.29.6).

□

67.34. Morphisms and dimensions of fibres

04NP This section is the analogue of Morphisms, Section 29.28. The formulations in this
section are a bit awkward since we do not have local rings of algebraic spaces at
points.
Lemma 67.34.1.04NQ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let x ∈ |X|. Assume f is locally of finite type. Then we have

relative dimension of f at x
=

dimension of local ring of the fibre of f at x
+

transcendence degree of x/f(x)
where the notation is as in Definition 67.33.1.
Proof. This follows immediately from Morphisms, Lemma 29.28.1 applied to h :
U → V and u ∈ U as in Lemma 67.22.5. □

Lemma 67.34.2.04NR Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of algebraic spaces over S. Let x ∈ |X| and set y = f(x). Assume f and g locally
of finite type. Then
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(1)
relative dimension of g ◦ f at x

≤
relative dimension of f at x

+
relative dimension of g at y

(2) equality holds in (1) if for some morphism Spec(k)→ Z from the spectrum
of a field in the class of g(f(x)) = g(y) the morphism Xk → Yk is flat at
x, for example if f is flat at x,

(3)
transcendence degree of x/g(f(x))

=
transcendence degree of x/f(x)

+
transcendence degree of f(x)/g(f(x))

Proof. Choose a diagram
U

��

// V

��

// W

��
X // Y // Z

with U, V,W schemes and vertical arrows étale and surjective. (See Spaces, Lemma
65.11.6.) Choose u ∈ U mapping to x. Set v, w equal to the images of u in V,W .
Apply Morphisms, Lemma 29.28.2 to the top row and the points u, v, w. Details
omitted. □

Lemma 67.34.3.04NS Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a fibre product diagram of algebraic spaces over S. Let x′ ∈ |X ′|. Set x = g′(x′).
Assume f locally of finite type. Then

(1)
relative dimension of f at x

=
relative dimension of f ′ at x′

(2) we have
dimension of local ring of the fibre of f ′ at x′

−
dimension of local ring of the fibre of f at x

=
transcendence degree of x/f(x)

−
transcendence degree of x′/f ′(x′)

and the common value is ≥ 0,

https://stacks.math.columbia.edu/tag/04NS
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(3) given x and y′ ∈ |Y ′| mapping to the same y ∈ |Y | there exists a choice
of x′ such that the integer in (2) is 0.

Proof. Choose a surjective étale morphism V → Y with V a scheme. Choose a
surjective étale morphism U → V ×Y X with U a scheme. Choose a surjective
étale morphism V ′ → V ×Y Y ′ with V ′ a scheme. Set U ′ = V ′ ×V U . Then
the induced morphism U ′ → X ′ is also surjective and étale (argument omitted).
Choose u′ ∈ U ′ mapping to x′. At this point parts (1) and (2) follow by applying
Morphisms, Lemma 29.28.3 to the diagram of schemes involving U ′, U, V ′, V and
the point u′. To prove (3) first choose v ∈ V mapping to y. Then using Properties
of Spaces, Lemma 66.4.3 we can choose v′ ∈ V ′ mapping to y′ and v and u ∈ U
mapping to x and v. Finally, according to Morphisms, Lemma 29.28.3 we can
choose u′ ∈ U ′ mapping to v′ and u such that the integer is zero. Then taking
x′ ∈ |X ′| the image of u′ works. □

Lemma 67.34.4.04NT Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let n ≥ 0. Assume f is locally of finite type. The set

Wn = {x ∈ |X| such that the relative dimension of f at x ≤ n}

is open in |X|.

Proof. Choose a diagram
U

h
//

a

��

V

��
X // Y

where U and V are schemes and the vertical arrows are surjective and étale, see
Spaces, Lemma 65.11.6. By Morphisms, Lemma 29.28.4 the set Un of points where
h has relative dimension ≤ n is open in U . By our definition of relative dimension
for morphisms of algebraic spaces at points we see that Un = a−1(Wn). The lemma
follows by definition of the topology on |X|. □

Lemma 67.34.5.04NU Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S Let n ≥ 0. Assume f is locally of finite presentation. The open

Wn = {x ∈ |X| such that the relative dimension of f at x ≤ n}

of Lemma 67.34.4 is retrocompact in |X|. (See Topology, Definition 5.12.1.)

Proof. Choose a diagram
U

h
//

a

��

V

��
X // Y

where U and V are schemes and the vertical arrows are surjective and étale,
see Spaces, Lemma 65.11.6. In the proof of Lemma 67.34.4 we have seen that
a−1(Wn) = Un is the corresponding set for the morphism h. By Morphisms, Lemma
29.28.6 we see that Un is retrocompact in U . The lemma follows by definition of
the topology on |X|, compare with Properties of Spaces, Lemma 66.5.5 and its
proof. □
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Lemma 67.34.6.04NV Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type. Then f is locally quasi-finite if
and only if f has relative dimension 0 at each x ∈ |X|.

Proof. Choose a diagram
U

h
//

a

��

V

��
X // Y

where U and V are schemes and the vertical arrows are surjective and étale, see
Spaces, Lemma 65.11.6. The definitions imply that h is locally quasi-finite if and
only if f is locally quasi-finite, and that f has relative dimension 0 at all x ∈ |X| if
and only if h has relative dimension 0 at all u ∈ U . Hence the result follows from
the result for h which is Morphisms, Lemma 29.29.5. □

Lemma 67.34.7.04NW Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type. Then there exists a canonical
open subspace X ′ ⊂ X such that f |X′ : X ′ → Y is locally quasi-finite, and such
that the relative dimension of f at any x ∈ |X|, x ̸∈ |X ′| is ≥ 1. Formation of X ′

commutes with arbitrary base change.

Proof. Combine Lemmas 67.34.4, 67.34.6, and 67.34.3. □

Lemma 67.34.8.06LS Let S be a scheme. Consider a cartesian diagram

X

��

F
p

oo

��
Y Spec(k)oo

where X → Y is a morphism of algebraic spaces over S which is locally of finite
type and where k is a field over S. Let z ∈ |F | be such that dimz(F ) = 0. Then,
after replacing X by an open subspace containing p(z), the morphism

X −→ Y

is locally quasi-finite.

Proof. Let X ′ ⊂ X be the open subspace over which f is locally quasi-finite found
in Lemma 67.34.7. Since the formation of X ′ commutes with arbitrary base change
we see that z ∈ X ′ ×Y Spec(k). Hence the lemma is clear. □

67.35. The dimension formula

0BAW The analog of the dimension formula (Morphisms, Lemma 29.52.1) is a bit tricky
to formulate, because we would have to define integral algebraic spaces (we do
this later) as well as universally catenary algebraic spaces. However, the following
version is straightforward.

Lemma 67.35.1.0BAX Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume Y is locally Noetherian and f locally of finite type. Let
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x ∈ |X| with image y ∈ |Y |. Then we have
the dimension of the local ring of X at x ≤
the dimension of the local ring of Y at y + E−
the transcendence degree of x/y

Here E is the maximum of the transcendence degrees of ξ/f(ξ) where ξ ∈ |X| runs
over the points specializing to x at which the local ring of X has dimension 0.

Proof. Choose an affine scheme V , an étale morphism V → Y , and a point v ∈ V
mapping to y. Choose an affine scheme U , an étale morphism U → X ×Y V and
a point u ∈ U mapping to v in V and x in X. Unwinding Definition 67.33.1 and
Properties of Spaces, Definition 66.10.2 we have to show that

dim(OU,u) ≤ dim(OV,v) + E − trdegκ(v)(κ(u))
Let ξU ∈ U be a generic point of an irreducible component of U which contains u.
Then ξU maps to a point ξ ∈ |X| which is in the list used to define the quantity
E and in fact every ξ used in the definition of E occurs in this manner (small
detail omitted). In particular, there are only a finite number of these ξ and we
can take the maximum (i.e., it really is a maximum and not a supremum). The
transcendence degree of ξ over f(ξ) is trdegκ(ξV )(κ(ξU )) where ξV ∈ V is the image
of ξU . Thus the lemma follows from Morphisms, Lemma 29.52.2. □

Lemma 67.35.2.0BAY Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume Y is locally Noetherian and f is locally of finite type. Then

dim(X) ≤ dim(Y ) + E

where E is the supremum of the transcendence degrees of ξ/f(ξ) where ξ runs
through the points at which the local ring of X has dimension 0.

Proof. Immediate consequence of Lemma 67.35.1 and Properties of Spaces, Lemma
66.10.3. □

67.36. Syntomic morphisms

03Z6 The property “syntomic” of morphisms of schemes is étale local on the source-and-
target, see Descent, Remark 35.32.7. It is also stable under base change and fpqc
local on the target, see Morphisms, Lemma 29.30.4 and Descent, Lemma 35.23.26.
Hence, by Lemma 67.22.1 above, we may define the notion of a syntomic morphism
of algebraic spaces as follows and it agrees with the already existing notion defined
in Section 67.3 when the morphism is representable.

Definition 67.36.1.03Z7 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is syntomic if the equivalent conditions of Lemma 67.22.1 hold
with P =“syntomic”.

(2) Let x ∈ |X|. We say f is syntomic at x if there exists an open neighbour-
hood X ′ ⊂ X of x such that f |X′ : X ′ → Y is syntomic.

Lemma 67.36.2.03Z8 The composition of syntomic morphisms is syntomic.

Proof. See Remark 67.22.3 and Morphisms, Lemma 29.30.3. □

Lemma 67.36.3.03Z9 The base change of a syntomic morphism is syntomic.

https://stacks.math.columbia.edu/tag/0BAY
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Proof. See Remark 67.22.4 and Morphisms, Lemma 29.30.4. □

Lemma 67.36.4.03ZA Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is syntomic,
(2) for every x ∈ |X| the morphism f is syntomic at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is syntomic,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is syntomic,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is a syntomic morphism,
(6) there exists a scheme U and a surjective étale morphism φ : U → X such

that the composition f ◦ φ is syntomic,
(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is syntomic,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is
surjective such that the top horizontal arrow is syntomic, and

(9) there exist Zariski coverings Y =
⋃
i∈I Yi, and f−1(Yi) =

⋃
Xij such that

each morphism Xij → Yi is syntomic.

Proof. Omitted. □

Lemma 67.36.5.0DEY A syntomic morphism is locally of finite presentation.

Proof. Follows immediately from the case of schemes (Morphisms, Lemma 29.30.6).
□

Lemma 67.36.6.0DEZ A syntomic morphism is flat.

Proof. Follows immediately from the case of schemes (Morphisms, Lemma 29.30.7).
□

Lemma 67.36.7.0DF0 A syntomic morphism is universally open.

Proof. Combine Lemmas 67.36.5, 67.36.6, and 67.30.6. □
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67.37. Smooth morphisms

03ZB The property “smooth” of morphisms of schemes is étale local on the source-and-
target, see Descent, Remark 35.32.7. It is also stable under base change and fpqc
local on the target, see Morphisms, Lemma 29.34.5 and Descent, Lemma 35.23.27.
Hence, by Lemma 67.22.1 above, we may define the notion of a smooth morphism
of algebraic spaces as follows and it agrees with the already existing notion defined
in Section 67.3 when the morphism is representable.

Definition 67.37.1.03ZC Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is smooth if the equivalent conditions of Lemma 67.22.1 hold
with P =“smooth”.

(2) Let x ∈ |X|. We say f is smooth at x if there exists an open neighbourhood
X ′ ⊂ X of x such that f |X′ : X ′ → Y is smooth.

Lemma 67.37.2.03ZD The composition of smooth morphisms is smooth.

Proof. See Remark 67.22.3 and Morphisms, Lemma 29.34.4. □

Lemma 67.37.3.03ZE The base change of a smooth morphism is smooth.

Proof. See Remark 67.22.4 and Morphisms, Lemma 29.34.5. □

Lemma 67.37.4.03ZF Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is smooth,
(2) for every x ∈ |X| the morphism f is smooth at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is smooth,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is smooth,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is a smooth morphism,
(6) there exists a scheme U and a surjective étale morphism φ : U → X such

that the composition f ◦ φ is smooth,
(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is smooth,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is
surjective such that the top horizontal arrow is smooth, and
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(9) there exist Zariski coverings Y =
⋃
i∈I Yi, and f−1(Yi) =

⋃
Xij such that

each morphism Xij → Yi is smooth.

Proof. Omitted. □

Lemma 67.37.5.04AJ A smooth morphism of algebraic spaces is locally of finite presen-
tation.

Proof. Let X → Y be a smooth morphism of algebraic spaces. By definition this
means there exists a diagram as in Lemma 67.22.1 with h smooth and surjective
vertical arrow a. By Morphisms, Lemma 29.34.8 h is locally of finite presentation.
Hence X → Y is locally of finite presentation by definition. □

Lemma 67.37.6.06MH A smooth morphism of algebraic spaces is locally of finite type.

Proof. Combine Lemmas 67.37.5 and 67.28.5. □

Lemma 67.37.7.04TA A smooth morphism of algebraic spaces is flat.

Proof. Let X → Y be a smooth morphism of algebraic spaces. By definition this
means there exists a diagram as in Lemma 67.22.1 with h smooth and surjective
vertical arrow a. By Morphisms, Lemma 29.34.8 h is flat. Hence X → Y is flat by
definition. □

Lemma 67.37.8.06CP A smooth morphism of algebraic spaces is syntomic.

Proof. Let X → Y be a smooth morphism of algebraic spaces. By definition this
means there exists a diagram as in Lemma 67.22.1 with h smooth and surjective
vertical arrow a. By Morphisms, Lemma 29.34.7 h is syntomic. Hence X → Y is
syntomic by definition. □

Lemma 67.37.9.0DZI Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. There is a maximal open subspace U ⊂ X such that f |U : U → Y
is smooth. Moreover, formation of this open commutes with base change by

(1) morphisms which are flat and locally of finite presentation,
(2) flat morphisms provided f is locally of finite presentation.

Proof. The existence of U follows from the fact that the property of being smooth
is Zariski (and even étale) local on the source, see Lemma 67.37.4. Moreover, this
lemma allows us to translate properties (1) and (2) into the case of morphisms
of schemes. The case of schemes is Morphisms, Lemma 29.34.15. Some details
omitted. □

Lemma 67.37.10.0AFI LetX and Y be locally Noetherian algebraic spaces over a scheme
S, and let f : X → Y be a smooth morphism. For every point x ∈ |X| with image
y ∈ |Y |,

dimx(X) = dimy(Y ) + dimx(Xy)
where dimx(Xy) is the relative dimension of f at x as in Definition 67.33.1.

Proof. By definition of the dimension of an algebraic space at a point (Properties of
Spaces, Definition 66.9.1), this reduces to the corresponding statement for schemes
(Morphisms, Lemma 29.34.21). □
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67.38. Unramified morphisms

03ZG The property “unramified” (resp. “G-unramified”) of morphisms of schemes is étale
local on the source-and-target, see Descent, Remark 35.32.7. It is also stable under
base change and fpqc local on the target, see Morphisms, Lemma 29.35.5 and De-
scent, Lemma 35.23.28. Hence, by Lemma 67.22.1 above, we may define the notion
of an unramified morphism (resp. G-unramified morphism) of algebraic spaces as
follows and it agrees with the already existing notion defined in Section 67.3 when
the morphism is representable.

Definition 67.38.1.03ZH Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is unramified if the equivalent conditions of Lemma 67.22.1 hold
with P = unramified.

(2) Let x ∈ |X|. We say f is unramified at x if there exists an open neigh-
bourhood X ′ ⊂ X of x such that f |X′ : X ′ → Y is unramified.

(3) We say f is G-unramified if the equivalent conditions of Lemma 67.22.1
hold with P = G-unramified.

(4) Let x ∈ |X|. We say f is G-unramified at x if there exists an open
neighbourhood X ′ ⊂ X of x such that f |X′ : X ′ → Y is G-unramified.

Because of the following lemma, from here on we will only develop theory for
unramified morphisms, and whenever we want to use a G-unramified morphism we
will simply say “an unramified morphism locally of finite presentation”.

Lemma 67.38.2.04G1 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then f is G-unramified if and only if f is unramified and locally of
finite presentation.

Proof. Consider any diagram as in Lemma 67.22.1. Then all we are saying is that
the morphism h is G-unramified if and only if it is unramified and locally of finite
presentation. This is clear from Morphisms, Definition 29.35.1. □

Lemma 67.38.3.03ZI The composition of unramified morphisms is unramified.

Proof. See Remark 67.22.3 and Morphisms, Lemma 29.35.4. □

Lemma 67.38.4.03ZJ The base change of an unramified morphism is unramified.

Proof. See Remark 67.22.4 and Morphisms, Lemma 29.35.5. □

Lemma 67.38.5.03ZK Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is unramified,
(2) for every x ∈ |X| the morphism f is unramified at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is unramified,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is unramified,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is an unramified morphism,
(6) there exists a scheme U and a surjective étale morphism φ : U → X such

that the composition f ◦ φ is unramified,
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(7) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is unramified,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is
surjective such that the top horizontal arrow is unramified, and

(9) there exist Zariski coverings Y =
⋃
i∈I Yi, and f−1(Yi) =

⋃
Xij such that

each morphism Xij → Yi is unramified.

Proof. Omitted. □

Lemma 67.38.6.05VZ An unramified morphism of algebraic spaces is locally of finite
type.

Proof. Via a diagram as in Lemma 67.22.1 this translates into Morphisms, Lemma
29.35.9. □

Lemma 67.38.7.05W0 If f is unramified at x then f is quasi-finite at x. In particular,
an unramified morphism is locally quasi-finite.

Proof. Via a diagram as in Lemma 67.22.1 this translates into Morphisms, Lemma
29.35.10. □

Lemma 67.38.8.06CQ An immersion of algebraic spaces is unramified.

Proof. Let i : X → Y be an immersion of algebraic spaces. Choose a scheme V
and a surjective étale morphism V → Y . Then V ×Y X → V is an immersion of
schemes, hence unramified (see Morphisms, Lemmas 29.35.7 and 29.35.8). Thus by
definition i is unramified. □

Lemma 67.38.9.05W1 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) If f is unramified, then the diagonal morphism ∆X/Y : X → X ×Y X is
an open immersion.

(2) If f is locally of finite type and ∆X/Y is an open immersion, then f is
unramified.

Proof. We know in any case that ∆X/Y is a representable monomorphism, see
Lemma 67.4.1. Choose a scheme V and a surjective étale morphism V → Y .
Choose a scheme U and a surjective étale morphism U → X ×Y V . Consider the
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commutative diagram

U

��

∆U/V

// U ×V U

��

// V

∆V/Y

��
X

∆X/Y // X ×Y X // V ×Y V

with cartesian right square. The left vertical arrow is surjective étale. The right
vertical arrow is étale as a morphism between schemes étale over Y , see Properties
of Spaces, Lemma 66.16.6. Hence the middle vertical arrow is étale too (but it need
not be surjective).
Assume f is unramified. Then U → V is unramified, hence ∆U/V is an open
immersion by Morphisms, Lemma 29.35.13. Looking at the left square of the dia-
gram above we conclude that ∆X/Y is an étale morphism, see Properties of Spaces,
Lemma 66.16.3. Hence ∆X/Y is a representable étale monomorphism, which im-
plies that it is an open immersion by Étale Morphisms, Theorem 41.14.1. (See also
Spaces, Lemma 65.5.8 for the translation from schemes language into the language
of functors.)
Assume that f is locally of finite type and that ∆X/Y is an open immersion. This
implies that U → V is locally of finite type too (by definition of a morphism of
algebraic spaces which is locally of finite type). Looking at the displayed diagram
above we conclude that ∆U/V is étale as a morphism between schemes étale over
X ×Y X, see Properties of Spaces, Lemma 66.16.6. But since ∆U/V is the diagonal
of a morphism between schemes we see that it is in any case an immersion, see
Schemes, Lemma 26.21.2. Hence it is an open immersion, and we conclude that
U → V is unramified by Morphisms, Lemma 29.35.13. This in turn means that f
is unramified by definition. □

Lemma 67.38.10.05W2 Let S be a scheme. Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces over S. Assume that X → Z is locally of finite type. Then
there exists an open subspace U(f) ⊂ X such that |U(f)| ⊂ |X| is the set of points
where f is unramified. Moreover, for any morphism of algebraic spaces Z ′ → Z, if
f ′ : X ′ → Y ′ is the base change of f by Z ′ → Z, then U(f ′) is the inverse image of
U(f) under the projection X ′ → X.

Proof. This lemma is the analogue of Morphisms, Lemma 29.35.15 and in fact
we will deduce the lemma from it. By Definition 67.38.1 the set {x ∈ |X| :
f is unramified at x} is open in X. Hence we only need to prove the final state-
ment. By Lemma 67.23.6 the morphism X → Y is locally of finite type. By Lemma
67.23.3 the morphism X ′ → Y ′ is locally of finite type.
Choose a scheme W and a surjective étale morphism W → Z. Choose a scheme V
and a surjective étale morphism V →W ×Z Y . Choose a scheme U and a surjective
étale morphism U → V ×Y X. Finally, choose a scheme W ′ and a surjective étale
morphism W ′ →W×ZZ ′. Set V ′ = W ′×W V and U ′ = W ′×WU , so that we obtain
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surjective étale morphisms V ′ → Y ′ and U ′ → X ′. We will use without further
mention an étale morphism of algebraic spaces induces an open map of associated
topological spaces (see Properties of Spaces, Lemma 66.16.7). This combined with
Lemma 67.38.5 implies that U(f) is the image in |X| of the set T of points in U
where the morphism U → V is unramified. Similarly, U(f ′) is the image in |X ′|
of the set T ′ of points in U ′ where the morphism U ′ → V ′ is unramified. Now, by
construction the diagram

U ′ //

��

U

��
V ′ // V

is cartesian (in the category of schemes). Hence the aforementioned Morphisms,
Lemma 29.35.15 applies to show that T ′ is the inverse image of T . Since |U ′| → |X ′|
is surjective this implies the lemma. □

Lemma 67.38.11.06G6 Let S be a scheme. Let X → Y → Z be morphisms of algebraic
spaces over S. If X → Z is unramified, then X → Y is unramified.

Proof. Choose a commutative diagram

U

��

// V

��

// W

��
X // Y // Z

with vertical arrows étale and surjective. (See Spaces, Lemma 65.11.6.) Apply
Morphisms, Lemma 29.35.16 to the top row. □

67.39. Étale morphisms

03XS The notion of an étale morphism of algebraic spaces was defined in Properties of
Spaces, Definition 66.16.2. Here is what it means for a morphism to be étale at a
point.

Definition 67.39.1.04RH Let S be a scheme. Let f : X → Y be a morphism of alge-
braic spaces over S. Let x ∈ |X|. We say f is étale at x if there exists an open
neighbourhood X ′ ⊂ X of x such that f |X′ : X ′ → Y is étale.

Lemma 67.39.2.03XT Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is étale,
(2) for every x ∈ |X| the morphism f is étale at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is étale,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is étale,
(5) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is an étale morphism,
(6) there exists a scheme U and a surjective étale morphism φ : U → X such

that the composition f ◦ φ is étale,
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(7) for every commutative diagram
U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is étale,

(8) there exists a commutative diagram
U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X sur-
jective such that the top horizontal arrow is étale, and

(9) there exist Zariski coverings Y =
⋃
Yi and f−1(Yi) =

⋃
Xij such that

each morphism Xij → Yi is étale.
Proof. Combine Properties of Spaces, Lemmas 66.16.3, 66.16.5 and 66.16.4. Some
details omitted. □

Lemma 67.39.3.0465 The composition of two étale morphisms of algebraic spaces is
étale.
Proof. This is a copy of Properties of Spaces, Lemma 66.16.4. □

Lemma 67.39.4.0466 The base change of an étale morphism of algebraic spaces by any
morphism of algebraic spaces is étale.
Proof. This is a copy of Properties of Spaces, Lemma 66.16.5. □

Lemma 67.39.5.03XU An étale morphism of algebraic spaces is locally quasi-finite.
Proof. Let X → Y be an étale morphism of algebraic spaces, see Properties of
Spaces, Definition 66.16.2. By Properties of Spaces, Lemma 66.16.3 we see this
means there exists a diagram as in Lemma 67.22.1 with h étale and surjective
vertical arrow a. By Morphisms, Lemma 29.36.6 h is locally quasi-finite. Hence
X → Y is locally quasi-finite by definition. □

Lemma 67.39.6.04XX An étale morphism of algebraic spaces is smooth.
Proof. The proof is identical to the proof of Lemma 67.39.5. It uses the fact that
an étale morphism of schemes is smooth (by definition of an étale morphism of
schemes). □

Lemma 67.39.7.0467 An étale morphism of algebraic spaces is flat.
Proof. The proof is identical to the proof of Lemma 67.39.5. It uses Morphisms,
Lemma 29.36.12. □

Lemma 67.39.8.0468 An étale morphism of algebraic spaces is locally of finite presen-
tation.
Proof. The proof is identical to the proof of Lemma 67.39.5. It uses Morphisms,
Lemma 29.36.11. □
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Lemma 67.39.9.06LT An étale morphism of algebraic spaces is locally of finite type.

Proof. An étale morphism is locally of finite presentation and a morphism locally
of finite presentation is locally of finite type, see Lemmas 67.39.8 and 67.28.5. □

Lemma 67.39.10.06CR An étale morphism of algebraic spaces is unramified.

Proof. The proof is identical to the proof of Lemma 67.39.5. It uses Morphisms,
Lemma 29.36.5. □

Lemma 67.39.11.05W3 Let S be a scheme. Let X,Y be algebraic spaces étale over an
algebraic space Z. Any morphism X → Y over Z is étale.

Proof. This is a copy of Properties of Spaces, Lemma 66.16.6. □

Lemma 67.39.12.06LU A locally finitely presented, flat, unramified morphism of alge-
braic spaces is étale.

Proof. Let X → Y be a locally finitely presented, flat, unramified morphism of
algebraic spaces. By Properties of Spaces, Lemma 66.16.3 we see this means there
exists a diagram as in Lemma 67.22.1 with h locally finitely presented, flat, unram-
ified and surjective vertical arrow a. By Morphisms, Lemma 29.36.16 h is étale.
Hence X → Y is étale by definition. □

67.40. Proper morphisms

03ZL The notion of a proper morphism plays an important role in algebraic geometry.
Here is the definition of a proper morphism of algebraic spaces.

Definition 67.40.1.03ZM Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is proper if f is separated, finite type, and universally
closed.

Lemma 67.40.2.083R Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f is proper,
(2) for every scheme Z and every morphism Z → Y the projection Z×Y X →

Z is proper,
(3) for every affine scheme Z and every morphism Z → Y the projection

Z ×Y X → Z is proper,
(4) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is proper, and
(5) there exists a Zariski covering Y =

⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is proper.

Proof. Combine Lemmas 67.4.12, 67.23.4, 67.8.8, and 67.9.5. □

Lemma 67.40.3.04WP A base change of a proper morphism is proper.

Proof. See Lemmas 67.4.4, 67.23.3, and 67.9.3. □

Lemma 67.40.4.04XY A composition of proper morphisms is proper.

Proof. See Lemmas 67.4.8, 67.23.2, and 67.9.4. □

Lemma 67.40.5.04XZ A closed immersion of algebraic spaces is a proper morphism of
algebraic spaces.
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Proof. As a closed immersion is by definition representable this follows from Spaces,
Lemma 65.5.8 and the corresponding result for morphisms of schemes, see Mor-
phisms, Lemma 29.41.6. □

Lemma 67.40.6.04NX Let S be a scheme. Consider a commutative diagram of algebraic
spaces

X //

  

Y

~~
B

over S.
(1) If X → B is universally closed and Y → B is separated, then the mor-

phism X → Y is universally closed. In particular, the image of |X| in |Y |
is closed.

(2) If X → B is proper and Y → B is separated, then the morphism X → Y
is proper.

Proof. Assume X → B is universally closed and Y → B is separated. We factor
the morphism as X → X×B Y → Y . The first morphism is a closed immersion, see
Lemma 67.4.6 hence universally closed. The projection X ×B Y → Y is the base
change of a universally closed morphism and hence universally closed, see Lemma
67.9.3. Thus X → Y is universally closed as the composition of universally closed
morphisms, see Lemma 67.9.4. This proves (1). To deduce (2) combine (1) with
Lemmas 67.4.10, 67.8.9, and 67.23.6. □

Lemma 67.40.7.08AJ Let S be a scheme. Let B be an algebraic space over S. Let
f : X → Y be a morphism of algebraic spaces over B. If X is universally closed
over B and f is surjective then Y is universally closed over B. In particular, if also
Y is separated and of finite type over B, then Y is proper over B.

Proof. Assume X is universally closed and f surjective. Denote p : X → B,
q : Y → B the structure morphisms. Let B′ → B be a morphism of algebraic
spaces over S. The base change f ′ : XB′ → YB′ is surjective (Lemma 67.5.5), and
the base change p′ : XB′ → B′ is closed. If T ⊂ YB′ is closed, then (f ′)−1(T ) ⊂ XB′

is closed, hence p′((f ′)−1(T )) = q′(T ) is closed. So q′ is closed. □

Lemma 67.40.8.0AGD Let S be a scheme. Let

X
h

//

f   

Y

g
~~

B

be a commutative diagram of morphism of algebraic spaces over S. Assume
(1) X → B is a proper morphism,
(2) Y → B is separated and locally of finite type,

Then the scheme theoretic image Z ⊂ Y of h is proper over B and X → Z is
surjective.

Proof. The scheme theoretic image of h is constructed in Section 67.16. Observe
that h is quasi-compact (Lemma 67.8.10) hence |h|(|X|) ⊂ |Z| is dense (Lemma
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67.16.3). On the other hand |h|(|X|) is closed in |Y | (Lemma 67.40.6) hence X → Z
is surjective. Thus Z → B is a proper (Lemma 67.40.7). □

Lemma 67.40.9.04Y0 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is separated,
(2) ∆X/Y : X → X ×Y X is universally closed, and
(3) ∆X/Y : X → X ×Y X is proper.

Proof. The implication (1)⇒ (3) follows from Lemma 67.40.5. We will use Spaces,
Lemma 65.5.8 without further mention in the rest of the proof. Recall that ∆X/Y

is a representable monomorphism which is locally of finite type, see Lemma 67.4.1.
Since proper ⇒ universally closed for morphisms of schemes we conclude that (3)
implies (2). If ∆X/Y is universally closed then Étale Morphisms, Lemma 41.7.2
implies that it is a closed immersion. Thus (2) ⇒ (1) and we win. □

67.41. Valuative criteria

03IW The section introduces the basics on valuative criteria for morphisms of algebraic
spaces. Here is a list of references to further results

(1) the valuative criterion for universal closedness can be found in Section
67.42,

(2) the valuative criterion of separatedness can be found in Section 67.43,
(3) the valuative criterion for properness can be found in Section 67.44,
(4) additional converse statements can be found in Decent Spaces, Section

68.16 and Decent Spaces, Lemma 68.17.11, and
(5) in the Noetherian case it is enough to check the criterion for discrete

valuation rings as is shown in Cohomology of Spaces, Section 69.19 and
Limits of Spaces, Section 70.21, and

(6) refined versions of the valuative criteria in the Noetherian case can be
found in Limits of Spaces, Section 70.22.

We first formally state the definition and then we discuss how this differs from the
case of morphisms of schemes.

Definition 67.41.1.03IX Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f satisfies the uniqueness part of the valuative criterion if
given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K, there exists at most one
dotted arrow (without requiring existence). We say f satisfies the existence part of
the valuative criterion if given any solid diagram as above there exists an extension
K ′/K of fields, a valuation ring A′ ⊂ K ′ dominating A and a morphism Spec(A′)→
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X such that the following diagram commutes

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

We say f satisfies the valuative criterion if f satisfies both the existence and unique-
ness part.

The formulation of the existence part of the valuative criterion is slightly different
for morphisms of algebraic spaces, since it may be necessary to extend the fraction
field of the valuation ring. In practice this difference almost never plays a role.

(1) Checking the uniqueness part of the valuative criterion never involves any
fraction field extensions, hence this is exactly the same as in the case of
schemes.

(2) It is necessary to allow for field extensions in general, see Example 67.41.6.
(3) For morphisms of algebraic spaces it always suffices to take a finite sepa-

rable extensions K ′/K in the existence part of the valuative criterion, see
Lemma 67.41.3.

(4) If f : X → Y is a separated morphism of algebraic spaces, then we can
always take K = K ′ when we check the existence part of the valuative
criterion, see Lemma 67.41.5.

(5) For a quasi-compact and quasi-separated morphism f : X → Y , we get
an equivalence between “f is separated and universally closed” and “f
satisfies the usual valuative criterion”, see Lemma 67.43.3. The valuative
criterion for properness is the usual one, see Lemma 67.44.1.

As a first step in the theory, we show that the criterion is identical to the criterion
as formulated for morphisms of schemes in case the morphism of algebraic spaces
is representable.

Lemma 67.41.2.03K8 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is representable. The following are equivalent

(1) f satisfies the existence part of the valuative criterion as in Definition
67.41.1,

(2) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K, there exists a dotted
arrow, i.e., f satisfies the existence part of the valuative criterion as in
Schemes, Definition 26.20.3.
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Proof. It suffices to show that given a commutative diagram of the form

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

φ

44

Spec(A) // Y

as in Definition 67.41.1, then we can find a morphism Spec(A)→ X fitting into the
diagram too. Set XA = Spec(A)×Y Y . As f is representable we see that XA is a
scheme. The morphism φ gives a morphism φ′ : Spec(A′) → XA. Let x ∈ XA be
the image of the closed point of φ′ : Spec(A′) → XA. Then we have the following
commutative diagram of rings

K ′ Koo OXA,xoo

vv
A′

OO

Aoo Aoo

OO

Since A is a valuation ring, and since A′ dominates A, we see that K ∩ A′ = A.
Hence the ring map OXA,x → K has image contained in A. Whence a morphism
Spec(A)→ XA (see Schemes, Section 26.13) as desired. □

Lemma 67.41.3.03KH Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f satisfies the existence part of the valuative criterion as in Definition
67.41.1,

(2) f satisfies the existence part of the valuative criterion as in Definition
67.41.1 modified by requiring the extension K ′/K to be finite separable.

Proof. We have to show that (1) implies (2). Suppose given a diagram

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

as in Definition 67.41.1 with K ⊂ K ′ arbitrary. Choose a scheme U and a surjective
étale morphism U → X. Then

Spec(A′)×X U −→ Spec(A′)

is surjective étale. Let p be a point of Spec(A′)×X U mapping to the closed point
of Spec(A′). Let p′ ⇝ p be a generalization of p mapping to the generic point
of Spec(A′). Such a generalization exists because generalizations lift along flat
morphisms of schemes, see Morphisms, Lemma 29.25.9. Then p′ corresponds to a
point of the scheme Spec(K ′)×X U . Note that

Spec(K ′)×X U = Spec(K ′)×Spec(K) (Spec(K)×X U)

Hence p′ maps to a point q′ ∈ Spec(K)×XU whose residue field is a finite separable
extension of K. Finally, p′ ⇝ p maps to a specialization u′ ⇝ u on the scheme U .
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With all this notation we get the following diagram of rings

κ(p′) κ(q′)oo κ(u′)oo

OSpec(A′)×XU,p

ff

OU,uoo

OO

K ′

OO

A′oo

OO

Aoo

OO

This means that the ring B ⊂ κ(q′) generated by the images of A and OU,u maps
to a subring of κ(p′) contained in the image B′ of OSpec(A′)×XU,p → κ(p′). Note
that B′ is a local ring. Let m ⊂ B be the maximal ideal. By construction A ∩ m,
(resp. OU,u ∩m, resp. A′ ∩m) is the maximal ideal of A (resp. OU,u, resp. A′). Set
q = B ∩m. This is a prime ideal such that A ∩ q is the maximal ideal of A. Hence
Bq ⊂ κ(q′) is a local ring dominating A. By Algebra, Lemma 10.50.2 we can find a
valuation ring A1 ⊂ κ(q′) with field of fractions κ(q′) dominating Bq. The (local)
ring map OU,u → A1 gives a morphism Spec(A1)→ U → X such that the diagram

Spec(κ(q′)) //

��

Spec(K) // X

��
Spec(A1) //

44

Spec(A) // Y

is commutative. Since the fraction field of A1 is κ(q′) and since κ(q′)/K is finite
separable by construction the lemma is proved. □

Lemma 67.41.4.0ARH Let S be a scheme. Let f : X → Y be a separated morphism of
algebraic spaces over S. Suppose given a diagram

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) //

;;

Y

as in Definition 67.41.1 with K ⊂ K ′ arbitrary. Then the dotted arrow exists
making the diagram commute.

Proof. We have to show that we can find a morphism Spec(A) → X fitting into
the diagram.
Consider the base change XA = Spec(A) ×Y X of X. Then XA → Spec(A) is
a separated morphism of algebraic spaces (Lemma 67.4.4). Base changing all the
morphisms of the diagram above we obtain

Spec(K ′) //

��

Spec(K) // XA

��
Spec(A′) //

44

Spec(A) Spec(A)

Thus we may replace X by XA, assume that Y = Spec(A) and that we have a
diagram as above. We may and do replace X by a quasi-compact open subspace
containing the image of |Spec(A′)| → |X|.
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The morphism Spec(A′) → X is quasi-compact by Lemma 67.8.9. Let Z ⊂ X
be the scheme theoretic image of Spec(A′) → X. Then Z is a reduced (Lemma
67.16.4), quasi-compact (as a closed subspace of X), separated (as a closed subspace
of X) algebraic space over A. Consider the base change

Spec(K ′) = Spec(A′)×Spec(A) Spec(K)→ X ×Spec(A) Spec(K) = XK

of the morphism Spec(A′) → X by the flat morphism of schemes Spec(K) →
Spec(A). By Lemma 67.30.12 we see that the scheme theoretic image of this mor-
phism is the base change ZK of Z. On the other hand, by assumption (i.e., the com-
mutative diagram above) this morphism factors through a morphism Spec(K) →
ZK which is a section to the structure morphism ZK → Spec(K). As ZK is
separated, this section is a closed immersion (Lemma 67.4.7). We conclude that
ZK = Spec(K).

Let V → Z be a surjective étale morphism with V an affine scheme (Properties
of Spaces, Lemma 66.6.3). Say V = Spec(B). Then V ×Z Spec(A′) = Spec(C) is
affine as Z is separated. Note that B → C is injective as V is the scheme theoretic
image of V ×Z Spec(A′) → V by Lemma 67.16.3. On the other hand, A′ → C
is étale as corresponds to the base change of V → Z. Since A′ is a torsion free
A-module, the flatness of A′ → C implies C is a torsion free A-module, hence B is
a torsion free A-module. Note that being torsion free as an A-module is equivalent
to being flat (More on Algebra, Lemma 15.22.10). Next, we write

V ×Z V = Spec(B′)

Note that the two ring maps B → B′ are étale as V → Z is étale. The canonical
surjective map B ⊗A B → B′ becomes an isomorphism after tensoring with K
over A because ZK = Spec(K). However, B ⊗A B is torsion free as an A-module
by our remarks above. Thus B′ = B ⊗A B. It follows that the base change of
the ring map A → B by the faithfully flat ring map A → B is étale (note that
Spec(B) → Spec(A) is surjective as X → Spec(A) is surjective). Hence A → B is
étale (Descent, Lemma 35.23.29), in other words, V → X is étale. Since we have
V ×Z V = V ×Spec(A) V we conclude that Z = Spec(A) as algebraic spaces (for
example by Spaces, Lemma 65.9.1) and the proof is complete. □

Lemma 67.41.5.0A3W Let S be a scheme. Let f : X → Y be a separated morphism of
algebraic spaces over S. The following are equivalent

(1) f satisfies the existence part of the valuative criterion as in Definition
67.41.1,

(2) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K, there exists a dotted
arrow, i.e., f satisfies the existence part of the valuative criterion as in
Schemes, Definition 26.20.3.
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Proof. We have to show that (1) implies (2). Suppose given a commutative diagram

Spec(K) //

��

X

��
Spec(A) // Y

as in part (2). By (1) there exists a commutative diagram

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

as in Definition 67.41.1 with K ⊂ K ′ arbitrary. By Lemma 67.41.4 we can find a
morphism Spec(A)→ X fitting into the diagram, i.e., (2) holds. □

Example 67.41.6.03KI Consider the algebraic space X constructed in Spaces, Example
65.14.2. Recall that it is Galois twist of the affine line with zero doubled. The
Galois twist is with respect to a degree two Galois extension k′/k of fields. As such
it comes with a morphism

π : X −→ S = A1
k

which is quasi-compact. We claim that π is universally closed. Namely, after base
change by Spec(k′)→ Spec(k) the morphism π is identified with the morphism

affine line with zero doubled −→ affine line
which is universally closed (some details omitted). Since the morphism Spec(k′)→
Spec(k) is universally closed and surjective, a diagram chase shows that π is uni-
versally closed. On the other hand, consider the diagram

Spec(k((x))) //

��

X

π

��
Spec(k[[x]]) //

99

A1
k

Since the unique point of X above 0 ∈ A1
k corresponds to a monomorphism

Spec(k′) → X it is clear there cannot exist a dotted arrow! This shows that a
finite separable field extension is needed in general.

Lemma 67.41.7.03IY The base change of a morphism of algebraic spaces which satis-
fies the existence part of (resp. uniqueness part of) the valuative criterion by any
morphism of algebraic spaces satisfies the existence part of (resp. uniqueness part
of) the valuative criterion.

Proof. Let f : X → Y be a morphism of algebraic spaces over the scheme S. Let
Z → Y be any morphism of algebraic spaces over S. Consider a solid commutative
diagram of the following shape

Spec(K) //

��

Z ×Y X //

��

X

��
Spec(A) //

99 44

Z // Y

https://stacks.math.columbia.edu/tag/03KI
https://stacks.math.columbia.edu/tag/03IY
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Then the set of north-west dotted arrows making the diagram commute is in 1-1
correspondence with the set of west-north-west dotted arrows making the diagram
commute. This proves the lemma in the case of “uniqueness”. For the existence part,
assume f satisfies the existence part of the valuative criterion. If we are given a solid
commutative diagram as above, then by assumption there exists an extension K ′/K
of fields and a valuation ring A′ ⊂ K ′ dominating A and a morphism Spec(A′)→ X
fitting into the following commutative diagram

Spec(K ′) //

��

Spec(K) // Z ×Y X // X

��
Spec(A′) //

22

Spec(A) // Z // Y

And by the remarks above the skew arrow corresponds to an arrow Spec(A′) →
Z ×Y X as desired. □

Lemma 67.41.8.03IZ The composition of two morphisms of algebraic spaces which sat-
isfy the (existence part of, resp. uniqueness part of) the valuative criterion satisfies
the (existence part of, resp. uniqueness part of) the valuative criterion.

Proof. Let f : X → Y , g : Y → Z be morphisms of algebraic spaces over the
scheme S. Consider a solid commutative diagram of the following shape

Spec(K)

��

// X

f

��
Y

g

��
Spec(A) //

;;

DD

Z

If we have the uniqueness part for g, then there exists at most one north-west
dotted arrow making the diagram commute. If we also have the uniqueness part
for f , then we have at most one north-north-west dotted arrow making the diagram
commute. The proof in the existence case comes from contemplating the following
diagram

Spec(K ′′) //

��

Spec(K ′) // Spec(K) // X

f

��
Y

g

��
Spec(A′′) //

55

Spec(A′) //

44

Spec(A) // Z

Namely, the existence part for g gives us the extension K ′, the valuation ring A′

and the arrow Spec(A′) → Y , whereupon the existence part for f gives us the
extension K ′′, the valuation ring A′′ and the arrow Spec(A′′)→ X. □

67.42. Valuative criterion for universal closedness

03K9 The existence part of the valuative criterion implies universal closedness for quasi-
compact morphisms, see Lemma 67.42.1. In the case of schemes, this is an “if and

https://stacks.math.columbia.edu/tag/03IZ
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only if” statement, but for morphisms of algebraic spaces this is wrong. Example
67.9.6 shows that A1

k/Z → Spec(k) is universally closed, but it is easy to see that
the existence part of the valuative criterion fails. We revisit this topic in Decent
Spaces, Section 68.16 and show the converse holds if the source of the morphism is
a decent space (see also Decent Spaces, Lemma 68.17.11 for a relative version).

Lemma 67.42.1.03KA Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) f is quasi-compact, and
(2) f satisfies the existence part of the valuative criterion.

Then f is universally closed.

Proof. By Lemmas 67.8.4 and 67.41.7 properties (1) and (2) are preserved under
any base change. By Lemma 67.9.5 we only have to show that |T ×Y X| → |T | is
closed, whenever T is an affine scheme over S mapping into Y . Hence it suffices
to prove: If Y is an affine scheme, f : X → Y is quasi-compact and satisfies the
existence part of the valuative criterion, then f : |X| → |Y | is closed. In this
situation X is a quasi-compact algebraic space. By Properties of Spaces, Lemma
66.6.3 there exists an affine scheme U and a surjective étale morphism φ : U → X.
Let T ⊂ |X| closed. The inverse image φ−1(T ) ⊂ U is closed, and hence is the set
of points of an affine closed subscheme Z ⊂ U . Thus, by Algebra, Lemma 10.41.5
we see that f(T ) = f(φ(|Z|)) ⊂ |Y | is closed if it is closed under specialization.

Let y′ ⇝ y be a specialization in Y with y′ ∈ f(T ). Choose a point x′ ∈ T ⊂ |X|
mapping to y′ under f . We may represent x′ by a morphism Spec(K) → X for
some field K. Thus we have the following diagram

Spec(K)
x′
//

��

X

f

��
Spec(OY,y) // Y,

see Schemes, Section 26.13 for the existence of the left vertical map. Choose a
valuation ring A ⊂ K dominating the image of the ring map OY,y → K (this is
possible since the image is a local ring and not a field as y′ ̸= y, see Algebra, Lemma
10.50.2). By assumption there exists a field extension K ′/K and a valuation ring
A′ ⊂ K ′ dominating A, and a morphism Spec(A′)→ X fitting into the commutative
diagram. Since A′ dominates A, and A dominates OY,y we see that the closed point
of Spec(A′) maps to a point x ∈ X with f(x) = y which is a specialization of x′.
Hence x ∈ T as T is closed, and hence y ∈ f(T ) as desired. □

The following lemma will be generalized in Decent Spaces, Lemma 68.17.11.

Lemma 67.42.2.0A3X Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) If f is quasi-separated and universally closed, then f satisfies the existence
part of the valuative criterion.

(2) If f is quasi-compact and quasi-separated, then f is universally closed if
and only if the existence part of the valuative criterion holds.

https://stacks.math.columbia.edu/tag/03KA
https://stacks.math.columbia.edu/tag/0A3X
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Proof. If (1) is true then combined with Lemma 67.42.1 we obtain (2). Assume f
is quasi-separated and universally closed. Assume given a diagram

Spec(K) //

��

X

��
Spec(A) // Y

as in Definition 67.41.1. A formal argument shows that the existence of the desired
diagram

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

follows from existence in the case of the morphism XA → Spec(A). Since being
quasi-separated and universally closed are preserved by base change, the lemma
follows from the result in the next paragraph.

Consider a solid diagram

Spec(K)
x

//

��

X

f

��
Spec(A)

99

Spec(A)

where A is a valuation ring with field of fractions K. By Lemma 67.8.9 and the fact
that f is quasi-separated we have that the morphism x is quasi-compact. Since f
is universally closed, we have in particular that |f |({x}) is closed in Spec(A). Since
this image contains the generic point of Spec(A) there exists a point x′ ∈ |X| in
the closure of x mapping to the closed point of Spec(A). By Lemma 67.16.5 we can
find a commutative diagram

Spec(K ′) //

��

Spec(K)

��
Spec(A′) // X

such that the closed point of Spec(A′) maps to x′ ∈ |X|. It follows that Spec(A′)→
Spec(A) maps the closed point to the closed point, i.e., A′ dominates A and this
finishes the proof. □

Lemma 67.42.3.0A3Y Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-compact and separated. Then the following are
equivalent

(1) f is universally closed,
(2) the existence part of the valuative criterion holds as in Definition 67.41.1,

and

https://stacks.math.columbia.edu/tag/0A3Y
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(3) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K, there exists a dotted
arrow, i.e., f satisfies the existence part of the valuative criterion as in
Schemes, Definition 26.20.3.

Proof. Since f is separated parts (2) and (3) are equivalent by Lemma 67.41.5. The
equivalence of (3) and (1) follows from Lemma 67.42.2. □

Lemma 67.42.4.089F Let S be a scheme. Let f : X → Y be a flat morphism of algebraic
spaces over S. Let Spec(A) → Y be a morphism where A is a valuation ring. If
the closed point of Spec(A) maps to a point of |Y | in the image of |X| → |Y |, then
there exists a commutative diagram

Spec(A′) //

��

X

��
Spec(A) // Y

where A → A′ is an extension of valuation rings (More on Algebra, Definition
15.123.1).

Proof. The base changeXA → Spec(A) is flat (Lemma 67.30.4) and the closed point
of Spec(A) is in the image of |XA| → | Spec(A)| (Properties of Spaces, Lemma
66.4.3). Thus we may assume Y = Spec(A). Let U → X be a surjective étale
morphism where U is a scheme. Let u ∈ U map to the closed point of Spec(A).
Consider the flat local ring map A→ B = OU,u. By Algebra, Lemma 10.39.16 there
exists a prime ideal q ⊂ B such that q lies over (0) ⊂ A. By Algebra, Lemma 10.50.2
we can find a valuation ring A′ ⊂ κ(q) dominating B/q. The induced morphism
Spec(A′)→ U → X is a solution to the problem posed by the lemma. □

Lemma 67.42.5.089G Let S be a scheme. Let f : X → Y and h : U → X be morphisms
of algebraic spaces over S. If

(1) f and h are quasi-compact,
(2) |h|(|U |) is dense in |X|, and

given any commutative solid diagram

Spec(K) //

��

U // X

��
Spec(A) //

66

Y

where A is a valuation ring with field of fractions K
(3) there exists at most one dotted arrow making the diagram commute, and

https://stacks.math.columbia.edu/tag/089F
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(4) there exists an extension K ′/K of fields, a valuation ring A′ ⊂ K ′ domi-
nating A and a morphism Spec(A′)→ X such that the following diagram
commutes

Spec(K ′) //

��

Spec(K) // U // X

��
Spec(A′) //

33

Spec(A) // Y

then f is universally closed. If moreover
(5) f is quasi-separated

then f is separated and universally closed.

Proof. Assume (1), (2), (3), and (4). We will verify the existence part of the
valuative criterion for f which will imply f is universally closed by Lemma 67.42.1.
To do this, consider a commutative diagram

(67.42.5.1)089H

Spec(K) //

��

X

��
Spec(A) // Y

where A is a valuation ring andK is the fraction field of A. Note that since valuation
rings and fields are reduced, we may replace U , X, and S by their respective
reductions by Properties of Spaces, Lemma 66.12.4. In this case the assumption
that h(U) is dense means that the scheme theoretic image of h : U → X is X, see
Lemma 67.16.4.

Reduction to the case Y affine. Choose an étale morphism Spec(R) → Y such
that the closed point of Spec(A) maps to an element of Im(|Spec(R)| → |Y |). By
Lemma 67.42.4 we can find a local ring map A → A′ of valuation rings and a
morphism Spec(A′)→ Spec(R) fitting into a commutative diagram

Spec(A′) //

��

Spec(R)

��
Spec(A) // Y

Since in Definition 67.41.1 we allow for extensions of valuation rings it is clear that
we may replace A by A′, Y by Spec(R), X by X×Y Spec(R) and U by U×Y Spec(R).

From now on we assume that Y = Spec(R) is an affine scheme. Let Spec(B)→ X
be an étale morphism from an affine scheme such that the morphism Spec(K)→ X
is in the image of |Spec(B)| → |X|. Since we may replace K by an extension
K ′ ⊃ K and A by a valuation ring A′ ⊂ K ′ dominating A (which exists by Algebra,
Lemma 10.50.2), we may assume the morphism Spec(K) → X factors through
Spec(B) (by definition of |X|). In other words, we may think of K as a B-algebra.
Choose a polynomial algebra P over B and a B-algebra surjection P → K. Then
Spec(P )→ X is flat as a composition Spec(P )→ Spec(B)→ X. Hence the scheme
theoretic image of the morphism U ×X Spec(P )→ Spec(P ) is Spec(P ) by Lemma
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67.30.12. By Lemma 67.16.5 we can find a commutative diagram

Spec(K ′) //

��

U ×X Spec(P )

��
Spec(A′) // Spec(P )

where A′ is a valuation ring and K ′ is the fraction field of A′ such that the closed
point of Spec(A′) maps to Spec(K) ⊂ Spec(P ). In other words, there is a B-algebra
map φ : K → A′/mA′ . Choose a valuation ring A′′ ⊂ A′/mA′ dominating φ(A)
with field of fractions K ′′ = A′/mA′ (Algebra, Lemma 10.50.2). We set

C = {λ ∈ A′ | λ mod mA′ ∈ A′′}.

which is a valuation ring by Algebra, Lemma 10.50.10. As C is an R-algebra with
fraction field K ′, we obtain a solid commutative diagram

Spec(K ′
1) //

��

Spec(K ′) //

��

U // X

��
Spec(C1) //

33

Spec(C) // Y

as in the statement of the lemma. Thus assumption (4) produces C → C1 and the
dotted arrows making the diagram commute. Let A′

1 = (C1)p be the localization
of C1 at a prime p ⊂ C1 lying over mA′ ⊂ C. Since C → C1 is flat by More on
Algebra, Lemma 15.22.10 such a prime p exists by Algebra, Lemmas 10.39.17 and
10.39.16. Note that A′ is the localization of C at mA′ and that A′

1 is a valuation
ring (Algebra, Lemma 10.50.9). In other words, A′ → A′

1 is a local ring map of
valuation rings. Assumption (3) implies

Spec(A′
1) //

��

Spec(C1) // X

Spec(A′) // Spec(P ) // Spec(B)

OO

commutes. Hence the restriction of the morphism Spec(C1) → X to Spec(C1/p)
restricts to the composition

Spec(κ(p))→ Spec(A′/mA′) = Spec(K ′′)→ Spec(K)→ X

on the generic point of Spec(C1/p). Moreover, C1/p is a valuation ring (Alge-
bra, Lemma 10.50.9) dominating A′′ which dominates A. Thus the morphism
Spec(C1/p) → X witnesses the existence part of the valuative criterion for the
diagram (67.42.5.1) as desired.

Next, suppose that (5) is satisfied as well, i.e., the morphism ∆ : X → X ×S X
is quasi-compact. In this case assumptions (1) – (4) hold for h and ∆. Hence the
first part of the proof shows that ∆ is universally closed. By Lemma 67.40.9 we
conclude that f is separated. □
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67.43. Valuative criterion of separatedness

03KT First we prove a converse and then we state the criterion.
Lemma 67.43.1.03KU Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is separated, then f satisfies the uniqueness part of the valuative
criterion.
Proof. Let a diagram as in Definition 67.41.1 be given. Suppose there are two
distinct morphisms a, b : Spec(A)→ X fitting into the diagram. Let Z ⊂ Spec(A)
be the equalizer of a and b. Then Z = Spec(A)×(a,b),X×YX,∆ X. If f is separated,
then ∆ is a closed immersion, and this is a closed subscheme of Spec(A). By
assumption it contains the generic point of Spec(A). Since A is a domain this
implies Z = Spec(A). Hence a = b as desired. □

Lemma 67.43.2 (Valuative criterion separatedness).03KV Let S be a scheme. Let f :
X → Y be a morphism of algebraic spaces over S. Assume

(1) the morphism f is quasi-separated, and
(2) the morphism f satisfies the uniqueness part of the valuative criterion.

Then f is separated.
Proof. Assumption (1) means ∆X/Y is quasi-compact. We claim the morphism
∆X/Y : X → X ×Y X satisfies the existence part of the valuative criterion. Let a
solid commutative diagram

Spec(K) //

��

X

��
Spec(A) //

99

X ×Y X

be given. The lower right arrow corresponds to a pair of morphisms a, b : Spec(A)→
X over Y . By assumption (2) we see that a = b. Hence using a as the dotted arrow
works. Hence Lemma 67.42.1 applies, and we see that ∆X/Y is universally closed.
Since always ∆X/Y is locally of finite type and separated, we conclude from More on
Morphisms, Lemma 37.44.1 that ∆X/Y is a finite morphism (also, use the general
principle of Spaces, Lemma 65.5.8). At this point ∆X/Y is a representable, finite
monomorphism, hence a closed immersion by Morphisms, Lemma 29.44.15. □

Lemma 67.43.3.0A3Z Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-compact and quasi-separated. Then the following
are equivalent

(1) f is separated and universally closed,
(2) the valuative criterion holds as in Definition 67.41.1,
(3) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K, there exists a unique
dotted arrow, i.e., f satisfies the valuative criterion as in Schemes, Defi-
nition 26.20.3.

https://stacks.math.columbia.edu/tag/03KU
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Proof. Since f is quasi-separated, the uniqueness part of the valutative criterion
implies f is separated (Lemma 67.43.2). Conversely, if f is separated, then it
satisfies the uniqueness part of the valuative criterion (Lemma 67.43.1). Having
said this, we see that in each of the three cases the morphism f is separated and
satisfies the uniqueness part of the valuative criterion. In this case the lemma is a
formal consequence of Lemma 67.42.3. □

67.44. Valuative criterion of properness

0CKZ Here is a statement.

Lemma 67.44.1 (Valuative criterion for properness).0A40 Let S be a scheme. Let
f : X → Y be a morphism of algebraic spaces over S. Assume f is of finite type
and quasi-separated. Then the following are equivalent

(1) f is proper,
(2) the valuative criterion holds as in Definition 67.41.1,
(3) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K, there exists a unique
dotted arrow, i.e., f satisfies the valuative criterion as in Schemes, Defi-
nition 26.20.3.

Proof. Formal consequence of Lemma 67.43.3 and the definitions. □

67.45. Integral and finite morphisms

03ZN We have already defined in Section 67.3 what it means for a representable morphism
of algebraic spaces to be integral (resp. finite).

Lemma 67.45.1.03ZO Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. Then f is integral, resp. finite (in the sense of Section
67.3), if and only if for all affine schemes Z and morphisms Z → Y the scheme
X ×Y Z is affine and integral, resp. finite, over Z.

Proof. This follows directly from the definition of an integral (resp. finite) morphism
of schemes (Morphisms, Definition 29.44.1). □

This clears the way for the following definition.

Definition 67.45.2.03ZP Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say that f is integral if for every affine scheme Z and morphisms
Z → Y the algebraic space X ×Y Z is representable by an affine scheme
integral over Z.

(2) We say that f is finite if for every affine scheme Z and morphisms Z → Y
the algebraic space X×Y Z is representable by an affine scheme finite over
Z.

https://stacks.math.columbia.edu/tag/0A40
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Lemma 67.45.3.03ZQ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is representable and integral (resp. finite),
(2) f is integral (resp. finite),
(3) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is integral (resp. finite), and
(4) there exists a Zariski covering Y =

⋃
Yi such that each of the morphisms

f−1(Yi)→ Yi is integral (resp. finite).

Proof. It is clear that (1) implies (2) and that (2) implies (3) by taking V to
be a disjoint union of affines étale over Y , see Properties of Spaces, Lemma 66.6.1.
Assume V → Y is as in (3). Then for every affine open W of V we see that W×Y X
is an affine open of V ×Y X. Hence by Properties of Spaces, Lemma 66.13.1 we
conclude that V ×Y X is a scheme. Moreover the morphism V ×Y X → V is affine.
This means we can apply Spaces, Lemma 65.11.5 because the class of integral (resp.
finite) morphisms satisfies all the required properties (see Morphisms, Lemmas
29.44.6 and Descent, Lemmas 35.23.22, 35.23.23, and 35.37.1). The conclusion of
applying this lemma is that f is representable and integral (resp. finite), i.e., (1)
holds.

The equivalence of (1) and (4) follows from the fact that being integral (resp. finite)
is Zariski local on the target (the reference above shows that being integral or finite
is in fact fpqc local on the target). □

Lemma 67.45.4.03ZR The composition of integral (resp. finite) morphisms is integral
(resp. finite).

Proof. Omitted. □

Lemma 67.45.5.03ZS The base change of an integral (resp. finite) morphism is integral
(resp. finite).

Proof. Omitted. □

Lemma 67.45.6.0414 A finite morphism of algebraic spaces is integral. An integral
morphism of algebraic spaces which is locally of finite type is finite.

Proof. In both cases the morphism is representable, and you can check the condition
after a base change by an affine scheme mapping into Y , see Lemmas 67.45.3. Hence
this lemma follows from the same lemma for the case of schemes, see Morphisms,
Lemma 29.44.4. □

Lemma 67.45.7.0415 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f is integral, and
(2) f is affine and universally closed.

Proof. In both cases the morphism is representable, and you can check the condition
after a base change by an affine scheme mapping into Y , see Lemmas 67.45.3,
67.20.3, and 67.9.5. Hence the result follows from Morphisms, Lemma 29.44.7. □

Lemma 67.45.8.04NY A finite morphism of algebraic spaces is quasi-finite.

https://stacks.math.columbia.edu/tag/03ZQ
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Proof. Let f : X → Y be a morphism of algebraic spaces. By Definition 67.45.2
and Lemmas 67.8.8 and 67.27.6 both properties may be checked after base change
to an affine over Y , i.e., we may assume Y affine. If f is finite then X is a scheme.
Hence the result follows from the corresponding result for schemes, see Morphisms,
Lemma 29.44.10. □

Lemma 67.45.9.04NZ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f is finite, and
(2) f is affine and proper.

Proof. In both cases the morphism is representable, and you can check the condition
after base change to an affine scheme mapping into Y , see Lemmas 67.45.3, 67.20.3,
and 67.40.2. Hence the result follows from Morphisms, Lemma 29.44.11. □

Lemma 67.45.10.081Y A closed immersion is finite (and a fortiori integral).

Proof. Omitted. □

Lemma 67.45.11.0CZ2 Let S be a scheme. Let Xi → Y , i = 1, . . . , n be finite morphisms
of algebraic spaces over S. Then X1 ⨿ . . .⨿Xn → Y is finite too.

Proof. Follows from the case of schemes (Morphisms, Lemma 29.44.13) by étale
localization. □

Lemma 67.45.12.081Z Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of algebraic spaces over S.

(1) If g ◦ f is finite and g separated then f is finite.
(2) If g ◦ f is integral and g separated then f is integral.

Proof. Assume g ◦ f is finite (resp. integral) and g separated. The base change
X ×Z Y → Y is finite (resp. integral) by Lemma 67.45.5. The morphism X →
X ×Z Y is a closed immersion as Y → Z is separated, see Lemma 67.4.7. A closed
immersion is finite (resp. integral), see Lemma 67.45.10. The composition of finite
(resp. integral) morphisms is finite (resp. integral), see Lemma 67.45.4. Thus we
win. □

67.46. Finite locally free morphisms

03ZT We have already defined in Section 67.3 what it means for a representable morphism
of algebraic spaces to be finite locally free.

Lemma 67.46.1.03ZU Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. Then f is finite locally free (in the sense of Section 67.3)
if and only if f is affine and the sheaf f∗OX is a finite locally free OY -module.

Proof. Assume f is finite locally free (as defined in Section 67.3). This means
that for every morphism V → Y whose source is a scheme the base change f ′ :
V ×Y X → V is a finite locally free morphism of schemes. This in turn means (by
the definition of a finite locally free morphism of schemes) that f ′

∗OV×YX is a finite
locally free OV -module. We may choose V → Y to be surjective and étale. By
Properties of Spaces, Lemma 66.26.2 we conclude the restriction of f∗OX to V is
finite locally free. Hence by Modules on Sites, Lemma 18.23.3 applied to the sheaf
f∗OX on Yspaces,étale we conclude that f∗OX is finite locally free.
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Conversely, assume f is affine and that f∗OX is a finite locally free OY -module.
Let V be a scheme, and let V → Y be a surjective étale morphism. Again by
Properties of Spaces, Lemma 66.26.2 we see that f ′

∗OV×YX is finite locally free.
Hence f ′ : V ×Y X → V is finite locally free (as it is also affine). By Spaces,
Lemma 65.11.5 we conclude that f is finite locally free (use Morphisms, Lemma
29.48.4 Descent, Lemmas 35.23.30 and 35.37.1). Thus we win. □

This clears the way for the following definition.

Definition 67.46.2.03ZV Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say that f is finite locally free if f is affine and f∗OX is a finite
locally free OY -module. In this case we say f is has rank or degree d if the sheaf
f∗OX is finite locally free of rank d.

Lemma 67.46.3.03ZW Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is representable and finite locally free,
(2) f is finite locally free,
(3) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is finite locally free, and
(4) there exists a Zariski covering Y =

⋃
Yi such that each morphism f−1(Yi)→

Yi is finite locally free.

Proof. It is clear that (1) implies (2) and that (2) implies (3) by taking V to
be a disjoint union of affines étale over Y , see Properties of Spaces, Lemma 66.6.1.
Assume V → Y is as in (3). Then for every affine open W of V we see that W×Y X
is an affine open of V ×Y X. Hence by Properties of Spaces, Lemma 66.13.1 we
conclude that V ×Y X is a scheme. Moreover the morphism V ×Y X → V is affine.
This means we can apply Spaces, Lemma 65.11.5 because the class of finite locally
free morphisms satisfies all the required properties (see Morphisms, Lemma 29.48.4
Descent, Lemmas 35.23.30 and 35.37.1). The conclusion of applying this lemma is
that f is representable and finite locally free, i.e., (1) holds.
The equivalence of (1) and (4) follows from the fact that being finite locally free is
Zariski local on the target (the reference above shows that being finite locally free
is in fact fpqc local on the target). □

Lemma 67.46.4.03ZX The composition of finite locally free morphisms is finite locally
free.

Proof. Omitted. □

Lemma 67.46.5.03ZY The base change of a finite locally free morphism is finite locally
free.

Proof. Omitted. □

Lemma 67.46.6.0416 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is finite locally free,
(2) f is finite, flat, and locally of finite presentation.

If Y is locally Noetherian these are also equivalent to
(3) f is finite and flat.
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Proof. In each of the three cases the morphism is representable and you can check
the property after base change by a surjective étale morphism V → Y , see Lemmas
67.45.3, 67.46.3, 67.30.5, and 67.28.4. If Y is locally Noetherian, then V is locally
Noetherian. Hence the result follows from the corresponding result in the schemes
case, see Morphisms, Lemma 29.48.2. □

67.47. Rational maps

0EML This section is the analogue of Morphisms, Section 29.49. We will use without
further mention that the intersection of dense opens of a topological space is a
dense open.
Definition 67.47.1.0EMM Let S be a scheme. Let X, Y be algebraic spaces over S.

(1) Let f : U → Y , g : V → Y be morphisms of algebraic spaces over S
defined on dense open subspaces U , V of X. We say that f is equivalent
to g if f |W = g|W for some dense open subspace W ⊂ U ∩ V .

(2) A rational map from X to Y is an equivalence class for the equivalence
relation defined in (1).

(3) Given morphisms X → B and Y → B of algebraic spaces over S we say
that a rational map from X to Y is a B-rational map from X to Y if
there exists a representative f : U → Y of the equivalence class which is
a morphism over B.

We say that two morphisms f , g as in (1) of the definition define the same rational
map instead of saying that they are equivalent. In many cases we will consider in
the future, the algebraic spaces X and Y will contain a dense open subspaces X ′

and Y ′ which are schemes. In that case a rational map from X to Y is the same
as an S-rational map from X ′ to Y ′ in the sense of Morphisms, Definition 67.47.1.
Then all of the theory developed for schemes can be brought to bear.
Definition 67.47.2.0EMN Let S be a scheme. Let X be an algebraic space over S. A
rational function on X is a rational map from X to A1

S .
Looking at the discussion following Morphisms, Definition 29.49.3 we find that this
is the same as the notion defined there in case X happens to be a scheme.
Recall that we have the canonical identification

MorS(T,A1
S) = Mor(T,A1

Z) = Γ(T,OT )
for any scheme T over S, see Schemes, Example 26.15.2. Hence A1

S is a ring-object
in the category of schemes over S. In other words, addition and multiplication
define morphisms

+ : A1
S ×S A1

S → A1
S and ∗ : A1

S ×S A1
S → A1

S

satisfying the axioms of the addition and multiplication in a ring (commutative
with 1 as always). Hence also the set of rational maps into A1

S has a natural ring
structure.
Definition 67.47.3.0EMP Let S be a scheme. LetX be an algebraic space over S. The ring
of rational functions on X is the ring R(X) whose elements are rational functions
with addition and multiplication as just described.
We will define function fields for integral algebraic spaces later, see Spaces over
Fields, Section 72.4.
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Definition 67.47.4.0EMQ Let S be a scheme. Let φ be a rational map between two
algebraic spaces X and Y over S. We say φ is defined in a point x ∈ |X| if there
exists a representative (U, f) of φ with x ∈ |U |. The domain of definition of φ is
the set of all points where φ is defined.

The domain of definition is viewed as an open subspace of X via Properties of
Spaces, Lemma 66.4.8. With this definition it isn’t true in general that φ has a
representative which is defined on all of the domain of definition.

Lemma 67.47.5.0EMR Let S be a scheme. Let X and Y be algebraic spaces over S.
Assume X is reduced and Y is separated over S. Let φ be a rational map from
X to Y with domain of definition U ⊂ X. Then there exists a unique morphism
f : U → Y of algebraic spaces representing φ.

Proof. Let (V, g) and (V ′, g′) be representatives of φ. Then g, g′ agree on a dense
open subspace W ⊂ V ∩ V ′. On the other hand, the equalizer E of g|V ∩V ′ and
g′|V ∩V ′ is a closed subspace of V ∩ V ′ because it is the base change of ∆ : Y →
Y ×S Y by the morphism V ∩ V ′ → Y ×S Y given by g|V ∩V ′ and g′|V ∩V ′ . Now
W ⊂ E implies that |E| = |V ∩ V ′|. As V ∩ V ′ is reduced we conclude E =
V ∩V ′ scheme theoretically, i.e., g|V ∩V ′ = g′|V ∩V ′ , see Properties of Spaces, Lemma
66.12.4. It follows that we can glue the representatives g : V → Y of φ to a
morphism f : U → Y because

∐
V → U is a surjection of fppf sheaves and∐

V,V ′ V ∩ V ′ = (
∐
V )×U (

∐
V ). □

In general it does not make sense to compose rational maps. The reason is that the
image of a representative of the first rational map may have empty intersection with
the domain of definition of the second. However, if we assume that our spaces are
irreducible and we look at dominant rational maps, then we can compose rational
maps.

Definition 67.47.6.0EMS Let S be a scheme. Let X and Y be algebraic spaces over S.
Assume |X| and |Y | are irreducible. A rational map from X to Y is called dominant
if any representative f : U → Y is a dominant morphism in the sense of Definition
67.18.1.

We can compose a dominant rational map φ between irreducible algebraic spaces
X and Y with an arbitrary rational map ψ from Y to Z. Namely, choose repre-
sentatives f : U → Y with |U | ⊂ |X| open dense and g : V → Z with |V | ⊂ |Y |
open dense. Then W = |f |−1(V ) ⊂ |X| is open nonempty (because the image of
|f | is dense and hence must meet the nonempty open V ) and hence dense as |X| is
irreducible. We define ψ ◦ φ as the equivalence class of g ◦ f |W : W → Z. We omit
the verification that this is well defined.
In this way we obtain a category whose objects are irreducible algebraic spaces over
S and whose morphisms are dominant rational maps.

Definition 67.47.7.0EMT Let S be a scheme. Let X and Y be algebraic spaces over S with
|X| and |Y | irreducible. We say X and Y are birational if X and Y are isomorphic
in the category of irreducible algebraic spaces over S and dominant rational maps.

If X and Y are birational irreducible algebraic spaces, then the set of rational
maps from X to Z is bijective with the set of rational map from Y to Z for all
algebraic spaces Z (functorially in Z). For “general” irreducible algebraic spaces

https://stacks.math.columbia.edu/tag/0EMQ
https://stacks.math.columbia.edu/tag/0EMR
https://stacks.math.columbia.edu/tag/0EMS
https://stacks.math.columbia.edu/tag/0EMT


67.48. RELATIVE NORMALIZATION OF ALGEBRAIC SPACES 5398

this is just one possible definition. Another would be to require X and Y have
isomorphic rings of rational functions; sometimes these two notions are equivalent
(insert future reference here).

Lemma 67.47.8.0EMU Let S be a scheme. Let X and Y be algebraic space over S
with |X| and |Y | irreducible. Then X and Y are birational if and only if there are
nonempty open subspaces U ⊂ X and V ⊂ Y which are isomorphic as algebraic
spaces over S.

Proof. Assume X and Y are birational. Let f : U → Y and g : V → X define
inverse dominant rational maps from X to Y and from Y to X. After shrinking
U we may assume f : U → Y factors through V . As g ◦ f is the identity as a
dominant rational map, we see that the composition U → V → X is the identity
on a dense open of U . Thus after replacing U by a smaller open we may assume
that U → V → X is the inclusion of U into X. By symmetry we find there exists
an open subspace V ′ ⊂ V such that g|V ′ : V ′ → X factors through U ⊂ X and such
that V ′ → U → Y is the identity. The inverse image of |V ′| by |U | → |V | is an open
of |U | and hence equal to |U ′| for some open subspace U ′ ⊂ U , see Properties of
Spaces, Lemma 66.4.8. Then U ′ ⊂ U → V factors as U ′ → V ′. Similarly V ′ → U
factors as V ′ → U ′. The reader finds that U ′ → V ′ and V ′ → U ′ are mutually
inverse morphisms of algebraic spaces over S and the proof is complete. □

67.48. Relative normalization of algebraic spaces

0BAZ This section is the analogue of Morphisms, Section 29.53.

Lemma 67.48.1.0820 Let S be a scheme. Let X be an algebraic space over S. Let A be
a quasi-coherent sheaf of OX -algebras. There exists a quasi-coherent sheaf of OX -
algebras A′ ⊂ A such that for any affine object U of Xétale the ring A′(U) ⊂ A(U)
is the integral closure of OX(U) in A(U).

Proof. Let U be an object ofXétale. Then U is a scheme. DenoteA|U the restriction
to the Zariski site. Then A|U is a quasi-coherent sheaf of OU -algebras hence we can
apply Morphisms, Lemma 29.53.1 to find a quasi-coherent subalgebra A′

U ⊂ A|U
such that the value of A′

U on any affine open W ⊂ U is as given in the statement
of the lemma. If f : U ′ → U is a morphism in Xétale, then A|U ′ = f∗(A|U )
where f∗ means pullback by the morphism f in the Zariski topology; this holds
because A is quasi-coherent (see introduction to Properties of Spaces, Section 66.29
and the references to the discussion in the chapter on descent on schemes). Since
f is étale we find that More on Morphisms, Lemma 37.19.1 says that we get a
canonical isomorphism f∗(A′

U ) = A′
U ′ . This immediately tells us that we obtain

a sub presheaf A′ ⊂ A of OX -algebras over Xétale which is a sheaf for the Zariski
topology and has the right values on affine objects. But the fact that each A′

U

is quasi-coherent on the scheme U and that for f : U ′ → U étale we have A′
U ′ =

f∗(A′
U ) implies that A′ is quasi-coherent on Xétale as well (as this is a local property

and we have the references above describing quasi-coherent modules on Uétale in
exactly this manner). □

Definition 67.48.2.0821 Let S be a scheme. Let X be an algebraic space over S. Let A
be a quasi-coherent sheaf of OX -algebras. The integral closure of OX in A is the
quasi-coherent OX -subalgebra A′ ⊂ A constructed in Lemma 67.48.1 above.
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We will apply this in particular when A = f∗OY for a quasi-compact and quasi-
separated morphism of algebraic spaces f : Y → X (see Lemma 67.11.2). We can
then take the relative spectrum of the quasi-coherent OX -algebra (Lemma 67.20.7)
to obtain the normalization of X in Y .

Definition 67.48.3.0822 Let S be a scheme. Let f : Y → X be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. Let O′ be the integral closure
of OX in f∗OY . The normalization of X in Y is the morphism of algebraic spaces

ν : X ′ = Spec
X

(O′)→ X

over S. It comes equipped with a natural factorization

Y
f ′

−→ X ′ ν−→ X

of the initial morphism f .

To get the factorization, use Remark 67.20.9 and functoriality of the Spec construc-
tion.

Lemma 67.48.4.0ABP Let S be a scheme. Let f : Y → X be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. Let Y → X ′ → X be the
normalization of X in Y .

(1) If W → X is an étale morphism of algebraic spaces over S, then W ×XX ′

is the normalization of W in W ×X Y .
(2) If Y and X are representable, then Y ′ is representable and is canonically

isomorphic to the normalization of the scheme X in the scheme Y as
constructed in Morphisms, Section 29.54.

Proof. It is immediate from the construction that the formation of the normaliza-
tion of X in Y commutes with étale base change, i.e., part (1) holds. On the other
hand, ifX and Y are schemes, then for U ⊂ X affine open, f∗OY (U) = OY (f−1(U))
and hence ν−1(U) is the spectrum of exactly the same ring as we get in the corre-
sponding construction for schemes. □

Here is a characterization of this construction.

Lemma 67.48.5.0823 Let S be a scheme. Let f : Y → X be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. The factorization f = ν ◦ f ′,
where ν : X ′ → X is the normalization of X in Y is characterized by the following
two properties:

(1) the morphism ν is integral, and
(2) for any factorization f = π ◦ g, with π : Z → X integral, there exists a

commutative diagram

Y

f ′

��

g
// Z

π

��
X ′

h

>>

ν // X

for a unique morphism h : X ′ → Z.
Moreover, in (2) the morphism h : X ′ → Z is the normalization of Z in Y .
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Proof. Let O′ ⊂ f∗OY be the integral closure of OX as in Definition 67.48.3.
The morphism ν is integral by construction, which proves (1). Assume given a
factorization f = π ◦ g with π : Z → X integral as in (2). By Definition 67.45.2
π is affine, and hence Z is the relative spectrum of a quasi-coherent sheaf of OX -
algebras B. The morphism g : X → Z corresponds to a map of OX -algebras
χ : B → f∗OY . Since B(U) is integral over OX(U) for every affine U étale over
X (by Definition 67.45.2) we see from Lemma 67.48.1 that χ(B) ⊂ O′. By the
functoriality of the relative spectrum Lemma 67.20.7 this provides us with a unique
morphism h : X ′ → Z. We omit the verification that the diagram commutes.
It is clear that (1) and (2) characterize the factorization f = ν ◦ f ′ since it char-
acterizes it as an initial object in a category. The morphism h in (2) is integral by
Lemma 67.45.12. Given a factorization g = π′ ◦g′ with π′ : Z ′ → Z integral, we get
a factorization f = (π ◦ π′) ◦ g′ and we get a morphism h′ : X ′ → Z ′. Uniqueness
implies that π′◦h′ = h. Hence the characterization (1), (2) applies to the morphism
h : X ′ → Z which gives the last statement of the lemma. □

Lemma 67.48.6.0AYF Let S be a scheme. Let f : Y → X be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let X ′ → X be the normalization
of X in Y . If Y is reduced, so is X ′.

Proof. This follows from the fact that a subring of a reduced ring is reduced. Some
details omitted. □

Lemma 67.48.7.0AYG Let S be a scheme. Let f : Y → X be a quasi-compact and
quasi-separated morphism of schemes. Let X ′ → X be the normalization of X
in Y . If x′ ∈ |X ′| is a point of codimension 0 (Properties of Spaces, Definition
66.10.2), then x′ is the image of some y ∈ |Y | of codimension 0.

Proof. By Lemma 67.48.4 and the definitions, we may assume that X = Spec(A) is
affine. Then X ′ = Spec(A′) where A′ is the integral closure of A in Γ(Y,OY ) and x′

corresponds to a minimal prime of A′. Choose a surjective étale morphism V → Y
where V = Spec(B) is affine. Then A′ → B is injective, hence every minimal prime
of A′ is the image of a minimal prime of B, see Algebra, Lemma 10.30.5. The
lemma follows. □

Lemma 67.48.8.0824 Let S be a scheme. Let f : Y → X be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. Suppose that Y = Y1⨿Y2 is a
disjoint union of two algebraic spaces. Write fi = f |Yi . Let X ′

i be the normalization
of X in Yi. Then X ′

1 ⨿X ′
2 is the normalization of X in Y .

Proof. Omitted. □

Lemma 67.48.9.0A0Q Let S be a scheme. Let f : X → Y be a quasi-compact, quasi-
separated and universally closed morphisms of algebraic spaces over S. Then f∗OX
is integral over OY . In other words, the normalization of Y in X is equal to the
factorization

X −→ Spec
Y

(f∗OX) −→ Y

of Remark 67.20.9.

Proof. The question is étale local on Y , hence we may reduce to the case where
Y = Spec(R) is affine. Let h ∈ Γ(X,OX). We have to show that h satisfies a
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monic equation over R. Think of h as a morphism as in the following commutative
diagram

X
h

//

f ��

A1
Y

~~
Y

Let Z ⊂ A1
Y be the scheme theoretic image of h, see Definition 67.16.2. The

morphism h is quasi-compact as f is quasi-compact and A1
Y → Y is separated,

see Lemma 67.8.9. By Lemma 67.16.3 the morphism X → Z has dense image
on underlying topological spaces. By Lemma 67.40.6 the morphism X → Z is
closed. Hence h(X) = Z (set theoretically). Thus we can use Lemma 67.40.7 to
conclude that Z → Y is universally closed (and even proper). Since Z ⊂ A1

Y , we
see that Z → Y is affine and proper, hence integral by Lemma 67.45.7. Writing
A1
Y = Spec(R[T ]) we conclude that the ideal I ⊂ R[T ] of Z contains a monic

polynomial P (T ) ∈ R[T ]. Hence P (h) = 0 and we win. □

Lemma 67.48.10.0825 Let S be a scheme. Let f : Y → X be an integral morphism of
algebraic spaces over S. Then the integral closure of X in Y is equal to Y .

Proof. By Lemma 67.45.7 this is a special case of Lemma 67.48.9. □

Lemma 67.48.11.0BB0 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that

(1) Y is Nagata,
(2) f is quasi-separated of finite type,
(3) X is reduced.

Then the normalization ν : Y ′ → Y of Y in X is finite.

Proof. The question is étale local on Y , see Lemma 67.48.4. Thus we may as-
sume Y = Spec(R) is affine. Then R is a Noetherian Nagata ring and we have
to show that the integral closure of R in Γ(X,OX) is finite over R. Since f is
quasi-compact we see that X is quasi-compact. Choose an affine scheme U and
a surjective étale morphism U → X (Properties of Spaces, Lemma 66.6.3). Then
Γ(X,OX) ⊂ Γ(U,OX). Since R is Noetherian it suffices to show that the integral
closure of R in Γ(U,OU ) is finite over R. As U → Y is of finite type this follows
from Morphisms, Lemma 29.53.15. □

67.49. Normalization

07U3 This section is the analogue of Morphisms, Section 29.54.

Lemma 67.49.1.0BB1 Let S be a scheme. Let X be an algebraic space over S. The
following are equivalent

(1) there is a surjective étale morphism U → X where U is a scheme such that
every quasi-compact open of U has finitely many irreducible components,

(2) for every scheme U and every étale morphism U → X every quasi-compact
open of U has finitely many irreducible components,

(3) for every quasi-compact algebraic space Y étale over X the set of codi-
mension 0 points of Y (Properties of Spaces, Definition 66.10.2) is finite,
and

https://stacks.math.columbia.edu/tag/0825
https://stacks.math.columbia.edu/tag/0BB0
https://stacks.math.columbia.edu/tag/0BB1


67.49. NORMALIZATION 5402

(4) for every quasi-compact algebraic space Y étale over X the space |Y | has
finitely many irreducible components.

If X is representable this means that every quasi-compact open of X has finitely
many irreducible components.
Proof. The equivalence of (1) and (2) and the final statement follow from Descent,
Lemma 35.16.3 and Properties of Spaces, Lemma 66.7.1. It is clear that (4) implies
(1) and (2) by considering only those Y which are schemes. Similarly, (3) implies
(1) and (2) since for a scheme the codimension 0 points are the generic points of
its irreducible components, see for example Properties of Spaces, Lemma 66.11.1.
Conversely, assume (2) and let Y → X be an étale morphism of algebraic spaces
with Y quasi-compact. Then we can choose an affine scheme V and a surjective étale
morphism V → Y (Properties of Spaces, Lemma 66.6.3). Since V has finitely many
irreducible components by (2) and since |V | → |Y | is surjective and continuous, we
conclude that |Y | has finitely many irreducible components by Topology, Lemma
5.8.5. Thus (4) holds. Similarly, by Properties of Spaces, Lemma 66.11.1 the images
of the generic points of the irreducible components of V are the codimension 0 points
of Y and we conclude that there are finitely many, i.e., (3) holds. □

Lemma 67.49.2.0GMB Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Then X satisfies the equivalent conditions of Lemma 67.49.1.
Proof. If U → X is étale and U is a scheme, then U is a locally Noetherian scheme,
see Properties of Spaces, Section 66.7. A locally Noetherian scheme has a locally
finite set of irreducible components (Divisors, Lemma 31.26.1). Thus we conclude
that X passes condition (2) of the lemma. □

Lemma 67.49.3.0GMC Let S be a scheme. Let f : X → Y be a flat morphism of algebraic
spaces over S. Then for x ∈ |X| we have: x has codimension 0 in X ⇒ f(x) has
codimension 0 in Y .
Proof. Via Properties of Spaces, Lemma 66.11.1 and étale localization this trans-
lates into the case of a morphism of schemes and generic points of irreducible
components. Here the result follows as generalizations lift along flat morphisms of
schemes, see Morphisms, Lemma 29.25.9. □

Lemma 67.49.4.0GMD Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is flat and locally of finite type and assume Y satisfies the
equivalent conditions of Lemma 67.49.1. Then X satisfies the equivalent conditions
of Lemma 67.49.1 and for x ∈ |X| we have: x has codimension 0 in X ⇒ f(x) has
codimension 0 in Y .
Proof. The last statement follows from Lemma 67.49.3. Choose a surjective étale
morphism V → Y where V is a scheme. Choose a surjective étale morphism
U → X ×Y V where U is a scheme. It suffices to show that every quasi-compact
open of U has finitely many irreducible components. We will use the results of
Properties of Spaces, Lemma 66.11.1 without further mention. By what we’ve
already shown, the codimension 0 points of U lie above codimension 0 points in U
and these are locally finite by assumption. Hence it suffices to show that for v ∈ V
of codimension 0 the codimension 0 points of the scheme theoretic fibre Uv = U×V v
are locally finite. This is true because Uv is a scheme locally of finite type over κ(v),
hence locally Noetherian and we can apply Lemma 67.49.2 for example. □
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Lemma 67.49.5.07U4 Let S be a scheme. For every algebraic space X over S satisfying
the equivalent conditions of Lemma 67.49.1 there exists a morphism of algebraic
spaces

νX : Xν −→ X

with the following properties
(1) if X satisfies the equivalent conditions of Lemma 67.49.1 then Xν is nor-

mal and νX is integral,
(2) if X is a scheme such that every quasi-compact open has finitely many

irreducible components, then νX : Xν → X is the normalization of X
constructed in Morphisms, Section 29.54,

(3) if f : X → Y is a morphism of algebraic spaces over S which both satisfy
the equivalent conditions of Lemma 67.49.1 and every codimension 0 point
of X is mapped by f to a codimension 0 point of Y , then there is a
unique morphism fν : Xν → Y ν of algebraic spaces over S such that
νY ◦ fν = f ◦ νX , and

(4) if f : X → Y is an étale or smooth morphism of algebraic spaces and Y
satisfies the equivalent conditions of Lemma 67.49.1, then the hypotheses
of (3) hold and the morphism fν induces an isomorphism Xν → X×Y Y ν .

Proof. Consider the category C whose objects are the schemes U over S such that
every quasi-compact open of U has finitely many irreducible components and whose
morphisms are those morphisms g : U → V of schemes over S such that every
generic point of an irreducible component of U is mapped to the generic point of
an irreducible component of V . We have already shown that

(a) for U ∈ Ob(C) we have a normalization morphism νU : Uν → U as in
Morphisms, Definition 29.54.1,

(b) for U ∈ Ob(C) the morphism νU is integral and Uν is a normal scheme,
see Morphisms, Lemma 29.54.5,

(c) for every g : U → V ∈ Arrows(C) there is a unique morphism gν : Uν →
V ν such that νV ◦ gν = g ◦ νU , see Morphisms, Lemma 29.54.5 part (4)
applied to the composition Xν → X → Y ,

(d) if V ∈ Ob(C) and g : U → V is étale or smooth, then U ∈ Ob(C) and g ∈
Arrows(C) and the morphism gν induces an isomorphism Uν → U ×V V ν ,
see Lemma 67.49.4 and More on Morphisms, Lemma 37.19.3.

Our task is to extend this construction to the corresponding category of algebraic
spaces X over S.

Let X be an algebraic space over S satisfying the equivalent conditions of Lemma
67.49.1. Let U → X be a surjective étale morphism where U is a scheme. Set
R = U ×X U with projections s, t : R → U and j = (t, s) : R → U ×S U so that
X = U/R, see Spaces, Lemma 65.9.1. Observe that U and R are objects of C by
our assumptions on X and that the morphisms s and t are étale morphisms of
schemes over S. By (a) we have the normalization morphisms νU : Uν → U and
νR : Rν → R, by (d) we have morphisms sν : Rν → Uν , tν : Rν → Uν which define
isomorphisms Rν → R×s,U Uν and Rν → Uν ×U,t R. It follows that sν and tν are
étale (as they are isomorphic to base changes of étale morphisms). The induced
morphism jν = (tν , sν) : Rν → Uν ×S Uν is a monomorphism as it is equal to the

https://stacks.math.columbia.edu/tag/07U4
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composition
Rν → (Uν ×U,t R)×R (R×s,U Uν)

= Uν ×U,t R×s,U Uν

j−→ Uν ×U (U ×S U)×U Uν

= Uν ×S Uν

The first arrow is the diagonal morphism of νR. (This tells us that Rν is a subscheme
of the restriction of R to Uν .) A formal computation with fibre products using
property (d) shows that Rν ×sν ,Uν ,tν Rν is the normalization of R×s,U,t R. Hence
the étale morphism c : R×s,U,tR→ R extends uniquely to cν by (d). The morphism
cν is compatible with the projection pr13 : Uν×SUν×SUν → Uν×SUν . Similarly,
there are morphisms iν : Rν → Rν compatible with the morphism Uν ×S Uν →
Uν×SUν which switches factors and there is a morphism eν : Uν → Rν compatible
with the diagonal morphism Uν → Uν ×S Uν . All in all it follows that jν :
Rν → Uν ×S Uν is an étale equivalence relation. At this point we may and do set
Xν = Uν/Rν (Spaces, Theorem 65.10.5). Then we see that we have Uν = Xν×XU
by Groupoids, Lemma 39.20.7.
What have we shown in the previous paragraph is this: for every algebraic space
X over S satisfying the equivalent conditions of Lemma 67.49.1 if we choose a
surjective étale morphism g : U → X where U is a scheme, then we obtain a
cartesian diagram

Xν

νX

��

Uν
gν
oo

νU

��
X U

goo

of algebraic spaces. This immediately implies that Xν is a normal algebraic space
and that νX is a integral morphism. This gives part (1) of the lemma.
We will show below that the morphism νX : Xν → X up to unique isomorphism is
independent of the choice of g, but for now, if X is a scheme, we choose id : X → X
so that it is clear that we have part (2) of the lemma.
We still have to prove parts (3) and (4). Let g : U → X and νX : Xν → X and
gν : Uν → Xν be as above. Let Z be a normal scheme and let h : Z → U and
a : Z → Xν be morphisms over S such that g ◦ h = νX ◦ a and such that every
irreducible compoent of Z dominates an irreducible component of U (via h). By
Morphisms, Lemma 29.54.5 part (4) we obtain a unique morphism hν : Z → Uν

such that h = νU ◦ hν . Picture:

Xν

νX

��

Uν
gν
oo

νU

��

Z
hν
oo

a

uu

h~~
X U

goo

Observe that a = gν ◦ hν . Namely, since the square with corners Xν , X, Uν , U
is cartesian, this follows immediately from the fact that hν is unique (given h). In
other words, given h : Z → U as above (and not a) there is a unique morphism
a : Z → Xν with νX ◦ a = g ◦ h.
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Let f : X → Y be as in part (3) of the statement of the lemma. Suppose we have
chosen surjective étale morphisms U → X and V → Y where U and V are schemes
such that f lifts to a morphism g : U → V . Then g ∈ Arrows(C) and we obtain a
unique morphism gν : Uν → V ν compatible with νU and νV . However, then the
two morphisms

Rν = Uν ×Xν Uν → Uν → V ν → Y ν

must be the same by our comments in the previous paragraph (applied with Y in
stead of X). Since Xν is constructed by taking the quotient of Uν by Rν it follows
that we obtain a (unique) morphism fν : Xν → Y ν as stated in (3).
To see that the construction of Xν is independent of the choice of g : U → X
surjective étale, apply the construction in the previous paragraph to id : X → X
and a morphism U ′ → U between étale coverings of X. This is enough because
given any two étale coverings of X there is a third one which dominates both. The
reader shows that the morphism between the two normalizations constructed using
either U ′ → X or U → X becomes an isomorphism after base change to U ′ and
hence was an isomorphism. We omit the details.
We omit the proof of (4) which is similar; hint use part (d) above. □

This leads us to the following definition.

Definition 67.49.6.0BB2 Let S be a scheme. LetX be an algebraic space over S satisfying
the equivalent conditions of Lemma 67.49.1. We define the normalization of X as
the morphism

νX : Xν −→ X

constructed in Lemma 67.49.5.

The definition applies to locally Noetherian algebraic spaces, see Lemma 67.49.2.
Usually the normalization is defined only for reduced algebraic spaces. With the
definition above the normalization of X is the same as the normalization of the
reduction Xred of X.

Lemma 67.49.7.0BB3 Let S be a scheme. Let X be an algebraic space over S satisfying
the equivalent conditions of Lemma 67.49.1. The normalization morphism ν factors
through the reduction Xred and Xν → Xred is the normalization of Xred.

Proof. We may check this étale locally on X and hence reduce to the case of schemes
which is Morphisms, Lemma 29.54.2. Some details omitted. □

Lemma 67.49.8.0BB4 Let S be a scheme. Let X be an algebraic space over S satisfying
the equivalent conditions of Lemma 67.49.1.

(1) The normalization Xν is normal.
(2) The morphism ν : Xν → X is integral and surjective.
(3) The map |ν| : |Xν | → |X| induces a bijection between the sets of points

of codimension 0 (Properties of Spaces, Definition 66.10.2).
(4) Let Z → X be a morphism. Assume Z is a normal algebraic space and

that for z ∈ |Z| we have: z has codimension 0 in Z ⇒ f(z) has codimen-
sion 0 in X. Then there exists a unique factorization Z → Xν → X.

Proof. Properties (1), (2), and (3) follow from the corresponding results for schemes
(Morphisms, Lemma 29.54.5) combined with the fact that a point of a scheme is a
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generic point of an irreducible component if and only if the dimension of the local
ring is zero (Properties, Lemma 28.10.4).
Let Z → X be a morphism as in (4). Let U be a scheme and let U → X be a
surjective étale morphism. Choose a scheme V and a surjective étale morphism V →
U×XZ. The condition on codimension 0 points assures us that V → U maps generic
points of irreducible components of V to generic points of irreducible components
of U . Thus we obtain a unique factorization V → Uν → U by Morphisms, Lemma
29.54.5. The uniqueness guarantees us that the two maps

V ×U×XZ V → V → Uν

agree because these maps are the unique factorization of the map V ×U×XZ V →
V → U . Since the algebraic space U ×X Z is equal to the quotient V/V ×U×XZ V
(see Spaces, Section 65.9) we find a canonical morphism U ×X Z → Uν . Picture

U ×X Z //

��

Uν //

��

U

��
Z 22// Xν // X

To obtain the dotted arrow we note that the construction of the arrow U×XZ → Uν

is functorial in the étale morphism U → X (precise formulation and proof omitted).
Hence if we set R = U ×X U with projections s, t : R → U , then we obtain a
morphism R ×X Z → Rν commuting with s, t : R → U and sν , tν : Rν → Uν .
Recall that Xν = Uν/Rν , see proof of Lemma 67.49.5. Since X = U/R a simple
sheaf theoretic argument shows that Z = (U×XZ)/(R×XZ). Thus the morphisms
U ×X Z → Uν and R×X Z → Rν define a morphism Z → Xν as desired. □

Lemma 67.49.9.0BB5 Let S be a scheme. Let X be a Nagata algebraic space over S.
The normalization ν : Xν → X is a finite morphism.

Proof. Since X being Nagata is locally Noetherian, Definition 67.49.6 applies. By
construction of Xν in Lemma 67.49.5 we immediately reduce to the case of schemes
which is Morphisms, Lemma 29.54.10. □

67.50. Separated, locally quasi-finite morphisms

0417 In this section we prove that an algebraic space which is locally quasi-finite and
separated over a scheme, is representable. This implies that a separated and locally
quasi-finite morphism is representable (see Lemma 67.51.1). But first... a lemma
(which will be obsoleted by Proposition 67.50.2).

Lemma 67.50.1.03XW Let S be a scheme. Consider a commutative diagram

V ′ //

$$

T ′ ×T X //

��

X

��
T ′ // T

of algebraic spaces over S. Assume
(1) T ′ → T is an étale morphism of affine schemes,
(2) X → T is a separated, locally quasi-finite morphism,
(3) V ′ is an open subspace of T ′ ×T X, and
(4) V ′ → T ′ is quasi-affine.
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In this situation the image U of V ′ in X is a quasi-compact open subspace of X
which is representable.

Proof. We first make some trivial observations. Note that V ′ is representable by
Lemma 67.21.3. It is also quasi-compact (as a quasi-affine scheme over an affine
scheme, see Morphisms, Lemma 29.13.2). Since T ′ ×T X → X is étale (Properties
of Spaces, Lemma 66.16.5) the map |T ′ ×T X| → |X| is open, see Properties of
Spaces, Lemma 66.16.7. Let U ⊂ X be the open subspace corresponding to the
image of |V ′|, see Properties of Spaces, Lemma 66.4.8. As |V ′| is quasi-compact
we see that |U | is quasi-compact, hence U is a quasi-compact algebraic space, by
Properties of Spaces, Lemma 66.5.2.
By Morphisms, Lemma 29.57.9 the morphism T ′ → T is universally bounded.
Hence we can do induction on the integer n bounding the degree of the fibres of
T ′ → T , see Morphisms, Lemma 29.57.8 for a description of this integer in the case
of an étale morphism. If n = 1, then T ′ → T is an open immersion (see Étale
Morphisms, Theorem 41.14.1), and the result is clear. Assume n > 1.
Consider the affine scheme T ′′ = T ′ ×T T ′. As T ′ → T is étale we have a de-
composition (into open and closed affine subschemes) T ′′ = ∆(T ′) ⨿ T ∗. Namely
∆ = ∆T ′/T is open by Morphisms, Lemma 29.35.13 and closed because T ′ → T
is separated as a morphism of affines. As a base change the degrees of the fibres
of the second projection pr1 : T ′ ×T T ′ → T ′ are bounded by n, see Morphisms,
Lemma 29.57.5. On the other hand, pr1|∆(T ′) : ∆(T ′)→ T ′ is an isomorphism and
every fibre has exactly one point. Thus, on applying Morphisms, Lemma 29.57.8 we
conclude the degrees of the fibres of the restriction pr1|T∗ : T ∗ → T ′ are bounded
by n− 1. Hence the induction hypothesis applied to the diagram

p−1
0 (V ′) ∩X∗ //

%%

X∗
p1|X∗

//

��

X ′

��
T ∗ pr1|T∗ // T ′

gives that p1(p−1
0 (V ′) ∩X∗) is a quasi-compact scheme. Here we set X ′′ = T ′′ ×T

X, X∗ = T ∗ ×T X, and X ′ = T ′ ×T X, and p0, p1 : X ′′ → X ′ are the base
changes of pr0,pr1. Most of the hypotheses of the lemma imply by base change the
corresponding hypothesis for the diagram above. For example p−1

0 (V ′) = T ′′×T ′ V ′

is a scheme quasi-affine over T ′′ as a base change. Some verifications omitted.
By Properties of Spaces, Lemma 66.13.1 we conclude that

p1(p−1
0 (V ′)) = V ′ ∪ p1(p−1

0 (V ′) ∩X∗)

is a quasi-compact scheme. Moreover, it is clear that p1(p−1
0 (V ′)) is the inverse

image of the quasi-compact open subspace U ⊂ X discussed in the first paragraph
of the proof. In other words, T ′ ×T U is a scheme! Note that T ′ ×T U is quasi-
compact and separated and locally quasi-finite over T ′, as T ′ ×T X → T ′ is locally
quasi-finite and separated being a base change of the original morphism X → T
(see Lemmas 67.4.4 and 67.27.4). This implies by More on Morphisms, Lemma
37.43.2 that T ′ ×T U → T ′ is quasi-affine.
By Descent, Lemma 35.39.1 this gives a descent datum on T ′ ×T U/T ′ relative to
the étale covering {T ′ →W}, where W ⊂ T is the image of the morphism T ′ → T .
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Because U ′ is quasi-affine over T ′ we see from Descent, Lemma 35.38.1 that this
datum is effective, and by the last part of Descent, Lemma 35.39.1 this implies that
U is a scheme as desired. Some minor details omitted. □

Proposition 67.50.2.03XX Let S be a scheme. Let f : X → T be a morphism of algebraic
spaces over S. Assume

(1) T is representable,
(2) f is locally quasi-finite, and
(3) f is separated.

Then X is representable.

Proof. Let T =
⋃
Ti be an affine open covering of the scheme T . If we can show

that the open subspaces Xi = f−1(Ti) are representable, then X is representable,
see Properties of Spaces, Lemma 66.13.1. Note that Xi = Ti×T X and that locally
quasi-finite and separated are both stable under base change, see Lemmas 67.4.4
and 67.27.4. Hence we may assume T is an affine scheme.
By Properties of Spaces, Lemma 66.6.2 there exists a Zariski covering X =

⋃
Xi

such that each Xi has a surjective étale covering by an affine scheme. By Prop-
erties of Spaces, Lemma 66.13.1 again it suffices to prove the proposition for each
Xi. Hence we may assume there exists an affine scheme U and a surjective étale
morphism U → X. This reduces us to the situation in the next paragraph.
Assume we have

U −→ X −→ T

where U and T are affine schemes, U → X is étale surjective, and X → T is
separated and locally quasi-finite. By Lemmas 67.39.5 and 67.27.3 the morphism
U → T is locally quasi-finite. Since U and T are affine it is quasi-finite. Set
R = U ×X U . Then X = U/R, see Spaces, Lemma 65.9.1. As X → T is separated
the morphism R→ U ×T U is a closed immersion, see Lemma 67.4.5. In particular
R is an affine scheme also. As U → X is étale the projection morphisms t, s : R→ U
are étale as well. In particular s and t are quasi-finite, flat and of finite presentation
(see Morphisms, Lemmas 29.36.6, 29.36.12 and 29.36.11).
Let (U,R, s, t, c) be the groupoid associated to the étale equivalence relation R on
U . Let u ∈ U be a point, and denote p ∈ T its image. We are going to use
More on Groupoids, Lemma 40.13.2 for the groupoid (U,R, s, t, c) over the scheme
T with points p and u as above. By the discussion in the previous paragraph
all the assumptions (1) – (7) of that lemma are satisfied. Hence we get an étale
neighbourhood (T ′, p′)→ (T, p) and disjoint union decompositions

UT ′ = U ′ ⨿W, RT ′ = R′ ⨿W ′

and u′ ∈ U ′ satisfying conclusions (a), (b), (c), (d), (e), (f), (g), and (h) of the
aforementioned More on Groupoids, Lemma 40.13.2. We may and do assume that
T ′ is affine (after possibly shrinking T ′). Conclusion (h) implies that R′ = U ′×XT ′

U ′ with projection mappings identified with the restrictions of s′ and t′. Thus
(U ′, R′, s′|R′ , t′|R′ , c′|R′×t′,U′,s′R′) of conclusion (g) is an étale equivalence relation.
By Spaces, Lemma 65.10.2 we conclude that U ′/R′ is an open subspace of XT ′ . By
conclusion (d) the schemes U ′, R′ are affine and the morphisms s′|R′ , t′|R′ are finite
étale. Hence Groupoids, Proposition 39.23.9 kicks in and we see that U ′/R′ is an
affine scheme.
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We conclude that for every pair of points (u, p) as above we can find an étale
neighbourhood (T ′, p′) → (T, p) with κ(p) = κ(p′) and a point u′ ∈ UT ′ mapping
to u such that the image x′ of u′ in |XT ′ | has an open neighbourhood V ′ in XT ′

which is an affine scheme. We apply Lemma 67.50.1 to obtain an open subspace
W ⊂ X which is a scheme, and which contains x (the image of u in |X|). Since
this works for every x we see that X is a scheme by Properties of Spaces, Lemma
66.13.1. This ends the proof. □

67.51. Applications

05W4 An alternative proof of the following lemma is to see it as a consequence of Zariski’s
main theorem for (nonrepresentable) morphisms of algebraic spaces as discussed
in More on Morphisms of Spaces, Section 76.34. Namely, More on Morphisms
of Spaces, Lemma 76.34.2 implies that a quasi-finite and separated morphism of
algebraic spaces is quasi-affine and therefore representable.

Lemma 67.51.1.0418 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally quasi-finite and separated, then f is representable.

Proof. This is immediate from Proposition 67.50.2 and the fact that being locally
quasi-finite and separated is preserved under any base change, see Lemmas 67.27.4
and 67.4.4. □

Lemma 67.51.2.05W5 Let S be a scheme. Let f : X → Y be an étale and universally
injective morphism of algebraic spaces over S. Then f is an open immersion.

Proof. Let T → Y be a morphism from a scheme into Y . If we can show that
X ×Y T → T is an open immersion, then we are done. Since being étale and
being universally injective are properties of morphisms stable under base change
(see Lemmas 67.39.4 and 67.19.5) we may assume that Y is a scheme. Note that
the diagonal ∆X/Y : X → X ×Y X is étale, a monomorphism, and surjective by
Lemma 67.19.2. Hence we see that ∆X/Y is an isomorphism (see Spaces, Lemma
65.5.9), in particular we see that X is separated over Y . It follows that X is a
scheme too, by Proposition 67.50.2. Finally, X → Y is an open immersion by
the fundamental theorem for étale morphisms of schemes, see Étale Morphisms,
Theorem 41.14.1. □

67.52. Zariski’s Main Theorem (representable case)

0ABQ This is the version you can prove using that normalization commutes with étale
localization. Before we can prove more powerful versions (for non-representable
morphisms) we need to develop more tools. See More on Morphisms of Spaces,
Section 76.34.

Lemma 67.52.1.0ABR Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is representable, of finite type, and separated. Let Y ′ be the
normalization of Y in X. Picture:

X

f   

f ′
// Y ′

ν
~~

Y

Then there exists an open subspace U ′ ⊂ Y ′ such that
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(1) (f ′)−1(U ′)→ U ′ is an isomorphism, and
(2) (f ′)−1(U ′) ⊂ X is the set of points at which f is quasi-finite.

Proof. Let W → Y be a surjective étale morphism where W is a scheme. Then
W ×Y X is a scheme as well. By Lemma 67.48.4 the algebraic space W ×Y Y ′ is
representable and is the normalization of the scheme W in the scheme W ×Y X.
Picture

W ×Y X

(1,f) $$

(1,f ′)
// W ×Y Y ′

(1,ν)zz
W

By More on Morphisms, Lemma 37.43.1 the result of the lemma holds over W . Let
V ′ ⊂W ×Y Y ′ be the open subscheme such that

(1) (1, f ′)−1(V ′)→ V ′ is an isomorphism, and
(2) (1, f ′)−1(V ′) ⊂W ×Y X is the set of points at which (1, f) is quasi-finite.

By Lemma 67.34.7 there is a maximal open set of points U ⊂ X where f is quasi-
finite and W×Y U = (1, f ′)−1(V ′). The morphism f ′|U : U → Y ′ is an open immer-
sion by Lemma 67.12.1 as its base change to W is the isomorphism (1, f ′)−1(V ′)→
V ′ followed by the open immersion V ′ → W ×Y Y ′. Setting U ′ = Im(U → Y ′)
finishes the proof (omitted: the verification that (f ′)−1(U ′) = U). □

In the following lemma we can drop the assumption of being representable as we’ve
shown that a locally quasi-finite separated morphism is representable.

Lemma 67.52.2.0ABS Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-finite and separated. Let Y ′ be the normalization
of Y in X. Picture:

X

f   

f ′
// Y ′

ν
~~

Y

Then f ′ is a quasi-compact open immersion and ν is integral. In particular f is
quasi-affine.

Proof. By Lemma 67.51.1 the morphism f is representable. Hence we may apply
Lemma 67.52.1. Thus there exists an open subspace U ′ ⊂ Y ′ such that (f ′)−1(U ′) =
X (!) and X → U ′ is an isomorphism! In other words, f ′ is an open immersion.
Note that f ′ is quasi-compact as f is quasi-compact and ν : Y ′ → Y is separated
(Lemma 67.8.9). Hence for every affine scheme Z and morphism Z → Y the fibre
product Z ×Y X is a quasi-compact open subscheme of the affine scheme Z ×Y Y ′.
Hence f is quasi-affine by definition. □

67.53. Universal homeomorphisms

05Z3 The class of universal homeomorphisms of schemes is closed under composition
and arbitrary base change and is fppf local on the base. See Morphisms, Lemmas
29.45.3 and 29.45.2 and Descent, Lemma 35.23.9. Thus, if we apply the discussion
in Section 67.3 to this notion we see that we know what it means for a representable
morphism of algebraic spaces to be a universal homeomorphism.

https://stacks.math.columbia.edu/tag/0ABS
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Lemma 67.53.1.05Z4 Let S be a scheme. Let f : X → Y be a representable morphism
of algebraic spaces over S. Then f is a universal homeomorphism (in the sense of
Section 67.3) if and only if for every morphism of algebraic spaces Z → Y the base
change map Z ×Y X → Z induces a homeomorphism |Z ×Y X| → |Z|.

Proof. If for every morphism of algebraic spaces Z → Y the base change map Z×Y
X → Z induces a homeomorphism |Z×Y X| → |Z|, then the same is true whenever
Z is a scheme, which formally implies that f is a universal homeomorphism in the
sense of Section 67.3. Conversely, if f is a universal homeomorphism in the sense of
Section 67.3 then X → Y is integral, universally injective and surjective (by Spaces,
Lemma 65.5.8 and Morphisms, Lemma 29.45.5). Hence f is universally closed, see
Lemma 67.45.7 and universally injective and (universally) surjective, i.e., f is a
universal homeomorphism. □

Definition 67.53.2.05Z5 Let S be a scheme. A morphism f : X → Y of algebraic spaces
over S is called a universal homeomorphism if and only if for every morphism of
algebraic spaces Z → Y the base change Z ×Y X → Z induces a homeomorphism
|Z ×Y X| → |Z|.

This definition does not clash with the pre-existing definition for representable
morphisms of algebraic spaces by our Lemma 67.53.1. For morphisms of algebraic
spaces it is not the case that universal homeomorphisms are always integral.

Example 67.53.3.05Z6 This is a continuation of Remark 67.19.4. Consider the algebraic
space X = A1

k/{x ∼ −x | x ̸= 0}. There are morphisms
A1
k −→ X −→ A1

k

such that the first arrow is étale surjective, the second arrow is universally injective,
and the composition is the map x 7→ x2. Hence the composition is universally
closed. Thus it follows that the map X → A1

k is a universal homeomorphism, but
X → A1

k is not separated.

Let S be a scheme. Let f : X → Y be a universal homeomorphism of alge-
braic spaces over S. Then f is universally closed, hence is quasi-compact, see
Lemma 67.9.7. But f need not be separated (see example above), and not even
quasi-separated: an example is to take infinite dimensional affine space A∞ =
Spec(k[x1, x2, . . .]) modulo the equivalence relation given by flipping finitely many
signs of nonzero coordinates (details omitted).
First we state the obligatory lemmas.

Lemma 67.53.4.0CFT The base change of a universal homeomorphism of algebraic spaces
by any morphism of algebraic spaces is a universal homeomorphism.

Proof. This is immediate from the definition. □

Lemma 67.53.5.0CFU The composition of a pair of universal homeomorphisms of alge-
braic spaces is a universal homeomorphism.

Proof. Omitted. □

Lemma 67.53.6.08AK Let S be a scheme. Let X be an algebraic space over S. The
canonical closed immersion Xred → X (see Properties of Spaces, Definition 66.12.5)
is a universal homeomorphism.

https://stacks.math.columbia.edu/tag/05Z4
https://stacks.math.columbia.edu/tag/05Z5
https://stacks.math.columbia.edu/tag/05Z6
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https://stacks.math.columbia.edu/tag/08AK
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Proof. Omitted. □

We put the following result here as we do not currently have a better place to put
it.

Lemma 67.53.7.0AEH Let S be a scheme. Let f : Y → X be a universally injective,
integral morphism of algebraic spaces over S.

(1) The functor
fsmall,∗ : Sh(Yétale) −→ Sh(Xétale)

is fully faithful and its essential image is those sheaves of sets F on Xétale

whose restriction to |X| \ f(|Y |) is isomorphic to ∗, and
(2) the functor

fsmall,∗ : Ab(Yétale) −→ Ab(Xétale)
is fully faithful and its essential image is those abelian sheaves on Yétale
whose support is contained in f(|Y |).

In both cases f−1
small is a left inverse to the functor fsmall,∗.

Proof. Since f is integral it is universally closed (Lemma 67.45.7). In particular,
f(|Y |) is a closed subset of |X| and the statements make sense. The rest of the proof
is identical to the proof of Lemma 67.13.5 except that we use Étale Cohomology,
Proposition 59.47.1 instead of Étale Cohomology, Proposition 59.46.4. □
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CHAPTER 68

Decent Algebraic Spaces

06NK 68.1. Introduction

06NL In this chapter we study “local” properties of general algebraic spaces, i.e., those
algebraic spaces which aren’t quasi-separated. Quasi-separated algebraic spaces are
studied in [Knu71]. It turns out that essentially new phenomena happen, especially
regarding points and specializations of points, on more general algebraic spaces.
On the other hand, for most basic results on algebraic spaces, one needn’t worry
about these phenomena, which is why we have decided to have this material in a
separate chapter following the standard development of the theory.

68.2. Conventions

06NM The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

68.3. Universally bounded fibres

03JK We briefly discuss what it means for a morphism from a scheme to an algebraic
space to have universally bounded fibres. Please refer to Morphisms, Section 29.57
for similar definitions and results on morphisms of schemes.

Definition 68.3.1.03JL Let S be a scheme. Let X be an algebraic space over S, and let
U be a scheme over S. Let f : U → X be a morphism over S. We say the fibres
of f are universally bounded1 if there exists an integer n such that for all fields k
and all morphisms Spec(k)→ X the fibre product Spec(k)×X U is a finite scheme
over k whose degree over k is ≤ n.

This definition makes sense because the fibre product Spec(k) ×Y X is a scheme.
Moreover, if Y is a scheme we recover the notion of Morphisms, Definition 29.57.1
by virtue of Morphisms, Lemma 29.57.2.

Lemma 68.3.2.03JM Let S be a scheme. Let X be an algebraic space over S. Let V → U
be a morphism of schemes over S, and let U → X be a morphism from U to X. If
the fibres of V → U and U → X are universally bounded, then so are the fibres of
V → X.

1This is probably nonstandard notation.

5414
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Proof. Let n be an integer which works for V → U , and let m be an integer which
works for U → X in Definition 68.3.1. Let Spec(k) → X be a morphism, where k
is a field. Consider the morphisms

Spec(k)×X V −→ Spec(k)×X U −→ Spec(k).
By assumption the scheme Spec(k)×X U is finite of degree at most m over k, and
n is an integer which bounds the degree of the fibres of the first morphism. Hence
by Morphisms, Lemma 29.57.4 we conclude that Spec(k) ×X V is finite over k of
degree at most nm. □

Lemma 68.3.3.03JN Let S be a scheme. Let Y → X be a representable morphism of
algebraic spaces over S. Let U → X be a morphism from a scheme to X. If the
fibres of U → X are universally bounded, then the fibres of U ×X Y → Y are
universally bounded.

Proof. This is clear from the definition, and properties of fibre products. (Note
that U ×X Y is a scheme as we assumed Y → X representable, so the definition
applies.) □

Lemma 68.3.4.03JO Let S be a scheme. Let g : Y → X be a representable morphism
of algebraic spaces over S. Let f : U → X be a morphism from a scheme towards
X. Let f ′ : U ×X Y → Y be the base change of f . If

Im(|f | : |U | → |X|) ⊂ Im(|g| : |Y | → |X|)
and f ′ has universally bounded fibres, then f has universally bounded fibres.

Proof. Let n ≥ 0 be an integer bounding the degrees of the fibre products Spec(k)×Y
(U ×X Y ) as in Definition 68.3.1 for the morphism f ′. We claim that n works for f
also. Namely, suppose that x : Spec(k)→ X is a morphism from the spectrum of a
field. Then either Spec(k)×X U is empty (and there is nothing to prove), or x is in
the image of |f |. By Properties of Spaces, Lemma 66.4.3 and the assumption of the
lemma we see that this means there exists a field extension k′/k and a commutative
diagram

Spec(k′) //

��

Y

��
Spec(k) // X

Hence we see that
Spec(k′)×Y (U ×X Y ) = Spec(k′)×Spec(k) (Spec(k)×X U)

Since the scheme Spec(k′) ×Y (U ×X Y ) is assumed finite of degree ≤ n over k′

it follows that also Spec(k) ×X U is finite of degree ≤ n over k as desired. (Some
details omitted.) □

Lemma 68.3.5.03JP Let S be a scheme. Let X be an algebraic space over S. Consider
a commutative diagram

U

g   

f
// V

h~~
X

https://stacks.math.columbia.edu/tag/03JN
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where U and V are schemes. If g has universally bounded fibres, and f is surjective
and flat, then also h has universally bounded fibres.

Proof. Assume g has universally bounded fibres, and f is surjective and flat. Say
n ≥ 0 is an integer which bounds the degrees of the schemes Spec(k) ×X U as in
Definition 68.3.1. We claim n also works for h. Let Spec(k) → X be a morphism
from the spectrum of a field to X. Consider the morphism of schemes

Spec(k)×X V −→ Spec(k)×X U

It is flat and surjective. By assumption the scheme on the left is finite of degree
≤ n over Spec(k). It follows from Morphisms, Lemma 29.57.10 that the degree of
the scheme on the right is also bounded by n as desired. □

Lemma 68.3.6.03JQ Let S be a scheme. Let X be an algebraic space over S, and let
U be a scheme over S. Let φ : U → X be a morphism over S. If the fibres of
φ are universally bounded, then there exists an integer n such that each fibre of
|U | → |X| has at most n elements.

Proof. The integer n of Definition 68.3.1 works. Namely, pick x ∈ |X|. Represent
x by a morphism x : Spec(k)→ X. Then we get a commutative diagram

Spec(k)×X U //

��

U

��
Spec(k) x // X

which shows (via Properties of Spaces, Lemma 66.4.3) that the inverse image of
x in |U | is the image of the top horizontal arrow. Since Spec(k) ×X U is finite of
degree ≤ n over k it has at most n points. □

68.4. Finiteness conditions and points

03JR In this section we elaborate on the question of when points can be represented by
monomorphisms from spectra of fields into the space.

Remark 68.4.1.03II Before we give the proof of the next lemma let us recall some facts
about étale morphisms of schemes:

(1) An étale morphism is flat and hence generalizations lift along an étale
morphism (Morphisms, Lemmas 29.36.12 and 29.25.9).

(2) An étale morphism is unramified, an unramified morphism is locally quasi-
finite, hence fibres are discrete (Morphisms, Lemmas 29.36.16, 29.35.10,
and 29.20.6).

(3) A quasi-compact étale morphism is quasi-finite and in particular has finite
fibres (Morphisms, Lemmas 29.20.9 and 29.20.10).

(4) An étale scheme over a field k is a disjoint union of spectra of finite
separable field extension of k (Morphisms, Lemma 29.36.7).

For a general discussion of étale morphisms, please see Étale Morphisms, Section
41.11.

Lemma 68.4.2.03JS Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. The following are equivalent:

https://stacks.math.columbia.edu/tag/03JQ
https://stacks.math.columbia.edu/tag/03II
https://stacks.math.columbia.edu/tag/03JS
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(1) there exists a family of schemes Ui and étale morphisms φi : Ui → X such
that

∐
φi :

∐
Ui → X is surjective, and such that for each i the fibre of

|Ui| → |X| over x is finite, and
(2) for every affine scheme U and étale morphism φ : U → X the fibre of
|U | → |X| over x is finite.

Proof. The implication (2) ⇒ (1) is trivial. Let φi : Ui → X be a family of étale
morphisms as in (1). Let φ : U → X be an étale morphism from an affine scheme
towards X. Consider the fibre product diagrams

U ×X Ui pi
//

qi

��

Ui

φi

��
U

φ // X

∐
U ×X Ui ∐

pi

//∐
qi

��

∐
Ui∐

φi

��
U

φ // X

Since qi is étale it is open (see Remark 68.4.1). Moreover, the morphism
∐
qi is

surjective. Hence there exist finitely many indices i1, . . . , in and a quasi-compact
opens Wij ⊂ U ×X Uij which surject onto U . The morphism pi is étale, hence
locally quasi-finite (see remark on étale morphisms above). Thus we may apply
Morphisms, Lemma 29.57.9 to see the fibres of pij |Wij

: Wij → Ui are finite. Hence
by Properties of Spaces, Lemma 66.4.3 and the assumption on φi we conclude that
the fibre of φ over x is finite. In other words (2) holds. □

Lemma 68.4.3.03JU Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. The following are equivalent:

(1) there exists a scheme U , an étale morphism φ : U → X, and points
u, u′ ∈ U mapping to x such that setting R = U ×X U the fibre of

|R| → |U | ×|X| |U |

over (u, u′) is finite,
(2) for every scheme U , étale morphism φ : U → X and any points u, u′ ∈ U

mapping to x setting R = U ×X U the fibre of

|R| → |U | ×|X| |U |

over (u, u′) is finite,
(3) there exists a morphism Spec(k) → X with k a field in the equivalence

class of x such that the projections Spec(k) ×X Spec(k) → Spec(k) are
étale and quasi-compact, and

(4) there exists a monomorphism Spec(k) → X with k a field in the equiva-
lence class of x.

Proof. Assume (1), i.e., let φ : U → X be an étale morphism from a scheme towards
X, and let u, u′ be points of U lying over x such that the fibre of |R| → |U |×|X| |U |
over (u, u′) is a finite set. In this proof we think of a point u = Spec(κ(u)) as a
scheme. Note that u → U , u′ → U are monomorphisms (see Schemes, Lemma
26.23.7), hence u×X u′ → R = U ×X U is a monomorphism. In this language the
assumption really means that u ×X u′ is a scheme whose underlying topological
space has finitely many points. Let ψ : W → X be an étale morphism from a
scheme towards X. Let w,w′ ∈W be points of W mapping to x. We have to show

https://stacks.math.columbia.edu/tag/03JU
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that w ×X w′ is a scheme whose underlying topological space has finitely many
points. Consider the fibre product diagram

W ×X U
p

//

q

��

U

φ

��
W

ψ // X

As x is the image of u and u′ we may pick points w̃, w̃′ in W ×X U with q(w̃) = w,
q(w̃′) = w′, u = p(w̃) and u′ = p(w̃′), see Properties of Spaces, Lemma 66.4.3. As
p, q are étale the field extensions κ(w) ⊂ κ(w̃) ⊃ κ(u) and κ(w′) ⊂ κ(w̃′) ⊃ κ(u′)
are finite separable, see Remark 68.4.1. Then we get a commutative diagram

w ×X w′

��

w̃ ×X w̃′oo

��

// u×X u′

��
w ×X w′ w̃ ×S w̃′oo // u×S u′

where the squares are fibre product squares. The lower horizontal morphisms are
étale and quasi-compact, as any scheme of the form Spec(k) ×S Spec(k′) is affine,
and by our observations about the field extensions above. Thus we see that the
top horizontal arrows are étale and quasi-compact and hence have finite fibres. We
have seen above that |u×X u′| is finite, so we conclude that |w ×X w′| is finite. In
other words, (2) holds.
Assume (2). Let U → X be an étale morphism from a scheme U such that x is in
the image of |U | → |X|. Let u ∈ U be a point mapping to x. Then we have seen
in the previous paragraph that u = Spec(κ(u))→ X has the property that u×X u
has a finite underlying topological space. On the other hand, the projection maps
u×X u→ u are the composition

u×X u −→ u×X U −→ u×X X = u,

i.e., the composition of a monomorphism (the base change of the monomorphism
u → U) by an étale morphism (the base change of the étale morphism U → X).
Hence u×X U is a disjoint union of spectra of fields finite separable over κ(u) (see
Remark 68.4.1). Since u×X u is finite the image of it in u×X U is a finite disjoint
union of spectra of fields finite separable over κ(u). By Schemes, Lemma 26.23.11
we conclude that u×X u is a finite disjoint union of spectra of fields finite separable
over κ(u). In other words, we see that u ×X u → u is quasi-compact and étale.
This means that (3) holds.
Let us prove that (3) implies (4). Let Spec(k) → X be a morphism from the
spectrum of a field into X, in the equivalence class of x such that the two projections
t, s : R = Spec(k)×X Spec(k)→ Spec(k) are quasi-compact and étale. This means
in particular that R is an étale equivalence relation on Spec(k). By Spaces, Theorem
65.10.5 we know that the quotient sheaf X ′ = Spec(k)/R is an algebraic space. By
Groupoids, Lemma 39.20.6 the map X ′ → X is a monomorphism. Since s, t are
quasi-compact, we see that R is quasi-compact and hence Properties of Spaces,
Lemma 66.15.3 applies to X ′, and we see that X ′ = Spec(k′) for some field k′.
Hence we get a factorization

Spec(k) −→ Spec(k′) −→ X
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which shows that Spec(k′)→ X is a monomorphism mapping to x ∈ |X|. In other
words (4) holds.
Finally, we prove that (4) implies (1). Let Spec(k)→ X be a monomorphism with k
a field in the equivalence class of x. Let U → X be a surjective étale morphism from
a scheme U to X. Let u ∈ U be a point over x. Since Spec(k) ×X u is nonempty,
and since Spec(k)×X u→ u is a monomorphism we conclude that Spec(k)×X u = u
(see Schemes, Lemma 26.23.11). Hence u→ U → X factors through Spec(k)→ X,
here is a picture

u //

��

U

��
Spec(k) // X

Since the right vertical arrow is étale this implies that κ(u)/k is a finite separable
extension. Hence we conclude that

u×X u = u×Spec(k) u

is a finite scheme, and we win by the discussion of the meaning of property (1) in
the first paragraph of this proof. □

Lemma 68.4.4.040U Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. Let U be a scheme and let φ : U → X be an étale morphism. The
following are equivalent:

(1) x is in the image of |U | → |X|, and setting R = U ×X U the fibres of both
|U | −→ |X| and |R| −→ |X|

over x are finite,
(2) there exists a monomorphism Spec(k) → X with k a field in the equiva-

lence class of x, and the fibre product Spec(k)×X U is a finite nonempty
scheme over k.

Proof. Assume (1). This clearly implies the first condition of Lemma 68.4.3 and
hence we obtain a monomorphism Spec(k)→ X in the class of x. Taking the fibre
product we see that Spec(k)×X U → Spec(k) is a scheme étale over Spec(k) with
finitely many points, hence a finite nonempty scheme over k, i.e., (2) holds.
Assume (2). By assumption x is in the image of |U | → |X|. The finiteness of the
fibre of |U | → |X| over x is clear since this fibre is equal to |Spec(k) ×X U | by
Properties of Spaces, Lemma 66.4.3. The finiteness of the fibre of |R| → |X| above
x is also clear since it is equal to the set underlying the scheme

(Spec(k)×X U)×Spec(k) (Spec(k)×X U)
which is finite over k. Thus (1) holds. □

Lemma 68.4.5.03JV Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. The following are equivalent:

(1) for every affine scheme U , any étale morphism φ : U → X setting R =
U ×X U the fibres of both

|U | −→ |X| and |R| −→ |X|
over x are finite,

https://stacks.math.columbia.edu/tag/040U
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(2) there exist schemes Ui and étale morphisms Ui → X such that
∐
Ui → X

is surjective and for each i, setting Ri = Ui ×X Ui the fibres of both
|Ui| −→ |X| and |Ri| −→ |X|

over x are finite,
(3) there exists a monomorphism Spec(k) → X with k a field in the equiva-

lence class of x, and for any affine scheme U and étale morphism U → X
the fibre product Spec(k)×X U is a finite scheme over k,

(4) there exists a quasi-compact monomorphism Spec(k)→ X with k a field
in the equivalence class of x,

(5) there exists a quasi-compact morphism Spec(k)→ X with k a field in the
equivalence class of x, and

(6) every morphism Spec(k)→ X with k a field in the equivalence class of x
is quasi-compact.

Proof. The equivalence of (1) and (3) follows on applying Lemma 68.4.4 to every
étale morphism U → X with U affine. It is clear that (3) implies (2). Assume
Ui → X and Ri are as in (2). We conclude from Lemma 68.4.2 that for any affine
scheme U and étale morphism U → X the fibre of |U | → |X| over x is finite.
Say this fibre is {u1, . . . , un}. Then, as Lemma 68.4.3 (1) applies to Ui → X
for some i such that x is in the image of |Ui| → |X|, we see that the fibre of
|R = U ×X U | → |U | ×|X| |U | is finite over (ua, ub), a, b ∈ {1, . . . , n}. Hence the
fibre of |R| → |X| over x is finite. In this way we see that (1) holds. At this point
we know that (1), (2), and (3) are equivalent.
If (4) holds, then for any affine scheme U and étale morphism U → X the scheme
Spec(k) ×X U is on the one hand étale over k (hence a disjoint union of spectra
of finite separable extensions of k by Remark 68.4.1) and on the other hand quasi-
compact over U (hence quasi-compact). Thus we see that (3) holds. Conversely, if
Ui → X is as in (2) and Spec(k)→ X is a monomorphism as in (3), then∐

Spec(k)×X Ui −→
∐

Ui

is quasi-compact (because over each Ui we see that Spec(k)×X Ui is a finite disjoint
union spectra of fields). Thus Spec(k) → X is quasi-compact by Morphisms of
Spaces, Lemma 67.8.8.
It is immediate that (4) implies (5). Conversely, let Spec(k) → X be a quasi-
compact morphism in the equivalence class of x. Let U → X be an étale morphism
with U affine. Consider the fibre product

F //

��

U

��
Spec(k) // X

Then F → U is quasi-compact, hence F is quasi-compact. On the other hand,
F → Spec(k) is étale, hence F is a finite disjoint union of spectra of finite separable
extensions of k (Remark 68.4.1). Since the image of |F | → |U | is the fibre of
|U | → |X| over x (Properties of Spaces, Lemma 66.4.3), we conclude that the fibre
of |U | → |X| over x is finite. The scheme F ×Spec(k) F is also a finite union of
spectra of fields because it is also quasi-compact and étale over Spec(k). There is
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a monomorphism F ×X F → F ×Spec(k) F , hence F ×X F is a finite disjoint union
of spectra of fields (Schemes, Lemma 26.23.11). Thus the image of F ×X F →
U ×X U = R is finite. Since this image is the fibre of |R| → |X| over x by
Properties of Spaces, Lemma 66.4.3 we conclude that (1) holds. At this point we
know that (1) – (5) are equivalent.

It is clear that (6) implies (5). Conversly, assume Spec(k)→ X is as in (4) and let
Spec(k′)→ X be another morphism with k′ a field in the equivalence class of x. By
Properties of Spaces, Lemma 66.4.11 we have a factorization Spec(k′)→ Spec(k)→
X of the given morphism. This is a composition of quasi-compact morphisms and
hence quasi-compact (Morphisms of Spaces, Lemma 67.8.5) as desired. □

Lemma 68.4.6.03JT Let S be a scheme. Let X be an algebraic space over S. The
following are equivalent:

(1) there exist schemes Ui and étale morphisms Ui → X such that
∐
Ui → X

is surjective and each Ui → X has universally bounded fibres, and
(2) for every affine scheme U and étale morphism φ : U → X the fibres of

U → X are universally bounded.

Proof. The implication (2)⇒ (1) is trivial. Assume (1). Let (φi : Ui → X)i∈I be a
collection of étale morphisms from schemes towards X, covering X, such that each
φi has universally bounded fibres. Let ψ : U → X be an étale morphism from an
affine scheme towards X. For each i consider the fibre product diagram

U ×X Ui pi
//

qi

��

Ui

φi

��
U

ψ // X

Since qi is étale it is open (see Remark 68.4.1). Moreover, we have U =
⋃

Im(qi),
since the family (φi)i∈I is surjective. Since U is affine, hence quasi-compact we
can finite finitely many i1, . . . , in ∈ I and quasi-compact opens Wj ⊂ U ×X Uij
such that U =

⋃
pij (Wj). The morphism pij is étale, hence locally quasi-finite

(see remark on étale morphisms above). Thus we may apply Morphisms, Lemma
29.57.9 to see the fibres of pij |Wj : Wj → Uij are universally bounded. Hence by
Lemma 68.3.2 we see that the fibres of Wj → X are universally bounded. Thus
also

∐
j=1,...,nWj → X has universally bounded fibres. Since

∐
j=1,...,nWj → X

factors through the surjective étale map
∐
qij |Wj

:
∐
j=1,...,nWj → U we see that

the fibres of U → X are universally bounded by Lemma 68.3.5. In other words (2)
holds. □

Lemma 68.4.7.03IH Let S be a scheme. Let X be an algebraic space over S. The
following are equivalent:

(1) there exists a Zariski covering X =
⋃
Xi and for each i a scheme Ui and

a quasi-compact surjective étale morphism Ui → Xi, and
(2) there exist schemes Ui and étale morphisms Ui → X such that the pro-

jections Ui ×X Ui → Ui are quasi-compact and
∐
Ui → X is surjective.

Proof. If (1) holds then the morphisms Ui → Xi → X are étale (combine Mor-
phisms, Lemma 29.36.3 and Spaces, Lemmas 65.5.4 and 65.5.3 ). Moreover, as
Ui ×X Ui = Ui ×Xi Ui, both projections Ui ×X Ui → Ui are quasi-compact.

https://stacks.math.columbia.edu/tag/03JT
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If (2) holds then let Xi ⊂ X be the open subspace corresponding to the image of the
open map |Ui| → |X|, see Properties of Spaces, Lemma 66.4.10. The morphisms
Ui → Xi are surjective. Hence Ui → Xi is surjective étale, and the projections
Ui×Xi Ui → Ui are quasi-compact, because Ui×Xi Ui = Ui×X Ui. Thus by Spaces,
Lemma 65.11.4 the morphisms Ui → Xi are quasi-compact. □

68.5. Conditions on algebraic spaces

03JW In this section we discuss the relationship between various natural conditions on
algebraic spaces we have seen above. Please read Section 68.6 to get a feeling for
the meaning of these conditions.

Lemma 68.5.1.03JX Let S be a scheme. Let X be an algebraic space over S. Consider
the following conditions on X:

(α) For every x ∈ |X|, the equivalent conditions of Lemma 68.4.2 hold.
(β) For every x ∈ |X|, the equivalent conditions of Lemma 68.4.3 hold.
(γ) For every x ∈ |X|, the equivalent conditions of Lemma 68.4.5 hold.
(δ) The equivalent conditions of Lemma 68.4.6 hold.
(ϵ) The equivalent conditions of Lemma 68.4.7 hold.
(ζ) The space X is Zariski locally quasi-separated.
(η) The space X is quasi-separated
(θ) The space X is representable, i.e., X is a scheme.
(ι) The space X is a quasi-separated scheme.

We have

(θ)

�$
(ι)

:B

�$

(ζ) +3 (ϵ) +3 (δ) +3 (γ) ks +3 (α) + (β)

(η)

:B

Proof. The implication (γ) ⇔ (α) + (β) is immediate. The implications in the
diamond on the left are clear from the definitions.

Assume (ζ), i.e., that X is Zariski locally quasi-separated. Then (ϵ) holds by
Properties of Spaces, Lemma 66.6.6.

Assume (ϵ). By Lemma 68.4.7 there exists a Zariski open covering X =
⋃
Xi

such that for each i there exists a scheme Ui and a quasi-compact surjective étale
morphism Ui → Xi. Choose an i and an affine open subscheme W ⊂ Ui. It suffices
to show that W → X has universally bounded fibres, since then the family of all
these morphisms W → X covers X. To do this we consider the diagram

W ×X Ui p
//

q

��

Ui

��
W // X

https://stacks.math.columbia.edu/tag/03JX
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Since W → X factors through Xi we see that W ×X Ui = W ×Xi Ui, and hence q
is quasi-compact. Since W is affine this implies that the scheme W ×X Ui is quasi-
compact. Thus we may apply Morphisms, Lemma 29.57.9 and we conclude that p
has universally bounded fibres. From Lemma 68.3.4 we conclude that W → X has
universally bounded fibres as well.
Assume (δ). Let U be an affine scheme, and let U → X be an étale morphism.
By assumption the fibres of the morphism U → X are universally bounded. Thus
also the fibres of both projections R = U ×X U → U are universally bounded, see
Lemma 68.3.3. And by Lemma 68.3.2 also the fibres of R → X are universally
bounded. Hence for any x ∈ X the fibres of |U | → |X| and |R| → |X| over x
are finite, see Lemma 68.3.6. In other words, the equivalent conditions of Lemma
68.4.5 hold. This proves that (δ)⇒ (γ). □

Lemma 68.5.2.03KE Let S be a scheme. Let P be one of the properties (α), (β), (γ),
(δ), (ϵ), (ζ), or (θ) of algebraic spaces listed in Lemma 68.5.1. Then if X is an
algebraic space over S, and X =

⋃
Xi is a Zariski open covering such that each Xi

has P, then X has P.
Proof. Let X be an algebraic space over S, and let X =

⋃
Xi is a Zariski open

covering such that each Xi has P.
The case P = (α). The condition (α) for Xi means that for every x ∈ |Xi| and
every affine scheme U , and étale morphism φ : U → Xi the fibre of φ : |U | → |Xi|
over x is finite. Consider x ∈ X, an affine scheme U and an étale morphism U → X.
Since X =

⋃
Xi is a Zariski open covering there exits a finite affine open covering

U = U1∪ . . .∪Un such that each Uj → X factors through some Xij . By assumption
the fibres of |Uj | → |Xij | over x are finite for j = 1, . . . , n. Clearly this means that
the fibre of |U | → |X| over x is finite. This proves the result for (α).
The case P = (β). The condition (β) forXi means that every x ∈ |Xi| is represented
by a monomorphism from the spectrum of a field towards Xi. Hence the same
follows for X as Xi → X is a monomorphism and X =

⋃
Xi.

The case P = (γ). Note that (γ) = (α) + (β) by Lemma 68.5.1 hence the lemma
for (γ) follows from the cases treated above.
The case P = (δ). The condition (δ) for Xi means there exist schemes Uij and
étale morphisms Uij → Xi with universally bounded fibres which cover Xi. These
schemes also give an étale surjective morphism

∐
Uij → X and Uij → X still has

universally bounded fibres.
The case P = (ϵ). The condition (ϵ) for Xi means we can find a set Ji and
morphisms φij : Uij → Xi such that each φij is étale, both projections Uij ×Xi
Uij → Uij are quasi-compact, and

∐
j∈Ji Uij → Xi is surjective. In this case the

compositions Uij → Xi → X are étale (combine Morphisms, Lemmas 29.36.3 and
29.36.9 and Spaces, Lemmas 65.5.4 and 65.5.3 ). Since Xi ⊂ X is a subspace we
see that Uij ×Xi Uij = Uij ×X Uij , and hence the condition on fibre products is
preserved. And clearly

∐
i,j Uij → X is surjective. Hence X satisfies (ϵ).

The case P = (ζ). The condition (ζ) for Xi means that Xi is Zariski locally
quasi-separated. It is immediately clear that this means X is Zariski locally quasi-
separated.
For (θ), see Properties of Spaces, Lemma 66.13.1. □

https://stacks.math.columbia.edu/tag/03KE
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Lemma 68.5.3.03KF Let S be a scheme. Let P be one of the properties (β), (γ), (δ),
(ϵ), or (θ) of algebraic spaces listed in Lemma 68.5.1. Let X, Y be algebraic spaces
over S. Let X → Y be a representable morphism. If Y has property P, so does X.

Proof. Assume f : X → Y is a representable morphism of algebraic spaces, and
assume that Y has P. Let x ∈ |X|, and set y = f(x) ∈ |Y |.

The case P = (β). Condition (β) for Y means there exists a monomorphism
Spec(k) → Y representing y. The fibre product Xy = Spec(k) ×Y X is a scheme,
and x corresponds to a point of Xy, i.e., to a monomorphism Spec(k′) → Xy. As
Xy → X is a monomorphism also we see that x is represented by the monomorphism
Spec(k′)→ Xy → X. In other words (β) holds for X.

The case P = (γ). Since (γ) ⇒ (β) we have seen in the preceding paragraph that
y and x can be represented by monomorphisms as in the following diagram

Spec(k′)
x
//

��

X

��
Spec(k) y // Y

Also, by definition of property (γ) via Lemma 68.4.5 (2) there exist schemes Vi and
étale morphisms Vi → Y such that

∐
Vi → Y is surjective and for each i, setting

Ri = Vi ×Y Vi the fibres of both

|Vi| −→ |Y | and |Ri| −→ |Y |

over y are finite. This means that the schemes (Vi)y and (Ri)y are finite schemes
over y = Spec(k). As X → Y is representable, the fibre products Ui = Vi×Y X are
schemes. The morphisms Ui → X are étale, and

∐
Ui → X is surjective. Finally,

for each i we have

(Ui)x = (Vi ×Y X)x = (Vi)y ×Spec(k) Spec(k′)

and

(Ui ×X Ui)x = ((Vi ×Y X)×X (Vi ×Y X))x = (Ri)y ×Spec(k) Spec(k′)

hence these are finite over k′ as base changes of the finite schemes (Vi)y and (Ri)y.
This implies that (γ) holds for X, again via the second condition of Lemma 68.4.5.

The case P = (δ). Let V → Y be an étale morphism with V an affine scheme.
Since Y has property (δ) this morphism has universally bounded fibres. By Lemma
68.3.3 the base change V ×Y X → X also has universally bounded fibres. Hence
the first part of Lemma 68.4.6 applies and we see that Y also has property (δ).

The case P = (ϵ). We will repeatedly use Spaces, Lemma 65.5.5. Let Vi → Y be
as in Lemma 68.4.7 (2). Set Ui = X ×Y Vi. The morphisms Ui → X are étale,
and

∐
Ui → X is surjective. Because Ui ×X Ui = X ×Y (Vi ×Y Vi) we see that the

projections Ui ×Y Ui → Ui are base changes of the projections Vi ×Y Vi → Vi, and
so quasi-compact as well. Hence X satisfies Lemma 68.4.7 (2).

The case P = (θ). In this case the result is Categories, Lemma 4.8.3. □

https://stacks.math.columbia.edu/tag/03KF
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68.6. Reasonable and decent algebraic spaces

03I7 In Lemma 68.5.1 we have seen a number of conditions on algebraic spaces related
to the behaviour of étale morphisms from affine schemes into X and related to
the existence of special étale coverings of X by schemes. We tabulate the different
types of conditions here:

(α) fibres of étale morphisms from affines are finite
(β) points come from monomorphisms of spectra of fields
(γ) points come from quasi-compact monomorphisms of spectra of fields
(δ) fibres of étale morphisms from affines are universally bounded
(ϵ) cover by étale morphisms from schemes quasi-compact onto their image

The conditions in the following definition are not exactly conditions on the diagonal
of X, but they are in some sense separation conditions on X.

Definition 68.6.1.03I8 Let S be a scheme. Let X be an algebraic space over S.
(1) We say X is decent if for every point x ∈ X the equivalent conditions of

Lemma 68.4.5 hold, in other words property (γ) of Lemma 68.5.1 holds.
(2) We say X is reasonable if the equivalent conditions of Lemma 68.4.6 hold,

in other words property (δ) of Lemma 68.5.1 holds.
(3) We say X is very reasonable if the equivalent conditions of Lemma 68.4.7

hold, i.e., property (ϵ) of Lemma 68.5.1 holds.

We have the following implications among these conditions on algebraic spaces:

representable

%-
very reasonable +3 reasonable +3 decent

quasi-separated

19

The notion of a very reasonable algebraic space is obsolete. It was introduced
because the assumption was needed to prove some results which are now proven for
the class of decent spaces. The class of decent spaces is the largest class of spaces
X where one has a good relationship between the topology of |X| and properties
of X itself.

Example 68.6.2.03ID The algebraic space A1
Q/Z constructed in Spaces, Example 65.14.8

is not decent as its “generic point” cannot be represented by a monomorphism from
the spectrum of a field.

Remark 68.6.3.03JY Reasonable algebraic spaces are technically easier to work with
than very reasonable algebraic spaces. For example, if X → Y is a quasi-compact
étale surjective morphism of algebraic spaces and X is reasonable, then so is Y , see
Lemma 68.17.8 but we don’t know if this is true for the property “very reasonable”.
Below we give another technical property enjoyed by reasonable algebraic spaces.

Lemma 68.6.4.03K0 Let S be a scheme. Let X be a quasi-compact reasonable algebraic
space. Then there exists a directed system of quasi-compact and quasi-separated

https://stacks.math.columbia.edu/tag/03I8
https://stacks.math.columbia.edu/tag/03ID
https://stacks.math.columbia.edu/tag/03JY
https://stacks.math.columbia.edu/tag/03K0
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algebraic spaces Xi such that X = colimiXi (colimit in the category of sheaves).
Moreover we can arrange it such that

(1) for every quasi-compact scheme T over S we have colimXi(T ) = X(T ),
(2) the transition morphisms Xi → Xi′ of the system and the coprojections

Xi → X are surjective and étale, and
(3) if X is a scheme, then the algebraic spaces Xi are schemes and the tran-

sition morphisms Xi → Xi′ and the coprojections Xi → X are local
isomorphisms.

Proof. We sketch the proof. By Properties of Spaces, Lemma 66.6.3 we have X =
U/R with U affine. In this case, reasonable means U → X is universally bounded.
Hence there exists an integer N such that the “fibres” of U → X have degree at
most N , see Definition 68.3.1. Denote s, t : R → U and c : R ×s,U,t R → R the
groupoid structural maps.
Claim: for every quasi-compact open A ⊂ R there exists an open R′ ⊂ R such that

(1) A ⊂ R′,
(2) R′ is quasi-compact, and
(3) (U,R′, s|R′ , t|R′ , c|R′×s,U,tR′) is a groupoid scheme.

Note that e : U → R is open as it is a section of the étale morphism s : R→ U , see
Étale Morphisms, Proposition 41.6.1. Moreover U is affine hence quasi-compact.
Hence we may replace A by A∪e(U) ⊂ R, and assume that A contains e(U). Next,
we define inductively A1 = A, and

An = c(An−1 ×s,U,t A) ⊂ R
for n ≥ 2. Arguing inductively, we see that An is quasi-compact for all n ≥ 2, as
the image of the quasi-compact fibre product An−1×s,U,tA. If k is an algebraically
closed field over S, and we consider k-points then

An(k) =
{

(u, u′) ∈ U(k) : there exist u = u1, u2, . . . , un ∈ U(k) with
(ui, ui+1) ∈ A for all i = 1, . . . , n− 1.

}
But as the fibres of U(k) → X(k) have size at most N we see that if n >
N then we get a repeat in the sequence above, and we can shorten it proving
AN = An for all n ≥ N . This implies that R′ = AN gives a groupoid scheme
(U,R′, s|R′ , t|R′ , c|R′×s,U,tR′), proving the claim above.
Consider the map of sheaves on (Sch/S)fppf

colimR′⊂R U/R
′ −→ U/R

where R′ ⊂ R runs over the quasi-compact open subschemes of R which give étale
equivalence relations as above. Each of the quotients U/R′ is an algebraic space (see
Spaces, Theorem 65.10.5). Since R′ is quasi-compact, and U affine the morphism
R′ → U ×Spec(Z) U is quasi-compact, and hence U/R′ is quasi-separated. Finally,
if T is a quasi-compact scheme, then

colimR′⊂R U(T )/R′(T ) −→ U(T )/R(T )
is a bijection, since every morphism from T into R ends up in one of the open
subrelations R′ by the claim above. This clearly implies that the colimit of the
sheaves U/R′ is U/R. In other words the algebraic space X = U/R is the colimit
of the quasi-separated algebraic spaces U/R′.
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Properties (1) and (2) follow from the discussion above. If X is a scheme, then if
we choose U to be a finite disjoint union of affine opens of X we will obtain (3).
Details omitted. □

Lemma 68.6.5.0ABT Let S be a scheme. Let X, Y be algebraic spaces over S. Let
X → Y be a representable morphism. If Y is decent (resp. reasonable), then so is
X.

Proof. Translation of Lemma 68.5.3. □

Lemma 68.6.6.0ABU Let S be a scheme. Let X → Y be an étale morphism of algebraic
spaces over S. If Y is decent, resp. reasonable, then so is X.

Proof. Let U be an affine scheme and U → X an étale morphism. Set R = U ×X U
and R′ = U ×Y U . Note that R→ R′ is a monomorphism.

Let x ∈ |X|. To show that X is decent, we have to show that the fibres of |U | → |X|
and |R| → |X| over x are finite. But if Y is decent, then the fibres of |U | → |Y |
and |R′| → |Y | are finite. Hence the result for “decent”.

To show that X is reasonable, we have to show that the fibres of U → X are
universally bounded. However, if Y is reasonable, then the fibres of U → Y are
universally bounded, which immediately implies the same thing for the fibres of
U → X. Hence the result for “reasonable”. □

68.7. Points and specializations

03K1 There exists an étale morphism of algebraic spaces f : X → Y and a nontrivial
specialization between points in a fibre of |f | : |X| → |Y |, see Examples, Lemma
110.50.1. If the source of the morphism is a scheme we can avoid this by imposing
condition (α) on Y .

Lemma 68.7.1.03IM Let S be a scheme. Let X be an algebraic space over S. Let U → X
be an étale morphism from a scheme to X. Assume u, u′ ∈ |U | map to the same
point x of |X|, and u′ ⇝ u. If the pair (X,x) satisfies the equivalent conditions of
Lemma 68.4.2 then u = u′.

Proof. Assume the pair (X,x) satisfies the equivalent conditions for Lemma 68.4.2.
Let U be a scheme, U → X étale, and let u, u′ ∈ |U | map to x of |X|, and u′ ⇝ u.
We may and do replace U by an affine neighbourhood of u. Let t, s : R = U×XU →
U be the étale projection maps.

Pick a point r ∈ R with t(r) = u and s(r) = u′. This is possible by Properties
of Spaces, Lemma 66.4.5. Because generalizations lift along the étale morphism t
(Remark 68.4.1) we can find a specialization r′ ⇝ r with t(r′) = u′. Set u′′ = s(r′).
Then u′′ ⇝ u′. Thus we may repeat and find r′′ ⇝ r′ with t(r′′) = u′′. Set

https://stacks.math.columbia.edu/tag/0ABT
https://stacks.math.columbia.edu/tag/0ABU
https://stacks.math.columbia.edu/tag/03IM
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u′′′ = s(r′′), and so on. Here is a picture:

r′′

s

!!

t

~~ ��
u′′

��

r′

s

!!

t

~~ ��

u′′′

��
u′

��

r

s

!!

t

~~

u′′

��
u u′

In Remark 68.4.1 we have seen that there are no specializations among points in
the fibres of the étale morphism s. Hence if u(n+1) = u(n) for some n, then also
r(n) = r(n−1) and hence also (by taking t) u(n) = u(n−1). This then forces the
whole tower to collapse, in particular u = u′. Thus we see that if u ̸= u′, then
all the specializations are strict and {u, u′, u′′, . . .} is an infinite set of points in U
which map to the point x in |X|. As we chose U affine this contradicts the second
part of Lemma 68.4.2, as desired. □

Lemma 68.7.2.0H1Q Let S be a scheme. Let X be an algebraic space over S. Let
U → X be an étale morphism from a scheme to X. Assume u, u′ ∈ |U | map to the
same point x of |X|, and u′ ⇝ u. If X is locally Noetherian, then u = u′.

Proof. The discussion in Schemes, Section 26.13 shows that OU,u′ is a localization
of the Noetherian local ring OU,u. By Properties of Spaces, Lemma 66.10.1 we
have dim(OU,u) = dim(OU,u′). By dimension theory for Noetherian local rings we
conclude u = u′. □

Lemma 68.7.3.03K2 Let S be a scheme. Let X be an algebraic space over S. Let
x, x′ ∈ |X| and assume x′ ⇝ x, i.e., x is a specialization of x′. Assume the pair
(X,x′) satisfies the equivalent conditions of Lemma 68.4.5. Then for every étale
morphism φ : U → X from a scheme U and any u ∈ U with φ(u) = x, exists a
point u′ ∈ U , u′ ⇝ u with φ(u′) = x′.

Proof. We may replace U by an affine open neighbourhood of u. Hence we may
assume that U is affine. As x is in the image of the open map |U | → |X|, so is x′.
Thus we may replace X by the Zariski open subspace corresponding to the image
of |U | → |X|, see Properties of Spaces, Lemma 66.4.10. In other words we may
assume that U → X is surjective and étale. Let s, t : R = U ×X U → U be the
projections. By our assumption that (X,x′) satisfies the equivalent conditions of
Lemma 68.4.5 we see that the fibres of |U | → |X| and |R| → |X| over x′ are finite.
Say {u′

1, . . . , u
′
n} ⊂ U and {r′

1, . . . , r
′
m} ⊂ R form the complete inverse image of

{x′}. Consider the closed sets

T = {u′
1} ∪ . . . ∪ {u′

n} ⊂ |U |, T ′ = {r′
1} ∪ . . . ∪ {r′

m} ⊂ |R|.

Trivially we have s(T ′) ⊂ T . Because R is an equivalence relation we also have
t(T ′) = s(T ′) as the set {r′

j} is invariant under the inverse of R by construction.
Let w ∈ T be any point. Then u′

i ⇝ w for some i. Choose r ∈ R with s(r) = w.
Since generalizations lift along s : R → U , see Remark 68.4.1, we can find r′ ⇝ r

https://stacks.math.columbia.edu/tag/0H1Q
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with s(r′) = u′
i. Then r′ = r′

j for some j and we conclude that w ∈ s(T ′). Hence
T = s(T ′) = t(T ′) is an |R|-invariant closed set in |U |. This means T is the inverse
image of a closed (!) subset T ′′ = φ(T ) of |X|, see Properties of Spaces, Lemmas
66.4.5 and 66.4.6. Hence T ′′ = {x′}. Thus T contains some point u1 mapping to x
as x ∈ T ′′. I.e., we see that for some i there exists a specialization u′

i ⇝ u1 which
maps to the given specialization x′ ⇝ x.

To finish the proof, choose a point r ∈ R such that s(r) = u and t(r) = u1 (using
Properties of Spaces, Lemma 66.4.3). As generalizations lift along t, and u′

i ⇝ u1
we can find a specialization r′ ⇝ r such that t(r′) = u′

i. Set u′ = s(r′). Then
u′ ⇝ u and φ(u′) = x′ as desired. □

Lemma 68.7.4.0B7W Let S be a scheme. Let f : Y → X be a flat morphism of algebraic
spaces over S. Let x, x′ ∈ |X| and assume x′ ⇝ x, i.e., x is a specialization of
x′. Assume the pair (X,x′) satisfies the equivalent conditions of Lemma 68.4.5 (for
example if X is decent, X is quasi-separated, or X is representable). Then for every
y ∈ |Y | with f(y) = x, there exists a point y′ ∈ |Y |, y′ ⇝ y with f(y′) = x′.

Proof. (The parenthetical statement holds by the definition of decent spaces and
the implications between the different separation conditions mentioned in Section
68.6.) Choose a scheme V and a surjective étale morphism V → Y . Choose v ∈ V
mapping to y. Then we see that it suffices to prove the lemma for V → X. Thus
we may assume Y is a scheme. Choose a scheme U and a surjective étale morphism
U → X. Choose u ∈ U mapping to x. By Lemma 68.7.3 we may choose u′ ⇝ u
mapping to x′. By Properties of Spaces, Lemma 66.4.3 we may choose z ∈ U ×X Y
mapping to y and u. Thus we reduce to the case of the flat morphism of schemes
U ×X Y → U which is Morphisms, Lemma 29.25.9. □

68.8. Stratifying algebraic spaces by schemes

0A4I In this section we prove that a quasi-compact and quasi-separated algebraic space
has a finite stratification by locally closed subspaces each of which is a scheme and
such that the glueing of the parts is by elementary distinguished squares. We first
prove a slightly weaker result for reasonable algebraic spaces.

Lemma 68.8.1.07S8 Let S be a scheme. Let W → X be a morphism of a scheme W to
an algebraic space X which is flat, locally of finite presentation, separated, locally
quasi-finite with universally bounded fibres. There exist reduced closed subspaces

∅ = Z−1 ⊂ Z0 ⊂ Z1 ⊂ Z2 ⊂ . . . ⊂ Zn = X

such that with Xr = Zr \Zr−1 the stratification X =
∐
r=0,...,nXr is characterized

by the following universal property: Given g : T → X the projection W ×X T → T
is finite locally free of degree r if and only if g(|T |) ⊂ |Xr|.

Proof. Let n be an integer bounding the degrees of the fibres of W → X. Choose
a scheme U and a surjective étale morphism U → X. Apply More on Morphisms,
Lemma 37.45.3 to W ×X U → U . We obtain closed subsets

∅ = Y−1 ⊂ Y0 ⊂ Y1 ⊂ Y2 ⊂ . . . ⊂ Yn = U

characterized by the property stated in the lemma for the morphism W ×X U → U .
Clearly, the formation of these closed subsets commutes with base change. Setting
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R = U ×X U with projection maps s, t : R→ U we conclude that
s−1(Yr) = t−1(Yr)

as closed subsets of R. In other words the closed subsets Yr ⊂ U are R-invariant.
This means that |Yr| is the inverse image of a closed subset Zr ⊂ |X|. Denote
Zr ⊂ X also the reduced induced algebraic space structure, see Properties of Spaces,
Definition 66.12.5.
Let g : T → X be a morphism of algebraic spaces. Choose a scheme V and a
surjective étale morphism V → T . To prove the final assertion of the lemma it
suffices to prove the assertion for the composition V → X (by our definition of
finite locally free morphisms, see Morphisms of Spaces, Section 67.46). Similarly,
the morphism of schemes W ×X V → V is finite locally free of degree r if and only
if the morphism of schemes

W ×X (U ×X V ) −→ U ×X V

is finite locally free of degree r (see Descent, Lemma 35.23.30). By construction
this happens if and only if |U ×X V | → |U | maps into |Yr|, which is true if and only
if |V | → |X| maps into |Zr|. □

Lemma 68.8.2.086T Let S be a scheme. Let W → X be a morphism of a scheme W
to an algebraic space X which is flat, locally of finite presentation, separated, and
locally quasi-finite. Then there exist open subspaces

X = X0 ⊃ X1 ⊃ X2 ⊃ . . .

such that a morphism Spec(k) → X where k is a field factors through Xd if and
only if W ×X Spec(k) has degree ≥ d over k.

Proof. Choose a scheme U and a surjective étale morphism U → X. Apply More
on Morphisms, Lemma 37.45.5 to W ×X U → U . We obtain open subschemes

U = U0 ⊃ U1 ⊃ U2 ⊃ . . .

characterized by the property stated in the lemma for the morphism W ×X U → U .
Clearly, the formation of these closed subsets commutes with base change. Setting
R = U ×X U with projection maps s, t : R→ U we conclude that

s−1(Ud) = t−1(Ud)
as open subschemes of R. In other words the open subschemes Ud ⊂ U are R-
invariant. This means that Ud is the inverse image of an open subspace Xd ⊂ X
(Properties of Spaces, Lemma 66.12.2). □

Lemma 68.8.3.0BBN Let S be a scheme. Let X be a quasi-compact algebraic space over
S. There exist open subspaces

. . . ⊂ U4 ⊂ U3 ⊂ U2 ⊂ U1 = X

with the following properties:
(1) setting Tp = Up \ Up+1 (with reduced induced subspace structure) there

exists a separated scheme Vp and a surjective étale morphism fp : Vp → Up
such that f−1

p (Tp)→ Tp is an isomorphism,
(2) if x ∈ |X| can be represented by a quasi-compact morphism Spec(k)→ X

from a field, then x ∈ Tp for some p.
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Proof. By Properties of Spaces, Lemma 66.6.3 we can choose an affine scheme U
and a surjective étale morphism U → X. For p ≥ 0 set

Wp = U ×X . . .×X U \ all diagonals
where the fibre product has p factors. Since U is separated, the morphism U → X
is separated and all fibre products U ×X . . . ×X U are separated schemes. Since
U → X is separated the diagonal U → U×XU is a closed immersion. Since U → X
is étale the diagonal U → U ×X U is an open immersion, see Morphisms of Spaces,
Lemmas 67.39.10 and 67.38.9. Similarly, all the diagonal morphisms are open and
closed immersions and Wp is an open and closed subscheme of U ×X . . . ×X U .
Moreover, the morphism

U ×X . . .×X U −→ U ×Spec(Z) . . .×Spec(Z) U

is locally quasi-finite and separated (Morphisms of Spaces, Lemma 67.4.5) and its
target is an affine scheme. Hence every finite set of points of U ×X . . . ×X U is
contained in an affine open, see More on Morphisms, Lemma 37.45.1. Therefore,
the same is true for Wp. There is a free action of the symmetric group Sp on Wp

over X (because we threw out the fix point locus from U ×X . . . ×X U). By the
above and Properties of Spaces, Proposition 66.14.1 the quotient Vp = Wp/Sp is a
scheme. Since the action of Sp on Wp was over X, there is a morphism Vp → X.
Since Wp → X is étale and since Wp → Vp is surjective étale, it follows that also
Vp → X is étale, see Properties of Spaces, Lemma 66.16.3. Observe that Vp is a
separated scheme by Properties of Spaces, Lemma 66.14.3.
We let Up ⊂ X be the open subspace which is the image of Vp → X. By construction
a morphism Spec(k) → X with k algebraically closed, factors through Up if and
only if U ×X Spec(k) has ≥ p points; as usual observe that U ×X Spec(k) is scheme
theoretically a disjoint union of (possibly infinitely many) copies of Spec(k), see
Remark 68.4.1. It follows that the Up give a filtration of X as stated in the lemma.
Moreover, our morphism Spec(k) → X factors through Tp if and only if U ×X
Spec(k) has exactly p points. In this case we see that Vp ×X Spec(k) has exactly
one point. Set Zp = f−1

p (Tp) ⊂ Vp. This is a closed subscheme of Vp. Then Zp → Tp
is an étale morphism between algebraic spaces which induces a bijection on k-valued
points for any algebraically closed field k. To be sure this implies that Zp → Tp is
universally injective, whence an open immersion by Morphisms of Spaces, Lemma
67.51.2 hence an isomorphism and (1) has been proved.
Let x : Spec(k) → X be a quasi-compact morphism where k is a field. Then
the composition Spec(k) → Spec(k) → X is quasi-compact as well (Morphisms of
Spaces, Lemma 67.8.5). In this case the scheme U ×X Spec(k) is quasi-compact.
In view of the fact (seen above) that it is a disjoint union of copies of Spec(k) we
find that it has finitely many points. If the number of points is p, then we see that
indeed x ∈ Tp and the proof is finished. □

Lemma 68.8.4.07S9 Let S be a scheme. Let X be a quasi-compact, reasonable algebraic
space over S. There exist an integer n and open subspaces

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

with the following property: setting Tp = Up\Up+1 (with reduced induced subspace
structure) there exists a separated scheme Vp and a surjective étale morphism fp :
Vp → Up such that f−1

p (Tp)→ Tp is an isomorphism.
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Proof. The proof of this lemma is identical to the proof of Lemma 68.8.3. Let n
be an integer bounding the degrees of the fibres of U → X which exists as X is
reasonable, see Definition 68.6.1. Then we see that Un+1 = ∅ and the proof is
complete. □

Lemma 68.8.5.07SA Let S be a scheme. Let X be a quasi-compact, reasonable algebraic
space over S. There exist an integer n and open subspaces

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

such that each Tp = Up \ Up+1 (with reduced induced subspace structure) is a
scheme.

Proof. Immediate consequence of Lemma 68.8.4. □

The following result is almost identical to [GR71, Proposition 5.7.8].

Lemma 68.8.6.07ST This result is almost
identical to [GR71,
Proposition 5.7.8].

Let X be a quasi-compact and quasi-separated algebraic space over
Spec(Z). There exist an integer n and open subspaces

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

with the following property: setting Tp = Up\Up+1 (with reduced induced subspace
structure) there exists a quasi-compact separated scheme Vp and a surjective étale
morphism fp : Vp → Up such that f−1

p (Tp)→ Tp is an isomorphism.

Proof. The proof of this lemma is identical to the proof of Lemma 68.8.3. Observe
that a quasi-separated space is reasonable, see Lemma 68.5.1 and Definition 68.6.1.
Hence we find that Un+1 = ∅ as in Lemma 68.8.4. At the end of the argument we
add that sinceX is quasi-separated the schemes U×X . . .×XU are all quasi-compact.
Hence the schemes Wp are quasi-compact. Hence the quotients Vp = Wp/Sp by the
symmetric group Sp are quasi-compact schemes. □

The following lemma probably belongs somewhere else.

Lemma 68.8.7.0ECZ Let S be a scheme. Let X be a quasi-separated algebraic space
over S. Let E ⊂ |X| be a subset. Then E is étale locally constructible (Properties
of Spaces, Definition 66.8.2) if and only if E is a locally constructible subset of the
topological space |X| (Topology, Definition 5.15.1).

Proof. Assume E ⊂ |X| is a locally constructible subset of the topological space
|X|. Let f : U → X be an étale morphism where U is a scheme. We have to
show that f−1(E) is locally constructible in U . The question is local on U and
X, hence we may assume that X is quasi-compact, E ⊂ |X| is constructible, and
U is affine. In this case U → X is quasi-compact, hence f : |U | → |X| is quasi-
compact. Observe that retrocompact opens of |X|, resp. U are the same thing as
quasi-compact opens of |X|, resp. U , see Topology, Lemma 5.27.1. Thus f−1(E) is
constructible by Topology, Lemma 5.15.3.

Conversely, assume E is étale locally constructible. We want to show that E is
locally constructible in the topological space |X|. The question is local on X,
hence we may assume that X is quasi-compact as well as quasi-separated. We will
show that in this case E is constructible in |X|. Choose open subspaces

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X
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and surjective étale morphisms fp : Vp → Up inducing isomorphisms f−1
p (Tp) →

Tp = Up \Up+1 where Vp is a quasi-compact separated scheme as in Lemma 68.8.6.
By definition the inverse image Ep ⊂ Vp of E is locally constructible in Vp. Then Ep
is constructible in Vp by Properties, Lemma 28.2.5. Thus Ep∩ |f−1

p (Tp)| = E ∩ |Tp|
is constructible in |Tp| by Topology, Lemma 5.15.7 (observe that Vp \ f−1

p (Tp) is
quasi-compact as it is the inverse image of the quasi-compact space Up+1 by the
quasi-compact morphism fp). Thus

E = (|Tn| ∩ E) ∪ (|Tn−1| ∩ E) ∪ . . . ∪ (|T1| ∩ E)
is constructible by Topology, Lemma 5.15.14. Here we use that |Tp| is constructible
in |X| which is clear from what was said above. □

68.9. Integral cover by a scheme

0D2T Here we prove that given any quasi-compact and quasi-separated algebraic space
X, there is a scheme Y and a surjective, integral morphism Y → X. After we
develop some theory about limits of algebraic spaces, we will prove that one can do
this with a finite morphism, see Limits of Spaces, Section 70.16.
Lemma 68.9.1.0G2D Let S be a scheme. Let j : V → Y be a quasi-compact open
immersion of algebraic spaces over S. Let π : Z → V be an integral morphism.
Then there exists an integral morphism ν : Y ′ → Y such that Z is V -isomorphic
to the inverse image of V in Y ′.
Proof. Since both j and π are quasi-compact and separated, so is j ◦ π. Let ν :
Y ′ → Y be the normalization of Y in Z, see Morphisms of Spaces, Section 67.48. Of
course ν is integral, see Morphisms of Spaces, Lemma 67.48.5. The final statement
follows formally from Morphisms of Spaces, Lemmas 67.48.4 and 67.48.10. □

Lemma 68.9.2.09YB Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S.

(1) There exists a surjective integral morphism Y → X where Y is a scheme,
(2) given a surjective étale morphism U → X we may choose Y → X such

that for every y ∈ Y there is an open neighbourhood V ⊂ Y such that
V → X factors through U .

Proof. Part (1) is the special case of part (2) where U = X. Choose a surjective
étale morphism U ′ → U where U ′ is a scheme. It is clear that we may replace U
by U ′ and hence we may assume U is a scheme. Since X is quasi-compact, there
exist finitely many affine opens Ui ⊂ U such that U ′ =

∐
Ui → X is surjective.

After replacing U by U ′ again, we see that we may assume U is affine. Since X is
quasi-separated, hence reasonable, there exists an integer d bounding the degree of
the geometric fibres of U → X (see Lemma 68.5.1). We will prove the lemma by
induction on d for all quasi-compact and separated schemes U mapping surjective
and étale onto X. If d = 1, then U = X and the result holds with Y = U . Assume
d > 1.
We apply Morphisms of Spaces, Lemma 67.52.2 and we obtain a factorization

U
j

//

  

Y

π~~
X
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with π integral and j a quasi-compact open immersion. We may and do assume
that j(U) is scheme theoretically dense in Y . Then U ×X Y is a quasi-compact,
separated scheme (being finite over U) and we have

U ×X Y = U ⨿W

Here the first summand is the image of U → U×X Y (which is closed by Morphisms
of Spaces, Lemma 67.4.6 and open because it is étale as a morphism between
algebraic spaces étale over Y ) and the second summand is the (open and closed)
complement. The image V ⊂ Y of W is an open subspace containing Y \ U .
The étale morphism W → Y has geometric fibres of cardinality < d. Namely, this
is clear for geometric points of U ⊂ Y by inspection. Since |U | ⊂ |Y | is dense, it
holds for all geometric points of Y by Lemma 68.8.1 (the degree of the fibres of a
quasi-compact étale morphism does not go up under specialization). Thus we may
apply the induction hypothesis to W → V and find a surjective integral morphism
Z → V with Z a scheme, which Zariski locally factors through W . Choose a
factorization Z → Z ′ → Y with Z ′ → Y integral and Z → Z ′ open immersion
(Lemma 68.9.1). After replacing Z ′ by the scheme theoretic closure of Z in Z ′ we
may assume that Z is scheme theoretically dense in Z ′. After doing this we have
Z ′ ×Y V = Z. Finally, let T ⊂ Y be the induced closed subspace structure on
Y \ V . Consider the morphism

Z ′ ⨿ T −→ X

This is a surjective integral morphism by construction. Since T ⊂ U it is clear
that the morphism T → X factors through U . On the other hand, let z ∈ Z ′ be a
point. If z ̸∈ Z, then z maps to a point of Y \ V ⊂ U and we find a neighbourhood
of z on which the morphism factors through U . If z ∈ Z, then we have an open
neighbourhood of z in Z (which is also an open neighbourhood of z in Z ′) which
factors through W ⊂ U ×X Y and hence through U . □

Lemma 68.9.3.0GUL Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S such that |X| has finitely many irreducible components.

(1) There exists a surjective integral morphism Y → X where Y is a scheme
such that f is finite étale over a quasi-compact dense open U ⊂ X,

(2) given a surjective étale morphism V → X we may choose Y → X such
that for every y ∈ Y there is an open neighbourhood W ⊂ Y such that
W → X factors through V .

Proof. The proof is the (roughly) same as the proof of Lemma 68.9.2 with additional
technical comments to obtain the dense quasi-compact open U (and unfortunately
changes in notation to keep track of U).
Part (1) is the special case of part (2) where V = X.
Proof of (2). Choose a surjective étale morphism V ′ → V where V ′ is a scheme.
It is clear that we may replace V by V ′ and hence we may assume V is a scheme.
Since X is quasi-compact, there exist finitely many affine opens Vi ⊂ V such that
V ′ =

∐
Vi → X is surjective. After replacing V by V ′ again, we see that we may

assume V is affine. Since X is quasi-separated, hence reasonable, there exists an
integer d bounding the degree of the geometric fibres of V → X (see Lemma 68.5.1).
By induction on d ≥ 1 we will prove the following induction hypothesis (Hd):
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• for any quasi-compact and quasi-separated algebraic space X with finitely
many irreducible components, for any m ≥ 0, for any quasi-compact and
separated schemes Vj , j = 1, . . . ,m, for any étale morphisms φj : Vj → X,
j = 1, . . . ,m such that d bounds the degree of the geometric fibres of
φj : Vj → X and φ =

∐
φj : V =

∐
Vj → X is surjective, the statement

of the lemma holds for φ : V → X.
If d = 1, then each φj is an open immersion. Hence X is a scheme and the result
holds with Y = V . Assume d > 1, assume (Hd−1) and let m, φ : Vj → X,
j = 1, . . . ,m be as in (Hd).

Let η1, . . . , ηn ∈ |X| be the generic points of the irreducible components of |X|.
By Properties of Spaces, Proposition 66.13.3 there is an open subscheme U ⊂ X
with η1, . . . , ηn ∈ U . By shrinking U we may assume U affine and by Morphisms,
Lemma 29.51.1 we may assume each φj : Vj → X is finite étale over U . Of course,
we see that U is quasi-compact and dense in X and that φ−1

j (U) is dense in Vj . In
particular each Vj has finitely many irreducible components.

Fix j ∈ {1, . . . ,m}. As in Morphisms of Spaces, Lemma 67.52.2 we let Yj be the
normalization of X in Vj . We obtain a factorization

Vj //

φj   

Yj

πj~~
X

with πj integral and Vj → Yj a quasi-compact open immersion. Since Yj is the
normalization of X in Vj , we see from Morphisms of Spaces, Lemmas 67.48.4 and
67.48.10 that φ−1

j (U)→ π−1
j (U) is an isomorphism. Thus πj is finite étale over U .

Observe that Vj is scheme theoretically dense in Yj because Yj is the normalization
of X in Vj (follows from the characterization of relative normalization in Morphisms
of Spaces, Lemma 67.48.5). Since Vj is quasi-compact we see that |Vj | ⊂ |Yj | is
dense, see Morphisms of Spaces, Section 67.17 (and especially Morphisms of Spaces,
Lemma 67.17.7). It follows that |Yj | has finitely many irreducible components.
Then Vj ×X Yj is a quasi-compact, separated scheme (being finite over Vj) and

Vj ×X Yj = Vj ⨿Wj

Here the first summand is the image of Vj → Vj×XYj (which is closed by Morphisms
of Spaces, Lemma 67.4.6 and open because it is étale as a morphism between
algebraic spaces étale over Y ) and the second summand is the (open and closed)
complement.

The étale morphism Wj → Yj has geometric fibres of cardinality < d. Namely,
this is clear for geometric points of Vj ⊂ Yj by inspection. Since |Vj | ⊂ |Yj | is
dense, it holds for all geometric points of Yj by Lemma 68.8.1 (the degree of the
fibres of a quasi-compact étale morphism does not go up under specialization). By
(Hd−1) applied to Vj ⨿Wj → Yj we find a surjective integral morphism Y ′

j → Yj
with Y ′

j a scheme, which Zariski locally factors through Vj⨿Wj , and which is finite
étale over a quasi-compact dense open Uj ⊂ Yj . After shrinking U we may and
do assume that π−1

j (U) ⊂ Uj (we may and do choose the same U for all j; some
details omitted).
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We claim that
Y =

∐
j=1,...,m

Y ′
j −→ X

is the solution to our problem. First, this morphism is integral as on each summand
we have the composition Y ′

j → Y → X of integral morphisms (Morphisms of
Spaces, Lemma 67.45.4). Second, this morphism Zariski locally factors through
V =

∐
Vj because we saw above that each Y ′

j → Yj factors Zariski locally through
Vj ⨿Wj = Vj ×X Yj . Finally, since both Y ′

j → Yj and Yj → X are finite étale over
U , so is the composition. This finishes the proof. □

68.10. Schematic locus

06NN In this section we prove that a decent algebraic space has a dense open subspace
which is a scheme. We first prove this for reasonable algebraic spaces.

Proposition 68.10.1.03JI Let S be a scheme. Let X be an algebraic space over S. If
X is reasonable, then there exists a dense open subspace of X which is a scheme.

Proof. By Properties of Spaces, Lemma 66.13.1 the question is local on X. Hence
we may assume there exists an affine scheme U and a surjective étale morphism
U → X (Properties of Spaces, Lemma 66.6.1). Let n be an integer bounding the
degrees of the fibres of U → X which exists as X is reasonable, see Definition
68.6.1. We will argue by induction on n that whenever

(1) U → X is a surjective étale morphism whose fibres have degree ≤ n, and
(2) U is isomorphic to a locally closed subscheme of an affine scheme

then the schematic locus is dense in X.

Let Xn ⊂ X be the open subspace which is the complement of the closed subspace
Zn−1 ⊂ X constructed in Lemma 68.8.1 using the morphism U → X. Let Un ⊂ U
be the inverse image of Xn. Then Un → Xn is finite locally free of degree n. Hence
Xn is a scheme by Properties of Spaces, Proposition 66.14.1 (and the fact that any
finite set of points of Un is contained in an affine open of Un, see Properties, Lemma
28.29.5).

Let X ′ ⊂ X be the open subspace such that |X ′| is the interior of |Zn−1| in |X|
(see Topology, Definition 5.21.1). Let U ′ ⊂ U be the inverse image. Then U ′ → X ′

is surjective étale and has degrees of fibres bounded by n− 1. By induction we see
that the schematic locus of X ′ is an open dense X ′′ ⊂ X ′. By elementary topology
we see that X ′′ ∪Xn ⊂ X is open and dense and we win. □

Theorem 68.10.2 (David Rydh).086U Let S be a scheme. Let X be an algebraic space
over S. If X is decent, then there exists a dense open subspace of X which is a
scheme.

Proof. Assume X is a decent algebraic space for which the theorem is false. By
Properties of Spaces, Lemma 66.13.1 there exists a largest open subspace X ′ ⊂ X
which is a scheme. Since X ′ is not dense in X, there exists an open subspace
X ′′ ⊂ X such that |X ′′| ∩ |X ′| = ∅. Replacing X by X ′′ we get a nonempty decent
algebraic space X which does not contain any open subspace which is a scheme.

Choose a nonempty affine scheme U and an étale morphism U → X. We may and
do replace X by the open subscheme corresponding to the image of |U | → |X|.
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Consider the sequence of open subspaces
X = X0 ⊃ X1 ⊃ X2 . . .

constructed in Lemma 68.8.2 for the morphism U → X. Note that X0 = X1 as
U → X is surjective. Let U = U0 = U1 ⊃ U2 . . . be the induced sequence of open
subschemes of U .
Choose a nonempty open affine V1 ⊂ U1 (for example V1 = U1). By induction we
will construct a sequence of nonempty affine opens V1 ⊃ V2 ⊃ . . . with Vn ⊂ Un.
Namely, having constructed V1, . . . , Vn−1 we can always choose Vn unless Vn−1 ∩
Un = ∅. But if Vn−1 ∩ Un = ∅, then the open subspace X ′ ⊂ X with |X ′| =
Im(|Vn−1| → |X|) is contained in |X|\|Xn|. Hence Vn−1 → X ′ is an étale morphism
whose fibres have degree bounded by n − 1. In other words, X ′ is reasonable (by
definition), hence X ′ contains a nonempty open subscheme by Proposition 68.10.1.
This is a contradiction which shows that we can pick Vn.
By Limits, Lemma 32.4.3 the limit V∞ = limVn is a nonempty scheme. Pick a
morphism Spec(k) → V∞. The composition Spec(k) → V∞ → U → X has image
contained in all Xd by construction. In other words, the fibred U ×X Spec(k) has
infinite degree which contradicts the definition of a decent space. This contradiction
finishes the proof of the theorem. □

Lemma 68.10.3.0BA1 Let S be a scheme. Let X → Y be a surjective finite locally free
morphism of algebraic spaces over S. For y ∈ |Y | the following are equivalent

(1) y is in the schematic locus of Y , and
(2) there exists an affine open U ⊂ X containing the preimage of y.

Proof. If y ∈ Y is in the schematic locus, then it has an affine open neighbourhood
V ⊂ Y and the inverse image U of V in X is an open finite over V , hence affine.
Thus (1) implies (2).
Conversely, assume that U ⊂ X as in (2) is given. Set R = X×Y X and denote the
projections s, t : R→ X. Consider Z = R\s−1(U)∩t−1(U). This is a closed subset
of R. The image t(Z) is a closed subset of X which can loosely be described as the
set of points of X which are R-equivalent to a point of X \U . Hence U ′ = X \ t(Z)
is an R-invariant, open subspace of X contained in U which contains the fibre of
X → Y over y. Since X → Y is open (Morphisms of Spaces, Lemma 67.30.6) the
image of U ′ is an open subspace V ′ ⊂ Y . Since U ′ is R-invariant and R = X×Y X,
we see that U ′ is the inverse image of V ′ (use Properties of Spaces, Lemma 66.4.3).
After replacing Y by V ′ and X by U ′ we see that we may assume X is a scheme
isomorphic to an open subscheme of an affine scheme.
Assume X is a scheme isomorphic to an open subscheme of an affine scheme. In this
case the fppf quotient sheaf X/R is a scheme, see Properties of Spaces, Proposition
66.14.1. Since Y is a sheaf in the fppf topology, obtain a canonical map X/R→ Y
factoring X → Y . Since X → Y is surjective finite locally free, it is surjective as a
map of sheaves (Spaces, Lemma 65.5.9). We conclude that X/R→ Y is surjective
as a map of sheaves. On the other hand, since R = X×Y X as sheaves we conclude
that X/R→ Y is injective as a map of sheaves. Hence X/R→ Y is an isomorphism
and we see that Y is representable. □

At this point we have several different ways for proving the following lemma.
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Lemma 68.10.4.06NG Let S be a scheme. Let X be an algebraic space over S. If there
exists a finite, étale, surjective morphism U → X where U is a scheme, then there
exists a dense open subspace of X which is a scheme.

First proof. The morphism U → X is finite locally free. Hence there is a decom-
position of X into open and closed subspaces Xd ⊂ X such that U ×X Xd → Xd is
finite locally free of degree d. Thus we may assume U → X is finite locally free of
degree d. In this case, let Ui ⊂ U , i ∈ I be the set of affine opens. For each i the
morphism Ui → X is étale and has universally bounded fibres (namely, bounded
by d). In other words, X is reasonable and the result follows from Proposition
68.10.1. □

Second proof. The question is local on X (Properties of Spaces, Lemma 66.13.1),
hence may assume X is quasi-compact. Then U is quasi-compact. Then there exists
a dense open subscheme W ⊂ U which is separated (Properties, Lemma 28.29.3).
Set Z = U \W . Let R = U ×X U and s, t : R → U the projections. Then t−1(Z)
is nowhere dense in R (Topology, Lemma 5.21.6) and hence ∆ = s(t−1(Z)) is an
R-invariant closed nowhere dense subset of U (Morphisms, Lemma 29.48.7). Let
u ∈ U \∆ be a generic point of an irreducible component. Since these points are
dense in U \ ∆ and since ∆ is nowhere dense, it suffices to show that the image
x ∈ X of u is in the schematic locus of X. Observe that t(s−1({u})) ⊂W is a finite
set of generic points of irreducible components of W (compare with Properties of
Spaces, Lemma 66.11.1). By Properties, Lemma 28.29.1 we can find an affine open
V ⊂W such that t(s−1({u})) ⊂ V . Since t(s−1({u})) is the fibre of |U | → |X| over
x, we conclude by Lemma 68.10.3. □

Third proof. (This proof is essentially the same as the second proof, but uses fewer
references.) Assume X is an algebraic space, U a scheme, and U → X is a finite
étale surjective morphism. Write R = U ×X U and denote s, t : R → U the
projections as usual. Note that s, t are surjective, finite and étale. Claim: The
union of the R-invariant affine opens of U is topologically dense in U .

Proof of the claim. Let W ⊂ U be an affine open. Set W ′ = t(s−1(W )) ⊂ U . Since
s−1(W ) is affine (hence quasi-compact) we see that W ′ ⊂ U is a quasi-compact
open. By Properties, Lemma 28.29.3 there exists a dense open W ′′ ⊂ W ′ which
is a separated scheme. Set ∆′ = W ′ \W ′′. This is a nowhere dense closed subset
of W ′′. Since t|s−1(W ) : s−1(W ) → W ′ is open (because it is étale) we see that
the inverse image (t|s−1(W ))−1(∆′) ⊂ s−1(W ) is a nowhere dense closed subset (see
Topology, Lemma 5.21.6). Hence, by Morphisms, Lemma 29.48.7 we see that

∆ = s
(
(t|s−1(W ))−1(∆′)

)
is a nowhere dense closed subset of W . Pick any point η ∈ W , η ̸∈ ∆ which is a
generic point of an irreducible component of W (and hence of U). By our choices
above the finite set t(s−1({η})) = {η1, . . . , ηn} is contained in the separated scheme
W ′′. Note that the fibres of s is are finite discrete spaces, and that generalizations
lift along the étale morphism t, see Morphisms, Lemmas 29.36.12 and 29.25.9. In
this way we see that each ηi is a generic point of an irreducible component of W ′′.
Thus, by Properties, Lemma 28.29.1 we can find an affine open V ⊂W ′′ such that
{η1, . . . , ηn} ⊂ V . By Groupoids, Lemma 39.24.1 this implies that η is contained
in an R-invariant affine open subscheme of U . The claim follows as W was chosen
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as an arbitrary affine open of U and because the set of generic points of irreducible
components of W \∆ is dense in W .
Using the claim we can finish the proof. Namely, if W ⊂ U is an R-invariant affine
open, then the restriction RW of R to W equals RW = s−1(W ) = t−1(W ) (see
Groupoids, Definition 39.19.1 and discussion following it). In particular the maps
RW → W are finite étale also. It follows in particular that RW is affine. Thus
we see that W/RW is a scheme, by Groupoids, Proposition 39.23.9. On the other
hand, W/RW is an open subspace of X by Spaces, Lemma 65.10.2. Hence having a
dense collection of points contained in R-invariant affine open of U certainly implies
that the schematic locus of X (see Properties of Spaces, Lemma 66.13.1) is open
dense in X. □

68.11. Residue fields and henselian local rings

0EMV For a decent algebraic space we can define the residue field and the henselian local
ring at a point. For example, the following lemma tells us the residue field of a
point on a decent space is defined.

Lemma 68.11.1.03K4 Let S be a scheme. Let X be an algebraic space over S. Consider
the map

{Spec(k)→ X monomorphism where k is a field} −→ |X|
This map is always injective. If X is decent then this map is a bijection.

Proof. We have seen in Properties of Spaces, Lemma 66.4.12 that the map is an
injection in general. By Lemma 68.5.1 it is surjective when X is decent (actually
one can say this is part of the definition of being decent). □

Let S be a scheme. Let X be an algebraic space over S. If a point x ∈ |X| can
be represented by a monomorphism Spec(k)→ X, then the field k is unique up to
unique isomorphism. For a decent algebraic space such a monomorphism exists for
every point by Lemma 68.11.1 and hence the following definition makes sense.

Definition 68.11.2.0EMW Let S be a scheme. Let X be a decent algebraic space over
S. Let x ∈ |X|. The residue field of X at x is the unique field κ(x) which comes
equipped with a monomorphism Spec(κ(x))→ X representing x.

Let S be a scheme. Let f : X → Y be a morphism of decent algebraic spaces over S.
Let x ∈ |X| be a point. Set y = f(x) ∈ |Y |. Then the composition Spec(κ(x))→ Y
is in the equivalence class defining y and hence factors through Spec(κ(y)) → Y .
In other words we get a commutative diagram

Spec(κ(x))
x
//

��

X

f

��
Spec(κ(y)) y // Y

The left vertical morphism corresponds to a homomorphism κ(y)→ κ(x) of fields.
We will often simply call this the homomorphism induced by f .

Lemma 68.11.3.0EMX Let S be a scheme. Let f : X → Y be a morphism of decent
algebraic spaces over S. Let x ∈ |X| be a point with image y = f(x) ∈ |Y |. The
following are equivalent
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(1) f induces an isomorphism κ(y)→ κ(x), and
(2) the induced morphism Spec(κ(x))→ Y is a monomorphism.

Proof. Immediate from the discussion above. □

The following lemma tells us that the henselian local ring of a point on a decent
algebraic space is defined.

Lemma 68.11.4.0BBP Let S be a scheme. Let X be a decent algebraic space over S.
For every point x ∈ |X| there exists an étale morphism

(U, u) −→ (X,x)

where U is an affine scheme, u is the only point of U lying over x, and the induced
homomorphism κ(x)→ κ(u) is an isomorphism.

Proof. We may assume that X is quasi-compact by replacing X with a quasi-
compact open containing x. Recall that x can be represented by a quasi-compact
(mono)morphism from the spectrum a field (by definition of decent spaces). Thus
the lemma follows from Lemma 68.8.3. □

Definition 68.11.5.0BGU Let S be a scheme. Let X be an algebraic space over S.
Let x ∈ X be a point. An elementary étale neighbourhood is an étale morphism
(U, u) → (X,x) where U is a scheme, u ∈ U is a point mapping to x, and the
morphism u = Spec(κ(u)) → X is a monomorphism. A morphism of elementary
étale neighbourhoods (U, u) → (U ′, u′) is defined as a morphism U → U ′ over X
mapping u to u′.

If X is not decent then the category of elementary étale neighbourhoods may be
empty.

Lemma 68.11.6.0BGV Let S be a scheme. Let X be a decent algebraic space over S.
Let x be a point of X. The category of elementary étale neighborhoods of (X,x)
is cofiltered (see Categories, Definition 4.20.1).

Proof. The category is nonempty by Lemma 68.11.4. Suppose that we have two
elementary étale neighbourhoods (Ui, ui)→ (X,x). Then consider U = U1 ×X U2.
Since Spec(κ(ui))→ X, i = 1, 2 are both monomorphisms in the class of x (Lemma
68.11.3) , we see that

u = Spec(κ(u1))×X Spec(κ(u2))

is the spectrum of a field κ(u) such that the induced maps κ(ui) → κ(u) are
isomorphisms. Then u → U is a point of U and we see that (U, u) → (X,x) is an
elementary étale neighbourhood dominating (Ui, ui). If a, b : (U1, u1) → (U2, u2)
are two morphisms between our elementary étale neighbourhoods, then we consider
the scheme

U = U1 ×(a,b),(U2×XU2),∆ U2

Using Properties of Spaces, Lemma 66.16.6 we see that U → X is étale. Moreover,
in exactly the same manner as before we see that U has a point u such that (U, u)→
(X,x) is an elementary étale neighbourhood. Finally, U → U1 equalizes a and b
and the proof is finished. □
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Definition 68.11.7.0BGW Let S be a scheme. Let X be a decent algebraic space over S.
Let x ∈ |X|. The henselian local ring of X at x, is

OhX,x = colim Γ(U,OU )
where the colimit is over the elementary étale neighbourhoods (U, u)→ (X,x).
Here is the analogue of Properties of Spaces, Lemma 66.22.1.
Lemma 68.11.8.0EMY Let S be a scheme. Let X be a decent algebraic space over S.
Let x ∈ |X|. Let (U, u)→ (X,x) be an elementary étale neighbourhood. Then

OhX,x = OhU,u
In words: the henselian local ring of X at x is equal to the henselization OhU,u of
the local ring OU,u of U at u.
Proof. Since the category of elementary étale neighbourhood of (X,x) is cofiltered
(Lemma 68.11.6) we see that the category of elementary étale neighbourhoods of
(U, u) is initial in the category of elementary étale neighbourhood of (X,x). Then
the equality follows from More on Morphisms, Lemma 37.35.5 and Categories,
Lemma 4.17.2 (initial is turned into cofinal because the colimit definining henselian
local rings is over the opposite of the category of elementary étale neighbourhoods).

□

Lemma 68.11.9.0EMZ Let S be a scheme. Let X be a decent algebraic space over S.
Let x be a geometric point of X lying over x ∈ |X|. The étale local ring OX,x of
X at x (Properties of Spaces, Definition 66.22.2) is the strict henselization of the
henselian local ring OhX,x of X at x.
Proof. Follows from Lemma 68.11.8, Properties of Spaces, Lemma 66.22.1 and the
fact that (Rh)sh = Rsh for a local ring (R,m, κ) and a given separable algebraic
closure κsep of κ. This equality follows from Algebra, Lemma 10.154.7. □

Lemma 68.11.10.0EN0 Let S be a scheme. Let X be a decent algebraic space over S.
Let x ∈ |X|. The residue field of the henselian local ring of X at x (Definition
68.11.7) is the residue field of X at x (Definition 68.11.2).
Proof. Choose an elementary étale neighbourhood (U, u) → (X,x). Then κ(u) =
κ(x) and OhX,x = OhU,u (Lemma 68.11.8). The residue field of OhU,u is κ(u) by
Algebra, Lemma 10.155.1 (the output of this lemma is the construction/definition
of the henselization of a local ring, see Algebra, Definition 10.155.3). □

Remark 68.11.11.0EPL Let S be a scheme. Let f : X → Y be a morphism of decent
algebraic spaces over S. Let x ∈ |X| with image y ∈ |Y |. Choose an elementary
étale neighbourhood (V, v) → (Y, y) (possible by Lemma 68.11.4). Then V ×Y X
is an algebraic space étale over X which has a unique point x′ mapping to x in
X and to v in V . (Details omitted; use that all points can be represented by
monomorphisms from spectra of fields.) Choose an elementary étale neighbourhood
(U, u)→ (V ×Y X,x′). Then we obtain the following commutative diagram

Spec(OX,x) //

��

Spec(OhX,x) //

��

Spec(OU,u) //

��

U //

��

X

��
Spec(OY,y) // Spec(OhY,y) // Spec(OV,v) // V // Y
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This comes from the identifications OX,x = OshU,u, OhX,x = OhU,u, OY,y = OshV,v,
OhY,y = OhV,v see in Lemma 68.11.8 and Properties of Spaces, Lemma 66.22.1 and
the functoriality of the (strict) henselization discussed in Algebra, Sections 10.154
and 10.155.

68.12. Points on decent spaces

03IG In this section we prove some properties of points on decent algebraic spaces. The
following lemma shows that specialization of points behaves well on decent algebraic
spaces. Spaces, Example 65.14.9 shows that this is not true in general.

Lemma 68.12.1.03K5 Let S be a scheme. Let X be a decent algebraic space over S.
Let U → X be an étale morphism from a scheme to X. If u, u′ ∈ |U | map to the
same point of |X|, and u′ ⇝ u, then u = u′.

Proof. Combine Lemmas 68.5.1 and 68.7.1. □

Lemma 68.12.2.03IL Let S be a scheme. Let X be a decent algebraic space over S.
Let x, x′ ∈ |X| and assume x′ ⇝ x, i.e., x is a specialization of x′. Then for every
étale morphism φ : U → X from a scheme U and any u ∈ U with φ(u) = x, exists
a point u′ ∈ U , u′ ⇝ u with φ(u′) = x′.

Proof. Combine Lemmas 68.5.1 and 68.7.3. □

Lemma 68.12.3.03K3 Let S be a scheme. Let X be a decent algebraic space over S.
Then |X| is Kolmogorov (see Topology, Definition 5.8.6).

Proof. Let x1, x2 ∈ |X| with x1 ⇝ x2 and x2 ⇝ x1. We have to show that x1 = x2.
Pick a scheme U and an étale morphism U → X such that x1, x2 are both in the
image of |U | → |X|. By Lemma 68.12.2 we can find a specialization u1 ⇝ u2 in U
mapping to x1 ⇝ x2. By Lemma 68.12.2 we can find u′

2 ⇝ u1 mapping to x2 ⇝ x1.
This means that u′

2 ⇝ u2 is a specialization between points of U mapping to the
same point of X, namely x2. This is not possible, unless u′

2 = u2, see Lemma
68.12.1. Hence also u1 = u2 as desired. □

Proposition 68.12.4.03K6 Let S be a scheme. Let X be a decent algebraic space over
S. Then the topological space |X| is sober (see Topology, Definition 5.8.6).

Proof. We have seen in Lemma 68.12.3 that |X| is Kolmogorov. Hence it remains
to show that every irreducible closed subset T ⊂ |X| has a generic point. By
Properties of Spaces, Lemma 66.12.3 there exists a closed subspace Z ⊂ X with
|Z| = |T |. By definition this means that Z → X is a representable morphism
of algebraic spaces. Hence Z is a decent algebraic space by Lemma 68.5.3. By
Theorem 68.10.2 we see that there exists an open dense subspace Z ′ ⊂ Z which is a
scheme. This means that |Z ′| ⊂ T is open dense. Hence the topological space |Z ′|
is irreducible, which means that Z ′ is an irreducible scheme. By Schemes, Lemma
26.11.1 we conclude that |Z ′| is the closure of a single point η ∈ T and hence also
T = {η}, and we win. □

For decent algebraic spaces dimension works as expected.

Lemma 68.12.5.0A4J Let S be a scheme. Dimension as defined in Properties of Spaces,
Section 66.9 behaves well on decent algebraic spaces X over S.

(1) If x ∈ |X|, then dimx(|X|) = dimx(X), and
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(2) dim(|X|) = dim(X).

Proof. Proof of (1). Choose a scheme U with a point u ∈ U and an étale morphism
h : U → X mapping u to x. By definition the dimension of X at x is dimu(|U |).
Thus we may pick U such that dimx(X) = dim(|U |). Let d be an integer. If
dim(U) ≥ d, then there exists a sequence of nontrivial specializations ud ⇝ . . .⇝ u0
in U . Taking the image we find a corresponding sequence h(ud) ⇝ . . . ⇝ h(u0)
each of which is nontrivial by Lemma 68.12.1. Hence we see that the image of |U | in
|X| has dimension at least d. Conversely, suppose that xd ⇝ . . .⇝ x0 is a sequence
of specializations in |X| with x0 in the image of |U | → |X|. Then we can lift this
to a sequence of specializations in U by Lemma 68.12.2.
Part (2) is an immediate consequence of part (1), Topology, Lemma 5.10.2, and
Properties of Spaces, Section 66.9. □

Lemma 68.12.6.0ABW Let S be a scheme. Let X → Y be a locally quasi-finite morphism
of algebraic spaces over S. Let x ∈ |X| with image y ∈ |Y |. Then the dimension of
the local ring of Y at y is ≥ to the dimension of the local ring of X at x.

Proof. The definition of the dimension of the local ring of a point on an algebraic
space is given in Properties of Spaces, Definition 66.10.2. Choose an étale morphism
(V, v)→ (Y, y) where V is a scheme. Choose an étale morphism U → V ×Y X and
a point u ∈ U mapping to x ∈ |X| and v ∈ V . Then U → V is locally quasi-finite
and we have to prove that

dim(OV,v) ≥ dim(OU,u)
This is Algebra, Lemma 10.125.4. □

Lemma 68.12.7.0ED0 Let S be a scheme. Let X → Y be a locally quasi-finite morphism
of algebraic spaces over S. Then dim(X) ≤ dim(Y ).

Proof. This follows from Lemma 68.12.6 and Properties of Spaces, Lemma 66.10.3.
□

The following lemma is a tiny bit stronger than Properties of Spaces, Lemma
66.15.3. We will improve this lemma in Lemma 68.14.2.

Lemma 68.12.8.03IK Let S be a scheme. Let k be a field. Let X be an algebraic space
over S and assume that there exists a surjective étale morphism Spec(k) → X. If
X is decent, then X ∼= Spec(k′) where k/k′ is a finite separable extension.

Proof. The assumption implies that |X| = {x} is a singleton. Since X is decent we
can find a quasi-compact monomorphism Spec(k′) → X whose image is x. Then
the projection U = Spec(k′) ×X Spec(k) → Spec(k) is a monomorphism, whence
U = Spec(k), see Schemes, Lemma 26.23.11. Hence the projection Spec(k) = U →
Spec(k′) is étale and we win. □

68.13. Reduced singleton spaces

06QU A singleton space is an algebraic space X such that |X| is a singleton. It turns
out that these can be more interesting than just being the spectrum of a field, see
Spaces, Example 65.14.7. We develop a tiny bit of machinery to be able to talk
about these.
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Lemma 68.13.1.06QV Let S be a scheme. Let Z be an algebraic space over S. Let k be a
field and let Spec(k)→ Z be surjective and flat. Then any morphism Spec(k′)→ Z
where k′ is a field is surjective and flat.

Proof. Consider the fibre square

T

��

// Spec(k)

��
Spec(k′) // Z

Note that T → Spec(k′) is flat and surjective hence T is not empty. On the other
hand T → Spec(k) is flat as k is a field. Hence T → Z is flat and surjective. It
follows from Morphisms of Spaces, Lemma 67.31.5 that Spec(k′)→ Z is flat. It is
surjective as by assumption |Z| is a singleton. □

Lemma 68.13.2.06QW Let S be a scheme. Let Z be an algebraic space over S. The
following are equivalent

(1) Z is reduced and |Z| is a singleton,
(2) there exists a surjective flat morphism Spec(k) → Z where k is a field,

and
(3) there exists a locally of finite type, surjective, flat morphism Spec(k)→ Z

where k is a field.

Proof. Assume (1). Let W be a scheme and let W → Z be a surjective étale mor-
phism. Then W is a reduced scheme. Let η ∈W be a generic point of an irreducible
component of W . Since W is reduced we have OW,η = κ(η). It follows that the
canonical morphism η = Spec(κ(η)) → W is flat. We see that the composition
η → Z is flat (see Morphisms of Spaces, Lemma 67.30.3). It is also surjective as
|Z| is a singleton. In other words (2) holds.

Assume (2). Let W be a scheme and let W → Z be a surjective étale morphism.
Choose a field k and a surjective flat morphism Spec(k)→ Z. Then W ×Z Spec(k)
is a scheme étale over k. Hence W ×Z Spec(k) is a disjoint union of spectra of fields
(see Remark 68.4.1), in particular reduced. Since W ×Z Spec(k)→W is surjective
and flat we conclude that W is reduced (Descent, Lemma 35.19.1). In other words
(1) holds.

It is clear that (3) implies (2). Finally, assume (2). Pick a nonempty affine scheme
W and an étale morphism W → Z. Pick a closed point w ∈ W and set k = κ(w).
The composition

Spec(k) w−→W −→ Z

is locally of finite type by Morphisms of Spaces, Lemmas 67.23.2 and 67.39.9. It is
also flat and surjective by Lemma 68.13.1. Hence (3) holds. □

The following lemma singles out a slightly better class of singleton algebraic spaces
than the preceding lemma.

Lemma 68.13.3.06QX Let S be a scheme. Let Z be an algebraic space over S. The
following are equivalent

(1) Z is reduced, locally Noetherian, and |Z| is a singleton, and
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(2) there exists a locally finitely presented, surjective, flat morphism Spec(k)→
Z where k is a field.

Proof. Assume (2) holds. By Lemma 68.13.2 we see that Z is reduced and |Z| is
a singleton. Let W be a scheme and let W → Z be a surjective étale morphism.
Choose a field k and a locally finitely presented, surjective, flat morphism Spec(k)→
Z. Then W ×Z Spec(k) is a scheme étale over k, hence a disjoint union of spectra of
fields (see Remark 68.4.1), hence locally Noetherian. Since W ×Z Spec(k)→W is
flat, surjective, and locally of finite presentation, we see that {W ×Z Spec(k)→W}
is an fppf covering and we conclude that W is locally Noetherian (Descent, Lemma
35.16.1). In other words (1) holds.
Assume (1). Pick a nonempty affine scheme W and an étale morphism W → Z.
Pick a closed point w ∈ W and set k = κ(w). Because W is locally Noetherian
the morphism w : Spec(k) → W is of finite presentation, see Morphisms, Lemma
29.21.7. Hence the composition

Spec(k) w−→W −→ Z

is locally of finite presentation by Morphisms of Spaces, Lemmas 67.28.2 and
67.39.8. It is also flat and surjective by Lemma 68.13.1. Hence (2) holds. □

Lemma 68.13.4.06QY Let S be a scheme. Let Z ′ → Z be a monomorphism of alge-
braic spaces over S. Assume there exists a field k and a locally finitely presented,
surjective, flat morphism Spec(k)→ Z. Then either Z ′ is empty or Z ′ = Z.
Proof. We may assume that Z ′ is nonempty. In this case the fibre product T =
Z ′ ×Z Spec(k) is nonempty, see Properties of Spaces, Lemma 66.4.3. Now T is an
algebraic space and the projection T → Spec(k) is a monomorphism. Hence T =
Spec(k), see Morphisms of Spaces, Lemma 67.10.8. We conclude that Spec(k)→ Z
factors through Z ′. But as Spec(k)→ Z is surjective, flat and locally of finite pre-
sentation, we see that Spec(k)→ Z is surjective as a map of sheaves on (Sch/S)fppf
(see Spaces, Remark 65.5.2) and we conclude that Z ′ = Z. □

The following lemma says that to each point of an algebraic space we can associate
a canonical reduced, locally Noetherian singleton algebraic space.
Lemma 68.13.5.06QZ Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. Then there exists a unique monomorphism Z → X of algebraic spaces
over S such that Z is an algebraic space which satisfies the equivalent conditions
of Lemma 68.13.3 and such that the image of |Z| → |X| is {x}.
Proof. Choose a scheme U and a surjective étale morphism U → X. Set R =
U ×X U so that X = U/R is a presentation (see Spaces, Section 65.9). Set

U ′ =
∐

u∈U lying over x
Spec(κ(u)).

The canonical morphism U ′ → U is a monomorphism. Let
R′ = U ′ ×X U ′ = R×(U×SU) (U ′ ×S U ′).

Because U ′ → U is a monomorphism we see that the projections s′, t′ : R′ → U ′

factor as a monomorphism followed by an étale morphism. Hence, as U ′ is a disjoint
union of spectra of fields, using Remark 68.4.1, and using Schemes, Lemma 26.23.11
we conclude that R′ is a disjoint union of spectra of fields and that the morphisms
s′, t′ : R′ → U ′ are étale. Hence Z = U ′/R′ is an algebraic space by Spaces,
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Theorem 65.10.5. As R′ is the restriction of R by U ′ → U we see Z → X is a
monomorphism by Groupoids, Lemma 39.20.6. Since Z → X is a monomorphism
we see that |Z| → |X| is injective, see Morphisms of Spaces, Lemma 67.10.9. By
Properties of Spaces, Lemma 66.4.3 we see that

|U ′| = |Z ×X U ′| → |Z| ×|X| |U ′|

is surjective which implies (by our choice of U ′) that |Z| → |X| has image {x}. We
conclude that |Z| is a singleton. Finally, by construction U ′ is locally Noetherian
and reduced, i.e., we see that Z satisfies the equivalent conditions of Lemma 68.13.3.

Let us prove uniqueness of Z → X. Suppose that Z ′ → X is a second such
monomorphism of algebraic spaces. Then the projections

Z ′ ←− Z ′ ×X Z −→ Z

are monomorphisms. The algebraic space in the middle is nonempty by Properties
of Spaces, Lemma 66.4.3. Hence the two projections are isomorphisms by Lemma
68.13.4 and we win. □

We introduce the following terminology which foreshadows the residual gerbes we
will introduce later, see Properties of Stacks, Definition 100.11.8.

Definition 68.13.6.06R0 Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. The residual space of X at x2 is the monomorphism Zx → X constructed
in Lemma 68.13.5.

In particular we know that Zx is a locally Noetherian, reduced, singleton algebraic
space and that there exists a field and a surjective, flat, locally finitely presented
morphism

Spec(k) −→ Zx.

The residual space is often given by a monomorphism from the spectrum of a field.

Lemma 68.13.7.0H1R Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. The residual space Zx of X at x is isomorphic to the spectrum of a field
if and only if x can be represented by a monomorphism Spec(k)→ X where k is a
field. If X is decent, this holds for all x ∈ |X|.

Proof. Since Zx → X is a monomorphism, if Zx = Spec(k) for some field k, then x
is represented by the monomorphism Spec(k) = Zx → X. Conversely, if Spec(k)→
X is a monomorphism which represents x, then Zx ×X Spec(k) → Spec(k) is a
monomorphism whose source is nonempty by Properties of Spaces, Lemma 66.4.3.
Hence Zx ×X Spec(k) = Spec(k) by Morphisms of Spaces, Lemma 67.10.8. Hence
we get a monomorphism Spec(k)→ Zx. This is an isomorphism by Lemma 68.13.4.
The final statement follows from Lemma 68.11.1. □

The residual space is a regular algebraic space by the following lemma.

Lemma 68.13.8.06R1 A reduced, locally Noetherian singleton algebraic space Z is reg-
ular.

2This is nonstandard notation.
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Proof. Let Z be a reduced, locally Noetherian singleton algebraic space over a
scheme S. Let W → Z be a surjective étale morphism where W is a scheme. Let k
be a field and let Spec(k)→ Z be surjective, flat, and locally of finite presentation
(see Lemma 68.13.3). The scheme T = W ×Z Spec(k) is étale over k in particular
regular, see Remark 68.4.1. Since T →W is locally of finite presentation, flat, and
surjective it follows that W is regular, see Descent, Lemma 35.19.2. By definition
this means that Z is regular. □

Lemma 68.13.9.0H1S Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Let x ∈ |X| be a point. Assume

(1) |f |(|Y |) is contained in {x} ⊂ |X|,
(2) Y is reduced, and
(3) X is locally Noetherian.

Then f factors through the residual space Zx of X at x.

Proof. Preliminary remark: since Zx → X is a monomorphism, it suffices to find
a surjective étale morphism Y ′ → Y such that Y ′ → X factors through Zx. A
remark here is that Y ′ is reduced as well.
Let U be an affine scheme and let U → X be an étale morphism such that x
is in the image of |U | → |X|. Since X is locally Noetherian, U is a Noetherian
affine scheme. By assumption (1) we see that Y ′ = U ×X Y → Y is surjective
as well as étale. Denote E ⊂ |U | the set of points mapping to x. There are
no nontrivial specializations between the elements of E, see Lemma 68.7.2. The
morphism Y ′ → U maps |Y ′| into E. By our construction of Zx in the proof of
Lemma 68.13.5 we know that

∐
u∈E u → X factors through Zx. Hence it suffices

to prove that Y ′ → U factors through
∐
u∈E u → X. After replacing Y ′ by an

étale covering by a scheme (which we are allowed by our preliminary remark), this
follows from Morphisms, Lemma 29.58.2. □

Lemma 68.13.10.0H1T Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Let x ∈ |X| be a point. Assume

(1) |f |(|Y |) is contained in {x} ⊂ |X|,
(2) Y is reduced, and
(3) x can be represented by a quasi-compact monomorphism x : Spec(k)→ X

where k is a field (for example if X is decent).
Then f factors through the residual space Zx = Spec(k) of X at x.

Proof. By Lemma 68.13.7 we have Zx = Spec(k).
Preliminary remark: since Spec(k) → X is a monomorphism, it suffices to find a
surjective étale morphism Y ′ → Y such that Y ′ → X factors through Zx. A remark
here is that Y ′ is reduced as well.
After replacing X by a quasi-compact open neighbourhood of x, we may assume X
quasi-compact. By Lemma 68.8.3, x is a point of T ⊂ U ⊂ X where T → U (resp.
U → X) is a closed (resp. open) immersion, and T is a scheme. By Properties of
Spaces, Lemma 66.4.9, f factors through U , so we may assume U = X. Then f
factors through T because Y is reduced, see Properties of Spaces, Lemma 66.12.4.
So we may assume that X = T is a scheme. By our preliminary remark we may
assume Y is a scheme too. This reduces us to Morphisms, Lemma 29.58.1. □
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Example 68.13.11.0H2Y Here is a counter example to Lemmas 68.13.9 and 68.13.10 in
case X is neither locally Noetherian nor decent. Let k be a field. Let G be an infinite
profinite group. Let Y be G viewed as a zero-dimensional affine k-group scheme,
i.e., Y = Spec(locally constant maps G → k). Let Γ be G viewed as a discrete
k-group scheme, acting on X by translations. Put X = Y/Γ. This is a one-point
algebraic space, with projection q : Y → X. Let e ∈ G be the origin (any element
would do), and view it as a k-point of Y . We get a k-point x : Spec(k) → X
which is a monomorphism since it is a section of X → Spec(k). We claim that
(although Y is affine and reduced and |X| = {x}), the morphism q does not factor
through any morphism Spec(K)→ X, where K is a field. Otherwise it would factor
through x by Properties of Spaces, Lemma 66.4.11. Now the pullback of q by x is
Γ→ Spec(k), with the projection Γ→ Y being the orbit map g 7→ g · e. The latter
has no section, whence the claim.

Lemma 68.13.12.0H1U Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X| with residual space Zx ⊂ X. Assume X is locally Noetherian. Then x is a
closed point of |X| if and only if the morphism Zx → X is a closed immersion.

Proof. If Zx → X is a closed immersion, then x is a closed point of |X|, see
Morphisms of Spaces, Lemma 67.12.3. Conversely, assume x is a closed point of
|X|. Let Z ⊂ X be the reduced closed subspace with |Z| = {x} (Properties of
Spaces, Lemma 66.12.3). Then Z is locally Noetherian by Morphisms of Spaces,
Lemmas 67.23.7 and 67.23.5. Since also Z is reduced and |Z| = {x} it Z = Zx is
the residual space by definition. □

68.14. Decent spaces

047Y In this section we collect some useful facts on decent spaces.

Lemma 68.14.1.0BB6 Any locally Noetherian decent algebraic space is quasi-separated.

Proof. Namely, let X be an algebraic space (over some base scheme, for example
over Z) which is decent and locally Noetherian. Let U → X and V → X be étale
morphisms with U and V affine schemes. We have to show that W = U ×X V is
quasi-compact (Properties of Spaces, Lemma 66.3.3). Since X is locally Noetherian,
the schemes U , V are Noetherian and W is locally Noetherian. Since X is decent,
the fibres of the morphism W → U are finite. Namely, we can represent any
x ∈ |X| by a quasi-compact monomorphism Spec(k) → X. Then Uk and Vk are
finite disjoint unions of spectra of finite separable extensions of k (Remark 68.4.1)
and we see that Wk = Uk ×Spec(k) Vk is finite. Let n be the maximum degree of a
fibre of W → U at a generic point of an irreducible component of U . Consider the
stratification

U = U0 ⊃ U1 ⊃ U2 ⊃ . . .
associated to W → U in More on Morphisms, Lemma 37.45.5. By our choice of n
above we conclude that Un+1 is empty. Hence we see that the fibres of W → U are
universally bounded. Then we can apply More on Morphisms, Lemma 37.45.3 to
find a stratification

∅ = Z−1 ⊂ Z0 ⊂ Z1 ⊂ Z2 ⊂ . . . ⊂ Zn = U

by closed subsets such that with Sr = Zr \ Zr−1 the morphism W ×U Sr → Sr is
finite locally free. Since U is Noetherian, the schemes Sr are Noetherian, whence
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the schemes W ×U Sr are Noetherian, whence W =
∐
W ×U Sr is quasi-compact

as desired. □

Lemma 68.14.2.047Z Let S be a scheme. Let X be a decent algebraic space over S.
(1) If |X| is a singleton then X is a scheme.
(2) If |X| is a singleton and X is reduced, then X ∼= Spec(k) for some field k.

Proof. Assume |X| is a singleton. It follows immediately from Theorem 68.10.2
that X is a scheme, but we can also argue directly as follows. Choose an affine
scheme U and a surjective étale morphism U → X. Set R = U ×X U . Then U
and R have finitely many points by Lemma 68.4.5 (and the definition of a decent
space). All of these points are closed in U and R by Lemma 68.12.1. It follows that
U and R are affine schemes. We may shrink U to a singleton space. Then U is the
spectrum of a henselian local ring, see Algebra, Lemma 10.153.10. The projections
R → U are étale, hence finite étale because U is the spectrum of a 0-dimensional
henselian local ring, see Algebra, Lemma 10.153.3. It follows that X is a scheme
by Groupoids, Proposition 39.23.9.
Part (2) follows from (1) and the fact that a reduced singleton scheme is the spec-
trum of a field. □

Remark 68.14.3.049D We will see in Limits of Spaces, Lemma 70.15.3 that an algebraic
space whose reduction is a scheme is a scheme.

Lemma 68.14.4.07U5 Let S be a scheme. Let X be a decent algebraic space over S.
Consider a commutative diagram

Spec(k) //

##

X

��
S

Assume that the image point s ∈ S of Spec(k) → S is a closed point and that
κ(s) ⊂ k is algebraic. Then the image x of Spec(k)→ X is a closed point of |X|.

Proof. Suppose that x⇝ x′ for some x′ ∈ |X|. Choose an étale morphism U → X
where U is a scheme and a point u′ ∈ U ′ mapping to x′. Choose a specialization
u ⇝ u′ in U with u mapping to x in X, see Lemma 68.12.2. Then u is the image
of a point w of the scheme W = Spec(k)×X U . Since the projection W → Spec(k)
is étale we see that κ(w) ⊃ k is finite. Hence κ(w) ⊃ κ(s) is algebraic. Hence
κ(u) ⊃ κ(s) is algebraic. Thus u is a closed point of U by Morphisms, Lemma
29.20.2. Thus u = u′, whence x = x′. □

Lemma 68.14.5.08AL Let S be a scheme. Let X be a decent algebraic space over S.
Consider a commutative diagram

Spec(k) //

##

X

��
S

Assume that the image point s ∈ S of Spec(k)→ S is a closed point and that the
field extension k/κ(s) is finite. Then Spec(k)→ X is a finite morphism. If κ(s) = k
then Spec(k)→ X is a closed immersion.
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Proof. By Lemma 68.14.4 the image point x ∈ |X| is closed. Let Z ⊂ X be the
reduced closed subspace with |Z| = {x} (Properties of Spaces, Lemma 66.12.3).
Note that Z is a decent algebraic space by Lemma 68.6.5. By Lemma 68.14.2 we
see that Z = Spec(k′) for some field k′. Of course k ⊃ k′ ⊃ κ(s). Then Spec(k)→ Z
is a finite morphism of schemes and Z → X is a finite morphism as it is a closed
immersion. Hence Spec(k) → X is finite (Morphisms of Spaces, Lemma 67.45.4).
If k = κ(s), then Spec(k) = Z and Spec(k)→ X is a closed immersion. □

Lemma 68.14.6.0AHB Let S be a scheme. Suppose X is a decent algebraic space over S.
Let x ∈ |X| be a closed point. Then x can be represented by a closed immersion
i : Spec(k)→ X from the spectrum of a field.

Proof. We know that x can be represented by a quasi-compact monomorphism
i : Spec(k) → X where k is a field (Definition 68.6.1). Let U → X be an étale
morphism where U is an affine scheme. As x is closed and X decent, the fibre F
of |U | → |X| over x consists of closed points (Lemma 68.12.1). As i is a monomor-
phism, so is Uk = U ×X Spec(k)→ U . In particular, the map |Uk| → F is injective.
Since Uk is quasi-compact and étale over a field, we see that Uk is a finite disjoint
union of spectra of fields (Remark 68.4.1). Say Uk = Spec(k1) ⨿ . . . ⨿ Spec(kr).
Since Spec(ki)→ U is a monomorphism, we see that its image ui has residue field
κ(ui) = ki. Since ui ∈ F is a closed point we conclude the morphism Spec(ki)→ U
is a closed immersion. As the ui are pairwise distinct, Uk → U is a closed immer-
sion. Hence i is a closed immersion (Morphisms of Spaces, Lemma 67.12.1). This
finishes the proof. □

68.15. Locally separated spaces

088H It turns out that a locally separated algebraic space is decent.

Lemma 68.15.1.088I Let A be a ring. Let k be a field. Let pn, n ≥ 1 be a sequence of
pairwise distinct primes of A. Moreover, for each n let k → κ(pn) be an embedding.
Then the closure of the image of∐

n ̸=m
Spec(κ(pn)⊗k κ(pm)) −→ Spec(A⊗A)

meets the diagonal.

Proof. Set kn = κ(pn). We may assume that A =
∏
kn. Denote xn = Spec(kn)

the open and closed point corresponding to A → kn. Then Spec(A) = Z ⨿ {xn}
where Z is a nonempty closed subset. Namely, Z = V (en;n ≥ 1) where en is the
idempotent of A corresponding to the factor kn and Z is nonempty as the ideal
generated by the en is not equal to A. We will show that the closure of the image
contains ∆(Z). The kernel of the map

(
∏

kn)⊗k (
∏

km) −→
∏

n ̸=m
kn ⊗k km

is the ideal generated by en⊗ en, n ≥ 1. Hence the closure of the image of the map
on spectra is V (en⊗ en;n ≥ 1) whose intersection with ∆(Spec(A)) is ∆(Z). Thus
it suffices to show that∐

n ̸=m
Spec(kn ⊗k km) −→ Spec(

∏
n ̸=m

kn ⊗k km)

has dense image. This follows as the family of ring maps
∏
n ̸=m kn⊗kkm → kn⊗kkm

is jointly injective. □
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Lemma 68.15.2 (David Rydh).088J A locally separated algebraic space is decent.

Proof. Let S be a scheme and let X be a locally separated algebraic space over
S. We may assume S = Spec(Z), see Properties of Spaces, Definition 66.3.1.
Unadorned fibre products will be over Z. Let x ∈ |X|. Choose a scheme U , an
étale morphism U → X, and a point u ∈ U mapping to x in |X|. As usual we
identify u = Spec(κ(u)). As X is locally separated the morphism

u×X u→ u× u

is an immersion (Morphisms of Spaces, Lemma 67.4.5). Hence More on Groupoids,
Lemma 40.11.5 tells us that it is a closed immersion (use Schemes, Lemma 26.10.4).
As u×Xu→ u×XU is a monomorphism (base change of u→ U) and as u×XU → u
is étale we conclude that u×X u is a disjoint union of spectra of fields (see Remark
68.4.1 and Schemes, Lemma 26.23.11). Since it is also closed in the affine scheme
u× u we conclude u×X u is a finite disjoint union of spectra of fields. Thus x can
be represented by a monomorphism Spec(k) → X where k is a field, see Lemma
68.4.3.

Next, let U = Spec(A) be an affine scheme and let U → X be an étale morphism.
To finish the proof it suffices to show that F = U ×X Spec(k) is finite. Write
F =

∐
i∈I Spec(ki) as the disjoint union of finite separable extensions of k. We

have to show that I is finite. Set R = U ×X U . As X is locally separated, the
morphism j : R → U × U is an immersion. Let U ′ ⊂ U × U be an open such that
j factors through a closed immersion j′ : R → U ′. Let e : U → R be the diagonal
map. Using that e is a morphism between schemes étale over U such that ∆ = j ◦ e
is a closed immersion, we conclude that R = e(U) ⨿W for some open and closed
subscheme W ⊂ R. Since j′ is a closed immersion we conclude that j′(W ) ⊂ U ′ is
closed and disjoint from j′(e(U)). Therefore j(W )∩∆(U) = ∅ in U ×U . Note that
W contains Spec(ki ⊗k ki′) for all i ̸= i′, i, i′ ∈ I. By Lemma 68.15.1 we conclude
that I is finite as desired. □

68.16. Valuative criterion

06NP For a quasi-compact morphism from a decent space the valuative criterion is nec-
essary in order for the morphism to be universally closed.

Proposition 68.16.1.03KJ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-compact, and X is decent. Then f is universally
closed if and only if the existence part of the valuative criterion holds.

Proof. In Morphisms of Spaces, Lemma 67.42.1 we have seen one of the implica-
tions. To prove the other, assume that f is universally closed. Let

Spec(K) //

��

X

��
Spec(A) // Y
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be a diagram as in Morphisms of Spaces, Definition 67.41.1. Let XA = Spec(A)×Y
X, so that we have

Spec(K) //

%%

XA

��
Spec(A)

By Morphisms of Spaces, Lemma 67.8.4 we see that XA → Spec(A) is quasi-
compact. Since XA → X is representable, we see that XA is decent also, see
Lemma 68.5.3. Moreover, as f is universally closed, we see that XA → Spec(A) is
universally closed. Hence we may and do replace X by XA and Y by Spec(A).
Let x′ ∈ |X| be the equivalence class of Spec(K) → X. Let y ∈ |Y | = |Spec(A)|
be the closed point. Set y′ = f(x′); it is the generic point of Spec(A). Since f
is universally closed we see that f({x′}) contains {y′}, and hence contains y. Let
x ∈ {x′} be a point such that f(x) = y. Let U be a scheme, and φ : U → X an
étale morphism such that there exists a u ∈ U with φ(u) = x. By Lemma 68.7.3
and our assumption that X is decent there exists a specialization u′ ⇝ u on U with
φ(u′) = x′. This means that there exists a common field extension K ⊂ K ′ ⊃ κ(u′)
such that

Spec(K ′) //

��

U

��
Spec(K) //

&&

X

��
Spec(A)

is commutative. This gives the following commutative diagram of rings

K ′ OU,uoo

K

OO

A

bb

OO

By Algebra, Lemma 10.50.2 we can find a valuation ring A′ ⊂ K ′ dominating the
image of OU,u in K ′. Since by construction OU,u dominates A we see that A′

dominates A also. Hence we obtain a diagram resembling the second diagram of
Morphisms of Spaces, Definition 67.41.1 and the proposition is proved. □

68.17. Relative conditions

03KW This is a (yet another) technical section dealing with conditions on algebraic spaces
having to do with points. It is probably a good idea to skip this section.

Definition 68.17.1.03KZ Let S be a scheme. We say an algebraic space X over S has
property (β) if X has the corresponding property of Lemma 68.5.1. Let f : X → Y
be a morphism of algebraic spaces over S.

https://stacks.math.columbia.edu/tag/03KZ
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(1) We say f has property (β) if for any scheme T and morphism T → Y the
fibre product T ×Y X has property (β).

(2) We say f is decent if for any scheme T and morphism T → Y the fibre
product T ×Y X is a decent algebraic space.

(3) We say f is reasonable if for any scheme T and morphism T → Y the
fibre product T ×Y X is a reasonable algebraic space.

(4) We say f is very reasonable if for any scheme T and morphism T → Y
the fibre product T ×Y X is a very reasonable algebraic space.

We refer to Remark 68.17.10 for an informal discussion. It will turn out that the
class of very reasonable morphisms is not so useful, but that the classes of decent
and reasonable morphisms are useful.

Lemma 68.17.2.03M5 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We have the following implications among the conditions on f :

representable

%-
very reasonable +3 reasonable +3 decent +3 (β)

quasi-separated

19

Proof. This is clear from the definitions, Lemma 68.5.1 and Morphisms of Spaces,
Lemma 67.4.12. □

Here is another sanity check.

Lemma 68.17.3.0ABX Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If X is decent (resp. is reasonable, resp. has property (β) of Lemma
68.5.1), then f is decent (resp. reasonable, resp. has property (β)).

Proof. Let T be a scheme and let T → Y be a morphism. Then T → Y is
representable, hence the base change T ×Y X → X is representable. Hence if X
is decent (or reasonable), then so is T ×Y X, see Lemma 68.6.5. Similarly, for
property (β), see Lemma 68.5.3. □

Lemma 68.17.4.03L0 Having property (β), being decent, or being reasonable is pre-
served under arbitrary base change.

Proof. This is immediate from the definition. □

Lemma 68.17.5.0ABY Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let ω ∈ {β, decent, reasonable}. Suppose that Y has property (ω)
and f : X → Y has (ω). Then X has (ω).

Proof. Let us prove the lemma in case ω = β. In this case we have to show that
any x ∈ |X| is represented by a monomorphism from the spectrum of a field into
X. Let y = f(x) ∈ |Y |. By assumption there exists a field k and a monomorphism
Spec(k) → Y representing y. Then x corresponds to a point x′ of Spec(k) ×Y X.
By assumption x′ is represented by a monomorphism Spec(k′) → Spec(k) ×Y X.
Clearly the composition Spec(k′)→ X is a monomorphism representing x.
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Let us prove the lemma in case ω = decent. Let x ∈ |X| and y = f(x) ∈ |Y |. By
the result of the preceding paragraph we can choose a diagram

Spec(k′)
x

//

��

X

f

��
Spec(k) y // Y

whose horizontal arrows monomorphisms. As Y is decent the morphism y is quasi-
compact. As f is decent the algebraic space Spec(k) ×Y X is decent. Hence the
monomorphism Spec(k′) → Spec(k) ×Y X is quasi-compact. Then the monomor-
phism x : Spec(k′)→ X is quasi-compact as a composition of quasi-compact mor-
phisms (use Morphisms of Spaces, Lemmas 67.8.4 and 67.8.5). As the point x was
arbitrary this implies X is decent.
Let us prove the lemma in case ω = reasonable. Choose V → Y étale with
V an affine scheme. Choose U → V ×Y X étale with U an affine scheme. By
assumption V → Y has universally bounded fibres. By Lemma 68.3.3 the morphism
V ×Y X → X has universally bounded fibres. By assumption on f we see that
U → V ×Y X has universally bounded fibres. By Lemma 68.3.2 the composition
U → X has universally bounded fibres. Hence there exists sufficiently many étale
morphisms U → X from schemes with universally bounded fibres, and we conclude
that X is reasonable. □

Lemma 68.17.6.03L1 Having property (β), being decent, or being reasonable is pre-
served under compositions.

Proof. Let ω ∈ {β, decent, reasonable}. Let f : X → Y and g : Y → Z be
morphisms of algebraic spaces over the scheme S. Assume f and g both have
property (ω). Then we have to show that for any scheme T and morphism T → Z
the space T×ZX has (ω). By Lemma 68.17.4 this reduces us to the following claim:
Suppose that Y is an algebraic space having property (ω), and that f : X → Y is
a morphism with (ω). Then X has (ω). This is the content of Lemma 68.17.5. □

Lemma 68.17.7.0ABZ Let S be a scheme. Let f : X → Y , g : Z → Y be morphisms
of algebraic spaces over S. If X and Z are decent (resp. reasonable, resp. have
property (β) of Lemma 68.5.1), then so does X ×Y Z.

Proof. Namely, by Lemma 68.17.3 the morphism X → Y has the property. Then
the base change X×Y Z → Z has the property by Lemma 68.17.4. And finally this
implies X ×Y Z has the property by Lemma 68.17.5. □

Lemma 68.17.8.03L2 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let P ∈ {(β), decent, reasonable}. Assume

(1) f is quasi-compact,
(2) f is étale,
(3) |f | : |X| → |Y | is surjective, and
(4) the algebraic space X has property P.

Then Y has property P.

Proof. Let us prove this in case P = (β). Let y ∈ |Y | be a point. We have to
show that y can be represented by a monomorphism from a field. Choose a point

https://stacks.math.columbia.edu/tag/03L1
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x ∈ |X| with f(x) = y. By assumption we may represent x by a monomorphism
Spec(k)→ X, with k a field. By Lemma 68.4.3 it suffices to show that the projec-
tions Spec(k) ×Y Spec(k) → Spec(k) are étale and quasi-compact. We can factor
the first projection as

Spec(k)×Y Spec(k) −→ Spec(k)×Y X −→ Spec(k)

The first morphism is a monomorphism, and the second is étale and quasi-compact.
By Properties of Spaces, Lemma 66.16.8 we see that Spec(k) ×Y X is a scheme.
Hence it is a finite disjoint union of spectra of finite separable field extensions of
k. By Schemes, Lemma 26.23.11 we see that the first arrow identifies Spec(k) ×Y
Spec(k) with a finite disjoint union of spectra of finite separable field extensions of
k. Hence the projection morphism is étale and quasi-compact.

Let us prove this in case P = decent. We have already seen in the first para-
graph of the proof that this implies that every y ∈ |Y | can be represented by a
monomorphism y : Spec(k) → Y . Pick such a y. Pick an affine scheme U and an
étale morphism U → X such that the image of |U | → |Y | contains y. By Lemma
68.4.5 it suffices to show that Uy is a finite scheme over k. The fibre product
Xy = Spec(k) ×Y X is a quasi-compact étale algebraic space over k. Hence by
Properties of Spaces, Lemma 66.16.8 it is a scheme. So it is a finite disjoint union
of spectra of finite separable extensions of k. Say Xy = {x1, . . . , xn} so xi is given
by xi : Spec(ki) → X with [ki : k] < ∞. By assumption X is decent, so the
schemes Uxi = Spec(ki)×X U are finite over ki. Finally, we note that Uy =

∐
Uxi

as a scheme and we conclude that Uy is finite over k as desired.

Let us prove this in case P = reasonable. Pick an affine scheme V and an étale
morphism V → Y . We have the show the fibres of V → Y are universally bounded.
The algebraic space V ×Y X is quasi-compact. Thus we can find an affine scheme
W and a surjective étale morphism W → V ×Y X, see Properties of Spaces, Lemma
66.6.3. Here is a picture (solid diagram)

W //

$$

V ×Y X //

��

X

f

��

Spec(k)
x

oo

y
{{

V // Y

The morphism W → X is universally bounded by our assumption that the space
X is reasonable. Let n be an integer bounding the degrees of the fibres of W → X.
We claim that the same integer works for bounding the fibres of V → Y . Namely,
suppose y ∈ |Y | is a point. Then there exists a x ∈ |X| with f(x) = y (see above).
This means we can find a field k and morphisms x, y given as dotted arrows in the
diagram above. In particular we get a surjective étale morphism

Spec(k)×x,X W → Spec(k)×x,X (V ×Y X) = Spec(k)×y,Y V

which shows that the degree of Spec(k) ×y,Y V over k is less than or equal to the
degree of Spec(k) ×x,X W over k, i.e., ≤ n, and we win. (This last part of the
argument is the same as the argument in the proof of Lemma 68.3.4. Unfortu-
nately that lemma is not general enough because it only applies to representable
morphisms.) □
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Lemma 68.17.9.03L3 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let P ∈ {(β), decent, reasonable, very reasonable}. The following
are equivalent

(1) f is P,
(2) for every affine scheme Z and every morphism Z → Y the base change

Z ×Y X → Z of f is P,
(3) for every affine scheme Z and every morphism Z → Y the algebraic space

Z ×Y X is P, and
(4) there exists a Zariski covering Y =

⋃
Yi such that each morphism f−1(Yi)→

Yi has P.
If P ∈ {(β), decent, reasonable}, then this is also equivalent to

(5) there exists a scheme V and a surjective étale morphism V → Y such that
the base change V ×Y X → V has P.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are trivial. The implication (3) ⇒
(1) can be seen as follows. Let Z → Y be a morphism whose source is a scheme
over S. Consider the algebraic space Z ×Y X. If we assume (3), then for any affine
open W ⊂ Z, the open subspace W ×Y X of Z ×Y X has property P. Hence by
Lemma 68.5.2 the space Z×Y X has property P, i.e., (1) holds. A similar argument
(omitted) shows that (4) implies (1).

The implication (1) ⇒ (5) is trivial. Let V → Y be an étale morphism from a
scheme as in (5). Let Z be an affine scheme, and let Z → Y be a morphism.
Consider the diagram

Z ×Y V q
//

p

��

V

��
Z // Y

Since p is étale, and hence open, we can choose finitely many affine open subschemes
Wi ⊂ Z ×Y V such that Z =

⋃
p(Wi). Consider the commutative diagram

V ×Y X

��

(
∐
Wi)×Y Xoo

��

// Z ×Y X

��
V

∐
Wi

oo // Z

We know V ×Y X has property P. By Lemma 68.5.3 we see that (
∐
Wi) ×Y X

has property P. Note that the morphism (
∐
Wi) ×Y X → Z ×Y X is étale and

quasi-compact as the base change of
∐
Wi → Z. Hence by Lemma 68.17.8 we

conclude that Z ×Y X has property P. □

Remark 68.17.10.03L4 An informal description of the properties (β), decent, reasonable,
very reasonable was given in Section 68.6. A morphism has one of these properties
if (very) loosely speaking the fibres of the morphism have the corresponding prop-
erties. Being decent is useful to prove things about specializations of points on |X|.
Being reasonable is a bit stronger and technically quite easy to work with.

Here is a lemma we promised earlier which uses decent morphisms.

https://stacks.math.columbia.edu/tag/03L3
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Lemma 68.17.11.03M6 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-compact and decent. (For example if f is repre-
sentable, or quasi-separated, see Lemma 68.17.2.) Then f is universally closed if
and only if the existence part of the valuative criterion holds.

Proof. In Morphisms of Spaces, Lemma 67.42.1 we proved that any quasi-compact
morphism which satisfies the existence part of the valuative criterion is universally
closed. To prove the other, assume that f is universally closed. In the proof of
Proposition 68.16.1 we have seen that it suffices to show, for any valuation ring
A, and any morphism Spec(A) → Y , that the base change fA : XA → Spec(A)
satisfies the existence part of the valuative criterion. By definition the algebraic
space XA has property (γ) and hence Proposition 68.16.1 applies to the morphism
fA and we win. □

68.18. Points of fibres

0AC0 Let S be a scheme. Consider a cartesian diagram
(68.18.0.1)0AC1 W

q
//

p

��

Z

g

��
X

f // Y

of algebraic spaces over S. Let x ∈ |X| and z ∈ |Z| be points mapping to the same
point y ∈ |Y |. We may ask: When is the set
(68.18.0.2)0AC2 Fx,z = {w ∈ |W | such that p(w) = x and q(w) = z}
finite?

Example 68.18.1.0AC3 If X,Y, Z are schemes, then the set Fx,z is equal to the spectrum
of κ(x)⊗κ(y) κ(z) (Schemes, Lemma 26.17.5). Thus we obtain a finite set if either
κ(y) ⊂ κ(x) is finite or if κ(y) ⊂ κ(z) is finite. In particular, this is always the case
if g is quasi-finite at z (Morphisms, Lemma 29.20.5).

Example 68.18.2.0AC4 Let K be a characteristic 0 field endowed with an automorphism
σ of infinite order. Set Y = Spec(K)/Z and X = A1

K/Z where Z acts on K via σ
and on A1

K = Spec(K[t]) via t 7→ t+1. Let Z = Spec(K). Then W = A1
K . Picture

A1
K q

//

p

��

Spec(K)

g

��
A1
K/Z

f // Spec(K)/Z

Take x corresponding to t = 0 and z the unique point of Spec(K). Then we see
that Fx,z = Z as a set.

Lemma 68.18.3.0AC5 In the situation of (68.18.0.1) if Z ′ → Z is a morphism and
z′ ∈ |Z ′| maps to z, then the induced map Fx,z′ → Fx,z is surjective.

Proof. Set W ′ = X ×Y Z ′ = W ×Z Z ′. Then |W ′| → |W | ×|Z| |Z ′| is surjective by
Properties of Spaces, Lemma 66.4.3. Hence the surjectivity of Fx,z′ → Fx,z. □

Lemma 68.18.4.0AC6 In diagram (68.18.0.1) the set (68.18.0.2) is finite if f is of finite
type and f is quasi-finite at x.

https://stacks.math.columbia.edu/tag/03M6
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Proof. The morphism q is quasi-finite at every w ∈ Fx,z, see Morphisms of Spaces,
Lemma 67.27.2. Hence the lemma follows from Morphisms of Spaces, Lemma
67.27.9. □

Lemma 68.18.5.0AC7 In diagram (68.18.0.1) the set (68.18.0.2) is finite if y can be
represented by a monomorphism Spec(k) → Y where k is a field and g is quasi-
finite at z. (Special case: Y is decent and g is étale.)

Proof. By Lemma 68.18.3 applied twice we may replace Z by Zk = Spec(k)×Y Z
and X by Xk = Spec(k)×Y X. We may and do replace Y by Spec(k) as well. Note
that Zk → Spec(k) is quasi-finite at z by Morphisms of Spaces, Lemma 67.27.2.
Choose a scheme V , a point v ∈ V , and an étale morphism V → Zk mapping v to
z. Choose a scheme U , a point u ∈ U , and an étale morphism U → Xk mapping u
to x. Again by Lemma 68.18.3 it suffices to show Fu,v is finite for the diagram

U ×Spec(k) V //

��

V

��
U // Spec(k)

The morphism V → Spec(k) is quasi-finite at v (follows from the general discussion
in Morphisms of Spaces, Section 67.22 and the definition of being quasi-finite at a
point). At this point the finiteness follows from Example 68.18.1. The parenthetical
remark of the statement of the lemma follows from the fact that on decent spaces
points are represented by monomorphisms from fields and from the fact that an
étale morphism of algebraic spaces is locally quasi-finite. □

Lemma 68.18.6.0AC8 Let S be a scheme. Let f : X → Y be a morphism of alge-
braic spaces over S. Let y ∈ |Y | and assume that y is represented by a quasi-
compact monomorphism Spec(k) → Y . Then |Xk| → |X| is a homeomorphism
onto f−1({y}) ⊂ |X| with induced topology.

Proof. We will use Properties of Spaces, Lemma 66.16.7 and Morphisms of Spaces,
Lemma 67.10.9 without further mention. Let V → Y be an étale morphism with
V affine such that there exists a v ∈ V mapping to y. Since Spec(k)→ Y is quasi-
compact there are a finite number of points of V mapping to y (Lemma 68.4.5).
After shrinking V we may assume v is the only one. Choose a scheme U and a
surjective étale morphism U → X. Consider the commutative diagram

U

��

UVoo

��

Uvoo

��
X

��

XV
oo

��

Xv
oo

��
Y Voo voo

Since Uv → UV identifies Uv with a subset of UV with the induced topology
(Schemes, Lemma 26.18.5), and since |UV | → |XV | and |Uv| → |Xv| are surjec-
tive and open, we see that |Xv| → |XV | is a homeomorphism onto its image (with
induced topology). On the other hand, the inverse image of f−1({y}) under the
open map |XV | → |X| is equal to |Xv|. We conclude that |Xv| → f−1({y}) is open.

https://stacks.math.columbia.edu/tag/0AC7
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The morphism Xv → X factors through Xk and |Xk| → |X| is injective with image
f−1({y}) by Properties of Spaces, Lemma 66.4.3. Using |Xv| → |Xk| → f−1({y})
the lemma follows because Xv → Xk is surjective. □

Lemma 68.18.7.0AC9 Let X be an algebraic space locally of finite type over a field k.
Let x ∈ |X|. Consider the conditions

(1) dimx(|X|) = 0,
(2) x is closed in |X| and if x′ ⇝ x in |X| then x′ = x,
(3) x is an isolated point of |X|,
(4) dimx(X) = 0,
(5) X → Spec(k) is quasi-finite at x.

Then (2), (3), (4), and (5) are equivalent. If X is decent, then (1) is equivalent to
the others.

Proof. Parts (4) and (5) are equivalent for example by Morphisms of Spaces, Lem-
mas 67.34.7 and 67.34.8.
Let U → X be an étale morphism where U is an affine scheme and let u ∈ U be a
point mapping to x. Moreover, if x is a closed point, e.g., in case (2) or (3), then
we may and do assume that u is a closed point. Observe that dimu(U) = dimx(X)
by definition and that this is equal to dim(OU,u) if u is a closed point, see Algebra,
Lemma 10.114.6.
If dimx(X) > 0 and u is closed, by the arguments above we can choose a nontrivial
specialization u′ ⇝ u in U . Then the transcendence degree of κ(u′) over k exceeds
the transcendence degree of κ(u) over k. It follows that the images x and x′ in X
are distinct, because the transcendence degree of x/k and x′/k are well defined, see
Morphisms of Spaces, Definition 67.33.1. This applies in particular in cases (2) and
(3) and we conclude that (2) and (3) imply (4).
Conversely, if X → Spec(k) is locally quasi-finite at x, then U → Spec(k) is locally
quasi-finite at u, hence u is an isolated point of U (Morphisms, Lemma 29.20.6).
It follows that (5) implies (2) and (3) as |U | → |X| is continuous and open.
Assume X is decent and (1) holds. Then dimx(X) = dimx(|X|) by Lemma 68.12.5
and the proof is complete. □

Lemma 68.18.8.0ACA Let X be an algebraic space locally of finite type over a field k.
Consider the conditions

(1) |X| is a finite set,
(2) |X| is a discrete space,
(3) dim(|X|) = 0,
(4) dim(X) = 0,
(5) X → Spec(k) is locally quasi-finite,

Then (2), (3), (4), and (5) are equivalent. If X is decent, then (1) implies the
others.

Proof. Parts (4) and (5) are equivalent for example by Morphisms of Spaces, Lemma
67.34.7.
Let U → X be a surjective étale morphism where U is a scheme.
If dim(U) > 0, then choose a nontrivial specialization u ⇝ u′ in U and the tran-
scendence degree of κ(u) over k exceeds the transcendence degree of κ(u′) over k.

https://stacks.math.columbia.edu/tag/0AC9
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It follows that the images x and x′ in X are distinct, because the transcendence
degree of x/k and x′/k is well defined, see Morphisms of Spaces, Definition 67.33.1.
We conclude that (2) and (3) imply (4).
Conversely, if X → Spec(k) is locally quasi-finite, then U is locally Noetherian
(Morphisms, Lemma 29.15.6) of dimension 0 (Morphisms, Lemma 29.29.5) and
hence is a disjoint union of spectra of Artinian local rings (Properties, Lemma
28.10.5). Hence U is a discrete topological space, and since |U | → |X| is continuous
and open, the same is true for |X|. In other words, (4) implies (2) and (3).
Assume X is decent and (1) holds. Then we may choose U above to be affine.
The fibres of |U | → |X| are finite (this is a part of the defining property of decent
spaces). Hence U is a finite type scheme over k with finitely many points. Hence U
is quasi-finite over k (Morphisms, Lemma 29.20.7) which by definition means that
X → Spec(k) is locally quasi-finite. □

Lemma 68.18.9.0ACB Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let x ∈ |X| with image y ∈ |Y |. Let
F = f−1({y}) with induced topology from |X|. Let k be a field and let Spec(k)→ Y
be in the equivalence class defining y. Set Xk = Spec(k)×Y X. Let x̃ ∈ |Xk| map
to x ∈ |X|. Consider the following conditions

(1)0ACC dimx(F ) = 0,
(2)0ACD x is isolated in F ,
(3)0ACE x is closed in F and if x′ ⇝ x in F , then x = x′,
(4)0ACF dimx̃(|Xk|) = 0,
(5)0ACG x̃ is isolated in |Xk|,
(6)0ACH x̃ is closed in |Xk| and if x̃′ ⇝ x̃ in |Xk|, then x̃ = x̃′,
(7)0ACI dimx̃(Xk) = 0,
(8)0ACJ f is quasi-finite at x.

Then we have
(4)

f decent
+3 (5) ks +3 (6) ks +3 (7) ks +3 (8)

If Y is decent, then conditions (2) and (3) are equivalent to each other and to
conditions (5), (6), (7), and (8). If Y and X are decent, then all conditions are
equivalent.

Proof. By Lemma 68.18.7 conditions (5), (6), and (7) are equivalent to each other
and to the condition that Xk → Spec(k) is quasi-finite at x̃. Thus by Morphisms
of Spaces, Lemma 67.27.2 they are also equivalent to (8). If f is decent, then Xk

is a decent algebraic space and Lemma 68.18.7 shows that (4) implies (5).
If Y is decent, then we can pick a quasi-compact monomorphism Spec(k′) → Y
in the equivalence class of y. In this case Lemma 68.18.6 tells us that |Xk′ | → F
is a homeomorphism. Combined with the arguments given above this implies the
remaining statements of the lemma; details omitted. □

Lemma 68.18.10.0ACK Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let y ∈ |Y |. Let k be a field and
let Spec(k) → Y be in the equivalence class defining y. Set Xk = Spec(k) ×Y X
and let F = f−1({y}) with the induced topology from |X|. Consider the following
conditions

https://stacks.math.columbia.edu/tag/0ACB
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(1)0ACL F is finite,
(2)0ACM F is a discrete topological space,
(3)0ACN dim(F ) = 0,
(4)0ACP |Xk| is a finite set,
(5)0ACQ |Xk| is a discrete space,
(6)0ACR dim(|Xk|) = 0,
(7)0ACS dim(Xk) = 0,
(8)0ACT f is quasi-finite at all points of |X| lying over y.

Then we have
(1) (4)ks

f decent
+3 (5) ks +3 (6) ks +3 (7) ks +3 (8)

If Y is decent, then conditions (2) and (3) are equivalent to each other and to
conditions (5), (6), (7), and (8). If Y and X are decent, then (1) implies all the
other conditions.

Proof. By Lemma 68.18.8 conditions (5), (6), and (7) are equivalent to each other
and to the condition that Xk → Spec(k) is locally quasi-finite. Thus by Morphisms
of Spaces, Lemma 67.27.2 they are also equivalent to (8). If f is decent, then Xk

is a decent algebraic space and Lemma 68.18.8 shows that (4) implies (5).
The map |Xk| → F is surjective by Properties of Spaces, Lemma 66.4.3 and we see
(4) ⇒ (1).
If Y is decent, then we can pick a quasi-compact monomorphism Spec(k′) → Y
in the equivalence class of y. In this case Lemma 68.18.6 tells us that |Xk′ | → F
is a homeomorphism. Combined with the arguments given above this implies the
remaining statements of the lemma; details omitted. □

68.19. Monomorphisms

06RY Here is another case where monomorphisms are representable. Please see More on
Morphisms of Spaces, Section 76.4 for more information.

Lemma 68.19.1.06RZ Let S be a scheme. Let Y be a disjoint union of spectra of zero
dimensional local rings over S. Let f : X → Y be a monomorphism of algebraic
spaces over S. Then f is representable, i.e., X is a scheme.

Proof. This immediately reduces to the case Y = Spec(A) where A is a zero di-
mensional local ring, i.e., Spec(A) = {mA} is a singleton. If X = ∅, then there
is nothing to prove. If not, choose a nonempty affine scheme U = Spec(B) and
an étale morphism U → X. As |X| is a singleton (as a subset of |Y |, see Mor-
phisms of Spaces, Lemma 67.10.9) we see that U → X is surjective. Note that
U ×X U = U ×Y U = Spec(B⊗AB). Thus we see that the ring maps B → B⊗AB
are étale. Since

(B ⊗A B)/mA(B ⊗A B) = (B/mAB)⊗A/mA (B/mAB)
we see that B/mAB → (B ⊗A B)/mA(B ⊗A B) is flat and in fact free of rank
equal to the dimension of B/mAB as a A/mA-vector space. Since B → B ⊗A B is
étale, this can only happen if this dimension is finite (see for example Morphisms,
Lemmas 29.57.8 and 29.57.9). Every prime of B lies over mA (the unique prime
of A). Hence Spec(B) = Spec(B/mA) as a topological space, and this space is

https://stacks.math.columbia.edu/tag/06RZ
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a finite discrete set as B/mAB is an Artinian ring, see Algebra, Lemmas 10.53.2
and 10.53.6. Hence all prime ideals of B are maximal and B = B1 × . . . × Bn
is a product of finitely many local rings of dimension zero, see Algebra, Lemma
10.53.5. Thus B → B ⊗A B is finite étale as all the local rings Bi are henselian by
Algebra, Lemma 10.153.10. Thus X is an affine scheme by Groupoids, Proposition
39.23.9. □

68.20. Generic points

0BB7 This section is a continuation of Properties of Spaces, Section 66.11.

Lemma 68.20.1.0ABV Let S be a scheme. Let X be a decent algebraic space over S.
Let x ∈ |X|. The following are equivalent

(1) x is a generic point of an irreducible component of |X|,
(2) for any étale morphism (Y, y)→ (X,x) of pointed algebraic spaces, y is a

generic point of an irreducible component of |Y |,
(3) for some étale morphism (Y, y)→ (X,x) of pointed algebraic spaces, y is

a generic point of an irreducible component of |Y |,
(4) the dimension of the local ring of X at x is zero, and
(5) x is a point of codimension 0 on X

Proof. Conditions (4) and (5) are equivalent for any algebraic space by definition,
see Properties of Spaces, Definition 66.10.2. Observe that any Y as in (2) and (3)
is decent by Lemma 68.6.6. Thus it suffices to prove the equivalence of (1) and (4)
as then the equivalence with (2) and (3) follows since the dimension of the local
ring of Y at y is equal to the dimension of the local ring of X at x. Let f : U → X
be an étale morphism from an affine scheme and let u ∈ U be a point mapping to
x.
Assume (1). Let u′ ⇝ u be a specialization in U . Then f(u′) = f(u) = x. By
Lemma 68.12.1 we see that u′ = u. Hence u is a generic point of an irreducible
component of U . Thus dim(OU,u) = 0 and we see that (4) holds.
Assume (4). The point x is contained in an irreducible component T ⊂ |X|. Since
|X| is sober (Proposition 68.12.4) we T has a generic point x′. Of course x′ ⇝
x. Then we can lift this specialization to u′ ⇝ u in U (Lemma 68.12.2). This
contradicts the assumption that dim(OU,u) = 0 unless u′ = u, i.e., x′ = x. □

Lemma 68.20.2.0ED1 Let S be a scheme. Let X be a decent algebraic space over S. Let
T ⊂ |X| be an irreducible closed subset. Let ξ ∈ T be the generic point (Proposition
68.12.4). Then codim(T, |X|) (Topology, Definition 5.11.1) is the dimension of the
local ring of X at ξ (Properties of Spaces, Definition 66.10.2).

Proof. Choose a scheme U , a point u ∈ U , and an étale morphism U → X sending
u to ξ. Then any sequence of nontrivial specializations ξe ⇝ . . . ⇝ ξ0 = ξ can be
lifted to a sequence ue ⇝ . . . ⇝ u0 = u in U by Lemma 68.12.2. Conversely, any
sequence of nontrivial specializations ue ⇝ . . .⇝ u0 = u in U maps to a sequence
of nontrivial specializations ξe ⇝ . . . ⇝ ξ0 = ξ by Lemma 68.12.1. Because |X|
and U are sober topological spaces we conclude that the codimension of T in |X|
and of {u} in U are the same. In this way the lemma reduces to the schemes case
which is Properties, Lemma 28.10.3. □

Lemma 68.20.3.0BB8 Let S be a scheme. Let X be an algebraic space over S. Assume
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(1) every quasi-compact scheme étale over X has finitely many irreducible
components, and

(2) every x ∈ |X| of codimension 0 on X can be represented by a monomor-
phism Spec(k)→ X.

Then X is a reasonable algebraic space.

Proof. Let U be an affine scheme and let a : U → X be an étale morphism. We
have to show that the fibres of a are universally bounded. By assumption (1) the
scheme U has finitely many irreducible components. Let u1, . . . , un ∈ U be the
generic points of these irreducible components. Let {x1, . . . , xm} ⊂ |X| be the
image of {u1, . . . , un}. Each xj is a point of codimension 0. By assumption (2)
we may choose a monomorphism Spec(kj)→ X representing xj . By Properties of
Spaces, Lemma 66.11.1 we have

U ×X Spec(kj) =
∐

a(ui)=xj
Spec(κ(ui))

This is a scheme finite over Spec(kj) of degree dj =
∑
a(ui)=xj [κ(ui) : kj ]. Set

n = max dj .
Observe that a is separated (Properties of Spaces, Lemma 66.6.4). Consider the
stratification

X = X0 ⊃ X1 ⊃ X2 ⊃ . . .
associated to U → X in Lemma 68.8.2. By our choice of n above we conclude that
Xn+1 is empty. Namely, if not, then a−1(Xn+1) is a nonempty open of U and hence
would contain one of the xi. This would mean that Xn+1 contains xj = a(ui) which
is impossible. Hence we see that the fibres of U → X are universally bounded (in
fact by the integer n). □

Lemma 68.20.4.0BB9 Let S be a scheme. Let X be an algebraic space over S. The
following are equivalent

(1) X is decent and |X| has finitely many irreducible components,
(2) every quasi-compact scheme étale over X has finitely many irreducible

components, there are finitely many x ∈ |X| of codimension 0 on X, and
each of these can be represented by a monomorphism Spec(k)→ X,

(3) there exists a dense open X ′ ⊂ X which is a scheme, X ′ has finitely
many irreducible components with generic points {x′

1, . . . , x
′
m}, and the

morphism x′
j → X is quasi-compact for j = 1, . . . ,m.

Moreover, if these conditions hold, then X is reasonable and the points x′
j ∈ |X|

are the generic points of the irreducible components of |X|.

Proof. In the proof we use Properties of Spaces, Lemma 66.11.1 without further
mention. Assume (1). Then X has a dense open subscheme X ′ by Theorem 68.10.2.
Since the closure of an irreducible component of |X ′| is an irreducible component
of |X|, we see that |X ′| has finitely many irreducible components. Thus (3) holds.
Assume X ′ ⊂ X is as in (3). Let {x′

1, . . . , x
′
m} be the generic points of the ir-

reducible components of X ′. Let a : U → X be an étale morphism with U a
quasi-compact scheme. To prove (2) it suffices to show that U has finitely many
irreducible components whose generic points lie over {x′

1, . . . , x
′
m}. It suffices to

prove this for the members of a finite affine open cover of U , hence we may and do
assume U is affine. Note that U ′ = a−1(X ′) ⊂ U is a dense open. Since U ′ → X ′ is
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an étale morphism of schemes, we see the generic points of irreducible components
of U ′ are the points lying over {x′

1, . . . , x
′
m}. Since x′

j → X is quasi-compact there
are finitely many points of U lying over x′

j (Lemma 68.4.5). Hence U ′ has finitely
many irreducible components, which implies that the closures of these irreducible
components are the irreducible components of U . Thus (2) holds.
Assume (2). This implies (1) and the final statement by Lemma 68.20.3. (We also
use that a reasonable algebraic space is decent, see discussion following Definition
68.6.1.) □

68.21. Generically finite morphisms

0BBA This section discusses for morphisms of algebraic spaces the material discussed in
Morphisms, Section 29.51 and Varieties, Section 33.17 for morphisms of schemes.
Lemma 68.21.1.0ACZ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that f is quasi-separated of finite type. Let y ∈ |Y | be a
point of codimension 0 on Y . The following are equivalent:

(1) the space |Xk| is finite where Spec(k)→ Y represents y,
(2) X → Y is quasi-finite at all points of |X| over y,
(3) there exists an open subspace Y ′ ⊂ Y with y ∈ |Y ′| such that Y ′×Y X →

Y ′ is finite.
If Y is decent these are also equivalent to

(4) the set f−1({y}) is finite.
Proof. The equivalence of (1) and (2) follows from Lemma 68.18.10 (and the fact
that a quasi-separated morphism is decent by Lemma 68.17.2).
Assume the equivalent conditions of (1) and (2). Choose an affine scheme V and
an étale morphism V → Y mapping a point v ∈ V to y. Then v is a generic point
of an irreducible component of V by Properties of Spaces, Lemma 66.11.1. Choose
an affine scheme U and a surjective étale morphism U → V ×Y X. Then U → V
is of finite type. The morphism U → V is quasi-finite at every point lying over
v by (2). It follows that the fibre of U → V over v is finite (Morphisms, Lemma
29.20.14). By Morphisms, Lemma 29.51.1 after shrinking V we may assume that
U → V is finite. Let

R = U ×V×YX U

Since f is quasi-separated, we see that V ×Y X is quasi-separated and hence R is
a quasi-compact scheme. Moreover the morphisms R → V is quasi-finite as the
composition of an étale morphism R → U and a finite morphism U → V . Hence
we may apply Morphisms, Lemma 29.51.1 once more and after shrinking V we
may assume that R → V is finite as well. This of course implies that the two
projections R → V are finite étale. It follows that V/R = V ×Y X is an affine
scheme, see Groupoids, Proposition 39.23.9. By Morphisms, Lemma 29.41.9 we
conclude that V ×Y X → V is proper and by Morphisms, Lemma 29.44.11 we
conclude that V ×Y X → V is finite. Finally, we let Y ′ ⊂ Y be the open subspace
of Y corresponding to the image of |V | → |Y |. By Morphisms of Spaces, Lemma
67.45.3 we conclude that Y ′ ×Y X → Y ′ is finite as the base change to V is finite
and as V → Y ′ is a surjective étale morphism.
If Y is decent and f is quasi-separated, then we see that X is decent too; use
Lemmas 68.17.2 and 68.17.5. Hence Lemma 68.18.10 applies to show that (4)
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implies (1) and (2). On the other hand, we see that (2) implies (4) by Morphisms
of Spaces, Lemma 67.27.9. □

Lemma 68.21.2.0AD0 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that f is quasi-separated and locally of finite type and Y
quasi-separated. Let y ∈ |Y | be a point of codimension 0 on Y . The following are
equivalent:

(1) the set f−1({y}) is finite,
(2) the space |Xk| is finite where Spec(k)→ Y represents y,
(3) there exist open subspaces X ′ ⊂ X and Y ′ ⊂ Y with f(X ′) ⊂ Y ′, y ∈ |Y ′|,

and f−1({y}) ⊂ |X ′| such that f |X′ : X ′ → Y ′ is finite.

Proof. Since quasi-separated algebraic spaces are decent, the equivalence of (1)
and (2) follows from Lemma 68.18.10. To prove that (1) and (2) imply (3) we may
and do replace Y by a quasi-compact open containing y. Since f−1({y}) is finite,
we can find a quasi-compact open subspace of X ′ ⊂ X containing the fibre. The
restriction f |X′ : X ′ → Y is quasi-compact and quasi-separated by Morphisms of
Spaces, Lemma 67.8.10 (this is where we use that Y is quasi-separated). Applying
Lemma 68.21.1 to f |X′ : X ′ → Y we see that (3) holds. We omit the proof that
(3) implies (2). □

Lemma 68.21.3.0BBB Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type. Let X0 ⊂ |X|, resp. Y 0 ⊂ |Y |
denote the set of codimension 0 points of X, resp. Y . Let y ∈ Y 0. The following
are equivalent

(1) f−1({y}) ⊂ X0,
(2) f is quasi-finite at all points lying over y,
(3) f is quasi-finite at all x ∈ X0 lying over y.

Proof. Let V be a scheme and let V → Y be a surjective étale morphism. Let
U be a scheme and let U → V ×Y X be a surjective étale morphism. Then f is
quasi-finite at the image x of a point u ∈ U if and only if U → V is quasi-finite at u.
Moreover, x ∈ X0 if and only if u is the generic point of an irreducible component
of U (Properties of Spaces, Lemma 66.11.1). Thus the lemma reduces to the case
of the morphism U → V , i.e., to Morphisms, Lemma 29.51.4. □

Lemma 68.21.4.0BBC Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type. Let X0 ⊂ |X|, resp. Y 0 ⊂ |Y |
denote the set of codimension 0 points of X, resp. Y . Assume

(1) Y is decent,
(2) X0 and Y 0 are finite and f−1(Y 0) = X0,
(3) either f is quasi-compact or f is separated.

Then there exists a dense open V ⊂ Y such that f−1(V )→ V is finite.

Proof. By Lemmas 68.20.4 and 68.20.1 we may assume Y is a scheme with finitely
many irreducible components. Shrinking further we may assume Y is an irreducible
affine scheme with generic point y. Then the fibre of f over y is finite.
Assume f is quasi-compact and Y affine irreducible. Then X is quasi-compact and
we may choose an affine scheme U and a surjective étale morphism U → X. Then
U → Y is of finite type and the fibre of U → Y over y is the set U0 of generic points
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of irreducible components of U (Properties of Spaces, Lemma 66.11.1). Hence U0

is finite (Morphisms, Lemma 29.20.14) and after shrinking Y we may assume that
U → Y is finite (Morphisms, Lemma 29.51.1). Next, consider R = U ×X U . Since
the projection s : R → U is étale we see that R0 = s−1(U0) lies over y. Since
R → U ×Y U is a monomorphism, we conclude that R0 is finite as U ×Y U → Y
is finite. And R is separated (Properties of Spaces, Lemma 66.6.4). Thus we may
shrink Y once more to reach the situation where R is finite over Y (Morphisms,
Lemma 29.51.5). In this case it follows that X = U/R is finite over Y by exactly
the same arguments as given in the proof of Lemma 68.21.1 (or we can simply apply
that lemma because it follows immediately that X is quasi-separated as well).

Assume f is separated and Y affine irreducible. Choose V ⊂ Y and U ⊂ X as
in Lemma 68.21.2. Since f |U : U → V is finite, we see that U ⊂ f−1(V ) is
closed as well as open (Morphisms of Spaces, Lemmas 67.40.6 and 67.45.9). Thus
f−1(V ) = U ⨿ W for some open subspace W of X. However, since U contains
all the codimension 0 points of X we conclude that W = ∅ (Properties of Spaces,
Lemma 66.11.2) as desired. □

68.22. Birational morphisms

0ACU The following definition of a birational morphism of algebraic spaces seems to be the
closest to our definition (Morphisms, Definition 29.50.1) of a birational morphism
of schemes.

Definition 68.22.1.0ACV Let S be a scheme. Let X and Y algebraic spaces over S.
Assume X and Y are decent and that |X| and |Y | have finitely many irreducible
components. We say a morphism f : X → Y is birational if

(1) |f | induces a bijection between the set of generic points of irreducible com-
ponents of |X| and the set of generic points of the irreducible components
of |Y |, and

(2) for every generic point x ∈ |X| of an irreducible component the local ring
map OY,f(x) → OX,x is an isomorphism (see clarification below).

Clarification: Since X and Y are decent the topological spaces |X| and |Y | are
sober (Proposition 68.12.4). Hence condition (1) makes sense. Moreover, because
we have assumed that |X| and |Y | have finitely many irreducible components, we
see that the generic points x1, . . . , xn ∈ |X|, resp. y1, . . . , yn ∈ |Y | are contained in
any dense open of |X|, resp. |Y |. In particular, they are contained in the schematic
locus of X, resp. Y by Theorem 68.10.2. Thus we can define OX,xi , resp. OY,yi to
be the local ring of this scheme at xi, resp. yi.

We conclude that if the morphism f : X → Y is birational, then there exist dense
open subspaces X ′ ⊂ X and Y ′ ⊂ Y such that

(1) f(X ′) ⊂ Y ′,
(2) X ′ and Y ′ are representable, and
(3) f |X′ : X ′ → Y ′ is birational in the sense of Morphisms, Definition 29.50.1.

However, we do insist that X and Y are decent with finitely many irreducible com-
ponents. Other ways to characterize decent algebraic spaces with finitely many
irreducible components are given in Lemma 68.20.4. In most cases birational mor-
phisms are isomorphisms over dense opens.
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Lemma 68.22.2.0ACW Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which are decent and have finitely many irreducible components. If
f is birational then f is dominant.

Proof. Follows immediately from the definitions. See Morphisms of Spaces, Defini-
tion 67.18.1. □

Lemma 68.22.3.0BBD Let S be a scheme. Let f : X → Y be a birational morphism
of algebraic spaces over S which are decent and have finitely many irreducible
components. If y ∈ Y is the generic point of an irreducible component, then the
base change X ×Y Spec(OY,y)→ Spec(OY,y) is an isomorphism.

Proof. Let X ′ ⊂ X and Y ′ ⊂ Y be the maximal open subspaces which are rep-
resentable, see Lemma 68.20.4. By Lemma 68.21.3 the fibre of f over y is con-
sists of points of codimension 0 of X and is therefore contained in X ′. Hence
X ×Y Spec(OY,y) = X ′ ×Y ′ Spec(OY ′,y) and the result follows from Morphisms,
Lemma 29.50.3. □

Lemma 68.22.4.0BBE Let S be a scheme. Let f : X → Y be a birational morphism
of algebraic spaces over S which are decent and have finitely many irreducible
components. Assume one of the following conditions is satisfied

(1) f is locally of finite type and Y reduced (i.e., integral),
(2) f is locally of finite presentation.

Then there exist dense opens U ⊂ X and V ⊂ Y such that f(U) ⊂ V and f |U :
U → V is an isomorphism.

Proof. By Lemma 68.20.4 we may assume that X and Y are schemes. In this case
the result is Morphisms, Lemma 29.50.5. □

Lemma 68.22.5.0BBF Let S be a scheme. Let f : X → Y be a birational morphism
of algebraic spaces over S which are decent and have finitely many irreducible
components. Assume

(1) either f is quasi-compact or f is separated, and
(2) either f is locally of finite type and Y is reduced or f is locally of finite

presentation.
Then there exists a dense open V ⊂ Y such that f−1(V )→ V is an isomorphism.

Proof. By Lemma 68.20.4 we may assume Y is a scheme. By Lemma 68.21.4 we
may assume that f is finite. Then X is a scheme too and the result follows from
Morphisms, Lemma 29.51.6. □

Lemma 68.22.6.0B4D Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which are decent and have finitely many irreducible components. If
f is birational and V → Y is an étale morphism with V affine, then X ×Y V is
decent with finitely many irreducible components and X ×Y V → V is birational.

Proof. The algebraic space U = X ×Y V is decent (Lemma 68.6.6). The generic
points of V and U are the elements of |V | and |U | which lie over generic points of
|Y | and |X| (Lemma 68.20.1). Since Y is decent we conclude there are finitely many
generic points on V . Let ξ ∈ |X| be a generic point of an irreducible component.
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By the discussion following Definition 68.22.1 we have a cartesian square
Spec(OX,ξ)

��

// X

��
Spec(OY,f(ξ)) // Y

whose horizontal morphisms are monomorphisms identifying local rings and where
the left vertical arrow is an isomorphism. It follows that in the diagram

Spec(OX,ξ)×X U

��

// U

��
Spec(OY,f(ξ))×Y V // V

the vertical arrow on the left is an isomorphism. The horizonal arrows have image
contained in the schematic locus of U and V and identify local rings (some details
omitted). Since the image of the horizontal arrows are the points of |U |, resp. |V |
lying over ξ, resp. f(ξ) we conclude. □

Lemma 68.22.7.0BBG Let S be a scheme. Let f : X → Y be a birational morphism
between algebraic spaces over S which are decent and have finitely many irreducible
components. Then the normalizations Xν → X and Y ν → Y exist and there is a
commutative diagram

Xν //

��

Y ν

��
X // Y

of algebraic spaces over S. The morphism Xν → Y ν is birational.
Proof. By Lemma 68.20.4 we see that X and Y satisfy the equivalent conditions
of Morphisms of Spaces, Lemma 67.49.1 and the normalizations are defined. By
Morphisms of Spaces, Lemma 67.49.8 the algebraic space Xν is normal and maps
codimension 0 points to codimension 0 points. Since f maps codimension 0 points to
codimension 0 points (this is the same as generic points on decent spaces by Lemma
68.20.1) we obtain from Morphisms of Spaces, Lemma 67.49.8 a factorization of the
composition Xν → X → Y through Y ν .
Observe that Xν and Y ν are decent for example by Lemma 68.6.5. Moreover
the maps Xν → X and Y ν → Y induce bijections on irreducible components
(see references above) hence Xν and Y ν both have a finite number of irreducible
components and the map Xν → Y ν induces a bijection between their generic points.
To prove that Xν → Y ν is birational, it therefore suffices to show it induces an
isomorphism on local rings at these points. To do this we may replace X and Y by
open neighbourhoods of their generic points, hence we may assume X and Y are
affine irreducible schemes with generic points x and y. Since f is birational the map
OX,x → OY,y is an isomorphism. Let xν ∈ Xν and yν ∈ Y ν be the points lying
over x and y. By construction of the normalization we see that OXν ,xν = OX,x/mx
and similarly on Y . Thus the map OXν ,xν → OY ν ,yν is an isomorphism as well. □

Lemma 68.22.8.0B4E Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume
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(1) X and Y are decent and have finitely many irreducible components,
(2) f is integral and birational,
(3) Y is normal, and
(4) X is reduced.

Then f is an isomorphism.

Proof. Let V → Y be an étale morphism with V affine. It suffices to show that
U = X ×Y V → V is an isomorphism. By Lemma 68.22.6 and its proof we see
that U and V are decent and have finitely many irreducible components and that
U → V is birational. By Properties, Lemma 28.7.5 V is a finite disjoint union of
integral schemes. Thus we may assume V is integral. As f is birational, we see that
U is irreducible and reduced, i.e., integral (note that U is a scheme as f is integral,
hence representable). Thus we may assume that X and Y are integral schemes and
the result follows from the case of schemes, see Morphisms, Lemma 29.54.8. □

Lemma 68.22.9.0BBH Let S be a scheme. Let f : X → Y be an integral birational
morphism of decent algebraic spaces over S which have finitely many irreducible
components. Then there exists a factorization Y ν → X → Y and Y ν → X is the
normalization of X.

Proof. Consider the map Xν → Y ν of Lemma 68.22.7. This map is integral by
Morphisms of Spaces, Lemma 67.45.12. Hence it is an isomorphism by Lemma
68.22.8. □

68.23. Jacobson spaces

0BA2 We have defined the Jacobson property for algebraic spaces in Properties of Spaces,
Remark 66.7.3. For representable algebraic spaces it agrees with the property dis-
cussed in Properties, Section 28.6. The relationship between the Jacobson property
and the behaviour of the topological space |X| is not evident for general algebraic
spaces |X|. However, a decent (for example quasi-separated or locally separated)
algebraic space X is Jacobson if and only if |X| is Jacobson (see Lemma 68.23.4).

Lemma 68.23.1.0BA3 Let S be a scheme. Let X be a Jacobson algebraic space over S.
Any algebraic space locally of finite type over X is Jacobson.

Proof. Let U → X be a surjective étale morphism where U is a scheme. Then U
is Jacobson (by definition) and for a morphism of schemes V → U which is locally
of finite type we see that V is Jacobson by the corresponding result for schemes
(Morphisms, Lemma 29.16.9). Thus if Y → X is a morphism of algebraic spaces
which is locally of finite type, then setting V = U ×X Y we see that Y is Jacobson
by definition. □

Lemma 68.23.2.0BA4 Let S be a scheme. Let X be a Jacobson algebraic space over
S. For x ∈ Xft-pts and g : W → X locally of finite type with W a scheme, if
x ∈ Im(|g|), then there exists a closed point of W mapping to x.

Proof. Let U → X be an étale morphism with U a scheme and with u ∈ U closed
mapping to x, see Morphisms of Spaces, Lemma 67.25.3. Observe that W , W×XU ,
and U are Jacobson schemes by Lemma 68.23.1. Hence finite type points on these
schemes are the same thing as closed points by Morphisms, Lemma 29.16.8. The
inverse image T ⊂ W ×X U of u is a nonempty (as x in the image of W → X)
closed subset. By Morphisms, Lemma 29.16.7 there is a closed point t of W ×X U
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which maps to u. As W ×X U →W is locally of finite type the image of t in W is
closed by Morphisms, Lemma 29.16.8. □

Lemma 68.23.3.0BA5 Let S be a scheme. Let X be a decent Jacobson algebraic space
over S. Then Xft-pts ⊂ |X| is the set of closed points.

Proof. If x ∈ |X| is closed, then we can represent x by a closed immersion Spec(k)→
X, see Lemma 68.14.6. Hence x is certainly a finite type point.
Conversely, let x ∈ |X| be a finite type point. We know that x can be represented
by a quasi-compact monomorphism Spec(k) → X where k is a field (Definition
68.6.1). On the other hand, by definition, there exists a morphism Spec(k′) → X
which is locally of finite type and represents x (Morphisms, Definition 29.16.3).
We obtain a factorization Spec(k′) → Spec(k) → X. Let U → X be any étale
morphism with U affine and consider the morphisms

Spec(k′)×X U → Spec(k)×X U → U

The quasi-compact scheme Spec(k) ×X U is étale over Spec(k) hence is a finite
disjoint union of spectra of fields (Remark 68.4.1). Moreover, the first morphism is
surjective and locally of finite type (Morphisms, Lemma 29.15.8) hence surjective
on finite type points (Morphisms, Lemma 29.16.6) and the composition (which is
locally of finite type) sends finite type points to closed points as U is Jacobson
(Morphisms, Lemma 29.16.8). Thus the image of Spec(k) ×X U → U is a finite
set of closed points hence closed. Since this is true for every affine U and étale
morphism U → X, we conclude that x ∈ |X| is closed. □

Lemma 68.23.4.0BA6 Let S be a scheme. Let X be a decent algebraic space over S.
Then X is Jacobson if and only if |X| is Jacobson.

Proof. Assume X is Jacobson and that T ⊂ |X| is a closed subset. By Morphisms
of Spaces, Lemma 67.25.6 we see that T ∩Xft-pts is dense in T . By Lemma 68.23.3
we see that Xft-pts are the closed points of |X|. Thus |X| is indeed Jacobson.
Assume |X| is Jacobson. Let f : U → X be an étale morphism with U an affine
scheme. We have to show that U is Jacobson. If x ∈ |X| is closed, then the fibre
F = f−1({x}) is a finite (by definition of decent) closed (by construction of the
topology on |X|) subset of U . Since there are no specializations between points
of F (Lemma 68.12.1) we conclude that every point of F is closed in U . If U is
not Jacobson, then there exists a non-closed point u ∈ U such that {u} is locally
closed (Topology, Lemma 5.18.3). We will show that f(u) ∈ |X| is closed; by the
above u is closed in U which is a contradiction and finishes the proof. To prove
this we may replace U by an affine open neighbourhood of u. Thus we may assume
that {u} is closed in U . Let R = U ×X U with projections s, t : R → U . Then
s−1({u}) = {r1, . . . , rm} is finite (by definition of decent spaces). After replacing
U by a smaller affine open neighbourhood of u we may assume that t(rj) = u for
j = 1, . . . ,m. It follows that {u} is an R-invariant closed subset of U . Hence {f(u)}
is a locally closed subset of X as it is closed in the open |f |(|U |) of |X|. Since |X|
is Jacobson we conclude that f(u) is closed in |X| as desired. □

Lemma 68.23.5.0ED2 Let S be a scheme. Let X be a decent locally Noetherian algebraic
space over S. Let x ∈ |X|. Then

W = {x′ ∈ |X| : x′ ⇝ x, x′ ̸= x}
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is a Noetherian, spectral, sober, Jacobson topological space.

Proof. We may replace by any open subspace containing x. Thus we may assume
that X is quasi-compact. Then |X| is a Noetherian topological space (Properties
of Spaces, Lemma 66.24.2). Thus W is a Noetherian topological space (Topology,
Lemma 5.9.2).
Combining Lemma 68.14.1 with Properties of Spaces, Lemma 66.15.2 we see that
|X| is a spectral toplogical space. By Topology, Lemma 5.24.7 we see that W ∪{x}
is a spectral topological space. Now W is a quasi-compact open of W ∪ {x} and
hence W is spectral by Topology, Lemma 5.23.5.
Let E ⊂W be an irreducible closed subset. Then if Z ⊂ |X| is the closure of E we
see that x ∈ Z. There is a unique generic point η ∈ Z by Proposition 68.12.4. Of
course η ∈ W and hence η ∈ E. We conclude that E has a unique generic point,
i.e., W is sober.
Let x′ ∈W be a point such that {x′} is locally closed in W . To finish the proof we
have to show that x′ is a closed point of W . If not, then there exists a nontrivial
specialization x′ ⇝ x′

1 in W . Let U be an affine scheme, u ∈ U a point, and let
U → X be an étale morphism mapping u to x. By Lemma 68.12.2 we can choose
specializations u′ ⇝ u′

1 ⇝ u mapping to x′ ⇝ x′
1 ⇝ x. Let p′ ⊂ OU,u be the

prime ideal corresponding to u′. The existence of the specializations implies that
dim(OU,u/p′) ≥ 2. Hence every nonempty open of Spec(OU,u/p′) is infinite by
Algebra, Lemma 10.61.1. By Lemma 68.12.1 we obtain a continuous map

Spec(OU,u/p′) \ {mu/p′} −→W

Since the generic point of the LHS maps to x′ the image is contained in {x′}. We
conclude the inverse image of {x′} under the displayed arrow is nonempty open
hence infinite. However, the fibres of U → X are finite as X is decent and we
conclude that {x′} is infinite. This contradiction finishes the proof. □

68.24. Local irreducibility

0DQ5 We have already defined the geometric number of branches of an algebraic space
at a point in Properties of Spaces, Section 66.23. The number of branches of an
algebraic space at a point can only be defined for decent algebraic spaces.

Lemma 68.24.1.0DQ6 Let S be a scheme. Let X be a decent algebraic space over S.
Let x ∈ |X| be a point. The following are equivalent

(1) for any elementary étale neighbourhood (U, u) → (X,x) the local ring
OU,u has a unique minimal prime,

(2) for any elementary étale neighbourhood (U, u)→ (X,x) there is a unique
irreducible component of U through u,

(3) for any elementary étale neighbourhood (U, u) → (X,x) the local ring
OU,u is unibranch,

(4) the henselian local ring OhX,x has a unique minimal prime.

Proof. The equivalence of (1) and (2) follows from the fact that irreducible com-
ponents of U passing through u are in 1-1 correspondence with minimal primes of
the local ring of U at u. The ring OhX,x is the henselization of OU,u, see discussion
following Definition 68.11.7. In particular (3) and (4) are equivalent by More on

https://stacks.math.columbia.edu/tag/0DQ6
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Algebra, Lemma 15.106.3. The equivalence of (2) and (3) follows from More on
Morphisms, Lemma 37.36.2. □

Definition 68.24.2.0DQ7 Let S be a scheme. Let X be a decent algebraic space over S.
Let x ∈ |X|. We say that X is unibranch at x if the equivalent conditions of Lemma
68.24.1 hold. We say that X is unibranch if X is unibranch at every x ∈ |X|.

This is consistent with the definition for schemes (Properties, Definition 28.15.1).

Lemma 68.24.3.0DQ8 Let S be a scheme. Let X be a decent algebraic space over S. Let
x ∈ |X| be a point. Let n ∈ {1, 2, . . .} be an integer. The following are equivalent

(1) for any elementary étale neighbourhood (U, u) → (X,x) the number of
minimal primes of the local ring OU,u is ≤ n and for at least one choice
of (U, u) it is n,

(2) for any elementary étale neighbourhood (U, u)→ (X,x) the number irre-
ducible components of U passing through u is ≤ n and for at least one
choice of (U, u) it is n,

(3) for any elementary étale neighbourhood (U, u) → (X,x) the number of
branches of U at u is ≤ n and for at least one choice of (U, u) it is n,

(4) the number of minimal prime ideals of OhX,x is n.

Proof. The equivalence of (1) and (2) follows from the fact that irreducible com-
ponents of U passing through u are in 1-1 correspondence with minimal primes of
the local ring of U at u. The ring OX,x is the henselization of OU,u, see discussion
following Definition 68.11.7. In particular (3) and (4) are equivalent by More on
Algebra, Lemma 15.106.3. The equivalence of (2) and (3) follows from More on
Morphisms, Lemma 37.36.2. □

Definition 68.24.4.0DQ9 Let S be a scheme. Let X be a decent algebraic space over S.
Let x ∈ |X|. The number of branches of X at x is either n ∈ N if the equivalent
conditions of Lemma 68.24.3 hold, or else ∞.

68.25. Catenary algebraic spaces

0ED3 This section extends the material in Properties, Section 28.11 and Morphisms,
Section 29.17 to algebraic spaces.

Definition 68.25.1.0ED4 Let S be a scheme. Let X be a decent algebraic space over S.
We say X is catenary if |X| is catenary (Topology, Definition 5.11.4).

If X is representable, then this is equivalent to the corresponding notion for the
scheme representing X.

Lemma 68.25.2.0ED5 Let S be a locally Noetherian and universally catenary scheme.
Let δ : S → Z be a dimension function. Let X be a decent algebraic space over S
such that the structure morphism X → S is locally of finite type. Let δX : |X| → Z
be the map sending x to δ(f(x)) plus the transcendence degree of x/f(x). Then
δX is a dimension function on |X|.

Proof. Let φ : U → X be a surjective étale morphism where U is a scheme. Then
the similarly defined function δU is a dimension function on U by Morphisms,
Lemma 29.52.3. On the other hand, by the definition of relative transcendence
degree in (Morphisms of Spaces, Definition 67.33.1) we see that δU (u) = δX(φ(u)).
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Let x ⇝ x′ be a specialization of points in |X|. by Lemma 68.12.2 we can find
a specialization u ⇝ u′ of points of U with φ(u) = x and φ(u′) = x′. Moreover,
we see that x = x′ if and only if u = u′, see Lemma 68.12.1. Thus the fact that
δU is a dimension function implies that δX is a dimension function, see Topology,
Definition 5.20.1. □

Lemma 68.25.3.0ED6 Let S be a locally Noetherian and universally catenary scheme.
Let X be an algebraic space over S such that X is decent and such that the structure
morphism X → S is locally of finite type. Then X is catenary.

Proof. The question is local on S (use Topology, Lemma 5.11.5). Thus we may
assume that S has a dimension function, see Topology, Lemma 5.20.4. Then we
conclude that |X| has a dimension function by Lemma 68.25.2. Since |X| is sober
(Proposition 68.12.4) we conclude that |X| is catenary by Topology, Lemma 5.20.2.

□

By Lemma 68.25.3 the following definition is compatible with the already existing
notion for representable algebraic spaces.

Definition 68.25.4.0ED7 Let S be a scheme. Let X be a decent and locally Noetherian
algebraic space over S. We say X is universally catenary if for every morphism
Y → X of algebraic spaces which is locally of finite type and with Y decent, the
algebraic space Y is catenary.

If X is an algebraic space, then the condition “X is decent and locally Noether-
ian” is equivalent to “X is quasi-separated and locally Noetherian”. This is Lemma
68.14.1. Thus another way to understand the definition above is that X is uni-
versally catenary if and only if Y is catenary for all morphisms Y → X which are
quasi-separated and locally of finite type.

Lemma 68.25.5.0ED8 Let S be a scheme. Let X be a decent, locally Noetherian, and
universally catenary algebraic space over S. Then any decent algebraic space locally
of finite type over X is universally catenary.

Proof. This is formal from the definitions and the fact that compositions of mor-
phisms locally of finite type are locally of finite type (Morphisms of Spaces, Lemma
67.23.2). □

Lemma 68.25.6.0ED9 Let S be a scheme. Let f : Y → X be a surjective finite morphism
of decent and locally Noetherian algebraic spaces. Let δ : |X| → Z be a function.
If δ ◦ |f | is a dimension function, then δ is a dimension function.

Proof. Let x 7→ x′, x ̸= x′ be a specialization in |X|. Choose y ∈ |Y | with |f |(y) =
x. Since |f | is closed (Morphisms of Spaces, Lemma 67.45.9) we find a specialization
y ⇝ y′ with |f |(y′) = x′. Thus we conclude that δ(x) = δ(|f |(y)) > δ(|f |(y′)) =
δ(x′) (see Topology, Definition 5.20.1). If x ⇝ x′ is an immediate specialization,
then y ⇝ y′ is an immediate specialization too: namely if y ⇝ y′′ ⇝ y′, then
|f |(y′′) must be either x or x′ and there are no nontrivial specializations between
points of fibres of |f | by Lemma 68.18.10. □

The discussion will be continued in More on Morphisms of Spaces, Section 76.32.
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CHAPTER 69

Cohomology of Algebraic Spaces

071T 69.1. Introduction

071U In this chapter we write about cohomology of algebraic spaces. Although we prove
some results on cohomology of abelian sheaves, we focus mainly on cohomology
of quasi-coherent sheaves, i.e., we prove analogues of the results in the chapter
“Cohomology of Schemes”. Some of the results in this chapter can be found in
[Knu71].
An important missing ingredient in this chapter is the induction principle, i.e., the
analogue for quasi-compact and quasi-separated algebraic spaces of Cohomology
of Schemes, Lemma 30.4.1. This is formulated precisely and proved in detail in
Derived Categories of Spaces, Section 75.9. Instead of the induction principle, in
this chapter we use the alternating Čech complex, see Section 69.6. It is designed
to prove vanishing statements such as Proposition 69.7.2, but in some cases the
induction principle is a more powerful and perhaps more “standard” tool. We
encourage the reader to take a look at the induction principle after reading some
of the material in this section.

69.2. Conventions

071V The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.
Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

69.3. Higher direct images

071Y Let S be a scheme. Let X be a representable algebraic space over S. Let F
be a quasi-coherent module on X (see Properties of Spaces, Section 66.29). By
Descent, Proposition 35.9.3 the cohomology groups Hi(X,F) agree with the usual
cohomology group computed in the Zariski topology of the corresponding quasi-
coherent module on the scheme representing X.
More generally, let f : X → Y be a quasi-compact and quasi-separated morphism
of representable algebraic spaces X and Y . Let F be a quasi-coherent module
on X. By Descent, Lemma 35.9.5 the sheaf Rif∗F agrees with the usual higher
direct image computed for the Zariski topology of the quasi-coherent module on
the scheme representing X mapping to the scheme representing Y .
More generally still, suppose f : X → Y is a representable, quasi-compact, and
quasi-separated morphism of algebraic spaces over S. Let V be a scheme and let

5476
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V → Y be an étale surjective morphism. Let U = V ×Y X and let f ′ : U → V be
the base change of f . Then for any quasi-coherent OX -module F we have
(69.3.0.1)071Z Rif ′

∗(F|U ) = (Rif∗F)|V ,
see Properties of Spaces, Lemma 66.26.2. And because f ′ : U → V is a quasi-
compact and quasi-separated morphism of schemes, by the remark of the preceding
paragraph we may compute Rif ′

∗(F|U ) by thinking of F|U as a quasi-coherent sheaf
on the scheme U , and f ′ as a morphism of schemes. We will frequently use this
without further mention.
Next, we prove that higher direct images of quasi-coherent sheaves are quasi-
coherent for any quasi-compact and quasi-separated morphism of algebraic spaces.
In the proof we use a trick; a “better” proof would use a relative Čech complex, as
discussed in Sheaves on Stacks, Sections 96.18 and 96.19 ff.

Lemma 69.3.1.0720 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is quasi-compact and quasi-separated, then Rif∗ transforms
quasi-coherent OX -modules into quasi-coherent OY -modules.

Proof. Let V → Y be an étale morphism where V is an affine scheme. Set U = V×Y
X and denote f ′ : U → V the induced morphism. Let F be a quasi-coherent OX -
module. By Properties of Spaces, Lemma 66.26.2 we have Rif ′

∗(F|U ) = (Rif∗F)|V .
Since the property of being a quasi-coherent module is local in the étale topology
on Y (see Properties of Spaces, Lemma 66.29.6) we may replace Y by V , i.e., we
may assume Y is an affine scheme.
Assume Y is affine. Since f is quasi-compact we see that X is quasi-compact. Thus
we may choose an affine scheme U and a surjective étale morphism g : U → X, see
Properties of Spaces, Lemma 66.6.3. Picture

U
g
//

f◦g   

X

f

��
Y

The morphism g : U → X is representable, separated and quasi-compact because
X is quasi-separated. Hence the lemma holds for g (by the discussion above the
lemma). It also holds for f ◦ g : U → Y (as this is a morphism of affine schemes).
In the situation described in the previous paragraph we will show by induction on
n that IHn: for any quasi-coherent sheaf F on X the sheaves RifF are quasi-
coherent for i ≤ n. The case n = 0 follows from Morphisms of Spaces, Lemma
67.11.2. Assume IHn. In the rest of the proof we show that IHn+1 holds.
Let H be a quasi-coherent OU -module. Consider the Leray spectral sequence

Ep,q2 = Rpf∗R
qg∗H ⇒ Rp+q(f ◦ g)∗H

Cohomology on Sites, Lemma 21.14.7. As Rqg∗H is quasi-coherent by IHn all the
sheaves Rpf∗R

qg∗H are quasi-coherent for p ≤ n. The sheaves Rp+q(f ◦ g)∗H are
all quasi-coherent (in fact zero for p + q > 0 but we do not need this). Looking
in degrees ≤ n+ 1 the only module which we do not yet know is quasi-coherent is
En+1,0

2 = Rn+1f∗g∗H. Moreover, the differentials dn+1,0
r : En+1,0

r → En+1+r,1−r
r

are zero as the target is zero. Using that QCoh(OX) is a weak Serre subcategory

https://stacks.math.columbia.edu/tag/0720
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of Mod(OX) (Properties of Spaces, Lemma 66.29.7) it follows that Rn+1f∗g∗H is
quasi-coherent (details omitted).
Let F be a quasi-coherent OX -module. Set H = g∗F . The adjunction mapping
F → g∗g

∗F = g∗H is injective as U → X is surjective étale. Consider the exact
sequence

0→ F → g∗H → G → 0
where G is the cokernel of the first map and in particular quasi-coherent. Applying
the long exact cohomology sequence we obtain

Rnf∗g∗H → Rnf∗G → Rn+1f∗F → Rn+1f∗g∗H → Rn+1f∗G
The cokernel of the first arrow is quasi-coherent and we have seen above that
Rn+1f∗g∗H is quasi-coherent. Thus Rn+1f∗F has a 2-step filtration where the first
step is quasi-coherent and the second a submodule of a quasi-coherent sheaf. Since
F is an arbitrary quasi-coherent OX -module, this result also holds for G. Thus we
can choose an exact sequence 0 → A → Rn+1f∗G → B with A, B quasi-coherent
OY -modules. Then the kernel K of Rn+1f∗g∗H → Rn+1f∗G → B is quasi-coherent,
whereupon we obtain a map K → A whose kernel K′ is quasi-coherent too. Hence
Rn+1f∗F sits in an exact sequence

Rnf∗g∗H → Rnf∗G → Rn+1f∗F → K′ → 0
with all modules quasi-coherent except for possibly Rn+1f∗F . We conclude that
Rn+1f∗F is quasi-coherent, i.e., IHn+1 holds as desired. □

Lemma 69.3.2.08EX Let S be a scheme. Let f : X → Y be a quasi-separated and quasi-
compact morphism of algebraic spaces over S. For any quasi-coherent OX -module
F and any affine object V of Yétale we have

Hq(V ×Y X,F) = H0(V,Rqf∗F)
for all q ∈ Z.

Proof. Since formation of Rf∗ commutes with étale localization (Properties of
Spaces, Lemma 66.26.2) we may replace Y by V and assume Y = V is affine. Con-
sider the Leray spectral sequence Ep,q2 = Hp(Y,Rqf∗F) converging to Hp+q(X,F),
see Cohomology on Sites, Lemma 21.14.5. By Lemma 69.3.1 we see that the sheaves
Rqf∗F are quasi-coherent. By Cohomology of Schemes, Lemma 30.2.2 we see that
Ep,q2 = 0 when p > 0. Hence the spectral sequence degenerates at E2 and we
win. □

69.4. Finite morphisms

0DK2 Here are some results which hold for all abelian sheaves (in particular also quasi-
coherent modules). We warn the reader that these lemmas do not hold for finite
morphisms of schemes and the Zariski topology.

Lemma 69.4.1.0A4K Let S be a scheme. Let f : X → Y be an integral (for example
finite) morphism of algebraic spaces. Then f∗ : Ab(Xétale)→ Ab(Yétale) is an exact
functor and Rpf∗ = 0 for p > 0.

Proof. By Properties of Spaces, Lemma 66.18.12 we may compute the higher direct
images on an étale cover of Y . Hence we may assume Y is a scheme. This implies
that X is a scheme (Morphisms of Spaces, Lemma 67.45.3). In this case we may
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apply Étale Cohomology, Lemma 59.43.5. For the finite case the reader may wish
to consult the less technical Étale Cohomology, Proposition 59.55.2. □

Lemma 69.4.2.0DK3 Let S be a scheme. Let f : X → Y be a finite morphism of
algebraic spaces over S. Let y be a geometric point of Y with lifts x1, . . . , xn in X.
Then

(f∗F)y =
∏

i=1,...,n
Fxi

for any sheaf F on Xétale.

Proof. Choose an étale neighbourhood (V, v) of y. Then the stalk (f∗F)y is the
stalk of f∗F|V at v. By Properties of Spaces, Lemma 66.18.12 we may replace Y
by V and X by X ×Y V . Then Z → X is a finite morphism of schemes and the
result is Étale Cohomology, Proposition 59.55.2. □

Lemma 69.4.3.0DK4 Let S be a scheme. Let π : X → Y be a finite morphism of
algebraic spaces over S. Let A be a sheaf of rings on Xétale. Let B be a sheaf of
rings on Yétale. Let φ : B → π∗A be a homomorphism of sheaves of rings so that
we obtain a morphism of ringed topoi

f = (π, φ) : (Sh(Xétale),A) −→ (Sh(Yétale),B).
For a sheaf of A-modules F and a sheaf of B-modules G the canonical map

G ⊗B f∗F −→ f∗(f∗G ⊗A F).
is an isomorphism.

Proof. The map is the map adjoint to the map
f∗G ⊗A f∗f∗F = f∗(G ⊗B f∗F) −→ f∗G ⊗A F

coming from id : f∗G → f∗G and the adjunction map f∗f∗F → F . To see this
map is an isomorphism, we may check on stalks (Properties of Spaces, Theorem
66.19.12). Let y be a geometric point of Y and let x1, . . . , xn be the geometric
points of X lying over y. Working out what our maps does on stalks, we see that
we have to show

Gy ⊗By

(⊕
i=1,...,n

Fxi
)

=
⊕

i=1,...,n
(Gy ⊗Bx Axi)⊗Axi

Fxi

which holds true. Here we have used that taking tensor products commutes with
taking stalks, the behaviour of stalks under pullback Properties of Spaces, Lemma
66.19.9, and the behaviour of stalks under pushforward along a closed immersion
Lemma 69.4.2. □

We end this section with an insanely general projection formula for finite mor-
phisms.

Lemma 69.4.4.0DK5 With S, X, Y , π, A, B, φ, and f as in Lemma 69.4.3 we have

K ⊗L
B Rf∗M = Rf∗(Lf∗K ⊗L

A M)
in D(B) for any K ∈ D(B) and M ∈ D(A).

Proof. Since f∗ is exact (Lemma 69.4.1) the functor Rf∗ is computed by applying
f∗ to any representative complex. Choose a complex K• of B-modules representing
K which is K-flat with flat terms, see Cohomology on Sites, Lemma 21.17.11. Then
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f∗K• is K-flat with flat terms, see Cohomology on Sites, Lemma 21.18.1. Choose
any complex M• of A-modules representing M . Then we have to show

Tot(K• ⊗B f∗M•) = f∗Tot(f∗K• ⊗AM•)

because by our choices these complexes represent the right and left hand side of
the formula in the lemma. Since f∗ commutes with direct sums (for example by
the description of the stalks in Lemma 69.4.2), this reduces to the equalities

Kn ⊗B f∗Mm = f∗(f∗Kn ⊗AMm)

which are true by Lemma 69.4.3. □

69.5. Colimits and cohomology

073D The following lemma in particular applies to diagrams of quasi-coherent sheaves.

Lemma 69.5.1.073E Let S be a scheme. Let X be an algebraic space over S. If X is
quasi-compact and quasi-separated, then

colimiH
p(X,Fi) −→ Hp(X, colimi Fi)

is an isomorphism for every filtered diagram of abelian sheaves on Xétale.

Proof. This follows from Cohomology on Sites, Lemma 21.16.1. Namely, let B ⊂
Ob(Xspaces,étale) be the set of quasi-compact and quasi-separated spaces étale over
X. Note that if U ∈ B then, because U is quasi-compact, the collection of finite
coverings {Ui → U} with Ui ∈ B is cofinal in the set of coverings of U inXspaces,étale.
By Morphisms of Spaces, Lemma 67.8.10 the set B satisfies all the assumptions of
Cohomology on Sites, Lemma 21.16.1. Since X ∈ B we win. □

Lemma 69.5.2.07U6 Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let F = colimFi be a filtered
colimit of abelian sheaves on Xétale. Then for any p ≥ 0 we have

Rpf∗F = colimRpf∗Fi.

Proof. Recall that Rpf∗F is the sheaf on Yspaces,étale associated to V 7→ Hp(V ×Y
X,F), see Cohomology on Sites, Lemma 21.7.4 and Properties of Spaces, Lemma
66.18.8. Recall that the colimit is the sheaf associated to the presheaf colimit.
Hence we can apply Lemma 69.5.1 to Hp(V ×Y X,−) where V is affine to conclude
(because when V is affine, then V ×Y X is quasi-compact and quasi-separated).
Strictly speaking this also uses Properties of Spaces, Lemma 66.18.6 to see that
there exist enough affine objects. □

The following lemma tells us that finitely presented modules behave as expected in
quasi-compact and quasi-separated algebraic spaces.

Lemma 69.5.3.07U7 Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let I be a directed set and let (Fi, φii′) be a system over
I of OX -modules. Let G be an OX -module of finite presentation. Then we have

colimi HomX(G,Fi) = HomX(G, colimi Fi).

In particular, HomX(G,−) commutes with filtered colimits in QCoh(OX).

https://stacks.math.columbia.edu/tag/073E
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Proof. The displayed equality is a special case of Modules on Sites, Lemma 18.27.12.
In order to apply it, we need to check the hypotheses of Sites, Lemma 7.17.8 part
(4) for the site Xétale. In order to do this, we will check hypotheses (2)(a), (2)(b),
(2)(c) of Sites, Remark 7.17.9. Namely, let B ⊂ Ob(Xétale) be the set of affine
objects. Then

(1) Since X is quasi-compact, there exists a U ∈ B such that U → X is sur-
jective (Properties of Spaces, Lemma 66.6.3), hence h#

U → ∗ is surjective.
(2) For U ∈ B every étale covering {Ui → U}i∈I of U can be refined by a

finite étale covering {Uj → U}j=1,...,m with Uj ∈ B (Topologies, Lemma
34.4.4).

(3) For U,U ′ ∈ Ob(Xétale) we have h#
U × h

#
U ′ = h#

U×XU ′ . If U,U ′ ∈ B, then
U×X U ′ is quasi-compact because X is quasi-separated, see Morphisms of
Spaces, Lemma 67.8.10 for example. Hence we can find a surjective étale
morphism U ′′ → U ×X U ′ with U ′′ ∈ B (Properties of Spaces, Lemma
66.6.3). In other words, we have morphisms U ′′ → U and U ′′ → U ′ such
that the map h#

U ′′ → h#
U × h

#
u′ is surjective.

For the final statement, observe that the inclusion functor QCoh(OX)→ Mod(OX)
commutes with colimits and that finitely presented modules are quasi-coherent. See
Properties of Spaces, Lemma 66.29.7. □

69.6. The alternating Čech complex

0721 Let S be a scheme. Let f : U → X be an étale morphism of algebraic spaces over
S. The functor

j : Uspaces,étale −→ Xspaces,étale, V/U 7−→ V/X

induces an equivalence of Uspaces,étale with the localization Xspaces,étale/U , see
Properties of Spaces, Section 66.27. Hence there exist functors

f! : Ab(Uétale) −→ Ab(Xétale), f! : Mod(OU ) −→ Mod(OX),
which are left adjoint to

f−1 : Ab(Xétale) −→ Ab(Uétale), f∗ : Mod(OX) −→ Mod(OU )
see Modules on Sites, Section 18.19. Warning: This functor, a priori, has nothing
to do with cohomology with compact supports! We dubbed this functor “extension
by zero” in the reference above. Note that the two versions of f! agree as f∗ = f−1

for sheaves of OX -modules.
As we are going to use this construction below let us recall some of its properties.
Given an abelian sheaf G on Uétale the sheaf f! is the sheafification of the presheaf

V/X 7−→ f!G(V ) =
⊕

φ∈MorX(V,U)
G(V φ−→ U),

see Modules on Sites, Lemma 18.19.2. Moreover, if G is an OU -module, then f!G
is the sheafification of the exact same presheaf of abelian groups which is endowed
with an OX -module structure in an obvious way (see loc. cit.). Let x : Spec(k)→ X
be a geometric point. Then there is a canonical identification

(f!G)x =
⊕

u
Gu

where the sum is over all u : Spec(k) → U such that f ◦ u = x, see Modules on
Sites, Lemma 18.38.1 and Properties of Spaces, Lemma 66.19.13. In the following
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we are going to study the sheaf f!Z. Here Z denotes the constant sheaf on Xétale

or Uétale.

Lemma 69.6.1.0722 Let S be a scheme. Let fi : Ui → X be étale morphisms of algebraic
spaces over S. Then there are isomorphisms

f1,!Z⊗Z f2,!Z −→ f12,!Z

where f12 : U1 ×X U2 → X is the structure morphism and

(f1 ⨿ f2)!Z −→ f1,!Z⊕ f2,!Z

Proof. Once we have defined the map it will be an isomorphism by our description
of stalks above. To define the map it suffices to work on the level of presheaves.
Thus we have to define a map(⊕

φ1∈MorX(V,U1)
Z
)
⊗Z

(⊕
φ2∈MorX(V,U2)

Z
)
−→

⊕
φ∈MorX(V,U1×XU2)

Z

We map the element 1φ1 ⊗ 1φ2 to the element 1φ1×φ2 with obvious notation. We
omit the proof of the second equality. □

Another important feature is the trace map

Trf : f!Z −→ Z.

The trace map is adjoint to the map Z→ f−1Z (which is an isomorphism). If x is
above, then Trf on stalks at x is the map

(Trf )x : (f!Z)x =
⊕

u
Z −→ Z = Zx

which sums the given integers. This is true because it is adjoint to the map 1 : Z→
f−1Z. In particular, if f is surjective as well as étale then Trf is surjective.

Assume that f : U → X is a surjective étale morphism of algebraic spaces. Consider
the Koszul complex associated to the trace map we discussed above

. . .→ ∧3f!Z→ ∧2f!Z→ f!Z→ Z→ 0

Here the exterior powers are over the sheaf of rings Z. The maps are defined by
the rule

e1 ∧ . . . ∧ en 7−→
∑

i=1,...,n
(−1)i+1Trf (ei)e1 ∧ . . . ∧ êi ∧ . . . ∧ en

where e1, . . . , en are local sections of f!Z. Let x be a geometric point of X and set
Mx = (f!Z)x =

⊕
u Z. Then the stalk of the complex above at x is the complex

. . .→ ∧3Mx → ∧2Mx →Mx → Z→ 0

which is exact because Mx → Z is surjective, see More on Algebra, Lemma 15.28.5.
Hence if we let K• = K•(f) be the complex with Ki = ∧i+1f!Z, then we obtain a
quasi-isomorphism

(69.6.1.1)0723 K• −→ Z[0]

We use the complex K• to define what we call the alternating Čech complex asso-
ciated to f : U → X.

https://stacks.math.columbia.edu/tag/0722
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Definition 69.6.2.0724 Let S be a scheme. Let f : U → X be a surjective étale morphism
of algebraic spaces over S. Let F be an object of Ab(Xétale). The alternating Čech
complex1 Č•

alt(f,F) associated to F and f is the complex
Hom(K0,F)→ Hom(K1,F)→ Hom(K2,F)→ . . .

with Hom groups computed in Ab(Xétale).

The reader may verify that if U =
∐
Ui and f |Ui : Ui → X is the open immersion

of a subspace, then Č•
alt(f,F) agrees with the complex introduced in Cohomology,

Section 20.23 for the Zariski covering X =
⋃
Ui and the restriction of F to the

Zariski site of X. What is more important however, is to relate the cohomology of
the alternating Čech complex to the cohomology.

Lemma 69.6.3.0725 Let S be a scheme. Let f : U → X be a surjective étale morphism
of algebraic spaces over S. Let F be an object of Ab(Xétale). There exists a
canonical map

Č•
alt(f,F) −→ RΓ(X,F)

in D(Ab). Moreover, there is a spectral sequence with E1-page
Ep,q1 = ExtqAb(Xétale)(K

p,F)

converging to Hp+q(X,F) where Kp = ∧p+1f!Z.

Proof. Recall that we have the quasi-isomorphism K• → Z[0], see (69.6.1.1).
Choose an injective resolution F → I• in Ab(Xétale). Consider the double com-
plex Hom(K•, I•) with terms Hom(Kp, Iq). The differential dp,q1 : Ap,q → Ap+1,q

is the one coming from the differential Kp+1 → Kp and the differential dp,q2 : Ap,q →
Ap,q+1 is the one coming from the differential Iq → Iq+1. Denote Tot(Hom(K•, I•))
the associated total complex, see Homology, Section 12.18. We will use the two
spectral sequences (′Er,

′dr) and (′′Er,
′′dr) associated to this double complex, see

Homology, Section 12.25.
Because K• is a resolution of Z we see that the complexes

Hom(K•, Iq) : Hom(K0, Iq)→ Hom(K1, Iq)→ Hom(K2, Iq)→ . . .

are acyclic in positive degrees and have H0 equal to Γ(X, Iq). Hence by Homology,
Lemma 12.25.4 the natural map

I•(X) −→ Tot(Hom(K•, I•))
is a quasi-isomorphism of complexes of abelian groups. In particular we conclude
that Hn(Tot(Hom(K•, I•))) = Hn(X,F).
The map Č•

alt(f,F) → RΓ(X,F) of the lemma is the composition of Č•
alt(f,F) →

Tot(Hom(K•, I•)) with the inverse of the displayed quasi-isomorphism.
Finally, consider the spectral sequence (′Er,

′dr). We have
Ep,q1 = qth cohomology of Hom(Kp, I0)→ Hom(Kp, I1)→ Hom(Kp, I2)→ . . .

This proves the lemma. □

It follows from the lemma that it is important to understand the ext groups
ExtAb(Xétale)(Kp,F), i.e., the right derived functors of F 7→ Hom(Kp,F).

1This may be nonstandard notation

https://stacks.math.columbia.edu/tag/0724
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Lemma 69.6.4.0726 Let S be a scheme. Let f : U → X be a surjective, étale, and
separated morphism of algebraic spaces over S. For p ≥ 0 set

Wp = U ×X . . .×X U \ all diagonals
where the fibre product has p+ 1 factors. There is a free action of Sp+1 on Wp over
X and

Hom(Kp,F) = Sp+1-anti-invariant elements of F(Wp)
functorially in F where Kp = ∧p+1f!Z.

Proof. Because U → X is separated the diagonal U → U ×X U is a closed im-
mersion. Since U → X is étale the diagonal U → U ×X U is an open immersion,
see Morphisms of Spaces, Lemmas 67.39.10 and 67.38.9. Hence Wp is an open and
closed subspace of Up+1 = U ×X . . . ×X U . The action of Sp+1 on Wp is free as
we’ve thrown out the fixed points of the action. By Lemma 69.6.1 we see that

(f!Z)⊗p+1 = fp+1
! Z = (Wp → X)!Z⊕Rest

where fp+1 : Up+1 → X is the structure morphism. Looking at stalks over a
geometric point x of X we see that(⊕

u7→x
Z
)⊗p+1

−→ (Wp → X)!Zx

is the quotient whose kernel is generated by all tensors 1u0⊗ . . .⊗1up where ui = uj
for some i ̸= j. Thus the quotient map

(f!Z)⊗p+1 −→ ∧p+1f!Z

factors through (Wp → X)!Z, i.e., we get

(f!Z)⊗p+1 −→ (Wp → X)!Z −→ ∧p+1f!Z

This already proves that Hom(Kp,F) is (functorially) a subgroup of
Hom((Wp → X)!Z,F) = F(Wp)

To identify it with the Sp+1-anti-invariants we have to prove that the surjection
(Wp → X)!Z → ∧p+1f!Z is the maximal Sp+1-anti-invariant quotient. In other
words, we have to show that ∧p+1f!Z is the quotient of (Wp → X)!Z by the
subsheaf generated by the local sections s − sign(σ)σ(s) where s is a local section
of (Wp → X)!Z. This can be checked on the stalks, where it is clear. □

Lemma 69.6.5.0727 Let S be a scheme. Let W be an algebraic space over S. Let G be
a finite group acting freely on W . Let U = W/G, see Properties of Spaces, Lemma
66.34.1. Let χ : G → {+1,−1} be a character. Then there exists a rank 1 locally
free sheaf of Z-modules Z(χ) on Uétale such that for every abelian sheaf F on Uétale
we have

H0(W,F|W )χ = H0(U,F ⊗Z Z(χ))

Proof. The quotient morphism q : W → U is a G-torsor, i.e., there exists a surjec-
tive étale morphism U ′ → U such that W×UU ′ =

∐
g∈G U

′ as spaces with G-action
over U ′. (Namely, U ′ = W works.) Hence q∗Z is a finite locally free Z-module with
an action of G. For any geometric point u of U , then we get G-equivariant isomor-
phisms

(q∗Z)u =
⊕

w 7→u
Z =

⊕
g∈G

Z = Z[G]

https://stacks.math.columbia.edu/tag/0726
https://stacks.math.columbia.edu/tag/0727


69.6. THE ALTERNATING ČECH COMPLEX 5485

where the second = uses a geometric point w0 lying over u and maps the summand
corresponding to g ∈ G to the summand corresponding to g(w0). We have

H0(W,F|W ) = H0(U,F ⊗Z q∗Z)

because q∗F|W = F ⊗Z q∗Z as one can check by restricting to U ′. Let

Z(χ) = (q∗Z)χ ⊂ q∗Z

be the subsheaf of sections that transform according to χ. For any geometric point
u of U we have

Z(χ)u = Z ·
∑

g
χ(g)g ⊂ Z[G] = (q∗Z)u

It follows that Z(χ) is locally free of rank 1 (more precisely, this should be checked
after restricting to U ′). Note that for any Z-module M the χ-semi-invariants of
M [G] are the elements of the form m ·

∑
g χ(g)g. Thus we see that for any abelian

sheaf F on U we have
(F ⊗Z q∗Z)χ = F ⊗Z Z(χ)

because we have equality at all stalks. The result of the lemma follows by taking
global sections. □

Now we can put everything together and obtain the following pleasing result.

Lemma 69.6.6.0728 Let S be a scheme. Let f : U → X be a surjective, étale, and
separated morphism of algebraic spaces over S. For p ≥ 0 set

Wp = U ×X . . .×X U \ all diagonals

(with p + 1 factors) as in Lemma 69.6.4. Let χp : Sp+1 → {+1,−1} be the sign
character. Let Up = Wp/Sp+1 and Z(χp) be as in Lemma 69.6.5. Then the spectral
sequence of Lemma 69.6.3 has E1-page

Ep,q1 = Hq(Up,F|Up ⊗Z Z(χp))

and converges to Hp+q(X,F).

Proof. Note that since the action of Sp+1 on Wp is over X we do obtain a morphism
Up → X. Since Wp → X is étale and since Wp → Up is surjective étale, it follows
that also Up → X is étale, see Morphisms of Spaces, Lemma 67.39.2. Therefore
an injective object of Ab(Xétale) restricts to an injective object of Ab(Up,étale), see
Cohomology on Sites, Lemma 21.7.1. Moreover, the functor G 7→ G ⊗Z Z(χp)) is
an auto-equivalence of Ab(Up), whence transforms injective objects into injective
objects and is exact (because Z(χp) is an invertible Z-module). Thus given an
injective resolution F → I• in Ab(Xétale) the complex

Γ(Up, I0|Up ⊗Z Z(χp))→ Γ(Up, I1|Up ⊗Z Z(χp))→ Γ(Up, I2|Up ⊗Z Z(χp))→ . . .

computes H∗(Up,F|Up ⊗Z Z(χp)). On the other hand, by Lemma 69.6.5 it is equal
to the complex of Sp+1-anti-invariants in

Γ(Wp, I0)→ Γ(Wp, I1)→ Γ(Wp, I2)→ . . .

which by Lemma 69.6.4 is equal to the complex

Hom(Kp, I0)→ Hom(Kp, I1)→ Hom(Kp, I2)→ . . .

which computes Ext∗
Ab(Xétale)(Kp,F). Putting everything together we win. □

https://stacks.math.columbia.edu/tag/0728
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69.7. Higher vanishing for quasi-coherent sheaves

0729 In this section we show that given a quasi-compact and quasi-separated algebraic
space X there exists an integer n = n(X) such that the cohomology of any quasi-
coherent sheaf on X vanishes beyond degree n.

Lemma 69.7.1.072A With S, W , G, U , χ as in Lemma 69.6.5. If F is a quasi-coherent
OU -module, then so is F ⊗Z Z(χ).

Proof. TheOU -module structure is clear. To check that F⊗ZZ(χ) is quasi-coherent
it suffices to check étale locally. Hence the lemma follows as Z(χ) is finite locally
free as a Z-module. □

The following proposition is interesting even if X is a scheme. It is the natural
generalization of Cohomology of Schemes, Lemma 30.4.2. Before we state it, observe
that given an étale morphism f : U → X from an affine scheme towards a quasi-
separated algebraic space X the fibres of f are universally bounded, in particular
there exists an integer d such that the fibres of |U | → |X| all have size at most d;
this is the implication (η)⇒ (δ) of Decent Spaces, Lemma 68.5.1.

Proposition 69.7.2.072B Let S be a scheme. Let X be an algebraic space over S. Assume
X is quasi-compact and separated. Let U be an affine scheme, and let f : U → X
be a surjective étale morphism. Let d be an upper bound for the size of the fibres
of |U | → |X|. Then for any quasi-coherent OX -module F we have Hq(X,F) = 0
for q ≥ d.

Proof. We will use the spectral sequence of Lemma 69.6.6. The lemma applies
since f is separated as U is separated, see Morphisms of Spaces, Lemma 67.4.10.
Since X is separated the scheme U ×X . . .×X U is a closed subscheme of U ×Spec(Z)
. . .×Spec(Z) U hence is affine. Thus Wp is affine. Hence Up = Wp/Sp+1 is an affine
scheme by Groupoids, Proposition 39.23.9. The discussion in Section 69.3 shows
that cohomology of quasi-coherent sheaves onWp (as an algebraic space) agrees with
the cohomology of the corresponding quasi-coherent sheaf on the underlying affine
scheme, hence vanishes in positive degrees by Cohomology of Schemes, Lemma
30.2.2. By Lemma 69.7.1 the sheaves F|Up ⊗Z Z(χp) are quasi-coherent. Hence
Hq(Wp,F|Up ⊗Z Z(χp)) is zero when q > 0. By our definition of the integer d we
see that Wp = ∅ for p ≥ d. Hence also H0(Wp,F|Up ⊗Z Z(χp)) is zero when p ≥ d.
This proves the proposition. □

In the following lemma we establish that a quasi-compact and quasi-separated al-
gebraic space has finite cohomological dimension for quasi-coherent modules. We
are explicit about the bound only because we will use it later to prove a similar
result for higher direct images.

Lemma 69.7.3.072C Let S be a scheme. Let X be an algebraic space over S. Assume
X is quasi-compact and quasi-separated. Then we can choose

(1) an affine scheme U ,
(2) a surjective étale morphism f : U → X,
(3) an integer d bounding the degrees of the fibres of U → X,
(4) for every p = 0, 1, . . . , d a surjective étale morphism Vp → Up from an

affine scheme Vp where Up is as in Lemma 69.6.6, and
(5) an integer dp bounding the degree of the fibres of Vp → Up.

https://stacks.math.columbia.edu/tag/072A
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Moreover, whenever we have (1) – (5), then for any quasi-coherent OX -module F
we have Hq(X,F) = 0 for q ≥ max(dp + p).
Proof. Since X is quasi-compact we can find a surjective étale morphism U → X
with U affine, see Properties of Spaces, Lemma 66.6.3. By Decent Spaces, Lemma
68.5.1 the fibres of f are universally bounded, hence we can find d. We have
Up = Wp/Sp+1 and Wp ⊂ U ×X . . . ×X U is open and closed. Since X is quasi-
separated the schemes Wp are quasi-compact, hence Up is quasi-compact. Since U
is separated, the schemes Wp are separated, hence Up is separated by (the absolute
version of) Spaces, Lemma 65.14.5. By Properties of Spaces, Lemma 66.6.3 we can
find the morphisms Vp → Wp. By Decent Spaces, Lemma 68.5.1 we can find the
integers dp.
At this point the proof uses the spectral sequence

Ep,q1 = Hq(Up,F|Up ⊗Z Z(χp))⇒ Hp+q(X,F)
see Lemma 69.6.6. By definition of the integer d we see that Up = 0 for p ≥ d. By
Proposition 69.7.2 and Lemma 69.7.1 we see that Hq(Up,F|Up ⊗Z Z(χp)) is zero
for q ≥ dp for p = 0, . . . , d. Whence the lemma. □

69.8. Vanishing for higher direct images

073F We apply the results of Section 69.7 to obtain vanishing of higher direct images of
quasi-coherent sheaves for quasi-compact and quasi-separated morphisms. This is
useful because it allows one to argue by descending induction on the cohomological
degree in certain situations.
Lemma 69.8.1.073G Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that

(1) f is quasi-compact and quasi-separated, and
(2) Y is quasi-compact.

Then there exists an integer n(X → Y ) such that for any algebraic space Y ′, any
morphism Y ′ → Y and any quasi-coherent sheaf F ′ on X ′ = Y ′ ×Y X the higher
direct images Rif ′

∗F ′ are zero for i ≥ n(X → Y ).
Proof. Let V → Y be a surjective étale morphism where V is an affine scheme,
see Properties of Spaces, Lemma 66.6.3. Suppose we prove the result for the base
change fV : V ×Y X → V . Then the result holds for f with n(X → Y ) = n(XV →
V ). Namely, if Y ′ → Y and F ′ are as in the lemma, then Rif ′

∗F ′|V×Y Y ′ is equal
to Rif ′

V,∗F ′|X′
V

where f ′
V : X ′

V = V ×Y Y ′ ×Y X → V ×Y Y ′ = Y ′
V , see Properties

of Spaces, Lemma 66.26.2. Thus we may assume that Y is an affine scheme.
Moreover, to prove the vanishing for all Y ′ → Y and F ′ it suffices to do so when Y ′

is an affine scheme. In this case, Rif ′
∗F ′ is quasi-coherent by Lemma 69.3.1. Hence

it suffices to prove that Hi(X ′,F ′) = 0, because Hi(X ′,F ′) = H0(Y ′, Rif ′
∗F ′) by

Cohomology on Sites, Lemma 21.14.6 and the vanishing of higher cohomology of
quasi-coherent sheaves on affine algebraic spaces (Proposition 69.7.2).
Choose U → X, d, Vp → Up and dp as in Lemma 69.7.3. For any affine scheme Y ′

and morphism Y ′ → Y denote X ′ = Y ′×Y X, U ′ = Y ′×Y U , V ′
p = Y ′×Y Vp. Then

U ′ → X ′, d′ = d, V ′
p → U ′

p and d′
p = d is a collection of choices as in Lemma 69.7.3

for the algebraic space X ′ (details omitted). Hence we see that Hi(X ′,F ′) = 0 for
i ≥ max(p+ dp) and we win. □

https://stacks.math.columbia.edu/tag/073G
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Lemma 69.8.2.073H Let S be a scheme. Let f : X → Y be an affine morphism of
algebraic spaces over S. Then Rif∗F = 0 for i > 0 and any quasi-coherent OX -
module F .

Proof. Recall that an affine morphism of algebraic spaces is representable. Hence
this follows from (69.3.0.1) and Cohomology of Schemes, Lemma 30.2.3. □

Lemma 69.8.3.0D2U Let S be a scheme. Let f : X → Y be an affine morphism of
algebraic spaces over S. Let F be a quasi-coherent OX -module. Then Hi(X,F) =
Hi(Y, f∗F) for all i ≥ 0.

Proof. Follows from Lemma 69.8.2 and the Leray spectral sequence. See Cohomol-
ogy on Sites, Lemma 21.14.6. □

69.9. Cohomology with support in a closed subspace

0A4L This section is the analogue of Cohomology, Sections 20.21 and 20.34 and Étale
Cohomology, Section 59.79 for abelian sheaves on algebraic spaces.
Let S be a scheme. Let X be an algebraic space over S and let Z ⊂ X be a closed
subspace. Let F be an abelian sheaf on Xétale. We let

ΓZ(X,F) = {s ∈ F(X) | Supp(s) ⊂ Z}
be the sections with support in Z (Properties of Spaces, Definition 66.20.3). This
is a left exact functor which is not exact in general. Hence we obtain a derived
functor

RΓZ(X,−) : D(Xétale) −→ D(Ab)
and cohomology groups with support in Z defined by Hq

Z(X,F) = RqΓZ(X,F).
Let I be an injective abelian sheaf on Xétale. Let U ⊂ X be the open subspace
which is the complement of Z. Then the restriction map I(X) → I(U) is surjec-
tive (Cohomology on Sites, Lemma 21.12.6) with kernel ΓZ(X, I). It immediately
follows that for K ∈ D(Xétale) there is a distinguished triangle

RΓZ(X,K)→ RΓ(X,K)→ RΓ(U,K)→ RΓZ(X,K)[1]
in D(Ab). As a consequence we obtain a long exact cohomology sequence

. . .→ Hi
Z(X,K)→ Hi(X,K)→ Hi(U,K)→ Hi+1

Z (X,K)→ . . .

for any K in D(Xétale).
For an abelian sheaf F on Xétale we can consider the subsheaf of sections with
support in Z, denoted HZ(F), defined by the rule

HZ(F)(U) = {s ∈ F(U) | Supp(s) ⊂ U ×X Z}
Here we use the support of a section from Properties of Spaces, Definition 66.20.3.
Using the equivalence of Morphisms of Spaces, Lemma 67.13.5 we may view HZ(F)
as an abelian sheaf on Zétale. Thus we obtain a functor

Ab(Xétale) −→ Ab(Zétale), F 7−→ HZ(F)
which is left exact, but in general not exact.

Lemma 69.9.1.0A4M Let S be a scheme. Let i : Z → X be a closed immersion of
algebraic spaces over S. Let I be an injective abelian sheaf on Xétale. Then HZ(I)
is an injective abelian sheaf on Zétale.
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Proof. Observe that for any abelian sheaf G on Zétale we have
HomZ(G,HZ(F)) = HomX(i∗G,F)

because after all any section of i∗G has support in Z. Since i∗ is exact (Lemma
69.4.1) and as I is injective on Xétale we conclude that HZ(I) is injective on
Zétale. □

Denote
RHZ : D(Xétale) −→ D(Zétale)

the derived functor. We set HqZ(F) = RqHZ(F) so that H0
Z(F) = HZ(F). By the

lemma above we have a Grothendieck spectral sequence
Ep,q2 = Hp(Z,HqZ(F))⇒ Hp+q

Z (X,F)

Lemma 69.9.2.0A4N Let S be a scheme. Let i : Z → X be a closed immersion of algebraic
spaces over S. Let G be an injective abelian sheaf on Zétale. Then HpZ(i∗G) = 0 for
p > 0.

Proof. This is true because the functor i∗ is exact (Lemma 69.4.1) and trans-
forms injective abelian sheaves into injective abelian sheaves (Cohomology on Sites,
Lemma 21.14.2). □

Lemma 69.9.3.0A4P Let S be a scheme. Let f : X → Y be an étale morphism of
algebraic spaces over S. Let Z ⊂ Y be a closed subspace such that f−1(Z)→ Z is
an isomorphism of algebraic spaces. Let F be an abelian sheaf on X. Then

HqZ(F) = Hqf−1(Z)(f
−1F)

as abelian sheaves on Z = f−1(Z) and we have Hq
Z(Y,F) = Hq

f−1(Z)(X, f
−1F).

Proof. Because f is étale an injective resolution of F pulls back to an injective
resolution of f−1F . Hence it suffices to check the equality for HZ(−) which follows
from the definitions. The proof for cohomology with supports is the same. Some
details omitted. □

Let S be a scheme and let X be an algebraic space over S. Let T ⊂ |X| be a closed
subset. We denote DT (Xétale) the strictly full saturated triangulated subcategory
of D(Xétale) consisting of objects whose cohomology sheaves are supported on T .

Lemma 69.9.4.0AEI Let S be a scheme. Let i : Z → X be a closed immersion of
algebraic spaces over S. The map Ri∗ = i∗ : D(Zétale) → D(Xétale) induces an
equivalence D(Zétale)→ D|Z|(Xétale) with quasi-inverse

i−1|DZ(Xétale) = RHZ |D|Z|(Xétale)

Proof. Recall that i−1 and i∗ is an adjoint pair of exact functors such that i−1i∗
is isomorphic to the identify functor on abelian sheaves. See Properties of Spaces,
Lemma 66.19.9 and Morphisms of Spaces, Lemma 67.13.5. Thus i∗ : D(Zétale) →
DZ(Xétale) is fully faithful and i−1 determines a left inverse. On the other hand,
suppose that K is an object of DZ(Xétale) and consider the adjunction map K →
i∗i

−1K. Using exactness of i∗ and i−1 this induces the adjunction maps Hn(K)→
i∗i

−1Hn(K) on cohomology sheaves. Since these cohomology sheaves are sup-
ported on Z we see these adjunction maps are isomorphisms and we conclude that
D(Zétale)→ DZ(Xétale) is an equivalence.
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To finish the proof we have to show that RHZ(K) = i−1K if K is an object of
DZ(Xétale). To do this we can use that K = i∗i

−1K as we’ve just proved this is
the case. Then we can choose a K-injective representative I• for i−1K. Since i∗ is
the right adjoint to the exact functor i−1, the complex i∗I• is K-injective (Derived
Categories, Lemma 13.31.9). We see that RHZ(K) is computed by HZ(i∗I•) = I•

as desired. □

69.10. Vanishing above the dimension

0A4Q Let S be a scheme. Let X be a quasi-compact and quasi-separated algebraic space
over S. In this case |X| is a spectral space, see Properties of Spaces, Lemma 66.15.2.
Moreover, the dimension of X (as defined in Properties of Spaces, Definition 66.9.2)
is equal to the Krull dimension of |X|, see Decent Spaces, Lemma 68.12.5. We will
show that for quasi-coherent sheaves on X we have vanishing of cohomology above
the dimension. This result is already interesting for quasi-separated algebraic spaces
of finite type over a field.

Lemma 69.10.1.0A4R Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Assume dim(X) ≤ d for some integer d. Let F be a quasi-
coherent sheaf F on X.

(1) Hq(X,F) = 0 for q > d,
(2) Hd(X,F)→ Hd(U,F) is surjective for any quasi-compact open U ⊂ X,
(3) Hq

Z(X,F) = 0 for q > d for any closed subspace Z ⊂ X whose complement
is quasi-compact.

Proof. By Properties of Spaces, Lemma 66.22.5 every algebraic space Y étale over
X has dimension ≤ d. If Y is quasi-separated, the dimension of Y is equal to the
Krull dimension of |Y | by Decent Spaces, Lemma 68.12.5. Also, if Y is a scheme,
then étale cohomology of F over Y , resp. étale cohomology of F with support in
a closed subscheme, agrees with usual cohomology of F , resp. usual cohomology
with support in the closed subscheme. See Descent, Proposition 35.9.3 and Étale
Cohomology, Lemma 59.79.5. We will use these facts without further mention.
By Decent Spaces, Lemma 68.8.6 there exist an integer n and open subspaces

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

with the following property: setting Tp = Up\Up+1 (with reduced induced subspace
structure) there exists a quasi-compact separated scheme Vp and a surjective étale
morphism fp : Vp → Up such that f−1

p (Tp)→ Tp is an isomorphism.
As Un = Vn is a scheme, our initial remarks imply the cohomology of F over Un
vanishes in degrees > d by Cohomology, Proposition 20.22.4. Suppose we have
shown, by induction, that Hq(Up+1,F|Up+1) = 0 for q > d. It suffices to show
Hq
Tp

(Up,F) for q > d is zero in order to conclude the vanishing of cohomology of F
over Up in degrees > d. However, we have

Hq
Tp

(Up,F) = Hq

f−1
p (Tp)(Vp,F)

by Lemma 69.9.3 and as Vp is a scheme we obtain the desired vanishing from
Cohomology, Proposition 20.22.4. In this way we conclude that (1) is true.
To prove (2) let U ⊂ X be a quasi-compact open subspace. Consider the open
subspace U ′ = U∪Un. Let Z = U ′\U . Then g : Un → U ′ is an étale morphism such

https://stacks.math.columbia.edu/tag/0A4R
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that g−1(Z)→ Z is an isomorphism. Hence by Lemma 69.9.3 we have Hq
Z(U ′,F) =

Hq
Z(Un,F) which vanishes in degree > d because Un is a scheme and we can apply

Cohomology, Proposition 20.22.4. We conclude that Hd(U ′,F) → Hd(U,F) is
surjective. Assume, by induction, that we have reduced our problem to the case
where U contains Up+1. Then we set U ′ = U ∪ Up, set Z = U ′ \ U , and we
argue using the morphism fp : Vp → U ′ which is étale and has the property that
f−1
p (Z)→ Z is an isomorphism. In other words, we again see that

Hq
Z(U ′,F) = Hq

f−1
p (Z)(Vp,F)

and we again see this vanishes in degrees > d. We conclude that Hd(U ′,F) →
Hd(U,F) is surjective. Eventually we reach the stage where U1 = X ⊂ U which
finishes the proof.
A formal argument shows that (2) implies (3). □

69.11. Cohomology and base change, I

073I Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces over S. Let
F be a quasi-coherent sheaf on X. Suppose further that g : Y ′ → Y is a morphism
of algebraic spaces over S. Denote X ′ = XY ′ = Y ′×Y X the base change of X and
denote f ′ : X ′ → Y ′ the base change of f . Also write g′ : X ′ → X the projection,
and set F ′ = (g′)∗F . Here is a diagram representing the situation:

(69.11.0.1)073J

F ′ = (g′)∗F X ′
g′
//

f ′

��

X

f

��

F

Rf ′
∗F ′ Y ′ g // Y Rf∗F

Here is the simplest case of the base change property we have in mind.

Lemma 69.11.1.07U8 Let S be a scheme. Let f : X → Y be an affine morphism
of algebraic spaces over S. Let F be a quasi-coherent OX -module. In this case
f∗F ∼= Rf∗F is a quasi-coherent sheaf, and for every diagram (69.11.0.1) we have

g∗f∗F = f ′
∗(g′)∗F .

Proof. By the discussion surrounding (69.3.0.1) this reduces to the case of an affine
morphism of schemes which is treated in Cohomology of Schemes, Lemma 30.5.1.

□

Lemma 69.11.2 (Flat base change).073K Let S be a scheme. Consider a cartesian
diagram of algebraic spaces

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

over S. Let F be a quasi-coherent OX -module with pullback F ′ = (g′)∗F . Assume
that g is flat and that f is quasi-compact and quasi-separated. For any i ≥ 0

(1) the base change map of Cohomology on Sites, Lemma 21.15.1 is an iso-
morphism

g∗Rif∗F −→ Rif ′
∗F ′,

(2) if Y = Spec(A) and Y ′ = Spec(B), then Hi(X,F)⊗A B = Hi(X ′,F ′).

https://stacks.math.columbia.edu/tag/07U8
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Proof. The morphism g′ is flat by Morphisms of Spaces, Lemma 67.30.4. Note that
flatness of g and g′ is equivalent to flatness of the morphisms of small étale ringed
sites, see Morphisms of Spaces, Lemma 67.30.9. Hence we can apply Cohomology
on Sites, Lemma 21.15.1 to obtain a base change map

g∗Rpf∗F −→ Rpf ′
∗F ′

To prove this map is an isomorphism we can work locally in the étale topology on
Y ′. Thus we may assume that Y and Y ′ are affine schemes. Say Y = Spec(A) and
Y ′ = Spec(B). In this case we are really trying to show that the map

Hp(X,F)⊗A B −→ Hp(XB ,FB)
is an isomorphism where XB = Spec(B) ×Spec(A) X and FB is the pullback of F
to XB . In other words, it suffices to prove (2).
Fix A → B a flat ring map and let X be a quasi-compact and quasi-separated
algebraic space over A. Note that g′ : XB → X is affine as a base change of
Spec(B)→ Spec(A). Hence the higher direct images Ri(g′)∗FB are zero by Lemma
69.8.2. Thus Hp(XB ,FB) = Hp(X, g′

∗FB), see Cohomology on Sites, Lemma
21.14.6. Moreover, we have

g′
∗FB = F ⊗A B

where A, B denotes the constant sheaf of rings with value A, B. Namely, it is clear
that there is a map from right to left. For any affine scheme U étale over X we
have

g′
∗FB(U) = FB(Spec(B)×Spec(A) U)

= Γ(Spec(B)×Spec(A) U, (Spec(B)×Spec(A) U → U)∗F|U )
= B ⊗A F(U)

hence the map is an isomorphism. Write B = colimMi as a filtered colimit of
finite free A-modules Mi using Lazard’s theorem, see Algebra, Theorem 10.81.4.
We deduce that

Hp(X, g′
∗FB) = Hp(X,F ⊗A B)

= Hp(X, colimi F ⊗AMi)
= colimiH

p(X,F ⊗AMi)
= colimiH

p(X,F)⊗AMi

= Hp(X,F)⊗A colimiMi

= Hp(X,F)⊗A B

The first equality because g′
∗FB = F ⊗A B as seen above. The second because ⊗

commutes with colimits. The third equality because cohomology on X commutes
with colimits (see Lemma 69.5.1). The fourth equality because Mi is finite free
(i.e., because cohomology commutes with finite direct sums). The fifth because ⊗
commutes with colimits. The sixth by choice of our system. □

69.12. Coherent modules on locally Noetherian algebraic spaces

07U9 This section is the analogue of Cohomology of Schemes, Section 30.9. In Modules on
Sites, Definition 18.23.1 we have defined coherent modules on any ringed topos. We
use this notion to define coherent modules on locally Noetherian algebraic spaces.
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Although it is possible to work with coherent modules more generally we resist the
urge to do so.

Definition 69.12.1.07UA Let S be a scheme. Let X be a locally Noetherian algebraic
space over S. A quasi-coherent module F on X is called coherent if F is a coherent
OX -module on the site Xétale in the sense of Modules on Sites, Definition 18.23.1.

This definition is compatible with the already existing notion of a coherent module
on a locally Noetherian scheme; see assertion (5) of Properties of Spaces, Section
66.30 (or more directly Descent, Lemma 35.8.10). Thus from now on, if X is
a locally Noetherian scheme over S, we will not distinguish between a coherent
module on X viewed as a scheme or a coherent module on X viewed as an algebraic
space; this is compatible with the corresponding identifications of categories of
quasi-coherent modules discussed in Properties of Spaces, Section 66.29.
Having said the above, the following lemma gives an understandable characteriza-
tion of coherent modules on locally Noetherian algebraic spaces.

Lemma 69.12.2.07UB Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let F be an OX -module. The following are equivalent

(1) F is coherent,
(2) F is a quasi-coherent, finite type OX -module,
(3) F is a finitely presented OX -module,
(4) for any étale morphism φ : U → X where U is a scheme the pullback φ∗F

is a coherent module on U , and
(5) there exists a surjective étale morphism φ : U → X where U is a scheme

such that the pullback φ∗F is a coherent module on U .
In particular OX is coherent, any invertible OX -module is coherent, and more
generally any finite locally free OX -module is coherent.

Proof. To be sure, if X is a locally Noetherian algebraic space and U → X is an
étale morphism, then U is locally Noetherian, see Properties of Spaces, Section
66.7. The lemma then follows from the points (1) – (5) made in Properties of
Spaces, Section 66.30 and the corresponding result for coherent modules on locally
Noetherian schemes, see Cohomology of Schemes, Lemma 30.9.1. □

Lemma 69.12.3.07UC Let S be a scheme. Let X be a locally Noetherian algebraic
space over S. The category of coherent OX -modules is abelian. More precisely, the
kernel and cokernel of a map of coherent OX -modules are coherent. Any extension
of coherent sheaves is coherent.

Proof. Choose a scheme U and a surjective étale morphism f : U → X. Pullback
f∗ is an exact functor as it equals a restriction functor, see Properties of Spaces,
Equation (66.26.1.1). By Lemma 69.12.2 we can check whether an OX -module F
is coherent by checking whether f∗F is coherent. Hence the lemma follows from
the case of schemes which is Cohomology of Schemes, Lemma 30.9.2. □

Coherent modules form a Serre subcategory of the category of quasi-coherent OX -
modules. This does not hold for modules on a general ringed topos.

Lemma 69.12.4.07UD Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let F be a coherent OX -module. Any quasi-coherent submodule of F is
coherent. Any quasi-coherent quotient module of F is coherent.

https://stacks.math.columbia.edu/tag/07UA
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Proof. Choose a scheme U and a surjective étale morphism f : U → X. Pullback
f∗ is an exact functor as it equals a restriction functor, see Properties of Spaces,
Equation (66.26.1.1). By Lemma 69.12.2 we can check whether an OX -module G
is coherent by checking whether f∗H is coherent. Hence the lemma follows from
the case of schemes which is Cohomology of Schemes, Lemma 30.9.3. □

Lemma 69.12.5.07UE Let S be a scheme. Let X be a locally Noetherian algebraic
space over S,. Let F , G be coherent OX -modules. The OX -modules F ⊗OX

G and
HomOX

(F ,G) are coherent.

Proof. Via Lemma 69.12.2 this follows from the result for schemes, see Cohomology
of Schemes, Lemma 30.9.4. □

Lemma 69.12.6.07UF Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let F , G be coherent OX -modules. Let φ : G → F be a homomorphism of
OX -modules. Let x be a geometric point of X lying over x ∈ |X|.

(1) If Fx = 0 then there exists an open neighbourhood X ′ ⊂ X of x such that
F|X′ = 0.

(2) If φx : Gx → Fx is injective, then there exists an open neighbourhood
X ′ ⊂ X of x such that φ|X′ is injective.

(3) If φx : Gx → Fx is surjective, then there exists an open neighbourhood
X ′ ⊂ X of x such that φ|X′ is surjective.

(4) If φx : Gx → Fx is bijective, then there exists an open neighbourhood
X ′ ⊂ X of x such that φ|X′ is an isomorphism.

Proof. Let φ : U → X be an étale morphism where U is a scheme and let u ∈ U
be a point mapping to x. By Properties of Spaces, Lemmas 66.29.4 and 66.22.1 as
well as More on Algebra, Lemma 15.45.1 we see that φx is injective, surjective, or
bijective if and only if φu : φ∗Fu → φ∗Gu has the corresponding property. Thus we
can apply the schemes version of this lemma to see that (after possibly shrinking
U) the map φ∗F → φ∗G is injective, surjective, or an isomorphism. Let X ′ ⊂ X
be the open subspace corresponding to |φ|(|U |) ⊂ |X|, see Properties of Spaces,
Lemma 66.4.8. Since {U → X ′} is a covering for the étale topology, we conclude
that φ|X′ is injective, surjective, or an isomorphism as desired. Finally, observe
that (1) follows from (2) by looking at the map F → 0. □

Lemma 69.12.7.07UG Let S be a scheme. Let X be a locally Noetherian algebraic
space over S. Let F be a coherent OX -module. Let i : Z → X be the scheme
theoretic support of F and G the quasi-coherent OZ-module such that i∗G = F ,
see Morphisms of Spaces, Definition 67.15.4. Then G is a coherent OZ-module.

Proof. The statement of the lemma makes sense as a coherent module is in partic-
ular of finite type. Moreover, as Z → X is a closed immersion it is locally of finite
type and hence Z is locally Noetherian, see Morphisms of Spaces, Lemmas 67.23.7
and 67.23.5. Finally, as G is of finite type it is a coherent OZ-module by Lemma
69.12.2 □

Lemma 69.12.8.08AM Let S be a scheme. Let i : Z → X be a closed immersion of locally
Noetherian algebraic spaces over S. Let I ⊂ OX be the quasi-coherent sheaf of
ideals cutting out Z. The functor i∗ induces an equivalence between the category of
coherent OX -modules annihilated by I and the category of coherent OZ-modules.
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Proof. The functor is fully faithful by Morphisms of Spaces, Lemma 67.14.1. Let
F be a coherent OX -module annihilated by I. By Morphisms of Spaces, Lemma
67.14.1 we can write F = i∗G for some quasi-coherent sheaf G on Z. To check that G
is coherent we can work étale locally (Lemma 69.12.2). Choosing an étale covering
by a scheme we conclude that G is coherent by the case of schemes (Cohomology
of Schemes, Lemma 30.9.8). Hence the functor is fully faithful and the proof is
done. □

Lemma 69.12.9.07UH Let S be a scheme. Let f : X → Y be a finite morphism of
algebraic spaces over S with Y locally Noetherian. Let F be a coherent OX -
module. Assume f is finite and Y locally Noetherian. Then Rpf∗F = 0 for p > 0
and f∗F is coherent.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Then V ×Y
X → V is a finite morphism of locally Noetherian schemes. By (69.3.0.1) we reduce
to the case of schemes which is Cohomology of Schemes, Lemma 30.9.9. □

69.13. Coherent sheaves on Noetherian spaces

07UI In this section we mention some properties of coherent sheaves on Noetherian al-
gebraic spaces.

Lemma 69.13.1.07UJ Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let F be a coherent OX -module. The ascending chain condition holds for
quasi-coherent submodules of F . In other words, given any sequence

F1 ⊂ F2 ⊂ . . . ⊂ F

of quasi-coherent submodules, then Fn = Fn+1 = . . . for some n ≥ 0.

Proof. Choose an affine scheme U and a surjective étale morphism U → X (see
Properties of Spaces, Lemma 66.6.3). Then U is a Noetherian scheme (by Mor-
phisms of Spaces, Lemma 67.23.5). If Fn|U = Fn+1|U = . . . then Fn = Fn+1 = . . ..
Hence the result follows from the case of schemes, see Cohomology of Schemes,
Lemma 30.10.1. □

Lemma 69.13.2.07UK Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let F be a coherent sheaf on X. Let I ⊂ OX be a quasi-coherent sheaf of ideals
corresponding to a closed subspace Z ⊂ X. Then there is some n ≥ 0 such that
InF = 0 if and only if Supp(F) ⊂ Z (set theoretically).

Proof. Choose an affine scheme U and a surjective étale morphism U → X (see
Properties of Spaces, Lemma 66.6.3). Then U is a Noetherian scheme (by Mor-
phisms of Spaces, Lemma 67.23.5). Note that InF|U = 0 if and only if InF = 0
and similarly for the condition on the support. Hence the result follows from the
case of schemes, see Cohomology of Schemes, Lemma 30.10.2. □

Lemma 69.13.3 (Artin-Rees).07UL Let S be a scheme. Let X be a Noetherian algebraic
space over S. Let F be a coherent sheaf on X. Let G ⊂ F be a quasi-coherent
subsheaf. Let I ⊂ OX be a quasi-coherent sheaf of ideals. Then there exists a c ≥ 0
such that for all n ≥ c we have

In−c(IcF ∩ G) = InF ∩ G

https://stacks.math.columbia.edu/tag/07UH
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Proof. Choose an affine scheme U and a surjective étale morphism U → X (see
Properties of Spaces, Lemma 66.6.3). Then U is a Noetherian scheme (by Mor-
phisms of Spaces, Lemma 67.23.5). The equality of the lemma holds if and only if
it holds after restricting to U . Hence the result follows from the case of schemes,
see Cohomology of Schemes, Lemma 30.10.3. □

Lemma 69.13.4.07UM Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let F be a quasi-coherent OX -module. Let G be a coherent OX -module. Let
I ⊂ OX be a quasi-coherent sheaf of ideals. Denote Z ⊂ X the corresponding
closed subspace and set U = X \ Z. There is a canonical isomorphism

colimn HomOX
(InG,F) −→ HomOU

(G|U ,F|U ).
In particular we have an isomorphism

colimn HomOX
(In,F) −→ Γ(U,F).

Proof. Let W be an affine scheme and let W → X be a surjective étale morphism
(see Properties of Spaces, Lemma 66.6.3). Set R = W ×X W . Then W and R are
Noetherian schemes, see Morphisms of Spaces, Lemma 67.23.5. Hence the result
hold for the restrictions of F , G, and I, U , Z to W and R by Cohomology of
Schemes, Lemma 30.10.5. It follows formally that the result holds over X. □

69.14. Devissage of coherent sheaves

07UN This section is the analogue of Cohomology of Schemes, Section 30.12.

Lemma 69.14.1.07UP Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let F be a coherent sheaf on X. Suppose that Supp(F) = Z ∪ Z ′ with Z, Z ′

closed. Then there exists a short exact sequence of coherent sheaves
0→ G′ → F → G → 0

with Supp(G′) ⊂ Z ′ and Supp(G) ⊂ Z.

Proof. Let I ⊂ OX be the sheaf of ideals defining the reduced induced closed
subspace structure on Z, see Properties of Spaces, Lemma 66.12.3. Consider the
subsheaves G′

n = InF and the quotients Gn = F/InF . For each n we have a short
exact sequence

0→ G′
n → F → Gn → 0

For every geometric point x of Z ′ \Z we have Ix = OX,x and hence Gn,x = 0. Thus
we see that Supp(Gn) ⊂ Z. Note that X \Z ′ is a Noetherian algebraic space. Hence
by Lemma 69.13.2 there exists an n such that G′

n|X\Z′ = InF|X\Z′ = 0. For such
an n we see that Supp(G′

n) ⊂ Z ′. Thus setting G′ = G′
n and G = Gn works. □

In the following we will freely use the scheme theoretic support of finite type mod-
ules as defined in Morphisms of Spaces, Definition 67.15.4.

Lemma 69.14.2.07UQ Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let F be a coherent sheaf on X. Assume that the scheme theoretic support of
F is a reduced Z ⊂ X with |Z| irreducible. Then there exist an integer r > 0, a
nonzero sheaf of ideals I ⊂ OZ , and an injective map of coherent sheaves

i∗
(
I⊕r)→ F

whose cokernel is supported on a proper closed subspace of Z.
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Proof. By assumption there exists a coherent OZ-module G with support Z and
F ∼= i∗G, see Lemma 69.12.7. Hence it suffices to prove the lemma for the case
Z = X and i = id.
By Properties of Spaces, Proposition 66.13.3 there exists a dense open subspace
U ⊂ X which is a scheme. Note that U is a Noetherian integral scheme. After
shrinking U we may assume that F|U ∼= O⊕r

U (for example by Cohomology of
Schemes, Lemma 30.12.2 or by a direct algebra argument). Let I ⊂ OX be a quasi-
coherent sheaf of ideals whose associated closed subspace is the complement of U in
X (see for example Properties of Spaces, Section 66.12). By Lemma 69.13.4 there
exists an n ≥ 0 and a morphism In(O⊕r

X ) → F which recovers our isomorphism
over U . Since In(O⊕r

X ) = (In)⊕r we get a map as in the lemma. It is injective:
namely, if σ is a nonzero section of I⊕r over a scheme W étale over X, then because
X hence W is reduced the support of σ contains a nonempty open of W . But the
kernel of (In)⊕r → F is zero over a dense open, hence σ cannot be a section of the
kernel. □

Lemma 69.14.3.07UR Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let F be a coherent sheaf on X. There exists a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F
by coherent subsheaves such that for each j = 1, . . . ,m there exists a reduced closed
subspace Zj ⊂ X with |Zj | irreducible and a sheaf of ideals Ij ⊂ OZj such that

Fj/Fj−1 ∼= (Zj → X)∗Ij
Proof. Consider the collection

T =
{
T ⊂ |X| closed such that there exists a coherent sheaf F

with Supp(F) = T for which the lemma is wrong

}
We are trying to show that T is empty. If not, then because |X| is Noetherian
(Properties of Spaces, Lemma 66.24.2) we can choose a minimal element T ∈ T .
This means that there exists a coherent sheaf F on X whose support is T and for
which the lemma does not hold. Clearly T ̸= ∅ since the only sheaf whose support
is empty is the zero sheaf for which the lemma does hold (with m = 0).
If T is not irreducible, then we can write T = Z1∪Z2 with Z1, Z2 closed and strictly
smaller than T . Then we can apply Lemma 69.14.1 to get a short exact sequence
of coherent sheaves

0→ G1 → F → G2 → 0
with Supp(Gi) ⊂ Zi. By minimality of T each of Gi has a filtration as in the
statement of the lemma. By considering the induced filtration on F we arrive at a
contradiction. Hence we conclude that T is irreducible.
Suppose T is irreducible. Let J be the sheaf of ideals defining the reduced induced
closed subspace structure on T , see Properties of Spaces, Lemma 66.12.3. By
Lemma 69.13.2 we see there exists an n ≥ 0 such that J nF = 0. Hence we obtain
a filtration

0 = InF ⊂ In−1F ⊂ . . . ⊂ IF ⊂ F
each of whose successive subquotients is annihilated by J . Hence if each of these
subquotients has a filtration as in the statement of the lemma then also F does. In
other words we may assume that J does annihilate F .
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Assume T is irreducible and JF = 0 where J is as above. Then the scheme
theoretic support of F is T , see Morphisms of Spaces, Lemma 67.14.1. Hence we
can apply Lemma 69.14.2. This gives a short exact sequence

0→ i∗(I⊕r)→ F → Q→ 0
where the support of Q is a proper closed subset of T . Hence we see that Q has
a filtration of the desired type by minimality of T . But then clearly F does too,
which is our final contradiction. □

Lemma 69.14.4.07US Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let P be a property of coherent sheaves on X. Assume

(1) For any short exact sequence of coherent sheaves
0→ F1 → F → F2 → 0

if Fi, i = 1, 2 have property P then so does F .
(2) For every reduced closed subspace Z ⊂ X with |Z| irreducible and every

quasi-coherent sheaf of ideals I ⊂ OZ we have P for i∗I.
Then property P holds for every coherent sheaf on X.

Proof. First note that if F is a coherent sheaf with a filtration
0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F

by coherent subsheaves such that each of Fi/Fi−1 has property P, then so does F .
This follows from the property (1) for P. On the other hand, by Lemma 69.14.3 we
can filter any F with successive subquotients as in (2). Hence the lemma follows. □

Here is a more useful variant of the lemma above.

Lemma 69.14.5.07UT Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let P be a property of coherent sheaves on X. Assume

(1) For any short exact sequence of coherent sheaves
0→ F1 → F → F2 → 0

if Fi, i = 1, 2 have property P then so does F .
(2) If P holds for F⊕r for some r ≥ 1, then it holds for F .
(3) For every reduced closed subspace i : Z → X with |Z| irreducible there

exists a coherent sheaf G on Z such that
(a) Supp(G) = Z,
(b) for every nonzero quasi-coherent sheaf of ideals I ⊂ OZ there exists

a quasi-coherent subsheaf G′ ⊂ IG such that Supp(G/G′) is proper
closed in |Z| and such that P holds for i∗G′.

Then property P holds for every coherent sheaf on X.

Proof. Consider the collection

T =
{
T ⊂ |X| nonempty closed such that there exists a coherent sheaf

F with Supp(F) = T for which the lemma is wrong

}
We are trying to show that T is empty. If not, then because |X| is Noetherian
(Properties of Spaces, Lemma 66.24.2) we can choose a minimal element T ∈ T .
This means that there exists a coherent sheaf F on X whose support is T and for
which the lemma does not hold.
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If T is not irreducible, then we can write T = Z1∪Z2 with Z1, Z2 closed and strictly
smaller than T . Then we can apply Lemma 69.14.1 to get a short exact sequence
of coherent sheaves

0→ G1 → F → G2 → 0
with Supp(Gi) ⊂ Zi. By minimality of T each of Gi has P. Hence F has property
P by (1), a contradiction.
Suppose T is irreducible. Let J be the sheaf of ideals defining the reduced induced
closed subspace structure on T , see Properties of Spaces, Lemma 66.12.3. By
Lemma 69.13.2 we see there exists an n ≥ 0 such that J nF = 0. Hence we obtain
a filtration

0 = J nF ⊂ J n−1F ⊂ . . . ⊂ JF ⊂ F
each of whose successive subquotients is annihilated by J . Hence if each of these
subquotients has a filtration as in the statement of the lemma then also F does by
(1). In other words we may assume that J does annihilate F .
Assume T is irreducible and JF = 0 where J is as above. Denote i : Z → X the
closed subspace corresponding to J . Then F = i∗H for some coherent OZ-module
H, see Morphisms of Spaces, Lemma 67.14.1 and Lemma 69.12.7. Let G be the
coherent sheaf on Z satisfying (3)(a) and (3)(b). We apply Lemma 69.14.2 to get
injective maps

I⊕r1
1 → H and I⊕r2

2 → G
where the support of the cokernels are proper closed in Z. Hence we find an
nonempty open V ⊂ Z such that

H⊕r2
V
∼= G⊕r1

V

Let I ⊂ OZ be a quasi-coherent ideal sheaf cutting out Z \ V we obtain (Lemma
69.13.4) a map

InG⊕r1 −→ H⊕r2

which is an isomorphism over V . The kernel is supported on Z\V hence annihilated
by some power of I, see Lemma 69.13.2. Thus after increasing n we may assume the
displayed map is injective, see Lemma 69.13.3. Applying (3)(b) we find G′ ⊂ InG
such that

(i∗G′)⊕r1 −→ i∗H⊕r2 = F⊕r2

is injective with cokernel supported in a proper closed subset of Z and such that
property P holds for i∗G′. By (1) property P holds for (i∗G′)⊕r1 . By (1) and
minimality of T = |Z| property P holds for F⊕r2 . And finally by (2) property P
holds for F which is the desired contradiction. □

Lemma 69.14.6.08AN Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let P be a property of coherent sheaves on X. Assume

(1) For any short exact sequence of coherent sheaves on X if two out of three
have property P so does the third.

(2) If P holds for F⊕r for some r ≥ 1, then it holds for F .
(3) For every reduced closed subspace i : Z → X with |Z| irreducible there

exists a coherent sheaf G on X whose scheme theoretic support is Z such
that P holds for G.

Then property P holds for every coherent sheaf on X.
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Proof. We will show that conditions (1) and (2) of Lemma 69.14.4 hold. This is
clear for condition (1). To show that (2) holds, let

T =
{
i : Z → X reduced closed subspace with |Z| irreducible such

that i∗I does not have P for some quasi-coherent I ⊂ OZ

}
If T is nonempty, then since X is Noetherian, we can find an i : Z → X which is
minimal in T . We will show that this leads to a contradiction.

Let G be the sheaf whose scheme theoretic support is Z whose existence is assumed
in assumption (3). Let φ : i∗I⊕r → G be as in Lemma 69.14.2. Let

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = Coker(φ)

be a filtration as in Lemma 69.14.3. By minimality of Z and assumption (1) we see
that Coker(φ) has property P. As φ is injective we conclude using assumption (1)
once more that i∗I⊕r has property P. Using assumption (2) we conclude that i∗I
has property P.

Finally, if J ⊂ OZ is a second quasi-coherent sheaf of ideals, set K = I ∩ J and
consider the short exact sequences

0→ K → I → I/K → 0 and 0→ K → J → J /K → 0

Arguing as above, using the minimality of Z, we see that i∗I/K and i∗J /K satisfy
P. Hence by assumption (1) we conclude that i∗K and then i∗J satisfy P. In other
words, Z is not an element of T which is the desired contradiction. □

69.15. Limits of coherent modules

07UU A colimit of coherent modules (on a locally Noetherian algebraic space) is typically
not coherent. But it is quasi-coherent as any colimit of quasi-coherent modules
on an algebraic space is quasi-coherent, see Properties of Spaces, Lemma 66.29.7.
Conversely, if the algebraic space is Noetherian, then every quasi-coherent module
is a filtered colimit of coherent modules.

Lemma 69.15.1.07UV Let S be a scheme. Let X be a Noetherian algebraic space over S.
Every quasi-coherent OX -module is the filtered colimit of its coherent submodules.

Proof. Let F be a quasi-coherent OX -module. If G,H ⊂ F are coherent OX -
submodules then the image of G ⊕ H → F is another coherent OX -submodule
which contains both of them (see Lemmas 69.12.3 and 69.12.4). In this way we see
that the system is directed. Hence it now suffices to show that F can be written
as a filtered colimit of coherent modules, as then we can take the images of these
modules in F to conclude there are enough of them.

Let U be an affine scheme and U → X a surjective étale morphism. Set R =
U ×X U so that X = U/R as usual. By Properties of Spaces, Proposition 66.32.1
we see that QCoh(OX) = QCoh(U,R, s, t, c). Hence we reduce to showing the
corresponding thing for QCoh(U,R, s, t, c). Thus the result follows from the more
general Groupoids, Lemma 39.15.4. □

Lemma 69.15.2.07UW Let S be a scheme. Let f : X → Y be an affine morphism of
algebraic spaces over S with Y Noetherian. Then every quasi-coherent OX -module
is a filtered colimit of finitely presented OX -modules.
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Proof. Let F be a quasi-coherent OX -module. Write f∗F = colimHi with Hi
a coherent OY -module, see Lemma 69.15.1. By Lemma 69.12.2 the modules Hi
are OY -modules of finite presentation. Hence f∗Hi is an OX -module of finite
presentation, see Properties of Spaces, Section 66.30. We claim the map

colim f∗Hi = f∗f∗F → F

is surjective as f is assumed affine, Namely, choose a scheme V and a surjective
étale morphism V → Y . Set U = X ×Y V . Then U is a scheme, f ′ : U → V
is affine, and U → X is surjective étale. By Properties of Spaces, Lemma 66.26.2
we see that f ′

∗(F|U ) = f∗F|V and similarly for pullbacks. Thus the restriction of
f∗f∗F → F to U is the map

f∗f∗F|U = (f ′)∗(f∗F)|V ) = (f ′)∗f ′
∗(F|U )→ F|U

which is surjective as f ′ is an affine morphism of schemes. Hence the claim holds.
We conclude that every quasi-coherent module on X is a quotient of a filtered
colimit of finitely presented modules. In particular, we see that F is a cokernel of
a map

colimj∈J Gj −→ colimi∈I Hi
with Gj and Hi finitely presented. Note that for every j ∈ I there exist i ∈ I and
a morphism α : Gj → Hi such that

Gj α
//

��

Hi

��
colimj∈J Gj // colimi∈I Hi

commutes, see Lemma 69.5.3. In this situation Coker(α) is a finitely presented
OX -module which comes endowed with a map Coker(α)→ F . Consider the set K
of triples (i, j, α) as above. We say that (i, j, α) ≤ (i′, j′, α′) if and only if i ≤ i′,
j ≤ j′, and the diagram

Gj α
//

��

Hi

��
Gj′

α′
// Hi′

commutes. It follows from the above that K is a directed partially ordered set,
F = colim(i,j,α)∈K Coker(α),

and we win. □

69.16. Vanishing of cohomology

07UX In this section we show that a quasi-compact and quasi-separated algebraic space
is affine if it has vanishing higher cohomology for all quasi-coherent sheaves. We
do this in a sequence of lemmas all of which will become obsolete once we prove
Proposition 69.16.7.

Situation 69.16.1.07UY Here S is a scheme andX is a quasi-compact and quasi-separated
algebraic space over S with the following property: For every quasi-coherent OX -
module F we have H1(X,F) = 0. We set A = Γ(X,OX).
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We would like to show that the canonical morphism
p : X −→ Spec(A)

(see Properties of Spaces, Lemma 66.33.1) is an isomorphism. If M is an A-module
we denote M ⊗A OX the quasi-coherent module p∗M̃ .

Lemma 69.16.2.07UZ In Situation 69.16.1 for an A-module M we have p∗(M ⊗AOX) =
M̃ and Γ(X,M ⊗A OX) = M .

Proof. The equality p∗(M⊗AOX) = M̃ follows from the equality Γ(X,M⊗AOX) =
M as p∗(M⊗AOX) is a quasi-coherent module on Spec(A) by Morphisms of Spaces,
Lemma 67.11.2. Observe that Γ(X,

⊕
i∈I OX) =

⊕
i∈I A by Lemma 69.5.1. Hence

the lemma holds for free modules. Choose a short exact sequence F1 → F0 → M
where F0, F1 are free A-modules. Since H1(X,−) is zero the global sections functor
is right exact. Moreover the pullback p∗ is right exact as well. Hence we see that

Γ(X,F1 ⊗A OX)→ Γ(X,F0 ⊗A OX)→ Γ(X,M ⊗A OX)→ 0
is exact. The result follows. □

The following lemma shows that Situation 69.16.1 is preserved by base change of
X → Spec(A) by Spec(A′)→ Spec(A).

Lemma 69.16.3.07V0 In Situation 69.16.1.
(1) Given an affine morphismX ′ → X of algebraic spaces, we haveH1(X ′,F ′) =

0 for every quasi-coherent OX′ -module F ′.
(2) Given an A-algebra A′ setting X ′ = X ×Spec(A) Spec(A′) the morphism

X ′ → X is affine and Γ(X ′,OX′) = A′.

Proof. Part (1) follows from Lemma 69.8.2 and the Leray spectral sequence (Co-
homology on Sites, Lemma 21.14.5). Let A → A′ be as in (2). Then X ′ → X
is affine because affine morphisms are preserved under base change (Morphisms of
Spaces, Lemma 67.20.5) and the fact that a morphism of affine schemes is affine.
The equality Γ(X ′,OX′) = A′ follows as (X ′ → X)∗OX′ = A′ ⊗A OX by Lemma
69.11.1 and thus

Γ(X ′,OX′) = Γ(X, (X ′ → X)∗OX′) = Γ(X,A′ ⊗A OX) = A′

by Lemma 69.16.2. □

Lemma 69.16.4.07V1 In Situation 69.16.1. Let Z0, Z1 ⊂ |X| be disjoint closed subsets.
Then there exists an a ∈ A such that Z0 ⊂ V (a) and Z1 ⊂ V (a− 1).

Proof. We may and do endow Z0, Z1 with the reduced induced subspace structure
(Properties of Spaces, Definition 66.12.5) and we denote i0 : Z0 → X and i1 :
Z1 → X the corresponding closed immersions. Since Z0 ∩ Z1 = ∅ we see that the
canonical map of quasi-coherent OX -modules

OX −→ i0,∗OZ0 ⊕ i1,∗OZ1

is surjective (look at stalks at geometric points). Since H1(X,−) is zero on the
kernel of this map the induced map of global sections is surjective. Thus we can
find a ∈ A which maps to the global section (0, 1) of the right hand side. □

Lemma 69.16.5.07V4 In Situation 69.16.1 the morphism p : X → Spec(A) is universally
injective.
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Proof. Let A → k be a ring homomorphism where k is a field. It suffices to show
that Spec(k)×Spec(A) X has at most one point (see Morphisms of Spaces, Lemma
67.19.6). Using Lemma 69.16.3 we may assume that A is a field and we have to
show that |X| has at most one point.
Let’s think of X as an algebraic space over Spec(k) and let’s use the notation
X(K) to denote K-valued points of X for any extension K/k, see Morphisms of
Spaces, Section 67.24. If K/k is an algebraically closed field extension of large
transcendence degree, then we see that X(K) → |X| is surjective, see Morphisms
of Spaces, Lemma 67.24.2. Hence, after replacing k by K, we see that it suffices to
prove that X(k) is a singleton (in the case A = k).
Let x, x′ ∈ X(k). By Decent Spaces, Lemma 68.14.4 we see that x and x′ are closed
points of |X|. Hence x and x′ map to distinct points of Spec(k) if x ̸= x′ by Lemma
69.16.4. We conclude that x = x′ as desired. □

Lemma 69.16.6.07V5 In Situation 69.16.1 the morphism p : X → Spec(A) is separated.

Proof. By Decent Spaces, Lemma 68.9.2 we can find a scheme Y and a surjective
integral morphism Y → X. Since an integral morphism is affine, we can apply
Lemma 69.16.3 to see that H1(Y,G) = 0 for every quasi-coherent OY -module G.
Since Y → X is quasi-compact and X is quasi-compact, we see that Y is quasi-
compact. Since Y is a scheme, we may apply Cohomology of Schemes, Lemma
30.3.1 to see that Y is affine. Hence Y is separated. Note that an integral morphism
is affine and universally closed, see Morphisms of Spaces, Lemma 67.45.7. By
Morphisms of Spaces, Lemma 67.9.8 we see that X is a separated algebraic space.

□

Proposition 69.16.7.07V6 A quasi-compact and quasi-separated algebraic space is affine
if and only if all higher cohomology groups of quasi-coherent sheaves vanish. More
precisely, any algebraic space as in Situation 69.16.1 is an affine scheme.

Proof. Choose an affine scheme U = Spec(B) and a surjective étale morphism
φ : U → X. Set R = U ×X U . As p is separated (Lemma 69.16.6) we see that R is
a closed subscheme of U ×Spec(A) U = Spec(B ⊗A B). Hence R = Spec(C) is affine
too and the ring map

B ⊗A B −→ C

is surjective. Let us denote the two maps s, t : B → C as usual. Pick g1, . . . , gm ∈ B
such that s(g1), . . . , s(gm) generate C over t : B → C (which is possible as t : B → C
is of finite presentation and the displayed map is surjective). Then g1, . . . , gm give
global sections of φ∗OU and the map

OX [z1, . . . , zn] −→ φ∗OU , zj 7−→ gj

is surjective: you can check this by restricting to U . Namely, φ∗φ∗OU = t∗OR
(by Lemma 69.11.2) hence you get exactly the condition that s(gi) generate C over
t : B → C. By the vanishing of H1 of the kernel we see that

Γ(X,OX [x1, . . . , xn]) = A[x1, . . . , xn] −→ Γ(X,φ∗OU ) = Γ(U,OU ) = B

is surjective. Thus we conclude that B is a finite type A-algebra. Hence X →
Spec(A) is of finite type and separated. By Lemma 69.16.5 and Morphisms of
Spaces, Lemma 67.27.5 it is also locally quasi-finite. Hence X → Spec(A) is rep-
resentable by Morphisms of Spaces, Lemma 67.51.1 and X is a scheme. Finally
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X is affine, hence equal to Spec(A), by an application of Cohomology of Schemes,
Lemma 30.3.1. □

Lemma 69.16.8.0D2V Let S be a scheme. Let X be a Noetherian algebraic space over
S. Assume that for every coherent OX -module F we have H1(X,F) = 0. Then X
is an affine scheme.

Proof. The assumption implies that H1(X,F) = 0 for every quasi-coherent OX -
module F by Lemmas 69.15.1 and 69.5.1. Then X is affine by Proposition 69.16.7.

□

Lemma 69.16.9.0D2W Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let L be an invertible OX -module. Assume that for every coherent OX -module
F there exists an n ≥ 1 such that H1(X,F ⊗OX

L⊗n) = 0. Then X is a scheme
and L is ample on X.

Proof. Let s ∈ H0(X,L⊗d) be a global section. Let U ⊂ X be the open subspace
over which s is a generator of L⊗d. In particular we have L⊗d|U ∼= OU . We claim
that U is affine.
Proof of the claim. We will show that H1(U,F) = 0 for every quasi-coherent OU -
module F . This will prove the claim by Proposition 69.16.7. Denote j : U → X the
inclusion morphism. Since étale locally the morphism j is affine (by Morphisms,
Lemma 29.11.10) we see that j is affine (Morphisms of Spaces, Lemma 67.20.3).
Hence we have

H1(U,F) = H1(X, j∗F)
by Lemma 69.8.2 (and Cohomology on Sites, Lemma 21.14.6). Write j∗F =
colimFi as a filtered colimit of coherent OX -modules, see Lemma 69.15.1. Then

H1(X, j∗F) = colimH1(X,Fi)
by Lemma 69.5.1. Thus it suffices to show thatH1(X,Fi) maps to zero inH1(U, j∗Fi).
By assumption there exists an n ≥ 1 such that

H1(X,Fi ⊗OX
(OX ⊕ L⊕ . . .⊕ L⊗d−1)⊗OX

L⊗n) = 0
Hence there exists an a ≥ 0 such that H1(X,Fi ⊗OX

L⊗ad) = 0. On the other
hand, the map

sa : Fi −→ Fi ⊗OX
L⊗ad

is an isomorphism after restriction to U . Contemplating the commutative diagram

H1(X,Fi) //

sa

��

H1(U, j∗Fi)

∼=
��

H1(X,Fi ⊗OX
L⊗ad) // H1(U, j∗(Fi ⊗OX

L⊗ad))

we conclude that the map H1(X,Fi)→ H1(U, j∗Fi) is zero and the claim holds.
Let x ∈ |X| be a closed point. By Decent Spaces, Lemma 68.14.6 we can represent
x by a closed immersion i : Spec(k) → X (this also uses that a quasi-separated
algebraic space is decent, see Decent Spaces, Section 68.6). Thus OX → i∗OSpec(k)
is surjective. Let I ⊂ OX be the kernel and choose d ≥ 1 such that H1(X, I ⊗OX

L⊗d) = 0. Then
H0(X,L⊗d)→ H0(X, i∗OSpec(k) ⊗OX

L⊗d) = H0(Spec(k), i∗L⊗d) ∼= k

https://stacks.math.columbia.edu/tag/0D2V
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is surjective by the long exact cohomology sequence. Hence there exists an s ∈
H0(X,L⊗d) such that x ∈ U where U is the open subspace corresponding to s as
above. Thus x is in the schematic locus (see Properties of Spaces, Lemma 66.13.1)
of X by our claim.
To conclude that X is a scheme, it suffices to show that any open subset of |X| which
contains all the closed points is equal to |X|. This follows from the fact that |X| is
a Noetherian topological space, see Properties of Spaces, Lemma 66.24.3. Finally,
if X is a scheme, then we can apply Cohomology of Schemes, Lemma 30.3.3 to
conclude that L is ample. □

69.17. Finite morphisms and affines

07VN This section is the analogue of Cohomology of Schemes, Section 30.13.

Lemma 69.17.1.0GF7 Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Assume f is finite, surjective and X locally Noetherian. Let i : Z →
X be a closed immersion. Denote i′ : Z ′ → Y the inverse image of Z (Morphisms
of Spaces, Section 67.13) and f ′ : Z ′ → Z the induced morphism. Then G = f ′

∗OZ′

is a coherent OZ-module whose support is Z.

Proof. Observe that f ′ is the base change of f and hence is finite and surjective
by Morphisms of Spaces, Lemmas 67.5.5 and 67.45.5. Note that Y , Z, and Z ′ are
locally Noetherian by Morphisms of Spaces, Lemma 67.23.5 (and the fact that closed
immersions and finite morphisms are of finite type). By Lemma 69.12.9 we see that
G is a coherent OZ-module. The support of G is closed in |Z|, see Morphisms of
Spaces, Lemma 67.15.2. Hence if the support of G is not equal to |Z|, then after
replacing X by an open subspace we may assume G = 0 but Z ̸= ∅. This would
mean that f ′

∗OZ′ = 0. In particular the section 1 ∈ Γ(Z ′,OZ′) = Γ(Z, f ′
∗OZ′)

would be zero which would imply Z ′ = ∅ is the empty algebraic space. This is
impossible as Z ′ → Z is surjective. □

Lemma 69.17.2.0GF8 Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf on Y . Let I be a quasi-coherent
sheaf of ideals on X. If f is affine then If∗F = f∗(f−1IF) (with notation as
explained in the proof).

Proof. The notation means the following. Since f−1 is an exact functor we see that
f−1I is a sheaf of ideals of f−1OX . Via the map f ♯ : f−1OX → OY on Yétale this
acts on F . Then f−1IF is the subsheaf generated by sums of local sections of the
form as where a is a local section of f−1I and s is a local section of F . It is a
quasi-coherent OY -submodule of F because it is also the image of a natural map
f∗I ⊗OY

F → F .
Having said this the proof is straightforward. Namely, the question is étale local
on X and hence we may assume X is an affine scheme. In this case the result is a
consequence of the corresponding result for schemes, see Cohomology of Schemes,
Lemma 30.13.2. □

Lemma 69.17.3.07VP Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Assume

(1) f finite,
(2) f surjective,

https://stacks.math.columbia.edu/tag/0GF7
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(3) Y affine, and
(4) X Noetherian.

Then X is affine.

Proof. We will prove that under the assumptions of the lemma for any coherent
OX -module F we have H1(X,F) = 0. This implies that H1(X,F) = 0 for every
quasi-coherent OX -module F by Lemmas 69.15.1 and 69.5.1. Then it follows that
X is affine from Proposition 69.16.7.
Let P be the property of coherent sheaves F on X defined by the rule

P(F)⇔ H1(X,F) = 0.
We are going to apply Lemma 69.14.5. Thus we have to verify (1), (2) and (3) of
that lemma for P. Property (1) follows from the long exact cohomology sequence
associated to a short exact sequence of sheaves. Property (2) follows since H1(X,−)
is an additive functor. To see (3) let i : Z → X be a reduced closed subspace with
|Z| irreducible. Let i′ : Z ′ → Y and f ′ : Z ′ → Z be as in Lemma 69.17.1 and
set G = f ′

∗OZ′ . We claim that G satisfies properties (3)(a) and (3)(b) of Lemma
69.14.5 which will finish the proof. Property (3)(a) we have seen in Lemma 69.17.1.
To see (3)(b) let I be a nonzero quasi-coherent sheaf of ideals on Z. Denote
I ′ ⊂ OZ′ the quasi-coherent ideal (f ′)−1IOZ′ , i.e., the image of (f ′)∗I → OZ′ . By
Lemma 69.17.2 we have f∗I ′ = IG. We claim the common value G′ = IG = f ′

∗I ′

satisfies the condition expressed in (3)(b). First, it is clear that the support of
G/G′ is contained in the support of OZ/I which is a proper subspace of |Z| as
I is a nonzero ideal sheaf on the reduced and irreducible algebraic space Z. The
morphism f ′ is affine, hence R1f ′

∗I ′ = 0 by Lemma 69.8.2. As Z ′ is affine (as a
closed subscheme of an affine scheme) we have H1(Z ′, I ′) = 0. Hence the Leray
spectral sequence (in the form Cohomology on Sites, Lemma 21.14.6) implies that
H1(Z, f ′

∗I ′) = 0. Since i : Z → X is affine we conclude that R1i∗f
′
∗I ′ = 0 hence

H1(X, i∗f ′
∗I ′) = 0 by Leray again. In other words, we have H1(X, i∗G′) = 0 as

desired. □

69.18. A weak version of Chow’s lemma

089I In this section we quickly prove the following lemma in order to help us prove the
basic results on cohomology of coherent modules on proper algebraic spaces.

Lemma 69.18.1.089J Let A be a ring. Let X be an algebraic space over Spec(A) whose
structure morphism X → Spec(A) is separated of finite type. Then there exists
a proper surjective morphism X ′ → X where X ′ is a scheme which is H-quasi-
projective over Spec(A).

Proof. Let W be an affine scheme and let f : W → X be a surjective étale mor-
phism. There exists an integer d such that all geometric fibres of f have ≤ d points
(because X is a separated algebraic hence reasonable, see Decent Spaces, Lemma
68.5.1). Picking d minimal we get a nonempty open U ⊂ X such that f−1(U)→ U
is finite étale of degree d, see Decent Spaces, Lemma 68.8.1. Let

V ⊂W ×X W ×X . . .×X W

(d factors in the fibre product) be the complement of all the diagonals. Because
W → X is separated the diagonal W → W ×X W is a closed immersion. Since
W → X is étale the diagonal W →W ×XW is an open immersion, see Morphisms

https://stacks.math.columbia.edu/tag/089J
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of Spaces, Lemmas 67.39.10 and 67.38.9. Hence the diagonals are open and closed
subschemes of the quasi-compact scheme W×X . . .×XW . In particular we conclude
V is a quasi-compact scheme. Choose an open immersion W ⊂ Y with Y H-
projective over A (this is possible as W is affine and of finite type over A; for
example we can use Morphisms, Lemmas 29.39.2 and 29.43.11). Let

Z ⊂ Y ×A Y ×A . . .×A Y

be the scheme theoretic image of the composition V → W ×X . . . ×X W → Y ×A
. . . ×A Y . Observe that this morphism is quasi-compact since V is quasi-compact
and Y ×A . . . ×A Y is separated. Note that V → Z is an open immersion as
V → Y ×A . . .×AY is an immersion, see Morphisms, Lemma 29.7.7. The projection
morphisms give d morphisms gi : Z → Y . These morphisms gi are projective as Y
is projective over A, see material in Morphisms, Section 29.43. We set

X ′ =
⋃
g−1
i (W ) ⊂ Z

There is a morphism X ′ → X whose restriction to g−1
i (W ) is the composition

g−1
i (W ) → W → X. Namely, these morphisms agree over V hence agree over
g−1
i (W )∩ g−1

j (W ) by Morphisms of Spaces, Lemma 67.17.8. Claim: the morphism
X ′ → X is proper.

If the claim holds, then the lemma follows by induction on d. Namely, by construc-
tion X ′ is H-quasi-projective over Spec(A). The image of X ′ → X contains the
open U as V surjects onto U . Denote T the reduced induced algebraic space struc-
ture on X \U . Then T ×X W is a closed subscheme of W , hence affine. Moreover,
the morphism T ×X W → T is étale and every geometric fibre has < d points. By
induction hypothesis there exists a proper surjective morphism T ′ → T where T ′ is
a scheme H-quasi-projective over Spec(A). Since T is a closed subspace of X we see
that T ′ → X is a proper morphism. Thus the lemma follows by taking the proper
surjective morphism X ′ ⨿ T ′ → X.

Proof of the claim. By construction the morphism X ′ → X is separated and of
finite type. We will check conditions (1) – (4) of Morphisms of Spaces, Lemma
67.42.5 for the morphisms V → X ′ and X ′ → X. Conditions (1) and (2) we have
seen above. Condition (3) holds as X ′ → X is separated (as a morphism whose
source is a separated algebraic space). Thus it suffices to check liftability to X ′ for
diagrams

Spec(K) //

��

V

��
Spec(R) // X

where R is a valuation ring with fraction field K. Note that the top horizontal map
is given by d pairwise distinct K-valued points w1, . . . , wd of W . In fact, this is a
complete set of inverse images of the point x ∈ X(K) coming from the diagram.
Since W → X is surjective, we can, after possibly replacing R by an extension of
valuation rings, lift the morphism Spec(R)→ X to a morphism w : Spec(R)→W ,
see Morphisms of Spaces, Lemma 67.42.4. Since w1, . . . , wd is a complete collection
of inverse images of x we see that w|Spec(K) is equal to one of them, say wi. Thus
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we see that we get a commutative diagram

Spec(K) //

��

Z

gi

��
Spec(R) w // Y

By the valuative criterion of properness for the projective morphism gi we can lift
w to z : Spec(R) → Z, see Morphisms, Lemma 29.43.5 and Schemes, Proposition
26.20.6. The image of z is in g−1

i (W ) ⊂ X ′ and the proof is complete. □

69.19. Noetherian valuative criterion

0ARI We prove a version of the valuative criterion for properness using discrete valuation
rings. More precise (and therefore more technical) versions can be found in Limits
of Spaces, Section 70.21.

Lemma 69.19.1.0ARJ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) Y is locally Noetherian,
(2) f is locally of finite type and quasi-separated,
(3) for every commutative diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a discrete valuation ring and K its fraction field, there is at
most one dotted arrow making the diagram commute.

Then f is separated.

Proof. We have to show that the diagonal ∆ : X → X×Y X is a closed immersion.
We already know ∆ is representable, separated, a monomorphism, and locally of
finite type, see Morphisms of Spaces, Lemma 67.4.1. Choose an affine scheme U
and an étale morphism U → X ×Y X. Set V = X ×∆,X×YX U . It suffices to show
that V → U is a closed immersion (Morphisms of Spaces, Lemma 67.12.1). Since
X×Y X is locally of finite type over Y we see that U is Noetherian (use Morphisms
of Spaces, Lemmas 67.23.2, 67.23.3, and 67.23.5). Note that V is a scheme as ∆
is representable. Also, V is quasi-compact because f is quasi-separated. Hence
V → U is of finite type. Consider a commutative diagram

Spec(K) //

��

V

��
Spec(A) //

;;

U

of morphisms of schemes where A is a discrete valuation ring with fraction field K.
We can interpret the composition Spec(A)→ U → X×Y X as a pair of morphisms
a, b : Spec(A) → X agreeing as morphisms into Y and equal when restricted to
Spec(K). Hence our assumption (3) guarantees a = b and we find the dotted arrow
in the diagram. By Limits, Lemma 32.15.3 we conclude that V → U is proper. In

https://stacks.math.columbia.edu/tag/0ARJ
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other words, ∆ is proper. Since ∆ is a monomorphism, we find that ∆ is a closed
immersion (Étale Morphisms, Lemma 41.7.2) as desired. □

Lemma 69.19.2.0ARK Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) Y is locally Noetherian,
(2) f is of finite type and quasi-separated,
(3) for every commutative diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a discrete valuation ring and K its fraction field, there is a
unique dotted arrow making the diagram commute.

Then f is proper.

Proof. It suffices to prove f is universally closed because f is separated by Lemma
69.19.1. To do this we may work étale locally on Y (Morphisms of Spaces, Lemma
67.9.5). Hence we may assume Y = Spec(A) is a Noetherian affine scheme. Choose
X ′ → X as in the weak form of Chow’s lemma (Lemma 69.18.1). We claim that
X ′ → Spec(A) is universally closed. The claim implies the lemma by Morphisms
of Spaces, Lemma 67.40.7. To prove this, according to Limits, Lemma 32.15.4 it
suffices to prove that in every solid commutative diagram

Spec(K) //

��

X ′ // X

��
Spec(A) //

a

;;

b

66

Y

whereA is a dvr with fraction fieldK we can find the dotted arrow a. By assumption
we can find the dotted arrow b. Then the morphism X ′ ×X,b Spec(A) → Spec(A)
is a proper morphism of schemes and by the valuative criterion for morphisms of
schemes we can lift b to the desired morphism a. □

Remark 69.19.3 (Variant for complete discrete valuation rings).0ARL In Lemmas 69.19.1
and 69.19.2 it suffices to consider complete discrete valuation rings. To be precise
in Lemma 69.19.1 we can replace condition (3) by the following condition: Given
any commutative diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a complete discrete valuation ring with fraction field K there exists at
most one dotted arrow making the diagram commute. Namely, given any diagram
as in Lemma 69.19.1 (3) the completion A∧ is a discrete valuation ring (More on
Algebra, Lemma 15.43.5) and the uniqueness of the arrow Spec(A∧) → X implies
the uniqueness of the arrow Spec(A) → X for example by Properties of Spaces,

https://stacks.math.columbia.edu/tag/0ARK
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Proposition 66.17.1. Similarly in Lemma 69.19.2 we can replace condition (3) by
the following condition: Given any commutative diagram

Spec(K) //

��

X

��
Spec(A) // Y

where A is a complete discrete valuation ring with fraction field K there exists
an extension A ⊂ A′ of complete discrete valuation rings inducing a fraction field
extension K ⊂ K ′ such that there exists a unique arrow Spec(A′)→ X making the
diagram

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

commute. Namely, given any diagram as in Lemma 69.19.2 part (3) the existence
of any commutative diagram

Spec(L) //

��

Spec(K) // X

��
Spec(B) //

44

Spec(A) // Y

for any extension A ⊂ B of discrete valuation rings will imply there exists an arrow
Spec(A) → X fitting into the diagram. This was shown in Morphisms of Spaces,
Lemma 67.41.4. In fact, it follows from these considerations that it suffices to look
for dotted arrows in diagrams for any class of discrete valuation rings such that,
given any discrete valuation ring, there is an extension of it that is in the class. For
example, we could take complete discrete valuation rings with algebraically closed
residue field.

69.20. Higher direct images of coherent sheaves

08AP In this section we prove the fundamental fact that the higher direct images of a
coherent sheaf under a proper morphism are coherent. First we prove a helper
lemma.

Lemma 69.20.1.08AQ Let S be a scheme. Consider a commutative diagram

X
i
//

f   

Pn
Y

��
Y

of algebraic spaces over S. Assume i is a closed immersion and Y Noetherian. Set
L = i∗OPn

Y
(1). Let F be a coherent module on X. Then there exists an integer d0

such that for all d ≥ d0 we have Rpf∗(F ⊗OX
L⊗d) = 0 for all p > 0.

Proof. Checking whether Rpf∗(F⊗L⊗d) is zero can be done étale locally on Y , see
Equation (69.3.0.1). Hence we may assume Y is the spectrum of a Noetherian ring.

https://stacks.math.columbia.edu/tag/08AQ
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In this case X is a scheme and the result follows from Cohomology of Schemes,
Lemma 30.16.2. □

Lemma 69.20.2.08AR Let S be a scheme. Let f : X → Y be a proper morphism of
algebraic spaces over S with Y locally Noetherian. Let F be a coherent OX -module.
Then Rif∗F is a coherent OY -module for all i ≥ 0.

Proof. We first remark that X is a locally Noetherian algebraic space by Mor-
phisms of Spaces, Lemma 67.23.5. Hence the statement of the lemma makes sense.
Moreover, computing Rif∗F commutes with étale localization on Y (Properties of
Spaces, Lemma 66.26.2) and checking whether Rif∗F coherent can be done étale
locally on Y (Lemma 69.12.2). Hence we may assume that Y = Spec(A) is a
Noetherian affine scheme.

Assume Y = Spec(A) is an affine scheme. Note that f is locally of finite presentation
(Morphisms of Spaces, Lemma 67.28.7). Thus it is of finite presentation, hence X
is Noetherian (Morphisms of Spaces, Lemma 67.28.6). Thus Lemma 69.14.6 applies
to the category of coherent modules of X. For a coherent sheaf F on X we say
P holds if and only if Rif∗F is a coherent module on Spec(A). We will show
that conditions (1), (2), and (3) of Lemma 69.14.6 hold for this property thereby
finishing the proof of the lemma.

Verification of condition (1). Let

0→ F1 → F2 → F3 → 0

be a short exact sequence of coherent sheaves on X. Consider the long exact
sequence of higher direct images

Rp−1f∗F3 → Rpf∗F1 → Rpf∗F2 → Rpf∗F3 → Rp+1f∗F1

Then it is clear that if 2-out-of-3 of the sheaves Fi have property P, then the
higher direct images of the third are sandwiched in this exact complex between two
coherent sheaves. Hence these higher direct images are also coherent by Lemmas
69.12.3 and 69.12.4. Hence property P holds for the third as well.

Verification of condition (2). This follows immediately from the fact that Rif∗(F1⊕
F2) = Rif∗F1⊕Rif∗F2 and that a summand of a coherent module is coherent (see
lemmas cited above).

Verification of condition (3). Let i : Z → X be a closed immersion with Z reduced
and |Z| irreducible. Set g = f ◦ i : Z → Spec(A). Let G be a coherent module on Z
whose scheme theoretic support is equal to Z such that Rpg∗G is coherent for all p.
Then F = i∗G is a coherent module on X whose scheme theoretic support is Z such
that Rpf∗F = Rpg∗G. To see this use the Leray spectral sequence (Cohomology on
Sites, Lemma 21.14.7) and the fact that Rqi∗G = 0 for q > 0 by Lemma 69.8.2 and
the fact that a closed immersion is affine. (Morphisms of Spaces, Lemma 67.20.6).
Thus we reduce to finding a coherent sheaf G on Z with support equal to Z such
that Rpg∗G is coherent for all p.

https://stacks.math.columbia.edu/tag/08AR
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We apply Lemma 69.18.1 to the morphism Z → Spec(A). Thus we get a diagram

Z

g
##

Z ′

g′

��

π
oo

i
// Pn

A

{{
Spec(A)

with π : Z ′ → Z proper surjective and i an immersion. Since Z → Spec(A)
is proper we conclude that g′ is proper (Morphisms of Spaces, Lemma 67.40.4).
Hence i is a closed immersion (Morphisms of Spaces, Lemmas 67.40.6 and 67.12.3).
It follows that the morphism i′ = (i, π) : Pn

A×Spec(A)Z
′ = Pn

Z is a closed immersion
(Morphisms of Spaces, Lemma 67.4.6). Set

L = i∗OPn
A

(1) = (i′)∗OPn
Z

(1)

We may apply Lemma 69.20.1 to L and π as well as L and g′. Hence for all d≫ 0 we
have Rpπ∗L⊗d = 0 for all p > 0 and Rp(g′)∗L⊗d = 0 for all p > 0. Set G = π∗L⊗d.
By the Leray spectral sequence (Cohomology on Sites, Lemma 21.14.7) we have

Ep,q2 = Rpg∗R
qπ∗L⊗d ⇒ Rp+q(g′)∗L⊗d

and by choice of d the only nonzero terms in Ep,q2 are those with q = 0 and the
only nonzero terms of Rp+q(g′)∗L⊗d are those with p = q = 0. This implies that
Rpg∗G = 0 for p > 0 and that g∗G = (g′)∗L⊗d. Applying Cohomology of Schemes,
Lemma 30.16.3 we see that g∗G = (g′)∗L⊗d is coherent.

We still have to check that the support of G is Z. This follows from the fact that L⊗d

has lots of global sections. We spell it out here. Note that L⊗d is globally generated
for all d ≥ 0 because the same is true forOPn(d). Pick a point z ∈ Z ′ mapping to the
generic point ξ of Z which we can do as π is surjective. (Observe that Z does indeed
have a generic point as |Z| is irreducible and Z is Noetherian, hence quasi-separated,
hence |Z| is a sober topological space by Properties of Spaces, Lemma 66.15.1.) Pick
s ∈ Γ(Z ′,L⊗d) which does not vanish at z. Since Γ(Z,G) = Γ(Z ′,L⊗d) we may
think of s as a global section of G. Choose a geometric point z of Z ′ lying over z
and denote ξ = g′ ◦ z the corresponding geometric point of Z. The adjunction map

(g′)∗G = (g′)∗g′
∗L⊗d −→ L⊗d

induces a map of stalks Gξ → Lz, see Properties of Spaces, Lemma 66.29.5. More-
over the adjunction map sends the pullback of s (viewed as a section of G) to s
(viewed as a section of L⊗d). Thus the image of s in the vector space which is the
source of the arrow

Gξ ⊗ κ(ξ) −→ L⊗d
z ⊗ κ(z)

isn’t zero since by choice of s the image in the target of the arrow is nonzero.
Hence ξ is in the support of G (Morphisms of Spaces, Lemma 67.15.2). Since |Z| is
irreducible and Z is reduced we conclude that the scheme theoretic support of G is
all of Z as desired. □

Lemma 69.20.3.08AS Let A be a Noetherian ring. Let f : X → Spec(A) be a proper
morphism of algebraic spaces. Let F be a coherent OX -module. Then Hi(X,F) is
finite A-module for all i ≥ 0.

https://stacks.math.columbia.edu/tag/08AS
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Proof. This is just the affine case of Lemma 69.20.2. Namely, by Lemma 69.3.1 we
know that Rif∗F is a quasi-coherent sheaf. Hence it is the quasi-coherent sheaf
associated to the A-module Γ(Spec(A), Rif∗F) = Hi(X,F). The equality holds by
Cohomology on Sites, Lemma 21.14.6 and vanishing of higher cohomology groups of
quasi-coherent modules on affine schemes (Cohomology of Schemes, Lemma 30.2.2).
By Lemma 69.12.2 we see Rif∗F is a coherent sheaf if and only if Hi(X,F) is an
A-module of finite type. Hence Lemma 69.20.2 gives us the conclusion. □

Lemma 69.20.4.08AT Let A be a Noetherian ring. Let B be a finitely generated graded
A-algebra. Let f : X → Spec(A) be a proper morphism of algebraic spaces. Set
B = f∗B̃. Let F be a quasi-coherent graded B-module of finite type. For every
p ≥ 0 the graded B-module Hp(X,F) is a finite B-module.

Proof. To prove this we consider the fibre product diagram

X ′ = Spec(B)×Spec(A) X π
//

f ′

��

X

f

��
Spec(B) // Spec(A)

Note that f ′ is a proper morphism, see Morphisms of Spaces, Lemma 67.40.3.
Also, B is a finitely generated A-algebra, and hence Noetherian (Algebra, Lemma
10.31.1). This implies that X ′ is a Noetherian algebraic space (Morphisms of
Spaces, Lemma 67.28.6). Note thatX ′ is the relative spectrum of the quasi-coherent
OX -algebra B by Morphisms of Spaces, Lemma 67.20.7. Since F is a quasi-coherent
B-module we see that there is a unique quasi-coherent OX′ -module F ′ such that
π∗F ′ = F , see Morphisms of Spaces, Lemma 67.20.10. Since F is finite type as a
B-module we conclude that F ′ is a finite type OX′ -module (details omitted). In
other words, F ′ is a coherent OX′ -module (Lemma 69.12.2). Since the morphism
π : X ′ → X is affine we have

Hp(X,F) = Hp(X ′,F ′)
by Lemma 69.8.2 and Cohomology on Sites, Lemma 21.14.6. Thus the lemma
follows from Lemma 69.20.3. □

69.21. Ample invertible sheaves and cohomology

0GF9 Here is a criterion for ampleness on proper algebraic spaces over affine bases in
terms of vanishing of cohomology after twisting.

Lemma 69.21.1.0GFA Let R be a Noetherian ring. Let X be a proper algebraic space
over R. Let L be an invertible OX -module. The following are equivalent

(1) X is a scheme and L is ample on X,
(2) for every coherentOX -module F there exists an n0 ≥ 0 such thatHp(X,F⊗
L⊗n) = 0 for all n ≥ n0 and p > 0, and

(3) for every coherentOX -module F there exists an n ≥ 1 such thatH1(X,F⊗
L⊗n) = 0.

Proof. The implication (1) ⇒ (2) follows from Cohomology of Schemes, Lemma
30.17.1. The implication (2) ⇒ (3) is trivial. The implication (3) ⇒ (1) is Lemma
69.16.9. □

https://stacks.math.columbia.edu/tag/08AT
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Lemma 69.21.2.0GFB Let R be a Noetherian ring. Let f : Y → X be a morphism of
algebraic spaces proper over R. Let L be an invertible OX -module. Assume f is
finite and surjective. The following are equivalent

(1) X is a scheme and L is ample, and
(2) Y is a scheme and f∗L is ample.

Proof. Assume (1). Then Y is a scheme as a finite morphism is representable
(by schemes), see Morphisms of Spaces, Lemma 67.45.3. Hence (2) follows from
Cohomology of Schemes, Lemma 30.17.2.
Assume (2). Let P be the following property on coherent OX -modules F : there
exists an n0 such that Hp(X,F ⊗L⊗n) = 0 for all n ≥ n0 and p > 0. We will prove
that P holds for any coherent OX -module F , which implies L is ample by Lemma
69.21.1. We are going to apply Lemma 69.14.5. Thus we have to verify (1), (2)
and (3) of that lemma for P . Property (1) follows from the long exact cohomology
sequence associated to a short exact sequence of sheaves and the fact that tensoring
with an invertible sheaf is an exact functor. Property (2) follows since Hp(X,−) is
an additive functor.
To see (3) let i : Z → X be a reduced closed subspace with |Z| irreducible. Let
i′ : Z ′ → Y and f ′ : Z ′ → Z be as in Lemma 69.17.1 and set G = f ′

∗OZ′ . We claim
that G satisfies properties (3)(a) and (3)(b) of Lemma 69.14.5 which will finish the
proof. Property (3)(a) we have seen in Lemma 69.17.1. To see (3)(b) let I be a
nonzero quasi-coherent sheaf of ideals on Z. Denote I ′ ⊂ OZ′ the quasi-coherent
ideal (f ′)−1IOZ′ , i.e., the image of (f ′)∗I → OZ′ . By Lemma 69.17.2 we have
f∗I ′ = IG. We claim the common value G′ = IG = f ′

∗I ′ satisfies the condition
expressed in (3)(b). First, it is clear that the support of G/G′ is contained in the
support of OZ/I which is a proper subspace of |Z| as I is a nonzero ideal sheaf on
the reduced and irreducible algebraic space Z. Recall that f ′

∗, i∗, and i′∗ transform
coherent modules into coherent modules, see Lemmas 69.12.9 and 69.12.8. As Y is
a scheme and L is ample we see from Lemma 69.21.1 that there exists an n0 such
that

Hp(Y, i′∗I ′ ⊗OY
f∗L⊗n) = 0

for n ≥ n0 and p > 0. Now we get
Hp(X, i∗G′ ⊗OX

L⊗n) = Hp(Z,G′ ⊗OZ
i∗L⊗n)

= Hp(Z, f ′
∗I ′ ⊗OZ

i∗L⊗n))
= Hp(Z, f ′

∗(I ′ ⊗OZ′ (f ′)∗i∗L⊗n))
= Hp(Z, f ′

∗(I ′ ⊗OZ′ (i′)∗f∗L⊗n))
= Hp(Z ′, I ′ ⊗OZ′ (i′)∗f∗L⊗n))
= Hp(Y, i′∗I ′ ⊗OY

f∗L⊗n) = 0
Here we have used the projection formula and the Leray spectral sequence (see
Cohomology on Sites, Sections 21.50 and 21.14) and Lemma 69.4.1. This verifies
property (3)(b) of Lemma 69.14.5 as desired. □

69.22. The theorem on formal functions

08AU This section is the analogue of Cohomology of Schemes, Section 30.20. We encour-
age the reader to read that section first.

https://stacks.math.columbia.edu/tag/0GFB
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Situation 69.22.1.08AV Here A is a Noetherian ring and I ⊂ A is an ideal. Also,
f : X → Spec(A) is a proper morphism of algebraic spaces and F is a coherent
sheaf on X.

In this situation we denote InF the quasi-coherent submodule of F generated as an
OX -module by products of local sections of F and elements of In. In other words,
it is the image of the map f∗Ĩ ⊗OX

F → F .

Lemma 69.22.2.08AW In Situation 69.22.1. Set B =
⊕

n≥0 I
n. Then for every p ≥ 0 the

graded B-module
⊕

n≥0 H
p(X, InF) is a finite B-module.

Proof. Let B =
⊕
InOX = f∗B̃. Then

⊕
InF is a finite type graded B-module.

Hence the result follows from Lemma 69.20.4. □

Lemma 69.22.3.08AX In Situation 69.22.1. For every p ≥ 0 there exists an integer c ≥ 0
such that

(1) the multiplication map In−c ⊗ Hp(X, IcF) → Hp(X, InF) is surjective
for all n ≥ c, and

(2) the image ofHp(X, In+mF)→ Hp(X, InF) is contained in the submodule
Im−cHp(X, InF) for all n ≥ 0, m ≥ c.

Proof. By Lemma 69.22.2 we can find d1, . . . , dt ≥ 0, and xi ∈ Hp(X, IdiF) such
that

⊕
n≥0 H

p(X, InF) is generated by x1, . . . , xt over B =
⊕

n≥0 I
n. Take c =

max{di}. It is clear that (1) holds. For (2) let b = max(0, n − c). Consider the
commutative diagram of A-modules

In+m−c−b ⊗ Ib ⊗Hp(X, IcF) //

��

In+m−c ⊗Hp(X, IcF) // Hp(X, In+mF)

��
In+m−c−b ⊗Hp(X, InF) // Hp(X, InF)

By part (1) of the lemma the composition of the horizontal arrows is surjective if
n+m ≥ c. On the other hand, it is clear that n+m− c− b ≥ m− c. Hence part
(2). □

Lemma 69.22.4.08AY In Situation 69.22.1. Fix p ≥ 0.
(1) There exists a c1 ≥ 0 such that for all n ≥ c1 we have

Ker(Hp(X,F)→ Hp(X,F/InF)) ⊂ In−c1Hp(X,F).

(2) The inverse system

(Hp(X,F/InF))n∈N

satisfies the Mittag-Leffler condition (see Homology, Definition 12.31.2).
(3) In fact for any p and n there exists a c2(n) ≥ n such that

Im(Hp(X,F/IkF)→ Hp(X,F/InF)) = Im(Hp(X,F)→ Hp(X,F/InF))

for all k ≥ c2(n).

Proof. Let c1 = max{cp, cp+1}, where cp, cp+1 are the integers found in Lemma
69.22.3 for Hp and Hp+1. We will use this constant in the proofs of (1), (2) and
(3).

https://stacks.math.columbia.edu/tag/08AV
https://stacks.math.columbia.edu/tag/08AW
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Let us prove part (1). Consider the short exact sequence

0→ InF → F → F/InF → 0

From the long exact cohomology sequence we see that

Ker(Hp(X,F)→ Hp(X,F/InF)) = Im(Hp(X, InF)→ Hp(X,F))

Hence by our choice of c1 we see that this is contained in In−c1Hp(X,F) for n ≥ c1.

Note that part (3) implies part (2) by definition of the Mittag-Leffler condition.

Let us prove part (3). Fix an n throughout the rest of the proof. Consider the
commutative diagram

0 // InF // F // F/InF // 0

0 // In+mF //

OO

F //

OO

F/In+mF //

OO

0

This gives rise to the following commutative diagram

Hp(X, InF) // Hp(X,F) // Hp(X,F/InF)
δ

// Hp+1(X, InF)

Hp(X, In+mF) //

OO

Hp(X,F) //

1

OO

Hp(X,F/In+mF) //

OO

Hp+1(X, In+mF)

a

OO

If m ≥ c1 we see that the image of a is contained in Im−c1Hp+1(X, InF). By the
Artin-Rees lemma (see Algebra, Lemma 10.51.3) there exists an integer c3(n) such
that

INHp+1(X, InF) ∩ Im(δ) ⊂ δ
(
IN−c3(n)Hp(X,F/InF)

)
for all N ≥ c3(n). As Hp(X,F/InF) is annihilated by In, we see that if m ≥
c3(n) + c1 + n, then

Im(Hp(X,F/In+mF)→ Hp(X,F/InF)) = Im(Hp(X,F)→ Hp(X,F/InF))

In other words, part (3) holds with c2(n) = c3(n) + c1 + n. □

Theorem 69.22.5 (Theorem on formal functions).08AZ In Situation 69.22.1. Fix p ≥ 0.
The system of maps

Hp(X,F)/InHp(X,F) −→ Hp(X,F/InF)

define an isomorphism of limits

Hp(X,F)∧ −→ limnH
p(X,F/InF)

where the left hand side is the completion of the A-module Hp(X,F) with respect to
the ideal I, see Algebra, Section 10.96. Moreover, this is in fact a homeomorphism
for the limit topologies.

Proof. In fact, this follows immediately from Lemma 69.22.4. We spell out the
details. Set M = Hp(X,F) and Mn = Hp(X,F/InF). Denote Nn = Im(M →
Mn). By the description of the limit in Homology, Section 12.31 we have

limnMn = {(xn) ∈
∏

Mn | φi(xn) = xn−1, n = 2, 3, . . .}

https://stacks.math.columbia.edu/tag/08AZ
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Pick an element x = (xn) ∈ limnMn. By Lemma 69.22.4 part (3) we have xn ∈ Nn
for all n since by definition xn is the image of some xn+m ∈ Mn+m for all m. By
Lemma 69.22.4 part (1) we see that there exists a factorization

M → Nn →M/In−c1M

of the reduction map. Denote yn ∈ M/In−c1M the image of xn for n ≥ c1. Since
for n′ ≥ n the composition M → Mn′ → Mn is the given map M → Mn we see
that yn′ maps to yn under the canonical map M/In

′−c1M → M/In−c1M . Hence
y = (yn+c1) defines an element of limnM/InM . We omit the verification that y
maps to x under the map

M∧ = limnM/InM −→ limnMn

of the lemma. We also omit the verification on topologies. □

Lemma 69.22.6.08B0 Let A be a ring. Let I ⊂ A be an ideal. Assume A is Noetherian
and complete with respect to I. Let f : X → Spec(A) be a proper morphism of
algebraic spaces. Let F be a coherent sheaf on X. Then

Hp(X,F) = limnH
p(X,F/InF)

for all p ≥ 0.

Proof. This is a reformulation of the theorem on formal functions (Theorem 69.22.5)
in the case of a complete Noetherian base ring. Namely, in this case the A-module
Hp(X,F) is finite (Lemma 69.20.3) hence I-adically complete (Algebra, Lemma
10.97.1) and we see that completion on the left hand side is not necessary. □

Lemma 69.22.7.08B1 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S and let F be a quasi-coherent sheaf on Y . Assume

(1) Y locally Noetherian,
(2) f proper, and
(3) F coherent.

Let y be a geometric point of Y . Consider the “infinitesimal neighbourhoods”

Xn = Spec(OY,y/mny )×Y X
in
//

fn

��

X

f

��
Spec(OY,y/mny ) cn // Y

of the fibre X1 = Xy and set Fn = i∗nF . Then we have

(Rpf∗F)∧
y
∼= limnH

p(Xn,Fn)

as O∧
Y,y-modules.

Proof. This is just a reformulation of a special case of the theorem on formal func-
tions, Theorem 69.22.5. Let us spell it out. Note that OY,y is a Noetherian local
ring, see Properties of Spaces, Lemma 66.24.4. Consider the canonical morphism
c : Spec(OY,y) → Y . This is a flat morphism as it identifies local rings. De-
note f ′ : X ′ → Spec(OY,y) the base change of f to this local ring. We see that
c∗Rpf∗F = Rpf ′

∗F ′ by Lemma 69.11.2. Moreover, we have canonical identifications
Xn = X ′

n for all n ≥ 1.

https://stacks.math.columbia.edu/tag/08B0
https://stacks.math.columbia.edu/tag/08B1
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Hence we may assume that Y = Spec(A) is the spectrum of a strictly henselian Noe-
therian local ring A with maximal ideal m and that y → Y is equal to Spec(A/m)→
Y . It follows that

(Rpf∗F)y = Γ(Y,Rpf∗F) = Hp(X,F)
because (Y, y) is an initial object in the category of étale neighbourhoods of y. The
morphisms cn are each closed immersions. Hence their base changes in are closed
immersions as well. Note that in,∗Fn = in,∗i

∗
nF = F/mnF . By the Leray spectral

sequence for in, and Lemma 69.12.9 we see that
Hp(Xn,Fn) = Hp(X, in,∗F) = Hp(X,F/mnF)

Hence we may indeed apply the theorem on formal functions to compute the limit
in the statement of the lemma and we win. □

Here is a lemma which we will generalize later to fibres of dimension > 0, namely
the next lemma.

Lemma 69.22.8.0A4S Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let y be a geometric point of Y . Assume

(1) Y locally Noetherian,
(2) f is proper, and
(3) Xy has discrete underlying topological space.

Then for any coherent sheaf F on X we have (Rpf∗F)y = 0 for all p > 0.

Proof. Let κ(y) be the residue field of the local ring of OY,y. As in Lemma 69.22.7
we set Xy = X1 = Spec(κ(y))×Y X. By Morphisms of Spaces, Lemma 67.34.8 the
morphism f : X → Y is quasi-finite at each of the points of the fibre of X → Y over
y. It follows that Xy → y is separated and quasi-finite. Hence Xy is a scheme by
Morphisms of Spaces, Proposition 67.50.2. Since it is quasi-compact its underlying
topological space is a finite discrete space. Then it is an affine scheme by Schemes,
Lemma 26.11.8. By Lemma 69.17.3 it follows that the algebraic spaces Xn are
affine schemes as well. Moreover, the underlying topological of each Xn is the same
as that of X1. Hence it follows that Hp(Xn,Fn) = 0 for all p > 0. Hence we see
that (Rpf∗F)∧

y = 0 by Lemma 69.22.7. Note that Rpf∗F is coherent by Lemma
69.20.2 and hence Rpf∗Fy is a finite OY,y-module. By Algebra, Lemma 10.97.1 this
implies that (Rpf∗F)y = 0. □

Lemma 69.22.9.0A4T Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let y be a geometric point of Y . Assume

(1) Y locally Noetherian,
(2) f is proper, and
(3) dim(Xy) = d.

Then for any coherent sheaf F on X we have (Rpf∗F)y = 0 for all p > d.

Proof. Let κ(y) be the residue field of the local ring of OY,y. As in Lemma
69.22.7 we set Xy = X1 = Spec(κ(y))×Y X. Moreover, the underlying topological
space of each infinitesimal neighbourhood Xn is the same as that of Xy. Hence
Hp(Xn,Fn) = 0 for all p > d by Lemma 69.10.1. Hence we see that (Rpf∗F)∧

y = 0
by Lemma 69.22.7 for p > d. Note that Rpf∗F is coherent by Lemma 69.20.2 and
hence Rpf∗Fy is a finite OY,y-module. By Algebra, Lemma 10.97.1 this implies
that (Rpf∗F)y = 0. □

https://stacks.math.columbia.edu/tag/0A4S
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69.23. Applications of the theorem on formal functions

0A4U We will add more here as needed.

Lemma 69.23.1.0A4V (For a more general version see More on Morphisms of Spaces,
Lemma 76.35.1). Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume Y is locally Noetherian. The following are equivalent

(1) f is finite, and
(2) f is proper and |Xk| is a discrete space for every morphism Spec(k)→ Y

where k is a field.

Proof. A finite morphism is proper according to Morphisms of Spaces, Lemma
67.45.9. A finite morphism is quasi-finite according to Morphisms of Spaces, Lemma
67.45.8. A quasi-finite morphism has discrete fibres Xk, see Morphisms of Spaces,
Lemma 67.27.5. Hence a finite morphism is proper and has discrete fibres Xk.
Assume f is proper with discrete fibres Xk. We want to show f is finite. In fact it
suffices to prove f is affine. Namely, if f is affine, then it follows that f is integral
by Morphisms of Spaces, Lemma 67.45.7 whereupon it follows from Morphisms of
Spaces, Lemma 67.45.6 that f is finite.
To show that f is affine we may assume that Y is affine, and our goal is to show that
X is affine too. Since f is proper we see that X is separated and quasi-compact.
We will show that for any coherent OX -module F we have H1(X,F) = 0. This
implies that H1(X,F) = 0 for every quasi-coherent OX -module F by Lemmas
69.15.1 and 69.5.1. Then it follows that X is affine from Proposition 69.16.7. By
Lemma 69.22.8 we conclude that the stalks of R1f∗F are zero for all geometric
points of Y . In other words, R1f∗F = 0. Hence we see from the Leray Spectral
Sequence for f that H1(X,F) = H1(Y, f∗F). Since Y is affine, and f∗F is quasi-
coherent (Morphisms of Spaces, Lemma 67.11.2) we conclude H1(Y, f∗F) = 0 from
Cohomology of Schemes, Lemma 30.2.2. Hence H1(X,F) = 0 as desired. □

As a consequence we have the following useful result.

Lemma 69.23.2.0A4W (For a more general version see More on Morphisms of Spaces,
Lemma 76.35.2). Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let y be a geometric point of Y . Assume

(1) Y is locally Noetherian,
(2) f is proper, and
(3) |Xy| is finite.

Then there exists an open neighbourhood V ⊂ Y of y such that f |f−1(V ) : f−1(V )→
V is finite.

Proof. The morphism f is quasi-finite at all the geometric points of X lying over
y by Morphisms of Spaces, Lemma 67.34.8. By Morphisms of Spaces, Lemma
67.34.7 the set of points at which f is quasi-finite is an open subspace U ⊂ X. Let
Z = X \ U . Then y ̸∈ f(Z). Since f is proper the set f(Z) ⊂ Y is closed. Choose
any open neighbourhood V ⊂ Y of y with Z ∩ V = ∅. Then f−1(V )→ V is locally
quasi-finite and proper. Hence f−1(V ) → V has discrete fibres Xk (Morphisms of
Spaces, Lemma 67.27.5) which are quasi-compact hence finite. Thus f−1(V )→ V
is finite by Lemma 69.23.1. □
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CHAPTER 70

Limits of Algebraic Spaces

07SB 70.1. Introduction

07SC In this chapter we put material related to limits of algebraic spaces. A first topic is
the characterization of algebraic spaces F locally of finite presentation over the base
S as limit preserving functors. We continue with a study of limits of inverse systems
over directed sets (Categories, Definition 4.21.1) with affine transition maps. We
discuss absolute Noetherian approximation for quasi-compact and quasi-separated
algebraic spaces following [CLO12]. Another approach is due to David Rydh (see
[Ryd08]) whose results also cover absolute Noetherian approximation for certain
algebraic stacks.

70.2. Conventions

07SD The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.
Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

70.3. Morphisms of finite presentation

049I In this section we generalize Limits, Proposition 32.6.1 to morphisms of algebraic
spaces. The motivation for the following definition comes from the proposition just
cited.
Definition 70.3.1.049J Let S be a scheme.

(1) A functor F : (Sch/S)oppfppf → Sets is said to be limit preserving or locally
of finite presentation if for every affine scheme T over S which is a limit
T = limTi of a directed inverse system of affine schemes Ti over S, we
have

F (T ) = colimF (Ti).
We sometimes say that F is locally of finite presentation over S.

(2) Let F,G : (Sch/S)oppfppf → Sets. A transformation of functors a : F → G
is limit preserving or locally of finite presentation if for every scheme T
over S and every y ∈ G(T ) the functor
Fy : (Sch/T )oppfppf −→ Sets, T ′/T 7−→ {x ∈ F (T ′) | a(x) = y|T ′}

is locally of finite presentation over T 1. We sometimes say that F is
relatively limit preserving over G.

1The characterization (2) in Lemma 70.3.2 may be easier to parse.

5522
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The functor Fy is in some sense the fiber of a : F → G over y, except that it is a
presheaf on the big fppf site of T . A formula for this functor is:
(70.3.1.1)049K Fy = F |(Sch/T )fppf×G|(Sch/T )fppf

∗

Here ∗ is the final object in the category of (pre)sheaves on (Sch/T )fppf (see Sites,
Example 7.10.2) and the map ∗ → G|(Sch/T )fppf is given by y. Note that if j :
(Sch/T )fppf → (Sch/S)fppf is the localization functor, then the formula above
becomes Fy = j−1F ×j−1G ∗ and j!Fy is just the fiber product F ×G,y T . (See Sites,
Section 7.25, for information on localization, and especially Sites, Remark 7.25.10
for information on j! for presheaves.)
At this point we temporarily have two definitions of what it means for a morphism
X → Y of algebraic spaces over S to be locally of finite presentation. Namely, one
by Morphisms of Spaces, Definition 67.28.1 and one using that X → Y is a trans-
formation of functors so that Definition 70.3.1 applies (we will use the terminology
“limit preserving” for this notion as much as possible). We will show in Proposition
70.3.10 that these two definitions agree.
Lemma 70.3.2.06BC Let S be a scheme. Let a : F → G be a transformation of functors
(Sch/S)oppfppf → Sets. The following are equivalent

(1) a : F → G is limit preserving, and
(2) for every affine scheme T over S which is a limit T = limTi of a directed

inverse system of affine schemes Ti over S the diagram of sets
colimi F (Ti) //

a

��

F (T )

a

��
colimiG(Ti) // G(T )

is a fibre product diagram.
Proof. Assume (1). Consider T = limi∈I Ti as in (2). Let (y, xT ) be an element of
the fibre product colimiG(Ti)×G(T )F (T ). Then y comes from yi ∈ G(Ti) for some
i. Consider the functor Fyi on (Sch/Ti)fppf as in Definition 70.3.1. We see that
xT ∈ Fyi(T ). Moreover T = limi′≥i Ti′ is a directed system of affine schemes over
Ti. Hence (1) implies that xT the image of a unique element x of colimi′≥i Fyi(Ti′).
Thus x is the unique element of colimF (Ti) which maps to the pair (y, xT ). This
proves that (2) holds.
Assume (2). Let T be a scheme and yT ∈ G(T ). We have to show that FyT is limit
preserving. Let T ′ = limi∈I T

′
i be an affine scheme over T which is the directed

limit of affine scheme T ′
i over T . Let xT ′ ∈ FyT . Pick i ∈ I which is possible as I

is a directed set. Denote yi ∈ F (T ′
i ) the image of yT ′ . Then we see that (yi, xT ′) is

an element of the fibre product colimiG(T ′
i ) ×G(T ′) F (T ′). Hence by (2) we get a

unique element x of colimi F (T ′
i ) mapping to (yi, xT ′). It is clear that x defines an

element of colimi Fy(T ′
i ) mapping to xT ′ and we win. □

Lemma 70.3.3.049L Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : G→ H be transformations of functors. If a and b are limit
preserving, then

b ◦ a : F −→ H

is limit preserving.
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Proof. Let T = limi∈I Ti as in characterization (2) of Lemma 70.3.2. Consider the
diagram of sets

colimi F (Ti) //

a

��

F (T )

a

��
colimiG(Ti) //

b

��

G(T )

b

��
colimiH(Ti) // H(T )

By assumption the two squares are fibre product squares. Hence the outer rectangle
is a fibre product diagram too which proves the lemma. □

Lemma 70.3.4.0GDY Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : G → H be transformations of functors. If b ◦ a and b are
limit preserving, then a is limit preserving.

Proof. Let T = limi∈I Ti as in characterization (2) of Lemma 70.3.2. Consider the
diagram of sets

colimi F (Ti) //

a

��

F (T )

a

��
colimiG(Ti) //

b

��

G(T )

b

��
colimiH(Ti) // H(T )

By assumption the lower square and the outer rectangle are fibre products of sets.
Hence the upper square is a fibre product square too which proves the lemma. □

Lemma 70.3.5.049M Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : H → G be transformations of functors. Consider the fibre
product diagram

H ×b,G,a F
b′
//

a′

��

F

a

��
H

b // G

If a is limit preserving, then the base change a′ is limit preserving.

Proof. Omitted. Hint: This is formal. □

Lemma 70.3.6.0GDZ Let S be a scheme contained in Schfppf . Let E,F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : H → G, and c : G→ E be transformations of functors. If
c, c ◦ a, and c ◦ b are limit preserving, then F ×G H → E is too.

Proof. Let T = limi∈I Ti as in characterization (2) of Lemma 70.3.2. Then we have

colim(F ×G H)(Ti) = colimF (Ti)×colimG(Ti) colimH(Ti)

https://stacks.math.columbia.edu/tag/0GDY
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as filtered colimits commute with finite products. Our goal is thus to show that

colimF (Ti)×colimG(Ti) colimH(Ti) //

��

F (T )×G(T ) H(T )

��
colimiE(Ti) // E(T )

is a fibre product diagram. This follows from the observation that given maps of
sets E′ → E, F → G, H → G, and G→ E we have

E′ ×E (F ×G H) = (E′ ×E F )×(E′×EG) (E′ ×E H)
Some details omitted. □

Lemma 70.3.7.049O Let S be a scheme contained in Schfppf . Let F : (Sch/S)oppfppf →
Sets be a functor. If F is limit preserving then its sheafification F# is limit pre-
serving.

Proof. Assume F is limit preserving. It suffices to show that F+ is limit preserving,
since F# = (F+)+, see Sites, Theorem 7.10.10. Let T be an affine scheme over S,
and let T = limTi be written as the directed limit of an inverse system of affine S
schemes. Recall that F+(T ) is the colimit of Ȟ0(V, F ) where the limit is over all
coverings of T in (Sch/S)fppf . Any fppf covering of an affine scheme can be refined
by a standard fppf covering, see Topologies, Lemma 34.7.4. Hence we can write

F+(T ) = colimV standard covering T Ȟ
0(V, F ).

Any V = {Tk → T}k=1,...,n in the colimit may be written as Vi×Ti T for some i and
some standard fppf covering Vi = {Ti,k → Ti}k=1,...,n of Ti. Denote Vi′ = {Ti′,k →
Ti′}k=1,...,n the base change for i′ ≥ i. Then we see that

colimi′≥i Ȟ
0(Vi, F ) = colimi′≥i Equalizer(

∏
F (Ti′,k) //

//
∏
F (Ti′,k ×Ti′ Ti′,l)

= Equalizer( colimi′≥i
∏
F (Ti′,k) //

// colimk′≥k
∏
F (Ti′,k ×Ti′ Ti′,l)

= Equalizer(
∏
F (Tk) //

//
∏
F (Tk ×T Tl)

= Ȟ0(V, F )
Here the second equality holds because filtered colimits are exact. The third
equality holds because F is limit preserving and because limi′≥i Ti′,k = Tk and
limi′≥i Ti′,k ×Ti′ Ti′,l = Tk ×T Tl by Limits, Lemma 32.2.3. If we use this for all
coverings at the same time we obtain

F+(T ) = colimV standard covering T Ȟ
0(V, F )

= colimi∈I colimVi standard covering Ti Ȟ
0(T ×Ti Vi, F )

= colimi∈I F
+(Ti)

The switch of the order of the colimits is allowed by Categories, Lemma 4.14.10. □

Lemma 70.3.8.049P Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor.
Assume that

(1) F is a sheaf, and
(2) there exists an fppf covering {Uj → S}j∈J such that F |(Sch/Uj)fppf is limit

preserving.
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Then F is limit preserving.

Proof. Let T be an affine scheme over S. Let I be a directed set, and let Ti be an
inverse system of affine schemes over S such that T = limTi. We have to show that
the canonical map colimF (Ti)→ F (T ) is bijective.

Choose some 0 ∈ I and choose a standard fppf covering {V0,k → T0}k=1,...,m which
refines the pullback {Uj×S T0 → T0} of the given fppf covering of S. For each i ≥ 0
we set Vi,k = Ti ×T0 V0,k, and we set Vk = T ×T0 V0,k. Note that Vk = limi≥0 Vi,k,
see Limits, Lemma 32.2.3.

Suppose that x, x′ ∈ colimF (Ti) map to the same element of F (T ). Say x, x′ are
given by elements xi, x′

i ∈ F (Ti) for some i ∈ I (we may choose the same i for
both as I is directed). By assumption (2) and the fact that xi, x′

i map to the same
element of F (T ) this implies that

xi|Vi′,k = x′
i|Vi′,k

for some suitably large i′ ∈ I. We can choose the same i′ for each k as k ∈
{1, . . . ,m} ranges over a finite set. Since {Vi′,k → Ti′} is an fppf covering and F
is a sheaf this implies that xi|Ti′ = x′

i|Ti′ as desired. This proves that the map
colimF (Ti)→ F (T ) is injective.

To show surjectivity we argue in a similar fashion. Let x ∈ F (T ). By assumption
(2) for each k we can choose a i such that x|Vk comes from an element xi,k ∈ F (Vi,k).
As before we may choose a single i which works for all k. By the injectivity proved
above we see that

xi,k|Vi′,k×T
i′
Vi′,l = xi,l|Vi′,k×T

i′
Vi′,l

for some large enough i′. Hence by the sheaf condition of F the elements xi,k|Vi′,k
glue to an element xi′ ∈ F (Ti′) as desired. □

Lemma 70.3.9.049Q Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets be functors. If a : F → G is a transformation which is limit preserving, then
the induced transformation of sheaves F# → G# is limit preserving.

Proof. Suppose that T is a scheme and y ∈ G#(T ). We have to show the functor
F#
y : (Sch/T )oppfppf → Sets constructed from F# → G# and y as in Definition 70.3.1

is limit preserving. By Equation (70.3.1.1) we see that F#
y is a sheaf. Choose an

fppf covering {Vj → T}j∈J such that y|Vj comes from an element yj ∈ F (Vj). Note
that the restriction of F# to (Sch/Vj)fppf is just F#

yj . If we can show that F#
yj is

limit preserving then Lemma 70.3.8 guarantees that F#
y is limit preserving and we

win. This reduces us to the case y ∈ G(T ).

Let y ∈ G(T ). In this case we claim that F#
y = (Fy)#. This follows from Equation

(70.3.1.1). Thus this case follows from Lemma 70.3.7. □

Proposition 70.3.10.04AK Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) The morphism f is a morphism of algebraic spaces which is locally of
finite presentation, see Morphisms of Spaces, Definition 67.28.1.

(2) The morphism f : X → Y is limit preserving as a transformation of
functors, see Definition 70.3.1.
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Proof. Assume (1). Let T be a scheme and let y ∈ Y (T ). We have to show that
T ×Y X is limit preserving over T in the sense of Definition 70.3.1. Hence we
are reduced to proving that if X is an algebraic space which is locally of finite
presentation over S as an algebraic space, then it is limit preserving as a functor
X : (Sch/S)oppfppf → Sets. To see this choose a presentation X = U/R, see Spaces,
Definition 65.9.3. It follows from Morphisms of Spaces, Definition 67.28.1 that
both U and R are schemes which are locally of finite presentation over S. Hence
by Limits, Proposition 32.6.1 we have

U(T ) = colimU(Ti), R(T ) = colimR(Ti)

whenever T = limi Ti in (Sch/S)fppf . It follows that the presheaf

(Sch/S)oppfppf −→ Sets, W 7−→ U(W )/R(W )

is limit preserving. Hence by Lemma 70.3.7 its sheafification X = U/R is limit
preserving too.

Assume (2). Choose a scheme V and a surjective étale morphism V → Y . Next,
choose a scheme U and a surjective étale morphism U → V ×Y X. By Lemma 70.3.5
the transformation of functors V ×Y X → V is limit preserving. By Morphisms of
Spaces, Lemma 67.39.8 the morphism of algebraic spaces U → V ×Y X is locally
of finite presentation, hence limit preserving as a transformation of functors by the
first part of the proof. By Lemma 70.3.3 the composition U → V ×Y X → V is
limit preserving as a transformation of functors. Hence the morphism of schemes
U → V is locally of finite presentation by Limits, Proposition 32.6.1 (modulo a set
theoretic remark, see last paragraph of the proof). This means, by definition, that
(1) holds.

Set theoretic remark. Let U → V be a morphism of (Sch/S)fppf . In the statement
of Limits, Proposition 32.6.1 we characterize U → V as being locally of finite
presentation if for all directed inverse systems (Ti, fii′) of affine schemes over V
we have U(T ) = colimV (Ti), but in the current setting we may only consider
affine schemes Ti over V which are (isomorphic to) an object of (Sch/S)fppf . So
we have to make sure that there are enough affines in (Sch/S)fppf to make the
proof work. Inspecting the proof of (2) ⇒ (1) of Limits, Proposition 32.6.1 we see
that the question reduces to the case that U and V are affine. Say U = Spec(A)
and V = Spec(B). By construction of (Sch/S)fppf the spectrum of any ring of
cardinality ≤ |B| is isomorphic to an object of (Sch/S)fppf . Hence it suffices to
observe that in the "only if" part of the proof of Algebra, Lemma 10.127.3 only
A-algebras of cardinality ≤ |B| are used. □

Remark 70.3.11.05N0 Here is an important special case of Proposition 70.3.10. Let
S be a scheme. Let X be an algebraic space over S. Then X is locally of finite
presentation over S if and only if X, as a functor (Sch/S)opp → Sets, is limit
preserving. Compare with Limits, Remark 32.6.2. In fact, we will see in Lemma
70.3.12 below that it suffices if the map

colimX(Ti) −→ X(T )

is surjective whenever T = limTi is a directed limit of affine schemes over S.
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Lemma 70.3.12.0CM6 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If for every directed limit T = limi∈I Ti of affine schemes over S the
map

colimX(Ti) −→ X(T )×Y (T ) colimY (Ti)
is surjective, then f is locally of finite presentation. In other words, in Proposition
70.3.10 part (2) it suffices to check surjectivity in the criterion of Lemma 70.3.2.

Proof. Choose a scheme V and a surjective étale morphism g : V → Y . Next,
choose a scheme U and a surjective étale morphism h : U → V ×Y X. It suffices to
show for T = limTi as in the lemma that the map

colimU(Ti) −→ U(T )×V (T ) colimV (Ti)

is surjective, because then U → V will be locally of finite presentation by Limits,
Lemma 32.6.3 (modulo a set theoretic remark exactly as in the proof of Proposition
70.3.10). Thus we take a : T → U and bi : Ti → V which determine the same
morphism T → V . Picture

T

a

��

pi
// Ti

bi

��{{
U

h // X ×Y V

��

// V

g

��
X

f // Y

By the assumption of the lemma after increasing i we can find a morphism ci : Ti →
X such that h ◦a = (bi, ci) ◦ pi : Ti → V ×Y X and such that f ◦ ci = g ◦ bi. Since h
is an étale morphism of algebraic spaces (and hence locally of finite presentation),
we have the surjectivity of

colimU(Ti) −→ U(T )×(X×Y V )(T ) colim(X ×Y V )(Ti)

by Proposition 70.3.10. Hence after increasing i again we can find the desired
morphism ai : Ti → U with a = ai ◦ pi and bi = (U → V ) ◦ ai. □

70.4. Limits of algebraic spaces

07SE The following lemma explains how we think of limits of algebraic spaces in this
chapter. We will use (without further mention) that the base change of an affine
morphism of algebraic spaces is affine (see Morphisms of Spaces, Lemma 67.20.5).

Lemma 70.4.1.07SF Let S be a scheme. Let I be a directed set. Let (Xi, fii′) be an
inverse system over I in the category of algebraic spaces over S. If the morphisms
fii′ : Xi → Xi′ are affine, then the limit X = limiXi (as an fppf sheaf) is an
algebraic space. Moreover,

(1) each of the morphisms fi : X → Xi is affine,
(2) for any i ∈ I and any morphism of algebraic spaces T → Xi we have

X ×Xi T = limi′≥iXi′ ×Xi T.

as algebraic spaces over S.
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Proof. Part (2) is a formal consequence of the existence of the limit X = limXi as
an algebraic space over S. Choose an element 0 ∈ I (this is possible as a directed
set is nonempty). Choose a scheme U0 and a surjective étale morphism U0 → X0.
Set R0 = U0 ×X0 U0 so that X0 = U0/R0. For i ≥ 0 set Ui = Xi ×X0 U0 and
Ri = Xi ×X0 R0 = Ui ×Xi Ui. By Limits, Lemma 32.2.2 we see that U = limi≥0 Ui
and R = limi≥0 Ri are schemes. Moreover, the two morphisms s, t : R → U
are the base change of the two projections R0 → U0 by the morphism U → U0,
in particular étale. The morphism R → U ×S U defines an equivalence relation
as directed a limit of equivalence relations is an equivalence relation. Hence the
morphism R→ U ×S U is an étale equivalence relation. We claim that the natural
map

(70.4.1.1)07SG U/R −→ limXi

is an isomorphism of fppf sheaves on the category of schemes over S. The claim
implies X = limXi is an algebraic space by Spaces, Theorem 65.10.5.

Let Z be a scheme and let a : Z → limXi be a morphism. Then a = (ai) where
ai : Z → Xi. Set W0 = Z ×a0,X0 U0. Note that W0 = Z ×ai,Xi Ui for all i ≥ 0 by
our choice of Ui → Xi above. Hence we obtain a morphism W0 → limi≥0 Ui = U .
Since W0 → Z is surjective and étale, we conclude that (70.4.1.1) is a surjective
map of sheaves. Finally, suppose that Z is a scheme and that a, b : Z → U/R are
two morphisms which are equalized by (70.4.1.1). We have to show that a = b.
After replacing Z by the members of an fppf covering we may assume there exist
morphisms a′, b′ : Z → U which give rise to a and b. The condition that a, b are
equalized by (70.4.1.1) means that for each i ≥ 0 the compositions a′

i, b
′
i : Z → U →

Ui are equal as morphisms into Ui/Ri = Xi. Hence (a′
i, b

′
i) : Z → Ui ×S Ui factors

through Ri, say by some morphism ci : Z → Ri. Since R = limi≥0 Ri we see that
c = lim ci : Z → R is a morphism which shows that a, b are equal as morphisms of
Z into U/R.

Part (1) follows as we have seen above that Ui ×Xi X = U and U → Ui is affine by
construction. □

Lemma 70.4.2.07SH Let S be a scheme. Let I be a directed set. Let (Xi, fii′) be an
inverse system over I of algebraic spaces over S with affine transition maps. Let
X = limiXi. Let 0 ∈ I. Suppose that T → X0 is a morphism of algebraic spaces.
Then

T ×X0 X = limi≥0 T ×X0 Xi

as algebraic spaces over S.

Proof. The limit X is an algebraic space by Lemma 70.4.1. The equality is formal,
see Categories, Lemma 4.14.10. □

Lemma 70.4.3.0CUH Let S be a scheme. Let I be a directed set. Let (Xi, fi′i)→ (Yi, gi′i)
be a morphism of inverse systems over I of algebraic spaces over S. Assume

(1) the morphisms fi′i : Xi′ → Xi are affine,
(2) the morphisms gi′i : Yi′ → Yi are affine,
(3) the morphisms Xi → Yi are closed immersions.

Then limXi → limYi is a closed immersion.
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Proof. Observe that limXi and limYi exist by Lemma 70.4.1. Pick 0 ∈ I and
choose an affine scheme V0 and an étale morphism V0 → Y0. Then the morphisms
Vi = Yi ×Y0 V0 → Ui = Xi ×Y0 V0 are closed immersions of affine schemes. Hence
the morphism V = Y ×Y0 V0 → U = X ×Y0 V0 is a closed immersion because
V = limVi, U = limUi and because a limit of closed immersions of affine schemes
is a closed immersion: a filtered colimit of surjective ring maps is surjective. Since
the étale morphisms V → Y form an étale covering of Y as we vary our choice of
V0 → Y0 we see that the lemma is true. □

Lemma 70.4.4.0CUI Let S be a scheme. Let I be a directed set. Let (Xi, fi′i) be an
inverse systems over I of algebraic spaces over S. If Xi is reduced for all i, then X
is reduced.

Proof. Observe that limXi exists by Lemma 70.4.1. Pick 0 ∈ I and choose an
affine scheme V0 and an étale morphism U0 → X0. Then the affine schemes Ui =
Xi ×X0 U0 are reduced. Hence U = X ×X0 U0 is a reduced affine scheme as a
limit of reduced affine schemes: a filtered colimit of reduced rings is reduced. Since
the étale morphisms U → X form an étale covering of X as we vary our choice of
U0 → X0 we see that the lemma is true. □

Lemma 70.4.5.0CP4 Let S be a scheme. Let X → Y be a morphism of algebraic
spaces over S. The equivalent conditions (1) and (2) of Proposition 70.3.10 are also
equivalent to

(3) for every directed limit T = limTi of quasi-compact and quasi-separated
algebraic spaces Ti over S with affine transition morphisms the diagram
of sets

colimi Mor(Ti, X) //

��

Mor(T,X)

��
colimi Mor(Ti, Y ) // Mor(T, Y )

is a fibre product diagram.

Proof. It is clear that (3) implies (2). We will assume (2) and prove (3). The proof
is rather formal and we encourage the reader to find their own proof.

Let us first prove that (3) holds when Ti is in addition assumed separated for all
i. Choose i ∈ I and choose a surjective étale morphism Ui → Ti where Ui is affine.
Using Lemma 70.4.2 we see that with U = Ui ×Ti T and Ui′ = Ui ×Ti Ti′ we have
U = limi′≥i Ui′ . Of course U and Ui′ are affine (see Lemma 70.4.1). Since Ti is
separated, the fibre product Vi = Ui×TiUi is an affine scheme as well and we obtain
affine schemes V = Vi×Ti T and Vi′ = Vi×Ti Ti′ with V = limi′≥i Vi′ . Observe that
U → T and Ui → Ti are surjective étale and that V = U×T U and Vi′ = Ui′×Ti′ Ui′ .
Note that Mor(T,X) is the equalizer of the two maps Mor(U,X) → Mor(V,X);
this is true for example because X as a sheaf on (Sch/S)fppf is the coequalizer of
the two maps hV → hu. Similarly Mor(Ti′ , X) is the equalizer of the two maps
Mor(Ui′ , X)→ Mor(Vi′ , X). And of course the same thing is true with X replaced
with Y . Condition (2) says that the diagrams of in (3) are fibre products in the
case of U = limUi and V = limVi. It follows formally that the same thing is true
for T = limTi.
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In the general case, choose an affine scheme U , an i ∈ I, and a surjective étale
morphism U → Ti. Repeating the argument of the previous paragraph we still
achieve the proof: the schemes Vi′ , V are no longer affine, but they are still quasi-
compact and separated and the result of the preceding paragraph applies. □

70.5. Descending properties

0826 This section is the analogue of Limits, Section 32.4.

Lemma 70.5.1.0CUJ Let S be a scheme. Let X = limi∈I Xi be the limit of a directed
inverse system of algebraic spaces over S with affine transition morphisms (Lemma
70.4.1). If each Xi is decent (for example quasi-separated or locally separated) then
|X| = limi |Xi| as sets.

Proof. There is a canonical map |X| → lim |Xi|. Choose 0 ∈ I. If W0 ⊂ X0 is an
open subspace, then we have f−1

0 W0 = limi≥0 f
−1
i0 W0, see Lemma 70.4.1. Hence, if

we can prove the lemma for inverse systems where X0 is quasi-compact, then the
lemma follows in general. Thus we may and do assume X0 is quasi-compact.
Choose an affine scheme U0 and a surjective étale morphism U0 → X0. Set Ui =
Xi ×X0 U0 and U = X ×X0 U0. Set Ri = Ui ×Xi Ui and R = U ×X U . Recall that
U = limUi and R = limRi, see proof of Lemma 70.4.1. Recall that |X| = |U |/|R|
and |Xi| = |Ui|/|Ri|. By Limits, Lemma 32.4.6 we have |U | = lim |Ui| and |R| =
lim |Ri|.
Surjectivity of |X| → lim |Xi|. Let (xi) ∈ lim |Xi|. Denote Si ⊂ |Ui| the inverse
image of xi. This is a finite nonempty set by the definition of decent spaces (Decent
Spaces, Definition 68.6.1). Hence limSi is nonempty, see Categories, Lemma 4.21.7.
Let (ui) ∈ limSi ⊂ lim |Ui|. By the above this determines a point u ∈ |U | which
maps to an x ∈ |X| mapping to the given element (xi) of lim |Xi|.
Injectivity of |X| → lim |Xi|. Suppose that x, x′ ∈ |X| map to the same point of
lim |Xi|. Choose lifts u, u′ ∈ |U | and denote ui, u′

i ∈ |Ui| the images. For each i let
Ti ⊂ |Ri| be the set of points mapping to (ui, u′

i) ∈ |Ui| × |Ui|. This is a finite set
by the definition of decent spaces (Decent Spaces, Definition 68.6.1). Moreover Ti
is nonempty as we’ve assumed that x and x′ map to the same point of Xi. Hence
limTi is nonempty, see Categories, Lemma 4.21.7. As before let r ∈ |R| = lim |Ri|
be a point corresponding to an element of limTi. Then r maps to (u, u′) in |U |×|U |
by construction and we see that x = x′ in |X| as desired.
Parenthetical statement: A quasi-separated algebraic space is decent, see Decent
Spaces, Section 68.6 (the key observation to this is Properties of Spaces, Lemma
66.6.7). A locally separated algebraic space is decent by Decent Spaces, Lemma
68.15.2. □

Lemma 70.5.2.086V With same notation and assumptions as in Lemma 70.5.1 we have
|X| = limi |Xi| as topological spaces.

Proof. We will use the criterion of Topology, Lemma 5.14.3. We have seen that
|X| = limi |Xi| as sets in Lemma 70.5.1. The maps fi : X → Xi are morphisms
of algebraic spaces hence determine continuous maps |X| → |Xi|. Thus f−1

i (Ui) is
open for each open Ui ⊂ |Xi|. Finally, let x ∈ |X| and let x ∈ V ⊂ |X| be an open
neighbourhood. We have to find an i and an open neighbourhood Wi ⊂ |Xi| of the
image x with f−1

i (Wi) ⊂ V . Choose 0 ∈ I. Choose a scheme U0 and a surjective
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étale morphism U0 → X0. Set U = X ×X0 U0 and Ui = Xi ×X0 U0 for i ≥ 0.
Then U = limi≥0 Ui in the category of schemes by Lemma 70.4.1. Choose u ∈ U
mapping to x. By the result for schemes (Limits, Lemma 32.4.2) we can find an
i ≥ 0 and an open neighbourhood Ei ⊂ Ui of the image of u whose inverse image
in U is contained in the inverse image of V in U . Then we can set Wi ⊂ |Xi| equal
to the image of Ei. This works because |Ui| → |Xi| is open. □

Lemma 70.5.3.086W Let S be a scheme. Let X = limi∈I Xi be the limit of a directed
inverse system of algebraic spaces over S with affine transition morphisms (Lemma
70.4.1). If each Xi is quasi-compact and nonempty, then |X| is nonempty.

Proof. Choose 0 ∈ I. Choose an affine scheme U0 and a surjective étale morphism
U0 → X0. Set Ui = Xi ×X0 U0 and U = X ×X0 U0. Then each Ui is a nonempty
affine scheme. Hence U = limUi is nonempty (Limits, Lemma 32.4.3) and thus X
is nonempty. □

Lemma 70.5.4.0CUK Let S be a scheme. Let X = limi∈I Xi be the limit of a directed
inverse system of algebraic spaces over S with affine transition morphisms (Lemma
70.4.1). Let x ∈ |X| with images xi ∈ |Xi|. If each Xi is decent, then {x} =
limi {xi} as sets and as algebraic spaces if endowed with reduced induced scheme
structure.

Proof. Set Z = {x} ⊂ |X| and Zi = {xi} ⊂ |Xi|. Since |X| → |Xi| is continuous we
see that Z maps into Zi for each i. Hence we obtain an injective map Z → limZi
because |X| = lim |Xi| as sets (Lemma 70.5.1). Suppose that x′ ∈ |X| is not in Z.
Then there is an open subset U ⊂ |X| with x′ ∈ U and x ̸∈ U . Since |X| = lim |Xi|
as topological spaces (Lemma 70.5.2) we can write U =

⋃
j∈J f

−1
j (Uj) for some

subset J ⊂ I and opens Uj ⊂ |Xj |, see Topology, Lemma 5.14.2. Then we see that
for some j ∈ J we have fj(x′) ∈ Uj and fj(x) ̸∈ Uj . In other words, we see that
fj(x′) ̸∈ Zj . Thus Z = limZi as sets.
Next, endow Z and Zi with their reduced induced scheme structures, see Properties
of Spaces, Definition 66.12.5. The transition morphisms Xi′ → Xi induce affine
morphisms Zi′ → Zi and the projections X → Xi induce compatible morphisms
Z → Zi. Hence we obtain morphisms Z → limZi → X of algebraic spaces. By
Lemma 70.4.3 we see that limZi → X is a closed immersion. By Lemma 70.4.4 the
algebraic space limZi is reduced. By the above Z → limZi is bijective on points.
By uniqueness of the reduced induced closed subscheme structure we find that this
morphism is an isomorphism of algebraic spaces. □

Situation 70.5.5.084R Let S be a scheme. Let X = limi∈I Xi be the limit of a directed
inverse system of algebraic spaces over S with affine transition morphisms (Lemma
70.4.1). We assume that Xi is quasi-compact and quasi-separated for all i ∈ I. We
also choose an element 0 ∈ I.

Lemma 70.5.6.07SI Notation and assumptions as in Situation 70.5.5. Suppose that F0
is a quasi-coherent sheaf on X0. Set Fi = f∗

0iF0 for i ≥ 0 and set F = f∗
0F0. Then

Γ(X,F) = colimi≥0 Γ(Xi,Fi)

Proof. Choose a surjective étale morphism U0 → X0 where U0 is an affine scheme
(Properties of Spaces, Lemma 66.6.3). Set Ui = Xi ×X0 U0. Set R0 = U0 ×X0 U0
and Ri = R0 ×X0 Xi. In the proof of Lemma 70.4.1 we have seen that there
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exists a presentation X = U/R with U = limUi and R = limRi. Note that Ui
and U are affine and that Ri and R are quasi-compact and separated (as Xi is
quasi-separated). Hence Limits, Lemma 32.4.7 implies that

F(U) = colimFi(Ui) and F(R) = colimFi(Ri).
The lemma follows as Γ(X,F) = Ker(F(U) → F(R)) and similarly Γ(Xi,Fi) =
Ker(Fi(Ui)→ Fi(Ri)) □

Lemma 70.5.7.0827 Notation and assumptions as in Situation 70.5.5. For any quasi-
compact open subspace U ⊂ X there exists an i and a quasi-compact open Ui ⊂ Xi

whose inverse image in X is U .

Proof. Follows formally from the construction of limits in Lemma 70.4.1 and the
corresponding result for schemes: Limits, Lemma 32.4.11. □

The following lemma will be superseded by the stronger Lemma 70.6.10.

Lemma 70.5.8.084S Notation and assumptions as in Situation 70.5.5. Let f0 : Y0 → Z0
be a morphism of algebraic spaces over X0. Assume (a) Y0 → X0 and Z0 → X0
are representable, (b) Y0, Z0 quasi-compact and quasi-separated, (c) f0 locally of
finite presentation, and (d) Y0 ×X0 X → Z0 ×X0 X an isomorphism. Then there
exists an i ≥ 0 such that Y0 ×X0 Xi → Z0 ×X0 Xi is an isomorphism.

Proof. Choose an affine scheme U0 and a surjective étale morphism U0 → X0. Set
Ui = U0 ×X0 Xi and U = U0 ×X0 X. Apply Limits, Lemma 32.8.11 to see that
Y0 ×X0 Ui → Z0 ×X0 Ui is an isomorphism of schemes for some i ≥ 0 (details
omitted). As Ui → Xi is surjective étale, it follows that Y0 ×X0 Xi → Z0 ×X0 Xi is
an isomorphism (details omitted). □

Lemma 70.5.9.084T Notation and assumptions as in Situation 70.5.5. If X is separated,
then Xi is separated for some i ∈ I.

Proof. Choose an affine scheme U0 and a surjective étale morphism U0 → X0.
For i ≥ 0 set Ui = U0 ×X0 Xi and set U = U0 ×X0 X. Note that Ui and U are
affine schemes which come equipped with surjective étale morphisms Ui → Xi and
U → X. Set Ri = Ui ×Xi Ui and R = U ×X U with projections si, ti : Ri → Ui
and s, t : R → U . Note that Ri and R are quasi-compact separated schemes (as
the algebraic spaces Xi and X are quasi-separated). The maps si : Ri → Ui
and s : R → U are of finite type. By definition Xi is separated if and only
if (ti, si) : Ri → Ui × Ui is a closed immersion, and since X is separated by
assumption, the morphism (t, s) : R→ U × U is a closed immersion. Since R→ U
is of finite type, there exists an i such that the morphism R → Ui × U is a closed
immersion (Limits, Lemma 32.4.16). Fix such an i ∈ I. Apply Limits, Lemma
32.8.5 to the system of morphisms Ri′ → Ui × Ui′ for i′ ≥ i (this is permissible as
indeed Ri′ = Ri ×Ui×Ui Ui × Ui′) to see that Ri′ → Ui × Ui′ is a closed immersion
for i′ sufficiently large. This implies immediately that Ri′ → Ui′ × Ui′ is a closed
immersion finishing the proof of the lemma. □

Lemma 70.5.10.07SQ Notation and assumptions as in Situation 70.5.5. If X is affine,
then there exists an i such that Xi is affine.

Proof. Choose 0 ∈ I. Choose an affine scheme U0 and a surjective étale morphism
U0 → X0. Set U = U0 ×X0 X and Ui = U0 ×X0 Xi for i ≥ 0. Since the transition
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morphisms are affine, the algebraic spaces Ui and U are affine. Thus U → X is an
étale morphism of affine schemes. Hence we can write X = Spec(A), U = Spec(B)
and

B = A[x1, . . . , xn]/(g1, . . . , gn)
such that ∆ = det(∂gλ/∂xµ) is invertible in B, see Algebra, Lemma 10.143.2. Set
Ai = OXi(Xi). We have A = colimAi by Lemma 70.5.6. After increasing 0 we
may assume we have g1,i, . . . , gn,i ∈ Ai[x1, . . . , xn] mapping to g1, . . . , gn. Set

Bi = Ai[x1, . . . , xn]/(g1,i, . . . , gn,i)

for all i ≥ 0. Increasing 0 if necessary we may assume that ∆i = det(∂gλ,i/∂xµ) is
invertible in Bi for all i ≥ 0. Thus Ai → Bi is an étale ring map. After increasing
0 we may assume also that Spec(Bi) → Spec(Ai) is surjective, see Limits, Lemma
32.8.15. Increasing 0 yet again we may choose elements h1,i, . . . , hn,i ∈ OUi(Ui)
which map to the classes of x1, . . . , xn in B = OU (U) and such that gλ,i(hν,i) = 0
in OUi(Ui). Thus we obtain a commutative diagram

(70.5.10.1)084U

Xi

��

Uioo

��
Spec(Ai) Spec(Bi)oo

By construction Bi = B0 ⊗A0 Ai and B = B0 ⊗A0 A. Consider the morphism

f0 : U0 −→ X0 ×Spec(A0) Spec(B0)

This is a morphism of quasi-compact and quasi-separated algebraic spaces repre-
sentable, separated and étale over X0. The base change of f0 to X is an isomor-
phism by our choices. Hence Lemma 70.5.8 guarantees that there exists an i such
that the base change of f0 to Xi is an isomorphism, in other words the diagram
(70.5.10.1) is cartesian. Thus Descent, Lemma 35.39.1 applied to the fppf cov-
ering {Spec(Bi) → Spec(Ai)} combined with Descent, Lemma 35.37.1 give that
Xi → Spec(Ai) is representable by a scheme affine over Spec(Ai) as desired. (Of
course it then also follows that Xi = Spec(Ai) but we don’t need this.) □

Lemma 70.5.11.07SR Notation and assumptions as in Situation 70.5.5. If X is a scheme,
then there exists an i such that Xi is a scheme.

Proof. Choose a finite affine open covering X =
⋃
Wj . By Lemma 70.5.7 we can

find an i ∈ I and open subspaces Wj,i ⊂ Xi whose base change to X is Wj → X.
By Lemma 70.5.10 we may assume that each Wj,i is an affine scheme. This means
that Xi is a scheme (see for example Properties of Spaces, Section 66.13). □

Lemma 70.5.12.0828 Let S be a scheme. Let B be an algebraic space over S. Let
X = limXi be a directed limit of algebraic spaces over B with affine transition
morphisms. Let Y → X be a morphism of algebraic spaces over B.

(1) If Y → X is a closed immersion, Xi quasi-compact, and Y → B locally
of finite type, then Y → Xi is a closed immersion for i large enough.

(2) If Y → X is an immersion, Xi quasi-separated, Y → B locally of finite
type, and Y quasi-compact, then Y → Xi is an immersion for i large
enough.
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(3) If Y → X is an isomorphism, Xi quasi-compact, Xi → B locally of finite
type, the transition morphisms Xi′ → Xi are closed immersions, and
Y → B is locally of finite presentation, then Y → Xi is an isomorphism
for i large enough.

(4) If Y → X is a monomorphism, Xi quasi-separated, Y → B locally of
finite type, and Y quasi-compact, then Y → Xi is a monomorphism for i
large enough.

Proof. Proof of (1). Choose 0 ∈ I. As X0 is quasi-compact, we can choose an
affine scheme W and an étale morphism W → B such that the image of |X0| → |B|
is contained in |W | → |B|. Choose an affine scheme U0 and an étale morphism
U0 → X0 ×B W such that U0 → X0 is surjective. (This is possible by our choice
of W and the fact that X0 is quasi-compact; details omitted.) Let V → Y , resp.
U → X, resp. Ui → Xi be the base change of U0 → X0 (for i ≥ 0). It suffices to
prove that V → Ui is a closed immersion for i sufficiently large. Thus we reduce
to proving the result for V → U = limUi over W . This follows from the case of
schemes, which is Limits, Lemma 32.4.16.
Proof of (2). Choose 0 ∈ I. Choose a quasi-compact open subspace X ′

0 ⊂ X0 such
that Y → X0 factors through X ′

0. After replacing Xi by the inverse image of X ′
0

for i ≥ 0 we may assume all X ′
i are quasi-compact and quasi-separated. Let U ⊂ X

be a quasi-compact open such that Y → X factors through a closed immersion
Y → U (U exists as Y is quasi-compact). By Lemma 70.5.7 we may assume that
U = limUi with Ui ⊂ Xi quasi-compact open. By part (1) we see that Y → Ui is
a closed immersion for some i. Thus (2) holds.
Proof of (3). Choose 0 ∈ I. Choose an affine scheme U0 and a surjective étale
morphism U0 → X0. Set Ui = Xi ×X0 U0, U = X ×X0 U0 = Y ×X0 U0. Then
U = limUi is a limit of affine schemes, the transition maps of the system are closed
immersions, and U → U0 is of finite presentation (because U → B is locally of
finite presentation and U0 → B is locally of finite type and Morphisms of Spaces,
Lemma 67.28.9). Thus we’ve reduced to the following algebra fact: If A = limAi
is a directed colimit of R-algebras with surjective transition maps and A of finite
presentation over A0, then A = Ai for some i. Namely, write A = A0/(f1, . . . , fn).
Pick i such that f1, . . . , fn map to zero under the surjective map A0 → Ai.
Proof of (4). Set Zi = Y ×Xi Y . As the transition morphisms Xi′ → Xi are
affine hence separated, the transition morphisms Zi′ → Zi are closed immersions,
see Morphisms of Spaces, Lemma 67.4.5. We have limZi = Y ×X Y = Y as
Y → X is a monomorphism. Choose 0 ∈ I. Since Y → X0 is locally of finite type
(Morphisms of Spaces, Lemma 67.23.6) the morphism Y → Z0 is locally of finite
presentation (Morphisms of Spaces, Lemma 67.28.10). The morphisms Zi → Z0
are locally of finite type (they are closed immersions). Finally, Zi = Y ×Xi Y is
quasi-compact as Xi is quasi-separated and Y is quasi-compact. Thus part (3)
applies to Y = limi≥0 Zi over Z0 and we conclude Y = Zi for some i. This proves
(4) and the lemma. □

Lemma 70.5.13.086X Let S be a scheme. Let Y be an algebraic space over S. Let
X = limXi be a directed limit of algebraic spaces over Y with affine transition
morphisms. Assume

(1) Y is quasi-separated,
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(2) Xi is quasi-compact and quasi-separated,
(3) the morphism X → Y is separated.

Then Xi → Y is separated for all i large enough.

Proof. Let 0 ∈ I. Choose an affine scheme W and an étale morphism W → Y such
that the image of |W | → |Y | contains the image of |X0| → |Y |. This is possible
as X0 is quasi-compact. It suffices to check that W ×Y Xi → W is separated
for some i ≥ 0 because the diagonal of W ×Y Xi over W is the base change of
Xi → Xi ×Y Xi by the surjective étale morphism (Xi ×Y Xi)×Y W → Xi ×Y Xi.
Since Y is quasi-separated the algebraic spaces W ×Y Xi are quasi-compact (as
well as quasi-separated). Thus we may base change to W and assume Y is an
affine scheme. When Y is an affine scheme, we have to show that Xi is a separated
algebraic space for i large enough and we are given that X is a separated algebraic
space. Thus this case follows from Lemma 70.5.9. □

Lemma 70.5.14.0A0R Let S be a scheme. Let Y be an algebraic space over S. Let
X = limXi be a directed limit of algebraic spaces over Y with affine transition
morphisms. Assume

(1) Y quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) X → Y affine.

Then Xi → Y is affine for i large enough.

Proof. Choose an affine scheme W and a surjective étale morphism W → Y . Then
X×YW is affine and it suffices to check thatXi×YW is affine for some i (Morphisms
of Spaces, Lemma 67.20.3). This follows from Lemma 70.5.10. □

Lemma 70.5.15.0A0S Let S be a scheme. Let Y be an algebraic space over S. Let
X = limXi be a directed limit of algebraic spaces over Y with affine transition
morphisms. Assume

(1) Y quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) the transition morphisms Xi′ → Xi are finite,
(4) Xi → Y locally of finite type
(5) X → Y integral.

Then Xi → Y is finite for i large enough.

Proof. Choose an affine scheme W and a surjective étale morphism W → Y . Then
X ×Y W is finite over W and it suffices to check that Xi ×Y W is finite over W
for some i (Morphisms of Spaces, Lemma 67.45.3). By Lemma 70.5.11 this reduces
us to the case of schemes. In the case of schemes it follows from Limits, Lemma
32.4.19. □

Lemma 70.5.16.0A0T Let S be a scheme. Let Y be an algebraic space over S. Let
X = limXi be a directed limit of algebraic spaces over Y with affine transition
morphisms. Assume

(1) Y quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) the transition morphisms Xi′ → Xi are closed immersions,
(4) Xi → Y locally of finite type
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(5) X → Y is a closed immersion.
Then Xi → Y is a closed immersion for i large enough.

Proof. Choose an affine scheme W and a surjective étale morphism W → Y . Then
X×Y W is a closed subspace of W and it suffices to check that Xi×Y W is a closed
subspace W for some i (Morphisms of Spaces, Lemma 67.12.1). By Lemma 70.5.11
this reduces us to the case of schemes. In the case of schemes it follows from Limits,
Lemma 32.4.20. □

70.6. Descending properties of morphisms

084V This section is the analogue of Section 70.5 for properties of morphisms. We will
work in the following situation.

Situation 70.6.1.084W Let S be a scheme. Let B = limBi be a limit of a directed
inverse system of algebraic spaces over S with affine transition morphisms (Lemma
70.4.1). Let 0 ∈ I and let f0 : X0 → Y0 be a morphism of algebraic spaces over B0.
Assume B0, X0, Y0 are quasi-compact and quasi-separated. Let fi : Xi → Yi be
the base change of f0 to Bi and let f : X → Y be the base change of f0 to B.

Lemma 70.6.2.07SL With notation and assumptions as in Situation 70.6.1. If
(1) f is étale,
(2) f0 is locally of finite presentation,

then fi is étale for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0.
Choose an affine scheme U0 and a surjective étale morphism U0 → V0 ×Y0 X0.
Diagram

U0

��

// V0

��
X0 // Y0

The vertical arrows are surjective and étale by construction. We can base change
this diagram to Bi or B to get

Ui

��

// Vi

��
Xi

// Yi

and
U

��

// V

��
X // Y

Note that Ui, Vi, U, V are affine schemes, the vertical morphisms are surjective étale,
and the limit of the morphisms Ui → Vi is U → V . Recall that Xi → Yi is
étale if and only if Ui → Vi is étale and similarly X → Y is étale if and only if
U → V is étale (Morphisms of Spaces, Lemma 67.39.2). Since f0 is locally of finite
presentation, so is the morphism U0 → V0. Hence the lemma follows from Limits,
Lemma 32.8.10. □

Lemma 70.6.3.0CN2 With notation and assumptions as in Situation 70.6.1. If
(1) f is smooth,
(2) f0 is locally of finite presentation,

then fi is smooth for some i ≥ 0.
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Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0.
Choose an affine scheme U0 and a surjective étale morphism U0 → V0 ×Y0 X0.
Diagram

U0

��

// V0

��
X0 // Y0

The vertical arrows are surjective and étale by construction. We can base change
this diagram to Bi or B to get

Ui

��

// Vi

��
Xi

// Yi

and
U

��

// V

��
X // Y

Note that Ui, Vi, U, V are affine schemes, the vertical morphisms are surjective étale,
and the limit of the morphisms Ui → Vi is U → V . Recall that Xi → Yi is smooth
if and only if Ui → Vi is smooth and similarly X → Y is smooth if and only if
U → V is smooth (Morphisms of Spaces, Definition 67.37.1). Since f0 is locally of
finite presentation, so is the morphism U0 → V0. Hence the lemma follows from
Limits, Lemma 32.8.9. □

Lemma 70.6.4.07SN With notation and assumptions as in Situation 70.6.1. If
(1) f is surjective,
(2) f0 is locally of finite presentation,

then fi is surjective for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0.
Choose an affine scheme U0 and a surjective étale morphism U0 → V0 ×Y0 X0.
Diagram

U0

��

// V0

��
X0 // Y0

The vertical arrows are surjective and étale by construction. We can base change
this diagram to Bi or B to get

Ui

��

// Vi

��
Xi

// Yi

and
U

��

// V

��
X // Y

Note that Ui, Vi, U, V are affine schemes, the vertical morphisms are surjective étale,
the limit of the morphisms Ui → Vi is U → V , and the morphisms Ui → Xi ×Yi Vi
and U → X×Y V are surjective (as base changes of U0 → X0×Y0 V0). In particular,
we see that Xi → Yi is surjective if and only if Ui → Vi is surjective and similarly
X → Y is surjective if and only if U → V is surjective. Since f0 is locally of finite
presentation, so is the morphism U0 → V0. Hence the lemma follows from the case
of schemes (Limits, Lemma 32.8.15). □

Lemma 70.6.5.084X Notation and assumptions as in Situation 70.6.1. If
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(1) f is universally injective,
(2) f0 is locally of finite type,

then fi is universally injective for some i ≥ 0.

Proof. Recall that a morphism X → Y is universally injective if and only if the
diagonal X → X ×Y X is surjective (Morphisms of Spaces, Definition 67.19.3 and
Lemma 67.19.2). Observe that X0 → X0 ×Y0 X0 is of locally of finite presentation
(Morphisms of Spaces, Lemma 67.28.10). Hence the lemma follows from Lemma
70.6.4 by considering the morphism X0 → X0 ×Y0 X0. □

Lemma 70.6.6.084Y Notation and assumptions as in Situation 70.6.1. If f is affine,
then fi is affine for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0. Set
Vi = V0×Y0Yi and V = V0×Y0Y . Since f is affine we see that V ×YX = limVi×YiXi

is affine. By Lemma 70.5.10 we see that Vi ×Yi Xi is affine for some i ≥ 0. For this
i the morphism fi is affine (Morphisms of Spaces, Lemma 67.20.3). □

Lemma 70.6.7.084Z Notation and assumptions as in Situation 70.6.1. If
(1) f is finite,
(2) f0 is locally of finite type,

then fi is finite for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0. Set
Vi = V0×Y0Yi and V = V0×Y0Y . Since f is finite we see that V ×Y X = limVi×YiXi

is a scheme finite over V . By Lemma 70.5.10 we see that Vi ×Yi Xi is affine for
some i ≥ 0. Increasing i if necessary we find that Vi×YiXi → Vi is finite by Limits,
Lemma 32.8.3. For this i the morphism fi is finite (Morphisms of Spaces, Lemma
67.45.3). □

Lemma 70.6.8.0850 Notation and assumptions as in Situation 70.6.1. If
(1) f is a closed immersion,
(2) f0 is locally of finite type,

then fi is a closed immersion for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0. Set
Vi = V0 ×Y0 Yi and V = V0 ×Y0 Y . Since f is a closed immersion we see that
V ×Y X = limVi ×Yi Xi is a closed subscheme of the affine scheme V . By Lemma
70.5.10 we see that Vi ×Yi Xi is affine for some i ≥ 0. Increasing i if necessary we
find that Vi×Yi Xi → Vi is a closed immersion by Limits, Lemma 32.8.5. For this i
the morphism fi is a closed immersion (Morphisms of Spaces, Lemma 67.45.3). □

Lemma 70.6.9.0851 Notation and assumptions as in Situation 70.6.1. If f is separated,
then fi is separated for some i ≥ 0.

Proof. Apply Lemma 70.6.8 to the diagonal morphism ∆X0/Y0 : X0 → X0 ×Y0 X0.
(Diagonal morphisms are locally of finite type and the fibre product X0 ×Y0 X0 is
quasi-compact and quasi-separated. Some details omitted.) □

Lemma 70.6.10.0852 Notation and assumptions as in Situation 70.6.1. If
(1) f is a isomorphism,
(2) f0 is locally of finite presentation,

https://stacks.math.columbia.edu/tag/084Y
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then fi is a isomorphism for some i ≥ 0.

Proof. Being an isomorphism is equivalent to being étale, universally injective, and
surjective, see Morphisms of Spaces, Lemma 67.51.2. Thus the lemma follows from
Lemmas 70.6.2, 70.6.4, and 70.6.5. □

Lemma 70.6.11.07SM Notation and assumptions as in Situation 70.6.1. If
(1) f is a monomorphism,
(2) f0 is locally of finite type,

then fi is a monomorphism for some i ≥ 0.

Proof. Recall that a morphism is a monomorphism if and only if the diagonal is
an isomorphism. The morphism X0 → X0 ×Y0 X0 is locally of finite presentation
by Morphisms of Spaces, Lemma 67.28.10. Since X0 ×Y0 X0 is quasi-compact and
quasi-separated we conclude from Lemma 70.6.10 that ∆i : Xi → Xi ×Yi Xi is an
isomorphism for some i ≥ 0. For this i the morphism fi is a monomorphism. □

Lemma 70.6.12.08K0 Notation and assumptions as in Situation 70.6.1. Let F0 be a
quasi-coherent OX0-module and denote Fi the pullback to Xi and F the pullback
to X. If

(1) F is flat over Y ,
(2) F0 is of finite presentation, and
(3) f0 is locally of finite presentation,

then Fi is flat over Yi for some i ≥ 0. In particular, if f0 is locally of finite
presentation and f is flat, then fi is flat for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0.
Choose an affine scheme U0 and a surjective étale morphism U0 → V0 ×Y0 X0.
Diagram

U0

��

// V0

��
X0 // Y0

The vertical arrows are surjective and étale by construction. We can base change
this diagram to Bi or B to get

Ui

��

// Vi

��
Xi

// Yi

and
U

��

// V

��
X // Y

Note that Ui, Vi, U, V are affine schemes, the vertical morphisms are surjective étale,
and the limit of the morphisms Ui → Vi is U → V . Recall that Fi is flat over Yi if
and only if Fi|Ui is flat over Vi and similarly F is flat over Y if and only if F|U is
flat over V (Morphisms of Spaces, Definition 67.30.1). Since f0 is locally of finite
presentation, so is the morphism U0 → V0. Hence the lemma follows from Limits,
Lemma 32.10.4. □

Lemma 70.6.13.08K1 Assumptions and notation as in Situation 70.6.1. If
(1) f is proper, and
(2) f0 is locally of finite type,

https://stacks.math.columbia.edu/tag/07SM
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then there exists an i such that fi is proper.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0. Set
Vi = Yi×Y0 V0 and V = Y ×Y0 V0. It suffices to prove that the base change of fi to
Vi is proper, see Morphisms of Spaces, Lemma 67.40.2. Thus we may assume Y0 is
affine.
By Lemma 70.6.9 we see that fi is separated for some i ≥ 0. Replacing 0 by i
we may assume that f0 is separated. Observe that f0 is quasi-compact. Thus f0
is separated and of finite type. By Cohomology of Spaces, Lemma 69.18.1 we can
choose a diagram

X0

  

X ′
0

��

π
oo // Pn

Y0

}}
Y0

where X ′
0 → Pn

Y0
is an immersion, and π : X ′

0 → X0 is proper and surjective.
Introduce X ′ = X ′

0 ×Y0 Y and X ′
i = X ′

0 ×Y0 Yi. By Morphisms of Spaces, Lemmas
67.40.4 and 67.40.3 we see that X ′ → Y is proper. Hence X ′ → Pn

Y is a closed im-
mersion (Morphisms of Spaces, Lemma 67.40.6). By Morphisms of Spaces, Lemma
67.40.7 it suffices to prove that X ′

i → Yi is proper for some i. By Lemma 70.6.8
we find that X ′

i → Pn
Yi

is a closed immersion for i large enough. Then X ′
i → Yi is

proper and we win. □

Lemma 70.6.14.0D4K Assumptions and notation as in Situation 70.6.1. Let d ≥ 0. If
(1) f has relative dimension ≤ d (Morphisms of Spaces, Definition 67.33.2),

and
(2) f0 is locally of finite type,

then there exists an i such that fi has relative dimension ≤ d.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0.
Choose an affine scheme U0 and a surjective étale morphism U0 → V0 ×Y0 X0.
Diagram

U0

��

// V0

��
X0 // Y0

The vertical arrows are surjective and étale by construction. We can base change
this diagram to Bi or B to get

Ui

��

// Vi

��
Xi

// Yi

and
U

��

// V

��
X // Y

Note that Ui, Vi, U, V are affine schemes, the vertical morphisms are surjective étale,
and the limit of the morphisms Ui → Vi is U → V . In this situation Xi → Yi has
relative dimension ≤ d if and only if Ui → Vi has relative dimension ≤ d (as defined
in Morphisms, Definition 29.29.1). To see the equivalence, use that the definition
for morphisms of algebraic spaces involves Morphisms of Spaces, Definition 67.33.1
which uses étale localization. The same is true for X → Y and U → V . Since f0 is

https://stacks.math.columbia.edu/tag/0D4K
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locally of finite type, so is the morphism U0 → V0. Hence the lemma follows from
the more general Limits, Lemma 32.18.1. □

70.7. Descending relative objects

07SJ The following lemma is typical of the type of results in this section.
Lemma 70.7.1.07SK Let S be a scheme. Let I be a directed set. Let (Xi, fii′) be an
inverse system over I of algebraic spaces over S. Assume

(1) the morphisms fii′ : Xi → Xi′ are affine,
(2) the spaces Xi are quasi-compact and quasi-separated.

Let X = limiXi. Then the category of algebraic spaces of finite presentation over
X is the colimit over I of the categories of algebraic spaces of finite presentation
over Xi.
Proof. Pick 0 ∈ I. Choose a surjective étale morphism U0 → X0 where U0 is an
affine scheme (Properties of Spaces, Lemma 66.6.3). Set Ui = Xi ×X0 U0. Set
R0 = U0 ×X0 U0 and Ri = R0 ×X0 Xi. Denote si, ti : Ri → Ui and s, t : R → U
the two projections. In the proof of Lemma 70.4.1 we have seen that there exists
a presentation X = U/R with U = limUi and R = limRi. Note that Ui and
U are affine and that Ri and R are quasi-compact and separated (as Xi is quasi-
separated). Let Y be an algebraic space over S and let Y → X be a morphism of
finite presentation. Set V = U×XY . This is an algebraic space of finite presentation
over U . Choose an affine scheme W and a surjective étale morphism W → V . Then
W → Y is surjective étale as well. Set R′ = W×YW so that Y = W/R′ (see Spaces,
Section 65.9). Note that W is a scheme of finite presentation over U and that R′ is
a scheme of finite presentation over R (details omitted). By Limits, Lemma 32.10.1
we can find an index i and a morphism of schemes Wi → Ui of finite presentation
whose base change to U gives W → U . Similarly we can find, after possibly
increasing i, a scheme R′

i of finite presentation over Ri whose base change to R is
R′. The projection morphisms s′, t′ : R′ → W are morphisms over the projection
morphisms s, t : R → U . Hence we can view s′, resp. t′ as a morphism between
schemes of finite presentation over U (with structure morphism R′ → U given by
R′ → R followed by s, resp. t). Hence we can apply Limits, Lemma 32.10.1 again to
see that, after possibly increasing i, there exist morphisms s′

i, t
′
i : R′

i → Wi, whose
base change to U is S′, t′. By Limits, Lemmas 32.8.10 and 32.8.14 we may assume
that s′

i, t
′
i are étale and that j′

i : R′
i →Wi×XiWi is a monomorphism (here we view

j′
i as a morphism of schemes of finite presentation over Ui via one of the projections

– it doesn’t matter which one). Setting Yi = Wi/R
′
i (see Spaces, Theorem 65.10.5)

we obtain an algebraic space of finite presentation over Xi whose base change to X
is isomorphic to Y .
This shows that every algebraic space of finite presentation over X comes from an
algebraic space of finite presentation over some Xi, i.e., it shows that the functor
of the lemma is essentially surjective. To show that it is fully faithful, consider
an index 0 ∈ I and two algebraic spaces Y0, Z0 of finite presentation over X0. Set
Yi = Xi×X0 Y0, Y = X×X0 Y0, Zi = Xi×X0Z0, and Z = X×X0Z0. Let α : Y → Z
be a morphism of algebraic spaces over X. Choose a surjective étale morphism
V0 → Y0 where V0 is an affine scheme. Set Vi = V0 ×Y0 Yi and V = V0 ×Y0 Y
which are affine schemes endowed with surjective étale morphisms to Yi and Y .
The composition V → Y → Z → Z0 comes from a (essentially unique) morphism

https://stacks.math.columbia.edu/tag/07SK


70.8. ABSOLUTE NOETHERIAN APPROXIMATION 5543

Vi → Z0 for some i ≥ 0 by Proposition 70.3.10 (applied to Z0 → X0 which is of
finite presentation by assumption). After increasing i the two compositions

Vi ×Yi Vi → Vi → Z0

are equal as this is true in the limit. Hence we obtain a (essentially unique) mor-
phism Yi → Z0. Since this is a morphism over X0 it induces a morphism into
Zi = Z0 ×X0 Xi as desired. □

Lemma 70.7.2.07V7 With notation and assumptions as in Lemma 70.7.1. The category
of OX -modules of finite presentation is the colimit over I of the categories OXi-
modules of finite presentation.

Proof. Choose 0 ∈ I. Choose an affine scheme U0 and a surjective étale morphism
U0 → X0. Set Ui = Xi ×X0 U0. Set R0 = U0 ×X0 U0 and Ri = R0 ×X0 Xi. Denote
si, ti : Ri → Ui and s, t : R → U the two projections. In the proof of Lemma
70.4.1 we have seen that there exists a presentation X = U/R with U = limUi and
R = limRi. Note that Ui and U are affine and that Ri and R are quasi-compact
and separated (as Xi is quasi-separated). Moreover, it is also true that R ×s,U,t
R = colimRi ×si,Ui,ti Ri. Thus we know that QCoh(OU ) = colim QCoh(OUi),
QCoh(OR) = colim QCoh(ORi), and QCoh(OR×s,U,tR) = colim QCoh(ORi×si,Ui,tiRi)
by Limits, Lemma 32.10.2. We have QCoh(OX) = QCoh(U,R, s, t, c) and QCoh(OXi) =
QCoh(Ui, Ri, si, ti, ci), see Properties of Spaces, Proposition 66.32.1. Thus the re-
sult follows formally. □

Lemma 70.7.3.0D2X With notation and assumptions as in Lemma 70.7.1. Then
(1) any finite locally free OX -module is the pullback of a finite locally free
OXi-module for some i,

(2) any invertible OX -module is the pullback of an invertible OXi-module for
some i.

Proof. Proof of (2). Let L be an invertibleOX -module. Since invertible modules are
of finite presentation we can find an i and modules Li and Ni of finite presentation
over Xi such that f∗

i Li ∼= L and f∗
i Ni ∼= L⊗−1, see Lemma 70.7.2. Since pullback

commutes with tensor product we see that f∗
i (Li ⊗OXi

Ni) is isomorphic to OX .
Since the tensor product of finitely presented modules is finitely presented, the same
lemma implies that f∗

i′iLi ⊗OX
i′
f∗
i′iNi is isomorphic to OXi′ for some i′ ≥ i. It

follows that f∗
i′iLi is invertible (Modules on Sites, Lemma 18.32.2) and the proof is

complete.
Proof of (1). Omitted. Hint: argue as in the proof of (2) using that a module (on a
locally ringed site) is finite locally free if and only if it has a dual, see Modules on
Sites, Section 18.29. Alternatively, argue as in the proof for schemes, see Limits,
Lemma 32.10.3. □

70.8. Absolute Noetherian approximation

07SS The following result is [CLO12, Theorem 1.2.2]. A key ingredient in the proof is
Decent Spaces, Lemma 68.8.6.

Proposition 70.8.1.07SU Our proof follows
closely the proof
given in [CLO12,
Theorem 1.2.2].

Let X be a quasi-compact and quasi-separated algebraic space
over Spec(Z). There exist a directed set I and an inverse system of algebraic spaces
(Xi, fii′) over I such that

https://stacks.math.columbia.edu/tag/07V7
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(1) the transition morphisms fii′ are affine
(2) each Xi is quasi-separated and of finite type over Z, and
(3) X = limXi.

Proof. We apply Decent Spaces, Lemma 68.8.6 to get open subspaces Up ⊂ X,
schemes Vp, and morphisms fp : Vp → Up with properties as stated. Note that
fn : Vn → Un is an étale morphism of algebraic spaces whose restriction to the
inverse image of Tn = (Vn)red is an isomorphism. Hence fn is an isomorphism,
for example by Morphisms of Spaces, Lemma 67.51.2. In particular Un is a quasi-
compact and separated scheme. Thus we can write Un = limUn,i as a directed
limit of schemes of finite type over Z with affine transition morphisms, see Limits,
Proposition 32.5.4. Thus, applying descending induction on p, we see that we have
reduced to the problem posed in the following paragraph.

Here we have U ⊂ X, U = limUi, Z ⊂ X, and f : V → X with the following
properties

(1) X is a quasi-compact and quasi-separated algebraic space,
(2) V is a quasi-compact and separated scheme,
(3) U ⊂ X is a quasi-compact open subspace,
(4) (Ui, gii′) is a directed inverse system of quasi-separated algebraic spaces

of finite type over Z with affine transition morphisms whose limit is U ,
(5) Z ⊂ X is a closed subspace such that |X| = |U | ⨿ |Z|,
(6) f : V → X is a surjective étale morphism such that f−1(Z) → Z is an

isomorphism.
Problem: Show that the conclusion of the proposition holds for X.

Note that W = f−1(U) ⊂ V is a quasi-compact open subscheme étale over U .
Hence we may apply Lemmas 70.7.1 and 70.6.2 to find an index 0 ∈ I and an étale
morphism W0 → U0 of finite presentation whose base change to U produces W .
Setting Wi = W0 ×U0 Ui we see that W = limi≥0 Wi. After increasing 0 we may
assume the Wi are schemes, see Lemma 70.5.11. Moreover, Wi is of finite type over
Z.

Apply Limits, Lemma 32.5.3 to W = limi≥0 Wi and the inclusion W ⊂ V . Replace
I by the directed set J found in that lemma. This allows us to write V as a directed
limit V = limVi of finite type schemes over Z with affine transition maps such that
each Vi contains Wi as an open subscheme (compatible with transition morphisms).
For each i we can form the push out

Wi
//

∆
��

Vi

��
Wi ×Ui Wi

// Ri

in the category of schemes. Namely, the left vertical and upper horizontal arrows are
open immersions of schemes. In other words, we can construct Ri as the glueing
of Vi and Wi ×Ui Wi along the common open Wi (see Schemes, Section 26.14).
Note that the étale projection maps Wi ×Ui Wi → Wi extend to étale morphisms
si, ti : Ri → Vi. It is clear that the morphism ji = (ti, si) : Ri → Vi × Vi is
an étale equivalence relation on Vi. Note that Wi ×Ui Wi is quasi-compact (as
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Ui is quasi-separated and Wi quasi-compact) and Vi is quasi-compact, hence Ri is
quasi-compact. For i ≥ i′ the diagram

(70.8.1.1)07SV

Ri //

si

��

Ri′

si′

��
Vi // Vi′

is cartesian because

(Wi′ ×Ui′ Wi′)×Ui′ Ui = Wi′ ×Ui′ Ui ×Ui Ui ×Ui′ Wi′ = Wi ×Ui Wi.

Consider the algebraic space Xi = Vi/Ri (see Spaces, Theorem 65.10.5). As Vi is
of finite type over Z and Ri is quasi-compact we see that Xi is quasi-separated and
of finite type over Z (see Properties of Spaces, Lemma 66.6.5 and Morphisms of
Spaces, Lemmas 67.8.6 and 67.23.4). As the construction of Ri above is compatible
with transition morphisms, we obtain morphisms of algebraic spaces Xi → Xi′ for
i ≥ i′. The commutative diagrams

Vi //

��

Vi′

��
Xi

// Xi′

are cartesian as (70.8.1.1) is cartesian, see Groupoids, Lemma 39.20.7. Since Vi →
Vi′ is affine, this implies that Xi → Xi′ is affine, see Morphisms of Spaces, Lemma
67.20.3. Thus we can form the limit X ′ = limXi by Lemma 70.4.1. We claim that
X ∼= X ′ which finishes the proof of the proposition.

Proof of the claim. Set R = limRi. By construction the algebraic space X ′ comes
equipped with a surjective étale morphism V → X ′ such that

V ×X′ V ∼= R

(use Lemma 70.4.1). By construction limWi ×Ui Wi = W ×U W and V = limVi
so that R is the union of W ×U W and V glued along W . Property (6) implies the
projections V ×X V → V are isomorphisms over f−1(Z) ⊂ V . Hence the scheme
V ×X V is the union of the opens ∆V/X(V ) and W ×U W which intersect along
∆W/X(W ). We conclude that there exists a unique isomorphism R ∼= V ×X V
compatible with the projections to V . Since V → X and V → X ′ are surjective
étale we see that

X = V/V ×X V = V/R = V/V ×X′ V = X ′

by Spaces, Lemma 65.9.1 and we win. □

70.9. Applications

07V8 The following lemma can also be deduced directly from Decent Spaces, Lemma
68.8.6 without passing through absolute Noetherian approximation.

Lemma 70.9.1.07V9 Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Every quasi-coherent OX -module is a filtered colimit of
finitely presented OX -modules.

https://stacks.math.columbia.edu/tag/07V9
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Proof. We may view X as an algebraic space over Spec(Z), see Spaces, Definition
65.16.2 and Properties of Spaces, Definition 66.3.1. Thus we may apply Proposition
70.8.1 and write X = limXi with Xi of finite presentation over Z. Thus Xi

is a Noetherian algebraic space, see Morphisms of Spaces, Lemma 67.28.6. The
morphism X → Xi is affine, see Lemma 70.4.1. Conclusion by Cohomology of
Spaces, Lemma 69.15.2. □

The rest of this section consists of straightforward applications of Lemma 70.9.1.

Lemma 70.9.2.0829 Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let F be a quasi-coherent OX -module. Then F is the
directed colimit of its finite type quasi-coherent submodules.

Proof. If G,H ⊂ F are finite type quasi-coherent OX -submodules then the image
of G ⊕H → F is another finite type quasi-coherent OX -submodule which contains
both of them. In this way we see that the system is directed. To show that F is the
colimit of this system, write F = colimi Fi as a directed colimit of finitely presented
quasi-coherent sheaves as in Lemma 70.9.1. Then the images Gi = Im(Fi → F)
are finite type quasi-coherent subsheaves of F . Since F is the colimit of these the
result follows. □

Lemma 70.9.3.086Y Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let F be a finite type quasi-coherent OX -module. Then
we can write F = limFi where each Fi is an OX -module of finite presentation and
all transition maps Fi → Fi′ surjective.

Proof. Write F = colimGi as a filtered colimit of finitely presented OX -modules
(Lemma 70.9.1). We claim that Gi → F is surjective for some i. Namely, choose an
étale surjection U → X where U is an affine scheme. Choose finitely many sections
sk ∈ F(U) generating F|U . Since U is affine we see that sk is in the image of
Gi → F for i large enough. Hence Gi → F is surjective for i large enough. Choose
such an i and let K ⊂ Gi be the kernel of the map Gi → F . Write K = colimKa
as the filtered colimit of its finite type quasi-coherent submodules (Lemma 70.9.2).
Then F = colimGi/Ka is a solution to the problem posed by the lemma. □

Let X be an algebraic space. In the following lemma we use the notion of a finitely
presented quasi-coherent OX -algebra A. This means that for every affine U =
Spec(R) étale over X we have A|U = Ã where A is a (commutative) R-algebra
which is of finite presentation as an R-algebra.

Lemma 70.9.4.082A Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be a quasi-coherent OX -algebra. Then A is a directed
colimit of finitely presented quasi-coherent OX -algebras.

Proof. First we write A = colimi Fi as a directed colimit of finitely presented
quasi-coherent sheaves as in Lemma 70.9.1. For each i let Bi = Sym(Fi) be the
symmetric algebra on Fi over OX . Write Ii = Ker(Bi → A). Write Ii = colimj Fi,j
where Fi,j is a finite type quasi-coherent submodule of Ii, see Lemma 70.9.2. Set
Ii,j ⊂ Ii equal to the Bi-ideal generated by Fi,j . Set Ai,j = Bi/Ii,j . Then Ai,j is
a quasi-coherent finitely presented OX -algebra. Define (i, j) ≤ (i′, j′) if i ≤ i′ and
the map Bi → Bi′ maps the ideal Ii,j into the ideal Ii′,j′ . Then it is clear that
A = colimi,j Ai,j . □

https://stacks.math.columbia.edu/tag/0829
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Let X be an algebraic space. In the following lemma we use the notion of a quasi-
coherent OX -algebra A of finite type. This means that for every affine U = Spec(R)
étale over X we have A|U = Ã where A is a (commutative) R-algebra which is of
finite type as an R-algebra.

Lemma 70.9.5.082B Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be a quasi-coherent OX -algebra. Then A is the
directed colimit of its finite type quasi-coherent OX -subalgebras.

Proof. Omitted. Hint: Compare with the proof of Lemma 70.9.2. □

Let X be an algebraic space. In the following lemma we use the notion of a finite
(resp. integral) quasi-coherent OX -algebra A. This means that for every affine
U = Spec(R) étale over X we have A|U = Ã where A is a (commutative) R-algebra
which is finite (resp. integral) as an R-algebra.

Lemma 70.9.6.086Z Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be a finite quasi-coherent OX -algebra. Then A =
colimAi is a directed colimit of finite and finitely presented quasi-coherent OX -
algebras with surjective transition maps.

Proof. By Lemma 70.9.3 there exists a finitely presented OX -module F and a
surjection F → A. Using the algebra structure we obtain a surjection

Sym∗
OX

(F) −→ A
Denote J the kernel. Write J = colim Ei as a filtered colimit of finite type OX -
submodules Ei (Lemma 70.9.2). Set

Ai = Sym∗
OX

(F)/(Ei)
where (Ei) indicates the ideal sheaf generated by the image of Ei → Sym∗

OX
(F).

Then each Ai is a finitely presented OX -algebra, the transition maps are surjective,
and A = colimAi. To finish the proof we still have to show that Ai is a finite OX -
algebra for i sufficiently large. To do this we choose an étale surjective map U → X
where U is an affine scheme. Take generators f1, . . . , fm ∈ Γ(U,F). As A(U)
is a finite OX(U)-algebra we see that for each j there exists a monic polynomial
Pj ∈ O(U)[T ] such that Pj(fj) is zero in A(U). Since A = colimAi by construction,
we have Pj(fj) = 0 in Ai(U) for all sufficiently large i. For such i the algebras Ai
are finite. □

Lemma 70.9.7.082C Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be an integral quasi-coherent OX -algebra. Then

(1) A is the directed colimit of its finite quasi-coherent OX -subalgebras, and
(2) A is a directed colimit of finite and finitely presented OX -algebras.

Proof. By Lemma 70.9.5 we have A = colimAi where Ai ⊂ A runs through the
quasi-coherent OX -sub algebras of finite type. Any finite type quasi-coherent OX -
subalgebra of A is finite (use Algebra, Lemma 10.36.5 on affine schemes étale over
X). This proves (1).
To prove (2), write A = colimFi as a colimit of finitely presented OX -modules
using Lemma 70.9.1. For each i, let Ji be the kernel of the map

Sym∗
OX

(Fi) −→ A

https://stacks.math.columbia.edu/tag/082B
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For i′ ≥ i there is an induced map Ji → Ji′ and we have A = colim Sym∗
OX

(Fi)/Ji.
Moreover, the quasi-coherent OX -algebras Sym∗

OX
(Fi)/Ji are finite (see above).

Write Ji = colim Eik as a colimit of finitely presented OX -modules. Given i′ ≥ i
and k there exists a k′ such that we have a map Eik → Ei′k′ making

Ji // Ji′

Eik

OO

// Ei′k′

OO

commute. This follows from Cohomology of Spaces, Lemma 69.5.3. This induces a
map

Aik = Sym∗
OX

(Fi)/(Eik) −→ Sym∗
OX

(Fi′)/(Ei′k′) = Ai′k′

where (Eik) denotes the ideal generated by Eik. The quasi-coherent OX -algebras
Aki are of finite presentation and finite for k large enough (see proof of Lemma
70.9.6). Finally, we have

colimAik = colimAi = A

Namely, the first equality was shown in the proof of Lemma 70.9.6 and the second
equality because A is the colimit of the modules Fi. □

Lemma 70.9.8.0853 Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let U ⊂ X be a quasi-compact open. Let F be a quasi-
coherent OX -module. Let G ⊂ F|U be a quasi-coherent OU -submodule which is of
finite type. Then there exists a quasi-coherent submodule G′ ⊂ F which is of finite
type such that G′|U = G.

Proof. Denote j : U → X the inclusion morphism. As X is quasi-separated and U
quasi-compact, the morphism j is quasi-compact. Hence j∗G ⊂ j∗F|U are quasi-
coherent modules on X (Morphisms of Spaces, Lemma 67.11.2). LetH = Ker(j∗G⊕
F → j∗F|U ). Then H|U = G. By Lemma 70.9.2 we can find a finite type quasi-
coherent submodule H′ ⊂ H such that H′|U = H|U = G. Set G′ = Im(H′ → F) to
conclude. □

70.10. Relative approximation

09NR We discuss variants of Proposition 70.8.1 over a base.

Lemma 70.10.1.0GS3 Let f : X → Y be a morphism of quasi-compact and quasi-
separated algebraic spaces over Z. Then there exists a direct set I and an inverse
system (fi : Xi → Yi) of morphisms algebraic spaces over I, such that the transition
morphisms Xi → Xi′ and Yi → Yi′ are affine, such that Xi and Yi are quasi-
separated and of finite type over Z, and such that (X → Y ) = lim(Xi → Yi).

Proof. Write X = lima∈AXa and Y = limb∈B Yb as in Proposition 70.8.1, i.e.,
with Xa and Yb quasi-separated and of finite type over Z and with affine transition
morphisms.
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Fix b ∈ B. By Lemma 70.4.5 applied to Yb and X = limXa over Z we find there
exists an a ∈ A and a morphism fa,b : Xa → Yb making the diagram

X

��

// Y

��
Xa

// Yb

commute. Let I be the set of triples (a, b, fa,b) we obtain in this manner.

Let (a, b, fa,b) and (a′, b′, fa′,b′) be in I. Let b′′ ≤ min(b, b′). By Lemma 70.4.5 again,
there exists an a′′ ≥ max(a, a′) such that the compositions Xa′′ → Xa → Yb → Yb′′

and Xa′′ → Xa′ → Yb′ → Yb′′ are equal. We endow I with the preorder

(a, b, fa,b) ≥ (a′, b′, fa′,b′)⇔ a ≥ a′, b ≥ b′, and gb,b′ ◦ fa,b = fa′,b′ ◦ ha,a′

where ha,a′ : Xa → Xa′ and gb,b′ : Yb → Yb′ are the transition morphisms. The
remarks above show that I is directed and that the maps I → A, (a, b, fa,b) 7→ a
and I → B, (a, b, fa,b) are cofinal. If for i = (a, b, fa,b) we set Xi = Xa, Yi = Yb,
and fi = fa,b, then we get an inverse system of morphisms over I and we have

limi∈I Xi = lima∈AXa = X and limi∈I Si = limb∈B Yb = Y

by Categories, Lemma 4.17.4 (recall that limits over I are really limits over the
opposite category associated to I and hence cofinal turns into initial). This finishes
the proof. □

Lemma 70.10.2.09NS Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that

(1) X is quasi-compact and quasi-separated, and
(2) Y is quasi-separated.

Then X = limXi is a limit of a directed inverse system of algebraic spaces Xi of
finite presentation over Y with affine transition morphisms over Y .

Proof. Since |f |(|X|) is quasi-compact we may replace Y by a quasi-compact open
subspace whose set of points contains |f |(|X|). Hence we may assume Y is quasi-
compact as well. By Lemma 70.10.1 we can write (X → Y ) = lim(Xi → Yi)
for some directed inverse system of morphisms of finite type schemes over Z with
affine transition morphisms. Since limits commute with limits (Categories, Lemma
4.14.10) we have X = limXi×Yi Y . For i ≥ i′ the transition morphism Xi×Yi Y →
Xi′ ×Yi′ Y is affine as the composition

Xi ×Yi Y → Xi ×Yi′ Y → Xi′ ×Yi′ Y

where the first morphism is a closed immersion (by Morphisms of Spaces, Lemma
67.4.5) and the second is a base change of an affine morphism (Morphisms of Spaces,
Lemma 67.20.5) and the composition of affine morphisms is affine (Morphisms of
Spaces, Lemma 67.20.4). The morphisms fi are of finite presentation (Morphisms of
Spaces, Lemmas 67.28.7 and 67.28.9) and hence the base changes Xi×fi,Yi Y → Y
are of finite presentation (Morphisms of Spaces, Lemma 67.28.3). □
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70.11. Finite type closed in finite presentation

07SP This section is the analogue of Limits, Section 32.9.

Lemma 70.11.1.0870 Let S be a scheme. Let f : X → Y be an affine morphism
of algebraic spaces over S. If Y quasi-compact and quasi-separated, then X is a
directed limit X = limXi with each Xi affine and of finite presentation over Y .

Proof. Consider the quasi-coherent OY -module A = f∗OX . By Lemma 70.9.4 we
can write A = colimAi as a directed colimit of finitely presented OY -algebras Ai.
Set Xi = Spec

Y
(Ai), see Morphisms of Spaces, Definition 67.20.8. By construction

Xi → Y is affine and of finite presentation and X = limXi. □

Lemma 70.11.2.09YA Let S be a scheme. Let f : X → Y be an integral morphism
of algebraic spaces over S. Assume Y quasi-compact and quasi-separated. Then
X can be written as a directed limit X = limXi where Xi are finite and of finite
presentation over Y .

Proof. Consider the quasi-coherent OY -module A = f∗OX . By Lemma 70.9.7 we
can write A = colimAi as a directed colimit of finite and finitely presented OY -
algebras Ai. Set Xi = Spec

Y
(Ai), see Morphisms of Spaces, Definition 67.20.8. By

construction Xi → Y is finite and of finite presentation and X = limXi. □

Lemma 70.11.3.07VR Let S be a scheme. Let f : X → Y be a finite morphism of
algebraic spaces over S. Assume Y quasi-compact and quasi-separated. Then X
can be written as a directed limit X = limXi where the transition maps are closed
immersions and the objects Xi are finite and of finite presentation over Y .

Proof. Consider the finite quasi-coherent OY -module A = f∗OX . By Lemma 70.9.6
we can write A = colimAi as a directed colimit of finite and finitely presented OY -
algebras Ai with surjective transition maps. Set Xi = Spec

Y
(Ai), see Morphisms

of Spaces, Definition 67.20.8. By construction Xi → Y is finite and of finite pre-
sentation, the transition maps are closed immersions, and X = limXi. □

Lemma 70.11.4.0A0U Let S be a scheme. Let f : X → Y be a closed immersion of
algebraic spaces over S. Assume Y quasi-compact and quasi-separated. Then X
can be written as a directed limit X = limXi where the transition maps are closed
immersions and the morphismsXi → Y are closed immersions of finite presentation.

Proof. Let I ⊂ OY be the quasi-coherent sheaf of ideals defining X as a closed
subspace of Y . By Lemma 70.9.2 we can write I = colim Ii as the filtered colimit
of its finite type quasi-coherent submodules. Let Xi be the closed subspace of X
cut out by Ii. Then Xi → Y is a closed immersion of finite presentation, and
X = limXi. Some details omitted. □

Lemma 70.11.5.0871 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) f is locally of finite type and quasi-affine, and
(2) Y is quasi-compact and quasi-separated.

Then there exists a morphism of finite presentation f ′ : X ′ → Y and a closed
immersion X → X ′ over Y .
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Proof. By Morphisms of Spaces, Lemma 67.21.6 we can find a factorization X →
Z → Y where X → Z is a quasi-compact open immersion and Z → Y is affine.
Write Z = limZi with Zi affine and of finite presentation over Y (Lemma 70.11.1).
For some 0 ∈ I we can find a quasi-compact open U0 ⊂ Z0 such that X is isomorphic
to the inverse image of U0 in Z (Lemma 70.5.7). Let Ui be the inverse image of U0
in Zi, so U = limUi. By Lemma 70.5.12 we see that X → Ui is a closed immersion
for some i large enough. Setting X ′ = Ui finishes the proof. □

Lemma 70.11.6.0872 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume:

(1) f is of locally of finite type.
(2) X is quasi-compact and quasi-separated, and
(3) Y is quasi-compact and quasi-separated.

Then there exists a morphism of finite presentation f ′ : X ′ → Y and a closed
immersion X → X ′ of algebraic spaces over Y .
Proof. By Proposition 70.8.1 we can write X = limiXi with Xi quasi-separated of
finite type over Z and with transition morphisms fii′ : Xi → Xi′ affine. Consider
the commutative diagram

X //

!!

Xi,Y
//

��

Xi

��
Y // Spec(Z)

Note thatXi is of finite presentation over Spec(Z), see Morphisms of Spaces, Lemma
67.28.7. Hence the base change Xi,Y → Y is of finite presentation by Morphisms
of Spaces, Lemma 67.28.3. Observe that limXi,Y = X×Y and that X → X×Y is
a monomorphism. By Lemma 70.5.12 we see that X → Xi,Y is a monomorphism
for i large enough. Fix such an i. Note that X → Xi,Y is locally of finite type
(Morphisms of Spaces, Lemma 67.23.6) and a monomorphism, hence separated and
locally quasi-finite (Morphisms of Spaces, Lemma 67.27.10). Hence X → Xi,Y is
representable. Hence X → Xi,Y is quasi-affine because we can use the principle
Spaces, Lemma 65.5.8 and the result for morphisms of schemes More on Morphisms,
Lemma 37.43.2. Thus Lemma 70.11.5 gives a factorization X → X ′ → Xi,Y with
X → X ′ a closed immersion and X ′ → Xi,Y of finite presentation. Finally, X ′ →
Y is of finite presentation as a composition of morphisms of finite presentation
(Morphisms of Spaces, Lemma 67.28.2). □

Proposition 70.11.7.0873 Let S be a scheme. f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) f is of finite type and separated, and
(2) Y is quasi-compact and quasi-separated.

Then there exists a separated morphism of finite presentation f ′ : X ′ → Y and a
closed immersion X → X ′ over Y .
Proof. By Lemma 70.11.6 there is a closed immersion X → Z with Z/Y of finite
presentation. Let I ⊂ OZ be the quasi-coherent sheaf of ideals defining X as a
closed subscheme of Y . By Lemma 70.9.2 we can write I as a directed colimit
I = colima∈A Ia of its quasi-coherent sheaves of ideals of finite type. Let Xa ⊂ Z
be the closed subspace defined by Ia. These form an inverse system indexed by A.
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The transition morphisms Xa → Xa′ are affine because they are closed immersions.
Each Xa is quasi-compact and quasi-separated since it is a closed subspace of Z and
Z is quasi-compact and quasi-separated by our assumptions. We have X = limaXa

as follows directly from the fact that I = colima∈A Ia. Each of the morphisms
Xa → Z is of finite presentation, see Morphisms, Lemma 29.21.7. Hence the
morphisms Xa → Y are of finite presentation. Thus it suffices to show that Xa → Y
is separated for some a ∈ A. This follows from Lemma 70.5.13 as we have assumed
that X → Y is separated. □

70.12. Approximating proper morphisms

0A0V
Lemma 70.12.1.0A0W Let S be a scheme. Let f : X → Y be a proper morphism of
algebraic spaces over S with Y quasi-compact and quasi-separated. Then X =
limXi is a directed limit of algebraic spaces Xi proper and of finite presentation
over Y and with transition morphisms and morphisms X → Xi closed immersions.

Proof. By Proposition 70.11.7 we can find a closed immersion X → X ′ with X ′

separated and of finite presentation over Y . By Lemma 70.11.4 we can write X =
limXi with Xi → X ′ a closed immersion of finite presentation. We claim that for
all i large enough the morphism Xi → Y is proper which finishes the proof.
To prove this we may assume that Y is an affine scheme, see Morphisms of Spaces,
Lemma 67.40.2. Next, we use the weak version of Chow’s lemma, see Cohomology
of Spaces, Lemma 69.18.1, to find a diagram

X ′

!!

X ′′

��

π
oo // Pn

Y

}}
Y

where X ′′ → Pn
Y is an immersion, and π : X ′′ → X ′ is proper and surjective.

Denote X ′
i ⊂ X ′′, resp. π−1(X) the scheme theoretic inverse image of Xi ⊂ X ′,

resp. X ⊂ X ′. Then limX ′
i = π−1(X). Since π−1(X) → Y is proper (Morphisms

of Spaces, Lemmas 67.40.4), we see that π−1(X) → Pn
Y is a closed immersion

(Morphisms of Spaces, Lemmas 67.40.6 and 67.12.3). Hence for i large enough we
find that X ′

i → Pn
Y is a closed immersion by Lemma 70.5.16. Thus X ′

i is proper
over Y . For such i the morphism Xi → Y is proper by Morphisms of Spaces,
Lemma 67.40.7. □

Lemma 70.12.2.0A0X Let f : X → Y be a proper morphism of algebraic spaces over Z
with Y quasi-compact and quasi-separated. Then there exists a directed set I, an
inverse system (fi : Xi → Yi) of morphisms of algebraic spaces over I, such that
the transition morphisms Xi → Xi′ and Yi → Yi′ are affine, such that fi is proper
and of finite presentation, such that Yi is of finite presentation over Z, and such
that (X → Y ) = lim(Xi → Yi).

Proof. By Lemma 70.12.1 we can write X = limk∈K Xk with Xk → Y proper and
of finite presentation. Next, by absolute Noetherian approximation (Proposition
70.8.1) we can write Y = limj∈J Yj with Yj of finite presentation over Z. For
each k there exists a j and a morphism Xk,j → Yj of finite presentation with
Xk
∼= Y ×Yj Xk,j as algebraic spaces over Y , see Lemma 70.7.1. After increasing
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j we may assume Xk,j → Yj is proper, see Lemma 70.6.13. The set I will be
consist of these pairs (k, j) and the corresponding morphism is Xk,j → Yj . For
every k′ ≥ k we can find a j′ ≥ j and a morphism Xj′,k′ → Xj,k over Yj′ → Yj
whose base change to Y gives the morphism Xk′ → Xk (follows again from Lemma
70.7.1). These morphisms form the transition morphisms of the system. Some
details omitted. □

Recall the scheme theoretic support of a finite type quasi-coherent module, see
Morphisms of Spaces, Definition 67.15.4.

Lemma 70.12.3.08K2 Assumptions and notation as in Situation 70.6.1. Let F0 be a
quasi-coherent OX0 -module. Denote F and Fi the pullbacks of F0 to X and Xi.
Assume

(1) f0 is locally of finite type,
(2) F0 is of finite type,
(3) the scheme theoretic support of F is proper over Y .

Then the scheme theoretic support of Fi is proper over Yi for some i.

Proof. We may replace X0 by the scheme theoretic support of F0. By Morphisms
of Spaces, Lemma 67.15.2 this guarantees that Xi is the support of Fi and X is
the support of F . Then, if Z ⊂ X denotes the scheme theoretic support of F ,
we see that Z → X is a universal homeomorphism. We conclude that X → Y is
proper as this is true for Z → Y by assumption, see Morphisms, Lemma 29.41.9.
By Lemma 70.6.13 we see that Xi → Y is proper for some i. Then it follows that
the scheme theoretic support Zi of Fi is proper over Y by Morphisms of Spaces,
Lemmas 67.40.5 and 67.40.4. □

70.13. Embedding into affine space

088K Some technical lemmas to be used in the proof of Chow’s lemma later.

Lemma 70.13.1.088L Let S be a scheme. Let f : U → X be a morphism of algebraic
spaces over S. Assume U is an affine scheme, f is locally of finite type, and X
quasi-separated and locally separated. Then there exists an immersion U → An

X

over X.

Proof. Say U = Spec(A). Write A = colimAi as a filtered colimit of finite type
Z-subalgebras. For each i the morphism U → Ui = Spec(Ai) induces a morphism

U −→ X × Ui
over X. In the limit the morphism U → X × U is an immersion as X is locally
separated, see Morphisms of Spaces, Lemma 67.4.6. By Lemma 70.5.12 we see
that U → X × Ui is an immersion for some i. Since Ui is isomorphic to a closed
subscheme of An

Z the lemma follows. □

Remark 70.13.2.088M We have seen in Examples, Section 110.28 that Lemma 70.13.1
does not hold if we drop the assumption that X be locally separated. This raises
the question: Does Lemma 70.13.1 hold if we drop the assumption that X be
quasi-separated? If you know the answer, please email stacks.project@gmail.com.

Lemma 70.13.3.088N Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Assume X Noetherian and f of finite presentation. Then there
exists a dense open V ⊂ Y and an immersion V → An

X .
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Proof. The assumptions imply that Y is Noetherian (Morphisms of Spaces, Lemma
67.28.6). Then Y is quasi-separated, hence has a dense open subscheme (Properties
of Spaces, Proposition 66.13.3). Thus we may assume that Y is a Noetherian
scheme. By removing intersections of irreducible components of Y (use Topology,
Lemma 5.9.2 and Properties, Lemma 28.5.5) we may assume that Y is a disjoint
union of irreducible Noetherian schemes. Since there is an immersion

An
X ⨿Am

X −→ Amax(n,m)+1
X

(details omitted) we see that it suffices to prove the result in case Y is irreducible.
Assume Y is an irreducible scheme. Let T ⊂ |X| be the closure of the image of
f : Y → X. Note that since |Y | and |X| are sober topological spaces (Properties
of Spaces, Lemma 66.15.1) T is irreducible with a unique generic point ξ which is
the image of the generic point η of Y . Let I ⊂ X be a quasi-coherent sheaf of
ideals cutting out the reduced induced space structure on T (Properties of Spaces,
Definition 66.12.5). Since OY,η is an Artinian local ring we see that for some n > 0
we have f−1InOY,η = 0. As f−1IOY is a finite type quasi-coherent ideal we
conclude that f−1InOV = 0 for some nonempty open V ⊂ Y . Let Z ⊂ X be the
closed subspace cut out by In. By construction V → Y → X factors through Z.
Because An

Z → An
X is an immersion, we may replace X by Z and Y by V . Hence

we reach the situation where Y and X are irreducible and Y → X maps the generic
point of Y onto the generic point of X.
Assume Y and X are irreducible, Y is a scheme, and Y → X maps the generic
point of Y onto the generic point of X. By Properties of Spaces, Proposition 66.13.3
X has a dense open subscheme U ⊂ X. Choose a nonempty affine open V ⊂ Y
whose image in X is contained in U . By Morphisms, Lemma 29.39.2 we may factor
V → U as V → An

U → U . Composing with An
U → An

X we obtain the desired
immersion. □

70.14. Sections with support in a closed subset

0854 This section is the analogue of Properties, Section 28.24.

Lemma 70.14.1.0855 Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space. Let U ⊂ X be an open subspace. The following are equivalent:

(1) U → X is quasi-compact,
(2) U is quasi-compact, and
(3) there exists a finite type quasi-coherent sheaf of ideals I ⊂ OX such that
|X| \ |U | = |V (I)|.

Proof. Let W be an affine scheme and let φ : W → X be a surjective étale mor-
phism, see Properties of Spaces, Lemma 66.6.3. If (1) holds, then φ−1(U) → W
is quasi-compact, hence φ−1(U) is quasi-compact, hence U is quasi-compact (as
|φ−1(U)| → |U | is surjective). If (2) holds, then φ−1(U) is quasi-compact be-
cause φ is quasi-compact since X is quasi-separated (Morphisms of Spaces, Lemma
67.8.10). Hence φ−1(U) → W is a quasi-compact morphism of schemes by Prop-
erties, Lemma 28.24.1. It follows that U → X is quasi-compact by Morphisms of
Spaces, Lemma 67.8.8. Thus (1) and (2) are equivalent.
Assume (1) and (2). By Properties of Spaces, Lemma 66.12.3 there exists a unique
quasi-coherent sheaf of ideals J cutting out the reduced induced closed subspace
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structure on |X| \ |U |. Note that J |U = OU which is an OU -modules of finite
type. As U is quasi-compact it follows from Lemma 70.9.2 that there exists a
quasi-coherent subsheaf I ⊂ J which is of finite type and has the property that
I|U = J |U . Then |X|\ |U | = |V (I)| and we obtain (3). Conversely, if I is as in (3),
then φ−1(U) ⊂W is a quasi-compact open by the lemma for schemes (Properties,
Lemma 28.24.1) applied to φ−1I on W . Thus (2) holds. □

Lemma 70.14.2.0856 Let S be a scheme. Let X be an algebraic space over S. Let
I ⊂ OX be a quasi-coherent sheaf of ideals. Let F be a quasi-coherent OX -module.
Consider the sheaf of OX -modules F ′ which associates to every object U of Xétale

the module
F ′(U) = {s ∈ F(U) | Is = 0}

Assume I is of finite type. Then
(1) F ′ is a quasi-coherent sheaf of OX -modules,
(2) for affine U in Xétale we have F ′(U) = {s ∈ F(U) | I(U)s = 0}, and
(3) F ′

x = {s ∈ Fx | Ixs = 0}.

Proof. It is clear that the rule defining F ′ gives a subsheaf of F . Hence we may
work étale locally on X to verify the other statements. Thus the lemma reduces to
the case of schemes which is Properties, Lemma 28.24.2. □

Definition 70.14.3.0857 Let S be a scheme. Let X be an algebraic space over S. Let
I ⊂ OX be a quasi-coherent sheaf of ideals of finite type. Let F be a quasi-coherent
OX -module. The subsheaf F ′ ⊂ F defined in Lemma 70.14.2 above is called the
subsheaf of sections annihilated by I.

Lemma 70.14.4.0858 Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let I ⊂ OY be a quasi-coherent
sheaf of ideals of finite type. Let F be a quasi-coherent OX -module. Let F ′ ⊂ F be
the subsheaf of sections annihilated by f−1IOX . Then f∗F ′ ⊂ f∗F is the subsheaf
of sections annihilated by I.

Proof. Omitted. Hint: The assumption that f is quasi-compact and quasi-separated
implies that f∗F is quasi-coherent (Morphisms of Spaces, Lemma 67.11.2) so that
Lemma 70.14.2 applies to I and f∗F . □

Next we come to the sheaf of sections supported in a closed subset. Again this isn’t
always a quasi-coherent sheaf, but if the complement of the closed is “retrocompact”
in the given algebraic space, then it is.

Lemma 70.14.5.0859 Let S be a scheme. Let X be an algebraic space over S. Let T ⊂
|X| be a closed subset and let U ⊂ X be the open subspace such that T ⨿|U | = |X|.
Let F be a quasi-coherent OX -module. Consider the sheaf of OX -modules F ′ which
associates to every object φ : W → X of Xétale the module

F ′(W ) = {s ∈ F(W ) | the support of s is contained in |φ|−1(T )}
If U → X is quasi-compact, then

(1) for W affine there exist a finitely generated ideal I ⊂ OX(W ) such that
|φ|−1(T ) = V (I),

(2) forW and I as in (1) we have F ′(W ) = {x ∈ F(W ) | Inx = 0 for some n},
(3) F ′ is a quasi-coherent sheaf of OX -modules.

https://stacks.math.columbia.edu/tag/0856
https://stacks.math.columbia.edu/tag/0857
https://stacks.math.columbia.edu/tag/0858
https://stacks.math.columbia.edu/tag/0859


70.15. CHARACTERIZING AFFINE SPACES 5556

Proof. It is clear that the rule defining F ′ gives a subsheaf of F . Hence we may
work étale locally on X to verify the other statements. Thus the lemma reduces to
the case of schemes which is Properties, Lemma 28.24.5. □

Definition 70.14.6.085A Let S be a scheme. Let X be an algebraic space over S. Let
T ⊂ |X| be a closed subset whose complement corresponds to an open subspace
U ⊂ X with quasi-compact inclusion morphism U → X. Let F be a quasi-coherent
OX -module. The quasi-coherent subsheaf F ′ ⊂ F defined in Lemma 70.14.5 above
is called the subsheaf of sections supported on T .

Lemma 70.14.7.085B Let S be a scheme. Let f : X → Y be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. Let T ⊂ |Y | be a closed
subset. Assume |Y | \ T corresponds to an open subspace V ⊂ Y such that V → Y
is quasi-compact. Let F be a quasi-coherent OX -module. Let F ′ ⊂ F be the
subsheaf of sections supported on |f |−1T . Then f∗F ′ ⊂ f∗F is the subsheaf of
sections supported on T .

Proof. Omitted. Hints: |X| \ |f |−1T is the support of the open subspace U =
f−1V ⊂ X. Since V → Y is quasi-compact, so is U → X (by base change).
The assumption that f is quasi-compact and quasi-separated implies that f∗F is
quasi-coherent. Hence Lemma 70.14.5 applies to T and f∗F as well as to |f |−1T
and F . The equality of the given quasi-coherent modules is immediate from the
definitions. □

70.15. Characterizing affine spaces

07VQ This section is the analogue of Limits, Section 32.11.

Lemma 70.15.1.07VS Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that f is surjective and finite, and assume that X is affine.
Then Y is affine.

Proof. We may and do view f : X → Y as a morphism of algebraic space over
Spec(Z) (see Spaces, Definition 65.16.2). Note that a finite morphism is affine
and universally closed, see Morphisms of Spaces, Lemma 67.45.7. By Morphisms
of Spaces, Lemma 67.9.8 we see that Y is a separated algebraic space. As f is
surjective and X is quasi-compact we see that Y is quasi-compact.

By Lemma 70.11.3 we can write X = limXa with each Xa → Y finite and of
finite presentation. By Lemma 70.5.10 we see that Xa is affine for a large enough.
Hence we may and do assume that f : X → Y is finite, surjective, and of finite
presentation.

By Proposition 70.8.1 we may write Y = lim Yi as a directed limit of algebraic
spaces of finite presentation over Z. By Lemma 70.7.1 we can find 0 ∈ I and a
morphism X0 → Y0 of finite presentation such that Xi = X0 ×Y0 Yi for i ≥ 0 and
such that X = limiXi. By Lemma 70.6.7 we see that Xi → Yi is finite for i large
enough. By Lemma 70.6.4 we see that Xi → Yi is surjective for i large enough. By
Lemma 70.5.10 we see that Xi is affine for i large enough. Hence for i large enough
we can apply Cohomology of Spaces, Lemma 69.17.3 to conclude that Yi is affine.
This implies that Y is affine and we conclude. □
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Proposition 70.15.2.07VT Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that X is affine and f is surjective and universally closed2.
Then Y is affine.
Proof. We may and do view f : X → Y as a morphism of algebraic spaces over
Spec(Z) (see Spaces, Definition 65.16.2). By Morphisms of Spaces, Lemma 67.9.8
we see that Y is a separated algebraic space. Then by Morphisms of Spaces, Lemma
67.20.11 we find that f is affine. Whereupon by Morphisms of Spaces, Lemma
67.45.7 we see that f is integral.
By the preceding paragraph, we may assume f : X → Y is surjective and integral,
X is affine, and Y is separated. Since f is surjective and X is quasi-compact we
also deduce that Y is quasi-compact.
Consider the sheaf A = f∗OX . This is a quasi-coherent sheaf of OY -algebras, see
Morphisms of Spaces, Lemma 67.11.2. By Lemma 70.9.1 we can writeA = colimi Fi
as a filtered colimit of finite type OY -modules. Let Ai ⊂ A be the OY -subalgebra
generated by Fi. Since the map of algebras OY → A is integral, we see that each
Ai is a finite quasi-coherent OY -algebra. Hence

Xi = Spec
Y

(Ai) −→ Y

is a finite morphism of algebraic spaces. Here Spec is the construction of Morphisms
of Spaces, Lemma 67.20.7. It is clear that X = limiXi. Hence by Lemma 70.5.10
we see that for i sufficiently large the scheme Xi is affine. Moreover, since X → Y
factors through each Xi we see that Xi → Y is surjective. Hence we conclude that
Y is affine by Lemma 70.15.1. □

The following corollary of the result above can be found in [CLO12].
Lemma 70.15.3.07VU [CLO12, 3.1.12]Let S be a scheme. Let X be an algebraic space over S. If Xred

is a scheme, then X is a scheme.
Proof. Let U ′ ⊂ Xred be an open affine subscheme. Let U ⊂ X be the open
subspace corresponding to the open |U ′| ⊂ |Xred| = |X|. Then U ′ → U is surjective
and integral. Hence U is affine by Proposition 70.15.2. Thus every point is contained
in an open subscheme of X, i.e., X is a scheme. □

Lemma 70.15.4.07VV Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is integral and induces a bijection |X| → |Y |. Then X is
a scheme if and only if Y is a scheme.
Proof. An integral morphism is representable by definition, hence if Y is a scheme,
so is X. Conversely, assume that X is a scheme. Let U ⊂ X be an affine open. An
integral morphism is closed and |f | is bijective, hence |f |(|U |) ⊂ |Y | is open as the
complement of |f |(|X| \ |U |). Let V ⊂ Y be the open subspace with |V | = |f |(|U |),
see Properties of Spaces, Lemma 66.4.8. Then U → V is integral and surjective,
hence V is an affine scheme by Proposition 70.15.2. This concludes the proof. □

Lemma 70.15.5.08B2 Let S be a scheme. Let f : X → B and B′ → B be morphisms of
algebraic spaces over S. Assume

(1) B′ → B is a closed immersion,
(2) |B′| → |B| is bijective,

2An integral morphism is universally closed, see Morphisms of Spaces, Lemma 67.45.7.
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(3) X ×B B′ → B′ is a closed immersion, and
(4) X → B is of finite type or B′ → B is of finite presentation.

Then f : X → B is a closed immersion.

Proof. Assumptions (1) and (2) imply that Bred = B′
red. Set X ′ = X×B B′. Then

X ′ → X is closed immersion and X ′
red = Xred. Let U → B be an étale morphism

with U affine. Then X ′ ×B U → X ×B U is a closed immersion of algebraic spaces
inducing an isomorphism on underlying reduced spaces. Since X ′×B U is a scheme
(as B′ → B and X ′ → B′ are representable) so is X ×B U by Lemma 70.15.3.
Hence X → B is representable too. Thus we reduce to the case of schemes, see
Morphisms, Lemma 29.45.7. □

70.16. Finite cover by a scheme

0ACX As an application of the limit results of this chapter, we prove that given any
quasi-compact and quasi-separated algebraic space X, there is a scheme Y and a
surjective, finite morphism Y → X. We will rely on the already proven result that
we can find a finite integral cover by a scheme, which was proved in Decent Spaces,
Section 68.9.

Proposition 70.16.1.09YC Let S be a scheme. Let X be a quasi-compact and quasi-
separated algebraic space over S.

(1) There exists a surjective finite morphism Y → X of finite presentation
where Y is a scheme,

(2) given a surjective étale morphism U → X we may choose Y → X such
that for every y ∈ Y there is an open neighbourhood V ⊂ Y such that
V → X factors through U .

Proof. Part (1) is the special case of (2) with U = X. Let Y → X be as in Decent
Spaces, Lemma 68.9.2. Choose a finite affine open covering Y =

⋃
Vj such that

Vj → X factors through U . We can write Y = limYi with Yi → X finite and
of finite presentation, see Lemma 70.11.2. For large enough i the algebraic space
Yi is a scheme, see Lemma 70.5.11. For large enough i we can find affine opens
Vi,j ⊂ Yi whose inverse image in Y recovers Vj , see Lemma 70.5.7. For even larger
i the morphisms Vj → U over X come from morphisms Vi,j → U over X, see
Proposition 70.3.10. This finishes the proof. □

Lemma 70.16.2.0GUM Let S be a scheme. Let f : X → Y be an integral morphism
of algebraic spaces over S. Assume Y quasi-compact and quasi-separated. Let
V ⊂ Y be a quasi-compact open subspace such that f−1(V ) → V is finite and of
finite presentation. Then X can be written as a directed limit X = limXi where
fi : Xi → Y are finite and of finite presentation such that f−1(V )→ f−1

i (V ) is an
isomorphism for all i.

Proof. This lemma is a slight refinement of Proposition 70.16.1. Consider the in-
tegral quasi-coherent OY -algebra A = f∗OX . In the next paragraph, we will write
A = colimAi as a directed colimit of finite and finitely presented OY -algebras
Ai such that Ai|V = A|V . Having done this we set Xi = Spec

Y
(Ai), see Mor-

phisms of Spaces, Definition 67.20.8. By construction Xi → Y is finite and of finite
presentation, X = limXi, and f−1

i (V ) = f−1(V ).
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The proof of the assertion on algebras is similar to the proof of part (2) of Lemma
70.9.7. First, write A = colimFi as a colimit of finitely presented OY -modules
using Lemma 70.9.1. Since A|V is a finite type OV -module we may and do assume
that Fi|V → A|V is surjective for all i. For each i, let Ji be the kernel of the map

Sym∗
OX

(Fi) −→ A

For i′ ≥ i there is an induced map Ji → Ji′ . We have A = colim Sym∗
OX

(Fi)/Ji.
Moreover, the quasi-coherent OX -algebras Sym∗

OX
(Fi)/Ji are finite (as finite type

quasi-coherent subalgebras of the integral quasi-coherent OY -algebra A over OX).
The restriction of Sym∗

OX
(Fi)/Ji to V is A|V by the surjectivity above. Hence

Ji|V is finitely generated as an ideal sheaf of Sym∗
OX

(Fi)|V due to the fact that
A|V is finitely presented as an OY -algebra. Write Ji = colim Eik as a colimit of
finitely presented OX -modules. We may and do assume that Eik|V generates Ji|V
as a sheaf of ideal of Sym∗

OX
(Fi)|V by the statement on finite generation above.

Given i′ ≥ i and k there exists a k′ such that we have a map Eik → Ei′k′ making

Ji // Ji′

Eik

OO

// Ei′k′

OO

commute. This follows from Cohomology of Spaces, Lemma 69.5.3. This induces a
map

Aik = Sym∗
OX

(Fi)/(Eik) −→ Sym∗
OX

(Fi′)/(Ei′k′) = Ai′k′

where (Eik) denotes the ideal generated by Eik. The quasi-coherent OX -algebras
Aki are of finite presentation and finite for k large enough (see proof of Lemma
70.9.6). Moreover we have Aik|V = A|V by construction. Finally, we have

colimAik = colimAi = A

Namely, the first equality was shown in the proof of Lemma 70.9.6 and the second
equality because A is the colimit of the modules Fi. □

Lemma 70.16.3.0GUN Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S such that |X| has finitely many irreducible components.

(1) There exists a surjective finite morphism f : Y → X of finite presentation
where Y is a scheme such that f is finite étale over a quasi-compact dense
open U ⊂ X,

(2) given a surjective étale morphism V → X we may choose Y → X such
that for every y ∈ Y there is an open neighbourhood W ⊂ Y such that
W → X factors through V .

Proof. Part (1) is the special case of (2) with V = X.

Proof of (2). Let π : Y → X be as in Decent Spaces, Lemma 68.9.3 and let U ⊂ X
be a quasi-compact dense open such that π−1(U) → U is finite étale. Choose a
finite affine open covering Y =

⋃
Wj such that Wj → X factors through V . We

can write Y = lim Yi with πi : Yi → X finite and of finite presentation such that
π−1(U) → π−1

i (U) is an isomorphism, see Lemma 70.16.2. For large enough i the
algebraic space Yi is a scheme, see Lemma 70.5.11. For large enough i we can find
affine opens Wi,j ⊂ Yi whose inverse image in Y recovers Wj , see Lemma 70.5.7.
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For even larger i the morphisms Wj → V over X come from morphisms Wi,j → U
over X, see Proposition 70.3.10. This finishes the proof. □

Lemma 70.16.4.0GUP Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. There exists a t ≥ 0 and closed subspaces

X ⊃ Z0 ⊃ Z1 ⊃ . . . ⊃ Zt = ∅
such that Zi → X is of finite presentation, Z0 ⊂ X is a thickening, and for each
i = 0, . . . t − 1 there exists a scheme Yi, a surjective, finite, and finitely presented
morphism Yi → Zi which is finite étale over Zi \ Zi+1.

Proof. We may view X as an algebraic space over Spec(Z), see Spaces, Definition
65.16.2 and Properties of Spaces, Definition 66.3.1. Thus we may apply Proposition
70.8.1. It follows that we can find an affine morphism X → X0 with X0 of finite
presentation over Z. If we can prove the lemma for X0, then we can pull back
the stratification and the morphisms to X and get the result for X; some details
omitted. This reduces us to the case discussed in the next paragraph.
Assume X is of finite presentation over Z. Then X is Noetherian and |X| is a
Noetherian topological space (with finitely many irreducible components) of finite
dimension. Hence we may use induction on dim(|X|). Any finite morphism towards
X is of finite presentation, so we can ignore that requirement in the rest of the proof.
By Lemma 70.16.3 there exists a surjective finite morphism Y → X which is finite
étale over a dense open U ⊂ X. Set Z0 = X and let Z1 ⊂ X be the reduced
closed subspace with |Z1| = |X| \ |U |. By induction we find an integer t ≥ 0 and a
filtration

Z1 ⊃ Z1,0 ⊃ Z1,1 ⊃ . . . ⊃ Z1,t = ∅
by closed subspaces, where Z1,0 → Z1 is a thickening and there exist finite surjective
morphisms Y1,i → Z1,i which are finite étale over Z1,i \Z1,i+1. Since Z1 is reduced,
we have Z1 = Z1,0. Hence we can set Zi = Z1,i−1 and Yi = Y1,i−1 for i ≥ 1 and the
lemma is proved. □

70.17. Obtaining schemes

0B7X A few more techniques to show an algebraic space is a scheme. The first is that we
can show there is a minimal closed subspace which is not a scheme.

Lemma 70.17.1.0B7Y Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. If X is not a scheme, then there exists a closed subspace
Z ⊂ X such that Z is not a scheme, but every proper closed subspace Z ′ ⊂ Z is a
scheme.

Proof. We prove this by Zorn’s lemma. Let Z be the set of closed subspaces Z
which are not schemes ordered by inclusion. By assumption Z contains X, hence is
nonempty. If Zα is a totally ordered subset of Z, then Z =

⋂
Zα is in Z. Namely,

Z = limZα

and the transition morphisms are affine. Thus we may apply Lemma 70.5.11 to see
that if Z were a scheme, then so would one of the Zα. (This works even if Z = ∅,
but note that by Lemma 70.5.3 this cannot happen.) Thus Z has minimal elements
by Zorn’s lemma. □

Now we can prove a little bit about these minimal non-schemes.
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Lemma 70.17.2.0B7Z Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Assume that every proper closed subspace Z ⊂ X is a
scheme, but X is not a scheme. Then X is reduced and irreducible.

Proof. We see that X is reduced by Lemma 70.15.3. Choose closed subsets T1 ⊂ |X|
and T2 ⊂ |X| such that |X| = T1 ∪T2. If T1 and T2 are proper closed subsets, then
the corresponding reduced induced closed subspaces Z1, Z2 ⊂ X (Properties of
Spaces, Definition 66.12.5) are schemes and so is Z = Z1 ×X Z2 = Z1 ∩ Z2 as a
closed subscheme of either Z1 or Z2. Observe that the coproduct Z1 ⨿Z Z2 exists
in the category of schemes, see More on Morphisms, Lemma 37.67.8. One way to
proceed, is to show that Z1 ⨿Z Z2 is isomorphic to X, but we cannot use this here
as the material on pushouts of algebraic spaces comes later in the theory. Instead
we will use Lemma 70.15.1 to find an affine neighbourhood of every point. Namely,
let x ∈ |X|. If x ̸∈ Z1, then x has a neighbourhood which is a scheme, namely,
X \ Z1. Similarly if x ̸∈ Z2. If x ∈ Z = Z1 ∩ Z2, then we choose an affine open
U ⊂ Z1 ⨿Z Z2 containing z. Then U1 = Z1 ∩ U and U2 = Z2 ∩ U are affine opens
whose intersections with Z agree. Since |Z1| = T1 and |Z2| = T2 are closed subsets
of |X| which intersect in |Z|, we find an open W ⊂ |X| with W ∩ T1 = |U1| and
W ∩T2 = |U2|. Let W denote the corresponding open subspace of X. Then x ∈ |W |
and the morphism U1⨿U2 →W is a surjective finite morphism whose source is an
affine scheme. Thus W is an affine scheme by Lemma 70.15.1. □

A key point in the following lemma is that we only need to check the condition in
the images of points of X.

Lemma 70.17.3.0B80 Let f : X → S be a quasi-compact and quasi-separated morphism
from an algebraic space to a scheme S. If for every x ∈ |X| with image s = f(x) ∈ S
the algebraic space X ×S Spec(OS,s) is a scheme, then X is a scheme.

Proof. Let x ∈ |X|. It suffices to find an open neighbourhood U of s = f(x)
such that X ×S U is a scheme. As X ×S Spec(OS,s) is a scheme, then, since
OS,s = colimOS(U) where the colimit is over affine open neighbourhoods of s in S
we see that

X ×S Spec(OS,s) = limX ×S U
By Lemma 70.5.11 we see that X ×S U is a scheme for some U . □

Instead of restricting to local rings as in Lemma 70.17.3, we can restrict to closed
subschemes of the base.

Lemma 70.17.4.0B81 Let φ : X → Spec(A) be a quasi-compact and quasi-separated
morphism from an algebraic space to an affine scheme. If X is not a scheme, then
there exists an ideal I ⊂ A such that the base change XA/I is not a scheme, but
for every I ⊂ I ′, I ̸= I ′ the base change XA/I′ is a scheme.

Proof. We prove this by Zorn’s lemma. Let I be the set of ideals I such that XA/I

is not a scheme. By assumption I contains (0). If Iα is a chain of ideals in I, then
I =

⋃
Iα is in I. Namely, A/I = colimA/Iα, hence

XA/I = limXA/Iα

Thus we may apply Lemma 70.5.11 to see that if XA/I were a scheme, then so
would be one of the XA/Iα . Thus I has maximal elements by Zorn’s lemma. □
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70.18. Glueing in closed fibres

0E8Y Applying our theory above to the spectrum of a local ring we obtain a few pleasing
glueing results for relative algebraic spaces. We first prove a helper lemma (which
will be vastly generalized in Bootstrap, Section 80.11).

Lemma 70.18.1.0E8Z Let S = U∪W be an open covering of a scheme. Then the functor

FPS −→ FPU ×FPU∩W FPW

given by base change is an equivalence where FPT is the category of algebraic
spaces of finite presentation over the scheme T .

Proof. First, since S = U ∪W is a Zariski covering, we see that the category of
sheaves on (Sch/S)fppf is equivalent to the category of triples (FU ,FW , φ) where
FU is a sheaf on (Sch/U)fppf , FW is a sheaf on (Sch/W )fppf , and

φ : FU |(Sch/U∩W )fppf −→ FW |(Sch/U∩W )fppf

is an isomorphism. See Sites, Lemma 7.26.5 (note that no other gluing data are
necessary because U ×S U = U , W ×S W = W and that the cocycle condition
is automatic for the same reason). Now, if the sheaf F on (Sch/S)fppf maps to
(FU ,FW , φ) via this equivalence, then F is an algebraic space if and only if FU and
FW are algebraic spaces. This follows immediately from Algebraic Spaces, Lemma
65.8.5 as FU → F and FW → F are representable by open immersions and cover
F . Finally, in this case the algebraic space F is of finite presentation over S if and
only if FU is of finite presentation over U and FW is of finite presentation over W
by Morphisms of Spaces, Lemmas 67.8.8, 67.4.12, and 67.28.4. □

Lemma 70.18.2.0E90 Let S be a scheme. Let s ∈ S be a closed point such that
U = S \ {s} → S is quasi-compact. With V = Spec(OS,s) \ {s} there is an
equivalence of categories

FPS −→ FPU ×FPV FPSpec(OS,s)

where FPT is the category of algebraic spaces of finite presentation over T .

Proof. Let W ⊂ S be an open neighbourhood of s. The functor

FPS → FPU ×FPW\{s} FPW

is an equivalence of categories by Lemma 70.18.1. We have OS,s = colimOW (W )
where W runs over the affine open neighbourhoods of s. Hence Spec(OS,s) = limW
where W runs over the affine open neighbourhoods of s. Thus the category of
algebraic spaces of finite presentation over Spec(OS,s) is the limit of the category
of algebraic spaces of finite presentation over W where W runs over the affine open
neighbourhoods of s, see Lemma 70.7.1. For every affine open s ∈ W we see that
U ∩W is quasi-compact as U → S is quasi-compact. Hence V = limW ∩ U =
limW \ {s} is a limit of quasi-compact and quasi-separated schemes (see Limits,
Lemma 32.2.2). Thus also the category of algebraic spaces of finite presentation
over V is the limit of the categories of algebraic spaces of finite presentation over
W ∩U where W runs over the affine open neighbourhoods of s. The lemma follows
formally from a combination of these results. □
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Lemma 70.18.3.0E91 Let S be a scheme. Let U ⊂ S be a retrocompact open. Let
s ∈ S be a point in the complement of U . With V = Spec(OS,s) ∩ U there is an
equivalence of categories

colims∈U ′⊃U open FPU ′ −→ FPU ×FPV FPSpec(OS,s)

where FPT is the category of algebraic spaces of finite presentation over T .

Proof. Let W ⊂ S be an open neighbourhood of s. By Lemma 70.18.1 the functor
FPU∪W −→ FPU ×FPU∩W FPW

is an equivalence of categories. We have OS,s = colimOW (W ) where W runs over
the affine open neighbourhoods of s. Hence Spec(OS,s) = limW where W runs over
the affine open neighbourhoods of s. Thus the category of algebraic spaces of finite
presentation over Spec(OS,s) is the limit of the category of algebraic spaces of finite
presentation over W where W runs over the affine open neighbourhoods of s, see
Lemma 70.7.1. For every affine open s ∈ W we see that U ∩W is quasi-compact
as U → S is quasi-compact. Hence V = limW ∩ U is a limit of quasi-compact
and quasi-separated schemes (see Limits, Lemma 32.2.2). Thus also the category
of algebraic spaces of finite presentation over V is the limit of the categories of
algebraic spaces of finite presentation over W ∩ U where W runs over the affine
open neighbourhoods of s. The lemma follows formally from a combination of these
results. □

Lemma 70.18.4.0E92 Let S be a scheme. Let s1, . . . , sn ∈ S be pairwise distinct closed
points such that U = S\{s1, . . . , sn} → S is quasi-compact. With Si = Spec(OS,si)
and Ui = Si \ {si} there is an equivalence of categories

FPS −→ FPU ×(FPU1 ×...×FPUn ) (FPS1 × . . .× FPSn)
where FPT is the category of algebraic spaces of finite presentation over T .

Proof. For n = 1 this is Lemma 70.18.2. For n > 1 the lemma can be proved in
exactly the same way or it can be deduced from it. For example, suppose that
fi : Xi → Si are objects of FPSi and f : X → U is an object of FPU and
we’re given isomorphisms Xi ×Si Ui = X ×U Ui. By Lemma 70.18.2 we can find
a morphism f ′ : X ′ → U ′ = S \ {s1, . . . , sn−1} which is of finite presentation,
which is isomorphic to Xi over Si, which is isomorphic to X over U , and these
isomorphisms are compatible with the given isomorphism Xi ×Sn Un = X ×U Un.
Then we can apply induction to fi : Xi → Si, i ≤ n − 1, f ′ : X ′ → U ′, and the
induced isomorphisms Xi ×Si Ui = X ′ ×U ′ Ui, i ≤ n − 1. This shows essential
surjectivity. We omit the proof of fully faithfulness. □

70.19. Application to modifications

0BGX Using limits we can describe the category of modifications of a decent algebraic
space over a closed point in terms of the henselian local ring.

Lemma 70.19.1.0BGY Let S be a scheme. Consider a separated étale morphism f : V →
W of algebraic spaces over S. Assume there exists a closed subspace T ⊂ W such
that f−1T → T is an isomorphism. Then, with W 0 = W \T and V 0 = f−1W 0 the
base change functor{
g : X →W morphism of algebraic spaces

g−1(W 0)→W 0 is an isomorphism

}
−→

{
h : Y → V morphism of algebraic spaces

h−1(V 0)→ V 0 is an isomorphism

}
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is an equivalence of categories.

Proof. Since V → W is separated we see that V ×W V = ∆(V ) ⨿ U for some
open and closed subspace U of V ×W V . By the assumption that f−1T → T is an
isomorphism we see that U ×W T = ∅, i.e., the two projections U → V maps into
V 0.

Given h : Y → V in the right hand category, consider the contravariant functor X
on (Sch/S)fppf defined by the rule

X(T ) = {(w, y) | w : T →W, y : T ×w,W V → Y morphism over V }

Denote g : X →W the map sending (w, y) ∈ X(T ) to w ∈W (T ). Since h−1V 0 →
V 0 is an isomorphism, we see that if w : T → W maps into W 0, then there is a
unique choice for h. In other words X×g,WW 0 = W 0. On the other hand, consider
a T -valued point (w, y, v) of X ×g,W,f V . Then w = f ◦ v and

y : T ×f◦v,W V −→ V

is a morphism over V . Consider the morphism

T ×f◦v,W V
(v,idV )−−−−→ V ×W V = V ⨿ U

The inverse image of V is T embedded via (idT , v) : T → T ×f◦v,W V . The
composition y′ = y ◦ (idT , v) : T → Y is a morphism with v = h ◦ y′ which
determines y because the restriction of y to the other part is uniquely determined
as U maps into V 0 by the second projection. It follows that X ×g,W,f V → Y ,
(w, y, v) 7→ y′ is an isomorphism.

Thus if we can show that X is an algebraic space, then we are done. Since V →W
is separated and étale it is representable by Morphisms of Spaces, Lemma 67.51.1
(and Morphisms of Spaces, Lemma 67.39.5). Of course W 0 → W is representable
and étale as it is an open immersion. Thus

W 0 ⨿ Y = X ×g,W W 0 ⨿X ×g,W,f V = X ×g,W (W 0 ⨿ V ) −→ X

is representable, surjective, and étale by Spaces, Lemmas 65.3.3 and 65.5.5. Thus
X is an algebraic space by Spaces, Lemma 65.11.2. □

Lemma 70.19.2.0BGZ Notation and assumptions as in Lemma 70.19.1. Let g : X →W
correspond to h : Y → V via the equivalence. Then g is quasi-compact, quasi-
separated, separated, locally of finite presentation, of finite presentation, locally of
finite type, of finite type, proper, integral, finite, and add more here if and only if
h is so.

Proof. If g is quasi-compact, quasi-separated, separated, locally of finite presenta-
tion, of finite presentation, locally of finite type, of finite type, proper, finite, so is
h as a base change of g by Morphisms of Spaces, Lemmas 67.8.4, 67.4.4, 67.28.3,
67.23.3, 67.40.3, 67.45.5. Conversely, let P be a property of morphisms of algebraic
spaces which is étale local on the base and which holds for the identity morphism
of any algebraic space. Since {W 0 → W,V → W} is an étale covering, to prove
that g has P it suffices to show that h has P . Thus we conclude using Morphisms
of Spaces, Lemmas 67.8.8, 67.4.12, 67.28.4, 67.23.4, 67.40.2, 67.45.3. □

https://stacks.math.columbia.edu/tag/0BGZ
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Lemma 70.19.3.0BH0 Let S be a scheme. Let X be a decent algebraic space over S.
Let x ∈ |X| be a closed point such that U = X \ {x} → X is quasi-compact. With
V = Spec(OhX,x) \ {mhx} the base change functor{
f : Y → X of finite presentation
f−1(U)→ U is an isomorphism

}
−→

{
g : Y → Spec(OhX,x) of finite presentation

g−1(V )→ V is an isomorphism

}
is an equivalence of categories.

Proof. Let a : (W,w) → (X,x) be an elementary étale neighbourhood of x with
W affine as in Decent Spaces, Lemma 68.11.4. Since x is a closed point of X and
w is the unique point of W lying over x, we see that w is a closed point of W .
Since a is étale and identifies residue fields at x and w, it follows that a induces
an isomorphism a−1x→ x (as closed subspaces of X and W ). Thus we may apply
Lemma 70.19.1 and 70.19.2 to reduce the problem to the case where X is an affine
scheme.
Assume X is an affine scheme. Recall that OhX,x is the colimit of Γ(U,OU ) over
affine elementary étale neighbourhoods (U, u) → (X,x). Recall that the category
of these neighbourhoods is cofiltered, see Decent Spaces, Lemma 68.11.6 or More
on Morphisms, Lemma 37.35.4. Then Spec(OhX,x) = limU and V = limU \ {u}
(Lemma 70.4.1) where the limits are taken over the same category. Thus by Lemma
70.7.1 The category on the right is the colimit of the categories for the pairs (U, u).
And by the material in the first paragraph, each of these categories is equivalent to
the category for the pair (X,x). This finishes the proof. □

70.20. Universally closed morphisms

0CM7 In this section we discuss when a quasi-compact (but not necessarily separated)
morphism is universally closed. We first prove a lemma which will allow us to check
universal closedness after a base change which is locally of finite presentation.

Lemma 70.20.1.0CM8 Let S be a scheme. Let f : X → Y and g : Z → Y be morphisms
of algebraic spaces over S. Let z ∈ |Z| and let T ⊂ |X×Y Z| be a closed subset with
z ̸∈ Im(T → |Z|). If f is quasi-compact, then there exists an étale neighbourhood
(V, v)→ (Z, z), a commutative diagram

V

��

a
// Z ′

b

��
Z

g // Y,

and a closed subset T ′ ⊂ |X ×Y Z ′| such that
(1) the morphism b : Z ′ → Y is locally of finite presentation,
(2) with z′ = a(v) we have z′ ̸∈ Im(T ′ → |Z ′|), and
(3) the inverse image of T in |X×Y V |maps into T ′ via |X×Y V | → |X×Y Z ′|.

Moreover, we may assume V and Z ′ are affine schemes and if Z is a scheme we may
assume V is an affine open neighbourhood of z.

Proof. We will deduce this from the corresponding result for morphisms of schemes.
Let y ∈ |Y | be the image of z. First we choose an affine étale neighbourhood
(U, u) → (Y, y) and then we choose an affine étale neighbourhood (V, v) → (Z, z)
such that the morphism V → Y factors through U . Then we may replace

https://stacks.math.columbia.edu/tag/0BH0
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(1) X → Y by X ×Y U → U ,
(2) Z → Y by V → U ,
(3) z by v, and
(4) T by its inverse image in |(X ×Y U)×U V | = |X ×Y V |.

In fact, below we will show that after replacing V by an affine open neighbourhood
of v there will be a morphism a : V → Z ′ for some Z ′ → U of finite presentation
and a closed subset T ′ of |(X ×Y U) ×U Z ′| = |X ×Y Z ′| such that T maps into
T ′ and a(v) ̸∈ Im(T ′ → |Z ′|). Thus we may and do assume that Z and Y are
affine schemes with the proviso that we need to find a solution where V is an open
neighbourhood of z.
Since f is quasi-compact and Y is affine, the algebraic space X is quasi-compact.
Choose an affine scheme W and a surjective étale morphism W → X. Let TW ⊂
|W ×Y Z| be the inverse image of T . Then z is not in the image of TW . By the
schemes case (Limits, Lemma 32.14.1) we can find an open neighbourhood V ⊂ Z
of z a commutative diagram of schemes

V

��

a
// Z ′

b

��
Z

g // Y,

and a closed subset T ′ ⊂ |W ×Y Z ′| such that
(1) the morphism b : Z ′ → Y is locally of finite presentation,
(2) with z′ = a(z) we have z′ ̸∈ Im(T ′ → Z ′), and
(3) T1 = TW ∩ |W ×Y V | maps into T ′ via |W ×Y V | → |W ×Y Z ′|.

The commutative diagram

W ×Y Z

��

W ×Y Voo
a1

//

c

��

W ×Y Z ′

q

��
X ×Y Z X ×Y Voo a2 // X ×Y Z ′

has cartesian squares and the vertical maps are, surjective, étale and a fortiori open.
Looking at the left hand square we see that T1 = TW ∩ |W ×Y V | is the inverse
image of T2 = T ∩ |X ×Y V | by c. By Properties of Spaces, Lemma 66.4.3 we get
a1(T1) = q−1(a2(T2)). By Topology, Lemma 5.6.4 we get

q−1
(
a2(T2)

)
= q−1(a2(T2)) = a1(T1) ⊂ T ′

As q is surjective the image of a2(T2) → |Z ′| does not contain z′ since the same
is true for T ′. Thus we can take the diagram with Z ′, V, a, b above and the closed
subset a2(T2) ⊂ |X ×Y Z ′| as a solution to the problem posed by the lemma. □

Lemma 70.20.2.0CM9 Let S be a scheme. Let f : X → Y be a quasi-compact morphism
of algebraic spaces over S. The following are equivalent

(1) f is universally closed,
(2) for every morphism Z → Y which is locally of finite presentation the map
|X ×Y Z| → |Z| is closed, and

(3) there exists a scheme V and a surjective étale morphism V → Y such that
|An × (X ×Y V )| → |An × V | is closed for all n ≥ 0.
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Proof. It is clear that (1) implies (2). Suppose that |X ×Y Z| → |Z| is not closed
for some morphism of algebraic spaces Z → Y over S. This means that there exists
some closed subset T ⊂ |X×Y Z| such that Im(T → |Z|) is not closed. Pick z ∈ |Z|
in the closure of the image of T but not in the image. Apply Lemma 70.20.1. We
find an étale neighbourhood (V, v)→ (Z, z), a commutative diagram

V

��

a
// Z ′

b

��
Z

g // Y,

and a closed subset T ′ ⊂ |X ×Y Z ′| such that
(1) the morphism b : Z ′ → Y is locally of finite presentation,
(2) with z′ = a(v) we have z′ ̸∈ Im(T ′ → |Z ′|), and
(3) the inverse image of T in |X×Y V |maps into T ′ via |X×Y V | → |X×Y Z ′|.

We claim that z′ is in the closure of Im(T ′ → |Z ′|) which implies that |X×Y Z ′| →
|Z ′| is not closed. The claim shows that (2) implies (1). To see the claim is true
we contemplate following commutative diagram

X ×Y Z

��

X ×Y Voo

��

// X ×Y Z ′

��
Z Voo a // Z ′

Let TV ⊂ |X ×Y V | be the inverse image of T . By Properties of Spaces, Lemma
66.4.3 the image of TV in |V | is the inverse image of the image of T in |Z|. Then
since z is in the closure of the image of T → |Z| and since |V | → |Z| is open, we
see that v is in the closure of the image of TV → |V |. Since the image of TV in
|X×Y Z ′| is contained in |T ′| it follows immediately that z′ = a(v) is in the closure
of the image of T ′.
It is clear that (1) implies (3). Let V → Y be as in (3). If we can show that
X ×Y V → V is universally closed, then f is universally closed by Morphisms of
Spaces, Lemma 67.9.5. Thus it suffices to show that f : X → Y satisfies (2) if f
is a quasi-compact morphism of algebraic spaces, Y is a scheme, and |An ×X| →
|An × Y | is closed for all n. Let Z → Y be locally of finite presentation. We have
to show the map |X ×Y Z| → |Z| is closed. This question is étale local on Z hence
we may assume Z is affine (some details omitted). Since Y is a scheme, Z is affine,
and Z → Y is locally of finite presentation we can find an immersion Z → An×Y ,
see Morphisms, Lemma 29.39.2. Consider the cartesian diagram

X ×Y Z

��

// An ×X

��
Z // An × Y

inducing the
cartesian square

|X ×Y Z|

��

// |An ×X|

��
|Z| // |An × Y |

of topological spaces whose horizontal arrows are homeomorphisms onto locally
closed subsets (Properties of Spaces, Lemma 66.12.1). Thus every closed subset T
of |X×Y Z| is the pullback of a closed subset T ′ of |An×Y |. Since the assumption
is that the image of T ′ in |An × X| is closed we conclude that the image of T in
|Z| is closed as desired. □
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Lemma 70.20.3.0CMA Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f separated and of finite type. The following are equivalent

(1) The morphism f is proper.
(2) For any morphism Y → Z which is locally of finite presentation the map
|X ×Y Z| → |Z| is closed, and

(3) there exists a scheme V and a surjective étale morphism V → Y such that
|An × (X ×Y V )| → |An × V | is closed for all n ≥ 0.

Proof. In view of the fact that a proper morphism is the same thing as a separated,
finite type, and universally closed morphism, this lemma is a special case of Lemma
70.20.2. □

70.21. Noetherian valuative criterion

0CMB We have already proved some results in Cohomology of Spaces, Section 69.19. The
corresponding section for schemes is Limits, Section 32.15.

Many of the results in this section can (and perhaps should) be proved by appealing
to the following lemma, although we have not always done so.

Lemma 70.21.1.0CMC Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f finite type and Y locally Noetherian. Let y ∈ |Y | be a
point in the closure of the image of |f |. Then there exists a commutative diagram

Spec(K) //

��

X

f

��
Spec(A) // Y

where A is a discrete valuation ring and K is its field of fractions mapping the
closed point of Spec(A) to y. Moreover, we can assume that the point x ∈ |X|
corresponding to Spec(K)→ X is a codimension 0 point3 and that K is the residue
field of a point on a scheme étale over X.

Proof. Choose an affine scheme V , a point v ∈ V and an étale morphism V → Y
mapping v to y. The map |V | → |Y | is open and by Properties of Spaces, Lemma
66.4.3 the image of |X ×Y V | → |V | is the inverse image of the image of |f |. We
conclude that the point v is in the closure of the image of |X ×Y V | → |V |. If we
prove the lemma for X ×Y V → V and the point v, then the lemma follows for f
and y. In this way we reduce to the situation described in the next paragraph.

Assume we have f : X → Y and y ∈ |Y | as in the lemma where Y is an affine
scheme. Since f is quasi-compact, we conclude that X is quasi-compact. Hence we
can choose an affine scheme W and a surjective étale morphism W → X. Then the
image of |f | is the same as the image of W → Y . In this way we reduce to the case
of schemes which is Limits, Lemma 32.15.1. □

First we state the result concerning separation. We will often use solid commutative
diagrams of morphisms of algebraic spaces over a base scheme S having the following

3See discussion in Properties of Spaces, Section 66.11.
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shape

(70.21.1.1)0H1V

Spec(K) //

��

X

��
Spec(A) //

;;

Y

with A a valuation ring and K its field of fractions.

Lemma 70.21.2.0H1W Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-separated and locally of finite type and Y is
locally Noetherian. The following are equivalent:

(1) The morphism f is separated.
(2) For any diagram (70.21.1.1) there is at most one dotted arrow.
(3) For all diagrams (70.21.1.1) with A a discrete valuation ring there is at

most one dotted arrow.
(4) For all diagrams (70.21.1.1) where A is a discrete valuation ring and where

the image of Spec(K) → X is a point of codimension 0 on X there is at
most one dotted arrow.

Proof. We have (1) ⇒ (2) by Morphisms of Spaces, Lemma 67.43.1. The impli-
cations (2) ⇒ (3) and (3) ⇒ (4) are immediate. It remains to show (4) implies
(1).

Assume (4). We have to show that the diagonal ∆ : X → X ×Y X is a closed
immersion. We already know ∆ is representable, separated, a monomorphism, and
locally of finite type, see Morphisms of Spaces, Lemma 67.4.1. Choose an affine
scheme U and an étale morphism U → X ×Y X. Set V = X ×∆,X×YX U . It
suffices to show that V → U is a closed immersion (Morphisms of Spaces, Lemma
67.12.1). Since X ×Y X is locally of finite type over Y we see that U is Noetherian
(use Morphisms of Spaces, Lemmas 67.23.2, 67.23.3, and 67.23.5). Note that V
is a scheme as ∆ is representable. Also, V is quasi-compact because f is quasi-
separated. Hence V → U is separated and of finite type. Consider a commutative
diagram

Spec(K) //

��

V

��
Spec(A) //

;;

U

of morphisms of schemes where A is a discrete valuation ring with fraction field K
and where K is the residue field of a generic point of the Noetherian scheme V .
Since V → X is étale (as a base change of the étale morphism U → X×Y X) we see
that the image of Spec(K)→ V → X is a point of codimension 0, see Properties of
Spaces, Section 66.10. We can interpret the composition Spec(A)→ U → X ×Y X
as a pair of morphisms a, b : Spec(A)→ X agreeing as morphisms into Y and equal
when restricted to Spec(K) and that this restriction maps to a point of codimension
0. Hence our assumption (4) guarantees a = b and we find the dotted arrow in
the diagram. By Limits, Lemma 32.15.3 we conclude that V → U is proper. In
other words, ∆ is proper. Since ∆ is a monomorphism, we find that ∆ is a closed
immersion (Étale Morphisms, Lemma 41.7.2) as desired. □

https://stacks.math.columbia.edu/tag/0H1W
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Lemma 70.21.3.0H1X Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-separated and of finite type and Y is locally
Noetherian. The following are equivalent:

(1) f is proper,
(2) f satisfies the valuative criterion, see Morphisms of Spaces, Definition

67.41.1,
(3) for any diagram (70.21.1.1) there exists exactly one dotted arrow,
(4) for all diagrams (70.21.1.1) with A a discrete valuation ring there exists

exactly one dotted arrow, and
(5) for all diagrams (70.21.1.1) where A is a discrete valuation ring and where

the image of Spec(K)→ X is a point of codimension 0 on X there exists
exactly one dotted arrow4.

Proof. We have (1) ⇔ (2) ⇔ (3) by Morphisms of Spaces, Lemma 67.44.1. It is
clear that (3) ⇒ (4) ⇒ (5). To finish the proof we will now show (5) implies (1).

Assume (5). By Lemma 70.21.2 we see that f is separated. To finish the proof
it suffices to show that f is universally closed. Let V → Y be an étale morphism
where V is an affine scheme. It suffices to show that the base change V ×Y X → V
is universally closed, see Morphisms of Spaces, Lemma 67.9.5. Let

Spec(K) //

��

V ×Y X

��

// X

��
Spec(A) //

99 44

V // Y

of algebraic spaces over S be a commutative diagram where A is a discrete valuation
ring with fraction field K and where Spec(K) → V ×Y X maps to a point of
codimension 0 of the algebraic space V ×Y X. Since V ×Y X → X is étale it follows
that the image of Spec(K)→ X is a point of codimension 0 of X. Thus by (5) we
obtain the longer of the two dotted arrows fitting into the diagram. Then of course
we obtain the shorter one as well. It follows that our assumptions hold for the
morphism V ×Y X → V and we reduce to the case discussed in the next paragraph.

Aassume Y is a Noetherian affine scheme. In this case X is a separated Noether-
ian algebraic space (we already know f is separated) of finite type over Y . (In
particular, the algebraic space X has a dense open subspace which is a scheme
by Properties of Spaces, Proposition 66.13.3 although strictly speaking we will
not need this.) Choose a quasi-projective scheme X ′ over Y and a proper sur-
jective morphism X ′ → X as in the weak form of Chow’s lemma (Cohomology of
Spaces, Lemma 69.18.1). We may replace X ′ by the disjoint union of the irreducible
components which dominate an irreducible component of X; details omitted. In
particular, we may assume that generic points of the scheme X ′ map to points of
codimension 0 of X (in this case these are exactly the generic points of X). We
claim that X ′ → Y is proper. The claim implies X is proper over Y by Morphisms
of Spaces, Lemma 67.40.7. To prove this, according to Limits, Lemma 32.15.3 it

4There is a sharper formulation where in the existence part one only requires the dotted
arrow exists after an extension of discrete valuation rings.
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suffices to prove that in every solid commutative diagram

Spec(K) //

��

X ′ // X

��
Spec(A) //

a

;;

b

66

Y

where A is a dvr with fraction field K and where K is the residue field of a generic
point of X ′ we can find the dotted arrow a (we already know uniqueness as X ′ is
separated). By assumption (5) we can find the dotted arrow b. Then the morphism
X ′×X,b Spec(A)→ Spec(A) is a proper morphism of schemes and by the valuative
criterion for morphisms of schemes we can lift b to the desired morphism a. □

Lemma 70.21.4.0H1Y Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume Y is locally Noetherian and f is of finite type. Then the
following are equivalent

(1) f is universally closed,
(2) f satisfies the existence part of the valuative criterion,
(3) there exists a scheme V and a surjective étale morphism V → Y such that
|An ×X ×Y V | → |An × V | is closed for all n ≥ 0,

(4) for all diagrams (70.21.1.1) with A a discrete valuation ring there there
exists a finite separable extension K ′/K of fields, a discrete valuation ring
A′ ⊂ K ′ dominating A, and a morphism Spec(A′) → X such that the
following diagram commutes

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

(5) for all diagrams (70.21.1.1) with A a discrete valuation ring there there
exists a field extension K ′/K, a valuation ring A′ ⊂ K ′ dominating A, and
a morphism Spec(A′)→ X such that the following diagram commutes

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

Proof. Parts (1), (2), and (3) are equivalent by Lemma 70.20.2 and Morphisms of
Spaces, Lemma 67.42.1. These equivalent conditions imply part (4) as Morphisms
of Spaces, Lemma 67.41.3 tells us that we may always choose K ′/K finite separable
in the existence part of the valuative criterion and this automatically forces A′ to
be a discrete valuation ring by Krull-Akizuki (Algebra, Lemma 10.119.12). The
implication (4) ⇒ (5) is immediate. In the rest of the proof we show that (5)
implies (1).

Assume (5). Chose an affine scheme V and an étale morphism V → Y . It suffices to
show that the base change of f to V is universally closed, see Morphisms of Spaces,
Lemma 67.9.5. Exactly as in the proof of Lemma 70.21.3 we see that assumption
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(5) is inherited by this base change; details omitted. This reduces us to the case
discussed in the next paragraph.

Assume Y is a Noetherian affine scheme and we have (5). To prove that f is
universally closed it suffices to show that |X×An| → |Y ×An| is closed for all n (by
the discussion above). Since assumption (5) is inherited by the product morphism
X×An → Y ×An (details omitted) we reduce to proving that |X| → |Y | is closed.

Assume Y is a Noetherian affine scheme and we have (5). Let T ⊂ |X| be a closed
subset. We have to show that the image of T in |Y | is closed. We may replace X
by the reduced induced closed subspace structure on T ; we omit the verification
that property (5) is preserved by this replacement. Thus we reduce to proving that
the image of |X| → |Y | is closed.

Let y ∈ |Y | be a point in the closure of the image of |X| → |Y |. By Lemma 70.21.1
we may choose a commutative diagram

Spec(K) //

��

X

f

��
Spec(A) // Y

where A is a discrete valuation ring and K is its field of fractions mapping the
closed point of Spec(A) to y. It follows immediately from property (5) that y is in
the image of |X| → |Y | and the proof is complete. □

70.22. Refined Noetherian valuative criteria

0H1Z This section is the analogue of Limits, Section 32.16. One usually does not have to
consider all possible diagrams with valuation rings when checking valuative criteria.

Lemma 70.22.1.0CMD Let S be a scheme. Let f : X → Y and h : U → X be morphisms
of algebraic spaces over S. Assume that Y is locally Noetherian, that f and h are
of finite type, that f is separated, and that the image of |h| : |U | → |X| is dense in
|X|. If given any commutative solid diagram

Spec(K) //

��

U
h // X

f

��
Spec(A) //

66

Y

where A is a discrete valuation ring with field of fractions K, there exists a dotted
arrow making the diagram commute, then f is proper.

Proof. It suffices to prove that f is universally closed. Let V → Y be an étale
morphism where V is an affine scheme. By Morphisms of Spaces, Lemma 67.9.5
it suffices to prove that the base change X ×Y V → V is universally closed. By
Properties of Spaces, Lemma 66.4.3 the image I of |U ×Y V | → |X ×Y V | is the
inverse image of the image of |h|. Since |X ×Y V | → |X| is open (Properties of
Spaces, Lemma 66.16.7) we conclude that I is dense in |X ×Y V |. Therefore the
assumptions of the lemma are satisfied for the morphisms U×Y V → X×Y V → V .
Hence we may assume Y is an affine scheme.

https://stacks.math.columbia.edu/tag/0CMD
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Assume Y is an affine scheme. Then U is quasi-compact. Choose an affine scheme
and a surjective étale morphism W → U . Then we may and do replace U by W
and assume that U is affine. By the weak version of Chow’s lemma (Cohomology
of Spaces, Lemma 69.18.1) we can choose a surjective proper morphism X ′ → X
where X ′ is a scheme. Then U ′ = X ′ ×X U is a scheme and U ′ → X ′ is of finite
type. We may replace X ′ by the scheme theoretic image of h′ : U ′ → X ′ and hence
h′(U ′) is dense in X ′. We claim that for every diagram

Spec(K) //

��

U ′ h // X ′

f ′

��
Spec(A) //

66

Y

where A is a discrete valuation ring with field of fractions K, there exists a dotted
arrow making the diagram commute. Namely, we first get an arrow Spec(A)→ X
by the assumption of the lemma and then we lift this to an arrow Spec(A) → X ′

using the valuative criterion for properness (Morphisms of Spaces, Lemma 67.44.1).
The morphism X ′ → Y is separated as a composition of a proper and a separated
morphism. Thus by the case of schemes the morphism X ′ → Y is proper (Limits,
Lemma 32.16.1). By Morphisms of Spaces, Lemma 67.40.7 we conclude thatX → Y
is proper. □

Lemma 70.22.2.0CME Let S be a scheme. Let f : X → Y and h : U → X be morphisms
of algebraic spaces over S. Assume that Y is locally Noetherian, that f is locally
of finite type and quasi-separated, that h is of finite type, and that the image of
|h| : |U | → |X| is dense in |X|. If given any commutative solid diagram

Spec(K) //

��

U
h // X

f

��
Spec(A) //

66

Y

where A is a discrete valuation ring with field of fractions K, there exists at most
one dotted arrow making the diagram commute, then f is separated.

Proof. We will apply Lemma 70.22.1 to the morphisms U → X and ∆ : X →
X ×Y X. We check the conditions. Observe that ∆ is quasi-compact because f is
quasi-separated. Of course ∆ is locally of finite type and separated (true for any
diagonal morphism). Finally, suppose given a commutative solid diagram

Spec(K) //

��

U
h // X

∆
��

Spec(A)
(a,b) //

55

X ×Y X

where A is a discrete valuation ring with field of fractions K. Then a and b give
two dotted arrows in the diagram of the lemma and have to be equal. Hence as
dotted arrow we can use a = b which gives existence. This finishes the proof. □

Lemma 70.22.3.0CMF Let S be a scheme. Let f : X → Y and h : U → X be morphisms
of algebraic spaces over S. Assume that Y is locally Noetherian, that f and h are

https://stacks.math.columbia.edu/tag/0CME
https://stacks.math.columbia.edu/tag/0CMF
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of finite type, that f is quasi-separated, and that h(U) is dense in X. If given any
commutative solid diagram

Spec(K) //

��

U
h // X

f

��
Spec(A) //

66

Y

where A is a discrete valuation ring with field of fractions K, there exists a unique
dotted arrow making the diagram commute, then f is proper.
Proof. Combine Lemmas 70.22.2 and 70.22.1. □

70.23. Descending finite type spaces

0CP5 This section continues the theme of Section 70.11 in the spirit of the results dis-
cussed in Section 70.7. It is also the analogue of Limits, Section 32.22 for algebraic
spaces.
Situation 70.23.1.0CP6 Let S be a scheme, for example Spec(Z). Let B = limi∈I Bi
be the limit of a directed inverse system of Noetherian spaces over S with affine
transition morphisms Bi′ → Bi for i′ ≥ i.
Lemma 70.23.2.0CP7 In Situation 70.23.1. Let X → B be a quasi-separated and finite
type morphism of algebraic spaces. Then there exists an i ∈ I and a diagram

(70.23.2.1)0CP8

X //

��

W

��
B // Bi

such that W → Bi is of finite type and such that the induced morphism X →
B ×Bi W is a closed immersion.
Proof. By Lemma 70.11.6 we can find a closed immersion X → X ′ over B where
X ′ is an algebraic space of finite presentation over B. By Lemma 70.7.1 we can
find an i and a morphism of finite presentation X ′

i → Bi whose pull back is X ′.
Set W = X ′

i. □

Lemma 70.23.3.0CP9 In Situation 70.23.1. Let X → B be a quasi-separated and finite
type morphism of algebraic spaces. Given i ∈ I and a diagram

X //

��

W

��
B // Bi

as in (70.23.2.1) for i′ ≥ i let Xi′ be the scheme theoretic image of X → Bi′×BiW .
Then X = limi′≥iXi′ .
Proof. Since X is quasi-compact and quasi-separated formation of the scheme the-
oretic image of X → Bi′ ×Bi W commutes with étale localization (Morphisms of
Spaces, Lemma 67.16.3). Hence we may and do assume W is affine and maps into
an affine Ui étale over Bi. Then

Bi′ ×Bi W = Bi′ ×Bi Ui ×Ui W = Ui′ ×Ui W

https://stacks.math.columbia.edu/tag/0CP6
https://stacks.math.columbia.edu/tag/0CP7
https://stacks.math.columbia.edu/tag/0CP9
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where Ui′ = Bi′ ×Bi Ui is affine as the transition morphisms are affine. Thus the
lemma follows from the case of schemes which is Limits, Lemma 32.22.3. □

Lemma 70.23.4.0CPA In Situation 70.23.1. Let f : X → Y be a morphism of algebraic
spaces quasi-separated and of finite type over B. Let

X //

��

W

��
B // Bi1

and

Y //

��

V

��
B // Bi2

be diagrams as in (70.23.2.1). Let X = limi≥i1 Xi and Y = limi≥i2 Yi be the
corresponding limit descriptions as in Lemma 70.23.3. Then there exists an i0 ≥
max(i1, i2) and a morphism

(fi)i≥i0 : (Xi)i≥i0 → (Yi)i≥i0
of inverse systems over (Bi)i≥i0 such that such that f = limi≥i0 fi. If (gi)i≥i0 :
(Xi)i≥i0 → (Yi)i≥i0 is a second morphism of inverse systems over (Bi)i≥i0 such
that such that f = limi≥i0 gi then fi = gi for all i≫ i0.

Proof. Since V → Bi2 is of finite presentation and X = limi≥i1 Xi we can appeal to
Proposition 70.3.10 as improved by Lemma 70.4.5 to find an i0 ≥ max(i1, i2) and a
morphism h : Xi0 → V over Bi2 such that X → Xi0 → V is equal to X → Y → V .
For i ≥ i0 we get a commutative solid diagram

X

��

// Xi
//

��

��

Xi0

h

��
Y //

��

Yi //

��

V

��
B // Bi // Bi0

Since X → Xi has scheme theoretically dense image and since Yi is the scheme
theoretic image of Y → Bi ×Bi2 V we find that the morphism Xi → Bi ×Bi2 V
induced by the diagram factors through Yi (Morphisms of Spaces, Lemma 67.16.6).
This proves existence.
Uniqueness. Let Ei → Xi be the equalizer of fi and gi for i ≥ i0. We have Ei =
Yi ×∆,Yi×BiYi,(fi,gi) Xi. Hence Ei → Xi is a monomorphism of finite presentation
as a base change of the diagonal of Yi over Bi, see Morphisms of Spaces, Lemmas
67.4.1 and 67.28.10. Since Xi is a closed subspace of Bi ×Bi0 Xi0 and similarly for
Yi we see that

Ei = Xi ×(Bi×Bi0Xi0 ) (Bi ×Bi0 Ei0) = Xi ×Xi0 Ei0
Similarly, we have X = X ×Xi0 Ei0 . Hence we conclude that Ei = Xi for i large
enough by Lemma 70.6.10. □

Remark 70.23.5.0CPB In Situation 70.23.1 Lemmas 70.23.2, 70.23.3, and 70.23.4 tell
us that the category of algebraic spaces quasi-separated and of finite type over B
is equivalent to certain types of inverse systems of algebraic spaces over (Bi)i∈I ,
namely the ones produced by applying Lemma 70.23.3 to a diagram of the form

https://stacks.math.columbia.edu/tag/0CPA
https://stacks.math.columbia.edu/tag/0CPB
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(70.23.2.1). For example, given X → B finite type and quasi-separated if we choose
two different diagrams X → V1 → Bi1 and X → V2 → Bi2 as in (70.23.2.1), then
applying Lemma 70.23.4 to idX (in two directions) we see that the corresponding
limit descriptions of X are canonically isomorphic (up to shrinking the directed set
I). And so on and so forth.

Lemma 70.23.6.0CPC Notation and assumptions as in Lemma 70.23.4. If f is flat and
of finite presentation, then there exists an i3 > i0 such that for i ≥ i3 we have fi is
flat, Xi = Yi ×Yi3 Xi3 , and X = Y ×Yi3 Xi3 .

Proof. By Lemma 70.7.1 we can choose an i ≥ i2 and a morphism U → Yi of
finite presentation such that X = Y ×Yi U (this is where we use that f is of finite
presentation). After increasing i we may assume that U → Yi is flat, see Lemma
70.6.12. As discussed in Remark 70.23.5 we may and do replace the initial diagram
used to define the system (Xi)i≥i1 by the system corresponding to X → U → Bi.
Thus Xi′ for i′ ≥ i is defined as the scheme theoretic image of X → Bi′ ×Bi U .

Because U → Yi is flat (this is where we use that f is flat), because X = Y ×Yi U ,
and because the scheme theoretic image of Y → Yi is Yi, we see that the scheme
theoretic image of X → U is U (Morphisms of Spaces, Lemma 67.30.12). Observe
that Yi′ → Bi′ ×Bi Yi is a closed immersion for i′ ≥ i by construction of the system
of Yj . Then the same argument as above shows that the scheme theoretic image
of X → Bi′ ×Bi U is equal to the closed subspace Yi′ ×Yi U . Thus we see that
Xi′ = Yi′ ×Yi U for all i′ ≥ i and hence the lemma holds with i3 = i. □

Lemma 70.23.7.0CPD Notation and assumptions as in Lemma 70.23.4. If f is smooth,
then there exists an i3 > i0 such that for i ≥ i3 we have fi is smooth.

Proof. Combine Lemmas 70.23.6 and 70.6.3. □

Lemma 70.23.8.0CPE Notation and assumptions as in Lemma 70.23.4. If f is proper,
then there exists an i3 ≥ i0 such that for i ≥ i3 we have fi is proper.

Proof. By the discussion in Remark 70.23.5 the choice of i1 and W fitting into
a diagram as in (70.23.2.1) is immaterial for the truth of the lemma. Thus we
choose W as follows. First we choose a closed immersion X → X ′ with X ′ → Y
proper and of finite presentation, see Lemma 70.12.1. Then we choose an i3 ≥ i2
and a proper morphism W → Yi3 such that X ′ = Y ×Yi3 W . This is possible
because Y = limi≥i2 Yi and Lemmas 70.10.2 and 70.6.13. With this choice of W
it is immediate from the construction that for i ≥ i3 the algebraic space Xi is a
closed subspace of Yi ×Yi3 W ⊂ Bi ×Bi3 W and hence proper over Yi. □

Lemma 70.23.9.0CPF In Situation 70.23.1 suppose that we have a cartesian diagram

X1
p
//

q

��

X3

a

��
X2 b // X4

https://stacks.math.columbia.edu/tag/0CPC
https://stacks.math.columbia.edu/tag/0CPD
https://stacks.math.columbia.edu/tag/0CPE
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of algebraic spaces quasi-separated and of finite type over B. For each j = 1, 2, 3, 4
choose ij ∈ I and a diagram

Xj //

��

W j

��
B // Bij

as in (70.23.2.1). Let Xj = limi≥ij X
j
i be the corresponding limit descriptions as

in Lemma 70.23.4. Let (ai)i≥i5 , (bi)i≥i6 , (pi)i≥i7 , and (qi)i≥i8 be the corresponding
morphisms of inverse systems contructed in Lemma 70.23.4. Then there exists an
i9 ≥ max(i5, i6, i7, i8) such that for i ≥ i9 we have ai ◦ pi = bi ◦ qi and such that

(qi, pi) : X1
i −→ X2

i ×bi,X4
i
,ai X

3
i

is a closed immersion. If a and b are flat and of finite presentation, then there exists
an i10 ≥ max(i5, i6, i7, i8, i9) such that for i ≥ i10 the last displayed morphism is
an isomorphism.

Proof. According to the discussion in Remark 70.23.5 the choice of W 1 fitting into
a diagram as in (70.23.2.1) is immaterial for the truth of the lemma. Thus we may
choose W 1 = W 2×W 4 W 3. Then it is immediate from the construction of X1

i that
ai ◦ pi = bi ◦ qi and that

(qi, pi) : X1
i −→ X2

i ×bi,X4
i
,ai X

3
i

is a closed immersion.
If a and b are flat and of finite presentation, then so are p and q as base changes of
a and b. Thus we can apply Lemma 70.23.6 to each of a, b, p, q, and a ◦ p = b ◦ q.
It follows that there exists an i9 ∈ I such that

(qi, pi) : X1
i → X2

i ×X4
i
X3
i

is the base change of (qi9 , pi9) by the morphism by the morphism X4
i → X4

i9
for

all i ≥ i9. We conclude that (qi, pi) is an isomorphism for all sufficiently large i by
Lemma 70.6.10. □
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CHAPTER 71

Divisors on Algebraic Spaces

0838 71.1. Introduction

0839 In this chapter we study divisors on algebraic spaces and related topics. A basic
reference for algebraic spaces is [Knu71].

71.2. Associated and weakly associated points

0CTV In the case of schemes we have introduced two competing notions of associated
points. Namely, the usual associated points (Divisors, Section 31.2) and the weakly
associated points (Divisors, Section 31.5). For a general algebraic space the notion
of an associated point is basically useless and we don’t even bother to introduce
it. If the algebraic space is locally Noetherian, then we allow ourselves to use the
phrase “associated point” instead of “weakly associated point” as the notions are
the same for Noetherian schemes (Divisors, Lemma 31.5.8). Before we make our
definition, we need a lemma.

Lemma 71.2.1.0CTW Let S be a scheme. Let X be an algebraic space over S. Let F be
a quasi-coherent OX -module. Let x ∈ |X|. The following are equivalent

(1) for some étale morphism f : U → X with U a scheme and u ∈ U mapping
to x, the point u is weakly associated to f∗F ,

(2) for every étale morphism f : U → X with U a scheme and u ∈ U mapping
to x, the point u is weakly associated to f∗F ,

(3) the maximal ideal of OX,x is a weakly associated prime of the stalk Fx.
If X is locally Noetherian, then these are also equivalent to

(4) for some étale morphism f : U → X with U a scheme and u ∈ U mapping
to x, the point u is associated to f∗F ,

(5) for every étale morphism f : U → X with U a scheme and u ∈ U mapping
to x, the point u is associated to f∗F ,

(6) the maximal ideal of OX,x is an associated prime of the stalk Fx.

Proof. Choose a scheme U with a point u and an étale morphism f : U → X
mapping u to x. Lift x to a geometric point of U over u. Recall that OX,x = OshU,u
where the strict henselization is with respect to our chosen lift of x, see Properties
of Spaces, Lemma 66.22.1. Finally, we have

Fx = (f∗F)u ⊗OU,u
OX,x = (f∗F)u ⊗OU,u

OshU,u
by Properties of Spaces, Lemma 66.29.4. Hence the equivalence of (1), (2), and
(3) follows from More on Flatness, Lemma 38.2.9. If X is locally Noetherian,
then any U as above is locally Noetherian, hence we see that (1), resp. (2) are
equivalent to (4), resp. (5) by Divisors, Lemma 31.5.8. On the other hand, in the
locally Noetherian case the local ring OX,x is Noetherian too (Properties of Spaces,

5580
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Lemma 66.24.4). Hence the equivalence of (3) and (6) by the same lemma (or by
Algebra, Lemma 10.66.9). □

Definition 71.2.2.0CTX Let S be a scheme. Let X be an algebraic space over S. Let F
be a quasi-coherent sheaf on X. Let x ∈ |X|.

(1) We say x is weakly associated to F if the equivalent conditions (1), (2),
and (3) of Lemma 71.2.1 are satisfied.

(2) We denote WeakAss(F) the set of weakly associated points of F .
(3) The weakly associated points of X are the weakly associated points of
OX .

If X is locally Noetherian we will say x is associated to F if and only if x is weakly
associated to F and we set Ass(F) = WeakAss(F). Finally (still assuming X is
locally Noetherian), we will say x is an associated point of X if and only if x is a
weakly associated point of X.
At this point we can prove the obligatory lemmas.
Lemma 71.2.3.0CTY Let S be a scheme. Let X be an algebraic space over S. Let F be
a quasi-coherent OX -module. Then WeakAss(F) ⊂ Supp(F).
Proof. This is immediate from the definitions. The support of an abelian sheaf on
X is defined in Properties of Spaces, Definition 66.20.3. □

Lemma 71.2.4.0CTZ Let S be a scheme. Let X be an algebraic space over S. Let
0 → F1 → F2 → F3 → 0 be a short exact sequence of quasi-coherent sheaves
on X. Then WeakAss(F2) ⊂ WeakAss(F1) ∪WeakAss(F3) and WeakAss(F1) ⊂
WeakAss(F2).
Proof. For every geometric point x ∈ X the sequence of stalks 0→ F1,x → F2,x →
F3,x → 0 is a short exact sequence of OX,x-modules. Hence the lemma follows from
Algebra, Lemma 10.66.4. □

Lemma 71.2.5.0CU0 Let S be a scheme. Let X be an algebraic space over S. Let F be
a quasi-coherent OX -module. Then

F = (0)⇔WeakAss(F) = ∅
Proof. Choose a scheme U and a surjective étale morphism f : U → X. Then F
is zero if and only if f∗F is zero. Hence the lemma follows from the definition and
the lemma in the case of schemes, see Divisors, Lemma 31.5.5. □

Lemma 71.2.6.0CUL Let S be a scheme. Let X be an algebraic space over S. Let F be
a quasi-coherent OX -module. Let x ∈ |X|. If

(1) x ∈ Supp(F)
(2) x is a codimension 0 point of X (Properties of Spaces, Definition 66.10.2).

Then x ∈ WeakAss(F). If F is a finite type OX -module with scheme theoretic
support Z (Morphisms of Spaces, Definition 67.15.4) and x is a codimension 0
point of Z, then x ∈WeakAss(F).
Proof. Since x ∈ Supp(F) the stalk Fx is not zero. Hence WeakAss(Fx) is nonempty
by Algebra, Lemma 10.66.5. On the other hand, the spectrum of OX,x is a single-
ton. Hence x is a weakly associated point of F by definition. The final statement
follows as OX,x → OZ,z is a surjection, the spectrum of OZ,z is a singleton, and Fx
is a nonzero module over OZ,z. □

https://stacks.math.columbia.edu/tag/0CTX
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Lemma 71.2.7.0CUM Let S be a scheme. Let X be an algebraic space over S. Let F be
a quasi-coherent OX -module. Let x ∈ |X|. If

(1) X is decent (for example quasi-separated or locally separated),
(2) x ∈ Supp(F)
(3) x is not a specialization of another point in Supp(F).

Then x ∈WeakAss(F).

Proof. (A quasi-separated algebraic space is decent, see Decent Spaces, Section
68.6. A locally separated algebraic space is decent, see Decent Spaces, Lemma
68.15.2.) Choose a scheme U , a point u ∈ U , and an étale morphism f : U → X
mapping u to x. By Decent Spaces, Lemma 68.12.1 if u′ ⇝ u is a nontrivial special-
ization, then f(u′) ̸= x. Hence we see that u ∈ Supp(f∗F) is not a specialization
of another point of Supp(f∗F). Hence u ∈ WeakAss(f∗F) by Divisors, Lemma
71.2.6. □

Lemma 71.2.8.0CUN Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let F be a coherent OX -module. Then Ass(F) ∩ W is finite for every
quasi-compact open W ⊂ |X|.

Proof. Choose a quasi-compact scheme U and an étale morphism U → X such that
W is the image of |U | → |X|. Then U is a Noetherian scheme and we may apply
Divisors, Lemma 31.2.5 to conclude. □

Lemma 71.2.9.0CUP Let S be a scheme. Let X be an algebraic space over S. Let
F be a quasi-coherent OX -module. If U → X is an étale morphism such that
WeakAss(F) ⊂ Im(|U | → |X|), then Γ(X,F)→ Γ(U,F) is injective.

Proof. Let s ∈ Γ(X,F) be a section which restricts to zero on U . Let F ′ ⊂ F be
the image of the map OX → F defined by s. Then F ′|U = 0. This implies that
WeakAss(F ′) ∩ Im(|U | → |X|) = ∅ (by the definition of weakly associated points).
On the other hand, WeakAss(F ′) ⊂ WeakAss(F) by Lemma 71.2.4. We conclude
WeakAss(F ′) = ∅. Hence F ′ = 0 by Lemma 71.2.5. □

Lemma 71.2.10.0CUQ Let S be a scheme. Let f : X → Y be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. Let F be a quasi-coherent
OX -module. Let y ∈ |Y | be a point which is not in the image of |f |. Then y is not
weakly associated to f∗F .

Proof. By Morphisms of Spaces, Lemma 67.11.2 the OY -module f∗F is quasi-
coherent hence the lemma makes sense. Choose an affine scheme V , a point v ∈ V ,
and an étale morphism V → Y mapping v to y. We may replace f : X → Y ,
F , y by X ×Y V → V , F|X×Y V , v. Thus we may assume Y is an affine scheme.
In this case X is quasi-compact, hence we can choose an affine scheme U and a
surjective étale morphism U → X. Denote g : U → Y the composition. Then
f∗F ⊂ g∗(F|U ). By Lemma 71.2.4 we reduce to the case of schemes which is
Divisors, Lemma 31.5.9. □

Lemma 71.2.11.0CUR Let S be a scheme. Let X be an algebraic space over S. Let
φ : F → G be a map of quasi-coherent OX -modules. Assume that for every x ∈ |X|
at least one of the following happens

(1) Fx → Gx is injective, or
(2) x ̸∈WeakAss(F).

https://stacks.math.columbia.edu/tag/0CUM
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Then φ is injective.

Proof. The assumptions imply that WeakAss(Ker(φ)) = ∅ and hence Ker(φ) = 0
by Lemma 71.2.5. □

Lemma 71.2.12.0EN1 Let S be a scheme. Let X be a reduced algebraic space over S.
Then the weakly associated point of X are exactly the codimension 0 points of X.

Proof. Working étale locally this follows from Divisors, Lemma 31.5.12 and Prop-
erties of Spaces, Lemma 66.11.1. □

71.3. Morphisms and weakly associated points

0CU1
Lemma 71.3.1.0CU2 Let S be a scheme. Let f : X → Y be an affine morphism of
algebraic spaces over S. Let F be a quasi-coherent OX -module. Then we have

WeakAssS(f∗F) ⊂ f(WeakAssX(F))

Proof. Choose a scheme V and a surjective étale morphism V → Y . Set U =
X ×Y V . Then U → V is an affine morphism of schemes. By our definition
of weakly associated points the problem is reduced to the morphism of schemes
U → V . This case is treated in Divisors, Lemma 31.6.1. □

Lemma 71.3.2.0CU8 Let S be a scheme. Let f : X → Y be an affine morphism of
algebraic spaces over S. Let F be a quasi-coherent OX -module. If X is locally
Noetherian, then we have

WeakAssY (f∗F) = f(WeakAssX(F))

Proof. Choose a scheme V and a surjective étale morphism V → Y . Set U = X×Y
V . Then U → V is an affine morphism of schemes and U is locally Noetherian. By
our definition of weakly associated points the problem is reduced to the morphism
of schemes U → V . This case is treated in Divisors, Lemma 31.6.2. □

Lemma 71.3.3.0CU9 Let S be a scheme. Let f : X → Y be a finite morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module. Then WeakAss(f∗F) =
f(WeakAss(F)).

Proof. Choose a scheme V and a surjective étale morphism V → Y . Set U =
X×Y V . Then U → V is a finite morphism of schemes. By our definition of weakly
associated points the problem is reduced to the morphism of schemes U → V . This
case is treated in Divisors, Lemma 31.6.3. □

Lemma 71.3.4.0CUA Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let G be a quasi-coherent OY -module. Let x ∈ |X| and y = f(x) ∈
|Y |. If

(1) y ∈WeakAssS(G),
(2) f is flat at x, and
(3) the dimension of the local ring of the fibre of f at x is zero (Morphisms

of Spaces, Definition 67.33.1),
then x ∈WeakAss(f∗G).
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Proof. Choose a scheme V , a point v ∈ V , and an étale morphism V → Y mapping
v to y. Choose a scheme U , a point u ∈ U , and an étale morphism U → V ×Y X
mapping v to a point lying over v and x. This is possible because there is a
t ∈ |V ×YX|mapping to (v, y) by Properties of Spaces, Lemma 66.4.3. By definition
we see that the dimension of OUv,u is zero. Hence u is a generic point of the fiber
Uv. By our definition of weakly associated points the problem is reduced to the
morphism of schemes U → V . This case is treated in Divisors, Lemma 31.6.4. □

Lemma 71.3.5.0CUS Let K/k be a field extension. Let X be an algebraic space over k.
Let F be a quasi-coherent OX -module. Let y ∈ XK with image x ∈ X. If y is a
weakly associated point of the pullback FK , then x is a weakly associated point of
F .

Proof. This is the translation of Divisors, Lemma 31.6.5 into the language of alge-
braic spaces. We omit the details of the translation. □

Lemma 71.3.6.0CUT Let S be a scheme. Let f : X → Y be a finite flat morphism of
algebraic spaces. Let G be a quasi-coherent OY -module. Let x ∈ |X| be a point
with image y ∈ |Y |. Then

x ∈WeakAss(g∗G)⇔ y ∈WeakAss(G)

Proof. Follows immediately from the case of schemes (More on Flatness, Lemma
38.2.7) by étale localization. □

Lemma 71.3.7.0CUU Let S be a scheme. Let f : X → Y be an étale morphism of
algebraic spaces. Let G be a quasi-coherent OY -module. Let x ∈ |X| be a point
with image y ∈ |Y |. Then

x ∈WeakAss(f∗G)⇔ y ∈WeakAss(G)

Proof. This is immediate from the definition of weakly associated points and in
fact the corresponding lemma for the case of schemes (More on Flatness, Lemma
38.2.8) is the basis for our definition. □

71.4. Relative weak assassin

0CUV We need a couple of lemmas to define this gadget.

Lemma 71.4.1.0CUW Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let y ∈ |Y |. The following are equivalent

(1) for some scheme V , point v ∈ V , and étale morphism V → Y mapping v
to y, the algebraic space Xv is locally Noetherian,

(2) for every scheme V , point v ∈ V , and étale morphism V → Y mapping v
to y, the algebraic space Xv is locally Noetherian, and

(3) there exists a field k and a morphism Spec(k) → Y representing y such
that Xk is locally Noetherian.

If there exists a field k0 and a monomorphism Spec(k0) → Y representing y, then
these are also equivalent to

(4) the algebraic space Xk0 is locally Noetherian.

Proof. Observe that Xv = v×Y X = Spec(κ(v))×Y X. Hence the implications (2)
⇒ (1)⇒ (3) are clear. Assume that Spec(k)→ Y is a morphism from the spectrum
of a field such that Xk is locally Noetherian. Let V → Y be an étale morphism from

https://stacks.math.columbia.edu/tag/0CUS
https://stacks.math.columbia.edu/tag/0CUT
https://stacks.math.columbia.edu/tag/0CUU
https://stacks.math.columbia.edu/tag/0CUW


71.4. RELATIVE WEAK ASSASSIN 5585

a scheme V and let v ∈ V a point mapping to y. Then the scheme v×Y Spec(k) is
nonempty. Choose a point w ∈ v ×Y Spec(k). Consider the morphisms

Xv ←− Xw −→ Xk

Since V → Y is étale and since w may be viewed as a point of V ×Y Spec(k),
we see that κ(w)/k is a finite separable extension of fields (Morphisms, Lemma
29.36.7). Thus Xw → Xk is a finite étale morphism as a base change of w →
Spec(k). Hence Xw is locally Noetherian (Morphisms of Spaces, Lemma 67.23.5).
The morphism Xw → Xv is a surjective, affine, flat morphism as a base change
of the surjective, affine, flat morphism w → v. Then the fact that Xw is locally
Noetherian implies that Xv is locally Noetherian. This can be seen by picking a
surjective étale morphism U → X and then using that Uw → Uv is surjective,
affine, and flat. Working affine locally on the scheme Uv we conclude that Uw is
locally Noetherian by Algebra, Lemma 10.164.1.
Finally, it suffices to prove that (3) implies (4) in case we have a monomorphism
Spec(k0) → Y in the class of y. Then Spec(k) → Y factors as Spec(k) →
Spec(k0) → Y . The argument given above then shows that Xk being locally Noe-
therian impies that Xk0 is locally Noetherian. □

Definition 71.4.2.0CUX Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let y ∈ |Y |. We say the fibre of f over y is locally Noetherian if the
equivalent conditions (1), (2), and (3) of Lemma 71.4.1 are satisfied. We say the
fibres of f are locally Noetherian if this holds for every y ∈ |Y |.

Of course, the usual way to guarantee locally Noetherian fibres is to assume the
morphism is locally of finite type.

Lemma 71.4.3.0CUY Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally of finite type, then the fibres of f are locally Noetherian.

Proof. This follows from Morphisms of Spaces, Lemma 67.23.5 and the fact that
the spectrum of a field is Noetherian. □

Lemma 71.4.4.0CUZ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let x ∈ |X| and y = f(x) ∈ |Y |. Let F be a quasi-coherent
OX -module. Consider commutative diagrams

X

��

X ×Y V

��

oo Xv

��

oo

Y Voo voo

X

��

U

��

oo Uv

��

oo

Y Voo voo

x_

��

x′
_

��

�oo u?

��

�oo

y v�oo

where V and U are schemes, V → Y and U → X ×Y V are étale, v ∈ V , x′ ∈ |Xv|,
u ∈ U are points related as in the last diagram. Denote F|Xv and F|Uv the pullbacks
of F . The following are equivalent

(1) for some V, v, x′ as above x′ is a weakly associated point of F|Xv ,
(2) for every V → Y, v, x′ as above x′ is a weakly associated point of F|Xv ,
(3) for some U, V, u, v as above u is a weakly associated point of F|Uv ,
(4) for every U, V, u, v as above u is a weakly associated point of F|Uv ,
(5) for some field k and morphism Spec(k) → Y representing y and some

t ∈ |Xk| mapping to x, the point t is a weakly associated point of F|Xk .
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If there exists a field k0 and a monomorphism Spec(k0) → Y representing y, then
these are also equivalent to

(6) x0 is a weakly associated point of F|Xk0
where x0 ∈ |Xk0 | is the unique

point mapping to x.
If the fibre of f over y is locally Noetherian, then in conditions (1), (2), (3), (4),
and (6) we may replace “weakly associated” with “associated”.

Proof. Observe that given V, v, x′ as in the lemma we can find U → X ×Y V and
u ∈ U mapping to x′ and then the morphism Uv → Xv is étale. Thus it is clear
that (1) and (3) are equivalent as well as (2) and (4). Each of these implies (5).
We will show that (5) implies (2). Suppose given V, v, x′ as well as Spec(k) → X
and t ∈ |Xk| such that the point t is a weakly associated point of F|Xk . We can
choose a point w ∈ v ×Y Spec(k). Then we obtain the morphisms

Xv ←− Xw −→ Xk

Since V → Y is étale and since w may be viewed as a point of V ×Y Spec(k), we see
that κ(w)/k is a finite separable extension of fields (Morphisms, Lemma 29.36.7).
Thus Xw → Xk is a finite étale morphism as a base change of w → Spec(k). Thus
any point x′′ of Xw lying over t is a weakly associated point of F|Xw by Lemma
71.3.7. We may pick x′′ mapping to x′ (Properties of Spaces, Lemma 66.4.3). Then
Lemma 71.3.5 implies that x′ is a weakly associated point of F|Xv .

To finish the proof it suffices to show that the equivalent conditions (1) – (5) imply
(6) if we are given Spec(k0)→ Y as in (6). In this case the morphism Spec(k)→ Y
of (5) factors uniquely as Spec(k) → Spec(k0) → Y . Then x0 is the image of t
under the morphism Xk → Xk0 . Hence the same lemma as above shows that (6) is
true. □

Definition 71.4.5.0CV0 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module. The relative weak assassin
of F in X over Y is the set WeakAssX/Y (F) ⊂ |X| consisting of those x ∈ |X| such
that the equivalent conditions of Lemma 71.4.4 are satisfied. If the fibres of f are
locally Noetherian (Definition 71.4.2) then we use the notation AssX/Y (F).

With this notation we can formulate some of the results already proven for schemes.

Lemma 71.4.6.0CV1 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module. Let G be a quasi-coherent
OY -module. Assume

(1) F is flat over Y ,
(2) X and Y are locally Noetherian, and
(3) the fibres of f are locally Noetherian.

Then

AssX(F ⊗OX
f∗G) = {x ∈ AssX/Y (F) such that f(x) ∈ AssY (G)}

Proof. Via étale localization, this is an immediate consequence of the result for
schemes, see Divisors, Lemma 31.3.1. The result for schemes is more general only
because we haven’t defined associated points for non-Noetherian algebraic spaces
(hence we need to assume X and the fibres of X → Y are locally Noetherian to
even be able to formulate this result). □
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Lemma 71.4.7.0CV2 Let S be a scheme. Let

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

be a cartesian diagram of algebraic spaces over S. Let F be a quasi-coherent
OX -module and set F ′ = (g′)∗F . If f is locally of finite type, then

(1) x′ ∈ AssX′/Y ′(F ′)⇒ g′(x′) ∈ AssX/Y (F)
(2) if x ∈ AssX/Y (F), then given y′ ∈ |Y ′| with f(x) = g(y′), there exists an

x′ ∈ AssX′/Y ′(F ′) with g′(x′) = x and f ′(x′) = y′.

Proof. This follows from the case of schemes by étale localization. We write out the
details completely. Choose a scheme V and a surjective étale morphism V → Y .
Choose a scheme U and a surjective étale morphism U → V ×Y X. Choose a
scheme V ′ and a surjective étale morphism V ′ → V ×Y Y ′. Then U ′ = V ′ ×V U is
a scheme and the morphism U ′ → X ′ is surjective and étale.
Proof of (1). Choose u′ ∈ U ′ mapping to x′. Denote v′ ∈ V ′ the image of u′.
Then x′ ∈ AssX′/Y ′(F ′) is equivalent to u′ ∈ Ass(F|U ′

v′
) by definition (writing Ass

instead of WeakAss makes sense as U ′
v′ is locally Noetherian). Applying Divisors,

Lemma 31.7.3 we see that the image u ∈ U of u′ is in Ass(F|Uv ) where v ∈ V is
the image of u. This in turn means g′(x′) ∈ AssX/Y (F).
Proof of (2). Choose u ∈ U mapping to x. Denote v ∈ V the image of u. Then
x ∈ AssX/Y (F) is equivalent to u ∈ Ass(F|Uv ) by definition. Choose a point
v′ ∈ V ′ mapping to y′ ∈ |Y ′| and to v ∈ V (possible by Properties of Spaces,
Lemma 66.4.3). Let t ∈ Spec(κ(v′)⊗κ(v) κ(u)) be a generic point of an irreducible
component. Let u′ ∈ U ′ be the image of t. Applying Divisors, Lemma 31.7.3 we
see that u′ ∈ Ass(F ′|U ′

v′
). This in turn means x′ ∈ AssX′/Y ′(F ′) where x′ ∈ |X ′| is

the image of u′. □

Lemma 71.4.8.0CV3 With notation and assumptions as in Lemma 71.4.7. Assume g
is locally quasi-finite, or more generally that for every y′ ∈ |Y ′| the transcendence
degree of y′/g(y′) is 0. Then AssX′/Y ′(F ′) is the inverse image of AssX/Y (F).

Proof. The transcendence degree of a point over its image is defined in Morphisms
of Spaces, Definition 67.33.1. Let x′ ∈ |X ′| with image x ∈ |X|. Choose a scheme
V and a surjective étale morphism V → Y . Choose a scheme U and a surjective
étale morphism U → V ×Y X. Choose a scheme V ′ and a surjective étale morphism
V ′ → V ×Y Y ′. Then U ′ = V ′ ×V U is a scheme and the morphism U ′ → X ′ is
surjective and étale. Choose u ∈ U mapping to x. Denote v ∈ V the image of
u. Then x ∈ AssX/Y (F) is equivalent to u ∈ Ass(F|Uv ) by definition. Choose
a point u′ ∈ U ′ mapping to x′ ∈ |X ′| and to u ∈ U (possible by Properties of
Spaces, Lemma 66.4.3). Let v′ ∈ V ′ be the image of u′. Then x′ ∈ AssX′/Y ′(F ′)
is equivalent to u′ ∈ Ass(F ′|U ′

v′
) by definition. Now the lemma follows from the

discussion in Divisors, Remark 31.7.4 applied to u′ ∈ Spec(κ(v′)⊗κ(v) κ(u)). □

Lemma 71.4.9.0CV4 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let i : Z → X be a finite morphism. Let G be a quasi-coherent
OZ-module. Then WeakAssX/Y (i∗G) = i(WeakAssZ/Y (G)).
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Proof. Follows from the case of schemes (Divisors, Lemma 31.8.3) by étale local-
ization. Details omitted. □

Lemma 71.4.10.0CVV Let Y be a scheme. Let X be an algebraic space of finite presen-
tation over Y . Let F be a quasi-coherent OX -module of finite presentation. Let
U ⊂ X be an open subspace such that U → Y is quasi-compact. Then the set

E = {y ∈ Y | AssXy (Fy) ⊂ |Uy|}
is locally constructible in Y .

Proof. Note that since Y is a scheme, it makes sense to take the fibres Xy =
Spec(κ(y))×Y X. (Also, by our definitions, the set AssXy (Fy) is exactly the fibre
of AssX/Y (F) → Y over y, but we won’t need this.) The question is local on Y ,
indeed, we have to show that E is constructible if Y is affine. In this case X is quasi-
compact. Choose an affine scheme W and a surjective étale morphism φ : W → X.
Then AssXy (Fy) is the image of AssWy

(φ∗Fy) for all y ∈ Y . Hence the lemma
follows from the case of schemes for the open φ−1(U) ⊂ W and the morphism
W → Y . The case of schemes is More on Morphisms, Lemma 37.25.5. □

71.5. Fitting ideals

0CZ3 This section is the continuation of the discussion in Divisors, Section 31.9. Let S be
a scheme. Let X be an algebraic space over S. Let F be a finite type, quasi-coherent
OX -module. In this situation we can construct the Fitting ideals

0 = Fit−1(F) ⊂ Fit0(F) ⊂ Fit1(F) ⊂ . . . ⊂ OX
as the sequence of quasi-coherent sheaves ideals characterized by the following prop-
erty: for every affine U = Spec(A) étale over X if F|U corresponds to the A-module
M , then Fiti(F)|U corresponds to the ideal Fiti(M) ⊂ A. This is well defined and
a quasi-coherent sheaf of ideals because if A → B is an étale ring map, then
the ith Fitting ideal of M ⊗A B over B is equal to Fiti(M)B by More on Alge-
bra, Lemma 15.8.4 part (3). More precisely (perhaps), the existence of the quasi-
coherent sheaves of ideals Fit0(OX) follows (for example) from the description of
quasi-coherent sheaves in Properties of Spaces, Lemma 66.29.3 and the pullback
property given in Divisors, Lemma 31.9.1.
The advantage of constructing the Fitting ideals in this way is that we see immedi-
ately that formation of Fitting ideals commutes with étale localization hence many
properties of the Fitting ideals immediately reduce to the corresponding properties
in the case of schemes. Often we will use the discussion in Properties of Spaces,
Section 66.30 to do the translation between properties of quasi-coherent sheaves on
schemes and on algebraic spaces.

Lemma 71.5.1.0CZ4 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a finite type, quasi-coherentOY -module. Then f−1Fiti(F)·
OX = Fiti(f∗F).

Proof. Reduces to Divisors, Lemma 31.9.1 by étale localization. □

Lemma 71.5.2.0CZ5 Let S be a scheme. Let X be an algebraic space over S. Let F
be a finitely presented OX -module. Then Fitr(F) is a quasi-coherent ideal of finite
type.
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Proof. Reduces to Divisors, Lemma 31.9.2 by étale localization. □

Lemma 71.5.3.0CZ6 Let S be a scheme. Let X be an algebraic space over S. Let F be
a finite type, quasi-coherent OX -module. Let Z0 ⊂ X be the closed subspace cut
out by Fit0(F). Let Z ⊂ X be the scheme theoretic support of F . Then

(1) Z ⊂ Z0 ⊂ X as closed subspaces,
(2) |Z| = |Z0| = Supp(F) as closed subsets of |X|,
(3) there exists a finite type, quasi-coherent OZ0-module G0 with

(Z0 → X)∗G0 = F .

Proof. Recall that formation of Z commutes with étale localization, see Morphisms
of Spaces, Definition 67.15.4 (which uses Morphisms of Spaces, Lemma 67.15.3 to
define Z). Hence (1) and (2) follow from the case of schemes, see Divisors, Lemma
31.9.3. To get G0 as in part (3) we can use that we have G on Z as in Morphisms
of Spaces, Lemma 67.15.3 and set G0 = (Z → Z0)∗G. □

Lemma 71.5.4.0CZ7 Let S be a scheme. Let X be an algebraic space over S. Let F be
a finite type, quasi-coherent OX -module. Let x ∈ |X|. Then F can be generated
by r elements in an étale neighbourhood of x if and only if Fitr(F)x = OX,x.

Proof. Reduces to Divisors, Lemma 31.9.4 by étale localization (as well as the
description of the local ring in Properties of Spaces, Section 66.22 and the fact that
the strict henselization of a local ring is faithfully flat to see that the equality over
the strict henselization is equivalent to the equality over the local ring). □

Lemma 71.5.5.0CZ8 Let S be a scheme. Let X be an algebraic space over S. Let F be
a finite type, quasi-coherent OX -module. Let r ≥ 0. The following are equivalent

(1) F is finite locally free of rank r
(2) Fitr−1(F) = 0 and Fitr(F) = OX , and
(3) Fitk(F) = 0 for k < r and Fitk(F) = OX for k ≥ r.

Proof. Reduces to Divisors, Lemma 31.9.5 by étale localization. □

Lemma 71.5.6.0CZ9 Let S be a scheme. Let X be an algebraic space over S. Let F be
a finite type, quasi-coherent OX -module. The closed subspaces

X = Z−1 ⊃ Z0 ⊃ Z1 ⊃ Z2 . . .

defined by the Fitting ideals of F have the following properties
(1) The intersection

⋂
Zr is empty.

(2) The functor (Sch/X)opp → Sets defined by the rule

T 7−→
{
{∗} if FT is locally generated by ≤ r sections
∅ otherwise

is representable by the open subspace X \ Zr.
(3) The functor Fr : (Sch/X)opp → Sets defined by the rule

T 7−→
{
{∗} if FT locally free rank r
∅ otherwise

is representable by the locally closed subspace Zr−1 \ Zr of X.
If F is of finite presentation, then Zr → X, X \ Zr → X, and Zr−1 \ Zr → X are
of finite presentation.
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Proof. Reduces to Divisors, Lemma 31.9.6 by étale localization. □

Lemma 71.5.7.0CZA Let S be a scheme. Let X be an algebraic space over S. Let F
be an OX -module of finite presentation. Let X = Z−1 ⊂ Z0 ⊂ Z1 ⊂ . . . be as in
Lemma 71.5.6. Set Xr = Zr−1 \ Zr. Then X ′ =

∐
r≥0 Xr represents the functor

Fflat : Sch/X −→ Sets, T 7−→
{
{∗} if FT flat over T
∅ otherwise

Moreover, F|Xr is locally free of rank r and the morphisms Xr → X and X ′ → X
are of finite presentation.
Proof. Reduces to Divisors, Lemma 31.9.7 by étale localization. □

71.6. Effective Cartier divisors

083A For some reason it seem convenient to define the notion of an effective Cartier
divisor before anything else. Note that in Morphisms of Spaces, Section 67.13 we
discussed the correspondence between closed subspaces and quasi-coherent sheaves
of ideals. Moreover, in Properties of Spaces, Section 66.30, we discussed properties
of quasi-coherent modules, in particular “locally generated by 1 element”. These
references show that the following definition is compatible with the definition for
schemes.
Definition 71.6.1.083B Let S be a scheme. Let X be an algebraic space over S.

(1) A locally principal closed subspace of X is a closed subspace whose sheaf
of ideals is locally generated by 1 element.

(2) An effective Cartier divisor on X is a closed subspace D ⊂ X such that
the ideal sheaf ID ⊂ OX is an invertible OX -module.

Thus an effective Cartier divisor is a locally principal closed subspace, but the
converse is not always true. Effective Cartier divisors are closed subspaces of pure
codimension 1 in the strongest possible sense. Namely they are locally cut out by
a single element which is not a zerodivisor. In particular they are nowhere dense.
Lemma 71.6.2.083C Let S be a scheme. Let X be an algebraic space over S. Let D ⊂ X
be a closed subspace. The following are equivalent:

(1) The subspace D is an effective Cartier divisor on X.
(2) For some scheme U and surjective étale morphism U → X the inverse

image D ×X U is an effective Cartier divisor on U .
(3) For every scheme U and every étale morphism U → X the inverse image

D ×X U is an effective Cartier divisor on U .
(4) For every x ∈ |D| there exists an étale morphism (U, u) → (X,x) of

pointed algebraic spaces such that U = Spec(A) andD×XU = Spec(A/(f))
with f ∈ A not a zerodivisor.

Proof. The equivalence of (1) – (3) follows from Definition 71.6.1 and the references
preceding it. Assume (1) and let x ∈ |D|. Choose a scheme W and a surjective
étale morphism W → X. Choose w ∈ D×XW mapping to x. By (3) D×XW is an
effective Cartier divisor on W . Hence we can find affine étale neighbourhood U by
choosing an affine open neighbourhood of w in W as in Divisors, Lemma 31.13.2.
Assume (4). Then we see that ID|U is invertible by Divisors, Lemma 31.13.2. Since
we can find an étale covering of X by the collection of all such U and X \ D, we
conclude that ID is an invertible OX -module. □
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Lemma 71.6.3.083D Let S be a scheme. Let X be an algebraic space over S. Let Z ⊂ X
be a locally principal closed subspace. Let U = X \ Z. Then U → X is an affine
morphism.

Proof. The question is étale local on X, see Morphisms of Spaces, Lemmas 67.20.3
and Lemma 71.6.2. Thus this follows from the case of schemes which is Divisors,
Lemma 31.13.3. □

Lemma 71.6.4.083S Let S be a scheme. Let X be an algebraic space over S. Let D ⊂ X
be an effective Cartier divisor. Let U = X \D. Then U → X is an affine morphism
and U is scheme theoretically dense in X.

Proof. Affineness is Lemma 71.6.3. The density question is étale local on X by
Morphisms of Spaces, Definition 67.17.3. Thus this follows from the case of schemes
which is Divisors, Lemma 31.13.4. □

Lemma 71.6.5.083T Let S be a scheme. Let X be an algebraic space over S. Let
D ⊂ X be an effective Cartier divisor. Let x ∈ |D|. If dimx(X) < ∞, then
dimx(D) < dimx(X).

Proof. Both the definition of an effective Cartier divisor and of the dimension of
an algebraic space at a point (Properties of Spaces, Definition 66.9.1) are étale
local. Hence this lemma follows from the case of schemes which is Divisors, Lemma
31.13.5. □

Definition 71.6.6.083U Let S be a scheme. Let X be an algebraic space over S. Given
effective Cartier divisors D1, D2 on X we set D = D1 + D2 equal to the closed
subspace of X corresponding to the quasi-coherent sheaf of ideals ID1ID2 ⊂ OS .
We call this the sum of the effective Cartier divisors D1 and D2.

It is clear that we may define the sum
∑
niDi given finitely many effective Cartier

divisors Di on X and nonnegative integers ni.

Lemma 71.6.7.083V The sum of two effective Cartier divisors is an effective Cartier
divisor.

Proof. Omitted. Étale locally this reduces to the following simple algebra fact: if
f1, f2 ∈ A are nonzerodivisors of a ring A, then f1f2 ∈ A is a nonzerodivisor. □

Lemma 71.6.8.083W Let S be a scheme. Let X be an algebraic space over S. Let Z, Y
be two closed subspaces of X with ideal sheaves I and J . If IJ defines an effective
Cartier divisor D ⊂ X, then Z and Y are effective Cartier divisors and D = Z+Y .

Proof. By Lemma 71.6.2 this reduces to the case of schemes which is Divisors,
Lemma 31.13.9. □

Recall that we have defined the inverse image of a closed subspace under any mor-
phism of algebraic spaces in Morphisms of Spaces, Definition 67.13.2.

Lemma 71.6.9.083X Let S be a scheme. Let f : X ′ → X be a morphism of algebraic
spaces over S. Let Z ⊂ X be a locally principal closed subspace. Then the inverse
image f−1(Z) is a locally principal closed subspace of X ′.

Proof. Omitted. □
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Definition 71.6.10.083Y Let S be a scheme. Let f : X ′ → X be a morphism of algebraic
spaces over S. Let D ⊂ X be an effective Cartier divisor. We say the pullback of D
by f is defined if the closed subspace f−1(D) ⊂ X ′ is an effective Cartier divisor.
In this case we denote it either f∗D or f−1(D) and we call it the pullback of the
effective Cartier divisor.

The condition that f−1(D) is an effective Cartier divisor is often satisfied in prac-
tice.

Lemma 71.6.11.083Z Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let D ⊂ Y be an effective Cartier divisor. The pullback of D by f
is defined in each of the following cases:

(1) f(x) ̸∈ |D| for any weakly associated point x of X,
(2) f is flat, and
(3) add more here as needed.

Proof. Working étale locally this lemma reduces to the case of schemes, see Divisors,
Lemma 31.13.13. □

Lemma 71.6.12.0840 Let S be a scheme. Let f : X ′ → X be a morphism of algebraic
spaces over S. Let D1, D2 be effective Cartier divisors on X. If the pullbacks of
D1 and D2 are defined then the pullback of D = D1 + D2 is defined and f∗D =
f∗D1 + f∗D2.

Proof. Omitted. □

71.7. Effective Cartier divisors and invertible sheaves

0CPG Since an effective Cartier divisor has an invertible ideal sheaf (Definition 71.6.1)
the following definition makes sense.

Definition 71.7.1.0841 Let S be a scheme. Let X be an algebraic space over S and let
D ⊂ X be an effective Cartier divisor with ideal sheaf ID.

(1) The invertible sheaf OX(D) associated to D is defined by
OX(D) = HomOX

(ID,OX) = I⊗−1
D .

(2) The canonical section, usually denoted 1 or 1D, is the global section of
OX(D) corresponding to the inclusion mapping ID → OX .

(3) We write OX(−D) = OX(D)⊗−1 = ID.
(4) Given a second effective Cartier divisor D′ ⊂ X we define OX(D−D′) =
OX(D)⊗OX

OX(−D′).

Some comments. We will see below that the assignment D 7→ OX(D) turns addition
of effective Cartier divisors (Definition 71.6.6) into addition in the Picard group of
X (Lemma 71.7.3). However, the expression D − D′ in the definition above does
not have any geometric meaning. More precisely, we can think of the set of effective
Cartier divisors on X as a commutative monoid EffCart(X) whose zero element is
the empty effective Cartier divisor. Then the assignment (D,D′) 7→ OX(D −D′)
defines a group homomorphism

EffCart(X)gp −→ Pic(X)
where the left hand side is the group completion of EffCart(X). In other words,
when we write OX(D−D′) we may think of D−D′ as an element of EffCart(X)gp.
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Lemma 71.7.2.0B4F Let S be a scheme. Let X be an algebraic space over S. Let
D ⊂ X be an effective Cartier divisor. Then for the conormal sheaf we have
CD/X = ID|D = OX(D)⊗−1|D.
Proof. Omitted. □

Lemma 71.7.3.0842 Let S be a scheme. Let X be an algebraic space over S. Let D1,
D2 be effective Cartier divisors on X. Let D = D1 + D2. Then there is a unique
isomorphism

OX(D1)⊗OX
OX(D2) −→ OX(D)

which maps 1D1 ⊗ 1D2 to 1D.
Proof. Omitted. □

Definition 71.7.4.0843 Let S be a scheme. Let X be an algebraic space over S. Let L
be an invertible sheaf on X. A global section s ∈ Γ(X,L) is called a regular section
if the map OX → L, f 7→ fs is injective.
Lemma 71.7.5.0844 Let S be a scheme. Let X be an algebraic space over S. Let
f ∈ Γ(X,OX). The following are equivalent:

(1) f is a regular section, and
(2) for any x ∈ X the image f ∈ OX,x is not a zerodivisor.
(3) for any affine U = Spec(A) étale over X the restriction f |U is a nonzero-

divisor of A, and
(4) there exists a scheme U and a surjective étale morphism U → X such

that f |U is a regular section of OU .
Proof. Omitted. □

Note that a global section s of an invertible OX -module L may be seen as an OX -
module map s : OX → L. Its dual is therefore a map s : L⊗−1 → OX . (See
Modules on Sites, Lemma 18.32.4 for the dual invertible sheaf.)
Definition 71.7.6.0845 Let S be a scheme. Let X be an algebraic space over S. Let L
be an invertible sheaf. Let s ∈ Γ(X,L). The zero scheme of s is the closed subspace
Z(s) ⊂ X defined by the quasi-coherent sheaf of ideals I ⊂ OX which is the image
of the map s : L⊗−1 → OX .
Lemma 71.7.7.0846 Let S be a scheme. Let X be an algebraic space over S. Let L be
an invertible OX -module. Let s ∈ Γ(X,L).

(1) Consider closed immersions i : Z → X such that i∗s ∈ Γ(Z, i∗L)) is zero
ordered by inclusion. The zero scheme Z(s) is the maximal element of
this ordered set.

(2) For any morphism of algebraic spaces f : Y → X over S we have f∗s = 0
in Γ(Y, f∗L) if and only if f factors through Z(s).

(3) The zero scheme Z(s) is a locally principal closed subspace of X.
(4) The zero scheme Z(s) is an effective Cartier divisor on X if and only if s

is a regular section of L.
Proof. Omitted. □

Lemma 71.7.8.0847 Let S be a scheme. Let X be an algebraic space over S.
(1) If D ⊂ X is an effective Cartier divisor, then the canonical section 1D of
OX(D) is regular.
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(2) Conversely, if s is a regular section of the invertible sheaf L, then there
exists a unique effective Cartier divisor D = Z(s) ⊂ X and a unique
isomorphism OX(D)→ L which maps 1D to s.

The constructions D 7→ (OX(D), 1D) and (L, s) 7→ Z(s) give mutually inverse maps{
effective Cartier divisors on X

}
↔
{

pairs (L, s) consisting of an invertible
OX -module and a regular global section

}
Proof. Omitted. □

71.8. Effective Cartier divisors on Noetherian spaces

0CPH In the locally Noetherian setting most of the discussion of effective Cartier divisors
and regular sections simplifies somewhat.

Lemma 71.8.1.0B4G Let S be a scheme and let X be a locally Noetherian algebraic
space over S. Let D ⊂ X be an effective Cartier divisor. If X is (Sk), then D is
(Sk−1).

Proof. By our definition of the property (Sk) for algebraic spaces (Properties of
Spaces, Section 66.7) and Lemma 71.6.2 this follows from the case of schemes
(Divisors, Lemma 31.15.5). □

Lemma 71.8.2.0B4H Let S be a scheme and let X be a locally Noetherian normal
algebraic space over S. Let D ⊂ X be an effective Cartier divisor. Then D is (S1).

Proof. By our definition of normality for algebraic spaces (Properties of Spaces,
Section 66.7) and Lemma 71.6.2 this follows from the case of schemes (Divisors,
Lemma 31.15.6). □

The following lemma can sometimes be used to produce effective Cartier divisors.

Lemma 71.8.3.0DML Let S be a scheme. Let X be a regular Noetherian separated
algebraic space over S. Let U ⊂ X be a dense affine open. Then there exists an
effective Cartier divisor D ⊂ X with U = X \D.

Proof. We claim that the reduced induced algebraic space structure D on X \ U
(Properties of Spaces, Definition 66.12.5) is the desired effective Cartier divisor.
The construction of D commutes with étale localization, see proof of Properties
of Spaces, Lemma 66.12.3. Let X ′ → X be a surjective étale morphism with X ′

affine. Since X is separated, we see that U ′ = X ′ ×X U is affine. Since |X ′| → |X|
is open, we see that U ′ is dense in X ′. Since D′ = X ′×X D is the reduced induced
scheme structure on X ′ \U ′, we conclude that D′ is an effective Cartier divisor by
Divisors, Lemma 31.16.6 and its proof. This is what we had to show. □

Lemma 71.8.4.0DMM Let S be a scheme. Let X be a regular Noetherian separated
algebraic space over S. Then every invertible OX -module is isomorphic to

OX(D −D′) = OX(D)⊗OX
OX(D′)⊗−1

for some effective Cartier divisors D,D′ in X.

Proof. Let L be an invertible OX -module. Choose a dense affine open U ⊂ X such
that L|U is trivial. This is possible because X has a dense open subspace which is
a scheme, see Properties of Spaces, Proposition 66.13.3. Denote s : OU → L|U the
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trivialization. The complement of U is an effective Cartier divisor D. We claim
that for some n > 0 the map s extends uniquely to a map

s : OX(−nD) −→ L

The claim implies the lemma because it shows that L ⊗OX
OX(nD) has a regular

global section hence is isomorphic toOX(D′) for some effective Cartier divisor D′ by
Lemma 71.7.8. To prove the claim we may work étale locally. Thus we may assume
X is an affine Noetherian scheme. Since OX(−nD) = In where I = OX(−D) is
the ideal sheaf of D in X, this case follows from Cohomology of Schemes, Lemma
30.10.5. □

The following lemma really belongs to a different section.

Lemma 71.8.5.0DMC Let R be a valuation ring with fraction field K. Let X be an
algebraic space over R such that X → Spec(R) is smooth. For every effective
Cartier divisor D ⊂ XK there exists an effective Cartier divisor D′ ⊂ X with
D′
K = D.

Proof. Let D′ ⊂ X be the scheme theoretic image of D → XK → X. Since this
morphism is quasi-compact, formation of D′ commutes with flat base change, see
Morphisms of Spaces, Lemma 67.30.12. In particular we find that D′

K = D. Hence,
we may assume X is affine. Say X = Spec(A). Then XK = Spec(A⊗R K) and D
corresponds to an ideal I ⊂ A⊗R K. We have to show that J = I ∩A cuts out an
effective Cartier divisor in X. First, observe that A/J is flat over R (as a torsion
free R-module, see More on Algebra, Lemma 15.22.10), hence J is finitely generated
by More on Algebra, Lemma 15.25.6 and Algebra, Lemma 10.5.3. Thus it suffices
to show that Jq ⊂ Aq is generated by a single element for each prime q ⊂ A. Let
p = R∩ q. Then Rp is a valuation ring (Algebra, Lemma 10.50.9). Observe further
that Aq/pAq is a regular ring by Algebra, Lemma 10.140.3. Thus we may apply
More on Algebra, Lemma 15.121.3 to see that I(Aq⊗RK) is generated by a single
element f ∈ Ap ⊗R K. After clearing denominators we may assume f ∈ Aq. Let
c ⊂ Rp be the content ideal of f (see More on Algebra, Definition 15.24.1 and More
on Flatness, Lemma 38.19.6). Since Rp is a valuation ring and since c is finitely
generated (More on Algebra, Lemma 15.24.2) we see c = (π) for some π ∈ Rp

(Algebra, Lemma 10.50.15). After relacing f by π−1f we see that f ∈ Aq and
f ̸∈ pAq. Claim: Iq = (f) which finishes the proof. To see the claim, observe that
f ∈ Iq. Hence we have a surjection Aq/(f)→ Aq/Iq which is an isomorphism after
tensoring over R with K. Thus we are done if Aq/(f) is Rp-flat. This follows from
Algebra, Lemma 10.128.5 and our choice of f . □

71.9. Relative effective Cartier divisors

0EPM The following lemma shows that an effective Cartier divisor which is flat over the
base is really a “family of effective Cartier divisors” over the base. For example the
restriction to any fibre is an effective Cartier divisor.

Lemma 71.9.1.0EPN Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let D ⊂ X be a closed subspace. Assume

(1) D is an effective Cartier divisor, and
(2) D → Y is a flat morphism.
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Then for every morphism of schemes g : Y ′ → Y the pullback (g′)−1D is an effective
Cartier divisor on X ′ = Y ′ ×Y X where g′ : X ′ → X is the projection.

Proof. Using Lemma 71.6.2 the property of being an effective Cartier divisor is
étale local. Thus this lemmma immediately reduces to the case of schemes which
is Divisors, Lemma 31.18.1. □

This lemma is the motivation for the following definition.

Definition 71.9.2.0EPP Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. A relative effective Cartier divisor on X/Y is an effective Cartier
divisor D ⊂ X such that D → Y is a flat morphism of algebraic spaces.

71.10. Meromorphic functions and sections

0EN2 This section is the analogue of Divisors, Section 31.23. Beware: it is even easier to
make mistakes with this material in the case of algebraic space, than it is in the
case of schemes!
Let S be a scheme. Let X be an algebraic space over S. For any scheme U étale
over X we have defined the set S(U) ⊂ OX(U) of regular sections of OX over U ,
see Definition 71.7.4. The restriction of a regular section to V/U étale is regular.
Hence S : U 7→ S(U) is a subsheaf (of sets) of OX . We sometimes denote S = SX
if we want to indicate the dependence on X. Moreover, S(U) is a multiplicative
subset of the ring OX(U) for each U . Hence we may consider the presheaf of rings

U 7−→ S(U)−1OX(U),
on Xétale and its sheafification, see Modules on Sites, Section 18.44.

Definition 71.10.1.0EN3 Let S be a scheme. Let X be an algebraic space over S. The
sheaf of meromorphic functions on X is the sheaf KX on Xétale associated to the
presheaf displayed above. A meromorphic function on X is a global section of KX .

Since each element of each S(U) is a nonzerodivisor on OX(U) we see that the nat-
ural map of sheaves of rings OX → KX is injective. Moreover, by the compatibility
of sheafification and taking stalks we see that

KX,x = S−1
x OX,x

for any geometric point x of X. The set Sx is a subset of the set of nonzerodivisors
of OX,x, but in general not equal to this.

Lemma 71.10.2.0EN4 Let S be a scheme. Let X be an algebraic space over S. For U
affine and étale over X the set SX(U) is the set of nonzerodivisors in OX(U).

Proof. Follows from Lemma 71.7.5. □

Next, let F be a sheaf of OX -modules on Xétale. Consider the presheaf U 7→
S(U)−1F(U). Its sheafification is the sheaf F ⊗OX

KX , see Modules on Sites,
Lemma 18.44.2.

Definition 71.10.3.0EN5 Let S be a scheme. Let X be an algebraic space over S. Let
F be a sheaf of OX -modules on Xétale.

(1) We denote KX(F) the sheaf of KX -modules which is the sheafification of
the presheaf U 7→ S(U)−1F(U). Equivalently KX(F) = F ⊗OX

KX (see
above).
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(2) A meromorphic section of F is a global section of KX(F).

In particular we have
KX(F)x = Fx ⊗OX,x

KX,x = S−1
x Fx

for any geometric point x of X. However, one has to be careful since it may not
be the case that Sx is the set of nonzerodivisors in the étale local ring OX,x as we
pointed out above. The sheaves of meromorphic sections aren’t quasi-coherent mod-
ules in general, but they do have some properties in common with quasi-coherent
modules.

Lemma 71.10.4.0EN6 Let S be a scheme. Let X be an algebraic space over S. Assume
(a) every weakly associated point of X is a point of codimension 0, and
(b) X satisfies the equivalent conditions of Morphisms of Spaces, Lemma

67.49.1.
Then

(1) KX is a quasi-coherent sheaf of OX -algebras,
(2) for U ∈ Xétale affine KX(U) is the total ring of fractions of OX(U),
(3) for a geometric point x the set Sx the set of nonzerodivisors of OX,x, and
(4) for a geometric point x the ring KX,x is the total ring of fractions of OX,x.

Proof. By Lemma 71.7.5 we see that U ∈ Xétale affine SX(U) ⊂ OX(U) is the set
of nonzerodivisors in OX(U). Thus the presheaf S−1OX is equal to

U 7−→ Q(OX(U))
on Xaffine,étale, with notation as in Algebra, Example 10.9.8. Observe that the
codimension 0 points of X correspond to the generic points of U , see Properties
of Spaces, Lemma 66.11.1. Hence if U = Spec(A), then A is a ring with finitely
many minimal primes such that any weakly associated prime of A is minimal. The
same is true for any étale extension of A (because the spectrum of such is an affine
scheme étale over X hence can play the role of A in the previous sentence). In order
to show that our presheaf is a sheaf and quasi-coherent it suffices to show that

Q(A)⊗A B −→ Q(B)
is an isomorphism when A → B is an étale ring map, see Properties of Spaces,
Lemma 66.29.3. (To define the displayed arrow, observe that since A → B is
flat it maps nonzerodivisors to nonzerodivisors.) By Algebra, Lemmas 10.25.4 and
10.66.7. we have

Q(A) =
∏

p⊂A minimal
Ap and Q(B) =

∏
q⊂B minimal

Bq

Since A → B is étale, the minimal primes of B are exactly the primes of B lying
over the minimal primes of A (for example by More on Algebra, Lemma 15.44.2).
By Algebra, Lemmas 10.153.10, 10.153.3 (13), and 10.153.5 we see that Ap ⊗A B
is a finite product of local rings finite étale over Ap. This cleary implies that
Ap ⊗A B =

∏
q lies over pBq as desired.

At this point we know that (1) and (2) hold. Proof of (3). Let s ∈ OX,x be a
nonzerodivisor. Then we can find an étale neighbourhood (U, u) → (X,x) and
f ∈ OX(U) mapping to s. Let u ∈ U be the point determined by u. Since
OU,u → OX,x is faithfully flat (as a strict henselization), we see that f maps to a
nonzerodivisor in OU,u. By Divisors, Lemma 31.23.6 after shrinking U we find that
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f is a nonzerodivisor and hence a section of SX(U). Part (4) follows from (3) by
computing stalks. □

Lemma 71.10.5.0EN7 Let S be a scheme. Let X be an algebraic space over S. Assume
(a) every weakly associated point of X is a point of codimension 0, and
(b) X satisfies the equivalent conditions of Morphisms of Spaces, Lemma

67.49.1.
(c) X is representable by a scheme X0 (awkward but temporary notation).

Then the sheaf of meromorphic functions KX is the quasi-coherent sheaf of OX -
algebras associated to the quasi-coherent sheaf of meromorphic functions KX0 .

Proof. For the equivalence between QCoh(OX) and QCoh(OX0), please see Prop-
erties of Spaces, Section 66.29. The lemma is true because KX and KX0 are quasi-
coherent and have the same value on corresponding affine opens of X and X0 by
Lemma 71.10.4 and Divisors, Lemma 31.23.6. □

Definition 71.10.6.0EN8 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say that pullbacks of meromorphic functions are defined for f if
for every commutative diagram

U //

��

X

��
V // Y

with U ∈ Xétale and V ∈ Yétale and any section s ∈ SY (V ) the pullback f ♯(s) ∈
OX(U) is an element of SX(U).

In this case there is an induced map f ♯ : f−1
smallKY → KX , in other words we obtain

a commutative diagram of morphisms of ringed topoi

(Sh(Xétale),KX) //

fsmall

��

(Sh(Xétale),OX)

fsmall

��
(Sh(Yétale),KY ) // (Sh(Yétale),OY )

We sometimes denote f∗(s) = f ♯(s) for a section s ∈ Γ(Y,KY ).

Lemma 71.10.7.0EN9 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Pullbacks of meromorphic sections are defined in each of the following
cases

(1) weakly associated points of X are mapped to points of codimension 0 on
Y ,

(2) f is flat,
(3) add more here as needed.

Proof. Working étale locally, this translates into the case of schemes, see Divisors,
Lemma 31.23.5. To do the translation use Lemma 71.7.5 (description of regular
sections), Definition 71.2.2 (definition of weakly associated points), and Properties
of Spaces, Lemma 66.11.1 (description of codimension 0 points). □

Lemma 71.10.8.0ENA Let S be a scheme. Let X be an algebraic space over S. Assume
(a) every weakly associated point of X is a point of codimension 0, and
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(b) X satisfies the equivalent conditions of Morphisms of Spaces, Lemma
67.49.1,

(c) every codimension 0 point of X can be represented by a monomorphism
Spec(k)→ X.

Let X0 ⊂ |X| be the set of codimension 0 points of X. Then we have

KX =
⊕

η∈X0
jη,∗OX,η =

∏
η∈X0

jη,∗OX,η

where jη : Spec(OX,η) → X is the canonical map of Schemes, Section 26.13; this
makes sense because X0 is contained in the schematic locus of X. Similarly, for
every quasi-coherent OX -module F we obtain the formula

KX(F) =
⊕

η∈X0
jη,∗Fη =

∏
η∈X0

jη,∗Fη

for the sheaf of meromorphic sections of F . Finally, the ring of rational functions
of X is the ring of meromorphic functions on X, in a formula: R(X) = Γ(X,KX).

Proof. By Decent Spaces, Lemma 68.20.3 and Section 68.6 we see that X is decent1.
Thus X0 ⊂ |X| is the set of generic points of irreducible components (Decent
Spaces, Lemma 68.20.1) and X0 is locally finite in |X| by (b). It follows that X0 is
contained in every dense open subset of |X|. In particular, X0 is contained in the
schematic locus (Decent Spaces, Theorem 68.10.2). Thus the local rings OX,η and
the morphisms jη are defined.
Observe that a locally finite direct sum of sheaves of modules is equal to the product.
This and the fact that X0 is locally finite in |X| explains the equalities between
direct sums and products in the statement. Then since KX(F) = F ⊗OX

KX we
see that the second equality follows from the first.
Let j : Y =

∐
η∈X0 Spec(OX,η)→ X be the product of the morphisms jη. We have

to show that KX = j∗OY . Observe that KY = OY as Y is a disjoint union of spectra
of local rings of dimension 0: in a local ring of dimension zero any nonzerodivisor
is a unit. Next, note that pullbacks of meromorphic functions are defined for j by
Lemma 71.10.7. This gives a map

KX −→ j∗OY .

Let U ∈ Xétale be affine. By Lemma 71.10.4 the left hand side evaluates to total
ring of fractions of OX(U). On the other hand, the right hand side is equal to the
product of the local rings of U at the codimension 0 points, i.e., the generic points
of U . These two rings are equal (as we already saw in the proof of Lemma 71.10.4)
by Algebra, Lemmas 10.25.4 and 10.66.7. Thus our map is an isomorphism.
Finally, we have to show that R(X) = Γ(X,KX). This follows from the case of
schemes (Divisors, Lemma 31.23.6) applied to the schematic locusX ′ ⊂ X. Namely,
the ring of rational functions of X is by definition the same as the ring of rational
functions on X ′ as it is a dense open subspace of X (see above). Certainly, R(X ′)
agrees with the ring of rational functions when X ′ is viewed as a scheme. On
the other hand, by our description of KX above, and the fact, seen above, that
X0 ⊂ |X ′| is contained in any dense open, we see that Γ(X,KX) = Γ(X ′,KX′).
Finally, use the compatibility recorded in Lemma 71.10.5. □

1Conversely, if X is decent, then condition (c) holds automatically.
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Definition 71.10.9.0ENB Let S be a scheme. Let X be an algebraic space over S. Let L
be an invertible OX -module. A meromorphic section s of L is said to be regular if
the induced map KX → KX(L) is injective.

Let us spell out when (regular) meromorphic sections can be pulled back.

Lemma 71.10.10.0ENC Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that pullbacks of meromorphic functions are defined for f
(see Definition 71.10.6).

(1) Let F be a sheaf of OY -modules. There is a canonical pullback map
f∗ : Γ(Y,KY (F))→ Γ(X,KX(f∗F)) for meromorphic sections of F .

(2) Let L be an invertible OX -module. A regular meromorphic section s of L
pulls back to a regular meromorphic section f∗s of f∗L.

Proof. Omitted. □

Lemma 71.10.11.0EPQ Let S be a scheme. Let X be an algebraic space over S satisfying
(a), (b), and (c) of Lemma 71.10.8. Then every invertible OX -module L has a
regular meromorphic section.

Proof. With notation as in Lemma 71.10.8 the stalk Lη of L at is defined for all
η ∈ X0 and it is a rank 1 free OX,η-module. Pick a generator sη ∈ Lη for all
η ∈ X0. It follows immediately from the description of KX and KX(L) in Lemma
71.10.8 that s =

∏
sη is a regular meromorphic section of L. □

71.11. Relative Proj

0848 This section revisits the construction of the relative proj in the setting of algebraic
spaces. The material in this section corresponds to the material in Constructions,
Section 27.16 and Divisors, Section 31.30 in the case of schemes.

Situation 71.11.1.0849 Here S is a scheme, X is an algebraic space over S, and A is a
quasi-coherent graded OX -algebra.

In Situation 71.11.1 we are going to define a functor F : (Sch/S)oppfppf → Sets
which will turn out to be an algebraic space. We will follow (mutatis mutandis)
the procedure of Constructions, Section 27.16. First, given a scheme T over S we
define a quadruple over T to be a system (d, f : T → X,L, ψ)

(1) d ≥ 1 is an integer,
(2) f : T → X is a morphism over S,
(3) L is an invertible OT -module, and
(4) ψ : f∗A(d) →

⊕
n≥0 L⊗n is a homomorphism of graded OT -algebras such

that f∗Ad → L is surjective.
We say two quadruples (d, f,L, ψ) and (d′, f ′,L′, ψ′) are equivalent2 if and only
if we have f = f ′ and for some positive integer m = ad = a′d′ there exists an
isomorphism β : L⊗a → (L′)⊗a′ with the property that β ◦ ψ|f∗A(m) and ψ′|f∗A(m)

agree as graded ring maps f∗A(m) →
⊕

n≥0(L′)⊗mn. Given a quadruple (d, f,L, ψ)
and a morphism h : T ′ → T we have the pullback (d, f ◦ h, h∗L, h∗ψ). Pullback

2This definition is motivated by Constructions, Lemma 27.16.4. The advantage of choosing
this one is that it clearly defines an equivalence relation.

https://stacks.math.columbia.edu/tag/0ENB
https://stacks.math.columbia.edu/tag/0ENC
https://stacks.math.columbia.edu/tag/0EPQ
https://stacks.math.columbia.edu/tag/0849
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preserves the equivalence relation. Finally, for a quasi-compact scheme T over S
we set

F (T ) = the set of equivalence classes of quadruples over T
and for an arbitrary scheme T over S we set

F (T ) = limV⊂T quasi-compact open F (V ).
In other words, an element ξ of F (T ) corresponds to a compatible system of choices
of elements ξV ∈ F (V ) where V ranges over the quasi-compact opens of T . Thus
we have defined our functor
(71.11.1.1)084A F : Schopp −→ Sets
There is a morphism F → X of functors sending the quadruple (d, f,L, ψ) to f .
Lemma 71.11.2.084B In Situation 71.11.1. The functor F above is an algebraic space.
For any morphism g : Z → X where Z is a scheme there is a canonical isomorphism
Proj

Z
(g∗A) = Z ×X F compatible with further base change.

Proof. It suffices to prove the second assertion, see Spaces, Lemma 65.11.3. Let
g : Z → X be a morphism where Z is a scheme. Let F ′ be the functor of quadruples
associated to the graded quasi-coherent OZ-algebra g∗A. Then there is a canonical
isomorphism F ′ = Z ×X F , sending a quadruple (d, f : T → Z,L, ψ) for F ′ to
(d, g ◦ f,L, ψ) (details omitted, see proof of Constructions, Lemma 27.16.1). By
Constructions, Lemmas 27.16.4, 27.16.5, and 27.16.6 and Definition 27.16.7 we see
that F ′ is representable by Proj

Z
(g∗A). □

The lemma above tells us the following definition makes sense.
Definition 71.11.3.084C Let S be a scheme. Let X be an algebraic space over S. Let
A be a quasi-coherent sheaf of graded OX -algebras. The relative homogeneous
spectrum of A over X, or the homogeneous spectrum of A over X, or the relative
Proj of A over X is the algebraic space F over X of Lemma 71.11.2. We denote it
π : Proj

X
(A)→ X.

In particular the structure morphism of the relative Proj is representable by con-
struction. We can also think about the relative Proj via glueing. Let φ : U → X be
a surjective étale morphism, where U is a scheme. Set R = U ×X U with projection
morphisms s, t : R→ U . By Lemma 71.11.2 there exists a canonical isomorphism

γ : Proj
U

(φ∗A) −→ Proj
X

(A)×X U

over U . Let α : t∗φ∗A → s∗φ∗A be the canonical isomorphism of Properties of
Spaces, Proposition 66.32.1. Then the diagram

Proj
U

(φ∗A)×U,s R Proj
R

(s∗φ∗A)

induced by α

��

Proj
X

(A)×X R

s∗γ

55

t∗γ

))
Proj

U
(φ∗A)×U,t R Proj

R
(t∗φ∗A)

is commutative (the equal signs come from Constructions, Lemma 27.16.10). Thus,
if we denote AU , AR the pullback of A to U , R, then P = Proj

X
(A) has an

https://stacks.math.columbia.edu/tag/084B
https://stacks.math.columbia.edu/tag/084C
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étale covering by the scheme PU = Proj
U

(AU ) and PU ×P PU is equal to PR =
Proj

R
(AR). Using these remarks we can argue in the usual fashion using étale

localization to transfer results on the relative proj from the case of schemes to the
case of algebraic spaces.

Lemma 71.11.4.084D In Situation 71.11.1. The relative Proj comes equipped with
a quasi-coherent sheaf of Z-graded algebras

⊕
n∈ZOProj

X
(A)(n) and a canonical

homomorphism of graded algebras

ψ : π∗A −→
⊕

n≥0
OProj

X
(A)(n)

whose base change to any scheme overX agrees with Constructions, Lemma 27.15.5.

Proof. As in the discussion following Definition 71.11.3 choose a scheme U and a
surjective étale morphism U → X, set R = U ×X U with projections s, t : R→ U ,
AU = A|U , AR = A|R, and π : P = Proj

X
(A) → X, πU : PU = Proj

U
(AU )

and πR : PR = Proj
U

(AR). By the Constructions, Lemma 27.15.5 we have a
quasi-coherent sheaf of Z-graded OPU -algebras

⊕
n∈ZOPU (n) and a canonical map

ψU : π∗
UAU →

⊕
n≥0OPU (n) and similarly for PR. By Constructions, Lemma

27.16.10 the pullback of OPU (n) and ψU by either projection PR → PU is equal
to OPR(n) and ψR. By Properties of Spaces, Proposition 66.32.1 we obtain OP (n)
and ψ. We omit the verification of compatibility with pullback to arbitrary schemes
over X. □

Having constructed the relative Proj we turn to some basic properties.

Lemma 71.11.5.085C Let S be a scheme. Let g : X ′ → X be a morphism of algebraic
spaces over S and let A be a quasi-coherent sheaf of graded OX -algebras. Then
there is a canonical isomorphism

r : Proj
X′(g∗A) −→ X ′ ×X Proj

X
(A)

as well as a corresponding isomorphism

θ : r∗pr∗
2

(⊕
d∈Z
OProj

X
(A)(d)

)
−→

⊕
d∈Z
OProj

X′ (g∗A)(d)

of Z-graded OProj
X′ (g∗A)-algebras.

Proof. Let F be the functor (71.11.1.1) and let F ′ be the corresponding functor
defined using g∗A on X ′. We claim there is a canonical isomorphism r : F ′ →
X ′ ×X F of functors (and of course r is the isomorphism of the lemma). It suffices
to construct the bijection r : F ′(T )→ X ′(T )×X(T )F (T ) for quasi-compact schemes
T over S. First, if ξ = (d′, f ′,L′, ψ′) is a quadruple over T for F ′, then we can set
r(ξ) = (f ′, (d′, g ◦ f ′,L′, ψ′)). This makes sense as (g ◦ f ′)∗A(d) = (f ′)∗(g∗A)(d).
The inverse map sends the pair (f ′, (d, f,L, ψ)) to the quadruple (d, f ′,L, ψ). We
omit the proof of the final assertion (hint: reduce to the case of schemes by étale
localization and apply Constructions, Lemma 27.16.10). □

Lemma 71.11.6.084E In Situation 71.11.1 the morphism π : Proj
X

(A)→ X is separated.

Proof. By Morphisms of Spaces, Lemma 67.4.12 and the construction of the relative
Proj this follows from the case of schemes which is Constructions, Lemma 27.16.9.

□

Lemma 71.11.7.084F In Situation 71.11.1. If one of the following holds

https://stacks.math.columbia.edu/tag/084D
https://stacks.math.columbia.edu/tag/085C
https://stacks.math.columbia.edu/tag/084E
https://stacks.math.columbia.edu/tag/084F
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(1) A is of finite type as a sheaf of A0-algebras,
(2) A is generated by A1 as an A0-algebra and A1 is a finite type A0-module,
(3) there exists a finite type quasi-coherent A0-submodule F ⊂ A+ such that
A+/FA is a locally nilpotent sheaf of ideals of A/FA,

then π : Proj
X

(A)→ X is quasi-compact.
Proof. By Morphisms of Spaces, Lemma 67.8.8 and the construction of the relative
Proj this follows from the case of schemes which is Divisors, Lemma 31.30.1. □

Lemma 71.11.8.084G In Situation 71.11.1. IfA is of finite type as a sheaf ofOX -algebras,
then π : Proj

X
(A)→ X is of finite type.

Proof. By Morphisms of Spaces, Lemma 67.23.4 and the construction of the relative
Proj this follows from the case of schemes which is Divisors, Lemma 31.30.2. □

Lemma 71.11.9.084H In Situation 71.11.1. If OX → A0 is an integral algebra map3 and
A is of finite type as an A0-algebra, then π : Proj

X
(A)→ X is universally closed.

Proof. By Morphisms of Spaces, Lemma 67.9.5 and the construction of the relative
Proj this follows from the case of schemes which is Divisors, Lemma 31.30.3. □

Lemma 71.11.10.084I In Situation 71.11.1. The following conditions are equivalent
(1) A0 is a finite type OX -module and A is of finite type as an A0-algebra,
(2) A0 is a finite type OX -module and A is of finite type as an OX -algebra.

If these conditions hold, then π : Proj
X

(A)→ X is proper.
Proof. By Morphisms of Spaces, Lemma 67.40.2 and the construction of the relative
Proj this follows from the case of schemes which is Divisors, Lemma 31.30.3. □

Lemma 71.11.11.085D Let S be a scheme. Let X be an algebraic space over S. Let
A be a quasi-coherent sheaf of graded OX -modules generated as an A0-algebra by
A1. With P = Proj

X
(A) we have

(1) P represents the functor F1 which associates to T over S the set of iso-
morphism classes of triples (f,L, ψ), where f : T → X is a morphism over
S, L is an invertible OT -module, and ψ : f∗A →

⊕
n≥0 L⊗n is a map of

graded OT -algebras inducing a surjection f∗A1 → L,
(2) the canonical map π∗A1 → OP (1) is surjective, and
(3) each OP (n) is invertible and the multiplication maps induce isomorphisms
OP (n)⊗OP

OP (m) = OP (n+m).
Proof. Omitted. See Constructions, Lemma 27.16.11 for the case of schemes. □

71.12. Functoriality of relative proj

085E This section is the analogue of Constructions, Section 27.18.
Lemma 71.12.1.085F Let S be a scheme. Let X be an algebraic space over S. Let ψ :
A → B be a map of quasi-coherent graded OX -algebras. Set P = Proj

X
(A) → X

and Q = Proj
X

(B) → X. There is a canonical open subspace U(ψ) ⊂ Q and a
canonical morphism of algebraic spaces

rψ : U(ψ) −→ P

3In other words, the integral closure of OX in A0, see Morphisms of Spaces, Definition
67.48.2, equals A0.

https://stacks.math.columbia.edu/tag/084G
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over X and a map of Z-graded OU(ψ)-algebras

θ = θψ : r∗
ψ

(⊕
d∈Z
OP (d)

)
−→

⊕
d∈Z
OU(ψ)(d).

The triple (U(ψ), rψ, θ) is characterized by the property that for any scheme W
étale over X the triple

(U(ψ)×X W, rψ|U(ψ)×XW : U(ψ)×X W → P ×X W, θ|U(ψ)×XW )
is equal to the triple associated to ψ : A|W → B|W of Constructions, Lemma
27.18.1.

Proof. This lemma follows from étale localization and the case of schemes, see
discussion following Definition 71.11.3. Details omitted. □

Lemma 71.12.2.085G Let S be a scheme. Let X be an algebraic space over S. Let A, B,
and C be quasi-coherent graded OX -algebras. Set P = Proj

X
(A), Q = Proj

X
(B)

and R = Proj
X

(C). Let φ : A → B, ψ : B → C be graded OX -algebra maps. Then
we have

U(ψ ◦ φ) = r−1
φ (U(ψ)) and rψ◦φ = rφ ◦ rψ|U(ψ◦φ).

In addition we have
θψ ◦ r∗

ψθφ = θψ◦φ

with obvious notation.

Proof. Omitted. □

Lemma 71.12.3.085H With hypotheses and notation as in Lemma 71.12.1 above. As-
sume Ad → Bd is surjective for d≫ 0. Then

(1) U(ψ) = Q,
(2) rψ : Q→ R is a closed immersion, and
(3) the maps θ : r∗

ψOP (n) → OQ(n) are surjective but not isomorphisms in
general (even if A → B is surjective).

Proof. Follows from the case of schemes (Constructions, Lemma 27.18.3) by étale
localization. □

Lemma 71.12.4.085I With hypotheses and notation as in Lemma 71.12.1 above. As-
sume Ad → Bd is an isomorphism for all d≫ 0. Then

(1) U(ψ) = Q,
(2) rψ : Q→ P is an isomorphism, and
(3) the maps θ : r∗

ψOP (n)→ OQ(n) are isomorphisms.

Proof. Follows from the case of schemes (Constructions, Lemma 27.18.4) by étale
localization. □

Lemma 71.12.5.085J With hypotheses and notation as in Lemma 71.12.1 above. As-
sume Ad → Bd is surjective for d ≫ 0 and that A is generated by A1 over A0.
Then

(1) U(ψ) = Q,
(2) rψ : Q→ P is a closed immersion, and
(3) the maps θ : r∗

ψOP (n)→ OQ(n) are isomorphisms.

Proof. Follows from the case of schemes (Constructions, Lemma 27.18.5) by étale
localization. □

https://stacks.math.columbia.edu/tag/085G
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71.13. Invertible sheaves and morphisms into relative Proj

0D2Y It seems that we may need the following lemma somewhere. The situation is the
following:

(1) Let S be a scheme and Y an algebraic space over S.
(2) Let A be a quasi-coherent graded OY -algebra.
(3) Denote π : Proj

Y
(A)→ Y the relative Proj of A over Y .

(4) Let f : X → Y be a morphism of algebraic spaces over S.
(5) Let L be an invertible OX -module.
(6) Let ψ : f∗A →

⊕
d≥0 L⊗d be a homomorphism of graded OX -algebras.

Given this data let U(ψ) ⊂ X be the open subspace with

|U(ψ)| =
⋃

d≥1
{locus where f∗Ad → L⊗d is surjective}

Formation of U(ψ) ⊂ X commutes with pullback by any morphism X ′ → X.

Lemma 71.13.1.0D2Z With assumptions and notation as above. The morphism ψ in-
duces a canonical morphism of algebraic spaces over Y

rL,ψ : U(ψ) −→ Proj
Y

(A)
together with a map of graded OU(ψ)-algebras

θ : r∗
L,ψ

(⊕
d≥0
OProj

Y
(A)(d)

)
−→

⊕
d≥0
L⊗d|U(ψ)

characterized by the following properties:
(1) For V → Y étale and d ≥ 0 the diagram

Ad(V )

ψ

��

ψ
// Γ(V ×Y X,L⊗d)

restrict

��
Γ(V ×Y Proj

Y
(A),OProj

Y
(A)(d)) θ // Γ(V ×Y U(ψ),L⊗d)

is commutative.
(2) For any d ≥ 1 and any morphism W → X where W is a scheme such

that ψ|W : f∗Ad|W → L⊗d|W is surjective we have (a) W → X factors
through U(ψ) and (b) composition ofW → U(ψ) with rL,ψ agrees with the
morphism W → Proj

Y
(A) which exists by the construction of Proj

Y
(A),

see Definition 71.11.3.
(3) Consider a commutative diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

where X ′ and Y ′ are schemes, set A′ = g∗A and L′ = (g′)∗L and denote
ψ′ : (f ′)∗A →

⊕
d≥0(L′)⊗d the pullback of ψ. Let U(ψ′), rψ′,L′ , and θ′ be

the open, morphism, and homomorphism constructed in Constructions,
Lemma 71.13.1. Then U(ψ′) = (g′)−1(U(ψ)) and rψ′,L′ agrees with the
base change of rψ,L via the isomorphism Proj

Y ′(A′) = Y ′ ×Y Proj
Y

(A)
of Lemma 71.11.5. Moreover, θ′ is the pullback of θ.

https://stacks.math.columbia.edu/tag/0D2Z
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Proof. Omitted. Hints: First we observe that for a quasi-compact scheme W over
X the following are equivalent

(1) W → X factors through U(ψ), and
(2) there exists a d such that ψ|W : f∗Ad|W → L⊗d|W is surjective.

This gives a description of U(ψ) as a subfunctor ofX on our base category (Sch/S)fppf .
For such a W and d we consider the quadruple (d,W → Y,L|W , ψ(d)|W ). By def-
inition of Proj

Y
(A) we obtain a morphism W → Proj

Y
(A). By our notion of

equivalence of quadruples one sees that this morphism is independent of the choice
of d. This clearly defines a transformation of functors rψ,L : U(ψ) → Proj

Y
(A),

i.e., a morphism of algebraic spaces. By construction this morphism satisfies (2).
Since the morphism constructed in Constructions, Lemma 27.19.1 satisfies the same
property, we see that (3) is true.
To construct θ and check the compatibility (1) of the lemma, work étale locally on
Y and X, arguing as in the discussion following Definition 71.11.3. □

71.14. Relatively ample sheaves

0D30 This section is the analogue of Morphisms, Section 29.37 for algebraic spaces. Our
definition of a relatively ample invertible sheaf is as follows.
Definition 71.14.1.0D31 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let L be an invertible OX -module. We say L is relatively ample,
or f -relatively ample, or ample on X/Y , or f -ample if f : X → Y is representable
and for every morphism Z → Y where Z is a scheme, the pullback LZ of L to
XZ = Z ×Y X is ample on XZ/Z as in Morphisms, Definition 29.37.1.
We will almost always reduce questions about relatively ample invertible sheaves
to the case of schemes. Thus in this section we have mainly sanity checks.
Lemma 71.14.2.0D32 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let L be an invertible OX -module. Assume Y is a scheme. The
following are equivalent

(1) L is ample on X/Y in the sense of Definition 71.14.1, and
(2) X is a scheme and L is ample on X/Y in the sense of Morphisms, Defini-

tion 29.37.1.
Proof. This follows from the definitions and Morphisms, Lemma 29.37.9 (which
says that being relatively ample for schemes is preserved under base change). □

Lemma 71.14.3.0D33 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let L be an invertible OX -module. Let Y ′ → Y be a morphism of
algebraic spaces over S. Let f ′ : X ′ → Y ′ be the base change of f and denote L′

the pullback of L to X ′. If L is f -ample, then L′ is f ′-ample.
Proof. This follows immediately from the definition! (Hint: transitivity of base
change.) □

Lemma 71.14.4.0D34 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If there exists an f -ample invertible sheaf, then f is representable,
quasi-compact, and separated.
Proof. This is clear from the definitions and Morphisms, Lemma 29.37.3. (If in
doubt, take a look at the principle of Algebraic Spaces, Lemma 65.5.8.) □

https://stacks.math.columbia.edu/tag/0D31
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Lemma 71.14.5.0D35 Let V → U be a surjective étale morphism of affine schemes.
Let X be an algebraic space over U . Let L be an invertible OX -module. Let
Y = V ×U X and let N be the pullback of L to Y . The following are equivalent

(1) L is ample on X/U , and
(2) N is ample on Y/V .

Proof. The implication (1) ⇒ (2) follows from Lemma 71.14.3. Assume (2). This
implies that Y → V is quasi-compact and separated (Lemma 71.14.4) and Y is a
scheme. It follows that the morphism f : X → U is quasi-compact and separated
(Morphisms of Spaces, Lemmas 67.8.8 and 67.4.12). Set A =

⊕
d≥0 f∗L⊗d. This

is a quasi-coherent sheaf of graded OU -algebras (Morphisms of Spaces, Lemma
67.11.2). By adjunction we have a map ψ : f∗A →

⊕
d≥0 L⊗d. Applying Lemma

71.13.1 we obtain an open subspace U(ψ) ⊂ X and a morphism

rL,ψ : U(ψ)→ Proj
U

(A)

Since h : V → U is étale we have A|V = (Y → V )∗(
⊕

d≥0N⊗d), see Properties of
Spaces, Lemma 66.26.2. It follows that the pullback ψ′ of ψ to Y is the adjunction
map for the situation (Y → V,N ) as in Morphisms, Lemma 29.37.4 part (5). Since
N is ample on Y/V we conclude from the lemma just cited that U(ψ′) = Y and
that rN ,ψ′ is an open immersion. Since Lemma 71.13.1 tells us that the formation
of rL,ψ commutes with base change, we conclude that U(ψ) = X and that we have
a commutative diagram

Y
r′
//

��

Proj
V

(A|V )

��

// V

��
X

r // Proj
U

(A) // U

whose squares are fibre products. We conclude that r is an open immersion by
Morphisms of Spaces, Lemma 67.12.1. Thus X is a scheme. Then we can apply
Morphisms, Lemma 29.37.4 part (5) to conclude that L is ample on X/U . □

Lemma 71.14.6.0D36 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let L be an invertible OX -module. The following are equivalent

(1) L is ample on X/Y ,
(2) for every scheme Z and every morphism Z → Y the algebraic space XZ =

Z ×Y X is a scheme and the pullback LZ is ample on XZ/Z,
(3) for every affine scheme Z and every morphism Z → Y the algebraic space

XZ = Z ×Y X is a scheme and the pullback LZ is ample on XZ/Z,
(4) there exists a scheme V and a surjective étale morphism V → Y such that

the algebraic space XV = V ×Y X is a scheme and the pullback LV is
ample on XV /V .

Proof. Parts (1) and (2) are equivalent by definition. The implication (2) ⇒ (3)
is immediate. If (3) holds and Z → Y is as in (2), then we see that XZ → Z is
affine locally on Z representable. Hence XZ is a scheme for example by Properties
of Spaces, Lemma 66.13.1. Then it follows that LZ is ample on XZ/Z because it
holds locally on Z and we can use Morphisms, Lemma 29.37.4. Thus (1), (2), and
(3) are equivalent. Clearly these conditions imply (4).
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Assume (4). Let Z → Y be a morphism with Z affine. Then U = V ×Y Z → Z is a
surjective étale morphism such that the pullback of LZ by XU → XZ is relatively
ample on XU/U . Of course we may replace U by an affine open. It follows that LZ
is ample on XZ/Z by Lemma 71.14.5. Thus (4)⇒ (3) and the proof is complete. □

Lemma 71.14.7.0GUQ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then f is quasi-affine if and only if OX is f -relatively ample.

Proof. Follows from the case of schemes, see Morphisms, Lemma 29.37.6. □

71.15. Relative ampleness and cohomology

0D37 This section contains some results related to the results in Cohomology of Schemes,
Sections 30.21 and 30.17.
The following lemma is just an example of what we can do.

Lemma 71.15.1.0D38 Let R be a Noetherian ring. Let X be an algebraic space over
R such that the structure morphism f : X → Spec(R) is proper. Let L be an
invertible OX -module. The following are equivalent

(1) L is ample on X/R (Definition 71.14.1),
(2) for every coherentOX -module F there exists an n0 ≥ 0 such thatHp(X,F⊗
L⊗n) = 0 for all n ≥ n0 and p > 0.

Proof. The implication (1) ⇒ (2) follows from Cohomology of Schemes, Lemma
30.16.1 because assumption (1) implies that X is a scheme. The implication (2) ⇒
(1) is Cohomology of Spaces, Lemma 69.16.9. □

Lemma 71.15.2.0D39 Let Y be a Noetherian scheme. Let X be an algebraic space over
Y such that the structure morphism f : X → Y is proper. Let L be an invertible
OX -module. Let F be a coherent OX -module. Let y ∈ Y be a point such that Xy

is a scheme and Ly is ample on Xy. Then there exists a d0 such that for all d ≥ d0
we have

Rpf∗(F ⊗OX
L⊗d)y = 0 for p > 0

and the map
f∗(F ⊗OX

L⊗d)y −→ H0(Xy,Fy ⊗OXy
L⊗d
y )

is surjective.

Proof. Note that OY,y is a Noetherian local ring. Consider the canonical morphism
c : Spec(OY,y)→ Y , see Schemes, Equation (26.13.1.1). This is a flat morphism as
it identifies local rings. Denote momentarily f ′ : X ′ → Spec(OY,y) the base change
of f to this local ring. We see that c∗Rpf∗F = Rpf ′

∗F ′ by Cohomology of Spaces,
Lemma 69.11.2. Moreover, the fibres Xy and X ′

y are identified. Hence we may
assume that Y = Spec(A) is the spectrum of a Noetherian local ring (A,m, κ) and
y ∈ Y corresponds to m. In this case Rpf∗(F ⊗OX

L⊗d)y = Hp(X,F ⊗OX
L⊗d) for

all p ≥ 0. Denote fy : Xy → Spec(κ) the projection.

Let B = Grm(A) =
⊕

n≥0 m
n/mn+1. Consider the sheaf B = f∗

y B̃ of quasi-coherent
graded OXy -algebras. We will use notation as in Cohomology of Spaces, Section
69.22 with I replaced by m. Since Xy is the closed subspace of X cut out by
mOX we may think of mnF/mn+1F as a coherent OXy -module, see Cohomology
of Spaces, Lemma 69.12.8. Then

⊕
n≥0 m

nF/mn+1F is a quasi-coherent graded
B-module of finite type because it is generated in degree zero over B abd because
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the degree zero part is Fy = F/mF which is a coherent OXy -module. Hence by
Cohomology of Schemes, Lemma 30.19.3 part (2) there exists a d0 such that

Hp(Xy,m
nF/mn+1F ⊗OXy

L⊗d
y ) = 0

for all p > 0, d ≥ d0, and n ≥ 0. By Cohomology of Spaces, Lemma 69.8.3 this is
the same as the statement that Hp(X,mnF/mn+1F ⊗OX

L⊗d) = 0 for all p > 0,
d ≥ d0, and n ≥ 0.
Consider the short exact sequences

0→ mnF/mn+1F → F/mn+1F → F/mnF → 0
of coherent OX -modules. Tensoring with L⊗d is an exact functor and we obtain
short exact sequences

0→ mnF/mn+1F ⊗OX
L⊗d → F/mn+1F ⊗OX

L⊗d → F/mnF ⊗OX
L⊗d → 0

Using the long exact cohomology sequence and the vanishing above we conclude
(using induction) that

(1) Hp(X,F/mnF ⊗OX
L⊗d) = 0 for all p > 0, d ≥ d0, and n ≥ 0, and

(2) H0(X,F/mnF ⊗OX
L⊗d) → H0(Xy,Fy ⊗OXy

L⊗d
y ) is surjective for all

d ≥ d0 and n ≥ 1.
By the theorem on formal functions (Cohomology of Spaces, Theorem 69.22.5) we
find that the m-adic completion of Hp(X,F ⊗OX

L⊗d) is zero for all d ≥ d0 and
p > 0. Since Hp(X,F ⊗OX

L⊗d) is a finite A-module by Cohomology of Spaces,
Lemma 69.20.3 it follows from Nakayama’s lemma (Algebra, Lemma 10.20.1) that
Hp(X,F ⊗OX

L⊗d) is zero for all d ≥ d0 and p > 0. For p = 0 we deduce
from Cohomology of Spaces, Lemma 69.22.4 part (3) that H0(X,F ⊗OX

L⊗d) →
H0(Xy,Fy ⊗OXy

L⊗d
y ) is surjective, which gives the final statement of the lemma.

□

Lemma 71.15.3.0D3A (For a more general version see Descent on Spaces, Lemma
74.13.2). Let Y be a Noetherian scheme. Let X be an algebraic space over Y
such that the structure morphism f : X → Y is proper. Let L be an invertible
OX -module. Let y ∈ Y be a point such that Xy is a scheme and Ly is ample on
Xy. Then there is an open neighbourhood V ⊂ Y of y such that L|f−1(V ) is ample
on f−1(V )/V (as in Definition 71.14.1).

Proof. Pick d0 as in Lemma 71.15.2 for F = OX . Pick d ≥ d0 so that we can find
r ≥ 0 and sections sy,0, . . . , sy,r ∈ H0(Xy,L⊗d

y ) which define a closed immersion
φy = φL⊗d

y ,(sy,0,...,sy,r) : Xy → Pr
κ(y).

This is possible by Morphisms, Lemma 29.39.4 but we also use Morphisms, Lemma
29.41.7 to see that φy is a closed immersion and Constructions, Section 27.13 for
the description of morphisms into projective space in terms of invertible sheaves
and sections. By our choice of d0, after replacing Y by an open neighbourhood of
y, we can choose s0, . . . , sr ∈ H0(X,L⊗d) mapping to sy,0, . . . , sy,r. Let Xsi ⊂ X
be the open subspace where si is a generator of L⊗d. Since the sy,i generate L⊗d

y

we see that |Xy| ⊂ U =
⋃
|Xsi |. Since X → Y is closed, we see that there is an

open neighbourhood y ∈ V ⊂ Y such that |f |−1(V ) ⊂ U . After replacing Y by V
we may assume that the si generate L⊗d. Thus we obtain a morphism

φ = φL⊗d,(s0,...,sr) : X −→ Pr
Y
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with L⊗d ∼= φ∗OPr
Y

(1) whose base change to y gives φy (strictly speaking we need
to write out a proof that the construction of morphisms into projective space given
in Constructions, Section 27.13 also works to describe morphisms of algebraic spaces
into projective space; we omit the details).
We will finish the proof by a sleight of hand; the “correct” proof proceeds by directly
showing that φ is a closed immersion after base changing to an open neighbourhood
of y. Namely, by Cohomology of Spaces, Lemma 69.23.2 we see that φ is a finite
over an open neighbourhood of the fibre Pr

κ(y) of Pr
Y → Y above y. Using that

Pr
Y → Y is closed, after shrinking Y we may assume that φ is finite. In particular

X is a scheme. Then L⊗d ∼= φ∗OPr
Y

(1) is ample by the very general Morphisms,
Lemma 29.37.7. □

71.16. Closed subspaces of relative proj

085K Some auxiliary lemmas about closed subspaces of relative proj. This section is the
analogue of Divisors, Section 31.31.

Lemma 71.16.1.085L Let S be a scheme. Let X be an algebraic space over S. Let A be
a quasi-coherent graded OX -algebra. Let π : P = Proj

X
(A) → X be the relative

Proj of A. Let i : Z → P be a closed subspace. Denote I ⊂ A the kernel of the
canonical map

A −→
⊕

d≥0
π∗ ((i∗OZ)(d))

If π is quasi-compact, then there is an isomorphism Z = Proj
X

(A/I).

Proof. The morphism π is separated by Lemma 71.11.6. As π is quasi-compact,
π∗ transforms quasi-coherent modules into quasi-coherent modules, see Morphisms
of Spaces, Lemma 67.11.2. Hence I is a quasi-coherent OX -module. In particular,
B = A/I is a quasi-coherent graded OX -algebra. The functoriality morphism
Z ′ = Proj

X
(B) → Proj

X
(A) is everywhere defined and a closed immersion, see

Lemma 71.12.3. Hence it suffices to prove Z = Z ′ as closed subspaces of P .
Having said this, the question is étale local on the base and we reduce to the case
of schemes (Divisors, Lemma 31.31.1) by étale localization. □

In case the closed subspace is locally cut out by finitely many equations we can
define it by a finite type ideal sheaf of A.

Lemma 71.16.2.085M Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be a quasi-coherent graded OX -algebra. Let π : P =
Proj

X
(A) → X be the relative Proj of A. Let i : Z → P be a closed subscheme.

If π is quasi-compact and i of finite presentation, then there exists a d > 0 and a
quasi-coherent finite type OX -submodule F ⊂ Ad such that Z = Proj

X
(A/FA).

Proof. The reader can redo the arguments used in the case of schemes. However,
we will show the lemma follows from the case of schemes by a trick. Let I ⊂ A
be the quasi-coherent graded ideal cutting out Z of Lemma 71.16.1. Choose an
affine scheme U and a surjective étale morphism U → X, see Properties of Spaces,
Lemma 66.6.3. By the case of schemes (Divisors, Lemma 31.31.4) there exists a
d > 0 and a quasi-coherent finite type OU -submodule F ′ ⊂ Id|U ⊂ Ad|U such that
Z ×X U is equal to Proj

U
(A|U/F ′A|U ). By Limits of Spaces, Lemma 70.9.2 we

can find a finite type quasi-coherent submodule F ⊂ Id such that F ′ ⊂ F|U . Let
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Z ′ = Proj
X

(A/FA). Then Z ′ → P is a closed immersion (Lemma 71.12.5) and
Z ⊂ Z ′ as FA ⊂ I. On the other hand, Z ′ ×X U ⊂ Z ×X U by our choice of F .
Thus Z = Z ′ as desired. □

Lemma 71.16.3.085N Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be a quasi-coherent graded OX -algebra. Let π : P =
Proj

X
(A)→ X be the relative Proj of A. Let i : Z → X be a closed subspace. Let

U ⊂ X be an open. Assume that
(1) π is quasi-compact,
(2) i of finite presentation,
(3) |U | ∩ |π|(|i|(|Z|)) = ∅,
(4) U is quasi-compact,
(5) An is a finite type OX -module for all n.

Then there exists a d > 0 and a quasi-coherent finite type OX -submodule F ⊂ Ad
with (a) Z = Proj

X
(A/FA) and (b) the support of Ad/F is disjoint from U .

Proof. We use the same trick as in the proof of Lemma 71.16.2 to reduce to the case
of schemes. Let I ⊂ A be the quasi-coherent graded ideal cutting out Z of Lemma
71.16.1. Choose an affine scheme W and a surjective étale morphism W → X,
see Properties of Spaces, Lemma 66.6.3. By the case of schemes (Divisors, Lemma
31.31.5) there exists a d > 0 and a quasi-coherent finite type OW -submodule F ′ ⊂
Id|W ⊂ Ad|W such that (a) Z ×X W is equal to Proj

W
(A|W /F ′A|W ) and (b) the

support of Ad|W /F ′ is disjoint from U ×X W . By Limits of Spaces, Lemma 70.9.2
we can find a finite type quasi-coherent submodule F ⊂ Id such that F ′ ⊂ F|W .
Let Z ′ = Proj

X
(A/FA). Then Z ′ → P is a closed immersion (Lemma 71.12.5)

and Z ⊂ Z ′ as FA ⊂ I. On the other hand, Z ′ ×X W ⊂ Z ×X W by our choice of
F . Thus Z = Z ′. Finally, we see that Ad/F is supported on X \ U as Ad|W /F|W
is a quotient of Ad|W /F ′ which is supported on W \ U ×X W . Thus the lemma
follows. □

Lemma 71.16.4.0B4I Let S be a scheme and let X be an algebraic space over S. Let E
be a quasi-coherent OX -module. There is a bijection{

sections σ of the
morphism P(E)→ X

}
↔
{

surjections E → L where
L is an invertible OX -module

}
In this case σ is a closed immersion and there is a canonical isomorphism

Ker(E → L)⊗OX
L⊗−1 −→ Cσ(X)/P(E)

Both the bijection and isomorphism are compatible with base change.

Proof. Because the constructions are compatible with base change, it suffices to
check the statement étale locally on X. Thus we may assume X is a scheme and
the result is Divisors, Lemma 31.31.6. □

71.17. Blowing up

085P Blowing up is an important tool in algebraic geometry.

Definition 71.17.1.085Q Let S be a scheme. Let X be an algebraic space over S. Let
I ⊂ OX be a quasi-coherent sheaf of ideals, and let Z ⊂ X be the closed subspace
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corresponding to I (Morphisms of Spaces, Lemma 67.13.1). The blowing up of X
along Z, or the blowing up of X in the ideal sheaf I is the morphism

b : Proj
X

(⊕
n≥0
In
)
−→ X

The exceptional divisor of the blowup is the inverse image b−1(Z). Sometimes Z is
called the center of the blowup.

We will see later that the exceptional divisor is an effective Cartier divisor. More-
over, the blowing up is characterized as the “smallest” algebraic space over X such
that the inverse image of Z is an effective Cartier divisor.
If b : X ′ → X is the blowup of X in Z, then we often denote OX′(n) the twists of
the structure sheaf. Note that these are invertible OX′ -modules and that OX′(n) =
OX′(1)⊗n because X ′ is the relative Proj of a quasi-coherent graded OX -algebra
which is generated in degree 1, see Lemma 71.11.11.

Lemma 71.17.2.085R Let S be a scheme. Let X be an algebraic space over S. Let
I ⊂ OX be a quasi-coherent sheaf of ideals. Let U = Spec(A) be an affine scheme
étale over X and let I ⊂ A be the ideal corresponding to I|U . If X ′ → X is the
blowup of X in I, then there is a canonical isomorphism

U ×X X ′ = Proj(
⊕

d≥0
Id)

of schemes over U , where the right hand side is the homogeneous spectrum of the
Rees algebra of I in A. Moreover, U ×X X ′ has an affine open covering by spectra
of the affine blowup algebras A[ Ia ].

Proof. Note that the restriction I|U is equal to the pullback of I via the morphism
U → X, see Properties of Spaces, Section 66.26. Thus the lemma follows on
combining Lemma 71.11.2 with Divisors, Lemma 31.32.2. □

Lemma 71.17.3.085S Let S be a scheme. Let X1 → X2 be a flat morphism of algebraic
spaces over S. Let Z2 ⊂ X2 be a closed subspace. Let Z1 be the inverse image of
Z2 in X1. Let X ′

i be the blowup of Zi in Xi. Then there exists a cartesian diagram

X ′
1

//

��

X ′
2

��
X1 // X2

of algebraic spaces over S.

Proof. Let I2 be the ideal sheaf of Z2 in X2. Denote g : X1 → X2 the given
morphism. Then the ideal sheaf I1 of Z1 is the image of g∗I2 → OX1 (see Mor-
phisms of Spaces, Definition 67.13.2 and discussion following the definition). By
Lemma 71.11.5 we see that X1 ×X2 X

′
2 is the relative Proj of

⊕
n≥0 g

∗In2 . Be-
cause g is flat the map g∗In2 → OX1 is injective with image In1 . Thus we see that
X1 ×X2 X

′
2 = X ′

1. □

Lemma 71.17.4.085T Let S be a scheme. Let X be an algebraic space over S. Let
Z ⊂ X be a closed subspace. The blowing up b : X ′ → X of Z in X has the
following properties:

(1) b|b−1(X\Z) : b−1(X \ Z)→ X \ Z is an isomorphism,
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(2) the exceptional divisor E = b−1(Z) is an effective Cartier divisor on X ′,
(3) there is a canonical isomorphism OX′(−1) = OX′(E)

Proof. Let U be a scheme and let U → X be a surjective étale morphism. As
blowing up commutes with flat base change (Lemma 71.17.3) we can prove each of
these statements after base change to U . This reduces us to the case of schemes.
In this case the result is Divisors, Lemma 31.32.4. □

Lemma 71.17.5 (Universal property blowing up).085U Let S be a scheme. Let X be
an algebraic space over S. Let Z ⊂ X be a closed subspace. Let C be the full
subcategory of (Spaces/X) consisting of Y → X such that the inverse image of Z
is an effective Cartier divisor on Y . Then the blowing up b : X ′ → X of Z in X is
a final object of C.

Proof. We see that b : X ′ → X is an object of C according to Lemma 71.17.4. Let
f : Y → X be an object of C. We have to show there exists a unique morphism
Y → X ′ over X. Let D = f−1(Z). Let I ⊂ OX be the ideal sheaf of Z and let ID
be the ideal sheaf of D. Then f∗I → ID is a surjection to an invertible OY -module.
This extends to a map ψ :

⊕
f∗Id →

⊕
IdD of graded OY -algebras. (We observe

that IdD = I⊗d
D as D is an effective Cartier divisor.) By Lemma 71.11.11. the triple

(f : Y → X, ID, ψ) defines a morphism Y → X ′ over X. The restriction

Y \D −→ X ′ \ b−1(Z) = X \ Z

is unique. The open Y \D is scheme theoretically dense in Y according to Lemma
71.6.4. Thus the morphism Y → X ′ is unique by Morphisms of Spaces, Lemma
67.17.8 (also b is separated by Lemma 71.11.6). □

Lemma 71.17.6.085V Let S be a scheme. Let X be an algebraic space over S. Let
Z ⊂ X be an effective Cartier divisor. The blowup of X in Z is the identity
morphism of X.

Proof. Immediate from the universal property of blowups (Lemma 71.17.5). □

Lemma 71.17.7.085W Let S be a scheme. Let X be an algebraic space over S. Let
I ⊂ OX be a quasi-coherent sheaf of ideals. If X is reduced, then the blowup X ′

of X in I is reduced.

Proof. Let U be a scheme and let U → X be a surjective étale morphism. As
blowing up commutes with flat base change (Lemma 71.17.3) we can prove each of
these statements after base change to U . This reduces us to the case of schemes.
In this case the result is Divisors, Lemma 31.32.8. □

Lemma 71.17.8.0BH1 Let S be a scheme. Let X be an algebraic space over S. Let
b : X ′ → X be the blowup of X in a closed subspace. If X satisfies the equivalent
conditions of Morphisms of Spaces, Lemma 67.49.1 then so does X ′.

Proof. Follows immediately from the lemma cited in the statement, the étale local
description of blowing ups in Lemma 71.17.2, and Divisors, Lemma 31.32.10. □

Lemma 71.17.9.085X Let S be a scheme. Let X be an algebraic space over S. Let
b : X ′ → X be a blowup of X in a closed subspace. For any effective Cartier divisor
D on X the pullback b−1D is defined (see Definition 71.6.10).
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Proof. By Lemmas 71.17.2 and 71.6.2 this reduces to the following algebra fact:
Let A be a ring, I ⊂ A an ideal, a ∈ I, and x ∈ A a nonzerodivisor. Then the
image of x in A[ Ia ] is a nonzerodivisor. Namely, suppose that x(y/an) = 0 in A[ Ia ].
Then amxy = 0 in A for some m. Hence amy = 0 as x is a nonzerodivisor. Whence
y/an is zero in A[ Ia ] as desired. □

Lemma 71.17.10.085Y Let S be a scheme. Let X be an algebraic space over S. Let
I ⊂ OX and J be quasi-coherent sheaves of ideals. Let b : X ′ → X be the blowing
up of X in I. Let b′ : X ′′ → X ′ be the blowing up of X ′ in b−1JOX′ . Then
X ′′ → X is canonically isomorphic to the blowing up of X in IJ .

Proof. Let E ⊂ X ′ be the exceptional divisor of b which is an effective Cartier
divisor by Lemma 71.17.4. Then (b′)−1E is an effective Cartier divisor on X ′′ by
Lemma 71.17.9. Let E′ ⊂ X ′′ be the exceptional divisor of b′ (also an effective
Cartier divisor). Consider the effective Cartier divisor E′′ = E′ + (b′)−1E. By
construction the ideal of E′′ is (b ◦ b′)−1I(b ◦ b′)−1JOX′′ . Hence according to
Lemma 71.17.5 there is a canonical morphism from X ′′ to the blowup c : Y → X of
X in IJ . Conversely, as IJ pulls back to an invertible ideal we see that c−1IOY
defines an effective Cartier divisor, see Lemma 71.6.8. Thus a morphism c′ : Y → X ′

over X by Lemma 71.17.5. Then (c′)−1b−1JOY = c−1JOY which also defines an
effective Cartier divisor. Thus a morphism c′′ : Y → X ′′ over X ′. We omit the
verification that this morphism is inverse to the morphism X ′′ → Y constructed
earlier. □

Lemma 71.17.11.085Z Let S be a scheme. Let X be an algebraic space over S. Let
I ⊂ OX be a quasi-coherent sheaf of ideals. Let b : X ′ → X be the blowing up of
X in the ideal sheaf I. If I is of finite type, then b : X ′ → X is a proper morphism.

Proof. Let U be a scheme and let U → X be a surjective étale morphism. As
blowing up commutes with flat base change (Lemma 71.17.3) we can prove each of
these statements after base change to U (see Morphisms of Spaces, Lemma 67.40.2).
This reduces us to the case of schemes. In this case the morphism b is projective
by Divisors, Lemma 31.32.13 hence proper by Morphisms, Lemma 29.43.5. □

Lemma 71.17.12.0860 Let S be a scheme and let X be an algebraic space over S.
Assume X is quasi-compact and quasi-separated. Let Z ⊂ X be a closed subspace
of finite presentation. Let b : X ′ → X be the blowing up with center Z. Let
Z ′ ⊂ X ′ be a closed subspace of finite presentation. Let X ′′ → X ′ be the blowing
up with center Z ′. There exists a closed subspace Y ⊂ X of finite presentation,
such that

(1) |Y | = |Z| ∪ |b|(|Z ′|), and
(2) the composition X ′′ → X is isomorphic to the blowing up of X in Y .

Proof. The condition that Z → X is of finite presentation means that Z is cut out
by a finite type quasi-coherent sheaf of ideals I ⊂ OX , see Morphisms of Spaces,
Lemma 67.28.12. Write A =

⊕
n≥0 In so that X ′ = Proj(A). Note that X \ Z is

a quasi-compact open subspace of X by Limits of Spaces, Lemma 70.14.1. Since
b−1(X \Z)→ X \Z is an isomorphism (Lemma 71.17.4) the same result shows that
b−1(X \Z) \Z ′ is quasi-compact open subspace in X ′. Hence U = X \ (Z ∪ b(Z ′))
is quasi-compact open subspace in X. By Lemma 71.16.3 there exist a d > 0 and a
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finite type OX -submodule F ⊂ Id such that Z ′ = Proj(A/FA) and such that the
support of Id/F is contained in X \ U .

Since F ⊂ Id is an OX -submodule we may think of F ⊂ Id ⊂ OX as a finite
type quasi-coherent sheaf of ideals on X. Let’s denote this J ⊂ OX to prevent
confusion. Since Id/J and O/Id are supported on |X| \ |U | we see that |V (J )|
is contained in |X| \ |U |. Conversely, as J ⊂ Id we see that |Z| ⊂ |V (J )|. Over
X \Z ∼= X ′\b−1(Z) the sheaf of ideals J cuts out Z ′ (see displayed formula below).
Hence |V (J )| equals |Z| ∪ |b|(|Z ′|). It follows that also |V (IJ )| = |Z| ∪ |b|(|Z ′|).
Moreover, IJ is an ideal of finite type as a product of two such. We claim that
X ′′ → X is isomorphic to the blowing up of X in IJ which finishes the proof of
the lemma by setting Y = V (IJ ).

First, recall that the blowup of X in IJ is the same as the blowup of X ′ in
b−1JOX′ , see Lemma 71.17.10. Hence it suffices to show that the blowup of X ′ in
b−1JOX′ agrees with the blowup of X ′ in Z ′. We will show that

b−1JOX′ = IdEIZ′

as ideal sheaves on X ′′. This will prove what we want as IdE cuts out the effective
Cartier divisor dE and we can use Lemmas 71.17.6 and 71.17.10.

To see the displayed equality of the ideals we may work locally. With notation A, I,
a ∈ I as in Lemma 71.17.2 we see that F corresponds to an R-submodule M ⊂ Id
mapping isomorphically to an ideal J ⊂ R. The condition Z ′ = Proj(A/FA)
means that Z ′∩Spec(A[ Ia ]) is cut out by the ideal generated by the elements m/ad,
m ∈ M . Say the element m ∈ M corresponds to the function f ∈ J . Then in the
affine blowup algebra A′ = A[ Ia ] we see that f = (adm)/ad = ad(m/ad). Thus the
equality holds. □

71.18. Strict transform

0861 This section is the analogue of Divisors, Section 31.33. Let S be a scheme, let B
be an algebraic space over S, and let Z ⊂ B be a closed subspace. Let b : B′ → B
be the blowing up of B in Z and denote E ⊂ B′ the exceptional divisor E = b−1Z.
In the following we will often consider an algebraic space X over B and form the
cartesian diagram

pr−1
B′ E //

��

X ×B B′
prX
//

prB′

��

X

f

��
E // B′ // B

Since E is an effective Cartier divisor (Lemma 71.17.4) we see that pr−1
B′ E ⊂ X×BB′

is locally principal (Lemma 71.6.9). Thus the inclusion morphism of the comple-
ment of pr−1

B′ E in X×BB′ is affine and in particular quasi-compact (Lemma 71.6.3).
Consequently, for a quasi-coherent OX×BB′ -module G the subsheaf of sections sup-
ported on |pr−1

B′ E| is a quasi-coherent submodule, see Limits of Spaces, Definition
70.14.6. If G is a quasi-coherent sheaf of algebras, e.g., G = OX×BB′ , then this
subsheaf is an ideal of G.

Definition 71.18.1.0862 With Z ⊂ B and f : X → B as above.

https://stacks.math.columbia.edu/tag/0862
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(1) Given a quasi-coherent OX -module F the strict transform of F with re-
spect to the blowup of B in Z is the quotient F ′ of pr∗

XF by the submodule
of sections supported on |pr−1

B′ E|.
(2) The strict transform of X is the closed subspace X ′ ⊂ X ×B B′ cut out

by the quasi-coherent ideal of sections of OX×BB′ supported on |pr−1
B′ E|.

Note that taking the strict transform along a blowup depends on the closed subspace
used for the blowup (and not just on the morphism B′ → B).

Lemma 71.18.2 (Étale localization and strict transform).0863 In the situation of Defi-
nition 71.18.1. Let

U //

��

X

��
V // B

be a commutative diagram of morphisms with U and V schemes and étale horizontal
arrows. Let V ′ → V be the blowup of V in Z ×B V . Then

(1) V ′ = V ×B B′ and the maps V ′ → B′ and U ×V V ′ → X ×B B′ are étale,
(2) the strict transform U ′ of U relative to V ′ → V is equal to X ′×X U where

X ′ is the strict transform of X relative to B′ → B, and
(3) for a quasi-coherent OX -module F the restriction of the strict transform
F ′ to U ×V V ′ is the strict transform of F|U relative to V ′ → V .

Proof. Part (1) follows from the fact that blowup commutes with flat base change
(Lemma 71.17.3), the fact that étale morphisms are flat, and that the base change of
an étale morphism is étale. Part (3) then follows from the fact that taking the sheaf
of sections supported on a closed commutes with pullback by étale morphisms, see
Limits of Spaces, Lemma 70.14.5. Part (2) follows from (3) applied to F = OX . □

Lemma 71.18.3.0864 In the situation of Definition 71.18.1.
(1) The strict transform X ′ of X is the blowup of X in the closed subspace

f−1Z of X.
(2) For a quasi-coherent OX -module F the strict transform F ′ is canonically

isomorphic to the pushforward along X ′ → X×BB′ of the strict transform
of F relative to the blowing up X ′ → X.

Proof. Let X ′′ → X be the blowup of X in f−1Z. By the universal property of
blowing up (Lemma 71.17.5) there exists a commutative diagram

X ′′ //

��

X

��
B′ // B

whence a morphism i : X ′′ → X ×B B′. The first assertion of the lemma is that
i is a closed immersion with image X ′. The second assertion of the lemma is that
F ′ = i∗F ′′ where F ′′ is the strict transform of F with respect to the blowing up
X ′′ → X. We can check these assertions étale locally on X, hence we reduce to the
case of schemes (Divisors, Lemma 31.33.2). Some details omitted. □

Lemma 71.18.4.0865 In the situation of Definition 71.18.1.
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(1) If X is flat over B at all points lying over Z, then the strict transform of
X is equal to the base change X ×B B′.

(2) Let F be a quasi-coherent OX -module. If F is flat over B at all points
lying over Z, then the strict transform F ′ of F is equal to the pullback
pr∗
XF .

Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 31.33.3)
by étale localization (Lemma 71.18.2). □

Lemma 71.18.5.0866 Let S be a scheme. Let B be an algebraic space over S. Let
Z ⊂ B be a closed subspace. Let b : B′ → B be the blowing up of Z in B. Let
g : X → Y be an affine morphism of spaces over B. Let F be a quasi-coherent
sheaf on X. Let g′ : X ×B B′ → Y ×B B′ be the base change of g. Let F ′ be the
strict transform of F relative to b. Then g′

∗F ′ is the strict transform of g∗F .
Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 31.33.4)
by étale localization (Lemma 71.18.2). □

Lemma 71.18.6.0867 Let S be a scheme. Let B be an algebraic space over S. Let Z ⊂ B
be a closed subspace. Let D ⊂ B be an effective Cartier divisor. Let Z ′ ⊂ B be
the closed subspace cut out by the product of the ideal sheaves of Z and D. Let
B′ → B be the blowup of B in Z.

(1) The blowup of B in Z ′ is isomorphic to B′ → B.
(2) Let f : X → B be a morphism of algebraic spaces and let F be a quasi-

coherentOX -module. If the subsheaf of F of sections supported on |f−1D|
is zero, then the strict transform of F relative to the blowing up in Z agrees
with the strict transform of F relative to the blowing up of B in Z ′.

Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 31.33.5)
by étale localization (Lemma 71.18.2). □

Lemma 71.18.7.0868 Let S be a scheme. Let B be an algebraic space over S. Let
Z ⊂ B be a closed subspace. Let b : B′ → B be the blowing up with center Z. Let
Z ′ ⊂ B′ be a closed subspace. Let B′′ → B′ be the blowing up with center Z ′. Let
Y ⊂ B be a closed subscheme such that |Y | = |Z| ∪ |b|(|Z ′|) and the composition
B′′ → B is isomorphic to the blowing up of B in Y . In this situation, given any
scheme X over B and F ∈ QCoh(OX) we have

(1) the strict transform of F with respect to the blowing up of B in Y is equal
to the strict transform with respect to the blowup B′′ → B′ in Z ′ of the
strict transform of F with respect to the blowup B′ → B of B in Z, and

(2) the strict transform of X with respect to the blowing up of B in Y is equal
to the strict transform with respect to the blowup B′′ → B′ in Z ′ of the
strict transform of X with respect to the blowup B′ → B of B in Z.

Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 31.33.6)
by étale localization (Lemma 71.18.2). □

Lemma 71.18.8.0869 In the situation of Definition 71.18.1. Suppose that
0→ F1 → F2 → F3 → 0

is an exact sequence of quasi-coherent sheaves on X which remains exact after any
base change T → B. Then the strict transforms of F ′

i relative to any blowup
B′ → B form a short exact sequence 0→ F ′

1 → F ′
2 → F ′

3 → 0 too.
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Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 31.33.7)
by étale localization (Lemma 71.18.2). □

Lemma 71.18.9.0D0P Let S be a scheme. Let B be an algebraic space over S. Let F be
a finite type quasi-coherent OB-module. Let Zk ⊂ S be the closed subscheme cut
out by Fitk(F), see Section 71.5. Let B′ → B be the blowup of B in Zk and let F ′

be the strict transform of F . Then F ′ can locally be generated by ≤ k sections.

Proof. Omitted. Follows from the case of schemes (Divisors, Lemma 31.35.1) by
étale localization (Lemma 71.18.2). □

Lemma 71.18.10.0D0Q Let S be a scheme. Let B be an algebraic space over S. Let F
be a finite type quasi-coherent OB-module. Let Zk ⊂ S be the closed subscheme
cut out by Fitk(F), see Section 71.5. Assume that F is locally free of rank k on
B \ Zk. Let B′ → B be the blowup of B in Zk and let F ′ be the strict transform
of F . Then F ′ is locally free of rank k.

Proof. Omitted. Follows from the case of schemes (Divisors, Lemma 31.35.2) by
étale localization (Lemma 71.18.2). □

71.19. Admissible blowups

086A To have a bit more control over our blowups we introduce the following standard
terminology.

Definition 71.19.1.086B Let S be a scheme. Let X be an algebraic space over S. Let
U ⊂ X be an open subspace. A morphism X ′ → X is called a U -admissible blowup
if there exists a closed immersion Z → X of finite presentation with Z disjoint from
U such that X ′ is isomorphic to the blowup of X in Z.

We recall that Z → X is of finite presentation if and only if the ideal sheaf IZ ⊂ OX
is of finite type, see Morphisms of Spaces, Lemma 67.28.12. In particular, a U -
admissible blowup is a proper morphism, see Lemma 71.17.11. Note that there can
be multiple centers which give rise to the same morphism. Hence the requirement
is just the existence of some center disjoint from U which produces X ′. Finally, as
the morphism b : X ′ → X is an isomorphism over U (see Lemma 71.17.4) we will
often abuse notation and think of U as an open subspace of X ′ as well.

Lemma 71.19.2.086C Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let U ⊂ X be a quasi-compact open subspace. Let b : X ′ →
X be a U -admissible blowup. Let X ′′ → X ′ be a U -admissible blowup. Then the
composition X ′′ → X is a U -admissible blowup.

Proof. Immediate from the more precise Lemma 71.17.12. □

Lemma 71.19.3.086D Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space. Let U, V ⊂ X be quasi-compact open subspaces. Let b : V ′ → V
be a U ∩ V -admissible blowup. Then there exists a U -admissible blowup X ′ → X
whose restriction to V is V ′.

Proof. Let I ⊂ OV be the finite type quasi-coherent sheaf of ideals such that V (I)
is disjoint from U ∩V and such that V ′ is isomorphic to the blowup of V in I. Let
I ′ ⊂ OU∪V be the quasi-coherent sheaf of ideals whose restriction to U is OU and
whose restriction to V is I. By Limits of Spaces, Lemma 70.9.8 there exists a finite
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type quasi-coherent sheaf of ideals J ⊂ OX whose restriction to U ∪ V is I ′. The
lemma follows. □

Lemma 71.19.4.086E Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let U ⊂ X be a quasi-compact open subspace. Let bi :
Xi → X, i = 1, . . . , n be U -admissible blowups. There exists a U -admissible blowup
b : X ′ → X such that (a) b factors as X ′ → Xi → X for i = 1, . . . , n and (b) each
of the morphisms X ′ → Xi is a U -admissible blowup.

Proof. Let Ii ⊂ OX be the finite type quasi-coherent sheaf of ideals such that V (Ii)
is disjoint from U and such that Xi is isomorphic to the blowup of X in Ii. Set
I = I1 · . . . · In and let X ′ be the blowup of X in I. Then X ′ → X factors through
bi by Lemma 71.17.10. □

Lemma 71.19.5.086F Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let U, V be quasi-compact disjoint open subspaces of X.
Then there exist a U ∪ V -admissible blowup b : X ′ → X such that X ′ is a disjoint
union of open subspaces X ′ = X ′

1 ⨿X ′
2 with b−1(U) ⊂ X ′

1 and b−1(V ) ⊂ X ′
2.

Proof. Choose a finite type quasi-coherent sheaf of ideals I, resp. J such that
X \ U = V (I), resp. X \ V = V (J ), see Limits of Spaces, Lemma 70.14.1. Then
|V (IJ )| = |X|. Hence IJ is a locally nilpotent sheaf of ideals. Since I and J are
of finite type and X is quasi-compact there exists an n > 0 such that InJ n = 0.
We may and do replace I by In and J by J n. Whence IJ = 0. Let b : X ′ → X
be the blowing up in I+J . This is U ∪V -admissible as |V (I+J )| = |X|\|U |∪|V |.
We will show that X ′ is a disjoint union of open subspaces X ′ = X ′

1⨿X ′
2 as in the

statement of the lemma.
Since |V (I + J )| is the complement of |U ∪ V | we conclude that V ∪ U is scheme
theoretically dense in X ′, see Lemmas 71.17.4 and 71.6.4. Thus if such a decompo-
sition X ′ = X ′

1 ⨿X ′
2 into open and closed subspaces exists, then X ′

1 is the scheme
theoretic closure of U in X ′ and similarly X ′

2 is the scheme theoretic closure of
V in X ′. Since U → X ′ and V → X ′ are quasi-compact taking scheme theoretic
closures commutes with étale localization (Morphisms of Spaces, Lemma 67.16.3).
Hence to verify the existence of X ′

1 and X ′
2 we may work étale locally on X. This

reduces us to the case of schemes which is treated in the proof of Divisors, Lemma
31.34.5. □
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CHAPTER 72

Algebraic Spaces over Fields

06DR 72.1. Introduction

06DS This chapter is the analogue of the chapter on varieties in the setting of algebraic
spaces. A reference for algebraic spaces is [Knu71].

72.2. Conventions

06LX The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

72.3. Generically finite morphisms

0ACY This section continues the discussion in Decent Spaces, Section 68.21 and the ana-
logue for morphisms of algebraic spaces of Varieties, Section 33.17.

Lemma 72.3.1.0AD1 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type and Y is locally Noetherian. Let
y ∈ |Y | be a point of codimension ≤ 1 on Y . Let X0 ⊂ |X| be the set of points of
codimension 0 on X. Assume in addition one of the following conditions is satisfied

(1) for every x ∈ X0 the transcendence degree of x/f(x) is 0,
(2) for every x ∈ X0 with f(x)⇝ y the transcendence degree of x/f(x) is 0,
(3) f is quasi-finite at every x ∈ X0,
(4) f is quasi-finite at a dense set of points of |X|,
(5) add more here.

Then f is quasi-finite at every point of X lying over y.

Proof. We want to reduce the proof to the case of schemes. To do this we choose
a commutative diagram

U //

g

��

X

f

��
V // Y

where U , V are schemes and where the horizontal arrows are étale and surjec-
tive. Pick v ∈ V mapping to y. Observe that V is locally Noetherian and that
dim(OV,v) ≤ 1 (see Properties of Spaces, Definitions 66.10.2 and Remark 66.7.3).
The fibre Uv of U → V over v surjects onto f−1({y}) ⊂ |X|. The inverse image of

5622
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X0 in U is exactly the set of generic points of irreducible components of U (Prop-
erties of Spaces, Lemma 66.11.1). If η ∈ U is such a point with image x ∈ X0, then
the transcendence degree of x/f(x) is the transcendence degree of κ(η) over κ(g(η))
(Morphisms of Spaces, Definition 67.33.1). Observe that U → V is quasi-finite at
u ∈ U if and only if f is quasi-finite at the image of u in X.
Case (1). Here case (1) of Varieties, Lemma 33.17.1 applies and we conclude that
U → V is quasi-finite at all points of Uv. Hence f is quasi-finite at every point
lying over y.
Case (2). Let u ∈ U be a generic point of an irreducible component whose image
in V specializes to v. Then the image x ∈ X0 of u has the property that f(x)⇝ y.
Hence we see that case (2) of Varieties, Lemma 33.17.1 applies and we conclude as
before.
Case (3) follows from case (3) of Varieties, Lemma 33.17.1.
In case (4), since |U | → |X| is open, we see that the set of points where U → V is
quasi-finite is dense as well. Hence case (4) of Varieties, Lemma 33.17.1 applies. □

Lemma 72.3.2.0AD2 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is proper and Y is locally Noetherian. Let y ∈ Y be a
point of codimension ≤ 1 in Y . Let X0 ⊂ |X| be the set of points of codimension
0 on X. Assume in addition one of the following conditions is satisfied

(1) for every x ∈ X0 the transcendence degree of x/f(x) is 0,
(2) for every x ∈ X0 with f(x)⇝ y the transcendence degree of x/f(x) is 0,
(3) f is quasi-finite at every x ∈ X0,
(4) f is quasi-finite at a dense set of points of |X|,
(5) add more here.

Then there exists an open subspace Y ′ ⊂ Y containing y such that Y ′ ×Y X → Y ′

is finite.
Proof. By Lemma 72.3.1 the morphism f is quasi-finite at every point lying over
y. Let y : Spec(k) → Y be a geometric point lying over y. Then |Xy| is a discrete
space (Decent Spaces, Lemma 68.18.10). Since Xy is quasi-compact as f is proper
we conclude that |Xy| is finite. Thus we can apply Cohomology of Spaces, Lemma
69.23.2 to conclude. □

Lemma 72.3.3.0BBQ Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let f : Y → X be a birational proper morphism of algebraic spaces with Y
reduced. Let U ⊂ X be the maximal open over which f is an isomorphism. Then
U contains

(1) every point of codimension 0 in X,
(2) every x ∈ |X| of codimension 1 on X such that the local ring of X at x is

normal (Properties of Spaces, Remark 66.7.6), and
(3) every x ∈ |X| such that the fibre of |Y | → |X| over x is finite and such

that the local ring of X at x is normal.
Proof. Part (1) follows from Decent Spaces, Lemma 68.22.5 (and the fact that the
Noetherian algebraic spaces X and Y are quasi-separated and hence decent). Part
(2) follows from part (3) and Lemma 72.3.2 (and the fact that finite morphisms have
finite fibres). Let x ∈ |X| be as in (3). By Cohomology of Spaces, Lemma 69.23.2
(which applies by Decent Spaces, Lemma 68.18.10) we may assume f is finite.
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Choose an affine scheme X ′ and an étale morphism X ′ → X and a point x′ ∈ X
mapping to x. It suffices to show there exists an open neighbourhood U ′ of x′ ∈ X ′

such that Y ×X X ′ → X ′ is an isomorphism over U ′ (namely, then U contains the
image of U ′ in X, see Spaces, Lemma 65.5.6). Then Y ×X X ′ → X is a finite
birational (Decent Spaces, Lemma 68.22.6) morphism. Since a finite morphism is
affine we reduce to the case of a finite birational morphism of Noetherian affine
schemes Y → X and x ∈ X such that OX,x is a normal domain. This is treated in
Varieties, Lemma 33.17.3. □

72.4. Integral algebraic spaces

0AD3 We have not yet defined the notion of an integral algebraic space. The problem
is that being integral is not an étale local property of schemes. We could use the
property, that X is reduced and |X| is irreducible, given in Properties, Lemma
28.3.4 to define integral algebraic spaces. In this case the algebraic space described
in Spaces, Example 65.14.9 would be integral which does not seem right. To avoid
this type of pathology we will in addition assume that X is a decent algebraic space,
although perhaps a weaker alternative exists.
Definition 72.4.1.0AD4 Let S be a scheme. We say an algebraic space X over S is
integral if it is reduced, decent, and |X| is irreducible.
In this case the irreducible topological space |X| is sober (Decent Spaces, Propo-
sition 68.12.4). Hence it has a unique generic point x. In fact, in Decent Spaces,
Lemma 68.20.4 we characterized decent algebraic spaces with finitely many irre-
ducible components. Applying that lemma we see that an algebraic space X is
integral if it is reduced, has an irreducible dense open subscheme X ′ with generic
point x′ and the morphism x′ → X is quasi-compact.
Lemma 72.4.2.0END Let S be a scheme. Let X be an integral algebraic space over S.
Let η ∈ |X| be the generic point of X. There are canonical identifications

R(X) = OhX,η = κ(η)
where R(X) is the ring of rational functions defined in Morphisms of Spaces, Defi-
nition 67.47.3, κ(η) is the residue field defined in Decent Spaces, Definition 68.11.2,
and OhX,η is the henselian local ring defined in Decent Spaces, Definition 68.11.5.
In particular, these rings are fields.
Proof. Since X is a scheme in an open neighbourhood of η (see discussion above),
this follows immediately from the corresponding result for schemes, see Morphisms,
Lemma 29.49.5. We also use: the henselianization of a field is itself and that
our definitions of these objects for algebraic spaces are compatible with those for
schemes. Details omitted. □

This leads to the following definition.
Definition 72.4.3.0ENE Let S be a scheme. Let X be an integral algebraic space over
S. The function field, or the field of rational functions of X is the field R(X) of
Lemma 72.4.2.
We may occasionally indicate this field k(X) instead of R(X).
Lemma 72.4.4.0BH2 Let S be a scheme. Let X be an integral algebraic space over S.
Then Γ(X,OX) is a domain.
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Proof. SetR = Γ(X,OX). If f, g ∈ R are nonzero and fg = 0 thenX = V (f)∪V (g)
where V (f) denotes the closed subspace of X cut out by f . Since X is irreducible,
we see that either V (f) = X or V (g) = X. Then either f = 0 or g = 0 by
Properties of Spaces, Lemma 66.21.4. □

Here is a lemma about normal integral algebraic spaces.

Lemma 72.4.5.0AYH Let S be a scheme. Let X be a normal integral algebraic space
over S. For every x ∈ |X| there exists a normal integral affine scheme U and an
étale morphism U → X such that x is in the image.

Proof. Choose an affine scheme U and an étale morphism U → X such that x is
in the image. Let ui, i ∈ I be the generic points of irreducible components of U .
Then each ui maps to the generic point of X (Decent Spaces, Lemma 68.20.1). By
our definition of a decent space (Decent Spaces, Definition 68.6.1), we see that I is
finite. Hence U = Spec(A) where A is a normal ring with finitely many minimal
primes. Thus A =

∏
i∈I Ai is a product of normal domains by Algebra, Lemma

10.37.16. Then U =
∐
Ui with Ui = Spec(Ai) and x is in the image of Ui → X for

some i. This proves the lemma. □

Lemma 72.4.6.0BH3 Let S be a scheme. Let X be a normal integral algebraic space
over S. Then Γ(X,OX) is a normal domain.

Proof. Set R = Γ(X,OX). Then R is a domain by Lemma 72.4.4. Let f = a/b be
an element of the fraction field of R which is integral over R. For any U → X étale
with U a scheme there is at most one fU ∈ Γ(U,OU ) with b|UfU = a|U . Namely, U
is reduced and the generic points of U map to the generic point of X which implies
that b|U is a nonzerodivisor. For every x ∈ |X| we choose U → X as in Lemma
72.4.5. Then there is a unique fU ∈ Γ(U,OU ) with b|UfU = a|U because Γ(U,OU )
is a normal domain by Properties, Lemma 28.7.9. By the uniqueness mentioned
above these fU glue and define a global section f of the structure sheaf, i.e., of
R. □

Lemma 72.4.7.0ENF Let S be a scheme. Let X be a decent algebraic space over S.
There are canonical bijections between the following sets:

(1) the set of points of X, i.e., |X|,
(2) the set of irreducible closed subsets of |X|,
(3) the set of integral closed subspaces of X.

The bijection from (1) to (2) sends x to {x}. The bijection from (3) to (2) sends Z
to |Z|.

Proof. Our map defines a bijection between (1) and (2) as |X| is sober by Decent
Spaces, Proposition 68.12.4. Given T ⊂ |X| closed and irreducible, there is a unique
reduced closed subspace Z ⊂ X such that |Z| = T , namely, Z is the reduced induced
subspace structure on T , see Properties of Spaces, Definition 66.12.5. This is an
integral algebraic space because it is decent, reduced, and irreducible. □

72.5. Morphisms between integral algebraic spaces

0ENG The following lemma characterizes dominant morphisms of finite degree between
integral algebraic spaces.
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Lemma 72.5.1.0AD5 Let S be a scheme. Let X, Y be integral algebraic spaces over
S Let x ∈ |X| and y ∈ |Y | be the generic points. Let f : X → Y be locally of
finite type. Assume f is dominant (Morphisms of Spaces, Definition 67.18.1). The
following are equivalent:

(1) the transcendence degree of x/y is 0,
(2) the extension κ(x)/κ(y) (see proof) is finite,
(3) there exist nonempty affine opens U ⊂ X and V ⊂ Y such that f(U) ⊂ V

and f |U : U → V is finite,
(4) f is quasi-finite at x, and
(5) x is the only point of |X| mapping to y.

If f is separated or if f is quasi-compact, then these are also equivalent to
(6) there exists a nonempty affine open V ⊂ Y such that f−1(V ) → V is

finite.

Proof. By elementary topology, we see that f(x) = y as f is dominant. Let Y ′ ⊂ Y
be the schematic locus of Y and letX ′ ⊂ f−1(Y ′) be the schematic locus of f−1(Y ′).
By the discussion above, using Decent Spaces, Proposition 68.12.4 and Theorem
68.10.2, we see that x ∈ |X ′| and y ∈ |Y ′|. Then f |X′ : X ′ → Y ′ is a morphism of
integral schemes which is locally of finite type. Thus we see that (1), (2), (3) are
equivalent by Morphisms, Lemma 29.51.7.
Condition (4) implies condition (1) by Morphisms of Spaces, Lemma 67.33.3 applied
to X → Y → Y . On the other hand, condition (3) implies condition (4) as a finite
morphism is quasi-finite and as x ∈ U because x is the generic point. Thus (1) –
(4) are equivalent.
Assume the equivalent conditions (1) – (4). Suppose that x′ 7→ y. Then x⇝ x′ is
a specialization in the fibre of |X| → |Y | over y. If x′ ̸= x, then f is not quasi-finite
at x by Decent Spaces, Lemma 68.18.9. Hence x = x′ and (5) holds. Conversely, if
(5) holds, then (5) holds for the morphism of schemes X ′ → Y ′ (see above) and we
can use Morphisms, Lemma 29.51.7 to see that (1) holds.
Observe that (6) implies the equivalent conditions (1) – (5) without any further
assumptions on f . To finish the proof we have to show the equivalent conditions
(1) – (5) imply (6). This follows from Decent Spaces, Lemma 68.21.4. □

Definition 72.5.2.0AD6 Let S be a scheme. Let X and Y be integral algebraic spaces
over S. Let f : X → Y be locally of finite type and dominant. Assume any of the
equivalent conditions (1) – (5) of Lemma 72.5.1. Let x ∈ |X| and y ∈ |Y | be the
generic points. Then the positive integer

deg(X/Y ) = [κ(x) : κ(y)]
is called the degree of X over Y .

Lemma 72.5.3.0ENH Let S be a scheme. Let X, Y , Z be integral algebraic spaces over
S. Let f : X → Y and g : Y → Z be dominant morphisms locally of finite type.
Assume any of the equivalent conditions (1) – (5) of Lemma 72.5.1 hold for f and
g. Then

deg(X/Z) = deg(X/Y ) deg(Y/Z).

Proof. This comes from the multiplicativity of degrees in towers of finite extensions
of fields, see Fields, Lemma 9.7.7. □
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72.6. Weil divisors

0ENI This section is the analogue of Divisors, Section 31.26.

We will introduce Weil divisors and rational equivalence of Weil divisors for locally
Noetherian integral algebraic spaces. Since we are not assuming our algebraic spaces
are quasi-compact we have to be a little careful when defining Weil divisors. We
have to allow infinite sums of prime divisors because a rational function may have
infinitely many poles for example. In the quasi-compact case our Weil divisors are
finite sums as usual. Here is a basic lemma we will often use to prove collections of
closed subspaces are locally finite.

Lemma 72.6.1.0EE5 Let S be a scheme and let X be a locally Noetherian algebraic space
over S. If T ⊂ |X| is a closed subset, then the collection of irreducible components
of T is locally finite.

Proof. The topological space |X| is locally Noetherian (Properties of Spaces, Lemma
66.24.2). A Noetherian topological space has a finite number of irreducible compo-
nents and a subspace of a Noetherian space is Noetherian (Topology, Lemma 5.9.2).
Thus the lemma follows from the definition of locally finite (Topology, Definition
5.28.4). □

Let S be a scheme. Let X be a decent algebraic space over S. Let Z be an integral
closed subspace of X and let ξ ∈ |Z| be the generic point. Then the codimension
of |Z| in |X| is equal to the dimension of the local ring of X at ξ by Decent Spaces,
Lemma 68.20.2. Recall that we also indicate this by saying that ξ is a point of
codimension 1 on X, see Properties of Spaces, Definition 66.10.2.

Definition 72.6.2.0ENJ Let S be a scheme. Let X be a locally Noetherian integral
algebraic space over S.

(1) A prime divisor is an integral closed subspace Z ⊂ X of codimension 1,
i.e., the generic point of |Z| is a point of codimension 1 on X.

(2) A Weil divisor is a formal sum D =
∑
nZZ where the sum is over prime

divisors of X and the collection {|Z| : nZ ̸= 0} is locally finite in |X|
(Topology, Definition 5.28.4).

The group of all Weil divisors on X is denoted Div(X).

Our next task is to define the Weil divisor associated to a rational function. In
order to do this we need to define the order of vanishing of a rational function on a
locally Noetherian integral algebraic space X along a prime divisor Z. Let ξ ∈ |Z|
be the generic point. Here we run into the problem that the local ring OX,ξ doesn’t
exist and the henselian local ring OhX,ξ may not be a domain, see Example 72.6.11.
To get around this we use the following lemma.

Lemma 72.6.3.0ENK Let S be a scheme. Let X be a locally Noetherian integral algebraic
space over S. Let Z ⊂ X be a prime divisor and let ξ ∈ |Z| be the generic point.
Then the henselian local ring OhX,ξ is a reduced 1-dimensional Noetherian local ring
and there is a canonical injective map

R(X) −→ Q(OhX,ξ)

from the function field R(X) of X into the total ring of fractions.
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Proof. We will use the results of Decent Spaces, Section 68.11. Let (U, u)→ (X, ξ)
be an elementary étale neighbourhood. Observe that U is locally Noetherian and
reduced. Thus OU,u is a 1-dimensional (by our definition of prime divisors) reduced
Noetherian ring. After replacing U by an affine open neighbourhood of u we may
assume U is Noetherian and affine. After replacing U by a smaller open, we may
assume every irreducible component of U passes through u. Since U → X is open
and X irreducible, U → X is dominant. Hence we obtain a ring map R(X) →
R(U) by composing rational maps, see Morphisms of Spaces, Section 67.47. Since
R(X) is a field, this map is injective. By our choice of U we see that R(U) is the
total quotient ring Q(OU,u), see Morphisms, Lemma 29.49.5 and Algebra, Lemma
10.25.4.
At this point we have proved all the statements in the lemma with OU,u in stead
of OhX,ξ. However, OhX,ξ is the henselization of OU,u. Thus OhX,ξ is a 1-dimensional
reduced Noetherian ring, see More on Algebra, Lemmas 15.45.4, 15.45.7, and
15.45.3. Since OU,u → OhX,ξ is faithfully flat by More on Algebra, Lemma 15.45.1
it sends nonzerodivisors to nonzerodivisors. Therefore we obtain a canonical map
Q(OU,u) → Q(OhX,ξ) and we obtain our map. We omit the verification that the
map is independent of the choice of (U, u) → (X,x); a slightly better approach
would be to first observe that colimQ(OU,u) = Q(OhX,ξ). □

Definition 72.6.4.0ENL Let S be a scheme. Let X be a locally Noetherian integral
algebraic space over S. Let f ∈ R(X)∗. For every prime divisor Z ⊂ X we define
the order of vanishing of f along Z as the integer

ordZ(f) = lengthOh
X,ξ

(OhX,ξ/aOhX,ξ)− lengthOh
X,ξ

(OhX,ξ/bOhX,ξ)

where a, b ∈ OhX,ξ are nonzerodivisors such that the image of f in Q(OhX,ξ) (Lemma
72.6.3) is equal to a/b. This is well defined by Algebra, Lemma 10.121.1.

If OhX,ξ happens to be a domain, then we obtain
ordZ(f) = ordOh

X,ξ
(f)

where the right hand side is the notion of Algebra, Definition 10.121.2. Note that
for f, g ∈ R(X)∗ we have

ordZ(fg) = ordZ(f) + ordZ(g).
Of course it can happen that ordZ(f) < 0. In this case we say that f has a pole
along Z and that −ordZ(f) > 0 is the order of pole of f along Z. It is important
to note that the condition ordZ(f) ≥ 0 is not equivalent to the condition f ∈ OhX,ξ
unless the local ring OX,ξ is a discrete valuation ring.

Lemma 72.6.5.0ENM Let S be a scheme. Let X be a locally Noetherian integral algebraic
space over S. Let f ∈ R(X)∗. If the prime divisor Z ⊂ X meets the schematic
locus of X, then the order of vanishing ordZ(f) of Definition 72.6.4 agrees with the
order of vanishing of Divisors, Definition 31.26.3.

Proof. After shrinking X we may assume X is an integral Noetherian scheme. If
ξ ∈ Z denotes the generic point, then we find that OhX,ξ is the henselization of OX,ξ
(Decent Spaces, Lemma 68.11.8). To prove the lemma it suffices and is necessary
to show that

lengthOX,ξ
(OX,ξ/aOX,ξ) = lengthOh

X,ξ
(OhX,ξ/aOhX,ξ)
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This follows immediately from Algebra, Lemma 10.52.13 (and the fact that OX,ξ →
OhX,ξ is a flat local ring homomorphism of local Noetherian rings). □

Lemma 72.6.6.0ENN Let S be a scheme. Let X be a locally Noetherian integral algebraic
space over S. Let f ∈ R(X)∗. Then the collections

{Z ⊂ X | Z a prime divisor with generic point ξ and f not in OX,ξ}
and

{Z ⊂ X | Z a prime divisor and ordZ(f) ̸= 0}
are locally finite in X.

Proof. There exists a nonempty open subspace U ⊂ X such that f corresponds to
a section of Γ(U,O∗

X). Hence the prime divisors which can occur in the sets of the
lemma all correspond to irreducible components of |X| \ |U |. Hence Lemma 72.6.1
gives the desired result. □

This lemma allows us to make the following definition.

Definition 72.6.7.0ENP Let S be a scheme. Let X be a locally Noetherian integral
algebraic space over S. Let f ∈ R(X)∗. The principal Weil divisor associated to f
is the Weil divisor

div(f) = divX(f) =
∑

ordZ(f)[Z]
where the sum is over prime divisors and ordZ(f) is as in Definition 72.6.4. This
makes sense by Lemma 72.6.6.

Lemma 72.6.8.0ENQ Let S be a scheme. Let X be a locally Noetherian integral algebraic
space over S. Let f, g ∈ R(X)∗. Then

divX(fg) = divX(f) + divX(g)
as Weil divisors on X.

Proof. This is clear from the additivity of the ord functions. □

We see from the lemma above that the collection of principal Weil divisors form a
subgroup of the group of all Weil divisors. This leads to the following definition.

Definition 72.6.9.0ENR Let S be a scheme. Let X be a locally Noetherian integral
algebraic space over S. The Weil divisor class group of X is the quotient of the
group of Weil divisors by the subgroup of principal Weil divisors. Notation: Cl(X).

By construction we obtain an exact complex

(72.6.9.1)0ENS R(X)∗ div−−→ Div(X)→ Cl(X)→ 0
which we can think of as a presentation of Cl(X). Our next task is to relate the
Weil divisor class group to the Picard group.

Example 72.6.10.0ENT This is a continuation of Morphisms of Spaces, Example 67.53.3.
Consider the algebraic space X = A1

k/{t ∼ −t | t ̸= 0}. This is a smooth algebraic
space over the field k. There is a universal homeomorphism

X −→ A1
k = Spec(k[t])

which is an isomorphism over A1
k \ {0}. We conclude that X is Noetherian and

integral. Since dim(X) = 1, we see that the prime divisors of X are the closed
points of X. Consider the unique closed point x ∈ |X| lying over 0 ∈ A1

k. Since
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X \ {x} maps isomorphically to A1 \ {0} we see that the classes in Cl(X) of closed
points different from x are zero. However, the divisor of t on X is 2[x]. We conclude
that Cl(X) = Z/2Z.
Example 72.6.11.0ENU Let k be a field. Let

U = Spec(k[x, y]/(xy))
be the union of the coordinate axes in A2

k. Denote ∆ : U → U ×k U the diagonal
and ∆′ : U → U ×k U the map u 7→ (u, σ(u)) where σ : U → U , (x, y) 7→ (y, x) is
the automorphism flipping the coordinate axes. Set

R = ∆(U)⨿∆′(U \ {0U})
where 0U ∈ U is the origin. It is easy to see that R is an étale equivalence relation
on U . The quotient X = U/R is an algebraic space. The morphism U → A1

k,
(x, y) 7→ x+ y is R-invariant and hence defines a morphism

X −→ A1
k

This morphism is a universal homeomorphism and an isomorphism over A1
k \ {0}.

It follows that X is integral and Noetherian. Exactly as in Example 72.6.10 the
reader shows that Cl(X) = Z/2Z with generator corresponding to the unique closed
point x ∈ |X| mapping to 0 ∈ A1

k. However, in this case the henselian local ring of
X at x isn’t a domain, as it is the henselization of OU,0U .

72.7. The Weil divisor class associated to an invertible module

0ENV In this section we go through exactly the same progression as in Section 72.6 to
define a canonical map Pic(X)→ Cl(X) on a locally Noetherian integral algebraic
space.
Let S be a scheme. Let X be a locally Noetherian integral algebraic space over
S. Let L be an invertible OX -module. By Divisors on Spaces, Lemma 71.10.11
there exists a regular meromorphic section s ∈ Γ(X,KX(L)). In fact, by Divisors
on Spaces, Lemma 71.10.8 this is the same thing as a nonzero element in Lη where
η ∈ |X| is the generic point. The same lemma tells us that if L = OX , then s is the
same thing as a nonzero rational function on X (so what we will do below matches
the construction in Section 72.6).
Let Z ⊂ X be a prime divisor and let ξ ∈ |Z| be the generic point. We are going
to define the order of vanishing of s along Z. Consider the canonical morphism

cξ : Spec(OhX,ξ) −→ X

whose source is the spectrum of the henselian local ring of X as ξ (Decent Spaces,
Definition 68.11.7). The pullback Lξ = c∗

ξL is an invertible module and hence
trivial; choose a generator sξ of Lξ. Since cξ is flat, pullbacks of meromorphic
functions and (regular) sections are defined for cξ, see Divisors on Spaces, Definition
71.10.6 and Lemmas 71.10.7 and 71.10.10. Thus we get

c∗
ξ(s) = fsξ

for some nonzerodivisor f ∈ Q(OhX,ξ). Here we are using Divisors, Lemma 31.24.2
to identify the space of meromorphic sections of Lξ ∼= OSpec(Oh

X,ξ
) in terms of the

total ring of fractions of OhX,ξ. Let us agree to denote this element

s/sξ = f ∈ Q(OhX,ξ)
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Observe that f = s/sξ is replaced by uf where u ∈ OhX,ξ is a unit if we change our
choice of sξ.

Definition 72.7.1.0EPR Let S be a scheme. Let X be a locally Noetherian integral
algebraic algebraic space over S. Let L be an invertible OX -module. Let s ∈
Γ(X,KX(L)) be a regular meromorphic section of L. For every prime divisor Z ⊂ X
with generic point ξ ∈ |Z| we define the order of vanishing of s along Z as the integer

ordZ,L(s) = lengthOh
X,ξ

(OhX,ξ/aOhX,ξ)− lengthOh
X,ξ

(OhX,ξ/bOhX,ξ)

where a, b ∈ OhX,ξ are nonzerodivisors such that the element s/sξ of Q(OhX,ξ) con-
structed above is equal to a/b. This is well defined by the above and Algebra,
Lemma 10.121.1.

As explained above, a regular meromorphic section s of OX can be written s = f ·1
where f is a nonzero rational function on X and we have ordZ(f) = ordZ,OX

(s).
As in the case of principal divisors we have the following lemma.

Lemma 72.7.2.0EPS Let S be a scheme. Let X be a locally Noetherian integral algebraic
space over S. Let L be an invertible OX -module. Let s ∈ KX(L) be a regular (i.e.,
nonzero) meromorphic section of L. Then the sets

{Z ⊂ X | Z a prime divisor with generic point ξ and s not in Lξ}
and

{Z ⊂ X | Z is a prime divisor and ordZ,L(s) ̸= 0}
are locally finite in X.

Proof. There exists a nonempty open subspace U ⊂ X such that s corresponds to
a section of Γ(U,L) which generates L over U . Hence the prime divisors which can
occur in the sets of the lemma all correspond to irreducible components of |X|\ |U |.
Hence Lemma 72.6.1. gives the desired result. □

Lemma 72.7.3.0EPT Let S be a scheme. Let X be a locally Noetherian integral algebraic
space over S Let L be an invertible OX -module. Let s, s′ ∈ KX(L) be nonzero
meromorphic sections of L. Then f = s/s′ is an element of R(X)∗ and we have∑

ordZ,L(s)[Z] =
∑

ordZ,L(s′)[Z] + div(f)

as Weil divisors.

Proof. This is clear from the definitions. Note that Lemma 72.7.2 guarantees that
the sums are indeed Weil divisors. □

Definition 72.7.4.0EPU Let S be a scheme. Let X be a locally Noetherian integral
algebraic space over S. Let L be an invertible OX -module.

(1) For any nonzero meromorphic section s of L we define the Weil divisor
associated to s as

divL(s) =
∑

ordZ,L(s)[Z] ∈ Div(X)

where the sum is over prime divisors. This is well defined by Lemma
72.7.2.

(2) We define Weil divisor class associated to L as the image of divL(s) in
Cl(X) where s is any nonzero meromorphic section of L over X. This is
well defined by Lemma 72.7.3.
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As expected this construction is additive in the invertible module.

Lemma 72.7.5.0EPV Let S be a scheme. Let X be a locally Noetherian integral algebraic
space over S. Let L, N be invertible OX -modules. Let s, resp. t be a nonzero
meromorphic section of L, resp. N . Then st is a nonzero meromorphic section of
L ⊗OX

N and
divL⊗N (st) = divL(s) + divN (t)

in Div(X). In particular, the Weil divisor class of L⊗OX
N is the sum of the Weil

divisor classes of L and N .

Proof. Let s, resp. t be a nonzero meromorphic section of L, resp. N . Then st
is a nonzero meromorphic section of L ⊗ N . Let Z ⊂ X be a prime divisor. Let
ξ ∈ |Z| be its generic point. Choose generators sξ ∈ Lξ, and tξ ∈ Nξ with notation
as described earlier in this section. Then sξ ⊗ tξ is a generator for (L ⊗ N )ξ. So
st/(sξtξ) = (s/sξ)(t/tξ) in Q(OhX,ξ). Applying the additivity of Algebra, Lemma
10.121.1 we conclude that

divL⊗N ,Z(st) = divL,Z(s) + divN ,Z(t)
Some details omitted. □

Let S be a scheme. Let X be a locally Noetherian integral algebraic space over
S. By the constructions and lemmas above we obtain a homomorphism of abelian
groups
(72.7.5.1)0EPW Pic(X) −→ Cl(X)
which assigns to an invertible module its Weil divisor class.

Lemma 72.7.6.0EPX Let S be a scheme. Let X be a locally Noetherian integral algebraic
space over S. If X is normal, then the map (72.7.5.1) Pic(X)→ Cl(X) is injective.

Proof. Let L be an invertible OX -module whose associated Weil divisor class is
trivial. Let s be a regular meromorphic section of L. The assumption means that
divL(s) = div(f) for some f ∈ R(X)∗. Then we see that t = f−1s is a regular
meromorphic section of L with divL(t) = 0, see Lemma 72.7.3. We claim that t
defines a trivialization of L. The claim finishes the proof of the lemma. Our proof
of the claim is a bit awkward as we don’t yet have a lot of theory at our dispposal;
we suggest the reader skip the proof.
We may check our claim étale locally. Let U ∈ Xétale be affine such that L|U is
trivial. Say sU ∈ Γ(U,L|U ) is a trivialization. By Properties, Lemma 28.7.5 we
may also assume U is integral. Write U = Spec(A) as the spectrum of a normal
Noetherian domain A with fraction field K. We may write t|U = fsU for some
element f of K, see Divisors on Spaces, Lemma 71.10.4 for example. Let p ⊂ A be
a height one prime corresponding to a codimension 1 point u ∈ U which maps to a
codimension 1 point ξ ∈ |X|. Choose a trivialization sξ of Lξ as in the beginning
of this section. Choose a geometric point u of U lying over u. Then

(OhX,ξ)sh = OX,u = OshU,u = (Ap)sh

see Decent Spaces, Lemmas 68.11.9 and Properties of Spaces, Lemma 66.22.1. The
normality of X shows that all of these are discrete valuation rings. The trivial-
izations sU and sξ differ by a unit as sections of L pulled back to Spec(OX,u).
Write t = fξsξ with fξ ∈ Q(OhX,ξ). We conclude that fξ and f differ by a unit in
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Q(OX,u). If Z ⊂ X denotes the prime divisor corresponding to ξ (Lemma 72.4.7),
then 0 = ordZ,L(t) = ordOh

X,ξ
(fξ) and since OhX,ξ is a discrete valuation ring we

see that fξ is a unit. Thus f is a unit in OX,u and hence in particular f ∈ Ap.
This implies f ∈ A by Algebra, Lemma 10.157.6. We conclude that t ∈ Γ(X,L).
Repeating the argument with t−1 viewed as a meromorphic section of L⊗−1 finishes
the proof. □

72.8. Modifications and alterations

0AD7 Using our notion of an integral algebraic space we can define a modification as
follows.

Definition 72.8.1.0AD8 Let S be a scheme. Let X be an integral algebraic space over
S. A modification of X is a birational proper morphism f : X ′ → X of algebraic
spaces over S with X ′ integral.

For birational morphisms of algebraic spaces, see Decent Spaces, Definition 68.22.1.

Lemma 72.8.2.0AD9 Let f : X ′ → X be a modification as in Definition 72.8.1. There
exists a nonempty open U ⊂ X such that f−1(U)→ U is an isomorphism.

Proof. By Lemma 72.5.1 there exists a nonempty U ⊂ X such that f−1(U) → U
is finite. By generic flatness (Morphisms of Spaces, Proposition 67.32.1) we may
assume f−1(U) → U is flat and of finite presentation. So f−1(U) → U is finite
locally free (Morphisms of Spaces, Lemma 67.46.6). Since f is birational, the degree
of X ′ over X is 1. Hence f−1(U) → U is finite locally free of degree 1, in other
words it is an isomorphism. □

Definition 72.8.3.0ADA Let S be a scheme. Let X be an integral algebraic space over S.
An alteration of X is a proper dominant morphism f : Y → X of algebraic spaces
over S with Y integral such that f−1(U) → U is finite for some nonempty open
U ⊂ X.

If f : Y → X is a dominant and proper morphism between integral algebraic spaces,
then it is an alteration as soon as the induced extension of residue fields in generic
points is finite. Here is the precise statement.

Lemma 72.8.4.0ADB Let S be a scheme. Let f : X → Y be a proper dominant morphism
of integral algebraic spaces over S. Then f is an alteration if and only if any of the
equivalent conditions (1) – (6) of Lemma 72.5.1 hold.

Proof. Immediate consequence of the lemma referenced in the statement. □

Lemma 72.8.5.0DMN Let S be a scheme. Let f : X → Y be a proper surjective morphism
of algebraic spaces over S. Assume Y is integral. Then there exists an integral
closed subspace X ′ ⊂ X such that f ′ = f |X′ : X ′ → Y is an alteration.

Proof. Let V ⊂ Y be a nonempty open affine (Decent Spaces, Theorem 68.10.2).
Let η ∈ V be the generic point. Then Xη is a nonempty proper algebraic space over
η. Choose a closed point x ∈ |Xη| (exists because |Xη| is a quasi-compact, sober
topological space, see Decent Spaces, Proposition 68.12.4 and Topology, Lemma
5.12.8.) Let X ′ be the reduced induced closed subspace structure on {x} ⊂ |X|
(Properties of Spaces, Definition 66.12.5. Then f ′ : X ′ → Y is surjective as the
image contains η. Also f ′ is proper as a composition of a closed immersion and a
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proper morphism. Finally, the fibre X ′
η has a single point; to see this use Decent

Spaces, Lemma 68.18.6 for both X → Y and X ′ → Y and the point η. Since Y is
decent and X ′ → Y is separated we see that X ′ is decent (Decent Spaces, Lemmas
68.17.2 and 68.17.5). Thus f ′ is an alteration by Lemma 72.8.4. □

72.9. Schematic locus

06LY We have already proven a number of results on the schematic locus of an algebraic
space. Here is a list of references:

(1) Properties of Spaces, Sections 66.13 and 66.14,
(2) Decent Spaces, Section 68.10,
(3) Properties of Spaces, Lemma 66.15.3 ⇐ Decent Spaces, Lemma 68.12.8
⇐ Decent Spaces, Lemma 68.14.2,

(4) Limits of Spaces, Section 70.15, and
(5) Limits of Spaces, Section 70.17.

There are some cases where certain types of morphisms of algebraic spaces are
automatically representable, for example separated, locally quasi-finite morphisms
(Morphisms of Spaces, Lemma 67.51.1), and flat monomorphisms (More on Mor-
phisms of Spaces, Lemma 76.4.1). In Section 72.10 we will study what happens
with the schematic locus under extension of base field.

Lemma 72.9.1.06LZ Let S be a scheme. Let X be an algebraic space over S. Assume
X satisfies at least one of the following conditions

(1) X is quasi-separated and dim(X) = 0,
(2) X is locally of finite type over a field k and dim(X) = 0,
(3) X is Noetherian and dim(X) = 0, or
(4) add more here.

Then X is a separated scheme and any quasi-compact open of X is affine.

Proof. If we prove that any quasi-compact open of X is affine, then X is a separated
scheme. Thus we may assume X is quasi-compact and we aim to show that X is
affine. Cases (2) and (3) follow immediately from case (1) but we will give a separate
proofs of (2) and (3) as these proofs use significantly less theory.
Proof of (3). Let U be an affine scheme and let U → X be an étale morphism. Set
R = U ×X U . The two projection morphisms s, t : R → U are étale morphisms of
schemes. By Properties of Spaces, Definition 66.9.2 we see that dim(U) = 0 and
dim(R) = 0. Since R is a locally Noetherian scheme of dimension 0, we see that R
is a disjoint union of spectra of Artinian local rings (Properties, Lemma 28.10.5).
Since we assumed that X is Noetherian (so quasi-separated) we conclude that R
is quasi-compact. Hence R is an affine scheme (use Schemes, Lemma 26.6.8). The
étale morphisms s, t : R → U induce finite residue field extensions. Hence s and
t are finite by Algebra, Lemma 10.54.4 (small detail omitted). Thus Groupoids,
Proposition 39.23.9 shows that X = U/R is an affine scheme.
Proof of (2) – almost identical to the proof of (3). Let U be an affine scheme
and let U → X be a surjective étale morphism. Set R = U ×X U . The two
projection morphisms s, t : R→ U are étale morphisms of schemes. By Properties
of Spaces, Definition 66.9.2 we see that dim(U) = 0 and similarly dim(R) = 0.
On the other hand, the morphism U → Spec(k) is locally of finite type as the
composition of the étale morphism U → X and X → Spec(k), see Morphisms of
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Spaces, Lemmas 67.23.2 and 67.39.9. Similarly, R → Spec(k) is locally of finite
type. Hence by Varieties, Lemma 33.20.2 we see that U and R are disjoint unions
of spectra of local Artinian k-algebras finite over k. The same thing is therefore
true of U ×Spec(k) U . As

R = U ×X U −→ U ×Spec(k) U

is a monomorphism, we see that R is a finite(!) union of spectra of finite k-algebras.
It follows that R is affine, see Schemes, Lemma 26.6.8. Applying Varieties, Lemma
33.20.2 once more we see that R is finite over k. Hence s, t are finite, see Morphisms,
Lemma 29.44.14. Thus Groupoids, Proposition 39.23.9 shows that X = U/R is an
affine scheme.
Cohomological proof of (1). By Cohomology of Spaces, Lemma 69.10.1 we have
vanishing of higher cohomology groups for all quasi-coherent sheaves F onX. Hence
X is affine (in particular a scheme) by Cohomology of Spaces, Proposition 69.16.7.
Geometric proof of (1). Choose a stratification

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

and étale morphisms fp : Vp → Up as in Decent Spaces, Lemma 68.8.6 (we will
use all their properties below). Then dim(Vp) = 0 by our definition of dimension
of algebraic spaces. Thus Properties, Lemma 28.10.6 applies to each Vp. Then
f−1
p (Up+1) ⊂ Vp is quasi-compact open and hence is affine as well as closed. It

follows that |Tp| ⊂ |Up| (see locus citatus) is open as well as closed. Hence X is a
disjoint union of open and closed subspaces whose reduced structures are schemes.
It follows that X is a scheme (Limits of Spaces, Lemma 70.15.3). Then the proof
is finished by the case of schemes that we already referenced above. □

The following lemma tells us that a quasi-separated algebraic space is a scheme
away from codimension 1.

Lemma 72.9.2.0ADC Let S be a scheme. Let X be a quasi-separated algebraic space
over S. Let x ∈ |X|. The following are equivalent

(1) x is a point of codimension 0 on X,
(2) the local ring of X at x has dimension 0, and
(3) x is a generic point of an irreducible component of |X|.

If true, then there exists an open subspace of X containing x which is a scheme.

Proof. The equivalence of (1), (2), and (3) follows from Decent Spaces, Lemma
68.20.1 and the fact that a quasi-separated algebraic space is decent (Decent Spaces,
Section 68.6). However in the next paragraph we will give a more elementary proof
of the equivalence.
Note that (1) and (2) are equivalent by definition (Properties of Spaces, Definition
66.10.2). To prove the equivalence of (1) and (3) we may assume X is quasi-
compact. Choose

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

and fi : Vi → Ui as in Decent Spaces, Lemma 68.8.6. Say x ∈ Ui, x ̸∈ Ui+1. Then
x = fi(y) for a unique y ∈ Vi. If (1) holds, then y is a generic point of an irreducible
component of Vi (Properties of Spaces, Lemma 66.11.1). Since f−1

i (Ui+1) is a quasi-
compact open of Vi not containing y, there is an open neighbourhood W ⊂ Vi of
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y disjoint from f−1
i (Vi) (see Properties, Lemma 28.2.2 or more simply Algebra,

Lemma 10.26.4). Then fi|W : W → X is an isomorphism onto its image and hence
x = fi(y) is a generic point of |X|. Conversely, assume (3) holds. Then fi maps
{y} onto the irreducible component {x} of |Ui|. Since |fi| is bijective over {x}, it
follows that {y} is an irreducible component of Ui. Thus x is a point of codimension
0.
The final statement of the lemma is Properties of Spaces, Proposition 66.13.3. □

The following lemma says that a separated locally Noetherian algebraic space is a
scheme in codimension 1, i.e., away from codimension 2.
Lemma 72.9.3.0ADD Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. If X is separated, locally Noetherian, and the dimension of the local ring
of X at x is ≤ 1 (Properties of Spaces, Definition 66.10.2), then there exists an
open subspace of X containing x which is a scheme.
Proof. (Please see the remark below for a different approach avoiding the material
on finite groupoids.) We can replace X by an quasi-compact neighbourhood of
x, hence we may assume X is quasi-compact, separated, and Noetherian. There
exists a scheme U and a finite surjective morphism U → X, see Limits of Spaces,
Proposition 70.16.1. Let R = U ×X U . Then j : R → U ×S U is an equivalence
relation and we obtain a groupoid scheme (U,R, s, t, c) over S with s, t finite and
U Noetherian and separated. Let {u1, . . . , un} ⊂ U be the set of points mapping
to x. Then dim(OU,ui) ≤ 1 by Decent Spaces, Lemma 68.12.6.
By More on Groupoids, Lemma 40.14.10 there exists an R-invariant affine open
W ⊂ U containing the orbit {u1, . . . , un}. Since U → X is finite surjective the
continuous map |U | → |X| is closed surjective, hence submersive by Topology,
Lemma 5.6.5. Thus f(W ) is open and there is an open subspace X ′ ⊂ X with f :
W → X ′ a surjective finite morphism. Then X ′ is an affine scheme by Cohomology
of Spaces, Lemma 69.17.3 and the proof is finished. □

Remark 72.9.4.0ADE Here is a sketch of a proof of Lemma 72.9.3 which avoids using
More on Groupoids, Lemma 40.14.10.
Step 1. We may assume X is a reduced Noetherian separated algebraic space (for
example by Cohomology of Spaces, Lemma 69.17.3 or by Limits of Spaces, Lemma
70.15.3) and we may choose a finite surjective morphism Y → X where Y is a
Noetherian scheme (by Limits of Spaces, Proposition 70.16.1).
Step 2. After replacing X by an open neighbourhood of x, there exists a birational
finite morphism X ′ → X and a closed subscheme Y ′ ⊂ X ′×X Y such that Y ′ → X ′

is surjective finite locally free. Namely, because X is reduced there is a dense
open subspace U ⊂ X over which Y is flat (Morphisms of Spaces, Proposition
67.32.1). Then we can choose a U -admissible blowup b : X̃ → X such that the
strict transform Ỹ of Y is flat over X̃, see More on Morphisms of Spaces, Lemma
76.39.1. (An alternative is to use Hilbert schemes if one wants to avoid using the
result on blowups). Then we let X ′ ⊂ X̃ be the scheme theoretic closure of b−1(U)
and Y ′ = X ′ ×X̃ Ỹ . Since x is a codimension 1 point, we see that X ′ → X is finite
over a neighbourhood of x (Lemma 72.3.2).
Step 3. After shrinking X to a smaller neighbourhood of x we get that X ′ is a
scheme. This holds because Y ′ is a scheme and Y ′ → X ′ being finite locally free

https://stacks.math.columbia.edu/tag/0ADD
https://stacks.math.columbia.edu/tag/0ADE


72.10. SCHEMATIC LOCUS AND FIELD EXTENSION 5637

and because every finite set of codimension 1 points of Y ′ is contained in an affine
open. Use Properties of Spaces, Proposition 66.14.1 and Varieties, Proposition
33.42.7.
Step 4. There exists an affine open W ′ ⊂ X ′ containing all points lying over x
which is the inverse image of an open subspace of X. To prove this let Z ⊂ X be
the closure of the set of points where X ′ → X is not an isomorphism. We may
assume x ∈ Z otherwise we are already done. Then x is a generic point of an
irreducible component of Z and after shrinking X we may assume Z is an affine
scheme (Lemma 72.9.2). Then the inverse image Z ′ ⊂ X ′ is an affine scheme as well.
Say x1, . . . , xn ∈ Z ′ are the points mapping to x. Then we can find an affine open
W ′ in X ′ whose intersection with Z ′ is the inverse image of a principal open of Z
containing x. Namely, we first pick an affine open W ′ ⊂ X ′ containing x1, . . . , xn
using Varieties, Proposition 33.42.7. Then we pick a principal open D(f) ⊂ Z
containing x whose inverse image D(f |Z′) is contained in W ′ ∩ Z ′. Then we pick
f ′ ∈ Γ(W ′,OW ′) restricting to f |Z′ and we replace W ′ by D(f ′) ⊂ W ′. Since
X ′ → X is an isomorphism away from Z ′ → Z the choice of W ′ guarantees that
the image W ⊂ X of W ′ is open with inverse image W ′ in X ′.
Step 5. Then W ′ → W is a finite surjective morphism and W is a scheme by
Cohomology of Spaces, Lemma 69.17.3 and the proof is complete.

72.10. Schematic locus and field extension

0B82 It can happen that a nonrepresentable algebraic space over a field k becomes rep-
resentable (i.e., a scheme) after base change to an extension of k. See Spaces,
Example 65.14.2. In this section we address this issue.

Lemma 72.10.1.0B83 Let k be a field. Let X be an algebraic space over k. If there
exists a purely inseparable field extension k′/k such that Xk′ is a scheme, then X
is a scheme.

Proof. The morphism Xk′ → X is integral, surjective, and universally injective.
Hence this lemma follows from Limits of Spaces, Lemma 70.15.4. □

Lemma 72.10.2.0B84 Let k be a field with algebraic closure k. Let X be a quasi-
separated algebraic space over k.

(1) If there exists a field extension K/k such that XK is a scheme, then Xk
is a scheme.

(2) If X is quasi-compact and there exists a field extension K/k such that
XK is a scheme, then Xk′ is a scheme for some finite separable extension
k′ of k.

Proof. Since every algebraic space is the union of its quasi-compact open subspaces,
we see that the first part of the lemma follows from the second part (some details
omitted). Thus we assume X is quasi-compact and we assume given an extension
K/k with XK representable. Write K =

⋃
A as the colimit of finitely generated

k-subalgebras A. By Limits of Spaces, Lemma 70.5.11 we see that XA is a scheme
for some A. Choose a maximal ideal m ⊂ A. By the Hilbert Nullstellensatz
(Algebra, Theorem 10.34.1) the residue field k′ = A/m is a finite extension of k.
Thus we see that Xk′ is a scheme. If k′ ⊃ k is not separable, let k′/k′′/k be the
subextension found in Fields, Lemma 9.14.6. Since k′/k′′ is purely inseparable, by

https://stacks.math.columbia.edu/tag/0B83
https://stacks.math.columbia.edu/tag/0B84


72.10. SCHEMATIC LOCUS AND FIELD EXTENSION 5638

Lemma 72.10.1 the algebraic space Xk′′ is a scheme. Since k′′|k is separable the
proof is complete. □

Lemma 72.10.3.0B86 Let k′/k be a finite Galois extension with Galois group G. Let X
be an algebraic space over k. Then G acts freely on the algebraic space Xk′ and
X = Xk′/G in the sense of Properties of Spaces, Lemma 66.34.1.

Proof. Omitted. Hints: First show that Spec(k) = Spec(k′)/G. Then use compat-
ibility of taking quotients with base change. □

Lemma 72.10.4.0B87 Let S be a scheme. Let X be an algebraic space over S and let
G be a finite group acting freely on X. Set Y = X/G as in Properties of Spaces,
Lemma 66.34.1. For y ∈ |Y | the following are equivalent

(1) y is in the schematic locus of Y , and
(2) there exists an affine open U ⊂ X containing the preimage of y.

Proof. It follows from the construction of Y = X/G in Properties of Spaces, Lemma
66.34.1 that the morphism X → Y is surjective and étale. Of course we have
X ×Y X = X × G hence the morphism X → Y is even finite étale. It is also
surjective. Thus the lemma follows from Decent Spaces, Lemma 68.10.3. □

Lemma 72.10.5.0B85 Let k be a field. Let X be a quasi-separated algebraic space over
k. If there exists a purely transcendental field extension K/k such that XK is a
scheme, then X is a scheme.

Proof. Since every algebraic space is the union of its quasi-compact open subspaces,
we may assume X is quasi-compact (some details omitted). Recall (Fields, Def-
inition 9.26.1) that the assumption on the extension K/k signifies that K is the
fraction field of a polynomial ring (in possibly infinitely many variables) over k.
Thus K =

⋃
A is the union of subalgebras each of which is a localization of a finite

polynomial algebra over k. By Limits of Spaces, Lemma 70.5.11 we see that XA is
a scheme for some A. Write

A = k[x1, . . . , xn][1/f ]
for some nonzero f ∈ k[x1, . . . , xn].
If k is infinite then we can finish the proof as follows: choose a1, . . . , an ∈ k with
f(a1, . . . , an) ̸= 0. Then (a1, . . . , an) define an k-algebra map A → k mapping xi
to ai and 1/f to 1/f(a1, . . . , an). Thus the base change XA ×Spec(A) Spec(k) ∼= X
is a scheme as desired.
In this paragraph we finish the proof in case k is finite. In this case we write
X = limXi with Xi of finite presentation over k and with affine transition mor-
phisms (Limits of Spaces, Lemma 70.10.2). Using Limits of Spaces, Lemma 70.5.11
we see that Xi,A is a scheme for some i. Thus we may assume X → Spec(k) is of fi-
nite presentation. Let x ∈ |X| be a closed point. We may represent x by a closed im-
mersion Spec(κ)→ X (Decent Spaces, Lemma 68.14.6). Then Spec(κ)→ Spec(k)
is of finite type, hence κ is a finite extension of k (by the Hilbert Nullstellensatz,
see Algebra, Theorem 10.34.1; some details omitted). Say [κ : k] = d. Choose an
integer n ≫ 0 prime to d and let k′/k be the extension of degree n. Then k′/k
is Galois with G = Aut(k′/k) cyclic of order n. If n is large enough there will be
k-algebra homomorphism A → k′ by the same reason as above. Then Xk′ is a
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scheme and X = Xk′/G (Lemma 72.10.3). On the other hand, since n and d are
relatively prime we see that

Spec(κ)×X Xk′ = Spec(κ)×Spec(k) Spec(k′) = Spec(κ⊗k k′)

is the spectrum of a field. In other words, the fibre of Xk′ → X over x consists of
a single point. Thus by Lemma 72.10.4 we see that x is in the schematic locus of
X as desired. □

Remark 72.10.6.0BA7 Let k be a finite field. Let K/k be a geometrically irreducible field
extension. Then K is the limit of geometrically irreducible finite type k-algebras
A. Given A the estimates of Lang and Weil [LW54], show that for n ≫ 0 there
exists an k-algebra homomorphism A → k′ with k′/k of degree n. Analyzing the
argument given in the proof of Lemma 72.10.5 we see that if X is a quasi-separated
algebraic space over k and XK is a scheme, then X is a scheme. If we ever need
this result we will precisely formulate it and prove it here.

Lemma 72.10.7.0B88 Let k be a field with algebraic closure k. Let X be an algebraic
space over k such that

(1) X is decent and locally of finite type over k,
(2) Xk is a scheme, and
(3) any finite set of k-rational points of Xk is contained in an affine.

Then X is a scheme.

Proof. If K/k is an extension, then the base change XK is decent (Decent Spaces,
Lemma 68.6.5) and locally of finite type over K (Morphisms of Spaces, Lemma
67.23.3). By Lemma 72.10.1 it suffices to prove that X becomes a scheme after base
change to the perfection of k, hence we may assume k is a perfect field (this step
isn’t strictly necessary, but makes the other arguments easier to think about). By
covering X by quasi-compact opens we see that it suffices to prove the lemma in case
X is quasi-compact (small detail omitted). In this case |X| is a sober topological
space (Decent Spaces, Proposition 68.12.4). Hence it suffices to show that every
closed point in |X| is contained in the schematic locus of X (use Properties of
Spaces, Lemma 66.13.1 and Topology, Lemma 5.12.8).

Let x ∈ |X| be a closed point. By Decent Spaces, Lemma 68.14.6 we can find
a closed immersion Spec(l) → X representing x. Then Spec(l) → Spec(k) is of
finite type (Morphisms of Spaces, Lemma 67.23.2) and we conclude that l is a finite
extension of k by the Hilbert Nullstellensatz (Algebra, Theorem 10.34.1). It is
separable because k is perfect. Thus the scheme

Spec(l)×X Xk = Spec(l)×Spec(k) Spec(k) = Spec(l ⊗k k)

is the disjoint union of a finite number of k-rational points. By assumption (3) we
can find an affine open W ⊂ Xk containing these points.

By Lemma 72.10.2 we see that Xk′ is a scheme for some finite extension k′/k. After
enlarging k′ we may assume that there exists an affine open U ′ ⊂ Xk′ whose base
change to k recovers W (use that Xk is the limit of the schemes Xk′′ for k′ ⊂ k′′ ⊂ k
finite and use Limits, Lemmas 32.4.11 and 32.4.13). We may assume that k′/k is
a Galois extension (take the normal closure Fields, Lemma 9.16.3 and use that k
is perfect). Set G = Gal(k′/k). By construction the G-invariant closed subscheme
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Spec(l) ×X Xk′ is contained in U ′. Thus x is in the schematic locus by Lemmas
72.10.3 and 72.10.4. □

The following two lemmas should go somewhere else. Please compare the next
lemma to Decent Spaces, Lemma 68.18.8.

Lemma 72.10.8.06S0 Let k be a field. Let X be an algebraic space over k. The following
are equivalent

(1) X is locally quasi-finite over k,
(2) X is locally of finite type over k and has dimension 0,
(3) X is a scheme and is locally quasi-finite over k,
(4) X is a scheme and is locally of finite type over k and has dimension 0,

and
(5) X is a disjoint union of spectra of Artinian local k-algebras A over k with

dimk(A) <∞.

Proof. Because we are over a field relative dimension of X/k is the same as the
dimension of X. Hence by Morphisms of Spaces, Lemma 67.34.6 we see that (1) and
(2) are equivalent. Hence it follows from Lemma 72.9.1 (and trivial implications)
that (1) – (4) are equivalent. Finally, Varieties, Lemma 33.20.2 shows that (1) –
(4) are equivalent with (5). □

Lemma 72.10.9.06S1 Let k be a field. Let f : X → Y be a monomorphism of algebraic
spaces over k. If Y is locally quasi-finite over k so is X.

Proof. Assume Y is locally quasi-finite over k. By Lemma 72.10.8 we see that
Y =

∐
Spec(Ai) where each Ai is an Artinian local ring finite over k. By Decent

Spaces, Lemma 68.19.1 we see that X is a scheme. Consider Xi = f−1(Spec(Ai)).
Then Xi has either one or zero points. If Xi has zero points there is nothing to
prove. If Xi has one point, then Xi = Spec(Bi) with Bi a zero dimensional local
ring and Ai → Bi is an epimorphism of rings. In particular Ai/mAi = Bi/mAiBi
and we see that Ai → Bi is surjective by Nakayama’s lemma, Algebra, Lemma
10.20.1 (because mAi is a nilpotent ideal!). Thus Bi is a finite local k-algebra, and
we conclude by Lemma 72.10.8 that X → Spec(k) is locally quasi-finite. □

72.11. Geometrically reduced algebraic spaces

0DMP If X is a reduced algebraic space over a field, then it can happen that X becomes
nonreduced after extending the ground field. This does not happen for geometrically
reduced algebraic spaces.

Definition 72.11.1.0DMQ Let k be a field. Let X be an algebraic space over k.
(1) Let x ∈ |X| be a point. We say X is geometrically reduced at x if OX,x

is geometrically reduced over k.
(2) We say X is geometrically reduced over k if X is geometrically reduced

at every point of X.

Observe that if X is geometrically reduced at x, then the local ring of X at x is
reduced (Properties of Spaces, Lemma 66.22.6). Similarly, if X is geometrically
reduced over k, then X is reduced (by Properties of Spaces, Lemma 66.21.4). The
following lemma in particular implies this definition does not clash with the corre-
sponding property for schemes over a field.
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Lemma 72.11.2.0DMR Let k be a field. Let X be an algebraic space over k. Let x ∈ |X|.
The following are equivalent

(1) X is geometrically reduced at x,
(2) for some étale neighbourhood (U, u) → (X,x) where U is a scheme, U is

geometrically reduced at u,
(3) for any étale neighbourhood (U, u) → (X,x) where U is a scheme, U is

geometrically reduced at u.

Proof. Recall that the local ring OX,x is the strict henselization of OU,u, see Prop-
erties of Spaces, Lemma 66.22.1. By Varieties, Lemma 33.6.2 we find that U is
geometrically reduced at u if and only if OU,u is geometrically reduced over k.
Thus we have to show: if A is a local k-algebra, then A is geometrically reduced
over k if and only if Ash is geometrically reduced over k. We check this using the
definition of geometrically reduced algebras (Algebra, Definition 10.43.1). Let K/k
be a field extension. Since A → Ash is faithfully flat (More on Algebra, Lemma
15.45.1) we see that A⊗kK → Ash⊗kK is faithfully flat (Algebra, Lemma 10.39.7).
Hence if Ash⊗kK is reduced, so is A⊗kK by Algebra, Lemma 10.164.2. Conversely,
recall that Ash is a colimit of étale A-algebra, see Algebra, Lemma 10.155.2. Thus
Ash ⊗k K is a filtered colimit of étale A ⊗k K-algebras. We conclude by Algebra,
Lemma 10.163.7. □

Lemma 72.11.3.0DMS Let k be a field. Let X be an algebraic space over k. The following
are equivalent

(1) X is geometrically reduced,
(2) for some surjective étale morphism U → X where U is a scheme, U is

geometrically reduced,
(3) for any étale morphism U → X where U is a scheme, U is geometrically

reduced.

Proof. Immediate from the definitions and Lemma 72.11.2. □

The notion isn’t interesting in characteristic zero.

Lemma 72.11.4.0E02 Let X be an algebraic space over a perfect field k (for example k
has characteristic zero).

(1) For x ∈ |X|, if OX,x is reduced, then X is geometrically reduced at x.
(2) If X is reduced, then X is geometrically reduced over k.

Proof. The first statement follows from Algebra, Lemma 10.43.6 and the definition
of a perfect field (Algebra, Definition 10.45.1). The second statement follows from
the first. □

Lemma 72.11.5.0E03 Let k be a field of characteristic p > 0. Let X be an algebraic
space over k. The following are equivalent

(1) X is geometrically reduced over k,
(2) Xk′ is reduced for every field extension k′/k,
(3) Xk′ is reduced for every finite purely inseparable field extension k′/k,
(4) Xk1/p is reduced,
(5) Xkperf is reduced, and
(6) Xk̄ is reduced.
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Proof. Choose a surjective étale morphism U → X where U is a scheme. Via
Lemma 72.11.3 the lemma follows from the result for U over k. See Varieties,
Lemma 33.6.4. □

Lemma 72.11.6.0E04 Let k be a field. Let X be an algebraic space over k. Let k′/k be
a field extension. Let x ∈ |X| be a point and let x′ ∈ |Xk′ | be a point lying over x.
The following are equivalent

(1) X is geometrically reduced at x,
(2) Xk′ is geometrically reduced at x′.

In particular, X is geometrically reduced over k if and only if Xk′ is geometrically
reduced over k′.

Proof. Choose an étale morphism U → X where U is a scheme and a point u ∈ U
mapping to x ∈ |X|. By Properties of Spaces, Lemma 66.4.3 we may choose a point
u′ ∈ Uk′ = U ×X Xk′ mapping to both u and x′. By Lemma 72.11.2 the lemma
follows from the lemma for U, u, u′ which is Varieties, Lemma 33.6.6. □

Lemma 72.11.7.0E05 Let k be a field. Let f : X → Y be a morphism of algebraic
spaces over k. Let x ∈ |X| be a point with image y ∈ |Y |.

(1) if f is étale at x, then X is geometrically reduced at x⇔ Y is geometrically
reduced at y,

(2) if f is surjective étale, then X is geometrically reduced ⇔ Y is geometri-
cally reduced.

Proof. Part (1) is clear because OX,x = OY,y if f is étale at x. Part (2) follows
immediately from part (1). □

72.12. Geometrically connected algebraic spaces

0A0Y If X is a connected algebraic space over a field, then it can happen that X be-
comes disconnected after extending the ground field. This does not happen for
geometrically connected algebraic spaces.

Definition 72.12.1.0A0Z Let X be an algebraic space over the field k. We say X is
geometrically connected over k if the base change Xk′ is connected for every field
extension k′ of k.

By convention a connected topological space is nonempty; hence a fortiori geomet-
rically connected algebraic spaces are nonempty.

Lemma 72.12.2.0A10 Let X be an algebraic space over the field k. Let k′/k be a
field extension. Then X is geometrically connected over k if and only if Xk′ is
geometrically connected over k′.

Proof. If X is geometrically connected over k, then it is clear that Xk′ is geo-
metrically connected over k′. For the converse, note that for any field extension
k′′/k there exists a common field extension k′′′/k′ and k′′′/k′. As the morphism
Xk′′′ → Xk′′ is surjective (as a base change of a surjective morphism between
spectra of fields) we see that the connectedness of Xk′′′ implies the connectedness
of Xk′′ . Thus if Xk′ is geometrically connected over k′ then X is geometrically
connected over k. □
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Lemma 72.12.3.0A11 Let k be a field. Let X, Y be algebraic spaces over k. Assume X
is geometrically connected over k. Then the projection morphism

p : X ×k Y −→ Y

induces a bijection between connected components.

Proof. Let y ∈ |Y | be represented by a morphism Spec(K)→ Y where K is a field.
The fibre of |X ×k Y | → |Y | over y is the image of |XK | → |X ×k Y | by Properties
of Spaces, Lemma 66.4.3. Thus these fibres are connected by our assumption that
X is geometrically connected. By Morphisms of Spaces, Lemma 67.6.6 the map |p|
is open. Thus we may apply Topology, Lemma 5.7.6 to conclude. □

Lemma 72.12.4.0A12 Let k′/k be an extension of fields. Let X be an algebraic space
over k. Assume k separably algebraically closed. Then the morphism Xk′ → X
induces a bijection of connected components. In particular, X is geometrically
connected over k if and only if X is connected.

Proof. Since k is separably algebraically closed we see that k′ is geometrically con-
nected over k, see Algebra, Lemma 10.48.4. Hence Z = Spec(k′) is geometrically
connected over k by Varieties, Lemma 33.7.5. Since Xk′ = Z ×k X the result is a
special case of Lemma 72.12.3. □

Lemma 72.12.5.0A13 Let k be a field. Let X be an algebraic space over k. Let k be a
separable algebraic closure of k. Then X is geometrically connected if and only if
the base change Xk is connected.

Proof. Assume Xk is connected. Let k′/k be a field extension. There exists a field
extension k′

/k such that k′ embeds into k′ as an extension of k. By Lemma 72.12.4
we see that X

k
′ is connected. Since X

k
′ → Xk′ is surjective we conclude that Xk′

is connected as desired. □

Let k be a field. Let k/k be a (possibly infinite) Galois extension. For example
k could be the separable algebraic closure of k. For any σ ∈ Gal(k/k) we get a
corresponding automorphism Spec(σ) : Spec(k) −→ Spec(k). Note that Spec(σ) ◦
Spec(τ) = Spec(τ ◦ σ). Hence we get an action

Gal(k/k)opp × Spec(k) −→ Spec(k)

of the opposite group on the scheme Spec(k). Let X be an algebraic space over k.
Since Xk = Spec(k) ×Spec(k) X by definition we see that the action above induces
a canonical action

(72.12.5.1)0A14 Gal(k/k)opp ×Xk −→ Xk.

Lemma 72.12.6.0A15 Let k be a field. Let X be an algebraic space over k. Let k be
a (possibly infinite) Galois extension of k. Let V ⊂ Xk be a quasi-compact open.
Then

(1) there exists a finite subextension k/k′/k and a quasi-compact open V ′ ⊂
Xk′ such that V = (V ′)k,

(2) there exists an open subgroup H ⊂ Gal(k/k) such that σ(V ) = V for all
σ ∈ H.
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Proof. Choose a scheme U and a surjective étale morphism U → X. Choose a
quasi-compact open W ⊂ Uk whose image in Xk is V . This is possible because
|Uk| → |Xk| is continuous and because |Uk| has a basis of quasi-compact opens. We
can apply Varieties, Lemma 33.7.9 to W ⊂ Uk to obtain the lemma. □

Lemma 72.12.7.0A16 Let k be a field. Let k/k be a (possibly infinite) Galois extension.
Let X be an algebraic space over k. Let T ⊂ |Xk| have the following properties

(1) T is a closed subset of |Xk|,
(2) for every σ ∈ Gal(k/k) we have σ(T ) = T .

Then there exists a closed subset T ⊂ |X| whose inverse image in |Xk′ | is T .

Proof. Let T ⊂ |X| be the image of T . Since |Xk| → |X| is surjective, the statement
means that T is closed and that its inverse image is T . Choose a scheme U and a
surjective étale morphism U → X. By the case of schemes (see Varieties, Lemma
33.7.10) there exists a closed subset T ′ ⊂ |U | whose inverse image in |Uk| is the
inverse image of T . Since |Uk| → |Xk| is surjective, we see that T ′ is the inverse
image of T via |U | → |X|. By our construction of the topology on |X| this means
that T is closed. In the same manner one sees that T is the inverse image of T . □

Lemma 72.12.8.0A17 Let k be a field. Let X be an algebraic space over k. The following
are equivalent

(1) X is geometrically connected,
(2) for every finite separable field extension k′/k the algebraic space Xk′ is

connected.

Proof. This proof is identical to the proof of Varieties, Lemma 33.7.11 except that
we replace Varieties, Lemma 33.7.7 by Lemma 72.12.5, we replace Varieties, Lemma
33.7.9 by Lemma 72.12.6, and we replace Varieties, Lemma 33.7.10 by Lemma
72.12.7. We urge the reader to read that proof in stead of this one.
It follows immediately from the definition that (1) implies (2). Assume that X is
not geometrically connected. Let k ⊂ k be a separable algebraic closure of k. By
Lemma 72.12.5 it follows that Xk is disconnected. Say Xk = U ⨿ V with U and V
open, closed, and nonempty algebraic subspaces of Xk.

Suppose that W ⊂ X is any quasi-compact open subspace. Then Wk ∩ U and
Wk ∩ V are open and closed subspaces of Wk. In particular Wk ∩ U and Wk ∩ V
are quasi-compact, and by Lemma 72.12.6 both Wk ∩ U and Wk ∩ V are defined
over a finite subextension and invariant under an open subgroup of Gal(k/k). We
will use this without further mention in the following.
Pick W0 ⊂ X quasi-compact open subspace such that both W0,k ∩U and W0,k ∩ V
are nonempty. Choose a finite subextension k/k′/k and a decomposition W0,k′ =
U ′

0 ⨿ V ′
0 into open and closed subsets such that W0,k ∩ U = (U ′

0)k and W0,k ∩ V =
(V ′

0)k. Let H = Gal(k/k′) ⊂ Gal(k/k). In particular σ(W0,k ∩ U) = W0,k ∩ U and
similarly for V .
Having chosen W0, k′ as above, for every quasi-compact open subspace W ⊂ X we
set

UW =
⋂

σ∈H
σ(Wk ∩ U), VW =

⋃
σ∈H

σ(Wk ∩ V ).
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Now, since Wk ∩ U and Wk ∩ V are fixed by an open subgroup of Gal(k/k) we see
that the union and intersection above are finite. Hence UW and VW are both open
and closed subspaces. Also, by construction Wk̄ = UW ⨿ VW .
We claim that if W ⊂W ′ ⊂ X are quasi-compact open subspaces, then Wk∩UW ′ =
UW and Wk ∩ VW ′ = VW . Verification omitted. Hence we see that upon defining
U =

⋃
W⊂X UW and V =

⋃
W⊂X VW we obtain Xk = U ⨿ V is a disjoint union

of open and closed subsets. It is clear that V is nonempty as it is constructed by
taking unions (locally). On the other hand, U is nonempty since it contains W0∩U
by construction. Finally, U, V ⊂ Xk̄ are closed and H-invariant by construction.
Hence by Lemma 72.12.7 we have U = (U ′)k̄, and V = (V ′)k̄ for some closed
U ′, V ′ ⊂ Xk′ . Clearly Xk′ = U ′ ⨿ V ′ and we see that Xk′ is disconnected as
desired. □

72.13. Geometrically irreducible algebraic spaces

0DMT Spaces, Example 65.14.9 shows that it is best not to think about irreducible al-
gebraic spaces in complete generality1. For decent (for example quasi-separated)
algebraic spaces this kind of disaster doesn’t happen. Thus we make the following
definition only under the assumption that our algebraic space is decent.

Definition 72.13.1.0DMU Let k be a field. Let X be a decent algebraic space over k. We
say X is geometrically irreducible if the topological space |Xk′ | is irreducible2 for
any field extension k′ of k.

Observe that Xk′ is a decent algebraic space (Decent Spaces, Lemma 68.6.5). Hence
the topological space |Xk′ | is sober. Decent Spaces, Proposition 68.12.4.

72.14. Geometrically integral algebraic spaces

0DMV Recall that integral algebraic spaces are by definition decent, see Section 72.4.

Definition 72.14.1.0DMW Let X be an algebraic space over the field k. We say X is
geometrically integral over k if the algebraic space Xk′ is integral (Definition 72.4.1)
for every field extension k′ of k.

In particularX is a decent algebraic space. We can relate this to being geometrically
reduced and geometrically irreducible as follows.

Lemma 72.14.2.0DMX Let k be a field. Let X be a decent algebraic space over k. Then
X is geometrically integral over k if and only if X is both geometrically reduced
and geometrically irreducible over k.

Proof. This is an immediate consequence of the definitions because our notion of
integral (in the presence of decency) is equivalent to reduced and irreducible. □

Lemma 72.14.3.0DMY Let k be a field. Let X be a proper algebraic space over k.
(1) A = H0(X,OX) is a finite dimensional k-algebra,
(2) A =

∏
i=1,...,nAi is a product of Artinian local k-algebras, one factor for

each connected component of |X|,

1To be sure, if we say “the algebraic space X is irreducible”, we probably mean to say “the
topological space |X| is irreducible”.

2An irreducible space is nonempty.
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(3) if X is reduced, then A =
∏
i=1,...,n ki is a product of fields, each a finite

extension of k,
(4) if X is geometrically reduced, then ki is finite separable over k,
(5) if X is geometrically connected, then A is geometrically irreducible over

k,
(6) if X is geometrically irreducible, then A is geometrically irreducible over

k,
(7) if X is geometrically reduced and connected, then A = k, and
(8) if X is geometrically integral, then A = k.

Proof. By Cohomology of Spaces, Lemma 69.20.3 we see that A = H0(X,OX) is a
finite dimensional k-algebra. This proves (1).
Then A is a product of local rings by Algebra, Lemma 10.53.2 and Algebra, Propo-
sition 10.60.7. If X = Y ⨿ Z with Y and Z open subspaces of X, then we obtain
an idempotent e ∈ A by taking the section of OX which is 1 on Y and 0 on Z.
Conversely, if e ∈ A is an idempotent, then we get a corresponding decomposition
of |X|. Finally, as |X| is a Noetherian topological space (by Morphisms of Spaces,
Lemma 67.28.6 and Properties of Spaces, Lemma 66.24.2) its connected compo-
nents are open. Hence the connected components of |X| correspond 1-to-1 with
primitive idempotents of A. This proves (2).
If X is reduced, then A is reduced (Properties of Spaces, Lemma 66.21.4). Hence
the local rings Ai = ki are reduced and therefore fields (for example by Algebra,
Lemma 10.25.1). This proves (3).
If X is geometrically reduced, then same thing is true for A ⊗k k = H0(Xk,OXk)
(see Cohomology of Spaces, Lemma 69.11.2 for equality). This implies that ki⊗k k
is a product of fields and hence ki/k is separable for example by Algebra, Lemmas
10.44.1 and 10.44.3. This proves (4).
If X is geometrically connected, then A⊗k k = H0(Xk,OXk) is a zero dimensional
local ring by part (2) and hence its spectrum has one point, in particular it is
irreducible. Thus A is geometrically irreducible. This proves (5). Of course (5)
implies (6).
IfX is geometrically reduced and connected, then A = k1 is a field and the extension
k1/k is finite separable and geometrically irreducible. However, then k1 ⊗k k is a
product of [k1 : k] copies of k and we conclude that k1 = k. This proves (7). Of
course (7) implies (8). □

Lemma 72.14.4.0DMZ Let k be a field. Let X be a proper integral algebraic space over
k. Let L be an invertible OX -module. If H0(X,L) and H0(X,L⊗−1) are both
nonzero, then L ∼= OX .

Proof. Let s ∈ H0(X,L) and t ∈ H0(X,L⊗−1) be nonzero sections. Let x ∈ |X| be
a point in the support of s. Choose an affine étale neighbourhood (U, u)→ (X,x)
such that L|U ∼= OU . Then s|U corresponds to a nonzero regular function on the
reduced (because X is reduced) scheme U and hence is nonvanishing in a generic
point of an irreducible component of U . By Decent Spaces, Lemma 68.20.1 we
conclude that the generic point η of |X| is in the support of s. The same is true
for t. Then of course st must be nonzero because the local ring of X at η is a field
(by aforementioned lemma the local ring has dimension zero, as X is reduced the
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local ring is reduced, and Algebra, Lemma 10.25.1). However, we have seen that
K = H0(X,OX) is a field in Lemma 72.14.3. Thus st is everywhere nonzero and
we see that s : OX → L is an isomorphism. □

72.15. Dimension

0EDA In this section we continue the discussion about dimension. Here is a list of previous
material:

(1) dimension is defined in Properties of Spaces, Section 66.9,
(2) dimension of local ring is defined in Properties of Spaces, Section 66.10,
(3) a couple of results in Properties of Spaces, Lemmas 66.22.4 and 66.22.5,
(4) relative dimension is defined in Morphisms of Spaces, Section 67.33,
(5) results on dimension of fibres in Morphisms of Spaces, Section 67.34,
(6) a weak form of the dimension formula Morphisms of Spaces, Section 67.35,
(7) a result on smoothness and dimension Morphisms of Spaces, Lemma

67.37.10,
(8) dimension is dim(|X|) for decent spaces Decent Spaces, Lemma 68.12.5,
(9) quasi-finite maps and dimension Decent Spaces, Lemmas 68.12.6 and

68.12.7.
In More on Morphisms of Spaces, Section 76.31 we will discuss jumping of dimension
in fibres of a finite type morphism.

Lemma 72.15.1.0EDB Let S be a scheme. Let f : X → Y be an integral morphism
of algebraic spaces. Then dim(X) ≤ dim(Y ). If f is surjective then dim(X) =
dim(Y ).

Proof. Choose V → Y surjective étale with V a scheme. Then U = X ×Y V is a
scheme and U → V is integral (and surjective if f is surjective). By Properties of
Spaces, Lemma 66.22.5 we have dim(X) = dim(U) and dim(Y ) = dim(V ). Thus
the result follows from the case of schemes which is Morphisms, Lemma 29.44.9. □

Lemma 72.15.2.0EDC Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that

(1) Y is locally Noetherian,
(2) X and Y are integral algebraic spaces,
(3) f is dominant, and
(4) f is locally of finite type.

If x ∈ |X| and y ∈ |Y | are the generic points, then
dim(X) ≤ dim(Y ) + transcendence degree of x/y.

If f is proper, then equality holds.

Proof. Recall that |X| and |Y | are irreducible sober topological spaces, see discus-
sion following Definition 72.4.1. Thus the fact that f is dominant means that |f |
maps x to y. Moreover, x ∈ |X| is the unique point at which the local ring of X has
dimension 0, see Decent Spaces, Lemma 68.20.1. By Morphisms of Spaces, Lemma
67.35.1 we see that the dimension of the local ring of X at any point x′ ∈ |X| is
at most the dimension of the local ring of Y at y′ = f(x′) plus the transcendence
degree of x/y. Since the dimension of X, resp. dimension of Y is the supremum
of the dimensions of the local rings at x′, resp. y′ (Properties of Spaces, Lemma
66.10.3) we conclude the inequality holds.
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Assume f is proper. Let V ⊂ Y be a nonempty quasi-compact open subspace. If
we can prove the equality for the morphism f−1(V )→ V , then we get the equality
for X → Y . Thus we may assume that X and Y are quasi-compact. Observe that
X is quasi-separated as a locally Noetherian decent algebraic space, see Decent
Spaces, Lemma 68.14.1. Thus we may choose Y ′ → Y finite surjective where Y ′

is a scheme, see Limits of Spaces, Proposition 70.16.1. After replacing Y ′ by a
suitable closed subscheme, we may assume Y ′ is integral, see for example the more
general Lemma 72.8.5. By the same lemma, we may choose a closed subspace
X ′ ⊂ X ×Y Y ′ such that X ′ is integral and X ′ → X is finite surjective. Now
X ′ is also locally Noetherian (Morphisms of Spaces, Lemma 67.23.5) and we can
use Limits of Spaces, Proposition 70.16.1 once more to choose a finite surjective
morphism X ′′ → X ′ with X ′′ a scheme. As before we may assume that X ′′ is
integral. Picture

X ′′

��

// X

f

��
Y ′ // Y

By Lemma 72.15.1 we have dim(X ′′) = dim(X) and dim(Y ′) = dim(Y ). Since
X and Y have open neighbourhoods of x, resp. y which are schemes, we readily
see that the generic points x′′ ∈ X ′′, resp. y′ ∈ Y ′ are the unique points mapping
to x, resp. y and that the residue field extensions κ(x′′)/κ(x) and κ(y′)/κ(y) are
finite. This implies that the transcendence degree of x′′/y′ is the same as the
transcendence degree of x/y. Thus the equality follows from the case of schemes
whicn is Morphisms, Lemma 29.52.4. □

72.16. Spaces smooth over fields

06M0 This section is the analogue of Varieties, Section 33.25.

Lemma 72.16.1.06M1 Let k be a field. Let X be an algebraic space smooth over k.
Then X is a regular algebraic space.

Proof. Choose a scheme U and a surjective étale morphism U → X. The morphism
U → Spec(k) is smooth as a composition of an étale (hence smooth) morphism and
a smooth morphism (see Morphisms of Spaces, Lemmas 67.39.6 and 67.37.2). Hence
U is regular by Varieties, Lemma 33.25.3. By Properties of Spaces, Definition 66.7.2
this means that X is regular. □

Lemma 72.16.2.07W4 Let k be a field. Let X be an algebraic space smooth over Spec(k).
The set of x ∈ |X| which are image of morphisms Spec(k′)→ X with k′ ⊃ k finite
separable is dense in |X|.

Proof. Choose a scheme U and a surjective étale morphism U → X. The morphism
U → Spec(k) is smooth as a composition of an étale (hence smooth) morphism and
a smooth morphism (see Morphisms of Spaces, Lemmas 67.39.6 and 67.37.2). Hence
we can apply Varieties, Lemma 33.25.6 to see that the closed points of U whose
residue fields are finite separable over k are dense. This implies the lemma by our
definition of the topology on |X|. □

https://stacks.math.columbia.edu/tag/06M1
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72.17. Euler characteristics

0DN0 In this section we prove some elementary properties of Euler characteristics of
coherent sheaves on algebraic spaces proper over fields.

Definition 72.17.1.0DN1 Let k be a field. Let X be a proper algebraic over k. Let F be
a coherent OX -module. In this situation the Euler characteristic of F is the integer

χ(X,F) =
∑

i
(−1)i dimkH

i(X,F).

For justification of the formula see below.

In the situation of the definition only a finite number of the vector spaces Hi(X,F)
are nonzero (Cohomology of Spaces, Lemma 69.7.3) and each of these spaces is
finite dimensional (Cohomology of Spaces, Lemma 69.20.3). Thus χ(X,F) ∈ Z is
well defined. Observe that this definition depends on the field k and not just on
the pair (X,F).

Lemma 72.17.2.0DN2 Let k be a field. Let X be a proper algebraic space over k. Let
0 → F1 → F2 → F3 → 0 be a short exact sequence of coherent modules on X.
Then

χ(X,F2) = χ(X,F1) + χ(X,F3)

Proof. Consider the long exact sequence of cohomology

0→ H0(X,F1)→ H0(X,F2)→ H0(X,F3)→ H1(X,F1)→ . . .

associated to the short exact sequence of the lemma. The rank-nullity theorem in
linear algebra shows that

0 = dimH0(X,F1)− dimH0(X,F2) + dimH0(X,F3)− dimH1(X,F1) + . . .

This immediately implies the lemma. □

Lemma 72.17.3.0EDD Let k be a field. Let f : Y → X be a morphism of algebraic
spaces proper over k. Let G be a coherent OY -module. Then

χ(Y,G) =
∑

(−1)iχ(X,Rif∗G)

Proof. The formula makes sense: the sheaves Rif∗G are coherent and only a finite
number of them are nonzero, see Cohomology of Spaces, Lemmas 69.20.2 and 69.8.1.
By Cohomology on Sites, Lemma 21.14.5 there is a spectral sequence with

Ep,q2 = Hp(X,Rqf∗G)

converging to Hp+q(Y,G). By finiteness of cohomology on X we see that only a
finite number of Ep,q2 are nonzero and each Ep,q2 is a finite dimensional vector space.
It follows that the same is true for Ep,qr for r ≥ 2 and that∑

(−1)p+q dimk E
p,q
r

is independent of r. Since for r large enough we have Ep,qr = Ep,q∞ and since
convergence means there is a filtration on Hn(Y,G) whose graded pieces are Ep,q∞
with p + 1 = n (this is the meaning of convergence of the spectral sequence), we
conclude. □

https://stacks.math.columbia.edu/tag/0DN1
https://stacks.math.columbia.edu/tag/0DN2
https://stacks.math.columbia.edu/tag/0EDD


72.18. NUMERICAL INTERSECTIONS 5650

72.18. Numerical intersections

0DN3 In this section we play around with the Euler characteristic of coherent sheaves
on proper algebraic spaces to obtain numerical intersection numbers for invertible
modules. Our main tool will be the following lemma.

Lemma 72.18.1.0DN4 Let k be a field. Let X be a proper algebraic space over k. Let
F be a coherent OX -module. Let L1, . . . ,Lr be invertible OX -modules. The map

(n1, . . . , nr) 7−→ χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r )
is a numerical polynomial in n1, . . . , nr of total degree at most the dimension of the
scheme theoretic support of F .

Proof. Let Z ⊂ X be the scheme theoretic support of F . Then F = i∗G for some
coherent OZ-module G (Cohomology of Spaces, Lemma 69.12.7) and we have

χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r ) = χ(Z,G ⊗ i∗L⊗n1
1 ⊗ . . .⊗ i∗L⊗nr

r )
by the projection formula (Cohomology on Sites, Lemma 21.50.1) and Cohomology
of Spaces, Lemma 69.8.3. Since |Z| = Supp(F) we see that it suffices to show

PF (n1, . . . , nr) : (n1, . . . , nr) 7−→ χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r )
is a numerical polynomial in n1, . . . , nr of total degree at most dim(X). Let us say
property P holds for the coherent OX -module F if the above is true.
We will prove this statement by devissage, more precisely we will check conditions
(1), (2), and (3) of Cohomology of Spaces, Lemma 69.14.6 are satisfied.
Verification of condition (1). Let

0→ F1 → F2 → F3 → 0
be a short exact sequence of coherent sheaves on X. By Lemma 72.17.2 we have

PF2(n1, . . . , nr) = PF1(n1, . . . , nr) + PF3(n1, . . . , nr)
Then it is clear that if 2-out-of-3 of the sheaves Fi have property P, then so does
the third.
Condition (2) follows because PF⊕m(n1, . . . , nr) = mPF (n1, . . . , nr).
Proof of (3). Let i : Z → X be a reduced closed subspace with |Z| irreducible. We
have to find a coherent module G on X whose support is Z such that P holds for
G. We will give two constructions: one using Chow’s lemma and one using a finite
cover by a scheme.
Proof existence G using a finite cover by a scheme. Choose π : Z ′ → Z finite
surjective where Z ′ is a scheme, see Limits of Spaces, Proposition 70.16.1. Set
G = i∗π∗OZ′ = (i ◦ π)∗OZ′ . Note that Z ′ is proper over k and that the support of
G is Y (details omitted). We have
R(π◦i)∗(OZ′) = G and R(π◦i)∗(π∗i∗(L⊗n1

1 ⊗. . .⊗L⊗nr
r )) = G⊗L⊗n1

1 ⊗. . .⊗L⊗nr
r

The first equality holds because i ◦ π is affine (Cohomology of Spaces, Lemma
69.8.2) and the second equality follows from the first and the projection formula
(Cohomology on Sites, Lemma 21.50.1). Using Leray (Cohomology on Sites, Lemma
21.14.6) we obtain

PG(n1, . . . , nr) = χ(Z ′, π∗i∗(L⊗n1
1 ⊗ . . .⊗ L⊗nr

r ))

https://stacks.math.columbia.edu/tag/0DN4
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By the case of schemes (Varieties, Lemma 33.45.1) this is a numerical polynomial
in n1, . . . , nr of degree at most dim(Z ′). We conclude because dim(Z ′) ≤ dim(Z) ≤
dim(X). The first inequality follows from Decent Spaces, Lemma 68.12.7.
Proof existence G using Chow’s lemma. We apply Cohomology of Spaces, Lemma
69.18.1 to the morphism Z → Spec(k). Thus we get a surjective proper morphism
f : Y → Z over Spec(k) where Y is a closed subscheme of Pm

k for some m. After
replacing Y by a closed subscheme we may assume that Y is integral and f : Y → Z
is an alteration, see Lemma 72.8.5. Denote OY (n) the pullback of OPm

k
(n). Pick

n > 0 such that Rpf∗OY (n) = 0 for p > 0, see Cohomology of Spaces, Lemma
69.20.1. We claim that G = i∗f∗OY (n) satisfies P. Namely, by the case of schemes
(Varieties, Lemma 33.45.1) we know that

(n1, . . . , nr) 7−→ χ(Y,OY (n)⊗ f∗i∗(L⊗n1
1 ⊗ . . .⊗ L⊗nr

r ))
is a numerical polynomial in n1, . . . , nr of total degree at most dim(Y ). On the
other hand, by the projection formula (Cohomology on Sites, Lemma 21.50.1)
i∗Rf∗

(
OY (n)⊗ f∗i∗(L⊗n1

1 ⊗ . . .⊗ L⊗nr
r )

)
= i∗Rf∗OY (n)⊗ L⊗n1

1 ⊗ . . .⊗ L⊗nr
r

= G ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r

the last equality by our choice of n. By Leray (Cohomology on Sites, Lemma
21.14.6) we get

χ(Y,OY (n)⊗ f∗i∗(L⊗n1
1 ⊗ . . .⊗ L⊗nr

r )) = PG(n1, . . . , nr)
and we conclude because dim(Y ) ≤ dim(Z) ≤ dim(X). The first inequality holds
by Morphisms of Spaces, Lemma 67.35.2 and the fact that Y → Z is an alteration
(and hence the induced extension of residue fields in generic points is finite). □

The following lemma roughly shows that the leading coefficient only depends on
the length of the coherent module in the generic points of its support.

Lemma 72.18.2.0EDE Let k be a field. Let X be a proper algebraic space over k. Let
F be a coherent OX -module. Let L1, . . . ,Lr be invertible OX -modules. Let d =
dim(Supp(F)). Let Zi ⊂ X be the irreducible components of Supp(F) of dimension
d. Let xi be a geometric generic point of Zi and set mi = lengthOX,xi

(Fxi). Then

χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r )−
∑

i
mi χ(Zi,L⊗n1

1 ⊗ . . .⊗ L⊗nr
r |Zi)

is a numerical polynomial in n1, . . . , nr of total degree < d.

Proof. We first prove a slightly weaker statement. Namely, say dim(X) = N and
let Xi ⊂ X be the irreducible components of dimension N . Let xi be a geometric
generic point of Xi. The étale local ring OX,xi is Noetherian of dimension 0, hence
for every coherent OX -module F the length

mi(F) = lengthOX,xi
(Fxi)

is an integer ≥ 0. We claim that

E(F) = χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r )−
∑

i
mi(F) χ(Zi,L⊗n1

1 ⊗ . . .⊗ L⊗nr
r |Zi)

is a numerical polynomial in n1, . . . , nr of total degree < N . We will prove this
using Cohomology of Spaces, Lemma 69.14.6. For any short exact sequence 0 →
F ′ → F → F ′′ → 0 we have E(F) = E(F ′) + E(F ′′). This follows from additivity
of Euler characteristics (Lemma 72.17.2) and additivity of lengths (Algebra, Lemma

https://stacks.math.columbia.edu/tag/0EDE
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10.52.3). This immediately implies properties (1) and (2) of Cohomology of Spaces,
Lemma 69.14.6. Finally, property (3) holds because for G = OZ for any Z ⊂ X
irreducible reduced closed subspace. Namely, if Z = Zi0 for some i0, then mi(G) =
δi0i and we conclude E(G) = 0. If Z ̸= Zi for any i, then mi(G) = 0 for all i,
dim(Z) < N and we get the result from Lemma 72.18.1.

Proof of the statement as in the lemma. Let Z ⊂ X be the scheme theoretic
support of F . Then F = i∗G for some coherent OZ-module G (Cohomology of
Spaces, Lemma 69.12.7) and we have

χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r ) = χ(Z,G ⊗ i∗L⊗n1
1 ⊗ . . .⊗ i∗L⊗nr

r )

by the projection formula (Cohomology on Sites, Lemma 21.50.1) and Cohomology
of Spaces, Lemma 69.8.3. Since |Z| = Supp(F) we see that Zi ⊂ Z for all i and
we see that these are the irreducible components of Z of dimension d. We may and
do think of xi as a geometric point of Z. The map i♯ : OX → i∗OZ determines a
surjection

OX,xi → OZ,xi
Via this map we have an isomorphism of modules Gxi = Fxi as F = i∗G. This
implies that

mi = lengthOX,xi
(Fxi) = lengthOZ,xi

(Gxi)

Thus we see that the expression in the lemma is equal to

χ(Z,G ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r )−
∑

i
mi χ(Zi,L⊗n1

1 ⊗ . . .⊗ L⊗nr
r |Zi)

and the result follows from the discussion in the first paragraph (applied with Z in
stead of X). □

Definition 72.18.3.0EDF Let k be a field. Let X be a proper algebraic space over k.
Let i : Z → X be a closed subspace of dimension d. Let L1, . . . ,Ld be invertible
OX -modules. We define the intersection number (L1 · · · Ld ·Z) as the coefficient of
n1 . . . nd in the numerical polynomial

χ(X, i∗OZ ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nd

d ) = χ(Z,L⊗n1
1 ⊗ . . .⊗ L⊗nd

d |Z)

In the special case that L1 = . . . = Ld = L we write (Ld · Z).

The displayed equality in the definition follows from the projection formula (Co-
homology, Section 20.54) and Cohomology of Schemes, Lemma 30.2.4. We prove a
few lemmas for these intersection numbers.

Lemma 72.18.4.0EDG In the situation of Definition 72.18.3 the intersection number
(L1 · · · Ld · Z) is an integer.

Proof. Any numerical polynomial of degree e in n1, . . . , nd can be written uniquely
as a Z-linear combination of the functions

(
n1
k1

)(
n2
k2

)
. . .
(
nd
kd

)
with k1 + . . .+ kd ≤ e.

Apply this with e = d. Left as an exercise. □

Lemma 72.18.5.0EDH In the situation of Definition 72.18.3 the intersection number
(L1 · · · Ld · Z) is additive: if Li = L′

i ⊗ L′′
i , then we have

(L1 · · · Li · · · Ld · Z) = (L1 · · · L′
i · · · Ld · Z) + (L1 · · · L′′

i · · · Ld · Z)

https://stacks.math.columbia.edu/tag/0EDF
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Proof. This is true because by Lemma 72.18.1 the function

(n1, . . . , ni−1, n
′
i, n

′′
i , ni+1, . . . , nd) 7→ χ(Z,L⊗n1

1 ⊗. . .⊗(L′
i)⊗n′

i⊗(L′′
i )⊗n′′

i ⊗. . .⊗L⊗nd
d |Z)

is a numerical polynomial of total degree at most d in d+ 1 variables. □

Lemma 72.18.6.0EDI In the situation of Definition 72.18.3 let Zi ⊂ Z be the irreducible
components of dimension d. Let mi = lengthOX,xi

(OZ,xi) where xi is a geometric
generic point of Zi. Then

(L1 · · · Ld · Z) =
∑

mi(L1 · · · Ld · Zi)

Proof. Immediate from Lemma 72.18.2 and the definitions. □

Lemma 72.18.7.0EDJ Let k be a field. Let f : Y → X be a morphism of algebraic
spaces proper over k. Let Z ⊂ Y be an integral closed subspace of dimension d and
let L1, . . . ,Ld be invertible OX -modules. Then

(f∗L1 · · · f∗Ld · Z) = deg(f |Z : Z → f(Z))(L1 · · · Ld · f(Z))

where deg(Z → f(Z)) is as in Definition 72.5.2 or 0 if dim(f(Z)) < d.

Proof. In the statement f(Z) ⊂ X is the scheme theoretic image of f and it is also
the reduced induced algebraic space structure on the closed subset f(|Z|) ⊂ X,
see Morphisms of Spaces, Lemma 67.16.4. Then Z and f(Z) are reduced, proper
(hence decent) algebraic spaces over k, whence integral (Definition 72.4.1). The left
hand side is computed using the coefficient of n1 . . . nd in the function

χ(Y,OZ ⊗ f∗L⊗n1
1 ⊗ . . .⊗ f∗L⊗nd

d ) =
∑

(−1)iχ(X,Rif∗OZ ⊗L⊗n1
1 ⊗ . . .⊗L⊗nd

d )

The equality follows from Lemma 72.17.3 and the projection formula (Cohomol-
ogy, Lemma 20.54.2). If f(Z) has dimension < d, then the right hand side is
a polynomial of total degree < d by Lemma 72.18.1 and the result is true. As-
sume dim(f(Z)) = d. Then by dimension theory (Lemma 72.15.2) we find that
the equivalent conditions (1) – (5) of Lemma 72.5.1 hold. Thus deg(Z → f(Z))
is well defined. By the already used Lemma 72.5.1 we find f : Z → f(Z) is fi-
nite over a nonempty open V of f(Z); after possibly shrinking V we may assume
V is a scheme. Let ξ ∈ V be the generic point. Thus deg(f : Z → f(Z)) the
length of the stalk of f∗OZ at ξ over OX,ξ and the stalk of Rif∗OX at ξ is zero
for i > 0 (for example by Cohomology of Spaces, Lemma 69.4.1). Thus the terms
χ(X,Rif∗OZ ⊗ L⊗n1

1 ⊗ . . .⊗ L⊗nd
d ) with i > 0 have total degree < d and

χ(X, f∗OZ⊗L⊗n1
1 ⊗. . .⊗L⊗nd

d ) = deg(f : Z → f(Z))χ(f(Z),L⊗n1
1 ⊗. . .⊗L⊗nd

d |f(Z))

modulo a polynomial of total degree < d by Lemma 72.18.2. The desired result
follows. □

Lemma 72.18.8.0EDK Let k be a field. Let X be a proper algebraic space over k.
Let Z ⊂ X be a closed subspace of dimension d. Let L1, . . . ,Ld be invertible
OX -modules. Assume there exists an effective Cartier divisor D ⊂ Z such that
L1|Z ∼= OZ(D). Then

(L1 · · · Ld · Z) = (L2 · · · Ld ·D)

https://stacks.math.columbia.edu/tag/0EDI
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Proof. We may replace X by Z and Li by Li|Z . Thus we may assume X = Z and
L1 = OX(D). Then L−1

1 is the ideal sheaf of D and we can consider the short exact
sequence

0→ L⊗−1
1 → OX → OD → 0

Set P (n1, . . . , nd) = χ(X,L⊗n1
1 ⊗ . . . ⊗ L⊗nd

d ) and Q(n1, . . . , nd) = χ(D,L⊗n1
1 ⊗

. . .⊗ L⊗nd
d |D). We conclude from additivity (Lemma 72.17.2) that

P (n1, . . . , nd)− P (n1 − 1, n2, . . . , nd) = Q(n1, . . . , nd)
Because the total degree of P is at most d, we see that the coefficient of n1 . . . nd
in P is equal to the coefficient of n2 . . . nd in Q. □
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CHAPTER 73

Topologies on Algebraic Spaces

03Y4 73.1. Introduction

03Y5 In this chapter we introduce some topologies on the category of algebraic spaces.
Compare with the material in [Gro71], [BLR90], [LMB00] and [Knu71]. Before
doing so we would like to point out that there are many different choices of sites
(as defined in Sites, Definition 7.6.2) which give rise to the same notion of sheaf on
the underlying category. Hence our choices may be slightly different from those in
the references but ultimately lead to the same cohomology groups, etc.

73.2. The general procedure

03Y6 In this section we explain a general procedure for producing the sites we will be
working with. This discussion will make little or no sense unless the reader has
read Topologies, Section 34.2.

Let S be a base scheme. Take any category Schα constructed as in Sets, Lemma
3.9.2 starting with S and any set of schemes over S you want to be included. Choose
any set of coverings Covfppf on Schα as in Sets, Lemma 3.11.1 starting with the
category Schα and the class of fppf coverings. Let Schfppf denote the big fppf site
so obtained, and let (Sch/S)fppf denote the corresponding big fppf site of S. (The
above is entirely as prescribed in Topologies, Section 34.7.)

Given choices as above the category of algebraic spaces over S has a set of iso-
morphism classes. One way to see this is to use the fact that any algebraic space
over S is of the form U/R for some étale equivalence relation j : R → U ×S U
with U,R ∈ Ob((Sch/S)fppf ), see Spaces, Lemma 65.9.1. Hence we can find a full
subcategory Spaces/S of the category of algebraic spaces over S which has a set of
objects such that each algebraic space is isomorphic to an object of Spaces/S. We
fix a choice of such a category.

In the sections below, given a topology τ , the big site (Spaces/S)τ (resp. the big
site (Spaces/X)τ of an algebraic space X over S) has as underlying category the
category Spaces/S (resp. the subcategory Spaces/X of Spaces/S, see Categories,
Example 4.2.13). The procedure for turning this into a site is as usual by defining
a class of τ -coverings and using Sets, Lemma 3.11.1 to choose a sufficiently large
set of coverings which defines the topology.

We point out that the small étale site Xétale of an algebraic space X has already
been defined in Properties of Spaces, Definition 66.18.1. Its objects are schemes
étale over X, of which there are plenty by definition of an algebraic spaces. However,
a more natural site, from the perspective of this chapter (compare Topologies,
Definition 34.4.8) is the site Xspaces,étale of Properties of Spaces, Definition 66.18.2.
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These two sites define the same topos, see Properties of Spaces, Lemma 66.18.3.
We will not redefine these in this chapter; instead we will simply use them.

73.3. Zariski topology

03YD In Spaces, Section 65.12 we introduced the notion of a Zariski covering of an al-
gebraic space by open subspaces. Here is the corresponding notion with open
subspaces replaced by open immersions.

Definition 73.3.1.041G Let S be a scheme, and let X be an algebraic space over S. A
Zariski covering of X is a family of morphisms {fi : Xi → X}i∈I of algebraic spaces
over S such that each fi is an open immersion and such that

|X| =
⋃

i∈I
|fi|(|Xi|),

i.e., the morphisms are jointly surjective.

Although Zariski coverings are occasionally useful the corresponding topology on
the category of algebraic spaces is really too coarse, and not particularly useful.
Still, it does define a site.

Lemma 73.3.2.041H Let S be a scheme. Let X be an algebraic space over S.
(1) If X ′ → X is an isomorphism then {X ′ → X} is a Zariski covering of X.
(2) If {Xi → X}i∈I is a Zariski covering and for each i we have a Zariski

covering {Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is a Zariski covering.
(3) If {Xi → X}i∈I is a Zariski covering and X ′ → X is a morphism of

algebraic spaces then {X ′ ×X Xi → X ′}i∈I is a Zariski covering.

Proof. Omitted. □

73.4. Étale topology

03YC In this section we discuss the notion of a étale covering of algebraic spaces, and
we define the big étale site of an algebraic space. Please compare with Topologies,
Section 34.4.

Definition 73.4.1.041E Let S be a scheme, and let X be an algebraic space over S. An
étale covering of X is a family of morphisms {fi : Xi → X}i∈I of algebraic spaces
over S such that each fi is étale and such that

|X| =
⋃

i∈I
|fi|(|Xi|),

i.e., the morphisms are jointly surjective.

This is exactly the same as Topologies, Definition 34.4.1. In particular, if X and all
the Xi are schemes, then we recover the usual notion of a étale covering of schemes.

Lemma 73.4.2.0DF1 Any Zariski covering is an étale covering.

Proof. This is clear from the definitions and the fact that an open immersion is an
étale morphism (this follows from Morphisms, Lemma 29.36.9 via Spaces, Lemma
65.5.8 as immersions are representable). □

Lemma 73.4.3.041F Let S be a scheme. Let X be an algebraic space over S.
(1) If X ′ → X is an isomorphism then {X ′ → X} is a étale covering of X.

https://stacks.math.columbia.edu/tag/041G
https://stacks.math.columbia.edu/tag/041H
https://stacks.math.columbia.edu/tag/041E
https://stacks.math.columbia.edu/tag/0DF1
https://stacks.math.columbia.edu/tag/041F
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(2) If {Xi → X}i∈I is a étale covering and for each i we have a étale covering
{Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is a étale covering.

(3) If {Xi → X}i∈I is a étale covering and X ′ → X is a morphism of algebraic
spaces then {X ′ ×X Xi → X ′}i∈I is a étale covering.

Proof. Omitted. □

The following lemma tells us that the sites (Spaces/X)étale and (Spaces/X)smooth
have the same categories of sheaves.

Lemma 73.4.4.0CFV Let S be a scheme. Let X be an algebraic space over S. Let
{Xi → X}i∈I be a smooth covering of X. Then there exists an étale covering
{Uj → X}j∈J of X which refines {Xi → X}i∈I .

Proof. First choose a scheme U and a surjective étale morphism U → X. For each i
choose a scheme Wi and a surjective étale morphism Wi → Xi. Then {Wi → X}i∈I
is a smooth covering which refines {Xi → X}i∈I . Hence {Wi ×X U → U}i∈I is a
smooth covering of schemes. By More on Morphisms, Lemma 37.38.7 we can choose
an étale covering {Uj → U} which refines {Wi ×X U → U}. Then {Uj → X}j∈J is
an étale covering refining {Xi → X}i∈I . □

Definition 73.4.5.0DBX Let S be a scheme. A big étale site (Spaces/S)étale is any site
constructed as follows:

(1) Choose a big étale site (Sch/S)étale as in Topologies, Section 34.4.
(2) As underlying category take the category Spaces/S of algebraic spaces

over S (see discussion in Section 73.2 why this is a set).
(3) Choose any set of coverings as in Sets, Lemma 3.11.1 starting with the

category Spaces/S and the class of étale coverings of Definition 73.4.1.

Having defined this, we can localize to get the étale site of an algebraic space.

Definition 73.4.6.0DBY Let S be a scheme. Let (Spaces/S)étale be as in Definition 73.4.5.
Let X be an algebraic space over S, i.e., an object of (Spaces/S)étale. Then the big
étale site (Spaces/X)étale of X is the localization of the site (Spaces/S)étale at X
introduced in Sites, Section 7.25.

Recall that given an algebraic space X over S as in the definition, we already
have defined the small étale sites Xspaces,étale and Xétale, see Properties of Spaces,
Section 66.18. We will silently identify the corresponding topoi using the inclusion
functor Xétale ⊂ Xspaces,étale (Properties of Spaces, Lemma 66.18.3) and we will
call it the small étale topos of X. Next, we establish some relationships between
the topoi associated to these sites.

Lemma 73.4.7.0DF2 Let S be a scheme. Let f : Y → X be a morphism of (Spaces/S)étale.
The inclusion functor Yspaces,étale → (Spaces/X)étale is cocontinuous and induces
a morphism of topoi

if : Sh(Yétale) −→ Sh((Spaces/X)étale)

For a sheaf G on (Spaces/X)étale we have the formula (i−1
f G)(U/Y ) = G(U/X).

The functor i−1
f also has a left adjoint if,! which commutes with fibre products and

equalizers.

https://stacks.math.columbia.edu/tag/0CFV
https://stacks.math.columbia.edu/tag/0DBX
https://stacks.math.columbia.edu/tag/0DBY
https://stacks.math.columbia.edu/tag/0DF2
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Proof. Denote the functor u : Yspaces,étale → (Spaces/X)étale. In other words,
given an étale morphism j : U → Y corresponding to an object of Yspaces,étale we
set u(U → T ) = (f ◦ j : U → S). The category Yspaces,étale has fibre products and
equalizers and u commutes with them. It is immediate that u cocontinuous. The
functor u is also continuous as u transforms coverings to coverings and commutes
with fibre products. Hence the Lemma follows from Sites, Lemmas 7.21.5 and
7.21.6. □

Lemma 73.4.8.0DF3 Let S be a scheme. Let X be an object of (Spaces/S)étale. The
inclusion functor Xspaces,étale → (Spaces/X)étale satisfies the hypotheses of Sites,
Lemma 7.21.8 and hence induces a morphism of sites

πX : (Spaces/X)étale −→ Xspaces,étale

and a morphism of topoi
iX : Sh(Xétale) −→ Sh((Spaces/X)étale)

such that πX ◦ iX = id. Moreover, iX = iidX with iidX as in Lemma 73.4.7. In
particular the functor i−1

X = πX,∗ is described by the rule i−1
X (G)(U/X) = G(U/X).

Proof. In this case the functor u : Xspaces,étale → (Spaces/X)étale, in addition to
the properties seen in the proof of Lemma 73.4.7 above, also is fully faithful and
transforms the final object into the final object. The lemma follows from Sites,
Lemma 7.21.8. □

Definition 73.4.9.0DF4 In the situation of Lemma 73.4.8 the functor i−1
X = πX,∗ is often

called the restriction to the small étale site, and for a sheaf F on the big étale site
we often denote F|Xétale this restriction.

With this notation in place we have for a sheaf F on the big site and a sheaf G on
the small site that

MorSh(Xétale)(F|Xétale ,G) = MorSh((Spaces/X)étale)(F , iX,∗G)
MorSh(Xétale)(G,F|Xétale) = MorSh((Spaces/X)étale)(π−1

X G,F)

Moreover, we have (iX,∗G)|Xétale = G and we have (π−1
X G)|Xétale = G.

Lemma 73.4.10.0DF5 Let S be a scheme. Let f : Y → X be a morphism in (Spaces/S)étale.
The functor

u : (Spaces/Y )étale −→ (Spaces/X)étale, V/Y 7−→ V/X

is cocontinuous, and has a continuous right adjoint
v : (Spaces/X)étale −→ (Spaces/Y )étale, (U → X) 7−→ (U ×X Y → Y ).

They induce the same morphism of topoi
fbig : Sh((Spaces/Y )étale) −→ Sh((Spaces/X)étale)

We have f−1
big (G)(U/Y ) = G(U/X). We have fbig,∗(F)(U/X) = F(U ×X Y/Y ).

Also, f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous and commutes with fibre products
and equalizers (details omitted; compare with the proof of Lemma 73.4.7). Hence
Sites, Lemmas 7.21.5 and 7.21.6 apply and we deduce the formula for f−1

big and the
existence of fbig!. Moreover, the functor v is a right adjoint because given U/Y and

https://stacks.math.columbia.edu/tag/0DF3
https://stacks.math.columbia.edu/tag/0DF4
https://stacks.math.columbia.edu/tag/0DF5
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V/X we have MorX(u(U), V ) = MorY (U, V ×X Y ) as desired. Thus we may apply
Sites, Lemmas 7.22.1 and 7.22.2 to get the formula for fbig,∗. □

Lemma 73.4.11.0DF6 Let S be a scheme. Let f : Y → X be a morphism in (Spaces/S)étale.
(1) We have if = fbig ◦ iT with if as in Lemma 73.4.7 and iT as in Lemma

73.4.8.
(2) The functor Xspaces,étale → Tspaces,étale, (U → X) 7→ (U ×X Y → Y ) is

continuous and induces a morphism of sites

fspaces,étale : Yspaces,étale −→ Xspaces,étale

The corresponding morphism of small étale topoi is denoted

fsmall : Sh(Yétale)→ Sh(Xétale)

We have fsmall,∗(F)(U/X) = F(U ×X Y/Y ).
(3) We have a commutative diagram of morphisms of sites

Yspaces,étale

fspaces,étale

��

(Spaces/Y )étale
fbig

��

πY
oo

Xspaces,étale (Spaces/X)étale
πXoo

so that fsmall ◦ πY = πX ◦ fbig as morphisms of topoi.
(4) We have fsmall = πX ◦ fbig ◦ iY = πX ◦ if .

Proof. The equality if = fbig ◦ iY follows from the equality i−1
f = i−1

T ◦ f
−1
big which

is clear from the descriptions of these functors above. Thus we see (1).

The functor u : Xspaces,étale → Yspaces,étale, u(U → X) = (U ×X Y → Y ) was
shown to give rise to a morphism of sites and correspong morphism of small étale
topoi in Properties of Spaces, Lemma 66.18.8. The description of the pushforward
is clear.

Part (3) follows because πX and πY are given by the inclusion functors and fspaces,étale
and fbig by the base change functors U 7→ U ×X Y .

Statement (4) follows from (3) by precomposing with iY . □

In the situation of the lemma, using the terminology of Definition 73.4.9 we have:
for F a sheaf on the big étale site of Y

(fbig,∗F)|Xétale = fsmall,∗(F|Yétale),

This equality is clear from the commutativity of the diagram of sites of the lemma,
since restriction to the small étale site of Y , resp. X is given by πY,∗, resp. πX,∗. A
similar formula involving pullbacks and restrictions is false.

Lemma 73.4.12.0DF7 Let S be a scheme. Given morphisms f : X → Y , g : Y → Z in
(Spaces/S)étale we have gbig ◦ fbig = (g ◦ f)big and gsmall ◦ fsmall = (g ◦ f)small.

Proof. This follows from the simple description of pushforward and pullback for the
functors on the big sites from Lemma 73.4.10. For the functors on the small sites
this follows from the description of the pushforward functors in Lemma 73.4.11. □

https://stacks.math.columbia.edu/tag/0DF6
https://stacks.math.columbia.edu/tag/0DF7
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Lemma 73.4.13.0DF8 Let S be a scheme. Consider a cartesian diagram

Y ′
g′
//

f ′

��

Y

f

��
X ′ g // X

in (Spaces/S)étale. Then i−1
g ◦ fbig,∗ = f ′

small,∗ ◦ (ig′)−1 and g−1
big ◦ fbig,∗ = f ′

big,∗ ◦
(g′
big)−1.

Proof. Since the diagram is cartesian, we have for U ′/X ′ that U ′×X′Y ′ = U ′×XY .
Hence both i−1

g ◦ fbig,∗ and f ′
small,∗ ◦ (ig′)−1 send a sheaf F on (Spaces/Y )étale to

the sheaf U ′ 7→ F(U ′ ×X′ Y ′) on X ′
étale (use Lemmas 73.4.7 and 73.4.10). The

second equality can be proved in the same manner or can be deduced from the very
general Sites, Lemma 7.28.1. □

Remark 73.4.14.0DF9 The sites (Spaces/X)étale and Xspaces,étale come with structure
sheaves. For the small étale site we have seen this in Properties of Spaces, Section
66.21. The structure sheaf O on the big étale site (Spaces/X)étale is defined by
assigning to an object U the global sections of the structure sheaf of U . This makes
sense because after all U is an algebraic space itself hence has a structure sheaf.
Since OU is a sheaf on the étale site of U , the presheaf O so defined satisfies the
sheaf condition for coverings of U , i.e., O is a sheaf. We can upgrade the morphisms
if , πX , iX , fsmall, and fbig defined above to morphisms of ringed sites, respectively
topoi. Let us deal with these one by one.

(1) In Lemma 73.4.7 denote O the structure sheaf on (Spaces/X)étale. We
have (i−1

f O)(U/Y ) = OU (U) = OY (U) by construction. Hence an iso-
morphism i♯f : i−1

f O → OY .
(2) In Lemma 73.4.8 it was noted that iX is a special case of if with f = idX

hence we are back in case (1).
(3) In Lemma 73.4.8 the morphism πX satisfies (πX,∗O)(U) = O(U) = OX(U).

Hence we can use this to define π♯X : OX → πX,∗O.
(4) In Lemma 73.4.11 the extension of fsmall to a morphism of ringed topoi

was discussed in Properties of Spaces, Lemma 66.21.3.
(5) In Lemma 73.4.11 the functor f−1

big is simply the restriction via the inclu-
sion functor (Spaces/Y )étale → (Spaces/X)étale. Let O1 be the structure
sheaf on (Spaces/X)étale and letO2 be the structure sheaf on (Spaces/Y )étale.
We obtain a canonical isomorphism f ♯big : f−1

bigO1 → O2.
Moreover, with these definitions compositions work out correctly too. We omit
giving a detailed statement and proof.

73.5. Smooth topology

03YB In this section we discuss the notion of a smooth covering of algebraic spaces, and we
define the big smooth site of an algebraic space. Please compare with Topologies,
Section 34.5.

Definition 73.5.1.041C Let S be a scheme, and let X be an algebraic space over S.
A smooth covering of X is a family of morphisms {fi : Xi → X}i∈I of algebraic

https://stacks.math.columbia.edu/tag/0DF8
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spaces over S such that each fi is smooth and such that

|X| =
⋃

i∈I
|fi|(|Xi|),

i.e., the morphisms are jointly surjective.

This is exactly the same as Topologies, Definition 34.5.1. In particular, if X and
all the Xi are schemes, then we recover the usual notion of a smooth covering of
schemes.

Lemma 73.5.2.0DFA Any étale covering is a smooth covering, and a fortiori, any Zariski
covering is a smooth covering.

Proof. This is clear from the definitions, the fact that an étale morphism is smooth
(Morphisms of Spaces, Lemma 67.39.6), and Lemma 73.4.2. □

Lemma 73.5.3.041D Let S be a scheme. Let X be an algebraic space over S.
(1) If X ′ → X is an isomorphism then {X ′ → X} is a smooth covering of X.
(2) If {Xi → X}i∈I is a smooth covering and for each i we have a smooth

covering {Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is a smooth covering.
(3) If {Xi → X}i∈I is a smooth covering and X ′ → X is a morphism of

algebraic spaces then {X ′ ×X Xi → X ′}i∈I is a smooth covering.

Proof. Omitted. □

To be continued...

73.6. Syntomic topology

03YA In this section we discuss the notion of a syntomic covering of algebraic spaces,
and we define the big syntomic site of an algebraic space. Please compare with
Topologies, Section 34.6.

Definition 73.6.1.041A Let S be a scheme, and let X be an algebraic space over S. A
syntomic covering of X is a family of morphisms {fi : Xi → X}i∈I of algebraic
spaces over S such that each fi is syntomic and such that

|X| =
⋃

i∈I
|fi|(|Xi|),

i.e., the morphisms are jointly surjective.

This is exactly the same as Topologies, Definition 34.6.1. In particular, if X and
all the Xi are schemes, then we recover the usual notion of a syntomic covering of
schemes.

Lemma 73.6.2.0DFB Any smooth covering is a syntomic covering, and a fortiori, any
étale or Zariski covering is a syntomic covering.

Proof. This is clear from the definitions and the fact that a smooth morphism is
syntomic (Morphisms of Spaces, Lemma 67.37.8), and Lemma 73.5.2. □

Lemma 73.6.3.041B Let S be a scheme. Let X be an algebraic space over S.
(1) If X ′ → X is an isomorphism then {X ′ → X} is a syntomic covering of

X.
(2) If {Xi → X}i∈I is a syntomic covering and for each i we have a syntomic

covering {Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is a syntomic covering.

https://stacks.math.columbia.edu/tag/0DFA
https://stacks.math.columbia.edu/tag/041D
https://stacks.math.columbia.edu/tag/041A
https://stacks.math.columbia.edu/tag/0DFB
https://stacks.math.columbia.edu/tag/041B
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(3) If {Xi → X}i∈I is a syntomic covering and X ′ → X is a morphism of
algebraic spaces then {X ′ ×X Xi → X ′}i∈I is a syntomic covering.

Proof. Omitted. □

To be continued...

73.7. Fppf topology

03Y7 In this section we discuss the notion of an fppf covering of algebraic spaces, and
we define the big fppf site of an algebraic space. Please compare with Topologies,
Section 34.7.

Definition 73.7.1.03Y8 Let S be a scheme, and let X be an algebraic space over S. An
fppf covering of X is a family of morphisms {fi : Xi → X}i∈I of algebraic spaces
over S such that each fi is flat and locally of finite presentation and such that

|X| =
⋃

i∈I
|fi|(|Xi|),

i.e., the morphisms are jointly surjective.

This is exactly the same as Topologies, Definition 34.7.1. In particular, if X and all
the Xi are schemes, then we recover the usual notion of an fppf covering of schemes.

Lemma 73.7.2.0DFC Any syntomic covering is an fppf covering, and a fortiori, any
smooth, étale, or Zariski covering is an fppf covering.

Proof. This is clear from the definitions, the fact that a syntomic morphism is
flat and locally of finite presentation (Morphisms of Spaces, Lemmas 67.36.5 and
67.36.6) and Lemma 73.6.2. □

Lemma 73.7.3.03Y9 Let S be a scheme. Let X be an algebraic space over S.
(1) If X ′ → X is an isomorphism then {X ′ → X} is an fppf covering of X.
(2) If {Xi → X}i∈I is an fppf covering and for each i we have an fppf covering
{Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is an fppf covering.

(3) If {Xi → X}i∈I is an fppf covering and X ′ → X is a morphism of algebraic
spaces then {X ′ ×X Xi → X ′}i∈I is an fppf covering.

Proof. Omitted. □

Lemma 73.7.4.042T Let S be a scheme, and let X be an algebraic space over S. Suppose
that U = {fi : Xi → X}i∈I is an fppf covering of X. Then there exists a refinement
V = {gi : Ti → X} of U which is an fppf covering such that each Ti is a scheme.

Proof. Omitted. Hint: For each i choose a scheme Ti and a surjective étale mor-
phism Ti → Xi. Then check that {Ti → X} is an fppf covering. □

Lemma 73.7.5.0469 Let S be a scheme. Let {fi : Xi → X}i∈I be an fppf covering of
algebraic spaces over S. Then the map of sheaves∐

Xi −→ X

is surjective.

Proof. This follows from Spaces, Lemma 65.5.9. See also Spaces, Remark 65.5.2 in
case you are confused about the meaning of this lemma. □
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Definition 73.7.6.0DBV Let S be a scheme. A big fppf site (Spaces/S)fppf is any site
constructed as follows:

(1) Choose a big fppf site (Sch/S)fppf as in Topologies, Section 34.7.
(2) As underlying category take the category Spaces/S of algebraic spaces

over S (see discussion in Section 73.2 why this is a set).
(3) Choose any set of coverings as in Sets, Lemma 3.11.1 starting with the

category Spaces/S and the class of fppf coverings of Definition 73.7.1.

Having defined this, we can localize to get the fppf site of an algebraic space.

Definition 73.7.7.0DBW Let S be a scheme. Let (Spaces/S)fppf be as in Definition 73.7.6.
Let X be an algebraic space over S, i.e., an object of (Spaces/S)fppf . Then the
big fppf site (Spaces/X)fppf of X is the localization of the site (Spaces/S)fppf at
X introduced in Sites, Section 7.25.

Next, we establish some relationships between the topoi associated to these sites.

Lemma 73.7.8.0DFD Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. The functor

u : (Spaces/Y )fppf −→ (Spaces/X)fppf , V/Y 7−→ V/X

is cocontinuous, and has a continuous right adjoint
v : (Spaces/X)fppf −→ (Spaces/Y )fppf , (U → Y ) 7−→ (U ×X Y → Y ).

They induce the same morphism of topoi
fbig : Sh((Spaces/Y )fppf ) −→ Sh((Spaces/X)fppf )

We have f−1
big (G)(U/Y ) = G(U/X). We have fbig,∗(F)(U/X) = F(U ×X Y/Y ).

Also, f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers. Hence Sites, Lemmas 7.21.5 and 7.21.6 apply and we deduce
the formula for f−1

big and the existence of fbig!. Moreover, the functor v is a right
adjoint because given U/T and V/X we have MorX(u(U), V ) = MorY (U, V ×X Y )
as desired. Thus we may apply Sites, Lemmas 7.22.1 and 7.22.2 to get the formula
for fbig,∗. □

Lemma 73.7.9.0DFE Let S be a scheme. Given morphisms f : X → Y , g : Y → Z of
algebraic spaces over S we have gbig ◦ fbig = (g ◦ f)big.

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 73.7.8. □

73.8. The ph topology

0DFF In this section we define the ph topology. This is the topology generated by étale
coverings and proper surjective morphisms, see Lemma 73.8.7.

Definition 73.8.1.0DFG Let S be a scheme and let X be an algebraic space over S. A
ph covering of X is a family of morphisms {Xi → X}i∈I of algebraic spaces over
S such that fi is locally of finite type and such that for every U → X with U
affine there exists a standard ph covering {Uj → U}j=1,...,m refining the family
{Xi ×X U → U}i∈I .
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In other words, there exists indices i1, . . . , im ∈ I and morphisms hj : Uj → Xij

such that fij ◦ hj = h ◦ gj . Note that if X and all Xi are representable, this is the
same as a ph covering of schemes by Topologies, Definition 34.8.4.

Lemma 73.8.2.0DFH Any fppf covering is a ph covering, and a fortiori, any syntomic,
smooth, étale or Zariski covering is a ph covering.

Proof. We will show that an fppf covering is a ph covering, and then the rest follows
from Lemma 73.7.2. Let {Xi → X}i∈I be an fppf covering of algebraic spaces over
a base scheme S. Let U be an affine scheme and let U → X be a morphism. We
can refine the fppf covering {Xi ×U U → U}i∈I by an fppf covering {Ti → U}i∈I
where Ti is a scheme (Lemma 73.7.4). Then we can find a standard ph covering
{Uj → U}j=1,...,m refining {Ti → U}i∈I by More on Morphisms, Lemma 37.48.7
(and the definition of ph coverings for schemes). Thus {Xi → X}i∈I is a ph covering
by definition. □

Lemma 73.8.3.0DFI Let S be a scheme. Let f : Y → X be a surjective proper morphism
of algebraic spaces over S. Then {Y → X} is a ph covering.

Proof. Let U → X be a morphism with U affine. By Chow’s lemma (in the
weak form given as Cohomology of Spaces, Lemma 69.18.1) we see that there is a
surjective proper morphism of schemes V → U which factors through Y ×XU → U .
Taking any finite affine open cover of V we obtain a standard ph covering of U
refining {X ×Y U → U} as desired. □

Lemma 73.8.4.0DFJ Let S be a scheme. Let X be an algebraic space over S.
(1) If X ′ → X is an isomorphism then {X ′ → X} is a ph covering of X.
(2) If {Xi → X}i∈I is a ph covering and for each i we have a ph covering
{Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is a ph covering.

(3) If {Xi → X}i∈I is a ph covering and X ′ → X is a morphism of algebraic
spaces then {X ′ ×X Xi → X ′}i∈I is a ph covering.

Proof. Part (1) is clear. Consider g : X ′ → X and {Xi → X}i∈I a ph covering as
in (3). By Morphisms of Spaces, Lemma 67.23.3 the morphisms X ′ ×X Xi → X ′

are locally of finite type. If h′ : Z → X ′ is a morphism from an affine scheme
towards X ′, then set h = g ◦ h′ : Z → X. The assumption on {Xi → X}i∈I means
there exists a standard ph covering {Zj → Z}j=1,...,n and morphisms Zj → Xi(j)
covering h for certain i(j) ∈ I. By the universal property of the fibre product we
obtain morphisms Zj → X ′ ×X Xi(j) over h′ also. Hence {X ′ ×X Xi → X ′}i∈I is
a ph covering. This proves (3).
Let {Xi → X}i∈I and {Xij → Xi}j∈Ji be as in (2). Let h : Z → X be a
morphism from an affine scheme towards X. By assumption there exists a standard
ph covering {Zj → Z}j=1,...,n and morphisms hj : Zj → Xi(j) covering h for
some indices i(j) ∈ I. By assumption there exist standard ph coverings {Zj,l →
Zj}l=1,...,n(j) and morphisms Zj,l → Xi(j)j(l) covering hj for some indices j(l) ∈
Ji(j). By Topologies, Lemma 34.8.3 the family {Zj,l → Z} can be refined by a
standard ph covering. Hence we conclude that {Xij → X}i∈I,j∈Ji is a ph covering.

□

Definition 73.8.5.0DFK Let S be a scheme. A big ph site (Spaces/S)ph is any site
constructed as follows:
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https://stacks.math.columbia.edu/tag/0DFI
https://stacks.math.columbia.edu/tag/0DFJ
https://stacks.math.columbia.edu/tag/0DFK


73.8. THE PH TOPOLOGY 5666

(1) Choose a big ph site (Sch/S)ph as in Topologies, Section 34.8.
(2) As underlying category take the category Spaces/S of algebraic spaces

over S (see discussion in Section 73.2 why this is a set).
(3) Choose any set of coverings as in Sets, Lemma 3.11.1 starting with the

category Spaces/S and the class of ph coverings of Definition 73.8.1.

Having defined this, we can localize to get the ph site of an algebraic space.

Definition 73.8.6.0DFL Let S be a scheme. Let (Spaces/S)ph be as in Definition 73.8.5.
Let X be an algebraic space over S, i.e., an object of (Spaces/S)ph. Then the big ph
site (Spaces/X)ph of X is the localization of the site (Spaces/S)ph at X introduced
in Sites, Section 7.25.

Here is the promised characterization of ph sheaves.

Lemma 73.8.7.0DFM Let S be a scheme. Let X be an algebraic space over S. Let F be
a presheaf on (Spaces/X)ph. Then F is a sheaf if and only if

(1) F satisfies the sheaf condition for étale coverings, and
(2) if f : V → U is a proper surjective morphism of (Spaces/X)ph, then F(U)

maps bijectively to the equalizer of the two maps F(V )→ F(V ×U V ).

Proof. We will show that if (1) and (2) hold, then F is sheaf. Let {Ti → T} be
a ph covering, i.e., a covering in (Spaces/X)ph. We will verify the sheaf condition
for this covering. Let si ∈ F(Ti) be sections which restrict to the same section
over Ti ×T Ti′ . We will show that there exists a unique section s ∈ F restricting
to si over Ti. Let {Uj → T} be an étale covering with Uj affine. By property
(1) it suffices to produce sections sj ∈ F(Uj) which agree on Uj ∩ Uj′ in order to
produce s. Consider the ph coverings {Ti ×T Uj → Uj}. Then sji = si|Ti×TUj
are sections agreeing over (Ti ×T Uj) ×Uj (Ti′ ×T Uj). Choose a proper surjective
morphism Vj → Uj and a finite affine open covering Vj =

⋃
Vjk such that the

standard ph covering {Vjk → Uj} refines {Ti×T Uj → Uj}. If sjk ∈ F(Vjk) denotes
the pullback of sji to Vjk by the implied morphisms, then we find that sjk glue to a
section s′

j ∈ F(Vj). Using the agreement on overlaps once more, we find that s′
j is

in the equalizer of the two maps F(Vj)→ F(Vj ×Uj Vj). Hence by (2) we find that
s′
j comes from a unique section sj ∈ F(Uj). We omit the verification that these

sections sj have all the desired properties. □

Next, we establish some relationships between the topoi associated to these sites.

Lemma 73.8.8.0DFN Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. The functor

u : (Spaces/Y )ph −→ (Spaces/X)ph, V/Y 7−→ V/X

is cocontinuous, and has a continuous right adjoint

v : (Spaces/X)ph −→ (Spaces/Y )ph, (U → Y ) 7−→ (U ×X Y → Y ).

They induce the same morphism of topoi

fbig : Sh((Spaces/Y )ph) −→ Sh((Spaces/X)ph)

We have f−1
big (G)(U/Y ) = G(U/X). We have fbig,∗(F)(U/X) = F(U ×X Y/Y ).

Also, f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.
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Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers. Hence Sites, Lemmas 7.21.5 and 7.21.6 apply and we deduce
the formula for f−1

big and the existence of fbig!. Moreover, the functor v is a right
adjoint because given U/T and V/X we have MorX(u(U), V ) = MorY (U, V ×X Y )
as desired. Thus we may apply Sites, Lemmas 7.22.1 and 7.22.2 to get the formula
for fbig,∗. □

Lemma 73.8.9.0DFP Let S be a scheme. Given morphisms f : X → Y , g : Y → Z of
algebraic spaces over S we have gbig ◦ fbig = (g ◦ f)big.
Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 73.8.8. □

Lemma 73.8.10.0DK6 Let S be a scheme. Let X be an algebraic space over S. Let
P be a property of objects in (Spaces/X)fppf such that whenever {Ui → U} is a
covering in (Spaces/X)fppf , then

P (Ui0 ×U . . .×U Uip) for all p ≥ 0, i0, . . . , ip ∈ I ⇒ P (U)
If P (U) for all U affine and flat, locally of finite presentation over X, then P (X).
Proof. Let U be a separated algebraic space locally of finite presentation over X.
Then we can choose an étale covering {Ui → U}i∈I with Vi affine. Since U is
separated, we conclude that Ui0 ×U . . .×U Uip is always affine. Whence P (Ui0 ×U
. . .×U Uip) always. Hence P (U) holds. Choose a scheme U which is a disjoint union
of affines and a surjective étale morphism U → X. Then U ×X . . .×X U (with p+1
factors) is a separated algebraic space étale over X. Hence P (U ×X . . . ×X U) by
the above. We conclude that P (X) is true. □

73.9. Fpqc topology

03MP We briefly discuss the notion of an fpqc covering of algebraic spaces. Please compare
with Topologies, Section 34.9. We will show in Descent on Spaces, Proposition
74.4.1 that quasi-coherent sheaves descent along these.
Definition 73.9.1.03MQ Let S be a scheme, and let X be an algebraic space over S. An
fpqc covering of X is a family of morphisms {fi : Xi → X}i∈I of algebraic spaces
such that each fi is flat and such that for every affine scheme Z and morphism
h : Z → X there exists a standard fpqc covering {gj : Zj → Z}j=1,...,m which
refines the family {Xi ×X Z → Z}i∈I .
In other words, there exists indices i1, . . . , im ∈ I and morphisms hj : Uj → Xij

such that fij ◦ hj = h ◦ gj . Note that if X and all Xi are representable, this is the
same as a fpqc covering of schemes by Topologies, Lemma 34.9.11.
Lemma 73.9.2.0DFQ Any fppf covering is an fpqc covering, and a fortiori, any syntomic,
smooth, étale or Zariski covering is an fpqc covering.
Proof. We will show that an fppf covering is an fpqc covering, and then the rest
follows from Lemma 73.7.2. Let {fi : Ui → U}i∈I be an fppf covering of algebraic
spaces over S. By definition this means that the fi are flat which checks the first
condition of Definition 73.9.1. To check the second, let V → U be a morphism with
V affine. We may choose an étale covering {Vij → V ×U Ui} with Vij affine. Then
the compositions fij : Vij → V ×U Ui → V are flat and locally of finite presentation
as compositions of such (Morphisms of Spaces, Lemmas 67.28.2, 67.30.3, 67.39.7,
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and 67.39.8). Hence these morphisms are open (Morphisms of Spaces, Lemma
67.30.6) and we see that |V | =

⋃
i∈I
⋃
j∈Ji fij(|Vij |) is an open covering of |V |. Since

|V | is quasi-compact, this covering has a finite refinement. Say Vi1j1 , . . . , ViN jN do
the job. Then {Vikjk → V }k=1,...,N is a standard fpqc covering of V refinining the
family {Ui ×U V → V }. This finishes the proof. □

Lemma 73.9.3.03MR Let S be a scheme. Let X be an algebraic space over S.
(1) If X ′ → X is an isomorphism then {X ′ → X} is an fpqc covering of X.
(2) If {Xi → X}i∈I is an fpqc covering and for each i we have an fpqc covering
{Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is an fpqc covering.

(3) If {Xi → X}i∈I is an fpqc covering andX ′ → X is a morphism of algebraic
spaces then {X ′ ×X Xi → X ′}i∈I is an fpqc covering.

Proof. Part (1) is clear. Consider g : X ′ → X and {Xi → X}i∈I an fpqc covering
as in (3). By Morphisms of Spaces, Lemma 67.30.4 the morphisms X ′×XXi → X ′

are flat. If h′ : Z → X ′ is a morphism from an affine scheme towards X ′, then
set h = g ◦ h′ : Z → X. The assumption on {Xi → X}i∈I means there exists
a standard fpqc covering {Zj → Z}j=1,...,n and morphisms Zj → Xi(j) covering
h for certain i(j) ∈ I. By the universal property of the fibre product we obtain
morphisms Zj → X ′ ×X Xi(j) over h′ also. Hence {X ′ ×X Xi → X ′}i∈I is an fpqc
covering. This proves (3).
Let {Xi → X}i∈I and {Xij → Xi}j∈Ji be as in (2). Let h : Z → X be a
morphism from an affine scheme towards X. By assumption there exists a standard
fpqc covering {Zj → Z}j=1,...,n and morphisms hj : Zj → Xi(j) covering h for
some indices i(j) ∈ I. By assumption there exist standard fpqc coverings {Zj,l →
Zj}l=1,...,n(j) and morphisms Zj,l → Xi(j)j(l) covering hj for some indices j(l) ∈
Ji(j). By Topologies, Lemma 34.9.10 the family {Zj,l → Z} is a standard fpqc
covering. Hence we conclude that {Xij → X}i∈I,j∈Ji is an fpqc covering. □

Lemma 73.9.4.03MS Let S be a scheme, and let X be an algebraic space over S. Suppose
that {fi : Xi → X}i∈I is a family of morphisms of algebraic spaces with target X.
Let U → X be a surjective étale morphism from a scheme towards X. Then
{fi : Xi → X}i∈I is an fpqc covering of X if and only if {U ×X Xi → U}i∈I is an
fpqc covering of U .

Proof. If {Xi → X}i∈I is an fpqc covering, then so is {U×XXi → U}i∈I by Lemma
73.9.3. Assume that {U ×X Xi → U}i∈I is an fpqc covering. Let h : Z → X be
a morphism from an affine scheme towards X. Then we see that U ×X Z → Z
is a surjective étale morphism of schemes, in particular open. Hence we can find
finitely many affine opens W1, . . . ,Wt of U ×X Z whose images cover Z. For each
j we may apply the condition that {U ×X Xi → U}i∈I is an fpqc covering to the
morphism Wj → U , and obtain a standard fpqc covering {Wjl →Wj} which refines
{Wj ×X Xi → Wj}i∈I . Hence {Wjl → Z} is a standard fpqc covering of Z (see
Topologies, Lemma 34.9.10) which refines {Z ×X Xi → X} and we win. □

Lemma 73.9.5.0419 Let S be a scheme, and let X be an algebraic space over S. Suppose
that U = {fi : Xi → X}i∈I is an fpqc covering of X. Then there exists a refinement
V = {gi : Ti → X} of U which is an fpqc covering such that each Ti is a scheme.

Proof. Omitted. Hint: For each i choose a scheme Ti and a surjective étale mor-
phism Ti → Xi. Then check that {Ti → X} is an fpqc covering. □
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CHAPTER 74

Descent and Algebraic Spaces

03YE 74.1. Introduction

03YF In the chapter on topologies on algebraic spaces (see Topologies on Spaces, Section
73.1) we introduced étale, fppf, smooth, syntomic and fpqc coverings of algebraic
spaces. In this chapter we discuss what kind of structures over algebraic spaces can
be descended through such coverings. See for example [Gro95a], [Gro95b], [Gro95e],
[Gro95f], [Gro95c], and [Gro95d].

74.2. Conventions

041I The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

74.3. Descent data for quasi-coherent sheaves

04W2 This section is the analogue of Descent, Section 35.2 for algebraic spaces. It makes
sense to read that section first.

Definition 74.3.1.04W3 Let S be a scheme. Let {fi : Xi → X}i∈I be a family of
morphisms of algebraic spaces over S with fixed target X.

(1) A descent datum (Fi, φij) for quasi-coherent sheaves with respect to the
given family is given by a quasi-coherent sheaf Fi on Xi for each i ∈ I,
an isomorphism of quasi-coherent OXi×XXj -modules φij : pr∗

0Fi → pr∗
1Fj

for each pair (i, j) ∈ I2 such that for every triple of indices (i, j, k) ∈ I3

the diagram

pr∗
0Fi

pr∗
01φij $$

pr∗
02φik

// pr∗
2Fk

pr∗
1Fj

pr∗
12φjk

::

of OXi×XXj×XXk -modules commutes. This is called the cocycle condition.
(2) A morphism ψ : (Fi, φij)→ (F ′

i , φ
′
ij) of descent data is given by a family

ψ = (ψi)i∈I of morphisms of OXi-modules ψi : Fi → F ′
i such that all the

5671
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diagrams
pr∗

0Fi φij
//

pr∗
0ψi

��

pr∗
1Fj

pr∗
1ψj

��
pr∗

0F ′
i

φ′
ij // pr∗

1F ′
j

commute.

Lemma 74.3.2.04W4 Let S be a scheme. Let U = {Ui → U}i∈I and V = {Vj → V }j∈J
be families of morphisms of algebraic spaces over S with fixed targets. Let (g, α :
I → J, (gi)) : U → V be a morphism of families of maps with fixed target, see Sites,
Definition 7.8.1. Let (Fj , φjj′) be a descent datum for quasi-coherent sheaves with
respect to the family {Vj → V }j∈J . Then

(1) The system (
g∗
iFα(i), (gi × gi′)∗φα(i)α(i′)

)
is a descent datum with respect to the family {Ui → U}i∈I .

(2) This construction is functorial in the descent datum (Fj , φjj′).
(3) Given a second morphism (g′, α′ : I → J, (g′

i)) of families of maps with
fixed target with g = g′ there exists a functorial isomorphism of descent
data

(g∗
iFα(i), (gi × gi′)∗φα(i)α(i′)) ∼= ((g′

i)∗Fα′(i), (g′
i × g′

i′)∗φα′(i)α′(i′)).

Proof. Omitted. Hint: The maps g∗
iFα(i) → (g′

i)∗Fα′(i) which give the isomorphism
of descent data in part (3) are the pullbacks of the maps φα(i)α′(i) by the morphisms
(gi, g′

i) : Ui → Vα(i) ×V Vα′(i). □

Let g : U → V be a morphism of algebraic spaces. The lemma above tells us
that there is a well defined pullback functor between the categories of descent data
relative to families of maps with target V and U provided there is a morphism
between those families of maps which “lives over g”.

Definition 74.3.3.04W5 Let S be a scheme. Let {Ui → U}i∈I be a family of morphisms
of algebraic spaces over S with fixed target.

(1) Let F be a quasi-coherent OU -module. We call the unique descent on F
datum with respect to the covering {U → U} the trivial descent datum.

(2) The pullback of the trivial descent datum to {Ui → U} is called the
canonical descent datum. Notation: (F|Ui , can).

(3) A descent datum (Fi, φij) for quasi-coherent sheaves with respect to the
given family is said to be effective if there exists a quasi-coherent sheaf F
on U such that (Fi, φij) is isomorphic to (F|Ui , can).

Lemma 74.3.4.04W6 Let S be a scheme. Let U be an algebraic space over S. Let
{Ui → U} be a Zariski covering of U , see Topologies on Spaces, Definition 73.3.1.
Any descent datum on quasi-coherent sheaves for the family U = {Ui → U} is
effective. Moreover, the functor from the category of quasi-coherent OU -modules
to the category of descent data with respect to {Ui → U} is fully faithful.

Proof. Omitted. □
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74.4. Fpqc descent of quasi-coherent sheaves

04W7 The main application of flat descent for modules is the corresponding descent state-
ment for quasi-coherent sheaves with respect to fpqc-coverings.

Proposition 74.4.1.04W8 Let S be a scheme. Let {Xi → X} be an fpqc covering of
algebraic spaces over S, see Topologies on Spaces, Definition 73.9.1. Any descent
datum on quasi-coherent sheaves for {Xi → X} is effective. Moreover, the functor
from the category of quasi-coherent OX -modules to the category of descent data
with respect to {Xi → X} is fully faithful.

Proof. This is more or less a formal consequence of the corresponding result for
schemes, see Descent, Proposition 35.5.2. Here is a strategy for a proof:

(1) The fact that {Xi → X} is a refinement of the trivial covering {X → X}
gives, via Lemma 74.3.2, a functor QCoh(OX) → DD({Xi → X}) from
the category of quasi-coherent OX -modules to the category of descent
data for the given family.

(2) In order to prove the proposition we will construct a quasi-inverse functor
back : DD({Xi → X})→ QCoh(OX).

(3) Applying again Lemma 74.3.2 we see that there is a functor DD({Xi →
X}) → DD({Tj → X}) if {Tj → X} is a refinement of the given family.
Hence in order to construct the functor back we may assume that each Xi

is a scheme, see Topologies on Spaces, Lemma 73.9.5. This reduces us to
the case where all the Xi are schemes.

(4) A quasi-coherent sheaf on X is by definition a quasi-coherent OX -module
on Xétale. Now for any U ∈ Ob(Xétale) we get an fppf covering {Ui ×X
Xi → U} by schemes and a morphism g : {Ui ×X Xi → U} → {Xi → X}
of coverings lying over U → X. Given a descent datum ξ = (Fi, φij) we
obtain a quasi-coherent OU -module Fξ,U corresponding to the pullback
g∗ξ of Lemma 74.3.2 to the covering of U and using effectivity for fppf
covering of schemes, see Descent, Proposition 35.5.2.

(5) Check that ξ 7→ Fξ,U is functorial in ξ. Omitted.
(6) Check that ξ 7→ Fξ,U is compatible with morphisms U → U ′ of the site

Xétale, so that the system of sheaves Fξ,U corresponds to a quasi-coherent
Fξ on Xétale, see Properties of Spaces, Lemma 66.29.3. Details omitted.

(7) Check that back : ξ 7→ Fξ is quasi-inverse to the functor constructed in
(1). Omitted.

This finishes the proof. □

74.5. Quasi-coherent modules and affines

0H02 Let S be a scheme. Let X be an algebraic space over S. Recall that Xaffine,étale

is the full subcategory of Xétale whose objects are affine turned into a site by
declaring the coverings to be the standard étale coverings. See Properties of Spaces,
Definition 66.18.5. By Properties of Spaces, Lemma 66.18.6 we have an equivalence
of topoi g : Sh(Xaffine,étale) → Sh(Xétale) whose pullback functor is given by
restriction. Recall that OX denotes the structure sheaf on Xétale. Then we obtain
an equivalence

(74.5.0.1)0H03 (Sh(Xaffine,étale),OX |Xaffine,étale) −→ (Sh(Xétale),OX)

https://stacks.math.columbia.edu/tag/04W8
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of ringed topoi. We will often write OX in stead of OX |Xaffine,étale . Having said
this we can compare quasi-coherent modules as well.

Lemma 74.5.1.0H04 Let S be a scheme. Let X be an algebraic space over S. Let F be
a presheaf of OX -modules on Xaffine,étale. The following are equivalent

(1) for every morphism U → U ′ of Xaffine,étale the map F(U ′) ⊗OX(U ′)
OX(U)→ F(U) is an isomorphism,

(2) F is a quasi-coherent module on the ringed site (Xaffine,étale,OX) in the
sense of Modules on Sites, Definition 18.23.1,

(3) F corresponds to a quasi-coherent module onX via the equivalence (74.5.0.1),

Proof. Assume (1) holds. To show that F is a sheaf, let U = {Ui → U}i=1,...,n be
a covering of Xaffine,étale. The sheaf condition for F and U , by our assumption on
F , reduces to showing that

0→ F(U)→
∏
F(U)⊗OX(U) OX(Ui)→

∏
F(U)⊗OX(U) OX(Ui ×U Uj)

is exact. This is true because OX(U) →
∏
OX(Ui) is faithfully flat (by Descent,

Lemma 35.9.1 and the fact that coverings in Xaffine,étale are standard étale cov-
erings) and we may apply Descent, Lemma 35.3.6. Next, we show that F is quasi-
coherent on Xaffine,étale. Namely, for U in Xaffine,étale, set R = OX(U) and
choose a presentation⊕

k∈K
R −→

⊕
l∈L

R −→ F(U) −→ 0

by free R-modules. By property (1) and the right exactness of tensor product we
see that for every morphism U ′ → U in Xaffine,étale we obtain a presentation⊕

k∈K
OX(U ′) −→

⊕
l∈L
OX(U ′) −→ F(U ′) −→ 0

In other words, we see that the restriction of F to the localized categoryXaffine,etale/U
has a presentation⊕

k∈K
OX |Xaffine,étale/U −→

⊕
l∈L
OX |Xaffine,étale/U −→ F|Xaffine,étale/U −→ 0

as required to show that F is quasi-coherent. With apologies for the horrible
notation, this finishes the proof that (1) implies (2).
Since the notion of a quasi-coherent module is intrinsic (Modules on Sites, Lemma
18.23.2) we see that the equivalence (74.5.0.1) induces an equivalence between cat-
egories of quasi-coherent modules. Thus we have the equivalence of (2) and (3).
Let us assume (3) and prove (1). Namely, let G be a quasi-coherent module on X
corresponding to F . Let h : U → U ′ → X be a morphism of Xaffine,étale. Denote
f : U → X and f ′ : U ′ → X the structure morphisms, so that f = f ′ ◦ h. We have
F(U ′) = Γ(U ′, (f ′)∗G) and F(U) = Γ(U, f∗G) = Γ(U, h∗(f ′)∗G). Hence (1) holds
by Schemes, Lemma 26.7.3. □

74.6. Descent of finiteness properties of modules

060T This section is the analogue for the case of algebraic spaces of Descent, Section
35.7. The goal is to show that one can check a quasi-coherent module has a certain
finiteness conditions by checking on the members of a covering. We will repeatedly
use the following proof scheme. Suppose that X is an algebraic space, and that
{Xi → X} is a fppf (resp. fpqc) covering. Let U → X be a surjective étale morphism

https://stacks.math.columbia.edu/tag/0H04
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such that U is a scheme. Then there exists an fppf (resp. fpqc) covering {Yj → X}
such that

(1) {Yj → X} is a refinement of {Xi → X},
(2) each Yj is a scheme, and
(3) each morphism Yj → X factors though U , and
(4) {Yj → U} is an fppf (resp. fpqc) covering of U .

Namely, first refine {Xi → X} by an fppf (resp. fpqc) covering such that each
Xi is a scheme, see Topologies on Spaces, Lemma 73.7.4, resp. Lemma 73.9.5.
Then set Yi = U ×X Xi. A quasi-coherent OX -module F is of finite type, of
finite presentation, etc if and only if the quasi-coherent OU -module F|U is of finite
type, of finite presentation, etc. Hence we can use the existence of the refinement
{Yj → X} to reduce the proof of the following lemmas to the case of schemes. We
will indicate this by saying that “the result follows from the case of schemes by
étale localization”.

Lemma 74.6.1.060U Let X be an algebraic space over a scheme S. Let F be a quasi-
coherent OX -module. Let {fi : Xi → X}i∈I be an fpqc covering such that each
f∗
i F is a finite type OXi-module. Then F is a finite type OX -module.

Proof. This follows from the case of schemes, see Descent, Lemma 35.7.1, by étale
localization. □

Lemma 74.6.2.060V Let X be an algebraic space over a scheme S. Let F be a quasi-
coherent OX -module. Let {fi : Xi → X}i∈I be an fpqc covering such that each
f∗
i F is an OXi-module of finite presentation. Then F is an OX -module of finite

presentation.

Proof. This follows from the case of schemes, see Descent, Lemma 35.7.3, by étale
localization. □

Lemma 74.6.3.060W Let X be an algebraic space over a scheme S. Let F be a quasi-
coherent OX -module. Let {fi : Xi → X}i∈I be an fpqc covering such that each
f∗
i F is a flat OXi-module. Then F is a flat OX -module.

Proof. This follows from the case of schemes, see Descent, Lemma 35.7.5, by étale
localization. □

Lemma 74.6.4.060X Let X be an algebraic space over a scheme S. Let F be a quasi-
coherent OX -module. Let {fi : Xi → X}i∈I be an fpqc covering such that each
f∗
i F is a finite locally free OXi-module. Then F is a finite locally free OX -module.

Proof. This follows from the case of schemes, see Descent, Lemma 35.7.6, by étale
localization. □

The definition of a locally projective quasi-coherent sheaf can be found in Properties
of Spaces, Section 66.31. It is also proved there that this notion is preserved under
pullback.

Lemma 74.6.5.060Y Let X be an algebraic space over a scheme S. Let F be a quasi-
coherent OX -module. Let {fi : Xi → X}i∈I be an fpqc covering such that each
f∗
i F is a locally projective OXi-module. Then F is a locally projective OX -module.

Proof. This follows from the case of schemes, see Descent, Lemma 35.7.7, by étale
localization. □

https://stacks.math.columbia.edu/tag/060U
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We also add here two results which are related to the results above, but are of a
slightly different nature.

Lemma 74.6.6.060Z Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module. Assume f is a finite mor-
phism. Then F is an OX -module of finite type if and only if f∗F is an OY -module
of finite type.

Proof. As f is finite it is representable. Choose a scheme V and a surjective étale
morphism V → Y . Then U = V ×Y X is a scheme with a surjective étale morphism
towards X and a finite morphism ψ : U → V (the base change of f). Since
ψ∗(F|U ) = f∗F|V the result of the lemma follows immediately from the schemes
version which is Descent, Lemma 35.7.9. □

Lemma 74.6.7.0610 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module. Assume f is finite and of
finite presentation. Then F is an OX -module of finite presentation if and only if
f∗F is an OY -module of finite presentation.

Proof. As f is finite it is representable. Choose a scheme V and a surjective étale
morphism V → Y . Then U = V ×Y X is a scheme with a surjective étale morphism
towards X and a finite morphism ψ : U → V (the base change of f). Since
ψ∗(F|U ) = f∗F|V the result of the lemma follows immediately from the schemes
version which is Descent, Lemma 35.7.10. □

74.7. Fpqc coverings

04P0 This section is the analogue of Descent, Section 35.13. At the moment we do not
know if all of the material for fpqc coverings of schemes holds also for algebraic
spaces.

Lemma 74.7.1.04P1 Let S be a scheme. Let {fi : Ti → T}i∈I be an fpqc covering of
algebraic spaces over S. Suppose that for each i we have an open subspace Wi ⊂ Ti
such that for all i, j ∈ I we have pr−1

0 (Wi) = pr−1
1 (Wj) as open subspaces of Ti×TTj .

Then there exists a unique open subspace W ⊂ T such that Wi = f−1
i (W ) for each

i.

Proof. By Topologies on Spaces, Lemma 73.9.5 we may assume each Ti is a scheme.
Choose a scheme U and a surjective étale morphism U → T . Then {Ti×T U → U}
is an fpqc covering of U and Ti ×T U is a scheme for each i. Hence we see that
the collection of opens Wi ×T U comes from a unique open subscheme W ′ ⊂ U by
Descent, Lemma 35.13.6. As U → X is open we can define W ⊂ X the Zariski
open which is the image of W ′, see Properties of Spaces, Section 66.4. We omit the
verification that this works, i.e., that Wi is the inverse image of W for each i. □

Lemma 74.7.2.04P2 Let S be a scheme. Let {Ti → T} be an fpqc covering of algebraic
spaces over S, see Topologies on Spaces, Definition 73.9.1. Then given an algebraic
space B over S the sequence

MorS(T,B) // ∏
i MorS(Ti, B) //

//
∏
i,j MorS(Ti ×T Tj , B)

is an equalizer diagram. In other words, every representable functor on the category
of algebraic spaces over S satisfies the sheaf condition for fpqc coverings.

https://stacks.math.columbia.edu/tag/060Z
https://stacks.math.columbia.edu/tag/0610
https://stacks.math.columbia.edu/tag/04P1
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Proof. We know this is true if {Ti → T} is an fpqc covering of schemes, see Prop-
erties of Spaces, Proposition 66.17.1. This is the key fact and we encourage the
reader to skip the rest of the proof which is formal. Choose a scheme U and a
surjective étale morphism U → T . Let Ui be a scheme and let Ui → Ti ×T U be a
surjective étale morphism. Then {Ui → U} is an fpqc covering. This follows from
Topologies on Spaces, Lemmas 73.9.3 and 73.9.4. By the above we have the result
for {Ui → U}.

What this means is the following: Suppose that bi : Ti → B is a family of morphisms
with bi ◦ pr0 = bj ◦ pr1 as morphisms Ti ×T Tj → B. Then we let ai : Ui → B
be the composition of Ui → Ti with bi. By what was said above we find a unique
morphism a : U → B such that ai is the composition of a with Ui → U . The
uniqueness guarantees that a ◦ pr0 = a ◦ pr1 as morphisms U ×T U → B. Then
since T = U/(U ×T U) as a sheaf, we find that a comes from a unique morphism
b : T → B. Chasing diagrams we find that b is the morphism we are looking for. □

74.8. Descent of finiteness and smoothness properties of morphisms

06NQ The following type of lemma is occasionally useful.

Lemma 74.8.1.06NR Let S be a scheme. Let X → Y → Z be morphism of algebraic
spaces. Let P be one of the following properties of morphisms of algebraic spaces
over S: flat, locally finite type, locally finite presentation. Assume that X → Z has
P and that X → Y is a surjection of sheaves on (Sch/S)fppf . Then Y → Z is P .

Proof. Choose a scheme W and a surjective étale morphism W → Z. Choose a
scheme V and a surjective étale morphism V →W ×Z Y . Choose a scheme U and a
surjective étale morphism U → V ×YX. By assumption we can find an fppf covering
{Vi → V } and lifts Vi → X of the morphism Vi → Y . Since U → X is surjective
étale we see that over the members of the fppf covering {Vi ×X U → V } we have
lifts into U . Hence U → V induces a surjection of sheaves on (Sch/S)fppf . By our
definition of what it means to have property P for a morphism of algebraic spaces
(see Morphisms of Spaces, Definition 67.30.1, Definition 67.23.1, and Definition
67.28.1) we see that U → W has P and we have to show V → W has P . Thus
we reduce the question to the case of morphisms of schemes which is treated in
Descent, Lemma 35.14.8. □

A more standard case of the above lemma is the following. (The version with “flat”
follows from Morphisms of Spaces, Lemma 67.31.5.)

Lemma 74.8.2.0AHC Let S be a scheme. Let

X
f

//

p
  

Y

q
~~

B

be a commutative diagram of morphisms of algebraic spaces over S. Assume that f
is surjective, flat, and locally of finite presentation and assume that p is locally of fi-
nite presentation (resp. locally of finite type). Then q is locally of finite presentation
(resp. locally of finite type).

https://stacks.math.columbia.edu/tag/06NR
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Proof. Since {X → Y } is an fppf covering, it induces a surjection of fppf sheaves
(Topologies on Spaces, Lemma 73.7.5) and the lemma is a special case of Lemma
74.8.1. On the other hand, an easier argument is to deduce it from the analogue
for schemes. Namely, the problem is étale local on B and Y (Morphisms of Spaces,
Lemmas 67.23.4 and 67.28.4). Hence we may assume that B and Y are affine
schemes. Since |X| → |Y | is open (Morphisms of Spaces, Lemma 67.30.6), we
can choose an affine scheme U and an étale morphism U → X such that the
composition U → Y is surjective. In this case the result follows from Descent,
Lemma 35.14.3. □

Lemma 74.8.3.0AHD Let S be a scheme. Let

X
f

//

p
  

Y

q
~~

B

be a commutative diagram of morphisms of algebraic spaces over S. Assume that
(1) f is surjective, and syntomic (resp. smooth, resp. étale),
(2) p is syntomic (resp. smooth, resp. étale).

Then q is syntomic (resp. smooth, resp. étale).

Proof. We deduce this from the analogue for schemes. Namely, the problem is étale
local on B and Y (Morphisms of Spaces, Lemmas 67.36.4, 67.37.4, and 67.39.2).
Hence we may assume that B and Y are affine schemes. Since |X| → |Y | is open
(Morphisms of Spaces, Lemma 67.30.6), we can choose an affine scheme U and an
étale morphism U → X such that the composition U → Y is surjective. In this
case the result follows from Descent, Lemma 35.14.4. □

Actually we can strengthen this result as follows.

Lemma 74.8.4.0AHE Let S be a scheme. Let

X
f

//

p
  

Y

q
~~

B

be a commutative diagram of morphisms of algebraic spaces over S. Assume that
(1) f is surjective, flat, and locally of finite presentation,
(2) p is smooth (resp. étale).

Then q is smooth (resp. étale).

Proof. We deduce this from the analogue for schemes. Namely, the problem is étale
local on B and Y (Morphisms of Spaces, Lemmas 67.37.4 and 67.39.2). Hence we
may assume that B and Y are affine schemes. Since |X| → |Y | is open (Morphisms
of Spaces, Lemma 67.30.6), we can choose an affine scheme U and an étale morphism
U → X such that the composition U → Y is surjective. In this case the result
follows from Descent, Lemma 35.14.5. □

https://stacks.math.columbia.edu/tag/0AHD
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Lemma 74.8.5.0AHF Let S be a scheme. Let

X
f

//

p
  

Y

q
~~

B

be a commutative diagram of morphisms of algebraic spaces over S. Assume that
(1) f is surjective, flat, and locally of finite presentation,
(2) p is syntomic.

Then both q and f are syntomic.

Proof. We deduce this from the analogue for schemes. Namely, the problem is étale
local on B and Y (Morphisms of Spaces, Lemma 67.36.4). Hence we may assume
that B and Y are affine schemes. Since |X| → |Y | is open (Morphisms of Spaces,
Lemma 67.30.6), we can choose an affine scheme U and an étale morphism U → X
such that the composition U → Y is surjective. In this case the result follows from
Descent, Lemma 35.14.7. □

74.9. Descending properties of spaces

06DP In this section we put some results of the following kind.

Lemma 74.9.1.06DQ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let x ∈ |X|. If f is flat at x and X is geometrically unibranch at x,
then Y is geometrically unibranch at f(x).

Proof. Consider the map of étale local rings OY,f(x) → OX,x. By Morphisms of
Spaces, Lemma 67.30.8 this is flat. Hence if OX,x has a unique minimal prime, so
does OY,f(x) (by going down, see Algebra, Lemma 10.39.19). □

Lemma 74.9.2.06MI Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is flat and surjective and X is reduced, then Y is reduced.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Choose a
scheme U and a surjective étale morphism U → X ×Y V . As f is surjective and
flat, the morphism of schemes U → V is surjective and flat. In this way we reduce
the problem to the case of schemes (as reducedness of X and Y is defined in terms
of reducedness of U and V , see Properties of Spaces, Section 66.7). The case of
schemes is Descent, Lemma 35.19.1. □

Lemma 74.9.3.06MJ Let f : X → Y be a morphism of algebraic spaces. If f is locally
of finite presentation, flat, and surjective and X is locally Noetherian, then Y is
locally Noetherian.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Choose a
scheme U and a surjective étale morphism U → X ×Y V . As f is surjective, flat,
and locally of finite presentation the morphism of schemes U → V is surjective,
flat, and locally of finite presentation. In this way we reduce the problem to the
case of schemes (as being locally Noetherian for X and Y is defined in terms of
being locally Noetherian of U and V , see Properties of Spaces, Section 66.7). In
the case of schemes the result follows from Descent, Lemma 35.16.1. □

https://stacks.math.columbia.edu/tag/0AHF
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Lemma 74.9.4.06MK Let f : X → Y be a morphism of algebraic spaces. If f is locally
of finite presentation, flat, and surjective and X is regular, then Y is regular.
Proof. By Lemma 74.9.3 we know that Y is locally Noetherian. Choose a scheme
V and a surjective étale morphism V → Y . It suffices to prove that the local rings
of V are all regular local rings, see Properties, Lemma 28.9.2. Choose a scheme
U and a surjective étale morphism U → X ×Y V . As f is surjective and flat the
morphism of schemes U → V is surjective and flat. By assumption U is a regular
scheme in particular all of its local rings are regular (by the lemma above). Hence
the lemma follows from Algebra, Lemma 10.110.9. □

Lemma 74.9.5.0GB3 Let f : X → Y be a smooth morphism of algebraic spaces. If Y is
reduced, then X is reduced. If f is surjective and X is reduced, then Y is reduced.
Proof. Choose a commutative diagram

U

��

// V

��
X // Y

where U and V are schemes, the vertical arrows are surjective and étale, and U →
X ×Y V is surjective étale. Observe that X is a reduced algebraic space if and
only if U is a reduced scheme by our definition of reduced algebraic spaces in
Properties of Spaces, Section 66.7. Similarly for Y and V . The morphism U →
V is a smooth morphism of schemes, see Morphisms of Spaces, Lemma 67.37.4.
Since being reduced is local for the smooth topology for schemes (Descent, Lemma
35.18.1) we see that U is reduced if V is reduced. On the other hand, if X → Y
is surjective, then U → V is surjective and in this case if U is reduced, then V is
reduced. □

74.10. Descending properties of morphisms

03YG In this section we introduce the notion of when a property of morphisms of algebraic
spaces is local on the target in a topology. Please compare with Descent, Section
35.22.
Definition 74.10.1.03YH Let S be a scheme. Let P be a property of morphisms of
algebraic spaces over S. Let τ ∈ {fpqc, fppf, syntomic, smooth, étale}. We say
P is τ local on the base, or τ local on the target, or local on the base for the τ -
topology if for any τ -covering {Yi → Y }i∈I of algebraic spaces and any morphism
of algebraic spaces f : X → Y we have

f has P ⇔ each Yi ×Y X → Yi has P.
To be sure, since isomorphisms are always coverings we see (or require) that prop-
erty P holds for X → Y if and only if it holds for any arrow X ′ → Y ′ isomorphic to
X → Y . If a property is τ -local on the target then it is preserved by base changes
by morphisms which occur in τ -coverings. Here is a formal statement.
Lemma 74.10.2.06EM Let S be a scheme. Let τ ∈ {fpqc, fppf, syntomic, smooth, étale}.
Let P be a property of morphisms of algebraic spaces over S which is τ local on
the target. Let f : X → Y have property P. For any morphism Y ′ → Y which
is flat, resp. flat and locally of finite presentation, resp. syntomic, resp. étale, the
base change f ′ : Y ′ ×Y X → Y ′ of f has property P.

https://stacks.math.columbia.edu/tag/06MK
https://stacks.math.columbia.edu/tag/0GB3
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Proof. This is true because we can fit Y ′ → Y into a family of morphisms which
forms a τ -covering. □

A simple often used consequence of the above is that if f : X → Y has property P
which is τ -local on the target and f(X) ⊂ V for some open subspace V ⊂ Y , then
also the induced morphism X → V has P. Proof: The base change f by V → Y
gives X → V .

Lemma 74.10.3.06R2 Let S be a scheme. Let τ ∈ {fppf, syntomic, smooth, étale}. Let
P be a property of morphisms of algebraic spaces over S which is τ local on the
target. For any morphism of algebraic spaces f : X → Y over S there exists a
largest open subspace W (f) ⊂ Y such that the restriction XW (f) → W (f) has P.
Moreover,

(1) if g : Y ′ → Y is a morphism of algebraic spaces which is flat and locally
of finite presentation, syntomic, smooth, or étale and the base change
f ′ : XY ′ → Y ′ has P, then g factors through W (f),

(2) if g : Y ′ → Y is flat and locally of finite presentation, syntomic, smooth,
or étale, then W (f ′) = g−1(W (f)), and

(3) if {gi : Yi → Y } is a τ -covering, then g−1
i (W (f)) = W (fi), where fi is the

base change of f by Yi → Y .

Proof. Consider the union Wset ⊂ |Y | of the images g(|Y ′|) ⊂ |Y | of morphisms
g : Y ′ → Y with the properties:

(1) g is flat and locally of finite presentation, syntomic, smooth, or étale, and
(2) the base change Y ′ ×g,Y X → Y ′ has property P.

Since such a morphism g is open (see Morphisms of Spaces, Lemma 67.30.6) we
see that Wset is an open subset of |Y |. Denote W ⊂ Y the open subspace whose
underlying set of points is Wset, see Properties of Spaces, Lemma 66.4.8. Since P
is local in the τ topology the restriction XW →W has property P because we are
given a covering {Y ′ → W} of W such that the pullbacks have P. This proves
the existence and proves that W (f) has property (1). To see property (2) note
that W (f ′) ⊃ g−1(W (f)) because P is stable under base change by flat and locally
of finite presentation, syntomic, smooth, or étale morphisms, see Lemma 74.10.2.
On the other hand, if Y ′′ ⊂ Y ′ is an open such that XY ′′ → Y ′′ has property P,
then Y ′′ → Y factors through W by construction, i.e., Y ′′ ⊂ g−1(W (f)). This
proves (2). Assertion (3) follows from (2) because each morphism Yi → Y is flat
and locally of finite presentation, syntomic, smooth, or étale by our definition of a
τ -covering. □

Lemma 74.10.4.041J Let S be a scheme. Let P be a property of morphisms of algebraic
spaces over S. Assume

(1) if Xi → Yi, i = 1, 2 have property P so does X1 ⨿X2 → Y1 ⨿ Y2,
(2) a morphism of algebraic spaces f : X → Y has property P if and only if for

every affine scheme Z and morphism Z → Y the base change Z×Y X → Z
of f has property P, and

(3) for any surjective flat morphism of affine schemes Z ′ → Z over S and a
morphism f : X → Z from an algebraic space to Z we have

f ′ : Z ′ ×Z X → Z ′ has P ⇒ f has P.
Then P is fpqc local on the base.
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Proof. If P has property (2), then it is automatically stable under any base change.
Hence the direct implication in Definition 74.10.1.

Let {Yi → Y }i∈I be an fpqc covering of algebraic spaces over S. Let f : X → Y be
a morphism of algebraic spaces over S. Assume each base change fi : Yi×Y X → Yi
has property P. Our goal is to show that f has P. Let Z be an affine scheme, and
let Z → Y be a morphism. By (2) it suffices to show that the morphism of algebraic
spaces Z ×Y X → Z has P. Since {Yi → Y }i∈I is an fpqc covering we know there
exists a standard fpqc covering {Zj → Z}j=1,...,n and morphisms Zj → Yij over Y
for suitable indices ij ∈ I. Since fij has P we see that

Zj ×Y X = Zj ×Yij (Yij ×Y X) −→ Zj

has P as a base change of fij (see first remark of the proof). Set Z ′ =
∐
j=1,...,n Zj ,

so that Z ′ → Z is a flat and surjective morphism of affine schemes over S. By (1)
we conclude that Z ′×Y X → Z ′ has property P. Since this is the base change of the
morphism Z ×Y X → Z by the morphism Z ′ → Z we conclude that Z ×Y X → Z
has property P as desired. □

74.11. Descending properties of morphisms in the fpqc topology

041K In this section we find a large number of properties of morphisms of algebraic spaces
which are local on the base in the fpqc topology. Please compare with Descent,
Section 35.23 for the case of morphisms of schemes.

Lemma 74.11.1.041L Let S be a scheme. The property P(f) =“f is quasi-compact” is
fpqc local on the base on algebraic spaces over S.

Proof. We will use Lemma 74.10.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 67.8.8. Let Z ′ → Z be a surjective
flat morphism of affine schemes over S. Let f : X → Z be a morphism of algebraic
spaces, and assume that the base change f ′ : Z ′ ×Z X → Z ′ is quasi-compact. We
have to show that f is quasi-compact. To see this, using Morphisms of Spaces,
Lemma 67.8.8 again, it is enough to show that for every affine scheme Y and
morphism Y → Z the fibre product Y ×Z X is quasi-compact. Here is a picture:

(74.11.1.1)041M

Y ×Z Z ′ ×Z X

��

//

''

Z ′ ×Z X

f ′

��

##
Y ×Z X

��

// X

f

��

Y ×Z Z ′ //

''

Z ′

$$
Y // Z

Note that all squares are cartesian and the bottom square consists of affine schemes.
The assumption that f ′ is quasi-compact combined with the fact that Y ×Z Z ′ is
affine implies that Y ×Z Z ′ ×Z X is quasi-compact. Since

Y ×Z Z ′ ×Z X −→ Y ×Z X

https://stacks.math.columbia.edu/tag/041L
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is surjective as a base change of Z ′ → Z we conclude that Y ×ZX is quasi-compact,
see Morphisms of Spaces, Lemma 67.8.6. This finishes the proof. □

Lemma 74.11.2.041N Let S be a scheme. The property P(f) =“f is quasi-separated”
is fpqc local on the base on algebraic spaces over S.

Proof. A base change of a quasi-separated morphism is quasi-separated, see Mor-
phisms of Spaces, Lemma 67.4.4. Hence the direct implication in Definition 74.10.1.
Let {Yi → Y }i∈I be an fpqc covering of algebraic spaces over S. Let f : X → Y be a
morphism of algebraic spaces over S. Assume each base change Xi := Yi×Y X → Yi
is quasi-separated. This means that each of the morphisms

∆i : Xi −→ Xi ×Yi Xi = Yi ×Y (X ×Y X)
is quasi-compact. The base change of a fpqc covering is an fpqc covering, see
Topologies on Spaces, Lemma 73.9.3 hence {Yi ×Y (X ×Y X) → X ×Y X} is an
fpqc covering of algebraic spaces. Moreover, each ∆i is the base change of the
morphism ∆ : X → X ×Y X. Hence it follows from Lemma 74.11.1 that ∆ is
quasi-compact, i.e., f is quasi-separated. □

Lemma 74.11.3.041O Let S be a scheme. The property P(f) =“f is universally closed”
is fpqc local on the base on algebraic spaces over S.

Proof. We will use Lemma 74.10.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 67.9.5. Let Z ′ → Z be a surjective
flat morphism of affine schemes over S. Let f : X → Z be a morphism of algebraic
spaces, and assume that the base change f ′ : Z ′ ×Z X → Z ′ is universally closed.
We have to show that f is universally closed. To see this, using Morphisms of
Spaces, Lemma 67.9.5 again, it is enough to show that for every affine scheme Y and
morphism Y → Z the map |Y ×ZX| → |Y | is closed. Consider the cube (74.11.1.1).
The assumption that f ′ is universally closed implies that |Y ×ZZ ′×ZX| → |Y ×ZZ ′|
is closed. As Y ×Z Z ′ → Y is quasi-compact, surjective, and flat as a base change
of Z ′ → Z we see the map |Y ×Z Z ′| → |Y | is submersive, see Morphisms, Lemma
29.25.12. Moreover the map

|Y ×Z Z ′ ×Z X| −→ |Y ×Z Z ′| ×|Y | |Y ×Z X|
is surjective, see Properties of Spaces, Lemma 66.4.3. It follows by elementary
topology that |Y ×Z X| → |Y | is closed. □

Lemma 74.11.4.041P Let S be a scheme. The property P(f) =“f is universally open”
is fpqc local on the base on algebraic spaces over S.

Proof. The proof is the same as the proof of Lemma 74.11.3. □

Lemma 74.11.5.0CFW The property P(f) =“f is universally submersive” is fpqc local
on the base.

Proof. The proof is the same as the proof of Lemma 74.11.3. □

Lemma 74.11.6.041Q The property P(f) =“f is surjective” is fpqc local on the base.

Proof. Omitted. (Hint: Use Properties of Spaces, Lemma 66.4.3.) □

Lemma 74.11.7.041R The property P(f) =“f is universally injective” is fpqc local on
the base.
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Proof. We will use Lemma 74.10.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 67.9.5. Let Z ′ → Z be a flat
surjective morphism of affine schemes over S and let f : X → Z be a morphism from
an algebraic space to Z. Assume that the base change f ′ : X ′ → Z ′ is universally
injective. Let K be a field, and let a, b : Spec(K) → X be two morphisms such
that f ◦ a = f ◦ b. As Z ′ → Z is surjective there exists a field extension K ′/K and
a morphism Spec(K ′)→ Z ′ such that the following solid diagram commutes

Spec(K ′)

))
a′,b′

$$

��

X ′ //

��

Z ′

��
Spec(K) a,b // X // Z

As the square is cartesian we get the two dotted arrows a′, b′ making the diagram
commute. Since X ′ → Z ′ is universally injective we get a′ = b′. This forces a = b as
{Spec(K ′) → Spec(K)} is an fpqc covering, see Properties of Spaces, Proposition
66.17.1. Hence f is universally injective as desired. □

Lemma 74.11.8.0CFX The property P(f) =“f is a universal homeomorphism” is fpqc
local on the base.

Proof. This can be proved in exactly the same manner as Lemma 74.11.3. Alter-
natively, one can use that a map of topological spaces is a homeomorphism if and
only if it is injective, surjective, and open. Thus a universal homeomorphism is the
same thing as a surjective, universally injective, and universally open morphism.
See Morphisms of Spaces, Lemma 67.5.5 and Morphisms of Spaces, Definitions
67.19.3, 67.5.2, 67.6.2, 67.53.2. Thus the lemma follows from Lemmas 74.11.6,
74.11.7, and 74.11.4. □

Lemma 74.11.9.041S The property P(f) =“f is locally of finite type” is fpqc local on
the base.

Proof. We will use Lemma 74.10.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 67.23.4. Let Z ′ → Z be a sur-
jective flat morphism of affine schemes over S. Let f : X → Z be a morphism of
algebraic spaces, and assume that the base change f ′ : Z ′ ×Z X → Z ′ is locally of
finite type. We have to show that f is locally of finite type. Let U be a scheme
and let U → X be surjective and étale. By Morphisms of Spaces, Lemma 67.23.4
again, it is enough to show that U → Z is locally of finite type. Since f ′ is locally
of finite type, and since Z ′ ×Z U is a scheme étale over Z ′ ×Z X we conclude (by
the same lemma again) that Z ′ ×Z U → Z ′ is locally of finite type. As {Z ′ → Z}
is an fpqc covering we conclude that U → Z is locally of finite type by Descent,
Lemma 35.23.10 as desired. □

Lemma 74.11.10.041T The property P(f) =“f is locally of finite presentation” is fpqc
local on the base.
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Proof. We will use Lemma 74.10.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 67.28.4. Let Z ′ → Z be a sur-
jective flat morphism of affine schemes over S. Let f : X → Z be a morphism of
algebraic spaces, and assume that the base change f ′ : Z ′ ×Z X → Z ′ is locally of
finite presentation. We have to show that f is locally of finite presentation. Let
U be a scheme and let U → X be surjective and étale. By Morphisms of Spaces,
Lemma 67.28.4 again, it is enough to show that U → Z is locally of finite presenta-
tion. Since f ′ is locally of finite presentation, and since Z ′ ×Z U is a scheme étale
over Z ′×ZX we conclude (by the same lemma again) that Z ′×Z U → Z ′ is locally
of finite presentation. As {Z ′ → Z} is an fpqc covering we conclude that U → Z is
locally of finite presentation by Descent, Lemma 35.23.11 as desired. □

Lemma 74.11.11.041U The property P(f) =“f is of finite type” is fpqc local on the
base.

Proof. Combine Lemmas 74.11.1 and 74.11.9. □

Lemma 74.11.12.041V The property P(f) =“f is of finite presentation” is fpqc local on
the base.

Proof. Combine Lemmas 74.11.1, 74.11.2 and 74.11.10. □

Lemma 74.11.13.041W The property P(f) =“f is flat” is fpqc local on the base.

Proof. We will use Lemma 74.10.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 67.30.5. Let Z ′ → Z be a sur-
jective flat morphism of affine schemes over S. Let f : X → Z be a morphism of
algebraic spaces, and assume that the base change f ′ : Z ′ ×Z X → Z ′ is flat. We
have to show that f is flat. Let U be a scheme and let U → X be surjective and
étale. By Morphisms of Spaces, Lemma 67.30.5 again, it is enough to show that
U → Z is flat. Since f ′ is flat, and since Z ′ ×Z U is a scheme étale over Z ′ ×Z X
we conclude (by the same lemma again) that Z ′ ×Z U → Z ′ is flat. As {Z ′ → Z}
is an fpqc covering we conclude that U → Z is flat by Descent, Lemma 35.23.15 as
desired. □

Lemma 74.11.14.041X The property P(f) =“f is an open immersion” is fpqc local on
the base.

Proof. We will use Lemma 74.10.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 67.12.1. Consider a cartesian
diagram

X ′ //

��

X

��
Z ′ // Z

of algebraic spaces over S where Z ′ → Z is a surjective flat morphism of affine
schemes, and X ′ → Z ′ is an open immersion. We have to show that X → Z is an
open immersion. Note that |X ′| ⊂ |Z ′| corresponds to an open subscheme U ′ ⊂ Z ′

(isomorphic to X ′) with the property that pr−1
0 (U ′) = pr−1

1 (U ′) as open subschemes
of Z ′ ×Z Z ′. Hence there exists an open subscheme U ⊂ Z such that X ′ = (Z ′ →
Z)−1(U), see Descent, Lemma 35.13.6. By Properties of Spaces, Proposition 66.17.1
we see that X satisfies the sheaf condition for the fpqc topology. Now we have the
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fpqc covering U = {U ′ → U} and the element U ′ → X ′ → X ∈ Ȟ0(U , X). By the
sheaf condition we obtain a morphism U → X such that

U ′ //

∼=
��

��

U

��

��

X ′ //

��

X

��
Z ′ // Z

is commutative. On the other hand, we know that for any scheme T over S and
T -valued point T → X the composition T → X → Z is a morphism such that
Z ′ ×Z T → Z ′ factors through U ′. Clearly this means that T → Z factors through
U . In other words the map of sheaves U → X is bijective and we win. □

Lemma 74.11.15.041Y The property P(f) =“f is an isomorphism” is fpqc local on the
base.
Proof. Combine Lemmas 74.11.6 and 74.11.14. □

Lemma 74.11.16.041Z The property P(f) =“f is affine” is fpqc local on the base.
Proof. We will use Lemma 74.10.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 67.20.3. Let Z ′ → Z be a sur-
jective flat morphism of affine schemes over S. Let f : X → Z be a morphism of
algebraic spaces, and assume that the base change f ′ : Z ′×Z X → Z ′ is affine. Let
X ′ be a scheme representing Z ′ ×Z X. We obtain a canonical isomorphism

φ : X ′ ×Z Z ′ −→ Z ′ ×Z X ′

since both schemes represent the algebraic space Z ′ ×Z Z ′ ×Z X. This is a descent
datum for X ′/Z ′/Z, see Descent, Definition 35.34.1 (verification omitted, compare
with Descent, Lemma 35.39.1). Since X ′ → Z ′ is affine this descent datum is
effective, see Descent, Lemma 35.37.1. Thus there exists a scheme Y → Z over
Z and an isomorphism ψ : Z ′ ×Z Y → X ′ compatible with descent data. Of
course Y → Z is affine (by construction or by Descent, Lemma 35.23.18). Note
that Y = {Z ′ ×Z Y → Y } is a fpqc covering, and interpreting ψ as an element of
X(Z ′×ZY ) we see that ψ ∈ Ȟ0(Y, X). By the sheaf condition for X with respect to
this covering (see Properties of Spaces, Proposition 66.17.1) we obtain a morphism
Y → X. By construction the base change of this to Z ′ is an isomorphism, hence an
isomorphism by Lemma 74.11.15. This proves that X is representable by an affine
scheme and we win. □

Lemma 74.11.17.0420 The property P(f) =“f is a closed immersion” is fpqc local on
the base.
Proof. We will use Lemma 74.10.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 67.12.1. Consider a cartesian
diagram

X ′ //

��

X

��
Z ′ // Z
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of algebraic spaces over S where Z ′ → Z is a surjective flat morphism of affine
schemes, and X ′ → Z ′ is a closed immersion. We have to show that X → Z is
a closed immersion. The morphism X ′ → Z ′ is affine. Hence by Lemma 74.11.16
we see that X is a scheme and X → Z is affine. It follows from Descent, Lemma
35.23.19 that X → Z is a closed immersion as desired. □

Lemma 74.11.18.0421 The property P(f) =“f is separated” is fpqc local on the base.

Proof. A base change of a separated morphism is separated, see Morphisms of
Spaces, Lemma 67.4.4. Hence the direct implication in Definition 74.10.1.

Let {Yi → Y }i∈I be an fpqc covering of algebraic spaces over S. Let f : X → Y be a
morphism of algebraic spaces over S. Assume each base change Xi := Yi×Y X → Yi
is separated. This means that each of the morphisms

∆i : Xi −→ Xi ×Yi Xi = Yi ×Y (X ×Y X)

is a closed immersion. The base change of a fpqc covering is an fpqc covering,
see Topologies on Spaces, Lemma 73.9.3 hence {Yi ×Y (X ×Y X) → X ×Y X} is
an fpqc covering of algebraic spaces. Moreover, each ∆i is the base change of the
morphism ∆ : X → X ×Y X. Hence it follows from Lemma 74.11.17 that ∆ is a
closed immersion, i.e., f is separated. □

Lemma 74.11.19.0422 The property P(f) =“f is proper” is fpqc local on the base.

Proof. The lemma follows by combining Lemmas 74.11.3, 74.11.18 and 74.11.11.
□

Lemma 74.11.20.0423 The property P(f) =“f is quasi-affine” is fpqc local on the base.

Proof. We will use Lemma 74.10.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 67.21.3. Let Z ′ → Z be a sur-
jective flat morphism of affine schemes over S. Let f : X → Z be a morphism of
algebraic spaces, and assume that the base change f ′ : Z ′×ZX → Z ′ is quasi-affine.
Let X ′ be a scheme representing Z ′ ×Z X. We obtain a canonical isomorphism

φ : X ′ ×Z Z ′ −→ Z ′ ×Z X ′

since both schemes represent the algebraic space Z ′ ×Z Z ′ ×Z X. This is a descent
datum for X ′/Z ′/Z, see Descent, Definition 35.34.1 (verification omitted, compare
with Descent, Lemma 35.39.1). Since X ′ → Z ′ is quasi-affine this descent datum
is effective, see Descent, Lemma 35.38.1. Thus there exists a scheme Y → Z over
Z and an isomorphism ψ : Z ′×Z Y → X ′ compatible with descent data. Of course
Y → Z is quasi-affine (by construction or by Descent, Lemma 35.23.20). Note
that Y = {Z ′ ×Z Y → Y } is a fpqc covering, and interpreting ψ as an element of
X(Z ′×ZY ) we see that ψ ∈ Ȟ0(Y, X). By the sheaf condition for X (see Properties
of Spaces, Proposition 66.17.1) we obtain a morphism Y → X. By construction
the base change of this to Z ′ is an isomorphism, hence an isomorphism by Lemma
74.11.15. This proves that X is representable by a quasi-affine scheme and we
win. □

Lemma 74.11.21.0424 The property P(f) =“f is a quasi-compact immersion” is fpqc
local on the base.
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Proof. We will use Lemma 74.10.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemmas 67.12.1 and 67.8.8. Consider a
cartesian diagram

X ′ //

��

X

��
Z ′ // Z

of algebraic spaces over S where Z ′ → Z is a surjective flat morphism of affine
schemes, and X ′ → Z ′ is a quasi-compact immersion. We have to show that
X → Z is a closed immersion. The morphism X ′ → Z ′ is quasi-affine. Hence
by Lemma 74.11.20 we see that X is a scheme and X → Z is quasi-affine. It
follows from Descent, Lemma 35.23.21 that X → Z is a quasi-compact immersion
as desired. □

Lemma 74.11.22.0425 The property P(f) =“f is integral” is fpqc local on the base.

Proof. An integral morphism is the same thing as an affine, universally closed
morphism. See Morphisms of Spaces, Lemma 67.45.7. Hence the lemma follows on
combining Lemmas 74.11.3 and 74.11.16. □

Lemma 74.11.23.0426 The property P(f) =“f is finite” is fpqc local on the base.

Proof. An finite morphism is the same thing as an integral, morphism which is
locally of finite type. See Morphisms of Spaces, Lemma 67.45.6. Hence the lemma
follows on combining Lemmas 74.11.9 and 74.11.22. □

Lemma 74.11.24.0427 The properties P(f) =“f is locally quasi-finite” and P(f) =“f
is quasi-finite” are fpqc local on the base.

Proof. We have already seen that “quasi-compact” is fpqc local on the base, see
Lemma 74.11.1. Hence it is enough to prove the lemma for “locally quasi-finite”.
We will use Lemma 74.10.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 67.27.6. Let Z ′ → Z be a surjective flat
morphism of affine schemes over S. Let f : X → Z be a morphism of algebraic
spaces, and assume that the base change f ′ : Z ′ ×Z X → Z ′ is locally quasi-finite.
We have to show that f is locally quasi-finite. Let U be a scheme and let U → X be
surjective and étale. By Morphisms of Spaces, Lemma 67.27.6 again, it is enough
to show that U → Z is locally quasi-finite. Since f ′ is locally quasi-finite, and since
Z ′×ZU is a scheme étale over Z ′×ZX we conclude (by the same lemma again) that
Z ′ ×Z U → Z ′ is locally quasi-finite. As {Z ′ → Z} is an fpqc covering we conclude
that U → Z is locally quasi-finite by Descent, Lemma 35.23.24 as desired. □

Lemma 74.11.25.0428 The property P(f) =“f is syntomic” is fpqc local on the base.

Proof. We will use Lemma 74.10.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 67.36.4. Let Z ′ → Z be a sur-
jective flat morphism of affine schemes over S. Let f : X → Z be a morphism of
algebraic spaces, and assume that the base change f ′ : Z ′ ×Z X → Z ′ is syntomic.
We have to show that f is syntomic. Let U be a scheme and let U → X be sur-
jective and étale. By Morphisms of Spaces, Lemma 67.36.4 again, it is enough to
show that U → Z is syntomic. Since f ′ is syntomic, and since Z ′×Z U is a scheme
étale over Z ′ ×Z X we conclude (by the same lemma again) that Z ′ ×Z U → Z ′ is
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syntomic. As {Z ′ → Z} is an fpqc covering we conclude that U → Z is syntomic
by Descent, Lemma 35.23.26 as desired. □

Lemma 74.11.26.0429 The property P(f) =“f is smooth” is fpqc local on the base.

Proof. We will use Lemma 74.10.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 67.37.4. Let Z ′ → Z be a sur-
jective flat morphism of affine schemes over S. Let f : X → Z be a morphism of
algebraic spaces, and assume that the base change f ′ : Z ′ ×Z X → Z ′ is smooth.
We have to show that f is smooth. Let U be a scheme and let U → X be surjective
and étale. By Morphisms of Spaces, Lemma 67.37.4 again, it is enough to show
that U → Z is smooth. Since f ′ is smooth, and since Z ′×Z U is a scheme étale over
Z ′ ×Z X we conclude (by the same lemma again) that Z ′ ×Z U → Z ′ is smooth.
As {Z ′ → Z} is an fpqc covering we conclude that U → Z is smooth by Descent,
Lemma 35.23.27 as desired. □

Lemma 74.11.27.042A The property P(f) =“f is unramified” is fpqc local on the base.

Proof. We will use Lemma 74.10.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 67.38.5. Let Z ′ → Z be a sur-
jective flat morphism of affine schemes over S. Let f : X → Z be a morphism of
algebraic spaces, and assume that the base change f ′ : Z ′×ZX → Z ′ is unramified.
We have to show that f is unramified. Let U be a scheme and let U → X be surjec-
tive and étale. By Morphisms of Spaces, Lemma 67.38.5 again, it is enough to show
that U → Z is unramified. Since f ′ is unramified, and since Z ′ ×Z U is a scheme
étale over Z ′ ×Z X we conclude (by the same lemma again) that Z ′ ×Z U → Z ′ is
unramified. As {Z ′ → Z} is an fpqc covering we conclude that U → Z is unramified
by Descent, Lemma 35.23.28 as desired. □

Lemma 74.11.28.042B The property P(f) =“f is étale” is fpqc local on the base.

Proof. We will use Lemma 74.10.4 to prove this. Assumptions (1) and (2) of that
lemma follow from Morphisms of Spaces, Lemma 67.39.2. Let Z ′ → Z be a sur-
jective flat morphism of affine schemes over S. Let f : X → Z be a morphism of
algebraic spaces, and assume that the base change f ′ : Z ′ ×Z X → Z ′ is étale. We
have to show that f is étale. Let U be a scheme and let U → X be surjective and
étale. By Morphisms of Spaces, Lemma 67.39.2 again, it is enough to show that
U → Z is étale. Since f ′ is étale, and since Z ′×Z U is a scheme étale over Z ′×Z X
we conclude (by the same lemma again) that Z ′ ×Z U → Z ′ is étale. As {Z ′ → Z}
is an fpqc covering we conclude that U → Z is étale by Descent, Lemma 35.23.29
as desired. □

Lemma 74.11.29.042C The property P(f) =“f is finite locally free” is fpqc local on the
base.

Proof. Being finite locally free is equivalent to being finite, flat and locally of fi-
nite presentation (Morphisms of Spaces, Lemma 67.46.6). Hence this follows from
Lemmas 74.11.23, 74.11.13, and 74.11.10. □

Lemma 74.11.30.042D The property P(f) =“f is a monomorphism” is fpqc local on
the base.
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Proof. Let f : X → Y be a morphism of algebraic spaces. Let {Yi → Y } be an fpqc
covering, and assume each of the base changes fi : Xi → Yi of f is a monomorphism.
We have to show that f is a monomorphism.
First proof. Note that f is a monomorphism if and only if ∆ : X → X ×Y X is an
isomorphism. By applying this to fi we see that each of the morphisms

∆i : Xi −→ Xi ×Yi Xi = Yi ×Y (X ×Y X)
is an isomorphism. The base change of an fpqc covering is an fpqc covering, see
Topologies on Spaces, Lemma 73.9.3 hence {Yi ×Y (X ×Y X) → X ×Y X} is an
fpqc covering of algebraic spaces. Moreover, each ∆i is the base change of the
morphism ∆ : X → X ×Y X. Hence it follows from Lemma 74.11.15 that ∆ is an
isomorphism, i.e., f is a monomorphism.
Second proof. Let V be a scheme, and let V → Y be a surjective étale morphism.
If we can show that V ×Y X → V is a monomorphism, then it follows that X → Y
is a monomorphism. Namely, given any cartesian diagram of sheaves

F
a
//

b

��

G

c

��
H d // I

F = H×I G

if c is a surjection of sheaves, and a is injective, then also d is injective. This reduces
the problem to the case where Y is a scheme. Moreover, in this case we may assume
that the algebraic spaces Yi are schemes also, since we can always refine the covering
to place ourselves in this situation, see Topologies on Spaces, Lemma 73.9.5.
Assume {Yi → Y } is an fpqc covering of schemes. Let a, b : T → X be two
morphisms such that f ◦ a = f ◦ b. We have to show that a = b. Since fi is a
monomorphism we see that ai = bi, where ai, bi : Yi ×Y T → Xi are the base
changes. In particular the compositions Yi ×Y T → T → X are equal. Since
{Yi×Y T → T} is an fpqc covering we deduce that a = b from Properties of Spaces,
Proposition 66.17.1. □

74.12. Descending properties of morphisms in the fppf topology

042E In this section we find some properties of morphisms of algebraic spaces for which
we could not (yet) show they are local on the base in the fpqc topology which,
however, are local on the base in the fppf topology.

Lemma 74.12.1.042U The property P(f) =“f is an immersion” is fppf local on the base.

Proof. Let f : X → Y be a morphism of algebraic spaces. Let {Yi → Y }i∈I be an
fppf covering of Y . Let fi : Xi → Yi be the base change of f .
If f is an immersion, then each fi is an immersion by Spaces, Lemma 65.12.3. This
proves the direct implication in Definition 74.10.1.
Conversely, assume each fi is an immersion. By Morphisms of Spaces, Lemma
67.10.7 this implies each fi is separated. By Morphisms of Spaces, Lemma 67.27.7
this implies each fi is locally quasi-finite. Hence we see that f is locally quasi-
finite and separated, by applying Lemmas 74.11.18 and 74.11.24. By Morphisms of
Spaces, Lemma 67.51.1 this implies that f is representable!
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By Morphisms of Spaces, Lemma 67.12.1 it suffices to show that for every scheme
Z and morphism Z → Y the base change Z ×Y X → Z is an immersion. By
Topologies on Spaces, Lemma 73.7.4 we can find an fppf covering {Zi → Z} by
schemes which refines the pullback of the covering {Yi → Y } to Z. Hence we see
that Z ×Y X → Z (which is a morphism of schemes according to the result of the
preceding paragraph) becomes an immersion after pulling back to the members of
an fppf (by schemes) of Z. Hence Z ×Y X → Z is an immersion by the result for
schemes, see Descent, Lemma 35.24.1. □

Lemma 74.12.2.042F The property P(f) =“f is locally separated” is fppf local on the
base.

Proof. A base change of a locally separated morphism is locally separated, see
Morphisms of Spaces, Lemma 67.4.4. Hence the direct implication in Definition
74.10.1.
Let {Yi → Y }i∈I be an fppf covering of algebraic spaces over S. Let f : X → Y be a
morphism of algebraic spaces over S. Assume each base change Xi := Yi×Y X → Yi
is locally separated. This means that each of the morphisms

∆i : Xi −→ Xi ×Yi Xi = Yi ×Y (X ×Y X)
is an immersion. The base change of a fppf covering is an fppf covering, see Topolo-
gies on Spaces, Lemma 73.7.3 hence {Yi ×Y (X ×Y X) → X ×Y X} is an fppf
covering of algebraic spaces. Moreover, each ∆i is the base change of the morphism
∆ : X → X ×Y X. Hence it follows from Lemma 74.12.1 that ∆ is a immersion,
i.e., f is locally separated. □

74.13. Application of descent of properties of morphisms

0D3B This section is the analogue of Descent, Section 35.25.

Lemma 74.13.1.0D3C Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let L be an invertible OX -module. Let {gi : Yi → Y }i∈I be an fpqc
covering. Let fi : Xi → Yi be the base change of f and let Li be the pullback of L
to Xi. The following are equivalent

(1) L is ample on X/Y , and
(2) Li is ample on Xi/Yi for every i ∈ I.

Proof. The implication (1) ⇒ (2) follows from Divisors on Spaces, Lemma 71.14.3.
Assume (2). To check L is ample on X/Y we may work étale localy on Y , see
Divisors on Spaces, Lemma 71.14.6. Thus we may assume that Y is a scheme and
then we may in turn assume each Yi is a scheme too, see Topologies on Spaces,
Lemma 73.9.5. In other words, we may assume that {Yi → Y } is an fpqc covering
of schemes.
By Divisors on Spaces, Lemma 71.14.4 we see that Xi → Yi is representable (i.e.,
Xi is a scheme), quasi-compact, and separated. Hence f is quasi-compact and
separated by Lemmas 74.11.1 and 74.11.18. This means that A =

⊕
d≥0 f∗L⊗d

is a quasi-coherent graded OY -algebra (Morphisms of Spaces, Lemma 67.11.2).
Moreover, the formation of A commutes with flat base change by Cohomology of
Spaces, Lemma 69.11.2. In particular, if we set Ai =

⊕
d≥0 fi,∗L

⊗d
i then we have

Ai = g∗
iA. It follows that the natural maps ψd : f∗Ad → L⊗d ofOX pullback to give
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the natural maps ψi,d : f∗
i (Ai)d → L⊗d

i of OXi-modules. Since Li is ample on Xi/Yi
we see that for any point xi ∈ Xi, there exists a d ≥ 1 such that f∗

i (Ai)d → L⊗d
i

is surjective on stalks at xi. This follows either directly from the definition of a
relatively ample module or from Morphisms, Lemma 29.37.4. If x ∈ |X|, then
we can choose an i and an xi ∈ Xi mapping to x. Since OX,x → OXi,xi is flat
hence faithfully flat, we conclude that for every x ∈ |X| there exists a d ≥ 1
such that f∗Ad → L⊗d is surjective on stalks at x. This implies that the open
subset U(ψ) ⊂ X of Divisors on Spaces, Lemma 71.13.1 corresponding to the
map ψ : f∗A →

⊕
d≥0 L⊗d of graded OX -algebras is equal to X. Consider the

corresponding morphism
rL,ψ : X −→ Proj

Y
(A)

It is clear from the above that the base change of rL,ψ to Yi is the morphism rLi,ψi
which is an open immersion by Morphisms, Lemma 29.37.4. Hence rL,ψ is an open
immersion by Lemma 74.11.14. Hence X is a scheme and we conclude L is ample
on X/Y by Morphisms, Lemma 29.37.4. □

Lemma 74.13.2.0D3D Let S be a scheme. Let f : X → Y be a proper morphism of
algebraic spaces over S. Let L be an invertible OX -module. There exists an open
subspace V ⊂ Y characterized by the following property: A morphism Y ′ → Y
of algebraic spaces factors through V if and only if the pullback L′ of L to X ′ =
Y ′ ×Y X is ample on X ′/Y ′ (as in Divisors on Spaces, Definition 71.14.1).

Proof. Suppose that the lemma holds whenever Y is a scheme. Let U be a scheme
and let U → Y be a surjective étale morphism. Let R = U ×Y U with projections
t, s : R → U . Denote XU = U ×Y X and LU the pullback. Then we get an
open subscheme V ′ ⊂ U as in the lemma for (XU → U,LU ). By the functorial
characterization we see that s−1(V ′) = t−1(V ′). Thus there is an open subspace
V ⊂ Y such that V ′ is the inverse image of V in U . In particular V ′ → V is
surjective étale and we conclude that LV is ample on XV /V (Divisors on Spaces,
Lemma 71.14.6). Now, if Y ′ → Y is a morphism such that L′ is ample on X ′/Y ′,
then U ×Y Y ′ → Y ′ must factor through V ′ and we conclude that Y ′ → Y factors
through V . Hence V ⊂ Y is as in the statement of the lemma. In this way we
reduce to the case dealt with in the next paragraph.
Assume Y is a scheme. Since the question is local on Y we may assume Y is an
affine scheme. We will show the following:

(A) If Spec(k)→ Y is a morphism such that Lk is ample on Xk/k, then there
is an open neighbourhood V ⊂ Y of the image of Spec(k)→ Y such that
LV is ample on XV /V .

It is clear that (A) implies the truth of the lemma.
Let X → Y , L, Spec(k)→ Y be as in (A). By Lemma 74.13.1 we may assume that
k = κ(y) is the residue field of a point y of Y .
As Y is affine we can find a directed set I and an inverse system of morphisms Xi →
Yi of algebraic spaces with Yi of finite presentation over Z, with affine transition
morphisms Xi → Xi′ and Yi → Yi′ , with Xi → Yi proper and of finite presentation,
and such that X → Y = lim(Xi → Yi). See Limits of Spaces, Lemma 70.12.2. After
shrinking I we may assume Yi is an (affine) scheme for all i, see Limits of Spaces,
Lemma 70.5.10. After shrinking I we can assume we have a compatible system of
invertible OXi-modules Li pulling back to L, see Limits of Spaces, Lemma 70.7.3.
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Let yi ∈ Yi be the image of y. Then κ(y) = colim κ(yi). Hence Xy = limXi,yi and
after shrinking I we may assume Xi,yi is a scheme for all i, see Limits of Spaces,
Lemma 70.5.11. Hence for some i we have Li,yi is ample on Xi,yi by Limits, Lemma
32.4.15. By Divisors on Spaces, Lemma 71.15.3 we find an open neigbourhood
Vi ⊂ Yi of yi such that Li restricted to f−1

i (Vi) is ample relative to Vi. Letting
V ⊂ Y be the inverse image of Vi finishes the proof (hints: use Morphisms, Lemma
29.37.9 and the fact that X → Y ×Yi Xi is affine and the fact that the pullback of
an ample invertible sheaf by an affine morphism is ample by Morphisms, Lemma
29.37.7). □

74.14. Properties of morphisms local on the source

06EN In this section we define what it means for a property of morphisms of algebraic
spaces to be local on the source. Please compare with Descent, Section 35.26.

Definition 74.14.1.06EP Let S be a scheme. Let P be a property of morphisms of
algebraic spaces over S. Let τ ∈ {fpqc, fppf, syntomic, smooth, étale}. We say
P is τ local on the source, or local on the source for the τ -topology if for any
morphism f : X → Y of algebraic spaces over S, and any τ -covering {Xi → X}i∈I
of algebraic spaces we have

f has P ⇔ each Xi → Y has P.

To be sure, since isomorphisms are always coverings we see (or require) that prop-
erty P holds for X → Y if and only if it holds for any arrow X ′ → Y ′ isomorphic to
X → Y . If a property is τ -local on the source then it is preserved by precomposing
with morphisms which occur in τ -coverings. Here is a formal statement.

Lemma 74.14.2.06EQ Let S be a scheme. Let τ ∈ {fpqc, fppf, syntomic, smooth, étale}.
Let P be a property of morphisms of algebraic spaces over S which is τ local on the
source. Let f : X → Y have property P. For any morphism a : X ′ → X which is
flat, resp. flat and locally of finite presentation, resp. syntomic, resp. smooth, resp.
étale, the composition f ◦ a : X ′ → Y has property P.

Proof. This is true because we can fit X ′ → X into a family of morphisms which
forms a τ -covering. □

Lemma 74.14.3.06ER Let S be a scheme. Let τ ∈ {fpqc, fppf, syntomic, smooth, étale}.
Suppose that P is a property of morphisms of schemes over S which is étale local
on the source-and-target. Denote Pspaces the corresponding property of morphisms
of algebraic spaces over S, see Morphisms of Spaces, Definition 67.22.2. If P is
local on the source for the τ -topology, then Pspaces is local on the source for the
τ -topology.

Proof. Let f : X → Y be a morphism of algebraic spaces over S. Let {Xi →
X}i∈I be a τ -covering of algebraic spaces. Choose a scheme V and a surjective
étale morphism V → Y . Choose a scheme U and a surjective étale morphism
U → X ×Y V . For each i choose a scheme Ui and a surjective étale morphism
Ui → Xi ×X U .
Note that {Xi×XU → U}i∈I is a τ -covering. Note that each {Ui → Xi×XU} is an
étale covering, hence a τ -covering. Hence {Ui → U}i∈I is a τ -covering of algebraic
spaces over S. But since U and each Ui is a scheme we see that {Ui → U}i∈I is a
τ -covering of schemes over S.
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Now we have

f has Pspaces ⇔ U → V has P
⇔ each Ui → V has P
⇔ each Xi → Y has Pspaces.

the first and last equivalence by the definition of Pspaces the middle equivalence
because we assumed P is local on the source in the τ -topology. □

74.15. Properties of morphisms local in the fpqc topology on the source

06ES Here are some properties of morphisms that are fpqc local on the source.

Lemma 74.15.1.06ET The property P(f) =“f is flat” is fpqc local on the source.

Proof. Follows from Lemma 74.14.3 using Morphisms of Spaces, Definition 67.30.1
and Descent, Lemma 35.27.1. □

74.16. Properties of morphisms local in the fppf topology on the source

06EU Here are some properties of morphisms that are fppf local on the source.

Lemma 74.16.1.06EV The property P(f) =“f is locally of finite presentation” is fppf
local on the source.

Proof. Follows from Lemma 74.14.3 using Morphisms of Spaces, Definition 67.28.1
and Descent, Lemma 35.28.1. □

Lemma 74.16.2.06EW The property P(f) =“f is locally of finite type” is fppf local on
the source.

Proof. Follows from Lemma 74.14.3 using Morphisms of Spaces, Definition 67.23.1
and Descent, Lemma 35.28.2. □

Lemma 74.16.3.06EX The property P(f) =“f is open” is fppf local on the source.

Proof. Follows from Lemma 74.14.3 using Morphisms of Spaces, Definition 67.6.2
and Descent, Lemma 35.28.3. □

Lemma 74.16.4.06EY The property P(f) =“f is universally open” is fppf local on the
source.

Proof. Follows from Lemma 74.14.3 using Morphisms of Spaces, Definition 67.6.2
and Descent, Lemma 35.28.4. □

74.17. Properties of morphisms local in the syntomic topology on the source

06EZ Here are some properties of morphisms that are syntomic local on the source.

Lemma 74.17.1.06F0 The property P(f) =“f is syntomic” is syntomic local on the
source.

Proof. Follows from Lemma 74.14.3 using Morphisms of Spaces, Definition 67.36.1
and Descent, Lemma 35.29.1. □
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74.18. Properties of morphisms local in the smooth topology on the source

06F1 Here are some properties of morphisms that are smooth local on the source.

Lemma 74.18.1.06F2 The property P(f) =“f is smooth” is smooth local on the source.

Proof. Follows from Lemma 74.14.3 using Morphisms of Spaces, Definition 67.37.1
and Descent, Lemma 35.30.1. □

74.19. Properties of morphisms local in the étale topology on the source

06F3 Here are some properties of morphisms that are étale local on the source.

Lemma 74.19.1.06F4 The property P(f) =“f is étale” is étale local on the source.

Proof. Follows from Lemma 74.14.3 using Morphisms of Spaces, Definition 67.39.1
and Descent, Lemma 35.31.1. □

Lemma 74.19.2.06F5 The property P(f) =“f is locally quasi-finite” is étale local on
the source.

Proof. Follows from Lemma 74.14.3 using Morphisms of Spaces, Definition 67.27.1
and Descent, Lemma 35.31.2. □

Lemma 74.19.3.06F6 The property P(f) =“f is unramified” is étale local on the source.

Proof. Follows from Lemma 74.14.3 using Morphisms of Spaces, Definition 67.38.1
and Descent, Lemma 35.31.3. □

74.20. Properties of morphisms smooth local on source-and-target

06F7 Let P be a property of morphisms of algebraic spaces. There is an intuitive meaning
to the phrase “P is smooth local on the source and target”. However, it turns out
that this notion is not the same as asking P to be both smooth local on the source
and smooth local on the target. We have discussed a similar phenomenon (for the
étale topology and the category of schemes) in great detail in Descent, Section 35.32
(for a quick overview take a look at Descent, Remark 35.32.8). However, there is
an important difference between the case of the smooth and the étale topology. To
see this difference we encourage the reader to ponder the difference between De-
scent, Lemma 35.32.4 and Lemma 74.20.2 as well as the difference between Descent,
Lemma 35.32.5 and Lemma 74.20.3. Namely, in the étale setting the choice of the
étale “covering” of the target is immaterial, whereas in the smooth setting it is not.

Definition 74.20.1.06F8 Let S be a scheme. Let P be a property of morphisms of
algebraic spaces over S. We say P is smooth local on source-and-target if

(1) (stable under precomposing with smooth maps) if f : X → Y is smooth
and g : Y → Z has P, then g ◦ f has P,

(2) (stable under smooth base change) if f : X → Y has P and Y ′ → Y is
smooth, then the base change f ′ : Y ′ ×Y X → Y ′ has P, and

(3) (locality) given a morphism f : X → Y the following are equivalent
(a) f has P,
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(b) for every x ∈ |X| there exists a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with smooth vertical arrows and u ∈ |U | with a(u) = x such that h
has P.

The above serves as our definition. In the lemmas below we will show that this is
equivalent to P being smooth local on the target, smooth local on the source, and
stable under post-composing by smooth morphisms.

Lemma 74.20.2.06F9 Let S be a scheme. Let P be a property of morphisms of algebraic
spaces over S which is smooth local on source-and-target. Then

(1) P is smooth local on the source,
(2) P is smooth local on the target,
(3) P is stable under postcomposing with smooth morphisms: if f : X → Y

has P and g : Y → Z is smooth, then g ◦ f has P.

Proof. We write everything out completely.
Proof of (1). Let f : X → Y be a morphism of algebraic spaces over S. Let
{Xi → X}i∈I be a smooth covering of X. If each composition hi : Xi → Y has
P, then for each |x| ∈ X we can find an i ∈ I and a point xi ∈ |Xi| mapping to
x. Then (Xi, xi) → (X,x) is a smooth morphism of pairs, and idY : Y → Y is a
smooth morphism, and hi is as in part (3) of Definition 74.20.1. Thus we see that
f has P. Conversely, if f has P then each Xi → Y has P by Definition 74.20.1
part (1).
Proof of (2). Let f : X → Y be a morphism of algebraic spaces over S. Let
{Yi → Y }i∈I be a smooth covering of Y . Write Xi = Yi ×Y X and hi : Xi → Yi
for the base change of f . If each hi : Xi → Yi has P, then for each x ∈ |X| we pick
an i ∈ I and a point xi ∈ |Xi| mapping to x. Then (Xi, xi) → (X,x) is a smooth
morphism of pairs, Yi → Y is smooth, and hi is as in part (3) of Definition 74.20.1.
Thus we see that f has P. Conversely, if f has P, then each Xi → Yi has P by
Definition 74.20.1 part (2).
Proof of (3). Assume f : X → Y has P and g : Y → Z is smooth. For every
x ∈ |X| we can think of (X,x)→ (X,x) as a smooth morphism of pairs, Y → Z is
a smooth morphism, and h = f is as in part (3) of Definition 74.20.1. Thus we see
that g ◦ f has P. □

The following lemma is the analogue of Morphisms, Lemma 29.14.4.

Lemma 74.20.3.06FA Let S be a scheme. Let P be a property of morphisms of algebraic
spaces over S which is smooth local on source-and-target. Let f : X → Y be a
morphism of algebraic spaces over S. The following are equivalent:

(a) f has property P,
(b) for every x ∈ |X| there exists a smooth morphism of pairs a : (U, u) →

(X,x), a smooth morphism b : V → Y , and a morphism h : U → V such
that f ◦ a = b ◦ h and h has P,
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(c) for some commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with a, b smooth and a surjective the morphism h has P,
(d) for any commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with b smooth and U → X ×Y V smooth the morphism h has P,
(e) there exists a smooth covering {Yi → Y }i∈I such that each base change

Yi ×Y X → Yi has P,
(f) there exists a smooth covering {Xi → X}i∈I such that each composition

Xi → Y has P,
(g) there exists a smooth covering {Yi → Y }i∈I and for each i ∈ I a smooth

covering {Xij → Yi×Y X}j∈Ji such that each morphism Xij → Yi has P.

Proof. The equivalence of (a) and (b) is part of Definition 74.20.1. The equivalence
of (a) and (e) is Lemma 74.20.2 part (2). The equivalence of (a) and (f) is Lemma
74.20.2 part (1). As (a) is now equivalent to (e) and (f) it follows that (a) equivalent
to (g).

It is clear that (c) implies (b). If (b) holds, then for any x ∈ |X| we can choose a
smooth morphism of pairs ax : (Ux, ux)→ (X,x), a smooth morphism bx : Vx → Y ,
and a morphism hx : Ux → Vx such that f ◦ ax = bx ◦ hx and hx has P. Then
h =

∐
hx :

∐
Ux →

∐
Vx with a =

∐
ax and b =

∐
bx is a diagram as in (c). (Note

that h has property P as {Vx →
∐
Vx} is a smooth covering and P is smooth local

on the target.) Thus (b) is equivalent to (c).

Now we know that (a), (b), (c), (e), (f), and (g) are equivalent. Suppose (a) holds.
Let U, V, a, b, h be as in (d). Then X×Y V → V has P as P is stable under smooth
base change, whence U → V has P as P is stable under precomposing with smooth
morphisms. Conversely, if (d) holds, then setting U = X and V = Y we see that f
has P. □

Lemma 74.20.4.06FB Let S be a scheme. Let P be a property of morphisms of algebraic
spaces over S. Assume

(1) P is smooth local on the source,
(2) P is smooth local on the target, and
(3) P is stable under postcomposing with smooth morphisms: if f : X → Y

has P and Y → Z is a smooth morphism then X → Z has P.
Then P is smooth local on the source-and-target.

Proof. Let P be a property of morphisms of algebraic spaces which satisfies con-
ditions (1), (2) and (3) of the lemma. By Lemma 74.14.2 we see that P is stable
under precomposing with smooth morphisms. By Lemma 74.10.2 we see that P is
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stable under smooth base change. Hence it suffices to prove part (3) of Definition
74.20.1 holds.

More precisely, suppose that f : X → Y is a morphism of algebraic spaces over S
which satisfies Definition 74.20.1 part (3)(b). In other words, for every x ∈ X there
exists a smooth morphism ax : Ux → X, a point ux ∈ |Ux| mapping to x, a smooth
morphism bx : Vx → Y , and a morphism hx : Ux → Vx such that f ◦ ax = bx ◦ hx
and hx has P. The proof of the lemma is complete once we show that f has P.
Set U =

∐
Ux, a =

∐
ax, V =

∐
Vx, b =

∐
bx, and h =

∐
hx. We obtain a

commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with a, b smooth, a surjective. Note that h has P as each hx does and P is smooth
local on the target. Because a is surjective and P is smooth local on the source,
it suffices to prove that b ◦ h has P. This follows as we assumed that P is stable
under postcomposing with a smooth morphism and as b is smooth. □

Remark 74.20.5.06FC Using Lemma 74.20.4 and the work done in the earlier sections
of this chapter it is easy to make a list of types of morphisms which are smooth
local on the source-and-target. In each case we list the lemma which implies the
property is smooth local on the source and the lemma which implies the property
is smooth local on the target. In each case the third assumption of Lemma 74.20.4
is trivial to check, and we omit it. Here is the list:

(1) flat, see Lemmas 74.15.1 and 74.11.13,
(2) locally of finite presentation, see Lemmas 74.16.1 and 74.11.10,
(3) locally finite type, see Lemmas 74.16.2 and 74.11.9,
(4) universally open, see Lemmas 74.16.4 and 74.11.4,
(5) syntomic, see Lemmas 74.17.1 and 74.11.25,
(6) smooth, see Lemmas 74.18.1 and 74.11.26,
(7) add more here as needed.

74.21. Properties of morphisms étale-smooth local on source-and-target

0CFY This section is the analogue of Section 74.20 for properties of morphisms which are
étale local on the source and smooth local on the target. We give this property a
ridiculously long name in order to avoid using it too much.

Definition 74.21.1.0CFZ Let S be a scheme. Let P be a property of morphisms of
algebraic spaces over S. We say P is étale-smooth local on source-and-target if

(1) (stable under precomposing with étale maps) if f : X → Y is étale and
g : Y → Z has P, then g ◦ f has P,

(2) (stable under smooth base change) if f : X → Y has P and Y ′ → Y is
smooth, then the base change f ′ : Y ′ ×Y X → Y ′ has P, and

(3) (locality) given a morphism f : X → Y the following are equivalent
(a) f has P,

https://stacks.math.columbia.edu/tag/06FC
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(b) for every x ∈ |X| there exists a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with b smooth and U → X ×Y V étale and u ∈ |U | with a(u) = x
such that h has P.

The above serves as our definition. In the lemmas below we will show that this is
equivalent to P being étale local on the target, smooth local on the source, and
stable under post-composing by étale morphisms.

Lemma 74.21.2.0CG0 Let S be a scheme. Let P be a property of morphisms of algebraic
spaces over S which is étale-smooth local on source-and-target. Then

(1) P is étale local on the source,
(2) P is smooth local on the target,
(3) P is stable under postcomposing with étale morphisms: if f : X → Y has
P and g : Y → Z is étale, then g ◦ f has P, and

(4) P has a permanence property: given f : X → Y and g : Y → Z étale
such that g ◦ f has P, then f has P.

Proof. We write everything out completely.
Proof of (1). Let f : X → Y be a morphism of algebraic spaces over S. Let
{Xi → X}i∈I be an étale covering of X. If each composition hi : Xi → Y has P,
then for each |x| ∈ X we can find an i ∈ I and a point xi ∈ |Xi| mapping to x.
Then (Xi, xi)→ (X,x) is an étale morphism of pairs, and idY : Y → Y is a smooth
morphism, and hi is as in part (3) of Definition 74.21.1. Thus we see that f has P.
Conversely, if f has P then each Xi → Y has P by Definition 74.21.1 part (1).
Proof of (2). Let f : X → Y be a morphism of algebraic spaces over S. Let
{Yi → Y }i∈I be a smooth covering of Y . Write Xi = Yi ×Y X and hi : Xi → Yi
for the base change of f . If each hi : Xi → Yi has P, then for each x ∈ |X| we
pick an i ∈ I and a point xi ∈ |Xi| mapping to x. Then Xi → X ×Y Yi is an étale
morphism (because it is an isomorphism), Yi → Y is smooth, and hi is as in part
(3) of Definition 74.20.1. Thus we see that f has P. Conversely, if f has P, then
each Xi → Yi has P by Definition 74.20.1 part (2).
Proof of (3). Assume f : X → Y has P and g : Y → Z is étale. The morphism X →
Y ×Z X is étale as a morphism between algebraic spaces étale over X ( Properties
of Spaces, Lemma 66.16.6). Also Y → Z is étale hence a smooth morphism. Thus
the diagram

X

��

f
// Y

��
X

g◦f // Z

works for every x ∈ |X| in part (3) of Definition 74.20.1 and we conclude that g ◦ f
has P.
Proof of (4). Let f : X → Y be a morphism and g : Y → Z étale such that
g ◦ f has P. Then by Definition 74.21.1 part (2) we see that prY : Y ×Z X → Y
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has P. But the morphism (f, 1) : X → Y ×Z X is étale as a section to the étale
projection prX : Y ×Z X → X, see Morphisms of Spaces, Lemma 67.39.11. Hence
f = prY ◦ (f, 1) has P by Definition 74.21.1 part (1). □

Lemma 74.21.3.0CG1 Let S be a scheme. Let P be a property of morphisms of algebraic
spaces over S which is etale-smooth local on source-and-target. Let f : X → Y be
a morphism of algebraic spaces over S. The following are equivalent:

(a) f has property P,
(b) for every x ∈ |X| there exists a smooth morphism b : V → Y , an étale

morphism a : U → V ×Y X, and a point u ∈ |U | mapping to x such that
U → V has P,

(c) for some commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with b smooth, U → V ×Y X étale, and a surjective the morphism h has
P,

(d) for any commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with b smooth and U → X ×Y V étale, the morphism h has P,
(e) there exists a smooth covering {Yi → Y }i∈I such that each base change

Yi ×Y X → Yi has P,
(f) there exists an étale covering {Xi → X}i∈I such that each composition

Xi → Y has P,
(g) there exists a smooth covering {Yi → Y }i∈I and for each i ∈ I an étale

covering {Xij → Yi×Y X}j∈Ji such that each morphism Xij → Yi has P.

Proof. The equivalence of (a) and (b) is part of Definition 74.21.1. The equivalence
of (a) and (e) is Lemma 74.21.2 part (2). The equivalence of (a) and (f) is Lemma
74.21.2 part (1). As (a) is now equivalent to (e) and (f) it follows that (a) equivalent
to (g).

It is clear that (c) implies (b). If (b) holds, then for any x ∈ |X| we can choose
a smooth morphism a smooth morphism bx : Vx → Y , an étale morphism Ux →
Vx ×Y X, and ux ∈ |Ux| mapping to x such that Ux → Vx has P. Then h =

∐
hx :∐

Ux →
∐
Vx with a =

∐
ax and b =

∐
bx is a diagram as in (c). (Note that h

has property P as {Vx →
∐
Vx} is a smooth covering and P is smooth local on the

target.) Thus (b) is equivalent to (c).

Now we know that (a), (b), (c), (e), (f), and (g) are equivalent. Suppose (a) holds.
Let U, V, a, b, h be as in (d). Then X×Y V → V has P as P is stable under smooth
base change, whence U → V has P as P is stable under precomposing with étale
morphisms. Conversely, if (d) holds, then setting U = X and V = Y we see that f
has P. □

https://stacks.math.columbia.edu/tag/0CG1
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Lemma 74.21.4.0CG2 Let S be a scheme. Let P be a property of morphisms of algebraic
spaces over S. Assume

(1) P is étale local on the source,
(2) P is smooth local on the target, and
(3) P is stable under postcomposing with open immersions: if f : X → Y has
P and Y ⊂ Z is an open embedding then X → Z has P.

Then P is étale-smooth local on the source-and-target.

Proof. Let P be a property of morphisms of algebraic spaces which satisfies con-
ditions (1), (2) and (3) of the lemma. By Lemma 74.14.2 we see that P is stable
under precomposing with étale morphisms. By Lemma 74.10.2 we see that P is
stable under smooth base change. Hence it suffices to prove part (3) of Definition
74.20.1 holds.
More precisely, suppose that f : X → Y is a morphism of algebraic spaces over S
which satisfies Definition 74.20.1 part (3)(b). In other words, for every x ∈ X there
exists a smooth morphism bx : Vx → Y , an étale morphism Ux → Vx ×Y X, and
a point ux ∈ |Ux| mapping to x such that hx : Ux → Vx has P. The proof of the
lemma is complete once we show that f has P.
Let ax : Ux → X be the composition Ux → Vx ×Y X → X. Set U =

∐
Ux,

a =
∐
ax, V =

∐
Vx, b =

∐
bx, and h =

∐
hx. We obtain a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with b smooth, U → V ×Y X étale, a surjective. Note that h has P as each hx does
and P is smooth local on the target. In the next paragraph we prove that we may
assume U, V,X, Y are schemes; we encourage the reader to skip it.
Let X,Y, U, V, a, b, f, h be as in the previous paragraph. We have to show f has P.
Let X ′ → X be a surjective étale morphism with Xi a scheme. Set U ′ = X ′×X U .
Then U ′ → X ′ is surjective and U ′ → X ′ ×Y V is étale. Since P is étale local on
the source, we see that U ′ → V has P and that it suffices to show that X ′ → Y has
P. In other words, we may assume that X is a scheme. Next, choose a surjective
étale morphism Y ′ → Y with Y ′ a scheme. Set V ′ = V ×Y Y ′, X ′ = X ×Y Y ′, and
U ′ = U ×Y Y ′. Then U ′ → X ′ is surjective and U ′ → X ′ ×Y ′ V ′ is étale. Since
P is smooth local on the target, we see that U ′ → V ′ has P and that it suffices to
prove X ′ → Y ′ has P. Thus we may assume both X and Y are schemes. Choose
a surjective étale morphism V ′ → V with V ′ a scheme. Set U ′ = U ×V V ′. Then
U ′ → X is surjective and U ′ → X ×Y V ′ is étale. Since P is smooth local on
the source, we see that U ′ → V ′ has P. Thus we may replace U, V by U ′, V ′ and
assume X,Y, V are schemes. Finally, we replace U by a scheme surjective étale over
U and we see that we may assume U, V,X, Y are all schemes.
If U, V,X, Y are schemes, then f has P by Descent, Lemma 35.32.11. □

Remark 74.21.5.0CG3 Using Lemma 74.21.4 and the work done in the earlier sections
of this chapter it is easy to make a list of types of morphisms which are smooth
local on the source-and-target. In each case we list the lemma which implies the
property is etale local on the source and the lemma which implies the property is
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smooth local on the target. In each case the third assumption of Lemma 74.21.4 is
trivial to check, and we omit it. Here is the list:

(1) étale, see Lemmas 74.19.1 and 74.11.28,
(2) locally quasi-finite, see Lemmas 74.19.2 and 74.11.24,
(3) unramified, see Lemmas 74.19.3 and 74.11.27, and
(4) add more here as needed.

Of course any property listed in Remark 74.20.5 is a fortiori an example that could
be listed here.

74.22. Descent data for spaces over spaces

0ADF This section is the analogue of Descent, Section 35.34 for algebraic spaces. Most of
the arguments in this section are formal relying only on the definition of a descent
datum.

Definition 74.22.1.0ADG Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S.

(1) Let V → Y be a morphism of algebraic spaces. A descent datum for
V/Y/X is an isomorphism φ : V ×X Y → Y ×X V of algebraic spaces over
Y ×X Y satisfying the cocycle condition that the diagram

V ×X Y ×X Y
φ01

((

φ02
// Y ×X Y ×X V

Y ×X V ×X Y

φ12

66

commutes (with obvious notation).
(2) We also say that the pair (V/Y, φ) is a descent datum relative to Y → X.
(3) A morphism f : (V/Y, φ)→ (V ′/Y, φ′) of descent data relative to Y → X

is a morphism f : V → V ′ of algebraic spaces over Y such that the diagram

V ×X Y
φ
//

f×idY
��

Y ×X V

idY ×f
��

V ′ ×X Y
φ′
// Y ×X V ′

commutes.

Remark 74.22.2.0ADH Let S be a scheme. Let Y → X be a morphism of algebraic
spaces over S. Let (V/Y, φ) be a descent datum relative to Y → X. We may think
of the isomorphism φ as an isomorphism

(Y ×X Y )×pr0,Y V −→ (Y ×X Y )×pr1,Y V

of algebraic spaces over Y ×X Y . So loosely speaking one may think of φ as a map
φ : pr∗

0V → pr∗
1V

1. The cocycle condition then says that pr∗
02φ = pr∗

12φ ◦pr∗
01φ. In

this way it is very similar to the case of a descent datum on quasi-coherent sheaves.

Here is the definition in case you have a family of morphisms with fixed target.

1Unfortunately, we have chosen the “wrong” direction for our arrow here. In Definitions
74.22.1 and 74.22.3 we should have the opposite direction to what was done in Definition 74.3.1
by the general principle that “functions” and “spaces” are dual.
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Definition 74.22.3.0ADI Let S be a scheme. Let {Xi → X}i∈I be a family of morphisms
of algebraic spaces over S with fixed target X.

(1) A descent datum (Vi, φij) relative to the family {Xi → X} is given by an
algebraic space Vi over Xi for each i ∈ I, an isomorphism φij : Vi×XXj →
Xi ×X Vj of algebraic spaces over Xi ×X Xj for each pair (i, j) ∈ I2 such
that for every triple of indices (i, j, k) ∈ I3 the diagram

Vi ×X Xj ×X Xk

pr∗
01φij

))

pr∗
02φik

// Xi ×X Xj ×X Vk

Xi ×X Vj ×X Xk

pr∗
12φjk

55

of algebraic spaces over Xi ×X Xj ×X Xk commutes (with obvious nota-
tion).

(2) A morphism ψ : (Vi, φij)→ (V ′
i , φ

′
ij) of descent data is given by a family

ψ = (ψi)i∈I of morphisms ψi : Vi → V ′
i of algebraic spaces over Xi such

that all the diagrams

Vi ×X Xj φij
//

ψi×id
��

Xi ×X Vj

id×ψj
��

V ′
i ×X Xj

φ′
ij // Xi ×X V ′

j

commute.

Remark 74.22.4.0ADJ Let S be a scheme. Let {Xi → X}i∈I be a family of morphisms
of algebraic spaces over S with fixed target X. Let (Vi, φij) be a descent datum
relative to {Xi → X}. We may think of the isomorphisms φij as isomorphisms

(Xi ×X Xj)×pr0,Xi Vi −→ (Xi ×X Xj)×pr1,Xj Vj

of algebraic spaces over Xi ×X Xj . So loosely speaking one may think of φij as an
isomorphism pr∗

0Vi → pr∗
1Vj over Xi ×X Xj . The cocycle condition then says that

pr∗
02φik = pr∗

12φjk ◦ pr∗
01φij . In this way it is very similar to the case of a descent

datum on quasi-coherent sheaves.

The reason we will usually work with the version of a family consisting of a single
morphism is the following lemma.

Lemma 74.22.5.0ADK Let S be a scheme. Let {Xi → X}i∈I be a family of morphisms of
algebraic spaces over S with fixed target X. Set Y =

∐
i∈I Xi. There is a canonical

equivalence of categories
category of descent data

relative to the family {Xi → X}i∈I
−→ category of descent data

relative to Y/X

which maps (Vi, φij) to (V, φ) with V =
∐
i∈I Vi and φ =

∐
φij .

Proof. Observe that Y ×XY =
∐
ij Xi×XXj and similarly for higher fibre products.

Giving a morphism V → Y is exactly the same as giving a family Vi → Xi. And
giving a descent datum φ is exactly the same as giving a family φij . □

Lemma 74.22.6.0ADL Pullback of descent data. Let S be a scheme.
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(1) Let
Y ′

f
//

a′

��

Y

a

��
X ′ h // X

be a commutative diagram of algebraic spaces over S. The construction
(V → Y, φ) 7−→ f∗(V → Y, φ) = (V ′ → Y ′, φ′)

where V ′ = Y ′ ×Y V and where φ′ is defined as the composition

V ′ ×X′ Y ′ (Y ′ ×Y V )×X′ Y ′ (Y ′ ×X′ Y ′)×Y×XY (V ×X Y )

id×φ
��

Y ′ ×X′ V ′ Y ′ ×X′ (Y ′ ×Y V ) (Y ′ ×X Y ′)×Y×XY (Y ×X V )

defines a functor from the category of descent data relative to Y → X to
the category of descent data relative to Y ′ → X ′.

(2) Given two morphisms fi : Y ′ → Y , i = 0, 1 making the diagram commute
the functors f∗

0 and f∗
1 are canonically isomorphic.

Proof. We omit the proof of (1), but we remark that the morphism φ′ is the mor-
phism (f × f)∗φ in the notation introduced in Remark 74.22.2. For (2) we indicate
which morphism f∗

0V → f∗
1V gives the functorial isomorphism. Namely, since f0

and f1 both fit into the commutative diagram we see there is a unique morphism
r : Y ′ → Y ×X Y with fi = pri ◦ r. Then we take

f∗
0V = Y ′ ×f0,Y V

= Y ′ ×pr0◦r,Y V

= Y ′ ×r,Y×XY (Y ×X Y )×pr0,Y V
φ−→ Y ′ ×r,Y×XY (Y ×X Y )×pr1,Y V

= Y ′ ×pr1◦r,Y V

= Y ′ ×f1,Y V

= f∗
1V

We omit the verification that this works. □

Definition 74.22.7.0ADM With S,X,X ′, Y, Y ′, f, a, a′, h as in Lemma 74.22.6 the functor

(V, φ) 7−→ f∗(V, φ)
constructed in that lemma is called the pullback functor on descent data.

Lemma 74.22.8.0ADN Let S be a scheme. Let U ′ = {X ′
i → X ′}i∈I′ and U = {Xj →

X}i∈I be families of morphisms with fixed target. Let α : I ′ → I, g : X ′ → X
and gi : X ′

i → Xα(i) be a morphism of families of maps with fixed target, see Sites,
Definition 7.8.1.

(1) Let (Vi, φij) be a descent datum relative to the family U . The system(
g∗
i Vα(i), (gi × gj)∗φα(i)α(j)

)
(with notation as in Remark 74.22.4) is a descent datum relative to U ′.
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(2) This construction defines a functor between the category of descent data
relative to U and the category of descent data relative to U ′.

(3) Given a second β : I ′ → I, h : X ′ → X and h′
i : X ′

i → Xβ(i) morphism of
families of maps with fixed target, then if g = h the two resulting functors
between descent data are canonically isomorphic.

(4) These functors agree, via Lemma 74.22.5, with the pullback functors con-
structed in Lemma 74.22.6.

Proof. This follows from Lemma 74.22.6 via the correspondence of Lemma 74.22.5.
□

Definition 74.22.9.0ADP With U ′ = {X ′
i → X ′}i∈I′ , U = {Xi → X}i∈I , α : I ′ → I,

g : X ′ → X, and gi : X ′
i → Xα(i) as in Lemma 74.22.8 the functor

(Vi, φij) 7−→ (g∗
i Vα(i), (gi × gj)∗φα(i)α(j))

constructed in that lemma is called the pullback functor on descent data.

If U and U ′ have the same target X, and if U ′ refines U (see Sites, Definition 7.8.1)
but no explicit pair (α, gi) is given, then we can still talk about the pullback functor
since we have seen in Lemma 74.22.8 that the choice of the pair does not matter
(up to a canonical isomorphism).

Definition 74.22.10.0ADQ Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S.

(1) Given an algebraic space U over X we have the trivial descent datum of
U relative to id : X → X, namely the identity morphism on U .

(2) By Lemma 74.22.6 we get a canonical descent datum on Y ×X U relative
to Y → X by pulling back the trivial descent datum via f . We often
denote (Y ×X U, can) this descent datum.

(3) A descent datum (V, φ) relative to Y/X is called effective if (V, φ) is iso-
morphic to the canonical descent datum (Y ×X U, can) for some algebraic
space U over X.

Thus being effective means there exists an algebraic space U over X and an iso-
morphism ψ : V → Y ×X U over Y such that φ is equal to the composition

V ×X Y
ψ×idY−−−−→ Y ×X U ×S Y = Y ×X Y ×X U

idY ×ψ−1

−−−−−−→ Y ×X V

There is a slight problem here which is that this definition (in spirit) conflicts with
the definition given in Descent, Definition 35.34.10 in case Y and X are schemes.
However, it will always be clear from context which version we mean.

Definition 74.22.11.0ADR Let S be a scheme. Let {Xi → X} be a family of morphisms
of algebraic spaces over S with fixed target X.

(1) Given an algebraic space U over X we have a canonical descent datum on
the family of algebraic spaces Xi×X U by pulling back the trivial descent
datum for U relative to {id : S → S}. We denote this descent datum
(Xi ×X U, can).

(2) A descent datum (Vi, φij) relative to {Xi → S} is called effective if there
exists an algebraic space U over X such that (Vi, φij) is isomorphic to
(Xi ×X U, can).
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74.23. Descent data in terms of sheaves

0ADS This section is the analogue of Descent, Section 35.39. It is slightly different as
algebraic spaces are already sheaves.
Lemma 74.23.1.0ADT Let S be a scheme. Let {Xi → X}i∈I be an fppf covering of
algebraic spaces over S (Topologies on Spaces, Definition 73.7.1). There is an
equivalence of categories{

descent data (Vi, φij)
relative to {Xi → X}

}
↔

sheaves F on (Sch/S)fppf endowed
with a map F → X such that each
Xi ×X F is an algebraic space

 .

Moreover,
(1) the algebraic space Xi ×X F on the right hand side corresponds to Vi on

the left hand side, and
(2) the sheaf F is an algebraic space2 if and only if the corresponding descent

datum (Xi, φij) is effective.
Proof. Let us construct the functor from right to left. Let F → X be a map of
sheaves on (Sch/S)fppf such that each Vi = Xi ×X F is an algebraic space. We
have the projection Vi → Xi. Then both Vi ×X Xj and Xi ×X Vj represent the
sheaf Xi ×X F ×X Xj and hence we obtain an isomorphism

φii′ : Vi ×X Xj → Xi ×X Vj

It is straightforward to see that the maps φij are morphisms over Xi ×X Xj and
satisfy the cocycle condition. The functor from right to left is given by this con-
struction F 7→ (Vi, φij).
Let us construct a functor from left to right. The isomorphisms φij give isomor-
phisms

φij : Vi ×X Xj −→ Xi ×X Vj

over Xi ×Xj . Set F equal to the coequalizer in the following diagram∐
i,i′ Vi ×X Xj

pr0 //

pr1◦φij
//
∐
i Vi

// F

The cocycle condition guarantees that F comes with a map F → X and that Xi×X
F is isomorphic to Vi. The functor from left to right is given by this construction
(Vi, φij) 7→ F .
We omit the verification that these constructions are mutually quasi-inverse func-
tors. The final statements (1) and (2) follow from the constructions. □

74.24. Other chapters
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CHAPTER 75

Derived Categories of Spaces

08EY 75.1. Introduction

08EZ In this chapter we discuss derived categories of modules on algebraic spaces. There
do not seem to be good introductory references addressing this topic; it is covered
in the literature by referring to papers dealing with derived categories of modules
on algebraic stacks, for example see [Ols07b].

75.2. Conventions

08F0 If A is an abelian category and M is an object of A then we also denote M the
object of K(A) and/or D(A) corresponding to the complex which has M in degree
0 and is zero in all other degrees.
If we have a ring A, then K(A) denotes the homotopy category of complexes of
A-modules and D(A) the associated derived category. Similarly, if we have a ringed
space (X,OX) the symbol K(OX) denotes the homotopy category of complexes of
OX -modules and D(OX) the associated derived category.

75.3. Generalities

08GD In this section we put some general results on cohomology of unbounded complexes
of modules on algebraic spaces.

Lemma 75.3.1.08GE Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Given an étale morphism V → Y , set U = V ×Y X and denote
g : U → V the projection morphism. Then (Rf∗E)|V = Rg∗(E|U ) for E in D(OX).

Proof. Represent E by a K-injective complex I• of OX -modules. Then Rf∗(E) =
f∗I• and Rg∗(E|U ) = g∗(I•|U ) by Cohomology on Sites, Lemma 21.20.1. Hence
the result follows from Properties of Spaces, Lemma 66.26.2. □

Definition 75.3.2.08GF Let S be a scheme. Let X be an algebraic space over S. Let E
be an object of D(OX). Let T ⊂ |X| be a closed subset. We say E is supported on
T if the cohomology sheaves Hi(E) are supported on T .

75.4. Derived category of quasi-coherent modules on the small étale site

071P Let X be a scheme. In this section we show that DQCoh(OX) can be defined in
terms of the small étale site Xétale of X. Denote Oétale the structure sheaf on
Xétale. Consider the morphism of ringed sites
(75.4.0.1)08H7 ϵ : (Xétale,Oétale) −→ (XZar,OX).
denoted idsmall,étale,Zar in Descent, Lemma 35.8.5.

5709
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Lemma 75.4.1.08H8 The morphism ϵ of (75.4.0.1) is a flat morphism of ringed sites. In
particular the functor ϵ∗ : Mod(OX)→ Mod(Oétale) is exact. Moreover, if ϵ∗F = 0,
then F = 0.

Proof. The flatness of the morphism ϵ is Descent, Lemma 35.10.1. Here is another
proof. We have to show that Oétale is a flat ϵ−1OX -module. To do this it suffices to
check OX,x → Oétale,x is flat for any geometric point x of X, see Modules on Sites,
Lemma 18.39.3, Sites, Lemma 7.34.2, and Étale Cohomology, Remarks 59.29.11. By
Étale Cohomology, Lemma 59.33.1 we see that Oétale,x is the strict henselization of
OX,x. Thus OX,x → Oétale,x is faithfully flat by More on Algebra, Lemma 15.45.1.
The exactness of ϵ∗ follows from the flatness of ϵ by Modules on Sites, Lemma
18.31.2.
Let F be an OX -module. If ϵ∗F = 0, then with notation as above

0 = ϵ∗Fx = Fx ⊗OX,x
Oétale,x

(Modules on Sites, Lemma 18.36.4) for all geometric points x. By faithful flatness
of OX,x → Oétale,x we conclude Fx = 0 for all x ∈ X. □

Let X be a scheme. Notation as in (75.4.0.1). Recall that ϵ∗ : QCoh(OX) →
QCoh(Oétale) is an equivalence by Descent, Proposition 35.8.9 and Remark 35.8.6.
Moreover, QCoh(Oétale) forms a Serre subcategory of Mod(Oétale) by Descent,
Lemma 35.10.2. Hence we can let DQCoh(Oétale) be the triangulated subcategory of
D(Oétale) whose objects are the complexes with quasi-coherent cohomology sheaves,
see Derived Categories, Section 13.17. The functor ϵ∗ is exact (Lemma 75.4.1) hence
induces ϵ∗ : D(OX)→ D(Oétale) and since pullbacks of quasi-coherent modules are
quasi-coherent also ϵ∗ : DQCoh(OX)→ DQCoh(Oétale).

Lemma 75.4.2.071Q Let X be a scheme. The functor ϵ∗ : DQCoh(OX)→ DQCoh(Oétale)
defined above is an equivalence.

Proof. We will prove this by showing the functor Rϵ∗ : D(Oétale)→ D(OX) induces
a quasi-inverse. We will use freely that ϵ∗ is given by restriction to XZar ⊂ Xétale

and the description of ϵ∗ = id∗
small,étale,Zar in Descent, Lemma 35.8.5.

For a quasi-coherent OX -module F the adjunction map F → ϵ∗ϵ
∗F is an iso-

morphism by the fact that Fa (Descent, Definition 35.8.2) is a sheaf as proved in
Descent, Lemma 35.8.1. Conversely, every quasi-coherent Oétale-module H is of the
form ϵ∗F for some quasi-coherent OX -module F , see Descent, Proposition 35.8.9.
Then F = ϵ∗H by what we just said and we conclude that the adjunction map
ϵ∗ϵ∗H → H is an isomorphism for all quasi-coherent Oétale-modules H.
Let E be an object of DQCoh(Oétale) and denote Hq = Hq(E) its qth cohomology
sheaf. Let B be the set of affine objects of Xétale. Then Hp(U,Hq) = 0 for all
p > 0, all q ∈ Z, and all U ∈ B, see Descent, Proposition 35.9.3 and Cohomology
of Schemes, Lemma 30.2.2. By Cohomology on Sites, Lemma 21.23.11 this means
that

Hq(U,E) = H0(U,Hq)
for all U ∈ B. In particular, we find that this holds for affine opens U ⊂ X. It
follows that the qth cohomology of Rϵ∗E over U is the value of the sheaf ϵ∗Hq over
U . Applying sheafification we obtain

Hq(Rϵ∗E) = ϵ∗Hq

https://stacks.math.columbia.edu/tag/08H8
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which in particular shows thatRϵ∗ induces a functorDQCoh(Oétale)→ DQCoh(OX).
Since ϵ∗ is exact we then obtain Hq(ϵ∗Rϵ∗E) = ϵ∗ϵ∗Hq = Hq (by discussion above).
Thus the adjunction map ϵ∗Rϵ∗E → E is an isomorphism.

Conversely, for F ∈ DQCoh(OX) the adjunction map F → Rϵ∗ϵ
∗F is an isomor-

phism for the same reason, i.e., because the cohomology sheaves of Rϵ∗ϵ∗F are
isomorphic to ϵ∗Hm(ϵ∗F ) = ϵ∗ϵ

∗Hm(F ) = Hm(F ). □

75.5. Derived category of quasi-coherent modules

071W Let S be a scheme. Lemma 75.4.2 shows that the category DQCoh(OS) can be
defined in terms of complexes of OS-modules on the scheme S or by complexes of
O-modules on the small étale site of S. Hence the following definition is compatible
with the definition in the case of schemes.

Definition 75.5.1.071X Let S be a scheme. Let X be an algebraic space over S. The
derived category of OX -modules with quasi-coherent cohomology sheaves is denoted
DQCoh(OX).

This makes sense by Properties of Spaces, Lemma 66.29.7 and Derived Categories,
Section 13.17. Thus we obtain a canonical functor

(75.5.1.1)08F1 D(QCoh(OX)) −→ DQCoh(OX)

see Derived Categories, Equation (13.17.1.1).

Observe that a flat morphism f : Y → X of algebraic spaces induces an exact
functor f∗ : Mod(OX) → Mod(OY ), see Morphisms of Spaces, Lemma 67.30.9
and Modules on Sites, Lemma 18.31.2. In particular Lf∗ : D(OX) → D(OY )
is computed on any representative complex (Derived Categories, Lemma 13.16.9).
We will write Lf∗ = f∗ when f is flat and we have Hi(f∗E) = f∗Hi(E) for E in
D(OX) in this case. We will use this often when f is étale. Of course in the étale
case the pullback functor is just the restriction to Yétale, see Properties of Spaces,
Equation (66.26.1.1).

Lemma 75.5.2.08F2 Let S be a scheme. Let X be an algebraic space over S. Let E be
an object of D(OX). The following are equivalent

(1) E is in DQCoh(OX),
(2) for every étale morphism φ : U → X where U is an affine scheme φ∗E is

an object of DQCoh(OU ),
(3) for every étale morphism φ : U → X where U is a scheme φ∗E is an

object of DQCoh(OU ),
(4) there exists a surjective étale morphism φ : U → X where U is a scheme

such that φ∗E is an object of DQCoh(OU ), and
(5) there exists a surjective étale morphism of algebraic spaces f : Y → X

such that Lf∗E is an object of DQCoh(OY ).

Proof. This follows immediately from the discussion preceding the lemma and Prop-
erties of Spaces, Lemma 66.29.6. □

Lemma 75.5.3.08F3 Let S be a scheme. Let X be an algebraic space over S. Then
DQCoh(OX) has direct sums.

https://stacks.math.columbia.edu/tag/071X
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Proof. By Injectives, Lemma 19.13.4 the derived category D(OX) has direct sums
and they are computed by taking termwise direct sums of any representatives.
Thus it is clear that the cohomology sheaf of a direct sum is the direct sum of the
cohomology sheaves as taking direct sums is an exact functor (in any Grothendieck
abelian category). The lemma follows as the direct sum of quasi-coherent sheaves
is quasi-coherent, see Properties of Spaces, Lemma 66.29.7. □

We will need some information on derived limits. We warn the reader that in the
lemma below the derived limit will typically not be an object of DQCoh.

Lemma 75.5.4.0D3E Let S be a scheme. Let X be an algebraic space over S. Let (Kn)
be an inverse system of DQCoh(OX) with derived limit K = R limKn in D(OX).
Assume Hq(Kn+1)→ Hq(Kn) is surjective for all q ∈ Z and n ≥ 1. Then

(1) Hq(K) = limHq(Kn),
(2) R limHq(Kn) = limHq(Kn), and
(3) for every affine open U ⊂ X we have Hp(U, limHq(Kn)) = 0 for p > 0.

Proof. Let B ⊂ Ob(Xétale) be the set of affine objects. Since Hq(Kn) is quasi-
coherent we have Hp(U,Hq(Kn)) = 0 for U ∈ B by the discussion in Cohomology
of Spaces, Section 69.3 and Cohomology of Schemes, Lemma 30.2.2. Moreover,
the maps H0(U,Hq(Kn+1))→ H0(U,Hq(Kn)) are surjective for U ∈ B by similar
reasoning. Part (1) follows from Cohomology on Sites, Lemma 21.23.12 whose
conditions we have just verified. Parts (2) and (3) follow from Cohomology on
Sites, Lemma 21.23.5. □

Lemma 75.5.5.08F4 Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. The functor Lf∗ sends DQCoh(OX) into DQCoh(OY ).

Proof. Choose a diagram
U

a

��

h
// V

b
��

X
f // Y

where U and V are schemes, the vertical arrows are étale, and a is surjective. Since
a∗ ◦ Lf∗ = Lh∗ ◦ b∗ the result follows from Lemma 75.5.2 and the case of schemes
which is Derived Categories of Schemes, Lemma 36.3.8. □

Lemma 75.5.6.08F5 Let S be a scheme. Let X be an algebraic space over S. For objects
K,L of DQCoh(OX) the derived tensor product K ⊗L L is in DQCoh(OX).

Proof. Let φ : U → X be a surjective étale morphism from a scheme U . Since
φ∗(K ⊗L

OX
L) = φ∗K ⊗L

OU
φ∗L we see from Lemma 75.5.2 that this follows from

the case of schemes which is Derived Categories of Schemes, Lemma 36.3.9. □

The following lemma will help us to “compute” a right derived functor on an object
of DQCoh(OX).

Lemma 75.5.7.08F6 Let S be a scheme. Let X be an algebraic space over S. Let E
be an object of DQCoh(OX). Then the canonical map E → R lim τ≥−nE is an
isomorphism1.

1In particular, E has a K-injective representative as in Cohomology on Sites, Lemma 21.24.1.

https://stacks.math.columbia.edu/tag/0D3E
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Proof. Denote Hi = Hi(E) the ith cohomology sheaf of E. Let B be the set of
affine objects of Xétale. Then Hp(U,Hi) = 0 for all p > 0, all i ∈ Z, and all U ∈ B
as U is an affine scheme. See discussion in Cohomology of Spaces, Section 69.3 and
Cohomology of Schemes, Lemma 30.2.2. Thus the lemma follows from Cohomology
on Sites, Lemma 21.23.10 with d = 0. □

Lemma 75.5.8.08F7 Let S be a scheme. Let X be an algebraic space over S. Let
F : Mod(OX)→ Ab be a functor and N ≥ 0 an integer. Assume that

(1) F is left exact,
(2) F commutes with countable direct products,
(3) RpF (F) = 0 for all p ≥ N and F quasi-coherent.

Then for E ∈ DQCoh(OX)
(1) Hi(RF (τ≤aE)→ Hi(RF (E)) is an isomorphism for i ≤ a,
(2) Hi(RF (E))→ Hi(RF (τ≥b−N+1E)) is an isomorphism for i ≥ b,
(3) if Hi(E) = 0 for i ̸∈ [a, b] for some −∞ ≤ a ≤ b ≤ ∞, then Hi(RF (E)) =

0 for i ̸∈ [a, b+N − 1].

Proof. Statement (1) is Derived Categories, Lemma 13.16.1.

Proof of statement (2). Write En = τ≥−nE. We have E = R limEn, see Lemma
75.5.7. Thus RF (E) = R limRF (En) in D(Ab) by Injectives, Lemma 19.13.6.
Thus for every i ∈ Z we have a short exact sequence

0→ R1 limHi−1(RF (En))→ Hi(RF (E))→ limHi(RF (En))→ 0

see More on Algebra, Remark 15.86.10. To prove (2) we will show that the term
on the left is zero and that the term on the right equals Hi(RF (E−b+N−1) for any
b with i ≥ b.

For every n we have a distinguished triangle

H−n(E)[n]→ En → En−1 → H−n(E)[n+ 1]

(Derived Categories, Remark 13.12.4) in D(OX). Since H−n(E) is quasi-coherent
we have

Hi(RF (H−n(E)[n])) = Ri+nF (H−n(E)) = 0
for i+ n ≥ N and

Hi(RF (H−n(E)[n+ 1])) = Ri+n+1F (H−n(E)) = 0

for i+ n+ 1 ≥ N . We conclude that

Hi(RF (En))→ Hi(RF (En−1))

is an isomorphism for n ≥ N − i. Thus the systems Hi(RF (En)) all satisfy the ML
condition and the R1 lim term in our short exact sequence is zero (see discussion in
More on Algebra, Section 15.86). Moreover, the system Hi(RF (En)) is constant
starting with n = N − i− 1 as desired.

Proof of (3). Under the assumption on E we have τ≤a−1E = 0 and we get the
vanishing of Hi(RF (E)) for i ≤ a− 1 from (1). Similarly, we have τ≥b+1E = 0 and
hence we get the vanishing of Hi(RF (E)) for i ≥ b+ n from part (2). □

https://stacks.math.columbia.edu/tag/08F7
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75.6. Total direct image

08F9 The following lemma is the analogue of Cohomology of Spaces, Lemma 69.8.1.

Lemma 75.6.1.08FA Let S be a scheme. Let f : X → Y be a quasi-separated and
quasi-compact morphism of algebraic spaces over S.

(1) The functor Rf∗ sends DQCoh(OX) into DQCoh(OY ).
(2) If Y is quasi-compact, there exists an integer N = N(X,Y, f) such that

for an object E of DQCoh(OX) with Hm(E) = 0 for m > 0 we have
Hm(Rf∗E) = 0 for m ≥ N .

(3) In fact, if Y is quasi-compact we can find N = N(X,Y, f) such that for
every morphism of algebraic spaces Y ′ → Y the same conclusion holds for
the functor R(f ′)∗ where f ′ : X ′ → Y ′ is the base change of f .

Proof. Let E be an object of DQCoh(OX). To prove (1) we have to show that
Rf∗E has quasi-coherent cohomology sheaves. This question is local on Y , hence
we may assume Y is quasi-compact. Pick N = N(X,Y, f) as in Cohomology of
Spaces, Lemma 69.8.1. Thus Rpf∗F = 0 for all quasi-coherent OX -modules F and
all p ≥ N . Moreover Rpf∗F is quasi-coherent for all p by Cohomology of Spaces,
Lemma 69.3.1. These statements remain true after base change.
First, assume E is bounded below. We will show (1) and (2) and (3) hold for such
E with our choice of N . In this case we can for example use the spectral sequence

Rpf∗H
q(E)⇒ Rp+qf∗E

(Derived Categories, Lemma 13.21.3), the quasi-coherence of Rpf∗H
q(E), and the

vanishing of Rpf∗H
q(E) for p ≥ N to see that (1), (2), and (3) hold in this case.

Next we prove (2) and (3). Say Hm(E) = 0 for m > 0. Let V be an affine object of
Yétale. We have Hp(V ×Y X,F) = 0 for p ≥ N , see Cohomology of Spaces, Lemma
69.3.2. Hence we may apply Lemma 75.5.8 to the functor Γ(V ×Y X,−) to see that

RΓ(V,Rf∗E) = RΓ(V ×Y X,E)
has vanishing cohomology in degrees ≥ N . Since this holds for all V affine in Yétale
we conclude that Hm(Rf∗E) = 0 for m ≥ N .
Next, we prove (1) in the general case. Recall that there is a distinguished triangle

τ≤−n−1E → E → τ≥−nE → (τ≤−n−1E)[1]
inD(OX), see Derived Categories, Remark 13.12.4. By (2) we see thatRf∗τ≤−n−1E
has vanishing cohomology sheaves in degrees ≥ −n+N . Thus, given an integer q we
see that Rqf∗E is equal to Rqf∗τ≥−nE for some n and the result above applies. □

Lemma 75.6.2.08FB Let S be a scheme. Let f : X → Y be a quasi-separated and
quasi-compact morphism of algebraic spaces over S. Then Rf∗ : DQCoh(OX) →
DQCoh(OY ) commutes with direct sums.

Proof. Let Ei be a family of objects of DQCoh(OX) and set E =
⊕
Ei. We want

to show that the map ⊕
Rf∗Ei −→ Rf∗E

is an isomorphism. We will show it induces an isomorphism on cohomology sheaves
in degree 0 which will imply the lemma. Choose an integer N as in Lemma 75.6.1.
Then R0f∗E = R0f∗τ≥−NE and R0f∗Ei = R0f∗τ≥−NEi by the lemma cited.

https://stacks.math.columbia.edu/tag/08FA
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Observe that τ≥−NE =
⊕
τ≥−NEi. Thus we may assume all of the Ei have

vanishing cohomology sheaves in degrees < −N . Next we use the spectral sequences

Rpf∗H
q(E)⇒ Rp+qf∗E and Rpf∗H

q(Ei)⇒ Rp+qf∗Ei

(Derived Categories, Lemma 13.21.3) to reduce to the case of a direct sum of
quasi-coherent sheaves. This case is handled by Cohomology of Spaces, Lemma
69.5.2. □

Remark 75.6.3.08GH Let S be a scheme. Let f : X → Y be a morphism of representable
algebraic spaces X and Y over S. Let f0 : X0 → Y0 be a morphism of schemes
representing f (awkward but temporary notation). Then the diagram

DQCoh(OX0)
Lemma 75.4.2

DQCoh(OX)

DQCoh(OY0)

Lf∗
0

OO

Lemma 75.4.2
DQCoh(OY )

Lf∗

OO

(Lemma 75.5.5 and Derived Categories of Schemes, Lemma 36.3.8) is commutative.
This follows as the equivalences DQCoh(OX0) → DQCoh(OX) and DQCoh(OY0) →
DQCoh(OY ) of Lemma 75.4.2 come from pulling back by the (flat) morphisms of
ringed sites ϵ : Xétale → X0,Zar and ϵ : Yétale → Y0,Zar and the diagram of ringed
sites

X0,Zar

f0

��

Xétaleϵ
oo

f

��
Y0,Zar Yétale

ϵoo

is commutative (details omitted). If f is quasi-compact and quasi-separated, equiv-
alently if f0 is quasi-compact and quasi-separated, then we claim

DQCoh(OX0)

Rf0,∗

��

Lemma 75.4.2
DQCoh(OX)

Rf∗

��
DQCoh(OY0) Lemma 75.4.2

DQCoh(OY )

(Lemma 75.6.1 and Derived Categories of Schemes, Lemma 36.4.1) is commutative
as well. This also follows from the commutative diagram of sites displayed above
as the proof of Lemma 75.4.2 shows that the functor Rϵ∗ gives the equivalences
DQCoh(OX)→ DQCoh(OX0) and DQCoh(OY )→ DQCoh(OY0).

Lemma 75.6.4.08II Let S be a scheme. Let f : X → Y be an affine morphism of alge-
braic spaces over S. Then Rf∗ : DQCoh(OX)→ DQCoh(OY ) reflects isomorphisms.

Proof. The statement means that a morphism α : E → F of DQCoh(OX) is an
isomorphism if Rf∗α is an isomorphism. We may check this on cohomology sheaves.
In particular, the question is étale local on Y . Hence we may assume Y and therefore
X is affine. In this case the problem reduces to the case of schemes (Derived
Categories of Schemes, Lemma 36.5.2) via Lemma 75.4.2 and Remark 75.6.3. □

Lemma 75.6.5.08IJ Let S be a scheme. Let f : X → Y be an affine morphism of
algebraic spaces over S. For E in DQCoh(OY ) we have Rf∗Lf

∗E = E ⊗L
OY

f∗OX .

https://stacks.math.columbia.edu/tag/08GH
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Proof. Since f is affine the map f∗OX → Rf∗OX is an isomorphism (Cohomology
of Spaces, Lemma 69.8.2). There is a canonical map E⊗L f∗OX = E⊗LRf∗OX →
Rf∗Lf

∗E adjoint to the map
Lf∗(E ⊗L Rf∗OX) = Lf∗E ⊗L Lf∗Rf∗OX −→ Lf∗E ⊗L OX = Lf∗E

coming from 1 : Lf∗E → Lf∗E and the canonical map Lf∗Rf∗OX → OX . To
check the map so constructed is an isomorphism we may work locally on Y . Hence
we may assume Y and therefore X is affine. In this case the problem reduces to the
case of schemes (Derived Categories of Schemes, Lemma 36.5.3) via Lemma 75.4.2
and Remark 75.6.3. □

75.7. Being proper over a base

0CZB This section is the analogue of Cohomology of Schemes, Section 30.26. As usual
with material having to do with topology on the sets of points, we have to be careful
translating the material to algebraic spaces.
Lemma 75.7.1.0CZC Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let T ⊂ |X| be a closed subset. The
following are equivalent

(1) the morphism Z → Y is proper if Z is the reduced induced algebraic space
structure on T (Properties of Spaces, Definition 66.12.5),

(2) for some closed subspace Z ⊂ X with |Z| = T the morphism Z → Y is
proper, and

(3) for any closed subspace Z ⊂ X with |Z| = T the morphism Z → Y is
proper.

Proof. The implications (3) ⇒ (1) and (1) ⇒ (2) are immediate. Thus it suffices
to prove that (2) implies (3). We urge the reader to find their own proof of this
fact. Let Z ′ and Z ′′ be closed subspaces with T = |Z ′| = |Z ′′| such that Z ′ → Y is
a proper morphism of algebraic spaces. We have to show that Z ′′ → Y is proper
too. Let Z ′′′ = Z ′ ∪ Z ′′ be the scheme theoretic union, see Morphisms of Spaces,
Definition 67.14.4. Then Z ′′′ is another closed subspace with |Z ′′′| = T . This
follows for example from the description of scheme theoretic unions in Morphisms
of Spaces, Lemma 67.14.6. Since Z ′′ → Z ′′′ is a closed immersion it suffices to
prove that Z ′′′ → Y is proper (see Morphisms of Spaces, Lemmas 67.40.5 and
67.40.4). The morphism Z ′ → Z ′′′ is a bijective closed immersion and in particular
surjective and universally closed. Then the fact that Z ′ → Y is separated implies
that Z ′′′ → Y is separated, see Morphisms of Spaces, Lemma 67.9.8. Moreover
Z ′′′ → Y is locally of finite type as X → Y is locally of finite type (Morphisms
of Spaces, Lemmas 67.23.7 and 67.23.2). Since Z ′ → Y is quasi-compact and
Z ′ → Z ′′′ is a universal homeomorphism we see that Z ′′′ → Y is quasi-compact.
Finally, since Z ′ → Y is universally closed, we see that the same thing is true for
Z ′′′ → Y by Morphisms of Spaces, Lemma 67.40.7. This finishes the proof. □

Definition 75.7.2.0CZD Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let T ⊂ |X| be a closed subset. We
say T is proper over Y if the equivalent conditions of Lemma 75.7.1 are satisfied.
The lemma used in the definition above is false if the morphism f : X → Y is not
locally of finite type. Therefore we urge the reader not to use this terminology if f
is not locally of finite type.

https://stacks.math.columbia.edu/tag/0CZC
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Lemma 75.7.3.0CZE Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let T ′ ⊂ T ⊂ |X| be closed subsets.
If T is proper over Y , then the same is true for T ′.

Proof. Omitted. □

Lemma 75.7.4.0CZF Let S be a scheme. Consider a cartesian diagram of algebraic
spaces over S

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

with f locally of finite type. If T is a closed subset of |X| proper over Y , then
|g′|−1(T ) is a closed subset of |X ′| proper over Y ′.

Proof. Observe that the statement makes sense as f ′ is locally of finite type by
Morphisms of Spaces, Lemma 67.23.3. Let Z ⊂ X be the reduced induced closed
subspace structure on T . Denote Z ′ = (g′)−1(Z) the scheme theoretic inverse
image. Then Z ′ = X ′ ×X Z = (Y ′ ×Y X) ×X Z = Y ′ ×Y Z is proper over Y ′ as
a base change of Z over Y (Morphisms of Spaces, Lemma 67.40.3). On the other
hand, we have T ′ = |Z ′|. Hence the lemma holds. □

Lemma 75.7.5.0CZG Let S be a scheme. Let B be an algebraic space over S. Let
f : X → Y be a morphism of algebraic spaces which are locally of finite type over
B.

(1) If Y is separated over B and T ⊂ |X| is a closed subset proper over B,
then |f |(T ) is a closed subset of |Y | proper over B.

(2) If f is universally closed and T ⊂ |X| is a closed subset proper over B,
then |f |(T ) is a closed subset of Y proper over B.

(3) If f is proper and T ⊂ |Y | is a closed subset proper over B, then |f |−1(T )
is a closed subset of |X| proper over B.

Proof. Proof of (1). Assume Y is separated over B and T ⊂ |X| is a closed subset
proper over B. Let Z be the reduced induced closed subspace structure on T and
apply Morphisms of Spaces, Lemma 67.40.8 to Z → Y over B to conclude.
Proof of (2). Assume f is universally closed and T ⊂ |X| is a closed subset proper
over B. Let Z be the reduced induced closed subspace structure on T and let Z ′

be the reduced induced closed subspace structure on |f |(T ). We obtain an induced
morphism Z → Z ′. Denote Z ′′ = f−1(Z ′) the scheme theoretic inverse image.
Then Z ′′ → Z ′ is universally closed as a base change of f (Morphisms of Spaces,
Lemma 67.40.3). Hence Z → Z ′ is universally closed as a composition of the closed
immersion Z → Z ′′ and Z ′′ → Z ′ (Morphisms of Spaces, Lemmas 67.40.5 and
67.40.4). We conclude that Z ′ → B is separated by Morphisms of Spaces, Lemma
67.9.8. Since Z → B is quasi-compact and Z → Z ′ is surjective we see that Z ′ → B
is quasi-compact. Since Z ′ → B is the composition of Z ′ → Y and Y → B we see
that Z ′ → B is locally of finite type (Morphisms of Spaces, Lemmas 67.23.7 and
67.23.2). Finally, since Z → B is universally closed, we see that the same thing is
true for Z ′ → B by Morphisms of Spaces, Lemma 67.40.7. This finishes the proof.
Proof of (3). Assume f is proper and T ⊂ |Y | is a closed subset proper over B. Let
Z be the reduced induced closed subspace structure on T . Denote Z ′ = f−1(Z)

https://stacks.math.columbia.edu/tag/0CZE
https://stacks.math.columbia.edu/tag/0CZF
https://stacks.math.columbia.edu/tag/0CZG


75.7. BEING PROPER OVER A BASE 5718

the scheme theoretic inverse image. Then Z ′ → Z is proper as a base change
of f (Morphisms of Spaces, Lemma 67.40.3). Whence Z ′ → B is proper as the
composition of Z ′ → Z and Z → B (Morphisms of Spaces, Lemma 67.40.4). This
finishes the proof. □

Lemma 75.7.6.0CZH Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let Ti ⊂ |X|, i = 1, . . . , n be closed
subsets. If Ti, i = 1, . . . , n are proper over Y , then the same is true for T1∪ . . .∪Tn.

Proof. Let Zi be the reduced induced closed subscheme structure on Ti. The mor-
phism

Z1 ⨿ . . .⨿ Zn −→ X

is finite by Morphisms of Spaces, Lemmas 67.45.10 and 67.45.11. As finite mor-
phisms are universally closed (Morphisms of Spaces, Lemma 67.45.9) and since
Z1 ⨿ . . . ⨿ Zn is proper over S we conclude by Lemma 75.7.5 part (2) that the
image Z1 ∪ . . . ∪ Zn is proper over S. □

Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces over S
which is locally of finite type. Let F be a finite type, quasi-coherent OX -module.
Then the support Supp(F) of F is a closed subset of |X|, see Morphisms of Spaces,
Lemma 67.15.2. Hence it makes sense to say “the support of F is proper over Y ”.

Lemma 75.7.7.0CZI Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let F be a finite type, quasi-coherent
OX -module. The following are equivalent

(1) the support of F is proper over Y ,
(2) the scheme theoretic support of F (Morphisms of Spaces, Definition 67.15.4)

is proper over Y , and
(3) there exists a closed subspace Z ⊂ X and a finite type, quasi-coherent
OZ-module G such that (a) Z → Y is proper, and (b) (Z → X)∗G = F .

Proof. The support Supp(F) of F is a closed subset of |X|, see Morphisms of Spaces,
Lemma 67.15.2. Hence we can apply Definition 75.7.2. Since the scheme theoretic
support of F is a closed subspace whose underlying closed subset is Supp(F) we
see that (1) and (2) are equivalent by Definition 75.7.2. It is clear that (2) implies
(3). Conversely, if (3) is true, then Supp(F) ⊂ |Z| and hence Supp(F) is proper
over Y for example by Lemma 75.7.3. □

Lemma 75.7.8.0CZJ Let S be a scheme. Consider a cartesian diagram of algebraic
spaces over S

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

with f locally of finite type. Let F be a finite type, quasi-coherent OX -module. If
the support of F is proper over Y , then the support of (g′)∗F is proper over Y ′.

Proof. Observe that the statement makes sense because (g′) ∗ F is of finite type
by Modules on Sites, Lemma 18.23.4. We have Supp((g′)∗F) = |g′|−1(Supp(F))
by Morphisms of Spaces, Lemma 67.15.2. Thus the lemma follows from Lemma
75.7.4. □

https://stacks.math.columbia.edu/tag/0CZH
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Lemma 75.7.9.0CZK Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let F , G be finite type, quasi-coherent
OX -module.

(1) If the supports of F , G are proper over Y , then the same is true for F⊕G,
for any extension of G by F , for Im(u) and Coker(u) given any OX -module
map u : F → G, and for any quasi-coherent quotient of F or G.

(2) If Y is locally Noetherian, then the category of coherent OX -modules
with support proper over Y is a Serre subcategory (Homology, Definition
12.10.1) of the abelian category of coherent OX -modules.

Proof. Proof of (1). Let T , T ′ be the support of F and G. Then all the sheaves
mentioned in (1) have support contained in T ∪T ′. Thus the assertion itself is clear
from Lemmas 75.7.3 and 75.7.6 provided we check that these sheaves are finite type
and quasi-coherent. For quasi-coherence we refer the reader to Properties of Spaces,
Section 66.29. For “finite type” we refer the reader to Properties of Spaces, Section
66.30.

Proof of (2). The proof is the same as the proof of (1). Note that the assertions
make sense as X is locally Noetherian by Morphisms of Spaces, Lemma 67.23.5 and
by the description of the category of coherent modules in Cohomology of Spaces,
Section 69.12. □

Lemma 75.7.10.08GC Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type and Y locally Noetherian. Let F
be a coherent OX -module with support proper over Y . Then Rpf∗F is a coherent
OY -module for all p ≥ 0.

Proof. By Lemma 75.7.7 there exists a closed immersion i : Z → X with g = f ◦ i :
Z → Y proper and F = i∗G for some coherent module G on Z. We see that Rpg∗G
is coherent on S by Cohomology of Spaces, Lemma 69.20.2. On the other hand,
Rqi∗G = 0 for q > 0 (Cohomology of Spaces, Lemma 69.12.9). By Cohomology on
Sites, Lemma 21.14.7 we get Rpf∗F = Rpg∗G and the lemma follows. □

75.8. Derived category of coherent modules

08GI Let S be a scheme. Let X be a locally Noetherian algebraic space over S. In
this case the category Coh(OX) ⊂ Mod(OX) of coherent OX -modules is a weak
Serre subcategory, see Homology, Section 12.10 and Cohomology of Spaces, Lemma
69.12.3. Denote

DCoh(OX) ⊂ D(OX)
the subcategory of complexes whose cohomology sheaves are coherent, see Derived
Categories, Section 13.17. Thus we obtain a canonical functor

(75.8.0.1)08GJ D(Coh(OX)) −→ DCoh(OX)

see Derived Categories, Equation (13.17.1.1).

Lemma 75.8.1.08GK Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type and Y is Noetherian. Let E be
an object of Db

Coh(OX) such that the support of Hi(E) is proper over Y for all i.
Then Rf∗E is an object of Db

Coh(OY ).

https://stacks.math.columbia.edu/tag/0CZK
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Proof. Consider the spectral sequence
Rpf∗H

q(E)⇒ Rp+qf∗E

see Derived Categories, Lemma 13.21.3. By assumption and Lemma 75.7.10 the
sheaves Rpf∗H

q(E) are coherent. Hence Rp+qf∗E is coherent, i.e., E ∈ DCoh(OY ).
Boundedness from below is trivial. Boundedness from above follows from Coho-
mology of Spaces, Lemma 69.8.1 or from Lemma 75.6.1. □

Lemma 75.8.2.0D0R Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type and Y is Noetherian. Let E be
an object of D+

Coh(OX) such that the support of Hi(E) is proper over S for all i.
Then Rf∗E is an object of D+

Coh(OY ).

Proof. The proof is the same as the proof of Lemma 75.8.1. You can also de-
duce it from Lemma 75.8.1 by considering what the exact functor Rf∗ does to the
distinguished triangles τ≤aE → E → τ≥a+1E → τ≤aE[1]. □

Lemma 75.8.3.0D0S Let S be a scheme. Let X be a locally Noetherian algebraic
space over S. If L is in D+

Coh(OX) and K in D−
Coh(OX), then RHom(K,L) is in

D+
Coh(OX).

Proof. We can check whether an object of D(OX) is in DCoh(OX) étale locally on
X, see Cohomology of Spaces, Lemma 69.12.2. Hence this lemma follows from the
case of schemes, see Derived Categories of Schemes, Lemma 36.11.5. □

Lemma 75.8.4.0D0T Let A be a Noetherian ring. Let X be a proper algebraic space
over A. For L in D+

Coh(OX) and K in D−
Coh(OX), the A-modules ExtnOX

(K,L) are
finite.

Proof. Recall that
ExtnOX

(K,L) = Hn(X,RHomOX
(K,L)) = Hn(Spec(A), Rf∗RHomOX

(K,L))
see Cohomology on Sites, Lemma 21.35.1 and Cohomology on Sites, Section 21.14.
Thus the result follows from Lemmas 75.8.3 and 75.8.2. □

75.9. Induction principle

08GL In this section we discuss an induction principle for algebraic spaces analogous to
what is Cohomology of Schemes, Lemma 30.4.1 for schemes. To formulate it we
introduce the notion of an elementary distinguished square; this terminology is
borrowed from [MV99]. The principle as formulated here is implicit in the paper
[GR71] by Raynaud and Gruson. A related principle for algebraic stacks is [Ryd10,
Theorem D] by David Rydh.

Definition 75.9.1.08GM Let S be a scheme. A commutative diagram

U ×W V //

��

V

f

��
U

j // W

of algebraic spaces over S is called an elementary distinguished square if
(1) U is an open subspace of W and j is the inclusion morphism,
(2) f is étale, and
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(3) setting T = W \ U (with reduced induced subspace structure) the mor-
phism f−1(T )→ T is an isomorphism.

We will indicate this by saying: “Let (U ⊂ W, f : V → W ) be an elementary
distinguished square.”

Note that if (U ⊂ W, f : V → W ) is an elementary distinguished square, then we
have W = U ∪ f(V ). Thus {U → W,V → W} is an étale covering of W . It turns
out that these étale coverings have nice properties and that in some sense there are
“enough” of them.

Lemma 75.9.2.08GN Let S be a scheme. Let (U ⊂ W, f : V → W ) be an elementary
distinguished square of algebraic spaces over S.

(1) If V ′ ⊂ V and U ⊂ U ′ ⊂ W are open subspaces and W ′ = U ′ ∪ f(V ′)
then (U ′ ⊂W ′, f |V ′ : V ′ →W ′) is an elementary distinguished square.

(2) If p : W ′ → W is a morphism of algebraic spaces, then (p−1(U) ⊂
W ′, V ×W W ′ →W ′) is an elementary distinguished square.

(3) If S′ → S is a morphism of schemes, then (S′×S U ⊂ S′×SW,S′×S V →
S′ ×S W ) is an elementary distinguished square.

Proof. Omitted. □

Lemma 75.9.3.08GP Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let P be a property of the quasi-compact and quasi-
separated objects of Xspaces,étale. Assume that

(1) P holds for every affine object of Xspaces,étale,
(2) for every elementary distinguished square (U ⊂W, f : V →W ) such that

(a) W is a quasi-compact and quasi-separated object of Xspaces,étale,
(b) U is quasi-compact,
(c) V is affine, and
(d) P holds for U , V , and U ×W V ,
then P holds for W .

Then P holds for every quasi-compact and quasi-separated object of Xspaces,étale

and in particular for X.

Proof. We first claim that P holds for every representable quasi-compact and quasi-
separated object of Xspaces,étale. Namely, suppose that U → X is étale and U is a
quasi-compact and quasi-separated scheme. By assumption (1) property P holds
for every affine open of U . Moreover, if W,V ⊂ U are quasi-compact open with
V affine and P holds for W , V , and W ∩ V , then P holds for W ∪ V by (2) (as
the pair (W ⊂ W ∪ V, V → W ∪ V ) is an elementary distinguished square). Thus
P holds for U by the induction principle for schemes, see Cohomology of Schemes,
Lemma 30.4.1.
To finish the proof it suffices to prove P holds for X (because we can simply replace
X by any quasi-compact and quasi-separated object ofXspaces,étale we want to prove
the result for). We will use the filtration

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

and the morphisms fp : Vp → Up of Decent Spaces, Lemma 68.8.6. We will prove
that P holds for Up by descending induction on p. Note that P holds for Un+1
by (1) as an empty algebraic space is affine. Assume P holds for Up+1. Note that

https://stacks.math.columbia.edu/tag/08GN
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(Up+1 ⊂ Up, fp : Vp → Up) is an elementary distinguished square, but (2) may not
apply as Vp may not be affine. However, as Vp is a quasi-compact scheme we may
choose a finite affine open covering Vp = Vp,1 ∪ . . . ∪ Vp,m. Set Wp,0 = Up+1 and

Wp,i = Up+1 ∪ fp(Vp,1 ∪ . . . ∪ Vp,i)
for i = 1, . . . ,m. These are quasi-compact open subspaces of X. Then we have

Up+1 = Wp,0 ⊂Wp,1 ⊂ . . . ⊂Wp,m = Up

and the pairs
(Wp,0 ⊂Wp,1, fp|Vp,1), (Wp,1 ⊂Wp,2, fp|Vp,2), . . . , (Wp,m−1 ⊂Wp,m, fp|Vp,m)

are elementary distinguished squares by Lemma 75.9.2. Note that P holds for each
Vp,1 (as affine schemes) and for Wp,i×Wp,i+1Vp,i+1 as this is a quasi-compact open of
Vp,i+1 and hence P holds for it by the first paragraph of this proof. Thus (2) applies
to each of these and we inductively conclude P holds for Wp,1, . . . ,Wp,m = Up. □

Lemma 75.9.4.08GQ Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let B ⊂ Ob(Xspaces,étale). Let P be a property of the
elements of B. Assume that

(1) every W ∈ B is quasi-compact and quasi-separated,
(2) if W ∈ B and U ⊂W is quasi-compact open, then U ∈ B,
(3) if V ∈ Ob(Xspaces,étale) is affine, then (a) V ∈ B and (b) P holds for V ,
(4) for every elementary distinguished square (U ⊂W, f : V →W ) such that

(a) W ∈ B,
(b) U is quasi-compact,
(c) V is affine, and
(d) P holds for U , V , and U ×W V ,
then P holds for W .

Then P holds for every W ∈ B.

Proof. This is proved in exactly the same manner as the proof of Lemma 75.9.3.
(We remark that (4)(d) makes sense as U×W V is a quasi-compact open of V hence
an element of B by conditions (2) and (3).) □

Remark 75.9.5.08GR How to choose the collection B in Lemma 75.9.4? Here are some
examples:

(1) If X is quasi-compact and separated, then we can choose B to be the
set of quasi-compact and separated objects of Xspaces,étale. Then X ∈ B
and B satisfies (1), (2), and (3)(a). With this choice of B Lemma 75.9.4
reproduces Lemma 75.9.3.

(2) If X is quasi-compact with affine diagonal over Z (as in Properties of
Spaces, Definition 66.3.1), then we can choose B to be the set of objects
of Xspaces,étale which are quasi-compact and have affine diagonal over Z.
Again X ∈ B and B satisfies (1), (2), and (3)(a).

(3) If X is quasi-compact and quasi-separated, then the smallest subset B
which contains X and satisfies (1), (2), and (3)(a) is given by the rule
W ∈ B if and only if either W is a quasi-compact open subspace of X, or
W is a quasi-compact open of an affine object of Xspaces,étale.

Here is a variant where we extend the truth from an open to larger opens.
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Lemma 75.9.6.09IT Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let W ⊂ X be a quasi-compact open subspace. Let P be
a property of quasi-compact open subspaces of X. Assume that

(1) P holds for W , and
(2) for every elementary distinguished square (W1 ⊂W2, f : V →W2) where

such that
(a) W1, W2 are quasi-compact open subspaces of X,
(b) W ⊂W1,
(c) V is affine, and
(d) P holds for W1,
then P holds for W2.

Then P holds for X.

Proof. We can deduce this from Lemma 75.9.4, but instead we will give a direct
argument by explicitly redoing the proof of Lemma 75.9.3. We will use the filtration

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

and the morphisms fp : Vp → Up of Decent Spaces, Lemma 68.8.6. We will prove
that P holds for Wp = W ∪ Up by descending induction on p. This will finish the
proof as W1 = X. Note that P holds for Wn+1 = W ∩Un+1 = W by (1). Assume P
holds for Wp+1. Observe that Wp\Wp+1 (with reduced induced subspace structure)
is a closed subspace of Up \Up+1. Since (Up+1 ⊂ Up, fp : Vp → Up) is an elementary
distinguished square, the same is true for (Wp+1 ⊂Wp, fp : Vp →Wp). However (2)
may not apply as Vp may not be affine. However, as Vp is a quasi-compact scheme
we may choose a finite affine open covering Vp = Vp,1∪ . . .∪Vp,m. Set Wp,0 = Wp+1
and

Wp,i = Wp+1 ∪ fp(Vp,1 ∪ . . . ∪ Vp,i)
for i = 1, . . . ,m. These are quasi-compact open subspaces of X containing W .
Then we have

Wp+1 = Wp,0 ⊂Wp,1 ⊂ . . . ⊂Wp,m = Wp

and the pairs
(Wp,0 ⊂Wp,1, fp|Vp,1), (Wp,1 ⊂Wp,2, fp|Vp,2), . . . , (Wp,m−1 ⊂Wp,m, fp|Vp,m)

are elementary distinguished squares by Lemma 75.9.2. Now (2) applies to each of
these and we inductively conclude P holds for Wp,1, . . . ,Wp,m = Wp. □

75.10. Mayer-Vietoris

08GS In this section we prove that an elementary distinguished triangle gives rise to
various Mayer-Vietoris sequences.
Let S be a scheme. Let U → X be an étale morphism of algebraic spaces over S. In
Properties of Spaces, Section 66.27 it was shown that Uspaces,étale = Xspaces,étale/U
compatible with structure sheaves. Hence in this situation we often think of the
morphism jU : U → X as a localization morphism (see Modules on Sites, Definition
18.19.1). In particular we think of pullback j∗

U as restriction to U and we often
denote it by |U ; this is compatible with Properties of Spaces, Equation (66.26.1.1).
In particular we see that
(75.10.0.1)08GT (F|U )u = Fx

https://stacks.math.columbia.edu/tag/09IT
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if u is a geometric point of U and x the image of u in X. Moreover, restriction
has an exact left adjoint jU !, see Modules on Sites, Lemmas 18.19.2 and 18.19.3.
Finally, recall that if G is an OX -module, then

(75.10.0.2)08GU (jU !G)x =
⊕

u
Gu

for any geometric point x : Spec(k) → X where the direct sum is over those
morphisms u : Spec(k) → U such that jU ◦ u = x, see Modules on Sites, Lemma
18.38.1 and Properties of Spaces, Lemma 66.19.13.

Lemma 75.10.1.08GV Let S be a scheme. Let (U ⊂ X,V → X) be an elementary
distinguished square of algebraic spaces over S.

(1) For a sheaf of OX -modules F we have a short exact sequence
0→ jU×XV !F|U×XV → jU !F|U ⊕ jV !F|V → F → 0

(2) For an object E of D(OX) we have a distinguished triangle
jU×XV !E|U×XV → jU !E|U ⊕ jV !E|V → E → jU×XV !E|U×XV [1]
in D(OX).

Proof. To show the sequence of (1) is exact we may check on stalks at geometric
points by Properties of Spaces, Theorem 66.19.12. Let x be a geometric point of X.
By Equations (75.10.0.1) and (75.10.0.2) taking stalks at x we obtain the sequence

0→
⊕

(u,v)
Fx →

⊕
u
Fx ⊕

⊕
v
Fx → Fx → 0

This sequence is exact because for every x there either is exactly one u mapping to
x, or there is no u and exactly one v mapping to x.
Proof of (2). We have seen in Cohomology on Sites, Section 21.20 that the restric-
tion functors and the extension by zero functors on derived categories are computed
by just applying the functor to any complex. Let E• be a complex of OX -modules
representing E. The distinguished triangle of the lemma is the distinguished trian-
gle associated (by Derived Categories, Section 13.12 and especially Lemma 13.12.1)
to the short exact sequence of complexes of OX -modules

0→ jU×XV !E•|U×XV → jU !E•|U ⊕ jV !E•|V → E• → 0
which is short exact by (1). □

Lemma 75.10.2.08GW Let S be a scheme. Let (U ⊂ X,V → X) be an elementary
distinguished square of algebraic spaces over S.

(1) For every sheaf of OX -modules F we have a short exact sequence
0→ F → jU,∗F|U ⊕ jV,∗F|V → jU×XV,∗F|U×XV → 0

(2) For any object E of D(OX) we have a distinguished triangle
E → RjU,∗E|U ⊕RjV,∗E|V → RjU×XV,∗E|U×XV → E[1]

in D(OX).

Proof. Let W be an object of Xétale. We claim the sequence
0→ F(W )→ F(W ×X U)⊕F(W ×X V )→ F(W ×X U ×X V )

is exact and that an element of the last group can locally on W be lifted to the
middle one. By Lemma 75.9.2 the pair (W ×X U ⊂ W,V ×X W → W ) is an

https://stacks.math.columbia.edu/tag/08GV
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elementary distinguished square. Thus we may assume W = X and it suffices to
prove the same thing for

0→ F(X)→ F(U)⊕F(V )→ F(U ×X V )

We have seen that

0→ jU×XV !OU×XV → jU !OU ⊕ jV !OV → OX → 0

is a exact sequence of OX -modules in Lemma 75.10.1 and applying the right ex-
act functor HomOX

(−,F) gives the sequence above. This also means that the
obstruction to lifting s ∈ F(U ×X V ) to an element of F(U) ⊕ F(V ) lies in
Ext1

OX
(OX ,F) = H1(X,F). By locality of cohomology (Cohomology on Sites,

Lemma 21.7.3) this obstruction vanishes étale locally on X and the proof of (1) is
complete.

Proof of (2). Choose a K-injective complex I• representing E whose terms In are
injective objects of Mod(OX), see Injectives, Theorem 19.12.6. Then I•|U is a
K-injective complex (Cohomology on Sites, Lemma 21.20.1). Hence RjU,∗E|U is
represented by jU,∗I•|U . Similarly for V and U ×X V . Hence the distinguished
triangle of the lemma is the distinguished triangle associated (by Derived Cate-
gories, Section 13.12 and especially Lemma 13.12.1) to the short exact sequence of
complexes

0→ I• → jU,∗I•|U ⊕ jV,∗I•|V → jU×XV,∗I•|U×XV → 0.

This sequence is exact by (1). □

Lemma 75.10.3.08JK Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let (U ⊂ X,V → X) be an elementary distinguished square.
Denote a = f |U : U → Y , b = f |V : V → Y , and c = f |U×XV : U ×X V → Y the
restrictions. For every object E of D(OX) there exists a distinguished triangle

Rf∗E → Ra∗(E|U )⊕Rb∗(E|V )→ Rc∗(E|U×XV )→ Rf∗E[1]

in D(OY ). This triangle is functorial in E.

Proof. Choose a K-injective complex I• representing E. We may assume In is an
injective object of Mod(OX) for all n, see Injectives, Theorem 19.12.6. Then Rf∗E
is computed by f∗I•. Similarly for U , V , and U ∩ V by Cohomology on Sites,
Lemma 21.20.1. Hence the distinguished triangle of the lemma is the distinguished
triangle associated (by Derived Categories, Section 13.12 and especially Lemma
13.12.1) to the short exact sequence of complexes

0→ f∗I• → a∗I•|U ⊕ b∗I•|V → c∗I•|U×XV → 0.

To see this is a short exact sequence of complexes we argue as follows. Pick an
injective object I of Mod(OX). Apply f∗ to the short exact sequence

0→ I → jU,∗I|U ⊕ jV,∗I|V → jU×XV,∗I|U×XV → 0

of Lemma 75.10.2 and use that R1f∗I = 0 to get a short exact sequence

0→ f∗I → f∗jU,∗I|U ⊕ f∗jV,∗I|V → f∗jU×XV,∗I|U×XV → 0

The proof is finished by observing that a∗ = f∗jU,∗ and similarly for b∗ and c∗. □

https://stacks.math.columbia.edu/tag/08JK
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Lemma 75.10.4.08H9 Let S be a scheme. Let (U ⊂ X,V → X) be an elementary
distinguished square of algebraic spaces over S. For objects E, F of D(OX) we
have a Mayer-Vietoris sequence

. . . // Ext−1(EU×XV , FU×XV )

qqHom(E,F ) // Hom(EU , FU )⊕Hom(EV , FV ) // Hom(EU×XV , FU×XV )

where the subscripts denote restrictions to the relevant opens and the Hom’s are
taken in the relevant derived categories.

Proof. Use the distinguished triangle of Lemma 75.10.1 to obtain a long exact se-
quence of Hom’s (from Derived Categories, Lemma 13.4.2) and use that Hom(jU !E|U , F ) =
Hom(E|U , F |U ) by Cohomology on Sites, Lemma 21.20.8. □

Lemma 75.10.5.0CRS Let S be a scheme. Let (U ⊂ X,V → X) be an elementary
distinguished square of algebraic spaces over S. For an object E of D(OX) we have
a distinguished triangle

RΓ(X,E)→ RΓ(U,E)⊕RΓ(V,E)→ RΓ(U ×X V,E)→ RΓ(X,E)[1]
and in particular a long exact cohomology sequence
. . .→ Hn(X,E)→ Hn(U,E)⊕Hn(V,E)→ Hn(U ×X V,E)→ Hn+1(X,E)→ . . .

The construction of the distinguished triangle and the long exact sequence is func-
torial in E.

Proof. Choose a K-injective complex I• representing E whose terms In are injec-
tive objects of Mod(OX), see Injectives, Theorem 19.12.6. In the proof of Lemma
75.10.2 we found a short exact sequence of complexes

0→ I• → jU,∗I•|U ⊕ jV,∗I•|V → jU×XV,∗I•|U×XV → 0
Since H1(X, In) = 0, we see that taking global sections gives an exact sequence of
complexes

0→ Γ(X, I•)→ Γ(U, I•)⊕ Γ(V, I•)→ Γ(U ×X V, I•)→ 0
Since these complexes representRΓ(X,E), RΓ(U,E), RΓ(V,E), andRΓ(U×XV,E)
we get a distinguished triangle by Derived Categories, Section 13.12 and especially
Lemma 13.12.1. □

Lemma 75.10.6.08HA Let S be a scheme. Let j : U → X be a étale morphism of
algebraic spaces over S. Given an étale morphism V → Y , set W = V ×X U and
denote jW : W → V the projection morphism. Then (j!E)|V = jW !(E|W ) for E in
D(OU ).

Proof. This is true because (j!F)|V = jW !(F|W ) for an OX -module F as follows
immediately from the construction of the functors j! and jW !, see Modules on Sites,
Lemma 18.19.2. □

Lemma 75.10.7.08GG Let S be a scheme. Let (U ⊂ X, j : V → X) be an elementary
distinguished square of algebraic spaces over S. Set T = |X| \ |U |.

(1) If E is an object of D(OX) supported on T , then (a) E → Rj∗(E|V ) and
(b) j!(E|V )→ E are isomorphisms.

https://stacks.math.columbia.edu/tag/08H9
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(2) If F is an object of D(OV ) supported on j−1T , then (a) F → (j!F )|V , (b)
(Rj∗F )|V → F , and (c) j!F → Rj∗F are isomorphisms.

Proof. Let E be an object of D(OX) whose cohomology sheaves are supported on
T . Then we see that E|U = 0 and E|U×XV = 0 as T doesn’t meet U and j−1T
doesn’t meet U ×X V . Thus (1)(a) follows from Lemma 75.10.2. In exactly the
same way (1)(b) follows from Lemma 75.10.1.

Let F be an object of D(OV ) whose cohomology sheaves are supported on j−1T .
By Lemma 75.3.1 we have (Rj∗F )|U = RjW,∗(F |W ) = 0 because F |W = 0 by our
assumption. Similarly (j!F )|U = jW !(F |W ) = 0 by Lemma 75.10.6. Thus j!F and
Rj∗F are supported on T and (j!F )|V and (Rj∗F )|V are supported on j−1(T ).
To check that the maps (2)(a), (b), (c) are isomorphisms in the derived category,
it suffices to check that these map induce isomorphisms on stalks of cohomology
sheaves at geometric points of T and j−1(T ) by Properties of Spaces, Theorem
66.19.12. This we may do after replacing X by V , U by U ×X V , V by V ×X V
and F by F |V×XV (restriction via first projection), see Lemmas 75.3.1, 75.10.6, and
75.9.2. Since V ×X V → V has a section this reduces (2) to the case that j : V → X
has a section.

Assume j has a section σ : X → V . Set V ′ = σ(X). This is an open subspace of
V . Set U ′ = j−1(U). This is another open subspace of V . Then (U ′ ⊂ V, V ′ → V )
is an elementary distinguished square. Observe that F |U ′ = 0 and F |V ′∩U ′ = 0
because F is supported on j−1(T ). Denote j′ : V ′ → V the open immersion and
jV ′ : V ′ → X the composition V ′ → V → X which is the inverse of σ. Set
F ′ = σ∗F . The distinguished triangles of Lemmas 75.10.1 and 75.10.2 show that
F = j′

!(F |V ′) and F = Rj′
∗(F |V ′). It follows that j!F = j!j

′
!(F |V ′) = jV ′!F = F ′

because jV ′ : V ′ → X is an isomorphism and the inverse of σ. Similarly, Rj∗F =
Rj∗Rj

′
∗F = RjV ′,∗F = F ′. This proves (2)(c). To prove (2)(a) and (2)(b) it suffices

to show that F = F ′|V . This is clear because both F and F ′|V restrict to zero on
U ′ and U ′ ∩ V ′ and the same object on V ′. □

We can glue complexes!

Lemma 75.10.8.08HB Let S be a scheme. Let (U ⊂ X,V → X) be an elementary
distinguished square of algebraic spaces over S. Suppose given

(1) an object A of D(OU ),
(2) an object B of D(OV ), and
(3) an isomorphism c : A|U×XV → B|U×XV .

Then there exists an object F of D(OX) and isomorphisms f : F |U → A, g : F |V →
B such that c = g|U×XV ◦ f−1|U×XV . Moreover, given

(1) an object E of D(OX),
(2) a morphism a : A→ E|U of D(OU ),
(3) a morphism b : B → E|V of D(OV ),

such that
a|U×XV = b|U×XV ◦ c.

Then there exists a morphism F → E in D(OX) whose restriction to U is a◦f and
whose restriction to V is b ◦ g.

https://stacks.math.columbia.edu/tag/08HB
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Proof. Denote jU , jV , jU×XV the corresponding morphisms towards X. Choose a
distinguished triangle

F → RjU,∗A⊕RjV,∗B → RjU×XV,∗(B|U×XV )→ F [1]
Here the mapRjV,∗B → RjU×XV,∗(B|U×XV ) is the obvious one. The mapRjU,∗A→
RjU×XV,∗(B|U×XV ) is the composition of RjU,∗A → RjU×XV,∗(A|U×XV ) with
RjU×XV,∗c. Restricting to U we obtain

F |U → A⊕ (RjV,∗B)|U → (RjU×XV,∗(B|U×XV ))|U → F |U [1]
Denote j : U ×X V → U . Compatibility of restriction and total direct im-
age (Lemma 75.3.1) shows that both (RjV,∗B)|U and (RjU×XV,∗(B|U×XV ))|U are
canonically isomorphic to Rj∗(B|U×XV ). Hence the second arrow of the last dis-
played equation has a section, and we conclude that the morphism F |U → A is an
isomorphism.
To see that the morphism F |V → B is an isomorphism we will use a trick. Namely,
choose a distinguished triangle

F |V → B → B′ → F [1]|V
in D(OV ). Since F |U → A is an isomorphism, and since we have the isomorphism
c : A|U×XV → B|U×XV the restriction of F |V → B is an isomorphism over U×X V .
Thus B′ is supported on j−1

V (T ) where T = |X| \ |U |. On the other hand, there is
a morphism of distinguished triangles

F //

��

RjU,∗F |U ⊕RjV,∗F |V //

��

RjU×XV,∗F |U×XV
//

��

F [1]

��
F // RjU,∗A⊕RjV,∗B // RjU×XV,∗(B|U×XV ) // F [1]

The all of the vertical maps in this diagram are isomorphisms, except for the
map RjV,∗F |V → RjV,∗B, hence that is an isomorphism too (Derived Categories,
Lemma 13.4.3). This implies that RjV,∗B′ = 0. Hence B′ = 0 by Lemma 75.10.7.
The existence of the morphism F → E follows from the Mayer-Vietoris sequence
for Hom, see Lemma 75.10.4. □

75.11. The coherator

08GX Let S be a scheme. Let X be an algebraic space over S. The coherator is a functor
QX : Mod(OX) −→ QCoh(OX)

which is right adjoint to the inclusion functor QCoh(OX) → Mod(OX). It exists
for any algebraic space X and moreover the adjunction mapping QX(F) → F
is an isomorphism for every quasi-coherent module F , see Properties of Spaces,
Proposition 66.32.2. Since QX is left exact (as a right adjoint) we can consider its
right derived extension

RQX : D(OX) −→ D(QCoh(OX)).
Since QX is right adjoint to the inclusion functor QCoh(OX) → Mod(OX) we see
that RQX is right adjoint to the canonical functor D(QCoh(OX)) → D(OX) by
Derived Categories, Lemma 13.30.3.
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In this section we will study the functor RQX . In Section 75.19 we will study
the (closely related) right adjoint to the inclusion functor DQCoh(OX) → D(OX)
(when it exists).
Lemma 75.11.1.08GY Let S be a scheme. Let f : X → Y be an affine morphism of
algebraic spaces over S. Then f∗ defines a derived functor f∗ : D(QCoh(OX)) →
D(QCoh(OY )). This functor has the property that

D(QCoh(OX))

f∗

��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

commutes.
Proof. The functor f∗ : QCoh(OX) → QCoh(OY ) is exact, see Cohomology of
Spaces, Lemma 69.8.2. Hence f∗ defines a derived functor f∗ : D(QCoh(OX)) →
D(QCoh(OY )) by simply applying f∗ to any representative complex, see Derived
Categories, Lemma 13.16.9. For any complex ofOX -modules F• there is a canonical
map f∗F• → Rf∗F•. To finish the proof we show this is a quasi-isomorphism when
F• is a complex with each Fn quasi-coherent. The statement is étale local on Y
hence we may assume Y affine. As an affine morphism is representable we reduce
to the case of schemes by the compatibility of Remark 75.6.3. The case of schemes
is Derived Categories of Schemes, Lemma 36.7.1. □

Lemma 75.11.2.08GZ Let S be a scheme. Let f : X → Y be a morphism of alge-
braic spaces over S. Assume f is quasi-compact, quasi-separated, and flat. Then,
denoting

Φ : D(QCoh(OX))→ D(QCoh(OY ))
the right derived functor of f∗ : QCoh(OX) → QCoh(OY ) we have RQY ◦ Rf∗ =
Φ ◦RQX .
Proof. We will prove this by showing that RQY ◦Rf∗ and Φ◦RQX are right adjoint
to the same functor D(QCoh(OY ))→ D(OX).
Since f is quasi-compact and quasi-separated, we see that f∗ preserves quasi-
coherence, see Morphisms of Spaces, Lemma 67.11.2. Recall that QCoh(OX)
is a Grothendieck abelian category (Properties of Spaces, Proposition 66.32.2).
Hence any K in D(QCoh(OX)) can be represented by a K-injective complex I• of
QCoh(OX), see Injectives, Theorem 19.12.6. Then we can define Φ(K) = f∗I•.
Since f is flat, the functor f∗ is exact. Hence f∗ defines f∗ : D(OY ) → D(OX)
and also f∗ : D(QCoh(OY ))→ D(QCoh(OX)). The functor f∗ = Lf∗ : D(OY )→
D(OX) is left adjoint to Rf∗ : D(OX)→ D(OY ), see Cohomology on Sites, Lemma
21.19.1. Similarly, the functor f∗ : D(QCoh(OY ))→ D(QCoh(OX)) is left adjoint
to Φ : D(QCoh(OX))→ D(QCoh(OY )) by Derived Categories, Lemma 13.30.3.
Let A be an object of D(QCoh(OY )) and E an object of D(OX). Then

HomD(QCoh(OY ))(A,RQY (Rf∗E)) = HomD(OY )(A,Rf∗E)
= HomD(OX)(f∗A,E)
= HomD(QCoh(OX))(f∗A,RQX(E))
= HomD(QCoh(OY ))(A,Φ(RQX(E)))

https://stacks.math.columbia.edu/tag/08GY
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This implies what we want. □

Lemma 75.11.3.08H0 Let S be a scheme. Let X be an affine algebraic space over S.
Set A = Γ(X,OX). Then

(1) QX : Mod(OX)→ QCoh(OX) is the functor which sends F to the quasi-
coherent OX -module associated to the A-module Γ(X,F),

(2) RQX : D(OX) → D(QCoh(OX)) is the functor which sends E to the
complex of quasi-coherent OX -modules associated to the object RΓ(X,E)
of D(A),

(3) restricted to DQCoh(OX) the functor RQX defines a quasi-inverse to
(75.5.1.1).

Proof. Let X0 = Spec(A) be the affine scheme representing X. Recall that there
is a morphism of ringed sites ϵ : Xétale → X0,Zar which induces equivalences

QCoh(OX)
ϵ∗ // QCoh(OX0)
ϵ∗
oo

see Lemma 75.4.2. Hence we see that QX = ϵ∗ ◦QX0 ◦ ϵ∗ by uniqueness of adjoint
functors. Hence (1) follows from the description of QX0 in Derived Categories
of Schemes, Lemma 36.7.3 and the fact that Γ(X0, ϵ∗F) = Γ(X,F). Part (2)
follows from (1) and the fact that the functor from A-modules to quasi-coherent
OX -modules is exact. The third assertion now follows from the result for schemes
(Derived Categories of Schemes, Lemma 36.7.3) and Lemma 75.4.2. □

Next, we prove a criterion for when the functor D(QCoh(OX)) → DQCoh(OX) is
an equivalence.

Lemma 75.11.4.09TG Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Suppose that for every étale morphism j : V → W with
W ⊂ X quasi-compact open and V affine the right derived functor

Φ : D(QCoh(OU ))→ D(QCoh(OW ))
of the left exact functor j∗ : QCoh(OV ) → QCoh(OW ) fits into a commutative
diagram

D(QCoh(OV ))

Φ
��

iV
// DQCoh(OV )

Rj∗

��
D(QCoh(OW )) iW // DQCoh(OW )

Then the functor (75.5.1.1)
D(QCoh(OX)) −→ DQCoh(OX)

is an equivalence with quasi-inverse given by RQX .

Proof. We first use the induction principle to prove iX is fully faithful. More
precisely, we will use Lemma 75.9.6. Let (U ⊂ W,V → W ) be an elementary
distinguished square with V affine and U,W quasi-compact open in X. Assume
that iU is fully faithful. We have to show that iW is fully faithful. We may replace
X by W , i.e., we may assume W = X (we do this just to simplify the notation –
observe that the condition in the statement of the lemma is preserved under this
operation).

https://stacks.math.columbia.edu/tag/08H0
https://stacks.math.columbia.edu/tag/09TG


75.11. THE COHERATOR 5731

Suppose that A,B are objects of D(QCoh(OX)). We want to show that
HomD(QCoh(OX))(A,B) −→ HomD(OX)(iX(A), iX(B))

is bijective. Let T = |X| \ |U |.
Assume first iX(B) is supported on T . In this case the map

iX(B)→ RjV,∗(iX(B)|V ) = RjV,∗(iV (B|V ))
is a quasi-isomorphism (Lemma 75.10.7). By assumption we have an isomorphism
iX(Φ(B|V ))→ RjV,∗(iV (B|V )) in D(OX). Moreover, Φ and −|V are adjoint func-
tors on the derived categories of quasi-coherent modules (by Derived Categories,
Lemma 13.30.3). The adjunction map B → Φ(B|V ) becomes an isomorphism after
applying iX , whence is an isomorphism in D(QCoh(OX)). Hence

MorD(QCoh(OX))(A,B) = MorD(QCoh(OX))(A,Φ(B|V ))
= MorD(QCoh(OV ))(A|V , B|V )
= MorD(OV )(iV (A|V ), iV (B|V ))
= MorD(OX)(iX(A), RjV,∗(iV (B|V )))
= MorD(OX)(iX(A), iX(B))

as desired. Here we have used that iV is fully faithful (Lemma 75.11.3).
In general, choose any complex B• of quasi-coherent OX -modules representing B.
Next, choose any quasi-isomorphism s : B•|U → C• of complexes of quasi-coherent
modules on U . As jU : U → X is quasi-compact and quasi-separated the functor
jU,∗ transforms quasi-coherent modules into quasi-coherent modules (Morphisms of
Spaces, Lemma 67.11.2). Thus there is a canonical map B• → jU,∗(B•|U )→ jU,∗C•

of complexes of quasi-coherent modules on X. Set B′′ = jU,∗C• in D(QCoh(OX))
and choose a distinguished triangle

B → B′′ → B′ → B[1]
in D(QCoh(OX)). Since the first arrow of the triangle restricts to an isomorphism
over U we see that B′ is supported on T . Hence in the diagram

HomD(QCoh(OX))(A,B′[−1]) //

��

HomD(OX)(iX(A), iX(B′)[−1])

��
HomD(QCoh(OX))(A,B) //

��

HomD(OX)(iX(A), iX(B))

��
HomD(QCoh(OX))(A,B′′) //

��

HomD(OX)(iX(A), iX(B′′))

��
HomD(QCoh(OX))(A,B′) // HomD(OX)(iX(A), iX(B′))

we have exact columns and the top and bottom horizontal arrows are bijective.
Finally, choose a complex A• of quasi-coherent modules representing A.
Let α : iX(A) → iX(B) be a morphism between in D(OX). The restriction α|U
comes from a morphism in D(QCoh(OU )) as iU is fully faithful. Hence there
exists a choice of s : B•|U → C• as above such that α|U is represented by an
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actual map of complexes A•|U → C•. This corresponds to a map of complexes
A → jU,∗C•. In other words, the image of α in HomD(OX)(iX(A), iX(B′′)) comes
from an element of HomD(QCoh(OX))(A,B′′). A diagram chase then shows that α
comes from a morphism A→ B in D(QCoh(OX)). Finally, suppose that a : A→ B
is a morphism of D(QCoh(OX)) which becomes zero in D(OX). After choosing B•

suitably, we may assume a is represented by a morphism of complexes a• : A• → B•.
Since iU is fully faithul the restriction a•|U is zero in D(QCoh(OU )). Thus we can
choose s such that s◦a•|U : A•|U → C• is homotopic to zero. Applying the functor
jU,∗ we conclude that A• → jU,∗C• is homotopic to zero. Thus a maps to zero in
HomD(QCoh(OX))(A,B′′). Thus we may assume that a is the image of an element of
b ∈ HomD(QCoh(OX))(A,B′[−1]). The image of b in HomD(OX)(iX(A), iX(B′)[−1])
comes from a γ ∈ HomD(OX)(A,B′′[−1]) (as a maps to zero in the group on the
right). Since we’ve seen above the horizontal arrows are surjective, we see that γ
comes from a c in HomD(QCoh(OX))(A,B′′[−1]) which implies a = 0 as desired.
At this point we know that iX is fully faithful for our original X. Since RQX is
its right adjoint, we see that RQX ◦ iX = id (Categories, Lemma 4.24.4). To finish
the proof we show that for any E in DQCoh(OX) the map iX(RQX(E))→ E is an
isomorphism. Choose a distinguished triangle

iX(RQX(E))→ E → E′ → iX(RQX(E))[1]
in DQCoh(OX). A formal argument using the above shows that iX(RQX(E′)) = 0.
Thus it suffices to prove that for E ∈ DQCoh(OX) the condition iX(RQX(E)) = 0
implies that E = 0. Consider an étale morphism j : V → X with V affine. By
Lemmas 75.11.3 and 75.11.2 and our assumption we have
Rj∗(E|V ) = Rj∗(iV (RQV (E|V ))) = iX(Φ(RQV (E|V ))) = iX(RQX(Rj∗(E|V )))

Choose a distinguished triangle
E → Rj∗(E|V )→ E′ → E[1]

Apply RQX to get a distinguished triangle
0→ RQX(Rj∗(E|V ))→ RQX(E′)→ 0[1]

in other words the map in the middle is an isomorphism. Combined with the
string of equalities above we find that our first distinguished triangle becomes a
distinguished triangle

E → iX(RQX(E′))→ E′ → E[1]
where the middle morphism is the adjunction map. However, the composition E →
E′ is zero, hence E → iX(RQX(E′)) is zero by adjunction! Since this morphism is
isomorphic to the morphism E → Rj∗(E|V ) adjoint to id : E|V → E|V we conclude
that E|V is zero. Since this holds for all affine V étale over X we conclude E is
zero as desired. □

Proposition 75.11.5.08H1 Let S be a scheme. Let X be a quasi-compact algebraic space
over S with affine diagonal over Z (as in Properties of Spaces, Definition 66.3.1).
Then the functor (75.5.1.1)

D(QCoh(OX)) −→ DQCoh(OX)
is an equivalence with quasi-inverse given by RQX .

https://stacks.math.columbia.edu/tag/08H1
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Proof. Let V → W be an étale morphism with V affine and W a quasi-compact
open subspace of X. Then the morphism V →W is affine as W has affine diagonal
over Z and V is affine (Morphisms of Spaces, Lemma 67.20.11). Lemma 75.11.1 then
guarantees that the assumption of Lemma 75.11.4 holds. Hence we conclude. □

Lemma 75.11.6.0CSR Let S be a scheme and let f : X → Y be a morphism of algebraic
spaces over S. Assume X and Y are quasi-compact and have affine diagonal over
Z (as in Properties of Spaces, Definition 66.3.1). Then, denoting

Φ : D(QCoh(OX))→ D(QCoh(OY ))
the right derived functor of f∗ : QCoh(OX)→ QCoh(OY ) the diagram

D(QCoh(OX))

Φ
��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

is commutative.

Proof. Observe that the horizontal arrows in the diagram are equivalences of cate-
gories by Proposition 75.11.5. Hence we can identify these categories (and similarly
for other quasi-compact algebraic spaces with affine diagonal) and then the state-
ment of the lemma is that the canonical map Φ(K) → Rf∗(K) is an isomorphism
for all K in D(QCoh(OX)). Note that if K1 → K2 → K3 → K1[1] is a distin-
guished triangle in D(QCoh(OX)) and the statement is true for two-out-of-three,
then it is true for the third.
Let B ⊂ Ob(Xspaces,étale) be the set of objects which are quasi-compact and have
affine diagonal. For U ∈ B and any morphism g : U → Z where Z is a quasi-
compact algebraic space over S with affine diagonal, denote

Φg : D(QCoh(OU ))→ D(QCoh(OZ))
the derived extension of g∗. Let P (U) = “for any K in D(QCoh(OU )) and any
g : U → Z as above the map Φg(K) → Rg∗K is an isomorphism”. By Remark
75.9.5 conditions (1), (2), and (3)(a) of Lemma 75.9.4 hold and we are left with
proving (3)(b) and (4).
Checking condition (3)(b). Let U be an affine scheme étale over X. Let g : U → Z
be as above. Since the diagonal of Z is affine the morphism g : U → Z is affine
(Morphisms of Spaces, Lemma 67.20.11). Hence P (U) holds by Lemma 75.11.1.
Checking condition (4). Let (U ⊂ W,V → W ) be an elementary distinguished
square in Xspaces,étale with U,W, V in B and V affine. Assume that P holds for
U , V , and U ×W V . We have to show that P holds for W . Let g : W → Z be
a morphism to a quasi-compact algebraic space with affine diagonal. Let K be an
object of D(QCoh(OW )). Consider the distinguished triangle

K → RjU,∗K|U ⊕RjV,∗K|V → RjU×WV,∗K|U×WV → K[1]
in D(OW ). By the two-out-of-three property mentioned above, it suffices to show
that Φg(RjU,∗K|U ) → Rg∗(RjU,∗K|U ) is an isomorphism and similarly for V and
U ×W V . This is discussed in the next paragraph.
Let j : U → W be a morphism Xspaces,étale with U,W in B and P holds for U .
Let g : W → Z be a morphism to a quasi-compact algebraic space with affine

https://stacks.math.columbia.edu/tag/0CSR
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diagonal. To finish the proof we have to show that Φg(Rj∗K) → Rg∗(Rj∗K)
is an isomorphism for any K in D(QCoh(OU )). Let I• be a K-injective com-
plex in QCoh(OU ) representing K. From P (U) applied to j we see that j∗I•

represents Rj∗K. Since j∗ : QCoh(OU ) → QCoh(OX) has an exact left ad-
joint j∗ : QCoh(OX) → QCoh(OU ) we see that j∗I• is a K-injective complex
in QCoh(OW ), see Derived Categories, Lemma 13.31.9. Hence Φg(Rj∗K) is repre-
sented by g∗j∗I• = (g ◦ j)∗I•. By P (U) applied to g ◦ j we see that this represents
Rg◦j,∗(K) = Rg∗(Rj∗K). This finishes the proof. □

75.12. The coherator for Noetherian spaces

09TH We need a little bit more about injective modules to treat the case of a Noetherian
algebraic space.

Lemma 75.12.1.09TI Let S be a Noetherian affine scheme. Every injective object of
QCoh(OS) is a filtered colimit colimi Fi of quasi-coherent sheaves of the form

Fi = (Zi → S)∗Gi
where Zi is the spectrum of an Artinian ring and Gi is a coherent module on Zi.

Proof. Let S = Spec(A). Let J be an injective object of QCoh(OS). Since
QCoh(OS) is equivalent to the category of A-modules we see that J is equal to
J̃ for some injective A-module J . By Dualizing Complexes, Proposition 47.5.9 we
can write J =

⊕
Eα with Eα indecomposable and therefore isomorphic to the

injective hull of a reside field at a point. Thus (because finite disjoint unions of
Artinian schemes are Artinian) we may assume that J is the injective hull of κ(p)
for some prime p of A. Then J =

⋃
J [pn] where J [pn] is the injective hull of κ(p)

over A/pnAp, see Dualizing Complexes, Lemma 47.7.3. Thus J̃ is the colimit of
the sheaves (Zn → X)∗Gn where Zn = Spec(Ap/p

nAp) and Gn the coherent sheaf
associated to the finite A/pnAp-module J [pn]. Finiteness follows from Dualizing
Complexes, Lemma 47.6.1. □

Lemma 75.12.2.09TJ Let S be an affine scheme. Let X be a Noetherian algebraic
space over S. Every injective object of QCoh(OX) is a direct summand of a filtered
colimit colimi Fi of quasi-coherent sheaves of the form

Fi = (Zi → X)∗Gi
where Zi is the spectrum of an Artinian ring and Gi is a coherent module on Zi.

Proof. Choose an affine scheme U and a surjective étale morphism j : U → X
(Properties of Spaces, Lemma 66.6.3). Then U is a Noetherian affine scheme.
Choose an injective object J ′ of QCoh(OU ) such that there exists an injection
J |U → J ′. Then

J → j∗J ′

is an injective morphism in QCoh(OX), hence identifies J as a direct summand
of j∗J ′. Thus the result follows from the corresponding result for J ′ proved in
Lemma 75.12.1. □

Lemma 75.12.3.09TK Let S be a scheme. Let f : X → Y be a flat, quasi-compact, and
quasi-separated morphism of algebraic spaces over S. If J is an injective object of
QCoh(OX), then f∗J is an injective object of QCoh(OY ).

https://stacks.math.columbia.edu/tag/09TI
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Proof. Since f is quasi-compact and quasi-separated, the functor f∗ transforms
quasi-coherent sheaves into quasi-coherent sheaves (Morphisms of Spaces, Lemma
67.11.2). The functor f∗ is a left adjoint to f∗ which transforms injections into
injections. Hence the result follows from Homology, Lemma 12.29.1 □

Lemma 75.12.4.09TL Let S be a scheme. Let X be a Noetherian algebraic space over
S. If J is an injective object of QCoh(OX), then

(1) Hp(U,J |U ) = 0 for p > 0 and for every quasi-compact and quasi-separated
algebraic space U étale over X,

(2) for any morphism f : X → Y of algebraic spaces over S with Y quasi-
separated we have Rpf∗J = 0 for p > 0.

Proof. Proof of (1). Write J as a direct summand of colimFi with Fi = (Zi →
X)∗Gi as in Lemma 75.12.2. It is clear that it suffices to prove the vanishing for
colimFi. Since pullback commutes with colimits and since U is quasi-compact and
quasi-separated, it suffices to prove Hp(U,Fi|U ) = 0 for p > 0, see Cohomology of
Spaces, Lemma 69.5.1. Observe that Zi → X is an affine morphism, see Morphisms
of Spaces, Lemma 67.20.12. Thus

Fi|U = (Zi ×X U → U)∗G′
i = R(Zi ×X U → U)∗G′

i

where G′
i is the pullback of Gi to Zi ×X U , see Cohomology of Spaces, Lemma

69.11.1. Since Zi ×X U is affine we conclude that G′
i has no higher cohomology on

Zi ×X U . By the Leray spectral sequence we conclude the same thing is true for
Fi|U (Cohomology on Sites, Lemma 21.14.6).

Proof of (2). Let f : X → Y be a morphism of algebraic spaces over S. Let V → Y
be an étale morphism with V affine. Then V ×Y X → X is an étale morphism
and V ×Y X is a quasi-compact and quasi-separated algebraic space étale over X
(details omitted). Hence Hp(V ×Y X,J ) is zero by part (1). Since Rpf∗J is the
sheaf associated to the presheaf V 7→ Hp(V ×Y X,J ) the result is proved. □

Lemma 75.12.5.09TM Let S be a scheme. Let f : X → Y be a morphism of Noetherian
algebraic spaces over S. Then f∗ on quasi-coherent sheaves has a right derived
extension Φ : D(QCoh(OX))→ D(QCoh(OY )) such that the diagram

D(QCoh(OX))

Φ
��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

commutes.

Proof. Since X and Y are Noetherian the morphism is quasi-compact and quasi-
separated (see Morphisms of Spaces, Lemma 67.8.10). Thus f∗ preserve quasi-
coherence, see Morphisms of Spaces, Lemma 67.11.2. Next, let K be an object of
D(QCoh(OX)). Since QCoh(OX) is a Grothendieck abelian category (Properties of
Spaces, Proposition 66.32.2), we can represent K by a K-injective complex I• such
that each In is an injective object of QCoh(OX), see Injectives, Theorem 19.12.6.
Thus we see that the functor Φ is defined by setting

Φ(K) = f∗I•

https://stacks.math.columbia.edu/tag/09TL
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where the right hand side is viewed as an object of D(QCoh(OY )). To finish the
proof of the lemma it suffices to show that the canonical map

f∗I• −→ Rf∗I•

is an isomorphism in D(OY ). To see this it suffices to prove the map induces an
isomorphism on cohomology sheaves. Pick any m ∈ Z. Let N = N(X,Y, f) be as
in Lemma 75.6.1. Consider the short exact sequence

0→ σ≥m−N−1I• → I• → σ≤m−N−2I• → 0
of complexes of quasi-coherent sheaves on X. By Lemma 75.6.1 we see that the
cohomology sheaves of Rf∗σ≤m−N−2I• are zero in degrees ≥ m − 1. Thus we see
that Rmf∗I• is isomorphic to Rmf∗σ≥m−N−1I•. In other words, we may assume
that I• is a bounded below complex of injective objects of QCoh(OX). This case
follows from Leray’s acyclicity lemma (Derived Categories, Lemma 13.16.7) with
required vanishing because of Lemma 75.12.4. □

Proposition 75.12.6.09TN Let S be a scheme. Let X be a Noetherian algebraic space
over S. Then the functor (75.5.1.1)

D(QCoh(OX)) −→ DQCoh(OX)
is an equivalence with quasi-inverse given by RQX .

Proof. Follows immediately from Lemmas 75.12.5 and 75.11.4. □

75.13. Pseudo-coherent and perfect complexes

08HC In this section we study the general notions defined in Cohomology on Sites, Sec-
tions 21.44, 21.45, 21.46, and 21.47 for the étale site of an algebraic space. In
particular we match this with what happens for schemes.
First we compare the notion of a pseudo-coherent complex on a scheme and on its
associated small étale site.

Lemma 75.13.1.08HD Let X be a scheme. Let F be an OX -module. The following are
equivalent

(1) F is of finite type as an OX -module, and
(2) ϵ∗F is of finite type as an Oétale-module on the small étale site of X.

Here ϵ is as in (75.4.0.1).

Proof. The implication (1) ⇒ (2) is a general fact, see Modules on Sites, Lemma
18.23.4. Assume (2). By assumption there exists an étale covering {fi : Xi → X}
such that ϵ∗F|(Xi)étale is generated by finitely many sections. Let x ∈ X. We will
show that F is generated by finitely many sections in a neighbourhood of x. Say x is
in the image of Xi → X and denote X ′ = Xi. Let s1, . . . , sn ∈ Γ(X ′, ϵ∗F|X′

étale
) be

generating sections. As ϵ∗F = ϵ−1F ⊗ϵ−1OX
Oétale we can find an étale morphism

X ′′ → X ′ such that x is in the image of X ′ → X and such that si|X′′ =
∑
sij ⊗aij

for some sections sij ∈ ϵ−1F(X ′′) and aij ∈ Oétale(X ′′). Denote U ⊂ X the image
of X ′′ → X. This is an open subscheme as f ′′ : X ′′ → X is étale (Morphisms,
Lemma 29.36.13). After possibly shrinking X ′′ more we may assume sij come from
elements tij ∈ F(U) as follows from the construction of the inverse image functor
ϵ−1. Now we claim that tij generate F|U which finishes the proof of the lemma.
Namely, the corresponding map O⊕N

U → F|U has the property that its pullback

https://stacks.math.columbia.edu/tag/09TN
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by f ′′ to X ′′ is surjective. Since f ′′ : X ′′ → U is a surjective flat morphism of
schemes, this implies that O⊕N

U → F|U is surjective by looking at stalks and using
that OU,f ′′(z) → OX′′,z is faithfully flat for all z ∈ X ′′. □

In the situation above the morphism of sites ϵ is flat hence defines a pullback on
complexes of modules.

Lemma 75.13.2.08HE Let X be a scheme. Let E be an object of D(OX). The following
are equivalent

(1) E is m-pseudo-coherent, and
(2) ϵ∗E is m-pseudo-coherent on the small étale site of X.

Here ϵ is as in (75.4.0.1).

Proof. The implication (1)⇒ (2) is a general fact, see Cohomology on Sites, Lemma
21.45.3. Assume ϵ∗E is m-pseudo-coherent. We will use without further mention
that ϵ∗ is an exact functor and that therefore

ϵ∗Hi(E) = Hi(ϵ∗E).
To show that E is m-pseudo-coherent we may work locally on X, hence we may
assume that X is quasi-compact (for example affine). Since X is quasi-compact
every étale covering {Ui → X} has a finite refinement. Thus we see that ϵ∗E is
an object of D−(Oétale), see comments following Cohomology on Sites, Definition
21.45.1. By Lemma 75.4.1 it follows that E is an object of D−(OX).
Let n ∈ Z be the largest integer such that Hn(E) is nonzero; then n is also the
largest integer such that Hn(ϵ∗E) is nonzero. We will prove the lemma by induction
on n −m. If n < m, then the lemma is clearly true. If n ≥ m, then Hn(ϵ∗E) is
a finite Oétale-module, see Cohomology on Sites, Lemma 21.45.7. Hence Hn(E) is
a finite OX -module, see Lemma 75.13.1. After replacing X by the members of an
open covering, we may assume there exists a surjection O⊕t

X → Hn(E). We may
locally on X lift this to a map of complexes α : O⊕t

X [−n] → E (details omitted).
Choose a distinguished triangle

O⊕t
X [−n]→ E → C → O⊕t

X [−n+ 1]
Then C has vanishing cohomology in degrees ≥ n. On the other hand, the complex
ϵ∗C is m-pseudo-coherent, see Cohomology on Sites, Lemma 21.45.4. Hence by
induction we see that C is m-pseudo-coherent. Applying Cohomology on Sites,
Lemma 21.45.4 once more we conclude. □

Lemma 75.13.3.08HF Let X be a scheme. Let E be an object of D(OX). Then
(1) E has tor amplitude in [a, b] if and only if ϵ∗E has tor amplitude in [a, b].
(2) E has finite tor dimension if and only if ϵ∗E has finite tor dimension.

Here ϵ is as in (75.4.0.1).

Proof. The easy implication follows from Cohomology on Sites, Lemma 21.46.5. For
the converse, assume that ϵ∗E has tor amplitude in [a, b]. Let F be an OX -module.
As ϵ is a flat morphism of ringed sites (Lemma 75.4.1) we have

ϵ∗(E ⊗L
OX
F) = ϵ∗E ⊗L

Oétale
ϵ∗F

Thus the (assumed) vanishing of cohomology sheaves on the right hand side implies
the desired vanishing of the cohomology sheaves of E⊗L

OX
F via Lemma 75.4.1. □
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Lemma 75.13.4.0DK7 Let f : X → Y be a morphism of schemes. Let E be an object of
D(OX). Then

(1) E as an object of D(f−1OY ) has tor amplitude in [a, b] if and only if ϵ∗E
has tor amplitude in [a, b] as an object of D(f−1

smallOYétale).
(2) E locally has finite tor dimension as an object of D(f−1OY ) if and only

if ϵ∗E locally has finite tor dimension as an object of D(f−1
smallOYétale).

Here ϵ is as in (75.4.0.1).

Proof. The easy direction in (1) follows from Cohomology on Sites, Lemma 21.46.5.
Let x ∈ X be a point and let x be a geometric point lying over x. Let y = f(x)
and denote y the geometric point of Y coming from x. Then (f−1OY )x = OY,y
(Sheaves, Lemma 6.21.5) and

(f−1
smallOYétale)x = OYétale,y = OshY,y

is the strict henselization (by Étale Cohomology, Lemmas 59.36.2 and 59.33.1).
Since the stalk of OXétale at X is OshX,x we obtain

(ϵ∗E)x = Ex ⊗L
OX,x

OshX,x
by transitivity of pullbacks. If ϵ∗E has tor amplitude in [a, b] as a complex of
f−1
smallOYétale -modules, then (ϵ∗E)x has tor amplitude in [a, b] as a complex of OshY,y-

modules (because taking stalks is a pullback and lemma cited above). By More
on Flatness, Lemma 38.2.6 we find the tor amplitude of (ϵ∗E)x as a complex of
OY,y-modules is in [a, b]. Since OX,x → OshX,x is faithfully flat (More on Algebra,
Lemma 15.45.1) and since (ϵ∗E)x = Ex⊗L

OX,x
OshX,x we may apply More on Algebra,

Lemma 15.66.18 to conclude the tor amplitude of Ex as a complex of OY,y-modules
is in [a, b]. By Cohomology, Lemma 20.48.5 we conclude that E as an object of
D(f−1OY ) has tor amplitude in [a, b]. This gives the reverse implication in (1).
Part (2) follows formally from (1). □

Lemma 75.13.5.08HG Let X be a scheme. Let E be an object of D(OX). Then E is a
perfect object of D(OX) if and only if ϵ∗E is a perfect object of D(Oétale). Here ϵ
is as in (75.4.0.1).

Proof. The easy implication follows from the general result contained in Cohomol-
ogy on Sites, Lemma 21.47.5. For the converse, we can use the equivalence of Coho-
mology on Sites, Lemma 21.47.4 and the corresponding results for pseudo-coherent
and complexes of finite tor dimension, namely Lemmas 75.13.2 and 75.13.3. Some
details omitted. □

Lemma 75.13.6.08JL Let S be a scheme. Let X be an algebraic space over S. If E is an
m-pseudo-coherent object of D(OX), then Hi(E) is a quasi-coherent OX -module
for i > m. If E is pseudo-coherent, then E is an object of DQCoh(OX).

Proof. Locally Hi(E) is isomorphic to Hi(E•) with E• strictly perfect. The sheaves
E i are direct summands of finite free modules, hence quasi-coherent. The lemma
follows. □

Lemma 75.13.7.08IK Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let E be an object of DQCoh(OX). For m ∈ Z the following are equivalent

(1) Hi(E) is coherent for i ≥ m and zero for i≫ 0, and
(2) E is m-pseudo-coherent.

https://stacks.math.columbia.edu/tag/0DK7
https://stacks.math.columbia.edu/tag/08HG
https://stacks.math.columbia.edu/tag/08JL
https://stacks.math.columbia.edu/tag/08IK


75.13. PSEUDO-COHERENT AND PERFECT COMPLEXES 5739

In particular, E is pseudo-coherent if and only if E is an object of D−
Coh(OX).

Proof. As X is quasi-compact we can find an affine scheme U and a surjective
étale morphism U → X (Properties of Spaces, Lemma 66.6.3). Observe that U
is Noetherian. Note that E is m-pseudo-coherent if and only if E|U is m-pseudo-
coherent (follows from the definition or from Cohomology on Sites, Lemma 21.45.2).
Similarly, Hi(E) is coherent if and only if Hi(E)|U = Hi(E|U ) is coherent (see Co-
homology of Spaces, Lemma 69.12.2). Thus we may assume that X is representable.
If X is representable by a scheme X0 then (Lemma 75.4.2) we can write E = ϵ∗E0
where E0 is an object of DQCoh(OX0) and ϵ : Xétale → (X0)Zar is as in (75.4.0.1).
In this case E is m-pseudo-coherent if and only if E0 is by Lemma 75.13.2. Similarly,
Hi(E0) is of finite type (i.e., coherent) if and only if Hi(E) is by Lemma 75.13.1.
Finally, Hi(E0) = 0 if and only if Hi(E) = 0 by Lemma 75.4.1. Thus we reduce to
the case of schemes which is Derived Categories of Schemes, Lemma 36.10.3. □

Lemma 75.13.8.08IL Let S be a scheme. Let X be a quasi-separated algebraic space
over S. Let E be an object of DQCoh(OX). Let a ≤ b. The following are equivalent

(1) E has tor amplitude in [a, b], and
(2) for all F in QCoh(OX) we have Hi(E ⊗L

OX
F) = 0 for i ̸∈ [a, b].

Proof. It is clear that (1) implies (2). Assume (2). Let j : U → X be an étale
morphism with U affine. As X is quasi-separated j : U → X is quasi-compact and
separated, hence j∗ transforms quasi-coherent modules into quasi-coherent mod-
ules (Morphisms of Spaces, Lemma 67.11.2). Thus the functor QCoh(OX) →
QCoh(OU ) is essentially surjective. It follows that condition (2) implies the van-
ishing of Hi(E|U ⊗L

OU
G) for i ̸∈ [a, b] for all quasi-coherent OU -modules G. Since

it suffices to prove that E|U has tor amplitude in [a, b] we reduce to the case where
X is representable.
If X is representable by a scheme X0 then (Lemma 75.4.2) we can write E = ϵ∗E0
where E0 is an object of DQCoh(OX0) and ϵ : Xétale → (X0)Zar is as in (75.4.0.1).
For every quasi-coherent module F0 on X0 the module ϵ∗F0 is quasi-coherent on
X and

Hi(E ⊗L
OX

ϵ∗F0) = ϵ∗Hi(E0 ⊗L
OX0
F0)

as ϵ is flat (Lemma 75.4.1). Moreover, the vanishing of these sheaves for i ̸∈
[a, b] implies the same thing for Hi(E0 ⊗L

OX0
F0) by the same lemma. Thus we’ve

reduced the problem to the case of schemes which is treated in Derived Categories
of Schemes, Lemma 36.10.6. □

Lemma 75.13.9.08JP Let X be a scheme. Let E,F be objects of D(OX). Assume either
(1) E is pseudo-coherent and F lies in D+(OX), or
(2) E is perfect and F arbitrary,

then there is a canonical isomorphism
ϵ∗RHom(E,F ) −→ RHom(ϵ∗E, ϵ∗F )

Here ϵ is as in (75.4.0.1).

Proof. Recall that ϵ is flat (Lemma 75.4.1) and hence ϵ∗ = Lϵ∗. There is a canonical
map from left to right by Cohomology on Sites, Remark 21.35.11. To see this is an
isomorphism we can work locally, i.e., we may assume X is an affine scheme.
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In case (1) we can represent E by a bounded above complex E• of finite free OX -
modules, see Derived Categories of Schemes, Lemma 36.13.3. We may also represent
F by a bounded below complex F• of OX -modules. Applying Cohomology, Lemma
20.46.11 we see that RHom(E,F ) is represented by the complex with terms⊕

n=−p+q
HomOX

(Ep,Fq)

Applying Cohomology on Sites, Lemma 21.44.10 we see that RHom(ϵ∗E, ϵ∗F ) is
represented by the complex with terms⊕

n=−p+q
HomOétale

(ϵ∗Ep, ϵ∗Fq)

Thus the statement of the lemma boils down to the true fact that the canonical
map

ϵ∗HomOX
(E ,F) −→ HomOétale

(ϵ∗E , ϵ∗F)
is an isomorphism for any OX -module F and finite free OX -module E .

In case (2) we can represent E by a strictly perfect complex E• of OX -modules,
use Derived Categories of Schemes, Lemmas 36.3.5 and 36.10.7 and the fact that
a perfect complex of modules is represented by a finite complex of finite projective
modules. Thus we can do the exact same proof as above, replacing the reference to
Cohomology, Lemma 20.46.11 by a reference to Cohomology, Lemma 20.46.9. □

Lemma 75.13.10.0A8A Let S be a scheme. Let X be an algebraic space over S. Let
L,K be objects of D(OX). If either

(1) L in D+
QCoh(OX) and K is pseudo-coherent,

(2) L in DQCoh(OX) and K is perfect,
then RHom(K,L) is in DQCoh(OX).

Proof. This follows from the analogue for schemes (Derived Categories of Schemes,
Lemma 36.10.8) via the criterion of Lemma 75.5.2, the criterion of Lemmas 75.13.2
and 75.13.5, and the result of Lemma 75.13.9. □

Lemma 75.13.11.0E4Q Let S be a scheme. Let X be an algebraic space over S. Let
K,L,M be objects of DQCoh(OX). The map

K ⊗L
OX

RHom(M,L) −→ RHom(M,K ⊗L
OX

L)

of Cohomology on Sites, Lemma 21.35.7 is an isomorphism in the following cases
(1) M perfect, or
(2) K is perfect, or
(3) M is pseudo-coherent, L ∈ D+(OX), and K has finite tor dimension.

Proof. Checking whether or not the map is an isomorphism can be done étale
locally hence we may assume X is an affine scheme. Then we can write K,L,M
as ϵ∗K0, ϵ

∗L0, ϵ
∗M0 for some K0, L0,M0 in DQCoh(OX) by Lemma 75.4.2. Then

we see that Lemma 75.13.9 reduces cases (1) and (3) to the case of schemes which
is Derived Categories of Schemes, Lemma 36.10.9. If K is perfect but no other
assumptions are made, then we do not know that either side of the arrow is in
DQCoh(OX) but the result is still true becauseK will be represented (after localizing
further) by a finite complex of finite free modules in which case it is clear. □
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75.14. Approximation by perfect complexes

08HH In this section we continue the discussion started in Derived Categories of Schemes,
Section 36.14.
Definition 75.14.1.08HI Let S be a scheme. Let X be an algebraic space over S.
Consider triples (T,E,m) where

(1) T ⊂ |X| is a closed subset,
(2) E is an object of DQCoh(OX), and
(3) m ∈ Z.

We say approximation holds for the triple (T,E,m) if there exists a perfect object
P of D(OX) supported on T and a map α : P → E which induces isomorphisms
Hi(P )→ Hi(E) for i > m and a surjection Hm(P )→ Hm(E).
Approximation cannot hold for every triple. Please read the remarks following
Derived Categories of Schemes, Definition 36.14.1 to see why.
Definition 75.14.2.08HJ Let S be a scheme. Let X be an algebraic space over S. We say
approximation by perfect complexes holds on X if for any closed subset T ⊂ |X|
such that the morphism X \T → X is quasi-compact there exists an integer r such
that for every triple (T,E,m) as in Definition 75.14.1 with

(1) E is (m− r)-pseudo-coherent, and
(2) Hi(E) is supported on T for i ≥ m− r

approximation holds.
Lemma 75.14.3.08HK Let S be a scheme. Let (U ⊂ X, j : V → X) be an elementary
distinguished square of algebraic space over S. Let E be a perfect object of D(OV )
supported on j−1(T ) where T = |X|\|U |. Then Rj∗E is a perfect object of D(OX).
Proof. Being perfect is local on Xétale. Thus it suffices to check that Rj∗E is perfect
when restricted to U and V . We have Rj∗E|V = E by Lemma 75.10.7 which is
perfect. We have Rj∗E|U = 0 because E|V \j−1(T ) = 0 (use Lemma 75.3.1). □

Lemma 75.14.4.08HL Let S be a scheme. Let (U ⊂ X, j : V → X) be an elementary
distinguished square of algebraic spaces over S. Let T be a closed subset of |X|\|U |
and let (T,E,m) be a triple as in Definition 75.14.1. If

(1) approximation holds for (j−1T,E|V ,m), and
(2) the sheaves Hi(E) for i ≥ m are supported on T ,

then approximation holds for (T,E,m).
Proof. Let P → E|V be an approximation of the triple (j−1T,E|V ,m) over V .
Then Rj∗P is a perfect object of D(OX) by Lemma 75.14.3. On the other hand,
Rj∗P = j!P by Lemma 75.10.7. We see that j!P is supported on T for example by
(75.10.0.2). Hence we obtain an approximation Rj∗P = j!P → j!(E|V )→ E. □

Lemma 75.14.5.08HM Let S be a scheme. Let X be an algebraic space over S which
is representable by an affine scheme. Then approximation holds for every triple
(T,E,m) as in Definition 75.14.1 such that there exists an integer r ≥ 0 with

(1) E is m-pseudo-coherent,
(2) Hi(E) is supported on T for i ≥ m− r + 1,
(3) X \ T is the union of r affine opens.

In particular, approximation by perfect complexes holds for affine schemes.
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Proof. LetX0 be an affine scheme representingX. Let T0 ⊂ X0 by the closed subset
corresponding to T . Let ϵ : Xétale → X0,Zar be the morphism (75.4.0.1). We may
write E = ϵ∗E0 for some object E0 of DQCoh(OX0), see Lemma 75.4.2. Then E0 is
m-pseudo-coherent, see Lemma 75.13.2. Comparing stalks of cohomology sheaves
(see proof of Lemma 75.4.1) we see that Hi(E0) is supported on T0 for i ≥ m−r+1.
By Derived Categories of Schemes, Lemma 36.14.4 there exists an approximation
P0 → E0 of (T0, E0,m). By Lemma 75.13.5 we see that P = ϵ∗P0 is a perfect object
of D(OX). Pulling back we obtain an approximation P = ϵ∗P0 → ϵ∗E0 = E as
desired. □

Lemma 75.14.6.08HN Let S be a scheme. Let (U ⊂ X, j : V → X) be an elementary
distinguished square of algebraic spaces over S. Assume U quasi-compact, V affine,
and U ×X V quasi-compact. If approximation by perfect complexes holds on U ,
then approximation by perfect complexes holds on X.

Proof. Let T ⊂ |X| be a closed subset with X \ T → X quasi-compact. Let rU be
the integer of Definition 75.14.2 adapted to the pair (U, T ∩ |U |). Set T ′ = T \ |U |.
Endow T ′ with the induced reduced subspace structure. Since |T ′| is contained in
|X| \ |U | we see that j−1(T ′) → T ′ is an isomorphism. Moreover, V \ j−1(T ′) is
quasi-compact as it is the fibre product of U ×X V with X \ T over X and we’ve
assumed U ×X V quasi-compact and X \ T → X quasi-compact. Let r′ be the
number of affines needed to cover V \ j−1(T ′). We claim that r = max(rU , r′)
works for the pair (X,T ).

To see this choose a triple (T,E,m) such that E is (m − r)-pseudo-coherent and
Hi(E) is supported on T for i ≥ m − r. Let t be the largest integer such that
Ht(E)|U is nonzero. (Such an integer exists as U is quasi-compact and E|U is
(m− r)-pseudo-coherent.) We will prove that E can be approximated by induction
on t.

Base case: t ≤ m− r′. This means that Hi(E) is supported on T ′ for i ≥ m− r′.
Hence Lemma 75.14.5 guarantees the existence of an approximation P → E|V
of (T ′, E|V ,m) on V . Applying Lemma 75.14.4 we see that (T ′, E,m) can be
approximated. Such an approximation is also an approximation of (T,E,m).

Induction step. Choose an approximation P → E|U of (T ∩ |U |, E|U ,m). This in
particular gives a surjection Ht(P ) → Ht(E|U ). In the rest of the proof we will
use the equivalence of Lemma 75.4.2 (and the compatibilities of Remark 75.6.3) for
the representable algebraic spaces V and U ×X V . We will also use the fact that
(m− r)-pseudo-coherence, resp. perfectness on the Zariski site and étale site agree,
see Lemmas 75.13.2 and 75.13.5. Thus we can use the results of Derived Categories
of Schemes, Section 36.13 for the open immersion U×X V ⊂ V . In this way Derived
Categories of Schemes, Lemma 36.13.9 implies there exists a perfect object Q in
D(OV ) supported on j−1(T ) and an isomorphism Q|U×XV → (P ⊕ P [1])|U×XV .
By Derived Categories of Schemes, Lemma 36.13.6 we can replace Q by Q⊗L I and
assume that the map

Q|U×XV −→ (P ⊕ P [1])|U×XV −→ P |U×XV −→ E|U×XV

lifts to Q → E|V . By Lemma 75.10.8 we find an morphism a : R → E of D(OX)
such that a|U is isomorphic to P ⊕ P [1] → E|U and a|V isomorphic to Q → E|V .
Thus R is perfect and supported on T and the map Ht(R) → Ht(E) is surjective
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on restriction to U . Choose a distinguished triangle
R→ E → E′ → R[1]

Then E′ is (m−r)-pseudo-coherent (Cohomology on Sites, Lemma 21.45.4), Hi(E′)|U =
0 for i ≥ t, and Hi(E′) is supported on T for i ≥ m− r. By induction we find an
approximation R′ → E′ of (T,E′,m). Fit the composition R′ → E′ → R[1] into a
distinguished triangle R → R′′ → R′ → R[1] and extend the morphisms R′ → E′

and R[1]→ R[1] into a morphism of distinguished triangles

R //

��

R′′

��

// R′

��

// R[1]

��
R // E // E′ // R[1]

using TR3. Then R′′ is a perfect complex (Cohomology on Sites, Lemma 21.47.6)
supported on T . An easy diagram chase shows that R′′ → E is the desired approx-
imation. □

Theorem 75.14.7.08HP Let S be a scheme. Let X be a quasi-compact and quasi-
separated algebraic space over S. Then approximation by perfect complexes holds
on X.

Proof. This follows from the induction principle of Lemma 75.9.3 and Lemmas
75.14.6 and 75.14.5. □

75.15. Generating derived categories

09IU This section is the analogue of Derived Categories of Schemes, Section 36.15. How-
ever, we first prove the following lemma which is the analogue of Derived Categories
of Schemes, Lemma 36.13.10.

Lemma 75.15.1.09IV Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let W ⊂ X be a quasi-compact open. Let T ⊂ |X| be a
closed subset such that X \ T → X is a quasi-compact morphism. Let E be an
object of DQCoh(OX). Let α : P → E|W be a map where P is a perfect object of
D(OW ) supported on T ∩W . Then there exists a map β : R → E where R is a
perfect object of D(OX) supported on T such that P is a direct summand of R|W
in D(OW ) compatible α and β|W .

Proof. We will use the induction principle of Lemma 75.9.6 to prove this. Thus we
immediately reduce to the case where we have an elementary distinguished square
(W ⊂ X, f : V → X) with V affine and P → E|W as in the statement of the
lemma. In the rest of the proof we will use Lemma 75.4.2 (and the compatibilities
of Remark 75.6.3) for the representable algebraic spaces V and W ×X V . We will
also use the fact that perfectness on the Zariski site and étale site agree, see Lemma
75.13.5.
By Derived Categories of Schemes, Lemma 36.13.9 we can choose a perfect object Q
in D(OV ) supported on f−1T and an isomorphism Q|W×XV → (P ⊕ P [1])|W×XV .
By Derived Categories of Schemes, Lemma 36.13.6 we can replace Q by Q ⊗L I
(still supported on f−1T ) and assume that the map

Q|W×XV → (P ⊕ P [1])|W×V −→ P |W×XV −→ E|W×XV

https://stacks.math.columbia.edu/tag/08HP
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lifts to Q → E|V . By Lemma 75.10.8 we find an morphism a : R → E of D(OX)
such that a|W is isomorphic to P ⊕ P [1]→ E|W and a|V isomorphic to Q→ E|V .
Thus R is perfect and supported on T as desired. □

Remark 75.15.2.09IW The proof of Lemma 75.15.1 shows that
R|W = P ⊕ P⊕n1 [1]⊕ . . .⊕ P⊕nm [m]

for some m ≥ 0 and nj ≥ 0. Thus the highest degree cohomology sheaf of R|W
equals that of P . By repeating the construction for the map P⊕n1 [1] ⊕ . . . ⊕
P⊕nm [m] → R|W , taking cones, and using induction we can achieve equality of
cohomology sheaves of R|W and P above any given degree.

Lemma 75.15.3.09IX Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let W be a quasi-compact open subspace of X. Let P be
a perfect object of D(OW ). Then P is a direct summand of the restriction of a
perfect object of D(OX).

Proof. Special case of Lemma 75.15.1. □

Theorem 75.15.4.09IY Let S be a scheme. Let X be a quasi-compact and quasi-
separated algebraic space over S. The category DQCoh(OX) can be generated by
a single perfect object. More precisely, there exists a perfect object P of D(OX)
such that for E ∈ DQCoh(OX) the following are equivalent

(1) E = 0, and
(2) HomD(OX)(P [n], E) = 0 for all n ∈ Z.

Proof. We will prove this using the induction principle of Lemma 75.9.3.
If X is affine, then OX is a perfect generator. This follows from Lemma 75.4.2 and
Derived Categories of Schemes, Lemma 36.3.5.
Assume that (U ⊂ X, f : V → X) is an elementary distinguished square with
U quasi-compact such that the theorem holds for U and V is an affine scheme.
Let P be a perfect object of D(OU ) which is a generator for DQCoh(OU ). Using
Lemma 75.15.3 we may choose a perfect object Q of D(OX) whose restriction to
U is a direct sum one of whose summands is P . Say V = Spec(A). Let Z ⊂ V
be the reduced closed subscheme which is the inverse image of X \ U and maps
isomorphically to it (see Definition 75.9.1). This is a retrocompact closed subset
of V . Choose f1, . . . , fr ∈ A such that Z = V (f1, . . . , fr). Let K ∈ D(OV ) be
the perfect object corresponding to the Koszul complex on f1, . . . , fr over A. Note
that since K is supported on Z, the pushforward K ′ = Rf∗K is a perfect object of
D(OX) whose restriction to V is K (see Lemmas 75.14.3 and 75.10.7). We claim
that Q⊕K ′ is a generator for DQCoh(OX).
Let E be an object of DQCoh(OX) such that there are no nontrivial maps from any
shift of Q⊕K ′ into E. By Lemma 75.10.7 we have K ′ = f!K and hence

HomD(OX)(K ′[n], E) = HomD(OV )(K[n], E|V )
Thus by Derived Categories of Schemes, Lemma 36.15.2 (using also Lemma 75.4.2)
the vanishing of these groups implies that E|V is isomorphic to R(U ×X V →
V )∗E|U×XV . This implies that E = R(U → X)∗E|U (small detail omitted). If this
is the case then

HomD(OX)(Q[n], E) = HomD(OU )(Q|U [n], E|U )
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which contains HomD(OU )(P [n], E|U ) as a direct summand. Thus by our choice of
P the vanishing of these groups implies that E|U is zero. Whence E is zero. □

Remark 75.15.5.0E4R Let S be a scheme. Let f : X → Y be a morphism of quasi-
compact and quasi-separated algebraic spaces over S. Let E ∈ DQCoh(OY ) be a
generator (see Theorem 75.15.4). Then the following are equivalent

(1) for K ∈ DQCoh(OX) we have Rf∗K = 0 if and only if K = 0,
(2) Rf∗ : DQCoh(OX)→ DQCoh(OY ) reflects isomorphisms, and
(3) Lf∗E is a generator for DQCoh(OX).

The equivalence between (1) and (2) is a formal consequence of the fact that
Rf∗ : DQCoh(OX) → DQCoh(OY ) is an exact functor of triangulated categories.
Similarly, the equivalence between (1) and (3) follows formally from the fact that
Lf∗ is the left adjoint to Rf∗. These conditions hold if f is affine (Lemma 75.6.4)
or if f is an open immersion, or if f is a composition of such.

The following result is an strengthening of Theorem 75.15.4 proved using exactly the
same methods. Let T ⊂ |X| be a closed subset where X is an algebraic space. Let’s
denote DT (OX) the strictly full, saturated, triangulated subcategory consisting of
complexes whose cohomology sheaves are supported on T .

Lemma 75.15.6.0AEC Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let T ⊂ |X| be a closed subset such that |X| \ T is quasi-
compact. With notation as above, the category DQCoh,T (OX) is generated by a
single perfect object.

Proof. We will prove this using the induction principle of Lemma 75.9.3. The
property is true for representable quasi-compact and quasi-separated objects of the
site Xspaces,étale by Derived Categories of Schemes, Lemma 36.15.4.

Assume that (U ⊂ X, f : V → X) is an elementary distinguished square such that
the lemma holds for U and V is affine. To finish the proof we have to show that
the result holds for X. Let P be a perfect object of D(OU ) supported on T ∩ U
which is a generator for DQCoh,T∩U (OU ). Using Lemma 75.15.1 we may choose
a perfect object Q of D(OX) supported on T whose restriction to U is a direct
sum one of whose summands is P . Write V = Spec(B). Let Z = X \ U . Then
f−1Z is a closed subset of V such that V \ f−1Z is quasi-compact. As X is quasi-
separated, it follows that f−1Z ∩ f−1T = f−1(Z ∩ T ) is a closed subset of V such
that W = V \ f−1(Z ∩ T ) is quasi-compact. Thus we can choose g1, . . . , gs ∈ B
such that f−1(Z ∩ T ) = V (g1, . . . , gr). Let K ∈ D(OV ) be the perfect object
corresponding to the Koszul complex on g1, . . . , gs over B. Note that since K is
supported on f−1(Z ∩ T ) ⊂ V closed, the pushforward K ′ = R(V → X)∗K is
a perfect object of D(OX) whose restriction to V is K (see Lemmas 75.14.3 and
75.10.7). We claim that Q⊕K ′ is a generator for DQCoh,T (OX).

Let E be an object of DQCoh,T (OX) such that there are no nontrivial maps from
any shift of Q ⊕K ′ into E. By Lemma 75.10.7 we have K ′ = R(V → X)!K and
hence

HomD(OX)(K ′[n], E) = HomD(OV )(K[n], E|V )
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Thus by Derived Categories of Schemes, Lemma 36.15.2 we have E|V = Rj∗E|W
where j : W → V is the inclusion. Picture

W
j

// V Z ∩ Too

��
V \ f−1Z

j′

OO

j′′

::

Z

bb

Since E is supported on T we see that E|W is supported on f−1T ∩W = f−1T ∩
(V \ f−1Z) which is closed in W . We conclude that

E|V = Rj∗(E|W ) = Rj∗(Rj′
∗(E|U∩V )) = Rj′′

∗ (E|U∩V )
Here the second equality is part (1) of Cohomology, Lemma 20.33.6 which applies
because V is a scheme and E has quasi-coherent cohomology sheaves hence push-
forward along the quasi-compact open immersion j′ agrees with pushforward on
the underlying schemes, see Remark 75.6.3. This implies that E = R(U → X)∗E|U
(small detail omitted). If this is the case then

HomD(OX)(Q[n], E) = HomD(OU )(Q|U [n], E|U )
which contains HomD(OU )(P [n], E|U ) as a direct summand. Thus by our choice of
P the vanishing of these groups implies that E|U is zero. Whence E is zero. □

75.16. Compact and perfect objects

09M7 This section is the analogue of Derived Categories of Schemes, Section 36.17.

Proposition 75.16.1.09M8 Let S be a scheme. Let X be a quasi-compact and quasi-
separated algebraic space over S. An object of DQCoh(OX) is compact if and only
if it is perfect.

Proof. If K is a perfect object of D(OX) with dual K∨ (Cohomology on Sites,
Lemma 21.48.4) we have

HomD(OX)(K,M) = H0(X,K∨ ⊗L
OX

M)
functorially in M . Since K∨⊗L

OX
− commutes with direct sums and since H0(X,−)

commutes with direct sums on DQCoh(OX) by Lemma 75.6.2 we conclude that K
is compact in DQCoh(OX).
Conversely, let K be a compact object of DQCoh(OX). To show that K is perfect,
it suffices to show that K|U is perfect for every affine scheme U étale over X, see
Cohomology on Sites, Lemma 21.47.2. Observe that j : U → X is a quasi-compact
and separated morphism. Hence Rj∗ : DQCoh(OU )→ DQCoh(OX) commutes with
direct sums, see Lemma 75.6.2. Thus the adjointness of restriction to U and Rj∗
implies thatK|U is a perfect object ofDQCoh(OU ). Hence we reduce to the case that
X is affine, in particular a quasi-compact and quasi-separated scheme. Via Lemma
75.4.2 and 75.13.5 we reduce to the case of schemes, i.e., to Derived Categories of
Schemes, Proposition 36.17.1. □

Remark 75.16.2.0GFC Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let G be a perfect object of D(OX) which is a generator
for DQCoh(OX). By Theorem 75.15.4 there is at least one of these. Combining
Lemma 75.5.3 with Proposition 75.16.1 and with Derived Categories, Proposition
13.37.6 we see that G is a classical generator for Dperf (OX).
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The following result is a strengthening of Proposition 75.16.1. Let T ⊂ |X| be a
closed subset where X is an algebraic space. As before DT (OX) denotes the strictly
full, saturated, triangulated subcategory consisting of complexes whose cohomol-
ogy sheaves are supported on T . Since taking direct sums commutes with taking
cohomology sheaves, it follows that DT (OX) has direct sums and that they are
equal to direct sums in D(OX).
Lemma 75.16.3.0AED Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let T ⊂ |X| be a closed subset such that |X| \ T is quasi-
compact. An object of DQCoh,T (OX) is compact if and only if it is perfect as an
object of D(OX).
Proof. We observe that DQCoh,T (OX) is a triangulated category with direct sums
by the remark preceding the lemma. By Proposition 75.16.1 the perfect objects
define compact objects of D(OX) hence a fortiori of any subcategory preserved
under taking direct sums. For the converse we will use there exists a generator
E ∈ DQCoh,T (OX) which is a perfect complex of OX -modules, see Lemma 75.15.6.
Hence by the above, E is compact. Then it follows from Derived Categories, Propo-
sition 13.37.6 that E is a classical generator of the full subcategory of compact
objects of DQCoh,T (OX). Thus any compact object can be constructed out of E by
a finite sequence of operations consisting of (a) taking shifts, (b) taking finite direct
sums, (c) taking cones, and (d) taking direct summands. Each of these operations
preserves the property of being perfect and the result follows. □

Remark 75.16.4.0GFD Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let T ⊂ |X| be a closed subset such that |X| \ T is quasi-
compact. Let G be a perfect object of DQCoh,T (OX) which is a generator for
DQCoh,T (OX). By Lemma 75.15.6 there is at least one of these. Combining the
fact that DQCoh,T (OX) has direct sums with Lemma 75.16.3 and with Derived Cat-
egories, Proposition 13.37.6 we see that G is a classical generator for Dperf,T (OX).
The following lemma is an application of the ideas that go into the proof of the
preceding lemma.
Lemma 75.16.5.0AEE Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let T ⊂ |X| be a closed subset such that the complement
U ⊂ X is quasi-compact. Let α : P → E be a morphism of DQCoh(OX) with either

(1) P is perfect and E supported on T , or
(2) P pseudo-coherent, E supported on T , and E bounded below.

Then there exists a perfect complex of OX -modules I and a map I → OX [0] such
that I ⊗L P → E is zero and such that I|U → OU [0] is an isomorphism.
Proof. Set D = DQCoh,T (OX). In both cases the complex K = RHom(P,E) is
an object of D. See Lemma 75.13.10 for quasi-coherence. It is clear that K is
supported on T as formation of RHom commutes with restriction to opens. The
map α defines an element of H0(K) = HomD(OX)(OX [0],K). Then it suffices to
prove the result for the map α : OX [0]→ K.
Let E ∈ D be a perfect generator, see Lemma 75.15.6. Write

K = hocolimKn

as in Derived Categories, Lemma 13.37.3 using the generator E. Since the functor
D → D(OX) commutes with direct sums, we see that K = hocolimKn holds in
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D(OX). Since OX is a compact object of D(OX) we find an n and a morphism
αn : OX → Kn which gives rise to α, see Derived Categories, Lemma 13.33.9. By
Derived Categories, Lemma 13.37.4 applied to the morphism OX [0] → Kn in the
ambient category D(OX) we see that αn factors as OX [0] → Q → Kn where Q is
an object of ⟨E⟩. We conclude that Q is a perfect complex supported on T .

Choose a distinguished triangle

I → OX [0]→ Q→ I[1]

By construction I is perfect, the map I → OX [0] restricts to an isomorphism over
U , and the composition I → K is zero as α factors through Q. This proves the
lemma. □

75.17. Derived categories as module categories

09M9 The section is the analogue of Derived Categories of Schemes, Section 36.18.

Lemma 75.17.1.09MA Let S be a scheme. Let X be an algebraic space over S. Let
K• be a complex of OX -modules whose cohomology sheaves are quasi-coherent.
Let (E, d) = HomCompdg(OX)(K•,K•) be the endomorphism differential graded
algebra. Then the functor

−⊗L
E K

• : D(E,d) −→ D(OX)

of Differential Graded Algebra, Lemma 22.35.3 has image contained in DQCoh(OX).

Proof. Let P be a differential graded E-module with property P . Let F• be a
filtration on P as in Differential Graded Algebra, Section 22.20. Then we have

P ⊗E K• = hocolim FiP ⊗E K•

Each of the FiP has a finite filtration whose graded pieces are direct sums of E[k].
The result follows easily. □

The following lemma can be strengthened (there is a uniformity in the vanishing
over all L with nonzero cohomology sheaves only in a fixed range).

Lemma 75.17.2.09MB Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let K be a perfect object of D(OX). Then

(1) there exist integers a ≤ b such that HomD(OX)(K,L) = 0 for L ∈ DQCoh(OX)
with Hi(L) = 0 for i ∈ [a, b], and

(2) if L is bounded, then ExtnD(OX)(K,L) is zero for all but finitely many n.

Proof. Part (2) follows from (1) as ExtnD(OX)(K,L) = HomD(OX)(K,L[n]). We
prove (1). Since K is perfect we have

ExtiD(OX)(K,L) = Hi(X,K∨ ⊗L
OX

L)

where K∨ is the “dual” perfect complex to K, see Cohomology on Sites, Lemma
21.48.4. Note that P = K∨ ⊗L

OX
L is in DQCoh(X) by Lemmas 75.5.6 and 75.13.6

(to see that a perfect complex has quasi-coherent cohomology sheaves). Say K∨

has tor amplitude in [a, b]. Then the spectral sequence

Ep,q1 = Hp(K∨ ⊗L
OX

Hq(L))⇒ Hp+q(K∨ ⊗L
OX

L)
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shows that Hj(K∨ ⊗L
OX

L) is zero if Hq(L) = 0 for q ∈ [j − b, j − a]. Let N be the
integer max(dp+p) of Cohomology of Spaces, Lemma 69.7.3. Then H0(X,K∨⊗L

OX

L) vanishes if the cohomology sheaves
H−N (K∨ ⊗L

OX
L), H−N+1(K∨ ⊗L

OX
L), . . . , H0(K∨ ⊗L

OX
L)

are zero. Namely, by the lemma cited and Lemma 75.5.8, we have
H0(X,K∨ ⊗L

OX
L) = H0(X, τ≥−N (K∨ ⊗L

OX
L))

and by the vanishing of cohomology sheaves, this is equal to H0(X, τ≥1(K∨⊗L
OX

L))
which is zero by Derived Categories, Lemma 13.16.1. It follows that HomD(OX)(K,L)
is zero if Hi(L) = 0 for i ∈ [−b−N,−a]. □

The following is the analogue of Derived Categories of Schemes, Theorem 36.18.3.

Theorem 75.17.3.09MC Let S be a scheme. Let X be a quasi-compact and quasi-
separated algebraic space over S. Then there exist a differential graded algebra
(E,d) with only a finite number of nonzero cohomology groups Hi(E) such that
DQCoh(OX) is equivalent to D(E,d).

Proof. LetK• be a K-injective complex ofO-modules which is perfect and generates
DQCoh(OX). Such a thing exists by Theorem 75.15.4 and the existence of K-
injective resolutions. We will show the theorem holds with

(E,d) = HomCompdg(OX)(K•,K•)

where Compdg(OX) is the differential graded category of complexes of O-modules.
Please see Differential Graded Algebra, Section 22.35. Since K• is K-injective we
have
(75.17.3.1)09MD Hn(E) = ExtnD(OX)(K•,K•)
for all n ∈ Z. Only a finite number of these Exts are nonzero by Lemma 75.17.2.
Consider the functor

−⊗L
E K

• : D(E,d) −→ D(OX)
of Differential Graded Algebra, Lemma 22.35.3. Since K• is perfect, it defines a
compact object of D(OX), see Proposition 75.16.1. Combined with (75.17.3.1) the
functor above is fully faithful as follows from Differential Graded Algebra, Lemmas
22.35.6. It has a right adjoint

RHom(K•,−) : D(OX) −→ D(E,d)
by Differential Graded Algebra, Lemmas 22.35.5 which is a left quasi-inverse functor
by generalities on adjoint functors. On the other hand, it follows from Lemma
75.17.1 that we obtain

−⊗L
E K

• : D(E,d) −→ DQCoh(OX)
and by our choice of K• as a generator of DQCoh(OX) the kernel of the adjoint
restricted to DQCoh(OX) is zero. A formal argument shows that we obtain the
desired equivalence, see Derived Categories, Lemma 13.7.2. □

Remark 75.17.4 (Variant with support).0DK8 Let S be a scheme. Let X be a quasi-
compact and quasi-separated algebraic space. Let T ⊂ |X| be a closed subset
such that |X| \ T is quasi-compact. The analogue of Theorem 75.17.3 holds for
DQCoh,T (OX). This follows from the exact same argument as in the proof of the

https://stacks.math.columbia.edu/tag/09MC
https://stacks.math.columbia.edu/tag/0DK8


75.18. CHARACTERIZING PSEUDO-COHERENT COMPLEXES, I 5750

theorem, using Lemmas 75.15.6 and 75.16.3 and a variant of Lemma 75.17.1 with
supports. If we ever need this, we will precisely state the result here and give a
detailed proof.

Remark 75.17.5 (Uniqueness of dga).0DK9 LetX be a quasi-compact and quasi-separated
algebraic space over a ring R. By the construction of the proof of Theorem 75.17.3
there exists a differential graded algebra (A,d) over R such that DQCoh(X) is R-
linearly equivalent to D(A,d) as a triangulated category. One may ask: how unique
is (A,d)? The answer is (only) slightly better than just saying that (A,d) is well
defined up to derived equivalence. Namely, suppose that (B, d) is a second such
pair. Then we have

(A,d) = HomCompdg(OX)(K•,K•)
and

(B, d) = HomCompdg(OX)(L•, L•)
for some K-injective complexes K• and L• of OX -modules corresponding to perfect
generators of DQCoh(OX). Set

Ω = HomCompdg(OX)(K•, L•) Ω′ = HomCompdg(OX)(L•,K•)
Then Ω is a differential graded Bopp ⊗R A-module and Ω′ is a differential graded
Aopp ⊗R B-module. Moreover, the equivalence

D(A,d)→ DQCoh(OX)→ D(B, d)
is given by the functor − ⊗L

A Ω′ and similarly for the quasi-inverse. Thus we are
in the situation of Differential Graded Algebra, Remark 22.37.10. If we ever need
this remark we will provide a precise statement with a detailed proof here.

75.18. Characterizing pseudo-coherent complexes, I

0DKA This material will be continued in More on Morphisms of Spaces, Section 76.51.
We can characterize pseudo-coherent objects as derived homotopy limits of approx-
imations by perfect objects.

Lemma 75.18.1.0DKB Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let K ∈ D(OX). The following are equivalent

(1) K is pseudo-coherent, and
(2) K = hocolimKn where Kn is perfect and τ≥−nKn → τ≥−nK is an iso-

morphism for all n.

Proof. The implication (2) ⇒ (1) is true on any ringed site. Namely, assume (2)
holds. Recall that a perfect object of the derived category is pseudo-coherent,
see Cohomology on Sites, Lemma 21.47.4. Then it follows from the definitions
that τ≥−nKn is (−n + 1)-pseudo-coherent and hence τ≥−nK is (−n + 1)-pseudo-
coherent, hence K is (−n + 1)-pseudo-coherent. This is true for all n, hence K is
pseudo-coherent, see Cohomology on Sites, Definition 21.45.1.
Assume (1). We start by choosing an approximation K1 → K of (X,K,−2) by
a perfect complex K1, see Definitions 75.14.1 and 75.14.2 and Theorem 75.14.7.
Suppose by induction we have

K1 → K2 → . . .→ Kn → K

with Ki perfect such that such that τ≥−iKi → τ≥−iK is an isomorphism for all
1 ≤ i ≤ n. Then we pick a ≤ b as in Lemma 75.17.2 for the perfect object Kn.
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Choose an approximation Kn+1 → K of (X,K,min(a − 1,−n − 1)). Choose a
distinguished triangle

Kn+1 → K → C → Kn+1[1]
Then we see that C ∈ DQCoh(OX) has Hi(C) = 0 for i ≥ a. Thus by our choice of
a, b we see that HomD(OX)(Kn, C) = 0. Hence the composition Kn → K → C is
zero. Hence by Derived Categories, Lemma 13.4.2 we can factor Kn → K through
Kn+1 proving the induction step.
We still have to prove that K = hocolimKn. This follows by an application of
Derived Categories, Lemma 13.33.8 to the functors Hi(−) : D(OX) → Mod(OX)
and our choice of Kn. □

Lemma 75.18.2.0DKC LetX be a quasi-compact and quasi-separated scheme. Let T ⊂ X
be a closed subset such that X \ T is quasi-compact. Let K ∈ D(OX) supported
on T . The following are equivalent

(1) K is pseudo-coherent, and
(2) K = hocolimKn where Kn is perfect, supported on T , and τ≥−nKn →

τ≥−nK is an isomorphism for all n.

Proof. The proof of this lemma is exactly the same as the proof of Lemma 75.18.1
except that in the choice of the approximations we use the triples (T,K,m). □

75.19. The coherator revisited

0CR3 In Section 75.11 we constructed and studied the right adjoint RQX to the canonical
functor D(QCoh(OX))→ D(OX). It was constructed as the right derived extension
of the coherator QX : Mod(OX)→ QCoh(OX). In this section, we study when the
inclusion functor

DQCoh(OX) −→ D(OX)
has a right adjoint. If this right adjoint exists, we will denote2 it

DQX : D(OX) −→ DQCoh(OX)
It turns out that quasi-compact and quasi-separated algebraic spaces have such a
right adjoint.

Lemma 75.19.1.0CR4 Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. The inclusion functor DQCoh(OX) → D(OX) has a right
adjoint.

First proof. We will use the induction principle in Lemma 75.9.3 to prove this. If
D(QCoh(OX)) → DQCoh(OX) is an equivalence, then the lemma is true because
the functor RQX of Section 75.11 is a right adjoint to the functor D(QCoh(OX))→
D(OX). In particular, our lemma is true for affine algebraic spaces, see Lemma
75.11.3. Thus we see that it suffices to show: if (U ⊂ X, f : V → X) is an
elementary distinguished square with U quasi-compact and V affine and the lemma
holds for U , V , and U ×X V , then the lemma holds for X.
The adjoint exists if and only if for every object K of D(OX) we can find a distin-
guished triangle

E′ → E → K → E′[1]

2This is probably nonstandard notation. However, we have already used QX for the coherator
and RQX for its derived extension.
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in D(OX) such that E′ is in DQCoh(OX) and such that Hom(M,K) = 0 for all M in
DQCoh(OX). See Derived Categories, Lemma 13.40.7. Consider the distinguished
triangle

E → RjU,∗E|U ⊕RjV,∗E|V → RjU×XV,∗E|U×XV → E[1]
in D(OX) of Lemma 75.10.2. By Derived Categories, Lemma 13.40.5 it suffices to
construct the desired distinguished triangles forRjU,∗E|U , RjV,∗E|V , andRjU×XV,∗E|U×XV .
This reduces us to the statement discussed in the next paragraph.
Let j : U → X be an étale morphism corresponding with U quasi-compact and
quasi-separated and the lemma is true for U . Let L be an object of D(OU ). Then
there exists a distinguished triangle

E′ → Rj∗L→ K → E′[1]
in D(OX) such that E′ is in DQCoh(OX) and such that Hom(M,K) = 0 for all M
in DQCoh(OX). To see this we choose a distinguished triangle

L′ → L→ Q→ L′[1]
in D(OU ) such that L′ is in DQCoh(OU ) and such that Hom(N,Q) = 0 for all N in
DQCoh(OU ). This is possible because the statement in Derived Categories, Lemma
13.40.7 is an if and only if. We obtain a distinguished triangle

Rj∗L
′ → Rj∗L→ Rj∗Q→ Rj∗L

′[1]
in D(OX). Observe that Rj∗L

′ is in DQCoh(OX) by Lemma 75.6.1. On the other
hand, if M in DQCoh(OX), then

Hom(M,Rj∗Q) = Hom(Lj∗M,Q) = 0
because Lj∗M is in DQCoh(OU ) by Lemma 75.5.5. This finishes the proof. □

Second proof. The adjoint exists by Derived Categories, Proposition 13.38.2. The
hypotheses are satisfied: First, note that DQCoh(OX) has direct sums and direct
sums commute with the inclusion functor (Lemma 75.5.3). On the other hand,
DQCoh(OX) is compactly generated because it has a perfect generator Theorem
75.15.4 and because perfect objects are compact by Proposition 75.16.1. □

Lemma 75.19.2.0CR5 Let S be a scheme. Let f : X → Y be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. If the right adjoints DQX
and DQY of the inclusion functors DQCoh → D exist for X and Y , then

Rf∗ ◦DQX = DQY ◦Rf∗

Proof. The statement makes sense because Rf∗ sends DQCoh(OX) into DQCoh(OY )
by Lemma 75.6.1. The statement is true because Lf∗ similarly maps DQCoh(OY )
into DQCoh(OX) (Lemma 75.5.5) and hence both Rf∗ ◦DQX and DQY ◦Rf∗ are
right adjoint to Lf∗ : DQCoh(OY )→ D(OX). □

Remark 75.19.3.0CR6 Let S be a scheme. Let (U ⊂ X, f : V → X) be an elementary
distinguished square of algebraic spaces over S. Assume X, U , V are quasi-compact
and quasi-separated. By Lemma 75.19.1 the functors DQX , DQU , DQV , DQU×XV
exist. Moreover, there is a canonical distinguished triangle
DQX(K)→ RjU,∗DQU (K|U )⊕RjV,∗DQV (K|V )→ RjU×XV,∗DQU×XV (K|U×XV )→
for any K ∈ D(OX). This follows by applying the exact functor DQX to the
distinguished triangle of Lemma 75.10.2 and using Lemma 75.19.2 three times.
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Lemma 75.19.4.0CSS Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. The functor DQX of Lemma 75.19.1 has the following
boundedness property: there exists an integer N = N(X) such that, if K in D(OX)
with Hi(U,K) = 0 for U affine étale over X and i ̸∈ [a, b], then the cohomology
sheaves Hi(DQX(K)) are zero for i ̸∈ [a, b+N ].

Proof. We will prove this using the induction principle of Lemma 75.9.3.

If X is affine, then the lemma is true with N = 0 because then RQX = DQX is
given by taking the complex of quasi-coherent sheaves associated to RΓ(X,K). See
Lemma 75.11.3.

Let (U ⊂ W, f : V → W ) be an elementary distinguished square with W quasi-
compact and quasi-separated, U ⊂ W quasi-compact open, V affine such that
the lemma holds for U , V , and U ×W V . Say with integers N(U), N(V ), and
N(U ×W V ). Now suppose K is in D(OX) with Hi(W,K) = 0 for all affine W
étale over X and all i ̸∈ [a, b]. Then K|U , K|V , K|U×WV have the same property.
Hence we see that RQU (K|U ) and RQV (K|V ) and RQU∩V (K|U×WV ) have van-
ishing cohomology sheaves outside the inverval [a, b + max(N(U), N(V ), N(U ×W
V )). Since the functors RjU,∗, RjV,∗, RjU×WV,∗ have finite cohomological di-
mension on DQCoh by Lemma 75.6.1 we see that there exists an N such that
RjU,∗DQU (K|U ), RjV,∗DQV (K|V ), and RjU∩V,∗DQU×WV (K|U×WV ) have vanish-
ing cohomology sheaves outside the interval [a, b+N ]. Then finally we conclude by
the distinguished triangle of Remark 75.19.3. □

Example 75.19.5.0CST Let S be a scheme. Let X be a quasi-compact and quasi-
separated algebraic space over S. Let (Fn) be an inverse system of quasi-coherent
sheaves on X. Since DQX is a right adjoint it commutes with products and there-
fore with derived limits. Hence we see that

DQX(R limFn) = (R lim in DQCoh(OX))(Fn)

where the first R lim is taken in D(OX). In fact, let’s write K = R limFn for this.
For any affine U étale over X we have

Hi(U,K) = Hi(RΓ(U,R limFn)) = Hi(R limRΓ(U,Fn)) = Hi(R lim Γ(U,Fn))

since cohomology commutes with derived limits and since the quasi-coherent sheaves
Fn have no higher cohomology on affines. By the computation of R lim in the cat-
egory of abelian groups, we see that Hi(U,K) = 0 unless i ∈ [0, 1]. Then finally
we conclude that the R lim in DQCoh(OX), which is DQX(K) by the above, is in
Db

QCoh(OX) and has vanishing cohomology sheaves in negative degrees by Lemma
75.19.4.

75.20. Cohomology and base change, IV

08IM This section is the analogue of Derived Categories of Schemes, Section 36.22.

Lemma 75.20.1.08IN Let S be a scheme. Let f : X → Y be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. For E in DQCoh(OX) and K
in DQCoh(OY ) we have

Rf∗(E)⊗L
OY

K = Rf∗(E ⊗L
OX

Lf∗K)
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Proof. Without any assumptions there is a map Rf∗(E) ⊗L
OY

K → Rf∗(E ⊗L
OX

Lf∗K). Namely, it is the adjoint to the canonical map

Lf∗(Rf∗(E)⊗L
OY

K) = Lf∗(Rf∗(E))⊗L
OX

Lf∗K −→ E ⊗L
OX

Lf∗K

coming from the map Lf∗Rf∗E → E. See Cohomology on Sites, Lemmas 21.18.4
and 21.19.1. To check it is an isomorphism we may work étale locally on Y . Hence
we reduce to the case that Y is an affine scheme.

Suppose that K =
⊕
Ki is a direct sum of some complexes Ki ∈ DQCoh(OY ). If

the statement holds for each Ki, then it holds for K. Namely, the functors Lf∗ and
⊗L preserve direct sums by construction and Rf∗ commutes with direct sums (for
complexes with quasi-coherent cohomology sheaves) by Lemma 75.6.2. Moreover,
suppose that K → L→M → K[1] is a distinguished triangle in DQCoh(Y ). Then
if the statement of the lemma holds for two of K,L,M , then it holds for the third
(as the functors involved are exact functors of triangulated categories).

Assume Y affine, say Y = Spec(A). The functor ˜ : D(A) → DQCoh(OY ) is an
equivalence by Lemma 75.4.2 and Derived Categories of Schemes, Lemma 36.3.5.
Let T be the property for K ∈ D(A) that the statement of the lemma holds for K̃.
The discussion above and More on Algebra, Remark 15.59.11 shows that it suffices
to prove T holds for A[k]. This finishes the proof, as the statement of the lemma
is clear for shifts of the structure sheaf. □

Definition 75.20.2.08IP Let S be a scheme. Let B be an algebraic space over S. Let
X, Y be algebraic spaces over B. We say X and Y are Tor independent over B if
and only if for every commutative diagram

Spec(k)

y

�� b ##

x
// X

��
Y // B

of geometric points the rings OX,x and OY,y are Tor independent over OB,b (see
More on Algebra, Definition 15.61.1).

The following lemma shows in particular that this definition agrees with our defi-
nition in the case of representable algebraic spaces.

Lemma 75.20.3.08IQ Let S be a scheme. Let B be an algebraic space over S. Let X,
Y be algebraic spaces over B. The following are equivalent

(1) X and Y are Tor independent over B,
(2) for every commutative diagram

U

��

// W

��

V

��

oo

X // B Yoo

with étale vertical arrows U and V are Tor independent over W ,
(3) for some commutative diagram as in (2) with (a) W → B étale surjective,

(b) U → X ×B W étale surjective, (c) V → Y ×B W étale surjective, the
spaces U and V are Tor independent over W , and
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(4) for some commutative diagram as in (3) with U , V , W schemes, the
schemes U and V are Tor independent over W in the sense of Derived
Categories of Schemes, Definition 36.22.2.

Proof. For an étale morphism φ : U → X of algebraic spaces and geometric point
u the map of local rings OX,φ(u) → OU,u is an isomorphism. Hence the equivalence
of (1) and (2) follows. So does the implication (1) ⇒ (3). Assume (3) and pick a
diagram of geometric points as in Definition 75.20.2. The assumptions imply that
we can first lift b to a geometric point w of W , then lift the geometric point (x, b) to
a geometric point u of U , and finally lift the geometric point (y, b) to a geometric
point v of V . Use Properties of Spaces, Lemma 66.19.4 to find the lifts. Using
the remark on local rings above we conclude that the condition of the definition is
satisfied for the given diagram.
Having made these initial points, it is clear that (4) comes down to the state-
ment that Definition 75.20.2 agrees with Derived Categories of Schemes, Definition
36.22.2 when X, Y , and B are schemes.
Let x, b, y be as in Definition 75.20.2 lying over the points x, y, b. Recall that
OX,x = OshX,x (Properties of Spaces, Lemma 66.22.1) and similarly for the other
two. By Algebra, Lemma 10.155.12 we see that OX,x is a strict henselization of
OX,x ⊗OB,b

OB,b. In particular, the ring map
OX,x ⊗OB,b

OB,b −→ OX,x
is flat (More on Algebra, Lemma 15.45.1). By More on Algebra, Lemma 15.61.3
we see that

TorOB,b

i (OX,x,OY,y)⊗OX,x⊗OB,bOY,y
(OX,x ⊗O

B,b
OY,y) = Tor

O
B,b

i (OX,x,OY,y)

Hence it follows that if X and Y are Tor independent over B as schemes, then X
and Y are Tor independent as algebraic spaces over B.
For the converse, we may assume X, Y , and B are affine. Observe that the ring
map

OX,x ⊗OB,b
OY,y −→ OX,x ⊗O

B,b
OY,y

is flat by the observations given above. Moreover, the image of the map on spectra
includes all primes s ⊂ OX,x⊗OB,b

OY,y lying over mx and my. Hence from this and
the displayed formula of Tor’s above we see that if X and Y are Tor independent
over B as algebraic spaces, then

TorOB,b

i (OX,x,OY,y)s = 0
for all i > 0 and all s as above. By More on Algebra, Lemma 15.61.6 applied to
the ring maps Γ(B,OB)→ Γ(X,OX) and Γ(B,OB)→ Γ(X,OX) this implies that
X and Y are Tor independent over B. □

Lemma 75.20.4.08IR Let S be a scheme. Let g : Y ′ → Y be a morphism of algebraic
spaces over S. Let f : X → Y be a quasi-compact and quasi-separated morphism
of algebraic spaces over S. Consider the base change diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y
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If X and Y ′ are Tor independent over Y , then for all E ∈ DQCoh(OX) we have
Rf ′

∗L(g′)∗E = Lg∗Rf∗E.

Proof. For any object E ofD(OX) we can use Cohomology on Sites, Remark 21.19.3
to get a canonical base change map Lg∗Rf∗E → Rf ′

∗L(g′)∗E. To check this is an
isomorphism we may work étale locally on Y ′. Hence we may assume g : Y ′ → Y is
a morphism of affine schemes. In particular, g is affine and it suffices to show that

Rg∗Lg
∗Rf∗E → Rg∗Rf

′
∗L(g′)∗E = Rf∗(Rg′

∗L(g′)∗E)

is an isomorphism, see Lemma 75.6.4 (and use Lemmas 75.5.5, 75.5.6, and 75.6.1
to see that the objects Rf ′

∗L(g′)∗E and Lg∗Rf∗E have quasi-coherent cohomology
sheaves). Note that g′ is affine as well (Morphisms of Spaces, Lemma 67.20.5). By
Lemma 75.6.5 the map becomes a map

Rf∗E ⊗L
OY

g∗OY ′ −→ Rf∗(E ⊗L
OX

g′
∗OX′)

Observe that g′
∗OX′ = f∗g∗OY ′ . Thus by Lemma 75.20.1 it suffices to prove that

Lf∗g∗OY ′ = f∗g∗OY ′ . This follows from our assumption that X and Y ′ are Tor
independent over Y . Namely, to check it we may work étale locally on X, hence we
may also assume X is affine. Say X = Spec(A), Y = Spec(R) and Y ′ = Spec(R′).
Our assumption implies that A and R′ are Tor independent over R (see Lemma
75.20.3 and More on Algebra, Lemma 15.61.6), i.e., TorRi (A,R′) = 0 for i > 0. In
other words A⊗L

RR
′ = A⊗RR′ which exactly means that Lf∗g∗OY ′ = f∗g∗OY ′ . □

The following lemma will be used in the chapter on dualizing complexes.

Lemma 75.20.5.0E4S Let g : S′ → S be a morphism of affine schemes. Consider a
cartesian square

X ′
g′
//

f ′

��

X

f

��
S′ g // S

of quasi-compact and quasi-separated algebraic spaces. Assume g and f Tor inde-
pendent. Write S = Spec(R) and S′ = Spec(R′). For M,K ∈ D(OX) the canonical
map

RHomX(M,K)⊗L
R R

′ −→ RHomX′(L(g′)∗M,L(g′)∗K)
in D(R′) is an isomorphism in the following two cases

(1) M ∈ D(OX) is perfect and K ∈ DQCoh(X), or
(2) M ∈ D(OX) is pseudo-coherent, K ∈ D+

QCoh(X), and R′ has finite tor
dimension over R.

Proof. There is a canonical map RHomX(M,K) → RHomX′(L(g′)∗M,L(g′)∗K)
in D(Γ(X,OX)) of global hom complexes, see Cohomology on Sites, Section 21.36.
Restricting scalars we can view this as a map in D(R). Then we can use the
adjointness of restriction and − ⊗L

R R′ to get the displayed map of the lemma.
Having defined the map it suffices to prove it is an isomorphism in the derived
category of abelian groups.

The right hand side is equal to

RHomX(M,R(g′)∗L(g′)∗K) = RHomX(M,K ⊗L
OX

g′
∗OX′)
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by Lemma 75.6.5. In both cases the complexRHom(M,K) is an object ofDQCoh(OX)
by Lemma 75.13.10. There is a natural map

RHom(M,K)⊗L
OX

g′
∗OX′ −→ RHom(M,K ⊗L

OX
g′

∗OX′)

which is an isomorphism in both cases Lemma 75.13.11. To see that this lemma
applies in case (2) we note that g′

∗OX′ = Rg′
∗OX′ = Lf∗g∗OX the second equality

by Lemma 75.20.4. Using Derived Categories of Schemes, Lemma 36.10.4, Lemma
75.13.3, and Cohomology on Sites, Lemma 21.46.5 we conclude that g′

∗OX′ has
finite Tor dimension. Hence, in both cases by replacing K by RHom(M,K) we
reduce to proving

RΓ(X,K)⊗L
A A

′ −→ RΓ(X,K ⊗L
OX

g′
∗OX′)

is an isomorphism. Note that the left hand side is equal to RΓ(X ′, L(g′)∗K) by
Lemma 75.6.5. Hence the result follows from Lemma 75.20.4. □

Remark 75.20.6.0E4T With notation as in Lemma 75.20.5. The diagram

RHomX(M,Rg′
∗L)⊗L

R R
′ //

µ

��

RHomX′(L(g′)∗M,L(g′)∗Rg′
∗L)

a

��
RHomX(M,R(g′)∗L) RHomX′(L(g′)∗M,L)

is commutative where the top horizontal arrow is the map from the lemma, µ is the
multiplication map, and a comes from the adjunction map L(g′)∗Rg′

∗L → L. The
multiplication map is the adjunction map K ′ ⊗L

R R
′ → K ′ for any K ′ ∈ D(R′).

Lemma 75.20.7.0DKD Let S be a scheme. Consider a cartesian square of algebraic spaces

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

over S. Assume g and f Tor independent.
(1) If E ∈ D(OX) has tor amplitude in [a, b] as a complex of f−1OY -modules,

then L(g′)∗E has tor amplitude in [a, b] as a complex of f−1OY ′ -modules.
(2) If G is an OX -module flat over Y , then L(g′)∗G = (g′)∗G.

Proof. We can compute tor dimension at stalks, see Cohomology on Sites, Lemma
21.46.10 and Properties of Spaces, Theorem 66.19.12. If x′ is a geometric point of
X ′ with image x in X, then

(L(g′)∗E)x′ = Ex ⊗L
OX,x

OX′,x′

Let y′ in Y ′ and y in Y be the image of x′ and x. Since X and Y ′ are tor independent
over Y , we can apply More on Algebra, Lemma 15.61.2 to see that the right hand
side of the displayed formula is equal to Ex ⊗L

OY,y
OY ′,y′ in D(OY ′,y′). Thus (1)

follows from More on Algebra, Lemma 15.66.13. To see (2) observe that flatness of
G is equivalent to the condition that G[0] has tor amplitude in [0, 0]. Applying (1)
we conclude. □
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75.21. Cohomology and base change, V

0DKE This section is the analogue of Derived Categories of Schemes, Section 36.26. In
Section 75.20 we saw a base change theorem holds when the morphisms are tor
independent. Even in the affine case there cannot be a base change theorem without
such a condition, see More on Algebra, Section 15.61. In this section we analyze
when one can get a base change result “one complex at a time”.
To make this work, let S be a base scheme and suppose we have a commutative
diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of algebraic spaces over S (usually we will assume it is cartesian). Let K ∈
DQCoh(OX) and let L(g′)∗K → K ′ be a map in DQCoh(OX′). For a geometric point
x′ of X ′ consider the geometric points x = g′(x′), y′ = f ′(x′), y = f(x) = g(y′) of
X, Y ′, Y . Then we can consider the maps

Kx ⊗L
OY,y

OY ′,y′ → Kx ⊗L
OX,x

OX′,x′ → K ′
x′

where the first arrow is More on Algebra, Equation (15.61.0.1) and the second
comes from (L(g′)∗K)x′ = Kx⊗L

OX,x
OX′,x′ and the given map L(g′)∗K → K ′. For

each i ∈ Z we obtain a OX,x⊗OY,y
OY ′,y′ -module structure on Hi(Kx⊗L

OY,y
OY ′,y′).

Putting everything together we obtain canonical maps
(75.21.0.1)0DKF Hi(Kx ⊗L

OY,y
OY ′,y′)⊗(OX,x⊗OY,y

OY ′,y′ ) OX′,x′ −→ Hi(K ′
x′)

of OX′,x′ -modules.

Lemma 75.21.1.0DKG Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian diagram of algebraic spaces over S. Let K ∈ DQCoh(OX) and let
L(g′)∗K → K ′ be a map in DQCoh(OX′). The following are equivalent

(1) for any x′ ∈ X ′ and i ∈ Z the map (75.21.0.1) is an isomorphism,
(2) for any commutative diagram

U

��

a

  
V ′ //

c

  

V

b

  

X

f

��
Y ′ g // Y

with a, b, c étale, U, V, V ′ schemes, and with U ′ = V ′ ×V U the equiva-
lent conditions of Derived Categories of Schemes, Lemma 75.21.1 hold for
(U → X)∗K and (U ′ → X ′)∗K ′, and
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(3) there is some diagram as in (2) with U ′ → X ′ surjective.

Proof. Observe that (1) is étale local onX ′. Working through formal implications of
what is known, we see that it suffices to prove condition (1) of this lemma is equiva-
lent to condition (1) of Derived Categories of Schemes, Lemma 36.26.1 ifX,Y, Y ′, X ′

are representable by schemes X0, Y0, Y
′

0 , X
′
0. Denote f0, g0, g

′
0, f

′
0 the morphisms be-

tween these schemes corresponding to f, g, g′, f ′. We may assume K = ϵ∗K0 and
K ′ = ϵ∗K ′

0 for some objects K0 ∈ DQCoh(OX0) and K ′
0 ∈ DQCoh(OX′

0
), see Lemma

75.4.2. Moreover, the map Lg∗K → K ′ is the pullback of a map L(g0)∗K0 → K ′
0

with notation as in Remark 75.6.3. Recall that OX,x is the strict henselization of
OX,x (Properties of Spaces, Lemma 66.22.1) and that we have

Kx = K0,x ⊗L
OX,x

OX,x and K ′
x′ = K ′

0,x′ ⊗L
OX′,x′ OX′,x′

(akin to Properties of Spaces, Lemma 66.29.4). Consider the commutative diagram

Hi(Kx ⊗L
OY,y

OY ′,y′)⊗(OX,x⊗OY,y
OY ′,y′ ) OX′,x′ // Hi(K ′

x′)

Hi(K0,x ⊗L
OY,y

OY ′,y′)⊗(OX,x⊗OY,yOY ′,y′ ) OX′,x′

OO

// Hi(K ′
0,x′)

OO

We have to show that the lower horizontal arrow is an isomorphism if and only if
the upper horizontal arrow is an isomorphism. Since OX′,x′ → OX′,x′ is faithfully
flat (More on Algebra, Lemma 15.45.1) it suffices to show that the top arrow is
the base change of the bottom arrow by this map. This follows immediately from
the relationships between stalks given above for the objects on the right. For the
objects on the left it suffices to show that

Hi
(

(K0,x ⊗L
OX,x

OX,x)⊗L
OY,y

OY ′,y′

)
= Hi(K0,x ⊗L

OY,y
OY ′,y′)⊗(OX,x⊗OY,yOY ′,y′ ) (OX,x ⊗OY,y

OY ′,y′)

This follows from More on Algebra, Lemma 15.61.5. The flatness assumptions of
this lemma hold by what was said above as well as Algebra, Lemma 10.155.12
implying that OX,x is the strict henselization of OX,x ⊗OY,y

OY,y and that OY ′,y′

is the strict henselization of OY ′,y′ ⊗OY,y
OY,y. □

Lemma 75.21.2.0DKH Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian diagram of algebraic spaces over S. Let K ∈ DQCoh(OX) and let
L(g′)∗K → K ′ be a map in DQCoh(OX′). If

(1) the equivalent conditions of Lemma 75.21.1 hold, and
(2) f is quasi-compact and quasi-separated,

then the composition Lg∗Rf∗K → Rf ′
∗L(g′)∗K → Rf ′

∗K
′ is an isomorphism.

Proof. To check the map is an isomorphism we may work étale locally on Y ′. Hence
we may assume g : Y ′ → Y is a morphism of affine schemes. In this case, we will
use the induction principle of Lemma 75.9.3 to prove that for a quasi-compact
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and quasi-separated algebraic space U étale over X the similarly constructed map
Lg∗R(U → Y )∗K|U → R(U ′ → Y ′)∗K

′|U ′ is an isomorphism. Here U ′ = X ′ ×g′,X

U = Y ′ ×g,Y U .

If U is a scheme (for example affine), then the result holds. Namely, then Y, Y ′, U, U ′

are schemes, K and K ′ come from objects of the derived category of the underly-
ing schemes by Lemma 75.4.2 and the condition of Derived Categories of Schemes,
Lemma 36.26.1 holds for these complexes by Lemma 75.21.1. Thus (by the compat-
ibilities explained in Remark 75.6.3) we can apply the result in the case of schemes
which is Derived Categories of Schemes, Lemma 36.26.2.

The induction step. Let (U ⊂ W,V → W ) be an elementary distinguished square
with W a quasi-compact and quasi-separated algebraic space étale over X, with
U quasi-compact, V affine and the result holds for U , V , and U ×W V . To easy
notation we replace W by X (this is permissible at this point). Denote a : U → Y ,
b : V → Y , and c : U ×X V → Y the obvious morphisms. Let a′ : U ′ → Y ′,
b′ : V ′ → Y ′ and c′ : U ′ ×X′ V ′ → Y ′ be the base changes of a, b, and c. Using the
distinguished triangles from relative Mayer-Vietoris (Lemma 75.10.3) we obtain a
commutative diagram

Lg∗Rf∗K //

��

Rf ′
∗K

′

��
Lg∗Ra∗K|U ⊕ Lg∗Rb∗K|V //

��

Ra′
∗K

′|U ′ ⊕Rb′
∗K

′|V ′

��
Lg∗Rc∗K|U×XV

//

��

Rc′
∗K

′|U ′×X′V ′

��
Lg∗Rf∗K[1] // Rf ′

∗K
′[1]

Since the 2nd and 3rd horizontal arrows are isomorphisms so is the first (Derived
Categories, Lemma 13.4.3) and the proof of the lemma is finished. □

Lemma 75.21.3.0DKI Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
S′ g // S

be a cartesian diagram of algebraic spaces over S. Let K ∈ DQCoh(OX) and let
L(g′)∗K → K ′ be a map in DQCoh(OX′). If the equivalent conditions of Lemma
75.21.1 hold, then

(1) for E ∈ DQCoh(OX) the equivalent conditions of Lemma 75.21.1 hold for
L(g′)∗(E ⊗L K)→ L(g′)∗E ⊗L K ′,

(2) if E in D(OX) is perfect the equivalent conditions of Lemma 75.21.1 hold
for L(g′)∗RHom(E,K)→ RHom(L(g′)∗E,K ′), and

(3) if K is bounded below and E in D(OX) pseudo-coherent the equivalent
conditions of Lemma 75.21.1 hold for L(g′)∗RHom(E,K)→ RHom(L(g′)∗E,K ′).
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Proof. The statement makes sense as the complexes involved have quasi-coherent
cohomology sheaves by Lemmas 75.5.5, 75.5.6, and 75.13.10 and Cohomology on
Sites, Lemmas 21.45.3 and 21.47.5. Having said this, we can check the maps
(75.21.0.1) are isomorphisms in case (1) by computing the source and target of
(75.21.0.1) using the transitive property of tensor product, see More on Algebra,
Lemma 15.59.15. The map in (2) and (3) is the composition

L(g′)∗RHom(E,K)→ RHom(L(g′)∗E,L(g′)∗K)→ RHom(L(g′)∗E,K ′)

where the first arrow is Cohomology on Sites, Remark 21.35.11 and the second
arrow comes from the given map L(g′)∗K → K ′. To prove the maps (75.21.0.1) are
isomorphisms one represents Ex by a bounded complex of finite projective OX.x-
modules in case (2) or by a bounded above complex of finite free modules in case
(3) and computes the source and target of the arrow. Some details omitted. □

Lemma 75.21.4.0A1K Let S be a scheme. Let f : X → Y be a quasi-compact and
quasi-separated morphism of algebraic spaces over S. Let E ∈ DQCoh(OX). Let
G• be a bounded above complex of quasi-coherent OX -modules flat over Y . Then
formation of

Rf∗(E ⊗L
OX
G•)

commutes with arbitrary base change (see proof for precise statement).

Proof. The statement means the following. Let g : Y ′ → Y be a morphism of
algebraic spaces and consider the base change diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

in other words X ′ = Y ′ ×Y X. The lemma asserts that

Lg∗Rf∗(E ⊗L
OX
G•) −→ Rf ′

∗(L(g′)∗E ⊗L
OX′ (g′)∗G•)

is an isomorphism. Observe that on the right hand side we do not use derived
pullback on G•. To prove this, we apply Lemmas 75.21.2 and 75.21.3 to see that it
suffices to prove the canonical map

L(g′)∗G• → (g′)∗G•

satisfies the equivalent conditions of Lemma 75.21.1. This follows by checking the
condition on stalks, where it immediately follows from the fact that G•

x⊗OY,y
OY ′,y′

computes the derived tensor product by our assumptions on the complex G•. □

Lemma 75.21.5.08JQ Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let E be an object of D(OX). Let
G• be a complex of quasi-coherent OX -modules. If

(1) E is perfect, G• is a bounded above, and Gn is flat over Y , or
(2) E is pseudo-coherent, G• is bounded, and Gn is flat over Y ,

then formation of
Rf∗RHom(E,G•)

commutes with arbitrary base change (see proof for precise statement).
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Proof. The statement means the following. Let g : Y ′ → Y be a morphism of
algebraic spaces and consider the base change diagram

X ′
h
//

f ′

��

X

f

��
Y ′ g // Y

in other words X ′ = Y ′ ×Y X. The lemma asserts that
Lg∗Rf∗RHom(E,G•) −→ R(f ′)∗RHom(L(g′)∗E, (g′)∗G•)

is an isomorphism. Observe that on the right hand side we do not use the derived
pullback on G•. To prove this, we apply Lemmas 75.21.2 and 75.21.3 to see that it
suffices to prove the canonical map

L(g′)∗G• → (g′)∗G•

satisfies the equivalent conditions of Lemma 75.21.1. This was shown in the proof
of Lemma 75.21.4. □

75.22. Producing perfect complexes

0A1L The following lemma is our main technical tool for producing perfect complexes.
Later versions of this result will reduce to this by Noetherian approximation.

Lemma 75.22.1.08IS Let S be a scheme. Let Y be a Noetherian algebraic space over
S. Let f : X → Y be a morphism of algebraic spaces which is locally of finite type
and quasi-separated. Let E ∈ D(OX) such that

(1) E ∈ Db
Coh(OX),

(2) the support of Hi(E) is proper over Y for all i,
(3) E has finite tor dimension as an object of D(f−1OY ).

Then Rf∗E is a perfect object of D(OY ).

Proof. By Lemma 75.8.1 we see that Rf∗E is an object of Db
Coh(OY ). Hence Rf∗E

is pseudo-coherent (Lemma 75.13.7). Hence it suffices to show that Rf∗E has finite
tor dimension, see Cohomology on Sites, Lemma 21.47.4. By Lemma 75.13.8 it
suffices to check that Rf∗(E) ⊗L

OY
F has universally bounded cohomology for all

quasi-coherent sheaves F on Y . Bounded from above is clear as Rf∗(E) is bounded
from above. Let T ⊂ |X| be the union of the supports of Hi(E) for all i. Then T is
proper over Y by assumptions (1) and (2) and Lemma 75.7.6. In particular there
exists a quasi-compact open subspace X ′ ⊂ X containing T . Setting f ′ = f |X′

we have Rf∗(E) = Rf ′
∗(E|X′) because E restricts to zero on X \ T . Thus we may

replace X by X ′ and assume f is quasi-compact. We have assumed f is quasi-
separated. Thus

Rf∗(E)⊗L
OY
F = Rf∗

(
E ⊗L

OX
Lf∗F

)
= Rf∗

(
E ⊗L

f−1OY
f−1F

)
by Lemma 75.20.1 and Cohomology on Sites, Lemma 21.18.5. By assumption (3)
the complex E ⊗L

f−1OY
f−1F has cohomology sheaves in a given finite range, say

[a, b]. Then Rf∗ of it has cohomology in the range [a,∞) and we win. □

Lemma 75.22.2.0DKJ Let S be a scheme. Let B be a Noetherian algebraic space over
S. Let f : X → B be a morphism of algebraic spaces which is locally of finite
type and quasi-separated. Let E ∈ D(OX) be perfect. Let G• be a bounded
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complex of coherent OX -modules flat over B with support proper over B. Then
K = Rf∗(E ⊗L

OX
G•) is a perfect object of D(OB).

Proof. The object K is perfect by Lemma 75.22.1. We check the lemma applies:
Locally E is isomorphic to a finite complex of finite free OX -modules. Hence locally
E ⊗L

OX
G• is isomorphic to a finite complex whose terms are of the form⊕

i=a,...,b
(Gi)⊕ri

for some integers a, b, ra, . . . , rb. This immediately implies the cohomology sheaves
Hi(E⊗L

OX
G) are coherent. The hypothesis on the tor dimension also follows as Gi

is flat over f−1OY . □

Lemma 75.22.3.0DKK Let S be a scheme. Let B be a Noetherian algebraic space over
S. Let f : X → B be a morphism of algebraic spaces which is locally of finite
type and quasi-separated. Let E ∈ D(OX) be perfect. Let G• be a bounded
complex of coherent OX -modules flat over B with support proper over B. Then
K = Rf∗RHom(E,G) is a perfect object of D(OB).

Proof. Since E is a perfect complex there exists a dual perfect complex E∨, see
Cohomology on Sites, Lemma 21.48.4. Observe that RHom(E,G•) = E∨ ⊗L

OX
G•.

Thus the perfectness of K follows from Lemma 75.22.2. □

75.23. A projection formula for Ext

08JM Lemma 75.23.3 (or similar results in the literature) is sometimes useful to verify
properties of an obstruction theory needed to verify one of Artin’s criteria for Quot
functors, Hilbert schemes, and other moduli problems. Suppose that f : X → Y is
a proper, flat, finitely presented morphism of algebraic spaces and E ∈ D(OX) is
perfect. Here the lemma says

ExtiX(E, f∗F) = ExtiY ((Rf∗E
∨)∨,F)

for F quasi-coherent on Y . Writing it this way makes it look like a projection
formula for Ext and indeed the result follows rather easily from Lemma 75.20.1.

Lemma 75.23.1.0A1M Assumptions and notation as in Lemma 75.22.2. Then there are
functorial isomorphisms

Hi(B,K ⊗L
OB
F) −→ Hi(X,E ⊗L

OX
(G• ⊗OX

f∗F))
for F quasi-coherent on B compatible with boundary maps (see proof).

Proof. We have
G• ⊗L

OX
Lf∗F = G• ⊗L

f−1OB
f−1F = G• ⊗f−1OB

f−1F = G• ⊗OX
f∗F

the first equality by Cohomology on Sites, Lemma 21.18.5, the second as Gn is a
flat f−1OB-module, and the third by definition of pullbacks. Hence we obtain

Hi(X,E ⊗L
OX

(G• ⊗OX
f∗F)) = Hi(X,E ⊗L

OX
G• ⊗L

OX
Lf∗F)

= Hi(B,Rf∗(E ⊗L
OX
G• ⊗L

OX
Lf∗F))

= Hi(B,Rf∗(E ⊗L
OX
G•)⊗L

OB
F)

= Hi(B,K ⊗L
OB
F)

https://stacks.math.columbia.edu/tag/0DKK
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The first equality by the above, the second by Leray (Cohomology on Sites, Remark
21.14.4), and the third equality by Lemma 75.20.1. The statement on boundary
maps means the following: Given a short exact sequence 0→ F1 → F2 → F3 → 0
then the isomorphisms fit into commutative diagrams

Hi(B,K ⊗L
OB
F3) //

δ

��

Hi(X,E ⊗L
OX

(G• ⊗OX
f∗F3))

δ

��
Hi+1(B,K ⊗L

OB
F1) // Hi+1(X,E ⊗L

OX
(G• ⊗OX

f∗F1))

where the boundary maps come from the distinguished triangle
K ⊗L

OB
F1 → K ⊗L

OB
F2 → K ⊗L

OB
F3 → K ⊗L

OB
F1[1]

and the distinguished triangle in D(OX) associated to the short exact sequence
0→ G• ⊗OX

f∗F1 → G• ⊗OX
f∗F2 → G• ⊗OX

f∗F3 → 0
of complexes. This sequence is exact because Gn is flat over B. We omit the
verification of the commutativity of the displayed diagram. □

Lemma 75.23.2.08JN Assumption and notation as in Lemma 75.22.3. Then there are
functorial isomorphisms

Hi(B,K ⊗L
OB
F) −→ ExtiOX

(E,G• ⊗OX
f∗F)

for F quasi-coherent on B compatible with boundary maps (see proof).

Proof. As in the proof of Lemma 75.22.3 let E∨ be the dual perfect complex and
recall that K = Rf∗(E∨ ⊗L

OX
G•). Since we also have

ExtiOX
(E,G• ⊗OX

f∗F) = Hi(X,E∨ ⊗L
OX

(G• ⊗OX
f∗F))

by construction of E∨, the existence of the isomorphisms follows from Lemma
75.23.1 applied to E∨ and G•. The statement on boundary maps means the follow-
ing: Given a short exact sequence 0→ F1 → F2 → F3 → 0 then the isomorphisms
fit into commutative diagrams

Hi(B,K ⊗L
OB
F3) //

δ

��

ExtiOX
(E,G• ⊗OX

f∗F3)

δ

��
Hi+1(B,K ⊗L

OB
F1) // Exti+1

OX
(E,G• ⊗OX

f∗F1)

where the boundary maps come from the distinguished triangle
K ⊗L

OB
F1 → K ⊗L

OB
F2 → K ⊗L

OB
F3 → K ⊗L

OB
F1[1]

and the distinguished triangle in D(OX) associated to the short exact sequence
0→ G• ⊗OX

f∗F1 → G• ⊗OX
f∗F2 → G• ⊗OX

f∗F3 → 0
of complexes. This sequence is exact because Gn is flat over B. We omit the
verification of the commutativity of the displayed diagram. □

Lemma 75.23.3.08JR Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S, E ∈ D(OX), and F• a complex of OX -modules. Assume

(1) B is Noetherian,
(2) f is locally of finite type and quasi-separated,

https://stacks.math.columbia.edu/tag/08JN
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(3) E ∈ D−
Coh(OX),

(4) G• is a bounded complex of coherent OX -module flat over B with support
proper over B.

Then the following two statements are true
(A) for every m ∈ Z there exists a perfect object K of D(OB) and functorial

maps

αiF : ExtiOX
(E,G• ⊗OX

f∗F) −→ Hi(B,K ⊗L
OB
F)

for F quasi-coherent on B compatible with boundary maps (see proof)
such that αiF is an isomorphism for i ≤ m, and

(B) there exists a pseudo-coherent L ∈ D(OB) and functorial isomorphisms

ExtiOB
(L,F) −→ ExtiOX

(E,G• ⊗OX
f∗F)

for F quasi-coherent on B compatible with boundary maps.

Proof. Proof of (A). Suppose Gi is nonzero only for i ∈ [a, b]. We may replace
X by a quasi-compact open neighbourhood of the union of the supports of Gi.
Hence we may assume X is Noetherian. In this case X and f are quasi-compact
and quasi-separated. Choose an approximation P → E by a perfect complex P of
(X,E,−m− 1 + a) (possible by Theorem 75.14.7). Then the induced map

ExtiOX
(E,G• ⊗OX

f∗F) −→ ExtiOX
(P,G• ⊗OX

f∗F)

is an isomorphism for i ≤ m. Namely, the kernel, resp. cokernel of this map is a
quotient, resp. submodule of

ExtiOX
(C,G• ⊗OX

f∗F) resp. Exti+1
OX

(C,G• ⊗OX
f∗F)

where C is the cone of P → E. Since C has vanishing cohomology sheaves in degrees
≥ −m−1+a these Ext-groups are zero for i ≤ m+1 by Derived Categories, Lemma
13.27.3. This reduces us to the case that E is a perfect complex which is Lemma
75.23.2. The statement on boundaries is explained in the proof of Lemma 75.23.2.

Proof of (B). As in the proof of (A) we may assume X is Noetherian. Observe that
E is pseudo-coherent by Lemma 75.13.7. By Lemma 75.18.1 we can write E =
hocolimEn with En perfect and En → E inducing an isomorphism on truncations
τ≥−n. Let E∨

n be the dual perfect complex (Cohomology on Sites, Lemma 21.48.4).
We obtain an inverse system . . . → E∨

3 → E∨
2 → E∨

1 of perfect objects. This in
turn gives rise to an inverse system

. . .→ K3 → K2 → K1 with Kn = Rf∗(E∨
n ⊗L

OX
G•)

perfect on Y , see Lemma 75.22.2. By Lemma 75.23.2 and its proof and by the
arguments in the previous paragraph (with P = En) for any quasi-coherent F on
Y we have functorial canonical maps

ExtiOX
(E,G• ⊗OX

f∗F)

tt ))
Hi(Y,Kn+1 ⊗L

OY
F) // Hi(Y,Kn ⊗L

OY
F)
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which are isomorphisms for i ≤ n+ a. Let Ln = K∨
n be the dual perfect complex.

Then we see that L1 → L2 → L3 → . . . is a system of perfect objects in D(OY )
such that for any quasi-coherent F on Y the maps

ExtiOY
(Ln+1,F) −→ ExtiOY

(Ln,F)
are isomorphisms for i ≤ n + a − 1. This implies that Ln → Ln+1 induces
an isomorphism on truncations τ≥−n−a+2 (hint: take cone of Ln → Ln+1 and
look at its last nonvanishing cohomology sheaf). Thus L = hocolimLn is pseudo-
coherent, see Lemma 75.18.1. The mapping property of homotopy colimits gives
that ExtiOY

(L,F) = ExtiOY
(Ln,F) for i ≤ n+ a− 3 which finishes the proof. □

Remark 75.23.4.0DKL The pseudo-coherent complex L of part (B) of Lemma 75.23.3 is
canonically associated to the situation. For example, formation of L as in (B) is
compatible with base change. In other words, given a cartesian diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of schemes we have canonical functorial isomorphisms
ExtiOY ′ (Lg∗L,F ′) −→ ExtiOX

(L(g′)∗E, (g′)∗G• ⊗OX′ (f ′)∗F ′)
for F ′ quasi-coherent on Y ′. Obsere that we do not use derived pullback on G• on
the right hand side. If we ever need this, we will formulate a precise result here
and give a detailed proof.

75.24. Limits and derived categories

09RG In this section we collect some results about the derived category of an algebraic
space which is the limit of an inverse system of algebraic spaces. More precisely,
we will work in the following setting.

Situation 75.24.1.09RH Let S be a scheme. Let X = limi∈I Xi be a limit of a directed
system of algebraic spaces over S with affine transition morphisms fi′i : Xi′ → Xi.
We denote fi : X → Xi the projection. We assume that Xi is quasi-compact and
quasi-separated for all i ∈ I. We also choose an element 0 ∈ I.

Lemma 75.24.2.09RI In Situation 75.24.1. Let E0 and K0 be objects of D(OX0). Set
Ei = Lf∗

i0E0 and Ki = Lf∗
i0K0 for i ≥ 0 and set E = Lf∗

0E0 and K = Lf∗
0K0.

Then the map
colimi≥0 HomD(OXi

)(Ei,Ki) −→ HomD(OX)(E,K)
is an isomorphism if either

(1) E0 is perfect and K0 ∈ DQCoh(OX0), or
(2) E0 is pseudo-coherent and K0 ∈ DQCoh(OX0) has finite tor dimension.

Proof. For every quasi-compact and quasi-separated object U0 of (X0)spaces,étale
consider the condition P that the canonical map

colimi≥0 HomD(OUi
)(Ei|Ui ,Ki|Ui) −→ HomD(OU )(E|U ,K|U )

is an isomorphism, where U = X ×X0 U0 and Ui = Xi ×X0 U0. We will prove P
holds for each U0 by the induction principle of Lemma 75.9.3. Condition (2) of this

https://stacks.math.columbia.edu/tag/0DKL
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lemma follows immediately from Mayer-Vietoris for hom in the derived category,
see Lemma 75.10.4. Thus it suffices to prove the lemma when X0 is affine.
If X0 is affine, then the result follows from the case of schemes, see Derived Cate-
gories of Schemes, Lemma 36.29.2. To see this use the equivalence of Lemma 75.4.2
and use the translation of properties explained in Lemmas 75.13.2, 75.13.3, and
75.13.5. □

Lemma 75.24.3.09RJ In Situation 75.24.1 the category of perfect objects of D(OX) is
the colimit of the categories of perfect objects of D(OXi).

Proof. For every quasi-compact and quasi-separated object U0 of (X0)spaces,étale
consider the condition P that the functor

colimi≥0 Dperf (OUi) −→ Dperf (OU )
is an equivalence where perf indicates the full subcategory of perfect objects and
where U = X ×X0 U0 and Ui = Xi ×X0 U0. We will prove P holds for every U0 by
the induction principle of Lemma 75.9.3. First, we observe that we already know
the functor is fully faithful by Lemma 75.24.2. Thus it suffices to prove essential
surjectivity.
We first check condition (2) of the induction principle. Thus suppose that we have
an elementary distinguished square (U0 ⊂ X0, V0 → X0) and that P holds for U0,
V0, and U0×X0 V0. Let E be a perfect object of D(OX). We can find i ≥ 0 and EU,i
perfect on Ui and EV,i perfect on Vi whose pullback to U and V are isomorphic to
E|U and E|V . Denote

a : EU,i → (R(X → Xi)∗E)|Ui and b : EV,i → (R(X → Xi)∗E)|Vi
the maps adjoint to the isomorphisms L(U → Ui)∗EU,i → E|U and L(V →
Vi)∗EV,i → E|V . By fully faithfulness, after increasing i, we can find an isomor-
phism c : EU,i|Ui×XiVi → EV,i|Ui×XiVi which pulls back to the identifications

L(U → Ui)∗EU,i|U×XV → E|U×XV → L(V → Vi)∗EV,i|U×XV .

Apply Lemma 75.10.8 to get an object Ei on Xi and a map d : Ei → R(X → Xi)∗E
which restricts to the maps a and b over Ui and Vi. Then it is clear that Ei is perfect
and that d is adjoint to an isomorphism L(X → Xi)∗Ei → E.
Finally, we check condition (1) of the induction principle, in other words, we check
the lemma holds when X0 is affine. This follows from the case of schemes, see
Derived Categories of Schemes, Lemma 36.29.3. To see this use the equivalence of
Lemma 75.4.2 and use the translation of Lemma 75.13.5. □

75.25. Cohomology and base change, VI

0A1N A final section on cohomology and base change continuing the discussion of Sections
75.20, 75.21, and 75.22. An easy to grok special case is given in Remark 75.25.2.

Lemma 75.25.1.0A1P Let S be a scheme. Let f : X → Y be a morphism of finite
presentation between algebraic spaces over S. Let E ∈ D(OX) be a perfect object.
Let G• be a bounded complex of finitely presented OX -modules, flat over Y , with
support proper over Y . Then

K = Rf∗(E ⊗L
OX
G•)

is a perfect object ofD(OY ) and its formation commutes with arbitrary base change.

https://stacks.math.columbia.edu/tag/09RJ
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Proof. The statement on base change is Lemma 75.21.4. Thus it suffices to show
that K is a perfect object. If Y is Noetherian, then this follows from Lemma
75.22.2. We will reduce to this case by Noetherian approximation. We encourage
the reader to skip the rest of this proof.
The question is local on Y , hence we may assume Y is affine. Say Y = Spec(R). We
write R = colimRi as a filtered colimit of Noetherian rings Ri. By Limits of Spaces,
Lemma 70.7.1 there exists an i and an algebraic space Xi of finite presentation over
Ri whose base change to R is X. By Limits of Spaces, Lemma 70.7.2 we may
assume after increasing i, that there exists a bounded complex of finitely presented
OXi-modules G•

i whose pullback to X is G•. After increasing i we may assume Gni
is flat over Ri, see Limits of Spaces, Lemma 70.6.12. After increasing i we may
assume the support of Gni is proper over Ri, see Limits of Spaces, Lemma 70.12.3.
Finally, by Lemma 75.24.3 we may, after increasing i, assume there exists a perfect
object Ei of D(OXi) whose pullback to X is E. By Lemma 75.22.2 we have that
Ki = Rfi,∗(Ei ⊗L

OXi
G•
i ) is perfect on Spec(Ri) where fi : Xi → Spec(Ri) is the

structure morphism. By the base change result (Lemma 75.21.4) the pullback of
Ki to Y = Spec(R) is K and we conclude. □

Remark 75.25.2.0A1Q Let R be a ring. Let X be an algebraic space of finite presentation
over R. Let G be a finitely presented OX -module flat over R with support proper
over R. By Lemma 75.25.1 there exists a finite complex of finite projective R-
modules M• such that we have

RΓ(XR′ ,GR′) = M• ⊗R R′

functorially in the R-algebra R′.

Lemma 75.25.3.0CTL Let S be a scheme. Let f : X → Y be a morphism of finite
presentation between algebraic spaces over S. Let E ∈ D(OX) be a pseudo-coherent
object. Let G• be a bounded above complex of finitely presented OX -modules, flat
over Y , with support proper over Y . Then

K = Rf∗(E ⊗L
OX
G•)

is a pseudo-coherent object of D(OY ) and its formation commutes with arbitrary
base change.

Proof. The statement on base change is Lemma 75.21.4. Thus it suffices to show
that K is a pseudo-coherent object. This will follow from Lemma 75.25.1 by ap-
proximation by perfect complexes. We encourage the reader to skip the rest of the
proof.
The question is étale local on Y , hence we may assume Y is affine. Then X is
quasi-compact and quasi-separated. Moreover, there exists an integer N such that
total direct image Rf∗ : DQCoh(OX) → DQCoh(OY ) has cohomological dimension
N as explained in Lemma 75.6.1. Choose an integer b such that Gi = 0 for i > b. It
suffices to show that K is m-pseudo-coherent for every m. Choose an approximation
P → E by a perfect complex P of (X,E,m−N−1−b). This is possible by Theorem
75.14.7. Choose a distinguished triangle

P → E → C → P [1]
in DQCoh(OX). The cohomology sheaves of C are zero in degrees ≥ m−N − 1− b.
Hence the cohomology sheaves of C ⊗L G• are zero in degrees ≥ m−N − 1. Thus

https://stacks.math.columbia.edu/tag/0A1Q
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the cohomology sheaves of Rf∗(C ⊗L G) are zero in degrees ≥ m− 1. Hence

Rf∗(P ⊗L G)→ Rf∗(E ⊗L G)
is an isomorphism on cohomology sheaves in degrees ≥ m. Next, suppose that
Hi(P ) = 0 for i > a. Then P ⊗L σ≥m−N−1−aG• −→ P ⊗L G• is an isomorphism
on cohomology sheaves in degrees ≥ m−N − 1. Thus again we find that

Rf∗(P ⊗L σ≥m−N−1−aG•)→ Rf∗(P ⊗L G•)
is an isomorphism on cohomology sheaves in degrees ≥ m. By Lemma 75.25.1
the source is a perfect complex. We conclude that K is m-pseudo-coherent as
desired. □

Lemma 75.25.4.0CTM Let S be a scheme. Let f : X → Y be a proper morphism of
finite presentation of algebraic spaces over S.

(1) Let E ∈ D(OX) be perfect and f flat. Then Rf∗E is a perfect object of
D(OY ) and its formation commutes with arbitrary base change.

(2) Let G be an OX -module of finite presentation, flat over S. Then Rf∗G
is a perfect object of D(OY ) and its formation commutes with arbitrary
base change.

Proof. Special cases of Lemma 75.25.1 applied with (1) G• equal to OX in degree
0 and (2) E = OX and G• consisting of G sitting in degree 0. □

Lemma 75.25.5.0CTN Let S be a scheme. Let f : X → Y be a flat proper morphism of
finite presentation of algebraic spaces over S. Let E ∈ D(OX) be pseudo-coherent.
Then Rf∗E is a pseudo-coherent object of D(OY ) and its formation commutes with
arbitrary base change.

More generally, if f : X → Y is proper and E on X is pseudo-coherent relative to Y
(More on Morphisms of Spaces, Definition 76.45.3), then Rf∗E is pseudo-coherent
(but formation does not commute with base change in this generality). The case of
this for schemes is proved in [Kie72].

Proof. Special case of Lemma 75.25.3 applied with G = OX . □

Lemma 75.25.6.0D3F Let R be a ring. Let X be an algebraic space and let f : X →
Spec(R) be proper, flat, and of finite presentation. Let (Mn) be an inverse system
of R-modules with surjective transition maps. Then the canonical map

OX ⊗R (limMn) −→ limOX ⊗RMn

induces an isomorphism from the source to DQX applied to the target.

Proof. The statement means that for any object E of DQCoh(OX) the induced map
Hom(E,OX ⊗R (limMn)) −→ Hom(E, limOX ⊗RMn)

is an isomorphism. Since DQCoh(OX) has a perfect generator (Theorem 75.15.4)
it suffices to check this for perfect E. By Lemma 75.5.4 we have limOX ⊗RMn =
R limOX ⊗RMn. The exact functor RHomX(E,−) : DQCoh(OX)→ D(R) of Co-
homology on Sites, Section 21.36 commutes with products and hence with derived
limits, whence

RHomX(E, limOX ⊗RMn) = R limRHomX(E,OX ⊗RMn)

https://stacks.math.columbia.edu/tag/0CTM
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Let E∨ be the dual perfect complex, see Cohomology on Sites, Lemma 21.48.4. We
have

RHomX(E,OX ⊗RMn) = RΓ(X,E∨ ⊗L
OX

Lf∗Mn) = RΓ(X,E∨)⊗L
RMn

by Lemma 75.20.1. From Lemma 75.25.4 we see RΓ(X,E∨) is a perfect complex of
R-modules. In particular it is a pseudo-coherent complex and by More on Algebra,
Lemma 15.102.3 we obtain

R limRΓ(X,E∨)⊗L
RMn = RΓ(X,E∨)⊗L

R limMn

as desired. □

Lemma 75.25.7.0CWH Let A be a ring. Let X be an algebraic space over A which is
quasi-compact and quasi-separated. Let K ∈ D−

QCoh(OX). If RΓ(X,E ⊗L K) is
pseudo-coherent in D(A) for every perfect E in D(OX), then RΓ(X,E ⊗L K) is
pseudo-coherent in D(A) for every pseudo-coherent E in D(OX).

Proof. There exists an integer N such that RΓ(X,−) : DQCoh(OX) → D(A) has
cohomological dimension N as explained in Lemma 75.6.1. Let b ∈ Z be such
that Hi(K) = 0 for i > b. Let E be pseudo-coherent on X. It suffices to show
that RΓ(X,E ⊗L K) is m-pseudo-coherent for every m. Choose an approximation
P → E by a perfect complex P of (X,E,m − N − 1 − b). This is possible by
Theorem 75.14.7. Choose a distinguished triangle

P → E → C → P [1]
in DQCoh(OX). The cohomology sheaves of C are zero in degrees ≥ m−N − 1− b.
Hence the cohomology sheaves of C ⊗L K are zero in degrees ≥ m−N − 1. Thus
the cohomology of RΓ(X,C ⊗L K) are zero in degrees ≥ m− 1. Hence

RΓ(X,P ⊗L K)→ RΓ(X,E ⊗L K)
is an isomorphism on cohomology in degrees ≥ m. By assumption the source
is pseudo-coherent. We conclude that RΓ(X,E ⊗L K) is m-pseudo-coherent as
desired. □

Lemma 75.25.8.0A1R Let S be a scheme. Let f : X → Y be a morphism of finite
presentation between algebraic spaces over S. Let E ∈ D(OX) be a perfect object.
Let G• be a bounded complex of finitely presented OX -modules, flat over Y , with
support proper over Y . Then

K = Rf∗RHom(E,G•)
is a perfect object ofD(OY ) and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 75.21.5. Thus it suffices to show
that K is a perfect object. If Y is Noetherian, then this follows from Lemma
75.22.3. We will reduce to this case by Noetherian approximation. We encourage
the reader to skip the rest of this proof.
The question is local on Y , hence we may assume Y is affine. Say Y = Spec(R). We
write R = colimRi as a filtered colimit of Noetherian rings Ri. By Limits of Spaces,
Lemma 70.7.1 there exists an i and an algebraic space Xi of finite presentation over
Ri whose base change to R is X. By Limits of Spaces, Lemma 70.7.2 we may
assume after increasing i, that there exists a bounded complex of finitely presented
OXi-module G•

i whose pullback to X is G. After increasing i we may assume Gni is

https://stacks.math.columbia.edu/tag/0CWH
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flat over Ri, see Limits of Spaces, Lemma 70.6.12. After increasing i we may assume
the support of Gni is proper over Ri, see Limits of Spaces, Lemma 70.12.3. Finally,
by Lemma 75.13.5 we may, after increasing i, assume there exists a perfect object Ei
of D(OXi) whose pullback to X is E. Applying Lemma 75.23.2 to Xi → Spec(Ri),
Ei, G•

i and using the base change property already shown we obtain the result. □

75.26. Perfect complexes

0D1X We first talk about jumping loci for betti numbers of perfect complexes. First we
have to define betti numbers.
Let S be a scheme. Let X be an algebraic space over S. Let E be an object of
D(OX). Let x ∈ |X|. We want to define βi(x) ∈ {0, 1, 2, . . .} ∪ {∞}. To do this,
choose a morphism f : Spec(k) → X in the equivalence class of x. Then Lf∗E

is an object of D(Spec(k)étale,O). By Étale Cohomology, Lemma 59.59.4 and
Theorem 59.17.4 we find that D(Spec(k)étale,O) = D(k) is the derived category
of k-vector spaces. Hence Lf∗E is a complex of k-vector spaces and we can take
βi(x) = dimkH

i(Lf∗E). It is easy to see that this does not depend on the choice of
the representative in x. Moreover, if X is a scheme, this is the same as the notion
used in Derived Categories of Schemes, Section 36.31.

Lemma 75.26.1.0D1Y Let S be a scheme. Let X be an algebraic space over S. Let
E ∈ D(OX) be pseudo-coherent (for example perfect). For any i ∈ Z consider the
function

βi : |X| −→ {0, 1, 2, . . .}
defined above. Then we have

(1) formation of βi commutes with arbitrary base change,
(2) the functions βi are upper semi-continuous, and
(3) the level sets of βi are étale locally constructible.

Proof. Choose a scheme U and a surjective étale morphism φ : U → X. Then
Lφ∗E is a pseudo-coherent complex on the scheme U (use Lemma 75.13.2) and
we can apply the result for schemes, see Derived Categories of Schemes, Lemma
36.31.1. The meaning of part (3) is that the inverse image of the level sets to U are
locally constructible, see Properties of Spaces, Definition 66.8.2. □

Lemma 75.26.2.0E0R Let Y be a scheme and let X be an algebraic space over Y such
that the structure morphism f : X → Y is flat, proper, and of finite presentation.
Let F be an OX -module of finite presentation, flat over Y . For fixed i ∈ Z consider
the function

βi : |Y | → {0, 1, 2, . . .}, y 7−→ dimκ(y) H
i(Xy,Fy)

Then we have
(1) formation of βi commutes with arbitrary base change,
(2) the functions βi are upper semi-continuous, and
(3) the level sets of βi are locally constructible in Y .

Proof. By cohomology and base change (more precisely by Lemma 75.25.4) the
object K = Rf∗F is a perfect object of the derived category of Y whose formation
commutes with arbitrary base change. In particular we have

Hi(Xy,Fy) = Hi(K ⊗L
OY

κ(y))
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Thus the lemma follows from Lemma 75.26.1. □

Lemma 75.26.3.0D1Z Let S be a scheme. Let X be an algebraic space over S. Let
E ∈ D(OX) be perfect. The function

χE : |X| −→ Z, x 7−→
∑

(−1)iβi(x)

is locally constant on X.

Proof. Omitted. Hints: Follows from the case of schemes by étale localization. See
Derived Categories of Schemes, Lemma 36.31.2. □

Lemma 75.26.4.0D20 Let S be a scheme. Let X be an algebraic space over S. Let
E ∈ D(OX) be perfect. Given i, r ∈ Z, there exists an open subspace U ⊂ X
characterized by the following

(1) E|U ∼= Hi(E|U )[−i] and Hi(E|U ) is a locally free OU -module of rank r,
(2) a morphism f : Y → X factors through U if and only if Lf∗E is isomor-

phic to a locally free module of rank r placed in degree i.

Proof. Omitted. Hints: Follows from the case of schemes by étale localization. See
Derived Categories of Schemes, Lemma 36.31.3. □

Lemma 75.26.5.0E6A Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is proper, flat, and of finite presentation. Let F be an OX -
module of finite presentation, flat over Y . Fix i, r ∈ Z. Then there exists an open
subspace V ⊂ Y with the following property: A morphism T → Y factors through
V if and only if RfT,∗FT is isomorphic to a finite locally free module of rank r
placed in degree i.

Proof. By cohomology and base change ( Lemma 75.25.4) the object K = Rf∗F
is a perfect object of the derived category of Y whose formation commutes with
arbitrary base change. Thus this lemma follows immediately from Lemma 75.26.4.

□

Lemma 75.26.6.0D21 Let S be a scheme. Let X be an algebraic space over S. Let
E ∈ D(OX) be perfect of tor-amplitude in [a, b] for some a, b ∈ Z. Let r ≥ 0. Then
there exists a locally closed subspace j : Z → X characterized by the following

(1) Ha(Lj∗E) is a locally free OZ-module of rank r, and
(2) a morphism f : Y → X factors through Z if and only if for all morphisms

g : Y ′ → Y the OY ′ -module Ha(L(f ◦ g)∗E) is locally free of rank r.
Moreover, j : Z → X is of finite presentation and we have

(3) if f : Y → X factors as Y g−→ Z → X, then Ha(Lf∗E) = g∗Ha(Lj∗E),
(4) if βa(x) ≤ r for all x ∈ |X|, then j is a closed immersion and given

f : Y → X the following are equivalent
(a) f : Y → X factors through Z,
(b) H0(Lf∗E) is a locally free OY -module of rank r,
and if r = 1 these are also equivalent to
(c) OY → HomOY

(H0(Lf∗E), H0(Lf∗E)) is injective.

Proof. Omitted. Hints: Follows from the case of schemes by étale localization. See
Derived Categories of Schemes, Lemma 36.31.4. □
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Lemma 75.26.7.0E6B Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) f is proper, flat, and of finite presentation, and
(2) for a morphism Spec(k)→ Y where k is a field, we have k = H0(Xk,OXk).

Then we have
(a) f∗OX = OY and this holds after any base change,
(b) étale locally on Y we have

Rf∗OX = OY ⊕ P

in D(OY ) where P is perfect of tor amplitude in [1,∞).

Proof. It suffices to prove (a) and (b) étale locally on Y , thus we may and do
assume Y is an affine scheme. By cohomology and base change (Lemma 75.25.4)
the complex E = Rf∗OX is perfect and its formation commutes with arbitrary base
change. In particular, for y ∈ Y we see that H0(E⊗Lκ(y)) = H0(Xy,OXy ) = κ(y).
Thus β0(y) ≤ 1 for all y ∈ Y with notation as in Lemma 75.26.1. Apply Lemma
75.26.6 with a = 0 and r = 1. We obtain a universal closed subscheme j : Z → Y
with H0(Lj∗E) invertible characterized by the equivalence of (4)(a), (b), and (c)
of the lemma. Since formation of E commutes with base change, we have

Lf∗E = Rpr1,∗OX×YX

The morphism pr1 : X ×Y X has a section namely the diagonal morphism ∆ for X
over Y . We obtain maps

OX −→ Rpr1,∗OX×YX −→ OX

in D(OX) whose composition is the identity. Thus Rpr1,∗OX×YX = OX ⊕ E′ in
D(OX). Thus OX is a direct summand of H0(Lf∗E) and we conclude that X → Y
factors through Z by the equivalence of (4)(c) and (4)(a) of the lemma cited above.
Since {X → Y } is an fppf covering, we have Z = Y . Thus f∗OX is an invertible
OY -module. We conclude OY → f∗OX is an isomorphism because a ring map
A → B such that B is invertible as an A-module is an isomorphism. Since the
assumptions are preserved under base change, we see that (a) is true.

Proof of (b). Above we have seen that for every y ∈ Y the mapOY → H0(E⊗Lκ(y))
is surjective. Thus we may apply More on Algebra, Lemma 15.76.2 to see that in
an open neighbourhood of y we have a decomposition Rf∗OX = OY ⊕ P □

Lemma 75.26.8.0E0S Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) f is proper, flat, and of finite presentation, and
(2) the geometric fibres of f are reduced and connected.

Then f∗OX = OY and this holds after any base change.

Proof. By Lemma 75.26.7 it suffices to show that k = H0(Xk,OXk) for all mor-
phisms Spec(k) → Y where k is a field. This follows from Spaces over Fields,
Lemma 72.14.3 and the fact that Xk is geometrically connected and geometrically
reduced. □
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75.27. Other applications

0CRT In this section we state and prove some results that can be deduced from the theory
worked out above.

Lemma 75.27.1.0CRU Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let K be an object of DQCoh(OX) such that the cohomology
sheaves Hi(K) have countable sets of sections over affine schemes étale over X.
Then for any quasi-compact and quasi-separated étale morphism U → X and any
perfect object E in D(OX) the sets

Hi(U,K ⊗L E), Exti(E|U ,K|U )

are countable.

Proof. Using Cohomology on Sites, Lemma 21.48.4 we see that it suffices to prove
the result for the groups Hi(U,K ⊗L E). We will use the induction principle to
prove the lemma, see Lemma 75.9.3.

When U = Spec(A) is affine the result follows from the case of schemes, see Derived
Categories of Schemes, Lemma 36.33.2.

To finish the proof it suffices to show: if (U ⊂ W,V → W ) is an elementary
distinguished triangle and the result holds for U , V , and U ×W V , then the result
holds for W . This is an immediate consquence of the Mayer-Vietoris sequence, see
Lemma 75.10.5. □

Lemma 75.27.2.0CRV Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Assume the sets of sections of OX over affines étale over X
are countable. Let K be an object of DQCoh(OX). The following are equivalent

(1) K = hocolimEn with En a perfect object of D(OX), and
(2) the cohomology sheaves Hi(K) have countable sets of sections over affines

étale over X.

Proof. If (1) is true, then (2) is true because homotopy colimits commutes with
taking cohomology sheaves (by Derived Categories, Lemma 13.33.8) and because a
perfect complex is locally isomorphic to a finite complex of finite free OX -modules
and therefore satisfies (2) by assumption on X.

Assume (2). Choose a K-injective complex K• representing K. Choose a perfect
generator E of DQCoh(OX) and represent it by a K-injective complex I•. According
to Theorem 75.17.3 and its proof there is an equivalence of triangulated categories
F : DQCoh(OX)→ D(A,d) where (A,d) is the differential graded algebra

(A,d) = HomCompdg(OX)(I•, I•)

which maps K to the differential graded module

M = HomCompdg(OX)(I•,K•)

Note that Hi(A) = Exti(E,E) and Hi(M) = Exti(E,K). Moreover, since F is an
equivalence it and its quasi-inverse commute with homotopy colimits. Therefore,
it suffices to write M as a homotopy colimit of compact objects of D(A,d). By
Differential Graded Algebra, Lemma 22.38.3 it suffices show that Exti(E,E) and
Exti(E,K) are countable for each i. This follows from Lemma 75.27.1. □
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Lemma 75.27.3.0CRW Let A be a ring. Let f : U → X be a flat morphism of algebraic
spaces of finite presentation over A. Then

(1) there exists an inverse system of perfect objects Ln of D(OX) such that
RΓ(U,Lf∗K) = hocolim RHomX(Ln,K)

in D(A) functorially in K in DQCoh(OX), and
(2) there exists a system of perfect objects En of D(OX) such that

RΓ(U,Lf∗K) = hocolim RΓ(X,En ⊗L K)
in D(A) functorially in K in DQCoh(OX).

Proof. By Lemma 75.20.1 we have
RΓ(U,Lf∗K) = RΓ(X,Rf∗OU ⊗L K)

functorially in K. Observe that RΓ(X,−) commutes with homotopy colimits be-
cause it commutes with direct sums by Lemma 75.6.2. Similarly, −⊗LK commutes
with derived colimits because −⊗L K commutes with direct sums (because direct
sums in D(OX) are given by direct sums of representing complexes). Hence to
prove (2) it suffices to write Rf∗OU = hocolimEn for a system of perfect objects
En of D(OX). Once this is done we obtain (1) by setting Ln = E∨

n , see Cohomology
on Sites, Lemma 21.48.4.
Write A = colimAi with Ai of finite type over Z. By Limits of Spaces, Lemma
70.7.1 we can find an i and morphisms Ui → Xi → Spec(Ai) of finite presentation
whose base change to Spec(A) recovers U → X → Spec(A). After increasing i we
may assume that fi : Ui → Xi is flat, see Limits of Spaces, Lemma 70.6.12. By
Lemma 75.20.4 the derived pullback of Rfi,∗OUi by g : X → Xi is equal to Rf∗OU .
Since Lg∗ commutes with derived colimits, it suffices to prove what we want for fi.
Hence we may assume that U and X are of finite type over Z.
Assume f : U → X is a morphism of algebraic spaces of finite type over Z. To
finish the proof we will show thatRf∗OU is a homotopy colimit of perfect complexes.
To see this we apply Lemma 75.27.2. Thus it suffices to show that Rif∗OU has
countable sets of sections over affines étale over X. This follows from Lemma
75.27.1 applied to the structure sheaf. □

75.28. The resolution property

0GUR This section is the analogue of Derived Categories of Schemes, Section 36.36 for al-
gebraic spaces; please read that section first. It is currently not known if a smooth
proper algebraic space over a field always has the resolution property or if this is
false. If you know the answer to this question, please email stacks.project@gmail.com.
We can make the following definition although it scarcely makes sense to consider
it for general algebraic spaces.

Definition 75.28.1.0GUS Let S be a scheme. Let X be an algebraic space over S. We
say X has the resolution property if every quasi-coherent OX -module of finite type
is the quotient of a finite locally free OX -module.

If X is a quasi-compact and quasi-separated algebraic space, then it suffices to check
every OX -module module of finite presentation (automatically quasi-coherent) is
the quotient of a finite locally free OX -module, see Limits of Spaces, Lemma 70.9.3.

https://stacks.math.columbia.edu/tag/0CRW
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If X is a Noetherian algebraic space, then finite type quasi-coherent modules are
exactly the coherent OX -modules, see Cohomology of Spaces, Lemma 69.12.2.

Lemma 75.28.2.0GUT Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) Y is quasi-compact and quasi-separated and has the resolution property,
(2) there exists an f -ample invertible module on X (Divisors on Spaces, Def-

inition 71.14.1).
Then X has the resolution property.

Proof. Let F be a finite type quasi-coherent OX -module. Let L be an f -ample
invertible module. Choose an affine scheme V and a surjective étale morphism
V → Y . Set U = V ×Y X. Then L|U is ample on U . By Properties, Proposition
28.26.13 we know there exists finitely many maps si : L⊗ni |U → F|U which are
jointly surjective. Consider the quasi-coherent OY -modules

Hn = f∗(F ⊗OX
L⊗n)

We may think of si as a section over V of the sheaf H−ni . Suppose we can find
finite locally free OY -modules Ei and maps Ei → H−ni such that si is in the image.
Then the corresponding maps

f∗Ei ⊗OX
L⊗ni −→ F

are going to be jointly surjective and the lemma is proved. By Limits of Spaces,
Lemma 70.9.2 for each i we can find a finite type quasi-coherent submodule H′

i ⊂
H−ni which contains the section si over V . Thus the resolution property of Y
produces surjections Ei → H′

i and we conclude. □

Lemma 75.28.3.0GUU Let S be a scheme. Let f : X → Y be an affine or quasi-affine
morphism of algebraic spaces over S with Y quasi-compact and quasi-separated. If
Y has the resolution property, so does X.

Proof. By Divisors on Spaces, Lemma 71.14.7 this is a special case of Lemma
75.28.2. □

Here is a case where one can prove the resolution property goes down.

Lemma 75.28.4.0GUV Let S be a scheme. Let f : X → Y be a surjective finite locally
free morphism of algebraic spaces over S. If X has the resolution property, so does
Y .

Proof. The condition means that f is affine and that f∗OX is a finite locally free
OY -module of positive rank. Let G be a quasi-coherent OY -module of finite type.
By assumption there exists a surjection E → f∗G for some finite locally free OX -
module E . Since f∗ is exact (Cohomology of Spaces, Section 69.4) we get a surjection

f∗E −→ f∗f
∗G = G ⊗OY

f∗OX
Taking duals we get a surjection

f∗E ⊗OY
HomOY

(f∗OX ,OY ) −→ G
Since f∗E is finite locally free, we conclude. □

For more on the resolution property of algebraic spaces, please see More on Mor-
phisms of Spaces, Section 76.56.
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75.29. Detecting Boundedness

0GFE In this section, we show that compact generators of DQCoh of a quasi-compact,
quasi-separated scheme, as constructed in Section 75.15, have a special property.
We recommend reading that section first as it is very similar to this one.

Lemma 75.29.1.0GFF Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let P ∈ Dperf (OX) and E ∈ DQCoh(OX). Let a ∈ Z. The
following are equivalent

(1) HomD(OX)(P [−i], E) = 0 for i≫ 0, and
(2) HomD(OX)(P [−i], τ≥aE) = 0 for i≫ 0.

Proof. Using the triangle τ<aE → E → τ≥aE → we see that the equivalence follows
if we can show

HomD(OX)(P [−i], τ<aE) = HomD(OX)(P, (τ<aE)[i]) = 0

for i≫ 0. As P is perfect this is true by Lemma 75.17.2. □

Lemma 75.29.2.0GFG Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let P ∈ Dperf (OX) and E ∈ DQCoh(OX). Let a ∈ Z. The
following are equivalent

(1) HomD(OX)(P [−i], E) = 0 for i≪ 0, and
(2) HomD(OX)(P [−i], τ≤aE) = 0 for i≪ 0.

Proof. Using the triangle τ≤aE → E → τ>aE → we see that the equivalence follows
if we can show

HomD(OX)(P [−i], τ>aE) = HomD(OX)(P, (τ>aE)[i]) = 0

for i≪ 0. As P is perfect this is true by Lemma 75.17.2. □

Proposition 75.29.3.0GFH Let S be a scheme. Let X be a quasi-compact and quasi-
separated algebraic space over S. Let G ∈ Dperf (OX) be a perfect complex which
generates DQCoh(OX). Let E ∈ DQCoh(OX). The following are equivalent

(1) E ∈ D−
QCoh(OX),

(2) HomD(OX)(G[−i], E) = 0 for i≫ 0,
(3) ExtiX(G,E) = 0 for i≫ 0,
(4) RHomX(G,E) is in D−(Z),
(5) Hi(X,G∨ ⊗L

OX
E) = 0 for i≫ 0,

(6) RΓ(X,G∨ ⊗L
OX

E) is in D−(Z),
(7) for every perfect object P of D(OX)

(a) the assertions (2), (3), (4) hold with G replaced by P , and
(b) Hi(X,P ⊗L

OX
E) = 0 for i≫ 0,

(c) RΓ(X,P ⊗L
OX

E) is in D−(Z).

Proof. Assume (1). Since HomD(OX)(G[−i], E) = HomD(OX)(G,E[i]) we see that
this is zero for i≫ 0 by Lemma 75.17.2. This proves that (1) implies (2).

Parts (2), (3), (4) are equivalent by the discussion in Cohomology on Sites, Section
21.36. Part (5) and (6) are equivalent as Hi(X,−) = Hi(RΓ(X,−)) by definition.
The equivalent conditions (2), (3), (4) are equivalent to the equivalent conditions
(5), (6) by Cohomology on Sites, Lemma 21.48.4 and the fact that (G[−i])∨ = G∨[i].
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It is clear that (7) implies (2). Conversely, let us prove that the equivalent conditions
(2) – (6) imply (7). Recall that G is a classical generator for Dperf (OX) by Remark
75.16.2. For P ∈ Dperf (OX) let T (P ) be the assertion that RHomX(P,E) is in
D−(Z). Clearly, T is inherited by direct sums, satisfies the 2-out-of-three property
for distinguished triangles, is inherited by direct summands, and is perserved by
shifts. Hence by Derived Categories, Remark 13.36.7 we see that (4) implies T
holds on all of Dperf (OX). The same argument works for all other properties,
except that for property (7)(b) and (7)(c) we also use that P 7→ P∨ is a self
equivalence of Dperf (OX). Small detail omitted.
We will prove the equivalent conditions (2) – (7) imply (1) using the induction
principle of Lemma 75.9.3.
First, we prove (2) – (7)⇒ (1) if X is affine. This follows from the case of schemes,
see Derived Categories of Schemes, Proposition 36.40.5.
Now assume (U ⊂ X, j : V → X) is an elementary distinguished square of quasi-
compact and quasi-separated algebraic spaces over S and assume the implication
(2) – (7) ⇒ (1) is known for U , V , and U ×X V . To finish the proof we have to
show the implication (2) – (7) ⇒ (1) for X. Suppose E ∈ DQCoh(OX) satisfies (2)
– (7). By Lemma 75.15.3 and Theorem 75.15.4 there exists a perfect complex Q on
X such that Q|U generates DQCoh(OU ).
Say V = Spec(A). Let Z ⊂ V be the reduced closed subscheme which is the inverse
image of X\U and maps isomorphically to it (see Definition 75.9.1). This is a retro-
compact closed subset of V . Choose f1, . . . , fr ∈ A such that Z = V (f1, . . . , fr).
Let K ∈ D(OV ) be the perfect object corresponding to the Koszul complex on
f1, . . . , fr overA. Note that sinceK is supported on Z, the pushforwardK ′ = Rj∗K
is a perfect object of D(OX) whose restriction to V is K (see Lemmas 75.14.3
and 75.10.7). By assumption, we know RHomOX

(Q,E) and RHomOX
(K ′, E) are

bounded above.
By Lemma 75.10.7 we have K ′ = j!K and hence

HomD(OX)(K ′[−i], E) = HomD(OV )(K[−i], E|V ) = 0
for i≫ 0. Therefore, we may apply Derived Categories of Schemes, Lemma 36.40.1
to E|V to obtain an integer a such that τ≥a(E|V ) = τ≥aR(U×XV → V )∗(E|U×XV ).
Then τ≥aE = τ≥aR(U → X)∗(E|U ) (check that the canonical map is an isomor-
phism after restricting to U and to V ). Hence using Lemma 75.29.1 twice we see
that

HomD(OU )(Q|U [−i], E|U ) = HomD(OX)(Q[−i], R(U → X)∗(E|U )) = 0
for i ≫ 0. Since the Proposition holds for U and the generator Q|U , we have
E|U ∈ D−

QCoh(OU ). But then since the functor R(U → X)∗ preserves D−
QCoh (by

Lemma 75.6.1), we get τ≥aE ∈ D−
QCoh(OX). Thus E ∈ D−

QCoh(OX). □

Proposition 75.29.4.0GFI Let S be a scheme. Let X be a quasi-compact and quasi-
separated algebraic space over S. Let G ∈ Dperf (OX) be a perfect complex which
generates DQCoh(OX). Let E ∈ DQCoh(OX). The following are equivalent

(1) E ∈ D+
QCoh(OX),

(2) HomD(OX)(G[−i], E) = 0 for i≪ 0,
(3) ExtiX(G,E) = 0 for i≪ 0,

https://stacks.math.columbia.edu/tag/0GFI
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(4) RHomX(G,E) is in D+(Z),
(5) Hi(X,G∨ ⊗L

OX
E) = 0 for i≪ 0,

(6) RΓ(X,G∨ ⊗L
OX

E) is in D+(Z),
(7) for every perfect object P of D(OX)

(a) the assertions (2), (3), (4) hold with G replaced by P , and
(b) Hi(X,P ⊗L

OX
E) = 0 for i≪ 0,

(c) RΓ(X,P ⊗L
OX

E) is in D+(Z).

Proof. Assume (1). Since HomD(OX)(G[−i], E) = HomD(OX)(G,E[i]) we see that
this is zero for i≪ 0 by Lemma 75.17.2. This proves that (1) implies (2).
Parts (2), (3), (4) are equivalent by the discussion in Cohomology on Sites, Section
21.36. Part (5) and (6) are equivalent as Hi(X,−) = Hi(RΓ(X,−)) by definition.
The equivalent conditions (2), (3), (4) are equivalent to the equivalent conditions
(5), (6) by Cohomology on Sites, Lemma 21.48.4 and the fact that (G[−i])∨ = G∨[i].
It is clear that (7) implies (2). Conversely, let us prove that the equivalent conditions
(2) – (6) imply (7). Recall that G is a classical generator for Dperf (OX) by Remark
75.16.2. For P ∈ Dperf (OX) let T (P ) be the assertion that RHomX(P,E) is in
D+(Z). Clearly, T is inherited by direct sums, satisfies the 2-out-of-three property
for distinguished triangles, is inherited by direct summands, and is perserved by
shifts. Hence by Derived Categories, Remark 13.36.7 we see that (4) implies T
holds on all of Dperf (OX). The same argument works for all other properties,
except that for property (7)(b) and (7)(c) we also use that P 7→ P∨ is a self
equivalence of Dperf (OX). Small detail omitted.
We will prove the equivalent conditions (2) – (7) imply (1) using the induction
principle of Lemma 75.9.3.
First, we prove (2) – (7)⇒ (1) if X is affine. This follows from the case of schemes,
see Derived Categories of Schemes, Proposition 36.40.6.
Now assume (U ⊂ X, j : V → X) is an elementary distinguished square of quasi-
compact and quasi-separated algebraic spaces over S and assume the implication
(2) – (7) ⇒ (1) is known for U , V , and U ×X V . To finish the proof we have to
show the implication (2) – (7) ⇒ (1) for X. Suppose E ∈ DQCoh(OX) satisfies (2)
– (7). By Lemma 75.15.3 and Theorem 75.15.4 there exists a perfect complex Q on
X such that Q|U generates DQCoh(OU ).
Say V = Spec(A). Let Z ⊂ V be the reduced closed subscheme which is the inverse
image of X\U and maps isomorphically to it (see Definition 75.9.1). This is a retro-
compact closed subset of V . Choose f1, . . . , fr ∈ A such that Z = V (f1, . . . , fr). Let
K ∈ D(OV ) be the perfect object corresponding to the Koszul complex on f1, . . . , fr
over A. Note that since K is supported on Z, the pushforward K ′ = Rj∗K is a per-
fect object of D(OX) whose restriction to V is K (see Lemmas 75.14.3 and 75.10.7).
By assumption, we know RHomOX

(Q,E) and RHomOX
(K ′, E) are bounded be-

low.
By Lemma 75.10.7 we have K ′ = j!K and hence

HomD(OX)(K ′[−i], E) = HomD(OV )(K[−i], E|V ) = 0
for i≪ 0. Therefore, we may apply Derived Categories of Schemes, Lemma 36.40.2
to E|V to obtain an integer a such that τ≤a(E|V ) = τ≤aR(U×XV → V )∗(E|U×XV ).
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Then τ≤aE = τ≤aR(U → X)∗(E|U ) (check that the canonical map is an isomor-
phism after restricting to U and to V ). Hence using Lemma 75.29.2 twice we see
that

HomD(OU )(Q|U [−i], E|U ) = HomD(OX)(Q[−i], R(U → X)∗(E|U )) = 0
for i ≪ 0. Since the Proposition holds for U and the generator Q|U , we have
E|U ∈ D+

QCoh(OU ). But then since the functor R(U → X)∗ preserves D+
QCoh (by

Lemma 75.6.1), we get τ≤aE ∈ D+
QCoh(OX). Thus E ∈ D+

QCoh(OX). □

75.30. Quasi-coherent objects in the derived category

0H05 Let S be a scheme. Let X be an algebraic space over S. Recall that Xaffine,étale

denotes the category of affine objects of Xétale with topology given by standard
étale coverings, see Properties of Spaces, Definition 66.18.5. We remind the reader
that the topos of Xaffine,étale is the small étale topos of X, see Properties of Spaces,
Lemma 66.18.6. The site Xétale comes with a structure sheaf OX whose restriction
to Xaffine,étale we also denote OX . Then there is an equivalence of ringed topoi

(Sh(Xaffine,étale),OX) −→ (Sh(Xétale),OX)
See Descent on Spaces, Equation (74.5.0.1) and the discussion in Descent on Spaces,
Section 74.5.
In this section we denote Xaffine the underlying category of Xaffine,étale endowed
with the chaotic topology, i.e., such that sheaves agree with presheaves. In par-
ticular, the structure sheaf OX becomes a sheaf on Xaffine as well. We obtain a
morphisms of ringed sites

ϵ : (Xaffine,étale,OX) −→ (Xaffine,OX)
as in Cohomology on Sites, Section 21.27. In this section we will identifyDQCoh(OX)
with the category QC (Xaffine,OX) introduced in Cohomology on Sites, Section
21.43.

Lemma 75.30.1.0H06 In the sitation above there are canonical exact equivalences be-
tween the following triangulated categories

(1) DQCoh(OX),
(2) DQCoh(Xaffine,étale,OX),
(3) DQCoh(Xaffine,OX), and
(4) QC (Xaffine,OX).

Proof. If U → V → X are étale morphisms with U and V affine, then the ring
map OX(V ) → OX(U) is flat. Hence the equivalence between (3) and (4) is a
special case of Cohomology on Sites, Lemma 21.43.11 (the proof also clarifies the
statement).
The discussion preceding the lemma shows that we have an equivalence of ringed
topoi (Sh(Xaffine,étale),OX) → (Sh(Xétale),OX) and hence an equivalence be-
tween abelian categories of modules. Since the notion of quasi-coherent modules
is intrinsic (Modules on Sites, Lemma 18.23.2) we see that this equivalence pre-
serves the subcategories of quasi-coherent modules. Thus we get a canonical exact
equivalence between the triangulated categories in (1) and (2).
To get an exact equivalence between the triangulated categories in (2) and (3) we
will apply Cohomology on Sites, Lemma 21.29.1 to the morphism ϵ : (Xaffine,étale,OX)→

https://stacks.math.columbia.edu/tag/0H06
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(Xaffine,OX) above. We take B = Ob(Xaffine) and we takeA ⊂ PMod(Xaffine,O)
to be the full subcategory of those presheaves F such that F(V )⊗OX(V )OX(U)→
F(U) is an isomorphism. Observe that by Descent on Spaces, Lemma 74.5.1 ob-
jects of A are exactly those sheaves in the étale topology which are quasi-coherent
modules on (Xaffine,étale,OX). On the other hand, by Modules on Sites, Lemma
18.24.2, the objects of A are exactly the quasi-coherent modules on (Xaffine,OX),
i.e., in the chaotic topology. Thus if we show that Cohomology on Sites, Lemma
21.29.1 applies, then we do indeed get the canonical equivalence between the cate-
gories of (2) and (3) using ϵ∗ and Rϵ∗.
We have to verify 4 conditions:

(1) Every object of A is a sheaf for the étale topology. This we have seen
above.

(2) A is a weak Serre subcategory of Mod(Xaffine,étale,OX). Above we have
seen that A = QCoh(Xaffine,étale,OX) and we have seen above that
these, via the equivalence Mod(Xaffine,étale,O) = Mod(Xétale,OX), cor-
respond to the quasi-coherent modules on X. Thus the result by Proper-
ties of Spaces, Lemma 66.29.7 and Homology, Lemma 12.10.3.

(3) Every object of Xaffine has a covering in the chaotic topology whose
members are elements of B. This holds because B contains all objects.

(4) For every object U of Xaffine and F in A we have Hp
Zar(U,F) = 0

for p > 0. This holds by the vanishing of cohomology of quasi-coherent
modules on affines, see discussion in Cohomology of Spaces, Section 69.3
and Cohomology of Schemes, Lemma 30.2.2.

This finishes the proof. □

Remark 75.30.2.0H07 Let S be a scheme. Let X be an algebraic space over S. We will
later show that also QC ((Aff/X),O) is canonically equivalent to DQCoh(OX). See
Sheaves on Stacks, Proposition 96.26.4.
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CHAPTER 76

More on Morphisms of Spaces

049F 76.1. Introduction

049G In this chapter we continue our study of properties of morphisms of algebraic spaces.
A fundamental reference is [Knu71].

76.2. Conventions

049H The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.
Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

76.3. Radicial morphisms

0480 It turns out that a radicial morphism is not the same thing as a universally injective
morphism, contrary to what happens with morphisms of schemes. In fact it is a bit
stronger.

Definition 76.3.1.0481 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is radicial if for any morphism Spec(K) → Y where K
is a field the reduction (Spec(K)×Y X)red is either empty or representable by the
spectrum of a purely inseparable field extension of K.

Lemma 76.3.2.0482 A radicial morphism of algebraic spaces is universally injective.

Proof. Let S be a scheme. Let f : X → Y be a radicial morphism of algebraic
spaces over S. It is clear from the definition that given a morphism Spec(K)→ Y
there is at most one lift of this morphism to a morphism into X. Hence we conclude
that f is universally injective by Morphisms of Spaces, Lemma 67.19.2. □

Example 76.3.3.0483 It is no longer true that universally injective is equivalent to
radicial. For example the morphism

X = [Spec(Q)/Gal(Q/Q)] −→ S = Spec(Q)
of Spaces, Example 65.14.7 is universally injective, but is not radicial in the sense
above.

Nonetheless it is often the case that the reverse implication holds.

Lemma 76.3.4.0484 Let S be a scheme. Let f : X → Y be a universally injective
morphism of algebraic spaces over S.

(1) If f is decent then f is radicial.

5784
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(2) If f is quasi-separated then f is radicial.
(3) If f is locally separated then f is radicial.

Proof. Let P be a property of morphisms of algebraic spaces which is stable under
base change and composition and holds for closed immersions. Assume f : X → Y
has P and is universally injective. Then, in the situation of Definition 76.3.1 the
morphism (Spec(K)×Y X)red → Spec(K) is universally injective and has P. This
reduces the problem of proving

P + universally injective⇒ radicial
to the problem of proving that any nonempty reduced algebraic space X over field
whose structure morphism X → Spec(K) is universally injective and P is repre-
sentable by the spectrum of a field. Namely, then X → Spec(K) will be a morphism
of schemes and we conclude by the equivalence of radicial and universally injective
for morphisms of schemes, see Morphisms, Lemma 29.10.2.
Let us prove (1). Assume f is decent and universally injective. By Decent Spaces,
Lemmas 68.17.4, 68.17.6, and 68.17.2 (to see that an immersion is decent) we see
that the discussion in the first paragraph applies. Let X be a nonempty decent
reduced algebraic space universally injective over a field K. In particular we see that
|X| is a singleton. By Decent Spaces, Lemma 68.14.2 we conclude that X ∼= Spec(L)
for some extension K ⊂ L as desired.
A quasi-separated morphism is decent, see Decent Spaces, Lemma 68.17.2. Hence
(1) implies (2).
Let us prove (3). Recall that the separation axioms are stable under base change and
composition and that closed immersions are separated, see Morphisms of Spaces,
Lemmas 67.4.4, 67.4.8, and 67.10.7. Thus the discussion in the first paragraph of
the proof applies. Let X be a reduced algebraic space universally injective and
locally separated over a field K. In particular |X| is a singleton hence X is quasi-
compact, see Properties of Spaces, Lemma 66.5.2. We can find a surjective étale
morphism U → X with U affine, see Properties of Spaces, Lemma 66.6.3. Consider
the morphism of schemes

j : U ×X U −→ U ×Spec(K) U

As X → Spec(K) is universally injective j is surjective, and as X → Spec(K) is
locally separated j is an immersion. A surjective immersion is a closed immersion,
see Schemes, Lemma 26.10.4. Hence R = U ×X U is affine as a closed subscheme
of an affine scheme. In particular R is quasi-compact. It follows that X = U/R is
quasi-separated, and the result follows from (2). □

Remark 76.3.5.049E Let X → Y be a morphism of algebraic spaces. For some applica-
tions (of radicial morphisms) it is enough to require that for every Spec(K) → Y
where K is a field

(1) the space |Spec(K)×Y X| is a singleton,
(2) there exists a monomorphism Spec(L)→ Spec(K)×Y X, and
(3) K ⊂ L is purely inseparable.

If needed later we will may call such a morphism weakly radicial. For example if
X → Y is a surjective weakly radicial morphism then X(k) → Y (k) is surjective
for every algebraically closed field k. Note that the base change XQ → Spec(Q) of
the morphism in Example 76.3.3 is weakly radicial, but not radicial. The analogue

https://stacks.math.columbia.edu/tag/049E
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of Lemma 76.3.4 is that if X → Y has property (β) and is universally injective,
then it is weakly radicial (proof omitted).

Lemma 76.3.6.0AGE Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) f is locally of finite type,
(2) for every étale morphism V → Y the map |X ×Y V | → |V | is injective.

Then f is universally injective.

Proof. The question is étale local on Y by Morphisms of Spaces, Lemma 67.19.6.
Hence we may assume that Y is a scheme. Then Y is in particular decent and by
Decent Spaces, Lemma 68.18.9 we see that f is locally quasi-finite. Let y ∈ Y be a
point and let Xy be the scheme theoretic fibre. Assume Xy is not empty. By Spaces
over Fields, Lemma 72.10.8 we see that Xy is a scheme which is locally quasi-finite
over κ(y). Since |Xy| ⊂ |X| is the fibre of |X| → |Y | over y we see that Xy has a
unique point x. The same is true for Xy ×Spec(κ(y)) Spec(k) for any finite separable
extension k/κ(y) because we can realize k as the residue field at a point lying over
y in an étale scheme over Y , see More on Morphisms, Lemma 37.35.2. Thus Xy is
geometrically connected, see Varieties, Lemma 33.7.11. This implies that the finite
extension κ(x)/κ(y) is purely inseparable.
We conclude (in the case that Y is a scheme) that for every y ∈ Y either the
fibre Xy is empty, or (Xy)red = Spec(κ(x)) with κ(y) ⊂ κ(x) purely inseparable.
Hence f is radicial (some details omitted), whence universally injective by Lemma
76.3.2. □

76.4. Monomorphisms

0B89 This section is the continuation of Morphisms of Spaces, Section 67.10. We would
like to know whether or not every monomorphism of algebraic spaces is repre-
sentable. If you can prove this is true or have a counterexample, please email
stacks.project@gmail.com. For the moment this is known in the following cases

(1) for monomorphisms which are locally of finite type (more generally any
separated, locally quasi-finite morphism is representable by Morphisms
of Spaces, Lemma 67.51.1 and a monomorphism which is locally of finite
type is locally quasi-finite by Morphisms of Spaces, Lemma 67.27.10),

(2) if the target is a disjoint union of spectra of zero dimensional local rings
(Decent Spaces, Lemma 68.19.1), and

(3) for flat monomorphisms (see below).

Lemma 76.4.1 (David Rydh).0B8A A flat monomorphism of algebraic spaces is repre-
sentable by schemes.

Proof. Let f : X → Y be a flat monomorphism of algebraic spaces. To prove f is
representable, we have to show X ×Y V is a scheme for every scheme V mapping
to Y . Since being a scheme is local (Properties of Spaces, Lemma 66.13.1), we may
assume V is affine. Thus we may assume Y = Spec(B) is an affine scheme. Next,
we can assume that X is quasi-compact by replacing X by a quasi-compact open.
The space X is separated as X → X×Spec(B)X is an isomorphism. Applying Limits
of Spaces, Lemma 70.17.3 we reduce to the case where B is local, X → Spec(B)
is a flat monomorphism, and there exists a point x ∈ X mapping to the closed

https://stacks.math.columbia.edu/tag/0AGE
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point of Spec(B). Then X → Spec(B) is surjective as generalizations lift along flat
morphisms of separated algebraic spaces, see Decent Spaces, Lemma 68.7.4. Hence
we see that {X → Spec(B)} is an fpqc cover. Then X → Spec(B) is a morphism
which becomes an isomorphism after base change by X → Spec(B). Hence it is an
isomorphism by fpqc descent, see Descent on Spaces, Lemma 74.11.15. □

The following is (in some sense) a variant of the lemma above.

Lemma 76.4.2.0B8B Let S be a scheme. Let f : X → Y be a quasi-compact monomor-
phism of algebraic spaces such that for every T → Y the map

OT → fT,∗OX×Y T

is injective. Then f is an isomorphism (and hence representable by schemes).

Proof. The question is étale local on Y , hence we may assume Y = Spec(A) is affine.
Then X is quasi-compact and we may choose an affine scheme U = Spec(B) and
a surjective étale morphism U → X (Properties of Spaces, Lemma 66.6.3). Note
that U ×X U = Spec(B ⊗A B). Hence the category of quasi-coherent OX -modules
is equivalent to the category DDB/A of descent data on modules for A → B. See
Properties of Spaces, Proposition 66.32.1, Descent, Definition 35.3.1, and Descent,
Subsection 35.4.14. On the other hand,

A→ B

is a universally injective ring map. Namely, given an A-module M we see that
A ⊕ M → B ⊗A (A ⊕ M) is injective by the assumption of the lemma. Hence
DDB/A is equivalent to the category of A-modules by Descent, Theorem 35.4.22.
Thus pullback along f : X → Spec(A) determines an equivalence of categories
of quasi-coherent modules. In particular f∗ is exact on quasi-coherent modules
and we see that f is flat (small detail omitted). Moreover, it is clear that f is
surjective (for example because Spec(B) → Spec(A) is surjective). Hence we see
that {X → Spec(A)} is an fpqc cover. Then X → Spec(A) is a morphism which
becomes an isomorphism after base change by X → Spec(A). Hence it is an
isomorphism by fpqc descent, see Descent on Spaces, Lemma 74.11.15. □

Lemma 76.4.3.0B8C A quasi-compact flat surjective monomorphism of algebraic spaces
is an isomorphism.

Proof. Such a morphism satisfies the assumptions of Lemma 76.4.2. □

76.5. Conormal sheaf of an immersion

04CM Let S be a scheme. Let i : Z → X be a closed immersion of algebraic spaces over
S. Let I ⊂ OX be the corresponding quasi-coherent sheaf of ideals, see Morphisms
of Spaces, Lemma 67.13.1. Consider the short exact sequence

0→ I2 → I → I/I2 → 0
of quasi-coherent sheaves on X. Since the sheaf I/I2 is annihilated by I it cor-
responds to a sheaf on Z by Morphisms of Spaces, Lemma 67.14.1. This quasi-
coherent OZ-module is the conormal sheaf of Z in X and is often denoted I/I2 by
the abuse of notation mentioned in Morphisms of Spaces, Section 67.14.
In case i : Z → X is a (locally closed) immersion we define the conormal sheaf of i
as the conormal sheaf of the closed immersion i : Z → X \ ∂Z, see Morphisms of
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Spaces, Remark 67.12.4. It is often denoted I/I2 where I is the ideal sheaf of the
closed immersion i : Z → X \ ∂Z.

Definition 76.5.1.04CN Let i : Z → X be an immersion. The conormal sheaf CZ/X of
Z in X or the conormal sheaf of i is the quasi-coherent OZ-module I/I2 described
above.

In [DG67, IV Definition 16.1.2] this sheaf is denoted NZ/X . We will not follow this
convention since we would like to reserve the notation NZ/X for the normal sheaf
of the immersion. It is defined as

NZ/X = HomOZ
(CZ/X ,OZ) = HomOZ

(I/I2,OZ)

provided the conormal sheaf is of finite presentation (otherwise the normal sheaf
may not even be quasi-coherent). We will come back to the normal sheaf later
(insert future reference here).

Lemma 76.5.2.04CO Let S be a scheme. Let i : Z → X be an immersion. Let φ : U → X
be an étale morphism where U is a scheme. Set ZU = U ×X Z which is a locally
closed subscheme of U . Then

CZ/X |ZU = CZU/U

canonically and functorially in U .

Proof. Let T ⊂ X be a closed subspace such that i defines a closed immersion
into X \ T . Let I be the quasi-coherent sheaf of ideals on X \ T defining Z.
Then the lemma just states that I|U\φ−1(T ) is the sheaf of ideals of the immersion
ZU → U \φ−1(T ). This is clear from the construction of I in Morphisms of Spaces,
Lemma 67.13.1. □

Lemma 76.5.3.04CP Let S be a scheme. Let

Z
i
//

f

��

X

g

��
Z ′ i′ // X ′

be a commutative diagram of algebraic spaces over S. Assume i, i′ immersions.
There is a canonical map of OZ-modules

f∗CZ′/X′ −→ CZ/X

Proof. First find open subspaces U ′ ⊂ X ′ and U ⊂ X such that g(U) ⊂ U ′ and
such that i(Z) ⊂ U and i(Z ′) ⊂ U ′ are closed (proof existence omitted). Replacing
X by U and X ′ by U ′ we may assume that i and i′ are closed immersions. Let
I ′ ⊂ OX′ and I ⊂ OX be the quasi-coherent sheaves of ideals associated to i′ and
i, see Morphisms of Spaces, Lemma 67.13.1. Consider the composition

g−1I ′ → g−1OX′
g♯−→ OX → OX/I = i∗OZ

Since g(i(Z)) ⊂ Z ′ we conclude this composition is zero (see statement on factor-
izations in Morphisms of Spaces, Lemma 67.13.1). Thus we obtain a commutative

https://stacks.math.columbia.edu/tag/04CN
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diagram
0 // I // OX // i∗OZ // 0

0 // g−1I ′ //

OO

g−1OX′ //

OO

g−1i′∗OZ′ //

OO

0

The lower row is exact since g−1 is an exact functor. By exactness we also see that
(g−1I ′)2 = g−1((I ′)2). Hence the diagram induces a map g−1(I ′/(I ′)2) → I/I2.
Pulling back (using i−1 for example) to Z we obtain i−1g−1(I ′/(I ′)2) → CZ/X .
Since i−1g−1 = f−1(i′)−1 this gives a map f−1CZ′/X′ → CZ/X , which induces the
desired map. □

Lemma 76.5.4.04G2 Let S be a scheme. The conormal sheaf of Definition 76.5.1, and
its functoriality of Lemma 76.5.3 satisfy the following properties:

(1) If Z → X is an immersion of schemes over S, then the conormal sheaf
agrees with the one from Morphisms, Definition 29.31.1.

(2) If in Lemma 76.5.3 all the spaces are schemes, then the map f∗CZ′/X′ →
CZ/X is the same as the one constructed in Morphisms, Lemma 29.31.3.

(3) Given a commutative diagram

Z
i
//

f

��

X

g

��
Z ′ i′ //

f ′

��

X ′

g′

��
Z ′′ i′′

// X ′′

then the map (f ′ ◦ f)∗CZ′′/X′′ → CZ/X is the same as the composition of
f∗CZ′/X′ → CZ/X with the pullback by f of (f ′)∗CZ′′/X′′ → CZ′/X′

Proof. Omitted. Note that Part (1) is a special case of Lemma 76.5.2. □

Lemma 76.5.5.04CQ Let S be a scheme. Let

Z
i
//

f

��

X

g

��
Z ′ i′ // X ′

be a fibre product diagram of algebraic spaces over S. Assume i, i′ immersions.
Then the canonical map f∗CZ′/X′ → CZ/X of Lemma 76.5.3 is surjective. If g is
flat, then it is an isomorphism.

Proof. Choose a commutative diagram

U //

��

X

��
U ′ // X ′

where U , U ′ are schemes and the horizontal arrows are surjective and étale, see
Spaces, Lemma 65.11.6. Then using Lemmas 76.5.2 and 76.5.4 we see that the
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question reduces to the case of a morphism of schemes. In the schemes case this is
Morphisms, Lemma 29.31.4. □

Lemma 76.5.6.06BD Let S be a scheme. Let Z → Y → X be immersions of algebraic
spaces. Then there is a canonical exact sequence

i∗CY/X → CZ/X → CZ/Y → 0

where the maps come from Lemma 76.5.3 and i : Z → Y is the first morphism.

Proof. Let U be a scheme and let U → X be a surjective étale morphism. Via
Lemmas 76.5.2 and 76.5.4 the exactness of the sequence translates immediately
into the exactness of the corresponding sequence for the immersions of schemes
Z ×X U → Y ×X U → U . Hence the lemma follows from Morphisms, Lemma
29.31.5. □

76.6. The normal cone of an immersion

09RM Let S be a scheme. Let i : Z → X be a closed immersion of algebraic spaces over S.
Let I ⊂ OX be the corresponding quasi-coherent sheaf of ideals, see Morphisms of
Spaces, Lemma 67.13.1. Consider the quasi-coherent sheaf of graded OX -algebras⊕

n≥0 In/In+1. Since the sheaves In/In+1 are each annihilated by I this graded
algebra corresponds to a quasi-coherent sheaf of graded OZ-algebras by Morphisms
of Spaces, Lemma 67.14.1. This quasi-coherent graded OZ-algebra is called the
conormal algebra of Z in X and is often simply denoted

⊕
n≥0 In/In+1 by the

abuse of notation mentioned in Morphisms of Spaces, Section 67.14.

In case i : Z → X is a (locally closed) immersion we define the conormal algebra of
i as the conormal algebra of the closed immersion i : Z → X \ ∂Z, see Morphisms
of Spaces, Remark 67.12.4. It is often denoted

⊕
n≥0 In/In+1 where I is the ideal

sheaf of the closed immersion i : Z → X \ ∂Z.

Definition 76.6.1.09RN Let i : Z → X be an immersion. The conormal algebra CZ/X,∗
of Z in X or the conormal algebra of i is the quasi-coherent sheaf of graded OZ-
algebras

⊕
n≥0 In/In+1 described above.

Thus CZ/X,1 = CZ/X is the conormal sheaf of the immersion. Also CZ/X,0 = OZ
and CZ/X,n is a quasi-coherent OZ-module characterized by the property

(76.6.1.1)09RP i∗CZ/X,n = In/In+1

where i : Z → X \ ∂Z and I is the ideal sheaf of i as above. Finally, note that
there is a canonical surjective map

(76.6.1.2)09RQ Sym∗(CZ/X) −→ CZ/X,∗
of quasi-coherent graded OZ-algebras which is an isomorphism in degrees 0 and 1.

Lemma 76.6.2.09RR Let S be a scheme. Let i : Z → X be an immersion of algebraic
spaces over S. Let φ : U → X be an étale morphism where U is a scheme. Set
ZU = U ×X Z which is a locally closed subscheme of U . Then

CZ/X,∗|ZU = CZU/U,∗
canonically and functorially in U .
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Proof. Let T ⊂ X be a closed subspace such that i defines a closed immersion into
X \ T . Let I be the quasi-coherent sheaf of ideals on X \ T defining Z. Then the
lemma follows from the fact that I|U\φ−1(T ) is the sheaf of ideals of the immersion
ZU → U \φ−1(T ). This is clear from the construction of I in Morphisms of Spaces,
Lemma 67.13.1. □

Lemma 76.6.3.09RS Let S be a scheme. Let

Z
i
//

f

��

X

g

��
Z ′ i′ // X ′

be a commutative diagram of algebraic spaces over S. Assume i, i′ immersions.
There is a canonical map of graded OZ-algebras

f∗CZ′/X′,∗ −→ CZ/X,∗
Proof. First find open subspaces U ′ ⊂ X ′ and U ⊂ X such that g(U) ⊂ U ′ and
such that i(Z) ⊂ U and i(Z ′) ⊂ U ′ are closed (proof existence omitted). Replacing
X by U and X ′ by U ′ we may assume that i and i′ are closed immersions. Let
I ′ ⊂ OX′ and I ⊂ OX be the quasi-coherent sheaves of ideals associated to i′ and
i, see Morphisms of Spaces, Lemma 67.13.1. Consider the composition

g−1I ′ → g−1OX′
g♯−→ OX → OX/I = i∗OZ

Since g(i(Z)) ⊂ Z ′ we conclude this composition is zero (see statement on factor-
izations in Morphisms of Spaces, Lemma 67.13.1). Thus we obtain a commutative
diagram

0 // I // OX // i∗OZ // 0

0 // g−1I ′ //

OO

g−1OX′ //

OO

g−1i′∗OZ′ //

OO

0
The lower row is exact since g−1 is an exact functor. By exactness we also see
that (g−1I ′)n = g−1((I ′)n) for all n ≥ 1. Hence the diagram induces a map
g−1((I ′)n/(I ′)n+1) → In/In+1. Pulling back (using i−1 for example) to Z we
obtain i−1g−1((I ′)n/(I ′)n+1)→ CZ/X,n. Since i−1g−1 = f−1(i′)−1 this gives maps
f−1CZ′/X′,n → CZ/X,n, which induce the desired map. □

Lemma 76.6.4.09RT Let S be a scheme. Let

Z
i
//

f

��

X

g

��
Z ′ i′ // X ′

be a cartesian square of algebraic spaces over S with i, i′ immersions. Then the
canonical map f∗CZ′/X′,∗ → CZ/X,∗ of Lemma 76.6.3 is surjective. If g is flat, then
it is an isomorphism.

Proof. We may check the statement after étale localizing X ′. In this case we may
assume X ′ → X is a morphism of schemes, hence Z and Z ′ are schemes and the
result follows from the case of schemes, see Divisors, Lemma 31.19.4. □
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We use the same conventions for cones and vector bundles over algebraic spaces
as we do for schemes (where we use the conventions of EGA), see Constructions,
Sections 27.7 and 27.6. In particular, a vector bundle is a very general gadget (and
not locally isomorphic to an affine space bundle).

Definition 76.6.5.09RU Let S be a scheme. Let i : Z → X be an immersion of algebraic
spaces over S. The normal cone CZX of Z in X is

CZX = Spec
Z

(CZ/X,∗)
see Morphisms of Spaces, Definition 67.20.8. The normal bundle of Z in X is the
vector bundle

NZX = Spec
Z

(Sym(CZ/X))

Thus CZX → Z is a cone over Z and NZX → Z is a vector bundle over Z.
Moreover, the canonical surjection (76.6.1.2) of graded algebras defines a canonical
closed immersion
(76.6.5.1)09RV CZX −→ NZX

of cones over Z.

76.7. Sheaf of differentials of a morphism

04CR We suggest the reader take a look at the corresponding section in the chapter on
commutative algebra (Algebra, Section 10.131), the corresponding section in the
chapter on morphism of schemes (Morphisms, Section 29.32) as well as Modules
on Sites, Section 18.33. We first show that the notion of sheaf of differentials for
a morphism of schemes agrees with the corresponding morphism of small étale
(ringed) sites.
To clearly state the following lemma we temporarily go back to denoting Fa
the sheaf of OXétale -modules associated to a quasi-coherent OX -module F on the
scheme X, see Descent, Definition 35.8.2.

Lemma 76.7.1.04CS Let f : X → Y be a morphism of schemes. Let fsmall : Xétale →
Yétale be the associated morphism of small étale sites, see Descent, Remark 35.8.4.
Then there is a canonical isomorphism

(ΩX/Y )a = ΩXétale/Yétale
compatible with universal derivations. Here the first module is the sheaf on Xétale

associated to the quasi-coherent OX -module ΩX/Y , see Morphisms, Definition
29.32.1, and the second module is the one from Modules on Sites, Definition 18.33.3.

Proof. Let h : U → X be an étale morphism. In this case the natural map
h∗ΩX/Y → ΩU/Y is an isomorphism, see More on Morphisms, Lemma 37.9.9. This
means that there is a natural OYétale -derivation

da : OXétale −→ (ΩX/Y )a

since we have just seen that the value of (ΩX/Y )a on any object U of Xétale is canon-
ically identified with Γ(U,ΩU/Y ). By the universal property of dX/Y : OXétale →
ΩXétale/Yétale there is a unique OXétale -linear map c : ΩXétale/Yétale → (ΩX/Y )a such
that da = c ◦ dX/Y .
Conversely, suppose that F is an OXétale -module and D : OXétale → F is a OYétale -
derivation. Then we can simply restrict D to the small Zariski site XZar of X.
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Since sheaves on XZar agree with sheaves on X, see Descent, Remark 35.8.3, we
see that D|XZar : OX → F|XZar is just a “usual” Y -derivation. Hence we obtain
a map ψ : ΩX/Y −→ F|XZar such that D|XZar = ψ ◦ d. In particular, if we apply
this with F = ΩXétale/Yétale we obtain a map

c′ : ΩX/Y −→ ΩXétale/Yétale |XZar
Consider the morphism of ringed sites idsmall,étale,Zar : Xétale → XZar discussed
in Descent, Remark 35.8.4 and Lemma 35.8.5. Since the restriction functor F 7→
F|XZar is equal to idsmall,étale,Zar,∗, since id∗

small,étale,Zar is left adjoint to idsmall,étale,Zar,∗
and since (ΩX/Y )a = id∗

small,étale,ZarΩX/Y we see that c′ is adjoint to a map
c′′ : (ΩX/Y )a −→ ΩXétale/Yétale .

We claim that c′′ and c′ are mutually inverse. This claim finishes the proof of the
lemma. To see this it is enough to show that c′′(d(f)) = dX/Y (f) and c(dX/Y (f)) =
d(f) if f is a local section of OX over an open of X. We omit the verification. □

This clears the way for the following definition. For an alternative, see Remark
76.7.5.
Definition 76.7.2.04CT Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The sheaf of differentials ΩX/Y of X over Y is sheaf of differentials
(Modules on Sites, Definition 18.33.10) for the morphism of ringed topoi

(fsmall, f ♯) : (Xétale,OX)→ (Yétale,OY )
of Properties of Spaces, Lemma 66.21.3. The universal Y -derivation will be denoted
dX/Y : OX → ΩX/Y .
By Lemma 76.7.1 this does not conflict with the already existing notion in case X
and Y are representable. From now on, if X and Y are representable, we no longer
distinguish between the sheaf of differentials defined above and the one defined in
Morphisms, Definition 29.32.1. We want to relate this to the usual modules of
differentials for morphisms of schemes. Here is the key lemma.
Lemma 76.7.3.04CU Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Consider any commutative diagram

U

a

��

ψ
// V

b
��

X
f // Y

where the vertical arrows are étale morphisms of algebraic spaces. Then
ΩX/Y |Uétale = ΩU/V

In particular, if U , V are schemes, then this is equal to the usual sheaf of differentials
of the morphism of schemes U → V .
Proof. By Properties of Spaces, Lemma 66.18.11 and Equation (66.18.11.1) we
may think of the restriction of a sheaf on Xétale to Uétale as the pullback by asmall.
Similarly for b. By Modules on Sites, Lemma 18.33.6 we have

ΩX/Y |Uétale = ΩOUétale
/a−1
small

f−1
small

OYétale

Since a−1
smallf

−1
smallOYétale = ψ−1

smallb
−1
smallOYétale = ψ−1

smallOVétale we see that the
lemma holds. □
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Lemma 76.7.4.04CV Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then ΩX/Y is a quasi-coherent OX -module.

Proof. Choose a diagram as in Lemma 76.7.3 with a and b surjective and U and V
schemes. Then we see that ΩX/Y |U = ΩU/V which is quasi-coherent (for example
by Morphisms, Lemma 29.32.7). Hence we conclude that ΩX/Y is quasi-coherent
by Properties of Spaces, Lemma 66.29.6. □

Remark 76.7.5.04CW Now that we know that ΩX/Y is quasi-coherent we can attempt to
construct it in another manner. For example we can use the result of Properties of
Spaces, Section 66.32 to construct the sheaf of differentials by glueing. For example
if Y is a scheme and if U → X is a surjective étale morphism from a scheme towards
X, then we see that ΩU/Y is a quasi-coherent OU -module, and since s, t : R → U
are étale we get an isomorphism

α : s∗ΩU/Y → ΩR/Y → t∗ΩU/Y
by using Morphisms, Lemma 29.34.16. You check that this satisfies the cocycle
condition and you’re done. If Y is not a scheme, then you define ΩU/Y as the
cokernel of the map (U → Y )∗ΩY/S → ΩU/S , and proceed as before. This two step
process is a little bit ugly. Another possibility is to glue the sheaves ΩU/V for any
diagram as in Lemma 76.7.3 but this is not very elegant either. Both approaches
will work however, and will give a slightly more elementary construction of the
sheaf of differentials.

Lemma 76.7.6.04CX Let S be a scheme. Let

X ′

��

f
// X

��
Y ′ // Y

be a commutative diagram of algebraic spaces. The map f ♯ : OX → f∗OX′ com-
posed with the map f∗dX′/Y ′ : f∗OX′ → f∗ΩX′/Y ′ is a Y -derivation. Hence we
obtain a canonical map of OX -modules ΩX/Y → f∗ΩX′/Y ′ , and by adjointness of
f∗ and f∗ a canonical OX′ -module homomorphism

cf : f∗ΩX/Y −→ ΩX′/Y ′ .

It is uniquely characterized by the property that f∗dX/Y (t) mapsto dX′/Y ′(f∗t)
for any local section t of OX .

Proof. This is a special case of Modules on Sites, Lemma 18.33.11. □

Lemma 76.7.7.05Z7 Let S be a scheme. Let

X ′′

��

g
// X ′

��

f
// X

��
Y ′′ // Y ′ // Y

be a commutative diagram of algebraic spaces over S. Then we have
cf◦g = cg ◦ g∗cf

as maps (f ◦ g)∗ΩX/Y → ΩX′′/Y ′′ .
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Proof. Omitted. Hint: Use the characterization of cf , cg, cf◦g in terms of the effect
these maps have on local sections. □

Lemma 76.7.8.05Z8 Let S be a scheme. Let f : X → Y , g : Y → B be morphisms of
algebraic spaces over S. Then there is a canonical exact sequence

f∗ΩY/B → ΩX/B → ΩX/Y → 0
where the maps come from applications of Lemma 76.7.6.

Proof. Follows from the schemes version, see Morphisms, Lemma 29.32.9, of this
result via étale localization, see Lemma 76.7.3. □

Lemma 76.7.9.05Z9 Let S be a scheme. If X → Y is an immersion of algebraic spaces
over S then ΩX/S is zero.

Proof. Follows from the schemes version, see Morphisms, Lemma 29.32.14, of this
result via étale localization, see Lemma 76.7.3. □

Lemma 76.7.10.05ZA Let S be a scheme. Let B be an algebraic space over S. Let
i : Z → X be an immersion of algebraic spaces over B. There is a canonical exact
sequence

CZ/X → i∗ΩX/B → ΩZ/B → 0
where the first arrow is induced by dX/B and the second arrow comes from Lemma
76.7.6.

Proof. This is the algebraic spaces version of Morphisms, Lemma 29.32.15 and
will be a consequence of that lemma by étale localization, see Lemmas 76.7.3 and
76.5.2. However, we should make sure we can define the first arrow globally. Hence
we explain the meaning of “induced by dX/B” here. Namely, we may assume that
i is a closed immersion after replacing X by an open subspace. Let I ⊂ OX be the
quasi-coherent sheaf of ideals corresponding to Z ⊂ X. Then dX/S : I → ΩX/S
maps the subsheaf I2 ⊂ I to IΩX/S . Hence it induces a map I/I2 → ΩX/S/IΩX/S
which is OX/I-linear. By Morphisms of Spaces, Lemma 67.14.1 this corresponds
to a map CZ/X → i∗ΩX/S as desired. □

Lemma 76.7.11.05ZB Let S be a scheme. Let B be an algebraic space over S. Let
i : Z → X be an immersion of algebraic spaces over B, and assume i (étale locally)
has a left inverse. Then the canonical sequence

0→ CZ/X → i∗ΩX/B → ΩZ/B → 0
of Lemma 76.7.10 is (étale locally) split exact.

Proof. Clarification: we claim that if g : X → Z is a left inverse of i over B, then
i∗cg is a right inverse of the map i∗ΩX/B → ΩZ/B . Having said this, the result
follows from the corresponding result for morphisms of schemes by étale localization,
see Lemmas 76.7.3 and 76.5.2. □

Lemma 76.7.12.05ZC Let S be a scheme. Let X → Y be a morphism of algebraic spaces
over S. Let g : Y ′ → Y be a morphism of algebraic spaces over S. Let X ′ = XY ′

be the base change of X. Denote g′ : X ′ → X the projection. Then the map
(g′)∗ΩX/Y → ΩX′/Y ′

of Lemma 76.7.6 is an isomorphism.
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Proof. Follows from the schemes version, see Morphisms, Lemma 29.32.10 and étale
localization, see Lemma 76.7.3. □

Lemma 76.7.13.05ZD Let S be a scheme. Let f : X → B and g : Y → B be morphisms
of algebraic spaces over S with the same target. Let p : X ×B Y → X and
q : X ×B Y → Y be the projection morphisms. The maps from Lemma 76.7.6

p∗ΩX/B ⊕ q∗ΩY/B −→ ΩX×BY/B

give an isomorphism.

Proof. Follows from the schemes version, see Morphisms, Lemma 29.32.11 and étale
localization, see Lemma 76.7.3. □

Lemma 76.7.14.05ZE Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally of finite type, then ΩX/Y is a finite type OX -module.

Proof. Follows from the schemes version, see Morphisms, Lemma 29.32.12 and étale
localization, see Lemma 76.7.3. □

Lemma 76.7.15.05ZF Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally of finite presentation, then ΩX/Y is an OX -module of
finite presentation.

Proof. Follows from the schemes version, see Morphisms, Lemma 29.32.13 and étale
localization, see Lemma 76.7.3. □

Lemma 76.7.16.0CK5 Let S be a scheme. Let f : X → Y be a smooth morphism of
algebraic spaces over S. Then the module of differentials ΩX/Y is finite locally free.

Proof. The statement is étale local on X and Y by Lemma 76.7.3. Hence this
follows from the case of schemes, see Morphisms, Lemma 29.34.12. □

76.8. Topological invariance of the étale site

05ZG We show that the site Xspaces,étale is a “topological invariant”. It then follows that
Xétale, which consists of the representable objects in Xspaces,étale, is a topological
invariant too, see Lemma 76.8.2.

Theorem 76.8.1.05ZH Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is integral, universally injective and surjective. The
functor

V 7−→ VX = X ×Y V
defines an equivalence of categories Yspaces,étale → Xspaces,étale.

Proof. The morphism f is representable and a universal homeomorphism, see Mor-
phisms of Spaces, Section 67.53.
We first prove that the functor is faithful. Suppose that V ′, V are objects of
Yspaces,étale and that a, b : V ′ → V are distinct morphisms over Y . Since V ′, V
are étale over Y the equalizer

E = V ′ ×(a,b),V×Y V,∆V/Y
V

of a, b is étale over Y also. Hence E → V ′ is an étale monomorphism (i.e., an open
immersion) which is an isomorphism if and only if it is surjective. Since X → Y is
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a universal homeomorphism we see that this is the case if and only if EX = V ′
X ,

i.e., if and only if aX = bX .
Next, we prove that the functor is fully faithful. Suppose that V ′, V are objects of
Yspaces,étale and that c : V ′

X → VX is a morphism over X. We want to construct a
morphism a : V ′ → V over Y such that aX = c. Let a′ : V ′′ → V ′ be a surjective
étale morphism such that V ′′ is a separated algebraic space. If we can construct a
morphism a′′ : V ′′ → V such that a′′

X = c ◦ a′
X , then the two compositions

V ′′ ×V ′ V ′′ pri−−→ V ′′ a′′

−−→ V

will be equal by the faithfulness of the functor proved in the first paragraph. Hence
a′′ will factor through a unique morphism a : V ′ → V as V ′ is (as a sheaf) the
quotient of V ′′ by the equivalence relation V ′′ ×V ′ V ′′. Hence we may assume that
V ′ is separated. In this case the graph

Γc ⊂ (V ′ ×Y V )X
is open and closed (details omitted). Since X → Y is a universal homeomorphism,
there exists an open and closed subspace Γ ⊂ V ′ ×Y V such that ΓX = Γc. The
projection Γ→ V ′ is an étale morphism whose base change to X is an isomorphism.
Hence Γ → V ′ is étale, universally injective, and surjective, so an isomorphism
by Morphisms of Spaces, Lemma 67.51.2. Thus Γ is the graph of a morphism
a : V ′ → V as desired.
Finally, we prove that the functor is essentially surjective. Suppose that U is
an object of Xspaces,étale. We have to find an object V of Yspaces,étale such that
VX ∼= U . Let U ′ → U be a surjective étale morphism such that U ′ ∼= V ′

X and
U ′ ×U U ′ ∼= V ′′

X for some objects V ′′, V ′ of Yspaces,étale. Then by fully faithfulness
of the functor we obtain morphisms s, t : V ′′ → V ′ with tX = pr0 and sX = pr1 as
morphisms U ′×U U ′ → U ′. Using that (pr0,pr1) : U ′×U U ′ → U ′×S U ′ is an étale
equivalence relation, and that U ′ → V ′ and U ′×UU ′ → V ′′ are universally injective
and surjective we deduce that (t, s) : V ′′ → V ′×SV ′ is an étale equivalence relation.
Then the quotient V = V ′/V ′′ (see Spaces, Theorem 65.10.5) is an algebraic space
V over Y . There is a morphism V ′ → V such that V ′′ = V ′×V V ′. Thus we obtain
a morphism V → Y (see Descent on Spaces, Lemma 74.7.2). On base change
to X we see that we have a morphism U ′ → VX and a compatible isomorphism
U ′ ×VX U ′ = U ′ ×U U ′, which implies that VX ∼= U (by the lemma just cited once
more).
Pick a scheme W and a surjective étale morphism W → Y . Pick a scheme U ′

and a surjective étale morphism U ′ → U ×X WX . Note that U ′ and U ′ ×U U ′ are
schemes étale over X whose structure morphism to X factors through the scheme
WX . Hence by Étale Cohomology, Theorem 59.45.2 there exist schemes V ′, V ′′ étale
over W whose base change to WX is isomorphic to respectively U ′ and U ′ ×U U ′.
This finishes the proof. □

Lemma 76.8.2.07VW With assumption and notation as in Theorem 76.8.1 the equiva-
lence of categories Yspaces,étale → Xspaces,étale restricts to equivalences of categories
Yétale → Xétale and Yaffine,étale → Xaffine,étale.

Proof. This is just the statement that given an object V ∈ Yspaces,étale we have V
is a(n affine) scheme if and only if V ×Y X is a(n affine) scheme. Since V ×Y X → V

https://stacks.math.columbia.edu/tag/07VW
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is integral, universally injective, and surjective (as a base change of X → Y ) this
follows from Limits of Spaces, Lemma 70.15.4 and Proposition 70.15.2. □

Remark 76.8.3.05ZI Email by Lenny
Taelman dated May
1, 2016.

A universal homeomorphism of algebraic spaces need not be rep-
resentable, see Morphisms of Spaces, Example 67.53.3. In fact Theorem 76.8.1 does
not hold for universal homeomorphisms. To see this, let k be an algebraically closed
field of characteristic 0 and let

A1 → X → A1

be as in Morphisms of Spaces, Example 67.53.3. Recall that the first morphism is
étale and identifies t with −t for t ∈ A1

k \ {0} and that the second morphism is
our universal homeomorphism. Since A1

k has no nontrivial connected finite étale
coverings (because k is algebraically closed of characteristic zero; details omitted),
it suffices to construct a nontrivial connected finite étale covering Y → X. To do
this, let Y be the affine line with zero doubled (Schemes, Example 26.14.3). Then
Y = Y1 ∪ Y2 with Yi = A1

k glued along A1
k \ {0}. To define the morphism Y → X

we use the morphisms

Y1
1−→ A1

k → X and Y2
−1−−→ A1

k → X.

These glue over Y1 ∩ Y2 by the construction of X and hence define a morphism
Y → X. In fact, we claim that

Y

��

Y1 ⨿ Y2oo

��
X A1

k
oo

is a cartesian square. We omit the details; you can use for example Groupoids,
Lemma 39.20.7. Since A1

k → X is étale and surjective, this proves that Y → X is
finite étale of degree 2 which gives the desired example.
More simply, you can argue as follows. The scheme Y has a free action of the group
G = {+1,−1} where −1 acts by swapping Y1 and Y2 and changing the sign of the
coordinate. Then X = Y/G (see Spaces, Definition 65.14.4) and hence Y → X is
finite étale. You can also show directly that there exists a universal homeomorphism
X → A1

k by using t 7→ t2 on affine spaces. In fact, this X is the same as the X
above.

76.9. Thickenings

05ZJ The following terminology may not be completely standard, but it is convenient.

Definition 76.9.1.05ZK Thickenings. Let S be a scheme.
(1) We say an algebraic space X ′ is a thickening of an algebraic space X if X

is a closed subspace of X ′ and the associated topological spaces are equal.
(2) We say X ′ is a first order thickening of X if X is a closed subspace of

X ′ and the quasi-coherent sheaf of ideals I ⊂ OX′ defining X has square
zero.

(3) Given two thickenings X ⊂ X ′ and Y ⊂ Y ′ a morphism of thickenings
is a morphism f ′ : X ′ → Y ′ such that f(X) ⊂ Y , i.e., such that f ′|X
factors through the closed subspace Y . In this situation we set f = f ′|X :
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X → Y and we say that (f, f ′) : (X ⊂ X ′)→ (Y ⊂ Y ′) is a morphism of
thickenings.

(4) Let B be an algebraic space. We similarly define thickenings over B, and
morphisms of thickenings over B. This means that the spaces X,X ′, Y, Y ′

above are algebraic spaces endowed with a structure morphism to B, and
that the morphisms X → X ′, Y → Y ′ and f ′ : X ′ → Y ′ are morphisms
over B.

The fundamental equivalence. Note that if X ⊂ X ′ is a thickening, then X → X ′

is integral and universally bijective. This implies that

(76.9.1.1)05ZL Xspaces,étale = X ′
spaces,étale

via the pullback functor, see Theorem 76.8.1. Hence we may think of OX′ as a
sheaf on Xspaces,étale. Thus a canonical equivalence of locally ringed topoi

(76.9.1.2)05ZM (Sh(X ′
spaces,étale),OX′) ∼= (Sh(Xspaces,étale),OX′)

Below we will frequently combine this with the fully faithfulness result of Properties
of Spaces, Theorem 66.28.4. For example the closed immersion iX : X → X ′

corresponds to the surjective map i♯X : OX′ → OX .

Let S be a scheme, and let B be an algebraic space over S. Let (f, f ′) : (X ⊂
X ′) → (Y ⊂ Y ′) be a morphism of thickenings over B. Note that the diagram of
continuous functors

Xspaces,étale Yspaces,étaleoo

X ′
spaces,étale

OO

Y ′
spaces,étale

OO

oo

is commutative and the vertical arrows are equivalences. Hence fspaces,étale, fsmall,
f ′
spaces,étale, and f ′

small all define the same morphism of topoi. Thus we may think
of

(f ′)♯ : f−1
spaces,étaleOY ′ −→ OX′

as a map of sheaves of OB-algebras fitting into the commutative diagram

f−1
spaces,étaleOY

f♯
// // OX

f−1
spaces,étaleOY ′

(f ′)♯ //

i♯
Y

OO

OX′

i♯
X

OO

Here iX : X → X ′ and iY : Y → Y ′ are the names of the given closed immersions.

Lemma 76.9.2.05ZN Let S be a scheme. Let B be an algebraic space over S. Let
X ⊂ X ′ and Y ⊂ Y ′ be thickenings of algebraic spaces over B. Let f : X → Y be
a morphism of algebraic spaces over B. Given any map of OB-algebras

α : f−1
spaces,étaleOY ′ → OX′
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such that
f−1
spaces,étaleOY

f♯
// // OX

f−1
spaces,étaleOY ′

α //

i♯
Y

OO

OX′

i♯
X

OO

commutes, there exists a unique morphism of (f, f ′) of thickenings over B such that
α = (f ′)♯.

Proof. To find f ′, by Properties of Spaces, Theorem 66.28.4, all we have to do is
show that the morphism of ringed topoi

(fspaces,étale, α) : (Sh(Xspaces,étale),OX′) −→ (Sh(Yspaces,étale),OY ′)

is a morphism of locally ringed topoi. This follows directly from the definition of
morphisms of locally ringed topoi (Modules on Sites, Definition 18.40.9), the fact
that (f, f ♯) is a morphism of locally ringed topoi (Properties of Spaces, Lemma
66.28.1), that α fits into the given commutative diagram, and the fact that the
kernels of i♯X and i♯Y are locally nilpotent. Finally, the fact that f ′ ◦ iX = iY ◦f fol-
lows from the commutativity of the diagram and another application of Properties
of Spaces, Theorem 66.28.4. We omit the verification that f ′ is a morphism over
B. □

Lemma 76.9.3.05ZP Let S be a scheme. Let X ⊂ X ′ be a thickening of algebraic spaces
over S. For any open subspace U ⊂ X there exists a unique open subspace U ′ ⊂ X ′

such that U = X ×X′ U ′.

Proof. Let U ′ → X ′ be the object of X ′
spaces,étale corresponding to the object U →

X of Xspaces,étale via (76.9.1.1). The morphism U ′ → X ′ is étale and universally
injective, hence an open immersion, see Morphisms of Spaces, Lemma 67.51.2. □

Finite order thickenings. Let iX : X → X ′ be a thickening of algebraic spaces. Any
local section of the kernel I = Ker(i♯X) ⊂ OX′ is locally nilpotent. Let us say that
X ⊂ X ′ is a finite order thickening if the ideal sheaf I is “globally” nilpotent, i.e.,
if there exists an n ≥ 0 such that In+1 = 0. Technically the class of finite order
thickenings X ⊂ X ′ is much easier to handle than the general case. Namely, in this
case we have a filtration

0 ⊂ In ⊂ In−1 ⊂ . . . ⊂ I ⊂ OX′

and we see that X ′ is filtered by closed subspaces

X = X0 ⊂ X1 ⊂ . . . ⊂ Xn−1 ⊂ Xn+1 = X ′

such that each pair Xi ⊂ Xi+1 is a first order thickening over B. Using simple in-
duction arguments many results proved for first order thickenings can be rephrased
as results on finite order thickenings.

Lemma 76.9.4.05ZQ Let S be a scheme. Let X ⊂ X ′ be a thickening of algebraic spaces
over S. Let U be an affine object of Xspaces,étale. Then

Γ(U,OX′)→ Γ(U,OX)

is surjective where we think of OX′ as a sheaf on Xspaces,étale via (76.9.1.2).
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Proof. Let U ′ → X ′ be the étale morphism of algebraic spaces such that U =
X ×X′ U ′, see Theorem 76.8.1. By Limits of Spaces, Lemma 70.15.1 we see that
U ′ is an affine scheme. Hence Γ(U,OX′) = Γ(U ′,OU ′)→ Γ(U,OU ) is surjective as
U → U ′ is a closed immersion of affine schemes. Below we give a direct proof for
finite order thickenings which is the case most used in practice. □

Proof for finite order thickenings. We may assume that X ⊂ X ′ is a first order
thickening by the principle explained above. Denote I the kernel of the surjection
OX′ → OX . As I is a quasi-coherentOX′ -module and since I2 = 0 by the definition
of a first order thickening we may apply Morphisms of Spaces, Lemma 67.14.1 to
see that I is a quasi-coherent OX -module. Hence the lemma follows from the long
exact cohomology sequence associated to the short exact sequence

0→ I → OX′ → OX → 0
and the fact that H1

étale(U, I) = 0 as I is quasi-coherent, see Descent, Proposition
35.9.3 and Cohomology of Schemes, Lemma 30.2.2. □

Lemma 76.9.5.05ZR Let S be a scheme. Let X ⊂ X ′ be a thickening of algebraic spaces
over S. If X is (representable by) a scheme, then so is X ′.

Proof. Note that X ′
red = Xred. Hence if X is a scheme, then X ′

red is a scheme. Thus
the result follows from Limits of Spaces, Lemma 70.15.3. Below we give a direct
proof for finite order thickenings which is the case most often used in practice. □

Proof for finite order thickenings. It suffices to prove this when X ′ is a first order
thickening of X. By Properties of Spaces, Lemma 66.13.1 there is a largest open
subspace of X ′ which is a scheme. Thus we have to show that every point x of
|X ′| = |X| is contained in an open subspace of X ′ which is a scheme. Using Lemma
76.9.3 we may replace X ⊂ X ′ by U ⊂ U ′ with x ∈ U and U an affine scheme.
Hence we may assume that X is affine. Thus we reduce to the case discussed in
the next paragraph.
Assume X ⊂ X ′ is a first order thickening where X is an affine scheme. Set
A = Γ(X,OX) and A′ = Γ(X ′,OX′). By Lemma 76.9.4 the map A → A′ is
surjective. The kernel I is an ideal of square zero. By Properties of Spaces, Lemma
66.33.1 we obtain a canonical morphism f : X ′ → Spec(A′) which fits into the
following commutative diagram

X // X ′

f

��
Spec(A) // Spec(A′)

Because the horizontal arrows are thickenings it is clear that f is universally injec-
tive and surjective. Hence it suffices to show that f is étale, since then Morphisms
of Spaces, Lemma 67.51.2 will imply that f is an isomorphism.
To prove that f is étale choose an affine scheme U ′ and an étale morphism U ′ →
X ′. It suffices to show that U ′ → X ′ → Spec(A′) is étale, see Properties of
Spaces, Definition 66.16.2. Write U ′ = Spec(B′). Set U = X ×X′ U ′. Since U
is a closed subspace of U ′, it is a closed subscheme, hence U = Spec(B) with
B′ → B surjective. Denote J = Ker(B′ → B) and note that J = Γ(U, I) where
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I = Ker(OX′ → OX) on Xspaces,étale as in the proof of Lemma 76.9.4. The
morphism U ′ → X ′ → Spec(A′) induces a commutative diagram

0 // J // B′ // B // 0

0 // I //

OO

A′ //

OO

A //

OO

0

Now, since I is a quasi-coherent OX -module we have I = (Ĩ)a, see Descent, Defini-
tion 35.8.2 for notation and Descent, Proposition 35.8.9 for why this is true. Hence
we see that J = I⊗AB. Finally, note that A→ B is étale as U → X is étale as the
base change of the étale morphism U ′ → X ′. We conclude that A′ → B′ is étale
by Algebra, Lemma 10.143.11. □

Lemma 76.9.6.05ZS Let S be a scheme. Let X ⊂ X ′ be a thickening of algebraic spaces
over S. The functor

V ′ 7−→ V = X ×X′ V ′

defines an equivalence of categories X ′
étale → Xétale.

Proof. The functor V ′ 7→ V defines an equivalence of categories X ′
spaces,étale →

Xspaces,étale, see Theorem 76.8.1. Thus it suffices to show that V is a scheme if and
only if V ′ is a scheme. This is the content of Lemma 76.9.5. □

First order thickening are described as follows.

Lemma 76.9.7.05ZT Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Consider a short exact sequence

0→ I → A → OX → 0

of sheaves on Xétale where A is a sheaf of f−1OB-algebras, A → OX is a surjection
of sheaves of f−1OB-algebras, and I is its kernel. If

(1) I is an ideal of square zero in A, and
(2) I is quasi-coherent as an OX -module

then there exists a first order thickening X ⊂ X ′ over B and an isomorphism
OX′ → A of f−1OB-algebras compatible with the surjections to OX .

Proof. In this proof we redo some of the arguments used in the proofs of Lemmas
76.9.4 and 76.9.5. We first handle the case B = S = Spec(Z). Let U be an affine
scheme, and let U → X be étale. Then

0→ I(U)→ A(U)→ OX(U)→ 0

is exact as H1(Uétale, I) = 0 as I is quasi-coherent, see Descent, Proposition 35.9.3
and Cohomology of Schemes, Lemma 30.2.2. If V → U is a morphism of affine
objects of Xspaces,étale then

I(V ) = I(U)⊗OX(U) OX(V )

since I is a quasi-coherent OX -module, see Descent, Proposition 35.8.9. Hence
A(U) → A(V ) is an étale ring map, see Algebra, Lemma 10.143.11. Hence we see
that

U 7−→ U ′ = Spec(A(U))
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is a functor fromXaffine,étale to the category of affine schemes and étale morphisms.
In fact, we claim that this functor can be extended to a functor U 7→ U ′ on all of
Xétale. To see this, if U is an object of Xétale, note that

0→ I|UZar → A|UZar → OX |UZar → 0
and I|UZar is a quasi-coherent sheaf on U , see Descent, Proposition 35.9.4. Hence
by More on Morphisms, Lemma 37.2.2 we obtain a first order thickening U ⊂ U ′

of schemes such that OU ′ is isomorphic to A|UZar . It is clear that this construction
is compatible with the construction for affines above.
Choose a presentation X = U/R, see Spaces, Definition 65.9.3 so that s, t : R→ U
define an étale equivalence relation. Applying the functor above we obtain an étale
equivalence relation s′, t′ : R′ → U ′ in schemes. Consider the algebraic space X ′ =
U ′/R′ (see Spaces, Theorem 65.10.5). The morphism X = U/R→ U ′/R′ = X ′ is a
first order thickening. Consider OX′ viewed as a sheaf on Xétale. By construction
we have an isomorphism

γ : OX′ |Uétale −→ A|Uétale
such that s−1γ agrees with t−1γ on Rétale. Hence by Properties of Spaces, Lemma
66.18.14 this implies that γ comes from a unique isomorphism OX′ → A as desired.
To handle the case of a general base algebraic space B, we first construct X ′ as an
algebraic space over Z as above. Then we use the isomorphism OX′ → A to define
f−1OB → OX′ . According to Lemma 76.9.2 this defines a morphism X ′ → B
compatible with the given morphism X → B and we are done. □

Lemma 76.9.8.09ZX Let S be a scheme. Let Y ⊂ Y ′ be a thickening of algebraic
spaces over S. Let X ′ → Y ′ be a morphism and set X = Y ×Y ′ X ′. Then
(X ⊂ X ′) → (Y ⊂ Y ′) is a morphism of thickenings. If Y ⊂ Y ′ is a first (resp.
finite order) thickening, then X ⊂ X ′ is a first (resp. finite order) thickening.

Proof. Omitted. □

Lemma 76.9.9.0BPH Let S be a scheme. If X ⊂ X ′ and X ′ ⊂ X ′′ are thickenings of
algebraic spaces over S, then so is X ⊂ X ′′.

Proof. Omitted. □

Lemma 76.9.10.0BPI The property of being a thickening is fpqc local. Similarly for
first order thickenings.

Proof. The statement means the following: Let S be a scheme and let X → X ′ be
a morphism of algebraic spaces over S. Let {gi : X ′

i → X ′} be an fpqc covering of
algebraic spaces such that the base change Xi → X ′

i is a thickening for all i. Then
X → X ′ is a thickening. Since the morphisms gi are jointly surjective we conclude
that X → X ′ is surjective. By Descent on Spaces, Lemma 74.11.17 we conclude
that X → X ′ is a closed immersion. Thus X → X ′ is a thickening. We omit the
proof in the case of first order thickenings. □

76.10. Morphisms of thickenings

0CG4 If (f, f ′) : (X ⊂ X ′)→ (Y ⊂ Y ′) is a morphism of thickenings of algebraic spaces,
then often properties of the morphism f are inherited by f ′. There are several
variants.
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Lemma 76.10.1.09ZY Let S be a scheme. Let (f, f ′) : (X ⊂ X ′) → (Y ⊂ Y ′) be a
morphism of thickenings of algebraic spaces over S. Then

(1) f is an affine morphism if and only if f ′ is an affine morphism,
(2) f is a surjective morphism if and only if f ′ is a surjective morphism,
(3) f is quasi-compact if and only if f ′ quasi-compact,
(4) f is universally closed if and only if f ′ is universally closed,
(5) f is integral if and only if f ′ is integral,
(6) f is (quasi-)separated if and only if f ′ is (quasi-)separated,
(7) f is universally injective if and only if f ′ is universally injective,
(8) f is universally open if and only if f ′ is universally open,
(9) f is representable if and only if f ′ is representable, and

(10) add more here.
Proof. Observe that Y → Y ′ and X → X ′ are integral and universal homeomor-
phisms. This immediately implies parts (2), (3), (4), (7), and (8). Part (1) follows
from Limits of Spaces, Proposition 70.15.2 which tells us that there is a 1-to-1
correspondence between affine schemes étale over X and X ′ and between affine
schemes étale over Y and Y ′. Part (5) follows from (1) and (4) by Morphisms of
Spaces, Lemma 67.45.7. Finally, note that

X ×Y X = X ×Y ′ X → X ×Y ′ X ′ → X ′ ×Y ′ X ′

is a thickening (the two arrows are thickenings by Lemma 76.9.8). Hence applying
(3) and (4) to the morphism (X ⊂ X ′) → (X ×Y X → X ′ ×Y ′ X ′) we obtain
(6). Finally, part (9) follows from the fact that an algebraic space thickening of a
scheme is again a scheme, see Lemma 76.9.5. □

Lemma 76.10.2.09ZZ Let S be a scheme. Let (f, f ′) : (X ⊂ X ′) → (Y ⊂ Y ′) be a
morphism of thickenings of algebraic spaces over S such that X = Y ×Y ′ X ′. If
X ⊂ X ′ is a finite order thickening, then

(1) f is a closed immersion if and only if f ′ is a closed immersion,
(2) f is locally of finite type if and only if f ′ is locally of finite type,
(3) f is locally quasi-finite if and only if f ′ is locally quasi-finite,
(4) f is locally of finite type of relative dimension d if and only if f ′ is locally

of finite type of relative dimension d,
(5) ΩX/Y = 0 if and only if ΩX′/Y ′ = 0,
(6) f is unramified if and only if f ′ is unramified,
(7) f is proper if and only if f ′ is proper,
(8) f is a finite morphism if and only if f ′ is an finite morphism,
(9) f is a monomorphism if and only if f ′ is a monomorphism,

(10) f is an immersion if and only if f ′ is an immersion, and
(11) add more here.

Proof. Choose a scheme V ′ and a surjective étale morphism V ′ → Y ′. Choose a
scheme U ′ and a surjective étale morphism U ′ → X ′ ×Y ′ V ′. Set V = Y ×Y ′ V ′

and U = X ×X′ U ′. Then for étale local properties of morphisms we can reduce to
the morphism of thickenings of schemes (U ⊂ U ′)→ (V ⊂ V ′) and apply More on
Morphisms, Lemma 37.3.3. This proves (2), (3), (4), (5), and (6).
The properties of morphisms in (1), (7), (8), (9), (10) are stable under base change,
hence if f ′ has property P, then so does f . See Spaces, Lemma 65.12.3, and
Morphisms of Spaces, Lemmas 67.40.3, 67.45.5, and 67.10.5.
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The interesting direction in (1), (7), (8), (9), (10) is to assume that f has the
property and deduce that f ′ has it too. By induction on the order of the thickening
we may assume that Y ⊂ Y ′ is a first order thickening, see discussion on finite
order thickenings above.
Proof of (1). Choose a scheme V ′ and a surjective étale morphism V ′ → Y ′. Set
V = Y ×Y ′ V ′, U ′ = X ′ ×Y ′ V ′ and U = X ×Y V . Then U → V is a closed
immersion, which implies that U is a scheme, which in turn implies that U ′ is a
scheme (Lemma 76.9.5). Thus we can apply the lemma in the case of schemes
(More on Morphisms, Lemma 37.3.3) to (U ⊂ U ′)→ (V ⊂ V ′) to conclude.
Proof of (7). Follows by combining (2) with results of Lemma 76.10.1 and the fact
that proper equals quasi-compact + separated + locally of finite type + universally
closed.
Proof of (8). Follows by combining (2) with results of Lemma 76.10.1 and using the
fact that finite equals integral + locally of finite type (Morphisms, Lemma 29.44.4).
Proof of (9). As f is a monomorphism we have X = X ×Y X. We may apply
the results proved so far to the morphism of thickenings (X ⊂ X ′) → (X ×Y
X ⊂ X ′ ×Y ′ X ′). We conclude X ′ → X ′ ×Y ′ X ′ is a closed immersion by (1).
In fact, it is a first order thickening as the ideal defining the closed immersion
X ′ → X ′×Y ′ X ′ is contained in the pullback of the ideal I ⊂ OY ′ cutting out Y in
Y ′. Indeed, X = X ×Y X = (X ′ ×Y ′ X ′)×Y ′ Y is contained in X ′. The conormal
sheaf of the closed immersion ∆ : X ′ → X ′ ×Y ′ X ′ is equal to ΩX′/Y ′ (this is
the analogue of Morphisms, Lemma 29.32.7 for algebraic spaces and follows either
by étale localization or by combining Lemmas 76.7.11 and 76.7.13; some details
omitted). Thus it suffices to show that ΩX′/Y ′ = 0 which follows from (5) and the
corresponding statement for X/Y .
Proof of (10). If f : X → Y is an immersion, then it factors as X → V → Y where
V → Y is an open subspace and X → V is a closed immersion, see Morphisms
of Spaces, Remark 67.12.4. Let V ′ ⊂ Y ′ be the open subspace whose underlying
topological space |V ′| is the same as |V | ⊂ |Y | = |Y ′|. Then X ′ → Y ′ factors
through V ′ and we conclude that X ′ → V ′ is a closed immersion by part (1). This
finishes the proof. □

The following lemma is a variant on the preceding one. Rather than assume that
the thickenings involved are finite order (which allows us to transfer the property
of being locally of finite type from f to f ′), we instead take as given that each of f
and f ′ is locally of finite type.

Lemma 76.10.3.0BPJ Let S be a scheme. Let (f, f ′) : (X ⊂ X ′) → (Y → Y ′) be a
morphism of thickenings of algebraic spaces over S. Assume f and f ′ are locally of
finite type and X = Y ×Y ′ X ′. Then

(1) f is locally quasi-finite if and only if f ′ is locally quasi-finite,
(2) f is finite if and only if f ′ is finite,
(3) f is a closed immersion if and only if f ′ is a closed immersion,
(4) ΩX/Y = 0 if and only if ΩX′/Y ′ = 0,
(5) f is unramified if and only if f ′ is unramified,
(6) f is a monomorphism if and only if f ′ is a monomorphism,
(7) f is an immersion if and only if f ′ is an immersion,
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(8) f is proper if and only if f ′ is proper, and
(9) add more here.

Proof. Choose a scheme V ′ and a surjective étale morphism V ′ → Y ′. Choose a
scheme U ′ and a surjective étale morphism U ′ → X ′ ×Y ′ V ′. Set V = Y ×Y ′ V ′

and U = X ×X′ U ′. Then for étale local properties of morphisms we can reduce to
the morphism of thickenings of schemes (U ⊂ U ′)→ (V ⊂ V ′) and apply More on
Morphisms, Lemma 37.3.4. This proves (1), (4), and (5).

The properties in (2), (3), (6), (7), and (8) are stable under base change, hence if
f ′ has property P, then so does f . See Spaces, Lemma 65.12.3, and Morphisms of
Spaces, Lemmas 67.40.3, 67.45.5, and 67.10.5. Hence in each case we need only to
prove that if f has the desired property, so does f ′.

Case (2) follows from case (5) of Lemma 76.10.1 and the fact that the finite mor-
phisms are precisely the integral morphisms that are locally of finite type (Mor-
phisms of Spaces, Lemma 67.45.6).

Case (3). This follows immediately from Limits of Spaces, Lemma 70.15.5.

Proof of (6). As f is a monomorphism we have X = X ×Y X. We may apply
the results proved so far to the morphism of thickenings (X ⊂ X ′)→ (X ×Y X ⊂
X ′×Y ′X ′). We conclude ∆X′/Y ′ : X ′ → X ′×Y ′X ′ is a closed immersion by (3). In
fact ∆X′/Y ′ induces a bijection |X ′| → |X ′ ×Y ′ X ′|, hence ∆X′/Y ′ is a thickening.
On the other hand ∆X′/Y ′ is locally of finite presentation by Morphisms of Spaces,
Lemma 67.28.10. In other words, ∆X′/Y ′(X ′) is cut out by a quasi-coherent sheaf
of ideals J ⊂ OX′×Y ′X′ of finite type. Since ΩX′/Y ′ = 0 by (5) we see that the
conormal sheaf of X ′ → X ′ ×Y ′ X ′ is zero. (The conormal sheaf of the closed
immersion ∆X′/Y ′ is equal to ΩX′/Y ′ ; this is the analogue of Morphisms, Lemma
29.32.7 for algebraic spaces and follows either by étale localization or by combining
Lemmas 76.7.11 and 76.7.13; some details omitted.) In other words, J /J 2 = 0.
This implies ∆X′/Y ′ is an isomorphism, for example by Algebra, Lemma 10.21.5.

Proof of (7). If f : X → Y is an immersion, then it factors as X → V → Y where
V → Y is an open subspace and X → V is a closed immersion, see Morphisms
of Spaces, Remark 67.12.4. Let V ′ ⊂ Y ′ be the open subspace whose underlying
topological space |V ′| is the same as |V | ⊂ |Y | = |Y ′|. Then X ′ → Y ′ factors
through V ′ and we conclude that X ′ → V ′ is a closed immersion by part (3).

Case (8) follows from Lemma 76.10.1 and the definition of proper morphisms as
being the quasi-compact, universally closed, and separated morphisms that are
locally of finite type. □

76.11. Picard groups of thickenings

0DNL Some material on Picard groups of thickenings.
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Lemma 76.11.1.0DNM Let S be a scheme. Let X ⊂ X ′ be a first order thickening of
algebraic spaces over S with ideal sheaf I. Then there is a canonical exact sequence

0 // H0(X, I) // H0(X ′,O∗
X′) // H0(X,O∗

X)

// H1(X, I) // Pic(X ′) // Pic(X)

// H2(X, I) // . . . // . . .

of abelian groups.
Proof. Recall that Xétale = X ′

étale, see Lemma 76.9.6 and more generally the dis-
cussion in Section 76.9. The sequence of the lemma is the long exact cohomology
sequence associated to the short exact sequence of sheaves of abelian groups

0→ I → O∗
X′ → O∗

X → 0
on Xétale where the first map sends a local section f of I to the invertible section
1+f of OX′ . We also use the identification of the Picard group of a ringed site with
the first cohomology group of the sheaf of invertible functions, see Cohomology on
Sites, Lemma 21.6.1. □

76.12. First order infinitesimal neighbourhood

05ZU A natural construction of first order thickenings is the following. Suppose that
i : Z → X be an immersion of algebraic spaces. Choose an open subspace U ⊂ X
such that i identifies Z with a closed subspace Z ⊂ U (see Morphisms of Spaces,
Remark 67.12.4). Let I ⊂ OU be the quasi-coherent sheaf of ideals defining Z
in U , see Morphisms of Spaces, Lemma 67.13.1. Then we can consider the closed
subspace Z ′ ⊂ U defined by the quasi-coherent sheaf of ideals I2.
Definition 76.12.1.05ZV Let i : Z → X be an immersion of algebraic spaces. The first
order infinitesimal neighbourhood of Z in X is the first order thickening Z ⊂ Z ′

over X described above.
This thickening has the following universal property (which will assuage any fears
that the construction above depends on the choice of the open U).
Lemma 76.12.2.05ZW Let i : Z → X be an immersion of algebraic spaces. The first
order infinitesimal neighbourhood Z ′ of Z in X has the following universal property:
Given any commutative diagram

Z

i

��

T
a

oo

��
X T ′boo

where T ⊂ T ′ is a first order thickening over X, there exists a unique morphism
(a′, a) : (T ⊂ T ′)→ (Z ⊂ Z ′) of thickenings over X.
Proof. Let U ⊂ X be the open subspace used in the construction of Z ′, i.e., an open
such that Z is identified with a closed subspace of U cut out by the quasi-coherent
sheaf of ideals I. Since |T | = |T ′| we see that |b|(|T ′|) ⊂ |U |. Hence we can think of

https://stacks.math.columbia.edu/tag/0DNM
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b as a morphism into U , see Properties of Spaces, Lemma 66.4.9. Let J ⊂ OT ′ be
the square zero quasi-coherent sheaf of ideals cutting out T . By the commutativity
of the diagram we have b|T = i ◦ a where i : Z → U is the closed immersion.
We conclude that b♯(b−1I) ⊂ J by Morphisms of Spaces, Lemma 67.13.1. As
T ′ is a first order thickening of T we see that J 2 = 0 hence b♯(b−1(I2)) = 0.
By Morphisms of Spaces, Lemma 67.13.1 this implies that b factors through Z ′.
Letting a′ : T ′ → Z ′ be this factorization we win. □

Lemma 76.12.3.05ZX Let i : Z → X be an immersion of algebraic spaces. Let Z ⊂ Z ′

be the first order infinitesimal neighbourhood of Z in X. Then the diagram

Z //

��

Z ′

��
Z // X

induces a map of conormal sheaves CZ/X → CZ/Z′ by Lemma 76.5.3. This map is
an isomorphism.

Proof. This is clear from the construction of Z ′ above. □

76.13. Formally smooth, étale, unramified transformations

04G3 Recall that a ring map R→ A is called formally smooth, resp. formally étale, resp.
formally unramified (see Algebra, Definition 10.138.1, resp. Definition 10.150.1,
resp. Definition 10.148.1) if for every commutative solid diagram

A //

!!

B/I

R //

OO

B

OO

where I ⊂ B is an ideal of square zero, there exists a, resp. exists a unique, resp.
exists at most one dotted arrow which makes the diagram commute. This moti-
vates the following analogue for morphisms of algebraic spaces, and more generally
functors.

Definition 76.13.1.049S Let S be a scheme. Let a : F → G be a transformation of
functors F,G : (Sch/S)oppfppf → Sets. Consider commutative solid diagrams of the
form

F

a

��

T

i
��

oo

G T ′oo

``

where T and T ′ are affine schemes and i is a closed immersion defined by an ideal
of square zero.

(1) We say a is formally smooth if given any solid diagram as above there
exists a dotted arrow making the diagram commute1.

1This is just one possible definition that one can make here. Another slightly weaker condition
would be to require that the dotted arrow exists fppf locally on T ′. This weaker notion has in
some sense better formal properties.

https://stacks.math.columbia.edu/tag/05ZX
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(2) We say a is formally étale if given any solid diagram as above there exists
exactly one dotted arrow making the diagram commute.

(3) We say a is formally unramified if given any solid diagram as above there
exists at most one dotted arrow making the diagram commute.

Lemma 76.13.2.04G4 Let S be a scheme. Let a : F → G be a transformation of functors
F,G : (Sch/S)oppfppf → Sets. Then a is formally étale if and only if a is both formally
smooth and formally unramified.

Proof. Formal from the definition. □

Lemma 76.13.3.049T Composition.
(1) A composition of formally smooth transformations of functors is formally

smooth.
(2) A composition of formally étale transformations of functors is formally

étale.
(3) A composition of formally unramified transformations of functors is for-

mally unramified.

Proof. This is formal. □

Lemma 76.13.4.049U Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : H → G be transformations of functors. Consider the fibre
product diagram

H ×b,G,a F
b′
//

a′

��

F

a

��
H

b // G

(1) If a is formally smooth, then the base change a′ is formally smooth.
(2) If a is formally étale, then the base change a′ is formally étale.
(3) If a is formally unramified, then the base change a′ is formally unramified.

Proof. This is formal. □

Lemma 76.13.5.04AL Let S be a scheme. Let F,G : (Sch/S)oppfppf → Sets. Let a : F → G
be a representable transformation of functors.

(1) If a is smooth then a is formally smooth.
(2) If a is étale, then a is formally étale.
(3) If a is unramified, then a is formally unramified.

Proof. Consider a solid commutative diagram

F

a

��

T

i
��

oo

G T ′oo

``

as in Definition 76.13.1. Then F ×G T ′ is a scheme smooth (resp. étale, resp.
unramified) over T ′. Hence by More on Morphisms, Lemma 37.11.7 (resp. Lemma
37.8.9, resp. Lemma 37.6.8) we can fill in (resp. uniquely fill in, resp. fill in at most

https://stacks.math.columbia.edu/tag/04G4
https://stacks.math.columbia.edu/tag/049T
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one way) the dotted arrow in the diagram

F ×G T ′

��

T

i

��

oo

T ′ T ′oo

dd

an hence we also obtain the corresponding assertion in the first diagram. □

Lemma 76.13.6.04CY Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : G→ H be transformations of functors. Assume that a is
representable, surjective, and étale.

(1) If b is formally smooth, then b ◦ a is formally smooth.
(2) If b is formally étale, then b ◦ a is formally étale.
(3) If b is formally unramified, then b ◦ a is formally unramified.

Conversely, consider a solid commutative diagram

G

b

��

T

i
��

oo

H T ′oo

``

with T ′ an affine scheme over S and i : T → T ′ a closed immersion defined by an
ideal of square zero.

(4) If b ◦ a is formally smooth, then for every t ∈ T there exists an étale
morphism of affines U ′ → T ′ and a morphism U ′ → G such that

G

b

��

Too T ×T ′ U ′

��

oo

H T ′oo U ′

ii

oo

commutes and t is in the image of U ′ → T ′.
(5) If b ◦ a is formally unramified, then there exists at most one dotted arrow

in the diagram above, i.e., b is formally unramified.
(6) If b ◦ a is formally étale, then there exists exactly one dotted arrow in the

diagram above, i.e., b is formally étale.

Proof. Assume b is formally smooth (resp. formally étale, resp. formally unram-
ified). Since an étale morphism is both smooth and unramified we see that a is
representable and smooth (resp. étale, resp. unramified). Hence parts (1), (2) and
(3) follow from a combination of Lemma 76.13.5 and Lemma 76.13.3.

Assume that b ◦ a is formally smooth. Consider a diagram as in the statement of
the lemma. Let W = F ×G T . By assumption W is a scheme surjective étale over
T . By Étale Morphisms, Theorem 41.15.2 there exists a scheme W ′ étale over T ′

such that W = T ×T ′ W ′. Choose an affine open subscheme U ′ ⊂ W ′ such that t
is in the image of U ′ → T ′. Because b ◦ a is formally smooth we see that the exist

https://stacks.math.columbia.edu/tag/04CY
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morphisms U ′ → F such that

F

b◦a
��

Woo T ×T ′ U ′

��

oo

H T ′oo U ′

ii

oo

commutes. Taking the composition U ′ → F → G gives a map as in part (5) of the
lemma.
Assume that f, g : T ′ → G are two dotted arrows fitting into the diagram of the
lemma. Let W = F ×G T . By assumption W is a scheme surjective étale over T .
By Étale Morphisms, Theorem 41.15.2 there exists a scheme W ′ étale over T ′ such
that W = T ×T ′ W ′. Since a is formally étale the compositions

W ′ → T ′ f−→ G and W ′ → T ′ g−→ G

lift to morphisms f ′, g′ : W ′ → F (lift on affine opens and glue by uniqueness).
Now if b ◦ a : F → H is formally unramified, then f ′ = g′ and hence f = g as
W ′ → T ′ is an étale covering. This proves part (6) of the lemma.
Assume that b ◦ a is formally étale. Then by part (4) we can étale locally on T ′

find a dotted arrow fitting into the diagram and by part (5) this dotted arrow is
unique. Hence we may glue the local solutions to get assertion (6). Some details
omitted. □

Remark 76.13.7.04CZ It is tempting to think that in the situation of Lemma 76.13.6
we have “b formally smooth”⇔ “b ◦a formally smooth”. However, this is likely not
true in general.

Lemma 76.13.8.04G5 Let S be a scheme. Let F,G,H : (Sch/S)oppfppf → Sets. Let
a : F → G, b : G → H be transformations of functors. Assume b is formally
unramified.

(1) If b ◦ a is formally unramified then a is formally unramified.
(2) If b ◦ a is formally étale then a is formally étale.
(3) If b ◦ a is formally smooth then a is formally smooth.

Proof. Let T ⊂ T ′ be a closed immersion of affine schemes defined by an ideal of
square zero. Let g′ : T ′ → G and f : T → F be given such that g′|T = a ◦ f .
Because b is formally unramified, there is a one to one correspondence between

{f ′ : T ′ → F | f = f ′|T and a ◦ f ′ = g′}
and

{f ′ : T ′ → F | f = f ′|T and b ◦ a ◦ f ′ = b ◦ g′}.
From this the lemma follows formally. □

76.14. Formally unramified morphisms

04G6 In this section we work out what it means that a morphism of algebraic spaces is
formally unramified.

Definition 76.14.1.04G7 Let S be a scheme. A morphism f : X → Y of algebraic
spaces over S is said to be formally unramified if it is formally unramified as a
transformation of functors as in Definition 76.13.1.

https://stacks.math.columbia.edu/tag/04CZ
https://stacks.math.columbia.edu/tag/04G5
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We will not restate the results proved in the more general setting of formally unram-
ified transformations of functors in Section 76.13. It turns out we can characterize
this property in terms of vanishing of the module of relative differentials, see Lemma
76.14.6.

Lemma 76.14.2.04G8 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is formally unramified,
(2) for every diagram

U

��

ψ
// V

��
X

f // Y
where U and V are schemes and the vertical arrows are étale the morphism
of schemes ψ is formally unramified (as in More on Morphisms, Definition
37.6.1), and

(3) for one such diagram with surjective vertical arrows the morphism ψ is
formally unramified.

Proof. Assume f is formally unramified. By Lemma 76.13.5 the morphisms U → X
and V → Y are formally unramified. Thus by Lemma 76.13.3 the composition
U → Y is formally unramified. Then it follows from Lemma 76.13.8 that U → V
is formally unramified. Thus (1) implies (2). And (2) implies (3) trivially
Assume given a diagram as in (3). By Lemma 76.13.5 the morphism V → Y is
formally unramified. Thus by Lemma 76.13.3 the composition U → Y is formally
unramified. Then it follows from Lemma 76.13.6 that X → Y is formally unrami-
fied, i.e., (1) holds. □

Lemma 76.14.3.05ZY Let S be a scheme. If f : X → Y is a formally unramified
morphism of algebraic spaces over S, then given any solid commutative diagram

X

f

��

T

i
��

oo

S T ′oo

``

where T ⊂ T ′ is a first order thickening of algebraic spaces over S there exists at
most one dotted arrow making the diagram commute. In other words, in Definition
76.14.1 the condition that T be an affine scheme may be dropped.

Proof. This is true because there exists a surjective étale morphism U ′ → T ′ where
U ′ is a disjoint union of affine schemes (see Properties of Spaces, Lemma 66.6.1)
and a morphism T ′ → X is determined by its restriction to U ′. □

Lemma 76.14.4.05ZZ A composition of formally unramified morphisms is formally un-
ramified.

Proof. This is formal. □

Lemma 76.14.5.0600 A base change of a formally unramified morphism is formally
unramified.

Proof. This is formal. □

https://stacks.math.columbia.edu/tag/04G8
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Lemma 76.14.6.04G9 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is formally unramified, and
(2) ΩX/Y = 0.

Proof. This is a combination of Lemma 76.14.2, More on Morphisms, Lemma
37.6.7, and Lemma 76.7.3. □

Lemma 76.14.7.04GA Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) The morphism f is unramified,
(2) the morphism f is locally of finite type and ΩX/Y = 0, and
(3) the morphism f is locally of finite type and formally unramified.

Proof. Choose a diagram
U

��

ψ
// V

��
X

f // Y
where U and V are schemes and the vertical arrows are étale and surjective. Then
we see

f unramified⇔ ψ unramified
⇔ ψ locally finite type and ΩU/V = 0
⇔ f locally finite type and ΩX/Y = 0
⇔ f locally finite type and formally unramified

Here we have used Morphisms, Lemma 29.35.2 and Lemma 76.14.6. □

Lemma 76.14.8.05W6 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is unramified and a monomorphism,
(2) f is unramified and universally injective,
(3) f is locally of finite type and a monomorphism,
(4) f is universally injective, locally of finite type, and formally unramified.

Moreover, in this case f is also representable, separated, and locally quasi-finite.

Proof. We have seen in Lemma 76.14.7 that being formally unramified and locally
of finite type is the same thing as being unramified. Hence (4) is equivalent to (2).
A monomorphism is certainly formally unramified hence (3) implies (4). It is clear
that (1) implies (3). Finally, if (2) holds, then ∆ : X → X ×Y X is both an open
immersion (Morphisms of Spaces, Lemma 67.38.9) and surjective (Morphisms of
Spaces, Lemma 67.19.2) hence an isomorphism, i.e., f is a monomorphism. In this
way we see that (2) implies (1). Finally, we see that f is representable, separated,
and locally quasi-finite by Morphisms of Spaces, Lemmas 67.27.10 and 67.51.1. □

Lemma 76.14.9.05W8 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is a closed immersion,
(2) f is universally closed, unramified, and a monomorphism,
(3) f is universally closed, unramified, and universally injective,

https://stacks.math.columbia.edu/tag/04G9
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(4) f is universally closed, locally of finite type, and a monomorphism,
(5) f is universally closed, universally injective, locally of finite type, and

formally unramified.

Proof. The equivalence of (2) – (5) follows immediately from Lemma 76.14.8. More-
over, if (2) – (5) are satisfied then f is representable. Similarly, if (1) is satisfied
then f is representable. Hence the result follows from the case of schemes, see Étale
Morphisms, Lemma 41.7.2. □

76.15. Universal first order thickenings

0601 Let S be a scheme. Let h : Z → X be a morphism of algebraic spaces over S. A
universal first order thickening of Z over X is a first order thickening Z ⊂ Z ′ over X
such that given any first order thickening T ⊂ T ′ over X and a solid commutative
diagram

(76.15.0.1)0602

Z

~~

T

  

a
oo

Z ′

''

T ′a′
oo

b
ww

X

there exists a unique dotted arrow making the diagram commute. Note that in
this situation (a, a′) : (T ⊂ T ′) → (Z ⊂ Z ′) is a morphism of thickenings over
X. Thus if a universal first order thickening exists, then it is unique up to unique
isomorphism. In general a universal first order thickening does not exist, but if h is
formally unramified then it does. Before we prove this, let us show that a universal
first order thickening in the category of schemes is a universal first order thickening
in the category of algebraic spaces.

Lemma 76.15.1.0603 Let S be a scheme. Let h : Z → X be a morphism of algebraic
spaces over S. Let Z ⊂ Z ′ be a first order thickening over X. The following are
equivalent

(1) Z ⊂ Z ′ is a universal first order thickening,
(2) for any diagram (76.15.0.1) with T ′ a scheme a unique dotted arrow exists

making the diagram commute, and
(3) for any diagram (76.15.0.1) with T ′ an affine scheme a unique dotted arrow

exists making the diagram commute.

Proof. The implications (1) ⇒ (2) ⇒ (3) are formal. Assume (3) a assume given
an arbitrary diagram (76.15.0.1). Choose a presentation T ′ = U ′/R′, see Spaces,
Definition 65.9.3. We may assume that U ′ =

∐
U ′
i is a disjoint union of affines,

so R′ = U ′ ×T ′ U ′ =
∐
i,j U

′
i ×′

T U
′
j . For each pair (i, j) choose an affine open

covering U ′
i ×′

T U
′
j =

⋃
k R

′
ijk. Denote Ui, Rijk the fibre products with T over

T ′. Then each Ui ⊂ U ′
i and Rijk ⊂ R′

ijk is a first order thickening of affine
schemes. Denote ai : Ui → Z, resp. aijk : Rijk → Z the composition of a : T → Z
with the morphism Ui → T , resp. Rijk → T . By (3) applied to ai : Ui → Z
we obtain unique morphisms a′

i : U ′
i → Z ′. By (3) applied to aijk we see that

the two compositions R′
ijk → R′

i → Z ′ and R′
ijk → R′

j → Z ′ are equal. Hence

https://stacks.math.columbia.edu/tag/0603
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a′ =
∐
a′
i : U ′ =

∐
U ′
i → Z ′ descends to the quotient sheaf T ′ = U ′/R′ and we

win. □

Lemma 76.15.2.0604 Let S be a scheme. Let Z → Y → X be morphisms of algebraic
spaces over S. If Z ⊂ Z ′ is a universal first order thickening of Z over Y and
Y → X is formally étale, then Z ⊂ Z ′ is a universal first order thickening of Z over
X.

Proof. This is formal. Namely, by Lemma 76.15.1 it suffices to consider solid
commutative diagrams (76.15.0.1) with T ′ an affine scheme. The composition
T → Z → Y lifts uniquely to T ′ → Y as Y → X is assumed formally étale.
Hence the fact that Z ⊂ Z ′ is a universal first order thickening over Y produces
the desired morphism a′ : T ′ → Z ′. □

Lemma 76.15.3.0605 Let S be a scheme. Let Z → Y → X be morphisms of algebraic
spaces over S. Assume Z → Y is étale.

(1) If Y ⊂ Y ′ is a universal first order thickening of Y over X, then the unique
étale morphism Z ′ → Y ′ such that Z = Y ×Y ′ Z ′ (see Theorem 76.8.1) is
a universal first order thickening of Z over X.

(2) If Z → Y is surjective and (Z ⊂ Z ′)→ (Y ⊂ Y ′) is an étale morphism of
first order thickenings over X and Z ′ is a universal first order thickening
of Z over X, then Y ′ is a universal first order thickening of Y over X.

Proof. Proof of (1). By Lemma 76.15.1 it suffices to consider solid commutative
diagrams (76.15.0.1) with T ′ an affine scheme. The composition T → Z → Y lifts
uniquely to T ′ → Y ′ as Y ′ is the universal first order thickening. Then the fact
that Z ′ → Y ′ is étale implies (see Lemma 76.13.5) that T ′ → Y ′ lifts to the desired
morphism a′ : T ′ → Z ′.
Proof of (2). Let T ⊂ T ′ be a first order thickening over X and let a : T → Y be
a morphism. Set W = T ×Y Z and denote c : W → Z the projection Let W ′ → T ′

be the unique étale morphism such that W = T ×T ′ W ′, see Theorem 76.8.1. Note
that W ′ → T ′ is surjective as Z → Y is surjective. By assumption we obtain a
unique morphism c′ : W ′ → Z ′ over X restricting to c on W . By uniqueness the
two restrictions of c′ to W ′×T ′W ′ are equal (as the two restrictions of c to W×TW
are equal). Hence c′ descends to a unique morphism a′ : T ′ → Y ′ and we win. □

Lemma 76.15.4.0606 Let S be a scheme. Let h : Z → X be a formally unramified
morphism of algebraic spaces over S. There exists a universal first order thickening
Z ⊂ Z ′ of Z over X.

Proof. Choose any commutative diagram
V

��

// U

��
Z // X

where V and U are schemes and the vertical arrows are étale. Note that V → U is a
formally unramified morphism of schemes, see Lemma 76.14.2. Combining Lemma
76.15.1 and More on Morphisms, Lemma 37.7.1 we see that a universal first order
thickening V ⊂ V ′ of V over U exists. By Lemma 76.15.2 part (1) V ′ is a universal
first order thickening of V over X.
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Fix a scheme U and a surjective étale morphism U → X. The argument above
shows that for any V → Z étale with V a scheme such that V → Z → X factors
through U a universal first order thickening V ⊂ V ′ of V over X exists (but does not
depend on the chosen factorization of V → X through U). Now we may choose V
such that V → Z is surjective étale (see Spaces, Lemma 65.11.6). Then R = V ×ZV
a scheme étale over Z such that R → X factors through U also. Hence we obtain
universal first order thickenings V ⊂ V ′ and R ⊂ R′ over X. As V ⊂ V ′ is a
universal first order thickening, the two projections s, t : R → V lift to morphisms
s′, t′ : R′ → V ′. By Lemma 76.15.3 as R′ is the universal first order thickening of
R over X these morphisms are étale. Then (t′, s′) : R′ → V ′ is an étale equivalence
relation and we can set Z ′ = V ′/R′. Since V ′ → Z ′ is surjective étale and v′ is the
universal first order thickening of V over X we conclude from Lemma 76.15.2 part
(2) that Z ′ is a universal first order thickening of Z over X. □

Definition 76.15.5.0607 Let S be a scheme. Let h : Z → X be a formally unramified
morphism of algebraic spaces over S.

(1) The universal first order thickening of Z over X is the thickening Z ⊂ Z ′

constructed in Lemma 76.15.4.
(2) The conormal sheaf of Z over X is the conormal sheaf of Z in its universal

first order thickening Z ′ over X.

We often denote the conormal sheaf CZ/X in this situation.

Thus we see that there is a short exact sequence of sheaves

0→ CZ/X → OZ′ → OZ → 0

on Zétale and CZ/X is a quasi-coherent OZ-module. The following lemma proves
that there is no conflict between this definition and the definition in case Z → X
is an immersion.

Lemma 76.15.6.0608 Let S be a scheme. Let i : Z → X be an immersion of algebraic
spaces over S. Then

(1) i is formally unramified,
(2) the universal first order thickening of Z over X is the first order infinites-

imal neighbourhood of Z in X of Definition 76.12.1,
(3) the conormal sheaf of i in the sense of Definition 76.5.1 agrees with the

conormal sheaf of i in the sense of Definition 76.15.5.

Proof. An immersion of algebraic spaces is by definition a representable morphism.
Hence by Morphisms, Lemmas 29.35.7 and 29.35.8 an immersion is unramified (via
the abstract principle of Spaces, Lemma 65.5.8). Hence it is formally unramified
by Lemma 76.14.7. The other assertions follow by combining Lemmas 76.12.2 and
76.12.3 and the definitions. □

Lemma 76.15.7.0609 Let S be a scheme. Let Z → X be a formally unramified morphism
of algebraic spaces over S. Then the universal first order thickening Z ′ is formally
unramified over X.
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Proof. Let T ⊂ T ′ be a first order thickening of affine schemes over X. Let

Z ′

��

T
c

oo

��
X T ′oo

a,b

``

be a commutative diagram. Set T0 = c−1(Z) ⊂ T and T ′
a = a−1(Z) (scheme

theoretically). Since Z ′ is a first order thickening of Z, we see that T ′ is a first
order thickening of T ′

a. Moreover, since c = a|T we see that T0 = T ∩ T ′
a (scheme

theoretically). As T ′ is a first order thickening of T it follows that T ′
a is a first order

thickening of T0. Now a|T ′
a

and b|T ′
a

are morphisms of T ′
a into Z ′ over X which agree

on T0 as morphisms into Z. Hence by the universal property of Z ′ we conclude
that a|T ′

a
= b|T ′

a
. Thus a and b are morphism from the first order thickening T ′ of

T ′
a whose restrictions to T ′

a agree as morphisms into Z. Thus using the universal
property of Z ′ once more we conclude that a = b. In other words, the defining
property of a formally unramified morphism holds for Z ′ → X as desired. □

Lemma 76.15.8.060A Let S be a scheme Consider a commutative diagram of algebraic
spaces over S

Z
h
//

f

��

X

g

��
W

h′
// Y

with h and h′ formally unramified. Let Z ⊂ Z ′ be the universal first order thicken-
ing of Z over X. Let W ⊂W ′ be the universal first order thickening of W over Y .
There exists a canonical morphism (f, f ′) : (Z,Z ′) → (W,W ′) of thickenings over
Y which fits into the following commutative diagram

Z ′

~~
f ′

��
Z //

f

��

44

X

��

W ′

}}
W

44

// Y

In particular the morphism (f, f ′) of thickenings induces a morphism of conormal
sheaves f∗CW/Y → CZ/X .

Proof. The first assertion is clear from the universal property of W ′. The induced
map on conormal sheaves is the map of Lemma 76.5.3 applied to (Z ⊂ Z ′)→ (W ⊂
W ′). □

Lemma 76.15.9.060B Let S be a scheme. Let

Z
h
//

f

��

X

g

��
W

h′
// Y

be a fibre product diagram of algebraic spaces over S with h′ formally unramified.
Then h is formally unramified and if W ⊂W ′ is the universal first order thickening

https://stacks.math.columbia.edu/tag/060A
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of W over Y , then Z = X ×Y W ⊂ X ×Y W ′ is the universal first order thickening
of Z over X. In particular the canonical map f∗CW/Y → CZ/X of Lemma 76.15.8
is surjective.
Proof. The morphism h is formally unramified by Lemma 76.14.5. It is clear that
X ×Y W ′ is a first order thickening. It is straightforward to check that it has the
universal property because W ′ has the universal property (by mapping properties
of fibre products). See Lemma 76.5.5 for why this implies that the map of conormal
sheaves is surjective. □

Lemma 76.15.10.060C Let S be a scheme. Let

Z
h
//

f

��

X

g

��
W

h′
// Y

be a fibre product diagram of algebraic spaces over S with h′ formally unramified
and g flat. In this case the corresponding map Z ′ → W ′ of universal first order
thickenings is flat, and f∗CW/Y → CZ/X is an isomorphism.
Proof. Flatness is preserved under base change, see Morphisms of Spaces, Lemma
67.30.4. Hence the first statement follows from the description of W ′ in Lemma
76.15.9. It is clear that X ×Y W ′ is a first order thickening. It is straightforward
to check that it has the universal property because W ′ has the universal property
(by mapping properties of fibre products). See Lemma 76.5.5 for why this implies
that the map of conormal sheaves is an isomorphism. □

Lemma 76.15.11.060D Taking the universal first order thickenings commutes with étale
localization. More precisely, let h : Z → X be a formally unramified morphism of
algebraic spaces over a base scheme S. Let

V

��

// U

��
Z // X

be a commutative diagram with étale vertical arrows. Let Z ′ be the universal first
order thickening of Z over X. Then V → U is formally unramified and the universal
first order thickening V ′ of V over U is étale over Z ′. In particular, CZ/X |V = CV/U .
Proof. The first statement is Lemma 76.14.2. The compatibility of universal first
order thickenings is a consequence of Lemmas 76.15.2 and 76.15.3. □

Lemma 76.15.12.060E Let S be a scheme. Let B be an algebraic space over S. Let
h : Z → X be a formally unramified morphism of algebraic spaces over B. Let
Z ⊂ Z ′ be the universal first order thickening of Z over X with structure morphism
h′ : Z ′ → X. The canonical map

dh′ : (h′)∗ΩX/B → ΩZ′/B

induces an isomorphism h∗ΩX/B → ΩZ′/B ⊗OZ .

Proof. The map ch′ is the map defined in Lemma 76.7.6. If i : Z → Z ′ is the given
closed immersion, then i∗ch′ is a map h∗ΩX/S → ΩZ′/S ⊗ OZ . Checking that it
is an isomorphism reduces to the case of schemes by étale localization, see Lemma
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https://stacks.math.columbia.edu/tag/060D
https://stacks.math.columbia.edu/tag/060E


76.15. UNIVERSAL FIRST ORDER THICKENINGS 5819

76.15.11 and Lemma 76.7.3. In this case the result is More on Morphisms, Lemma
37.7.9. □

Lemma 76.15.13.060F Let S be a scheme. Let B be an algebraic space over S. Let
h : Z → X be a formally unramified morphism of algebraic spaces over B. There
is a canonical exact sequence

CZ/X → h∗ΩX/B → ΩZ/B → 0.
The first arrow is induced by dZ′/B where Z ′ is the universal first order neighbour-
hood of Z over X.

Proof. We know that there is a canonical exact sequence
CZ/Z′ → ΩZ′/S ⊗OZ → ΩZ/S → 0.

see Lemma 76.7.10. Hence the result follows on applying Lemma 76.15.12. □

Lemma 76.15.14.06BE Let S be a scheme. Let

Z
i
//

j   

X

��
Y

be a commutative diagram of algebraic spaces over S where i and j are formally
unramified. Then there is a canonical exact sequence

CZ/Y → CZ/X → i∗ΩX/Y → 0
where the first arrow comes from Lemma 76.15.8 and the second from Lemma
76.15.13.

Proof. Since the maps have been defined, checking the sequence is exact reduces to
the case of schemes by étale localization, see Lemma 76.15.11 and Lemma 76.7.3.
In this case the result is More on Morphisms, Lemma 37.7.11. □

Lemma 76.15.15.06BF Let S be a scheme. Let Z → Y → X be formally unramified
morphisms of algebraic spaces over S.

(1) If Z ⊂ Z ′ is the universal first order thickening of Z over X and Y ⊂ Y ′ is
the universal first order thickening of Y over X, then there is a morphism
Z ′ → Y ′ and Y ×Y ′ Z ′ is the universal first order thickening of Z over Y .

(2) There is a canonical exact sequence
i∗CY/X → CZ/X → CZ/Y → 0

where the maps come from Lemma 76.15.8 and i : Z → Y is the first
morphism.

Proof. The map h : Z ′ → Y ′ in (1) comes from Lemma 76.15.8. The assertion
that Y ×Y ′ Z ′ is the universal first order thickening of Z over Y is clear from the
universal properties of Z ′ and Y ′. By Lemma 76.5.6 we have an exact sequence

(i′)∗CY×Y ′Z′/Z′ → CZ/Z′ → CZ/Y×Y ′Z′ → 0
where i′ : Z → Y ×Y ′ Z ′ is the given morphism. By Lemma 76.5.5 there exists
a surjection h∗CY/Y ′ → CY×Y ′Z′/Z′ . Combined with the equalities CY/Y ′ = CY/X ,
CZ/Z′ = CZ/X , and CZ/Y×Y ′Z′ = CZ/Y this proves the lemma. □
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76.16. Formally étale morphisms

04GB In this section we work out what it means that a morphism of algebraic spaces is
formally étale.

Definition 76.16.1.04GC Let S be a scheme. A morphism f : X → Y of algebraic spaces
over S is said to be formally étale if it is formally étale as a transformation of
functors as in Definition 76.13.1.

We will not restate the results proved in the more general setting of formally étale
transformations of functors in Section 76.13.

Lemma 76.16.2.04GD Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is formally étale,
(2) for every diagram

U

��

ψ
// V

��
X

f // Y

where U and V are schemes and the vertical arrows are étale the mor-
phism of schemes ψ is formally étale (as in More on Morphisms, Definition
37.8.1), and

(3) for one such diagram with surjective vertical arrows the morphism ψ is
formally étale.

Proof. Assume f is formally étale. By Lemma 76.13.5 the morphisms U → X and
V → Y are formally étale. Thus by Lemma 76.13.3 the composition U → Y is
formally étale. Then it follows from Lemma 76.13.8 that U → V is formally étale.
Thus (1) implies (2). And (2) implies (3) trivially
Assume given a diagram as in (3). By Lemma 76.13.5 the morphism V → Y
is formally étale. Thus by Lemma 76.13.3 the composition U → Y is formally
étale. Then it follows from Lemma 76.13.6 that X → Y is formally étale, i.e., (1)
holds. □

Lemma 76.16.3.0611 Let S be a scheme. Let f : X → Y be a formally étale morphism
of algebraic spaces over S. Then given any solid commutative diagram

X

f

��

T

i
��

aoo

Y T ′oo

``

where T ⊂ T ′ is a first order thickening of algebraic spaces over Y there exists ex-
actly one dotted arrow making the diagram commute. In other words, in Definition
76.16.1 the condition that T be affine may be dropped.

Proof. Let U ′ → T ′ be a surjective étale morphism where U ′ =
∐
U ′
i is a disjoint

union of affine schemes. Let Ui = T ×T ′ U ′
i . Then we get morphisms a′

i : U ′
i → X

such that a′
i|Ui equals the composition Ui → T → X. By uniqueness (see Lemma

76.14.3) we see that a′
i and a′

j agree on the fibre product U ′
i ×T ′ U ′

j . Hence
∐
a′
i :

U ′ → X descends to give a unique morphism a′ : T ′ → X. □
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Lemma 76.16.4.0612 A composition of formally étale morphisms is formally étale.

Proof. This is formal. □

Lemma 76.16.5.0613 A base change of a formally étale morphism is formally étale.

Proof. This is formal. □

Lemma 76.16.6.0614 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S The following are equivalent:

(1) f is formally étale,
(2) f is formally unramified and the universal first order thickening of X over

Y is equal to X,
(3) f is formally unramified and CX/Y = 0, and
(4) ΩX/Y = 0 and CX/Y = 0.

Proof. Actually, the last assertion only make sense because ΩX/Y = 0 implies that
CX/Y is defined via Lemma 76.14.6 and Definition 76.15.5. This also makes it clear
that (3) and (4) are equivalent.
Either of the assumptions (1), (2), and (3) imply that f is formally unramified.
Hence we may assume f is formally unramified. The equivalence of (1), (2), and
(3) follow from the universal property of the universal first order thickening X ′

of X over S and the fact that X = X ′ ⇔ CX/Y = 0 since after all by definition
CX/Y = CX/X′ is the ideal sheaf of X in X ′. □

Lemma 76.16.7.0615 An unramified flat morphism is formally étale.

Proof. Follows from the case of schemes, see More on Morphisms, Lemma 37.8.7
and étale localization, see Lemmas 76.14.2 and 76.16.2 and Morphisms of Spaces,
Lemma 67.30.5. □

Lemma 76.16.8.0616 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) The morphism f is étale, and
(2) the morphism f is locally of finite presentation and formally étale.

Proof. Follows from the case of schemes, see More on Morphisms, Lemma 37.8.9 and
étale localization, see Lemma 76.16.2 and Morphisms of Spaces, Lemmas 67.28.4
and 67.39.2. □

76.17. Infinitesimal deformations of maps

0617 In this section we explain how a derivation can be used to infinitesimally move a
map. Throughout this section we use that a sheaf on a thickening X ′ of X can be
seen as a sheaf on X, see Equations (76.9.1.1) and (76.9.1.2).

Lemma 76.17.1.0618 Let S be a scheme. Let B be an algebraic space over S. Let
X ⊂ X ′ and Y ⊂ Y ′ be two first order thickenings of algebraic spaces over B. Let
(a, a′), (b, b′) : (X ⊂ X ′) → (Y ⊂ Y ′) be two morphisms of thickenings over B.
Assume that

(1) a = b, and
(2) the two maps a∗CY/Y ′ → CX/X′ (Lemma 76.5.3) are equal.
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Then the map (a′)♯ − (b′)♯ factors as

OY ′ → OY
D−→ a∗CX/X′ → a∗OX′

where D is an OB-derivation.

Proof. Instead of working on Y we work on X. The advantage is that the pullback
functor a−1 is exact. Using (1) and (2) we obtain a commutative diagram with
exact rows

0 // CX/X′ // OX′ // OX // 0

0 // a−1CY/Y ′ //

OO

a−1OY ′ //

(a′)♯

OO

(b′)♯

OO

a−1OY //

OO

0

Now it is a general fact that in such a situation the difference of the OB-algebra
maps (a′)♯ and (b′)♯ is an OB-derivation from a−1OY to CX/X′ . By adjointness of
the functors a−1 and a∗ this is the same thing as an OB-derivation from OY into
a∗CX/X′ . Some details omitted. □

Note that in the situation of the lemma above we may write D as
(76.17.1.1)0619 D = dY/B ◦ θ
where θ is an OY -linear map θ : ΩY/B → a∗CX/X′ . Of course, then by adjunction
again we may view θ as an OX -linear map θ : a∗ΩY/B → CX/X′ .

Lemma 76.17.2.04D0 Let S be a scheme. Let B be an algebraic space over S. Let
(a, a′) : (X ⊂ X ′) → (Y ⊂ Y ′) be a morphism of first order thickenings over B.
Let

θ : a∗ΩY/B → CX/X′

be an OX -linear map. Then there exists a unique morphism of pairs (b, b′) : (X ⊂
X ′) → (Y ⊂ Y ′) such that (1) and (2) of Lemma 76.17.1 hold and the derivation
D and θ are related by Equation (76.17.1.1).

Proof. Consider the map
α = (a′)♯ +D : a−1OY ′ → OX′

where D is as in Equation (76.17.1.1). As D is an OB-derivation it follows that α
is a map of sheaves of OB-algebras. By construction we have i♯X ◦α = a♯ ◦ i♯Y where
iX : X → X ′ and iY : Y → Y ′ are the given closed immersions. By Lemma 76.9.2
we obtain a unique morphism (a, b′) : (X ⊂ X ′)→ (Y ⊂ Y ′) of thickenings over B
such that α = (b′)♯. Setting b = a we win. □

Remark 76.17.3.0CK6 Assumptions and notation as in Lemma 76.17.2. The action of a
local section θ on a′ is sometimes indicated by θ · a′. Note that this means nothing
else than the fact that (a′)♯ and (θ · a′)♯ differ by a derivation D which is related
to θ by Equation (76.17.1.1).

Lemma 76.17.4.061A Let S be a scheme. Let B be an algebraic space over S. Let
X ⊂ X ′ and Y ⊂ Y ′ be first order thickenings over B. Assume given a morphism
a : X → Y and a map A : a∗CY/Y ′ → CX/X′ of OX -modules. For an object U ′ of
(X ′)spaces,étale with U = X ×X′ U ′ consider morphisms a′ : U ′ → Y ′ such that

(1) a′ is a morphism over B,
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(2) a′|U = a|U , and
(3) the induced map a∗CY/Y ′ |U → CX/X′ |U is the restriction of A to U .

Then the rule
(76.17.4.1)061B U ′ 7→ {a′ : U ′ → Y ′ such that (1), (2), (3) hold.}
defines a sheaf of sets on (X ′)spaces,étale.

Proof. Denote F the rule of the lemma. The restriction mapping F(U ′)→ F(V ′)
for V ′ ⊂ U ′ ⊂ X ′ of F is really the restriction map a′ 7→ a′|V ′ . With this definition
in place it is clear that F is a sheaf since morphisms of algebraic spaces satisfy étale
descent, see Descent on Spaces, Lemma 74.7.2. □

Lemma 76.17.5.061C Same notation and assumptions as in Lemma 76.17.4. We identify
sheaves on X and X ′ via (76.9.1.1). There is an action of the sheaf

HomOX
(a∗ΩY/B , CX/X′)

on the sheaf (76.17.4.1). Moreover, the action is simply transitive for any object
U ′ of (X ′)spaces,étale over which the sheaf (76.17.4.1) has a section.

Proof. This is a combination of Lemmas 76.17.1, 76.17.2, and 76.17.4. □

Remark 76.17.6.061D A special case of Lemmas 76.17.1, 76.17.2, 76.17.4, and 76.17.5 is
where Y = Y ′. In this case the map A is always zero. The sheaf of Lemma 76.17.4
is just given by the rule

U ′ 7→ {a′ : U ′ → Y over B with a′|U = a|U}

and we act on this by the sheaf HomOX
(a∗ΩY/B , CX/X′).

Remark 76.17.7.0CK7 Another special case of Lemmas 76.17.1, 76.17.2, 76.17.4, and
76.17.5 is where B itself is a thickening Z ⊂ Z ′ = B and Y = Z ×Z′ Y ′. Picture

(X ⊂ X ′)
(a,?)

//

(g,g′) &&

(Y ⊂ Y ′)

(h,h′)xx
(Z ⊂ Z ′)

In this case the map A : a∗CY/Y ′ → CX/X′ is determined by a: the map h∗CZ/Z′ →
CY/Y ′ is surjective (because we assumed Y = Z ×Z′ Y ′), hence the pullback
g∗CZ/Z′ = a∗h∗CZ/Z′ → a∗CY/Y ′ is surjective, and the composition g∗CZ/Z′ →
a∗CY/Y ′ → CX/X′ has to be the canonical map induced by g′. Thus the sheaf of
Lemma 76.17.4 is just given by the rule

U ′ 7→ {a′ : U ′ → Y ′ over Z ′ with a′|U = a|U}

and we act on this by the sheaf HomOX
(a∗ΩY/Z , CX/X′).

Lemma 76.17.8.0CK8 Let S be a scheme. Consider a commutative diagram of first order
thickenings

(T2 ⊂ T ′
2)

(h,h′)
��

(a2,a
′
2)

// (X2 ⊂ X ′
2)

(f,f ′)
��

(T1 ⊂ T ′
1)

(a1,a
′
1) // (X1 ⊂ X ′

1)

and a commutative
diagram

X ′
2

//

��

B2

��
X ′

1
// B1
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of algebraic spaces over S with X2 → X1 and B2 → B1 étale. For any OT1 -linear
map θ1 : a∗

1ΩX1/B1 → CT1/T ′
1

let θ2 be the composition

a∗
2ΩX2/B2 h∗a∗

1ΩX1/B1

h∗θ1 // h∗CT1/T ′
1

// CT2/T ′
2

(equality sign is explained in the proof). Then the diagram

T ′
2

θ2·a′
2

//

��

X ′
2

��
T ′

1
θ1·a′

1 // X ′
1

commutes where the actions θ2 · a′
2 and θ1 · a′

1 are as in Remark 76.17.3.

Proof. The equality sign comes from the identification f∗ΩX1/S1 = ΩX2/S2 we get
as the construction of the sheaf of differentials is compatible with étale localiza-
tion (both on source and target), see Lemma 76.7.3. Namely, using this we have
a∗

2ΩX2/S2 = a∗
2f

∗ΩX1/S1 = h∗a∗
1ΩX1/S1 because f ◦ a2 = a1 ◦ h. Having said this,

the commutativity of the diagram may be checked on étale locally. Thus we may
assume T ′

i , X ′
i, B2, and B1 are schemes and in this case the lemma follows from

More on Morphisms, Lemma 37.9.10. Alternative proof: using Lemma 76.9.2 it
suffices to show a certain diagram of sheaves of rings on X ′

1 is commutative; then
argue exactly as in the proof of the aforementioned More on Morphisms, Lemma
37.9.10 to see that this is indeed the case. □

76.18. Infinitesimal deformations of algebraic spaces

06BG The following simple lemma is often a convenient tool to check whether an infini-
tesimal deformation of a map is flat.

Lemma 76.18.1.06BH Let S be a scheme. Let (f, f ′) : (X ⊂ X ′) → (Y ⊂ Y ′) be a
morphism of first order thickenings of algebraic spaces over S. Assume that f is
flat. Then the following are equivalent

(1) f ′ is flat and X = Y ×Y ′ X ′, and
(2) the canonical map f∗CY/Y ′ → CX/X′ is an isomorphism.

Proof. Choose a scheme V ′ and a surjective étale morphism V ′ → Y ′. Choose a
scheme U ′ and a surjective étale morphism U ′ → X ′ ×Y ′ V ′. Set U = X ×X′ U ′

and V = Y ×Y ′ V ′. According to our definition of a flat morphism of algebraic
spaces we see that the induced map g : U → V is a flat morphism of schemes and
that f ′ is flat if and only if the corresponding morphism g′ : U ′ → V ′ is flat. Also,
X = Y ×Y ′ X ′ if and only if U = V ×V ′ V ′. Finally, the map f∗CY/Y ′ → CX/X′

is an isomorphism if and only if g∗CV/V ′ → CU/U ′ is an isomorphism. Hence the
lemma follows from its analogue for morphisms of schemes, see More on Morphisms,
Lemma 37.10.1. □

The following lemma is the “nilpotent” version of the “critère de platitude par
fibres”, see Section 76.23.

https://stacks.math.columbia.edu/tag/06BH
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Lemma 76.18.2.0CG5 Let S be a scheme. Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(B ⊂ B′)

of thickenings of algebraic spaces over S. Assume
(1) X ′ is flat over B′,
(2) f is flat,
(3) B ⊂ B′ is a finite order thickening, and
(4) X = B ×B′ X ′ and Y = B ×B′ Y ′.

Then f ′ is flat and Y ′ is flat over B′ at all points in the image of f ′.

Proof. Choose a scheme U ′ and a surjective étale morphism U ′ → B′. Choose a
scheme V ′ and a surjective étale morphism V ′ → U ′ ×B′ Y ′. Choose a scheme W ′

and a surjective étale morphism W ′ → V ′ ×Y ′ X ′. Let U, V,W be the base change
of U ′, V ′,W ′ by B → B′. Then flatness of f ′ is equivalent to flatness of W ′ → V ′

and we are given that W → V is flat. Hence we may apply the lemma in the case
of schemes to the diagram

(W ⊂W ′) //

&&

(V ⊂ V ′)

xx
(U ⊂ U ′)

of thickenings of schemes. See More on Morphisms, Lemma 37.10.2. The statement
about flatness of Y ′/B′ at points in the image of f ′ follows in the same manner. □

Many properties of morphisms of schemes are preserved under flat deformations.

Lemma 76.18.3.0CG6 Let S be a scheme. Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(B ⊂ B′)

of thickenings of algebraic spaces over S. AssumeB ⊂ B′ is a finite order thickening,
X ′ flat over B′, X = B ×B′ X ′, and Y = B ×B′ Y ′. Then

(1) f is representable if and only if f ′ is representable,0CG7
(2) f is flat if and only if f ′ is flat,0CG8
(3) f is an isomorphism if and only if f ′ is an isomorphism,0CG9
(4) f is an open immersion if and only if f ′ is an open immersion,0CGA
(5) f is quasi-compact if and only if f ′ is quasi-compact,0CGB
(6) f is universally closed if and only if f ′ is universally closed,0CGC
(7) f is (quasi-)separated if and only if f ′ is (quasi-)separated,0CGD
(8) f is a monomorphism if and only if f ′ is a monomorphism,0CGE
(9) f is surjective if and only if f ′ is surjective,0CGF

(10) f is universally injective if and only if f ′ is universally injective,0CGG

https://stacks.math.columbia.edu/tag/0CG5
https://stacks.math.columbia.edu/tag/0CG6
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(11) f is affine if and only if f ′ is affine,0CGH
(12)0CGI f is locally of finite type if and only if f ′ is locally of finite type,
(13) f is locally quasi-finite if and only if f ′ is locally quasi-finite,0CGJ
(14)0CGK f is locally of finite presentation if and only if f ′ is locally of finite pre-

sentation,
(15)0CGL f is locally of finite type of relative dimension d if and only if f ′ is locally

of finite type of relative dimension d,
(16) f is universally open if and only if f ′ is universally open,0CGM
(17) f is syntomic if and only if f ′ is syntomic,0CGN
(18) f is smooth if and only if f ′ is smooth,0CGP
(19) f is unramified if and only if f ′ is unramified,0CGQ
(20) f is étale if and only if f ′ is étale,0CGR
(21) f is proper if and only if f ′ is proper,0CGS
(22) f is integral if and only if f ′ is integral,0CGT
(23) f is finite if and only if f ′ is finite,0CGU
(24)0CGV f is finite locally free (of rank d) if and only if f ′ is finite locally free (of

rank d), and
(25) add more here.

Proof. Case (1) follows from Lemma 76.10.1.
Choose a scheme U ′ and a surjective étale morphism U ′ → B′. Choose a scheme
V ′ and a surjective étale morphism V ′ → U ′ ×B′ Y ′. Choose a scheme W ′ and
a surjective étale morphism W ′ → V ′ ×Y ′ X ′. Let U, V,W be the base change of
U ′, V ′,W ′ by B → B′. Consider the diagram

(W ⊂W ′) //

&&

(V ⊂ V ′)

xx
(U ⊂ U ′)

of thickenings of schemes. For any of the properties which are étale local on the
source-and-target the result follows immediately from the corresponding result for
morphisms of thickenings of schemes applied to the diagram above. Thus cases (2),
(12), (13), (14), (15), (17), (18), (19), (20) follow from the corresponding cases of
More on Morphisms, Lemma 37.10.3.
Since X → X ′ and Y → Y ′ are universal homeomorphisms we see that any question
about the topology of the maps X → Y and X ′ → Y ′ has the same answer. Thus
we see that cases (5), (6), (9), (10), and (16) hold.
In each of the remaining cases we only prove the implication f has P ⇒ f ′ has P
since the other implication follows from the fact that P is stable under base change,
see Spaces, Lemma 65.12.3 and Morphisms of Spaces, Lemmas 67.4.4, 67.10.5,
67.20.5, 67.40.3, 67.45.5, and 67.46.5.
The case (4). Assume f is an open immersion. Then f ′ is étale by (20) and
universally injective by (10) hence f ′ is an open immersion, see Morphisms of
Spaces, Lemma 67.51.2. You can avoid using this lemma at the cost of first using
(1) to reduce to the case of schemes.
The case (3). Follows from cases (4) and (9).
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The case (7). See Lemma 76.10.1.
The case (8). Assume f is a monomorphism. Consider the diagonal morphism
∆X′/Y ′ : X ′ → X ′ ×Y ′ X ′. The base change of ∆X′/Y ′ by B → B′ is ∆X/Y

which is an isomorphism by assumption. By (3) we conclude that ∆X′/Y ′ is an
isomorphism and hence f ′ is a monomorphism.
The case (11). See Lemma 76.10.1.
The case (21). See Lemma 76.10.2.
The case (22). See Lemma 76.10.1.
The case (23). See Lemma 76.10.2.
The case (24). Assume f finite locally free. By (23) we see that f ′ is finite. By (2)
we see that f ′ is flat. By (14) f ′ is locally of finite presentation. Hence f ′ is finite
locally free by Morphisms of Spaces, Lemma 67.46.6. □

The following lemma is the “locally nilpotent” version of the “critère de platitude
par fibres”, see Section 76.23.

Lemma 76.18.4.0CGW Let S be a scheme. Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(B ⊂ B′)

of thickenings of algebraic spaces over S. Assume
(1) Y ′ → B′ is locally of finite type,
(2) X ′ → B′ is flat and locally of finite presentation,
(3) f is flat, and
(4) X = B ×B′ X ′ and Y = B ×B′ Y ′.

Then f ′ is flat and for all y′ ∈ |Y ′| in the image of |f ′| the morphism Y ′ → B′ is
flat at y′.

Proof. Choose a scheme U ′ and a surjective étale morphism U ′ → B′. Choose a
scheme V ′ and a surjective étale morphism V ′ → U ′ ×B′ Y ′. Choose a scheme W ′

and a surjective étale morphism W ′ → V ′ ×Y ′ X ′. Let U, V,W be the base change
of U ′, V ′,W ′ by B → B′. Then flatness of f ′ is equivalent to flatness of W ′ → V ′

and we are given that W → V is flat. Hence we may apply the lemma in the case
of schemes to the diagram

(W ⊂W ′) //

&&

(V ⊂ V ′)

xx
(U ⊂ U ′)

of thickenings of schemes. See More on Morphisms, Lemma 37.10.4. The statement
about flatness of Y ′/B′ at points in the image of f ′ follows in the same manner. □

Many properties of morphisms of schemes are preserved under flat deformations as
in the lemma above.

https://stacks.math.columbia.edu/tag/0CGW
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Lemma 76.18.5.0CGX Let S be a scheme. Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(B ⊂ B′)

of thickenings of algebraic spaces over S. Assume Y ′ → B′ locally of finite type,
X ′ → B′ flat and locally of finite presentation, X = B ×B′ X ′, and Y = B ×B′ Y ′.
Then

(1) f is representable if and only if f ′ is representable,0CGY
(2) f is flat if and only if f ′ is flat,0CGZ
(3) f is an isomorphism if and only if f ′ is an isomorphism,0CH0
(4) f is an open immersion if and only if f ′ is an open immersion,0CH1
(5) f is quasi-compact if and only if f ′ is quasi-compact,0CH2
(6) f is universally closed if and only if f ′ is universally closed,0CH3
(7) f is (quasi-)separated if and only if f ′ is (quasi-)separated,0CH4
(8) f is a monomorphism if and only if f ′ is a monomorphism,0CH5
(9) f is surjective if and only if f ′ is surjective,0CH6

(10) f is universally injective if and only if f ′ is universally injective,0CH7
(11) f is affine if and only if f ′ is affine,0CH8
(12) f is locally quasi-finite if and only if f ′ is locally quasi-finite,0CH9
(13)0CHA f is locally of finite type of relative dimension d if and only if f ′ is locally

of finite type of relative dimension d,
(14) f is universally open if and only if f ′ is universally open,0CHB
(15) f is syntomic if and only if f ′ is syntomic,0CHC
(16) f is smooth if and only if f ′ is smooth,0CHD
(17) f is unramified if and only if f ′ is unramified,0CHE
(18) f is étale if and only if f ′ is étale,0CHF
(19) f is proper if and only if f ′ is proper,0CHG
(20) f is finite if and only if f ′ is finite,0CHH
(21)0CHI f is finite locally free (of rank d) if and only if f ′ is finite locally free (of

rank d), and
(22) add more here.

Proof. Case (1) follows from Lemma 76.10.1.
Choose a scheme U ′ and a surjective étale morphism U ′ → B′. Choose a scheme
V ′ and a surjective étale morphism V ′ → U ′ ×B′ Y ′. Choose a scheme W ′ and
a surjective étale morphism W ′ → V ′ ×Y ′ X ′. Let U, V,W be the base change of
U ′, V ′,W ′ by B → B′. Consider the diagram

(W ⊂W ′) //

&&

(V ⊂ V ′)

xx
(U ⊂ U ′)

of thickenings of schemes. For any of the properties which are étale local on the
source-and-target the result follows immediately from the corresponding result for

https://stacks.math.columbia.edu/tag/0CGX
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morphisms of thickenings of schemes applied to the diagram above. Thus cases (2),
(12), (13), (15), (16), (17), (18) follow from the corresponding cases of More on
Morphisms, Lemma 37.10.5.
Since X → X ′ and Y → Y ′ are universal homeomorphisms we see that any question
about the topology of the maps X → Y and X ′ → Y ′ has the same answer. Thus
we see that cases (5), (6), (9), (10), and (14) hold.
In each of the remaining cases we only prove the implication f has P ⇒ f ′ has P
since the other implication follows from the fact that P is stable under base change,
see Spaces, Lemma 65.12.3 and Morphisms of Spaces, Lemmas 67.4.4, 67.10.5,
67.20.5, 67.40.3, 67.45.5, and 67.46.5.
The case (4). Assume f is an open immersion. Then f ′ is étale by (18) and
universally injective by (10) hence f ′ is an open immersion, see Morphisms of
Spaces, Lemma 67.51.2. You can avoid using this lemma at the cost of first using
(1) to reduce to the case of schemes.
The case (3). Follows from cases (4) and (9).
The case (7). See Lemma 76.10.1.
The case (8). Assume f is a monomorphism. Consider the diagonal morphism
∆X′/Y ′ : X ′ → X ′ ×Y ′ X ′. The base change of ∆X′/Y ′ by B → B′ is ∆X/Y

which is an isomorphism by assumption. By (3) we conclude that ∆X′/Y ′ is an
isomorphism and hence f ′ is a monomorphism.
The case (11). See Lemma 76.10.1.
The case (19). See Lemma 76.10.3.
The case (20). See Lemma 76.10.3.
The case (21). Assume f finite locally free. By (20) we see that f ′ is finite. By (2)
we see that f ′ is flat. Also f ′ is locally finite presentation by Morphisms of Spaces,
Lemma 67.28.9. Hence f ′ is finite locally free by Morphisms of Spaces, Lemma
67.46.6. □

76.19. Formally smooth morphisms

049R In this section we introduce the notion of a formally smooth morphism X → Y of
algebraic spaces. Such a morphism is characterized by the property that T -valued
points of X lift to infinitesimal thickenings of T provided T is affine. The main
result is that a morphism which is formally smooth and locally of finite presentation
is smooth, see Lemma 76.19.6. It turns out that this criterion is often easier to use
than the Jacobian criterion.

Definition 76.19.1.060G Let S be a scheme. A morphism f : X → Y of algebraic spaces
over S is said to be formally smooth if it is formally smooth as a transformation of
functors as in Definition 76.13.1.

In the cases of formally unramified and formally étale morphisms the condition that
T ′ be affine could be dropped, see Lemmas 76.14.3 and 76.16.3. This is no longer
true in the case of formally smooth morphisms. In fact, a slightly more natural
condition would be that we should be able to fill in the dotted arrow étale locally
on T ′. In fact, analyzing the proof of Lemma 76.19.6 shows that this would be
equivalent to the definition as it currently stands. It is also true that requiring

https://stacks.math.columbia.edu/tag/060G
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the existence of the dotted arrow fppf locally on T ′ would be sufficient, but that is
slightly more difficult to prove.
We will not restate the results proved in the more general setting of formally smooth
transformations of functors in Section 76.13.
Lemma 76.19.2.061E A composition of formally smooth morphisms is formally smooth.
Proof. Omitted. □

Lemma 76.19.3.061F A base change of a formally smooth morphism is formally smooth.
Proof. Omitted, but see Algebra, Lemma 10.138.2 for the algebraic version. □

Lemma 76.19.4.061G Let f : X → S be a morphism of schemes. Then f is formally
étale if and only if f is formally smooth and formally unramified.
Proof. Omitted. □

Here is a helper lemma which will be superseded by Lemma 76.19.10.
Lemma 76.19.5.061H Let S be a scheme. Let

U

��

ψ
// V

��
X

f // Y

be a commutative diagram of morphisms of algebraic spaces over S. If the vertical
arrows are étale and f is formally smooth, then ψ is formally smooth.
Proof. By Lemma 76.13.5 the morphisms U → X and V → Y are formally étale.
By Lemma 76.13.3 the composition U → Y is formally smooth. By Lemma 76.13.8
we see ψ : U → V is formally smooth. □

The following lemma is the main result of this section. It implies, combined with
Limits of Spaces, Proposition 70.3.10, that we can recognize whether a morphism
of algebraic spaces f : X → Y is smooth in terms of “simple” properties of the
transformation of functors X → Y .
Lemma 76.19.6 (Infinitesimal lifting criterion).04AM Let S be a scheme. Let f : X → Y
be a morphism of algebraic spaces over S. The following are equivalent:

(1) The morphism f is smooth.
(2) The morphism f is locally of finite presentation, and formally smooth.

Proof. Assume f : X → S is locally of finite presentation and formally smooth.
Consider a commutative diagram

U

��

ψ
// V

��
X

f // Y

where U and V are schemes and the vertical arrows are étale and surjective. By
Lemma 76.19.5 we see ψ : U → V is formally smooth. By Morphisms of Spaces,
Lemma 67.28.4 the morphism ψ is locally of finite presentation. Hence by the case
of schemes the morphism ψ is smooth, see More on Morphisms, Lemma 37.11.7.
Hence f is smooth, see Morphisms of Spaces, Lemma 67.37.4.

https://stacks.math.columbia.edu/tag/061E
https://stacks.math.columbia.edu/tag/061F
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Conversely, assume that f : X → Y is smooth. Consider a solid commutative
diagram

X

f

��

T

i
��

a
oo

Y T ′oo

``

as in Definition 76.19.1. We will show the dotted arrow exists thereby proving that
f is formally smooth. Let F be the sheaf of sets on (T ′)spaces,étale of Lemma 76.17.4
as in the special case discussed in Remark 76.17.6. Let

H = HomOT
(a∗ΩX/Y , CT/T ′)

be the sheaf of OT -modules on Tspaces,étale with action H × F → F as in Lemma
76.17.5. The action H× F → F turns F into a pseudo H-torsor, see Cohomology
on Sites, Definition 21.4.1. Our goal is to show that F is a trivial H-torsor. There
are two steps: (I) To show that F is a torsor we have to show that F has étale
locally a section. (II) To show that F is the trivial torsor it suffices to show that
H1(Tétale,H) = 0, see Cohomology on Sites, Lemma 21.4.3.
First we prove (I). To see this choose a commutative diagram

U

��

ψ
// V

��
X

f // Y

where U and V are schemes and the vertical arrows are étale and surjective. As f
is assumed smooth we see that ψ is smooth and hence formally smooth by Lemma
76.13.5. By the same lemma the morphism V → Y is formally étale. Thus by
Lemma 76.13.3 the composition U → Y is formally smooth. Then (I) follows from
Lemma 76.13.6 part (4).
Finally we prove (II). By Lemma 76.7.15 we see that ΩX/S is of finite presentation.
Hence a∗ΩX/S is of finite presentation (see Properties of Spaces, Section 66.30).
Hence the sheaf H = HomOT

(a∗ΩX/Y , CT/T ′) is quasi-coherent by Properties of
Spaces, Lemma 66.29.7. Thus by Descent, Proposition 35.9.3 and Cohomology of
Schemes, Lemma 30.2.2 we have

H1(Tspaces,étale,H) = H1(Tétale,H) = H1(T,H) = 0
as desired. □

Smooth morphisms satisfy strong local lifting property, see Lemma 76.19.7. If in
the lemma we assume T ′ is affine, then we do not know if it is necessary to take an
étale covering. More precisely, if we have a commutative diagram

X

��

Too

��
Y T ′oo

``

of algebraic spaces where X → Y is smooth and T → T ′ is a thickening of affine
schemes, the does a dotted arrow making the diagram commute always exist? If you
know the answer, or if you have a reference, please email stacks.project@gmail.com.

mailto:stacks.project@gmail.com
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Lemma 76.19.7.0CHJ Let S be a scheme. Consider a commutative diagram

X

��

Too

��
Y T ′oo

of algebraic spaces over S where X → Y is smooth and T → T ′ is a thickening.
Then there exists an étale covering {T ′

i → T ′} such that we can find the dotted
arrow in

X

��

Too

��

T ×T ′ T ′
i

oo

��
Y T ′oo T ′

i
oo

hh

making the diagram commute (for all i).

Proof. Choose an étale covering {Yi → Y } with each Yi affine. After replacing T ′

by the induced étale covering we may assume Y is affine.

Assume Y is affine. Choose an étale covering {Xi → X}. This gives rise to an
étale covering of T . This étale covering of T comes from an étale covering of T ′ (by
Theorem 76.8.1, see discussion in Section 76.9). Hence we may assume X is affine.

Assume X and Y are affine. We can do one more étale covering of T ′ and assume
T ′ is affine. In this case the lemma follows from Algebra, Lemma 10.138.17. □

We do a bit more work to show that being formally smooth is étale local on the
source. To begin we show that a formally smooth morphism has a nice sheaf of
differentials. The notion of a locally projective quasi-coherent module is defined in
Properties of Spaces, Section 66.31.

Lemma 76.19.8.061I Let S be a scheme. Let f : X → Y be a formally smooth
morphism of algebraic spaces over S. Then ΩX/Y is locally projective on X.

Proof. Choose a diagram
U

��

ψ
// V

��
X

f // Y

where U and V are affine(!) schemes and the vertical arrows are étale. By Lemma
76.19.5 we see ψ : U → V is formally smooth. Hence Γ(V,OV ) → Γ(U,OU )
is a formally smooth ring map, see More on Morphisms, Lemma 37.11.6. Hence
by Algebra, Lemma 10.138.7 the Γ(U,OU )-module ΩΓ(U,OU )/Γ(V,OV ) is projective.
Hence ΩU/V is locally projective, see Properties, Section 28.21. Since ΩX/Y |U =
ΩU/V we see that ΩX/Y is locally projective too. (Because we can find an étale
covering of X by the affine U ’s fitting into diagrams as above – details omitted.) □

Lemma 76.19.9.061J Let T be an affine scheme. Let F , G be quasi-coherent OT -
modules on Tétale. Consider the internal hom sheaf H = HomOT

(F ,G) on Tétale.
If F is locally projective, then H1(Tétale,H) = 0.

https://stacks.math.columbia.edu/tag/0CHJ
https://stacks.math.columbia.edu/tag/061I
https://stacks.math.columbia.edu/tag/061J
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Proof. By the definition of a locally projective sheaf on an algebraic space (see
Properties of Spaces, Definition 66.31.2) we see that FZar = F|TZar is a locally
projective sheaf on the scheme T . Thus FZar is a direct summand of a free OTZar -
module. Whereupon we conclude (as F = (FZar)a, see Descent, Proposition 35.8.9)
that F is a direct summand of a free OT -module on Tétale. Hence we may assume
that F =

⊕
i∈I OT is a free module. In this case H =

∏
i∈I G is a product of quasi-

coherent modules. By Cohomology on Sites, Lemma 21.12.5 we conclude that H1 =
0 because the cohomology of a quasi-coherent sheaf on an affine scheme is zero, see
Descent, Proposition 35.9.3 and Cohomology of Schemes, Lemma 30.2.2. □

Lemma 76.19.10.061K Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is formally smooth,
(2) for every diagram

U

��

ψ
// V

��
X

f // Y

where U and V are schemes and the vertical arrows are étale the morphism
of schemes ψ is formally smooth (as in More on Morphisms, Definition
37.6.1), and

(3) for one such diagram with surjective vertical arrows the morphism ψ is
formally smooth.

Proof. We have seen that (1) implies (2) and (3) in Lemma 76.19.5. Assume (3).
The proof that f is formally smooth is entirely similar to the proof of (1) ⇒ (2) of
Lemma 76.19.6.

Consider a solid commutative diagram

X

f

��

T

i
��

a
oo

Y T ′oo

``

as in Definition 76.19.1. We will show the dotted arrow exists thereby proving that
f is formally smooth. Let F be the sheaf of sets on (T ′)spaces,étale of Lemma 76.17.4
as in the special case discussed in Remark 76.17.6. Let

H = HomOT
(a∗ΩX/Y , CT/T ′)

be the sheaf of OT -modules on Tspaces,étale with action H × F → F as in Lemma
76.17.5. The action H× F → F turns F into a pseudo H-torsor, see Cohomology
on Sites, Definition 21.4.1. Our goal is to show that F is a trivial H-torsor. There
are two steps: (I) To show that F is a torsor we have to show that F has étale
locally a section. (II) To show that F is the trivial torsor it suffices to show that
H1(Tétale,H) = 0, see Cohomology on Sites, Lemma 21.4.3.

https://stacks.math.columbia.edu/tag/061K
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First we prove (I). To see this consider a diagram (which exists because we are
assuming (3))

U

��

ψ
// V

��
X

f // Y

where U and V are schemes, the vertical arrows are étale and surjective, and ψ is
formally smooth. By Lemma 76.13.5 the morphism V → Y is formally étale. Thus
by Lemma 76.13.3 the composition U → Y is formally smooth. Then (I) follows
from Lemma 76.13.6 part (4).

Finally we prove (II). By Lemma 76.19.8 we see that ΩU/V locally projective. Hence
ΩX/Y is locally projective, see Descent on Spaces, Lemma 74.6.5. Hence a∗ΩX/Y
is locally projective, see Properties of Spaces, Lemma 66.31.3. Hence

H1(Tétale,H) = H1(Tétale,HomOT
(a∗ΩX/Y , CT/T ′) = 0

by Lemma 76.19.9 as desired. □

Lemma 76.19.11.06CS The property P(f) =“f is formally smooth” is fpqc local on the
base.

Proof. Let f : X → Y be a morphism of algebraic spaces over a scheme S. Choose
an index set I and diagrams

Ui

��

ψi

// Vi

��
X

f // Y

with étale vertical arrows and Ui, Vi affine schemes. Moreover, assume that
∐
Ui →

X and
∐
Vi → Y are surjective, see Properties of Spaces, Lemma 66.6.1. By Lemma

76.19.10 we see that f is formally smooth if and only if each of the morphisms
ψi are formally smooth. Hence we reduce to the case of a morphism of affine
schemes. In this case the result follows from Algebra, Lemma 10.138.16. Some
details omitted. □

Lemma 76.19.12.06BI Let S be a scheme. Let f : X → Y , g : Y → Z be morphisms of
algebraic spaces over S. Assume f is formally smooth. Then

0→ f∗ΩY/Z → ΩX/Z → ΩX/Y → 0

Lemma 76.7.8 is short exact.

Proof. Follows from the case of schemes, see More on Morphisms, Lemma 37.11.11,
by étale localization, see Lemmas 76.19.10 and 76.7.3. □

Lemma 76.19.13.06BJ Let S be a scheme. Let B be an algebraic space over S. Let
h : Z → X be a formally unramified morphism of algebraic spaces over B. Assume
that Z is formally smooth over B. Then the canonical exact sequence

0→ CZ/X → h∗ΩX/B → ΩZ/B → 0

of Lemma 76.15.13 is short exact.

https://stacks.math.columbia.edu/tag/06CS
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Proof. Let Z → Z ′ be the universal first order thickening of Z over X. From the
proof of Lemma 76.15.13 we see that our sequence is identified with the sequence

CZ/Z′ → ΩZ′/B ⊗OZ → ΩZ/B → 0.

Since Z → S is formally smooth we can étale locally on Z ′ find a left inverse Z ′ → Z
over B to the inclusion map Z → Z ′. Thus the sequence is étale locally split, see
Lemma 76.7.11. □

Lemma 76.19.14.06BK Let S be a scheme. Let

Z
i
//

j   

X

f

��
Y

be a commutative diagram of algebraic spaces over S where i and j are formally
unramified and f is formally smooth. Then the canonical exact sequence

0→ CZ/Y → CZ/X → i∗ΩX/Y → 0

of Lemma 76.15.14 is exact and locally split.

Proof. Denote Z → Z ′ the universal first order thickening of Z over X. Denote
Z → Z ′′ the universal first order thickening of Z over Y . By Lemma 76.15.13 here
is a canonical morphism Z ′ → Z ′′ so that we have a commutative diagram

Z
i′
//

j′   

Z ′
a
//

k
��

X

f

��
Z ′′ b // Y

The sequence above is identified with the sequence

CZ/Z′′ → CZ/Z′ → (i′)∗ΩZ′/Z′′ → 0

via our definitions concerning conormal sheaves of formally unramified morphisms.
Let U ′′ → Z ′′ be an étale morphism with U ′′ affine. Denote U → Z and U ′ → Z ′

the corresponding affine schemes étale over Z and Z ′. As f is formally smooth
there exists a morphism h : U ′′ → X which agrees with i on U and such that f ◦ h
equals b|U ′′ . Since Z ′ is the universal first order thickening we obtain a unique
morphism g : U ′′ → Z ′ such that g = a ◦ h. The universal property of Z ′′ implies
that k ◦ g is the inclusion map U ′′ → Z ′′. Hence g is a left inverse to k. Picture

U

��

// Z ′

k
��

U ′′ //

g

==

Z ′′

Thus g induces a map CZ/Z′ |U → CZ/Z′′ |U which is a left inverse to the map
CZ/Z′′ → CZ/Z′ over U . □

https://stacks.math.columbia.edu/tag/06BK
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76.20. Smoothness over a Noetherian base

0APM This section is the analogue of More on Morphisms, Section 37.12.

Lemma 76.20.1.0APN Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let x ∈ |X|. Assume that Y is locally Noetherian and f locally of
finite type. The following are equivalent:

(1) f is smooth at x,
(2) for every solid commutative diagram

X

f

��

Spec(B)

i

��

α
oo

Y Spec(B′)βoo

cc

where B′ → B is a surjection of local rings with Ker(B′ → B) of square
zero, and α mapping the closed point of Spec(B) to x there exists a dotted
arrow making the diagram commute, and

(3) same as in (2) but with B′ → B ranging over small extensions (see Alge-
bra, Definition 10.141.1).

Proof. Condition (1) means there is an open subspace X ′ ⊂ X such that X ′ → Y
is smooth. Hence (1) implies conditions (2) and (3) by Lemma 76.19.6. Condition
(2) implies condition (3) trivially. Assume (3). Choose a commutative diagram

X

��

Uoo

��
Y Voo

with U and V affine, horizontal arrows étale and such that there is a point u ∈ U
mapping to x. Next, consider a diagram

X

��

Uoo

��

Spec(B)

i

��

α
oo

Y Voo Spec(B′)βoo

as in (3) but for u ∈ U → V . Let γ : Spec(B′)→ X be the arrow we get from our
assumption that (3) holds for X. Because U → X is étale and hence formally étale
(Lemma 76.16.8) the morphism γ has a unique lift to U compatible with α. Then
because V → Y is étale hence formally étale this lift is compatible with β. Hence
(3) holds for u ∈ U → V and we conclude that U → V is smooth at u by More
on Morphisms, Lemma 37.12.1. This proves that X → Y is smooth at x, thereby
finishing the proof. □

Sometimes it is useful to know that one only needs to check the lifting criterion
for small extensions “centered” at points of finite type (see Morphisms of Spaces,
Section 67.25).

Lemma 76.20.2.0APP Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume Y is locally Noetherian and f locally of finite type. The
following are equivalent:

https://stacks.math.columbia.edu/tag/0APN
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(1) f is smooth,
(2) for every solid commutative diagram

X

f

��

Spec(B)

i

��

α
oo

Y Spec(B′)βoo

cc

where B′ → B is a small extension of Artinian local rings and β of finite
type (!) there exists a dotted arrow making the diagram commute.

Proof. If f is smooth, then the infinitesimal lifting criterion (Lemma 76.19.6) says
f is formally smooth and (2) holds.
Assume f is not smooth. The set of points x ∈ X where f is not smooth forms
a closed subset T of |X|. By Morphisms of Spaces, Lemma 67.25.6, there exists a
point x ∈ T ⊂ X with x ∈ Xft-pts. Choose a commutative diagram

X

��

Uoo

��

u_

��
Y Voo v

with U and V affine, horizontal arrows étale and such that there is a point u ∈ U
mapping to x. Then u is a finite type point of U . Since U → V is not smooth at
the point u, by More on Morphisms, Lemma 37.12.1 there is a diagram

X

��

Uoo

��

Spec(B)

i

��

α
oo

Y Voo Spec(B′)βoo

cc

with B′ → B a small extension of (Artinian) local rings such that the residue field
of B is equal to κ(v) and such that the dotted arrow does not exist. Since U → V
is of finite type, we see that v is a finite type point of V . By Morphisms, Lemma
29.16.2 the morphism β is of finite type, hence the composition Spec(B) → Y is
of finite type also. Arguing exactly as in the proof of Lemma 76.20.1 (using that
U → X and V → Y are étale hence formally étale) we see that there cannot be an
arrow Spec(B)→ X fitting into the outer rectangle of the last displayed diagram.
In other words, (2) doesn’t hold and the proof is complete. □

Here is a useful application.

Lemma 76.20.3.0APQ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type and Y locally Noetherian. Let
Z ⊂ Y be a closed subspace with nth infinitesimal neighbourhood Zn ⊂ Y . Set
Xn = Zn ×Y X.

(1) If Xn → Zn is smooth for all n, then f is smooth at every point of f−1(Z).
(2) If Xn → Zn is étale for all n, then f is étale at every point of f−1(Z).

Proof. Assume Xn → Zn is smooth for all n. Let x ∈ X be a point lying over a
point of Z. Given a small extension B′ → B and morphisms α, β as in Lemma
76.20.1 part (3) the maximal ideal of B′ is nilpotent (as B′ is Artinian) and hence

https://stacks.math.columbia.edu/tag/0APQ
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the morphism β factors through Zn and α factors through Xn for a suitable n.
Thus the lifting property for Xn → Zn kicks in to get the desired dotted arrow
in the diagram. This proves (1). Part (2) follows from (1) and the fact that a
morphism is étale if and only if it is smooth of relative dimension 0. □

76.21. The naive cotangent complex

0D0U This section is the continuation of Modules on Sites, Section 18.35 which in turn
continues the discussion in Algebra, Section 10.134.

Definition 76.21.1.0D0V Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The naive cotangent complex of f is the complex defined in Modules
on Sites, Definition 18.35.4 for the morphism of ringed topoi fsmall between the
small étale sites of X and Y , see Properties of Spaces, Lemma 66.21.3. Notation:
NLf or NLX/Y .

The next lemmas show this definition is compatible with the definition for ring
maps and for schemes and that NLX/Y is an object of DQCoh(OX).

Lemma 76.21.2.0D0W Let S be a scheme. Consider a commutative diagram

U

p

��

g
// V

q

��
X

f // Y

of algebraic spaces over S with p and q étale. Then there is a canonical identification
NLX/Y |Uétale = NLU/V in D(OU ).

Proof. Formation of the naive cotangent complex commutes with pullback (Mod-
ules on Sites, Lemma 18.35.3) and we have p−1

smallOX = OU and g−1
smallOVétale =

p−1
smallf

−1
smallOYétale because q−1

smallOYétale = OVétale by Properties of Spaces, Lemma
66.26.1. Tracing through the definitions we conclude that NLX/Y |Uétale = NLU/V .

□

Lemma 76.21.3.0D0X Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume X and Y representable by schemes X0 and Y0. Then there
is a canonical identification NLX/Y = ϵ∗ NLX0/Y0 in D(OX) where ϵ is as in De-
rived Categories of Spaces, Section 75.4 and NLX0/Y0 is as in More on Morphisms,
Definition 37.13.1.

Proof. Let f0 : X0 → Y0 be the morphism of schemes corresponding to f . There
is a canonical map ϵ−1f−1

0 OY0 → f−1
smallOY compatible with ϵ♯ : ϵ−1OX0 → OX

because there is a commutative diagram

X0,Zar

f0

��

Xétaleϵ
oo

f

��
Y0,Zar Yétale

ϵoo

see Derived Categories of Spaces, Remark 75.6.3. Thus we obtain a canonical map

ϵ−1 NLX0/Y0 = ϵ−1 NLOX0/f
−1
0 OY0

= NLϵ−1OX0/ϵ
−1f−1

0 OY0
→ NLOX/f

−1
small

OY
= NLX/Y

https://stacks.math.columbia.edu/tag/0D0V
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by functoriality of the naive cotangent complex. To see that the induced map
ϵ∗ NLX0/Y0 → NLX/Y is an isomorphism in D(OX) we may check on stalks at
geometric points (Properties of Spaces, Theorem 66.19.12). Let x : Spec(k) → X0
be a geometric point lying over x ∈ X0, with y = f ◦ x lying over y ∈ Y0. Then

NLX/Y,x = NLOX,x/OY,y

This is true because taking stalks at x is the same as taking inverse image via
x : Spec(k) → X and we may apply Modules on Sites, Lemma 18.35.3. On the
other hand we have

(ϵ∗ NLX0/Y0)x = NLX0/Y0,x⊗OX0,x
OX,x = NLOX0,x/OY0,y

⊗OX0,x
OX,x

Some details omitted (hint: use that the stalk of a pullback is the stalk at the image
point, see Sites, Lemma 7.34.2, as well as the corresponding result for modules, see
Modules on Sites, Lemma 18.36.4). Observe that OX,x is the strict henselization
of OX0,x and similarly for OY,y (Properties of Spaces, Lemma 66.22.1). Thus the
result follows from More on Algebra, Lemma 15.33.8. □

Lemma 76.21.4.0D0Y Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The cohomology sheaves of the complex NLX/Y are quasi-coherent,
zero outside degrees −1, 0 and equal to ΩX/Y in degree 0.

Proof. By construction of the naive cotangent complex in Modules on Sites, Section
18.35 we have that NLX/Y is a complex sitting in degrees −1, 0 and that its
cohomology in degree 0 is ΩX/Y (by our construction of ΩX/Y in Section 76.7).
The sheaf of differentials is quasi-coherent (by Lemma 76.7.4). To finish the proof
it suffices to show that H−1(NLX/Y ) is quasi-coherent. This follows by checking
étale locally (allowed by Lemma 76.21.2 and Properties of Spaces, Lemma 66.29.6)
reducing to the case of schemes (Lemma 76.21.3) and finally using the result in the
case of schemes (More on Morphisms, Lemma 37.13.3). □

Lemma 76.21.5.0D0Z Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is locally of finite presentation, then NLX/Y is étale locally on
X quasi-isomorphic to a complex

. . .→ 0→ F−1 → F0 → 0→ . . .

of quasi-coherent OX -modules with F0 of finite presentation and F−1 of finite type.

Proof. Formation of the naive cotangent complex commutes with étale localization
by Lemma 76.21.2. This reduces us to the case of schemes by Lemma 76.21.3. The
result in the case of schemes is More on Morphisms, Lemma 37.13.4. □

Lemma 76.21.6.0D10 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f is formally smooth,
(2) H−1(NLX/Y ) = 0 and H0(NLX/Y ) = ΩX/Y is locally projective.

Proof. This follows from Lemma 76.19.10, Lemma 76.21.2, Lemma 76.21.3 and the
case of schemes which is More on Morphisms, Lemma 37.13.5. □

Lemma 76.21.7.0D11 Let f : X → Y be a morphism of schemes. The following are
equivalent

(1) f is formally étale,
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(2) H−1(NLX/Y ) = H0(NLX/Y ) = 0.

Proof. Assume (1). A formally étale morphism is a formally smooth morphism.
Thus H−1(NLX/Y ) = 0 by Lemma 76.21.6. On the other hand, a formally étale
morphism if formally unramified hence we have ΩX/Y = 0 by Lemma 76.14.6.
Conversely, if (2) holds, then f is formally smooth by Lemma 76.21.6 and formally
unramified by Lemma 76.14.6 and hence formally étale by Lemmas 76.19.4. □

Lemma 76.21.8.0D12 Let f : X → Y be a morphism of schemes. The following are
equivalent

(1) f is smooth, and
(2) f is locally of finite presentation, H−1(NLX/Y ) = 0, and H0(NLX/Y ) =

ΩX/Y is finite locally free.

Proof. This follows from Lemma 76.19.10, Lemma 76.21.2, Lemma 76.21.3 and the
case of schemes which is More on Morphisms, Lemma 37.13.7. □

76.22. Openness of the flat locus

05WU This section is analogue of More on Morphisms, Section 37.15. Note that we have
defined the notion of flatness for quasi-coherent modules on algebraic spaces in
Morphisms of Spaces, Section 67.31.

Theorem 76.22.1.05WV Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf on X. Assume f is locally of finite
presentation and that F is an OX -module which is locally of finite presentation.
Then

{x ∈ |X| : F is flat over Y at x}
is open in |X|.

Proof. Choose a commutative diagram
U

p

��

α
// V

q

��
X

a // Y

with U , V schemes and p, q surjective and étale as in Spaces, Lemma 65.11.6. By
More on Morphisms, Theorem 37.15.1 the set U ′ = {u ∈ |U | : p∗F is flat over V at u}
is open in U . By Morphisms of Spaces, Definition 67.31.2 the image of U ′ in |X| is
the set of the theorem. Hence we are done because the map |U | → |X| is open, see
Properties of Spaces, Lemma 66.4.6. □

Lemma 76.22.2.05WW Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian diagram of algebraic spaces over S. Let F be a quasi-coherent OX -
module. Assume g is flat, f is locally of finite presentation, and F is locally of
finite presentation. Then

{x′ ∈ |X ′| : (g′)∗F is flat over Y ′ at x′}

https://stacks.math.columbia.edu/tag/0D12
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is the inverse image of the open subset of Theorem 76.22.1 under the continuous
map |g′| : |X ′| → |X|.

Proof. This follows from Morphisms of Spaces, Lemma 67.31.3. □

76.23. Critère de platitude par fibres

05WX Let S be a scheme. Consider a commutative diagram of algebraic spaces over S
X

f
//

g
  

Y

h��
Z

and a quasi-coherent OX -module F . Given a point x ∈ |X| we consider the question
as to whether F is flat over Y at x. If F is flat over Z at x, then the theorem below
states this question is intimately related to the question of whether the restriction
of F to the fibre of X → Z over g(x) is flat over the fibre of Y → Z over g(x). To
make sense out of this we offer the following preliminary lemma.

Lemma 76.23.1.05WY In the situation above the following are equivalent
(1) Pick a geometric point x of X lying over x. Set y = f ◦ x and z = g ◦ x.

Then the module Fx/mzFx is flat over OY,y/mzOY,y.
(2) Pick a morphism x : Spec(K) → X in the equivalence class of x. Set

z = g ◦ x, Xz = Spec(K) ×z,Z X, Yz = Spec(K) ×z,Z Y , and Fz the
pullback of F to Xz. Then Fz is flat at x over Yz (as defined in Morphisms
of Spaces, Definition 67.31.2).

(3) Pick a commutative diagram
U

a

tt

//

  

V

b
tt ~~

X
f

//

g
  

Y

h��

W

c

ttZ

where U, V,W are schemes, and a, b, c are étale, and a point u ∈ U map-
ping to x. Let w ∈W be the image of u. Let Fw be the pullback of F to
the fibre Uw of U →W at w. Then Fw is flat over Vw at u.

Proof. Note that in (2) the morphism x : Spec(K) → X defines a K-rational
point of Xz, hence the statement makes sense. Moreover, the condition in (2) is
independent of the choice of Spec(K) → X in the equivalence class of x (details
omitted; this will also follow from the arguments below because the other conditions
do not depend on this choice). Also note that we can always choose a diagram as
in (3) by: first choosing a scheme W and a surjective étale morphism W → Z, then
choosing a scheme V and a surjective étale morphism V → W ×Z Y , and finally
choosing a scheme U and a surjective étale morphism U → V ×Y X. Having made
these choices we set U → W equal to the composition U → V → W and we can
pick a point u ∈ U mapping to x because the morphism U → X is surjective.
Suppose given both a diagram as in (3) and a geometric point x : Spec(k)→ X as
in (1). By Properties of Spaces, Lemma 66.19.4 we can choose a geometric point

https://stacks.math.columbia.edu/tag/05WY
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u : Spec(k) → U lying over u such that x = a ◦ u. Denote v : Spec(k) → V
and w : Spec(k) → W the induced geometric points of V and W . In this setting
we know that OX,x = OshU,u and similarly for Y and Z, see Properties of Spaces,
Lemma 66.22.1. In the same vein we have

Fx = (a∗F)u ⊗OU,u
OshU,u

see Properties of Spaces, Lemma 66.29.4. Note that the stalk of Fw at u is given
by

(Fw)u = (a∗F)u/mw(a∗F)u
and the local ring of Vw at v is given by

OVw,v = OV,v/mwOV,v.
Since mz = mwOZ,z = mwOshW,w we see that

Fx/mzFx = (a∗F)u ⊗OU,u
OX,x/mzOX,x

= (Fw)u ⊗OUw,u
OshU,u/mwOshU,u

= (Fw)u ⊗OUw,u
OshUw,u

= (Fw)u
the penultimate equality by Algebra, Lemma 10.156.4 and the last equality by
Properties of Spaces, Lemma 66.29.4. The same arguments applied to the structure
sheaves of V and Y show that

OshVw,v = OshV,v/mwOshV,v = OY,y/mzOY,y.
OK, and now we can use Morphisms of Spaces, Lemma 67.31.1 to see that (1) is
equivalent to (3).
Finally we prove the equivalence of (2) and (3). To do this we pick a field extension
K̃ of K and a morphism x̃ : Spec(K̃) → U which lies over u (this is possible
because u ×X,x Spec(K) is a nonempty scheme). Set z̃ : Spec(K̃) → U → W be
the composition. We obtain a commutative diagram

Uw ×w z̃
a

tt

//

##

Vw ×w z̃

b
ss {{

Xz
f

//

g
  

Yz

h
~~

z̃

c

ssz

where z = Spec(K) and w = Spec(κ(w)). Now it is clear that Fw and Fz pull back
to the same module on Uw ×w z̃. This leads to a commutative diagram

Xz

��

Uw ×w z̃oo

��

// Uw

��
Yz Vw ×w z̃oo // Vw

both of whose squares are cartesian and whose bottom horizontal arrows are flat:
the lower left horizontal arrow is the composition of the morphism Y ×Z z̃ →
Y ×Z z = Yz (base change of a flat morphism), the étale morphism V ×Z z̃ → Y ×Z z̃,
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and the étale morphism V ×W z̃ → V ×Z z̃. Thus it follows from Morphisms of
Spaces, Lemma 67.31.3 that
Fz flat at x over Yz ⇔ F|Uw×w z̃ flat at x̃ over Vw ×w z̃ ⇔ Fw flat at u over Vw

and we win. □

Definition 76.23.2.05WZ Let S be a scheme. Let X → Y → Z be morphisms of algebraic
spaces over S. Let F be a quasi-coherent OX -module. Let x ∈ |X| be a point and
denote z ∈ |Z| its image.

(1) We say the restriction of F to its fibre over z is flat at x over the fibre of
Y over z if the equivalent conditions of Lemma 76.23.1 are satisfied.

(2) We say the fibre of X over z is flat at x over the fibre of Y over z if the
equivalent conditions of Lemma 76.23.1 hold with F = OX .

(3) We say the fibre of X over z is flat over the fibre of Y over z if for all
x ∈ |X| lying over z the fibre of X over z is flat at x over the fibre of Y
over z

With this definition in hand we can state a version of the criterion as follows. The
Noetherian version can be found in Section 76.24.

Theorem 76.23.3.05X0 Let S be a scheme. Let f : X → Y and Y → Z be morphisms
of algebraic spaces over S. Let F be a quasi-coherent OX -module. Assume

(1) X is locally of finite presentation over Z,
(2) F an OX -module of finite presentation, and
(3) Y is locally of finite type over Z.

Let x ∈ |X| and let y ∈ |Y | and z ∈ |Z| be the images of x. If Fx ̸= 0, then the
following are equivalent:

(1) F is flat over Z at x and the restriction of F to its fibre over z is flat at
x over the fibre of Y over z, and

(2) Y is flat over Z at y and F is flat over Y at x.
Moreover, the set of points x where (1) and (2) hold is open in Supp(F).

Proof. Choose a diagram as in Lemma 76.23.1 part (3). It follows from the defini-
tions that this reduces to the corresponding theorem for the morphisms of schemes
U → V → W , the quasi-coherent sheaf a∗F , and the point u ∈ U . Thus the theo-
rem follows from the corresponding result for schemes which is More on Morphisms,
Theorem 37.16.2. □

Lemma 76.23.4.05X1 Let S be a scheme. Let f : X → Y and Y → Z be a morphism
of algebraic spaces over S. Assume

(1) X is locally of finite presentation over Z,
(2) X is flat over Z,
(3) for every z ∈ |Z| the fibre of X over z is flat over the fibre of Y over z,

and
(4) Y is locally of finite type over Z.

Then f is flat. If f is also surjective, then Y is flat over Z.

Proof. This is a special case of Theorem 76.23.3. □

Lemma 76.23.5.05X2 Let S be a scheme. Let f : X → Y and Y → Z be morphisms of
algebraic spaces over S. Let F be a quasi-coherent OX -module. Assume

https://stacks.math.columbia.edu/tag/05WZ
https://stacks.math.columbia.edu/tag/05X0
https://stacks.math.columbia.edu/tag/05X1
https://stacks.math.columbia.edu/tag/05X2


76.23. CRITÈRE DE PLATITUDE PAR FIBRES 5844

(1) X is locally of finite presentation over Z,
(2) F an OX -module of finite presentation,
(3) F is flat over Z, and
(4) Y is locally of finite type over Z.

Then the set
A = {x ∈ |X| : F flat at x over Y }.

is open in |X| and its formation commutes with arbitrary base change: If Z ′ → Z
is a morphism of algebraic spaces, and A′ is the set of points of X ′ = X ×Z Z ′

where F ′ = F ×Z Z ′ is flat over Y ′ = Y ×Z Z ′, then A′ is the inverse image of A
under the continuous map |X ′| → |X|.
Proof. One way to prove this is to translate the proof as given in More on Mor-
phisms, Lemma 37.16.4 into the category of algebraic spaces. Instead we will prove
this by reducing to the case of schemes. Namely, choose a diagram as in Lemma
76.23.1 part (3) such that a, b, and c are surjective. It follows from the defini-
tions that this reduces to the corresponding theorem for the morphisms of schemes
U → V → W , the quasi-coherent sheaf a∗F , and the point u ∈ U . The only
minor point to make is that given a morphism of algebraic spaces Z ′ → Z we
choose a scheme W ′ and a surjective étale morphism W ′ → W ×Z Z ′. Then we
set U ′ = W ′ ×W U and V ′ = W ′ ×W V . We write a′, b′, c′ for the morphisms from
U ′, V ′,W ′ to X ′, Y ′, Z ′. In this case A, resp. A′ are images of the open subsets of
U , resp. U ′ associated to a∗F , resp. (a′)∗F ′. This indeed does reduce the lemma
to More on Morphisms, Lemma 37.16.4. □

Lemma 76.23.6.05X3 Let S be a scheme. Let f : X → Y and Y → Z be a morphism
of algebraic spaces over S. Assume

(1) X is locally of finite presentation over Z,
(2) X is flat over Z, and
(3) Y is locally of finite type over Z.

Then the set
{x ∈ |X| : X flat at x over Y }.

is open in |X| and its formation commutes with arbitrary base change Z ′ → Z.
Proof. This is a special case of Lemma 76.23.5. □

Lemma 76.23.7.0CZS Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite presentation. Let F be a finitely presented
OX -module. Let x ∈ |X| with image y ∈ |Y |. If F is flat at x over Y , then the
following are equivalent

(1) (Fy)x is a flat OXy,x-module,
(2) (Fy)x is a free OXy,x-module,
(3) Fy is finite free in an étale neighbourhood of x in Xy, and
(4) F is finite free in an étale neighbourhood of x in X.

Here x is a geometric point of X lying over x and y = f ◦ x.
Proof. Pick a commutative diagram

U

��

// V

��
X // Y
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where U and V are schemes and the vertical arrows are étale such that there is a
point u ∈ U mapping to x. Let v ∈ V be the image of u. Applying Lemma 76.23.1
to id : X → X over Y we see that (1) translates into the condition “F|Uv is flat over
Uv at u”. In other words, (1) is equivalent to (F|Uv )u being a flat OUv,u-module.
By the case of schemes (More on Morphisms, Lemma 37.16.7), we find that this
implies that F|U is finite free in an open neighbourhood of u. In this way we see
that (1) implies (4). The implications (4) ⇒ (3) and (2) ⇒ (1) are immediate. For
the implication (3) ⇒ (2) use the description of local rings and stalks in Properties
of Spaces, Lemmas 66.22.1 and 66.29.4. □

Lemma 76.23.8.0CZT Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite presentation. Let F be a finitely presented
OX -module flat over Y . Then the set

{x ∈ |X| : F free in an étale neighbourhood of x}
is open in |X| and its formation commutes with arbitrary base change Y ′ → Y .

Proof. Openness holds trivially. Let Y ′ → Y be a morphism of algebraic spaces, set
X ′ = Y ′ ×Y X, and let x′ ∈ |X ′| be a point lying over x ∈ |X|. By Lemma 76.23.7
we see that x is in our set if and only if (Fy)x is a flat OXy,x-module. Simiarly, x′

is in the analogue of our set for the pullback F ′ of F to X ′ if and only if (F ′
y′)x′ is a

flat OX′
y′ ,x

′ -module (with obvious notation). These two assertions are equivalent by
Lemma 76.23.1 applied to the morphism id : X → X over Y . Thus the statement
on base change holds. □

76.24. Flatness over a Noetherian base

08VN Here is the “Critère de platitude par fibres” in the Noetherian case.

Theorem 76.24.1.0APR Let S be a scheme. Let f : X → Y and Y → Z be morphisms
of algebraic spaces over S. Let F be a quasi-coherent OX -module. Assume

(1) X, Y , Z locally Noetherian, and
(2) F a coherent OX -module.

Let x ∈ |X| and let y ∈ |Y | and z ∈ |Z| be the images of x. If Fx ̸= 0, then the
following are equivalent:

(1) F is flat over Z at x and the restriction of F to its fibre over z is flat at
x over the fibre of Y over z, and

(2) Y is flat over Z at y and F is flat over Y at x.

Proof. Choose a diagram as in Lemma 76.23.1 part (3). It follows from the defini-
tions that this reduces to the corresponding theorem for the morphisms of schemes
U → V → W , the quasi-coherent sheaf a∗F , and the point u ∈ U . Thus the theo-
rem follows from the corresponding result for schemes which is More on Morphisms,
Theorem 37.16.1. □

Lemma 76.24.2.0APS Let S be a scheme. Let f : X → Y and Y → Z be a morphism
of algebraic spaces over S. Assume

(1) X, Y , Z locally Noetherian,
(2) X is flat over Z,
(3) for every z ∈ |Z| the fibre of X over z is flat over the fibre of Y over z.

Then f is flat. If f is also surjective, then Y is flat over Z.
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Proof. This is a special case of Theorem 76.24.1. □

Just like for checking smoothness, if the base is Noetherian it suffices to check
flatness over Artinian rings. Here is a sample statement.

Lemma 76.24.3.08VP Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let X be
an algebraic space locally of finite presentation over S = Spec(A). For n ≥ 1 set
Sn = Spec(A/In) and Xn = Sn ×S X. Let F be coherent OX -module. If for every
n ≥ 1 the pullback Fn of F to X is flat over Sn, then the (open) locus where F is
flat over X contains the inverse image of V (I) under X → S.

Proof. The locus where F is flat over S is open in |X| by Theorem 76.22.1. The
statement is insensitive to replacing X by the members of an étale covering, hence
we may assume X is an affine scheme. In this case the result follows immediately
from Algebra, Lemma 10.99.11. Some details omitted. □

76.25. Normalization revisited

082D Normalization commutes with smooth base change.

Lemma 76.25.1.082E Let S be a scheme. Let f : Y → X be a smooth morphism of
algebraic spaces over S. Let A be a quasi-coherent sheaf of OX -algebras. The
integral closure of OY in f∗A is equal to f∗A′ where A′ ⊂ A is the integral closure
of OX in A.

Proof. By our construction of the integral closure, see Morphisms of Spaces, Defi-
nition 67.48.2, this reduces immediately to the case where X and Y are affine. In
this case the result is Algebra, Lemma 10.147.4. □

Lemma 76.25.2 (Normalization commutes with smooth base change).082F Let S be a
scheme. Let

Y2 //

��

Y1

f

��
X2

φ // X1

be a fibre square of algebraic spaces over S. Assume f is quasi-compact and quasi-
separated and φ is smooth. Let Yi → X ′

i → Xi be the normalization of Xi in Yi.
Then X ′

2
∼= X2 ×X1 X

′
1.

Proof. The base change of the factorization Y1 → X ′
1 → X1 to X2 is a factorization

Y2 → X2 ×X1 X
′
1 → X1 and X2 ×X1 X

′
1 → X1 is integral (Morphisms of Spaces,

Lemma 67.45.5). Hence we get a morphism h : X ′
2 → X2 ×X1 X

′
1 by the universal

property of Morphisms of Spaces, Lemma 67.48.5. Observe that X ′
2 is the relative

spectrum of the integral closure of OX2 in f2,∗OY2 . If A′ ⊂ f1,∗OY1 denotes the
integral closure of OX2 , then X2 ×X1 X

′
1 is the relative spectrum of φ∗A′ as the

construction of the relative spectrum commutes with arbitrary base change. By
Cohomology of Spaces, Lemma 69.11.2 we know that f2,∗OY2 = φ∗f1,∗OY1 . Hence
the result follows from Lemma 76.25.1. □
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76.26. Cohen-Macaulay morphisms

0E0T This is the analogue of More on Morphisms, Section 37.22.
Lemma 76.26.1.0E0U The property of morphisms of germs of schemes

P((X,x)→ (S, s)) =
the local ring OXs,x of the fibre is Noetherian and Cohen-Macaulay

is étale local on the source-and-target (Descent, Definition 35.33.1).
Proof. Given a diagram as in Descent, Definition 35.33.1 we obtain an étale mor-
phism of fibres U ′

v′ → Uv mapping u′ to u, see Descent, Lemma 35.33.5. Thus the
strict henselizations of the local rings OU ′

v′ ,u
′ and OUv,u are the same. We conclude

by More on Algebra, Lemma 15.45.9. □

Definition 76.26.2.0E0V Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume the fibres of f are locally Noetherian (Divisors on Spaces,
Definition 71.4.2).

(1) Let x ∈ |X|, and y = f(x). We say that f is Cohen-Macaulay at x if f
is flat at x and the equivalent conditions of Morphisms of Spaces, Lemma
67.22.5 hold for the property P described in Lemma 76.26.1.

(2) We say f is a Cohen-Macaulay morphism if f is Cohen-Macaulay at every
point of X.

Here is a translation.
Lemma 76.26.3.0E0W Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume the fibres of f are locally Noetherian. The following are
equivalent

(1) f is Cohen-Macaulay,
(2) f is flat and for some surjective étale morphism V → Y where V is a

scheme, the fibres of XV → V are Cohen-Macaulay algebraic spaces, and
(3) f is flat and for any étale morphism V → Y where V is a scheme, the

fibres of XV → V are Cohen-Macaulay algebraic spaces.
Given x ∈ |X| with image y ∈ |Y | the following are equivalent

(a) f is Cohen-Macaulay at x, and
(b) OY,y → OX,x is flat and OX,x/myOX,x is Cohen-Macaulay.

Proof. Given an étale morphism V → Y where V is a scheme choose a scheme U
and a surjective étale morphism U → X×Y V . Consider the commutative diagram

U

��

// V

��
X // Y

Let u ∈ U with images x ∈ |X|, y ∈ |Y |, and v ∈ V . Then f is Cohen-Macaulay
at x if and only if U → V is Cohen-Macaulay at u (by definition). Moreover
the morphism Uv → Xv = (XV )v is surjective étale. Hence the scheme Uv is
Cohen-Macaulay if and only if the algebraic space Xv is Cohen-Macaulay. Thus
the equivalence of (1), (2), and (3) follows from the corresponding equivalence
for morphisms of schemes, see More on Morphisms, Lemma 37.22.2 by a formal
argument.
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Proof of equivalence of (a) and (b). The corresponding equivalence for flatness
is Morphisms of Spaces, Lemma 67.30.8. Thus we may assume f is flat at x
when proving the equivalence. Consider a diagram and x, y, u, v as above. Then
OY,y → OX,x is equal to the map OshV,v → OshU,u on strict henselizations of local
rings, see Properties of Spaces, Lemma 66.22.1. Thus we have

OX,x/myOX,x = (OU,u/mvOU,u)sh

by Algebra, Lemma 10.156.4. Thus we have to show that the Noetherian local ring
OU,u/mvOU,u is Cohen-Macaulay if and only if its strict henselization is. This is
More on Algebra, Lemma 15.45.9. □

Lemma 76.26.4.0E0X Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of algebraic spaces over S. Assume that the fibres of f , g, and g ◦ f are locally
Noetherian. Let x ∈ |X| with images y ∈ |Y | and z ∈ |Z|.

(1) If f is Cohen-Macaulay at x and g is Cohen-Macaulay at f(x), then g ◦ f
is Cohen-Macaulay at x.

(2) If f and g are Cohen-Macaulay, then g ◦ f is Cohen-Macaulay.
(3) If g◦f is Cohen-Macaulay at x and f is flat at x, then f is Cohen-Macaulay

at x and g is Cohen-Macaulay at f(x).
(4) If f ◦ g is Cohen-Macaulay and f is flat, then f is Cohen-Macaulay and g

is Cohen-Macaulay at every point in the image of f .

Proof. Working étale locally this follows from the corresponding result for schemes,
see More on Morphisms, Lemma 37.22.4. Alternatively, we can use the equivalence
of (a) and (b) in Lemma 76.26.3. Thus we consider the local homomorphism of
Noetherian local rings

OY,y/mzOY,y −→ OX,x/mzOX,x

whose fibre is
OX,x/myOX,x

and we use Algebra, Lemma 10.163.3. □

Lemma 76.26.5.0E0Y Let S be a scheme. Let f : X → Y be a flat morphism of
locally Noetherian algebraic spaces over S. If X is Cohen-Macaulay, then f is
Cohen-Macaulay and OY,f(x) is Cohen-Macaulay for all x ∈ |X|.

Proof. After translating into algebra using Lemma 76.26.3 (compare with the proof
of Lemma 76.26.4) this follows from Algebra, Lemma 10.163.3. □

Lemma 76.26.6.0E0Z Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume the fibres of f are locally Noetherian. Let Y ′ → Y be locally
of finite type. Let f ′ : X ′ → Y ′ be the base change of f . Let x′ ∈ |X ′| be a point
with image x ∈ |X|.

(1) If f is Cohen-Macaulay at x, then f ′ : X ′ → Y ′ is Cohen-Macaulay at x′.
(2) If f is flat at x and f ′ is Cohen-Macaulay at x′, then f is Cohen-Macaulay

at x.
(3) If Y ′ → Y is flat at f ′(x′) and f ′ is Cohen-Macaulay at x′, then f is

Cohen-Macaulay at x.
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Proof. Denote y ∈ |Y | and y′ ∈ |Y ′| the image of x′. Choose a surjective étale
morphism V → Y where V is a scheme. Choose a surjective étale morphism U →
X ×Y V where U is a scheme. Choose a surjectiev étale morphism V ′ → Y ′ ×Y V
where V ′ is a scheme. Then U ′ = U ×V V ′ is a scheme which comes equipped
with a surjective étale morphism U ′ → X ′. Choose u′ ∈ U ′ mapping to x′. Denote
u ∈ U the image of u′. Then the lemma follows from the lemma for U → V and its
base change U ′ → V ′ and the points u′ and u (this follows from the definitions).
Thus the lemma follows from the case of schemes, see More on Morphisms, Lemma
37.22.6. □

Lemma 76.26.7.0E10 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is flat and locally of finite presentation. Let

W = {x ∈ |X| : f is Cohen-Macaulay at x}

Then W is open in |X| and the formation of W commutes with arbitrary base
change of f : For any morphism g : Y ′ → Y , consider the base change f ′ : X ′ → Y ′

of f and the projection g′ : X ′ → X. Then the corresponding set W ′ for the
morphism f ′ is equal to W ′ = (g′)−1(W ).

Proof. Choose a commutative diagram

U

��

// V

��
X // Y

with étale vertical arrows and U and V schemes. Let u ∈ U with image x ∈ |X|.
Then f is Cohen-Macaulay at x if and only if U → V is Cohen-Macaulay at u (by
definition). Thus we reduce to the case of the morphism U → V . See More on
Morphisms, Lemma 37.22.7. □

Lemma 76.26.8.0E11 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that f is locally of finite presentation and Cohen-Macaulay.
Then there exist open and closed subschemes Xd ⊂ X such that X =

∐
d≥0 Xd and

f |Xd : Xd → Y has relative dimension d.

Proof. Choose a commutative diagram

U

��

// V

��
X // Y

with étale vertical arrows and U and V schemes. Then U → V is locally of finite
presentation and Cohen-Macaulay (immediate from our definitions). Thus we have
a decomposition U =

∐
d≥0 Ud into open and closed subschemes with f |Ud : Ud → V

of relative dimension d, see Morphisms, Lemma 29.29.4. Let u ∈ U with image
x ∈ |X|. Then f has relative dimension d at x if and only if U → V has relative
dimension d at u (this follows from our definitions). In this way we see that Ud
is the inverse image of a subset Xd ⊂ |X| which is necessarily open and closed.
Denoting Xd the corresponding open and closed algebraic subspace of X we see
that the lemma is true. □
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76.27. Gorenstein morphisms

0E12 This is the analogue of Duality for Schemes, Section 48.25.

Lemma 76.27.1.0E13 The property of morphisms of germs of schemes
P((X,x)→ (S, s)) =
the local ring OXs,x of the fibre is Noetherian and Gorenstein

is étale local on the source-and-target (Descent, Definition 35.33.1).

Proof. Given a diagram as in Descent, Definition 35.33.1 we obtain an étale mor-
phism of fibres U ′

v′ → Uv mapping u′ to u, see Descent, Lemma 35.33.5. Thus
OUv,u → OU ′

v′ ,u
′ is the localization of an étale ring map. Hence the first is Noe-

therian if and only if the second is Noetherian, see More on Algebra, Lemma 15.44.1.
Then, since OU ′

v′ ,u
′/muOU ′

v′ ,u
′ = κ(u′) (Algebra, Lemma 10.143.5) is a Gorenstein

ring, we see that OUv,u is Gorenstein if and only if OU ′
v′ ,u

′ is Gorenstein by Dual-
izing Complexes, Lemma 47.21.8. □

Definition 76.27.2.0E14 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume the fibres of f are locally Noetherian (Divisors on Spaces,
Definition 71.4.2).

(1) Let x ∈ |X|, and y = f(x). We say that f is Gorenstein at x if f is flat at
x and the equivalent conditions of Morphisms of Spaces, Lemma 67.22.5
hold for the property P described in Lemma 76.27.1.

(2) We say f is a Gorenstein morphism if f is Gorenstein at every point of
X.

Here is a translation.

Lemma 76.27.3.0E15 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume the fibres of f are locally Noetherian. The following are
equivalent

(1) f is Gorenstein,
(2) f is flat and for some surjective étale morphism V → Y where V is a

scheme, the fibres of XV → V are Gorenstein algebraic spaces, and
(3) f is flat and for any étale morphism V → Y where V is a scheme, the

fibres of XV → V are Gorenstein algebraic spaces.
Given x ∈ |X| with image y ∈ |Y | the following are equivalent

(a) f is Gorenstein at x, and
(b) OY,y → OX,x is flat and OX,x/myOX,x is Gorenstein.

Proof. Given an étale morphism V → Y where V is a scheme choose a scheme U
and a surjective étale morphism U → X×Y V . Consider the commutative diagram

U

��

// V

��
X // Y

Let u ∈ U with images x ∈ |X|, y ∈ |Y |, and v ∈ V . Then f is Gorenstein at x
if and only if U → V is Gorenstein at u (by definition). Moreover the morphism
Uv → Xv = (XV )v is surjective étale. Hence the scheme Uv is Gorenstein if and
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only if the algebraic space Xv is Gorenstein. Thus the equivalence of (1), (2),
and (3) follows from the corresponding equivalence for morphisms of schemes, see
Duality for Schemes, Lemma 48.24.4 by a formal argument.
Proof of equivalence of (a) and (b). The corresponding equivalence for flatness
is Morphisms of Spaces, Lemma 67.30.8. Thus we may assume f is flat at x
when proving the equivalence. Consider a diagram and x, y, u, v as above. Then
OY,y → OX,x is equal to the map OshV,v → OshU,u on strict henselizations of local
rings, see Properties of Spaces, Lemma 66.22.1. Thus we have

OX,x/myOX,x = (OU,u/mvOU,u)sh

by Algebra, Lemma 10.156.4. Thus we have to show that the Noetherian local ring
OU,u/mvOU,u is Gorenstein if and only if its strict henselization is. This follows
immediately from Dualizing Complexes, Lemma 47.22.3 and the definition of a
Gorenstein local ring as a Noetherian local ring which is a dualizing complex over
itself. □

Lemma 76.27.4.0E16 Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of algebraic spaces over S. Assume that the fibres of f , g, and g ◦ f are locally
Noetherian. Let x ∈ |X| with images y ∈ |Y | and z ∈ |Z|.

(1) If f is Gorenstein at x and g is Gorenstein at f(x), then g◦f is Gorenstein
at x.

(2) If f and g are Gorenstein, then g ◦ f is Gorenstein.
(3) If g ◦ f is Gorenstein at x and f is flat at x, then f is Gorenstein at x and

g is Gorenstein at f(x).
(4) If f ◦g is Gorenstein and f is flat, then f is Gorenstein and g is Gorenstein

at every point in the image of f .

Proof. Working étale locally this follows from the corresponding result for schemes,
see Duality for Schemes, Lemma 48.25.6. Alternatively, we can use the equivalence
of (a) and (b) in Lemma 76.27.3. Thus we consider the local homomorphism of
Noetherian local rings

OY,y/mzOY,y −→ OX,x/mzOX,x
whose fibre is

OX,x/myOX,x
and we use Dualizing Complexes, Lemma 47.21.8. □

Lemma 76.27.5.0E17 Let S be a scheme. Let f : X → Y be a flat morphism of locally
Noetherian algebraic spaces over S. If X is Gorenstein, then f is Gorenstein and
OY,f(x) is Gorenstein for all x ∈ |X|.

Proof. After translating into algebra using Lemma 76.27.3 (compare with the proof
of Lemma 76.27.4) this follows from Dualizing Complexes, Lemma 47.21.8. □

Lemma 76.27.6.0E18 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume the fibres of f are locally Noetherian. Let Y ′ → Y be locally
of finite type. Let f ′ : X ′ → Y ′ be the base change of f . Let x′ ∈ |X ′| be a point
with image x ∈ |X|.

(1) If f is Gorenstein at x, then f ′ : X ′ → Y ′ is Gorenstein at x′.
(2) If f is flat at x and f ′ is Gorenstein at x′, then f is Gorenstein at x.
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(3) If Y ′ → Y is flat at f ′(x′) and f ′ is Gorenstein at x′, then f is Gorenstein
at x.

Proof. Denote y ∈ |Y | and y′ ∈ |Y ′| the image of x′. Choose a surjective étale
morphism V → Y where V is a scheme. Choose a surjective étale morphism U →
X ×Y V where U is a scheme. Choose a surjectiev étale morphism V ′ → Y ′ ×Y V
where V ′ is a scheme. Then U ′ = U ×V V ′ is a scheme which comes equipped
with a surjective étale morphism U ′ → X ′. Choose u′ ∈ U ′ mapping to x′. Denote
u ∈ U the image of u′. Then the lemma follows from the lemma for U → V and its
base change U ′ → V ′ and the points u′ and u (this follows from the definitions).
Thus the lemma follows from the case of schemes, see Duality for Schemes, Lemma
48.25.8. □

Lemma 76.27.7.0E19 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is flat and locally of finite presentation. Let

W = {x ∈ |X| : f is Gorenstein at x}
Then W is open in |X| and the formation of W commutes with arbitrary base
change of f : For any morphism g : Y ′ → Y , consider the base change f ′ : X ′ → Y ′

of f and the projection g′ : X ′ → X. Then the corresponding set W ′ for the
morphism f ′ is equal to W ′ = (g′)−1(W ).
Proof. Choose a commutative diagram

U

��

// V

��
X // Y

Let u ∈ U with image x ∈ |X|. Then f is Gorenstein at x if and only if U → V
is Gorenstein at u (by definition). Thus we reduce to the case of the morphism
U → V of schemes. Openness is proven in Duality for Schemes, Lemma 48.25.11
and compatibility with base change in Duality for Schemes, Lemma 48.25.9. □

76.28. Slicing Cohen-Macaulay morphisms

06LV Let S be a scheme. Let X be an algebraic space over S. Let f1, . . . , fr ∈ Γ(X,OX).
In this case we denote V (f1, . . . , fr) the closed subspace of X cut out by f1, . . . , fr.
More precisely, we can define V (f1, . . . , fr) as the closed subspace of X correspond-
ing to the quasi-coherent sheaf of ideals generated by f1, . . . , fr, see Morphisms of
Spaces, Lemma 67.13.1. Alternatively, we can choose a presentation X = U/R and
consider the closed subscheme Z ⊂ U cut out by f1|U, . . . , fr|U . It is clear that Z
is an R-invariant (see Groupoids, Definition 39.19.1) closed subscheme and we may
set V (f1, . . . , fr) = Z/RZ .
Lemma 76.28.1.06LW Let S be a scheme. Consider a cartesian diagram

X

��

F
p

oo

��
Y Spec(k)oo

where X → Y is a morphism of algebraic spaces over S which is flat and locally of
finite presentation, and where k is a field over S. Let f1, . . . , fr ∈ Γ(X,OX) and

https://stacks.math.columbia.edu/tag/0E19
https://stacks.math.columbia.edu/tag/06LW


76.28. SLICING COHEN-MACAULAY MORPHISMS 5853

z ∈ |F | such that f1, . . . , fr map to a regular sequence in the local ring OF,z. Then,
after replacing X by an open subspace containing p(z), the morphism

V (f1, . . . , fr) −→ Y

is flat and locally of finite presentation.

Proof. Set Z = V (f1, . . . , fr). It is clear that Z → X is locally of finite presentation,
hence the composition Z → Y is locally of finite presentation, see Morphisms
of Spaces, Lemma 67.28.2. Hence it suffices to show that Z → Y is flat in a
neighbourhood of p(z). Let k′/k be an extension field. Then F ′ = F ×Spec(k)
Spec(k′) is surjective and flat over F , hence we can find a point z′ ∈ |F ′| mapping
to z and the local ring map OF,z → OF ′,z′ is flat, see Morphisms of Spaces, Lemma
67.30.8. Hence the image of f1, . . . , fr in OF ′,z′ is a regular sequence too, see
Algebra, Lemma 10.68.5. Thus, during the proof we may replace k by an extension
field. In particular, we may assume that z ∈ |F | comes from a section z : Spec(k)→
F of the structure morphism F → Spec(k).

Choose a scheme V and a surjective étale morphism V → Y . Choose a scheme U
and a surjective étale morphism U → X ×Y V . After possibly enlarging k once
more we may assume that Spec(k) → F → X factors through U (as U → X is
surjective). Let u : Spec(k) → U be such a factorization and denote v ∈ V the
image of u. Note that the morphisms

Uv ×Spec(κ(v)) Spec(k) = U ×V Spec(k)→ U ×Y Spec(k)→ F

are étale (the first as the base change of V → V ×Y V and the second as the base
change of U → X). Moreover, by construction the point u : Spec(k) → U gives
a point of the left most space which maps to z on the right. Hence the elements
f1, . . . , fr map to a regular sequence in the local ring on the right of the following
map

OUv,u −→ OUv×Spec(κ(v)Spec(k),u = OU×V Spec(k),u.

But since the displayed arrow is flat (combine More on Flatness, Lemma 38.2.5 and
Morphisms of Spaces, Lemma 67.30.8) we see from Algebra, Lemma 10.68.5 that
f1, . . . , fr maps to a regular sequence in OUv,u. By More on Morphisms, Lemma
37.23.2 we conclude that the morphism of schemes

V (f1, . . . , fr)×X U = V (f1|U , . . . , fr|U )→ V

is flat in an open neighbourhood U ′ of u. Let X ′ ⊂ X be the open subspace
corresponding to the image of |U ′| → |X| (see Properties of Spaces, Lemmas 66.4.6
and 66.4.8). We conclude that V (f1, . . . , fr) ∩ X ′ → Y is flat (see Morphisms of
Spaces, Definition 67.30.1) as we have the commutative diagram

V (f1, . . . , fr)×X U ′

a

��

// V

b

��
V (f1, . . . , fr) ∩X ′ // Y

with a, b étale and a surjective. □
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76.29. Reduced fibres

0E06 This section is the analogue of More on Morphisms, Section 37.26.

Lemma 76.29.1.0E07 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let y ∈ |Y |. The following are equivalent

(1) for some morphism Spec(k)→ Y in the equivalence class of y the algebraic
space Xk is geometrically reduced over k,

(2) for every morphism Spec(k)→ Y in the equivalence class of y the algebraic
space Xk is geometrically reduced over k,

(3) for every morphism Spec(k)→ Y in the equivalence class of y the algebraic
space Xk is reduced.

Proof. This follows immediately from Spaces over Fields, Lemma 72.11.6 and the
definition of the equivalence relation defining |X| given in Properties of Spaces,
Section 66.4. □

Definition 76.29.2.0E08 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let y ∈ |Y |. We say the fibre of f : X → Y at y is geometrically
reduced if the equivalent conditions of Lemma 76.29.1 hold.

Here are the obligatory lemmas.

Lemma 76.29.3.0E09 Let S be a scheme. Let f : X → Y and g : Y ′ → Y be morphisms
of algebraic spaces over S. Denote f ′ : X ′ → Y ′ the base change of f by g. Then

{y′ ∈ |Y ′| : the fibre of f ′ : X ′ → Y ′ at y′ is geometrically reduced}
= g−1({y ∈ |Y | : the fibre of f : X → Y at y is geometrically reduced}).

Proof. For y′ ∈ |Y ′| choose a morphism Spec(k) → Y ′ in the equivalence class
of y′. Then g(y′) is represented by the composition Spec(k) → Y ′ → Y . Hence
X ′ ×Y ′ Spec(k) = X ×Y Spec(k) and the result follows from the definition. □

Lemma 76.29.4.0E0A Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is quasi-compact and locally of finite presentation. Then the
set

E = {y ∈ |Y | : the fibre of f : X → Y at y is geometrically reduced}
is étale locally constructible.

Proof. Choose an affine scheme V and an étale morphism V → Y . The mean-
ing of the statement is that the inverse image of E in |V | is constructible. By
Lemma 76.29.3 we may replace Y by V , i.e., we may assume that Y is an affine
scheme. Then X is quasi-compact. Choose an affine scheme U and a surjective
étale morphism U → X. For a morphism Spec(k) → Y the morphism between
fibres Uk → Xk is surjective étale. Hence Uk is geometrically reduced over k if and
only if Xk is geometrically reduced over k, see Spaces over Fields, Lemma 72.11.7.
Thus the set E for X → Y is the same as the set E for U → Y . In this way we see
that the lemma follows from the case of schemes, see More on Morphisms, Lemma
37.26.5. □

Lemma 76.29.5.0E0B Let X be an algebraic space over a discrete valuation ring R whose
structure morphism X → Spec(R) is proper and flat. If the special fibre is reduced,
then both X and the generic fibre Xη are reduced.
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Proof. Choose an étale morphism U → X where U is an affine scheme. Then U is
of finite type over R. Let u ∈ U be in the special fibre. The local ring A = OU,u
is essentially of finite type over R, hence Noetherian. Let π ∈ R be a uniformizer.
Since X is flat over R, we see that π ∈ mA is a nonzerodivisor on A and since the
special fibre of X is reduced, we have that A/πA is reduced. If a ∈ A, a ̸= 0 then
there exists an n ≥ 0 and an element a′ ∈ A such that a = πna′ and a′ ̸∈ πA.
This follows from Krull intersection theorem (Algebra, Lemma 10.51.4). If a is
nilpotent, so is a′, because π is a nonzerodivisor. But a′ maps to a nonzero element
of the reduced ring A/πA so this is impossible. Hence A is reduced. It follows
that there exists an open neighbourhood of u in U which is reduced (small detail
omitted; use that U is Noetherian). Thus we can find an étale morphism U → X
with U a reduced scheme, such that every point of the special fibre of X is in the
image. Since X is proper over R it follows that U → X is surjective. Hence X is
reduced. Since the generic fibre of U → Spec(R) is reduced as well (on affine pieces
it is computed by taking localizations), we conclude the same thing is true for the
generic fibre. □

Lemma 76.29.6.0E0C Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is flat, proper, and of finite presentation, then the set

E = {y ∈ |Y | : the fibre of f : X → Y at y is geometrically reduced}

is open in |Y |.

Proof. By Lemma 76.29.3 formation of E commutes with base change. To check a
subset of |Y | is open, we may replace Y by the members of an étale covering. Thus
we may assume Y is affine. Then Y is a cofiltered limit of affine schemes of finite
type over Z. Hence we can assume X → Y is the base change of X0 → Y0 where
Y0 is the spectrum of a finite type Z-algebra and X0 → Y0 is flat and proper. See
Limits of Spaces, Lemma 70.7.1, 70.6.12, and 70.6.13. Since the formation of E
commutes with base change (see above), we may assume the base is Noetherian.

Assume Y is Noetherian. The set is constructible by Lemma 76.29.4. Hence it
suffices to show the set is stable under generalization (Topology, Lemma 5.19.10).
By Properties, Lemma 28.5.10 we reduce to the case where Y = Spec(R), R is a
discrete valuation ring, and the closed fibre Xy is geometrically reduced. To show:
the generic fibre Xη is geometrically reduced.

If not then there exists a finite extension L of the fraction field of R such that XL

is not reduced, see Spaces over Fields, Lemmas 72.11.4 (characteristic zero) and
72.11.5 (positive characteristic). There exists a discrete valuation ring R′ ⊂ L with
fraction field L dominating R, see Algebra, Lemma 10.120.18. After replacing R
by R′ we reduce to Lemma 76.29.5. □

76.30. Connected components of fibres

0E1A This section is the analogue of More on Morphisms, Section 37.28.

Lemma 76.30.1.0E1B Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let

nX/Y : |Y | → {0, 1, 2, 3, . . . ,∞}

https://stacks.math.columbia.edu/tag/0E0C
https://stacks.math.columbia.edu/tag/0E1B


76.31. DIMENSION OF FIBRES 5856

be the function which associates to y ∈ Y the number of connected components of
Xk where Spec(k)→ Y is in the equivalence class of y with k algebraically closed.
This is well defined and if g : Y ′ → Y is a morphism then

nX′/Y ′ = nX/Y ◦ g
where X ′ → Y ′ is the base change of f .

Proof. Suppose that y′ ∈ Y ′ has image y ∈ Y . Let Spec(k′)→ Y ′ be in the equiv-
alence class of y′ with k′ algebraically closed. Then we can choose a commutative
diagram

Spec(K) //

%%

Spec(k′) // Y ′

��
Spec(k) // Y

where K is an algebraically closed field. The result follows as the morphisms of
schemes

X ′
k′ (X ′

k′)K = (Xk)Koo // Xk

induce bijections between connected components, see Spaces over Fields, Lemma
72.12.4. To use this to prove the function is well defined take Y ′ = Y . □

76.31. Dimension of fibres

0D4L This section is the analogue of More on Morphisms, Section 37.30.

Lemma 76.31.1.0D4M Let S be a scheme. Let f : X → Y be a finite type morphism of
algebraic spaces over S. Let y ∈ |Y |. The following quantities are the same

(1) d = −∞ if y is not in the image of |f | and otherwise the minimal integer
d such that f has relative dimension ≤ d at every x ∈ |X| mapping to y,

(2) the dimension of the algebraic space Xk = Spec(k)×Y X for any morphism
Spec(k)→ Y in the equivalence class defining y.

Proof. To parse this one has to consult Morphisms of Spaces, Definition 67.33.1,
Properties of Spaces, Definition 66.9.2, Properties of Spaces, Definition 66.9.1. We
will show that the numbers in (1) and (2) are equal for a fixed morphism Spec(k)→
Y . Choose an étale morphism V → Y where V is an affine scheme and a point v ∈ V
mapping to y. Since V ×Y Spec(k)→ Spec(k) is surjective étale (by Properties of
Spaces, Lemma 66.4.3) we can find a finite separable extension k′/k (by Morphisms,
Lemma 29.36.7) and a commutative diagram

Spec(k′) //

��

V

��
Spec(k) // Y

We may replace X → Y by V ×Y X → V and Xk by Xk′ = Spec(k′)×V (V ×Y X)
because this does not change the dimensions in question by Properties of Spaces,
Lemma 66.22.5 and Morphisms of Spaces, Lemma 67.34.3. Thus we may assume
that Y is an affine scheme. In this case we may assume that k = κ(y) because
the dimension of Xκ(y) and Xk are the same by the aforementioned Morphisms of
Spaces, Lemma 67.34.3 and the fact that for an algebraic space Z over a field K
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the relative dimension of Z at a point z ∈ |Z| is the same as dimz(Z) by definition.
Assume Y is affine and k = κ(y). Then X is quasi-compact we can choose an affine
scheme U and an surjective étale morphism U → X. Then dim(Xk) = dim(Uk) =
max dimu(Uk) is equal to the number given in (1) by definition. □

Lemma 76.31.2.0D4N Let S be a scheme. Let f : X → Y be a finite type morphism of
algebraic spaces over S. Let

nX/Y : |Y | → {−∞, 0, 1, 2, 3, . . .}
be the function which associates to y ∈ |Y | the integer discussed in Lemma 76.31.1.
If g : Y ′ → Y is a morphism then

nX′/Y ′ = nX/Y ◦ |g|
where X ′ → Y ′ is the base change of f .
Proof. This follows immediately from Lemma 76.31.1. □

Lemma 76.31.3.0D4P Let S be a scheme. Let f : X → Y be a flat morphism of finite
presentation of algebraic spaces over S. Let nX/Y be the function on Y giving
the dimension of fibres of f introduced in Lemma 76.31.2. Then nX/Y is lower
semi-continuous.
Proof. Let V → Y be a surjective étale morphism where V is a scheme. If we can
show that the composition nX/Y ◦ |g| is lower semi-continuous, then the lemma
follows as |g| is open. Hence we may assume Y is a scheme. Working locally we
may assume V is an affine scheme. Then we can choose an affine scheme U and a
surjective étale morphism U → X. Then nX/Y = nU/Y . Hence we may assume X
and Y are both schemes. In this case the lemma follows from More on Morphisms,
Lemma 37.30.4. □

Lemma 76.31.4.0D4Q Let S be a scheme. Let f : X → Y be a proper morphism of
algebraic spaces over S. Let nX/Y be the function on Y giving the dimension of
fibres of f introduced in Lemma 76.31.2. Then nX/Y is upper semi-continuous.
Proof. Let Zd = {x ∈ |X| : the fibre of f at x has dimension > d}. Then Zd is a
closed subset of |X| by Morphisms of Spaces, Lemma 67.34.4. Since f is proper
f(Zd) is closed in |Y |. Since y ∈ f(Zd) ⇔ nX/Y (y) > d we see that the lemma is
true. □

Lemma 76.31.5.0D4R Let S be a scheme. Let f : X → Y be a proper, flat, finitely
presented morphism of algebraic spaces over S. Let nX/Y be the function on Y
giving the dimension of fibres of f introduced in Lemma 76.31.2. Then nX/Y is
locally constant.
Proof. Immediate consequence of Lemmas 76.31.3 and 76.31.4. □

76.32. Catenary algebraic spaces

0EDL This section continues the discussion started in Decent Spaces, Section 68.25. The
following lemma will be used in the proof of the next one.
Lemma 76.32.1.0EDM Let S be a scheme. Let f : X → Y be an integral morphism
of algebraic spaces over S. Let y ∈ |Y | be a point which can be represented by a
closed immersion y : Spec(k)→ Y . Then there exists a factorization X → X ′ → Y
of f such that
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(1) X ′ → Y is integral,
(2) X → X ′ is an isomorphism over X ′ \X ′

y,
(3) X ′

y has a unique point x′ with κ(x′) = k.
Moreover, if f is finite and Y is locally Noetherian, then X ′ → Y is finite.

Proof. By Morphisms of Spaces, Lemma 67.11.2 the sheaves f∗OX , (Xy → Y )∗OXy ,
and y∗OSpec(k) are quasi-coherent sheaves of OY -algebras. Consider the maps

f∗OY −→ (Xy → Y )∗OXy ←− y∗OSpec(k)

The fibre product is a quasi-coherent sheaf of OY -algebras A′ and we can define
X ′ → Y as the relative spectrum of A′ over Y , see Morphisms, Lemma 29.11.5.
This construction commutes with arbitrary change of base. In particular, it is clear
that over the open subspace |Y |\{y} the morphism X → X ′ is an isomorphism and
over |Y | \{y} the morphism X ′ → Y is integral. It remains to prove the statements
in a small neighbourhood of y. Choose an affine scheme V = Spec(R) and an
étale morphism φ : V → Y such that y is in the image of φ. Then Vy is a closed
subscheme of V étale over k, whence consists of finitely many points each with
residue field separable over k (see Decent Spaces, Remark 68.4.1). After shrinking
V we may assume there is a unique closed point v = Spec(l)→ V mapping to y with
l/k finite separable. We may write V ×Y X = Spec(C) with R→ C an integral ring
map. The stated compatibility with base change gives us that U ×X Y ′ = Spec(C ′)
where

C ′ = C ×C⊗Rl l

Since R→ l is surjective, also C → C⊗R l is surjective and we see that this is a fibre
product of the kind studied in More on Algebra, Situation 15.6.1 (with A,A′, B,B′

corresponding to C ⊗R l, C, l, C ′). Observe that C ′ is an R-subalgebra of C and
hence is integral over R; this proves (1). Finally, More on Algebra, Lemma 15.6.2
shows that V ×X Y ′ = Spec(C ′) has a unique point y′′ lying over v with residue l
(this corresponds with the obvious surjective map C ′ → l). Thus Xy×Spec(k)Spec(l)
has a unique point with residue field l. Since l/k is finite separable, this implies X ′

y

has a unique point with residue field k, i.e., (3) holds.

To prove the final statement, observe that if Y is locally Noetherian, then R is
a Noetherian ring and if f is finite, then R → C is finite. Then C ′ is a finite
type R-algebra by More on Algebra, Lemma 15.5.1. This proves that X ′ → Y is
finite. □

Lemma 76.32.2.0EDN Let S be a scheme. Let B be an algebraic space over S. Let
δ : |B| → Z be a function. Assume B is decent, locally Noetherian, and universally
catenary and δ is a dimension function. If X is a decent algebraic space over B
whose structure morphism f : X → B is locally of finite type we define δX : |X| → Z
by the rule

δX(x) = δ(f(x)) + transcendence degreeof x/f(x)
(Morphisms of Spaces, Definition 67.33.1). Then δX is a dimension function.

Proof. The problem is local on B. Thus we may assume B is quasi-compact. By
Decent Spaces, Lemma 68.14.1 we see B is quasi-separated. By Limits of Spaces,
Proposition 70.16.1 we can choose a finite surjective morphism π : Y → X where
Y is a scheme. Claim: δY is a dimension function.
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The claim implies the lemma. With X → B as in the lemma set Z = Y ×BX with
projections p : Z → Y and q : Z → X. Then we have

δZ(z) = δY (p(z)) + transcendence degreeof z/p(z)

and δZ(z) = δX(q(z)). This follows from Morphisms of Spaces, Lemma 67.34.2 and
the fact that these transcendence degrees are zero for finite morphisms. By Decent
Spaces, Lemma 68.25.2 and the claim we find that δZ is a dimension function. Then
we find that δX is a dimension function by Decent Spaces, Lemma 68.25.6.

Proof of the claim. Consider a specialization y ⇝ y′, y ̸= y′ of points of the
Noetherian scheme Y . Then δY (y) > δY (y′) because there are no specializations
between points in fibres of Y (see Decent Spaces, Lemma 68.18.10). Using this for
a chain of specializations we find

δY (y)− δY (y′) ≥ codim({y′}, {y})

Our task is to show equality. By Properties, Lemma 28.5.9 we can choose a spe-
cialization y′ ⇝ y0. It suffices to show δY (y)− δY (y0) = codim({y0}, {y}) because
this will imply the equality for both y ⇝ y′ and y′ ⇝ y0.

Choose a maximal chain y = yc ⇝ yc−1 ⇝ . . . ⇝ y0 of specializations in Y . Set
b = π(y) and b0 = π(y0). Choose a maximal chain b = be ⇝ be−1 ⇝ . . . ⇝ b0 of
specializations in |B|. We have to show e = c. Since π is closed (Morphisms of
Spaces, Lemma 67.45.9) we can find a sequence of specializations y = y′

e ⇝ y′
e−1 ⇝

. . .⇝ y′
0 mapping to b = be ⇝ be−1 ⇝ . . .⇝ b0. Observe that y′

e ⇝ y′
e−1 ⇝ . . .⇝

y′
0 is a maximal chain as well. If y0 = y′

0, then because Y is catenary, we conclude
that e = c as desired. In the next paragraph we reduce to this case by sleight of
hand and we conclude in the same manner.

Since π is closed we see that b0 is a closed point of |B|. By Decent Spaces, Lemma
68.14.6 we can represent b0 by a closed immersion b0 : Spec(k) → B. By Lemma
76.32.1 we can find a factorization

Y → Y ′ → X

with π′ : Y ′ → X finite and Y → Y ′ a morphism which map y0 and y′
0 to the same

point and is an isomorphism away from the inverse image of b0. (Of course Y ′ won’t
be a scheme but this doesn’t matter for the argument that follows.) Clearly the
maximal chains of specializations yc ⇝ yc−1 ⇝ . . .⇝ y0 and y′

e ⇝ y′
e−1 ⇝ . . .⇝ y′

0
map to maximal chains of specializations in Y ′ having the same start and end. Since
B is universally catenary, we see that |Y ′| is catenary and we conclude as before. □

76.33. Étale localization of morphisms

082G The section is the analogue of More on Morphisms, Section 37.41.

Lemma 76.33.1.082H Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let y ∈ |Y |. Let x1, . . . , xn ∈ |X| mapping to y. Assume that

(1) f is locally of finite type,
(2) f is separated,
(3) f is quasi-finite at x1, . . . , xn, and
(4) f is quasi-compact or Y is decent.
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Then there exists an étale morphism (U, u) → (Y, y) of pointed algebraic spaces
and a decomposition

U ×Y X = W ⨿ V

into open and closed subspaces such that the morphism V → U is finite, every
point of the fibre of |V | → |U | over u maps to an xi, and the fibre of |W | → |U |
over u contains no point mapping to an xi.

Proof. Let (U, u) → (Y, y) be an étale morphism of algebraic spaces and consider
the set of w ∈ |U ×Y X| mapping to u ∈ |U | and one of the xi ∈ |X|. By Decent
Spaces, Lemma 68.18.4 (if f is of finite type) or Decent Spaces, Lemma 68.18.5 (if
Y is decent) this set is finite. It follows that we may replace f by the base change
U ×Y X → U and x1, . . . , xn by the set of these w. In particular we may and do
assume that Y is an affine scheme, whence X is a separated algebraic space.

Choose an affine scheme Z and an étale morphism Z → X such that x1, . . . , xn
are in the image of |Z| → |X|. The fibres of |Z| → |X| are finite, see Properties
of Spaces, Lemma 66.6.7 (or the more general discussion in Decent Spaces, Section
68.6). Let {z1, . . . , zm} ⊂ |Z| be the preimage of {x1, . . . , xn}. By More on Mor-
phisms, Lemma 37.41.4 there exists an étale morphism (U, u) → (Y, y) such that
U ×Y Z = Z1 ⨿ Z2 with Z1 → U finite and (Z1)y = {z1, . . . , zm}. We may assume
that U is affine and hence Z1 is affine too.

Since f is separated, the image V of Z1 → X is both open and closed (Morphisms
of Spaces, Lemma 67.40.6). Set W = X \V to get a decomposition as in the lemma.
To finish the proof we have to show that V → U is finite. As Z1 → V is surjective
and étale, V is the quotient of Z1 by the étale equivalence relation R = Z1 ×V Z1,
see Spaces, Lemma 65.9.1. Since f is separated, V → U is separated and R is closed
in Z1 ×U Z1. Since Z1 → U is finite, the projections s, t : R→ Z1 are finite. Thus
V is an affine scheme by Groupoids, Proposition 39.23.9. By Morphisms, Lemma
29.41.9 we conclude that V → U is proper and by Morphisms, Lemma 29.44.11 we
conclude that V → U is finite, thereby finishing the proof. □

Lemma 76.33.2.0ADU Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let x ∈ |X| with image y ∈ |Y |. Assume that

(1) f is locally of finite type,
(2) f is separated, and
(3) f is quasi-finite at x.

Then there exists an étale morphism (U, u) → (Y, y) of pointed algebraic spaces
and a decomposition

U ×Y X = W ⨿ V

into open and closed subspaces such that the morphism V → U is finite and there
exists a point v ∈ |V | which maps to x in |X| and u in |U |.

Proof. Pick a scheme U , a point u ∈ U , and an étale morphism U → Y mapping
u to y. There exists a point x′ ∈ |U ×Y X| mapping to x in |X| and u in |U |
(Properties of Spaces, Lemma 66.4.3). To finish, apply Lemma 76.33.1 to the
morphism U ×Y X → U and the point x′. It applies because U is a scheme and
hence u comes from the monomorphism Spec(κ(u))→ U . □
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76.34. Zariski’s Main Theorem

05W7 In this section we apply the results of the previous section to prove Zariski’s main
theorem for morphisms of algebraic spaces. This section is the analogue of More
on Morphisms, Section 37.43.

Lemma 76.34.1.082I Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is of finite type and separated. Let Y ′ be the normalization of
Y in X. Picture:

X

f   

f ′
// Y ′

ν
~~

Y

Then there exists an open subspace U ′ ⊂ Y ′ such that
(1) (f ′)−1(U ′)→ U ′ is an isomorphism, and
(2) (f ′)−1(U ′) ⊂ X is the set of points at which f is quasi-finite.

Proof. By Morphisms of Spaces, Lemma 67.34.7 there is an open subspace U ⊂ X
corresponding to the points of |X| where f is quasi-finite. We have to prove

(a) the image of |U | → |Y ′| is |U ′| for some open subspace U ′ of Y ′,
(b) U = f−1(U ′), and
(c) U → U ′ is an isomorphism.

Since formation of U commutes with arbitrary base change (Morphisms of Spaces,
Lemma 67.34.7), since formation of the normalization Y ′ commutes with smooth
base change (Lemma 76.25.2), since étale morphisms are open, and since “being
an isomorphism” is fpqc local on the base (Descent on Spaces, Lemma 74.11.15),
it suffices to prove (a), (b), (c) étale locally on Y (some details omitted). Thus we
may assume Y is an affine scheme. This implies that Y ′ is an (affine) scheme as
well.

Let x ∈ |U |. Claim: there exists an open neighbourhood f ′(x) ∈ V ⊂ Y ′ such
that (f ′)−1V → V is an isomorphism. We first prove the claim implies the lemma.
Namely, then (f ′)−1V ∼= V is a scheme (as an open of Y ′), locally of finite type
over Y (as an open subspace of X), and for v ∈ V the residue field extension
κ(v)/κ(ν(v)) is algebraic (as V ⊂ Y ′ and Y ′ is integral over Y ). Hence the fibres
of V → Y are discrete (Morphisms, Lemma 29.20.2) and (f ′)−1V → Y is locally
quasi-finite (Morphisms, Lemma 29.20.8). This implies (f ′)−1V ⊂ U and V ⊂ U ′.
Since x was arbitrary we see that (a), (b), and (c) are true.

Let y = f(x) ∈ |Y |. Let (T, t) → (Y, y) be an étale morphism of pointed schemes.
Denote by a subscript T the base change to T . Let z ∈ XT be a point in the fibre
Xt lying over x. Note that UT ⊂ XT is the set of points where fT is quasi-finite,
see Morphisms of Spaces, Lemma 67.34.7. Note that

XT
f ′
T−−→ Y ′

T
νT−−→ T

is the normalization of T in XT , see Lemma 76.25.2. Suppose that the claim holds
for z ∈ UT ⊂ XT → Y ′

T → T , i.e., suppose that we can find an open neighbourhood
f ′
T (z) ∈ V ′ ⊂ Y ′

T such that (f ′
T )−1V ′ → V ′ is an isomorphism. The morphism

Y ′
T → Y ′ is étale hence the image V ⊂ Y ′ of V ′ is open. Observe that f ′(x) ∈ V
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as f ′
T (z) ∈ V ′. Observe that

(f ′
T )−1V ′ //

��

(f ′)−1(V )

��
V ′ // V

is a fibre square (as Y ′
T×Y ′X = XT ). Since the left vertical arrow is an isomorphism

and {V ′ → V } is a étale covering, we conclude that the right vertical arrow is an
isomorphism by Descent on Spaces, Lemma 74.11.15. In other words, the claim
holds for x ∈ U ⊂ X → Y ′ → Y .

By the result of the previous paragraph to prove the claim for x ∈ |U |, we may
replace Y by an étale neighbourhood T of y = f(x) and x by any point lying over
x in T ×Y X. Thus we may assume there is a decomposition

X = V ⨿W

into open and closed subspaces where V → Y is finite and x ∈ V , see Lemma
76.33.1. Since X is a disjoint union of V and W over Y and since V → Y is finite
we see that the normalization of Y in X is the morphism

X = V ⨿W −→ V ⨿W ′ −→ S

where W ′ is the normalization of Y in W , see Morphisms of Spaces, Lemmas
67.48.8, 67.45.6, and 67.48.10. The claim follows and we win. □

The following lemma is a duplicate of Morphisms of Spaces, Lemma 67.52.2. The
reason for having two copies of the same lemma is that the proofs are somewhat
different. The proof given below rests on Zariski’s Main Theorem for nonrepre-
sentable morphisms of algebraic spaces as presented above, whereas the proof of
Morphisms of Spaces, Lemma 67.52.2 rests on Morphisms of Spaces, Proposition
67.50.2 to reduce to the case of morphisms of schemes.

Lemma 76.34.2.082J Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-finite and separated. Let Y ′ be the normalization
of Y in X. Picture:

X

f   

f ′
// Y ′

ν
~~

Y

Then f ′ is a quasi-compact open immersion and ν is integral. In particular f is
quasi-affine.

Proof. This follows from Lemma 76.34.1. Namely, by that lemma there exists
an open subspace U ′ ⊂ Y ′ such that (f ′)−1(U ′) = X (!) and X → U ′ is an
isomorphism! In other words, f ′ is an open immersion. Note that f ′ is quasi-
compact as f is quasi-compact and ν : Y ′ → Y is separated (Morphisms of Spaces,
Lemma 67.8.9). Hence for every affine scheme Z and morphism Z → Y the fibre
product Z ×Y X is a quasi-compact open subscheme of the affine scheme Z ×Y Y ′.
Hence f is quasi-affine by definition. □
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Lemma 76.34.3 (Zariski’s Main Theorem).082K Let S be a scheme. Let f : X → Y
be a morphism of algebraic spaces over S. Assume f is quasi-finite and separated
and assume that Y is quasi-compact and quasi-separated. Then there exists a
factorization

X

f   

j
// T

π
��

Y

where j is a quasi-compact open immersion and π is finite.

Proof. Let X → Y ′ → Y be as in the conclusion of Lemma 76.34.2. By Limits of
Spaces, Lemma 70.9.7 we can write ν∗OY ′ = colimi∈I Ai as a directed colimit of
finite quasi-coherent OX -algebras Ai ⊂ ν∗OY ′ . Then πi : Ti = Spec

Y
(Ai)→ Y is a

finite morphism for each i. Note that the transition morphisms Ti′ → Ti are affine
and that Y ′ = limTi.

By Limits of Spaces, Lemma 70.5.7 there exists an i and a quasi-compact open
Ui ⊂ Ti whose inverse image in Y ′ equals f ′(X). For i′ ≥ i let Ui′ be the inverse
image of Ui in Ti′ . Then X ∼= f ′(X) = limi′≥i Ui′ , see Limits of Spaces, Lemma
70.4.1. By Limits of Spaces, Lemma 70.5.12 we see that X → Ui′ is a closed
immersion for some i′ ≥ i. (In fact X ∼= Ui′ for sufficiently large i′ but we don’t
need this.) Hence X → Ti′ is an immersion. By Morphisms of Spaces, Lemma
67.12.6 we can factor this as X → T → Ti′ where the first arrow is an open
immersion and the second a closed immersion. Thus we win. □

Lemma 76.34.4.0874 With notation and hypotheses as in Lemma 76.34.3. Assume
moreover that f is locally of finite presentation. Then we can choose the factoriza-
tion such that T is finite and of finite presentation over Y .

Proof. By Limits of Spaces, Lemma 70.11.3 we can write T = limTi where all Ti
are finite and of finite presentation over Y and the transition morphisms Ti′ → Ti
are closed immersions. By Limits of Spaces, Lemma 70.5.7 there exists an i and
an open subscheme Ui ⊂ Ti whose inverse image in T is X. By Limits of Spaces,
Lemma 70.5.12 we see that X ∼= Ui for large enough i. Replacing T by Ti finishes
the proof. □

76.35. Applications of Zariski’s Main Theorem, I

0F43 A first application is the characterization of finite morphisms as proper morphisms
with finite fibres.

Lemma 76.35.1.0A4X Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is finite,
(2) f is proper and locally quasi-finite,
(3) f is proper and |Xk| is a discrete space for every morphism Spec(k)→ Y

where k is a field,
(4) f is universally closed, separated, locally of finite type and |Xk| is a dis-

crete space for every morphism Spec(k)→ Y where k is a field.
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Proof. We have (1) ⇒ (2) by Morphisms of Spaces, Lemmas 67.45.9, 67.45.8. We
have (2) ⇒ (3) by Morphisms of Spaces, Lemma 67.27.5. By definition (3) implies
(4).
Assume (4). Since f is universally closed it is quasi-compact (Morphisms of Spaces,
Lemma 67.9.7). Pick a point y of |Y |. We represent y by a morphism Spec(k) →
Y . Note that |Xk| is finite discrete as a quasi-compact discrete space. The map
|Xk| → |X| surjects onto the fibre of |X| → |Y | over y (Properties of Spaces,
Lemma 66.4.3). By Morphisms of Spaces, Lemma 67.34.8 we see that X → Y is
quasi-finite at all the points of the fibre of |X| → |Y | over y. Choose an elementary
étale neighbourhood (U, u)→ (Y, y) and decomposition XU = V ⨿W as in Lemma
76.33.1 adapted to all the points of |X| lying over y. Note that Wu = ∅ because we
used all the points in the fibre of |X| → |Y | over y. Since f is universally closed we
see that the image of |W | in |U | is a closed set not containing u. After shrinking
U we may assume that W = ∅. In other words we see that XU = V is finite over
U . Since y ∈ |Y | was arbitrary this means there exists a family {Ui → Y } of étale
morphisms whose images cover Y such that the base changes XUi → Ui are finite.
We conclude that f is finite by Morphisms of Spaces, Lemma 67.45.3. □

As a consequence we have the following useful result.

Lemma 76.35.2.0A4Y Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let y ∈ |Y |. Assume

(1) f is proper, and
(2) f is quasi-finite at all x ∈ |X| lying over y (Decent Spaces, Lemma

68.18.10).
Then there exists an open neighbourhood V ⊂ Y of y such that f |f−1(V ) : f−1(V )→
V is finite.

Proof. By Morphisms of Spaces, Lemma 67.34.7 the set of points at which f is
quasi-finite is an open U ⊂ X. Let Z = X \ U . Then y ̸∈ f(Z). Since f is
proper the set f(Z) ⊂ Y is closed. Choose any open neighbourhood V ⊂ Y of
y with Z ∩ V = ∅. Then f−1(V ) → V is locally quasi-finite and proper. Hence
f−1(V )→ V is finite by Lemma 76.35.1. □

Lemma 76.35.3.0AEJ Let S be a scheme. Let

X
h

//

f   

Y

g
~~

B

be a commutative diagram of morphism of algebraic spaces over S. Let b ∈ B and
let Spec(k)→ B be a morphism in the equivalence class of b. Assume

(1) X → B is a proper morphism,
(2) Y → B is separated and locally of finite type,
(3) one of the following is true

(a) the image of |Xk| → |Yk| is finite,
(b) the image of |f |−1({b}) in |Y | is finite and B is decent.

Then there is an open subspace B′ ⊂ B containing b such that XB′ → YB′ factors
through a closed subspace Z ⊂ YB′ finite over B′.
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Proof. Let Z ⊂ Y be the scheme theoretic image of h, see Morphisms of Spaces,
Section 67.16. By Morphisms of Spaces, Lemma 67.40.8 the morphism X → Z is
surjective and Z → B is proper. Thus

{x ∈ |X| lying over b} → {z ∈ |Z| lying over b}

and |Xk| → |Zk| are surjective. We see that either (3)(a) or (3)(b) imply that Z →
B is quasi-finite all points of |Z| lying over b by Decent Spaces, Lemma 68.18.10.
Hence Z → B is finite in an open neighbourhood of b by Lemma 76.35.2. □

76.36. Stein factorization

0A18 Stein factorization is the statement that a proper morphism f : X → S with
f∗OX = OS has connected fibres.

Lemma 76.36.1.0A19 Let S be a scheme. Let f : X → Y be a universally closed and
quasi-separated morphism of algebraic spaces over S. There exists a factorization

X
f ′

//

f   

Y ′

π
~~

Y

with the following properties:
(1) the morphism f ′ is universally closed, quasi-compact, quasi-separated,

and surjective,
(2) the morphism π : Y ′ → Y is integral,
(3) we have f ′

∗OX = OY ′ ,
(4) we have Y ′ = Spec

Y
(f∗OX), and

(5) Y ′ is the normalization of Y in X as defined in Morphisms of Spaces,
Definition 67.48.3.

Formation of the factorization f = π ◦ f ′ commutes with flat base change.

Proof. By Morphisms of Spaces, Lemma 67.9.7 the morphism f is quasi-compact.
We just define Y ′ as the normalization of Y in X, so (5) and (2) hold automatically.
By Morphisms of Spaces, Lemma 67.48.9 we see that (4) holds. The morphism f ′ is
universally closed by Morphisms of Spaces, Lemma 67.40.6. It is quasi-compact by
Morphisms of Spaces, Lemma 67.8.9 and quasi-separated by Morphisms of Spaces,
Lemma 67.4.10.

To show the remaining statements we may assume the base Y is affine (as taking
normalization commutes with étale localization). Say Y = Spec(R). Then Y ′ =
Spec(A) with A = Γ(X,OX) an integral R-algebra. Thus it is clear that f ′

∗OX
is OY ′ (because f ′

∗OX is quasi-coherent, by Morphisms of Spaces, Lemma 67.11.2,
and hence equal to Ã). This proves (3).

Let us show that f ′ is surjective. As f ′ is universally closed (see above) the image
of f ′ is a closed subset V (I) ⊂ Y ′ = Spec(A). Pick h ∈ I. Then h|X = f ♯(h) is a
global section of the structure sheaf of X which vanishes at every point. As X is
quasi-compact this means that h|X is a nilpotent section, i.e., hn|X = 0 for some
n > 0. But A = Γ(X,OX), hence hn = 0. In other words I is contained in the
Jacobson radical of A and we conclude that V (I) = Y ′ as desired. □
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Lemma 76.36.2.0E1C In Lemma 76.36.1 assume in addition that f is locally of finite
type and Y affine. Then for y ∈ Y the fibre π−1({y}) = {y1, . . . , yn} is finite and
the field extensions κ(yi)/κ(y) are finite.

Proof. Recall that there are no specializations among the points of π−1({y}), see
Algebra, Lemma 10.36.20. As f ′ is surjective, we find that |Xy| → π−1({y}) is
surjective. Observe that Xy is a quasi-separated algebraic space of finite type over
a field (quasi-compactness was shown in the proof of the referenced lemma). Thus
|Xy| is a Noetherian topological space (Morphisms of Spaces, Lemma 67.28.6).
A topological argument (omitted) now shows that π−1({y}) is finite. For each i
we can pick a finite type point xi ∈ |Xy| mapping to yi (Morphisms of Spaces,
Lemma 67.25.6). We conclude that κ(yi)/κ(y) is finite: xi can be represented by a
morphism Spec(ki)→ Xy of finite type (by our definition of finite type points) and
hence Spec(ki) → y = Spec(κ(y)) is of finite type (as a composition of finite type
morphisms), hence ki/κ(y) is finite (Morphisms, Lemma 29.16.1). □

Let f : X → Y be a morphism of algebraic spaces and let y : Spec(k) → Y
be a geometric point. Then the fibre of f over y is the algebraic space Xy =
X ×Y,y Spec(k) over k. If Y is a scheme and y ∈ Y is a point, then we denote
Xy = X ×Y Spec(κ(y)) the fibre as usual.

Lemma 76.36.3.0A1A Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let y be a geometric point of Y . Then Xy is connected, if and
only if for every étale neighbourhood (V, v)→ (Y, y) where V is a scheme the base
change XV → V has connected fibre Xv.

Proof. Since the category of étale neighbourhoods of y is cofiltered and contains a
cofinal collection of schemes (Properties of Spaces, Lemma 66.19.3) we may replace
Y by one of these neighbourhoods and assume that Y is a scheme. Let y ∈ Y
be the point corresponding to y. Then Xy is geometrically connected over κ(y) if
and only if Xy is connected and if and only if (Xy)k′ is connected for every finite
separable extension k′ of κ(y). See Spaces over Fields, Section 72.12 and especially
Lemma 72.12.8. By More on Morphisms, Lemma 37.35.2 there exists an affine étale
neighbourhood (V, v) → (Y, y) such that κ(s) ⊂ κ(u) is identified with κ(s) ⊂ k′

any given finite separable extension. The lemma follows. □

Theorem 76.36.4 (Stein factorization; Noetherian case).0A1B Let S be a scheme. Let
f : X → Y be a proper morphism of algebraic spaces over S with Y locally
Noetherian. There exists a factorization

X
f ′

//

f   

Y ′

π
~~

Y

with the following properties:
(1) the morphism f ′ is proper with connected geometric fibres,
(2) the morphism π : Y ′ → Y is finite,
(3) we have f ′

∗OX = OY ′ ,
(4) we have Y ′ = Spec

Y
(f∗OX), and

(5) Y ′ is the normalization of Y in X, see Morphisms, Definition 29.53.3.
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Proof. Let f = π ◦ f ′ be the factorization of Lemma 76.36.1. Note that besides
the conclusions of Lemma 76.36.1 we also have that f ′ is separated (Morphisms of
Spaces, Lemma 67.4.10) and finite type (Morphisms of Spaces, Lemma 67.23.6).
Hence f ′ is proper. By Cohomology of Spaces, Lemma 69.20.2 we see that f∗OX
is a coherent OY -module. Hence we see that π is finite, i.e., (2) holds.
This proves all but the most interesting assertion, namely that the geometric fibres
of f ′ are connected. It is clear from the discussion above that we may replace Y by
Y ′. Then Y is locally Noetherian, f : X → Y is proper, and f∗OX = OY . Let y be
a geometric point of Y . At this point we apply the theorem on formal functions,
more precisely Cohomology of Spaces, Lemma 69.22.7. It tells us that

O∧
Y,y = limnH

0(Xn,OXn)

where Xn = Spec(OY,y/mny ) ×Y X. Note that X1 = Xy → Xn is a (finite order)
thickening and hence the underlying topological space of Xn is equal to that of Xy.
Thus, if Xy = T1 ⨿ T2 is a disjoint union of nonempty open and closed subspaces,
then similarly Xn = T1,n ⨿ T2,n for all n. And this in turn means H0(Xn,OXn)
contains a nontrivial idempotent e1,n, namely the function which is identically 1
on T1,n and identically 0 on T2,n. It is clear that e1,n+1 restricts to e1,n on Xn.
Hence e1 = lim e1,n is a nontrivial idempotent of the limit. This contradicts the
fact that O∧

Y,y is a local ring. Thus the assumption was wrong, i.e., Xy is connected
as desired. □

Theorem 76.36.5 (Stein factorization; general case).0A1C Let S be a scheme. Let
f : X → Y be a proper morphism of algebraic spaces over S. There exists a
factorization

X
f ′

//

f   

Y ′

π
~~

Y

with the following properties:
(1) the morphism f ′ is proper with connected geometric fibres,
(2) the morphism π : Y ′ → Y is integral,
(3) we have f ′

∗OX = OY ′ ,
(4) we have Y ′ = Spec

Y
(f∗OX), and

(5) Y ′ is the normalization of Y in X (Morphisms of Spaces, Definition
67.48.3).

Proof. We may apply Lemma 76.36.1 to get the morphism f ′ : X → Y ′. Note that
besides the conclusions of Lemma 76.36.1 we also have that f ′ is separated (Mor-
phisms of Spaces, Lemma 67.4.10) and finite type (Morphisms of Spaces, Lemma
67.23.6). Hence f ′ is proper. At this point we have proved all of the statements
except for the statement that f ′ has connected geometric fibres.
It is clear from the discussion that we may replace Y by Y ′. Then f : X → Y is
proper and f∗OX = OY . Note that these conditions are preserved under flat base
change (Morphisms of Spaces, Lemma 67.40.3 and Cohomology of Spaces, Lemma
69.11.2). Let y be a geometric point of Y . By Lemma 76.36.3 and the remark just
made we reduce to the case where Y is a scheme, y ∈ Y is a point, f : X → Y is a
proper algebraic space over Y with f∗OX = OY , and we have to show the fibre Xy
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is connected. Replacing Y by an affine neighbourhood of y we may assume that
Y = Spec(R) is affine. Then f∗OX = OY signifies that the ring map R→ Γ(X,OX)
is bijective.
By Limits of Spaces, Lemma 70.12.2 we can write (X → Y ) = lim(Xi → Yi)
with Xi → Yi proper and of finite presentation and Yi Noetherian. For i large
enough Yi is affine (Limits of Spaces, Lemma 70.5.10). Say Yi = Spec(Ri). Let
R′
i = Γ(Xi,OXi). Observe that we have ring maps Ri → R′

i → R. Namely, we
have the first because Xi is an algebraic space over Ri and the second because we
have X → Xi and R = Γ(X,OX). Note that R = colimR′

i by Limits of Spaces,
Lemma 70.5.6. Then

X

��

// Xi

��
Y // Y ′

i
// Yi

is commutative with Y ′
i = Spec(R′

i). Let y′
i ∈ Y ′

i be the image of y. We have
Xy = limXi,y′

i
because X = limXi, Y = lim Y ′

i , and κ(y) = colim κ(y′
i). Now let

Xy = U ⨿ V with U and V open and closed. Then U, V are the inverse images of
opens Ui, Vi in Xi,y′

i
(Limits of Spaces, Lemma 70.5.7). By Theorem 76.36.4 the

fibres of Xi → Y ′
i are connected, hence either U or V is empty. This finishes the

proof. □

Here is an application.

Lemma 76.36.6.0AYI Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) f is proper,
(2) Y is integral (Spaces over Fields, Definition 72.4.1) with generic point ξ,
(3) Y is normal,
(4) X is reduced,
(5) every generic point of an irreducible component of |X| maps to ξ,
(6) we have H0(Xξ,O) = κ(ξ).

Then f∗OX = OY and f has geometrically connected fibres.

Proof. Apply Theorem 76.36.5 to get a factorization X → Y ′ → Y . It is enough
to show that Y ′ = Y . It suffices to show that Y ′ ×Y V → V is an isomorphism,
where V → Y is an étale morphism and V an affine integral scheme, see Spaces
over Fields, Lemma 72.4.5. The formation of Y ′ commutes with étale base change,
see Morphisms of Spaces, Lemma 67.48.4. The generic points of X ×Y V lie over
the generic points of X (Decent Spaces, Lemma 68.20.1) hence map to the generic
point of V by assumption (5). Moreover, condition (6) is preserved under the base
change by V → Y , for example by flat base change (Cohomology of Spaces, Lemma
69.11.2). Thus it suffices to prove the lemma in case Y is a normal integral affine
scheme.
Assume Y is a normal integral affine scheme. We will show Y ′ → Y is an iso-
morphism by an application of Morphisms, Lemma 29.54.8. Namely, Y ′ is reduced
because X is reduced (Morphisms of Spaces, Lemma 67.48.6). The morphism
Y ′ → Y is integral by the theorem cited above. Since Y is decent and X → Y
is separated, we see that X is decent too; to see this use Decent Spaces, Lemmas
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68.17.2 and 68.17.5. By assumption (5), Morphisms of Spaces, Lemma 67.48.7, and
Decent Spaces, Lemma 68.20.1 we see that every generic point of an irreducible
component of |Y ′| maps to ξ. On the other hand, since Y ′ is the relative spectrum
of f∗OX we see that the scheme theoretic fibre Y ′

ξ is the spectrum of H0(Xξ,O)
which is equal to κ(ξ) by assumption. Hence Y ′ is an integral scheme with function
field equal to the function field of Y . This finishes the proof. □

Here is another application.

Lemma 76.36.7.0E1D Let S be a scheme. Let X → Y be a morphism of algebraic
spaces over S. If f is proper, flat, and of finite presentation, then the function
nX/Y : |Y | → Z counting the number of geometric connected components of fibres
of f (Lemma 76.30.1) is lower semi-continuous.

Proof. The question is étale local on Y , hence we may and do assume Y is an affine
scheme. Let y ∈ Y . Set n = nX/S(y). Note that n < ∞ as the geometric fibre of
X → Y at y is a proper algebraic space over a field, hence Noetherian, hence has
a finite number of connected components. We have to find an open neighbourhood
V of y such that nX/S |V ≥ n. Let X → Y ′ → Y be the Stein factorization as in
Theorem 76.36.5. By Lemma 76.36.2 there are finitely many points y′

1, . . . , y
′
m ∈ Y ′

lying over y and the extensions κ(y′
i)/κ(y) are finite. More on Morphisms, Lemma

37.42.1 tells us that after replacing Y by an étale neighbourhood of y we may assume
Y ′ = V1⨿. . .⨿Vm as a scheme with y′

i ∈ Vi and κ(y′
i)/κ(y) purely inseparable. Then

the algebraic spaces Xy′
i

are geometrically connected over κ(y), hence m = n. The
algebraic spaces Xi = (f ′)−1(Vi), i = 1, . . . , n are flat and of finite presentation over
Y . Hence the image of Xi → Y is open (Morphisms of Spaces, Lemma 67.30.6).
Thus in a neighbourhood of y we see that nX/Y is at least n. □

Lemma 76.36.8.0E1E Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) f is proper, flat, and of finite presentation, and
(2) the geometric fibres of f are reduced.

Then the function nX/S : |Y | → Z counting the numbers of geometric connected
components of fibres of f (Lemma 76.30.1) is locally constant.

Proof. By Lemma 76.36.7 the function nX/Y is lower semincontinuous. Thus it
suffices to show it is upper semi-continuous. To do this we may work étale locally
on Y , hence we may assume Y is an affine scheme. For y ∈ Y consider the κ(y)-
algebra

A = H0(Xy,OXy )
By Spaces over Fields, Lemma 72.14.3 and the fact that Xy is geometrically reduced
A is finite product of finite separable extensions of κ(y). Hence A ⊗κ(y) κ(y) is
a product of β0(y) = dimκ(y) A copies of κ(y). Thus Xy has β0(y) connected
components. In other words, we have nX/S = β0 as functions on Y . Thus nX/Y
is upper semi-continuous by Derived Categories of Spaces, Lemma 75.26.2. This
finishes the proof. □

Lemma 76.36.9.0E0D Let S be a scheme. Let f : X → Y be a proper morphism
of algebraic spaces over S. Let X → Y ′ → Y be the Stein factorization of f
(Theorem 76.36.5). If f is of finite presentation, flat, with geometrically reduced
fibres (Definition 76.29.2), then Y ′ → Y is finite étale.
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Proof. Formation of the Stein factorization commutes with flat base change, see
Lemma 76.36.1. Thus we may work étale locally on Y and we may assume Y is an
affine scheme. Then Y ′ is an affine scheme and Y ′ → Y is integral.

Let y ∈ Y . Set n be the number of connected components of the geometric fibre Xy.
Note that n <∞ as the geometric fibre of X → Y at y is a proper algebraic space
over a field, hence Noetherian, hence has a finite number of connected components.
By Lemma 76.36.2 there are finitely many points y′

1, . . . , y
′
m ∈ Y ′ lying over y and

for each i we can pick a finite type point xi ∈ |Xy| mapping to y′
i the extension

κ(y′
i)/κ(y) is finite. Thus More on Morphisms, Lemma 37.42.1 tells us that after

replacing Y by an étale neighbourhood of y we may assume Y ′ = V1 ⨿ . . .⨿ Vm as
a scheme with y′

i ∈ Vi and κ(y′
i)/κ(y) purely inseparable. In this case the algebraic

spaces Xy′
i

are geometrically connected over κ(y), hence m = n. The algebraic
spaces Xi = (f ′)−1(Vi), i = 1, . . . , n are proper, flat, of finite presentation, with
geometrically reduced fibres over Y . It suffices to prove the lemma for each of the
morphisms Xi → Y . This reduces us to the case where Xy is connected.

Assume that Xy is connected. By Lemma 76.36.8 we see that X → Y has geomet-
rically connected fibres in a neighbourhood of y. Thus we may assume the fibres of
X → Y are geometrically connected. Then f∗OX = OY by Derived Categories of
Spaces, Lemma 75.26.8 which finishes the proof. □

The proof of the following lemma uses Stein factorization for schemes which is why
it ended up in this section.

Lemma 76.36.10.0CWI Let (A, I) be a henselian pair. Let X be an algebraic space
separated and of finite type over A. Set X0 = X ×Spec(A) Spec(A/I). Let Y ⊂
X0 be an open and closed subspace such that Y → Spec(A/I) is proper. Then
there exists an open and closed subspace W ⊂ X which is proper over A with
W ×Spec(A) Spec(A/I) = Y .

Proof. We will denote T 7→ T0 the base change by Spec(A/I) → Spec(A). By
a weak version of Chow’s lemma (in the form of Cohomology of Spaces, Lemma
69.18.1) there exists a surjective proper morphism φ : X ′ → X such that X ′

admits an immersion into Pn
A. Set Y ′ = φ−1(Y ). This is an open and closed

subscheme of X ′
0. The lemma holds for (X ′, Y ′) by More on Morphisms, Lemma

37.53.9. Let W ′ ⊂ X ′ be the open and closed subscheme proper over A such
that Y ′ = W ′

0. By Morphisms of Spaces, Lemma 67.40.6 Q1 = φ(|W ′|) ⊂ |X|
and Q2 = φ(|X ′ \ W ′|) ⊂ |X| are closed subsets and by Morphisms of Spaces,
Lemma 67.40.7 any closed subspace structure on Q1 is proper over A. The image
of Q1 ∩Q2 in Spec(A) is closed. Since (A, I) is henselian, if Q1 ∩Q2 is nonempty,
then we find that Q1 ∩Q2 has a point lying over Spec(A/I). This is impossible as
W ′

0 = Y ′ = φ−1(Y ). We conclude that Q1 is open and closed in |X|. Let W ⊂ X
be the corresponding open and closed subspace. Then W is proper over A with
W0 = Y . □

76.37. Extending properties from an open

0875 In this section we collect a number of results of the form: If f : X → Y is a flat
morphism of algebraic spaces and f satisfies some property over a dense open of
Y , then f satisfies the same property over all of Y .
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Lemma 76.37.1.0876 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module. Let V ⊂ Y be an open
subspace. Assume

(1) f is locally of finite presentation,
(2) F is of finite type and flat over Y ,
(3) V → Y is quasi-compact and scheme theoretically dense,
(4) F|f−1V is of finite presentation.

Then F is of finite presentation.

Proof. It suffices to prove the pullback of F to a scheme surjective and étale over
X is of finite presentation. Hence we may assume X is a scheme. Similarly, we
can replace Y by a scheme surjective and étale and over Y (the inverse image of
V in this scheme is scheme theoretically dense, see Morphisms of Spaces, Section
67.17). Thus we reduce to the case of schemes which is More on Flatness, Lemma
38.11.1. □

Lemma 76.37.2.0877 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let V ⊂ Y be an open subspace. Assume

(1) f is locally of finite type and flat,
(2) V → Y is quasi-compact and scheme theoretically dense,
(3) f |f−1V : f−1V → V is locally of finite presentation.

Then f is of locally of finite presentation.

Proof. The proof is identical to the proof of Lemma 76.37.1 except one uses More
on Flatness, Lemma 38.11.2. □

Lemma 76.37.3.0878 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is flat and locally of finite type. Let V ⊂ Y be an open subspace
such that |V | ⊂ |Y | is dense and such that XV → V has relative dimension ≤ d. If
also either

(1) f is locally of finite presentation, or
(2) V → Y is quasi-compact,

then f : X → Y has relative dimension ≤ d.

Proof. We may replace Y by its reduction, hence we may assume Y is reduced.
Then V is scheme theoretically dense in Y , see Morphisms of Spaces, Lemma
67.17.7. By definition the property of having relative dimension ≤ d can be checked
on an étale covering, see Morphisms of Spaces, Sections 67.33. Thus it suffices to
prove f has relative dimension ≤ d after replacing X by a scheme surjective and
étale over X. Similarly, we can replace Y by a scheme surjective and étale and
over Y . The inverse image of V in this scheme is scheme theoretically dense, see
Morphisms of Spaces, Section 67.17. Since a scheme theoretically dense open of a
scheme is in particular dense, we reduce to the case of schemes which is More on
Flatness, Lemma 38.11.3. □

Lemma 76.37.4.0B4J Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is flat and proper. Let V → Y be an open subspace with
|V | ⊂ |Y | dense such that XV → V is finite. If also either f is locally of finite
presentation or V → Y is quasi-compact, then f is finite.
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Proof. By Lemma 76.37.3 the fibres of f have dimension zero. By Morphisms of
Spaces, Lemma 67.34.6 this implies that f is locally quasi-finite. By Morphisms of
Spaces, Lemma 67.51.1 this implies that f is representable. We can check whether
f is finite étale locally on Y , hence we may assume Y is a scheme. Since f is
representable, we reduce to the case of schemes which is More on Flatness, Lemma
38.11.4. □

Lemma 76.37.5.0879 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let V ⊂ Y be an open subspace. If

(1) f is separated, locally of finite type, and flat,
(2) f−1(V )→ V is an isomorphism, and
(3) V → Y is quasi-compact and scheme theoretically dense,

then f is an open immersion.

Proof. Applying Lemma 76.37.2 we see that f is locally of finite presentation.
Applying Lemma 76.37.3 we see that f has relative dimension ≤ 0. By Morphisms
of Spaces, Lemma 67.34.6 this implies that f is locally quasi-finite. By Morphisms
of Spaces, Lemma 67.51.1 this implies that f is representable. By Descent on
Spaces, Lemma 74.11.14 we can check whether f is an open immersion étale locally
on Y . Hence we may assume that Y is a scheme. Since f is representable, we
reduce to the case of schemes which is More on Flatness, Lemma 38.11.5. □

76.38. Blowing up and flatness

087A Instead of redoing the work in More on Flatness, Section 38.30 we prove an analogue
of More on Flatness, Lemma 38.30.5 which tells us that the problem of finding a
suitable blowup is often étale local on the base.

Lemma 76.38.1.087B Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let φ : W → X be a quasi-compact separated étale
morphism. Let U ⊂ X be a quasi-compact open subspace. Let I ⊂ OW be a finite
type quasi-coherent sheaf of ideals such that V (I)∩φ−1(U) = ∅. Then there exists
a finite type quasi-coherent sheaf of ideals J ⊂ OX such that

(1) V (J ) ∩ U = ∅, and
(2) φ−1(J )OW = II ′ for some finite type quasi-coherent ideal I ′ ⊂ OW .

Proof. Choose a factorization W → Y → X where j : W → Y is a quasi-compact
open immersion and π : Y → X is a finite morphism of finite presentation (Lemma
76.34.4). Let V = j(W ) ∪ π−1(U) ⊂ Y . Note that I on W ∼= j(W ) and Oπ−1(U)
glue to a finite type quasi-coherent sheaf of ideals I1 ⊂ OV . By Limits of Spaces,
Lemma 70.9.8 there exists a finite type quasi-coherent sheaf of ideals I2 ⊂ OY such
that I2|V = I1. In other words, I2 ⊂ OY is a finite type quasi-coherent sheaf of
ideals such that V (I2) is disjoint from π−1(U) and j−1I2 = I. Denote i : Z → Y
the corresponding closed immersion which is of finite presentation (Morphisms of
Spaces, Lemma 67.28.12). In particular the composition τ = π ◦ i : Z → X is finite
and of finite presentation (Morphisms of Spaces, Lemmas 67.28.2 and 67.45.4).
Let F = τ∗OZ which we think of as a quasi-coherent OX -module. By Descent on
Spaces, Lemma 74.6.7 we see that F is a finitely presented OX -module. Let J =
Fit0(F). (Insert reference to fitting modules on ringed topoi here.) This is a finite
type quasi-coherent sheaf of ideals on X (as F is of finite presentation, see More on
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Algebra, Lemma 15.8.4). Part (1) of the lemma holds because |τ |(|Z|)∩ |U | = ∅ by
our choice of I2 and because the 0th Fitting ideal of the trivial module equals the
structure sheaf. To prove (2) note that φ−1(J )OW = Fit0(φ∗F) because taking
Fitting ideals commutes with base change. On the other hand, as φ : W → X
is separated and étale we see that (1, j) : W → W ×X Y is an open and closed
immersion. Hence W ×Y Z = V (I) ⨿ Z ′ for some finite and finitely presented
morphism of algebraic spaces τ ′ : Z ′ →W . Thus we see that

Fit0(φ∗F) = Fit0((W ×Y Z →W )∗OW×Y Z)
= Fit0(OW /I) · Fit0(τ ′

∗OZ′)
= I · Fit0(τ ′

∗OZ′)
the second equality by More on Algebra, Lemma 15.8.4 translated in sheaves on
ringed topoi. Setting I ′ = Fit0(τ ′

∗OZ′) finishes the proof of the lemma. □

Theorem 76.38.2.087C Let S be a scheme. Let B be a quasi-compact and quasi-
separated algebraic space over S. Let X be an algebraic space over B. Let F be
a quasi-coherent module on X. Let U ⊂ B be a quasi-compact open subspace.
Assume

(1) X is quasi-compact,
(2) X is locally of finite presentation over B,
(3) F is a module of finite type,
(4) FU is of finite presentation, and
(5) FU is flat over U .

Then there exists a U -admissible blowup B′ → B such that the strict transform F ′

of F is an OX×BB′ -module of finite presentation and flat over B′.

Proof. Choose an affine scheme V and a surjective étale morphism V → X. Be-
cause strict transform commutes with étale localization (Divisors on Spaces, Lemma
71.18.2) it suffices to prove the result with X replaced by V . Hence we may assume
that X → B is representable (in addition to the hypotheses of the lemma).
Assume that X → B is representable. Choose an affine scheme W and a surjective
étale morphism φ : W → B. Note that X×BW is a scheme. By the case of schemes
(More on Flatness, Theorem 38.30.7) we can find a finite type quasi-coherent sheaf
of ideals I ⊂ OW such that (a) |V (I)| ∩ |φ−1(U)| = ∅ and (b) the strict transform
of F|X×BW with respect to the blowing up W ′ →W in I becomes flat over W ′ and
is a module of finite presentation. Choose a finite type sheaf of ideals J ⊂ OB as
in Lemma 76.38.1. Let B′ → B be the blowing up of J . We claim that this blowup
works. Namely, it is clear that B′ → B is U -admissible by our choice of ideal J .
Moreover, the base change B′ ×B W → W is the blowup of W in φ−1J = II ′

(compatibility of blowup with flat base change, see Divisors on Spaces, Lemma
71.17.3). Hence there is a factorization

W ×B B′ →W ′ →W

where the first morphism is a blowup as well, see Divisors on Spaces, Lemma
71.17.10). The restriction of F ′ (which lives on B′ ×B X) to W ×B B′ ×B X is the
strict transform of F|X×BW (Divisors on Spaces, Lemma 71.18.2) and hence is the
twice repeated strict transform of F|X×BW by the two blowups displayed above
(Divisors on Spaces, Lemma 71.18.7). After the first blowup our sheaf is already
flat over the base and of finite presentation (by construction). Whence this holds
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after the second strict transform as well (since this is a pullback by Divisors on
Spaces, Lemma 71.18.4). Thus we see that the restriction of F ′ to an étale cover
of B′ ×B X has the desired properties and the theorem is proved. □

76.39. Applications

087D In this section we apply the result on flattening by blowing up.

Lemma 76.39.1.087E Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let U ⊂ B be an open subspace. Assume

(1) B is quasi-compact and quasi-separated,
(2) U is quasi-compact,
(3) f : X → B is of finite type and quasi-separated, and
(4) f−1(U)→ U is flat and locally of finite presentation.

Then there exists a U -admissible blowup B′ → B such that the strict transform X ′

of X is flat and of finite presentation over B′.

Proof. Let B′ → B be a U -admissible blowup. Note that the strict transform of
X is quasi-compact and quasi-separated over B′ as X is quasi-compact and quasi-
separated overB. Hence we only need to worry about finding a U -admissible blowup
such that the strict transform becomes flat and locally of finite presentation. We
cannot directly apply Theorem 76.38.2 becauseX is not locally of finite presentation
over B.
Choose an affine scheme V and a surjective étale morphism V → X. (This is
possible as X is quasi-compact as a finite type space over the quasi-compact space
B.) Then it suffices to show the result for the morphism V → B (as strict transform
commutes with étale localization, see Divisors on Spaces, Lemma 71.18.2). Hence
we may assume that X → B is separated as well as finite type. In this case we can
find a closed immersion i : X → Y with Y → B separated and of finite presentation,
see Limits of Spaces, Proposition 70.11.7.
Apply Theorem 76.38.2 to F = i∗OX on Y/B. We find a U -admissible blowup
B′ → B such that strict transform of F is flat over B′ and of finite presentation. Let
X ′ be the strict transform of X under the blowup B′ → B. Let i′ : X ′ → Y ×BB′ be
the induced morphism. Since taking strict transform commutes with pushforward
along affine morphisms (Divisors on Spaces, Lemma 71.18.5), we see that i′∗OX′

is flat over B′ and of finite presentation as a OY×BB′ -module. Thus X ′ → B′

is flat and locally of finite presentation. This implies the lemma by our earlier
remarks. □

Lemma 76.39.2.0B4K Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let U ⊂ B be an open subspace. Assume

(1) B is quasi-compact and quasi-separated,
(2) U is quasi-compact,
(3) f : X → B is proper, and
(4) f−1(U)→ U is finite locally free.

Then there exists a U -admissible blowup B′ → B such that the strict transform X ′

of X is finite locally free over B′.

Proof. By Lemma 76.39.1 we may assume that X → B is flat and of finite presen-
tation. After replacing B by a U -admissible blowup if necessary, we may assume
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that U ⊂ B is scheme theoretically dense. Then f is finite by Lemma 76.37.4.
Hence f is finite locally free by Morphisms of Spaces, Lemma 67.46.6. □

Lemma 76.39.3.0GUW Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let U ⊂ B be an open subspace. Assume

(1) B is quasi-compact and quasi-separated,
(2) U is quasi-compact,
(3) f : X → B is proper, and
(4) f−1(U)→ U is an isomorphism.

Then there exists a U -admissible blowup B′ → B such that the strict transform X ′

of X maps isomorphically to B′.

Proof. By Lemma 76.39.1 we may assume that X → B is flat and of finite presen-
tation. After replacing B by a U -admissible blowup if necessary, we may assume
that U ⊂ B is scheme theoretically dense. Then f is finite by Lemma 76.37.4 and
an open immersion by Lemma 76.37.5. Hence f is an open immersion whose image
is closed and contains the dense open U , whence f is an isomorphism. □

Lemma 76.39.4.087F Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let U ⊂ B be an open subspace. Assume

(1) B quasi-compact and quasi-separated,
(2) U is quasi-compact,
(3) f is of finite type
(4) f−1(U)→ U is an isomorphism.

Then there exists a U -admissible blowup B′ → B such that U is scheme theoreti-
cally dense in B′ and such that the strict transform X ′ of X maps isomorphically
to an open subspace of B′.

Proof. This lemma is a generalization of Lemma 76.39.3. As the composition of
U -admissible blowups is U -admissible (Divisors on Spaces, Lemma 71.19.2) we can
proceed in stages. Pick a finite type quasi-coherent sheaf of ideals I ⊂ OB with
|B|\|U | = |V (I)|. Replace B by the blowup of B in I and X by the strict transform
of X. After this replacement B \ U is the support of an effective Cartier divisor
D (Divisors on Spaces, Lemma 71.17.4). In particular U is scheme theoretically
dense in B (Divisors on Spaces, Lemma 71.6.4). Next, we do another U -admissible
blowup to get to the situation where X → B is flat and of finite presentation, see
Lemma 76.39.1. Note that U is still scheme theoretically dense in B. Hence X → B
is an open immersion by Lemma 76.37.5. □

The following lemma says that a modification can be dominated by a blowup.

Lemma 76.39.5.087G Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let U ⊂ B be an open subspace. Assume

(1) B is quasi-compact and quasi-separated,
(2) U is quasi-compact,
(3) f : X → B is proper,
(4) f−1(U)→ U us an isomorphism.

Then there exists a U -admissible blowup B′ → B which dominates X, i.e., such
that there exists a factorization B′ → X → B of the blowup morphism.
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Proof. By Lemma 76.39.3 we may find a U -admissible blowup B′ → B such that
the strict transform X ′ maps isomorphically to B′. Then we can use B′ = X ′ → X
as the factorization. □

Lemma 76.39.6.0CPI Let S be a scheme. Let X, Y be algebraic spaces over S. Let
U ⊂W ⊂ Y be open subspaces. Let f : X →W and let s : U → X be morphisms
such that f ◦ s = idU . Assume

(1) f is proper,
(2) Y is quasi-compact and quasi-separated, and
(3) U and W are quasi-compact.

Then there exists a U -admissible blowup b : Y ′ → Y and a morphism s′ : b−1(W )→
X extending s with f ◦ s′ = b|b−1(W ).

Proof. We may and do replace X by the scheme theoretic image of s. Then X →W
is an isomorphism over U , see Morphisms of Spaces, Lemma 67.16.7. By Lemma
76.39.5 there exists a U -admissible blowup W ′ →W and an extension W ′ → X of
s. We finish the proof by applying Divisors on Spaces, Lemma 71.19.3 to extend
W ′ →W to a U -admissible blowup of Y . □

76.40. Chow’s lemma

088P In this section we prove Chow’s lemma (Lemma 76.40.5). We encourage the reader
to take a look at Cohomology of Spaces, Section 69.18 for a weak version of Chow’s
lemma that is easy to prove and sufficient for many applications.
Since we have yet to define projective morphisms of algebraic spaces, the statements
of lemmas (see for example Lemma 76.40.2) will involve representable proper mor-
phisms, rather than projective ones.

Lemma 76.40.1.088Q Let S be a scheme. Let Y be a quasi-compact and quasi-separated
algebraic space over S. Let U → X1 and U → X2 be open immersions of algebraic
spaces over Y and assume U , X1, X2 of finite type and separated over Y . Then
there exists a commutative diagram

X ′
1

��

// X X ′
2

oo

��
X1 Uoo

`` OO >>

// X2

of algebraic spaces over Y where X ′
i → Xi is a U -admissible blowup, X ′

i → X is an
open immersion, and X is separated and finite type over Y .

Proof. Throughout the proof all the algebraic spaces will be separated of finite
type over Y . This in particular implies these algebraic spaces are quasi-compact
and quasi-separated and that the morphisms between them will be quasi-compact
and separated. See Morphisms of Spaces, Sections 67.4 and 67.8. We will use that
if U →W is an immersion of such spaces over Y , then the scheme theoretic image
Z of U in W is a closed subspace of W and U → Z is an open immersion, U ⊂ Z
is scheme theoretically dense, and |U | ⊂ |Z| is dense. See Morphisms of Spaces,
Lemma 67.17.7.
Let X12 ⊂ X1 ×Y X2 be the scheme theoretic image of U → X1 ×Y X2. The
projections pi : X12 → Xi induce isomorphisms p−1

i (U) → U by Morphisms of

https://stacks.math.columbia.edu/tag/0CPI
https://stacks.math.columbia.edu/tag/088Q
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Spaces, Lemma 67.16.7. Choose a U -admissible blowup Xi
i → Xi such that the

strict transform Xi
12 of X12 is isomorphic to an open subspace of Xi

i , see Lemma
76.39.4. Let Ii ⊂ OXi be the corresponding finite type quasi-coherent sheaf of
ideals. Recall that Xi

12 → X12 is the blowup in p−1
i IiOX12 , see Divisors on Spaces,

Lemma 71.18.3. Let X ′
12 be the blowup of X12 in p−1

1 I1p
−1
2 I2OX12 , see Divisors on

Spaces, Lemma 71.17.10 for what this entails. We obtain a commutative diagram

X ′
12

��

// X2
12

��
X1

12
// X12

where all the morphisms are U -admissible blowing ups. Since Xi
12 ⊂ Xi

i is an open
we may choose a U -admissible blowup X ′

i → Xi
i restricting to X ′

12 → Xi
12, see

Divisors on Spaces, Lemma 71.19.3. Then X ′
12 ⊂ X ′

i is an open subspace and the
diagram

X ′
12

��

// X ′
i

��
Xi

12
// Xi

i

is commutative with vertical arrows blowing ups and horizontal arrows open immer-
sions. Note that X ′

12 → X ′
1×Y X ′

2 is an immersion and proper (use that X ′
12 → X12

is proper and X12 → X1 ×Y X2 is closed and X ′
1 ×Y X ′

2 → X1 ×Y X2 is separated
and apply Morphisms of Spaces, Lemma 67.40.6). Thus X ′

12 → X ′
1 ×Y X ′

2 is a
closed immersion. If we define X by glueing X ′

1 and X ′
2 along the common open

subspace X ′
12, then X → Y is of finite type and separated2. As compositions of U -

admissible blowups are U -admissible blowups (Divisors on Spaces, Lemma 71.19.2)
the lemma is proved. □

Lemma 76.40.2.088R Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let U ⊂ X be an open subspace. Assume

(1) U is quasi-compact,
(2) Y is quasi-compact and quasi-separated,
(3) there exists an immersion U → Pn

Y over Y ,
(4) f is of finite type and separated.

Then there exists a commutative diagram

U

~~ �� !! ((
X

  

X ′oo

��

// Z ′

}}

// Z

~~
Y Pn

Y
oo

2Because we may check closedness of the diagonal X → X ×Y X over the four open parts
X′
i ×Y X′

j of X ×Y X where it is clear.

https://stacks.math.columbia.edu/tag/088R
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where the arrows with source U are open immersions, X ′ → X is a U -admissible
blowup, X ′ → Z ′ is an open immersion, Z ′ → Y is a proper and representable
morphism of algebraic spaces. More precisely, Z ′ → Z is a U -admissible blowup
and Z → Pn

Y is a closed immersion.

Proof. Let Z ⊂ Pn
Y be the scheme theoretic image of the immersion U → Pn

Y . Since
U → Pn

Y is quasi-compact we see that U ⊂ Z is a (scheme theoretically) dense open
subspace (Morphisms of Spaces, Lemma 67.17.7). Apply Lemma 76.40.1 to find a
diagram

X ′

��

// X
′

Z ′oo

��
X Uoo

`` OO >>

// Z

with properties as listed in the statement of that lemma. As X ′ → X and Z ′ → Z
are U -admissible blowups we find that U is a scheme theoretically dense open
of both X ′ and Z ′ (see Divisors on Spaces, Lemmas 71.17.4 and 71.6.4). Since
Z ′ → Z → Y is proper we see that Z ′ ⊂ X ′ is a closed subspace (see Morphisms of
Spaces, Lemma 67.40.6). It follows that X ′ ⊂ Z ′ (scheme theoretically), hence X ′

is an open subspace of Z ′ (small detail omitted) and the lemma is proved. □

Lemma 76.40.3.088S Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f separated, of finite type, and Y Noetherian. Then there
exists a dense open subspace U ⊂ X and a commutative diagram

U

~~ �� !! ((
X

  

X ′oo

��

// Z ′

}}

// Z

~~
Y Pn

Y
oo

where the arrows with source U are open immersions, X ′ → X is a U -admissible
blowup, X ′ → Z ′ is an open immersion, Z ′ → Y is a proper and representable
morphism of algebraic spaces. More precisely, Z ′ → Z is a U -admissible blowup
and Z → Pn

Y is a closed immersion.

Proof. By Limits of Spaces, Lemma 70.13.3 there exists a dense open subspace
U ⊂ X and an immersion U → An

Y over Y . Composing with the open immersion
An
Y → Pn

Y we obtain a situation as in Lemma 76.40.2 and the result follows. □

Remark 76.40.4.088T In Lemmas 76.40.2 and 76.40.3 the morphism g : Z ′ → Y is a
composition of projective morphisms. Presumably (by the analogue for algebraic
spaces of Morphisms, Lemma 29.37.8) there exists a g-ample invertible sheaf on Z ′.
If we ever need this, then we will state and prove this here.

The following result is [Knu71, IV Theorem 3.1]. Note that the immersionX ′ → Pn
Y

is quasi-compact, hence can be factored asX ′ → Z ′ → Pn
Y where the first morphism

is an open immersion and the second morphism a closed immersion (Morphisms of
Spaces, Lemma 67.17.7).

https://stacks.math.columbia.edu/tag/088S
https://stacks.math.columbia.edu/tag/088T
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Lemma 76.40.5 (Chow’s lemma).088U [Knu71, IV
Theorem 3.1]

Let S be a scheme. Let f : X → Y be a morphism
of algebraic spaces over S. Assume f separated of finite type, and Y separated and
Noetherian. Then there exists a commutative diagram

X

  

X ′oo

��

// Pn
Y

}}
Y

where X ′ → X is a U -admissible blowup for some dense open U ⊂ X and the
morphism X ′ → Pn

Y is an immersion.

Proof. In this first paragraph of the proof we reduce the lemma to the case where
Y is of finite type over Spec(Z). We may and do replace the base scheme S by
Spec(Z). We can write Y = limYi as a directed limit of separated algebraic spaces
of finite type over Spec(Z), see Limits of Spaces, Proposition 70.8.1 and Lemma
70.5.9. For all i sufficiently large we can find a separated finite type morphism
Xi → Yi such that X = Y ×Yi Xi, see Limits of Spaces, Lemmas 70.7.1 and 70.6.9.
Let η1, . . . , ηn be the generic points of the irreducible components of |X| (X is
Noetherian as a finite type separated algebraic space over the Noetherian algebraic
space Y and therefore |X| is a Noetherian topological space). By Limits of Spaces,
Lemma 70.5.2 we find that the images of η1, . . . , ηn in |Xi| are distinct for i large
enough. We may replace Xi by the scheme theoretic image of the (quasi-compact,
in fact affine) morphism X → Xi. After this replacement we see that the images
of η1, . . . , ηn in |Xi| are the generic points of the irreducible components of |Xi|,
see Morphisms of Spaces, Lemma 67.16.3. Having said this, suppose we can find a
diagram

Xi

  

X ′
i

oo

��

// Pn
Yi

}}
Y

where X ′
i → Xi is a Ui-admissible blowup for some dense open Ui ⊂ Xi and the

morphism X ′
i → Pn

Yi
is an immersion. Then the strict transform X ′ → X of X

relative to X ′
i → Xi is a U -admissible blowing up where U ⊂ X is the inverse image

of Ui in X. Because of our carefuly chosen index i it follows that η1, . . . , ηn ∈ |U |
and U ⊂ X is dense. Moreover, X ′ → Pn

Y is an immersion as X ′ is closed in
X ′
i ×Xi X = X ′

i ×Yi Y which comes with an immersion into Pn
Y . Thus we have

reduced to the situation of the following paragraph.
Assume that Y is separated of finite type over Spec(Z). Then X → Spec(Z) is
separated of finite type as well. We apply Lemma 76.40.3 to X → Spec(Z) to find
a dense open subspace U ⊂ X and a commutative diagram

U

zz �� $$ ))
X

##

X ′oo

��

// Z ′

zz

// Z

~~
Spec(Z) Pn

Z
oo

https://stacks.math.columbia.edu/tag/088U
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with all the properties listed in the lemma. Note that Z has an ample invertible
sheaf, namely OPn(1)|Z . Hence Z ′ → Z is a H-projective morphism by Morphisms,
Lemma 29.43.16. It follows that Z ′ → Spec(Z) is H-projective by Morphisms,
Lemma 29.43.7. Thus there exists a closed immersion Z ′ → Pm

Spec(Z) for some
m ≥ 0. It follows that the diagonal morphism

X ′ → Y ×Pm
Z = Pm

Y

is an immersion (because the composition with the projection to Pm
Z is an immer-

sion) and we win. □

76.41. Variants of Chow’s Lemma

089K In this section we prove a number of variants of Chow’s lemma dealing with mor-
phisms between non-Noetherian algebraic spaces. The Noetherian versions are
Lemma 76.40.3 and Lemma 76.40.5.

Lemma 76.41.1.089L Let S be a scheme. Let Y be a quasi-compact and quasi-separated
algebraic space over S. Let f : X → Y be a separated morphism of finite type.
Then there exists a commutative diagram

X

  

X ′oo

��

// X
′

~~
Y

where X ′ → X is proper surjective, X ′ → X
′ is an open immersion, and X

′ → Y
is proper and representable morphism of algebraic spaces.

Proof. By Limits of Spaces, Proposition 70.11.7 we can find a closed immersion
X → X1 where X1 is separated and of finite presentation over Y . Clearly, if we
prove the assertion for X1 → Y , then the result follows for X. Hence we may
assume that X is of finite presentation over Y .

We may and do replace the base scheme S by Spec(Z). Write Y = limi Yi as a
directed limit of quasi-separated algebraic spaces of finite type over Spec(Z), see
Limits of Spaces, Proposition 70.8.1. By Limits of Spaces, Lemma 70.7.1 we can find
an index i ∈ I and a scheme Xi → Yi of finite presentation so that X = Y ×Yi Xi.
By Limits of Spaces, Lemma 70.6.9 we may assume that Xi → Yi is separated.
Clearly, if we prove the assertion for Xi over Yi, then the assertion holds for X.
The case Xi → Yi is treated by Lemma 76.40.3. □

Lemma 76.41.2.089M Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f separated of finite type, and Y separated and quasi-
compact. Then there exists a commutative diagram

X

  

X ′oo

��

// Pn
Y

}}
Y

where X ′ → X is proper surjective morphism and the morphism X ′ → Pn
Y is an

immersion.

https://stacks.math.columbia.edu/tag/089L
https://stacks.math.columbia.edu/tag/089M
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Proof. By Limits of Spaces, Proposition 70.11.7 we can find a closed immersion
X → X1 where X1 is separated and of finite presentation over Y . Clearly, if we
prove the assertion for X1 → Y , then the result follows for X. Hence we may
assume that X is of finite presentation over Y .
We may and do replace the base scheme S by Spec(Z). Write Y = limi Yi as a
directed limit of quasi-separated algebraic spaces of finite type over Spec(Z), see
Limits of Spaces, Proposition 70.8.1. By Limits of Spaces, Lemma 70.5.9 we may
assume that Yi is separated for all i. By Limits of Spaces, Lemma 70.7.1 we can find
an index i ∈ I and a scheme Xi → Yi of finite presentation so that X = Y ×Yi Xi.
By Limits of Spaces, Lemma 70.6.9 we may assume that Xi → Yi is separated.
Clearly, if we prove the assertion for Xi over Yi, then the assertion holds for X.
The case Xi → Yi is treated by Lemma 76.40.5. □

76.42. Grothendieck’s existence theorem

089N In this section we discuss Grothendieck’s existence theorem for algebraic spaces.
Instead of developing a theory of “formal algebraic spaces” we temporarily develop
a bit of language that replaces the notion of a “coherent module on a Noetherian
adic formal space”.
Let S be a scheme. Let X be a Noetherian algebraic space over S. Let I ⊂ OX
be a quasi-coherent sheaf of ideals. Below we will consider inverse systems (Fn) of
coherent OX -modules such that

(1) Fn is annihilated by In, and
(2) the transition maps induce isomorphisms Fn+1/InFn+1 → Fn.

A morphism α : (Fn)→ (Gn) of such inverse systems is simply a compatible system
of morphisms αn : Fn → Gn. Let us denote the category of these inverse systems
with Coh(X, I). We will develop some theory regarding these systems that will
parallel to the corresponding results in the case of schemes, see Cohomology of
Schemes, Sections 30.24, 30.25, 30.27, and 30.28.
Functoriality. Let f : X → Y be a morphism of Noetherian algebraic spaces over a
scheme S, and let J ⊂ OY be a quasi-coherent sheaf of ideals. Set I = f−1JOX .
In this situation there is a functor

f∗ : Coh(Y,J ) −→ Coh(X, I)
which sends (Gn) to (f∗Gn). Compare with Cohomology of Schemes, Lemma
30.23.9. If f is étale, then we may think of this as simply the restriction of the
system to X, see Properties of Spaces, Equation 66.26.1.1.
Étale descent. Let S be a scheme. Let U0 → X be a surjective étale morphism of
Noetherian algebraic spaces. Set U1 = U0 ×X U0 and U2 = U0 ×X U0 ×X U0. Let
I ⊂ OX be a quasi-coherent sheaf of ideals. Set Ii = I|Ui . In this situation we
obtain a diagram of categories

Coh(X, I) // Coh(U0, I0) // // Coh(U1, I1) // //// Coh(U2, I2)

an the first arrow presents Coh(X, I) as the homotopy limit of the right part of
the diagram. More precisely, given a descent datum, i.e., a pair ((Gn), φ) where
(Gn) is an object of Coh(U0, I0) and φ : pr∗

0(Gn) → pr∗
1(Gn) is an isomorphism

in Coh(U1, I1) satisfying the cocycle condition in Coh(U2, I2), then there exists
a unique object (Fn) of Coh(X, I) whose associated canonical descent datum is
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isomorphic to ((Gn), φ). Compare with Descent on Spaces, Definition 74.3.3. The
proof of this statement follows immediately by applying Descent on Spaces, Propo-
sition 74.4.1 to the descent data (Gn, φn) for varying n.

Lemma 76.42.1.089P Let S be a scheme. Let X be a Noetherian algebraic space over
S and let I ⊂ OX be a quasi-coherent sheaf of ideals.

(1) The category Coh(X, I) is abelian.
(2) Exactness in Coh(X, I) can be checked étale locally.
(3) For any flat morphism f : X ′ → X of Noetherian algebraic spaces the

functor f∗ : Coh(X, I)→ Coh(X ′, f−1IOX′) is exact.

Proof. Proof of (1). Choose an affine scheme U0 and a surjective étale mor-
phism U0 → X. Set U1 = U0 ×X U0 and U2 = U0 ×X U0 ×X U0 as in our
discussion of étale descent above. The categories Coh(Ui, Ii) are abelian (Coho-
mology of Schemes, Lemma 30.23.2) and the pullback functors are exact func-
tors Coh(U0, I0) → Coh(U1, I1) and Coh(U1, I1) → Coh(U2, I2) (Cohomology of
Schemes, Lemma 30.23.9). The lemma then follows formally from the description
of Coh(X, I) as a category of descent data. Some details omitted; compare with
the proof of Groupoids, Lemma 39.14.6.

Part (2) follows immediately from the discussion in the previous paragraph. In the
situation of (3) choose a commutative diagram

U ′

��

// U

��
X ′ // X

where U ′ and U are affine schemes and the vertical morphisms are surjective étale.
Then U ′ → U is a flat morphism of Noetherian schemes (Morphisms of Spaces,
Lemma 67.30.5) whence the pullback functor Coh(U, IOU ) → Coh(U ′, IOU ′) is
exact by Cohomology of Schemes, Lemma 30.23.9. Since we can check exactness in
Coh(X,OX) on U and similarly for X ′, U ′ the assertion follows. □

Lemma 76.42.2.08B3 Let S be a scheme. Let X be a Noetherian algebraic space over
S and let I ⊂ OX be a quasi-coherent sheaf of ideals. A map (Fn) → (Gn) is
surjective in Coh(X, I) if and only if F1 → G1 is surjective.

Proof. We can check on an affine étale cover of X by Lemma 76.42.1. Thus we
reduce to the case of schemes which is Cohomology of Schemes, Lemma 30.23.3. □

Let S be a scheme. Let X be a Noetherian algebraic space over S and let I ⊂ OX
be a quasi-coherent sheaf of ideals. There is a functor

(76.42.2.1)08B4 Coh(OX) −→ Coh(X, I), F 7−→ F∧

which associates to the coherent OX -module F the object F∧ = (F/InF) of
Coh(X, I).

Lemma 76.42.3.08B5 The functor (76.42.2.1) is exact.

Proof. It suffices to check this étale locally on X, see Lemma 76.42.1. Thus we
reduce to the case of schemes which is Cohomology of Schemes, Lemma 30.23.4. □

https://stacks.math.columbia.edu/tag/089P
https://stacks.math.columbia.edu/tag/08B3
https://stacks.math.columbia.edu/tag/08B5
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Lemma 76.42.4.08B6 Let S be a scheme. Let X be a Noetherian algebraic space over
S and let I ⊂ OX be a quasi-coherent sheaf of ideals. Let F , G be coherent
OX -modules. Set H = HomOX

(F ,G). Then
limH0(X,H/InH) = MorCoh(X,I)(F∧,G∧).

Proof. Since H is a sheaf on Xétale and since we have étale descent for objects
of Coh(X, I) it suffices to prove this étale locally. Thus we reduce to the case of
schemes which is Cohomology of Schemes, Lemma 30.23.5. □

We introduce the setting that we will focus on throughout the rest of this section.

Situation 76.42.5.08B7 Here A is a Noetherian ring complete with respect to an ideal
I. Also f : X → Spec(A) is a finite type separated morphism of algebraic spaces
and I = IOX .

In this situation we denote
Cohsupport proper over A(OX)

be the full subcategory of Coh(OX) consisting of those coherent OX -modules whose
support is proper over Spec(A), or equivalently whose scheme theoretic support is
proper over Spec(A), see Derived Categories of Spaces, Lemma 75.7.7. Similarly,
we let

Cohsupport proper over A(X, I)
be the full subcategory of Coh(X, I) consisting of those objects (Fn) such that the
support of F1 is proper over Spec(A). Since the support of a quotient module is
contained in the support of the module, it follows that (76.42.2.1) induces a functor
(76.42.5.1)08B8 Cohsupport proper over A(OX) −→ Cohsupport proper over A(X, I)
Our first result is that this functor is fully faithful.

Lemma 76.42.6.08B9 In Situation 76.42.5. Let F , G be coherent OX -modules. Assume
that the intersection of the supports of F and G is proper over Spec(A). Then the
map

MorCoh(OX)(F ,G) −→ MorCoh(X,I)(F∧,G∧)
coming from (76.42.2.1) is a bijection. In particular, (76.42.5.1) is fully faithful.

Proof. Let H = HomOX
(G,F). This is a coherent OX -module because its restric-

tion of schemes étale over X is coherent by Modules, Lemma 17.22.6. By Lemma
76.42.4 the map

limnH
0(X,H/InH)→ MorCoh(X,I)(G∧,F∧)

is bijective. Let i : Z → X be the scheme theoretic support of H. It is clear that Z
is a closed subspace such that |Z| is contained in the intersection of the supports of
F and G. Hence Z → Spec(A) is proper by assumption (see Derived Categories of
Spaces, Section 75.7). Write H = i∗H′ for some coherent OZ-module H′. We have
i∗(H′/InH′) = H/InH. Hence we obtain

limnH
0(X,H/InH) = limnH

0(Z,H′/InH′)
= H0(Z,H′)
= H0(X,H)
= MorCoh(OX)(F ,G)

https://stacks.math.columbia.edu/tag/08B6
https://stacks.math.columbia.edu/tag/08B7
https://stacks.math.columbia.edu/tag/08B9
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the second equality by the theorem on formal functions (Cohomology of Spaces,
Lemma 69.22.6). This proves the lemma. □

Remark 76.42.7.08BA Let S be a scheme. Let X be a Noetherian algebraic space over
S and let I,K ⊂ OX be quasi-coherent sheaves of ideals. Let α : (Fn) → (Gn) be
a morphism of Coh(X, I). Given an affine scheme U = Spec(A) and a surjective
étale morphism U → X denote I,K ⊂ A the ideals corresponding to the restrictions
I|U ,K|U . Denote αU : M → N of finite A∧-modules which corresponds to α|U via
Cohomology of Schemes, Lemma 30.23.1. We claim the following are equivalent

(1) there exists an integer t ≥ 1 such that Ker(αn) and Coker(αn) are anni-
hilated by Kt for all n ≥ 1,

(2) for any (or some) affine open Spec(A) = U ⊂ X as above the modules
Ker(αU ) and Coker(αU ) are annihilated by Kt for some integer t ≥ 1.

If these equivalent conditions hold we will say that α is a map whose kernel and
cokernel are annihilated by a power of K. To see the equivalence we refer to Coho-
mology of Schemes, Remark 30.25.1.

Lemma 76.42.8.08BB Let S be a scheme. Let X be a Noetherian algebraic space over
S and let I ⊂ OX be a quasi-coherent sheaf of ideals. Let G be a coherent OX -
module, (Fn) an object of Coh(X, I), and α : (Fn)→ G∧ a map whose kernel and
cokernel are annihilated by a power of I. Then there exists a unique (up to unique
isomorphism) triple (F , a, β) where

(1) F is a coherent OX -module,
(2) a : F → G is an OX -module map whose kernel and cokernel are annihi-

lated by a power of I,
(3) β : (Fn)→ F∧ is an isomorphism, and
(4) α = a∧ ◦ β.

Proof. The uniqueness and étale descent for objects of Coh(X, I) and Coh(OX)
implies it suffices to construct (F , a, β) étale locally on X. Thus we reduce to the
case of schemes which is Cohomology of Schemes, Lemma 30.23.6. □

Lemma 76.42.9.08BC In Situation 76.42.5. Let K ⊂ OX be a quasi-coherent sheaf of
ideals. Let Xe ⊂ X be the closed subspace cut out by Ke. Let Ie = IOXe . Let
(Fn) be an object of Cohsupport proper over A(X, I). Assume

(1) the functor Cohsupport proper over A(OXe)→ Cohsupport proper over A(Xe, Ie)
is an equivalence for all e ≥ 1, and

(2) there exists an object H of Cohsupport proper over A(OX) and a map α :
(Fn)→ H∧ whose kernel and cokernel are annihilated by a power of K.

Then (Fn) is in the essential image of (76.42.5.1).

Proof. During this proof we will use without further mention that for a closed
immersion i : Z → X the functor i∗ gives an equivalence between the category of
coherent modules on Z and coherent modules on X annihilated by the ideal sheaf
of Z, see Cohomology of Spaces, Lemma 69.12.8. In particular we think of

Cohsupport proper over A(OXe) ⊂ Cohsupport proper over A(OX)

as the full subcategory of consisting of modules annihilated by Ke and

Cohsupport proper over A(Xe, Ie) ⊂ Cohsupport proper over A(X, I)

https://stacks.math.columbia.edu/tag/08BA
https://stacks.math.columbia.edu/tag/08BB
https://stacks.math.columbia.edu/tag/08BC
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as the full subcategory of objects annihilated by Ke. Moreover (1) tells us these
two categories are equivalent under the completion functor (76.42.5.1).
Applying this equivalence we get a coherent OX -module Ge annihilated by Ke cor-
responding to the system (Fn/KeFn) of Cohsupport proper over A(X, I). The maps
Fn/Ke+1Fn → Fn/KeFn correspond to canonical maps Ge+1 → Ge which in-
duce isomorphisms Ge+1/KeGe+1 → Ge. We obtain an object (Ge) of the category
Cohsupport proper over A(X,K). The map α induces a system of maps

Fn/KeFn −→ H/(In +Ke)H
whence maps Ge → H/KeH (by the equivalence of categories again). Let t ≥ 1
be an integer, which exists by assumption (2), such that Kt annihilates the kernel
and cokernel of all the maps Fn → H/InH. Then K2t annihilates the kernel and
cokernel of the maps Fn/KeFn → H/(In+Ke)H (details omitted; see Cohomology
of Schemes, Remark 30.25.1). Whereupon we conclude that K4t annihilates the
kernel and the cokernel of the maps

Ge −→ H/KeH,

(details omitted; see Cohomology of Schemes, Remark 30.25.1). We apply Lemma
76.42.8 to obtain a coherent OX -module F , a map a : F → H and an isomor-
phism β : (Ge) → (F/KeF) in Coh(X,K). Working backwards, for a given n the
triple (F/InF , a mod In, β mod In) is a triple as in the lemma for the morphism
αn mod Ke : (Fn/KeFn) → (H/(In + Ke)H) of Coh(X,K). Thus the uniqueness
in Lemma 76.42.8 gives a canonical isomorphism F/InF → Fn compatible with
all the morphisms in sight.
To finish the proof of the lemma we still have to show that the support of F is
proper over A. By construction the kernel of a : F → H is annihilated by a power
of K. Hence the support of this kernel is contained in the support of G1. Since G1
is an object of Cohsupport proper over A(OX1) we see this is proper over A. Combined
with the fact that the support of H is proper over A we conclude that the support
of F is proper over A by Derived Categories of Spaces, Lemma 75.7.6. □

Lemma 76.42.10.08BD Let S be a scheme. Let f : X → Y be a representable proper
morphism of Noetherian algebraic spaces over S. Let J ,K ⊂ OY be quasi-coherent
sheaves of ideals. Assume f is an isomorphism over V = Y \ V (K). Set I =
f−1JOX . Let (Gn) be an object of Coh(Y,J ), let F be a coherent OX -module,
and let β : (f∗Gn) → F∧ be an isomorphism in Coh(X, I). Then there exists a
map

α : (Gn) −→ (f∗F)∧

in Coh(Y,J ) whose kernel and cokernel are annihilated by a power of K.

Proof. Since f is a proper morphism we see that f∗F is a coherent OY -module
(Cohomology of Spaces, Lemma 69.20.2). Thus the statement of the lemma makes
sense. Consider the compositions

γn : Gn → f∗f
∗Gn → f∗(F/InF).

Here the first map is the adjunction map and the second is f∗βn. We claim that
there exists a unique α as in the lemma such that the compositions

Gn
αn−−→ f∗F/J nf∗F → f∗(F/InF)

https://stacks.math.columbia.edu/tag/08BD
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equal γn for all n. Because of the uniqueness and étale descent for Coh(Y,J ) it
suffices to prove this étale locally on Y . Thus we may assume Y is the spectrum of
a Noetherian ring. As f is representable we see that X is a scheme as well. Thus
we reduce to the case of schemes, see proof of Cohomology of Schemes, Lemma
30.25.3. □

Theorem 76.42.11 (Grothendieck’s existence theorem).08BE In Situation 76.42.5 the
functor (76.42.5.1) is an equivalence.

Proof. We will use the equivalence of categories of Cohomology of Spaces, Lemma
69.12.8 without further mention in the proof of the theorem. By Lemma 76.42.6 the
functor is fully faithful. Thus we need to prove the functor is essentially surjective.

Consider the collection Ξ of quasi-coherent sheaves of ideals K ⊂ OX such that the
statement holds for every object (Fn) of Cohsupport proper over A(X, I) annihilated
by K. We want to show (0) is in Ξ. If not, then since X is Noetherian there exists
a maximal quasi-coherent sheaf of ideals K not in Ξ, see Cohomology of Spaces,
Lemma 69.13.1. After replacing X by the closed subscheme of X corresponding
to K we may assume that every nonzero K is in Ξ. Let (Fn) be an object of
Cohsupport proper over A(X, I). We will show that this object is in the essential image,
thereby completing the proof of the theorem.

Apply Chow’s lemma (Lemma 76.40.5) to find a proper surjective morphism f :
Y → X which is an isomorphism over a dense open U ⊂ X such that Y is H-quasi-
projective over A. Note that Y is a scheme and f representable. Choose an open
immersion j : Y → Y ′ with Y ′ projective over A, see Morphisms, Lemma 29.43.11.
Let Tn be the scheme theoretic support of Fn. Note that |Tn| = |T1|, hence Tn
is proper over A for all n (Morphisms of Spaces, Lemma 67.40.7). Then f∗Fn is
supported on the closed subscheme f−1Tn which is proper over A (by Morphisms
of Spaces, Lemma 67.40.4 and properness of f). In particular, the composition
f−1Tn → Y → Y ′ is closed (Morphisms, Lemma 29.41.7). Let T ′

n ⊂ Y ′ be the cor-
responding closed subscheme; it is contained in the open subscheme Y and equal
to f−1Tn as a closed subscheme of Y . Let F ′

n be the coherent OY ′ -module cor-
responding to f∗Fn viewed as a coherent module on Y ′ via the closed immersion
f−1Tn = T ′

n ⊂ Y ′. Then (F ′
n) is an object of Coh(Y ′, IOY ′). By the projec-

tive case of Grothendieck’s existence theorem (Cohomology of Schemes, Lemma
30.24.3) there exists a coherent OY ′ -module F ′ and an isomorphism (F ′)∧ ∼= (F ′

n)
in Coh(Y ′, IOY ′). Let Z ′ ⊂ Y ′ be the scheme theoretic support of F ′. Since
F ′/IF ′ = F ′

1 we see that Z ′ ∩ V (IOY ′) = T ′
1 set-theoretically. The structure

morphism p′ : Y ′ → Spec(A) is proper, hence p′(Z ′ ∩ (Y ′ \ Y )) is closed in
Spec(A). If nonempty, then it would contain a point of V (I) as I is contained
in the Jacobson radical of A (Algebra, Lemma 10.96.6). But we’ve seen above that
Z ′∩ (p′)−1V (I) = T ′

1 ⊂ Y hence we conclude that Z ′ ⊂ Y . Thus F ′|Y is supported
on a closed subscheme of Y proper over A.

Let K be the quasi-coherent sheaf of ideals cutting out the reduced complement
X \ U . By Cohomology of Spaces, Lemma 69.20.2 the OX -module H = f∗F ′ is
coherent and by Lemma 76.42.10 there exists a morphism α : (Fn) → H∧ in the
category Cohsupport proper over A(X, I) whose kernel and cokernel are annihilated by
a power of K. Let Z0 ⊂ X be the scheme theoretic support of H. It is clear that
|Z0| ⊂ f(|Z ′|). Hence Z0 → Spec(A) is proper (Morphisms of Spaces, Lemma
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67.40.7). Thus H is an object of Cohsupport proper over A(OX). Since each of the
sheaves of ideals Ke is an element of Ξ we see that the assumptions of Lemma
76.42.9 are satisfied and we conclude. □

Remark 76.42.12 (Unwinding Grothendieck’s existence theorem).08BF Let A be a
Noetherian ring complete with respect to an ideal I. Write S = Spec(A) and
Sn = Spec(A/In). Let X → S be a morphism of algebraic spaces that is separated
and of finite type. For n ≥ 1 we set Xn = X ×S Sn. Picture:

X1
i1
//

��

X2
i2
//

��

X3 //

��

. . . X

��
S1 // S2 // S3 // . . . S

In this situation we consider systems (Fn, φn) where
(1) Fn is a coherent OXn -module,
(2) φn : i∗nFn+1 → Fn is an isomorphism, and
(3) Supp(F1) is proper over S1.

Theorem 76.42.11 says that the completion functor
coherent OX -modules F

with support proper over A −→ systems (Fn)
as above

is an equivalence of categories. In the special case that X is proper over A we can
omit the conditions on the supports.

76.43. Grothendieck’s algebraization theorem

0A00 This section is the analogue of Cohomology of Schemes, Section 30.28. However,
this section is missing the result on algebraization of deformations of proper alge-
braic spaces endowed with ample invertible sheaves, as a proper algebraic space
which comes with an ample invertible sheaf is already a scheme. We do have an
algebraization result on proper algebraic spaces of relative dimension 1. Our first
result is a translation of Grothendieck’s existence theorem in terms of closed sub-
schemes and finite morphisms.

Lemma 76.43.1.08BG Let A be a Noetherian ring complete with respect to an ideal I.
Write S = Spec(A) and Sn = Spec(A/In). Let X → S be a morphism of algebraic
spaces that is separated and of finite type. For n ≥ 1 we set Xn = X ×S Sn.
Suppose given a commutative diagram

Z1 //

��

Z2 //

��

Z3 //

��

. . .

X1
i1 // X2

i2 // X3 // . . .

of algebraic spaces with cartesian squares. Assume that
(1) Z1 → X1 is a closed immersion, and
(2) Z1 → S1 is proper.

Then there exists a closed immersion of algebraic spaces Z → X such that Zn =
Z ×S Sn for all n ≥ 1. Moreover, Z is proper over S.

https://stacks.math.columbia.edu/tag/08BF
https://stacks.math.columbia.edu/tag/08BG


76.43. GROTHENDIECK’S ALGEBRAIZATION THEOREM 5888

Proof. Let’s write jn : Zn → Xn for the vertical morphisms. As the squares in the
statement are cartesian we see that the base change of jn to X1 is j1. Thus Limits of
Spaces, Lemma 70.15.5 shows that jn is a closed immersion. Set Fn = jn,∗OZn , so
that j♯n is a surjection OXn → Fn. Again using that the squares are cartesian we see
that the pullback of Fn+1 to Xn is Fn. Hence Grothendieck’s existence theorem, as
reformulated in Remark 76.42.12, tells us there exists a map OX → F of coherent
OX -modules whose restriction to Xn recovers OXn → Fn. Moreover, the support
of F is proper over S. As the completion functor is exact (Lemma 76.42.3) we see
that OX → F is surjective. Thus F = OX/J for some quasi-coherent sheaf of
ideals J . Setting Z = V (J ) finishes the proof. □

Lemma 76.43.2.0A01 Let A be a Noetherian ring complete with respect to an ideal I.
Write S = Spec(A) and Sn = Spec(A/In). Let X → S be a morphism of algebraic
spaces that is separated and of finite type. For n ≥ 1 we set Xn = X ×S Sn.
Suppose given a commutative diagram

Y1 //

��

Y2 //

��

Y3 //

��

. . .

X1
i1 // X2

i2 // X3 // . . .

of algebraic spaces with cartesian squares. Assume that
(1) Y1 → X1 is a finite morphism, and
(2) Y1 → S1 is proper.

Then there exists a finite morphism of algebraic spaces Y → X such that Yn =
Y ×S Sn for all n ≥ 1. Moreover, Y is proper over S.

Proof. Let’s write fn : Yn → Xn for the vertical morphisms. As the squares in
the statement are cartesian we see that the base change of fn to X1 is f1. Thus
Lemma 76.10.2 shows that fn is a finite morphism. Set Fn = fn,∗OYn . Using
that the squares are cartesian we see that the pullback of Fn+1 to Xn is Fn.
Hence Grothendieck’s existence theorem, as reformulated in Remark 76.42.12, tells
us there exists a coherent OX -module F whose restriction to Xn recovers Fn.
Moreover, the support of F is proper over S. As the completion functor is fully
faithful (Theorem 76.42.11) we see that the multiplication maps Fn⊗OXn

Fn → Fn
fit together to give an algebra structure on F . Setting Y = Spec

X
(F) finishes the

proof. □

Lemma 76.43.3.0A4Z Let A be a Noetherian ring complete with respect to an ideal I.
Write S = Spec(A) and Sn = Spec(A/In). Let X, Y be algebraic spaces over S.
For n ≥ 1 we set Xn = X ×S Sn and Yn = Y ×S Sn. Suppose given a compatible
system of commutative diagrams

Xn+1

##

gn+1
// Yn+1

{{
Xn

66

  

gn
// Yn

55

||

Sn+1

Sn

55
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Assume that
(1) X → S is proper, and
(2) Y → S is separated of finite type.

Then there exists a unique morphism of algebraic spaces g : X → Y over S such
that gn is the base change of g to Sn.

Proof. The morphisms (1, gn) : Xn → Xn ×S Yn are closed immersions because
Yn → Sn is separated (Morphisms of Spaces, Lemma 67.4.7). Thus by Lemma
76.43.1 there exists a closed subspace Z ⊂ X×SY proper over S whose base change
to Sn recovers Xn ⊂ Xn×SYn. The first projection p : Z → X is a proper morphism
(as Z is proper over S, see Morphisms of Spaces, Lemma 67.40.6) whose base change
to Sn is an isomorphism for all n. In particular, p : Z → X is quasi-finite on an
open subspace of Z containing every point of Z0 for example by Morphisms of
Spaces, Lemma 67.34.7. As Z is proper over S this open neighbourhood is all of
Z. We conclude that p : Z → X is finite by Zariski’s main theorem (for example
apply Lemma 76.34.3 and use properness of Z over X to see that the immersion
is a closed immersion). Applying the equivalence of Theorem 76.42.11 we see that
p∗OZ = OX as this is true modulo In for all n. Hence p is an isomorphism and
we obtain the morphism g as the composition X ∼= Z → Y . We omit the proof of
uniqueness. □

Remark 76.43.4.0GHK We can ask if in Grothendieck’s algebraization theorem (in the
form of Lemma 76.43.3), we can get by with weaker separation axioms on the
target. Let us be more precise. Let A, I, S, Sn, X, Y , Xn, Yn, and gn be as in the
statement of Lemma 76.43.3 and assume that

(1) X → S is proper, and
(2) Y → S is locally of finite type.

Does there exist a morphism of algebraic spaces g : X → Y over S such that gn is
the base change of g to Sn? We don’t know the answer in general; if you do please
email stacks.project@gmail.com. If Y → S is separated, then the result holds by
the lemma (there is an immediate reduction to the case where X is finite type
over S, by choosing a quasi-compact open containing the image of g1). If we only
assume Y → S is quasi-separated, then the result is true as well. First, as before we
may assume Y is quasi-compact as well as quasi-separated. Then we can use either
[Bha16] or from [HR19] to algebraize (gn). Namely, to apply the first reference, we
use

Dperf (X)→ limDperf (Xn) limLg∗
n−−−−−→ limDperf (Yn) = Dperf (Y )

where the last step uses a Grothendieck existence result for the derived category
of the proper algebraic space Y over R (compare with Flatness on Spaces, Remark
77.13.7). The paper cited shows that this arrow determines a morphism Y → X
as desired. To apply the second reference we use the same argument with coherent
modules:

Coh(OX)→ lim Coh(OXn) lim g∗
n−−−−→ lim Coh(OYn) = Coh(OY )

where the final equality is a consequence of Grothendieck’s existence theorem (The-
orem 76.42.11). The second reference tells us that this functor corresponds to a
morphism Y → X over R. If we ever need this generalization we will precisely state
and carefully prove the result here.

https://stacks.math.columbia.edu/tag/0GHK
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Lemma 76.43.5.0E7R Let (A,m, κ) be a complete local Noetherian ring. Set S =
Spec(A) and Sn = Spec(A/mn). Consider a commutative diagram

X1
i1
//

��

X2
i2
//

��

X3 //

��

. . .

S1 // S2 // S3 // . . .

of algebraic spaces with cartesian squares. If dim(X1) ≤ 1, then there exists a pro-
jective morphism of schemes X → S and isomorphisms Xn

∼= X ×S Sn compatible
with in.

Proof. By Spaces over Fields, Lemma 72.9.3 the algebraic space X1 is a scheme.
Hence X1 is a proper scheme of dimension ≤ 1 over κ. By Varieties, Lemma 33.43.4
we see that X1 is H-projective over κ. Let L1 be an ample invertible sheaf on X1.
We are going to show that L1 lifts to a compatible system {Ln} of invertible sheaves
on {Xn}. Observe that Xn is a scheme too by Lemma 76.9.5. Recall that X1 → Xn

induces homeomorphisms of underlying topological spaces. In the rest of the proof
we do not distinguish between sheaves on Xn and sheaves on X1. Suppose, given
a lift Ln to Xn. We consider the exact sequence

1→ (1 + mnOXn+1)∗ → O∗
Xn+1

→ O∗
Xn → 1

of sheaves on Xn+1. The class of Ln in H1(Xn,O∗
Xn

) (see Cohomology, Lemma
20.6.1) can be lifted to an element of H1(Xn+1,O∗

Xn+1
) if and only if the obstruction

in H2(Xn+1, (1 + mnOXn+1)∗) is zero. As X1 is a Noetherian scheme of dimension
≤ 1 this cohomology group vanishes (Cohomology, Proposition 20.20.7).
By Grothendieck’s algebraization theorem (Cohomology of Schemes, Theorem 30.28.4)
we find a projective morphism of schemes X → S = Spec(A) and a compatible sys-
tem of isomorphisms Xn = Sn ×S X. □

Lemma 76.43.6.0AE7 Let (A,m, κ) be a complete Noetherian local ring. Let X be an
algebraic space over Spec(A). If X → Spec(A) is proper and dim(Xκ) ≤ 1, then X
is a scheme projective over A.

Proof. Set Xn = X×Spec(A) Spec(A/mn). By Lemma 76.43.5 there exists a projec-
tive morphism Y → Spec(A) and compatible isomorphisms Y×Spec(A)Spec(A/mn) ∼=
X ×Spec(A) Spec(A/mn). By Lemma 76.43.3 we see that X ∼= Y and the proof is
complete. □

76.44. Regular immersions

06BL This section is the analogue of Divisors, Section 31.21 for morphisms of algebraic
spaces. The reader is encouraged to read up on regular immersions of schemes in
that section first.
In Divisors, Section 31.21 we defined four types of regular immersions for morphisms
of schemes. Of these only three are (as far as we know) local on the target for the
étale topology; as usual plain old regular immersions aren’t. This is why for mor-
phisms of algebraic spaces we cannot actually define regular immersions. (These
kinds of annoyances prompted Grothendieck and his school to replace original no-
tion of a regular immersion by a Koszul-regular immersions, see [BGI71, Exposee
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VII, Definition 1.4].) But we can define Koszul-regular, H1-regular, and quasi-
regular immersions. Another remark is that since Koszul-regular immersions are
not preserved by arbitrary base change, we cannot use the strategy of Morphisms
of Spaces, Section 67.3 to define them. Similarly, as Koszul-regular immersions are
not étale local on the source, we cannot use Morphisms of Spaces, Lemma 67.22.1
to define them either. We replace this lemma instead by the following.

Lemma 76.44.1.06BM Let P be a property of morphisms of schemes which is étale local
on the target. Let S be a scheme. Let f : X → Y be a representable morphism of
algebraic spaces over S. Consider commutative diagrams

X ×Y V

��

// V

��
X

f // Y

where V is a scheme and V → Y is étale. The following are equivalent
(1) for any diagram as above the projection X ×Y V → V has property P,

and
(2) for some diagram as above with V → Y surjective the projection X ×Y

V → V has property P.
If X and Y are representable, then this is also equivalent to f (as a morphism of
schemes) having property P.

Proof. Let us prove the equivalence of (1) and (2). The implication (1) ⇒ (2) is
immediate. Assume

X ×Y V

��

// V

��
X

f // Y

X ×Y V ′

��

// V ′

��
X

f // Y

are two diagrams as in the lemma. Assume V → Y is surjective and X ×Y V → V
has property P. To show that (2) implies (1) we have to prove that X ×Y V ′ → V ′

has P. To do this consider the diagram

X ×Y V

��

(X ×Y V )×X (X ×Y V ′)oo

��

// X ×Y V ′

��
V V ×Y V ′oo // V ′

By our assumption that P is étale local on the source, we see that P is preserved
under étale base change, see Descent, Lemma 35.22.2. Hence if the left vertical
arrow has P the so does the middle vertical arrow. Since U×XU ′ → U ′ is surjective
and étale (hence defines an étale covering of U ′) this implies (as P is assumed local
for the étale topology on the target) that the left vertical arrow has P.
If X and Y are representable, then we can take idY : Y → Y as our étale covering
to see the final statement of the lemma is true. □

Note that “being a Koszul-regular (resp. H1-regular, resp. quasi-regular) immer-
sion” is a property of morphisms of schemes which is fpqc local on the target, see
Descent, Lemma 35.23.32. Hence the following definition now makes sense.

https://stacks.math.columbia.edu/tag/06BM
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Definition 76.44.2.06BN Let S be a scheme. Let i : X → Y be a morphism of algebraic
spaces over S.

(1) We say i is a Koszul-regular immersion if i is representable and the equiv-
alent conditions of Lemma 76.44.1 hold with P(f) =“f is a Koszul-regular
immersion”.

(2) We say i is an H1-regular immersion if i is representable and the equiv-
alent conditions of Lemma 76.44.1 hold with P(f) =“f is an H1-regular
immersion”.

(3) We say i is a quasi-regular immersion if i is representable and the equiv-
alent conditions of Lemma 76.44.1 hold with P(f) =“f is a quasi-regular
immersion”.

Lemma 76.44.3.06BP Let S be a scheme. Let i : Z → X be an immersion of algebraic
spaces over S. We have the following implications: i is Koszul-regular ⇒ i is
H1-regular ⇒ i is quasi-regular.

Proof. Via the definition this lemma immediately reduces to Divisors, Lemma
31.21.2. □

Lemma 76.44.4.09RW Let S be a scheme. Let i : Z → X be an immersion of algebraic
spaces over S. Assume X is locally Noetherian. Then i is Koszul-regular ⇔ i is
H1-regular ⇔ i is quasi-regular.

Proof. Via Definition 76.44.2 (and the definition of a locally Noetherian algebraic
space in Properties of Spaces, Section 66.7) this immediately translates to the case
of schemes which is Divisors, Lemma 31.21.3. □

Lemma 76.44.5.09RX Let S be a scheme. Let i : Z → X be a Koszul-regular, H1-
regular, or quasi-regular immersion of algebraic spaces over S. Let X ′ → X be a
flat morphism of algebraic spaces over S. Then the base change i′ : Z ×X X ′ → X ′

is a Koszul-regular, H1-regular, or quasi-regular immersion.

Proof. Via Definition 76.44.2 (and the definition of a flat morphism of algebraic
spaces in Morphisms of Spaces, Section 67.30) this lemma reduces to the case of
schemes, see Divisors, Lemma 31.21.4. □

Lemma 76.44.6.09RY Let S be a scheme. Let i : Z → X be an immersion of algebraic
spaces over S. Then i is a quasi-regular immersion if and only if the following
conditions are satisfied

(1) i is locally of finite presentation,
(2) the conormal sheaf CZ/X is finite locally free, and
(3) the map (76.6.1.2) is an isomorphism.

Proof. Follows from the case of schemes (Divisors, Lemma 31.21.5) via étale local-
ization (use Definition 76.44.2 and Lemma 76.6.2). □

Lemma 76.44.7.09RZ Let S be a scheme. Let Z → Y → X be immersions of algebraic
spaces over S. Assume that Z → Y is H1-regular. Then the canonical sequence of
Lemma 76.5.6

0→ i∗CY/X → CZ/X → CZ/Y → 0
is exact and (étale) locally split.
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Proof. Since CZ/Y is finite locally free (see Lemma 76.44.6 and Lemma 76.44.3) it
suffices to prove that the sequence is exact. It suffices to show that the first map is
injective as the sequence is already right exact in general. After étale localization
on X this reduces to the case of schemes, see Divisors, Lemma 31.21.6. □

A composition of quasi-regular immersions may not be quasi-regular, see Algebra,
Remark 10.69.8. The other types of regular immersions are preserved under com-
position.

Lemma 76.44.8.09S0 Let S be a scheme. Let i : Z → Y and j : Y → X be immersions
of algebraic spaces over S.

(1) If i and j are Koszul-regular immersions, so is j ◦ i.
(2) If i and j are H1-regular immersions, so is j ◦ i.
(3) If i is an H1-regular immersion and j is a quasi-regular immersion, then

j ◦ i is a quasi-regular immersion.

Proof. Immediate from the case of schemes, see Divisors, Lemma 31.21.7. □

Lemma 76.44.9.09S1 Let S be a scheme. Let i : Z → Y and j : Y → X be immersions
of algebraic spaces over S. Assume that the sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0
of Lemma 76.5.6 is exact and locally split.

(1) If j ◦ i is a quasi-regular immersion, so is i.
(2) If j ◦ i is a H1-regular immersion, so is i.
(3) If both j and j ◦ i are Koszul-regular immersions, so is i.

Proof. Immediate from the case of schemes, see Divisors, Lemma 31.21.8. □

Lemma 76.44.10.09S2 Let S be a scheme. Let i : Z → Y and j : Y → X be immersions
of algebraic spaces over S. Assume X is locally Noetherian. The following are
equivalent

(1) i and j are Koszul regular immersions,
(2) i and j ◦ i are Koszul regular immersions,
(3) j ◦ i is a Koszul regular immersion and the conormal sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0
is exact and locally split.

Proof. Immediate from the case of schemes, see Divisors, Lemma 31.21.9. □

76.45. Relative pseudo-coherence

0CSV This section is the analogue of More on Morphisms, Section 37.59. However, in the
treatment of this material for algebraic spaces we have decided to work exclusively
with objects in the derived category whose cohomology sheaves are quasi-coherent.
There are two reasons for this: (1) it greatly simplifies the exposition and (2) we
currently have no use for the more general notion.

Remark 76.45.1.0CSW Let S be a scheme. Let f : X → Y be a morphism of representable
algebraic spaces over S which is locally of finite type. Let f0 : X0 → Y0 be a
morphism of schemes representing f (awkward but temporary notation). Then f0
is locally of finite type. If E is an object of DQCoh(OX), then E is the pullback of a
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unique object E0 in DQCoh(OX0), see Derived Categories of Spaces, Lemma 75.4.2.
In this situation the phrase “E is m-pseudo-coherent relative to Y ” will be taken to
mean “E0 is m-pseudo-coherent relative to Y0” as defined in More on Morphisms,
Section 37.59.

Lemma 76.45.2.0CSX Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let m ∈ Z. Let E ∈ DQCoh(OX).
With notation as explained in Remark 76.45.1 the following are equivalent:

(1) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale, the complex
E|U is m-pseudo-coherent relative to V ,

(2) for some commutative diagram as in (1) with U → X surjective, the
complex E|U is m-pseudo-coherent relative to V ,

(3) for every commutative diagram as in (1) with U and V affine the complex
RΓ(U,E) of OX(U)-modules is m-pseudo-coherent relative to OY (V ).

Proof. Part (1) implies (3) by More on Morphisms, Lemma 37.59.7.

Assume (3). Pick any commutative diagram as in (1) with U → X surjective.
Choose an affine open covering V =

⋃
Vj and affine open coverings (U → V )−1(Vj) =⋃

Uij . By (3) and More on Morphisms, Lemma 37.59.7 we see that E|U is m-
pseudo-coherent relative to V . Thus (3) implies (2).

Assume (2). Choose a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, the morphism U → X is
surjective, and E|U is m-pseudo-coherent relative to V . Next, suppose given a
second commutative diagram

U ′

��

// V ′

��
X // Y

with étale vertical arrows and U ′, V ′ schemes. We want to show that E|U ′ is m-
pseudo-coherent relative to V ′. The morphism U ′′ = U ×X U ′ → U ′ is surjective
étale and U ′′ → V ′ factors through V ′′ = V ′ ×Y V which is étale over V ′. Hence
it suffices to show that E|U ′′ is m-pseudo-coherent relative to V ′′, see More on
Morphisms, Lemmas 37.70.1 and 37.70.2. Using the second lemma once more it
suffices to show that E|U ′′ is m-pseudo-coherent relative to V . This is true by More
on Morphisms, Lemma 37.59.16 and the fact that an étale morphism of schemes is
pseudo-coherent by More on Morphisms, Lemma 37.60.6. □

https://stacks.math.columbia.edu/tag/0CSX
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Definition 76.45.3.0CSY Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let E be an object of DQCoh(OX).
Let F be a quasi-coherent OX -module. Fix m ∈ Z.

(1) We say E is m-pseudo-coherent relative to Y if the equivalent conditions
of Lemma 76.45.2 are satisfied.

(2) We say E is pseudo-coherent relative to Y if E is m-pseudo-coherent
relative to Y for all m ∈ Z.

(3) We say F is m-pseudo-coherent relative to Y if F viewed as an object of
DQCoh(OX) is m-pseudo-coherent relative to Y .

(4) We say F is pseudo-coherent relative to Y if F viewed as an object of
DQCoh(OX) is pseudo-coherent relative to Y .

Most of the properties of pseudo-coherent complexes relative to a base will follow
immediately from the corresponding properties in the case of schemes. We will add
the relevant lemmas here as needed.
Lemma 76.45.4.0DII Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let E in DQCoh(OX). If f is flat and locally of finite presentation,
then the following are equivalent

(1) E is pseudo-coherent relative to Y , and
(2) E is pseudo-coherent on X.

Proof. By étale localization and the definitions we may assume X and Y are
schemes. For the case of schemes this follows from More on Morphisms, Lemma
37.59.18. □

76.46. Pseudo-coherent morphisms

06BQ This section is the analogue of More on Morphisms, Section 37.60 for morphisms
of schemes. The reader is encouraged to read up on pseudo-coherent morphisms of
schemes in that section first.
The property “pseudo-coherent” of morphisms of schemes is étale local on the
source-and-target. To see this use More on Morphisms, Lemmas 37.60.10 and
37.60.13 and Descent, Lemma 35.32.6. By Morphisms of Spaces, Lemma 67.22.1
we may define the notion of a pseudo-coherent morphism of algebraic spaces as fol-
lows and it agrees with the already existing notion defined in More on Morphisms,
Section 37.60 when the algebraic spaces in question are representable.
Definition 76.46.1.06BR Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is pseudo-coherent if the equivalent conditions of Morphisms of
Spaces, Lemma 67.22.1 hold with P =“pseudo-coherent”.

(2) Let x ∈ |X|. We say f is pseudo-coherent at x if there exists an open
neighbourhood X ′ ⊂ X of x such that f |X′ : X ′ → Y is pseudo-coherent.

Beware that a base change of a pseudo-coherent morphism is not pseudo-coherent
in general.
Lemma 76.46.2.06BS A flat base change of a pseudo-coherent morphism is pseudo-
coherent.
Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 37.60.3. □
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Lemma 76.46.3.06BT A composition of pseudo-coherent morphisms is pseudo-coherent.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 37.60.4. □

Lemma 76.46.4.06BU A pseudo-coherent morphism is locally of finite presentation.

Proof. Immediate from the definitions. □

Lemma 76.46.5.06BV A flat morphism which is locally of finite presentation is pseudo-
coherent.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 37.60.6. □

Lemma 76.46.6.06BW Let f : X → Y be a morphism of algebraic spaces pseudo-coherent
over a base algebraic space B. Then f is pseudo-coherent.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 37.60.7. □

Lemma 76.46.7.06BX Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If Y is locally Noetherian, then f is pseudo-coherent if and only if
f is locally of finite type.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 37.60.9. □

76.47. Perfect morphisms

06BY This section is the analogue of More on Morphisms, Section 37.61 for morphisms
of schemes. The reader is encouraged to read up on perfect morphisms of schemes
in that section first.
The property “perfect” of morphisms of schemes is étale local on the source-and-
target. To see this use More on Morphisms, Lemmas 37.61.10 and 37.61.14 and
Descent, Lemma 35.32.6. By Morphisms of Spaces, Lemma 67.22.1 we may define
the notion of a perfect morphism of algebraic spaces as follows and it agrees with
the already existing notion defined in More on Morphisms, Section 37.61 when the
algebraic spaces in question are representable.

Definition 76.47.1.06BZ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is perfect if the equivalent conditions of Morphisms of Spaces,
Lemma 67.22.1 hold with P =“perfect”.

(2) Let x ∈ |X|. We say f is perfect at x if there exists an open neighbourhood
X ′ ⊂ X of x such that f |X′ : X ′ → Y is perfect.

Note that a perfect morphism is pseudo-coherent, hence locally of finite presenta-
tion. Beware that a base change of a perfect morphism is not perfect in general.

Lemma 76.47.2.06C0 A flat base change of a perfect morphism is perfect.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 37.61.3. □

Lemma 76.47.3.06C1 A composition of perfect morphisms is perfect.
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Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 37.61.4. □

Lemma 76.47.4.06C2 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f is flat and perfect, and
(2) f is flat and locally of finite presentation.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 37.61.5. □

Lemma 76.47.5.0E4U Let S be a scheme. Let Y be a Noetherian algebraic space over S.
Let f : X → Y be a perfect proper morphism of algebraic spaces. Let E ∈ D(OX)
be perfect. Then Rf∗E is a perfect object of D(OY ).

Proof. We claim that Derived Categories of Spaces, Lemma 75.22.1 applies. Con-
ditions (1) and (2) are immediate. Condition (3) is local on X. Thus we may
assume X and Y affine and E represented by a strictly perfect complex of OX -
modules. Thus it suffices to show that OX has finite tor dimension as a sheaf of
f−1OY -modules on the étale site. By Derived Categories of Spaces, Lemma 75.13.4
it suffices to check this on the Zariski site. This is equivalent to being perfect for
finite type morphisms of schemes by More on Morphisms, Lemma 37.61.11. □

76.48. Local complete intersection morphisms

06C3 This section is the analogue of More on Morphisms, Section 37.62 for morphisms
of schemes. The reader is encouraged to read up on local complete intersection
morphisms of schemes in that section first.

The property “being a local complete intersection morphism” of morphisms of
schemes is étale local on the source-and-target. To see this use More on Mor-
phisms, Lemmas 37.62.19 and 37.62.20 and Descent, Lemma 35.32.6. By Mor-
phisms of Spaces, Lemma 67.22.1 we may define the notion of a local complete
intersection morphism of algebraic spaces as follows and it agrees with the already
existing notion defined in More on Morphisms, Section 37.62 when the algebraic
spaces in question are representable.

Definition 76.48.1.06C4 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is a Koszul morphism, or that f is a local complete intersection
morphism if the equivalent conditions of Morphisms of Spaces, Lemma
67.22.1 hold with P(f) =“f is a local complete intersection morphism”.

(2) Let x ∈ |X|. We say f is Koszul at x if there exists an open neighbourhood
X ′ ⊂ X of x such that f |X′ : X ′ → Y is a local complete intersection
morphism.

In some sense the defining property of a local complete intersection morphism is
the result of the following lemma.

Lemma 76.48.2.06C5 Let S be a scheme. Let f : X → Y be a local complete intersection
morphism of algebraic spaces over S. Let P be an algebraic space smooth over Y .
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Let U → X be an étale morphism of algebraic spaces and let i : U → P an
immersion of algebraic spaces over Y . Picture:

X

  

Uoo

��

i
// P

��
Y

Then i is a Koszul-regular immersion of algebraic spaces.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Choose a
scheme W and a surjective étale morphism W → P ×Y V . Set U ′ = U ×P W ,
which is a scheme étale over U . We have to show that U ′ → W is a Koszul-
regular immersion of schemes, see Definition 76.44.2. By Definition 76.48.1 above
the morphism of schemes U ′ → V is a local complete intersection morphism. Hence
the result follows from More on Morphisms, Lemma 37.62.3. □

It seems like a good idea to collect here some properties in common with all Koszul
morphisms.

Lemma 76.48.3.06C6 Let S be a scheme. Let f : X → Y be a local complete intersection
morphism of algebraic spaces over S. Then

(1) f is locally of finite presentation,
(2) f is pseudo-coherent, and
(3) f is perfect.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 37.62.4. □

Beware that a base change of a Koszul morphism is not Koszul in general.

Lemma 76.48.4.06C7 A flat base change of a local complete intersection morphism is a
local complete intersection morphism.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 37.62.6. □

Lemma 76.48.5.06C8 A composition of local complete intersection morphisms is a local
complete intersection morphism.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 37.62.7. □

Lemma 76.48.6.06C9 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent

(1) f is flat and a local complete intersection morphism, and
(2) f is syntomic.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 37.62.8. □

Lemma 76.48.7.0CHK Let S be a scheme. A Koszul-regular immersion of algebraic
spaces over S is a local complete intersection morphism.
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Proof. Let i : X → Y be a Koszul-regular immersion of algebraic spaces over S.
By definition there exists a surjective étale morphism V → Y where V is a scheme
such that X ×Y V is a scheme and the base change X ×Y V → V is a Koszul-
regular immersion of schemes. By More on Morphisms, Lemma 37.62.9 we see that
X×Y V → V is a local complete intersection morphism. From Definition 76.48.1 we
conclude that i is a local complete intersection morphism of algebraic spaces. □

Lemma 76.48.8.0CHL Let S be a scheme. Let

X
f

//

  

Y

��
Z

be a commutative diagram of morphisms of algebraic spaces over S. Assume Y → Z
is smooth and X → Z is a local complete intersection morphism. Then f : X → Y
is a local complete intersection morphism.

Proof. Choose a scheme W and a surjective étale morphism W → Z. Choose a
scheme V and a surjective étale morphism V → W ×Z Y . Choose a scheme U
and a surjective étale morphism U → V ×Y X. Then U → W is a local complete
intersection morphism of schemes and V → W is a smooth morphism of schemes.
By the result for schemes (More on Morphisms, Lemma 37.62.10) we conclude that
U → V is a local complete intersection morphism. By definition this means that f
is a local complete intersection morphism. □

Lemma 76.48.9.0CHM The property P(f) =“f is a local complete intersection morphism”
is fpqc local on the base.

Proof. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces over
S. Let {Yi → Y } be an fpqc covering (Topologies on Spaces, Definition 73.9.1).
Let fi : Xi → Yi be the base change of f by Yi → Y . If f is a local complete
intersection morphism, then each fi is a local complete intersection morphism by
Lemma 76.48.4.
Conversely, assume each fi is a local complete intersection morphism. We may
replace the covering by a refinement (again because flat base change preserves the
property of being a local complete intersection morphism). Hence we may assume
Yi is a scheme for each i, see Topologies on Spaces, Lemma 73.9.5. Choose a scheme
V and a surjective étale morphism V → Y . Choose a scheme U and a surjective
étale morphism U → V ×Y X. We have to show that U → V is a local complete
intersection morphism of schemes. By Topologies on Spaces, Lemma 73.9.4 we have
that {Yi×Y V → V } is an fpqc covering of schemes. By the case of schemes (More
on Morphisms, Lemma 37.62.19) it suffices to prove the base change

U ×Y Yi = U ×V (V ×Y Yi) −→ V

of U → V by V ×Y Yi → V is a local complete intersection morphism. We can
write this as the composition

U ×Y Yi −→ (V ×Y X)×Y Yi = V ×Y Xi −→ V ×Y Yi
The first arrow is an étale morphism of schemes (as a base change of U → V ×Y X)
and the second arrow is a local complete intersection morphism of schemes as a
flat base change of fi. The result follows as being a local complete intersection
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morphism is syntomic local on the source and since étale morphisms are syntomic
(More on Morphisms, Lemma 37.62.20 and Morphisms, Lemma 29.36.10). □

Lemma 76.48.10.0CHN The property P(f) =“f is a local complete intersection mor-
phism” is syntomic local on the source.

Proof. This follows from Descent on Spaces, Lemma 74.14.3 and More on Mor-
phisms, Lemma 37.62.20. □

Lemma 76.48.11.06CA Let S be a scheme. Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces over S. Assume that both p and q are flat and locally of finite
presentation. Then there exists an open subspace U(f) ⊂ X such that |U(f)| ⊂ |X|
is the set of points where f is Koszul. Moreover, for any morphism of algebraic
spaces Z ′ → Z, if f ′ : X ′ → Y ′ is the base change of f by Z ′ → Z, then U(f ′) is
the inverse image of U(f) under the projection X ′ → X.

Proof. This lemma is the analogue of More on Morphisms, Lemma 37.62.21 and
in fact we will deduce the lemma from it. By Definition 76.48.1 the set {x ∈ |X| :
f is Koszul at x} is open in |X| hence by Properties of Spaces, Lemma 66.4.8 it
corresponds to an open subspace U(f) of X. Hence we only need to prove the final
statement.

Choose a scheme W and a surjective étale morphism W → Z. Choose a scheme
V and a surjective étale morphism V → W ×Z Y . Choose a scheme U and a
surjective étale morphism U → V ×Y X. Finally, choose a scheme W ′ and a
surjective étale morphism W ′ →W ×Z Z ′. Set V ′ = W ′×W V and U ′ = W ′×W U ,
so that we obtain surjective étale morphisms V ′ → Y ′ and U ′ → X ′. We will use
without further mention an étale morphism of algebraic spaces induces an open
map of associated topological spaces (see Properties of Spaces, Lemma 66.16.7).
Note that by definition U(f) is the image in |X| of the set T of points in U where
the morphism of schemes U → V is Koszul. Similarly, U(f ′) is the image in |X ′| of
the set T ′ of points in U ′ where the morphism of schemes U ′ → V ′ is Koszul. Now,
by construction the diagram

U ′ //

��

U

��
V ′ // V

is cartesian (in the category of schemes). Hence the aforementioned More on Mor-
phisms, Lemma 37.62.21 applies to show that T ′ is the inverse image of T . Since
|U ′| → |X ′| is surjective this implies the lemma. □

Lemma 76.48.12.06CB Let S be a scheme. Let f : X → Y be a local complete intersec-
tion morphism of algebraic spaces over S. Then f is unramified if and only if f is
formally unramified and in this case the conormal sheaf CX/Y is finite locally free
on X.
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Proof. This follows from the corresponding result for morphisms of schemes, see
More on Morphisms, Lemma 37.62.22, by étale localization, see Lemma 76.15.11.
(Note that in the situation of this lemma the morphism V → U is unramified and
a local complete intersection morphism by definition.) □

Lemma 76.48.13.06CC Let S be a scheme. Let Z → Y → X be formally unramified
morphisms of algebraic spaces over S. Assume that Z → Y is a local complete
intersection morphism. The exact sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0
of Lemma 76.5.6 is short exact.

Proof. Choose a scheme U and a surjective étale morphism U → X. Choose a
scheme V and a surjective étale morphism V → U ×X Y . Choose a scheme W and
a surjective étale morphism W → V ×Y Z. By Lemma 76.15.11 the morphisms
W → V and V → U are formally unramified. Moreover the sequence i∗CY/X →
CZ/X → CZ/Y → 0 restricts to the corresponding sequence i∗CV/U → CW/U →
CW/V → 0 for W → V → U . Hence the result follows from the result for schemes
(More on Morphisms, Lemma 37.62.23) as by definition the morphism W → V is
a local complete intersection morphism. □

76.49. When is a morphism an isomorphism?

05X7 More generally we can ask: “When does a morphism have property P?” A more
precise question is the following. Suppose given a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces. Does there exist a monomorphism of algebraic spaces W → Z
with the following two properties:

(1) the base change fW : XW → YW has property P, and
(2) any morphism Z ′ → Z of algebraic spaces factors through W if and only

if the base change fZ′ : XZ′ → YZ′ has property P.
In many cases, if W → Z exists, then it is an immersion, open immersion, or closed
immersion.
The answer to this question may depend on auxiliary properties of the morphisms
f , p, and q. An example is P(f) =“f is flat” which we have discussed for morphisms
of schemes in the case Y = S in great detail in the chapter “More on Flatness”,
starting with More on Flatness, Section 38.20.

Lemma 76.49.1.05X8 Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces. Assume that p is locally of finite type and closed. Then there
exists an open subspace W ⊂ Z such that a morphism Z ′ → Z factors through W
if and only if the base change fZ′ : XZ′ → YZ′ is unramified.
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Proof. By Morphisms of Spaces, Lemma 67.38.10 there exists an open subspace
U(f) ⊂ X which is the set of points where f is unramified. Moreover, formation of
U(f) commutes with arbitrary base change. Let W ⊂ Z be the open subspace (see
Properties of Spaces, Lemma 66.4.8) with underlying set of points

|W | = |Z| \ |p| (|X| \ |U(f)|)

i.e., z ∈ |Z| is a point of W if and only if f is unramified at every point of X above
z. Note that this is open because we assumed that p is closed. Since the formation
of U(f) commutes with arbitrary base change we immediately see (using Properties
of Spaces, Lemma 66.4.9) that W has the desired universal property. □

Lemma 76.49.2.05X9 Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces. Assume that
(1) p is locally of finite type,
(2) p is closed, and
(3) p2 : X ×Y X → Z is closed.

Then there exists an open subspace W ⊂ Z such that a morphism Z ′ → Z factors
through W if and only if the base change fZ′ : XZ′ → YZ′ is unramified and
universally injective.

Proof. After replacing Z by the open subspace found in Lemma 76.49.1 we may
assume that f is already unramified; note that this does not destroy assumption (2)
or (3). By Morphisms of Spaces, Lemma 67.38.9 we see that ∆X/Y : X → X×Y X is
an open immersion. This remains true after any base change. Hence by Morphisms
of Spaces, Lemma 67.19.2 we see that fZ′ is universally injective if and only if the
base change of the diagonal XZ′ → (X ×Y X)Z′ is an isomorphism. Let W ⊂ Z be
the open subspace (see Properties of Spaces, Lemma 66.4.8) with underlying set of
points

|W | = |Z| \ |p2|
(
|X ×Y X| \ Im(|∆X/Y |)

)
i.e., z ∈ |Z| is a point of W if and only if the fibre of |X ×Y X| → |Z| over z is in
the image of |X| → |X ×Y X|. Then it is clear from the discussion above that the
restriction p−1(W )→ q−1(W ) of f is unramified and universally injective.

Conversely, suppose that fZ′ is unramified and universally injective. In order to
show that Z ′ → Z factors through W it suffices to show that |Z ′| → |Z| has image
contained in |W |, see Properties of Spaces, Lemma 66.4.9. Hence it suffices to
prove the result when Z ′ is the spectrum of a field. Denote z ∈ |Z| the image of
|Z ′| → |Z|. The discussion above shows that

|XZ′ | −→ |(X ×Y X)Z′ |
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is surjective. By Properties of Spaces, Lemma 66.4.3 in the commutative diagram

|XZ′ |

��

// |(X ×Y X)Z′ |

��
|p|−1({z}) // |p2|−1({z})

the vertical arrows are surjective. It follows that z ∈ |W | as desired. □

Lemma 76.49.3.05XA Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces. Assume that
(1) p is locally of finite type,
(2) p is universally closed, and
(3) q : Y → Z is separated.

Then there exists an open subspace W ⊂ Z such that a morphism Z ′ → Z factors
through W if and only if the base change fZ′ : XZ′ → YZ′ is a closed immersion.

Proof. We will use the characterization of closed immersions as universally closed,
unramified, and universally injective morphisms, see Lemma 76.14.9. First, note
that since p is universally closed and q is separated, we see that f is universally
closed, see Morphisms of Spaces, Lemma 67.40.6. It follows that any base change of
f is universally closed, see Morphisms of Spaces, Lemma 67.9.3. Thus to finish the
proof of the lemma it suffices to prove that the assumptions of Lemma 76.49.2 are
satisfied. The projection pr0 : X ×Y X → X is universally closed as a base change
of f , see Morphisms of Spaces, Lemma 67.9.3. Hence X ×Y X → Z is universally
closed as a composition of universally closed morphisms (see Morphisms of Spaces,
Lemma 67.9.4). This finishes the proof of the lemma. □

Lemma 76.49.4.05XB Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces. Assume that
(1) p is locally of finite presentation,
(2) p is flat,
(3) p is closed, and
(4) q is locally of finite type.

Then there exists an open subspace W ⊂ Z such that a morphism Z ′ → Z factors
through W if and only if the base change fZ′ : XZ′ → YZ′ is flat.

Proof. By Lemma 76.23.6 the set

A = {x ∈ |X| : X flat at x over Y }.

https://stacks.math.columbia.edu/tag/05XA
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is open in |X| and its formation commutes with arbitrary base change. Let W ⊂ Z
be the open subspace (see Properties of Spaces, Lemma 66.4.8) with underlying set
of points

|W | = |Z| \ |p| (|X| \A)
i.e., z ∈ |Z| is a point of W if and only if the whole fibre of |X| → |Z| over z
is contained in A. This is open because p is closed. Since the formation of A
commutes with arbitrary base change it follows that W works. □

Lemma 76.49.5.05XC Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces. Assume that
(1) p is locally of finite presentation,
(2) p is flat,
(3) p is closed,
(4) q is locally of finite type, and
(5) q is closed.

Then there exists an open subspace W ⊂ Z such that a morphism Z ′ → Z factors
through W if and only if the base change fZ′ : XZ′ → YZ′ is surjective and flat.

Proof. By Lemma 76.49.4 we may assume that f is flat. Note that f is locally
of finite presentation by Morphisms of Spaces, Lemma 67.28.9. Hence f is open,
see Morphisms of Spaces, Lemma 67.30.6. Let W ⊂ Z be the open subspace (see
Properties of Spaces, Lemma 66.4.8) with underlying set of points

|W | = |Z| \ |q| (|Y | \ |f |(|X|)) .
in other words for z ∈ |Z| we have z ∈ |W | if and only if the whole fibre of
|Y | → |Z| over z is in the image of |X| → |Y |. Since q is closed this set is open
in |Z|. The morphism XW → YW is surjective by construction. Finally, suppose
that XZ′ → YZ′ is surjective. In order to show that Z ′ → Z factors through W
it suffices to show that |Z ′| → |Z| has image contained in |W |, see Properties of
Spaces, Lemma 66.4.9. Hence it suffices to prove the result when Z ′ is the spectrum
of a field. Denote z ∈ |Z| the image of |Z ′| → |Z|. By Properties of Spaces, Lemma
66.4.3 in the commutative diagram

|XZ′ |

��

// |YZ′ |

��
|p|−1({z}) // |q|−1({z})

the vertical arrows are surjective. It follows that z ∈ |W | as desired. □

Lemma 76.49.6.05XD Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

https://stacks.math.columbia.edu/tag/05XC
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of algebraic spaces. Assume that
(1) p is locally of finite presentation,
(2) p is flat,
(3) p is universally closed,
(4) q is locally of finite type,
(5) q is closed, and
(6) q is separated.

Then there exists an open subspace W ⊂ Z such that a morphism Z ′ → Z factors
through W if and only if the base change fZ′ : XZ′ → YZ′ is an isomorphism.
Proof. By Lemma 76.49.5 there exists an open subspace W1 ⊂ Z such that fZ′ is
surjective and flat if and only if Z ′ → Z factors through W1. By Lemma 76.49.3
there exists an open subspace W2 ⊂ Z such that fZ′ is a closed immersion if
and only if Z ′ → Z factors through W2. We claim that W = W1 ∩ W2 works.
Certainly, if fZ′ is an isomorphism, then Z ′ → Z factors through W . Hence it
suffices to show that fW is an isomorphism. By construction fW is a surjective flat
closed immersion. In particular fW is representable. Since a surjective flat closed
immersion of schemes is an isomorphism (see Morphisms, Lemma 29.26.1) we win.
(Note that actually fW is locally of finite presentation, whence open, so you can
avoid the use of this lemma if you like.) □

Lemma 76.49.7.06CE Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces. Assume that
(1) p is flat and locally of finite presentation,
(2) p is closed, and
(3) q is flat and locally of finite presentation,

Then there exists an open subspace W ⊂ Z such that a morphism Z ′ → Z factors
through W if and only if the base change fZ′ : XZ′ → YZ′ is a local complete
intersection morphism.
Proof. By Lemma 76.48.11 there exists an open subspace U(f) ⊂ X which is the set
of points where f is Koszul. Moreover, formation of U(f) commutes with arbitrary
base change. Let W ⊂ Z be the open subspace (see Properties of Spaces, Lemma
66.4.8) with underlying set of points

|W | = |Z| \ |p| (|X| \ |U(f)|)
i.e., z ∈ |Z| is a point of W if and only if f is Koszul at every point of X above z.
Note that this is open because we assumed that p is closed. Since the formation of
U(f) commutes with arbitrary base change we immediately see (using Properties
of Spaces, Lemma 66.4.9) that W has the desired universal property. □

76.50. Exact sequences of differentials and conormal sheaves

06CD In this section we collect some results on exact sequences of conormal sheaves and
sheaves of differentials. In some sense these are all realizations of the triangle of
cotangent complexes associated to composable morphisms of algebraic spaces.

https://stacks.math.columbia.edu/tag/06CE
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In the sequences below each of the maps are as constructed in either Lemma 76.7.6
or Lemma 76.15.8. Let S be a scheme. Let g : Z → Y and f : Y → X be morphisms
of algebraic spaces over S.

(1) There is a canonical exact sequence

g∗ΩY/X → ΩZ/X → ΩZ/Y → 0,

see Lemma 76.7.8. If g : Z → Y is formally smooth, then this sequence is
a short exact sequence, see Lemma 76.19.12.

(2) If g is formally unramified, then there is a canonical exact sequence

CZ/Y → g∗ΩY/X → ΩZ/X → 0,

see Lemma 76.15.13. If f ◦ g : Z → X is formally smooth, then this
sequence is a short exact sequence, see Lemma 76.19.13.

(3) if g and f ◦ g are formally unramified, then there is a canonical exact
sequence

CZ/X → CZ/Y → g∗ΩY/X → 0,

see Lemma 76.15.14. If f : Y → X is formally smooth, then this sequence
is a short exact sequence, see Lemma 76.19.14.

(4) if g and f are formally unramified, then there is a canonical exact sequence

g∗CY/X → CZ/X → CZ/Y → 0.

see Lemma 76.15.15. If g : Z → Y is a local complete intersection mor-
phism, then this sequence is a short exact sequence, see Lemma 76.48.13.

76.51. Characterizing pseudo-coherent complexes, II

0CTP In this section we discuss a characterization of pseudo-coherent complexes in terms
of cohomology. Earlier material on pseudo-coherent complexes on algebraic spaces
may be found in Derived Categories of Spaces, Section 75.13 and in Derived Cate-
gories of Spaces, Section 75.18. The analogue of this section for schemes is More on
Morphisms, Section 37.69. A basic tool will be to reduce to the case of projective
space using a derived version of Chow’s lemma, see Lemma 76.51.2.

Lemma 76.51.1.0CTQ Let S be a scheme. Consider a commutative diagram of algebraic
spaces

Z ′

��

// Y ′

��
X ′ // B′

over S. Let B → B′ be a morphism. Denote by X and Y the base changes of X ′

and Y ′ to B. Assume Y ′ → B′ and Z ′ → X ′ are flat. Then X ×B Y and Z ′ are
Tor independent over X ′ ×B′ Y ′.

https://stacks.math.columbia.edu/tag/0CTQ
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Proof. By Derived Categories of Spaces, Lemma 75.20.3 we may check tor inde-
pendence étale locally on X ×B Y and Z ′. This3 reduces the lemma to the case of
schemes which is More on Morphisms, Lemma 37.69.1. □

Lemma 76.51.2 (Derived Chow’s lemma).0CTR Let A be a ring. Let X be a separated
algebraic space of finite presentation over A. Let x ∈ |X|. Then there exist an
n ≥ 0, a closed subspace Z ⊂ X ×A Pn

A, a point z ∈ |Z|, an open V ⊂ Pn
A, and an

object E in D(OX×APn
A

) such that
(1) Z → X ×A Pn

A is of finite presentation,
(2) c : Z → Pn

A is a closed immersion over V , set W = c−1(V ),
(3) the restriction of b : Z → X to W is étale, z ∈W , and b(z) = x,
(4) E|X×AV

∼= (b, c)∗OZ |X×AV ,
(5) E is pseudo-coherent and supported on Z.

Proof. We can find a finite type Z-subalgebra A′ ⊂ A and an algebraic space X ′

separated and of finite presentation over A′ whose base change to A is X. See
Limits of Spaces, Lemmas 70.7.1 and 70.6.9. Let x′ ∈ |X ′| be the image of x. If we
can prove the lemma for (X ′/A′, x′), then the lemma follows for (X/A, x). Namely,
if n′, Z ′, z′, V ′, E′ provide the solution for (X ′/A′, x′), then we can let n = n′, let
Z ⊂ X × Pn be the inverse image of Z ′, let z ∈ Z be the unique point mapping
to x, let V ⊂ Pn

A be the inverse image of V ′, and let E be the derived pullback of
E′. Observe that E is pseudo-coherent by Cohomology on Sites, Lemma 21.45.3.
It only remains to check (5). To see this set W = c−1(V ) and W ′ = (c′)−1(V ′) and
consider the cartesian square

W

(b,c)
��

// W ′

(b′,c′)
��

X ×A V // X ′ ×A′ V ′

By Lemma 76.51.1 X ×A V and W ′ are tor-independent over X ′ ×A′ V ′. Thus
the derived pullback of (b′, c′)∗OW ′ to X ×A V is (b, c)∗OW by Derived Categories
of Spaces, Lemma 75.20.4. This also uses that R(b′, c′)∗OZ′ = (b′, c′)∗OZ′ be-
cause (b′, c′) is a closed immersion and simiarly for (b, c)∗OZ . Since E′|U ′×A′V ′ =
(b′, c′)∗OW ′ we obtain E|U×AV = (b, c)∗OW and (5) holds. This reduces us to the
situation described in the next paragraph.

Assume A is of finite type over Z. Choose an étale morphism U → X where U is
an affine scheme and a point u ∈ U mapping to x. Then U is of finite type over A.
Choose a closed immersion U → An

A and denote j : U → Pn
A the immersion we get

3Here is the argument in more detail. Choose a surjective étale morphism W ′ → B′ with
W ′ a scheme. Choose a surjective étale morphism W → B ×B′ W ′ with W a scheme. Choose a
surjective étale morphism U ′ → X′×B′ W ′ with U ′ a scheme. Choose a surjective étale morphism
V ′ → Y ′ ×B′ W ′ with V ′ a scheme. Observe that U ′ ×W ′ V ′ → X′ ×B′ Y ′ is surjective étale.
Choose a surjective étale morphism T ′ → Z′ ×X′×B′Y ′ U ′ ×W ′ V ′ with T ′ a scheme. Denote U
and V the base changes of U ′ and V ′ to W . Then the lemma says that X ×B Y and Z′ are Tor
independent over X′×B′ Y ′ as algebraic spaces if and only if U×W V and T ′ are Tor independent
over U ′ ×W ′ V ′ as schemes. Thus it suffices to prove the lemma for the square with corners
T ′, U ′, V ′,W ′ and base change by W → W ′. The flatness of Y ′ → B′ and Z′ → X′ implies
flatness of V ′ →W ′ and T ′ → U ′.

https://stacks.math.columbia.edu/tag/0CTR
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by composing with the open immersion An
A → Pn

A. Let Z be the scheme theoretic
closure of

(idU , j) : U −→ X ×A Pn
A

Let z ∈ Z be the image of u. Let Y ⊂ Pn
A be the scheme theoretic closure of j. Then

it is clear that Z ⊂ X×AY is the scheme theoretic closure of (idU , j) : U → X×AY .
As X is separated, the morphism X ×A Y → Y is separated as well. Hence we see
that Z → Y is an isomorphism over the open subscheme j(U) ⊂ Y by Morphisms
of Spaces, Lemma 67.16.7. Choose V ⊂ Pn

A open with V ∩ Y = j(U). Then we
see that (2) holds, that W = (idU , j)(U), and hence that (3) holds. Part (1) holds
because A is Noetherian.

Because A is Noetherian we see that X and X ×A Pn
A are Noetherian algebraic

spaces. Hence we can take E = (b, c)∗OZ in this case: (4) is clear and for (5) see
Derived Categories of Spaces, Lemma 75.13.7. This finishes the proof. □

Lemma 76.51.3.0CTS Let X/A, x ∈ |X|, and n,Z, z, V, E be as in Lemma 76.51.2. For
any K ∈ DQCoh(OX) we have

Rq∗(Lp∗K ⊗L E)|V = R(W → V )∗K|W

where p : X ×A Pn
A → X and q : X ×A Pn

A → Pn
A are the projections and where

the morphism W → V is the finitely presented closed immersion c|W : W → V .

Proof. Since W = c−1(V ) and since c is a closed immersion over V , we see that
c|W is a closed immersion. It is of finite presentation because W and V are of finite
presentation over A, see Morphisms of Spaces, Lemma 67.28.9. First we have

Rq∗(Lp∗K ⊗L E)|V = Rq′
∗
(
(Lp∗K ⊗L E)|X×AV

)
where q′ : X ×A V → V is the projection because formation of total direct image
commutes with localization. Denote i = (b, c)|W : W → X ×A V the given closed
immersion. Then

Rq′
∗
(
(Lp∗K ⊗L E)|X×AV

)
= Rq′

∗(Lp∗K|X×AV ⊗L i∗OW )

by property (5). Since i is a closed immersion we have i∗OW = Ri∗OW . Using
Derived Categories of Spaces, Lemma 75.20.1 we can rewrite this as

Rq′
∗Ri∗Li

∗Lp∗K|X×AV = R(q′ ◦ i)∗Lb
∗K|W = R(W → V )∗K|W

which is what we want. (Note that restricting to W and derived pulling back via
W → X is the same thing as W is étale over X.) □

Lemma 76.51.4.0CTT Let A be a ring. Let X be an algebraic space separated and
of finite presentation over A. Let K ∈ DQCoh(OX). If RΓ(X,E ⊗L K) is pseudo-
coherent in D(A) for every pseudo-coherent E in D(OX), then K is pseudo-coherent
relative to A (Definition 76.45.3).

Proof. Assume K ∈ DQCoh(OX) and RΓ(X,E ⊗L K) is pseudo-coherent in D(A)
for every pseudo-coherent E in D(OX). Let x ∈ |X|. We will show that K is
pseudo-coherent relative to A in an étale neighbourhood of x. This will prove the
lemma by our definition of relative pseudo-coherence.

https://stacks.math.columbia.edu/tag/0CTS
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Choose n,Z, z, V, E as in Lemma 76.51.2. Denote p : X×Pn → X and q : X×Pn →
Pn
A the projections. Then for any i ∈ Z we have

RΓ(Pn
A, Rq∗(Lp∗K ⊗L E)⊗L OPn

A
(i))

= RΓ(X ×Pn, Lp∗K ⊗L E ⊗L Lq∗OPn
A

(i))
= RΓ(X,K ⊗L Rq∗(E ⊗L Lq∗OPn

A
(i)))

by Derived Categories of Spaces, Lemma 75.20.1. By Derived Categories of Spaces,
Lemma 75.25.5 the complex Rq∗(E⊗LLq∗OPn

A
(i)) is pseudo-coherent on X. Hence

the assumption tells us the expression in the displayed formula is a pseudo-coherent
object of D(A). By Derived Categories of Schemes, Lemma 36.34.2 we conclude
that Rq∗(Lp∗K ⊗L E) is pseudo-coherent on Pn

A. By Lemma 76.51.3 we have

Rq∗(Lp∗K ⊗L E)|X×AV = R(W → V )∗K|W
Since W → V is a closed immersion into an open subscheme of Pn

A this means
K|W is pseudo-coherent relative to A for example by More on Morphisms, Lemma
37.59.18. □

Lemma 76.51.5.0GFJ Let A be a ring. Let X be an algebraic space separated and of
finite presentation over A. Let K ∈ DQCoh(OX). If RΓ(X,E ⊗L K) is pseudo-
coherent in D(A) for every perfect E ∈ D(OX), then K is pseudo-coherent relative
to A.

Proof. In view of Lemma 76.51.4, it suffices to show RΓ(X,E ⊗L K) is pseudo-
coherent in D(A) for every pseudo-coherent E ∈ D(OX). By Derived Categories
of Spaces, Proposition 75.29.3 it follows that K ∈ D−

QCoh(OX). Now the result
follows by Derived Categories of Spaces, Lemma 75.25.7. □

76.52. Relatively perfect objects

0DKM In this section we introduce a notion from [Lie06a]. This notion has been discussed
for morphisms of schemes in Derived Categories of Schemes, Section 36.35.

Definition 76.52.1.0DKN Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is flat and locally of finite presentation. An object E of D(OX)
is perfect relative to Y or Y -perfect if E is pseudo-coherent (Cohomology on Sites,
Definition 21.45.1) and E locally has finite tor dimension as an object of D(f−1OY )
(Cohomology on Sites, Definition 21.46.1).

Please see Derived Categories of Schemes, Remark 36.35.14 for a discussion; here
we just mention that E being pseudo-coherent is the same thing as E being pseudo-
coherent relative to Y by Lemma 76.45.4. Moreover, pseudo-coherence of E implies
E ∈ DQCoh(OX), see Derived Categories of Spaces, Lemma 75.13.6.

Example 76.52.2.0DKP Let k be a field. Let X be an algebraic space of finite presentation
over k (in particular X is quasi-compact). Then an object E of D(OX) is k-perfect
if and only if it is bounded and pseudo-coherent (by definition), i.e., if and only if
it is in Db

Coh(X) (by Derived Categories of Spaces, Lemma 75.13.7). Thus being
relatively perfect does not mean “perfect on the fibres”.

The corresponding algebra concept is studied in More on Algebra, Section 15.83.
We can link the notion for algebraic spaces with the algebraic notion as follows.

https://stacks.math.columbia.edu/tag/0GFJ
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Lemma 76.52.3.0DKQ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is flat and locally of finite presentation. Let E ∈ DQCoh(OX).
The following are equivalent:

(1) E is Y -perfect,
(2) for every commutative diagram

U

��

g
// V

��
X

f // Y

where U , V are schemes and the vertical arrows are étale, the complex
E|U is V -perfect in the sense of Derived Categories of Schemes, Definition
36.35.1,

(3) for some commutative diagram as in (2) with U → X surjective, the
complex E|U is V -perfect in the sense of Derived Categories of Schemes,
Definition 36.35.1,

(4) for every commutative diagram as in (2) with U and V affine the complex
RΓ(U,E) is OY (V )-perfect.

Proof. To make sense of parts (2), (3), (4) of the lemma, observe that the object E|U
of DQCoh(OU ) corresponds to an object E0 of DQCoh(OU0) where U0 denotes the
scheme underlying U , see Derived Categories of Spaces, Lemma 75.4.2. Moreover,
in this case E0 is pseudo-coherent if and only if E|U is pseudo-coherent, see Derived
Categories of Spaces, Lemma 75.13.2. Also, E|U locally has finite tor dimension
over f−1OY |U = g−1OV if and only if E0 locally has finite tor dimension over
g−1

0 OV0 by Derived Categories of Spaces, Lemma 75.13.4. Here g0 : U0 → V0 is the
morphism of schemes representing g : U → V (notation as in Derived Categories
of Spaces, Remark 75.6.3). Finally, observe that “being pseudo-coherent” is étale
local and of course “having locally finite tor dimension” is étale local. Thus we see
that it suffices to check Y -perfectness étale locally and by the above discussion we
see that (1) implies (2) and (3) implies (1). Since part (4) is equivalent to (2) and
(3) by Derived Categories of Schemes, Lemma 36.35.3 the proof is complete. □

Lemma 76.52.4.0DKR Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is flat and locally of finite presentation. The full subcategory
of D(OX) consisting of Y -perfect objects is a saturated4 triangulated subcategory.

Proof. This follows from Cohomology on Sites, Lemmas 21.45.4, 21.45.6, 21.46.6,
and 21.46.8. □

Lemma 76.52.5.0DKS Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is flat and locally of finite presentation. A perfect object of
D(OX) is Y -perfect. If K,M ∈ D(OX), then K⊗L

OX
M is Y -perfect if K is perfect

and M is Y -perfect.

Proof. Reduce to the case of schemes using Lemma 76.52.3 and then apply Derived
Categories of Schemes, Lemma 36.35.5. □

Lemma 76.52.6.0DKT Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is flat and locally of finite presentation. Let g : Y ′ → Y be a

4Derived Categories, Definition 13.6.1.

https://stacks.math.columbia.edu/tag/0DKQ
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morphism of algebraic spaces over S. Set X ′ = Y ′ ×Y X and denote g′ : X ′ → X
the projection. If K ∈ D(OX) is Y -perfect, then L(g′)∗K is Y ′-perfect.

Proof. Reduce to the case of schemes using Lemma 76.52.3 and then apply Derived
Categories of Schemes, Lemma 36.35.6. □

Situation 76.52.7.0DKU Let S be a scheme. Let Y = limi∈I Yi be a limit of a directed
system of algebraic spaces over S with affine transition morphisms gi′i : Yi′ → Yi.
We assume that Yi is quasi-compact and quasi-separated for all i ∈ I. We denote
gi : Y → Yi the projection. We fix an element 0 ∈ I and a flat morphism of finite
presentation X0 → Y0. We set Xi = Yi ×Y0 X0 and X = Y ×Y0 X0 and we denote
the transition morphisms fi′i : Xi′ → Xi and fi : X → Xi the projections.

Lemma 76.52.8.0DKV In Situation 76.52.7. Let K0 and L0 be objects of D(OX0). Set
Ki = Lf∗

i0K0 and Li = Lf∗
i0L0 for i ≥ 0 and set K = Lf∗

0K0 and L = Lf∗
0L0.

Then the map
colimi≥0 HomD(OXi

)(Ki, Li) −→ HomD(OX)(K,L)

is an isomorphism if K0 is pseudo-coherent and L0 ∈ DQCoh(OX0) has (locally)
finite tor dimension as an object of D((X0 → Y0)−1OY0)

Proof. For every quasi-compact and quasi-separated object U0 of (X0)spaces,étale
consider the condition P that

colimi≥0 HomD(OUi
)(Ki|Ui , Li|Ui) −→ HomD(OU )(K|U , L|U )

is an isomorphism where U = X ×X0 U0 and Ui = Xi ×X0 U0. We will prove P
holds for each U0.
Suppose that (U0 ⊂ W0, V0 → W0) is an elementary distinguished square in
(X0)spaces,étale and P holds for U0, V0, U0×W0 V0. Then P holds for W0 by Mayer-
Vietoris for hom in the derived category, see Derived Categories of Spaces, Lemma
75.10.4.
We first consider U0 = W0 ×Y0 X0 with W0 a quasi-compact and quasi-separated
object of (Y0)spaces,étale. By the induction principle of Derived Categories of Spaces,
Lemma 75.9.3 applied to these W0 and the previous paragraph, we find that it is
enough to prove P for U0 = W0 ×Y0 X0 with W0 affine. In other words, we have
reduced to the case where Y0 is affine. Next, we apply the induction principle again,
this time to all quasi-compact and quasi-separated opens of X0, to reduce to the
case where X0 is affine as well.
If X0 and Y0 are affine, then we are back in the case of schemes which is proved
in Derived Categories of Schemes, Lemma 36.35.8. The reader may use Derived
Categories of Spaces, Lemmas 75.13.6, 75.4.2, 75.13.2, and 75.13.4 to accomplish
the translation of the statement into a statement involving only schemes and derived
categories of modules on schemes. □

Lemma 76.52.9.0DKW In Situation 76.52.7 the category of Y -perfect objects of D(OX)
is the colimit of the categories of Yi-perfect objects of D(OXi).

Proof. For every quasi-compact and quasi-separated object U0 of (X0)spaces,étale
consider the condition P that the functor

colimi≥0 DYi-perfect(OUi) −→ DY -perfect(OU )

https://stacks.math.columbia.edu/tag/0DKU
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is an equivalence where U = X ×X0 U0 and Ui = Xi ×X0 U0. We observe that we
already know this functor is fully faithful by Lemma 76.52.8. Thus it suffices to
prove essential surjectivity.

Suppose that (U0 ⊂ W0, V0 → W0) is an elementary distinguished square in
(X0)spaces,étale and P holds for U0, V0, U0 ×W0 V0. We claim that P holds for
W0. We will use the notation Ui = Xi ×X0 U0, U = X ×X0 U0, and similarly for
V0 and W0. We will abusively use the symbol fi for all the morphisms U → Ui,
V → Vi, U ×W V → Ui ×Wi

Vi, and W → Wi. Suppose E is an Y -perfect object
of D(OW ). Goal: show E is in the essential image of the functor. By assumption,
we can find i ≥ 0, an Yi-perfect object EU,i on Ui, an Yi-perfect object EV,i on Vi,
and isomorphisms Lf∗

i EU,i → E|U and Lf∗
i EV,i → E|V . Let

a : EU,i → (Rfi,∗E)|Ui and b : EV,i → (Rfi,∗E)|Vi
the maps adjoint to the isomorphisms Lf∗

i EU,i → E|U and Lf∗
i EV,i → E|V . By

fully faithfulness, after increasing i, we can find an isomorphism c : EU,i|Ui×WiVi →
EV,i|Ui×WiVi which pulls back to the identifications

Lf∗
i EU,i|U×WV → E|U×WV → Lf∗

i EV,i|U×WV .

Apply Derived Categories of Spaces, Lemma 75.10.8 to get an object Ei on Wi and
a map d : Ei → Rfi,∗E which restricts to the maps a and b over Ui and Vi. Then
it is clear that Ei is Yi-perfect (because being relatively perfect is an étale local
property) and that d is adjoint to an isomorphism Lf∗

i Ei → E.

By exactly the same argument as used in the proof of Lemma 76.52.8 using the
induction principle (Derived Categories of Spaces, Lemma 75.9.3) we reduce to the
case where both X0 and Y0 are affine: first work with quasi-compact and quasi-
separated objects in (Y0)spaces,étale to reduce to Y0 affine, then work with quasi-
compact and quasi-separated object in (X0)spaces,étale to reduce to X0 affine. In the
affine case the result follows from the case of schemes which is Derived Categories
of Schemes, Lemma 36.35.9. The translation into the case for schemes is done by
Lemma 76.52.3. □

Lemma 76.52.10.0DKX Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is flat, proper, and of finite presentation. Let E ∈ D(OX) be
Y -perfect. Then Rf∗E is a perfect object of D(OY ) and its formation commutes
with arbitrary base change.

Proof. The statement on base change is Derived Categories of Spaces, Lemma
75.21.4 (with G• equal to OX in degree 0). Thus it suffices to show that Rf∗E is a
perfect object. We will reduce to the case where Y is Noetherian affine by a limit
argument.

The question is étale local on Y , hence we may assume Y is affine. Say Y =
Spec(R). We write R = colimRi as a filtered colimit of Noetherian rings Ri. By
Limits of Spaces, Lemma 70.7.1 there exists an i and an algebraic space Xi of finite
presentation over Ri whose base change to R is X. By Limits of Spaces, Lemmas
70.6.13 and 70.6.12 we may assume Xi is proper and flat over Ri. By Lemma 76.52.9
we may assume there exists a Ri-perfect object Ei of D(OXi) whose pullback to
X is E. Applying Derived Categories of Spaces, Lemma 75.22.1 to Xi → Spec(Ri)
and Ei and using the base change property already shown we obtain the result. □

https://stacks.math.columbia.edu/tag/0DKX
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Lemma 76.52.11.0DKY Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let E,K ∈ D(OX). Assume

(1) Y is quasi-compact and quasi-separated,
(2) f is proper, flat, and of finite presentation,
(3) E is Y -perfect,
(4) K is pseudo-coherent.

Then there exists a pseudo-coherent L ∈ D(OY ) such that
Rf∗RHom(K,E) = RHom(L,OY )

and the same is true after arbitrary base change: given

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

cartesian, then we have
Rf ′

∗RHom(L(g′)∗K,L(g′)∗E)
= RHom(Lg∗L,OY ′)

Proof. Since Y is quasi-compact and quasi-separated, the same is true for X. By
Derived Categories of Spaces, Lemma 75.18.1 we can write K = hocolimKn with
Kn perfect and Kn → K inducing an isomorphism on truncations τ≥−n. Let K∨

n

be the dual perfect complex (Cohomology on Sites, Lemma 21.48.4). We obtain an
inverse system . . . → K∨

3 → K∨
2 → K∨

1 of perfect objects. By Lemma 76.52.5 we
see that K∨

n ⊗OX
E is Y -perfect. Thus we may apply Lemma 76.52.10 to K∨

n ⊗OX
E

and we obtain an inverse system
. . .→M3 →M2 →M1

of perfect complexes on Y with
Mn = Rf∗(K∨

n ⊗L
OX

E) = Rf∗RHom(Kn, E)
Moreover, the formation of these complexes commutes with any base change, namely
Lg∗Mn = Rf ′

∗((L(g′)∗Kn)∨ ⊗L
OX′ L(g′)∗E) = Rf ′

∗RHom(L(g′)∗Kn, L(g′)∗E).

As Kn → K induces an isomorphism on τ≥−n, we see that Kn → Kn+1 induces an
isomorphism on τ≥−n. It follows that K∨

n+1 → K∨
n induces an isomorphism on τ≤n

as K∨
n = RHom(Kn,OX). Suppose that E has tor amplitude in [a, b] as a complex

of f−1OY -modules. Then the same is true after any base change, see Derived
Categories of Spaces, Lemma 75.20.7. We find that K∨

n+1 ⊗OX
E → K∨

n ⊗OX
E

induces an isomorphism on τ≤n+a and the same is true after any base change.
Applying the right derived functor Rf∗ we conclude the maps Mn+1 →Mn induce
isomorphisms on τ≤n+a and the same is true after any base change. Choose a
distinguished triangle

Mn+1 →Mn → Cn →Mn+1[1]
Pick y ∈ |Y |. Choose an elementary étale neighbourhood (U, u) → (Y, y); this is
possible by Decent Spaces, Lemma 68.11.4. Take Y ′ equal to the spectrum of the
residue field at u. Pull back to see that Cn|U ⊗L

OU
κ(u) has nonzero cohomology

only in degrees ≥ n + a. By More on Algebra, Lemma 15.75.6 we see that the
perfect complex Cn|U has tor amplitude in [n + a,mn] for some integer mn and
after possibly shrinking U . Thus Cn has tor amplitude in [n + a,mn] for some
integer mn (because Y is quasi-compact). In particular, the dual perfect complex
C∨
n has tor amplitude in [−mn,−n− a].

https://stacks.math.columbia.edu/tag/0DKY
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Let Ln = M∨
n be the dual perfect complex. The conclusion from the discussion

in the previous paragraph is that Ln → Ln+1 induces isomorphisms on τ≥−n−a.
Thus L = hocolimLn is pseudo-coherent, see Derived Categories of Spaces, Lemma
75.18.1. Since we have
RHom(K,E) = RHom(hocolimKn, E) = R limRHom(Kn, E) = R limK∨

n ⊗OX
E

(Cohomology on Sites, Lemma 21.48.8) and since R lim commutes with Rf∗ we find
that

Rf∗RHom(K,E) = R limMn = R limRHom(Ln,OY ) = RHom(L,OY )
This proves the formula over Y . Since the construction of Mn is compatible with
base chance, the formula continues to hold after any base change. □

Remark 76.52.12.0DKZ The reader may have noticed the similarity between Lemma
76.52.11 and Derived Categories of Spaces, Lemma 75.23.3. Indeed, the pseudo-
coherent complex L of Lemma 76.52.11 may be characterized as the unique pseudo-
coherent complex on Y such that there are functorial isomorphisms

ExtiOY
(L,F) −→ ExtiOX

(K,E ⊗L
OX

Lf∗F)
compatible with boundary maps for F ranging over QCoh(OY ). If we ever need
this we will formulate a precise result here and give a detailed proof.
Lemma 76.52.13.0GFK Let S be a scheme. Let X be an algebraic space over S such
that the structure morphism f : X → S is flat and locally of finite presentation.
Let E be a pseudo-coherent object of D(OX). The following are equivalent

(1) E is S-perfect, and
(2) E is locally bounded below and for every point s ∈ S the object L(Xs →

X)∗E of D(OXs) is locally bounded below.
Proof. Since everything is local we immediately reduce to the case that X and S are
affine, see Lemma 76.52.3. This case is handled by Derived Categories of Schemes,
Lemma 36.35.13. □

Lemma 76.52.14.0GFL Let A be a ring. Let X be an algebraic space separated, of finite
presentation, and flat over A. Let K ∈ DQCoh(OX). If RΓ(X,E ⊗L K) is perfect
in D(A) for every perfect E ∈ D(OX), then K is Spec(A)-perfect.
Proof. By Lemma 76.51.5, K is pseudo-coherent relative to A. By Lemma 76.45.4,
K is pseudo-coherent in D(OX). By Derived Categories of Spaces, Proposition
75.29.4 we see that K is in D−(OX). Let p be a prime ideal of A and denote
i : Y → X the inclusion of the scheme theoretic fibre over p, i.e., Y is a scheme
over κ(p). By Lemma 76.52.13, we will be done if we can show Li∗(K) is bounded
below. Let G ∈ Dperf (OX) be a perfect complex which generates DQCoh(OX), see
Derived Categories of Spaces, Theorem 75.15.4. We have

RHomOY
(Li∗(G), Li∗(K)) = RΓ(Y,Li∗(G∨ ⊗L K))

= RΓ(X,G∨ ⊗L K)⊗L
A κ(p)

The first equality uses that Li∗ preserves perfect objects and duals and Cohomology
on Sites, Lemma 21.48.4; we omit some details. The second equality follows from
Derived Categories of Spaces, Lemma 75.20.4 as X is flat over A. It follows from
our hypothesis that this is a perfect object of D(κ(p)). The object Li∗(G) ∈
Dperf (OY ) generates DQCoh(OY ) by Derived Categories of Spaces, Remark 75.15.5.

https://stacks.math.columbia.edu/tag/0DKZ
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Hence Derived Categories of Spaces, Proposition 75.29.4 now implies that Li∗(K)
is bounded below and we win. □

76.53. Theorem of the cube

0D22 This section is the analogue of More on Morphisms, Section 37.33. The following
lemma tells us that the diagonal of the Picard functor is representable by locally
closed immersions under the assumptions made in the lemma.

Lemma 76.53.1.0D23 Let S be a scheme. Let f : X → Y be a flat, proper morphism
of finite presentation of algebraic spaces over S. Let E be a finite locally free
OX -module. For a morphism g : Y ′ → Y consider the base change diagram

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

Assume OY ′ → f ′
∗OX′ is an isomorphism for all g : Y ′ → Y . Then there exists

an immersion j : Z → Y of finite presentation such that a morphism g : Y ′ → Y
factors through Z if and only if there exists a finite locally free OY ′ -module N with
(f ′)∗N ∼= (g′)∗L.

Proof. Let y : Spec(k) → Y be a field valued point. Then the fibre Xy of f at
y is connected by our assumption that H0(Xy,OXy ) = k. Thus the rank of E is
constant on the fibres. Since f is open (Morphisms of Spaces, Lemma 67.30.6) and
closed we conclude that there is a decomposition Y =

∐
Yr of Y into open and

closed subspaces such that E has constant rank r on the inverse image of Yr. Thus
we may assume E has constant rank r. We will denote E∨ = Hom(E ,OX) the dual
rank r module.

By cohomology and base change (more precisely by Derived Categories of Spaces,
Lemma 75.25.4) we see that E = Rf∗E is a perfect object of the derived category
of Y and that its formation commutes with arbitrary change of base. Similarly
for E′ = Rf∗E∨. Since there is never any cohomology in degrees < 0, we see that
E and E′ have (locally) tor-amplitude in [0, b] for some b. Observe that for any
g : Y ′ → Y we have f ′

∗((g′)∗E) = H0(Lg∗E) and f ′
∗((g′)∗E∨) = H0(Lg∗E′). Let

j : Z → Y and j′ : Z ′ → Y be the locally closed immersions constructed in Derived
Categories of Spaces, Lemma 75.26.6 for E and E′ with a = 0 and r = r; these
are characterized by the property that H0(Lj∗E) and H0((j′)∗E′) are locally free
modules of rank r compatible with pullback.

Let g : Y ′ → Y be a morphism. If there exists an N as in the lemma, then,
using the projection formula Cohomology on Sites, Lemma 21.50.1, we see that the
modules

f ′
∗((g′)∗E) ∼= f ′

∗((f ′)∗N ) ∼= N⊗OY ′ f
′
∗OX′ ∼= N and similarly f ′

∗((g′)∗E∨) ∼= N∨

are locally free of rank r and remain locally free of rank r after any further base
change Y ′′ → Y ′. Hence in this case g : Y ′ → Y factors through j and through j′.
Thus we may replace Y by Z ×Y Z ′ and assume that f∗E and f∗E∨ are locally free
OY -modules of rank r whose formation commutes with arbitrary change of base.

https://stacks.math.columbia.edu/tag/0D23
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In this sitation if g : Y ′ → Y is a morphism and there exists an N as in the lemma,
then the map (cup product in degree 0)

f ′
∗((g′)∗E)⊗OY ′ f

′
∗((g′)∗E∨) −→ OY ′

is a perfect pairing. Conversely, if this cup product map is a perfect pairing, then
we see that locally on Y ′ we have a basis of sections σ1, . . . , σr in f ′

∗((g′)∗L) and
τ1, . . . , τr in f ′

∗((g′)∗E∨) whose products satisfy σiτj = δij . Thinking of σi as a
section of (g′)∗L on X ′ and τj as a section of (g′)∗L∨ on X ′, we conclude that

σ1, . . . , σr : O⊕r
X′ −→ (g′)∗E

is an isomorphism with inverse given by
τ1, . . . , τr : (g′)∗E −→ O⊕r

X′

In other words, we see that (f ′)∗f ′
∗(g′)∗E ∼= (g′)∗E . But the condition that the

cupproduct is nondegenerate picks out a retrocompact open subscheme (namely,
the locus where a suitable determinant is nonzero) and the proof is complete. □

76.54. Descent of finiteness properties of complexes

0DL0 This section is the analogue of More on Morphisms, Section 37.70 and Derived
Categories of Schemes, Section 36.12.

Lemma 76.54.1.0DL1 Let S be a scheme. Let {fi : Xi → X} be an fpqc covering of
algebraic spaces over S. Let E ∈ DQCoh(OX). Let m ∈ Z. Then E is m-pseudo-
coherent if and only if each Lf∗

i E is m-pseudo-coherent.

Proof. Pullback always preserves m-pseudo-coherence, see Cohomology on Sites,
Lemma 21.45.3. Thus it suffices to assume Lf∗

i E is m-pseudo-coherent and to
prove that E is m-pseudo-coherent. Then first we may assume Xi is a scheme
for all i, see Topologies on Spaces, Lemma 73.9.5. Next, choose a surjective étale
morphism U → X where U is a scheme. Then Ui = U ×X Xi is a scheme and we
obtain an fpqc covering {Ui → U} of schemes, see Topologies on Spaces, Lemma
73.9.4. We know the result is true for {Ui → U}i∈I by the case for schemes, see
Derived Categories of Schemes, Lemma 36.12.2. On the other hand, the restriction
E|U comes from an object of DQCoh(OU ) (defined using the Zariski topology and
the “usual” structure sheaf of U), see Derived Categories of Spaces, Lemma 75.4.2.
The lemma follows as the two notions of pseudo-coherent (étale and Zariski) agree
by Derived Categories of Spaces, Lemma 75.13.2. □

Lemma 76.54.2.0DL2 Let S be a scheme. Let {gi : Yi → Y } be an fpqc covering of
algebraic spaces over S. Let f : X → Y be a morphism of algebraic spaces and set
Xi = Yi×Y X with projections fi : Xi → Yi and g′

i : Xi → X. Let E ∈ DQCoh(OX).
Let a, b ∈ Z. Then the following are equivalent

(1) E has tor amplitude in [a, b] as an object of D(f−1OY ), and
(2) L(g′

i)∗E has tor amplitude in [a, b] as a object of D(f−1
i OYi) for all i.

Also true if “tor amplitude in [a, b]” is replaced by “locally finite tor dimension”.

Proof. Pullback preserves “tor amplitude in [a, b]” by Derived Categories of Spaces,
Lemma 75.20.7 Observe that Yi and X are tor independent over Y as Yi → Y is
flat. Let us assume (2) and prove (1). We can compute tor dimension at stalks, see
Cohomology on Sites, Lemma 21.46.10 and Properties of Spaces, Theorem 66.19.12.

https://stacks.math.columbia.edu/tag/0DL1
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Let x be a geometric point of X. Choose an i and a geometric point xi in Xi with
image x in X. Then

(L(g′
i)∗E)xi = Ex ⊗L

OX,x
OX,xi

Let yi in Yi and y in Y be the image of xi and x. Since X and Yi are tor independent
over Y , we can apply More on Algebra, Lemma 15.61.2 to see that the right hand
side of the displayed formula is equal to Ex⊗L

OY,y
OYi,yi in D(OYi,yi). Since we have

assume the tor amplitude of this is in [a, b], we conclude that the tor amplitude of
Ex in D(OY,y) is in [a, b] by More on Algebra, Lemma 15.66.17. Thus (1) follows.

Using some elementary topology the case “locally finite tor dimension” follows
too. □

The following lemmas do not really belong in this section.

Lemma 76.54.3.0DL3 Let S be a scheme. Let i : X → X ′ be a finite order thickening of
algebraic spaces. Let K ′ ∈ D(OX′) be an object such that K = Li∗K ′ is pseudo-
coherent. Then K ′ is pseudo-coherent.

Proof. We first prove K ′ has quasi-coherent cohomology sheaves; we urge the reader
to skip this part. To do this, we may reduce to the case of a first order thickening,
see Section 76.9. Let I ⊂ OX′ be the quasi-coherent sheaf of ideals cutting out X.
Tensoring the short exact sequence

0→ I → OX′ → i∗OX → 0

with K ′ we obtain a distinguished triangle

K ′ ⊗L
OX′ I → K ′ → K ′ ⊗L

OX′ i∗OX → (K ′ ⊗L
OX′ I)[1]

Since i∗ = Ri∗ and since we may view I as a quasi-coherent OX -module (as we
have a first order thickening) we may rewrite this as

i∗(K ⊗L
OX
I)→ K ′ → i∗K → i∗(K ⊗L

OX
I)[1]

Please use Cohomology of Spaces, Lemma 69.4.4 to identify the terms. Since K is
in DQCoh(OX) we conclude that K ′ is in DQCoh(OX′); this uses Derived Categories
of Spaces, Lemmas 75.13.6, 75.5.6, and 75.6.1.

Assume K ′ is in DQCoh(OX′). The question is étale local on X ′ hence we may
assume X ′ is affine. In this case the result follows from the case of schemes (More
on Morphisms, Lemma 37.71.1). The translation into the language of schemes uses
Derived Categories of Spaces, Lemmas 75.4.2 and 75.13.2 and Remark 75.6.3. □

Lemma 76.54.4.0DL4 Let S be a scheme. Consider a cartesian diagram

X
i
//

f

��

X ′

f ′

��
Y

j // Y ′

of algebraic spaces over S. Assume X ′ → Y ′ is flat and locally of finite presentation
and Y → Y ′ is a finite order thickening. Let E′ ∈ D(OX′). If E = Li∗(E′) is Y -
perfect, then E′ is Y ′-perfect.
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Proof. Recall that being Y -perfect for E means E is pseudo-coherent and locally
has finite tor dimension as a complex of f−1OY -modules (Definition 76.52.1).
By Lemma 76.54.3 we find that E′ is pseudo-coherent. In particular, E′ is in
DQCoh(OX′), see Derived Categories of Spaces, Lemma 75.13.6. By Lemma 76.52.3
this reduces us to the case of schemes. The case of schemes is More on Morphisms,
Lemma 37.71.2. □

Lemma 76.54.5.0DL5 Let (R, I) be a pair consisting of a ring and an ideal I contained
in the Jacobson radical. Set S = Spec(R) and S0 = Spec(R/I). Let X be an
algebraic space over R whose structure morphism f : X → S is proper, flat, and of
finite presentation. Denote X0 = S0×S X. Let E ∈ D(OX) be pseudo-coherent. If
the derived restriction E0 of E to X0 is S0-perfect, then E is S-perfect.

Proof. Choose a surjective étale morphism U → X with U affine. Choose a closed
immersion U → Ad

S . Set U0 = S0 ×S U . The complex E0|U0 has tor amplitude
in [a, b] for some a, b ∈ Z. Let x be a geometric point of X. We will show that
the tor amplitude of Ex over R is in [a− d, b]. This will finish the proof as the tor
amplitude can be read off from the stalks by Cohomology on Sites, Lemma 21.46.10
and Properties of Spaces, Theorem 66.19.12.

Let x ∈ |X| be the point determined by x. Recall that |X| → |S| is closed (by
definition of proper morphisms). Since I is contained in the Jacobson radical, any
nonempty closed subset of S contains a point of the closed subscheme S0. Hence we
can find a specialization x⇝ x0 in |X| with x0 ∈ |X0|. Choose u0 ∈ U0 mapping to
x0. By Decent Spaces, Lemma 68.7.4 (or by Decent Spaces, Lemma 68.7.3 which
applies directly to étale morphisms) we find a specialization u⇝ u0 in U such that
u maps to x. We may lift x to a geometric point u of U lying over u. Then we have
Ex = (E|U )u.

Write U = Spec(A). Then A is a flat, finitely presented R-algebra which is a
quotient of a polynomial R-algebra in d-variables. The restriction E|U corresponds
(by Derived Categories of Spaces, Lemmas 75.13.6, 75.4.2, and 75.13.2 and Derived
Categories of Schemes, Lemma 36.3.5 and 36.10.2) to a pseudo-coherent object K
of D(A). Observe that E0 corresponds to K ⊗L

A A/IA. Let q ⊂ q0 ⊂ A be the
prime ideals corresponding to u⇝ u0. Then

Ex = (E|U )u = Eu ⊗L
OU,u

OU,u = Kq ⊗L
Aq

Ashq

(some details omitted). Since Aq → Ashq is flat, the tor amplitude of this as an R-
module is the same as the tor amplitude of Kq as an R-module (More on Algebra,
Lemma 15.66.18). Also, Kq is a localization of Kq0 . Hence it suffices to show that
Kq0 has tor amplitude in [a− d, b] as a complex of R-modules.

Let I ⊂ p0 ⊂ R be the prime ideal corresponding to f(x0). Then we have

K ⊗L
R κ(p0) = (K ⊗L

R R/I)⊗L
R/I κ(p0)

= (K ⊗L
A A/IA)⊗L

R/I κ(p0)

the second equality because R → A is flat. By our choice of a, b this complex has
cohomology only in degrees in the interval [a, b]. Thus we may finally apply More
on Algebra, Lemma 15.83.9 to R→ A, q0, p0 and K to conclude. □
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76.55. Families of nodal curves

0DSD This section is the continuation of Algebraic Curves, Section 53.20. Please also see
that section for our choice of terminology.

The property “at-worst-nodal of relative dimension 1” of morphisms of schemes
is étale local on the source-and-target, see Descent, Lemma 35.32.6 and Algebraic
Curves, Lemmas 53.20.8, 53.20.9, and 53.20.7. It is also stable under base change
and fpqc local on the target, see Algebraic Curves, Lemmas 53.20.4 and 53.20.9.
Hence, by Morphisms of Spaces, Lemma 67.22.1 we may define the notion of an
at-worst-nodal morphism of relative dimension 1 for algebraic spaces as follows and
it agrees with the already existing notion defined in Morphisms of Spaces, Section
67.3 when the morphism is representable.

Definition 76.55.1.0DSE Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is at-worst-nodal of relative dimension 1 if the equivalent
conditions of Morphisms of Spaces, Lemma 67.22.1 hold with P =“at-worst-nodal
of relative dimension 1”.

Lemma 76.55.2.0DSF The property of being at-worst-nodal of relative dimension 1 is
preserved under base change.

Proof. See Morphisms of Spaces, Remark 67.22.4 and Algebraic Curves, Lemma
53.20.4. □

Lemma 76.55.3.0DSG Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) f is at-worst-nodal of relative dimension 1,
(2) for every scheme Z and any morphism Z → Y the morphism Z×Y X → Z

is at-worst-nodal of relative dimension 1,
(3) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y

X → Z is at-worst-nodal of relative dimension 1,
(4) there exists a scheme V and a surjective étale morphism V → Y such that

V ×Y X → V is at-worst-nodal of relative dimension 1,
(5) there exists a scheme U and a surjective étale morphism φ : U → X such

that the composition f ◦ φ is at-worst-nodal of relative dimension 1,
(6) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale the top horizontal
arrow is at-worst-nodal of relative dimension 1,

(7) there exists a commutative diagram

U

��

// V

��
X // Y
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where U , V are schemes, the vertical arrows are étale, and U → X is
surjective such that the top horizontal arrow is at-worst-nodal of relative
dimension 1, and

(8) there exist Zariski coverings Y =
⋃
i∈I Yi, and f−1(Yi) =

⋃
Xij such that

each morphism Xij → Yi is at-worst-nodal of relative dimension 1.

Proof. Omitted. □

The following lemma tells us that we can check whether a morphism is at-worst-
nodal of relative dimension 1 on the fibres.

Lemma 76.55.4.0DSH Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is flat and locally of finite presentation. Then there is a
maximal open subspace X ′ ⊂ X such that f |X′ : X ′ → Y is at-worst-nodal of
relative dimension 1. Moreover, formation of X ′ commutes with arbitrary base
change.

Proof. Choose a commutative diagram

U

��

h
// V

��
X

f // Y

where U , V are schemes, the vertical arrows are étale, and U → X is surjective.
By the lemma for the case of schemes (Algebraic Curves, Lemma 53.20.5) we find
a maximal open subscheme U ′ ⊂ U such that h|U ′ : U ′ → V is at-worst-nodal of
relative dimension 1 and such that formation of U ′ commutes with base change.
Let X ′ ⊂ X be the open subspace whose points correspond to the open subset
Im(|U ′| → |X|). By Lemma 76.55.3 we see that X ′ → Y is at-worst-nodal of
relative dimension 1 and that X ′ is the largest open subspace with this property
(this also implies that U ′ is the inverse image of X ′ in U , but we do not need this).
Since the same is true after base change the proof is complete. □

76.56. The resolution property

0GUX We continue the discussion in Derived Categories of Spaces, Section 75.28.

Situation 76.56.1.0GUY Let S be a scheme. Let X be a quasi-compact and quasi-
separated algebraic space over S. Let V → X be a surjective étale morphism where
V is an affine scheme (such a thing exists by Properties of Spaces, Lemma 66.6.3).
Choose a commutative diagram

V

φ   

j
// Y

π~~
X

where j is an open immersion and π is a finite morphism of algebraic spaces (such
a diagram exists by Lemma 76.34.3). Let I ⊂ OY be a finite type quasi-coherent
sheaf of ideals on Y with V (I) = Y \ j(V ) (such a sheaf of ideals exists by Limits
of Spaces, Lemma 70.14.1).
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Lemma 76.56.2.0GUZ In Situation 76.56.1, assume X is Noetherian. Then for any
coherent OX -module F there exist r ≥ 0, integers n1, . . . , nr ≥ 0, and a surjection⊕

i=1,...,r
π∗(Ini) −→ F

of OX -modules.

Proof. Denote ωY/X the coherent OY -module such that there is an isomorphism
π∗ωY/X ∼= HomOX

(π∗OY ,OX)
of π∗OY -modules, see Morphisms of Spaces, Lemma 67.20.10 and Descent on
Spaces, Lemma 74.6.6. The canonical map OX → π∗OY produces a canonical
map

Trπ : π∗ωY/X −→ OX
Since V is Noetherian affine we may choose sections

s1, . . . , sr ∈ Γ(V, π∗F ⊗OY
ωY/X)

generating the coherent module π∗F ⊗OX
ωY/X over V . By Cohomology of Spaces,

Lemma 69.13.4 we can choose integers ni ≥ 0 such that si extends to a map
s′
i : Ini → π∗F ⊗OY

ωY/X . Pushing to X we obtain maps

σi : π∗Ini
π∗s

′
i−−−→ π∗(π∗F ⊗OY

ωY/X) = F ⊗OX
π∗ωY/X

Trπ−−→ F
where the equality sign is Cohomology of Spaces, Lemma 69.4.3. To finish the proof
we will show that the sum of these maps is surjective.
Let x ∈ |X| be a point of X. Let v ∈ |V | be a point mapping to x. We may choose
an étale neighbourhood (U, u)→ (X,x) such that

U ×X Y = W
∐

W ′

(disjoint union of algebraic spaces) such that W → U is an isomorphism and such
that the unique point w ∈ W lying over u maps to v in V ⊂ Y . To see this is
true use Lemma 76.33.2 and Étale Morphisms, Lemma 41.18.1. After shrinking U
further if necessary we may assume W maps into V ⊂ Y by the projection. Since
the formation of ωY/X commutes with étale localization we see that

π∗ωY/X |U = (π|W )∗ωW/U ⊕ (π|W ′)∗ωW ′/U

We have (π|W )∗ωW/U = OU and this isomorphism is given by the trace map Trπ|U
restricted to the first summand in the decomposition above. Since W maps into V
we see that Ini |W = OW . Hence

π∗(Ini)|U = OU ⊕ (W ′ → U)∗(Ini |W ′)
Chasing diagrams the reader sees (details omitted) that σi|U on the summand OU
is the map OU → F corresponding to the section

si|W ∈ Γ(W,π∗F ⊗OY
ωY/X) = Γ(W,F|W ⊗OW

ωW/U ) = Γ(U,F)
Since the sections si generate the module π∗F⊗OY

ωY/X over V and since W maps
into V we conclude that the restriction of

⊕
σi to U is surjective. Since x was an

arbitrary point the proof is complete. □

Lemma 76.56.3.0GV0 In Situation 76.56.1, assume X is Noetherian. Then X has the
resolution property if and only if π∗I is the quotient of a finite locally free OX -
module.
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Proof. The module π∗I is coherent by Cohomology of Spaces, Lemma 69.12.9.
Hence if X has the resolution property then π∗I is the quotient of a finite locally
free OX -module. Conversely, assume given a surjection E → π∗I for some finite
locally free OX -module E . Observe that for all n ≥ 1 there is a surjection

π∗I ⊗OX
π∗In −→ π∗In+1

Hence E⊗n surjects onto π∗In for all n ≥ 1. We conclude that X has the resolution
property if we combine this with the result of Lemma 76.56.2. □

Lemma 76.56.4.0GV1 In Situation 76.56.1, the algebraic space X has the resolution
property if and only if π∗I is the quotient of a finite locally free OX -module.

Proof. The pushforward π∗G of a finite type quasi-coherent OY -module G is a finite
type quasi-coherentOX -module by Descent on Spaces, Lemma 74.6.6. In particular,
if X has the resolution property, then π∗I is the quotient of a finite locally free
OX -module by Derived Categories of Spaces, Definition 75.28.1.
Assume that we have a surjection E → π∗I for some finite locally free OX -module
E . In the rest of the proof we show that X has the resolution property by reducing
to the Noetherian case handled in Lemma 76.56.3. We suggest the reader skip the
rest of the proof.
A first reduction is that we may view X as an algebraic space over Spec(Z), see
Spaces, Definition 65.16.2. (This doesn’t affect the conditions nor the conclusion
of the lemma.)
By Limits of Spaces, Lemma 70.11.3 we can write Y = limYi with Yi finite and
of finite presentation over X and where the transition maps are closed immersions.
Consider the closed subspace Z = V (I) of Y . Since I is of finite type, the morphism
Z → Y is of finite presentation. Hence we can find an i and a morphism Zi → Yi of
finite presentation whose base change to Y is Z → Y , see Limits of Spaces, Lemma
70.7.1. For i′ ≥ i denote Zi′ = Zi ×Yi Yi′ . After increasing i we may assume
Zi → Yi is a closed immersion (of finite presentation), see Limits of Spaces, Lemma
70.6.8. Denote Ii ⊂ OYi the ideal sheaf of Zi and denote πi : Yi → X the structure
morphism. Similarly for i′ ≥ i. Since Z = limi′≥i Zi′ we have

π∗I = colim πi′,∗Ii′
The transition maps in the system are all surjective as follows from the surjectivity
of the maps πi,∗OYi → πi′,∗OYi′ and the fact that Zi′ = Zi×Yi Yi′ . By Cohomology
of Spaces, Lemma 69.5.3 for some i′ ≥ i the map E → π∗I lifts to a map E →
πi′,∗Ii′ . After increasing i′ this map E → πi′,∗Ii′ becomes surjective (since if not
the colimit of the cokernels, having surjective transition maps, is nonzero). This
reduces us to the case discussed in the next paragraph.
Assume X is an algebraic space over Z and that Y → X is of finite presentation.
By absolute Noetherian approximation we can write X = limXi as a directed limit,
where each Xi is a quasi-separated algebraic space of finite type over Z and the
transition morphisms are affine, see Limits of Spaces, Proposition 70.8.1. Since
π : Y → X is of finite presentation we can find an i and a morphism πi : Yi → Xi

of finite presentation whose base change to X is π, see Limits of Spaces, Lemma
70.7.1. After increasing i we may assume πi is finite, see Limits of Spaces, Lemma
70.6.7. Next, we may assume there exists a finite locally free OXi-module Ei whose
pullback to X is E , see Limits of Spaces, Lemma 70.7.3. We may also assume there

https://stacks.math.columbia.edu/tag/0GV1
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is a map Ei → πi,∗OYi whose pullback to X is the composition E → π∗I → π∗OY ,
see Limits of Spaces, Lemma 70.7.2. The cokernel

Ei → πi,∗OYi → Qi → 0

is a coherent OYi-module whose pullback to X is the (finitely presented) cokernel
Q of the map E → π∗OY . In other words, we have Q = π∗(OY /I). Consider the
map

Ei ⊗OXi
πi,∗OYi −→ πi,∗OYi ⊗OXi

πi,∗OYi → πi,∗OYi → Qi
where the second arrow is given by the algebra structure on πi,∗OYi . The pullback
of this map to Y is zero because the image of E → π∗OY is the ideal π∗I. Hence
by Limits of Spaces, Lemma 70.7.2 after increasing i we may assume the displayed
composition is zero. This exactly means that the imag of Ei → πi,∗OYi is of the
form πi,∗Ii for some coherent ideal sheaf Ii ⊂ OYi . Since Ei → πi,∗OYi pulls back
to E → π∗OY we see that the pullback of Ii to Y generates I. Denote Vi ⊂ Yi
the open subspace whose complement is V (Ii) ⊂ Yi. Then V is the inverse image
of Vi by the comments above. After increasing i we may assume that Vi is affine
and that πi|Vi : Vi → Xi is étale, see Limits of Spaces, Lemmas 70.5.10 and 70.6.2.
Having said all of this, we may apply Lemma 76.56.3 to conclude that Xi has the
resolution property. Since X → Xi is affine we conclude that X has the resolution
property too by Derived Categories of Spaces, Lemma 75.28.3. □

Lemma 76.56.5.0GV2 Let S be a scheme. Let X = limXi be a limit of a direct system
of quasi-compact and quasi-separated algebraic spaces over S with affine transition
morphisms. Then X has the resolution property if and only if Xi has the resolution
properties for some i.

Proof. If Xi has the resolution property, then X does by Derived Categories of
Spaces, Lemma 75.28.3. Assume X has the resolution property. Choose i ∈ I.
We may choose an affine scheme Vi and a surjective étale morphism Vi → Xi

(Properties of Spaces, Lemma 66.6.3). We may choose an embedding j : Vi → Yi
with Yi finite and finitely presented over Xi (Lemma 76.34.4). We may choose a
finite type quasi-coherent ideal Ii ⊂ OYi such that Vi = Yi\V (Ii) (Limits of Spaces,
Lemma 70.14.1). Denote V → Y → X the base changes of Vi → Yi → Xi to X.
Denote I ⊂ OY the pullback of the ideal Ii. By the easy direction of Lemma 76.56.4
there exists a finite locally free OX -module E and a surjection E → π∗I. Note that
since πi : Yi → Xi is finite and of finite presentation we also have that π : Y → X is
finite and of finite presentation and that the OXi-modules πi,∗OYi and πi,∗(OYi/Ii)
are of finite presentation and pullback to X to give π∗OY and π∗(OY /I). Thus
by Limits of Spaces, Lemma 70.7.2 after increasing i we can find a finite locally
free OXi-module Ei and a map Ei → πi,∗OYi whose base change to X recovers
the composition E → π∗I → π∗OY . The pullbacks of the finitely presented OXi-
modules Coker(Ei → πi,∗OYi) and πi,∗(OYi/Ii) to X agree as quotients of π∗OY .
Hence by Limits of Spaces, Lemma 70.7.2 we may assume that these agree, in other
words that the image of Ei → πi,∗OXi is equal to πi,∗Ii. Then we conclude that Xi

has the resolution property by Lemma 76.56.4. □

Lemma 76.56.6.0GV3 Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space with the resolution property. Then X has affine diagonal over Z
(as in Properties of Spaces, Definition 66.3.1).
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Proof. We could prove this as in the case of schemes, but instead we will deduce the
lemma from the case of schemes. First, we may and do assume S = Spec(Z). Next,
we choose a scheme Y and a surjective integral morphism f : Y → X, see Decent
Spaces, Lemma 68.9.2. Then f is affine, hence Y has the resolution property by
Derived Categories of Spaces, Lemma 75.28.3. Hence by the case of schemes, the
scheme Y has affine diagonal, see Derived Categories of Schemes, Lemma 36.36.10.
Next, we consider the commutative diagram

Y

��

∆Y

// Y ×Z Y

��
X

∆X // X ×Z X

Observe that the right vertical arrow is integral, in particular affine. Let W →
X ×Z X be a morphism with W affine. Then we see that

Y ×X×ZX W = Y ×∆Y ,Y×ZY (Y ×Z Y )×X×ZX W

is affine. On the other hand, Y → X is integral and surjective hence
Y ×X×ZX W −→ X ×X×ZX W

is integral surjective as the base change of Y → X to W . We conclude that the
target of this arrow is affine by Limits of Spaces, Proposition 70.15.2. It follows
that ∆X is affine as desired. □

76.57. Blowing up and the resolution property

0GV4 We prove that the resolution property is satisfied after a blowing up.

Lemma 76.57.1.0GV5 Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Assume that |X| has finitely many irreducible components.
There exists a dense quasi-compact open U ⊂ X and a U -admissible blowing up
X ′ → X such that the algebraic space X ′ has the resolution property.

Proof. By Limits of Spaces, Lemma 70.16.3 there exists a surjective, finite, and
finitely presented morphism f : Y → X where Y is a scheme and a quasi-compact
dense open U ⊂ X such that f−1(U)→ U is finite étale. By More on Morphisms,
Lemma 37.80.2 there is a quasi-compact dense open V ⊂ Y and a V -admissible
blowing up Y ′ → Y such that Y ′ has an ample family of invertible modules. After
shrinking U we may assume that f−1(U) ⊂ V (details omitted). Hence f ′ : Y ′ → X
is finite étale over U and in particular, the morphism (f ′)−1(U)→ U is finite locally
free. By Lemma 76.39.2 there is a U -admissible blowing up X ′ → X such that the
strict transform Y ′′ of Y ′ is finite locally free over X ′. Picture

Y ′′

��

g
// Y ′ // Y

��
X ′ // X

Since g : Y ′′ → Y ′ is a blowing up (Divisors on Spaces, Lemma 71.18.3) in the
inverse image of the center of X ′ → X, we see that g : Y ′′ → Y ′ is projective
and that there exists some g-ample invertible module on Y ′′. Hence by More
on Morphisms, Lemma 37.79.1 we see that Y ′′ has an ample family of invertible
modules. Hence Y ′′ has the resolution property, see Derived Categories of Schemes,
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Lemma 36.36.7. We conclude that X ′ has the resolution property by Derived
Categories of Spaces, Lemma 75.28.4. □

Lemma 76.57.2.0GV6 Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. There exists a t ≥ 0 and closed subspaces

X ⊃ Z0 ⊃ Z1 ⊃ . . . ⊃ Zt = ∅
such that Zi → X is of finite presentation, Z0 ⊂ X is a thickening, and for each
i = 0, . . . t − 1 there exists a (Zi \ Zi−1)-admissible blowing up Z ′

i → Zi such that
Z ′
i has the resolution property.

Proof. In this paragraph we use absolute Noetherian approximation to reduce to
the case of algebraic spaces of finite presentation over Spec(Z). We may view X
as an algebraic space over Spec(Z), see Spaces, Definition 65.16.2 and Properties
of Spaces, Definition 66.3.1. Thus we may apply Limits of Spaces, Proposition
70.8.1. It follows that we can find an affine morphism X → X0 with X0 of finite
presentation over Z. If we can prove the lemma for X0, then we can pull back
the stratification and the centers of the blowing ups to X and get the result for
X; this uses that the resolution property goes up along affine morphisms (Derived
Categories of Spaces, Lemma 75.28.3) and that the strict transform of an affine
morphism is affine – details omitted. This reduces us to the case discussed in the
next paragraph.
Assume X is of finite presentation over Z. Then X is Noetherian and |X| is a
Noetherian topological space (with finitely many irreducible components) of finite
dimension. Hence we may use induction on dim(|X|). By Lemma 76.57.1 there
exists a dense open U ⊂ X and a U -admissible blowing up X ′ → X such that X ′

has the resolution property. Set Z0 = X and let Z1 ⊂ X be the reduced closed
subspace with |Z1| = |X|\|U |. By induction we find an integer t ≥ 0 and a filtration

Z1 ⊃ Z1,0 ⊃ Z1,1 ⊃ . . . ⊃ Z1,t = ∅
by closed subspaces, where Z1,0 → Z1 is a thickening and there exist (Z1,i \Z1,i+1)-
admissible blowing ups Z ′

1,i → Z1,i such that Z ′
1,i has the resolution property. Since

Z1 is reduced, we have Z1 = Z1,0. Hence we can set Zi = Z1,i−1 and Z ′
i = Z ′

1,i−1
for i ≥ 1 and the lemma is proved. □
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CHAPTER 77

Flatness on Algebraic Spaces

0CU3 77.1. Introduction

0CU4 In this chapter, we discuss some advanced results on flat modules and flat mor-
phisms in the setting of algebraic spaces. We strongly encourage the reader to take
a look at the corresponding chapter in the setting of schemes first, see More on
Flatness, Section 38.1. A reference is the paper [GR71] by Raynaud and Gruson.

77.2. Impurities

0CV5 The section is the analogue of More on Flatness, Section 38.15.

Situation 77.2.1.0CV6 Let S be a scheme. Let f : X → Y be a finite type, decent1

morphism of algebraic spaces over S. Also, F is a finite type quasi-coherent OX -
module. Finally y ∈ |Y | is a point of Y .

In this situation consider a scheme T , a morphism g : T → Y , a point t ∈ T with
g(t) = y, a specialization t′ ⇝ t in T , and a point ξ ∈ |XT | lying over t′. Here
XT = T ×Y X. Picture

(77.2.1.1)0CV7

ξ_

��
t′ // t � //// y

XT

fT
��

// X

f

��
T

g // Y

Moreover, denote FT the pullback of F to XT .

Definition 77.2.2.0CV8 In Situation 77.2.1 we say a diagram (77.2.1.1) defines an im-
purity of F above y if ξ ∈ AssXT /T (FT ) and t ̸∈ fT ({ξ}). We will indicate this by
saying “let (g : T → Y, t′ ⇝ t, ξ) be an impurity of F above y”.

Another way to say this is: (g : T → Y, t′ ⇝ t, ξ) is an impurity of F above y if
there exists no specialization ξ ⇝ θ in the topological space |XT | with fT (θ) = t.
Specializations in non-decent algebraic spaces do not behave well. If the morphism
f is decent, then XT is a decent algebraic space for all morphisms g : T → Y as
above, see Decent Spaces, Definition 68.17.1.

Lemma 77.2.3.0CV9 In Situation 77.2.1. Let (g : T → S, t′ ⇝ t, ξ) be an impurity of F
above y. Assume T = limi∈I Ti is a directed limit of affine schemes over Y . Then
for some i the triple (Ti → Y, t′i ⇝ ti, ξi) is an impurity of F above y.

1Quasi-separated morphisms are decent, see Decent Spaces, Lemma 68.17.2. For any mor-
phism Spec(k) → Y where k is a field, the algebraic space Xk is of finite presentation over k
because it is of finite type over k and quasi-separated by Decent Spaces, Lemma 68.14.1.

5928
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Proof. The notation in the statement means this: Let pi : T → Ti be the projection
morphisms, let ti = pi(t) and t′i = pi(t′). Finally ξi ∈ |XTi | is the image of ξ. By
Divisors on Spaces, Lemma 71.4.7 we have ξi ∈ AssXTi/Ti(FTi). Thus the only
point is to show that ti ̸∈ fTi({ξi}) for some i.
Let Zi ⊂ XTi be the reduced induced scheme structure on {ξi} ⊂ |XTi | and let
Z ⊂ XT be the reduced induced scheme structure on {ξ} ⊂ |XT |. Then Z = limZi
by Limits of Spaces, Lemma 70.5.4 (the lemma applies because each XTi is decent).
Choose a field k and a morphism Spec(k)→ T whose image is t. Then

∅ = Z ×T Spec(k) = (limZi)×(limTi) Spec(k) = limZi ×Ti Spec(k)
because limits commute with fibred products (limits commute with limits). Each
Zi ×Ti Spec(k) is quasi-compact because XTi → Ti is of finite type and hence
Zi → Ti is of finite type. Hence Zi ×Ti Spec(k) is empty for some i by Limits of
Spaces, Lemma 70.5.3. Since the image of the composition Spec(k)→ T → Ti is ti
we obtain what we want. □

Impurities go up along flat base change.

Lemma 77.2.4.0CVA In Situation 77.2.1. Let (Y1, y1)→ (Y, y) be a morphism of pointed
algebraic spaces over S. Assume Y1 → Y is flat at y1. If (T → Y, t′ ⇝ t, ξ) is an
impurity of F above y, then there exists an impurity (T1 → Y1, t

′
1 ⇝ t1, ξ1) of the

pullback F1 of F to X1 = Y1 ×Y X over y1 such that T1 is étale over Y1 ×Y T .

Proof. Choose an étale morphism T1 → Y1 ×Y T where T1 is a scheme and let
t1 ∈ T1 be a point mapping to y1 and t. It is possible to find a pair (T1, t1) like this
by Properties of Spaces, Lemma 66.4.3. The morphism of schemes T1 → T is flat at
t1 (use Morphisms of Spaces, Lemma 67.30.4 and the definition of flat morphisms
of algebraic spaces) there exists a specialization t′1 ⇝ t1 lying over t′ ⇝ t, see
Morphisms, Lemma 29.25.9. Choose a point ξ1 ∈ |XT1 | mapping to t′1 and ξ with
ξ1 ∈ AssXT1/T1(FT1). point of Spec(κ(t′1)⊗κ(t′) κ(ξ)). This is possible by Divisors
on Spaces, Lemma 71.4.7. As the closure Z1 of {ξ1} in |XT1 | maps into the closure
of {ξ} in |XT | we conclude that the image of Z1 in |T1| cannot contain t1. Hence
(T1 → Y1, t

′
1 ⇝ t1, ξ1) is an impurity of F1 above Y1. □

Lemma 77.2.5.0CVB In Situation 77.2.1. Let y be a geometric point lying over y. Let
O = OY,y be the étale local ring of Y at y. Denote Y sh = Spec(O), Xsh =
X ×Y Y sh, and Fsh the pullback of F to Xsh. The following are equivalent

(1) there exists an impurity (Y sh → Y, y′ ⇝ y, ξ) of F above y,
(2) every point of AssXsh/Y sh(Fsh) specializes to a point of the closed fibre

Xy,
(3) there exists an impurity (T → Y, t′ ⇝ t, ξ) of F above y such that (T, t)→

(Y, y) is an étale neighbourhood, and
(4) there exists an impurity (T → Y, t′ ⇝ t, ξ) of F above y such that T → Y

is quasi-finite at t.

Proof. That parts (1) and (2) are equivalent is immediate from the definition.
Recall that O = OY,y is the filtered colimit of O(V ) over the category of étale
neighbourhoods (V, v) → (Y, y) (Properties of Spaces, Lemma 66.19.3). Moreover,
it suffices to consider affine étale neighbourhoods V . Hence Y sh = Spec(O) =
lim Spec(O(V )) = limV . Thus we see that (1) implies (3) by Lemma 77.2.3.
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Since an étale morphism is locally quasi-finite (Morphisms of Spaces, Lemma 67.39.5)
we see that (3) implies (4).
Finally, assume (4). After replacing T by an open neighbourhood of t we may
assume T → Y is locally quasi-finite. By Lemma 77.2.4 we find an impurity
(T1 → Y sh, t′1 ⇝ t1, ξ1) with T1 → T ×Y Y sh étale. Since an étale morphism
is locally quasi-finite and using Morphisms of Spaces, Lemma 67.27.4 and Mor-
phisms, Lemma 29.20.12 we see that T1 → Y sh is locally quasi-finite. As O is
strictly henselian, we can apply More on Morphisms, Lemma 37.41.1 to see that
after replacing T1 by an open and closed neighbourhood of t1 we may assume
that T1 → Y sh = Spec(O) is finite. Let θ ∈ |Xsh| be the image of ξ1 and let
y′ ∈ Spec(O) be the image of t′1. By Divisors on Spaces, Lemma 71.4.7 we see
that θ ∈ AssXsh/Y sh(Fsh). Since π : XT1 → Xsh is finite, it induces a closed map
|XT1 | → |Xsh|. Hence the image of {ξ1} is {θ}. It follows that (Y sh → Y, y′ ⇝ y, θ)
is an impurity of F above y and the proof is complete. □

77.3. Relatively pure modules

0CVC This section is the analogue of More on Flatness, Section 38.16.

Definition 77.3.1.0CVD In Situation 77.2.1.
(1) We say F is pure above y if none of the equivalent conditions of Lemma

77.2.5 hold.
(2) We say F is universally pure above y if there does not exist any impurity

of F above y.
(3) We say that X is pure above y if OX is pure above y.
(4) We say F is universally Y -pure, or universally pure relative to Y if F is

universally pure above y for every y ∈ |Y |.
(5) We say F is Y -pure, or pure relative to Y if F is pure above y for every

y ∈ |Y |.
(6) We say that X is Y -pure or pure relative to Y if OX is pure relative to

Y .

The obligatory lemmas follow.

Lemma 77.3.2.0CVE In Situation 77.2.1.
(1) F is universally pure above y, and
(2) for every morphism (Y ′, y′)→ (Y, y) of pointed algebraic spaces the pull-

back FY ′ is pure above y′.
In particular, F is universally pure relative to Y if and only if every base change
FY ′ of F is pure relative to Y ′.

Proof. This is formal. □

Lemma 77.3.3.0CVF In Situation 77.2.1. Let (Y ′, y′)→ (Y, y) be a morphism of pointed
algebraic spaces. If Y ′ → Y is quasi-finite at y′ and F is pure above y, then FY ′ is
pure above y′.

Proof. It (T → Y ′, t′ ⇝ t, ξ) is an impurity of FY ′ above y′ with T → Y ′ quasi-finite
at t, then (T → Y, t′ → t, ξ) is an impurity of F above y with T → Y quasi-finite at
t, see Morphisms of Spaces, Lemma 67.27.3. Hence the lemma follows immediately
from the definition of purity. □
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Purity satisfies flat descent.
Lemma 77.3.4.0CVG In Situation 77.2.1. Let (Y1, y1)→ (Y, y) be a morphism of pointed
algebraic spaces. Assume Y1 → Y is flat at y1.

(1) If FY1 is pure above y1, then F is pure above y.
(2) If FY1 is universally pure above y1, then F is universally pure above y.

Proof. This is true because impurities go up along a flat base change, see Lemma
77.2.4. For example part (1) follows because by any impurity (T → Y, t′ ⇝ t, ξ)
of F above y with T → Y quasi-finite at t by the lemma leads to an impurity
(T1 → Y1, t

′
1 ⇝ t1, ξ1) of the pullback F1 of F to X1 = Y1 ×Y X over y1 such that

T1 is étale over Y1×Y T . Hence T1 → Y1 is quasi-finite at t1 because étale morphisms
are locally quasi-finite and compositions of locally quasi-finite morphisms are locally
quasi-finite (Morphisms of Spaces, Lemmas 67.39.5 and 67.27.3). Similarly for part
(2). □

Lemma 77.3.5.0CVH In Situation 77.2.1. Let i : Z → X be a closed immersion and
assume that F = i∗G for some finite type, quasi-coherent sheaf G on Z. Then G is
(universally) pure above y if and only if F is (universally) pure above y.
Proof. This follows from Divisors on Spaces, Lemma 71.4.9. □

Lemma 77.3.6.0CVI In Situation 77.2.1.
(1) If the support of F is proper over Y , then F is universally pure relative

to Y .
(2) If f is proper, then F is universally pure relative to Y .
(3) If f is proper, then X is universally pure relative to Y .

Proof. First we reduce (1) to (2). Namely, let Z ⊂ X be the scheme theoretic
support of F (Morphisms of Spaces, Definition 67.15.4). Let i : Z → X be the
corresponding closed immersion and write F = i∗G for some finite type quasi-
coherent OZ-module G. In case (1) Z → Y is proper by assumption. Thus by
Lemma 77.3.5 case (1) reduces to case (2).
Assume f is proper. Let (g : T → Y, t′ ⇝ t, ξ) be an impurity of F above y. Since
f is proper, it is universally closed. Hence fT : XT → T is closed. Since fT (ξ) = t′

this implies that t ∈ f({ξ}) which is a contradiction. □

77.4. Flat finite type modules

0CVJ Please compare with More on Flatness, Sections 38.10, 38.13, and 38.26. Most of
these results have immediate consequences of algebraic spaces by étale localization.
Lemma 77.4.1.0CWJ Let S be a scheme. Let X → Y be a finite type morphism of
algebraic spaces over S. Let F be a finite type quasi-coherent OX -module. Let
y ∈ |Y | be a point. There exists an étale morphism (Y ′, y′) → (Y, y) with Y ′ an
affine scheme and étale morphisms hi : Wi → XY ′ , i = 1, . . . , n such that for each
i there exists a complete dévissage of Fi/Wi/Y

′ over y′, where Fi is the pullback
of F to Wi and such that |(XY ′)y′ | ⊂

⋃
hi(Wi).

Proof. The question is étale local on Y hence we may assume Y is an affine scheme.
Then X is quasi-compact, hence we can choose an affine scheme X ′ and a surjective
étale morphism X ′ → X. Then we may apply More on Flatness, Lemma 38.5.8 to
X ′ → Y , (X ′ → Y )∗F , and y to get what we want. □
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Lemma 77.4.2.0CWK Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let F be a quasi-coherent OX -module
of finite type. Let y ∈ |Y | and F = f−1({y}) ⊂ |X|. Then the set

{x ∈ F | F flat over Y at x}

is open in F .

Proof. Choose a scheme V , a point v ∈ V , and an étale morphism V → Y mapping
v to y. Choose a scheme U and a surjective étale morphism U → V ×Y X. Then
|Uv| → F is an open continuous map of topological spaces as |U | → |X| is continuous
and open. Hence the result follows from the case of schemes which is More on
Flatness, Lemma 38.10.4. □

Lemma 77.4.3.0CVK Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let x ∈ |X| with image y ∈ |Y |. Let
F be a finite type quasi-coherent sheaf on X. Let G be a quasi-coherent sheaf on
Y . If F is flat at x over Y , then

x ∈WeakAssX(F ⊗OX
f∗G)⇔ y ∈WeakAssY (G) and x ∈ AssX/Y (F).

Proof. Choose a commutative diagram

U

��

g
// V

��
X

f // Y

where U and V are schemes and the vertical arrows are surjective étale. Choose
u ∈ U mapping to x. Let E = F|U and H = G|V . Let v ∈ V be the image of u.
Then x ∈ WeakAssX(F ⊗OX

f∗G) if and only if u ∈ WeakAssX(E ⊗OX
g∗H) by

Divisors on Spaces, Definition 71.2.2. Similarly, y ∈WeakAssY (G) if and only if v ∈
WeakAssV (H). Finally, we have x ∈ AssX/Y (F) if and only if u ∈ AssUv (E|Uv ) by
Divisors on Spaces, Definition 71.4.5. Observe that flatness of F at x is equivalent
to flatness of E at u, see Morphisms of Spaces, Definition 67.31.2. The equivalence
for g : U → V , E , H, u, and v is More on Flatness, Lemma 38.13.3. □

Lemma 77.4.4.0CVL Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let F be a finite type quasi-coherent
sheaf on X which is flat over Y . Let G be a quasi-coherent sheaf on Y . Then we
have

WeakAssX(F ⊗OX
f∗G) = AssX/Y (F) ∩ |f |−1(WeakAssY (G))

Proof. Immediate consequence of Lemma 77.4.3. □

Theorem 77.4.5.0DLR Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module. Assume

(1) X → Y is locally of finite presentation,
(2) F is an OX -module of finite type, and
(3) the set of weakly associated points of Y is locally finite in Y .

Then U = {x ∈ |X| : F flat at x over Y } is open in X and F|U is an OU -module
of finite presentation and flat over Y .
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Proof. Condition (3) means that if V → Y is a surjective étale morphism where V
is a scheme, then the weakly associated points of V are locally finite on the scheme
V . (Recall that the weakly associated points of V are exactly the inverse image of
the weakly associated points of Y by Divisors on Spaces, Definition 71.2.2.) Having
said this the question is étale local on X and Y , hence we may assume X and Y
are schemes. Thus the result follows from More on Flatness, Theorem 38.13.6. □

Lemma 77.4.6.0CVW Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf on X. Let y ∈ |Y |. Set F =
f−1({y}) ⊂ |X|. Assume that

(1) f is of finite type,
(2) F is of finite type, and
(3) F is flat over Y at all x ∈ F .

Then there exists an étale morphism (Y ′, y′)→ (Y, y) where Y ′ is a scheme and a
commutative diagram of algebraic spaces

X

��

X ′
g

oo

��
Y Spec(OY ′,y′)oo

such that X ′ → X ×Y Spec(OY ′,y′) is étale, |X ′
y′ | → F is surjective, X ′ is affine,

and Γ(X ′, g∗F) is a free OY ′,y′ -module.

Proof. Choose an étale morphism (Y ′, y′) → (Y, y) where Y ′ is an affine scheme.
Then X×Y Y ′ is quasi-compact. Choose an affine scheme X ′ and a surjective étale
morphism X ′ → X ×Y Y ′. Picture

X

��

X ′
g

oo

��
Y Y ′oo

Then F ′ = g∗F is flat over Y ′ at all points of X ′
y′ , see Morphisms of Spaces, Lemma

67.31.3. Hence we can apply the lemma in the case of schemes (More on Flatness,
Lemma 38.12.11) to the morphism X ′ → Y ′, the quasi-coherent sheaf g∗F , and
the point y′. This gives an étale morphism (Y ′′, y′′)→ (Y ′, y′) and a commutative
diagram

X

��

X ′
g

oo

��

X ′′
g′

oo

��
Y Y ′oo Spec(OY ′′,y′′)oo

To get what we want we take (Y ′′, y′′)→ (Y, y) and g ◦ g′ : X ′′ → X. □

Theorem 77.4.7.0CWL Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let F be a quasi-coherent OX -module
of finite type. Let x ∈ |X| with image y ∈ |Y |. Set F = f−1({y}) ⊂ |X|. Consider
the conditions

(1) F is flat at x over Y , and
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(2) for every x′ ∈ F ∩ AssX/Y (F) which specializes to x we have that F is
flat at x′ over Y .

Then we always have (2) ⇒ (1). If X and Y are decent, then (1) ⇒ (2).

Proof. Assume (2). Choose a scheme V and a surjective étale morphism V → Y .
Choose a scheme U and a surjective étale morphism U → V ×Y X. Choose a point
u ∈ U mapping to x. Let v ∈ V be the image of u. We will deduce the result from
the corresponding result for F|U = (U → X)∗F and the point u. Uv. This works
because AssU/V (F|U )∩|Uv| is equal to AssUv (F|Uv ) and equal to the inverse image
of F ∩AssX/Y (F). Since the map |Uv| → F is continuous we see that specializations
in |Uv| map to specializations in F , hence condition (2) is inherited by U → V ,
F|U , and the point u. Thus More on Flatness, Theorem 38.26.1 applies and we
conclude that (1) holds.
If Y is decent, then we can represent y by a quasi-compact monomorphism Spec(k)→
Y (by definition of decent spaces, see Decent Spaces, Definition 68.6.1). Then
F = |Xk|, see Decent Spaces, Lemma 68.18.6. If in addition X is decent (or more
generally if f is decent, see Decent Spaces, Definition 68.17.1 and Decent Spaces,
Lemma 68.17.3), then Xy is a decent space too. Furthermore, specializations in F
can be lifted to specializations in Uv → Xy, see Decent Spaces, Lemma 68.12.2.
Having said this it is clear that the reverse implication holds, because it holds in
the case of schemes. □

Lemma 77.4.8.0CWM Let S be a local scheme with closed point s. Let f : X → S be a
morphism from an algebraic space X to S which is locally of finite type. Let F be
a finite type quasi-coherent OX -module. Assume that

(1) every point of AssX/S(F) specializes to a point of the closed fibre Xs
2,

(2) F is flat over S at every point of Xs.
Then F is flat over S.

Proof. This is immediate from the fact that it suffices to check for flatness at points
of the relative assassin of F over S by Theorem 77.4.7. □

77.5. Flat finitely presented modules

0CVX This is the analogue of More on Flatness, Section 38.12.

Proposition 77.5.1.0CVY Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf on X. Let x ∈ |X| with image
y ∈ |Y |. Assume that

(1) f is locally of finite presentation,
(2) F is of finite presentation, and
(3) F is flat at x over Y .

Then there exists a commutative diagram of pointed schemes

(X,x)

��

(X ′, x′)
g

oo

��
(Y, y) (Y ′, y′)oo

2For example this holds if f is finite type and F is pure along Xs, or if f is proper.
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whose horizontal arrows are étale such thatX ′, Y ′ are affine and such that Γ(X ′, g∗F)
is a projective Γ(Y ′,OY ′)-module.

Proof. As formulated this proposition immmediately reduces to the case of schemes,
which is More on Flatness, Proposition 38.12.4. □

Lemma 77.5.2.0CVZ Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf on X. Let y ∈ |Y |. Set F =
f−1({y}) ⊂ |X|. Assume that

(1) f is of finite presentation,
(2) F is of finite presentation, and
(3) F is flat over Y at all x ∈ F .

Then there exists a commutative diagram of algebraic spaces

X

��

X ′
g

oo

��
Y Y ′hoo

such that h and g are étale, there is a point y′ ∈ |Y ′| mapping to y, we have
F ⊂ g(|X ′|), the algebraic spaces X ′, Y ′ are affine, and Γ(X ′, g∗F) is a projective
Γ(Y ′,OY ′)-module.

Proof. As formulated this lemma immmediately reduces to the case of schemes,
which is More on Flatness, Lemma 38.12.5. □

77.6. A criterion for purity

0CW0 This section is the analogue of More on Flatness, Section 38.18.

Lemma 77.6.1.0CW1 Let S be a scheme. Let X be a decent algebraic space locally of
finite type over S. Let F be a finite type, quasi-coherent OX -module. Let s ∈ S
such that F is flat over S at all points of Xs. Let x′ ∈ AssX/S(F). If the closure
of {x′} in |X| meets |Xs|, then the closure meets AssX/S(F) ∩ |Xs|.

Proof. Observe that |Xs| ⊂ |X| is the set of points of |X| lying over s ∈ S, see
Decent Spaces, Lemma 68.18.6. Let t ∈ |Xs| be a specialization of x′ in |X|. Choose
an affine scheme U and a point u ∈ U and an étale morphism φ : U → X mapping u
to t. By Decent Spaces, Lemma 68.12.2 we can choose a specialization u′ ⇝ u with
u′ mapping to x′. Set g = f ◦φ. Observe that s′ = g(u′) = f(x′) specializes to s. By
our definition of AssX/S(F) we have u′ ∈ AssU/S(φ∗F). By the schemes version of
this lemma (More on Flatness, Lemma 38.18.1) we see that there is a specialization
u′ ⇝ u with u ∈ AssUs(φ∗Fs) = AssU/S(φ∗F) ∩ Us. Hence x = φ(u) ∈ AssX/S(F)
lies over s and the lemma is proved. □

Lemma 77.6.2.0CW2 Let Y be an algebraic space over a scheme S. Let g : X ′ → X be
a morphism of algebraic spaces over Y with X locally of finite type over Y . Let F
be a quasi-coherent OX -module. If AssX/Y (F) ⊂ g(|X ′|), then for any morphism
Z → Y we have AssXZ/Z(FZ) ⊂ gZ(|X ′

Z |).

Proof. By Properties of Spaces, Lemma 66.4.3 the map |X ′
Z | → |XZ | ×|X| |X ′| is

surjective as X ′
Z is equal to XZ ×X X ′. By Divisors on Spaces, Lemma 71.4.7 the

map |XZ | → |X| sends AssXZ/Z(FZ) into AssX/Y (F). The lemma follows. □
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Lemma 77.6.3.0CW3 Let Y be an algebraic space over a scheme S. Let g : X ′ → X
be an étale morphism of algebraic spaces over Y . Assume the structure morphisms
X ′ → Y and X → Y are decent and of finite type. Let F be a finite type, quasi-
coherent OX -module. Let y ∈ |Y |. Set F = f−1({y}) ⊂ |X|.

(1) If AssX/Y (F) ⊂ g(|X ′|) and g∗F is (universally) pure above y, then F is
(universally) pure above y.

(2) If F is pure above y, g(|X ′|) contains F , and Y is affine local with closed
point y, then AssX/Y (F) ⊂ g(|X ′|).

(3) If F is pure above y, F is flat at all points of F , g(|X ′|) contains AssX/Y (F)∩
F , and Y is affine local with closed point y, then AssX/Y (F) ⊂ g(|X ′|).

(4) Add more here.

Proof. The assumptions on X → Y and X ′ → Y guarantee that we may apply the
material in Sections 77.2 and 77.3 to these morphisms and the sheaves F and g∗F .
Since g is étale we see that AssX′/Y (g∗F) is the inverse image of AssX/Y (F) and
the same remains true after base change.
Proof of (1). Assume AssX/Y (F) ⊂ g(|X ′|). Suppose that (T → Y, t′ ⇝ t, ξ) is an
impurity of F above y. Since AssXT /T (FT ) ⊂ gT (|X ′

T |) by Lemma 77.6.2 we can
choose a point ξ′ ∈ |X ′

T | mapping to ξ. By the above we see that (T → Y, t′ ⇝ t, ξ′)
is an impurity of g∗F above y′. This implies (1) is true.
Proof of (2). This follows from the fact that g(|X ′|) is open in |X| and the fact
that by purity every point of AssX/Y (F) specializes to a point of F .
Proof of (3). This follows from the fact that g(|X ′|) is open in |X| and the fact
that by purity combined with Lemma 77.6.1 every point of AssX/Y (F) specializes
to a point of AssX/Y (F) ∩ F . □

Lemma 77.6.4.0CW4 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module. Let y ∈ |Y |. Assume

(1) f is decent and of finite type,
(2) F is of finite type,
(3) F is flat over Y at all points lying over y, and
(4) F is pure above y.

Then F is universally pure above y.

Proof. Consider the morphism Spec(OY,y)→ Y . This is a flat morphism from the
spectrum of a stricly henselian local ring which maps the closed point to y. By
Lemma 77.3.4 we reduce to the case described in the next paragraph.
Assume Y is the spectrum of a strictly henselian local ring R with closed point y.
By Lemma 77.4.6 there exists an étale morphism g : X ′ → X with g(|X ′|) ⊃ |Xy|,
with X ′ affine, and with Γ(X ′, g∗F) a free R-module. Then g∗F is universally pure
relative to Y , see More on Flatness, Lemma 38.17.4. Hence it suffices to prove that
g(|X ′|) contains AssX/Y (F) by Lemma 77.6.3 part (1). This in turn follows from
Lemma 77.6.3 part (2). □

Lemma 77.6.5.0CW5 Let S be a scheme. Let f : X → Y be a decent, finite type
morphism of algebraic spaces over S. Let F be a finite type quasi-coherent OX -
module. Assume F is flat over Y . In this case F is pure relative to Y if and only
if F is universally pure relative to Y .
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Proof. Immediate consequence of Lemma 77.6.4 and the definitions. □

Lemma 77.6.6.0CW6 Let Y be an algebraic space over a scheme S. Let g : X ′ → X
be a flat morphism of algebraic spaces over Y with X locally of finite type over
Y . Let F be a finite type quasi-coherent OX -module which is flat over Y . If
AssX/Y (F) ⊂ g(|X ′|) then the canonical map

F −→ g∗g
∗F

is injective, and remains injective after any base change.

Proof. The final assertion means that FZ → (gZ)∗g
∗
ZFZ is injective for any mor-

phism Z → Y . Since the assumption on the relative assassin is preserved by base
change (Lemma 77.6.2) it suffices to prove the injectivity of the displayed arrow.

Let K = Ker(F → g∗g
∗F). Our goal is to prove that K = 0. In order to do this

it suffices to prove that WeakAssX(K) = ∅, see Divisors on Spaces, Lemma 71.2.5.
We have WeakAssX(K) ⊂ WeakAssX(F), see Divisors on Spaces, Lemma 71.2.4.
As F is flat we see from Lemma 77.4.4 that WeakAssX(F) ⊂ AssX/Y (F). By
assumption any point x of AssX/Y (F) is the image of some x′ ∈ |X ′|. Since g is
flat the local ring map OX,x → OX′,x′ is faithfully flat, hence the map

Fx −→ (g∗F)x′ = Fx ⊗OX,x
OX′,x′

is injective (see Algebra, Lemma 10.82.11). Since the displayed arrow factors
through Fx → (g∗g

∗F)x, we conclude that Kx = 0. Hence x cannot be a weakly
associated point of K and we win. □

77.7. Flattening functors

083E This section is the analogue of More on Flatness, Section 38.20. We urge the reader
to skip this section on a first reading.

Situation 77.7.1.083F Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let u : F → G be a homomorphism of quasi-coherent OX -modules.
For any scheme T over B we will denote uT : FT → GT the base change of u to T , in
other words, uT is the pullback of u via the projection morphism XT = X ×B T →
X. In this situation we can consider the functor

(77.7.1.1)083G Fiso : (Sch/B)opp −→ Sets, T −→
{
{∗} if uT is an isomorphism,
∅ else.

There are variants Finj , Fsurj , Fzero where we ask that uT is injective, surjective,
or zero.

In Situation 77.7.1 we sometimes think of the functors Fiso, Finj , Fsurj , and Fzero
as functors (Sch/S)opp → Sets endowed with a morphism Fiso → B, Finj → B,
Fsurj → B, and Fzero → B. Namely, if T is a scheme over S, then an element
h ∈ Fiso(T ) is a morphism h : T → B such that the base change of u via h is an
isomorphism. In particular, when we say that Fiso is an algebraic space, we mean
that the corresponding functor (Sch/S)opp → Sets is an algebraic space.

Lemma 77.7.2.083H In Situation 77.7.1. Each of the functors Fiso, Finj , Fsurj , Fzero
satisfies the sheaf property for the fpqc topology.
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Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over B. Set Xi = XTi =
X ×S Ti and ui = uTi . Note that {Xi → XT }i∈I is an fpqc covering of XT , see
Topologies on Spaces, Lemma 73.9.3. In particular, for every x ∈ |XT | there exists
an i ∈ I and an xi ∈ |Xi| mapping to x. Since OXT ,x → OXi,xi is flat, hence
faithfully flat (see Morphisms of Spaces, Section 67.30). we conclude that (ui)xi is
injective, surjective, bijective, or zero if and only if (uT )x is injective, surjective,
bijective, or zero. The lemma follows. □

Lemma 77.7.3.083I In Situation 77.7.1 let X ′ → X be a flat morphism of algebraic
spaces. Denote u′ : F ′ → G′ the pullback of u to X ′. Denote F ′

iso, F ′
inj , F ′

surj ,
F ′
zero the functors on Sch/B associated to u′.

(1) If G is of finite type and the image of |X ′| → |X| contains the support of
G, then Fsurj = F ′

surj and Fzero = F ′
zero.

(2) If F is of finite type and the image of |X ′| → |X| contains the support of
F , then Finj = F ′

inj and Fzero = F ′
zero.

(3) If F and G are of finite type and the image of |X ′| → |X| contains the
supports of F and G, then Fiso = F ′

iso.

Proof. let v : H → E be a map of quasi-coherent modules on an algebraic space
Y and let φ : Y ′ → Y be a surjective flat morphism of algebraic spaces, then v is
an isomorphism, injective, surjective, or zero if and only if φ∗v is an isomorphism,
injective, surjective, or zero. Namely, for every y ∈ |Y | there exists a y′ ∈ |Y ′| and
the map of local rings OY,y → OY ′,y′ is faithfully flat (see Morphisms of Spaces,
Section 67.30). Of course, to check for injectivity or being zero it suffices to look
at the points in the support of H, and to check for surjectivity it suffices to look
at points in the support of E . Moreover, under the finite type assumptions as in
the statement of the lemma, taking the supports commutes with base change, see
Morphisms of Spaces, Lemma 67.15.2. Thus the lemma is clear. □

Recall that we’ve defined the scheme theoretic support of a finite type quasi-
coherent module in Morphisms of Spaces, Definition 67.15.4.

Lemma 77.7.4.083J In Situation 77.7.1.
(1) If G is of finite type and the scheme theoretic support of G is quasi-compact

over B, then Fsurj is limit preserving.
(2) If F of finite type and the scheme theoretic support of F is quasi-compact

over B, then Fzero is limit preserving.
(3) If F is of finite type, G is of finite presentation, and the scheme theo-

retic supports of F and G are quasi-compact over B, then Fiso is limit
preserving.

Proof. Proof of (1). Let i : Z → X be the scheme theoretic support of G and think
of G as a finite type quasi-coherent module on Z. We may replace X by Z and u by
the map i∗F → G (details omitted). Hence we may assume f is quasi-compact and G
of finite type. Let T = limi∈I Ti be a directed limit of affine B-schemes and assume
that uT is surjective. Set Xi = XTi = X×S Ti and ui = uTi : Fi = FTi → Gi = GTi .
To prove (1) we have to show that ui is surjective for some i. Pick 0 ∈ I and replace
I by {i | i ≥ 0}. Since f is quasi-compact we see X0 is quasi-compact. Hence
we may choose a surjective étale morphism φ0 : W0 → X0 where W0 is an affine
scheme. Set W = W0×T0 T and Wi = W0×T0 Ti for i ≥ 0. These are affine schemes
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endowed with a surjective étale morphisms φ : W → XT and φi : Wi → Xi. Note
that W = limWi. Hence φ∗uT is surjective and it suffices to prove that φ∗

i ui is
surjective for some i. Thus we have reduced the problem to the affine case which
is Algebra, Lemma 10.127.5 part (2).

Proof of (2). Assume F is of finite type with scheme theoretic support Z ⊂ B
quasi-compact over B. Let T = limi∈I Ti be a directed limit of affine B-schemes
and assume that uT is zero. Set Xi = Ti×BX and denote ui : Fi → Gi the pullback.
Choose 0 ∈ I and replace I by {i | i ≥ 0}. Set Z0 = Z ×X X0. By Morphisms
of Spaces, Lemma 67.15.2 the support of Fi is |Z0|. Since |Z0| is quasi-compact
we can find an affine scheme W0 and an étale morphism W0 → X0 such that
|Z0| ⊂ Im(|W0| → |X0|). Set W = W0 ×T0 T and Wi = W0 ×T0 Ti for i ≥ 0. These
are affine schemes endowed with étale morphisms φ : W → XT and φi : Wi → Xi.
Note that W = limWi and that the support of FT and Fi is contained in the image
of |W | → |XT | and |Wi| → |Xi|. Now φ∗uT is injective and it suffices to prove that
φ∗
i ui is injective for some i. Thus we have reduced the problem to the affine case

which is Algebra, Lemma 10.127.5 part (1).

Proof of (3). This can be proven in exactly the same manner as in the previous two
paragraphs using Algebra, Lemma 10.127.5 part (3). We can also deduce it from
(1) and (2) as follows. Let T = limi∈I Ti be a directed limit of affine B-schemes
and assume that uT is an isomorphism. By part (1) there exists an 0 ∈ I such
that uT0 is surjective. Set K = Ker(uT0) and consider the map of quasi-coherent
modules v : K → FT0 . For i ≥ 0 the base change vTi is zero if and only if ui is
an isomorphism. Moreover, vT is zero. Since GT0 is of finite presentation, FT0 is of
finite type, and uT0 is surjective we conclude that K is of finite type (Modules on
Sites, Lemma 18.24.1). It is clear that the support of K is contained in the support
of FT0 which is quasi-compact over T0. Hence we can apply part (2) to see that vTi
is zero for some i. □

Lemma 77.7.5.0CVM In Situation 77.7.1 suppose given an exact sequence

F u−→ G v−→ H → 0

Then we have Fv,iso = Fu,zero with obvious notation.

Proof. Since pullback is right exact we see that FT → GT → HT → 0 is exact for
every scheme T over B. Hence uT is surjective if and only if vT is an isomorphism.

□

Lemma 77.7.6.0CW7 In Situation 77.7.1 suppose given an affine morphism i : Z → X
and a quasi-coherent OZ-module H such that G = i∗H. Let v : i∗F → H be the
map adjoint to u. Then

(1) Fv,zero = Fu,zero, and
(2) if i is a closed immersion, then Fv,surj = Fu,surj .

Proof. Let T be a scheme over B. Denote iT : ZT → XT the base change of i and
HT the pullback of H to ZT . Observe that (i∗F)T = i∗TFT and iT,∗HT = (i∗H)T .
The first statement follows from commutativity of pullbacks and the second from
Cohomology of Spaces, Lemma 69.11.1. Hence we see that uT and vT are adjoint
maps as well. Thus uT = 0 if and only if vT = 0. This proves (1). In case (2) we
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see that uT is surjective if and only if vT is surjective because uT factors as

FT → iT,∗i
∗
TFT

iT,∗vT−−−−→ iT,∗HT
and the fact that iT,∗ is an exact functor fully faithfully embedding the category of
quasi-coherent modules on ZT into the category of quasi-coherent OXT -modules.
See Morphisms of Spaces, Lemma 67.14.1. □

Lemma 77.7.7.0CW8 In Situation 77.7.1 suppose given an affine morphism g : X → X ′.
Set u′ = f∗u : f∗F → f∗G. Then Fu,iso = Fu′,iso, Fu,inj = Fu′,inj , Fu,surj =
Fu′,surj , and Fu,zero = Fu′,zero.

Proof. By Cohomology of Spaces, Lemma 69.11.1 we have gT,∗uT = u′
T . Moreover,

gT,∗ : QCoh(OXT ) → QCoh(OX) is a faithful, exact functor reflecting isomor-
phisms, injective maps, and surjective maps. □

Situation 77.7.8.0CWX Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module. For any scheme T over Y
we will denote FT the base change of F to T , in other words, FT is the pullback
of F via the projection morphism XT = X ×Y T → X. Since the base change of a
flat module is flat we obtain a functor

(77.7.8.1)0CWY Fflat : (Sch/Y )opp −→ Sets, T −→
{
{∗} if FT is flat over T,
∅ else.

In Situation 77.7.8 we sometimes think of Fflat as a functor (Sch/S)opp → Sets
endowed with a morphism Fflat → Y . Namely, if T is a scheme over S, then an
element h ∈ Fflat(T ) is a morphism h : T → Y such that the base change of F
via h is flat over T . In particular, when we say that Fflat is an algebraic space, we
mean that the corresponding functor (Sch/S)opp → Sets is an algebraic space.

Lemma 77.7.9.0CWZ In Situation 77.7.8.
(1) The functor Fflat satisfies the sheaf property for the fpqc topology.
(2) If f is quasi-compact and locally of finite presentation and F is of finite

presentation, then the functor Fflat is limit preserving.

Proof. Part (1) follows from the following statement: If T ′ → T is a surjective
flat morphism of algebraic spaces over Y , then FT ′ is flat over T ′ if and only if
FT is flat over T , see Morphisms of Spaces, Lemma 67.31.3. Part (2) follows from
Limits of Spaces, Lemma 70.6.12 if f is also quasi-separated (i.e., f is of finite
presentation). For the general case, first reduce to the case where the base is affine
and then cover X by finitely many affines to reduce to the quasi-separated case.
Details omitted. □

77.8. Making a map zero

0CW9 This section has no analogue in the corresponding chapter on schemes.

Situation 77.8.1.0CWA Let S = Spec(R) be an affine scheme. Let X be an algebraic
space over S. Let u : F → G be a map of quasi-coherent OX -modules. Assume G
flat over S.

Lemma 77.8.2.083K In Situation 77.8.1. Let T → S be a quasi-compact morphism
of schemes such that the base change uT is zero. Then exists a closed subscheme
Z ⊂ S such that (a) T → S factors through Z and (b) the base change uZ is
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zero. If F is a finite type OX -module and the scheme theoretic support of F is
quasi-compact, then we can take Z → S of finite presentation.

Proof. Let U → X be a surjective étale morphism of algebraic spaces where U =∐
Ui is a disjoint union of affine schemes (see Properties of Spaces, Lemma 66.6.1).

By Lemma 77.7.3 we see that we may replace X by U . In other words, we may
assume that X =

∐
Xi is a disjoint union of affine schemes Xi. Suppose that we can

prove the lemma for ui = u|Xi . Then we find a closed subscheme Zi ⊂ S such that
T → S factors through Zi and ui,Zi is zero. If Zi = Spec(R/Ii) ⊂ Spec(R) = S,
then taking Z = Spec(R/

∑
Ii) works. Thus we may assume that X = Spec(A) is

affine.

Choose a finite affine open covering T = T1 ∪ . . . ∪ Tm. It is clear that we may
replace T by

∐
j=1,...,m Tj . Hence we may assume T is affine. Say T = Spec(R′).

Let u : M → N be the homomorphisms of A-modules corresponding to u : F → G.
Then N is a flat R-module as G is flat over S. The assumption of the lemma means
that the composition

M ⊗R R′ → N ⊗R R′

is zero. Let z ∈M . By Lazard’s theorem (Algebra, Theorem 10.81.4) and the fact
that ⊗ commutes with colimits we can find free R-module Fz, an element z̃ ∈ Fz,
and a map Fz → N such that u(z) is the image of z̃ and z̃ maps to zero in Fz⊗RR′.
Choose a basis {ez,α} of Fz and write z̃ =

∑
fz,αez,α with fz,α ∈ R. Let I ⊂ R

be the ideal generated by the elements fz,α with z ranging over all elements of M .
By construction I maps to zero in R′ and the elements z̃ map to zero in Fz/IFz
whence in N/IN . Thus Z = Spec(R/I) is a solution to the problem in this case.

Assume F is of finite type with quasi-compact scheme theoretic support. Write
Z = Spec(R/I). Write I =

⋃
Iλ as a filtered union of finitely generated ideals. Set

Zλ = Spec(R/Iλ), so Z = colimZλ. Since uZ is zero, we see that uZλ is zero for
some λ by Lemma 77.7.4. This finishes the proof of the lemma. □

Lemma 77.8.3.083L Let A be a ring. Let u : M → N be a map of A-modules. If N is
projective as an A-module, then there exists an ideal I ⊂ A such that for any ring
map φ : A→ B the following are equivalent

(1) u⊗ 1 : M ⊗A B → N ⊗A B is zero, and
(2) φ(I) = 0.

Proof. As N is projective we can find a projective A-module C such that F = N⊕C
is a free R-module. By replacing u by u⊕ 1 : F = M ⊕C → N ⊕C we see that we
may assume N is free. In this case let I be the ideal of A generated by coefficients
of all the elements of Im(u) with respect to some (fixed) basis of N . □

Lemma 77.8.4.0CWB In Situation 77.8.1. Let T ⊂ S be a subset. Let s ∈ S be in the
closure of T . For t ∈ T , let ut be the pullback of u to Xt and let us be the pullback
of u to Xs. If X is locally of finite presentation over S, G is of finite presentation3,
and ut = 0 for all t ∈ T , then us = 0.

3It would suffice if X is locally of finite type over S and G is finitely presented relative to
S, but this notion hasn’t yet been defined in the setting of algebraic spaces. The definition for
schemes is given in More on Morphisms, Section 37.58.
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Proof. To check whether us is zero, is étale local on the fibre Xs. Hence we may
pick a point x ∈ |Xs| ⊂ |X| and check in an étale neighbourhood. Choose

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

as in Proposition 77.5.1. Let T ′ ⊂ S′ be the inverse image of T . Observe that s′

is in the closure of T ′ because S′ → S is open. Hence we reduce to the algebra
problem described in the next paragraph.

We have an R-module map u : M → N such that N is projective as an R-module
and such that ut : M ⊗R κ(t)→ N ⊗R κ(t) is zero for each t ∈ T . Problem: show
that us = 0. Let I ⊂ R be the ideal defined in Lemma 77.8.3. Then I maps to zero
in κ(t) for all t ∈ T . Hence T ⊂ V (I). Since s is in the closure of T we see that
s ∈ V (I). Hence us = 0. □

It would be interesting to find a “simple” direct proof of either Lemma 77.8.5 or
Lemma 77.8.6 using arguments like those used in Lemmas 77.8.2 and 77.8.4. A
“classical” proof of this lemma when f : X → B is a projective morphism and B a
Noetherian scheme would be: (a) choose a relatively ample invertible sheaf OX(1),
(b) set un : f∗F(n)→ f∗G(n), (c) observe that f∗G(n) is a finite locally free sheaf
for all n ≫ 0, and (d) Fzero is represented by the vanishing locus of un for some
n≫ 0.

Lemma 77.8.5.0CWC In Situation 77.7.1. Assume
(1) f is of finite presentation, and
(2) G is of finite presentation, flat over B, and pure relative to B.

Then Fzero is an algebraic space and Fzero → B is a closed immersion. If F is of
finite type, then Fzero → B is of finite presentation.

Proof. By Lemma 77.6.5 the module G is universally pure relative to B. In order
to prove that Fzero is an algebraic space, it suffices to show that Fzero → B is
representable, see Spaces, Lemma 65.11.3. Let B′ → B be a morphism where B′

is a scheme and let u′ : F ′ → G′ be the pullback of u to X ′ = XB′ . Then the
associated functor F ′

zero equals Fzero ×B B′. This reduces us to the case that B is
a scheme.

Assume B is a scheme. We will show that Fzero is representable by a closed sub-
scheme of B. By Lemma 77.7.2 and Descent, Lemmas 35.37.2 and 35.39.1 the
question is local for the étale topology on B. Let b ∈ B. We first replace B by an
affine neighbourhood of b. Choose a diagram

X

��

X ′
g

oo

��
B B′oo
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and b′ ∈ B′ mapping to b ∈ B as in Lemma 77.5.2. As we are working étale locally,
we may replace B by B′ and assume that we have a diagram

X

  

X ′
g

oo

~~
B

with B and X ′ affine such that Γ(X ′, g∗G) is a projective Γ(B,OB)-module and
g(|X ′|) ⊃ |Xb|. Let U ⊂ X be the open subspace with |U | = g(|X ′|). By Divisors
on Spaces, Lemma 71.4.10 the set

E = {t ∈ B : AssXt(Gt) ⊂ |Ut|} = {t ∈ B : AssX/B(G) ∩ |Xt| ⊂ |Ut|}

is constructible in B. By Lemma 77.6.3 part (2) we see that E contains Spec(OB,b).
By Morphisms, Lemma 29.22.4 we see that E contains an open neighbourhood of
b. Hence after replacing B by a smaller affine neighbourhood of b we may assume
that AssX/B(G) ⊂ g(|X ′|).

From Lemma 77.6.6 it follows that u : F → G is injective if and only if g∗u : g∗F →
g∗G is injective, and the same remains true after any base change. Hence we have
reduced to the case where, in addition to the assumptions in the theorem, X → B
is a morphism of affine schemes and Γ(X,G) is a projective Γ(B,OB)-module. This
case follows immediately from Lemma 77.8.3.

We still have to show that Fzero → B is of finite presentation if F is of finite
type. This follows from Lemma 77.7.4 combined with Limits of Spaces, Proposition
70.3.10. □

Lemma 77.8.6.083M In Situation 77.7.1. Assume
(1) f is locally of finite presentation,
(2) G is an OX -module of finite presentation flat over B,
(3) the support of G is proper over B.

Then the functor Fzero is an algebraic space and Fzero → B is a closed immersion.
If F is of finite type, then Fzero → B is of finite presentation.

Proof. If f is of finite presentation, then this follows immediately from Lemmas
77.8.5 and 77.3.6. This is the only case of interest and we urge the reader to skip
the rest of the proof, which deals with the possibility (allowed by the assumptions
in this lemma) that f is not quasi-separated or quasi-compact.

Let i : Z → X be the closed subspace cut out by the zeroth fitting ideal of G (Divi-
sors on Spaces, Section 71.5). Then Z → B is proper by assumption (see Derived
Categories of Spaces, Section 75.7). On the other hand i is of finite presentation
(Divisors on Spaces, Lemma 71.5.2 and Morphisms of Spaces, Lemma 67.28.12).
There exists a quasi-coherent OZ-module H of finite type with i∗H = G (Divisors
on Spaces, Lemma 71.5.3). In fact H is of finite presentation as an OZ-module by
Algebra, Lemma 10.6.4 (details omitted). Then Fzero is the same as the functor
Fzero for the map i∗F → H adjoint to u, see Lemma 77.7.6. The sheaf H is flat
relative to B because the same is true for G (check on stalks; details omitted).
Moreover, note that if F is of finite type, then i∗F is of finite type. Hence we have
reduced the lemma to the case discussed in the first paragraph of the proof. □
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77.9. Flattening a map

0CVN This section is the analogue of More on Flatness, Section 38.23. In particular the
following result is a variant of More on Flatness, Theorem 38.23.3.

Theorem 77.9.1.0CWD In Situation 77.7.1 assume
(1) f is of finite presentation,
(2) F is of finite presentation, flat over B, and pure relative to B, and
(3) u is surjective.

Then Fiso is representable by a closed immersion Z → B. Moreover Z → S is of
finite presentation if G is of finite presentation.

Proof. Let K = Ker(u) and denote v : K → F the inclusion. By Lemma 77.7.5 we
see that Fu,iso = Fv,zero. By Lemma 77.8.5 applied to v we see that Fu,iso = Fv,zero
is representable by a closed subspace of B. Note that K is of finite type if G is of
finite presentation, see Modules on Sites, Lemma 18.24.1. Hence we also obtain the
final statement of the lemma. □

Lemma 77.9.2.083N In Situation 77.7.1. Assume
(1) f is locally of finite presentation,
(2) F is locally of finite presentation and flat over B,
(3) the support of F is proper over B, and
(4) u is surjective.

Then the functor Fiso is an algebraic space and Fiso → B is a closed immersion. If
G is of finite presentation, then Fiso → B is of finite presentation.

Proof. Let K = Ker(u) and denote v : K → F the inclusion. By Lemma 77.7.5 we
see that Fu,iso = Fv,zero. By Lemma 77.8.6 applied to v we see that Fu,iso = Fv,zero
is representable by a closed subspace of B. Note that K is of finite type if G is of
finite presentation, see Modules on Sites, Lemma 18.24.1. Hence we also obtain the
final statement of the lemma. □

We will use the following (easy) result when discussing the Quot functor.

Lemma 77.9.3.09TP In Situation 77.7.1. Assume
(1) f is locally of finite presentation,
(2) G is of finite type,
(3) the support of G is proper over B.

Then Fsurj is an algebraic space and Fsurj → B is an open immersion.

Proof. Consider Coker(u). Observe that Coker(uT ) = Coker(u)T for any T/B.
Note that formation of the support of a finite type quasi-coherent module commutes
with pullback (Morphisms of Spaces, Lemma 67.15.1). Hence Fsurj is representable
by the open subspace of B corresponding to the open set

|B| \ |f |(Supp(Coker(u)))

see Properties of Spaces, Lemma 66.4.8. This is an open because |f | is closed on
Supp(G) and Supp(Coker(u)) is a closed subset of Supp(G). □
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77.10. Flattening in the local case

0CWN This section is the analogue of More on Flatness, Section 38.24.

Lemma 77.10.1.0CWP Let S be the spectrum of a henselian local ring with closed point
s. Let X → S be a morphism of algebraic spaces which is locally of finite type. Let
F be a finite type quasi-coherent OX -module. Let E ⊂ |Xs| be a subset. There
exists a closed subscheme Z ⊂ S with the following property: for any morphism of
pointed schemes (T, t)→ (S, s) the following are equivalent

(1) FT is flat over T at all points of |Xt| which map to a point of E ⊂ |Xs|,
and

(2) Spec(OT,t)→ S factors through Z.
Moreover, if X → S is locally of finite presentation, F is of finite presentation, and
E ⊂ |Xs| is closed and quasi-compact, then Z → S is of finite presentation.

Proof. Choose a scheme U and an étale morphism φ : U → X. Let E′ ⊂ |Us| be
the inverse image of E. If E′ → E is surjective, then condition (1) is equivalent
to: (φ∗F)T is flat over T at all points of |Ut| which map to a point of E′ ⊂ |Ut|.
Choosing φ to be surjective, we reduced to the case of schemes which is More on
Flatness, Lemma 38.24.3. If E is closed and quasi-compact, then we may choose U
to be affine such that E′ → E is surjective. Then E′ is closed and quasi-compact
and the final statement follows from the final statement of More on Flatness, Lemma
38.24.3. □

77.11. Universal flattening

0CWQ This section is the analogue of More on Flatness, Section 38.27. Our main aim is
to prove Lemma 77.11.8. However, we do not see a way to deduce this result from
the corresponding result for schemes directly. Hence we have to redevelop some of
the material here. But first a definition.

Definition 77.11.1.0CWR Let S be a scheme. Let X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module. We say that the universal
flattening of F exists if the functor Fflat defined in Situation 77.7.8 is an algebraic
space. We say that the universal flattening of X exists if the universal flattening
of OX exists.

This is a bit unsatisfactory, because here the definition of universal flattening does
not agree with the one used in the case of schemes, as we don’t know whether every
monomorphism of algebraic spaces is representable (More on Morphisms of Spaces,
Section 76.4). Hopefully no confusion will ever result from this.

Lemma 77.11.2.0CWS Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces which is locally of finite type. Let F be a quasi-coherent OX -module of
finite type. Let n ≥ 0. The following are equivalent

(1) for some commutative diagram

U

φ

��

// V

��
X // Y
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with surjective, étale vertical arrows where U and V are schemes, the
sheaf φ∗F is flat over V in dimensions ≥ n (More on Flatness, Definition
38.20.10),

(2) for every commutative diagram

U

φ

��

// V

��
X // Y

with étale vertical arrows where U and V are schemes, the sheaf φ∗F is
flat over V in dimensions ≥ n, and

(3) for x ∈ |X| such that F is not flat at x over Y the transcendence degree
of x/f(x) is < n (Morphisms of Spaces, Definition 67.33.1).

If this is true, then it remains true after any base change Y ′ → Y .

Proof. Suppose that we have a diagram as in (1). Then the equivalence of the con-
ditions in More on Flatness, Lemma 38.20.9 shows that (1) and (3) are equivalent.
But condition (3) is inherited by φ∗F for any U → V as in (2). Whence we see
that (3) implies (2) by the result for schemes again. The result for schemes also
implies the statement on base change. □

Definition 77.11.3.0CWT Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let F be a quasi-coherent OX -module
of finite type. Let n ≥ 0. We say F is flat over Y in dimensions ≥ n if the equivalent
conditions of Lemma 77.11.2 are satisfied.

Situation 77.11.4.0CWU Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let F be a quasi-coherent OX -module
of finite type. For any scheme T over Y we will denote FT the base change of
F to T , in other words, FT is the pullback of F via the projection morphism
XT = X ×Y T → X. Note that fT : XT → T is of finite type and that FT is an
OXT -module of finite type (Morphisms of Spaces, Lemma 67.23.3 and Modules on
Sites, Lemma 18.23.4). Let n ≥ 0. By Definition 77.11.3 and Lemma 77.11.2 we
obtain a functor
(77.11.4.1)

0CWV Fn : (Sch/Y )opp −→ Sets, T −→
{
{∗} if FT is flat over T in dim ≥ n,
∅ else.

In Situation 77.11.4 we sometimes think of Fn as a functor (Sch/S)opp → Sets
endowed with a morphism Fn → Y . Namely, if T is a scheme over S, then an
element h ∈ Fn(T ) is a morphism h : T → Y such that the base change of F via h
is flat over T in dim ≥ n. In particular, when we say that Fn is an algebraic space,
we mean that the corresponding functor (Sch/S)opp → Sets is an algebraic space.

Lemma 77.11.5.0CWW In Situation 77.11.4.
(1) The functor Fn satisfies the sheaf property for the fpqc topology.
(2) If f is quasi-compact and locally of finite presentation and F is of finite

presentation, then the functor Fn is limit preserving.

Proof. Proof of (1). Suppose that {Ti → T} is an fpqc covering of a scheme T
over Y . We have to show that if Fn(Ti) is nonempty for all i, then Fn(T ) is
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nonempty. Choose a diagram as in part (1) of Lemma 77.11.2. Denote F ′
n the

corresponding functor for φ∗F and the morphism U → V . By More on Flatness,
Lemma 38.20.12 we have the sheaf property for F ′

n. Thus we get the sheaf property
for Fn because for T → Y we have Fn(T ) = F ′

n(V ×Y T ) by Lemma 77.11.2 and
because {V ×Y Ti → V ×Y T} is an fpqc covering.
Proof of (2). Suppose that T = limi∈I Ti is a filtered limit of affine schemes Ti over
Y and assume that Fn(T ) is nonempty. We have to show that Fn(Ti) is nonempty
for some i. Choose a diagram as in part (1) of Lemma 77.11.2. Fix i ∈ I and choose
an affine open Wi ⊂ V ×Y Ti mapping surjectively onto Ti. For i′ ≥ i let Wi′ be the
inverse image of Wi in V ×Y Ti′ and let W ⊂ V ×Y T be the inverse image of Wi.
Then W = limi′≥iWi is a filtered limit of affine schemes over V . By Lemma 77.11.2
again it suffices to show that F ′

n(Wi′) is nonempty for some i′ ≥ i. But we know
that F ′

n(W ) is nonempty because of our assumption that Fn(T ) = F ′
n(V ×Y T ) is

nonempty. Thus we can apply More on Flatness, Lemma 38.20.12 to conclude. □

Lemma 77.11.6.0CX0 In Situation 77.11.4. Let h : X ′ → X be an étale morphism. Set
F ′ = h∗F and f ′ = f ◦ h. Let F ′

n be (77.11.4.1) associated to (f ′ : X ′ → Y,F ′).
Then Fn is a subfunctor of F ′

n and if h(X ′) ⊃ AssX/Y (F), then Fn = F ′
n.

Proof. Choose U → X, V → Y , U → V as in part (1) of Lemma 77.11.2. Choose a
surjective étale morphism U ′ → U ×X X ′ where U ′ is a scheme. Then we have the
lemma for the two functors FU,n and FU ′,n determined by U ′ → U and F|U over
V , see More on Flatness, Lemma 38.27.2. On the other hand, Lemma 77.11.2 tells
us that given T → Y we have Fn(T ) = FU,n(V ×Y T ) and F ′

n(T ) = FU ′,n(V ×Y T ).
This proves the lemma. □

Theorem 77.11.7.0CX1 In Situation 77.11.4. Assume moreover that f is of finite presen-
tation, that F is an OX -module of finite presentation, and that F is pure relative
to Y . Then Fn is an algebraic space and Fn → Y is a monomorphism of finite
presentation.

Proof. The functor Fn is a sheaf for the fppf topology by Lemma 77.11.5. Since
Fn → Y is a monomorphism of sheaves on (Sch/S)fppf we see that ∆ : Fn →
Fn×Fn is the pullback of the diagonal ∆Y : Y → Y ×SY . Hence the representability
of ∆Y implies the same thing for Fn. Therefore it suffices to prove that there exists
a scheme W over S and a surjective étale morphism W → Fn.
To construct W → Fn choose an étale covering {Yi → Y } with Yi a scheme. Let
Xi = X×Y Yi and let Fi be the pullback of F to Xi. Then Fi is pure relative to Yi
either by definition or by Lemma 77.3.3. The other assumptions of the theorem are
preserved as well. Finally, the restriction of Fn to Yi is the functor Fn corresponding
to Xi → Yi and Fi. Hence it suffices to show: Given F and f : X → Y as in the
statement of the theorem where Y is a scheme, the functor Fn is representable by
a scheme Zn and Zn → Y is a monomorphism of finite presentation.
Observe that a monomorphism of finite presentation is separated and quasi-finite
(Morphisms, Lemma 29.20.15). Hence combining Descent, Lemma 35.39.1, More
on Morphisms, Lemma 37.57.1 , and Descent, Lemmas 35.23.31 and 35.23.13 we
see that the question is local for the étale topology on Y .
In particular the situation is local for the Zariski topology on Y and we may assume
that Y is affine. In this case the dimension of the fibres of f is bounded above, hence
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we see that Fn is representable for n large enough. Thus we may use descending
induction on n. Suppose that we know Fn+1 is representable by a monomorphism
Zn+1 → Y of finite presentation. Consider the base change Xn+1 = Zn+1 ×Y X
and the pullback Fn+1 of F to Xn+1. The morphism Zn+1 → Y is quasi-finite
as it is a monomorphism of finite presentation, hence Lemma 77.3.3 implies that
Fn+1 is pure relative to Zn+1. Since Fn is a subfunctor of Fn+1 we conclude that in
order to prove the result for Fn it suffices to prove the result for the corresponding
functor for the situation Fn+1/Xn+1/Zn+1. In this way we reduce to proving the
result for Fn in case Yn+1 = Y , i.e., we may assume that F is flat in dimensions
≥ n+ 1 over Y .
Fix n and assume F is flat in dimensions ≥ n+1 over the affine scheme Y . To finish
the proof we have to show that Fn is representable by a monomorphism Zn → S of
finite presentation. Since the question is local in the étale topology on Y it suffices
to show that for every y ∈ Y there exists an étale neighbourhood (Y ′, y′)→ (Y, y)
such that the result holds after base change to Y ′. Thus by Lemma 77.4.1 we may
assume there exist étale morphisms hj : Wj → X, j = 1, . . . ,m such that for each
j there exists a complete dévissage of Fj/Wj/Y over y, where Fj is the pullback
of F to Wj and such that |Xy| ⊂

⋃
hj(Wj). Since hj is étale, by Lemma 77.11.2

the sheaves Fj are still flat over in dimensions ≥ n+ 1 over Y . Set W =
⋃
hj(Wj),

which is a quasi-compact open of X. As F is pure along Xy we see that
E = {t ∈ |Y | : AssXt(Ft) ⊂W}.

contains all generalizations of y. By Divisors on Spaces, Lemma 71.4.10 E is a
constructible subset of Y . We have seen that Spec(OY,y) ⊂ E. By Morphisms,
Lemma 29.22.4 we see that E contains an open neighbourhood of y. Hence after
shrinking Y we may assume that E = Y . It follows from Lemma 77.11.6 that
it suffices to prove the lemma for the functor Fn associated to X =

∐
Wj and

F =
∐
Fj . If Fj,n denotes the functor for Wj → Y and the sheaf Fj we see

that Fn =
∏
Fj,n. Hence it suffices to prove each Fj,n is representable by some

monomorphism Zj,n → Y of finite presentation, since then
Zn = Z1,n ×Y . . .×Y Zm,n

Thus we have reduced the theorem to the special case handled in More on Flatness,
Lemma 38.27.4. □

Thus we finally obtain the desired result.
Lemma 77.11.8.0CX2 Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module.

(1) If f is of finite presentation, F is an OX -module of finite presentation, and
F is pure relative to Y , then there exists a universal flattening Y ′ → Y
of F . Moreover Y ′ → Y is a monomorphism of finite presentation.

(2) If f is of finite presentation and X is pure relative to Y , then there exists a
universal flattening Y ′ → Y of X. Moreover Y ′ → Y is a monomorphism
of finite presentation.

(3) If f is proper and of finite presentation and F is an OX -module of fi-
nite presentation, then there exists a universal flattening Y ′ → Y of F .
Moreover Y ′ → Y is a monomorphism of finite presentation.

(4) If f is proper and of finite presentation then there exists a universal flat-
tening Y ′ → Y of X.
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Proof. These statements follow immediately from Theorem 77.11.7 applied to F0 =
Fflat and the fact that if f is proper then F is automatically pure over the base,
see Lemma 77.3.6. □

77.12. Grothendieck’s Existence Theorem

0CX3 This section is the analogue of More on Flatness, Section 38.28 and continues the
discussion in More on Morphisms of Spaces, Section 76.42. We will work in the
following situation.

Situation 77.12.1.0CX4 Here we have an inverse system of rings (An) with surjective
transition maps whose kernels are locally nilpotent. Set A = limAn. We have
an algebraic space X separated and of finite presentation over A. We set Xn =
X ×Spec(A) Spec(An) and we view it as a closed subspace of X. We assume further
given a system (Fn, φn) where Fn is a finitely presented OXn -module, flat over An,
with support proper over An, and

φn : Fn ⊗OXn
OXn−1 −→ Fn−1

is an isomorphism (notation using the equivalence of Morphisms of Spaces, Lemma
67.14.1).

Our goal is to see if we can find a quasi-coherent sheaf F on X such that Fn =
F ⊗OX

OXn for all n.

Lemma 77.12.2.0CX5 In Situation 77.12.1 consider
K = R limDQCoh(OX)(Fn) = DQX(R limD(OX) Fn)

Then K is in Db
QCoh(OX) and in fact K has nonzero cohomology sheaves only in

degrees ≥ 0.

Proof. Special case of Derived Categories of Spaces, Example 75.19.5. □

Lemma 77.12.3.0CX6 In Situation 77.12.1 let K be as in Lemma 77.12.2. For any perfect
object E of D(OX) we have

(1) M = RΓ(X,K ⊗L E) is a perfect object of D(A) and there is a canonical
isomorphism RΓ(Xn,Fn ⊗L E|Xn) = M ⊗L

A An in D(An),
(2) N = RHomX(E,K) is a perfect object of D(A) and there is a canonical

isomorphism RHomXn(E|Xn ,Fn) = N ⊗L
A An in D(An).

In both statements E|Xn denotes the derived pullback of E to Xn.

Proof. Proof of (2). Write En = E|Xn and Nn = RHomXn(En,Fn). Recall
that RHomXn(−,−) is equal to RΓ(Xn, RHom(−,−)), see Cohomology on Sites,
Section 21.36. Hence by Derived Categories of Spaces, Lemma 75.25.8 we see that
Nn is a perfect object of D(An) whose formation commutes with base change. Thus
the maps Nn ⊗L

An
An−1 → Nn−1 coming from φn are isomorphisms. By More on

Algebra, Lemma 15.97.3 we find that R limNn is perfect and that its base change
back to An recovers Nn. On the other hand, the exact functor RHomX(E,−) :
DQCoh(OX)→ D(A) of triangulated categories commutes with products and hence
with derived limits, whence
RHomX(E,K) = R limRHomX(E,Fn) = R limRHomX(En,Fn) = R limNn

This proves (2). To see that (1) holds, translate it into (2) using Cohomology on
Sites, Lemma 21.48.4. □
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Lemma 77.12.4.0CX7 In Situation 77.12.1 let K be as in Lemma 77.12.2. Then K is
pseudo-coherent relative to A.

Proof. Combinging Lemma 77.12.3 and Derived Categories of Spaces, Lemma 75.25.7
we see that RΓ(X,K ⊗L E) is pseudo-coherent in D(A) for all pseudo-coherent E
in D(OX). Thus the lemma follows from More on Morphisms of Spaces, Lemma
76.51.4. □

Lemma 77.12.5.0CX8 In Situation 77.12.1 let K be as in Lemma 77.12.2. For any étale
morphism U → X with U quasi-compact and quasi-separated we have

RΓ(U,K)⊗L
A An = RΓ(Un,Fn)

in D(An) where Un = U ×X Xn.

Proof. Fix n. By Derived Categories of Spaces, Lemma 75.27.3 there exists a system
of perfect complexes Em on X such that RΓ(U,K) = hocolimRΓ(X,K⊗LEm). In
fact, this formula holds not just for K but for every object of DQCoh(OX). Applying
this to Fn we obtain

RΓ(Un,Fn) = RΓ(U,Fn)
= hocolimmRΓ(X,Fn ⊗L Em)
= hocolimmRΓ(Xn,Fn ⊗L Em|Xn)

Using Lemma 77.12.3 and the fact that −⊗L
AAn commutes with homotopy colimits

we obtain the result. □

Lemma 77.12.6.0CX9 In Situation 77.12.1 let K be as in Lemma 77.12.2. Denote X0 ⊂
|X| the closed subset consisting of points lying over the closed subset Spec(A1) =
Spec(A2) = . . . of Spec(A). There exists an open subspace W ⊂ X containing X0
such that

(1) Hi(K)|W is zero unless i = 0,
(2) F = H0(K)|W is of finite presentation, and
(3) Fn = F ⊗OX

OXn .

Proof. Fix n ≥ 1. By construction there is a canonical map K → Fn in DQCoh(OX)
and hence a canonical map H0(K)→ Fn of quasi-coherent sheaves. This explains
the meaning of part (3).

Let x ∈ X0 be a point. We will find an open neighbourhood W of x such that (1),
(2), and (3) are true. Since X0 is quasi-compact this will prove the lemma. Let
U → X be an étale morphism with U affine and u ∈ U a point mapping to x. Since
|U | → |X| is open it suffices to find an open neighbourhood of u in U where (1), (2),
and (3) are true. Say U = Spec(B). Choose a surjection P → B with P smooth
over A. By Lemma 77.12.4 and the definition of relative pseudo-coherence there
exists a bounded above complex F • of finite free P -modules representing Ri∗K
where i : U → Spec(P ) is the closed immersion induced by the presentation. Let
Mn be the B-module corresponding to Fn|U . By Lemma 77.12.5

Hi(F • ⊗A An) =
{

0 if i ̸= 0
Mn if i = 0
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Let i be the maximal index such that F i is nonzero. If i ≤ 0, then (1), (2), and (3)
are true. If not, then i > 0 and we see that the rank of the map

F i−1 → F i

in the point u is maximal. Hence in an open neighbourhood of u inside Spec(P )
the rank is maximal. Thus after replacing P by a principal localization we may
assume that the displayed map is surjective. Since F i is finite free we may choose
a splitting F i−1 = F ′ ⊕ F i. Then we may replace F • by the complex

. . .→ F i−2 → F ′ → 0→ . . .

and we win by induction on i. □

Lemma 77.12.7.0CXA In Situation 77.12.1 let K be as in Lemma 77.12.2. Let W ⊂ X

be as in Lemma 77.12.6. Set F = H0(K)|W . Then, after possibly shrinking the
open W , the support of F is proper over A.

Proof. Fix n ≥ 1. Let In = Ker(A → An). By More on Algebra, Lemma 15.11.3
the pair (A, In) is henselian. Let Z ⊂ W be the scheme theoretic support of F .
This is a closed subspace as F is of finite presentation. By part (3) of Lemma
77.12.6 we see that Z ×Spec(A) Spec(An) is equal to the support of Fn and hence
proper over Spec(A/I). By More on Morphisms of Spaces, Lemma 76.36.10 we can
write Z = Z1 ⨿ Z2 with Z1, Z2 open and closed in Z, with Z1 proper over A, and
with Z1 ×Spec(A) Spec(A/In) equal to the support of Fn. In other words, |Z2| does
not meet X0. Hence after replacing W by W \ Z2 we obtain the lemma. □

Theorem 77.12.8 (Grothendieck Existence Theorem).0CXB In Situation 77.12.1 there
exists a finitely presented OX -module F , flat over A, with support proper over A,
such that Fn = F ⊗OX

OXn for all n compatibly with the maps φn.

Proof. Apply Lemmas 77.12.2, 77.12.3, 77.12.4, 77.12.5, 77.12.6, and 77.12.7 to get
an open subspace W ⊂ X containing all points lying over Spec(An) and a finitely
presented OW -module F whose support is proper over A with Fn = F ⊗OW

OXn
for all n ≥ 1. (This makes sense as Xn ⊂ W .) By Lemma 77.3.6 we see that
F is universally pure relative to Spec(A). By Theorem 77.11.7 (for explanation,
see Lemma 77.11.8) there exists a universal flattening S′ → Spec(A) of F and
moreover the morphism S′ → Spec(A) is a monomorphism of finite presentation.
In particular S′ is a scheme (this follows from the proof of the theorem but it
also follows a postoriori by Morphisms of Spaces, Proposition 67.50.2). Since the
base change of F to Spec(An) is Fn we find that Spec(An) → Spec(A) factors
(uniquely) through S′ for each n. By More on Flatness, Lemma 38.28.8 we see
that S′ = Spec(A). This means that F is flat over A. Finally, since the scheme
theoretic support Z of F is proper over Spec(A), the morphism Z → X is closed.
Hence the pushforward (W → X)∗F is supported on W and has all the desired
properties. □

77.13. Grothendieck’s Existence Theorem, bis

0DIJ In this section we prove an analogue for Grothendieck’s existence theorem in the
derived category, following the method used in Section 77.12 for quasi-coherent
modules. This section is the analogue of More on Flatness, Section 38.29 for al-
gebraic spaces. The classical case (for algebraic spaces) is discussed in More on
Morphisms of Spaces, Section 76.42. We will work in the following situation.
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Situation 77.13.1.0DIK Here we have an inverse system of rings (An) with surjective
transition maps whose kernels are locally nilpotent. Set A = limAn. We have an
algebraic space X proper, flat, and of finite presentation over A. We set Xn =
X ×Spec(A) Spec(An) and we view it as a closed subspace of X. We assume further
given a system (Kn, φn) where Kn is a pseudo-coherent object of D(OXn) and

φn : Kn −→ Kn−1

is a map in D(OXn) which induces an isomorphism Kn ⊗L
OXn

OXn−1 → Kn−1 in
D(OXn−1).

More precisely, we should write φn : Kn → Rin−1,∗Kn−1 where in−1 : Xn−1 → Xn

is the inclusion morphism and in this notation the condition is that the adjoint
map Li∗n−1Kn → Kn−1 is an isomorphism. Our goal is to find a pseudo-coherent
K ∈ D(OX) such thatKn = K⊗L

OX
OXn for all n (with the same abuse of notation).

Lemma 77.13.2.0DIL In Situation 77.13.1 consider
K = R limDQCoh(OX)(Kn) = DQX(R limD(OX) Kn)

Then K is in D−
QCoh(OX).

Proof. The functor DQX exists because X is quasi-compact and quasi-separated,
see Derived Categories of Spaces, Lemma 75.19.1. Since DQX is a right adjoint it
commutes with products and therefore with derived limits. Hence the equality in
the statement of the lemma.
By Derived Categories of Spaces, Lemma 75.19.4 the functor DQX has bounded
cohomological dimension. Hence it suffices to show that R limKn ∈ D−(OX). To
see this, let U → X be étale with U affine. Then there is a canonical exact sequence

0→ R1 limHm−1(U,Kn)→ Hm(U,R limKn)→ limHm(U,Kn)→ 0
by Cohomology on Sites, Lemma 21.23.2. Since U is affine and Kn is pseudo-
coherent (and hence has quasi-coherent cohomology sheaves by Derived Categories
of Spaces, Lemma 75.13.6) we see that Hm(U,Kn) = Hm(Kn)(U) by Derived
Categories of Schemes, Lemma 36.3.5. Thus we conclude that it suffices to show
that Kn is bounded above independent of n.
Since Kn is pseudo-coherent we have Kn ∈ D−(OXn). Suppose that an is maximal
such that Han(Kn) is nonzero. Of course a1 ≤ a2 ≤ a3 ≤ . . .. Note that Han(Kn) is
an OXn -module of finite presentation (Cohomology on Sites, Lemma 21.45.7). We
have Han(Kn−1) = Han(Kn) ⊗OXn

OXn−1 . Since Xn−1 → Xn is a thickening, it
follows from Nakayama’s lemma (Algebra, Lemma 10.20.1) that if Han(Kn)⊗OXn

OXn−1 is zero, then Han(Kn) is zero too (argue by checking on stalks for example;
small detail omitted). Thus an−1 = an for all n and we conclude. □

Lemma 77.13.3.0DIM In Situation 77.13.1 let K be as in Lemma 77.13.2. For any perfect
object E of D(OX) the cohomology

M = RΓ(X,K ⊗L E)
is a pseudo-coherent object of D(A) and there is a canonical isomorphism

RΓ(Xn,Kn ⊗L E|Xn) = M ⊗L
A An

in D(An). Here E|Xn denotes the derived pullback of E to Xn.
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https://stacks.math.columbia.edu/tag/0DIL
https://stacks.math.columbia.edu/tag/0DIM
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Proof. Write En = E|Xn andMn = RΓ(Xn,Kn⊗LE|Xn). By Derived Categories of
Spaces, Lemma 75.25.5 we see that Mn is a pseudo-coherent object of D(An) whose
formation commutes with base change. Thus the maps Mn ⊗L

An
An−1 → Mn−1

coming from φn are isomorphisms. By More on Algebra, Lemma 15.97.1 we find
that R limMn is pseudo-coherent and that its base change back to An recovers
Mn. On the other hand, the exact functor RΓ(X,−) : DQCoh(OX) → D(A) of
triangulated categories commutes with products and hence with derived limits,
whence
RΓ(X,E ⊗L K) = R limRΓ(X,E ⊗L Kn) = R limRΓ(Xn, En ⊗L Kn) = R limMn

as desired. □

Lemma 77.13.4.0DIN In Situation 77.13.1 let K be as in Lemma 77.13.2. Then K is
pseudo-coherent on X.

Proof. Combinging Lemma 77.13.3 and Derived Categories of Spaces, Lemma 75.25.7
we see that RΓ(X,K ⊗L E) is pseudo-coherent in D(A) for all pseudo-coherent E
in D(OX). Thus it follows from More on Morphisms of Spaces, Lemma 76.51.4 that
K is pseudo-coherent relative to A. Since X is of flat and of finite presentation
over A, this is the same as being pseudo-coherent on X, see More on Morphisms of
Spaces, Lemma 76.45.4. □

Lemma 77.13.5.0DIP In Situation 77.13.1 let K be as in Lemma 77.13.2. For any étale
morphism U → X with U quasi-compact and quasi-separated we have

RΓ(U,K)⊗L
A An = RΓ(Un,Kn)

in D(An) where Un = U ×X Xn.

Proof. Fix n. By Derived Categories of Spaces, Lemma 75.27.3 there exists a system
of perfect complexes Em on X such that RΓ(U,K) = hocolimRΓ(X,K⊗LEm). In
fact, this formula holds not just for K but for every object of DQCoh(OX). Applying
this to Kn we obtain

RΓ(Un,Kn) = RΓ(U,Kn)
= hocolimmRΓ(X,Kn ⊗L Em)
= hocolimmRΓ(Xn,Kn ⊗L Em|Xn)

Using Lemma 77.13.3 and the fact that −⊗L
AAn commutes with homotopy colimits

we obtain the result. □

Theorem 77.13.6 (Derived Grothendieck Existence Theorem).0DIQ In Situation 77.13.1
there exists a pseudo-coherent K in D(OX) such that Kn = K ⊗L

OX
OXn for all n

compatibly with the maps φn.

Proof. Apply Lemmas 77.13.2, 77.13.3, 77.13.4 to get a pseudo-coherent object K
of D(OX). Choosing affine U in Lemma 77.13.5 it follows immediately that K
restricts to Kn over Xn. □

Remark 77.13.7.0DIR The result in this section can be generalized. It is probably
correct if we only assume X → Spec(A) to be separated, of finite presentation, and
Kn pseudo-coherent relative to An supported on a closed subset of Xn proper over
An. The outcome will be a K which is pseudo-coherent relative to A supported

https://stacks.math.columbia.edu/tag/0DIN
https://stacks.math.columbia.edu/tag/0DIP
https://stacks.math.columbia.edu/tag/0DIQ
https://stacks.math.columbia.edu/tag/0DIR
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on a closed subset proper over A. If we ever need this, we will formulate a precise
statement and prove it here.

77.14. Other chapters

Preliminaries
(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Differential Graded Sheaves
(25) Hypercoverings

Schemes
(26) Schemes
(27) Constructions of Schemes
(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes
(31) Divisors
(32) Limits of Schemes
(33) Varieties
(34) Topologies on Schemes
(35) Descent
(36) Derived Categories of Schemes
(37) More on Morphisms
(38) More on Flatness
(39) Groupoid Schemes
(40) More on Groupoid Schemes
(41) Étale Morphisms of Schemes

Topics in Scheme Theory
(42) Chow Homology
(43) Intersection Theory
(44) Picard Schemes of Curves
(45) Weil Cohomology Theories
(46) Adequate Modules
(47) Dualizing Complexes
(48) Duality for Schemes
(49) Discriminants and Differents
(50) de Rham Cohomology
(51) Local Cohomology
(52) Algebraic and Formal Geome-

try
(53) Algebraic Curves
(54) Resolution of Surfaces
(55) Semistable Reduction
(56) Functors and Morphisms
(57) Derived Categories of Varieties
(58) Fundamental Groups of

Schemes
(59) Étale Cohomology
(60) Crystalline Cohomology
(61) Pro-étale Cohomology
(62) Relative Cycles
(63) More Étale Cohomology
(64) The Trace Formula

Algebraic Spaces
(65) Algebraic Spaces
(66) Properties of Algebraic Spaces
(67) Morphisms of Algebraic Spaces
(68) Decent Algebraic Spaces
(69) Cohomology of Algebraic

Spaces
(70) Limits of Algebraic Spaces
(71) Divisors on Algebraic Spaces
(72) Algebraic Spaces over Fields
(73) Topologies on Algebraic Spaces
(74) Descent and Algebraic Spaces
(75) Derived Categories of Spaces
(76) More on Morphisms of Spaces
(77) Flatness on Algebraic Spaces
(78) Groupoids in Algebraic Spaces
(79) More on Groupoids in Spaces



77.14. OTHER CHAPTERS 5955

(80) Bootstrap
(81) Pushouts of Algebraic Spaces

Topics in Geometry
(82) Chow Groups of Spaces
(83) Quotients of Groupoids
(84) More on Cohomology of Spaces
(85) Simplicial Spaces
(86) Duality for Spaces
(87) Formal Algebraic Spaces
(88) Algebraization of Formal

Spaces
(89) Resolution of Surfaces Revis-

ited
Deformation Theory

(90) Formal Deformation Theory
(91) Deformation Theory
(92) The Cotangent Complex
(93) Deformation Problems

Algebraic Stacks
(94) Algebraic Stacks
(95) Examples of Stacks
(96) Sheaves on Algebraic Stacks
(97) Criteria for Representability

(98) Artin’s Axioms
(99) Quot and Hilbert Spaces

(100) Properties of Algebraic Stacks
(101) Morphisms of Algebraic Stacks
(102) Limits of Algebraic Stacks
(103) Cohomology of Algebraic

Stacks
(104) Derived Categories of Stacks
(105) Introducing Algebraic Stacks
(106) More on Morphisms of Stacks
(107) The Geometry of Stacks

Topics in Moduli Theory
(108) Moduli Stacks
(109) Moduli of Curves

Miscellany
(110) Examples
(111) Exercises
(112) Guide to Literature
(113) Desirables
(114) Coding Style
(115) Obsolete
(116) GNU Free Documentation Li-

cense
(117) Auto Generated Index



CHAPTER 78

Groupoids in Algebraic Spaces

0437 78.1. Introduction

0438 This chapter is devoted to generalities concerning groupoids in algebraic spaces.
We recommend reading the beautiful paper [KM97] by Keel and Mori.
A lot of what we say here is a repeat of what we said in the chapter on groupoid
schemes, see Groupoids, Section 39.1. The discussion of quotient stacks is new here.

78.2. Conventions

0439 The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.
Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.
We continue our convention to label projection maps starting with index 0, so we
have pr0 : X ×S Y → X and pr1 : X ×S Y → Y .

78.3. Notation

043A Let S be a scheme; this will be our base scheme and all algebraic spaces will be
over S. Let B be an algebraic space over S; this will be our base algebraic space,
and often other algebraic spaces, and schemes will be over B. If we say that X is
an algebraic space over B, then we mean that X is an algebraic space over S which
comes equipped with structure morphism X → B. Moreover, we try to reserve the
letter T to denote a “test” scheme over B. In other words T is a scheme which
comes equipped with a structure morphism T → B. In this situation we denote
X(T ) for the set of T -valued points of X over B. In a formula:

X(T ) = MorB(T,X).
Similarly, given a second algebraic space Y over B we set

X(Y ) = MorB(Y,X).
Suppose we are given algebraic spaces X, Y over B as above and a morphism
f : X → Y over B. For any scheme T over B we get an induced map of sets

f : X(T ) −→ Y (T )
which is functorial in the scheme T over B. As f is a map of sheaves on (Sch/S)fppf
over the sheaf B it is clear that f determines and is determined by this rule. More
generally, we use the same notation for maps between fibre products. For example,
if X, Y , Z are algebraic spaces over B, and if m : X×B Y → Z×BZ is a morphism

5956
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of algebraic spaces over B, then we think of m as corresponding to a collection of
maps between T -valued points

X(T )× Y (T ) −→ Z(T )× Z(T ).

And so on and so forth.

Finally, given two maps f, g : X → Y of algebraic spaces over B, if the induced
maps f, g : X(T ) → Y (T ) are equal for every scheme T over B, then f = g, and
hence also f, g : X(Z)→ Y (Z) are equal for every third algebraic space Z over B.
Hence, for example, to check the axioms for an group algebraic space G over B, it
suffices to check commutativity of diagram on T -valued points where T is a scheme
over B as we do in Definition 78.5.1 below.

78.4. Equivalence relations

043B Please refer to Groupoids, Section 39.3 for notation.

Definition 78.4.1.043C Let B → S as in Section 78.3. Let U be an algebraic space over
B.

(1) A pre-relation on U over B is any morphism j : R→ U ×B U of algebraic
spaces over B. In this case we set t = pr0 ◦ j and s = pr1 ◦ j, so that
j = (t, s).

(2) A relation on U over B is a monomorphism j : R→ U ×B U of algebraic
spaces over B.

(3) A pre-equivalence relation is a pre-relation j : R → U ×B U such that
the image of j : R(T ) → U(T ) × U(T ) is an equivalence relation for all
schemes T over B.

(4) We say a morphism R→ U ×B U of algebraic spaces over B is an equiva-
lence relation on U over B if and only if for every T over B the T -valued
points of R define an equivalence relation on the set of T -valued points of
U .

In other words, an equivalence relation is a pre-equivalence relation such that j is
a relation.

Lemma 78.4.2.043D Let B → S as in Section 78.3. Let U be an algebraic space over B.
Let j : R→ U ×B U be a pre-relation. Let g : U ′ → U be a morphism of algebraic
spaces over B. Finally, set

R′ = (U ′ ×B U ′)×U×BU R
j′

−→ U ′ ×B U ′

Then j′ is a pre-relation on U ′ over B. If j is a relation, then j′ is a relation.
If j is a pre-equivalence relation, then j′ is a pre-equivalence relation. If j is an
equivalence relation, then j′ is an equivalence relation.

Proof. Omitted. □

Definition 78.4.3.043E Let B → S as in Section 78.3. Let U be an algebraic space over
B. Let j : R → U ×B U be a pre-relation. Let g : U ′ → U be a morphism of
algebraic spaces over B. The pre-relation j′ : R′ → U ′ ×B U ′ of Lemma 78.4.2 is
called the restriction, or pullback of the pre-relation j to U ′. In this situation we
sometimes write R′ = R|U ′ .

https://stacks.math.columbia.edu/tag/043C
https://stacks.math.columbia.edu/tag/043D
https://stacks.math.columbia.edu/tag/043E
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Lemma 78.4.4.043F Let B → S as in Section 78.3. Let j : R→ U×BU be a pre-relation
of algebraic spaces over B. Consider the relation on |U | defined by the rule

x ∼ y ⇔ ∃ r ∈ |R| : t(r) = x, s(r) = y.

If j is a pre-equivalence relation then this is an equivalence relation.

Proof. Suppose that x ∼ y and y ∼ z. Pick r ∈ |R| with t(r) = x, s(r) = y and
pick r′ ∈ |R| with t(r′) = y, s(r′) = z. We may pick a field K such that r and r′

can be represented by morphisms r, r′ : Spec(K) → R with s ◦ r = t ◦ r′. Denote
x = t◦r, y = s◦r = t◦r′, and z = s◦r′, so x, y, z : Spec(K)→ U . By construction
(x, y) ∈ j(R(K)) and (y, z) ∈ j(R(K)). Since j is a pre-equivalence relation we see
that also (x, z) ∈ j(R(K)). This clearly implies that x ∼ z.

The proof that ∼ is reflexive and symmetric is omitted. □

78.5. Group algebraic spaces

043G Please refer to Groupoids, Section 39.4 for notation.

Definition 78.5.1.043H Let B → S as in Section 78.3.
(1) A group algebraic space over B is a pair (G,m), where G is an algebraic

space over B and m : G ×B G → G is a morphism of algebraic spaces
over B with the following property: For every scheme T over B the pair
(G(T ),m) is a group.

(2) A morphism ψ : (G,m) → (G′,m′) of group algebraic spaces over B is a
morphism ψ : G→ G′ of algebraic spaces over B such that for every T/B
the induced map ψ : G(T )→ G′(T ) is a homomorphism of groups.

Let (G,m) be a group algebraic space over the algebraic space B. By the discus-
sion in Groupoids, Section 39.4 we obtain morphisms of algebraic spaces over B
(identity) e : B → G and (inverse) i : G → G such that for every T the quadruple
(G(T ),m, e, i) satisfies the axioms of a group.

Let (G,m), (G′,m′) be group algebraic spaces over B. Let f : G → G′ be a
morphism of algebraic spaces over B. It follows from the definition that f is a
morphism of group algebraic spaces over B if and only if the following diagram is
commutative:

G×B G
f×f
//

m

��

G′ ×B G′

m

��
G

f // G′

Lemma 78.5.2.043I Let B → S as in Section 78.3. Let (G,m) be a group algebraic
space over B. Let B′ → B be a morphism of algebraic spaces. The pullback
(GB′ ,mB′) is a group algebraic space over B′.

Proof. Omitted. □

78.6. Properties of group algebraic spaces

06P5 In this section we collect some simple properties of group algebraic spaces which
hold over any base.

https://stacks.math.columbia.edu/tag/043F
https://stacks.math.columbia.edu/tag/043H
https://stacks.math.columbia.edu/tag/043I
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Lemma 78.6.1.06P6 Let S be a scheme. Let B be an algebraic space over S. Let G be
a group algebraic space over B. Then G → B is separated (resp. quasi-separated,
resp. locally separated) if and only if the identity morphism e : B → G is a closed
immersion (resp. quasi-compact, resp. an immersion).

Proof. We recall that by Morphisms of Spaces, Lemma 67.4.7 we have that e is
a closed immersion (resp. quasi-compact, resp. an immersion) if G → B is sepa-
rated (resp. quasi-separated, resp. locally separated). For the converse, consider
the diagram

G
∆G/B

//

��

G×B G

(g,g′)7→m(i(g),g′)
��

B
e // G

It is an exercise in the functorial point of view in algebraic geometry to show that
this diagram is cartesian. In other words, we see that ∆G/B is a base change of
e. Hence if e is a closed immersion (resp. quasi-compact, resp. an immersion) so
is ∆G/B , see Spaces, Lemma 65.12.3 (resp. Morphisms of Spaces, Lemma 67.8.4,
resp. Spaces, Lemma 65.12.3). □

Lemma 78.6.2.0DSI Let S be a scheme. Let B be an algebraic space over S. Let G
be a group algebraic space over B. Assume G → B is locally of finite type. Then
G→ B is unramified (resp. locally quasi-finite) if and only if G→ B is unramified
(resp. quasi-finite) at e(b) for all b ∈ |B|.

Proof. By Morphisms of Spaces, Lemma 67.38.10 (resp. Morphisms of Spaces,
Lemma 67.27.2) there is a maximal open subspace U ⊂ G such that U → B
is unramified (resp. locally quasi-finite) and formation of U commutes with base
change. Thus we reduce to the case where B = Spec(k) is the spectrum of a field.
Let g ∈ G(K) be a point with values in an extension K/k. Then to check whether
or not g is in U , we may base change to K. Hence it suffices to show

G→ Spec(k) is unramified at e⇔ G→ Spec(k) is unramified at g
for a k-rational point g (resp. similarly for quasi-finite at g and e). Since translation
by g is an automorphism of G over k this is clear. □

Lemma 78.6.3.0DSJ Let S be a scheme. Let B be an algebraic space over S. Let G be
a group algebraic space over B. Assume G→ B is locally of finite type.

(1) There exists a maximal open subspace U ⊂ B such that GU → U is
unramified and formation of U commutes with base change.

(2) There exists a maximal open subspace U ⊂ B such that GU → U is locally
quasi-finite and formation of U commutes with base change.

Proof. By Morphisms of Spaces, Lemma 67.38.10 (resp. Morphisms of Spaces,
Lemma 67.27.2) there is a maximal open subspace W ⊂ G such that W → B
is unramified (resp. locally quasi-finite). Moreover formation of W commutes with
base change. By Lemma 78.6.2 we see that U = e−1(W ) in either case. □

78.7. Examples of group algebraic spaces

06P7 If G → S is a group scheme over the base scheme S, then the base change GB to
any algebraic space B over S is an group algebraic space over B by Lemma 78.5.2.
We will frequently use this in the examples below.

https://stacks.math.columbia.edu/tag/06P6
https://stacks.math.columbia.edu/tag/0DSI
https://stacks.math.columbia.edu/tag/0DSJ
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Example 78.7.1 (Multiplicative group algebraic space).043J Let B → S as in Section
78.3. Consider the functor which associates to any scheme T over B the group
Γ(T,O∗

T ) of units in the global sections of the structure sheaf. This is representable
by the group algebraic space

Gm,B = B ×S Gm,S

over B. Here Gm,S is the multiplicative group scheme over S, see Groupoids,
Example 39.5.1.

Example 78.7.2 (Roots of unity as a group algebraic space).043K Let B → S as in Sec-
tion 78.3. Let n ∈ N. Consider the functor which associates to any scheme T over
B the subgroup of Γ(T,O∗

T ) consisting of nth roots of unity. This is representable
by the group algebraic space

µn,B = B ×S µn,S
over B. Here µn,S is the group scheme of nth roots of unity over S, see Groupoids,
Example 39.5.2.

Example 78.7.3 (Additive group algebraic space).043L Let B → S as in Section 78.3.
Consider the functor which associates to any scheme T over B the group Γ(T,OT )
of global sections of the structure sheaf. This is representable by the group algebraic
space

Ga,B = B ×S Ga,S

over B. Here Ga,S is the additive group scheme over S, see Groupoids, Example
39.5.3.

Example 78.7.4 (General linear group algebraic space).043M Let B → S as in Section
78.3. Let n ≥ 1. Consider the functor which associates to any scheme T over B
the group

GLn(Γ(T,OT ))
of invertible n× n matrices over the global sections of the structure sheaf. This is
representable by the group algebraic space

GLn,B = B ×S GLn,S
over B. Here Gm,S is the general linear group scheme over S, see Groupoids,
Example 39.5.4.

Example 78.7.5.043N Let B → S as in Section 78.3. Let n ≥ 1. The determinant
defines a morphism of group algebraic spaces

det : GLn,B −→ Gm,B

over B. It is the base change of the determinant morphism over S from Groupoids,
Example 39.5.5.

Example 78.7.6 (Constant group algebraic space).043O Let B → S as in Section 78.3.
Let G be an abstract group. Consider the functor which associates to any scheme T
over B the group of locally constant maps T → G (where T has the Zariski topology
and G the discrete topology). This is representable by the group algebraic space

GB = B ×S GS
over B. Here GS is the constant group scheme introduced in Groupoids, Example
39.5.6.

https://stacks.math.columbia.edu/tag/043J
https://stacks.math.columbia.edu/tag/043K
https://stacks.math.columbia.edu/tag/043L
https://stacks.math.columbia.edu/tag/043M
https://stacks.math.columbia.edu/tag/043N
https://stacks.math.columbia.edu/tag/043O
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78.8. Actions of group algebraic spaces

043P Please refer to Groupoids, Section 39.10 for notation.

Definition 78.8.1.043Q Let B → S as in Section 78.3. Let (G,m) be a group algebraic
space over B. Let X be an algebraic space over B.

(1) An action of G on the algebraic space X/B is a morphism a : G×BX → X
over B such that for every scheme T over B the map a : G(T )×X(T )→
X(T ) defines the structure of a G(T )-set on X(T ).

(2) Suppose that X, Y are algebraic spaces over B each endowed with an
action of G. An equivariant or more precisely a G-equivariant morphism
ψ : X → Y is a morphism of algebraic spaces over B such that for every
T over B the map ψ : X(T )→ Y (T ) is a morphism of G(T )-sets.

In situation (1) this means that the diagrams
(78.8.1.1)043R G×B G×B X 1G×a

//

m×1X
��

G×B X

a

��
G×B X

a // X

G×B X a
// X

X

e×1X

OO

1X

::

are commutative. In situation (2) this just means that the diagram
G×B X id×f

//

a

��

G×B Y

a

��
X

f // Y

commutes.

Definition 78.8.2.06P8 Let B → S, G → B, and X → B as in Definition 78.8.1. Let
a : G×B X → X be an action of G on X/B. We say the action is free if for every
scheme T over B the action a : G(T )×X(T )→ X(T ) is a free action of the group
G(T ) on the set X(T ).

Lemma 78.8.3.06P9 Situation as in Definition 78.8.2, The action a is free if and only if
G×B X → X ×B X, (g, x) 7→ (a(g, x), x)

is a monomorphism of algebraic spaces.

Proof. Immediate from the definitions. □

78.9. Principal homogeneous spaces

04TV This section is the analogue of Groupoids, Section 39.11. We suggest reading that
section first.

Definition 78.9.1.04TW Let S be a scheme. Let B be an algebraic space over S. Let
(G,m) be a group algebraic space over B. Let X be an algebraic space over B, and
let a : G×B X → X be an action of G on X.

(1) We say X is a pseudo G-torsor or that X is formally principally ho-
mogeneous under G if the induced morphism G ×B X → X ×B X,
(g, x) 7→ (a(g, x), x) is an isomorphism.

(2) A pseudo G-torsor X is called trivial if there exists an G-equivariant
isomorphism G→ X over B where G acts on G by left multiplication.

https://stacks.math.columbia.edu/tag/043Q
https://stacks.math.columbia.edu/tag/06P8
https://stacks.math.columbia.edu/tag/06P9
https://stacks.math.columbia.edu/tag/04TW
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It is clear that if B′ → B is a morphism of algebraic spaces then the pullback XB′

of a pseudo G-torsor over B is a pseudo GB′ -torsor over B′.
Lemma 78.9.2.04TX In the situation of Definition 78.9.1.

(1) The algebraic space X is a pseudo G-torsor if and only if for every scheme
T over B the set X(T ) is either empty or the action of the group G(T )
on X(T ) is simply transitive.

(2) A pseudo G-torsor X is trivial if and only if the morphism X → B has a
section.

Proof. Omitted. □

Definition 78.9.3.04TY Let S be a scheme. Let B be an algebraic space over S. Let
(G,m) be a group algebraic space over B. Let X be a pseudo G-torsor over B.

(1) We say X is a principal homogeneous space, or more precisely a principal
homogeneous G-space over B if there exists a fpqc covering1 {Bi → B}i∈I
such that eachXBi → Bi has a section (i.e., is a trivial pseudoGBi-torsor).

(2) Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. We say X is a G-torsor
in the τ topology, or a τ G-torsor, or simply a τ torsor if there exists a τ
covering {Bi → B}i∈I such that each XBi → Bi has a section.

(3) If X is a principal homogeneous G-space over B, then we say that it is
quasi-isotrivial if it is a torsor for the étale topology.

(4) If X is a principal homogeneous G-space over B, then we say that it is
locally trivial if it is a torsor for the Zariski topology.

We sometimes say “let X be a G-principal homogeneous space over B” to indicate
that X is an algebraic space over B equipped with an action of G which turns it
into a principal homogeneous space over B. Next we show that this agrees with
the notation introduced earlier when both apply.
Lemma 78.9.4.04TZ Let S be a scheme. Let (G,m) be a group algebraic space over S.
Let X be an algebraic space over S, and let a : G×S X → X be an action of G on
X. Then X is a G-torsor in the fppf -topology in the sense of Definition 78.9.3 if
and only if X is a G-torsor on (Sch/S)fppf in the sense of Cohomology on Sites,
Definition 21.4.1.
Proof. Omitted. □

Lemma 78.9.5.0DSK Let S be a scheme. Let B be an algebraic space over S. Let G be
a group algebraic space over B. Let X be a pseudo G-torsor over B. Assume G
and X locally of finite type over B.

(1) If G→ B is unramified, then X → B is unramified.
(2) If G→ B is locally quasi-finite, then X → B is locally quasi-finite.

Proof. Proof of (1). By Morphisms of Spaces, Lemma 67.38.10 we reduce to the
case where B is the spectrum of a field. If X is empty, then the result holds. If X
is nonempty, then after increasing the field, we may assume X has a point. Then
G ∼= X and the result holds.

1The default type of torsor in Groupoids, Definition 39.11.3 is a pseudo torsor which is trivial
on an fpqc covering. Since G, as an algebraic space, can be seen a sheaf of groups there already is a
notion of a G-torsor which corresponds to fppf-torsor, see Lemma 78.9.4. Hence we use “principal
homogeneous space” for a pseudo torsor which is fpqc locally trivial, and we try to avoid using
the word torsor in this situation.

https://stacks.math.columbia.edu/tag/04TX
https://stacks.math.columbia.edu/tag/04TY
https://stacks.math.columbia.edu/tag/04TZ
https://stacks.math.columbia.edu/tag/0DSK
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The proof of (2) works in exactly the same way using Morphisms of Spaces, Lemma
67.27.2. □

78.10. Equivariant quasi-coherent sheaves

043S Please compare with Groupoids, Section 39.12.

Definition 78.10.1.043T Let B → S as in Section 78.3. Let (G,m) be a group algebraic
space over B, and let a : G×B X → X be an action of G on the algebraic space X
overB. AnG-equivariant quasi-coherentOX -module, or simply a equivariant quasi-
coherent OX -module, is a pair (F , α), where F is a quasi-coherent OX -module, and
α is a OG×BX -module map

α : a∗F −→ pr∗
1F

where pr1 : G×B X → X is the projection such that
(1) the diagram

(1G × a)∗pr∗
2F pr∗

12α
// pr∗

2F

(1G × a)∗a∗F

(1G×a)∗α

OO

(m× 1X)∗a∗F

(m×1X)∗α

OO

is a commutative in the category of OG×BG×BX -modules, and
(2) the pullback

(e× 1X)∗α : F −→ F
is the identity map.

For explanation compare with the relevant diagrams of Equation (78.8.1.1).

Note that the commutativity of the first diagram guarantees that (e× 1X)∗α is an
idempotent operator on F , and hence condition (2) is just the condition that it is
an isomorphism.

Lemma 78.10.2.043U Let B → S as in Section 78.3. Let G be a group algebraic space
over B. Let f : X → Y be a G-equivariant morphism between algebraic spaces over
B endowed with G-actions. Then pullback f∗ given by (F , α) 7→ (f∗F , (1G×f)∗α)
defines a functor from the category of quasi-coherent G-equivariant sheaves on Y
to the category of quasi-coherent G-equivariant sheaves on X.

Proof. Omitted. □

78.11. Groupoids in algebraic spaces

043V Please refer to Groupoids, Section 39.13 for notation.

Definition 78.11.1.043W Let B → S as in Section 78.3.
(1) A groupoid in algebraic spaces over B is a quintuple (U,R, s, t, c) where U

and R are algebraic spaces over B, and s, t : R→ U and c : R×s,U,tR→ R
are morphisms of algebraic spaces over B with the following property: For
any scheme T over B the quintuple

(U(T ), R(T ), s, t, c)
is a groupoid category.

https://stacks.math.columbia.edu/tag/043T
https://stacks.math.columbia.edu/tag/043U
https://stacks.math.columbia.edu/tag/043W
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(2) A morphism f : (U,R, s, t, c)→ (U ′, R′, s′, t′, c′) of groupoids in algebraic
spaces over B is given by morphisms of algebraic spaces f : U → U ′ and f :
R→ R′ over B with the following property: For any scheme T over B the
maps f define a functor from the groupoid category (U(T ), R(T ), s, t, c)
to the groupoid category (U ′(T ), R′(T ), s′, t′, c′).

Let (U,R, s, t, c) be a groupoid in algebraic spaces over B. Note that there are
unique morphisms of algebraic spaces e : U → R and i : R → R over B such that
for every scheme T over B the induced map e : U(T )→ R(T ) is the identity, and i :
R(T )→ R(T ) is the inverse of the groupoid category. The septuple (U,R, s, t, c, e, i)
satisfies commutative diagrams corresponding to each of the axioms (1), (2)(a),
(2)(b), (3)(a) and (3)(b) of Groupoids, Section 39.13. Conversely given a septuple
with this property the quintuple (U,R, s, t, c) is a groupoid in algebraic spaces over
B. Note that i is an isomorphism, and e is a section of both s and t. Moreover,
given a groupoid in algebraic spaces over B we denote

j = (t, s) : R −→ U ×B U

which is compatible with our conventions in Section 78.4 above. We sometimes
say “let (U,R, s, t, c, e, i) be a groupoid in algebraic spaces over B” to stress the
existence of identity and inverse.

Lemma 78.11.2.043X Let B → S as in Section 78.3. Given a groupoid in algebraic
spaces (U,R, s, t, c) over B the morphism j : R → U ×B U is a pre-equivalence
relation.

Proof. Omitted. This is a nice exercise in the definitions. □

Lemma 78.11.3.043Y Let B → S as in Section 78.3. Given an equivalence relation
j : R → U ×B U over B there is a unique way to extend it to a groupoid in
algebraic spaces (U,R, s, t, c) over B.

Proof. Omitted. This is a nice exercise in the definitions. □

Lemma 78.11.4.043Z Let B → S as in Section 78.3. Let (U,R, s, t, c) be a groupoid in
algebraic spaces over B. In the commutative diagram

U

R

s

��

t

::

R×s,U,t Rpr0
oo

pr1

��

c
// R

s

��

t

dd

U R
too s // U

the two lower squares are fibre product squares. Moreover, the triangle on top
(which is really a square) is also cartesian.

Proof. Omitted. Exercise in the definitions and the functorial point of view in
algebraic geometry. □

https://stacks.math.columbia.edu/tag/043X
https://stacks.math.columbia.edu/tag/043Y
https://stacks.math.columbia.edu/tag/043Z
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Lemma 78.11.5.0450 Let B → S be as in Section 78.3. Let (U,R, s, t, c, e, i) be a
groupoid in algebraic spaces over B. The diagram

(78.11.5.1)04P3 R×t,U,t R
pr1 //

pr0
//

pr0×c◦(i,1)
��

R
t //

idR
��

U

idU
��

R×s,U,t R
c //

pr0
//

pr1

��

R
t //

s

��

U

R
s //

t
// U

is commutative. The two top rows are isomorphic via the vertical maps given. The
two lower left squares are cartesian.

Proof. The commutativity of the diagram follows from the axioms of a groupoid.
Note that, in terms of groupoids, the top left vertical arrow assigns to a pair of
morphisms (α, β) with the same target, the pair of morphisms (α, α−1 ◦ β). In any
groupoid this defines a bijection between Arrows×t,Ob,tArrows and Arrows×s,Ob,t
Arrows. Hence the second assertion of the lemma. The last assertion follows from
Lemma 78.11.4. □

Lemma 78.11.6.0DTA Let B → S be as in Section 78.3. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. Let B′ → B be a morphism of algebraic spaces. Then
the base changes U ′ = B′ ×B U , R′ = B′ ×B R endowed with the base changes s′,
t′, c′ of the morphisms s, t, c form a groupoid in algebraic spaces (U ′, R′, s′, t′, c′)
over B′ and the projections determine a morphism (U ′, R′, s′, t′, c′)→ (U,R, s, t, c)
of groupoids in algebraic spaces over B.

Proof. Omitted. Hint: R′ ×s′,U ′,t′ R
′ = B′ ×B (R×s,U,t R). □

78.12. Quasi-coherent sheaves on groupoids

0440 Please compare with Groupoids, Section 39.14.

Definition 78.12.1.0441 Let B → S as in Section 78.3. Let (U,R, s, t, c) be a groupoid in
algebraic spaces over B. A quasi-coherent module on (U,R, s, t, c) is a pair (F , α),
where F is a quasi-coherent OU -module, and α is a OR-module map

α : t∗F −→ s∗F
such that

(1) the diagram

pr∗
1t

∗F
pr∗

1α
// pr∗

1s
∗F

pr∗
0s

∗F c∗s∗F

pr∗
0t

∗F
pr∗

0α

ee

c∗t∗F
c∗α

::

is a commutative in the category of OR×s,U,tR-modules, and

https://stacks.math.columbia.edu/tag/0450
https://stacks.math.columbia.edu/tag/0DTA
https://stacks.math.columbia.edu/tag/0441
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(2) the pullback
e∗α : F −→ F

is the identity map.
Compare with the commutative diagrams of Lemma 78.11.4.

The commutativity of the first diagram forces the operator e∗α to be idempotent.
Hence the second condition can be reformulated as saying that e∗α is an isomor-
phism. In fact, the condition implies that α is an isomorphism.

Lemma 78.12.2.077W Let B → S as in Section 78.3. Let (U,R, s, t, c) be a groupoid in
algebraic spaces over B. If (F , α) is a quasi-coherent module on (U,R, s, t, c) then
α is an isomorphism.

Proof. Pull back the commutative diagram of Definition 78.12.1 by the morphism
(i, 1) : R → R ×s,U,t R. Then we see that i∗α ◦ α = s∗e∗α. Pulling back by the
morphism (1, i) we obtain the relation α ◦ i∗α = t∗e∗α. By the second assumption
these morphisms are the identity. Hence i∗α is an inverse of α. □

Lemma 78.12.3.0442 Let B → S as in Section 78.3. Consider a morphism f :
(U,R, s, t, c)→ (U ′, R′, s′, t′, c′) of groupoid in algebraic spaces over B. Then pull-
back f∗ given by

(F , α) 7→ (f∗F , f∗α)
defines a functor from the category of quasi-coherent sheaves on (U ′, R′, s′, t′, c′) to
the category of quasi-coherent sheaves on (U,R, s, t, c).

Proof. Omitted. □

Lemma 78.12.4.0GPM Let B → S as in Section 78.3. Consider a morphism f :
(U,R, s, t, c) → (U ′, R′, s′, t′, c′) of groupoids in algebraic spaces over B. Assume
that

(1) f : U → U ′ is quasi-compact and quasi-separated,
(2) the square

R

t

��

f
// R′

t′

��
U

f // U ′

is cartesian, and
(3) s′ and t′ are flat.

Then pushforward f∗ given by

(F , α) 7→ (f∗F , f∗α)

defines a functor from the category of quasi-coherent sheaves on (U,R, s, t, c) to
the category of quasi-coherent sheaves on (U ′, R′, s′, t′, c′) which is right adjoint to
pullback as defined in Lemma 78.12.3.

Proof. Since U → U ′ is quasi-compact and quasi-separated we see that f∗ trans-
forms quasi-coherent sheaves into quasi-coherent sheaves (Morphisms of Spaces,

https://stacks.math.columbia.edu/tag/077W
https://stacks.math.columbia.edu/tag/0442
https://stacks.math.columbia.edu/tag/0GPM
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Lemma 67.11.2). Moreover, since the squares

R

t

��

f
// R′

t′

��
U

f // U ′

and
R

s

��

f
// R′

s′

��
U

f // U ′

are cartesian we find that (t′)∗f∗F = f∗t
∗F and (s′)∗f∗F = f∗s

∗F , see Coho-
mology of Spaces, Lemma 69.11.2. Thus it makes sense to think of f∗α as a map
(t′)∗f∗F → (s′)∗f∗F . A similar argument shows that f∗α satisfies the cocycle
condition. The functor is adjoint to the pullback functor since pullback and push-
forward on modules on ringed spaces are adjoint. Some details omitted. □

Lemma 78.12.5.077X Let B → S be as in Section 78.3. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. The category of quasi-coherent modules on (U,R, s, t, c)
has colimits.

Proof. Let i 7→ (Fi, αi) be a diagram over the index category I. We can form
the colimit F = colimFi which is a quasi-coherent sheaf on U , see Properties
of Spaces, Lemma 66.29.7. Since colimits commute with pullback we see that
s∗F = colim s∗Fi and similarly t∗F = colim t∗Fi. Hence we can set α = colimαi.
We omit the proof that (F , α) is the colimit of the diagram in the category of
quasi-coherent modules on (U,R, s, t, c). □

Lemma 78.12.6.06VZ Let B → S as in Section 78.3. Let (U,R, s, t, c) be a groupoid in
algebraic spaces over B. If s, t are flat, then the category of quasi-coherent modules
on (U,R, s, t, c) is abelian.

Proof. Let φ : (F , α) → (G, β) be a homomorphism of quasi-coherent modules on
(U,R, s, t, c). Since s is flat we see that

0→ s∗ Ker(φ)→ s∗F → s∗G → s∗ Coker(φ)→ 0

is exact and similarly for pullback by t. Hence α and β induce isomorphisms κ :
t∗ Ker(φ)→ s∗ Ker(φ) and λ : t∗ Coker(φ)→ s∗ Coker(φ) which satisfy the cocycle
condition. Then it is straightforward to verify that (Ker(φ), κ) and (Coker(φ), λ)
are a kernel and cokernel in the category of quasi-coherent modules on (U,R, s, t, c).
Moreover, the condition Coim(φ) = Im(φ) follows because it holds over U . □

78.13. Colimits of quasi-coherent modules

0GPN This section is the analogue of Groupoids, Section 39.15.

Lemma 78.13.1.0GPP Let B → S as in Section 78.3. Let (U,R, s, t, c) be a groupoid in
algebraic spaces over B. Assume s, t are flat, quasi-compact, and quasi-separated.
For any quasi-coherent module G on U , there exists a canonical isomorphism
α : t∗s∗t

∗G → s∗s∗t
∗G which turns (s∗t

∗G, α) into a quasi-coherent module on
(U,R, s, t, c). This construction defines a functor

QCoh(OU ) −→ QCoh(U,R, s, t, c)

which is a right adjoint to the forgetful functor (F , β) 7→ F .

https://stacks.math.columbia.edu/tag/077X
https://stacks.math.columbia.edu/tag/06VZ
https://stacks.math.columbia.edu/tag/0GPP


78.13. COLIMITS OF QUASI-COHERENT MODULES 5968

Proof. The pushforward of a quasi-coherent module along a quasi-compact and
quasi-separated morphism is quasi-coherent, see Morphisms of Spaces, Lemma
67.11.2. Hence s∗t

∗G is quasi-coherent. With notation as in Lemma 78.11.4 we
have

t∗s∗t
∗G = pr1,∗pr∗

0t
∗G = pr1,∗c

∗t∗G = s∗s∗t
∗G

The middle equality because t ◦ c = t ◦ pr0 as morphisms R ×s,U,t R → U , and
the first and the last equality because we know that base change and pushforward
commute in these steps by Cohomology of Spaces, Lemma 69.11.2.
To verify the cocycle condition of Definition 78.12.1 for α and the adjointness
property we describe the construction G 7→ (s∗t

∗G, α) in another way. Consider the
groupoid scheme (R,R×t,U,tR,pr0,pr1,pr02) associated to the equivalence relation
R×t,U,t R on R, see Lemma 78.11.3. There is a morphism

f : (R,R×t,U,t R,pr1,pr0,pr02) −→ (U,R, s, t, c)
of groupoid schemes given by s : R → U and R ×t,U,t R → R given by (r0, r1) 7→
r−1

0 ◦ r1; we omit the verification of the commutativity of the required diagrams.
Since t, s : R→ U are quasi-compact, quasi-separated, and flat, and since we have
a cartesian square

R×t,U,t R

pr0

��

(r0,r1)7→r−1
0 ◦r1

// R

t

��
R

s // U

by Lemma 78.11.5 it follows that Lemma 78.12.4 applies to f . Thus pushforward
and pullback of quasi-coherent modules along f are adjoint functors. To finish the
proof we will identify these functors with the functors described above. To do this,
note that

t∗ : QCoh(OU ) −→ QCoh(R,R×t,U,t R,pr1,pr0,pr02)
is an equivalence by the theory of descent of quasi-coherent sheaves as {t : R→ U}
is an fpqc covering, see Descent on Spaces, Proposition 74.4.1.
Pushforward along f precomposed with the equivalence t∗ sends G to (s∗t

∗G, α); we
omit the verification that the isomorphism α obtained in this fashion is the same
as the one constructed above.
Pullback along f postcomposed with the inverse of the equivalence t∗ sends (F , β)
to the descent relative to {t : R→ U} of the module s∗F endowed with the descent
datum γ on R ×t,U,t R which is the pullback of β by (r0, r1) 7→ r−1

0 ◦ r1. Consider
the isomorphism β : t∗F → s∗F . The canonical descent datum (Descent on Spaces,
Definition 74.3.3) on t∗F relative to {t : R→ U} translates via β into the map

pr∗
0s

∗F pr∗
0β

−1

−−−−−→ pr∗
0t

∗F can−−→ pr∗
1t

∗F pr∗
1β−−−→ pr∗

1s
∗F

Since β satisfies the cocycle condition, this is equal to the pullback of β by (r0, r1) 7→
r−1

0 ◦ r1. To see this take the actual cocycle relation in Definition 78.12.1 and
pull it back by the morphism (pr0, c ◦ (i, 1)) : R ×t,U,t R → R ×s,U,t R which
also plays a role in the commutative diagram of Lemma 78.11.5. It follows that
(s∗F , γ) is isomorphic to (t∗F , can). All in all, we conclude that pullback by f
postcomposed with the inverse of the equivalence t∗ is isomorphic to the forgetful
functor (F , β) 7→ F . □
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Remark 78.13.2.0GPQ In the situation of Lemma 78.13.1 denote

F : QCoh(U,R, s, t, c)→ QCoh(OU ), (F , β) 7→ F

the forgetful functor and denote

G : QCoh(OU )→ QCoh(U,R, s, t, c), G 7→ (s∗t
∗G, α)

the right adjoint constructed in the lemma. Then the unit η : id → G ◦ F of the
adjunction evaluated on (F , β) is given by the map

F → s∗s
∗F β−1

−−→ s∗t
∗F

We omit the verification.

Lemma 78.13.3.0GPR Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module, let G be a quasi-coherent
OY -module, and let φ : G → f∗F be a module map. Assume

(1) φ is injective,
(2) f is quasi-compact, quasi-separated, flat, and surjective,
(3) X, Y are locally Noetherian, and
(4) G is a coherent OY -module.

Then F ∩ f∗G defined as the pullback

F // f∗f
∗F

F ∩ f∗G

OO

// f∗G

OO

is a coherent OX -module.

Proof. We will freely use the characterization of coherent modules of Cohomology
of Spaces, Lemma 69.12.2 as well as the fact that coherent modules form a Serre
subcategory of QCoh(OX), see Cohomology of Spaces, Lemma 69.12.4. If f has a
section σ, then we see that F∩f∗G is contained in the image of σ∗G → σ∗f∗F = F ,
hence coherent. In general, to show that F ∩ f∗G is coherent, it suffices the show
that f∗(F ∩f∗G) is coherent (see Descent on Spaces, Lemma 74.6.1). Since f is flat
this is equal to f∗F ∩f∗f∗G. Since f is flat, quasi-compact, and quasi-separated we
see f∗f∗G = p∗q

∗G where p, q : Y ×X Y → Y are the projections, see Cohomology
of Spaces, Lemma 69.11.2. Since p has a section we win. □

Let B → S be as in Section 78.3. Let (U,R, s, t, c) be a groupoid in algebraic
spaces over B. Assume that U is locally Noetherian. In the lemma below we say
that a quasi-coherent sheaf (F , α) on (U,R, s, t, c) is coherent if F is a coherent
OU -module.

Lemma 78.13.4.0GPS Let B → S be as in Section 78.3. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. Assume that

(1) U , R are Noetherian,
(2) s, t are flat, quasi-compact, and quasi-separated.

Then every quasi-coherent module (F , α) on (U,R, s, t, c) is a filtered colimit of
coherent modules.

https://stacks.math.columbia.edu/tag/0GPQ
https://stacks.math.columbia.edu/tag/0GPR
https://stacks.math.columbia.edu/tag/0GPS
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Proof. We will use the characterization of Cohomology of Spaces, Lemma 69.12.2 of
coherent modules on locally Noetherian algebraic spaces without further mention.
We can write F = colimHi as the filtered colimit of coherent submodules Hi ⊂ F ,
see Cohomology of Spaces, Lemma 69.15.1. Given a quasi-coherent sheaf H on U
we denote (s∗t

∗H, α) the quasi-coherent sheaf on (U,R, s, t, c) of Lemma 78.13.1.
Consider the adjunction map (F , β)→ (s∗t

∗F , α) in QCoh(U,R, s, t, c), see Remark
78.13.2. Set

(Fi, βi) = (F , β)×(s∗t∗F,α) (s∗t
∗Hi, α)

in QCoh(U,R, s, t, c). Since restriction to U is an exact functor on QCoh(U,R, s, t, c)
by the proof of Lemma 78.12.6 we obtain a pullback diagram

F // s∗t
∗F

Fi //

OO

s∗t
∗Hi

OO

in other words Fi = F ∩ s∗t
∗Hi. By the description of the adjunction map in

Remark 78.13.2 this diagram is isomorphic to the diagram

F // s∗s
∗F

Fi //

OO

s∗t
∗Hi

OO

where the right vertical arrow is the result of appplying s∗ to the map

t∗Hi → t∗F β−→ s∗F

This arrow is injective as t is a flat morphism. It follows that Fi is coherent by
Lemma 78.13.3. Finally, because s is quasi-compact and quasi-separated we see that
s∗ commutes with colimits (see Cohomology of Schemes, Lemma 30.6.1). Hence
s∗t

∗F = colim s∗t
∗Hi and hence (F , β) = colim(Fi, βi) as desired. □

78.14. Crystals in quasi-coherent sheaves

077Y Let (I,Φ, j) be a pair consisting of a set I and a pre-relation j : Φ→ I×I. Assume
given for every i ∈ I a scheme Xi and for every ϕ ∈ Φ a morphism of schemes
fϕ : Xi′ → Xi where j(ϕ) = (i, i′). Set X = ({Xi}i∈I , {fϕ}ϕ∈Φ). Define a crystal in
quasi-coherent modules on X as a rule which associates to every i ∈ Ob(I) a quasi-
coherent sheaf Fi on Xi and for every ϕ ∈ Φ with j(ϕ) = (i, i′) an isomorphism

αϕ : f∗
ϕFi −→ Fi′

of quasi-coherent sheaves on Xi′ . These crystals in quasi-coherent modules form
an additive category CQC(X)2. This category has colimits (proof is the same as
the proof of Lemma 78.12.5). If all the morphisms fϕ are flat, then CQC(X) is
abelian (proof is the same as the proof of Lemma 78.12.6). Let κ be a cardinal.

2We could single out a set of triples ϕ, ϕ′, ϕ′′ ∈ Φ with j(ϕ) = (i, i′), j(ϕ′) = (i′, i′′), and
j(ϕ′′) = (i, i′′) such that fϕ′′ = fϕ ◦fϕ′ and require that αϕ′ ◦f∗

ϕ′αϕ = αϕ′′ for these triples. This
would define an additive subcategory. For example the data (I,Φ) could be the set of objects and
arrows of an index category and X could be a diagram of schemes over this index category. The
result of Lemma 78.14.1 immediately gives the corresponding result in the subcategory.
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We say that a crystal in quasi-coherent modules F on X is κ-generated if each Fi
is κ-generated (see Properties, Definition 28.23.1).

Lemma 78.14.1.077Z In the situation above, if all the morphisms fϕ are flat, then there
exists a cardinal κ such that every object ({Fi}i∈I , {αϕ}ϕ∈Φ) of CQC(X) is the
directed colimit of its κ-generated submodules.

Proof. In the lemma and in this proof a submodule of ({Fi}i∈I , {αϕ}ϕ∈Φ) means
the data of a quasi-coherent submodule Gi ⊂ Fi for all i such that αϕ(f∗

ϕGi) = Gi′
as subsheaves of Fi′ for all ϕ ∈ Φ. This makes sense because since fϕ is flat the
pullback f∗

ϕ is exact, i.e., preserves subsheaves. The proof will be a variant to the
proof of Properties, Lemma 28.23.3. We urge the reader to read that proof first.

We claim that it suffices to prove the lemma in case all the schemes Xi are affine.
To see this let

J =
∐

i∈I
{U ⊂ Xi affine open}

and let

Ψ =
∐

ϕ∈Φ
{(U, V ) | U ⊂ Xi, V ⊂ Xi′ affine open with fϕ(U) ⊂ V }

⨿
∐

i∈I
{(U,U ′) | U,U ′ ⊂ Xi affine open with U ⊂ U ′}

endowed with the obvious map Ψ → J × J . Then our (F , α) induces a crystal in
quasi-coherent sheaves ({Hj}j∈J , {βψ}ψ∈Ψ) on Y = (J,Ψ) by setting H(i,U) = Fi|U
for (i, U) ∈ J and setting βψ for ψ ∈ Ψ equal to the restriction of αϕ to U if
ψ = (ϕ,U, V ) and equal to id : (Fi|U ′)|U → Fi|U when ψ = (i, U, U ′). More-
over, submodules of ({Hj}j∈J , {βψ}ψ∈Ψ) correspond 1-to-1 with submodules of
({Fi}i∈I , {αϕ}ϕ∈Φ). We omit the proof (hint: use Sheaves, Section 6.30). More-
over, it is clear that if κ works for Y , then the same κ works for X (by the definition
of κ-generated modules). Hence it suffices to proof the lemma for crystals in quasi-
coherent sheaves on Y .

Assume that all the schemes Xi are affine. Let κ be an infinite cardinal larger than
the cardinality of I or Φ. Let ({Fi}i∈I , {αϕ}ϕ∈Φ) be an object of CQC(X). For
each i write Xi = Spec(Ai) and Mi = Γ(Xi,Fi). For every ϕ ∈ Φ with j(ϕ) = (i, i′)
the map αϕ translates into an Ai′ -module isomorphism

αϕ : Mi ⊗Ai Ai′ −→Mi′

Using the axiom of choice choose a rule

(ϕ,m) 7−→ S(ϕ,m′)

where the source is the collection of pairs (ϕ,m′) such that ϕ ∈ Φ with j(ϕ) = (i, i′)
and m′ ∈Mi′ and where the output is a finite subset S(ϕ,m′) ⊂Mi so that

m′ = αϕ

(∑
m∈S(ϕ,m′)

m⊗ a′
m

)
for some a′

m ∈ Ai′ .

Having made these choices we claim that any section of any Fi over any Xi is
in a κ-generated submodule. To see this suppose that we are given a collection

https://stacks.math.columbia.edu/tag/077Z
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S = {Si}i∈I of subsets Si ⊂Mi each with cardinality at most κ. Then we define a
new collection S ′ = {S′

i}i∈I with

S′
i = Si ∪

⋃
(ϕ,m′), j(ϕ)=(i,i′), m′∈Si′

S(ϕ,m′)

Note that each S′
i still has cardinality at most κ. Set S(0) = S, S(1) = S ′ and by

induction S(n+1) = (S(n))′. Then set S(∞)
i =

⋃
n≥0 S

(n)
i and S(∞) = {S(∞)

i }i∈I .
By construction, for every ϕ ∈ Φ with j(ϕ) = (i, i′) and every m′ ∈ S(∞)

i′ we can
write m′ as a finite linear combination of images αϕ(m⊗ 1) with m ∈ S(∞)

i . Thus
we see that setting Ni equal to the Ai-submodule of Mi generated by S

(∞)
i the

corresponding quasi-coherent submodules Ñi ⊂ Fi form a κ-generated submodule.
This finishes the proof. □

Lemma 78.14.2.0780 Let B → S as in Section 78.3. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. If s, t are flat, then there exists a set T and a family
of objects (Ft, αt)t∈T of QCoh(U,R, s, t, c) such that every object (F , α) is the
directed colimit of its submodules isomorphic to one of the objects (Ft, αt).

Proof. This lemma is a generalization of Groupoids, Lemma 39.15.7 which deals
with the case of a groupoid in schemes. We can’t quite use the same argument, so
we use the material on “crystals of quasi-coherent sheaves” we developed above.

Choose a scheme W and a surjective étale morphism W → U . Choose a scheme
V and a surjective étale morphism V → W ×U,s R. Choose a scheme V ′ and a
surjective étale morphism V ′ → R×t,U W . Consider the collection of schemes

I = {W,W ×U W,V, V ′, V ×R V ′}

and the set of morphisms of schemes

Φ = {pri : W ×U W →W,V →W,V ′ →W,V ×R V ′ → V, V ×R V ′ → V ′}

Set X = (I,Φ). Recall that we have defined a category CQC(X) of crystals of
quasi-coherent sheaves on X. There is a functor

QCoh(U,R, s, t, c) −→ CQC(X)

which assigns to (F , α) the sheaf F|W on W , the sheaf F|W×UW on W ×U W ,
the pullback of F via V → W ×U,s R → W → U on V , the pullback of F via
V ′ → R ×t,U W → W → U on V ′, and finally the pullback of F via V ×R V ′ →
V → W ×U,s R → W → U on V ×R V ′. As comparison maps {αϕ}ϕ∈Φ we
use the obvious ones (coming from associativity of pullbacks) except for the map
ϕ = prV ′ : V ×R V ′ → V ′ we use the pullback of α : t∗F → s∗F to V ×R V ′. This

https://stacks.math.columbia.edu/tag/0780
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makes sense because of the following commutative diagram

V ×R V ′

zz $$
V

$$

��

V ′

zz

��

R

s

��

t

��

W

$$

W

zz
U

The functor displayed above isn’t an equivalence of categories. However, since W →
U is surjective étale it is faithful3. Since all the morphisms in the diagram above
are flat we see that it is an exact functor of abelian categories. Moreover, we claim
that given (F , α) with image ({Fi}i∈I , {αϕ}ϕ∈Φ) there is a 1-to-1 correspondence
between quasi-coherent submodules of (F , α) and ({Fi}i∈I , {αϕ}ϕ∈Φ). Namely,
given a submodule of ({Fi}i∈I , {αϕ}ϕ∈Φ) compatibility of the submodule over W
with the projection maps W ×UW →W will guarantee the submodule comes from
a quasi-coherent submodule of F (by Properties of Spaces, Proposition 66.32.1)
and compatibility with αprV ′ will insure this subsheaf is compatible with α (details
omitted).

Choose a cardinal κ as in Lemma 78.14.1 for the system X = (I,Φ). It is clear from
Properties, Lemma 28.23.2 that there is a set of isomorphism classes of κ-generated
crystals in quasi-coherent sheaves on X. Hence the result is clear. □

78.15. Groupoids and group spaces

0443 Please compare with Groupoids, Section 39.16.

Lemma 78.15.1.0444 Let B → S as in Section 78.3. Let (G,m) be a group algebraic
space over B with identity eG and inverse iG. Let X be an algebraic space over B
and let a : G×B X → X be an action of G on X over B. Then we get a groupoid
in algebraic spaces (U,R, s, t, c, e, i) over B in the following manner:

(1) We set U = X, and R = G×B X.
(2) We set s : R→ U equal to (g, x) 7→ x.
(3) We set t : R→ U equal to (g, x) 7→ a(g, x).
(4) We set c : R×s,U,t R→ R equal to ((g, x), (g′, x′)) 7→ (m(g, g′), x′).
(5) We set e : U → R equal to x 7→ (eG(x), x).
(6) We set i : R→ R equal to (g, x) 7→ (iG(g), a(g, x)).

Proof. Omitted. Hint: It is enough to show that this works on the set level. For this
use the description above the lemma describing g as an arrow from v to a(g, v). □

3In fact the functor is fully faithful, but we won’t need this.

https://stacks.math.columbia.edu/tag/0444
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Lemma 78.15.2.0445 Let B → S as in Section 78.3. Let (G,m) be a group algebraic
space over B. Let X be an algebraic space over B and let a : G ×B X → X be
an action of G on X over B. Let (U,R, s, t, c) be the groupoid in algebraic spaces
constructed in Lemma 78.15.1. The rule (F , α) 7→ (F , α) defines an equivalence of
categories between G-equivariant OX -modules and the category of quasi-coherent
modules on (U,R, s, t, c).

Proof. The assertion makes sense because t = a and s = pr1 as morphisms R =
G×BX → X, see Definitions 78.10.1 and 78.12.1. Using the translation in Lemma
78.15.1 the commutativity requirements of the two definitions match up exactly. □

78.16. The stabilizer group algebraic space

0446 Please compare with Groupoids, Section 39.17. Given a groupoid in algebraic spaces
we get a group algebraic space as follows.

Lemma 78.16.1.0447 Let B → S as in Section 78.3. Let (U,R, s, t, c) be a groupoid in
algebraic spaces over B. The algebraic space G defined by the cartesian square

G //

��

R

j=(t,s)
��

U
∆ // U ×B U

is a group algebraic space over U with composition law m induced by the compo-
sition law c.

Proof. This is true because in a groupoid category the set of self maps of any object
forms a group. □

Since ∆ is a monomorphism we see that G = j−1(∆U/B) is a subsheaf of R.
Thinking of it in this way, the structure morphism G = j−1(∆U/B)→ U is induced
by either s or t (it is the same), and m is induced by c.

Definition 78.16.2.0448 Let B → S as in Section 78.3. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. The group algebraic space j−1(∆U/B) → U is called
the stabilizer of the groupoid in algebraic spaces (U,R, s, t, c).

In the literature the stabilizer group algebraic space is often denoted S (because
the word stabilizer starts with an “s” presumably); we cannot do this since we have
already used S for the base scheme.

Lemma 78.16.3.0449 Let B → S as in Section 78.3. Let (U,R, s, t, c) be a groupoid in
algebraic spaces over B, and let G/U be its stabilizer. Denote Rt/U the algebraic
space R seen as an algebraic space over U via the morphism t : R→ U . There is a
canonical left action

a : G×U Rt −→ Rt

induced by the composition law c.

Proof. In terms of points over T/B we define a(g, r) = c(g, r). □

https://stacks.math.columbia.edu/tag/0445
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78.17. Restricting groupoids

044A Please refer to Groupoids, Section 39.18 for notation.

Lemma 78.17.1.044B Let B → S as in Section 78.3. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. Let g : U ′ → U be a morphism of algebraic spaces.
Consider the following diagram

R′

��

//

t′

%%

s′

**
R×s,U U ′ //

��

U ′

g

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′ g // U

where all the squares are fibre product squares. Then there is a canonical com-
position law c′ : R′ ×s′,U ′,t′ R

′ → R′ such that (U ′, R′, s′, t′, c′) is a groupoid in
algebraic spaces over B and such that U ′ → U , R′ → R defines a morphism
(U ′, R′, s′, t′, c′)→ (U,R, s, t, c) of groupoids in algebraic spaces over B. Moreover,
for any scheme T over B the functor of groupoids

(U ′(T ), R′(T ), s′, t′, c′)→ (U(T ), R(T ), s, t, c)
is the restriction (see Groupoids, Section 39.18) of (U(T ), R(T ), s, t, c) via the map
U ′(T )→ U(T ).

Proof. Omitted. □

Definition 78.17.2.044C Let B → S as in Section 78.3. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. Let g : U ′ → U be a morphism of algebraic spaces over
B. The morphism of groupoids in algebraic spaces (U ′, R′, s′, t′, c′)→ (U,R, s, t, c)
constructed in Lemma 78.17.1 is called the restriction of (U,R, s, t, c) to U ′. We
sometime use the notation R′ = R|U ′ in this case.

Lemma 78.17.3.044D The notions of restricting groupoids and (pre-)equivalence rela-
tions defined in Definitions 78.17.2 and 78.4.3 agree via the constructions of Lemmas
78.11.2 and 78.11.3.

Proof. What we are saying here is that R′ of Lemma 78.17.1 is also equal to
R′ = (U ′ ×B U ′)×U×BU R −→ U ′ ×B U ′

In fact this might have been a clearer way to state that lemma. □

78.18. Invariant subspaces

044E In this section we discuss briefly the notion of an invariant subspace.

Definition 78.18.1.044F Let B → S as in Section 78.3. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over the base B.

(1) We say an open subspace W ⊂ U is R-invariant if t(s−1(W )) ⊂W .
(2) A locally closed subspace Z ⊂ U is called R-invariant if t−1(Z) = s−1(Z)

as locally closed subspaces of R.
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(3) A monomorphism of algebraic spaces T → U is R-invariant if T ×U,t R =
R×s,U T as algebraic spaces over R.

For an open subspace W ⊂ U the R-invariance is also equivalent to requiring that
s−1(W ) = t−1(W ). If W ⊂ U is R-invariant then the restriction of R to W is
just RW = s−1(W ) = t−1(W ). Similarly, if Z ⊂ U is an R-invariant locally closed
subspace, then the restriction of R to Z is just RZ = s−1(Z) = t−1(Z).
Lemma 78.18.2.044G Let B → S as in Section 78.3. Let (U,R, s, t, c) be a groupoid in
algebraic spaces over B.

(1) If s and t are open, then for every open W ⊂ U the open s(t−1(W )) is
R-invariant.

(2) If s and t are open and quasi-compact, then U has an open covering
consisting of R-invariant quasi-compact open subspaces.

Proof. Assume s and t open and W ⊂ U open. Since s is open we see that
W ′ = s(t−1(W )) is an open subspace of U . Now it is quite easy to using the
functorial point of view that this is an R-invariant open subset of U , but we are
going to argue this directly by some diagrams, since we think it is instructive. Note
that t−1(W ′) is the image of the morphism

A := t−1(W )×s|t−1(W ),U,t
R

pr1−−→ R

and that s−1(W ′) is the image of the morphism

B := R×s,U,s|t−1(W )
t−1(W ) pr0−−→ R.

The algebraic spaces A, B on the left of the arrows above are open subspaces of
R×s,U,t R and R×s,U,s R respectively. By Lemma 78.11.4 the diagram

R×s,U,t R

pr1
$$

(pr1,c)
// R×s,U,s R

pr0
zz

R

is commutative, and the horizontal arrow is an isomorphism. Moreover, it is clear
that (pr1, c)(A) = B. Hence we conclude s−1(W ′) = t−1(W ′), and W ′ is R-
invariant. This proves (1).
Assume now that s, t are both open and quasi-compact. Then, if W ⊂ U is a quasi-
compact open, then also W ′ = s(t−1(W )) is a quasi-compact open, and invariant
by the discussion above. Letting W range over images of affines étale over U we
see (2). □

78.19. Quotient sheaves

044H Let S be a scheme, and let B be an algebraic space over S. Let j : R → U ×B U
be a pre-relation over B. For each scheme S′ over S we can take the equivalence
relation ∼S′ generated by the image of j(S′) : R(S′) → U(S′) × U(S′). Hence we
get a presheaf

(78.19.0.1)044I (Sch/S)oppfppf −→ Sets,
S′ 7−→ U(S′)/ ∼S′

Note that since j is a morphism of algebraic spaces over B and into U ×B U there
is a canonical transformation of presheaves from the presheaf (78.19.0.1) to B.

https://stacks.math.columbia.edu/tag/044G
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Definition 78.19.1.044J Let B → S and the pre-relation j : R→ U ×B U be as above.
In this setting the quotient sheaf U/R associated to j is the sheafification of the
presheaf (78.19.0.1) on (Sch/S)fppf . If j : R → U ×B U comes from the action of
a group algebraic space G over B on U as in Lemma 78.15.1 then we denote the
quotient sheaf U/G.
This means exactly that the diagram

R
//
// U // U/R

is a coequalizer diagram in the category of sheaves of sets on (Sch/S)fppf . Again
there is a canonical map of sheaves U/R→ B as j is a morphism of algebraic spaces
over B into U ×B U .
Remark 78.19.2.044K A variant of the construction above would have been to sheafify
the functor

(Spaces/B)oppfppf −→ Sets,
X 7−→ U(X)/ ∼X

where now ∼X⊂ U(X)× U(X) is the equivalence relation generated by the image
of j : R(X) → U(X) × U(X). Here of course U(X) = MorB(X,U) and R(X) =
MorB(X,R). In fact, the result would have been the same, via the identifications
of (insert future reference in Topologies of Spaces here).
Definition 78.19.3.044L In the situation of Definition 78.19.1. We say that the pre-
relation j has a quotient representable by an algebraic space if the sheaf U/R is an
algebraic space. We say that the pre-relation j has a representable quotient if the
sheaf U/R is representable by a scheme. We will say a groupoid in algebraic spaces
(U,R, s, t, c) over B has a representable quotient (resp. quotient representable by
an algebraic space if the quotient U/R with j = (t, s) is representable (resp. an
algebraic space).
If the quotient U/R is representable by M (either a scheme or an algebraic space
over S), then it comes equipped with a canonical structure morphism M → B as
we’ve seen above.
The following lemma characterizes M representing the quotient. It applies for
example if U →M is flat, of finite presentation and surjective, and R ∼= U ×M U .
Lemma 78.19.4.044M In the situation of Definition 78.19.1. Assume there is an algebraic
space M over S, and a morphism U →M such that

(1) the morphism U →M equalizes s, t,
(2) the map U →M is a surjection of sheaves, and
(3) the induced map (t, s) : R→ U ×M U is a surjection of sheaves.

In this case M represents the quotient sheaf U/R.
Proof. Condition (1) says that U → M factors through U/R. Condition (2) says
that U/R→M is surjective as a map of sheaves. Condition (3) says that U/R→M
is injective as a map of sheaves. Hence the lemma follows. □

The following lemma is wrong if we do not require j to be a pre-equivalence relation
(but just a pre-relation say).
Lemma 78.19.5.046O Let S be a scheme. Let B be an algebraic space over S. Let
j : R→ U ×B U be a pre-equivalence relation over B. For a scheme S′ over S and
a, b ∈ U(S′) the following are equivalent:
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(1) a and b map to the same element of (U/R)(S′), and
(2) there exists an fppf covering {fi : Si → S′} of S′ and morphisms ri : Si →

R such that a ◦ fi = s ◦ ri and b ◦ fi = t ◦ ri.
In other words, in this case the map of sheaves

R −→ U ×U/R U
is surjective.

Proof. Omitted. Hint: The reason this works is that the presheaf (78.19.0.1) in
this case is really given by T 7→ U(T )/j(R(T )) as j(R(T )) ⊂ U(T ) × U(T ) is an
equivalence relation, see Definition 78.4.1. □

Lemma 78.19.6.046P Let S be a scheme. Let B be an algebraic space over S. Let
j : R→ U ×B U be a pre-relation over B and g : U ′ → U a morphism of algebraic
spaces over B. Let j′ : R′ → U ′ ×B U ′ be the restriction of j to U ′. The map of
quotient sheaves

U ′/R′ −→ U/R

is injective. If U ′ → U is surjective as a map of sheaves, for example if {g : U ′ → U}
is an fppf covering (see Topologies on Spaces, Definition 73.7.1), then U ′/R′ → U/R
is an isomorphism of sheaves.

Proof. Suppose ξ, ξ′ ∈ (U ′/R′)(S′) are sections which map to the same section of
U/R. Then we can find an fppf covering S = {Si → S′} of S′ such that ξ|Si , ξ′|Si
are given by ai, a

′
i ∈ U ′(Si). By Lemma 78.19.5 and the axioms of a site we may

after refining T assume there exist morphisms ri : Si → R such that g ◦ ai = s ◦ ri,
g ◦ a′

i = t ◦ ri. Since by construction R′ = R ×U×SU (U ′ ×S U ′) we see that
(ri, (ai, a′

i)) ∈ R′(Si) and this shows that ai and a′
i define the same section of

U ′/R′ over Si. By the sheaf condition this implies ξ = ξ′.
If U ′ → U is a surjective map of sheaves, then U ′/R′ → U/R is surjective also.
Finally, if {g : U ′ → U} is a fppf covering, then the map of sheaves U ′ → U is
surjective, see Topologies on Spaces, Lemma 73.7.5. □

Lemma 78.19.7.044N Let S be a scheme. Let B be an algebraic space over S. Let
(U,R, s, t, c) be a groupoid in algebraic spaces over B. Let g : U ′ → U a morphism
of algebraic spaces over B. Let (U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c)
to U ′. The map of quotient sheaves

U ′/R′ −→ U/R

is injective. If the composition

U ′ ×g,U,t R pr1
//

h

((
R

s
// U

is a surjection of fppf sheaves then the map is bijective. This holds for example if
{h : U ′ ×g,U,t R→ U} is an fppf -covering, or if U ′ → U is a surjection of sheaves,
or if {g : U ′ → U} is a covering in the fppf topology.

Proof. Injectivity follows on combining Lemmas 78.11.2 and 78.19.6. To see surjec-
tivity (see Sites, Section 7.11 for a characterization of surjective maps of sheaves)
we argue as follows. Suppose that T is a scheme and σ ∈ U/R(T ). There exists a
covering {Ti → T} such that σ|Ti is the image of some element fi ∈ U(Ti). Hence

https://stacks.math.columbia.edu/tag/046P
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we may assume that σ if the image of f ∈ U(T ). By the assumption that h is a
surjection of sheaves, we can find an fppf covering {φi : Ti → T} and morphisms
fi : Ti → U ′×g,U,tR such that f ◦φi = h◦fi. Denote f ′

i = pr0 ◦fi : Ti → U ′. Then
we see that f ′

i ∈ U ′(Ti) maps to g ◦f ′
i ∈ U(Ti) and that g ◦f ′

i ∼Ti h◦fi = f ◦φi no-
tation as in (78.19.0.1). Namely, the element of R(Ti) giving the relation is pr1 ◦fi.
This means that the restriction of σ to Ti is in the image of U ′/R′(Ti)→ U/R(Ti)
as desired.
If {h} is an fppf covering, then it induces a surjection of sheaves, see Topologies on
Spaces, Lemma 73.7.5. If U ′ → U is surjective, then also h is surjective as s has a
section (namely the neutral element e of the groupoid scheme). □

78.20. Quotient stacks

044O In this section and the next few sections we describe a kind of generalization of
Section 78.19 above and Groupoids, Section 39.20. It is different in the following
way: We are going to take quotient stacks instead of quotient sheaves.
Let us assume we have a scheme S, and algebraic space B over S and a groupoid
in algebraic spaces (U,R, s, t, c) over B. Given these data we consider the functor

(78.20.0.1)044P (Sch/S)oppfppf −→ Groupoids
S′ 7−→ (U(S′), R(S′), s, t, c)

By Categories, Example 4.37.1 this “presheaf in groupoids” corresponds to a cate-
gory fibred in groupoids over (Sch/S)fppf . In this chapter we will denote this

[U/pR]→ (Sch/S)fppf
where the subscript p is there to distinguish from the quotient stack.

Definition 78.20.1.044Q Quotient stacks. Let B → S be as above.
(1) Let (U,R, s, t, c) be a groupoid in algebraic spaces over B. The quotient

stack
p : [U/R] −→ (Sch/S)fppf

of (U,R, s, t, c) is the stackification (see Stacks, Lemma 8.9.1) of the cate-
gory fibred in groupoids [U/pR] over (Sch/S)fppf associated to (78.20.0.1).

(2) Let (G,m) be a group algebraic space over B. Let a : G ×B X → X be
an action of G on an algebraic space over B. The quotient stack

p : [X/G] −→ (Sch/S)fppf
is the quotient stack associated to the groupoid in algebraic spaces (X,G×B
X, s, t, c) over B of Lemma 78.15.1.

Thus [U/R] and [X/G] are stacks in groupoids over (Sch/S)fppf . These stacks
will be very important later on and hence it makes sense to give a detailed de-
scription. Recall that given an algebraic space X over S we use the notation
SX → (Sch/S)fppf to denote the stack in sets associated to the sheaf X, see Cate-
gories, Lemma 4.38.6 and Stacks, Lemma 8.6.2.

Lemma 78.20.2.044R Assume B → S and (U,R, s, t, c) as in Definition 78.20.1 (1).
There are canonical 1-morphisms π : SU → [U/R], and [U/R] → SB of stacks
in groupoids over (Sch/S)fppf . The composition SU → SB is the 1-morphism
associated to the structure morphism U → B.

https://stacks.math.columbia.edu/tag/044Q
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Proof. During this proof let us denote [U/pR] the category fibred in groupoids asso-
ciated to the presheaf in groupoids (78.20.0.1). By construction of the stackification
there is a 1-morphism [U/pR]→ [U/R]. The 1-morphism SU → [U/R] is simply the
composition SU → [U/pR]→ [U/R], where the first arrow associates to the scheme
S′/S and morphism x : S′ → U over S the object x ∈ U(S′) of the fibre category
of [U/pR] over S′.

To construct the 1-morphism [U/R]→ SB it is enough to construct the 1-morphism
[U/pR]→ SB , see Stacks, Lemma 8.9.2. On objects over S′/S we just use the map

U(S′) −→ B(S′)

coming from the structure morphism U → B. And clearly, if a ∈ R(S′) is an
“arrow” with source s(a) ∈ U(S′) and target t(a) ∈ U(S′), then since s and t are
morphisms over B these both map to the same element a of B(S′). Hence we can
map an arrow a ∈ R(S′) to the identity morphism of a. (This is good because the
fibre category (SB)S′ only contains identities.) We omit the verification that this
rule is compatible with pullback on these split fibred categories, and hence defines
a 1-morphism [U/pR]→ SB as desired.

We omit the verification of the last statement. □

Lemma 78.20.3.044S Assumptions and notation as in Lemma 78.20.2. There exists a
canonical 2-morphism α : π ◦ s→ π ◦ t making the diagram

SR s
//

t

��

SU

π

��
SU

π // [U/R]

2-commutative.

Proof. Let S′ be a scheme over S. Let r : S′ → R be a morphism over S. Then
r ∈ R(S′) is an isomorphism between the objects s ◦ r, t ◦ r ∈ U(S′). Moreover,
this construction is compatible with pullbacks. This gives a canonical 2-morphism
αp : πp ◦ s → πp ◦ t where πp : SU → [U/pR] is as in the proof of Lemma 78.20.2.
Thus even the diagram

SR s
//

t

��

SU
πp

��
SU

πp // [U/pR]

is 2-commutative. Thus a fortiori the diagram of the lemma is 2-commutative. □

Remark 78.20.4.04M7 In future chapters we will use the ambiguous notation where
instead of writing SX for the stack in sets associated to X we simply write X.
Using this notation the diagram of Lemma 78.20.3 becomes the familiar diagram

R
s
//

t

��

U

π

��
U

π // [U/R]

https://stacks.math.columbia.edu/tag/044S
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In the following sections we will show that this diagram has many good properties.
In particular we will show that it is a 2-fibre product (Section 78.22) and that it is
close to being a 2-coequalizer of s and t (Section 78.23).

78.21. Functoriality of quotient stacks

04Y3 A morphism of groupoids in algebraic spaces gives an associated morphism of quo-
tient stacks.

Lemma 78.21.1.046Q Let S be a scheme. Let B be an algebraic space over S. Let
f : (U,R, s, t, c)→ (U ′, R′, s′, t′, c′) be a morphism of groupoids in algebraic spaces
over B. Then f induces a canonical 1-morphism of quotient stacks

[f ] : [U/R] −→ [U ′/R′].

Proof. Denote [U/pR] and [U ′/pR
′] the categories fibred in groupoids over the base

site (Sch/S)fppf associated to the functors (78.20.0.1). It is clear that f defines
a 1-morphism [U/pR] → [U ′/pR

′] which we can compose with the stackyfication
functor for [U ′/R′] to get [U/pR] → [U ′/R′]. Then, by the universal property
of the stackyfication functor [U/pR] → [U/R], see Stacks, Lemma 8.9.2 we get
[U/R]→ [U ′/R′]. □

Let B → S and f : (U,R, s, t, c)→ (U ′, R′, s′, t′, c′) be as in Lemma 78.21.1. In this
situation, we define a third groupoid in algebraic spaces over B as follows, using
the language of T -valued points where T is a (varying) scheme over B:

(1) U ′′ = U ×f,U ′,t′ R
′ so that a T -valued point is a pair (u, r′) with f(u) =

t′(r′),
(2) R′′ = R×f◦s,U ′,t′R

′ so that a T -valued point is a pair (r, r′) with f(s(r)) =
t′(r′),

(3) s′′ : R′′ → U ′′ is given by s′′(r, r′) = (s(r), r′),
(4) t′′ : R′′ → U ′′ is given by t′′(r, r′) = (t(r), c′(f(r), r′)),
(5) c′′ : R′′×s′′,U ′′,t′′R′′ → R′′ is given by c′′((r1, r

′
1), (r2, r

′
2)) = (c(r1, r2), r′

2).
The formula for c′′ makes sense as s′′(r1, r

′
1) = t′′(r2, r

′
2). It is clear that c′′ is

associative. The identity e′′ is given by e′′(u, r) = (e(u), r). The inverse of (r, r′) is
given by (i(r), c′(f(r), r′)). Thus we do indeed get a groupoid in algebraic spaces
over B.

Clearly the maps U ′′ → U and R′′ → R define a morphism g : (U ′′, R′′, s′′, t′′, c′′)→
(U,R, s, t, c) of groupoids in algebraic spaces over B. Moreover, the maps U ′′ → U ′,
(u, r′) 7→ s′(r′) and R′′ → U ′, (r, r′) 7→ s′(r′) show that in fact (U ′′, R′′, s′′, t′′, c′′)
is a groupoid in algebraic spaces over U ′.

Lemma 78.21.2.04Y4 Notation and assumption as in Lemma 78.21.1. Let (U ′′, R′′, s′′, t′′, c′′)
be the groupoid in algebraic spaces over B constructed above. There is a 2-
commutative square

[U ′′/R′′]

��

[g]
// [U/R]

[f ]
��

SU ′ // [U ′/R′]

which identifies [U ′′/R′′] with the 2-fibre product.

https://stacks.math.columbia.edu/tag/046Q
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Proof. The maps [f ] and [g] come from an application of Lemma 78.21.1 and the
other two maps come from Lemma 78.20.2 (and the fact that (U ′′, R′′, s′′, t′′, c′′)
lives over U ′). To show the 2-fibre product property, it suffices to prove the lemma
for the diagram

[U ′′/pR
′′]

��

[g]
// [U/pR]

[f ]
��

SU ′ // [U ′/pR
′]

of categories fibred in groupoids, see Stacks, Lemma 8.9.3. In other words, it suffices
to show that an object of the 2-fibre product SU×[U ′/pR′] [U/pR] over T corresponds
to a T -valued point of U ′′ and similarly for morphisms. And of course this is exactly
how we constructed U ′′ and R′′ in the first place.

In detail, an object of SU ×[U ′/pR′] [U/pR] over T is a triple (u′, u, r′) where u′ is a
T -valued point of U ′, u is a T -valued point of U , and r′ is a morphism from u′ to
f(u) in [U ′/R′]T , i.e., r′ is a T -valued point of R with s′(r′) = u′ and t′(r′) = f(u).
Clearly we can forget about u′ without losing information and we see that these
objects are in one-to-one correspondence with T -valued points of R′′.

Similarly for morphisms: Let (u′
1, u1, r

′
1) and (u′

2, u2, r
′
2) be two objects of the fibre

product over T . Then a morphism from (u′
2, u2, r

′
2) to (u′

1, u1, r
′
1) is given by (1, r)

where 1 : u′
1 → u′

2 means simply u′
1 = u′

2 (this is so because SU is fibred in sets), and
r is a T -valued point of R with s(r) = u2, t(r) = u1 and moreover c′(f(r), r′

2) = r′
1.

Hence the arrow
(1, r) : (u′

2, u2, r
′
2)→ (u′

1, u1, r
′
1)

is completely determined by knowing the pair (r, r′
2). Thus the functor of arrows is

represented by R′′, and moreover the morphisms s′′, t′′, and c′′ clearly correspond
to source, target and composition in the 2-fibre product SU ×[U ′/pR′] [U/pR]. □

78.22. The 2-cartesian square of a quotient stack

04M8 In this section we compute the Isom-sheaves for a quotient stack and we deduce
that the defining diagram of a quotient stack is a 2-fibre product.

Lemma 78.22.1.044V Assume B → S, (U,R, s, t, c) and π : SU → [U/R] are as in
Lemma 78.20.2. Let S′ be a scheme over S. Let x, y ∈ Ob([U/R]S′) be objects
of the quotient stack over S′. If x = π(x′) and y = π(y′) for some morphisms
x′, y′ : S′ → U , then

Isom(x, y) = S′ ×(y′,x′),U×SU R

as sheaves over S′.

Proof. Let [U/pR] be the category fibred in groupoids associated to the presheaf in
groupoids (78.20.0.1) as in the proof of Lemma 78.20.2. By construction the sheaf
Isom(x, y) is the sheaf associated to the presheaf Isom(x′, y′). On the other hand,
by definition of morphisms in [U/pR] we have

Isom(x′, y′) = S′ ×(y′,x′),U×SU R

and the right hand side is an algebraic space, therefore a sheaf. □

https://stacks.math.columbia.edu/tag/044V
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Lemma 78.22.2.04M9 Assume B → S, (U,R, s, t, c), and π : SU → [U/R] are as in
Lemma 78.20.2. The 2-commutative square

SR s
//

t

��

SU

π

��
SU

π // [U/R]

of Lemma 78.20.3 is a 2-fibre product of stacks in groupoids of (Sch/S)fppf .

Proof. According to Stacks, Lemma 8.5.6 the lemma makes sense. It also tells us
that we have to show that the functor

SR −→ SU ×[U/R] SU
which maps r : T → R to (T, t(r), s(r), α(r)) is an equivalence, where the right hand
side is the 2-fibre product as described in Categories, Lemma 4.32.3. This is, after
spelling out the definitions, exactly the content of Lemma 78.22.1. (Alternative
proof: Work out the meaning of Lemma 78.21.2 in this situation will give you the
result also.) □

Lemma 78.22.3.044W Assume B → S and (U,R, s, t, c) are as in Definition 78.20.1 (1).
For any scheme T over S and objects x, y of [U/R] over T the sheaf Isom(x, y) on
(Sch/T )fppf has the following property: There exists a fppf covering {Ti → T}i∈I
such that Isom(x, y)|(Sch/Ti)fppf is representable by an algebraic space.

Proof. Follows immediately from Lemma 78.22.1 and the fact that both x and y
locally in the fppf topology come from objects of SU by construction of the quotient
stack. □

78.23. The 2-coequalizer property of a quotient stack

04MA On a groupoid we have the composition, which leads to a cocycle condition for the
canonical 2-morphism of the lemma above. To give the precise formulation we will
use the notation introduced in Categories, Sections 4.28 and 4.29.

Lemma 78.23.1.044T Assumptions and notation as in Lemmas 78.20.2 and 78.20.3. The
vertical composition of

SR×s,U,tR

π◦s◦pr1=π◦s◦c

++�� α⋆idpr1

π◦t◦pr1=π◦s◦pr0

// 33

π◦t◦pr0=π◦t◦c
�� α⋆idpr0

[U/R]

is the 2-morphism α ⋆ idc. In a formula α ⋆ idc = (α ⋆ idpr0) ◦ (α ⋆ idpr1).

Proof. We make two remarks:
(1) The formula α ⋆ idc = (α ⋆ idpr0) ◦ (α ⋆ idpr1) only makes sense if you

realize the equalities π ◦ s ◦ pr1 = π ◦ s ◦ c, π ◦ t ◦ pr1 = π ◦ s ◦ pr0,
and π ◦ t ◦ pr0 = π ◦ t ◦ c. Namely, the second one implies the vertical
composition ◦ makes sense, and the other two guarantee the two sides of
the formula are 2-morphisms with the same source and target.

https://stacks.math.columbia.edu/tag/04M9
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(2) The reason the lemma holds is that composition in the category fibred
in groupoids [U/pR] associated to the presheaf in groupoids (78.20.0.1)
comes from the composition law c : R×s,U,t R→ R.

We omit the proof of the lemma. □

Note that, in the situation of the lemma, we actually have the equalities s◦pr1 = s◦c,
t ◦ pr1 = s ◦ pr0, and t ◦ pr0 = t ◦ c before composing with π. Hence the formula
in the lemma below makes sense in exactly the same way that the formula in the
lemma above makes sense.

Lemma 78.23.2.044U Assumptions and notation as in Lemmas 78.20.2 and 78.20.3. The
2-commutative diagram of Lemma 78.20.3 is a 2-coequalizer in the following sense:
Given

(1) a stack in groupoids X over (Sch/S)fppf ,
(2) a 1-morphism f : SU → X , and
(3) a 2-arrow β : f ◦ s→ f ◦ t

such that
β ⋆ idc = (β ⋆ idpr0) ◦ (β ⋆ idpr1)

then there exists a 1-morphism [U/R]→ X which makes the diagram

SR s
//

t

��

SU

��
f

��

SU //

f
))

[U/R]

""
X

2-commute.

Proof. Suppose given X , f and β as in the lemma. By Stacks, Lemma 8.9.2 it
suffices to construct a 1-morphism g : [U/pR] → X . First we note that the 1-
morphism SU → [U/pR] is bijective on objects. Hence on objects we can set g(x) =
f(x) for x ∈ Ob(SU ) = Ob([U/pR]). A morphism φ : x → y of [U/pR] arises from
a commutative diagram

S2

h

��

x
//

φ
  

U

R

s

OO

t

��
S1

y // U.

Thus we can set g(φ) equal to the composition

f(x)

--

f(s ◦ φ) (f ◦ s)(φ) β // (f ◦ t)(φ) f(t ◦ φ) f(y ◦ h)

��
f(y).

https://stacks.math.columbia.edu/tag/044U
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The vertical arrow is the result of applying the functor f to the canonical morphism
y ◦ h→ y in SU (namely, the strongly cartesian morphism lifting h with target y).
Let us verify that f so defined is compatible with composition, at least on fibre
categories. So let S′ be a scheme over S, and let a : S′ → R×s,U,tR be a morphism.
In this situation we set x = s ◦ pr1 ◦ a = s ◦ c ◦ a, y = t ◦ pr1 ◦ a = s ◦ pr0 ◦ a, and
z = t ◦ pr0 ◦ a = t ◦ pr0 ◦ c to get a commutative diagram

x
c◦a

//

pr1◦a
��

z

y

pr0◦a

??

in the fibre category [U/pR]S′ . Moreover, any commutative triangle in this fibre
category has this form. Then we see by our definitions above that f maps this to
a commutative diagram if and only if the diagram

(f ◦ s)(c ◦ a)
β
// (f ◦ t)(c ◦ a)

(f ◦ s)(pr1 ◦ a)
β

((

(f ◦ t)(pr0 ◦ a)

(f ◦ t)(pr1 ◦ a) (f ◦ s)(pr0 ◦ a)

β
66

is commutative which is exactly the condition expressed by the formula in the
lemma. We omit the verification that f maps identities to identities and is com-
patible with composition for arbitrary morphisms. □

78.24. Explicit description of quotient stacks

04MB In order to formulate the result we need to introduce some notation. Assume B → S
and (U,R, s, t, c) are as in Definition 78.20.1 (1). Let T be a scheme over S. Let
T = {Ti → T}i∈I be an fppf covering. A [U/R]-descent datum relative to T is
given by a system (ui, rij) where

(1) for each i a morphism ui : Ti → U , and
(2) for each i, j a morphism rij : Ti ×T Tj → R

such that
(a) as morphisms Ti ×T Tj → U we have

s ◦ rij = ui ◦ pr0 and t ◦ rij = uj ◦ pr1,

(b) as morphisms Ti ×T Tj ×T Tk → R we have
c ◦ (rjk ◦ pr12, rij ◦ pr01) = rik ◦ pr02.

A morphism (ui, rij) → (u′
i, r

′
ij) between two [U/R]-descent data over the same

covering T is a collection (ri : Ti → R) such that
(α) as morphisms Ti → U we have

ui = s ◦ ri and u′
i = t ◦ ri

(β) as morphisms Ti ×T Tj → R we have
c ◦ (r′

ij , ri ◦ pr0) = c ◦ (rj ◦ pr1, rij).
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There is a natural composition law on morphisms of descent data relative to a fixed
covering and we obtain a category of descent data. This category is a groupoid.
Finally, if T ′ = {T ′

j → T}j∈J is a second fppf covering which refines T then there is
a notion of pullback of descent data. This is particularly easy to describe explicitly
in this case. Namely, if α : J → I and φj : T ′

j → Tα(i) is the morphism of coverings,
then the pullback of the descent datum (ui, rii′) is simply

(uα(i) ◦ φj , rα(j)α(j′) ◦ φj × φj′).

Pullback defined in this manner defines a functor from the category of descent data
over T to the category of descend data over T ′.

Lemma 78.24.1.044X Assume B → S and (U,R, s, t, c) are as in Definition 78.20.1 (1).
Let π : SU → [U/R] be as in Lemma 78.20.2. Let T be a scheme over S.

(1) for every object x of the fibre category [U/R]T there exists an fppf covering
{fi : Ti → T}i∈I such that f∗

i x
∼= π(ui) for some ui ∈ U(Ti),

(2) the composition of the isomorphisms

π(ui ◦ pr0) = pr∗
0π(ui) ∼= pr∗

0f
∗
i x
∼= pr∗

1f
∗
j x
∼= pr∗

1π(uj) = π(uj ◦ pr1)

are of the form π(rij) for certain morphisms rij : Ti ×T Tj → R,
(3) the system (ui, rij) forms a [U/R]-descent datum as defined above,
(4) any [U/R]-descent datum (ui, rij) arises in this manner,
(5) if x corresponds to (ui, rij) as above, and y ∈ Ob([U/R]T ) corresponds to

(u′
i, r

′
ij) then there is a canonical bijection

Mor[U/R]T (x, y)←→
{

morphisms (ui, rij)→ (u′
i, r

′
ij)

of [U/R]-descent data

}
(6) this correspondence is compatible with refinements of fppf coverings.

Proof. Statement (1) is part of the construction of the stackyfication. Part (2) fol-
lows from Lemma 78.22.1. We omit the verification of (3). Part (4) is a translation
of the fact that in a stack all descent data are effective. We omit the verifications
of (5) and (6). □

78.25. Restriction and quotient stacks

046R In this section we study what happens to the quotient stack when taking a restric-
tion.

Lemma 78.25.1.046S Notation and assumption as in Lemma 78.21.1. The morphism of
quotient stacks

[f ] : [U/R] −→ [U ′/R′]
is fully faithful if and only if R is the restriction of R′ via the morphism f : U → U ′.

Proof. Let x, y be objects of [U/R] over a scheme T/S. Let x′, y′ be the images of
x, y in the category [U ′/R′]T . The functor [f ] is fully faithful if and only if the map
of sheaves

Isom(x, y) −→ Isom(x′, y′)
is an isomorphism for every T, x, y. We may test this locally on T (in the fppf
topology). Hence, by Lemma 78.24.1 we may assume that x, y come from a, b ∈

https://stacks.math.columbia.edu/tag/044X
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U(T ). In that case we see that x′, y′ correspond to f ◦ a, f ◦ b. By Lemma 78.22.1
the displayed map of sheaves in this case becomes

T ×(a,b),U×BU R −→ T ×f◦a,f◦b,U ′×BU ′ R′.

This is an isomorphism if R is the restriction, because in that case R = (U ×B
U)×U ′×BU ′ R′, see Lemma 78.17.3 and its proof. Conversely, if the last displayed
map is an isomorphism for all T, a, b, then it follows that R = (U×BU)×U ′×BU ′R′,
i.e., R is the restriction of R′. □

Lemma 78.25.2.046T Notation and assumption as in Lemma 78.21.1. The morphism of
quotient stacks

[f ] : [U/R] −→ [U ′/R′]
is an equivalence if and only if

(1) (U,R, s, t, c) is the restriction of (U ′, R′, s′, t′, c′) via f : U → U ′, and
(2) the map

U ×f,U ′,t′ R
′

pr1
//

h

((
R′

s′
// U ′

is a surjection of sheaves.
Part (2) holds for example if {h : U ×f,U ′,t′ R

′ → U ′} is an fppf covering, or if
f : U → U ′ is a surjection of sheaves, or if {f : U → U ′} is an fppf covering.

Proof. We already know that part (1) is equivalent to fully faithfulness by Lemma
78.25.1. Hence we may assume that (1) holds and that [f ] is fully faithful. Our
goal is to show, under these assumptions, that [f ] is an equivalence if and only if
(2) holds. We may use Stacks, Lemma 8.4.8 which characterizes equivalences.
Assume (2). We will use Stacks, Lemma 8.4.8 to prove [f ] is an equivalence.
Suppose that T is a scheme and x′ ∈ Ob([U ′/R′]T ). There exists a covering
{gi : Ti → T} such that g∗

i x
′ is the image of some element a′

i ∈ U ′(Ti), see
Lemma 78.24.1. Hence we may assume that x′ is the image of a′ ∈ U ′(T ). By
the assumption that h is a surjection of sheaves, we can find an fppf covering
{φi : Ti → T} and morphisms bi : Ti → U ×g,U ′,t′ R

′ such that a′ ◦ φi = h ◦ bi.
Denote ai = pr0 ◦ bi : Ti → U . Then we see that ai ∈ U(Ti) maps to f ◦ai ∈ U ′(Ti)
and that f ◦ai ∼=Ti h◦ bi = a′ ◦φi, where ∼=Ti denotes isomorphism in the fibre cat-
egory [U ′/R′]Ti . Namely, the element of R′(Ti) giving the isomorphism is pr1 ◦ bi.
This means that the restriction of x to Ti is in the essential image of the functor
[U/R]Ti → [U ′/R′]Ti as desired.
Assume [f ] is an equivalence. Let ξ′ ∈ [U ′/R′]U ′ denote the object corresponding
to the identity morphism of U ′. Applying Stacks, Lemma 8.4.8 we see there exists
an fppf covering U ′ = {g′

i : U ′
i → U ′} such that (g′

i)∗ξ′ ∼= [f ](ξi) for some ξi in
[U/R]U ′

i
. After refining the covering U ′ (using Lemma 78.24.1) we may assume ξi

comes from a morphism ai : U ′
i → U . The fact that [f ](ξi) ∼= (g′

i)∗ξ′ means that,
after possibly refining the covering U ′ once more, there exist morphisms r′

i : U ′
i → R′

with t′ ◦ r′
i = f ◦ ai and s′ ◦ r′

i = idU ′ ◦ g′
i. Picture

U

f

��

U ′
iai

oo

r′
i

~~
g′
i

��
U ′ R′t′oo s′

// U ′

https://stacks.math.columbia.edu/tag/046T
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Thus (ai, r′
i) : U ′

i → U ×g,U ′,t′ R
′ are morphisms such that h ◦ (ai, r′

i) = g′
i and we

conclude that {h : U ×g,U ′,t′ R
′ → U ′} can be refined by the fppf covering U ′ which

means that h induces a surjection of sheaves, see Topologies on Spaces, Lemma
73.7.5.
If {h} is an fppf covering, then it induces a surjection of sheaves, see Topologies on
Spaces, Lemma 73.7.5. If U ′ → U is surjective, then also h is surjective as s has a
section (namely the neutral element e of the groupoid in algebraic spaces). □

Lemma 78.25.3.04ZN Notation and assumption as in Lemma 78.21.1. Assume that

R

s

��

f
// R′

s′

��
U

f // U ′

is cartesian. Then
SU

��

// [U/R]

[f ]
��

SU ′ // [U ′/R′]
is a 2-fibre product square.

Proof. Applying the inverse isomorphisms i : R→ R and i′ : R′ → R′ to the (first)
cartesian diagram of the statement of the lemma we see that

R

t

��

f
// R′

t′

��
U

f // U ′

is cartesian as well. By Lemma 78.21.2 we have a 2-fibre square

[U ′′/R′′]

��

// [U/R]

��
SU ′ // [U ′/R′]

where U ′′ = U ×f,U ′,t′ R
′ and R′′ = R ×f◦s,U ′,t′ R

′. By the above we see that
(t, f) : R→ U ′′ is an isomorphism, and that

R′′ = R×f◦s,U ′,t′ R
′ = R×s,U U ×f,U ′,t′ R

′ = R×s,U,t ×R.

Explicitly the isomorphism R ×s,U,t R → R′′ is given by the rule (r0, r1) 7→
(r0, f(r1)). Moreover, s′′, t′′, c′′ translate into the maps

R×s,U,t R→ R, s′′(r0, r1) = r1, t′′(r0, r1) = c(r0, r1)
and

c′′ : (R×s,U,t R)×s′′,R,t′′ (R×s,U,t R) −→ R×s,U,t R,
((r0, r1), (r2, r3)) 7−→ (c(r0, r2), r3).

Precomposing with the isomorphism
R×s,U,s R −→ R×s,U,t R, (r0, r1) 7−→ (c(r0, i(r1)), r1)

https://stacks.math.columbia.edu/tag/04ZN
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we see that t′′ and s′′ turn into pr0 and pr1 and that c′′ turns into pr02 : R ×s,U,s
R ×s,U,s R → R ×s,U,s R. Hence we see that there is an isomorphism [U ′′/R′′] ∼=
[R/R ×s,U,s R] where as a groupoid in algebraic spaces (R,R ×s,U,s R, s′′, t′′, c′′)
is the restriction of the trivial groupoid (U,U, id, id, id) via s : R → U . Since
s : R→ U is a surjection of fppf sheaves (as it has a right inverse) the morphism

[U ′′/R′′] ∼= [R/R×s,U,s R] −→ [U/U ] = SU

is an equivalence by Lemma 78.25.2. This proves the lemma. □

78.26. Inertia and quotient stacks

06PA The (relative) inertia stack of a stack in groupoids is defined in Stacks, Section
8.7. The actual construction, in the setting of fibred categories, and some of its
properties is in Categories, Section 4.34.

Lemma 78.26.1.06PB Assume B → S and (U,R, s, t, c) as in Definition 78.20.1 (1). Let
G/U be the stabilizer group algebraic space of the groupoid (U,R, s, t, c, e, i), see
Definition 78.16.2. Set R′ = R×s,U G and set

(1) s′ : R′ → G, (r, g) 7→ g,
(2) t′ : R′ → G, (r, g) 7→ c(r, c(g, i(r))),
(3) c′ : R′ ×s′,G,t′ R

′ → R′, ((r1, g1), (r2, g2) 7→ (c(r1, r2), g1).
Then (G,R′, s′, t′, c′) is a groupoid in algebraic spaces over B and

I[U/R] = [G/R′].

i.e., the associated quotient stack is the inertia stack of [U/R].

Proof. By Stacks, Lemma 8.8.5 it suffices to prove that I[U/pR] = [G/pR′]. Let T
be a scheme over S. Recall that an object of the inertia fibred category of [U/pR]
over T is given by a pair (x, g) where x is an object of [U/pR] over T and g is an
automorphism of x in its fibre category over T . In other words, x : T → U and
g : T → R such that x = s ◦ g = t ◦ g. This means exactly that g : T → G.
A morphism in the inertia fibred category from (x, g) → (y, h) over T is given by
r : T → R such that s(r) = x, t(r) = y and c(r, g) = c(h, r), see the commutative
diagram in Categories, Lemma 4.34.1. In a formula

h = c(r, c(g, i(r))) = c(c(r, g), i(r)).

The notation s(r), etc is a short hand for s ◦ r, etc. The composition of r1 :
(x2, g2)→ (x1, g1) and r2 : (x1, g1)→ (x2, g2) is c(r1, r2) : (x1, g1)→ (x3, g3).

Note that in the above we could have written g in stead of (x, g) for an object
of I[U/pR] over T as x is the image of g under the structure morphism G → U .
Then the morphisms g → h in I[U/pR] over T correspond exactly to morphisms
r′ : T → R′ with s′(r′) = g and t′(r′) = h. Moreover, the composition corresponds
to the rule explained in (3). Thus the lemma is proved. □

Lemma 78.26.2.06PC Assume B → S and (U,R, s, t, c) as in Definition 78.20.1 (1). Let
G/U be the stabilizer group algebraic space of the groupoid (U,R, s, t, c, e, i), see

https://stacks.math.columbia.edu/tag/06PB
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Definition 78.16.2. There is a canonical 2-cartesian diagram

SG //

��

SU

��
I[U/R] // [U/R]

of stacks in groupoids of (Sch/S)fppf .

Proof. By Lemma 78.25.3 it suffices to prove that the morphism s′ : R′ → G
of Lemma 78.26.1 isomorphic to the base change of s by the structure morphism
G→ U . This base change property is clear from the construction of s′. □

78.27. Gerbes and quotient stacks

06PD In this section we relate quotient stacks to the discussion Stacks, Section 8.11 and
especially gerbes as defined in Stacks, Definition 8.11.4. The stacks in groupoids
occurring in this section are generally speaking not algebraic stacks!

Lemma 78.27.1.06PE Notation and assumption as in Lemma 78.21.1. The morphism of
quotient stacks

[f ] : [U/R] −→ [U ′/R′]

turns [U/R] into a gerbe over [U ′/R′] if f : U → U ′ and R → R′|U are surjective
maps of fppf sheaves. Here R′|U is the restriction of R′ to U via f : U → U ′.

Proof. We will verify that Stacks, Lemma 8.11.3 properties (2) (a) and (2) (b) hold.
Property (2)(a) holds because U → U ′ is a surjective map of sheaves (use Lemma
78.24.1 to see that objects in [U ′/R′] locally come from U ′). To prove (2)(b) let
x, y be objects of [U/R] over a scheme T/S. Let x′, y′ be the images of x, y in the
category [U ′/′R]T . Condition (2)(b) requires us to check the map of sheaves

Isom(x, y) −→ Isom(x′, y′)

on (Sch/T )fppf is surjective. To see this we may work fppf locally on T and assume
that come from a, b ∈ U(T ). In that case we see that x′, y′ correspond to f ◦a, f ◦b.
By Lemma 78.22.1 the displayed map of sheaves in this case becomes

T ×(a,b),U×BU R −→ T ×f◦a,f◦b,U ′×BU ′ R′ = T ×(a,b),U×BU R
′|U .

Hence the assumption that R → R′|U is a surjective map of fppf sheaves on
(Sch/S)fppf implies the desired surjectivity. □

Lemma 78.27.2.06PF Let S be a scheme. Let B be an algebraic space over S. Let G
be a group algebraic space over B. Endow B with the trivial action of G. The
morphism

[B/G] −→ SB
(Lemma 78.20.2) turns [B/G] into a gerbe over B.

Proof. Immediate from Lemma 78.27.1 as the morphisms B → B and B×BG→ B
are surjective as morphisms of sheaves. □

https://stacks.math.columbia.edu/tag/06PE
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78.28. Quotient stacks and change of big site

04WW We suggest skipping this section on a first reading. Pullbacks of stacks are defined
in Stacks, Section 8.12.

Lemma 78.28.1.04WX Suppose given big sites Schfppf and Sch′
fppf . Assume that Schfppf

is contained in Sch′
fppf , see Topologies, Section 34.12. Let S ∈ Ob(Schfppf ). Let

B,U,R ∈ Sh((Sch/S)fppf ) be algebraic spaces, and let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. Let f : (Sch′/S)fppf → (Sch/S)fppf the morphism of
sites corresponding to the inclusion functor u : Schfppf → Sch′

fppf . Then we have
a canonical equivalence

[f−1U/f−1R] −→ f−1[U/R]

of stacks in groupoids over (Sch′/S)fppf .

Proof. Note that f−1B, f−1U, f−1R ∈ Sh((Sch′/S)fppf ) are algebraic spaces by
Spaces, Lemma 65.15.1 and hence (f−1U, f−1R, f−1s, f−1t, f−1c) is a groupoid in
algebraic spaces over f−1B. Thus the statement makes sense.

The category up[U/pR] is the localization of the category upp[U/pR] at right multi-
plicative system I of morphisms. An object of upp[U/pR] is a triple

(T ′, ϕ : T ′ → T, x)

where T ′ ∈ Ob((Sch′/S)fppf ), T ∈ Ob((Sch/S)fppf ), ϕ is a morphism of schemes
over S, and x : T → U is a morphism of sheaves on (Sch/S)fppf . Note that the
morphism of schemes ϕ : T ′ → T is the same thing as a morphism ϕ : T ′ → u(T ),
and since u(T ) represents f−1T it is the same thing as a morphism T ′ → f−1T .
Moreover, as f−1 on algebraic spaces is fully faithful, see Spaces, Lemma 65.15.2,
we may think of x as a morphism x : f−1T → f−1U as well. From now on we will
make such identifications without further mention. A morphism

(a, a′, α) : (T ′
1, ϕ1 : T ′

1 → T1, x1) −→ (T ′
2, ϕ2 : T ′

2 → T2, x2)

of upp[U/pR] is a commutative diagram

U

T ′
1

a′

��

ϕ1

// T1

a

��

x1

??

α
// R

t

��

s

OO

T ′
2

ϕ2 // T2
x2 // U

and such a morphism is an element of I if and only if T ′
1 = T ′

2 and a′ = id. We
define a functor

upp[U/pR] −→ [f−1U/pf
−1R]

by the rules
(T ′, ϕ : T ′ → T, x) 7−→ (x ◦ ϕ : T ′ → f−1U)

on objects and
(a, a′, α) 7−→ (α ◦ ϕ1 : T ′

1 → f−1R)

https://stacks.math.columbia.edu/tag/04WX
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on morphisms as above. It is clear that elements of I are transformed into isomor-
phisms as (f−1U, f−1R, f−1s, f−1t, f−1c) is a groupoid in algebraic spaces over
f−1B. Hence this functor factors in a canonical way through a functor

up[U/pR] −→ [f−1U/pf
−1R]

Applying stackification we obtain a functor of stacks
f−1[U/R] −→ [f−1U/f−1R]

over (Sch′/S)fppf , as by Stacks, Lemma 8.12.11 the stack f−1[U/R] is the stacki-
fication of up[U/pR].
At this point we have a morphism of stacks, and to verify that it is an equivalence it
suffices to show that it is fully faithful and that objects are locally in the essential
image, see Stacks, Lemmas 8.4.7 and 8.4.8. The statement on objects holds as
f−1R admits a surjective étale morphism f−1W → f−1R for some object W of
(Sch/S)fppf . To show that the functor is “full”, it suffices to show that morphisms
are locally in the image of the functor which holds as f−1U admits a surjective
étale morphism f−1W → f−1U for some object W of (Sch/S)fppf . We omit the
proof that the functor is faithful. □

78.29. Separation conditions

0453 This really means conditions on the morphism j : R → U ×B U when given a
groupoid in algebraic spaces (U,R, s, t, c) over B. As in the previous section we
first formulate the corresponding diagram.
Lemma 78.29.1.0454 Let B → S be as in Section 78.3. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. Let G→ U be the stabilizer group algebraic space. The
commutative diagram

R

∆R/U×BU

��

f 7→(f,s(f))
// R×s,U U

��

// U

��
R×(U×BU) R

(f,g) 7→(f,f−1◦g) // R×s,U G // G

the two left horizontal arrows are isomorphisms and the right square is a fibre
product square.
Proof. Omitted. Exercise in the definitions and the functorial point of view in
algebraic geometry. □

Lemma 78.29.2.0455 Let B → S be as in Section 78.3. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. Let G→ U be the stabilizer group algebraic space.

(1) The following are equivalent
(a) j : R→ U ×B U is separated,
(b) G→ U is separated, and
(c) e : U → G is a closed immersion.

(2) The following are equivalent
(a) j : R→ U ×B U is locally separated,
(b) G→ U is locally separated, and
(c) e : U → G is an immersion.

(3) The following are equivalent
(a) j : R→ U ×B U is quasi-separated,

https://stacks.math.columbia.edu/tag/0454
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(b) G→ U is quasi-separated, and
(c) e : U → G is quasi-compact.

Proof. The group algebraic space G→ U is the base change of R→ U ×B U by the
diagonal morphism U → U×BU , see Lemma 78.16.1. Hence if j is separated (resp.
locally separated, resp. quasi-separated), then G → U is separated (resp. locally
separated, resp. quasi-separated). See Morphisms of Spaces, Lemma 67.4.4. Thus
(a) ⇒ (b) in (1), (2), and (3).
Conversely, if G → U is separated (resp. locally separated, resp. quasi-separated),
then the morphism e : U → G, as a section of the structure morphism G → U is
a closed immersion (resp. an immersion, resp. quasi-compact), see Morphisms of
Spaces, Lemma 67.4.7. Thus (b) ⇒ (c) in (1), (2), and (3).
If e is a closed immersion (resp. an immersion, resp. quasi-compact) then by the
result of Lemma 78.29.1 (and Spaces, Lemma 65.12.3, and Morphisms of Spaces,
Lemma 67.8.4) we see that ∆R/U×BU is a closed immersion (resp. an immersion,
resp. quasi-compact). Thus (c) ⇒ (a) in (1), (2), and (3). □
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CHAPTER 79

More on Groupoids in Spaces

04P4 79.1. Introduction

04P5 This chapter is devoted to advanced topics on groupoids in algebraic spaces. Even
though the results are stated in terms of groupoids in algebraic spaces, the reader
should keep in mind the 2-cartesian diagram

(79.1.0.1)04P6

R //

��

U

��
U // [U/R]

where [U/R] is the quotient stack, see Groupoids in Spaces, Remark 78.20.4. Many
of the results are motivated by thinking about this diagram. See for example the
beautiful paper [KM97] by Keel and Mori.

79.2. Notation

04P7 We continue to abide by the conventions and notation introduced in Groupoids in
Spaces, Section 78.3.

79.3. Useful diagrams

04P8 We briefly restate the results of Groupoids in Spaces, Lemmas 78.11.4 and 78.11.5
for easy reference in this chapter. Let S be a scheme. Let B be an algebraic
space over S. Let (U,R, s, t, c) be a groupoid in algebraic spaces over B. In the
commutative diagram

(79.3.0.1)04P9

U

R

s

��

t

::

R×s,U,t Rpr0
oo

pr1

��

c
// R

s

��

t

dd

U R
too s // U

the two lower squares are fibre product squares. Moreover, the triangle on top
(which is really a square) is also cartesian.

5995
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The diagram

(79.3.0.2)0451

R×t,U,t R
pr1 //

pr0
//

pr0×c◦(i,1)
��

R
t //

idR
��

U

idU
��

R×s,U,t R
c //

pr0
//

pr1

��

R
t //

s

��

U

R
s //

t
// U

is commutative. The two top rows are isomorphic via the vertical maps given. The
two lower left squares are cartesian.

79.4. Local structure

0CK9 Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid in algebraic spaces over S.
Let u be a geometric point of U . In this section we explain what kind of structure
we obtain on the local rings (Properties of Spaces, Definition 66.22.2)

A = OU,u and B = OR,e(u)

The convention we will use is to denote the local ring homomorphisms induced
by the morphisms s, t, c, e, i by the corresponding letters. In particular we have a
commutative diagram

A

t ��

1

''
B

e // A

A

s

??

1

77

of local rings. Thus if I ⊂ B denotes the kernel of e : B → A, then B = s(A)⊕ I =
t(A)⊕ I. Let us denote

C = OR×s,U,tR,(e,e)(u)

Then we have
C = (B ⊗s,A,t B)hmB⊗B+B⊗mB

because the localization (B⊗s,A,tB)mB⊗B+B⊗mB has separably closed residue field.
Let J ⊂ C be the ideal of C generated by I ⊗B+B⊗ I. Then J is also the kernel
of the local ring homomorphism

(e, e) : C −→ A

The composition law c : R×s,U,t R→ R corresponds to a ring map
c : B −→ C

sending I into J .

Lemma 79.4.1.0CKA The map I/I2 → J/J2 induced by c is the composition

I/I2 (1,1)−−−→ I/I2 ⊕ I/I2 → J/J2

https://stacks.math.columbia.edu/tag/0CKA
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where the second arrow comes from the equality J = (I ⊗B +B ⊗ I)C. The map
i : B → B induces the map −1 : I/I2 → I/I2.

Proof. To describe a local homomorphism from C to another henselian local ring it
is enough to say what happens to elements of the form b1 ⊗ b2 by Algebra, Lemma
10.155.6 for example. Keeping this in mind we have the two canonical maps

e2 : C → B, b1 ⊗ b2 7→ b1s(e(b2)), e1 : C → B, b1 ⊗ b2 7→ t(e(b1))b2

corresponding to the embeddings R → R ×s,U,t R given by r 7→ (r, e(s(r))) and
r 7→ (e(t(r)), r). These maps define maps J/J2 → I/I2 which jointly give an
inverse to the map I/I2 ⊕ I/I2 → J/J2 of the lemma. Thus to prove statement
we only have to show that e1 ◦ c : B → B and e2 ◦ c : B → B are the identity
maps. This follows from the fact that both compositions R→ R×s,U,t R→ R are
identities.

The statement on i follows from the statement on c and the fact that c◦(1, i) = e◦t.
Some details omitted. □

79.5. Groupoid of sections

0CKB Suppose we have a groupoid (Ob,Arrows, s, t, c, e, i). Then we can construct a
monoid Γ whose elements are maps δ : Ob → Arrows with s ◦ δ = idOb and
composition given by

δ1 ◦ δ2 = c(δ1 ◦ t ◦ δ2, δ2)
In other words, an element of Γ is a rule δ which prescribes an arrow emanating
from every object and composition is the natural thing. For example

•

��
•:: •

��
•

__ ◦

•

��
•

??

•

��
•

__ =

•





•:: •oo

•

__

with obvious notation

The same procedure can be applied to a groupoid in algebraic spaces (U,R, s, t, c, e, i)
over a scheme S. Namely, as elements of Γ we take the set

Γ = {δ : U → R | s ◦ δ = idU}

and composition ◦ : Γ× Γ→ Γ is given by the rule above

(79.5.0.1)0CKC δ1 ◦ δ2 = c(δ1 ◦ t ◦ δ2, δ2)

The identity is given by e ∈ Γ. The groupoid Γ is not a group in general because
there may be elements δ ∈ Γ which do not have an inverse. Namely, it is clear that
δ ∈ Γ will have an inverse if and only if t ◦ δ is an automorphism of U and in this
case δ−1 = i ◦ δ ◦ (t ◦ δ)−1.

For later use we discuss what happens with the subgroupoid Γ0 of Γ of sections
which are infinitesimally close to the identity e. More precisely, suppose given
an R-invariant closed subspace U0 ⊂ U such that U is a first order thickening
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of U0. Denote R0 = s−1(U0) = t−1(U0) and let (U0, R0, s0, t0, c0, e0, i0) be the
corresponding groupoid in algebraic spaces. Set

Γ0 = {δ ∈ Γ | δ|U0 = e0}
If s and t are flat, then every element in Γ0 is invertible. This follows because t ◦ δ
will be a morphism U → U inducing the identity on OU0 and on CU0/U (Lemma
79.5.1) and we conclude because we have a short exact sequence 0 → CU0/U →
OU → OU0 → 0.

Lemma 79.5.1.0CKD In the situation discussed in this section, let δ ∈ Γ0 and f = t ◦ δ :
U → U . If s, t are flat, then the canonical map CU0/U → CU0/U induced by f (More
on Morphisms of Spaces, Lemma 76.5.3) is the identity map.

Proof. To see this we extend the bottom of the diagram (79.3.0.2) as follows

Y //

��

R×s,U,t R
c //

pr0
//

pr1

��

R
t //

s

��

U

U
δ

// R
s //

t
// U

where the left square is cartesian and this is our definition of Y ; we will not need to
know more about Y . There is a similar diagram with similar properties obtained
by base change to U0 everywhere. We are trying to show that idU = s ◦ δ and
f = t ◦ δ induce the same maps on conormal sheaves. Since s is flat and surjective,
it suffices to prove the same thing for the two compositions a, b : Y → R along the
top row. Observe that a0 = b0 and that one of a and b is an isomorphism as we
know that s ◦ δ is an isomorphism. Therefore the two morphisms a, b : Y → R are
morphisms between algebraic spaces flat over U (via the morphism t : R→ U and
the morphism t ◦ a = t ◦ b : Y → U). This implies what we want. Namely, by the
compatibility with compositions in More on Morphisms of Spaces, Lemma 76.5.4
we conclude that both maps a∗

0CR0/R → CY0/Y fit into a commutative diagram

a∗
0CR0/R

// CY0/Y

a∗
0t

∗
0CU0/U

OO

(t0 ◦ a0)∗CU0/U

OO

whose vertical arrows are isomorphisms by More on Morphisms of Spaces, Lemma
76.18.1. Thus the lemma holds. □

Let us identify the group Γ0. Applying the discussion in More on Morphisms of
Spaces, Remarks 76.17.3 and 76.17.7 to the diagram

(U0 ⊂ U)
(e0,δ)

//

(idU0 ,idU ) &&

(R0 ⊂ R)

(s0,s)xx
(U0 ⊂ U)

we see that δ = θ · e for a unique OU0-linear map θ : e∗
0ΩR0/U0 → CU0/U . Thus we

get a bijection
(79.5.1.1)0CKE HomOU0

(e∗
0ΩR0/U0 , CU0/U ) −→ Γ0

https://stacks.math.columbia.edu/tag/0CKD
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by applying More on Morphisms of Spaces, Lemma 76.17.5.

Lemma 79.5.2.0CKF The bijection (79.5.1.1) is an isomorphism of groups.

Proof. Let δ1, δ2 ∈ Γ0 correspond to θ1, θ2 as above and the composition δ =
δ1 ◦ δ2 in Γ0 correspond to θ. We have to show that θ = θ1 + θ2. Recall (More
on Morphisms of Spaces, Lemma 76.17.2) that θ1, θ2, θ correspond to derivations
D1, D2, D : e−1

0 OR0 → CU0/U given by D1 = θ1 ◦ dR0/U0 and so on. It suffices to
check that D = D1 +D2.
We may check equality on stalks. Let u be a geometric point of U and let us use
the local rings A,B,C introduced in Section 79.4. The morphisms δi correspond
to ring maps δi : B → A. Let K ⊂ A be the ideal of square zero such that
A/K = OU0,u. In other words, K is the stalk of CU0/U at u. The fact that δi ∈ Γ0
means exactly that δi(I) ⊂ K. The derivation Di is just the map δi − e : B → A.
Since B = s(A)⊕I we see that Di is determined by its restriction to I and that this
is just given by δi|I . Moreover Di and hence δi annihilates I2 because I = Ker(I).
To finish the proof we observe that δ corresponds to the composition

B → C = (B ⊗s,A,t B)hmB⊗B+B⊗mB → A

where the first arrow is c and the second arrow is determined by the rule b1⊗ b2 7→
δ2(t(δ1(b1)))δ2(b2) as follows from (79.5.0.1). By Lemma 79.4.1 we see that an
element ζ of I maps to ζ ⊗ 1 + 1 ⊗ ζ plus higher order terms. Hence we conclude
that

D(ζ) = (δ2 ◦ t) (D1(ζ)) +D2(ζ)
However, by Lemma 79.5.1 the action of δ2 ◦ t on K = CU0/U,u is the identity and
we win. □

79.6. Properties of groupoids

044Y This section is the analogue of More on Groupoids, Section 40.6. The reader is
strongly encouraged to read that section first.
The following lemma is the analogue of More on Groupoids, Lemma 40.6.4.

Lemma 79.6.1.044Z Let B → S be as in Section 79.2. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. Let τ ∈ {fppf, étale, smooth, syntomic}. Let P be a
property of morphisms of algebraic spaces which is τ -local on the target (Descent on
Spaces, Definition 74.10.1). Assume {s : R→ U} and {t : R→ U} are coverings for
the τ -topology. Let W ⊂ U be the maximal open subspace such that s−1(W )→W
has property P. Then W is R-invariant (Groupoids in Spaces, Definition 78.18.1).

Proof. The existence and properties of the open W ⊂ U are described in Descent
on Spaces, Lemma 74.10.3. In Diagram (79.3.0.1) let W1 ⊂ R be the maximal
open subscheme over which the morphism pr1 : R ×s,U,t R → R has property P.
It follows from the aforementioned Descent on Spaces, Lemma 74.10.3 and the
assumption that {s : R → U} and {t : R → U} are coverings for the τ -topology
that t−1(W ) = W1 = s−1(W ) as desired. □

Lemma 79.6.2.06R4 Let B → S be as in Section 79.2. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. Let G→ U be its stabilizer group algebraic space. Let
τ ∈ {fppf, étale, smooth, syntomic}. Let P be a property of morphisms of algebraic
spaces which is τ -local on the target. Assume {s : R → U} and {t : R → U} are

https://stacks.math.columbia.edu/tag/0CKF
https://stacks.math.columbia.edu/tag/044Z
https://stacks.math.columbia.edu/tag/06R4
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coverings for the τ -topology. Let W ⊂ U be the maximal open subspace such
that GW → W has property P. Then W is R-invariant (see Groupoids in Spaces,
Definition 78.18.1).
Proof. The existence and properties of the open W ⊂ U are described in Descent
on Spaces, Lemma 74.10.3. The morphism

G×U,t R −→ R×s,U G, (g, r) 7−→ (r, r−1 ◦ g ◦ r)
is an isomorphism of algebraic spaces over R (where ◦ denotes composition in
the groupoid). Hence s−1(W ) = t−1(W ) by the properties of W proved in the
aforementioned Descent on Spaces, Lemma 74.10.3. □

79.7. Comparing fibres

04PA This section is the analogue of More on Groupoids, Section 40.7. The reader is
strongly encouraged to read that section first.
Lemma 79.7.1.0452 Let B → S be as in Section 79.2. Let (U,R, s, t, c) be a groupoid
in algebraic spaces over B. Let K be a field and let r, r′ : Spec(K) → R be
morphisms such that t ◦ r = t ◦ r′ : Spec(K) → U . Set u = s ◦ r, u′ = s ◦ r′ and
denote Fu = Spec(K) ×u,U,s R and Fu′ = Spec(K) ×u′,U,s R the fibre products.
Then Fu ∼= Fu′ as algebraic spaces over K.
Proof. We use the properties and the existence of Diagram (79.3.0.1). There exists
a morphism ξ : Spec(K) → R ×s,U,t R with pr0 ◦ ξ = r and c ◦ ξ = r′. Let
r̃ = pr1 ◦ ξ : Spec(K) → R. Then looking at the bottom two squares of Diagram
(79.3.0.1) we see that both Fu and Fu′ are identified with the algebraic space
Spec(K)×r̃,R,pr1 (R×s,U,t R). □

Actually, in the situation of the lemma the morphisms of pairs s : (R, r) → (U, u)
and s : (R, r′)→ (U, u′) are locally isomorphic in the τ -topology, provided {s : R→
U} is a τ -covering. We will insert a precise statement here if needed.

79.8. Restricting groupoids

04RM In this section we collect a bunch of lemmas on properties of groupoids which are
inherited by restrictions. Most of these lemmas can be proved by contemplating
the defining diagram

(79.8.0.1)04RN

R′

��

//

t′

%%

s′

**
R×s,U U ′ //

��

U ′

g

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′ g // U

of a restriction. See Groupoids in Spaces, Lemma 78.17.1.
Lemma 79.8.1.04RP Let S be a scheme. Let B be an algebraic space over S. Let
(U,R, s, t, c) be a groupoid in algebraic spaces over B. Let g : U ′ → U be a
morphism of algebraic spaces over B. Let (U ′, R′, s′, t′, c′) be the restriction of
(U,R, s, t, c) via g.

https://stacks.math.columbia.edu/tag/0452
https://stacks.math.columbia.edu/tag/04RP
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(1) If s, t are locally of finite type and g is locally of finite type, then s′, t′ are
locally of finite type.

(2) If s, t are locally of finite presentation and g is locally of finite presentation,
then s′, t′ are locally of finite presentation.

(3) If s, t are flat and g is flat, then s′, t′ are flat.
(4) Add more here.

Proof. The property of being locally of finite type is stable under composition
and arbitrary base change, see Morphisms of Spaces, Lemmas 67.23.2 and 67.23.3.
Hence (1) is clear from Diagram (79.8.0.1). For the other cases, see Morphisms of
Spaces, Lemmas 67.28.2, 67.28.3, 67.30.3, and 67.30.4. □

79.9. Properties of groups over fields and groupoids on fields

06DW The reader is advised to first look at the corresponding sections for groupoid
schemes, see Groupoids, Section 39.7 and More on Groupoids, Section 40.10.
Situation 79.9.1.06DX Here S is a scheme, k is a field over S, and (G,m) is a group
algebraic space over Spec(k).
Situation 79.9.2.06DY Here S is a scheme, B is an algebraic space, and (U,R, s, t, c) is
a groupoid in algebraic spaces over B with U = Spec(k) for some field k.
Note that in Situation 79.9.1 we obtain a groupoid in algebraic spaces
(79.9.2.1)06DZ (Spec(k), G, p, p,m)
where p : G → Spec(k) is the structure morphism of G, see Groupoids in Spaces,
Lemma 78.15.1. This is a situation as in Situation 79.9.2. We will use this without
further mention in the rest of this section.
Lemma 79.9.3.06E0 In Situation 79.9.2 the composition morphism c : R ×s,U,t R → R
is flat and universally open. In Situation 79.9.1 the group law m : G×k G→ G is
flat and universally open.
Proof. The composition is isomorphic to the projection map pr1 : R ×t,U,t R → R
by Diagram (79.3.0.2). The projection is flat as a base change of the flat morphism
t and open by Morphisms of Spaces, Lemma 67.6.6. The second assertion follows
immediately from the first because m matches c in (79.9.2.1). □

Note that the following lemma applies in particular when working with either quasi-
separated or locally separated algebraic spaces (Decent Spaces, Lemma 68.15.2).
Lemma 79.9.4.08BH In Situation 79.9.2 assume R is a decent space. Then R is a
separated algebraic space. In Situation 79.9.1 assume that G is a decent algebraic
space. Then G is separated algebraic space.
Proof. We first prove the second assertion. By Groupoids in Spaces, Lemma 78.6.1
we have to show that e : S → G is a closed immersion. This follows from Decent
Spaces, Lemma 68.14.5.
Next, we prove the first assertion. To do this we may replace B by S. By the
paragraph above the stabilizer group scheme G → U is separated. By Groupoids
in Spaces, Lemma 78.29.2 the morphism j = (t, s) : R→ U ×S U is separated. As
U is the spectrum of a field the scheme U ×S U is affine (by the construction of
fibre products in Schemes, Section 26.17). Hence R is separated, see Morphisms of
Spaces, Lemma 67.4.9. □

https://stacks.math.columbia.edu/tag/06DX
https://stacks.math.columbia.edu/tag/06DY
https://stacks.math.columbia.edu/tag/06E0
https://stacks.math.columbia.edu/tag/08BH
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Lemma 79.9.5.06E1 In Situation 79.9.2. Let k′/k be a field extension, U ′ = Spec(k′) and
let (U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c) via U ′ → U . In the defining
diagram

R′

��

//

t′

%%

s′

**

&&

R×s,U U ′ //

��

U ′

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′ // U
all the morphisms are surjective, flat, and universally open. The dotted arrow
R′ → R is in addition affine.

Proof. The morphism U ′ → U equals Spec(k′)→ Spec(k), hence is affine, surjective
and flat. The morphisms s, t : R → U and the morphism U ′ → U are universally
open by Morphisms, Lemma 29.23.4. Since R is not empty and U is the spectrum
of a field the morphisms s, t : R→ U are surjective and flat. Then you conclude by
using Morphisms of Spaces, Lemmas 67.5.5, 67.5.4, 67.6.4, 67.20.5, 67.20.4, 67.30.4,
and 67.30.3. □

Lemma 79.9.6.06E2 In Situation 79.9.2. For any point r ∈ |R| there exist
(1) a field extension k′/k with k′ algebraically closed,
(2) a point r′ : Spec(k′) → R′ where (U ′, R′, s′, t′, c′) is the restriction of

(U,R, s, t, c) via Spec(k′)→ Spec(k)
such that

(1) the point r′ maps to r under the morphism R′ → R, and
(2) the maps s′ ◦ r′, t′ ◦ r′ : Spec(k′)→ Spec(k′) are automorphisms.

Proof. Let’s represent r by a morphism r : Spec(K) → R for some field K. To
prove the lemma we have to find an algebraically closed field k′ and a commutative
diagram

k′ k′
1

oo

k′

τ

OO

K

σ

``

k
s

oo

i

__

k

i

``

t

OO

where s, t : k → K are the field maps coming from s◦r and t◦r. In the proof of More
on Groupoids, Lemma 40.10.5 it is shown how to construct such a diagram. □

Lemma 79.9.7.06E3 In Situation 79.9.2. If r : Spec(k) → R is a morphism such that
s ◦ r, t ◦ r are automorphisms of Spec(k), then the map

R −→ R, x 7−→ c(r, x)
is an automorphism R→ R which maps e to r.

Proof. Proof is identical to the proof of More on Groupoids, Lemma 40.10.6. □

https://stacks.math.columbia.edu/tag/06E1
https://stacks.math.columbia.edu/tag/06E2
https://stacks.math.columbia.edu/tag/06E3
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Lemma 79.9.8.06E4 In Situation 79.9.2 the algebraic space R is geometrically unibranch.
In Situation 79.9.1 the algebraic space G is geometrically unibranch.

Proof. Let r ∈ |R|. We have to show that R is geometrically unibranch at r.
Combining Lemma 79.9.5 with Descent on Spaces, Lemma 74.9.1 we see that it
suffices to prove this in case k is algebraically closed and r comes from a morphism
r : Spec(k)→ R such that s◦ r and t◦ r are automorphisms of Spec(k). By Lemma
79.9.7 we reduce to the case that r = e is the identity of R and k is algebraically
closed.
Assume r = e and k is algebraically closed. Let A = OR,e be the étale local ring
of R at e and let C = OR×s,U,tR,(e,e) be the étale local ring of R ×s,U,t R at (e, e).
By More on Algebra, Lemma 15.107.4 the minimal prime ideals q of C correspond
1-to-1 to pairs of minimal primes p, p′ ⊂ A. On the other hand, the composition
law induces a flat ring map

A
c♯

// C q

A⊗s♯,k,t♯ A

OO

p⊗A+A⊗ p′

_

Note that (c♯)−1(q) contains both p and p′ as the diagrams

A
c♯

// C

A⊗s♯,k k

OO

A⊗s♯,k,t♯ A
1⊗e♯oo

OO A
c♯

// C

k ⊗k,t♯ A

OO

A⊗s♯,k,t♯ A
e♯⊗1oo

OO

commute by (79.3.0.1). Since c♯ is flat (as c is a flat morphism by Lemma 79.9.3),
we see that (c♯)−1(q) is a minimal prime of A. Hence p = (c♯)−1(q) = p′. □

In the following lemma we use dimension of algebraic spaces (at a point) as defined
in Properties of Spaces, Section 66.9. We also use the dimension of the local ring
defined in Properties of Spaces, Section 66.10 and transcendence degree of points,
see Morphisms of Spaces, Section 67.33.

Lemma 79.9.9.06FD In Situation 79.9.2 assume s, t are locally of finite type. For all
r ∈ |R|

(1) dim(R) = dimr(R),
(2) the transcendence degree of r over Spec(k) via s equals the transcendence

degree of r over Spec(k) via t, and
(3) if the transcendence degree mentioned in (2) is 0, then dim(R) = dim(OR,r).

Proof. Let r ∈ |R|. Denote trdeg(r/sk) the transcendence degree of r over Spec(k)
via s. Choose an étale morphism φ : V → R where V is a scheme and v ∈ V
mapping to r. Using the definitions mentioned above the lemma we see that

dimr(R) = dimv(V ) = dim(OV,v) + trdegs(k)(κ(v)) = dim(OR,r) + trdeg(r/sk)
and similarly for t (the second equality by Morphisms, Lemma 29.28.1). Hence we
see that trdeg(r/sk) = trdeg(r/tk), i.e., (2) holds.
Let k′/k be a field extension. Note that the restriction R′ of R to Spec(k′) (see
Lemma 79.9.5) is obtained from R by two base changes by morphisms of fields.

https://stacks.math.columbia.edu/tag/06E4
https://stacks.math.columbia.edu/tag/06FD
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Thus Morphisms of Spaces, Lemma 67.34.3 shows the dimension of R at a point
is unchanged by this operation. Hence in order to prove (1) we may assume, by
Lemma 79.9.6, that r is represented by a morphism r : Spec(k) → R such that
both s ◦ r and t ◦ r are automorphisms of Spec(k). In this case there exists an
automorphism R → R which maps r to e (Lemma 79.9.7). Hence we see that
dimr(R) = dime(R) for any r. By definition this means that dimr(R) = dim(R).
Part (3) is a formal consequence of the results obtained in the discussion above. □

Lemma 79.9.10.06FE In Situation 79.9.1 assume G locally of finite type. For all g ∈ |G|
(1) dim(G) = dimg(G),
(2) if the transcendence degree of g over k is 0, then dim(G) = dim(OG,g).

Proof. Immediate from Lemma 79.9.9 via (79.9.2.1). □

Lemma 79.9.11.06FF In Situation 79.9.2 assume s, t are locally of finite type. Let
G = Spec(k)×∆,Spec(k)×BSpec(k),t×sR be the stabilizer group algebraic space. Then
we have dim(R) = dim(G).
Proof. Since G and R are equidimensional (see Lemmas 79.9.9 and 79.9.10) it
suffices to prove that dime(R) = dime(G). Let V be an affine scheme, v ∈ V , and
let φ : V → R be an étale morphism of schemes such that φ(v) = e. Note that V is
a Noetherian scheme as s◦φ is locally of finite type as a composition of morphisms
locally of finite type and as V is quasi-compact (use Morphisms of Spaces, Lemmas
67.23.2, 67.39.8, and 67.28.5 and Morphisms, Lemma 29.15.6). Hence V is locally
connected (see Properties, Lemma 28.5.5 and Topology, Lemma 5.9.6). Thus we
may replace V by the connected component containing v (it is still affine as it
is an open and closed subscheme of V ). Set T = Vred equal to the reduction of
V . Consider the two morphisms a, b : T → Spec(k) given by a = s ◦ φ|T and
b = t ◦ φ|T . Note that a, b induce the same field map k → κ(v) because φ(v) = e!
Let ka ⊂ Γ(T,OT ) be the integral closure of a♯(k) ⊂ Γ(T,OT ). Similarly, let
kb ⊂ Γ(T,OT ) be the integral closure of b♯(k) ⊂ Γ(T,OT ). By Varieties, Proposition
33.31.1 we see that ka = kb. Thus we obtain the following commutative diagram

k

a

"" ++
ka = kb // Γ(T,OT ) // κ(v)

k

b

<< 33

As discussed above the long arrows are equal. Since ka = kb → κ(v) is injective we
conclude that the two morphisms a and b agree. Hence T → R factors through G.
It follows that Rred = Gred in an open neighbourhood of e which certainly implies
that dime(R) = dime(G). □

79.10. Group algebraic spaces over fields

0B8D There exists a nonseparated group algebraic space over a field, namely Ga/Z over a
field of characteristic zero, see Examples, Section 110.49. In fact any group scheme
over a field is separated (Lemma 79.9.4) hence every nonseparated group algebraic
space over a field is nonrepresentable. On the other hand, a group algebraic space

https://stacks.math.columbia.edu/tag/06FE
https://stacks.math.columbia.edu/tag/06FF
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over a field is separated as soon as it is decent, see Lemma 79.9.4. In this section
we will show that a separated group algebraic space over a field is representable,
i.e., a scheme.

Lemma 79.10.1.0B8E Let k be a field with algebraic closure k. Let G be a group
algebraic space over k which is separated1. Then Gk is a scheme.

Proof. By Spaces over Fields, Lemma 72.10.2 it suffices to show that GK is a
scheme for some field extension K/k. Denote G′

K ⊂ GK the schematic locus of GK
as in Properties of Spaces, Lemma 66.13.1. By Properties of Spaces, Proposition
66.13.3 we see that G′

K ⊂ GK is dense open, in particular not empty. Choose a
scheme U and a surjective étale morphism U → G. By Varieties, Lemma 33.14.2
if K is an algebraically closed field of large enough transcendence degree, then UK
is a Jacobson scheme and every closed point of UK is K-rational. Hence G′

K has
a K-rational point and it suffices to show that every K-rational point of GK is in
G′
K . If g ∈ GK(K) is a K-rational point and g′ ∈ G′

K(K) a K-rational point in the
schematic locus, then we see that g is in the image of G′

K under the automorphism

GK −→ GK , h 7−→ g(g′)−1h

of GK . Since automorphisms of GK as an algebraic space preserve G′
K , we conclude

that g ∈ G′
K as desired. □

Lemma 79.10.2.0B8F Let k be a field. Let G be a group algebraic space over k. If G is
separated and locally of finite type over k, then G is a scheme.

Proof. This follows from Lemma 79.10.1, Groupoids, Lemma 39.8.6, and Spaces
over Fields, Lemma 72.10.7. □

Proposition 79.10.3.0B8G Let k be a field. Let G be a group algebraic space over k. If
G is separated, then G is a scheme.

Proof. This lemma generalizes Lemma 79.10.2 (which covers all cases one cares
about in practice). The proof is very similar to the proof of Spaces over Fields,
Lemma 72.10.7 used in the proof of Lemma 79.10.2 and we encourage the reader
to read that proof first.

By Lemma 79.10.1 the base change Gk is a scheme. Let K/k be a purely tran-
scendental extension of very large transcendence degree. By Spaces over Fields,
Lemma 72.10.5 it suffices to show that GK is a scheme. Let Kperf be the perfect
closure of K. By Spaces over Fields, Lemma 72.10.1 it suffices to show that GKperf

is a scheme. Let K ⊂ Kperf ⊂ K be the algebraic closure of K. We may choose
an embedding k → K over k, so that GK is the base change of the scheme Gk by
k → K. By Varieties, Lemma 33.14.2 we see that GK is a Jacobson scheme all of
whose closed points have residue field K.

Since GK → GKperf is surjective, it suffices to show that the image g ∈ |GKperf | of
an arbitrary closed point of GK is in the schematic locus of GK . In particular, we

1It is enough to assume G is decent, e.g., locally separated or quasi-separated by Lemma
79.9.4.
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may represent g by a morphism g : Spec(L)→ GKperf where L/Kperf is separable
algebraic (for example we can take L = K). Thus the scheme

T = Spec(L)×G
Kperf

GK

= Spec(L)×Spec(Kperf ) Spec(K)
= Spec(L⊗Kperf K)

is the spectrum of a K-algebra which is a filtered colimit of algebras which are finite
products of copies of K. Thus by Groupoids, Lemma 39.7.13 we can find an affine
open W ⊂ GK containing the image of gK : T → GK .
Choose a quasi-compact open V ⊂ GKperf containing the image of W . By Spaces
over Fields, Lemma 72.10.2 we see that VK′ is a scheme for some finite extension
K ′/Kperf . After enlarging K ′ we may assume that there exists an affine open
U ′ ⊂ VK′ ⊂ GK′ whose base change to K recovers W (use that VK is the limit of the
schemes VK′′ for K ′ ⊂ K ′′ ⊂ K finite and use Limits, Lemmas 32.4.11 and 32.4.13).
We may assume that K ′/Kperf is a Galois extension (take the normal closure
Fields, Lemma 9.16.3 and use that Kperf is perfect). Set H = Gal(K ′/Kperf ). By
construction the H-invariant closed subscheme Spec(L) ×G

Kperf
GK′ is contained

in U ′. By Spaces over Fields, Lemmas 72.10.3 and 72.10.4 we conclude. □

79.11. No rational curves on groups

0AEK In this section we prove that there are no nonconstant morphisms from P1 to a
group algebraic space locally of finite type over a field.

Lemma 79.11.1.0AEL Let S be a scheme. Let B be an algebraic space over S. Let
f : X → Y and g : X → Z be morphisms of algebraic spaces over B. Assume

(1) Y → B is separated,
(2) g is surjective, flat, and locally of finite presentation,
(3) there is a scheme theoretically dense open V ⊂ Z such that f |g−1(V ) :

g−1(V )→ Y factors through V .
Then f factors through g.

Proof. Set R = X ×Z X. By (2) we see that Z = X/R as sheaves. Also (2) implies
that the inverse image of V in R is scheme theoretically dense in R (Morphisms of
Spaces, Lemma 67.30.11). The we see that the two compositions R→ X → Y are
equal by Morphisms of Spaces, Lemma 67.17.8. The lemma follows. □

Lemma 79.11.2.0AEM Let k be a field. Let n ≥ 1 and let (P1
k)n be the n-fold self product

over Spec(k). Let f : (P1
k)n → Z be a morphism of algebraic spaces over k. If Z is

separated of finite type over k, then f factors as

(P1
k)n projection−−−−−−−→ (P1

k)m finite−−−−→ Z.

Proof. We may assume k is algebraically closed (details omitted); we only do this so
we may argue using rational points, but the reader can work around this if she/he
so desires. In the proof products are over k. The automorphism group algebraic
space of (P1

k)n contains G = (GL2,k)n. If C ⊂ (P1
k)n is a closed subvariety (in

particular irreducible over k) which is mapped to a point, then we can apply More
on Morphisms of Spaces, Lemma 76.35.3 to the morphism

G× C → G× Z, (g, c) 7→ (g, f(g · c))
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over G. Hence g(C) is mapped to a point for g ∈ G(k) lying in a Zariski open
U ⊂ G. Suppose x = (x1, . . . , xn), y = (y1, . . . , yn) are k-valued points of (P1

k)n.
Let I ⊂ {1, . . . , n} be the set of indices i such that xi = yi. Then

{g(x) | g(y) = y, g ∈ U(k)}
is Zariski dense in the fibre of the projection πI : (P1

k)n →
∏
i∈I P1

k (exercise).
Hence if x, y ∈ C(k) are distinct, we conclude that f maps the whole fibre of πI
containing x, y to a single point. Moreover, the U(k)-orbit of C meets a Zariski
open set of fibres of πI . By Lemma 79.11.1 the morphism f factors through πI .
After repeating this process finitely many times we reach the stage where all fibres
of f over k points are finite. In this case f is finite by More on Morphisms of
Spaces, Lemma 76.35.2 and the fact that k points are dense in Z (Spaces over
Fields, Lemma 72.16.2). □

Lemma 79.11.3.0AEN Let k be a field. Let G be a separated group algebraic space locally
of finite type over k. There does not exist a nonconstant morphism f : P1

k → G
over Spec(k).

Proof. Assume f is nonconstant. Consider the morphisms
P1
k ×Spec(k) . . .×Spec(k) P1

k −→ G, (t1, . . . , tn) 7−→ f(g1) . . . f(gn)
where on the right hand side we use multiplication in the group. By Lemma 79.11.2
and the assumption that f is nonconstant this morphism is finite onto its image.
Hence dim(G) ≥ n for all n, which is impossible by Lemma 79.9.10 and the fact
that G is locally of finite type over k. □

79.12. The finite part of a morphism

04PB Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces over S. For
an algebraic space or a scheme T over S consider pairs (a, Z) where

(79.12.0.1)04PC
a : T → Y is a morphism over S,
Z ⊂ T ×Y X is an open subspace
such that pr0|Z : Z → T is finite.

Suppose h : T ′ → T is a morphism of algebraic spaces over S and (a, Z) is a pair
as in (79.12.0.1) over T . Set a′ = a ◦ h and Z ′ = (h × idX)−1(Z) = T ′ ×T Z.
Then (a′, Z ′) is a pair as in (79.12.0.1) over T ′. This follows as finite morphisms
are preserved under base change, see Morphisms of Spaces, Lemma 67.45.5. Thus
we obtain a functor

(79.12.0.2)04PD (X/Y )fin : (Sch/S)opp −→ Sets
T 7−→ {(a, Z) as above}

For applications we are mainly interested in this functor (X/Y )fin when f is sep-
arated and locally of finite type. To get an idea of what this is all about, take a
look at Remark 79.12.6.

Lemma 79.12.1.04PE Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then we have

(1) The presheaf (X/Y )fin satisfies the sheaf condition for the fppf topology.
(2) If T is an algebraic space over S, then there is a canonical bijection

MorSh((Sch/S)fppf )(T, (X/Y )fin) = {(a, Z) satisfying 79.12.0.1}
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Proof. Let T be an algebraic space over S. Let {Ti → T} be an fppf covering (by
algebraic spaces). Let si = (ai, Zi) be pairs over Ti satisfying 79.12.0.1 such that
we have si|Ti×TTj = sj |Ti×TTj . First, this implies in particular that ai and aj define
the same morphism Ti×T Tj → Y . By Descent on Spaces, Lemma 74.7.2 we deduce
that there exists a unique morphism a : T → Y such that ai equals the composition
Ti → T → Y . Second, this implies that Zi ⊂ Ti ×Y X are open subspaces whose
inverse images in (Ti×T Tj)×Y X are equal. Since {Ti×Y X → T ×Y X} is an fppf
covering we deduce that there exists a unique open subspace Z ⊂ T ×Y X which
restricts back to Zi over Ti, see Descent on Spaces, Lemma 74.7.1. We claim that
the projection Z → T is finite. This follows as being finite is local for the fpqc
topology, see Descent on Spaces, Lemma 74.11.23.

Note that the result of the preceding paragraph in particular implies (1).

Let T be an algebraic space over S. In order to prove (2) we will construct mutually
inverse maps between the displayed sets. In the following when we say “pair” we
mean a pair satisfying conditions 79.12.0.1.

Let v : T → (X/Y )fin be a natural transformation. Choose a scheme U and a
surjective étale morphism p : U → T . Then v(p) ∈ (X/Y )fin(U) corresponds to a
pair (aU , ZU ) over U . Let R = U ×T U with projections t, s : R → U . As v is a
transformation of functors we see that the pullbacks of (aU , ZU ) by s and t agree.
Hence, since {U → T} is an fppf covering, we may apply the result of the first
paragraph that deduce that there exists a unique pair (a, Z) over T .

Conversely, let (a, Z) be a pair over T . Let U → T , R = U ×T U , and t, s : R→ U
be as above. Then the restriction (a, Z)|U gives rise to a transformation of functors
v : hU → (X/Y )fin by the Yoneda lemma (Categories, Lemma 4.3.5). As the
two pullbacks s∗(a, Z)|U and t∗(a, Z)|U are equal, we see that v coequalizes the
two maps ht, hs : hR → hU . Since T = U/R is the fppf quotient sheaf by Spaces,
Lemma 65.9.1 and since (X/Y )fin is an fppf sheaf by (1) we conclude that v factors
through a map T → (X/Y )fin.

We omit the verification that the two constructions above are mutually inverse. □

Lemma 79.12.2.04PF Let S be a scheme. Consider a commutative diagram

X ′
j

//

  

X

~~
Y

of algebraic spaces over S. If j is an open immersion, then there is a canonical
injective map of sheaves j : (X ′/Y )fin → (X/Y )fin.

Proof. If (a, Z) is a pair over T for X ′/Y , then (a, j(Z)) is a pair over T for
X/Y . □

Lemma 79.12.3.04PG Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let X ′ ⊂ X be the maximal open
subspace over which f is locally quasi-finite, see Morphisms of Spaces, Lemma
67.34.7. Then (X/Y )fin = (X ′/Y )fin.
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Proof. Lemma 79.12.2 gives us an injective map (X ′/Y )fin → (X/Y )fin. Mor-
phisms of Spaces, Lemma 67.34.7 assures us that formation of X ′ commutes with
base change. Hence everything comes down to proving that if Z ⊂ X is an open
subspace such that f |Z : Z → Y is finite, then Z ⊂ X ′. This is true because a finite
morphism is locally quasi-finite, see Morphisms of Spaces, Lemma 67.45.8. □

Lemma 79.12.4.04PH Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let T be an algebraic space over S, and let (a, Z) be a pair as in
79.12.0.1. If f is separated, then Z is closed in T ×Y X.

Proof. A finite morphism of algebraic spaces is universally closed by Morphisms of
Spaces, Lemma 67.45.9. Since f is separated so is the morphism T ×Y X → T ,
see Morphisms of Spaces, Lemma 67.4.4. Thus the closedness of Z follows from
Morphisms of Spaces, Lemma 67.40.6. □

Remark 79.12.5.04PI Let f : X → Y be a separated morphism of algebraic spaces.
The sheaf (X/Y )fin comes with a natural map (X/Y )fin → Y by mapping the
pair (a, Z) ∈ (X/Y )fin(T ) to the element a ∈ Y (T ). We can use Lemma 79.12.4
to define operations

⋆i : (X/Y )fin ×Y (X/Y )fin −→ (X/Y )fin
by the rules

⋆1 : ((a, Z1), (a, Z2)) 7−→ (a, Z1 ∪ Z2)
⋆2 : ((a, Z1), (a, Z2)) 7−→ (a, Z1 ∩ Z2)
⋆3 : ((a, Z1), (a, Z2)) 7−→ (a, Z1 \ Z2)
⋆4 : ((a, Z1), (a, Z2)) 7−→ (a, Z2 \ Z1).

The reason this works is that Z1∩Z2 is both open and closed inside Z1 and Z2 (which
also implies that Z1 ∪ Z2 is the disjoint union of the other three pieces). Thus we
can think of (X/Y )fin as an F2-algebra (without unit) over Y with multiplication
given by ss′ = ⋆2(s, s′), and addition given by

s+ s′ = ⋆1(⋆3(s, s′), ⋆4(s, s′))
which boils down to taking the symmetric difference. Note that in this sheaf of
algebras 0 = (1Y , ∅) and that indeed s+ s = 0 for any local section s. If f : X → Y
is finite, then this algebra has a unit namely 1 = (1Y , X) and ⋆3(s, s′) = s(1 + s′),
and ⋆4(s, s′) = (1 + s)s′.

Remark 79.12.6.04PJ Let f : X → Y be a separated, locally quasi-finite morphism of
schemes. In this case the sheaf (X/Y )fin is closely related to the sheaf f!F2 (insert
future reference here) on Yétale. Namely, if V → Y is étale, and s ∈ Γ(V, f!F2), then
s ∈ Γ(V ×Y X,F2) is a section with proper support Z = Supp(s) over V . Since f
is also locally quasi-finite we see that the projection Z → V is actually finite. Since
the support of a section of a constant abelian sheaf is open we see that the pair
(V → Y, Supp(s)) satisfies 79.12.0.1. In fact, f!F2 ∼= (X/Y )fin|Yétale in this case
which also explains the F2-algebra structure introduced in Remark 79.12.5.

Lemma 79.12.7.04PK Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The diagonal of (X/Y )fin → Y

(X/Y )fin −→ (X/Y )fin ×Y (X/Y )fin
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is representable (by schemes) and an open immersion and the “absolute” diagonal
(X/Y )fin −→ (X/Y )fin × (X/Y )fin

is representable (by schemes).

Proof. The second statement follows from the first as the absolute diagonal is the
composition of the relative diagonal and a base change of the diagonal of Y (which is
representable by schemes), see Spaces, Section 65.3. To prove the first assertion we
have to show the following: Given a scheme T and two pairs (a, Z1) and (a, Z2) over
T with identical first component satisfying 79.12.0.1 there is an open subscheme
V ⊂ T with the following property: For any morphism of schemes h : T ′ → T we
have

h(T ′) ⊂ V ⇔
(
T ′ ×T Z1 = T ′ ×T Z2 as subspaces of T ′ ×Y X

)
Let us construct V . Note that Z1∩Z2 is open in Z1 and in Z2. Since pr0|Zi : Zi → T
is finite, hence proper (see Morphisms of Spaces, Lemma 67.45.9) we see that

E = pr0|Z1 (Z1 \ Z1 ∩ Z2)) ∪ pr0|Z2 (Z2 \ Z1 ∩ Z2))
is closed in T . Now it is clear that V = T \ E works. □

Lemma 79.12.8.04QE Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Suppose that U is a scheme, U → Y is an étale morphism and
Z ⊂ U ×Y X is an open subspace finite over U . Then the induced morphism
U → (X/Y )fin is étale.

Proof. This is formal from the description of the diagonal in Lemma 79.12.7 but
we write it out since it is an important step in the development of the theory. We
have to check that for any scheme T over S and a morphism T → (X/Y )fin the
projection map

T ×(X/Y )fin U −→ T

is étale. Note that
T ×(X/Y )fin U = (X/Y )fin ×((X/Y )fin×Y (X/Y )fin) (T ×Y U)

Applying the result of Lemma 79.12.7 we see that T ×(X/Y )fin U is represented
by an open subscheme of T ×Y U . As the projection T ×Y U → T is étale by
Morphisms of Spaces, Lemma 67.39.4 we conclude. □

Lemma 79.12.9.04QF Let S be a scheme. Let

X ′

��

// X

��
Y ′ // Y

be a fibre product square of algebraic spaces over S. Then

(X ′/Y ′)fin

��

// (X/Y )fin

��
Y ′ // Y

is a fibre product square of sheaves on (Sch/S)fppf .
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Proof. It follows immediately from the definitions that the sheaf (X ′/Y ′)fin is
equal to the sheaf Y ′ ×Y (X/Y )fin. □

Lemma 79.12.10.04QG Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is separated and locally quasi-finite, then there exists a scheme
U étale over Y and a surjective étale morphism U → (X/Y )fin over Y .

Proof. Note that the assertion makes sense by the result of Lemma 79.12.7 on
the diagonal of (X/Y )fin, see Spaces, Lemma 65.5.10. Let V be a scheme and
let V → Y be a surjective étale morphism. By Lemma 79.12.9 the morphism
(V ×Y X/V )fin → (X/Y )fin is a base change of the map V → Y and hence is
surjective and étale, see Spaces, Lemma 65.5.5. Hence it suffices to prove the lemma
for (V ×Y X/V )fin. (Here we implicitly use that the composition of representable,
surjective, and étale transformations of functors is again representable, surjective,
and étale, see Spaces, Lemmas 65.3.2 and 65.5.4, and Morphisms, Lemmas 29.9.2
and 29.36.3.) Note that the properties of being separated and locally quasi-finite
are preserved under base change, see Morphisms of Spaces, Lemmas 67.4.4 and
67.27.4. Hence V ×Y X → V is separated and locally quasi-finite as well, and
by Morphisms of Spaces, Proposition 67.50.2 we see that V ×Y X is a scheme as
well. Thus we may assume that f : X → Y is a separated and locally quasi-finite
morphism of schemes.

Pick a point y ∈ Y . Pick x1, . . . , xn ∈ X points lying over y. Pick an étale
neighbourhood a : (U, u)→ (Y, y) and a decomposition

U ×S X = W ⨿
∐

i=1,...,n

∐
j=1,...,mj

Vi,j

as in More on Morphisms, Lemma 37.41.5. Pick any subset

I ⊂ {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ mi}.

Given these choices we obtain a pair (a, Z) with Z =
⋃

(i,j)∈I Vi,j which satisfies
conditions 79.12.0.1. In other words we obtain a morphism U → (X/Y )fin. The
construction of this morphism depends on all the things we picked above, so we
should really write

U(y, n, x1, . . . , xn, a, I) −→ (X/Y )fin

This morphism is étale by Lemma 79.12.8.

Claim: The disjoint union of all of these is surjective onto (X/Y )fin. It is clear
that if the claim holds, then the lemma is true.

To show surjectivity we have to show the following (see Spaces, Remark 65.5.2):
Given a scheme T over S, a point t ∈ T , and a map T → (X/Y )fin we can find a
datum (y, n, x1, . . . , xn, a, I) as above such that t is in the image of the projection
map

U(y, n, x1, . . . , xn, a, I)×(X/Y )fin T −→ T.

To prove this we may clearly replace T by Spec(κ(t)) and T → (X/Y )fin by the
composition Spec(κ(t))→ T → (X/Y )fin. In other words, we may assume that T
is the spectrum of an algebraically closed field.
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Let T = Spec(k) be the spectrum of an algebraically closed field k. The morphism
T → (X/Y )fin is given by a pair (T → Y,Z) satisfying conditions 79.12.0.1. Here
is a picture:

Z

��

// X

��
Spec(k) T // Y

Let y ∈ Y be the image point of T → Y . Since Z is finite over k it has finitely
many points. Thus there exist finitely many points x1, . . . , xn ∈ X such that the
image of Z in X is contained in {x1, . . . , xn}. Choose a : (U, u) → (Y, y) adapted
to y and x1, . . . , xn as above, which gives the diagram

W ⨿
∐
i=1,...,n

∐
j=1,...,mj Vi,j

��

// X

��
U // Y.

Since k is algebraically closed and κ(y) ⊂ κ(u) is finite separable we may fac-
tor the morphism T = Spec(k) → Y through the morphism u = Spec(κ(u)) →
Spec(κ(y)) = y ⊂ Y . With this choice we obtain the commutative diagram:

Z

��

// W ⨿
∐
i=1,...,n

∐
j=1,...,mj Vi,j

��

// X

��
Spec(k) // U // Y

We know that the image of the left upper arrow ends up in
∐
Vi,j . Recall also that

Z is an open subscheme of Spec(k) ×Y X by definition of (X/Y )fin and that the
right hand square is a fibre product square. Thus we see that

Z ⊂
∐

i=1,...,n

∐
j=1,...,mj

Spec(k)×U Vi,j

is an open subscheme. By construction (see More on Morphisms, Lemma 37.41.5)
each Vi,j has a unique point vi,j lying over u with purely inseparable residue field
extension κ(vi,j)/κ(u). Hence each scheme Spec(k) ×U Vi,j has exactly one point.
Thus we see that

Z =
∐

(i,j)∈I
Spec(k)×U Vi,j

for a unique subset I ⊂ {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ mi}. Unwinding the definitions
this shows that

U(y, n, x1, . . . , xn, a, I)×(X/Y )fin T

with I as found above is nonempty as desired. □

Proposition 79.12.11.04QH Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S which is separated and locally of finite type. Then (X/Y )fin
is an algebraic space. Moreover, the morphism (X/Y )fin → Y is étale.

Proof. By Lemma 79.12.3 we may replace X by the open subscheme which is locally
quasi-finite over Y . Hence we may assume that f is separated and locally quasi-
finite. We will check the three conditions of Spaces, Definition 65.6.1. Condition (1)
follows from Lemma 79.12.1. Condition (2) follows from Lemma 79.12.7. Finally,
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condition (3) follows from Lemma 79.12.10. Thus (X/Y )fin is an algebraic space.
Moreover, that lemma shows that there exists a commutative diagram

U //

��

(X/Y )fin

zz
Y

with horizontal arrow surjective and étale and south-east arrow étale. By Properties
of Spaces, Lemma 66.16.3 this implies that the south-west arrow is étale as well. □

Remark 79.12.12.04QI The condition that f be separated cannot be dropped from
Proposition 79.12.11. An example is to take X the affine line with zero doubled,
see Schemes, Example 26.14.3, Y = A1

k the affine line, and X → Y the obvious
map. Recall that over 0 ∈ Y there are two points 01 and 02 in X. Thus (X/Y )fin
has four points over 0, namely ∅, {01}, {02}, {01, 02}. Of these four points only
three can be lifted to an open subscheme of U ×Y X finite over U for U → Y étale,
namely ∅, {01}, {02}. This shows that (X/Y )fin if representable by an algebraic
space is not étale over Y . Similar arguments show that (X/Y )fin is really not an
algebraic space. Details omitted.

Remark 79.12.13.04QJ Let Y = A1
R be the affine line over the real numbers, and let

X = Spec(C) mapping to the R-rational point 0 in Y . In this case the morphism
f : X → Y is finite, but it is not the case that (X/Y )fin is a scheme. Namely,
one can show that in this case the algebraic space (X/Y )fin is isomorphic to the
algebraic space of Spaces, Example 65.14.2 associated to the extension R ⊂ C.
Thus it is really necessary to leave the category of schemes in order to represent
the sheaf (X/Y )fin, even when f is a finite morphism.

Lemma 79.12.14.04RI Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is separated, flat, and locally of finite presentation. In this
case

(1) (X/Y )fin → Y is separated, representable, and étale, and
(2) if Y is a scheme, then (X/Y )fin is (representable by) a scheme.

Proof. Since f is in particular separated and locally of finite type (see Morphisms of
Spaces, Lemma 67.28.5) we see that (X/Y )fin is an algebraic space by Proposition
79.12.11. To prove that (X/Y )fin → Y is separated we have to show the following:
Given a scheme T and two pairs (a, Z1) and (a, Z2) over T with identical first
component satisfying 79.12.0.1 there is a closed subscheme V ⊂ T with the following
property: For any morphism of schemes h : T ′ → T we have

h factors through V ⇔
(
T ′ ×T Z1 = T ′ ×T Z2 as subspaces of T ′ ×Y X

)
In the proof of Lemma 79.12.7 we have seen that V = T ′ \E is an open subscheme
of T ′ with closed complement

E = pr0|Z1 (Z1 \ Z1 ∩ Z2)) ∪ pr0|Z2 (Z2 \ Z1 ∩ Z2)) .
Thus everything comes down to showing that E is also open. By Lemma 79.12.4
we see that Z1 and Z2 are closed in T ′ ×Y X. Hence Z1 \ Z1 ∩ Z2 is open in
Z1. As f is flat and locally of finite presentation, so is pr0|Z1 . This is true as
Z1 is an open subspace of the base change T ′ ×Y X, and Morphisms of Spaces,

https://stacks.math.columbia.edu/tag/04QI
https://stacks.math.columbia.edu/tag/04QJ
https://stacks.math.columbia.edu/tag/04RI


79.13. FINITE COLLECTIONS OF ARROWS 6014

Lemmas 67.28.3 and Lemmas 67.30.4. Hence pr0|Z1 is open, see Morphisms of
Spaces, Lemma 67.30.6. Thus pr0|Z1 (Z1 \ Z1 ∩ Z2)) is open and it follows that E
is open as desired.
We have already seen that (X/Y )fin → Y is étale, see Proposition 79.12.11. Hence
now we know it is locally quasi-finite (see Morphisms of Spaces, Lemma 67.39.5)
and separated, hence representable by Morphisms of Spaces, Lemma 67.51.1. The
final assertion is clear (if you like you can use Morphisms of Spaces, Proposition
67.50.2). □

Variant: Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let σ : Y → X be a section of f . For an algebraic space or a scheme T
over S consider pairs (a, Z) where

(79.12.14.1)04RQ

a : T → Y is a morphism over S,
Z ⊂ T ×Y X is an open subspace

such that pr0|Z : Z → T is finite and
(1T , σ ◦ a) : T → T ×Y X factors through Z.

We will denote (X/Y, σ)fin the subfunctor of (X/Y )fin parametrizing these pairs.

Lemma 79.12.15.04RR Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let σ : Y → X be a section of f . Consider the transformation of
functors

t : (X/Y, σ)fin −→ (X/Y )fin.
defined above. Then

(1) t is representable by open immersions,
(2) if f is separated, then t is representable by open and closed immersions,
(3) if (X/Y )fin is an algebraic space, then (X/Y, σ)fin is an algebraic space

and an open subspace of (X/Y )fin, and
(4) if (X/Y )fin is a scheme, then (X/Y, σ)fin is an open subscheme of it.

Proof. Omitted. Hint: Given a pair (a, Z) over T as in (79.12.0.1) the inverse
image of Z by (1T , σ ◦ a) : T → T ×Y X is the open subscheme of T we are looking
for. □

79.13. Finite collections of arrows

04RS Let C be a groupoid, see Categories, Definition 4.2.5. As discussed in Groupoids,
Section 39.13 this corresponds to a septuple (Ob,Arrows, s, t, c, e, i).
Using this data we can make another groupoid Cfin as follows:

(1) An object of Cfin consists of a finite subset Z ⊂ Arrows with the following
properties:
(a) s(Z) = {u} is a singleton, and
(b) e(u) ∈ Z.

(2) A morphism of Cfin consists of a pair (Z, z), where Z is an object of Cfin
and z ∈ Z.

(3) The source of (Z, z) is Z.
(4) The target of (Z, z) is t(Z, z) = {z′ ◦ z−1; z′ ∈ Z}.
(5) Given (Z1, z1), (Z2, z2) such that s(Z1, z1) = t(Z2, z2) the composition

(Z1, z1) ◦ (Z2, z2) is (Z2, z1 ◦ z2).

https://stacks.math.columbia.edu/tag/04RR
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We omit the verification that this defines a groupoid. Pictorially an object of Cfin
can be viewed as a diagram

•

•e ::

??

//

��

•

•
To make a morphism of Cfin you pick one of the arrows and you precompose the
other arrows by its inverse. For example if we pick the middle horizontal arrow
then the target is the picture

•

• •oo

OO

e
zz

��
•

Note that the cardinalities of s(Z, z) and t(Z, z) are equal. So Cfin is really a
countable disjoint union of groupoids.

79.14. The finite part of a groupoid

04RT In this section we are going to use the idea explained in Section 79.13 to take the
finite part of a groupoid in algebraic spaces.
Let S be a scheme. Let B be an algebraic space over S. Let (U,R, s, t, c, e, i)
be a groupoid in algebraic spaces over B. Assumption: The morphisms s, t are
separated and locally of finite type. This notation and assumption will we be fixed
throughout this section.
Denote Rs the algebraic space R seen as an algebraic space over U via s. Let
U ′ = (Rs/U, e)fin. Since s is separated and locally of finite type, by Proposition
79.12.11 and Lemma 79.12.15, we see that U ′ is an algebraic space endowed with an
étale morphism g : U ′ → U . Moreover, by Lemma 79.12.1 there exists a universal
open subspace Zuniv ⊂ R×s,U,gU ′ which is finite over U ′ and such that (1U ′ , e◦g) :
U ′ → R ×s,U,g U ′ factors through Zuniv. Moreover, by Lemma 79.12.4 the open
subspace Zuniv is also closed in R×s,U ′,g U . Picture so far:

Zuniv

�� %%
R×s,U,g U ′

��

// U ′

g

��
R

s // U

Let T be a scheme over B. We see that a T -valued point of Zuniv may be viewed
as a triple (u, Z, z) where

(1) u : T → U is a T -valued point of U ,
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(2) Z ⊂ R ×s,U,u T is an open and closed subspace finite over T such that
(e ◦ u, 1T ) factors through it, and

(3) z : T → R is a T -valued point of R with s ◦ z = u and such that (z, 1T )
factors through Z.

Having said this, it is morally clear from the discussion in Section 79.13 that we
can turn (Zuniv, U ′) into a groupoid in algebraic spaces over B. To make sure will
define the morphisms s′, t′, c′, e′, i′ one by one using the functorial point of view.
(Please don’t read this before reading and understanding the simple construction
in Section 79.13.)

The morphism s′ : Zuniv → U ′ corresponds to the rule

s′ : (u, Z, z) 7→ (u, Z).

The morphism t′ : Zuniv → U ′ is given by the rule

t′ : (u, Z, z) 7→ (t ◦ z, c(Z, i ◦ z)).

The entry c(Z, i ◦ z) makes sense as the map c(−, i ◦ z) : R×s,U,u T → R×s,U,t◦z T
is an isomorphism with inverse c(−, z). The morphism e′ : U ′ → Zuniv is given by
the rule

e′ : (u, Z) 7→ (u, Z, (e ◦ u, 1T )).
Note that this makes sense by the requirement that (e ◦ u, 1T ) factors through Z.
The morphism i′ : Zuniv → Zuniv is given by the rule

i′ : (u, Z, z) 7→ (t ◦ z, c(Z, i ◦ z), i ◦ z).

Finally, composition is defined by the rule

c′ : ((u1, Z1, z1), (u2, Z2, z2)) 7→ (u2, Z2, z1 ◦ z2).

We omit the verification that the axioms of a groupoid in algebraic spaces hold for
(U ′, Zuniv, s

′, t′, c′, e′, i′).

A final piece of information is that there is a canonical morphism of groupoids

(U ′, Zuniv, s
′, t′, c′, e′, i′) −→ (U,R, s, t, c, e, i)

Namely, the morphism U ′ → U is the morphism g : U ′ → U which is defined by
the rule (u, Z) 7→ u. The morphism Zuniv → R is defined by the rule (u, Z, z) 7→ z.
This finishes the construction. Let us summarize our findings as follows.

Lemma 79.14.1.04RU Let S be a scheme. Let B be an algebraic space over S. Let
(U,R, s, t, c, e, i) be a groupoid in algebraic spaces over B. Assume the morphisms
s, t are separated and locally of finite type. There exists a canonical morphism

(U ′, Zuniv, s
′, t′, c′, e′, i′) −→ (U,R, s, t, c, e, i)

of groupoids in algebraic spaces over B where
(1) g : U ′ → U is identified with (Rs/U, e)fin → U , and
(2) Zuniv ⊂ R×s,U,gU ′ is the universal open (and closed) subspace finite over

U ′ which contains the base change of the unit e.

Proof. See discussion above. □

https://stacks.math.columbia.edu/tag/04RU
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79.15. Étale localization of groupoid schemes

04RJ In this section we prove results similar to [KM97, Proposition 4.2]. We try to be
a bit more general, and we try to avoid using Hilbert schemes by using the finite
part of a morphism instead. The goal is to "split" a groupoid in algebraic spaces
over a point after étale localization. Here is the definition (very similar to [KM97,
Definition 4.1]).

Definition 79.15.1.04RK Let S be a scheme. Let B be an algebraic space over S Let
(U,R, s, t, c) be a groupoid in algebraic spaces over B. Let u ∈ |U | be a point.

(1) We say R is strongly split over u if there exists an open subspace P ⊂ R
such that
(a) (U,P, s|P , t|P , c|P×s,U,tP ) is a groupoid in algebraic spaces over B,
(b) s|P , t|P are finite, and
(c) {r ∈ |R| : s(r) = u, t(r) = u} ⊂ |P |.

The choice of such a P will be called a strong splitting of R over u.
(2) We say R is split over u if there exists an open subspace P ⊂ R such that

(a) (U,P, s|P , t|P , c|P×s,U,tP ) is a groupoid in algebraic spaces over B,
(b) s|P , t|P are finite, and
(c) {g ∈ |G| : g maps to u} ⊂ |P | where G→ U is the stabilizer.

The choice of such a P will be called a splitting of R over u.
(3) We say R is quasi-split over u if there exists an open subspace P ⊂ R

such that
(a) (U,P, s|P , t|P , c|P×s,U,tP ) is a groupoid in algebraic spaces over B,
(b) s|P , t|P are finite, and
(c) e(u) ∈ |P |2.

The choice of such a P will be called a quasi-splitting of R over u.

Note the similarity of the conditions on P to the conditions on pairs in (79.12.0.1).
In particular, if s, t are separated, then P is also closed in R (see Lemma 79.12.4).
Suppose we start with a groupoid in algebraic spaces (U,R, s, t, c) over B and a
point u ∈ |U |. Since the goal is to split the groupoid after étale localization we
may as well replace U by an affine scheme (what we mean is that this is harmless
for any possible application). Moreover, the additional hypotheses we are going
to have to impose will force R to be a scheme at least in a neighbourhood of
{r ∈ |R| : s(r) = u, t(r) = u} or e(u). This is why we start with a groupoid scheme
as described below. However, our technique of proof leads us outside of the category
of schemes, which is why we have formulated a splitting for the case of groupoids
in algebraic spaces above. On the other hand, we know of no applications but the
case where the morphisms s, t are also flat and of finite presentation, in which case
we end up back in the category of schemes.

Situation 79.15.2 (Strong splitting).04RL Let S be a scheme. Let (U,R, s, t, c) be a
groupoid scheme over S. Let u ∈ U be a point. Assume that

(1) s, t : R→ U are separated,
(2) s, t are locally of finite type,
(3) the set {r ∈ R : s(r) = u, t(r) = u} is finite, and
(4) s is quasi-finite at each point of the set in (3).

2This condition is implied by (a).

https://stacks.math.columbia.edu/tag/04RK
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Note that assumptions (3) and (4) are implied by the assumption that the fibre
s−1({u}) is finite, see Morphisms, Lemma 29.20.7.
Situation 79.15.3 (Splitting).0DTB Let S be a scheme. Let (U,R, s, t, c) be a groupoid
scheme over S. Let u ∈ U be a point. Assume that

(1) s, t : R→ U are separated,
(2) s, t are locally of finite type,
(3) the set {g ∈ G : g maps to u} is finite where G→ U is the stabilizer, and
(4) s is quasi-finite at each point of the set in (3).

Situation 79.15.4 (Quasi-splitting).04RV Let S be a scheme. Let (U,R, s, t, c) be a
groupoid scheme over S. Let u ∈ U be a point. Assume that

(1) s, t : R→ U are separated,
(2) s, t are locally of finite type, and
(3) s is quasi-finite at e(u).

For our application to the existence theorems for algebraic spaces the case of quasi-
splittings is sufficient. Moreover, the quasi-splitting case will allow us to prove an
étale local structure theorem for quasi-DM stacks. The splitting case will be used to
prove a version of the Keel-Mori theorem. The strong splitting case applies to give
an étale local structure theorem for quasi-DM algebraic stacks with quasi-compact
diagonal.
Lemma 79.15.5 (Existence of strong splitting).03FM In Situation 79.15.2 there exists an
algebraic space U ′, an étale morphism U ′ → U , and a point u′ : Spec(κ(u)) → U ′

lying over u : Spec(κ(u)) → U such that the restriction R′ = R|U ′ of R to U ′ is
strongly split over u′.
Proof. Let f : (U ′, Zuniv, s

′, t′, c′) → (U,R, s, t, c) be as constructed in Lemma
79.14.1. Recall that R′ = R×(U×SU) (U ′×SU ′). Thus we get a morphism (f, t′, s′) :
Zuniv → R′ of groupoids in algebraic spaces

(U ′, Zuniv, s
′, t′, c′)→ (U ′, R′, s′, t′, c′)

(by abuse of notation we indicate the morphisms in the two groupoids by the same
symbols). Now, as Zuniv ⊂ R ×s,U,g U ′ is open and R′ → R ×s,U,g U ′ is étale
(as a base change of U ′ → U) we see that Zuniv → R′ is an open immersion. By
construction the morphisms s′, t′ : Zuniv → U ′ are finite. It remains to find the
point u′ of U ′.
We think of u as a morphism Spec(κ(u))→ U as in the statement of the lemma. Set
Fu = R×s,USpec(κ(u)). The set {r ∈ R : s(r) = u, t(r) = u} is finite by assumption
and Fu → Spec(κ(u)) is quasi-finite at each of its elements by assumption. Hence
we can find a decomposition into open and closed subschemes

Fu = Zu ⨿Rest
for some scheme Zu finite over κ(u) whose support is {r ∈ R : s(r) = u, t(r) = u}.
Note that e(u) ∈ Zu. Hence by the construction of U ′ in Section 79.14 (u, Zu)
defines a Spec(κ(u))-valued point u′ of U ′.
We still have to show that the set {r′ ∈ |R′| : s′(r′) = u′, t′(r′) = u′} is contained in
|Zuniv|. Pick any point r′ in this set and represent it by a morphism z′ : Spec(k)→
R′. Denote z : Spec(k)→ R the composition of z′ with the map R′ → R. Clearly,
z defines an element of the set {r ∈ R : s(r) = u, t(r) = u}. Also, the compositions

https://stacks.math.columbia.edu/tag/0DTB
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s ◦ z, t ◦ z : Spec(k) → U factor through u, so we may think of s ◦ z, t ◦ z as a
morphism Spec(k) → Spec(κ(u)). Then z′ = (z, u′ ◦ t ◦ z, u′ ◦ s ◦ u) as morphisms
into R′ = R×(U×SU) (U ′ ×S U ′). Consider the triple

(s ◦ z, Zu ×Spec(κ(u)),s◦z Spec(k), z)

where Zu is as above. This defines a Spec(k)-valued point of Zuniv whose image via
s′, t′ in U ′ is u′ and whose image via Zuniv → R′ is the point r′ by the relationship
between z and z′ mentioned above. This finishes the proof. □

Lemma 79.15.6 (Existence of splitting).0DTC In Situation 79.15.3 there exists an alge-
braic space U ′, an étale morphism U ′ → U , and a point u′ : Spec(κ(u))→ U ′ lying
over u : Spec(κ(u))→ U such that the restriction R′ = R|U ′ of R to U ′ is split over
u′.

Proof. Let f : (U ′, Zuniv, s
′, t′, c′) → (U,R, s, t, c) be as constructed in Lemma

79.14.1. Recall that R′ = R×(U×SU) (U ′×SU ′). Thus we get a morphism (f, t′, s′) :
Zuniv → R′ of groupoids in algebraic spaces

(U ′, Zuniv, s
′, t′, c′)→ (U ′, R′, s′, t′, c′)

(by abuse of notation we indicate the morphisms in the two groupoids by the same
symbols). Now, as Zuniv ⊂ R ×s,U,g U ′ is open and R′ → R ×s,U,g U ′ is étale
(as a base change of U ′ → U) we see that Zuniv → R′ is an open immersion. By
construction the morphisms s′, t′ : Zuniv → U ′ are finite. It remains to find the
point u′ of U ′.

We think of u as a morphism Spec(κ(u)) → U as in the statement of the lemma.
Set Fu = R×s,U Spec(κ(u)). Let Gu ⊂ Fu be the scheme theoretic fibre of G→ U
over u. By assumption Gu is finite and Fu → Spec(κ(u)) is quasi-finite at each
point of Gu by assumption. Hence we can find a decomposition into open and
closed subschemes

Fu = Zu ⨿Rest
for some scheme Zu finite over κ(u) whose support is Gu. Note that e(u) ∈ Zu.
Hence by the construction of U ′ in Section 79.14 (u, Zu) defines a Spec(κ(u))-valued
point u′ of U ′.

We still have to show that the set {g′ ∈ |G′| : g′ maps to u′} is contained in |Zuniv|.
Pick any point g′ in this set and represent it by a morphism z′ : Spec(k) → G′.
Denote z : Spec(k) → G the composition of z′ with the map G′ → G. Clearly,
z defines a point of Gu. In fact, let us write ũ : Spec(k) → u → U for the
corresponding map to u or U . Consider the triple

(ũ, Zu ×u,ũ Spec(k), z)

where Zu is as above. This defines a Spec(k)-valued point of Zuniv whose image
via s′, t′ in U ′ is u′ and whose image via Zuniv → R′ is the point z′ (because the
image in R is z). This finishes the proof. □

Lemma 79.15.7 (Existence of quasi-splitting).04RW In Situation 79.15.4 there exists an
algebraic space U ′, an étale morphism U ′ → U , and a point u′ : Spec(κ(u)) → U ′

lying over u : Spec(κ(u)) → U such that the restriction R′ = R|U ′ of R to U ′ is
quasi-split over u′.

https://stacks.math.columbia.edu/tag/0DTC
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Proof. Let f : (U ′, Zuniv, s
′, t′, c′) → (U,R, s, t, c) be as constructed in Lemma

79.14.1. Recall that R′ = R×(U×SU) (U ′×SU ′). Thus we get a morphism (f, t′, s′) :
Zuniv → R′ of groupoids in algebraic spaces

(U ′, Zuniv, s
′, t′, c′)→ (U ′, R′, s′, t′, c′)

(by abuse of notation we indicate the morphisms in the two groupoids by the same
symbols). Now, as Zuniv ⊂ R ×s,U,g U ′ is open and R′ → R ×s,U,g U ′ is étale
(as a base change of U ′ → U) we see that Zuniv → R′ is an open immersion. By
construction the morphisms s′, t′ : Zuniv → U ′ are finite. It remains to find the
point u′ of U ′.

We think of u as a morphism Spec(κ(u))→ U as in the statement of the lemma. Set
Fu = R×s,U Spec(κ(u)). The morphism Fu → Spec(κ(u)) is quasi-finite at e(u) by
assumption. Hence we can find a decomposition into open and closed subschemes

Fu = Zu ⨿Rest

for some scheme Zu finite over κ(u) whose support is e(u). Hence by the construc-
tion of U ′ in Section 79.14 (u, Zu) defines a Spec(κ(u))-valued point u′ of U ′. To
finish the proof we have to show that e′(u′) ∈ Zuniv which is clear. □

Finally, when we add additional assumptions we obtain schemes.

Lemma 79.15.8.04RX In Situation 79.15.2 assume in addition that s, t are flat and locally
of finite presentation. Then there exists a scheme U ′, a separated étale morphism
U ′ → U , and a point u′ ∈ U ′ lying over u with κ(u) = κ(u′) such that the restriction
R′ = R|U ′ of R to U ′ is strongly split over u′.

Proof. This follows from the construction of U ′ in the proof of Lemma 79.15.5
because in this case U ′ = (Rs/U, e)fin is a scheme separated over U by Lemmas
79.12.14 and 79.12.15. □

Lemma 79.15.9.0DTD In Situation 79.15.3 assume in addition that s, t are flat and locally
of finite presentation. Then there exists a scheme U ′, a separated étale morphism
U ′ → U , and a point u′ ∈ U ′ lying over u with κ(u) = κ(u′) such that the restriction
R′ = R|U ′ of R to U ′ is split over u′.

Proof. This follows from the construction of U ′ in the proof of Lemma 79.15.6
because in this case U ′ = (Rs/U, e)fin is a scheme separated over U by Lemmas
79.12.14 and 79.12.15. □

Lemma 79.15.10.04RY In Situation 79.15.4 assume in addition that s, t are flat and
locally of finite presentation. Then there exists a scheme U ′, a separated étale
morphism U ′ → U , and a point u′ ∈ U ′ lying over u with κ(u) = κ(u′) such that
the restriction R′ = R|U ′ of R to U ′ is quasi-split over u′.

Proof. This follows from the construction of U ′ in the proof of Lemma 79.15.7
because in this case U ′ = (Rs/U, e)fin is a scheme separated over U by Lemmas
79.12.14 and 79.12.15. □

In fact we can obtain affine schemes by applying an earlier result on finite locally
free groupoids.
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Lemma 79.15.11.04RZ In Situation 79.15.2 assume in addition that s, t are flat and
locally of finite presentation and that U is affine. Then there exists an affine scheme
U ′, an étale morphism U ′ → U , and a point u′ ∈ U ′ lying over u with κ(u) = κ(u′)
such that the restriction R′ = R|U ′ of R to U ′ is strongly split over u′.

Proof. Let U ′ → U and u′ ∈ U ′ be the separated étale morphism of schemes
we found in Lemma 79.15.8. Let P ⊂ R′ be the strong splitting of R′ over u′.
By More on Groupoids, Lemma 40.9.1 the morphisms s′, t′ : R′ → U ′ are flat
and locally of finite presentation. They are finite by assumption. Hence s′, t′ are
finite locally free, see Morphisms, Lemma 29.48.2. In particular t(s−1(u′)) is a
finite set of points {u′

1, u
′
2, . . . , u

′
n} of U ′. Choose a quasi-compact open W ⊂ U ′

containing each u′
i. As U is affine the morphism W → U is quasi-compact (see

Schemes, Lemma 26.19.2). The morphism W → U is also locally quasi-finite (see
Morphisms, Lemma 29.36.6) and separated. Hence by More on Morphisms, Lemma
37.43.2 (a version of Zariski’s Main Theorem) we conclude that W is quasi-affine.
By Properties, Lemma 28.29.5 we see that {u′

1, . . . , u
′
n} are contained in an affine

open of U ′. Thus we may apply Groupoids, Lemma 39.24.1 to conclude that there
exists an affine P -invariant open U ′′ ⊂ U ′ which contains u′.
To finish the proof denote R′′ = R|U ′′ the restriction of R to U ′′. This is the same
as the restriction of R′ to U ′′. As P ⊂ R′ is an open and closed subscheme, so is
P |U ′′ ⊂ R′′. By construction the open subscheme U ′′ ⊂ U ′ is P -invariant which
means that P |U ′′ = (s′|P )−1(U ′′) = (t′|P )−1(U ′′) (see discussion in Groupoids,
Section 39.19) so the restrictions of s′′ and t′′ to P |U ′′ are still finite. The sub
groupoid scheme P |U ′′ is still a strong splitting of R′′ over u′′; above we verified
(a), (b) and (c) holds as {r′ ∈ R′ : t′(r′) = u′, s′(r′) = u′} = {r′′ ∈ R′′ : t′′(r′′) =
u′, s′′(r′′) = u′} trivially. The lemma is proved. □

Lemma 79.15.12.0DTE In Situation 79.15.3 assume in addition that s, t are flat and
locally of finite presentation and that U is affine. Then there exists an affine scheme
U ′, an étale morphism U ′ → U , and a point u′ ∈ U ′ lying over u with κ(u) = κ(u′)
such that the restriction R′ = R|U ′ of R to U ′ is split over u′.

Proof. The proof of this lemma is literally the same as the proof of Lemma 79.15.11
except that “strong splitting” needs to be replaced by “splitting” (2 times) and
that the reference to Lemma 79.15.8 needs to be replaced by a reference to Lemma
79.15.9. □

Lemma 79.15.13.04S0 In Situation 79.15.4 assume in addition that s, t are flat and
locally of finite presentation and that U is affine. Then there exists an affine scheme
U ′, an étale morphism U ′ → U , and a point u′ ∈ U ′ lying over u with κ(u) = κ(u′)
such that the restriction R′ = R|U ′ of R to U ′ is quasi-split over u′.

Proof. The proof of this lemma is literally the same as the proof of Lemma 79.15.11
except that “strong splitting” needs to be replaced by “quasi-splitting” (2 times)
and that the reference to Lemma 79.15.8 needs to be replaced by a reference to
Lemma 79.15.10. □

79.16. Other chapters

Preliminaries
(1) Introduction

(2) Conventions
(3) Set Theory
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CHAPTER 80

Bootstrap

046A 80.1. Introduction

046B In this chapter we use the material from the preceding sections to give criteria
under which a presheaf of sets on the category of schemes is an algebraic space.
Some of this material comes from the work of Artin, see [Art69b], [Art70], [Art73],
[Art71b], [Art71a], [Art69a], [Art69c], and [Art74]. However, our method will be to
use as much as possible arguments similar to those of the paper by Keel and Mori,
see [KM97].

80.2. Conventions

046C The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.
Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

80.3. Morphisms representable by algebraic spaces

02YP Here we define the notion of one presheaf being relatively representable by algebraic
spaces over another, and we prove some properties of this notion.
Definition 80.3.1.02YQ Let S be a scheme contained in Schfppf . Let F , G be presheaves
on Schfppf/S. We say a morphism a : F → G is representable by algebraic spaces
if for every U ∈ Ob((Sch/S)fppf ) and any ξ : U → G the fiber product U ×ξ,G F is
an algebraic space.
Here is a sanity check.
Lemma 80.3.2.03BN Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then f is representable by algebraic spaces.
Proof. This is formal. It relies on the fact that the category of algebraic spaces
over S has fibre products, see Spaces, Lemma 65.7.3. □

Lemma 80.3.3.03Y0 Let S be a scheme. Let

G′ ×G F //

a′

��

F

a

��
G′ // G

be a fibre square of presheaves on (Sch/S)fppf . If a is representable by algebraic
spaces so is a′.

6024
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Proof. Omitted. Hint: This is formal. □

Lemma 80.3.4.02YR Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets. Let a : F → G be representable by algebraic spaces. If G is a sheaf, then so
is F .
Proof. (Same as the proof of Spaces, Lemma 65.3.5.) Let {φi : Ti → T} be a
covering of the site (Sch/S)fppf . Let si ∈ F (Ti) which satisfy the sheaf condition.
Then σi = a(si) ∈ G(Ti) satisfy the sheaf condition also. Hence there exists a
unique σ ∈ G(T ) such that σi = σ|Ti . By assumption F ′ = hT ×σ,G,a F is a sheaf.
Note that (φi, si) ∈ F ′(Ti) satisfy the sheaf condition also, and hence come from
some unique (idT , s) ∈ F ′(T ). Clearly s is the section of F we are looking for. □

Lemma 80.3.5.05LA Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets. Let a : F → G be representable by algebraic spaces. Then ∆F/G : F →
F ×G F is representable by algebraic spaces.
Proof. (Same as the proof of Spaces, Lemma 65.3.6.) Let U be a scheme. Let
ξ = (ξ1, ξ2) ∈ (F ×G F )(U). Set ξ′ = a(ξ1) = a(ξ2) ∈ G(U). By assumption there
exist an algebraic space V and a morphism V → U representing the fibre product
U ×ξ′,GF . In particular, the elements ξ1, ξ2 give morphisms f1, f2 : U → V over U .
Because V represents the fibre product U ×ξ′,G F and because ξ′ = a ◦ ξ1 = a ◦ ξ2
we see that if g : U ′ → U is a morphism then

g∗ξ1 = g∗ξ2 ⇔ f1 ◦ g = f2 ◦ g.
In other words, we see that U×ξ,F×GF F is represented by V ×∆,V×V,(f1,f2)U which
is an algebraic space. □

The proof of Lemma 80.3.6 below is actually slightly tricky. Namely, we cannot
use the argument of the proof of Spaces, Lemma 65.11.3 because we do not yet
know that a composition of transformations representable by algebraic spaces is
representable by algebraic spaces. In fact, we will use this lemma to prove that
statement.
Lemma 80.3.6.02YS Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets. Let a : F → G be representable by algebraic spaces. If G is an algebraic
space, then so is F .
Proof. We have seen in Lemma 80.3.4 that F is a sheaf.
Let U be a scheme and let U → G be a surjective étale morphism. In this case
U ×G F is an algebraic space. Let W be a scheme and let W → U ×G F be a
surjective étale morphism.
First we claim that W → F is representable. To see this let X be a scheme and let
X → F be a morphism. Then

W ×F X = W ×U×GF U ×G F ×F X = W ×U×GF (U ×G X)
Since both U ×G F and G are algebraic spaces we see that this is a scheme.
Next, we claim that W → F is surjective and étale (this makes sense now that we
know it is representable). This follows from the formula above since both W →
U ×GF and U → G are étale and surjective, hence W ×U×GF (U ×GX)→ U ×GX
and U ×G X → X are surjective and étale, and the composition of surjective étale
morphisms is surjective and étale.
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Set R = W ×F W . By the above R is a scheme and the projections t, s : R → W
are étale. It is clear that R is an equivalence relation, and W → F is a surjection
of sheaves. Hence R is an étale equivalence relation and F = W/R. Hence F is an
algebraic space by Spaces, Theorem 65.10.5. □

Lemma 80.3.7.03XY Let S be a scheme. Let a : F → G be a map of presheaves on
(Sch/S)fppf . Suppose a : F → G is representable by algebraic spaces. If X is an
algebraic space over S, and X → G is a map of presheaves then X ×G F is an
algebraic space.
Proof. By Lemma 80.3.3 the transformation X ×G F → X is representable by
algebraic spaces. Hence it is an algebraic space by Lemma 80.3.6. □

Lemma 80.3.8.03Y1 Let S be a scheme. Let

F
a // G

b // H

be maps of presheaves on (Sch/S)fppf . If a and b are representable by algebraic
spaces, so is b ◦ a.
Proof. Let T be a scheme over S, and let T → H be a morphism. By assumption
T ×H G is an algebraic space. Hence by Lemma 80.3.7 we see that T ×H F =
(T ×H G)×G F is an algebraic space as well. □

Lemma 80.3.9.046D Let S be a scheme. Let Fi, Gi : (Sch/S)oppfppf → Sets, i = 1, 2. Let
ai : Fi → Gi, i = 1, 2 be representable by algebraic spaces. Then

a1 × a2 : F1 × F2 −→ G1 ×G2

is a representable by algebraic spaces.
Proof. Write a1 × a2 as the composition F1 × F2 → G1 × F2 → G1 ×G2. The first
arrow is the base change of a1 by the map G1 × F2 → G1, and the second arrow is
the base change of a2 by the map G1 × G2 → G2. Hence this lemma is a formal
consequence of Lemmas 80.3.8 and 80.3.3. □

Lemma 80.3.10.0AMN Let S be a scheme. Let a : F → G and b : G → H be transfor-
mations of functors (Sch/S)oppfppf → Sets. Assume

(1) ∆ : G→ G×H G is representable by algebraic spaces, and
(2) b ◦ a : F → H is representable by algebraic spaces.

Then a is representable by algebraic spaces.
Proof. Let U be a scheme over S and let ξ ∈ G(U). Then

U ×ξ,G,a F = (U ×b(ξ),H,b◦a F )×(ξ,a),(G×HG),∆ G

Hence the result using Lemma 80.3.7. □

Lemma 80.3.11.07WE Let S ∈ Ob(Schfppf ). Let F be a presheaf of sets on (Sch/S)fppf .
Assume

(1) F is a sheaf for the Zariski topology on (Sch/S)fppf ,
(2) there exists an index set I and subfunctors Fi ⊂ F such that

(a) each Fi is an fppf sheaf,
(b) each Fi → F is representable by algebraic spaces,
(c)

∐
Fi → F becomes surjective after fppf sheafification.

Then F is an fppf sheaf.
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Proof. Let T ∈ Ob((Sch/S)fppf ) and let s ∈ F (T ). By (2)(c) there exists an fppf
covering {Tj → T} such that s|Tj is a section of Fα(j) for some α(j) ∈ I. Let
Wj ⊂ T be the image of Tj → T which is an open subscheme Morphisms, Lemma
29.25.10. By (2)(b) we see Fα(j)×F,s|Wj Wj →Wj is a monomorphism of algebraic
spaces through which Tj factors. Since {Tj →Wj} is an fppf covering, we conclude
that Fα(j) ×F,s|Wj Wj = Wj , in other words s|Wj ∈ Fα(j)(Wj). Hence we conclude
that

∐
Fi → F is surjective for the Zariski topology.

Let {Tj → T} be an fppf covering in (Sch/S)fppf . Let s, s′ ∈ F (T ) with s|Tj = s′|Tj
for all j. We want to show that s, s′ are equal. As F is a Zariski sheaf by (1) we
may work Zariski locally on T . By the result of the previous paragraph we may
assume there exist i such that s ∈ Fi(T ). Then we see that s′|Tj is a section of Fi.
By (2)(b) we see Fi ×F,s′ T → T is a monomorphism of algebraic spaces through
which all of the Tj factor. Hence we conclude that s′ ∈ Fi(T ). Since Fi is a sheaf
for the fppf topology we conclude that s = s′.
Let {Tj → T} be an fppf covering in (Sch/S)fppf and let sj ∈ F (Tj) such that
sj |Tj×TTj′ = sj′ |Tj×TTj′ . By assumption (2)(b) we may refine the covering and
assume that sj ∈ Fα(j)(Tj) for some α(j) ∈ I. Let Wj ⊂ T be the image of Tj → T
which is an open subscheme Morphisms, Lemma 29.25.10. Then {Tj → Wj} is an
fppf covering. Since Fα(j) is a sub presheaf of F we see that the two restrictions of
sj to Tj ×Wj

Tj agree as elements of Fα(j)(Tj ×Wj
Tj). Hence, the sheaf condition

for Fα(j) implies there exists a s′
j ∈ Fα(j)(Wj) whose restriction to Tj is sj . For

a pair of indices j and j′ the sections s′
j |Wj∩Wj′ and s′

j′ |Wj∩Wj′ of F agree by the
result of the previous paragraph. This finishes the proof by the fact that F is a
Zariski sheaf. □

80.4. Properties of maps of presheaves representable by algebraic spaces

046E Here is the definition that makes this work.
Definition 80.4.1.03XZ Let S be a scheme. Let a : F → G be a map of presheaves on
(Sch/S)fppf which is representable by algebraic spaces. Let P be a property of
morphisms of algebraic spaces which

(1) is preserved under any base change, and
(2) is fppf local on the base, see Descent on Spaces, Definition 74.10.1.

In this case we say that a has property P if for every scheme U and ξ : U → G the
resulting morphism of algebraic spaces U ×G F → U has property P.
It is important to note that we will only use this definition for properties of mor-
phisms that are stable under base change, and local in the fppf topology on the
base. This is not because the definition doesn’t make sense otherwise; rather it is
because we may want to give a different definition which is better suited to the
property we have in mind.
The definition above applies1 for example to the properties of being “surjective”,
“quasi-compact”, “étale”, “smooth”, “flat”, “separated”, “(locally) of finite type”,

1Being preserved under base change holds by Morphisms of Spaces, Lemmas 67.5.5, 67.8.4,
67.39.4, 67.37.3, 67.30.4, 67.4.4, 67.23.3, 67.27.4, 67.28.3, 67.20.5, 67.40.3, and Spaces, Lemma
65.12.3. Being fppf local on the base holds by Descent on Spaces, Lemmas 74.11.6, 74.11.1,
74.11.28, 74.11.26, 74.11.13, 74.11.18, 74.11.11, 74.11.24, 74.11.10, 74.11.16, 74.11.19, and
74.11.17.

https://stacks.math.columbia.edu/tag/03XZ


80.4. PROPERTIES OF MAPS OF PRESHEAVES REPRESENTABLE BY ALGEBRAIC SPACES6028

“(locally) quasi-finite”, “(locally) of finite presentation”, “affine”, “proper”, and
“a closed immersion”. In other words, a is surjective (resp. quasi-compact, étale,
smooth, flat, separated, (locally) of finite type, (locally) quasi-finite, (locally) of
finite presentation, proper, a closed immersion) if for every scheme T and map
ξ : T → G the morphism of algebraic spaces T ×ξ,G F → T is surjective (resp.
quasi-compact, étale, flat, separated, (locally) of finite type, (locally) quasi-finite,
(locally) of finite presentation, proper, a closed immersion).
Next, we check consistency with the already existing notions. By Lemma 80.3.2
any morphism between algebraic spaces over S is representable by algebraic spaces.
And by Morphisms of Spaces, Lemma 67.5.3 (resp. 67.8.8, 67.39.2, 67.37.4, 67.30.5,
67.4.12, 67.23.4, 67.27.6, 67.28.4, 67.20.3, 67.40.2, 67.12.1) the definition of sur-
jective (resp. quasi-compact, étale, smooth, flat, separated, (locally) of finite type,
(locally) quasi-finite, (locally) of finite presentation, affine, proper, closed immer-
sion) above agrees with the already existing definition of morphisms of algebraic
spaces.
Some formal lemmas follow.

Lemma 80.4.2.046F Let S be a scheme. Let P be a property as in Definition 80.4.1.
Let

G′ ×G F //

a′

��

F

a

��
G′ // G

be a fibre square of presheaves on (Sch/S)fppf . If a is representable by algebraic
spaces and has P so does a′.

Proof. Omitted. Hint: This is formal. □

Lemma 80.4.3.046G Let S be a scheme. Let P be a property as in Definition 80.4.1,
and assume P is stable under composition. Let

F
a // G

b // H

be maps of presheaves on (Sch/S)fppf . If a, b are representable by algebraic spaces
and has P so does b ◦ a.

Proof. Omitted. Hint: See Lemma 80.3.8 and use stability under composition. □

Lemma 80.4.4.046H Let S be a scheme. Let Fi, Gi : (Sch/S)oppfppf → Sets, i = 1, 2. Let
ai : Fi → Gi, i = 1, 2 be representable by algebraic spaces. Let P be a property as
in Definition 80.4.1 which is stable under composition. If a1 and a2 have property
P so does a1 × a2 : F1 × F2 −→ G1 ×G2.

Proof. Note that the lemma makes sense by Lemma 80.3.9. Proof omitted. □

Lemma 80.4.5.0AM1 Let S be a scheme. Let F,G : (Sch/S)oppfppf → Sets. Let a : F → G

be a transformation of functors representable by algebraic spaces. Let P, P ′ be
properties as in Definition 80.4.1. Suppose that for any morphism f : X → Y of
algebraic spaces over S we have P(f) ⇒ P ′(f). If a has property P, then a has
property P ′.

Proof. Formal. □

https://stacks.math.columbia.edu/tag/046F
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Lemma 80.4.6.04S1 Let S be a scheme. Let F,G : (Sch/S)oppfppf → Sets be sheaves. Let
a : F → G be representable by algebraic spaces, flat, locally of finite presentation,
and surjective. Then a : F → G is surjective as a map of sheaves.
Proof. Let T be a scheme over S and let g : T → G be a T -valued point of G.
By assumption T ′ = F ×G T is an algebraic space and the morphism T ′ → T is
a flat, locally of finite presentation, and surjective morphism of algebraic spaces.
Let U → T ′ be a surjective étale morphism, where U is a scheme. Then by the
definition of flat morphisms of algebraic spaces the morphism of schemes U → T is
flat. Similarly for “locally of finite presentation”. The morphism U → T is surjective
also, see Morphisms of Spaces, Lemma 67.5.3. Hence we see that {U → T} is an
fppf covering such that g|U ∈ G(U) comes from an element of F (U), namely the
map U → T ′ → F . This proves the map is surjective as a map of sheaves, see Sites,
Definition 7.11.1. □

80.5. Bootstrapping the diagonal

046I In this section we prove that the diagonal of a sheaf F on (Sch/S)fppf is repre-
sentable as soon as there exists an “fppf cover” of F by a scheme or by an algebraic
space, see Lemma 80.5.3.
Lemma 80.5.1.03Y2 Let S be a scheme. If F is a presheaf on (Sch/S)fppf . The following
are equivalent:

(1) ∆F : F → F × F is representable by algebraic spaces,
(2) for every scheme T any map T → F is representable by algebraic spaces,

and
(3) for every algebraic space X any map X → F is representable by algebraic

spaces.
Proof. Assume (1). Let X → F be as in (3). Let T be a scheme, and let T → F
be a morphism. Then we have

T ×F X = (T ×S X)×F×F,∆ F

which is an algebraic space by Lemma 80.3.7 and (1). Hence X → F is repre-
sentable, i.e., (3) holds. The implication (3) ⇒ (2) is trivial. Assume (2). Let T
be a scheme, and let (a, b) : T → F × F be a morphism. Then

F ×∆F ,F×F T = (T ×a,F,b T )×T×T,∆T
T

which is an algebraic space by assumption. Hence ∆F is representable by algebraic
spaces, i.e., (1) holds. □

In particular if F is a presheaf satisfying the equivalent conditions of the lemma,
then for any morphism X → F where X is an algebraic space it makes sense to say
that X → F is surjective (resp. étale, flat, locally of finite presentation) by using
Definition 80.4.1.
Before we actually do the bootstrap we prove a fun lemma.
Lemma 80.5.2.046J Let S be a scheme. Let

E
a
//

f

��

F

g

��
H

b // G
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be a cartesian diagram of sheaves on (Sch/S)fppf , so E = H ×G F . If
(1) g is representable by algebraic spaces, surjective, flat, and locally of finite

presentation, and
(2) a is representable by algebraic spaces, separated, and locally quasi-finite

then b is representable (by schemes) as well as separated and locally quasi-finite.
Proof. Let T be a scheme, and let T → G be a morphism. We have to show that
T ×GH is a scheme, and that the morphism T ×GH → T is separated and locally
quasi-finite. Thus we may base change the whole diagram to T and assume that G
is a scheme. In this case F is an algebraic space. Let U be a scheme, and let U → F
be a surjective étale morphism. Then U → F is representable, surjective, flat and
locally of finite presentation by Morphisms of Spaces, Lemmas 67.39.7 and 67.39.8.
By Lemma 80.3.8 U → G is surjective, flat and locally of finite presentation also.
Note that the base change E ×F U → U of a is still separated and locally quasi-
finite (by Lemma 80.4.2). Hence we may replace the upper part of the diagram
of the lemma by E ×F U → U . In other words, we may assume that F → G is
a surjective, flat morphism of schemes which is locally of finite presentation. In
particular, {F → G} is an fppf covering of schemes. By Morphisms of Spaces,
Proposition 67.50.2 we conclude that E is a scheme also. By Descent, Lemma
35.39.1 the fact that E = H ×G F means that we get a descent datum on E
relative to the fppf covering {F → G}. By More on Morphisms, Lemma 37.57.1
this descent datum is effective. By Descent, Lemma 35.39.1 again this implies that
H is a scheme. By Descent, Lemmas 35.23.6 and 35.23.24 it now follows that b is
separated and locally quasi-finite. □

Here is the result that the section title refers to.
Lemma 80.5.3.046K Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor.
Assume that

(1) the presheaf F is a sheaf,
(2) there exists an algebraic space X and a map X → F which is representable

by algebraic spaces, surjective, flat and locally of finite presentation.
Then ∆F is representable (by schemes).
Proof. Let U → X be a surjective étale morphism from a scheme towards X. Then
U → X is representable, surjective, flat and locally of finite presentation by Mor-
phisms of Spaces, Lemmas 67.39.7 and 67.39.8. By Lemma 80.4.3 the composition
U → F is representable by algebraic spaces, surjective, flat and locally of finite
presentation also. Thus we see that R = U ×F U is an algebraic space, see Lemma
80.3.7. The morphism of algebraic spaces R→ U ×S U is a monomorphism, hence
separated (as the diagonal of a monomorphism is an isomorphism, see Morphisms
of Spaces, Lemma 67.10.2). Since U → F is locally of finite presentation, both
morphisms R → U are locally of finite presentation, see Lemma 80.4.2. Hence
R → U ×S U is locally of finite type (use Morphisms of Spaces, Lemmas 67.28.5
and 67.23.6). Altogether this means that R → U ×S U is a monomorphism which
is locally of finite type, hence a separated and locally quasi-finite morphism, see
Morphisms of Spaces, Lemma 67.27.10.
Now we are ready to prove that ∆F is representable. Let T be a scheme, and let
(a, b) : T → F × F be a morphism. Set

T ′ = (U ×S U)×F×F T.

https://stacks.math.columbia.edu/tag/046K
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Note that U ×S U → F ×F is representable by algebraic spaces, surjective, flat and
locally of finite presentation by Lemma 80.4.4. Hence T ′ is an algebraic space, and
the projection morphism T ′ → T is surjective, flat, and locally of finite presentation.
Consider Z = T ×F×F F (this is a sheaf) and

Z ′ = T ′ ×U×SU R = T ′ ×T Z.
We see that Z ′ is an algebraic space, and Z ′ → T ′ is separated and locally quasi-
finite by the discussion in the first paragraph of the proof which showed that R
is an algebraic space and that the morphism R → U ×S U has those properties.
Hence we may apply Lemma 80.5.2 to the diagram

Z ′ //

��

T ′

��
Z // T

and we conclude. □

Here is a variant of the result above.

Lemma 80.5.4.0AHV Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor. Let
X be a scheme and let X → F be representable by algebraic spaces and locally
quasi-finite. Then X → F is representable (by schemes).

Proof. Let T be a scheme and let T → F be a morphism. We have to show that
the algebraic space X ×F T is representable by a scheme. Consider the morphism

X ×F T −→ X ×Spec(Z) T

Since X ×F T → T is locally quasi-finite, so is the displayed arrow (Morphisms of
Spaces, Lemma 67.27.8). On the other hand, the displayed arrow is a monomor-
phism and hence separated (Morphisms of Spaces, Lemma 67.10.3). Thus X ×F T
is a scheme by Morphisms of Spaces, Proposition 67.50.2. □

80.6. Bootstrap

03XV We warn the reader right away that the result of this section will be superseded by
the stronger Theorem 80.10.1. On the other hand, the theorem in this section is
quite a bit easier to prove and still provides quite a bit of insight into how things
work, especially for those readers mainly interested in Deligne-Mumford stacks.
In Spaces, Section 65.6 we defined an algebraic space as a sheaf in the fppf topol-
ogy whose diagonal is representable, and such that there exist a surjective étale
morphism from a scheme towards it. In this section we show that a sheaf in the
fppf topology whose diagonal is representable by algebraic spaces and which has
an étale surjective covering by an algebraic space is also an algebraic space. In
other words, the category of algebraic spaces is an enlargement of the category of
schemes by those fppf sheaves F which have a representable diagonal and an étale
covering by a scheme. The result of this section says that doing the same process
again starting with the category of algebraic spaces, does not lead to yet another
category.
Another motivation for the material in this section is that it will guarantee later
that a Deligne-Mumford stack whose inertia stack is trivial is equivalent to an
algebraic space, see Algebraic Stacks, Lemma 94.13.2.

https://stacks.math.columbia.edu/tag/0AHV
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Here is the main result of this section (as we mentioned above this will be superseded
by the stronger Theorem 80.10.1).

Theorem 80.6.1.03Y3 Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor.
Assume that

(1) the presheaf F is a sheaf,
(2) the diagonal morphism F → F × F is representable by algebraic spaces,

and
(3) there exists an algebraic space X and a map X → F which is surjective,

and étale.
or assume that

(a) the presheaf F is a sheaf, and
(b) there exists an algebraic space X and a map X → F which is representable

by algebraic paces, surjective, and étale.
Then F is an algebraic space.

Proof. We will use the remarks directly below Definition 80.4.1 without further
mention.

Assume (1), (2), and (3) and let X → F be as in (3). By Lemma 80.5.1 the
morphism X → F is representable by algebraic spaces. Thus we see that (a) and
(b) hold.

Assume (a) and (b) and let X → F be as in (b). Let U → X be a surjective étale
morphism from a scheme towards X. By Lemma 80.3.8 the transformation U → F
is representable by algebraic spaces, surjective, and étale. Hence to prove that
F is an algebraic space boils down to proving that ∆F is representable (Spaces,
Definition 65.6.1). This follows immediately from Lemma 80.5.3. On the other
hand we can circumvent this lemma and show directly F is an algebraic space as
in the next paragraph.

Namely, let U be a scheme and let U → F be representable by algebraic spaces,
surjective, and étale. Consider the fibre product R = U ×F U . Both projections
R→ U are representable by algebraic spaces, surjective, and étale (Lemma 80.4.2).
In particular R is an algebraic space by Lemma 80.3.6. The morphism of algebraic
spaces R → U ×S U is a monomorphism, hence separated (as the diagonal of a
monomorphism is an isomorphism). Since R → U is étale, we see that R → U is
locally quasi-finite, see Morphisms of Spaces, Lemma 67.39.5. We conclude that
also R → U ×S U is locally quasi-finite by Morphisms of Spaces, Lemma 67.27.8.
Hence Morphisms of Spaces, Proposition 67.50.2 applies and R is a scheme. By
Lemma 80.4.6 the map U → F is a surjection of sheaves. Thus F = U/R. We
conclude that F is an algebraic space by Spaces, Theorem 65.10.5. □

80.7. Finding opens

04S2 First we prove a lemma which is a slight improvement and generalization of Spaces,
Lemma 65.10.2 to quotient sheaves associated to groupoids.

Lemma 80.7.1.046M Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let g : U ′ → U be a morphism. Assume

https://stacks.math.columbia.edu/tag/03Y3
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(1) the composition

U ′ ×g,U,t R pr1
//

h

((
R

s
// U

has an open image W ⊂ U , and
(2) the resulting map h : U ′ ×g,U,t R → W defines a surjection of sheaves in

the fppf topology.
Let R′ = R|U ′ be the restriction of R to U ′. Then the map of quotient sheaves

U ′/R′ → U/R

in the fppf topology is representable, and is an open immersion.

Proof. Note that W is an R-invariant open subscheme of U . This is true because
the set of points of W is the set of points of U which are equivalent in the sense
of Groupoids, Lemma 39.3.4 to a point of g(U ′) ⊂ U (the lemma applies as j :
R → U ×S U is a pre-equivalence relation by Groupoids, Lemma 39.13.2). Also
g : U ′ → U factors through W . Let R|W be the restriction of R to W . Then it
follows that R′ is also the restriction of R|W to U ′. Hence we can factor the map
of sheaves of the lemma as

U ′/R′ −→W/R|W −→ U/R

By Groupoids, Lemma 39.20.6 we see that the first arrow is an isomorphism of
sheaves. Hence it suffices to show the lemma in case g is the immersion of an
R-invariant open into U .
Assume U ′ ⊂ U is an R-invariant open and g is the inclusion morphism. Set
F = U/R and F ′ = U ′/R′. By Groupoids, Lemma 39.20.5 or 39.20.6 the map
F ′ → F is injective. Let ξ ∈ F (T ). We have to show that T ×ξ,F F ′ is representable
by an open subscheme of T . There exists an fppf covering {fi : Ti → T} such that
ξ|Ti is the image via U → U/R of a morphism ai : Ti → U . Set Vi = a−1

i (U ′). We
claim that Vi ×T Tj = Ti ×T Vj as open subschemes of Ti ×T Tj .
As ai ◦pr0 and aj ◦pr1 are morphisms Ti×T Tj → U which both map to the section
ξ|Ti×TTj ∈ F (Ti ×T Tj) we can find an fppf covering {fijk : Tijk → Ti ×T Tj} and
morphisms rijk : Tijk → R such that

ai ◦ pr0 ◦ fijk = s ◦ rijk, aj ◦ pr1 ◦ fijk = t ◦ rijk,
see Groupoids, Lemma 39.20.4. Since U ′ is R-invariant we have s−1(U ′) = t−1(U ′)
and hence f−1

ijk(Vi ×T Tj) = f−1
ijk(Ti ×T Vj). As {fijk} is surjective this implies the

claim above. Hence by Descent, Lemma 35.13.6 there exists an open subscheme
V ⊂ T such that f−1

i (V ) = Vi. We claim that V represents T ×ξ,F F ′.
As a first step, we will show that ξ|V lies in F ′(V ) ⊂ F (V ). Namely, the family of
morphisms {Vi → V } is an fppf covering, and by construction we have ξ|Vi ∈ F ′(Vi).
Hence by the sheaf property of F ′ we get ξ|V ∈ F ′(V ). Finally, let T ′ → T be a
morphism of schemes and that ξ|T ′ ∈ F ′(T ′). To finish the proof we have to show
that T ′ → T factors through V . We can find a fppf covering {T ′

j → T ′}j∈J and
morphisms bj : T ′

j → U ′ such that ξ|T ′
j

is the image via U ′ → U/R of bj . Clearly,
it is enough to show that the compositions T ′

j → T factor through V . Hence we
may assume that ξ|T ′ is the image of a morphism b : T ′ → U ′. Now, it is enough
to show that T ′ ×T Ti → Ti factors through Vi. Over the scheme T ′ ×T Ti the
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restriction of ξ is the image of two elements of (U/R)(T ′ ×T Ti), namely ai ◦ pr1,
and b ◦ pr0, the second of which factors through the R-invariant open U ′. Hence
by Groupoids, Lemma 39.20.4 there exists a covering {hk : Zk → T ′ ×T Ti} and
morphisms rk : Zk → R such that ai ◦ pr1 ◦ hk = s ◦ rk and b ◦ pr0 ◦ hk = t ◦ rk. As
U ′ is an R-invariant open the fact that b has image in U ′ then implies that each
ai ◦ pr1 ◦ hk has image in U ′. It follows from this that T ′ ×T Ti → Ti has image in
Vi by definition of Vi which concludes the proof. □

80.8. Slicing equivalence relations

046L In this section we explain how to “improve” a given equivalence relation by slicing.
This is not a kind of “étale slicing” that you may be used to but a much coarser
kind of slicing.

Lemma 80.8.1.0489 Let S be a scheme. Let j : R→ U ×S U be an equivalence relation
on schemes over S. Assume s, t : R→ U are flat and locally of finite presentation.
Then there exists an equivalence relation j′ : R′ → U ′ ×S U ′ on schemes over S,
and an isomorphism

U ′/R′ −→ U/R

induced by a morphism U ′ → U which maps R′ into R such that s′, t′ : R→ U are
flat, locally of finite presentation and locally quasi-finite.

Proof. We will prove this lemma in several steps. We will use without further
mention that an equivalence relation gives rise to a groupoid scheme and that
the restriction of an equivalence relation is an equivalence relation, see Groupoids,
Lemmas 39.3.2, 39.13.3, and 39.18.3.

Step 1: We may assume that s, t : R → U are locally of finite presentation and
Cohen-Macaulay morphisms. Namely, as in More on Groupoids, Lemma 40.8.1 let
g : U ′ → U be the open subscheme such that t−1(U ′) ⊂ R is the maximal open
over which s : R→ U is Cohen-Macaulay, and denote R′ the restriction of R to U ′.
By the lemma cited above we see that

t−1(U ′) U ′ ×g,U,t R pr1
//

h

((
R

s
// U

is surjective. Since h is flat and locally of finite presentation, we see that {h} is a
fppf covering. Hence by Groupoids, Lemma 39.20.6 we see that U ′/R′ → U/R is
an isomorphism. By the construction of U ′ we see that s′, t′ are Cohen-Macaulay
and locally of finite presentation.

Step 2. Assume s, t are Cohen-Macaulay and locally of finite presentation. Let
u ∈ U be a point of finite type. By More on Groupoids, Lemma 40.12.4 there exists
an affine scheme U ′ and a morphism g : U ′ → U such that

(1) g is an immersion,
(2) u ∈ U ′,
(3) g is locally of finite presentation,
(4) h is flat, locally of finite presentation and locally quasi-finite, and
(5) the morphisms s′, t′ : R′ → U ′ are flat, locally of finite presentation and

locally quasi-finite.

https://stacks.math.columbia.edu/tag/0489
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Here we have used the notation introduced in More on Groupoids, Situation 40.12.1.
Step 3. For each point u ∈ U which is of finite type choose a gu : U ′

u → U as in Step
2 and denote R′

u the restriction of R to U ′
u. Denote hu = s◦pr1 : U ′

u×gu,U,tR→ U .
Set U ′ =

∐
u∈U U

′
u, and g =

∐
gu. Let R′ be the restriction of R to U ′ as above.

We claim that the pair (U ′, g) works2. Note that

R′ =
∐

u1,u2∈U
(U ′

u1
×gu1 ,U,t

R)×R (R×s,U,gu2
U ′
u2

)

=
∐

u1,u2∈U
(U ′

u1
×gu1 ,U,t

R)×hu1 ,U,gu2
U ′
u2

Hence the projection s′ : R′ → U ′ =
∐
U ′
u2

is flat, locally of finite presentation
and locally quasi-finite as a base change of

∐
hu1 . Finally, by construction the

morphism h : U ′ ×g,U,t R→ U is equal to
∐
hu hence its image contains all points

of finite type of U . Since each hu is flat and locally of finite presentation we
conclude that h is flat and locally of finite presentation. In particular, the image
of h is open (see Morphisms, Lemma 29.25.10) and since the set of points of finite
type is dense (see Morphisms, Lemma 29.16.7) we conclude that the image of h
is U . This implies that {h} is an fppf covering. By Groupoids, Lemma 39.20.6
this means that U ′/R′ → U/R is an isomorphism. This finishes the proof of the
lemma. □

80.9. Quotient by a subgroupoid

04S3 We need one more lemma before we can do our final bootstrap. Let us discuss what
is going on in terms of “plain” groupoids before embarking on the scheme theoretic
version.
Let C be a groupoid, see Categories, Definition 4.2.5. As discussed in Groupoids,
Section 39.13 this corresponds to a quintuple (Ob,Arrows, s, t, c). Suppose we are
given a subset P ⊂ Arrows such that (Ob, P, s|P , t|P , c|P ) is also a groupoid and
such that there are no nontrivial automorphisms in P . Then we can construct the
quotient groupoid (Ob,Arrows, s, t, c) as follows:

(1) Ob = Ob/P is the set of P -isomorphism classes,
(2) Arrows = P\Arrows/P is the set of arrows in C up to pre-composing and

post-composing by arrows of P ,
(3) the source and target maps s, t : P\Arrows/P → Ob/P are induced by

s, t,
(4) composition is defined by the rule c(a, b) = c(a, b) which is well defined.

In fact, it turns out that the original groupoid (Ob,Arrows, s, t, c) is canonically
isomorphic to the restriction (see discussion in Groupoids, Section 39.18) of the
groupoid (Ob,Arrows, s, t, c) via the quotient map g : Ob → Ob. Recall that this
means that

Arrows = Ob×g,Ob,t Arrows×s,Ob,g Ob
which holds as P has no nontrivial automorphisms. We omit the details.

2Here we should check that U ′ is not too large, i.e., that it is isomorphic to an object of the
category Schfppf , see Section 80.2. This is a purely set theoretical matter; let us use the notion
of size of a scheme introduced in Sets, Section 3.9. Note that each U ′

u has size at most the size of
U and that the cardinality of the index set is at most the cardinality of |U | which is bounded by
the size of U . Hence U ′ is isomorphic to an object of Schfppf by Sets, Lemma 3.9.9 part (6).
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The following lemma holds in much greater generality, but this is the version we
use in the proof of the final bootstrap (after which we can more easily prove the
more general versions of this lemma).

Lemma 80.9.1.04S4 Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let P → R be monomorphism of schemes. Assume that

(1) (U,P, s|P , t|P , c|P×s,U,tP ) is a groupoid scheme,
(2) s|P , t|P : P → U are finite locally free,
(3) j|P : P → U ×S U is a monomorphism.
(4) U is affine, and
(5) j : R→ U ×S U is separated and locally quasi-finite,

Then U/P is representable by an affine scheme U , the quotient morphism U → U
is finite locally free, and P = U ×U U . Moreover, R is the restriction of a groupoid
scheme (U,R, s, t, c) on U via the quotient morphism U → U .

Proof. Conditions (1), (2), (3), and (4) and Groupoids, Proposition 39.23.9 imply
the affine scheme U representing U/P exists, the morphism U → U is finite locally
free, and P = U ×U U . The identification P = U ×U U is such that t|P = pr0 and
s|P = pr1, and such that composition is equal to pr02 : U ×U U ×U U → U ×U U .
A product of finite locally free morphisms is finite locally free (see Spaces, Lemma
65.5.7 and Morphisms, Lemmas 29.48.4 and 29.48.3). To get R we are going to
descend the scheme R via the finite locally free morphism U ×S U → U ×S U .
Namely, note that

(U ×S U)×(U×SU) (U ×S U) = P ×S P

by the above. Thus giving a descent datum (see Descent, Definition 35.34.1) for
R/U ×S U/U ×S U consists of an isomorphism

φ : R×(U×SU),t×t (P ×S P ) −→ (P ×S P )×s×s,(U×SU) R

over P ×S P satisfying a cocycle condition. We define φ on T -valued points by the
rule

φ : (r, (p, p′)) 7−→ ((p, p′), p−1 ◦ r ◦ p′)
where the composition is taken in the groupoid category (U(T ), R(T ), s, t, c). This
makes sense because for (r, (p, p′)) to be a T -valued point of the source of φ it
needs to be the case that t(r) = t(p) and s(r) = t(p′). Note that this map is an
isomorphism with inverse given by ((p, p′), r′) 7→ (p ◦ r′ ◦ (p′)−1, (p, p′)). To check
the cocycle condition we have to verify that φ02 = φ12 ◦ φ01 as maps over
(U×SU)×(U×SU) (U×SU)×(U×SU) (U×SU) = (P ×SP )×s×s,(U×SU),t×t (P ×SP )

By explicit calculation we see that
φ02 (r, (p1, p

′
1), (p2, p

′
2)) 7→ ((p1, p

′
1), (p2, p

′
2), (p1 ◦ p2)−1 ◦ r ◦ (p′

1 ◦ p′
2))

φ01 (r, (p1, p
′
1), (p2, p

′
2)) 7→ ((p1, p

′
1), p−1

1 ◦ r ◦ p′
1, (p2, p

′
2))

φ12 ((p1, p
′
1), r, (p2, p

′
2)) 7→ ((p1, p

′
1), (p2, p

′
2), p−1

2 ◦ r ◦ p′
2)

(with obvious notation) which implies what we want. As j is separated and locally
quasi-finite by (5) we may apply More on Morphisms, Lemma 37.57.1 to get a
scheme R→ U ×S U and an isomorphism

R→ R×(U×SU) (U ×S U)

https://stacks.math.columbia.edu/tag/04S4
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which identifies the descent datum φ with the canonical descent datum onR×(U×SU)
(U ×S U), see Descent, Definition 35.34.10.
Since U ×S U → U ×S U is finite locally free we conclude that R → R is finite
locally free as a base change. Hence R → R is surjective as a map of sheaves on
(Sch/S)fppf . Our choice of φ implies that given T -valued points r, r′ ∈ R(T ) these
have the same image in R if and only if p−1 ◦ r ◦ p′ for some p, p′ ∈ P (T ). Thus R
represents the sheaf

T 7−→ R(T ) = P (T )\R(T )/P (T )
with notation as in the discussion preceding the lemma. Hence we can define the
groupoid structure on (U = U/P,R = P\R/P ) exactly as in the discussion of the
“plain” groupoid case. It follows from this that (U,R, s, t, c) is the pullback of this
groupoid structure via the morphism U → U . This concludes the proof. □

80.10. Final bootstrap

04S5 The following result goes quite a bit beyond the earlier results.

Theorem 80.10.1.04S6 Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor.
Any one of the following conditions implies that F is an algebraic space:

(1) F = U/R where (U,R, s, t, c) is a groupoid in algebraic spaces over S such
that s, t are flat and locally of finite presentation, and j = (t, s) : R →
U ×S U is an equivalence relation,

(2) F = U/R where (U,R, s, t, c) is a groupoid scheme over S such that s, t
are flat and locally of finite presentation, and j = (t, s) : R → U ×S U is
an equivalence relation,

(3) F is a sheaf and there exists an algebraic space U and a morphism U → F
which is representable by algebraic spaces, surjective, flat and locally of
finite presentation,

(4) F is a sheaf and there exists a scheme U and a morphism U → F which is
representable by algebraic spaces or schemes, surjective, flat and locally
of finite presentation,

(5) F is a sheaf, ∆F is representable by algebraic spaces, and there exists an
algebraic space U and a morphism U → F which is surjective, flat, and
locally of finite presentation, or

(6) F is a sheaf, ∆F is representable, and there exists a scheme U and a mor-
phism U → F which is surjective, flat, and locally of finite presentation.

Proof. Trivial observations: (6) is a special case of (5) and (4) is a special case
of (3). We first prove that cases (5) and (3) reduce to case (1). Namely, by
bootstrapping the diagonal Lemma 80.5.3 we see that (3) implies (5). In case (5)
we set R = U ×F U which is an algebraic space by assumption. Moreover, by
assumption both projections s, t : R → U are surjective, flat and locally of finite
presentation. The map j : R → U ×S U is clearly an equivalence relation. By
Lemma 80.4.6 the map U → F is a surjection of sheaves. Thus F = U/R which
reduces us to case (1).
Next, we show that (1) reduces to (2). Namely, let (U,R, s, t, c) be a groupoid
in algebraic spaces over S such that s, t are flat and locally of finite presentation,
and j = (t, s) : R → U ×S U is an equivalence relation. Choose a scheme U ′

and a surjective étale morphism U ′ → U . Let R′ = R|U ′ be the restriction of R

https://stacks.math.columbia.edu/tag/04S6
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to U ′. By Groupoids in Spaces, Lemma 78.19.6 we see that U/R = U ′/R′. Since
s′, t′ : R′ → U ′ are also flat and locally of finite presentation (see More on Groupoids
in Spaces, Lemma 79.8.1) this reduces us to the case where U is a scheme. As j is
an equivalence relation we see that j is a monomorphism. As s : R → U is locally
of finite presentation we see that j : R → U ×S U is locally of finite type, see
Morphisms of Spaces, Lemma 67.23.6. By Morphisms of Spaces, Lemma 67.27.10
we see that j is locally quasi-finite and separated. Hence if U is a scheme, then R is
a scheme by Morphisms of Spaces, Proposition 67.50.2. Thus we reduce to proving
the theorem in case (2).

Assume F = U/R where (U,R, s, t, c) is a groupoid scheme over S such that s, t are
flat and locally of finite presentation, and j = (t, s) : R→ U ×S U is an equivalence
relation. By Lemma 80.8.1 we reduce to that case where s, t are flat, locally of
finite presentation, and locally quasi-finite. Let U =

⋃
i∈I Ui be an affine open

covering (with index set I of cardinality ≤ than the size of U to avoid set theoretic
problems later – most readers can safely ignore this remark). Let (Ui, Ri, si, ti, ci)
be the restriction of R to Ui. It is clear that si, ti are still flat, locally of finite
presentation, and locally quasi-finite as Ri is the open subscheme s−1(Ui)∩ t−1(Ui)
of R and si, ti are the restrictions of s, t to this open. By Lemma 80.7.1 (or the
simpler Spaces, Lemma 65.10.2) the map Ui/Ri → U/R is representable by open
immersions. Hence if we can show that Fi = Ui/Ri is an algebraic space, then∐
i∈I Fi is an algebraic space by Spaces, Lemma 65.8.4. As U =

⋃
Ui is an open

covering it is clear that
∐
Fi → F is surjective. Thus it follows that U/R is an

algebraic space, by Spaces, Lemma 65.8.5. In this way we reduce to the case where
U is affine and s, t are flat, locally of finite presentation, and locally quasi-finite and
j is an equivalence.

Assume (U,R, s, t, c) is a groupoid scheme over S, with U affine, such that s, t are
flat, locally of finite presentation, and locally quasi-finite, and j is an equivalence
relation. Choose u ∈ U . We apply More on Groupoids in Spaces, Lemma 79.15.13
to u ∈ U,R, s, t, c. We obtain an affine scheme U ′, an étale morphism g : U ′ → U ,
a point u′ ∈ U ′ with κ(u) = κ(u′) such that the restriction R′ = R|U ′ is quasi-
split over u′. Note that the image g(U ′) is open as g is étale and contains u.
Hence, repeatedly applying the lemma, we can find finitely many points ui ∈ U ,
i = 1, . . . , n, affine schemes U ′

i , étale morphisms gi : U ′
i → U , points u′

i ∈ U ′
i with

g(u′
i) = ui such that (a) each restriction R′

i is quasi-split over some point in U ′
i

and (b) U =
⋃
i=1,...,n gi(U ′

i). Now we rerun the last part of the argument in the
preceding paragraph: Using Lemma 80.7.1 (or the simpler Spaces, Lemma 65.10.2)
the map U ′

i/R
′
i → U/R is representable by open immersions. If we can show that

Fi = U ′
i/R

′
i is an algebraic space, then

∐
i∈I Fi is an algebraic space by Spaces,

Lemma 65.8.4. As {gi : U ′
i → U} is an étale covering it is clear that

∐
Fi → F

is surjective. Thus it follows that U/R is an algebraic space, by Spaces, Lemma
65.8.5. In this way we reduce to the case where U is affine and s, t are flat, locally of
finite presentation, and locally quasi-finite, j is an equivalence, and R is quasi-split
over u for some u ∈ U .

Assume (U,R, s, t, c) is a groupoid scheme over S, with U affine, u ∈ U such that
s, t are flat, locally of finite presentation, and locally quasi-finite and j = (t, s) :
R → U ×S U is an equivalence relation and R is quasi-split over u. Let P ⊂ R
be a quasi-splitting of R over u. By Lemma 80.9.1 we see that (U,R, s, t, c) is the
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restriction of a groupoid (U,R, s, t, c) by a surjective finite locally free morphism
U → U such that P = U ×U U . Note that s admits a factorization

R = U ×U,t R×s,U U
pr23−−−→ R×s,U U

pr2−−→ U

The map pr2 is the base change of s, and the map pr23 is a base change of the
surjective finite locally free map U → U . Since s is flat, locally of finite presentation,
and locally quasi-finite and since pr23 is surjective finite locally free (as a base
change of such), we conclude that pr2 is flat, locally of finite presentation, and
locally quasi-finite by Descent, Lemmas 35.27.1 and 35.28.1 and Morphisms, Lemma
29.20.18. Since pr2 is the base change of the morphism s by U → U and {U → U}
is an fppf covering we conclude s is flat, locally of finite presentation, and locally
quasi-finite, see Descent, Lemmas 35.23.15, 35.23.11, and 35.23.24. The same goes
for t. Consider the commutative diagram

U ×U U

##

P //

��

R

��
U

e // R

It is a general fact about restrictions that the outer four corners form a cartesian
diagram. By the equality we see the inner square is cartesian. Since P is open
in R (by definition of a quasi-splitting) we conclude that e is an open immersion
by Descent, Lemma 35.23.16. An application of Groupoids, Lemma 39.20.5 shows
that U/R = U/R. Hence we have reduced to the case where (U,R, s, t, c) is a
groupoid scheme over S, with U affine, u ∈ U such that s, t are flat, locally of finite
presentation, and locally quasi-finite and j = (t, s) : R→ U ×S U is an equivalence
relation and e : U → R is an open immersion!
But of course, if e is an open immersion and s, t are flat and locally of finite
presentation then the morphisms t, s are étale. For example you can see this by
applying More on Groupoids, Lemma 40.4.1 which shows that ΩR/U = 0 which in
turn implies that s, t : R → U is G-unramified (see Morphisms, Lemma 29.35.2),
which in turn implies that s, t are étale (see Morphisms, Lemma 29.36.16). And if
s, t are étale then finally U/R is an algebraic space by Spaces, Theorem 65.10.5. □

80.11. Applications

04SJ As a first application we obtain the following fundamental fact:

A sheaf which is fppf locally an algebraic space is an algebraic space.

This is the content of the following lemma. Note that assumption (2) is equivalent to
the condition that F |(Sch/Si)fppf is an algebraic space, see Spaces, Lemma 65.16.4.
Assumption (3) is a set theoretic condition which may be ignored by those not
worried about set theoretic questions.

Lemma 80.11.1.04SK Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor. Let
{Si → S}i∈I be a covering of (Sch/S)fppf . Assume that

(1) F is a sheaf,
(2) each Fi = hSi × F is an algebraic space, and
(3)

∐
i∈I Fi is an algebraic space (see Spaces, Lemma 65.8.4).

Then F is an algebraic space.

https://stacks.math.columbia.edu/tag/04SK
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Proof. Consider the morphism
∐
Fi → F . This is the base change of

∐
Si → S via

F → S. Hence it is representable, locally of finite presentation, flat and surjective
by our definition of an fppf covering and Lemma 80.4.2. Thus Theorem 80.10.1
applies to show that F is an algebraic space. □

Here is a special case of Lemma 80.11.1 where we do not need to worry about set
theoretical issues.
Lemma 80.11.2.04U0 Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor. Let
{Si → S}i∈I be a covering of (Sch/S)fppf . Assume that

(1) F is a sheaf,
(2) each Fi = hSi × F is an algebraic space, and
(3) the morphisms Fi → Si are of finite type.

Then F is an algebraic space.
Proof. We will use Lemma 80.11.1 above. To do this we will show that the as-
sumption that Fi is of finite type over Si to prove that the set theoretic condition
in the lemma is satisfied (after perhaps refining the given covering of S a bit). We
suggest the reader skip the rest of the proof.
If S′

i → Si is a morphism of schemes then
hS′

i
× F = hS′

i
×hSi hSi × F = hS′

i
×hSi Fi

is an algebraic space of finite type over S′
i, see Spaces, Lemma 65.7.3 and Morphisms

of Spaces, Lemma 67.23.3. Thus we may refine the given covering. After doing this
we may assume: (a) each Si is affine, and (b) the cardinality of I is at most the
cardinality of the set of points of S. (Since to cover all of S it is enough that each
point is in the image of Si → S for some i.)
Since each Si is affine and each Fi of finite type over Si we conclude that Fi is
quasi-compact. Hence by Properties of Spaces, Lemma 66.6.3 we can find an affine
Ui ∈ Ob((Sch/S)fppf ) and a surjective étale morphism Ui → Fi. The fact that
Fi → Si is locally of finite type then implies that Ui → Si is locally of finite
type, and in particular Ui → S is locally of finite type. By Sets, Lemma 3.9.7
we conclude that size(Ui) ≤ size(S). Since also |I| ≤ size(S) we conclude that∐
i∈I Ui is isomorphic to an object of (Sch/S)fppf by Sets, Lemma 3.9.5 and the

construction of Sch. This implies that
∐
Fi is an algebraic space by Spaces, Lemma

65.8.4 and we win. □

As a second application we obtain
Any fppf descent datum for algebraic spaces is effective.

This holds modulo set theoretical difficulties; as an example result we offer the
following lemma.
Lemma 80.11.3.0ADV Let S be a scheme. Let {Xi → X}i∈I be an fppf covering of
algebraic spaces over S.

(1) If I is countable3, then any descent datum for algebraic spaces relative to
{Xi → X} is effective.

3The restriction on countablility can be ignored by those who do not care about set theoretical
issues. We can allow larger index sets here if we can bound the size of the algebraic spaces which
we are descending. See for example Lemma 80.11.2.

https://stacks.math.columbia.edu/tag/04U0
https://stacks.math.columbia.edu/tag/0ADV
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(2) Any descent datum (Yi, φij) relative to {Xi → X}i∈I (Descent on Spaces,
Definition 74.22.3) with Yi → Xi of finite type is effective.

Proof. Proof of (1). By Descent on Spaces, Lemma 74.23.1 this translates into the
statement that an fppf sheaf F endowed with a map F → X is an algebraic space
provided that each F×XXi is an algebraic space. The restriction on the cardinality
of I implies that coproducts of algebraic spaces indexed by I are algebraic spaces,
see Spaces, Lemma 65.8.4 and Sets, Lemma 3.9.9. The morphism∐

F ×X Xi −→ F

is representable by algebraic spaces (as the base change of
∐
Xi → X, see Lemma

80.3.3), and surjective, flat, and locally of finite presentation (as the base change
of
∐
Xi → X, see Lemma 80.4.2). Hence part (1) follows from Theorem 80.10.1.

Proof of (2). First we apply Descent on Spaces, Lemma 74.23.1 to obtain an fppf
sheaf F endowed with a map F → X such that F ×X Xi = Yi for all i ∈ I. Our
goal is to show that F is an algebraic space. Choose a scheme U and a surjective
étale morphism U → X. Then F ′ = U ×X F → F is representable, surjective, and
étale as the base change of U → X. By Theorem 80.10.1 it suffices to show that
F ′ = U ×X F is an algebraic space. We may choose an fppf covering {Uj → U}j∈J
where Uj is a scheme refining the fppf covering {Xi×X U → U}i∈I , see Topologies
on Spaces, Lemma 73.7.4. Thus we get a map a : J → I and for each j a morphism
Uj → Xa(j) over X. Then we see that Uj ×U F ′ = Uj ×Xa(j) Ya(j) is of finite type
over Uj . Hence F ′ is an algebraic space by Lemma 80.11.2. □

Here is a different type of application.

Lemma 80.11.4.0AMP Let S be a scheme. Let a : F → G and b : G → H be transfor-
mations of functors (Sch/S)oppfppf → Sets. Assume

(1) F,G,H are sheaves,
(2) a : F → G is representable by algebraic spaces, flat, locally of finite

presentation, and surjective, and
(3) b ◦ a : F → H is representable by algebraic spaces.

Then b is representable by algebraic spaces.

Proof. Let U be a scheme over S and let ξ ∈ H(U). We have to show that U×ξ,HG
is an algebraic space. On the other hand, we know that U ×ξ,H F is an algebraic
space and that U ×ξ,H F → U ×ξ,H G is representable by algebraic spaces, flat,
locally of finite presentation, and surjective as a base change of the morphism a
(see Lemma 80.4.2). Thus the result follows from Theorem 80.10.1. □

Lemma 80.11.5.04TB Assume B → S and (U,R, s, t, c) are as in Groupoids in Spaces,
Definition 78.20.1 (1). For any scheme T over S and objects x, y of [U/R] over T
the sheaf Isom(x, y) on (Sch/T )fppf is an algebraic space.

Proof. By Groupoids in Spaces, Lemma 78.22.3 there exists an fppf covering {Ti →
T}i∈I such that Isom(x, y)|(Sch/Ti)fppf is an algebraic space for each i. By Spaces,
Lemma 65.16.4 this means that each Fi = hSi × Isom(x, y) is an algebraic space.
Thus to prove the lemma we only have to verify the set theoretic condition that∐
Fi is an algebraic space of Lemma 80.11.1 above to conclude. To do this we use

Spaces, Lemma 65.8.4 which requires showing that I and the Fi are not “too large”.
We suggest the reader skip the rest of the proof.

https://stacks.math.columbia.edu/tag/0AMP
https://stacks.math.columbia.edu/tag/04TB


80.11. APPLICATIONS 6042

Choose U ′ ∈ Ob(Sch/S)fppf and a surjective étale morphism U ′ → U . Let R′ be
the restriction of R to U ′. Since [U/R] = [U ′/R′] we may, after replacing U by U ′,
assume that U is a scheme. (This step is here so that the fibre products below are
over a scheme.)
Note that if we refine the covering {Ti → T} then it remains true that each Fi is an
algebraic space. Hence we may assume that each Ti is affine. Since Ti → T is locally
of finite presentation, this then implies that size(Ti) ≤ size(T ), see Sets, Lemma
3.9.7. We may also assume that the cardinality of the index set I is at most the
cardinality of the set of points of T since to get a covering it suffices to check that
each point of T is in the image. Hence |I| ≤ size(T ). Choose W ∈ Ob((Sch/S)fppf )
and a surjective étale morphism W → R. Note that in the proof of Groupoids in
Spaces, Lemma 78.22.3 we showed that Fi is representable by Ti×(yi,xi),U×BUR for
some xi, yi : Ti → U . Hence now we see that Vi = Ti ×(yi,xi),U×BU W is a scheme
which comes with an étale surjection Vi → Fi. By Sets, Lemma 3.9.6 we see that

size(Vi) ≤ max{size(Ti), size(W )} ≤ max{size(T ), size(W )}
Hence, by Sets, Lemma 3.9.5 we conclude that

size(
∐

i∈I
Vi) ≤ max{|I|, size(T ), size(W )}.

Hence we conclude by our construction of Sch that
∐
i∈I Vi is isomorphic to an

object V of (Sch/S)fppf . This verifies the hypothesis of Spaces, Lemma 65.8.4 and
we win. □

Lemma 80.11.6.06PG Let S be a scheme. Consider an algebraic space F of the form F =
U/R where (U,R, s, t, c) is a groupoid in algebraic spaces over S such that s, t are
flat and locally of finite presentation, and j = (t, s) : R→ U ×S U is an equivalence
relation. Then U → F is surjective, flat, and locally of finite presentation.

Proof. This is almost but not quite a triviality. Namely, by Groupoids in Spaces,
Lemma 78.19.5 and the fact that j is a monomorphism we see that R = U ×F U .
Choose a scheme W and a surjective étale morphism W → F . As U → F is a
surjection of sheaves we can find an fppf covering {Wi → W} and maps Wi → U
lifting the morphisms Wi → F . Then we see that

Wi ×F U = Wi ×U U ×F U = Wi ×U,t R

and the projection Wi ×F U → Wi is the base change of t : R → U hence flat
and locally of finite presentation, see Morphisms of Spaces, Lemmas 67.30.4 and
67.28.3. Hence by Descent on Spaces, Lemmas 74.11.13 and 74.11.10 we see that
U → F is flat and locally of finite presentation. It is surjective by Spaces, Remark
65.5.2. □

Lemma 80.11.7.06PH Let S be a scheme. Let X → B be a morphism of algebraic spaces
over S. Let G be a group algebraic space over B and let a : G ×B X → X be an
action of G on X over B. If

(1) a is a free action, and
(2) G→ B is flat and locally of finite presentation,

then X/G (see Groupoids in Spaces, Definition 78.19.1) is an algebraic space, the
morphism X → X/G is surjective, flat, and locally of finite presentation, and X is
an fppf G-torsor over X/G.

https://stacks.math.columbia.edu/tag/06PG
https://stacks.math.columbia.edu/tag/06PH
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Proof. The fact that X/G is an algebraic space is immediate from Theorem 80.10.1
and the definitions. Namely, X/G = X/R where R = G ×B X. The morphisms
s, t : G ×B X → X are flat and locally of finite presentation (clear for s as a base
change of G → B and by symmetry using the inverse it follows for t) and the
morphism j : G ×B X → X ×B X is a monomorphism by Groupoids in Spaces,
Lemma 78.8.3 as the action is free. The morphism X → X/G is surjective, flat,
and locally of finite presentation by Lemma 80.11.6. To see that X → X/G is
an fppf G-torsor (Groupoids in Spaces, Definition 78.9.3) we have to show that
G ×S X → X ×X/G X is an isomorphism and that X → X/G fppf locally has
sections. The second part is clear from the properties of X → X/G already shown.
The map G×SX → X×X/GX is injective (as a map of fppf sheaves) as the action
is free. Finally, the map is also surjective as a map of sheaves by Groupoids in
Spaces, Lemma 78.19.5. This finishes the proof. □

Lemma 80.11.8.04U1 Let {Si → S}i∈I be a covering of (Sch/S)fppf . Let G be a group
algebraic space over S, and denote Gi = GSi the base changes. Suppose given

(1) for each i ∈ I an fppf Gi-torsor Xi over Si, and
(2) for each i, j ∈ I a GSi×SSj -equivariant isomorphism φij : Xi ×S Sj →

Si ×S Xj satisfying the cocycle condition over every Si ×S Sj ×S Sj .
Then there exists an fppf G-torsor X over S whose base change to Si is isomorphic
to Xi such that we recover the descent datum φij .

Proof. We may think of Xi as a sheaf on (Sch/Si)fppf , see Spaces, Section 65.16.
By Sites, Section 7.26 the descent datum (Xi, φij) is effective in the sense that
there exists a unique sheaf X on (Sch/S)fppf which recovers the algebraic spaces
Xi after restricting back to (Sch/Si)fppf . Hence we see that Xi = hSi × X. By
Lemma 80.11.1 we see that X is an algebraic space, modulo verifying that

∐
Xi

is an algebraic space which we do at the end of the proof. By the equivalence of
categories in Sites, Lemma 7.26.5 the action maps Gi ×Si Xi → Xi glue to give
a map a : G ×S X → X. Now we have to show that a is an action and that
X is a pseudo-torsor, and fppf locally trivial (see Groupoids in Spaces, Definition
78.9.3). These may be checked fppf locally, and hence follow from the corresponding
properties of the actions Gi ×Si Xi → Xi. Hence the lemma is true.

We suggest the reader skip the rest of the proof, which is purely set theoretical.
Pick coverings {Sij → Sj}j∈Ji of (Sch/S)fppf which trivialize the Gi torsors Xi

(possible by assumption, and Topologies, Lemma 34.7.7 part (1)). Then {Sij →
S}i∈I,j∈Ji is a covering of (Sch/S)fppf and hence we may assume that each Xi

is the trivial torsor! Of course we may also refine the covering further, hence we
may assume that each Si is affine and that the index set I has cardinality bounded
by the cardinality of the set of points of S. Choose U ∈ Ob((Sch/S)fppf ) and a
surjective étale morphism U → G. Then we see that Ui = U ×S Si comes with an
étale surjective morphism to Xi

∼= Gi. By Sets, Lemma 3.9.6 we see size(Ui) ≤
max{size(U), size(Si)}. By Sets, Lemma 3.9.7 we have size(Si) ≤ size(S). Hence
we see that size(Ui) ≤ max{size(U), size(S)} for all i ∈ I. Together with the bound
on |I| we found above we conclude from Sets, Lemma 3.9.5 that size(

∐
Ui) ≤

max{size(U), size(S)}. Hence Spaces, Lemma 65.8.4 applies to show that
∐
Xi is

an algebraic space which is what we had to prove. □

https://stacks.math.columbia.edu/tag/04U1
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80.12. Algebraic spaces in the étale topology

076L Let S be a scheme. Instead of working with sheaves over the big fppf site (Sch/S)fppf
we could work with sheaves over the big étale site (Sch/S)étale. All of the material in
Algebraic Spaces, Sections 65.3 and 65.5 makes sense for sheaves over (Sch/S)étale.
Thus we get a second notion of algebraic spaces by working in the étale topology.
This notion is (a priori) weaker then the notion introduced in Algebraic Spaces,
Definition 65.6.1 since a sheaf in the fppf topology is certainly a sheaf in the étale
topology. However, the notions are equivalent as is shown by the following lemma.

Lemma 80.12.1.076M Denote the common underlying category of Schfppf and Schétale
by Schα (see Topologies, Remark 34.11.1). Let S be an object of Schα. Let

F : (Schα/S)opp −→ Sets

be a presheaf with the following properties:
(1) F is a sheaf for the étale topology,
(2) the diagonal ∆ : F → F × F is representable, and
(3) there exists U ∈ Ob(Schα/S) and U → F which is surjective and étale.

Then F is an algebraic space in the sense of Algebraic Spaces, Definition 65.6.1.

Proof. Note that properties (2) and (3) of the lemma and the corresponding prop-
erties (2) and (3) of Algebraic Spaces, Definition 65.6.1 are independent of the
topology. This is true because these properties involve only the notion of a fibre
product of presheaves, maps of presheaves, the notion of a representable transfor-
mation of functors, and what it means for such a transformation to be surjective
and étale. Thus all we have to prove is that an étale sheaf F with properties (2)
and (3) is also an fppf sheaf.

To do this, let R = U ×F U . By (2) the presheaf R is representable by a scheme
and by (3) the projections R → U are étale. Thus j : R → U ×S U is an étale
equivalence relation. Moreover U → F identifies F as the quotient of U by R
for the étale topology: (a) if T → F is a morphism, then {T ×F U → T} is an
étale covering, hence U → F is a surjection of sheaves for the étale topology, (b)
if a, b : T → U map to the same section of F , then (a, b) : T → R hence a and b
have the same image in the quotient of U by R for the étale topology. Next, let
U/R denote the quotient sheaf in the fppf topology which is an algebraic space by
Spaces, Theorem 65.10.5. Thus we have morphisms (transformations of functors)

U → F → U/R.

By the aforementioned Spaces, Theorem 65.10.5 the composition is representable,
surjective, and étale. Hence for any scheme T and morphism T → U/R the fibre
product V = T ×U/R U is a scheme surjective and étale over T . In other words,
{V → U} is an étale covering. This proves that U → U/R is surjective as a map
of sheaves in the étale topology. It follows that F → U/R is surjective as a map of
sheaves in the étale topology. On the other hand, the map F → U/R is injective
(as a map of presheaves) since R = U×U/RU again by Spaces, Theorem 65.10.5. It
follows that F → U/R is an isomorphism of étale sheaves, see Sites, Lemma 7.11.2
which concludes the proof. □

There is also an analogue of Spaces, Lemma 65.11.1.

https://stacks.math.columbia.edu/tag/076M
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Lemma 80.12.2.0BH4 Denote the common underlying category of Schfppf and Schétale
by Schα (see Topologies, Remark 34.11.1). Let S be an object of Schα. Let

F : (Schα/S)opp −→ Sets

be a presheaf with the following properties:
(1) F is a sheaf for the étale topology,
(2) there exists an algebraic space U over S and a map U → F which is

representable by algebraic spaces, surjective, and étale.
Then F is an algebraic space in the sense of Algebraic Spaces, Definition 65.6.1.

Proof. Set R = U ×F U . This is an algebraic space as U → F is assumed repre-
sentable by algebraic spaces. The projections s, t : R → U are étale morphisms of
algebraic spaces as U → F is assumed étale. The map j = (t, s) : R→ U ×S U is a
monomorphism and an equivalence relation as R = U ×F U . By Theorem 80.10.1
the fppf quotient sheaf F ′ = U/R is an algebraic space. The morphism U → F ′

is surjective, flat, and locally of finite presentation by Lemma 80.11.6. The map
R→ U×F ′U is surjective as a map of fppf sheaves by Groupoids in Spaces, Lemma
78.19.5 and since j is a monomorphism it is an isomorphism. Hence the base change
of U → F ′ by U → F ′ is étale, and we conclude that U → F ′ is étale by Descent on
Spaces, Lemma 74.11.28. Thus U → F ′ is surjective as a map of étale sheaves. This
means that F ′ is equal to the quotient sheaf U/R in the étale topology (small check
omitted). Hence we obtain a canonical factorization U → F ′ → F and F ′ → F is
an injective map of sheaves. On the other hand, U → F is surjective as a map of
étale sheaves and hence so is F ′ → F . This means that F ′ = F and the proof is
complete. □

In fact, it suffices to have a smooth cover by a scheme and it suffices to assume the
diagonal is representable by algebraic spaces.

Lemma 80.12.3.07WF Denote the common underlying category of Schfppf and Schétale
by Schα (see Topologies, Remark 34.11.1). Let S be an object of Schα.

F : (Schα/S)opp −→ Sets

be a presheaf with the following properties:
(1) F is a sheaf for the étale topology,
(2) the diagonal ∆ : F → F × F is representable by algebraic spaces, and
(3) there exists U ∈ Ob(Schα/S) and U → F which is surjective and smooth.

Then F is an algebraic space in the sense of Algebraic Spaces, Definition 65.6.1.

Proof. The proof mirrors the proof of Lemma 80.12.1. Let R = U×F U . By (2) the
presheaf R is an algebraic space and by (3) the projections R→ U are smooth and
surjective. Denote (U,R, s, t, c) the groupoid associated to the equivalence relation
j : R → U ×S U (see Groupoids in Spaces, Lemma 78.11.3). By Theorem 80.10.1
we see that X = U/R (quotient in the fppf-topology) is an algebraic space. Using
that the smooth topology and the étale topology have the same sheaves (by More
on Morphisms, Lemma 37.38.7) we see the map U → F identifies F as the quotient
of U by R for the smooth topology (details omitted). Thus we have morphisms
(transformations of functors)

U → F → X.

https://stacks.math.columbia.edu/tag/0BH4
https://stacks.math.columbia.edu/tag/07WF


80.13. OTHER CHAPTERS 6046

By Lemma 80.11.6 we see that U → X is surjective, flat and locally of finite
presentation. By Groupoids in Spaces, Lemma 78.19.5 (and the fact that j is a
monomorphism) we have R = U ×X U . By Descent on Spaces, Lemma 74.11.26
we conclude that U → X is smooth and surjective (as the projections R → U are
smooth and surjective and {U → X} is an fppf covering). Hence for any scheme T
and morphism T → X the fibre product T×XU is an algebraic space surjective and
smooth over T . Choose a scheme V and a surjective étale morphism V → T ×X U .
Then {V → T} is a smooth covering such that V → T → X lifts to a morphism
V → U . This proves that U → X is surjective as a map of sheaves in the smooth
topology. It follows that F → X is surjective as a map of sheaves in the smooth
topology. On the other hand, the map F → X is injective (as a map of presheaves)
since R = U ×X U . It follows that F → X is an isomorphism of smooth (= étale)
sheaves, see Sites, Lemma 7.11.2 which concludes the proof. □

Finally, here is the analogue of Spaces, Lemma 65.11.1 with a smooth morphism
covering the space.

Lemma 80.12.4.0GE0 Denote the common underlying category of Schfppf and Schétale
by Schα (see Topologies, Remark 34.11.1). Let S be an object of Schα. Let

F : (Schα/S)opp −→ Sets
be a presheaf with the following properties:

(1) F is a sheaf for the étale topology,
(2) there exists an algebraic space U over S and a map U → F which is

representable by algebraic spaces, surjective, and smooth.
Then F is an algebraic space in the sense of Algebraic Spaces, Definition 65.6.1.

Proof. The proof is identical to the proof of Lemma 80.12.2. Set R = U ×F U .
This is an algebraic space as U → F is assumed representable by algebraic spaces.
The projections s, t : R → U are smooth morphisms of algebraic spaces as U → F
is assumed smooth. The map j = (t, s) : R → U ×S U is a monomorphism and
an equivalence relation as R = U ×F U . By Theorem 80.10.1 the fppf quotient
sheaf F ′ = U/R is an algebraic space. The morphism U → F ′ is surjective, flat,
and locally of finite presentation by Lemma 80.11.6. The map R → U ×F ′ U is
surjective as a map of fppf sheaves by Groupoids in Spaces, Lemma 78.19.5 and
since j is a monomorphism it is an isomorphism. Hence the base change of U → F ′

by U → F ′ is smooth, and we conclude that U → F ′ is smooth by Descent on
Spaces, Lemma 74.11.26. Thus U → F ′ is surjective as a map of étale sheaves
(as the smooth topology is equal to the étale topology by More on Morphisms,
Lemma 37.38.7). This means that F ′ is equal to the quotient sheaf U/R in the
étale topology (small check omitted). Hence we obtain a canonical factorization
U → F ′ → F and F ′ → F is an injective map of sheaves. On the other hand,
U → F is surjective as a map of étale sheaves (as the smooth topology is the same
as the étale topology) and hence so is F ′ → F . This means that F ′ = F and the
proof is complete. □
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CHAPTER 81

Pushouts of Algebraic Spaces

0AHT 81.1. Introduction

0AHU The goal of this chapter is to discuss pushouts in the category of algebraic spaces.
This can be done with varying assumptions. A fairly general pushout construction is
given in [TT13]: one of the morphisms is affine and the other is a closed immersion.
We discuss a particular case of this in Section 81.6 where we assume one of the
morphisms is affine and the other is a thickening, a situation that often comes up
in deformation theory.
In Sections 81.10 and 81.11 we discuss diagrams

f−1(X \ Z) //

��

Y

f

��
X \ Z // X

where f is a quasi-compact and quasi-separated morphism of algebraic spaces,
Z → X is a closed immersion of finite presentation, the map f−1(Z) → Z is an
isomorphism, and f is flat along f−1(Z). In this situation we glue quasi-coherent
modules on X \ Z and Y (in Section 81.10) to quasi-coherent modules on X and
we glue algebraic spaces over X \ Z and Y (in Section 81.11) to algebraic spaces
over X.
In Section 81.13 we discuss how proper birational morphisms of Noetherian alge-
braic spaces give rise to coequalizer diagrams in algebraic spaces in some sense.
In Section 81.14 we use the construction of elementary distinguished squares in Sec-
tion 81.9 to prove Nagata’s theorem on compactifications in the setting of algebraic
spaces.

81.2. Conventions

0GFM The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.
Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

81.3. Colimits of algebraic spaces

0GFN We briefly discuss colimits of algebraic spaces. Let S be a scheme. Let I →
(Sch/S)fppf , i 7→ Xi be a diagram (see Categories, Section 4.14). For each i we

6049
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may consider the small étale site Xi,étale whose objects are schemes étale over Xi,
see Properties of Spaces, Section 66.18. For each morphism i→ j of I we have the
morphism Xi → Xj and hence a pullback functor Xj,étale → Xi,étale. Hence we
obtain a pseudo functor from Iopp into the 2-category of categories. Denote

limiXi,étale

the 2-limit (see insert future reference here). What does this mean concretely? An
object of this limit is a system of étale morphisms Ui → Xi over I such that for
each i→ j in I the diagram

Ui //

��

Uj

��
Xi

// Xj

is cartesian. Morphisms between objects are defined in the obvious manner. Sup-
pose that fi : Xi → T is a family of morphisms such that for each i→ j the com-
position Xi → Xj → T is equal to fi. Then we get a functor Tétale → limXi,étale.
With this notation in hand we can formulate our lemma.

Lemma 81.3.1.07SX Let S be a scheme. Let I → (Sch/S)fppf , i 7→ Xi be a diagram of
schemes over S as above. Assume that

(1) X = colimXi exists in the category of schemes,
(2)

∐
Xi → X is surjective,

(3) if U → X is étale and Ui = Xi ×X U , then U = colimUi in the category
of schemes, and

(4) every object (Ui → Xi) of limXi,étale with Ui → Xi separated is in the
essential image of the functor Xétale → limXi,étale.

Then X = colimXi in the category of algebraic spaces over S also.

Proof. Let Z be an algebraic space over S. Suppose that fi : Xi → Z is a family
of morphisms such that for each i → j the composition Xi → Xj → Z is equal
to fi. We have to construct a morphism of algebraic spaces f : X → Z such that
we can recover fi as the composition Xi → X → Z. Let W → Z be a surjective
étale morphism of a scheme to Z. We may assume that W is a disjoint union of
affines and in particular we may assume that W → Z is separated. For each i
set Ui = W ×Z,fi Xi and denote hi : Ui → W the projection. Then Ui → Xi

forms an object of limXi,étale with Ui → Xi separated. By assumption (4) we can
find an étale morphism U → X and (functorial) isomorphisms Ui = Xi ×X U . By
assumption (3) there exists a morphism h : U → W such that the compositions
Ui → U →W are hi. Let g : U → Z be the composition of h with the map W → Z.
To finish the proof we have to show that g : U → Z descends to a morphism X → Z.
To do this, consider the morphism (h, h) : U ×X U → W ×S W . Composing with
Ui ×Xi Ui → U ×X U we obtain (hi, hi) which factors through W ×Z W . Since
U ×X U is the colimit of the schemes Ui ×Xi Ui by (3) we see that (h, h) factors
through W ×Z W . Hence the two compositions U ×X U → U → W → Z are
equal. Because each Ui → Xi is surjective and assumption (2) we see that U → X
is surjective. As Z is a sheaf for the étale topology, we conclude that g : U → Z
descends to f : X → Z as desired. □

We can check that a cocone is a colimit (fpqc) locally on the cocone.

https://stacks.math.columbia.edu/tag/07SX
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Lemma 81.3.2.0GFQ Let S be a scheme. Let B be an algebraic space over S. Let I →
(Sch/S)fppf , i 7→ Xi be a diagram of algebraic spaces over B. Let (X,Xi → X)
be a cocone for the diagram in the category of algebraic spaces over B (Categories,
Remark 4.14.5). If there exists a fpqc covering {Ua → X}a∈A such that

(1) for all a ∈ A we have Ua = colimXi ×X Ua in the category of algebraic
spaces over B, and

(2) for all a, b ∈ A we have Ua×X Ub = colimXi×X Ua×X Ub in the category
of algebraic spaces over B,

then X = colimXi in the category of algebraic spaces over B.

Proof. Namely, for an algebraic space Y over B a morphism X → Y over B is
the same thing as a collection of morphism Ua → Y which agree on the overlaps
Ua ×X Ub for all a, b ∈ A, see Descent on Spaces, Lemma 74.7.2. □

We are going to find a common partial generalization of Lemmas 81.3.1 and 81.3.2
which can in particular be used to reduce a colimit construction to a subcategory
of the category of all algebraic spaces.
Let S be a scheme and let B be an algebraic space over S. Let I be an index
category and let i 7→ Xi be a diagram in the category of algebraic spaces over
B, see Categories, Section 4.14. For each i we may consider the small étale site
Xi,spaces,étale whose objects are algebraic spaces étale over Xi, see Properties of
Spaces, Section 66.18. For each morphism i → j of I we have the morphism
Xi → Xj and hence a pullback functor Xj,spaces,étale → Xi,spaces,étale. Hence we
obtain a pseudo functor from Iopp into the 2-category of categories. Denote

limiXi,spaces,étale

the 2-limit (see insert future reference here). What does this mean concretely?
An object of this limit is a diagram i 7→ (Ui → Xi) in the category of arrows of
algebraic spaces over B such that for each i→ j in I the diagram

Ui //

��

Uj

��
Xi

// Xj

is cartesian. Morphisms between objects are defined in the obvious manner. Sup-
pose that fi : Xi → Z is a family of morphisms of algebraic spaces over B such that
for each i→ j the composition Xi → Xj → Z is equal to fi. Then we get a functor
Zspaces,étale → limXi,spaces,étale. With this notation in hand we can formulate our
next lemma.

Lemma 81.3.3.0GHL Let S be a scheme. Let B be an algebraic space over S. Let I →
(Sch/S)fppf , i 7→ Xi be a diagram of algebraic spaces over B. Let (X,Xi → X)
be a cocone for the diagram in the category of algebraic spaces over B (Categories,
Remark 4.14.5). Assume that

(1) the base change functor Xspaces,étale → limXi,spaces,étale, sending U to
Ui = Xi ×X U is an equivalence,

(2) given
(a) B′ affine and étale over B,
(b) Z an affine scheme over B′,

https://stacks.math.columbia.edu/tag/0GFQ
https://stacks.math.columbia.edu/tag/0GHL
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(c) U → X ×B B′ an étale morphism of algebraic spaces with U affine,
(d) fi : Ui → Z a cocone over B′ of the diagram i 7→ Ui = U ×X Xi,
there exists a unique morphism f : U → Z over B′ such that fi equals
the composition Ui → U → Z.

Then X = colimXi in the category of all algebraic spaces over B.

Proof. In this paragraph we reduce to the case where B is an affine scheme. Let
B′ → B be an étale morphism of algebraic spaces. Observe that conditions (1)
and (2) are preserved if we replace B, Xi, X by B′, Xi ×B B′, X ×B B′. Let
{Ba → B}a∈A be an étale covering with Ba affine, see Properties of Spaces, Lemma
66.6.1. For a ∈ A denoteXa, Xa,i the base changes of X and the diagram to Ba. For
a, b ∈ A denote Xa,b and Xa,b,i the base changes of X and the diagram to Ba×BBb.
By Lemma 81.3.2 it suffices to prove that Xa = colimXa,i and Xa,b = colimXa,b,i.
This reduces us to the case where B = Ba (an affine scheme) or B = Ba ×B Bb (a
separated scheme). Repeating the argument once more, we conclude that we may
assume B is an affine scheme (this uses that the intersection of affine opens in a
separated scheme is affine).
Assume B is an affine scheme. Let Z be an algebraic space over B. We have to
show

MorB(X,Z) −→ lim MorB(Xi, Z)
is a bijection.
Proof of injectivity. Let f, g : X → Z be morphisms such that the compositions
fi, gi : Xi → Z are the same for all i. Choose an affine scheme Z ′ and an étale
morphism Z ′ → Z. By Properties of Spaces, Lemma 66.6.1 we know we can cover
Z by such affines. Set U = X ×f,Z Z ′ and U ′ = X ×g,Z Z ′ and denote p : U → X
and p′ : U ′ → X the projections. Since fi = gi for all i, we see that

Ui = Xi ×fi,Z Z ′ = Xi ×gi,Z Z ′ = U ′
i

compatible with transition morphisms. By (1) there is a unique isomorphism ϵ :
U → U ′ as algebraic spaces over X, i.e., with p = p′◦ϵ which is compatible with the
displayed identifications. Choose an étale covering {ha : Ua → U} with Ua affine.
By (2) we see that f ◦ p ◦ ha = g ◦ p′ ◦ ϵ ◦ ha = g ◦ p ◦ ha. Since {ha : Ua → U}
is an étale covering we conclude f ◦ p = g ◦ p. Since the collection of morphisms
p : U → X we obtain in this manner is an étale covering, we conclude that f = g.
Proof of surjectivity. Let fi : Xi → Z be an element of the right hand side
of the displayed arrow in the first paragraph of the proof. It suffices to find an
étale covering {Uc → X}c∈C such that the families fc,i ∈ limi MorB(Xi ×X Uc, Z)
come from morphisms fc : Uc → Z. Namely, by the uniqueness proved above the
morphisms fc will agree on Uc ×X Ub and hence will descend to give the desired
morphism f : X → Z. To find our covering, we first choose an étale covering
{ga : Za → Z}a∈A where each Za is affine. Then we let Ua,i = Xi ×fi,Z Za. By (1)
we find Ua,i = Xi×XUa for some algebraic spaces Ua étale over X. Then we choose
étale coverings {Ua,b → Ua}b∈Ba with Ua,b affine and we consider the morphisms

Ua,b,i = Xi ×X Ua,b → Xi ×X Ua = Xi ×fi,Z Za → Za

By (2) we obtain morphisms fa,b : Ua,b → Za compatible with these morphisms.
Setting C =

∐
a∈ABa and for c ∈ C corresponding to b ∈ Ba setting Uc = Ua,b and

fc = ga ◦ fa,b : Uc → Z we conclude. □
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Here is an application of these ideas to reduce the general case to the case of
separated algebraic spaces.

Lemma 81.3.4.0GFP Let S be a scheme. Let B be an algebraic space over S. Let
I → (Sch/S)fppf , i 7→ Xi be a diagram of algebraic spaces over B. Assume that

(1) each Xi is separated over B,
(2) X = colimXi exists in the category of algebraic spaces separated over B,
(3)

∐
Xi → X is surjective,

(4) if U → X is an étale separated morphism of algebraic spaces and Ui =
Xi×X U , then U = colimUi in the category of algebraic spaces separated
over B, and

(5) every object (Ui → Xi) of limXi,spaces,étale with Ui → Xi separated is of
the form Ui = Xi ×X U for some étale separated morphism of algebraic
spaces U → X.

Then X = colimXi in the category of all algebraic spaces over B.

Proof. We encourage the reader to look instead at Lemma 81.3.3 and its proof.

Let Z be an algebraic space over B. Suppose that fi : Xi → Z is a family of
morphisms such that for each i→ j the composition Xi → Xj → Z is equal to fi.
We have to construct a morphism of algebraic spaces f : X → Z over B such that we
can recover fi as the composition Xi → X → Z. Let W → Z be a surjective étale
morphism of a scheme to Z. We may assume that W is a disjoint union of affines
and in particular we may assume that W → Z is separated and that W is separated
over B. For each i set Ui = W ×Z,fi Xi and denote hi : Ui → W the projection.
Then Ui → Xi forms an object of limXi,spaces,étale with Ui → Xi separated. By
assumption (5) we can find a separated étale morphism U → X of algebraic spaces
and (functorial) isomorphisms Ui = Xi ×X U . By assumption (4) there exists a
morphism h : U →W over B such that the compositions Ui → U →W are hi. Let
g : U → Z be the composition of h with the map W → Z. To finish the proof we
have to show that g : U → Z descends to a morphism X → Z. To do this, consider
the morphism (h, h) : U ×X U →W ×SW . Composing with Ui ×Xi Ui → U ×X U
we obtain (hi, hi) which factors through W ×Z W . Since U ×X U is the colimit of
the algebraic spaces Ui ×Xi Ui in the category of algebraic spaces separated over
B by (4) we see that (h, h) factors through W ×Z W . Hence the two compositions
U ×X U → U → W → Z are equal. Because each Ui → Xi is surjective and
assumption (2) we see that U → X is surjective. As Z is a sheaf for the étale
topology, we conclude that g : U → Z descends to f : X → Z as desired. □

81.4. Descending étale sheaves

0GFR This section is the analogue for algebraic spaces of Étale Cohomology, Section
59.104.

In order to conveniently express our results we need some notation. Let S be a
scheme. Let U = {fi : Xi → X} be a family of morphisms of algebraic spaces over
S with fixed target. A descent datum for étale sheaves with respect to U is a family
((Fi)i∈I , (φij)i,j∈I) where

(1) Fi is in Sh(Xi,étale), and
(2) φij : pr−1

0,smallFi −→ pr−1
1,smallFj is an isomorphism in Sh((Xi×XXj)étale)

https://stacks.math.columbia.edu/tag/0GFP
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such that the cocycle condition holds: the diagrams

pr−1
0,smallFi

pr−1
02,smallφik &&

pr−1
01,smallφij // pr−1

1,smallFj

pr−1
12,smallφjkxx

pr−1
2,smallFk

commute in Sh((Xi ×X Xj ×X Xk)étale). There is an obvious notion of mor-
phisms of descent data and we obtain a category of descent data. A descent datum
((Fi)i∈I , (φij)i,j∈I) is called effective if there exist a F in Sh(Xétale) and isomor-
phisms φi : f−1

i,smallF → Fi in Sh(Xi,étale) compatible with the φij , i.e., such that

φij = pr−1
1,small(φj) ◦ pr−1

0,small(φ
−1
i )

Another way to say this is the following. Given an object F of Sh(Xétale) we obtain
the canonical descent datum (f−1

i,smallFi, cij) where cij is the canonical isomorphism

cij : pr−1
0,smallf

−1
i,smallF −→ pr−1

1,smallf
−1
j,smallF

The descent datum ((Fi)i∈I , (φij)i,j∈I) is effective if and only if it is isomorphic to
the canonical descent datum associated to some F in Sh(Xétale).

If the family consists of a single morphism {X → Y }, then we think of a descent
datum as a pair (F , φ) where F is an object of Sh(Xétale) and φ is an isomorphism

pr−1
0,smallF −→ pr−1

1,smallF

in Sh((X ×Y X)étale) such that the cocycle condition holds:

pr−1
0,smallF

pr−1
02,smallφ &&

pr−1
01,smallφ // pr−1

1,smallF

pr−1
12,smallφxx

pr−1
2,smallF

commutes in Sh((X ×Y X ×Y X)étale). There is a notion of morphisms of descent
data and effectivity exactly as before.

Lemma 81.4.1.0GFS Let S be a scheme. Let {fi : Xi → X} be an étale covering of
algebraic spaces. The functor

Sh(Xétale) −→ descent data for étale sheaves wrt {fi : Xi → X}

is an equivalence of categories.

Proof. In Properties of Spaces, Section 66.18 we have defined a site Xspaces,étale

whose objects are algebraic spaces étale over X with étale coverings. Moreover, we
have a identifications Sh(Xétale) = Sh(Xspaces,étale) compatible with morphisms
of algebraic spaces, i.e., compatible with pushforward and pullback. Hence the
statement of the lemma follows from the much more general discussion in Sites,
Section 7.26. □

https://stacks.math.columbia.edu/tag/0GFS
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Lemma 81.4.2.0GFT Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let {Yi → Y }i∈I be an étale covering of algebraic spaces. If for each
i ∈ I the functor

Sh(Yi,étale) −→ descent data for étale sheaves wrt {X ×Y Yi → Yi}

is an equivalence of categories and for each i, j ∈ I the functor

Sh((Yi×Y Yj)étale) −→ descent data for étale sheaves wrt {X×Y Yi×Y Yj → Yi×Y Yj}

is an equivalence of categories, then

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }

is an equivalence of categories.

Proof. Formal consequence of Lemma 81.4.1 and the definitions. □

Lemma 81.4.3.0GFU Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is representable (by schemes) and f has one of the following
properties: surjective and integral, surjective and proper, or surjective and flat and
locally of finite presentation Then

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }

is an equivalence of categories.

Proof. Each of the properties of morphisms of algebraic spaces mentioned in the
statement of the lemma is preserved by arbitrary base change, see the lists in
Spaces, Section 65.4. Thus we can apply Lemma 81.4.2 to see that we can work
étale locally on Y . In this way we reduce to the case where Y is a scheme; some
details omitted. In this case X is also a scheme and the result follows from Étale
Cohomology, Lemma 59.104.2, 59.104.3, or 59.104.5. □

Lemma 81.4.4.0GFV Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let π : X ′ → X be a morphism of algebraic spaces. Assume

(1) f ◦ π is representable (by schemes),
(2) f ◦π has one of the following properties: surjective and integral, surjective

and proper, or surjective and flat and locally of finite presentation.
Then

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }

is an equivalence of categories.

Proof. Formal consequence of Lemma 81.4.3 and Stacks, Lemma 8.3.7. □

Lemma 81.4.5.0GFW Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which has one of the following properties: surjective and integral,
surjective and proper, or surjective and flat and locally of finite presentation. Then
the functor

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }

is an equivalence of categories.

https://stacks.math.columbia.edu/tag/0GFT
https://stacks.math.columbia.edu/tag/0GFU
https://stacks.math.columbia.edu/tag/0GFV
https://stacks.math.columbia.edu/tag/0GFW
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Proof. Observe that the base change of a proper surjective morphism is proper and
surjective, see Morphisms of Spaces, Lemmas 67.40.3 and 67.5.5. Hence by Lemma
81.4.2 we may work étale locally on Y . Hence we reduce to Y being an affine
scheme; some details omitted.
Assume Y is affine. By Lemma 81.4.4 it suffices to find a morphism X ′ → X where
X ′ is a scheme such that X ′ → Y is surjective and integral, surjective and proper,
or surjective and flat and locally of finite presentation.
In case X → Y is integral and surjective, we can take X = X ′ as an integral
morphism is representable.
If f is proper and surjective, then the algebraic space X is quasi-compact and sepa-
rated, see Morphisms of Spaces, Section 67.8 and Lemma 67.4.9. Choose a scheme
X ′ and a surjective finite morphism X ′ → X, see Limits of Spaces, Proposition
70.16.1. Then X ′ → Y is surjective and proper.
Finally, if X → Y is surjective and flat and locally of finite presentation then we can
take an affine étale covering {Ui → X} and set X ′ equal to the disjoint

∐
Ui. □

Lemma 81.4.6.0GFX Let S be a scheme. Let {fi : Xi → X} be an fppf covering of
algebraic spaces over S. The functor

Sh(Xétale) −→ descent data for étale sheaves wrt {fi : Xi → X}
is an equivalence of categories.

Proof. We have Lemma 81.4.5 for the morphism f :
∐
Xi → X. Then a formal

argument shows that descent data for f are the same thing as descent data for the
covering, compare with Descent, Lemma 35.34.5. Details omitted. □

Lemma 81.4.7.0GFY Let S be a scheme. Let f : Y ′ → Y be a proper morphism of
algebraic spaces over S. Let i : Z → Y be a closed immersion. Set E = Z ×Y Y ′.
Picture

E

g

��

j
// Y ′

f

��
Z

i // Y

If f is an isomorphism over Y \ Z, then the functor
Sh(Yétale) −→ Sh(Y ′

étale)×Sh(Eétale) Sh(Zétale)
is an equivalence of categories.

Proof. Observe that X = Y ′∐Z → Y is a proper surjective morphism. Thus it
suffice to construct an equivalence of categories
Sh(Y ′

étale)×Sh(Eétale) Sh(Zétale) −→ descent data for étale sheaves wrt {X → Y }
compatible with pullback functors from Y because then we can use Lemma 81.4.5
to conclude. Thus let (G′,G, α) be an object of Sh(Y ′

étale)×Sh(Eétale) Sh(Zétale) with
notation as in Categories, Example 4.31.3. Then we can consider the sheaf F on
X defined by taking G′ on the summand Y ′ and G on the summand Z. We have
X ×Y X = Y ′ ×Y Y ′ ⨿ Y ′ ×Y Z ⨿ Z ×Y Y ′ ⨿ Z ×Y Z = Y ′ ×Y Y ′ ⨿ E ⨿ E ⨿ Z

The isomorphisms of the two pullbacks of F to this algebraic space are obvious over
the summands E, E, Z. The interesting part of the proof is to find an isomorphism
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https://stacks.math.columbia.edu/tag/0GFY


81.5. DESCENDING ÉTALE MORPHISMS OF ALGEBRAIC SPACES 6057

pr−1
0,smallG′ → pr−1

1,smallG′ over Y ′ ×Y Y ′ satisfying the cocycle condition. However,
our assumption that Y ′ → Y is an isomorphism over Y \ Z implies that

h : Y
∐

E ×Z E −→ Y ′ ×Y Y ′

is a surjective proper morphism. (It is in fact a finite morphism as it is the disjoint
union of two closed immersions.) Hence it suffices to construct an isomorphism
of the pullbacks of pr−1

0,smallG′and pr−1
1,smallG′ by hsmall satisfying a certain cocycle

condition. For the diagonal, it is clear how to do this. And for the pullback to
E ×Z E we use that both sheaves pull back to the pullback of G by the morphism
E ×Z E → Z. We omit the details. □

81.5. Descending étale morphisms of algebraic spaces

0GFZ In this section we combine the glueing results for étale sheaves given in Section
81.4 with the flexibility of algebraic spaces to get some descent statements for étale
morphisms of algebraic spaces.
Lemma 81.5.1.0GG0 Let S be a scheme. Let f : X → Y be a proper surjective morphism
of algebraic spaces over S. Any descent datum (U/X,φ) relative to f (Descent on
Spaces, Definition 74.22.1) with U étale over X is effective (Descent on Spaces,
Definition 74.22.10). More precisely, there exists an étale morphism V → Y of
algebraic spaces whose corresponding canonical descent datum is isomorphic to
(U/X,φ).
Proof. Recall that U gives rise to a representable sheaf F = hU in Sh(Xspaces,étale) =
Sh(Xétale), see Properties of Spaces, Section 66.18. The descent datum on U rel-
ative to f exactly gives a descent datum (F , φ) for étale sheaves with respect to
{X → Y }. By Lemma 81.4.5 this descent datum is effective. Let G be the corre-
sponding sheaf on Yétale. By Properties of Spaces, Lemma 66.27.3 we obtain an étale
morphism V → Y of algebraic spaces corresponding to G; we omit the verification
of the set theoretic condition1. The given isomorphism F → f−1

smallG corresponds
to an isomorphism U → V ×Y X compatible with the descent datum. □

Lemma 81.5.2.0GG1 Let S be a scheme. Let f : Y ′ → Y be a proper morphism of
algebraic spaces over S. Let i : Z → Y be a closed immersion. Set E = Z ×Y Y ′.
Picture

E

g

��

j
// Y ′

f

��
Z

i // Y

If f is an isomorphism over Y \ Z, then the functor
Yspaces,étale −→ Y ′

spaces,étale ×Espaces,étale Zspaces,étale
is an equivalence of categories.
Proof. Let (V ′ → Y ′,W → Z,α) be an object of the right hand side. Recall that V ′,
resp. W gives rise to a representable sheaf G′ = hV ′ in Sh(Y ′

spaces,étale) = Sh(Y ′
étale),

resp. G = hW in Sh(Zspaces,étale) = Sh(Zétale), see Properties of Spaces, Section
66.18. The isomorphism α : V ′ ×Y ′ E → W ×Z E determines an isomorphism
j−1
smallG′ → g−1

smallG of sheaves on E. By Lemma 81.4.7 we obtain a unique sheaf F

1It follows from the fact that F satisfies the corresponding condition.
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on Y pulling pack to G′ and G compatibly with the isomorphism. By Properties
of Spaces, Lemma 66.27.3 we obtain an étale morphism V → Y of algebraic spaces
corresponding to F ; we omit the verification of the set theoretic condition2. The
given isomorphism G′ → f−1

smallF and G → i−1
smallF corresponds to isomorphisms

V ′ → V ×Y Y ′ and W → V ×Y Z compatible with α as desired. □

81.6. Pushouts along thickenings and affine morphisms

07SW This section is analogue of More on Morphisms, Section 37.14.

Lemma 81.6.1.07SY Let S be a scheme. Let X → X ′ be a thickening of schemes over
S and let X → Y be an affine morphism of schemes over S. Let Y ′ = Y ⨿X X ′ be
the pushout in the category of schemes (see More on Morphisms, Lemma 37.14.3).
Then Y ′ is also a pushout in the category of algebraic spaces over S.

Proof. This is an immediate consequence of Lemma 81.3.1 and More on Morphisms,
Lemmas 37.14.3, 37.14.4, and 37.14.6. □

Lemma 81.6.2.07VX Let S be a scheme. Let X → X ′ be a thickening of algebraic spaces
over S and let X → Y be an affine morphism of algebraic spaces over S. Then
there exists a pushout

X //

f

��

X ′

f ′

��
Y // Y ⨿X X ′

in the category of algebraic spaces over S. Moreover Y ′ = Y ⨿X X ′ is a thickening
of Y and

OY ′ = OY ×f∗OX
f ′

∗OX′

as sheaves on Yétale = (Y ′)étale.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Set U =
V ×Y X. This is a scheme affine over V with a surjective étale morphism U → X.
By More on Morphisms of Spaces, Lemma 76.9.6 there exists a U ′ → X ′ surjective
étale with U = U ′ ×X′ X. In particular the morphism of schemes U → U ′ is a
thickening too. Apply More on Morphisms, Lemma 37.14.3 to obtain a pushout
V ′ = V ⨿U U ′ in the category of schemes.
We repeat this procedure to construct a pushout

U ×X U

��

// U ′ ×X′ U ′

��
V ×Y V // R′

in the category of schemes. Consider the morphisms
U ×X U → U → V ′, U ′ ×X′ U ′ → U ′ → V ′, V ×Y V → V → V ′

where we use the first projection in each case. Clearly these glue to give a morphism
t′ : R′ → V ′ which is étale by More on Morphisms, Lemma 37.14.6. Similarly,
we obtain s′ : R′ → V ′ étale. The morphism j′ = (t′, s′) : R′ → V ′ ×S V ′

is unramified (as t′ is étale) and a monomorphism when restricted to the closed

2It follows from the fact that G and G′ satisfies the corresponding condition.
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subscheme V ×Y V ⊂ R′. As V ×Y V ⊂ R′ is a thickening it follows that j′

is a monomorphism too. Finally, j′ is an equivalence relation as we can use the
functoriality of pushouts of schemes to construct a morphism c′ : R′×s′,V ′,t′R

′ → R′

(details omitted). At this point we set Y ′ = U ′/R′, see Spaces, Theorem 65.10.5.
We have morphisms X ′ = U ′/U ′ ×X′ U ′ → V ′/R′ = Y ′ and Y = V/V ×Y V →
V ′/R′ = Y ′. By construction these fit into the commutative diagram

X //

f

��

X ′

f ′

��
Y // Y ′

Since Y → Y ′ is a thickening we have Yétale = (Y ′)étale, see More on Morphisms of
Spaces, Lemma 76.9.6. The commutativity of the diagram gives a map of sheaves

OY ′ −→ OY ×f∗OX
f ′

∗OX′

on this set. By More on Morphisms, Lemma 37.14.3 this map is an isomorphism
when we restrict to the scheme V ′, hence it is an isomorphism.
To finish the proof we show that the diagram above is a pushout in the category of
algebraic spaces. To see this, let Z be an algebraic space and let a′ : X ′ → Z and
b : Y → Z be morphisms of algebraic spaces. By Lemma 81.6.1 we obtain a unique
morphism h : V ′ → Z fitting into the commutative diagrams

U ′

��

// V ′

h

��
X ′ a′

// Z

and
V //

��

V ′

h

��
Y

b // Z

The uniqueness shows that h◦t′ = h◦s′. Hence h factors uniquely as V ′ → Y ′ → Z
and we win. □

In the following lemma we use the fibre product of categories as defined in Cate-
gories, Example 4.31.3.

Lemma 81.6.3.07VY Let S be a base scheme. Let X → X ′ be a thickening of algebraic
spaces over S and let X → Y be an affine morphism of algebraic spaces over S. Let
Y ′ = Y ⨿X X ′ be the pushout (see Lemma 81.6.2). Base change gives a functor

F : (Spaces/Y ′) −→ (Spaces/Y )×(Spaces/Y ′) (Spaces/X ′)
given by V ′ 7−→ (V ′×Y ′Y, V ′×Y ′X ′, 1) which sends (Sch/Y ′) into (Sch/Y )×(Sch/Y ′)
(Sch/X ′). The functor F has a left adjoint

G : (Spaces/Y )×(Spaces/Y ′) (Spaces/X ′) −→ (Spaces/Y ′)
which sends the triple (V,U ′, φ) to the pushout V ⨿(V×YX) U

′ in the category of
algebraic spaces over S. The functor G sends (Sch/Y ) ×(Sch/Y ′) (Sch/X ′) into
(Sch/Y ′).

Proof. The proof is completely formal. Since the morphisms X → X ′ and X → Y
are representable it is clear that F sends (Sch/Y ′) into (Sch/Y )×(Sch/Y ′)(Sch/X ′).
Let us construct G. Let (V,U ′, φ) be an object of the fibre product category. Set
U = U ′×X′ X. Note that U → U ′ is a thickening. Since φ : V ×Y X → U ′×X′ X =
U is an isomorphism we have a morphism U → V over X → Y which identifies
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U with the fibre product X ×Y V . In particular U → V is affine, see Morphisms
of Spaces, Lemma 67.20.5. Hence we can apply Lemma 81.6.2 to get a pushout
V ′ = V ⨿U U ′. Denote V ′ → Y ′ the morphism we obtain in virtue of the fact that
V ′ is a pushout and because we are given morphisms V → Y and U ′ → X ′ agreeing
on U as morphisms into Y ′. Setting G(V,U ′, φ) = V ′ gives the functor G.

If (V,U ′, φ) is an object of (Sch/Y ) ×(Sch/Y ′) (Sch/X ′) then U = U ′ ×X′ X is a
scheme too and we can form the pushout V ′ = V ⨿U U ′ in the category of schemes
by More on Morphisms, Lemma 37.14.3. By Lemma 81.6.1 this is also a pushout in
the category of schemes, hence G sends (Sch/Y )×(Sch/Y ′) (Sch/X ′) into (Sch/Y ′).

Let us prove that G is a left adjoint to F . Let Z be an algebraic space over Y ′. We
have to show that

Mor(V ′, Z) = Mor((V,U ′, φ), F (Z))
where the morphism sets are taking in their respective categories. Let g′ : V ′ → Z
be a morphism. Denote g̃, resp. f̃ ′ the composition of g′ with the morphism V → V ′,
resp. U ′ → V ′. Base change g̃, resp. f̃ ′ by Y → Y ′, resp.X ′ → Y ′ to get a morphism
g : V → Z ×Y ′ Y , resp. f ′ : U ′ → Z ×Y ′ X ′. Then (g, f ′) is an element of the
right hand side of the equation above (details omitted). Conversely, suppose that
(g, f ′) : (V,U ′, φ) → F (Z) is an element of the right hand side. We may consider
the composition g̃ : V → Z, resp. f̃ ′ : U ′ → Z of g, resp. f by Z ×Y ′ X ′ → Z,
resp. Z ×Y ′ Y → Z. Then g̃ and f̃ ′ agree as morphism from U to Z. By the
universal property of pushout, we obtain a morphism g′ : V ′ → Z, i.e., an element
of the left hand side. We omit the verification that these constructions are mutually
inverse. □

Lemma 81.6.4.07VZ Let S be a scheme. Let

A //

��

C

��

// E

��
B // D // F

be a commutative diagram of algebraic spaces over S. Assume that A,B,C,D
and A,B,E, F form cartesian squares and that B → D is surjective étale. Then
C,D,E, F is a cartesian square.

Proof. This is formal. □

Lemma 81.6.5.07W0 In the situation of Lemma 81.6.3 the functor F ◦G is isomorphic
to the identity functor.

Proof. We will prove that F ◦ G is isomorphic to the identity by reducing this to
the corresponding statement of More on Morphisms, Lemma 37.14.4.

Choose a scheme Y1 and a surjective étale morphism Y1 → Y . Set X1 = Y1 ×Y X.
This is a scheme affine over Y1 with a surjective étale morphism X1 → X. By
More on Morphisms of Spaces, Lemma 76.9.6 there exists a X ′

1 → X ′ surjective
étale with X1 = X ′

1 ×X′ X. In particular the morphism of schemes X1 → X ′
1 is

a thickening too. Apply More on Morphisms, Lemma 37.14.3 to obtain a pushout
Y ′

1 = Y1 ⨿X1 X
′
1 in the category of schemes. In the proof of Lemma 81.6.2 we
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constructed Y ′ as a quotient of an étale equivalence relation on Y ′
1 such that we

get a commutative diagram

(81.6.5.1)07W1

X //

��

X ′

��

X1 //

��

>>

X ′
1

��

>>

Y // Y ′

Y1 //

>>

Y ′
1

>>

where all squares except the front and back squares are cartesian (the front and
back squares are pushouts) and the northeast arrows are surjective étale. Denote
F1, G1 the functors constructed in More on Morphisms, Lemma 37.14.4 for the
front square. Then the diagram of categories

(Sch/Y ′
1)

F1

//

��

(Sch/Y1)×(Sch/Y ′
1 ) (Sch/X ′

1)

��

G1oo

(Spaces/Y ′)
F
// (Spaces/Y )×(Spaces/Y ′) (Spaces/X ′)

Goo

is commutative by simple considerations regarding base change functors and the
agreement of pushouts in schemes with pushouts in spaces of Lemma 81.6.1.

Let (V,U ′, φ) be an object of (Spaces/Y ) ×(Spaces/Y ′) (Spaces/X ′). Denote U =
U ′ ×X′ X so that G(V,U ′, φ) = V ⨿U U ′. Choose a scheme V1 and a surjective
étale morphism V1 → Y1 ×Y V . Set U1 = V1 ×Y X. Then

U1 = V1 ×Y X −→ (Y1 ×Y V )×Y X = X1 ×Y V = X1 ×X X ×Y V = X1 ×X U

is surjective étale too. By More on Morphisms of Spaces, Lemma 76.9.6 there exists
a thickening U1 → U ′

1 and a surjective étale morphism U ′
1 → X ′

1 ×X′ U ′ whose
base change to X1 ×X U is the displayed morphism. At this point (V1, U

′
1, φ1)

is an object of (Sch/Y1) ×(Sch/Y ′
1 ) (Sch/X ′

1). In the proof of Lemma 81.6.2 we
constructed G(V,U ′, φ) = V ⨿U U ′ as a quotient of an étale equivalence relation on
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G1(V1, U
′
1, φ1) = V1 ⨿U1 U

′
1 such that we get a commutative diagram

(81.6.5.2)07W2

U //

��

U ′

��

U1 //

��

??

U ′
1

��

66

V // G(V,U ′, φ)

V1 //

??

G1(V1, U
′
1, φ1)

77

where all squares except the front and back squares are cartesian (the front and back
squares are pushouts) and the northeast arrows are surjective étale. In particular

G1(V1, U
′
1, φ1)→ G(V,U ′, φ)

is surjective étale.

Finally, we come to the proof of the lemma. We have to show that the adjunction
mapping (V,U ′, φ) → F (G(V,U ′, φ)) is an isomorphism. We know (V1, U

′
1, φ1) →

F1(G1(V1, U
′
1, φ1)) is an isomorphism by More on Morphisms, Lemma 37.14.4. Re-

call that F and F1 are given by base change. Using the properties of (81.6.5.2) and
Lemma 81.6.4 we see that V → G(V,U ′, φ)×Y ′ Y and U ′ → G(V,U ′, φ)×Y ′ X ′ are
isomorphisms, i.e., (V,U ′, φ)→ F (G(V,U ′, φ)) is an isomorphism. □

Lemma 81.6.6.08KV Let S be a base scheme. Let X → X ′ be a thickening of algebraic
spaces over S and let X → Y be an affine morphism of algebraic spaces over S. Let
Y ′ = Y ⨿X X ′ be the pushout (see Lemma 81.6.2). Let V ′ → Y ′ be a morphism of
algebraic spaces over S. Set V = Y ×Y ′ V ′, U ′ = X ′ ×Y ′ V ′, and U = X ×Y ′ V ′.
There is an equivalence of categories between

(1) quasi-coherent OV ′ -modules flat over Y ′, and
(2) the category of triples (G,F ′, φ) where

(a) G is a quasi-coherent OV -module flat over Y ,
(b) F ′ is a quasi-coherent OU ′ -module flat over X, and
(c) φ : (U → V )∗G → (U → U ′)∗F ′ is an isomorphism of OU -modules.

The equivalence maps G′ to ((V → V ′)∗G′, (U ′ → V ′)∗G′, can). Suppose G′ corre-
sponds to the triple (G,F ′, φ). Then

(a) G′ is a finite type OV ′ -module if and only if G and F ′ are finite type OY
and OU ′ -modules.

(b) if V ′ → Y ′ is locally of finite presentation, then G′ is an OV ′ -module of
finite presentation if and only if G and F ′ are OY and OU ′ -modules of
finite presentation.

Proof. A quasi-inverse functor assigns to the triple (G,F ′, φ) the fibre product

(V → V ′)∗G ×(U→V ′)∗F (U ′ → V ′)∗F ′

where F = (U → U ′)∗F ′. This works, because on affines étale over V ′ and Y ′ we
recover the equivalence of More on Algebra, Lemma 15.7.5. Details omitted.
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Parts (a) and (b) reduce by étale localization (Properties of Spaces, Section 66.30)
to the case where V ′ and Y ′ are affine in which case the result follows from More
on Algebra, Lemmas 15.7.4 and 15.7.6. □

Lemma 81.6.7.07W3 In the situation of Lemma 81.6.5. If V ′ = G(V,U ′, φ) for some
triple (V,U ′, φ), then

(1) V ′ → Y ′ is locally of finite type if and only if V → Y and U ′ → X ′ are
locally of finite type,

(2) V ′ → Y ′ is flat if and only if V → Y and U ′ → X ′ are flat,
(3) V ′ → Y ′ is flat and locally of finite presentation if and only if V → Y and

U ′ → X ′ are flat and locally of finite presentation,
(4) V ′ → Y ′ is smooth if and only if V → Y and U ′ → X ′ are smooth,
(5) V ′ → Y ′ is étale if and only if V → Y and U ′ → X ′ are étale, and
(6) add more here as needed.

If W ′ is flat over Y ′, then the adjunction mapping G(F (W ′)) → W ′ is an isomor-
phism. Hence F and G define mutually quasi-inverse functors between the category
of spaces flat over Y ′ and the category of triples (V,U ′, φ) with V → Y and U ′ → X ′

flat.

Proof. Choose a diagram (81.6.5.1) as in the proof of Lemma 81.6.5.
Proof of (1) – (5). Let (V,U ′, φ) be an object of (Spaces/Y )×(Spaces/Y ′)(Spaces/X ′).
Construct a diagram (81.6.5.2) as in the proof of Lemma 81.6.5. Then the base
change of G(V,U ′, φ) → Y ′ to Y ′

1 is G1(V1, U
′
1, φ1) → Y ′

1 . Hence (1) – (5) follow
immediately from the corresponding statements of More on Morphisms, Lemma
37.14.6 for schemes.
Suppose that W ′ → Y ′ is flat. Choose a scheme W ′

1 and a surjective étale morphism
W ′

1 → Y ′
1 ×Y ′ W ′. Observe that W ′

1 → W ′ is surjective étale as a composition of
surjective étale morphisms. We know that G1(F1(W ′

1)) → W ′
1 is an isomorphism

by More on Morphisms, Lemma 37.14.6 applied to W ′
1 over Y ′

1 and the front of
the diagram (with functors G1 and F1 as in the proof of Lemma 81.6.5). Then
the construction of G(F (W ′)) (as a pushout, i.e., as constructed in Lemma 81.6.2)
shows that G1(F1(W ′

1)) → G(F (W )) is surjective étale. Whereupon we conclude
that G(F (W ))→W is étale, see for example Properties of Spaces, Lemma 66.16.3.
But G(F (W ))→W is an isomorphism on underlying reduced algebraic spaces (by
construction), hence it is an isomorphism. □

81.7. Pushouts along closed immersions and integral morphisms

0GG2 This section is analogue of More on Morphisms, Section 37.67.

Lemma 81.7.1.0EDP In More on Morphisms, Situation 37.67.1 let Y ⨿ZX be the pushout
in the category of schemes (More on Morphisms, Proposition 37.67.3). Then Y ⨿ZX
is also a pushout in the category of algebraic spaces over S.

Proof. This is a consequence of Lemma 81.3.1, the proposition mentioned in the
lemma and More on Morphisms, Lemmas 37.67.6 and 37.67.7. Conditions (1) and
(2) of Lemma 81.3.1 follow immediately. To see (3) and (4) note that an étale
morphism is locally quasi-finite and use that the equivalence of categories of More
on Morphisms, Lemma 37.67.7 is constructed using the pushout construction of
More on Morphisms, Lemmas 37.67.6. Minor details omitted. □
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81.8. Pushouts and derived categories

0DL6 In this section we discuss the behaviour of the derived category of modules under
pushouts.

Lemma 81.8.1.0DL7 Let S be a scheme. Consider a pushout

X
i
//

f

��

X ′

f ′

��
Y

j // Y ′

in the category of algebraic spaces over S as in Lemma 81.6.2. Assume i is a
thickening. Then the essential image of the functor3

D(OY ′) −→ D(OY )×D(OX) D(OX′)
contains every triple (M,K ′, α) where M ∈ D(OY ) and K ′ ∈ D(OX′) are pseudo-
coherent.

Proof. Let (M,K ′, α) be an object of the target of the functor of the lemma. Here
α : Lf∗M → Li∗K ′ is an isomorphism which is adjoint to a map β : M →
Rf∗Li

∗K ′. Thus we obtain maps

Rj∗M
Rj∗β−−−→ Rj∗Rf∗Li

∗K ′ = Rf ′
∗Ri∗Li

∗K ′ ← Rf ′
∗K

′

where the arrow pointing left comes from K ′ → Ri∗Li
∗K ′. Choose a distinguished

triangle
M ′ → Rj∗M ⊕Rf ′

∗K
′ → Rj∗Rf∗Li

∗K ′ →M ′[1]
in D(OY ′). The first arrow defines canonical maps Lj∗M ′ → M and L(f ′)∗M ′ →
K ′ compatible with α. Thus it suffices to show that the maps Lj∗M ′ → M and
L(f ′)∗M ′ → K are isomorphisms. This we may check étale locally on Y ′, hence we
may assume Y ′ is étale.
Assume Y ′ affine and M ∈ D(OY ) and K ′ ∈ D(OX′) are pseudo-coherent. Say our
pushout corresponds to the fibre product

B B′oo

A

OO

A′oo

OO

of rings where B′ → B is surjective with locally nilpotent kernel I (and hence
A′ → A is surjective with locally nilpotent kernel I as well). The assumption on
M and K ′ imply that M comes from a pseudo-coherent object of D(A) and K ′

comes from a pseudo-coherent object of D(B′), see Derived Categories of Spaces,
Lemmas 75.13.6, 75.4.2, and 75.13.2 and Derived Categories of Schemes, Lemma
36.3.5 and 36.10.2. Moreover, pushforward and derived pullback agree with the
corresponding operations on derived categories of modules, see Derived Categories
of Spaces, Remark 75.6.3 and Derived Categories of Schemes, Lemmas 36.3.7 and
36.3.8. This reduces us to the statement formulated in the next paragraph. (To be
sure these references show the object M ′ lies DQCoh(OY ′) as this is a triangulated
subcategory of D(OY ′).)

3All functors given by derived pullback.
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Given a diagram of rings as above and a triple (M,K ′, α) where M ∈ D(A),
K ′ ∈ D(B′) are pseudo-coherent and α : M ⊗L

A B → K ′ ⊗L
B′ B is an isomorphism

suppose we have distinguished triangle
M ′ →M ⊕K ′ → K ′ ⊗L

B′ B →M ′[1]
in D(A′). Goal: show that the induced maps M ′⊗L

A′ A→M and M ′⊗L
A′ B′ → K ′

are isomorphisms. To do this, choose a bounded above complex E• of finite free
A-modules representing M . Since (B′, I) is a henselian pair (More on Algebra,
Lemma 15.11.2) with B = B′/I we may apply More on Algebra, Lemma 15.75.8
to see that there exists a bounded above complex P • of free B′-modules such that
α is represented by an isomorphism E• ⊗A B ∼= P • ⊗B′ B. Then we can consider
the short exact sequence

0→ L• → E• ⊕ P • → P • ⊗B′ B → 0
of complexes of B′-modules. More on Algebra, Lemma 15.6.9 implies L• is a
bounded above complex of finite projective A′-modules (in fact it is rather easy
to show directly that Ln is finite free in our case) and that we have L•⊗A′ A = E•

and L• ⊗A′ B′ = P •. The short exact sequence gives a distinguished triangle
L• →M ⊕K ′ → K ′ ⊗L

B′ B → (L•)[1]
in D(A′) (Derived Categories, Section 13.12) which is isomorphic to the given dis-
tinguished triangle by general properties of triangulated categories (Derived Cate-
gories, Section 13.4). In other words, L• represents M ′ compatibly with the given
maps. Thus the maps M ′ ⊗L

A′ A → M and M ′ ⊗L
A′ B′ → K ′ are isomorphisms

because we just saw that the corresponding thing is true for L•. □

81.9. Constructing elementary distinguished squares

0DVH Elementary distinguished squares were defined in Derived Categories of Spaces,
Section 75.9.

Lemma 81.9.1.0DVI Let S be a scheme. Let (U ⊂ W, f : V → W ) be an elementary
distinguished square. Then

U ×W V //

��

V

f

��
U // W

is a pushout in the category of algebraic spaces over S.

Proof. Observe that U ⨿V →W is a surjective étale morphism. The fibre product
(U ⨿ V )×W (U ⨿ V )

is the disjoint union of four pieces, namely U = U ×W U , U ×W V , V ×W U , and
V ×W V . There is a surjective étale morphism

V ⨿ (U ×W V )×U (U ×W V ) −→ V ×W V

because f induces an isomorphism over W \ U (part of the definition of being
an elementary distinguished square). Let B be an algebraic space over S and let
g : V → B and h : U → B be morphisms over S which agree after restricting to
U ×W V . Then the description of (U ⨿ V ) ×W (U ⨿ V ) given above shows that
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h ⨿ g : U ⨿ V → B equalizes the two projections. Since B is a sheaf for the étale
topology we obtain a unique factorization of h⨿ g through W as desired. □

Lemma 81.9.2.0DVJ Let S be a scheme. Let V , U be algebraic spaces over S. Let
V ′ ⊂ V be an open subspace and let f ′ : V ′ → U be a separated étale morphism of
algebraic spaces over S. Then there exists a pushout

V ′ //

��

V

f

��
U // W

in the category of algebraic spaces over S and moreover (U ⊂W, f : V →W ) is an
elementary distinguished square.
Proof. We are going to construct W as the quotient of an étale equivalence relation
R on U ⨿ V . Such a quotient is an algebraic space for example by Bootstrap,
Theorem 80.10.1. Moreover, the proof of Lemma 81.9.1 tells us to take

R = U ⨿ V ′ ⨿ V ′ ⨿ V ⨿ (V ′ ×U V ′ \∆V ′/U (V ′))
Since we assumed V ′ → U is separated, the image of ∆V ′/U is closed and hence
the complement is an open subspace. The morphism j : R→ (U ⨿ V )×S (U ⨿ V )
is given by

u, v′, v′, v, (v′
1, v

′
2) 7→ (u, u), (f ′(v′), v′), (v′, f ′(v′)), (v, v), (v′

1, v
′
2)

with obvious notation. It is immediately verified that this is a monomorphism, an
equivalence relation, and that the induced morphisms s, t : R → U ⨿ V are étale.
Let W = (U ⨿ V )/R be the quotient algebraic space. We obtain a commutative
diagram as in the statement of the lemma. To finish the proof it suffices to show
that this diagram is an elementary distinguished square, since then Lemma 81.9.1
implies that it is a pushout. Thus we have to show that U → W is open and that
f is étale and is an isomorphism over W \U . This follows from the choice of R; we
omit the details. □

81.10. Formal glueing of quasi-coherent modules

0AEP This section is the analogue of More on Algebra, Section 15.89. In the case of
morphisms of schemes, the result can be found in the paper by Joyet [Joy96]; this
is a good place to start reading. For a discussion of applications to descent problems
for stacks, see the paper by Moret-Bailly [MB96]. In the case of an affine morphism
of schemes there is a statement in the appendix of the paper [FR70] but one needs to
add the hypothesis that the closed subscheme is cut out by a finitely generated ideal
(as in the paper by Joyet) since otherwise the result does not hold. A generalization
of this material to (higher) derived categories with potential applications to nonflat
situations can be found in [Bha16, Section 5].
We start with a lemma on abelian sheaves supported on closed subsets.
Lemma 81.10.1.0AEQ Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Let Z ⊂ X closed subspace such that f−1Z → Z is integral and
universally injective. Let y be a geometric point of Y and x = f(y). We have

(Rf∗Q)x = Qy

in D(Ab) for any object Q of D(Yétale) supported on |f−1Z|.
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Proof. Consider the commutative diagram of algebraic spaces

f−1Z
i′
//

f ′

��

Y

f

��
Z

i // X

By Cohomology of Spaces, Lemma 69.9.4 we can write Q = Ri′∗K
′ for some object

K ′ of D(f−1Zétale). By Morphisms of Spaces, Lemma 67.53.7 we have K ′ =
(f ′)−1K with K = Rf ′

∗K
′. Then we have Rf∗Q = Rf∗Ri

′
∗K

′ = Ri∗Rf
′
∗K

′ =
Ri∗K. Let z be the geometric point of Z corresponding to x and let z′ be the
geometric point of f−1Z corresponding to y. We obtain the result of the lemma as
follows

Qy = (Ri′∗K ′)y = K ′
z′ = (f ′)−1Kz′ = Kz = Ri∗Kx = Rf∗Qx

The middle equality holds because of the description of the stalk of a pullback given
in Properties of Spaces, Lemma 66.19.9. □

Lemma 81.10.2.0AER Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Let Z ⊂ X closed subspace such that f−1Z → Z is integral and
universally injective. Let y be a geometric point of Y and x = f(y). Let G be an
abelian sheaf on Y . Then the map of two term complexes

(f∗Gx → (f ◦ j′)∗(G|V )x) −→ (Gy → j′
∗(G|V )y)

induces an isomorphism on kernels and an injection on cokernels. Here V = Y \
f−1Z and j′ : V → Y is the inclusion.

Proof. Choose a distinguished triangle
G → Rj′

∗G|V → Q→ G[1]
n D(Yétale). The cohomology sheaves of Q are supported on |f−1Z|. We apply Rf∗
and we obtain

Rf∗G → Rf∗Rj
′
∗G|V → Rf∗Q→ Rf∗G[1]

Taking stalks at x we obtain an exact sequence
0→ (R−1f∗Q)x → f∗Gx → (f ◦ j′)∗(G|V )x → (R0f∗Q)x

We can compare this with the exact sequence
0→ H−1(Q)y → Gy → j′

∗(G|V )y → H0(Q)y
Thus we see that the lemma follows because Qy = Rf∗Qx by Lemma 81.10.1. □

Lemma 81.10.3.0AES Let S be a scheme. Let X be an algebraic space over S. Let
f : Y → X be a quasi-compact and quasi-separated morphism. Let x be a geometric
point of X and let Spec(OX,x) → X be the canonical morphism. For a quasi-
coherent module G on Y we have

f∗Gx = Γ(Y ×X Spec(OX,x), p∗F)
where p : Y ×X Spec(OX,x)→ Y is the projection.

Proof. Observe that f∗Gx = Γ(Spec(OX,x), h∗f∗G) where h : Spec(OX,x) → X.
Hence the result is true because h is flat so that Cohomology of Spaces, Lemma
69.11.2 applies. □
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Lemma 81.10.4.0AET Let S be a scheme. Let X be an algebraic space over S. Let
i : Z → X be a closed immersion of finite presentation. Let Q ∈ DQCoh(OX) be
supported on |Z|. Let x be a geometric point of X and let Ix ⊂ OX,x be the stalk of
the ideal sheaf of Z. Then the cohomology modules Hn(Qx) are Ix-power torsion
(see More on Algebra, Definition 15.88.1).

Proof. Choose an affine scheme U and an étale morphism U → X such that x lifts
to a geometric point u of U . Then we can replace X by U , Z by U ×X Z, Q by
the restriction Q|U , and x by u. Thus we may assume that X = Spec(A) is affine.
Let I ⊂ A be the ideal defining Z. Since i : Z → X is of finite presentation, the
ideal I = (f1, . . . , fr) is finitely generated. The object Q comes from a complex
of A-modules M•, see Derived Categories of Spaces, Lemma 75.4.2 and Derived
Categories of Schemes, Lemma 36.3.5. Since the cohomology sheaves of Q are
supported on Z we see that the localization M•

f is acyclic for each f ∈ I. Take
x ∈ Hp(M•). By the above we can find ni such that fnii x = 0 in Hp(M•) for each i.
Then with n =

∑
ni we see that In annihilates x. Thus Hp(M•) is I-power torsion.

Since the ring map A→ OX,x is flat and since Ix = IOX,x we conclude. □

Lemma 81.10.5.0AEU Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Let Z ⊂ X be a closed subspace. Assume f−1Z → Z is an
isomorphism and that f is flat in every point of f−1Z. For any Q in DQCoh(OY )
supported on |f−1Z| we have Lf∗Rf∗Q = Q.

Proof. We show the canonical map Lf∗Rf∗Q→ Q is an isomorphism by checking
on stalks at y. If y is not in f−1Z, then both sides are zero and the result is true.
Assume the image x of y is in Z. By Lemma 81.10.1 we have Rf∗Qx = Qy and
since f is flat at y we see that

(Lf∗Rf∗Q)y = (Rf∗Q)x ⊗OX,x
OY,y = Qy ⊗OX,x

OY,y
Thus we have to check that the canonical map

Qy ⊗OX,x
OY,y −→ Qy

is an isomorphism in the derived category. Let Ix ⊂ OX,x be the stalk of the ideal
sheaf defining Z. Since Z → X is locally of finite presentation this ideal is finitely
generated and the cohomology groups of Qy are Iy = IxOY,y-power torsion by
Lemma 81.10.4 applied to Q on Y . It follows that they are also Ix-power torsion.
The ring map OX,x → OY,y is flat and induces an isomorphism after dividing by Ix
and Iy because we assumed that f−1Z → Z is an isomorphism. Hence we see that
the cohomology modules of Qy⊗OX,x

OY,y are equal to the cohomology modules of
Qy by More on Algebra, Lemma 15.89.2 which finishes the proof. □

Situation 81.10.6.0AEV Here S is a base scheme, f : Y → X is a quasi-compact and
quasi-separated morphism of algebraic spaces over S, and Z → X is a closed
immersion of finite presentation. We assume that f−1(Z) → Z is an isomorphism
and that f is flat in every point x ∈ |f−1Z|. We set U = X \Z and V = Y \f−1(Z).
Picture

V
j′
//

f |V
��

Y

f

��
U

j // X
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In Situation 81.10.6 we define QCoh(Y → X,Z) as the category of triples (H,G, φ)
where H is a quasi-coherent sheaf of OU -modules, G is a quasi-coherent sheaf of
OY -modules, and φ : f∗H → G|V is an isomorphism of OV -modules. There is a
canonical functor
(81.10.6.1)0AEW QCoh(OX) −→ QCoh(Y → X,Z)
which maps F to the system (F|U , f∗F , can). By analogy with the proof given
in the affine case, we construct a functor in the opposite direction. To an object
(H,G, φ) we assign the OX -module
(81.10.6.2)0AEX Ker(j∗H⊕ f∗G → (f ◦ j′)∗G|V )
Observe that j and j′ are quasi-compact morphisms as Z → X is of finite pre-
sentation. Hence f∗, j∗, and (f ◦ j′)∗ transform quasi-coherent modules into
quasi-coherent modules (Morphisms of Spaces, Lemma 67.11.2). Thus the mod-
ule (81.10.6.2) is quasi-coherent.

Lemma 81.10.7.0AEY In Situation 81.10.6. The functor (81.10.6.2) is right adjoint to
the functor (81.10.6.1).

Proof. This follows easily from the adjointness of f∗ to f∗ and j∗ to j∗. Details
omitted. □

Lemma 81.10.8.0AEZ In Situation 81.10.6. Let X ′ → X be a flat morphism of algebraic
spaces. Set Z ′ = X ′ ×X Z and Y ′ = X ′ ×X Y . The pullbacks QCoh(OX) →
QCoh(OX′) and QCoh(Y → X,Z)→ QCoh(Y ′ → X ′, Z ′) are compatible with the
functors (81.10.6.2) and 81.10.6.1).

Proof. This is true because pullback commutes with pullback and because flat pull-
back commutes with pushforward along quasi-compact and quasi-separated mor-
phisms, see Cohomology of Spaces, Lemma 69.11.2. □

Proposition 81.10.9.0AF0 In Situation 81.10.6 the functor (81.10.6.1) is an equivalence
with quasi-inverse given by (81.10.6.2).

Proof. We first treat the special case where X and Y are affine schemes and where
the morphism f is flat. Say X = Spec(R) and Y = Spec(S). Then f corresponds to
a flat ring map R→ S. Moreover, Z ⊂ X is cut out by a finitely generated ideal I ⊂
R. Choose generators f1, . . . , ft ∈ I. By the description of quasi-coherent modules
in terms of modules (Schemes, Section 26.7), we see that the category QCoh(Y →
X,Z) is canonically equivalent to the category Glue(R → S, f1, . . . , ft) of More
on Algebra, Remark 15.89.10 such that the functors (81.10.6.1) and (81.10.6.2)
correspond to the functors Can and H0. Hence the result follows from More on
Algebra, Proposition 15.89.15 in this case.
We return to the general case. Let F be a quasi-coherent module on X. We will
show that

α : F −→ Ker (j∗F|U ⊕ f∗f
∗F → (f ◦ j′)∗f

∗F|V )
is an isomorphism. Let (H,G, φ) be an object of QCoh(Y → X,Z). We will show
that

β : f∗ Ker (j∗H⊕ f∗G → (f ◦ j′)∗G|V ) −→ G
and

γ : j∗ Ker (j∗H⊕ f∗G → (f ◦ j′)∗G|V ) −→ H
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are isomorphisms. To see these statements are true it suffices to look at stalks. Let
y be a geometric point of Y mapping to the geometric point x of X.
Fix an object (H,G, φ) of QCoh(Y → X,Z). By Lemma 81.10.2 and a diagram
chase (omitted) the canonical map

Ker(j∗H⊕ f∗G → (f ◦ j′)∗G|V )x −→ Ker(j∗Hx ⊕ Gy → j′
∗Gy)

is an isomorphism.
In particular, if y is a geometric point of V , then we see that j′

∗Gy = Gy and
hence that this kernel is equal to Hx. This easily implies that αx, βx, and βy are
isomorphisms in this case.
Next, assume that y is a point of f−1Z. Let Ix ⊂ OX,x, resp. Iy ⊂ OY,y be
the stalk of the ideal cutting out Z, resp. f−1Z. Then Ix is a finitely generated
ideal, Iy = IxOY,y, and OX,x → OY,y is a flat local homomorphism inducing an
isomorphism OX,x/Ix = OY,y/Iy. At this point we can bootstrap using the diagram
of categories

QCoh(OX)
(81.10.6.1)

//

��

QCoh(Y → X,Z)

��

(81.10.6.2)
yy

ModOX,x

Can // Glue(OX,x → OY,y, f1, . . . , ft)

H0
ee

Namely, as in the first paragraph of the proof we identify
Glue(OX,x → OY,y, f1, . . . , ft) = QCoh(Spec(OY,y)→ Spec(OX,x), V (Ix))

The right vertical functor is given by pullback, and it is clear that the inner square
is commutative. Our computation of the stalk of the kernel in the third paragraph
of the proof combined with Lemma 81.10.3 implies that the outer square (using the
curved arrows) commutes. Thus we conclude using the case of a flat morphism of
affine schemes which we handled in the first paragraph of the proof. □

Lemma 81.10.10.0AFJ In Situation 81.10.6 the functor Rf∗ induces an equivalence
between DQCoh,|f−1Z|(OY ) and DQCoh,|Z|(OX) with quasi-inverse given by Lf∗.

Proof. Since f is quasi-compact and quasi-separated we see that Rf∗ defines a func-
tor from DQCoh,|f−1Z|(OY ) to DQCoh,|Z|(OX), see Derived Categories of Spaces,
Lemma 75.6.1. By Derived Categories of Spaces, Lemma 75.5.5 we see that Lf∗

maps DQCoh,|Z|(OX) into DQCoh,|f−1Z|(OY ). In Lemma 81.10.5 we have seen that
Lf∗Rf∗Q = Q for Q in DQCoh,|f−1Z|(OY ). By the dual of Derived Categories,
Lemma 13.7.2 to finish the proof it suffices to show that Lf∗K = 0 implies K = 0
for K in DQCoh,|Z|(OX). This follows from the fact that f is flat at all points of
f−1Z and the fact that f−1Z → Z is surjective. □

Lemma 81.10.11.0AF1 In Situation 81.10.6 there exists an fpqc covering {Xi → X}i∈I
refining the family {U → X,Y → X}.

Proof. For the definition and general properties of fpqc coverings we refer to Topolo-
gies, Section 34.9. In particular, we can first choose an étale covering {Xi → X}
with Xi affine and by base changing Y , Z, and U to each Xi we reduce to the
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case where X is affine. In this case U is quasi-compact and hence a finite union
U = U1 ∪ . . . ∪ Un of affine opens. Then Z is quasi-compact hence also f−1Z is
quasi-compact. Thus we can choose an affine scheme W and an étale morphism
h : W → Y such that h−1f−1Z → f−1Z is surjective. Say W = Spec(B) and
h−1f−1Z = V (J) where J ⊂ B is an ideal of finite type. By Pro-étale Cohomol-
ogy, Lemma 61.5.1 there exists a localization B → B′ such that points of Spec(B′)
correspond exactly to points of W = Spec(B) specializing to h−1f−1Z = V (J).
It follows that the composition Spec(B′) → Spec(B) = W → Y → X is flat as
by assumption f : Y → X is flat at all the points of f−1Z. Then {Spec(B′) →
X,U1 → X, . . . , Un → X} is an fpqc covering by Topologies, Lemma 34.9.2. □

81.11. Formal glueing of algebraic spaces

0AF2 In Situation 81.10.6 we consider the category Spaces(Y → X,Z) of commutative
diagrams of algebraic spaces over S of the form

U ′

��

V ′oo

��

// Y ′

��
U Voo // Y

where both squares are cartesian. There is a canonical functor
(81.11.0.1)0AF3 Spaces/X −→ Spaces(Y → X,Z)

which maps X ′ → X to the morphisms U ×X X ′ ← V ×X X ′ → Y ×X X ′.

Lemma 81.11.1.0AF4 In Situation 81.10.6 the functor (81.11.0.1) restricts to an equiv-
alence

(1) from the category of algebraic spaces affine over X to the full subcategory
of Spaces(Y → X,Z) consisting of (U ′ ← V ′ → Y ′) with U ′ → U ,
V ′ → V , and Y ′ → Y affine,

(2) from the category of closed immersions X ′ → X to the full subcategory of
Spaces(Y → X,Z) consisting of (U ′ ← V ′ → Y ′) with U ′ → U , V ′ → V ,
and Y ′ → Y closed immersions, and

(3) same statement as in (2) for finite morphisms.

Proof. The category of algebraic spaces affine over X is equivalent to the category
of quasi-coherent sheaves A of OX -algebras. The full subcategory of Spaces(Y →
X,Z) consisting of (U ′ ← V ′ → Y ′) with U ′ → U , V ′ → V , and Y ′ → Y affine is
equivalent to the category of algebra objects of QCoh(Y → X,Z). In both cases
this follows from Morphisms of Spaces, Lemma 67.20.7 with quasi-inverse given by
the relative spectrum construction (Morphisms of Spaces, Definition 67.20.8) which
commutes with arbitrary base change. Thus part (1) of the lemma follows from
Proposition 81.10.9.
Fully faithfulness in part (2) follows from part (1). For essential surjectivity, we
reduce by part (1) to proving that X ′ → X is a closed immersion if and only if
both U ×X X ′ → U and Y ×X X ′ → Y are closed immersions. By Lemma 81.10.11
{U → X,Y → X} can be refined by an fpqc covering. Hence the result follows
from Descent on Spaces, Lemma 74.11.17.
For (3) use the argument proving (2) and Descent on Spaces, Lemma 74.11.23. □
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Lemma 81.11.2.0AF5 In Situation 81.10.6 the functor (81.11.0.1) reflects isomorphisms.

Proof. By a formal argument with base change, this reduces to the following ques-
tion: A morphism a : X ′ → X of algebraic spaces such that U ×X X ′ → U and
Y ×XX ′ → Y are isomorphisms, is an isomorphism. The family {U → X,Y → X}
can be refined by an fpqc covering by Lemma 81.10.11. Hence the result follows
from Descent on Spaces, Lemma 74.11.15. □

Lemma 81.11.3.0AF6 In Situation 81.10.6 the functor (81.11.0.1) is fully faithful on
algebraic spaces separated over X. More precisely, it induces a bijection

MorX(X ′
1, X

′
2) −→ MorSpaces(Y→X,Z)(F (X ′

1), F (X ′
2))

whenever X ′
2 → X is separated.

Proof. Since X ′
2 → X is separated, the graph i : X ′

1 → X ′
1 ×X X ′

2 of a morphism
X ′

1 → X ′
2 over X is a closed immersion, see Morphisms of Spaces, Lemma 67.4.6.

Moreover a closed immersion i : T → X ′
1 ×X X ′

2 is the graph of a morphism if and
only if pr1 ◦ i is an isomorphism. The same is true for

(1) the graph of a morphism U ×X X ′
1 → U ×X X ′

2 over U ,
(2) the graph of a morphism V ×X X ′

1 → V ×X X ′
2 over V , and

(3) the graph of a morphism Y ×X X ′
1 → Y ×X X ′

2 over Y .
Moreover, if morphisms as in (1), (2), (3) fit together to form a morphism in
the category Spaces(Y → X,Z), then these graphs fit together to give an object of
Spaces(Y ×X (X ′

1×XX ′
2)→ X ′

1×XX ′
2, Z×X (X ′

1×XX ′
2)) whose triple of morphisms

are closed immersions. The proof is finished by applying Lemmas 81.11.1 and
81.11.2. □

81.12. Glueing and the Beauville-Laszlo theorem

0F9M Let R→ R′ be a ring homomorphism and let f ∈ R be an element such that
0→ R→ Rf ⊕R′ → R′

f → 0
is a short exact sequence. This implies that R/fnR ∼= R′/fnR′ for all n and
(R → R′, f) is a glueing pair in the sense of More on Algebra, Section 15.90. Set
X = Spec(R), U = Spec(Rf ), X ′ = Spec(R′) and U ′ = Spec(R′

f ). Picture

U ′ //

��

X ′

��
U // X

In this situation we can consider the category Spaces(U ← U ′ → X ′) whose objects
are commutative diagrams

V

��

V ′oo

��

// Y ′

��
U U ′oo // X ′

of algebraic spaces with both squares cartesian and whose morphism are defined
in the obvious manner. An object of this category will be denoted (V, V ′, Y ′) with
arrows surpressed from the notation. There is a functor
(81.12.0.1)0F9N Spaces/X −→ Spaces(U ← U ′ → X ′)
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given by base change: Y 7→ (U ×X Y, U ′ ×X Y,X ′ ×X Y ).

We have seen in More on Algebra, Section 15.90 that not every R-module M can
be recovered from its gluing data. Similarly, the functor (81.12.0.1) won’t be fully
faithful on the category of all spaces over X. In order to single out a suitable
subcategory of algebraic spaces over X we need a lemma.

Lemma 81.12.1.0F9P Let (R → R′, f) be a glueing pair, see above. Let Y be an
algebraic space over X. The following are equivalent

(1) there exists an étale covering {Yi → Y }i∈I with Yi affine and Γ(Yi,OYi)
glueable as an R-module,

(2) for every étale morphism W → Y with W affine Γ(W,OW ) is a glueable
R-module.

Proof. It is immediate that (2) implies (1). Assume {Yi → Y } is as in (1) and let
W → Y be as in (2). Then {Yi×Y W →W}i∈I is an étale covering, which we may
refine by an étale covering {Wj →W}j=1,...,m with Wj affine (Topologies, Lemma
34.4.4). Thus to finish the proof it suffices to show the following three algebraic
statements:

(1) if R → A → B are ring maps with A → B étale and A glueable as an
R-module, then B is glueable as an R-module,

(2) finite products of glueable R-modules are glueable,
(3) if R→ A→ B are ring maps with A→ B faithfully étale and B glueable

as an R-module, then A is glueable as an R-module.
Namely, the first of these will imply that Γ(Wj ,OWj

) is a glueable R-module, the
second will imply that

∏
Γ(Wj ,OWj

) is a glueable R-module, and the third will
imply that Γ(W,OW ) is a glueable R-module.

Consider an étale R-algebra homomorphism A → B. Set A′ = A ⊗R R′ and
B′ = B ⊗R R′ = A′ ⊗A B. Statements (1) and (3) then follow from the following
facts: (a) A, resp. B is glueable if and only if the sequence

0→ A→ Af ⊕A′ → A′
f → 0, resp. 0→ B → Bf ⊕B′ → B′

f → 0,

is exact, (b) the second sequence is equal to the functor −⊗AB applied to the first
and (c) (faithful) flatness of A→ B. We omit the proof of (2). □

Let (R→ R′, f) be a glueing pair, see above. We will say an algebraic space Y over
X = Spec(R) is glueable for (R → R′, f) if the equivalent conditions of Lemma
81.12.1 are satisfied.

Lemma 81.12.2.0F9Q Let (R → R′, f) be a glueing pair, see above. The functor
(81.12.0.1) restricts to an equivalence between the category of affine Y/X which
are glueable for (R → R′, f) and the full subcategory of objects (V, V ′, Y ′) of
Spaces(U ← U ′ → X ′) with V , V ′, Y ′ affine.

Proof. Let (V, V ′, Y ′) be an object of Spaces(U ← U ′ → X ′) with V , V ′, Y ′

affine. Write V = Spec(A1) and Y ′ = Spec(A′). By our definition of the category
Spaces(U ← U ′ → X ′) we find that V ′ is the spectrum of A1 ⊗Rf R′

f = A1 ⊗R R′

and the spectrum of A′
f . Hence we get an isomorphism φ : A′

f → A1 ⊗R R′ of
R′
f -algebras. By More on Algebra, Theorem 15.90.17 there exists a unique glueable
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R-module A and isomorphisms Af → A1 and A⊗RR′ → A′ of modules compatible
with φ. Since the sequence

0→ A→ A1 ⊕A′ → A′
f → 0

is short exact, the multiplications on A1 and A′ define a unique R-algebra structure
on A such that the maps A → A1 and A → A′ are ring homomorphisms. We
omit the verification that this construction defines a quasi-inverse to the functor
(81.12.0.1) restricted to the subcategories mentioned in the statement of the lemma.

□

Lemma 81.12.3.0F9R Let P be one of the following properties of morphisms: “finite”,
“closed immersion”, “flat”, “finite type”, “flat and finite presentation”, “étale”.
Under the equivalence of Lemma 81.12.2 the morphisms having P correspond to
morphisms of triples whose components have P .

Proof. Let P ′ be one of the following properties of homomorphisms of rings: “fi-
nite”, “surjective”, “flat”, “finite type”, “flat and of finite presentation”, “étale”.
Translated into algebra, the statement means the following: If A → B is an R-
algebra homomorphism and A and B are glueable for (R→ R′, f), then Af → Bf
and A⊗R R′ → B ⊗R R′ have P ′ if and only if A→ B has P ′.
By More on Algebra, Lemmas 15.90.5 and 15.90.19 the algebraic statement is true
for P ′ equal to “finite” or “flat”.
If Af → Bf and A⊗RR′ → B⊗RR′ are surjective, then N = B/A is an R-module
with Nf = 0 and N ⊗R R′ = 0 and hence vanishes by More on Algebra, Lemma
15.90.3. Thus A→ B is surjective.
If Af → Bf and A ⊗R R′ → B ⊗R R′ are finite type, then we can choose an
A-algebra homomorphism A[x1, . . . , xn] → B such that Af [x1, . . . , xn] → Bf and
(A⊗RR′)[x1, . . . , xn]→ B⊗RR′ are surjective (small detail omitted). We conclude
that A[x1, . . . , xn]→ B is surjective by the previous result. Thus A→ B is of finite
type.
If Af → Bf and A ⊗R R′ → B ⊗R R′ are flat and of finite presentation, then we
know that A→ B is flat and of finite type by what we have already shown. Choose
a surjection A[x1, . . . , xn] → B and denote I the kernel. By flatness of B over A
we see that If is the kernel of Af [x1, . . . , xn] → Bf and I ⊗R R′ is the kernel of
A ⊗R R′[x1, . . . , xn] → B ⊗R R′. Thus If is a finite Af [x1, . . . , xn]-module and
I ⊗R R′ is a finite (A ⊗R R′)[x1, . . . , xn]-module. By More on Algebra, Lemma
15.90.5 applied to I viewed as a module over A[x1, . . . , xn] we conclude that I is a
finitely generated ideal and we conclude A→ B is flat and of finite presentation.
If Af → Bf and A ⊗R R′ → B ⊗R R′ are étale, then we know that A → B
is flat and of finite presentation by what we have already shown. Since the fi-
bres of Spec(B) → Spec(A) are isomorphic to fibres of Spec(Bf ) → Spec(Af ) or
Spec(B/fB) → Spec(A/fA), we conclude that A → B is unramified, see Mor-
phisms, Lemmas 29.35.11 and 29.35.12. We conclude that A → B is étale by
Morphisms, Lemma 29.36.16 for example. □

Lemma 81.12.4.0F9S Let (R → R′, f) be a glueing pair, see above. The functor
(81.12.0.1) is faithful on the full subcategory of algebraic spaces Y/X glueable
for (R→ R′, f).
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Proof. Let f, g : Y → Z be two morphisms of algebraic spaces over X with Y and
Z glueable for (R → R′, f) such that f and g are mapped to the same morphism
in the category Spaces(U ← U ′ → X ′). We have to show the equalizer E → Y of f
and g is an isomorphism. Working étale locally on Y we may assume Y is an affine
scheme. Then E is a scheme and the morphism E → Y is a monomorphism and
locally quasi-finite, see Morphisms of Spaces, Lemma 67.4.1. Moreover, the base
change of E → Y to U and to X ′ is an isomorphism. As Y is the disjoint union of
the affine open V = U ×X Y and the affine closed V (f)×X Y , we conclude E is the
disjoint union of their isomorphic inverse images. It follows in particular that E is
quasi-compact. By Zariski’s main theorem (More on Morphisms, Lemma 37.43.3)
we conclude that E is quasi-affine. Set B = Γ(E,OE) and A = Γ(Y,OY ) so that we
have an R-algebra homomorphism A→ B. Since E → Y becomes an isomorphism
after base change to U and X ′ we obtain ring maps B → Af and B → A ⊗R R′

agreeing as maps into A ⊗R R′
f . Since A is glueable for (R → R′, f) we get a

ring map B → A which is left inverse to the map A → B. The corresponding
morphism Y = Spec(A) → Spec(B) maps into the open subscheme E ⊂ Spec(B)
pointwise because this is true after base change to U and X ′. Hence we get a
morphism Y → E over Y . Since E → Y is a monomorhism we conclude Y → E is
an isomorphism as desired. □

Lemma 81.12.5.0F9T Let (R → R′, f) be a glueing pair, see above. The functor
(81.12.0.1) is fully faithful on the full subcategory of algebraic spaces Y/X which
are (a) glueable for (R→ R′, f) and (b) have affine diagonal Y → Y ×X Y .

Proof. Let Y,Z be two algebraic spaces over X which are both glueable for (R →
R′, f) and assume the diagonal of Z is affine. Let a : U ×X Y → U ×X Z over U
and b : X ′ ×X Y → X ′ ×X Z over X ′ be two morphisms of algebraic spaces which
induce the same morphism c : U ′×X Y → U ′×X Z over U ′. We want to construct a
morphism f : Y → Z over X which produces the morphisms a, b on base change to
U , X ′. By the faithfulness of Lemma 81.12.4, it suffices to construct the morphism
f étale locally on Y (details omitted). Thus we may and do assume Y is affine.
Let y ∈ |Y | be a point. If y maps into the open U ⊂ X, then U ×X Y is an open of
Y on which the morphism f is defined (we can just take a). Thus we may assume
y maps into the closed subset V (f) of X. Since R/fR = R′/fR′ there is a unique
point y′ ∈ |X ′ ×X Y | mapping to y. Denote z′ = b(y′) ∈ |X ′ ×X Z| and z ∈ |Z|
the images of y′. Choose an étale neighbourhood (W,w) → (Z, z) with W affine.
Observe that

(U ×X W )×U×XZ,a (U ×X Y ), (U ′ ×X W )×U ′×XZ,c (U ′ ×X Y ),
and

(X ′ ×X W )×X′×XZ,b (X ′ ×X Y )
form an object of Spaces(U ← U ′ → X ′) with affine parts (this is where we use
that Z has affine diagonal). Hence by Lemma 81.12.2 there exists a unique affine
scheme V glueable for (R→ R′, f) such that

(U ×X V,U ′ ×X V,X ′ ×X V )
is the triple displayed above. By fully faithfulness for the affine case (Lemma
81.12.2) we get a unique morphisms V → W and V → Y agreeing with the first
and second projection morphisms over U and X ′ in the construction above. By
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Lemma 81.12.3 the morphism V → Y is étale. To finish the proof, it suffices to
show that there is a point v ∈ |V |mapping to y (because then f is defined on an étale
neighbourhood of y, namely V ). There is a unique point w′ ∈ |X ′ ×X W | mapping
to w. By uniqueness w′ is mapped to z′ under the map |X ′ ×X W | → |X ′ ×X Z|.
Then we consider the cartesian diagram

X ′ ×X V //

��

X ′ ×X W

��
X ′ ×X Y // X ′ ×X Z

to see that there is a point v′ ∈ |X ′ ×X V | mapping to y′ and w′, see Properties of
Spaces, Lemma 66.4.3. Of course the image v of v′ in |V | maps to y and the proof
is complete. □

Lemma 81.12.6.0F9U Let (R → R′, f) be a glueing pair, see above. Any object
(V, V ′, Y ′) of Spaces(U ← U ′ → X ′) with V , V ′, Y ′ quasi-affine is isomorphic
to the image under the functor (81.12.0.1) of a separated algebraic space Y over X.

Proof. Choose n′, T ′ → Y ′ and n1, T1 → V as in Properties, Lemma 28.18.6.
Picture

T1 ×V V ′ ×Y T ′

vv ((
T1

��

T1 ×V V ′oo

((

V ′ ×Y ′ T ′ //

vv

T ′

��
V V ′ //oo Y ′

Observe that T1×V V ′ and V ′×Y ′ T ′ are affine (namely the morphisms V ′ → V and
V ′ → Y ′ are affine as base changes of the affine morphisms U ′ → U and U ′ → X ′).
By construction we see that

An′

T1×V V ′ ∼= T1 ×V V ′ ×Y ′ T ′ ∼= An1
V ′×Y ′T ′

In other words, the affine schemes An′

T1
and An1

T ′ are part of a triple making an
affine object of Spaces(U ← U ′ → X ′). By Lemma 81.12.2 there exists a morphism
of affine schemes T → X and isomorphisms U ×X T ∼= An′

T1
and X ′ ×X T ∼= An1

T ′

compatible with the isomorphisms displayed above. These isomorphisms produce
morphisms

U ×X T −→ V and X ′ ×X T −→ Y ′

satisfying the property of Properties, Lemma 28.18.6 with n = n′+n1 and moreover
define a morphism from the triple (U×XT,U ′×XT,X ′×XT ) to our triple (V, V ′, Y ′)
in the category Spaces(U ← U ′ → X ′).
By Lemma 81.12.2 there is an affine scheme W whose image in Spaces(U ← U ′ →
X ′) is isomorphic to the triple
((U ×X T )×V (U ×X T ), (U ′ ×X T )×V ′ (U ′ ×X T ), (X ′ ×X T )×Y ′ (X ′ ×X T ))

By fully faithfulness of this construction, we obtain two maps p0, p1 : W → T
whose base changes to U,U ′, X ′ are the projection morphisms. By Lemma 81.12.3
the morphisms p0, p1 are flat and of finite presentation and the morphism (p0, p1) :
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W → T×XT is a closed immersion. In fact, W → T×XT is an equivalence relation:
by the lemmas used above we may check symmetry, reflexivity, and transitivity
after base change to U and X ′, where these are obvious (details omitted). Thus
the quotient sheaf

Y = T/W

is an algebraic space for example by Bootstrap, Theorem 80.10.1. Since it is clear
that Y/X is sent to the triple (V, V ′, Y ′). The base change of the diagonal ∆ :
Y → Y ×X Y by the quasi-compact surjective flat morphism T ×X T → Y ×X Y is
the closed immersion W → T ×X T . Thus ∆ is a closed immersion by Descent on
Spaces, Lemma 74.11.17. Thus the algebraic space Y is separated and the proof is
complete. □

81.13. Coequalizers and glueing

0AGF Let X be a Noetherian algebraic space and Z → X a closed subspace. Let X ′ → X
be the blowing up in Z. In this section we show that X can be recovered from X ′,
Zn and glueing data where Zn is the nth infinitesimal neighbourhood of Z in X.

Lemma 81.13.1.0AGG Let S be a scheme. Let
g : Y −→ X

be a morphism of algebraic spaces over S. Assume X is locally Noetherian, and g
is proper. Let R = Y ×X Y with projection morphisms t, s : R→ Y . There exists a
coequalizer X ′ of s, t : R→ Y in the category of algebraic spaces over S. Moreover

(1) The morphism X ′ → X is finite.
(2) The morphism Y → X ′ is proper.
(3) The morphism Y → X ′ is surjective.
(4) The morphism X ′ → X is universally injective.
(5) If g is surjective, the morphism X ′ → X is a universal homeomorphism.

Proof. Denote h : R → X denote the composition of either s or t with g. Then h
is proper by Morphisms of Spaces, Lemmas 67.40.3 and 67.40.4. The sheaves

g∗OY and h∗OR
are coherent OX -algebras by Cohomology of Spaces, Lemma 69.20.2. The X-
morphisms s, t induce OX -algebra maps s♯, t♯ from the first to the second. Set

A = Equalizer
(
s♯, t♯ : g∗OY −→ h∗OR

)
Then A is a coherent OX -algebra and we can define

X ′ = Spec
X

(A)
as in Morphisms of Spaces, Definition 67.20.8. By Morphisms of Spaces, Remark
67.20.9 and functoriality of the Spec construction there is a factorization

Y −→ X ′ −→ X

and the morphism g′ : Y → X ′ equalizes s and t.
Before we show that X ′ is the coequalizer of s and t, we show that Y → X ′

and X ′ → X have the desired properties. Since A is a coherent OX -module it
is clear that X ′ → X is a finite morphism of algebraic spaces. This proves (1).
The morphism Y → X ′ is proper by Morphisms of Spaces, Lemma 67.40.6. This
proves (2). Denote Y → Y ′ → X with Y ′ = Spec

X
(g∗OY ) the Stein factorization
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of g, see More on Morphisms of Spaces, Theorem 76.36.4. Of course we obtain
morphisms Y → Y ′ → X ′ → X fitting with the morphisms studied above. Since
OX′ ⊂ g∗OY is a finite extension we see that Y ′ → X ′ is finite and surjective. Some
details omitted; hint: use Algebra, Lemma 10.36.17 and reduce to the affine case
by étale localization. Since Y → Y ′ is surjective (with geometrically connected
fibres) we conclude that Y → X ′ is surjective. This proves (3). To show that
X ′ → X is universally injective, we have to show that X ′ → X ′×XX ′ is surjective,
see Morphisms of Spaces, Definition 67.19.3 and Lemma 67.19.2. Since Y → X ′

is surjective (see above) and since base changes and compositions of surjective
morphisms are surjective by Morphisms of Spaces, Lemmas 67.5.5 and 67.5.4 we
see that Y ×X Y → X ′ ×X X ′ is surjective. However, since Y → X ′ equalizes s
and t, we see that Y ×X Y → X ′ ×X X ′ factors through X ′ → X ′ ×X X ′ and we
conclude this latter map is surjective. This proves (4). Finally, if g is surjective,
then since g factors through X ′ → X we see that X ′ → X is surjective. Since
a surjective, universally injective, finite morphism is a universal homeomorphism
(because it is universally bijective and universally closed), this proves (5).

In the rest of the proof we show that Y → X ′ is the coequalizer of s and t in
the category of algebraic spaces over S. Observe that X ′ is locally Noetherian
(Morphisms of Spaces, Lemma 67.23.5). Moreover, observe that Y ×X′Y → Y ×XY
is an isomorphism as Y → X ′ equalizes s and t (this is a categorical statement).
Hence in order to prove the statement that Y → X ′ is the coequalizer of s and t,
we may and do assume X = X ′. In other words, OX is the equalizer of the maps
s♯, t♯ : g∗OY → h∗OR.

Let X1 → X be a flat morphism of algebraic spaces over S with X1 locally Noether-
ian. Denote g1 : Y1 → X1, h1 : R1 → X1 and s1, t1 : R1 → Y1 the base changes of
g, h, s, t to X1. Of course g1 is proper and R1 = Y1×X1 Y1. Since we have flat base
change for pushforward of quasi-coherent modules, Cohomology of Spaces, Lemma
69.11.2, we see that OX1 is the equalizer of the maps s♯1, t

♯
1 : g1,∗OY1 → h1,∗OR1 .

Hence all the assumptions we have are preserved by this base change.

At this point we are going to check conditions (1) and (2) of Lemma 81.3.3. Con-
dition (1) follows from Lemma 81.5.1 and the fact that g is proper and surjective
(because X = X ′). To check condition (2), by the remarks on base change above,
we reduce to the statement discussed and proved in the next paragraph.

Assume S = Spec(A) is an affine scheme, X = X ′ is an affine scheme, and Z is an
affine scheme over S. We have to show that

MorS(X,Z) −→ Equalizer(s, t : MorS(Y,Z)→ MorS(R,Z))

is bijective. However, this is clear from the fact that X = X ′ which implies OX is
the equalizer of the maps s♯, t♯ : g∗OY → h∗OR which in turn implies

Γ(X,OX) = Equalizer
(
s♯, t♯ : Γ(Y,OY )→ Γ(R,OR)

)
Namely, we have

MorS(X,Z) = HomA(Γ(Z,OZ),Γ(X,OX))

and similarly for Y and R, see Properties of Spaces, Lemma 66.33.1. □

We will work in the following situation.
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Situation 81.13.2.0AGH Let S be a scheme. LetX be a locally Noetherian algebraic space
over S. Let Z → X be a closed immersion and let U ⊂ X be the complementary
open subspace. Finally, let f : X ′ → X be a proper morphism of algebraic spaces
such that f−1(U)→ U is an isomorphism.

Lemma 81.13.3.0AGI In Situation 81.13.2 let Y = X ′ ⨿ Z and R = Y ×X Y with
projections t, s : R → Y . There exists a coequalizer X1 of s, t : R → Y in the
category of algebraic spaces over S. The morphism X1 → X is a finite universal
homeomorphism, an isomorphism over U , and Z → X lifts to X1.

Proof. Existence of X1 and the fact that X1 → X is a finite universal homeomor-
phism is a special case of Lemma 81.13.1. The formation of X1 commutes with
étale localization on X (see proof of Lemma 81.13.1). Thus the morphism X1 → X
is an isomorphism over U . It is immediate from the construction that Z → X lifts
to X1. □

In Situation 81.13.2 for n ≥ 1 let Zn ⊂ X be the nth order infinitesimal neigh-
bourhood of Z in X, i.e., the closed subscheme defined by the nth power of the
sheaf of ideals cutting out Z. Consider Yn = X ′ ⨿Zn and Rn = Yn ×X Yn and the
coequalizer

Rn
//
// Yn // Xn

// X

as in Lemma 81.13.3. The maps Yn → Yn+1 and Rn → Rn+1 induce morphisms

(81.13.3.1)0AGJ X1 → X2 → X3 → . . .→ X

Each of these morphisms is a universal homeomorphism as the morphisms Xn → X
are universal homeomorphisms.

Lemma 81.13.4.0AGK In Situation 81.13.2 assume X quasi-compact. In (81.13.3.1) for
all n large enough, there exists an m such that Xn → Xn+m factors through a
closed immersion X → Xn+m.

Proof. Let’s look a bit more closely at the construction of Xn and how it changes
as we increase n. We have Xn = Spec(An) where An is the equalizer of s♯n and
t♯n going from gn,∗OYn to hn,∗ORn . Here gn : Yn = X ′ ⨿ Zn → X and hn : Rn =
Yn ×X Yn → X are the given morphisms. Let I ⊂ OX be the coherent sheaf of
ideals corresponding to Z. Then

gn,∗OYn = f∗OX′ ×OX/In

Similarly, we have a decomposition

Rn = X ′ ×X X ′ ⨿X ′ ×X Zn ⨿ Zn ×X X ′ ⨿ Zn ×X Zn

As Zn → X is a monomorphism, we see that X ′ ×X Zn = Zn ×X X ′ and that this
identification is compatible with the two morphisms to X, with the two morphisms
to X ′, and with the two morphisms to Zn. Denote fn : X ′ ×X Zn → X the
morphism to X. Denote

A = Equalizer( f∗OX′
//
// (f × f)∗OX′×XX′ )

By the remarks above we find that

An = Equalizer( A×OX/In
//
// fn,∗OX′×XZn )
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We have canonical maps
OX → . . .→ A3 → A2 → A1

of coherent OX -algebras. The statement of the lemma means that for n large
enough there exists an m ≥ 0 such that the image of An+m → An is isomorphic to
OX . This we may check étale locally on X. Hence by Properties of Spaces, Lemma
66.6.3 we may assume X is an affine Noetherian scheme.
Since Xn → X is an isomorphism over U we see that the kernel of OX → An is
supported on |Z|. Since X is Noetherian, the sequence of kernels Jn = Ker(OX →
An) stabilizes (Cohomology of Spaces, Lemma 69.13.1). Say Jn0 = Jn0+1 = . . . =
J . By Cohomology of Spaces, Lemma 69.13.2 we find that ItJ = 0 for some t ≥ 0.
On the other hand, there is an OX -algebra map An → OX/In and hence J ⊂ In
for all n. By Artin-Rees (Cohomology of Spaces, Lemma 69.13.3) we find that
J ∩ In ⊂ In−cJ for some c ≥ 0 and all n≫ 0. We conclude that J = 0.
Pick n ≥ n0 as in the previous paragraph. Then OX → An is injective. Hence
it now suffices to find m ≥ 0 such that the image of An+m → An is equal to the
image of OX . Observe that An sits in a short exact sequence

0→ Ker(A → fn,∗OX′×XZn)→ An → OX/In → 0
and similarly for An+m. Hence it suffices to show

Ker(A → fn+m,∗OX′×XZn+m) ⊂ Im(In → A)
for some m ≥ 0. To do this we may work étale locally on X and since X is
Noetherian we may assume that X is a Noetherian affine scheme. Say X = Spec(R)
and I corresponds to the ideal I ⊂ R. Let A = Ã for a finite R-algebra A. Let
f∗OX′ = B̃ for a finite R-algebra B. Then R → A ⊂ B and these maps become
isomorphisms on inverting any element of I.
Note that fn,∗OX′×XZn is equal to f∗(OX′/InOX′) in the notation used in Coho-
mology of Spaces, Section 69.22. By Cohomology of Spaces, Lemma 69.22.4 we see
that there exists a c ≥ 0 such that

Ker(B → Γ(X, f∗(OX′/In+m+cOX′))
is contained in In+mB. On the other hand, as R→ B is finite and an isomorphism
after inverting any element of I we see that In+mB ⊂ Im(In → B) for m large
enough (can be chosen independent of n). This finishes the proof as A ⊂ B. □

Remark 81.13.5.0AGL The meaning of Lemma 81.13.4 is the system X1 → X2 → X3 →
. . . is essentially constant with value X. See Categories, Definition 4.22.1.

81.14. Compactifications

0F44 This section is the analogue of More on Flatness, Section 38.33. The theorem in
this section is the main theorem in [CLO12].
Let B be a quasi-compact and quasi-separated algebraic space over some base
scheme S. We will say an algebraic space X over B has a compactification over B
or is compactifyable over B if there exists a quasi-compact open immersion X → X
into an algebraic space X proper over B. If X has a compactification over B, then
X → B is separated and of finite type. The main theorem of this section is that
the converse is true as well.

https://stacks.math.columbia.edu/tag/0AGL
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Lemma 81.14.1.0F45 Let S be a scheme. Let X → Y be a morphism of algebraic spaces
over S. If (U ⊂ X, f : V → X) is an elementary distinguished square such that
U → Y and V → Y are separated and U ×X V → U ×Y V is closed, then X → Y
is separated.
Proof. We have to check that ∆ : X → X ×Y X is a closed immersion. There is an
étale covering of X ×Y X given by the four parts U ×Y U , U ×Y V , V ×Y U , and
V ×Y V . Observe that (U ×Y U) ×(X×YX),∆ X = U , (U ×Y V ) ×(X×YX),∆ X =
U×X V , (V ×Y U)×(X×YX),∆X = V ×XU , and (V ×Y V )×(X×YX),∆X = V . Thus
the assumptions of the lemma exactly tell us that ∆ is a closed immersion. □

Lemma 81.14.2.0F46 Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let U ⊂ X be a quasi-compact open.

(1) If Z1, Z2 ⊂ X are closed subspaces of finite presentation such that Z1 ∩
Z2 ∩ U = ∅, then there exists a U -admissible blowing up X ′ → X such
that the strict transforms of Z1 and Z2 are disjoint.

(2) If T1, T2 ⊂ |U | are disjoint constructible closed subsets, then there is a
U -admissible blowing up X ′ → X such that the closures of T1 and T2 are
disjoint.

Proof. Proof of (1). The assumption that Zi → X is of finite presentation signifies
that the quasi-coherent ideal sheaf Ii of Zi is of finite type, see Morphisms of Spaces,
Lemma 67.28.12. Denote Z ⊂ X the closed subspace cut out by the product I1I2.
Observe that Z ∩ U is the disjoint union of Z1 ∩ U and Z2 ∩ U . By Divisors on
Spaces, Lemma 71.19.5 there is a U ∩ Z-admissible blowup Z ′ → Z such that the
strict transforms of Z1 and Z2 are disjoint. Denote Y ⊂ Z the center of this blowing
up. Then Y → X is a closed immersion of finite presentation as the composition
of Y → Z and Z → X (Divisors on Spaces, Definition 71.19.1 and Morphisms
of Spaces, Lemma 67.28.2). Thus the blowing up X ′ → X of Y is a U -admissible
blowing up. By general properties of strict transforms, the strict transform of Z1, Z2
with respect to X ′ → X is the same as the strict transform of Z1, Z2 with respect
to Z ′ → Z, see Divisors on Spaces, Lemma 71.18.3. Thus (1) is proved.
Proof of (2). By Limits of Spaces, Lemma 70.14.1 there exists a finite type quasi-
coherent sheaf of ideals Ji ⊂ OU such that Ti = V (Ji) (set theoretically). By
Limits of Spaces, Lemma 70.9.8 there exists a finite type quasi-coherent sheaf of
ideals Ii ⊂ OX whose restriction to U is Ji. Apply the result of part (1) to the
closed subspaces Zi = V (Ii) to conclude. □

Lemma 81.14.3.0F47 Let S be a scheme. Let f : X → Y be a proper morphism
of quasi-compact and quasi-separated algebraic spaces over S. Let V ⊂ Y be a
quasi-compact open and U = f−1(V ). Let T ⊂ |V | be a closed subset such that
f |U : U → V is an isomorphism over an open neighbourhood of T in V . Then
there exists a V -admissible blowing up Y ′ → Y such that the strict transform
f ′ : X ′ → Y ′ of f is an isomorphism over an open neighbourhood of the closure of
T in |Y ′|.
Proof. Let T ′ ⊂ |V | be the complement of the maximal open over which f |U is an
isomorphism. Then T ′, T are closed in |V | and T ∩ T ′ = ∅. Since |V | is a spectral
topological space (Properties of Spaces, Lemma 66.15.2) we can find constructible
closed subsets Tc, T ′

c of |V | with T ⊂ Tc, T ′ ⊂ T ′
c such that Tc ∩ T ′

c = ∅ (choose a
quasi-compact open W of |V | containing T ′ not meeting T and set Tc = |V | \W ,

https://stacks.math.columbia.edu/tag/0F45
https://stacks.math.columbia.edu/tag/0F46
https://stacks.math.columbia.edu/tag/0F47
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then choose a quasi-compact open W ′ of |V | containing Tc not meeting T ′ and set
T ′
c = |V | \W ′). By Lemma 81.14.2 we may, after replacing Y by a V -admissible

blowing up, assume that Tc and T ′
c have disjoint closures in |Y |. Let Y0 be the open

subspace of Y corresponding to the open |Y |\T ′
c and set V0 = V ∩Y0, U0 = U×V V0,

and X0 = X ×Y Y0. Since U0 → V0 is an isomorphism, we can find a V0-admissible
blowing up Y ′

0 → Y0 such that the strict transform X ′
0 of X0 maps isomorphically

to Y ′
0 , see More on Morphisms of Spaces, Lemma 76.39.4. By Divisors on Spaces,

Lemma 71.19.3 there exists a V -admissible blow up Y ′ → Y whose restriction to
Y0 is Y ′

0 → Y0. If f ′ : X ′ → Y ′ denotes the strict transform of f , then we see what
we want is true because f ′ restricts to an isomorphism over Y ′

0 . □

Lemma 81.14.4.0F48 Let S be a scheme. Consider a diagram

X

f

��

Uoo

f |U
��

A

��

oo

Y Voo Boo

of quasi-compact and quasi-separated algebraic spaces over S. Assume
(1) f is proper,
(2) V is a quasi-compact open of Y , U = f−1(V ),
(3) B ⊂ V and A ⊂ U are closed subspaces,
(4) f |A : A→ B is an isomorphism, and f is étale at every point of A.

Then there exists a V -admissible blowing up Y ′ → Y such that the strict transform
f ′ : X ′ → Y ′ satisfies: for every geometric point a of the closure of |A| in |X ′| there
exists a quotient OX′,a → O such that OY ′,f ′(a) → O is finite flat.

As you can see from the proof, more is true, but the statement is already long
enough and this will be sufficient later on.

Proof. Let T ′ ⊂ |U | be the complement of the maximal open on which f |U is
étale. Then T ′ is closed in |U | and disjoint from |A|. Since |U | is a spectral
topological space (Properties of Spaces, Lemma 66.15.2) we can find constructible
closed subsets Tc, T ′

c of |U | with |A| ⊂ Tc, T ′ ⊂ T ′
c such that Tc ∩ T ′

c = ∅ (see proof
of Lemma 81.14.3). By Lemma 81.14.2 there is a U -admissible blowing up X1 → X
such that Tc and T ′

c have disjoint closures in |X1|. Let X1,0 be the open subspace
of X1 corresponding to the open |X1| \T

′
c and set U0 = U ∩X1,0. Observe that the

scheme theoretic image A1 ⊂ X1 of A is contained in X1,0 by construction.
After replacing Y by a V -admissible blowing up and taking strict transforms, we
may assume X1,0 → Y is flat, quasi-finite, and of finite presentation, see More
on Morphisms of Spaces, Lemmas 76.39.1 and 76.37.3. Consider the commutative
diagram

X1 //

  

X

��
Y

and the diagram

A1 //

��

A

��
B

of scheme theoretic images. The morphism A1 → A is surjective because it is
proper and hence the scheme theoretic image of A1 → A must be equal to A and
then we can use Morphisms of Spaces, Lemma 67.40.8. The statement on étale

https://stacks.math.columbia.edu/tag/0F48
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local rings follows by choosing a lift of the geometric point a to a geometric point
a1 of A1 and setting O = OX1,a1 . Namely, since X1 → Y is flat and quasi-finite on
X1,0 ⊃ A1, the map OY ′,f ′(a) → OX1,a1 is finite flat, see Algebra, Lemmas 10.156.3
and 10.153.3. □

Lemma 81.14.5.0F49 Let S be a scheme. Let X → B and Y → B be morphisms of
algebraic spaces over S. Let U ⊂ X be an open subspace. Let V → X ×B Y be a
quasi-compact morphism whose composition with the first projection maps into U .
Let Z ⊂ X ×B Y be the scheme theoretic image of V → X ×B Y . Let X ′ → X be
a U -admissible blowup. Then the scheme theoretic image of V → X ′ ×B Y is the
strict transform of Z with respect to the blowing up.

Proof. Denote Z ′ → Z the strict transform. The morphism Z ′ → X ′ induces a
morphism Z ′ → X ′ ×B Y which is a closed immersion (as Z ′ is a closed subspace
of X ′ ×X Z by definition). Thus to finish the proof it suffices to show that the
scheme theoretic image Z ′′ of V → Z ′ is Z ′. Observe that Z ′′ ⊂ Z ′ is a closed
subspace such that V → Z ′ factors through Z ′′. Since both V → X ×B Y and
V → X ′ ×B Y are quasi-compact (for the latter this follows from Morphisms of
Spaces, Lemma 67.8.9 and the fact that X ′ ×B Y → X ×B Y is separated as a
base change of a proper morphism), by Morphisms of Spaces, Lemma 67.16.3 we
see that Z ∩ (U ×B Y ) = Z ′′ ∩ (U ×B Y ). Thus the inclusion morphism Z ′′ → Z ′

is an isomorphism away from the exceptional divisor E of Z ′ → Z. However,
the structure sheaf of Z ′ does not have any nonzero sections supported on E (by
definition of strict transforms) and we conclude that the surjection OZ′ → OZ′′

must be an isomorphism. □

Lemma 81.14.6.0F4A Let S be a scheme. Let B be a quasi-compact and quasi-separated
algebraic space over S. Let U be an algebraic space of finite type and separated
over B. Let V → U be an étale morphism. If V has a compactification V ⊂ Y over
B, then there exists a V -admissible blowing up Y ′ → Y and an open V ⊂ V ′ ⊂ Y ′

such that V → U extends to a proper morphism V ′ → U .

Proof. Consider the scheme theoretic image Z ⊂ Y ×B U of the “diagonal” mor-
phism V → Y ×B U . If we replace Y by a V -admissible blowing up, then Z
is replaced by the strict transform with respect to this blowing up, see Lemma
81.14.5. Hence by More on Morphisms of Spaces, Lemma 76.39.4 we may assume
Z → Y is an open immersion. If V ′ ⊂ Y denotes the image, then we see that the
induced morphism V ′ → U is proper because the projection Y ×B U → U is proper
and V ′ ∼= Z is a closed subspace of Y ×B U . □

The following lemma is formulated for finite type separated algebraic spaces over
a finite type algebraic space over Z. The version for quasi-compact and quasi-
separated algebraic spaces is true as well (with essentially the same proof), but
will be trivially implied by the main theorem in this section. We strongly urge the
reader to read the proof of this lemma in the case of schemes first.

Lemma 81.14.7.0F4B Let B be an algebraic space of finite type over Z. Let U be an
algebraic space of finite type and separated over B. Let (U2 ⊂ U, f : U1 → U)
be an elementary distinguished square. Assume U1 and U2 have compactifications
over B and U1 ×U U2 → U has dense image. Then U has a compactification over
B.

https://stacks.math.columbia.edu/tag/0F49
https://stacks.math.columbia.edu/tag/0F4A
https://stacks.math.columbia.edu/tag/0F4B
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Proof. Choose a compactification Ui ⊂ Xi over B for i = 1, 2. We may assume Ui
is scheme theoretically dense in Xi. We may assume there is an open Vi ⊂ Xi and
a proper morphism ψi : Vi → U extending Ui → U , see Lemma 81.14.6. Picture

Ui //

��

Vi //

ψi~~

Xi

U

Denote Z1 ⊂ U the reduced closed subspace corresponding to the closed subset
|U | \ |U2|. Recall that f−1Z1 is a closed subspace of U1 mapping isomorphically to
Z1. Denote Z2 ⊂ U the reduced closed subspace corresponding to the closed subset
|U | \ Im(|f |) = |U2| \ Im(|U1 ×U U2| → |U2|). Thus we have

U = U2 ⨿ Z1 = Z2 ⨿ Im(f) = Z2 ⨿ Im(U1 ×U U2 → U2)⨿ Z1

set theoretically. Denote Zi,i ⊂ Vi the inverse image of Zi under ψi. Observe that
ψ2 is an isomorphism over an open neighbourhood of Z2. Observe that Z1,1 =
ψ−1

1 Z1 = f−1Z1 ⨿ T for some closed subspace T ⊂ V1 disjoint from f−1Z1 and
furthermore ψ1 is étale along f−1Z1. Denote Zi,j ⊂ Vi the inverse image of Zj
under ψi. Observe that ψi : Zi,j → Zj is a proper morphism. Since Zi and Zj are
disjoint closed subspaces of U , we see that Zi,i and Zi,j are disjoint closed subspaces
of Vi.
Denote Zi,i and Zi,j the scheme theoretic images of Zi,i and Zi,j in Xi. We recall
that |Zi,j | is dense in |Zi,j |, see Morphisms of Spaces, Lemma 67.17.7. After replac-
ing Xi by a Vi-admissible blowup we may assume that Zi,i and Zi,j are disjoint,
see Lemma 81.14.2. We assume this holds for both X1 and X2. Observe that this
property is preserved if we replace Xi by a further Vi-admissible blowup. Hence we
may replace X1 by another V1-admissible blowup and assume |Z1,1| is the disjoint
union of the closures of |T | and |f−1Z1| in |X1|.
Set V12 = V1 ×U V2. We have an immersion V12 → X1 ×B X2 which is the compo-
sition of the closed immersion V12 = V1 ×U V2 → V1 ×B V2 (Morphisms of Spaces,
Lemma 67.4.5) and the open immersion V1×BV2 → X1×BX2. Let X12 ⊂ X1×BX2
be the scheme theoretic image of V12 → X1 ×B X2. The projection morphisms

p1 : X12 → X1 and p2 : X12 → X2

are proper as X1 and X2 are proper over B. If we replace X1 by a V1-admissible
blowing up, then X12 is replaced by the strict transform with respect to this blowing
up, see Lemma 81.14.5.
Denote ψ : V12 → U the compositions ψ = ψ1 ◦ p1|V12 = ψ2 ◦ p2|V12 . Consider the
closed subspace

Z12,2 = (p1|V12)−1Z1,2 = (p2|V12)−1Z2,2 = ψ−1Z2 ⊂ V12

The morphism p1|V12 : V12 → V1 is an isomorphism over an open neighbourhood
of Z1,2 because ψ2 : V2 → U is an isomorphism over an open neighbourhood of Z2
and V12 = V1 ×U V2. By Lemma 81.14.3 there exists a V1-admissible blowing up
X ′

1 → X1 such that the strict tranform p′
1 : X ′

12 → X ′
1 of p1 is an isomorphism

over an open neighbourhood of the closure of |Z1,2| in |X ′
1|. After replacing X1

by X ′
1 and X12 by X ′

12 we may assume that p1 is an isomorphism over an open
neighbourhood of |Z1,2|.
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The result of the previous paragraph tells us that
X12 ∩ (Z1,2 ×B Z2,1) = ∅

where the intersection taken in X1 ×B X2. Namely, the inverse image p−1
1 Z1,2

in X12 maps isomorphically to Z1,2. In particular, we see that |Z12,2| is dense in
|p−1

1 Z1,2|. Thus p2 maps |p−1
1 Z1,2| into |Z2,2|. Since |Z2,2|∩|Z2,1| = ∅ we conclude.

It turns out that we need to do one additional blowing up before we can conclude
the argument. Namely, let V2 ⊂ W2 ⊂ X2 be the open subspace with underlying
topological space

|W2| = |V2| ∪ (|X2| \ |Z2,1|) = |X2| \
(
|Z2,1| \ |Z2,1|

)
Since p2(p−1

1 Z1,2) is contained in W2 (see above) we see that replacing X2 by a
W2-admissible blowup and X21 by the corresponding strict transform will preserve
the property of p1 being an isomorphism over an open neighbourhood of Z1,2. Since
Z2,1 ∩W2 = Z2,1 ∩ V2 = Z2,1 we see that Z2,1 is a closed subspace of W2 and V2.
Observe that V12 = V1 ×U V2 = p−1

1 (V1) = p−1
2 (V2) as open subspaces of X12 as it

is the largest open subspace of X12 over which the morphism ψ : V12 → U extends;
details omitted4. We have the following equalities of closed subspaces of V12:

p−1
2 Z2,1 = p−1

2 ψ−1
2 Z1 = p−1

1 ψ−1
1 Z1 = p−1

1 Z1,1 = p−1
1 f−1Z1 ⨿ p−1

1 T

Here and below we use the slight abuse of notation of writing p2 in stead of the
restriction of p2 to V12, etc. Since p−1

2 (Z2,1) is a closed subspace of p−1
2 (W2) as Z2,1

is a closed subspace of W2 we conclude that also p−1
1 f−1Z1 is a closed subspace of

p−1
2 (W2). Finally, the morphism p2 : X12 → X2 is étale at points of p−1

1 f−1Z1 as
ψ1 is étale along f−1Z1 and V12 = V1 ×U V2. Thus we may apply Lemma 81.14.4
to the morphism p2 : X12 → X2, the open W2, the closed subspace Z2,1 ⊂ W2,
and the closed subspace p−1

1 f−1Z1 ⊂ p−1
2 (W2). Hence after replacing X2 by a W2-

admissible blowup and X12 by the corresponding strict transform, we obtain for
every geometric point y of the closure of |p−1

1 f−1Z1| a local ring map OX12,y → O
such that OX2,p2(y) → O is finite flat.
Consider the algebraic space

W2 = U
∐

U2
(X2 \ Z2,1),

and with T ⊂ V1 as in the first paragraph the algebraic space

W1 = U
∐

U1
(X1 \ Z1,2 ∪ T ),

obtained by pushout, see Lemma 81.9.2. Let us apply Lemma 81.14.1 to see that
Wi → B is separated. First, U → B and Xi → B are separated. Let us check
the quasi-compact immersion Ui → U ×B (Xi \ Zi,j) is closed using the valuative
criterion, see Morphisms of Spaces, Lemma 67.42.1. Choose a valuation ring A over
B with fraction field K and compatible morphisms (u, xi) : Spec(A) → U ×B Xi

and ui : Spec(K)→ Ui. Since ψi is proper, we can find a unique vi : Spec(A)→ Vi
compatible with u and ui. Since Xi is proper over B we see that xi = vi. If vi
does not factor through Ui ⊂ Vi, then we conclude that xi maps the closed point

4Namely, V1 ×U V2 is proper over U so if ψ extends to a larger open of X12, then V1 ×U V2
would be closed in this open by Morphisms of Spaces, Lemma 67.40.6. Then we get equality as
V12 ⊂ X12 is dense.
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of Spec(A) into Zi,j or T when i = 1. This finishes the proof because we removed
Zi,j and T in the construction of Wi.
On the other hand, for any valuation ring A over B with fraction field K and any
morphism

γ : Spec(K)→ Im(U1 ×U U2 → U)
over B, we claim that after replacing A by an extension of valuation rings, there
is an i and an extension of γ to a morphism hi : Spec(A) → Wi. Namely, we
first extend γ to a morphism g2 : Spec(A) → X2 using the valuative criterion of
properness. If the image of g2 does not meet Z2,1, then we obtain our morphism
into W2. Otherwise, denote z ∈ Z2,1 a geometric point lying over the image of the
closed point under g2. We may lift this to a geometric point y of X12 in the closure
of |p−1

1 f−1Z1| because the map of spaces |p−1
1 f−1Z1| → |Z2,1| is closed with image

containing the dense open |Z2,1|. After replacing A by its strict henselization (More
on Algebra, Lemma 15.123.6) we get the following diagram

A // A′

OX2,z
//

OO

OX12,y
// O

OO

where OX12,y → O is the map we found in the 5th paragraph of the proof. Since
the horizontal composition is finite and flat we can find an extension of valuation
rings A′/A and dotted arrow making the diagram commute. After replacing A by
A′ this means that we obtain a lift g12 : Spec(A) → X12 whose closed point maps
into the closure of |p−1

1 f−1Z1|. Then g1 = p1 ◦ g12 : Spec(A)→ X1 is a morphism
whose closed point maps into the closure of |f−1Z1|. Since the closure of |f−1Z1| is
disjoint from the closure of |T | and contained in |Z1,1| which is disjoint from |Z1,2|
we conclude that g1 defines a morphism h1 : Spec(A)→W1 as desired.
Consider a diagram

W ′
1

��

// W W ′
2

oo

��
W1 Uoo

`` OO >>

// W2

as in More on Morphisms of Spaces, Lemma 76.40.1. By the previous paragraph
for every solid diagram

Spec(K)
γ

//

��

W

��
Spec(A)

;;

// B

where Im(γ) ⊂ Im(U1 ×U U2 → U) there is an i and an extension hi : Spec(A) →
Wi of γ after possibly replacing A by an extension of valuation rings. Using the
valuative criterion of properness for W ′

i →Wi, we can then lift hi to h′
i : Spec(A)→

W ′
i . Hence the dotted arrow in the diagram exists after possibly extending A. Since

W is separated over B, we see that the choice of extension isn’t needed and the
arrow is unique as well, see Morphisms of Spaces, Lemmas 67.41.5 and 67.43.1.
Then finally the existence of the dotted arrow implies that W → B is universally
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closed by Morphisms of Spaces, Lemma 67.42.5. As W → B is already of finite
type and separated, we win. □

Lemma 81.14.8.0F4C Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let U ⊂ X be a proper dense open subspace. Then there exists an affine scheme
V and an étale morphism V → X such that

(1) the open subspace W = U ∪ Im(V → X) is strictly larger than U ,
(2) (U ⊂W,V →W ) is a distinguished square, and
(3) U ×W V → U has dense image.

Proof. Choose a stratification

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

and morphisms fp : Vp → Up as in Decent Spaces, Lemma 68.8.6. Let p be the
smallest integer such that Up ̸⊂ U (this is possible as U ̸= X). Choose an affine
open V ⊂ Vp such that the étale morphism fp|V : V → X does not factor through
U . Consider the open W = U ∪ Im(V → X) and the reduced closed subspace
Z ⊂W with |Z| = |W | \ |U |. Then f−1Z → Z is an isomorphism because we have
the corresponding property for the morphism fp, see the lemma cited above. Thus
(U ⊂ W, f : V → W ) is a distinguished square. It may not be true that the open
I = Im(U×W V → U) is dense in U . The algebraic space U ′ ⊂ U whose underlying
set is |U |\|I| is Noetherian and hence we can find a dense open subscheme U ′′ ⊂ U ′,
see for example Properties of Spaces, Proposition 66.13.3. Then we can find a dense
open affine U ′′′ ⊂ U ′′, see Properties, Lemmas 28.5.7 and 28.29.1. After we replace
f by V ⨿ U ′′′ → X everything is clear. □

Theorem 81.14.9.0F4D [CLO12]Let S be a scheme. Let B be a quasi-compact and quasi-
separated algebraic space over S. Let X → B be a separated, finite type morphism.
Then X has a compactification over B.

Proof. We first reduce to the Noetherian case. We strongly urge the reader to skip
this paragraph. First, we may replace S by Spec(Z). See Spaces, Section 65.16 and
Properties of Spaces, Definition 66.3.1. There exists a closed immersion X → X ′

with X ′ → B of finite presentation and separated. See Limits of Spaces, Proposition
70.11.7. If we find a compactification of X ′ over B, then taking the scheme theoretic
closure of X in this will give a compactification of X over B. Thus we may assume
X → B is separated and of finite presentation. We may write B = limBi as a
directed limit of a system of Noetherian algebraic spaces of finite type over Spec(Z)
with affine transition morphisms. See Limits of Spaces, Proposition 70.8.1. We
can choose an i and a morphism Xi → Bi of finite presentation whose base change
to B is X → B, see Limits of Spaces, Lemma 70.7.1. After increasing i we may
assume Xi → Bi is separated, see Limits of Spaces, Lemma 70.6.9. If we can
find a compactification of Xi over Bi, then the base change of this to B will be a
compactification of X over B. This reduces us to the case discussed in the next
paragraph.

Assume B is of finite type over Z in addition to being quasi-compact and quasi-
separated. Let U → X be an étale morphism of algebraic spaces such that U has
a compactification Y over Spec(Z). The morphism

U −→ B ×Spec(Z) Y

https://stacks.math.columbia.edu/tag/0F4C
https://stacks.math.columbia.edu/tag/0F4D
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is separated and quasi-finite by Morphisms of Spaces, Lemma 67.27.10 (the dis-
played morphism factors into an immersion hence is a monomorphism). Hence by
Zariski’s main theorem (More on Morphisms of Spaces, Lemma 76.34.3) there is
an open immersion of U into an algebraic space Y ′ finite over B ×Spec(Z) Y . Then
Y ′ → B is proper as the composition Y ′ → B ×Spec(Z) Y → B of two proper
morphisms (use Morphisms of Spaces, Lemmas 67.45.9, 67.40.4, and 67.40.3). We
conclude that U has a compactification over B.
There is a dense open subspace U ⊂ X which is a scheme. (Properties of Spaces,
Proposition 66.13.3). In fact, we may choose U to be an affine scheme (Properties,
Lemmas 28.5.7 and 28.29.1). Thus U has a compactification over Spec(Z); this is
easily shown directly but also follows from the theorem for schemes, see More on
Flatness, Theorem 38.33.8. By the previous paragraph U has a compactification
over B. By Noetherian induction we can find a maximal dense open subspace
U ⊂ X which has a compactification over B. We will show that the assumption
that U ̸= X leads to a contradiction. Namely, by Lemma 81.14.8 we can find a
strictly larger open U ⊂ W ⊂ X and a distinguished square (U ⊂ W, f : V → W )
with V affine and U ×W V dense image in U . Since V is affine, as before it has
a compactification over B. Hence Lemma 81.14.7 applies to show that W has a
compactification over B which is the desired contradiction. □
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CHAPTER 82

Chow Groups of Spaces

0EDQ 82.1. Introduction

0EDR In this chapter we first discuss Chow groups of algebraic spaces. Having defined
these, we define Chern classes of vector bundles as operators on these chow groups.
The strategy will be entirely the same as the strategy in the case of schemes.
Therefore we urge the reader to take a look at the introduction (Chow Homology,
Section 42.1) of the corresponding chapter for schemes.
Some related papers: [EG98] and [Kre99].

82.2. Setup

0EDS We first fix the category of algebraic spaces we will be working with. Please keep
in mind throughout this chapter that “decent + locally Noetherian” is the same
as “quasi-separated + locally Noetherian” according to Decent Spaces, Lemma
68.14.1.

Situation 82.2.1.0EDT Here S is a scheme and B is an algebraic space over S. We assume
B is quasi-separated, locally Noetherian, and universally catenary (Decent Spaces,
Definition 68.25.4). Moreover, we assume given a dimension function δ : |B| −→ Z.
We say X/B is good if X is an algebraic space over B whose structure morphism
f : X → B is quasi-separated and locally of finite type. In this case we define

δ = δX/B : |X| −→ Z
as the map sending x to δ(f(x)) plus the transcendence degree of x/f(x) (Mor-
phisms of Spaces, Definition 67.33.1). This is a dimension function by More on
Morphisms of Spaces, Lemma 76.32.2.

A special case is when S = B is a scheme and (S, δ) is as in Chow Homology, Situ-
ation 42.7.1. Thus B might be the spectrum of a field (Chow Homology, Example
42.7.2) or B = Spec(Z) (Chow Homology, Example 42.7.3).
Many lemma, proposition, theorems, definitions on algebraic spaces are easier in
the setting of Situation 82.2.1 because the algebraic spaces we are working with
are quasi-separated (and thus a fortiori decent) and locally Noetherian. We will
sprinkle this chapter with remarks such as the following to point this out.

Remark 82.2.2.0EDU In Situation 82.2.1 if X/B is good, then |X| is a sober topologi-
cal space. See Properties of Spaces, Lemma 66.15.1 or Decent Spaces, Proposition
68.12.4. We will use this without further mention to choose generic points of irre-
ducible closed subsets of |X|.

Remark 82.2.3.0EDV In Situation 82.2.1 if X/B is good, then X is integral (Spaces
over Fields, Definition 72.4.1) if and only if X is reduced and |X| is irreducible.

6091
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Moreover, for any point ξ ∈ |X| there is a unique integral closed subspace Z ⊂ X
such that ξ is the generic point of the closed subset |Z| ⊂ |X|, see Spaces over
Fields, Lemma 72.4.7.

If B is Jacobson and δ sends closed points to zero, then δ is the function sending a
point to the dimension of its closure.

Lemma 82.2.4.0EDW In Situation 82.2.1 assume B is Jacobson and that δ(b) = 0 for
every closed point b of |B|. Let X/B be good. If Z ⊂ X is an integral closed
subspace with generic point ξ ∈ |Z|, then the following integers are the same:

(1) δ(ξ) = δX/B(ξ),
(2) dim(|Z|),
(3) codim({z}, |Z|) for z ∈ |Z| closed,
(4) the dimension of the local ring of Z at z for z ∈ |Z| closed, and
(5) dim(OZ,z) for z ∈ |Z| closed.

Proof. Let X, Z, ξ be as in the lemma. Since X is locally of finite type over B we see
that X is Jacobson, see Decent Spaces, Lemma 68.23.1. Hence Xft-pts ⊂ |X| is the
set of closed points by Decent Spaces, Lemma 68.23.3. Given a chain T0 ⊃ . . . ⊃ Te
of irreducible closed subsets of |Z| we have Te ∩ Xft-pts nonempty by Morphisms
of Spaces, Lemma 67.25.6. Thus we can always assume such a chain ends with
Te = {z} for some z ∈ |Z| closed. It follows that dim(Z) = supz codim({z}, |Z|)
where z runs over the closed points of |Z|. We have codim({z}, Z) = δ(ξ)− δ(z) by
Topology, Lemma 5.20.2. By Morphisms of Spaces, Lemma 67.25.4 the image of z is
a finite type point of B, i.e., a closed point of |B|. By Morphisms of Spaces, Lemma
67.33.4 the transcendence degree of z/b is 0. We conclude that δ(z) = δ(b) = 0 by
assumption. Thus we obtain equality

dim(|Z|) = codim({z}, Z) = δ(ξ)
for all z ∈ |Z| closed. Finally, we have that codim({z}, Z) is equal to the dimension
of the local ring of Z at z by Decent Spaces, Lemma 68.20.2 which in turn is equal
to dim(OZ,z) by Properties of Spaces, Lemma 66.22.4. □

In the situation of the lemma above the value of δ at the generic point of a closed
irreducible subset is the dimension of the irreducible closed subset. This motivates
the following definition.

Definition 82.2.5.0EDX In Situation 82.2.1 for any good X/B and any irreducible closed
subset T ⊂ |X| we define

dimδ(T ) = δ(ξ)
where ξ ∈ T is the generic point of T . We will call this the δ-dimension of T .
If T ⊂ |X| is any closed subset, then we define dimδ(T ) as the supremum of the
δ-dimensions of the irreducible components of T . If Z is a closed subspace of X,
then we set dimδ(Z) = dimδ(|Z|).

Of course this just means that dimδ(T ) = sup{δ(t) | t ∈ T}.

82.3. Cycles

0EDY This is the analogue of Chow Homology, Section 42.8
Since we are not assuming our spaces are quasi-compact we have to be a little careful
when defining cycles. We have to allow infinite sums because a rational function

https://stacks.math.columbia.edu/tag/0EDW
https://stacks.math.columbia.edu/tag/0EDX
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may have infinitely many poles for example. In any case, if X is quasi-compact
then a cycle is a finite sum as usual.

Definition 82.3.1.0EDZ In Situation 82.2.1 let X/B be good. Let k ∈ Z.
(1) A cycle on X is a formal sum

α =
∑

nZ [Z]

where the sum is over integral closed subspaces Z ⊂ X, each nZ ∈ Z,
and {|Z|;nZ ̸= 0} is a locally finite collection of subsets of |X| (Topology,
Definition 5.28.4).

(2) A k-cycle on X is a cycle

α =
∑

nZ [Z]

where nZ ̸= 0⇒ dimδ(Z) = k.
(3) The abelian group of all k-cycles on X is denoted Zk(X).

In other words, a k-cycle on X is a locally finite formal Z-linear combination of
integral closed subspaces (Remark 82.2.3) of δ-dimension k. Addition of k-cycles
α =

∑
nZ [Z] and β =

∑
mZ [Z] is given by

α+ β =
∑

(nZ +mZ)[Z],

i.e., by adding the coefficients.

82.4. Multiplicities

0EE0 A section with a few simple results on lengths and multiplicities.

Lemma 82.4.1.0EE1 Let S be a scheme and let X be an algebraic space over S. Let
F be a quasi-coherent OX -module. Let x ∈ |X|. Let d ∈ {0, 1, 2, . . . ,∞}. The
following are equivalent

(1) lengthOX,x
Fx = d

(2) for some étale morphism U → X with U a scheme and u ∈ U mapping to
x we have lengthOU,u

(F|U )u = d

(3) for any étale morphism U → X with U a scheme and u ∈ U mapping to
x we have lengthOU,u

(F|U )u = d

Proof. Let U → X and u ∈ U be as in (2) or (3). Then we know that OX,x is the
strict henselization of OU,u and that

Fx = (F|U )u ⊗OU,u
OX,x

See Properties of Spaces, Lemmas 66.22.1 and 66.29.4. Thus the equality of the
lengths follows from Algebra, Lemma 10.52.13 the fact that OU,u → OX,x is flat
and the fact that OX,x/muOX,x is equal to the residue field of OX,x. These facts
about strict henselizations can be found in More on Algebra, Lemma 15.45.1. □

Definition 82.4.2.0EE2 Let S be a scheme and let X be an algebraic space over S. Let
F be a quasi-coherent OX -module. Let x ∈ |X|. Let d ∈ {0, 1, 2, . . . ,∞}. We say
F has length d at x if the equivalent conditions of Lemma 82.4.1 are satisfied.

Lemma 82.4.3.0EE3 Let S be a scheme. Let i : Y → X be a closed immersion of
algebraic spaces over S. Let G be a quasi-coherent OY -module. Let y ∈ |Y | with
image x ∈ |X|. Let d ∈ {0, 1, 2, . . . ,∞}. The following are equivalent

https://stacks.math.columbia.edu/tag/0EDZ
https://stacks.math.columbia.edu/tag/0EE1
https://stacks.math.columbia.edu/tag/0EE2
https://stacks.math.columbia.edu/tag/0EE3


82.4. MULTIPLICITIES 6094

(1) G has length d at y, and
(2) i∗G has length d at x.

Proof. Choose an étale morphism f : U → X with U a scheme and u ∈ U mapping
to x. Set V = Y ×X U . Denote g : V → Y and j : V → U the projections. Then
j : V → U is a closed immersion and there is a unique point v ∈ V mapping to
y ∈ |Y | and u ∈ U (use Properties of Spaces, Lemma 66.4.3 and Spaces, Lemma
65.12.3). We have j∗(G|V ) = (i∗G)|U as modules on the scheme V and j∗ the “usual”
pushforward of modules for the morphism of schemes j, see discussion surrounding
Cohomology of Spaces, Equation (69.3.0.1). In this way we reduce to the case of
schemes: if i : Y → X is a closed immersion of schemes, then

(i∗G)x = Gy
as modules over OX,x where the module structure on the right hand side is given
by the surjection i♯y : OX,x → OY,y. Thus equality by Algebra, Lemma 10.52.5. □

Lemma 82.4.4.0EE4 Let S be a scheme and let X be a locally Noetherian algebraic
space over S. Let F be a coherent OX -module. Let x ∈ |X|. The following are
equivalent

(1) for some étale morphism U → X with U a scheme and u ∈ U mapping to
x we have u is a generic point of an irreducible component of Supp(F|U ),

(2) for any étale morphism U → X with U a scheme and u ∈ U mapping to
x we have u is a generic point of an irreducible component of Supp(F|U ),

(3) the length of F at x is finite and nonzero.
If X is decent (equivalently quasi-separated) then these are also equivalent to

(4) x is a generic point of an irreducible component of Supp(F).
Proof. Assume f : U → X is an étale morphism with U a scheme and u ∈ U maps
to x. Then F|U = f∗F is a coherentOU -module on the locally Noetherian scheme U
and in particular (F|U )u is a finite OU,u-module, see Cohomology of Spaces, Lemma
69.12.2 and Cohomology of Schemes, Lemma 30.9.1. Recall that the support of F|U
is a closed subset of U (Morphisms, Lemma 29.5.3) and that the support of (F|U )u
is the pullback of the support of F|U by the morphism Spec(OU,u)→ U . Thus u is
a generic point of an irreducible component of Supp(F|U ) if and only if the support
of (F|U )u is equal to the maximal ideal of OU,u. Now the equivalence of (1), (2),
(3) follows from by Algebra, Lemma 10.62.3.
If X is decent we choose an étale morphism f : U → X and a point u ∈ U mapping
to x. The support of F pulls back to the support of F|U , see Morphisms of Spaces,
Lemma 67.15.2. Also, specializations x′ ⇝ x in |X| lift to specializations u′ ⇝ u in
U and any nontrivial specialization u′ ⇝ u in U maps to a nontrivial specialization
f(u′) ⇝ f(u) in |X|, see Decent Spaces, Lemmas 68.12.2 and 68.12.1. Using that
|X| and U are sober topological spaces (Decent Spaces, Proposition 68.12.4 and
Schemes, Lemma 26.11.1) we conclude x is a generic point of the support of F if
and only if u is a generic point of the support of F|U . We conclude (4) is equivalent
to (1).
The parenthetical statement follows from Decent Spaces, Lemma 68.14.1. □

Lemma 82.4.5.0EE6 In Situation 82.2.1 let X/B be good. Let T ⊂ |X| be a closed
subset and t ∈ T . If dimδ(T ) ≤ k and δ(t) = k, then t is a generic point of an
irreducible component of T .

https://stacks.math.columbia.edu/tag/0EE4
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Proof. We know t is contained in an irreducible component T ′ ⊂ T . Let t′ ∈ T ′ be
the generic point. Then k ≥ δ(t′) ≥ δ(t). Since δ is a dimension function we see
that t = t′. □

82.5. Cycle associated to a closed subspace

0EE7 This section is the analogue of Chow Homology, Section 42.9.

Remark 82.5.1.0EE8 In Situation 82.2.1 let X/B be good. Let Y ⊂ X be a closed
subspace. By Remarks 82.2.2 and 82.2.3 there are 1-to-1 correspondences between

(1) irreducible components T of |Y |,
(2) generic points of irreducible components of |Y |, and
(3) integral closed subspaces Z ⊂ Y with the property that |Z| is an irre-

ducible component of |Y |.
In this chapter we will call Z as in (3) an irreducible component of Y and we will
call ξ ∈ |Z| its generic point.

Definition 82.5.2.0EE9 In Situation 82.2.1 let X/B be good. Let Y ⊂ X be a closed
subspace.

(1) For an irreducible component Z ⊂ Y with generic point ξ the length of
OY at ξ (Definition 82.4.2) is called the multiplicity of Z in Y . By Lemma
82.4.4 applied to OY on Y this is a positive integer.

(2) Assume dimδ(Y ) ≤ k. The k-cycle associated to Y is

[Y ]k =
∑

mZ,Y [Z]

where the sum is over the irreducible components Z of Y of δ-dimension
k and mZ,Y is the multiplicity of Z in Y . This is a k-cycle by Spaces over
Fields, Lemma 72.6.1.

It is important to note that we only define [Y ]k if the δ-dimension of Y does not
exceed k. In other words, by convention, if we write [Y ]k then this implies that
dimδ(Y ) ≤ k.

82.6. Cycle associated to a coherent sheaf

0EEA This is the analogue of Chow Homology, Section 42.10.

Definition 82.6.1.0EEB In Situation 82.2.1 let X/B be good. Let F be a coherent
OX -module.

(1) For an integral closed subspace Z ⊂ X with generic point ξ such that |Z|
is an irreducible component of Supp(F) the length of F at ξ (Definition
82.4.2) is called the multiplicity of Z in F . By Lemma 82.4.4 this is a
positive integer.

(2) Assume dimδ(Supp(F)) ≤ k. The k-cycle associated to F is

[F ]k =
∑

mZ,F [Z]

where the sum is over the integral closed subspaces Z ⊂ X corresponding
to irreducible components of Supp(F) of δ-dimension k and mZ,F is the
multiplicity of Z in F . This is a k-cycle by Spaces over Fields, Lemma
72.6.1.

https://stacks.math.columbia.edu/tag/0EE8
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It is important to note that we only define [F ]k if F is coherent and the δ-dimension
of Supp(F) does not exceed k. In other words, by convention, if we write [F ]k then
this implies that F is coherent on X and dimδ(Supp(F)) ≤ k.

Lemma 82.6.2.0EEC In Situation 82.2.1 let X/B be good. Let F be a coherent OX -
module with dimδ(Supp(F)) ≤ k. Let Z be an integral closed subspace of X with
dimδ(Z) = k. Let ξ ∈ |Z| be the generic point. Then the coefficient of Z in [F ]k is
the length of F at ξ.

Proof. Observe that |Z| is an irreducible component of Supp(F) if and only if ξ ∈
Supp(F), see Lemma 82.4.5. Moreover, the length of F at ξ is zero if ξ ̸∈ Supp(F).
Combining this with Definition 82.6.1 we conclude. □

Lemma 82.6.3.0EED In Situation 82.2.1 let X/B be good. Let Y ⊂ X be a closed
subspace. If dimδ(Y ) ≤ k, then [Y ]k = [i∗OY ]k where i : Y → X is the inclusion
morphism.

Proof. Let Z be an integral closed subspace of X with dimδ(Z) = k. If Z ̸⊂ Y the
Z has coefficient zero in both [Y ]k and [i∗OY ]k. If Z ⊂ Y , then the generic point of
Z may be viewed as a point y ∈ |Y | whose image x ∈ |X|. Then the coefficient of
Z in [Y ]k is the length of OY at y and the coefficient of Z in [i∗OY ]k is the length
of i∗OY at x. Thus the equality of the coefficients follows from Lemma 82.4.3. □

Lemma 82.6.4.0EEE In Situation 82.2.1 let X/B be good. Let 0 → F → G → H → 0
be a short exact sequence of coherent OX -modules. Assume that the δ-dimension
of the supports of F , G, and H are ≤ k. Then [G]k = [F ]k + [H]k.

Proof. Let Z be an integral closed subspace of X with dimδ(Z) = k. It suffices
to show that the coefficients of Z in [G]k, [F ]k, and [H]k satisfy the corresponding
additivity. By Lemma 82.6.2 it suffices to show

the length of G at x = the length of F at x+ the length of H at x
for any x ∈ |X|. Looking at Definition 82.4.2 this follows immediately from addi-
tivity of lengths, see Algebra, Lemma 10.52.3. □

82.7. Preparation for proper pushforward

0EEF This section is the analogue of Chow Homology, Section 42.11.

Lemma 82.7.1.0EEG In Situation 82.2.1 let X,Y/B be good and let f : X → Y be a
morphism over B. If Z ⊂ X is an integral closed subspace, then there exists a
unique integral closed subspace Z ′ ⊂ Y such that there is a commutative diagram

Z //

��

X

f

��
Z ′ // Y

with Z → Z ′ dominant. If f is proper, then Z → Z ′ is proper and surjective.

Proof. Let ξ ∈ |Z| be the generic point. Let Z ′ ⊂ Y be the integral closed sub-
space whose generic point is ξ′ = f(ξ), see Remark 82.2.3. Since ξ ∈ |f−1(Z ′)| =
|f |−1(|Z ′|) by Properties of Spaces, Lemma 66.4.3 and since Z is the reduced with
|Z| = {ξ} we see that Z ⊂ f−1(Z ′) as closed subspaces of X (see Properties of
Spaces, Lemma 66.12.4). Thus we obtain our morphism Z → Z ′. This morphism

https://stacks.math.columbia.edu/tag/0EEC
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is dominant as the generic point of Z maps to the generic point of Z ′. Uniqueness
of Z ′ is clear. If f is proper, then Z → Y is proper as a composition of proper
morphisms (Morphisms of Spaces, Lemmas 67.40.3 and 67.40.5). Then we conclude
that Z → Z ′ is proper by Morphisms of Spaces, Lemma 67.40.6. Surjectivity then
follows as the image of a proper morphism is closed. □

Remark 82.7.2.0ENW In Situation 82.2.1 let X/B be good. Every x ∈ |X| can be
represented by a (unique) monomorphism Spec(k) → X where k is a field, see
Decent Spaces, Lemma 68.11.1. Then k is the residue field of x and is denoted
κ(x). Recall that X has a dense open subscheme U ⊂ X (Properties of Spaces,
Proposition 66.13.3). If x ∈ U , then κ(x) agrees with the residue field of x on U as
a scheme. See Decent Spaces, Section 68.11.

Remark 82.7.3.0ENX In Situation 82.2.1 let X/B be good. Assume X is integral. In
this case the function field R(X) of X is defined and is equal to the residue field of
X at its generic point. See Spaces over Fields, Definition 72.4.3. Combining this
with Remark 82.2.3 we find that for any x ∈ X the residue field κ(x) is the function
field of the unique integral closed subspace Z ⊂ X whose generic point is x.

Lemma 82.7.4.0ENY In Situation 82.2.1 let X,Y/B be good and let f : X → Y be a
morphism over B. Assume X, Y integral and dimδ(X) = dimδ(Y ). Then either f
factors through a proper closed subspace of Y , or f is dominant and the extension
of function fields R(X)/R(Y ) is finite.

Proof. By Lemma 82.7.1 there is a unique integral closed subspace Z ⊂ Y such
that f factors through a dominant morphism X → Z. Then Z = Y if and only
if dimδ(Z) = dimδ(Y ). On the other hand, by our construction of dimension
functions (see Situation 82.2.1) we have dimδ(X) = dimδ(Z) + r where r the tran-
scendence degree of the extension R(X)/R(Z). Combining this with Spaces over
Fields, Lemma 72.5.1 the lemma follows. □

Lemma 82.7.5.0ENZ In Situation 82.2.1 let X,Y/B be good. Let f : X → Y be
a morphism over B. Assume f is quasi-compact, and {Ti}i∈I is a locally finite
collection of closed subsets of |X|. Then {|f |(Ti)}i∈I is a locally finite collection of
closed subsets of |Y |.

Proof. Let V ⊂ |Y | be a quasi-compact open subset. Then |f |−1(V ) ⊂ |X| is
quasi-compact by Morphisms of Spaces, Lemma 67.8.3. Hence the set {i ∈ I :
Ti ∩ |f |−1(V ) ̸= ∅} is finite by a simple topological argument which we omit. Since
this is the same as the set

{i ∈ I : |f |(Ti) ∩ V ̸= ∅} = {i ∈ I : |f |(Ti) ∩ V ̸= ∅}

the lemma is proved. □

82.8. Proper pushforward

0EP0 This section is the analogue of Chow Homology, Section 42.12.

Definition 82.8.1.0EP1 In Situation 82.2.1 let X,Y/B be good. Let f : X → Y be a
morphism over B. Assume f is proper.
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(1) Let Z ⊂ X be an integral closed subspace with dimδ(Z) = k. Let Z ′ ⊂ Y
be the image of Z as in Lemma 82.7.1. We define

f∗[Z] =
{

0 if dimδ(Z ′) < k,
deg(Z/Z ′)[Z ′] if dimδ(Z ′) = k.

The degree of Z over Z ′ is defined and finite if dimδ(Z ′) = dimδ(Z) by
Lemma 82.7.4 and Spaces over Fields, Definition 72.5.2.

(2) Let α =
∑
nZ [Z] be a k-cycle on X. The pushforward of α as the sum

f∗α =
∑

nZf∗[Z]

where each f∗[Z] is defined as above. The sum is locally finite by Lemma
82.7.5 above.

By definition the proper pushforward of cycles

f∗ : Zk(X) −→ Zk(Y )

is a homomorphism of abelian groups. It turns X 7→ Zk(X) into a covariant
functor on the category whose object are good algebraic spaces over B and whose
morphisms are proper morphisms over B.

Lemma 82.8.2.0EP2 In Situation 82.2.1 let X,Y, Z/B be good. Let f : X → Y and
g : Y → Z be proper morphisms over B. Then g∗ ◦ f∗ = (g ◦ f)∗ as maps Zk(X)→
Zk(Z).

Proof. Let W ⊂ X be an integral closed subspace of dimension k. Consider the
integral closed subspaces W ′ ⊂ Y and W ′′ ⊂ Z we get by applying Lemma 82.7.1
to f and W and then to g and W ′. Then W → W ′ and W ′ → W ′′ are surjective
and proper. We have to show that g∗(f∗[W ]) = (f ◦g)∗[W ]. If dimδ(W ′′) < k, then
both sides are zero. If dimδ(W ′′) = k, then we see W → W ′ and W ′ → W ′′ both
satisfy the hypotheses of Lemma 82.7.4. Hence

g∗(f∗[W ]) = deg(W/W ′) deg(W ′/W ′′)[W ′′], (f ◦ g)∗[W ] = deg(W/W ′′)[W ′′].

Then we can apply Spaces over Fields, Lemma 72.5.3 to conclude. □

Lemma 82.8.3.0EP3 In Situation 82.2.1 let f : X → Y be a proper morphism of good
algebraic spaces over B.

(1) Let Z ⊂ X be a closed subspace with dimδ(Z) ≤ k. Then

f∗[Z]k = [f∗OZ ]k.

(2) Let F be a coherent sheaf on X such that dimδ(Supp(F)) ≤ k. Then

f∗[F ]k = [f∗F ]k.

Note that the statement makes sense since f∗F and f∗OZ are coherent OY -modules
by Cohomology of Spaces, Lemma 69.20.2.

Proof. Part (1) follows from (2) and Lemma 82.6.3. Let F be a coherent sheaf on
X. Assume that dimδ(Supp(F)) ≤ k. By Cohomology of Spaces, Lemma 69.12.7
there exists a closed immersion i : Z → X and a coherent OZ-module G such that
i∗G ∼= F and such that the support of F is Z. Let Z ′ ⊂ Y be the scheme theoretic
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image of f |Z : Z → Y , see Morphisms of Spaces, Definition 67.16.2. Consider the
commutative diagram

Z
i
//

f |Z
��

X

f

��
Z ′ i′ // Y

of algebraic spaces over B. Observe that f |Z is surjective (follows from Morphisms
of Spaces, Lemma 67.16.3 and the fact that |f | is closed) and proper (follows from
Morphisms of Spaces, Lemmas 67.40.3, 67.40.5, and 67.40.6). We have f∗F =
f∗i∗G = i′∗(f |Z)∗G by going around the diagram in two ways. Suppose we know
the result holds for closed immersions and for f |Z . Then we see that
f∗[F ]k = f∗i∗[G]k = (i′)∗(f |Z)∗[G]k = (i′)∗[(f |Z)∗G]k = [(i′)∗(f |Z)∗G]k = [f∗F ]k

as desired. The case of a closed immersion follows from Lemma 82.4.3 and the
definitions. Thus we have reduced to the case where dimδ(X) ≤ k and f : X → Y
is proper and surjective.
Assume dimδ(X) ≤ k and f : X → Y is proper and surjective. For every irreducible
component Z ⊂ Y with generic point η there exists a point ξ ∈ X such that
f(ξ) = η. Hence δ(η) ≤ δ(ξ) ≤ k. Thus we see that in the expressions

f∗[F ]k =
∑

nZ [Z], and [f∗F ]k =
∑

mZ [Z].

whenever nZ ̸= 0, or mZ ̸= 0 the integral closed subspace Z is actually an irre-
ducible component of Y of δ-dimension k (see Lemma 82.4.5). Pick such an integral
closed subspace Z ⊂ Y and denote η its generic point. Note that for any ξ ∈ X
with f(ξ) = η we have δ(ξ) ≥ k and hence ξ is a generic point of an irreducible com-
ponent of X of δ-dimension k as well (see Lemma 82.4.5). By Spaces over Fields,
Lemma 72.3.2 there exists an open subspace η ∈ V ⊂ Y such that f−1(V )→ V is
finite. Since η is a generic point of an irreducible component of |Y | we may assume
V is an affine scheme, see Properties of Spaces, Proposition 66.13.3. Replacing Y
by V and X by f−1(V ) we reduce to the case where Y is affine, and f is finite.
In particular X and Y are schemes and we reduce to the corresponding result for
schemes, see Chow Homology, Lemma 42.12.4 (applied with S = Y ). □

82.9. Preparation for flat pullback

0EP4 This section is the analogue of Chow Homology, Section 42.13.
Recall that a morphism of algebraic spaces is said to have relative dimension r if
étale locally on the source and the target we get a morphism of schemes which
has relative dimension r. The precise definition is equivalent, but in fact slightly
different, see Morphisms of Spaces, Definition 67.33.2.

Lemma 82.9.1.0EP5 In Situation 82.2.1 let X,Y/B be good. Let f : X → Y be a
morphism over B. Assume f is flat of relative dimension r. For any closed subset
T ⊂ |Y | we have

dimδ(|f |−1(T )) = dimδ(T ) + r.

provided |f |−1(T ) is nonempty. If Z ⊂ Y is an integral closed subscheme and
Z ′ ⊂ f−1(Z) is an irreducible component, then Z ′ dominates Z and dimδ(Z ′) =
dimδ(Z) + r.
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Proof. Since the δ-dimension of a closed subset is the supremum of the δ-dimensions
of the irreducible components, it suffices to prove the final statement. We may
replace Y by the integral closed subscheme Z and X by f−1(Z) = Z ×Y X. Hence
we may assume Z = Y is integral and f is a flat morphism of relative dimension
r. Since Y is locally Noetherian the morphism f which is locally of finite type, is
actually locally of finite presentation. Hence Morphisms of Spaces, Lemma 67.30.6
applies and we see that f is open. Let ξ ∈ X be a generic point of an irreducible
component of X. By the openness of f we see that f(ξ) is the generic point η
of Z = Y . Thus Z ′ dominates Z = Y . Finally, we see that ξ and η are in the
schematic locus of X and Y by Properties of Spaces, Proposition 66.13.3. Since ξ is
a generic point of X we see that OX,ξ = OXη,ξ has only one prime ideal and hence
has dimension 0 (we may use usual local rings as ξ and η are in the schematic loci
of X and Y ). Thus by Morphisms of Spaces, Lemma 67.34.1 (and the definition of
morphisms of given relative dimension) we conclude that the transcendence degree
of κ(ξ) over κ(η) is r. In other words, δ(ξ) = δ(η) + r as desired. □

Here is the lemma that we will use to prove that the flat pullback of a locally finite
collection of closed subschemes is locally finite.
Lemma 82.9.2.0EP6 In Situation 82.2.1 let X,Y/B be good. Let f : X → Y be a
morphism over B. Assume {Ti}i∈I is a locally finite collection of closed subsets of
|Y |. Then {|f |−1(Ti)}i∈I is a locally finite collection of closed subsets of X.
Proof. Let U ⊂ |X| be a quasi-compact open subset. Since the image |f |(U) ⊂ |Y |
is a quasi-compact subset there exists a quasi-compact open V ⊂ |Y | such that
|f |(U) ⊂ V . Note that

{i ∈ I : |f |−1(Ti) ∩ U ̸= ∅} ⊂ {i ∈ I : Ti ∩ V ̸= ∅}.
Since the right hand side is finite by assumption we win. □

82.10. Flat pullback

0EP7 This section is the analogue of Chow Homology, Section 42.14.
Let S be a scheme and let f : X → Y be a morphism of algebraic spaces over S. Let
Z ⊂ Y be a closed subspace. In this chapter we will sometimes use the terminology
scheme theoretic inverse image for the inverse image f−1(Z) of Z constructed in
Morphisms of Spaces, Definition 67.13.2. The scheme theoretic inverse image is the
fibre product

f−1(Z) //

��

X

��
Z // Y

If I ⊂ OY is the quasi-coherent sheaf of ideals corresponding to Z in Y , then
f−1(I)OX is the quasi-coherent sheaf of ideals corresponding to f−1(Z) in X.
Definition 82.10.1.0EP8 In Situation 82.2.1 let X,Y/B be good. Let f : X → Y be a
morphism over B. Assume f is flat of relative dimension r.

(1) Let Z ⊂ Y be an integral closed subspace of δ-dimension k. We define
f∗[Z] to be the (k + r)-cycle on X associated to the scheme theoretic
inverse image

f∗[Z] = [f−1(Z)]k+r.
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This makes sense since dimδ(f−1(Z)) = k + r by Lemma 82.9.1.
(2) Let α =

∑
ni[Zi] be a k-cycle on Y . The flat pullback of α by f is the

sum
f∗α =

∑
nif

∗[Zi]
where each f∗[Zi] is defined as above. The sum is locally finite by Lemma
82.9.2.

(3) We denote f∗ : Zk(Y )→ Zk+r(X) the map of abelian groups so obtained.

An open immersion is flat. This is an important though trivial special case of a flat
morphism. If U ⊂ X is open then sometimes the pullback by j : U → X of a cycle
is called the restriction of the cycle to U . Note that in this case the maps

j∗ : Zk(X) −→ Zk(U)
are all surjective. The reason is that given any integral closed subspace Z ′ ⊂ U , we
can take the closure of Z of Z ′ in X and think of it as a reduced closed subspace of
X (see Properties of Spaces, Definition 66.12.5). And clearly Z ∩ U = Z ′, in other
words j∗[Z] = [Z ′] whence the surjectivity. In fact a little bit more is true.

Lemma 82.10.2.0EP9 In Situation 82.2.1 let X/B be good. Let U ⊂ X be an open
subspace. Let Y be the reduced closed subspace of X with |Y | = |X| \ |U | and
denote i : Y → X the inclusion morphism. For every k ∈ Z the sequence

Zk(Y ) i∗ // Zk(X) j∗
// Zk(U) // 0

is an exact complex of abelian groups.

Proof. Surjectivity of j∗ we saw above. First assume X is quasi-compact. Then
Zk(X) is a free Z-module with basis given by the elements [Z] where Z ⊂ X is
integral closed of δ-dimension k. Such a basis element maps either to the basis
element [Z ∩ U ] of Zk(U) or to zero if Z ⊂ Y . Hence the lemma is clear in this
case. The general case is similar and the proof is omitted. □

Lemma 82.10.3.0EPY In Situation 82.2.1 let f : X → Y be an étale morphism of good
algebraic spaces over B. If Z ⊂ Y is an integral closed subspace, then f∗[Z] =∑

[Z ′] where the sum is over the irreducible components (Remark 82.5.1) of f−1(Z).

Proof. The meaning of the lemma is that the coefficient of [Z ′] is 1. This follows
from the fact that f−1(Z) is a reduced algebraic space because it is étale over the
integral algebraic space Z. □

Lemma 82.10.4.0EPA In Situation 82.2.1 let X,Y, Z/B be good. Let f : X → Y and
g : Y → Z be flat morphisms of relative dimensions r and s over B. Then g ◦ f is
flat of relative dimension r + s and

f∗ ◦ g∗ = (g ◦ f)∗

as maps Zk(Z)→ Zk+r+s(X).

Proof. The composition is flat of relative dimension r+ s by Morphisms of Spaces,
Lemmas 67.34.2 and 67.30.3. Suppose that

(1) A ⊂ Z is a closed integral subspace of δ-dimension k,
(2) A′ ⊂ Y is a closed integral subspace of δ-dimension k+s with A′ ⊂ g−1(A),

and
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(3) A′′ ⊂ Y is a closed integral subspace of δ-dimension k + s+ r with A′′ ⊂
f−1(W ′).

We have to show that the coefficient n of [A′′] in (g◦f)∗[A] agrees with the coefficient
m of [A′′] in f∗(g∗[A]). We may choose a commutative diagram

U

��

// V

��

// W

��
X // Y // Z

where U, V,W are schemes, the vertical arrows are étale, and there exist points
u ∈ U , v ∈ V , w ∈ W such that u 7→ v 7→ w and such that u, v, w map to
the generic points of A′′, A′, A. (Details omitted.) Then we have flat local ring
homorphisms OW,w → OV,v, OV,v → OU,u, and repeatedly using Lemma 82.4.1 we
find

n = lengthOU,u
(OU,u/mwOU,u)

and
m = lengthOV,v

(OV,v/mwOV,v)lengthOU,u
(OU,u/mvOU,u)

Hence the equality follows from Algebra, Lemma 10.52.14. □

Lemma 82.10.5.0EPB In Situation 82.2.1 let X,Y/B be good. Let f : X → Y be a flat
morphism of relative dimension r.

(1) Let Z ⊂ Y be a closed subspace with dimδ(Z) ≤ k. Then we have
dimδ(f−1(Z)) ≤ k + r and [f−1(Z)]k+r = f∗[Z]k in Zk+r(X).

(2) Let F be a coherent sheaf on Y with dimδ(Supp(F)) ≤ k. Then we have
dimδ(Supp(f∗F)) ≤ k + r and

f∗[F ]k = [f∗F ]k+r

in Zk+r(X).

Proof. Part (1) follows from part (2) by Lemma 82.6.3 and the fact that f∗OZ =
Of−1(Z).

Proof of (2). As X, Y are locally Noetherian we may apply Cohomology of Spaces,
Lemma 69.12.2 to see that F is of finite type, hence f∗F is of finite type (Modules
on Sites, Lemma 18.23.4), hence f∗F is coherent (Cohomology of Spaces, Lemma
69.12.2 again). Thus the lemma makes sense. Let W ⊂ Y be an integral closed
subspace of δ-dimension k, and let W ′ ⊂ X be an integral closed subspace of
dimension k + r mapping into W under f . We have to show that the coefficient n
of [W ′] in f∗[F ]k agrees with the coefficient m of [W ′] in [f∗F ]k+r. We may choose
a commutative diagram

U

��

// V

��
X // Y

where U, V are schemes, the vertical arrows are étale, and there exist points u ∈ U ,
v ∈ V such that u 7→ v and such that u, v map to the generic points of W ′,W .
(Details omitted.) Consider the stalk M = (F|V )v as an OV,v-module. (Note that
M has finite length by our dimension assumptions, but we actually do not need to
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verify this. See Lemma 82.4.4.) We have (f∗F|U )u = OU,u ⊗OV,v
M . Thus we see

that
n = lengthOU,u

(OU,u⊗OV,v
M) and m = lengthOV,v

(M)lengthOV,v
(OU,u/mvOU,u)

Thus the equality follows from Algebra, Lemma 10.52.13. □

82.11. Push and pull

0EPC This section is the analogue of Chow Homology, Section 42.14.
In this section we verify that proper pushforward and flat pullback are compat-
ible when this makes sense. By the work we did above this is a consequence of
cohomology and base change.

Lemma 82.11.1.0EPD In Situation 82.2.1 let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a fibre product diagram of good algebraic spaces over B. Assume f : X → Y
proper and g : Y ′ → Y flat of relative dimension r. Then also f ′ is proper and g′

is flat of relative dimension r. For any k-cycle α on X we have
g∗f∗α = f ′

∗(g′)∗α

in Zk+r(Y ′).

Proof. The assertion that f ′ is proper follows from Morphisms of Spaces, Lemma
67.40.3. The assertion that g′ is flat of relative dimension r follows from Morphisms
of Spaces, Lemmas 67.34.3 and 67.30.4. It suffices to prove the equality of cycles
when α = [W ] for some integral closed subspaceW ⊂ X of δ-dimension k. Note that
in this case we have α = [OW ]k, see Lemma 82.6.3. By Lemmas 82.8.3 and 82.10.5
it therefore suffices to show that f ′

∗(g′)∗OW is isomorphic to g∗f∗OW . This follows
from cohomology and base change, see Cohomology of Spaces, Lemma 69.11.2. □

Lemma 82.11.2.0EPE In Situation 82.2.1 let X,Y/B be good. Let f : X → Y be a finite
locally free morphism of degree d (see Morphisms of Spaces, Definition 67.46.2).
Then f is both proper and flat of relative dimension 0, and

f∗f
∗α = dα

for every α ∈ Zk(Y ).

Proof. A finite locally free morphism is flat and finite by Morphisms of Spaces,
Lemma 67.46.6, and a finite morphism is proper by Morphisms of Spaces, Lemma
67.45.9. We omit showing that a finite morphism has relative dimension 0. Thus
the formula makes sense. To prove it, let Z ⊂ Y be an integral closed subscheme of
δ-dimension k. It suffices to prove the formula for α = [Z]. Since the base change
of a finite locally free morphism is finite locally free (Morphisms of Spaces, Lemma
67.46.5) we see that f∗f

∗OZ is a finite locally free sheaf of rank d on Z. Thus
clearly f∗f

∗OZ has length d at the generic point of Z. Hence
f∗f

∗[Z] = f∗f
∗[OZ ]k = [f∗f

∗OZ ]k = d[Z]
where we have used Lemmas 82.10.5 and 82.8.3. □
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82.12. Preparation for principal divisors

0EPF This section is the analogue of Chow Homology, Section 42.16. Some of the material
in this section partially overlaps with the discussion in Spaces over Fields, Section
72.6.

Lemma 82.12.1.0EPZ In Situation 82.2.1 let X/B be good. Assume X is integral.
(1) If Z ⊂ X is an integral closed subspace, then the following are equivalent:

(a) Z is a prime divisor,
(b) |Z| has codimension 1 in |X|, and
(c) dimδ(Z) = dimδ(X)− 1.

(2) If Z is an irreducible component of an effective Cartier divisor on X, then
dimδ(Z) = dimδ(X)− 1.

Proof. Part (1) follows from the definition of a prime divisor (Spaces over Fields,
Definition 72.6.2), Decent Spaces, Lemma 68.20.2, and the definition of a dimension
function (Topology, Definition 5.20.1).

Let D ⊂ X be an effective Cartier divisor. Let Z ⊂ D be an irreducible component
and let ξ ∈ |Z| be the generic point. Choose an étale neighbourhood (U, u)→ (X, ξ)
where U = Spec(A) and D×X U is cut out by a nonzerodivisor f ∈ A, see Divisors
on Spaces, Lemma 71.6.2. Then u is a generic point of V (f) by Decent Spaces,
Lemma 68.20.1. Hence OU,u has dimension 1 by Krull’s Hauptidealsatz (Algebra,
Lemma 10.60.11). Thus ξ is a codimension 1 point on X and Z is a prime divisor
as desired. □

82.13. Principal divisors

0EQ0 This section is the analogue of Chow Homology, Section 42.17. The following
definition is the analogue of Spaces over Fields, Definition 72.6.7 in our current
setup.

Definition 82.13.1.0EQ1 In Situation 82.2.1 let X/B be good. Assume X is integral
with dimδ(X) = n. Let f ∈ R(X)∗. The principal divisor associated to f is the
(n− 1)-cycle

div(f) = divX(f) =
∑

ordZ(f)[Z]

defined in Spaces over Fields, Definition 72.6.7. This makes sense because prime
divisors have δ-dimension n− 1 by Lemma 82.12.1.

In the situation of the definition for f, g ∈ R(X)∗ we have

divX(fg) = divX(f) + divX(g)

in Zn−1(X). See Spaces over Fields, Lemma 72.6.8. The following lemma will allow
us to reduce statements about principal divisors to the case of schemes.

Lemma 82.13.2.0EQ2 In Situation 82.2.1 let f : X → Y be an étale morphism of good
algebraic spaces over B. Assume Y is integral. Let g ∈ R(Y )∗. As cycles on X we
have

f∗(divY (g)) =
∑

X′
(X ′ → X)∗divX′(g ◦ f |X′)

where the sum is over the irreducible components of X (Remark 82.5.1).
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Proof. The map |X| → |Y | is open. The set of irreducible components of |X|
is locally finite in |X|. We conclude that f |X′ : X ′ → Y is dominant for every
irreducible component X ′ ⊂ X. Thus g ◦ f |X′ is defined (Morphisms of Spaces,
Section 67.47), hence divX′(g ◦ f |X′) is defined. Moreover, the sum is locally finite
and we find that the right hand side indeed is a cycle on X. The left hand side is
defined by Definition 82.10.1 and the fact that an étale morphism is flat of relative
dimension 0.
Since f is étale we see that δX(x) = δy(f(x)) for all x ∈ |X|. Thus if dimδ(Y ) = n,
then dimδ(X ′) = n for every irreducible component X ′ of X (since generic points
of X map to the generic point of Y , see above). Thus both left and right hand side
are (n− 1)-cycles.
Let Z ⊂ X be an integral closed subspace with dimδ(Z) = n − 1. To prove the
equality, we need to show that the coefficients of Z are the same. Let Z ′ ⊂ Y be
the integral closed subspace constructed in Lemma 82.7.1. Then dimδ(Z ′) = n− 1
too. Let ξ ∈ |Z| be the generic point. Then ξ′ = f(ξ) ∈ |Z ′| is the generic point.
Consider the commutative diagram

Spec(OhX,ξ) //

��

X

��
Spec(OhY,ξ′) // Y

of Decent Spaces, Remark 68.11.11. We have to be slightly careful as the reduced
Noetherian local rings OhX,ξ and OhY,ξ′ need not be domains. Thus we work with
total rings of fractions Q(−) rather than fraction fields. By definition, to get the
coefficient of Z ′ in divY (g) we write the image of g in Q(OhY,ξ′) as a/b with a, b ∈
OhY,ξ′ nonzerodivisors and we take

ordZ′(g) = lengthOh
Y,ξ′

(OhY,ξ′/aOhY,ξ′)− lengthOh
Y,ξ′

(OhY,ξ′/bOhY,ξ′)

Observe that the coefficient of Z in f∗divY (G) is the same integer, see Lemma
82.10.3. Suppose that ξ ∈ X ′. Then we can consider the maps

OhY,ξ′ → OhX,ξ → OhX′,ξ

The first arrow is flat and the second arrow is a surjective map of reduced local
Noetherian rings of dimension 1. Therefore both these maps send nonzerodivisors
to nonzerodivisors and we conclude the coefficient of Z ′ in divX′(g ◦ f |X′) is

ordZ(g ◦ f |X′) = lengthOh
X′,ξ

(OhX′,ξ/aOhX′,ξ)− lengthOh
Y,ξ′

(OhX′,ξ/bOhX′,ξ)

by the same prescription as above. Thus it suffices to show

lengthOh
Y,ξ′

(OhY,ξ′/aOhY,ξ′) =
∑

ξ∈|X′|
lengthOh

X′,ξ
(OhX′,ξ/aOhX′,ξ)

First, since the ring map OhY,ξ′ → OhX,ξ is flat and unramified, we have

lengthOh
Y,ξ′

(OhY,ξ′/aOhY,ξ′) = lengthOh
X,ξ

(OhX,ξ/aOhX,ξ)

by Algebra, Lemma 10.52.13. Let q1, . . . , qt be the nonmaximal primes of OhX,ξ and
set Rj = OhX,ξ/qj . For X ′ as above, denote J(X ′) ⊂ {1, . . . , t} the set of indices
such that qj corresponds to a point of X ′, i.e., such that under the surjection
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OhX,ξ → OX′,ξ the prime qj corresponds to a prime of OX′,ξ. By Chow Homology,
Lemma 42.3.2 we get

lengthOh
X,ξ

(OhX,ξ/aOhX,ξ) =
∑

j
lengthRj (Rj/aRj)

and
lengthOh

X′,ξ
(OhX′,ξ/aOhX′,ξ) =

∑
j∈J(X′)

lengthRj (Rj/aRj)

Thus the result of the lemma holds because {1, . . . , t} is the disjoint union of the
sets J(X ′): each point of codimension 0 on X lies on a unique X ′. □

82.14. Principal divisors and pushforward

0EQ3 This section is the analogue of Chow Homology, Section 42.18.

Lemma 82.14.1.0EQ4 In Situation 82.2.1 let X,Y/B be good. Assume X, Y are integral
and n = dimδ(X) = dimδ(Y ). Let p : X → Y be a dominant proper morphism.
Let f ∈ R(X)∗. Set

g = NmR(X)/R(Y )(f).
Then we have p∗div(f) = div(g).

Proof. We are going to deduce this from the case of schemes by étale localization.
Let Z ⊂ Y be an integral closed subspace of δ-dimension n− 1. We want to show
that the coefficient of [Z] in p∗div(f) and div(g) are equal. Apply Spaces over
Fields, Lemma 72.3.2 to the morphism p : X → Y and the generic point ξ ∈ |Z|.
We find that we may replace Y by an open subspace containing ξ and assume that
p : X → Y is finite. Pick an étale neighbourhood (V, v) → (Y, ξ) where V is an
affine scheme. By Lemma 82.10.3 it suffices to prove the equality of cycles after
pulling back to V . Set U = V ×Y X and consider the commutative diagram

U
a
//

p′

��

X

p

��
V

b // Y

Let Vj ⊂ V , j = 1, . . . ,m be the irreducible components of V . For each i, let
Uj,i, i = 1, . . . , nj be the irreducible components of U dominating Vj . Denote
p′
j,i : Uj,i → Vj the restriction of p′ : U → V . By the case of schemes (Chow

Homology, Lemma 42.18.1) we see that
p′
j,i,∗divUj,i(fj,i) = divVj (gj,i)

where fj,i is the restriction of f to Uj,i and gj,i is the norm of fj,i along the finite
extension R(Uj,i)/R(Vj). We have

b∗p∗divX(f) = p′
∗a

∗divX(f)

= p′
∗

(∑
j,i

(Uj,i → U)∗divUj,i(fj,i)
)

=
∑

j,i
(Vj → V )∗p

′
j,i,∗divUj,i(fj,i)

=
∑

j
(Vj → V )∗

(∑
i
divVj (gj,i)

)
=
∑

j
(Vj → V )∗divVj (

∏
i
gj,i)
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by Lemmas 82.11.1, 82.13.2, and 82.8.2. To finish the proof, using Lemma 82.13.2
again, it suffices to show that

g ◦ b|Vj =
∏

i
gj,i

as elements of the function field of Vj . In terms of fields this is the following
statement: let L/K be a finite extension. Let M/K be a finite separable extension.
Write M ⊗K L =

∏
Mi. Then for t ∈ L with images ti ∈ Mi the image of

NormL/K(t) in M is
∏

NormMi/M (ti). We omit the proof. □

82.15. Rational equivalence

0EQ5 This section is the analogue of Chow Homology, Section 42.19. In this section we
define rational equivalence on k-cycles. We will allow locally finite sums of images
of principal divisors (under closed immersions). This leads to some pretty strange
phenomena (see examples in the chapter on schemes). However, if we do not allow
these then we do not know how to prove that capping with Chern classes of line
bundles factors through rational equivalence.

Definition 82.15.1.0EQ6 In Situation 82.2.1 let X/B be good. Let k ∈ Z.
(1) Given any locally finite collection {Wj ⊂ X} of integral closed subspaces

with dimδ(Wj) = k + 1, and any fj ∈ R(Wj)∗ we may consider∑
(ij)∗div(fj) ∈ Zk(X)

where ij : Wj → X is the inclusion morphism. This makes sense as the
morphism

∐
ij :

∐
Wj → X is proper.

(2) We say that α ∈ Zk(X) is rationally equivalent to zero if α is a cycle of
the form displayed above.

(3) We say α, β ∈ Zk(X) are rationally equivalent and we write α ∼rat β if
α− β is rationally equivalent to zero.

(4) We define
CHk(X) = Zk(X)/ ∼rat

to be the Chow group of k-cycles on X. This is sometimes called the
Chow group of k-cycles modulo rational equivalence on X.

There are many other interesting equivalence relations. Rational equivalence is the
coarsest of them all. A very simple but important lemma is the following.

Lemma 82.15.2.0EQ7 In Situation 82.2.1 let X/B be good. Let U ⊂ X be an open
subspace. Let Y be the reduced closed subspace of X with |Y | = |X| \ |U | and
denote i : Y → X the inclusion morphism. Let k ∈ Z. Suppose α, β ∈ Zk(X). If
α|U ∼rat β|U then there exist a cycle γ ∈ Zk(Y ) such that

α ∼rat β + i∗γ.

In other words, the sequence

CHk(Y ) i∗ // CHk(X) j∗
// CHk(U) // 0

is an exact complex of abelian groups.
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Proof. Let {Wj}j∈J be a locally finite collection of integral closed subspaces of
U of δ-dimension k + 1, and let fj ∈ R(Wj)∗ be elements such that (α − β)|U =∑

(ij)∗div(fj) as in the definition. Let W ′
j ⊂ X be the corresponding integral closed

subspace of X, i.e., having the same generic point as Wj . Suppose that V ⊂ X
is a quasi-compact open. Then also V ∩ U is quasi-compact open in U as V is
Noetherian. Hence the set {j ∈ J | Wj ∩ V ̸= ∅} = {j ∈ J | W ′

j ∩ V ̸= ∅} is finite
since {Wj} is locally finite. In other words we see that {W ′

j} is also locally finite.
Since R(Wj) = R(W ′

j) we see that

α− β −
∑

(i′j)∗div(fj)

is a cycle on X whose restriction to U is zero. The lemma follows by applying
Lemma 82.10.2. □

Remark 82.15.3.0EQ8 In Situation 82.2.1 let X/B be good. Suppose we have infinite
collections αi, βi ∈ Zk(X), i ∈ I of k-cycles on X. Suppose that the supports of αi
and βi form locally finite collections of closed subsets of X so that

∑
αi and

∑
βi

are defined as cycles. Moreover, assume that αi ∼rat βi for each i. Then it is not
clear that

∑
αi ∼rat

∑
βi. Namely, the problem is that the rational equivalences

may be given by locally finite families {Wi,j , fi,j ∈ R(Wi,j)∗}j∈Ji but the union
{Wi,j}i∈I,j∈Ji may not be locally finite.

In many cases in practice, one has a locally finite family of closed subsets {Ti}i∈I
of |X| such that αi, βi are supported on Ti and such that αi ∼rat βi “on” Ti.
More precisely, the families {Wi,j , fi,j ∈ R(Wi,j)∗}j∈Ji consist of integral closed
subspaces Wi,j with |Wi,j | ⊂ Ti. In this case it is true that

∑
αi ∼rat

∑
βi on X,

simply because the family {Wi,j}i∈I,j∈Ji is automatically locally finite in this case.

82.16. Rational equivalence and push and pull

0EQ9 This section is the analogue of Chow Homology, Section 42.20. In this section we
show that flat pullback and proper pushforward commute with rational equivalence.

Lemma 82.16.1.0EQA In Situation 82.2.1 let X,Y/B be good. Assume Y integral with
dimδ(Y ) = k. Let f : X → Y be a flat morphism of relative dimension r. Then for
g ∈ R(Y )∗ we have

f∗divY (g) =
∑

mX′,X(X ′ → X)∗divX′(g ◦ f |X′)

as (k + r− 1)-cycles on X where the sum is over the irreducible components X ′ of
X and mX′,X is the multiplicity of X ′ in X.

Proof. Observe that any irreducible component of X dominates Y (Lemma 82.9.1)
and hence the composition g◦f |X′ is defined (Morphisms of Spaces, Section 67.47).
We will reduce this to the case of schemes. Choose a scheme V and a surjective
étale morphism V → Y . Choose a scheme U and a surjective étale morphism
U → V ×Y X. Picture

U
a
//

h
��

X

f

��
V

b // Y
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Since a is surjective and étale it follows from Lemma 82.10.3 that it suffices to prove
the equality of cycles after pulling back by a. We can use Lemma 82.13.2 to write

b∗divY (g) =
∑

(V ′ → V )∗divV ′(g ◦ b|V ′)

where the sum is over the irreducible components V ′ of V . Using Lemma 82.11.1
we find

h∗b∗divY (g) =
∑

(V ′ ×V U → U)∗(h′)∗divV ′(g ◦ b|V ′)
where h′ : V ′ ×V U → V ′ is the projection. We may apply the lemma in the case
of schemes (Chow Homology, Lemma 42.20.1) to the morphism h′ : V ′ ×V U → V ′

to see that we have
(h′)∗divV ′(g ◦ b|V ′) =

∑
mU ′,V ′×V U (U ′ → V ′ ×V U)∗divU ′(g ◦ b|V ′ ◦ h′|U ′)

where the sum is over the irreducible components U ′ of V ′ ×V U . Each U ′ occur-
ring in this sum is an irreducible component of U and conversely every irreducible
component U ′ of U is an irreducible component of V ′×V U for a unique irreducible
component V ′ ⊂ V . Given an irreducible component U ′ ⊂ U , denote a(U ′) ⊂ X
the “image” in X (Lemma 82.7.1); this is an irreducible component of X for ex-
ample by Lemma 82.9.1. The muplticity mU ′,V ′×V U is equal to the multiplicity
m
a(U ′),X . This follows from the equality h∗a∗[Y ] = b∗f∗[Y ] (Lemma 82.10.4), the

definitions, and Lemma 82.10.3. Combining all of what we just said we obtain

a∗f∗divY (g) = h∗b∗divY (g) =
∑

m
a(U ′),X(U ′ → U)∗divU ′(g ◦ (f ◦ a)|U ′)

Next, we analyze what happens with the right hand side of the formula in the
statement of the lemma if we pullback by a. First, we use Lemma 82.11.1 to get

a∗
∑

mX′,X(X ′ → X)∗divX′(g◦f |X′) =
∑

mX′,X(X ′×XU → U)∗(a′)∗divX′(g◦f |X′)

where a′ : X ′ ×X U → X ′ is the projection. By Lemma 82.13.2 we get

(a′)∗divX′(g ◦ f |X′) =
∑

(U ′ → X ′ ×X U)∗divU ′(g ◦ (f ◦ a)|U ′)

where the sum is over the irreducible components U ′ of X ′ ×X U . These U ′ are
irreducible components of U and in fact are exactly the irreducible components of U
such that a(U ′) = X ′. Comparing with what we obtained above we conclude. □

Lemma 82.16.2.0EQB In Situation 82.2.1 let X,Y/B be good. Let f : X → Y be a flat
morphism of relative dimension r. Let α ∼rat β be rationally equivalent k-cycles
on Y . Then f∗α ∼rat f∗β as (k + r)-cycles on X.

Proof. What do we have to show? Well, suppose we are given a collection
ij : Wj −→ Y

of closed immersions, with each Wj integral of δ-dimension k + 1 and rational
functions gj ∈ R(Wj)∗. Moreover, assume that the collection {|ij |(|Wj |)}j∈J is
locally finite in |Y |. Then we have to show that

f∗(
∑

ij,∗div(gj)) =
∑

f∗ij,∗div(gj)
is rationally equivalent to zero on X. The sum on the right makes sense by Lemma
82.9.2.
Consider the fibre products

i′j : W ′
j = Wj ×Y X −→ X.
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and denote fj : W ′
j →Wj the first projection. By Lemma 82.11.1 we can write the

sum above as ∑
i′j,∗(f∗

j div(gj))

By Lemma 82.16.1 we see that each f∗
j div(gj) is rationally equivalent to zero on

W ′
j . Hence each i′j,∗(f∗

j div(gj)) is rationally equivalent to zero. Then the same is
true for the displayed sum by the discussion in Remark 82.15.3. □

Lemma 82.16.3.0EQC In Situation 82.2.1 let X,Y/B be good. Let p : X → Y be a
proper morphism. Suppose α, β ∈ Zk(X) are rationally equivalent. Then p∗α is
rationally equivalent to p∗β.

Proof. What do we have to show? Well, suppose we are given a collection

ij : Wj −→ X

of closed immersions, with each Wj integral of δ-dimension k + 1 and rational
functions fj ∈ R(Wj)∗. Moreover, assume that the collection {ij(Wj)}j∈J is locally
finite on X. Then we have to show that

p∗

(∑
ij,∗div(fj)

)
is rationally equivalent to zero on X.

Note that the sum is equal to ∑
p∗ij,∗div(fj).

Let W ′
j ⊂ Y be the integral closed subspace which is the image of p◦ ij , see Lemma

82.7.1. The collection {W ′
j} is locally finite in Y by Lemma 82.7.5. Hence it suffices

to show, for a given j, that either p∗ij,∗div(fj) = 0 or that it is equal to i′j,∗div(gj)
for some gj ∈ R(W ′

j)∗.

The arguments above therefore reduce us to the case of a since integral closed
subspace W ⊂ X of δ-dimension k + 1. Let f ∈ R(W )∗. Let W ′ = p(W ) as above.
We get a commutative diagram of morphisms

W
i
//

p′

��

X

p

��
W ′ i′ // Y

Note that p∗i∗div(f) = i′∗(p′)∗div(f) by Lemma 82.8.2. As explained above we
have to show that (p′)∗div(f) is the divisor of a rational function on W ′ or zero.
There are three cases to distinguish.

The case dimδ(W ′) < k. In this case automatically (p′)∗div(f) = 0 and there is
nothing to prove.

The case dimδ(W ′) = k. Let us show that (p′)∗div(f) = 0 in this case. Since
(p′)∗div(f) is a k-cycle, we see that (p′)∗div(f) = n[W ′] for some n ∈ Z. In order
to prove that n = 0 we may replace W ′ by a nonempty open subspace. In particular,
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we may and do assume that W ′ is a scheme. Let η ∈W ′ be the generic point. Let
K = κ(η) = R(W ′) be the function field. Consider the base change diagram

Wη
//

c

��

W

p′

��
Spec(K) η // W ′

Observe that c is proper. Also |Wη| has dimension 1: use Decent Spaces, Lemma
68.18.6 to identify |Wη| as the subspace of |W | of points mapping to η and note that
since dimδ(W ) = k + 1 and δ(η) = k points of Wη must have δ-value either k or
k + 1. Thus the local rings have dimension ≤ 1 by Decent Spaces, Lemma 68.20.2.
By Spaces over Fields, Lemma 72.9.3 we find that Wη is a scheme. Since Spec(K)
is the limit of the nonempty affine open subschemes of W ′ we conclude that we
may assume that W is a scheme by Limits of Spaces, Lemma 70.5.11. Then finally
by the case of schemes (Chow Homology, Lemma 42.20.3) we find that n = 0.

The case dimδ(W ′) = k + 1. In this case Lemma 82.14.1 applies, and we see that
indeed p′

∗div(f) = div(g) for some g ∈ R(W ′)∗ as desired. □

82.17. The divisor associated to an invertible sheaf

0EQD This section is the analogue of Chow Homology, Section 42.24. The following
definition is the analogue of Spaces over Fields, Definition 72.7.4 in our current
setup.

Definition 82.17.1.0EQE In Situation 82.2.1 let X/B be good. Assume X is integral and
n = dimδ(X). Let L be an invertible OX -module.

(1) For any nonzero meromorphic section s of L we define the Weil divisor
associated to s is the (n− 1)-cycle

divL(s) =
∑

ordZ,L(s)[Z]

defined in Spaces over Fields, Definition 72.7.4. This makes sense because
Weil divisors have δ-dimension n− 1 by Lemma 82.12.1.

(2) We define Weil divisor associated to L as

c1(L) ∩ [X] = class of divL(s) ∈ CHn−1(X)

where s is any nonzero meromorphic section of L over X. This is well
defined by Spaces over Fields, Lemma 72.7.3.

The zero scheme of a nonzero section is an effective Cartier divisor whose Weil
divisor class computes the Weil divisor associated to the invertible module.

Lemma 82.17.2.0EQF In Situation 82.2.1 let X/B be good. Assume X is integral and
n = dimδ(X). Let L be an invertible OX -module. Let s ∈ Γ(X,L) be a nonzero
global section. Then

divL(s) = [Z(s)]n−1

in Zn−1(X) and
c1(L) ∩ [X] = [Z(s)]n−1

in CHn−1(X).
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Proof. Let Z ⊂ X be an integral closed subspace of δ-dimension n− 1. Let ξ ∈ |Z|
be its generic point. To prove the first equality we compare the coefficients of Z on
both sides. Choose an elementary étale neighbourhood (U, u)→ (X, ξ), see Decent
Spaces, Section 68.11 and recall that OhX,ξ = OhU,u in this case. After replacing U
by an open neighbourhood of u we may assume there is a trivializing section sU of
L|U . Write s|U = fsU for some f ∈ Γ(U,OU ). Then Z ×X U is equal to V (f) as
a closed subscheme of U , see Divisors on Spaces, Definition 71.7.6. As in Spaces
over Fields, Section 72.7 denote Lξ the pullback of L under the canonical morphism
cξ : Spec(OhX,ξ) → X. Denote sξ the pullback of sU ; it is a trivialization of Lξ.
Then we see that c∗

ξ(s) = fsξ. The coefficient of Z in [Z(s)]n−1 is by definition

lengthOU,u
(OU,u/fOU,u)

Since OU,u → OhX,ξ is flat and identifies residue fields this is equal to

lengthOh
X,ξ

(OhX,ξ/fOhX,ξ)

by Algebra, Lemma 10.52.13. This final quantity is equal to ordZ,L(s) by Spaces
over Fields, Definition 72.7.1, i.e., to the coefficient of Z in divL(s) as desired. □

Lemma 82.17.3.0EQG In Situation 82.2.1 let X/B be good. Let L be an invertible
OX -module. The morphism

q : T = Spec
(⊕

n∈Z
L⊗n

)
−→ X

has the following properties:
(1) q is surjective, smooth, affine, of relative dimension 1,
(2) there is an isomorphism α : q∗L ∼= OT ,
(3) formation of (q : T → X,α) commutes with base change,
(4) q∗ : Zk(X)→ Zk+1(T ) is injective,
(5) if Z ⊂ X is an integral closed subspace, then q−1(Z) ⊂ T is an integral

closed subspace,
(6) if Z ⊂ X is a closed subspace of X of δ-dimension ≤ k, then q−1(Z) is a

closed subspace of T of δ-dimension ≤ k + 1 and q∗[Z]k = [q−1(Z)]k+1,
(7) if ξ′ ∈ |T | is the generic point of the fibre of |T | → |X| over ξ, then the

ring map OhX,ξ → OhT,ξ′ is flat, we have mhξ′ = mhξOhT,ξ′ , and the residue
field extension is purely transcendental of transcendence degree 1, and

(8) add more here as needed.

Proof. Let U → X be an étale morphism such that L|U is trivial. Then T ×X U →
U is isomorphic to the projection morphism Gm × U → U , where Gm is the
multipliciative group scheme, see Groupoids, Example 39.5.1. Thus (1) is clear.
To see (2) observe that q∗q

∗L =
⊕

n∈Z L⊗n+1. Thus there is an obvious isomor-
phism q∗q

∗L → q∗OT of q∗OT -modules. By Morphisms of Spaces, Lemma 67.20.10
this determines an isomorphism q∗L → OT .
Part (3) holds because forming the relative spectrum commutes with arbitrary base
change and the same thing is clearly true for the isomorphism α.
Part (4) follows immediately from (1) and the definitions.
Part (5) follows from the fact that if Z is an integral algebraic space, then Gm×Z
is an integral algebraic space.
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Part (6) follows from the fact that lengths are preserved: if (A,m) is a local ring and
B = A[x]mA[x] and if M is an A-module, then lengthA(M) = lengthB(M ⊗A B).
This implies that if F is a coherent OX -module and ξ ∈ |X| with ξ′ ∈ |T | the
generic point of the fibre over ξ, then the length of F at ξ is the same as the length
of q∗F at ξ′. Tracing through the definitions this gives (6) and more.
The map in part (7) comes from Decent Spaces, Remark 68.11.11. However, in our
case we have

Spec(OhX,ξ)×X T = Gm × Spec(OhX,ξ) = Spec(OhX,ξ[t, t−1])
and ξ′ corresponds to the generic point of the special fibre of this over Spec(OhX,ξ).
Thus OhT,ξ′ is the henselization of the localization of OhX,ξ[t, t−1] at the correspond-
ing prime. Part (7) follows from this and some commutative algebra; details omit-
ted. □

Lemma 82.17.4.0EQH In Situation 82.2.1 let X/B be good. Let L be an invertible OX -
module. Assume X is integral. Let s be a nonzero meromorphic section of L. Let
q : T → X be the morphism of Lemma 82.17.3. Then

q∗divL(s) = divT (q∗(s))
where we view the pullback q∗(s) as a nonzero meromorphic function on T using
the isomorphism q∗L → OT
Proof. Observe that divT (q∗(s)) = divOT

(q∗(s)) by the compatibility between the
constructions given in Spaces over Fields, Sections 72.6 and 72.7. We will show
the agreement with divOT

(q∗(s)) in this proof. We will use all the properties of
q : T → X stated in Lemma 82.17.3 without further mention. Let Z ⊂ T be a
prime divisor. Then either Z → X is dominant or Z = q−1(Z ′) for some prime
divisor Z ′ ⊂ X. If Z → X is dominant, then the coefficient of Z in either side of
the equality of the lemma is zero. Thus we may assume Z = q−1(Z ′) where Z ′ ⊂ X
is a prime divisor. Let ξ′ ∈ |Z ′| and ξ ∈ |Z| be the generic points. Then we obtain
a commutative diagram

Spec(OhT,ξ) cξ
//

h

��

T

q

��
Spec(OhX,ξ′)

cξ′
// X

see Decent Spaces, Remark 68.11.11. Choose a trivialization sξ′ of Lξ′ = c∗
ξ′L.

Then we can use the pullback sξ of sξ′ via h as our trivialization of Lξ = c∗
ξq

∗L.
Write s/sξ′ = a/b for a, b ∈ OX,ξ′ nonzerodivisors. By definition the coefficient of
Z ′ in divL(s) is

lengthOh
X,ξ′

(OhX,ξ′/aOhX,ξ′)− lengthOh
X,ξ′

(OhX,ξ′/bOhX,ξ′)

Since Z = q−1(Z ′), this is also the coefficient of Z in q∗divL(s). Since OhX,ξ′ → OhT,ξ
is flat the elements a, b map to nonzerodivisors in OhT,ξ. Thus q∗(s)/sξ = a/b in the
total quotient ring of OhT,ξ. By definition the coefficient of Z in divT (q∗(s)) is

lengthOh
T,ξ

(OhT,ξ/aOhT,ξ)− lengthOh
T,ξ

(OhT,ξ/bOhT,ξ)

The proof is finished because these lengths are the same as before by Algebra,
Lemma 10.52.13 and the fact that mhξ = mhξ′OhT,ξ shown in Lemma 82.17.3. □
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82.18. Intersecting with an invertible sheaf

0EQI This section is the analogue of Chow Homology, Section 42.25. In this section we
study the following construction.

Definition 82.18.1.0EQJ In Situation 82.2.1 let X/B be good. Let L be an invertible
OX -module. We define, for every integer k, an operation

c1(L) ∩ − : Zk+1(X)→ CHk(X)

called intersection with the first Chern class of L.
(1) Given an integral closed subspace i : W → X with dimδ(W ) = k + 1 we

define
c1(L) ∩ [W ] = i∗(c1(i∗L) ∩ [W ])

where the right hand side is defined in Definition 82.17.1.
(2) For a general (k + 1)-cycle α =

∑
ni[Wi] we set

c1(L) ∩ α =
∑

nic1(L) ∩ [Wi]

Write each c1(L) ∩Wi =
∑
j ni,j [Zi,j ] with {Zi,j}j a locally finite sum of integral

closed subspaces of Wi. Since {Wi} is a locally finite collection of integral closed
subspaces on X, it follows easily that {Zi,j}i,j is a locally finite collection of closed
subspaces of X. Hence c1(L) ∩ α =

∑
nini,j [Zi,j ] is a cycle. Another, often more

convenient, way to think about this is to observe that the morphism
∐
Wi →

X is proper. Hence c1(L) ∩ α can be viewed as the pushforward of a class in
CHk(

∐
Wi) =

∏
CHk(Wi). This also explains why the result is well defined up to

rational equivalence on X.

The main goal for the next few sections is to show that intersecting with c1(L)
factors through rational equivalence. This is not a triviality.

Lemma 82.18.2.0EQK In Situation 82.2.1 let X/B be good. Let L, N be an invertible
sheaves on X. Then

c1(L) ∩ α+ c1(N ) ∩ α = c1(L ⊗OX
N ) ∩ α

in CHk(X) for every α ∈ Zk−1(X). Moreover, c1(OX) ∩ α = 0 for all α.

Proof. The additivity follows directly from Spaces over Fields, Lemma 72.7.5 and
the definitions. To see that c1(OX)∩α = 0 consider the section 1 ∈ Γ(X,OX). This
restricts to an everywhere nonzero section on any integral closed subspace W ⊂ X.
Hence c1(OX) ∩ [W ] = 0 as desired. □

Recall that Z(s) ⊂ X denotes the zero scheme of a global section s of an invertible
sheaf on an algebraic space X, see Divisors on Spaces, Definition 71.7.6.

Lemma 82.18.3.0EQL In Situation 82.2.1 let Y/B be good. Let L be an invertible
OY -module. Let s ∈ Γ(Y,L) be a regular section and assume dimδ(Y ) ≤ k + 1.
Write [Y ]k+1 =

∑
ni[Yi] where Yi ⊂ Y are the irreducible components of Y of

δ-dimension k + 1. Set si = s|Yi ∈ Γ(Yi,L|Yi). Then

(82.18.3.1)0EQM [Z(s)]k =
∑

ni[Z(si)]k

as k-cycles on Y .

https://stacks.math.columbia.edu/tag/0EQJ
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Proof. Let φ : V → Y be a surjective étale morphism where V is a scheme. It
suffices to prove the equality after pulling back by φ, see Lemma 82.10.3. That
same lemma tells us that φ∗[Yi] = [φ−1(Yi)] =

∑
[Vi,j ] where Vi,j are the ir-

reducible components of V lying over Yi. Hence if we first apply the case of
schemes (Chow Homology, Lemma 42.25.3) to φ∗si on Yi ×Y V we find that
φ∗[Z(si)]k = [Z(φ∗si)] =

∑
[Z(si,j)]k where si,j is the pullback of s to Vi,j . Apply-

ing the case of schemes to φ∗s we get

φ∗[Z(s)]k = [Z(φ∗s)]k =
∑

ni[Z(si,j)]k

by our remark on multiplicities above. Combining all of the above the proof is
complete. □

The following lemma is a useful result in order to compute the intersection product
of the c1 of an invertible sheaf and the cycle associated to a closed subscheme.
Recall that Z(s) ⊂ X denotes the zero scheme of a global section s of an invertible
sheaf on a scheme X, see Divisors, Definition 31.14.8.

Lemma 82.18.4.0EQN In Situation 82.2.1 let X/B be good. Let L be an invertible
OX -module. Let Y ⊂ X be a closed subscheme with dimδ(Y ) ≤ k + 1 and let
s ∈ Γ(Y,L|Y ) be a regular section. Then

c1(L) ∩ [Y ]k+1 = [Z(s)]k
in CHk(X).

Proof. Write
[Y ]k+1 =

∑
ni[Yi]

where Yi ⊂ Y are the irreducible components of Y of δ-dimension k+1 and ni > 0.
By assumption the restriction si = s|Yi ∈ Γ(Yi,L|Yi) is not zero, and hence is a
regular section. By Lemma 82.17.2 we see that [Z(si)]k represents c1(L|Yi). Hence
by definition

c1(L) ∩ [Y ]k+1 =
∑

ni[Z(si)]k
Thus the result follows from Lemma 82.18.3. □

82.19. Intersecting with an invertible sheaf and push and pull

0EQP This section is the analogue of Chow Homology, Section 42.26. In this section
we prove that the operation c1(L) ∩ − commutes with flat pullback and proper
pushforward.

Lemma 82.19.1.0EQQ In Situation 82.2.1 let X,Y/B be good. Let f : X → Y be a flat
morphism of relative dimension r. Let L be an invertible sheaf on Y . Assume Y is
integral and n = dimδ(Y ). Let s be a nonzero meromorphic section of L. Then we
have

f∗divL(s) =
∑

nidivf∗L|Xi (si)

in Zn+r−1(X). Here the sum is over the irreducible components Xi ⊂ X of δ-
dimension n + r, the section si = f |∗Xi(s) is the pullback of s, and ni = mXi,X is
the multiplicity of Xi in X.

https://stacks.math.columbia.edu/tag/0EQN
https://stacks.math.columbia.edu/tag/0EQQ
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Proof. Using sleight of hand we will deduce this from Lemma 82.16.1. (An alter-
native is to redo the proof of that lemma in the setting of meromorphic sections
of invertible modules.) Namely, let q : T → Y be the morphism of Lemma 82.17.3
constructed using L on Y . We will use all the properties of T stated in this lemma.
Consider the fibre product diagram

T ′
q′
//

h

��

X

f

��
T

q // Y

Then q′ : T ′ → X is the morphism constructed using f∗L on X. Then it suffices
to prove

(q′)∗f∗divL(s) =
∑

ni(q′)∗divf∗L|Xi (si)
Observe that T ′

i = q−1(Xi) are the irreducible components of T ′ and that ni is the
multiplicity of T ′

i in T ′. The left hand side is equal to
h∗q∗divL(s) = h∗divT (q∗(s))

by Lemma 82.17.4 (and Lemma 82.10.4). On the other hand, denoting q′
i : T ′

i → Xi

the restriction of q′ we find that Lemma 82.17.4 also tells us the right hand side is
equal to ∑

nidivTi((q′
i)∗(si))

In these two formulas the expressions q∗(s) and (q′
i)∗(si) represent the rational func-

tions corresponding to the pulled back meromorphic sections of q∗L and (q′
i)∗f∗L|Xi

via the isomorphism α : q∗L → OT and its pullbacks to spaces over T . With this
convention it is clear that (q′

i)∗(si) is the composition of the rational function q∗(s)
on T and the morphism h|T ′

i
: T ′

i → T . Thus Lemma 82.16.1 exactly says that

h∗divT (q∗(s)) =
∑

nidivTi((q′
i)∗(si))

as desired. □

Lemma 82.19.2.0EQR In Situation 82.2.1 let X,Y/B be good. Let f : X → Y be a flat
morphism of relative dimension r. Let L be an invertible sheaf on Y . Let α be a
k-cycle on Y . Then

f∗(c1(L) ∩ α) = c1(f∗L) ∩ f∗α

in CHk+r−1(X).

Proof. Write α =
∑
ni[Wi]. We will show that
f∗(c1(L) ∩ [Wi]) = c1(f∗L) ∩ f∗[Wi]

in CHk+r−1(X) by producing a rational equivalence on the closed subspace f−1(Wi)
of X. By the discussion in Remark 82.15.3 this will prove the equality of the lemma
is true.
Let W ⊂ Y be an integral closed subspace of δ-dimension k. Consider the closed
subspace W ′ = f−1(W ) = W ×Y X so that we have the fibre product diagram

W ′ //

h

��

X

f

��
W // Y

https://stacks.math.columbia.edu/tag/0EQR
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We have to show that f∗(c1(L) ∩ [W ]) = c1(f∗L) ∩ f∗[W ]. Choose a nonzero
meromorphic section s of L|W . Let W ′

i ⊂ W ′ be the irreducible components of
δ-dimension k + r. Write [W ′]k+r =

∑
ni[W ′

i ] with ni the multiplicity of W ′
i in

W ′ as per definition. So f∗[W ] =
∑
ni[W ′

i ] in Zk+r(X). Since each W ′
i → W is

dominant we see that si = s|W ′
i

is a nonzero meromorphic section for each i. By
Lemma 82.19.1 we have the following equality of cycles

h∗divL|W (s) =
∑

nidivf∗L|W ′
i

(si)

in Zk+r−1(W ′). This finishes the proof since the left hand side is a cycle on W ′

which pushes to f∗(c1(L)∩ [W ]) in CHk+r−1(X) and the right hand side is a cycle
on W ′ which pushes to c1(f∗L) ∩ f∗[W ] in CHk+r−1(X). □

Lemma 82.19.3.0EQS In Situation 82.2.1 let X,Y/B be good. Let f : X → Y be a
proper morphism. Let L be an invertible sheaf on Y . Assume X, Y integral, f
dominant, and dimδ(X) = dimδ(Y ). Let s be a nonzero meromorphic section s of
L on Y . Then

f∗ (divf∗L(f∗s)) = [R(X) : R(Y )]divL(s).
as cycles on Y . In particular

f∗(c1(f∗L) ∩ [X]) = c1(L) ∩ f∗[Y ].

Proof. The last equation follows from the first since f∗[X] = [R(X) : R(Y )][Y ] by
definition. Proof of the first equaltion. Let q : T → Y be the morphism of Lemma
82.17.3 constructed using L on Y . We will use all the properties of T stated in this
lemma. Consider the fibre product diagram

T ′
q′
//

h

��

X

f

��
T

q // Y

Then q′ : T ′ → X is the morphism constructed using f∗L on X. It suffices to prove
the equality after pulling back to T ′. The left hand side pulls back to

q∗f∗ (divf∗L(f∗s)) = h∗(q′)∗divf∗L(f∗s)
= h∗div(q′)∗f∗L((q′)∗f∗s)
= h∗divh∗q∗L(h∗q∗s)

The first equality by Lemma 82.11.1. The second by Lemma 82.19.1 using that T ′

is integral. The third because the displayed diagram commutes. The right hand
side pulls back to

[R(X) : R(Y )]q∗divL(s) = [R(T ′) : R(T )]divq∗L(q∗s)

This follows from Lemma 82.19.1, the fact that T is integral, and the equality
[R(T ′) : R(T )] = [R(X) : R(Y )] whose proof we omit (it follows from Lemma
82.11.1 but that would be a silly way to prove the equality). Thus it suffices to
prove the lemma for h : T ′ → T , the invertible module qL and the section q∗s. Since
q∗L = OT we reduce to the case where L ∼= O discussed in the next paragraph.

Assume that L = OY . In this case s corresponds to a rational function g ∈ R(Y ).
Using the embedding R(Y ) ⊂ R(X) we may think of g as a rational on X and we

https://stacks.math.columbia.edu/tag/0EQS
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are simply trying to prove
f∗ (divX(g)) = [R(X) : R(Y )]divY (g).

Comparing with the result of Lemma 82.14.1 we see this true since NmR(X)/R(Y )(g) =
g[R(X):R(Y )] as g ∈ R(Y )∗. □

Lemma 82.19.4.0EQT In Situation 82.2.1 let X,Y/B be good. Let p : X → Y be a
proper morphism. Let α ∈ Zk+1(X). Let L be an invertible sheaf on Y . Then

p∗(c1(p∗L) ∩ α) = c1(L) ∩ p∗α

in CHk(Y ).

Proof. Suppose that p has the property that for every integral closed subspace
W ⊂ X the map p|W : W → Y is a closed immersion. Then, by definition of
capping with c1(L) the lemma holds.
We will use this remark to reduce to a special case. Namely, write α =

∑
ni[Wi]

with ni ̸= 0 and Wi pairwise distinct. Let W ′
i ⊂ Y be the “image” of Wi as in

Lemma 82.7.1. Consider the diagram

X ′ =
∐
Wi q

//

p′

��

X

p

��
Y ′ =

∐
W ′
i

q′
// Y.

Since {Wi} is locally finite on X, and p is proper we see that {W ′
i} is locally finite on

Y and that q, q′, p′ are also proper morphisms. We may think of
∑
ni[Wi] also as a

k-cycle α′ ∈ Zk(X ′). Clearly q∗α
′ = α. We have q∗(c1(q∗p∗L)∩α′) = c1(p∗L)∩q∗α

′

and (q′)∗(c1((q′)∗L) ∩ p′
∗α

′) = c1(L) ∩ q′
∗p

′
∗α

′ by the initial remark of the proof.
Hence it suffices to prove the lemma for the morphism p′ and the cycle

∑
ni[Wi].

Clearly, this means we may assume X, Y integral, f : X → Y dominant and
α = [X]. In this case the result follows from Lemma 82.19.3. □

82.20. The key formula

0EQU This section is the analogue of Chow Homology, Section 42.27. We strongly urge
the reader to read the proof in that case first.
In Situation 82.2.1 let X/B be good. Assume X is integral and dimδ(X) = n. Let
L and N be invertible OX -modules. Let s be a nonzero meromorphic section of L
and let t be a nonzero meromorphic section of N . Let Z ⊂ X be a prime divisor
with generic point ξ ∈ |Z|. Consider the morphism

cξ : Spec(OhX,ξ) −→ X

used in Spaces over Fields, Section 72.7. We denote Lξ and Nξ the pullbacks of L
and N by cξ; we often think of Lξ and Nξ as the rank 1 free OhX,ξ-modules they
give rise to. Note that the pullback of s, resp. t is a regular meromorphic section
of Lξ, resp. Nξ.
Let Zi ⊂ X, i ∈ I be a locally finite set of prime divisors with the following
property: If Z ̸∈ {Zi}, then s is a generator for Lξ and t is a generator for Nξ.
Such a set exists by Spaces over Fields, Lemma 72.7.2. Then

divL(s) =
∑

ordZi,L(s)[Zi]

https://stacks.math.columbia.edu/tag/0EQT
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and similarly
divN (t) =

∑
ordZi,N (t)[Zi]

Unwinding the definitions more, we pick for each i generators si ∈ Lξi and ti ∈ Nξi
where ξi is the generic point of Zi. Then we can write

s = fisi and t = giti

with fi, gi invertible elements of the total ring of fractions Q(OhX,ξi). We abbreviate
Bi = OhX,ξi . Let us denote

ordBi : Q(Bi)∗ −→ Z, a/b 7−→ lengthBi(Bi/aBi)− lengthBi(Bi/bBi)

In other words, we temporarily extend Algebra, Definition 10.121.2 to these reduced
Noetherian local rings of dimension 1. Then by definition

ordZi,L(s) = ordBi(fi) and ordZi,N (t) = ordBi(gi)

Since ξi is the generic point of Zi we see that the residue field κ(ξi) is the function
field of Zi. Moreover κ(ξi) is the residue field of Bi, see Decent Spaces, Lemma
68.11.10. Since ti is a generator ofNξi we see that its image in the fibreNξi⊗Biκ(ξi)
is a nonzero meromorphic section of N|Zi . We will denote this image ti|Zi . From
our definitions it follows that

c1(N ) ∩ divL(s) =
∑

ordBi(fi)(Zi → X)∗divN |Zi (ti|Zi)

and similarly

c1(L) ∩ divN (t) =
∑

ordBi(gi)(Zi → X)∗divL|Zi (si|Zi)

in CHn−2(X). We are going to find a rational equivalence between these two cycles.
To do this we consider the tame symbol

∂Bi(fi, gi) ∈ κ(ξi)∗ = R(Zi)∗

see Chow Homology, Section 42.5.

Lemma 82.20.1 (Key formula).0EQV In the situation above the cycle∑
(Zi → X)∗

(
ordBi(fi)divN |Zi (ti|Zi)− ordBi(gi)divL|Zi (si|Zi)

)
is equal to the cycle ∑

(Zi → X)∗div(∂Bi(fi, gi))

Proof. The strategy of the proof will be: first reduce to the case where L and N
are trivial invertible modules, then change our choices of local trivializations, and
then finally use étale localization to reduce to the case of schemes1.

First step. Let q : T → X be the morphism constructed in Lemma 82.17.3. We
will use all properties stated in that lemma without further mention. In particular,
it suffices to show that the cycles are equal after pulling back by q. Denote s′

and t′ the pullbacks of s and t to meromorphic sections of q∗L and q∗N . Denote
Z ′
i = q−1(Zi), denote ξ′

i ∈ |Z ′
i| the generic point, denote B′

i = OhT,ξ′
i
, denote Lξ′

i

1It is possible that a shorter proof can be given by immediately applying étale localization.

https://stacks.math.columbia.edu/tag/0EQV
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and Nξ′
i

the pullbacks of L and N to Spec(B′
i). Recall that we have commutative

diagrams
Spec(B′

i) cξ′
i

//

��

T

q

��
Spec(Bi)

cξi // X

see Decent Spaces, Remark 68.11.11. Denote s′
i and t′i the pullbacks of si and ti

which are generators of Lξ′
i

and Nξ′
i
. Then we have

s′ = f ′
is

′
i and t′ = g′

it
′
i

where f ′
i and g′

i are the images of fi, gi under the map Q(Bi)→ Q(B′
i) induced by

Bi → B′
i. By Algebra, Lemma 10.52.13 we have

ordBi(fi) = ordB′
i
(f ′
i) and ordBi(gi) = ordB′

i
(g′
i)

By Lemma 82.19.1 applied to q : Z ′
i → Zi we have

q∗divN |Zi (ti|Zi) = divq∗N |Z′
i

(t′i|Z′
i
) and q∗divL|Zi (si|Zi) = divq∗L|Z′

i

(s′
i|Z′

i
)

This already shows that the first cycle in the statement of the lemma pulls back to
the corresponding cycle for s′, t′, Z ′

i, s
′
i, t

′
i. To see the same is true for the second,

note that by Chow Homology, Lemma 42.5.4 we have
∂Bi(fi, gi) 7→ ∂B′

i
(f ′
i , g

′
i) via κ(ξi)→ κ(ξ′

i)
Hence the same lemma as before shows that

q∗div(∂Bi(fi, gi)) = div(∂B′
i
(f ′
i , g

′
i))

Since q∗L ∼= OT we find that it suffices to prove the equality in case L is trivial.
Exchanging the roles of L and N we see that we may similarly assume N is trivial.
This finishes the proof of the first step.
Second step. Assume L = OX and N = OX . Denote 1 the trivializing section of L.
Then si = u · 1 for some unit u ∈ Bi. Let us examine what happens if we replace
si by 1. Then fi gets replaced by ufi. Thus the first part of the first expression of
the lemma is unchanged and in the second part we add

ordBi(gi)div(u|Zi)
where u|Zi is the image of u in the residue field by Spaces over Fields, Lemma
72.7.3 and in the second expression we add

div(∂Bi(u, gi))
by bi-linearity of the tame symbol. These terms agree by the property of the tame
symbol given in Chow Homology, Equation (6).
Let Y ⊂ X be an integral closed subspace with dimδ(Y ) = n − 2. To show that
the coefficients of Y of the two cycles of the lemma is the same, we may do a
replacement of si by 1 as in the previous paragraph. In exactly the same way one
shows that we may do a replacement of ti by 1. Since there are only a finite number
of Zi such that Y ⊂ Zi we may assume si = 1 and ti = 1 for all these Zi.
Third step. Here we prove the coefficients of Y in the cycles of the lemma agree for
an integral closed subspace Y with dimδ(Y ) = n − 2 such that moreover L = OX
and N = OX and si = 1 and ti = 1 for all Zi such that Y ⊂ Zi. After replacing X
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by a smaller open subspace we may in fact assume that si and ti are equal to 1 for
all i. In this case the first cycle is zero. Our task is to show that the coefficient of
Y in the second cycle is zero as well.
First, since L = OX and N = OX we may and do think of s, t as rational functions
f, g on X. Since si and ti are equal to 1 we find that fi, resp. gi is the image of
f , resp. g in Q(Bi) for all i. Let ζ ∈ |Y | be the generic point. Choose an étale
neighbourhood

(U, u) −→ (X, ζ)
and denote Y ′ = {u} ⊂ U . Since an étale morphism is flat, we can pullback f and
g to regular meromorphic functions on U which we will also denote f and g. For
every prime divisor Y ⊂ Z ⊂ X the scheme Z ×X U is a union of prime divisors
of U . Conversely, given a prime divisor Y ′ ⊂ Z ′ ⊂ U , there is a prime divisor
Y ⊂ Z ⊂ X such that Z ′ is a component of Z ×X U . Given such a pair (Z,Z ′) the
ring map

OhX,ξ → OhU,ξ′

is étale (in fact it is finite étale). Hence we find that
∂Oh

X,ξ
(f, g) 7→ ∂Oh

U,ξ′
(f, g) via κ(ξ)→ κ(ξ′)

by Chow Homology, Lemma 42.5.4. Thus Lemma 82.13.2 applies to show

(Z ×X U → Z)∗divZ(∂Oh
X,ξ

(f, g)) =
∑

Z′⊂Z×XU
divZ′(∂Oh

U,ξ′
(f, g))

Since flat pullback commutes with pushforward along closed immersions (Lemma
82.11.1) we see that it suffices to prove that the coefficient of Y ′ in∑

Z′⊂U
(Z ′ → U)∗divZ′(∂Oh

U,ξ′
(f, g))

is zero.
Let A = OU,u. Then f, g ∈ Q(A)∗. Thus we can write f = a/b and g = c/d with
a, b, c, d ∈ A nonzerodivisors. The coefficient of Y ′ in the expression above is∑

q⊂A height 1
ordA/q(∂Aq

(f, g))

By bilinearity of ∂A it suffices to prove∑
q⊂A height 1

ordA/q(∂Aq
(a, c))

is zero and similarly for the other pairs (a, d), (b, c), and (b, d). This is true by
Chow Homology, Lemma 42.6.2. □

82.21. Intersecting with an invertible sheaf and rational equivalence

0EQW This section is the analogue of Chow Homology, Section 42.28. Applying the key
lemma we obtain the fundamental properties of intersecting with invertible sheaves.
In particular, we will see that c1(L) ∩ − factors through rational equivalence and
that these operations for different invertible sheaves commute.

Lemma 82.21.1.0EQX In Situation 82.2.1 let X/B be good. Assume X integral and
dimδ(X) = n. Let L, N be invertible on X. Choose a nonzero meromorphic
section s of L and a nonzero meromorphic section t of N . Set α = divL(s) and
β = divN (t). Then

c1(N ) ∩ α = c1(L) ∩ β

https://stacks.math.columbia.edu/tag/0EQX
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in CHn−2(X).

Proof. Immediate from the key Lemma 82.20.1 and the discussion preceding it. □

Lemma 82.21.2.0EQY In Situation 82.2.1 let X/B be good. Let L be invertible on
X. The operation α 7→ c1(L) ∩ α factors through rational equivalence to give an
operation

c1(L) ∩ − : CHk+1(X)→ CHk(X)

Proof. Let α ∈ Zk+1(X), and α ∼rat 0. We have to show that c1(L)∩α as defined
in Definition 82.18.1 is zero. By Definition 82.15.1 there exists a locally finite family
{Wj} of integral closed subspaces with dimδ(Wj) = k + 2 and rational functions
fj ∈ R(Wj)∗ such that

α =
∑

(ij)∗divWj
(fj)

Note that p :
∐
Wj → X is a proper morphism, and hence α = p∗α

′ where
α′ ∈ Zk+1(

∐
Wj) is the sum of the principal divisors divWj

(fj). By Lemma 82.19.4
we have c1(L)∩α = p∗(c1(p∗L)∩α′). Hence it suffices to show that each c1(L|Wj

)∩
divWj

(fj) is zero. In other words we may assume thatX is integral and α = divX(f)
for some f ∈ R(X)∗.

Assume X is integral and α = divX(f) for some f ∈ R(X)∗. We can think of
f as a regular meromorphic section of the invertible sheaf N = OX . Choose
a meromorphic section s of L and denote β = divL(s). By Lemma 82.21.1 we
conclude that

c1(L) ∩ α = c1(OX) ∩ β.

However, by Lemma 82.18.2 we see that the right hand side is zero in CHk(X) as
desired. □

In Situation 82.2.1 let X/B be good. Let L be invertible on X. We will denote

c1(L)s ∩ − : CHk+s(X)→ CHk(X)

the operation c1(L) ∩ −. This makes sense by Lemma 82.21.2. We will denote
c1(Ls ∩ − the s-fold iterate of this operation for all s ≥ 0.

Lemma 82.21.3.0EQZ In Situation 82.2.1 let X/B be good. Let L, N be invertible on
X. For any α ∈ CHk+2(X) we have

c1(L) ∩ c1(N ) ∩ α = c1(N ) ∩ c1(L) ∩ α

as elements of CHk(X).

Proof. Write α =
∑
mj [Zj ] for some locally finite collection of integral closed

subspaces Zj ⊂ X with dimδ(Zj) = k + 2. Consider the proper morphism p :∐
Zj → X. Set α′ =

∑
mj [Zj ] as a (k+ 2)-cycle on

∐
Zj . By several applications

of Lemma 82.19.4 we see that c1(L)∩ c1(N )∩ α = p∗(c1(p∗L)∩ c1(p∗N )∩ α′) and
c1(N ) ∩ c1(L) ∩ α = p∗(c1(p∗N ) ∩ c1(p∗L) ∩ α′). Hence it suffices to prove the
formula in case X is integral and α = [X]. In this case the result follows from
Lemma 82.21.1 and the definitions. □

https://stacks.math.columbia.edu/tag/0EQY
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82.22. Intersecting with effective Cartier divisors

0ER0 This section is the analogue of Chow Homology, Section 42.29. Please read the
introduction of that section we motivation.
Recall that effective Cartier divisors correspond 1-to-1 to isomorphism classes of
pairs (L, s) where L is an invertible sheaf and s is a global section, see Divisors on
Spaces, Lemma 71.7.8. If D corresponds to (L, s), then L = OX(D). Please keep
this in mind while reading this section.

Definition 82.22.1.0ER1 In Situation 82.2.1 let X/B be good. Let (L, s) be a pair
consisting of an invertible sheaf and a global section s ∈ Γ(X,L). Let D = Z(s) be
the vanishing locus of s, and denote i : D → X the closed immersion. We define,
for every integer k, a (refined) Gysin homomorphism

i∗ : Zk+1(X)→ CHk(D).
by the following rules:

(1) Given a integral closed subspace W ⊂ X with dimδ(W ) = k+ 1 we define
(a) if W ̸⊂ D, then i∗[W ] = [D ∩W ]k as a k-cycle on D, and
(b) if W ⊂ D, then i∗[W ] = i′∗(c1(L|W ) ∩ [W ]), where i′ : W → D is the

induced closed immersion.
(2) For a general (k + 1)-cycle α =

∑
nj [Wj ] we set

i∗α =
∑

nji
∗[Wj ]

(3) If D is an effective Cartier divisor, then we denote D · α = i∗i
∗α the

pushforward of the class to a class on X.

In fact, as we will see later, this Gysin homomorphism i∗ can be viewed as an
example of a non-flat pullback. Thus we will sometimes informally call the class
i∗α the pullback of the class α.

Remark 82.22.2.0ER2 Let S, B, X, L, s, i : D → X be as in Definition 82.22.1 and
assume that L|D ∼= OD. In this case we can define a canonical map i∗ : Zk+1(X)→
Zk(D) on cycles, by requiring that i∗[W ] = 0 whenever W ⊂ D. The possibility to
do this will be useful later on.

Remark 82.22.3.0ER3 Let f : X ′ → X be a morphism of good algebraic spaces over B
as in Situation 82.2.1. Let (L, s, i : D → X) be a triple as in Definition 82.22.1.
Then we can set L′ = f∗L, s′ = f∗s, and D′ = X ′ ×X D = Z(s′). This gives a
commutative diagram

D′

g

��

i′
// X ′

f

��
D

i // X

and we can ask for various compatibilities between i∗ and (i′)∗.

Lemma 82.22.4.0ER4 In Situation 82.2.1 let X/B be good. Let (L, s, i : D → X) be as in
Definition 82.22.1. Let α be a (k+1)-cycle onX. Then i∗i∗α = c1(L)∩α in CHk(X).
In particular, if D is an effective Cartier divisor, then D · α = c1(OX(D)) ∩ α.

Proof. Write α =
∑
nj [Wj ] where ij : Wj → X are integral closed subspaces with

dimδ(Wj) = k. Since D is the vanishing locus of s we see that D ∩ Wj is the

https://stacks.math.columbia.edu/tag/0ER1
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vanishing locus of the restriction s|Wj
. Hence for each j such that Wj ̸⊂ D we have

c1(L) ∩ [Wj ] = [D ∩Wj ]k by Lemma 82.18.4. So we have

c1(L) ∩ α =
∑

Wj ̸⊂D
nj [D ∩Wj ]k +

∑
Wj⊂D

njij,∗(c1(L)|Wj ) ∩ [Wj ])

in CHk(X) by Definition 82.18.1. The right hand side matches (termwise) the
pushforward of the class i∗α on D from Definition 82.22.1. Hence we win. □

Lemma 82.22.5.0ER5 In Situation 82.2.1. Let f : X ′ → X be a proper morphism of
good algebraic spaces over B. Let (L, s, i : D → X) be as in Definition 82.22.1.
Form the diagram

D′

g

��

i′
// X ′

f

��
D

i // X

as in Remark 82.22.3. For any (k+ 1)-cycle α′ on X ′ we have i∗f∗α
′ = g∗(i′)∗α′ in

CHk(D) (this makes sense as f∗ is defined on the level of cycles).

Proof. Suppose α = [W ′] for some integral closed subspace W ′ ⊂ X ′. Let W ⊂ X
be the “image” of W ′ as in Lemma 82.7.1. In case W ′ ̸⊂ D′, then W ̸⊂ D and we
see that

[W ′ ∩D′]k = divL′|W ′ (s′|W ′) and [W ∩D]k = divL|W (s|W )
and hence f∗ of the first cycle equals the second cycle by Lemma 82.19.3. Hence
the equality holds as cycles. In case W ′ ⊂ D′, then W ⊂ D and f∗(c1(L|W ′)∩ [W ′])
is equal to c1(L|W ) ∩ [W ] in CHk(W ) by the second assertion of Lemma 82.19.3.
By Remark 82.15.3 the result follows for general α′. □

Lemma 82.22.6.0ER6 In Situation 82.2.1. Let f : X ′ → X be a flat morphism of
relative dimension r of good algebraic spaces over B. Let (L, s, i : D → X) be as
in Definition 82.22.1. Form the diagram

D′

g

��

i′
// X ′

f

��
D

i // X

as in Remark 82.22.3. For any (k + 1)-cycle α on X we have (i′)∗f∗α = g∗i∗α′ in
CHk+r(D) (this makes sense as f∗ is defined on the level of cycles).

Proof. Suppose α = [W ] for some integral closed subspace W ⊂ X. Let W ′ =
f−1(W ) ⊂ X ′. In case W ̸⊂ D, then W ′ ̸⊂ D′ and we see that

W ′ ∩D′ = g−1(W ∩D)
as closed subspaces of D′. Hence the equality holds as cycles, see Lemma 82.10.5.
In case W ⊂ D, then W ′ ⊂ D′ and W ′ = g−1(W ) with [W ′]k+1+r = g∗[W ] and
equality holds in CHk+r(D′) by Lemma 82.19.2. By Remark 82.15.3 the result
follows for general α′. □

Lemma 82.22.7.0ER7 In Situation 82.2.1 let X/B be good. Let (L, s, i : D → X) be as
in Definition 82.22.1. Let Z ⊂ X be a closed subscheme such that dimδ(Z) ≤ k+ 1
and such that D∩Z is an effective Cartier divisor on Z. Then i∗([Z]k+1) = [D∩Z]k.
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Proof. The assumption means that s|Z is a regular section of L|Z . Thus D ∩ Z =
Z(s) and we get

[D ∩ Z]k =
∑

ni[Z(si)]k
as cycles where si = s|Zi , the Zi are the irreducible components of δ-dimension
k + 1, and [Z]k+1 =

∑
ni[Zi]. See Lemma 82.18.3. We have D ∩ Zi = Z(si).

Comparing with the definition of the gysin map we conclude. □

82.23. Gysin homomorphisms

0ER8 This section is the analogue of Chow Homology, Section 42.30. In this section
we use the key formula to show the Gysin homomorphism factor through rational
equivalence.

Lemma 82.23.1.0ER9 In Situation 82.2.1 let X/B be good. Assume X integral and
n = dimδ(X). Let i : D → X be an effective Cartier divisor. Let N be an
invertible OX -module and let t be a nonzero meromorphic section of N . Then
i∗divN (t) = c1(N ) ∩ [D]n−1 in CHn−2(D).

Proof. Write divN (t) =
∑

ordZi,N (t)[Zi] for some integral closed subspaces Zi ⊂ X
of δ-dimension n − 1. We may assume that the family {Zi} is locally finite, that
t ∈ Γ(U,N|U ) is a generator where U = X \

⋃
Zi, and that every irreducible

component of D is one of the Zi, see Spaces over Fields, Lemmas 72.6.1, 72.6.6,
and 72.7.2.
Set L = OX(D). Denote s ∈ Γ(X,OX(D)) = Γ(X,L) the canonical section. We
will apply the discussion of Section 82.20 to our current situation. For each i let
ξi ∈ |Zi| be its generic point. Let Bi = OhX,ξi . For each i we pick generators si
of Lξi and ti of Nξi over Bi but we insist that we pick si = s if Zi ̸⊂ D. Write
s = fisi and t = giti with fi, gi ∈ Bi. Then ordZi,N (t) = ordBi(gi). On the other
hand, we have fi ∈ Bi and

[D]n−1 =
∑

ordBi(fi)[Zi]
because of our choices of si. We claim that

i∗divN (t) =
∑

ordBi(gi)divL|Zi (si|Zi)
as cycles. More precisely, the right hand side is a cycle representing the left
hand side. Namely, this is clear by our formula for divN (t) and the fact that
divL|Zi (si|Zi) = [Z(si|Zi)]n−2 = [Zi ∩ D]n−2 when Zi ̸⊂ D because in that case
si|Zi = s|Zi is a regular section, see Lemma 82.17.2. Similarly,

c1(N ) ∩ [D]n−1 =
∑

ordBi(fi)divN |Zi (ti|Zi)

The key formula (Lemma 82.20.1) gives the equality∑(
ordBi(fi)divN |Zi (ti|Zi)− ordBi(gi)divL|Zi (si|Zi)

)
=
∑

divZi(∂Bi(fi, gi))

of cycles. If Zi ̸⊂ D, then fi = 1 and hence divZi(∂Bi(fi, gi)) = 0. Thus we
get a rational equivalence between our specific cycles representing i∗divN (t) and
c1(N ) ∩ [D]n−1 on D. This finishes the proof. □

Lemma 82.23.2.0ERA In Situation 82.2.1 let X/B be good. Let (L, s, i : D → X) be as in
Definition 82.22.1. The Gysin homomorphism factors through rational equivalence
to give a map i∗ : CHk+1(X)→ CHk(D).
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Proof. Let α ∈ Zk+1(X) and assume that α ∼rat 0. This means there exists a
locally finite collection of integral closed subspaces Wj ⊂ X of δ-dimension k + 2
and fj ∈ R(Wj)∗ such that α =

∑
ij,∗divWj (fj). Set X ′ =

∐
Wi and consider the

diagram
D′

q

��

i′
// X ′

p

��
D

i // X

of Remark 82.22.3. Since X ′ → X is proper we see that i∗p∗ = q∗(i′)∗ by Lemma
82.22.5. As we know that q∗ factors through rational equivalence (Lemma 82.16.3),
it suffices to prove the result for α′ =

∑
divWj (fj) on X ′. Clearly this reduces us

to the case where X is integral and α = div(f) for some f ∈ R(X)∗.
Assume X is integral and α = div(f) for some f ∈ R(X)∗. If X = D, then we
see that i∗α is equal to c1(L) ∩ α. This is rationally equivalent to zero by Lemma
82.21.2. If D ̸= X, then we see that i∗divX(f) is equal to c1(OD) ∩ [D]n−1 in
CHk(D) by Lemma 82.23.1. Of course capping with c1(OD) is the zero map. □

Lemma 82.23.3.0ERB In Situation 82.2.1 let X/B be good. Let (L, s, i : D → X)
be a triple as in Definition 82.22.1. Let N be an invertible OX -module. Then
i∗(c1(N ) ∩ α) = c1(i∗N ) ∩ i∗α in CHk−2(D) for all α ∈ CHk(Z).

Proof. With exactly the same proof as in Lemma 82.23.2 this follows from Lemmas
82.19.4, 82.21.3, and 82.23.1. □

Lemma 82.23.4.0ERC In Situation 82.2.1 let X/B be good. Let (L, s, i : D → X) and
(L′, s′, i′ : D′ → X) be two triples as in Definition 82.22.1. Then the diagram

CHk(X)
i∗

//

(i′)∗

��

CHk−1(D)

��
CHk−1(D′) // CHk−2(D ∩D′)

commutes where each of the maps is a gysin map.

Proof. Denote j : D ∩D′ → D and j′ : D ∩D′ → D′ the closed immersions corre-
sponding to (L|D′ , s|D′ and (L′

D, s|D). We have to show that (j′)∗i∗α = j∗(i′)∗α for
all α ∈ CHk(X). Let W ⊂ X be an integral closed subscheme of dimension k. We
will prove the equality in case α = [W ]. The general case will then follow from the
observation in Remark 82.15.3 (and the specific shape of our rational equivalence
produced below). We will deduce the equality for α = [W ] from the key formula.
We let σ be a nonzero meromorphic section of L|W which we require to be equal
to s|W if W ̸⊂ D. We let σ′ be a nonzero meromorphic section of L′|W which we
require to be equal to s′|W if W ̸⊂ D′. Write

divL|W (σ) =
∑

ordZi,L|W (σ)[Zi] =
∑

ni[Zi]

and similarly

divL′|W (σ′) =
∑

ordZi,L′|W (σ′)[Zi] =
∑

n′
i[Zi]

as in the discussion in Section 82.20. Then we see that Zi ⊂ D if ni ̸= 0 and
Z ′
i ⊂ D′ if n′

i ̸= 0. For each i, let ξi ∈ |Zi| be the generic point. As in Section

https://stacks.math.columbia.edu/tag/0ERB
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82.20 we choose for each i an element σi ∈ Lξi , resp. σ′
i ∈ L′

ξi
which generates over

Bi = OhW,ξi and which is equal to the image of s, resp. s′ if Zi ̸⊂ D, resp. Zi ̸⊂ D′.
Write σ = fiσi and σ′ = f ′

iσ
′
i so that ni = ordBi(fi) and n′

i = ordBi(f ′
i). From our

definitions it follows that
(j′)∗i∗[W ] =

∑
ordBi(fi)divL′|Zi (σ

′
i|Zi)

as cycles and
j∗(i′)∗[W ] =

∑
ordBi(f ′

i)divL|Zi (σi|Zi)
The key formula (Lemma 82.20.1) now gives the equality∑(

ordBi(fi)divL′|Zi (σ
′
i|Zi)− ordBi(f ′

i)divL|Zi (σi|Zi)
)

=
∑

divZi(∂Bi(fi, f ′
i))

of cycles. Note that divZi(∂Bi(fi, f ′
i)) = 0 if Zi ̸⊂ D∩D′ because in this case either

fi = 1 or f ′
i = 1. Thus we get a rational equivalence between our specific cycles

representing (j′)∗i∗[W ] and j∗(i′)∗[W ] on D ∩D′ ∩W . □

82.24. Relative effective Cartier divisors

0ERD This section is the analogue of Chow Homology, Section 42.31. Relative effective
Cartier divisors are defined in Divisors on Spaces, Section 71.9. To develop the
basic results on Chern classes of vector bundles we only need the case where both
the ambient scheme and the effective Cartier divisor are flat over the base.

Lemma 82.24.1.0ERE In Situation 82.2.1. Let X,Y/B be good. Let p : X → Y be
a flat morphism of relative dimension r. Let i : D → X be a relative effective
Cartier divisor (Divisors on Spaces, Definition 71.9.2). Let L = OX(D). For any
α ∈ CHk+1(Y ) we have

i∗p∗α = (p|D)∗α

in CHk+r(D) and
c1(L) ∩ p∗α = i∗((p|D)∗α)

in CHk+r(X).

Proof. Let W ⊂ Y be an integral closed subspace of δ-dimension k+1. By Divisors
on Spaces, Lemma 71.9.1 we see that D ∩ p−1W is an effective Cartier divisor on
p−1W . By Lemma 82.22.7 we get the first equality in

i∗[p−1W ]k+r+1 = [D ∩ p−1W ]k+r = [(p|D)−1(W )]k+r.

and the second because D ∩ p−1(W ) = (p|D)−1(W ) as algebraic spaces. Since
by definition p∗[W ] = [p−1W ]k+r+1 we see that i∗p∗[W ] = (p|D)∗[W ] as cycles.
If α =

∑
mj [Wj ] is a general k + 1 cycle, then we get i∗α =

∑
mji

∗p∗[Wj ] =∑
mj(p|D)∗[Wj ] as cycles. This proves then first equality. To deduce the second

from the first apply Lemma 82.22.4. □

82.25. Affine bundles

0ERF This section is the analogue of Chow Homology, Section 42.32. For an affine bundle
the pullback map is surjective on Chow groups.

Lemma 82.25.1.0ERG In Situation 82.2.1 let X,Y/B be good. Let f : X → Y be
a quasi-compact flat morphism over B of relative dimension r. Assume that for
every y ∈ Y we have Xy

∼= Ar
κ(y). Then f∗ : CHk(Y ) → CHk+r(X) is surjective

for all k ∈ Z.
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Proof. Let α ∈ CHk+r(X). Write α =
∑
mj [Wj ] with mj ̸= 0 and Wj pairwise

distinct integral closed subspaces of δ-dimension k + r. Then the family {Wj} is
locally finite in X. Let Zj ⊂ Y be the integral closed subspace such that we obtain
a dominant morphism Wj → Zj as in Lemma 82.7.1. For any quasi-compact open
V ⊂ Y we see that f−1(V ) ∩Wj is nonempty only for finitely many j. Hence the
collection Zj of closures of images is a locally finite collection of integral closed
subspaces of Y .

Consider the fibre product diagrams

f−1(Zj) //

fj

��

X

f

��
Zj // Y

Suppose that [Wj ] ∈ Zk+r(f−1(Zj)) is rationally equivalent to f∗
j βj for some k-cycle

βj ∈ CHk(Zj). Then β =
∑
mjβj will be a k-cycle on Y and f∗β =

∑
mjf

∗
j βj

will be rationally equivalent to α (see Remark 82.15.3). This reduces us to the case
Y integral, and α = [W ] for some integral closed subscheme of X dominating Y .
In particular we may assume that d = dimδ(Y ) <∞.

Hence we can use induction on d = dimδ(Y ). If d < k, then CHk+r(X) = 0 and
the lemma holds; this is the base case of the induction. Consider a nonempty open
V ⊂ Y . Suppose that we can show that α|f−1(V ) = f∗β for some β ∈ Zk(V ).
By Lemma 82.10.2 we see that β = β′|V for some β′ ∈ Zk(Y ). By the exact
sequence CHk(f−1(Y \ V ))→ CHk(X)→ CHk(f−1(V )) of Lemma 82.15.2 we see
that α− f∗β′ comes from a cycle α′ ∈ CHk+r(f−1(Y \V )). Since dimδ(Y \V ) < d
we win by induction on d.

In particular, by replacing Y by a suitable open we may assume Y is a scheme
with generic point η. The isomorphism Yη ∼= Ar

η extends to an isomorphism over
a nonempty open V ⊂ Y , see Limits of Spaces, Lemma 70.7.1. This reduces us to
the case of schemes which is Chow Homology, Lemma 42.32.1. □

Lemma 82.25.2.0ERH In Situation 82.2.1 let X/B be good. Let L be an invertible
OX -module. Let

p : L = Spec(Sym∗(L)) −→ X

be the associated vector bundle over X. Then p∗ : CHk(X) → CHk+1(L) is an
isomorphism for all k.

Proof. For surjectivity see Lemma 82.25.1. Let o : X → L be the zero section of
L→ X, i.e., the morphism corresponding to the surjection Sym∗(L)→ OX which
maps L⊗n to zero for all n > 0. Then p ◦ o = idX and o(X) is an effective Cartier
divisor on L. Hence by Lemma 82.24.1 we see that o∗ ◦ p∗ = id and we conclude
that p∗ is injective too. □

82.26. Bivariant intersection theory

0ERI This section is the analogue of Chow Homology, Section 42.33. In order to intelli-
gently talk about higher Chern classes of vector bundles we introduce the following
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notion, following [FM81]. It follows from [Ful98, Theorem 17.1] that our defini-
tion agrees with that of [Ful98] modulo the caveat that we are working in different
settings.

Definition 82.26.1.0ERJ Similar to [Ful98,
Definition 17.1]

In Situation 82.2.1 let f : X → Y be a morphism of good
algebraic spaces over B. Let p ∈ Z. A bivariant class c of degree p for f is given
by a rule which assigns to every morphism Y ′ → Y of good algebraic spaces over
B and every k a map

c ∩ − : CHk(Y ′) −→ CHk−p(X ′)
where X ′ = Y ′ ×Y X, satisfying the following conditions

(1) if Y ′′ → Y ′ is a proper morphism, then c ∩ (Y ′′ → Y ′)∗α
′′ = (X ′′ →

X ′)∗(c ∩ α′′) for all α′′ on Y ′′,
(2) if Y ′′ → Y ′ a morphism of good algebraic spaces over B which is flat of

relative dimension r, then c∩ (Y ′′ → Y ′)∗α′ = (X ′′ → X ′)∗(c∩α′) for all
α′ on Y ′,

(3) if (L′, s′, i′ : D′ → Y ′) is as in Definition 82.22.1 with pullback (N ′, t′, j′ :
E′ → X ′) to X ′, then we have c ∩ (i′)∗α′ = (j′)∗(c ∩ α′) for all α′ on Y ′.

The collection of all bivariant classes of degree p for f is denoted Ap(X → Y ).

In Situation 82.2.1 let X → Y and Y → Z be morphisms of good algebraic spaces
over B. Let p ∈ Z. It is clear that Ap(X → Y ) is an abelian group. Moreover, it
is clear that we have a bilinear composition

Ap(X → Y )×Aq(Y → Z)→ Ap+q(X → Z)
which is associative. We will be most interested in Ap(X) = Ap(X → X), which
will always mean the bivariant cohomology classes for idX . Namely, that is where
Chern classes will live.

Definition 82.26.2.0ERK In Situation 82.2.1 let X/B be good. The Chow cohomology
of X is the graded Z-algebra A∗(X) whose degree p component is Ap(X → X).

Warning: It is not clear that the Z-algebra structure on A∗(X) is commutative,
but we will see that Chern classes live in its center.

Remark 82.26.3.0ERL In Situation 82.2.1 let f : X → Y be a morphism of good
algebraic spaces over B. Then there is a canonical Z-algebra map A∗(Y )→ A∗(X).
Namely, given c ∈ Ap(Y ) and X ′ → X, then we can let f∗c be defined by the map
c ∩ − : CHk(X ′) → CHk−p(X ′) which is given by thinking of X ′ as an algebraic
space over Y .

Lemma 82.26.4.0ERM In Situation 82.2.1 let X/B be good. Let L be an invertible
OX -module. Then the rule that to f : X ′ → X assigns c1(f∗L) ∩ − : CHk(X ′) →
CHk−1(X ′) is a bivariant class of degree 1.

Proof. This follows from Lemmas 82.21.2, 82.19.4, 82.19.2, and 82.23.3. □

Lemma 82.26.5.0ERN In Situation 82.2.1 let f : X → Y be a morphism of good algebraic
spaces over B which is flat of relative dimension r. Then the rule that to Y ′ → Y
assigns (f ′)∗ : CHk(Y ′)→ CHk+r(X ′) where X ′ = X ×Y Y ′ is a bivariant class of
degree −r.

Proof. This follows from Lemmas 82.16.2, 82.10.4, 82.11.1, and 82.22.6. □
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Lemma 82.26.6.0ERP In Situation 82.2.1 let X/B be good. Let (L, s, i : D → X)
be a triple as in Definition 82.22.1. Then the rule that to f : X ′ → X assigns
(i′)∗ : CHk(X ′) → CHk−1(D′) where D′ = D ×X X ′ is a bivariant class of degree
1.

Proof. This follows from Lemmas 82.23.2, 82.22.5, 82.22.6, and 82.23.4. □

Lemma 82.26.7.0ERQ In Situation 82.2.1 let f : X → Y and g : Y → Z be morphisms of
good algebraic spaces over B. Let c ∈ Ap(X → Z) and assume f is proper. Then
the rule that to X ′ → X assigns α 7−→ f∗(c ∩ α) is a bivariant class of degree p.

Proof. This follows from Lemmas 82.8.2, 82.11.1, and 82.22.5. □

Here we see that c1(L) is in the center of A∗(X).

Lemma 82.26.8.0ERR In Situation 82.2.1 let X/B be good. Let L be an invertible
OX -module. Then c1(L) ∈ A1(X) commutes with every element c ∈ Ap(X).

Proof. Let p : L → X be as in Lemma 82.25.2 and let o : X → L be the zero
section. Observe that p∗L⊗−1 has a canonical section whose vanishing locus is
exactly the effective Cartier divisor o(X). Let α ∈ CHk(X). Then we see that

p∗(c1(L⊗−1) ∩ α) = c1(p∗L⊗−1) ∩ p∗α = o∗o
∗p∗α

by Lemmas 82.19.2 and 82.24.1. Since c is a bivariant class we have

p∗(c ∩ c1(L⊗−1) ∩ α) = c ∩ p∗(c1(L⊗−1) ∩ α)
= c ∩ o∗o

∗p∗α

= o∗o
∗p∗(c ∩ α)

= p∗(c1(L⊗−1) ∩ c ∩ α)

(last equality by the above applied to c∩α). Since p∗ is injective by a lemma cited
above we get that c1(L⊗−1) is in the center of A∗(X). This proves the lemma. □

Here a criterion for when a bivariant class is zero.

Lemma 82.26.9.0ERS In Situation 82.2.1 let X/B be good. Let c ∈ Ap(X). Then c is
zero if and only if c∩ [Y ] = 0 in CH∗(Y ) for every integral algebraic space Y locally
of finite type over X.

Proof. The if direction is clear. For the converse, assume that c∩[Y ] = 0 in CH∗(Y )
for every integral algebraic space Y locally of finite type over X. Let X ′ → X be
locally of finite type. Let α ∈ CHk(X ′). Write α =

∑
ni[Yi] with Yi ⊂ X ′ a locally

finite collection of integral closed subschemes of δ-dimension k. Then we see that α
is pushforward of the cycle α′ =

∑
ni[Yi] on X ′′ =

∐
Yi under the proper morphism

X ′′ → X ′. By the properties of bivariant classes it suffices to prove that c∩ α′ = 0
in CHk−p(X ′′). We have CHk−p(X ′′) =

∏
CHk−p(Yi) as follows immediately from

the definitions. The projection maps CHk−p(X ′′) → CHk−p(Yi) are given by flat
pullback. Since capping with c commutes with flat pullback, we see that it suffices
to show that c ∩ [Yi] is zero in CHk−p(Yi) which is true by assumption. □
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82.27. Projective space bundle formula

0ERT In Situation 82.2.1 let X/B be good. Consider a finite locally free OX -module
E of rank r. Our convention is that the projective bundle associated to E is the
morphism

P(E) = Proj
X

(Sym∗(E)) π // X

over X with OP(E)(1) normalized so that π∗(OP(E)(1)) = E . In particular there is
a surjection π∗E → OP(E)(1). We will say informally “let (π : P → X,OP (1)) be
the projective bundle associated to E” to denote the situation where P = P(E) and
OP (1) = OP(E)(1).

Lemma 82.27.1.0ERU In Situation 82.2.1 let X/B be good. Let E be a finite locally
free OX -module E of rank r. Let (π : P → X,OP (1)) be the projective bundle
associated to E . For any α ∈ CHk(X) the element

π∗ (c1(OP (1))s ∩ π∗α) ∈ CHk+r−1−s(X)

is 0 if s < r − 1 and is equal to α when s = r − 1.

Proof. Let Z ⊂ X be an integral closed subspace of δ-dimension k. We will prove
the lemma for α = [Z]. We omit the argument deducing the general case from this
special case; hint: argue as in Remark 82.15.3.

Let PZ = P×XZ be the base change; of course πZ : PZ → Z is the projective bundle
associated to E|Z and OP (1) pulls back to the corresponding invertible module on
PZ . Since c1(OP (1)∩−, and π∗ are bivariant classes by Lemmas 82.26.4 and 82.26.5
we see that

π∗ (c1(OP (1))s ∩ π∗[Z]) = (Z → X)∗πZ,∗ (c1(OPZ (1))s ∩ π∗
Z [Z])

Hence it suffices to prove the lemma in case X is integral and α = [X].

Assume X is integral, dimδ(X) = k, and α = [X]. Note that π∗[X] = [P ] as P is
integral of δ-dimension r − 1. If s < r − 1, then by construction c1(OP (1))s ∩ [P ]
a (k + r − 1 − s)-cycle. Hence the pushforward of this cycle is zero for dimension
reasons.

Let s = r−1. By the argument given above we see that π∗(c1(OP (1))s∩[P ]) = n[X]
for some n ∈ Z. We want to show that n = 1. For the same dimension reasons as
above it suffices to prove this result after replacing X by a dense open. Thus we
may assume X is a scheme and the result follows from Chow Homology, Lemma
42.36.1. □

Lemma 82.27.2 (Projective space bundle formula).0ERV Let (S, δ) be as in Situation
82.2.1. Let X be locally of finite type over S. Let E be a finite locally free OX -
module E of rank r. Let (π : P → X,OP (1)) be the projective bundle associated
to E . The map ⊕r−1

i=0
CHk+i(X) −→ CHk+r−1(P ),

(α0, . . . , αr−1) 7−→ π∗α0 + c1(OP (1)) ∩ π∗α1 + . . .+ c1(OP (1))r−1 ∩ π∗αr−1

is an isomorphism.
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Proof. Fix k ∈ Z. We first show the map is injective. Suppose that (α0, . . . , αr−1)
is an element of the left hand side that maps to zero. By Lemma 82.27.1 we see
that

0 = π∗(π∗α0 + c1(OP (1)) ∩ π∗α1 + . . .+ c1(OP (1))r−1 ∩ π∗αr−1) = αr−1

Next, we see that
0 = π∗(c1(OP (1))∩(π∗α0+c1(OP (1))∩π∗α1+. . .+c1(OP (1))r−2∩π∗αr−2)) = αr−2

and so on. Hence the map is injective.
To prove the map is surjective, we will argue exactly as in the proof of Lemma
82.25.1 to reduce to the case of schemes. We urge the reader to skip the proof.
Let β ∈ CHk+r−1(P ). Write β =

∑
mj [Wj ] with mj ̸= 0 and Wj pairwise distinct

integral closed subspaces of δ-dimension k + r. Then the family {Wj} is locally
finite in P . Let Zj ⊂ X be the “image” of Wj as in Lemma 82.7.1. For any quasi-
compact open U ⊂ X we see that π−1(U)∩Wj is nonempty only for finitely many
j. Hence the collection Zj of images is a locally finite collection of integral closed
subspaces of X.
Consider the fibre product diagrams

Pj //

πj

��

P

π

��
Zj // X

Suppose that [Wj ] ∈ Zk+r−1(Pj) is rationally equivalent to
π∗
jαj,0 + c1(O(1)) ∩ π∗

jαj,1 + . . .+ c1(O(1))r−1 ∩ π∗
jαj,r−1

for some (k+ i)-cycle αj,i ∈ CHk+i(Zj). Then αi =
∑
mjβj,i will be a (k+ i)-cycle

on X and
π∗α0 + c1(O(1)) ∩ π∗α1 + . . .+ c1(O(1))r−1 ∩ π∗αr−1

will be rationally equivalent to β (see Remark 82.15.3). This reduces us to the case
X integral, and α = [W ] for some integral closed subscheme of P dominating X.
In particular we may assume that d = dimδ(X) <∞.
Hence we can use induction on d = dimδ(X). If d < k, then CHk+r−1(X) = 0 and
the lemma holds; this is the base case of the induction. Consider a nonempty open
U ⊂ X. Suppose that we can show that

β|π−1(U) = π∗α0 + c1(O(1)) ∩ π∗α1 + . . .+ c1(O(1))r−1 ∩ π∗αr−1

for some αi ∈ Zk+i(U). By Lemma 82.10.2 we see that αi = α′
i|U for some

α′
i ∈ Zk+i(X). By the exact sequences CHk+i(π−1(X \ U)) → CHk+i(P ) →

CHk+i(π−1(U)) of Lemma 82.15.2 we see that
β −

(
π∗α′

0 + c1(O(1)) ∩ π∗α′
1 + . . .+ c1(O(1))r−1 ∩ π∗α′

r−1
)

comes from a cycle β′ ∈ CHk+r(π−1(X \ U)). Since dimδ(X \ U) < d we win by
induction on d.
In particular, by replacing X by a suitable open we may assume X is a scheme and
we have reduced our problem to Chow Homology, Lemma 42.36.2. □
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Lemma 82.27.3.0ERW In Situation 82.2.1 let X/B be good. Let E be a finite locally free
sheaf of rank r on X. Let

p : E = Spec(Sym∗(E)) −→ X

be the associated vector bundle over X. Then p∗ : CHk(X) → CHk+r(E) is an
isomorphism for all k.

Proof. (For the case of linebundles, see Lemma 82.25.2.) For surjectivity see Lemma
82.25.1. Let (π : P → X,OP (1)) be the projective space bundle associated to the
finite locally free sheaf E⊕OX . Let s ∈ Γ(P,OP (1)) correspond to the global section
(0, 1) ∈ Γ(X, E ⊕ OX). Let D = Z(s) ⊂ P . Note that (π|D : D → X,OP (1)|D) is
the projective space bundle associated to E . We denote πD = π|D and OD(1) =
OP (1)|D. Moreover, D is an effective Cartier divisor on P . Hence OP (D) = OP (1)
(see Divisors on Spaces, Lemma 71.7.8). Also there is an isomorphism E ∼= P \D.
Denote j : E → P the corresponding open immersion. For injectivity we use that
the kernel of

j∗ : CHk+r(P ) −→ CHk+r(E)
are the cycles supported in the effective Cartier divisor D, see Lemma 82.15.2. So
if p∗α = 0, then π∗α = i∗β for some β ∈ CHk+r(D). By Lemma 82.27.2 we may
write

β = π∗
Dβ0 + . . .+ c1(OD(1))r−1 ∩ π∗

Dβr−1.

for some βi ∈ CHk+i(X). By Lemmas 82.24.1 and 82.19.4 this implies
π∗α = i∗β = c1(OP (1)) ∩ π∗β0 + . . .+ c1(OD(1))r ∩ π∗βr−1.

Since the rank of E ⊕ OX is r + 1 this contradicts Lemma 82.19.4 unless all α and
all βi are zero. □

82.28. The Chern classes of a vector bundle

0ERX This section is the analogue of Chow Homology, Sections 42.37 and 42.38. However,
contrary to what is done there, we directly define the Chern classes of a vector
bundle as bivariant classes. This saves a considerable amount of work.

Lemma 82.28.1.0ERY In Situation 82.2.1 let X/B be good. Let E be a finite locally
free sheaf of rank r on X. Let (π : P → X,OP (1)) be the projective space bundle
associated to E . For every morphism X ′ → X of good algebraic spaces over B there
are unique maps

ci(E) ∩ − : CHk(X ′) −→ CHk−i(X ′), i = 0, . . . , r
such that for α ∈ CHk(X ′) we have c0(E) ∩ α = α and∑

i=0,...,r
(−1)ic1(OP ′(1))i ∩ (π′)∗ (cr−i(E) ∩ α) = 0

where π′ : P ′ → X ′ is the base change of π. Moreover, these maps define a bivariant
class ci(E) of degree i on X.

Proof. Uniqueness and existence of the maps ci(E) ∩ − follows immediately from
Lemma 82.27.2 and the given description of c0(E). For every i ∈ Z the rule which
to every morphism X ′ → X of good algebraic spaces over B assigns the map

ti(E) ∩ − : CHk(X ′) −→ CHk−i(X ′), α 7−→ π′
∗(c1(OP ′(1))r−1+i ∩ (π′)∗α)
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is a bivariant class2 by Lemmas 82.26.4, 82.26.5, and 82.26.7. By Lemma 82.27.1
we have ti(E) = 0 for i < 0 and t0(E) = 1. Applying pushforward to the equation
in the statement of the lemma we find from Lemma 82.27.1 that

(−1)rt1(E) + (−1)r−1c1(E) = 0
In particular we find that c1(E) is a bivariant class. If we multiply the equation in
the statement of the lemma by c1(OP ′(1)) and push the result forward to X ′ we
find

(−1)rt2(E) + (−1)r−1t1(E) ∩ c1(E) + (−1)r−2c2(E) = 0
As before we conclude that c2(E) is a bivariant class. And so on. □

Definition 82.28.2.0ERZ In Situation 82.2.1 let X/B be good. Let E be a finite locally
free sheaf of rank r on X. For i = 0, . . . , r the ith Chern class of E is the bivariant
class ci(E) ∈ Ai(X) of degree i constructed in Lemma 82.28.1. The total Chern
class of E is the formal sum

c(E) = c0(E) + c1(E) + . . .+ cr(E)
which is viewed as a nonhomogeneous bivariant class on X.
For convenience we often set ci(E) = 0 for i > r and i < 0. By definition we have
c0(E) = 1 ∈ A0(X). Here is a sanity check.
Lemma 82.28.3.0ES0 In Situation 82.2.1 let X/B be good. Let L be an invertible
OX -module. The first Chern class of L on X of Definition 82.28.2 is equal to the
bivariant class of Lemma 82.26.4.
Proof. Namely, in this case P = P(L) = X with OP (1) = L by our normalization
of the projective bundle, see Section 82.27. Hence the equation in Lemma 82.28.1
reads

(−1)0c1(L)0 ∩ cnew1 (L) ∩ α+ (−1)1c1(L)1 ∩ cnew0 (L) ∩ α = 0
where cnewi (L) is as in Definition 82.28.2. Since cnew0 (L) = 1 and c1(L)0 = 1 we
conclude. □

Next we see that Chern classes are in the center of the bivariant Chow cohomology
ring A∗(X).
Lemma 82.28.4.0ES1 In Situation 82.2.1 let X/B be good. Let E be a locally free OX -
module of rank r. Then cj(L) ∈ Aj(X) commutes with every element c ∈ Ap(X).
In particular, if F is a second locally free OX -module on X of rank s, then

ci(E) ∩ cj(F) ∩ α = cj(F) ∩ ci(E) ∩ α
as elements of CHk−i−j(X) for all α ∈ CHk(X).
Proof. Let X ′ → X be a morphism of good algebraic spaces over B. Let α ∈
CHk(X ′). Write αj = cj(E) ∩ α, so α0 = α. By Lemma 82.28.1 we have∑r

i=0
(−1)ic1(OP ′(1))i ∩ (π′)∗(αr−i) = 0

in the chow group of the projective bundle (π′ : P ′ → X ′,OP ′(1)) associated to
(X ′ → X)∗E . Applying c ∩ − and using Lemma 82.26.8 and the properties of
bivariant classes we obtain∑r

i=0
(−1)ic1(OP ′(1))i ∩ π∗(c ∩ αr−i) = 0

2Up to signs these are the Segre classes of E.

https://stacks.math.columbia.edu/tag/0ERZ
https://stacks.math.columbia.edu/tag/0ES0
https://stacks.math.columbia.edu/tag/0ES1


82.29. POLYNOMIAL RELATIONS AMONG CHERN CLASSES 6135

in the Chow group of P ′. Hence we see that c ∩ αj is equal to cj(E) ∩ (c ∩ α) by
the uniqueness in Lemma 82.28.1. This proves the lemma. □

Remark 82.28.5.0ES2 In Situation 82.2.1 let X/B be good. Let E be a finite locally
free OX -module. If the rank of E is not constant then we can still define the Chern
classes of E . Namely, in this case we can write

X = X0 ⨿X1 ⨿X2 ⨿ . . .

where Xr ⊂ X is the open and closed subspace where the rank of E is r. If X ′ → X
is a morphism of good algebraic spaces over B, then we obtain by pullback a
corresponding decomposition of X ′ and we find that

CH∗(X ′) =
∏

r≥0
CH∗(X ′

r)

by our definitions. Then we simply define ci(E) to be the bivariant class which
preserves these direct product decompositions and acts by the already defined op-
erations ci(E|Xr ) ∩ − on the factors. Observe that in this setting it may happen
that ci(E) is nonzero for infinitely many i.

82.29. Polynomial relations among Chern classes

0ES3 In Situation 82.2.1 let X/B be good. Let Ei be a finite collection of finite locally
free OX -modules. By Lemma 82.28.4 we see that the Chern classes

cj(Ei) ∈ A∗(X)
generate a commutative (and even central) Z-subalgebra of the Chow cohomology
A∗(X). Thus we can say what it means for a polynomial in these Chern classes
to be zero, or for two polynomials to be the same. As an example, saying that
c1(E1)5 + c2(E2)c3(E3) = 0 means that the operations

CHk(Y ) −→ CHk−5(Y ), α 7−→ c1(E1)5 ∩ α+ c2(E2) ∩ c3(E3) ∩ α
are zero for all morphisms f : Y → X of good algebraic spaces over B. By Lemma
82.26.9 this is equivalent to the requirement that given any morphism f : Y → X
where Y is an integral algebraic space locally of finite type over X the cycle

c1(E1)5 ∩ [Y ] + c2(E2) ∩ c3(E3) ∩ [Y ]
is zero in CHdim(Y )−5(Y ).
A specific example is the relation

c1(L ⊗OX
N ) = c1(L) + c1(N )

proved in Lemma 82.18.2. More generally, here is what happens when we tensor
an arbitrary locally free sheaf by an invertible sheaf.

Lemma 82.29.1.0ES4 In Situation 82.2.1 let X/B be good. Let E be a finite locally free
sheaf of rank r on X. Let L be an invertible sheaf on X. Then we have

(82.29.1.1)0ES5 ci(E ⊗ L) =
∑i

j=0

(
r − i+ j

j

)
ci−j(E)c1(L)j

in A∗(X).

Proof. The proof is identical to the proof of Chow Homology, Lemma 42.39.1 re-
placing the lemmas used there by Lemmas 82.26.9 and 82.28.1. □
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82.30. Additivity of Chern classes

0ES6 This section is the analogue of Chow Homology, Section 42.40.

Lemma 82.30.1.0ES7 In Situation 82.2.1 let X/B be good. Let E , F be finite locally
free sheaves on X of ranks r, r − 1 which fit into a short exact sequence

0→ OX → E → F → 0

Then we have
cr(E) = 0, cj(E) = cj(F), j = 0, . . . , r − 1

in A∗(X).

Proof. The proof is identical to the proof of Chow Homology, Lemma 42.40.1 re-
placing the lemmas used there by Lemmas 82.26.9, 82.24.1, 82.19.4, and 82.28.1. □

Lemma 82.30.2.0ES8 In Situation 82.2.1 let X/B be good. Let E , F be finite locally
free sheaves on X of ranks r, r − 1 which fit into a short exact sequence

0→ L → E → F → 0

where L is an invertible sheaf. Then

c(E) = c(L)c(F)

in A∗(X).

Proof. The proof is identical to the proof of Chow Homology, Lemma 42.40.2 re-
placing the lemmas used there by Lemmas 82.30.1 and 82.29.1. □

Lemma 82.30.3.0ES9 In Situation 82.2.1 let X/B be good. Suppose that E sits in an
exact sequence

0→ E1 → E → E2 → 0
of finite locally free sheaves Ei of rank ri. The total Chern classes satisfy

c(E) = c(E1)c(E2)

in A∗(X).

Proof. The proof is identical to the proof of Chow Homology, Lemma 42.40.3 re-
placing the lemmas used there by Lemmas 82.26.9, 82.30.2, and 82.28.1. □

Lemma 82.30.4.0ESA In Situation 82.2.1 let X/B be good. Let Li, i = 1, . . . , r be
invertible OX -modules. Let E be a locally free rank OX -module endowed with a
filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E
such that Ei/Ei−1 ∼= Li. Set c1(Li) = xi. Then

c(E) =
∏r

i=1
(1 + xi)

in A∗(X).

Proof. Apply Lemma 82.30.2 and induction. □
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82.31. The splitting principle

0ESB This section is the analogue of Chow Homology, Section 42.40.

Lemma 82.31.1.0ESC In Situation 82.2.1 let X/B be good. Let Ei be a finite collection
of locally free OX -modules of rank ri. There exists a projective flat morphism
π : P → X of relative dimension d such that

(1) for any morphism f : Y → X of good algebraic spaces over B the map
π∗
Y : CH∗(Y )→ CH∗+d(Y ×X P ) is injective, and

(2) each π∗Ei has a filtration whose successive quotients Li,1, . . . ,Li,ri are
invertible OP -modules.

Proof. We prove this by induction on the integer r =
∑
ri. If r = 0 we can take

π = idX . If ri = 1 for all i, then we can also take π = idX . Assume that ri0 > 1 for
some i0. Let (π : P → X,OP (1)) be the projective bundle associated to Ei0 . The
canonical map π∗Ei0 → OP (1) is surjective and hence its kernel E ′

i0
is finite locally

free of rank ri0 − 1. Observe that π∗
Y is injective for any morphism f : Y → X

of good algebraic spaces over B, see Lemma 82.27.2. Thus it suffices to prove the
lemma for P and the locally free sheaves π∗Ei. However, because we have the
subbundle Ei0 ⊂ π∗Ei0 with invertible quotient, it now suffices to prove the lemma
for the collection {Ei}i ̸=i0 ∪ {E ′

i0
}. This decreases r by 1 and we win by induction

hypothesis. □

Rather than explaining what the splitting principle says, let us use it in the proof
of some lemmas.

Lemma 82.31.2.0ESD In Situation 82.2.1 let X/B be good. Let E be a finite locally free
OX -module with dual E∨. Then

ci(E∨) = (−1)ici(E)
in Ai(X).

Proof. Choose a morphism π : P → X as in Lemma 82.31.1. By the injectivity of
π∗ (after any base change) it suffices to prove the relation between the Chern classes
of E and E∨ after pulling back to P . Thus we may assume there exist invertible
OX -modules Li, i = 1, . . . , r and a filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E
such that Ei/Ei−1 ∼= Li. Then we obtain the dual filtration

0 = E⊥
r ⊂ E⊥

1 ⊂ E⊥
2 ⊂ . . . ⊂ E⊥

0 = E∨

such that E⊥
i−1/E⊥

i
∼= L⊗−1

i . Set xi = c1(Li). Then c1(L⊗−1
i ) = −xi by Lemma

82.18.2. By Lemma 82.30.4 we have

c(E) =
∏r

i=1
(1 + xi) and c(E∨) =

∏r

i=1
(1− xi)

in A∗(X). The result follows from a formal computation which we omit. □

Lemma 82.31.3.0ESE In Situation 82.2.1 let X/B be good. Let E and F be a finite
locally free OX -modules of ranks r and s. Then we have

c1(E ⊗ F) = rc1(F) + sc1(E)
c2(E ⊗ F) = r2c2(F) + rsc1(F)c1(E) + s2c2(E)

and so on (see proof).

https://stacks.math.columbia.edu/tag/0ESC
https://stacks.math.columbia.edu/tag/0ESD
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Proof. Arguing exactly as in the proof of Lemma 82.31.2 we may assume we have
invertible OX -modules Li, i = 1, . . . , r Ni, i = 1, . . . , s filtrations

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E and 0 = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fs = F
such that Ei/Ei−1 ∼= Li and such that Fj/Fj−1 ∼= Nj . Ordering pairs (i, j) lexico-
graphically we obtain a filtration

0 ⊂ . . . ⊂ Ei ⊗Fj + Ei−1 ⊗F ⊂ . . . ⊂ E ⊗ F
with successive quotients

L1 ⊗N1,L1 ⊗N2, . . . ,L1 ⊗Ns,L2 ⊗N1, . . . ,Lr ⊗Ns
By Lemma 82.30.4 we have

c(E) =
∏

(1 + xi), c(F) =
∏

(1 + yj), and c(F) =
∏

(1 + xi + yj),

in A∗(X). The result follows from a formal computation which we omit. □

82.32. Degrees of zero cycles

0ESF This section is the analogue of Chow Homology, Section 42.41. We start with
defining the degree of a zero cycle on a proper algebraic space over a field.

Definition 82.32.1.0ESG Let k be a field. Let p : X → Spec(k) be a proper morphism of
algebraic spaces. The degree of a zero cycle on X is given by proper pushforward

p∗ : CH0(X) −→ CH0(Spec(k)) −→ Z
(Lemma 82.16.3) composed with the natural isomorphism CH0(Spec(k))→ Z which
maps [Spec(k)] to 1. Notation: deg(α).

Let us spell this out further.

Lemma 82.32.2.0ESH Let k be a field. Let X be a proper algebraic space over k. Let
α =

∑
ni[Zi] be in Z0(X). Then

deg(α) =
∑

ni deg(Zi)

where deg(Zi) is the degree of Zi → Spec(k), i.e., deg(Zi) = dimk Γ(Zi,OZi).

Proof. This is the definition of proper pushforward (Definition 82.8.1). □

Lemma 82.32.3.0ESI Let k be a field. Let X be a proper algebraic space over k. Let
Z ⊂ X be a closed subspace of dimension d. Let L1, . . . ,Ld be invertible OX -
modules. Then

(L1 · · · Ld · Z) = deg(c1(L1) ∩ . . . ∩ c1(L1) ∩ [Z]d)
where the left hand side is defined in Spaces over Fields, Definition 72.18.3.

Proof. Let Zi ⊂ Z, i = 1, . . . , t be the irreducible components of dimension d. Let
mi be the multiplicity of Zi in Z. Then [Z]d =

∑
mi[Zi] and c1(L1)∩ . . .∩c1(Ld)∩

[Z]d is the sum of the cycles mic1(L1)∩ . . .∩ c1(Ld)∩ [Zi]. Since we have a similar
decomposition for (L1 · · · Ld · Z) by Spaces over Fields, Lemma 72.18.2 it suffices
to prove the lemma in case Z = X is a proper integral algebraic space over k.
By Chow’s lemma there exists a proper morphism f : X ′ → X which is an isomor-
phism over a dense open U ⊂ X such that X ′ is a scheme. See More on Morphisms
of Spaces, Lemma 76.40.5. Then X ′ is a proper scheme over k. After replacing

https://stacks.math.columbia.edu/tag/0ESG
https://stacks.math.columbia.edu/tag/0ESH
https://stacks.math.columbia.edu/tag/0ESI
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X ′ by the scheme theoretic closure of f−1(U) we may assume that X ′ is integral.
Then

(f∗L1 · · · f∗Ld ·X ′) = (L1 · · · Ld ·X)
by Spaces over Fields, Lemma 72.18.7 and we have

f∗(c1(f∗L1) ∩ . . . ∩ c1(f∗Ld) ∩ [Y ]) = c1(L1) ∩ . . . ∩ c1(Ld) ∩ [X]
by Lemma 82.19.4. Thus we may replace X by X ′ and assume that X is a proper
scheme over k. This case was proven in Chow Homology, Lemma 42.41.4. □
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CHAPTER 83

Quotients of Groupoids

048A 83.1. Introduction

048B This chapter is devoted to generalities concerning groupoids and their quotients
(as far as they exist). There is a lot of literature on this subject, see for example
[MFK94], [Ses72], [Kol97], [KM97], [Kol08] and many more.

83.2. Conventions and notation

048C In this chapter the conventions and notation are those introduced in Groupoids in
Spaces, Sections 78.2 and 78.3.

83.3. Invariant morphisms

048D
Definition 83.3.1.048E Let S be a scheme, and let B be an algebraic space over S. Let
j = (t, s) : R → U ×B U be a pre-relation of algebraic spaces over B. We say a
morphism ϕ : U → X of algebraic spaces over B is R-invariant if the diagram

R
s
//

t

��

U

ϕ

��
U

ϕ // X

is commutative. If j : R → U ×B U comes from the action of a group algebraic
space G on U over B as in Groupoids in Spaces, Lemma 78.15.1, then we say that
ϕ is G-invariant.

In other words, a morphism U → X is R-invariant if it equalizes s and t. We can
reformulate this in terms of associated quotient sheaves as follows.

Lemma 83.3.2.048F Let S be a scheme, and let B be an algebraic space over S. Let
j = (t, s) : R→ U×BU be a pre-relation of algebraic spaces over B. A morphism of
algebraic spaces ϕ : U → X is R-invariant if and only if it factors as U → U/R→ X.

Proof. This is clear from the definition of the quotient sheaf in Groupoids in Spaces,
Section 78.19. □

Lemma 83.3.3.048G Let S be a scheme, and let B be an algebraic space over S. Let
j = (t, s) : R→ U×BU be a pre-relation of algebraic spaces over B. Let U → X be
an R-invariant morphism of algebraic spaces over B. Let X ′ → X be any morphism
of algebraic spaces.

(1) Setting U ′ = X ′ ×X U , R′ = X ′ ×X R we obtain a pre-relation j′ : R′ →
U ′ ×B U ′.

(2) If j is a relation, then j′ is a relation.

6141
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(3) If j is a pre-equivalence relation, then j′ is a pre-equivalence relation.
(4) If j is an equivalence relation, then j′ is an equivalence relation.
(5) If j comes from a groupoid in algebraic spaces (U,R, s, t, c) over B, then

(a) (U,R, s, t, c) is a groupoid in algebraic spaces over X, and
(b) j′ comes from the base change (U ′, R′, s′, t′, c′) of this groupoid to

X ′, see Groupoids in Spaces, Lemma 78.11.6.
(6) If j comes from the action of a group algebraic space G/B on U as in

Groupoids in Spaces, Lemma 78.15.1 then j′ comes from the induced
action of G on U ′.

Proof. Omitted. Hint: Functorial point of view combined with the picture:

R′ = X ′ ×X R

��

//

&&

X ′ ×X U = U ′

��

&&
R

��

// U

��

U ′ = X ′ ×X U //

&&

X ′

&&
U // X

□

Definition 83.3.4.048H In the situation of Lemma 83.3.3 we call j′ : R′ → U ′×B U ′ the
base change of the pre-relation j to X ′. We say it is a flat base change if X ′ → X
is a flat morphism of algebraic spaces.

This kind of base change interacts well with taking quotient sheaves and quotient
stacks.

Lemma 83.3.5.0DTF In the situation of Lemma 83.3.3 there is an isomorphism of sheaves

U ′/R′ = X ′ ×X U/R

For the construction of quotient sheaves, see Groupoids in Spaces, Section 78.19.

Proof. Since U → X is R-invariant, it is clear that the map U → X factors through
the quotient sheaf U/R. Recall that by definition

R
//
// U // U/R

is a coequalizer diagram in the category Sh of sheaves of sets on (Sch/S)fppf .
In fact, this is a coequalizer diagram in the comma category Sh /X. Since the
base change functor X ′ ×X − : Sh /X → Sh /X ′ is exact (true in any topos), we
conclude. □

Lemma 83.3.6.0DTG Let S be a scheme. Let B be an algebraic space over S. Let
(U,R, s, t, c) be a groupoid in algebraic spaces over B. Let U → X be an R-
invariant morphism of algebraic spaces over B. Let g : X ′ → X be a morphism of
algebraic spaces over B and let (U ′, R′, s′, t′, c′) be the base change as in Lemma

https://stacks.math.columbia.edu/tag/048H
https://stacks.math.columbia.edu/tag/0DTF
https://stacks.math.columbia.edu/tag/0DTG
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83.3.3. Then
[U ′/R′] //

��

[U/R]

��
SX′ // SX

is a 2-fibre product of stacks in groupoids over (Sch/S)fppf . For the construction
of quotient stacks and the morphisms in this diagram, see Groupoids in Spaces,
Section 78.20.

Proof. We will prove this by using the explicit description of the quotient stacks
given in Groupoids in Spaces, Lemma 78.24.1. However, we strongly urge the reader
to find their own proof. First, we may view (U,R, s, t, c) as a groupoid in algebraic
spaces over X, hence we obtain a map f : [U/R] → SX , see Groupoids in Spaces,
Lemma 78.20.2. Similarly, we have f ′ : [U ′/R′]→ X ′.

An object of the 2-fibre product SX′ ×SX [U/R] over a scheme T over S is the same
as a morphism x′ : T → X ′ and an object y of [U/R] over T such that such that
the composition g ◦ x′ is equal to f(y). This makes sense because objects of SX
over T are morphisms T → X. By Groupoids in Spaces, Lemma 78.24.1 we may
assume y is given by a [U/R]-descent datum (ui, rij) relative to an fppf covering
{Ti → T}. The agreement of g ◦ x′ = f(y) means that the diagrams

Ti ui
//

��

U

��
T

x′
// X ′ g // X

and

Ti ×T Tj rij
//

��

R

��
T

x′
// X ′ g // X

are commutative.

On the other hand, an object y′ of [U ′/R′] over a scheme T over S by Groupoids
in Spaces, Lemma 78.24.1 is given by a [U ′/R′]-descent datum (u′

i, r
′
ij) relative to

an fppf covering {Ti → T}. Setting f ′(y′) = x′ : T → X ′ we see that the diagrams

Ti
u′
i

//

��

U ′

��
T

x′
// X ′

and

Ti ×T Tj
r′
ij

//

��

U ′

��
T

x′
// X ′

are commutative.

With this notation in place, we define a functor

[U ′/R′] −→ SX′ ×SX [U/R]

by sending y′ = (u′
i, r

′
ij) as above to the object (x′, (ui, rij)) where x′ = f ′(y′),

where ui is the composition Ti → U ′ → U , and where rij is the composition
Ti×T Tj → R′ → R. Conversely, given an object (x′, (ui, rij) of the right hand side
we can send this to the object ((x′, ui), (x′, rij)) of the left hand side. We omit the
discussion of what to do with morphisms (works in exactly the same manner). □
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83.4. Categorical quotients

048I This is the most basic kind of quotient one can consider.

Definition 83.4.1.048J Let S be a scheme, and let B be an algebraic space over S. Let
j = (t, s) : R→ U ×B U be pre-relation in algebraic spaces over B.

(1) We say a morphism ϕ : U → X of algebraic spaces over B is a categorical
quotient if it is R-invariant, and for every R-invariant morphism ψ : U →
Y of algebraic spaces over B there exists a unique morphism χ : X → Y
such that ψ = ϕ ◦ χ.

(2) Let C be a full subcategory of the category of algebraic spaces over B.
Assume U , R are objects of C. In this situation we say a morphism
ϕ : U → X of algebraic spaces over B is a categorical quotient in C if
X ∈ Ob(C), and ϕ is R-invariant, and for every R-invariant morphism
ψ : U → Y with Y ∈ Ob(C) there exists a unique morphism χ : X → Y
such that ψ = ϕ ◦ χ.

(3) If B = S and C is the category of schemes over S, then we say U → X is
a categorical quotient in the category of schemes, or simply a categorical
quotient in schemes.

We often single out a category C of algebraic spaces over B by some separation
axiom, see Example 83.4.3 for some standard cases. Note that ϕ : U → X is
a categorical quotient if and only if U → X is a coequalizer for the morphisms
t, s : R→ U in the category. Hence we immediately deduce the following lemma.

Lemma 83.4.2.048K Let S be a scheme, and let B be an algebraic space over S. Let
j : R → U ×B U be a pre-relation in algebraic spaces over B. If a categorical
quotient in the category of algebraic spaces over B exists, then it is unique up
to unique isomorphism. Similarly for categorical quotients in full subcategories of
Spaces/B.

Proof. See Categories, Section 4.11. □

Example 83.4.3.049V Let S be a scheme, and let B be an algebraic space over S. Here
are some standard examples of categories C that we often come up when applying
Definition 83.4.1:

(1) C is the category of all algebraic spaces over B,
(2) B is separated and C is the category of all separated algebraic spaces over

B,
(3) B is quasi-separated and C is the category of all quasi-separated algebraic

spaces over B,
(4) B is locally separated and C is the category of all locally separated alge-

braic spaces over B,
(5) B is decent and C is the category of all decent algebraic spaces over B,

and
(6) S = B and C is the category of schemes over S.

In this case, if ϕ : U → X is a categorical quotient then we say U → X is (1) a
categorical quotient, (2) a categorical quotient in separated algebraic spaces, (3) a
categorical quotient in quasi-separated algebraic spaces, (4) a categorical quotient
in locally separated algebraic spaces, (5) a categorical quotient in decent algebraic
spaces, (6) a categorical quotient in schemes.

https://stacks.math.columbia.edu/tag/048J
https://stacks.math.columbia.edu/tag/048K
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Definition 83.4.4.048L Let S be a scheme, and let B be an algebraic space over S. Let
C be a full subcategory of the category of algebraic spaces over B closed under fibre
products. Let j = (t, s) : R → U ×B U be pre-relation in C, and let U → X be an
R-invariant morphism with X ∈ Ob(C).

(1) We say U → X is a universal categorical quotient in C if for every mor-
phism X ′ → X in C the morphism U ′ = X ′×X U → X ′ is the categorical
quotient in C of the base change j′ : R′ → U ′ of j.

(2) We say U → X is a uniform categorical quotient in C if for every flat
morphism X ′ → X in C the morphism U ′ = X ′ ×X U → X ′ is the
categorical quotient in C of the base change j′ : R′ → U ′ of j.

Lemma 83.4.5.049W In the situation of Definition 83.4.1. If ϕ : U → X is a categorical
quotient and U is reduced, then X is reduced. The same holds for categorical
quotients in a category of spaces C listed in Example 83.4.3.
Proof. Let Xred be the reduction of the algebraic space X. Since U is reduced
the morphism ϕ : U → X factors through i : Xred → X (Properties of Spaces,
Lemma 66.12.4). Denote this morphism by ϕred : U → Xred. Since ϕ ◦ s = ϕ ◦ t
we see that also ϕred ◦ s = ϕred ◦ t (as i : Xred → X is a monomorphism). Hence
by the universal property of ϕ there exists a morphism χ : X → Xred such that
ϕred = ϕ ◦ χ. By uniqueness we see that i ◦ χ = idX and χ ◦ i = idXred . Hence i is
an isomorphism and X is reduced.
To show that this argument works in a category C one just needs to show that the
reduction of an object of C is an object of C. We omit the verification that this
holds for each of the standard examples. □

83.5. Quotients as orbit spaces

048M Let j = (t, s) : R → U ×B U be a pre-relation. If j is a pre-equivalence relation,
then loosely speaking the “orbits” of R on U are the subsets t(s−1({u})) of U .
However, if j is just a pre-relation, then we need to take the equivalence relation
generated by R.
Definition 83.5.1.048N Let S be a scheme, and let B be an algebraic space over S. Let
j : R → U ×B U be a pre-relation over B. If u ∈ |U |, then the orbit, or more
precisely the R-orbit of u is

Ou =

u′ ∈ |U | :

∃n ≥ 1, ∃u0, . . . , un ∈ |U | such that u0 = u and un = u′

and for all i ∈ {0, . . . , n− 1} either ui = ui+1 or
∃r ∈ |R|, s(r) = ui, t(r) = ui+1 or
∃r ∈ |R|, t(r) = ui, s(r) = ui+1


It is clear that these are the equivalence classes of an equivalence relation, i.e., we
have u′ ∈ Ou if and only if u ∈ Ou′ . The following lemma is a reformulation of
Groupoids in Spaces, Lemma 78.4.4.
Lemma 83.5.2.048O Let B → S as in Section 83.2. Let j : R → U ×B U be a pre-
equivalence relation of algebraic spaces over B. Then

Ou = {u′ ∈ |U | such that ∃r ∈ |R|, s(r) = u, t(r) = u′}.
Proof. By the aforementioned Groupoids in Spaces, Lemma 78.4.4 we see that the
orbits Ou as defined in the lemma give a disjoint union decomposition of |U |. Thus
we see they are equal to the orbits as defined in Definition 83.5.1. □

https://stacks.math.columbia.edu/tag/048L
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Lemma 83.5.3.048P In the situation of Definition 83.5.1. Let ϕ : U → X be an R-
invariant morphism of algebraic spaces over B. Then |ϕ| : |U | → |X| is constant on
the orbits.

Proof. To see this we just have to show that ϕ(u) = ϕ(u′) for all u, u′ ∈ |U | such
that there exists an r ∈ |R| such that s(r) = u and t(r) = u′. And this is clear
since ϕ equalizes s and t. □

There are several problems with considering the orbits Ou ⊂ |U | as a tool for
singling out properties of quotient maps. One issue is the following. Suppose that
Spec(k)→ B is a geometric point of B. Consider the canonical map

U(k) −→ |U |.
Then it is usually not the case that the equivalence classes of the equivalence relation
generated by j(R(k)) ⊂ U(k)×U(k) are the inverse images of the orbits Ou ⊂ |U |.
A silly example is to take S = B = Spec(Z), U = R = Spec(k) with s = t = idk.
Then |U | = |R| is a single point but U(k)/R(k) is enormous. A more interesting
example is to take S = B = Spec(Q), choose some of number fields K ⊂ L, and
set U = Spec(L) and R = Spec(L ⊗K L) with obvious maps s, t : R → U . In this
case |U | still has just one point, but the quotient

U(k)/R(k) = Hom(K, k)
consists of more than one element. We conclude from both examples that if U → X
is an R-invariant map and if we want it to “separate orbits” we get a much stronger
and interesting notion by considering the induced maps U(k)→ X(k) and ask that
those maps separate orbits.
There is an issue with this too. Namely, suppose that S = B = Spec(R), U =
Spec(C), and R = Spec(C)⨿Spec(K) for some field extension σ : C→ K. Let the
maps s, t be given by the identity on the component Spec(C), but by σ, σ ◦τ on the
second component where τ is complex conjugation. If K is a nontrivial extension
of C, then the two points 1, τ ∈ U(C) are not equivalent under j(R(C)). But after
choosing an extension C ⊂ Ω of sufficiently large cardinality (for example larger
than the cardinality of K) then the images of 1, τ ∈ U(C) in U(Ω) do become
equivalent! It seems intuitively clear that this happens either because s, t : R→ U
are not locally of finite type or because the cardinality of the field k is not large
enough.
Keeping this in mind we make the following definition.

Definition 83.5.4.048Q Let S be a scheme, and let B be an algebraic space over S. Let
j : R → U ×B U be a pre-relation over B. Let Spec(k) → B be a geometric point
of B.

(1) We say u, u′ ∈ U(k) are weakly R-equivalent if they are in the same
equivalence class for the equivalence relation generated by the relation
j(R(k)) ⊂ U(k)× U(k).

(2) We say u, u′ ∈ U(k) are R-equivalent if for some overfield k ⊂ Ω the
images in U(Ω) are weakly R-equivalent.

(3) The weak orbit, or more precisely the weak R-orbit of u ∈ U(k) is set of
all elements of U(k) which are weakly R-equivalent to u.

(4) The orbit, or more precisely the R-orbit of u ∈ U(k) is set of all elements
of U(k) which are R-equivalent to u.

https://stacks.math.columbia.edu/tag/048P
https://stacks.math.columbia.edu/tag/048Q
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It turns out that in good cases orbits and weak orbits agree, see Lemma 83.5.7. The
following lemma illustrates the difference in the special case of a pre-equivalence
relation.

Lemma 83.5.5.048R Let S be a scheme, and let B be an algebraic space over S. Let
Spec(k)→ B be a geometric point of B. Let j : R→ U ×B U be a pre-equivalence
relation over B. In this case the weak orbit of u ∈ U(k) is simply

{u′ ∈ U(k) such that ∃r ∈ R(k), s(r) = u, t(r) = u′}

and the orbit of u ∈ U(k) is

{u′ ∈ U(k) : ∃ field extension K/k, ∃ r ∈ R(K), s(r) = u, t(r) = u′}

Proof. This is true because by definition of a pre-equivalence relation the image
j(R(k)) ⊂ U(k)× U(k) is an equivalence relation. □

Let us describe the recipe for turning any pre-relation into a pre-equivalence rela-
tion. We will use the morphisms

(83.5.5.1)048S
jdiag : U −→ U ×B U, u 7−→ (u, u)
jflip : R −→ U ×B U, r 7−→ (s(r), t(r))
jcomp : R×s,U,t R −→ U ×B U, (r, r′) 7−→ (t(r), s(r′))

We define j1 = (t1, s1) : R1 → U ×B U to be the morphism

j ⨿ jdiag ⨿ jflip : R ⨿ U ⨿R −→ U ×B U

with notation as in Equation (83.5.5.1). For n > 1 we set

jn = (tn, sn) : Rn = R1 ×s1,U,tn−1 Rn−1 −→ U ×B U

where tn comes from t1 precomposed with projection onto R1 and sn comes from
sn−1 precomposed with projection onto Rn−1. Finally, we denote

j∞ = (t∞, s∞) : R∞ =
∐

n≥1
Rn −→ U ×B U.

Lemma 83.5.6.048T Let S be a scheme, and let B be an algebraic space over S. Let
j : R → U ×B U be a pre-relation over B. Then j∞ : R∞ → U ×B U is a
pre-equivalence relation over B. Moreover

(1) ϕ : U → X is R-invariant if and only if it is R∞-invariant,
(2) the canonical map of quotient sheaves U/R → U/R∞ (see Groupoids in

Spaces, Section 78.19) is an isomorphism,
(3) weak R-orbits agree with weak R∞-orbits,
(4) R-orbits agree with R∞-orbits,
(5) if s, t are locally of finite type, then s∞, t∞ are locally of finite type,
(6) add more here as needed.

Proof. Omitted. Hint for (5): Any property of s, t which is stable under composi-
tion and stable under base change, and Zariski local on the source will be inherited
by s∞, t∞. □

Lemma 83.5.7.048U Let S be a scheme, and let B be an algebraic space over S. Let
j : R → U ×B U be a pre-relation over B. Let Spec(k) → B be a geometric point
of B.
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(1) If s, t : R → U are locally of finite type then weak R-equivalence on
U(k) agrees with R-equivalence, and weak R-orbits agree with R-orbits
on U(k).

(2) If k has sufficiently large cardinality then weak R-equivalence on U(k)
agrees with R-equivalence, and weak R-orbits agree with R-orbits on U(k).

Proof. We first prove (1). Assume s, t locally of finite type. By Lemma 83.5.6 we
may assume that R is a pre-equivalence relation. Let k be an algebraically closed
field over B. Suppose u, u′ ∈ U(k) are R-equivalent. Then for some extension field
Ω/k there exists a point r ∈ R(Ω) mapping to (u, u′) ∈ (U ×B U)(Ω), see Lemma
83.5.5. Hence

Z = R×j,U×BU,(u,u′) Spec(k)
is nonempty. As s is locally of finite type we see that also j is locally of finite type,
see Morphisms of Spaces, Lemma 67.23.6. This implies Z is a nonempty algebraic
space locally of finite type over the algebraically closed field k (use Morphisms of
Spaces, Lemma 67.23.3). Thus Z has a k-valued point, see Morphisms of Spaces,
Lemma 67.24.1. Hence we conclude there exists a r ∈ R(k) with j(r) = (u, u′), and
we conclude that u, u′ are R-equivalent as desired.
The proof of part (2) is the same, except that it uses Morphisms of Spaces, Lemma
67.24.2 instead of Morphisms of Spaces, Lemma 67.24.1. This shows that the
assertion holds as soon as |k| > λ(R) with λ(R) as introduced just above Morphisms
of Spaces, Lemma 67.24.1. □

In the following definition we use the terminology “k is a field over B” to mean
that Spec(k) comes equipped with a morphism Spec(k)→ B.
Definition 83.5.8.048V Let S be a scheme, and let B be an algebraic space over S. Let
j : R→ U ×B U be a pre-relation over B.

(1) We say ϕ : U → X is set-theoretically R-invariant if and only if the
map U(k) → X(k) equalizes the two maps s, t : R(k) → U(k) for every
algebraically closed field k over B.

(2) We say ϕ : U → X separates orbits, or separates R-orbits if it is set-
theoretically R-invariant and ϕ(u) = ϕ(u′) in X(k) implies that u, u′ ∈
U(k) are in the same orbit for every algebraically closed field k over B.

In Example 83.5.12 we show that being set-theoretically invariant is “too weak” a
notion in the category of algebraic spaces. A more geometric reformulation of what
it means to be set-theoretically invariant or to separate orbits is in Lemma 83.5.17.
Lemma 83.5.9.048W In the situation of Definition 83.5.8. A morphism ϕ : U → X is
set-theoretically R-invariant if and only if for any algebraically closed field k over
B the map U(k)→ X(k) is constant on orbits.
Proof. This is true because the condition is supposed to hold for all algebraically
closed fields over B. □

Lemma 83.5.10.048X In the situation of Definition 83.5.8. An invariant morphism is
set-theoretically invariant.
Proof. This is immediate from the definitions. □

Lemma 83.5.11.048Y In the situation of Definition 83.5.8. Let ϕ : U → X be a morphism
of algebraic spaces over B. Assume
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(1) ϕ is set-theoretically R-invariant,
(2) R is reduced, and
(3) X is locally separated over B.

Then ϕ is R-invariant.

Proof. Consider the equalizer
Z = R×(ϕ,ϕ)◦j,X×BX,∆X/B

X

algebraic space. Then Z → R is an immersion by assumption (3). By assumption
(1) |Z| → |R| is surjective. This implies that Z → R is a bijective closed immersion
(use Schemes, Lemma 26.10.4) and by assumption (2) we conclude that Z = R. □

Example 83.5.12.048Z There exist reduced quasi-separated algebraic spaces X, Y and
a pair of morphisms a, b : Y → X which agree on all k-valued points but are not
equal. To get an example take Y = Spec(k[[x]]) and

X = A1
k

/(
∆⨿ {(x,−x) | x ̸= 0}

)
the algebraic space of Spaces, Example 65.14.1. The two morphisms a, b : Y → X
come from the two maps x 7→ x and x 7→ −x from Y to A1

k = Spec(k[x]). On the
generic point the two maps are the same because on the open part x ̸= 0 of the space
X the functions x and −x are equal. On the closed point the maps are obviously
the same. It is also true that a ̸= b. This implies that Lemma 83.5.11 does not
hold with assumption (3) replaced by the assumption that X be quasi-separated.
Namely, consider the diagram

Y

−1
��

1
// Y

a

��
Y

a // X

then the composition a◦ (−1) = b. Hence we can set R = Y , U = Y , s = 1, t = −1,
ϕ = a to get an example of a set-theoretically invariant morphism which is not
invariant.

The example above is instructive because the map Y → X even separates orbits.
It shows that in the category of algebraic spaces there are simply too many set-
theoretically invariant morphisms lying around. Next, let us define what it means
for R to be a set-theoretic equivalence relation, while remembering that we need to
allow for field extensions to make this work correctly.

Definition 83.5.13.0490 Let S be a scheme, and let B be an algebraic space over S. Let
j : R→ U ×B U be a pre-relation over B.

(1) We say j is a set-theoretic pre-equivalence relation if for all algebraically
closed fields k over B the relation ∼R on U(k) defined by

u ∼R u′ ⇔ ∃ field extension K/k, ∃ r ∈ R(K),
s(r) = u, t(r) = u′

is an equivalence relation.
(2) We say j is a set-theoretic equivalence relation if j is universally injective

and a set-theoretic pre-equivalence relation.

Let us reformulate this in more geometric terms.
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Lemma 83.5.14.0491 In the situation of Definition 83.5.13. The following are equivalent:
(1) The morphism j is a set-theoretic pre-equivalence relation.
(2) The subset j(|R|) ⊂ |U ×B U | contains the image of |j′| for any of the

morphisms j′ as in Equation (83.5.5.1).
(3) For every algebraically closed field k over B of sufficiently large cardinality

the subset j(R(k)) ⊂ U(k)× U(k) is an equivalence relation.
If s, t are locally of finite type these are also equivalent to

(4) For every algebraically closed field k over B the subset j(R(k)) ⊂ U(k)×
U(k) is an equivalence relation.

Proof. Assume (2). Let k be an algebraically closed field over B. We are going to
show that ∼R is an equivalence relation. Suppose that ui : Spec(k) → U , i = 1, 2
are k-valued points of U . Suppose that (u1, u2) is the image of a K-valued point
r ∈ R(K). Consider the solid commutative diagram

Spec(K ′) //

��

Spec(k)

(u2,u1)
��

Spec(K)

��

oo

R
j // U ×B U R

jflipoo

We also denote r ∈ |R| the image of r. By assumption the image of |jflip| is
contained in the image of |j|, in other words there exists a r′ ∈ |R| such that
|j|(r′) = |jflip|(r). But note that (u2, u1) is in the equivalence class that defines
|j|(r′) (by the commutativity of the solid part of the diagram). This means there
exists a field extension K ′/k and a morphism r′ : Spec(K)→ R (abusively denoted
r′ as well) with j ◦ r′ = (u2, u1) ◦ i where i : Spec(K ′) → Spec(K) is the obvious
map. In other words the dotted part of the diagram commutes. This proves that
∼R is a symmetric relation on U(k). In the similar way, using that the image of
|jdiag| is contained in the image of |j| we see that ∼R is reflexive (details omitted).

To show that ∼R is transitive assume given ui : Spec(k) → U , i = 1, 2, 3 and field
extensions Ki/k and points ri : Spec(Ki) → R, i = 1, 2 such that j(r1) = (u1, u2)
and j(r1) = (u2, u3). Then we may choose a commutative diagram of fields

K K2oo

K1

OO

koo

OO

and we may think of r1, r2 ∈ R(K). We consider the commutative solid diagram

Spec(K ′) //

��

Spec(k)

(u1,u3)
��

Spec(K)

(r1,r2)
��

oo

R
j // U ×B U R×s,U,t R

jcompoo

By exactly the same reasoning as in the first part of the proof, but this time using
that |jcomp|((r1, r2)) is in the image of |j|, we conclude that a field K ′ and dotted
arrows exist making the diagram commute. This proves that ∼R is transitive and
concludes the proof that (2) implies (1).
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Assume (1) and let k be an algebraically closed field over B whose cardinality is
larger than λ(R), see Morphisms of Spaces, Lemma 67.24.2. Suppose that u ∼R u′

with u, u′ ∈ U(k). By assumption there exists a point in |R| mapping to (u, u′) ∈
|U ×B U |. Hence by Morphisms of Spaces, Lemma 67.24.2 we conclude there exists
an r ∈ R(k) with j(r) = (u, u′). In this way we see that (1) implies (3).

Assume (3). Let us show that Im(|jcomp|) ⊂ Im(|j|). Pick any point c ∈ |R×s,U,tR|.
We may represent this by a morphism c : Spec(k)→ R×s,U,tR, with k over B having
sufficiently large cardinality. By assumption we see that jcomp(c) ∈ U(k)×U(k) =
(U ×B U)(k) is also the image j(r) for some r ∈ R(k). Hence jcomp(c) = j(r) in
|U ×B U | as desired (with r ∈ |R| the equivalence class of r). The same argument
shows also that Im(|jdiag|) ⊂ Im(|j|) and Im(|jflip|) ⊂ Im(|j|) (details omitted). In
this way we see that (3) implies (2). At this point we have shown that (1), (2) and
(3) are all equivalent.

It is clear that (4) implies (3) (without any assumptions on s, t). To finish the
proof of the lemma we show that (1) implies (4) if s, t are locally of finite type.
Namely, let k be an algebraically closed field over B. Suppose that u ∼R u′ with
u, u′ ∈ U(k). By assumption the algebraic space Z = R ×j,U×BU,(u,u′) Spec(k) is
nonempty. On the other hand, since j = (t, s) is locally of finite type the morphism
Z → Spec(k) is locally of finite type as well (use Morphisms of Spaces, Lemmas
67.23.6 and 67.23.3). Hence Z has a k point by Morphisms of Spaces, Lemma
67.24.1 and we conclude that (u, u′) ∈ j(R(k)) as desired. This finishes the proof
of the lemma. □

Lemma 83.5.15.049X In the situation of Definition 83.5.13. The following are equivalent:
(1) The morphism j is a set-theoretic equivalence relation.
(2) The morphism j is universally injective and j(|R|) ⊂ |U ×B U | contains

the image of |j′| for any of the morphisms j′ as in Equation (83.5.5.1).
(3) For every algebraically closed field k over B of sufficiently large cardinality

the map j : R(k)→ U(k)×U(k) is injective and its image is an equivalence
relation.

If j is decent, or locally separated, or quasi-separated these are also equivalent to
(4) For every algebraically closed field k over B the map j : R(k) → U(k) ×

U(k) is injective and its image is an equivalence relation.

Proof. The implications (1) ⇒ (2) and (2) ⇒ (3) follow from Lemma 83.5.14 and
the definitions. The same lemma shows that (3) implies j is a set-theoretic pre-
equivalence relation. But of course condition (3) also implies that j is universally in-
jective, see Morphisms of Spaces, Lemma 67.19.2, so that j is indeed a set-theoretic
equivalence relation. At this point we know that (1), (2), (3) are all equivalent.

Condition (4) implies (3) without any further hypotheses on j. Assume j is decent,
or locally separated, or quasi-separated and the equivalent conditions (1), (2), (3)
hold. By More on Morphisms of Spaces, Lemma 76.3.4 we see that j is radicial.
Let k be any algebraically closed field over B. Let u, u′ ∈ U(k) with u ∼R u′. We
see that R ×U×BU,(u,u′) Spec(k) is nonempty. Hence, as j is radicial, its reduction
is the spectrum of a field purely inseparable over k. As k = k we see that it is the
spectrum of k. Whence a point r ∈ R(k) with t(r) = u and s(r) = u′ as desired. □
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Lemma 83.5.16.0492 Let S be a scheme, and let B be an algebraic space over S. Let
j : R→ U ×B U be a pre-relation over B.

(1) If j is a pre-equivalence relation, then j is a set-theoretic pre-equivalence
relation. This holds in particular when j comes from a groupoid in alge-
braic spaces, or from an action of a group algebraic space on U .

(2) If j is an equivalence relation, then j is a set-theoretic equivalence relation.

Proof. Omitted. □

Lemma 83.5.17.049Y Let B → S be as in Section 83.2. Let j : R → U ×B U be a
pre-relation. Let ϕ : U → X be a morphism of algebraic spaces over B. Consider
the diagram

(U ×X U)×(U×BU) R

q

��

p
// R

j

��
U ×X U

c // U ×B U
Then we have:

(1) The morphism ϕ is set-theoretically invariant if and only if p is surjective.
(2) If j is a set-theoretic pre-equivalence relation then ϕ separates orbits if

and only if p and q are surjective.
(3) If p and q are surjective, then j is a set-theoretic pre-equivalence relation

(and ϕ separates orbits).
(4) If ϕ is R-invariant and j is a set-theoretic pre-equivalence relation, then

ϕ separates orbits if and only if the induced morphism R → U ×X U is
surjective.

Proof. Assume ϕ is set-theoretically invariant. This means that for any alge-
braically closed field k over B and any r ∈ R(k) we have ϕ(s(r)) = ϕ(t(r)). Hence
((ϕ(t(r)), ϕ(s(r))), r) defines a point in the fibre product mapping to r via p. This
shows that p is surjective. Conversely, assume p is surjective. Pick r ∈ R(k). As p
is surjective, we can find a field extension K/k and a K-valued point r̃ of the fibre
product with p(r̃) = r. Then q(r̃) ∈ U ×X U maps to (t(r), s(r)) in U ×B U and we
conclude that ϕ(s(r)) = ϕ(t(r)). This proves that ϕ is set-theoretically invariant.
The proofs of (2), (3), and (4) are omitted. Hint: Assume k is an algebraically
closed field over B of large cardinality. Consider the associated diagram of sets

(U(k)×X(k) U(k))×U(k)×U(k) R(k)

q

��

p
// R(k)

j

��
U(k)×X(k) U(k) c // U(k)× U(k)

By the lemmas above the equivalences posed in (2), (3), and (4) become set-
theoretic questions related to the diagram we just displayed, using that surjectivity
translates into surjectivity on k-valued points by Morphisms of Spaces, Lemma
67.24.2. □

Because we have seen above that the notion of a set-theoretically invariant mor-
phism is a rather weak one in the category of algebraic spaces, we define an orbit
space for a pre-relation as follows.
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Definition 83.5.18.0493 Let B → S as in Section 83.2. Let j : R → U ×B U be a
pre-relation. We say ϕ : U → X is an orbit space for R if

(1) ϕ is R-invariant,
(2) ϕ separates R-orbits, and
(3) ϕ is surjective.

The definition of separating R-orbits involves a discussion of points with values in
algebraically closed fields. But as we’ve seen in many cases this just corresponds
to the surjectivity of certain canonically associated morphisms of algebraic spaces.
We summarize some of the discussion above in the following characterization of
orbit spaces.

Lemma 83.5.19.049Z Let B → S as in Section 83.2. Let j : R → U ×B U be a set-
theoretic pre-equivalence relation. A morphism ϕ : U → X is an orbit space for R
if and only if

(1) ϕ ◦ s = ϕ ◦ t, i.e., ϕ is invariant,
(2) the induced morphism (t, s) : R→ U ×X U is surjective, and
(3) the morphism ϕ : U → X is surjective.

This characterization applies for example if j is a pre-equivalence relation, or comes
from a groupoid in algebraic spaces over B, or comes from the action of a group
algebraic space over B on U .

Proof. Follows immediately from Lemma 83.5.17 part (4). □

In the following lemma it is (probably) not good enough to assume just that the
morphisms s, t are locally of finite type. The reason is that it may happen that
some map ϕ : U → X is an orbit space, yet is not locally of finite type. In that case
U(k)→ X(k) may not be surjective for all algebraically closed fields k over B.

Lemma 83.5.20.04A0 Let B → S as in Section 83.2. Let j = (t, s) : R→ U ×B U be a
pre-relation. Assume R,U are locally of finite type over B. Let ϕ : U → X be an
R-invariant morphism of algebraic spaces over B. Then ϕ is an orbit space for R if
and only if the natural map

U(k)/
(
equivalence relation generated by j(R(k))

)
−→ X(k)

is bijective for all algebraically closed fields k over B.

Proof. Note that since U , R are locally of finite type over B all of the morphisms
s, t, j, ϕ are locally of finite type, see Morphisms of Spaces, Lemma 67.23.6. We will
also use without further mention Morphisms of Spaces, Lemma 67.24.1. Assume
ϕ is an orbit space. Let k be any algebraically closed field over B. Let x ∈ X(k).
Consider U ×ϕ,X,x Spec(k). This is a nonempty algebraic space which is locally of
finite type over k. Hence it has a k-valued point. This shows the displayed map
of the lemma is surjective. Suppose that u, u′ ∈ U(k) map to the same element
of X(k). By Definition 83.5.8 this means that u, u′ are in the same R-orbit. By
Lemma 83.5.7 this means that they are equivalent under the equivalence relation
generated by j(R(k)). Thus the displayed morphism is injective.
Conversely, assume the displayed map is bijective for all algebraically closed fields
k over B. This condition clearly implies that ϕ is surjective. We have already
assumed that ϕ is R-invariant. Finally, the injectivity of all the displayed maps
implies that ϕ separates orbits. Hence ϕ is an orbit space. □
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83.6. Coarse quotients

04A1 We only add this here so that we can later say that coarse quotients correspond to
coarse moduli spaces (or moduli schemes).

Definition 83.6.1.04A2 Let S be a scheme and B an algebraic space over S. Let j : R→
U ×B U be a pre-relation. A morphism ϕ : U → X of algebraic spaces over B is
called a coarse quotient if

(1) ϕ is a categorical quotient, and
(2) ϕ is an orbit space.

If S = B, U , R are all schemes, then we say a morphism of schemes ϕ : U → X is
a coarse quotient in schemes if

(1) ϕ is a categorical quotient in schemes, and
(2) ϕ is an orbit space.

In many situations the algebraic spaces R and U are locally of finite type over B
and the orbit space condition simply means that

U(k)/
(
equivalence relation generated by j(R(k))

) ∼= X(k)
for all algebraically closed fields k. See Lemma 83.5.20. If j is also a (set-theoretic)
pre-equivalence relation, then the condition is simply equivalent to U(k)/j(R(k))→
X(k) being bijective for all algebraically closed fields k.

83.7. Topological properties

04A3 Let S be a scheme and B an algebraic space over S. Let j : R → U ×B U be a
pre-relation. We say a subset T ⊂ |U | is R-invariant if s−1(T ) = t−1(T ) as subsets
of |R|. Note that if T is closed, then it may not be the case that the corresponding
reduced closed subspace of U is R-invariant (as in Groupoids in Spaces, Definition
78.18.1) because the pullbacks s−1(T ), t−1(T ) may not be reduced. Here are some
conditions that we can consider for an invariant morphism ϕ : U → X.

Definition 83.7.1.04A4 Let S be a scheme and B an algebraic space over S. Let j : R→
U ×B U be a pre-relation. Let ϕ : U → X be an R-invariant morphism of algebraic
spaces over B.

(1)04A5 The morphism ϕ is submersive.
(2)04A6 For any R-invariant closed subset Z ⊂ |U | the image ϕ(Z) is closed in
|X|.

(3)04A7 Condition (2) holds and for any pair of R-invariant closed subsets Z1, Z2 ⊂
|U | we have

ϕ(Z1 ∩ Z2) = ϕ(Z1) ∩ ϕ(Z2)
(4) The morphism (t, s) : R→ U ×X U is universally submersive.04A8

For each of these properties we can also require them to hold after any flat base
change, or after any base change, see Definition 83.3.4. In this case we say condition
(1), (2), (3), or (4) holds uniformly or universally.

83.8. Invariant functions

04A9 In some cases it is convenient to pin down the structure sheaf of a quotient by
requiring any invariant function to be a local section of the structure sheaf of the
quotient.
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Definition 83.8.1.04AA Let S be a scheme and B an algebraic space over S. Let j : R→
U ×B U be a pre-relation. Let ϕ : U → X be an R-invariant morphism. Denote
ϕ′ = ϕ ◦ s = ϕ ◦ t : R→ X.

(1) We denote (ϕ∗OU )R the OX -sub-algebra of ϕ∗OU which is the equalizer
of the two maps

ϕ∗OU
ϕ∗s

♯

//

ϕ∗t
♯

// ϕ
′
∗OR

on Xétale. We sometimes call this the sheaf of R-invariant functions on
X.

(2) We say the functions on X are the R-invariant functions on U if the
natural map OX → (ϕ∗OU )R is an isomorphism.

Of course we can require this property holds after any (flat or any) base change,
leading to a (uniform or) universal notion. This condition is often thrown in with
other conditions in order to obtain a (more) unique quotient. And of course a
good deal of motivation for the whole subject comes from the following special
case: U = Spec(A) is an affine scheme over a field S = B = Spec(k) and where
R = G×U , with G an affine group scheme over k. In this case you have the option
of taking for the quotient:

X = Spec(AG)
so that at least the condition of the definition above is satisfied. Even though this is
a nice thing you can do it is often not the right quotient; for example if U = GLn,k
and G is the group of upper triangular matrices, then the above gives X = Spec(k),
whereas a much better quotient (namely the flag variety) exists.

83.9. Good quotients

04AB Especially when taking quotients by group actions the following definition is useful.

Definition 83.9.1.04AC Let S be a scheme and B an algebraic space over S. Let j : R→
U ×B U be a pre-relation. A morphism ϕ : U → X of algebraic spaces over B is
called a good quotient if

(1) ϕ is invariant,
(2) ϕ is affine,
(3) ϕ is surjective,
(4) condition (3) holds universally, and
(5) the functions on X are the R-invariant functions on U .

In [Ses72] Seshadri gives almost the same definition, except that instead of (4) he
simply requires the condition (3) to hold – he does not require it to hold universally.

83.10. Geometric quotients

04AD This is Mumford’s definition of a geometric quotient (at least the definition from
the first edition of GIT; as far as we can tell later editions changed “universally
submersive” to “submersive”).

Definition 83.10.1.04AE Let S be a scheme and B an algebraic space over S. Let
j : R→ U ×B U be a pre-relation. A morphism ϕ : U → X of algebraic spaces over
B is called a geometric quotient if

https://stacks.math.columbia.edu/tag/04AA
https://stacks.math.columbia.edu/tag/04AC
https://stacks.math.columbia.edu/tag/04AE
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(1) ϕ is an orbit space,
(2) condition (1) holds universally, i.e., ϕ is universally submersive, and
(3) the functions on X are the R-invariant functions on U .
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CHAPTER 84

More on Cohomology of Spaces

0DFR 84.1. Introduction

0DFS In this chapter continues the discussion started in Cohomology of Spaces, Section
69.1. One can also view this chapter as the analogue for algebraic spaces of the
chapter on étale cohomology for schemes, see Étale Cohomology, Section 59.1.
In fact, we intend this chapter to be mainly a translation of the results already
proved for schemes into the language of algebraic spaces. Some of our results can
be found in [Knu71].

84.2. Conventions

0DFT The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.
Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

84.3. Transporting results from schemes

0DFU In this section we explain briefly how results for schemes imply results for (repre-
sentable) algebraic spaces and (representable) morphisms of algebraic spaces. For
quasi-coherent modules more is true (because étale cohomology of a quasi-coherent
module over a scheme agrees with Zariski cohomology) and this has already been
discussed in Cohomology of Spaces, Section 69.3.
Let S be a scheme. Let X be an algebraic space over S. Now suppose that X is
representable by the scheme X0 (awkward but temporary notation; we usually just
say “X is a scheme”). In this case X and X0 have the same small étale sites:

Xétale = (X0)étale
This is pointed out in Properties of Spaces, Section 66.18. Moreover, if f : X → Y
is a morphism of representable algebraic spaces over S and if f0 : X0 → Y0 is a
morphism of schemes representing f , then the induced morphisms of small étale
topoi agree:

Sh(Xétale)
fsmall

// Sh(Yétale)

Sh((X0)étale)
(f0)small // Sh((Y0)étale)

See Properties of Spaces, Lemma 66.18.8 and Topologies, Lemma 34.4.17.

6158
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Thus there is absolutely no difference between étale cohomology of a scheme and
the étale cohomology of the corresponding algebraic space. Similarly for higher
direct images along morphisms of schemes. In fact, if f : X → Y is a morphism
of algebraic spaces over S which is representable (by schemes), then the higher
direct images Rif∗F of a sheaf F on Xétale can be computed étale locally on Y
(Cohomology on Sites, Lemma 21.7.4) hence this often reduces computations and
proofs to the case where Y and X are schemes.

We will use the above without further mention in this chapter. For other topologies
the same thing is true; we state it explicitly as a lemma for cohomology here.

Lemma 84.3.1.0DFV Let S be a scheme. Let τ ∈ {étale, fppf, ph} (add more here).
The inclusion functor

(Sch/S)τ −→ (Spaces/S)τ
is a special cocontinuous functor (Sites, Definition 7.29.2) and hence identifies topoi.

Proof. The conditions of Sites, Lemma 7.29.1 are immediately verified as our func-
tor is fully faithful and as every algebraic space has an étale covering by schemes. □

84.4. Proper base change

0DFW The proper base change theorem for algebraic spaces follows from the proper base
change theorem for schemes and Chow’s lemma with a little bit of work.

Lemma 84.4.1.0DFX Let S be a scheme. Let f : Y → X be a surjective proper morphism
of algebraic spaces over S. Let F be a sheaf on Xétale. Then F → f∗f

−1F is
injective with image the equalizer of the two maps f∗f

−1F → g∗g
−1F where g is

the structure morphism g : Y ×X Y → X.

Proof. For any surjective morphism f : Y → X of algebraic spaces over S, the map
F → f∗f

−1F is injective. Namely, if x is a geometric point of X, then we choose
a geometric point y of Y lying over x and we consider

Fx → (f∗f
−1F)x → (f−1F)y = Fx

See Properties of Spaces, Lemma 66.19.9 for the last equality.

The second statement is local on X in the étale topology, hence we may and do
assume Y is an affine scheme.

Choose a surjective proper morphism Z → Y where Z is a scheme, see Cohomology
of Spaces, Lemma 69.18.1. The result for Z → X implies the result for Y → X.
Since Z → X is a surjective proper morphism of schemes and hence a ph covering
(Topologies, Lemma 34.8.6) the result for Z → X follows from Étale Cohomology,
Lemma 59.102.1 (in fact it is in some sense equivalent to this lemma). □

Lemma 84.4.2.0DFY Let (A, I) be a henselian pair. Let X be an algebraic space over
A such that the structure morphism f : X → Spec(A) is proper. Let i : X0 → X
be the inclusion of X ×Spec(A) Spec(A/I). For any sheaf F on Xétale we have
Γ(X,F) = Γ(X0, i

−1F).

https://stacks.math.columbia.edu/tag/0DFV
https://stacks.math.columbia.edu/tag/0DFX
https://stacks.math.columbia.edu/tag/0DFY
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Proof. Choose a surjective proper morphism Y → X where Y is a scheme, see
Cohomology of Spaces, Lemma 69.18.1. Consider the diagram

Γ(X0,F0) // Γ(Y0,G0) //
// Γ((Y ×X Y )0,H0)

Γ(X,F) //

OO

Γ(Y,G) //
//

OO

Γ(Y ×X Y,H)

OO

Here G, resp. H is the pullbackf or F to Y , resp. Y ×X Y and the index 0 indicates
base change to Spec(A/I). By the case of schemes (Étale Cohomology, Lemma
59.91.2) we see that the middle and right vertical arrows are bijective. By Lemma
84.4.1 it follows that the left one is too. □

Lemma 84.4.3.0DFZ Let A be a henselian local ring. Let X be an algebraic space over
A such that f : X → Spec(A) is a proper morphism. Let X0 ⊂ X be the fibre of f
over the closed point. For any sheaf F on Xétale we have Γ(X,F) = Γ(X0,F|X0).

Proof. This is a special case of Lemma 84.4.2. □

Lemma 84.4.4.0DG0 Let S be a scheme. Let f : X → Y and g : Y ′ → Y be a
morphisms of algebraic spaces over S. Assume f is proper. Set X ′ = Y ′×Y X with
projections f ′ : X ′ → Y ′ and g′ : X ′ → X. Let F be any sheaf on Xétale. Then
g−1f∗F = f ′

∗(g′)−1F .

Proof. The question is étale local on Y ′. Choose a scheme V and a surjective
étale morphism V → Y . Choose a scheme V ′ and a surjective étale morphism
V ′ → V ×Y Y ′. Then we may replace Y ′ by V ′ and Y by V . Hence we may assume
Y and Y ′ are schemes. Then we may work Zariski locally on Y and Y ′ and hence
we may assume Y and Y ′ are affine schemes.

Assume Y and Y ′ are affine schemes. Choose a surjective proper morphism h1 :
X1 → X where X1 is a scheme, see Cohomology of Spaces, Lemma 69.18.1. Set
X2 = X1 ×X X1 and denote h2 : X2 → X the structure morphism. Observe this
is a scheme. By the case of schemes (Étale Cohomology, Lemma 59.91.5) we know
the lemma is true for the cartesian diagrams

X ′
1

//

��

X1

��
Y ′ // Y

and

X ′
2

//

��

X2

��
Y ′ // Y

and the sheaves Fi = (Xi → X)−1F . By Lemma 84.4.1 we have an exact sequence
0 → F → h1,∗F1 → h2,∗F2 and similarly for (g′)−1F because X ′

2 = X ′
1 ×X′ X ′

1.
Hence we conlude that the lemma is true (some details omitted). □

Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces over S.
Let x : Spec(k) → S be a geometric point. The fibre of f at x is the algebraic
space Yx = Spec(k) ×x,X Y over Spec(k). If F is a sheaf on Yétale, then denote
Fx = p−1F the pullback of F to (Yx)étale. Here p : Yx → Y is the projection. In
the following we will consider the set Γ(Yx,Fx).

https://stacks.math.columbia.edu/tag/0DFZ
https://stacks.math.columbia.edu/tag/0DG0
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Lemma 84.4.5.0DG1 Let S be a scheme. Let f : Y → X be a proper morphism of
algebraic spaces over S. Let x → X be a geometric point. For any sheaf F on
Yétale the canonical map

(f∗F)x −→ Γ(Yx,Fx)
is bijective.

Proof. This is a special case of Lemma 84.4.4. □

Theorem 84.4.6.0DG2 Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian square of algebraic spaces over S. Assume f is proper. Let F be an
abelian torsion sheaf on Xétale. Then the base change map

g−1Rf∗F −→ Rf ′
∗(g′)−1F

is an isomorphism.

Proof. This proof repeats a few of the arguments given in the proof of the proper
base change theorem for schemes. See Étale Cohomology, Section 59.91 for more
details.
The statement is étale local on Y ′ and Y , hence we may assume both Y and Y ′

are affine schemes. Observe that this in particular proves the theorem in case f is
representable (we will use this below).
For every n ≥ 1 let F [n] be the subsheaf of sections of F annihilated by n. Then
F = colimF [n]. By Cohomology of Spaces, Lemma 69.5.2 the functors g−1Rpf∗
and Rpf ′

∗(g′)−1 commute with filtered colimits. Hence it suffices to prove the
theorem if F is killed by n.
Let F → I• be a resolution by injective sheaves of Z/nZ-modules. Observe that
g−1f∗I• = f ′

∗(g′)−1I• by Lemma 84.4.4. Applying Leray’s acyclicity lemma (De-
rived Categories, Lemma 13.16.7) we conclude it suffices to prove Rpf ′

∗(g′)−1Im = 0
for p > 0 and m ∈ Z.
Choose a surjective proper morphism h : Z → X where Z is a scheme, see Coho-
mology of Spaces, Lemma 69.18.1. Choose an injective map h−1Im → J where
J is an injective sheaf of Z/nZ-modules on Zétale. Since h is surjective the map
Im → h∗J is injective (see Lemma 84.4.1). Since Im is injective we see that Im is
a direct summand of h∗J . Thus it suffices to prove the desired vanishing for h∗J .
Denote h′ the base change by g and denote g′′ : Z ′ → Z the projection. There is a
spectral sequence

Ep,q2 = Rpf ′
∗R

qh′
∗(g′′)−1J

converging to Rp+q(f ′ ◦ h′)∗(g′′)−1J . Since h and f ◦ h are representable (by
schemes) we know the result we want holds for them. Thus in the spectral sequence
we see that Ep,q2 = 0 for q > 0 and Rp+q(f ′ ◦ h′)∗(g′′)−1J = 0 for p + q > 0. It
follows that Ep,02 = 0 for p > 0. Now

Ep,02 = Rpf ′
∗h

′
∗(g′′)−1J = Rpf ′

∗(g′)−1h∗J

https://stacks.math.columbia.edu/tag/0DG1
https://stacks.math.columbia.edu/tag/0DG2
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by Lemma 84.4.4. This finishes the proof. □

Lemma 84.4.7.0DG3 Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian square of algebraic spaces over S. Assume f is proper. Let E ∈
D+(Xétale) have torsion cohomology sheaves. Then the base change map g−1Rf∗E →
Rf ′

∗(g′)−1E is an isomorphism.

Proof. This is a simple consequence of the proper base change theorem (Theorem
84.4.6) using the spectral sequences

Ep,q2 = Rpf∗H
q(E) and E′p,q

2 = Rpf ′
∗(g′)−1Hq(E)

converging to Rnf∗E and Rnf ′
∗(g′)−1E. The spectral sequences are constructed in

Derived Categories, Lemma 13.21.3. Some details omitted. □

Lemma 84.4.8.0DG4 Let S be a scheme. Let f : X → Y be a proper morphism of
algebraic spaces. Let y → Y be a geometric point.

(1) For a torsion abelian sheaf F onXétale we have (Rnf∗F)y = Hn
étale(Xy,Fy).

(2) For E ∈ D+(Xétale) with torsion cohomology sheaves we have (Rnf∗E)y =
Hn
étale(Xy, Ey).

Proof. In the statement, Fy denotes the pullback of F to Xy = y ×Y X. Since
pulling back by y → Y produces the stalk of F , the first statement of the lemma
is a special case of Theorem 84.4.6. The second one is a special case of Lemma
84.4.7. □

Lemma 84.4.9.0DG5 Let k′/k be an extension of separably closed fields. Let X be a
proper algebraic space over k. Let F be a torsion abelian sheaf on X. Then the
map Hq

étale(X,F)→ Hq
étale(Xk′ ,F|Xk′ ) is an isomorphism for q ≥ 0.

Proof. This is a special case of Theorem 84.4.6. □

84.5. Comparing big and small topoi

0DG6 Let S be a scheme and let X be an algebraic space over S. In Topologies on Spaces,
Lemma 73.4.8 we have introduced comparison morphisms πX : (Spaces/X)étale →
Xspaces,étale and iX : Sh(Xétale) → Sh((Spaces/X)étale) with πX ◦ iX = id as
morphisms of topoi and πX,∗ = i−1

X . More generally, if f : Y → X is an object of
(Spaces/X)étale, then there is a morphism if : Sh(Yétale) → Sh((Spaces/X)étale)
such that fsmall = πX ◦ if , see Topologies on Spaces, Lemmas 73.4.7 and 73.4.11.
In Topologies on Spaces, Remark 73.4.14 we have extended these to a morphism of
ringed sites

πX : ((Spaces/X)étale,O)→ (Xspaces,étale,OX)
and morphisms of ringed topoi

iX : (Sh(Xétale),OX)→ (Sh((Spaces/X)étale),O)
and

if : (Sh(Yétale),OY )→ (Sh((Spaces/X)étale,O))

https://stacks.math.columbia.edu/tag/0DG3
https://stacks.math.columbia.edu/tag/0DG4
https://stacks.math.columbia.edu/tag/0DG5
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Note that the restriction i−1
X = πX,∗ (see Topologies, Definition 34.4.15) transforms

O into OX . Similarly, i−1
f transforms O into OY . See Topologies on Spaces,

Remark 73.4.14. Hence i∗XF = i−1
X F and i∗fF = i−1

f F for any O-module F on
(Spaces/X)étale. In particular i∗X and i∗f are exact functors. The functor i∗X is often
denoted F 7→ F|Xétale (and this does not conflict with the notation in Topologies
on Spaces, Definition 73.4.9).

Lemma 84.5.1.0DG7 Let S be a scheme. Let X be an algebraic space over S. Let F be
a sheaf on Xétale. Then π−1

X F is given by the rule
(π−1
X F)(Y ) = Γ(Yétale, f−1

smallF)
for f : Y → X in (Spaces/X)étale. Moreover, π−1

Y F satisfies the sheaf condition
with respect to smooth, syntomic, fppf, fpqc, and ph coverings.

Proof. Since pullback is transitive and fsmall = πX ◦ if (see above) we see that
i−1
f π−1

X F = f−1
smallF . This shows that π−1

X has the description given in the lemma.

To prove that π−1
X F is a sheaf for the ph topology it suffices by Topologies on

Spaces, Lemma 73.8.7 to show that for a surjective proper morphism V → U
of algebraic spaces over X we have (π−1

X F)(U) is the equalizer of the two maps
(π−1
X F)(V )→ (π−1

X F)(V ×U V ). This we have seen in Lemma 84.4.1.
The case of smooth, syntomic, fppf coverings follows from the case of ph coverings
by Topologies on Spaces, Lemma 73.8.2.
Let U = {Ui → U}i∈I be an fpqc covering of algebraic spaces over X. Let si ∈
(π−1
X F)(Ui) be sections which agree over Ui ×U Uj . We have to prove there exists

a unique s ∈ (π−1
X F)(U) restricting to si over Ui. Case I: U and Ui are schemes.

This case follows from Étale Cohomology, Lemma 59.39.2. Case II: U is a scheme.
Here we choose surjective étale morphisms Ti → Ui where Ti is a scheme. Then
T = {Ti → U} is an fpqc covering by schemes and by case I the result holds for
T . We omit the verification that this implies the result for U . Case III: general
case. Let W → U be a surjective étale morphism, where W is a scheme. Then
W = {Ui ×U W →W} is an fpqc covering (by algebraic spaces) of the scheme W .
By case II the result hold for W. We omit the verification that this implies the
result for U . □

Lemma 84.5.2.0DG8 Let S be a scheme. Let Y → X be a morphism of (Spaces/S)étale.
(1) If I is injective in Ab((Spaces/X)étale), then

(a) i−1
f I is injective in Ab(Yétale),

(b) I|Xétale is injective in Ab(Xétale),
(2) If I• is a K-injective complex in Ab((Spaces/X)étale), then

(a) i−1
f I• is a K-injective complex in Ab(Yétale),

(b) I•|Xétale is a K-injective complex in Ab(Xétale),
The corresponding statements for modules do not hold.

Proof. Parts (1)(b) and (2)(b) follow formally from the fact that the restriction
functor πX,∗ = i−1

X is a right adjoint of the exact functor π−1
X , see Homology,

Lemma 12.29.1 and Derived Categories, Lemma 13.31.9.
Parts (1)(a) and (2)(a) can be seen in two ways. First proof: We can use that i−1

f is
a right adjoint of the exact functor if,!. This functor is constructed in Topologies,

https://stacks.math.columbia.edu/tag/0DG7
https://stacks.math.columbia.edu/tag/0DG8
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Lemma 34.4.13 for sheaves of sets and for abelian sheaves in Modules on Sites,
Lemma 18.16.2. It is shown in Modules on Sites, Lemma 18.16.3 that it is exact.
Second proof. We can use that if = iY ◦ fbig as is shown in Topologies, Lemma
34.4.17. Since fbig is a localization, we see that pullback by it preserves injectives
and K-injectives, see Cohomology on Sites, Lemmas 21.7.1 and 21.20.1. Then we
apply the already proved parts (1)(b) and (2)(b) to the functor i−1

Y to conclude.

To see a counter example for the case of modules we refer to Étale Cohomology,
Lemma 59.99.1. □

Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces over S.
The commutative diagram of Topologies on Spaces, Lemma 73.4.11 (3) leads to a
commutative diagram of ringed sites

(Yspaces,étale,OY )

fspaces,étale

��

((Spaces/Y )étale,O)

fbig

��

πY
oo

(Xspaces,étale,OX) ((Spaces/X)étale,O)πXoo

as one easily sees by writing out the definitions of f ♯small, f
♯
big, π

♯
X , and π♯Y . In

particular this means that

(84.5.2.1)0DG9 (fbig,∗F)|Xétale = fsmall,∗(F|Yétale)

for any sheaf F on (Spaces/Y )étale and if F is a sheaf of O-modules, then (84.5.2.1)
is an isomorphism of OX -modules on Xétale.

Lemma 84.5.3.0DGA Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S.

(1) ForK inD((Spaces/Y )étale) we have (Rfbig,∗K)|Xétale = Rfsmall,∗(K|Yétale)
in D(Xétale).

(2) ForK inD((Spaces/Y )étale,O) we have (Rfbig,∗K)|Xétale = Rfsmall,∗(K|Yétale)
in D(Mod(Xétale,OX)).

More generally, let g : X ′ → X be an object of (Spaces/X)étale. Consider the fibre
product

Y ′
g′
//

f ′

��

Y

f

��
X ′ g // X

Then
(3) For K in D((Spaces/Y )étale) we have i−1

g (Rfbig,∗K) = Rf ′
small,∗(i−1

g′ K)
in D(X ′

étale).
(4) For K in D((Spaces/Y )étale,O) we have i∗g(Rfbig,∗K) = Rf ′

small,∗(i∗g′K)
in D(Mod(X ′

étale,OX′)).
(5) ForK inD((Spaces/Y )étale) we have g−1

big(Rfbig,∗K) = Rf ′
big,∗((g′

big)−1K)
in D((Spaces/X ′)étale).

(6) ForK inD((Spaces/Y )étale,O) we have g∗
big(Rfbig,∗K) = Rf ′

big,∗((g′
big)∗K)

in D(Mod(X ′
étale,OX′)).

https://stacks.math.columbia.edu/tag/0DGA
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Proof. Part (1) follows from Lemma 84.5.2 and (84.5.2.1) on choosing a K-injective
complex of abelian sheaves representing K.

Part (3) follows from Lemma 84.5.2 and Topologies, Lemma 34.4.19 on choosing a
K-injective complex of abelian sheaves representing K.

Part (5) is Cohomology on Sites, Lemma 21.21.1.

Part (6) is Cohomology on Sites, Lemma 21.21.2.

Part (2) can be proved as follows. Above we have seen that πX ◦ fbig = fsmall ◦ πY
as morphisms of ringed sites. Hence we obtain RπX,∗ ◦Rfbig,∗ = Rfsmall,∗ ◦RπY,∗
by Cohomology on Sites, Lemma 21.19.2. Since the restriction functors πX,∗ and
πY,∗ are exact, we conclude.

Part (4) follows from part (6) and part (2) applied to f ′ : Y ′ → X ′. □

Let S be a scheme. Let X be an algebraic space over S. Let H be an abelian sheaf
on (Spaces/X)étale. Recall that Hn

étale(U,H) denotes the cohomology of H over an
object U of (Spaces/X)étale.

Lemma 84.5.4.0DGB Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Then

(1) For K in D(Xétale) we have Hn
étale(X,π

−1
X K) = Hn(Xétale,K).

(2) For K in D(Xétale,OX) we have Hn
étale(X,Lπ∗

XK) = Hn(Xétale,K).
(3) For K in D(Xétale) we have Hn

étale(Y, π
−1
X K) = Hn(Yétale, f−1

smallK).
(4) ForK inD(Xétale,OX) we haveHn

étale(Y,Lπ∗
XK) = Hn(Yétale, Lf∗

smallK).
(5) For M in D((Spaces/X)étale) we have Hn

étale(Y,M) = Hn(Yétale, i−1
f M).

(6) For M in D((Spaces/X)étale,O) we have Hn
étale(Y,M) = Hn(Yétale, i∗fM).

Proof. To prove (5) represent M by a K-injective complex of abelian sheaves and
apply Lemma 84.5.2 and work out the definitions. Part (3) follows from this as
i−1
f π−1

X = f−1
small. Part (1) is a special case of (3).

Part (6) follows from the very general Cohomology on Sites, Lemma 21.37.5. Then
part (4) follows because Lf∗

small = i∗f ◦ Lπ∗
X . Part (2) is a special case of (4). □

Lemma 84.5.5.0DGC Let S be a scheme. Let X be an algebraic space over S. For
K ∈ D(Xétale) the map

K −→ RπX,∗π
−1
X K

is an isomorphism where πX : Sh((Spaces/X)étale)→ Sh(Xétale) is as above.

Proof. This is true because both π−1
X and πX,∗ = i−1

X are exact functors and the
composition πX,∗ ◦ π−1

X is the identity functor. □

Lemma 84.5.6.0DGD Let S be a scheme. Let f : Y → X be a proper morphism of
algebraic spaces over S. Then we have

(1) π−1
X ◦fsmall,∗ = fbig,∗ ◦π−1

Y as functors Sh(Yétale)→ Sh((Spaces/X)étale),
(2) π−1

X Rfsmall,∗K = Rfbig,∗π
−1
Y K for K in D+(Yétale) whose cohomology

sheaves are torsion, and
(3) π−1

X Rfsmall,∗K = Rfbig,∗π
−1
Y K for all K in D(Yétale) if f is finite.

https://stacks.math.columbia.edu/tag/0DGB
https://stacks.math.columbia.edu/tag/0DGC
https://stacks.math.columbia.edu/tag/0DGD
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Proof. Proof of (1). Let F be a sheaf on Yétale. Let g : X ′ → X be an object of
(Spaces/X)étale. Consider the fibre product

Y ′
f ′
//

g′

��

X ′

g

��
Y

f // X

Then we have
(fbig,∗π−1

Y F)(X ′) = (π−1
Y F)(Y ′) = ((g′

small)−1F)(Y ′) = (f ′
small,∗(g′

small)−1F)(X ′)
the second equality by Lemma 84.5.1. On the other hand

(π−1
X fsmall,∗F)(X ′) = (g−1

smallfsmall,∗F)(X ′)
again by Lemma 84.5.1. Hence by proper base change for sheaves of sets (Lemma
84.4.4) we conclude the two sets are canonically isomorphic. The isomorphism is
compatible with restriction mappings and defines an isomorphism π−1

X fsmall,∗F =
fbig,∗π

−1
Y F . Thus an isomorphism of functors π−1

X ◦ fsmall,∗ = fbig,∗ ◦ π−1
Y .

Proof of (2). There is a canonical base change map π−1
X Rfsmall,∗K → Rfbig,∗π

−1
Y K

for any K in D(Yétale), see Cohomology on Sites, Remark 21.19.3. To prove it
is an isomorphism, it suffices to prove the pull back of the base change map by
ig : Sh(X ′

étale) → Sh((Sch/X)étale) is an isomorphism for any object g : X ′ → X
of (Sch/X)étale. Let T ′, g′, f ′ be as in the previous paragraph. The pullback of the
base change map is

g−1
smallRfsmall,∗K = i−1

g π−1
X Rfsmall,∗K

→ i−1
g Rfbig,∗π

−1
Y K

= Rf ′
small,∗(i−1

g′ π
−1
Y K)

= Rf ′
small,∗((g′

small)−1K)
where we have used πX ◦ig = gsmall, πY ◦ig′ = g′

small, and Lemma 84.5.3. This map
is an isomorphism by the proper base change theorem (Lemma 84.4.7) provided K
is bounded below and the cohomology sheaves of K are torsion.
Proof of (3). If f is finite, then the functors fsmall,∗ and fbig,∗ are exact. This follows
from Cohomology of Spaces, Lemma 69.4.1 for fsmall. Since any base change f ′ of
f is finite too, we conclude from Lemma 84.5.3 part (3) that fbig,∗ is exact too (as
the higher derived functors are zero). Thus this case follows from part (1). □

84.6. Comparing fppf and étale topologies

0DGE This section is the analogue of Étale Cohomology, Section 59.100.
Let S be a scheme. Let X be an algebraic space over S. On the category Spaces/X
we consider the fppf and étale topologies. The identity functor (Spaces/X)étale →
(Spaces/X)fppf is continuous and defines a morphism of sites

ϵX : (Spaces/X)fppf −→ (Spaces/X)étale
by an application of Sites, Proposition 7.14.7. Please note that ϵX,∗ is the identity
functor on underlying presheaves and that ϵ−1

X associates to an étale sheaf the fppf
sheafification. Consider the morphism of sites

πX : (Spaces/X)étale −→ Xspaces,étale
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comparing big and small étale sites, see Section 84.5. The composition determines
a morphism of sites

aX = πX ◦ ϵX : (Spaces/X)fppf −→ Xspaces,étale

If H is an abelian sheaf on (Spaces/X)fppf , then we will write Hn
fppf (U,H) for the

cohomology of H over an object U of (Spaces/X)fppf .

Lemma 84.6.1.0DGF Let S be a scheme. Let X be an algebraic space over S.
(1) For F ∈ Sh(Xétale) we have ϵX,∗a−1

X F = π−1
X F and aX,∗a

−1
X F = F .

(2) For F ∈ Ab(Xétale) we have RiϵX,∗(a−1
X F) = 0 for i > 0.

Proof. We have a−1
X F = ϵ−1

X π−1
X F . By Lemma 84.5.1 the étale sheaf π−1

X F is a
sheaf for the fppf topology and therefore is equal to a−1

X F (as pulling back by
ϵX is given by fppf sheafification). Recall moreover that ϵX,∗ is the identity on
underlying presheaves. Now part (1) is immediate from the explicit description of
π−1
X in Lemma 84.5.1.

We will prove part (2) by reducing it to the case of schemes – see part (1) of Étale
Cohomology, Lemma 59.100.6. This will “clearly work” as every algebraic space is
étale locally a scheme. The details are given below but we urge the reader to skip
the proof.

For an abelian sheaf H on (Spaces/X)fppf the higher direct image RpϵX,∗H is
the sheaf associated to the presheaf U 7→ Hp

fppf (U,H) on (Spaces/X)étale. See
Cohomology on Sites, Lemma 21.7.4. Since every object of (Spaces/X)étale has
a covering by schemes, it suffices to prove that given U/X a scheme and ξ ∈
Hp
fppf (U, a−1

X F) we can find an étale covering {Ui → U} such that ξ restricts to
zero on Ui. We have

Hp
fppf (U, a−1

X F) = Hp((Spaces/U)fppf , (a−1
X F)|Spaces/U )

= Hp((Sch/U)fppf , (a−1
X F)|Sch/U )

where the second identification is Lemma 84.3.1 and the first is a general fact about
restriction (Cohomology on Sites, Lemma 21.7.1). Looking at the first paragraph
and the corresponding result in the case of schemes (Étale Cohomology, Lemma
59.100.1) we conclude that the sheaf (a−1

X F)|Sch/U matches the pullback by the
“schemes version of aU”. Therefore we can find an étale covering {Ui → U} such
that our class dies in Hp((Sch/Ui)fppf , (a−1

X F)|Sch/Ui) for each i, see Étale Coho-
mology, Lemma 59.100.6 (the precise statement one should use here is that Vn holds
for all n which is the statement of part (2) for the case of schemes). Transporting
back (using the same formulas as above but now for Ui) we conclude ξ restricts to
zero over Ui as desired. □

The hard work done in the case of schemes now tells us that étale and fppf coho-
mology agree for sheaves coming from the small étale site.

Lemma 84.6.2.0DGG Let S be a scheme. Let X be an algebraic space over S. For
K ∈ D+(Xétale) the maps

π−1
X K −→ RϵX,∗a

−1
X K and K −→ RaX,∗a

−1
X K

are isomorphisms with aX : Sh((Spaces/X)fppf )→ Sh(Xétale) as above.

https://stacks.math.columbia.edu/tag/0DGF
https://stacks.math.columbia.edu/tag/0DGG
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Proof. We only prove the second statement; the first is easier and proved in exactly
the same manner. There is an immediate reduction to the case whereK is given by a
single abelian sheaf. Namely, represent K by a bounded below complex F•. By the
case of a sheaf we see that Fn = aX,∗a

−1
X Fn and that the sheaves RqaX,∗a−1

X Fn are
zero for q > 0. By Leray’s acyclicity lemma (Derived Categories, Lemma 13.16.7)
applied to a−1

X F• and the functor aX,∗ we conclude. From now on assume K = F .

By Lemma 84.6.1 we have aX,∗a−1
X F = F . Thus it suffices to show thatRqaX,∗a−1

X F =
0 for q > 0. For this we can use aX = ϵX ◦πX and the Leray spectral sequence (Co-
homology on Sites, Lemma 21.14.7). By Lemma 84.6.1 we have RiϵX,∗(a−1

X F) = 0
for i > 0. We have ϵX,∗a−1

X F = π−1
X F and by Lemma 84.5.5 we haveRjπX,∗(π−1

X F) =
0 for j > 0. This concludes the proof. □

Lemma 84.6.3.0DGH Let S be a scheme and let X be an algebraic space over S. With
aX : Sh((Spaces/X)fppf )→ Sh(Xétale) as above:

(1) Hq(Xétale,F) = Hq
fppf (X, a−1

X F) for an abelian sheaf F on Xétale,
(2) Hq(Xétale,K) = Hq

fppf (X, a−1
X K) for K ∈ D+(Xétale).

Example: if A is an abelian group, then Hq
étale(X,A) = Hq

fppf (X,A).

Proof. This follows from Lemma 84.6.2 by Cohomology on Sites, Remark 21.14.4.
□

Lemma 84.6.4.0DGI Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then there are commutative diagrams of topoi

Sh((Spaces/X)fppf )
fbig,fppf

//

ϵX

��

Sh((Spaces/Y )fppf )

ϵY

��
Sh((Spaces/X)étale)

fbig,étale // Sh((Spaces/Y )étale)

and
Sh((Spaces/X)fppf )

fbig,fppf

//

aX

��

Sh((Spaces/Y )fppf )

aY

��
Sh(Xétale)

fsmall // Sh(Yétale)

with aX = πX ◦ ϵX and aY = πX ◦ ϵX .

Proof. This follows immediately from working out the definitions of the morphisms
involved, see Topologies on Spaces, Section 73.7 and Section 84.5. □

Lemma 84.6.5.0DGJ In Lemma 84.6.4 if f is proper, then we have
(1) a−1

Y ◦ fsmall,∗ = fbig,fppf,∗ ◦ a−1
X , and

(2) a−1
Y (Rfsmall,∗K) = Rfbig,fppf,∗(a−1

X K) for K in D+(Xétale) with torsion
cohomology sheaves.

Proof. Proof of (1). You can prove this by repeating the proof of Lemma 84.5.6
part (1); we will instead deduce the result from this. As ϵY,∗ is the identity functor
on underlying presheaves, it reflects isomorphisms. Lemma 84.6.1 shows that ϵY,∗ ◦

https://stacks.math.columbia.edu/tag/0DGH
https://stacks.math.columbia.edu/tag/0DGI
https://stacks.math.columbia.edu/tag/0DGJ
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a−1
Y = π−1

Y and similarly for X. To show that the canonical map a−1
Y fsmall,∗F →

fbig,fppf,∗a
−1
X F is an isomorphism, it suffices to show that

π−1
Y fsmall,∗F = ϵY,∗a

−1
Y fsmall,∗F

→ ϵY,∗fbig,fppf,∗a
−1
X F

= fbig,étale,∗ϵX,∗a
−1
X F

= fbig,étale,∗π
−1
X F

is an isomorphism. This is part (1) of Lemma 84.5.6.
To see (2) we use that

RϵY,∗Rfbig,fppf,∗a
−1
X K = Rfbig,étale,∗RϵX,∗a

−1
X K

= Rfbig,étale,∗π
−1
X K

= π−1
Y Rfsmall,∗K

= RϵY,∗a
−1
Y Rfsmall,∗K

The first equality by the commutative diagram in Lemma 84.6.4 and Cohomology
on Sites, Lemma 21.19.2. Then second equality is Lemma 84.6.2. The third is
Lemma 84.5.6 part (2). The fourth is Lemma 84.6.2 again. Thus the base change
map a−1

Y (Rfsmall,∗K)→ Rfbig,fppf,∗(a−1
X K) induces an isomorphism

RϵY,∗a
−1
Y Rfsmall,∗K → RϵY,∗Rfbig,fppf,∗a

−1
X K

The proof is finished by the following remark: a map α : a−1
Y L → M with L in

D+(Yétale) and M in D+((Spaces/Y )fppf ) such that RϵY,∗α is an isomorphism, is
an isomorphism. Namely, we show by induction on i that Hi(α) is an isomorphism.
This is true for all sufficiently small i. If it holds for i ≤ i0, then we see that
RjϵY,∗H

i(M) = 0 for j > 0 and i ≤ i0 by Lemma 84.6.1 because Hi(M) =
a−1
Y Hi(L) in this range. Hence ϵY,∗H

i0+1(M) = Hi0+1(RϵY,∗M) by a spectral
sequence argument. Thus ϵY,∗Hi0+1(M) = π−1

Y Hi0+1(L) = ϵY,∗a
−1
Y Hi0+1(L). This

implies Hi0+1(α) is an isomorphism (because ϵY,∗ reflects isomorphisms as it is the
identity on underlying presheaves) as desired. □

Lemma 84.6.6.0DGK In Lemma 84.6.4 if f is finite, then a−1
Y (Rfsmall,∗K) = Rfbig,fppf,∗(a−1

X K)
for K in D+(Xétale).

Proof. Let V → Y be a surjective étale morphism where V is a scheme. It suffices
to prove the base change map is an isomorphism after restricting to V . Hence we
may assume that Y is a scheme. As the morphism is finite, hence representable,
we conclude that we may assume both X and Y are schemes. In this case the
result follows from the case of schemes (Étale Cohomology, Lemma 59.100.6 part
(2)) using the comparison of topoi discussed in Section 84.3 and in particular given
in Lemma 84.3.1. Some details omitted. □

Lemma 84.6.7.0DGL In Lemma 84.6.4 assume f is flat, locally of finite presentation,
and surjective. Then the functor

Sh(Yétale) −→
{

(G,H, α)
∣∣∣∣G ∈ Sh(Xétale), H ∈ Sh((Sch/Y )fppf ),
α : a−1

X G → f−1
big,fppfH an isomorphism

}
sending F to (f−1

smallF , a
−1
Y F , can) is an equivalence.

https://stacks.math.columbia.edu/tag/0DGK
https://stacks.math.columbia.edu/tag/0DGL
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Proof. The functor a−1
X is fully faithful (as aX,∗a−1

X = id by Lemma 84.6.1). Hence
the forgetful functor (G,H, α) 7→ H identifies the category of triples with a full
subcategory of Sh((Sch/Y )fppf ). Moreover, the functor a−1

Y is fully faithful, hence
the functor in the lemma is fully faithful as well.
Suppose that we have an étale covering {Yi → Y }. Let fi : Xi → Yi be the base
change of f . Denote fij = fi × fj : Xi ×X Xj → Yi ×Y Yj . Claim: if the lemma is
true for fi and fij for all i, j, then the lemma is true for f . To see this, note that the
given étale covering determines an étale covering of the final object in each of the
four sites Yétale, Xétale, (Sch/Y )fppf , (Sch/X)fppf . Thus the category of sheaves is
equivalent to the category of glueing data for this covering (Sites, Lemma 7.26.5)
in each of the four cases. A huge commutative diagram of categories then finishes
the proof of the claim. We omit the details. The claim shows that we may work
étale locally on Y . In particular, we may assume Y is a scheme.
Assume Y is a scheme. Choose a scheme X ′ and a surjective étale morphism
s : X ′ → X. Set f ′ = f ◦ s : X ′ → Y and observe that f ′ is surjective, locally
of finite presentation, and flat. Claim: if the lemma is true for f ′, then it is true
for f . Namely, given a triple (G,H, α) for f , we can pullback by s to get a triple
(s−1
smallG,H, s

−1
big,fppfα) for f ′. A solution for this triple gives a sheaf F on Yétale

with a−1
Y F = H. By the first paragraph of the proof this means the triple is in the

essential image. This reduces us to the case where both X and Y are schemes. This
case follows from Étale Cohomology, Lemma 59.100.4 via the discussion in Section
84.3 and in particular Lemma 84.3.1. □

84.7. Comparing fppf and étale topologies: modules

0DGM We continue the discussion in Section 84.6 but in this section we briefly discuss
what happens for sheaves of modules.
Let S be a scheme. Let X be an algebraic space over S. The morphisms of
sites ϵX , πX , and their composition aX introduced in Section 84.6 have natural
enhancements to morphisms of ringed sites. The first is written as

ϵX : ((Spaces/X)fppf ,O) −→ ((Spaces/X)étale,O)
Note that we can use the same symbol for the structure sheaf as indeed the sheaves
have the same underlying presheaf. The second is

πX : ((Spaces/X)étale,O) −→ (Xétale,OX)
The third is the morphism

aX : ((Spaces/X)fppf ,O) −→ (Xétale,OX)
Let us review what we already know about quasi-coherent modules on these sites.

Lemma 84.7.1.0DGN Let S be a scheme. Let X be an algebraic space over S. Let F be
a quasi-coherent OX -module.

(1) The rule
Fa : (Spaces/X)étale −→ Ab, (f : Y → X) 7−→ Γ(Y, f∗F)

satisfies the sheaf condition for fpqc and a fortiori fppf and étale coverings,
(2) Fa = π∗

XF on (Spaces/X)étale,
(3) Fa = a∗

XF on (Spaces/X)fppf ,

https://stacks.math.columbia.edu/tag/0DGN
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(4) the rule F 7→ Fa defines an equivalence between quasi-coherent OX -
modules and quasi-coherent modules on ((Spaces/X)étale,O),

(5) the rule F 7→ Fa defines an equivalence between quasi-coherent OX -
modules and quasi-coherent modules on ((Spaces/X)fppf ,O),

(6) we have ϵX,∗a∗
XF = π∗

XF and aX,∗a
∗
XF = F ,

(7) we have RiϵX,∗(a∗
XF) = 0 and RiaX,∗(a∗

XF) = 0 for i > 0.

Proof. Part (1) is a consequence of fppf descent of quasi-coherent modules. Namely,
suppose that {fi : Ui → U} is an fpqc covering in (Spaces/X)étale. Denote g :
U → X the structure morphism. Suppose that we have a family of sections si ∈
Γ(Ui, f∗

i g
∗F) such that si|Ui×UUj = sj |Ui×UUj . We have to find the correspond

section s ∈ Γ(U, g∗F). We can reinterpret the si as a family of maps φi : f∗
i OU =

OUi → f∗
i g

∗F compatible with the canonical descent data associated to the quasi-
coherent sheaves OU and g∗F on U . Hence by Descent on Spaces, Proposition
74.4.1 we see that we may (uniquely) descend these to a map OU → g∗F which
gives us our section s.
We will deduce (2) – (7) from the corresponding statement for schemes. Choose an
étale covering {Xi → X}i∈I where each Xi is a scheme. Observe that Xi×XXj is a
scheme too. This covering induces a covering of the final object in each of the three
sites (Spaces/X)fppf , (Spaces/X)étale, and Xétale. Hence we see that the category
of sheaves on these sites are equivalent to descent data for these coverings, see Sites,
Lemma 7.26.5. Parts (2), (3) are local (because we have the glueing statement).
Being quasi-coherent is a local property, hence parts (4), (5) are local. Clearly (6)
and (7) are local. It follows that it suffices to prove parts (2) – (7) of the lemma
when X is a scheme.
Assume X is a scheme. The embeddings (Sch/X)étale ⊂ (Spaces/X)étale and
(Sch/X)fppf ⊂ (Spaces/X)fppf determine equivalences of ringed topoi by Lemma
84.3.1. We conclude that (2) – (7) follows from the case of schemes. Étale Coho-
mology, Lemma 59.101.1. To transport the property of being quasi-coherent via
this equivalence use that being quasi-coherent is an intrinsic property of modules
as explained in Modules on Sites, Section 18.23. Some minor details omitted. □

Lemma 84.7.2.0DGP Let S be a scheme. Let X be an algebraic space over S. For F a
quasi-coherent OX -module the maps

π∗
XF −→ RϵX,∗(a∗

XF) and F −→ RaX,∗(a∗
XF)

are isomorphisms.

Proof. This is an immediate consequence of parts (6) and (7) of Lemma 84.7.1. □

Lemma 84.7.3.0DGQ Let S be a scheme. Let X be an algebraic space over S. Let
F1 → F2 → F3 be a complex of quasi-coherent OX -modules. Set

Hétale = Ker(π∗
XF2 → π∗

XF3)/ Im(π∗
XF1 → π∗

XF2)
on (Spaces/X)étale and set

Hfppf = Ker(a∗
XF2 → a∗

XF3)/ Im(a∗
XF1 → a∗

XF2)
on (Spaces/X)fppf . Then Hétale = ϵX,∗Hfppf and

Hp
étale(U,Hétale) = Hp

fppf (U,Hfppf ) = 0
for p > 0 and any affine object U of (Spaces/X)étale.

https://stacks.math.columbia.edu/tag/0DGP
https://stacks.math.columbia.edu/tag/0DGQ
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More is true, namely the collection of modules on (Spaces/X)fppf which fppf locally
look like those in the lemma are called adquate modules. They form a weak Serre
subcategory of the category of all O-modules and their cohomology is studied in
Adequate Modules, Section 46.5.

Proof. For any object f : U → X of (Spaces/X)étale consider the restriction
Hétale|Uétale of Hétale to Uétale via the functor i∗f = i−1

f discussed in Section 84.5.
The sheaf Hétale|Uétale is equal to the homology of complex f∗F• in degree 1. This
is true because if ◦πX = f as morphisms of ringed sites Uétale → Xétale. In partic-
ular we see that Hétale|Uétale is a quasi-coherent OU -module. Next, let g : V → U
be a flat morphism in (Spaces/X)étale. Since

i∗f◦g ◦ π∗
X = (f ◦ g)∗ = g∗ ◦ f∗

as morphisms of sites Vétale → Xétale and since g is flat hence g∗ is exact, we obtain
Hétale|Vétale = g∗ (Hétale|Uétale)

With these preparations we are ready to prove the lemma.
Let U = {gi : Ui → U}i∈I be an fppf covering with f : U → X as above. The
sheaf propery holds for Hétale and the covering U by (1) of Lemma 84.7.1 applied
to Hétale|Uétale and the above. Therefore we see that Hétale is already an fppf
sheaf and this means that Hfppf is equal to Hétale as a presheaf. In particular
Hétale = ϵX,∗Hfppf .
Finally, to prove the vanishing, we use Cohomology on Sites, Lemma 21.10.9. We
let B be the affine objects of (Spaces/X)fppf and we let Cov be the set of finite
fppf coverings U = {Ui → U}i=1,...,n with U , Ui affine. We have

Ȟp(U ,Hétale) = Ȟp(U , (Hétale|Uétale)
a)

because the values of Hétale on the affine schemes Ui0 ×U . . . ×U Uip flat over U
agree with the values of the pullback of the quasi-coherent module Hétale|Uétale by
the first paragraph. Hence we obtain vanishing by Descent, Lemma 35.9.2. This
finishes the proof. □

Lemma 84.7.4.0DGR Let S be a scheme. Let X be an algebraic space over S. For
K ∈ DQCoh(OX) the maps

Lπ∗
XK −→ RϵX,∗(La∗

XK) and K −→ RaX,∗(La∗
XK)

are isomorphisms. Here aX : Sh((Spaces/X)fppf )→ Sh(Xétale) is as above.

Proof. The question is étale local on X hence we may assume X is affine. Say
X = Spec(A). Then we have DQCoh(OX) = D(A) by Derived Categories of Spaces,
Lemma 75.4.2 and Derived Categories of Schemes, Lemma 36.3.5. Hence we can
choose an K-flat complex of A-modules K• whose corresponding complex K• of
quasi-coherent OX -modules represents K. We claim that K• is a K-flat complex of
OX -modules.
Proof of the claim. By Derived Categories of Schemes, Lemma 36.3.6 we see that
K̃• is K-flat on the scheme (Spec(A),OSpec(A)). Next, note that K• = ϵ∗K̃• where
ϵ is as in Derived Categories of Spaces, Lemma 75.4.2 whence K• is K-flat by
Cohomology on Sites, Lemma 21.18.7 and the fact that the étale site of a scheme
has enough points (Étale Cohomology, Remarks 59.29.11).

https://stacks.math.columbia.edu/tag/0DGR
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By the claim we see that La∗
XK = a∗

XK• and Lπ∗
XK = π∗

XK•. Since the first
part of the proof shows that the pullback a∗

XKn of the quasi-coherent module is
acyclic for ϵX,∗, resp. aX,∗, surely the proof is done by Leray’s acyclicity lemma?
Actually..., no because Leray’s acyclicity lemma only applies to bounded below
complexes. However, in the next paragraph we will show the result does follow
from the bounded below case because our complex is the derived limit of bounded
below complexes of quasi-coherent modules.

The cohomology sheaves of π∗
XK• and a∗

XK• have vanishing higher cohomology
groups over affine objects of (Spaces/X)étale by Lemma 84.7.3. Therefore we have

Lπ∗
XK = R lim τ≥−n(Lπ∗

XK) and La∗
XK = R lim τ≥−n(La∗

XK)

by Cohomology on Sites, Lemma 21.23.10.

Proof of Lπ∗
XK = RϵX,∗(La∗

XF). By the above we have

RϵX,∗La
∗
XK = R limRϵX,∗(τ≥−n(La∗

XK))

by Cohomology on Sites, Lemma 21.23.3. Note that τ≥−n(La∗
XK) is represented by

τ≥−n(a∗
XK•) which may not be the same as a∗

X(τ≥−nK•). But clearly the systems

{τ≥−n(a∗
XK•)}n≥1 and {a∗

X(τ≥−nK•)}n≥1

are isomorphic as pro-systems. By Leray’s acyclicity lemma (Derived Categories,
Lemma 13.16.7) and the first part of the lemma we see that

RϵX,∗(a∗
X(τ≥−nK•)) = π∗

X(τ≥−nK•)

Then we can use that the systems

{τ≥−n(π∗
XK•)}n≥1 and {π∗

X(τ≥−nK•)}n≥1

are isomorphic as pro-systems. Finally, we put everything together as follows

RϵX,∗La
∗
XK = RϵX,∗(R lim τ≥−n(La∗

XK))
= R limRϵX,∗(τ≥−n(La∗

XK))
= R limRϵX,∗(τ≥−n(a∗

XK•))
= R limRϵX,∗(a∗

X(τ≥−nK•))
= R lim π∗

X(τ≥−nK•)
= R lim τ≥−n(π∗

XK•)
= R lim τ≥−n(Lπ∗

XK)
= Lπ∗

XK

Here in equalities four and six we have used that isomorphic pro-systems have the
same R lim (small detail omitted). You can avoid this step by using more about
cohomology of the terms of the complex τ≥−na

∗
XK• proved in Lemma 84.7.3 as this

will prove directly that RϵX,∗(τ≥−n(a∗
XK•)) = τ≥−n(π∗

XK•).

The equality K = RaX,∗(La∗
XF) is proved in exactly the same way using in the final

step that K = R lim τ≥−nK by Derived Categories of Spaces, Lemma 75.5.7. □
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84.8. Comparing ph and étale topologies

0DGS This section is the analogue of Étale Cohomology, Section 59.102.
Let S be a scheme. Let X be an algebraic space over S. On the category Spaces/X
we consider the ph and étale topologies. The identity functor (Spaces/X)étale →
(Spaces/X)ph is continuous as every étale covering is a ph covering by Topologies
on Spaces, Lemma 73.8.2. Hence it defines a morphism of sites

ϵX : (Spaces/X)ph −→ (Spaces/X)étale
by an application of Sites, Proposition 7.14.7. Please note that ϵX,∗ is the identity
functor on underlying presheaves and that ϵ−1

X associates to an étale sheaf the ph
sheafification. Consider the morphism of sites

πX : (Spaces/X)étale −→ Xspaces,étale

comparing big and small étale sites, see Section 84.5. The composition determines
a morphism of sites

aX = πX ◦ ϵX : (Spaces/X)ph −→ Xspaces,étale

If H is an abelian sheaf on (Spaces/X)ph, then we will write Hn
ph(U,H) for the

cohomology of H over an object U of (Spaces/X)ph.

Lemma 84.8.1.0DGT Let S be a scheme. Let X be an algebraic space over S.
(1) For F ∈ Sh(Xétale) we have ϵX,∗a−1

X F = π−1
X F and aX,∗a

−1
X F = F .

(2) For F ∈ Ab(Xétale) torsion we have RiϵX,∗(a−1
X F) = 0 for i > 0.

Proof. We have a−1
X F = ϵ−1

X π−1
X F . By Lemma 84.5.1 the étale sheaf π−1

X F is a
sheaf for the ph topology and therefore is equal to a−1

X F (as pulling back by ϵX is
given by ph sheafification). Recall moreover that ϵX,∗ is the identity on underlying
presheaves. Now part (1) is immediate from the explicit description of π−1

X in
Lemma 84.5.1.
We will prove part (2) by reducing it to the case of schemes – see part (1) of Étale
Cohomology, Lemma 59.102.5. This will “clearly work” as every algebraic space is
étale locally a scheme. The details are given below but we urge the reader to skip
the proof.
For an abelian sheaf H on (Spaces/X)ph the higher direct image RpϵX,∗H is the
sheaf associated to the presheaf U 7→ Hp

ph(U,H) on (Spaces/X)étale. See Cohomol-
ogy on Sites, Lemma 21.7.4. Since every object of (Spaces/X)étale has a covering
by schemes, it suffices to prove that given U/X a scheme and ξ ∈ Hp

ph(U, a−1
X F) we

can find an étale covering {Ui → U} such that ξ restricts to zero on Ui. We have
Hp
ph(U, a−1

X F) = Hp((Spaces/U)ph, (a−1
X F)|Spaces/U )

= Hp((Sch/U)ph, (a−1
X F)|Sch/U )

where the second identification is Lemma 84.3.1 and the first is a general fact about
restriction (Cohomology on Sites, Lemma 21.7.1). Looking at the first paragraph
and the corresponding result in the case of schemes (Étale Cohomology, Lemma
59.102.1) we conclude that the sheaf (a−1

X F)|Sch/U matches the pullback by the
“schemes version of aU”. Therefore we can find an étale covering {Ui → U} such
that our class dies in Hp((Sch/Ui)ph, (a−1

X F)|Sch/Ui) for each i, see Étale Cohomol-
ogy, Lemma 59.102.5 (the precise statement one should use here is that Vn holds

https://stacks.math.columbia.edu/tag/0DGT
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for all n which is the statement of part (2) for the case of schemes). Transporting
back (using the same formulas as above but now for Ui) we conclude ξ restricts to
zero over Ui as desired. □

The hard work done in the case of schemes now tells us that étale and ph cohomology
agree for torsion abelian sheaves coming from the small étale site.

Lemma 84.8.2.0DGU Let S be a scheme. Let X be an algebraic space over S. For
K ∈ D+(Xétale) with torsion cohomology sheaves the maps

π−1
X K −→ RϵX,∗a

−1
X K and K −→ RaX,∗a

−1
X K

are isomorphisms with aX : Sh((Spaces/X)ph)→ Sh(Xétale) as above.

Proof. We only prove the second statement; the first is easier and proved in ex-
actly the same manner. There is a reduction to the case where K is given by a
single torsion abelian sheaf. Namely, represent K by a bounded below complex
F• of torsion abelian sheaves. This is possible by Cohomology on Sites, Lemma
21.19.8. By the case of a sheaf we see that Fn = aX,∗a

−1
X Fn and that the sheaves

RqaX,∗a
−1
X Fn are zero for q > 0. By Leray’s acyclicity lemma (Derived Categories,

Lemma 13.16.7) applied to a−1
X F• and the functor aX,∗ we conclude. From now on

assume K = F where F is a torsion abelian sheaf.
By Lemma 84.8.1 we have aX,∗a−1

X F = F . Thus it suffices to show thatRqaX,∗a−1
X F =

0 for q > 0. For this we can use aX = ϵX ◦πX and the Leray spectral sequence (Co-
homology on Sites, Lemma 21.14.7). By Lemma 84.8.1 we have RiϵX,∗(a−1

X F) = 0
for i > 0. We have ϵX,∗a−1

X F = π−1
X F and by Lemma 84.5.5 we haveRjπX,∗(π−1

X F) =
0 for j > 0. This concludes the proof. □

Lemma 84.8.3.0DGV Let S be a scheme and let X be an algebraic space over S. With
aX : Sh((Spaces/X)ph)→ Sh(Xétale) as above:

(1) Hq(Xétale,F) = Hq
ph(X, a−1

X F) for a torsion abelian sheaf F on Xétale,
(2) Hq(Xétale,K) = Hq

ph(X, a−1
X K) for K ∈ D+(Xétale) with torsion coho-

mology sheaves
Example: if A is a torsion abelian group, then Hq

étale(X,A) = Hq
ph(X,A).

Proof. This follows from Lemma 84.8.2 by Cohomology on Sites, Remark 21.14.4.
□

Lemma 84.8.4.0DGW Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Then there are commutative diagrams of topoi

Sh((Spaces/X)ph)
fbig,ph

//

ϵX

��

Sh((Spaces/Y )ph)

ϵY

��
Sh((Spaces/X)étale)

fbig,étale // Sh((Spaces/Y )étale)
and

Sh((Spaces/X)ph)
fbig,ph

//

aX

��

Sh((Spaces/Y )ph)

aY

��
Sh(Xétale)

fsmall // Sh(Yétale)
with aX = πX ◦ ϵX and aY = πX ◦ ϵX .

https://stacks.math.columbia.edu/tag/0DGU
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Proof. This follows immediately from working out the definitions of the morphisms
involved, see Topologies on Spaces, Section 73.8 and Section 84.5. □

Lemma 84.8.5.0DGX In Lemma 84.8.4 if f is proper, then we have
(1) a−1

Y ◦ fsmall,∗ = fbig,ph,∗ ◦ a−1
X , and

(2) a−1
Y (Rfsmall,∗K) = Rfbig,ph,∗(a−1

X K) for K in D+(Xétale) with torsion
cohomology sheaves.

Proof. Proof of (1). You can prove this by repeating the proof of Lemma 84.5.6
part (1); we will instead deduce the result from this. As ϵY,∗ is the identity functor
on underlying presheaves, it reflects isomorphisms. Lemma 84.8.1 shows that ϵY,∗ ◦
a−1
Y = π−1

Y and similarly for X. To show that the canonical map a−1
Y fsmall,∗F →

fbig,ph,∗a
−1
X F is an isomorphism, it suffices to show that

π−1
Y fsmall,∗F = ϵY,∗a

−1
Y fsmall,∗F

→ ϵY,∗fbig,ph,∗a
−1
X F

= fbig,étale,∗ϵX,∗a
−1
X F

= fbig,étale,∗π
−1
X F

is an isomorphism. This is part (1) of Lemma 84.5.6.
To see (2) we use that

RϵY,∗Rfbig,ph,∗a
−1
X K = Rfbig,étale,∗RϵX,∗a

−1
X K

= Rfbig,étale,∗π
−1
X K

= π−1
Y Rfsmall,∗K

= RϵY,∗a
−1
Y Rfsmall,∗K

The first equality by the commutative diagram in Lemma 84.8.4 and Cohomology
on Sites, Lemma 21.19.2. Then second equality is Lemma 84.8.2. The third is
Lemma 84.5.6 part (2). The fourth is Lemma 84.8.2 again. Thus the base change
map a−1

Y (Rfsmall,∗K)→ Rfbig,ph,∗(a−1
X K) induces an isomorphism

RϵY,∗a
−1
Y Rfsmall,∗K → RϵY,∗Rfbig,ph,∗a

−1
X K

The proof is finished by the following remark: consider a map α : a−1
Y L→M with L

in D+(Yétale) having torsion cohomology sheaves and M in D+((Spaces/Y )ph). If
RϵY,∗α is an isomorphism, then α is an isomorphism. Namely, we show by induction
on i that Hi(α) is an isomorphism. This is true for all sufficiently small i. If it holds
for i ≤ i0, then we see that RjϵY,∗Hi(M) = 0 for j > 0 and i ≤ i0 by Lemma 84.8.1
because Hi(M) = a−1

Y Hi(L) in this range. Hence ϵY,∗Hi0+1(M) = Hi0+1(RϵY,∗M)
by a spectral sequence argument. Thus ϵY,∗Hi0+1(M) = π−1

Y Hi0+1(L) = ϵY,∗a
−1
Y Hi0+1(L).

This implies Hi0+1(α) is an isomorphism (because ϵY,∗ reflects isomorphisms as it
is the identity on underlying presheaves) as desired. □
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CHAPTER 85

Simplicial Spaces

09VI 85.1. Introduction

09VJ This chapter develops some theory concerning simplicial topological spaces, simpli-
cial ringed spaces, simplicial schemes, and simplicial algebraic spaces. The theory
of simplicial spaces sometimes allows one to prove local to global principles which
appear difficult to prove in other ways. Some example applications can be found
in the papers [Fal03], [Kie72], and [Del74].
We assume throughout that the reader is familiar with the basic concepts and results
of the chapter Simplicial Methods, see Simplicial, Section 14.1. In particular, we
continue to write X and not X• for a simplicial object.

85.2. Simplicial topological spaces

09VK A simplicial space is a simplicial object in the category of topological spaces where
morphisms are continuous maps of topological spaces. (We will use “simplicial
algebraic space” to refer to simplicial objects in the category of algebraic spaces.)
We may picture a simplicial space X as follows

X2

//
//
//
X1

//
//oo

oo
X0oo

Here there are two morphisms d1
0, d

1
1 : X1 → X0 and a single morphism s0

0 : X0 →
X1, etc. It is important to keep in mind that dni : Xn → Xn−1 should be thought of
as a “projection forgetting the ith coordinate” and snj : Xn → Xn+1 as the diagonal
map repeating the jth coordinate.
Let X be a simplicial space. We associate a site XZar

1 to X as follows.
(1) An object of XZar is an open U of Xn for some n,
(2) a morphism U → V of XZar is given by a φ : [m] → [n] where n,m are

such that U ⊂ Xn, V ⊂ Xm and φ is such that X(φ)(U) ⊂ V , and
(3) a covering {Ui → U} in XZar means that U,Ui ⊂ Xn are open, the maps

Ui → U are given by id : [n]→ [n], and U =
⋃
Ui.

Note that in particular, if U → V is a morphism of XZar given by φ, then X(φ) :
Xn → Xm does in fact induce a continuous map U → V of topological spaces.
It is clear that the above is a special case of a construction that associates to any
diagram of topological spaces a site. We formulate the obligatory lemma.

Lemma 85.2.1.09VL Let X be a simplicial space. Then XZar as defined above is a site.

Proof. Omitted. □

1This notation is similar to the notation in Sites, Example 7.6.4 and Topologies, Definition
34.3.7.

6179
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Let X be a simplicial space. Let F be a sheaf on XZar. It is clear from the definition
of coverings, that the restriction of F to the opens of Xn defines a sheaf Fn on the
topological space Xn. For every φ : [m] → [n] the restriction maps of F for pairs
U ⊂ Xn, V ⊂ Xm with X(φ)(U) ⊂ V , define an X(φ)-map F(φ) : Fm → Fn, see
Sheaves, Definition 6.21.7. Moreover, given φ : [m]→ [n] and ψ : [l]→ [m] we have

F(φ) ◦ F(ψ) = F(φ ◦ ψ)
(LHS uses composition of f -maps, see Sheaves, Definition 6.21.9). Clearly, the
converse is true as well: if we have a system ({Fn}n≥0, {F(φ)}φ∈Arrows(∆)) as above,
satisfying the displayed equalities, then we obtain a sheaf on XZar.

Lemma 85.2.2.09VM Let X be a simplicial space. There is an equivalence of categories
between

(1) Sh(XZar), and
(2) category of systems (Fn,F(φ)) described above.

Proof. See discussion above. □

Lemma 85.2.3.09VN Let f : Y → X be a morphism of simplicial spaces. Then the
functor u : XZar → YZar which associates to the open U ⊂ Xn the open f−1

n (U) ⊂
Yn defines a morphism of sites fZar : YZar → XZar.

Proof. It is clear that u is a continuous functor. Hence we obtain functors fZar,∗ =
us and f−1

Zar = us, see Sites, Section 7.14. To see that we obtain a morphism of
sites we have to show that us is exact. We will use Sites, Lemma 7.14.6 to see this.
Let V ⊂ Yn be an open subset. The category IuV (see Sites, Section 7.5) consists of
pairs (U,φ) where φ : [m]→ [n] and U ⊂ Xm open such that Y (φ)(V ) ⊂ f−1

m (U).
Moreover, a morphism (U,φ) → (U ′, φ′) is given by a ψ : [m′] → [m] such that
X(ψ)(U) ⊂ U ′ and φ ◦ ψ = φ′. It is our task to show that IuV is cofiltered.
We verify the conditions of Categories, Definition 4.20.1. Condition (1) holds be-
cause (Xn, id[n]) is an object. Let (U,φ) be an object. The condition Y (φ)(V ) ⊂
f−1
m (U) is equivalent to V ⊂ f−1

n (X(φ)−1(U)). Hence we obtain a morphism
(X(φ)−1(U), id[n]) → (U,φ) given by setting ψ = φ. Moreover, given a pair of
objects of the form (U, id[n]) and (U ′, id[n]) we see there exists an object, namely
(U ∩ U ′, id[n]), which maps to both of them. Thus condition (2) holds. To verify
condition (3) suppose given two morphisms a, a′ : (U,φ)→ (U ′, φ′) given by ψ,ψ′ :
[m′] → [m]. Then precomposing with the morphism (X(φ)−1(U), id[n]) → (U,φ)
given by φ equalizes a, a′ because φ ◦ ψ = φ′ = φ ◦ ψ′. This finishes the proof. □

Lemma 85.2.4.09VP Let f : Y → X be a morphism of simplicial spaces. In terms of the
description of sheaves in Lemma 85.2.2 the morphism fZar of Lemma 85.2.3 can be
described as follows.

(1) If G is a sheaf on Y , then (fZar,∗G)n = fn,∗Gn.
(2) If F is a sheaf on X, then (f−1

ZarF)n = f−1
n Fn.

Proof. The first part is immediate from the definitions. For the second part, note
that in the proof of Lemma 85.2.3 we have shown that for a V ⊂ Yn open the
category (IuV )opp contains as a cofinal subcategory the category of opens U ⊂ Xn

with f−1
n (U) ⊃ V and morphisms given by inclusions. Hence we see that the re-

striction of upF to opens of Yn is the presheaf fn,pFn as defined in Sheaves, Lemma
6.21.3. Since f−1

ZarF = usF is the sheafification of upF and since sheafification uses

https://stacks.math.columbia.edu/tag/09VM
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only coverings and since coverings in YZar use only inclusions between opens on
the same Yn, the result follows from the fact that f−1

n Fn is (correspondingly) the
sheafification of fn,pFn, see Sheaves, Section 6.21. □

Let X be a topological space. In Sites, Example 7.6.4 we denoted XZar the site
consisting of opens of X with inclusions as morphisms and coverings given by open
coverings. We identify the topos Sh(XZar) with the category of sheaves on X.

Lemma 85.2.5.09W0 Let X be a simplicial space. The functor Xn,Zar → XZar, U 7→ U
is continuous and cocontinuous. The associated morphism of topoi gn : Sh(Xn)→
Sh(XZar) satisfies

(1) g−1
n associates to the sheaf F on X the sheaf Fn on Xn,

(2) g−1
n : Sh(XZar)→ Sh(Xn) has a left adjoint gShn! ,

(3) gShn! commutes with finite connected limits,
(4) g−1

n : Ab(XZar)→ Ab(Xn) has a left adjoint gn!, and
(5) gn! is exact.

Proof. Besides the properties of our functor mentioned in the statement, the cate-
gory Xn,Zar has fibre products and equalizers and the functor commutes with them
(beware that XZar does not have all fibre products). Hence the lemma follows from
the discussion in Sites, Sections 7.20 and 7.21 and Modules on Sites, Section 18.16.
More precisely, Sites, Lemmas 7.21.1, 7.21.5, and 7.21.6 and Modules on Sites,
Lemmas 18.16.2 and 18.16.3. □

Lemma 85.2.6.09W1 Let X be a simplicial space. If I is an injective abelian sheaf on
XZar, then In is an injective abelian sheaf on Xn.

Proof. This follows from Homology, Lemma 12.29.1 and Lemma 85.2.5. □

Lemma 85.2.7.09W2 Let f : Y → X be a morphism of simplicial spaces. Then

Sh(Yn)

��

fn

// Sh(Xn)

��
Sh(YZar)

fZar // Sh(XZar)

is a commutative diagram of topoi.

Proof. Direct from the description of pullback functors in Lemmas 85.2.4 and
85.2.5. □

Lemma 85.2.8.09W4 Let Y be a simplicial space and let a : Y → X be an augmentation
(Simplicial, Definition 14.20.1). Let an : Yn → X be the corresponding morphisms
of topological spaces. There is a canonical morphism of topoi

a : Sh(YZar)→ Sh(X)

with the following properties:
(1) a−1F is the sheaf restricting to a−1

n F on Yn,
(2) am ◦ Y (φ) = an for all φ : [m]→ [n],
(3) a ◦ gn = an as morphisms of topoi with gn as in Lemma 85.2.5,
(4) a∗G for G ∈ Sh(YZar) is the equalizer of the two maps a0,∗G0 → a1,∗G1.

https://stacks.math.columbia.edu/tag/09W0
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Proof. Part (2) holds for augmentations of simplicial objects in any category. Thus
Y (φ)−1a−1

m F = a−1
n F which defines an Y (φ)-map from a−1

m F to a−1
n F . Thus we

can use (1) as the definition of a−1F (using Lemma 85.2.2) and (4) as the definition
of a∗. If this defines a morphism of topoi then part (3) follows because we’ll have
g−1
n ◦ a−1 = a−1

n by construction. To check a is a morphism of topoi we have to
show that a−1 is left adjoint to a∗ and we have to show that a−1 is exact. The last
fact is immediate from the exactness of the functors a−1

n .
Let F be an object of Sh(X) and let G be an object of Sh(YZar). Given β : a−1F →
G we can look at the components βn : a−1

n F → Gn. These maps are adjoint to maps
βn : F → an,∗Gn. Compatibility with the simplicial structure shows that β0 maps
into a∗G. Conversely, suppose given a map α : F → a∗G. For any n choose a
φ : [0]→ [n]. Then we can look at the composition

F α−→ a∗G → a0,∗G0
G(φ)−−−→ an,∗Gn

These are adjoint to maps a−1
n F → Gn which define a morphism of sheaves a−1F →

G. We omit the proof that the constructions given above define mutually inverse
bijections

MorSh(YZar)(a−1F ,G) = MorSh(X)(F , a∗G)
This finishes the proof. An interesting observation is here that this morphism
of topoi does not correspond to any obvious geometric functor between the sites
defining the topoi. □

Lemma 85.2.9.09W5 Let X be a simplicial topological space. The complex of abelian
presheaves on XZar

. . .→ ZX2 → ZX1 → ZX0

with boundary
∑

(−1)idni is a resolution of the constant presheaf Z.
Proof. Let U ⊂ Xm be an object of XZar. Then the value of the complex above
on U is the complex of abelian groups

. . .→ Z[Mor∆([2], [m])]→ Z[Mor∆([1], [m])]→ Z[Mor∆([0], [m])]
In other words, this is the complex associated to the free abelian group on the simpli-
cial set ∆[m], see Simplicial, Example 14.11.2. Since ∆[m] is homotopy equivalent
to ∆[0], see Simplicial, Example 14.26.7, and since “taking free abelian groups” is a
functor, we see that the complex above is homotopy equivalent to the free abelian
group on ∆[0] (Simplicial, Remark 14.26.4 and Lemma 14.27.2). This complex is
acyclic in positive degrees and equal to Z in degree 0. □

Lemma 85.2.10.09W6 Let X be a simplicial topological space. Let F be an abelian sheaf
on X. There is a spectral sequence (Er, dr)r≥0 with

Ep,q1 = Hq(Xp,Fp)
converging to Hp+q(XZar,F). This spectral sequence is functorial in F .
Proof. Let F → I• be an injective resolution. Consider the double complex with
terms

Ap,q = Iq(Xp)
and first differential given by the alternating sum along the maps dp+1

i -maps Iqp →
Iqp+1, see Lemma 85.2.2. Note that

Ap,q = Γ(Xp, Iqp) = MorPSh(hXp , Iq) = MorPAb(ZXp , Iq)

https://stacks.math.columbia.edu/tag/09W5
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Hence it follows from Lemma 85.2.9 and Cohomology on Sites, Lemma 21.10.1
that the rows of the double complex are exact in positive degrees and evaluate to
Γ(XZar, Iq) in degree 0. On the other hand, since restriction is exact (Lemma
85.2.5) the map

Fp → I•
p

is a resolution. The sheaves Iqp are injective abelian sheaves on Xp (Lemma 85.2.6).
Hence the cohomology of the columns computes the groups Hq(Xp,Fp). We con-
clude by applying Homology, Lemmas 12.25.3 and 12.25.4. □

Lemma 85.2.11.0D84 LetX be a simplicial space and let a : X → Y be an augmentation.
Let F be an abelian sheaf on XZar. Then Rna∗F is the sheaf associated to the
presheaf

V 7−→ Hn((X ×Y V )Zar,F|(X×Y V )Zar )

Proof. This is the analogue of Cohomology, Lemma 20.7.3 or of Cohomology on
Sites, Lemma 21.7.4 and we strongly encourge the reader to skip the proof. Choos-
ing an injective resolution of F on XZar and using the definitions we see that
it suffices to show: (1) the restriction of an injective abelian sheaf on XZar to
(X ×Y V )Zar is an injective abelian sheaf and (2) a∗F is equal to the rule

V 7−→ H0((X ×Y V )Zar,F|(X×Y V )Zar )
Part (2) follows from the following facts

(2a) a∗F is the equalizer of the two maps a0,∗F0 → a1,∗F1 by Lemma 85.2.8,
(2b) a0,∗F0(V ) = H0(a−1

0 (V ),F0) and a1,∗F1(V ) = H0(a−1
1 (V ),F1),

(2c) X0 ×Y V = a−1
0 (V ) and X1 ×Y V = a−1

1 (V ),
(2d) H0((X×Y V )Zar,F|(X×Y V )Zar ) is the equalizer of the two mapsH0(X0×Y

V,F0)→ H0(X1 ×Y V,F1) for example by Lemma 85.2.10.
Part (1) follows after one defines an exact left adjoint j! : Ab((X ×Y V )Zar) →
Ab(XZar) (extension by zero) to restriction Ab(XZar) → Ab((X ×Y V )Zar) and
using Homology, Lemma 12.29.1. □

Let X be a topological space. Denote X• the constant simplicial topological space
with value X. By Lemma 85.2.2 a sheaf on X•,Zar is the same thing as a cosimplicial
object in the category of sheaves on X.

Lemma 85.2.12.09W3 Let X be a topological space. Let X• be the constant simplicial
topological space with value X. The functor

X•,Zar −→ XZar, U 7−→ U

is continuous and cocontinuous and defines a morphism of topoi g : Sh(X•,Zar)→
Sh(X) as well as a left adjoint g! to g−1. We have

(1) g−1 associates to a sheaf on X the constant cosimplicial sheaf on X,
(2) g! associates to a sheaf F on X•,Zar the sheaf F0, and
(3) g∗ associates to a sheaf F on X•,Zar the equalizer of the two maps F0 →
F1.

Proof. The statements about the functor are straightforward to verify. The exis-
tence of g and g! follow from Sites, Lemmas 7.21.1 and 7.21.5. The description of
g−1 is immediate from Sites, Lemma 7.21.5. The description of g∗ and g! follows
as the functors given are right and left adjoint to g−1. □

https://stacks.math.columbia.edu/tag/0D84
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85.3. Simplicial sites and topoi

09WB It seems natural to define a simplicial site as a simplicial object in the (big) category
whose objects are sites and whose morphisms are morphisms of sites. See Sites,
Definitions 7.6.2 and 7.14.1 with composition of morphisms as in Sites, Lemma
7.14.4. But here are some variants one might want to consider: (a) we could work
with cocontinuous functors (see Sites, Sections 7.20 and 7.21) between sites instead,
(b) we could work in a suitable 2-category of sites where one introduces the notion
of a 2-morphism between morphisms of sites, (c) we could work in a 2-category
constructed out of cocontinuous functors. Instead of picking one of these variants
as a definition we will simply develop theory as needed.
Certainly a simplicial topos should probably be defined as a pseudo-functor from
∆opp into the 2-category of topoi. See Categories, Definition 4.29.5 and Sites,
Section 7.15 and 7.36. We will try to avoid working with such a beast if possible.
Case A. Let C be a simplicial object in the category whose objects are sites and
whose morphisms are morphisms of sites. This means that for every morphism
φ : [m] → [n] of ∆ we have a morphism of sites fφ : Cn → Cm. This morphism
is given by a continuous functor in the opposite direction which we will denote
uφ : Cm → Cn.

Lemma 85.3.1.09WC Let C be a simplicial object in the category of sites. With notation
as above we construct a site Ctotal as follows.

(1) An object of Ctotal is an object U of Cn for some n,
(2) a morphism (φ, f) : U → V of Ctotal is given by a map φ : [m]→ [n] with

U ∈ Ob(Cn), V ∈ Ob(Cm) and a morphism f : U → uφ(V ) of Cn, and
(3) a covering {(id, fi) : Ui → U} in Ctotal is given by an n and a covering
{fi : Ui → U} of Cn.

Proof. Composition of (φ, f) : U → V with (ψ, g) : V → W is given by (φ ◦
ψ, uφ(g) ◦ f). This uses that uφ ◦ uψ = uφ◦ψ.
Let {(id, fi) : Ui → U} be a covering as in (3) and let (φ, g) : W → U be a
morphism with W ∈ Ob(Cm). We claim that

W ×(φ,g),U,(id,fi) Ui = W ×g,uφ(U),uφ(fi) uφ(Ui)
in the category Ctotal. This makes sense as by our definition of morphisms of
sites, the required fibre products in Cm exist since uφ transforms coverings into
coverings. The same reasoning implies the claim (details omitted). Thus we see
that the collection of coverings is stable under base change. The other axioms of a
site are immediate. □

Case B. Let C be a simplicial object in the category whose objects are sites and
whose morphisms are cocontinuous functors. This means that for every morphism
φ : [m] → [n] of ∆ we have a cocontinuous functor denoted uφ : Cn → Cm. The
associated morphism of topoi is denoted fφ : Sh(Cn)→ Sh(Cm).

Lemma 85.3.2.09WD Let C be a simplicial object in the category whose objects are sites
and whose morphisms are cocontinuous functors. With notation as above, assume
the functors uφ : Cn → Cm have property P of Sites, Remark 7.20.5. Then we can
construct a site Ctotal as follows.

(1) An object of Ctotal is an object U of Cn for some n,

https://stacks.math.columbia.edu/tag/09WC
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(2) a morphism (φ, f) : U → V of Ctotal is given by a map φ : [m]→ [n] with
U ∈ Ob(Cn), V ∈ Ob(Cm) and a morphism f : uφ(U)→ V of Cm, and

(3) a covering {(id, fi) : Ui → U} in Ctotal is given by an n and a covering
{fi : Ui → U} of Cn.

Proof. Composition of (φ, f) : U → V with (ψ, g) : V → W is given by (φ ◦ ψ, g ◦
uψ(f)). This uses that uψ ◦ uφ = uφ◦ψ.
Let {(id, fi) : Ui → U} be a covering as in (3) and let (φ, g) : W → U be a
morphism with W ∈ Ob(Cm). We claim that

W ×(φ,g),U,(id,fi) Ui = W ×g,U,fi Ui
in the category Ctotal where the right hand side is the object of Cm defined in Sites,
Remark 7.20.5 which exists by property P . Compatibility of this type of fibre
product with compositions of functors implies the claim (details omitted). Since
the family {W ×g,U,fi Ui →W} is a covering of Cm by property P we see that the
collection of coverings is stable under base change. The other axioms of a site are
immediate. □

Situation 85.3.3.09WE Here we have one of the following two cases:
(A) C is a simplicial object in the category whose objects are sites and whose

morphisms are morphisms of sites. For every morphism φ : [m] → [n]
of ∆ we have a morphism of sites fφ : Cn → Cm given by a continuous
functor uφ : Cm → Cn.

(B) C is a simplicial object in the category whose objects are sites and whose
morphisms are cocontinuous functors having property P of Sites, Remark
7.20.5. For every morphism φ : [m] → [n] of ∆ we have a cocontinuous
functor uφ : Cn → Cm which induces a morphism of topoi fφ : Sh(Cn) →
Sh(Cm).

As usual we will denote f−1
φ and fφ,∗ the pullback and pushforward. We let Ctotal

denote the site defined in Lemma 85.3.1 (case A) or Lemma 85.3.2 (case B).

Let C be as in Situation 85.3.3. Let F be a sheaf on Ctotal. It is clear from the
definition of coverings, that the restriction of F to the objects of Cn defines a sheaf
Fn on the site Cn. For every φ : [m] → [n] the restriction maps of F along the
morphisms (φ, f) : U → V with U ∈ Ob(Cn) and V ∈ Ob(Cm) define an element
F(φ) of

MorSh(Cm)(Fm, fφ,∗Fn) = MorSh(Cn)(f−1
φ Fm,Fn)

Moreover, given φ : [m]→ [n] and ψ : [l]→ [m] the diagrams

Fl F(φ◦ψ)
//

F(ψ) ##

fφ◦ψ,∗Fn

fψ,∗Fm
fψ,∗F(φ)

99

and

f−1
φ◦ψFl F(φ◦ψ)

//

f−1
φ F(ψ) $$

Fn

f−1
φ Fm

F(φ)

<<

commute. Clearly, the converse statement is true as well: if we have a system
({Fn}n≥0, {F(φ)}φ∈Arrows(∆)) satisfying the commutativity constraints above, then
we obtain a sheaf on Ctotal.

Lemma 85.3.4.09WF In Situation 85.3.3 there is an equivalence of categories between
(1) Sh(Ctotal), and

https://stacks.math.columbia.edu/tag/09WE
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(2) the category of systems (Fn,F(φ)) described above.
In particular, the topos Sh(Ctotal) only depends on the topoi Sh(Cn) and the mor-
phisms of topoi fφ.

Proof. See discussion above. □

Lemma 85.3.5.09WG In Situation 85.3.3 the functor Cn → Ctotal, U 7→ U is continuous
and cocontinuous. The associated morphism of topoi gn : Sh(Cn) → Sh(Ctotal)
satisfies

(1) g−1
n associates to the sheaf F on Ctotal the sheaf Fn on Cn,

(2) g−1
n : Sh(Ctotal)→ Sh(Cn) has a left adjoint gShn! ,

(3) for G in Sh(Cn) the restriction of gShn! G to Cm is
∐
φ:[n]→[m] f

−1
φ G,

(4) gShn! commutes with finite connected limits,
(5) g−1

n : Ab(Ctotal)→ Ab(Cn) has a left adjoint gn!,
(6) for G in Ab(Cn) the restriction of gn!G to Cm is

⊕
φ:[n]→[m] f

−1
φ G, and

(7) gn! is exact.

Proof. Case A. If {Ui → U}i∈I is a covering in Cn then the image {Ui → U}i∈I is a
covering in Ctotal by definition (Lemma 85.3.1). For a morphism V → U of Cn, the
fibre product V ×U Ui in Cn is also the fibre product in Ctotal (by the claim in the
proof of Lemma 85.3.1). Therefore our functor is continuous. On the other hand,
our functor defines a bijection between coverings of U in Cn and coverings of U in
Ctotal. Therefore it is certainly the case that our functor is cocontinuous.
Case B. If {Ui → U}i∈I is a covering in Cn then the image {Ui → U}i∈I is a
covering in Ctotal by definition (Lemma 85.3.2). For a morphism V → U of Cn, the
fibre product V ×U Ui in Cn is also the fibre product in Ctotal (by the claim in the
proof of Lemma 85.3.2). Therefore our functor is continuous. On the other hand,
our functor defines a bijection between coverings of U in Cn and coverings of U in
Ctotal. Therefore it is certainly the case that our functor is cocontinuous.
At this point part (1) and the existence of gShn! and gn! in cases A and B follows
from Sites, Lemmas 7.21.1 and 7.21.5 and Modules on Sites, Lemma 18.16.2.
Proof of (3). Let G be a sheaf on Cn. Consider the sheaf H on Ctotal whose degree
m part is the sheaf

Hm =
∐

φ:[n]→[m]
f−1
φ G

given in part (3) of the statement of the lemma. Given a map ψ : [m] → [m′] the
map H(ψ) : f−1

ψ Hm → Hm′ is given on components by the identifications

f−1
ψ f−1

φ G → f−1
ψ◦φG

Observe that given a map α : H → F of sheaves on Ctotal we obtain a map G → Fn
corresponding to the restriction of αn to the component G in Hn. Conversely, given
a map β : G → Fn of sheaves on Cn we can define α : H → F by letting αm be the
map which on components

f−1
φ G → Fm

uses the maps adjoint to F(φ) ◦ f−1
φ β. We omit the arguments showing these two

constructions give mutually inverse maps
MorSh(Cn)(G,Fn) = MorSh(Ctotal)(H,F)

Thus H = gShn! G as desired.
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Proof of (4). If G is an abelian sheaf on Cn, then we proceed in exactly the same
ammner as above, except that we define H is the abelian sheaf on Ctotal whose
degree m part is the sheaf ⊕

φ:[n]→[m]
f−1
φ G

with transition maps defined exactly as above. The bijection

MorAb(Cn)(G,Fn) = MorAb(Ctotal)(H,F)

is proved exactly as above. Thus H = gn!G as desired.

The exactness properties of gShn! and gn! follow from formulas given for these func-
tors. □

Lemma 85.3.6.09WH In Situation 85.3.3. If I is injective in Ab(Ctotal), then In is injective
in Ab(Cn). If I• is a K-injective complex in Ab(Ctotal), then I•

n is K-injective in
Ab(Cn).

Proof. The first statement follows from Homology, Lemma 12.29.1 and Lemma
85.3.5. The second statement from Derived Categories, Lemma 13.31.9 and Lemma
85.3.5. □

85.4. Augmentations of simplicial sites

0D93 We continue in the fashion described in Section 85.3 working out the meaning of
augmentations in cases A and B treated in that section.

Remark 85.4.1.0D6Z In Situation 85.3.3 an augmentation a0 towards a site D will mean
(A) a0 : C0 → D is a morphism of sites given by a continuous functor u0 :

D → C0 such that for all φ,ψ : [0]→ [n] we have uφ ◦ u0 = uψ ◦ u0.
(B) a0 : Sh(C0) → Sh(D) is a morphism of topoi given by a cocontinuous

functor u0 : C0 → D such that for all φ,ψ : [0] → [n] we have u0 ◦ uφ =
u0 ◦ uψ.

Lemma 85.4.2.0D70 In Situation 85.3.3 let a0 be an augmentation towards a site D as
in Remark 85.4.1. Then a0 induces

(1) a morphism of topoi an : Sh(Cn)→ Sh(D) for all n ≥ 0,
(2) a morphism of topoi a : Sh(Ctotal)→ Sh(D)

such that
(1) for all φ : [m]→ [n] we have am ◦ fφ = an,
(2) if gn : Sh(Cn)→ Sh(Ctotal) is as in Lemma 85.3.5, then a ◦ gn = an, and
(3) a∗F for F ∈ Sh(Ctotal) is the equalizer of the two maps a0,∗F0 → a1,∗F1.

Proof. Case A. Let un : D → Cn be the common value of the functors uφ ◦ u0
for φ : [0] → [n]. Then un corresponds to a morphism of sites an : Cn → D, see
Sites, Lemma 7.14.4. The same lemma shows that for all φ : [m] → [n] we have
am ◦ fφ = an.

Case B. Let un : Cn → D be the common value of the functors u0 ◦ uφ for φ : [0]→
[n]. Then un is cocontinuous and hence defines a morphism of topoi an : Sh(Cn)→
Sh(D), see Sites, Lemma 7.21.2. The same lemma shows that for all φ : [m]→ [n]
we have am ◦ fφ = an.
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Consider the functor a−1 : Sh(D)→ Sh(Ctotal) which to a sheaf of sets G associates
the sheaf F = a−1G whose components are a−1

n G and whose transition maps F(φ)
are the identifications

f−1
φ Fm = f−1

φ a−1
m G = a−1

n G = Fn
for φ : [m] → [n], see the description of Sh(Ctotal) in Lemma 85.3.4. Since the
functors a−1

n are exact, a−1 is an exact functor. Finally, for a∗ : Sh(Ctotal)→ Sh(D)
we take the functor which to a sheaf F on Sh(D) associates

a∗F Equalizer(a0,∗F0
//
// a1,∗F1)

Here the two maps come from the two maps φ : [0]→ [1] via

a0,∗F0 → a0,∗fφ,∗f
−1
φ F0

F(φ)−−−→ a0,∗fφ,∗F1 = a1,∗F1

where the first arrow comes from 1→ fφ,∗f
−1
φ . Let G• denote the constant simplicial

sheaf with value G and let a•,∗F denote the simplicial sheaf having an,∗Fn in
degree n. By the usual adjuntion for the morphisms of topoi an we see that a map
a−1G → F is the same thing as a map

G• −→ a•,∗F
of simplicial sheaves. By Simplicial, Lemma 14.20.2 this is the same thing as a map
G → a∗F . Thus a−1 and a∗ are adjoint functors and we obtain our morphism of
topoi a2. The equalities a ◦ gn = fn follow immediately from the definitions. □

85.5. Morphisms of simplicial sites

0D94 We continue in the fashion described in Section 85.3 working out the meaning of
morphisms of simplicial sites in cases A and B treated in that section.
Remark 85.5.1.0D95 Let Cn, fφ, uφ and C′

n, f
′
φ, u

′
φ be as in Situation 85.3.3. A morphism

h between simplicial sites will mean
(A) Morphisms of sites hn : Cn → C′

n such that f ′
φ◦hn = hm◦fφ as morphisms

of sites for all φ : [m]→ [n].
(B) Cocontinuous functors vn : Cn → C′

n inducing morphisms of topoi hn :
Sh(Cn)→ Sh(C′

n) such that u′
φ ◦vn = vm ◦uφ as functors for all φ : [m]→

[n].
In both cases we have f ′

φ ◦ hn = hm ◦ fφ as morphisms of topoi, see Sites, Lemma
7.21.2 for case B and Sites, Definition 7.14.5 for case A.
Lemma 85.5.2.0D96 Let Cn, fφ, uφ and C′

n, f
′
φ, u

′
φ be as in Situation 85.3.3. Let h be a

morphism between simplicial sites as in Remark 85.5.1. Then we obtain a morphism
of topoi

htotal : Sh(Ctotal)→ Sh(C′
total)

and commutative diagrams
Sh(Cn)

gn

��

hn

// Sh(C′
n)

g′
n

��
Sh(Ctotal)

htotal // Sh(C′
total)

2In case B the morphism a corresponds to the cocontinuous functor Ctotal → D sending U
in Cn to un(U).
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Moreover, we have (g′
n)−1 ◦ htotal,∗ = hn,∗ ◦ g−1

n .

Proof. Case A. Say hn corresponds to the continuous functor vn : C′
n → Cn. Then

we can define a functor vtotal : C′
total → Ctotal by using vn in degree n. This is

clearly a continuous functor (see definition of coverings in Lemma 85.3.1). Let
h−1
total = vtotal,s : Sh(C′

total)→ Sh(Ctotal) and htotal,∗ = vstotal = vptotal : Sh(Ctotal)→
Sh(C′

total) be the adjoint pair of functors constructed and studied in Sites, Sections
7.13 and 7.14. To see that htotal is a morphism of topoi we still have to verify that
h−1
total is exact. We first observe that (g′

n)−1 ◦htotal,∗ = hn,∗ ◦g−1
n ; this is immediate

by computing sections over an object U of C′
n. Thus, if we think of a sheaf F on

Ctotal as a system (Fn,F(φ)) as in Lemma 85.3.4, then htotal,∗F corresponds to the
system (hn,∗Fn, hn,∗F(φ)). Clearly, the functor (F ′

n,F ′(φ))→ (h−1
n F ′

n, h
−1
n F ′(φ))

is its left adjoint. By uniqueness of adjoints, we conclude that h−1
total is given by

this rule on systems. In particular, h−1
total is exact (by the description of sheaves on

Ctotal given in the lemma and the exactness of the functors h−1
n ) and we have our

morphism of topoi. Finally, we obtain g−1
n ◦ h−1

total = h−1
n ◦ (g′

n)−1 as well, which
proves that the displayed diagram of the lemma commutes.

Case B. Here we have a functor vtotal : Ctotal → C′
total by using vn in degree n.

This is clearly a cocontinuous functor (see definition of coverings in Lemma 85.3.2).
Let htotal be the morphism of topoi associated to vtotal. The commutativity of
the displayed diagram of the lemma follows immediately from Sites, Lemma 7.21.2.
Taking left adjoints the final equality of the lemma becomes

h−1
total ◦ (g′

n)Sh! = gShn! ◦ h−1
n

This follows immediately from the explicit description of the functors (g′
n)Sh! and

gShn! in Lemma 85.3.5, the fact that h−1
n ◦ (f ′

φ)−1 = f−1
φ ◦ h−1

m for φ : [m] → [n],
and the fact that we already know h−1

total commutes with restrictions to the degree
n parts of the simplicial sites. □

Lemma 85.5.3.0D97 With notation and hypotheses as in Lemma 85.5.2. For K ∈
D(Ctotal) we have (g′

n)−1Rhtotal,∗K = Rhn,∗g
−1
n K.

Proof. Let I• be a K-injective complex on Ctotal representing K. Then g−1
n K

is represented by g−1
n I• = I•

n which is K-injective by Lemma 85.3.6. We have
(g′
n)−1htotal,∗I• = hn,∗g

−1
n I•

n by Lemma 85.5.2 which gives the desired equality. □

Remark 85.5.4.0D98 Let Cn, fφ, uφ and C′
n, f

′
φ, u

′
φ be as in Situation 85.3.3. Let a0,

resp. a′
0 be an augmentation towards a site D, resp. D′ as in Remark 85.4.1. Let h

be a morphism between simplicial sites as in Remark 85.5.1. We say a morphism
of topoi h−1 : Sh(D)→ Sh(D′) is compatible with h, a0, a′

0 if
(A) h−1 comes from a morphism of sites h−1 : D → D′ such that a′

0 ◦ h0 =
h−1 ◦ a0 as morphisms of sites.

(B) h−1 comes from a cocontinuous functor v−1 : D → D′ such that u′
0 ◦ v0 =

v−1 ◦ u0 as functors.
In both cases we have a′

0 ◦ h0 = h−1 ◦ a0 as morphisms of topoi, see Sites, Lemma
7.21.2 for case B and Sites, Definition 7.14.5 for case A.

https://stacks.math.columbia.edu/tag/0D97
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Lemma 85.5.5.0D99 Let Cn, fφ, uφ,D, a0, C′
n, f

′
φ, u

′
φ,D′, a′

0, and hn, n ≥ −1 be as in
Remark 85.5.4. Then we obtain a commutative diagram

Sh(Ctotal)

a

��

htotal

// Sh(C′
total)

a′

��
Sh(D)

h−1 // Sh(D′)

Proof. The morphism h is defined in Lemma 85.5.2. The morphisms a and a′ are
defined in Lemma 85.4.2. Thus the only thing is to prove the commutativity of the
diagram. To do this, we prove that a−1 ◦h−1

−1 = h−1
total ◦ (a′)−1. By the commutative

diagrams of Lemma 85.5.2 and the description of Sh(Ctotal) and Sh(C′
total) in terms

of components in Lemma 85.3.4, it suffices to show that

Sh(Cn)

an

��

hn

// Sh(C′
n)

a′
n

��
Sh(D)

h−1 // Sh(D′)

commutes for all n. This follows from the case for n = 0 (which is an assumption
in Remark 85.5.4) and for n > 0 we pick φ : [0] → [n] and then the required
commutativity follows from the case n = 0 and the relations an = a0 ◦ fφ and
a′
n = a′

0 ◦ f ′
φ as well as the commutation relations f ′

φ ◦ hn = h0 ◦ fφ. □

85.6. Ringed simplicial sites

0D71 Let us endow our simplicial topos with a sheaf of rings.

Lemma 85.6.1.0D72 In Situation 85.3.3. Let O be a sheaf of rings on Ctotal. There is
a canonical morphism of ringed topoi gn : (Sh(Cn),On) → (Sh(Ctotal),O) agree-
ing with the morphism gn of Lemma 85.3.5 on underlying topoi. The functor
g∗
n : Mod(O) → Mod(On) has a left adjoint gn!. For G in Mod(On)-modules the

restriction of gn!G to Cm is ⊕
φ:[n]→[m]

f∗
φG

where fφ : (Sh(Cm),Om)→ (Sh(Cn),On) is the morphism of ringed topoi agreeing
with the previously defined fφ on topoi and using the map O(φ) : f−1

φ On → Om
on sheaves of rings.

Proof. By Lemma 85.3.5 we have g−1
n O = On and hence we obtain our morphism

of ringed topoi. By Modules on Sites, Lemma 18.41.1 we obtain the adjoint gn!.
To prove the formula for gn! we first define a sheaf of O-modules H on Ctotal with
degree m component the Om-module

Hm =
⊕

φ:[n]→[m]
f∗
φG

Given a map ψ : [m]→ [m′] the mapH(ψ) : f−1
ψ Hm → Hm′ is given on components

by
f−1
ψ f∗

φG → f∗
ψf

∗
φG → f∗

ψ◦φG
Since this map f−1

ψ Hm → Hm′ is O(ψ) : f−1
ψ Om → Om′ -semi-linear, this indeed

does define an O-module (use Lemma 85.3.4). Then one proves directly that
MorOn

(G,Fn) = MorO(H,F)

https://stacks.math.columbia.edu/tag/0D99
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proceeding as in the proof of Lemma 85.3.5. Thus H = gn!G as desired. □

Lemma 85.6.2.0D73 In Situation 85.3.3. Let O be a sheaf of rings on Ctotal. If I is
injective in Mod(O), then In is a totally acyclic sheaf on Cn.

Proof. This follows from Cohomology on Sites, Lemma 21.37.4 applied to the in-
clusion functor Cn → Ctotal and its properties proven in Lemma 85.3.5. □

Lemma 85.6.3.0D74 With assumptions as in Lemma 85.6.1 the functor gn! : Mod(On)→
Mod(O) is exact if the maps f−1

φ On → Om are flat for all φ : [n]→ [m].

Proof. Recall that gn!G is the O-module whose degree m part is the Om-module⊕
φ:[n]→[m]

f∗
φG

Here the morphism of ringed topoi fφ : (Sh(Cm),Om)→ (Sh(Cn),On) uses the map
f−1
φ On → Om of the statement of the lemma. If these maps are flat, then f∗

φ is
exact (Modules on Sites, Lemma 18.31.2). By definition of the site Ctotal we see
that these functors have the desired exactness properties and we conclude. □

Lemma 85.6.4.0D75 In Situation 85.3.3. Let O be a sheaf of rings on Ctotal such that
f−1
φ On → Om is flat for all φ : [n] → [m]. If I is injective in Mod(O), then In is

injective in Mod(On).

Proof. This follows from Homology, Lemma 12.29.1 and Lemma 85.6.3. □

85.7. Morphisms of ringed simplicial sites

0DGY We continue the discussion of Section 85.5.

Remark 85.7.1.0DGZ Let Cn, fφ, uφ and C′
n, f

′
φ, u

′
φ be as in Situation 85.3.3. Let O and

O′ be a sheaf of rings on Ctotal and C′
total. We will say that (h, h♯) is a morphism

between ringed simplicial sites if h is a morphism between simplicial sites as in
Remark 85.5.1 and h♯ : h−1

totalO′ → O or equivalently h♯ : O′ → htotal,∗O is a
homomorphism of sheaves of rings.

Lemma 85.7.2.0DH0 Let Cn, fφ, uφ and C′
n, f

′
φ, u

′
φ be as in Situation 85.3.3. Let O and

O′ be a sheaf of rings on Ctotal and C′
total. Let (h, h♯) be a morphism between

simplicial sites as in Remark 85.7.1. Then we obtain a morphism of ringed topoi
htotal : (Sh(Ctotal,O)→ (Sh(C′

total),O′)
and commutative diagrams

(Sh(Cn),On)

gn

��

hn

// (Sh(C′
n),O′

n)

g′
n

��
(Sh(Ctotal),O) htotal // (Sh(C′

total),O′)

of ringed topoi where gn and g′
n are as in Lemma 85.6.1. Moreover, we have

(g′
n)∗ ◦ htotal,∗ = hn,∗ ◦ g∗

n as functor Mod(O)→ Mod(O′
n).

Proof. Follows from Lemma 85.5.2 and 85.6.1 by keeping track of the sheaves of
rings. A small point is that in order to define hn as a morphism of ringed topoi we
set h♯n = g−1

n h♯ : g−1
n h−1

totalO′ → g−1
n O which makes sense because g−1

n h−1
totalO′ =

https://stacks.math.columbia.edu/tag/0D73
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h−1
n (g′

n)−1O′ = h−1
n O′

n and g−1
n O = On. Note that g∗

nF = g−1
n F for a sheaf of O-

modules F and similarly for g′
n and this helps explain why (g′

n)∗◦htotal,∗ = hn,∗◦g∗
n

follows from the corresponding statement of Lemma 85.5.2. □

Lemma 85.7.3.0DH1 With notation and hypotheses as in Lemma 85.7.2. For K ∈ D(O)
we have (g′

n)∗Rhtotal,∗K = Rhn,∗g
∗
nK.

Proof. Recall that g∗
n = g−1

n because g−1
n O = On by the construction in Lemma

85.6.1. In particular g∗
n is exact and Lg∗

n is given by applying g∗
n to any repre-

sentative complex of modules. Similarly for g′
n. There is a canonical base change

map (g′
n)∗Rhtotal,∗K → Rhn,∗g

∗
nK, see Cohomology on Sites, Remark 21.19.3.

By Cohomology on Sites, Lemma 21.20.7 the image of this in D(C′
n) is the map

(g′
n)−1Rhtotal,∗Kab → Rhn,∗g

−1
n Kab where Kab is the image of K in D(Ctotal). This

we proved to be an isomorphism in Lemma 85.5.3 and the result follows. □

85.8. Cohomology on simplicial sites

0D76 Let C be as in Situation 85.3.3. In statement of the following lemmas we will let
gn : Sh(Cn)→ Sh(Ctotal) be the morphism of topoi of Lemma 85.3.5. If φ : [m]→ [n]
is a morphism of ∆, then the diagram of topoi

Sh(Cn)

gn %%

fφ

// Sh(Cm)

gmyy
Sh(Ctotal)

is not commutative, but there is a 2-morphism gn → gm ◦fφ coming from the maps
F(φ) : f−1

φ Fm → Fn. See Sites, Section 7.36.

Lemma 85.8.1.09WI In Situation 85.3.3 and with notation as above there is a complex
. . .→ g2!Z→ g1!Z→ g0!Z

of abelian sheaves on Ctotal which forms a resolution of the constant sheaf with
value Z on Ctotal.

Proof. We will use the description of the functors gn! in Lemma 85.3.5 without
further mention. As maps of the complex we take

∑
(−1)idni where dni : gn!Z →

gn−1!Z is the adjoint to the map Z→
⊕

[n−1]→[n] Z = g−1
n gn−1!Z corresponding to

the factor labeled with δni : [n − 1] → [n]. Then g−1
m applied to the complex gives

the complex

. . .→
⊕

α∈Mor∆([2],[m])]
Z→

⊕
α∈Mor∆([1],[m])]

Z→
⊕

α∈Mor∆([0],[m])]
Z

on Cm. In other words, this is the complex associated to the free abelian sheaf on
the simplicial set ∆[m], see Simplicial, Example 14.11.2. Since ∆[m] is homotopy
equivalent to ∆[0], see Simplicial, Example 14.26.7, and since “taking free abelian
sheaf on” is a functor, we see that the complex above is homotopy equivalent to the
free abelian sheaf on ∆[0] (Simplicial, Remark 14.26.4 and Lemma 14.27.2). This
complex is acyclic in positive degrees and equal to Z in degree 0. □

Lemma 85.8.2.0D77 In Situation 85.3.3. Let F be an abelian sheaf on Ctotal there is a
canonical complex

0→ Γ(Ctotal,F)→ Γ(C0,F0)→ Γ(C1,F1)→ Γ(C2,F2)→ . . .

https://stacks.math.columbia.edu/tag/0DH1
https://stacks.math.columbia.edu/tag/09WI
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which is exact in degrees −1, 0 and exact everywhere if F is injective.

Proof. Observe that Hom(Z,F) = Γ(Ctotal,F) and Hom(gn!Z,F) = Γ(Cn,Fn).
Hence this lemma is an immediate consequence of Lemma 85.8.1 and the fact that
Hom(−,F) is exact if F is injective. □

Lemma 85.8.3.09WJ In Situation 85.3.3. For K in D+(Ctotal) there is a spectral sequence
(Er, dr)r≥0 with

Ep,q1 = Hq(Cp,Kp), dp,q1 : Ep,q1 → Ep+1,q
1

converging to Hp+q(Ctotal,K). This spectral sequence is functorial in K.

Proof. Let I• be a bounded below complex of injectives representing K. Consider
the double complex with terms

Ap,q = Γ(Cp, Iqp)

where the horizontal arrows come from Lemma 85.8.2 and the vertical arrows from
the differentials of the complex I•. The rows of the double complex are exact
in positive degrees and evaluate to Γ(Ctotal, Iq) in degree 0. On the other hand,
since restriction to Cp is exact (Lemma 85.3.5) the complex I•

p represents Kp in
D(Cp). The sheaves Iqp are injective abelian sheaves on Cp (Lemma 85.3.6). Hence
the cohomology of the columns computes the groups Hq(Cp,Kp). We conclude by
applying Homology, Lemmas 12.25.3 and 12.25.4. □

Remark 85.8.4.0H0V Assumptions and notation as in Lemma 85.8.3 except we do not
require K in D(Ctotal) to be bounded below. We claim there is a natural spectral
sequence in this case also. Namely, suppose that I• is a K-injective complex of
sheaves on Ctotal with injective terms representing K. We have

RΓ(Ctotal,K) = RHom(Z,K)
= RHom(. . .→ g2!Z→ g1!Z→ g0!Z,K)
= Γ(Ctotal,Hom•(. . .→ g2!Z→ g1!Z→ g0!Z, I•))
= Totπ(A•,•)

where A•,• is the double complex with terms Ap,q = Γ(Cp, Iqp) and Totπ de-
notes the product totalization of this double complex. Namely, the first equal-
ity holds in any site. The second equality holds by Lemma 85.8.1. The third
equality holds because I• is K-injective, see Cohomology on Sites, Sections 21.34
and 21.35. The final equality holds by the construction of Hom• and the fact
that Hom(gp!Z, Iq) = Γ(Cp, Iqp). Then we get our spectral sequence by viewing
Totπ(A•,•) as a filtered complex with F iTotnπ(A•,•) =

∏
p+q=n, p≥iA

p,q. The spec-
tral sequence we obtain behaves like the spectral sequence (′Er,

′dr)r≥0 in Ho-
mology, Section 12.25 (where the case of the direct sum totalization is discussed)
except for regularity, boundedness, convergence, and abutment issues. In particular
we obtain Ep,q1 = Hq(Cp,Kp) as in Lemma 85.8.3.

Lemma 85.8.5.0H0W In Situation 85.3.3. Let K be an object of D(Ctotal).
(1) If H−p(Cp,Kp) = 0 for all p ≥ 0, then H0(Ctotal,K) = 0.
(2) If RΓ(Cp,Kp) = 0 for all p ≥ 0, then RΓ(Ctotal,K) = 0.

https://stacks.math.columbia.edu/tag/09WJ
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Proof. With notation as in Remark 85.8.4 we see that RΓ(Ctotal,K) is represented
by Totπ(A•,•). The assumption in (1) tells us that H−p(Ap,•) = 0. Thus the
vanishing in (1) follows from More on Algebra, Lemma 15.103.1. Part (2) follows
from part (1) and taking shifts. □

Lemma 85.8.6.0DBZ Let C be as in Situation 85.3.3. Let U ∈ Ob(Cn). Let F ∈
Ab(Ctotal). Then Hp(U,F) = Hp(U, g−1

n F) where on the left hand side U is viewed
as an object of Ctotal.

Proof. Observe that “U viewed as object of Ctotal” is explained by the construction
of Ctotal in Lemma 85.3.1 in case (A) and Lemma 85.3.2 in case (B). The equality
then follows from Lemma 85.3.6 and the definition of cohomology. □

85.9. Cohomology and augmentations of simplicial sites

0D9A Consider a simplicial site C as in Situation 85.3.3. Let a0 be an augmentation
towards a site D as in Remark 85.4.1. By Lemma 85.4.2 we obtain a morphism of
topoi

a : Sh(Ctotal) −→ Sh(D)
and morphisms of topoi gn : Sh(Cn) → Sh(Ctotal) as in Lemma 85.3.5. The com-
positions a ◦ gn are denoted an : Sh(Cn) → Sh(D). Furthermore, the simplicial
structure gives morphisms of topoi fφ : Sh(Cn) → Sh(Cm) such that an ◦ fφ = am
for all φ : [m]→ [n].

Lemma 85.9.1.0D78 In Situation 85.3.3 let a0 be an augmentation towards a site D as
in Remark 85.4.1. For any abelian sheaf G on D there is an exact complex

. . .→ g2!(a−1
2 G)→ g1!(a−1

1 G)→ g0!(a−1
0 G)→ a−1G → 0

of abelian sheaves on Ctotal.

Proof. We encourage the reader to read the proof of Lemma 85.8.1 first. We will
use Lemma 85.4.2 and the description of the functors gn! in Lemma 85.3.5 without
further mention. In particular gn!(a−1

n G) is the sheaf on Ctotal whose restriction to
Cm is the sheaf ⊕

φ:[n]→[m]
f−1
φ a−1

n G =
⊕

φ:[n]→[m]
a−1
m G

As maps of the complex we take
∑

(−1)idni where dni : gn!(a−1
n G)→ gn−1!(a−1

n−1G) is
the adjoint to the map a−1

n G →
⊕

[n−1]→[n] a
−1
n G = g−1

n gn−1!(a−1
n−1G) corresponding

to the factor labeled with δni : [n− 1]→ [n]. The map g0!(a−1
0 G)→ a−1G is adjoint

to the identity map of a−1
0 G. Then g−1

m applied to the chain complex in degrees
. . . , 2, 1, 0 gives the complex

. . .→
⊕

α∈Mor∆([2],[m])]
a−1
m G →

⊕
α∈Mor∆([1],[m])]

a−1
m G →

⊕
α∈Mor∆([0],[m])]

a−1
m G

on Cm. This is equal to a−1
m G tensored over the constant sheaf Z with the complex

. . .→
⊕

α∈Mor∆([2],[m])]
Z→

⊕
α∈Mor∆([1],[m])]

Z→
⊕

α∈Mor∆([0],[m])]
Z

discussed in the proof of Lemma 85.8.1. There we have seen that this complex is
homotopy equivalent to Z placed in degree 0 which finishes the proof. □

https://stacks.math.columbia.edu/tag/0DBZ
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Lemma 85.9.2.0D79 In Situation 85.3.3 let a0 be an augmentation towards a site D as
in Remark 85.4.1. For an abelian sheaf F on Ctotal there is a canonical complex

0→ a∗F → a0,∗F0 → a1,∗F1 → a2,∗F2 → . . .

on D which is exact in degrees −1, 0 and exact everywhere if F is injective.

Proof. To construct the complex, by the Yoneda lemma, it suffices for any abelian
sheaf G on D to construct a complex

0→ Hom(G, a∗F)→ Hom(G, a0,∗F0)→ Hom(G, a1,∗F1)→ . . .

functorially in G. To do this apply Hom(−,F) to the exact complex of Lemma
85.9.1 and use adjointness of pullback and pushforward. The exactness properties
in degrees −1, 0 follow from the construction as Hom(−,F) is left exact. If F is an
injective abelian sheaf, then the complex is exact because Hom(−,F) is exact. □

Lemma 85.9.3.0D7A In Situation 85.3.3 let a0 be an augmentation towards a site D as
in Remark 85.4.1. For any K in D+(Ctotal) there is a spectral sequence (Er, dr)r≥0
with

Ep,q1 = Rqap,∗Kp, dp,q1 : Ep,q1 → Ep+1,q
1

converging to Rp+qa∗K. This spectral sequence is functorial in K.

Proof. Let I• be a bounded below complex of injectives representing K. Consider
the double complex with terms

Ap,q = ap,∗Iqp
where the horizontal arrows come from Lemma 85.9.2 and the vertical arrows from
the differentials of the complex I•. The rows of the double complex are exact in
positive degrees and evaluate to a∗Iq in degree 0. On the other hand, since restric-
tion to Cp is exact (Lemma 85.3.5) the complex I•

p represents Kp in D(Cp). The
sheaves Iqp are injective abelian sheaves on Cp (Lemma 85.3.6). Hence the coho-
mology of the columns computes Rqap,∗Kp. We conclude by applying Homology,
Lemmas 12.25.3 and 12.25.4. □

85.10. Cohomology on ringed simplicial sites

0D7B This section is the analogue of Section 85.8 for sheaves of modules.

In Situation 85.3.3 let O be a sheaf of rings on Ctotal. In statement of the following
lemmas we will let gn : (Sh(Cn),On) → (Sh(Ctotal),O) be the morphism of ringed
topoi of Lemma 85.6.1. If φ : [m] → [n] is a morphism of ∆, then the diagram of
ringed topoi

(Sh(Cn),On)

gn ((

fφ

// (Sh(Cm),Om)

gmvv
(Sh(Ctotal),O)

is not commutative, but there is a 2-morphism gn → gm ◦fφ coming from the maps
F(φ) : f−1

φ Fm → Fn. See Sites, Section 7.36.
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Lemma 85.10.1.0D9B In Situation 85.3.3 let O be a sheaf of rings on Ctotal. There is a
complex

. . .→ g2!O2 → g1!O1 → g0!O0

of O-modules which forms a resolution of O. Here gn! is as in Lemma 85.6.1.

Proof. We will use the description of gn! given in Lemma 85.3.5. As maps of the
complex we take

∑
(−1)idni where dni : gn!On → gn−1!On−1 is the adjoint to the

map On →
⊕

[n−1]→[n]On = g∗
ngn−1!On−1 corresponding to the factor labeled with

δni : [n− 1]→ [n]. Then g−1
m applied to the complex gives the complex

. . .→
⊕

α∈Mor∆([2],[m])]
Om →

⊕
α∈Mor∆([1],[m])]

Om →
⊕

α∈Mor∆([0],[m])]
Om

on Cm. In other words, this is the complex associated to the free Om-module on
the simplicial set ∆[m], see Simplicial, Example 14.11.2. Since ∆[m] is homotopy
equivalent to ∆[0], see Simplicial, Example 14.26.7, and since “taking free abelian
sheaf on” is a functor, we see that the complex above is homotopy equivalent to the
free abelian sheaf on ∆[0] (Simplicial, Remark 14.26.4 and Lemma 14.27.2). This
complex is acyclic in positive degrees and equal to Om in degree 0. □

Lemma 85.10.2.0D9C In Situation 85.3.3 let O be a sheaf of rings. Let F be a sheaf of
O-modules. There is a canonical complex

0→ Γ(Ctotal,F)→ Γ(C0,F0)→ Γ(C1,F1)→ Γ(C2,F2)→ . . .

which is exact in degrees −1, 0 and exact everywhere if F is an injective O-module.

Proof. Observe that Hom(O,F) = Γ(Ctotal,F) and Hom(gn!On,F) = Γ(Cn,Fn).
Hence this lemma is an immediate consequence of Lemma 85.10.1 and the fact that
Hom(−,F) is exact if F is injective. □

Lemma 85.10.3.0D7E In Situation 85.3.3 let O be a sheaf of rings. For K in D+(O)
there is a spectral sequence (Er, dr)r≥0 with

Ep,q1 = Hq(Cp,Kp), dp,q1 : Ep,q1 → Ep+1,q
1

converging to Hp+q(Ctotal,K). This spectral sequence is functorial in K.

Proof. Let I• be a bounded below complex of injective O-modules representing K.
Consider the double complex with terms

Ap,q = Γ(Cp, Iqp)
where the horizontal arrows come from Lemma 85.10.2 and the vertical arrows from
the differentials of the complex I•. Observe that Γ(D,−) = HomOD (OD,−) on
Mod(OD). Hence the lemma says rows of the double complex are exact in positive
degrees and evaluate to Γ(Ctotal, Iq) in degree 0. Thus the total complex associated
to the double complex computes RΓ(Ctotal,K) by Homology, Lemma 12.25.4. On
the other hand, since restriction to Cp is exact (Lemma 85.3.5) the complex I•

p

represents Kp in D(Cp). The sheaves Iqp are totally acyclic on Cp (Lemma 85.6.2).
Hence the cohomology of the columns computes the groups Hq(Cp,Kp) by Leray’s
acyclicity lemma (Derived Categories, Lemma 13.16.7) and Cohomology on Sites,
Lemma 21.14.3. We conclude by applying Homology, Lemma 12.25.3. □

Lemma 85.10.4.0DH2 In Situation 85.3.3 let O be a sheaf of rings. Let U ∈ Ob(Cn).
Let F ∈ Mod(O). Then Hp(U,F) = Hp(U, g∗

nF) where on the left hand side U is
viewed as an object of Ctotal.

https://stacks.math.columbia.edu/tag/0D9B
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Proof. Observe that “U viewed as object of Ctotal” is explained by the construction
of Ctotal in Lemma 85.3.1 in case (A) and Lemma 85.3.2 in case (B). In both cases the
functor Cn → C is continuous and cocontinuous, see Lemma 85.3.5, and g−1

n O = On
by definition. Hence the result is a special case of Cohomology on Sites, Lemma
21.37.5. □

85.11. Cohomology and augmentations of ringed simplicial sites

0D9D This section is the analogue of Section 85.9 for sheaves of modules.
Consider a simplicial site C as in Situation 85.3.3. Let a0 be an augmentation
towards a site D as in Remark 85.4.1. Let O be a sheaf of rings on Ctotal. Let OD
be a sheaf of rings on D. Suppose we are given a morphism

a♯ : OD −→ a∗O
where a is as in Lemma 85.4.2. Consequently, we obtain a morphism of ringed topoi

a : (Sh(Ctotal),O) −→ (Sh(D),OD)
We will think of gn : (Sh(Cn),On)→ (Sh(Ctotal),O) as a morphism of ringed topoi
as in Lemma 85.6.1, then taking the composition an = a ◦ gn (Lemma 85.4.2) as
morphisms of ringed topoi we obtain

an : (Sh(Cn),On) −→ (Sh(D),OD)
Using the transition maps f−1

φ Om → On we obtain morphisms of ringed topoi
fφ : (Sh(Cn),On)→ (Sh(Cm),Om)

such that an ◦ fφ = am as morphisms of ringed topoi for all φ : [m]→ [n].

Lemma 85.11.1.0DH3 With notation as above. The morphism a : (Sh(Ctotal),O) →
(Sh(D),OD) is flat if and only if an : (Sh(Cn),On)→ (Sh(D),OD) is flat for n ≥ 0.

Proof. Since gn : (Sh(Cn),On)→ (Sh(Ctotal),O) is flat, we see that if a is flat, then
an = a ◦ gn is flat as a composition. Conversely, suppose that an is flat for all n.
We have to check that O is flat as a sheaf of a−1OD-modules. Let F → G be an
injective map of a−1OD-modules. We have to show that

F ⊗a−1OD O → G ⊗a−1OD O
is injective. We can check this on Cn, i.e., after applying g−1

n . Since g∗
n = g−1

n

because g−1
n O = On we obtain

g−1
n F ⊗g−1

n a−1OD
On → g−1

n G ⊗g−1
n a−1OD

On
which is injective because g−1

n a−1OD = a−1
n OD and we assume an was flat. □

Lemma 85.11.2.0D7C With notation as above. For a OD-module G there is an exact
complex

. . .→ g2!(a∗
2G)→ g1!(a∗

1G)→ g0!(a∗
0G)→ a∗G → 0

of sheaves of O-modules on Ctotal. Here gn! is as in Lemma 85.6.1.

Proof. Observe that a∗G is the O-module on Ctotal whose restriction to Cm is the
Om-module a∗

mG. The description of the functors gn! on modules in Lemma 85.6.1
shows that gn!(a∗

nG) is the O-module on Ctotal whose restriction to Cm is the Om-
module ⊕

φ:[n]→[m]
f∗
φa

∗
nG =

⊕
φ:[n]→[m]

a∗
mG

https://stacks.math.columbia.edu/tag/0DH3
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The rest of the proof is exactly the same as the proof of Lemma 85.9.1, replacing
a−1
m G by a∗

mG. □

Lemma 85.11.3.0D7D With notation as above. For an O-module F on Ctotal there is a
canonical complex

0→ a∗F → a0,∗F0 → a1,∗F1 → a2,∗F2 → . . .

of OD-modules which is exact in degrees −1, 0. If F is an injective O-module,
then the complex is exact in all degrees and remains exact on applying the functor
HomOD (G,−) for any OD-module G.

Proof. To construct the complex, by the Yoneda lemma, it suffices for any OD-
modules G on D to construct a complex

0→ HomOD (G, a∗F)→ HomOD (G, a0,∗F0)→ HomOD (G, a1,∗F1)→ . . .

functorially in G. To do this apply HomO(−,F) to the exact complex of Lemma
85.11.2 and use adjointness of pullback and pushforward. The exactness properties
in degrees −1, 0 follow from the construction as HomO(−,F) is left exact. If F is an
injective O-module, then the complex is exact because HomO(−,F) is exact. □

Lemma 85.11.4.0D7F With notation as above for any K in D+(O) there is a spectral
sequence (Er, dr)r≥0 in Mod(OD) with

Ep,q1 = Rqap,∗Kp

converging to Rp+qa∗K. This spectral sequence is functorial in K.

Proof. Let I• be a bounded below complex of injective O-modules representing K.
Consider the double complex with terms

Ap,q = ap,∗Iqp
where the horizontal arrows come from Lemma 85.11.3 and the vertical arrows from
the differentials of the complex I•. The lemma says rows of the double complex are
exact in positive degrees and evaluate to a∗Iq in degree 0. Thus the total complex
associated to the double complex computes Ra∗K by Homology, Lemma 12.25.4.
On the other hand, since restriction to Cp is exact (Lemma 85.3.5) the complex
I•
p represents Kp in D(Cp). The sheaves Iqp are totally acyclic on Cp (Lemma

85.6.2). Hence the cohomology of the columns are the sheaves Rqap,∗Kp by Leray’s
acyclicity lemma (Derived Categories, Lemma 13.16.7) and Cohomology on Sites,
Lemma 21.14.3. We conclude by applying Homology, Lemma 12.25.3. □

85.12. Cartesian sheaves and modules

0D7G Here is the definition.

Definition 85.12.1.07TF In Situation 85.3.3.
(1) A sheaf F of sets or of abelian groups on Ctotal is cartesian if the maps
F(φ) : f−1

φ Fm → Fn are isomorphisms for all φ : [m]→ [n].
(2) If O is a sheaf of rings on Ctotal, then a sheaf F of O-modules is cartesian

if the maps f∗
φFm → Fn are isomorphisms for all φ : [m]→ [n].

(3) An object K of D(Ctotal) is cartesian if the maps f−1
φ Km → Kn are

isomorphisms for all φ : [m]→ [n].
(4) If O is a sheaf of rings on Ctotal, then an object K of D(O) is cartesian if

the maps Lf∗
φKm → Kn are isomorphisms for all φ : [m]→ [n].

https://stacks.math.columbia.edu/tag/0D7D
https://stacks.math.columbia.edu/tag/0D7F
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Of course there is a general notion of a cartesian section of a fibred category and
the above are merely examples of this. The property on pullbacks needs only be
checked for the degeneracies.

Lemma 85.12.2.07TG In Situation 85.3.3.
(1) A sheaf F of sets or abelian groups is cartesian if and only if the maps

(fδn
j

)−1Fn−1 → Fn are isomorphisms.
(2) An objectK ofD(Ctotal) is cartesian if and only if the maps (fδn

j
)−1Kn−1 →

Kn are isomorphisms.
(3) If O is a sheaf of rings on Ctotal a sheaf F of O-modules is cartesian if and

only if the maps (fδn
j

)∗Fn−1 → Fn are isomorphisms.
(4) If O is a sheaf of rings on Ctotal an object K of D(O) is cartesian if and

only if the maps L(fδn
j

)∗Kn−1 → Kn are isomorphisms.
(5) Add more here.

Proof. In each case the key is that the pullback functors compose to pullback
functor; for part (4) see Cohomology on Sites, Lemma 21.18.3. We show how
the argument works in case (1) and omit the proof in the other cases. The cate-
gory ∆ is generated by the morphisms the morphisms δnj and σnj , see Simplicial,
Lemma 14.2.2. Hence we only need to check the maps (fδn

j
)−1Fn−1 → Fn and

(fσn
j

)−1Fn+1 → Fn are isomorphisms, see Simplicial, Lemma 14.3.2 for notation.
Since σnj ◦ δn+1

j = id[n] the composition

Fn = (fσn
j

)−1(fδn+1
j

)−1Fn → (fσn
j

)−1Fn+1 → Fn

is the identity. Thus the result for δn+1
j implies the result for σnj . □

Lemma 85.12.3.0D7H In Situation 85.3.3 let a0 be an augmentation towards a site D as
in Remark 85.4.1.

(1) The pullback a−1G of a sheaf of sets or abelian groups on D is cartesian.
(2) The pullback a−1K of an object K of D(D) is cartesian.

Let O be a sheaf of rings on Ctotal and OD a sheaf of rings on D and a♯ : OD → a∗O
a morphism as in Section 85.11.

(3) The pullback a∗F of a sheaf of OD-modules is cartesian.
(4) The derived pullback La∗K of an object K of D(OD) is cartesian.

Proof. This follows immediately from the identities am ◦ fφ = an for all φ : [m]→
[n]. See Lemma 85.4.2 and the discussion in Section 85.11. □

Lemma 85.12.4.0D7I In Situation 85.3.3. The category of cartesian sheaves of sets
(resp. abelian groups) is equivalent to the category of pairs (F , α) where F is a
sheaf of sets (resp. abelian groups) on C0 and

α : (fδ1
1
)−1F −→ (fδ1

0
)−1F

is an isomorphism of sheaves of sets (resp. abelian groups) on C1 such that (fδ2
1
)−1α =

(fδ2
0
)−1α ◦ (fδ2

2
)−1α as maps of sheaves on C2.

Proof. We abbreviate dnj = fδn
j

: Sh(Cn) → Sh(Cn−1). The condition on α in the
statement of the lemma makes sense because

d1
1 ◦ d2

2 = d1
1 ◦ d2

1, d1
1 ◦ d2

0 = d1
0 ◦ d2

2, d1
0 ◦ d2

0 = d1
0 ◦ d2

1

https://stacks.math.columbia.edu/tag/07TG
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as morphisms of topoi Sh(C2) → Sh(C0), see Simplicial, Remark 14.3.3. Hence we
can picture these maps as follows

(d2
0)−1(d1

1)−1F
(d2

0)−1α

// (d2
0)−1(d1

0)−1F

(d2
2)−1(d1

0)−1F (d2
1)−1(d1

0)−1F

(d2
2)−1(d1

1)−1F
(d2

2)−1α

hh

(d2
1)−1(d1

1)−1F
(d2

1)−1α

66

and the condition signifies the diagram is commutative. It is clear that given a
cartesian sheaf G of sets (resp. abelian groups) on Ctotal we can set F = G0 and α
equal to the composition

(d1
1)−1G0 → G1 ← (d0

1)−1G0

where the arrows are invertible as G is cartesian. To prove this functor is an
equivalence we construct a quasi-inverse. The construction of the quasi-inverse is
analogous to the construction discussed in Descent, Section 35.3 from which we
borrow the notation τni : [0]→ [n], 0 7→ i and τnij : [1]→ [n], 0 7→ i, 1 7→ j. Namely,
given a pair (F , α) as in the lemma we set Gn = (fτnn )−1F . Given φ : [n]→ [m] we
define G(φ) : (fφ)−1Gn → Gm using

(fφ)−1Gn (fφ)−1(fτnn )−1F (fτm
φ(n)

)−1F (fτm
φ(n)m

)−1(d1
1)−1F

(fτm
φ(n)m

)−1α

��
Gm (fτmm )−1F (fτm

φ(n)m
)−1(d1

0)−1F

We omit the verification that the commutativity of the displayed diagram above
implies the maps compose correctly and hence give rise to a sheaf on Ctotal, see
Lemma 85.3.4. We also omit the verification that the two functors are quasi-inverse
to each other. □

Lemma 85.12.5.07TH In Situation 85.3.3 let O be a sheaf of rings on Ctotal. The category
of cartesian O-modules is equivalent to the category of pairs (F , α) where F is a
O0-module and

α : (fδ1
1
)∗F −→ (fδ1

0
)∗F

is an isomorphism of O1-modules such that (fδ2
1
)∗α = (fδ2

0
)∗α ◦ (fδ2

2
)∗α as O2-

module maps.

Proof. The proof is identical to the proof of Lemma 85.12.4 with pullback of sheaves
of abelian groups replaced by pullback of modules. □

Lemma 85.12.6.0D7J In Situation 85.3.3.
(1) The full subcategory of cartesian abelian sheaves forms a weak Serre sub-

category of Ab(Ctotal). Colimits of systems of cartesian abelian sheaves
are cartesian.

https://stacks.math.columbia.edu/tag/07TH
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(2) Let O be a sheaf of rings on Ctotal such that the morphisms

fδn
j

: (Sh(Cn),On)→ (Sh(Cn−1),On−1)

are flat. The full subcategory of cartesian O-modules forms a weak Serre
subcategory of Mod(O). Colimits of systems of cartesian O-modules are
cartesian.

Proof. To see we obtain a weak Serre subcategory in (1) we check the conditions
listed in Homology, Lemma 12.10.3. First, if φ : F → G is a map between cartesian
abelian sheaves, then Ker(φ) and Coker(φ) are cartesian too because the restriction
functors Sh(Ctotal)→ Sh(Cn) and the functors f−1

φ are exact. Similarly, if

0→ F → H → G → 0

is a short exact sequence of abelian sheaves on Ctotal with F and G cartesian, then
it follows that H is cartesian from the 5-lemma. To see the property of colimits,
use that colimits commute with pullback as pullback is a left adjoint. In the case of
modules we argue in the same manner, using the exactness of flat pullback (Modules
on Sites, Lemma 18.31.2) and the fact that it suffices to check the condition for
fδn
j

, see Lemma 85.12.2. □

Remark 85.12.7 (Warning).0D7K Lemma 85.12.6 notwithstanding, it can happen that
the category of cartesian O-modules is abelian without being a Serre subcategory
of Mod(O). Namely, suppose that we only know that fδ1

1
and fδ1

0
are flat. Then

it follows easily from Lemma 85.12.5 that the category of cartesian O-modules is
abelian. But if fδ2

0
is not flat (for example), there is no reason for the inclusion

functor from the category of cartesian O-modules to all O-modules to be exact.

Lemma 85.12.8.0D7L In Situation 85.3.3.
(1) An object K of D(Ctotal) is cartesian if and only if Hq(K) is a cartesian

abelian sheaf for all q.
(2) LetO be a sheaf of rings on Ctotal such that the morphisms fδn

j
: (Sh(Cn),On)→

(Sh(Cn−1),On−1) are flat. Then an object K of D(O) is cartesian if and
only if Hq(K) is a cartesian O-module for all q.

Proof. Part (1) is true because the pullback functors (fφ)−1 are exact. Part (2)
follows from the characterization in Lemma 85.12.2 and the fact that L(fδn

j
)∗ =

(fδn
j

)∗ by flatness. □

Lemma 85.12.9.0D9E In Situation 85.3.3.
(1) An object K of D(Ctotal) is cartesian if and only the canonical map

gn!Kn −→ gn!Z⊗L
Z K

is an isomorphism for all n.
(2) Let O be a sheaf of rings on Ctotal such that the morphisms f−1

φ On → Om
are flat for all φ : [n] → [m]. Then an object K of D(O) is cartesian if
and only if the canonical map

gn!Kn −→ gn!On ⊗L
O K

is an isomorphism for all n.
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Proof. Proof of (1). Since gn! is exact, it induces a functor on derived categories
adjoint to g−1

n . The map is the adjoint of the map Kn → (g−1
n gn!Z)⊗L

Z Kn corre-
sponding to Z → g−1

n gn!Z which in turn is adjoint to id : gn!Z → gn!Z. Using the
description of gn! given in Lemma 85.3.5 we see that the restriction to Cm of this
map is ⊕

φ:[n]→[m]
f−1
φ Kn −→

⊕
φ:[n]→[m]

Km

Thus the statement is clear.
Proof of (2). Since gn! is exact (Lemma 85.6.3), it induces a functor on derived
categories adjoint to g∗

n (also exact). The map is the adjoint of the map Kn →
(g∗
ngn!On) ⊗L

On
Kn corresponding to On → g∗

ngn!On which in turn is adjoint to
id : gn!On → gn!On. Using the description of gn! given in Lemma 85.6.1 we see
that the restriction to Cm of this map is⊕

φ:[n]→[m]
f∗
φKn −→

⊕
φ:[n]→[m]

f∗
φOn ⊗Om

Km =
⊕

φ:[n]→[m]
Km

Thus the statement is clear. □

Lemma 85.12.10.0D7M In Situation 85.3.3 let O be a sheaf of rings on Ctotal. Let F
be a sheaf of O-modules. Then F is quasi-coherent in the sense of Modules on
Sites, Definition 18.23.1 if and only if F is cartesian and Fn is a quasi-coherent
On-module for all n.

Proof. Assume F is quasi-coherent. Since pullbacks of quasi-coherent modules
are quasi-coherent (Modules on Sites, Lemma 18.23.4) we see that Fn is a quasi-
coherent On-module for all n. To show that F is cartesian, let U be an object of
Cn for some n. Let us view U as an object of Ctotal. Because F is quasi-coherent
there exists a covering {Ui → U} and for each i a presentation⊕

j∈Ji
OCtotal/Ui →

⊕
k∈Ki

OCtotal/Ui → F|Ctotal/Ui → 0

Observe that {Ui → U} is a covering of Cn by the construction of the site Ctotal.
Next, let V be an object of Cm for some m and let V → U be a morphism of Ctotal
lying over φ : [n] → [m]. The fibre products Vi = V ×U Ui exist and we get an
induced covering {Vi → V } in Cm. Restricting the presentation above to the sites
Cn/Ui and Cm/Vi we obtain presentations⊕

j∈Ji
OCm/Ui →

⊕
k∈Ki

OCm/Ui → Fn|Cn/Ui → 0

and ⊕
j∈Ji
OCm/Vi →

⊕
k∈Ki

OCm/Vi → Fm|Cm/Vi → 0

These presentations are compatible with the map F(φ) : f∗
φFn → Fm (as this map

is defined using the restriction maps of F along morphisms of Ctotal lying over φ).
We conclude that F(φ)|Cm/Vi is an isomorphism. As {Vi → V } is a covering we
conclude F(φ)|Cm/V is an isomorphism. Since V and U were arbitrary this proves
that F is cartesian. (In case A use Sites, Lemma 7.14.10.)
Conversely, assume Fn is quasi-coherent for all n and that F is cartesian. Then for
any n and object U of Cn we can choose a covering {Ui → U} of Cn and for each i
a presentation ⊕

j∈Ji
OCm/Ui →

⊕
k∈Ki

OCm/Ui → Fn|Cn/Ui → 0

https://stacks.math.columbia.edu/tag/0D7M
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Pulling back to Ctotal/Ui we obtain complexes⊕
j∈Ji
OCtotal/Ui →

⊕
k∈Ki

OCtotal/Ui → F|Ctotal/Ui → 0

of modules on Ctotal/Ui. Then the property that F is cartesian implies that this is
exact. We omit the details. □

85.13. Simplicial systems of the derived category

0D9F In this section we are going to prove a special case of [BBD82, Proposition 3.2.9] in
the setting of derived categories of abelian sheaves. The case of modules is discussed
in Section 85.14.
Definition 85.13.1.0D9G In Situation 85.3.3. A simplicial system of the derived category
consists of the following data

(1) for every n an object Kn of D(Cn),
(2) for every φ : [m]→ [n] a map Kφ : f−1

φ Km → Kn in D(Cn)
subject to the condition that

Kφ◦ψ = Kφ ◦ f−1
φ Kψ : f−1

φ◦ψKl = f−1
φ f−1

ψ Kl −→ Kn

for any morphisms φ : [m] → [n] and ψ : [l] → [m] of ∆. We say the simplicial
system is cartesian if the maps Kφ are isomorphisms for all φ. Given two simpli-
cial systems of the derived category there is an obvious notion of a morphism of
simplicial systems of the derived category.
We have given this notion a ridiculously long name intentionally. The goal is to
show that a simplicial system of the derived category comes from an object of
D(Ctotal) under certain hypotheses.
Lemma 85.13.2.0D9H In Situation 85.3.3. If K ∈ D(Ctotal) is an object, then (Kn,K(φ))
is a simplicial system of the derived category. If K is cartesian, so is the system.
Proof. This is obvious. □

Lemma 85.13.3.0GME In Situation 85.3.3 suppose given K0 ∈ D(C0) and an isomorphism
α : f−1

δ1
1
K0 −→ f−1

δ1
0
K0

satisfying the cocycle condition. Set τni : [0] → [n], 0 7→ i and set Kn = f−1
τnn
K0.

Then the Kn form a cartesian simplicial system of the derived category.
Proof. Please compare with Lemma 85.12.4 and its proof (also to see the cocycle
condition spelled out). The construction is analogous to the construction discussed
in Descent, Section 35.3 from which we borrow the notation τni : [0] → [n], 0 7→ i
and τnij : [1]→ [n], 0 7→ i, 1 7→ j. Given φ : [n]→ [m] we define Kφ : f−1

φ Kn → Km

using
f−1
φ Kn f−1

φ f−1
τnn
K0 f−1

τm
φ(n)

K0 f−1
τm
φ(n)m

f−1
δ1

1
K0

f−1
τm
φ(n)m

α

��
Km f−1

τmm
K0 f−1

τm
φ(n)m

f−1
δ1

0
K0

We omit the verification that the cocycle condition implies the maps compose cor-
rectly (in their respective derived categories) and hence give rise to a simplicial
system in the derived category. □
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Lemma 85.13.4.0D9I In Situation 85.3.3. Let K be an object of D(Ctotal). Set

Xn = (gn!Z)⊗L
Z K and Yn = (gn!Z→ . . .→ g0!Z)[−n]⊗L

Z K

as objects of D(Ctotal) where the maps are as in Lemma 85.8.1. With the evident
canonical maps Yn → Xn and Y0 → Y1[1]→ Y2[2]→ . . . we have

(1) the distinguished triangles Yn → Xn → Yn−1 → Yn[1] define a Postnikov
system (Derived Categories, Definition 13.41.1) for . . .→ X2 → X1 → X0,

(2) K = hocolimYn[n] in D(Ctotal).

Proof. First, if K = Z, then this is the construction of Derived Categories, Example
13.41.2 applied to the complex

. . .→ g2!Z→ g1!Z→ g0!Z
in Ab(Ctotal) combined with the fact that this complex represents K = Z in
D(Ctotal) by Lemma 85.8.1. The general case follows from this, the fact that the
exact functor − ⊗L

Z K sends Postnikov systems to Postnikov systems, and that
−⊗L

Z K commutes with homotopy colimits. □

Lemma 85.13.5.0D9J In Situation 85.3.3. If K,K ′ ∈ D(Ctotal). Assume
(1) K is cartesian,
(2) Hom(Ki[i],K ′

i) = 0 for i > 0, and
(3) Hom(Ki[i+ 1],K ′

i) = 0 for i ≥ 0.
Then any map K → K ′ which induces the zero map K0 → K ′

0 is zero.

Proof. Consider the objects Xn and the Postnikov system Yn associated to K in
Lemma 85.13.4. As K = hocolimYn[n] the map K → K ′ induces a compatible
family of morphisms Yn[n] → K ′. By (1) and Lemma 85.12.9 we have Xn =
gn!Kn. Since Y0 = X0 we find that K0 → K ′

0 being zero implies Y0 → K ′ is zero.
Suppose we’ve shown that the map Yn[n] → K ′ is zero for some n ≥ 0. From the
distinguished triangle

Yn[n]→ Yn+1[n+ 1]→ Xn+1[n+ 1]→ Yn[n+ 1]
we get an exact sequence

Hom(Xn+1[n+ 1],K ′)→ Hom(Yn+1[n+ 1],K ′)→ Hom(Yn[n],K ′)
As Xn+1[n+ 1] = gn+1!Kn+1[n+ 1] the first group is equal to

Hom(Kn+1[n+ 1],K ′
n+1)

which is zero by assumption (2). By induction we conclude all the maps Yn[n]→ K ′

are zero. Consider the defining distinguished triangle⊕
Yn[n]→

⊕
Yn[n]→ K → (

⊕
Yn[n])[1]

for the homotopy colimit. Arguing as above, we find that it suffices to show that

Hom((
⊕

Yn[n])[1],K ′) =
∏

Hom(Yn[n+ 1],K ′)

is zero for all n ≥ 0. To see this, arguing as above, it suffices to show that
Hom(Kn[n+ 1],K ′

n) = 0
for all n ≥ 0 which follows from condition (3). □

Lemma 85.13.6.0D9K In Situation 85.3.3. If K,K ′ ∈ D(Ctotal). Assume

https://stacks.math.columbia.edu/tag/0D9I
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(1) K is cartesian,
(2) Hom(Ki[i− 1],K ′

i) = 0 for i > 1.
Then any map {Kn → K ′

n} between the associated simplicial systems of K and K ′

comes from a map K → K ′ in D(Ctotal).

Proof. Let {Kn → K ′
n}n≥0 be a morphism of simplicial systems of the derived

category. Consider the objects Xn and Postnikov system Yn associated to K of
Lemma 85.13.4. By (1) and Lemma 85.12.9 we have Xn = gn!Kn. In particular,
the map K0 → K ′

0 induces a morphism X0 → K ′. Since {Kn → K ′
n} is a morphism

of systems, a computation (omitted) shows that the composition

X1 → X0 → K ′

is zero. As Y0 = X0 and as Y1 fits into a distinguished triangle

Y1 → X1 → Y0 → Y1[1]

we conclude that there exists a morphism Y1[1] → K ′ whose composition with
X0 = Y0 → Y1[1] is the morphism X0 → K ′ given above. Suppose given a map
Yn[n]→ K ′ for n ≥ 1. From the distinguished triangle

Xn+1[n]→ Yn[n]→ Yn+1[n+ 1]→ Xn+1[n+ 1]

we get an exact sequence

Hom(Yn+1[n+ 1],K ′)→ Hom(Yn[n],K ′)→ Hom(Xn+1[n],K ′)

As Xn+1[n] = gn+1!Kn+1[n] the last group is equal to

Hom(Kn+1[n],K ′
n+1)

which is zero by assumption (2). By induction we get a system of maps Yn[n] →
K ′ compatible with transition maps and reducing to the given map on Y0. This
produces a map

γ : K = hocolimYn[n] −→ K ′

This map in any case has the property that the diagram

X0

!!

// K

γ

��
K ′

is commutative. Restricting to C0 we deduce that the map γ0 : K0 → K ′
0 is the

same as the first map K0 → K ′
0 of the morphism of simplicial systems. Since K

is cartesian, this easily gives that {γn} is the map of simplicial systems we started
out with. □

Lemma 85.13.7.0D9L In Situation 85.3.3. Let (Kn,Kφ) be a simplicial system of the
derived category. Assume

(1) (Kn,Kφ) is cartesian,
(2) Hom(Ki[t],Ki) = 0 for i ≥ 0 and t > 0.

Then there exists a cartesian object K of D(Ctotal) whose associated simplicial
system is isomorphic to (Kn,Kφ).

https://stacks.math.columbia.edu/tag/0D9L
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Proof. Set Xn = gn!Kn in D(Ctotal). For each n ≥ 1 we have

Hom(Xn, Xn−1) = Hom(Kn, g
−1
n gn−1!Kn−1) =

⊕
φ:[n−1]→[n]

Hom(Kn, f
−1
φ Kn−1)

Thus we get a map Xn → Xn−1 corresponding to the alternating sum of the maps
K−1
φ : Kn → f−1

φ Kn−1 where φ runs over δn0 , . . . , δnn . We can do this because Kφ

is invertible by assumption (1). Please observe the similarity with the definition of
the maps in the proof of Lemma 85.8.1. We obtain a complex

. . .→ X2 → X1 → X0

in D(Ctotal). We omit the computation which shows that the compositions are zero.
By Derived Categories, Lemma 13.41.6 if we have

Hom(Xi[i− j − 2], Xj) = 0 for i > j + 2
then we can extend this complex to a Postnikov system. The group is equal to

Hom(Ki[i− j − 2], g−1
i gj!Kj)

Again using that (Kn,Kφ) is cartesian we see that g−1
i gj!Kj is isomorphic to a

finite direct sum of copies of Ki. Hence the group vanishes by assumption (2).
Let the Postnikov system be given by Y0 = X0 and distinguished sequences Yn →
Xn → Yn−1 → Yn[1] for n ≥ 1. We set

K = hocolimYn[n]
To finish the proof we have to show that g−1

m K is isomorphic to Km for all m
compatible with the maps Kφ. Observe that

g−1
m K = hocolimg−1

m Yn[n]
and that g−1

m Yn[n] is a Postnikov system for g−1
m Xn. Consider the isomorphisms

g−1
m Xn =

⊕
φ:[n]→[m]

f−1
φ Kn

⊕
Kφ

−−−−→
⊕

φ:[n]→[m]
Km

These maps define an isomorphism of complexes

. . . // g−1
m X2 //

��

g−1
m X1 //

��

g−1
m X0

��
. . . //⊕

φ:[2]→[m] Km
//⊕

φ:[1]→[m] Km
//⊕

φ:[0]→[m] Km

in D(Cm) where the arrows in the bottom row are as in the proof of Lemma 85.8.1.
The squares commute by our choice of the arrows of the complex . . . → X2 →
X1 → X0; we omit the computation. The bottom row complex has a postnikov
tower given by

Y ′
m,n =

(⊕
φ:[n]→[m]

Z→ . . .→
⊕

φ:[0]→[m]
Z
)

[−n]⊗L
Z Km

and hocolimY ′
m,n = Km (please compare with the proof of Lemma 85.13.4 and

Derived Categories, Example 13.41.2). Applying the second part of Derived Cate-
gories, Lemma 13.41.6 the vertical maps in the big diagram extend to an isomor-
phism of Postnikov systems provided we have

Hom(g−1
m Xi[i− j − 1],

⊕
φ:[j]→[m]

Km) = 0 for i > j + 1
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The is true if Hom(Km[i− j− 1],Km) = 0 for i > j+ 1 which holds by assumption
(2). Choose an isomorphism given by γm,n : g−1

m Yn → Y ′
m,n of Postnikov systems

in D(Cm). By uniqueness of homotopy colimits, we can find an isomorphism

g−1
m K = hocolimg−1

m Yn[n] γm−−→ hocolimY ′
m,n = Km

compatible with γm,n.
We still have to prove that the maps γm fit into commutative diagrams

f−1
φ g−1

m K

f−1
φ γm

��

K(φ)
// g−1
n K

γn

��
f−1
φ Km

Kφ // Kn

for every φ : [m]→ [n]. Consider the diagram

f−1
φ (
⊕

ψ:[0]→[m] f
−1
ψ K0)

f−1
φ (
⊕

Kψ)
��

f−1
φ g−1

m X0

��

X0(φ)
// g−1
n X0

��

⊕
χ:[0]→[n] f

−1
χ K0⊕
Kχ

��
f−1
φ (
⊕

ψ:[0]→[m] Km) f−1
φ g−1

m K

f−1
φ γm

��

K(φ)
// g−1
n K

γn

��

⊕
χ:[0]→[n] Kn

f−1
φ Y ′

0,m
// f−1
φ Km

Kφ // Kn Y ′
0,n

oo

The top middle square is commutative as X0 → K is a morphism of simplicial
objects. The left, resp. the right rectangles are commutative as γm, resp. γn is
compatible with γ0,m, resp. γ0,n which are the arrows

⊕
Kψ and

⊕
Kχ in the

diagram. Going around the outer rectangle of the diagram is commutative as
(Kn,Kφ) is a simplical system and the map X0(φ) is given by the obvious iden-
tifications f−1

φ f−1
ψ K0 = f−1

φ◦ψK0. Note that the arrow
⊕

ψKm → Y ′
0,m → Km

induces an isomorphism on any of the direct summands (because of our explicit
construction of the Postnikov systems Y ′

i,j above). Hence, if we take a direct sum-
mand of the upper left and corner, then this maps isomorphically to f−1

φ g−1
m K as

γm is an isomorphism. Working out what the above says, but looking only at this
direct summand we conclude the lower middle square commutes as we well. This
concludes the proof. □

85.14. Simplicial systems of the derived category: modules

0D9M In this section we are going to prove a special case of [BBD82, Proposition 3.2.9] in
the setting of derived categories of O-modules. The (slightly) easier case of abelian
sheaves is discussed in Section 85.13.

Definition 85.14.1.0D9N In Situation 85.3.3. Let O be a sheaf of rings on Ctotal. A
simplicial system of the derived category of modules consists of the following data

(1) for every n an object Kn of D(On),
(2) for every φ : [m]→ [n] a map Kφ : Lf∗

φKm → Kn in D(On)
subject to the condition that

Kφ◦ψ = Kφ ◦ Lf∗
φKψ : Lf∗

φ◦ψKl = Lf∗
φLf

∗
ψKl −→ Kn

https://stacks.math.columbia.edu/tag/0D9N
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for any morphisms φ : [m] → [n] and ψ : [l] → [m] of ∆. We say the simplicial
system is cartesian if the maps Kφ are isomorphisms for all φ. Given two simpli-
cial systems of the derived category there is an obvious notion of a morphism of
simplicial systems of the derived category of modules.

We have given this notion a ridiculously long name intentionally. The goal is to
show that a simplicial system of the derived category of modules comes from an
object of D(O) under certain hypotheses.

Lemma 85.14.2.0D9P In Situation 85.3.3 let O be a sheaf of rings on Ctotal. If K ∈ D(O)
is an object, then (Kn,K(φ)) is a simplicial system of the derived category of
modules. If K is cartesian, so is the system.

Proof. This is immediate from the definitions. □

Lemma 85.14.3.0GMF In Situation 85.3.3 let O be a sheaf of rings on Ctotal. Suppose
given K0 ∈ D(O0) and an isomorphism

α : L(fδ1
1
)∗K0 −→ L(fδ1

0
)∗K0

satisfying the cocycle condition. Set τni : [0] → [n], 0 7→ i and set Kn = Lf∗
τnn
K0.

The objects Kn form the members of a cartesian simplicial system of the derived
category of modules.

Proof. Please compare with Lemmas 85.13.3 and 85.12.4 and its proof (also to
see the cocycle condition spelled out). The construction is analogous to the con-
struction discussed in Descent, Section 35.3 from which we borrow the notation
τni : [0] → [n], 0 7→ i and τnij : [1] → [n], 0 7→ i, 1 7→ j. Given φ : [n] → [m] we
define Kφ : L(fφ)∗Kn → Km using

L(fφ)∗Kn L(fφ)∗L(fτnn )∗K0 L(fτm
φ(n)

)∗K0 L(fτm
φ(n)m

)∗L(fδ1
1
)∗K0

L(fτm
φ(n)m

)∗α

��
Km L(fτmm )∗K0 L(fτm

φ(n)m
)∗L(fδ1

0
)∗K0

We omit the verification that the cocycle condition implies the maps compose cor-
rectly (in their respective derived categories) and hence give rise to a simplicial
systems of the derived category of modules. □

Lemma 85.14.4.0D9Q In Situation 85.3.3 let O be a sheaf of rings on Ctotal. Let K be
an object of D(Ctotal). Set

Xn = (gn!On)⊗L
O K and Yn = (gn!On → . . .→ g0!O0)[−n]⊗L

O K

as objects of D(O) where the maps are as in Lemma 85.8.1. With the evident
canonical maps Yn → Xn and Y0 → Y1[1]→ Y2[2]→ . . . we have

(1) the distinguished triangles Yn → Xn → Yn−1 → Yn[1] define a Postnikov
system (Derived Categories, Definition 13.41.1) for . . .→ X2 → X1 → X0,

(2) K = hocolimYn[n] in D(O).

Proof. First, if K = O, then this is the construction of Derived Categories, Example
13.41.2 applied to the complex

. . .→ g2!O2 → g1!O1 → g0!O0

https://stacks.math.columbia.edu/tag/0D9P
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in Ab(Ctotal) combined with the fact that this complex represents K = O in
D(Ctotal) by Lemma 85.10.1. The general case follows from this, the fact that
the exact functor −⊗L

O K sends Postnikov systems to Postnikov systems, and that
−⊗L

O K commutes with homotopy colimits. □

Lemma 85.14.5.0D9R In Situation 85.3.3 let O be a sheaf of rings on Ctotal. If K,K ′ ∈
D(O). Assume

(1) f−1
φ On → Om is flat for φ : [m]→ [n],

(2) K is cartesian,
(3) Hom(Ki[i],K ′

i) = 0 for i > 0, and
(4) Hom(Ki[i+ 1],K ′

i) = 0 for i ≥ 0.
Then any map K → K ′ which induces the zero map K0 → K ′

0 is zero.

Proof. The proof is exactly the same as the proof of Lemma 85.13.5 except using
Lemma 85.14.4 instead of Lemma 85.13.4. □

Lemma 85.14.6.0D9S In Situation 85.3.3 let O be a sheaf of rings on Ctotal. If K,K ′ ∈
D(O). Assume

(1) f−1
φ On → Om is flat for φ : [m]→ [n],

(2) K is cartesian,
(3) Hom(Ki[i− 1],K ′

i) = 0 for i > 1.
Then any map {Kn → K ′

n} between the associated simplicial systems of K and K ′

comes from a map K → K ′ in D(O).

Proof. The proof is exactly the same as the proof of Lemma 85.13.6 except using
Lemma 85.14.4 instead of Lemma 85.13.4. □

Lemma 85.14.7.0D9T In Situation 85.3.3 let O be a sheaf of rings on Ctotal. Let (Kn,Kφ)
be a simplicial system of the derived category of modules. Assume

(1) f−1
φ On → Om is flat for φ : [m]→ [n],

(2) (Kn,Kφ) is cartesian,
(3) Hom(Ki[t],Ki) = 0 for i ≥ 0 and t > 0.

Then there exists a cartesian object K of D(O) whose associated simplicial system
is isomorphic to (Kn,Kφ).

Proof. The proof is exactly the same as the proof of Lemma 85.13.7 with the
following changes

(1) use g∗
n = Lg∗

n everywhere instead of g−1
n ,

(2) use f∗
φ = Lf∗

φ everywhere instead of f−1
φ ,

(3) refer to Lemma 85.10.1 instead of Lemma 85.8.1,
(4) in the construction of Y ′

m,n use Om instead of Z,
(5) compare with the proof of Lemma 85.14.4 rather than the proof of Lemma

85.13.4.
This ends the proof. □

85.15. The site associated to a semi-representable object

09WK Let C be a site. Recall that a semi-representable object of C is simply a family
{Ui}i∈I of objects of C. A morphism {Ui}i∈I → {Vj}j∈J of semi-representable
objects is given by a map α : I → J and for every i ∈ I a morphism fi : Ui →

https://stacks.math.columbia.edu/tag/0D9R
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Vα(i) of C. The category of semi-representable objects of C is denoted SR(C). See
Hypercoverings, Definition 25.2.1 and the enclosing section for more information.

For a semi-representable object K = {Ui}i∈I of C we let

C/K =
∐

i∈I
C/Ui

be the disjoint union of the localizations of C at Ui. There is a natural structure of
a site on this category, with coverings inherited from the localizations C/Ui. The
site C/K is called the localization of C at K. Observe that a sheaf on C/K is the
same thing as a family of sheaves Fi on C/Ui, i.e.,

Sh(C/K) =
∏

i∈I
Sh(C/Ui)

This is occasionally useful to understand what is going on.

Let C be a site. Let K = {Ui}i∈I be an object of SR(C). There is a continuous
and cocontinuous localization functor j : C/K → C which is the product of the
localization functors ji : C/Vi → C. We obtain functors j!, j−1, j∗ exactly as in Sites,
Section 7.25. In terms of the product decomposition Sh(C/K) =

∏
i∈I Sh(C/Ui) we

have
j! : (Fi)i∈I 7−→

∐
ji,!Fi

j−1 : G 7−→ (j−1
i G)i∈I

j∗ : (Fi)i∈I 7−→
∏
ji,∗Fi

as the reader easily verifies.

Let f : K → L be a morphism of SR(C). Then we obtain a continuous and
cocontinuous functor

v : C/K −→ C/L
by applying the construction of Sites, Lemma 7.25.8 to the components. More
precisely, suppose f = (α, fi) where K = {Ui}i∈I , L = {Vj}j∈J , α : I → J , and
fi : Ui → Vα(i). Then the functor v maps the component C/Ui into the component
C/Vα(i) via the construction of the aforementioned lemma. In particular we obtain
a morphism

f : Sh(C/K)→ Sh(C/L)
of topoi. In terms of the product decompositions Sh(C/K) =

∏
i∈I Sh(C/Ui) and

Sh(C/L) =
∏
j∈J Sh(C/Vj) the reader verifies that

f! : (Fi)i∈I 7−→ (
∐
i∈I,α(i)=j fi,!Fi)j∈J

f−1 : (Gj)j∈J 7−→ (f−1
i Gα(i))i∈I

f∗ : (Fi)i∈I 7−→ (
∏
i∈I,α(i)=j fi,∗Fi)j∈J

where fi : Sh(C/Ui) → Sh(C/Vα(i)) is the morphism associated to the localization
functor C/Ui → C/Vα(i) corresponding to fi : Ui → Vα(i).

Lemma 85.15.1.0D85 Let C be a site.
(1) For K in SR(C) the functor j : C/K → C is continuous, cocontinuous, and

has property P of Sites, Remark 7.20.5.
(2) For f : K → L in SR(C) the functor v : C/K → C/L (see above) is

continuous, cocontinuous, and has property P of Sites, Remark 7.20.5.

https://stacks.math.columbia.edu/tag/0D85
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Proof. Proof of (2). In the notation of the discussion preceding the lemma, the
localization functors C/Ui → C/Vα(i) are continuous and cocontinuous by Sites,
Section 7.25 and satisfy P by Sites, Remark 7.25.11. It is formal to deduce v is
continuous and cocontinuous and has P . We omit the details. We also omit the
proof of (1). □

Lemma 85.15.2.0D86 Let C be a site and K in SR(C). For F in Sh(C) we have

j∗j
−1F = Hom(F (K)#,F)

where F is as in Hypercoverings, Definition 25.2.2.

Proof. Say K = {Ui}i∈I . Using the description of the functors j−1 and j∗ given
above we see that

j∗j
−1F =

∏
i∈I

ji,∗(F|C/Ui) =
∏

i∈I
Hom(h#

Ui
,F)

The second equality by Sites, Lemma 7.26.3. Since F (K) =
∐
hUi in PSh(C, we

have F (K)# =
∐
h#
Ui

in Sh(C) and sinceHom(−,F) turns coproducts into products
(immediate from the construction in Sites, Section 7.26), we conclude. □

Lemma 85.15.3.0D87 Let C be a site.
(1) ForK in SR(C) the functor j! gives an equivalence Sh(C/K)→ Sh(C)/F (K)#

where F is as in Hypercoverings, Definition 25.2.2.
(2) The functor j−1 : Sh(C)→ Sh(C/K) corresponds via the identification of

(1) with F 7→ (F × F (K)# → F (K)#).
(3) For f : K → L in SR(C) the functor f−1 corresponds via the identifications

of (1) to the functor Sh(C)/F (L)# → Sh(C)/F (K)#, (G → F (L)#) 7→
(G ×F (L)# F (K)# → F (K)#).

Proof. Observe that if K = {Ui}i∈I then the category Sh(C/K) decomposes as the
product of the categories Sh(C/Ui). Observe that F (K)# =

∐
i∈I h

#
Ui

(coproduct
in sheaves). Hence Sh(C)/F (K)# is the product of the categories Sh(C)/h#

Ui
. Thus

(1) and (2) follow from the corresponding statements for each i, see Sites, Lemmas
7.25.4 and 7.25.7. Similarly, if L = {Vj}j∈J and f is given by α : I → J and
fi : Ui → Vα(i), then we can apply Sites, Lemma 7.25.9 to each of the re-localization
morphisms C/Ui → C/Vα(i) to get (3). □

Lemma 85.15.4.0D88 Let C be a site. For K in SR(C) the functor j−1 sends injective
abelian sheaves to injective abelian sheaves. Similarly, the functor j−1 sends K-
injective complexes of abelian sheaves to K-injective complexes of abelian sheaves.

Proof. The first statement is the natural generalization of Cohomology on Sites,
Lemma 21.7.1 to semi-representable objects. In fact, it follows from this lemma by
the product decomposition of Sh(C/K) and the description of the functor j−1 given
above. The second statement is the natural generalization of Cohomology on Sites,
Lemma 21.20.1 and follows from it by the product decomposition of the topos.

Alternative: since j induces a localization of topoi by Lemma 85.15.3 part (1) it
also follows immediately from Cohomology on Sites, Lemmas 21.7.1 and 21.20.1 by
enlarging the site; compare with the proof of Cohomology on Sites, Lemma 21.13.3
in the case of injective sheaves. □

https://stacks.math.columbia.edu/tag/0D86
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Remark 85.15.5 (Variant for over an object).0D89 Let C be a site. Let X ∈ Ob(C). The
category SR(C, X) of semi-representable objects over X is defined by the formula
SR(C, X) = SR(C/X). See Hypercoverings, Definition 25.2.1. Thus we may apply
the above discussion to the site C/X. Briefly, the constructions above give

(1) a site C/K for K in SR(C, X),
(2) a decomposition Sh(C/K) =

∏
Sh(C/Ui) if K = {Ui/X},

(3) a localization functor j : C/K → C/X,
(4) a morphism f : Sh(C/K)→ Sh(C/L) for f : K → L in SR(C, X).

All results of this section hold in this situation by replacing C everywhere by C/X.

Remark 85.15.6 (Ringed variant).0D9U Let C be a site. Let OC be a sheaf of rings on
C. In this case, for any semi-representable object K of C the site C/K is a ringed
site with sheaf of rings OK = j−1OC . The constructions above give

(1) a ringed site (C/K,OK) for K in SR(C),
(2) a decomposition Mod(OK) =

∏
Mod(OUi) if K = {Ui},

(3) a localization morphism j : (Sh(C/K),OK)→ (Sh(C),OC) of ringed topoi,
(4) a morphism f : (Sh(C/K),OK) → (Sh(C/L),OL) of ringed topoi for f :

K → L in SR(C).
Many of the results above hold in this setting. For example, the functor j∗ has an
exact left adjoint

j! : Mod(OK)→ Mod(OC),
which in terms of the product decomposition given in (2) sends (Fi)i∈I to

⊕
ji,!Fi.

Similarly, given f : K → L as above, the functor f∗ has an exact left adjoint
f! : Mod(OK) → Mod(OL). Thus the functors j∗ and f∗ are exact, i.e., j and f
are flat morphisms of ringed topoi (also follows from the equalities OK = j−1OC
and OK = f−1OL).

Remark 85.15.7 (Ringed variant over an object).0D9V Let C be a site. Let OC be a sheaf
of rings on C. Let X ∈ Ob(C) and denote OX = OC |C/U . Then we can combine the
constructions given in Remarks 85.15.5 and 85.15.6 to get

(1) a ringed site (C/K,OK) for K in SR(C, X),
(2) a decomposition Mod(OK) =

∏
Mod(OUi) if K = {Ui},

(3) a localization morphism j : (Sh(C/K),OK) → (Sh(C/X),OX) of ringed
topoi,

(4) a morphism f : (Sh(C/K),OK) → (Sh(C/L),OL) of ringed topoi for f :
K → L in SR(C, X).

Of course all of the results mentioned in Remark 85.15.6 hold in this setting as well.

85.16. The site associate to a simplicial semi-representable object

0D8A Let C be a site. Let K be a simplicial object of SR(C). As usual, set Kn = K([n])
and denote K(φ) : Kn → Km the morphism associated to φ : [m] → [n]. By
the construction in Section 85.15 we obtain a simplicial object n 7→ C/Kn in the
category whose objects are sites and whose morphisms are cocontinuous functors.
In other words, we get a gadget as in Case B of Section 85.3. The functors satisfy
property P by Lemma 85.15.1. Hence we may apply Lemma 85.3.2 to obtain a site
(C/K)total.

https://stacks.math.columbia.edu/tag/0D89
https://stacks.math.columbia.edu/tag/0D9U
https://stacks.math.columbia.edu/tag/0D9V
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We can describe the site (C/K)total explicitly as follows. Say Kn = {Un,i}i∈In . For
φ : [m] → [n] the morphism K(φ) : Kn → Km is given by a map α(φ) : In → Im
and morphisms fφ,i : Un,i → Um,α(φ)(i) for i ∈ In. Then we have

(1) an object of (C/K)total corresponds to an object (U/Un,i) of C/Un,i for
some n and some i ∈ In,

(2) a morphism between U/Un,i and V/Um,j is a pair (φ, f) where φ : [m]→
[n], j = α(φ)(i), and f : U → V is a morphism of C such that

U
f
//

��

V

��
Un,i

fφ,i // Um,j

is commutative, and
(3) coverings of the object U/Un,i are constructed by starting with a covering
{fj : Uj → U} in C and letting {(id, fj) : Uj/Un,i → U/Un,i} be a covering
in (C/K)total.

All of our general theory developed for simplicial sites applies to (C/K)total. Ob-
serve that the obvious forgetful functor

jtotal : (C/K)total −→ C
is continuous and cocontinuous. It turns out that the associated morphism of topoi
comes from an (obvious) augmentation.

Lemma 85.16.1.0D8B Let C be a site. Let K be a simplicial object of SR(C). The
localization functor j0 : C/K0 → C defines an augmentation a0 : Sh(C/K0) →
Sh(C), as in case (B) of Remark 85.4.1. The corresponding morphisms of topoi

an : Sh(C/Kn) −→ Sh(C), a : Sh((C/K)total) −→ Sh(C)
of Lemma 85.4.2 are equal to the morphisms of topoi associated to the continuous
and cocontinuous localization functors jn : C/Kn → C and jtotal : (C/K)total → C.

Proof. This is immediate from working through the definitions. See in particular
the footnote in the proof of Lemma 85.4.2 for the relationship between a and jtotal.

□

Lemma 85.16.2.09WM With assumption and notation as in Lemma 85.16.1 we have the
following properties:

(1) there is a functor aSh! : Sh((C/K)total) → Sh(C) left adjoint to a−1 :
Sh(C)→ Sh((C/K)total),

(2) there is a functor a! : Ab((C/K)total) → Ab(C) left adjoint to a−1 :
Ab(C)→ Ab((C/K)total),

(3) the functor a−1 associates to F in Sh(C) the sheaf on (C/K)total wich in
degree n is equal to a−1

n F ,
(4) the functor a∗ associates to G in Ab((C/K)total) the equalizer of the two

maps j0,∗G0 → j1,∗G1,

Proof. Parts (3) and (4) hold for any augmentation of a simplicial site, see Lemma
85.4.2. Parts (1) and (2) follow as jtotal is continuous and cocontinuous. The
functor aSh! is constructed in Sites, Lemma 7.21.5 and the functor a! is constructed
in Modules on Sites, Lemma 18.16.2. □

https://stacks.math.columbia.edu/tag/0D8B
https://stacks.math.columbia.edu/tag/09WM
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Lemma 85.16.3.0DC0 Let C be a site. Let K be a simplicial object of SR(C). Let U/Un,i
be an object of C/Kn. Let F ∈ Ab((C/K)total). Then

Hp(U,F) = Hp(U,Fn,i)
where

(1) on the left hand side U is viewed as an object of Ctotal, and
(2) on the right hand side Fn,i is the ith component of the sheaf Fn on C/Kn

in the decomposition Sh(C/Kn) =
∏

Sh(C/Un,i) of Section 85.15.

Proof. This follows immediately from Lemma 85.8.6 and the product decomposi-
tions of Section 85.15. □

Remark 85.16.4 (Variant for over an object).0D8C Let C be a site. Let X ∈ Ob(C).
Recall that we have a category SR(C, X) = SR(C/X) of semi-representable objects
over X, see Remark 85.15.5. We may apply the above discussion to the site C/X.
Briefly, the constructions above give

(1) a site (C/K)total for a simplicial K object of SR(C, X),
(2) a localization functor jtotal : (C/K)total → C/X,
(3) localization functors jn : C/Kn → C/X,
(4) a morphism of topoi a : Sh((C/K)total)→ Sh(C/X),
(5) morphisms of topoi an : Sh(C/Kn)→ Sh(C/X),
(6) a functor aSh! : Sh((C/K)total)→ Sh(C/X) left adjoint to a−1, and
(7) a functor a! : Ab((C/K)total)→ Ab(C/X) left adjoint to a−1.

All of the results of this section hold in this setting. To prove this one replaces the
site C everywhere by C/X.

Remark 85.16.5 (Ringed variant).0D9W Let C be a site. Let OC be a sheaf of rings.
Given a simplicial semi-representable object K of C we set O = a−1OC , where a is
as in Lemmas 85.16.1 and 85.16.2. The constructions above, keeping track of the
sheaves of rings as in Remark 85.15.6, give

(1) a ringed site ((C/K)total,O) for a simplicial K object of SR(C),
(2) a morphism of ringed topoi a : (Sh((C/K)total),O)→ (Sh(C),OC),
(3) morphisms of ringed topoi an : (Sh(C/Kn),On)→ (Sh(C),OC),
(4) a functor a! : Mod(O)→ Mod(OC) left adjoint to a∗.

The functor a! exists (but in general is not exact) because a−1OC = O and we
can replace the use of Modules on Sites, Lemma 18.16.2 in the proof of Lemma
85.16.2 by Modules on Sites, Lemma 18.41.1. As discussed in Remark 85.15.6 there
are exact functors an! : Mod(On) → Mod(OC) left adjoint to a∗

n. Consequently,
the morphisms a and an are flat. Remark 85.15.6 implies the morphism of ringed
topoi fφ : (Sh(C/Kn),On) → (Sh(C/Km),Om) for φ : [m] → [n] is flat and there
exists an exact functor fφ! : Mod(On) → Mod(Om) left adjoint to f∗

φ. This in
turn implies that for the flat morphism of ringed topoi gn : (Sh(C/Kn),On) →
(Sh((C/K)total),O) the functor gn! : Mod(On) → Mod(O) left adjoint to g∗

n is
exact, see Lemma 85.6.3.

Remark 85.16.6 (Ringed variant over an object).0D9X Let C be a site. Let OC be a
sheaf of rings. Let X ∈ Ob(C) and denote OX = OC |C/X . Then we can combine
the constructions given in Remarks 85.16.4 and 85.16.5 to get

(1) a ringed site ((C/K)total,O) for a simplicial K object of SR(C, X),
(2) a morphism of ringed topoi a : (Sh((C/K)total),O)→ (Sh(C/X),OX),

https://stacks.math.columbia.edu/tag/0DC0
https://stacks.math.columbia.edu/tag/0D8C
https://stacks.math.columbia.edu/tag/0D9W
https://stacks.math.columbia.edu/tag/0D9X
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(3) morphisms of ringed topoi an : (Sh(C/Kn),On)→ (Sh(C/X),OX),
(4) a functor a! : Mod(O)→ Mod(OX) left adjoint to a∗.

Of course, all the results mentioned in Remark 85.16.5 hold in this setting as well.

85.17. Cohomological descent for hypercoverings

0D8D Let C be a site. In this section we assume C has equalizers and fibre products. We
let K be a hypercovering as defined in Hypercoverings, Definition 25.6.1. We will
study the augmentation

a : Sh((C/K)total) −→ Sh(C)

of Section 85.16.

Lemma 85.17.1.0D8E Let C be a site with equalizers and fibre products. Let K be a
hypercovering. Then

(1) a−1 : Sh(C) → Sh((C/K)total) is fully faithful with essential image the
cartesian sheaves of sets,

(2) a−1 : Ab(C) → Ab((C/K)total) is fully faithful with essential image the
cartesian sheaves of abelian groups.

In both cases a∗ provides the quasi-inverse functor.

Proof. The case of abelian sheaves follows immediately from the case of sheaves
of sets as the functor a−1 commutes with products. In the rest of the proof we
work with sheaves of sets. Observe that a−1F is cartesian for F in Sh(C) by
Lemma 85.12.3. It suffices to show that the adjunction map F → a∗a

−1F is
an isomorphism F in Sh(C) and that for a cartesian sheaf G on (C/K)total the
adjunction map a−1a∗G → G is an isomorphism.

Let F be a sheaf on C. Recall that a∗a
−1F is the equalizer of the two maps

a0,∗a
−1
0 F → a1,∗a

−1
1 F , see Lemma 85.16.2. By Lemma 85.15.2

a0,∗a
−1
0 F = Hom(F (K0)#,F) and a1,∗a

−1
1 F = Hom(F (K1)#,F)

On the other hand, we know that

F (K1)# //
// F (K0)# // final object ∗ of Sh(C)

is a coequalizer diagram in sheaves of sets by definition of a hypercovering. Thus
it suffices to prove that Hom(−,F) transforms coequalizers into equalizers which is
immediate from the construction in Sites, Section 7.26.

Let G be a cartesian sheaf on (C/K)total. We will show that G = a−1F for some
sheaf F on C. This will finish the proof because then a−1a∗G = a−1a∗a

−1F =
a−1F = G by the result of the previous paragraph. Set Kn = F (Kn)# for n ≥ 0.
Then we have maps of sheaves

K2
// //// K1

//// K0

coming from the fact that K is a simplicial semi-representable object. The fact
that K is a hypercovering means that

K1 → K0 ×K0 and K2 →
(

cosk1( K1
//// K0oo )

)
2

https://stacks.math.columbia.edu/tag/0D8E
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are surjective maps of sheaves. Using the description of cartesian sheaves on
(C/K)total given in Lemma 85.12.4 and using the description of Sh(C/Kn) in Lemma
85.15.3 we find that our problem can be entirely formulated3 in terms of

(1) the topos Sh(C), and
(2) the simplicial object K in Sh(C) whose terms are Kn.

Thus, after replacing C by a different site C′ as in Sites, Lemma 7.29.5, we may
assume C has all finite limits, the topology on C is subcanonical, a family {Vj → V }
of morphisms of C is a covering if and only if

∐
hVj → V is surjective, and there

exists a simplicial object U of C such that Kn = hUn as simplicial sheaves. Working
backwards through the equivalences we may assume Kn = {Un} for all n.
Let X be the final object of C. Then {U0 → X} is a covering, {U1 → U0×U0} is a
covering, and {U2 → (cosk1sk1U)2} is a covering. Let us use dni : Un → Un−1 and
snj : Un → Un+1 the morphisms corresponding to δni and σnj as in Simplicial, Defini-
tion 14.2.1. By abuse of notation, given a morphism c : V →W of C we denote the
morphism of topoi c : Sh(C/V )→ Sh(C/W ) by the same letter. Now G is given by
a sheaf G0 on C/U0 and an isomorphism α : (d1

1)−1G0 → (d1
0)−1G0 satisfying the co-

cycle condition on C/U2 formulated in Lemma 85.12.4. Since {U2 → (cosk1sk1U)2}
is a covering, the corresponding pullback functor on sheaves is faithful (small de-
tail omitted). Hence we may replace U by cosk1sk1U , because this replaces U2 by
(cosk1sk1U)2 and leaves U1 and U0 unchanged. Then

(d2
0, d

2
1, d

2
2) : U2 → U1 × U1 × U1

is a monomorphism whose its image on T -valued points is described in Simplicial,
Lemma 14.19.6. In particular, there is a morphism c fitting into a commutative
diagram

U1 ×(d1
1,d

1
0),U0×U0,(d1

1,d
1
0) U1

��

c
// U2

��
U1 × U1

(pr1,pr2,s
0
0◦d1

1◦pr1) // U1 × U1 × U1

as going around the other way defines a point of U2. Pulling back the cocycle
condition for α on U2 translates into the condition that the pullbacks of α via the
projections to U1 ×(d1

1,d
1
0),U0×U0,(d1

1,d
1
0) U1 are the same as the pullback of α via

s0
0 ◦ d1

1 ◦ pr1 is the identity map (namely, the pullback of α by s0
0 is the identity).

By Sites, Lemma 7.26.1 this means that α comes from an isomorphism
α′ : pr−1

1 G0 → pr−1
2 G0

of sheaves on C/U0×U0. Then finally, the morphism U2 → U0×U0×U0 is surjective
on associated sheaves as is easily seen using the surjectivity of U1 → U0 × U0 and
the description of U2 given above. Therefore α′ satisfies the cocycle condition on
U0×U0×U0. The proof is finished by an application of Sites, Lemma 7.26.5 to the
covering {U0 → X}. □

3Even though it does not matter what the precise formulation is, we spell it out: the problem
is to show that given an object G0/K0 of Sh(C)/K0 and an isomorphism

α : G0 ×K0,K(δ1
1) K1 → G0 ×K0,K(δ1

0) K1

over K1 satisfying a cocycle condtion in Sh(C)/K2, there exists F in Sh(C) and an isomorphism
F ×K0 → G0 over K0 compatible with α.
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Lemma 85.17.2.0D8F Let C be a site with equalizers and fibre products. Let K be a
hypercovering. The Čech complex of Lemma 85.9.2 associated to a−1F

a0,∗a
−1
0 F → a1,∗a

−1
1 F → a2,∗a

−1
2 F → . . .

is equal to the complex Hom(s(Z#
F (K)),F). Here s(Z#

F (K)) is as in Hypercoverings,
Definition 25.4.1.

Proof. By Lemma 85.15.2 we have
an,∗a

−1
n F = Hom′(F (Kn)#,F)

where Hom′ is as in Sites, Section 7.26. The boundary maps in the complex of
Lemma 85.9.2 come from the simplicial structure. Thus the equality of complexes
comes from the canonical identifications Hom′(G,F) = Hom(ZG ,F) for G in Sh(C).

□

Lemma 85.17.3.0D8G Let C be a site with equalizers and fibre products. Let K be a
hypercovering. For E ∈ D(C) the map

E −→ Ra∗a
−1E

is an isomorphism.

Proof. First, let I be an injective abelian sheaf on C. Then the spectral sequence
of Lemma 85.9.3 for the sheaf a−1I degenerates as (a−1I)p = a−1

p I is injective by
Lemma 85.15.4. Thus the complex

a0,∗a
−1
0 I → a1,∗a

−1
1 I → a2,∗a

−1
2 I → . . .

computesRa∗a
−1I. By Lemma 85.17.2 this is equal to the complexHom(s(Z#

F (K)), I).
Because K is a hypercovering, we see that s(Z#

F (K)) is exact in degrees > 0 by Hy-
percoverings, Lemma 25.4.4 applied to the simplicial presheaf F (K). Since I is
injective, the functor Hom(−, I) is exact and we conclude that Hom(s(Z#

F (K)), I)
is exact in positive degrees. We conclude that Rpa∗a

−1I = 0 for p > 0. On the
other hand, we have I = a∗a

−1I by Lemma 85.17.1.
Bounded case. Let E ∈ D+(C). Choose a bounded below complex I• of injec-
tives representing E. By the result of the first paragraph and Leray’s acyclicity
lemma (Derived Categories, Lemma 13.16.7) Ra∗a

−1I• is computed by the com-
plex a∗a

−1I• = I• and we conclude the lemma is true in this case.
Unbounded case. We urge the reader to skip this, since the argument is the same
as above, except that we use explicit representation by double complexes to get
around convergence issues. Let E ∈ D(C). To show the map E → Ra∗a

−1E is an
isomorphism, it suffices to show for every object U of C that

RΓ(U,E) = RΓ(U,Ra∗a
−1E)

We will compute both sides and show the map E → Ra∗a
−1E induces an iso-

morphism. Choose a K-injective complex I• representing E. Choose a quasi-
isomorphism a−1I• → J • for some K-injective complex J • on (C/K)total. We
have

RΓ(U,E) = RHom(Z#
U , E)

and
RΓ(U,Ra∗a

−1E) = RHom(Z#
U , Ra∗a

−1E) = RHom(a−1Z#
U , a

−1E)

https://stacks.math.columbia.edu/tag/0D8F
https://stacks.math.columbia.edu/tag/0D8G
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By Lemma 85.9.1 we have a quasi-isomorphism(
. . .→ g2!(a−1

2 Z#
U )→ g1!(a−1

1 Z#
U )→ g0!(a−1

0 Z#
U )
)
−→ a−1Z#

U

Hence RHom(a−1Z#
U , a

−1E) is equal to

RΓ((C/K)total, RHom(. . .→ g2!(a−1
2 Z#

U )→ g1!(a−1
1 Z#

U )→ g0!(a−1
0 Z#

U ),J •))
By the construction in Cohomology on Sites, Section 21.35 and since J • is K-
injective, we see that this is represented by the complex of abelian groups with
terms ∏

p+q=n
Hom(gp!(a−1

p Z#
U ),J q) =

∏
p+q=n

Hom(a−1
p Z#

U , g
−1
p J q)

See Cohomology on Sites, Lemmas 21.34.6 and 21.35.1 for more information. Thus
we find that RΓ(U,Ra∗a

−1E) is computed by the product total complex Totπ(B•,•)
with Bp,q = Hom(a−1

p Z#
U , g

−1
p J q). For the other side we argue similarly. First we

note that
s(Z#

F (K)) −→ Z
is a quasi-isomorphism of complexes on C by Hypercoverings, Lemma 25.4.4. Since
Z#
U is a flat sheaf of Z-modules we see that

s(Z#
F (K))⊗Z Z#

U −→ Z#
U

is a quasi-isomorphism. Therefore RHom(Z#
U , E) is equal to

RΓ(C, RHom(s(Z#
F (K))⊗Z Z#

U , I
•))

By the construction of RHom and since I• is K-injective, this is represented by
the complex of abelian groups with terms∏

p+q=n
Hom(Z#

Kp
⊗Z Z#

U , I
q) =

∏
p+q=n

Hom(a−1
p Z#

U , a
−1
p Iq)

The equality of terms follows from the fact that Z#
Kp
⊗ZZ#

U = ap!a
−1
p Z#

U by Modules
on Sites, Remark 18.27.10. Thus we find that RΓ(U,E) is computed by the product
total complex Totπ(A•,•) with Ap,q = Hom(a−1

p Z#
U , a

−1
p Iq).

Since I• is K-injective we see that a−1
p I• is K-injective, see Lemma 85.15.4. Since

J • is K-injective we see that g−1
p J • is K-injective, see Lemma 85.3.6. Both repre-

sent the object a−1
p E. Hence for every p ≥ 0 the map of complexes

Ap,• = Hom(a−1
p Z#

U , a
−1
p I•) −→ Hom(a−1

p Z#
U , g

−1
p J •) = Bp,•

induced by g−1
p applied to the given map a−1I• → J • is a quasi-isomorphisms as

these complexes both compute
RHom(a−1

p Z#
U , a

−1
p E)

By More on Algebra, Lemma 15.103.2 we conclude that the right vertical arrow in
the commutative diagram

RΓ(U,E) //

��

Totπ(A•,•)

��
RΓ(U,Ra∗a

−1E) // Totπ(B•,•)
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is a quasi-isomorphism. Since we saw above that the horizontal arrows are quasi-
isomorphisms, so is the left vertical arrow. □

Lemma 85.17.4.0D8H Let C be a site with equalizers and fibre products. Let K be a
hypercovering. Then we have a canonical isomorphism

RΓ(C, E) = RΓ((C/K)total, a−1E)

for E ∈ D(C).

Proof. This follows from Lemma 85.17.3 because RΓ((C/K)total,−) = RΓ(C,−) ◦
Ra∗ by Cohomology on Sites, Remark 21.14.4. □

Lemma 85.17.5.0D8I Let C be a site with equalizers and fibre products. Let K be
a hypercovering. Let A ⊂ Ab((C/K)total) denote the weak Serre subcategory of
cartesian abelian sheaves. Then the functor a−1 defines an equivalence

D+(C) −→ D+
A((C/K)total)

with quasi-inverse Ra∗.

Proof. Observe that A is a weak Serre subcategory by Lemma 85.12.6. The equiv-
alence is a formal consequence of the results obtained so far. Use Lemmas 85.17.1
and 85.17.3 and Cohomology on Sites, Lemma 21.28.5 □

We urge the reader to skip the following remark.

Remark 85.17.6.09X6 Let C be a site. Let G be a presheaf of sets on C. If C has
equalizers and fibre products, then we’ve defined the notion of a hypercovering of
G in Hypercoverings, Definition 25.6.1. We claim that all the results in this section
have a valid counterpart in this setting. To see this, define the localization C/G
of C at G exactly as in Sites, Lemma 7.30.3 (which is stated only for sheaves; the
topos Sh(C/G) is equal to the localization of the topos Sh(C) at the sheaf G#).
Then the reader easily shows that the site C/G has fibre products and equalizers
and that a hypercovering of G in C is the same thing as a hypercovering for the site
C/G. Hence replacing the site C by C/G in the lemmas on hypercoverings above we
obtain proofs of the corresponding results for hypercoverings of G. Example: for a
hypercovering K of G we have

RΓ(C/G, E) = RΓ((C/K)total, a−1E)

for E ∈ D+(C/G) where a : Sh((C/K)total) → Sh(C/G) is the canonical augmen-
tation. This is Lemma 85.17.4. Let RΓ(G,−) : D(C) → D(Ab) be defined as the
derived functor of the functor H0(G,−) = H0(G#,−) discussed in Hypercoverings,
Section 25.6 and Cohomology on Sites, Section 21.13. We have

RΓ(G, E) = RΓ(C/G, j−1E)

by the analogue of Cohomology on Sites, Lemma 21.7.1 for the localization fuctor
j : C/G → C. Putting everything together we obtain

RΓ(G, E) = RΓ((C/K)total, a−1j−1E) = RΓ((C/K)total, g−1E)

for E ∈ D+(C) where g : Sh((C/K)total)→ Sh(C) is the composition of a and j.

https://stacks.math.columbia.edu/tag/0D8H
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85.18. Cohomological descent for hypercoverings: modules

0D9Y Let C be a site. Let OC be a sheaf of rings. Assume C has equalizers and fibre
products and let K be a hypercovering as defined in Hypercoverings, Definition
25.6.1. We will study cohomological descent for the augmentation

a : (Sh((C/K)total),O) −→ (Sh(C),OC)

of Remark 85.16.5.

Lemma 85.18.1.0D9Z Let C be a site with equalizers and fibre products. Let OC be a
sheaf of rings. Let K be a hypercovering. With notation as above

a∗ : Mod(OC)→ Mod(O)

is fully faithful with essential image the cartesian O-modules. The functor a∗
provides the quasi-inverse.

Proof. Since a−1OC = O we have a∗ = a−1. Hence the lemma follows immediately
from Lemma 85.17.1. □

Lemma 85.18.2.0DA0 Let C be a site with equalizers and fibre products. Let OC be a
sheaf of rings. Let K be a hypercovering. For E ∈ D(OC) the map

E −→ Ra∗La
∗E

is an isomorphism.

Proof. Since a−1OC = O we have La∗ = a∗ = a−1. Moreover Ra∗ agrees with Ra∗
on abelian sheaves, see Cohomology on Sites, Lemma 21.20.7. Hence the lemma
follows immediately from Lemma 85.17.3. □

Lemma 85.18.3.0DA1 Let C be a site with equalizers and fibre products. Let OC be a
sheaf of rings. Let K be a hypercovering. Then we have a canonical isomorphism

RΓ(C, E) = RΓ((C/K)total, La∗E)

for E ∈ D(OC).

Proof. This follows from Lemma 85.18.2 because RΓ((C/K)total,−) = RΓ(C,−) ◦
Ra∗ by Cohomology on Sites, Remark 21.14.4 or by Cohomology on Sites, Lemma
21.20.5. □

Lemma 85.18.4.0DA2 Let C be a site with equalizers and fibre products. Let OC be a
sheaf of rings. Let K be a hypercovering. Let A ⊂ Mod(O) denote the weak Serre
subcategory of cartesian O-modules. Then the functor La∗ defines an equivalence

D+(OC) −→ D+
A(O)

with quasi-inverse Ra∗.

Proof. Observe that A is a weak Serre subcategory by Lemma 85.12.6 (the required
hypotheses hold by the discussion in Remark 85.16.5). The equivalence is a formal
consequence of the results obtained so far. Use Lemmas 85.18.1 and 85.18.2 and
Cohomology on Sites, Lemma 21.28.5. □

https://stacks.math.columbia.edu/tag/0D9Z
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85.19. Cohomological descent for hypercoverings of an object

0D8J In this section we assume C has fibre products and X ∈ Ob(C). We let K be a
hypercovering of X as defined in Hypercoverings, Definition 25.3.3. We will study
the augmentation

a : Sh((C/K)total) −→ Sh(C/X)
of Remark 85.16.4. Observe that C/X is a site which has equalizers and fibre prod-
ucts and that K is a hypercovering for the site C/X4 by Hypercoverings, Lemma
25.3.9. This means that every single result proved for hypercoverings in Section
85.17 has an immediate analogue in the situation in this section.

Lemma 85.19.1.0D8K Let C be a site with fibre products and X ∈ Ob(C). Let K be a
hypercovering of X. Then

(1) a−1 : Sh(C/X)→ Sh((C/K)total) is fully faithful with essential image the
cartesian sheaves of sets,

(2) a−1 : Ab(C/X)→ Ab((C/K)total) is fully faithful with essential image the
cartesian sheaves of abelian groups.

In both cases a∗ provides the quasi-inverse functor.

Proof. Via Remarks 85.15.5 and 85.16.4 and the discussion in the introduction to
this section this follows from Lemma 85.17.1. □

Lemma 85.19.2.0D8L Let C be a site with fibre product and X ∈ Ob(C). Let K be a
hypercovering of X. For E ∈ D(C/X) the map

E −→ Ra∗a
−1E

is an isomorphism.

Proof. Via Remarks 85.15.5 and 85.16.4 and the discussion in the introduction to
this section this follows from Lemma 85.17.3. □

Lemma 85.19.3.09X7 Let C be a site with fibre products and X ∈ Ob(C). Let K be a
hypercovering of X. Then we have a canonical isomorphism

RΓ(X,E) = RΓ((C/K)total, a−1E)
for E ∈ D(C/X).

Proof. Via Remarks 85.15.5 and 85.16.4 this follows from Lemma 85.17.4. □

Lemma 85.19.4.0D8M Let C be a site with fibre products and X ∈ Ob(C). Let K be a
hypercovering of X. Let A ⊂ Ab((C/K)total) denote the weak Serre subcategory
of cartesian abelian sheaves. Then the functor a−1 defines an equivalence

D+(C/X) −→ D+
A((C/K)total)

with quasi-inverse Ra∗.

Proof. Via Remarks 85.15.5 and 85.16.4 this follows from Lemma 85.17.5. □

4The converse may not be the case, i.e., if K is a simplicial object of SR(C, X) = SR(C/X)
which defines a hypercovering for the site C/X as in Hypercoverings, Definition 25.6.1, then it
may not be true that K defines a hypercovering of X. For example, if K0 = {U0,i}i∈I0 then
the latter condition guarantees {U0,i → X} is a covering of C whereas the former condition only
requires

∐
h#
U0,i
→ h#

X to be a surjective map of sheaves.

https://stacks.math.columbia.edu/tag/0D8K
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85.20. Cohomological descent for hypercoverings of an object: modules

0DA3 In this section we assume C has fibre products and X ∈ Ob(C). We let K be a
hypercovering of X as defined in Hypercoverings, Definition 25.3.3. Let OC be a
sheaf of rings on C. Set OX = OC |C/X . We will study the augmentation

a : (Sh((C/K)total),O) −→ (Sh(C/X),OX)

of Remark 85.16.6. Observe that C/X is a site which has equalizers and fibre
products and that K is a hypercovering for the site C/X. Therefore the results
in this section are immediate consequences of the corresponding results in Section
85.18.

Lemma 85.20.1.0DA4 Let C be a site with fibre products and X ∈ Ob(C). Let OC be a
sheaf of rings. Let K be a hypercovering of X. With notation as above

a∗ : Mod(OX)→ Mod(O)

is fully faithful with essential image the cartesian O-modules. The functor a∗
provides the quasi-inverse.

Proof. Via Remarks 85.15.7 and 85.16.6 and the discussion in the introduction to
this section this follows from Lemma 85.18.1. □

Lemma 85.20.2.0DA5 Let C be a site with fibre products and X ∈ Ob(C). Let OC be a
sheaf of rings. Let K be a hypercovering of X. For E ∈ D(OX) the map

E −→ Ra∗La
∗E

is an isomorphism.

Proof. Via Remarks 85.15.7 and 85.16.6 and the discussion in the introduction to
this section this follows from Lemma 85.18.2. □

Lemma 85.20.3.0DA6 Let C be a site with fibre products and X ∈ Ob(C). Let OC
be a sheaf of rings. Let K be a hypercovering of X. Then we have a canonical
isomorphism

RΓ(X,E) = RΓ((C/K)total, La∗E)
for E ∈ D(OC).

Proof. Via Remarks 85.15.7 and 85.16.6 and the discussion in the introduction to
this section this follows from Lemma 85.18.3. □

Lemma 85.20.4.0DA7 Let C be a site with fibre products and X ∈ Ob(C). Let OC be
a sheaf of rings. Let K be a hypercovering of X. Let A ⊂ Mod(O) denote the
weak Serre subcategory of cartesian O-modules. Then the functor La∗ defines an
equivalence

D+(OX) −→ D+
A(O)

with quasi-inverse Ra∗.

Proof. Via Remarks 85.15.7 and 85.16.6 and the discussion in the introduction to
this section this follows from Lemma 85.18.4. □
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85.21. Hypercovering by a simplicial object of the site

09X8 Let C be a site with fibre products and let X ∈ Ob(C). In this section we elucidate
the results of Section 85.19 in the case that our hypercovering is given by a simplicial
object of the site. Let U be a simplicial object of C. As usual we denote Un = U([n])
and fφ : Un → Um the morphism fφ = U(φ) corresponding to φ : [m] → [n].
Assume we have an augmentation

a : U → X

From this we obtain a simplicial site (C/U)total and an augmentation morphism

a : Sh((C/U)total) −→ Sh(C/X)

Namely, from U we obtain a simiplical object K of SR(C, X) with degree n part
Kn = {Un → X} and we can apply the constructions in Remark 85.16.4. More
precisely, an object of the site (C/U)total is given by a V/Un and a morphism
(φ, f) : V/Un →W/Um is given by a morphism φ : [m]→ [n] in ∆ and a morphism
f : V →W such that the diagram

V
f
//

��

W

��
Un

fφ // Um

is commutative. The morphism of topoi a is given by the cocontinuous functor
V/Un 7→ V/X. That’s all folks!

In this section we will say the augmentation a : U → X is a hypercovering of X in
C if the following hold

(1) {U0 → X} is a covering of C,
(2) {U1 → U0 ×X U0} is a covering of C,
(3) {Un+1 → (cosknsknU)n+1} is a covering of C for n ≥ 1.

This is equivalent to the condition that K (as above) is a hypercovering of X, see
Hypercoverings, Example 25.3.5.

Lemma 85.21.1.0DA8 Let C be a site with fibre product and X ∈ Ob(C). Let a : U → X
be a hypercovering of X in C as defined above. Then

(1) a−1 : Sh(C/X)→ Sh((C/U)total) is fully faithful with essential image the
cartesian sheaves of sets,

(2) a−1 : Ab(C/X)→ Ab((C/U)total) is fully faithful with essential image the
cartesian sheaves of abelian groups.

In both cases a∗ provides the quasi-inverse functor.

Proof. This is a special case of Lemma 85.19.1. □

Lemma 85.21.2.0D8N Let C be a site with fibre product and X ∈ Ob(C). Let a : U → X
be a hypercovering of X in C as defined above. For E ∈ D(C/X) the map

E −→ Ra∗a
−1E

is an isomorphism.

Proof. This is a special case of Lemma 85.19.2. □

https://stacks.math.columbia.edu/tag/0DA8
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Lemma 85.21.3.09X9 Let C be a site with fibre products and X ∈ Ob(C). Let a :
U → X be a hypercovering of X in C as defined above. Then we have a canonical
isomorphism

RΓ(X,E) = RΓ((C/U)total, a−1E)
for E ∈ D(C/X).

Proof. This is a special case of Lemma 85.19.3. □

Lemma 85.21.4.0DA9 Let C be a site with fibre product and X ∈ Ob(C). Let a : U → X
be a hypercovering of X in C as defined above. Let A ⊂ Ab((C/U)total) denote the
weak Serre subcategory of cartesian abelian sheaves. Then the functor a−1 defines
an equivalence

D+(C/X) −→ D+
A((C/U)total)

with quasi-inverse Ra∗.

Proof. This is a special case of Lemma 85.19.4 □

Lemma 85.21.5.09WL Let U be a simplicial object of a site C with fibre products.
(1) C/U has the structure of a simplicial object in the category whose objects

are sites and whose morphisms are morphisms of sites,
(2) the construction of Lemma 85.3.1 applied to the structure in (1) repro-

duces the site (C/U)total above,
(3) if a : U → X is an augmentation, then a0 : C/U0 → C/X is an augmenta-

tion as in Remark 85.4.1 part (A) and gives the same morphism of topoi
a : Sh((C/U)total)→ Sh(C/X) as the one above.

Proof. Given a morphism of objects V → W of C the localization morphism j :
C/V → C/W is a left adjoint to the base change functor C/W → C/V . The base
change functor is continuous and induces the same morphism of topoi as j. See
Sites, Lemma 7.27.3. This proves (1).

Part (2) holds because a morphism V/Un →W/Um of the category constructed in
Lemma 85.3.1 is a morphism V →W ×Um,fφ Un over Un which is the same thing as
a morphism f : V → W over the morphism fφ : Un → Um, i.e., the same thing as
a morphism in the category (C/U)total defined above. Equality of sets of coverings
is immediate from the definition.

We omit the proof of (3). □

85.22. Hypercovering by a simplicial object of the site: modules

0DAA Let C be a site with fibre products and X ∈ Ob(C). Let OC be a sheaf of rings on
C. Let U → X be a hypercovering of X in C as defined in Section 85.21. In this
section we study the augmentation

a : (Sh((C/U)total),O) −→ (Sh(C/X),OX)

we obtain by thinking of U as a simiplical semi-representable object of C/X whose
degree n part is the singleton element {Un/X} and applying the constructions in
Remark 85.16.6. Thus all the results in this section are immediate consequences of
the corresponding results in Section 85.20.
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Lemma 85.22.1.0DAB Let C be a site with fibre products and X ∈ Ob(C). Let OC be a
sheaf of rings. Let U be a hypercovering of X in C. With notation as above

a∗ : Mod(OX)→ Mod(O)

is fully faithful with essential image the cartesian O-modules. The functor a∗
provides the quasi-inverse.

Proof. This is a special case of Lemma 85.20.1. □

Lemma 85.22.2.0DAC Let C be a site with fibre products and X ∈ Ob(C). Let OC be a
sheaf of rings. Let U be a hypercovering of X in C. For E ∈ D(OX) the map

E −→ Ra∗La
∗E

is an isomorphism.

Proof. This is a special case of Lemma 85.20.2. □

Lemma 85.22.3.0DAD Let C be a site with fibre products and X ∈ Ob(C). Let OC be
a sheaf of rings. Let U be a hypercovering of X in C. Then we have a canonical
isomorphism

RΓ(X,E) = RΓ((C/U)total, La∗E)
for E ∈ D(OC).

Proof. This is a special case of Lemma 85.20.3. □

Lemma 85.22.4.0DAE Let C be a site with fibre products and X ∈ Ob(C). Let OC be a
sheaf of rings. Let U be a hypercovering of X in C. Let A ⊂ Mod(O) denote the
weak Serre subcategory of cartesian O-modules. Then the functor La∗ defines an
equivalence

D+(OX) −→ D+
A(O)

with quasi-inverse Ra∗.

Proof. This is a special case of Lemma 85.20.4. □

85.23. Unbounded cohomological descent for hypercoverings

0DC1 In this section we discuss unbounded cohomological descent. The results themselves
will be immediate consequences of our results on bounded cohomological descent
in the previous sections and Cohomology on Sites, Lemmas 21.28.6 and/or 21.28.7;
the real work lies in setting up notation and choosing appropriate assumptions.
Our discussion is motivated by the discussion in [LO08a] although the details are
a good bit different.

Let (C,OC) be a ringed site. Assume given for every object U of C a weak Serre
subcategory AU ⊂ Mod(OU ) satisfying the following properties

(1)0DC2 given a morphism U → V of C the restriction functor Mod(OV ) →
Mod(OU ) sends AV into AU ,

(2)0DC3 given a covering {Ui → U}i∈I of C an object F of Mod(OU ) is in AU if
and only if the restriction of F to C/Ui is in AUi for all i ∈ I.

(3)0DC4 there exists a subset B ⊂ Ob(C) such that
(a) every object of C has a covering whose members are in B, and
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(b) for every V ∈ B there exists an integer dV and a cofinal system CovV
of coverings of V such that

Hp(Vi,F) = 0 for {Vi → V } ∈ CovV , p > dV , and F ∈ Ob(AV )

Note that we require this to be true for F in AV and not just for “global” objects
(and thus it is stronger than the condition imposed in Cohomology on Sites, Situ-
ation 21.25.1). In this situation, there is a weak Serre subcategory A ⊂ Mod(OC)
consisting of objects whose restriction to C/U is in AU for all U ∈ Ob(C). Moreover,
there are derived categoriesDA(OC) andDAU

(OU ) and the restriction functors send
these into each other.

Example 85.23.1.0DC5 Let S be a scheme and let X be an algebraic space over S. Let
C = Xspaces,étale be the étale site on the category of algebraic spaces étale over X,
see Properties of Spaces, Definition 66.18.2. Denote OC the structure sheaf, i.e., the
sheaf given by the rule U 7→ Γ(U,OU ). Denote AU the category of quasi-coherent
OU -modules. Let B = Ob(C) and for V ∈ B set dV = 0 and let CovV denote the
coverings {Vi → V } with Vi affine for all i. Then the assumptions (1), (2), (3)
are satisfied. See Properties of Spaces, Lemmas 66.29.2 and 66.29.7 for properties
(1) and (2) and the vanishing in (3) follows from Cohomology of Schemes, Lemma
30.2.2 and the discussion in Cohomology of Spaces, Section 69.3.

Example 85.23.2.0DC6 Let S be one of the following types of schemes
(1) the spectrum of a finite field,
(2) the spectrum of a separably closed field,
(3) the spectrum of a strictly henselian Noetherian local ring,
(4) the spectrum of a henselian Noetherian local ring with finite residue field,
(5) add more here.

Let Λ be a finite ring whose order is invertible on S. Let C ⊂ (Sch/S)étale be the
full subcategory consisting of schemes locally of finite type over S endowed with
the étale topology. Let OC = Λ be the constant sheaf. Set AU = Mod(OU ), in
other words, we consider all étale sheaves of Λ-modules. Let B ⊂ Ob(C) be the set
of quasi-compact objects. For V ∈ B set

dV = 1 + 2 dim(S) + supv∈V (trdegκ(s)(κ(v)) + 2 dimOV,v)

and let CovV denote the étale coverings {Vi → V } with Vi quasi-compact for
all i. Our choice of bound dV comes from Gabber’s theorem on cohomological
dimension. To see that condition (3) holds with this choice, use [ILO14, Exposé
VIII-A, Corollary 1.2 and Lemma 2.2] plus elementary arguments on cohomological
dimensions of fields. We add 1 to the formula because our list contains cases where
we allow S to have finite residue field. We will come back to this example later
(insert future reference).

Let (C,OC) be a ringed site. Assume given weak Serre subcategoriesAU ⊂ Mod(OU )
satisfying condition (1). Then

(1) given a semi-representable object K = {Ui}i∈I we get a weak Serre sub-
category AK ⊂ Mod(OK) by taking

∏
AUi ⊂

∏
Mod(OUi) = Mod(OK),

and
(2) given a morphism of semi-representable objects f : K → L the pullback

map f∗ : Mod(OL)→ Mod(OL) sends AL into AK .
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See Remark 85.15.6 for notation and explanation. In particular, given a simplicial
semi-representable object K it is unambiguous to say what it means for an object
F of Mod(O) as in Remark 85.16.5 to have restrictions Fn in AKn for all n.

Lemma 85.23.3.0DC7 Let (C,OC) be a ringed site. Assume given weak Serre subcate-
gories AU ⊂ Mod(OU ) satisfying conditions (1), (2), and (3) above. Assume C has
equalizers and fibre products and let K be a hypercovering. Let ((C/K)total,O) be
as in Remark 85.16.5. Let Atotal ⊂ Mod(O) denote the weak Serre subcategory of
cartesian O-modules F whose restriction Fn is in AKn for all n (as defined above).
Then the functor La∗ defines an equivalence

DA(OC) −→ DAtotal
(O)

with quasi-inverse Ra∗.

Proof. The cartesian O-modules form a weak Serre subcategory by Lemma 85.12.6
(the required hypotheses hold by the discussion in Remark 85.16.5). Since the
restriction functor g∗

n : Mod(O) → Mod(On) are exact, it follows that Atotal is a
weak Serre subcategory.

Let us show that a∗ : A → Atotal is an equivalence of categories with inverse given
by La∗. We already know that La∗a

∗F = F by the bounded version (Lemma
85.18.4). It is clear that a∗F is in Atotal for F in A. Conversely, assume that
G ∈ Atotal. Because G is cartesian we see that G = a∗F for some OC-module F by
Lemma 85.18.1. We want to show that F is in A. Take U ∈ Ob(C). We have to
show that the restriction of F to C/U is in AU . As usual, write K0 = {U0,i}i∈I0 .
Since K is a hypercovering, the map

∐
i∈I0

hU0,i → ∗ becomes surjective after
sheafification. This implies there is a covering {Uj → U}j∈J and a map τ : J → I0
and for each j ∈ J a morphism φj : Uj → U0,τ(j). Since G0 = a∗

0F we find that the
restriction of F to C/Uj is equal to the restriction of the τ(j)th component of G0
to C/Uj via the morphism φj : Uj → U0,τ(i). Hence by (1) we find that F|C/Uj is
in AUj and in turn by (2) we find that F|C/U is in AU .

In particular the statement of the lemma makes sense. The lemma now follows
from Cohomology on Sites, Lemma 21.28.6. Assumption (1) is clear (see Remark
85.16.5). Assumptions (2) and (3) we proved in the preceding paragraph. As-
sumption (4) is immediate from (3). For assumption (5) let Btotal be the set of
objects U/Un,i of the site (C/K)total such that U ∈ B where B is as in (3). Here
we use the description of the site (C/K)total given in Section 85.16. Moreover, we
set CovU/Un,i equal to CovU and dU/Un,i equal dU where CovU and dU are given to
us by (3). Then we claim that condition (5) holds with these choices. This follows
immediately from Lemma 85.16.3 and the fact that F ∈ Atotal implies Fn ∈ AKn
and hence Fn,i ∈ AUn,i . (The reader who worries about the difference between co-
homology of abelian sheaves versus cohomology of sheaves of modules may consult
Cohomology on Sites, Lemma 21.12.4.) □

85.24. Glueing complexes

0DC8 This section is the continuation of Cohomology, Section 20.45. The goal is to prove
a slight generalization of [BBD82, Theorem 3.2.4]. Our method will be a tiny bit
different in that we use the material from Sections 85.13 and 85.14. We will also
reprove the unbounded version as it is proved in [LO08a].
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Advice to the reader: We suggest the reader first look at the statement of Lemma
85.24.5 as well as the second proof of this lemma.
Here is the situation we are interested in.
Situation 85.24.1.0DC9 Let (C,OC) be a ringed site. We are given

(1) a category B and a functor u : B → C,
(2) an object EU in D(Ou(U)) for U ∈ Ob(B),
(3) an isomorphism ρa : EU |C/u(V ) → EV in D(Ou(V )) for a : V → U in B

such that whenever we have composable arrows b : W → V and a : V → U of B,
then ρa◦b = ρb ◦ ρa|C/u(W ).
We won’t be able to prove anything about this without making more assumptions.
An interesting case is where B is a full subcategory such that every object of C has
a covering whose members are objects of B (this is the case considered in [BBD82]).
For us it is important to allow cases where this is not the case; the main alternative
case is where we have a morphism of sites f : C → D and B is a full subcategory of
D such that every object of D has a covering whose members are objects of B.
In Situation 85.24.1 a solution will be a pair (E, ρU ) where E is an object of D(OC)
and ρU : E|C/u(U) → EU for U ∈ Ob(B) are isomorphisms such that we have
ρa ◦ ρU |C/u(V ) = ρV for a : V → U in B.

Lemma 85.24.2.0DCA In Situation 85.24.1. Assume negative self-exts of EU in D(Ou(U))
are zero. Let L be a simplicial object of SR(B). Consider the simplicial object
K = u(L) of SR(C) and let ((C/K)total,O) be as in Remark 85.16.5. There exists a
cartesian object E of D(O) such that writing Ln = {Un,i}i∈In the restriction of E
to D(OC/u(Un,i)) is EUn,i compatibly (see proof for details). Moreover, E is unique
up to unique isomorphism.
Proof. Recall that Sh(C/Kn) =

∏
i∈In Sh(C/u(Un,i)) and similarly for the cate-

gories of modules. This product decomposition is also inherited by the derived
categories of sheaves of modules. Moreover, this product decomposition is compat-
ible with the morphisms in the simplicial semi-representable object K. See Section
85.15. Hence we can set En =

∏
i∈In EUn,i (“formal” product) in D(On). Tak-

ing (formal) products of the maps ρa of Situation 85.24.1 we obtain isomorphisms
Eφ : f∗

φEn → Em. The assumption about compostions of the maps ρa immediately
implies that (En, Eφ) defines a simplicial system of the derived category of mod-
ules as in Definition 85.14.1. The vanishing of negative exts assumed in the lemma
implies that Hom(En[t], En) = 0 for n ≥ 0 and t > 0. Thus by Lemma 85.14.7 we
obtain E. Uniqueness up to unique isomorphism follows from Lemmas 85.14.5 and
85.14.6. □

Lemma 85.24.3 (BBD glueing lemma).0DCB In Situation 85.24.1. Assume
(1) C has equalizers and fibre products,
(2) there is a morphism of sites f : C → D given by a continuous functor

u : D → C such that
(a) D has equalizers and fibre products and u commutes with them,
(b) B is a full subcategory of D and u : B → C is the restriction of u,
(c) every object of D has a covering whose members are objects of B,

(3) all negative self-exts of EU in D(Ou(U)) are zero, and
(4) there exists a t ∈ Z such that Hi(EU ) = 0 for i < t and U ∈ Ob(B).

https://stacks.math.columbia.edu/tag/0DC9
https://stacks.math.columbia.edu/tag/0DCA
https://stacks.math.columbia.edu/tag/0DCB
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Then there exists a solution unique up to unique isomorphism.

Proof. By Hypercoverings, Lemma 25.12.3 there exists a hypercovering L for the
site D such that Ln = {Un,i}i∈In with Ui,n ∈ Ob(B). Set K = u(L). Apply Lemma
85.24.2 to get a cartesian object E of D(O) on the site (C/K)total restricting to
EUn,i on C/u(Un,i) compatibly. The assumption on t implies that E ∈ D+(O). By
Hypercoverings, Lemma 25.12.4 we see that K is a hypercovering too. By Lemma
85.18.4 we find that E = a∗F for some F in D+(OC).

To prove that F is a solution we will use the construction of L0 and L1 given in the
proof of Hypercoverings, Lemma 25.12.3. (This is a bit inelegant but there does
not seem to be a completely straightforward way around it.)

Namely, we have I0 = Ob(B) and so L0 = {U}U∈Ob(B). Hence the isomorphism
a∗F → E restricted to the components C/u(U) of C/K0 defines isomorphisms
ρU : F |C/u(U) → EU for U ∈ Ob(B) by our choice of E.

To prove that ρU satisfy the requirement of compatibility with the maps ρa of
Situation 85.24.1 we use that I1 contains the set

Ω = {(U, V,W, a, b) | U, V,W ∈ B, a : U → V, b : U →W}

and that for i = (U, V,W, a, b) in Ω we have U1,i = U . Moreover, the component
maps fδ1

0 ,i
and fδ1

1 ,i
of the two morphisms K1 → K0 are the morphisms

a : U → V and b : U → V

Hence the compatibility mentioned in Lemma 85.24.2 gives that

ρa ◦ ρV |C/u(U) = ρU and ρb ◦ ρW |C/u(U) = ρU

Taking i = (U, V, U, a, idU ) ∈ Ω for example, we find that we have the desired
compatibility. The uniqueness of F follows from the uniqueness of E in the previous
lemma (small detail omitted). □

Lemma 85.24.4 (Unbounded BBD glueing lemma).0DCC In Situation 85.24.1. Assume
(1) C has equalizers and fibre products,
(2) there is a morphism of sites f : C → D given by a continuous functor

u : D → C such that
(a) D has equalizers and fibre products and u commutes with them,
(b) B is a full subcategory of D and u : B → C is the restriction of u,
(c) every object of D has a covering whose members are objects of B,

(3) all negative self-exts of EU in D(Ou(U)) are zero, and
(4) there exist weak Serre subcategories AU ⊂ Mod(OU ) for all U ∈ Ob(C)

satisfying conditions (1), (2), and (3),
(5) EU ∈ DAU

(OU ).
Then there exists a solution unique up to unique isomorphism.

Proof. The proof is exactly the same as the proof of Lemma 85.24.3. The only
change is that E is an object of DAtotal

(O) and hence we use Lemma 85.23.3 to
obtain F with E = a∗F instead of Lemma 85.18.4. □

Here is an example application of the general theory above.

https://stacks.math.columbia.edu/tag/0DCC
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Lemma 85.24.5.0GMG Email of Martin
Olsson dated Sep 9,
2021.

Let (C,OC) be a ringed site. Assume C has fibre products. Let
{Ui → X}i∈I be a covering in C. For i ∈ I let Ei be an object of D(OUi) and for
i, j ∈ I let

ρij : Ei|C/Uij −→ Ej |C/Uij
be an isomorphism in D(OUij ) where Uij = Ui ×X Uj . Assume

(1) the ρij satisfy the cocycle condition on Ui ×X Uj ×X Uk for all i, j, k ∈ I,
(2) ExtpOUi

(Ei, Ei) = 0 for all p < 0 and i ∈ I, and
(3) there exists a t ∈ Z such that Hp(Ei) = 0 for p < t and all i ∈ I.

Then there exists a unique pair (E, ρi) where E is an object of D(OX) and ρi :
E|Ui → Ei are isomorphisms in D(OUi) compatible with the ρij .

First proof. In this proof we deduce the lemma from the very general Lemma
85.24.3. We urge the reader to look at the second proof in stead.
We may replace C with C/X. Thus we may and do assume X is the final object of
C and that C has all finite limits.
Let B be the full subcategory of C consisting of U ∈ Ob(C) such that there exists
an i(U) ∈ I and a morphism aU : U → Ui(U). We denote EU = a∗

UEi(U) in D(OU )
the pullback (restriction) of Ei via aU . Given a morphism a : U → U ′ of B we
obtain a morphism (aU ′ ◦ a, aU ) : U → Ui(U ′) ×X Ui(U) = Ui(U ′)i(U) and hence an
isomorphism

ρa : a∗EU ′ = a∗a∗
U ′Ei(U ′)

(aU′ ◦a,aU )∗ρi(U′)i(U)−−−−−−−−−−−−−−→ a∗
UEi(U) = EU

in D(OU ). The data B, EU , ρa are as in Situation 85.24.1; the isomorphisms ρa
satisfy the cocycle condition exactly because of condition (1) in the statement of
the lemma (details omitted).
We are going to apply Lemma 85.24.3 with B, EU , ρa as above and with D = C and
f : C → D the identity morphism. Assumptions (1) and (2)(a) of Lemma 85.24.3
we have seen above. Assumption (2)(b) of Lemma 85.24.3 is clear. Assumption
(2)(c) of Lemma 85.24.3 holds because {Ui → X} is a covering5. Assumption (3)
of Lemma 85.24.3 holds because we have assumed the vanishing of all negative
Ext sheaves of Ei which certainly implies that for any object U lying over Ui the
negative self-Exts of Ei|U are zero. Assumption (4) of Lemma 85.24.3 holds because
we have assumed the cohomology sheaves of each Ei are zero to the left of t.
We obtain a unique solution (E, ρU ). Setting ρi = ρUi the lemma follows. □

Second proof. We sketch a more direct proof. Denote K the Čech hypercovering
of X associated to the covering {Ui → X}i∈I , see Hypercoverings, Example 25.3.4.
Thus for example K0 = {Ui → X}i∈I and K1 = {Ui ×X Uj → X}i,j∈I and so on.
Let ((C/K)total,O), a, an be as in Remark 85.16.6. The objects Ei determine an
object M0 in D(O0) =

∏
D(OUi). Similarly, the isomorphisms ρij determine an

isomorphism
α : L(fδ1

1
)∗M0 −→ L(fδ1

0
)∗M0

in D(O1) satisfying the cocycle condition. By Lemma 85.14.3 we obtain a cartesian
simplicial system (Mn) of the derived category. By the assumed vanishing of the

5In fact, it would suffice if the map
∐
i∈I hUi → hX becomes surjective on sheafification and

the lemma holds in this case with the same proof.

https://stacks.math.columbia.edu/tag/0GMG
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negative Ext sheaves we see that the objects Mn have vanishing negative self-exts.
Thus we find a cartesian object M of D(O) whose associated simplicial system is
isomorphic to (Mn) by Lemma 85.14.7. Since the cohomology sheaves of M are
zero in degrees < t we see that by Lemma 85.20.4 we have M = La∗E for some
E in D(OX). The isomorphism La∗E → M restricted to C/Ui produces the iso-
morphisms ρi. We omit the verification of the compatibility with the isomorphisms
ρij . □

85.25. Proper hypercoverings in topology

09XA Let’s work in the category LC of Hausdorff and locally quasi-compact topological
spaces and continuous maps, see Cohomology on Sites, Section 21.31. Let X be
an object of LC and let U be a simplicial object of LC. Assume we have an
augmentation

a : U → X

We say that U is a proper hypercovering of X if
(1) U0 → X is a proper surjective map,
(2) U1 → U0 ×X U0 is a proper surjective map,
(3) Un+1 → (cosknsknU)n+1 is a proper surjective map for n ≥ 1.

The category LC has all finite limits, hence the coskeleta used in the formulation
above exist.

Principle: Proper hypercoverings can be used to compute cohomology.

A key idea behind the proof of the principle is to find a topology on LC which is
stronger than the usual one such that (a) a surjective proper map defines a covering,
and (b) cohomology of usual sheaves with respect to this stronger topology agrees
with the usual cohomology. Properties (a) and (b) hold for the qc topology, see
Cohomology on Sites, Section 21.31. Once we have (a) and (b) we deduce the
principle via the earlier work done in this chapter.

Lemma 85.25.1.0DAF Let U be a simplicial object of LC and let a : U → X be an
augmentation. There is a commutative diagram

Sh((LCqc/U)total)
h
//

aqc

��

Sh(UZar)

a

��
Sh(LCqc/X)

h−1 // Sh(X)

where the left vertical arrow is defined in Section 85.21 and the right vertical arrow
is defined in Lemma 85.2.8.

Proof. Write Sh(X) = Sh(XZar). Observe that both (LCqc/U)total and UZar fall
into case A of Situation 85.3.3. This is immediate from the construction of UZar in
Section 85.2 and it follows from Lemma 85.21.5 for (LCqc/U)total. Next, consider
the functors Un,Zar → LCqc/Un, U 7→ U/Un and XZar → LCqc/X, U 7→ U/X.
We have seen that these define morphisms of sites in Cohomology on Sites, Section
21.31. Thus we obtain a morphism of simplicial sites compatible with augmenta-
tions as in Remark 85.5.4 and we may apply Lemma 85.5.5 to conclude. □

https://stacks.math.columbia.edu/tag/0DAF


85.25. PROPER HYPERCOVERINGS IN TOPOLOGY 6232

Lemma 85.25.2.0DAG Let U be a simplicial object of LC and let a : U → X be an
augmentation. If a : U → X gives a proper hypercovering of X, then

a−1 : Sh(X)→ Sh(UZar) and a−1 : Ab(X)→ Ab(UZar)

are fully faithful with essential image the cartesian sheaves and quasi-inverse given
by a∗. Here a : Sh(UZar)→ Sh(X) is as in Lemma 85.2.8.

Proof. We will prove the statement for sheaves of sets. It will be an almost formal
consequence of results already established. Consider the diagram of Lemma 85.25.1.
By Cohomology on Sites, Lemma 21.31.6 the functor (h−1)−1 is fully faithful with
quasi-inverse h−1,∗. The same holds true for the components hn of h. By the
description of the functors h−1 and h∗ of Lemma 85.5.2 we conclude that h−1 is
fully faithful with quasi-inverse h∗. Observe that U is a hypercovering of X in LCqc
(as defined in Section 85.21) by Cohomology on Sites, Lemma 21.31.4. By Lemma
85.21.1 we see that a−1

qc is fully faithful with quasi-inverse aqc,∗ and with essential
image the cartesian sheaves on (LCqc/U)total. A formal argument (chasing around
the diagram) now shows that a−1 is fully faithful.

Finally, suppose that G is a cartesian sheaf on UZar. Then h−1G is a cartesian sheaf
on LCqc/U . Hence h−1G = a−1

qc H for some sheaf H on LCqc/X. We compute

(h−1)−1(a∗G) = (h−1)−1Eq( a0,∗G0
//
// a1,∗G1 )

= Eq( (h−1)−1a0,∗G0
//
// (h−1)−1a1,∗G1 )

= Eq( aqc,0,∗h−1
0 G0

//
// aqc,1,∗h

−1
1 G1 )

= Eq( aqc,0,∗a−1
qc,0H

//
// aqc,1,∗a

−1
qc,1H )

= aqc,∗a
−1
qc H

= H

Here the first equality follows from Lemma 85.2.8, the second equality follows as
(h−1)−1 is an exact functor, the third equality follows from Cohomology on Sites,
Lemma 21.31.8 (here we use that a0 : U0 → X and a1 : U1 → X are proper),
the fourth follows from a−1

qc H = h−1G, the fifth from Lemma 85.4.2, and the sixth
we’ve seen above. Since a−1

qc H = h−1G we deduce that h−1G ∼= h−1a−1a∗G which
ends the proof by fully faithfulness of h−1. □

Lemma 85.25.3.09XS Let U be a simplicial object of LC and let a : U → X be an
augmentation. If a : U → X gives a proper hypercovering of X, then for K ∈
D+(X)

K → Ra∗(a−1K)

is an isomorphism where a : Sh(UZar)→ Sh(X) is as in Lemma 85.2.8.

Proof. Consider the diagram of Lemma 85.25.1. Observe that Rhn,∗h−1
n is the

identity functor on D+(Un) by Cohomology on Sites, Lemma 21.31.11. Hence

https://stacks.math.columbia.edu/tag/0DAG
https://stacks.math.columbia.edu/tag/09XS
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Rh∗h
−1 is the identity functor on D+(UZar) by Lemma 85.5.3. We have

Ra∗(a−1K) = Ra∗Rh∗h
−1a−1K

= Rh−1,∗Raqc,∗a
−1
qc (h−1)−1K

= Rh−1,∗(h−1)−1K

= K

The first equality by the discussion above, the second equality because of the com-
mutativity of the diagram in Lemma 85.25.1, the third equality by Lemma 85.21.2
(U is a hypercovering of X in LCqc by Cohomology on Sites, Lemma 21.31.4), and
the last equality by the already used Cohomology on Sites, Lemma 21.31.11. □

Lemma 85.25.4.09XC Let U be a simplicial object of LC and let a : U → X be an
augmentation. If U is a proper hypercovering of X, then

RΓ(X,K) = RΓ(UZar, a−1K)
for K ∈ D+(X) where a : Sh(UZar)→ Sh(X) is as in Lemma 85.2.8.

Proof. This follows from Lemma 85.25.3 because RΓ(UZar,−) = RΓ(X,−) ◦ Ra∗
by Cohomology on Sites, Remark 21.14.4. □

Lemma 85.25.5.0DAH Let U be a simplicial object of LC and let a : U → X be an
augmentation. Let A ⊂ Ab(UZar) denote the weak Serre subcategory of cartesian
abelian sheaves. If U is a proper hypercovering of X, then the functor a−1 defines
an equivalence

D+(X) −→ D+
A(UZar)

with quasi-inverse Ra∗ where a : Sh(UZar)→ Sh(X) is as in Lemma 85.2.8.

Proof. Observe that A is a weak Serre subcategory by Lemma 85.12.6. The equiv-
alence is a formal consequence of the results obtained so far. Use Lemmas 85.25.2
and 85.25.3 and Cohomology on Sites, Lemma 21.28.5. □

Lemma 85.25.6.09XB Let U be a simplicial object of LC and let a : U → X be an
augmentation. Let F be an abelian sheaf on X. Let Fn be the pullback to Un. If
U is a proper hypercovering of X, then there exists a canonical spectral sequence

Ep,q1 = Hq(Up,Fp)
converging to Hp+q(X,F).

Proof. Immediate consequence of Lemmas 85.25.4 and 85.2.10. □

85.26. Simplicial schemes

09XT A simplicial scheme is a simplicial object in the category of schemes, see Simplicial,
Definition 14.3.1. Recall that a simplicial scheme looks like

X2

//
//
//
X1

//
//oo

oo
X0oo

Here there are two morphisms d1
0, d

1
1 : X1 → X0 and a single morphism s0

0 : X0 →
X1, etc. These morphisms satisfy some required relations such as d1

0 ◦ s0
0 = idX0 =

d1
1 ◦ s0

0, see Simplicial, Lemma 14.3.2. It is useful to think of dni : Xn → Xn−1 as
the “projection forgetting the ith coordinate” and to think of snj : Xn → Xn+1 as
the “diagonal map repeating the jth coordinate”.

https://stacks.math.columbia.edu/tag/09XC
https://stacks.math.columbia.edu/tag/0DAH
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A morphism of simplicial schemes h : X → Y is the same thing as a morphism of
simplicial objects in the category of schemes, see Simplicial, Definition 14.3.1. Thus
h consists of morphisms of schemes hn : Xn → Yn such that hn−1 ◦ dnj = dnj ◦ hn
and hn+1 ◦ snj = snj ◦ hn whenever this makes sense.

An augmentation of a simplicial scheme X is a morphism of schemes a0 : X0 → S
such that a0 ◦ d1

0 = a0 ◦ d1
1. See Simplicial, Section 14.20.

Let X be a simplicial scheme. The construction of Section 85.2 applied to the
underlying simplicial topological space gives a site XZar. On the other hand, for
every n we have the small Zariski site Xn,Zar (Topologies, Definition 34.3.7) and
for every morphism φ : [m] → [n] we have a morphism of sites fφ = X(φ)small :
Xn,Zar → Xm,Zar, associated to the morphism of schemes X(φ) : Xn → Xm

(Topologies, Lemma 34.3.17). This gives a simplicial object C in the category of
sites. In Lemma 85.3.1 we constructed an associated site Ctotal. Assigning to an
open immersion its image defines an equivalence Ctotal → XZar which identifies
sheaves, i.e., Sh(Ctotal) = Sh(XZar). The difference between Ctotal and XZar is
similar to the difference between the small Zariski site SZar and the underlying
topological space of S. We will silently identify these sites in what follows.

Let XZar be the site associated to a simplicial scheme X. There is a sheaf of rings
O on XZar whose restriction to Xn is the structure sheaf OXn . This follows from
Lemma 85.2.2 or from Lemma 85.3.4. We will say O is the structure sheaf of the
simplicial scheme X. At this point all the material developed for simplicial (ringed)
sites applies, see Sections 85.3, 85.4, 85.5, 85.6, 85.8, 85.9, 85.10, 85.11, 85.12, 85.13,
and 85.14.

Let X be a simplicial scheme with structure sheaf O. As on any ringed topos, there
is a notion of a quasi-coherent O-module on XZar, see Modules on Sites, Definition
18.23.1. However, a quasi-coherent O-module on XZar is just a cartesian O-module
F whose restrictions Fn are quasi-coherent on Xn, see Lemma 85.12.10.

Let h : X → Y be a morphism of simplicial schemes. Either by Lemma 85.2.3 or by
(the proof of) Lemma 85.5.2 we obtain a morphism of sites hZar : XZar → YZar.
Recall that h−1

Zar and hZar,∗ have a simple description in terms of the components,
see Lemma 85.2.4 or Lemma 85.5.2. Let OX , resp. OY denote the structure sheaf
of X, resp. Y . We define h♯Zar : hZar,∗OX → OY to be the map of sheaves of rings
on YZar given by h♯n : hn,∗OXn → OYn on Yn. We obtain a morphism of ringed
sites

hZar : (XZar,OX) −→ (YZar,OY )

Let X be a simplicial scheme with structure sheaf O. Let S be a scheme and let
a0 : X0 → S be an augmentation of X. Either by Lemma 85.2.8 or by Lemma 85.4.2
we obtain a corresponding morphism of topoi a : Sh(XZar)→ Sh(S). Observe that
a−1G is the sheaf on XZar with components a−1

n G. Hence we can use the maps
a♯n : a−1

n OS → OXn to define a map a♯ : a−1OS → O, or equivalently by adjunction
a map a♯ : OS → a∗O (which as usual has the same name). This puts us in the
situation discussed in Section 85.11. Therefore we obtain a morphism of ringed
topoi

a : (Sh(XZar),O) −→ (Sh(S),OS)
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A final observation is the following. Suppose we are given a morphism h : X → Y
of simplicial schemes X and Y with structure sheaves OX , OY , augmentations
a0 : X0 → X−1, b0 : Y0 → Y−1 and a morphism h−1 : X−1 → Y−1 such that

X0
h0

//

a0

��

Y0

b0

��
X−1

h−1 // Y−1

commutes. Then from the constructions elucidated above we obtain a commutative
diagram of morphisms of ringed topoi as follows

(Sh(XZar),OX)
hZar

//

a

��

(Sh(YZar),OY )

b

��
(Sh(X−1),OX−1)

h−1 // (Sh(Y−1),OY−1)

85.27. Descent in terms of simplicial schemes

0248 Cartesian morphisms are defined as follows.

Definition 85.27.1.0249 Let a : Y → X be a morphism of simplicial schemes. We say a
is cartesian, or that Y is cartesian over X, if for every morphism φ : [n] → [m] of
∆ the corresponding diagram

Ym a
//

Y (φ)
��

Xm

X(φ)
��

Yn
a // Xn

is a fibre square in the category of schemes.

Cartesian morphisms are related to descent data. First we prove a general lemma
describing the category of cartesian simplicial schemes over a fixed simplicial scheme.
In this lemma we denote f∗ : Sch/X → Sch/Y the base change functor associated
to a morphism of schemes f : Y → X.

Lemma 85.27.2.07TC Let X be a simplicial scheme. The category of simplicial schemes
cartesian over X is equivalent to the category of pairs (V, φ) where V is a scheme
over X0 and

φ : V ×X0,d1
1
X1 −→ X1 ×d1

0,X0 V

is an isomorphism over X1 such that (s0
0)∗φ = idV and such that

(d2
1)∗φ = (d2

0)∗φ ◦ (d2
2)∗φ

as morphisms of schemes over X2.

Proof. The statement of the displayed equality makes sense because d1
1◦d2

2 = d1
1◦d2

1,
d1

1 ◦ d2
0 = d1

0 ◦ d2
2, and d1

0 ◦ d2
0 = d1

0 ◦ d2
1 as morphisms X2 → X0, see Simplicial,

https://stacks.math.columbia.edu/tag/0249
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Remark 14.3.3 hence we can picture these maps as follows
X2 ×d1

1◦d2
0,X0 V (d2

0)∗φ

// X2 ×d1
0◦d2

0,X0 V

X2 ×d1
0◦d2

2,X0 V X2 ×d1
0◦d2

1,X0 V

X2 ×d1
1◦d2

2,X0 V

(d2
2)∗φ

hh

X2 ×d1
1◦d2

1,X0 V

(d2
1)∗φ

66

and the condition signifies the diagram is commutative. It is clear that given a
simplicial scheme Y cartesian over X we can set V = Y0 and φ equal to the
composition

V ×X0,d1
1
X1 = Y0 ×X0,d1

1
X1 = Y1 = X1 ×X0,d1

0
Y0 = X1 ×X0,d1

0
V

of identifications given by the cartesian structure. To prove this functor is an
equivalence we construct a quasi-inverse. The construction of the quasi-inverse is
analogous to the construction discussed in Descent, Section 35.3 from which we
borrow the notation τni : [0] → [n], 0 7→ i and τnij : [1] → [n], 0 7→ i, 1 7→ j.
Namely, given a pair (V, φ) as in the lemma we set Yn = Xn ×X(τnn ),X0 V . Then
given β : [n]→ [m] we define V (β) : Ym → Yn as the pullback by X(τmβ(n)m) of the
map φ postcomposed by the projection Xm ×X(β),Xn Yn → Yn. This makes sense
because

Xm ×X(τm
β(n)m),X1 X1 ×d1

1,X0 V = Xm ×X(τmm ),X0 V = Ym

and
Xm ×X(τm

β(n)m),X1 X1 ×d1
0,X0 V = Xm ×X(τm

β(n)),X0 V = Xm ×X(β),Xn Yn.

We omit the verification that the commutativity of the displayed diagram above
implies the maps compose correctly. We also omit the verification that the two
functors are quasi-inverse to each other. □

Definition 85.27.3.024A Let f : X → S be a morphism of schemes. The simplicial
scheme associated to f , denoted (X/S)•, is the functor ∆opp → Sch, [n] 7→ X ×S
. . .×S X described in Simplicial, Example 14.3.5.

Thus (X/S)n is the (n + 1)-fold fibre product of X over S. The morphism d1
0 :

X×SX → X is the map (x0, x1) 7→ x1 and the morphism d1
1 is the other projection.

The morphism s0
0 is the diagonal morphism X → X ×S X.

Lemma 85.27.4.024B Let f : X → S be a morphism of schemes. Let π : Y → (X/S)•
be a cartesian morphism of simplicial schemes. Set V = Y0 considered as a scheme
over X. The morphisms d1

0, d
1
1 : Y1 → Y0 and the morphism π1 : Y1 → X ×S X

induce isomorphisms

V ×S X Y1
(d1

1,pr1◦π1)oo (pr0◦π1,d
1
0) // X ×S V.

Denote φ : V ×S X → X ×S V the resulting isomorphism. Then the pair (V, φ) is
a descent datum relative to X → S.

Proof. This is a special case of (part of) Lemma 85.27.2 as the displayed equation of
that lemma is equivalent to the cocycle condition of Descent, Definition 35.34.1. □

https://stacks.math.columbia.edu/tag/024A
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Lemma 85.27.5.024C Let f : X → S be a morphism of schemes. The construction

category of cartesian
schemes over (X/S)•

−→ category of descent data
relative to X/S

of Lemma 85.27.4 is an equivalence of categories.

Proof. The functor from left to right is given in Lemma 85.27.4. Hence this is a
special case of Lemma 85.27.2. □

We may reinterpret the pullback of Descent, Lemma 35.34.6 as follows. Suppose
given a morphism of simplicial schemes f : X ′ → X and a cartesian morphism of
simplicial schemes Y → X. Then the fibre product (viewed as a “pullback”)

f∗Y = Y ×X X ′

of simplicial schemes is a simplicial scheme cartesian over X ′. Suppose given a
commutative diagram of morphisms of schemes

X ′
f
//

��

X

��
S′ // S.

This gives rise to a morphism of simplicial schemes
f• : (X ′/S′)• −→ (X/S)•.

We claim that the “pullback” f∗
• along the morphism f• : (X ′/S′)• → (X/S)•

corresponds via Lemma 85.27.5 with the pullback defined in terms of descent data
in the aforementioned Descent, Lemma 35.34.6.

85.28. Quasi-coherent modules on simplicial schemes

07TE
Lemma 85.28.1.07TI Let f : V → U be a morphism of simplicial schemes. Given a
quasi-coherent module F on UZar the pullback f∗F is a quasi-coherent module on
VZar.

Proof. Recall that F is cartesian with Fn quasi-coherent, see Lemma 85.12.10. By
Lemma 85.2.4 we see that (f∗F)n = f∗

nFn (some details omitted). Hence (f∗F)n is
quasi-coherent. The same fact and the cartesian property for F imply the cartesian
property for f∗F . Thus F is quasi-coherent by Lemma 85.12.10 again. □

Lemma 85.28.2.07TJ Let f : V → U be a cartesian morphism of simplicial schemes.
Assume the morphisms dnj : Un → Un−1 are flat and the morphisms Vn → Un are
quasi-compact and quasi-separated. For a quasi-coherent module G on VZar the
pushforward f∗G is a quasi-coherent module on UZar.

Proof. If F = f∗G, then Fn = fn,∗Gn by Lemma 85.2.4. The maps F(φ) are
defined using the base change maps, see Cohomology, Section 20.17. The sheaves
Fn are quasi-coherent by Schemes, Lemma 26.24.1 and the fact that Gn is quasi-
coherent by Lemma 85.12.10. The base change maps along the degeneracies dnj
are isomorphisms by Cohomology of Schemes, Lemma 30.5.2 and the fact that G is
cartesian by Lemma 85.12.10. Hence F is cartesian by Lemma 85.12.2. Thus F is
quasi-coherent by Lemma 85.12.10. □

https://stacks.math.columbia.edu/tag/024C
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Lemma 85.28.3.07TK Let f : V → U be a cartesian morphism of simplicial schemes.
Assume the morphisms dnj : Un → Un−1 are flat and the morphisms Vn → Un
are quasi-compact and quasi-separated. Then f∗ and f∗ form an adjoint pair of
functors between the categories of quasi-coherent modules on UZar and VZar.

Proof. We have seen in Lemmas 85.28.1 and 85.28.2 that the statement makes
sense. The adjointness property follows immediately from the fact that each f∗

n is
adjoint to fn,∗. □

Lemma 85.28.4.07TL Let f : X → S be a morphism of schemes which has a section6.
Let (X/S)• be the simplicial scheme associated to X → S, see Definition 85.27.3.
Then pullback defines an equivalence between the category of quasi-coherent OS-
modules and the category of quasi-coherent modules on ((X/S)•)Zar.

Proof. Let σ : S → X be a section of f . Let (F , α) be a pair as in Lemma 85.12.5.
Set G = σ∗F . Consider the diagram

X
(σ◦f,1)

//

f

��

X ×S X
pr0

��

pr1
// X

S
σ // X

Note that pr0 = d1
1 and pr1 = d1

0. Hence we see that (σ ◦ f, 1)∗α defines an
isomorphism

f∗G = (σ ◦ f, 1)∗pr∗
0F −→ (σ ◦ f, 1)∗pr∗

1F = F
We omit the verification that this isomorphism is compatible with α and the canon-
ical isomorphism pr∗

0f
∗G → pr∗

1f
∗G. □

85.29. Groupoids and simplicial schemes

07TM Given a groupoid in schemes we can build a simplicial scheme. It will turn out that
the category of quasi-coherent sheaves on a groupoid is equivalent to the category
of cartesian quasi-coherent sheaves on the associated simplicial scheme.

Lemma 85.29.1.07TN Let (U,R, s, t, c, e, i) be a groupoid scheme over S. There exists a
simplicial scheme X over S with the following properties

(1) X0 = U , X1 = R, X2 = R×s,U,t R,
(2) s0

0 = e : X0 → X1,
(3) d1

0 = s : X1 → X0, d1
1 = t : X1 → X0,

(4) s1
0 = (e ◦ t, 1) : X1 → X2, s1

1 = (1, e ◦ t) : X1 → X2,
(5) d2

0 = pr1 : X2 → X1, d2
1 = c : X2 → X1, d2

2 = pr0, and
(6) X = cosk2sk2X.

For all n we haveXn = R×s,U,t. . .×s,U,tR with n factors. The map dnj : Xn → Xn−1
is given on functors of points by

(r1, . . . , rn) 7−→ (r1, . . . , c(rj , rj+1), . . . , rn)

for 1 ≤ j ≤ n − 1 whereas dn0 (r1, . . . , rn) = (r2, . . . , rn) and dnn(r1, . . . , rn) =
(r1, . . . , rn−1).

6In fact, it would be enough to assume that f has fpqc locally on S a section, since we have
descent of quasi-coherent modules by Descent, Section 35.5.

https://stacks.math.columbia.edu/tag/07TK
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Proof. We only have to verify that the rules prescribed in (1), (2), (3), (4), (5)
define a 2-truncated simplicial scheme U ′ over S, since then (6) allows us to set
X = cosk2U

′, see Simplicial, Lemma 14.19.2. Using the functor of points approach,
all we have to verify is that if (Ob,Arrows, s, t, c, e, i) is a groupoid, then

Arrows×s,Ob,t Arrows
pr0

��
c

��
pr1

��
Arrows

t

��
s

��

1,e

OO
e,1

OO

Ob

e

OO

is a 2-truncated simplicial set. We omit the details.
Finally, the description of Xn for n > 2 follows by induction from the description of
X0, X1, X2, and Simplicial, Remark 14.19.9 and Lemma 14.19.6. Alternately, one
shows that cosk2 applied to the 2-truncated simplicial set displayed above gives a
simplicial set whose nth term equals Arrows×s,Ob,t . . .×s,Ob,tArrows with n factors
and degeneracy maps as given in the lemma. Some details omitted. □

Lemma 85.29.2.07TP Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Let X be the simplicial scheme over S constructed in Lemma 85.29.1. Then the
category of quasi-coherent modules on (U,R, s, t, c) is equivalent to the category of
quasi-coherent modules on XZar.

Proof. This is clear from Lemmas 85.12.10 and 85.12.5 and Groupoids, Definition
39.14.1. □

In the following lemma we will use the concept of a cartesian morphism V → U of
simplicial schemes as defined in Definition 85.27.1.

Lemma 85.29.3.07TQ Let (U,R, s, t, c) be a groupoid scheme over a scheme S. Let
X be the simplicial scheme over S constructed in Lemma 85.29.1. Let (R/U)•
be the simplicial scheme associated to s : R → U , see Definition 85.27.3. There
exists a cartesian morphism t• : (R/U)• → X of simplicial schemes with low degree
morphisms given by

R×s,U,s R×s,U,s R
pr12
//

pr02
//

pr01
//

(r0,r1,r2) 7→(r0◦r−1
1 ,r1◦r−1

2 )

��

R×s,U,s R pr1
//

pr0
//

(r0,r1) 7→r0◦r−1
1

��

R

t

��
R×s,U,t R

pr1
//

c
//

pr0
//
R s

//

t
//
U

Proof. For arbitrary n we define (R/U)• → Xn by the rule
(r0, . . . , rn) −→ (r0 ◦ r−1

1 , . . . , rn−1 ◦ r−1
n )

Compatibility with degeneracy maps is clear from the description of the degen-
eracies in Lemma 85.29.1. We omit the verification that the maps respect the
morphisms snj . Groupoids, Lemma 39.13.5 (with the roles of s and t reversed)

https://stacks.math.columbia.edu/tag/07TP
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shows that the two right squares are cartesian. In exactly the same manner one
shows all the other squares are cartesian too. Hence the morphism is cartesian. □

85.30. Descent data give equivalence relations

024D In Section 85.27 we saw how descent data relative to X → S can be formulated in
terms of cartesian simplicial schemes over (X/S)•. Here we link this to equivalence
relations as follows.

Lemma 85.30.1.024E Let f : X → S be a morphism of schemes. Let π : Y → (X/S)•
be a cartesian morphism of simplicial schemes, see Definitions 85.27.1 and 85.27.3.
Then the morphism

j = (d1
1, d

1
0) : Y1 → Y0 ×S Y0

defines an equivalence relation on Y0 over S, see Groupoids, Definition 39.3.1.

Proof. Note that j is a monomorphism. Namely the composition Y1 → Y0×S Y0 →
Y0 ×S X is an isomorphism as π is cartesian.

Consider the morphism

(d2
2, d

2
0) : Y2 → Y1 ×d1

0,Y0,d1
1
Y1.

This works because d0 ◦ d2 = d1 ◦ d0, see Simplicial, Remark 14.3.3. Also, it is a
morphism over (X/S)2. It is an isomorphism because Y → (X/S)• is cartesian.
Note for example that the right hand side is isomorphic to Y0×π0,X,pr1 (X×SX×S
X) = X ×S Y0 ×S X because π is cartesian. Details omitted.

As in Groupoids, Definition 39.3.1 we denote t = pr0 ◦ j = d1
1 and s = pr1 ◦ j = d1

0.
The isomorphism above, combined with the morphism d2

1 : Y2 → Y1 give us a
composition morphism

c : Y1 ×s,Y0,t Y1 −→ Y1

over Y0 ×S Y0. This immediately implies that for any scheme T/S the relation
Y1(T ) ⊂ Y0(T )× Y0(T ) is transitive.

Reflexivity follows from the fact that the restriction of the morphism j to the
diagonal ∆ : X → X ×S X is an isomorphism (again use the cartesian property of
π).

To see symmetry we consider the morphism

(d2
2, d

2
1) : Y2 → Y1 ×d1

1,Y0,d1
1
Y1.

This works because d1 ◦ d2 = d1 ◦ d1, see Simplicial, Remark 14.3.3. It is an
isomorphism because Y → (X/S)• is cartesian. Note for example that the right
hand side is isomorphic to Y0 ×π0,X,pr0 (X ×S X ×S X) = Y0 ×S X ×S X because
π is cartesian. Details omitted.

Let T/S be a scheme. Let a ∼ b for a, b ∈ Y0(T ) be synonymous with (a, b) ∈ Y1(T ).
The isomorphism (d2

2, d
2
1) above implies that if a ∼ b and a ∼ c, then b ∼ c.

Combined with reflexivity this shows that ∼ is an equivalence relation. □

https://stacks.math.columbia.edu/tag/024E
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85.31. An example case

024F In this section we show that disjoint unions of spectra of Artinian rings can be
descended along a quasi-compact surjective flat morphism of schemes.

Lemma 85.31.1.024G Let X → S be a morphism of schemes. Suppose Y → (X/S)• is
a cartesian morphism of simplicial schemes. For y ∈ Y0 a point define

Ty = {y′ ∈ Y0 | ∃ y1 ∈ Y1 : d1
1(y1) = y, d1

0(y1) = y′}

as a subset of Y0. Then y ∈ Ty and Ty ∩ Ty′ ̸= ∅ ⇒ Ty = Ty′ .

Proof. Combine Lemma 85.30.1 and Groupoids, Lemma 39.3.4. □

Lemma 85.31.2.024H Let X → S be a morphism of schemes. Suppose Y → (X/S)• is
a cartesian morphism of simplicial schemes. Let y ∈ Y0 be a point. If X → S is
quasi-compact, then

Ty = {y′ ∈ Y0 | ∃ y1 ∈ Y1 : d1
1(y1) = y, d1

0(y1) = y′}

is a quasi-compact subset of Y0.

Proof. Let Fy be the scheme theoretic fibre of d1
1 : Y1 → Y0 at y. Then we see that

Ty is the image of the morphism

Fy //

��

Y1
d1

0 //

d1
1
��

Y0

y // Y0

Note that Fy is quasi-compact. This proves the lemma. □

Lemma 85.31.3.024I Let X → S be a quasi-compact flat surjective morphism. Let
(V, φ) be a descent datum relative to X → S. If V is a disjoint union of spectra of
Artinian rings, then (V, φ) is effective.

Proof. Let Y → (X/S)• be the cartesian morphism of simplicial schemes cor-
responding to (V, φ) by Lemma 85.27.5. Observe that Y0 = V . Write V =∐
i∈I Spec(Ai) with each Ai local Artinian. Moreover, let vi ∈ V be the unique

closed point of Spec(Ai) for all i ∈ I. Write i ∼ j if and only if vi ∈ Tvj with
notation as in Lemma 85.31.1 above. By Lemmas 85.31.1 and 85.31.2 this is
an equivalence relation with finite equivalence classes. Let I = I/ ∼. Then we
can write V =

∐
i∈I Vi with Vi =

∐
i∈i Spec(Ai). By construction we see that

φ : V ×S X → X ×S V maps the open and closed subspaces Vi ×S X into the open
and closed subspaces X ×S Vi. In other words, we get descent data (Vi, φi), and
(V, φ) is the coproduct of them in the category of descent data. Since each of the
Vi is a finite union of spectra of Artinian local rings the morphism Vi → X is affine,
see Morphisms, Lemma 29.11.13. Since {X → S} is an fpqc covering we see that
all the descent data (Vi, φi) are effective by Descent, Lemma 35.37.1. □

To be sure, the lemma above has very limited applicability!

https://stacks.math.columbia.edu/tag/024G
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85.32. Simplicial algebraic spaces

0DE7 Let S be a scheme. A simplicial algebraic space is a simplicial object in the category
of algebraic spaces over S, see Simplicial, Definition 14.3.1. Recall that a simplicial
algebraic space looks like

X2

//
//
//
X1

//
//oo

oo
X0oo

Here there are two morphisms d1
0, d

1
1 : X1 → X0 and a single morphism s0

0 : X0 →
X1, etc. These morphisms satisfy some required relations such as d1

0 ◦ s0
0 = idX0 =

d1
1 ◦ s0

0, see Simplicial, Lemma 14.3.2. It is useful to think of dni : Xn → Xn−1 as
the “projection forgetting the ith coordinate” and to think of snj : Xn → Xn+1 as
the “diagonal map repeating the jth coordinate”.
A morphism of simplicial algebraic spaces h : X → Y is the same thing as a mor-
phism of simplicial objects in the category of algebraic spaces over S, see Simplicial,
Definition 14.3.1. Thus h consists of morphisms of algebraic spaces hn : Xn → Yn
such that hn−1 ◦ dnj = dnj ◦ hn and hn+1 ◦ snj = snj ◦ hn whenever this makes sense.
An augmentation a : X → X−1 of a simplicial algebraic space X is given by a
morphism of algebraic spaces a0 : X0 → X−1 such that a0 ◦ d1

0 = a0 ◦ d1
1. See

Simplicial, Section 14.20. In this situation we always indicate an : Xn → X−1 the
induced morphisms for n ≥ 0.
Let X be a simplicial algebraic space. For every n we have the site Xn,spaces,étale

(Properties of Spaces, Definition 66.18.2) and for every morphism φ : [m]→ [n] we
have a morphism of sites

fφ = X(φ)spaces,étale : Xn,spaces,étale → Xm,spaces,étale,

associated to the morphism of algebraic spaces X(φ) : Xn → Xm (Properties of
Spaces, Lemma 66.18.8). This gives a simplicial object in the category of sites. In
Lemma 85.3.1 we constructed an associated site which we denote Xspaces,étale. An
object of the site Xspaces,étale is a an algebraic space U étale over Xn for some n
and a morphism (φ, f) : U/Xn → V/Xm is given by a morphism φ : [m] → [n] in
∆ and a morphism f : U → V of algebraic spaces such that the diagram

U
f
//

��

V

��
Xn

fφ // Xm

is commutative. Consider the full subcategories
Xaffine,étale ⊂ Xétale ⊂ Xspaces,étale

whose objects are U/Xn with U affine, respectively a scheme. Endowing these
categories with their natural topologies (see Properties of Spaces, Lemma 66.18.6,
Definition 66.18.1, and Lemma 66.18.3) these inclusion functors define equivalences
of topoi

Sh(Xaffine,étale) = Sh(Xétale) = Sh(Xspaces,étale)
In the following we will silently identify these topoi. We will say that Xétale is the
small étale site of X and its topos is the small étale topos of X.
Let Xétale be the small étale site of a simplicial algebraic space X. There is a
sheaf of rings O on Xétale whose restriction to Xn is the structure sheaf OXn . This
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follows from Lemma 85.3.4. We will say O is the structure sheaf of the simplicial
algebraic space X. At this point all the material developed for simplicial (ringed)
sites applies, see Sections 85.3, 85.4, 85.5, 85.6, 85.8, 85.9, 85.10, 85.11, 85.12, 85.13,
and 85.14.

Let X be a simplicial algebraic space with structure sheaf O. As on any ringed
topos, there is a notion of a quasi-coherent O-module on Xétale, see Modules on
Sites, Definition 18.23.1. However, a quasi-coherent O-module on Xétale is just a
cartesian O-module F whose restrictions Fn are quasi-coherent on Xn, see Lemma
85.12.10.

Let h : X → Y be a morphism of simplicial algebraic spaces over S. By Lemma
85.5.2 applied to the morphisms of sites (hn)spaces,étale : Xspaces,étale → Yspaces,étale
(Properties of Spaces, Lemma 66.18.8) we obtain a morphism of small étale topoi
hétale : Sh(Xétale) → Sh(Yétale). Recall that h−1

étale and hétale,∗ have a simple
description in terms of the components, see Lemma 85.5.2. Let OX , resp. OY
denote the structure sheaf of X, resp. Y . We define h♯étale : hétale,∗OX → OY to
be the map of sheaves of rings on Yétale given by h♯n : hn,∗OXn → OYn on Yn. We
obtain a morphism of ringed topoi

hétale : (Sh(Xétale),OX) −→ (Sh(Yétale),OY )

Let X be a simplicial algebraic space with structure sheaf O. Let X−1 be an
algebraic space over S and let a0 : X0 → X−1 be an augmentation of X. By
Lemma 85.4.2 applied to the morphism of sites (a0)spaces,étale : X0,spaces,étale →
X−1,spaces,étale we obtain a corresponding morphism of topoi a : Sh(Xétale) →
Sh(X−1,étale). Observe that a−1G is the sheaf on Xétale with components a−1

n G.
Hence we can use the maps a♯n : a−1

n OX−1 → OXn to define a map a♯ : a−1OX−1 →
O, or equivalently by adjunction a map a♯ : OX−1 → a∗O (which as usual has the
same name). This puts us in the situation discussed in Section 85.11. Therefore
we obtain a morphism of ringed topoi

a : (Sh(Xétale),O) −→ (Sh(X−1),OX−1)

A final observation is the following. Suppose we are given a morphism h : X → Y of
simplicial algebraic spaces X and Y with structure sheaves OX , OY , augmentations
a0 : X0 → X−1, b0 : Y0 → Y−1 and a morphism h−1 : X−1 → Y−1 such that

X0
h0

//

a0

��

Y0

b0

��
X−1

h−1 // Y−1

commutes. Then from the constructions elucidated above we obtain a commutative
diagram of morphisms of ringed topoi as follows

(Sh(Xétale),OX)
hétale

//

a

��

(Sh(Yétale),OY )

b

��
(Sh(X−1),OX−1)

h−1 // (Sh(Y−1),OY−1)
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85.33. Fppf hypercoverings of algebraic spaces

0DH4 This section is the analogue of Section 85.25 for the case of algebraic spaces and
fppf hypercoverings. The reader who wishes to do so, can replace “algebraic space”
everywhere with “scheme” and get equally valid results. This has the advantage
of replacing the references to More on Cohomology of Spaces, Section 84.6 with
references to Étale Cohomology, Section 59.100.
We fix a base scheme S. Let X be an algebraic space over S and let U be a simplicial
algebraic space over S. Assume we have an augmentation

a : U → X

See Section 85.32. We say that U is an fppf hypercovering of X if
(1) U0 → X is flat, locally of finite presentation, and surjective,
(2) U1 → U0 ×X U0 is flat, locally of finite presentation, and surjective,
(3) Un+1 → (cosknsknU)n+1 is flat, locally of finite presentation, and surjec-

tive for n ≥ 1.
The category of algebraic spaces over S has all finite limits, hence the coskeleta
used in the formulation above exist.

Principle: Fppf hypercoverings can be used to compute étale cohomology.
The key idea behind the proof of the principle is to compare the fppf and étale
topologies on the category Spaces/S. Namely, the fppf topology is stronger than
the étale topology and we have (a) a flat, locally finitely presented, surjective map
defines an fppf covering, and (b) fppf cohomology of sheaves pulled back from
the small étale site agrees with étale cohomology as we have seen in More on
Cohomology of Spaces, Section 84.6.
Lemma 85.33.1.0DH5 Let S be a scheme. Let X be an algebraic space over S. Let U
be a simplicial algebraic space over S. Let a : U → X be an augmentation. There
is a commutative diagram

Sh((Spaces/U)fppf,total)
h
//

afppf

��

Sh(Uétale)

a

��
Sh((Spaces/X)fppf )

h−1 // Sh(Xétale)

where the left vertical arrow is defined in Section 85.21 and the right vertical arrow
is defined in Section 85.32.
Proof. The notation (Spaces/U)fppf,total indicates that we are using the construc-
tion of Section 85.21 for the site (Spaces/S)fppf and the simplicial object U of this
site7. We will use the sites Xspaces,étale and Uspaces,étale for the topoi on the right
hand side; this is permissible see discussion in Section 85.32.
Observe that both (Spaces/U)fppf,total and Uspaces,étale fall into case A of Situation
85.3.3. This is immediate from the construction of Uétale in Section 85.32 and it
follows from Lemma 85.21.5 for (Spaces/U)fppf,total. Next, consider the functors
Un,spaces,étale → (Spaces/Un)fppf , U 7→ U/Un and Xspaces,étale → (Spaces/X)fppf ,
U 7→ U/X. We have seen that these define morphisms of sites in More on Coho-
mology of Spaces, Section 84.6 where these were denoted aUn = ϵUn ◦ πun and

7We could also use the étale topology and this would be denoted (Spaces/U)étale,total.

https://stacks.math.columbia.edu/tag/0DH5
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aX = ϵX ◦πX . Thus we obtain a morphism of simplicial sites compatible with aug-
mentations as in Remark 85.5.4 and we may apply Lemma 85.5.5 to conclude. □

Lemma 85.33.2.0DH6 Let S be a scheme. Let X be an algebraic space over S. Let
U be a simplicial algebraic space over S. Let a : U → X be an augmentation. If
a : U → X is an fppf hypercovering of X, then

a−1 : Sh(Xétale)→ Sh(Uétale) and a−1 : Ab(Xétale)→ Ab(Uétale)

are fully faithful with essential image the cartesian sheaves and quasi-inverse given
by a∗. Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 85.32.

Proof. We will prove the statement for sheaves of sets. It will be an almost formal
consequence of results already established. Consider the diagram of Lemma 85.33.1.
In the proof of this lemma we have seen that h−1 is the morphism aX of More on
Cohomology of Spaces, Section 84.6. Thus it follows from More on Cohomology of
Spaces, Lemma 84.6.1 that (h−1)−1 is fully faithful with quasi-inverse h−1,∗. The
same holds true for the components hn of h. By the description of the functors h−1

and h∗ of Lemma 85.5.2 we conclude that h−1 is fully faithful with quasi-inverse
h∗. Observe that U is a hypercovering of X in (Spaces/S)fppf as defined in Section
85.21. By Lemma 85.21.1 we see that a−1

fppf is fully faithful with quasi-inverse
afppf,∗ and with essential image the cartesian sheaves on (Spaces/U)fppf,total. A
formal argument (chasing around the diagram) now shows that a−1 is fully faithful.

Finally, suppose that G is a cartesian sheaf on Uétale. Then h−1G is a carte-
sian sheaf on (Spaces/U)fppf,total. Hence h−1G = a−1

fppfH for some sheaf H on
(Spaces/X)fppf . In particular we find that h−1

0 G0 = (a0,big,fppf )−1H. Recalling
that h0 = aU0 and that U0 → X is flat, locally of finite presentation, and surjective,
we find from More on Cohomology of Spaces, Lemma 84.6.7 that there exists a sheaf
F on Xétale and isomorphism H = (h−1)−1F . Since a−1

fppfH = h−1G we deduce
that h−1G ∼= h−1a−1F . By fully faithfulness of h−1 we conclude that a−1F ∼= G.

Fix an isomorphism θ : a−1F → G. To finish the proof we have to show G = a−1a∗G
(in order to show that the quasi-inverse is given by a∗; everything else has been
proven above). Because a−1 is fully faithful we have id ∼= a∗a

−1 by Categories,
Lemma 4.24.4. Thus F ∼= a∗a

−1F and a∗θ : a∗a
−1F → a∗G combine to an

isomorphism F → a∗G. Pulling back by a and precomposing by θ−1 we find the
desired isomorphism. □

Lemma 85.33.3.0DH7 Let S be a scheme. Let X be an algebraic space over S. Let
U be a simplicial algebraic space over S. Let a : U → X be an augmentation. If
a : U → X is an fppf hypercovering of X, then for K ∈ D+(Xétale)

K → Ra∗(a−1K)

is an isomorphism. Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 85.32.

Proof. Consider the diagram of Lemma 85.33.1. Observe that Rhn,∗h−1
n is the

identity functor on D+(Un,étale) by More on Cohomology of Spaces, Lemma 84.6.2.
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Hence Rh∗h
−1 is the identity functor on D+(Uétale) by Lemma 85.5.3. We have

Ra∗(a−1K) = Ra∗Rh∗h
−1a−1K

= Rh−1,∗Rafppf,∗a
−1
fppf (h−1)−1K

= Rh−1,∗(h−1)−1K

= K

The first equality by the discussion above, the second equality because of the com-
mutativity of the diagram in Lemma 85.25.1, the third equality by Lemma 85.21.2
as U is a hypercovering of X in (Spaces/S)fppf , and the last equality by the already
used More on Cohomology of Spaces, Lemma 84.6.2. □

Lemma 85.33.4.0DH8 Let S be a scheme. Let X be an algebraic space over S. Let
U be a simplicial algebraic space over S. Let a : U → X be an augmentation. If
a : U → X is an fppf hypercovering of X, then

RΓ(Xétale,K) = RΓ(Uétale, a−1K)

for K ∈ D+(Xétale). Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 85.32.

Proof. This follows from Lemma 85.33.3 because RΓ(Uétale,−) = RΓ(Xétale,−) ◦
Ra∗ by Cohomology on Sites, Remark 21.14.4. □

Lemma 85.33.5.0DH9 Let S be a scheme. Let X be an algebraic space over S. Let U
be a simplicial algebraic space over S. Let a : U → X be an augmentation. Let
A ⊂ Ab(Uétale) denote the weak Serre subcategory of cartesian abelian sheaves. If
U is an fppf hypercovering of X, then the functor a−1 defines an equivalence

D+(Xétale) −→ D+
A(Uétale)

with quasi-inverse Ra∗. Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 85.32.

Proof. Observe that A is a weak Serre subcategory by Lemma 85.12.6. The equiv-
alence is a formal consequence of the results obtained so far. Use Lemmas 85.33.2
and 85.33.3 and Cohomology on Sites, Lemma 21.28.5. □

Lemma 85.33.6.0DHA Let S be a scheme. Let X be an algebraic space over S. Let U
be a simplicial algebraic space over S. Let a : U → X be an augmentation. Let F
be an abelian sheaf on Xétale. Let Fn be the pullback to Un,étale. If U is an fppf
hypercovering of X, then there exists a canonical spectral sequence

Ep,q1 = Hq
étale(Up,Fp)

converging to Hp+q
étale(X,F).

Proof. Immediate consequence of Lemmas 85.33.4 and 85.8.3. □

85.34. Fppf hypercoverings of algebraic spaces: modules

0DHB We continue the discussion of (cohomological) descent for fppf hypercoverings started
in Section 85.33 but in this section we discuss what happens for sheaves of mod-
ules. We mainly discuss quasi-coherent modules and it turns out that we can do
unbounded cohomological descent for those.

https://stacks.math.columbia.edu/tag/0DH8
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Lemma 85.34.1.0DHC Let S be a scheme. Let X be an algebraic space over S. Let U
be a simplicial algebraic space over S. Let a : U → X be an augmentation. There
is a commutative diagram

(Sh((Spaces/U)fppf,total),Obig,total)
h
//

afppf

��

(Sh(Uétale),OU )

a

��
(Sh((Spaces/X)fppf ),Obig)

h−1 // (Sh(Xétale),OX)

of ringed topoi where the left vertical arrow is defined in Section 85.22 and the right
vertical arrow is defined in Section 85.32.

Proof. For the underlying diagram of topoi we refer to the discussion in the proof of
Lemma 85.33.1. The sheaf OU is the structure sheaf of the simplicial algebraic space
U as defined in Section 85.32. The sheaf OX is the usual structure sheaf of the alge-
braic spaceX. The sheaves of ringsObig,total andObig come from the structure sheaf
on (Spaces/S)fppf in the manner explained in Section 85.22 which also constructs
afppf as a morphism of ringed topoi. The component morphisms hn = aUn and
h−1 = aX are morphisms of ringed topoi by More on Cohomology of Spaces, Section
84.7. Finally, since the continuous functor u : Uspaces,étale → (Spaces/U)fppf,total
used to define h8 is given by V/Un 7→ V/Un we see that h∗Obig,total = OU which
is how we endow h with the structure of a morphism of ringed simplicial sites as
in Remark 85.7.1. Then we obtain h as a morphism of ringed topoi by Lemma
85.7.2. Please observe that the morphisms hn indeed agree with the morphisms
aUn described above. We omit the verification that the diagram is commutative
(as a diagram of ringed topoi – we already know it is commutative as a diagram of
topoi). □

Lemma 85.34.2.0DHD Let S be a scheme. Let X be an algebraic space over S. Let
U be a simplicial algebraic space over S. Let a : U → X be an augmentation. If
a : U → X is an fppf hypercovering of X, then

a∗ : QCoh(OX)→ QCoh(OU )
is an equivalence fully faithful with quasi-inverse given by a∗. Here a : Sh(Uétale)→
Sh(Xétale) is as in Section 85.32.

Proof. Consider the diagram of Lemma 85.34.1. In the proof of this lemma we have
seen that h−1 is the morphism aX of More on Cohomology of Spaces, Section 84.7.
Thus it follows from More on Cohomology of Spaces, Lemma 84.7.1 that

(h−1)∗ : QCoh(OX) −→ QCoh(Obig)
is an equivalence with quasi-inverse h−1,∗. The same holds true for the components
hn of h. Recall that QCoh(OU ) and QCoh(Obig,total) consist of cartesian modules
whose components are quasi-coherent, see Lemma 85.12.10. Since the functors h∗

and h∗ of Lemma 85.7.2 agree with the functors h∗
n and hn,∗ on components we

conclude that
h∗ : QCoh(OU ) −→ QCoh(Obig,total)

is an equivalence with quasi-inverse h∗. Observe that U is a hypercovering of X
in (Spaces/S)fppf as defined in Section 85.21. By Lemma 85.22.1 we see that

8This happened in the proof of Lemma 85.33.1 via an application of Lemma 85.5.5.
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a∗
fppf is fully faithful with quasi-inverse afppf,∗ and with essential image the carte-

sian sheaves of Ofppf,total-modules. Thus, by the description of QCoh(Obig) and
QCoh(Obig,total) of Lemma 85.12.10, we get an equivalence

a∗
fppf : QCoh(Obig) −→ QCoh(Obig,total)

with quasi-inverse given by afppf,∗. A formal argument (chasing around the dia-
gram) now shows that a∗ is fully faithful on QCoh(OX) and has image contained
in QCoh(OU ).

Finally, suppose that G is in QCoh(OU ). Then h∗G is in QCoh(Obig,total). Hence
h∗G = a∗

fppfH with H = afppf,∗h
∗G in QCoh(Obig) (see above). In turn we see

that H = (h−1)∗F with F = h−1,∗H in QCoh(OX). Going around the diagram we
deduce that h∗G ∼= h∗a∗F . By fully faithfulness of h∗ we conclude that a∗F ∼= G.
Since F = h−1,∗afppf,∗h

∗G = a∗h∗h
∗G = a∗G we also obtain the statement that

the quasi-inverse is given by a∗. □

Lemma 85.34.3.0DHE Let S be a scheme. Let X be an algebraic space over S. Let
U be a simplicial algebraic space over S. Let a : U → X be an augmentation. If
a : U → X is an fppf hypercovering of X, then for F a quasi-coherent OX -module
the map

F → Ra∗(a∗F)
is an isomorphism. Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 85.32.

Proof. Consider the diagram of Lemma 85.33.1. Let Fn = a∗
nF be the nth com-

ponent of a∗F . This is a quasi-coherent OUn -module. Then Fn = Rhn,∗h
∗
nFn

by More on Cohomology of Spaces, Lemma 84.7.2. Hence a∗F = Rh∗h
∗a∗F by

Lemma 85.7.3. We have

Ra∗(a∗F) = Ra∗Rh∗h
∗a∗F

= Rh−1,∗Rafppf,∗a
∗
fppf (h−1)∗F

= Rh−1,∗(h−1)∗F
= F

The first equality by the discussion above, the second equality because of the com-
mutativity of the diagram in Lemma 85.25.1, the third equality by Lemma 85.22.2
as U is a hypercovering of X in (Spaces/S)fppf and La∗

fppf = a∗
fppf as afppf is flat

(namely a−1
fppfObig = Obig,total, see Remark 85.16.5), and the last equality by the

already used More on Cohomology of Spaces, Lemma 84.7.2. □

Lemma 85.34.4.0DHF Let S be a scheme. Let X be an algebraic space over S. Let
U be a simplicial algebraic space over S. Let a : U → X be an augmentation.
Assume a : U → X is an fppf hypercovering of X. Then QCoh(OU ) is a weak Serre
subcategory of Mod(OU ) and

a∗ : DQCoh(OX) −→ DQCoh(OU )

is an equivalence of categories with quasi-inverse given byRa∗. Here a : Sh(Uétale)→
Sh(Xétale) is as in Section 85.32.

Proof. First observe that the maps an : Un → X and dni : Un → Un−1 are flat,
locally of finite presentation, and surjective by Hypercoverings, Remark 25.8.4.
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Recall that an OU -module F is quasi-coherent if and only if it is cartesian and Fn
is quasi-coherent for all n. See Lemma 85.12.10. By Lemma 85.12.6 (and flatness
of the maps dni : Un → Un−1 shown above) the cartesian modules for a weak Serre
subcategory of Mod(OU ). On the other hand QCoh(OUn) ⊂ Mod(OUn) is a weak
Serre subcategory for each n (Properties of Spaces, Lemma 66.29.7). Combined we
see that QCoh(OU ) ⊂ Mod(OU ) is a weak Serre subcategory.
To finish the proof we check the conditions (1) – (5) of Cohomology on Sites, Lemma
21.28.6 one by one.
Ad (1). This holds since an flat (seen above) implies a is flat by Lemma 85.11.1.
Ad (2). This is the content of Lemma 85.34.2.
Ad (3). This is the content of Lemma 85.34.3.
Ad (4). Recall that we can use either the site Uétale or Uspaces,étale to define the
small étale topos Sh(Uétale), see Section 85.32. The assumption of Cohomology on
Sites, Situation 21.25.1 holds for the triple (Uspaces,étale,OU ,QCoh(OU )) and by
the same reasoning for the triple (Uétale,OU ,QCoh(OU )). Namely, take

B ⊂ Ob(Uétale) ⊂ Ob(Uspaces,étale)
to be the set of affine objects. For V/Un ∈ B take dV/Un = 0 and take CovV/Un
to be the set of étale coverings {Vi → V } with Vi affine. Then we get the desired
vanishing because for F ∈ QCoh(OU ) and any V/Un ∈ B we have

Hp(V/Un,F) = Hp(V,Fn)
by Lemma 85.10.4. Here on the right hand side we have the cohomology of the
quasi-coherent sheaf Fn on Un over the affine obect V of Un,étale. This vanishes for
p > 0 by the discussion in Cohomology of Spaces, Section 69.3 and Cohomology of
Schemes, Lemma 30.2.2.
Ad (5). Follows by taking B ⊂ Ob(Xspaces,étale) the set of affine objects and the
references given above. □

Lemma 85.34.5.0DHG Let S be a scheme. Let X be an algebraic space over S. Let
U be a simplicial algebraic space over S. Let a : U → X be an augmentation. If
a : U → X is an fppf hypercovering of X, then

RΓ(Xétale,K) = RΓ(Uétale, a∗K)
for K ∈ DQCoh(OX). Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 85.32.

Proof. This follows from Lemma 85.34.4 because RΓ(Uétale,−) = RΓ(Xétale,−) ◦
Ra∗ by Cohomology on Sites, Remark 21.14.4. □

Lemma 85.34.6.0DHH Let S be a scheme. Let X be an algebraic space over S. Let U
be a simplicial algebraic space over S. Let a : U → X be an augmentation. Let F
be quasi-coherent OX -module. Let Fn be the pullback to Un,étale. If U is an fppf
hypercovering of X, then there exists a canonical spectral sequence

Ep,q1 = Hq
étale(Up,Fp)

converging to Hp+q
étale(X,F).

Proof. Immediate consequence of Lemmas 85.34.5 and 85.10.3. □
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85.35. Fppf descent of complexes

0DL8 In this section we pull some of the previously shown results together for fppf cov-
erings of algebraic spaces and derived categories of quasi-coherent modules.

Lemma 85.35.1.0DL9 Let X be an algebraic space over a scheme S. Let K,E ∈
DQCoh(OX). Let a : U → X be an fppf hypercovering. Assume that for all
n ≥ 0 we have

ExtiOUn
(La∗

nK,La
∗
nE) = 0 for i < 0

Then we have
(1) ExtiOX

(K,E) = 0 for i < 0, and
(2) there is an exact sequence
0→ HomOX

(K,E)→ HomOU0
(La∗

0K,La
∗
0E)→ HomOU1

(La∗
1K,La

∗
1E)

Proof. Write Kn = La∗
nK and En = La∗

nE. Then these are the simplicial systems
of the derived category of modules (Definition 85.14.1) associated to La∗K and
La∗E (Lemma 85.14.2) where a : Uétale → Xétale is as in Section 85.32. Let us
prove (2) first. By Lemma 85.34.4 we have

HomOX
(K,E) = HomOU

(La∗K,La∗E)
Thus the sequence looks like this:

0→ HomOU
(La∗K,La∗E)→ HomOU0

(K0, E0)→ HomOU1
(K1, E1)

The first arrow is injective by Lemma 85.14.5. The image of this arrow is the kernel
of the second by Lemma 85.14.6. This finishes the proof of (2). Part (1) follows by
applying part (2) with K[i] and E for i > 0. □

Lemma 85.35.2.0DLA Let X be an algebraic space over a scheme S. Let a : U → X be
an fppf hypercovering. Suppose given K0 ∈ DQCoh(U0) and an isomorphism

α : L(fδ1
1
)∗K0 −→ L(fδ1

0
)∗K0

satisfying the cocycle condition on U1. Set τni : [0] → [n], 0 7→ i and set Kn =
Lf∗

τnn
K0. Assume ExtiOUn

(Kn,Kn) = 0 for i < 0. Then there exists an object
K ∈ DQCoh(OX) and an isomorphism La∗

0K → K compatible with α.

Proof. The objects Kn form the members of a simplicial system of the derived cate-
gory of modules by Lemma 85.14.3. Then we obtain an object K ′ ∈ DQCoh(OUétale)
such that (Kn,Kφ) is the system deduced from K ′, see Lemma 85.14.7. Finally,
we apply Lemma 85.34.4 to see that K ′ = La∗K for some K ∈ DQCoh(OX) as
desired. □

85.36. Proper hypercoverings of algebraic spaces

0DHI This section is the analogue of Section 85.25 for the case of algebraic spaces. The
reader who wishes to do so, can replace “algebraic space” everywhere with “scheme”
and get equally valid results. This has the advantage of replacing the references to
More on Cohomology of Spaces, Section 84.8 with references to Étale Cohomology,
Section 59.102.
We fix a base scheme S. Let X be an algebraic space over S and let U be a simplicial
algebraic space over S. Assume we have an augmentation

a : U → X

https://stacks.math.columbia.edu/tag/0DL9
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See Section 85.32. We say that U is a proper hypercovering of X if
(1) U0 → X is proper and surjective,
(2) U1 → U0 ×X U0 is proper and surjective,
(3) Un+1 → (cosknsknU)n+1 is proper and surjective for n ≥ 1.

The category of algebraic spaces over S has all finite limits, hence the coskeleta
used in the formulation above exist.

Principle: Proper hypercoverings can be used to compute étale cohomology.

The key idea behind the proof of the principle is to compare the ph and étale
topologies on the category Spaces/S. Namely, the ph topology is stronger than the
étale topology and we have (a) a proper surjective map defines a ph covering, and
(b) ph cohomology of sheaves pulled back from the small étale site agrees with étale
cohomology as we have seen in More on Cohomology of Spaces, Section 84.8.
All results in this section generalize to the case where U → X is merely a “ph
hypercovering”, meaning a hypercovering of X in the site (Spaces/S)ph as defined
in Section 85.21. If we ever need this, we will precisely formulate and prove this
here.

Lemma 85.36.1.0DHJ Let S be a scheme. Let X be an algebraic space over S. Let U
be a simplicial algebraic space over S. Let a : U → X be an augmentation. There
is a commutative diagram

Sh((Spaces/U)ph,total)
h
//

aph

��

Sh(Uétale)

a

��
Sh((Spaces/X)ph)

h−1 // Sh(Xétale)

where the left vertical arrow is defined in Section 85.21 and the right vertical arrow
is defined in Section 85.32.

Proof. The notation (Spaces/U)ph,total indicates that we are using the construction
of Section 85.21 for the site (Spaces/S)ph and the simplicial object U of this site9.
We will use the sites Xspaces,étale and Uspaces,étale for the topoi on the right hand
side; this is permissible see discussion in Section 85.32.
Observe that both (Spaces/U)ph,total and Uspaces,étale fall into case A of Situation
85.3.3. This is immediate from the construction of Uétale in Section 85.32 and it
follows from Lemma 85.21.5 for (Spaces/U)ph,total. Next, consider the functors
Un,spaces,étale → (Spaces/Un)ph, U 7→ U/Un and Xspaces,étale → (Spaces/X)ph,
U 7→ U/X. We have seen that these define morphisms of sites in More on Co-
homology of Spaces, Section 84.8 where these were denoted aUn = ϵUn ◦ πun and
aX = ϵX ◦πX . Thus we obtain a morphism of simplicial sites compatible with aug-
mentations as in Remark 85.5.4 and we may apply Lemma 85.5.5 to conclude. □

Lemma 85.36.2.0DHK Let S be a scheme. Let X be an algebraic space over S. Let
U be a simplicial algebraic space over S. Let a : U → X be an augmentation. If
a : U → X is a proper hypercovering of X, then

a−1 : Sh(Xétale)→ Sh(Uétale) and a−1 : Ab(Xétale)→ Ab(Uétale)

9To distinguish from (Spaces/U)fppf,total defined using the fppf topology in Section 85.33.
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are fully faithful with essential image the cartesian sheaves and quasi-inverse given
by a∗. Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 85.32.

Proof. We will prove the statement for sheaves of sets. It will be an almost formal
consequence of results already established. Consider the diagram of Lemma 85.36.1.
In the proof of this lemma we have seen that h−1 is the morphism aX of More on
Cohomology of Spaces, Section 84.8. Thus it follows from More on Cohomology of
Spaces, Lemma 84.8.1 that (h−1)−1 is fully faithful with quasi-inverse h−1,∗. The
same holds true for the components hn of h. By the description of the functors h−1

and h∗ of Lemma 85.5.2 we conclude that h−1 is fully faithful with quasi-inverse h∗.
Observe that U is a hypercovering of X in (Spaces/S)ph as defined in Section 85.21
since a surjective proper morphism gives a ph covering by Topologies on Spaces,
Lemma 73.8.3. By Lemma 85.21.1 we see that a−1

ph is fully faithful with quasi-inverse
aph,∗ and with essential image the cartesian sheaves on (Spaces/U)ph,total. A formal
argument (chasing around the diagram) now shows that a−1 is fully faithful.

Finally, suppose that G is a cartesian sheaf on Uétale. Then h−1G is a cartesian sheaf
on (Spaces/U)ph,total. Hence h−1G = a−1

phH for some sheaf H on (Spaces/X)ph. We
compute using somewhat pedantic notation

(h−1)−1(a∗G) = (h−1)−1Eq( a0,small,∗G0
//
// a1,small,∗G1 )

= Eq( (h−1)−1a0,small,∗G0
//
// (h−1)−1a1,small,∗G1 )

= Eq( a0,big,ph,∗h
−1
0 G0

//
// a1,big,ph,∗h

−1
1 G1 )

= Eq( a0,big,ph,∗(a0,big,ph)−1H //
// a1,big,ph,∗(a1,big,ph)−1H )

= aph,∗a
−1
phH

= H

Here the first equality follows from Lemma 85.4.2, the second equality follows as
(h−1)−1 is an exact functor, the third equality follows from More on Cohomology of
Spaces, Lemma 84.8.5 (here we use that a0 : U0 → X and a1 : U1 → X are proper),
the fourth follows from a−1

phH = h−1G, the fifth from Lemma 85.4.2, and the sixth
we’ve seen above. Since a−1

phH = h−1G we deduce that h−1G ∼= h−1a−1a∗G which
ends the proof by fully faithfulness of h−1. □

Lemma 85.36.3.0DHL Let S be a scheme. Let X be an algebraic space over S. Let
U be a simplicial algebraic space over S. Let a : U → X be an augmentation. If
a : U → X is a proper hypercovering of X, then for K ∈ D+(Xétale)

K → Ra∗(a−1K)

is an isomorphism. Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 85.32.

Proof. Consider the diagram of Lemma 85.36.1. Observe that Rhn,∗h−1
n is the

identity functor on D+(Un,étale) by More on Cohomology of Spaces, Lemma 84.8.2.
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85.37. OTHER CHAPTERS 6253

Hence Rh∗h
−1 is the identity functor on D+(Uétale) by Lemma 85.5.3. We have

Ra∗(a−1K) = Ra∗Rh∗h
−1a−1K

= Rh−1,∗Raph,∗a
−1
ph (h−1)−1K

= Rh−1,∗(h−1)−1K

= K

The first equality by the discussion above, the second equality because of the com-
mutativity of the diagram in Lemma 85.25.1, the third equality by Lemma 85.21.2
as U is a hypercovering of X in (Spaces/S)ph by Topologies on Spaces, Lemma
73.8.3, and the last equality by the already used More on Cohomology of Spaces,
Lemma 84.8.2. □

Lemma 85.36.4.0DHM Let S be a scheme. Let X be an algebraic space over S. Let
U be a simplicial algebraic space over S. Let a : U → X be an augmentation. If
a : U → X is a proper hypercovering of X, then

RΓ(Xétale,K) = RΓ(Uétale, a−1K)
for K ∈ D+(Xétale). Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 85.32.

Proof. This follows from Lemma 85.36.3 because RΓ(Uétale,−) = RΓ(Xétale,−) ◦
Ra∗ by Cohomology on Sites, Remark 21.14.4. □

Lemma 85.36.5.0DHN Let S be a scheme. Let X be an algebraic space over S. Let U
be a simplicial algebraic space over S. Let a : U → X be an augmentation. Let
A ⊂ Ab(Uétale) denote the weak Serre subcategory of cartesian abelian sheaves. If
U is a proper hypercovering of X, then the functor a−1 defines an equivalence

D+(Xétale) −→ D+
A(Uétale)

with quasi-inverse Ra∗. Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 85.32.

Proof. Observe that A is a weak Serre subcategory by Lemma 85.12.6. The equiv-
alence is a formal consequence of the results obtained so far. Use Lemmas 85.36.2
and 85.36.3 and Cohomology on Sites, Lemma 21.28.5. □

Lemma 85.36.6.0DHP Let S be a scheme. Let X be an algebraic space over S. Let U
be a simplicial algebraic space over S. Let a : U → X be an augmentation. Let
F be an abelian sheaf on Xétale. Let Fn be the pullback to Un,étale. If U is a ph
hypercovering of X, then there exists a canonical spectral sequence

Ep,q1 = Hq
étale(Up,Fp)

converging to Hp+q
étale(X,F).

Proof. Immediate consequence of Lemmas 85.36.4 and 85.8.3. □
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CHAPTER 86

Duality for Spaces

0E4V 86.1. Introduction

0E4W This chapter is the analogue of the corresponding chapter for schemes, see Duality
for Schemes, Section 48.1. The development is similar to the development in the
papers [Nee96], [LN07], [Lip09], and [Nee14].

86.2. Dualizing complexes on algebraic spaces

0E4X Let U be a locally Noetherian scheme. Let Oétale be the structure sheaf of U on
the small étale site of U . We will say an object K ∈ DQCoh(Oétale) is a dualizing
complex on U if K = ϵ∗(ω•

U ) for some dualizing complex ω•
U in the sense of Duality

for Schemes, Section 48.2. Here ϵ∗ : DQCoh(OU ) → DQCoh(Oétale) is the equiva-
lence of Derived Categories of Spaces, Lemma 75.4.2. Most of the properties of ω•

U

studied in Duality for Schemes, Section 48.2 are inherited by K via the discussion
in Derived Categories of Spaces, Sections 75.4 and 75.13.
We define a dualizing complex on a locally Noetherian algebraic space to be a
complex which étale locally comes from a dualizing complex on the corresponding
scheme.
Lemma 86.2.1.0E4Y Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let K be an object of DQCoh(OX). The following are equivalent

(1) For every étale morphism U → X where U is a scheme the restriction
K|U is a dualizing complex for U (as discussed above).

(2) There exists a surjective étale morphism U → X where U is a scheme
such that K|U is a dualizing complex for U .

Proof. Assume U → X is surjective étale where U is a scheme. Let V → X be an
étale morphism where V is a scheme. Then

U ← U ×X V → V

are étale morphisms of schemes with the arrow to V surjective. Hence we can use
Duality for Schemes, Lemma 48.26.1 to see that if K|U is a dualizing complex for
U , then K|V is a dualizing complex for V . □

Definition 86.2.2.0E4Z Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. An object K of DQCoh(OX) is called a dualizing complex if K satisfies the
equivalent conditions of Lemma 86.2.1.
Lemma 86.2.3.0E50 Let A be a Noetherian ring and let X = Spec(A). Let Oétale be
the structure sheaf of X on the small étale site of X. Let K,L be objects of D(A).
If K ∈ DCoh(A) and L has finite injective dimension, then

ϵ∗ ˜RHomA(K,L) = RHomOétale
(ϵ∗K̃, ϵ∗L̃)

6256
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in D(Oétale) where ϵ : (Xétale,Oétale) → (X,OX) is as in Derived Categories of
Spaces, Section 75.4.

Proof. By Duality for Schemes, Lemma 48.2.3 we have a canonical isomorphism

˜RHomA(K,L) = RHomOX
(K̃, L̃)

in D(OX). There is a canonical map

ϵ∗RHomOX
(K̃, L̃) −→ RHomOétale

(ϵ∗K̃, ϵ∗L̃)

in D(Oétale), see Cohomology on Sites, Remark 21.35.11. We will show the left
and right hand side of this arrow have isomorphic cohomology sheaves, but we will
omit the verification that the isomorphism is given by this arrow.

We may assume that L is given by a finite complex I• of injective A-modules.
By induction on the length of I• and compatibility of the constructions with dis-
tinguished triangles, we reduce to the case that L = I[0] where I is an injective
A-module. Recall that the cohomology sheaves of RHomOétale

(ϵ∗K̃, ϵ∗L̃)) are the
sheafifications of the presheaf sending U étale over X to the ith ext group between
the restrictions of ϵ∗K̃ and ϵ∗L̃ to Uétale. See Cohomology on Sites, Lemma 21.35.1.
If U = Spec(B) is affine, then this ext group is equal to ExtiB(K ⊗A B,L ⊗A B)
by the equivalence of Derived Categories of Spaces, Lemma 75.4.2 and Derived
Categories of Schemes, Lemma 36.3.5 (this also uses the compatibilities detailed in
Derived Categories of Spaces, Remark 75.6.3). Since A → B is étale, we see that
I ⊗A B is an injective B-module by Dualizing Complexes, Lemma 47.26.4. Hence
we see that

ExtnB(K ⊗A B, I ⊗A B) = HomB(H−n(K ⊗A B), I ⊗A B)
= HomAf (H−n(K)⊗A B, I ⊗A B)
= HomA(H−n(K), I)⊗A B
= ExtnA(K, I)⊗A B

The penultimate equality because H−n(K) is a finite A-module, see More on Alge-
bra, Lemma 15.65.4. Therefore the cohomology sheaves of the left and right hand
side of the equality in the lemma are the same. □

Lemma 86.2.4.0E51 Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let K be a dualizing complex on X. Then K is an object of DCoh(OX)
and D = RHomOX

(−,K) induces an anti-equivalence

D : DCoh(OX) −→ DCoh(OX)

which comes equipped with a canonical isomorphism id → D ◦ D. If X is quasi-
compact, then D exchanges D+

Coh(OX) and D−
Coh(OX) and induces an equivalence

Db
Coh(OX)→ Db

Coh(OX).

Proof. Let U → X be an étale morphism with U affine. Say U = Spec(A) and let
ω•
A be a dualizing complex for A corresponding to K|U as in Lemma 86.2.1 and

https://stacks.math.columbia.edu/tag/0E51
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Duality for Schemes, Lemma 48.2.1. By Lemma 86.2.3 the diagram
DCoh(A) //

RHomA(−,ω•
A)
��

DCoh(Oétale)

RHomOétale (−,K|U )
��

DCoh(A) // D(Oétale)
commutes where Oétale is the structure sheaf of the small étale site of U . Since for-
mation of RHom commutes with restriction, we conclude that D sends DCoh(OX)
into DCoh(OX). Moreover, the canonical map

L −→ RHomOX
(RHomOX

(L,K),K)
(Cohomology on Sites, Lemma 21.35.5) is an isomorphism for all L in DCoh(OX) be-
cause this is true over all U as above by Dualizing Complexes, Lemma 47.15.3. The
statement on boundedness properties of the functor D in the quasi-compact case
also follows from the corresponding statements of Dualizing Complexes, Lemma
47.15.3. □

Let (C,O) be a ringed site. Recall that an object L of D(O) is invertible if it
is an invertible object for the symmetric monoidal structure on D(OX) given by
derived tensor product. In Cohomology on Sites, Lemma 21.49.2 we we have seen
this means L is perfect and if (C,O) is a locally ringed site, then for every object
U of C there is a covering {Ui → U} of U in C such that L|Ui ∼= OUi [−ni] for some
integers ni.
Let S be a scheme and let X be an algebraic space over S. If L in D(OX) is
invertible, then there is a disjoint union decomposition X =

∐
n∈Z Xn such that

L|Xn is an invertible module sitting in degree n. In particular, it follows that
L =

⊕
Hn(L)[−n] which gives a well defined complex of OX -modules (with zero

differentials) representing L.

Lemma 86.2.5.0E52 Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. If K and K ′ are dualizing complexes on X, then K ′ is isomorphic to
K ⊗L

OX
L for some invertible object L of D(OX).

Proof. Set
L = RHomOX

(K,K ′)
This is an invertible object of D(OX), because affine locally this is true. Use Lemma
86.2.3 and Dualizing Complexes, Lemma 47.15.5 and its proof. The evaluation map
L⊗L

OX
K → K ′ is an isomorphism for the same reason. □

Lemma 86.2.6.0E53 Let S be a scheme. Let X be a locally Noetherian quasi-separated
algebraic space over S. Let ω•

X be a dualizing complex on X. Then X the function
|X| → Z defined by
x 7−→ δ(x) such that ω•

X,x[−δ(x)] is a normalized dualizing complex over OX,x
is a dimension function on |X|.

Proof. Let U be a scheme and let U → X be a surjective étale morphism. Let ω•
U

be the dualizing complex on U associated to ω•
X |U . If u ∈ U maps to x ∈ |X|, then

OX,x is the strict henselization of OU,u. By Dualizing Complexes, Lemma 47.22.1
we see that if ω• is a normalized dualizing complex for OU,u, then ω•⊗OU,u

OX,x is
a normalized dualizing complex for OX,x. Hence we see that the dimension function

https://stacks.math.columbia.edu/tag/0E52
https://stacks.math.columbia.edu/tag/0E53
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U → Z of Duality for Schemes, Lemma 48.2.7 for the scheme U and the complex
ω•
U is equal to the composition of U → |X| with δ. Using the specializations in
|X| lift to specializations in U and that nontrivial specializations in U map to
nontrivial specializations in X (Decent Spaces, Lemmas 68.12.2 and 68.12.1) an
easy topological argument shows that δ is a dimension function on |X|. □

86.3. Right adjoint of pushforward

0E54 This is the analogue of Duality for Schemes, Section 48.3.

Lemma 86.3.1.0E55 This is almost the
same as [Nee96,
Example 4.2].

Let S be a scheme. Let f : X → Y be a morphism between
quasi-separated and quasi-compact algebraic spaces over S. The functor Rf∗ :
DQCoh(X)→ DQCoh(Y ) has a right adjoint.

Proof. We will prove a right adjoint exists by verifying the hypotheses of Derived
Categories, Proposition 13.38.2. First off, the category DQCoh(OX) has direct
sums, see Derived Categories of Spaces, Lemma 75.5.3. The category DQCoh(OX)
is compactly generated by Derived Categories of Spaces, Theorem 75.15.4. Since
X and Y are quasi-compact and quasi-separated, so is f , see Morphisms of Spaces,
Lemmas 67.4.10 and 67.8.9. Hence the functor Rf∗ commutes with direct sums,
see Derived Categories of Spaces, Lemma 75.6.2. This finishes the proof. □

Lemma 86.3.2.0E56 Notation and assumptions as in Lemma 86.3.1. Let a : DQCoh(OY )→
DQCoh(OX) be the right adjoint toRf∗. Then amapsD+

QCoh(OY ) intoD+
QCoh(OX).

In fact, there exists an integer N such that Hi(K) = 0 for i ≤ c implies Hi(a(K)) =
0 for i ≤ c−N .

Proof. By Derived Categories of Spaces, Lemma 75.6.1 the functor Rf∗ has fi-
nite cohomological dimension. In other words, there exist an integer N such that
Hi(Rf∗L) = 0 for i ≥ N + c if Hi(L) = 0 for i ≥ c. Say K ∈ D+

QCoh(OY ) has
Hi(K) = 0 for i ≤ c. Then

HomD(OX)(τ≤c−Na(K), a(K)) = HomD(OY )(Rf∗τ≤c−Na(K),K) = 0
by what we said above. Clearly, this implies that Hi(a(K)) = 0 for i ≤ c−N . □

Let S be a scheme. Let f : X → Y be a morphism of quasi-separated and
quasi-compact algebraic spaces over S. Let a denote the right adjoint to Rf∗ :
DQCoh(OX) → DQCoh(OY ). For every K ∈ DQCoh(OY ) and L ∈ DQCoh(OX) we
obtain a canonical map
(86.3.2.1)0E57 Rf∗RHomOX

(L, a(K)) −→ RHomOY
(Rf∗L,K)

Namely, this map is constructed as the composition
Rf∗RHomOX

(L, a(K))→ RHomOY
(Rf∗L,Rf∗a(K))→ RHomOY

(Rf∗L,K)
where the first arrow is Cohomology on Sites, Remark 21.35.10 and the second
arrow is the counit Rf∗a(K)→ K of the adjunction.

Lemma 86.3.3.0E58 Let S be a scheme. Let f : X → Y be a morphism of quasi-
compact and quasi-separated algebraic spaces over S. Let a be the right adjoint
to Rf∗ : DQCoh(OX) → DQCoh(OY ). Let L ∈ DQCoh(OX) and K ∈ DQCoh(OY ).
Then the map (86.3.2.1)

Rf∗RHomOX
(L, a(K)) −→ RHomOY

(Rf∗L,K)

https://stacks.math.columbia.edu/tag/0E55
https://stacks.math.columbia.edu/tag/0E56
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becomes an isomorphism after applying the functor DQY : D(OY )→ DQCoh(OY )
discussed in Derived Categories of Spaces, Section 75.19.

Proof. The statement makes sense as DQY exists by Derived Categories of Spaces,
Lemma 75.19.1. SinceDQY is the right adjoint to the inclusion functorDQCoh(OY )→
D(OY ) to prove the lemma we have to show that for any M ∈ DQCoh(OY ) the
map (86.3.2.1) induces an bijection

HomY (M,Rf∗RHomOX
(L, a(K))) −→ HomY (M,RHomOY

(Rf∗L,K))
To see this we use the following string of equalities

HomY (M,Rf∗RHomOX
(L, a(K))) = HomX(Lf∗M,RHomOX

(L, a(K)))
= HomX(Lf∗M ⊗L

OX
L, a(K))

= HomY (Rf∗(Lf∗M ⊗L
OX

L),K)
= HomY (M ⊗L

OY
Rf∗L,K)

= HomY (M,RHomOY
(Rf∗L,K))

The first equality holds by Cohomology on Sites, Lemma 21.19.1. The second equal-
ity by Cohomology on Sites, Lemma 21.35.2. The third equality by construction
of a. The fourth equality by Derived Categories of Spaces, Lemma 75.20.1 (this is
the important step). The fifth by Cohomology on Sites, Lemma 21.35.2. □

Example 86.3.4.0GG3 The statement of Lemma 86.3.3 is not true without applying the
“coherator” DQY . See Duality for Schemes, Example 48.3.7.

Remark 86.3.5.0GG4 In the situation of Lemma 86.3.3 we have
DQY (Rf∗RHomOX

(L, a(K))) = Rf∗DQX(RHomOX
(L, a(K)))

by Derived Categories of Spaces, Lemma 75.19.2. Thus if RHomOX
(L, a(K)) ∈

DQCoh(OX), then we can “erase” the DQY on the left hand side of the arrow.
On the other hand, if we know that RHomOY

(Rf∗L,K) ∈ DQCoh(OY ), then
we can “erase” the DQY from the right hand side of the arrow. If both are
true then we see that (86.3.2.1) is an isomorphism. Combining this with De-
rived Categories of Spaces, Lemma 75.13.10 we see that Rf∗RHomOX

(L, a(K))→
RHomOY

(Rf∗L,K) is an isomorphism if
(1) L and Rf∗L are perfect, or
(2) K is bounded below and L and Rf∗L are pseudo-coherent.

For (2) we use that a(K) is bounded below if K is bounded below, see Lemma
86.3.2.

Example 86.3.6.0GG5 Let S be a scheme. Let f : X → Y be a proper morphism of
Noetherian algebraic spaces over S, L ∈ D−

Coh(X) and K ∈ D+
QCoh(OY ). Then the

map Rf∗RHomOX
(L, a(K)) → RHomOY

(Rf∗L,K) is an isomorphism. Namely,
the complexes L and Rf∗L are pseudo-coherent by Derived Categories of Spaces,
Lemmas 75.13.7 and 75.8.1 and the discussion in Remark 86.3.5 applies.

Lemma 86.3.7.0E59 Let S be a scheme. Let f : X → Y be a morphism of quasi-
separated and quasi-compact algebraic spaces over S. For all L ∈ DQCoh(OX)
and K ∈ DQCoh(OY ) (86.3.2.1) induces an isomorphism RHomX(L, a(K)) →
RHomY (Rf∗L,K) of global derived homs.

https://stacks.math.columbia.edu/tag/0GG3
https://stacks.math.columbia.edu/tag/0GG4
https://stacks.math.columbia.edu/tag/0GG5
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Proof. By construction (Cohomology on Sites, Section 21.36) the complexes

RHomX(L, a(K)) = RΓ(X,RHomOX
(L, a(K))) = RΓ(Y,Rf∗RHomOX

(L, a(K)))

and
RHomY (Rf∗L,K) = RΓ(Y,RHomOX

(Rf∗L, a(K)))
Thus the lemma is a consequence of Lemma 86.3.3. Namely, a map E → E′

in D(OY ) which induces an isomorphism DQY (E) → DQY (E′) induces a quasi-
isomorphism RΓ(Y,E) → RΓ(Y,E′). Indeed we have Hi(Y,E) = ExtiY (OY , E) =
Hom(OY [−i], E) = Hom(OY [−i], DQY (E)) because OY [−i] is in DQCoh(OY ) and
DQY is the right adjoint to the inclusion functor DQCoh(OY )→ D(OY ). □

86.4. Right adjoint of pushforward and base change, I

0E5A Let us define the base change map between right adjoints of pushforward. Let S
be a scheme. Consider a cartesian diagram

(86.4.0.1)0E5B
X ′

g′
//

f ′

��

X

f

��
Y ′ g // Y

where Y ′ and X are Tor independent over Y . Denote

a : DQCoh(OY )→ DQCoh(OX) and a′ : DQCoh(OY ′)→ DQCoh(OX′)

the right adjoints to Rf∗ and Rf ′
∗ (Lemma 86.3.1). The base change map of Coho-

mology on Sites, Remark 21.19.3 gives a transformation of functors

Lg∗ ◦Rf∗ −→ Rf ′
∗ ◦ L(g′)∗

on derived categories of sheaves with quasi-coherent cohomology. Hence a trans-
formation between the right adjoints in the opposite direction

a ◦Rg∗ ←− Rg′
∗ ◦ a′

Lemma 86.4.1.0E5C In diagram (86.4.0.1) the map a◦Rg∗ ← Rg′
∗◦a′ is an isomorphism.

Proof. The base change map Lg∗ ◦ Rf∗K → Rf ′
∗ ◦ L(g′)∗K is an isomorphism

for every K in DQCoh(OX) by Derived Categories of Spaces, Lemma 75.20.4 (this
uses the assumption of Tor independence). Thus the corresponding transformation
between adjoint functors is an isomorphism as well. □

Then we can consider the morphism of functors DQCoh(OY )→ DQCoh(OX′) given
by the composition

(86.4.1.1)0E5D L(g′)∗ ◦ a→ L(g′)∗ ◦ a ◦Rg∗ ◦Lg∗ ← L(g′)∗ ◦Rg′
∗ ◦ a′ ◦Lg∗ → a′ ◦Lg∗

The first arrow comes from the adjunction map id → Rg∗Lg
∗ and the last arrow

from the adjunction map L(g′)∗Rg′
∗ → id. We need the assumption on Tor indepen-

dence to invert the arrow in the middle, see Lemma 86.4.1. Alternatively, we can
think of (86.4.1.1) by adjointness of L(g′)∗ and R(g′)∗ as a natural transformation

a→ a ◦Rg∗ ◦ Lg∗ ← Rg′
∗ ◦ a′ ◦ Lg∗

https://stacks.math.columbia.edu/tag/0E5C
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were again the second arrow is invertible. If M ∈ DQCoh(OX) and K ∈ DQCoh(OY )
then on Yoneda functors this map is given by

HomX(M,a(K)) = HomY (Rf∗M,K)
→ HomY (Rf∗M,Rg∗Lg

∗K)
= HomY ′(Lg∗Rf∗M,Lg∗K)
← HomY ′(Rf ′

∗L(g′)∗M,Lg∗K)
= HomX′(L(g′)∗M,a′(Lg∗K))
= HomX(M,Rg′

∗a
′(Lg∗K))

(were the arrow pointing left is invertible by the base change theorem given in
Derived Categories of Spaces, Lemma 75.20.4) which makes things a little bit more
explicit.

In this section we first prove that the base change map satisfies some natural com-
patibilities with regards to stacking squares as in Cohomology on Sites, Remarks
21.19.4 and 21.19.5 for the usual base change map. We suggest the reader skip the
rest of this section on a first reading.

Lemma 86.4.2.0E5E Let S be a scheme. Consider a commutative diagram

X ′
k
//

f ′

��

X

f

��
Y ′ l //

g′

��

Y

g

��
Z ′ m // Z

of quasi-compact and quasi-separated algebraic spaces over S where both diagrams
are cartesian and where f and l as well as g and m are Tor independent. Then the
maps (86.4.1.1) for the two squares compose to give the base change map for the
outer rectangle (see proof for a precise statement).

Proof. It follows from the assumptions that g◦f and m are Tor independent (details
omitted), hence the statement makes sense. In this proof we write k∗ in place of
Lk∗ and f∗ instead of Rf∗. Let a, b, and c be the right adjoints of Lemma 86.3.1
for f , g, and g ◦ f and similarly for the primed versions. The arrow corresponding
to the top square is the composition

γtop : k∗ ◦ a→ k∗ ◦ a ◦ l∗ ◦ l∗
ξtop←−− k∗ ◦ k∗ ◦ a′ ◦ l∗ → a′ ◦ l∗

where ξtop : k∗ ◦ a′ → a ◦ l∗ is an isomorphism (hence can be inverted) and is the
arrow “dual” to the base change map l∗ ◦f∗ → f ′

∗ ◦k∗. The outer arrows come from
the canonical maps 1→ l∗ ◦ l∗ and k∗ ◦ k∗ → 1. Similarly for the second square we
have

γbot : l∗ ◦ b→ l∗ ◦ b ◦m∗ ◦m∗ ξbot←−− l∗ ◦ l∗ ◦ b′ ◦m∗ → b′ ◦m∗

For the outer rectangle we get

γrect : k∗ ◦ c→ k∗ ◦ c ◦m∗ ◦m∗ ξrect←−−− k∗ ◦ k∗ ◦ c′ ◦m∗ → c′ ◦m∗
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We have (g ◦ f)∗ = g∗ ◦ f∗ and hence c = a ◦ b and similarly c′ = a′ ◦ b′. The
statement of the lemma is that γrect is equal to the composition

k∗ ◦ c = k∗ ◦ a ◦ b γtop−−→ a′ ◦ l∗ ◦ b γbot−−→ a′ ◦ b′ ◦m∗ = c′ ◦m∗

To see this we contemplate the following diagram:

k∗ ◦ a ◦ b

��

tt

k∗ ◦ a ◦ l∗ ◦ l∗ ◦ b

tt
k∗ ◦ a ◦ b ◦m∗ ◦m∗ // k∗ ◦ a ◦ l∗ ◦ l∗ ◦ b ◦m∗ ◦m∗ k∗ ◦ k∗ ◦ a′ ◦ l∗ ◦ b

ξtop

OO

��tt
k∗ ◦ k∗ ◦ a′ ◦ l∗ ◦ b ◦m∗ ◦m∗

ξtop

OO

**

a′ ◦ l∗ ◦ b

��
k∗ ◦ k∗ ◦ a′ ◦ b′ ◦m∗

ξrect

OO

**

k∗ ◦ k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′ ◦m∗

ξbot

OO

oo

**

a′ ◦ l∗ ◦ b ◦m∗ ◦m∗

a′ ◦ l∗ ◦ l∗ ◦ b′ ◦m∗

ξbot

OO

��
a′ ◦ b′ ◦m∗

Going down the right hand side we have the composition and going down the left
hand side we have γrect. All the quadrilaterals on the right hand side of this diagram
commute by Categories, Lemma 4.28.2 or more simply the discussion preceding
Categories, Definition 4.28.1. Hence we see that it suffices to show the diagram

a ◦ l∗ ◦ l∗ ◦ b ◦m∗ a ◦ b ◦m∗oo

k∗ ◦ a′ ◦ l∗ ◦ b ◦m∗

ξtop

OO

k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′

ξbot

OO

// k∗ ◦ a′ ◦ b′

ξrect

OO

becomes commutative if we invert the arrows ξtop, ξbot, and ξrect (note that this is
different from asking the diagram to be commutative). However, the diagram

a ◦ l∗ ◦ l∗ ◦ b ◦m∗

a ◦ l∗ ◦ l∗ ◦ l∗ ◦ b′

ξbot

55

k∗ ◦ a′ ◦ l∗ ◦ b ◦m∗

ξtop
ii

k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′
ξtop

ii

ξbot

55



86.4. RIGHT ADJOINT OF PUSHFORWARD AND BASE CHANGE, I 6264

commutes by Categories, Lemma 4.28.2. Since the diagrams

a ◦ l∗ ◦ l∗ ◦ b ◦m∗ a ◦ b ◦moo

a ◦ l∗ ◦ l∗ ◦ l∗ ◦ b′

OO

a ◦ l∗ ◦ b′oo

OO

and

a ◦ l∗ ◦ l∗ ◦ l∗ ◦ b′ // a ◦ l∗ ◦ b′

k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′

OO

// k∗ ◦ a′ ◦ b′

OO

commute (see references cited) and since the composition of l∗ → l∗ ◦ l∗ ◦ l∗ → l∗ is
the identity, we find that it suffices to prove that

k ◦ a′ ◦ b′ ξbot−−→ a ◦ l∗ ◦ b
ξtop−−→ a ◦ b ◦m∗

is equal to ξrect (via the identifications a◦b = c and a′◦b′ = c′). This is the statement
dual to Cohomology on Sites, Remark 21.19.4 and the proof is complete. □

Lemma 86.4.3.0E5F Let S be a scheme. Consider a commutative diagram

X ′′
g′
//

f ′′

��

X ′
g
//

f ′

��

X

f

��
Y ′′ h′

// Y ′ h // Y

of quasi-compact and quasi-separated algebraic spaces over S where both diagrams
are cartesian and where f and h as well as f ′ and h′ are Tor independent. Then
the maps (86.4.1.1) for the two squares compose to give the base change map for
the outer rectangle (see proof for a precise statement).

Proof. It follows from the assumptions that f and h◦h′ are Tor independent (details
omitted), hence the statement makes sense. In this proof we write g∗ in place of
Lg∗ and f∗ instead of Rf∗. Let a, a′, and a′′ be the right adjoints of Lemma 86.3.1
for f , f ′, and f ′′. The arrow corresponding to the right square is the composition

γright : g∗ ◦ a→ g∗ ◦ a ◦ h∗ ◦ h∗ ξright←−−−− g∗ ◦ g∗ ◦ a′ ◦ h∗ → a′ ◦ h∗

where ξright : g∗ ◦ a′ → a ◦ h∗ is an isomorphism (hence can be inverted) and is the
arrow “dual” to the base change map h∗ ◦ f∗ → f ′

∗ ◦ g∗. The outer arrows come
from the canonical maps 1→ h∗ ◦ h∗ and g∗ ◦ g∗ → 1. Similarly for the left square
we have

γleft : (g′)∗ ◦ a′ → (g′)∗ ◦ a′ ◦ (h′)∗ ◦ (h′)∗ ξleft←−−− (g′)∗ ◦ (g′)∗ ◦ a′′ ◦ (h′)∗ → a′′ ◦ (h′)∗

For the outer rectangle we get

γrect : k∗ ◦ a→ k∗ ◦ a ◦m∗ ◦m∗ ξrect←−−− k∗ ◦ k∗ ◦ a′′ ◦m∗ → a′′ ◦m∗

where k = g ◦ g′ and m = h ◦ h′. We have k∗ = (g′)∗ ◦ g∗ and m∗ = (h′)∗ ◦ h∗. The
statement of the lemma is that γrect is equal to the composition

k∗ ◦ a = (g′)∗ ◦ g∗ ◦ a γright−−−−→ (g′)∗ ◦ a′ ◦ h∗ γleft−−−→ a′′ ◦ (h′)∗ ◦ h∗ = a′′ ◦m∗
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To see this we contemplate the following diagram

(g′)∗ ◦ g∗ ◦ a

��

ww

(g′)∗ ◦ g∗ ◦ a ◦ h∗ ◦ h∗

ss
(g′)∗ ◦ g∗ ◦ a ◦ h∗ ◦ (h′)∗ ◦ (h′)∗ ◦ h∗ (g′)∗ ◦ g∗ ◦ g∗ ◦ a′ ◦ h∗

ξright

OO

��ss
(g′)∗ ◦ g∗ ◦ g∗ ◦ a′ ◦ (h′)∗ ◦ (h′)∗ ◦ h∗

ξright

OO

++

(g′)∗ ◦ a′ ◦ h∗

��
(g′)∗ ◦ g∗ ◦ g∗ ◦ (g′)∗ ◦ a′′ ◦ (h′)∗ ◦ h∗

ξleft

OO

''

++

(g′)∗ ◦ a′ ◦ (h′)∗ ◦ (h′)∗ ◦ h∗

(g′)∗ ◦ (g′)∗ ◦ a′′ ◦ (h′)∗ ◦ h∗

ξleft

OO

��
a′′ ◦ (h′)∗ ◦ h∗

Going down the right hand side we have the composition and going down the left
hand side we have γrect. All the quadrilaterals on the right hand side of this diagram
commute by Categories, Lemma 4.28.2 or more simply the discussion preceding
Categories, Definition 4.28.1. Hence we see that it suffices to show that

g∗ ◦ (g′)∗ ◦ a′′ ξleft−−−→ g∗ ◦ a′ ◦ (h′)∗
ξright−−−−→ a ◦ h∗ ◦ (h′)∗

is equal to ξrect. This is the statement dual to Cohomology, Remark 20.28.5 and
the proof is complete. □

Remark 86.4.4.0E5G Let S be a scheme. Consider a commutative diagram

X ′′
k′
//

f ′′

��

X ′
k
//

f ′

��

X

f

��
Y ′′ l′ //

g′′

��

Y ′ l //

g′

��

Y

g

��
Z ′′ m′

// Z ′ m // Z

of quasi-compact and quasi-separated algebraic spaces over S where all squares
are cartesian and where (f, l), (g,m), (f ′, l′), (g′,m′) are Tor independent pairs of
maps. Let a, a′, a′′, b, b′, b′′ be the right adjoints of Lemma 86.3.1 for f , f ′, f ′′, g,
g′, g′′. Let us label the squares of the diagram A, B, C, D as follows

A B
C D
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Then the maps (86.4.1.1) for the squares are (where we use k∗ = Lk∗, etc)
γA : (k′)∗ ◦ a′ → a′′ ◦ (l′)∗ γB : k∗ ◦ a→ a′ ◦ l∗
γC : (l′)∗ ◦ b′ → b′′ ◦ (m′)∗ γD : l∗ ◦ b→ b′ ◦m∗

For the 2× 1 and 1× 2 rectangles we have four further base change maps
γA+B : (k ◦ k′)∗ ◦ a→ a′′ ◦ (l ◦ l′)∗

γC+D : (l ◦ l′)∗ ◦ b→ b′′ ◦ (m ◦m′)∗

γA+C : (k′)∗ ◦ (a′ ◦ b′)→ (a′′ ◦ b′′) ◦ (m′)∗

γA+C : k∗ ◦ (a ◦ b)→ (a′ ◦ b′) ◦m∗

By Lemma 86.4.3 we have
γA+B = γA ◦ γB , γC+D = γC ◦ γD

and by Lemma 86.4.2 we have
γA+C = γC ◦ γA, γB+D = γD ◦ γB

Here it would be more correct to write γA+B = (γA ⋆ idl∗) ◦ (id(k′)∗ ⋆ γB) with
notation as in Categories, Section 4.28 and similarly for the others. However, we
continue the abuse of notation used in the proofs of Lemmas 86.4.2 and 86.4.3 of
dropping ⋆ products with identities as one can figure out which ones to add as long
as the source and target of the transformation is known. Having said all of this we
find (a priori) two transformations

(k′)∗ ◦ k∗ ◦ a ◦ b −→ a′′ ◦ b′′ ◦ (m′)∗ ◦m∗

namely
γC ◦ γA ◦ γD ◦ γB = γA+C ◦ γB+D

and
γC ◦ γD ◦ γA ◦ γB = γC+D ◦ γA+B

The point of this remark is to point out that these transformations are equal.
Namely, to see this it suffices to show that

(k′)∗ ◦ a′ ◦ l∗ ◦ b
γD
//

γA

��

(k′)∗ ◦ a′ ◦ b′ ◦m∗

γA

��
a′′ ◦ (l′)∗ ◦ l∗ ◦ b

γD // a′′ ◦ (l′)∗ ◦ b′ ◦m∗

commutes. This is true by Categories, Lemma 4.28.2 or more simply the discussion
preceding Categories, Definition 4.28.1.

86.5. Right adjoint of pushforward and base change, II

0E5H In this section we prove that the base change map of Section 86.4 is an isomorphism
in some cases.

Lemma 86.5.1.0E5I In diagram (86.4.0.1) assume in addition g : Y ′ → Y is a morphism
of affine schemes and f : X → Y is proper. Then the base change map (86.4.1.1)
induces an isomorphism

L(g′)∗a(K) −→ a′(Lg∗K)
in the following cases

(1) for all K ∈ DQCoh(OX) if f is flat of finite presentation,
(2) for all K ∈ DQCoh(OX) if f is perfect and Y Noetherian,
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(3) for K ∈ D+
QCoh(OX) if g has finite Tor dimension and Y Noetherian.

Proof. Write Y = Spec(A) and Y ′ = Spec(A′). As a base change of an affine
morphism, the morphism g′ is affine. Let M be a perfect generator for DQCoh(OX),
see Derived Categories of Spaces, Theorem 75.15.4. Then L(g′)∗M is a generator for
DQCoh(OX′), see Derived Categories of Spaces, Remark 75.15.5. Hence it suffices
to show that (86.4.1.1) induces an isomorphism

(86.5.1.1)0E5J RHomX′(L(g′)∗M,L(g′)∗a(K)) −→ RHomX′(L(g′)∗M,a′(Lg∗K))

of global hom complexes, see Cohomology on Sites, Section 21.36, as this will imply
the cone of L(g′)∗a(K)→ a′(Lg∗K) is zero. The structure of the proof is as follows:
we will first show that these Hom complexes are isomorphic and in the last part of
the proof we will show that the isomorphism is induced by (86.5.1.1).

The left hand side. Because M is perfect, the canonical map

RHomX(M,a(K))⊗L
A A

′ −→ RHomX′(L(g′)∗M,L(g′)∗a(K))

is an isomorphism by Derived Categories of Spaces, Lemma 75.20.5. We can
combine this with the isomorphism RHomY (Rf∗M,K) = RHomX(M,a(K)) of
Lemma 86.3.7 to get that the left hand side equals RHomY (Rf∗M,K)⊗L

A A
′.

The right hand side. Here we first use the isomorphism

RHomX′(L(g′)∗M,a′(Lg∗K)) = RHomY ′(Rf ′
∗L(g′)∗M,Lg∗K)

of Lemma 86.3.7. Since f and g are Tor independent the base change map Lg∗Rf∗M →
Rf ′

∗L(g′)∗M is an isomorphism by Derived Categories of Spaces, Lemma 75.20.4.
Hence we may rewrite this as RHomY ′(Lg∗Rf∗M,Lg∗K). Since Y , Y ′ are affine
and K, Rf∗M are in DQCoh(OY ) (Derived Categories of Spaces, Lemma 75.6.1)
we have a canonical map

β : RHomY (Rf∗M,K)⊗L
A A

′ −→ RHomY ′(Lg∗Rf∗M,Lg∗K)

in D(A′). This is the arrow More on Algebra, Equation (15.99.1.1) where we have
used Derived Categories of Schemes, Lemmas 36.3.5 and 36.10.8 to translate back
and forth into algebra.

(1) If f is flat and of finite presentation, the complex Rf∗M is perfect on Y
by Derived Categories of Spaces, Lemma 75.25.4 and β is an isomorphism
by More on Algebra, Lemma 15.99.2 part (1).

(2) If f is perfect and Y Noetherian, the complex Rf∗M is perfect on Y by
More on Morphisms of Spaces, Lemma 76.47.5 and β is an isomorphism
as before.

(3) If g has finite tor dimension and Y is Noetherian, the complex Rf∗M is
pseudo-coherent on Y (Derived Categories of Spaces, Lemmas 75.8.1 and
75.13.7) and β is an isomorphism by More on Algebra, Lemma 15.99.2
part (4).

We conclude that we obtain the same answer as in the previous paragraph.

In the rest of the proof we show that the identifications of the left and right hand side
of (86.5.1.1) given in the second and third paragraph are in fact given by (86.5.1.1).
To make our formulas manageable we will use (−,−)X = RHomX(−,−), use −⊗A′
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in stead of −⊗L
A A

′, and we will abbreviate g∗ = Lg∗ and f∗ = Rf∗. Consider the
following commutative diagram

((g′)∗M, (g′)∗a(K))X′

��

(M,a(K))X ⊗A′
α

oo

��

(f∗M,K)Y ⊗A′

��
((g′)∗M, (g′)∗a(g∗g

∗K))X′ (M,a(g∗g
∗K))X ⊗A′

α
oo (f∗M, g∗g

∗K)Y ⊗A′

µ′

''

((g′)∗M, (g′)∗g′
∗a

′(g∗K))X′

OO

��

(M, g′
∗a

′(g∗K))X ⊗A′

OO

α
oo

µ
tt

(f∗M,K)⊗A′

β

��
((g′)∗M,a′(g∗K))X′ (f ′

∗(g′)∗M, g∗K)Y ′ // (g∗f∗M, g∗K)Y ′

The arrows labeled α are the maps from Derived Categories of Spaces, Lemma
75.20.5 for the diagram with corners X ′, X, Y ′, Y . The upper part of the diagram
is commutative as the horizontal arrows are functorial in the entries. The middle
vertical arrows come from the invertible transformation g′

∗ ◦ a′ → a ◦ g∗ of Lemma
86.4.1 and therefore the middle square is commutative. Going down the left hand
side is (86.5.1.1). The upper horizontal arrows provide the identifications used in the
second paragraph of the proof. The lower horizontal arrows including β provide
the identifications used in the third paragraph of the proof. Given E ∈ D(A),
E′ ∈ D(A′), and c : E → E′ in D(A) we will denote µc : E ⊗ A′ → E′ the map
induced by c and the adjointness of restriction and base change; if c is clear we
write µ = µc, i.e., we drop c from the notation. The map µ in the diagram is of
this form with c given by the identification (M, g′

∗a(g∗K))X = ((g′)∗M,a′(g∗K))X′

; the triangle involving µ is commutative by Derived Categories of Spaces, Remark
75.20.6.
Observe that

(M,a(g∗g
∗K))X (f∗M, g∗g

∗K)Y (g∗f∗M, g∗K)Y ′

(M, g′
∗a

′(g∗K))X

OO

((g′)∗M,a′(g∗K))X′ (f ′
∗(g′)∗M, g∗K)Y ′

OO

is commutative by the very definition of the transformation g′
∗ ◦a′ → a◦g∗. Letting

µ′ be as above corresponding to the identification (f∗M, g∗g
∗K)X = (g∗f∗M, g∗K)Y ′ ,

then the hexagon commutes as well. Thus it suffices to show that β is equal to the
composition of (f∗M,K)Y ⊗A′ → (f∗M, g∗g

∗K)X ⊗A′ and µ′. To do this, it suf-
fices to prove the two induced maps (f∗M,K)Y → (g∗f∗M, g∗K)Y ′ are the same.
In other words, it suffices to show the diagram

RHomA(E,K)
induced by β

//

))

RHomA′(E ⊗L
A A

′,K ⊗L
A A

′)

RHomA(E,K ⊗L
A A

′)

44

commutes for all E,K ∈ D(A). Since this is how β is constructed in More on
Algebra, Section 15.99 the proof is complete. □
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86.6. Right adjoint of pushforward and trace maps

0E5K Let S be a scheme. Let f : X → Y be a morphism of quasi-compact and quasi-
separated algebraic spaces over S. Let a : DQCoh(OY )→ DQCoh(OX) be the right
adjoint as in Lemma 86.3.1. By Categories, Section 4.24 we obtain a transformation
of functors

Trf : Rf∗ ◦ a −→ id

The corresponding map Trf,K : Rf∗a(K) −→ K for K ∈ DQCoh(OY ) is sometimes
called the trace map. This is the map which has the property that the bijection

HomX(L, a(K)) −→ HomY (Rf∗L,K)

for L ∈ DQCoh(OX) which characterizes the right adjoint is given by

φ 7−→ Trf,K ◦Rf∗φ

The canonical map (86.3.2.1)

Rf∗RHomOX
(L, a(K)) −→ RHomOY

(Rf∗L,K)

comes about by composition with Trf,K . Every trace map we are going to consider
in this section will be a special case of this trace map. Before we discuss some
special cases we show that formation of the trace map commutes with base change.

Lemma 86.6.1 (Trace map and base change).0E5L Suppose we have a diagram (86.4.0.1).
Then the maps 1 ⋆ Trf : Lg∗ ◦ Rf∗ ◦ a → Lg∗ and Trf ′ ⋆ 1 : Rf ′

∗ ◦ a′ ◦ Lg∗ → Lg∗

agree via the base change maps β : Lg∗ ◦ Rf∗ → Rf ′
∗ ◦ L(g′)∗ (Cohomology on

Sites, Remark 21.19.3) and α : L(g′)∗ ◦ a→ a′ ◦Lg∗ (86.4.1.1). More precisely, the
diagram

Lg∗ ◦Rf∗ ◦ a

β⋆1
��

1⋆Trf
// Lg∗

Rf ′
∗ ◦ L(g′)∗ ◦ a 1⋆α // Rf ′

∗ ◦ a′ ◦ Lg∗

Trf′⋆1

OO

of transformations of functors commutes.

Proof. In this proof we write f∗ for Rf∗ and g∗ for Lg∗ and we drop ⋆ products
with identities as one can figure out which ones to add as long as the source and
target of the transformation is known. Recall that β : g∗ ◦ f∗ → f ′

∗ ◦ (g′)∗ is an
isomorphism and that α is defined using the isomorphism β∨ : g′

∗ ◦ a′ → a ◦ g∗
which is the adjoint of β, see Lemma 86.4.1 and its proof. First we note that the
top horizontal arrow of the diagram in the lemma is equal to the composition

g∗ ◦ f∗ ◦ a→ g∗ ◦ f∗ ◦ a ◦ g∗ ◦ g∗ → g∗ ◦ g∗ ◦ g∗ → g∗

where the first arrow is the unit for (g∗, g∗), the second arrow is Trf , and the third
arrow is the counit for (g∗, g∗). This is a simple consequence of the fact that the
composition g∗ → g∗ ◦ g∗ ◦ g∗ → g∗ of unit and counit is the identity. Consider the
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diagram

g∗ ◦ f∗ ◦ a
β

uu ��

Trf
// g∗

f ′
∗ ◦ (g′)∗ ◦ a

))

g∗ ◦ f∗ ◦ a ◦ g∗ ◦ g∗

β

��

44

g∗ ◦ f∗ ◦ g′
∗ ◦ a′ ◦ g∗β∨

oo

β

��

f ′
∗ ◦ a′ ◦ g∗

Trf′

ii

f ′
∗ ◦ (g′)∗ ◦ a ◦ g∗ ◦ g∗ f ′

∗ ◦ (g′)∗ ◦ g′
∗ ◦ a′ ◦ g∗

55

β∨
oo

In this diagram the two squares commute Categories, Lemma 4.28.2 or more simply
the discussion preceding Categories, Definition 4.28.1. The triangle commutes by
the discussion above. By Categories, Lemma 4.24.8 the square

g∗ ◦ f∗ ◦ g′
∗ ◦ a′

β∨

��

β
// f ′

∗ ◦ (g′)∗ ◦ g′
∗ ◦ a′

��
g∗ ◦ f∗ ◦ a ◦ g∗ // id

commutes which implies the pentagon in the big diagram commutes. Since β and
β∨ are isomorphisms, and since going on the outside of the big diagram equals
Trf ◦ α ◦ β by definition this proves the lemma. □

Let S be a scheme. Let f : X → Y be a morphism of quasi-compact and quasi-
separated algebraic spaces over S. Let a : DQCoh(OY ) → DQCoh(OX) be the
right adjoint of Rf∗ as in Lemma 86.3.1. By Categories, Section 4.24 we obtain a
transformation of functors

ηf : id→ a ◦Rf∗

which is called the unit of the adjunction.

Lemma 86.6.2.0E5M Suppose we have a diagram (86.4.0.1). Then the maps 1 ⋆ ηf :
L(g′)∗ → L(g′)∗ ◦ a ◦Rf∗ and ηf ′ ⋆ 1 : L(g′)∗ → a′ ◦Rf ′

∗ ◦L(g′)∗ agree via the base
change maps β : Lg∗ ◦Rf∗ → Rf ′

∗ ◦L(g′)∗ (Cohomology on Sites, Remark 21.19.3)
and α : L(g′)∗ ◦ a→ a′ ◦ Lg∗ (86.4.1.1). More precisely, the diagram

L(g′)∗
1⋆ηf

//

ηf′⋆1
��

L(g′)∗ ◦ a ◦Rf∗

α

��
a′ ◦Rf ′

∗ ◦ L(g′)∗ a′ ◦ Lg∗ ◦Rf∗
βoo

of transformations of functors commutes.

Proof. This proof is dual to the proof of Lemma 86.6.1. In this proof we write f∗
for Rf∗ and g∗ for Lg∗ and we drop ⋆ products with identities as one can figure out
which ones to add as long as the source and target of the transformation is known.
Recall that β : g∗ ◦f∗ → f ′

∗ ◦(g′)∗ is an isomorphism and that α is defined using the
isomorphism β∨ : g′

∗ ◦ a′ → a ◦ g∗ which is the adjoint of β, see Lemma 86.4.1 and
its proof. First we note that the left vertical arrow of the diagram in the lemma is
equal to the composition

(g′)∗ → (g′)∗ ◦ g′
∗ ◦ (g′)∗ → (g′)∗ ◦ g′

∗ ◦ a′ ◦ f ′
∗ ◦ (g′)∗ → a′ ◦ f ′

∗ ◦ (g′)∗
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where the first arrow is the unit for ((g′)∗, g′
∗), the second arrow is ηf ′ , and the

third arrow is the counit for ((g′)∗, g′
∗). This is a simple consequence of the fact

that the composition (g′)∗ → (g′)∗ ◦ (g′)∗ ◦ (g′)∗ → (g′)∗ of unit and counit is the
identity. Consider the diagram

(g′)∗ ◦ a ◦ f∗ // (g′)∗ ◦ a ◦ g∗ ◦ g∗ ◦ f∗
β

tt
(g′)∗

ηf
55

ηf′

��

))

(g′)∗ ◦ a ◦ g∗ ◦ f ′
∗ ◦ (g′)∗ (g′)∗ ◦ g′

∗ ◦ a′ ◦ g∗ ◦ f∗

β∨

OO

β

tt ��
(g′)∗ ◦ g′

∗ ◦ a′ ◦ f ′
∗ ◦ (g′)∗

uu

β∨

OO

a′ ◦ g∗ ◦ f∗

β
rr

a′ ◦ f ′
∗ ◦ (g′)∗

In this diagram the two squares commute Categories, Lemma 4.28.2 or more simply
the discussion preceding Categories, Definition 4.28.1. The triangle commutes by
the discussion above. By the dual of Categories, Lemma 4.24.8 the square

id //

��

g′
∗ ◦ a′ ◦ g∗ ◦ f∗

β

��
g′

∗ ◦ a′ ◦ g∗ ◦ f∗
β∨
// a ◦ g∗ ◦ f ′

∗ ◦ (g′)∗

commutes which implies the pentagon in the big diagram commutes. Since β and
β∨ are isomorphisms, and since going on the outside of the big diagram equals
β ◦ α ◦ ηf by definition this proves the lemma. □

86.7. Right adjoint of pushforward and pullback

0E5N Let S be a scheme. Let f : X → Y be a morphism of quasi-compact and quasi-
separated algebraic spaces over S. Let a be the right adjoint of pushforward as in
Lemma 86.3.1. For K,L ∈ DQCoh(OY ) there is a canonical map

Lf∗K ⊗L
OX

a(L) −→ a(K ⊗L
OY

L)

Namely, this map is adjoint to a map

Rf∗(Lf∗K ⊗L
OX

a(L)) = K ⊗L
OY

Rf∗(a(L)) −→ K ⊗L
OY

L

(equality by Derived Categories of Spaces, Lemma 75.20.1) for which we use the
trace map Rf∗a(L)→ L. When L = OY we obtain a map

(86.7.0.1)0E5P Lf∗K ⊗L
OX

a(OY ) −→ a(K)

functorial in K and compatible with distinguished triangles.

Lemma 86.7.1.0E5Q Let S be a scheme. Let f : X → Y be a morphism of quasi-
compact and quasi-separated algebraic spaces over S. The map Lf∗K⊗L

OX
a(L)→

a(K⊗L
OY

L) defined above for K,L ∈ DQCoh(OY ) is an isomorphism if K is perfect.
In particular, (86.7.0.1) is an isomorphism if K is perfect.
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Proof. Let K∨ be the “dual” to K, see Cohomology on Sites, Lemma 21.48.4. For
M ∈ DQCoh(OX) we have

HomD(OY )(Rf∗M,K ⊗L
OY

L) = HomD(OY )(Rf∗M ⊗L
OY

K∨, L)
= HomD(OX)(M ⊗L

OX
Lf∗K∨, a(L))

= HomD(OX)(M,Lf∗K ⊗L
OX

a(L))

Second equality by the definition of a and the projection formula (Cohomology on
Sites, Lemma 21.50.1) or the more general Derived Categories of Spaces, Lemma
75.20.1. Hence the result by the Yoneda lemma. □

Lemma 86.7.2.0E5R Suppose we have a diagram (86.4.0.1). Let K ∈ DQCoh(OY ). The
diagram

L(g′)∗(Lf∗K ⊗L
OX

a(OY )) //

��

L(g′)∗a(K)

��
L(f ′)∗Lg∗K ⊗L

OX′ a
′(OY ′) // a′(Lg∗K)

commutes where the horizontal arrows are the maps (86.7.0.1) for K and Lg∗K
and the vertical maps are constructed using Cohomology on Sites, Remark 21.19.3
and (86.4.1.1).

Proof. In this proof we will write f∗ for Rf∗ and f∗ for Lf∗, etc, and we will write
⊗ for ⊗L

OX
, etc. Let us write (86.7.0.1) as the composition

f∗K ⊗ a(OY )→ a(f∗(f∗K ⊗ a(OY )))
← a(K ⊗ f∗a(OK))
→ a(K ⊗OY )
→ a(K)

Here the first arrow is the unit ηf , the second arrow is a applied to Cohomology
on Sites, Equation (21.50.0.1) which is an isomorphism by Derived Categories of
Spaces, Lemma 75.20.1, the third arrow is a applied to idK ⊗ Trf , and the fourth
arrow is a applied to the isomorphism K ⊗ OY = K. The proof of the lemma
consists in showing that each of these maps gives rise to a commutative square as
in the statement of the lemma. For ηf and Trf this is Lemmas 86.6.2 and 86.6.1.
For the arrow using Cohomology on Sites, Equation (21.50.0.1) this is Cohomology
on Sites, Remark 21.50.2. For the multiplication map it is clear. This finishes the
proof. □

86.8. Right adjoint of pushforward for proper flat morphisms

0E5S For proper, flat, and finitely presented morphisms of quasi-compact and quasi-
separated algebraic spaces the right adjoint of pushforward enjoys some remarkable
properties.

Lemma 86.8.1.0E5T Let S be a scheme. Let Y be a quasi-compact and quasi-separated
algebraic space over S. Let f : X → Y be a morphism of algebraic spaces which
is proper, flat, and of finite presentation. Let a be the right adjoint for Rf∗ :
DQCoh(OX)→ DQCoh(OY ) of Lemma 86.3.1. Then a commutes with direct sums.
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Proof. Let P be a perfect object of D(OX). By Derived Categories of Spaces,
Lemma 75.25.4 the complex Rf∗P is perfect on Y . Let Ki be a family of objects
of DQCoh(OY ). Then

HomD(OX)(P, a(
⊕

Ki)) = HomD(OY )(Rf∗P,
⊕

Ki)

=
⊕

HomD(OY )(Rf∗P,Ki)

=
⊕

HomD(OX)(P, a(Ki))

because a perfect object is compact (Derived Categories of Spaces, Proposition
75.16.1). Since DQCoh(OX) has a perfect generator (Derived Categories of Spaces,
Theorem 75.15.4) we conclude that the map

⊕
a(Ki) → a(

⊕
Ki) is an isomor-

phism, i.e., a commutes with direct sums. □

Lemma 86.8.2.0E5U Let S be a scheme. Let Y be a quasi-compact and quasi-separated
algebraic space over S. Let f : X → Y be a morphism of algebraic spaces which is
proper, flat, and of finite presentation. The map (86.7.0.1) is an isomorphism for
every object K of DQCoh(OY ).

Proof. By Lemma 86.8.1 we know that a commutes with direct sums. Hence the
collection of objects of DQCoh(OY ) for which (86.7.0.1) is an isomorphism is a
strictly full, saturated, triangulated subcategory of DQCoh(OY ) which is moreover
preserved under taking direct sums. Since DQCoh(OY ) is a module category (De-
rived Categories of Spaces, Theorem 75.17.3) generated by a single perfect object
(Derived Categories of Spaces, Theorem 75.15.4) we can argue as in More on Alge-
bra, Remark 15.59.11 to see that it suffices to prove (86.7.0.1) is an isomorphism
for a single perfect object. However, the result holds for perfect objects, see Lemma
86.7.1. □

Lemma 86.8.3.0E5V Let Y be an affine scheme. Let f : X → Y be a morphism of
algebraic spaces which is proper, flat, and of finite presentation. Let a be the right
adjoint for Rf∗ : DQCoh(OX)→ DQCoh(OY ) of Lemma 86.3.1. Then

(1) a(OY ) is a Y -perfect object of D(OX),
(2) Rf∗a(OY ) has vanishing cohomology sheaves in positive degrees,
(3) OX → RHomOX

(a(OY ), a(OY )) is an isomorphism.

Proof. For a perfect object E of D(OX) we have

Rf∗(E ⊗L
OX

ω•
X/Y ) = Rf∗RHomOX

(E∨, ω•
X/Y )

= RHomOY
(Rf∗E

∨,OY )
= (Rf∗E

∨)∨

For the first equality, see Cohomology on Sites, Lemma 21.48.4. For the second
equality, see Lemma 86.3.3, Remark 86.3.5, and Derived Categories of Spaces,
Lemma 75.25.4. The third equality is the definition of the dual. In particular
these references also show that the outcome is a perfect object of D(OY ). We con-
clude that ω•

X/Y is Y -perfect by More on Morphisms of Spaces, Lemma 76.52.14.
This proves (1).
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Let M be an object of DQCoh(OY ). Then
HomY (M,Rf∗a(OY )) = HomX(Lf∗M,a(OY ))

= HomY (Rf∗Lf
∗M,OY )

= HomY (M ⊗L
OY

Rf∗OY ,OY )
The first equality holds by Cohomology on Sites, Lemma 21.19.1. The second
equality by construction of a. The third equality by Derived Categories of Spaces,
Lemma 75.20.1. Recall Rf∗OX is perfect of tor amplitude in [0, N ] for some N ,
see Derived Categories of Spaces, Lemma 75.25.4. Thus we can represent Rf∗OX
by a complex of finite projective modules sitting in degrees [0, N ] (using More on
Algebra, Lemma 15.74.2 and the fact that Y is affine). Hence if M = OY [−i]
for some i > 0, then the last group is zero. Since Y is affine we conclude that
Hi(Rf∗a(OY )) = 0 for i > 0. This proves (2).
Let E be a perfect object of DQCoh(OX). Then we have

HomX(E,RHomOX
(a(OY ), a(OY )) = HomX(E ⊗L

OX
a(OY ), a(OY ))

= HomY (Rf∗(E ⊗L
OX

a(OY )),OY )
= HomY (Rf∗(RHomOX

(E∨, a(OY ))),OY )
= HomY (RHomOY

(Rf∗E
∨,OY ),OY )

= RΓ(Y,Rf∗E
∨)

= HomX(E,OX)
The first equality holds by Cohomology on Sites, Lemma 21.35.2. The second equal-
ity is the definition of a. The third equality comes from the construction of the dual
perfect complex E∨, see Cohomology on Sites, Lemma 21.48.4. The fourth equal-
ity follows from the equality Rf∗RHomOX

(E∨, ω•
X/Y ) = RHomOY

(Rf∗E
∨,OY )

shown in the first paragraph of the proof. The fifth equality holds by double dual-
ity for perfect complexes (Cohomology on Sites, Lemma 21.48.4) and the fact that
Rf∗E is perfect by Derived Categories of Spaces, Lemma 75.25.4 The last equality
is Leray for f . This string of equalities essentially shows (3) holds by the Yoneda
lemma. Namely, the object RHom(a(OY ), a(OY )) is in DQCoh(OX) by Derived
Categories of Spaces, Lemma 75.13.10. Taking E = OX in the above we get a map
α : OX → RHomOX

(a(OY ), a(OY )) corresponding to idOX
∈ HomX(OX ,OX).

Since all the isomorphisms above are functorial in E we see that the cone on α
is an object C of DQCoh(OX) such that Hom(E,C) = 0 for all perfect E. Since
the perfect objects generate (Derived Categories of Spaces, Theorem 75.15.4) we
conclude that α is an isomorphism. □

86.9. Relative dualizing complexes for proper flat morphisms

0E5W Motivated by Duality for Schemes, Sections 48.12 and 48.28 and the material in
Section 86.8 we make the following definition.

Definition 86.9.1.0E5X Let S be a scheme. Let f : X → Y be a proper, flat morphism of
algebraic spaces over S which is of finite presentation. A relative dualizing complex
for X/Y is a pair (ω•

X/Y , τ) consisting of a Y -perfect object ω•
X/Y of D(OX) and a

map
τ : Rf∗ω

•
X/Y −→ OY
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such that for any cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

where Y ′ is an affine scheme the pair (L(g′)∗ω•
X/Y , Lg

∗τ) is isomorphic to the pair
(a′(OY ′),Trf ′,OY ′ ) studied in Sections 86.3, 86.4, 86.5, 86.6, 86.7, and 86.8.

There are several remarks we should make here.
(1) In Definition 86.9.1 one may drop the assumption that ω•

X/Y is Y -perfect.
Namely, running Y ′ through the members of an étale covering of Y by
affines, we see from Lemma 86.8.3 that the restrictions of ω•

X/Y to the
members of an étale covering of X are Y -perfect, which implies ω•

X/Y is
Y -perfect, see More on Morphisms of Spaces, Section 76.52.

(2) Consider a relative dualizing complex (ω•
X/Y , τ) and a cartesian square

as in Definition 86.9.1. We are going to think of the existence of the
isomorphism (L(g′)∗ω•

X/Y , Lg
∗τ) ∼= (a′(OY ′),Trf ′,OY ′ ) as follows: it says

that for any M ′ ∈ DQCoh(OX′) the map
HomX′(M ′, L(g′)∗ω•

X/Y ) −→ HomY ′(Rf ′
∗M

′,OY ′), φ′ 7−→ Lg∗τ ◦Rf ′
∗φ

′

is an isomorphism. This follows from the definition of a′ and the discussion
in Section 86.6. In particular, the Yoneda lemma guarantees that the
isomorphism is unique.

(3) If Y is affine itself, then a relative dualizing complex (ω•
X/Y , τ) exists and

is canonically isomorphic to (a(OY ),Trf,OY
) where a is the right adjoint

for Rf∗ as in Lemma 86.3.1 and Trf is as in Section 86.6. Namely, given
a diagram as in the definition we get an isomorphism L(g′)∗a(OY ) →
a′(OY ′) by Lemma 86.5.1 which is compatible with trace maps by Lemma
86.6.1.

This produces exactly enough information to glue the locally given relative dualizing
complexes to global ones. We suggest the reader skip the proofs of the following
lemmas.

Lemma 86.9.2.0E5Y Let S be a scheme. Let X → Y be a proper, flat morphism of
algebraic spaces which is of finite presentation. If (ω•

X/Y , τ) is a relative dualizing
complex, then OX → RHomOX

(ω•
X/Y , ω

•
X/Y ) is an isomorphism and Rf∗ω

•
X/Y has

vanishing cohomology sheaves in positive degrees.

Proof. It suffices to prove this after base change to an affine scheme étale over Y
in which case it follows from Lemma 86.8.3. □

Lemma 86.9.3.0E5Z Let S be a scheme. Let X → Y be a proper, flat morphism
of algebraic spaces which is of finite presentation. If (ω•

j , τj), j = 1, 2 are two
relative dualizing complexes on X/Y , then there is a unique isomorphism (ω•

1 , τ1)→
(ω•

2 , τ2).

Proof. Consider g : Y ′ → Y étale with Y ′ an affine scheme and denote X ′ =
Y ′ ×Y X the base change. By Definition 86.9.1 and the discussion following, there
is a unique isomorphism ι : (ω•

1 |X′ , τ1|Y ′)→ (ω•
2 |X′ , τ2|Y ′). If Y ′′ → Y ′ is a further
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étale morphism of affines and X ′′ = Y ′′×Y X, then ι|X′′ is the unique isomorphism
(ω•

1 |X′′ , τ1|Y ′′)→ (ω•
2 |X′′ , τ2|Y ′′) (by uniqueness). Also we have

ExtpX′(ω•
1 |X′ , ω•

2 |X′) = 0, p < 0
because OX′ ∼= RHomOX′ (ω•

1 |X′ , ω•
1 |X′) ∼= RHomOX′ (ω•

1 |X′ , ω•
2 |X′) by Lemma

86.9.2.
Choose a étale hypercovering b : V → Y such that each Vn =

∐
i∈In Yn,i with

Yn,i affine. This is possible by Hypercoverings, Lemma 25.12.2 and Remark 25.12.9
(to replace the hypercovering produced in the lemma by the one having disjoint
unions in each degree). Denote Xn,i = Yn,i ×Y X and Un = Vn ×Y X so that we
obtain an étale hypercovering a : U → X (Hypercoverings, Lemma 25.12.4) with
Un =

∐
Xn,i. The assumptions of Simplicial Spaces, Lemma 85.35.1 are satisfied

for a : U → X and the complexes ω•
1 and ω•

2 . Hence we obtain a unique morphism
ι : ω•

1 → ω•
2 whose restriction to X0,i is the unique isomorphism (ω•

1 |X0,i , τ1|Y0,i)→
(ω•

2 |X0,i , τ2|Y0,i) We still have to see that the diagram

Rf∗ω
•
1

τ1 ##

Rf∗ι
// Rf∗ω

•
1

τ2{{
OY

is commutative. However, we know that Rf∗ω
•
1 and Rf∗ω

•
2 have vanishing coho-

mology sheaves in positive degrees (Lemma 86.9.2) thus this commutativity may
be proved after restricting to the affines Y0,i where it holds by construction. □

Lemma 86.9.4.0E60 Let S be a scheme. Let X → Y be a proper, flat morphism of
algebraic spaces which is of finite presentation. Let (ω•, τ) be a pair consisting of a
Y -perfect object of D(OX) and a map τ : Rf∗ω

• → OY . Assume we have cartesian
diagrams

Xi
g′
i

//

fi

��

X

f

��
Yi

gi // Y

with Yi affine such that {gi : Yi → Y } is an étale covering and isomorphisms of
pairs (ω•|Xi , τ |Yi) → (ai(OYi),Trfi,OYi

) as in Definition 86.9.1. Then (ω•, τ) is a
relative dualizing complex for X over Y .

Proof. Let g : Y ′ → Y and X ′, f ′, g′, a′ be as in Definition 86.9.1. Set ((ω′)•, τ ′) =
(L(g′)∗ω•, Lg∗τ). We can find a finite étale covering {Y ′

j → Y ′} by affines which
refines {Yi ×Y Y ′ → Y ′} (Topologies, Lemma 34.4.4). Thus for each j there is an
ij and a morphism kj : Y ′

j → Yij over Y . Consider the fibre products

X ′
j

h′
j

//

f ′
j

��

X ′

f ′

��
Y ′
j

hj // Y ′

Denote k′
j : X ′

j → Xij the induced morphism (base change of kj by fij ). Restricting
the given isomorphisms to Y ′

j via the morphism k′
j we get isomorphisms of pairs
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((ω′)•|X′
j
, τ ′|Y ′

j
)→ (aj(OY ′

j
),Trf ′

j
,OY ′

j

). After replacing f : X → Y by f ′ : X ′ → Y ′

we reduce to the problem solved in the next paragraph.
Assume Y is affine. Problem: show (ω•, τ) is isomorphic to (ω•

X/Y ,Tr) = (a(OY ),Trf,OY
).

We may assume our covering {Yi → Y } is given by a single surjective étale mor-
phism {g : Y ′ → Y } of affines. Namely, we can first replace {gi : Yi → Y } by a
finite subcovering, and then we can set g =

∐
gi : Y ′ =

∐
Yi → Y ; some details

omitted. Set X ′ = Y ′×Y X with maps f ′, g′ as in Definition 86.9.1. Then all we’re
given is that we have an isomorphism

(ω•|X′ , τ |Y ′)→ (a′(OY ′),Trf ′,OY ′ )
Since (ω•

X/Y ,Tr) is a relative dualizing complex (see discussion following Definition
86.9.1) there is a unique isomorphism

(ω•
X/Y |X′ ,Tr|Y ′)→ (a′(OY ′),Trf ′,OY ′ )

Uniqueness by Lemma 86.9.3 for example. Combining the displayed isomorphisms
we find an isomorphism

α : (ω•|X′ , τ |Y ′)→ (ω•
X/Y |X′ ,Tr|Y ′)

Set Y ′′ = Y ′ ×Y Y ′ and X ′′ = Y ′′ ×Y X the two pullbacks of α to X ′′ have to
be the same by uniqueness again. Since we have vanishing negative self exts for
ω•
X′/Y ′ over X ′ (Lemma 86.9.2) and since this remains true after pulling back by

any projection Y ′ ×Y . . . ×Y Y ′ → Y ′ (small detail omitted – compare with the
proof of Lemma 86.9.3), we find that α descends to an isomorphism ω• → ω•

X/Y

over X by Simplicial Spaces, Lemma 85.35.1. □

Lemma 86.9.5.0E61 Let S be a scheme. Let X → Y be a proper, flat morphism of
algebraic spaces which is of finite presentation. There exists a relative dualizing
complex (ω•

X/Y , τ).

Proof. Choose a étale hypercovering b : V → Y such that each Vn =
∐
i∈In Yn,i with

Yn,i affine. This is possible by Hypercoverings, Lemma 25.12.2 and Remark 25.12.9
(to replace the hypercovering produced in the lemma by the one having disjoint
unions in each degree). Denote Xn,i = Yn,i ×Y X and Un = Vn ×Y X so that we
obtain an étale hypercovering a : U → X (Hypercoverings, Lemma 25.12.4) with
Un =

∐
Xn,i. For each n, i there exists a relative dualizing complex (ω•

n,i, τn,i) on
Xn,i/Yn,i. See discussion following Definition 86.9.1. For φ : [m]→ [n] and i ∈ In
consider the morphisms gφ,i : Yn,i → Ym,α(φ) and g′

φ,i : Xn,i → Xm,α(φ) which are
part of the structure of the given hypercoverings (Hypercoverings, Section 25.12).
Then we have a unique isomorphisms

ιn,i,φ : (L(g′
n,i)∗ω•

n,i, Lg
∗
n,iτn,i) −→ (ω•

m,α(φ)(i), τm,α(φ)(i))

of pairs, see discussion following Definition 86.9.1. Observe that ω•
n,i has vanishing

negative self exts on Xn,i by Lemma 86.9.2. Denote (ω•
n, τn) the pair on Un/Vn

constructed using the pairs (ω•
n,i, τn,i) for i ∈ In. For φ : [m] → [n] and i ∈ In

consider the morphisms gφ : Vn → Vm and g′
φ : Un → Um which are part of

the structure of the simplicial algebraic spaces V and U . Then we have unique
isomorphisms

ιφ : (L(g′
φ)∗ω•

n, Lg
∗
φτn) −→ (ω•

m, τm)
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of pairs constructed from the isomorphisms on the pieces. The uniqueness guaran-
tees that these isomorphisms satisfy the transitivity condition as formulated in Sim-
plicial Spaces, Definition 85.14.1. The assumptions of Simplicial Spaces, Lemma
85.35.2 are satisfied for a : U → X, the complexes ω•

n and the isomorphisms
ιφ

1. Thus we obtain an object ω• of DQCoh(OX) together with an isomorphism
ι0 : ω•|U0 → ω•

0 compatible with the two isomorphisms ιδ1
0

and ιδ1
1
. Finally, we

apply Simplicial Spaces, Lemma 85.35.1 to find a unique morphism
τ : Rf∗ω

• −→ OY
whose restriction to V0 agrees with τ0; some details omitted – compare with the
end of the proof of Lemma 86.9.3 for example to see why we have the required
vanishing of negative exts. By Lemma 86.9.4 the pair (ω•, τ) is a relative dualizing
complex and the proof is complete. □

Lemma 86.9.6.0E6C Let S be a scheme. Consider a cartesian square

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

of algebraic spaces over S. Assume X → Y is proper, flat, and of finite presentation.
Let (ω•

X/Y , τ) be a relative dualizing complex for f . Then (L(g′)∗ω•
X/Y , Lg

∗τ) is a
relative dualizing complex for f ′.

Proof. Observe that L(g′)∗ω•
X/Y is Y ′-perfect by More on Morphisms of Spaces,

Lemma 76.52.6. The other condition of Definition 86.9.1 holds by transitivity of
fibre products. □

86.10. Comparison with the case of schemes

0E6D We should add a lot more in this section.

Lemma 86.10.1.0E6E Let S be a scheme. Let f : X → Y be a morphism of quasi-
compact and quasi-separated algebraic spaces over S. Assume X and Y are repre-
sentable and let f0 : X0 → Y0 be a morphism of schemes representing f (awkward
but temporary notation). Let a : DQCoh(OY ) → DQCoh(OX) be the right adjoint
of Rf∗ from Lemma 86.3.1. Let a0 : DQCoh(OY0) → DQCoh(OX0) be the right
adjoint of Rf∗ from Duality for Schemes, Lemma 48.3.1. Then

DQCoh(OX0)
Derived Categories of Spaces, Lemma 75.4.2

DQCoh(OX)

DQCoh(OY0)

a0

OO

Derived Categories of Spaces, Lemma 75.4.2
DQCoh(OY )

a

OO

is commutative.

Proof. Follows from uniqueness of adjoints and the compatibilities of Derived Cat-
egories of Spaces, Remark 75.6.3. □

1This lemma uses only ω•
0 and the two maps δ1

1 , δ
1
0 : [1] → [0]. The reader can skip the

first few lines of the proof of the referenced lemma because here we actually are already given a
simplicial system of the derived category of modules.

https://stacks.math.columbia.edu/tag/0E6C
https://stacks.math.columbia.edu/tag/0E6E
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CHAPTER 87

Formal Algebraic Spaces

0AHW 87.1. Introduction

0AHX Formal schemes were introduced in [DG67]. A more general version of formal
schemes was introduced in [McQ02] and another in [Yas09]. Formal algebraic spaces
were introduced in [Knu71]. Related material and much besides can be found in
[Abb10] and [FK]. This chapter introduces the notion of formal algebraic spaces
we will work with. Our definition is general enough to allow most classes of formal
schemes/spaces in the literature as full subcategories.

Although we do discuss the comparison of some of these alternative theories with
ours, we do not always give full details when it is not necessary for the logical
development of the theory.

Besides introducing formal algebraic spaces, we also prove a few very basic proper-
ties and we discuss a few types of morphisms.

87.2. Formal schemes à la EGA

0AHY In this section we review the construction of formal schemes in [DG67]. This notion,
although very useful in algebraic geometry, may not always be the correct one to
consider. Perhaps it is better to say that in the setup of the theory a number of
choices are made, where for different purposes others might work better. And indeed
in the literature one can find many different closely related theories adapted to the
problem the authors may want to consider. Still, one of the major advantages of
the theory as sketched here is that one gets to work with definite geometric objects.

Before we start we should point out an issue with the sheaf condition for sheaves of
topological rings or more generally sheaves of topological spaces. Namely, the big
categories

(1) category of topological spaces,
(2) category of topological groups,
(3) category of topological rings,
(4) category of topological modules over a given topological ring,

endowed with their natural forgetful functors to Sets are not examples of types of
algebraic structures as defined in Sheaves, Section 6.15. Thus we cannot blithely
apply to them the machinery developed in that chapter. On the other hand, each
of the categories listed above has limits and equalizers and the forgetful functor to
sets, groups, rings, modules commutes with them (see Topology, Lemmas 5.14.1,
5.30.3, 5.30.8, and 5.30.11). Thus we can define the notion of a sheaf as in Sheaves,
Definition 6.9.1 and the underlying presheaf of sets, groups, rings, or modules is a

6281
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sheaf. The key difference is that for an open covering U =
⋃
i∈I Ui the diagram

F(U) // ∏
i∈I F(Ui)

//
//
∏

(i0,i1)∈I×I F(Ui0 ∩ Ui1)

has to be an equalizer diagram in the category of topological spaces, topological
groups, topological rings, topological modules, i.e., that the first map identifies
F(U) with a subspace of

∏
i∈I F(Ui) which is endowed with the product topology.

The stalk Fx of a sheaf F of topological spaces, topological groups, topological
rings, or topological modules at a point x ∈ X is defined as the colimit over open
neighbourhoods

Fx = colimx∈U F(U)
in the corresponding category. This is the same as taking the colimit on the level
of sets, groups, rings, or modules (see Topology, Lemmas 5.29.1, 5.30.6, 5.30.9,
and 5.30.12) but comes equipped with a topology. Warning: the topology one gets
depends on which category one is working with, see Examples, Section 110.77. One
can sheafify presheaves of topological spaces, topological groups, topological rings,
or topological modules and taking stalks commutes with this operation, see Remark
87.2.4.
Let f : X → Y be a continuous map of topological spaces. There is a functor f∗
from the category of sheaves of topological spaces, topological groups, topological
rings, topological modules, to the corresponding category of sheaves on Y which is
defined by setting f∗F(V ) = F(f−1V ) as usual. (We delay discussing the pullback
in this setting till later.) We define the notion of an f -map ξ : G → F between
a sheaf of topological spaces G on Y and a sheaf of topological spaces F on X
in exactly the same manner as in Sheaves, Definition 6.21.7 with the additional
constraint that ξV : G(V ) → F(f−1V ) be continuous for every open V ⊂ Y . We
have

{f -maps from G to F} = MorSh(Y,Top)(G, f∗F)
as in Sheaves, Lemma 6.21.8. Similarly for sheaves of topological groups, topological
rings, topological modules. Finally, let ξ : G → F be an f -map as above. Then
given x ∈ X with image y = f(x) there is a continuous map

ξx : Gy −→ Fx
of stalks defined in exactly the same manner as in the discussion following Sheaves,
Definition 6.21.9.
Using the discussion above, we can define a category LTRS of “locally topologically
ringed spaces”. An object is a pair (X,OX) consisting of a topological space X and
a sheaf of topological rings OX whose stalks OX,x are local rings (if one forgets
about the topology). A morphism (X,OX) → (Y,OY ) of LTRS is a pair (f, f ♯)
where f : X → Y is a continuous map of topological spaces and f ♯ : OY → OX is
an f -map such that for every x ∈ X the induced map

f ♯x : OY,f(x) −→ OX,x
is a local homomorphism of local rings (forgetting about the topologies). The
composition works in exactly the same manner as composition of morphisms of
locally ringed spaces.
Assume now that the topological space X has a basis consisting of quasi-compact
opens. Given a sheaf F of sets, groups, rings, modules over a ring, one can endow F
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with the structure of a sheaf of topological spaces, topological groups, topological
rings, topological modules. Namely, if U ⊂ X is quasi-compact open, we endow
F(U) with the discrete topology. If U ⊂ X is arbitrary, then we choose an open
covering U =

⋃
i∈I Ui by quasi-compact opens and we endow F(U) with the induced

topology from
∏
i∈I F(Ui) (as we should do according to our discussion above). The

reader may verify (omitted) that we obtain a sheaf of topological spaces, topological
groups, topological rings, topological modules in this fashion. Let us say that a sheaf
of topological spaces, topological groups, topological rings, topological modules is
pseudo-discrete if the topology on F(U) is discrete for every quasi-compact open
U ⊂ X. Then the construction given above is an adjoint to the forgetful functor and
induces an equivalence between the category of sheaves of sets and the category of
pseudo-discrete sheaves of topological spaces (similarly for groups, rings, modules).
Grothendieck and Dieudonné first define formal affine schemes. These correspond
to admissible topological rings A, see More on Algebra, Definition 15.36.1. Namely,
given A one considers a fundamental system Iλ of ideals of definition for the ring
A. (In any admissible topological ring the family of all ideals of definition forms
a fundamental system.) For each λ we can consider the scheme Spec(A/Iλ). For
Iλ ⊂ Iµ the induced morphism

Spec(A/Iµ)→ Spec(A/Iλ)
is a thickening because Inµ ⊂ Iλ for some n. Another way to see this, is to notice
that the image of each of the maps

Spec(A/Iλ)→ Spec(A)
is a homeomorphism onto the set of open prime ideals of A. This motivates the
definition

Spf(A) = {open prime ideals p ⊂ A}
endowed with the topology coming from Spec(A). For each λ we can consider the
structure sheaf OSpec(A/Iλ) as a sheaf on Spf(A). Let Oλ be the corresponding
pseudo-discrete sheaf of topological rings, see above. Then we set

OSpf(A) = limOλ
where the limit is taken in the category of sheaves of topological rings. The pair
(Spf(A),OSpf(A)) is called the formal spectrum of A.
At this point one should check several things. The first is that the stalks OSpf(A),x
are local rings (forgetting about the topology). The second is that given f ∈ A, for
the corresponding open D(f) ∩ Spf(A) we have

Γ(D(f) ∩ Spf(A),OSpf(A)) = A{f} = lim(A/Iλ)f
as topological rings where Iλ is a fundamental system of ideals of definition as above.
Moreover, the ring A{f} is admissible too and (Spf(Af ),OSpf(A{f})) is isomorphic to
(D(f)∩ Spf(A),OSpf(A)|D(f)∩Spf(A)). Finally, given a pair of admissible topological
rings A,B we have
(87.2.0.1)0AHZ MorLTRS((Spf(B),OSpf(B)), (Spf(A),OSpf(A))) = Homcont(A,B)
where LTRS is the category of “locally topologically ringed spaces” as defined
above.
Having said this, in [DG67] a formal scheme is defined as a pair (X,OX) where X
is a topological space and OX is a sheaf of topological rings such that every point
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has an open neighbourhood isomorphic (in LTRS) to an affine formal scheme. A
morphism of formal schemes f : (X,OX)→ (Y,OY) is a morphism in the category
LTRS.
Let A be a ring endowed with the discrete topology. Then A is admissible and
the formal scheme Spf(A) is equal to Spec(A). The structure sheaf OSpf(A) is the
pseudo-discrete sheaf of topological rings associated to OSpec(A), in other words, its
underlying sheaf of rings is equal toOSpec(A) and the ringOSpf(A)(U) = OSpec(A)(U)
over a quasi-compact open U has the discrete topology, but not in general. Thus
we can associate to every affine scheme a formal affine scheme. In exactly the same
manner we can start with a general scheme (X,OX) and associate to it (X,O′

X)
where O′

X is the pseudo-discrete sheaf of topological rings whose underlying sheaf of
rings is OX . This construction is compatible with morphisms and defines a functor
(87.2.0.2)0AI0 Schemes −→ Formal Schemes
It follows in a straightforward manner from (87.2.0.1) that this functor is fully
faithful.
Let X be a formal scheme. Let us define the size of the formal scheme by the
formula size(X) = max(ℵ0, κ1, κ2) where κ1 is the cardinality of the formal affine
opens of X and κ2 is the supremum of the cardinalities of OX(U) where U ⊂ X is
such a formal affine open.

Lemma 87.2.1.0AI1 Choose a category of schemes Schα as in Sets, Lemma 3.9.2. Given
a formal scheme X let

hX : (Schα)opp −→ Sets, hX(S) = MorFormal Schemes(S,X)
be its functor of points. Then we have

MorFormal Schemes(X,Y) = MorPSh(Schα)(hX, hY)
provided the size of X is not too large.

Proof. First we observe that hX satisfies the sheaf property for the Zariski topology
for any formal scheme X (see Schemes, Definition 26.15.3). This follows from the
local nature of morphisms in the category of formal schemes. Also, for an open im-
mersion V → W of formal schemes, the corresponding transformation of functors
hV → hW is injective and representable by open immersions (see Schemes, Defi-
nition 26.15.3). Choose an open covering X =

⋃
Ui of a formal scheme by affine

formal schemes Ui. Then the collection of functors hUi covers hX (see Schemes,
Definition 26.15.3). Finally, note that

hUi ×hX
hUj = hUi∩Uj

Hence in order to give a map hX → hY is equivalent to giving a family of maps
hUi → hY which agree on overlaps. Thus we can reduce the bijectivity (resp.
injectivity) of the map of the lemma to bijectivity (resp. injectivity) for the pairs
(Ui,Y) and injectivity (resp. nothing) for (Ui ∩ Uj ,Y). In this way we reduce to
the case where X is an affine formal scheme. Say X = Spf(A) for some admissible
topological ring A. Also, choose a fundamental system of ideals of definition Iλ ⊂ A.
We can also localize on Y. Namely, suppose that V ⊂ Y is an open formal sub-
scheme and φ : hX → hY. Then

hV ×hY,φ hX → hX

https://stacks.math.columbia.edu/tag/0AI1
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is representable by open immersions. Pulling back to Spec(A/Iλ) for all λ we
find an open subscheme Uλ ⊂ Spec(A/Iλ). However, for Iλ ⊂ Iµ the morphism
Spec(A/Iλ) → Spec(A/Iµ) pulls back Uµ to Uλ. Thus these glue to give an open
formal subscheme U ⊂ X. A straightforward argument (omitted) shows that

hU = hV ×hY
hX

In this way we see that given an open covering Y =
⋃
Vj and a transformation

of functors φ : hX → hY we obtain a corresponding open covering of X. Since X
is affine, we can refine this covering by a finite open covering X = U1 ∪ . . . ∪ Un
by affine formal subschemes. In other words, for each i there is a j and a map
φi : hUi → hVj such that

hUi φi
//

��

hVj

��
hX

φ // hY

commutes. With a few additional arguments (which we omit) this implies that it
suffices to prove the bijectivity of the lemma in case both X and Y are affine formal
schemes.

Assume X and Y are affine formal schemes. Say X = Spf(A) and Y = Spf(B). Let
φ : hX → hY be a transformation of functors. Let Iλ ⊂ A be a fundamental system
of ideals of definition. The canonical inclusion morphism iλ : Spec(A/Iλ) → X
maps to a morphism φ(iλ) : Spec(A/Iλ)→ Y. By (87.2.0.1) this corresponds to a
continuous map χλ : B → A/Iλ. Since φ is a transformation of functors it follows
that for Iλ ⊂ Iµ the composition B → A/Iλ → A/Iµ is equal to χµ. In other words
we obtain a ring map

χ = limχλ : B −→ limA/Iλ = A

This is a continuous homomorphism because the inverse image of Iλ is open for
all λ (as A/Iλ has the discrete topology and χλ is continuous). Thus we obtain
a morphism Spf(χ) : X → Y by (87.2.0.1). We omit the verification that this
construction is the inverse to the map of the lemma in this case.

Set theoretic remarks. To make this work on the given category of schemes Schα
we just have to make sure all the schemes used in the proof above are isomorphic
to objects of Schα. In fact, a careful analysis shows that it suffices if the schemes
Spec(A/Iλ) occurring above are isomorphic to objects of Schα. For this it certainly
suffices to assume the size of X is at most the size of a scheme contained in Schα. □

Lemma 87.2.2.0AI2 Let X be a formal scheme. The functor of points hX (see Lemma
87.2.1) satisfies the sheaf condition for fpqc coverings.

Proof. Topologies, Lemma 34.9.13 reduces us to the case of a Zariski covering and
a covering {Spec(S) → Spec(R)} with R → S faithfully flat. We observed in the
proof of Lemma 87.2.1 that hX satisfies the sheaf condition for Zariski coverings.

Suppose that R → S is a faithfully flat ring map. Denote π : Spec(S) → Spec(R)
the corresponding morphism of schemes. It is surjective and flat. Let f : Spec(S)→
X be a morphism such that f◦pr1 = f◦pr2 as maps Spec(S⊗RS)→ X. By Descent,
Lemma 35.13.1 we see that as a map on the underlying sets f is of the form f = g◦π

https://stacks.math.columbia.edu/tag/0AI2
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for some (set theoretic) map g : Spec(R) → X. By Morphisms, Lemma 29.25.12
and the fact that f is continuous we see that g is continuous.

Pick y ∈ Spec(R). Choose U ⊂ X an affine formal open subscheme containing g(y).
Say U = Spf(A) for some admissible topological ring A. By the above we may
choose an r ∈ R such that y ∈ D(r) ⊂ g−1(U). The restriction of f to π−1(D(r))
into U corresponds to a continuous ring map A→ Sr by (87.2.0.1). The two induced
ring maps A → Sr ⊗Rr Sr = (S ⊗R S)r are equal by assumption on f . Note that
Rr → Sr is faithfully flat. By Descent, Lemma 35.3.6 the equalizer of the two
arrows Sr → Sr ⊗Rr Sr is Rr. We conclude that A→ Sr factors uniquely through
a map A → Rr which is also continuous as it has the same (open) kernel as the
map A→ Sr. This map in turn gives a morphism D(r)→ U by (87.2.0.1).

What have we proved so far? We have shown that for any y ∈ Spec(R) there exists
a standard affine open y ∈ D(r) ⊂ Spec(R) such that the morphism f |π−1(D(r)) :
π−1(D(r)) → X factors uniquely though some morphism D(r) → X. We omit the
verification that these morphisms glue to the desired morphism Spec(R)→ X. □

Remark 87.2.3 (McQuillan’s variant).0AI3 There is a variant of the construction of
formal schemes due to McQuillan, see [McQ02]. He suggests a slight weakening of
the condition of admissibility. Namely, recall that an admissible topological ring is
a complete (and separated by our conventions) topological ring A which is linearly
topologized such that there exists an ideal of definition: an open ideal I such that
any neighbourhood of 0 contains In for some n ≥ 1. McQuillan works with what
we will call weakly admissible topological rings. A weakly admissible topological
ring A is a complete (and separated by our conventions) topological ring which is
linearly topologized such that there exists an weak ideal of definition: an open ideal
I such that for all f ∈ I we have fn → 0 for n → ∞. Similarly to the admissible
case, if I is a weak ideal of definition and J ⊂ A is an open ideal, then I ∩ J is
a weak ideal of definition. Thus the weak ideals of definition form a fundamental
system of open neighbourhoods of 0 and one can proceed along much the same
route as above to define a larger category of formal schemes based on this notion.
The analogues of Lemmas 87.2.1 and 87.2.2 still hold in this setting (with the same
proof).

Remark 87.2.4 (Sheafification of presheaves of topological spaces).0AI4 [Gra65]In this remark
we briefly discuss sheafification of presheaves of topological spaces. The exact same
arguments work for presheaves of topological abelian groups, topological rings, and
topological modules (over a given topological ring). In order to do this in the correct
generality let us work over a site C. The reader who is interested in the case of
(pre)sheaves over a topological space X should think of objects of C as the opens of
X, of morphisms of C as inclusions of opens, and of coverings in C as coverings in X,
see Sites, Example 7.6.4. Denote Sh(C,Top) the category of sheaves of topological
spaces on C and denote PSh(C,Top) the category of presheaves of topological spaces
on C. Let F be a presheaf of topological spaces on C. The sheafification F# should
satisfy the formula

MorPSh(C,Top)(F ,G) = MorSh(C,Top)(F#,G)

functorially in G from Sh(C,Top). In other words, we are trying to construct the
left adjoint to the inclusion functor Sh(C,Top)→ PSh(C,Top). We first claim that

https://stacks.math.columbia.edu/tag/0AI3
https://stacks.math.columbia.edu/tag/0AI4
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Sh(C,Top) has limits and that the inclusion functor commutes with them. Namely,
given a category I and a functor i 7→ Gi into Sh(C,Top) we simply define

(limGi)(U) = limGi(U)
where we take the limit in the category of topological spaces (Topology, Lemma
5.14.1). This defines a sheaf because limits commute with limits (Categories,
Lemma 4.14.10) and in particular products and equalizers (which are the opera-
tions used in the sheaf axiom). Finally, a morphism of presheaves from F → limGi
is clearly the same thing as a compatible system of morphisms F → Gi. In other
words, the object limGi is the limit in the category of presheaves of topological
spaces and a fortiori in the category of sheaves of topological spaces. Our second
claim is that any morphism of presheaves F → G with G an object of Sh(C,Top)
factors through a subsheaf G′ ⊂ G whose size is bounded. Here we define the size
|H| of a sheaf of topological spaces H to be the cardinal supU∈Ob(C) |H(U)|. To
prove our claim we let

G′(U) =
{

s ∈ G(U)
∣∣∣∣ there exists a covering {Ui → U}i∈I

such that s|Ui ∈ Im(F(Ui)→ G(Ui))

}
We endow G′(U) with the induced topology. Then G′ is a sheaf of topological spaces
(details omitted) and G′ → G is a morphism through which the given map F → G
factors. Moreover, the size of G′ is bounded by some cardinal κ depending only on
C and the presheaf F (hint: use that coverings in C form a set by our conventions).
Putting everything together we see that the assumptions of Categories, Theorem
4.25.3 are satisfied and we obtain sheafification as the left adjoint of the inclusion
functor from sheaves to presheaves. Finally, let p be a point of the site C given by
a functor u : C → Sets, see Sites, Definition 7.32.2. For a topological space M the
presheaf defined by the rule

U 7→ Map(u(U),M) =
∏

x∈u(U)
M

endowed with the product topology is a sheaf of topological spaces. Hence the exact
same argument as given in the proof of Sites, Lemma 7.32.5 shows that Fp = F#

p ,
in other words, sheafification commutes with taking stalks at a point.

87.3. Conventions and notation

0AI5 The conventions from now on will be similar to the conventions in Properties of
Spaces, Section 66.2. Thus from now on the standing assumption is that all schemes
are contained in a big fppf site Schfppf . And all rings A considered have the
property that Spec(A) is (isomorphic) to an object of this big site. For topological
rings A we assume only that all discrete quotients have this property (but usually
we assume more, compare with Remark 87.11.5).
Let S be a scheme and let X be a “space” over S, i.e., a sheaf on (Sch/S)fppf . In
this chapter we will write X×SX for the product of X with itself in the category of
sheaves on (Sch/S)fppf instead of X ×X. Moreover, if X and Y are “spaces” then
we say "let f : X → Y be a morphism" to indicate that f is a natural transformation
of functors, i.e., a map of sheaves on (Sch/S)fppf . Similarly, if U is a scheme over
S and X is a “space” over S, then we say "let f : U → X be a morphism" or "let
g : X → U be a morphism" to indicate that f or g is a map of sheaves hU → X or
X → hU where hU is as in Categories, Example 4.3.4.
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87.4. Topological rings and modules

0AMQ This section is a continuation of More on Algebra, Section 15.36. Let R be a
topological ring and let M be a linearly topologized R-module. When we say “let
Mλ be a fundamental system of open submodules” we will mean that each Mλ is an
open submodule and that any neighbourhood of 0 contains one of the Mλ. In other
words, this means that Mλ is a fundamental system of neighbourhoods of 0 in M
consisting of submodules. Similarly, if R is a linearly topologized ring, then we say
“let Iλ be a fundamental system of open ideals” to mean that Iλ is a fundamental
system of neighbourhoods of 0 in R consisting of ideals.

Example 87.4.1.0AMR Let R be a linearly topologized ring and let M be a linearly
topologized R-module. Let Iλ be a fundamental system of open ideals in R and
let Mµ be a fundamental system of open submodules of M . The continuity of
+ : M ×M →M is automatic and the continuity of R×M →M signifies

∀f, x, µ ∃λ, ν, (f + Iλ)(x+Mν) ⊂ fx+Mµ

Since fMν + IλMν ⊂Mµ if Mν ⊂Mµ we see that the condition is equivalent to
∀x, µ ∃λ Iλx ⊂Mµ

However, it need not be the case that given µ there is a λ such that IλM ⊂ Mµ.
For example, consider R = k[[t]] with the t-adic topology and M =

⊕
n∈N R with

fundamental system of open submodules given by

Mm =
⊕

n∈N
tnmR

Since every x ∈M has finitely many nonzero coordinates we see that, given m and
x there exists a k such that tkx ∈Mm. Thus M is a linearly topologized R-module,
but it isn’t true that given m there is a k such that tkM ⊂Mm. On the other hand,
if R→ S is a continuous map of linearly topologized rings, then the corresponding
statement does hold, i.e., for every open ideal J ⊂ S there exists an open ideal
I ⊂ R such that IS ⊂ J (as the reader can easily deduce from continuity of the
map R→ S).

Lemma 87.4.2.0AMS Let R be a topological ring. Let M be a linearly topologized R-
module and let Mλ, λ ∈ Λ be a fundamental system of open submodules. Let
N ⊂M be a submodule. The closure of N is

⋂
λ∈Λ(N +Mλ).

Proof. Since each N+Mλ is open, it is also closed. Hence the intersection is closed.
If x ∈ M is not in the closure of N , then (x + Mλ) ∩ N = 0 for some λ. Hence
x ̸∈ N +Mλ. This proves the lemma. □

Unless otherwise mentioned we endow submodules and quotient modules with the
induced topology. Let M be a linearly topologized module over a topological ring
R, and let 0→ N → M → Q→ 0 be a short exact sequence of R-modules. If Mλ

is a fundamental system of open submodules of M , then N ∩Mλ is a fundamental
system of open submodules of N . If π : M → Q is the quotient map, then π(Mλ)
is a fundamental system of open submodules of Q. In particular these induced
topologies are linear topologies.

Lemma 87.4.3.0ARZ Let R be a topological ring. Let M be a linearly topologized
R-module. Let N ⊂M be a submodule. Then

(1) 0→ N∧ →M∧ → (M/N)∧ is exact, and

https://stacks.math.columbia.edu/tag/0AMR
https://stacks.math.columbia.edu/tag/0AMS
https://stacks.math.columbia.edu/tag/0ARZ
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(2) N∧ is the closure of the image of N →M∧.

Proof. Let Mλ, λ ∈ Λ be a fundamental system of open submodules. Then N ∩Mλ

is a fundamental system of open submodules of N and Mλ+N/N is a fundamental
system of open submodules ofM/N . Thus we see that (1) follows from the exactness
of the sequences

0→ N/N ∩Mλ →M/Mλ →M/(Mλ +N)→ 0
and the fact that taking limits commutes with limits. The second statement follows
from this and the fact that N → N∧ has dense image and that the kernel of
M∧ → (M/N)∧ is closed. □

Lemma 87.4.4.0AMT Let R be a topological ring. Let M be a complete, linearly topol-
ogized R-module. Let N ⊂ M be a closed submodule. If M has a countable
fundamental system of neighbourhoods of 0, then M/N is complete and the map
M →M/N is open.

Proof. Let Mn, n ∈ N be a fundamental system of open submodules of M . We
may assume Mn+1 ⊂ Mn for all n. The system (Mn + N)/N is a fundamental
system in M/N . Hence we have to show that M/N = limM/(Mn +N). Consider
the short exact sequences

0→ N/N ∩Mn →M/Mn →M/(Mn +N)→ 0
Since the transition maps of the system {N/N ∩Mn} are surjective we see that
M = limM/Mn (by completeness of M) surjects onto limM/(Mn+N) by Algebra,
Lemma 10.86.4. As N is closed we see that the kernel of M → limM/(Mn + N)
is N (see Lemma 87.4.2). Finally, M →M/N is open by definition of the quotient
topology. □

Lemma 87.4.5.0AS0 [Mat86, Theorem
8.1]

Let R be a topological ring. Let M be a linearly topologized R-
module. Let N ⊂ M be a submodule. Assume M has a countable fundamental
system of neighbourhoods of 0. Then

(1) 0→ N∧ →M∧ → (M/N)∧ → 0 is exact,
(2) N∧ is the closure of the image of N →M∧,
(3) M∧ → (M/N)∧ is open.

Proof. We have 0→ N∧ →M∧ → (M/N)∧ is exact and statement (2) by Lemma
87.4.3. This produces a canonical map c : M∧/N∧ → (M/N)∧. The module
M∧/N∧ is complete andM∧ →M∧/N∧ is open by Lemma 87.4.4. By the universal
property of completion we obtain a canonical map b : (M/N)∧ → M∧/N∧. Then
b and c are mutually inverse as they are on a dense subset. □

Lemma 87.4.6.0F1S Let R be a topological ring. Let M be a topological R-module.
Let I ⊂ R be a finitely generated ideal. Assume M has an open submodule whose
topology is I-adic. Then M∧ has an open submodule whose topology is I-adic and
we have M∧/InM∧ = M/InM for all n ≥ 1.

Proof. Let M ′ ⊂ M be an open submodule whose topology is I-adic. Then
{InM ′}n≥1 is a fundamental system of open submodules of M . Thus M∧ =
limM/InM ′ contains (M ′)∧ = limM ′/InM ′ as an open submodule and the topol-
ogy on (M ′)∧ is I-adic by Algebra, Lemma 10.96.3. Since I is finitely generated,
In is finitely generated, say by f1, . . . , fr. Observe that the surjection (f1, . . . , fr) :

https://stacks.math.columbia.edu/tag/0AMT
https://stacks.math.columbia.edu/tag/0AS0
https://stacks.math.columbia.edu/tag/0F1S
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M⊕r → InM is continuous and open by our description of the topology on M
above. By Lemma 87.4.5 applied to this surjection and to the short exact sequence
0→ InM →M →M/InM → 0 we conclude that

(f1, . . . , fr) : (M∧)⊕r −→M∧

surjects onto the kernel of the surjection M∧ →M/InM . Since f1, . . . , fr generate
In we conclude. □

Definition 87.4.7.0AMU Let R be a topological ring. Let M and N be linearly topologized
R-modules. The tensor product of M and N is the (usual) tensor product M ⊗RN
endowed with the linear topology defined by declaring

Im(Mµ ⊗R N +M ⊗R Nν −→M ⊗R N)

to be a fundamental system of open submodules, where Mµ ⊂M and Nν ⊂ N run
through fundamental systems of open submodules in M and N . The completed
tensor product

M⊗̂RN = limM ⊗R N/(Mµ ⊗R N +M ⊗R Nν) = limM/Mµ ⊗R N/Nν
is the completion of the tensor product.

Observe that the topology on R is immaterial for the construction of the tensor
product or the completed tensor product. If R → A and R → B are continu-
ous maps of linearly topologized rings, then the construction above gives a tensor
product A⊗R B and a completed tensor product A⊗̂RB.

We record here the notions introduced in Remark 87.2.3.

Definition 87.4.8.0AMV Let A be a linearly topologized ring.
(1) An element f ∈ A is called topologically nilpotent if fn → 0 as n→∞.
(2) A weak ideal of definition for A is an open ideal I ⊂ A consisting entirely

of topologically nilpotent elements.
(3) We say A is weakly pre-admissible if A has a weak ideal of definition.
(4) We say A is weakly admissible if A is weakly pre-admissible and complete1.

Given a weak ideal of definition I in a linearly topologized ring A and an open ideal
J the intersection I∩J is a weak ideal of definition. Hence if there is one weak ideal
of definition, then there is a fundamental system of open ideals consisting of weak
ideals of definition. In particular, given a weakly admissible topological ring A then
A = limA/Iλ where {Iλ} is a fundamental system of weak ideals of definition.

Lemma 87.4.9.0DCZ Let A be a weakly admissible topological ring. Let I ⊂ A be a
weak ideal of definition. Then (A, I) is a henselian pair.

Proof. Let A → A′ be an étale ring map and let σ : A′ → A/I be an A-algebra
map. By More on Algebra, Lemma 15.11.6 it suffices to lift σ to an A-algebra
map A′ → A. To do this, as A is complete, it suffices to find, for every open ideal
J ⊂ I, a unique A-algebra map A′ → A/J lifting σ. Since I is a weak ideal of
definition, the ideal I/J is locally nilpotent. We conclude by More on Algebra,
Lemma 15.11.2. □

1By our conventions this includes separated.

https://stacks.math.columbia.edu/tag/0AMU
https://stacks.math.columbia.edu/tag/0AMV
https://stacks.math.columbia.edu/tag/0DCZ
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Lemma 87.4.10.0AMW Let B be a linearly topologized ring. The set of topologically
nilpotent elements of B is a closed, radical ideal of B. Let φ : A → B be a
continuous map of linearly topologized rings.

(1) If f ∈ A is topologically nilpotent, then φ(f) is topologically nilpotent.
(2) If I ⊂ A consists of topologically nilpotent elements, then the closure of

φ(I)B consists of topologically nilpotent elements.

Proof. Let b ⊂ B be the set of topologically nilpotent elements. We omit the proof
of the fact that b is a radical ideal (good exercise in the definitions). Let g be an
element of the closure of b. Our goal is to show that g is topologically nilpotent.
Let J ⊂ B be an open ideal. We have to show ge ∈ J for some e ≥ 1. We have
g ∈ b + J by Lemma 87.4.2. Hence g = f + h for some f ∈ b and h ∈ J . Pick
m ≥ 1 such that fm ∈ J . Then gm+1 ∈ J as desired.
Let φ : A → B be as in the statement of the lemma. Assertion (1) is clear and
assertion (2) follows from this and the fact that b is a closed ideal. □

Lemma 87.4.11.0AMZ Let A → B be a continuous map of linearly topologized rings.
Let I ⊂ A be an ideal. The closure of IB is the kernel of B → B⊗̂AA/I.

Proof. Let Jµ be a fundamental system of open ideals of B. The closure of IB is⋂
(IB + Jλ) by Lemma 87.4.2. Let Iµ be a fundamental system of open ideals in

A. Then
B⊗̂AA/I = lim(B/Jλ ⊗A A/(Iµ + I)) = limB/(Jλ + IµB + IB)

Since A → B is continuous, for every λ there is a µ such that IµB ⊂ Jλ, see
discussion in Example 87.4.1. Hence the limit can be written as limB/(Jλ + IB)
and the result is clear. □

Lemma 87.4.12.0GB4 Let B → A and B → C be continuous homomorphisms of linearly
topologized rings.

(1) If A and C are weakly pre-admissible, then A⊗̂BC is weakly admissible.
(2) If A and C are pre-admissible, then A⊗̂BC is admissible.
(3) If A and C have a countable fundamental system of open ideals, then

A⊗̂BC has a countable fundamental system of open ideals.
(4) If A and C are pre-adic and have finitely generated ideals of definition,

then A⊗̂BC is adic and has a finitely generated ideal of definition.
(5) If A and C are pre-adic Noetherian rings and B/b→ A/a is of finite type

where a ⊂ A and b ⊂ B are the ideals of topologically nilpotent elements,
then A⊗̂BC is adic Noetherian.

Proof. Let Iλ ⊂ A, λ ∈ Λ and Jµ ⊂ C, µ ∈ M be fundamental systems of open
ideals, then by definition

A⊗̂BC = limλ,µA/Iλ ⊗B C/Jµ
with the limit topology. Thus a fundamental system of open ideals is given by
the kernels Kλ,µ of the maps A⊗̂BC → A/Iλ ⊗B C/Jµ. Note that Kλ,µ is the
closure of the ideal Iλ(A⊗̂BC)+Jµ(A⊗̂BC). Finally, we have a ring homomorphism
τ : A⊗B C → A⊗̂BC with dense image.
Proof of (1). If Iλ and Jµ consist of topologically nilpotent elements, then so does
Kλ,µ by Lemma 87.4.10. Hence A⊗̂BC is weakly admissible by definition.

https://stacks.math.columbia.edu/tag/0AMW
https://stacks.math.columbia.edu/tag/0AMZ
https://stacks.math.columbia.edu/tag/0GB4
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Proof of (2). Assume for some λ0 and µ0 the ideals I = Iλ0 ⊂ A and Jµ0 ⊂ C are
ideals of definition. Thus for every λ there exists an n such that In ⊂ Iλ. For every
µ there exists an m such that Jm ⊂ Jµ. Then(

I(A⊗̂BC) + J(A⊗̂BC)
)n+m ⊂ Iλ(A⊗̂BC) + Jµ(A⊗̂BC)

It follows that the open ideal K = Kλ0,µ0 satisfies Kn+m ⊂ Kλ,µ. Hence K is an
ideal of definition of A⊗̂BC and A⊗̂BC is admissible by definition.
Proof of (3). If Λ and M are countable, so is Λ×M .
Proof of (4). Assume Λ = N and M = N and we have finitely generated ideals
I ⊂ A and J ⊂ C such that In = In and Jn = Jn. Then

I(A⊗̂BC) + J(A⊗̂BC)
is a finitely generated ideal and it is easily seen that A⊗̂BC is the completion of
A⊗B C with respect to this ideal. Hence (4) follows from Algebra, Lemma 10.96.3.
Proof of (5). Let c ⊂ C be the ideal of topologically nilpotent elements. Since A and
C are adic Noetherian, we see that a and c are ideals of definition (details omitted).
From part (4) we already know that A⊗̂BC is adic and that a(A⊗̂BC) + c(A⊗̂BC)
is a finitely generated ideal of definition. Since

A⊗̂BC/
(
a(A⊗̂BC) + c(A⊗̂BC)

)
= A/a⊗B/b C/c

is Noetherian as a finite type algebra over the Noetherian ring C/c we conclude by
Algebra, Lemma 10.97.5. □

87.5. Taut ring maps

0GX1 It turns out to be convenient to have a name for the following property of continuous
maps between linearly topologized rings.

Definition 87.5.1.0AMX Let φ : A → B be a continuous map of linearly topologized
rings. We say φ is taut2 if for every open ideal I ⊂ A the closure of the ideal φ(I)B
is open and these closures form a fundamental system of open ideals.

If φ : A→ B is a continuous map of linearly topologized rings and Iλ a fundamental
system of open ideals of A, then φ is taut if and only if the closures of IλB are
open and form a fundamental system of open ideals in A.

Lemma 87.5.2.0AMY Let φ : A→ B be a continuous map of weakly admissible topolog-
ical rings. The following are equivalent

(1) φ is taut,
(2) for every weak ideal of definition I ⊂ A the closure of φ(I)B is a weak

ideal of definition of B and these form a fundamental system of weak
ideals of definition of B.

Proof. The remarks following Definition 87.5.1 show that (2) implies (1). Con-
versely, assume φ is taut. If I ⊂ A is a weak ideal of definition, then the closure of
φ(I)B is open by definition of tautness and consists of topologically nilpotent ele-
ments by Lemma 87.4.10. Hence the closure of φ(I)B is a weak ideal of definition.

2This is nonstandard notation. The definition generalizes to modules, by saying a linearly
topologized A-module M is A-taut if for every open ideal I ⊂ A the closure of IM in M is open
and these closures form a fundamental system of neighbourhoods of 0 in M .

https://stacks.math.columbia.edu/tag/0AMX
https://stacks.math.columbia.edu/tag/0AMY
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Furthermore, by definition of tautness these ideals form a fundamental system of
open ideals and we see that (2) is true. □

Lemma 87.5.3.0GX2 Let A be a linearly topologized ring. The map A→ A∧ from A to
its completion is taut.

Proof. Let Iλ be a fundamental system of open ideals of A. Recall that A∧ =
limA/Iλ with the limit topology, which means that the kernels Jλ = Ker(A∧ →
A/Iλ) form a fundamental system of open ideals of A∧. Since Jλ is the closure of
IλA

∧ (compare with Lemma 87.4.11) we conclude. □

Lemma 87.5.4.0GX3 Let A→ B and B → C be continuous homomorphisms of linearly
topologized rings. If A→ B and B → C are taut, then A→ C is taut.

Proof. Omitted. Hint: if I ⊂ A is an ideal and J is the closure of IB, then the
closure of JC is equal to the closure of IC. □

Lemma 87.5.5.0GX4 Let A→ B and B → C be continuous homomorphisms of linearly
topologized rings. If A→ C is taut, then B → C is taut.

Proof. Let J ⊂ B be an open ideal with inverse image I ⊂ A. Then the closure of
JC contains the closure of IC. Hence this closure is open as A → C is taut. Let
Iλ be a fundamental system of open ideals of A. Let Kλ be the closure of IλC.
Since A→ C is taut, these form a fundamental system of open ideals of C. Denote
Jλ ⊂ B the inverse image of Kλ. Then the closure of JλC is Kλ. Hence we see
that the closures of the ideals JC, where J runs over the open ideals of B form a
fundamental system of open ideals of C. □

Lemma 87.5.6.0GX5 Let A→ B and A→ C be continuous homomorphisms of linearly
topologized rings. If A→ B is taut, then C → B⊗̂AC is taut.

Proof. Let K ⊂ C be an open ideal. Choose any open ideal I ⊂ A whose image
in C is contained in J . By assumption the closure J of IB is open. Since A →
B is taut we see that B⊗̂AC is the limit of the rings B/J ⊗A/I C/K over all
choices of K and I, i.e, the ideals J(B⊗̂AC) + K(B⊗̂AC) form a fundamental
system of open ideals. Now, since B → B⊗̂AC is continuous we see that J maps
into the closure of K(B⊗̂AC) (as I maps into K). Hence this closure is equal to
J(B⊗̂AC) +K(B⊗̂AC) and the proof is complete. □

Lemma 87.5.7.0GX6 Let φ : A→ B be a continuous homomorphism of linearly topolo-
gized rings. If φ is taut and A has a countable fundamental system of open ideals,
then B has a countable fundamental system of open ideals.

Proof. Immediate from the definitions. □

Lemma 87.5.8.0GX7 Let φ : A → B be a continuous homomorphism of linearly topol-
ogized rings. If φ is taut and A is weakly pre-admissible, then B is weakly pre-
admissible.

Proof. Let I ⊂ A be a weak ideal of definition. Then the closure J of IB is open
and consists of topologically nilpotent elements by Lemma 87.4.10. Hence J is a
weak ideal of definition of B. □

Lemma 87.5.9.0GX8 Let φ : A→ B be a continuous homomorphism of linearly topolo-
gized rings. If φ is taut and A is pre-admissible, then B is pre-admissible.

https://stacks.math.columbia.edu/tag/0GX2
https://stacks.math.columbia.edu/tag/0GX3
https://stacks.math.columbia.edu/tag/0GX4
https://stacks.math.columbia.edu/tag/0GX5
https://stacks.math.columbia.edu/tag/0GX6
https://stacks.math.columbia.edu/tag/0GX7
https://stacks.math.columbia.edu/tag/0GX8
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Proof. Let I ⊂ A be an ideal of definition. Let Iλ ⊂ A be a fundamental system of
open ideals. Then the closure J of IB is open and the closures Jλ of IλB are open
and form a fundamental system of open ideals of B. For every λ there is an n such
that In ⊂ Iλ. Observe that Jn is contained in the closure of InB. Thus Jn ⊂ Jλ
and we conclude J is an ideal of definition. □

Lemma 87.5.10.0APT Let φ : A→ B be a continuous homomorphism of linearly topol-
ogized rings. Assume

(1) φ is taut and has dense image,
(2) A is complete and has a countable fundamental system of open ideals, and
(3) B is separated.

Then φ is surjective and open, B is complete, and B = A/K for some closed ideal
K ⊂ A.

Proof. By the open mapping lemma (More on Algebra, Lemma 15.36.5) combined
with tautness of φ, we see the map φ is open. Since the image of φ is dense, we see
that φ is surjective. The kernel K of φ is closed as φ is continuous. It follows that
B = A/K is complete, see for example Lemma 87.4.4. □

87.6. Adic ring maps

0GX9 Let us make the following definition.

Definition 87.6.1.0GBR Let A and B be pre-adic topological rings. A ring homomorphism
φ : A→ B is adic3 if there exists an ideal of definition I ⊂ A such that the topology
on B is the I-adic topology.

If φ : A→ B is an adic homomorphism of pre-adic rings, then φ is continuous and
the topology on B is the I-adic topology for every ideal of definition I of A.

Lemma 87.6.2.0GXA Let A→ B and B → C be continuous homomorphisms of pre-adic
rings. If A→ B and B → C are adic, then A→ C is adic.

Proof. Omitted. □

Lemma 87.6.3.0GXB Let A→ B and B → C be continuous homomorphisms of pre-adic
rings. If A→ C is adic, then B → C is adic.

Proof. Choose an ideal of definition I of A. As A→ C is adic, we see that IC is an
ideal of definition of C. As B → C is continuous, we can find an ideal of definition
J ⊂ B mapping into IC. As A→ B is continuous the inverse image I ′ ⊂ I of J in
I is an ideal of definition of A too. Hence I ′C ⊂ JC ⊂ IC is sandwiched between
two ideals of definition, hence is an ideal of definition itself. □

Lemma 87.6.4.0GXC Let φ : A → B be a continuous homomorphism between pre-adic
topological rings. If φ is adic, then φ is taut.

Proof. Immediate from the definitions. □

The next lemma says two things
(1) the property of being adic ascents along taut maps of complete linearly

topologized rings, and

3This may be nonstandard terminology.
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(2) the properties “φ is taut” and “φ is adic” are equivalent for continuous
maps φ : A→ B between adic rings if A has a finitely generated ideal of
definition.

Because of (2) we can say that “tautness” generalizes “adicness” to continuous ring
maps between arbitrary linearly topologized rings. See also Section 87.23.
Lemma 87.6.5.0APU Let φ : A→ B be a continuous map of linearly topologized rings.
If φ is taut, A is pre-adic and has a finitely generated ideal of definition, and B
is complete, then B is adic and has a finitely generated ideal of definition and the
ring map φ is adic.
Proof. Choose a finitely generated ideal of definition I of A. Let Jn be the closure
of φ(In)B in B. Since B is complete we have B = limB/Jn. Let B′ = limB/InB
be the I-adic completion of B. By Algebra, Lemma 10.96.3, the I-adic topology on
B′ is complete and B′/InB′ = B/InB. Thus the ring map B′ → B is continuous
and has dense image as B′ → B/InB → B/Jn is surjective for all n. Finally, the
map B′ → B is taut because (InB′)B = InB and A → B is taut. By Lemma
87.5.10 we see that B′ → B is open and surjective. Thus the topology on B is the
I-adic topology and the proof is complete. □

87.7. Weakly adic rings

0GXD We suggest the reader skip this section. The following is a natural generalization
of adic rings.
Definition 87.7.1.0GXE [GR04, Definition

8.3.8]
Let A be a linearly topologized ring.

(1) We say A is weakly pre-adic4 if there exists an ideal I ⊂ A such that the
closure of In is open for all n ≥ 0 and these closures form a fundamental
system of open ideals.

(2) We say A is weakly adic if A is weakly pre-adic and complete5.
For complete linearly topologized rings we have the following implications

adic + Noetherian

��
adic + finitely generated ideal of definition

��
adic

��
weakly adic

��
admissible + first countable

��

+3 admissible

��
weakly admissible + first countable +3 weakly admissible

4In [GR04] the authors say A is c-adic.
5By our conventions this includes separated.

https://stacks.math.columbia.edu/tag/0APU
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where “first countable” means that our topological ring has a countable fundamental
system of open ideals. There is a similar diagram of implications for noncomplete
linearly topologized rings (i.e., using the notions of pre-adic, weakly pre-adic, pre-
admissible, and weakly pre-admissible). Contrary to what happens with pre-adic
rings the completion of a weakly pre-adic ring is weakly adic as the following lemma
characterizing weakly pre-adic rings shows.

Lemma 87.7.2.0GXF Let A be a linearly topologized ring. The following are equivalent
(1) A is weakly pre-adic,
(2) there exists a taut continuous ring map A′ → A where A′ is a pre-adic

topological ring, and
(3) A is pre-admissible and there exists an ideal of definition I such that the

closure of In is open for all n ≥ 1, and
(4) A is pre-admissible and for every ideal of definition I the closure of In is

open for all n ≥ 1.
The completion of a weakly pre-adic ring is weakly adic. If A is weakly adic, then
A is admissible and has a countable fundamental system of open ideals.

Proof. Assume (1). Choose an ideal I such that the closure of In is open for all
n and such that these closures form a fundamental system of open ideals. Denote
A′ = A endowed with the I-adic topology. Then A′ → A is taut by definition and
we see that (2) holds.

Assume (2). Let I ′ ⊂ A′ be an ideal of definition. Denote I the closure of I ′A.
Tautness of A′ → A means that the closures In of (I ′)nA are open and form a
fundamental system of open ideals. Thus I = I1 is open and the closures of In are
equal to In and hence open and form a fundamental system of open ideals. Thus
certainly I is an ideal of definition such that the closure of In is open for all n.
Hence (3) holds.

If I ⊂ A is as in (3), then I is an ideal as in Definition 87.7.1 and we see that (1)
holds. Also, if I ′ ⊂ A is any other ideal of definition, then I ′ is open (see More
on Algebra, Definition 15.36.1) and hence contains In for some n ≥ 1. Thus (I ′)m
contains Inm for all m ≥ 1 and we conclude that the closures of (I ′)m are open for
all m. In this way we see that (3) implies (4). The implication (4) ⇒ (3) is trivial.

Let A be weakly pre-adic. Choose A′ → A as in (2). By Lemmas 87.5.3 and 87.5.4
the composition A′ → A∧ is taut. Hence A∧ is weakly pre-adic by the equivalence
of (2) and (1). Since the completion of a linearly topologized ring A is complete
(More on Algebra, Section 15.36) we see that A∧ is weakly adic.

Let A be weakly adic. Then A is complete and and pre-admissible by (1) ⇒ (3)
and hence A is admissible. Of course by definition A has a countable fundamental
system of open ideals. □

We give two criteria that guarantee that a weakly adic ring is adic and has a finitely
generated ideal of definition.

Lemma 87.7.3.0GXG Let A be a complete linearly topologized ring. Let I ⊂ A be a
finitely generated ideal such that the closure of In is open for all n ≥ 0 and these
closures form a fundamental system of open ideals. Then A is adic and has a finitely
generated ideal of definition.
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Proof. Denote A′ the ring A endowed with the I-adic topology. The assumptions
tells us that A′ → A is taut. We conclude by Lemma 87.6.5 (to be sure, this lemma
also tells us that I is an ideal of definition). □

Lemma 87.7.4.0GXH Let A be a weakly adic topological ring. Let I be an ideal of
definition such that I/I2 is a finitely generated module where I2 is the closure of
I2. Then A is adic and has a finitely generated ideal of definition.

Proof. We use the characterization of Lemma 87.7.2 without further mention.
Choose f1, . . . , fr ∈ I which map to generators of I/I2. Set I ′ = (f1, . . . , fr).
We have I ′ + I2 = I. Then I2 is the closure of I2 = (I ′ + I2)2 ⊂ I ′ + I3 where
I3 is the closure of I3. Hence I ′ + I3 = I. Continuing in this fashion we see that
I ′ + In = I for all n ≥ 2 where In is the closure of In. In other words, the closure
of I ′ in A is I. Hence the closure of (I ′)n is In. Thus the closures of (I ′)n are a
fundamental system of open ideals of A. We conclude by Lemma 87.7.3. □

A key feature of the property “weakly pre-adic” is that it ascents along taut ring
homomorphisms of linearly topologized rings.

Lemma 87.7.5.0GXI Let φ : A→ B be a continuous homomorphism of linearly topolo-
gized rings. If φ is taut and A is weakly pre-adic, then B is weakly pre-adic.

Proof. Let I ⊂ A be an ideal such that the closure In of In is open and these
closures define a fundamental system of open ideals. Then the closure of InB is
equal to the closure of InB. Since φ is taut, these closures are open and form a
fundamental system of open ideals of B. Hence B is weakly pre-adic. □

Lemma 87.7.6.0GXJ Let B → A and B → C be continuous homomorphisms of linearly
topologized rings. If A and C are weakly pre-adic, then A⊗̂BC is weakly adic.

Proof. We will use the characterization of Lemma 87.7.2 without further mention.
By Lemma 87.4.12 we know that A⊗̂BC is admissible. Moreover, the proof of that
lemma shows that the closure K ⊂ A⊗̂BC is an ideal of definition, when I ⊂ A
and J ⊂ C of I(A⊗̂BC) + J(A⊗̂BC) are ideals of definition. Then it suffices to
show that the closure of Kn is open for all n ≥ 1. Since the ideal Kn contains
In(A⊗̂BC)+Jn(A⊗̂BC), since the closure of In in A is open, and since the closure
of Jn in C is open, we see that the closure of Kn is open in A⊗̂BC. □

87.8. Descending properties

0GXK In this section we consider the following situation
(1) φ : A→ B is a continuous map of linearly topologized topological rings,
(2) φ is taut, and
(3) for every open ideal I ⊂ A if J ⊂ B denotes the closure of IB, then the

map A/I → B/J is faithfully flat.
We are going to show that properties of B are inherited by A in this situation.

Lemma 87.8.1.0GXL In the situation above, if B has a countable fundamental system
of open ideals, then A has a countable fundamental system of open ideals.

Proof. Choose a fundamental system B ⊃ J1 ⊃ J2 ⊃ . . . of open ideals. By
tautness of φ, for every n we can find an open ideal In such that Jn ⊃ InB. We
claim that In is a fundamental system of open ideals of A. Namely, suppose that
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I ⊂ A is open. As φ is taut, the closure of IB is open and hence contains Jn for
some n large enough. Hence InB ⊂ IB. Let J be the closure of IB in B. Since
A/I → B/J is faithfully flat, it is injective. Hence, since In → A/I → B/J is
zero as InB ⊂ IB ⊂ J , we conclude that In → A/I is zero. Hence In ⊂ I and we
win. □

Lemma 87.8.2.0GXM In the situation above, if B is weakly pre-admissible, then A is
weakly pre-admissible.

Proof. Let J ⊂ B be a weak ideal of definition. Let I ⊂ A be an open ideal such
that IB ⊂ J . To show that I is a weak ideal of definition we have to show that any
f ∈ I is topologically nilpotent. Let I ′ ⊂ A be an open ideal. Denote J ′ ⊂ B the
closure of I ′B. Then A/I ′ → B/J ′ is faithfully flat, hence injective. Thus in order
to show that fn ∈ I ′ it suffices to show that φ(f)n ∈ J ′. This holds for n≫ 0 since
φ(f) ∈ J , the ideal J is a weak ideal of defintion of B, and J ′ is open in B. □

Lemma 87.8.3.0GXN In the situation above, if B is pre-admissible, then A is pre-
admissible.

Proof. Let J ⊂ B be a weak ideal of definition. Let I ⊂ A be an open ideal such
that IB ⊂ J . Let I ′ ⊂ A be an open ideal. To show that I is an ideal of definition
we have to show that In ⊂ I ′ for n≫ 0. Denote J ′ ⊂ B the closure of I ′B. Then
A/I ′ → B/J ′ is faithfully flat, hence injective. Thus in order to show that In ⊂ I ′

it suffices to show that φ(I)n ⊂ J ′. This holds for n≫ 0 since φ(I) ⊂ J , the ideal
J is an ideal of defintion of B, and J ′ is open in B. □

Lemma 87.8.4.0GXP In the situation above, if B is weakly pre-adic, then A is weakly
pre-adic.

Proof. We will use the characterization of weakly pre-adic rings given in Lemma
87.7.2 without further mention. By Lemma 87.8.3 the topological ring A is pre-
admissible. Let I ⊂ A be an ideal of definition. Fix n ≥ 1. To prove the lemma we
have to show that the closure of In is open. Let Iλ ⊂ A be a fundamental system
of open ideals. Denote J ⊂ B, resp. Jλ ⊂ B the closure of IB, resp. IλB. Since B
is weakly pre-adic, the closure of Jn is open. Hence there exists a λ such that

Jλ ⊂
⋂

µ
(Jn + Jµ)

because the right hand side is the closure of Jn by Lemma 87.4.2. This means that
the image of Jλ in B/Jµ is contained in the image of Jn in B/Jµ. Observe that the
image of Jn in B/Jµ is equal to the image of InB in B/Jµ (since every element of
J is congruent to an element of IB modulo Jµ). Since A/Iµ → B/Jµ is faithfully
flat and since IλB ⊂ Jλ, we conclude that the image of Iλ in A/Iµ is contained
in the image of In. We conclude that Iλ is contained in the closure of In and the
proof is complete. □

Lemma 87.8.5.0GXQ In the situation above, if B is adic and has a finitely generated
ideal of definition and A is complete, then A is adic and has a finitely generated
ideal of definition.

Proof. We already know that A is weakly adic and a fortiori admissible by Lemma
87.8.4 (and Lemma 87.7.2 to see that adic rings are weakly adic). Let I ⊂ A be an
ideal of definition. Let J ⊂ B be a finitely generated ideal of definition. Since the
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closure of IB is open, we can find an n > 0 such that Jn is contained in the closure
of IB. Thus after replacing J by Jn we may assume J is a finitely generated ideal
of definition contained in the closure of IB. By Lemma 87.4.2 this certainly implies
that

J ⊂ IB + J2

Consider the finitely generated A-module M = (J + IB)/IB. The displayed equa-
tion shows that JM = M . By Lemma 87.4.9 (for example) we see that J is con-
tained in the Jacobson radical of B. Hence by Nakayama’s lemma, more precisely
part (2) of Algebra, Lemma 10.20.1, we conclude M = 0. Thus J ⊂ IB.
Since J is finitely generated, we can find a finitely generated ideal I ′ ⊂ I such that
J ⊂ I ′B. Since A→ B is continuous, J ⊂ B is open, and I is an ideal of definition,
we can find an n > 0 such that InB ⊂ J . Let Jn+1 ⊂ B be the closure of In+1B.
We have

In · (B/Jn+1) ⊂ J · (B/Jn+1) ⊂ I ′ · (B/Jn+1)
Since A/In+1 → B/Jn+1 is faithfully flat, this implies In ·(A/In+1) ⊂ I ′ ·(A/In+1)
which in turn means

In ⊂ I ′ + In+1

This implies In ⊂ I ′ + In+k for all k ≥ 1 which in turn implies that Inm ⊂
(I ′)m+Inm+k for all k,m ≥ 1. This implies that the closure of (I ′)m contains Inm.
Since the closure of Inm is open as A is weakly adic, we conclude that the closure
(I ′)m is open for all m. Since these closures form a fundamental system of open
ideals of A (as the same thing is true for the closures of In) we conclude by Lemma
87.7.3. □

87.9. Affine formal algebraic spaces

0AI6 In this section we introduce affine formal algebraic spaces. These will in fact be the
same as what are called affine formal schemes in [BD]. However, we will call them
affine formal algebraic spaces, in order to prevent confusion with the notion of an
affine formal scheme as defined in [DG67].
Recall that a thickening of schemes is a closed immersion which induces a surjection
on underlying topological spaces, see More on Morphisms, Definition 37.2.1.

Definition 87.9.1.0AI7 Let S be a scheme. We say a sheaf X on (Sch/S)fppf is an affine
formal algebraic space if there exist

(1) a directed set Λ,
(2) a system (Xλ, fλµ) over Λ in (Sch/S)fppf where

(a) each Xλ is affine,
(b) each fλµ : Xλ → Xµ is a thickening,

such that
X ∼= colimλ∈Λ Xλ

as fppf sheaves and X satisfies a set theoretic condition (see Remark 87.11.5). A
morphism of affine formal algebraic spaces over S is a map of sheaves.

Observe that the system (Xλ, fλµ) is not part of the data. Suppose that U is a
quasi-compact scheme over S. Since the transition maps are monomorphisms, we
see that

X(U) = colimXλ(U)
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by Sites, Lemma 7.17.7. Thus the fppf sheafification inherent in the colimit of the
definition is a Zariski sheafification which does not do anything for quasi-compact
schemes.

Lemma 87.9.2.0AI8 Let S be a scheme. If X is an affine formal algebraic space over
S, then the diagonal morphism ∆ : X → X ×S X is representable and a closed
immersion.

Proof. Suppose given U → X and V → X where U, V are schemes over S. Let us
show that U ×X V is representable. Write X = colimXλ as in Definition 87.9.1.
The discussion above shows that Zariski locally on U and V the morphisms factors
through some Xλ. In this case U ×X V = U ×Xλ V which is a scheme. Thus the
diagonal is representable, see Spaces, Lemma 65.5.10. Given (a, b) : W → X ×S X
where W is a scheme over S consider the map X×∆,X×SX,(a,b)W →W . As before
locally on W the morphisms a and b map into the affine scheme Xλ for some λ and
then we get the morphism Xλ ×∆λ,Xλ×SXλ,(a,b) W → W . This is the base change
of ∆λ : Xλ → Xλ ×S Xλ which is a closed immersion as Xλ → S is separated
(because Xλ is affine). Thus X → X ×S X is a closed immersion. □

A morphism of schemes X → X ′ is a thickening if it is a closed immersion and
induces a surjection on underlying sets of points, see (More on Morphisms, Defini-
tion 37.2.1). Hence the property of being a thickening is preserved under arbitrary
base change and fpqc local on the target, see Spaces, Section 65.4. Thus Spaces,
Definition 65.5.1 applies to “thickening” and we know what it means for a repre-
sentable transformation F → G of presheaves on (Sch/S)fppf to be a thickening.
We observe that this does not clash with our definition (More on Morphisms of
Spaces, Definition 76.9.1) of thickenings in case F and G are algebraic spaces.

Lemma 87.9.3.0AI9 Let Xλ, λ ∈ Λ and X = colimXλ be as in Definition 87.9.1. Then
Xλ → X is representable and a thickening.

Proof. The statement makes sense by the discussion in Spaces, Section 65.3 and
65.5. By Lemma 87.9.2 the morphisms Xλ → X are representable. Given U → X
where U is a scheme, then the discussion following Definition 87.9.1 shows that
Zariski locally on U the morphism factors through some Xµ with λ ≤ µ. In this
case U×XXλ = U×XµXλ so that U×XXλ → U is a base change of the thickening
Xλ → Xµ. □

Lemma 87.9.4.0AIA Let Xλ, λ ∈ Λ and X = colimXλ be as in Definition 87.9.1. If
Y is a quasi-compact algebraic space over S, then any morphism Y → X factors
through an Xλ.

Proof. Choose an affine scheme V and a surjective étale morphism V → Y . The
composition V → Y → X factors through Xλ for some λ by the discussion following
Definition 87.9.1. Since V → Y is a surjection of sheaves, we conclude. □

Lemma 87.9.5.0AIB Let S be a scheme. Let X be a sheaf on (Sch/S)fppf . Then X is
an affine formal algebraic space if and only if the following hold

(1) any morphism U → X where U is an affine scheme over S factors through
a morphism T → X which is representable and a thickening with T an
affine scheme over S, and

(2) a set theoretic condition as in Remark 87.11.5.
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Proof. It follows from Lemmas 87.9.3 and 87.9.4 that an affine formal algebraic
space satisfies (1) and (2). In order to prove the converse we may assume X is
not empty. Let Λ be the category of representable morphisms T → X which are
thickenings where T is an affine scheme over S. This category is directed. Since
X is not empty, Λ contains at least one object. If T → X and T ′ → X are in Λ,
then we can factor T ⨿ T ′ → X through T ′′ → X in Λ. Between any two objects
of Λ there is a unique arrow or none. Thus Λ is a directed set and by assumption
X = colimT→X in Λ T . To finish the proof we need to show that any arrow T → T ′

in Λ is a thickening. This is true because T ′ → X is a monomorphism of sheaves,
so that T = T ×T ′ T ′ = T ×X T ′ and hence the morphism T → T ′ equals the
projection T ×X T ′ → T ′ which is a thickening because T → X is a thickening. □

For a general affine formal algebraic space X there is no guarantee that X has
enough functions to separate points (for example). See Examples, Section 110.74.
To characterize those that do we offer the following lemma.
Lemma 87.9.6.0AIC Let S be a scheme. Let X be an fppf sheaf on (Sch/S)fppf which
satisfies the set theoretic condition of Remark 87.11.5. The following are equivalent:

(1) there exists a weakly admissible topological ring A over S (see Remark
87.2.3) such that X = colimI⊂A weak ideal of definition Spec(A/I),

(2) X is an affine formal algebraic space and there exists an S-algebra A and
a map X → Spec(A) such that for a closed immersion T → X with T an
affine scheme the composition T → Spec(A) is a closed immersion,

(3) X is an affine formal algebraic space and there exists an S-algebra A and
a map X → Spec(A) such that for a closed immersion T → X with T a
scheme the composition T → Spec(A) is a closed immersion,

(4) X is an affine formal algebraic space and for some choice of X = colimXλ

as in Definition 87.9.1 the projections lim Γ(Xλ,OXλ)→ Γ(Xλ,OXλ) are
surjective,

(5) X is an affine formal algebraic space and for any choice of X = colimXλ

as in Definition 87.9.1 the projections lim Γ(Xλ,OXλ)→ Γ(Xλ,OXλ) are
surjective.

Moreover, the weakly admissible topological ring is A = lim Γ(Xλ,OXλ) endowed
with its limit topology and the weak ideals of definition classify exactly the mor-
phisms T → X which are representable and thickenings.
Proof. It is clear that (5) implies (4).
Assume (4) for X = colimXλ as in Definition 87.9.1. Set A = lim Γ(Xλ,OXλ). Let
T → X be a closed immersion with T a scheme (note that T → X is representable
by Lemma 87.9.2). Since Xλ → X is a thickening, so is Xλ ×X T → T . On the
other hand, Xλ×X T → Xλ is a closed immersion, hence Xλ×X T is affine. Hence
T is affine by Limits, Proposition 32.11.2. Then T → X factors through Xλ for
some λ by Lemma 87.9.4. Thus A → Γ(Xλ,O) → Γ(T,O) is surjective. In this
way we see that (3) holds.
It is clear that (3) implies (2).
Assume (2) for A and X → Spec(A). Write X = colimXλ as in Definition 87.9.1.
Then Aλ = Γ(Xλ,O) is a quotient of A by assumption (2). Hence A∧ = limAλ is
a complete topological ring, see discussion in More on Algebra, Section 15.36. The
maps A∧ → Aλ are surjective as A → Aλ is. We claim that for any λ the kernel

https://stacks.math.columbia.edu/tag/0AIC


87.9. AFFINE FORMAL ALGEBRAIC SPACES 6302

Iλ ⊂ A∧ of A∧ → Aλ is a weak ideal of definition. Namely, it is open by definition
of the limit topology. If f ∈ Iλ, then for any µ ∈ Λ the image of f in Aµ is zero
in all the residue fields of the points of Xµ. Hence it is a nilpotent element of Aµ.
Hence some power fn ∈ Iµ. Thus fn → 0 as n→ 0. Thus A∧ is weakly admissible.
Finally, suppose that I ⊂ A∧ is a weak ideal of definition. Then I ⊂ A∧ is open
and hence there exists some λ such that I ⊃ Iλ. Thus we obtain a morphism
Spec(A∧/I)→ Spec(Aλ)→ X. Then it follows that X = colim Spec(A∧/I) where
now the colimit is over all weak ideals of definition. Thus (1) holds.
Assume (1). In this case it is clear that X is an affine formal algebraic space. Let
X = colimXλ be any presentation as in Definition 87.9.1. For each λ we can find a
weak ideal of definition I ⊂ A such that Xλ → X factors through Spec(A/I)→ X,
see Lemma 87.9.4. Then Xλ = Spec(A/Iλ) with I ⊂ Iλ. Conversely, for any weak
ideal of definition I ⊂ A the morphism Spec(A/I)→ X factors through Xλ for some
λ, i.e., Iλ ⊂ I. It follows that each Iλ is a weak ideal of definition and that they
form a cofinal subset of the set of weak ideals of definition. Hence A = limA/I =
limA/Iλ and we see that (5) is true and moreover that A = lim Γ(Xλ,OXλ). □

With this lemma in hand we can make the following definition.

Definition 87.9.7.0AID Let S be a scheme. Let X be an affine formal algebraic space
over S. We say X is McQuillan if X satisfies the equivalent conditions of Lemma
87.9.6. Let A be the weakly admissible topological ring associated to X. We say

(1) X is classical if X is McQuillan and A is admissible (More on Algebra,
Definition 15.36.1),

(2) X is weakly adic if X is McQuillan and A is weakly adic (Definition
87.7.1),

(3) X is adic if X is McQuillan and A is adic (More on Algebra, Definition
15.36.1),

(4) X is adic* if X is McQuillan, A is adic, and A has a finitely generated
ideal of definition, and

(5) X is Noetherian if X is McQuillan and A is both Noetherian and adic.

In [FK] they use the terminology “of finite ideal type” for the property that an adic
topological ring A contains a finitely generated ideal of definition. Given an affine
formal algebraic space X here are the implications among the notions introduced
in the definition:

X Noetherian +3 X adic* +3 X adic

ow
X weakly adic +3 X classical +3 X McQuillan

See discussion in Section 87.7 and for a precise statement see Lemma 87.10.3.

Remark 87.9.8.0AIE The classical affine formal algebraic spaces correspond to the affine
formal schemes considered in EGA ([DG67]). To explain this we assume our base
scheme is Spec(Z). Let X = Spf(A) be an affine formal scheme. Let hX be its
functor of points as in Lemma 87.2.1. Then hX = colim hSpec(A/I) where the colimit
is over the collection of ideals of definition of the admissible topological ring A. This
follows from (87.2.0.1) when evaluating on affine schemes and it suffices to check
on affine schemes as both sides are fppf sheaves, see Lemma 87.2.2. Thus hX is an
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affine formal algebraic space. In fact, it is a classical affine formal algebraic space by
Definition 87.9.7. Thus Lemma 87.2.1 tells us the category of affine formal schemes
is equivalent to the category of classical affine formal algebraic spaces.
Having made the connection with affine formal schemes above, it seems natural to
make the following definition.
Definition 87.9.9.0AIF Let S be a scheme. Let A be a weakly admissible topological
ring over S, see Definition 87.4.86. The formal spectrum of A is the affine formal
algebraic space

Spf(A) = colim Spec(A/I)
where the colimit is over the set of weak ideals of definition of A and taken in the
category Sh((Sch/S)fppf ).
Such a formal spectrum is McQuillan by construction and conversely every McQuil-
lan affine formal algebraic space is isomorphic to a formal spectrum. To be sure,
in our theory there exist affine formal algebraic spaces which are not the formal
spectrum of any weakly admissible topological ring. Following [Yas09] we could in-
troduce S-pro-rings to be pro-objects in the category of S-algebras, see Categories,
Remark 4.22.5. Then every affine formal algebraic space over S would be the for-
mal spectrum of such an S-pro-ring. We will not do this and instead we will work
directly with the corresponding affine formal algebraic spaces.
The construction of the formal spectrum is functorial. To explain this let φ : B → A
be a continuous map of weakly admissible topological rings over S. Then

Spf(φ) : Spf(B)→ Spf(A)
is the unique morphism of affine formal algebraic spaces such that the diagrams

Spec(B/J)

��

// Spec(A/I)

��
Spf(B) // Spf(A)

commute for all weak ideals of definition I ⊂ A and J ⊂ B with φ(I) ⊂ J . Since
continuity of φ implies that for every weak ideal of definition J ⊂ B there is a
weak ideal of definition I ⊂ A with the required property, we see that the required
commutativities uniquely determine and define Spf(φ).
Lemma 87.9.10.0AN0 Let S be a scheme. Let A, B be weakly admissible topological
rings over S. Any morphism f : Spf(B)→ Spf(A) of affine formal algebraic spaces
over S is equal to Spf(f ♯) for a unique continuous S-algebra map f ♯ : A→ B.
Proof. Let f : Spf(B)→ Spf(A) be as in the lemma. Let J ⊂ B be a weak ideal of
definition. By Lemma 87.9.4 there exists a weak ideal of definition I ⊂ A such that
Spec(B/J) → Spf(B) → Spf(A) factors through Spec(A/I). By Schemes, Lemma
26.6.4 we obtain an S-algebra map A/I → B/J . These maps are compatible for
varying J and define the map f ♯ : A → B. This map is continuous because for
every weak ideal of definition J ⊂ B there is a weak ideal of definition I ⊂ A such
that f ♯(I) ⊂ J . The equality f = Spf(f ♯) holds by our choice of the ring maps
A/I → B/J which make up f ♯. □

6See More on Algebra, Definition 15.36.1 for the classical case and see Remark 87.2.3 for a
discussion of differences.
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Lemma 87.9.11.0AIG Let S be a scheme. Let f : X → Y be a map of presheaves on
(Sch/S)fppf . If X is an affine formal algebraic space and f is representable by
algebraic spaces and locally quasi-finite, then f is representable (by schemes).

Proof. Let T be a scheme over S and T → Y a map. We have to show that the
algebraic space X×Y T is a scheme. Write X = colimXλ as in Definition 87.9.1. Let
W ⊂ X ×Y T be a quasi-compact open subspace. The restriction of the projection
X ×Y T → X to W factors through Xλ for some λ. Then

W → Xλ ×S T

is a monomorphism (hence separated) and locally quasi-finite (because W → X×Y
T → T is locally quasi-finite by our assumption on X → Y , see Morphisms of
Spaces, Lemma 67.27.8). HenceW is a scheme by Morphisms of Spaces, Proposition
67.50.2. Thus X ×Y T is a scheme by Properties of Spaces, Lemma 66.13.1. □

87.10. Countably indexed affine formal algebraic spaces

0AIH These are the affine formal algebraic spaces as in the following lemma.

Lemma 87.10.1.0AII Let S be a scheme. Let X be an affine formal algebraic space
over S. The following are equivalent

(1) there exists a system X1 → X2 → X3 → . . . of thickenings of affine
schemes over S such that X = colimXn,

(2) there exists a choice X = colimXλ as in Definition 87.9.1 such that Λ is
countable.

Proof. This follows from the observation that a countable directed set has a cofinal
subset isomorphic to (N,≥). See proof of Algebra, Lemma 10.86.3. □

Definition 87.10.2.0AIJ Let S be a scheme. Let X be an affine formal algebraic space
over S. We say X is countably indexed if the equivalent conditions of Lemma
87.10.1 are satisfied.

In the language of [BD] this is expressed by saying that X is an ℵ0-ind scheme.

Lemma 87.10.3.0AIK Let X be an affine formal algebraic space over a scheme S.
(1) If X is Noetherian, then X is adic*.
(2) If X is adic*, then X is adic.
(3) If X is adic, then X is weakly adic.
(4) If X is weakly adic, then X is classical.
(5) If X is weakly adic, then X is countably indexed.
(6) If X is countably indexed, then X is McQuillan.

Proof. Statements (1), (2), (3), and (4) follow by writing X = Spf(A) and where
A is a weakly admissible (hence complete) linearly topologized ring and using the
implications between the various types of such rings discussed in Section 87.7.

Proof of (5). By definition there exists a weakly adic topological ring A such that
X = colim Spec(A/I) where the colimit is over the ideals of definition of A. As A
is weakly adic, there exits in particular a countable fundamental system Iλ of open
ideals, see Definition 87.7.1. Then X = colim Spec(A/In) by definition of Spf(A).
Thus X is countably indexed.
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Proof of (6). Write X = colimXn for some system X1 → X2 → X3 → . . . of
thickenings of affine schemes over S. Then

A = lim Γ(Xn,OXn)

surjects onto each Γ(Xn,OXn) because the transition maps are surjections as the
morphisms Xn → Xn+1 are closed immersions. Hence X is McQuillan. □

Lemma 87.10.4.0AN1 Let S be a scheme. Let X be a presheaf on (Sch/S)fppf . The
following are equivalent

(1) X is a countably indexed affine formal algebraic space,
(2) X = Spf(A) where A is a weakly admissible topological S-algebra which

has a countable fundamental system of neighbourhoods of 0,
(3) X = Spf(A) where A is a weakly admissible topological S-algebra which

has a fundamental system A ⊃ I1 ⊃ I2 ⊃ I3 ⊃ . . . of weak ideals of
definition,

(4) X = Spf(A) where A is a complete topological S-algebra with a funda-
mental system of open neighbourhoods of 0 given by a countable sequence
A ⊃ I1 ⊃ I2 ⊃ I3 ⊃ . . . of ideals such that In/In+1 is locally nilpotent,
and

(5) X = Spf(A) where A = limB/Jn with the limit topology where B ⊃ J1 ⊃
J2 ⊃ J3 ⊃ . . . is a sequence of ideals in an S-algebra B with Jn/Jn+1
locally nilpotent.

Proof. Assume (1). By Lemma 87.10.3 we can write X = Spf(A) where A is a
weakly admissible topological S-algebra. For any presentation X = colimXn as
in Lemma 87.10.1 part (1) we see that A = limAn with Xn = Spec(An) and
An = A/In for some weak ideal of definition In ⊂ A. This follows from the final
statement of Lemma 87.9.6 which moreover implies that {In} is a fundamental
system of open neighbourhoods of 0. Thus we have a sequence

A ⊃ I1 ⊃ I2 ⊃ I3 ⊃ . . .

of weak ideals of definition with A = limA/In. In this way we see that condition
(1) implies each of the conditions (2) – (5).

Assume (5). First note that the limit topology on A = limB/Jn is a linearly
topologized, complete topology, see More on Algebra, Section 15.36. If f ∈ A maps
to zero in B/J1, then some power maps to zero in B/J2 as its image in J1/J2 is
nilpotent, then a further power maps to zero in J2/J3, etc, etc. In this way we
see the open ideal Ker(A→ B/J1) is a weak ideal of definition. Thus A is weakly
admissible. In this way we see that (5) implies (2).

It is clear that (4) is a special case of (5) by taking B = A. It is clear that (3) is a
special case of (2).

AssumeA is as in (2). Let En be a countable fundamental system of neighbourhoods
of 0 in A. Since A is a weakly admissible topological ring we can find open ideals
In ⊂ En. We can also choose a weak ideal of definition J ⊂ A. Then J ∩ In is
a fundamental system of weak ideals of definition of A and we get X = Spf(A) =
colim Spec(A/(J ∩ In)) which shows that X is a countably indexed affine formal
algebraic space. □
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Lemma 87.10.5.0AKM Let S be a scheme. Let X be an affine formal algebraic space.
The following are equivalent

(1) X is Noetherian,
(2) X is adic* and for every closed immersion T → X with T a scheme, T is

Noetherian,
(3) X is adic* and for some choice of X = colimXλ as in Definition 87.9.1

the schemes Xλ are Noetherian, and
(4) X is weakly adic and for some choice X = colimXλ as in Definition 87.9.1

the schemes Xλ are Noetherian.

Proof. Assume X is Noetherian. Then X = Spf(A) where A is a Noetherian adic
ring. Let T → X be a closed immersion where T is a scheme. By Lemma 87.9.6
we see that T is affine and that T → Spec(A) is a closed immersion. Since A is
Noetherian, we see that T is Noetherian. In this way we see that (1) ⇒ (2).
The implications (2) ⇒ (3) and (2) ⇒ (4) are immediate (see Lemma 87.10.3).
To prove (3) ⇒ (1) write X = Spf(A) for some adic ring A with finitely generated
ideal of definition I. We are also given that the rings A/Iλ are Noetherian for some
fundamental system of open ideals Iλ. Since I is open, we can find a λ such that
Iλ ⊂ I. Then A/I is Noetherian and we conclude that A is Noetherian by Algebra,
Lemma 10.97.5.
To prove (4) ⇒ (3) write X = Spf(A) for some weakly adic ring A. Then A is
admissible and has an ideal of definition I and the closure I2 of I2 is open, see
Lemma 87.7.2. We are also given that the rings A/Iλ are Noetherian for some
fundamental system of open ideals Iλ. Choose a λ such that Iλ ⊂ I2. Then A/I2
is Noetherian as a quotient of A/Iλ. Hence I/I2 is a finite A-module. Hence A is
an adic ring with a finitely generated ideal of definition by Lemma 87.7.4. Thus X
is adic* and (3) holds. □

87.11. Formal algebraic spaces

0AIL We take a break from our habit of introducing new concepts first for rings, then
for schemes, and then for algebraic spaces, by introducing formal algebraic spaces
without first introducing formal schemes. The general idea will be that a formal
algebraic space is a sheaf in the fppf topology which étale locally is an affine formal
scheme in the sense of [BD]. Related material can be found in [Yas09].
In the definition of a formal algebraic space we are going to borrow some terminology
from Bootstrap, Sections 80.3 and 80.4.

Definition 87.11.1.0AIM Let S be a scheme. We say a sheaf X on (Sch/S)fppf is a
formal algebraic space if there exist a family of maps {Xi → X}i∈I of sheaves such
that

(1) Xi is an affine formal algebraic space,
(2) Xi → X is representable by algebraic spaces and étale,
(3)

∐
Xi → X is surjective as a map of sheaves

and X satisfies a set theoretic condition (see Remark 87.11.5). A morphism of
formal algebraic spaces over S is a map of sheaves.

Discussion. Sanity check: an affine formal algebraic space is a formal algebraic
space. In the situation of the definition the morphisms Xi → X are representable
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(by schemes), see Lemma 87.9.11. By Bootstrap, Lemma 80.4.6 we could instead of
asking

∐
Xi → X to be surjective as a map of sheaves, require that it be surjective

(which makes sense because it is representable).
Our notion of a formal algebraic space is very general. In fact, even affine formal
algebraic spaces as defined above are very nasty objects.

Lemma 87.11.2.0AIP Let S be a scheme. If X is a formal algebraic space over S, then
the diagonal morphism ∆ : X → X×SX is representable, a monomorphism, locally
quasi-finite, locally of finite type, and separated.

Proof. Suppose given U → X and V → X with U, V schemes over S. Then U×X V
is a sheaf. Choose {Xi → X} as in Definition 87.11.1. For every i the morphism

(U ×X Xi)×Xi (V ×X Xi) = (U ×X V )×X Xi → U ×X V

is representable and étale as a base change of Xi → X and its source is a scheme (use
Lemmas 87.9.2 and 87.9.11). These maps are jointly surjective hence U ×X V is an
algebraic space by Bootstrap, Theorem 80.10.1. The morphism U ×X V → U ×S V
is a monomorphism. It is also locally quasi-finite, because on precomposing with
the morphism displayed above we obtain the composition

(U ×X Xi)×Xi (V ×X Xi)→ (U ×X Xi)×S (V ×X Xi)→ U ×S V
which is locally quasi-finite as a composition of a closed immersion (Lemma 87.9.2)
and an étale morphism, see Descent on Spaces, Lemma 74.19.2. Hence we conclude
that U ×X V is a scheme by Morphisms of Spaces, Proposition 67.50.2. Thus ∆ is
representable, see Spaces, Lemma 65.5.10.
In fact, since we’ve shown above that the morphisms of schemes U×X V → U×S V
are aways monomorphisms and locally quasi-finite we conclude that ∆ : X → X×S
X is a monomorphism and locally quasi-finite, see Spaces, Lemma 65.5.11. Then
we can use the principle of Spaces, Lemma 65.5.8 to see that ∆ is separated and
locally of finite type. Namely, a monomorphism of schemes is separated (Schemes,
Lemma 26.23.3) and a locally quasi-finite morphism of schemes is locally of finite
type (follows from the definition in Morphisms, Section 29.20). □

Lemma 87.11.3.0AIQ Let S be a scheme. Let f : X → Y be a morphism from an
algebraic space over S to a formal algebraic space over S. Then f is representable
by algebraic spaces.

Proof. Let Z → Y be a morphism where Z is a scheme over S. We have to show
that X ×Y Z is an algebraic space. Choose a scheme U and a surjective étale
morphism U → X. Then U ×Y Z → X ×Y Z is representable surjective étale
(Spaces, Lemma 65.5.5) and U ×Y Z is a scheme by Lemma 87.11.2. Hence the
result by Bootstrap, Theorem 80.10.1. □

Remark 87.11.4.0AIR Modulo set theoretic issues the category of formal schemes à la
EGA (see Section 87.2) is equivalent to a full subcategory of the category of formal
algebraic spaces. To explain this we assume our base scheme is Spec(Z). By Lemma
87.2.2 the functor of points hX associated to a formal scheme X is a sheaf in the fppf
topology. By Lemma 87.2.1 the assignment X 7→ hX is a fully faithful embedding
of the category of formal schemes into the category of fppf sheaves. Given a formal
scheme X we choose an open covering X =

⋃
Xi with Xi affine formal schemes.

Then hXi is an affine formal algebraic space by Remark 87.9.8. The morphisms
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hXi → hX are representable and open immersions. Thus {hXi → hX} is a family as
in Definition 87.11.1 and we see that hX is a formal algebraic space.

Remark 87.11.5.0AIS Let S be a scheme and let (Sch/S)fppf be a big fppf site as in
Topologies, Definition 34.7.8. As our set theoretic condition on X in Definitions
87.9.1 and 87.11.1 we take: there exist objects U,R of (Sch/S)fppf , a morphism
U → X which is a surjection of fppf sheaves, and a morphism R → U ×X U
which is a surjection of fppf sheaves. In other words, we require our sheaf to be a
coequalizer of two maps between representable sheaves. Here are some observations
which imply this notion behaves reasonably well:

(1) Suppose X = colimλ∈Λ Xλ and the system satisfies conditions (1) and (2)
of Definition 87.9.1. Then U =

∐
λ∈Λ Xλ → X is a surjection of fppf

sheaves. Moreover, U ×X U is a closed subscheme of U ×S U by Lemma
87.9.2. Hence if U is representable by an object of (Sch/S)fppf then
U ×S U is too (see Sets, Lemma 3.9.9) and the set theoretic condition is
satisfied. This is always the case if Λ is countable, see Sets, Lemma 3.9.9.

(2) Sanity check. Let {Xi → X}i∈I be as in Definition 87.11.1 (with the
set theoretic condition as formulated above) and assume that each Xi

is actually an affine scheme. Then X is an algebraic space. Namely, if
we choose a larger big fppf site (Sch′/S)fppf such that U ′ =

∐
Xi and

R′ =
∐
Xi×XXj are representable by objects in it, then X ′ = U ′/R′ will

be an object of the category of algebraic spaces for this choice. Then an
application of Spaces, Lemma 65.15.2 shows that X is an algebraic space
for (Sch/S)fppf .

(3) Let {Xi → X}i∈I be a family of maps of sheaves satisfying conditions (1),
(2), (3) of Definition 87.11.1. For each i we can pick Ui ∈ Ob((Sch/S)fppf )
and Ui → Xi which is a surjection of sheaves. Thus if I is not too large (for
example countable) then U =

∐
Ui → X is a surjection of sheaves and U

is representable by an object of (Sch/S)fppf . To get R ∈ Ob((Sch/S)fppf )
surjecting onto U×XU it suffices to assume the diagonal ∆ : X → X×SX
is not too wild, for example this always works if the diagonal of X is quasi-
compact, i.e., X is quasi-separated.

87.12. The reduction

0GB5 All formal algebraic spaces have an underlying reduced algebraic space as the fol-
lowing lemma demonstrates.

Lemma 87.12.1.0AIN Let S be a scheme. Let X be a formal algebraic space over
S. There exists a reduced algebraic space Xred and a representable morphism
Xred → X which is a thickening. A morphism U → X with U a reduced algebraic
space factors uniquely through Xred.

Proof. First assume that X is an affine formal algebraic space. Say X = colimXλ

as in Definition 87.9.1. Since the transition morphisms are thickenings, the affine
schemes Xλ all have isomorphic reductions Xred. The morphism Xred → X is
representable and a thickening by Lemma 87.9.3 and the fact that compositions
of thickenings are thickenings. We omit the verification of the universal property
(use Schemes, Definition 26.12.5, Schemes, Lemma 26.12.7, Properties of Spaces,
Definition 66.12.5, and Properties of Spaces, Lemma 66.12.4).
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Let X and {Xi → X}i∈I be as in Definition 87.11.1. For each i let Xi,red →
Xi be the reduction as constructed above. For i, j ∈ I the projection Xi,red ×X
Xj → Xi,red is an étale (by assumption) morphism of schemes (by Lemma 87.9.11).
Hence Xi,red×X Xj is reduced (see Descent, Lemma 35.18.1). Thus the projection
Xi,red ×X Xj → Xj factors through Xj,red by the universal property. We conclude
that

Rij = Xi,red ×X Xj = Xi,red ×X Xj,red = Xi ×X Xj,red

because the morphisms Xi,red → Xi are injections of sheaves. Set U =
∐
Xi,red, set

R =
∐
Rij , and denote s, t : R → U the two projections. As a sheaf R = U ×X U

and s and t are étale. Then (t, s) : R → U defines an étale equivalence relation
by our observations above. Thus Xred = U/R is an algebraic space by Spaces,
Theorem 65.10.5. By construction the diagram∐

Xi,red
//

��

∐
Xi

��
Xred

// X

is cartesian. Since the right vertical arrow is étale surjective and the top horizontal
arrow is representable and a thickening we conclude that Xred → X is representable
by Bootstrap, Lemma 80.5.2 (to verify the assumptions of the lemma use that
a surjective étale morphism is surjective, flat, and locally of finite presentation
and use that thickenings are separated and locally quasi-finite). Then we can use
Spaces, Lemma 65.5.6 to conclude that Xred → X is a thickening (use that being
a thickening is equivalent to being a surjective closed immersion).
Finally, suppose that U → X is a morphism with U a reduced algebraic space over
S. Then each Xi ×X U is étale over U and therefore reduced (by our definition of
reduced algebraic spaces in Properties of Spaces, Section 66.7). Then Xi×XU → Xi

factors throughXi,red. Hence U → X factors throughXred because {Xi×XU → U}
is an étale covering. □

Example 87.12.2.0GB6 Let A be a weakly admissible topological ring. In this case we
have

Spf(A)red = Spec(A/a)
where a ⊂ A is the ideal of topologically nilpotent elements. Namely, a is a radical
ideal (Lemma 87.4.10) which is open because A is weakly admissible.

Lemma 87.12.3.0GB7 Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S which is representable by algebraic spaces and smooth (for
example étale). Then Xred = X ×Y Yred.

Proof. (The étale case follows directly from the construction of the underlying
reduced algebraic space in the proof of Lemma 87.12.1.) Assume f is smooth.
Observe that X ×Y Yred → Yred is a smooth morphism of algebraic spaces. Hence
X×Y Yred is a reduced algebraic space by Descent on Spaces, Lemma 74.9.5. Then
the univeral property of reduction shows that the canonical morphism Xred →
X ×Y Yred is an isomorphism. □

Lemma 87.12.4.0GB8 Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S which is representable by algebraic spaces. Then f is
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surjective in the sense of Bootstrap, Definition 80.4.1 if and only if fred : Xred →
Yred is a surjective morphism of algebraic spaces.

Proof. Omitted. □

87.13. Colimits of algebraic spaces along thickenings

0AIT A special type of formal algebraic space is one which can globally be written as a
cofiltered colimit of algebraic spaces along thickenings as in the following lemma.
We will see later (in Section 87.18) that any quasi-compact and quasi-separated
formal algebraic space is such a global colimit.

Lemma 87.13.1.0AIU Let S be a scheme. Suppose given a directed set Λ and a system
of algebraic spaces (Xλ, fλµ) over Λ where each fλµ : Xλ → Xµ is a thickening.
Then X = colimλ∈Λ Xλ is a formal algebraic space over S.

Proof. Since we take the colimit in the category of fppf sheaves, we see that X is
a sheaf. Choose and fix λ ∈ Λ. Choose an étale covering {Xi,λ → Xλ} where Xi is
an affine scheme over S, see Properties of Spaces, Lemma 66.6.1. For each µ ≥ λ
there exists a cartesian diagram

Xi,λ
//

��

Xi,µ

��
Xλ

// Xµ

with étale vertical arrows, see More on Morphisms of Spaces, Theorem 76.8.1 (this
also uses that a thickening is a surjective closed immersion which satisfies the con-
ditions of the theorem). Moreover, these diagrams are unique up to unique isomor-
phism and hence Xi,µ = Xµ ×Xµ′ Xi,µ′ for µ′ ≥ µ. The morphisms Xi,µ → Xi,µ′

is a thickening as a base change of a thickening. Each Xi,µ is an affine scheme
by Limits of Spaces, Proposition 70.15.2 and the fact that Xi,λ is affine. Set
Xi = colimµ≥λXi,µ. Then Xi is an affine formal algebraic space. The morphism
Xi → X is étale because given an affine scheme U any U → X factors through Xµ

for some µ ≥ λ (details omitted). In this way we see that X is a formal algebraic
space. □

Let S be a scheme. Let X be a formal algebraic space over S. How does one prove
or check that X is a global colimit as in Lemma 87.13.1? To do this we look for
maps i : Z → X where Z is an algebraic space over S and i is surjective and a closed
immersion, in other words, i is a thickening. This makes sense as i is representable
by algebraic spaces (Lemma 87.11.3) and we can use Bootstrap, Definition 80.4.1
as before.

Example 87.13.2.0CB8 Let (A,m, κ) be a valuation ring, which is (π)-adically complete
for some nonzero π ∈ m. Assume also that m is not finitely generated. An example
is A = OCp

and π = p whereOCp
is the ring of integers of the field of p-adic complex

numbers Cp (this is the completion of the algebraic closure of Qp). Another example
is

A =
{∑

α∈Q, α≥0
aαt

α

∣∣∣∣ aα ∈ κ and for all n there are only a
finite number of nonzero aα with α ≤ n

}
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and π = t. Then X = Spf(A) is an affine formal algebraic space and Spec(κ)→ X
is a thickening which corresponds to the weak ideal of definition m ⊂ A which is
however not an ideal of definition.

Remark 87.13.3 (Weak ideals of definition).0AIV Let X be a formal scheme in the sense
of McQuillan, see Remark 87.2.3. An weak ideal of definition for X is an ideal
sheaf I ⊂ OX such that for all U ⊂ X affine formal open subscheme the ideal
I(U) ⊂ OX(U) is a weak ideal of definition of the weakly admissible topological
ring OX(U). It suffices to check the condition on the members of an affine open
covering. There is a one-to-one correspondence

{weak ideals of definition for X} ↔ {thickenings i : Z → hX as above}
This correspondence associates to I the scheme Z = (X,OX/I) together with the
obvious morphism to X. A fundamental system of weak ideals of definition is a
collection of weak ideals of definition Iλ such that on every affine open formal
subscheme U ⊂ X the ideals

Iλ = Iλ(U) ⊂ A = Γ(U,OX)
form a fundamental system of weak ideals of definition of the weakly admissible
topological ring A. It suffices to check on the members of an affine open covering.
We conclude that the formal algebraic space hX associated to the McQuillan formal
scheme X is a colimit of schemes as in Lemma 87.13.1 if and only if there exists a
fundamental system of weak ideals of definition for X.

Remark 87.13.4 (Ideals of definition).0AIW Let X be a formal scheme à la EGA. An ideal
of definition for X is an ideal sheaf I ⊂ OX such that for all U ⊂ X affine formal
open subscheme the ideal I(U) ⊂ OX(U) is an ideal of definition of the admissible
topological ring OX(U). It suffices to check the condition on the members of an
affine open covering. We do not get the same correspondence between ideals of
definition and thickenings Z → hX as in Remark 87.13.3; an example is given in
Example 87.13.2. A fundamental system of ideals of definition is a collection of
ideals of definition Iλ such that on every affine open formal subscheme U ⊂ X the
ideals

Iλ = Iλ(U) ⊂ A = Γ(U,OX)
form a fundamental system of ideals of definition of the admissible topological ring
A. It suffices to check on the members of an affine open covering. Suppose that
X is quasi-compact and that {Iλ}λ∈Λ is a fundamental system of weak ideals of
definition. If A is an admissible topological ring then all sufficiently small open
ideals are ideals of definition (namely any open ideal contained in an ideal of def-
inition is an ideal of definition). Thus since we only need to check on the finitely
many members of an affine open covering we see that Iλ is an ideal of definition
for λ sufficiently large. Using the discussion in Remark 87.13.3 we conclude that
the formal algebraic space hX associated to the quasi-compact formal scheme X à
la EGA is a colimit of schemes as in Lemma 87.13.1 if and only if there exists a
fundamental system of ideals of definition for X.

87.14. Completion along a closed subset

0AIX Our notion of a formal algebraic space is well adapted to taking the completion
along a closed subset.
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Lemma 87.14.1.0AIY Let S be a scheme. Let X be an affine scheme over S. Let T ⊂ |X|
be a closed subset. Then the functor

(Sch/S)fppf −→ Sets, U 7−→ {f : U → X | f(|U |) ⊂ T}
is a McQuillan affine formal algebraic space.

Proof. Say X = Spec(A) and T corresponds to the radical ideal I ⊂ A. Let
U = Spec(B) be an affine scheme over S and let f : U → X be an element of F (U).
Then f corresponds to a ring map φ : A→ B such that every prime of B contains
φ(I)B. Thus every element of φ(I) is nilpotent in B, see Algebra, Lemma 10.17.2.
Setting J = Ker(φ) we conclude that I/J is a locally nilpotent ideal in A/J .
Equivalently, V (J) = V (I) = T . In other words, the functor of the lemma equals
colim Spec(A/J) where the colimit is over the collection of ideals J with V (J) = T .
Thus our functor is an affine formal algebraic space. It is McQuillan (Definition
87.9.7) because the maps A→ A/J are surjective and hence A∧ = limA/J → A/J
is surjective, see Lemma 87.9.6. □

Lemma 87.14.2.0AIZ Let S be a scheme. Let X be an algebraic space over S. Let
T ⊂ |X| be a closed subset. Then the functor

(Sch/S)fppf −→ Sets, U 7−→ {f : U → X | f(|U |) ⊂ T}
is a formal algebraic space.

Proof. Denote F the functor. Let {Ui → U} be an fppf covering. Then
∐
|Ui| →

|U | is surjective. Since X is an fppf sheaf, it follows that F is an fppf sheaf.
Let {gi : Xi → X} be an étale covering such that Xi is affine for all i, see Properties
of Spaces, Lemma 66.6.1. The morphisms F ×X Xi → F are étale (see Spaces,
Lemma 65.5.5) and the map

∐
F ×X Xi → F is a surjection of sheaves. Thus it

suffices to prove that F ×XXi is an affine formal algebraic space. A U -valued point
of F ×X Xi is a morphism U → Xi whose image is contained in the closed subset
g−1
i (T ) ⊂ |Xi|. Thus this follows from Lemma 87.14.1. □

Definition 87.14.3.0AMC Let S be a scheme. Let X be an algebraic space over S. Let
T ⊂ |X| be a closed subset. The formal algebraic space of Lemma 87.14.2 is called
the completion of X along T .

In [DG67, Chapter I, Section 10.8] the notation X/T is used to denote the com-
pletion and we will occasionally use this notation as well. Let f : X → X ′ be a
morphism of algebraic spaces over a scheme S. Suppose that T ⊂ |X| and T ′ ⊂ |X ′|
are closed subsets such that |f |(T ) ⊂ T ′. Then it is clear that f defines a morphism
of formal algebraic spaces

X/T −→ X ′
/T ′

between the completions.

Lemma 87.14.4.0APV Let S be a scheme. Let f : X ′ → X be a morphism of algebraic
spaces over S. Let T ⊂ |X| be a closed subset and let T ′ = |f |−1(T ) ⊂ |X ′|. Then

X ′
/T ′

//

��

X ′

f

��
X/T

// X

https://stacks.math.columbia.edu/tag/0AIY
https://stacks.math.columbia.edu/tag/0AIZ
https://stacks.math.columbia.edu/tag/0AMC
https://stacks.math.columbia.edu/tag/0APV
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is a cartesian diagram of sheaves. In particular, the morphism X ′
/T ′ → X/T is

representable by algebraic spaces.

Proof. Namely, suppose that Y → X is a morphism from a scheme into X such
that |Y | maps into T . Then Y ×X X ′ → X is a morphism of algebraic spaces such
that |Y ×X X ′| maps into T ′. Hence the functor Y ×X/T X ′

/T ′ is represented by
Y ×X X ′ and we see that the lemma holds. □

Lemma 87.14.5.0GB9 Let S be a scheme. Let X be an algebraic space over S. Let
T ⊂ |X| be a closed subset. The reduction (X/T )red of the completion X/T of X
along T is the reduced induced closed subspace Z of X corresponding to T .

Proof. It follows from Lemma 87.12.1, Properties of Spaces, Definition 66.12.5
(which uses Properties of Spaces, Lemma 66.12.3 to construct Z), and the defi-
nition of X/T that Z and (X/T )red are reduced algebraic spaces characterized the
same mapping property: a morphism g : Y → X whose source is a reduced algebraic
space factors through them if and only if |Y | maps into T ⊂ |X|. □

Lemma 87.14.6.0GBA Let S be a scheme. Let X = Spec(A) be an affine scheme over S.
Let T ⊂ X be a closed subset. Let X/T be the formal completion of X along T .

(1) If X \ T is quasi-compact, i.e., T is constructible, then X/T is adic*.
(2) If T = V (I) for some finitely generated ideal I ⊂ A, then X/T = Spf(A∧)

where A∧ is the I-adic completion of A.
(3) If X is Noetherian, then X/T is Noetherian.

Proof. By Algebra, Lemma 10.29.1 if (1) holds, then we can find an ideal I ⊂ A as
in (2). If (3) holds then we can find an ideal I ⊂ A as in (2). Moreover, completions
of Noetherian rings are Noetherian by Algebra, Lemma 10.97.6. All in all we see
that it suffices to prove (2).
Proof of (2). Let I = (f1, . . . , fr) ⊂ A cut out T . If Z = Spec(B) is an affine
scheme and g : Z → X is a morphism with g(Z) ⊂ T (set theoretically), then
g♯(fi) is nilpotent in B for each i. Thus In maps to zero in B for some n. Hence
we see that X/T = colim Spec(A/In) = Spf(A∧). □

The following lemma is due to Ofer Gabber.

Lemma 87.14.7.0APW Email by Ofer
Gabber of
September 11, 2014.

Let S be a scheme. Let X = Spec(A) be an affine scheme over S.
Let T ⊂ X be a closed subscheme.

(1) If the formal completion X/T is countably indexed and there exist count-
ably many f1, f2, f3, . . . ∈ A such that T = V (f1, f2, f3, . . .), then X/T is
adic*.

(2) The conclusion of (1) is wrong if we omit the assumption that T can be
cut out by countably many functions in X.

Proof. The assumption that X/T is countably indexed means that there exists a
sequence of ideals

A ⊃ J1 ⊃ J2 ⊃ J3 ⊃ . . .
with V (Jn) = T such that every ideal J ⊂ A with V (J) = T there exists an n such
that J ⊃ Jn.
To construct an example for (2) let ω1 be the first uncountable ordinal. Let k be a
field and let A be the k-algebra generated by xα, α ∈ ω1 and yαβ with α ∈ β ∈ ω1

https://stacks.math.columbia.edu/tag/0GB9
https://stacks.math.columbia.edu/tag/0GBA
https://stacks.math.columbia.edu/tag/0APW
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subject to the relations xα = yαβxβ . Let T = V (xα). Let Jn = (xnα). If J ⊂ A
is an ideal such that V (J) = T , then xnαα ∈ J for some nα ≥ 1. One of the sets
{α | nα = n} must be unbounded in ω1. Then the relations imply that Jn ⊂ J .

To see that (2) holds it now suffices to show that A∧ = limA/Jn is not a ring
complete with respect to a finitely generated ideal. For γ ∈ ω1 let Aγ be the
quotient of A by the ideal generated by xα, α ∈ γ and yαβ , α ∈ γ. As A/J1 is
reduced, every topologically nilpotent element f of limA/Jn is in J∧

1 = lim J1/Jn.
This means f is an infinite series involving only a countable number of generators.
Hence f dies in A∧

γ = limAγ/JnAγ for some γ. Note that A∧ → A∧
γ is continuous

and open by Lemma 87.4.5. If the topology on A∧ was I-adic for some finitely
generated ideal I ⊂ A∧, then I would go to zero in some A∧

γ . This would mean
that A∧

γ is discrete, which is not the case as there is a surjective continuous and
open (by Lemma 87.4.5) map A∧

γ → k[[t]] given by xα 7→ t, yαβ 7→ 1 for γ = α or
γ ∈ α.

Before we prove (1) we first prove the following: If I ⊂ A∧ is a finitely generated
ideal whose closure Ī is open, then I = Ī. Since V (J2

n) = T there exists an m
such that J2

n ⊃ Jm. Thus, we may assume that J2
n ⊃ Jn+1 for all n by passing to

a subsequence. Set J∧
n = limk≥n Jn/Jk ⊂ A∧. Since the closure Ī =

⋂
(I + J∧

n )
(Lemma 87.4.2) is open we see that there exists an m such that I + J∧

n ⊃ J∧
m for

all n ≥ m. Fix such an m. We have

J∧
n−1I + J∧

n+1 ⊃ J∧
n−1(I + J∧

n+1) ⊃ J∧
n−1J

∧
m

for all n ≥ m + 1. Namely, the first inclusion is trivial and the second was shown
above. Because Jn−1Jm ⊃ J2

n−1 ⊃ Jn these inclusions show that the image of Jn in
A∧ is contained in the ideal J∧

n−1I + J∧
n+1. Because this ideal is open we conclude

that
J∧
n−1I + J∧

n+1 ⊃ J∧
n .

Say I = (g1, . . . , gt). Pick f ∈ J∧
m+1. Using the last displayed inclusion, valid for

all n ≥ m+ 1, we can write by induction on c ≥ 0

f =
∑

fi,cgi mod J∧
m+1+c

with fi,c ∈ J∧
m and fi,c ≡ fi,c−1 mod J∧

m+c. It follows that IJ∧
m ⊃ J∧

m+1. Combined
with I + J∧

m+1 ⊃ J∧
m we conclude that I is open.

Proof of (1). Assume T = V (f1, f2, f3, . . .). Let Im ⊂ A∧ be the ideal generated by
f1, . . . , fm. We distinguish two cases.

Case I: For some m the closure of Im is open. Then Im is open by the result of the
previous paragraph. For any n we have (Jn)2 ⊃ Jn+1 by design, so the closure of
(J∧
n )2 contains J∧

n+1 and thus is open. Taking n large, it follows that the closure
of the product of any two open ideals in A∧ is open. Let us prove Ikm is open for
k ≥ 1 by induction on k. The case k = 1 is our hypothesis on m in Case I. For
k > 1, suppose Ik−1

m is open. Then Ikm = Ik−1
m ·Im is the product of two open ideals

and hence has open closure. But then since Ikm is finitely generated it follows that
Ikm is open by the previous paragraph (applied to I = Ikm), so we can continue the
induction on k. As each element of Im is topologically nilpotent, we conclude that
Im is an ideal of definition which proves that A∧ is adic with a finitely generated
ideal of definition, i.e., X/T is adic*.
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Case II. For all m the closure Īm of Im is not open. Then the topology on A∧/Īm
is not discrete. This means we can pick ϕ(m) ≥ m such that

Im(Jϕ(m) → A/(f1, . . . , fm)) ̸= Im(Jϕ(m)+1 → A/(f1, . . . , fm))

To see this we have used that A∧/(Īm + J∧
n ) = A/((f1, . . . , fm) + Jn). Choose

exponents ei > 0 such that feii ∈ Jϕ(m)+1 for 0 < m < i. Let J = (fe1
1 , fe2

2 , fe3
3 , . . .).

Then V (J) = T . We claim that J ̸⊃ Jn for all n which is a contradiction proving
Case II does not occur. Namely, the image of J in A/(f1, . . . , fm) is contained in
the image of Jϕ(m)+1 which is properly contained in the image of Jm. □

87.15. Fibre products

0AJ0 Obligatory section about fibre products of formal algebraic spaces.

Lemma 87.15.1.0AJ1 Let S be a scheme. Let {Xi → X}i∈I be a family of maps of
sheaves on (Sch/S)fppf . Assume (a) Xi is a formal algebraic space over S, (b)
Xi → X is representable by algebraic spaces and étale, and (c)

∐
Xi → X is a

surjection of sheaves. Then X is a formal algebraic space over S.

Proof. For each i pick {Xij → Xi}j∈Ji as in Definition 87.11.1. Then {Xij →
X}i∈I,j∈Ji is a family as in Definition 87.11.1 for X. □

Lemma 87.15.2.0AJ2 Let S be a scheme. Let X,Y be formal algebraic spaces over
S and let Z be a sheaf whose diagonal is representable by algebraic spaces. Let
X → Z and Y → Z be maps of sheaves. Then X ×Z Y is a formal algebraic space.

Proof. Choose {Xi → X} and {Yj → Y } as in Definition 87.11.1. Then {Xi ×Z
Yj → X ×Z Y } is a family of maps which are representable by algebraic spaces and
étale. Thus Lemma 87.15.1 tells us it suffices to show that X ×Z Y is a formal
algebraic space when X and Y are affine formal algebraic spaces.

Assume X and Y are affine formal algebraic spaces. Write X = colimXλ and
Y = colimYµ as in Definition 87.9.1. Then X ×Z Y = colimXλ ×Z Yµ. Each
Xλ ×Z Yµ is an algebraic space. For λ ≤ λ′ and µ ≤ µ′ the morphism

Xλ ×Z Yµ → Xλ ×Z Yµ′ → Xλ′ ×Z Yµ′

is a thickening as a composition of base changes of thickenings. Thus we conclude
by applying Lemma 87.13.1. □

Lemma 87.15.3.0AJ3 Let S be a scheme. The category of formal algebraic spaces over
S has fibre products.

Proof. Special case of Lemma 87.15.2 because formal algebraic spaces have repre-
sentable diagonals, see Lemma 87.11.2. □

Lemma 87.15.4.0CB9 Let S be a scheme. Let X → Z and Y → Z be morphisms of
formal algebraic spaces over S. Then (X ×Z Y )red = (Xred ×Zred Yred)red.

Proof. This follows from the universal property of the reduction in Lemma 87.12.1.
□

We have already proved the following lemma (without knowing that fibre products
exist).

https://stacks.math.columbia.edu/tag/0AJ1
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Lemma 87.15.5.0AN2 Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. The diagonal morphism ∆ : X → X ×Y X is repre-
sentable (by schemes), a monomorphism, locally quasi-finite, locally of finite type,
and separated.

Proof. Let T be a scheme and let T → X ×Y X be a morphism. Then

T ×(X×YX) X = T ×(X×SX) X

Hence the result follows immediately from Lemma 87.11.2. □

87.16. Separation axioms for formal algebraic spaces

0AJ4 This section is about “absolute” separation conditions on formal algebraic spaces.
We will discuss separation conditions for morphisms of formal algebraic spaces later.

Lemma 87.16.1.0AJ5 Let S be a scheme. Let X be a formal algebraic space over S.
The following are equivalent

(1) the reduction of X (Lemma 87.12.1) is a quasi-separated algebraic space,
(2) for U → X, V → X with U , V quasi-compact schemes the fibre product

U ×X V is quasi-compact,
(3) for U → X, V → X with U , V affine the fibre product U ×X V is quasi-

compact.

Proof. Observe that U ×X V is a scheme by Lemma 87.11.2. Let Ured, Vred, Xred

be the reduction of U, V,X. Then

Ured ×Xred Vred = Ured ×X Vred → U ×X V

is a thickening of schemes. From this the equivalence of (1) and (2) is clear, keeping
in mind the analogous lemma for algebraic spaces, see Properties of Spaces, Lemma
66.3.3. We omit the proof of the equivalence of (2) and (3). □

Lemma 87.16.2.0AJ6 Let S be a scheme. Let X be a formal algebraic space over S.
The following are equivalent

(1) the reduction of X (Lemma 87.12.1) is a separated algebraic space,
(2) for U → X, V → X with U , V affine the fibre product U ×X V is affine

and
O(U)⊗Z O(V ) −→ O(U ×X V )

is surjective.

Proof. If (2) holds, then Xred is a separated algebraic space by applying Properties
of Spaces, Lemma 66.3.3 to morphisms U → Xred and V → Xred with U, V affine
and using that U ×Xred V = U ×X V .

Assume (1). Let U → X and V → X be as in (2). Observe that U ×X V is a
scheme by Lemma 87.11.2. Let Ured, Vred, Xred be the reduction of U, V,X. Then

Ured ×Xred Vred = Ured ×X Vred → U ×X V

is a thickening of schemes. It follows that (U ×X V )red = (Ured ×Xred Vred)red. In
particular, we see that (U ×X V )red is an affine scheme and that

O(U)⊗Z O(V ) −→ O((U ×X V )red)

https://stacks.math.columbia.edu/tag/0AN2
https://stacks.math.columbia.edu/tag/0AJ5
https://stacks.math.columbia.edu/tag/0AJ6
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is surjective, see Properties of Spaces, Lemma 66.3.3. Then U ×X V is affine by
Limits of Spaces, Proposition 70.15.2. On the other hand, the morphism U×X V →
U × V of affine schemes is the composition

U ×X V = X ×(X×SX) (U ×S V )→ U ×S V → U × V

The first morphism is a monomorphism and locally of finite type (Lemma 87.11.2).
The second morphism is an immersion (Schemes, Lemma 26.21.9). Hence the com-
position is a monomorphism which is locally of finite type. On the other hand,
the composition is integral as the map on underlying reduced affine schemes is
a closed immersion by the above and hence universally closed (use Morphisms,
Lemma 29.44.7). Thus the ring map

O(U)⊗Z O(V ) −→ O(U ×X V )

is an epimorphism which is integral of finite type hence finite hence surjective (use
Morphisms, Lemma 29.44.4 and Algebra, Lemma 10.107.6). □

Definition 87.16.3.0AJ7 Let S be a scheme. Let X be a formal algebraic space over S.
We say

(1) X is quasi-separated if the equivalent conditions of Lemma 87.16.1 are
satisfied.

(2) X is separated if the equivalent conditions of Lemma 87.16.2 are satisfied.

The following lemma implies in particular that the completed tensor product of
weakly admissible topological rings is a weakly admissible topological ring.

Lemma 87.16.4.0AN3 Let S be a scheme. Let X → Z and Y → Z be morphisms of
formal algebraic spaces over S. Assume Z separated.

(1) If X and Y are affine formal algebraic spaces, then so is X ×Z Y .
(2) IfX and Y are McQuillan affine formal algebraic spaces, then so isX×ZY .
(3) If X, Y , and Z are McQuillan affine formal algebraic spaces corresponding

to the weakly admissible topological S-algebras A, B, and C, then X×ZY
corresponds to A⊗̂CB.

Proof. Write X = colimXλ and Y = colimYµ as in Definition 87.9.1. Then X ×Z
Y = colimXλ×ZYµ. Since Z is separated the fibre products are affine, hence we see
that (1) holds. Assume X and Y corresponds to the weakly admissible topological
S-algebras A and B and Xλ = Spec(A/Iλ) and Yµ = Spec(B/Jµ). Then

Xλ ×Z Yµ → Xλ × Yµ → Spec(A⊗B)

is a closed immersion. Thus one of the conditions of Lemma 87.9.6 holds and we
conclude that X ×Z Y is McQuillan. If also Z is McQuillan corresponding to C,
then

Xλ ×Z Yµ = Spec(A/Iλ ⊗C B/Jµ)
hence we see that the weakly admissible topological ring corresponding to X ×Z Y
is the completed tensor product (see Definition 87.4.7). □

Lemma 87.16.5.0APX Let S be a scheme. Let X be a formal algebraic space over S.
Let U → X be a morphism where U is a separated algebraic space over S. Then
U → X is separated.

https://stacks.math.columbia.edu/tag/0AJ7
https://stacks.math.columbia.edu/tag/0AN3
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Proof. The statement makes sense because U → X is representable by algebraic
spaces (Lemma 87.11.3). Let T be a scheme and T → X a morphism. We have to
show that U ×X T → T is separated. Since U ×X T → U ×S T is a monomorphism,
it suffices to show that U ×S T → T is separated. As this is the base change
of U → S this follows. We used in the argument above: Morphisms of Spaces,
Lemmas 67.4.4, 67.4.8, 67.10.3, and 67.4.11. □

87.17. Quasi-compact formal algebraic spaces

0AJ8 Here is the characterization of quasi-compact formal algebraic spaces.

Lemma 87.17.1.0AJ9 Let S be a scheme. Let X be a formal algebraic space over S.
The following are equivalent

(1) the reduction of X (Lemma 87.12.1) is a quasi-compact algebraic space,
(2) we can find {Xi → X}i∈I as in Definition 87.11.1 with I finite,
(3) there exists a morphism Y → X representable by algebraic spaces which

is étale and surjective and where Y is an affine formal algebraic space.

Proof. Omitted. □

Definition 87.17.2.0AJA Let S be a scheme. Let X be a formal algebraic space over
S. We say X is quasi-compact if the equivalent conditions of Lemma 87.17.1 are
satisfied.

Lemma 87.17.3.0AJB Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. The following are equivalent

(1) the induced map fred : Xred → Yred between reductions (Lemma 87.12.1)
is a quasi-compact morphism of algebraic spaces,

(2) for every quasi-compact scheme T and morphism T → Y the fibre product
X ×Y T is a quasi-compact formal algebraic space,

(3) for every affine scheme T and morphism T → Y the fibre product X×Y T
is a quasi-compact formal algebraic space, and

(4) there exists a covering {Yj → Y } as in Definition 87.11.1 such that each
X ×Y Yj is a quasi-compact formal algebraic space.

Proof. Omitted. □

Definition 87.17.4.0AJC Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. We say f is quasi-compact if the equivalent conditions of
Lemma 87.17.3 are satisfied.

This agrees with the already existing notion when the morphism is representable
by algebraic spaces (and in particular when it is representable).

Lemma 87.17.5.0AM2 Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S which is representable by algebraic spaces. Then f is quasi-
compact in the sense of Definition 87.17.4 if and only if f is quasi-compact in the
sense of Bootstrap, Definition 80.4.1.

Proof. This is immediate from the definitions and Lemma 87.17.3. □

https://stacks.math.columbia.edu/tag/0AJ9
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87.18. Quasi-compact and quasi-separated formal algebraic spaces

0AJD The following result is due to Yasuda, see [Yas09, Proposition 3.32].
Lemma 87.18.1.0AJE [Yas09, Proposition

3.32]
Let S be a scheme. Let X be a quasi-compact and quasi-separated

formal algebraic space over S. Then X = colimXλ for a system of algebraic spaces
(Xλ, fλµ) over a directed set Λ where each fλµ : Xλ → Xµ is a thickening.
Proof. By Lemma 87.17.1 we may choose an affine formal algebraic space Y and
a representable surjective étale morphism Y → X. Write Y = colimYλ as in
Definition 87.9.1.
Pick λ ∈ Λ. Then Yλ×X Y is a scheme by Lemma 87.9.11. The reduction (Lemma
87.12.1) of Yλ ×X Y is equal to the reduction of Yred ×Xred Yred which is quasi-
compact as X is quasi-separated and Yred is affine. Therefore Yλ ×X Y is a quasi-
compact scheme. Hence there exists a µ ≥ λ such that pr2 : Yλ ×X Y → Y
factors through Yµ, see Lemma 87.9.4. Let Zλ be the scheme theoretic image of
the morphism pr2 : Yλ ×X Y → Yµ. This is independent of the choice of µ and
we can and will think of Zλ ⊂ Y as the scheme theoretic image of the morphism
pr2 : Yλ×X Y → Y . Observe that Zλ is also equal to the scheme theoretic image of
the morphism pr1 : Y ×X Yλ → Y since this is isomorphic to the morphism used to
define Zλ. We claim that Zλ×X Y = Y ×X Zλ as subfunctors of Y ×X Y . Namely,
since Y → X is étale we see that Zλ ×X Y is the scheme theoretic image of the
morphism

pr13 = pr1 × idY : Y ×X Yλ ×X Y −→ Y ×X Y

by Morphisms of Spaces, Lemma 67.16.3. By the same token, Y ×X Zλ is the
scheme theoretic image of the morphism

pr13 = idY × pr2 : Y ×X Yλ ×X Y −→ Y ×X Y

The claim follows. Then Rλ = Zλ ×X Y = Y ×X Zλ together with the morphism
Rλ → Zλ ×S Zλ defines an étale equivalence relation. In this way we obtain an
algebraic space Xλ = Zλ/Rλ. By construction the diagram

Zλ //

��

Y

��
Xλ

// X

is cartesian (because X is the coequalizer of the two projections R = Y ×X Y → Y ,
because Zλ ⊂ Y is R-invariant, and because Rλ is the restriction of R to Zλ). Hence
Xλ → X is representable and a closed immersion, see Spaces, Lemma 65.11.5. On
the other hand, since Yλ ⊂ Zλ we see that (Xλ)red = Xred, in other words, Xλ → X
is a thickening. Finally, we claim that

X = colimXλ

We have Y ×X Xλ = Zλ ⊃ Yλ. Every morphism T → X where T is a scheme over
S lifts étale locally to a morphism into Y which lifts étale locally into a morphism
into some Yλ. Hence T → X lifts étale locally on T to a morphism into Xλ. This
finishes the proof. □

Remark 87.18.2.0AJF In this remark we translate the statement and proof of Lemma
87.18.1 into the language of formal schemes à la EGA. Looking at Remark 87.13.4
we see that the lemma can be translated as follows

https://stacks.math.columbia.edu/tag/0AJE
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(*) Every quasi-compact and quasi-separated formal scheme has a fundamen-
tal system of ideals of definition.

To prove this we first use the induction principle (reformulated for quasi-compact
and quasi-separated formal schemes) of Cohomology of Schemes, Lemma 30.4.1 to
reduce to the following situation: X = U ∪V with U, V open formal subschemes,
with V affine, and the result is true for U, V, and U∩V. Pick any ideals of definition
I ⊂ OU and J ⊂ OV. By our assumption that we have a fundamental system of
ideals of definition on U and V and because U ∩ V is quasi-compact, we can find
ideals of definition I ′ ⊂ I and J ′ ⊂ J such that

I ′|U∩V ⊂ J |U∩V and J ′|U∩V ⊂ I|U∩V

Let U → U ′ → U and V → V ′ → V be the closed immersions determined by the
ideals of definition I ′ ⊂ I ⊂ OU and J ′ ⊂ J ⊂ OV. Let U ∩ V denote the open
subscheme of V whose underlying topological space is that of U∩V. By our choice
of I ′ there is a factorization U ∩ V → U ′. We define similarly U ∩V which factors
through V ′. Then we consider

ZU = scheme theoretic image of U ⨿ (U ∩ V ) −→ U ′

and
ZV = scheme theoretic image of (U ∩V)⨿ V −→ V ′

Since taking scheme theoretic images of quasi-compact morphisms commutes with
restriction to opens (Morphisms, Lemma 29.6.3) we see that ZU ∩ V = U ∩ ZV .
Thus ZU and ZV glue to a scheme Z which comes equipped with a morphism
Z → X. Analogous to the discussion in Remark 87.13.3 we see that Z corresponds
to a weak ideal of definition IZ ⊂ OX. Note that ZU ⊂ U ′ and that ZV ⊂ V ′. Thus
the collection of all IZ constructed in this manner forms a fundamental system of
weak ideals of definition. Hence a subfamily gives a fundamental system of ideals
of definition, see Remark 87.13.4.

Lemma 87.18.3.0DE8 Let S be a scheme. Let X be a formal algebraic space over S.
Then X is an affine formal algebraic space if and only if its reduction Xred (Lemma
87.12.1) is affine.

Proof. By Lemmas 87.16.1 and 87.17.1 and Definitions 87.16.3 and 87.17.2 we see
that X is quasi-compact and quasi-separated. By Yasuda’s lemma (Lemma 87.18.1)
we can write X = colimXλ as a filtered colimit of thickenings of algebraic spaces.
However, each Xλ is affine by Limits of Spaces, Lemma 70.15.3 because (Xλ)red =
Xred. Hence X is an affine formal algebraic space by definition. □

87.19. Morphisms representable by algebraic spaces

0AJG Let f : X → Y be a morphism of formal algebraic spaces which is representable
by algebraic spaces. For these types of morphisms we have a lot of theory at our
disposal, thanks to the work done in the chapters on algebraic spaces.

Lemma 87.19.1.0APY The composition of morphisms representable by algebraic spaces
is representable by algebraic spaces. The same holds for representable (by schemes).

Proof. See Bootstrap, Lemma 80.3.8. □

Lemma 87.19.2.0APZ A base change of a morphism representable by algebraic spaces is
representable by algebraic spaces. The same holds for representable (by schemes).
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Proof. See Bootstrap, Lemma 80.3.3. □

Lemma 87.19.3.0AQ0 Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of formal algebraic spaces over S. If g ◦ f : X → Z is representable by algebraic
spaces, then f : X → Y is representable by algebraic spaces.

Proof. Note that the diagonal of Y → Z is representable by Lemma 87.15.5. Thus
X → Y is representable by algebraic spaces by Bootstrap, Lemma 80.3.10. □

The property of being representable by algebraic spaces is local on the source and
the target.

Lemma 87.19.4.0AN4 Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. The following are equivalent:

(1) the morphism f is representable by algebraic spaces,
(2) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are formal algebraic spaces, the vertical arrows are repre-
sentable by algebraic spaces, U → X is surjective étale, and U → V is
representable by algebraic spaces,

(3) for any commutative diagram

U

��

// V

��
X // Y

where U , V are formal algebraic spaces and the vertical arrows are rep-
resentable by algebraic spaces, the morphism U → V is representable by
algebraic spaces,

(4) there exists a covering {Yj → Y } as in Definition 87.11.1 and for each j a
covering {Xji → Yj ×Y X} as in Definition 87.11.1 such that Xji → Yj is
representable by algebraic spaces for each j and i,

(5) there exist a covering {Xi → X} as in Definition 87.11.1 and for each
i a factorization Xi → Yi → Y where Yi is an affine formal algebraic
space, Yi → Y is representable by algebraic spaces, such that Xi → Yi is
representable by algebraic spaces, and

(6) add more here.

Proof. It is clear that (1) implies (2) because we can take U = X and V = Y .
Conversely, (2) implies (1) by Bootstrap, Lemma 80.11.4 applied to U → X → Y .

Assume (1) is true and consider a diagram as in (3). Then U → Y is representable
by algebraic spaces (as the composition U → X → Y , see Bootstrap, Lemma
80.3.8) and factors through V . Thus U → V is representable by algebraic spaces
by Lemma 87.19.3.

It is clear that (3) implies (2). Thus now (1) – (3) are equivalent.
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Observe that the condition in (4) makes sense as the fibre product Yj ×Y X is a
formal algebraic space by Lemma 87.15.3. It is clear that (4) implies (5).
Assume Xi → Yi → Y as in (5). Then we set V =

∐
Yi and U =

∐
Xi to see that

(5) implies (2).
Finally, assume (1) – (3) are true. Thus we can choose any covering {Yj → Y } as
in Definition 87.11.1 and for each j any covering {Xji → Yj ×Y X} as in Definition
87.11.1. Then Xij → Yj is representable by algebraic spaces by (3) and we see that
(4) is true. This concludes the proof. □

Lemma 87.19.5.0AJH Let S be a scheme. Let Y be an affine formal algebraic space over
S. Let f : X → Y be a map of sheaves on (Sch/S)fppf which is representable by
algebraic spaces. Then X is a formal algebraic space.

Proof. Write Y = colimYλ as in Definition 87.9.1. For each λ the fibre product
X ×Y Yλ is an algebraic space. Hence X = colimX ×Y Yλ is a formal algebraic
space by Lemma 87.13.1. □

Lemma 87.19.6.0AJI Let S be a scheme. Let Y be a formal algebraic space over S. Let
f : X → Y be a map of sheaves on (Sch/S)fppf which is representable by algebraic
spaces. Then X is a formal algebraic space.

Proof. Let {Yi → Y } be as in Definition 87.11.1. Then X×Y Yi → X is a family of
morphisms representable by algebraic spaces, étale, and jointly surjective. Thus it
suffices to show that X ×Y Yi is a formal algebraic space, see Lemma 87.15.1. This
follows from Lemma 87.19.5. □

Lemma 87.19.7.0AKN Let S be a scheme. Let f : X → Y be a morphism of affine formal
algebraic spaces which is representable by algebraic spaces. Then f is representable
(by schemes) and affine.

Proof. We will show that f is affine; it will then follow that f is representable
and affine by Morphisms of Spaces, Lemma 67.20.3. Write Y = colim Yµ and
X = colimXλ as in Definition 87.9.1. Let T → Y be a morphism where T is
a scheme over S. We have to show that X ×Y T → T is affine, see Bootstrap,
Definition 80.4.1. To do this we may assume that T is affine and we have to prove
that X ×Y T is affine. In this case T → Y factors through Yµ → Y for some µ,
see Lemma 87.9.4. Since f is quasi-compact we see that X ×Y T is quasi-compact
(Lemma 87.17.3). Hence X ×Y T → X factors through Xλ for some λ. Similarly
Xλ → Y factors through Yµ after increasing µ. Then X ×Y T = Xλ ×Yµ T . We
conclude as fibre products of affine schemes are affine. □

Lemma 87.19.8.0AN5 Let S be a scheme. Let φ : A→ B be a continuous map of weakly
admissible topological rings over S. The following are equivalent

(1) Spf(φ) : Spf(B)→ Spf(A) is representable by algebraic spaces,
(2) Spf(φ) : Spf(B)→ Spf(A) is representable (by schemes),
(3) φ is taut, see Definition 87.5.1.

Proof. Parts (1) and (2) are equivalent by Lemma 87.19.7.
Assume the equivalent conditions (1) and (2) hold. If I ⊂ A is a weak ideal of
definition, then Spec(A/I) → Spf(A) is representable and a thickening (this is
clear from the construction of the formal spectrum but it also follows from Lemma
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87.9.6). Then Spec(A/I)×Spf(A) Spf(B)→ Spf(B) is representable and a thickening
as a base change. Hence by Lemma 87.9.6 there is a weak ideal of definition
J(I) ⊂ B such that Spec(A/I) ×Spf(A) Spf(B) = Spec(B/J(I)) as subfunctors of
Spf(B). We obtain a cartesian diagram

Spec(B/J(I))

��

// Spec(A/I)

��
Spf(B) // Spf(A)

By Lemma 87.16.4 we see that B/J(I) = B⊗̂AA/I. It follows that J(I) is the
closure of the ideal φ(I)B, see Lemma 87.4.11. Since Spf(A) = colim Spec(A/I)
with I as above, we find that Spf(B) = colim Spec(B/J(I)). Thus the ideals J(I)
form a fundamental system of weak ideals of definition (see Lemma 87.9.6). Hence
(3) holds.

Assume (3) holds. We are essentially just going to reverse the arguments given
in the previous paragraph. Let I ⊂ A be a weak ideal of definition. By Lemma
87.16.4 we get a cartesian diagram

Spf(B⊗̂AA/I)

��

// Spec(A/I)

��
Spf(B) // Spf(A)

If J(I) is the closure of IB, then J(I) is open in B by tautness of φ. Hence
if J is open in B and J ⊂ J(B), then B/J ⊗A A/I = B/(IB + J) = B/J(I)
because J(I) =

⋂
J⊂B open(IB + J) by Lemma 87.4.2. Hence the limit defin-

ing the completed tensor product collapses to give B⊗̂AA/I = B/J(I). Thus
Spf(B⊗̂AA/I) = Spec(B/J(I)). This proves that Spf(B) ×Spf(A) Spec(A/I) is
representable for every weak ideal of definition I ⊂ A. Since every morphism
T → Spf(A) with T quasi-compact factors through Spec(A/I) for some weak ideal
of definition I (Lemma 87.9.4) we conclude that Spf(φ) is representable, i.e., (2)
holds. This finishes the proof. □

Lemma 87.19.9.0AKP Let S be a scheme. Let Y be an affine formal algebraic space. Let
f : X → Y be a map of sheaves on (Sch/S)fppf which is representable and affine.
Then

(1) X is an affine formal algebraic space,
(2) if Y is countably indexed, then X is countably indexed,
(3) if Y is countably indexed and classical, then X is countably indexed and

classical,
(4) if Y is weakly adic, then X is weakly adic,
(5) if Y is adic*, then X is adic*, and
(6) if Y is Noetherian and f is (locally) of finite type, then X is Noetherian.

Proof. Proof of (1). Write Y = colimλ∈Λ Yλ as in Definition 87.9.1. Since f is
representable and affine, the fibre products Xλ = Yλ ×Y X are affine. And X =
colimYλ ×Y X. Thus X is an affine formal algebraic space.
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Proof of (2). If Y is countably indexed, then in the argument above we may assume
Λ is countable. Then we immediately see that X is countably indexed too.
Proof of (3), (4), and (5). In each of these cases the assumptions imply that Y is
a countably indexed affine formal algebraic space (Lemma 87.10.3) and hence X
is too by (2). Thus we may write X = Spf(A) and Y = Spf(B) for some weakly
admissible topological S-algebras A and B, see Lemma 87.10.4. By Lemma 87.9.10
the morphism f corresponds to a continuous S-algebra homomorphism φ : B → A.
We see from Lemma 87.19.8 that φ is taut. We conclude that (3) follows from
Lemma 87.5.9, (4) follows from Lemma 87.7.5, and (5) follows from Lemma 87.6.5.
Proof of (6). Combining (3) with Lemma 87.10.3 we see that X is adic*. Thus
we can use the criterion of Lemma 87.10.5. First, it tells us the affine schemes
Yλ are Noetherian. Then Xλ → Yλ is of finite type, hence Xλ is Noetherian too
(Morphisms, Lemma 29.15.6). Then the criterion tells us X is Noetherian and the
proof is complete. □

Lemma 87.19.10.0AKQ Let S be a scheme. Let f : X → Y be a morphism of affine
formal algebraic spaces which is representable by algebraic spaces. Then

(1) if Y is countably indexed, then X is countably indexed,
(2) if Y is countably indexed and classical, then X is countably indexed and

classical,
(3) if Y is weakly adic, then X is weakly adic,
(4) if Y is adic*, then X is adic*, and
(5) if Y is Noetherian and f is (locally) of finite type, then X is Noetherian.

Proof. Combine Lemmas 87.19.7 and 87.19.9. □

Example 87.19.11.0AN6 Let B be a weakly admissible topological ring. Let B → A be
a ring map (no topology). Then we can consider

A∧ = limA/JA

where the limit is over all weak ideals of definition J of B. Then A∧ (endowed with
the limit topology) is a complete linearly topologized ring. The (open) kernel I of
the surjection A∧ → A/JA is the closure of JA∧, see Lemma 87.4.2. By Lemma
87.4.10 we see that I consists of topologically nilpotent elements. Thus I is a weak
ideal of definition of A∧ and we conclude A∧ is a weakly admissible topological
ring. Thus φ : B → A∧ is taut map of weakly admissible topological rings and

Spf(A∧) −→ Spf(B)
is a special case of the phenomenon studied in Lemma 87.19.8.

Remark 87.19.12 (Warning).0AN7 The discussion in Lemmas 87.19.8, 87.19.9, and
87.19.10 is sharp in the following two senses:

(1) If A and B are weakly admissible rings and φ : A → B is a continuous
map, then Spf(φ) : Spf(B)→ Spf(A) is in general not representable.

(2) If f : Y → X is a representable morphism of affine formal algebraic spaces
and X = Spf(A) is McQuillan, then it does not follow that Y is McQuillan.

An example for (1) is to take A = k a field (with discrete topology) and B = k[[t]]
with the t-adic topology. An example for (2) is given in Examples, Section 110.74.

The warning above notwithstanding, we do have the following result.
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Lemma 87.19.13.0AN8 Let S be a scheme. Let Y be a McQuillan affine formal algebraic
space over S, i.e., Y = Spf(B) for some weakly admissible topological S-algebra B.
Then there is an equivalence of categories between

(1) the category of morphisms f : X → Y of affine formal algebraic spaces
which are representable by algebraic spaces and étale, and

(2) the category of topological B-algebras of the form A∧ where A is an étale
B-algebra and A∧ = limA/JA with J ⊂ B running over the weak ideals
of definition of B.

The equivalence is given by sending A∧ to X = Spf(A∧). In particular, any X as
in (1) is McQuillan.

Proof. Let A be an étale B-algebra. Then B/J → A/JA is étale for every open
ideal J ⊂ B. Hence the morphism Spf(A∧) → Y is representable and étale. The
functor Spf is fully faithful by Lemma 87.9.10. To finish the proof we will show in
the next paragraph that any X → Y as in (1) is in the essential image.

Choose a weak ideal of definition J0 ⊂ B. Set Y0 = Spec(B/J0) and X0 = Y0×Y X.
Then X0 → Y0 is an étale morphism of affine schemes (see Lemma 87.19.7). Say
X0 = Spec(A0). By Algebra, Lemma 10.143.10 we can find an étale algebra map
B → A such that A0 ∼= A/J0A. Consider an ideal of definition J ⊂ J0. As above
we may write Spec(B/J)×Y X = Spec(Ā) for some étale ring map B/J → Ā. Then
both B/J → Ā and B/J → A/JA are étale ring maps lifting the étale ring map
B/J0 → A0. By More on Algebra, Lemma 15.11.2 there is a unique B/J-algebra
isomorphism φJ : A/JA→ Ā lifting the identification modulo J0. Since the maps
φJ are unique they are compatible for varying J . Thus

X = colim Spec(B/J)×Y X = colim Spec(A/JA) = Spf(A)

and we see that the lemma holds. □

Lemma 87.19.14.0AN9 With notation and assumptions as in Lemma 87.19.13 let f :
X → Y correspond to B → A∧. The following are equivalent

(1) f : X → Y is surjective,
(2) B → A is faithfully flat,
(3) for every weak ideal of definition J ⊂ B the ring map B/J → A/JA is

faithfully flat, and
(4) for some weak ideal of definition J ⊂ B the ring map B/J → A/JA is

faithfully flat.

Proof. Let J ⊂ B be a weak ideal of definition. As every element of J is topo-
logically nilpotent, we see that every element of 1 + J is a unit. It follows that
J is contained in the Jacobson radical of B (Algebra, Lemma 10.19.1). Hence
a flat ring map B → A is faithfully flat if and only if B/J → A/JA is faith-
fully flat (Algebra, Lemma 10.39.16). In this way we see that (2) – (4) are
equivalent. If (1) holds, then for every weak ideal of definition J ⊂ B the mor-
phism Spec(A/JA) = Spec(B/J) ×Y X → Spec(B/J) is surjective which implies
(3). Conversely, assume (3). A morphism T → Y with T quasi-compact factors
through Spec(B/J) for some ideal of definition J of B (Lemma 87.9.4). Hence
X ×Y T = Spec(A/JA) ×Spec(B/J) T → T is surjective as a base change of the
surjective morphism Spec(A/JA)→ Spec(B/J). Thus (1) holds. □

https://stacks.math.columbia.edu/tag/0AN8
https://stacks.math.columbia.edu/tag/0AN9


87.20. TYPES OF FORMAL ALGEBRAIC SPACES 6326

87.20. Types of formal algebraic spaces

0AKR In this section we define “locally Noetherian”, “locally adic*”, “locally weakly adic”,
“locally countably indexed and classical”, and “locally countably indexed” formal
algebraic spaces. The types “locally adic”, “locally classical”, and “locally McQuil-
lan” are missing as we do not know how to prove the analogue of the following
lemmas for those cases (it would suffice to prove the analogue of these lemmas for
étale coverings between affine formal algebraic spaces).

Lemma 87.20.1.0AKS Let S be a scheme. Let X → Y be a morphism of affine formal
algebraic spaces which is representable by algebraic spaces, surjective, and flat.
Then X is countably indexed if and only if Y is countably indexed.

Proof. Assume X is countably indexed. We write X = colimXn as in Lemma
87.10.1. Write Y = colim Yλ as in Definition 87.9.1. For every n we can pick a λn
such that Xn → Y factors through Yλn , see Lemma 87.9.4. On the other hand, for
every λ the scheme Yλ ×Y X is affine (Lemma 87.19.7) and hence Yλ ×Y X → X
factors through Xn for some n (Lemma 87.9.4). Picture

Yλ ×Y X //

��

Xn
//

��

X

��
Yλ // 66Yλn

// Y

If we can show the dotted arrow exists, then we conclude that Y = colim Yλn and
Y is countably indexed. To do this we pick a µ with µ ≥ λ and µ ≥ λn. Thus both
Yλ → Y and Yλn → Y factor through Yµ → Y . Say Yµ = Spec(Bµ), the closed
subscheme Yλ corresponds to J ⊂ Bµ, and the closed subscheme Yλn corresponds
to J ′ ⊂ Bµ. We are trying to show that J ′ ⊂ J . By the diagram above we know
J ′Aµ ⊂ JAµ where Yµ ×Y X = Spec(Aµ). Since X → Y is surjective and flat the
morphism Yλ ×Y X → Yλ is a faithfully flat morphism of affine schemes, hence
Bµ → Aµ is faithfully flat. Thus J ′ ⊂ J as desired.

Assume Y is countably indexed. Then X is countably indexed by Lemma 87.19.10.
□

Lemma 87.20.2.0GXR Let S be a scheme. Let X → Y be a morphism of affine formal
algebraic spaces which is representable by algebraic spaces, surjective, and flat.
Then X is countably indexed and classical if and only if Y is countably indexed
and classical.

Proof. We have already seen the implication in one direction in Lemma 87.19.10.
For the other direction, note that by Lemma 87.20.1 we may assume both X and
Y are countably indexed. Thus X = Spf(A) and Y = Spf(B) for some weakly
admissible topological S-algebras A and B, see Lemma 87.10.4. By Lemma 87.9.10
the morphism X → Y corresponds to a continuous S-algebra homomorphism φ :
B → A. We see from Lemma 87.19.8 that φ is taut. Let J ⊂ B be an open ideal
and let I ⊂ A be the closure of JA. By Lemmas 87.16.4 and 87.4.11 we see that
Spec(B/J)×Y X = Spec(A/I). Hence B/J → A/I is faithfully flat (since X → Y
is surjective and flat). This means that φ : B → A is as in Section 87.8 (with
the roles of A and B swapped). We conclude that the lemma holds by Lemma
87.8.2. □
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Lemma 87.20.3.0GXS Let S be a scheme. Let X → Y be a morphism of affine formal
algebraic spaces which is representable by algebraic spaces, surjective, and flat.
Then X is weakly adic if and only if Y is weakly adic.

Proof. The proof is exactly the same as the proof of Lemma 87.20.2 except that at
the end we use Lemma 87.8.4. □

Lemma 87.20.4.0AKT Let S be a scheme. Let X → Y be a morphism of affine formal
algebraic spaces which is representable by algebraic spaces, surjective, and flat.
Then X is adic* if and only if Y is adic*.

Proof. The proof is exactly the same as the proof of Lemma 87.20.2 except that at
the end we use Lemma 87.8.5. □

Lemma 87.20.5.0AKW Let S be a scheme. Let X → Y be a morphism of affine formal
algebraic spaces which is representable by algebraic spaces, surjective, flat, and
(locally) of finite type. Then X is Noetherian if and only if Y is Noetherian.

Proof. Observe that a Noetherian affine formal algebraic space is adic*, see Lemma
87.10.3. Thus by Lemma 87.20.4 we may assume that both X and Y are adic*.
We will use the criterion of Lemma 87.10.5 to see that the lemma holds. Namely,
write Y = colimYn as in Lemma 87.10.1. For each n set Xn = Yn×Y X. Then Xn

is an affine scheme (Lemma 87.19.7) and X = colimXn. Each of the morphisms
Xn → Yn is faithfully flat and of finite type. Thus the lemma follows from the fact
that in this situation Xn is Noetherian if and only if Yn is Noetherian, see Algebra,
Lemma 10.164.1 (to go down) and Algebra, Lemma 10.31.1 (to go up). □

Lemma 87.20.6.0AKX Let S be a scheme. Let

P ∈

 countably indexed,
countably indexed and classical,
weakly adic, adic∗, Noetherian


Let X be a formal algebraic space over S. The following are equivalent

(1) if Y is an affine formal algebraic space and f : Y → X is representable by
algebraic spaces and étale, then Y has property P ,

(2) for some {Xi → X}i∈I as in Definition 87.11.1 each Xi has property P .

Proof. It is clear that (1) implies (2). Assume (2) and let Y → X be as in (1). Since
the fibre products Xi ×X Y are formal algebraic spaces (Lemma 87.15.2) we can
pick coverings {Xij → Xi×X Y } as in Definition 87.11.1. Since Y is quasi-compact,
there exist (i1, j1), . . . , (in, jn) such that

Xi1j1 ⨿ . . .⨿Xinjn −→ Y

is surjective and étale. Then Xikjk → Xik is representable by algebraic spaces and
étale hence Xikjk has property P by Lemma 87.19.10. Then Xi1j1 ⨿ . . . ⨿ Xinjn

is an affine formal algebraic space with property P (small detail omitted on finite
disjoint unions of affine formal algebraic spaces). Hence we conclude by applying
one of Lemmas 87.20.1, 87.20.2, 87.20.3, 87.20.4, and 87.20.5. □

The previous lemma clears the way for the following definition.
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Definition 87.20.7.0AKY Let S be a scheme. Let X be a formal algebraic space over
S. We say X is locally countably indexed, locally countably indexed and classical,
locally weakly adic, locally adic*, or locally Noetherian if the equivalent conditions
of Lemma 87.20.6 hold for the corresponding property.

The formal completion of a locally Noetherian algebraic space along a closed subset
is a locally Noetherian formal algebraic space.

Lemma 87.20.8.0AQ1 Let S be a scheme. Let X be an algebraic space over S. Let
T ⊂ |X| be a closed subset. Let X/T be the formal completion of X along T .

(1) If X \ T → X is quasi-compact, then X/T is locally adic*.
(2) If X is locally Noetherian, then X/T is locally Noetherian.

Proof. Choose a surjective étale morphism U → X with U =
∐
Ui a disjoint

union of affine schemes, see Properties of Spaces, Lemma 66.6.1. Let Ti ⊂ Ui be
the inverse image of T . We have X/T ×X Ui = (Ui)/Ti (Lemma 87.14.4). Hence
{(Ui)/Ti → X/T } is a covering as in Definition 87.11.1. Moreover, if X \ T → X is
quasi-compact, so is Ui \Ti → Ui and if X is locally Noetherian, so is Ui. Thus the
lemma follows from the affine case which is Lemma 87.14.6. □

Remark 87.20.9 (Warning).0CKX Suppose X = Spec(A) and T ⊂ X is the zero locus
of a finitely generated ideal I ⊂ A. Let J =

√
I be the radical of I. Then from

the definitions we see that X/T = Spf(A∧) where A∧ = limA/In is the I-adic
completion of A. On the other hand, the map A∧ → limA/Jn from the I-adic
completion to the J-adic completion can fail to be a ring isomorphisms. As an
example let

A =
⋃

n≥1
C[t1/n]

and I = (t). Then J = m is the maximal ideal of the valuation ring A and J2 = J .
Thus the J-adic completion of A is C whereas the I-adic completion is the valuation
ring described in Example 87.13.2 (but in particular it is easy to see that A ⊂ A∧).

Lemma 87.20.10.0GBB Let S be a scheme. Let X → Y and Z → Y be morphisms of
formal algebraic space over S. Then

(1) If X and Z are locally countably indexed, then X×Y Z is locally countably
indexed.

(2) If X and Z are locally countably indexed and classical, then X ×Y Z is
locally countably indexed and classical.

(3) If X and Z are weakly adic, then X ×Y Z is weakly adic.
(4) If X and Z are locally adic*, then X ×Y Z is locally adic*.
(5) If X and Z are locally Noetherian and Xred → Yred is locally of finite

type, then X ×Y Z is locally Noetherian.

Proof. Choose a covering {Yj → Y } as in Definition 87.11.1. For each j choose a
covering {Xji → Yj ×Y X} as in Definition 87.11.1. For each j choose a covering
{Zjk → Yj ×Y Z} as in Definition 87.11.1. Observe that Xji ×Yj Zjk is an affine
formal algebraic space by Lemma 87.16.4. Hence

{Xji ×Yj Zjk → X ×Y Z}

is a covering as in Definition 87.11.1. Thus it suffices to prove (1), (2), (3), and (4)
in case X, Y , and Z are affine formal algebraic spaces.

https://stacks.math.columbia.edu/tag/0AKY
https://stacks.math.columbia.edu/tag/0AQ1
https://stacks.math.columbia.edu/tag/0CKX
https://stacks.math.columbia.edu/tag/0GBB
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Assume X and Z are countably indexed. Say X = colimXn and Z = colimZm as
in Lemma 87.10.1. Write Y = colimλ∈Λ Yλ as in Definition 87.9.1. For each n and
m we can find λn,m ∈ Λ such that Xn → Y and Zm → Y factor through Yλn,m (for
example see Lemma 87.9.4). Pick λ0 ∈ Λ. By induction for t ≥ 1 pick an element
λt ∈ Λ such that λt ≥ λn,m for all 1 ≤ n,m ≤ t and λt ≥ λt−1. Set Y ′ = colimYλt .
Then Y ′ → Y is a monomorphism such that X → Y and Z → Y factor through Y ′.
Hence we may replace Y by Y ′, i.e., we may assume that Y is countably indexed.

Assume X, Y , and Z are countably indexed. By Lemma 87.10.4 we can write
X = Spf(A), Y = Spf(B), Z = Spf(C) for some weakly admissible topological rings
A, B, and C. The morphsms X → Y and Z → Y are given by continuous ring
maps B → A and B → C, see Lemma 87.9.10. By Lemma 87.16.4 we see that
X ×Y Z = Spf(A⊗̂BC) and that A⊗̂BC is a weakly admissible topological ring. In
particular, we see that X ×Y Z is countably indexed by Lemma 87.4.12 part (3).
This proves (1).

Proof of (2). In this case X and Z are countably indexed and hence the arguments
above show that X ×Y Z is the formal spectrum of A⊗̂BC where A and C are
admissible. Then A⊗̂BC is admissible by Lemma 87.4.12 part (2).

Proof of (3). As before we conclude that X ×Y Z is the formal spectrum of A⊗̂BC
where A and C are weakly adic. Then A⊗̂BC is weakly adic by Lemma 87.7.6.

Proof of (4). Arguing as above, this follows from Lemma 87.4.12 part (4).

Proof of (5). To deduce case (5) from Lemma 87.4.12 part (5) we need to show the
hypotheses match. Namely, with notation as in the first parapgrah of the proof,
if Xred → Yred is locally of finite type, then (Xji)red → (Yj)red is locally of finite
type. This follows from Morphisms of Spaces, Lemma 67.23.4 and the fact that in
the commutative diagram

(Xji)red

��

// (Yj)red

��
Xred

// Yred

the vertical morphisms are étale. Namely, we have (Xji)red = Xij ×X Xred and
(Yj)red = Yj×Y Yred by Lemma 87.12.3. Thus as above we reduce to the case where
X, Y , Z are affine formal algebraic spaces, X, Z are Noetherian, and Xred → Yred
is of finite type. Next, in the second paragraph of the proof we replaced Y by Y ′

but by construction Yred = Y ′
red, hence the finite type assumption is preserved by

this replacement. Then we see that X,Y, Z correspond to A,B,C and X ×Y Z to
A⊗̂BC with A, C Noetherian adic. Finally, taking the reduction corresponds to
dividing by the ideal of topologically nilpotent elements (Example 87.12.2) hence
the fact that Xred → Yred is of finite type does indeed mean that B/b→ A/a is of
finite type and the proof is complete. □

Lemma 87.20.11.0GHM Let S be a scheme. Let X be a locally Noetherian formal
algebraic space over S. Then X = colimXn for a system X1 → X2 → X3 → . . . of
finite order thickenings of locally Noetherian algebraic spaces over S where X1 =
Xred and Xn is the nth infinitesimal neighbourhood of X1 in Xm for all m ≥ n.

https://stacks.math.columbia.edu/tag/0GHM


87.21. MORPHISMS AND CONTINUOUS RING MAPS 6330

Proof. We only sketch the proof and omit some of the details. Set X1 = Xred.
Define Xn ⊂ X as the subfunctor defined by the rule: a morphism f : T → X where
T is a scheme factors through Xn if and only if the nth power of the ideal sheaf of
the closed immersion X1×XT → T is zero. Then Xn ⊂ X is a subsheaf as vanishing
of quasi-coherent modules can be checked fppf locally. We claim that Xn → X is
representable by schemes, a closed immersion, and that X = colimXn (as fppf
sheaves). To check this we may work étale locally on X. Hence we may assume
X = Spf(A) is a Noetherian affine formal algebraic space. Then X1 = Spec(A/a)
where a ⊂ A is the ideal of topologically nilpotent elements of the Noetherian adic
topological ring A. Then Xn = Spec(A/an) and we obtain what we want. □

87.21. Morphisms and continuous ring maps

0ANA In this section we denote WAdm the category of weakly admissible topological rings
and continuous ring homomorphisms. We define full subcategories

WAdm ⊃WAdmcount ⊃WAdmcic ⊃WAdmweakly adic ⊃WAdmadic∗ ⊃WAdmNoeth

whose objects are
(1) WAdmcount: those weakly admissible topological rings A which have a

countable fundamental system of open ideals,
(2) WAdmcic: the admissible topological rings A which have a countable fun-

damental system of open ideals,
(3) WAdmweakly adic: the weakly adic topological rings (Section 87.7),
(4) WAdmadic∗: the adic topological rings which have a finitely generated

ideal of definition, and
(5) WAdmNoeth: the adic topological rings which are Noetherian.

Clearly, the formal spectra of these types of rings are the basic building blocks of
locally countably indexed, locally countably indexed and classical, locally weakly
adic, locally adic*, and locally Noetherian formal algebraic spaces.

We briefly review the relationship between morphisms of countably indexed, affine
formal algebraic spaces and morphisms of WAdmcount. Let S be a scheme. Let X
and Y be countably indexed, affine formal algebraic spaces. Write X = Spf(A) and
Y = Spf(B) topological S-algebras A and B in WAdmcount, see Lemma 87.10.4.
By Lemma 87.9.10 there is a 1-to-1 correspondence between morphisms f : X → Y
and continuous maps

φ : B −→ A

of topological S-algebras. The relationship is given by f 7→ f ♯ and φ 7→ Spf(φ).

Let S be a scheme. Let f : X → Y be a morphism of locally countably indexed
formal algebraic spaces. Consider a commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces and U → X and V → Y representable
by algebraic spaces and étale. By Definition 87.20.7 (and hence via Lemma 87.20.6)
we see that U and V are countably indexed affine formal algebraic spaces. By the
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discussion in the previous paragraph we see that U → V is isomorphic to Spf(φ)
for some continuous map

φ : B −→ A

of topological S-algebras in WAdmcount.

Lemma 87.21.1.0ANB Let A ∈ Ob(WAdm). Let A → A′ be a ring map (no topology).
Let (A′)∧ = limI⊂A w.i.d A

′/IA′ be the object of WAdm constructed in Example
87.19.11.

(1) If A is in WAdmcount, so is (A′)∧.
(2) If A is in WAdmcic, so is (A′)∧.
(3) If A is in WAdmweakly adic, so is (A′)∧.
(4) If A is in WAdmadic∗, so is (A′)∧.
(5) If A is in WAdmNoeth and A′ is Noetherian, then (A′)∧ is in WAdmNoeth.

Proof. Recall that A → (A′)∧ is taut, see discussion in Example 87.19.11. Hence
statements (1), (2), (3), and (4) follow from Lemmas 87.5.7, 87.5.9, 87.7.5, and
87.6.5. Finally, assume that A is Noetherian and adic. By (4) we know that (A′)∧

is adic. By Algebra, Lemma 10.97.6 we see that (A′)∧ is Noetherian. Hence (5)
holds. □

Situation 87.21.2.0CBA Let P be a property of morphisms of WAdmcount. Consider
commutative diagrams

(87.21.2.1)0ANC

A // (A′)∧

B //

φ

OO

(B′)∧

φ′

OO

satisfying the following conditions
(1) A and B are objects of WAdmcount,
(2) A→ A′ and B → B′ are étale ring maps,
(3) (A′)∧ = limA′/IA′, resp. (B′)∧ = limB′/JB′ where I ⊂ A, resp. J ⊂ B

runs through the weakly admissible ideals of definition of A, resp. B,
(4) φ : B → A and φ′ : (B′)∧ → (A′)∧ are continuous.

By Lemma 87.21.1 the topological rings (A′)∧ and (B′)∧ are objects of WAdmcount.
We say P is a local property if the following axioms hold:

(1)0AND for any diagram (87.21.2.1) we have P (φ)⇒ P (φ′),
(2)0ANE for any diagram (87.21.2.1) with A→ A′ faithfully flat we have P (φ′)⇒

P (φ),
(3)0ANF if P (B → Ai) for i = 1, . . . , n, then P (B →

∏
i=1,...,nAi).

Axiom (3) makes sense as WAdmcount has finite products.

Lemma 87.21.3.0ANG Let S be a scheme. Let f : X → Y be a morphism of locally
countably indexed formal algebraic spaces over S. Let P be a local property of
morphisms of WAdmcount. The following are equivalent

https://stacks.math.columbia.edu/tag/0ANB
https://stacks.math.columbia.edu/tag/0CBA
https://stacks.math.columbia.edu/tag/0ANG
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(1) for every commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y repre-
sentable by algebraic spaces and étale, the morphism U → V corresponds
to a morphism of WAdmcount with property P ,

(2) there exists a covering {Yj → Y } as in Definition 87.11.1 and for each
j a covering {Xji → Yj ×Y X} as in Definition 87.11.1 such that each
Xji → Yj corresponds to a morphism of WAdmcount with property P ,
and

(3) there exist a covering {Xi → X} as in Definition 87.11.1 and for each i a
factorization Xi → Yi → Y where Yi is an affine formal algebraic space,
Yi → Y is representable by algebraic spaces and étale, and Xi → Yi
corresponds to a morphism of WAdmcount with property P .

Proof. It is clear that (1) implies (2) and that (2) implies (3). Assume {Xi → X}
and Xi → Yi → Y as in (3) and let a diagram as in (1) be given. Since Yi ×Y V is
a formal algebraic space (Lemma 87.15.2) we may pick coverings {Yij → Yi ×Y V }
as in Definition 87.11.1. For each (i, j) we may similarly choose coverings {Xijk →
Yij ×Yi Xi×X U} as in Definition 87.11.1. Since U is quasi-compact we can choose
(i1, j1, k1), . . . , (in, jn, kn) such that

Xi1j1k1 ⨿ . . .⨿Xinjnkn −→ U

is surjective. For s = 1, . . . , n consider the commutative diagram

Xisjsks

xx �� &&
X

��

Xis
oo

��

Xis ×X Uoo

��

Yisjs

xx &&

Xis ×X U

��

// U

��

// X

��
Y Yis
oo Yis ×Y Voo Yis ×Y V // V // Y

Let us say that P holds for a morphism of countably indexed affine formal algebraic
spaces if it holds for the corresponding morphism of WAdmcount. Observe that the
maps Xisjsks → Xis , Yisjs → Yis are given by completions of étale ring maps, see
Lemma 87.19.13. Hence we see that P (Xis → Yis) implies P (Xisjsks → Yisjs) by
axiom (1). Observe that the maps Yisjs → V are given by completions of étale
rings maps (same lemma as before). By axiom (2) applied to the diagram

Xisjsks

��

Xisjsks

��
Yisjs // V

(this is permissible as identities are faithfully flat ring maps) we conclude that
P (Xisjsks → V ) holds. By axiom (3) we find that P (

∐
s=1,...,nXisjsks → V ) holds.
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Since the morphism
∐
Xisjsks → U is surjective by construction, the corresponding

morphism of WAdmcount is the completion of a faithfully flat étale ring map, see
Lemma 87.19.14. One more application of axiom (2) (with B′ = B) implies that
P (U → V ) is true as desired. □

Remark 87.21.4 (Variant for adic-star).0ANH Let P be a property of morphisms of
WAdmadic∗. We say P is a local property if axioms (1), (2), (3) of Situation 87.21.2
hold for morphisms of WAdmadic∗. In exactly the same way we obtain a variant of
Lemma 87.21.3 for morphisms between locally adic* formal algebraic spaces over
S.

Remark 87.21.5 (Variant for Noetherian).0ANI Let P be a property of morphisms of
WAdmNoeth. We say P is a local property if axioms (1), (2), (3), of Situation 87.21.2
hold for morphisms of WAdmNoeth. In exactly the same way we obtain a variant of
Lemma 87.21.3 for morphisms between locally Noetherian formal algebraic spaces
over S.

Situation 87.21.6.0GBC Let P be a local property of morphisms of WAdmcount, see
Situation 87.21.2. We say P is stable under base change if given B → A and
B → C in WAdmcount we have P (B → A) ⇒ P (C → A⊗̂BC). This makes sense
as A⊗̂BC is an object of WAdmcount by Lemma 87.4.12.

Lemma 87.21.7.0GBD Let S be a scheme. Let P be a local property of morphisms of
WAdmcount which is stable under base change. Let f : X → Y and g : Z → Y be
morphisms of locally countably indexed formal algebraic spaces over S. If f satisfies
the equivalent conditions of Lemma 87.21.3 then so does pr2 : X ×Y Z → Z.

Proof. Choose a covering {Yj → Y } as in Definition 87.11.1. For each j choose a
covering {Xji → Yj ×Y X} as in Definition 87.11.1. For each j choose a covering
{Zjk → Yj ×Y Z} as in Definition 87.11.1. Observe that Xji ×Yj Zjk is an affine
formal algebraic space which is countably indexed, see Lemma 87.20.10. Then we
see that

{Xji ×Yj Zjk → X ×Y Z}
is a covering as in Definition 87.11.1. Moreover, the morphismsXji×YjZjk → Z fac-
tor through Zjk. By assumption we know that Xji → Yj corresponds to a morphism
Bj → Aji of WAdmcount having property P . The morphisms Zjk → Yj correspond
to morphisms Bj → Cjk in WAdmcount. Since Xji ×Yj Zjk = Spf(Aji⊗̂BjCjk) by
Lemma 87.16.4 we see that it suffices to show that Cjk → Aji⊗̂BjCjk has prop-
erty P which is exactly what the condition that P is stable under base change
guarantees. □

Remark 87.21.8 (Variant for adic-star).0GBE Let P be a local property of morphisms
of WAdmadic∗, see Remark 87.21.4. We say P is stable under base change if given
B → A and B → C in WAdmadic∗ we have P (B → A) ⇒ P (C → A⊗̂BC). This
makes sense as A⊗̂BC is an object of WAdmadic∗ by Lemma 87.4.12. In exactly
the same way we obtain a variant of Lemma 87.21.7 for morphisms between locally
adic* formal algebraic spaces over S.

Remark 87.21.9 (Variant for Noetherian).0GBF Let P be a local property of morphisms
of WAdmNoeth, see Remark 87.21.5. We say P is stable under base change if given
B → A and B → C in WAdmNoeth the property P (B → A) implies both that

https://stacks.math.columbia.edu/tag/0ANH
https://stacks.math.columbia.edu/tag/0ANI
https://stacks.math.columbia.edu/tag/0GBC
https://stacks.math.columbia.edu/tag/0GBD
https://stacks.math.columbia.edu/tag/0GBE
https://stacks.math.columbia.edu/tag/0GBF


87.21. MORPHISMS AND CONTINUOUS RING MAPS 6334

A⊗̂BC is adic Noetherian7 and that P (C → A⊗̂BC). In exactly the same way
we obtain a variant of Lemma 87.21.7 for morphisms between locally Noetherian
formal algebraic spaces over S.

Remark 87.21.10 (Another variant for Noetherian).0GBG Let P and Q be local properties
of morphisms of WAdmNoeth, see Remark 87.21.5. We say P is stable under base
change by Q if given B → A and B → C in WAdmNoeth satisfying P (B → A) and
Q(B → C), then A⊗̂BC is adic Noetherian and P (C → A⊗̂BC) holds. Arguing
exactly as in the proof of Lemma 87.21.7 we obtain the following statement: given
morphisms f : X → Y and g : Y → Z of locally Noetherian formal algebraic spaces
over S such that

(1) the equivalent conditions of Lemma 87.21.3 hold for f and P ,
(2) the equivalent conditions of Lemma 87.21.3 hold for g and Q,

then the equivalent conditions of Lemma 87.21.3 hold for pr2 : X ×Y Z → Z and
P .

Situation 87.21.11.0GBH Let P be a local property of morphisms of WAdmcount, see
Situation 87.21.2. We say P is stable under composition if given B → A and
C → B in WAdmcount we have P (B → A) ∧ P (C → B)⇒ P (C → A).

Lemma 87.21.12.0GBI Let S be a scheme. Let P be a local property of morphisms of
WAdmcount which is stable under composition. Let f : X → Y and g : Y → Z be
morphisms of locally countably indexed formal algebraic spaces over S. If f and g
satisfies the equivalent conditions of Lemma 87.21.3 then so does g ◦ f : X → Z.

Proof. Choose a covering {Zk → Z} as in Definition 87.11.1. For each k choose
a covering {Ykj → Zk ×Z Y } as in Definition 87.11.1. For each k and j choose
a covering {Xkji → Ykj ×Y X} as in Definition 87.11.1. If f and g satisfies the
equivalent conditions of Lemma 87.21.3 then Xkji → Yjk and Yjk → Zk correspond
to arrows Bkj → Akji and Ck → Bkj of WAdmcount having property P . Hence the
compositions do too and we conclude. □

Remark 87.21.13 (Variant for adic-star).0GBJ Let P be a local property of morphisms
of WAdmadic∗, see Remark 87.21.4. We say P is stable under composition if given
B → A and C → B in WAdmadic∗ we have P (B → A) ∧ P (C → B)⇒ P (C → A).
In exactly the same way we obtain a variant of Lemma 87.21.12 for morphisms
between locally adic* formal algebraic spaces over S.

Remark 87.21.14 (Variant for Noetherian).0GBK Let P be a local property of morphisms
of WAdmNoeth, see Remark 87.21.5. We say P is stable under composition if given
B → A and C → B in WAdmNoeth we have P (B → A)∧P (C → B)⇒ P (C → A).
In exactly the same way we obtain a variant of Lemma 87.21.12 for morphisms
between locally Noetherian formal algebraic spaces over S.

Situation 87.21.15.0GBL Let P be a local property of morphisms of WAdmcount, see
Situation 87.21.2. We say P has the cancellation property if given B → A and
C → B in WAdmcount we have P (C → B) ∧ P (C → A)⇒ P (B → A).

Lemma 87.21.16.0GBM Let S be a scheme. Let P be a local property of morphisms of
WAdmcount which has the cancellation property. Let f : X → Y and g : Y → Z be

7See Lemma 87.4.12 for a criterion.

https://stacks.math.columbia.edu/tag/0GBG
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morphisms of locally countably indexed formal algebraic spaces over S. If g ◦f and
g satisfies the equivalent conditions of Lemma 87.21.3 then so does f : X → Y .

Proof. Choose a covering {Zk → Z} as in Definition 87.11.1. For each k choose
a covering {Ykj → Zk ×Z Y } as in Definition 87.11.1. For each k and j choose a
covering {Xkji → Ykj×Y X} as in Definition 87.11.1. Let Xkji → Yjk and Yjk → Zk
correspond to arrows Bkj → Akji and Ck → Bkj of WAdmcount. If g ◦ f and g
satisfies the equivalent conditions of Lemma 87.21.3 then Ck → Bkj and Ck → Akji
satisfy P . Hence Bkj → Akji does too and we conclude. □

Remark 87.21.17 (Variant for adic-star).0GBN Let P be a local property of morphisms
of WAdmadic∗, see Remark 87.21.4. We say P has the cancellation property if given
B → A and C → B in WAdmadic∗ we have P (C → A) ∧ P (C → B)⇒ P (B → A).
In exactly the same way we obtain a variant of Lemma 87.21.12 for morphisms
between locally adic* formal algebraic spaces over S.

Remark 87.21.18 (Variant for Noetherian).0GBP Let P be a local property of morphisms
of WAdmNoeth, see Remark 87.21.5. We say P has the cancellation property if given
B → A and C → B in WAdmNoeth we have P (C → B)∧P (C → A)⇒ P (C → B).
In exactly the same way we obtain a variant of Lemma 87.21.12 for morphisms
between locally Noetherian formal algebraic spaces over S.

87.22. Taut ring maps and representability by algebraic spaces

0GBQ In this section we briefly show that morphisms between locally countably index
formal algebraic spaces correspond étale locally to taut continuous ring homomor-
phisms between weakly admissible topological rings having countable fundamental
systems of open ideals. In fact, this is rather clear from Lemma 87.19.8 and we
encourage the reader to skip this section.

Lemma 87.22.1.0ANJ Let B → A be an arrow of WAdmcount. The following are equiv-
alent

(a) B → A is taut (Definition 87.5.1),
(b) for B ⊃ J1 ⊃ J2 ⊃ J3 ⊃ . . . a fundamental system of weak ideals of

definitions there exist a commutative diagram

A // . . . // A3 // A2 // A1

B //

OO

. . . // B/J3 //

OO

B/J2 //

OO

B/J1

OO

such that An+1/JnAn+1 = An and A = limAn as topological ring.
Moreover, these equivalent conditions define a local property, i.e., they satisfy ax-
ioms (1), (2), (3).

Proof. The equivalence of (a) and (b) is immediate. Below we will give an algebraic
proof of the axioms, but it turns out we’ve already proven them. Namely, using
Lemma 87.19.8 the equivalent conditions (a) and (b) translate to saying the corre-
sponding morphism of affine formal algebraic spaces is representable by algebraic
spaces. Since this condition is “étale local on the source and target” by Lemma
87.19.4 we immediately get axioms (1), (2), and (3).

https://stacks.math.columbia.edu/tag/0GBN
https://stacks.math.columbia.edu/tag/0GBP
https://stacks.math.columbia.edu/tag/0ANJ
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Direct algebraic proof of (1), (2), (3). Let a diagram (87.21.2.1) as in Situation
87.21.2 be given. By Example 87.19.11 the maps A → (A′)∧ and B → (B′)∧

satisfy (a) and (b).

Assume (a) and (b) hold for φ. Let J ⊂ B be a weak ideal of definition. Then the
closure of JA, resp. J(B′)∧ is a weak ideal of definition I ⊂ A, resp. J ′ ⊂ (B′)∧.
Then the closure of I(A′)∧ is a weak ideal of definition I ′ ⊂ (A′)∧. A topological
argument shows that I ′ is also the closure of J(A′)∧ and of J ′(A′)∧. Finally, as J
runs over a fundamental system of weak ideals of definition of B so do the ideals I
and I ′ in A and (A′)∧. It follows that (a) holds for φ′. This proves (1).

Assume A → A′ is faithfully flat and that (a) and (b) hold for φ′. Let J ⊂ B be
a weak ideal of definition. Using (a) and (b) for the maps B → (B′)∧ → (A′)∧ we
find that the closure I ′ of J(A′)∧ is a weak ideal of definition. In particular, I ′ is
open and hence the inverse image of I ′ in A is open. Now we have (explanation
below)

A ∩ I ′ = A ∩
⋂

(J(A′)∧ + Ker((A′)∧ → A′/I0A
′))

= A ∩
⋂

Ker((A′)∧ → A′/JA′ + I0A
′)

=
⋂

(JA+ I0)

which is the closure of JA by Lemma 87.4.2. The intersections are over weak
ideals of definition I0 ⊂ A. The first equality because a fundamental system of
neighbourhoods of 0 in (A′)∧ are the kernels of the maps (A′)∧ → A′/I0A

′. The
second equality is trivial. The third equality because A→ A′ is faithfully flat, see
Algebra, Lemma 10.82.11. Thus the closure of JA is open. By Lemma 87.4.10
the closure of JA is a weak ideal of definition of A. Finally, given a weak ideal
of definition I ⊂ A we can find J such that J(A′)∧ is contained in the closure of
I(A′)∧ by property (a) for B → (B′)∧ and φ′. Thus we see that (a) holds for φ.
This proves (2).

We omit the proof of (3). □

Lemma 87.22.2.0ANK Let S be a scheme. Let f : X → Y be a morphism of locally
countably indexed formal algebraic spaces over S. The following are equivalent

(1) for every commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y repre-
sentable by algebraic spaces and étale, the morphism U → V corresponds
to a taut map B → A of WAdmcount,

(2) there exists a covering {Yj → Y } as in Definition 87.11.1 and for each
j a covering {Xji → Yj ×Y X} as in Definition 87.11.1 such that each
Xji → Yj corresponds to a taut ring map in WAdmcount,

(3) there exist a covering {Xi → X} as in Definition 87.11.1 and for each i a
factorization Xi → Yi → Y where Yi is an affine formal algebraic space,

https://stacks.math.columbia.edu/tag/0ANK
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Yi → Y is representable by algebraic spaces and étale, and Xi → Yi
corresponds to a taut ring map in WAdmcount, and

(4) f is representable by algebraic spaces.

Proof. The property of a map in WAdmcount being “taut” is a local property
by Lemma 87.22.1. Thus Lemma 87.21.3 exactly tells us that (1), (2), and (3)
are equivalent. On the other hand, by Lemma 87.19.8 being “taut” on maps in
WAdmcount corresponds exactly to being “representable by algebraic spaces” for
the corresponding morphisms of countably indexed affine formal algebraic spaces.
Thus the implication (1) ⇒ (2) of Lemma 87.19.4 shows that (4) implies (1) of the
current lemma. Similarly, the implication (4) ⇒ (1) of Lemma 87.19.4 shows that
(2) implies (4) of the current lemma. □

87.23. Adic morphisms

0AQ2 This section matches the occasionally used notion of an “adic morphism” f : X → Y
of locally adic* formal algebraic spaces X and Y on the one hand with representabil-
ity of f by algebraic spaces and on the other hand with our notion of taut continuous
ring homomorphisms. First we recall that tautness is equivalent to adicness for adic
rings with finitely generated ideal of definition.

Lemma 87.23.1.0GBS Let A and B be pre-adic topological rings. Let φ : A → B be a
continuous ring homomorphism.

(1) If φ is adic, then φ is taut.
(2) If B is complete, A has a finitely generated ideal of definition, and φ is

taut, then φ is adic.
In particular the conditions “φ is adic” and “φ is taut” are equivalent on the
category WAdmadic∗.

Proof. Part (1) is Lemma 87.6.4. Part (2) is Lemma 87.6.5. The final statement is
a consequence of (1) and (2). □

Let S be a scheme. Let f : X → Y be a morphism of locally adic* formal algebraic
spaces over S. By Lemma 87.22.2 the following are equivalent

(1) f is representable by algebraic spaces (in other words, the equivalent con-
ditions of Lemma 87.19.4 hold),

(2) for every commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y repre-
sentable by algebraic spaces and étale, the morphism U → V corresponds
to an adic8 map in WAdmadic∗.

In this situation we will say that f is an adic morphism (the formal definition is
below). This notion/terminology will only be defined/used for morphisms between
formal algebraic spaces which are locally adic* since otherwise we don’t have the
equivalence between (1) and (2) above.

8Equivalently taut by Lemma 87.23.1.

https://stacks.math.columbia.edu/tag/0GBS
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Definition 87.23.2.0AQ3 Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. Assume X and Y are locally adic*. We say f is an adic
morphism if f is representable by algebraic spaces. See discussion above.

87.24. Morphisms of finite type

0AM3 Due to how things are setup in the Stacks project, the following is really the correct
thing to do and stronger notions should have a different name.

Definition 87.24.1.0AM4 Let S be a scheme. Let f : Y → X be a morphism of formal
algebraic spaces over S.

(1) We say f is locally of finite type if f is representable by algebraic spaces
and is locally of finite type in the sense of Bootstrap, Definition 80.4.1.

(2) We say f is of finite type if f is locally of finite type and quasi-compact
(Definition 87.17.4).

We will discuss the relationship between finite type morphisms of certain formal
algebraic spaces and continuous ring maps A→ B which are topologically of finite
type in Section 87.29.

Lemma 87.24.2.0AJJ Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. The following are equivalent

(1) f is of finite type,
(2) f is representable by algebraic spaces and is of finite type in the sense of

Bootstrap, Definition 80.4.1.

Proof. This follows from Bootstrap, Lemma 80.4.5, the implication “quasi-compact
+ locally of finite type⇒ finite type” for morphisms of algebraic spaces, and Lemma
87.17.5. □

Lemma 87.24.3.0AQ4 The composition of finite type morphisms is of finite type. The
same holds for locally of finite type.

Proof. See Bootstrap, Lemma 80.4.3 and use Morphisms of Spaces, Lemma 67.23.2.
□

Lemma 87.24.4.0AQ5 A base change of a finite type morphism is finite type. The same
holds for locally of finite type.

Proof. See Bootstrap, Lemma 80.4.2 and use Morphisms of Spaces, Lemma 67.23.3.
□

Lemma 87.24.5.0AQ6 Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of formal algebraic spaces over S. If g ◦ f : X → Z is locally of finite type, then
f : X → Y is locally of finite type.

Proof. By Lemma 87.19.3 we see that f is representable by algebraic spaces. Let
T be a scheme and let T → Z be a morphism. Then we can apply Morphisms of
Spaces, Lemma 67.23.6 to the morphisms T ×Z X → T ×Z Y → T of algebraic
spaces to conclude. □

Being locally of finite type is local on the source and the target.

Lemma 87.24.6.0ANL Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. The following are equivalent:

https://stacks.math.columbia.edu/tag/0AQ3
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(1) the morphism f is locally of finite type,
(2) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are formal algebraic spaces, the vertical arrows are repre-
sentable by algebraic spaces and étale, U → X is surjective, and U → V
is locally of finite type,

(3) for any commutative diagram

U

��

// V

��
X // Y

where U , V are formal algebraic spaces and vertical arrows representable
by algebraic spaces and étale, the morphism U → V is locally of finite
type,

(4) there exists a covering {Yj → Y } as in Definition 87.11.1 and for each j a
covering {Xji → Yj ×Y X} as in Definition 87.11.1 such that Xji → Yj is
locally of finite type for each j and i,

(5) there exist a covering {Xi → X} as in Definition 87.11.1 and for each i a
factorization Xi → Yi → Y where Yi is an affine formal algebraic space,
Yi → Y is representable by algebraic spaces and étale, such that Xi → Yi
is locally of finite type, and

(6) add more here.

Proof. In each of the 5 cases the morphism f : X → Y is representable by algebraic
spaces, see Lemma 87.19.4. We will use this below without further mention.
It is clear that (1) implies (2) because we can take U = X and V = Y . Conversely,
assume given a diagram as in (2). Let T be a scheme and let T → Y be a morphism.
Then we can consider

U ×Y T

��

// V ×Y T

��
X ×Y T // T

The vertical arrows are étale and the top horizontal arrow is locally of finite type as
base changes of such morphisms. Hence by Morphisms of Spaces, Lemma 67.23.4
we conclude that X ×Y T → T is locally of finite type. In other words (1) holds.
Assume (1) is true and consider a diagram as in (3). Then U → Y is locally of
finite type (as the composition U → X → Y , see Bootstrap, Lemma 80.4.3). Let
T be a scheme and let T → V be a morphism. Then the projection T ×V U → T
factors as

T ×V U = (T ×Y U)×(V×Y V ) V → T ×Y U → T

The second arrow is locally of finite type (as a base change of the composition
U → X → Y ) and the first is the base change of the diagonal V → V ×Y V which
is locally of finite type by Lemma 87.15.5.
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It is clear that (3) implies (2). Thus now (1) – (3) are equivalent.
Observe that the condition in (4) makes sense as the fibre product Yj ×Y X is a
formal algebraic space by Lemma 87.15.3. It is clear that (4) implies (5).
Assume Xi → Yi → Y as in (5). Then we set V =

∐
Yi and U =

∐
Xi to see that

(5) implies (2).
Finally, assume (1) – (3) are true. Thus we can choose any covering {Yj → Y } as
in Definition 87.11.1 and for each j any covering {Xji → Yj ×Y X} as in Definition
87.11.1. Then Xij → Yj is locally of finite type by (3) and we see that (4) is true.
This concludes the proof. □

Example 87.24.7.0ANM Let S be a scheme. Let A be a weakly admissible topological
ring over S. Let A→ A′ be a finite type ring map. Then

(A′)∧ = limI⊂A w.i.d.A
′/IA′

is a weakly admissible ring and the corresponding morphism Spf((A′)∧)→ Spf(A)
is representable, see Example 87.19.11. If T → Spf(A) is a morphism where T
is a quasi-compact scheme, then this factors through Spec(A/I) for some weak
ideal of definition I ⊂ A (Lemma 87.9.4). Then T ×Spf(A) Spf((A′)∧) is equal to
T ×Spec(A/I) Spec(A′/IA′) and we see that Spf((A′)∧)→ Spf(A) is of finite type.

Lemma 87.24.8.0AQ7 Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. If Y is locally Noetherian and f locally of finite type, then
X is locally Noetherian.

Proof. Pick {Yj → Y } and {Xij → Yj×Y X} as in Lemma 87.24.6. Then it follows
from Lemma 87.19.9 that each Xij is Noetherian. This proves the lemma. □

Lemma 87.24.9.0AQ8 Let S be a scheme. Let f : X → Y and Z → Y be morphisms
of formal algebraic spaces over S. If Z is locally Noetherian and f locally of finite
type, then Z ×Y X is locally Noetherian.

Proof. The morphism Z ×Y X → Z is locally of finite type by Lemma 87.24.4.
Hence this follows from Lemma 87.24.8. □

87.25. Surjective morphisms

0GHN By Lemma 87.12.4 the following definition does not clash with the already existing
definitions for morphisms of algebraic spaces or morphisms of formal algebraic
spaces which are representable by algebraic spaces.

Definition 87.25.1.0GHP Let S be a scheme. A morphism f : X → Y of formal algebraic
spaces over S is said to be surjective if it induces a surjective morphism Xred → Yred
on underlying reduced algebraic spaces.

Lemma 87.25.2.0GHQ The composition of two surjective morphisms is a surjective mor-
phism.

Proof. Omitted. □

Lemma 87.25.3.0GHR A base change of a surjective morphism is a surjective morphism.

Proof. Omitted. □
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Lemma 87.25.4.0GHS Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. The following are equivalent

(1) f is surjective,
(2) for every scheme T and morphism T → Y the projection X ×Y T → T is

a surjective morphism of formal algebraic spaces,
(3) for every affine scheme T and morphism T → Y the projection X×Y T →

T is a surjective morphism of formal algebraic spaces,
(4) there exists a covering {Yj → Y } as in Definition 87.11.1 such that each

X ×Y Yj → Yj is a surjective morphism of formal algebraic spaces,
(5) there exists a surjective morphism Z → Y of formal algebraic spaces such

that X ×Y Z → Z is surjective, and
(6) add more here.

Proof. Omitted. □

87.26. Monomorphisms

0AQA Here is the definition.

Definition 87.26.1.0AQB Let S be a scheme. A morphism of formal algebraic spaces over
S is called a monomorphism if it is an injective map of sheaves.

An example is the following. Let X be an algebraic space and let T ⊂ |X| be
a closed subset. Then the morphism X/T → X from the formal completion of
X along T to X is a monomorphism. In particular, monomorphisms of formal
algebraic spaces are in general not representable.

Lemma 87.26.2.0GHT The composition of two monomorphisms is a monomorphism.

Proof. Omitted. □

Lemma 87.26.3.0GHU A base change of a monomorphism is a monomorphism.

Proof. Omitted. □

Lemma 87.26.4.0GHV Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. The following are equivalent

(1) f is a monomorphism,
(2) for every scheme T and morphism T → Y the projection X ×Y T → T is

a monomorphism of formal algebraic spaces,
(3) for every affine scheme T and morphism T → Y the projection X×Y T →

T is a monomorphism of formal algebraic spaces,
(4) there exists a covering {Yj → Y } as in Definition 87.11.1 such that each

X ×Y Yj → Yj is a monomorphism of formal algebraic spaces, and
(5) there exists a family of morphisms {Yj → Y } such that

∐
Yj → Y is a

surjection of sheaves on (Sch/S)fppf such that each X ×Y Yj → Yj is a
monomorphism for all j,

(6) there exists a morphism Z → Y of formal algebraic spaces which is repre-
sentable by algebraic spaces, surjective, flat, and locally of finite presen-
tation such that X ×Y Z → X is a monomorphism, and

(7) add more here.

Proof. Omitted. □
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87.27. Closed immersions

0ANN Here is the definition.

Definition 87.27.1.0ANP Let S be a scheme. Let f : Y → X be a morphism of formal
algebraic spaces over S. We say f is a closed immersion if f is representable by
algebraic spaces and a closed immersion in the sense of Bootstrap, Definition 80.4.1.

Please skip the initial the obligatory lemmas when reading this section.

Lemma 87.27.2.0GHW The composition of two closed immersions is a closed immersion.

Proof. Omitted. □

Lemma 87.27.3.0GHX A base change of a closed immersion is a closed immersion.

Proof. Omitted. □

Lemma 87.27.4.0GHY Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. The following are equivalent

(1) f is a closed immersion,
(2) for every scheme T and morphism T → Y the projection X ×Y T → T is

a closed immersion,
(3) for every affine scheme T and morphism T → Y the projection X×Y T →

T is a closed immersion,
(4) there exists a covering {Yj → Y } as in Definition 87.11.1 such that each

X ×Y Yj → Yj is a closed immersion, and
(5) there exists a morphism Z → Y of formal algebraic spaces which is repre-

sentable by algebraic spaces, surjective, flat, and locally of finite presen-
tation such that X ×Y Z → X is a closed immersion, and

(6) add more here.

Proof. Omitted. □

Lemma 87.27.5.0ANQ Let S be a scheme. Let X be a McQuillan affine formal algebraic
space over S. Let f : Y → X be a closed immersion of formal algebraic spaces
over S. Then Y is a McQuillan affine formal algebraic space and f corresponds to
a continuous homomorphism A → B of weakly admissible topological S-algebras
which is taut, has closed kernel, and has dense image.

Proof. Write X = Spf(A) where A is a weakly admissible topological ring. Let
Iλ be a fundamental system of weakly admissible ideals of definition in A. Then
Y ×X Spec(A/Iλ) is a closed subscheme of Spec(A/Iλ) and hence affine (Definition
87.27.1). Say Y×XSpec(A/Iλ) = Spec(Bλ). The ring mapA/Iλ → Bλ is surjective.
Hence the projections

B = limBλ −→ Bλ

are surjective as the compositions A → B → Bλ are surjective. It follows that Y
is McQuillan by Lemma 87.9.6. The ring map A → B is taut by Lemma 87.19.8.
The kernel is closed because B is complete and A → B is continuous. Finally, as
A→ Bλ is surjective for all λ we see that the image of A in B is dense. □

Even though we have the result above, in general we do not know how closed
immersions behave when the target is a McQuillan affine formal algebraic space,
see Remark 87.29.4.
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Example 87.27.6.0ANR Let S be a scheme. Let A be a weakly admissible topological
ring over S. Let K ⊂ A be a closed ideal. Setting

B = (A/K)∧ = limI⊂A w.i.d.A/(I +K)
the morphism Spf(B) → Spf(A) is representable, see Example 87.19.11. If T →
Spf(A) is a morphism where T is a quasi-compact scheme, then this factors through
Spec(A/I) for some weak ideal of definition I ⊂ A (Lemma 87.9.4). Then T ×Spf(A)
Spf(B) is equal to T ×Spec(A/I) Spec(A/(K + I)) and we see that Spf(B)→ Spf(A)
is a closed immersion. The kernel of A → B is K as K is closed, but beware that
in general the ring map A→ B = (A/K)∧ need not be surjective.

Lemma 87.27.7.0GHZ Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces. Assume

(1) f is representable by algebraic spaces,
(2) f is a monomorphism,
(3) the inclusion Yred → Y factors through f , and
(4) f is locally of finite type or Y is locally Noetherian.

Then f is a closed immersion.

Proof. Assumptions (2) and (3) imply that Xred = X ×Y Yred = Yred. We will use
this without further mention.
If Y ′ → Y is an étale morphism of formal algebraic spaces over S, then the base
change f ′ : X ×Y Y ′ → Y ′ satisfies conditions (1) – (4). Hence by Lemma 87.27.4
we may assume Y is an affine formal algebraic space.
Say Y = colimλ∈Λ Yλ as in Definition 87.9.1. Then Xλ = X ×Y Yλ is an algebraic
space endowed with a monomorphism fλ : Xλ → Yλ which induces an isomorphism
Xλ,red → Yλ,red. Thus Xλ is an affine scheme by Limits of Spaces, Proposition
70.15.2 (as Xλ,red → Xλ is surjective and integral). To finish the proof it suffices to
show that Xλ → Yλ is a closed immersion which we will do in the next paragraph.
Let X → Y be a monomorphism of affine schemes such that Xred = X ×Y Yred =
Yred. In general, this does not imply that X → Y is a closed immersion, see
Examples, Section 110.35. However, under our assumption (4) we know that in
the previous parapgrah either Xλ → Yλ is of finite type or Yλ is Noetherian. This
means that X → Y corresponds to a ring map R → A such that R/I → A/IA is
an isomorphism where I ⊂ R is the nil radical (ie., the maximal locally nilpotent
ideal of R) and either R→ A is of finite type or R is Noetherian. In the first case
R→ A is surjective by Algebra, Lemma 10.126.9 and in the second case I is finitely
generated, hence nilpotent, hence R → A is surjective by Nakayama’s lemma, see
Algebra, Lemma 10.20.1 part (11). □

87.28. Restricted power series

0AKZ Let A be a topological ring complete with respect to a linear topology (More on
Algebra, Definition 15.36.1). Let Iλ be a fundamental system of open ideals. Let
r ≥ 0 be an integer. In this setting one often denotes

A{x1, . . . , xr} = limλA/Iλ[x1, . . . , xr] = limλ(A[x1, . . . , xr]/IλA[x1, . . . , xr])
endowed with the limit topology. In other words, this is the completion of the poly-
nomial ring with respect to the ideals Iλ. We can think of elements of A{x1, . . . , xr}

https://stacks.math.columbia.edu/tag/0ANR
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as power series
f =

∑
E=(e1,...,er)

aEx
e1
1 . . . xerr

in x1, . . . , xr with coefficients aE ∈ A which tend to zero in the topology of A. In
other words, for any λ all but a finite number of aE are in Iλ. For this reason
elements of A{x1, . . . , xr} are sometimes called restricted power series. Sometimes
this ring is denoted A⟨x1, . . . , xr⟩; we will refrain from using this notation.

Remark 87.28.1 (Universal property restricted power series).0AJM [DG67, Chapter 0,
7.5.3]

Let A → C be a
continuous map of complete linearly topologized rings. Then any A-algebra map
A[x1, . . . xr] → C extends uniquely to a continuous map A{x1, . . . , xr} → C on
restricted power series.

Remark 87.28.2.0AL0 Let A be a ring and let I ⊂ A be an ideal. If A is I-adically com-
plete, then the I-adic completion A[x1, . . . , xr]∧ of A[x1, . . . , xr] is the restricted
power series ring over A as a ring. However, it is not clear that A[x1, . . . , xr]∧
is I-adically complete. We think of the topology on A{x1, . . . , xr} as the limit
topology (which is always complete) whereas we often think of the topology on
A[x1, . . . , xr]∧ as the I-adic topology (not always complete). If I is finitely gener-
ated, then A{x1, . . . , xr} = A[x1, . . . , xr]∧ as topological rings, see Algebra, Lemma
10.96.3.

87.29. Algebras topologically of finite type

0ALL Here is our definition. This definition is not generally agreed upon. Many authors
impose further conditions, often because they are only interested in specific types
of rings and not the most general case.

Definition 87.29.1.0ANS Let A→ B be a continuous map of topological rings (More on
Algebra, Definition 15.36.1). We say B is topologically of finite type over A if there
exists an A-algebra map A[x1, . . . , xn]→ B whose image is dense in B.

If A is a complete, linearly topologized ring, then the restricted power series ring
A{x1, . . . , xr} is topologically of finite type over A. If k is a field, then the power
series ring k[[x1, . . . , xr]] is topologically of finite type over k.
For continuous taut maps of weakly admissible topological rings, being topologically
of finite type corresponds exactly to morphisms of finite type between the associated
affine formal algebraic spaces.

Lemma 87.29.2.0ANT Let S be a scheme. Let φ : A→ B be a continuous map of weakly
admissible topological rings over S. The following are equivalent

(1) Spf(φ) : Y = Spf(B)→ Spf(A) = X is of finite type,
(2) φ is taut and B is topologically of finite type over A.

Proof. We can use Lemma 87.19.8 to relate tautness of φ to representability of
Spf(φ). We will use this without further mention below. It follows that X =
colim Spec(A/I) and Y = colim Spec(B/J(I)) where I ⊂ A runs over the weak
ideals of definition of A and J(I) is the closure of IB in B.
Assume (2). Choose a ring map A[x1, . . . , xr] → B whose image is dense. Then
A[x1, . . . , xr]→ B → B/J(I) has dense image too which means that it is surjective.
Therefore B/J(I) is of finite type over A/I. Let T → X be a morphism with T
a quasi-compact scheme. Then T → X factors through Spec(A/I) for some I
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(Lemma 87.9.4). Then T ×X Y = T ×Spec(A/I) Spec(B/J(I)), see proof of Lemma
87.19.8. Hence T ×Y X → T is of finite type as the base change of the morphism
Spec(B/J(I))→ Spec(A/I) which is of finite type. Thus (1) is true.
Assume (1). Pick any I ⊂ A as above. Since Spec(A/I) ×X Y = Spec(B/J(I))
we see that A/I → B/J(I) is of finite type. Choose b1, . . . , br ∈ B mapping
to generators of B/J(I) over A/I. We claim that the image of the ring map
A[x1, . . . , xr] → B sending xi to bi is dense. To prove this, let I ′ ⊂ I be a second
weak ideal of definition. Then we have

B/(J(I ′) + IB) = B/J(I)
because J(I) is the closure of IB and because J(I ′) is open. Hence we may apply
Algebra, Lemma 10.126.9 to see that (A/I ′)[x1, . . . , xr] → B/J(I ′) is surjective.
Thus (2) is true, concluding the proof. □

Let A be a topological ring complete with respect to a linear topology. Let (Iλ)
be a fundamental system of open ideals. Let C be the category of inverse systems
(Bλ) where

(1) Bλ is a finite type A/Iλ-algebra, and
(2) Bµ → Bλ is an A/Iµ-algebra homomorphism which induces an isomor-

phism Bµ/IλBµ → Bλ.
Morphisms in C are given by compatible systems of homomorphisms.

Lemma 87.29.3.0AL1 Let S be a scheme. Let X be an affine formal algebraic space
over S. Assume X is McQuillan and let A be the weakly admissible topological
ring associated to X. Then there is an anti-equivalence of categories between

(1) the category C introduced above, and
(2) the category of maps Y → X of finite type of affine formal algebraic

spaces.

Proof. Let (Iλ) be a fundamental system of weakly admissible ideals of definition
in A. Consider Y as in (2). Then Y ×X Spec(A/Iλ) is affine (Definition 87.24.1 and
Lemma 87.19.7). Say Y ×X Spec(A/Iλ) = Spec(Bλ). The ring map A/Iλ → Bλ
is of finite type because Spec(Bλ) → Spec(A/Iλ) is of finite type (by Definition
87.24.1). Then (Bλ) is an object of C.
Conversely, given an object (Bλ) of C we can set Y = colim Spec(Bλ). This is an
affine formal algebraic space. We claim that

Y ×X Spec(A/Iλ) = (colimµ Spec(Bµ))×X Spec(A/Iλ) = Spec(Bλ)
To show this it suffices we get the same values if we evaluate on a quasi-compact
scheme U . A morphism U → (colimµ Spec(Bµ)) ×X Spec(A/Iλ) comes from a
morphism U → Spec(Bµ) ×Spec(A/Iµ) Spec(A/Iλ) for some µ ≥ λ (use Lemma
87.9.4 two times). Since Spec(Bµ)×Spec(A/Iµ)Spec(A/Iλ) = Spec(Bλ) by our second
assumption on objects of C this proves what we want. Using this we can show the
morphism Y → X is of finite type. Namely, we note that for any morphism U → X
with U a quasi-compact scheme, we get a factorization U → Spec(A/Iλ) → X for
some λ (see lemma cited above). Hence

Y ×X U = Y ×X Spec(A/Iλ))×Spec(A/Iλ) U = Spec(Bλ)×Spec(A/Iλ) U

is a scheme of finite type over U as desired. Thus the construction (Bλ) 7→
colim Spec(Bλ) does give a functor from category (1) to category (2).
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To finish the proof we show that the above constructions define quasi-inverse func-
tors between the categories (1) and (2). In one direction you have to show that

(colimµ Spec(Bµ))×X Spec(A/Iλ) = Spec(Bλ)
for any object (Bλ) in the category C. This we proved above. For the other direction
you have to show that

Y = colim(Y ×X Spec(A/Iλ))
given Y in the category (2). Again this is true by evaluating on quasi-compact test
objects and because X = colim Spec(A/Iλ). □

Remark 87.29.4.0AJK Let A be a weakly admissible topological ring and let (Iλ) be a
fundamental system of weak ideals of definition. Let X = Spf(A), in other words,
X is a McQuillan affine formal algebraic space. Let f : Y → X be a morphism of
affine formal algebraic spaces. In general it will not be true that Y is McQuillan.
More specifically, we can ask the following questions:

(1) Assume that f : Y → X is a closed immersion. Then Y is McQuillan
and f corresponds to a continuous map φ : A → B of weakly admissible
topological rings which is taut, whose kernel K ⊂ A is a closed ideal, and
whose image φ(A) is dense in B, see Lemma 87.27.5. What conditions on
A guarantee that B = (A/K)∧ as in Example 87.27.6?

(2) What conditions on A guarantee that closed immersions f : Y → X
correspond to quotients A/K of A by closed ideals, in other words, the
corresponding continuous map φ is surjective and open?

(3) Suppose that f : Y → X is of finite type. Then we get Y = colim Spec(Bλ)
where (Bλ) is an object of C by Lemma 87.29.3. In this case it is true that
there exists a fixed integer r such that Bλ is generated by r elements over
A/Iλ for all λ (the argument is essentially already given in the proof of
(1)⇒ (2) in Lemma 87.29.2). However, it is not clear that the projections
limBλ → Bλ are surjective, i.e., it is not clear that Y is McQuillan. Is
there an example where Y is not McQuillan?

(4) Suppose that f : Y → X is of finite type and Y is McQuillan. Then
f corresponds to a continuous map φ : A → B of weakly admissible
topological rings. In fact φ is taut and B is topologically of finite type
over A, see Lemma 87.29.2. In other words, f factors as

Y −→ Ar
X −→ X

where the first arrow is a closed immersion of McQuillan affine formal
algebraic spaces. However, then questions (1) and (2) are in force for
Y → Ar

X .
Below we will answer these questions when X is countably indexed, i.e., when
A has a countable fundamental system of open ideals. If you have answers to
these questions in greater generality, or if you have counter examples, please email
stacks.project@gmail.com.

Lemma 87.29.5.0AQI Let S be a scheme. Let X be a countably indexed affine formal
algebraic space over S. Let f : Y → X be a closed immersion of formal algebraic
spaces over S. Then Y is a countably indexed affine formal algebraic space and f
corresponds to A→ A/K where A is an object of WAdmcount (Section 87.21) and
K ⊂ A is a closed ideal.
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Proof. By Lemma 87.10.4 we see thatX = Spf(A) whereA is an object of WAdmcount.
Since a closed immersion is representable and affine, we conclude by Lemma 87.19.9
that Y is an affine formal algebraic space and countably index. Thus applying
Lemma 87.10.4 again we see that Y = Spf(B) with B an object of WAdmcount. By
Lemma 87.27.5 we conclude that f is given by a morphism A→ B of WAdmcount

which is taut and has dense image. To finish the proof we apply Lemma 87.5.10. □

Lemma 87.29.6.0ANU Let B → A be an arrow of WAdmcount, see Section 87.21. The
following are equivalent

(a) B → A is taut and B/J → A/I is of finite type for every weak ideal of
definition J ⊂ B where I ⊂ A is the closure of JA,

(b) B → A is taut and B/Jλ → A/Iλ is of finite type for a cofinal system
(Jλ) of weak ideals of definition of B where Iλ ⊂ A is the closure of JλA,

(c) B → A is taut and A is topologically of finite type over B,
(d) A is isomorphic as a topological B-algebra to a quotient of B{x1, . . . , xn}

by a closed ideal.
Moreover, these equivalent conditions define a local property, i.e., they satisfy Ax-
ioms (1), (2), (3).

Proof. The implications (a) ⇒ (b), (c) ⇒ (a), (d) ⇒ (c) are straightforward from
the definitions. Assume (b) holds and let J ⊂ B and I ⊂ A be as in (a). Choose a
commutative diagram

A // . . . // A3 // A2 // A1

B //

OO

. . . // B/J3 //

OO

B/J2 //

OO

B/J1

OO

such that An+1/JnAn+1 = An and such that A = limAn as in Lemma 87.22.1. For
every m there exists a λ such that Jλ ⊂ Jm. Since B/Jλ → A/Iλ is of finite type,
this implies that B/Jm → A/Im is of finite type. Let α1, . . . , αn ∈ A1 be generators
of A1 over B/J1. Since A is a countable limit of a system with surjective transition
maps, we can find a1, . . . , an ∈ A mapping to α1, . . . , αn in A1. By Remark 87.28.1
we find a continuous map B{x1, . . . , xn} → A mapping xi to ai. This map induces
surjections (B/Jm)[x1, . . . , xn]→ Am by Algebra, Lemma 10.126.9. For m ≥ 1 we
obtain a short exact sequence

0→ Km → (B/Jm)[x1, . . . , xn]→ Am → 0

The induced transition mapsKm+1 → Km are surjective because Am+1/JmAm+1 =
Am. Hence the inverse limit of these short exact sequences is exact, see Algebra,
Lemma 10.86.4. Since B{x1, . . . , xn} = lim(B/Jm)[x1, . . . , xn] and A = limAm we
conclude that B{x1, . . . , xn} → A is surjective and open. As A is complete the
kernel is a closed ideal. In this way we see that (a), (b), (c), and (d) are equivalent.

Let a diagram (87.21.2.1) as in Situation 87.21.2 be given. By Example 87.24.7
the maps A → (A′)∧ and B → (B′)∧ satisfy (a), (b), (c), and (d). Moreover, by
Lemma 87.22.1 in order to prove Axioms (1) and (2) we may assume both B → A
and (B′)∧ → (A′)∧ are taut. Now pick a weak ideal of definition J ⊂ B. Let
J ′ ⊂ (B′)∧, I ⊂ A, I ′ ⊂ (A′)∧ be the closure of J(B′)∧, JA, J(A′)∧. By what was
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said above, it suffices to consider the commutative diagram

A/I // (A′)∧/I ′

B/J //

φ

OO

(B′)∧/J ′

φ′

OO

and to show (1) φ finite type ⇒ φ′ finite type, and (2) if A→ A′ is faithfully flat,
then φ′ finite type ⇒ φ finite type. Note that (B′)∧/J ′ = B′/JB′ and (A′)∧/I ′ =
A′/IA′ by the construction of the topologies on (B′)∧ and (A′)∧. In particular
the horizontal maps in the diagram are étale. Part (1) now follows from Algebra,
Lemma 10.6.2 and part (2) from Descent, Lemma 35.14.2 as the ring map A/I →
(A′)∧/I ′ = A′/IA′ is faithfully flat and étale.
We omit the proof of Axiom (3). □

Lemma 87.29.7.0CB6 In Lemma 87.29.6 if B is admissible (for example adic), then the
equivalent conditions (a) – (d) are also equivalent to

(e) B → A is taut and B/J → A/I is of finite type for some ideal of definition
J ⊂ B where I ⊂ A is the closure of JA.

Proof. It is enough to show that (e) implies (a). Let J ′ ⊂ B be a weak ideal of
definition and let I ′ ⊂ A be the closure of J ′A. We have to show that B/J ′ → A/I ′

is of finite type. If the corresponding statement holds for the smaller weak ideal of
definition J ′′ = J ′ ∩ J , then it holds for J ′. Thus we may assume J ′ ⊂ J . As J is
an ideal of definition (and not just a weak ideal of definition), we get Jn ⊂ J ′ for
some n ≥ 1. Thus we can consider the diagram

0 // I/I ′ // A/I ′ // A/I // 0

0 // J/J ′ //

OO

B/J ′ //

OO

B/J //

OO

0

with exact rows. Since I ′ ⊂ A is open and since I is the closure of JA we see that
I/I ′ = (J/J ′) · A/I ′. Because J/J ′ is a nilpotent ideal and as B/J → A/I is of
finite type, we conclude from Algebra, Lemma 10.126.8 that A/I ′ is of finite type
over B/J ′ as desired. □

Lemma 87.29.8.0ANV Let S be a scheme. Let f : X → Y be a morphism of affine formal
algebraic spaces. Assume Y countably indexed. The following are equivalent

(1) f is locally of finite type,
(2) f is of finite type,
(3) f corresponds to a morphism B → A of WAdmcount (Section 87.21) sat-

isfying the equivalent conditions of Lemma 87.29.6.

Proof. Since X and Y are affine it is clear that conditions (1) and (2) are equiva-
lent. In cases (1) and (2) the morphism f is representable by algebraic spaces by
definition, hence affine by Lemma 87.19.7. Thus if (1) or (2) holds we see that X
is countably indexed by Lemma 87.19.9. Write X = Spf(A) and Y = Spf(B) for
topological S-algebras A and B in WAdmcount, see Lemma 87.10.4. By Lemma
87.9.10 we see that f corresponds to a continuous map B → A. Hence now the
result follows from Lemma 87.29.2. □
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Lemma 87.29.9.0ANW Let S be a scheme. Let f : X → Y be a morphism of locally
countably indexed formal algebraic spaces over S. The following are equivalent

(1) for every commutative diagram
U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y repre-
sentable by algebraic spaces and étale, the morphism U → V corresponds
to a morphism of WAdmcount which is taut and topologically of finite
type,

(2) there exists a covering {Yj → Y } as in Definition 87.11.1 and for each
j a covering {Xji → Yj ×Y X} as in Definition 87.11.1 such that each
Xji → Yj corresponds to a morphism of WAdmcount which is taut and
topologically of finite type,

(3) there exist a covering {Xi → X} as in Definition 87.11.1 and for each
i a factorization Xi → Yi → Y where Yi is an affine formal algebraic
space, Yi → Y is representable by algebraic spaces and étale, and Xi → Yi
corresponds to a morphism of WAdmcount which is, taut and topologically
of finite type, and

(4) f is locally of finite type.
Proof. By Lemma 87.29.6 the property P (φ) =“φ is taut and topologically of finite
type” is local on WAdmcount. Hence by Lemma 87.21.3 we see that conditions (1),
(2), and (3) are equivalent. On the other hand, by Lemma 87.29.8 the condition
P on morphisms of WAdmcount corresponds exactly to morphisms of countably
indexed, affine formal algebraic spaces being locally of finite type. Thus the impli-
cation (1)⇒ (3) of Lemma 87.24.6 shows that (4) implies (1) of the current lemma.
Similarly, the implication (4) ⇒ (1) of Lemma 87.24.6 shows that (2) implies (4)
of the current lemma. □

87.30. Separation axioms for morphisms

0ARM This section is the analogue of Morphisms of Spaces, Section 67.4 for morphisms
of formal algebraic spaces.
Definition 87.30.1.0ARN Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. Let ∆X/Y : X → X ×Y X be the diagonal morphism.

(1) We say f is separated if ∆X/Y is a closed immersion.
(2) We say f is quasi-separated if ∆X/Y is quasi-compact.

Since ∆X/Y is representable (by schemes) by Lemma 87.15.5 we can test this by
considering morphisms T → X ×Y X from affine schemes T and checking whether

E = T ×X×YX X −→ T

is quasi-compact or a closed immersion, see Lemma 87.17.5 or Definition 87.27.1.
Note that the scheme E is the equalizer of two morphisms a, b : T → X which agree
as morphisms into Y and that E → T is a monomorphism and locally of finite type.
Lemma 87.30.2.0ARP All of the separation axioms listed in Definition 87.30.1 are stable
under base change.
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Proof. Let f : X → Y and Y ′ → Y be morphisms of formal algebraic spaces. Let
f ′ : X ′ → Y ′ be the base change of f by Y ′ → Y . Then ∆X′/Y ′ is the base change
of ∆X/Y by the morphism X ′ ×Y ′ X ′ → X ×Y X. Each of the properties of the
diagonal used in Definition 87.30.1 is stable under base change. Hence the lemma
is true. □

Lemma 87.30.3.0ARQ Let S be a scheme. Let f : X → Z, g : Y → Z and Z → T
be morphisms of formal algebraic spaces over S. Consider the induced morphism
i : X ×Z Y → X ×T Y . Then

(1) i is representable (by schemes), locally of finite type, locally quasi-finite,
separated, and a monomorphism,

(2) if Z → T is separated, then i is a closed immersion, and
(3) if Z → T is quasi-separated, then i is quasi-compact.

Proof. By general category theory the following diagram

X ×Z Y
i
//

��

X ×T Y

��
Z

∆Z/T //// Z ×T Z

is a fibre product diagram. Hence i is the base change of the diagonal morphism
∆Z/T . Thus the lemma follows from Lemma 87.15.5. □

Lemma 87.30.4.0ARR All of the separation axioms listed in Definition 87.30.1 are stable
under composition of morphisms.

Proof. Let f : X → Y and g : Y → Z be morphisms of formal algebraic spaces to
which the axiom in question applies. The diagonal ∆X/Z is the composition

X −→ X ×Y X −→ X ×Z X.

Our separation axiom is defined by requiring the diagonal to have some property
P. By Lemma 87.30.3 above we see that the second arrow also has this property.
Hence the lemma follows since the composition of (representable) morphisms with
property P also is a morphism with property P. □

Lemma 87.30.5.0ARS Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. Let P be any of the separation axioms of Definition 87.30.1.
The following are equivalent

(1) f is P,
(2) for every scheme Z and morphism Z → Y the base change Z ×Y X → Z

of f is P,
(3) for every affine scheme Z and every morphism Z → Y the base change

Z ×Y X → Z of f is P,
(4) for every affine scheme Z and every morphism Z → Y the formal algebraic

space Z ×Y X is P (see Definition 87.16.3),
(5) there exists a covering {Yj → Y } as in Definition 87.11.1 such that the

base change Yj ×Y X → Yj has P for all j.

Proof. We will repeatedly use Lemma 87.30.2 without further mention. In partic-
ular, it is clear that (1) implies (2) and (2) implies (3).
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Assume (3) and let Z → Y be a morphism where Z is an affine scheme. Let U , V
be affine schemes and let a : U → Z ×Y X and b : V → Z ×Y X be morphisms.
Then

U ×Z×YX V = (Z ×Y X)×∆,(Z×YX)×Z(Z×YX) (U ×Z V )
and we see that this is quasi-compact if P =“quasi-separated” or an affine scheme
equipped with a closed immersion into U ×Z V if P =“separated”. Thus (4) holds.
Assume (4) and let Z → Y be a morphism where Z is an affine scheme. Let U , V
be affine schemes and let a : U → Z ×Y X and b : V → Z ×Y X be morphisms.
Reading the argument above backwards, we see that U ×Z×YX V → U ×Z V is
quasi-compact if P =“quasi-separated” or a closed immersion if P =“separated”.
Since we can choose U and V as above such that U varies through an étale covering
of Z ×Y X, we find that the corresponding morphisms

U ×Z V → (Z ×Y X)×Z (Z ×Y X)
form an étale covering by affines. Hence we conclude that ∆ : (Z ×Y X)→ (Z ×Y
X)×Z (Z ×Y X) is quasi-compact, resp. a closed immersion. Thus (3) holds.
Let us prove that (3) implies (5). Assume (3) and let {Yj → Y } be as in Definition
87.11.1. We have to show that the morphisms

∆j : Yj ×Y X −→ (Yj ×Y X)×Yj (Yj ×Y X) = Yj ×Y X ×Y X
has the corresponding property (i.e., is quasi-compact or a closed immersion). Write
Yj = colimYj,λ as in Definition 87.9.1. Replacing Yj by Yj,λ in the formula above, we
have the property by our assumption that (3) holds. Since the displayed arrow is the
colimit of the arrows ∆j,λ and since we can test whether ∆j has the corresponding
property by testing after base change by affine schemes mapping into Yj×Y X×Y X,
we conclude by Lemma 87.9.4.
Let us prove that (5) implies (1). Let {Yj → Y } be as in (5). Then we have the
fibre product diagram ∐

Yj ×Y X //

��

X

��∐
Yj ×Y X ×Y X // X ×Y X

By assumption the left vertical arrow is quasi-compact or a closed immersion. It fol-
lows from Spaces, Lemma 65.5.6 that also the right vertical arrow is quasi-compact
or a closed immersion. □

87.31. Proper morphisms

0AM5 Here is the definition we will use.

Definition 87.31.1.0AM6 Let S be a scheme. Let f : Y → X be a morphism of formal
algebraic spaces over S. We say f is proper if f is representable by algebraic spaces
and is proper in the sense of Bootstrap, Definition 80.4.1.

It follows from the definitions that a proper morphism is of finite type.

Lemma 87.31.2.0ART Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. The following are equivalent

(1) f is proper,
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(2) for every scheme Z and morphism Z → Y the base change Z ×Y X → Z
of f is proper,

(3) for every affine scheme Z and every morphism Z → Y the base change
Z ×Y X → Z of f is proper,

(4) for every affine scheme Z and every morphism Z → Y the formal algebraic
space Z ×Y X is an algebraic space proper over Z,

(5) there exists a covering {Yj → Y } as in Definition 87.11.1 such that the
base change Yj ×Y X → Yj is proper for all j.

Proof. Omitted. □

Lemma 87.31.3.0GBT Proper morphisms of formal algebraic spaces are preserved by
base change.

Proof. This is an immediate consequence of Lemma 87.31.2 and transitivity of base
change. □

87.32. Formal algebraic spaces and fpqc coverings

0AQC This section is the analogue of Properties of Spaces, Section 66.17. Please read that
section first.

Lemma 87.32.1.0AQD Let S be a scheme. Let X be a formal algebraic space over S.
Then X satisfies the sheaf property for the fpqc topology.

Proof. The proof is identical to the proof of Properties of Spaces, Proposition
66.17.1. Since X is a sheaf for the Zariski topology it suffices to show the fol-
lowing. Given a surjective flat morphism of affines f : T ′ → T we have: X(T )
is the equalizer of the two maps X(T ′) → X(T ′ ×T T ′). See Topologies, Lemma
34.9.13.
Let a, b : T → X be two morphisms such that a ◦ f = b ◦ f . We have to show a = b.
Consider the fibre product

E = X ×∆X/S ,X×SX,(a,b) T.

By Lemma 87.11.2 the morphism ∆X/S is a representable monomorphism. Hence
E → T is a monomorphism of schemes. Our assumption that a ◦ f = b ◦ f implies
that T ′ → T factors (uniquely) through E. Consider the commutative diagram

T ′ ×T E //

��

E

��
T ′ //

:: ;;

T

Since the projection T ′×T E → T ′ is a monomorphism with a section we conclude it
is an isomorphism. Hence we conclude that E → T is an isomorphism by Descent,
Lemma 35.23.17. This means a = b as desired.
Next, let c : T ′ → X be a morphism such that the two compositions T ′ ×T T ′ →
T ′ → X are the same. We have to find a morphism a : T → X whose composition
with T ′ → T is c. Choose a formal affine scheme U and an étale morphism U → X
such that the image of |U | → |Xred| contains the image of |c| : |T ′| → |Xred|.
This is possible by Definition 87.11.1, Properties of Spaces, Lemma 66.4.6, the
fact that a finite union of formal affine algebraic spaces is a formal affine algebraic
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space, and the fact that |T ′| is quasi-compact (small argument omitted). The
morphism U → X is representable by schemes (Lemma 87.9.11) and separated
(Lemma 87.16.5). Thus

V = U ×X,c T ′ −→ T ′

is an étale and separated morphism of schemes. It is also surjective by our choice
of U → X (if you do not want to argue this you can replace U by a disjoint union
of formal affine algebraic spaces so that U → X is surjective everything else still
works as well). The fact that c ◦ pr0 = c ◦ pr1 means that we obtain a descent
datum on V/T ′/T (Descent, Definition 35.34.1) because

V ×T ′ (T ′ ×T T ′) = U ×X,c◦pr0 (T ′ ×T T ′)
= (T ′ ×T T ′)×c◦pr1,X U

= (T ′ ×T T ′)×T ′ V

The morphism V → T ′ is ind-quasi-affine by More on Morphisms, Lemma 37.66.8
(because étale morphisms are locally quasi-finite, see Morphisms, Lemma 29.36.6).
By More on Groupoids, Lemma 40.15.3 the descent datum is effective. Say W → T
is a morphism such that there is an isomorphism α : T ′×TW → V compatible with
the given descent datum on V and the canonical descent datum on T ′×T W . Then
W → T is surjective and étale (Descent, Lemmas 35.23.7 and 35.23.29). Consider
the composition

b′ : T ′ ×T W −→ V = U ×X,c T ′ −→ U

The two compositions b′ ◦ (pr0, 1), b′ ◦ (pr1, 1) : (T ′ ×T T ′)×T W → T ′ ×T W → U
agree by our choice of α and the corresponding property of c (computation omitted).
Hence b′ descends to a morphism b : W → U by Descent, Lemma 35.13.7. The
diagram

T ′ ×T W //

��

W
b
// U

��
T ′ c // X

is commutative. What this means is that we have proved the existence of a étale
locally on T , i.e., we have an a′ : W → X. However, since we have proved unique-
ness in the first paragraph, we find that this étale local solution satisfies the glueing
condition, i.e., we have pr∗

0a
′ = pr∗

1a
′ as elements of X(W ×T W ). Since X is an

étale sheaf we find an unique a ∈ X(T ) restricting to a′ on W . □

87.33. Maps out of affine formal schemes

0AQE We prove a few results that will be useful later. In the paper [Bha16] the reader
can find very general results of a similar nature.
Lemma 87.33.1.0AQF Let S be a scheme. Let A be a weakly admissible topological
S-algebra. Let X be an affine scheme over S. Then the natural map

MorS(Spec(A), X) −→ MorS(Spf(A), X)
is bijective.
Proof. If X is affine, say X = Spec(B), then we see from Lemma 87.9.10 that
morphisms Spf(A) → Spec(B) correspond to continuous S-algebra maps B → A
whereB has the discrete topology. These are just S-algebra maps, which correspond
to morphisms Spec(A)→ Spec(B). □
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Lemma 87.33.2.0AQG Let S be a scheme. Let A be a weakly admissible topological
S-algebra such that A/I is a local ring for some weak ideal of definition I ⊂ A. Let
X be a scheme over S. Then the natural map

MorS(Spec(A), X) −→ MorS(Spf(A), X)
is bijective.

Proof. Let φ : Spf(A) → X be a morphism. Since Spec(A/I) is local we see
that φ maps Spec(A/I) into an affine open U ⊂ X. However, this then implies
that Spec(A/J) maps into U for every ideal of definition J . Hence we may apply
Lemma 87.33.1 to see that φ comes from a morphism Spec(A) → X. This proves
surjectivity of the map. We omit the proof of injectivity. □

Lemma 87.33.3.0AQH Let S be a scheme. Let R be a complete local Noetherian S-
algebra. Let X be an algebraic space over S. Then the natural map

MorS(Spec(R), X) −→ MorS(Spf(R), X)
is bijective.

Proof. Let m be the maximal ideal of R. We have to show that
MorS(Spec(R), X) −→ lim MorS(Spec(R/mn), X)

is bijective for R as above.
Injectivity: Let x, x′ : Spec(R) → X be two morphisms mapping to the same
element in the right hand side. Consider the fibre product

T = Spec(R)×(x,x′),X×SX,∆ X

Then T is a scheme and T → Spec(R) is locally of finite type, monomorphism,
separated, and locally quasi-finite, see Morphisms of Spaces, Lemma 67.4.1. In
particular T is locally Noetherian, see Morphisms, Lemma 29.15.6. Let t ∈ T be
the unique point mapping to the closed point of Spec(R) which exists as x and
x′ agree over R/m. Then R → OT,t is a local ring map of Noetherian rings such
that R/mn → OT,t/mnOT,t is an isomorphism for all n (because x and x′ agree
over Spec(R/mn) for all n). Since OT,t maps injectively into its completion (see
Algebra, Lemma 10.51.4) we conclude that R = OT,t. Hence x and x′ agree over
R.
Surjectivity: Let (xn) be an element of the right hand side. Choose a scheme
U and a surjective étale morphism U → X. Denote x0 : Spec(k) → X the
morphism induced on the residue field k = R/m. The morphism of schemes
U×X,x0 Spec(k)→ Spec(k) is surjective étale. Thus U×X,x0 Spec(k) is a nonempty
disjoint union of spectra of finite separable field extensions of k, see Morphisms,
Lemma 29.36.7. Hence we can find a finite separable field extension k′/k and a
k′-point u0 : Spec(k′)→ U such that

Spec(k′)

��

u0
// U

��
Spec(k) x0 // X

commutes. Let R ⊂ R′ be the finite étale extension of Noetherian complete lo-
cal rings which induces k′/k on residue fields (see Algebra, Lemmas 10.153.7 and
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10.153.9). Denote x′
n the restriction of xn to Spec(R′/mnR′). By More on Mor-

phisms of Spaces, Lemma 76.16.8 we can find an element (u′
n) ∈ lim MorS(Spec(R′/mnR′), U)

mapping to (x′
n). By Lemma 87.33.2 the family (u′

n) comes from a unique mor-
phism u′ : Spec(R′) → U . Denote x′ : Spec(R′) → X the composition. Note that
R′ ⊗R R′ is a finite product of spectra of Noetherian complete local rings to which
our current discussion applies. Hence the diagram

Spec(R′ ⊗R R′) //

��

Spec(R′)

x′

��
Spec(R′) x′

// X

is commutative by the injectivity shown above and the fact that x′
n is the restriction

of xn which is defined over R/mn. Since {Spec(R′)→ Spec(R)} is an fppf covering
we conclude that x′ descends to a morphism x : Spec(R)→ X. We omit the proof
that xn is the restriction of x to Spec(R/mn). □

Lemma 87.33.4.0GBU Let S be a scheme. Let X be an algebraic space over S. Let
T ⊂ |X| be a closed subset such that X \ T → X is quasi-compact. Let R be a
complete local Noetherian S-algebra. Then an adic morphism p : Spf(R) → X/T

corresponds to a unique morphism g : Spec(R)→ X such that g−1(T ) = {mR}.

Proof. The statement makes sense because X/T is adic* by Lemma 87.20.8 (and
hence we’re allowed to use the terminology adic for morphisms, see Definition
87.23.2). Let p be given. By Lemma 87.33.3 we get a unique morphism g :
Spec(R) → X corresponding to the composition Spf(R) → X/T → X. Let Z ⊂ X
be the reduced induced closed subspace structure on T . The incusion morphism
Z → X corresponds to a morphism Z → X/T . Since p is adic it is representable by
algebraic spaces and we find

Spf(R)×X/T Z = Spf(R)×X Z

is an algebraic space endowed with a closed immersion to Spf(R). (Equality holds
because X/T → X is a monomorphism.) Thus this fibre product is equal to
Spec(R/J) for some ideal J ⊂ R wich contains mn0

R for some n0 ≥ 1. This im-
plies that Spec(R) ×X Z is a closed subscheme of Spec(R), say Spec(R) ×X Z =
Spec(R/I), whose intersection with Spec(R/mnR) for n ≥ n0 is equal to Spec(R/J).
In algebraic terms this says I + mnR = J + mnR = J for all n ≥ n0. By Krull’s
intersection theorem this implies I = J and we conclude. □

87.34. The small étale site of a formal algebraic space

0DE9 The motivation for the following definition comes from classical formal schemes: the
underlying topological space of a formal scheme (X,OX) is the underlying topolog-
ical space of the reduction Xred.
An important remark is the following. Suppose that X is an algebraic space with
reduction Xred (Properties of Spaces, Definition 66.12.5). Then we have
Xspaces,étale = Xred,spaces,étale, Xétale = Xred,étale, Xaffine,étale = Xred,affine,étale

by More on Morphisms of Spaces, Theorem 76.8.1 and Lemma 76.8.2. Therefore
the following definition does not conflict with the already existing notion in case
our formal algebraic space happens to be an algebraic space.
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Definition 87.34.1.0DEA Let S be a scheme. Let X be a formal algebraic space with
reduction Xred (Lemma 87.12.1).

(1) The small étale site Xétale of X is the site Xred,étale of Properties of
Spaces, Definition 66.18.1.

(2) The site Xspaces,étale is the site Xred,spaces,étale of Properties of Spaces,
Definition 66.18.2.

(3) The site Xaffine,étale is the site Xred,affine,étale of Properties of Spaces,
Lemma 66.18.6.

In Lemma 87.34.6 we will see that Xspaces,étale can be described by in terms of mor-
phisms of formal algebraic spaces which are representable by algebraic spaces and
étale. By Properties of Spaces, Lemmas 66.18.3 and 66.18.6 we have identifications
(87.34.1.1)0DEB Sh(Xétale) = Sh(Xspaces,étale) = Sh(Xaffine,étale)
We will call this the (small) étale topos of X.

Lemma 87.34.2.0DEC Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S.

(1) There is a continuous functor Yspaces,étale → Xspaces,étale which induces a
morphism of sites

fspaces,étale : Xspaces,étale → Yspaces,étale.

(2) The rule f 7→ fspaces,étale is compatible with compositions, in other words
(f ◦ g)spaces,étale = fspaces,étale ◦ gspaces,étale (see Sites, Definition 7.14.5).

(3) The morphism of topoi associated to fspaces,étale induces, via (87.34.1.1),
a morphism of topoi fsmall : Sh(Xétale) → Sh(Yétale) whose construction
is compatible with compositions.

Proof. The only point here is that f induces a morphism of reductions Xred → Yred
by Lemma 87.12.1. Hence this lemma is immediate from the corresponding lemma
for morphisms of algebraic spaces (Properties of Spaces, Lemma 66.18.8). □

If the morphism of formal algebraic spaces X → Y is étale, then the morphism of
topoi Sh(Xétale)→ Sh(Yétale) is a localization. Here is a statement.

Lemma 87.34.3.0DED Let S be a scheme, and let f : X → Y be a morphism of formal
algebraic spaces over S. Assume f is representable by algebraic spaces and étale.
In this case there is a cocontinuous functor j : Xétale → Yétale. The morphism
of topoi fsmall is the morphism of topoi associated to j, see Sites, Lemma 7.21.1.
Moreover, j is continuous as well, hence Sites, Lemma 7.21.5 applies.

Proof. This will follow immediately from the case of algebraic spaces (Properties of
Spaces, Lemma 66.18.11) if we can show that the induced morphism Xred → Yred is
étale. Observe that X×Y Yred is an algebraic space, étale over the reduced algebraic
space Yred, and hence reduced itself (by our definition of reduced algebraic spaces
in Properties of Spaces, Section 66.7. Hence Xred = X ×Y Yred as desired. □

Lemma 87.34.4.0DEE Let S be a scheme. Let X be an affine formal algebraic space over
S. Then Xaffine,étale is equivalent to the category whose objects are morphisms
φ : U → X of formal algebraic spaces such that

(1) U is an affine formal algebraic space,
(2) φ is representable by algebraic spaces and étale.
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Proof. Denote C the category introduced in the lemma. Observe that for φ : U → X
in C the morphism φ is representable (by schemes) and affine, see Lemma 87.19.7.
Recall that Xaffine,étale = Xred,affine,étale. Hence we can define a functor

C −→ Xaffine,étale, (U → X) 7−→ U ×X Xred

because U ×X Xred is an affine scheme.
To finish the proof we will construct a quasi-inverse. Namely, write X = colimXλ

as in Definition 87.9.1. For each λ we have Xred ⊂ Xλ is a thickening. Thus for
every λ we have an equivalence

Xred,affine,étale = Xλ,affine,étale

for example by More on Algebra, Lemma 15.11.2. Hence if Ured → Xred is an étale
morphism with Ured affine, then we obtain a system of étale morphisms Uλ → Xλ

of affine schemes compatible with the transition morphisms in the system defining
X. Hence we can take

U = colimUλ

as our affine formal algebraic space over X. The construction gives that U×XXλ =
Uλ. This shows that U → X is representable and étale. We omit the verification
that the constructions are mutually inverse to each other. □

Lemma 87.34.5.0DEF Let S be a scheme. Let X be an affine formal algebraic space
over S. Assume X is McQuillan, i.e., equal to Spf(A) for some weakly admissible
topological S-algebra A. Then (Xaffine,étale)opp is equivalent to the category whose

(1) objects are A-algebras of the form B∧ = limB/JB where A → B is an
étale ring map and J runs over the weak ideals of definition of A, and

(2) morphisms are continuous A-algebra homomorphisms.

Proof. Combine Lemmas 87.34.4 and 87.19.13. □

Lemma 87.34.6.0DEG Let S be a scheme. Let X be a formal algebraic space over
S. Then Xspaces,étale is equivalent to the category whose objects are morphisms
φ : U → X of formal algebraic spaces such that φ is representable by algebraic
spaces and étale.

Proof. Denote C the category introduced in the lemma. Recall that Xspaces,étale =
Xred,spaces,étale. Hence we can define a functor

C −→ Xspaces,étale, (U → X) 7−→ U ×X Xred

because U ×X Xred is an algebraic space étale over Xred.
To finish the proof we will construct a quasi-inverse. Choose an object ψ : V → Xred

of Xred,spaces,étale. Consider the functor UV,ψ : (Sch/S)fppf → Sets given by
UV,ψ(T ) = {(a, b) | a : T → X, b : T ×a,X Xred → V, ψ ◦ b = a|T×a,XXred}

We claim that the transformation UV,ψ → X, (a, b) 7→ a defines an object of the
category C. First, let’s prove that UV,ψ is a formal algebraic space. Observe that
UV,ψ is a sheaf for the fppf topology (some details omitted). Next, suppose that
Xi → X is an étale covering by affine formal algebraic spaces as in Definition
87.11.1. Set Vi = V ×Xred Xi,red and denote ψi : Vi → Xi,red the projection. Then
we have

UV,ψ ×X Xi = UVi,ψi
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by a formal argument because Xi,red = Xi ×X Xred (as Xi → X is representable
by algebraic spaces and étale). Hence it suffices to show that UVi,ψi is an affine
formal algebraic space, because then we will have a covering UVi,ψi → UV,ψ as in
Definition 87.11.1. On the other hand, we have seen in the proof of Lemma 87.34.3
that ψi : Vi → Xi is the base change of a representable and étale morphism Ui → Xi

of affine formal algebraic spaces. Then it is not hard to see that Ui = UVi,ψi as
desired.
We omit the verification that UV,ψ → X is representable by algebraic spaces and
étale. Thus we obtain our functor (V, ψ) 7→ (UV,ψ → X) in the other direction. We
omit the verification that the constructions are mutually inverse to each other. □

Lemma 87.34.7.0DEH Let S be a scheme. Let X be a formal algebraic space over
S. Then Xaffine,étale is equivalent to the category whose objects are morphisms
φ : U → X of formal algebraic spaces such that

(1) U is an affine formal algebraic space,
(2) φ is representable by algebraic spaces and étale.

Proof. This follows by combining Lemmas 87.34.6 and 87.18.3. □

87.35. The structure sheaf

0DEI Let X be a formal algebraic space. A structure sheaf for X is a sheaf of topological
rings OX on the étale site Xétale (which we defined in Section 87.34) such that

OX(Ured) = lim Γ(Uλ,OUλ)
as topological rings whenever

(1) φ : U → X is a morphism of formal algebraic spaces,
(2) U is an affine formal algebraic space,
(3) φ is representable by algebraic spaces and étale,
(4) Ured → Xred is the corresponding affine object of Xétale, see Lemma

87.34.7,
(5) U = colimUλ is a colimit representation for U as in Definition 87.9.1.

Structure sheaves exist but may behave in unexpected manner.

Lemma 87.35.1.0DEJ Every formal algebraic space has a structure sheaf.

Proof. Let S be a scheme. Let X be a formal algebraic space over S. By (87.34.1.1)
it suffices to construct OX as a sheaf of topological rings on Xaffine,étale. Denote
C the category whose objects are morphisms φ : U → X of formal algebraic spaces
such that U is an affine formal algebraic space and φ is representable by algebraic
spaces and étale. By Lemma 87.34.7 the functor U 7→ Ured is an equivalence of
categories C → Xaffine,étale. Hence by the rule given above the lemma, we already
have OX as a presheaf of topological rings on Xaffine,étale. Thus it suffices to check
the sheaf condition.
By definition of Xaffine,étale a covering corresponds to a finite family {gi : Ui →
U}i=1,...,n of morphisms of C such that {Ui,red → Ured} is an étale covering. The
morphisms gi are representably by algebraic spaces (Lemma 87.19.3) hence affine
(Lemma 87.19.7). Then gi is étale (follows formally from Properties of Spaces,
Lemma 66.16.6 as Ui and U are étale over X in the sense of Bootstrap, Section
80.4). Finally, write U = colimUλ as in Definition 87.9.1.

https://stacks.math.columbia.edu/tag/0DEH
https://stacks.math.columbia.edu/tag/0DEJ


87.35. THE STRUCTURE SHEAF 6359

With these preparations out of the way, we can prove the sheaf property as follows.
For each λ we set Ui,λ = Ui ×U Uλ and Uij,λ = (Ui ×U Uj) ×U Uλ. By the above,
these are affine schemes, {Ui,λ → Uλ} is an étale covering, and Uij,λ = Ui,λ×UλUj,λ.
Also we have Ui = colimUi,λ and Ui ×U Uj = colimUij,λ. For each λ we have an
exact sequence

0→ Γ(Uλ,OUλ)→
∏

i
Γ(Ui,λ,OUi,λ)→

∏
i,j

Γ(Uij,λ,OUij,λ)

as we have the sheaf condition for the structure sheaf on Uλ and the étale topology
(see Étale Cohomology, Proposition 59.17.1). Since limits commute with limits, the
inverse limit of these exact sequences is an exact sequence

0→ lim Γ(Uλ,OUλ)→
∏

i
lim Γ(Ui,λ,OUi,λ)→

∏
i,j

lim Γ(Uij,λ,OUij,λ)

which exactly means that

0→ OX(Ured)→
∏

i
OX(Ui,red)→

∏
i,j
OX((Ui ×U Uj)red)

is exact and hence the sheaf propery holds as desired. □

Remark 87.35.2.0DEK The structure sheaf does not always have “enough sections”. In
Examples, Section 110.74 we have seen that there exist affine formal algebraic
spaces which aren’t McQuillan and there are even examples whose points are not
separated by regular functions.

In the next lemma we prove that the structure sheaf on a countably indexed affine
formal scheme has vanishing higher cohomology. For non-countably indexed ones,
presumably this generally doesn’t hold.

Lemma 87.35.3.0DEL If X is a countably indexed affine formal algebraic space, then we
have Hn(Xétale,OX) = 0 for n > 0.

Proof. We may work with Xaffine,étale as this gives the same topos. We will apply
Cohomology on Sites, Lemma 21.10.9 to show we have vanishing. SinceXaffine,étale

has finite disjoint unions, this reduces us to the Čech complex of a covering given
by a single arrow {Ured → Vred} in Xaffine,étale = Xred,affine,étale (see Étale
Cohomology, Lemma 59.22.1). Thus we have to show that

0→ OX(Vred)→ OX(Ured)→ OX(Ured ×Vred Ured)→ . . .

is exact. We will do this below in the case Vred = Xred. The general case is proven
in exactly the same way.
Recall that X = Spf(A) where A is a weakly admissible topological ring having a
countable fundamental system of weak ideals of definition. We have seen in Lemmas
87.34.4 and 87.34.5 that the object Ured in Xaffine,étale corresponds to a morphism
U → X of affine formal algebraic spaces which is representable by algebraic space
and étale and U = Spf(B∧) where B is an étale A-algebra. By our rule for the
structure sheaf we see

OX(Ured) = B∧

We recall that B∧ = limB/JB where the limit is over weak ideals of definition
J ⊂ A. Working through the definitions we obtain

OX(Ured ×Xred Ured) = (B ⊗A B)∧
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and so on. Since U → X is a covering the map A→ B is faithfully flat, see Lemma
87.19.14. Hence the complex

0→ A→ B → B ⊗A B → B ⊗A B ⊗A B → . . .

is universally exact, see Descent, Lemma 35.3.6. Our goal is to show that
Hn(0→ A∧ → B∧ → (B ⊗A B)∧ → (B ⊗A B ⊗A B)∧ → . . .)

is zero for n > 0. To see what is going on, let’s split our exact complex (before
completion) into short exact sequences

0→ A→ B →M1 → 0, 0→Mi → B⊗Ai+1 →Mi+1 → 0
By what we said above, these are universally exact short exact sequences. Hence
JMi = Mi∩J(B⊗Ai+1) for every ideal J of A. In particular, the topology on Mi as
a submodule of B⊗Ai+1 is the same as the topology on Mi as a quotient module of
B⊗Ai. Therefore, since there exists a countable fundamental system of weak ideals
of definition in A, the sequences

0→ A∧ → B∧ →M∧
1 → 0, 0→M∧

i → (B⊗Ai+1)∧ →M∧
i+1 → 0

remain exact by Lemma 87.4.5. This proves the lemma. □

Remark 87.35.4.0DEM Even if the structure sheaf has good properties, this does not
mean there is a good theory of quasi-coherent modules. For example, in Examples,
Section 110.13 we have seen that for almost any Noetherian affine formal algebraic
spaces the most natural notion of a quasi-coherent module leads to a category of
modules which is not abelian.

87.36. Colimits of formal algebraic spaces

0GVL In this section we generalize the result of Section 87.13 to the case of systems
of morphisms of formal algebraic spaces. We remark that in the lemmas below
the condition “fλµ : Xλ → Xµ is a closed immersion inducing an isomorphism
Xλ,red → Xµ,red” can be reformulated as “fλµ is representable and a thickening”.

Lemma 87.36.1.0GVM Let S be a scheme. Suppose given a directed set Λ and a system of
affine formal algebraic spaces (Xλ, fλµ) over Λ where each fλµ : Xλ → Xµ is a closed
immersion inducing an isomorphism Xλ,red → Xµ,red. Then X = colimλ∈Λ Xλ is
an affine formal algebraic space over S.

Proof. We may write Xλ = colimω∈Ωλ Xλ,ω as the colimit of affine schemes over a
directed set Ωλ such that the transition morphisms Xλ,ω → Xλ,ω′ are thickenings.
For each λ, µ ∈ Λ and ω ∈ Ωλ, with µ ≥ λ there exists an ω′ ∈ Ωµ such that the
morphism Xλ,ω → Xµ factors through Xµ,ω′ , see Lemma 87.9.4. Then the mor-
phism Xλ,ω → Xµ,ω′ is a closed immersion inducing an isomorphism on reductions
and hence a thickening. Set Ω =

∐
λ∈Λ Ωλ and say (λ, ω) ≤ (µ, ω′) if and only if

λ ≤ µ and Xλ,ω → Xµ factors through Xµ,ω′ . It follows from the above that Ω is
a directed set and that X = colimλ∈Λ Xλ = colim(λ,ω)∈Ω Xλ,ω. This finishes the
proof. □

Lemma 87.36.2.0GVN Let S be a scheme. Suppose given a directed set Λ and a system
of formal algebraic spaces (Xλ, fλµ) over Λ where each fλµ : Xλ → Xµ is a closed
immersion inducing an isomorphism Xλ,red → Xµ,red. Then X = colimλ∈Λ Xλ is a
formal algebraic space over S.
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Proof. Since we take the colimit in the category of fppf sheaves, we see that X is
a sheaf. Choose and fix λ ∈ Λ. Choose a covering {Xi,λ → Xλ} as in Definition
87.11.1. In particular, we see that {Xi,λ,red → Xλ,red} is an étale covering by affine
schemes. For each µ ≥ λ there exists a cartesian diagram

Xi,λ
//

��

Xi,µ

��
Xλ

// Xµ

with étale vertical arrows. Namely, the étale morphism Xi,λ,red → Xλ,red = Xµ,red

corresponds to an étale morphism Xi,µ → Xµ of formal algebraic spaces with Xi,µ

an affine formal algebraic space, see Lemma 87.34.4. The same lemma implies the
base change of Xi,µ to Xλ agrees with Xi,λ. It also follows that Xi,µ = Xµ×Xµ′Xi,µ′

for µ′ ≥ µ ≥ λ. Set Xi = colimXi,µ. Then Xi,µ = Xi ×X Xµ (as functors). Since
any morphism T → X = colimXµ from an affine (or quasi-compact) scheme T maps
into Xµ for some µ, we see conclude that colimXi,µ → colimXµ is étale. Thus, if we
can show that colimXi,µ is an affine formal algebraic space, then the lemma holds.
Note that the morphisms Xi,µ → Xi,µ′ are closed immersions as a base change of
the closed immersion Xµ → Xµ′ . Finally, the morphism Xi,µ,red → Xi,µ′,red is an
isomorphism as Xµ,red → Xµ′,red is an isomorphism. Hence this reduces us to the
case discussed in Lemma 87.36.1. □

87.37. Recompletion

0GVP In this section we define the completion of a formal algebraic space along a closed
subset of its reduction. It is the natural generalization of Section 87.14.

Lemma 87.37.1.0GVQ Let S be a scheme. Let X be an affine formal algebraic space
over S. Let T ⊂ |Xred| be a closed subset. Then the functor

X/T : (Sch/S)fppf −→ Sets, U 7−→ {f : U → X : f(|U |) ⊂ T}
is an affine formal algebraic space.

Proof. Write X = colimXλ as in Definition 87.9.1. Then Xλ,red = Xred and we
may and do view T as a closed subset of |Xλ| = |Xλ,red|. By Lemma 87.14.1 for
each λ the completion (Xλ)/T is an affine formal algebraic space. The transition
morphisms (Xλ)/T → (Xµ)/T are closed immersions as base changes of the transi-
tion morphisms Xλ → Xµ, see Lemma 87.14.4. Also the morphisms ((Xλ)/T )red →
((Xµ)/T )red are isomorphisms by Lemma 87.14.5. Since X/T = colim(Xλ)/T we
conclude by Lemma 87.36.1. □

Lemma 87.37.2.0GVR Let S be a scheme. Let X be a formal algebraic space over S.
Let T ⊂ |Xred| be a closed subset. Then the functor

X/T : (Sch/S)fppf −→ Sets, U 7−→ {f : U → X | f(|U |) ⊂ T}
is a formal algebraic space.

Proof. The functor X/T is an fppf sheaf since if {Ui → U} is an fppf covering, then∐
|Ui| → |U | is surjective.

Choose a covering {gi : Xi → X}i∈I as in Definition 87.11.1. The morphisms
Xi ×X X/T → X/T are étale (see Spaces, Lemma 65.5.5) and the map

∐
Xi ×X
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X/T → X/T is a surjection of sheaves. Thus it suffices to prove that X/T ×X Xi

is an affine formal algebraic space. A U -valued point of Xi ×X X/T is a morphism
U → Xi whose image is contained in the closed subset |gi,red|−1(T ) ⊂ |Xi,red|.
Thus this follows from Lemma 87.37.1. □

Definition 87.37.3.0GVS Let S be a scheme. Let X be a formal algebraic space over
S. Let T ⊂ |Xred| be a closed subset. The formal algebraic space X/T of Lemma
87.14.2 is called the completion of X along T .

Let f : X → X ′ be a morphism of formal algebraic spaces over a scheme S. Suppose
that T ⊂ |Xred| and T ′ ⊂ |X ′

red| are closed subsets such that |fred|(T ) ⊂ T ′. Then
it is clear that f defines a morphism of formal algebraic spaces

X/T −→ X ′
/T ′

between the completions.

Lemma 87.37.4.0GVT Let S be a scheme. Let f : X ′ → X be a morphism of formal al-
gebraic spaces over S. Let T ⊂ |Xred| be a closed subset and let T ′ = |fred|−1(T ) ⊂
|X ′

red|. Then
X ′
/T ′

//

��

X ′

f

��
X/T

// X

is a cartesian diagram of formal algebraic spaces over S.

Proof. Namely, observe that the horizontal arrows are monomorphisms by con-
struction. Thus it suffices to show that a morphism g : U → X ′ from a scheme U
defines a point of X ′

/T if and only if f ◦ g defines a point of X/T . In other words,
we have to show that g(U) is contained in T ′ ⊂ |X ′

red| if and only if (f ◦ g)(U) is
contained in T ⊂ |Xred|. This follows immediately from our choice of T ′ as the
inverse image of T . □

Lemma 87.37.5.0GVU Let S be a scheme. Let X be a formal algebraic space over S.
Let T ⊂ |Xred| be a closed subset. The reduction (X/T )red of the completion X/T

of X along T is the reduced induced closed subspace Z of Xred corresponding to
T .

Proof. It follows from Lemma 87.12.1, Properties of Spaces, Definition 66.12.5
(which uses Properties of Spaces, Lemma 66.12.3 to construct Z), and the defi-
nition of X/T that Z and (X/T )red are reduced algebraic spaces characterized the
same mapping property: a morphism g : Y → X whose source is a reduced algebraic
space factors through them if and only if |Y | maps into T ⊂ |X|. □

Lemma 87.37.6.0GVV Let S be a scheme. Let X be an affine formal algebraic space
over S. Let T ⊂ Xred be a closed subset and let X/T be the formal completion of
X along T . Then

(1) X/T is an affine formal algebraic space,
(2) if X is McQuillan, then X/T is McQuillan,
(3) if |Xred| \ T is quasi-compact and X is countably indexed, then X/T is

countably indexed,
(4) if |Xred| \ T is quasi-compact and X is adic*, then X/T is adic*,

https://stacks.math.columbia.edu/tag/0GVS
https://stacks.math.columbia.edu/tag/0GVT
https://stacks.math.columbia.edu/tag/0GVU
https://stacks.math.columbia.edu/tag/0GVV
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(5) if X is Noetherian, then X/T is Noetherian.

Proof. Part (1) is Lemma 87.37.1. If X is McQuillan, then X = Spf(A) for some
weakly admissible topological ring A. Then X/T → X → Spec(A) satisfies property
(2) of Lemma 87.9.6 and hence X/T is McQuillan, see Definition 87.9.7.
AssumeX and T are as in (3). ThenX = Spf(A) where A has a fundamental system
A ⊃ I1 ⊃ I2 ⊃ I3 ⊃ . . . of weak ideals of definition, see Lemma 87.10.4. By Algebra,
Lemma 10.29.1 we can find a finitely generated ideal J = (f1, . . . , fr) ⊂ A/I1 such
that T is cut out by J inside Spec(A/I1) = |Xred|. Choose fi ∈ A lifting f i. If
Z = Spec(B) is an affine scheme and g : Z → X is a morphism with g(Z) ⊂ T
(set theoretically), then g♯ : A→ B factors through A/In for some n and g♯(fi) is
nilpotent in B for each i. Thus Jm,n = (f1, . . . , fr)m + In maps to zero in B for
some n,m ≥ 1. It follows that X/T is the formal spectrum of limn,mA/Jm,n and
hence countably indexed. This proves (3).
Proof of (4). Here the argument is the same as in (3). However, here we may choose
In = In for some finitely generated ideal I ⊂ A. Then it is clear that X/T is the
formal spectrum of limA/Jn where J = (f1, . . . , fr) + I. Some details omitted.
Proof of (5). In this case Xred is the spectrum of a Noetherian ring and hence the
assumption that |Xred| \T is quasi-compact is satisfied. Thus as in the proof of (4)
we see that X/T is the spectrum of limA/Jn which is a Noetherian adic topological
ring, see Algebra, Lemma 10.97.6. □

Lemma 87.37.7.0GVW Let S be a scheme. Let X be a formal algebraic space over S.
Let T ⊂ Xred be a closed subset and let X/T be the formal completion of X along
T . Then

(1) if Xred \ T → Xred is quasi-compact and X is locally countably indexed,
then X/T is locally countably indexed,

(2) if Xred \ T → Xred is quasi-compact and X is locally adic*, then X/T is
locally adic*, and

(3) if X is locally Noetherian, then X/T is locally Noetherian.

Proof. Choose a covering {Xi → X} as in Definition 87.11.1. Let Ti ⊂ Xi,red be
the inverse image of T . We have Xi ×X X/T = (Xi)/Ti (Lemma 87.37.4). Hence
{(Xi)/Ti → X/T } is a covering as in Definition 87.11.1. Moreover, if Xred \ T →
Xred is quasi-compact, so is Xi,red \ Ti → Xi,red and if X is locally countably
indexed, or locally adic*, pr locally Noetherian, the is Xi is countably index, or
adic*, or Noetherian. Thus the lemma follows from the affine case which is Lemma
87.37.6. □

87.38. Completion along a closed subspace

0GXT This section is the analgue of Section 87.14 for completions with respect to a closed
subspace.

Definition 87.38.1.0GXU Let S be a scheme. Let X be an algebraic space over S.
Let Z ⊂ X be a closed subspace and denote Zn ⊂ X the nth order infinitesimal
neighbourhood. The formal algebraic space

X∧
Z = colimZn

(see Lemma 87.36.2) is called the completion of X along Z.

https://stacks.math.columbia.edu/tag/0GVW
https://stacks.math.columbia.edu/tag/0GXU
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Observe that if T = |Z| then there is a canonical morphism X∧
Z → X/T comparing

the completions along Z and T (Section 87.14) which need not be an isomorphism.
Let f : X → X ′ be a morphism of algebraic spaces over a scheme S. Suppose that
Z ⊂ X and Z ′ ⊂ X ′ are closed subspaces such that f |Z maps Z into Z ′ inducing a
morphism Z → Z ′. Then it is clear that f defines a morphism of formal algebraic
spaces

X∧
Z −→ (X ′)∧

Z′

between the completions.

Lemma 87.38.2.0GXV Let S be a scheme. Let f : X ′ → X be a morphism of algebraic
spaces over S. Let Z ⊂ X be a closed subspace and let Z ′ = f−1(Z) = X ′ ×X Z.
Then

(X ′)∧
Z′ //

��

X ′

f

��
X∧
Z

// X

is a cartesian diagram of sheaves. In particular, the morphism (X ′)∧
Z′ → X∧

Z is
representable by algebraic spaces.

Proof. Namely, suppose that Y → X is a morphism from a scheme into X such that
Y → X factors through Z. Then Y ×X X ′ → X is a morphism of algebraic spaces
such that Y ×X X ′ → X ′ factors through Z ′. Since Z ′

n = X ′ ×X Zn for all n ≥ 1
the same is true for the infinitesimal neighbourhoods. Hence the cartesian square
of functors follows from the formulas X∧

Z = colimZn and (X ′)∧
Z′ = colimZ ′

n. □

Lemma 87.38.3.0GXW Let S be a scheme. Let X be an algebraic space over S. Let
Z ⊂ X be a closed subspace. The reduction (X∧

Z )red of the completion X∧
Z of X

along Z is Zred.

Proof. Omitted. □

Lemma 87.38.4.0GXX Let S be a scheme. Let X = Spec(A) be an affine scheme over S.
Let Z ⊂ X be a closed subscheme. Let X∧

Z be the formal completion of X along
Z.

(1) The affine formal algebraic space X∧
Z is weakly adic.

(2) If Z → X is of finite presentation, then X∧
Z is adic*.

(3) If Z = V (I) for some finitely generated ideal I ⊂ A, then X∧
Z = Spf(A∧)

where A∧ is the I-adic completion of A.
(4) If X is Noetherian, then X∧

Z is Noetherian.

Proof. Omitted. □

Lemma 87.38.5.0GXY Let S be a scheme. Let X be an algebraic space over S. Let
Z ⊂ X be a closed subspace. Let X∧

Z be the formal completion of X along Z.
(1) The formal algebraic space X∧

Z is locally weakly adic.
(2) If Z → X is of finite presentation, then X∧

Z is locally adic*.
(3) If X is locally Noetherian, then XZ is locally Noetherian.

Proof. Omitted. □

https://stacks.math.columbia.edu/tag/0GXV
https://stacks.math.columbia.edu/tag/0GXW
https://stacks.math.columbia.edu/tag/0GXX
https://stacks.math.columbia.edu/tag/0GXY
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CHAPTER 88

Algebraization of Formal Spaces

0AM7 88.1. Introduction

0AM8 The main goal of this chapter is to prove Artin’s theorem on dilatations, see Theo-
rem 88.29.1; the result on contractions will be discussed in Artin’s Axioms, Section
98.27. Both results use some material on formal algebraic spaces, hence in the
middle part of this chapter, we continue the discussion of formal algebraic spaces
from the previous chapter, see Formal Spaces, Section 87.1. The first part of this
chapter is dedicated to algebraic preliminaries, mostly dealing with algebraization
of rig-étale algebras.

Let A be a Noetherian ring and let I ⊂ A be an ideal. In the first part of this chapter
(Sections 88.2 – 88.10) we discuss the category of I-adically complete algebras
B topologically of finite type over a Noetherian ring A. It is shown that B =
A{x1, . . . , xn}/J for some (closed) ideal J in the restricted power series ring (where
A is endowed with the I-adic topology). We show there is a good notion of a naive
cotangent complex NL∧

B/A. If some power of I annihilates NL∧
B/A, then we say B

is a rig-étale algebra over (A, I); there is a similar notion of rig-smooth algebras.
If A is a G-ring, then we can show, using Popescu’s theorem, that any rig-smooth
algebra B over (A, I) is the completion of a finite type A-algebra; informally we say
that we can “algebraize” B. However, the main result of the first part is that any
rig-étale algebra B over (A, I) can be algebraized, see Lemma 88.10.2. One thing
to note here is that we prove this without assuming the ring A is a G-ring.

Many of the results discussed in the first part can be found in the paper [Elk73].
Other general references for this part are [DG67], [Abb10], and [FK].

In the second part of this chapter (Sections 88.12 – 88.24) we talk about types of
morphisms of formal algebraic spaces in a reasonable level of generality (mostly for
locally Noetherian formal algebraic spaces). The most interesting of these is the
notion of a “formal modification” in the last section. We carefully check that our
definition agrees with Artin’s definition in [Art70].

Finally, in the third and last part of this chapter (Sections 88.25 – 88.30) we prove
the main theorem and we give a few applications. In fact, we deduce Artin’s
theorem from a stronger result, namely, Theorem 88.27.4. This theorem says very
roughly: if f : X → X′ is a rig-étale morphism and X′ is the formal completion of
a locally Noetherian algebraic space, then so is X. In Artin’s work the morphism f
is assumed proper and rig-surjective.

88.2. Two categories

0AL2

6367
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Let A be a ring and let I ⊂ A be an ideal. In this section ∧ will mean I-adic
completion. Set An = A/In so that the I-adic completion of A is A∧ = limAn.
Let C be the category

(88.2.0.1)0AL3 C =


inverse systems . . .→ B3 → B2 → B1
where Bn is a finite type An-algebra,
Bn+1 → Bn is an An+1-algebra map
which induces Bn+1/I

nBn+1 ∼= Bn


Morphisms in C are given by systems of homomorphisms. Let C′ be the category

(88.2.0.2)0AL4 C′ =
{
A-algebras B which are I-adically complete
such that B/IB is of finite type over A/I

}
Morphisms in C′ are A-algebra maps. There is a functor

(88.2.0.3)0AJN C′ −→ C, B 7−→ (B/InB)

Indeed, since B/IB is of finite type over A/I the ring maps An = A/In → B/InB
are of finite type by Algebra, Lemma 10.126.8.

Lemma 88.2.1.0AJP Let A be a ring and let I ⊂ A be a finitely generated ideal. The
functor

C −→ C′, (Bn) 7−→ B = limBn

is a quasi-inverse to (88.2.0.3). The completions A[x1, . . . , xr]∧ are in C′ and any
object of C′ is of the form

B = A[x1, . . . , xr]∧/J
for some ideal J ⊂ A[x1, . . . , xr]∧.

Proof. Let (Bn) be an object of C. By Algebra, Lemma 10.98.2 we see that B =
limBn is I-adically complete and B/InB = Bn. Hence we see that B is an object
of C′ and that we can recover the object (Bn) by taking the quotients. Conversely,
if B is an object of C′, then B = limB/InB by assumption. Thus B 7→ (B/InB)
is a quasi-inverse to the functor of the lemma.

Since A[x1, . . . , xr]∧ = limAn[x1, . . . , xr] it is an object of C′ by the first statement
of the lemma. Finally, let B be an object of C′. Choose b1, . . . , br ∈ B whose
images in B/IB generate B/IB as an algebra over A/I. Since B is I-adically
complete, the A-algebra map A[x1, . . . , xr] → B, xi 7→ bi extends to an A-algebra
map A[x1, . . . , xr]∧ → B. To finish the proof we have to show this map is surjec-
tive which follows from Algebra, Lemma 10.96.1 as our map A[x1, . . . , xr] → B is
surjective modulo I and as B = B∧. □

We warn the reader that, in case A is not Noetherian, the quotient of an object of
C′ may not be an object of C′. See Examples, Lemma 110.8.1. Next we show this
does not happen when A is Noetherian.

Lemma 88.2.2.0AJQ [GD60, Proposition
7.5.5]

Let A be a Noetherian ring and let I ⊂ A be an ideal. Then
(1) every object of the category C′ (88.2.0.2) is Noetherian,
(2) if B ∈ Ob(C′) and J ⊂ B is an ideal, then B/J is an object of C′,
(3) for a finite type A-algebra C the I-adic completion C∧ is in C′,
(4) in particular the completion A[x1, . . . , xr]∧ is in C′.

https://stacks.math.columbia.edu/tag/0AJP
https://stacks.math.columbia.edu/tag/0AJQ
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Proof. Part (4) follows from Algebra, Lemma 10.97.6 as A[x1, . . . , xr] is Noetherian
(Algebra, Lemma 10.31.1). To see (1) by Lemma 88.2.1 we reduce to the case of
the completion of the polynomial ring which we just proved. Part (2) follows from
Algebra, Lemma 10.97.1 which tells us that ever finite B-module is IB-adically
complete. Part (3) follows in the same manner as part (4). □

Remark 88.2.3 (Base change).0AL5 Let φ : A1 → A2 be a ring map and let Ii ⊂ Ai
be ideals such that φ(Ic1) ⊂ I2 for some c ≥ 1. This induces ring maps A1,cn =
A1/I

cn
1 → A2/I

n
2 = A2,n for all n ≥ 1. Let Ci be the category (88.2.0.1) for (Ai, Ii).

There is a base change functor

(88.2.3.1)0AJZ C1 −→ C2, (Bn) 7−→ (Bcn ⊗A1,cn A2,n)

Let C′
i be the category (88.2.0.2) for (Ai, Ii). If I2 is finitely generated, then there

is a base change functor

(88.2.3.2)0AK0 C′
1 −→ C′

2, B 7−→ (B ⊗A1 A2)∧

because in this case the completion is complete (Algebra, Lemma 10.96.3). If both
I1 and I2 are finitely generated, then the two base change functors agree via the
functors (88.2.0.3) which are equivalences by Lemma 88.2.1.

Remark 88.2.4 (Base change by closed immersion).0AL6 Let A be a Noetherian ring
and I ⊂ A an ideal. Let a ⊂ A be an ideal. Denote Ā = A/a. Let Ī ⊂ Ā be
an ideal such that IcĀ ⊂ Ī and Īd ⊂ IĀ for some c, d ≥ 1. In this case the base
change functor (88.2.3.2) for (A, I) to (Ā, Ī) is given by B 7→ B̄ = B/aB. Namely,
we have

(88.2.4.1)0AK1 B̄ = (B ⊗A Ā)∧ = (B/aB)∧ = B/aB

the last equality because any finite B-module is I-adically complete by Algebra,
Lemma 10.97.1 and if annihilated by a also Ī-adically complete by Algebra, Lemma
10.96.9.

88.3. A naive cotangent complex

0AJL Let A be a Noetherian ring and let I ⊂ A be a ideal. Let B be an A-algebra which
is I-adically complete such that A/I → B/IB is of finite type, i.e., an object of
(88.2.0.2). By Lemma 88.2.2 we can write

B = A[x1, . . . , xr]∧/J

for some finitely generated ideal J . For a choice of presentation as above we define
the naive cotangent complex in this setting by the formula

(88.3.0.1)0AJR NL∧
B/A = (J/J2 −→

⊕
Bdxi)

with terms sitting in degrees −1 and 0 where the map sends the residue class of
g ∈ J to the differential dg =

∑
(∂g/∂xi)dxi. Here the partial derivative is taken

by thinking of g as a power series. The following lemma shows that NL∧
B/A is well

defined up to homotopy.

Lemma 88.3.1.0GAE Let A be a Noetherian ring and let I ⊂ A be a ideal. Let B be an
object of (88.2.0.2). The naive cotangent complex NL∧

B/A is well defined in K(B).

https://stacks.math.columbia.edu/tag/0AL5
https://stacks.math.columbia.edu/tag/0AL6
https://stacks.math.columbia.edu/tag/0GAE
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Proof. The lemma signifies that given a second presentation B = A[y1, . . . , ys]∧/K
the complexes of B-modules

(J/J2 → Bdxi) and (K/K2 →
⊕

Bdyj)

are homotopy equivalent. To see this, we can argue exactly as in the proof of
Algebra, Lemma 10.134.2.

Step 1. If we choose gi(y1, . . . , ys) ∈ A[y1, . . . , ys]∧ mapping to the image of xi in
B, then we obtain a (unique) continuous A-algebra homomorphism

A[x1, . . . , xr]∧ → A[y1, . . . , ys]∧, xi 7→ gi(y1, . . . , ys)

compatible with the given surjections to B. Such a map is called a morphism of
presentations. It induces a map from J into K and hence induces a B-module map
J/J2 → K/K2. Sending dxi to

∑
(∂gi/∂yj)dyj we obtain a map of complexes

(J/J2 →
⊕

Bdxi) −→ (K/K2 →
⊕

Bdyj)

Of course we can do the same thing with the roles of the two presentations ex-
changed to get a map of complexes in the other direction.

Step 2. The construction above is compatible with compositions of morphsms of
presentations. Hence to finish the proof it suffices to show: given gi(x1, . . . , xr) ∈
A[x1, . . . , xn]∧ mapping to the image of xi in B, the induced map of complexes

(J/J2 →
⊕

Bdxi) −→ (J/J2 →
⊕

Bdxi)

is homotopic to the identity map. To see this consider the map h :
⊕
Bdxi → J/J2

given by the rule dxi 7→ gi(x1, . . . , xn)− xi and compute. □

Lemma 88.3.2.0GAF Let A be a Noetherian ring and let I ⊂ A be a ideal. Let A→ B
be a finite type ring map. Choose a presentation α : A[x1, . . . , xn] → B. Then
NL∧

B∧/A = limNL(α)⊗BB∧ as complexes and NL∧
B∧/A = NLB/A⊗L

BB
∧ in D(B∧).

Proof. The statement makes sense as B∧ is an object of (88.2.0.2) by Lemma 88.2.2.
Let J = Ker(α). The functor of taking I-adic completion is exact on finite modules
over A[x1, . . . , xn] and agrees with the functor M 7→M ⊗A[x1,...,xn] A[x1, . . . , xn]∧,
see Algebra, Lemmas 10.97.1 and 10.97.2. Moreover, the ring maps A[x1, . . . , xn]→
A[x1, . . . , xn]∧ and B → B∧ are flat. Hence B∧ = A[x1, . . . , xn]∧/J∧ and

(J/J2)⊗B B∧ = (J/J2)∧ = J∧/(J∧)2

Since NL(α) = (J/J2 →
⊕
Bdxi), see Algebra, Section 10.134, we conclude the

complex NL∧
B∧/A is equal to NL(α)⊗B B∧. The final statement follows as NLB/A

is homotopy equivalent to NL(α) and because the ring map B → B∧ is flat (so
derived base change along B → B∧ is just base change). □

Lemma 88.3.3.0AJS Let A be a Noetherian ring and let I ⊂ A be a ideal. Let B be an
object of (88.2.0.2). Then

(1) the pro-objects {NL∧
B/A⊗BB/InB} and {NLBn/An} of D(B) are strictly

isomorphic (see proof for elucidation),
(2) NL∧

B/A = R limNLBn/An in D(B).
Here Bn and An are as in Section 88.2.

https://stacks.math.columbia.edu/tag/0GAF
https://stacks.math.columbia.edu/tag/0AJS
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Proof. The statement means the following: for every n we have a well defined
complex NLBn/An of Bn-modules and we have transition maps NLBn+1/An+1 →
NLBn/An . See Algebra, Section 10.134. Thus we can consider

. . .→ NLB3/A3 → NLB2/A2 → NLB1/A1

as an inverse system of complexes of B-modules and a fortiori as an inverse system
in D(B). Furthermore R limNLBn/An is a homotopy limit of this inverse system,
see Derived Categories, Section 13.34.

Choose a presentation B = A[x1, . . . , xr]∧/J . This defines presentations

Bn = B/InB = An[x1, . . . , xr]/Jn

where
Jn = JAn[x1, . . . , xr] = J/(J ∩ InA[x1, . . . , xr]∧)

The two term complex Jn/J
2
n −→

⊕
Bndxi represents NLBn/An , see Algebra,

Section 10.134. By Artin-Rees (Algebra, Lemma 10.51.2) in the Noetherian ring
A[x1, . . . , xr]∧ (Lemma 88.2.2) we find a c ≥ 0 such that we have canonical surjec-
tions

J/InJ → Jn → J/In−cJ → Jn−c, n ≥ c

for all n ≥ c. A moment’s thought shows that these maps are compatible with
differentials and we obtain maps of complexes

NL∧
B/A⊗BB/InB → NLBn/An → NL∧

B/A⊗BB/In−cB → NLBn−c/An−c

compatible with the transition maps of the inverse systems {NL∧
B/A⊗BB/InB}

and {NLBn/An}. This proves part (1) of the lemma.

By part (1) and since pro-isomorphic systems have the same R lim in order to
prove (2) it suffices to show that NL∧

B/A is equal to R limNL∧
B/A⊗BB/InB. How-

ever, NL∧
B/A is a two term complex M• of finite B-modules which are I-adically

complete for example by Algebra, Lemma 10.97.1. Hence M• = limM•/InM• =
R limM•/InM•, see More on Algebra, Lemma 15.87.1 and Remark 15.87.6. □

Lemma 88.3.4.0GAG Let (A1, I1) → (A2, I2) be as in Remark 88.2.3 with A1 and A2
Noetherian. Let B1 be in (88.2.0.2) for (A1, I1). Let B2 be the base change of B1.
Then there is a canonical map

NLB1/A1 ⊗B2B1 → NLB2/A2

which induces and isomorphism on H0 and a surjection on H−1.

Proof. Choose a presentation B1 = A1[x1, . . . , xr]∧/J1. Since A2/I
n
2 [x1, . . . , xr] =

A1/I
cn
1 [x1, . . . , xr]⊗A1/Icn1

A2/I
n
2 we have

A2[x1, . . . , xr]∧ = (A1[x1, . . . , xr]∧ ⊗A1 A2)∧

where we use I2-adic completion on both sides (but of course I1-adic completion
for A1[x1, . . . , xr]∧). Set J2 = J1A2[x1, . . . , xr]∧. Arguing similarly we get the
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presentation
B2 = (B1 ⊗A1 A2)∧

= lim A1/I
cn
1 [x1, . . . , xr]

J1(A1/Icn1 [x1, . . . , xr])
⊗A1/Icn1

A2/I
n
2

= lim A2/I
n
2 [x1, . . . , xr]

J2(A2/In2 [x1, . . . , xr])
= A2[x1, . . . , xr]∧/J2

for B2 over A2. As a consequence obtain a commutative diagram

NL∧
B1/A1

:

��

J1/J
2
1 d

//

��

⊕
B1dxi

��
NL∧

B2/A2
: J2/J

2
2

d //⊕B2dxi

The induced arrow J1/J
2
1 ⊗B1 B2 → J2/J

2
2 is surjective because J2 is generated by

the image of J1. This determines the arrow displayed in the lemma. We omit the
proof that this arrow is well defined up to homotopy (i.e., indepedent of the choice
of the presentations up to homotopy). The statement about the induced map on
cohomology modules follows easily from the discussion (details omitted). □

Lemma 88.3.5.0ALM Let A be a Noetherian ring and let I ⊂ A be a ideal. Let B → C
be morphism of (88.2.0.2). Then there is an exact sequence

C ⊗B H0(NL∧
B/A) // H0(NL∧

C/A) // H0(NL∧
C/B) // 0

H−1(NL∧
B/A⊗BC) // H−1(NL∧

C/A) // H−1(NL∧
C/B)

kk

See proof for elucidation.

Proof. Observe that taking the tensor product NL∧
B/A⊗BC makes sense as NL∧

B/A

is well defined up to homotopy by Lemma 88.3.1. Also, (B, IB) is pair where B is a
Noetherian ring (Lemma 88.2.2) and C is in the corresponding category (88.2.0.2).
Thus all the terms in the 6-term sequence are (well) defined.
Choose a presentationB = A[x1, . . . , xr]∧/J . Choose a presentation C = B[y1, . . . , ys]∧/J ′.
Combinging these presentations gives a presentation

C = A[x1, . . . , xr, y1, . . . , ys]∧/K
Then the reader verifies that we obtain a commutative diagram

0 //⊕Cdxi //⊕Cdxi ⊕
⊕
Cdyj //⊕Cdyj // 0

J/J2 ⊗B C //

OO

K/K2 //

OO

J ′/(J ′)2 //

OO

0

with exact rows. Note that the vertical arrow on the left hand side is the tensor
product of the arrow defining NL∧

B/A with idC . The lemma follows by applying the
snake lemma (Algebra, Lemma 10.4.1). □
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Lemma 88.3.6.0AQJ With assumptions as in Lemma 88.3.5 assume that B/InB →
C/InC is a local complete intersection homomorphism for all n. ThenH−1(NL∧

B/A⊗BC)→
H−1(NL∧

C/A) is injective.

Proof. For each n ≥ 1 we set An = A/In, Bn = B/InB, and Cn = C/InC. We
have

H−1(NL∧
B/A⊗BC) = limH−1(NL∧

B/A⊗BCn)
= limH−1(NL∧

B/A⊗BBn ⊗Bn Cn)
= limH−1(NLBn/An ⊗BnCn)

The first equality follows from More on Algebra, Lemma 15.100.1 and the fact that
H−1(NL∧

B/A⊗BC) is a finite C-module and hence I-adically complete for example
by Algebra, Lemma 10.97.1. The second equality is trivial. The third holds by
Lemma 88.3.3. The maps H−1(NLBn/An ⊗BnCn) → H−1(NLCn/An) are injective
by More on Algebra, Lemma 15.33.6. The proof is finished because we also have
H−1(NL∧

C/A) = limH−1(NLCn/An) similarly to the above. □

88.4. Rig-smooth algebras

0GAH As motivation for the following definition, please take a look at More on Algebra,
Remark 15.84.2.
Definition 88.4.1.0GAI Let A be a Noetherian ring and let I ⊂ A be an ideal. Let B be
an object of (88.2.0.2). We say B is rig-smooth over (A, I) if there exists an integer
c ≥ 0 such that Ic annihilates Ext1

B(NL∧
B/A, N) for every B-module N .

Let us work out what this means.
Lemma 88.4.2.0GAJ Let A be a Noetherian ring and let I ⊂ A be an ideal. Let
B be an object of (88.2.0.2). Write B = A[x1, . . . , xr]∧/J (Lemma 88.2.2) and
let NL∧

B/A = (J/J2 →
⊕
Bdxi) be its naive cotangent complex (88.3.0.1). The

following are equivalent
(1) B is rig-smooth over (A, I),
(2) the object NL∧

B/A of D(B) satisfies the equivalent conditions (1) – (4) of
More on Algebra, Lemma 15.84.10 with respect to the ideal IB,

(3) there exists a c ≥ 0 such that for all a ∈ Ic there is a map h :
⊕
Bdxi →

J/J2 such that a : J/J2 → J/J2 is equal to h ◦ d,
(4) there exist b1, . . . , bs ∈ B such that V (b1, . . . , bs) ⊂ V (IB) and such that

for every l = 1, . . . , s there exist m ≥ 0, f1, . . . , fm ∈ J , and subset
T ⊂ {1, . . . , n} with |T | = m such that
(a) deti∈T,j≤m(∂fj/∂xi) divides bl in B, and
(b) blJ ⊂ (f1, . . . , fm) + J2.

Proof. The equivalence of (1), (2), and (3) is immediate from More on Algebra,
Lemma 15.84.10.
Assume b1, . . . , bs are as in (4). Since B is Noetherian the inclusion V (b1, . . . , bs) ⊂
V (IB) implies IcB ⊂ (b1, . . . , bs) for some c ≥ 0 (for example by Algebra, Lemma
10.62.4). Pick 1 ≤ l ≤ s and m ≥ 0 and f1, . . . , fm ∈ J and T ⊂ {1, . . . , n} with
|T | = m satisfying (4)(a) and (b). Then if we invert bl we see that

NL∧
B/A⊗BBbl =

(⊕
j≤m

Bblfj −→
⊕

i=1,...,n
Bbldxi

)

https://stacks.math.columbia.edu/tag/0AQJ
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and moreover the arrow is isomorphic to the inclusion of the direct summand⊕
i∈T Bbldxi. We conclude thatH−1(NL∧

B/A) is bl-power torsion and thatH0(NL∧
B/A)

becomes finite free after inverting bl. Combined with the inclusion IcB ⊂ (b1, . . . , bs)
we see that H−1(NL∧

B/A) is IB-power torsion. Hence we see that condition (4) of
More on Algebra, Lemma 15.84.10 holds. In this way we see that (4) implies (2).
Assume the equivalent conditions (1), (2), and (3) hold. We will prove that (4)
holds, but we strongly urge the reader to convince themselves of this. The complex
NL∧

B/A determines an object of Db
Coh(Spec(B)) whose restriction to the Zariski

open U = Spec(B) \V (IB) is a finite locally free module E placed in degree 0 (this
follows for example from the the fourth equivalent condition in More on Algebra,
Lemma 15.84.10). Choose generators f1, . . . , fM for J . This determines an exact
sequence ⊕

j=1,...,M
OU · fj →

⊕
i=1,...,n

OU · dxi → E → 0

Let U =
⋃
l=1,...,s Ul be a finite affine open covering such that E|Ul is free of rank

rl = n − ml for some integer n ≥ ml ≥ 0. After replacing each Ul by an affine
open covering we may assume there exists a subset Tl ⊂ {1, . . . , n} such that the
elements dxi, i ∈ {1, . . . , n} \ Tl map to a basis for E|Ul . Repeating the argument,
we may assume there exists a subset T ′

l ⊂ {1, . . . ,M} of cardinality ml such that
fj , j ∈ T ′

l map to a basis of the kernel of OUl · dxi → E|Ul . Finally, since the open
covering U =

⋃
Ul may be refined by a open covering by standard opens (Algebra,

Lemma 10.17.2) we may assume Ul = D(gl) for some gl ∈ B. In particular we have
V (g1, . . . , gs) = V (IB). A linear algebra argument using our choices above shows
that deti∈Tl,j∈T ′

l
(∂fj/∂xi) maps to an invertible element of Bbl . Similarly, the

vanishing of cohomology of NL∧
B/A in degree −1 over Ul shows that J/J2 + (fj ; j ∈

T ′) is annihilated by a power of bl. After replacing each gl by a suitable power we
obtain conditions (4)(a) and (4)(b) of the lemma. Some details omitted. □

Lemma 88.4.3.0GAK Let A be a Noetherian ring and let I be an ideal. Let B be a finite
type A-algebra.

(1) If Spec(B) → Spec(A) is smooth over Spec(A) \ V (I), then B∧ is rig-
smooth over (A, I).

(2) If B∧ is rig-smooth over (A, I), then there exists g ∈ 1 + IB such that
Spec(Bg) is smooth over Spec(A) \ V (I).

Proof. We will use Lemma 88.4.2 without further mention.
Assume (1). Recall that formation of NLB/A commutes with localization, see Alge-
bra, Lemma 10.134.13. Hence by the very definition of smooth ring maps (in terms
of the naive cotangent complex being quasi-isomorphic to a finite projective mod-
ule placed in degree 0), we see that NLB/A satisfies the fourth equivalent condition
of More on Algebra, Lemma 15.84.10 with respect to the ideal IB (small detail
omitted). Since NL∧

B∧/A = NLB/A⊗BB∧ by Lemma 88.3.2 we conclude (2) holds
by More on Algebra, Lemma 15.84.7.
Assume (2). Choose a presentation B = A[x1, . . . , xn]/J , set N = J/J2, and
consider the element ξ ∈ Ext1

B(NLB/A, J/J2) determined by the identity map on
J/J2. Using again that NL∧

B∧/A = NLB/A⊗BB∧ we find that our assumption
implies the image

ξ ⊗ 1 ∈ Ext1
B∧(NLB/A⊗BB∧, N ⊗B B∧) = Ext1

B∧(NLB/A, N)⊗B B∧

https://stacks.math.columbia.edu/tag/0GAK
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is annihilated by Ic for some integer c ≥ 0. The equality holds for example by More
on Algebra, Lemma 15.99.2 (but can also easily be deduced from the much simpler
More on Algebra, Lemma 15.65.4). Thus M = IcBξ ⊂ Ext1

B(NLB/A, N) is a finite
submodule which maps to zero in Ext1

B(NLB/A, N) ⊗B B∧. Since B → B∧ is flat
this means that M⊗BB∧ is zero. By Nakayama’s lemma (Algebra, Lemma 10.20.1)
this means that M = IcBξ is annihilated by an element of the form g = 1 +x with
x ∈ IB. This implies that for every b ∈ IcB there is a B-linear dotted arrow
making the diagram commute

J/J2 //

b

��

⊕
Bdxi

h

��
J/J2 // (J/J2)g

Thus (NLB/A)gb is quasi-isomorphic to a finite projective module; small detail
omitted. Since (NLB/A)gb = NLBgb/A in D(Bgb) this shows that Bgb is smooth
over Spec(A). As this holds for all b ∈ IcB we conclude that Spec(Bg)→ Spec(A)
is smooth over Spec(A) \ V (I) as desired. □

Lemma 88.4.4.0GAL Let (A1, I1) → (A2, I2) be as in Remark 88.2.3 with A1 and A2
Noetherian. Let B1 be in (88.2.0.2) for (A1, I1). Let B2 be the base change of
B1. Let f1 ∈ B1 with image f2 ∈ B2. If Ext1

B1
(NL∧

B1/A1
, N1) is annihilated by f1

for every B1-module N1, then Ext1
B2

(NL∧
B2/A2

, N2) is annihilated by f2 for every
B2-module N2.

Proof. By Lemma 88.3.4 there is a map
NLB1/A1 ⊗B2B1 → NLB2/A2

which induces and isomorphism on H0 and a surjection on H−1. Thus the result by
More on Algebra, Lemmas 15.84.6, 15.84.7, and 15.84.9 the last two applied with
the principal ideals (f1) ⊂ B1 and (f2) ⊂ B2. □

Lemma 88.4.5.0GAM Let A1 → A2 be a map of Noetherian rings. Let Ii ⊂ Ai be an
ideal such that V (I1A2) = V (I2). Let B1 be in (88.2.0.2) for (A1, I1). Let B2 be
the base change of B1 as in Remark 88.2.3. If B1 is rig-smooth over (A1, I1), then
B2 is rig-smooth over (A2, I2).

Proof. Follows from Lemma 88.4.4 and Definition 88.4.1 and the fact that Ic2 is
contained in I1A2 for some c ≥ 0 as A2 is Noetherian. □

88.5. Deformations of ring homomorphisms

0GAN Some work on lifting ring homomorphisms from rig-smooth algebras.

Remark 88.5.1 (Linear approximation).0AK3 Let A be a ring and I ⊂ A be a finitely gen-
erated ideal. Let C be an I-adically complete A-algebra. Let ψ : A[x1, . . . , xr]∧ →
C be a continuous A-algebra map. Suppose given δi ∈ C, i = 1, . . . , r. Then we
can consider

ψ′ : A[x1, . . . , xr]∧ → C, xi 7−→ ψ(xi) + δi

see Formal Spaces, Remark 87.28.1. Then we have

ψ′(g) = ψ(g) +
∑

ψ(∂g/∂xi)δi + ξ
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with error term ξ ∈ (δiδj). This follows by writing g as a power series and working
term by term. Convergence is automatic as the coefficients of g tend to zero. Details
omitted.

Remark 88.5.2 (Lifting maps).0GAP Let A be a Noetherian ring and I ⊂ A be an ideal.
Let B be an object of (88.2.0.2). Let C be an I-adically complete A-algebra. Let
ψn : B → C/InC be an A-algebra homomorphism. The obstruction to lifting ψn
to an A-algebra homomorphism into C/I2nC is an element

o(ψn) ∈ Ext1
B(NL∧

B/A, I
nC/I2nC)

as we will explain. Namely, choose a presentation B = A[x1, . . . , xr]∧/J . Choose
a lift ψ : A[x1, . . . , xr]∧ → C of ψn. Since ψ(J) ⊂ InC we get ψ(J2) ⊂ I2nC and
hence we get a B-linear homomorphism

o(ψ) : J/J2 −→ InC/I2nC, g 7−→ ψ(g)
which of course extends to a C-linear map J/J2⊗BC → InC/I2nC. SinceNL∧

B/A =
(J/J2 →

⊕
Bdxi) we get o(ψn) as the image of o(ψ) by the identification

Ext1
B(NL∧

B/A, I
nC/I2nC)

= Coker
(

HomB(
⊕

Bdxi, InC/I2nC)→ HomB(J/J2, InC/I2nC)
)

See More on Algebra, Lemma 15.84.4 part (1) for the equality.

Suppose that o(ψn) maps to zero in Ext1
B(NL∧

B/A, I
n′
C/I2n′

C) for some integer n′

with n > n′ > n/2. We claim that this means we can find an A-algebra homo-
morphism ψ′

2n′ : B → C/I2n′
C which agrees with ψn as maps into C/In′

C. The
extreme case n′ = n explains why we previously said o(ψn) is the obstruction to
lifting ψn to C/I2nC. Proof of the claim: the hypothesis that o(ψn) maps to zero
tells us we can find a B-module map

h :
⊕

Bdxi −→ In
′
C/I2n′

C

such that o(ψ) and h◦d agree as maps into In′
C/I2n′

C. Say h(dxi) = δi mod I2n′
C

for some δi ∈ In
′
C. Then we look at the map
ψ′ : A[x1, . . . , xr]∧ → C, xi 7−→ ψ(xi)− δi

A computation with power series shows that ψ′(J) ⊂ I2n′
C. Namely, for g ∈ J we

get

ψ′(g) ≡ ψ(g)−
∑

ψ(∂g/∂xi)δi ≡ o(ψ)(g)− (h ◦ d)(g) ≡ 0 mod I2n′
C

See Remark 88.5.1 for the first equality. Hence ψ′ induces an A-algebra homomor-
phism ψ′

2n′ : B → C/I2n′
C as desired.

Lemma 88.5.3.0GAQ Assume given the following data
(1) an integer c ≥ 0,
(2) an ideal I of a Noetherian ring A,
(3) B in (88.2.0.2) for (A, I) such that Ic annihilates Ext1

B(NL∧
B/A, N) for

any B-module N ,
(4) a Noetherian I-adically complete A-algebra C; denote d = d(GrI(C)) and

q0 = q(GrI(C)) the integers found in Local Cohomology, Section 51.22,
(5) an integer n ≥ max(q0 + (d+ 1)c, 2(d+ 1)c+ 1), and
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(6) an A-algebra homomorphism ψn : B → C/InC.
Then there exists a map φ : B → C of A-algebras such that ψn mod In−(d+1)c =
φ mod In−(d+1)c.

Proof. Consider the obstruction class
o(ψn) ∈ Ext1

B(NL∧
B/A, I

nC/I2nC)
of Remark 88.5.2. For any C/InC-module N we have

Ext1
B(NL∧

B/A, N) = Ext1
C/InC(NL∧

B/A⊗L
BC/I

nC,N)
= Ext1

C/InC(NL∧
B/A⊗BC/InC,N)

The first equality by More on Algebra, Lemma 15.99.1 and the second one by More
on Algebra, Lemma 15.84.6. In particular, we see that Ext1

C/InC(NL∧
B/A⊗BC/InC,N)

is annihilated by IcC for all C/InC-modules N . It follows that we may apply Local
Cohomology, Lemma 51.22.7 to see that o(ψn) maps to zero in

Ext1
C/InC(NL∧

B/A⊗BC/InC, In
′
C/I2n′

C) = Ext1
B(NL∧

B/A, I
n′
C/I2n′

C) =
where n′ = n− (d+ 1)c. By the discussion in Remark 88.5.2 we obtain a map

ψ′
2n′ : B → C/I2n′

C

which agrees with ψn modulo In′ . Observe that 2n′ > n because n ≥ 2(d+ 1)c+ 1.
We may repeat this procedure. Starting with n0 = n and ψ0 = ψn we end up
getting a strictly increasing sequence of integers

n0 < n1 < n2 < . . .

and A-algebra homorphisms ψi : B → C/IniC such that ψi+1 and ψi agree modulo
Ini−tc. Since C is I-adically complete we can take φ to be the limit of the maps
ψi mod Ini−(d+1)c : B → C/Ini−(d+1)cC and the lemma follows. □

We suggest the reader skip ahead to the next section. Namely, the following two
lemmas are consequences of the result above if the algebra C in them is assumed
Noetherian.

Lemma 88.5.4.0AK6 Let I = (a) be a principal ideal of a Noetherian ring A. Let B be
an object of (88.2.0.2). Assume given an integer c ≥ 0 such that Ext1

B(NL∧
B/A, N)

is annihilated by ac for all B-modules N . Let C be an I-adically complete A-
algebra such that a is a nonzerodivisor on C. Let n > 2c. For any A-algebra
map ψn : B → C/anC there exists an A-algebra map φ : B → C such that
ψn mod an−cC = φ mod an−cC.

Proof. Consider the obstruction class
o(ψn) ∈ Ext1

B(NL∧
B/A, a

nC/a2nC)
of Remark 88.5.2. Since a is a nonzerodivisor on C the map ac : anC/a2nC →
anC/a2nC is isomorphic to the map anC/a2nC → an−cC/a2n−cC in the category
of C-modules. Hence by our assumption on NL∧

B/A we conclude that the class
o(ψn) maps to zero in

Ext1
B(NL∧

B/A, a
n−cC/a2n−cC)

and a fortiori in
Ext1

B(NL∧
B/A, a

n−cC/a2n−2cC)
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By the discussion in Remark 88.5.2 we obtain a map

ψ2n−2c : B → C/a2n−2cC

which agrees with ψn modulo an−cC. Observe that 2n− 2c > n because n > 2c.

We may repeat this procedure. Starting with n0 = n and ψ0 = ψn we end up
getting a strictly increasing sequence of integers

n0 < n1 < n2 < . . .

and A-algebra homorphisms ψi : B → C/aniC such that ψi+1 and ψi agree modulo
ani−cC. Since C is I-adically complete we can take φ to be the limit of the maps
ψi mod ani−cC : B → C/ani−cC and the lemma follows. □

Lemma 88.5.5.0AK7 Let I = (a) be a principal ideal of a Noetherian ring A. Let B be
an object of (88.2.0.2). Assume given an integer c ≥ 0 such that Ext1

B(NL∧
B/A, N) is

annihilated by ac for all B-modules N . Let C be an I-adically complete A-algebra.
Assume given an integer d ≥ 0 such that C[a∞]∩ adC = 0. Let n > max(2c, c+ d).
For any A-algebra map ψn : B → C/anC there exists an A-algebra map φ : B → C
such that ψn mod an−c = φ mod an−c.

If C is Noetherian we have C[a∞] = C[ae] for some e ≥ 0. By Artin-Rees (Algebra,
Lemma 10.51.2) there exists an integer f such that anC ∩C[a∞] ⊂ an−fC[a∞] for
all n ≥ f . Then d = e + f is an integer as in the lemma. This argument works in
particular if C is an object of (88.2.0.2) by Lemma 88.2.2.

Proof. Let C → C ′ be the quotient of C by C[a∞]. The A-algebra C ′ is I-adically
complete by Algebra, Lemma 10.96.10 and the fact that

⋂
(C[a∞] + anC) = C[a∞]

because for n ≥ d the sum C[a∞] + anC is direct. For m ≥ d the diagram

0 // C[a∞] //

��

C //

��

C ′ //

��

0

0 // C[a∞] // C/amC // C ′/amC ′ // 0

has exact rows. Thus C is the fibre product of C ′ and C/amC over C ′/amC ′

for all m ≥ d. By Lemma 88.5.4 we can choose a homomorphism φ′ : B → C ′

such that φ′ and ψn agree as maps into C ′/an−cC ′. We obtain a homomorphism
(φ′, ψn mod an−cC) : B → C ′ ×C′/an−cC′ C/an−cC. Since n − c ≥ d this is the
same thing as a homomorphism φ : B → C. This finishes the proof. □

88.6. Algebraization of rig-smooth algebras over G-rings

0ALU If the base ring A is a Noetherian G-ring, then we can prove [Elk73, III Theorem 7]
for arbitrary rig-smooth algebras with respect to any ideal I ⊂ A (not necessarily
principal).

Lemma 88.6.1.0GAR Let I be an ideal of a Noetherian ring A. Let r ≥ 0 and write
P = A[x1, . . . , xr] the I-adic completion. Consider a resolution

P⊕t K−→ P⊕m g1,...,gm−−−−−→ P → B → 0

https://stacks.math.columbia.edu/tag/0AK7
https://stacks.math.columbia.edu/tag/0GAR
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of a quotient of P . Assume B is rig-smooth over (A, I). Then there exists an integer
n such that for any complex

P⊕t K′

−−→ P⊕m g′
1,...,g

′
m−−−−−→ P

with gi − g′
i ∈ InP and K − K ′ ∈ InMat(m × t, P ) there exists an isomorphism

B → B′ of A-algebras where B′ = P/(g′
1, . . . , g

′
m).

Proof. (A) By Definition 88.4.1 we can choose a c ≥ 0 such that Ic annihilates
Ext1

B(NL∧
B/A, N) for all B-modules N .

(B) By More on Algebra, Lemmas 15.4.1 and 15.4.2 there exists a constant c1 =
c(g1, . . . , gm,K) such that for n ≥ c1 + 1 the complex

P⊕t K′

−−→ P⊕m g′
1,...,g

′
m−−−−−→ P → B′ → 0

is exact and GrI(B) ∼= GrI(B′).
(C) Let d0 = d(GrI(B)) and q0 = q(GrI(B)) be the integers found in Local Coho-
mology, Section 51.22.
We claim that n = max(c1 + 1, q0 + (d0 + 1)c, 2(d0 + 1)c + 1) works where c is as
in (A), c1 is as in (B), and q0, d0 are as in (C).
Let g′

1, . . . , g
′
m and K ′ be as in the lemma. Since gi = g′

i ∈ InP we obtain a
canonical A-algebra homomorphism

ψn : B −→ B′/InB′

which induces an isomorphism B/InB → B′/InB′. Since GrI(B) ∼= GrI(B′) we
have d0 = d(GrI(B′)) and q0 = q(GrI(B′)) and since n ≥ max(q0 +(1+d0)c, 2(d0 +
1)c+ 1) we may apply Lemma 88.5.3 to find an A-algebra homomorphism

φ : B −→ B′

such that φ mod In−(d0+1)cB′ = ψn mod In−(d0+1)cB′. Since n− (d0 + 1)c > 0 we
see that φ is an A-algebra homomorphism which modulo I induces the isomorphism
B/IB → B′/IB′ we found above. The rest of the proof shows that these facts force
φ to be an isomorphism; we suggest the reader find their own proof of this.
Namely, it follows that φ is surjective for example by applying Algebra, Lemma
10.96.1 part (1) using the fact that B and B′ are complete. Thus φ induces a
surjection GrI(B) → GrI(B′) which has to be an isomorphism because the source
and target are isomorphic Noetherian rings, see Algebra, Lemma 10.31.10 (of course
you can show φ induces the isomorphism we found above but that would need a
tiny argument). Thus φ induces injective maps IeB/Ie+1B → IeB′/Ie+1B′ for all
e ≥ 0. This implies φ is injective since for any b ∈ B there exists an e ≥ 0 such
that b ∈ IeB, b ̸∈ Ie+1B by Krull’s intersection theorem (Algebra, Lemma 10.51.4).
This finishes the proof. □

Lemma 88.6.2.0GAS Let I be an ideal of a Noetherian ring A. Let Ch be the henseliza-
tion of a finite type A-algebra C with respect to the ideal IC. Let J ⊂ Ch be an
ideal. Then there exists a finite type A-algebra B such that B∧ ∼= (Ch/J)∧.

Proof. By More on Algebra, Lemma 15.12.4 the ring Ch is Noetherian. Say J =
(g1, . . . , gm). The ring Ch is a filtered colimit of étale C algebras C ′ such that
C/IC → C ′/IC ′ is an isomorphism (see proof of More on Algebra, Lemma 15.12.1).

https://stacks.math.columbia.edu/tag/0GAS
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Pick an C ′ such that g1, . . . , gm are the images of g′
1, . . . , g

′
m ∈ C ′. Setting B =

C ′/(g′
1, . . . , g

′
m) we get a finite type A-algebra. Of course (C, IC) and C ′, IC ′) have

the same henselizations and the same completions. It follows easily from this that
B∧ = (Ch/J)∧. □

Proposition 88.6.3.0GAT Let I be an ideal of a Noetherian G-ring A. Let B be an object
of (88.2.0.2). If B is rig-smooth over (A, I), then there exists a finite type A-algebra
C and an isomorphism B ∼= C∧ of A-algebras.

Proof. Choose a presentation B = A[x1, . . . , xr]∧/J . Write P = A[x1, . . . , xr]∧.
Choose generators g1, . . . , gm ∈ J . Choose generators k1, . . . , kt of the module of
relations between g1, . . . , gm, i.e., such that

P⊕t k1,...,kt−−−−−→ P⊕m g1,...,gm−−−−−→ P → B → 0
is a resolution. Write ki = (ki1, . . . , kim) so that we have

(88.6.3.1)0AKB
∑

j
kijgj = 0

for i = 1, . . . , t. Denote K = (kij) the m× t-matrix with entries kij .
Let A[x1, . . . , xr]h be the henselization of the pair (A[x1, . . . , xr], IA[x1, . . . , xr]),
see More on Algebra, Lemma 15.12.1. We may and do think of A[x1, . . . , xr]h as a
subring of P = A[x1, . . . , xr]∧, see More on Algebra, Lemma 15.12.4. Since A is a
Noetherian G-ring, so is A[x1, . . . , xr], see More on Algebra, Proposition 15.50.10.
Hence we have approximation for the map A[x1, . . . , xr]h → A[x1, . . . , xr]∧ = P
with respect to the ideal generated by I, see Smoothing Ring Maps, Lemma
16.14.1. Choose a large enough integer n as in Lemma 88.6.1. By the approxi-
mation property we may choose g′

1, . . . , g
′
m ∈ A[x1, . . . , xr]h and a matrix K ′ =

(k′
ij) ∈ Mat(m × t, A[x1, . . . , xr]h) such that

∑
j k

′
ijg

′
j = 0 in A[x1, . . . , xr]h and

such that gi − g′
i ∈ InP and K − K ′ ∈ InMat(m × t, P ). By our choice of n we

conclude that there is an isomorphism

B → P/(g′
1, . . . , g

′
m) =

(
A[x1, . . . , xr]h/(g′

1, . . . , g
′
m)
)∧

This finishes the proof by Lemma 88.6.2. □

The following lemma isn’t true in general if A is not a G-ring but just Noether-
ian. Namely, if (A,m) is local and I = m, then the lemma is equivalent to Artin
approximation for Ah (as in Smoothing Ring Maps, Theorem 16.13.1) which does
not hold for every Noetherian local ring.

Lemma 88.6.4.0AK4 Let A be a Noetherian G-ring. Let I ⊂ A be an ideal. Let B,C be
finite type A-algebras. For any A-algebra map φ : B∧ → C∧ of I-adic completions
and any N ≥ 1 there exist

(1) an étale ring map C → C ′ which induces an isomorphism C/IC →
C ′/IC ′,

(2) an A-algebra map φ : B → C ′

such that φ and ψ agree modulo IN into C∧ = (C ′)∧.

Proof. The statement of the lemma makes sense as C → C ′ is flat (Algebra, Lemma
10.143.3) hence induces an isomorphism C/InC → C ′/InC ′ for all n (More on
Algebra, Lemma 15.89.2) and hence an isomorphism on completions. Let Ch be
the henselization of the pair (C, IC), see More on Algebra, Lemma 15.12.1. Then

https://stacks.math.columbia.edu/tag/0GAT
https://stacks.math.columbia.edu/tag/0AK4
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Ch is the filtered colimit of the algebras C ′ and the maps C → C ′ → Ch induce
isomorphism on completions (More on Algebra, Lemma 15.12.4). Thus it suffices to
prove there exists an A-algebra map B → Ch which is congruent to ψ modulo IN .
Write B = A[x1, . . . , xn]/(f1, . . . , fm). The ring map ψ corresponds to elements
ĉ1, . . . , ĉn ∈ C∧ with fj(ĉ1, . . . , ĉn) = 0 for j = 1, . . . ,m. Namely, as A is a
Noetherian G-ring, so is C, see More on Algebra, Proposition 15.50.10. Thus
Smoothing Ring Maps, Lemma 16.14.1 applies to give elements c1, . . . , cn ∈ Ch

such that fj(c1, . . . , cn) = 0 for j = 1, . . . ,m and such that ĉi − ci ∈ INCh. This
determines the map B → Ch as desired. □

88.7. Algebraization of rig-smooth algebras

0GAU It turns out that if the rig-smooth algebra has a specific presentation, then it is
straightforward to algebraize it. Please also see Remark 88.7.3 for a discussion.

Lemma 88.7.1.0GAV Let A be a ring. Let f1, . . . , fm ∈ A[x1, . . . , xn] and set B =
A[x1, . . . , xn]/(f1, . . . , fm). Assume m ≤ n and set g = det1≤i,j≤m(∂fj/∂xi). Then

(1) g annihilates Ext1
B(NLB/A, N) for every B-module N ,

(2) if n = m, then multiplication by g on NLB/A is 0 in D(B).

Proof. Let T be the m × m matrix with entries ∂fj/∂xi for 1 ≤ i, j ≤ n. Let
K ∈ D(B) be represented by the complex T : B⊕m → B⊕m with terms sitting in
degrees −1 and 0. By More on Algebra, Lemmas 15.84.12 we have g : K → K is
zero in D(B). Set J = (f1, . . . , fm). Recall that NLB/A is homotopy equivalent
to J/J2 →

⊕
i=1,...,nBdxi, see Algebra, Section 10.134. Denote L the complex

J/J2 →
⊕

i=1,...,mBdxi to that we have the quotient map NLB/A → L. We also
have a surjective map of complexes K → L by sending the jth basis element in the
term B⊕m in degree −1 to the class of fj in J/J2. Picture

NLB/A → L← K

From More on Algebra, Lemma 15.84.8 we conclude that multiplication by g on L is
0 in D(B). On the other hand, the distinguished triangle B⊕n−m[0]→ NLB/A → L

shows that Ext1
B(L,N)→ Ext1

B(NLB/A, N) is surjective for every B-module N and
hence annihilated by g. This proves part (1). If n = m then NLB/A = L and we
see that (2) holds. □

Lemma 88.7.2.0GAW Let I be an ideal of a Noetherian ring A. Let B be an object of
(88.2.0.2). Let B = A[x1, . . . , xr]∧/J be a presentation. Assume there exists an
element b ∈ B, 0 ≤ m ≤ r, and f1, . . . , fm ∈ J such that

(1) V (b) ⊂ V (IB) in Spec(B),
(2) the image of ∆ = det1≤i,j≤m(∂fj/∂xi) in B divides b, and
(3) bJ ⊂ (f1, . . . , fm) + J2.

Then there exists a finite type A-algebra C and an A-algebra isomorphism B ∼= C∧.

Proof. The conditions imply that B is rig-smooth over (A, I), see Lemma 88.4.2.
Write b′∆ = b in B for some b′ ∈ B. Say I = (a1, . . . , at). Since V (b) ⊂ V (IB)
there exists an integer c ≥ 0 such that IcB ⊂ bB. Write bbi = aci in B for some
bi ∈ B.
Choose an integer n ≫ 0 (we will see later how large). Choose polynomials
f ′

1, . . . , f
′
m ∈ A[x1, . . . , xr] such that fi − f ′

i ∈ InA[x1, . . . , xr]∧. We set ∆′ =

https://stacks.math.columbia.edu/tag/0GAV
https://stacks.math.columbia.edu/tag/0GAW
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det1≤i,j≤m(∂f ′
j/∂xi) and we consider the finite type A-algebra

C = A[x1, . . . , xr, z1, . . . , zt]/(f ′
1, . . . , f

′
m, z1∆′ − ac1, . . . , zt∆′ − act)

We will apply Lemma 88.7.1 to C. We compute

det


matrix of partials of

f ′
1, . . . , f

′
m, z1∆′ − ac1, . . . , zt∆′ − act

with respect to the variables
x1, . . . , xm, z1, . . . , zt

 = (∆′)t+1

Hence we see that Ext1
C(NLC/A, N) is annihilated by (∆′)t+1 for all C-modules N .

Since aci is divisible by ∆′ in C we see that a(t+1)c
i annihilates these Ext1’s also. Thus

Ic1 annihilates Ext1
C(NLC/A, N) for all C-modules N where c1 = 1+ t((t+1)c−1).

The exact value of c1 doesn’t matter for the rest of the argument; what matters is
that it is independent of n.

Since NL∧
C∧/A = NLC/A⊗CC∧ by Lemma 88.3.2 we conclude that multiplication

by Ic1 is zero on Ext1
C∧(NL∧

C∧/A, N) for any C∧-module N as well, see More on
Algebra, Lemmas 15.84.7 and 15.84.6. In particular C∧ is rig-smooth over (A, I).

Observe that we have a surjective A-algebra homomorphism

ψn : C −→ B/InB

sending the class of xi to the class of xi and sending the class of zi to the class of
bib

′. This works because of our choices of b′ and bi in the first paragraph of the
proof.

Let d = d(GrI(B)) and q0 = q(GrI(B)) be the integers found in Local Cohomology,
Section 51.22. By Lemma 88.5.3 if we take n ≥ max(q0 + (d+ 1)c1, 2(d+ 1)c1 + 1)
we can find a homomorphism φ : C∧ → B of A-algebras which is congruent to ψn
modulo In−(d+1)c1B.

Since φ : C∧ → B is surjective modulo I we see that it is surjective (for ex-
ample use Algebra, Lemma 10.96.1). To finish the proof it suffices to show that
Ker(φ)/Ker(φ)2 is annihilated by a power of I, see More on Algebra, Lemma
15.108.4.

Since φ is surjective we see thatNL∧
B/C∧ has cohomology modulesH0(NL∧

B/C∧) = 0
and H−1(NL∧

B/C∧) = Ker(φ)/Ker(φ)2. We have an exact sequence

H−1(NL∧
C∧/A⊗C∧B)→ H−1(NL∧

B/A)→ H−1(NL∧
B/C∧)→ H0(NL∧

C∧/A⊗C∧B)→ H0(NL∧
B/A)→ 0

by Lemma 88.3.5. The first two modules are annihilated by a power of I as B
and C∧ are rig-smooth over (A, I). Hence it suffices to show that the kernel of the
surjective map H0(NL∧

C∧/A⊗C∧B) → H0(NL∧
B/A) is annihilated by a power of I.

For this it suffices to show that it is annihilated by a power of b. In other words, it
suffices to show that

H0(NL∧
C∧/A)⊗C∧ B[1/b] −→ H0(NL∧

B/A)⊗B B[1/b]

is an isomorphism. However, both are free B[1/b] modules of rank r−m with basis
dxm+1, . . . ,dxr and we conclude the proof. □
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Remark 88.7.3.0GAX Let I be an ideal of a Noetherian ring A. Let B be an object of
(88.2.0.2) which is rig-smooth over (A, I). As far as we know, it is an open question
as to whether B is isomorphic to the I-adic completion of a finite type A-algebra.
Here are some things we do know:

(1) If A is a G-ring, then the answer is yes by Proposition 88.6.3.
(2) If B is rig-étale over (A, I), then the answer is yes by Lemma 88.10.2.
(3) If I is principal, then the answer is yes by [Elk73, III Theorem 7].
(4) In general there exists an ideal J = (b1, . . . , bs) ⊂ B such that V (J) ⊂

V (IB) and such that the I-adic completion of each of the affine blowup
algebras B[ Jbi ] are isomorphic to the I-adic completion of a finite type
A-algebra.

To see the last statement, choose b1, . . . , bs as in Lemma 88.4.2 part (4) and use the
properties mentioned there to see that Lemma 88.7.2 applies to each completion
(B[ Jbi ])

∧. Part (4) tells us that “rig-locally a rig-smooth formal algebraic space is
the completion of a finite type scheme over A” and it tells us that “there is an
admissible formal blowing up of Spf(B) which is affine locally algebraizable”.

88.8. Rig-étale algebras

0ALP In view of our definition of rig-smooth algebras (Definition 88.4.1), the following
definition should not come as a surprise.

Definition 88.8.1.0GAY Let A be a Noetherian ring and let I ⊂ A be an ideal. Let B be
an object of (88.2.0.2). We say B is rig-étale over (A, I) if there exists an integer
c ≥ 0 such that for all a ∈ Ic multiplication by a on NL∧

B/A is zero in D(B).

Condition (7) in the next lemma is one of the conditions used in [Art70] to de-
fine formal modifications. We have added it to the list of conditions to facilitate
comparison with our conditions later on.

Lemma 88.8.2.0AJU Let A be a Noetherian ring and let I ⊂ A be an ideal. Let
B be an object of (88.2.0.2). Write B = A[x1, . . . , xr]∧/J (Lemma 88.2.2) and
let NL∧

B/A = (J/J2 →
⊕
Bdxi) be its naive cotangent complex (88.3.0.1). The

following are equivalent
(1) B is rig-étale over (A, I),
(2)0AJV there exists a c ≥ 0 such that for all a ∈ Ic multiplication by a on NL∧

B/A

is zero in D(B),
(3)0AJW there exits a c ≥ 0 such that Hi(NL∧

B/A), i = −1, 0 is annihilated by Ic,
(4)0AJX there exists a c ≥ 0 such that Hi(NLBn/An), i = −1, 0 is annihilated by

Ic for all n ≥ 1 where An = A/In and Bn = B/InB,
(5)0GAZ for every a ∈ I there exists a c ≥ 0 such that

(a) ac annihilates H0(NL∧
B/A), and

(b) there exist f1, . . . , fr ∈ J such that acJ ⊂ (f1, . . . , fr) + J2.
(6)0GB0 for every a ∈ I there exist f1, . . . , fr ∈ J and c ≥ 0 such that

(a) det1≤i,j≤r(∂fj/∂xi) divides ac in B, and
(b) acJ ⊂ (f1, . . . , fr) + J2.

(7)0AJY choosing generaters f1, . . . , ft for J we have
(a) the Jacobian ideal of B over A, namely the ideal in B generated by

the r×r minors of the matrx (∂fj/∂xi)1≤i≤r,1≤j≤t, contains the ideal
IcB for some c, and

https://stacks.math.columbia.edu/tag/0GAX
https://stacks.math.columbia.edu/tag/0GAY
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(b) the Cramer ideal of B over A, namely the ideal in B generated by the
image in B of the rth Fitting ideal of J as an A[x1, . . . , xr]∧-module,
contains IcB for some c.

Proof. The equivalence of (1) and (2) is a restatement of Definition 88.8.1.

The equivalence of (2) and (3) follows from More on Algebra, Lemma 15.84.11.

The equivalence of (3) and (4) follows from the fact that the systems {NLBn/An}
and NL∧

B/A⊗BBn are strictly isomorphic, see Lemma 88.3.3. Some details omitted.

Assume (2). Let a ∈ I. Let c be such that multiplication by ac is zero onNL∧
B/A. By

More on Algebra, Lemma 15.84.4 part (1) there exists a map α :
⊕
Bdxi → J/J2

such that d ◦ α and α ◦ d are both multiplication by ac. Let fi ∈ J be an element
whose class modulo J2 is equal to α(dxi). A simple calculation gives that (6)(a),
(b) hold.

We omit the verification that (6) implies (5); it is just a statement on two term
complexes over B of the form M → B⊕r.

Assume (5) holds. Say I = (a1, . . . , at). Let ci ≥ 0 be the integer such that
(5)(a), (b) hold for acii . Then we see that I

∑
ci annihilates H0(NL∧

B/A). Let
fi,1, . . . , fi,r ∈ J be as in (5)(b) for ai. Consider the composition

B⊕r → J/J2 →
⊕

Bdxi

where the jth basis vector is mapped to the class of fi,j in J/J2. By (5)(a) and
(b) the cokernel of the composition is annihilated by a2ci

i . Thus this map is sur-
jective after inverting acii , and hence an isomorphism (Algebra, Lemma 10.16.4).
Thus the kernel of B⊕r →

⊕
Bdxi is ai-power torsion, and hence H−1(NL∧

B/A) =
Ker(J/J2 →

⊕
Bdxi) is ai-power torsion. Since B is Noetherian (Lemma 88.2.2),

all modules including H−1(NL∧
B/A) are finite. Thus adii annihilates H−1(NL∧

B/A)
for some di ≥ 0. It follows that I

∑
di annihilates H−1(NL∧

B/A) and we see that
(3) holds.

Thus conditions (2), (3), (4), (5), and (6) are equivalent. Thus it remains to
show that these conditions are equivalent with (7). Observe that the Cramer
ideal Fitr(J)B is equal to Fitr(J/J2) as J/J2 = J ⊗A[x1,...,xr]∧ B, see More on
Algebra, Lemma 15.8.4 part (3). Also, observe that the Jacobian ideal is just
Fit0(H0(NL∧

B/A)). Thus we see that the equivalence of (3) and (7) is a purely
algebraic question which we discuss in the next paragraph.

Let R be a Noetherian ring and let I ⊂ R be an ideal. Let M d−→ R⊕r be a two
term complex. We have to show that the following are equivalent

(A) the cohomology of M → R⊕r is annihilated by a power of I, and
(B) the ideals Fitr(M) and Fit0(Coker(d)) contain a power of I.

Since R is Noetherian, we can reformulate part (2) as an inclusion of the corre-
sponding closed subschemes, see Algebra, Lemmas 10.17.2 and 10.32.5. On the
other hand, over the complement of V (Fit0(Coker(d))) the cokernel of d vanishes
and over the complement of V (Fitr(M)) the module M is locally generated by r
elements, see More on Algebra, Lemma 15.8.6. Thus (B) is equivalent to
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(C) away from V (I) the cokernel of d vanishes and the module M is locally
generated by ≤ r elements.

Of course this is equivalent to the condition that M → R⊕r has vanishing coho-
mology over Spec(R) \ V (I) which in turn is equivalent to (A). This finishes the
proof. □

Lemma 88.8.3.0GB1 Let A be a Noetherian ring and let I be an ideal. Let B be an
object of (88.2.0.2). If B is rig-étale over (A, I), then B is rig-smooth over (A, I).

Proof. Immediate from Definitions 88.4.1 and 88.8.1. □

Lemma 88.8.4.0ALQ Let A be a Noetherian ring and let I be an ideal. Let B be a finite
type A-algebra.

(1) If Spec(B)→ Spec(A) is étale over Spec(A) \ V (I), then B∧ satisfies the
equivalent conditions of Lemma 88.8.2.

(2) If B∧ satisfies the equivalent conditions of Lemma 88.8.2, then there exists
g ∈ 1 + IB such that Spec(Bg) is étale over Spec(A) \ V (I).

Proof. Assume B∧ satisfies the equivalent conditions of Lemma 88.8.2. The naive
cotangent complex NLB/A is a complex of finite type B-modules and hence H−1

and H0 are finite B-modules. Completion is an exact functor on finite B-modules
(Algebra, Lemma 10.97.2) and NL∧

B∧/A is the completion of the complex NLB/A
(this is easy to see by choosing presentations). Hence the assumption implies there
exists a c ≥ 0 such that H−1/InH−1 and H0/InH0 are annihilated by Ic for all
n. By Nakayama’s lemma (Algebra, Lemma 10.20.1) this means that IcH−1 and
IcH0 are annihilated by an element of the form g = 1 + x with x ∈ IB. After
inverting g (which does not change the quotients B/InB) we see that NLB/A has
cohomology annihilated by Ic. Thus A → B is étale at any prime of B not lying
over V (I) by the definition of étale ring maps, see Algebra, Definition 10.143.1.
Conversely, assume that Spec(B) → Spec(A) is étale over Spec(A) \ V (I). Then
for every a ∈ I there exists a c ≥ 0 such that multiplication by ac is zero NLB/A.
Since NL∧

B∧/A is the derived completion of NLB/A (see Lemma 88.3.3) it follows
that B∧ satisfies the equivalent conditions of Lemma 88.8.2. □

Lemma 88.8.5.0AK2 Let (A1, I1) → (A2, I2) be as in Remark 88.2.3 with A1 and A2
Noetherian. Let B1 be in (88.2.0.2) for (A1, I1). Let B2 be the base change of B1.
If multiplication by f1 ∈ B1 on NL∧

B1/A1
is zero in D(B1), then multiplication by

the image f2 ∈ B2 on NL∧
B2/A2

is zero in D(B2).

Proof. By Lemma 88.3.4 there is a map
NLB1/A1 ⊗B2B1 → NLB2/A2

which induces and isomorphism on H0 and a surjection on H−1. Thus the result
by More on Algebra, Lemma 15.84.8. □

Lemma 88.8.6.0GB2 Let A1 → A2 be a map of Noetherian rings. Let Ii ⊂ Ai be an
ideal such that V (I1A2) = V (I2). Let B1 be in (88.2.0.2) for (A1, I1). Let B2 be
the base change of B1 as in Remark 88.2.3. If B1 is rig-étale over (A1, I1), then B2
is rig-étale over (A2, I2).

Proof. Follows from Lemma 88.8.5 and Definition 88.8.1 and the fact that Ic2 ⊂ I1A2
for some c ≥ 0 as A2 is Noetherian. □

https://stacks.math.columbia.edu/tag/0GB1
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https://stacks.math.columbia.edu/tag/0GB2
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Lemma 88.8.7.0AKJ Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let B be a
finite type A-algebra such that Spec(B) → Spec(A) is étale over Spec(A) \ V (I).
Let C be a Noetherian A-algebra. Then any A-algebra map B∧ → C∧ of I-adic
completions comes from a unique A-algebra map

B −→ Ch

where Ch is the henselization of the pair (C, IC) as in More on Algebra, Lemma
15.12.1. Moreover, any A-algebra homomorphism B → Ch factors through some
étale C-algebra C ′ such that C/IC → C ′/IC ′ is an isomorphism.
Proof. Uniqueness follows from the fact that Ch is a subring of C∧, see for example
More on Algebra, Lemma 15.12.4. The final assertion follows from the fact that Ch
is the filtered colimit of these C-algebras C ′, see proof of More on Algebra, Lemma
15.12.1. Having said this we now turn to the proof of existence.
Let φ : B∧ → C∧ be the given map. This defines a section

σ : (B ⊗A C)∧ −→ C∧

of the completion of the map C → B ⊗A C. We may replace (A, I,B,C, φ) by
(C, IC,B ⊗A C,C, σ). In this way we see that we may assume that A = C.
Proof of existence in the case A = C. In this case the map φ : B∧ → A∧ is
necessarily surjective. By Lemmas 88.8.4 and 88.3.5 we see that the cohomology
groups of NL∧

A∧/φB∧ are annihilated by a power of I. Since φ is surjective, this
implies that Ker(φ)/Ker(φ)2 is annihilated by a power of I. Hence φ : B∧ → A∧

is the completion of a finite type B-algebra B → D, see More on Algebra, Lemma
15.108.4. Hence A→ D is a finite type algebra map which induces an isomorphism
A∧ → D∧. By Lemma 88.8.4 we may replace D by a localization and assume that
A → D is étale away from V (I). Since A∧ → D∧ is an isomorphism, we see that
Spec(D)→ Spec(A) is also étale in a neighbourhood of V (ID) (for example by More
on Morphisms, Lemma 37.12.3). Thus Spec(D) → Spec(A) is étale. Therefore D
maps to Ah and the lemma is proved. □

88.9. A pushout argument

0AK8 The only goal in this section is to prove the following lemma which will play a
key role in algebraization of rig-étale algebras. We will use a bit of the theory of
algebraic spaces to prove this lemma; an earlier version of this chapter gave a (much
longer) proof using algebra and a bit of deformation theory that the interested
reader can find in the history of the Stacks project.
Lemma 88.9.1.0ALT Let A be a Noetherian ring and I ⊂ A an ideal. Let J ⊂ A be a
nilpotent ideal. Consider a commutative diagram

C // C0 C/JC

B0

OO

A //

OO

A0

OO

A/J

whose vertical arrows are of finite type such that

https://stacks.math.columbia.edu/tag/0AKJ
https://stacks.math.columbia.edu/tag/0ALT
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(1) Spec(C)→ Spec(A) is étale over Spec(A) \ V (I),
(2) Spec(B0)→ Spec(A0) is étale over Spec(A0) \ V (IA0), and
(3) B0 → C0 is étale and induces an isomorphism B0/IB0 = C0/IC0.

Then we can fill in the diagram above to a commutative diagram

C // C/JC

B

OO

// B0

OO

A //

OO

A/J

OO

with A → B of finite type, B/JB = B0, B → C étale, and Spec(B) → Spec(A)
étale over Spec(A) \ V (I).

Proof. Set X = Spec(A), X0 = Spec(A0), Y0 = Spec(B0), Z = Spec(C), Z0 =
Spec(C0). Furthermore, denote U ⊂ X, U0 ⊂ X0, V0 ⊂ Y0, W ⊂ Z, W0 ⊂ Z0
the complement of the vanishing set of I. Here is a picture to help visualize the
situation:

Z

��

Z0oo

��
Y0

��
X X0oo

W

��

W0oo

��
V0

��
U U0oo

The conditions in the lemma guarantee that
W0 //

��

Z0

��
V0 // Y0

is an elementary distinguished square, see Derived Categories of Spaces, Definition
75.9.1. In addition we know that W0 → U0 and V0 → U0 are étale. The morphism
X0 ⊂ X is a finite order thickening as J is assumed nilpotent. By the topological
invariance of the étale site we can find a unique étale morphism V → X of schemes
with V0 = V ×X X0 and we can lift the given morphism W0 → V0 to a unique
morphism W → V over X. See Étale Morphisms, Theorem 41.15.2. Since W0 →
V0 is separated, the morphism W → V is separated too, see for example More
on Morphisms, Lemma 37.10.3. By Pushouts of Spaces, Lemma 81.9.2 we can
construct an elementary distinguished square

W //

��

Z

��
V // Y

in the category of algebraic spaces over X. Since the base change of an elementary
distinguished square is an elementary distinguished square (Derived Categories of
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Spaces, Lemma 75.9.2) we see that

W0 //

��

Z0

��
V0 // Y ×X X0

is an elementary distinguished square. It follows that there is a unique isomor-
phism Y ×X X0 = Y0 compatible with the two squares involving these spaces be-
cause elementary distinguished squares are pushouts (Pushouts of Spaces, Lemma
81.9.1). It follows that Y is affine by Limits of Spaces, Proposition 70.15.2. Write
Y = Spec(B). It is clear that B fits into the desired diagram and satisfies all the
properties required of it. □

88.10. Algebraization of rig-étale algebras

0AK5 The main goal is to prove algebraization for rig-étale algebras when the underlying
Noetherian ring A is not assumed to be a G-ring and when the ideal I ⊂ A is
arbitrary – not necessarily principal. We first prove the principal ideal case and
then use the result of Section 88.9 to finish the proof.

Lemma 88.10.1.0ALS The rig-étale case of
[Elk73, III Theorem
7]

Let A be a Noetherian ring and I = (a) a principal ideal. Let B
be an object of (88.2.0.2) which is rig-étale over (A, I). Then there exists a finite
type A-algebra C and an isomorphism B ∼= C∧.

Proof. Choose a presentation B = A[x1, . . . , xr]∧/J . By Lemma 88.8.2 part (6) we
can find c ≥ 0 and f1, . . . , fr ∈ J such that det1≤i,j≤r(∂fj/∂xi) divides ac in B and
acJ ⊂ (f1, . . . , fr) + J2. Hence Lemma 88.7.2 applies. This finishes the proof, but
we’d like to point out that in this case the use of Lemma 88.5.3 can be replaced by
the much easier Lemma 88.5.5. □

Lemma 88.10.2.0AKA Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let B be
an object of (88.2.0.2) which is rig-étale over (A, I). Then there exists a finite type
A-algebra C and an isomorphism B ∼= C∧.

Proof. We prove this lemma by induction on the number of generators of I. Say
I = (a1, . . . , at). If t = 0, then I = 0 and there is nothing to prove. If t = 1, then
the lemma follows from Lemma 88.10.1. Assume t > 1.
For any m ≥ 1 set Ām = A/(amt ). Consider the ideal Īm = (ā1, . . . , āt−1) in Ām.
Observe that V (IĀm) = V (Īm). Let Bm = B/(amt ) be the base change of B for
the map (A, I)→ (Ām, Īm), see Remark 88.2.4. By Lemma 88.8.6 we find that Bm
is rig-étale over (Ām, Īm).
By induction hypothesis (on t) we can find a finite type Ām-algebra Cm and a map
Cm → Bm which induces an isomorphism C∧

m
∼= Bm where the completion is with

respect to Īm. By Lemma 88.8.4 we may assume that Spec(Cm) → Spec(Ām) is
étale over Spec(Ām) \ V (Īm).
We claim that we may choose Am → Cm → Bm as in the previous paragraph such
that moreover there are isomorphisms Cm/(am−1

t ) → Cm−1 compatible with the
given A-algebra structure and the maps to Bm−1 = Bm/(am−1

t ). Namely, first fix a
choice of A1 → C1 → B1. Suppose we have found Cm−1 → Cm−2 → . . .→ C1 with
the desired properties. Note that Cm/(am−1

t ) is étale over Spec(Ām−1) \ V (Īm−1).

https://stacks.math.columbia.edu/tag/0ALS
https://stacks.math.columbia.edu/tag/0AKA
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Hence by Lemma 88.8.7 there exists an étale extension Cm−1 → C ′
m−1 which in-

duces an isomorphism modulo Īm−1 and an Ām−1-algebra map Cm/(am−1
t ) →

C ′
m−1 inducing the isomorphism Bm/(am−1

t ) → Bm−1 on completions. Note that
Cm/(am−1

t ) → C ′
m−1 is étale over the complement of V (Īm−1) by Morphisms,

Lemma 29.36.18 and over V (Īm−1) induces an isomorphism on completions hence
is étale there too (for example by More on Morphisms, Lemma 37.12.3). Thus
Cm/(am−1

t ) → C ′
m−1 is étale. By the topological invariance of étale morphisms

(Étale Morphisms, Theorem 41.15.2) there exists an étale ring map Cm → C ′
m such

that Cm/(am−1
t ) → C ′

m−1 is isomorphic to Cm/(am−1
t ) → C ′

m/(am−1
t ). Observe

that the Īm-adic completion of C ′
m is equal to the Īm-adic completion of Cm, i.e.,

to Bm (details omitted). We apply Lemma 88.9.1 to the diagram

C ′
m

// C ′
m/(am−1

t )

C ′′
m

==

// Cm−1

OO

Ām //

OO

aa

Ām−1

OO

to see that there exists a “lift” of C ′′
m of Cm−1 to an algebra over Ām with all the

desired properties.

By construction (Cm) is an object of the category (88.2.0.1) for the principal ideal
(at). Thus the inverse limit B′ = limCm is an (at)-adically complete A-algebra
such that B′/atB

′ is of finite type over A/(at), see Lemma 88.2.1. By construction
the I-adic completion of B′ is isomorphic to B (details omitted). Consider the
complex NL∧

B′/A constructed using the (at)-adic topology. Choosing a presentation
for B′ (which induces a similar presentation for B) the reader immediately sees that
NL∧

B′/A⊗B′B = NL∧
B/A. Since at ∈ I and since the cohomology modules of NL∧

B′/A

are finite B′-modules (hence complete for the at-adic topology), we conclude that
act acts as zero on these cohomologies as the same thing is true by assumption for
NL∧

B/A. Thus B′ is rig-étale over (A, (at)) by Lemma 88.8.2. Hence finally, we may
apply Lemma 88.10.1 to B′ over (A, (at)) to finish the proof. □

Lemma 88.10.3.0AKG Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let B be
an I-adically complete A-algebra with A/I → B/IB of finite type. The equivalent
conditions of Lemma 88.8.2 are also equivalent to

(8)0AKH there exists a finite type A-algebra C such that Spec(C) → Spec(A) is
étale over Spec(A) \ V (I) and such that B ∼= C∧.

Proof. Combine Lemmas 88.8.2, 88.10.2, and 88.8.4. Small detail omitted. □

88.11. Finite type morphisms

0GBV In Formal Spaces, Section 87.24 we have defined finite type morphisms of formal
algebraic spaces. In this section we study the corresponding types of continuous ring
maps of adic topological rings which have a finitely generated ideal of definition.
We strongly suggest the reader skip this section.

https://stacks.math.columbia.edu/tag/0AKG
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Lemma 88.11.1.0GBW Let A and B be adic topological rings which have a finitely
generated ideal of definition. Let φ : A→ B be a continuous ring homomorphism.
The following are equivalent:

(1) φ is adic and B is topologically of finite type over A,
(2) φ is taut and B is topologically of finite type over A,
(3) there exists an ideal of definition I ⊂ A such that the topology on B is

the I-adic topology and there exist an ideal of definition I ′ ⊂ A such that
A/I ′ → B/I ′B is of finite type,

(4) for all ideals of definition I ⊂ A the topology on B is the I-adic topology
and A/I → B/IB is of finite type,

(5) there exists an ideal of definition I ⊂ A such that the topology on B is
the I-adic topology and B is in the category (88.2.0.2),

(6) for all ideals of definition I ⊂ A the topology on B is the I-adic topology
and B is in the category (88.2.0.2),

(7) B as a topological A-algebra is the quotient of A{x1, . . . , xr} by a closed
ideal,

(8) B as a topological A-algebra is the quotient of A[x1, . . . , xr]∧ by a closed
ideal where A[x1, . . . , xr]∧ is the completion of A[x1, . . . , xr] with respect
to some ideal of definition of A, and

(9) add more here.
Moreover, these equivalent conditions define a local property of morphisms of
WAdmadic∗ as defined in Formal Spaces, Remark 87.21.4.

Proof. Taut ring homomorphisms are defined in Formal Spaces, Definition 87.5.1.
Adic ring homomorphisms are defined in Formal Spaces, Definition 87.6.1. The
lemma follows from a combination of Formal Spaces, Lemmas 87.29.6, 87.29.7,
and 87.23.1. We omit the details. To be sure, there is no difference between the
topological rings A[x1, . . . , xn]∧ and A{x1, . . . , xr}, see Formal Spaces, Remark
87.28.2. □

Remark 88.11.2.0GBX Let A → B be an arrow of WAdmadic∗ which is adic and topo-
logically of finite type (see Lemma 88.11.1). Write B = A{x1, . . . , xr}/J . Then we
can set1

NL∧
B/A =

(
J/J2 −→

⊕
Bdxi

)
Exactly as in the proof of Lemma 88.3.1 the reader can show that this complex
of B-modules is well defined up to (unique isomorphism) in the homotopy cate-
gory K(B). Now, if A is Noetherian and I ⊂ A is an ideal of definition, then
this construction reproduces the naive cotangent complex of B over (A, I) defined
by Equation (88.3.0.1) in Section 88.3 simply because A[x1, . . . , xn]∧ agrees with
A{x1, . . . , xr} by Formal Spaces, Remark 87.28.2. In particular, we find that, still
when A is an adic Noetherian topological ring, the object NL∧

B/A is independent of
the choice of the ideal of definition I ⊂ A.

Lemma 88.11.3.0GBY Consider the property P on arrows of WAdmadic∗ defined in
Lemma 88.11.1. Then P is stable under base change as defined in Formal Spaces,
Remark 87.21.8.

1In fact, this construction works for arrows of WAdmcount satisfying the equivalent conditions
of Formal Spaces, Lemma 87.29.6.
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Proof. The statement makes sense by Lemma 88.11.1. To see that it is true as-
sume we have morphisms B → A and B → C in WAdmadic∗ and that as a topo-
logical B-algebra we have A = B{x1, . . . , xr}/J for some closed ideal J . Then
A⊗̂BC is isomorphic to the quotient of C{x1, . . . , xr}/J ′ where J ′ is the closure of
JC{x1, . . . , xr}. Some details omitted. □

Lemma 88.11.4.0GBZ Consider the property P on arrows of WAdmadic∗ defined in
Lemma 88.11.1. Then P is stable under composition as defined in Formal Spaces,
Remark 87.21.13.

Proof. The statement makes sense by Lemma 88.11.1. The easiest way to prove it
is true is to show that (a) compositions of adic ring maps between adic topological
rings are adic and (b) that compositions of continuous ring maps preserves the
property of being topologically of finite type. We omit the details. □

The following lemma says that morphisms of adic* formal algebraic spaces are
locally of finite type if and only if they are étale locally given by the types of maps
of topological rings described in Lemma 88.11.1.

Lemma 88.11.5.0GC0 Let S be a scheme. Let f : X → Y be a morphism of locally
adic* formal algebraic spaces over S. The following are equivalent

(1) for every commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y repre-
sentable by algebraic spaces and étale, the morphism U → V corresponds
to an arrow of WAdmadic∗ which is adic and topologically of finite type,

(2) there exists a covering {Yj → Y } as in Formal Spaces, Definition 87.11.1
and for each j a covering {Xji → Yj×Y X} as in Formal Spaces, Definition
87.11.1 such that each Xji → Yj corresponds to an arrow of WAdmadic∗

which is adic and topologically of finite type,
(3) there exist a covering {Xi → X} as in Formal Spaces, Definition 87.11.1

and for each i a factorization Xi → Yi → Y where Yi is an affine formal
algebraic space, Yi → Y is representable by algebraic spaces and étale,
and Xi → Yi corresponds to an arrow of WAdmadic∗ which is adic and
topologically of finite type, and

(4) f is locally of finite type.

Proof. Immediate consequence of the equivalence of (1) and (2) in Lemma 88.11.1
and Formal Spaces, Lemma 87.29.9. □

88.12. Finite type on reductions

0GC1 In this section we talk a little bit about morphisms X → Y of locally countably
indexed formal algebraic spaces such that Xred → Yred is locally of finite type.
We will translate this into an algebraic condition. To understand this algebraic
condition it pays to keep in mind the following:

https://stacks.math.columbia.edu/tag/0GBZ
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• If A is a weakly admissible topological ring, then the set a ⊂ A of
topological nilpotent elements is an open, radical ideal and Spf(A)red =
Spec(A/a).

See Formal Spaces, Definition 87.4.8, Lemma 87.4.10, and Example 87.12.2.

Lemma 88.12.1.0GC2 For an arrow φ : A → B in WAdmcount consider the property
P (φ) =“the induced ring homomorphism A/a→ B/b is of finite type” where a ⊂ A
and b ⊂ B are the ideals of topologically nilpotent elements. Then P is a local
property as defined in Formal Spaces, Situation 87.21.2.

Proof. Consider a commutative diagram

B // (B′)∧

A //

φ

OO

(A′)∧

φ′

OO

as in Formal Spaces, Situation 87.21.2. Taking Spf of this diagram we obtain

Spf(B)

��

Spf((B′)∧)oo

��
Spf(A) Spf((A′)∧)oo

of affine formal algebraic spaces whose horizontal arrows are representable by al-
gebraic spaces and étale by Formal Spaces, Lemma 87.19.13. Hence we obtain a
commutative diagram of affine schemes

Spf(B)red

f

��

Spf((B′)∧)redg
oo

f ′

��
Spf(A)red Spf((A′)∧)redoo

whose horizontal arrows are étale by Formal Spaces, Lemma 87.12.3. By Formal
Spaces, Example 87.12.2 and Lemma 87.19.14 conditions (1), (2), and (3) of Formal
Spaces, Situation 87.21.2 translate into the following statements

(1) if f is locally of finite type, then f ′ is locally of finite type,
(2) if f ′ is locally of finite type and g is surjective, then f is locally of finite

type, and
(3) if Ti → S, i = 1, . . . , n are locally of finite type, then

∐
i=1,...,n Ti → S is

locally of finite type.
Properties (1) and (2) follow from the fact that being locally of finite type is local on
the source and target in the étale topology, see discussion in Morphisms of Spaces,
Section 67.23. Property (3) is a straightforward consequence of the definition. □

Lemma 88.12.2.0GC3 Consider the property P on arrows of WAdmcount defined in
Lemma 88.12.1. Then P is stable under base change (Formal Spaces, Situation
87.21.6).

Proof. The statement makes sense by Lemma 88.12.1. To see that it is true assume
we have morphisms B → A and B → C in WAdmcount such that B/b → A/a is
of finite type where b ⊂ B and a ⊂ A are the ideals of topologically nilpotent

https://stacks.math.columbia.edu/tag/0GC2
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elements. Since A and B are weakly admissible, the ideals a and b are open. Let
c ⊂ C be the (open) ideal of topologically nilpotent elements. Then we find a
surjection A⊗̂BC → A/a ⊗B/b C/c whose kernel is a weak ideal of definition and
hence consists of topologically nilpotent elements (please compare with the proof
of Formal Spaces, Lemma 87.4.12). Since already C/c→ A/a⊗B/b C/c is of finite
type as a base change of B/b→ A/a we conclude. □

Lemma 88.12.3.0GC4 Consider the property P on arrows of WAdmcount defined in
Lemma 88.12.1. Then P is stable under composition (Formal Spaces, Situation
87.21.11).

Proof. Omitted. Hint: compositions of finite type ring maps are of finite type. □

Lemma 88.12.4.0GC5 Let φ : A → B be an arrow of WAdmcount. If φ is taut and
topologically of finite type, then φ satisfies the condition defined in Lemma 88.12.1.

Proof. This is an easy consequence of the definitions. □

Lemma 88.12.5.0GC6 Let φ : A→ B be an arrow of WAdmNoeth satisfying the condition
defined in Lemma 88.12.1. Then A→ B is topologically of finite type.

Proof. Let b ⊂ B be the ideal of topologically nilpotent elements. Choose b1, . . . , br ∈
B which map to generators of B/b over A. Choose generators br+1, . . . , bs of the
ideal b. We claim that the image of

φ : A[x1, . . . , xs] −→ B, xi 7−→ bi

has dense image. Namely, if b ∈ bn for some n ≥ 0, then we can write b =∑
bEb

er+1
r+1 . . . b

es
s for multiindices E = (er+1, . . . , es) with |E| =

∑
ei = n and bE ∈

B. Next, we can write bE = fE(b1, . . . , br)+b′
E with b′

E ∈ b and fE ∈ A[x1, . . . , xr].
Combined we obtain b ∈ Im(φ) + bn+1. By induction we see that B = Im(φ) + bn

for all n ≥ 0 which mplies what we want as b is an ideal of definition of B. □

Lemma 88.12.6.0GG6 Let φ : A → B be an arrow of WAdmNoeth. If φ is adic the
following are equivalent

(1) φ satisfies the condition defined in Lemma 88.12.1 and
(2) φ satisfies the condition defined in Lemma 88.11.1.

Proof. Omitted. Hint: For the proof of (1) ⇒ (2) use Lemma 88.12.5. □

Lemma 88.12.7.0GC7 Let S be a scheme. Let f : X → Y be a morphism of locally
countably indexed formal algebraic spaces over S. The following are equivalent

(1) for every commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y repre-
sentable by algebraic spaces and étale, the morphism U → V corresponds
to an arrow of WAdmcount satisfying the property defined in Lemma
88.12.1,
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(2) there exists a covering {Yj → Y } as in Formal Spaces, Definition 87.11.1
and for each j a covering {Xji → Yj×Y X} as in Formal Spaces, Definition
87.11.1 such that each Xji → Yj corresponds to an arrow of WAdmcount

satisfying the property defined in Lemma 88.12.1,
(3) there exist a covering {Xi → X} as in Formal Spaces, Definition 87.11.1

and for each i a factorization Xi → Yi → Y where Yi is an affine formal
algebraic space, Yi → Y is representable by algebraic spaces and étale, and
Xi → Yi corresponds to an arrow of WAdmcount satisfying the property
defined in Lemma 88.12.1, and

(4) the morphism fred : Xred → Yred is locally of finite type.

Proof. The equivalence of (1), (2), and (3) follows from Lemma 88.12.1 and an
application of Formal Spaces, Lemma 87.21.3. Let Yj and Xji be as in (2). Then

• The families {Yj,red → Yred} and {Xji,red → Xred} are étale coverings by
affine schemes. This follows from the discussion in the proof of Formal
Spaces, Lemma 87.12.1 or directly from Formal Spaces, Lemma 87.12.3.
• If Xji → Yj corresponds to the morphism Bj → Aji of WAdmcount, then
Xji,red → Yj,red corresponds to the ring map Bj/bj → Aji/aji where bj
and aji are the ideals of topologically nilpotent elements. This follows
from Formal Spaces, Example 87.12.2. Hence Xji,red → Yj,red is locally
of finite type if and only if Bj → Aji satisfies the property defined in
Lemma 88.12.1.

The equivalence of (2) and (4) follows from these remarks because being locally of
finite type is a property of morphisms of algebraic spaces which is étale local on
source and target, see discussion in Morphisms of Spaces, Section 67.23. □

88.13. Flat morphisms

0GC8 In this section we define flat morphisms of locally Noetherian formal algebraic
spaces.

Lemma 88.13.1.0GC9 The property P (φ) =“φ is flat” on arrows of WAdmNoeth is a
local property as defined in Formal Spaces, Remark 87.21.5.

Proof. Let us recall what the statement signifies. First, WAdmNoeth is the cate-
gory whose objects are adic Noetherian topological rings and whose morphisms are
continuous ring homomorphisms. Consider a commutative diagram

B // (B′)∧

A //

φ

OO

(A′)∧

φ′

OO

satisfying the following conditions: A and B are adic Noetherian topological rings,
A → A′ and B → B′ are étale ring maps, (A′)∧ = limA′/InA′ for some ideal of
definition I ⊂ A, (B′)∧ = limB′/JnB′ for some ideal of definition J ⊂ B, and
φ : A→ B and φ′ : (A′)∧ → (B′)∧ are continuous. Note that (A′)∧ and (B′)∧ are
adic Noetherian topological rings by Formal Spaces, Lemma 87.21.1. We have to
show

(1) φ is flat ⇒ φ′ is flat,
(2) if B → B′ faithfully flat, then φ′ is flat ⇒ φ is flat, and

https://stacks.math.columbia.edu/tag/0GC9
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(3) if A→ Bi is flat for i = 1, . . . , n, then A→
∏
i=1,...,nBi is flat.

We will use without further mention that completions of Noetherian rings are flat
(Algebra, Lemma 10.97.2). Since of course A→ A′ and B → B′ are flat, we see in
particular that the horizontal arrows in the diagram are flat.

Proof of (1). If φ is flat, then the composition A → (A′)∧ → (B′)∧ is flat. Hence
A′ → (B′)∧ is flat by More on Flatness, Lemma 38.2.3. Hence we see that (A′)∧ →
(B′)∧ is flat by applying More on Algebra, Lemma 15.27.5 with R = A′, with ideal
I(A′), and with M = (B′)∧ = M∧.

Proof of (2). Assume φ′ is flat and B → B′ is faithfully flat. Then the composition
A → (A′)∧ → (B′)∧ is flat. Also we see that B → (B′)∧ is faithfully flat by
Formal Spaces, Lemma 87.19.14. Hence by Algebra, Lemma 10.39.9 we find that
φ : A→ B is flat.

Proof of (3). Omitted. □

Lemma 88.13.2.0GCA Denote P the property of arrows of WAdmNoeth defined in Lemma
88.13.1. Denote Q the property defined in Lemma 88.12.1 viewed as a property of
arrows of WAdmNoeth. Denote R the property defined in Lemma 88.11.1 viewed
as a property of arrows of WAdmNoeth. Then

(1) P is stable under base change by Q (Formal Spaces, Remark 87.21.10),
and

(2) P +R is stable under base change (Formal Spaces, Remark 87.21.9).

Proof. The statement makes sense as each of the properties P , Q, and R is a
local property of morphisms of WAdmNoeth. Let φ : B → A and ψ : B → C
be morphisms of WAdmNoeth. If either Q(φ) or Q(ψ) then we see that A⊗̂BC is
Noetherian by Formal Spaces, Lemma 87.4.12. Since R implies Q (Lemma 88.12.4),
we find that this holds in both cases (1) and (2). This is the first thing we have to
check. It remains to show that C → A⊗̂BC is flat.

Proof of (1). Fix ideals of definition I ⊂ A and J ⊂ B. By Lemma 88.12.5 the
ring map B → C is topologically of finite type. Hence B → C/Jn is of finite
type for all n ≥ 1. Hence A ⊗B C/Jn is Noetherian as a ring (because it is of
finite type over A and A is Noetherian). Thus the I-adic completion A⊗̂BC/Jn of
A⊗B C/Jn is flat over C/Jn because C/Jn → A⊗B C/Jn is flat as a base change
of B → A and because A⊗BC/Jn → A⊗̂BC/Jn is flat by Algebra, Lemma 10.97.2
Observe that A⊗̂BC/Jn = (A⊗̂BC)/Jn(A⊗̂BC); details omitted. We conclude
that M = A⊗̂BC is a C-module which is complete with respect to the J-adic
topology such that M/JnM is flat over C/Jn for all n ≥ 1. This implies that M is
flat over C by More on Algebra, Lemma 15.27.4.

Proof of (2). In this case B → A is adic and hence we have just A⊗̂BC = limA⊗B
C/Jn. The rings A ⊗B C/Jn are Noetherian by an application of Formal Spaces,
Lemma 87.4.12 with C replaced by C/Jn. We conclude in the same manner as
before. □

Lemma 88.13.3.0GCB Denote P the property of arrows of WAdmNoeth defined in Lemma
88.13.1. Then P is stable under composition (Formal Spaces, Remark 87.21.14).

Proof. This is true because compositions of flat ring maps are flat. □
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Definition 88.13.4.0GCC Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian formal algebraic spaces over S. We say f is flat if for every commutative
diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y representable by
algebraic spaces and étale, the morphism U → V corresponds to a flat map of adic
Noetherian topological rings.
Let us prove that we can check this condition étale locally on the source and target.
Lemma 88.13.5.0GCD Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian formal algebraic spaces over S. The following are equivalent

(1) f is flat,
(2) for every commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y repre-
sentable by algebraic spaces and étale, the morphism U → V corresponds
to a flat map in WAdmNoeth,

(3) there exists a covering {Yj → Y } as in Formal Spaces, Definition 87.11.1
and for each j a covering {Xji → Yj×Y X} as in Formal Spaces, Definition
87.11.1 such that each Xji → Yj corresponds to a flat map in WAdmNoeth,
and

(4) there exist a covering {Xi → X} as in Formal Spaces, Definition 87.11.1
and for each i a factorization Xi → Yi → Y where Yi is an affine formal
algebraic space, Yi → Y is representable by algebraic spaces and étale,
and Xi → Yi corresponds to a flat map in WAdmNoeth.

Proof. The equivalence of (1) and (2) is Definition 88.13.4. The equivalence of
(2), (3), and (4) follows from the fact that being flat is a local property of arrows
of WAdmNoeth by Lemma 88.13.1 and an application of the variant of Formal
Spaces, Lemma 87.21.3 for morphisms between locally Noetherian algebraic spaces
mentioned in Formal Spaces, Remark 87.21.5. □

Lemma 88.13.6.0GCE Let S be a scheme. Let f : X → Y and g : Z → Y be morphisms
of locally Noetherian formal algebraic spaces over S.

(1) If f is flat and gred : Zred → Yred is locally of finite type, then the base
change X ×Y Z → Z is flat.

(2) If f is flat and locally of finite type, then the base change X ×Y Z → Z
is flat and locally of finite type.

Proof. Part (1) follows from a combination of Formal Spaces, Remark 87.21.10,
Lemma 88.13.2 part (1), Lemma 88.13.5, and Lemma 88.12.7.
Part (2) follows from a combination of Formal Spaces, Remark 87.21.9, Lemma
88.13.2 part (2), Lemma 88.13.5, and Lemma 88.11.5. □
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Lemma 88.13.7.0GCF Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of locally Noetherian formal algebraic spaces over S. If f and g are flat, then so is
g ◦ f .

Proof. Combine Formal Spaces, Remark 87.21.14 and Lemma 88.13.3. □

Lemma 88.13.8.0GCG Let S be a scheme. Let f : X → Y be a morphisms of locally
Noetherian formal algebraic spaces over S. If f is representable by algebraic spaces
and flat in the sense of Bootstrap, Definition 80.4.1, then f is flat in the sense of
Definition 88.13.4.

Proof. This is a sanity check whose proof should be trivial but isn’t quite. We urge
the reader to skip the proof. Assume f is representable by algebraic spaces and flat
in the sense of Bootstrap, Definition 80.4.1. Consider a commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y representable by
algebraic spaces and étale. Then the morphism U → V corresponds to a taut map
B → A of WAdmNoeth by Formal Spaces, Lemma 87.22.2. Observe that this means
B → A is adic (Formal Spaces, Lemma 87.23.1) and in particular for any ideal of
definition J ⊂ B the topology on A is the J-adic topology and the diagrams

Spec(A/JnA) //

��

Spec(B/Jn)

��
U // V

are cartesian.

Let T → V is a morphism where T is a scheme. Then

X ×Y T → T is flat⇒ U ×Y T → T is flat
⇒ U ×V V ×Y T → T is flat
⇒ U ×V V ×Y T → V ×Y T is flat
⇒ U ×V T → T is flat

The first statement is the assumption on f . The first implication because U → X is
étale and hence flat and compositions of flat morphisms of algebraic spaces are flat.
The second impliciation because U×Y T = U×V V ×Y T . The third implication by
More on Flatness, Lemma 38.2.3. The fourth implication because we can pullback
by the morphism T → V ×Y T . We conclude that U → V is flat in the sense
of Bootstrap, Definition 80.4.1. In terms of the continuous ring map B → A this
means the ring maps B/Jn → A/JnA are flat (see diagram above).

Finally, we can conclude that B → A is flat for example by More on Algebra,
Lemma 15.27.4. □
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88.14. Rig-closed points

0GG7 We develop just enough theory to be able to use this for testing rig-flatness in a
later section. The reader can find more theory in [BL93] who discuss (among other
things) the case of locally Noetherian formal schemes.

Lemma 88.14.1.0GG8 Let A be a Noetherian adic topological ring. Let q ⊂ A be a
prime ideal. The following are equivalent

(1) for some ideal of definition I ⊂ A we have I ̸⊂ q and q is maximal with
respect to this property,

(2) for some ideal of definition I ⊂ A the prime q defines a closed point of
Spec(A) \ V (I),

(3) for any ideal of definition I ⊂ A we have I ̸⊂ q and q is maximal with
respect to this property,

(4) for any ideal of definition I ⊂ A the prime q defines a closed point of
Spec(A) \ V (I),

(5) dim(A/q) = 1 and for some ideal of definition I ⊂ A we have I ̸⊂ q,
(6) dim(A/q) = 1 and for any ideal of definition I ⊂ A we have I ̸⊂ q,
(7) dim(A/q) = 1 and the induced topology on A/q is nontrivial,
(8) A/q is a 1-dimensional Noetherian complete local domain whose maximal

ideal is the radical of the image of any ideal of definition of A, and
(9) add more here.

Proof. It is clear that (1) and (2) are equivalent and for the same reason that (3)
and (4) are equivalent. Since V (I) is independent of the choice of the ideal of
definition I of A, we see that (2) and (4) are equivalent.

Assume the equivalent conditions (1) – (4) hold. If dim(A/q) > 1 we can choose
a maximal ideal q ⊂ m ⊂ A such that dim((A/q)m) > 1. Then Spec((A/q)m) −
V (I(A/q)m) would be infinite by Algebra, Lemma 10.61.1. This contradicts the
fact that q is closed in Spec(A) \ V (I). Hence we see that (6) holds. Trivially (6)
implies (5).

Conversely, assume (5) holds. Let I ⊂ A be an ideal of definition. Since A/q is com-
plete with respect to I(A/q) (for example by Algebra, Lemma 10.97.1) we see that
all closed points of Spec(A/q) are contained in V (IA/q) by Algebra, Lemma 10.96.6.
Since dim(A/q) = 1 and since I ̸⊂ q we conclude two things: (a) V (IA/q) must con-
tain all points distinct from the generic point of Spec(A/q), and (b) V (IA/q) must
be a (finite) discrete set. From (a) we see that q is a closed point of Spec(A) \V (I)
and we conclude that (2) holds.

Continuing to assume (5) we see that the finite discrete space V (IA/q) must be
a singleton by More on Algebra, Lemma 15.11.16 for example (and the fact that
complete pairs are henselian pairs, see More on Algebra, Lemma 15.11.4). Hence
we see that (8) is true. Conversely, it is clear that (8) implies (5).

At this point we know that (1) – (6) and (8) are equivalent. We omit the verification
that these are also equivalent to (7). □

In order to comfortably talk about such primes we introduce the following nonstan-
dard notation.
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Definition 88.14.2.0GG9 Let A be a Noetherian adic topological ring. Let q ⊂ A be a
prime ideal. We say q is rig-closed if the equivalent conditions of Lemma 88.14.1
are satisfied.

We will need a few lemmas which essentially tell us there are plenty of rig-closed
primes even in a relative settting.

Lemma 88.14.3.0GGA Let φ : A → B in WAdmNoeth. Denote a ⊂ A and b ⊂ B the
ideals of topologically nilpotent elements. Assume A/a → B/b is of finite type.
Let q ⊂ B be rig-closed. The residue field κ of the local ring B/q is a finite type
A/a-algebra.

Proof. Let q ⊂ m ⊂ B be the unique maximal ideal containing q. Then b ⊂ m.
Hence A/a→ B/b→ B/m = κ is of finite type. □

Lemma 88.14.4.0GGB Let φ : A → B be an arrow of WAdmNoeth which is adic and
topologically of finite type. Let q ⊂ B be rig-closed. Let p = φ−1(q) ⊂ A. Let
a ⊂ A be the ideal of topologically nilpotent elements. The following are equivalent

(1) the residue field κ of B/q is finite over A/a,
(2) p ⊂ A is rig-closed,
(3) A/p ⊂ B/q is a finite extension of rings.

Proof. Assume (1). Recall that B/q is a Noetherian local ring of dimension 1 whose
topology is the adic topology coming from the maximal ideal. Since φ is adic, we
see that A→ B/q is adic. Hence φ(a) is a nonzero ideal in B/q. Hence B/q+φ(a)
has finite length. Hence B/q+φ(a) is finite as an A/a-module by our assumption.
Thus B/q is finite over A by Algebra, Lemma 10.96.12. Thus (3) holds.

Assume (3). Then Spec(B/q) → Spec(A/p) is surjective by Algebra, Lemma
10.36.17. This implies (2).

Assume (2). Denote κ′ the residue field of A/p. By Lemma 88.14.3 (and Lemma
88.12.4) the extension κ/κ′ is finitely generated as an algebra. By the Hilbert
Nullstellensatz (Algebra, Lemma 10.34.2) we see that κ/κ′ is a finite extension.
Hence we see that (1) holds. □

Lemma 88.14.5.0GGC Let φ : A → B be an arrow of WAdmNoeth which is adic and
topologically of finite type. Let q ⊂ B be rig-closed. If A/I is Jacobson for some
ideal of definition I ⊂ A, then p = φ−1(q) ⊂ A is rig-closed.

Proof. By Lemma 88.14.3 (combined with Lemma 88.12.4) the residue field κ of
B/q is of finite type over A/a. Since A/a is Jacobson, we see that κ is finite over
A/a by Algebra, Lemma 10.35.18. We conclude by Lemma 88.14.4. □

Lemma 88.14.6.0GGD Let φ : A → B be an arrow of WAdmNoeth which is adic and
topologically of finite type. Let p ⊂ A be rig-closed. Let a ⊂ A and b ⊂ B be
the ideals of topologically nilpotent elements. If φ is flat, then the following are
equivalent

(1) the maximal ideal of A/p is in the image of Spec(B/b)→ Spec(A/a),
(2) there exists a rig-closed prime ideal q ⊂ B such that p = φ−1(q).

and if so then φ, p, and q satisfy the conclusions of Lemma 88.14.4.
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Proof. The implication (2)⇒ (1) is immediate. Assume (1). To prove the existence
of q we may replace A by A/p and B by B/pB (some details omitted). Thus we
may assume (A,m, κ) is a local complete 1-dimensional Noetherian ring, m = a, and
p = (0). Condition (1) just says that B0 = B ⊗A κ = B/mB = B/aB is nonzero.
Note that B0 is of finite type over κ. Hence we can use induction on dim(B0). If
dim(B0) = 0, then any minimal prime q ⊂ B will do (flatness of A → B insures
that q will lie over p = (0)). If dim(B0) > 0 then we can find an element b ∈ B
which maps to an element b0 ∈ B0 which is a nonzerodivisor and a nonunit, see
Algebra, Lemma 10.63.20. By Algebra, Lemma 10.99.2 the ring B′ = B/bB is flat
over A. Since B′

0 = B′ ⊗A κ = B0/(b0) is not zero, we may apply the induction
hypothesis to B′ and conclude. The final statement of the lemma is clear from
Lemma 88.14.4. □

We introduce some notation.
Definition 88.14.7.0GGE Let A be an adic topological ring which has a finitely generated
ideal of definition. Let f ∈ A. The completed principal localization A{f} of A is
the completion of Af = A[1/f ] of the principal localization of A at f with respect
to any ideal of definition of A.
To be sure, if f is topologically nilpotent, then A{f} is the zero ring.

Lemma 88.14.8.0GGF Let A be an adic Noetherian topological ring. Let p ⊂ A be a
prime ideal. Let f ∈ A be an element mapping to a unit in A/p. Then

pA{f} = p(Af )∧ = p⊗A (Af )∧ = (pf )∧

is a prime ideal with quotient
A/p = (A/p)⊗A (Af )∧ = (Af )∧/p(Af )∧ = A{f}/pA{f}

Proof. Since Af is Noetherian the ring map A → Af → (Af )∧ is flat. For any
finite A-module M we see that M ⊗A (Af )∧ is the completion of Mf . If f is a unit
on M , then Mf = M is already complete. See discussion in Algebra, Section 10.97.
From these observations the results follow easily. □

Lemma 88.14.9.0GGG Let φ : A → B be an arrow of WAdmNoeth which is adic and
topologically of finite type. Let q ⊂ B be rig-closed. There exists an f ∈ A which
maps to a unit in B/q such that we obtain a diagram

B // B{f}

A //

φ

OO

A{f}

φ{f}

OO

with primes

q q′ qB{f}

p p′

such that p′ is rig-closed, i.e., the map A{f} → B{f} and the prime ideals q′ and p′

satisfy the equivalent conditions of Lemma 88.14.4.
Proof. Please see Lemma 88.14.8 for the description of q′. The only assertion the
lemma makes is that for a suitable choice of f the prime ideal p′ has the property
dim((Af )∧/p′) = 1. By Lemma 88.14.4 this in turn just means that the residue
field κ of B/q = (Bf )∧/q′ is finite over (Af )∧/a′ = (A/a)f . By Lemma 88.14.3
we know that A/a → κ is a finite type algebra homomorphism. By the Hilbert
Nullstellensatz in the form of Algebra, Lemma 10.34.2 we can find an f ∈ A which
maps to a unit in κ such that κ is finite over Af . This finishes the proof. □
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Lemma 88.14.10.0GGH LetA be a Noetherian adic topological ring. DenoteA{x1, . . . , xn}
the restricted power series over A. Let q ⊂ A{x1, . . . , xn} be a prime ideal. Set
q′ = A[x1, . . . , xn] ∩ q and p = A ∩ q. If q and p are rig-closed, then the map

A[x1, . . . , xn]q′ → A{x1, . . . , xn}q
defines an isomorphism on completions with respect to their maximal ideals.

Proof. By Lemma 88.14.4 the ring map A/p → A{x1, . . . , xn}/q is finite. For
every m ≥ 1 the module qm/qm+1 is finite over A as it is a finite A{x1, . . . , xn}/q-
module. Hence A{x1, . . . xn}/qm is a finite A-module. Hence A[x1, . . . , xn] →
A{x1, . . . , xn}/qm is surjective (as the image is dense and an A-submodule). It
follows in a straightforward manner that A[x1, . . . , xn]/(q′)m → A{x1, . . . , xn}/qm
is an isomorphism for all m. From this the lemma easily follows. Hint: Pick
a topologically nilpotent g ∈ A which is not contained in p. Then the map of
completions is the map

limm (A[x1, . . . , xn]/(q′)m)g −→ (A{x1, . . . , xn}/qm)g
Some details omitted. □

Lemma 88.14.11.0GGI Let φ : A → B be an arrow of WAdmNoeth. Assume φ is adic,
topologically of finite type, flat, and A/I → B/IB is étale for some (resp. any)
ideal of definition I ⊂ A. Let q ⊂ B be rig-closed such that p = A ∩ q is rig-closed
as well. Then pBq = qBq.

Proof. Let κ be the residue field of the 1-dimensional complete local ring A/p. Since
A/I → B/IB is étale, we see that B ⊗A κ is a finite product of finite separable
extensions of κ, see Algebra, Lemma 10.143.4. One of these is the residue field
of B/q. By Algebra, Lemma 10.96.12 we see that B/pB is a finite A/p-algebra.
It is also flat. Combining the above we see that A/p → B/pB is finite étale, see
Algebra, Lemma 10.143.7. Hence B/pB is reduced, which implies the statement of
the lemma (details omitted). □

Lemma 88.14.12.0GGJ Let A be an adic Noetherian topological ring. Let p ⊂ A be a
rig-closed prime. For any n ≥ 1 the ring map

A/p −→ A{x1, . . . , xn} ⊗A A/p = A/p{x1, . . . , xn}

is regular. In particular, the algebra A{x1, . . . , xn}⊗A κ(p) is geometrically regular
over κ(p).

Proof. We will use some fact on regular ring maps the reader can find in More
on Algebra, Section 15.41. Since A/p is a complete local Noetherian ring it is
excellent (More on Algebra, Proposition 15.52.3). Hence A/p[x1, . . . , xn] is excellent
(by the same reference). Hence A/p[x1, . . . , xn] → A/p{x1, . . . , xn} is a regular
ring homomorphism by More on Algebra, Lemma 15.50.14. Of course A/p →
A/p[x1, . . . , xn] is smooth and hence regular. Since the composition of regular ring
maps is regular the proof is complete. □

88.15. Rig-flat homomorphisms

0GGK In this section we define rig-flat homomorphisms of adic Noetherian topological
rings.

https://stacks.math.columbia.edu/tag/0GGH
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Lemma 88.15.1.0GGL Let φ : A → B be a morphism in WAdmadic∗ (Formal Spaces,
Section 87.21). Assume φ is adic. The following are equivalent:

(1) Bf is flat over A for all topologically nilpotent f ∈ A,
(2) Bg is flat over A for all topologically nilpotent g ∈ B,
(3) Bq is flat over A for all primes q ⊂ B which do not contain an ideal of

definition,
(4) Bq is flat over A for every rig-closed prime q ⊂ B, and
(5) add more here.

Proof. Follows from the definitions and Algebra, Lemma 10.39.18. □

Definition 88.15.2.0GGM Let φ : A → B be a continuous ring homomorphism between
adic Noetherian topological rings, i.e., φ is an arrow of WAdmNoeth. We say φ is
naively rig-flat if φ is adic, topologically of finite type, and satisfies the equivalent
conditions of Lemma 88.15.1.

The example below shows that this notion does not “localize”.

Example 88.15.3.0GGN By Examples, Lemma 110.17.1 there exists a local Noetherian
2-dimensional domain (A,m) complete with respect to a principal ideal I = (a)
and an element f ∈ m, f ̸∈ I with the following property: the ring A{f}[1/a] is
nonreduced. Here A{f} is the I-adic completion (Af )∧ of the principal localization
Af . To be sure the ring A{f}[1/a] is nonzero. Let B = A{f}/nil(A{f}) be the
quotient by its nilradical. Observe that A → B is adic and topologically of finite
type. In fact, B is a quotient of A{x} = A[x]∧ by the map sending x to the image
of 1/f in B. Every prime q of B not containing a must lie over (0) ⊂ A2. Hence Bq

is flat over A as it is a module over the fraction field of A. Thus A→ B is naively
rig-flat. On the other hand, the map

A{f} −→ B{f} = (Bf )∧ = B = A{f}/nil(A{f})

is not flat after inverting a because we get the nontrivial surjection A{f}[1/a] →
A{f}[1/a]/nil(A{f}[1/a]). Hence A{f} → B∧

{f} is not naively rig-flat!

It turns out that it is easy to work around this problem by using the following
definition.

Definition 88.15.4.0GGP Let φ : A → B be a continuous ring homomorphism between
adic Noetherian topological rings, i.e., φ is an arrow of WAdmNoeth. We say φ is
rig-flat if φ is adic, topologically of finite type, and for all f ∈ A the induced map

A{f} −→ B{f}

is naively rig-flat (Definition 88.15.2).

Setting f = 1 in the definition above we see that rig-flatness implies naive rig-
flatness. The example shows the converse is false. However, in many situations we
don’t need to worry about the difference between rig-flatness and its naive version
as the next lemma shows.

2Namely, we can find q ⊂ q′ ⊂ B with a ∈ q′ because B is a-adically complete. Then
p′ = A ∩ q′ contains a but not f hence is a height 1 prime. Then p = A ∩ q must be strictly
contained in p′ as a ̸∈ p. Since dim(A) = 2 we see that p = (0).

https://stacks.math.columbia.edu/tag/0GGL
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Lemma 88.15.5.0GGQ Let φ : A → B be an arrow of WAdmNoeth. If A/I is Jacobson
for some (equivalently any) ideal of definition I ⊂ A and φ is naively rig-flat, then
φ is rig-flat.

Proof. Assume φ is naively rig-flat. We first state some obvious consequences of
the assumptions. Namely, let f ∈ A. Then A,B,A{f}, B{f} are Noetherian adic
topological rings. The maps A → A{f} → B{f} and A → B → B{f} are adic and
topologically of finite type. The ring maps A → A{f} and B → B{f} are flat as
compositions of A → Af and B → Bf and the completion maps which are flat by
Algebra, Lemma 10.97.2. The quotients of each of the rings A,B,A{f}, B{f} by I
is of finite type over A/I and hence Jacobson too (Algebra, Proposition 10.35.19).
Let q′ ⊂ B{f} be rig-closed. It suffices to prove that (B{f})q′ is flat over A{f}, see
Lemma 88.15.1. By Lemma 88.14.5 the primes q ⊂ B and p′ ⊂ A{f} and p ⊂ A
lying under q′ are rig-closed. We are going to apply Algebra, Lemma 10.100.2 to
the diagram

Bq
// (B{f})q′

Ap

OO

// (A{f})p′

OO

with M = Bq. The only assumption that hasn’t been checked yet is the fact that
p generates the maximal ideal of (A{f})p′ . This follows from Lemma 88.14.8; here
we use that p and p′ are rig-closed to see that f maps to a unit of A/p (this is the
only step in the proof that fails without the Jacobson assumption). Namely, this
tells us that A/p→ A{f}/p

′ is a finite inclusion of local rings (Lemma 88.14.4) and
f maps to a unit in the second one. □

Lemma 88.15.6.0GGR Let φ : A → B and A → C be arrows of WAdmNoeth. Assume
φ is rig-flat and A→ C adic and topologically of finite type. Then C → B⊗̂AC is
rig-flat.

Proof. Assume φ is rig-flat. Let f ∈ C be an element. We have to show that
C{f} → B⊗̂AC{f} is naively rig-flat. Since we can replace C by C{f} we it suffices
to show that C → B⊗̂AC is naively rig-flat.
If A→ C is surjective or more generally if C is finite as an A-module, then B⊗AC =
B⊗̂AC as a finite module over a complete Noetherian ring is complete, see Algebra,
Lemma 10.97.1. By the usual base change for flatness (Algebra, Lemma 10.39.7)
we see that naive rig-flatness of φ implies naive rig-flatness for C → B×AC in this
case.
In the general case, we can factor A → C as A → A{x1, . . . , xn} → C where
A{x1, . . . , xn} is the restricted power series ring and A{x1, . . . , xn} → C is sur-
jective. Thus it suffices to show C → B⊗̂AB is naively rig-flat in case C =
A{x1, . . . , xn}. Since A{x1, . . . , xn} = A{x1, . . . , xn−1}{xn} by induction on n
we reduce to the case discussed in the next paragraph.
Here C = A{x}. Note that B⊗̂AC = B{x}. We have to show that A{x} → B{x}
is naively rig-flat. Let q ⊂ B{x} be a rig-closed prime ideal. We have to show that
B{x}q is flat over A{x}. Set p = A ∩ q. By Lemma 88.14.9 we can find an f ∈ A
such that f maps to a unit in B{x}/q and such that the prime ideal p′ in A{f}

https://stacks.math.columbia.edu/tag/0GGQ
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induced is rig-closed. Below we will use that A{f}{x} = A{x}{f} and similarly for
B; details omitted. Consider the diagram

(B{x})q // (B{f}{x})q′

A{x} //

OO

A{f}{x}

OO

We want to show that the left vertical arrow is flat. The top horizontal arrow is
faithfully flat as it is a local homomorphism of local rings and flat as B{f}{x} is
the completion of a localization of the Noetherian ring B{x}. Similarly the bottom
horizontal arrow is flat. Hence it suffices to prove that the right vertical arrow is
flat. This reduces us to the case discussed in the next paragraph.

Here C = A{x}, we have a rig-closed prime ideal q ⊂ B{x} such that p = A ∩ q is
rig-closed as well. This implies, via Lemma 88.14.4, that the intermediate primes
B ∩ q and A{x} ∩ q are rig-closed as well. Consider the diagram

(B[x])B[x]∩q
// (B{x})q

(A[x])A[x]∩q
//

OO

(A{x})A{x}∩q

OO

of local homomorphisms of Noetherian local rings. By Lemma 88.14.10 the hori-
zontal arrows define isomorphisms on completions. We already know that the left
vertical arrow is flat (as A → B is naively rig-flat and hence A[x] → B[x] is flat
away from the closed locus defined by an ideal of definition). Hence we finally
conclude by More on Algebra, Lemma 15.43.8. □

Lemma 88.15.7.0GGS Consider a commutative diagram

B // B′

A //

φ

OO

A′

φ′

OO

in WAdmNoeth with all arrows adic and topologically of finite type. Assume A→ A′

and B → B′ are flat. Let I ⊂ A be an ideal of definition. If φ is rig-flat and
A/I → A′/IA′ is étale, then φ′ is rig-flat.

Proof. Given f ∈ A′ the assumptions of the lemma remain true for the digram

B // (B′){f}

A //

φ

OO

(A′){f}

OO

Hence it suffices to prove that φ′ is naively rig-flat.

Take a rig-closed prime ideal q′ ⊂ B′. We have to show that (B′)q′ is flat over A′.
We can choose an f ∈ A which maps to a unit of B′/q′ such that the induced prime

https://stacks.math.columbia.edu/tag/0GGS
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ideal p′′ of A{f} is rig-closed, see Lemma 88.14.9. To be precise, here q′′ = q′B′
{f}

and p′′ = A{f} ∩ q′′. Consider the diagram

B′
q′ // (B′

{f})q′′

A //

OO

A{f}

OO

We want to show that the left vertical arrow is flat. The top horizontal arrow
is faithfully flat as it is a local homomorphism of local rings and flat as B′

{f} is
the completion of a localization of the Noetherian ring B′

f . Similarly the bottom
horizontal arrow is flat. Hence it suffices to prove that the right vertical arrow is
flat. Finally, all the assumptions of the lemma remain true for the diagram

B{f} // B′
{f}

A{f} //

OO

A′
{f}

OO

This reduces us to the case discussed in the next paragraph.
Take a rig-closed prime ideal q′ ⊂ B′ and assume p = A ∩ q′ is rig-closed as well.
This implies also the primes q = B ∩ q′ and p′ = A′ ∩ q′ are rig-closed, see Lemma
88.14.4. We are going to apply Algebra, Lemma 10.100.2 to the diagram

Bq
// B′

q′

Ap

OO

// A′
p′

OO

with M = Bq. The only assumption that hasn’t been checked yet is the fact that
p generates the maximal ideal of A′

p′ . This follows from Lemma 88.14.11. □

Lemma 88.15.8.0GGT Consider a commutative diagram

B // B′

A //

φ

OO

A′

φ′

OO

in WAdmNoeth with all arrows adic and topologically of finite type. Assume A→ A′

flat and B → B′ faithfully flat. If φ′ is rig-flat, then φ is rig-flat.

Proof. Given f ∈ A the assumptions of the lemma remain true for the digram

B{f} // (B′){f}

A{f} //

φ

OO

(A′){f}

OO

(To check the condition on faithful flatness: faithful flatness of B → B′ is equivalent
to B → B′ being flat and Spec(B′/IB′) → Spec(B/IB) being surjective for some

https://stacks.math.columbia.edu/tag/0GGT


88.16. RIG-FLAT MORPHISMS 6406

ideal of definition I ⊂ A.) Hence it suffices to prove that φ is naively rig-flat.
However, we know that φ′ is naively rig-flat and that Spec(B′) → Spec(B) is
surjective. From this the result follows immediately. □

Finally, we can show that rig-flatness is a local property.

Lemma 88.15.9.0GGU The property P (φ) =“φ is rig-flat” on arrows of WAdmNoeth is a
local property as defined in Formal Spaces, Remark 87.21.4.

Proof. Let us recall what the statement signifies. First, WAdmNoeth is the cate-
gory whose objects are adic Noetherian topological rings and whose morphisms are
continuous ring homomorphisms. Consider a commutative diagram

B // (B′)∧

A //

φ

OO

(A′)∧

φ′

OO

satisfying the following conditions: A and B are adic Noetherian topological rings,
A → A′ and B → B′ are étale ring maps, (A′)∧ = limA′/InA′ for some ideal of
definition I ⊂ A, (B′)∧ = limB′/JnB′ for some ideal of definition J ⊂ B, and
φ : A→ B and φ′ : (A′)∧ → (B′)∧ are continuous. Note that (A′)∧ and (B′)∧ are
adic Noetherian topological rings by Formal Spaces, Lemma 87.21.1. We have to
show

(1) φ is rig-flat ⇒ φ′ is rig-flat,
(2) if B → B′ faithfully flat, then φ′ is rig-flat ⇒ φ is rig-flat, and
(3) if A→ Bi is rig-flat for i = 1, . . . , n, then A→

∏
i=1,...,nBi is rig-flat.

Being adic and topologically of finite type satisfies conditions (1), (2), and (3), see
Lemma 88.11.1. Thus in verifying (1), (2), and (3) for the property “rig-flat” we
may already assume our ring maps are all adic and topologically of finite type.
Then (1) and (2) follow from Lemmas 88.15.7 and 88.15.8. We omit the trivial
proof of (3). □

Lemma 88.15.10.0GGV The property P (φ) =“φ is rig-flat” on arrows of WAdmNoeth is
stable under composition as defined in Formal Spaces, Remark 87.21.14.

Proof. The statement makes sense by Lemma 88.15.9. To see that it is true assume
we have rig-flat morphisms A → B and B → C in WAdmNoeth. Then A → C
is adic and topologically of finite type by Lemma 88.11.4. To finish the proof
we have to show that for all f ∈ A the map A{f} → C{f} is naively rig-flat.
Since A{f} → B{f} and B{f} → C{f} are naively rig-flat, it suffices to show that
compositions of naively rig-flat maps are naively rig-flat. This is a consequence of
Algebra, Lemma 10.39.4. □

88.16. Rig-flat morphisms

0GGW In this section we use the work done in Section 88.15 to define rig-flat morphisms
of locally Noetherian algebraic spaces.

Definition 88.16.1.0GGX Let S be a scheme. Let f : X → Y be a morphism of lo-
cally Noetherian formal algebraic spaces over S. We say f is rig-flat if for every

https://stacks.math.columbia.edu/tag/0GGU
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commutative diagram
U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y representable by
algebraic spaces and étale, the morphism U → V corresponds to a rig-flat map of
adic Noetherian topological rings.

Let us prove that we can check this condition étale locally on source and target.

Lemma 88.16.2.0GGY Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian formal algebraic spaces over S. The following are equivalent

(1) f is rig-flat,
(2) for every commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y repre-
sentable by algebraic spaces and étale, the morphism U → V corresponds
to a rig-flat map in WAdmNoeth,

(3) there exists a covering {Yj → Y } as in Formal Spaces, Definition 87.11.1
and for each j a covering {Xji → Yj ×Y X} as in Formal Spaces, Defi-
nition 87.11.1 such that each Xji → Yj corresponds to a rig-flat map in
WAdmNoeth, and

(4) there exist a covering {Xi → X} as in Formal Spaces, Definition 87.11.1
and for each i a factorization Xi → Yi → Y where Yi is an affine formal
algebraic space, Yi → Y is representable by algebraic spaces and étale,
and Xi → Yi corresponds to a rig-flat map in WAdmNoeth.

Proof. The equivalence of (1) and (2) is Definition 88.16.1. The equivalence of (2),
(3), and (4) follows from the fact that being rig-flat is a local property of arrows
of WAdmNoeth by Lemma 88.15.9 and an application of the variant of Formal
Spaces, Lemma 87.21.3 for morphisms between locally Noetherian algebraic spaces
mentioned in Formal Spaces, Remark 87.21.5. □

Lemma 88.16.3.0GGZ Let S be a scheme. Let f : X → Y and g : Z → Y be morphisms
of locally Noetherian formal algebraic spaces over S. If f is rig-flat and g is locally
of finite type, then the base change X ×Y Z → Z is rig-flat.

Proof. By Formal Spaces, Remark 87.21.10 and the discussion in Formal Spaces,
Section 87.23, this follows from Lemma 88.15.6. □

Lemma 88.16.4.0GH0 Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of locally Noetherian formal algebraic spaces over S. If f and g are rig-flat, then
so is g ◦ f .

Proof. By Formal Spaces, Remark 87.21.14 this follows from Lemma 88.15.10. □

https://stacks.math.columbia.edu/tag/0GGY
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88.17. Rig-smooth homomorphisms

0GCH In this section we prove some properties of rig-smooth homomorphisms of adic
Noetherian topological rings which are needed to introduce rig-smooth morpisms
of locally Noetherian formal algebraic spaces.

Lemma 88.17.1.0GCI Let A→ B be a morphism in WAdmNoeth (Formal Spaces, Section
87.21). The following are equivalent:

(a) A → B satisfies the equivalent conditions of Lemma 88.11.1 and there
exists an ideal of definition I ⊂ B such that B is rig-smooth over (A, I),
and

(b) A → B satisfies the equivalent conditions of Lemma 88.11.1 and for all
ideals of definition I ⊂ A the algebra B is rig-smooth over (A, I).

Proof. Let I and I ′ be ideals of definitions of A. Then there exists an integer c ≥ 0
such that Ic ⊂ I ′ and (I ′)c ⊂ I. Hence B is rig-smooth over (A, I) if and only
if B is rig-smooth over (A, I ′). This follows from Definition 88.4.1, the inclusions
Ic ⊂ I ′ and (I ′)c ⊂ I, and the fact that the naive cotangent complex NL∧

B/A is
independent of the choice of ideal of definition of A by Remark 88.11.2. □

Definition 88.17.2.0GCJ Let φ : A → B be a continuous ring homomorphism between
adic Noetherian topological rings, i.e., φ is an arrow of WAdmNoeth. We say φ is
rig-smooth if the equivalent conditions of Lemma 88.17.1 hold.

This defines a local property.

Lemma 88.17.3.0GCK The property P (φ) =“φ is rig-smooth” on arrows of WAdmNoeth

is a local property as defined in Formal Spaces, Remark 87.21.5.

Proof. Let us recall what the statement signifies. First, WAdmNoeth is the cate-
gory whose objects are adic Noetherian topological rings and whose morphisms are
continuous ring homomorphisms. Consider a commutative diagram

B // (B′)∧

A //

φ

OO

(A′)∧

φ′

OO

satisfying the following conditions: A and B are adic Noetherian topological rings,
A → A′ and B → B′ are étale ring maps, (A′)∧ = limA′/InA′ for some ideal of
definition I ⊂ A, (B′)∧ = limB′/JnB′ for some ideal of definition J ⊂ B, and
φ : A→ B and φ′ : (A′)∧ → (B′)∧ are continuous. Note that (A′)∧ and (B′)∧ are
adic Noetherian topological rings by Formal Spaces, Lemma 87.21.1. We have to
show

(1) φ is rig-smooth ⇒ φ′ is rig-smooth,
(2) if B → B′ faithfully flat, then φ′ is rig-smooth ⇒ φ is rig-smooth, and
(3) if A → Bi is rig-smooth for i = 1, . . . , n, then A →

∏
i=1,...,nBi is rig-

smooth.
The equivalent conditions of Lemma 88.11.1 satisfy conditions (1), (2), and (3).
Thus in verifying (1), (2), and (3) for the property “rig-smooth” we may already
assume our ring maps satisfy the equivalent conditions of Lemma 88.11.1 in each
case.
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Pick an ideal of definition I ⊂ A. By the remarks above the topology on each ring
in the diagram is the I-adic topology and B, (A′)∧, and (B′)∧ are in the category
(88.2.0.2) for (A, I). Since A→ A′ and B → B′ are étale the complexes NLA′/A and
NLB′/B are zero and hence NL∧

(A′)∧/A and NL∧
(B′)∧/B are zero by Lemma 88.3.2.

Applying Lemma 88.3.5 to A→ (A′)∧ → (B′)∧ we get isomorphisms

Hi(NL∧
(B′)∧/(A′)∧)→ Hi(NL∧

(B′)∧/A)

Thus NL∧
(B′)∧/A → NL(B′)∧/(A′)∧ is a quasi-isomorphism. The ring maps B/InB →

B′/InB′ are étale and hence are local complete intersections (Algebra, Lemma
10.143.2). Hence we may apply Lemmas 88.3.5 and 88.3.6 to A→ B → (B′)∧ and
we get isomorphisms

Hi(NL∧
B/A⊗B(B′)∧)→ Hi(NL∧

(B′)∧/A)

We conclude that NL∧
B/A⊗B(B′)∧ → NL∧

(B′)∧/A is a quasi-isomorphism. Combin-
ing these two observations we obtain that

NL∧
(B′)∧/(A′)∧ ∼= NL∧

B/A⊗B(B′)∧

in D((B′)∧). With these preparations out of the way we can start the actual proof.
Proof of (1). Assume φ is rig-smooth. Then there exists a c ≥ 0 such that
Ext1

B(NL∧
B/A, N) is annihilated by Ic for every B-module N . By More on Al-

gebra, Lemmas 15.84.6 and 15.84.7 this property is preserved under base change
by B → (B′)∧. Hence Ext1

(B′)∧(NL∧
(B′)∧/(A′)∧ , N) is annihilated by Ic(A′)∧ for all

(B′)∧-modules N which tells us that φ′ is rig-smooth. This proves (1).
To prove (2) assume B → B′ is faithfully flat and that φ′ is rig-smooth. Then there
exists a c ≥ 0 such that Ext1

(B′)∧(NL∧
(B′)∧/(A′)∧ , N ′) is annihilated by Ic(B′)∧ for

every (B′)∧-module N ′. The composition B → B′ → (B′)∧ is flat (Algebra, Lemma
10.97.2) hence for any B-module N we have

Ext1
B(NL∧

B/A, N)⊗B (B′)∧ = Ext1
(B′)∧(NL∧

B/A⊗B(B′)∧, N ⊗B (B′)∧)

by More on Algebra, Lemma 15.99.2 part (3) (minor details omitted). Thus we see
that this module is annihilated by Ic. However, B → (B′)∧ is actually faithfully
flat by our assumption that B → B′ is faithfully flat (Formal Spaces, Lemma
87.19.14). Thus we conclude that Ext1

B(NL∧
B/A, N) is annihilated by Ic. Hence φ

is rig-smooth. This proves (2).
To prove (3), setting B =

∏
i=1,...,nBi we just observe that NL∧

B/A is the direct
sum of the complexes NL∧

Bi/A viewed as complexes of B-modules. □

Lemma 88.17.4.0GCL Consider the properties P (φ) =“φ is rig-smooth” and Q(φ)=“φ
is adic” on arrows of WAdmNoeth. Then P is stable under base change by Q as
defined in Formal Spaces, Remark 87.21.10.

Proof. The statement makes sense by Lemma 88.17.1. To see that it is true assume
we have morphisms B → A and B → C in WAdmNoeth and that B → A is rig-
smooth and B → C is adic (Formal Spaces, Definition 87.6.1). Then we can choose
an ideal of definition I ⊂ B such that the topology on A and C is the I-adic
topology. In this situation it follows immediately that A⊗̂BC is rig-smooth over
(C, IC) by Lemma 88.4.5. □

https://stacks.math.columbia.edu/tag/0GCL
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Lemma 88.17.5.0GCM The property P (φ) =“φ is rig-smooth” on arrows of WAdmNoeth

is stable under composition as defined in Formal Spaces, Remark 87.21.14.

Proof. We strongly urge the reader to find their own proof and not read the proof
that follows. The statement makes sense by Lemma 88.17.1. To see that it is true
assume we have rig-smooth morphisms A → B and B → C in WAdmNoeth. Then
we can choose an ideal of definition I ⊂ A such that the topology on C and B is
the I-adic topology. By Lemma 88.3.5 we obtain an exact sequence

C ⊗B H0(NL∧
B/A) // H0(NL∧

C/A) // H0(NL∧
C/B) // 0

H−1(NL∧
B/A⊗BC) // H−1(NL∧

C/A) // H−1(NL∧
C/B)

kk

Observe that H−1(NL∧
B/A⊗BC) and H−1(NL∧

C/B) are annihilated by a power of I;
this follows from Lemma 88.4.2 part (2) combined with More on Algebra, Lemmas
15.84.6 and 15.84.7 (to deal with the base change by B → C). Hence H−1(NL∧

C/A)
is annihilated by a power of I. Next, by the characterization of rig-smooth alge-
bras in Lemma 88.4.2 part (2) which in turn refers to More on Algebra, Lemma
15.84.10 part (5) we can choose f1, . . . , fs ∈ IB and g1, . . . , gt ∈ IC such that
V (f1, . . . , fs) = V (IB) and V (g1, . . . , gt) = V (IC) and such that H0(NL∧

B/A)fi is
a finite projective Bfi-module and H0(NL∧

C/B)gj is a finite projective Cgj -module.
Since the cohomologies in degree −1 vanish upon localization at figj we get a short
exact sequence

0→ (C ⊗B H0(NL∧
B/A))figj → H0(NL∧

C/A)figj → H0(NL∧
C/B)figj → 0

and we conclude that H0(NL∧
C/A)figj is a finite projective Cfigj -module as an ex-

tension of same. Thus by the criterion in Lemma 88.4.2 part (2) and via that
the criterion in More on Algebra, Lemma 15.84.10 part (4) we conclude that C is
rig-smooth over (A, I). □

The following lemma can be interpreted as saying that a rig-smooth homomorphism
is “rig-syntomic” or “rig-flat+rig-lci”.

Lemma 88.17.6.0GH1 Let φ : A → B be an arrow of WAdmNoeth. If φ is rig-smooth,
then φ is rig-flat, and for any presentation B = A{x1, . . . , xn}/J and prime J ⊂ q ⊂
A{x1, . . . , xn} not containing an ideal of definition the ideal Jq ⊂ A{x1, . . . , xn}q
is generated by a regular sequence.

Proof. Let f ∈ A. To prove that φ is rig-flat we have to show that φ{f} : A{f} →
B{f} is naively rig-flat. Now either by viewing φ{f} as a base change of φ and
using Lemma 88.17.4 or by using the fact that being rig-smooth is a local property
(Lemma 88.17.3) we see that φ{f} is rig-smooth. Hence it suffices to show that φ
is naively rig-flat.

Choose a presentation B = A{x1, . . . , xn}/J . In order to check the second part
of the lemma it suffices to check Jq ⊂ A{x1, . . . , xn}q is generated by a regular
sequence for J ⊂ q for q maximal with respect to not containing an ideal of def-
inition, see Algebra, Lemma 10.68.6 (which shows that the set of primes in V (J)
where there is a regular sequence generating J is open). In other words, we may

https://stacks.math.columbia.edu/tag/0GCM
https://stacks.math.columbia.edu/tag/0GH1


88.17. RIG-SMOOTH HOMOMORPHISMS 6411

assume q is rig-closed in A{x1, . . . , xn}. And to check that B is naively rig-flat, it
also suffices to check that the corresponding localizations Bq are flat over A.
Let q ⊂ A{x1, . . . , xn} be rig-closed with J ⊂ q. By Lemma 88.14.9 we may
choose an f ∈ A mapping to a unit in A{x1, . . . , xn}/q and such that the prime
ideal p′ in A{f} induced is rig-closed. Below we will use that A{f}{x1, . . . , xn} =
A{x1, . . . , xn}{f}; details omitted. Consider the diagram

A{x1, . . . , xn}q/Jq // A{f}{x1, . . . , xn}q′/JA{f}{x1, . . . , xn}q′

A{x1, . . . , xn}q //

OO

A{f}{x1, . . . , xn}q′

OO

A //

OO

A{f}

OO

The middle horizontal arrow is faithfully flat as it is a local homomorphism of
local rings and flat as A{f}{x1, . . . , xn} is the completion of a localization of the
Noetherian ring A{x1, . . . , xn}. Similarly the bottom horizontal arrow is flat. Hence
to show that Jq is generated by a regular sequence and that A→ A{x1, . . . , xn}q/Jq
is flat, it suffices to prove the same things for JA{f}{x1, . . . , xn}q′ and A{f} →
A{f}{x1, . . . , xn}q′/JA{f}{x1, . . . , xn}q′ . See Algebra, Lemma 10.68.5 or More on
Algebra, Lemma 15.32.4 for the statement on regular sequences. Finally, we have
already seen that A{f} → B{f} is rig-smooth. This reduces us to the case discussed
in the next paragraph.
Let q ⊂ A{x1, . . . , xn} be rig-closed with J ⊂ q such that moreover p = A ∩ q is
rig-closed as well. By the characterization of rig-smooth algebras given in Lemma
88.4.2 after reordering the variables x1, . . . , xn we can findm ≥ 0 and f1, . . . , fm ∈ J
such that

(1) Jq is generated by f1, . . . , fm, and
(2) det1≤i,j≤m(∂fj/∂xi) maps to a unit in A{x1, . . . , xn}q.

By Lemma 88.14.12 the fibre ring
F = A{x1, . . . , xn} ⊗A κ(p)

is regular. Observe that the A-derivations ∂/∂xi extend (uniquely) to derivations
Di : F → F . By More on Algebra, Lemma 15.48.3 we see that f1, . . . , fm map to
a regular sequence in Fq. By flatness of A → A{x1, . . . , xn} and Algebra, Lemma
10.99.3 this shows that f1, . . . , fm map to a regular sequence in A{x1, . . . , xm}q
and the quotient by these elements is flat over A. This finishes the proof. □

Lemma 88.17.7.0GH2 Let A → B → C be arrows in WAdmNoeth which are adic and
topologically of finite type. If B → C is rig-smooth, then the kernel of the map

H−1(NL∧
B/A⊗BC)→ H−1(NL∧

C/A)

(see Lemma 88.3.5) is annihilated by an ideal of definition.

Proof. Let q ⊂ C be a prime ideal which does not contain an ideal of definition.
Since the modules in question are finite it suffices to show that

H−1(NL∧
B/A⊗BC)q → H−1(NL∧

C/A)q

https://stacks.math.columbia.edu/tag/0GH2
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is injective. As in the proof of Lemma 88.3.5 choose presentationsB = A{x1, . . . , xr}/J ,
C = B{y1, . . . , ys}/J ′, and C = A{x1, . . . , xr, y1, . . . , ys}/K. Looking at the dia-
gram in the proof of Lemma 88.3.5 we see that it suffices to show that J/J2⊗BC →
K/K2 is injective after localization at the prime ideal q ⊂ A{x1, . . . , xr, y1, . . . , ys}
corresponding to q. Please compare with More on Algebra, Lemma 15.33.6 and its
proof. This is the same as asking J/KJ → K/K2 to be injective after localization
at q. Equivalently, we have to show that Jq ∩ K2

q = (KJ)q. By Lemma 88.17.6
we know that (K/J)q = J ′

q is generated by a regular sequence. Hence the desired
intersection property follows from More on Algebra, Lemma 15.32.5 (and the fact
that an ideal generated by a regular sequence is H1-regular, see More on Algebra,
Section 15.32). □

88.18. Rig-smooth morphisms

0GCN In this section we use the work done in Section 88.17 to define rig-smooth morphisms
of locally Noetherian algebraic spaces.

Definition 88.18.1.0GCP Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian formal algebraic spaces over S. We say f is rig-smooth if for every
commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y representable by
algebraic spaces and étale, the morphism U → V corresponds to a rig-smooth map
of adic Noetherian topological rings.

Let us prove that we can check this condition étale locally on source and target.

Lemma 88.18.2.0GCQ Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian formal algebraic spaces over S. The following are equivalent

(1) f is rig-smooth,
(2) for every commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y repre-
sentable by algebraic spaces and étale, the morphism U → V corresponds
to a rig-smooth map in WAdmNoeth,

(3) there exists a covering {Yj → Y } as in Formal Spaces, Definition 87.11.1
and for each j a covering {Xji → Yj×Y X} as in Formal Spaces, Definition
87.11.1 such that each Xji → Yj corresponds to a rig-smooth map in
WAdmNoeth, and

(4) there exist a covering {Xi → X} as in Formal Spaces, Definition 87.11.1
and for each i a factorization Xi → Yi → Y where Yi is an affine formal
algebraic space, Yi → Y is representable by algebraic spaces and étale,
and Xi → Yi corresponds to a rig-smooth map in WAdmNoeth.

https://stacks.math.columbia.edu/tag/0GCP
https://stacks.math.columbia.edu/tag/0GCQ
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Proof. The equivalence of (1) and (2) is Definition 88.18.1. The equivalence of
(2), (3), and (4) follows from the fact that being rig-smooth is a local property
of arrows of WAdmNoeth by Lemma 88.17.3 and an application of the variant of
Formal Spaces, Lemma 87.21.3 for morphisms between locally Noetherian algebraic
spaces mentioned in Formal Spaces, Remark 87.21.5. □

Lemma 88.18.3.0GCR Let S be a scheme. Let f : X → Y and g : Z → Y be morphisms
of locally Noetherian formal algebraic spaces over S. If f is rig-smooth and g is
adic, then the base change X ×Y Z → Z is rig-smooth.

Proof. By Formal Spaces, Remark 87.21.10 and the discussion in Formal Spaces,
Section 87.23, this follows from Lemma 88.17.4. □

Lemma 88.18.4.0GCS Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of locally Noetherian formal algebraic spaces over S. If f and g are rig-smooth,
then so is g ◦ f .

Proof. By Formal Spaces, Remark 87.21.14 this follows from Lemma 88.17.5. □

Lemma 88.18.5.0GH3 Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian formal algebraic spaces over S. If f is rig-smooth, then f is rig-flat.

Proof. Follows immediately from Lemma 88.17.6 and the definitions. □

88.19. Rig-étale homomorphisms

0GCT In this section we prove some properties of rig-étale homomorphisms of adic Noe-
therian topological rings which are needed to introduce rig-étale morphisms of lo-
cally Noetherian algebraic spaces.

Lemma 88.19.1.0GCU Let A→ B be a morphism in WAdmNoeth (Formal Spaces, Section
87.21). The following are equivalent:

(a) A → B satisfies the equivalent conditions of Lemma 88.11.1 and there
exists an ideal of definition I ⊂ B such that B is rig-étale over (A, I), and

(b) A → B satisfies the equivalent conditions of Lemma 88.11.1 and for all
ideals of definition I ⊂ A the algebra B is rig-étale over (A, I).

Proof. Let I and I ′ be ideals of definitions of A. Then there exists an integer c ≥ 0
such that Ic ⊂ I ′ and (I ′)c ⊂ I. Hence B is rig-étale over (A, I) if and only if B is
rig-étale over (A, I ′). This follows from Definition 88.8.1, the inclusions Ic ⊂ I ′ and
(I ′)c ⊂ I, and the fact that the naive cotangent complex NL∧

B/A is independent of
the choice of ideal of definition of A by Remark 88.11.2. □

Definition 88.19.2.0GCV Let φ : A → B be a continuous ring homomorphism between
adic Noetherian topological rings, i.e., φ is an arrow of WAdmNoeth. We say φ is
rig-etale if the equivalent conditions of Lemma 88.19.1 hold.

This defines a local property.

Lemma 88.19.3.0AQL The property P (φ) =“φ is rig-étale” on arrows of WAdmNoeth is
a local property as defined in Formal Spaces, Remark 87.21.5.

https://stacks.math.columbia.edu/tag/0GCR
https://stacks.math.columbia.edu/tag/0GCS
https://stacks.math.columbia.edu/tag/0GH3
https://stacks.math.columbia.edu/tag/0GCU
https://stacks.math.columbia.edu/tag/0GCV
https://stacks.math.columbia.edu/tag/0AQL
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Proof. This proof is exactly the same as the proof of Lemma 88.17.3. Let us recall
what the statement signifies. First, WAdmNoeth is the category whose objects
are adic Noetherian topological rings and whose morphisms are continuous ring
homomorphisms. Consider a commutative diagram

B // (B′)∧

A //

φ

OO

(A′)∧

φ′

OO

satisfying the following conditions: A and B are adic Noetherian topological rings,
A → A′ and B → B′ are étale ring maps, (A′)∧ = limA′/InA′ for some ideal of
definition I ⊂ A, (B′)∧ = limB′/JnB′ for some ideal of definition J ⊂ B, and
φ : A→ B and φ′ : (A′)∧ → (B′)∧ are continuous. Note that (A′)∧ and (B′)∧ are
adic Noetherian topological rings by Formal Spaces, Lemma 87.21.1. We have to
show

(1) φ is rig-étale ⇒ φ′ is rig-étale,
(2) if B → B′ faithfully flat, then φ′ is rig-étale ⇒ φ is rig-étale, and
(3) if A→ Bi is rig-étale for i = 1, . . . , n, then A→

∏
i=1,...,nBi is rig-étale.

The equivalent conditions of Lemma 88.11.1 satisfy conditions (1), (2), and (3).
Thus in verifying (1), (2), and (3) for the property “rig-étale” we may already
assume our ring maps satisfy the equivalent conditions of Lemma 88.11.1 in each
case.
Pick an ideal of definition I ⊂ A. By the remarks above the topology on each ring
in the diagram is the I-adic topology and B, (A′)∧, and (B′)∧ are in the category
(88.2.0.2) for (A, I). Since A→ A′ and B → B′ are étale the complexes NLA′/A and
NLB′/B are zero and hence NL∧

(A′)∧/A and NL∧
(B′)∧/B are zero by Lemma 88.3.2.

Applying Lemma 88.3.5 to A→ (A′)∧ → (B′)∧ we get isomorphisms
Hi(NL∧

(B′)∧/(A′)∧)→ Hi(NL∧
(B′)∧/A)

Thus NL∧
(B′)∧/A → NL(B′)∧/(A′)∧ is a quasi-isomorphism. The ring maps B/InB →

B′/InB′ are étale and hence are local complete intersections (Algebra, Lemma
10.143.2). Hence we may apply Lemmas 88.3.5 and 88.3.6 to A→ B → (B′)∧ and
we get isomorphisms

Hi(NL∧
B/A⊗B(B′)∧)→ Hi(NL∧

(B′)∧/A)

We conclude that NL∧
B/A⊗B(B′)∧ → NL∧

(B′)∧/A is a quasi-isomorphism. Combin-
ing these two observations we obtain that

NL∧
(B′)∧/(A′)∧ ∼= NL∧

B/A⊗B(B′)∧

in D((B′)∧). With these preparations out of the way we can start the actual proof.
Proof of (1). Assume φ is rig-étale. Then there exists a c ≥ 0 such that multipli-
cation by a ∈ Ic is zero on NL∧

B/A in D(B). This property is preserved under base
change by B → (B′)∧, see More on Algebra, Lemmas 15.84.6. By the isomorphism
above we find that φ′ is rig-étale. This proves (1).
To prove (2) assume B → B′ is faithfully flat and that φ′ is rig-étale. Then there
exists a c ≥ 0 such that multiplication by a ∈ Ic is zero on NL∧

(B′)∧/(A′)∧ in
D((B′)∧). By the isomorphism above we see that ac annihilates the cohomology
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modules of NL∧
B/A⊗B(B′)∧. The composition B → (B′)∧ is faithfully flat by our

assumption that B → B′ is faithfully flat, see Formal Spaces, Lemma 87.19.14.
Hence the cohomology modules of NL∧

B/A are annihilated by Ic. It follows from
Lemma 88.8.2 that φ is rig-étale. This proves (2).

To prove (3), setting B =
∏
i=1,...,nBi we just observe that NL∧

B/A is the direct
sum of the complexes NL∧

Bi/A viewed as complexes of B-modules. □

Lemma 88.19.4.0GCW Consider the properties P (φ) =“φ is rig-étale” and Q(φ)=“φ is
adic” on arrows of WAdmNoeth. Then P is stable under base change by Q as defined
in Formal Spaces, Remark 87.21.10.

Proof. The statement makes sense by Lemma 88.19.1. To see that it is true assume
we have morphisms B → A and B → C in WAdmNoeth and that B → A is rig-étale
and B → C is adic (Formal Spaces, Definition 87.6.1). Then we can choose an ideal
of definition I ⊂ B such that the topology on A and C is the I-adic topology. In
this situation it follows immediately that A⊗̂BC is rig-étale over (C, IC) by Lemma
88.8.6. □

Lemma 88.19.5.0GCX The property P (φ) =“φ is rig-étale” on arrows of WAdmNoeth is
stable under composition as defined in Formal Spaces, Remark 87.21.14.

Proof. The statement makes sense by Lemma 88.19.1. To see that it is true assume
we have rig-étale morphisms A → B and B → C in WAdmNoeth. Then we can
choose an ideal of definition I ⊂ A such that the topology on C and B is the I-adic
topology. By Lemma 88.3.5 we obtain an exact sequence

C ⊗B H0(NL∧
B/A) // H0(NL∧

C/A) // H0(NL∧
C/B) // 0

H−1(NL∧
B/A⊗BC) // H−1(NL∧

C/A) // H−1(NL∧
C/B)

kk

There exists a c ≥ 0 such that for all a ∈ I multiplication by ac is zero on NL∧
B/A

in D(B) and NL∧
C/B in D(C). Then of course multiplication by ac is zero on

NL∧
B/A⊗BC inD(C) too. HenceH0(NL∧

B/A)⊗AC, H0(NL∧
C/B), H−1(NL∧

B/A⊗BC),
and H−1(NL∧

C/B) are annihilated by ac. From the exact sequence we obtain that
multiplication by a2c is zero on H0(NL∧

C/A) and H−1(NL∧
C/A). It follows from

Lemma 88.8.2 that C is rig-étale over (A, I) as desired. □

Lemma 88.19.6.0GCY The property P (φ) =“φ is rig-étale” on arrows of WAdmNoeth

has the cancellation property as defined in Formal Spaces, Remark 87.21.18.

Proof. The statement makes sense by Lemma 88.19.1. To see that it is true assume
we have maps A → B and B → C in WAdmNoeth with A → C and A → B rig-
étale. We have to show that B → C is rig-étale. Then we can choose an ideal of
definition I ⊂ A such that the topology on C and B is the I-adic topology. By

https://stacks.math.columbia.edu/tag/0GCW
https://stacks.math.columbia.edu/tag/0GCX
https://stacks.math.columbia.edu/tag/0GCY
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Lemma 88.3.5 we obtain an exact sequence

C ⊗B H0(NL∧
B/A) // H0(NL∧

C/A) // H0(NL∧
C/B) // 0

H−1(NL∧
B/A⊗BC) // H−1(NL∧

C/A) // H−1(NL∧
C/B)

kk

There exists a c ≥ 0 such that for all a ∈ I multiplication by ac is zero on
NL∧

B/A in D(B) and NL∧
C/A in D(C). Hence H0(NL∧

B/A)⊗A C, H0(NL∧
C/A), and

H−1(NL∧
C/A) are annihilated by ac. From the exact sequence we obtain that mul-

tiplication by a2c is zero on H0(NL∧
C/B) and H−1(NL∧

C/B). It follows from Lemma
88.8.2 that C is rig-étale over (B, IB) as desired. □

88.20. Rig-étale morphisms

0AQK In this section we use the work done in Section 88.19 to define rig-étale morphisms
of locally Noetherian algebraic spaces.
Definition 88.20.1.0AQM Let S be a scheme. Let f : X → Y be a morphism of lo-
cally Noetherian formal algebraic spaces over S. We say f is rig-étale if for every
commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y representable by
algebraic spaces and étale, the morphism U → V corresponds to a rig-étale map of
adic Noetherian topological rings.
Let us prove that we can check this condition étale locally on source and target.
Lemma 88.20.2.0GCZ Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian formal algebraic spaces over S. The following are equivalent

(1) f is rig-étale,
(2) for every commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y repre-
sentable by algebraic spaces and étale, the morphism U → V corresponds
to a rig-étale map in WAdmNoeth,

(3) there exists a covering {Yj → Y } as in Formal Spaces, Definition 87.11.1
and for each j a covering {Xji → Yj ×Y X} as in Formal Spaces, Defini-
tion 87.11.1 such that each Xji → Yj corresponds to a rig-étale map in
WAdmNoeth, and

(4) there exist a covering {Xi → X} as in Formal Spaces, Definition 87.11.1
and for each i a factorization Xi → Yi → Y where Yi is an affine formal
algebraic space, Yi → Y is representable by algebraic spaces and étale,
and Xi → Yi corresponds to a rig-étale map in WAdmNoeth.

https://stacks.math.columbia.edu/tag/0AQM
https://stacks.math.columbia.edu/tag/0GCZ
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Proof. The equivalence of (1) and (2) is Definition 88.20.1. The equivalence of (2),
(3), and (4) follows from the fact that being rig-étale is a local property of arrows
of WAdmNoeth by Lemma 88.19.3 and an application of the variant of Formal
Spaces, Lemma 87.21.3 for morphisms between locally Noetherian algebraic spaces
mentioned in Formal Spaces, Remark 87.21.5. □

To be sure, a rig-étale morphism is locally of finite type.

Lemma 88.20.3.0AQN A rig-étale morphism of locally Noetherian formal algebraic spaces
is locally of finite type.

Proof. The property P in Lemma 88.19.3 implies the equivalent conditions (a),
(b), (c), and (d) in Formal Spaces, Lemma 87.29.6. Hence this follows from Formal
Spaces, Lemma 87.29.9. □

Lemma 88.20.4.0GD0 A rig-étale morphism of locally Noetherian formal algebraic spaces
is rig-smooth.

Proof. Follows from the definitions and Lemma 88.8.3. □

Lemma 88.20.5.0GD1 Let S be a scheme. Let f : X → Y and g : Z → Y be morphisms
of locally Noetherian formal algebraic spaces over S. If f is rig-étale and g is adic,
then the base change X ×Y Z → Z is rig-étale.

Proof. By Formal Spaces, Remark 87.21.10 and the discussion in Formal Spaces,
Section 87.23, this follows from Lemma 88.19.4. □

Lemma 88.20.6.0GD2 Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of locally Noetherian formal algebraic spaces over S. If f and g are rig-étale, then
so is g ◦ f .

Proof. By Formal Spaces, Remark 87.21.14 this follows from Lemma 88.19.5. □

Lemma 88.20.7.0GD3 Let S be a scheme. Let f : X → Y and g : Y → Z be a morphism
of locally Noetherian formal algebraic spaces over S. If g ◦ f and g are rig-étale,
then so is f .

Proof. By Formal Spaces, Remark 87.21.18 this follows from Lemma 88.19.6. □

Lemma 88.20.8.0GH4 Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of locally Noetherian formal algebraic spaces over S. If g ◦ f is rig-étale and g is an
adic monomorphism, then f is rig-étale.

Proof. Use Lemma 88.20.5 and that f is the base change of g ◦ f by g. □

Lemma 88.20.9.0GD4 Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces. Assume that X and Y are locally Noetherian and f is a closed
immersion. The following are equivalent

(1) f is rig-smooth,
(2) f is rig-étale,
(3) for every affine formal algebraic space V and every morphism V → Y

which is representable by algebraic spaces and étale the morphism X ×Y
V → V corresponds to a surjective morphism B → A in WAdmNoeth

whose kernel J has the following property: I(J/J2) = 0 for some ideal of
definition I of B.

https://stacks.math.columbia.edu/tag/0AQN
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https://stacks.math.columbia.edu/tag/0GD4
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Proof. Let us observe that given V and V → Y as in (2) without any further
assumption on f we see that the morphism X×Y V → V corresponds to a surjective
morphism B → A in WAdmNoeth by Formal Spaces, Lemma 87.29.5.

We have (2) ⇒ (1) by Lemma 88.20.4.

Proof of (3)⇒ (2). Assume (3). By Lemma 88.20.2 it suffices to show that the ring
maps B → A occuring in (3) are rig-étale in the sense of Definition 88.19.2. Let I
be as in (3). The naive cotangent complex NL∧

A/B of A over (B, I) is the complex
of A-modules given by putting J/J2 in degree −1. Hence A is rig-étale over (B, I)
by Definition 88.8.1.

Assume (1) and let V and B → A be as in (3). By Definition 88.18.1 we see that
B → A is rig-smooth. Choose any ideal of definition I ⊂ B. Then A is rig-smooth
over (B, I). As above the complex NL∧

A/B is given by putting J/J2 in degree −1.
Hence by Lemma 88.4.2 we see that J/J2 is annihilated by a power In for some
n ≥ 1. Since B is adic, we see that In is an ideal of definition of B and the proof
is complete. □

88.21. Rig-surjective morphisms

0AQP For morphisms locally of finite type between locally Noetherian formal algebraic
spaces a definition borrowed from [Art70] can be used. See Remark 88.21.2 for a
discussion of what to do in more general cases.

Definition 88.21.1.0AQQ Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. Assume that X and Y are locally Noetherian and that f
is locally of finite type. We say f is rig-surjective if for every solid diagram

Spf(R′) //

��

X

f

��
Spf(R) p // Y

where R is a complete discrete valuation ring and where p is an adic morphism there
exists an extension of complete discrete valuation rings R ⊂ R′ and a morphism
Spf(R′)→ X making the displayed diagram commute.

We will see in the lemmas below that this notion behaves reasonably well in the
context of locally Noetherian formal algebraic spaces and morphisms which are
locally of finite type. In the next remark we discuss options for modifying this
definition to a wider class of morphisms of formal algebraic spaces.

Remark 88.21.2.0AQZ The condition as formulated in Definition 88.21.1 is not right even
for morphisms of finite type of locally adic* formal algebraic spaces. For example, if
A = (

⋃
n≥1 k[t1/n])∧ where the completion is the t-adic completion, then there are

no adic morphisms Spf(R)→ Spf(A) where R is a complete discrete valuation ring.
Thus any morphism X → Spf(A) would be rig-surjective, but since A is a domain
and t ∈ A is not zero, we want to think of A as having at least one “rig-point”,
and we do not want to allow X = ∅. To cover this particular case, one can consider
adic morphisms

Spf(R) −→ Y
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where R is a valuation ring complete with respect to a principal ideal J whose
radical is mR =

√
J . In this case the value group of R can be embedded into (R,+)

and one obtains the point of view used by Berkovich in defining an analytic space
associated to Y , see [Ber90]. Another approach is championed by Huber. In his
theory, one drops the hypothesis that Spec(R/J) is a singleton, see [Hub93a].

Lemma 88.21.3.0AQR Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of formal algebraic spaces over S. Assume X, Y , Z are locally Noetherian and f
and g locally of finite type. Then if f and g are rig-surjective, so is g ◦ f .

Proof. Follows in a straightforward manner from the definitions (and Formal Spaces,
Lemma 87.24.3). □

Lemma 88.21.4.0AQS Let S be a scheme. Let f : X → Y and Z → Y be morphisms of
formal algebraic spaces over S. Assume X, Y , Z are locally Noetherian and f and
g locally of finite type. If f is rig-surjective, then the base change Z ×Y X → Z is
too.

Proof. Follows in a straightforward manner from the definitions (and Formal Spaces,
Lemmas 87.24.9 and 87.24.4). □

Lemma 88.21.5.0GH5 Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
locally of finite type of locally Noetherian formal algebraic spaces over S. If g ◦ f
is rig-surjective and g is a monomorphism, then f is rig-surjective.

Proof. Use Lemma 88.21.4 and that f is the base change of g ◦ f by g. □

Lemma 88.21.6.0AQT Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of formal algebraic spaces over S. Assume X, Y , Z locally Noetherian and f and
g locally of finite type. If g ◦ f : X → Z is rig-surjective, so is g : Y → Z.

Proof. Immediate from the definition. □

Lemma 88.21.7.0AQU Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian formal algebraic spaces which is representable by algebraic spaces, étale,
and surjective. Then f is rig-surjective.

Proof. Let p : Spf(R) → Y be an adic morphism where R is a complete discrete
valuation ring. Let Z = Spf(R) ×Y X. Then Z → Spf(R) is representable by
algebraic spaces, étale, and surjective. Hence Z is nonempty. Pick a nonempty
affine formal algebraic space V and an étale morphism V → Z (possible by our
definitions). Then V → Spf(R) corresponds to R → A∧ where R → A is an étale
ring map, see Formal Spaces, Lemma 87.19.13. Since A∧ ̸= 0 (as V ̸= ∅) we can
find a maximal ideal m of A lying over mR. Then Am is a discrete valuation ring
(More on Algebra, Lemma 15.44.4). Then R′ = A∧

m is a complete discrete valuation
ring (More on Algebra, Lemma 15.43.5). Applying Formal Spaces, Lemma 87.9.10.
we find the desired morphism Spf(R′)→ V → Z → X. □

The upshot of the lemmas above is that we may check whether f : X → Y is
rig-surjective, étale locally on Y .

Lemma 88.21.8.0AQV Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian formal algebraic spaces which is locally of finite type. Let {gi : Yi → Y }
be a family of morphisms of formal algebraic spaces which are representable by
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algebraic spaces and étale such that
∐
gi is surjective. Then f is rig-surjective if

and only if each fi : X ×Y Yi → Yi is rig-surjective.

Proof. Namely, if f is rig-surjective, so is any base change (Lemma 88.21.4). Con-
versely, if all fi are rig-surjective, so is

∐
fi :

∐
X ×Y Yi →

∐
Yi. By Lemma

88.21.7 the morphism
∐
gi :

∐
Yi → Y is rig-surjective. Hence

∐
X ×Y Yi → Y

is rig-surjective (Lemma 88.21.3). Since this morphism factors through X → Y we
see that X → Y is rig-surjective by Lemma 88.21.6. □

Lemma 88.21.9.0AQX Let A be a Noetherian ring complete with respect to an ideal I.
Let B be an I-adically complete A-algebra. If A/In → B/InB is of finite type and
flat for all n and faithfully flat for n = 1, then Spf(B)→ Spf(A) is rig-surjective.

Proof. We will use without further mention that morphisms between formal spectra
are given by continuous maps between the corresponding topological rings, see
Formal Spaces, Lemma 87.9.10. Let φ : A → R be a continuous map into a
complete discrete valuation ring A. This implies that φ(I) ⊂ mR. On the other
hand, since we only need to produce the lift φ′ : B′ → R′ in the case that φ
corresponds to an adic morphism, we may assume that φ(I) ̸= 0. Thus we may
consider the base change C = B⊗̂AR, see Remark 88.2.3 for example. Then C is
an mR-adically complete R-algebra such that C/mnRC is of finite type and flat over
R/mnR and such that C/mRC is nonzero. Pick any maximal ideal m ⊂ C lying over
mR. By flatness (which implies going down) we see that Spec(Cm) \ V (mRCm) is
a nonempty open. Hence We can pick a prime q ⊂ m such that q defines a closed
point of Spec(Cm) \ {m} and such that q ̸∈ V (ICm), see Properties, Lemma 28.6.4.
Then C/q is a dimension 1-local domain and we can find C/q ⊂ R′ with R′ a
discrete valuation ring (Algebra, Lemma 10.119.13). By construction mRR

′ ⊂ mR′

and we see that C → R′ extends to a continuous map C → (R′)∧ (in fact we can
pick R′ such that R′ = (R′)∧ in our current situation but we do not need this).
Since the completion of a discrete valuation ring is a discrete valuation ring, we see
that the assumption gives a commutative diagram of rings

(R′)∧ Coo Boo

R

OO

Roo

OO

Aoo

OO

which gives the desired lift. □

Lemma 88.21.10.0AQY Let A be a Noetherian ring complete with respect to an ideal I.
Let B be an I-adically complete A-algebra. Assume that

(1) the I-torsion in A is 0,
(2) A/In → B/InB is flat and of finite type for all n.

Then Spf(B) → Spf(A) is rig-surjective if and only if A/I → B/IB is faithfully
flat.

Proof. Faithful flatness implies rig-surjectivity by Lemma 88.21.9. To prove the
converse we will use without further mention that the vanishing of I-torsion is
equivalent to the vanishing of I-power torsion (More on Algebra, Lemma 15.88.3).
We will also use without further mention that morphisms between formal spectra
are given by continuous maps between the corresponding topological rings, see
Formal Spaces, Lemma 87.9.10.
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Assume Spf(B) → Spf(A) is rig-surjective. Choose a maximal ideal I ⊂ m ⊂ A.
The open U = Spec(Am) \V (Im) of Spec(Am) is nonempty as the Im-torsion of Am

is zero (use Algebra, Lemma 10.62.4). Thus we can find a prime q ⊂ Am which
defines a point of U (i.e., IAm ̸⊂ q) and which corresponds to a closed point of
Spec(Am) \ {m}, see Properties, Lemma 28.6.4. Then Am/q is a dimension 1 local
domain. Thus we can find an injective local homomorphism of local rings Am/q ⊂ R
where R is a discrete valuation ring (Algebra, Lemma 10.119.13). By construction
IR ⊂ mR and we see that A→ R extends to a continuous map A→ R∧. Since the
completion of a discrete valuation ring is a discrete valuation ring, we see that the
assumption gives a commutative diagram of rings

R′ Boo

R∧

OO

Aoo

OO

Thus we find a prime ideal of B lying over m. It follows that Spec(B/IB) →
Spec(A/I) is surjective, whence A/I → B/IB is faithfully flat (Algebra, Lemma
10.39.16). □

Lemma 88.21.11.0AR0 Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces. Assume X and Y are locally Noetherian, f locally of finite type,
and f a monomorphism. Then f is rig surjective if and only if every adic morphism
Spf(R)→ Y where R is a complete discrete valuation ring factors through X.

Proof. One direction is trivial. For the other, suppose that Spf(R)→ Y is an adic
morphism such that there exists an extension of complete discrete valuation rings
R ⊂ R′ with Spf(R′)→ Spf(R)→ X factoring through Y . Then Spec(R′/mnRR

′)→
Spec(R/mnR) is surjective and flat, hence the morphisms Spec(R/mnR) → X factor
through X as X satisfies the sheaf condition for fpqc coverings, see Formal Spaces,
Lemma 87.32.1. In other words, Spf(R)→ Y factors through X. □

Lemma 88.21.12.0GD5 Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces. Assume that X and Y are locally Noetherian and f is a closed
immersion. The following are equivalent

(1) f is rig-surjective, and
(2) for every affine formal algebraic space V and every morphism V → Y

which is representable by algebraic spaces and étale the morphism X ×Y
V → V corresponds to a surjective morphism B → A in WAdmNoeth

whose kernel J has the following property: IJn = 0 for some ideal of
definition I of B and some n ≥ 1.

Proof. Let us observe that given V and V → Y as in (2) without any further
assumption on f we see that the morphism X×Y V → V corresponds to a surjective
morphism B → A in WAdmNoeth by Formal Spaces, Lemma 87.29.5.
Assume (1). By Lemma 88.21.4 we see that Spf(A)→ Spf(B) is rig-surjective. Let
I ⊂ B be an ideal of definition. Since B is adic, Im ⊂ B is an ideal of definition
for all m ≥ 1. If ImJn ̸= 0 for all n,m ≥ 1, then IJ is not nilpotent, hence
V (IJ) ̸= Spec(B). Thus we can find a prime ideal p ⊂ B with p ̸∈ V (I) ∪ V (J).
Observe that I(B/p) ̸= B/p hence we can find a maximal ideal p+ I ⊂ m ⊂ B. By
Algebra, Lemma 10.119.13 we can find a discrete valuation ring R and an injective
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local ring homomorphism (B/p)m → R. Clearly, the ring map B → R cannot
factor through A = B/J . According to Lemma 88.21.11 this contradicts the fact
that Spf(A)→ Spf(B) is rig-surjective. Hence for some n,m we do have InJm = 0
which shows that (2) holds.

Assume (2). By Lemma 88.21.8 it suffices to show that Spf(A) → Spf(B) is rig-
surjective. Pick an ideal of definition I ⊂ B and an integer n such that IJn = 0.
Consider a ring map B → R where R is a discrete valuation ring and the image of
I is nonzero. Since R is a domain, we conclude the image of J in R is zero. Hence
B → R factors through the surjection B → A and we are done by definition of
rig-surjective morphisms. □

Lemma 88.21.13.0GD6 Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces. Assume that X and Y are locally Noetherian and f is a closed
immersion. The following are equivalent

(1) f is rig-smooth and rig-surjective,
(2) f is rig-étale and rig-surjective, and
(3) for every affine formal algebraic space V and every morphism V → Y

which is representable by algebraic spaces and étale the morphism X ×Y
V → V corresponds to a surjective morphism B → A in WAdmNoeth

whose kernel J has the following property: IJ = 0 for some ideal of
definition I of B.

Proof. Let I and J be ideals of a ring B such that IJn = 0 and I(J/J2) = 0. Then
InJ = 0 (proof omitted). Hence this lemma follows from a trivial combination of
Lemmas 88.20.9 and 88.21.12. □

Lemma 88.21.14.0GH6 Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of locally Noetherian formal algebraic spaces over S. Assume

(1) g is locally of finite type,
(2) f is rig-smooth (resp. rig-étale) and rig-surjective,
(3) g ◦ f is rig-smooth (resp. rig-étale)

then g is rig-smooth (resp. rig-étale).

Proof. We will prove this in the rig-smooth case and indicate the necessary changes
to prove the rig-étale case at the end of the proof. Consider a commutative diagram

X ×Y V //

��

V

��

// W

��
X // Y // Z

with V and W affine formal algebraic spaces, V → Y and W → Z representable
by algebraic spaces and étale. We have to show that V → W corresponds to a
rig-smooth map of adic Noetherian topological rings, see Definition 88.18.1. We
may write V = Spf(B) and W = Spf(C) and that V → W corresponds to an adic
ring map C → B which is topologically of finite type, see Lemma 88.11.5.

We will use below without further mention that X ×Y V → V is rig-smooth and
rig-surjective, see Lemmas 88.18.3 and 88.21.4. Also, the composition X ×Y V →
V →W is rig-smooth since g ◦ f is rig-smooth.
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Let I ⊂ C be an ideal of definition. The module Assume C → B is not rig-smooth
to get a contradiction. This means that there exists a prime ideal q ⊂ B not
containing IB such that either H−1(NL∧

B/C)p is nonzero or H0(NL∧
B/C)p is not a

finite free Bq-module. See Lemma 88.4.2; some details omitted. We may choose a
maximal ideal IB + q ⊂ m. By Algebra, Lemma 10.119.13 we can find a complete
discrete valuation ring R and an injective local ring homomorphism (B/q)m → R.
After replacing R by an extension, we may assume given a lift Spf(R) → X ×Y V
of the adic morphism Spf(R)→ V = Spf(B). Choose an étale covering {Spf(Ai)→
X ×Y V } as in Formal Spaces, Definition 87.11.1. By Lemma 88.21.7 we may
assume Spf(R) → X ×Y V lifts to a morphism Spf(R) → Spf(Ai) for some i (this
might require replacing R by another extension). Set A = Ai. Consider the ring
maps

C → B → A→ R

Let p ⊂ A be the kernel of the map A → R and note that p lies over q. We know
that C → A and B → A are rig-smooth. In particular the ring map Bq → Ap is
flat by Lemma 88.17.6. Consider the associated exact sequence

H0(NL∧
B/C)⊗B Ap

// H0(NL∧
A/C)p // H0(NL∧

A/B)p // 0

0 // H−1(NL∧
B/C ⊗BA)p // H−1(NL∧

A/C)p // H−1(NL∧
A/B)p

ll

of Lemmas 88.3.5 and 88.17.7. Given the rig-smoothness of C → A and B → A we
conclude that H−1(NL∧

B/C ⊗BA)p = 0 and that H0(NL∧
B/C)⊗B Ap is finite free as

a kernel of a surjection of finite free Ap-modules. Since Bq → Ap is flat and hence
faithfully flat, this implies that H−1(NL∧

B/C)q = 0 and that H0(NL∧
B/C)q is finite

free which is the contradiction we were looking for.
In the rig-étale case one argues in exactly the same manner but the conclusion
obtained is that both H−1(NL∧

B/C)q and H0(NL∧
B/C)q are zero. □

88.22. Formal algebraic spaces over cdvrs

0GD7 In this section we will use the following terminology: if A is a weakly admissible
topological ring, then we say “X is a formal algebraic space over A” to mean that X
is a formal algebraic space which comes equipped with a morphism p : X → Spf(A)
of formal algebraic spaces. In this situation we will call p the structure morphism.

Lemma 88.22.1.0GD8 Let X be a locally Noetherian formal algebraic space over a
complete discrete valuation ring A. Then there exists a closed immersion X ′ → X
of formal algebraic spaces such that X ′ is flat over A and such that any morphism
Y → X of locally Noetherian formal algebraic spaces with Y flat over A factors
through X ′.

Proof. Let π ∈ A be the uniformizer. Recall that an A-module is flat if and only if
the π-power torsion is 0.
First assume that X is an affine formal algebraic space. Then X = Spf(B) with
B an adic Noetherian A-algebra. In this case we set X ′ = Spf(B′) where B′ =
B/π-power torsion. It is clear that X ′ is flat over A and that X ′ → X is a closed
immersion. Let g : Y → X be a morphism of locally Noetherian formal algebraic
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spaces with Y flat over A. Choose a covering {Yj → Y } as in Formal Spaces,
Definition 87.11.1. Then Yj = Spf(Cj) with Cj flat over A. Hence the morphism
Yj → X, which correspond to a continuous R-algebra map B → Cj , factors through
X ′ as clearly B → Cj kills the π-power torsion. Since {Yj → Y } is a covering and
since X ′ → X is a monomorphism, we conclude that g factors through X ′.
Let X and {Xi → X}i∈I be as in Formal Spaces, Definition 87.11.1. For each i
let X ′

i → Xi be the flat part as constructed above. For i, j ∈ I the projection
X ′
i ×X Xj → X ′

i is an étale (by assumption) morphism of schemes (by Formal
Spaces, Lemma 87.9.11). Hence X ′

i×XXj is flat over A as morphisms representable
by algebraic spaces and étale are flat (Lemma 88.13.8). Thus the projection X ′

i×X
Xj → Xj factors through X ′

j by the universal property. We conclude that

Rij = X ′
i ×X Xj = X ′

i ×X X ′
j = Xi ×X X ′

j

because the morphisms X ′
i → Xi are injections of sheaves. Set U =

∐
X ′
i, set

R =
∐
Rij , and denote s, t : R → U the two projections. As a sheaf R = U ×X U

and s and t are étale. Then (t, s) : R→ U defines an étale equivalence relation by
our observations above. Thus X ′ = U/R is an algebraic space by Spaces, Theorem
65.10.5. By construction the diagram∐

X ′
i

//

��

∐
Xi

��
X ′ // X

is cartesian. Since the right vertical arrow is étale surjective and the top horizontal
arrow is representable and a closed immersion we conclude that X ′ → X is repre-
sentable by Bootstrap, Lemma 80.5.2. Then we can use Spaces, Lemma 65.5.6 to
conclude that X ′ → X is a closed immersion.
Finally, suppose that Y → X is a morphism with Y a locally Noetherian formal
algebraic space flat over A. Then each Xi ×X Y is étale over Y and therefore flat
over A (see above). Then Xi×X Y → Xi factors through X ′

i. Hence Y → X factors
through X ′ because {Xi ×X Y → Y } is an étale covering. □

Lemma 88.22.2.0GD9 Let X be a locally Noetherian formal algebraic space which is
locally of finite type over a complete discrete valuation ring A. Let X ′ ⊂ X be
as in Lemma 88.22.1. If X → X ×Spf(A) X is rig-étale and rig-surjective, then
X ′ = Spf(A) or X ′ = ∅.

Proof. (Aside: the diagonal is always locally of finite type by Formal Spaces,
Lemma 87.15.5 and X ×Spf(A) X is locally Noetherian by Formal Spaces, Lem-
mas 87.24.4 and 87.24.8. Thus imposing the conditions on the diagonal morphism
makes sense.) The diagram

X ′ //

��

X ′ ×Spf(A) X
′

��
X // X ×Spf(A) X

is cartesian. Hence X ′ → X ′ ×Spf(A) X
′ is rig-étale and rig-surjective by Lemma

88.21.4. Choose an affine formal algebraic space U and a morphism U → X ′ which
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is representable by algebraic spaces and étale. Then U = Spf(B) where B is an
adic Noetherian topological ring which is a flat A-algebra, whose topology is the
π-adic topology where π ∈ A is a uniformizer, and such that A/πnA → B/πnB is
of finite type for each n. For later use, we remark that this in particular implies: if
B ̸= 0, then the map Spf(B)→ Spf(A) is a surjection of sheaves (please recall that
we are using the fppf topology as always). Repeating the argument above, we see
that

W = U ×X′ U = X ′ ×X′×Spf(A)X′ (U ×Spf(A) U) −→ U ×Spf(A) U

is a closed immersion and rig-étale and rig-surjective. We have U ×Spf(A) U =
Spf(B⊗̂AB) by Formal Spaces, Lemma 87.16.4. Then B⊗̂AB is a flat A-algebra
as the π-adic completion of the flat A-algebra B ⊗A B. Hence W = U ×Spf(A) U
by Lemma 88.21.13. In other words, we have U ×X′ U = U ×Spf(A) U which in
turn means that the image of U → X ′ (as a map of sheaves) maps injectively to
Spf(A). Choose a covering {Ui → X ′} as in Formal Spaces, Definition 87.11.1.
In particular

∐
Ui → X ′ is a surjection of sheaves. By applying the above to

Ui
∐
Uj → X ′ (using the fact that Ui ⨿ Uj is an affine formal algebraic space as

well) we see that X ′ → Spf(A) is an injective map of fppf sheaves. Since X ′ is flat
over A, either X ′ is empty (if Ui is empty for all i) or the map is an isomorphism
(if Ui is nonempty for some i when we have seen that Ui → Spf(A) is a surjective
map of sheaves) and the proof is complete. □

Lemma 88.22.3.0GDA Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces. Assume

(1) X and Y are locally Noetherian,
(2) f locally of finite type,
(3) ∆f : X → X ×Y X is rig-étale and rig-surjective.

Then f is rig surjective if and only if every adic morphism Spf(R)→ Y where R is
a complete discrete valuation ring lifts to a morphism Spf(R)→ X.

Proof. One direction is trivial. For the other, suppose that Spf(R)→ Y is an adic
morphism such that there exists an extension of complete discrete valuation rings
R ⊂ R′ with Spf(R′) → Spf(R) → X factoring through Y . Consider the fibre
product diagram

Spf(R′) //

&&

Spf(R)×Y X //

p

��

X

f

��
Spf(R) // Y

The morphism p is locally of finite type as a base change of f , see Formal Spaces,
Lemma 87.24.4. The diagonal morphism ∆p is the base change of ∆f and hence
is rig-étale and rig-surjective. By Lemma 88.22.2 the flat locus of Spf(R) ×Y X
over R is either ∅ or equal to Spf(R). However, since Spf(R′) factors through it we
conclude it is not empty and hence we get a morphism Spf(R)→ Spf(R)×Y X → X
as desired. □

88.23. The completion functor

0GDB In this section we consider the following situation. First we fix a base scheme S. All
rings, topological rings, schemes, algebraic spaces, and formal algebraic spaces and
morphisms between these will be over S. Next, we fix an algebraic space X and a
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closed subset T ⊂ |X|. We denote U ⊂ X be the open subspace with |U | = |X| \T .
Picture

U → X |X| = |U | ⨿ T
In this situation, given an algebraic space X ′ over X, i.e., an algebraic space X ′

endowed with a morphism f : X ′ → X, then we denote T ′ ⊂ |X ′| the inverse image
of T and we let U ′ ⊂ X ′ be the open subspace with |U ′| = |X ′| \ T ′. Picture

U ′ = f−1U

U ′

��

// X ′

f

��
U // X

|U ′| //

��

|X ′|

|f |
��

T ′oo

��
|U | // |X| Too

T ′ = |f |−1T

We will relate properties of f to properties of the induced morphism
f/T : X ′

/T ′ −→ X/T

of formal completions. As indicated in the displayed formula, we will denote this
morphism f/T . We have already seen that f/T is representable by algebraic spaces
in Formal Spaces, Lemma 87.14.4. In fact, as the proof of that lemma shows, the
diagram

X ′
/T ′

f/T

��

// X ′

f

��
X/T

// X

is cartesian. Please keep this fact in mind whilst reading the lemmas stated and
proved below.

Lemma 88.23.1.0AQ9 In the situation above. If f is locally of finite type, then f/T is
locally of finite type.

Proof. (Finite type morphisms of formal algebraic spaces are discussed in Formal
Spaces, Section 87.24.) Namely, suppose that Z → X is a morphism from a scheme
into X such that |Z| maps into T . From the cartesian square above we see that
Z ×X X ′ is an algebraic space representing Z ×X/T X ′

/T ′ . Since Z ×X X ′ → Z is
locally of finite type by Morphisms of Spaces, Lemma 67.23.3 we conclude. □

Lemma 88.23.2.0GI0 In the situation above. If f is étale, then f/T is étale.

Proof. By the same argument as in the proof of Lemma 88.23.1 this follows from
Morphisms of Spaces, Lemma 67.39.4. □

Lemma 88.23.3.0GDC In the situation above. If f is a closed immersion, then f/T is a
closed immersion.

Proof. (Closed immersions of formal algebraic spaces are discussed in Formal Spaces,
Section 87.27.) By the same argument as in the proof of Lemma 88.23.1 this follows
from Spaces, Lemma 65.12.3. □

Lemma 88.23.4.0GDD In the situation above. If f is proper, then f/T is proper.

Proof. (Proper morphisms of formal algebraic spaces are discussed in Formal Spaces,
Section 87.31.) By the same argument as in the proof of Lemma 88.23.1 this follows
from Morphisms of Spaces, Lemma 67.40.3. □
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Lemma 88.23.5.0GDE In the situation above. If f is quasi-compact, then f/T is quasi-
compact.
Proof. (Quasi-compact morphisms of formal algebraic spaces are discussed in For-
mal Spaces, Section 87.17.) We have to show that (X ′

/T ′)red → (X/T )red is a
quasi-compact morphism of algebraic spaces. By Formal Spaces, Lemma 87.14.5
this is the morphism Z ′ → Z where Z ′ ⊂ X ′, resp. Z ⊂ X is the reduced induced
algebraic space structure on T ′, resp. T . It follows that Z ′ → f−1Z = Z×XX ′ is a
thickening (a closed immersion defining an isomorphism on underlying topological
spaces). Since Z ×X X ′ → Z is quasi-compact as a base change of f (Morphisms
of Spaces, Lemma 67.8.4) we conclude that Z ′ → Z is too by More on Morphisms
of Spaces, Lemma 76.10.1. □

Remark 88.23.6.0GDF In the situation above consider the diagonal morphisms ∆f :
X ′ → X ′ ×X X ′ and ∆f/T : X ′

/T ′ → X ′
/T ′ ×X/T X ′

/T ′ . It is easy to see that

X ′
/T ′ ×X/T X

′
/T ′ = (X ′ ×X X ′)/T ′′

as subfunctors of X ′×XX ′ where T ′′ ⊂ |X ′×XX ′| is the inverse image of T . Hence
we see that ∆f/T = (∆f )/T ′′ . We will use this below to show that properties of ∆f

are inherited by ∆f/T .

Lemma 88.23.7.0GDG In the situation above. If f is (quasi-)separated, then f/T is too.

Proof. (Separation conditions on morphisms of formal algebraic spaces are dis-
cussed in Formal Spaces, Section 87.30.) We have to show that if ∆f is quasi-
compact, resp. a closed immersion, then the same is true for ∆f/T . This follows
from the discussion in Remark 88.23.6 and Lemmas 88.23.5 and 88.23.3. □

Lemma 88.23.8.0GDH In the situation above. If X is locally Noetherian, f is locally of
finite type, and U ′ → U is smooth, then f/T is rig-smooth.
Proof. The strategy of the proof is this: reduce to the case where X and X ′ are
affine, translate the affine case into algebra, and finally apply Lemma 88.4.3. We
urge the reader to skip the details.
Choose a surjective étale morphism W → X with W =

∐
Wi a disjoint union

of affine schemes, see Properties of Spaces, Lemma 66.6.1. For each i choose a
surjective étale morphism W ′

i → Wi ×X X ′ where W ′
i =

∐
W ′
ij is a disjoint union

of affines. In particular
∐
W ′
ij → X ′ is surjective and étale. Denote fij : Wij →Wi

the given morphism. Denote Ti ⊂Wi and T ′
ij ⊂Wij the inverse images of T . Since

taking the completion along the inverse image of T produces cartesian diagrams
(see above) we have (Wi)/Ti = Wi ×X X/T and similarly (W ′

ij)/T ′
ij

= W ′
ij ×X′

X ′
/T ′ . Moreover, recall that (Wi)/Ti and (W ′

ij)/T ′
ij

are affine formal algebraic spaces.
Hence {W ′

ij)/T ′
ij
→ X ′

/T ′} is a covering as in Formal Spaces, Definition 87.11.1. By
Lemma 88.18.2 we see that it suffices to prove that

(W ′
ij)/T ′

ij
−→ (Wi)/Ti

is rig-smooth. Observe that W ′
ij →Wi is locally of finite type and induces a smooth

morphism W ′
ij\T ′

ij →Wi\Ti (as this is true for f and these properties of morphisms
are étale local on the source and target). Observe that Wi is locally Noetherian
(as X is locally Noetherian and this property is étale local on the algebraic space).
Hence it suffices to prove the lemma when X and X ′ are affine schemes.
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AssumeX = Spec(A) andX ′ = Spec(A′) are affine schemes. SinceX is Noetherian,
we see that A is Noetherian. The morphism f is given by a ring map A → A′ of
finite type. Let I ⊂ A be an ideal cutting out T . Then IA′ cuts out T ′. Also
Spec(A′) → Spec(A) is smooth over Spec(A) \ T . Let A∧ and (A′)∧ be the I-adic
completions. We have X/T = Spf(A∧) and X ′

/T ′ = Spf((A′)∧), see proof of Formal
Spaces, Lemma 87.20.8. By Lemma 88.4.3 we see that (A′)∧ is rig-smooth over
(A.I) which in turn means that A∧ → (A′)∧ is rig-smooth which finally implies
that X ′

/T ′ → X/T is rig smooth by Lemma 88.18.2. □

Lemma 88.23.9.0AR2 In the situation above. If X is locally Noetherian, f is locally of
finite type, and U ′ → U is étale, then f/T is rig-étale.

Proof. The proof is exactly the same as the proof of Lemma 88.23.8 except with
Lemmas 88.4.3 and 88.18.2 replaced by Lemmas 88.8.4 and 88.20.2 □

Lemma 88.23.10.0AQW In the situation above. If X is locally Noetherian, f is proper,
and U ′ → U is surjective, then f/T is rig-surjective.

Proof. (The statement makes sense by Lemma 88.23.1 and Formal Spaces, Lemma
87.20.8.) Let R be a complete discrete valuation ring with fraction field K. Let
p : Spf(R) → X/T be an adic morphism of formal algebraic spaces. By Formal
Spaces, Lemma 87.33.4 the composition Spf(R) → X/T → X corresponds to a
morphism q : Spec(R) → X which maps Spec(K) into U . Since U ′ → U is proper
and surjective we see that Spec(K)×U U ′ is nonempty and proper over K. Hence
we can choose a field extension K ′/K and a commutative diagram

Spec(K ′) //

��

U ′ //

��

X ′

��
Spec(K) // U // X

Let R′ ⊂ K ′ be a discrete valuation ring dominating R with fraction field K ′, see
Algebra, Lemma 10.119.13. Since Spec(K) → X extends to Spec(R) → X we see
by the valuative criterion of properness (Morphisms of Spaces, Lemma 67.44.1) that
we can extend our K ′-point of U ′ to a morphism Spec(R′)→ X ′ over Spec(R)→ X.
It follows that the inverse image of T ′ in Spec(R′) is the closed point and we find
an adic morphism Spf((R′)∧) → X ′

/T ′ lifting p as desired (note that (R′)∧ is a
complete discrete valuation ring by More on Algebra, Lemma 15.43.5). □

Lemma 88.23.11.0GDI In the situation above. If X is locally Noetherian, f is separated
and locally of finite type, and U ′ → U is a monomorphism, then ∆f/T is rig-
surjective.

Proof. The diagonal ∆f : X ′ → X ′×XX ′ is a closed immersion and the restriction
U ′ → U ′ ×U U ′ of ∆f is surjective. Hence the lemma follows from the discussion
in Remark 88.23.6 and Lemma 88.23.10. □

88.24. Formal modifications

0GDJ In this section we define and study Artin’s notion of a formal modification of locally
Noetherian formal algebraic spaces. First, here is the definition.
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Definition 88.24.1.0GDK Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian formal algebraic spaces over S. We say f is a formal modification if

(1) f is a proper morphism (Formal Spaces, Definition 87.31.1),
(2) f is rig-étale,
(3) f is rig-surjective,
(4) ∆f : X → X ×Y X is rig-surjective.

A typical example is given in Lemma 88.24.3 and indeed we will later show that
every formal modification is “formal locally” of this type, see Lemma 88.29.2. Let
us compare these conditions with those in Artin’s paper.

Remark 88.24.2.0GDL In [Art70, Definition 1.7] a formal modification is defined as a
proper morphism f : X → Y of locally Noetherian formal algebraic spaces satisfying
the following three conditions3

(i) the Cramer and Jacobian ideal of f each contain an ideal of definition of
X,

(ii) the ideal defining the diagonal map ∆ : X → X ×Y X is annihilated by
an ideal of definition of X ×Y X, and

(iii) any adic morphism Spf(R) → Y lifts to Spf(R) → X whenever R is a
complete discrete valuation ring.

Let us compare these to our list of conditions above.
Ad (i). Property (i) agrees with our condition that f be a rig-étale morphism: this
follows from Lemma 88.8.2 part (7).
Ad (ii). Assume f is rig-étale. Then ∆f : X → X ×Y X is rig-étale as a morphism
of locally Noetherian formal algebraic spaces which are rig-étale over X (via idX
for the first one and via pr1 for the second one). See Lemmas 88.20.5 and 88.20.7.
Hence property (ii) agrees with our condition that ∆f be rig-surjective by Lemma
88.21.13.
Ad (iii). Property (iii) does not quite agree with our notion of a rig-surjective
morphism, as Artin requires all adic morphisms Spf(R) → Y to lift to morphisms
into X whereas our notion of rig-surjective only asserts the existence of a lift after
replacing R by an extension. However, since we already have that ∆f is rig-étale
and rig-surjective by (i) and (ii), these conditions are equivalent by Lemma 88.22.3.

Lemma 88.24.3.0GDM Let S, f : X ′ → X, T ⊂ |X|, U ⊂ X, T ′ ⊂ |X ′|, and U ′ ⊂ X ′

be as in Section 88.23. If X is locally Noetherian, f is proper, and U ′ → U is an
isomorphism, then f/T : X ′

/T ′ → X/T is a formal modification.

Proof. By Formal Spaces, Lemmas 87.20.8 the source and target of the arrow are
locally Noetherian formal algebraic spaces. The other conditions follow from Lem-
mas 88.23.4, 88.23.9, 88.23.10, and 88.23.11. □

Lemma 88.24.4.0GDN Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian formal algebraic spaces over S which is a formal modification. Then for
any adic morphism Y ′ → Y of locally Noetherian formal algebraic spaces, the base
change f ′ : X ×Y Y ′ → Y ′ is a formal modification.

3We will not completely translate these conditions into the language developed in the Stacks
project. We hope nonetheless the discussion here will be useful to the reader.
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Proof. The morphism f ′ is proper by Formal Spaces, Lemma 87.31.3. The mor-
phism f ′ is rig-etale by Lemma 88.20.5. Then morphism f ′ is rig-surjective by
Lemma 88.21.4. Set X ′ = X×′

Y . The morphism ∆f ′ is the base change of ∆f by
the adic morphism X ′ ×Y ′ X ′ → X ×Y X. Hence ∆f ′ is rig-surjective by Lemma
88.21.4. □

88.25. Completions and morphisms, I

0GDP In this section we put some preliminary results on completions which we will use
in the proof of Theorem 88.27.4. Although the lemmas stated and proved here are
not trivial (some are based on our work on algebraization of rig-étale algebras), we
still suggest the reader skip this section on a first reading.

Lemma 88.25.1.0AR4 Let T ⊂ X be a closed subset of a Noetherian affine scheme X.
Let W be a Noetherian affine formal algebraic space. Let g : W → X/T be a rig-
étale morphism. Then there exists an affine scheme X ′ and a finite type morphism
f : X ′ → X étale over X \ T such that there is an isomorphism X ′

/f−1T
∼= W

compatible with f/T and g. Moreover, if W → X/T is étale, then X ′ → X is étale.

Proof. The existence of X ′ is a restatement of Lemma 88.10.3. The final statement
follows from More on Morphisms, Lemma 37.12.3. □

Lemma 88.25.2.0AR3 Assume we have
(1) Noetherian affine schemes X, X ′, and Y ,
(2) a closed subset T ⊂ |X|,
(3) a morphism f : X ′ → X locally of finite type and étale over X \ T ,
(4) a morphism h : Y → X,
(5) a morphism α : Y/T → X ′

/T over X/T (see proof for notation).
Then there exists an étale morphism b : Y ′ → Y of affine schemes which induces
an isomorphism b/T : Y ′

/T → Y/T and a morphism a : Y ′ → X ′ over X such that
α = a/T ◦ b−1

/T .

Proof. The notation using the subscript /T in the statement refers to the con-
struction which to a morphism of schemes g : V → X associates the morphism
g/T : V/g−1T → X/T of formal algebraic spaces; it is a functor from the category
of schemes over X to the category of formal algebraic spaces over X/T , see Section
88.23. Having said this, the lemma is just a reformulation of Lemma 88.8.7. □

Lemma 88.25.3.0AR6 Let S be a scheme. Let f : X → Y and g : Z → Y be morphisms
of algebraic spaces. Let T ⊂ |X| be closed. Assume that

(1) X is locally Noetherian,
(2) g is a monomorphism and locally of finite type,
(3) f |X\T : X \ T → Y factors through g, and
(4) f/T : X/T → Y factors through g,

then f factors through g.

Proof. Consider the fibre product E = X ×Y Z → X. By assumption the open
immersion X \ T → X factors through E and any morphism φ : X ′ → X with
|φ|(|X ′|) ⊂ T factors through E as well, see Formal Spaces, Section 87.14. By More
on Morphisms of Spaces, Lemma 76.20.3 this implies that E → X is étale at every
point of E mapping to a point of T . Hence E → X is an étale monomorphism,
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hence an open immersion (Morphisms of Spaces, Lemma 67.51.2). Then it follows
that E = X since our assumptions imply that |X| = |E|. □

Lemma 88.25.4.0GI1 Let S be a scheme. Let X, W be algebraic spaces over S with X
locally Noetherian. Let T ⊂ |X| be a closed subset. Let a, b : X →W be morphisms
of algebraic spaces over S such that a|X\T = b|X\T and such that a/T = b/T as
morphisms X/T →W . Then a = b.

Proof. Let E be the equalizer of a and b. Then E is an algebraic space and E → X
is locally of finite type and a monomorphism, see Morphisms of Spaces, Lemma
67.4.1. Our assumptions imply we can apply Lemma 88.25.3 to the two morphisms
f = id : X → X and g : E → X and the closed subset T of |X|. □

Lemma 88.25.5.0AR7 Let S be a scheme. Let X, Y be locally Noetherian algebraic
spaces over S. Let T ⊂ |X| and T ′ ⊂ |Y | be closed subsets. Let a, b : X → Y be
morphisms of algebraic spaces over S such that a|X\T = b|X\T , such that |a|(T ) ⊂
T ′ and |b|(T ) ⊂ T ′, and such that a/T = b/T as morphisms X/T → Y/T ′ . Then
a = b.

Proof. Consequence of the more general Lemma 88.25.4. □

Lemma 88.25.6.0AR8 Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let T ⊂ |X| be a closed subset. Let s, t : R → U be two morphisms of
algebraic spaces over X. Assume

(1) R, U are locally of finite type over X,
(2) the base change of s and t to X \ T is an étale equivalence relation, and
(3) the formal completion (t/T , s/T ) : R/T → U/T ×X/T U/T is an equivalence

relation too (see proof for notation).
Then (t, s) : R→ U ×X U is an étale equivalence relation.

Proof. The notation using the subscript /T in the statement refers to the construc-
tion which to a morphism f : X ′ → X of algebraic spaces associates the morphism
f/T : X ′

/f−1T → X/T of formal algebraic spaces, see Section 88.23. The morphisms
s, t : R → U are étale over X \ T by assumption. Since the formal completions
of the maps s, t : R → U are étale, we see that s and t are étale for example by
More on Morphisms, Lemma 37.12.3. Applying Lemma 88.25.3 to the morphisms
id : R ×U×XU R → R ×U×XU R and ∆ : R → R ×U×XU R we conclude that (t, s)
is a monomorphism. Applying it again to (t ◦ pr0, s ◦ pr1) : R ×s,U,t R → U ×X U
and (t, s) : R → U ×X U we find that “transitivity” holds. We omit the proof of
the other two axioms of an equivalence relation. □

Lemma 88.25.7.0AR9 Let S be a scheme. Let X be a locally Noetherian algebraic space
over S and let T ⊂ |X| be a closed subset. Let f : X ′ → X be a morphism of
algebraic spaces which is locally of finite type and étale outside of T . There exists
a factorization

X ′ −→ X ′′ −→ X

of f with the following properties: X ′′ → X is locally of finite type, X ′′ → X
is an isomorphism over X \ T , and X ′

/T → X ′′
/T is an isomorphism (see proof for

notation).
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Proof. The notation using the subscript /T in the statement refers to the construc-
tion which to a morphism f : X ′ → X of algebraic spaces associates the morphism
f/T : X ′

/f−1T → X/T of formal algebraic spaces, see Section 88.23. We will also use
the notion U ⊂ X and U ′ ⊂ X ′ to denote the open subspaces with |U | = |X| \ T
and U ′ = |X ′| \ f−1T introduced in Section 88.23.
After replacing X ′ by X ′⨿U we may and do assume the image of X ′ → X contains
U . Let

R = X ′ ⨿U ′ (U ′ ×U U ′)
be the pushout of U ′ → X ′ and the diagonal morphism U ′ → U ′×U U ′ = U ′×X U ′.
Since U ′ → X is étale, this diagonal is an open immersion and we see that R is
an algebraic space (this follows for example from Spaces, Lemma 65.8.5). The two
projections U ′ ×U U ′ → U ′ extend to R and we obtain two étale morphisms s, t :
R→ X ′. Checking on each piece separatedly we find that R is an étale equivalence
relation on X ′. Set X ′′ = X ′/R which is an algebraic space by Bootstrap, Theorem
80.10.1. By construction have the factorization as in the lemma and the morphism
X ′′ → X is locally of finite type (as this can be checked étale locally, i.e., on
X ′). Since U ′ → U is a surjective étale morphism and since s−1(U ′) = t−1(U ′) =
U ′ ×U U ′ we see that U ′′ = U ×X X ′′ → U is an isomorphism. Finally, we have
to show the morphism X ′ → X ′′ induces an isomorphism X ′

/T → X ′′
/T . To see

this, note that the formal completion of R along the inverse image of T is equal to
the formal completion of X ′ along the inverse image of T by our choice of R! By
our construction of the formal completion in Formal Spaces, Section 87.14 we have
X ′′
/T = (X ′

/T )/(R/T ) as sheaves. Since X ′
/T = R/T we conclude that X ′

/T = X ′′
/T

and this finishes the proof. □

88.26. Rig glueing of morphisms

0GI2 Let X, W be algebraic spaces with X Noetherian. Let Z ⊂ X be a closed subspace
with open complement U . The proposition below says roughly speaking that
{morphisms X →W} = {compatible morphisms U →W and X/Z →W}

where compatibility of a : U →W and b : X/Z →W means that a and b define the
same “morphism of rig-spaces”. To introduce the category of “rig-spaces” requires a
lot of work, but we don’t need to do so in order to state precisely what the condition
means in this case.

Proposition 88.26.1.0GI3 Let S be a scheme. Let X be a locally Noetherian algebraic
space over S. Let T ⊂ |X| be a closed subset with complementary open subspace
U ⊂ X. Let f : X ′ → X be a proper morphism of algebraic spaces such that
f−1(U)→ U is an isomorphism. For any algebraic space W over S the map

MorS(X,W ) −→ MorS(X ′,W )×MorS(X′
/T
,W ) MorS(X/T ,W )

is bijective.

Proof. Let w′ : X ′ → W and ŵ : X/T → W be morphisms which determine the
same morphism X ′

/T → W by composition with X ′
/T → X and X ′

/T → X/T . We
have to prove there exists a unique morphism w : X →W whose composition with
X ′ → X and X/T → X recovers w′ and ŵ. The uniqueness is immediate from
Lemma 88.25.4.

https://stacks.math.columbia.edu/tag/0GI3


88.27. ALGEBRAIZATION OF RIG-ÉTALE MORPHISMS 6433

The assumptions on T and f are preserved by base change by any étale morphism
X1 → X of algebraic spaces. Since formal algebraic spaces are sheaves for the étale
topology and since we aready have the uniqueness, it suffices to prove existence
after replacing X by the members of an étale covering. Thus we may assume X is
an affine Noetherian scheme.
Assume X is an affine Noetherian scheme. We will construct the morphism w :
X →W using the material in Pushouts of Spaces, Section 81.13. It makes sense to
read a little bit of the material in that section before continuing the read the proof.
Set X ′′ = X ′ ×X X ′ and consider the two morphisms a = w′ ◦ pr1 : X ′′ → W and
b = w′ ◦ pr2 : X ′′ →W . Then we see that a and b agree over the open U and that
a/T and ba/T agree (as these are both equal to the composition X ′′

/T → X/T →W

where the second arrow is ŵ). Thus by Lemma 88.25.4 we see a = b.
Denote Z ⊂ X the reduced induced closed subscheme structure on T . For n ≥ 1
denote Zn ⊂ X the nth infinitesimal neighbourhood of Z. Denote wn = ŵ|Zn :
Zn → W so that we have ŵ = colimwn on X/T = colimZn. Set Yn = X ′ ⨿ Zn.
Consider the two projections

sn, tn : Rn = Yn ×X Yn −→ Yn

Let Yn → Xn → X be the coequalizer of sn and tn as in Pushouts of Spaces, Section
81.13 (in particular this coequalizer exists, has good properties, etc, see Pushouts
of Spaces, Lemma 81.13.1). By the result a = b of the previous parapgraph and
the agreement of w′ and ŵ over X ′

/T we see that the morphism

w′ ⨿ wn : Yn −→W

equalizes the morphisms sn and tn. Hence we see that for all n ≥ 1 there is a
morphism wn : Xn → W compatible with w′ and wn. Moreover, for m ≥ 1 the
composition

Xn → Xn+m
wn+m

−−−−→W

is equal to wn by construction (as the corresponding statement holds for w′ ⨿
wn+m and w′ ⨿ wn). By Pushouts of Spaces, Lemma 81.13.4 and Remark 81.13.5
the system of algebraic spaces Xn is essentially constant with value X and we
conclude. □

88.27. Algebraization of rig-étale morphisms

0AR1 In this section we prove a generalization of the result on dilatations from the paper
of Artin [Art70].
The notation in this section will agree with the notation in Section 88.23 except
our algebraic spaces and formal algebraic spaces will be locally Noetherian.
Thus, we first fix a base scheme S. All rings, topological rings, schemes, algebraic
spaces, and formal algebraic spaces and morphisms between these will be over S.
Next, we fix a locally Noetherian algebraic space X and a closed subset T ⊂ |X|.
We denote U ⊂ X be the open subspace with |U | = |X| \ T . Picture

U → X |X| = |U | ⨿ T
Given a morphism of algebraic spaces f : X ′ → X, we will use the notation
U ′ = f−1U , T ′ = |f |−1(T ), and f/T : X ′

/T ′ → X/T as in Section 88.23. We
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will sometimes write X ′
/T in stead of X ′

/T ′ and more generally for a morphism
a : X ′ → X ′′ of algebraic spaces over X we will denote a/T : X ′

/T → X ′′
/T the

induced morphism of formal algebraic spaces obtained by completing the morphism
a along the inverse images of T in X ′ and X ′′.

Given this setup we will consider the functor
(88.27.0.1)

0AR5


morphisms of algebraic spaces
f : X ′ → X which are locally
of finite type and such that
U ′ → U is an isomorphism

 −→


morphisms g : W → X/T

of formal algebraic spaces
with W locally Noetherian

and g rig-étale


sending f : X ′ → X to f/T : X ′

/T ′ → X/T . This makes sense because f/T is
rig-étale by Lemma 88.23.9.

Lemma 88.27.1.0GDQ In the situation above, let X1 → X be a morphism of algebraic
spaces with X1 locally Noetherian. Denote T1 ⊂ |X1| the inverse image of T and
U1 ⊂ X1 the inverse image of U . We denote

(1) CX,T the category whose objects are morphisms of algebraic spaces f :
X ′ → X which are locally of finite type and such that U ′ = f−1U → U is
an isomorphism,

(2) CX1,T1 the category whose objects are morphisms of algebraic spaces f1 :
X ′

1 → X1 which are locally of finite type and such that f−1
1 U1 → U1 is an

isomorphism,
(3) CX/T the category whose objects are morphisms g : W → X/T of formal

algebraic spaces with W locally Noetherian and g rig-étale,
(4) CX1,/T1

the category whose objects are morphisms g1 : W1 → X1,/T1 of
formal algebraic spaces with W1 locally Noetherian and g1 rig-étale.

Then the diagram
CX,T

��

// CX/T

��
CX1,T1

// CX1,/T1

is commutative where the horizonal arrows are given by (88.27.0.1) and the vertical
arrows by base change along X1 → X and along X1,/T1 → X/T .

Proof. This follows immediately from the fact that the completion functor (h : Y →
X) 7→ Y/T = Y/|h|−1T on the category of algebraic spaces over X commutes with
fibre products. □

Lemma 88.27.2.0GDR In the situation above. Let f : X ′ → X be a morphism of algebraic
spaces which is locally of finite type and an isomorphism over U . Let g : Y → X
be a morphism with Y locally Noetherian. Then completion defines a bijection

MorX(Y,X ′) −→ MorX/T (Y/T , X ′
/T )

In particular, the functor (88.27.0.1) is fully faithful.

Proof. Let a, b : Y → X ′ be morphisms over X such that a/T = b/T . Then we see
that a and b agree over the open subspace g−1U and after completion along g−1T .

https://stacks.math.columbia.edu/tag/0GDQ
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Hence a = b by Lemma 88.25.5. In other words, the completion map is always
injective.

Let α : Y/T → X ′
/T be a morphism of formal algebraic spaces over X/T . We have

to prove there exists a morphism a : Y → X ′ over X such that α = a/T . The
proof proceeds by a standard but cumbersome reduction to the affine case and
then applying Lemma 88.25.2.

Let {hi : Yi → Y } be an étale covering of algebraic spaces. If we can find for each
i a morphism ai : Yi → X ′ over X whose completion (ai)/T : (Yi)/T → X ′

/T is
equal to α ◦ (hi)/T , then we get a morphism a : Y → X ′ with α = a/T . Namely,
we first observe that (ai)/T ◦ pr1 = (aj)/T ◦ pr2 as morphisms (Yi ×Y Yj)/T →
X ′
/T by the agreement with α (this uses that completion /T commutes with fibre

products). By the injectivity already proven this shows that ai ◦ pr1 = aj ◦ pr2 as
morphisms Yi×Y Yj → X ′. Since X ′ is an fppf sheaf this means that the collection
of morphisms ai descends to a morphism a : Y → X ′. We have α = a/T because
{(ai)/T : (Yi)/T → X ′

/T } is an étale covering.

By the result of the previous paragraph, to prove existence, we may assume that
Y is affine and that g : Y → X factors as g1 : Y → X1 and an étale morphism
X1 → X with X1 affine. Then we can consider T1 ⊂ |X1| the inverse image of T
and we can set X ′

1 = X ′ ×X X1 with projection f1 : X ′
1 → X1 and

α1 = (α, (g1)/T1) : Y/T1 = Y/T −→ X ′
/T ×X/T (X1)/T1 = (X ′

1)/T1

We conclude that it suffices to prove the existence for α1 over X1, in other words,
we may replace X,T,X ′, Y, f, g, α by X1, T1, X

′
1, Y, g1, α1. This reduces us to the

case described in the next paragraph.

Assume Y and X are affine. Recall that (Y/T )red is an affine scheme (isomorphic
to the reduced induced scheme structure on g−1T ⊂ Y , see Formal Spaces, Lemma
87.14.5). Hence αred : (Y/T )red → (X ′

/T )red has quasi-compact image E in f−1T

(this is the underlying topological space of (X ′
/T )red by the same lemma as above).

Thus we can find an affine scheme V and an étale morpism h : V → X ′ such that
the image of h contains E. Choose a solid cartesian diagram

Y ′
/T

  

// W

��

// V/T

h/T

��
Y/T

α // X ′
/T

By construction, the morphism W → Y/T is representable by algebraic spaces,
étale, and surjective (surjectivity can be seen by looking at the reductions, see
Formal Spaces, Lemma 87.12.4). By Lemma 88.25.1 we can write W = Y ′

/T for
Y ′ → Y étale and Y ′ affine. This gives the dotted arrows in the diagram. Since
W → Y/T is surjective, we see that the image of Y ′ → Y contains g−1T . Hence
{Y ′ → Y, Y \ g−1T → Y } is an étale covering. As f is an isomorphism over U we
have a (unique) morphism Y \ g−1T → X ′ over X agreeing with α on completions
(as the completion of Y \ g−1T is empty). Thus it suffices to prove the existence
for Y ′ which reduces us to the case studied in the next paragraph.
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By the result of the previous paragraph, we may assume that Y is affine and that
α factors as Y/T → V/T → X ′

/T where V is an affine scheme étale over X ′. We
may still replace Y by the members of an affine étale covering. By Lemma 88.25.2
we may find an étale morphism b : Y ′ → Y of affine schemes which induces an
isomorphism b/T : Y ′

/T → Y/T and a morphism c : Y ′ → V such that c/T ◦ b−1
/T is

the given morphism Y/T → V/T . Setting a′ : Y ′ → X ′ equal to the composition
of c and V → X ′ we find that a′

/T = α ◦ b/T , in other words, we have existence
for Y ′ and α ◦ b/T . Then we are done by replacing considering once more the étale
covering {Y ′ → Y, Y \ g−1T → Y }. □

Lemma 88.27.3.0ARA In the situation above. Assume X is affine. Then the functor
(88.27.0.1) is an equivalence.

Before we prove this lemma let us discuss an example. Suppose that S = Spec(k),
X = A1

k, and T = {0}. Then X/T = Spf(k[[x]]). Let W = Spf(k[[x]] × k[[x]]).
Then the corresponding f : X ′ → X is the affine line with zero doubled mapping
to the affine line (Schemes, Example 26.14.3). Moreover, this is the output of the
construction in Lemma 88.25.7 starting with X ⨿X over X.

Proof. We already know the functor is fully faithful, see Lemma 88.27.2. Essential
surjectivity. Let g : W → X/T be a morphism of formal algebraic spaces with W
locally Noetherian and g rig-étale. We will prove W is in the essential image in a
number of steps.

Step 1: W is an affine formal algebraic space. Then we can find U → X of finite
type and étale over X \ T such that U/T is isomorphic to W , see Lemma 88.25.1.
Thus we see that W is in the essential image by Lemma 88.25.7.

Step 2: W is separated. Choose {Wi → W} as in Formal Spaces, Definition
87.11.1. By Step 1 the formal algebraic spaces Wi and Wi ×W Wj are in the
essential image. Say Wi = (X ′

i)/T and Wi ×W Wj = (X ′
ij)/T . By fully faithfulness

we obtain morphisms tij : X ′
ij → X ′

i and sij : X ′
ij → X ′

j matching the projections
Wi ×W Wj →Wi and Wi ×W Wj →Wj . Consider the structure

R =
∐

X ′
ij , V =

∐
X ′
i, s =

∐
sij , t =

∐
tij

(We can’t use the letter U as it has already been used.) Applying Lemma 88.25.6
we find that (t, s) : R → V ×X V defines an étale equivalence relation on V over
X. Thus we can take the quotient X ′ = V/R and it is an algebraic space, see
Bootstrap, Theorem 80.10.1. Since completion commutes with fibre products and
taking quotient sheaves, we find that X ′

/T
∼= W as formal algebraic spaces over

X/T .

Step 3: W is general. Choose {Wi → W} as in Formal Spaces, Definition 87.11.1.
The formal algebraic spaces Wi and Wi ×W Wj are separated. Hence by Step 2
the formal algebraic spaces Wi and Wi×W Wj are in the essential image. Then we
argue exactly as in the previous paragraph to see that W is in the essential image
as well. This concludes the proof. □

Theorem 88.27.4.0ARB Let S be a scheme. Let X be a locally Noetherian algebraic
space over S. Let T ⊂ |X| be a closed subset. Let U ⊂ X be the open subspace

https://stacks.math.columbia.edu/tag/0ARA
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with |U | = |X| \ T . The completion functor (88.27.0.1)
morphisms of algebraic spaces
f : X ′ → X which are locally
of finite type and such that
f−1U → U is an isomorphism

 −→


morphisms g : W → X/T

of formal algebraic spaces
with W locally Noetherian

and g rig-étale


sending f : X ′ → X to f/T : X ′

/T ′ → X/T is an equivalence.

Proof. The functor is fully faithful by Lemma 88.27.2. Let g : W → X/T be a
morphism of formal algebraic spaces with W locally Noetherian and g rig-étale.
We will prove W is in the essential image to finish the proof.
Choose an étale covering {Xi → X} with Xi affine for all i. Denote Ui ⊂ Xi

the inverse image of U and denote Ti ⊂ Xi the inverse image of T . Recall that
(Xi)/Ti = (Xi)/T = (Xi ×X X)/T and Wi = Xi ×X W = (Xi)/T ×X/T W , see
Lemma 88.27.1. Observe that we obtain isomorphisms

αij : Wi ×X/T (Xj)/T −→ (Xi)/T ×X/T Wj

satisfying a suitable cocycle condition. By Lemma 88.27.3 applied toXi, Ti, Ui,Wi →
(Xi)/T there exists a morphism X ′

i → Xi of algebraic spaces which is locally of fi-
nite type and an isomorphism over Ui and an isomorphism βi : (X ′

i)/T ∼= Wi over
(Xi)/T . By fully faithfullness we find an isomorphism

aij : X ′
i ×X Xj −→ Xi ×X X ′

j

over Xi ×X Xj such that αij = βj |Xi×XXj ◦ (aij)/T ◦ β−1
i |Xi×XXj . By fully faith-

fulness again (this time over Xi ×X Xj ×X Xk) we see that these morphisms aij
satisfy the same cocycle condition as satisfied by the αij . In other words, we obtain
a descent datum (as in Descent on Spaces, Definition 74.22.3) (X ′

i, aij) relative to
the family {Xi → X}. By Bootstrap, Lemma 80.11.3, this descent datum is effec-
tive. Thus we find a morphism f : X ′ → X of algebraic spaces and isomorphisms
hi : X ′ ×X Xi → X ′

i over Xi such that aij = hj |Xi×XXj ◦ h−1
i |Xi×XXj . The reader

can check that the ensuing isomorphisms

(X ′ ×X Xi)/T
βi◦(hi)/T−−−−−−→Wi

over Xi glue to an isomorphism X ′
/T →W over X/T ; some details omitted. □

88.28. Completions and morphisms, II

0GDS To obtain Artin’s theorem on dilatations, we need to match formal modifications
with actual modifications in the correspondence given by Theorem 88.27.4. We
urge the reader to skip this section.

Lemma 88.28.1.0ARU With assumptions and notation as in Theorem 88.27.4 let f :
X ′ → X correspond to g : W → X/T . Then f is quasi-compact if and only if g is
quasi-compact.

Proof. If f is quasi-compact, then g is quasi-compact by Lemma 88.23.5. Con-
versely, assume g is quasi-compact. Choose an étale covering {Xi → X} with Xi

affine. It suffices to prove that the base change X ′ ×X Xi → Xi is quasi-compact,
see Morphisms of Spaces, Lemma 67.8.8. By Formal Spaces, Lemma 87.17.3 the
base changes Wi ×X/T (Xi)/T → (Xi)/T are quasi-compact. By Lemma 88.27.1 we
reduce to the case described in the next paragraph.

https://stacks.math.columbia.edu/tag/0ARU
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Assume X is affine and g : W → X/T quasi-compact. We have to show that X ′ is
quasi-compact. Let V → X ′ be a surjective étale morphism where V =

∐
j∈J Vj is

a disjoint union of affines. Then V/T → X ′
/T = W is a surjective étale morphism.

Since W is quasi-compact, then we can find a finite subset J ′ ⊂ J such that∐
j∈J′(Vj)/T →W is surjective. Then it follows that

U ⨿
∐

j∈J′
Vj −→ X ′

is surjective (and hence X ′ is quasi-compact). Namely, we have |X ′| = |U |⨿ |Wred|
as X ′

/T = W . □

Lemma 88.28.2.0ARV With assumptions and notation as in Theorem 88.27.4 let f :
X ′ → X correspond to g : W → X/T . Then f is quasi-separated if and only if g is
so.

Proof. If f is quasi-separated, then g is quasi-separated by Lemma 88.23.7. Con-
versely, assume g is quasi-separated. We have to show that f is quasi-separated.
Exactly as in the proof of Lemma 88.28.1 we may check this over the members of
a étale covering of X by affine schemes using Morphisms of Spaces, Lemma 67.4.12
and Formal Spaces, Lemma 87.30.5. Thus we may and do assume X is affine.

Let V → X ′ be a surjective étale morphism where V =
∐
j∈J Vj is a disjoint union

of affines. To show that X ′ is quasi-separated, it suffices to show that Vj ×X′ Vj′

is quasi-compact for all j, j′ ∈ J . Since W is quasi-separated the fibre products
(Vj ×Y Vj′)/T = (Vj)/T ×X′

/T
(Vj′)/T are quasi-compact for all j, j′ ∈ J . Since X is

Noetherian affine and U ′ → U is an isomorphism, we see that

(Vj ×X′ Vj′)×X U = (Vj ×X Vj′)×X U

is quasi-compact. Hence we conclude by the equality

|Vj ×X′ Vj′ | = |(Vj ×X′ Vj′)×X U | ⨿ |(Vj ×X′ Vj′)/T,red|

and the fact that a formal algebraic space is quasi-compact if and only if its asso-
ciated reduced algebraic space is so. □

Lemma 88.28.3.0ARW With assumptions and notation as in Theorem 88.27.4 let f :
X ′ → X correspond to g : W → X/T . Then f is separated ⇔ g is separated and
∆g : W →W ×X/T W is rig-surjective.

Proof. If f is separated, then g is separated and ∆g is rig-surjective by Lemmas
88.23.7 and 88.23.11. Assume g is separated and ∆g is rig-surjective. Exactly as in
the proof of Lemma 88.28.1 we may check this over the members of a étale covering
of X by affine schemes using Morphisms of Spaces, Lemma 67.4.4 (locality on the
base of being separated for morphisms of algebraic spaces), Formal Spaces, Lemma
87.30.2 (being separated for morphisms of formal algebraic spaces is preserved by
base change), and Lemma 88.21.4 (being rig-surjective is preserved by base change).
Thus we may and do assume X is affine. Furthermore, we already know that
f : X ′ → X is quasi-separated by Lemma 88.28.2.

https://stacks.math.columbia.edu/tag/0ARV
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By Cohomology of Spaces, Lemma 69.19.1 and Remark 69.19.3 it suffices to show
that given any commutative diagram

Spec(K) //

��

X ′

��
Spec(R) p //

88

X ′ ×X X ′

where R is a complete discrete valuation ring with fraction field K, there is a
dotted arrow making the diagram commute (as this will give the uniqueness part
of the valuative criterion). Let h : Spec(R)→ X be the composition of p with the
morphism Y ×X Y → X. There are three cases: Case I: h(Spec(R)) ⊂ U . This case
is trivial because U ′ = X ′ ×X U → U is an isomorphism. Case II: h maps Spec(R)
into T . This case follows from our assumption that g : W → X/T is separated.
Namely, if Z denotes the reduced induced closed subspace structure on T , then h
factors through Z and

W ×X/T Z = X ′ ×X Z −→ Z

is separated by assumption (and for example Formal Spaces, Lemma 87.30.5) which
implies we get the lifting property by Cohomology of Spaces, Lemma 69.19.1 applied
to the displayed arrow. Case III: h(Spec(K)) is not in T but h maps the closed
point of Spec(R) into T . In this case the corresponding morphism

p/T : Spf(R) −→ (X ′ ×X X ′)/T = W ×X/T W

is an adic morphism (by Formal Spaces, Lemma 87.14.4 and Definition 87.23.2).
Hence our assumption that ∆g : W → W ×X/T W is rig-surjective implies we can
lift p/T to a morphism Spf(R)→W = X ′

/T , see Lemma 88.21.11. Algebraizing the
composition Spf(R)→ X ′ using Formal Spaces, Lemma 87.33.3 we find a morphism
Spec(R)→ X ′ lifting p as desired. □

Lemma 88.28.4.0ARX With assumptions and notation as in Theorem 88.27.4 let f :
X ′ → X correspond to g : W → X/T . Then f is proper if and only if g is a formal
modification (Definition 88.24.1).

Proof. If f is proper, then g is a formal modification by Lemma 88.24.3. Assume
g is a formal modification. By Lemmas 88.28.1 and 88.28.3 we see that f is quasi-
compact and separated.

By Cohomology of Spaces, Lemma 69.19.2 and Remark 69.19.3 it suffices to show
that given any commutative diagram

Spec(K) //

��

X ′

f

��
Spec(R) p //

;;

X

where R is a complete discrete valuation ring with fraction field K, there is a dotted
arrow making the diagram commute. There are three cases: Case I: p(Spec(R)) ⊂
U . This case is trivial because U ′ → U is an isomorphism. Case II: p maps Spec(R)
into T . This case follows from our assumption that g : W → X/T is proper. Namely,

https://stacks.math.columbia.edu/tag/0ARX
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if Z denotes the reduced induced closed subspace structure on T , then p factors
through Z and

W ×X/T Z = X ′ ×X Z −→ Z

is proper by assumption which implies we get the lifting property by Cohomology of
Spaces, Lemma 69.19.2 applied to the displayed arrow. Case III: p(Spec(K)) is not
in T but p maps the closed point of Spec(R) into T . In this case the corresponding
morphism

p/T : Spf(R) −→ X ′
/T = W

is an adic morphism (by Formal Spaces, Lemma 87.14.4 and Definition 87.23.2).
Hence our assumption that g : W → X/T be rig-surjective implies we can lift g/T to
a morphism Spf(R′)→W = X ′

/T for some extension of complete discrete valuation
rings R ⊂ R′. Algebraizing the composition Spf(R′) → X ′ using Formal Spaces,
Lemma 87.33.3 we find a morphism Spec(R′)→ X ′ lifting p as desired. □

Lemma 88.28.5.0GI4 With assumptions and notation as in Theorem 88.27.4 let f :
X ′ → X correspond to g : W → X/T . Then f is étale if and only if g is étale.

Proof. If f is étale, then g is étale by Lemma 88.23.2. Conversely, assume g is
étale. Since f is an isomorphism over U we see that f is étale over U . Thus it
suffices to prove that f is étale at any point of X ′ lying over T . Denote Z ⊂ X the
reduced closed subspace whose underlying topological space is |Z| = T ⊂ |X|, see
Properties of Spaces, Definition 66.12.5. Letting Zn ⊂ X be the nth infinitesimal
neighbourhood we have X/T = colimZn. Since X ′

/T = W → X/T we conclude that
f−1(Zn) = X ′ ×X Zn → Zn is étale by the assumed étaleness of g. By More on
Morphisms of Spaces, Lemma 76.20.3 we conclude that f is étale at points lying
over T . □

88.29. Artin’s theorem on dilatations

0GDT In this section we use a different font for formal algebraic spaces to stress the
similarity of the statements with the corresponding statements in [Art70]. Here is
the first main theorem of this chapter.

Theorem 88.29.1.0GDU [Art70, Theorem
3.2]

Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let T ⊂ |X| be a closed subset. Let X = X/T be the formal completion of
X along T . Let

f : X′ → X

be a formal modification (Definition 88.24.1). Then there exists a unique proper
morphism f : X ′ → X which is an isomorphism over the complement of T in X
whose completion f/T recovers f.

Proof. This follows from Theorem 88.27.4 and Lemma 88.28.4. □

Here is the characterization of formal modifcations as promised in Section 88.24.

Lemma 88.29.2.0GDV Let S be a scheme. Let X′ → X be a formal modification (Defi-
nition 88.24.1) of locally Noetherian formal algebraic spaces over S. Given

(1) any adic Noetherian topological ring A,
(2) any adic morphism Spf(A) −→ X

https://stacks.math.columbia.edu/tag/0GI4
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there exists a proper morphism X → Spec(A) of algebraic spaces and an isomor-
phism

Spf(A)×X X′ −→ X/Z

over Spf(A) of the base change of X with the formal completion of X along the
“closed fibre” Z = X ×Spec(A) Spf(A)red of X over A.

Proof. The morphism Spf(A)×X X′ → Spf(A) is a formal modification by Lemma
88.24.4. Hence this follows from Theorem 88.29.1. □

88.30. Application to modifications

0AS1 Let A be a Noetherian ring and let I ⊂ A be an ideal. We set X = Spec(A) and
U = X \ V (I). In this section we will consider the category

(88.30.0.1)0AS2

f : X ′ −→ X

∣∣∣∣∣∣
X ′ is an algebraic space
f is locally of finite type

f−1(U)→ U is an isomorphism


A morphism from X ′/X to X ′′/X will be a morphism of algebraic spaces X ′ → X ′′

over X.
Let A → B be a homomorphism of Noetherian rings and let J ⊂ B be an ideal
such that J =

√
IB. Then base change along the morphism Spec(B) → Spec(A)

gives a functor from the category (88.30.0.1) for A to the category (88.30.0.1) for
B.

Lemma 88.30.1.0AE5 Let A→ B be a ring homomorphism of Noetherian rings inducing
an isomorphism on I-adic completions for some ideal I ⊂ A (for example if B is
the I-adic completion of A). Then base change defines an equivalence of categories
between the category (88.30.0.1) for (A, I) with the category (88.30.0.1) for (B, IB).

Proof. Set X = Spec(A) and T = V (I). Set X1 = Spec(B) and T1 = V (IB). By
Theorem 88.27.4 (in fact we only need the affine case treated in Lemma 88.27.3)
the category (88.30.0.1) for X and T is equivalent to the the category of rig-étale
morphisms W → X/T of locally Noetherian formal algebraic spaces. Similarly,
the the category (88.30.0.1) for X1 and T1 is equivalent to the category of rig-
étale morphisms W1 → X1,/T1 of locally Noetherian formal algebraic spaces. Since
X/T = Spf(A∧) and X1,/T1 = Spf(B∧) (Formal Spaces, Lemma 87.14.6) we see that
these categories are equivalent by our assumption that A∧ → B∧ is an isomorphism.
We omit the verification that this equivalence is given by base change. □

Lemma 88.30.2.0BH5 Notation and assumptions as in Lemma 88.30.1. Let f : X ′ →
Spec(A) correspond to g : Y ′ → Spec(B) via the equivalence. Then f is quasi-
compact, quasi-separated, separated, proper, finite, and add more here if and only
if g is so.

Proof. You can deduce this for the statements quasi-compact, quasi-separated, sep-
arated, and proper by using Lemmas 88.28.1 88.28.2, 88.28.3, 88.28.2, and 88.28.4 to
translate the corresponding property into a property of the formal completion and
using the argument of the proof of Lemma 88.30.1. However, there is a direct ar-
gument using fpqc descent as follows. First, you can reduce to proving the lemma
for A → A∧ and B → B∧ since A∧ → B∧ is an isomorphism. Then note that
{U → Spec(A),Spec(A∧)→ Spec(A)} is an fpqc covering with U = Spec(A)\V (I)
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as before. The base change of f by U → Spec(A) is idU by definition of our cat-
egory (88.30.0.1). Let P be a property of morphisms of algebraic spaces which is
fpqc local on the base (Descent on Spaces, Definition 74.10.1) such that P holds
for identity morphisms. Then we see that P holds for f if and only if P holds for
g. This applies to P equal to quasi-compact, quasi-separated, separated, proper,
and finite by Descent on Spaces, Lemmas 74.11.1, 74.11.2, 74.11.18, 74.11.19, and
74.11.23. □

Lemma 88.30.3.0AF7 Let A→ B be a local map of local Noetherian rings such that
(1) A→ B is flat,
(2) mB = mAB, and
(3) κ(mA) = κ(mB)

Then the base change functor from the category (88.30.0.1) for (A,mA) to the
category (88.30.0.1) for (B,mB) is an equivalence.

Proof. The conditions signify that A→ B induces an isomorphism on completions,
see More on Algebra, Lemma 15.43.9. Hence this lemma is a special case of Lemma
88.30.1. □

Lemma 88.30.4.0AE6 Let (A,m, κ) be a Noetherian local ring. Let f : X → S be
an object of (88.30.0.1). Then there exists a U -admissible blowup S′ → S which
dominates X.

Proof. Special case of More on Morphisms of Spaces, Lemma 76.39.5. □
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CHAPTER 89

Resolution of Surfaces Revisited

0BH6 89.1. Introduction

0BH7 This chapter discusses resolution of singularities of Noetherian algebraic spaces of
dimension 2. We have already discussed resolution of surfaces for schemes following
Lipman [Lip78] in an earlier chapter. See Resolution of Surfaces, Section 54.1.
Most of the results in this chapter are straightforward consequences of the results
on schemes.

Unless specifically mentioned otherwise all geometric objects in this chapter will
be algebraic spaces. Thus if we say “let f : X → Y be a modification” then this
means that f is a morphism as in Spaces over Fields, Definition 72.8.1. Similarly
for proper morphism, etc, etc.

89.2. Modifications

0BH8 Let (A,m, κ) be a Noetherian local ring. We set S = Spec(A) and U = S \ {m}. In
this section we will consider the category

(89.2.0.1)0AE2

f : X −→ S

∣∣∣∣∣∣
X is an algebraic space
f is a proper morphism

f−1(U)→ U is an isomorphism


A morphism from X/S to X ′/S will be a morphism of algebraic spaces X → X ′

compatible with the structure morphisms over S. In Algebraization of Formal
Spaces, Section 88.30 we have seen that this category only depends on the comple-
tion of A and we have proven some elementary properties of objects in this category.
In this section we specifically study cases where dim(A) ≤ 2 or where the dimension
of the closed fibre is at most 1.

Lemma 89.2.1.0AE3 Let (A,m, κ) be a 2-dimensional Noetherian local domain such that
U = Spec(A) \ {m} is a normal scheme. Then any modification f : X → Spec(A)
is a morphism as in (89.2.0.1).

Proof. Let f : X → S be a modification. We have to show that f−1(U)→ U is an
isomorphism. Since every closed point u of U has codimension 1, this follows from
Spaces over Fields, Lemma 72.3.3. □

Lemma 89.2.2.0AGM Let (A,m, κ) be a Noetherian local ring. Let g : X → Y be a
morphism in the category (89.2.0.1). If the induced morphism Xκ → Yκ of special
fibres is a closed immersion, then g is a closed immersion.

Proof. This is a special case of More on Morphisms of Spaces, Lemma 76.49.3. □

6444
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Lemma 89.2.3.0AYJ Let (A,m, κ) be a Noetherian local domain of dimension ≥ 1. Let
f : X → Spec(A) be a morphism of algebraic spaces. Assume at least one of the
following conditions is satisfied

(1) f is a modification (Spaces over Fields, Definition 72.8.1),
(2) f is an alteration (Spaces over Fields, Definition 72.8.3),
(3) f is locally of finite type, quasi-separated, X is integral, and there is

exactly one point of |X| mapping to the generic point of Spec(A),
(4) f is locally of finite type, X is decent, and the points of |X|mapping to the

generic point of Spec(A) are the generic points of irreducible components
of |X|,

(5) add more here.
Then dim(Xκ) ≤ dim(A)− 1.

Proof. Cases (1), (2), and (3) are special cases of (4). Choose an affine scheme
U = Spec(B) and an étale morphism U → X. The ring map A → B is of finite
type. We have to show that dim(Uκ) ≤ dim(A)− 1. Since X is decent, the generic
points of irreducible components of U are the points lying over generic points of
irreducible components of |X|, see Decent Spaces, Lemma 68.20.1. Hence the fibre
of Spec(B)→ Spec(A) over (0) is the (finite) set of minimal primes q1, . . . , qr of B.
Thus Af → Bf is finite for some nonzero f ∈ A (Algebra, Lemma 10.122.10). We
conclude κ(qi) is a finite extension of the fraction field of A. Let q ⊂ B be a prime
lying over m. Then

dim(Bq) = max dim((B/qi)q) ≤ dim(A)
the inequality by the dimension formula for A ⊂ B/qi, see Algebra, Lemma
10.113.1. However, the dimension of Bq/mBq (which is the local ring of Uκ at
the corresponding point) is at least one less because the minimal primes qi are not
in V (m). We conclude by Properties, Lemma 28.10.2. □

Lemma 89.2.4.0AGN If (A,m, κ) is a complete Noetherian local domain of dimension 2,
then every modification of Spec(A) is projective over A.

Proof. By More on Morphisms of Spaces, Lemma 76.43.6 it suffices to show that
the special fibre of any modification X of Spec(A) has dimension ≤ 1. This follows
from Lemma 89.2.3. □

89.3. Strategy

0BH9 Let S be a scheme. Let X be a decent algebraic space over S. Let x1, . . . , xn ∈
|X| be pairwise distinct closed points. For each i we pick an elementary étale
neighbourhood (Ui, ui)→ (X,xi) as in Decent Spaces, Lemma 68.11.4. This means
that Ui is an affine scheme, Ui → X is étale, ui is the unique point of Ui lying over
xi, and Spec(κ(ui)) → X is a monomorphism representing xi. After shrinking Ui
we may and do assume that for j ̸= i there does not exist a point of Ui mapping
to xj . Observe that ui ∈ Ui is a closed point.
Denote CX,{x1,...,xn} the category of morphisms of algebraic spaces f : Y → X

which induce an isomorphism f−1(X \ {x1, . . . , xn})→ X \ {x1, . . . , xn}. For each
i denote CUi,ui the category of morphisms of algebraic spaces gi : Yi → Ui which
induce an isomorphism g−1

i (Ui \{ui})→ Ui \{ui}. Base change defines an functor
(89.3.0.1)0BHA F : CX,{x1,...,xn} −→ CU1,u1 × . . .× CUn,un
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To reduce at least some of the problems in this chapter to the case of schemes we
have the following lemma.

Lemma 89.3.1.0BHB The functor F (89.3.0.1) is an equivalence.

Proof. For n = 1 this is Limits of Spaces, Lemma 70.19.1. For n > 1 the lemma
can be proved in exactly the same way or it can be deduced from it. For example,
suppose that gi : Yi → Ui are objects of CUi,ui . Then by the case n = 1 we can find
f ′
i : Y ′

i → X which are isomorphisms over X \ {xi} and whose base change to Ui is
fi. Then we can set

f : Y = Y ′
1 ×X . . .×X Y ′

n → X

This is an object of CX,{x1,...,xn} whose base change by Ui → X recovers gi. Thus
the functor is essentially surjective. We omit the proof of fully faithfulness. □

Lemma 89.3.2.0BHC Let X,xi, Ui → X,ui be as in (89.3.0.1). If f : Y → X corresponds
to gi : Yi → Ui under F , then f is quasi-compact, quasi-separated, separated,
locally of finite presentation, of finite presentation, locally of finite type, of finite
type, proper, integral, finite, if and only if gi is so for i = 1, . . . , n.

Proof. Follows from Limits of Spaces, Lemma 70.19.2. □

Lemma 89.3.3.0BHD Let X,xi, Ui → X,ui be as in (89.3.0.1). If f : Y → X corresponds
to gi : Yi → Ui under F , then Yxi

∼= (Yi)ui as algebraic spaces.

Proof. This is clear because ui → xi is an isomorphism. □

89.4. Dominating by quadratic transformations

0AHG We define the blowup of a space at a point only if X is decent.

Definition 89.4.1.0BHE Let S be a scheme. Let X be a decent algebraic space over S.
Let x ∈ |X| be a closed point. By Decent Spaces, Lemma 68.14.6 we can represent
x by a closed immersion i : Spec(k) → X. The blowing up X ′ → X of X at x
means the blowing up of X in the closed subspace Z = i(Spec(k)) ⊂ X.

In this generality the blowing up of X at x is not necessarily proper. However, if
X is locally Noetherian, then it follows from Divisors on Spaces, Lemma 71.17.11
that the blowing up is proper. Recall that a locally Noetherian algebraic space is
Noetherian if and only if it is quasi-compact and quasi-separated. Moreover, for
a locally Noetherian algebraic space, being quasi-separated is equivalent to being
decent (Decent Spaces, Lemma 68.14.1).

Lemma 89.4.2.0BHF Let X,xi, Ui → X,ui be as in (89.3.0.1) and assume f : Y → X
corresponds to gi : Yi → Ui under F . Then there exists a factorization

Y = Zm → Zm−1 → . . .→ Z1 → Z0 = X

of f where Zj+1 → Zj is the blowing up of Zj at a closed point zj lying over
{x1, . . . , xn} if and only if for each i there exists a factorization

Yi = Zi,mi → Zi,mi−1 → . . .→ Zi,1 → Zi,0 = Ui

of gi where Zi,j+1 → Zi,j is the blowing up of Zi,j at a closed point zi,j lying over
ui.
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Proof. A blowing up is a representable morphism. Hence in either case we induc-
tively see that Zj → X or Zi,j → Ui is representable. Whence each Zj or Zi,j
is a decent algebraic space by Decent Spaces, Lemma 68.6.5. This shows that the
assertions make sense (since blowing up is only defined for decent spaces). To prove
the equivalence, let’s start with a sequence of blowups Zm → Zm−1 → . . .→ Z1 →
Z0 = X. The first morphism Z1 → X is given by blowing up one of the xi, say x1.
Applying F to Z1 → X we find a blowup Z1,1 → U1 at u1 is the blowing up at u1
and otherwise Zi,0 = Ui for i > 1. In the next step, we either blow up one of the
xi, i ≥ 2 on Z1 or we pick a closed point z1 of the fibre of Z1 → X over x1. In the
first case it is clear what to do and in the second case we use that (Z1)x1

∼= (Z1,1)u1

(Lemma 89.3.3) to get a closed point z1,1 ∈ Z1,1 corresponding to z1. Then we
set Z1,2 → Z1,1 equal to the blowing up in z1,1. Continuing in this manner we
construct the factorizations of each gi.

Conversely, given sequences of blowups Zi,mi → Zi,mi−1 → . . .→ Zi,1 → Zi,0 = Ui
we construct the sequence of blowing ups of X in exactly the same manner. □

Lemma 89.4.3.0BHG Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let T ⊂ |X| be a finite set of closed points x such that (1) X is regular at x
and (2) the local ring of X at x has dimension 2. Let I ⊂ OX be a quasi-coherent
sheaf of ideals such that OX/I is supported on T . Then there exists a sequence

Xm → Xm−1 → . . .→ X1 → X0 = X

where Xj+1 → Xj is the blowing up of Xj at a closed point xj lying above a point
of T such that IOXn is an invertible ideal sheaf.

Proof. Say T = {x1, . . . , xr}. Pick elementary étale neighbourhoods (Ui, ui) →
(X,xi) as in Section 89.3. For each i the restriction Ii = I|Ui ⊂ OUi is a quasi-
coherent sheaf of ideals supported at ui. The local ring of Ui at ui is regular and
has dimension 2. Thus we may apply Resolution of Surfaces, Lemma 54.4.1 to find
a sequence

Xi,mi → Xi,mi−1 → . . .→ X1 → Xi,0 = Ui

of blowing ups in closed points lying over ui such that IiOXi,mi is invertible. By
Lemma 89.4.2 we find a sequence of blowing ups

Xm → Xm−1 → . . .→ X1 → X0 = X

as in the statement of the lemma whose base change to our Ui produces the given
sequences. It follows that IOXn is an invertible ideal sheaf. Namely, we know this
is true over X \ {x1, . . . , xn} and in an étale neighbourhood of the fibre of each xi
it is true by construction. □

Lemma 89.4.4.0BHH Let S be a scheme. Let X be a Noetherian algebraic space over S.
Let T ⊂ |X| be a finite set of closed points x such that (1) X is regular at x and
(2) the local ring of X at x has dimension 2. Let f : Y → X be a proper morphism
of algebraic spaces which is an isomorphism over U = X \ T . Then there exists a
sequence

Xn → Xn−1 → . . .→ X1 → X0 = X

where Xi+1 → Xi is the blowing up of Xi at a closed point xi lying above a point
of T and a factorization Xn → Y → X of the composition.
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Proof. By More on Morphisms of Spaces, Lemma 76.39.5 there exists a U -admissible
blowup X ′ → X which dominates Y → X. Hence we may assume there exists an
ideal sheaf I ⊂ OX such that OX/I is supported on T and such that Y is the
blowing up of X in I. By Lemma 89.4.3 there exists a sequence

Xn → Xn−1 → . . .→ X1 → X0 = X

where Xi+1 → Xi is the blowing up of Xi at a closed point xi lying above a point of
T such that IOXn is an invertible ideal sheaf. By the universal property of blowing
up (Divisors on Spaces, Lemma 71.17.5) we find the desired factorization. □

89.5. Dominating by normalized blowups

0BHI In this section we prove that a modification of a surface can be dominated by a
sequence of normalized blowups in points.
Definition 89.5.1.0BHJ Let S be a scheme. Let X be a decent algebraic space over S
satisfying the equivalent conditions of Morphisms of Spaces, Lemma 67.49.1. Let
x ∈ |X| be a closed point. The normalized blowup of X at x is the composition
X ′′ → X ′ → X where X ′ → X is the blowup of X at x (Definition 89.4.1) and
X ′′ → X ′ is the normalization of X ′.
Here the normalization X ′′ → X ′ is defined as the algebraic space X ′ satisfies
the equivalent conditions of Morphisms of Spaces, Lemma 67.49.1 by Divisors on
Spaces, Lemma 71.17.8. See Morphisms of Spaces, Definition 67.49.6 for the defi-
nition of the normalization.
In general the normalized blowing up need not be proper even when X is Noe-
therian. Recall that an algebraic space is Nagata if it has an étale covering by
affines which are spectra of Nagata rings (Properties of Spaces, Definition 66.7.2
and Remark 66.7.3 and Properties, Definition 28.13.1).
Lemma 89.5.2.0BHK In Definition 89.5.1 if X is Nagata, then the normalized blowing
up of X at x is a normal Nagata algebraic space proper over X.
Proof. The blowup morphism X ′ → X is proper (as X is locally Noetherian we
may apply Divisors on Spaces, Lemma 71.17.11). Thus X ′ is Nagata (Morphisms
of Spaces, Lemma 67.26.1). Therefore the normalization X ′′ → X ′ is finite (Mor-
phisms of Spaces, Lemma 67.49.9) and we conclude that X ′′ → X is proper as well
(Morphisms of Spaces, Lemmas 67.45.9 and 67.40.4). It follows that the normalized
blowing up is a normal (Morphisms of Spaces, Lemma 67.49.8) Nagata algebraic
space. □

Here is the analogue of Lemma 89.4.2 for normalized blowups.
Lemma 89.5.3.0BHL Let X,xi, Ui → X,ui be as in (89.3.0.1) and assume f : Y → X
corresponds to gi : Yi → Ui under F . Assume X satisfies the equivalent conditions
of Morphisms of Spaces, Lemma 67.49.1. Then there exists a factorization

Y = Zm → Zm−1 → . . .→ Z1 → Z0 = X

of f where Zj+1 → Zj is the normalized blowing up of Zj at a closed point zj lying
over {x1, . . . , xn} if and only if for each i there exists a factorization

Yi = Zi,mi → Zi,mi−1 → . . .→ Zi,1 → Zi,0 = Ui

of gi where Zi,j+1 → Zi,j is the normalized blowing up of Zi,j at a closed point zi,j
lying over ui.
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Proof. This follows by the exact same argument as used to prove Lemma 89.4.2. □

A Nagata algebraic space is locally Noetherian.

Lemma 89.5.4.0BHM Let S be a scheme. Let X be a Noetherian Nagata algebraic space
over S with dim(X) = 2. Let f : Y → X be a proper birational morphism. Then
there exists a commutative diagram

Xn
//

��

Xn−1 // . . . // X1 // X0

��
Y // X

where X0 → X is the normalization and where Xi+1 → Xi is the normalized
blowing up of Xi at a closed point.

Proof. Although one can prove this lemma directly for algebraic spaces, we will
continue the approach used above to reduce it to the case of schemes.

We will use that Noetherian algebraic spaces are quasi-separated and hence points
have well defined residue fields (for example by Decent Spaces, Lemma 68.11.4).
We will use the results of Morphisms of Spaces, Sections 67.26, 67.35, and 67.49
without further mention. We may replace Y by its normalization. Let X0 → X
be the normalization. The morphism Y → X factors through X0. Thus we may
assume that both X and Y are normal.

Assume X and Y are normal. The morphism f : Y → X is an isomorphism over
an open which contains every point of codimension 0 and 1 in Y and every point
of Y over which the fibre is finite, see Spaces over Fields, Lemma 72.3.3. Hence we
see that there is a finite set of closed points T ⊂ |X| such that f is an isomorphism
over X \ T . By More on Morphisms of Spaces, Lemma 76.39.5 there exists an
X \ T -admissible blowup Y ′ → X which dominates Y . After replacing Y by the
normalization of Y ′ we see that we may assume that Y → X is representable.

Say T = {x1, . . . , xr}. Pick elementary étale neighbourhoods (Ui, ui)→ (X,xi) as
in Section 89.3. For each i the morphism Yi = Y ×X Ui → Ui is a proper birational
morphism which is an isomorphism over Ui \ {ui}. Thus we may apply Resolution
of Surfaces, Lemma 54.5.3 to find a sequence

Xi,mi → Xi,mi−1 → . . .→ X1 → Xi,0 = Ui

of normalized blowing ups in closed points lying over ui such that Xi,mi dominates
Yi. By Lemma 89.5.3 we find a sequence of normalized blowing ups

Xm → Xm−1 → . . .→ X1 → X0 = X

as in the statement of the lemma whose base change to our Ui produces the given
sequences. It follows that Xm dominates Y by the equivalence of categories of
Lemma 89.3.1. □

89.6. Base change to the completion

0BHN The following simple lemma will turn out to be a useful tool in what follows.
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Lemma 89.6.1.0BHP Let (A,m, κ) be a local ring with finitely generated maximal ideal
m. Let X be a decent algebraic space over A. Let Y = X ×Spec(A) Spec(A∧) where
A∧ is the m-adic completion of A. For a point q ∈ |Y | with image p ∈ |X| lying over
the closed point of Spec(A) the map OhX,p → OhY,q of henselian local rings induces
an isomorphism on completions.

Proof. This follows immediately from the case of schemes by choosing an elementary
étale neighbourhood (U, u) → (X, p) as in Decent Spaces, Lemma 68.11.4, setting
V = U ×X Y = U ×Spec(A) Spec(A∧) and v = (u, q). The case of schemes is
Resolution of Surfaces, Lemma 54.11.1. □

Lemma 89.6.2.0BHQ Let (A,m, κ) be a Noetherian local ring. Let X → Spec(A) be
a morphism which is locally of finite type with X a decent algebraic space. Set
Y = X ×Spec(A) Spec(A∧). Let y ∈ |Y | with image x ∈ |X|. Then

(1) if OhY,y is regular, then OhX,x is regular,
(2) if y is in the closed fibre, then OhY,y is regular ⇔ OhX,x is regular, and
(3) If X is proper over A, then X is regular if and only if Y is regular.

Proof. By étale localization the first two statements follow immediately from the
counter part to this lemma for schemes, see Resolution of Surfaces, Lemma 54.11.2.
For part (3), since Y → X is surjective (as A → A∧ is faithfully flat) we see that
Y regular implies X regular by part (1). Conversely, if X is regular, then the
henselian local rings of Y are regular for all points of the special fibre. Let y ∈ |Y |
be a general point. Since |Y | → |Spec(A∧)| is closed in the proper case, we can
find a specialization y ⇝ y0 with y0 in the closed fibre. Choose an elementary étale
neighbourhood (V, v0) → (Y, y0) as in Decent Spaces, Lemma 68.11.4. Since Y is
decent we can lift y ⇝ y0 to a specialization v ⇝ v0 in V (Decent Spaces, Lemma
68.12.2). Then we conclude that OV,v is a localization of OV,v0 hence regular and
the proof is complete. □

Lemma 89.6.3.0BHR Let (A,m) be a local Noetherian ring. Let X be an algebraic space
over A. Assume

(1) A is analytically unramified (Algebra, Definition 10.162.9),
(2) X is locally of finite type over A,
(3) X → Spec(A) is étale at every point of codimension 0 in X.

Then the normalization of X is finite over X.

Proof. Choose a scheme U and a surjective étale morphism U → X. Then U →
Spec(A) satisfies the assumptions and hence the conclusions of Resolution of Sur-
faces, Lemma 54.11.5. □

89.7. Implied properties

0BHS In this section we prove that for a Noetherian integral algebraic space the existence
of a regular alteration has quite a few consequences. This section should be skipped
by those not interested in “bad” Noetherian algebraic spaces.

Lemma 89.7.1.0BHT Let S be a scheme. Let Y be a Noetherian integral algebraic space
over S. Assume there exists an alteration f : X → Y with X regular. Then the
normalization Y ν → Y is finite and Y has a dense open which is regular.

https://stacks.math.columbia.edu/tag/0BHP
https://stacks.math.columbia.edu/tag/0BHQ
https://stacks.math.columbia.edu/tag/0BHR
https://stacks.math.columbia.edu/tag/0BHT
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Proof. By étale localization, it suffices to prove this when Y = Spec(A) where A is
a Noetherian domain. Let B be the integral closure of A in its fraction field. Set
C = Γ(X,OX). By Cohomology of Spaces, Lemma 69.20.2 we see that C is a finite
A-module. As X is normal (Properties of Spaces, Lemma 66.25.4) we see that C is
normal domain (Spaces over Fields, Lemma 72.4.6). Thus B ⊂ C and we conclude
that B is finite over A as A is Noetherian.
There exists a nonempty open V ⊂ Y such that f−1V → V is finite, see Spaces
over Fields, Definition 72.8.3. After shrinking V we may assume that f−1V → V
is flat (Morphisms of Spaces, Proposition 67.32.1). Thus f−1V → V is faithfully
flat. Then V is regular by Algebra, Lemma 10.164.4. □

Lemma 89.7.2.0BHU Let (A,m, κ) be a local Noetherian domain. Assume there exists
an alteration f : X → Spec(A) with X regular. Then

(1) there exists a nonzero f ∈ A such that Af is regular,
(2) the integral closure B of A in its fraction field is finite over A,
(3) the m-adic completion of B is a normal ring, i.e., the completions of B at

its maximal ideals are normal domains, and
(4) the generic formal fibre of A is regular.

Proof. Parts (1) and (2) follow from Lemma 89.7.1. We have to redo part of
the proof of that lemma in order to set up notation for the proof of (3). Set
C = Γ(X,OX). By Cohomology of Spaces, Lemma 69.20.2 we see that C is a finite
A-module. As X is normal (Properties of Spaces, Lemma 66.25.4) we see that C is
normal domain (Spaces over Fields, Lemma 72.4.6). Thus B ⊂ C and we conclude
that B is finite over A as A is Noetherian. By Resolution of Surfaces, Lemma
54.13.2 in order to prove (3) it suffices to show that the m-adic completion C∧ is
normal.
By Algebra, Lemma 10.97.8 the completion C∧ is the product of the completions
of C at the prime ideals of C lying over m. There are finitely many of these and
these are the maximal ideals m1, . . . ,mr of C. (The corresponding result for B
explains the final statement of the lemma.) Thus replacing A by Cmi and X by
Xi = X ×Spec(C) Spec(Cmi) we reduce to the case discussed in the next paragraph.
(Note that Γ(Xi,O) = Cmi by Cohomology of Spaces, Lemma 69.11.2.)
Here A is a Noetherian local normal domain and f : X → Spec(A) is a regular
alteration with Γ(X,OX) = A. We have to show that the completion A∧ of A is
a normal domain. By Lemma 89.6.2 Y = X ×Spec(A) Spec(A∧) is regular. Since
Γ(Y,OY ) = A∧ by Cohomology of Spaces, Lemma 69.11.2. We conclude that A∧

is normal as before. Namely, Y is normal by Properties of Spaces, Lemma 66.25.4.
It is connected because Γ(Y,OY ) = A∧ is local. Hence Y is normal and integral
(as connected and normal implies integral for separated algebraic spaces). Thus
Γ(Y,OY ) = A∧ is a normal domain by Spaces over Fields, Lemma 72.4.6. This
proves (3).
Proof of (4). Let η ∈ Spec(A) denote the generic point and denote by a subscript η
the base change to η. Since f is an alteration, the scheme Xη is finite and faithfully
flat over η. Since Y = X ×Spec(A) Spec(A∧) is regular by Lemma 89.6.2 we see
that Yη is regular (as a limit of opens in Y ). Then Yη → Spec(A∧ ⊗A κ(η)) is
finite faithfully flat onto the generic formal fibre. We conclude by Algebra, Lemma
10.164.4. □

https://stacks.math.columbia.edu/tag/0BHU
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89.8. Resolution

0BHV Here is a definition.

Definition 89.8.1.0BHW Let S be a scheme. Let Y be a Noetherian integral algebraic
space over S. A resolution of singularities of X is a modification f : X → Y such
that X is regular.

In the case of surfaces we sometimes want a bit more information.

Definition 89.8.2.0BHX Let S be a scheme. Let Y be a 2-dimensional Noetherian integral
algebraic space over S. We say Y has a resolution of singularities by normalized
blowups if there exists a sequence

Yn → Xn−1 → . . .→ Y1 → Y0 → Y

where
(1) Yi is proper over Y for i = 0, . . . , n,
(2) Y0 → Y is the normalization,
(3) Yi → Yi−1 is a normalized blowup for i = 1, . . . , n, and
(4) Yn is regular.

Observe that condition (1) implies that the normalization Y0 of Y is finite over Y
and that the normalizations used in the normalized blowing ups are finite as well.
We finally come to the main theorem of this chapter.

Theorem 89.8.3.0BHY Let S be a scheme. Let Y be a two dimensional integral Noe-
therian algebraic space over S. The following are equivalent

(1) there exists an alteration X → Y with X regular,
(2) there exists a resolution of singularities of Y ,
(3) Y has a resolution of singularities by normalized blowups,
(4) the normalization Y ν → Y is finite, Y ν has finitely many singular points

y1, . . . , ym ∈ |Y |, and for each i the completion of the henselian local ring
OhY ν ,yi is normal.

Proof. The implications (3) ⇒ (2) ⇒ (1) are immediate.

Let X → Y be an alteration with X regular. Then Y ν → Y is finite by Lemma
89.7.1. Consider the factorization f : X → Y ν from Morphisms of Spaces, Lemma
67.49.8. The morphism f is finite over an open V ⊂ Y ν containing every point of
codimension ≤ 1 in Y ν by Spaces over Fields, Lemma 72.3.2. Then f is flat over
V by Algebra, Lemma 10.128.1 and the fact that a normal local ring of dimension
≤ 2 is Cohen-Macaulay by Serre’s criterion (Algebra, Lemma 10.157.4). Then V is
regular by Algebra, Lemma 10.164.4. As Y ν is Noetherian we conclude that Y ν \
V = {y1, . . . , ym} is finite. For each i let OhY ν ,yi be the henselian local ring. Then
X ×Y Spec(OhY ν ,yi) is a regular alteration of Spec(OhY ν ,yi) (some details omitted).
By Lemma 89.7.2 the completion of OhY ν ,yi is normal. In this way we see that (1)
⇒ (4).

Assume (4). We have to prove (3). We may immediately replace Y by its nor-
malization. Let y1, . . . , ym ∈ |Y | be the singular points. Choose a collection of
elementary étale neighbourhoods (Vi, vi) → (Y, yi) as in Section 89.3. For each i
the henselian local ring OhY ν ,yi is the henselization of OVi,vi . Hence these rings have

https://stacks.math.columbia.edu/tag/0BHW
https://stacks.math.columbia.edu/tag/0BHX
https://stacks.math.columbia.edu/tag/0BHY
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isomorphic completions. Thus by the result for schemes (Resolution of Surfaces,
Theorem 54.14.5) we see that there exist finite sequences of normalized blowups

Xi,ni → Xi,ni−1 → . . .→ Vi

blowing up only in points lying over vi such that Xi,ni is regular. By Lemma 89.5.3
there is a sequence of normalized blowing ups

Xn → Xn−1 → . . .→ X1 → Y

and of course Xn is regular too (look at the local rings). This completes the
proof. □

89.9. Examples

0AE8 Some examples related to the results earlier in this chapter.
Example 89.9.1.0AE9 [Sam68, 4(c)]Let k be a field. The ring A = k[x, y, z]/(xr + ys + zt) is a UFD
for r, s, t pairwise coprime integers. Namely, since xr + ys + zt is irreducible A is a
domain. The element z is a prime element, i.e., generates a prime ideal in A. On
the other hand, if t = 1 + ers for some e, then

A[1/z] ∼= k[x′, y′, 1/z]
where x′ = x/zes, y′ = y/zer and z = (x′)r + (y′)s. Thus A[1/z] is a localization of
a polynomial ring and hence a UFD. It follows from an argument of Nagata that
A is a UFD. See Algebra, Lemma 10.120.7. A similar argument can be given if t is
not congruent to 1 modulo rs.
Example 89.9.2.0AEA See [Bri68] and

[Lip69] for
nonvanishing of
local Picard groups
in general.

The ring A = C[[x, y, z]]/(xr + ys + zt) is not a UFD when
1 < r < s < t are pairwise coprime integers and not equal to 2, 3, 5. For example
consider the special case A = C[[x, y, z]]/(x2 + y5 + z7). Consider the maps

ψζ : C[[x, y, z]]/(x2 + y5 + z7)→ C[[t]]
given by

x 7→ t7, y 7→ t3, z 7→ −ζt2(1 + t)1/7

where ζ is a 7th root of unity. The kernel pζ of ψζ is a height one prime, hence if
A is a UFD, then it is principal, say given by fζ ∈ C[[x, y, z]]. Note that V (x3 −
y7) =

⋃
V (pζ) and A/(x3 − y7) is reduced away from the closed point. Hence, still

assuming A is a UFD, we would obtain∏
ζ
fζ = u(x3 − y7) + a(x2 + y5 + z7) in C[[x, y, z]]

for some unit u ∈ C[[x, y, z]] and some element a ∈ C[[x, y, z]]. After scaling by a
constant we may assume u(0, 0, 0) = 1. Note that the left hand side vanishes to
order 7. Hence a = −x mod m2. But then we get a term xy5 on the right hand
side which does not occur on the left hand side. A contradiction.
Example 89.9.3.0AEB There exists an excellent 2-dimensional Noetherian local ring and
a modification X → S = Spec(A) which is not a scheme. We sketch a construction.
Let X be a normal surface over C with a unique singular point x ∈ X. Assume that
there exists a resolution π : X ′ → X such that the exceptional fibre C = π−1(x)red
is a smooth projective curve. Furthermore, assume there exists a point c ∈ C such
that if OC(nc) is in the image of Pic(X ′) → Pic(C), then n = 0. Then we let
X ′′ → X ′ be the blowing up in the nonsingular point c. Let C ′ ⊂ X ′′ be the
strict transform of C and let E ⊂ X ′′ be the exceptional fibre. By Artin’s results

https://stacks.math.columbia.edu/tag/0AE9
https://stacks.math.columbia.edu/tag/0AEA
https://stacks.math.columbia.edu/tag/0AEB
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([Art70]; use for example [Mum61] to see that the normal bundle of C ′ is negative)
we can blow down the curve C ′ in X ′′ to obtain an algebraic space X ′′′. Picture

X ′′

}} ""
X ′

!!

X ′′′

||
X

We claim that X ′′′ is not a scheme. This provides us with our example because
X ′′′ is a scheme if and only if the base change of X ′′′ to A = OX,x is a scheme
(details omitted). If X ′′′ where a scheme, then the image of C ′ in X ′′′ would
have an affine neighbourhood. The complement of this neighbourhood would be an
effective Cartier divisor on X ′′′ (because X ′′′ is nonsingular apart from 1 point).
This effective Cartier divisor would correspond to an effective Cartier divisor on
X ′′ meeting E and avoiding C ′. Taking the image in X ′ we obtain an effective
Cartier divisor meeting C (set theoretically) in c. This is impossible as no multiple
of c is the restriction of a Cartier divisor by assumption.
To finish we have to find such a singular surface X. We can just take X to be the
affine surface given by

x3 + y3 + z3 + x4 + y4 + z4 = 0
in A3

C = Spec(C[x, y, z]) and singular point (0, 0, 0). Then (0, 0, 0) is the only
singular point. Blowing up X in the maximal ideal corresponding to (0, 0, 0) we
find three charts each isomorphic to the smooth affine surface

1 + s3 + t3 + x(1 + s4 + t4) = 0
which is nonsingular with exceptional divisor C given by x = 0. The reader will
recognize C as an elliptic curve. Finally, the surface X is rational as projection
from (0, 0, 0) shows, or because in the equation for the blowup we can solve for x.
Finally, the Picard group of a nonsingular rational surface is countable, whereas the
Picard group of an elliptic curve over the complex numbers is uncountable. Hence
we can find a closed point c as indicated.
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CHAPTER 90

Formal Deformation Theory

06G7 90.1. Introduction

06G8 This chapter develops formal deformation theory in a form applicable later in the
Stacks project, closely following Rim [GRR72, Exposee VI] and Schlessinger [Sch68].
We strongly encourage the reader new to this topic to read the paper by Schlessinger
first, as it is sufficiently general for most applications, and Schlessinger’s results are
indeed used in most papers that use this kind of formal deformation theory.

Let Λ be a complete Noetherian local ring with residue field k, and let CΛ denote
the category of Artinian local Λ-algebras with residue field k. Given a functor
F : CΛ → Sets such that F (k) is a one element set, Schlessinger’s paper introduced
conditions (H1)-(H4) such that:

(1) F has a “hull” if and only if (H1)-(H3) hold.
(2) F is prorepresentable if and only if (H1)-(H4) hold.

The purpose of this chapter is to generalize these results in two ways exactly as is
done in Rim’s paper:

(A) The functor F is replaced by a category F cofibered in groupoids over CΛ,
see Section 90.3.

(B) We let Λ be a Noetherian ring and Λ→ k a finite ring map to a field. The
category CΛ is the category of Artinian local Λ-algebras A endowed with
a given identification A/mA = k.

The analogue of the condition that F (k) is a one element set is that F(k) is the
trivial groupoid. If F satisfies this condition then we say it is a predeformation
category, but in general we do not make this assumption. Rim’s paper [GRR72,
Exposee VI] is the original source for the results in this document. We also mention
the useful paper [TV13], which discusses deformation theory with groupoids but in
less generality than we do here.

An important role is played by the “completion” ĈΛ of the category CΛ. An object
of ĈΛ is a Noetherian complete local Λ-algebra R whose residue field is identified
with k, see Section 90.4. On the one hand CΛ ⊂ ĈΛ is a strictly full subcategory
and on the other hand ĈΛ is a full subcategory of the category of pro-objects of CΛ.
A functor CΛ → Sets is prorepresentable if it is isomorphic to the restriction of a
representable functor R = MorĈΛ

(R,−) to CΛ where R ∈ Ob(ĈΛ).

Categories cofibred in groupoids are dual to categories fibred in groupoids; we
introduce them in Section 90.5. A smooth morphism of categories cofibred in
groupoids over CΛ is one that satisfies the infinitesimal lifting criterion for objects,
see Section 90.8. This is analogous to the definition of a formally smooth ring
map, see Algebra, Definition 10.138.1 and is exactly dual to the notion in Criteria

6458
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for Representability, Section 97.6. This is an important notion as we eventually
want to prove that certain kinds of categories cofibred in groupoids have a smooth
prorepresentable presentation, much like the characterization of algebraic stacks in
Algebraic Stacks, Sections 94.16 and 94.17. A versal formal object of a category F
cofibred in groupoids over CΛ is an object ξ ∈ F̂(R) of the completion such that
the associated morphism ξ : R|CΛ → F is smooth.

In Section 90.10, we define conditions (S1) and (S2) on F generalizing Schlessinger’s
(H1) and (H2). The analogue of Schlessinger’s (H3)—the condition that F has finite
dimensional tangent space—is not given a name. A key step in the development
of the theory is the existence of versal formal objects for predeformation categories
satisfying (S1), (S2) and (H3), see Lemma 90.13.4. Schlessinger’s notion of a hull
for a functor F : CΛ → Sets is, in our terminology, a versal formal object ξ ∈ F̂ (R)
such that the induced map of tangent spaces dξ : TR|CΛ → TF is an isomorphism.
In the literature a hull is often called a “miniversal” object. We do not do so, and
here is why. It can happen that a functor has a versal formal object without having
a hull. Moreover, we show in Section 90.14 that if a predeformation category has
a versal formal object, then it always has a minimal one (as defined in Definition
90.14.4) which is unique up to isomorphism, see Lemma 90.14.5. But it can happen
that the minimal versal formal object does not induce an isomorphism on tangent
spaces! (See Examples 90.15.3 and 90.15.8.)

Keeping in mind the differences pointed out above, Theorem 90.15.5 is the direct
generalization of (1) above: it recovers Schlessinger’s result in the case that F is
a functor and it characterizes minimal versal formal objects, in the presence of
conditions (S1) and (S2), in terms of the map dξ : TR|CΛ → TF on tangent spaces.

In Section 90.16, we define Rim’s condition (RS) on F generalizing Schlessinger’s
(H4). A deformation category is defined as a predeformation category satisfy-
ing (RS). The analogue to prorepresentable functors are the categories cofibred in
groupoids over CΛ which have a presentation by a smooth prorepresentable groupoid
in functors on CΛ, see Definitions 90.21.1, 90.22.1, and 90.23.1. This notion of a pre-
sentation takes into account the groupoid structure of the fibers of F . In Theorem
90.26.4 we prove that F has a presentation by a smooth prorepresentable groupoid
in functors if and only if F has a finite dimensional tangent space and finite dimen-
sional infinitesimal automorphism space. This is the generalization of (2) above:
it reduces to Schlessinger’s result in the case that F is a functor. There is a final
Section 90.27 where we discuss how to use minimal versal formal objects to produce
a (unique up to isomorphism) minimal presentation by a smooth prorepresentable
groupoid in functors.

We also find the following conceptual explanation for Schlessinger’s conditions. If
a predeformation category F satisfies (RS), then the associated functor of isomor-
phism classes F : CΛ → Sets satisfies (H1) and (H2) (Lemmas 90.16.6 and 90.10.5).
Conversely, if a functor F : CΛ → Sets arises naturally as the functor of isomorphism
classes of a category F cofibered in groupoids, then it seems to happen in prac-
tice that an argument showing F satisfies (H1) and (H2) will also show F satisfies
(RS). Examples are discussed in Deformation Problems, Section 93.1. Moreover,
if F satisfies (RS), then condition (H4) for F has a simple interpretation in terms
of extending automorphisms of objects of F (Lemma 90.16.7). These observations
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suggest that (RS) should be regarded as the fundamental deformation theoretic
glueing condition.

90.2. Notation and Conventions

06G9 A ring is commutative with 1. The maximal ideal of a local ring A is denoted by
mA. The set of positive integers is denoted by N = {1, 2, 3, . . .}. If U is an object
of a category C, we denote by U the functor MorC(U,−) : C → Sets, see Remarks
90.5.2 (12). Warning: this may conflict with the notation in other chapters where
we sometimes use U to denote hU (−) = MorC(−, U).
Throughout this chapter Λ is a Noetherian ring and Λ → k is a finite ring map
from Λ to a field. The kernel of this map is denoted mΛ and the image k′ ⊂ k. It
turns out that mΛ is a maximal ideal, k′ = Λ/mΛ is a field, and the extension k/k′

is finite. See discussion surrounding (90.3.3.1).

90.3. The base category

06GB Motivation. An important application of formal deformation theory is to criteria
for representability by algebraic spaces. Suppose given a locally Noetherian base
S and a functor F : (Sch/S)oppfppf → Sets. Let k be a finite type field over S, i.e.,
we are given a finite type morphism Spec(k) → S. One of Artin’s criteria is that
for any element x ∈ F (Spec(k)) the predeformation functor associated to the triple
(S, k, x) should be prorepresentable. By Morphisms, Lemma 29.16.1 the condition
that k is of finite type over S means that there exists an affine open Spec(Λ) ⊂ S
such that k is a finite Λ-algebra. This motivates why we work throughout this
chapter with a base category as follows.

Definition 90.3.1.06GC Let Λ be a Noetherian ring and let Λ→ k be a finite ring map
where k is a field. We define CΛ to be the category with

(1) objects are pairs (A,φ) where A is an Artinian local Λ-algebra and where
φ : A/mA → k is a Λ-algebra isomorphism, and

(2) morphisms f : (B,ψ) → (A,φ) are local Λ-algebra homomorphisms such
that φ ◦ (f mod m) = ψ.

We say we are in the classical case if Λ is a Noetherian complete local ring and k
is its residue field.

Note that if Λ → k is surjective and if A is an Artinian local Λ-algebra, then the
identification φ, if it exists, is unique. Moreover, in this case any Λ-algebra map
A→ B is going to be compatible with the identifications. Hence in this case CΛ is
just the category of local Artinian Λ-algebras whose residue field “is” k. By abuse
of notation we also denote objects of CΛ simply A in the general case. Moreover,
we will often write A/m = k, i.e., we will pretend all rings in CΛ have residue field k
(since all ring maps in CΛ are compatible with the given identifications this should
never cause any problems). Throughout the rest of this chapter the base ring Λ and
the field k are fixed. The category CΛ will be the base category for the cofibered
categories considered below.

Definition 90.3.2.06GD Let f : B → A be a ring map in CΛ. We say f is a small extension
if it is surjective and Ker(f) is a nonzero principal ideal which is annihilated by
mB .

https://stacks.math.columbia.edu/tag/06GC
https://stacks.math.columbia.edu/tag/06GD
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By the following lemma we can often reduce arguments involving surjective ring
maps in CΛ to the case of small extensions.

Lemma 90.3.3.06GE Let f : B → A be a surjective ring map in CΛ. Then f can be
factored as a composition of small extensions.

Proof. Let I be the kernel of f . The maximal ideal mB is nilpotent since B is
Artinian, say mnB = 0. Hence we get a factorization

B = B/Imn−1
B → B/Imn−2

B → . . .→ B/I ∼= A

of f into a composition of surjective maps whose kernels are annihilated by the
maximal ideal. Thus it suffices to prove the lemma when f itself is such a map, i.e.
when I is annihilated by mB . In this case I is a k-vector space, which has finite
dimension, see Algebra, Lemma 10.53.6. Take a basis x1, . . . , xn of I as a k-vector
space to get a factorization

B → B/(x1)→ . . .→ B/(x1, . . . , xn) ∼= A

of f into a composition of small extensions. □

The next lemma says that we can compute the length of a module over a local Λ-
algebra with residue field k in terms of the length over Λ. To explain the notation
in the statement, let k′ ⊂ k be the image of our fixed finite ring map Λ→ k. Note
that k′ ⊂ k is a finite extension of rings. Hence k′ is a field and k/k′ is a finite
extension of fields, see Algebra, Lemma 10.36.18. Moreover, as Λ→ k′ is surjective
we see that its kernel is a maximal ideal mΛ. Thus

(90.3.3.1)06S2 [k : k′] = [k : Λ/mΛ] <∞

and in the classical case we have k = k′. The notation k′ = Λ/mΛ will be fixed
throughout this chapter.

Lemma 90.3.4.06GG Let A be a local Λ-algebra with residue field k. Let M be an
A-module. Then [k : k′]lengthA(M) = lengthΛ(M). In the classical case we have
lengthA(M) = lengthΛ(M).

Proof. If M is a simple A-module then M ∼= k as an A-module, see Algebra,
Lemma 10.52.10. In this case lengthA(M) = 1 and lengthΛ(M) = [k′ : k], see Alge-
bra, Lemma 10.52.6. If lengthA(M) is finite, then the result follows on choosing a
filtration of M by A-submodules with simple quotients using additivity, see Alge-
bra, Lemma 10.52.3. If lengthA(M) is infinite, the result follows from the obvious
inequality lengthA(M) ≤ lengthΛ(M). □

Lemma 90.3.5.06S3 Let A→ B be a ring map in CΛ. The following are equivalent
(1) f is surjective,
(2) mA/m

2
A → mB/m

2
B is surjective, and

(3) mA/(mΛA+ m2
A)→ mB/(mΛB + m2

B) is surjective.

Proof. For any ring map f : A → B in CΛ we have f(mA) ⊂ mB for example
because mA, mB is the set of nilpotent elements of A, B. Suppose f is surjective.
Let y ∈ mB . Choose x ∈ A with f(x) = y. Since f induces an isomorphism
A/mA → B/mB we see that x ∈ mA. Hence the induced map mA/m

2
A → mB/m

2
B

is surjective. In this way we see that (1) implies (2).

https://stacks.math.columbia.edu/tag/06GE
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It is clear that (2) implies (3). The map A → B gives rise to a canonical commu-
tative diagram

mΛ/m
2
Λ ⊗k′ k //

��

mA/m
2
A

//

��

mA/(mΛA+ m2
A) //

��

0

mΛ/m
2
Λ ⊗k′ k // mB/m2

B
// mB/(mΛB + m2

B) // 0

with exact rows. Hence if (3) holds, then so does (2).
Assume (2). To show that A → B is surjective it suffices by Nakayama’s lemma
(Algebra, Lemma 10.20.1) to show that A/mA → B/mAB is surjective. (Note that
mA is a nilpotent ideal.) As k = A/mA = B/mB it suffices to show that mAB → mB
is surjective. Applying Nakayama’s lemma once more we see that it suffices to see
that mAB/mAmB → mB/m

2
B is surjective which is what we assumed. □

If A→ B is a ring map in CΛ, then the map mA/(mΛA+m2
A)→ mB/(mΛB +m2

B)
is the map on relative cotangent spaces. Here is a formal definition.

Definition 90.3.6.06GY Let R→ S be a local homomorphism of local rings. The relative
cotangent space1 of R over S is the S/mS-vector space mS/(mRS + m2

S).

If f1 : A1 → A and f2 : A2 → A are two ring maps, then the fiber product A1×AA2
is the subring of A1 × A2 consisting of elements whose two projections to A are
equal. Throughout this chapter we will be considering conditions involving such
a fiber product when f1 and f2 are in CΛ. It isn’t always the case that the fibre
product is an object of CΛ.

Example 90.3.7.06S4 Let p be a prime number and let n ∈ N. Let Λ = Fp(t1, t2, . . . , tn)
and let k = Fp(x1, . . . , xn) with map Λ → k given by ti 7→ xpi . Let A = k[ϵ] =
k[x]/(x2). Then A is an object of CΛ. Suppose that D : k → k is a derivation of k
over Λ, for example D = ∂/∂xi. Then the map

fD : k −→ k[ϵ], a 7→ a+D(a)ϵ
is a morphism of CΛ. Set A1 = A2 = k and set f1 = f∂/∂x1 and f2(a) = a. Then
A1 ×A A2 = {a ∈ k | ∂/∂x1(a) = 0} which does not surject onto k. Hence the fibre
product isn’t an object of CΛ.

It turns out that this problem can only occur if the residue field extension k/k′

(90.3.3.1) is inseparable and neither f1 nor f2 is surjective.

Lemma 90.3.8.06GH Let f1 : A1 → A and f2 : A2 → A be ring maps in CΛ. Then:
(1) If f1 or f2 is surjective, then A1 ×A A2 is in CΛ.
(2) If f2 is a small extension, then so is A1 ×A A2 → A1.
(3) If the field extension k/k′ is separable, then A1 ×A A2 is in CΛ.

Proof. The ring A1 ×A A2 is a Λ-algebra via the map Λ → A1 ×A A2 induced by
the maps Λ→ A1 and Λ→ A2. It is a local ring with unique maximal ideal

mA1 ×mA mA2 = Ker(A1 ×A A2 −→ k)

1Caution: We will see later that in our general setting the tangent space of an object A ∈ CΛ
over Λ should not be defined simply as the k-linear dual of the relative cotangent space. In fact,
the correct definition of the relative cotangent space is ΩS/R ⊗S S/mS .
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A ring is Artinian if and only if it has finite length as a module over itself, see
Algebra, Lemma 10.53.6. Since A1 and A2 are Artinian, Lemma 90.3.4 implies
lengthΛ(A1) and lengthΛ(A2), and hence lengthΛ(A1 × A2), are all finite. As
A1 ×A A2 ⊂ A1 × A2 is a Λ-submodule, this implies lengthA1×AA2(A1 ×A A2) ≤
lengthΛ(A1 ×A A2) is finite. So A1 ×A A2 is Artinian. Thus the only thing that is
keeping A1×AA2 from being an object of CΛ is the possibility that its residue field
maps to a proper subfield of k via the map A1 ×A A2 → A→ A/mA = k above.

Proof of (1). If f2 is surjective, then the projection A1 ×A A2 → A1 is surjective.
Hence the composition A1 ×A A2 → A1 → A1/mA1 = k is surjective and we
conclude that A1 ×A A2 is an object of CΛ.

Proof of (2). If f2 is a small extension then A2 → A and A1 ×A A2 → A1 are
both surjective with the same kernel. Hence the kernel of A1 ×A A2 → A1 is a
1-dimensional k-vector space and we see that A1 ×A A2 → A1 is a small extension.

Proof of (3). Choose x ∈ k such that k = k′(x) (see Fields, Lemma 9.19.1). Let
P ′(T ) ∈ k′[T ] be the minimal polynomial of x over k′. Since k/k′ is separable we
see that dP/dT (x) ̸= 0. Choose a monic P ∈ Λ[T ] which maps to P ′ under the
surjective map Λ[T ]→ k′[T ]. Because A,A1, A2 are henselian, see Algebra, Lemma
10.153.10, we can find x, x1, x2 ∈ A,A1, A2 with P (x) = 0, P (x1) = 0, P (x2) = 0
and such that the image of x, x1, x2 in k is x. Then (x1, x2) ∈ A1 ×A A2 because
x1, x2 map to x ∈ A by uniqueness, see Algebra, Lemma 10.153.2. Hence the
residue field of A1 ×A A2 contains a generator of k over k′ and we win. □

Next we define essential surjections in CΛ. A necessary and sufficient condition for
a surjection in CΛ to be essential is given in Lemma 90.3.12.

Definition 90.3.9.06GF Let f : B → A be a ring map in CΛ. We say f is an essential
surjection if it has the following properties:

(1) f is surjective.
(2) If g : C → B is a ring map in CΛ such that f ◦ g is surjective, then g is

surjective.

Using Lemma 90.3.5, we can characterize essential surjections in CΛ as follows.

Lemma 90.3.10.06S5 Let f : B → A be a ring map in CΛ. The following are equivalent
(1) f is an essential surjection,
(2) the map B/m2

B → A/m2
A is an essential surjection, and

(3) the map B/(mΛB + m2
B)→ A/(mΛA+ m2

A) is an essential surjection.

Proof. Assume (3). Let C → B be a ring map in CΛ such that C → A is surjective.
Then C → A/(mΛA+m2

A) is surjective too. We conclude that C → B/(mΛB+m2
B)

is surjective by our assumption. Hence C → B is surjective by applying Lemma
90.3.5 (2 times).

Assume (1). Let C → B/(mΛB + m2
B) be a morphism of CΛ such that C →

A/(mΛA+ m2
A) is surjective. Set C ′ = C ×B/(mΛB+m2

B
) B which is an object of CΛ

by Lemma 90.3.8. Note that C ′ → A/(mΛA+m2
A) is still surjective, hence C ′ → A

is surjective by Lemma 90.3.5. Thus C ′ → B is surjective by our assumption. This
implies that C ′ → B/(mΛB + m2

B) is surjective, which implies by the construction
of C ′ that C → B/(mΛB + m2

B) is surjective.

https://stacks.math.columbia.edu/tag/06GF
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In the first paragraph we proved (3) ⇒ (1) and in the second paragraph we proved
(1) ⇒ (3). The equivalence of (2) and (3) is a special case of the equivalence of (1)
and (3), hence we are done. □

To analyze essential surjections in CΛ a bit more we introduce some notation. Sup-
pose that A is an object of CΛ or more generally any Λ-algebra equipped with a
Λ-algebra surjection A→ k. There is a canonical exact sequence

(90.3.10.1)06S6 mA/m
2
A

dA−−→ ΩA/Λ ⊗A k → Ωk/Λ → 0
see Algebra, Lemma 10.131.9. Note that Ωk/Λ = Ωk/k′ with k′ as in (90.3.3.1). Let
H1(Lk/Λ) be the first homology module of the naive cotangent complex of k over
Λ, see Algebra, Definition 10.134.1. Then we can extend (90.3.10.1) to the exact
sequence

(90.3.10.2)06S7 H1(Lk/Λ)→ mA/m
2
A

dA−−→ ΩA/Λ ⊗A k → Ωk/Λ → 0,
see Algebra, Lemma 10.134.4. If B → A is a ring map in CΛ or more generally a
map of Λ-algebras equipped with Λ-algebra surjections onto k, then we obtain a
commutative diagram

(90.3.10.3)06S8

H1(Lk/Λ) // mB/m2
B dB

//

��

ΩB/Λ ⊗B k //

��

Ωk/Λ // 0

H1(Lk/Λ) // mA/m2
A

dA // ΩA/Λ ⊗A k // Ωk/Λ // 0

with exact rows.

Lemma 90.3.11.06S9 There is a canonical map

mΛ/m
2
Λ −→ H1(Lk/Λ).

If k′ ⊂ k is separable (for example if the characteristic of k is zero), then this map
induces an isomorphism mΛ/m

2
Λ ⊗k′ k = H1(Lk/Λ). If k = k′ (for example in the

classical case), then mΛ/m
2
Λ = H1(Lk/Λ). The composition

mΛ/m
2
Λ −→ H1(Lk/Λ) −→ mA/m

2
A

comes from the canonical map mΛ → mA.

Proof. Note that H1(Lk′/Λ) = mΛ/m
2
Λ as Λ→ k′ is surjective with kernel mΛ. The

map arises from functoriality of the naive cotangent complex. If k′ ⊂ k is separable,
then k′ → k is an étale ring map, see Algebra, Lemma 10.143.4. Thus its naive
cotangent complex has trivial homology groups, see Algebra, Definition 10.143.1.
Then Algebra, Lemma 10.134.4 applied to the ring maps Λ→ k′ → k implies that
mΛ/m

2
Λ ⊗k′ k = H1(Lk/Λ). We omit the proof of the final statement. □

Lemma 90.3.12.06H0 Let f : B → A be a ring map in CΛ. Notation as in (90.3.10.3).
(1) The equivalent conditions of Lemma 90.3.5 characterizing when f is sur-

jective are also equivalent to
(a) Im(dB)→ Im(dA) is surjective, and
(b) the map ΩB/Λ ⊗B k → ΩA/Λ ⊗A k is surjective.

(2) The following are equivalent
(a) f is an essential surjection (see Lemma 90.3.10),
(b) the map Im(dB)→ Im(dA) is an isomorphism, and

https://stacks.math.columbia.edu/tag/06S9
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(c) the map ΩB/Λ ⊗B k → ΩA/Λ ⊗A k is an isomorphism.
(3) If k/k′ is separable, then f is an essential surjection if and only if the map

mB/(mΛB + m2
B)→ mA/(mΛA+ m2

A) is an isomorphism.
(4) If f is a small extension, then f is not essential if and only if f has a

section s : A→ B in CΛ with f ◦ s = idA.

Proof. Proof of (1). It follows from (90.3.10.3) that (1)(a) and (1)(b) are equivalent.
Also, if A → B is surjective, then (1)(a) and (1)(b) hold. Assume (1)(a). Since
the kernel of dA is the image of H1(Lk/Λ) which also maps to mB/m

2
B we conclude

that mB/m2
B → mA/m

2
A is surjective. Hence B → A is surjective by Lemma 90.3.5.

This finishes the proof of (1).
Proof of (2). The equivalence of (2)(b) and (2)(c) is immediate from (90.3.10.3).
Assume (2)(b). Let g : C → B be a ring map in CΛ such that f ◦g is surjective. We
conclude that mC/m

2
C → mA/m

2
A is surjective by Lemma 90.3.5. Hence Im(dC)→

Im(dA) is surjective and by the assumption we see that Im(dC) → Im(dB) is sur-
jective. It follows that C → B is surjective by (1).
Assume (2)(a). Then f is surjective and we see that ΩB/Λ ⊗B k → ΩA/Λ ⊗A k is
surjective. Let K be the kernel. Note that K = dB(Ker(mB/m2

B → mA/m
2
A)) by

(90.3.10.3). Choose a splitting
ΩB/Λ ⊗B k = ΩA/Λ ⊗A k ⊕K

of k-vector space. The map d : B → ΩB/Λ induces via the projection onto K a
map D : B → K. Set C = {b ∈ B | D(b) = 0}. The Leibniz rule shows that this
is a Λ-subalgebra of B. Let x ∈ k. Choose x ∈ B mapping to x. If D(x) ̸= 0,
then we can find an element y ∈ mB such that D(y) = D(x). Hence x − y ∈ C
is an element which maps to x. Thus C → k is surjective and C is an object of
CΛ. Similarly, pick ω ∈ Im(dA). We can find x ∈ mB such that dB(x) maps to ω
by (1). If D(x) ̸= 0, then we can find an element y ∈ mB which maps to zero in
mA/m

2
A such that D(y) = D(x). Hence z = x− y is an element of mC whose image

dC(z) ∈ ΩC/k⊗C k maps to ω. Hence Im(dC)→ Im(dA) is surjective. We conclude
that C → A is surjective by (1). Hence C → B is surjective by assumption. Hence
D = 0, i.e., K = 0, i.e., (2)(c) holds. This finishes the proof of (2).
Proof of (3). If k′/k is separable, then H1(Lk/Λ) = mΛ/m

2
Λ ⊗k′ k, see Lemma

90.3.11. Hence Im(dA) = mA/(mΛA + m2
A) and similarly for B. Thus (3) follows

from (2).
Proof of (4). A section s of f is not surjective (by definition a small extension
has nontrivial kernel), hence f is not essentially surjective. Conversely, assume f
is a small extension but not an essential surjection. Choose a ring map C → B
in CΛ which is not surjective, such that C → A is surjective. Let C ′ ⊂ B be the
image of C → B. Then C ′ ̸= B but C ′ surjects onto A. Since f : B → A is a
small extension, lengthC(B) = lengthC(A) + 1. Thus lengthC(C ′) ≤ lengthC(A)
since C ′ is a proper subring of B. But C ′ → A is surjective, so in fact we must
have lengthC(C ′) = lengthC(A) and C ′ → A is an isomorphism which gives us our
section. □

Example 90.3.13.06SA Let Λ = k[[x]] be the power series ring in 1 variable over k. Set
A = k and B = Λ/(x2). Then B → A is an essential surjection by Lemma 90.3.12

https://stacks.math.columbia.edu/tag/06SA
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because it is a small extension and the map B → A does not have a right inverse
(in the category CΛ). But the map

k ∼= mB/m
2
B −→ mA/m

2
A = 0

is not an isomorphism. Thus in Lemma 90.3.12 (3) it is necessary to consider the
map of relative cotangent spaces mB/(mΛB + m2

B)→ mA/(mΛA+ m2
A).

90.4. The completed base category

06GV The following “completion” of the category CΛ will serve as the base category of
the completion of a category cofibered in groupoids over CΛ (Section 90.7).

Definition 90.4.1.06GW Let Λ be a Noetherian ring and let Λ→ k be a finite ring map
where k is a field. We define ĈΛ to be the category with

(1) objects are pairs (R,φ) where R is a Noetherian complete local Λ-algebra
and where φ : R/mR → k is a Λ-algebra isomorphism, and

(2) morphisms f : (S, ψ) → (R,φ) are local Λ-algebra homomorphisms such
that φ ◦ (f mod m) = ψ.

As in the discussion following Definition 90.3.1 we will usually denote an object of ĈΛ
simply R, with the identification R/mR = k understood. In this section we discuss
some basic properties of objects and morphisms of the category ĈΛ paralleling our
discussion of the category CΛ in the previous section.

Our first observation is that any object A ∈ CΛ is an object of ĈΛ as an Artinian
local ring is always Noetherian and complete with respect to its maximal ideal
(which is after all a nilpotent ideal). Moreover, it is clear from the definitions that
CΛ ⊂ ĈΛ is the strictly full subcategory consisting of all Artinian rings. As it turns
out, conversely every object of ĈΛ is a limit of objects of CΛ.

Suppose that R is an object of ĈΛ. Consider the rings Rn = R/mnR for n ∈ N. These
are Noetherian local rings with a unique nilpotent prime ideal, hence Artinian, see
Algebra, Proposition 10.60.7. The ring maps

. . .→ Rn+1 → Rn → . . .→ R2 → R1 = k

are all surjective. Completeness of R by definition means that R = limRn. If
f : R→ S is a ring map in ĈΛ then we obtain a system of ring maps fn : Rn → Sn
whose limit is the given map.

Lemma 90.4.2.06GZ Let f : R→ S be a ring map in ĈΛ. The following are equivalent
(1) f is surjective,
(2) the map mR/m

2
R → mS/m

2
S is surjective, and

(3) the map mR/(mΛR+ m2
R)→ mS/(mΛS + m2

S) is surjective.

Proof. Note that for n ≥ 2 we have the equality of relative cotangent spaces

mR/(mΛR+ m2
R) = mRn/(mΛRn + m2

Rn)

and similarly for S. Hence by Lemma 90.3.5 we see that Rn → Sn is surjective for
all n. Now let Kn be the kernel of Rn → Sn. Then the sequences

0→ Kn → Rn → Sn → 0

https://stacks.math.columbia.edu/tag/06GW
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form an exact sequence of directed inverse systems. The system (Kn) is Mittag-
Leffler since each Kn is Artinian. Hence by Algebra, Lemma 10.86.4 taking limits
preserves exactness. So limRn → limSn is surjective, i.e., f is surjective. □

Lemma 90.4.3.06SB The category ĈΛ admits pushouts.

Proof. Let R → S1 and R → S2 be morphisms of ĈΛ. Consider the ring C =
S1⊗RS2. This ring has a finitely generated maximal ideal m = mS1⊗S2 +S1⊗mS2

with residue field k. Set C∧ equal to the completion of C with respect to m. Then
C∧ is a Noetherian ring complete with respect to the maximal ideal m∧ = mC∧

whose residue field is identified with k, see Algebra, Lemma 10.97.5. Hence C∧ is
an object of ĈΛ. Then S1 → C∧ and S2 → C∧ turn C∧ into a pushout over R in
ĈΛ (details omitted). □

We will not need the following lemma.
Lemma 90.4.4.06H1 The category ĈΛ admits coproducts of pairs of objects.

Proof. Let R and S be objects of ĈΛ. Consider the ring C = R ⊗Λ S. There is a
canonical surjective map C → R ⊗Λ S → k ⊗Λ k → k where the last map is the
multiplication map. The kernel of C → k is a maximal ideal m. Note that m is
generated by mRC, mSC and finitely many elements of C which map to generators
of the kernel of k ⊗Λ k → k. Hence m is a finitely generated ideal. Set C∧ equal
to the completion of C with respect to m. Then C∧ is a Noetherian ring complete
with respect to the maximal ideal m∧ = mC∧ with residue field k, see Algebra,
Lemma 10.97.5. Hence C∧ is an object of ĈΛ. Then R → C∧ and S → C∧ turn
C∧ into a coproduct in ĈΛ (details omitted). □

An empty coproduct in a category is an initial object of the category. In the classical
case ĈΛ has an initial object, namely Λ itself. More generally, if k′ = k, then the
completion Λ∧ of Λ with respect to mΛ is an initial object. More generally still,
if k′ ⊂ k is separable, then ĈΛ has an initial object too. Namely, choose a monic
polynomial P ∈ Λ[T ] such that k ∼= k′[T ]/(P ′) where p′ ∈ k′[T ] is the image of P .
Then R = Λ∧[T ]/(P ) is an initial object, see proof of Lemma 90.3.8.
If R is an initial object as above, then we have CΛ = CR and ĈΛ = ĈR which
effectively brings the whole discussion in this chapter back to the classical case.
But, if k′ ⊂ k is inseparable, then an initial object does not exist.
Lemma 90.4.5.06SC Let S be an object of ĈΛ. Then dimk DerΛ(S, k) <∞.
Proof. Let x1, . . . , xn ∈ mS map to a k-basis for the relative cotangent space
mS/(mΛS + m2

S). Choose y1, . . . , ym ∈ S whose images in k generate k over k′.
We claim that dimk DerΛ(S, k) ≤ n + m. To see this it suffices to prove that if
D(xi) = 0 and D(yj) = 0, then D = 0. Let a ∈ S. We can find a polynomial
P =

∑
λJy

J with λJ ∈ Λ whose image in k is the same as the image of a in
k. Then we see that D(a − P ) = D(a) − D(P ) = D(a) by our assumption that
D(yj) = 0 for all j. Thus we may assume a ∈ mS . Write a =

∑
aixi with ai ∈ S.

By the Leibniz rule
D(a) =

∑
xiD(ai) +

∑
aiD(xi) =

∑
xiD(ai)

as we assumed D(xi) = 0. We have
∑
xiD(ai) = 0 as multiplication by xi is zero

on k. □
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Lemma 90.4.6.06SD Let f : R → S be a morphism of ĈΛ. If DerΛ(S, k) → DerΛ(R, k)
is injective, then f is surjective.

Proof. If f is not surjective, then mS/(mRS + m2
S) is nonzero by Lemma 90.4.2.

Then also Q = S/(f(R)+mRS+m2
S) is nonzero. Note that Q is a k = R/mR-vector

space via f . We turn Q into an S-module via S → k. The quotient map D : S → Q
is an R-derivation: if a1, a2 ∈ S, we can write a1 = f(b1) + a′

1 and a2 = f(b2) + a′
2

for some b1, b2 ∈ R and a′
1, a

′
2 ∈ mS . Then bi and ai have the same image in k for

i = 1, 2 and

a1a2 = (f(b1) + a′
1)(f(b2) + a′

2)
= f(b1)a′

2 + f(b2)a′
1

= f(b1)(f(b2) + a′
2) + f(b2)(f(b1) + a′

1)
= f(b1)a2 + f(b2)a1

in Q which proves the Leibniz rule. Hence D : S → Q is a Λ-derivation which is
zero on composing with R→ S. Since Q ̸= 0 there also exist derivations D : S → k
which are zero on composing with R → S, i.e., DerΛ(S, k) → DerΛ(R, k) is not
injective. □

Lemma 90.4.7.06SE Let R be an object of ĈΛ. Let (Jn) be a decreasing sequence of
ideals such that mnR ⊂ Jn. Set J =

⋂
Jn. Then the sequence (Jn/J) defines the

mR/J -adic topology on R/J .

Proof. It is clear that mnR/J ⊂ Jn/J . Thus it suffices to show that for every n there
exists an N such that JN/J ⊂ mnR/J . This is equivalent to JN ⊂ mnR + J . For each
n the ring R/mnR is Artinian, hence there exists a Nn such that

JNn + mnR = JNn+1 + mnR = . . .

Set En = (JNn + mnR)/mnR. Set E = limEn ⊂ limR/mnR = R. Note that E ⊂ J
as for any f ∈ E and any m we have f ∈ Jm + mnR for all n ≫ 0, so f ∈ Jm
by Krull’s intersection theorem, see Algebra, Lemma 10.51.4. Since the transition
maps En → En−1 are all surjective, we see that J surjects onto En. Hence for
N = Nn works. □

Lemma 90.4.8.06SF Let . . . → A3 → A2 → A1 be a sequence of surjective ring maps
in CΛ. If dimk(mAn/m2

An
) is bounded, then S = limAn is an object in ĈΛ and the

ideals In = Ker(S → An) define the mS-adic topology on S.

Proof. We will use freely that the maps S → An are surjective for all n. Note that
the maps mAn+1/m

2
An+1

→ mAn/m
2
An

are surjective, see Lemma 90.4.2. Hence for
n sufficiently large the dimension dimk(mAn/m2

An
) stabilizes to an integer, say r.

Thus we can find x1, . . . , xr ∈ mS whose images in An generate mAn . Moreover,
pick y1, . . . , yt ∈ S whose images in k generate k over Λ. Then we get a ring
map P = Λ[z1, . . . , zr+t] → S, zi 7→ xi and zr+j 7→ yj such that the composition
P → S → An is surjective for all n. Let m ⊂ P be the kernel of P → k. Let
R = P∧ be the m-adic completion of P ; this is an object of ĈΛ. Since we still
have the compatible system of (surjective) maps R → An we get a map R → S.
Set Jn = Ker(R → An). Set J =

⋂
Jn. By Lemma 90.4.7 we see that R/J =

limR/Jn = limAn = S and that the ideals Jn/J = In define the m-adic topology.
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(Note that for each n we have mNnR ⊂ Jn for some Nn and not necessarily Nn = n,
so a renumbering of the ideals Jn may be necessary before applying the lemma.) □

Lemma 90.4.9.06SG Let R′, R ∈ Ob(ĈΛ). Suppose that R = R′⊕I for some ideal I of R.
Let x1, . . . , xr ∈ I map to a basis of I/mRI. Set S = R′[[X1, . . . , Xr]] and consider
the R′-algebra map S → R mapping Xi to xi. Assume that for every n ≫ 0 the
map S/mnS → R/mnR has a left inverse in CΛ. Then S → R is an isomorphism.

Proof. As R = R′ ⊕ I we have
mR/m

2
R = mR′/m2

R′ ⊕ I/mRI
and similarly

mS/m
2
S = mR′/m2

R′ ⊕
⊕

kXi

Hence for n > 1 the map S/mnS → R/mnR induces an isomorphism on cotangent
spaces. Thus a left inverse hn : R/mnR → S/mnS is surjective by Lemma 90.4.2.
Since hn is injective as a left inverse it is an isomorphism. Thus the canonical
surjections S/mnS → R/mnR are all isomorphisms and we win. □

90.5. Categories cofibered in groupoids

06GA In developing the theory we work with categories cofibered in groupoids. We assume
as known the definition and basic properties of categories fibered in groupoids, see
Categories, Section 4.35.

Definition 90.5.1.06GJ Let C be a category. A category cofibered in groupoids over C
is a category F equipped with a functor p : F → C such that Fopp is a category
fibered in groupoids over Copp via popp : Fopp → Copp.

Explicitly, p : F → C is cofibered in groupoids if the following two conditions hold:
(1) For every morphism f : U → V in C and every object x lying over U ,

there is a morphism x→ y of F lying over f .
(2) For every pair of morphisms a : x → y and b : x → z of F and any

morphism f : p(y)→ p(z) such that p(b) = f ◦ p(a), there exists a unique
morphism c : y → z of F lying over f such that b = c ◦ a.

Remarks 90.5.2.06GK Everything about categories fibered in groupoids translates di-
rectly to the cofibered setting. The following remarks are meant to fix notation.
Let C be a category.

(1) We often omit the functor p : F → C from the notation.
(2) The fiber category over an object U in C is denoted by F(U). Its ob-

jects are those of F lying over U and its morphisms are those of F lying
over idU . If x, y are objects of F(U), we sometimes write MorU (x, y) for
MorF(U)(x, y).

(3) The fibre categories F(U) are groupoids, see Categories, Lemma 4.35.2.
Hence the morphisms in F(U) are all isomorphisms. We sometimes write
AutU (x) for MorF(U)(x, x).

(4)06SH Let F be a category cofibered in groupoids over C, let f : U → V be a
morphism in C, and let x ∈ Ob(F(U)). A pushforward of x along f is a
morphism x→ y of F lying over f . A pushforward is unique up to unique
isomorphism (see the discussion following Categories, Definition 4.33.1).
We sometimes write x→ f∗x for “the” pushforward of x along f .
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(5) A choice of pushforwards for F is the choice of a pushforward of x along f
for every pair (x, f) as above. We can make such a choice of pushforwards
for F by the axiom of choice.

(6) Let F be a category cofibered in groupoids over C. Given a choice of
pushforwards for F , there is an associated pseudo-functor C → Groupoids.
We will never use this construction so we give no details.

(7)06GL A morphism of categories cofibered in groupoids over C is a functor com-
muting with the projections to C. If F and F ′ are categories cofibered in
groupoids over C, we denote the morphisms from F to F ′ by MorC(F ,F ′).

(8)06GM Categories cofibered in groupoids form a (2, 1)-category Cof(C). Its 1-
morphisms are the morphisms described in (7). If p : F → C and p′ :
F ′ → C are categories cofibered in groupoids and φ,ψ : F → F ′ are 1-
morphisms, then a 2-morphism t : φ→ ψ is a morphism of functors such
that p′(tx) = idp(x) for all x ∈ Ob(F).

(9)06GN Let F : C → Groupoids be a functor. There is a category cofibered in
groupoids F → C associated to F as follows. An object of F is a pair
(U, x) where U ∈ Ob(C) and x ∈ Ob(F (U)). A morphism (U, x)→ (V, y)
is a pair (f, a) where f ∈ MorC(U, V ) and a ∈ MorF (V )(F (f)(x), y). The
functor F → C sends (U, x) to U . See Categories, Section 4.37.

(10)07W5 Let F be cofibered in groupoids over C. For U ∈ Ob(C) set F(U) equal to
the set of isomorphisms classes of the category F(U). If f : U → V is a
morphism of C, then we obtain a map of sets F(U)→ F(V ) by mapping
the isomorphism class of x to the isomorphism class of a pushforward f∗x
of x see (4). Then F : C → Sets is a functor. Similarly, if φ : F → G is a
morphism of cofibered categories, we denote by φ : F → G the associated
morphism of functors.

(11)06GP Let F : C → Sets be a functor. We can think of a set as a discrete
category, i.e., as a groupoid with only identity morphisms. Then the
construction (9) associates to F a category cofibered in sets. This defines
a fully faithful embedding of the category of functors C → Sets to the
category of categories cofibered in groupoids over C. We identify the
category of functors with its image under this embedding. Hence if F :
C → Sets is a functor, we denote the associated category cofibered in
sets also by F ; and if φ : F → G is a morphism of functors, we denote
still by φ the corresponding morphism of categories cofibered in sets, and
vice-versa. See Categories, Section 4.38.

(12)06GQ Let U be an object of C. We write U for the functor MorC(U,−) : C → Sets.
This defines a fully faithful embedding of Copp into the category of functors
C → Sets. Hence, if f : U → V is a morphism, we are justified in denoting
still by f the induced morphism V → U , and vice-versa.

(13)06SI Fiber products of categories cofibered in groupoids: If F → H and G →
H are morphisms of categories cofibered in groupoids over CΛ, then a
construction of their 2-fiber product is given by the construction for their
2-fiber product as categories over CΛ, as described in Categories, Lemma
4.32.3.

(14)0DZJ Products of categories cofibered in groupoids: If F and G are categories
cofibered in groupoids over CΛ then their product is defined to be the
2-fiber product F ×CΛ G as described in Categories, Lemma 4.32.3.
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(15)06GR Restricting the base category: Let p : F → C be a category cofibered in
groupoids, and let C′ be a full subcategory of C. The restriction F|C′ is the
full subcategory of F whose objects lie over objects of C′. It is a category
cofibered in groupoids via the functor p|C′ : F|C′ → C′.

90.6. Prorepresentable functors and predeformation categories

06GI Our basic goal is to understand categories cofibered in groupoids over CΛ and ĈΛ.
Since CΛ is a full subcategory of ĈΛ we can restrict categories cofibred in groupoids
over ĈΛ to CΛ, see Remarks 90.5.2 (15). In particular we can do this with functors,
in particular with representable functors. The functors on CΛ one obtains in this
way are called prorepresentable functors.

Definition 90.6.1.06GX Let F : CΛ → Sets be a functor. We say F is prorepresentable if
there exists an isomorphism F ∼= R|CΛ of functors for some R ∈ Ob(ĈΛ).

Note that if F : CΛ → Sets is prorepresentable by R ∈ Ob(ĈΛ), then

F (k) = MorĈΛ
(R, k) = {∗}

is a singleton. The categories cofibered in groupoids over CΛ that are arise in
deformation theory will often satisfy an analogous condition.

Definition 90.6.2.06GS A predeformation category F is a category cofibered in groupoids
over CΛ such that F(k) is equivalent to a category with a single object and a single
morphism, i.e., F(k) contains at least one object and there is a unique morphism
between any two objects. A morphism of predeformation categories is a morphism
of categories cofibered in groupoids over CΛ.

A feature of a predeformation category is the following. Let x0 ∈ Ob(F(k)). Then
every object of F comes equipped with a unique morphism to x0. Namely, if x is
an object of F over A, then we can choose a pushforward x→ q∗x where q : A→ k
is the quotient map. There is a unique isomorphism q∗x→ x0 and the composition
x→ q∗x→ x0 is the desired morphism.

Remark 90.6.3.06GT We say that a functor F : CΛ → Sets is a predeformation functor
if the associated cofibered set is a predeformation category, i.e. if F (k) is a one
element set. Thus if F is a predeformation category, then F is a predeformation
functor.

Remark 90.6.4.06GU Let p : F → CΛ be a category cofibered in groupoids, and let
x ∈ Ob(F(k)). We denote by Fx the category of objects over x. An object of Fx is
an arrow y → x. A morphism (y → x)→ (z → x) in Fx is a commutative diagram

y //

��

z

��
x

There is a forgetful functor Fx → F . We define the functor px : Fx → CΛ as the
composition Fx → F

p−→ CΛ. Then px : Fx → CΛ is a predeformation category
(proof omitted). In this way we can pass from an arbitrary category cofibered in
groupoids over CΛ to a predeformation category at any x ∈ Ob(F(k)).
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90.7. Formal objects and completion categories

06H2 In this section we discuss how to go between categories cofibred in groupoids over
CΛ to categories cofibred in groupoids over ĈΛ and vice versa.

Definition 90.7.1.06H3 Let F be a category cofibered in groupoids over CΛ. The category
F̂ of formal objects of F is the category with the following objects and morphisms.

(1) A formal object ξ = (R, ξn, fn) of F consists of an object R of ĈΛ, and
a collection indexed by n ∈ N of objects ξn of F(R/mnR) and morphisms
fn : ξn+1 → ξn lying over the projection R/mn+1

R → R/mnR.
(2) Let ξ = (R, ξn, fn) and η = (S, ηn, gn) be formal objects of F . A morphism

a : ξ → η of formal objects consists of a map a0 : R → S in ĈΛ and a
collection an : ξn → ηn of morphisms of F lying over R/mnR → S/mnS ,
such that for every n the diagram

ξn+1
fn

//

an+1

��

ξn

an

��
ηn+1

gn // ηn

commutes.

The category of formal objects comes with a functor p̂ : F̂ → ĈΛ which sends an
object (R, ξn, fn) to R and a morphism (R, ξn, fn)→ (S, ηn, gn) to the map R→ S.

Lemma 90.7.2.06H4 Let p : F → CΛ be a category cofibered in groupoids. Then
p̂ : F̂ → ĈΛ is a category cofibered in groupoids.

Proof. Let R→ S be a ring map in ĈΛ. Let (R, ξn, fn) be an object of F̂ . For each
n choose a pushforward ξn → ηn of ξn along R/mnR → S/mnS . For each n there
exists a unique morphism gn : ηn+1 → ηn in F lying over S/mn+1

S → S/mnS such
that

ξn+1

��

fn

// ξn

��
ηn+1

gn // ηn

commutes (by the first axiom of a category cofibred in groupoids). Hence we obtain
a morphism (R, ξn, fn) → (S, ηn, gn) lying over R → S, i.e., the first axiom of a
category cofibred in groupoids holds for F̂ . To see the second axiom suppose that
we have morphisms a : (R, ξn, fn) → (S, ηn, gn) and b : (R, ξn, fn) → (T, θn, hn) in
F̂ and a morphism c0 : S → T in ĈΛ such that c0 ◦ a0 = b0. By the second axiom
of a category cofibred in groupoids for F we obtain unique maps cn : ηn → θn
lying over S/mnS → T/mnT such that cn ◦ an = bn. Setting c = (cn)n≥0 gives the
desired morphism c : (S, ηn, gn) → (T, θn, hn) in F̂ (we omit the verification that
hn ◦ cn+1 = cn ◦ gn). □

Definition 90.7.3.06H5 Let p : F → CΛ be a category cofibered in groupoids. The
category cofibered in groupoids p̂ : F̂ → ĈΛ is called the completion of F .

If F is a category cofibered in groupoids over CΛ, we have defined F̂(R) for R ∈
Ob(ĈΛ) in terms of the filtration of R by powers of its maximal ideal. But suppose
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I = (In) is a filtration of R by ideals inducing the mR-adic topology. We define
F̂I(R) to be the category with the following objects and morphisms:

(1) An object is a collection (ξn, fn)n∈N of objects ξn of F(R/In) and mor-
phisms fn : ξn+1 → ξn lying over the projections R/In+1 → R/In.

(2) A morphism a : (ξn, fn) → (ηn, gn) consists of a collection an : ξn → ηn
of morphisms in F(R/In), such that for every n the diagram

ξn+1
fn //

an+1

��

ξn

an

��
ηn+1

gn // ηn

commutes.

Lemma 90.7.4.06H6 In the situation above, F̂I(R) is equivalent to the category F̂(R).

Proof. An equivalence F̂I(R) → F̂(R) can be defined as follows. For each n, let
m(n) be the least m that Im ⊂ mnR. Given an object (ξn, fn) of F̂I(R), let ηn be
the pushforward of ξm(n) along R/Im(n) → R/mnR. Let gn : ηn+1 → ηn be the
unique morphism of F lying over R/mn+1

R → R/mnR such that

ξm(n+1)
fm(n)◦...◦fm(n+1)−1

//

��

ξm(n)

��
ηn+1

gn // ηn

commutes (existence and uniqueness is guaranteed by the axioms of a cofibred
category). The functor F̂I(R) → F̂(R) sends (ξn, fn) to (R, ηn, gn). We omit the
verification that this is indeed an equivalence of categories. □

Remark 90.7.5.06H7 Let p : F → CΛ be a category cofibered in groupoids. Suppose that
for each R ∈ Ob(ĈΛ) we are given a filtration IR of R by ideals. If IR induces the
mR-adic topology on R for all R, then one can define a category F̂I by mimicking
the definition of F̂ . This category comes equipped with a morphism p̂I : F̂I → ĈΛ
making it into a category cofibered in groupoids such that F̂I(R) is isomorphic
to F̂IR(R) as defined above. The categories cofibered in groupoids F̂I and F̂ are
equivalent, by using over an object R ∈ Ob(ĈΛ) the equivalence of Lemma 90.7.4.

Remark 90.7.6.06H8 Let F : CΛ → Sets be a functor. Identifying functors with
cofibered sets, the completion of F is the functor F̂ : ĈΛ → Sets given by F̂ (S) =
limF (S/mnS). This agrees with the definition in Schlessinger’s paper [Sch68].

Remark 90.7.7.06SJ Let F be a category cofibred in groupoids over CΛ. We claim that
there is a canonical equivalence

can : F̂ |CΛ −→ F .

Namely, let A ∈ Ob(CΛ) and let (A, ξn, fn) be an object of F̂ |CΛ(A). Since A is
Artinian there is a minimal m ∈ N such that mmA = 0. Then can sends (A, ξn, fn)
to ξm. This functor is an equivalence of categories cofibered in groupoids by Cate-
gories, Lemma 4.35.9 because it is an equivalence on all fibre categories by Lemma
90.7.4 and the fact that the mA-adic topology on a local Artinian ring A comes

https://stacks.math.columbia.edu/tag/06H6
https://stacks.math.columbia.edu/tag/06H7
https://stacks.math.columbia.edu/tag/06H8
https://stacks.math.columbia.edu/tag/06SJ


90.7. FORMAL OBJECTS AND COMPLETION CATEGORIES 6474

from the zero ideal. We will frequently identify F with a full subcategory of F̂ via
a quasi-inverse to the functor can.

Remark 90.7.8.06H9 Let φ : F → G be a morphism of categories cofibered in groupoids
over CΛ. Then there is an induced morphism φ̂ : F̂ → Ĝ of categories cofibered
in groupoids over ĈΛ. It sends an object ξ = (R, ξn, fn) of F̂ to (R,φ(ξn), φ(fn)),
and it sends a morphism (a0 : R → S, an : ξn → ηn) between objects ξ and η of
F̂ to (a0 : R → S, φ(an) : φ(ξn) → φ(ηn)). Finally, if t : φ → φ′ is a 2-morphism
between 1-morphisms φ,φ′ : F → G of categories cofibred in groupoids, then we
obtain a 2-morphism t̂ : φ̂ → φ̂′. Namely, for ξ = (R, ξn, fn) as above we set
t̂ξ = (tφ(ξn)). Hence completion defines a functor between 2-categories

̂ : Cof(CΛ) −→ Cof(ĈΛ)
from the 2-category of categories cofibred in groupoids over CΛ to the 2-category of
categories cofibred in groupoids over ĈΛ.

Remark 90.7.9.06HA We claim the completion functor of Remark 90.7.8 and the re-
striction functor |CΛ : Cof(ĈΛ)→ Cof(CΛ) of Remarks 90.5.2 (15) are “2-adjoint” in
the following precise sense. Let F ∈ Ob(Cof(CΛ)) and let G ∈ Ob(Cof(ĈΛ)). Then
there is an equivalence of categories

Φ : MorCΛ(G|CΛ ,F) −→ MorĈΛ
(G, F̂)

To describe this equivalence, we define canonical morphisms G → Ĝ|CΛ and F̂ |CΛ →
F as follows

(1) Let R ∈ Ob(ĈΛ)) and let ξ be an object of the fiber category G(R). Choose
a pushforward ξ → ξn of ξ to R/mnR for each n ∈ N, and let fn : ξn+1 → ξn

be the induced morphism. Then G → Ĝ|CΛ sends ξ to (R, ξn, fn).
(2) This is the equivalence can : F̂ |CΛ → F of Remark 90.7.7.

Having said this, the equivalence Φ : MorCΛ(G|CΛ ,F)→ MorĈΛ
(G, F̂) sends a mor-

phism φ : G|CΛ → F to

G → Ĝ|CΛ

φ̂−→ F̂
There is a quasi-inverse Ψ : MorĈΛ

(G, F̂) → MorCΛ(G|CΛ ,F) to Φ which sends
ψ : G → F̂ to

G|CΛ

ψ|CΛ−−−→ F̂|CΛ → F .
We omit the verification that Φ and Ψ are quasi-inverse. We also do not address
functoriality of Φ (because it would lead into 3-category territory which we want
to avoid at all cost).

Remark 90.7.10.06HB For a category C we denote by CofSet(C) the category of cofibered
sets over C. It is a 1-category isomorphic the category of functors C → Sets. See
Remarks 90.5.2 (11). The completion and restriction functors restrict to functorŝ : CofSet(CΛ) → CofSet(ĈΛ) and |CΛ : CofSet(ĈΛ) → CofSet(CΛ) which we denote
by the same symbols. As functors on the categories of cofibered sets, completion
and restriction are adjoints in the usual 1-categorical sense: the same construction
as in Remark 90.7.9 defines a functorial bijection

MorCΛ(G|CΛ , F ) −→ MorĈΛ
(G, F̂ )
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for F ∈ Ob(CofSet(CΛ)) and G ∈ Ob(CofSet(ĈΛ)). Again the map F̂ |CΛ → F is an
isomorphism.

Remark 90.7.11.06HE Let G : ĈΛ → Sets be a functor that commutes with limits. Then
the map G → Ĝ|CΛ described in Remark 90.7.9 is an isomorphism. Indeed, if S is
an object of ĈΛ, then we have canonical bijections

Ĝ|CΛ(S) = limnG(S/mnS) = G(limn S/m
n
S) = G(S).

In particular, if R is an object of ĈΛ then R = R̂|CΛ because the representable
functor R commutes with limits by definition of limits.

Remark 90.7.12.06HC Let R be an object of ĈΛ. It defines a functor R : ĈΛ → Sets
as described in Remarks 90.5.2 (12). As usual we identify this functor with the
associated cofibered set. If F is a cofibered category over CΛ, then there is an
equivalence of categories

(90.7.12.1)06SK MorCΛ(R|CΛ ,F) −→ F̂(R).

It is given by the composition

MorCΛ(R|CΛ ,F) Φ−→ MorĈΛ
(R, F̂) ∼−→ F̂(R)

where Φ is as in Remark 90.7.9 and the second equivalence comes from the 2-
Yoneda lemma (the cofibered analogue of Categories, Lemma 4.41.2). Explicitly,
the equivalence sends a morphism φ : R|CΛ → F to the formal object (R,φ(R →
R/mnR), φ(fn)) in F̂(R), where fn : R/mn+1

R → R/mnR is the projection.

Assume a choice of pushforwards for F has been made. Given any ξ ∈ Ob(F̂(R))
we construct an explicit ξ : R|CΛ → F which maps to ξ under (90.7.12.1). Namely,
say ξ = (R, ξn, fn). An object α in R|CΛ is the same thing as a morphism α : R→ A

of ĈΛ with A Artinian. Let m ∈ N be minimal such that mmA = 0. Then α factors
through a unique αm : R/mmR → A and we can set ξ(α) = αm,∗ξm. We omit
the description of ξ on morphisms and we omit the proof that ξ maps to ξ via
(90.7.12.1).

Assume a choice of pushforwards for F̂ has been made. In this case the proof of
Categories, Lemma 4.41.2 gives an explicit quasi-inverse

ι : F̂(R) −→ MorĈΛ
(R, F̂)

to the 2-Yoneda equivalence which takes ξ to the morphism ι(ξ) : R → F̂ sending
f ∈ R(S) = MorCΛ(R,S) to f∗ξ. A quasi-inverse to (90.7.12.1) is then

F̂(R) ι−→ MorĈΛ
(R, F̂) Ψ−→ MorCΛ(R|CΛ ,F)

where Ψ is as in Remark 90.7.9. Given ξ ∈ Ob(F̂(R)) we have Ψ(ι(ξ)) ∼= ξ where ξ
is as in the previous paragraph, because both are mapped to ξ under the equivalence
of categories (90.7.12.1). Using R = R̂|CΛ (see Remark 90.7.11) and unwinding the
definitions of Φ and Ψ we conclude that ι(ξ) is isomorphic to the completion of ξ.

Remark 90.7.13.06SL Let F be a category cofibred in groupoids over CΛ. Let ξ =
(R, ξn, fn) and η = (S, ηn, gn) be formal objects of F . Let a = (an) : ξ → η be a
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morphism of formal objects, i.e., a morphism of F̂ . Let f = p̂(a) = a0 : R → S be
the projection of a in ĈΛ. Then we obtain a 2-commutative diagram

R|CΛ

ξ !!

S|CΛf
oo

η
}}

F
where ξ and η are the morphisms constructed in Remark 90.7.12. To see this let
α : S → A be an object of S|CΛ (see loc. cit.). Let m ∈ N be minimal such that
mmA = 0. We get a commutative diagram

R

f

��

// R/mmR

fm

��

βm

""
S // S/mmS

αm // A

such that the bottom arrows compose to give α. Then η(α) = αm,∗ηm and ξ(α◦f) =
βm,∗ξm. The morphism am : ξm → ηm lies over fm hence we obtain a canonical
morphism

ξ(α ◦ f) = βm,∗ξm −→ η(α) = αm,∗ηm

lying over idA such that
ξm //

am

��

βm,∗ξm

��
ηm // αm,∗ηm

commutes by the axioms of a category cofibred in groupoids. This defines a trans-
formation of functors ξ ◦ f → η which witnesses the 2-commutativity of the first
diagram of this remark.

Remark 90.7.14.06HD According to Remark 90.7.12, giving a formal object ξ of F is
equivalent to giving a prorepresentable functor U : CΛ → Sets and a morphism
U → F .

90.8. Smooth morphisms

06HF In this section we discuss smooth morphisms of categories cofibered in groupoids
over CΛ.

Definition 90.8.1.06HG Let φ : F → G be a morphism of categories cofibered in groupoids
over CΛ. We say φ is smooth if it satisfies the following condition: Let B → A be
a surjective ring map in CΛ. Let y ∈ Ob(G(B)), x ∈ Ob(F(A)), and y → φ(x) be
a morphism lying over B → A. Then there exists x′ ∈ Ob(F(B)), a morphism
x′ → x lying over B → A, and a morphism φ(x′)→ y lying over id : B → B, such
that the diagram

φ(x′) //

##

y

��
φ(x)

commutes.
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Lemma 90.8.2.06HH Let φ : F → G be a morphism of categories cofibered in groupoids
over CΛ. Then φ is smooth if the condition in Definition 90.8.1 is assumed to hold
only for small extensions B → A.

Proof. Let B → A be a surjective ring map in CΛ. Let y ∈ Ob(G(B)), x ∈
Ob(F(A)), and y → φ(x) be a morphism lying over B → A. By Lemma 90.3.3 we
can factor B → A into small extensions B = Bn → Bn−1 → . . . → B0 = A. We
argue by induction on n. If n = 1 the result is true by assumption. If n > 1, then
denote f : B = Bn → Bn−1 and denote g : Bn−1 → B0 = A. Choose a pushforward
y → f∗y of y along f , so that the morphism y → φ(x) factors as y → f∗y → φ(x).
By the induction hypothesis we can find xn−1 → x lying over g : Bn−1 → A and
a : φ(xn−1)→ f∗y lying over id : Bn−1 → Bn−1 such that

φ(xn−1)
a
//

$$

f∗y

��
φ(x)

commutes. We can apply the assumption to the composition y → φ(xn−1) of
y → f∗y with a−1 : f∗y → φ(xn−1). We obtain xn → xn−1 lying over Bn → Bn−1
and φ(xn)→ y lying over id : Bn → Bn so that the diagram

φ(xn) //

��

y

��
φ(xn−1) a //

$$

f∗y

��
φ(x)

commutes. Then the composition xn → xn−1 → x and φ(xn) → y are the mor-
phisms required by the definition of smoothness. □

Remark 90.8.3.06HI Let φ : F → G be a morphism of categories cofibered in groupoids
over CΛ. Let B → A be a ring map in CΛ. Choices of pushforwards along B → A for
objects in the fiber categories F(B) and G(B) determine functors F(B) → F(A)
and G(B)→ G(A) fitting into a 2-commutative diagram

F(B) φ //

��

G(B)

��
F(A) φ // G(A).

Hence there is an induced functor F(B) → F(A) ×G(A) G(B). Unwinding the
definitions shows that φ : F → G is smooth if and only if this induced functor
is essentially surjective whenever B → A is surjective (or equivalently, by Lemma
90.8.2, whenever B → A is a small extension).

Remark 90.8.4.06HJ The characterization of smooth morphisms in Remark 90.8.3 is
analogous to Schlessinger’s notion of a smooth morphism of functors, cf. [Sch68,
Definition 2.2.]. In fact, when F and G are cofibered in sets then our notion is
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equivalent to Schlessinger’s. Namely, in this case let F,G : CΛ → Sets be the
corresponding functors, see Remarks 90.5.2 (11). Then F → G is smooth if and
only if for every surjection of rings B → A in CΛ the map F (B)→ F (A)×G(A)G(B)
is surjective.
Remark 90.8.5.06HK Let F be a category cofibered in groupoids over CΛ. Then the
morphism F → F is smooth. Namely, suppose that f : B → A is a ring map in CΛ.
Let x ∈ Ob(F(A)) and let y ∈ F(B) be the isomorphism class of y ∈ Ob(F(B))
such that f∗y = x. Then we simply take x′ = y, the implied morphism x′ = y → x
over B → A, and the equality x′ = y as the solution to the problem posed in
Definition 90.8.1.
If R → S is a ring map ĈΛ, then there is an induced morphism S → R between
the functors S,R : ĈΛ → Sets. In this situation, smoothness of the restriction
S|CΛ → R|CΛ is a familiar notion:

Lemma 90.8.6.06HL Let R → S be a ring map in ĈΛ. Then the induced morphism
S|CΛ → R|CΛ is smooth if and only if S is a power series ring over R.
Proof. Assume S is a power series ring overR. Say S = R[[x1, . . . , xn]]. Smoothness
of S|CΛ → R|CΛ means the following (see Remark 90.8.4): Given a surjective ring
map B → A in CΛ, a ring map R → B, a ring map S → A such that the solid
diagram

S //

��

A

R

OO

// B

OO

is commutative then a dotted arrow exists making the diagram commute. (Note
the similarity with Algebra, Definition 10.138.1.) To construct the dotted arrow
choose elements bi ∈ B whose images in A are equal to the images of xi in A. Note
that bi ∈ mB as xi maps to an element of mA. Hence there is a unique R-algebra
map R[[x1, . . . , xn]] → B which maps xi to bi and which can serve as our dotted
arrow.
Conversely, assume S|CΛ → R|CΛ is smooth. Let x1, . . . , xn ∈ S be elements whose
images form a basis in the relative cotangent space mS/(mRS + m2

S) of S over R.
Set T = R[[X1, . . . , Xn]]. Note that both

S/(mRS + m2
S) ∼= R/mR[x1, . . . , xn]/(xixj)

and
T/(mRT + m2

T ) ∼= R/mR[X1, . . . , Xn]/(XiXj).
Let S/(mRS + m2

S) → T/(mRT + m2
T ) be the local R-algebra isomorphism given

by mapping the class of xi to the class of Xi. Let f1 : S → T/(mRT + m2
T ) be

the composition S → S/(mRS + m2
S) → T/(mRT + m2

T ). The assumption that
S|CΛ → R|CΛ is smooth means we can lift f1 to a map f2 : S → T/m2

T , then
to a map f3 : S → T/m3

T , and so on, for all n ≥ 1. Thus we get an induced
map f : S → T = limT/mnT of local R-algebras. By our choice of f1, the map f
induces an isomorphism mS/(mRS+m2

S)→ mT /(mRT +m2
T ) of relative cotangent

spaces. Hence f is surjective by Lemma 90.4.2 (where we think of f as a map in
ĈR). Choose preimages yi ∈ S of Xi ∈ T under f . As T is a power series ring
over R there exists a local R-algebra homomorphism s : T → S mapping Xi to
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yi. By construction f ◦ s = id. Then s is injective. But s induces an isomorphism
on relative cotangent spaces since f does, so it is also surjective by Lemma 90.4.2
again. Hence s and f are isomorphisms. □

Smooth morphisms satisfy the following functorial properties.

Lemma 90.8.7.06HM Let φ : F → G and ψ : G → H be morphisms of categories cofibered
in groupoids over CΛ.

(1) If φ and ψ are smooth, then ψ ◦ φ is smooth.
(2) If φ is essentially surjective and ψ ◦ φ is smooth, then ψ is smooth.
(3) If G′ → G is a morphism of categories cofibered in groupoids and φ is

smooth, then F ×G G′ → G′ is smooth.

Proof. Statements (1) and (2) follow immediately from the definitions. Proof of
(3) omitted. Hints: use the formulation of smoothness given in Remark 90.8.3 and
use that F ×G G′ is the 2-fibre product, see Remarks 90.5.2 (13). □

Lemma 90.8.8.06HN Let φ : F → G be a smooth morphism of categories cofibered
in groupoids over CΛ. Assume φ : F(k) → G(k) is essentially surjective. Then
φ : F → G and φ̂ : F̂ → Ĝ are essentially surjective.

Proof. Let y be an object of G lying over A ∈ Ob(CΛ). Let y → y0 be a pushforward
of y along A → k. By the assumption on essential surjectivity of φ : F(k) →
G(k) there exist an object x0 of F lying over k and an isomorphism y0 → φ(x0).
Smoothness of φ implies there exists an object x of F over A whose image φ(x) is
isomorphic to y. Thus φ : F → G is essentially surjective.

Let η = (R, ηn, gn) be an object of Ĝ. We construct an object ξ of F̂ with an
isomorphism η → φ(ξ). By the assumption on essential surjectivity of φ : F(k)→
G(k), there exists a morphism η1 → φ(ξ1) in G(k) for some ξ1 ∈ Ob(F(k)). The
morphism η2

g1−→ η1 → φ(ξ1) lies over the surjective ring map R/m2
R → k, hence by

smoothness of φ there exists ξ2 ∈ Ob(F(R/m2
R)), a morphism f1 : ξ2 → ξ1 lying

over R/m2
R → k, and a morphism η2 → φ(ξ2) such that

φ(ξ2)
φ(f1) // φ(ξ1)

η2

OO

g1 // η1

OO

commutes. Continuing in this way we construct an object ξ = (R, ξn, fn) of F̂ and
a morphism η → φ(ξ) = (R,φ(ξn), φ(fn)) in Ĝ(R). □

Later we are interested in producing smooth morphisms from prorepresentable func-
tors to predeformation categories F . By the discussion in Remark 90.7.12 these
morphisms correspond to certain formal objects of F . More precisely, these are the
so-called versal formal objects of F .

Definition 90.8.9.06HR Let F be a category cofibered in groupoids. Let ξ be a formal
object of F lying over R ∈ Ob(ĈΛ). We say ξ is versal if the corresponding morphism
ξ : R|CΛ → F of Remark 90.7.12 is smooth.
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Remark 90.8.10.06HS Let F be a category cofibered in groupoids over CΛ, and let ξ be
a formal object of F . It follows from the definition of smoothness that versality of
ξ is equivalent to the following condition: If

y

��
ξ // x

is a diagram in F̂ such that y → x lies over a surjective map B → A of Artinian
rings (we may assume it is a small extension), then there exists a morphism ξ → y
such that

y

��
ξ //

@@

x

commutes. In particular, the condition that ξ be versal does not depend on the
choices of pushforwards made in the construction of ξ : R|CΛ → F in Remark
90.7.12.

Lemma 90.8.11.06HT Let F be a predeformation category. Let ξ be a versal formal
object of F . For any formal object η of F̂ , there exists a morphism ξ → η.

Proof. By assumption the morphism ξ : R|CΛ → F is smooth. Then ι(ξ) : R→ F̂ is
the completion of ξ, see Remark 90.7.12. By Lemma 90.8.8 there exists an object f
of R such that ι(ξ)(f) = η. Then f is a ring map f : R→ S in ĈΛ. And ι(ξ)(f) = η
means that f∗ξ ∼= η which means exactly that there is a morphism ξ → η lying over
f . □

90.9. Smooth or unobstructed categories

0DYK Let p : F → CΛ be a category cofibered in groupoids. We can consider CΛ as a
category cofibered in groupoids over CΛ using the identity functor. In this way
p : F −→ CΛ becomes a morphism of categories cofibered in groupoids over CΛ.

Definition 90.9.1.06HP Let p : F → CΛ be a category cofibered in groupoids. We say
F is smooth or unobstructed if its structure morphism p is smooth in the sense of
Definition 90.8.1.

This is the “absolute” notion of smoothness for a category cofibered in groupoids
over CΛ, although it would be more correct to say that F is smooth over Λ. One has
to be careful with the phrase “F is unobstructed”: it may happen that F has an
obstruction theory with nonvanishing obstruction spaces even though F is smooth.

Remark 90.9.2.06HQ Suppose F is a predeformation category admitting a smooth mor-
phism φ : U → F from a predeformation category U . Then by Lemma 90.8.8 φ is
essentially surjective, so by Lemma 90.8.7 p : F → CΛ is smooth if and only if the
composition U φ−→ F p−→ CΛ is smooth, i.e. F is smooth if and only if U is smooth.

Lemma 90.9.3.0DYL Let R ∈ Ob(ĈΛ). The following are equivalent
(1) R|CΛ is smooth,
(2) Λ→ R is formally smooth in the mR-adic topology,
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(3) Λ→ R is flat and R⊗Λ k
′ is geometrically regular over k′, and

(4) Λ→ R is flat and k′ → R⊗Λk
′ is formally smooth in the mR-adic topology.

In the classical case, these are also equivalent to
(5) R is isomorphic to Λ[[x1, . . . , xn]] for some n.

Proof. Smoothness of p : R|CΛ → CΛ means that given B → A surjective in CΛ and
given R→ A we can find the dotted arrow in the diagram

R //

��

A

Λ //

OO

B

OO

This is certainly true if Λ → R is formally smooth in the mR-adic topology, see
More on Algebra, Definitions 15.37.3 and 15.37.1. Conversely, if this holds, then we
see that Λ → R is formally smooth in the mR-adic topology by More on Algebra,
Lemma 15.38.1. Thus (1) and (2) are equivalent.
The equivalence of (2), (3), and (4) is More on Algebra, Proposition 15.40.5. The
equivalence with (5) follows for example from Lemma 90.8.6 and the fact that CΛ
is the same as Λ|CΛ in the classical case. □

Lemma 90.9.4.0DZK Let F be a predeformation category. Let ξ be a versal formal
object of F lying over R ∈ Ob(ĈΛ). The following are equivalent

(1) F is unobstructed, and
(2) Λ→ R is formally smooth in the mR-adic topology.

In the classical case these are also equivalent to
(3) R ∼= Λ[[x1, . . . , xn]] for some n.

Proof. If (1) holds, i.e., if F is unobstructed, then the composition

R|CΛ

ξ
−→ F → CΛ

is smooth, see Lemma 90.8.7. Hence we see that (2) holds by Lemma 90.9.3.
Conversely, if (2) holds, then the composition is smooth and moreover the first
arrow is essentially surjective by Lemma 90.8.11. Hence we find that the second
arrow is smooth by Lemma 90.8.7 which means that F is unobstructed by definition.
The equivalence with (3) in the classical case follows from Lemma 90.9.3. □

Lemma 90.9.5.06SM There exists an R ∈ Ob(ĈΛ) such that the equivalent conditions of
Lemma 90.9.3 hold and moreover H1(Lk/Λ) = mR/m

2
R and ΩR/Λ ⊗R k = Ωk/Λ.

Proof. In the classical case we choose R = Λ. More generally, if the residue field
extension k/k′ is separable, then there exists a unique finite étale extension Λ∧ → R
(Algebra, Lemmas 10.153.9 and 10.153.7) of the completion Λ∧ of Λ inducing the
extension k/k′ on residue fields.
In the general case we proceed as follows. Choose a smooth Λ-algebra P and a
Λ-algebra surjection P → k. (For example, let P be a polynomial algebra.) Denote
mP the kernel of P → k. The Jacobi-Zariski sequence, see (90.3.10.2) and Algebra,
Lemma 10.134.4, is an exact sequence

0→ H1(NLk/Λ)→ mP /m
2
P → ΩP/Λ ⊗P k → Ωk/Λ → 0

https://stacks.math.columbia.edu/tag/0DZK
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We have the 0 on the left because P/k is smooth, hence NLP/Λ is quasi-isomorphic
to a finite projective module placed in degree 0, hence H1(NLP/Λ⊗P k) = 0. Sup-
pose f ∈ mP maps to a nonzero element of ΩP/Λ ⊗P k. Setting P ′ = P/(f) we
have a Λ-algebra surjection P ′ → k. Observe that P ′ is smooth at mP ′ : this follows
from More on Morphisms, Lemma 37.38.1. Thus after replacing P by a principal
localization of P ′, we see that dim(mP /m2

P ) decreases. Repeating finitely many
times, we may assume the map mP /m

2
P → ΩP/Λ ⊗P k is zero so that the exact

sequence breaks into isomorphisms H1(Lk/Λ) = mP /m
2
P and ΩP/Λ ⊗P k = Ωk/Λ.

Let R be the mP -adic completion of P . Then R is an object of ĈΛ. Namely, it is a
complete local Noetherian ring (see Algebra, Lemma 10.97.6) and its residue field
is identified with k. We claim that R works.
First observe that the map P → R induces isomorphisms mP /m

2
P = mR/m

2
R and

ΩP/Λ ⊗P k = ΩR/Λ ⊗R k. This is true because both mP /m
2
P and ΩP/Λ ⊗P k only

depend on the Λ-algebra P/m2
P , see Algebra, Lemma 10.131.11, the same holds

for R and we have P/m2
P = R/m2

R. Using the functoriality of the Jacobi-Zariski
sequence (90.3.10.3) we deduce that H1(Lk/Λ) = mR/m

2
R and ΩR/Λ ⊗R k = Ωk/Λ

as the same is true for P .
Finally, since Λ→ P is smooth we see that Λ→ P is formally smooth by Algebra,
Proposition 10.138.13. Then Λ → P is formally smooth for the mP -adic topology
by More on Algebra, Lemma 15.37.2. This property is inherited by the completion
R by More on Algebra, Lemma 15.37.4 and the proof is complete. In fact, it turns
out that whenever R|CΛ is smooth, then R is isomorphic to a completion of a smooth
algebra over Λ, but we won’t use this. □

Example 90.9.6.06SN Here is a more explicit example of an R as in Lemma 90.9.5.
Let p be a prime number and let n ∈ N. Let Λ = Fp(t1, t2, . . . , tn) and let k =
Fp(x1, . . . , xn) with map Λ→ k given by ti 7→ xpi . Then we can take

R = Λ[x1, . . . , xn]∧(xp1−t1,...,xpn−tn)

We cannot do “better” in this example, i.e., we cannot approximate CΛ by a smaller
smooth object of ĈΛ (one can argue that the dimension of R has to be at least n
since the map ΩR/Λ ⊗R k → Ωk/Λ is surjective). We will discuss this phenomenon
later in more detail.

90.10. Schlessinger’s conditions

06HV In the following we often consider fibre products A1 ×A A2 of rings in the category
CΛ. We have seen in Example 90.3.7 that such a fibre product may not always be
an object of CΛ. However, in virtually all cases below one of the two maps Ai → A
is surjective and A1 ×A A2 will be an object of CΛ by Lemma 90.3.8. We will use
this result without further mention.
We denote by k[ϵ] the ring of dual numbers over k. More generally, for a k-vector
space V , we denote by k[V ] the k-algebra whose underlying vector space is k ⊕ V
and whose multiplication is given by (a, v) · (a′, v′) = (aa′, av′ +a′v). When V = k,
k[V ] is the ring of dual numbers over k. For any finite dimensional k-vector space
V the ring k[V ] is in CΛ.

Definition 90.10.1.06HW Let F be a category cofibered in groupoids over CΛ. We define
conditions (S1) and (S2) on F as follows:
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(S1) Every diagram in F

x2

��
x1 // x

lying over

A2

��
A1 // A

in CΛ with A2 → A surjective can be completed to a commutative diagram

y //

��

x2

��
x1 // x

lying over

A1 ×A A2 //

��

A2

��
A1 // A.

(S2) The condition of (S1) holds for diagrams in F lying over a diagram in CΛ
of the form

k[ϵ]

��
A // k.

Moreover, if we have two commutative diagrams in F

y
c
//

a

��

xϵ

e

��
x

d // x0

and

y′
c′
//

a′

��

xϵ

e

��
x

d // x0

lying over

A×k k[ϵ] //

��

k[ϵ]

��
A // k

then there exists a morphism b : y → y′ in F(A×kk[ϵ]) such that a = a′◦b.

We can partly explain the meaning of conditions (S1) and (S2) in terms of fibre
categories. Suppose that f1 : A1 → A and f2 : A2 → A are ring maps in CΛ with
f2 surjective. Denote pi : A1 ×A A2 → Ai the projection maps. Assume a choice
of pushforwards for F has been made. Then the commutative diagram of rings
translates into a 2-commutative diagram

F(A1 ×A A2)
p2,∗
//

p1,∗

��

F(A2)

f2,∗

��
F(A1)

f1,∗ // F(A)

of fibre categories whence a functor

(90.10.1.1)06SP F(A1 ×A A2)→ F(A1)×F(A) F(A2)

into the 2-fibre product of categories. Condition (S1) requires that this functor be
essentially surjective. The first part of condition (S2) requires that this functor
be a essentially surjective if f2 equals the map k[ϵ] → k. Moreover in this case,
the second part of (S2) implies that two objects which become isomorphic in the
target are isomorphic in the source (but it is not equivalent to this statement). The
advantage of stating the conditions as in the definition is that no choices have to
be made.
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Lemma 90.10.2.06HX Let F be a category cofibered in groupoids over CΛ. Then F
satisfies (S1) if the condition of (S1) is assumed to hold only when A2 → A is a
small extension.

Proof. Proof omitted. Hints: apply Lemma 90.3.3 and use induction similar to the
proof of Lemma 90.8.2. □

Remark 90.10.3.06HY When F is cofibered in sets, conditions (S1) and (S2) are exactly
conditions (H1) and (H2) from Schlessinger’s paper [Sch68]. Namely, for a functor
F : CΛ → Sets, conditions (S1) and (S2) state:

(S1) If A1 → A and A2 → A are maps in CΛ with A2 → A surjective, then the
induced map F (A1 ×A A2)→ F (A1)×F (A) F (A2) is surjective.

(S2) If A→ k is a map in CΛ, then the induced map F (A×kk[ϵ])→ F (A)×F (k)
F (k[ϵ]) is bijective.

The injectivity of the map F (A ×k k[ϵ]) → F (A) ×F (k) F (k[ϵ]) comes from the
second part of condition (S2) and the fact that morphisms are identities.

Lemma 90.10.4.06HZ Let F be a category cofibred in groupoids over CΛ. If F satisfies
(S2), then the condition of (S2) also holds when k[ϵ] is replaced by k[V ] for any
finite dimensional k-vector space V .

Proof. In the case that F is cofibred in sets, i.e., corresponds to a functor F : CΛ →
Sets this follows from the description of (S2) for F in Remark 90.10.3 and the fact
that k[V ] ∼= k[ϵ] ×k . . . ×k k[ϵ] with dimk V factors. The case of functors is what
we will use in the rest of this chapter.

We prove the general case by induction on dim(V ). If dim(V ) = 1, then k[V ] ∼= k[ϵ]
and the result holds by assumption. If dim(V ) > 1 we write V = V ′ ⊕ kϵ. Pick a
diagram

xV

��
x // x0

lying over

k[V ]

��
A // k

Choose a morphism xV → xV ′ lying over k[V ] → k[V ′] and a morphism xV → xϵ
lying over k[V ]→ k[ϵ]. Note that the morphism xV → x0 factors as xV → xV ′ → x0
and as xV → xϵ → x0. By induction hypothesis we can find a diagram

y′

��

// xV ′

��
x // x0

lying over

A×k k[V ′]

��

// k[V ′]

��
A // k

This gives us a commutative diagram

xϵ

��
y′ // x0

lying over

k[ϵ]

��
A×k k[V ′] // k

https://stacks.math.columbia.edu/tag/06HX
https://stacks.math.columbia.edu/tag/06HY
https://stacks.math.columbia.edu/tag/06HZ
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Hence by (S2) we get a commutative diagram

y

��

// xϵ

��
y′ // x0

lying over

(A×k k[V ′])×k k[ϵ]

��

// k[ϵ]

��
A×k k[V ′] // k

Note that (A×k k[V ′])×k k[ϵ] = A×k k[V ′⊕ kϵ] = A×k k[V ]. We claim that y fits
into the correct commutative diagram. To see this we let y → yV be a morphism
lying over A ×k k[V ] → k[V ]. We can factor the morphisms y → y′ → xV ′ and
y → xϵ through the morphism y → yV (by the axioms of categories cofibred in
groupoids). Hence we see that both yV and xV fit into commutative diagrams

yV //

��

xϵ

��
xV ′ // x0

and

xV //

��

xϵ

��
xV ′ // x0

and hence by the second part of (S2) there exists an isomorphism yV → xV com-
patible with yV → xV ′ and xV → xV ′ and in particular compatible with the maps
to x0. The composition y → yV → xV then fits into the required commutative
diagram

y //

��

xV

��
x // x0

lying over

A×k k[V ]

��

// k[V ]

��
A // k

In this way we see that the first part of (S2) holds with k[ϵ] replaced by k[V ].

To prove the second part suppose given two commutative diagrams

y //

��

xV

��
x // x0

and

y′ //

��

xV

��
x // x0

lying over

A×k k[V ]

��

// k[V ]

��
A // k

We will use the morphisms xV → xV ′ → x0 and xV → xϵ → x0 introduced in the
first paragraph of the proof. Choose morphisms y → yV ′ and y′ → y′

V ′ lying over
A ×k k[V ] → A ×k k[V ′]. The axioms of a cofibred category imply we can find
commutative diagrams

yV ′ //

��

xV ′

��
x // x0

and

y′
V ′ //

��

xV ′

��
x // x0

lying over

A×k k[V ′]

��

// k[V ′]

��
A // k

By induction hypothesis we obtain an isomorphism b : yV ′ → y′
V ′ compatible with

the morphisms yV ′ → x and y′
V ′ → x, in particular compatible with the morphisms
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to x0. Then we have commutative diagrams
y //

��

xϵ

��
y′
V ′ // x0

and

y′ //

��

xϵ

��
y′
V ′ // x0

lying over

A×k k[ϵ]

��

// k[ϵ]

��
A // k

where the morphism y → y′
V ′ is the composition y → yV ′

b−→ y′
V ′ and where the

morphisms y → xϵ and y′ → xϵ are the compositions of the maps y → xV and
y′ → xV with the morphism xV → xϵ. Then the second part of (S2) guarantees the
existence of an isomorphism y → y′ compatible with the maps to y′

V ′ , in particular
compatible with the maps to x (because b was compatible with the maps to x). □

Lemma 90.10.5.06I0 Let F be a category cofibered in groupoids over CΛ.
(1) If F satisfies (S1), then so does F .
(2) If F satisfies (S2), then so does F provided at least one of the following

conditions is satisfied
(a) F is a predeformation category,
(b) the category F(k) is a set or a setoid, or
(c) for any morphism xϵ → x0 of F lying over k[ϵ]→ k the pushforward

map Autk[ϵ](xϵ)→ Autk(x0) is surjective.

Proof. Assume F has (S1). Suppose we have ring maps fi : Ai → A in CΛ with
f2 surjective. Let xi ∈ F(Ai) such that the pushforwards f1,∗(x1) and f2,∗(x2) are
isomorphic. Then we can denote x an object of F over A isomorphic to both of
these and we obtain a diagram as in (S1). Hence we find an object y of F over
A1 ×A A2 whose pushforward to A1, resp. A2 is isomorphic to x1, resp. x2. In this
way we see that (S1) holds for F .
Assume F has (S2). The first part of (S2) for F follows as in the argument above.
The second part of (S2) for F signifies that the map

F(A×k k[ϵ])→ F(A)×F(k) F(k[ϵ])

is injective for any ring A in CΛ. Suppose that y, y′ ∈ F(A ×k k[ϵ]). Using the
axioms of cofibred categories we can choose commutative diagrams

y
c
//

a

��

xϵ

e

��
x

d // x0

and

y′
c′
//

a′

��

x′
ϵ

e′

��
x′ d′

// x′
0

lying over

A×k k[ϵ]

��

// k[ϵ]

��
A // k

Assume that there exist isomorphisms α : x → x′ in F(A) and β : xϵ → x′
ϵ in

F(k[ϵ]). This also means there exists an isomorphism γ : x0 → x′
0 compatible with

α. To prove (S2) for F we have to show that there exists an isomorphism y → y′

in F(A ×k k[ϵ]). By (S2) for F such a morphism will exist if we can choose the
isomorphisms α and β and γ such that

x

α

��

// x0

γ

��

xϵ

β

��

e
oo

x′ // x′
0 x′

ϵ
e′
oo

https://stacks.math.columbia.edu/tag/06I0
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is commutative (because then we can replace x by x′ and xϵ by x′
ϵ in the previous

displayed diagram). The left hand square commutes by our choice of γ. We can
factor e′ ◦ β as γ′ ◦ e for some second map γ′ : x0 → x′

0. Now the question is
whether we can arrange it so that γ = γ′? This is clear if F(k) is a set, or a setoid.
Moreover, if Autk[ϵ](xϵ)→ Autk(x0) is surjective, then we can adjust the choice of
β by precomposing with an automorphism of xϵ whose image is γ−1 ◦ γ′ to make
things work. □

Lemma 90.10.6.06SQ Let F be a category cofibered in groupoids over CΛ. Let x0 ∈
Ob(F(k)). Let Fx0 be the category cofibred in groupoids over CΛ constructed in
Remark 90.6.4.

(1) If F satisfies (S1), then so does Fx0 .
(2) If F satisfies (S2), then so does Fx0 .

Proof. Any diagram as in Definition 90.10.1 in Fx0 gives rise to a diagram in F
and the output of condition (S1) or (S2) for this diagram in F can be viewed as an
output for Fx0 as well. □

Lemma 90.10.7.06IS Let p : F → CΛ be a category cofibered in groupoids. Consider a
diagram of F

y //

a

��

xϵ

e

��
x

d // x0

lying over

A×k k[ϵ] //

��

k[ϵ]

��
A // k.

in CΛ. Assume F satisfies (S2). Then there exists a morphism s : x → y with
a ◦ s = idx if and only if there exists a morphism sϵ : x→ xϵ with e ◦ sϵ = d.

Proof. The “only if” direction is clear. Conversely, assume there exists a morphism
sϵ : x → xϵ with e ◦ sϵ = d. Note that p(sϵ) : A → k[ϵ] is a ring map compatible
with the map A→ k. Hence we obtain

σ = (idA, p(sϵ)) : A→ A×k k[ϵ].
Choose a pushforward x→ σ∗x. By construction we can factor sϵ as x→ σ∗x→ xϵ.
Moreover, as σ is a section of A ×k k[ϵ] → A, we get a morphism σ∗x → x such
that x→ σ∗x→ x is idx. Because e ◦ sϵ = d we find that the diagram

σ∗x //

��

xϵ

e

��
x

d // x0

is commutative. Hence by (S2) we obtain a morphism σ∗x → y such that σ∗x →
y → x is the given map σ∗x → x. The solution to the problem is now to take
a : x→ y equal to the composition x→ σ∗x→ y. □

Lemma 90.10.8.06IT Consider a commutative diagram in a predeformation category F

y //

��

x2

a2

��
x1

a1 // x

lying over

A1 ×A A2 //

��

A2

f2

��
A1

f1 // A

https://stacks.math.columbia.edu/tag/06SQ
https://stacks.math.columbia.edu/tag/06IS
https://stacks.math.columbia.edu/tag/06IT
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in CΛ where f2 : A2 → A is a small extension. Assume there is a map h : A1 → A2
such that f2 = f1 ◦ h. Let I = Ker(f2). Consider the ring map

g : A1 ×A A2 −→ k[I] = k ⊕ I, (u, v) 7−→ u⊕ (v − h(u))
Choose a pushforward y → g∗y. Assume F satisfies (S2). If there exists a morphism
x1 → g∗y, then there exists a morphism b : x1 → x2 such that a1 = a2 ◦ b.
Proof. Note that idA1 × g : A1 ×A A2 → A1 ×k k[I] is an isomorphism and that
k[I] ∼= k[ϵ]. Hence we have a diagram

y //

��

g∗y

��
x1 // x0

lying over

A1 ×k k[ϵ] //

��

k[ϵ]

��
A1 // k.

where x0 is an object of F lying over k (every object of F has a unique morphism
to x0, see discussion following Definition 90.6.2). If we have a morphism x1 → g∗y
then Lemma 90.10.7 provides us with a section s : x1 → y of the map y → x1.
Composing this with the map y → x2 we obtain b : x1 → x2 which has the
property that a1 = a2 ◦ b because the diagram of the lemma commutes and because
s is a section. □

90.11. Tangent spaces of functors

06I2 Let R be a ring. We write ModR for the category of R-modules and ModfgR for the
category of finitely generated R-modules.

Definition 90.11.1.06I3 Let L : ModfgR → ModR, resp. L : ModR → ModR be a functor.
We say that L is R-linear if for every pair of objects M,N of ModfgR , resp. ModR
the map

L : HomR(M,N) −→ HomR(L(M), L(N))
is a map of R-modules.
Remark 90.11.2.06I4 One can define the notion of an R-linearity for any functor be-
tween categories enriched over ModR. We made the definition specifically for func-
tors L : ModfgR → ModR and L : ModR → ModR because these are the cases that
we have needed so far.
Remark 90.11.3.06I5 If L : ModfgR → ModR is an R-linear functor, then L preserves
finite products and sends the zero module to the zero module, see Homology, Lemma
12.3.7. On the other hand, if a functor ModfgR → Sets preserves finite products and
sends the zero module to a one element set, then it has a unique lift to a R-linear
functor, see Lemma 90.11.4.

Lemma 90.11.4.06I6 Let L : ModfgR → Sets, resp. L : ModR → Sets be a functor.
Suppose L(0) is a one element set and L preserves finite products. Then there
exists a unique R-linear functor L̃ : ModfgR → ModR, resp. L̃ : ModfgR → ModR,
such that

ModR
forget

##
ModfgR

L̃

::

L // Sets

resp.

ModR
forget

##
ModR

L̃

::

L // Sets

https://stacks.math.columbia.edu/tag/06I3
https://stacks.math.columbia.edu/tag/06I4
https://stacks.math.columbia.edu/tag/06I5
https://stacks.math.columbia.edu/tag/06I6
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commutes.

Proof. We only prove this in case L : ModfgR → Sets. Let M be a finitely generated
R-module. We define L̃(M) to be the set L(M) with the following R-module
structure.

Multiplication: If r ∈ R, multiplication by r on L(M) is defined to be the map
L(M)→ L(M) induced by the multiplication map r· : M →M .

Addition: The sum map M×M →M : (m1,m2) 7→ m1 +m2 induces a map L(M×
M)→ L(M). By assumption L(M×M) is canonically isomorphic to L(M)×L(M).
Addition on L(M) is defined by the map L(M)× L(M) ∼= L(M ×M)→ L(M).

Zero: There is a unique map 0 → M . The zero element of L(M) is the image of
L(0)→ L(M).

We omit the verification that this defines an R-module L̃(M), the unique such that
is R-linearly functorial in M . □

Lemma 90.11.5.06I7 Let L1, L2 : ModfgR → Sets be functors that take 0 to a one
element set and preserve finite products. Let t : L1 → L2 be a morphism of
functors. Then t induces a morphism t̃ : L̃1 → L̃2 between the functors guaranteed
by Lemma 90.11.4, which is given simply by t̃M = tM : L̃1(M) → L̃2(M) for each
M ∈ Ob(ModfgR ). In other words, tM : L̃1(M)→ L̃2(M) is a map of R-modules.

Proof. Omitted. □

In the case R = K is a field, a K-linear functor L : ModfgK → ModK is determined
by its value L(K).

Lemma 90.11.6.06I8 Let K be a field. Let L : ModfgK → ModK be a K-linear functor.
Then L is isomorphic to the functor L(K)⊗K − : ModfgK → ModK .

Proof. For V ∈ Ob(ModfgK ), the isomorphism L(K)⊗K V → L(V ) is given on pure
tensors by x⊗v 7→ L(fv)(x), where fv : K → V is the K-linear map sending 1 7→ v.
When V = K, this is the isomorphism L(K)⊗KK → L(K) given by multiplication
by K. For general V , it is an isomorphism by the case V = K and the fact that L
commutes with finite products (Remark 90.11.3). □

For a ring R and an R-module M , let R[M ] be the R-algebra whose underlying R-
module is R⊕M and whose multiplication is given by (r,m) · (r′,m′) = (rr′, rm′ +
r′m). When M = R this is the ring of dual numbers over R, which we denote by
R[ϵ].

Now let S be a ring and assume R is an S-algebra. Then the assignment M 7→ R[M ]
determines a functor ModR → S-Alg/R, where S-Alg/R denotes the category of
S-algebras over R. Note that S-Alg/R admits finite products: if A1 → R and
A2 → R are two objects, then A1 ×R A2 is a product.

Lemma 90.11.7.06I9 Let R be an S-algebra. Then the functor ModR → S-Alg/R
described above preserves finite products.

Proof. This is merely the statement that if M and N are R-modules, then the map
R[M ×N ]→ R[M ]×R R[N ] is an isomorphism in S-Alg/R. □

https://stacks.math.columbia.edu/tag/06I7
https://stacks.math.columbia.edu/tag/06I8
https://stacks.math.columbia.edu/tag/06I9
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Lemma 90.11.8.06IA Let R be an S-algebra, and let C be a strictly full subcategory of
S-Alg/R containing R[M ] for all M ∈ Ob(ModfgR ). Let F : C → Sets be a functor.
Suppose that F (R) is a one element set and that for any M,N ∈ Ob(ModfgR ), the
induced map

F (R[M ]×R R[N ])→ F (R[M ])× F (R[N ])
is a bijection. Then F (R[M ]) has a natural R-module structure for any M ∈
Ob(ModfgR ).

Proof. Note that R ∼= R[0] and R[M ]×RR[N ] ∼= R[M ×N ] hence R and R[M ]×R
R[N ] are objects of C by our assumptions on C. Thus the conditions on F make
sense. The functor ModR → S-Alg/R of Lemma 90.11.7 restricts to a functor
ModfgR → C by the assumption on C. Let L be the composition ModfgR → C → Sets,
i.e., L(M) = F (R[M ]). Then L preserves finite products by Lemma 90.11.7 and
the assumption on F . Hence Lemma 90.11.4 shows that L(M) = F (R[M ]) has a
natural R-module structure for any M ∈ Ob(ModfgR ). □

Definition 90.11.9.06IB Let C be a category as in Lemma 90.11.8. Let F : C → Sets
be a functor such that F (R) is a one element set. The tangent space TF of F is
F (R[ϵ]).

When F : C → Sets satisfies the hypotheses of Lemma 90.11.8, the tangent space
TF has a natural R-module structure.

Example 90.11.10.06SR Since CΛ contains all k[V ] for finite dimensional vector spaces
V we see that Definition 90.11.9 applies with S = Λ, R = k, C = CΛ, and F : CΛ →
Sets a predeformation functor. The tangent space is TF = F (k[ϵ]).

Example 90.11.11.06IC Let us work out the tangent space of Example 90.11.10 when
F : CΛ → Sets is a prorepresentable functor, say F = S|CΛ for S ∈ Ob(ĈΛ). Then F
commutes with arbitrary limits and thus satisfies the hypotheses of Lemma 90.11.8.
We compute

TF = F (k[ϵ]) = MorCΛ(S, k[ϵ]) = DerΛ(S, k)
and more generally for a finite dimensional k-vector space V we have

F (k[V ]) = MorCΛ(S, k[V ]) = DerΛ(S, V ).
Explicitly, a Λ-algebra map f : S → k[V ] compatible with the augmentations
q : S → k and k[V ]→ k corresponds to the derivation D defined by s 7→ f(s)−q(s).
Conversely, a Λ-derivation D : S → V corresponds to f : S → k[V ] in CΛ defined
by the rule f(s) = q(s) + D(s). Since these identifications are functorial we see
that the k-vector spaces structures on TF and DerΛ(S, k) correspond (see Lemma
90.11.5). It follows that dimk TF is finite by Lemma 90.4.5.

Example 90.11.12.06SS The computation of Example 90.11.11 simplifies in the classical
case. Namely, in this case the tangent space of the functor F = S|CΛ is simply the
relative cotangent space of S over Λ, in a formula TF = TS/Λ. In fact, this works
more generally when the field extension k/k′ is separable. See Exercises, Exercise
111.35.2.

Lemma 90.11.13.06ID Let F,G : C → Sets be functors satisfying the hypotheses of
Lemma 90.11.8. Let t : F → G be a morphism of functors. For any M ∈
Ob(ModfgR ), the map tR[M ] : F (R[M ]) → G(R[M ]) is a map of R-modules, where

https://stacks.math.columbia.edu/tag/06IA
https://stacks.math.columbia.edu/tag/06IB
https://stacks.math.columbia.edu/tag/06SR
https://stacks.math.columbia.edu/tag/06IC
https://stacks.math.columbia.edu/tag/06SS
https://stacks.math.columbia.edu/tag/06ID
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F (R[M ]) and G(R[M ]) are given the R-module structure from Lemma 90.11.8. In
particular, tR[ϵ] : TF → TG is a map of R-modules.

Proof. Follows from Lemma 90.11.5. □

Example 90.11.14.06ST Suppose that f : R → S is a ring map in ĈΛ. Set F = R|CΛ

and G = S|CΛ . The ring map f induces a transformation of functors G → F . By
Lemma 90.11.13 we get a k-linear map TG→ TF . This is the map

TG = DerΛ(S, k) −→ DerΛ(R, k) = TF

as follows from the canonical identifications F (k[V ]) = DerΛ(R, V ) and G(k[V ]) =
DerΛ(S, V ) of Example 90.11.11 and the rule for computing the map on tangent
spaces.

Lemma 90.11.15.06IE Let F : C → Sets be a functor satisfying the hypotheses of
Lemma 90.11.8. Assume R = K is a field. Then F (K[V ]) ∼= TF ⊗K V for any
finite dimensional K-vector space V .

Proof. Follows from Lemma 90.11.6. □

90.12. Tangent spaces of predeformation categories

06I1 We will define tangent spaces of predeformation functors using the general Defini-
tion 90.11.9. We have spelled this out in Example 90.11.10. It applies to predefor-
mation categories by looking at the associated functor of isomorphism classes.

Definition 90.12.1.06IG Let F be a predeformation category. The tangent space TF of
F is the set F(k[ϵ]) of isomorphism classes of objects in the fiber category F(k[ϵ]).

Thus TF is nothing but the tangent space of the associated functor F : CΛ → Sets.
It has a natural vector space structure when F satisfies (S2), or, in fact, as long as
F does.

Lemma 90.12.2.06IH Let F be a predeformation category such that F satisfies (S2)2.
Then TF has a natural k-vector space structure. For any finite dimensional vector
space V we have F(k[V ]) = TF ⊗k V functorially in V .

Proof. Let us write F = F : CΛ → Sets. This is a predeformation functor and F
satisfies (S2). By Lemma 90.10.4 (and the translation of Remark 90.10.3) we see
that

F (A×k k[V ]) −→ F (A)× F (k[V ])
is a bijection for every finite dimensional vector space V and every A ∈ Ob(CΛ). In
particular, if A = k[W ] then we see that F (k[W ] ×k k[V ]) = F (k[W ]) × F (k[V ]).
In other words, the hypotheses of Lemma 90.11.8 hold and we see that TF = TF
has a natural k-vector space structure. The final assertion follows from Lemma
90.11.15. □

A morphism of predeformation categories induces a map on tangent spaces.

Definition 90.12.3.06II Let φ : F → G be a morphism predeformation categories. The
differential dφ : TF → TG of φ is the map obtained by evaluating the morphism
of functors φ : F → G at A = k[ϵ].

2For example if F satisfies (S2), see Lemma 90.10.5.

https://stacks.math.columbia.edu/tag/06ST
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Lemma 90.12.4.06IJ Let φ : F → G be a morphism of predeformation categories.
Assume F and G both satisfy (S2). Then dφ : TF → TG is k-linear.

Proof. In the proof of Lemma 90.12.2 we have seen that F and G satisfy the hy-
potheses of Lemma 90.11.8. Hence the lemma follows from Lemma 90.11.13. □

Remark 90.12.5.06IK We can globalize the notions of tangent space and differential
to arbitrary categories cofibered in groupoids as follows. Let F be a category
cofibered in groupoids over CΛ, and let x ∈ Ob(F(k)). As in Remark 90.6.4, we get
a predeformation category Fx. We define

TxF = TFx
to be the tangent space of F at x. If φ : F → G is a morphism of categories cofibered
in groupoids over CΛ and x ∈ Ob(F(k)), then there is an induced morphism φx :
Fx → Gφ(x). We define the differential dxφ : TxF → Tφ(x)G of φ at x to be the map
dφx : TFx → TGφ(x). If both F and G satisfy (S2) then all of these tangent spaces
have a natural k-vector space structure and all the differentials dxφ : TxF → Tφ(x)G
are k-linear (use Lemmas 90.10.6 and 90.12.4).

The following observations are uninteresting in the classical case or when k/k′ is a
separable field extension, because then DerΛ(k, k) and DerΛ(k, V ) are zero. There
is a canonical identification

MorCΛ(k, k[ϵ]) = DerΛ(k, k).

Namely, for D ∈ DerΛ(k, k) let fD : k → k[ϵ] be the map a 7→ a + D(a)ϵ. More
generally, given a finite dimensional vector space V over k we have

MorCΛ(k, k[V ]) = DerΛ(k, V )

and we will use the same notation fD for the map associated to the derivation D.
We also have

MorCΛ(k[W ], k[V ]) = Homk(V,W )⊕DerΛ(k, V )

where (φ,D) corresponds to the map fφ,D : a + w 7→ a + φ(w) + D(a). We will
sometimes write f1,D : a+v → a+v+D(a) for the automorphism of k[V ] determined
by the derivation D : k → V . Note that f1,D ◦ f1,D′ = f1,D+D′ .

Let F be a predeformation category over CΛ. Let x0 ∈ Ob(F(k)). By the above
there is a canonical map

γV : DerΛ(k, V ) −→ F(k[V ])

defined by D 7→ fD,∗(x0). Moreover, there is an action

aV : DerΛ(k, V )×F(k[V ]) −→ F(k[V ])

defined by (D,x) 7→ f1,D,∗(x). These two maps are compatible, i.e., f1,D,∗fD′,∗x0 =
fD+D′,∗x0 as follows from a computation of the compositions of these maps. Note
that the maps γV and aV are independent of the choice of x0 as there is a unique
x0 up to isomorphism.

Lemma 90.12.6.06SU Let F be a predeformation category over CΛ. If F has (S2) then
the maps γV are k-linear and we have aV (D,x) = x+ γV (D).

https://stacks.math.columbia.edu/tag/06IJ
https://stacks.math.columbia.edu/tag/06IK
https://stacks.math.columbia.edu/tag/06SU
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Proof. In the proof of Lemma 90.12.2 we have seen that the functor V 7→ F(k[V ])
transforms 0 to a singleton and products to products. The same is true of the
functor V 7→ DerΛ(k, V ). Hence γV is linear by Lemma 90.11.5. Let D : k → V be
a Λ-derivation. Set D1 : k → V ⊕2 equal to a 7→ (D(a), 0). Then

k[V × V ]
+

//

f1,D1
��

k[V ]

f1,D

��
k[V × V ] + // k[V ]

commutes. Unwinding the definitions and using that F (V × V ) = F (V ) × F (V )
this means that aD(x1)+x2 = aD(x1 +x2) for all x1, x2 ∈ F (V ). Thus it suffices to
show that aV (D, 0) = 0 + γV (D) where 0 ∈ F (V ) is the zero vector. By definition
this is the element f0,∗(x0). Since fD = f1,D ◦ f0 the desired result follows. □

A special case of the constructions above are the map
(90.12.6.1)06SV γ : DerΛ(k, k) −→ TF

and the action
(90.12.6.2)06SW a : DerΛ(k, k)× TF −→ TF

defined for any predeformation category F . Note that if φ : F → G is a morphism
of predeformation categories, then we get commutative diagrams

DerΛ(k, k)
γ
//

γ
%%

TF

dφ

��
TG

and

DerΛ(k, k)× TF
a
//

1×dφ
��

TF

dφ

��
DerΛ(k, k)× TG a // TG

90.13. Versal formal objects

06SX The existence of a versal formal object forces F to have property (S1).

Lemma 90.13.1.06SY Let F be a predeformation category. Assume F has a versal
formal object. Then F satisfies (S1).

Proof. Let ξ be a versal formal object of F . Let
x2

��
x1 // x

be a diagram in F such that x2 → x lies over a surjective ring map. Since the natural
morphism F̂ |CΛ

∼−→ F is an equivalence (see Remark 90.7.7), we can consider this
diagram also as a diagram in F̂ . By Lemma 90.8.11 there exists a morphism ξ → x1,
so by Remark 90.8.10 we also get a morphism ξ → x2 making the diagram

ξ //

��

x2

��
x1 // x

https://stacks.math.columbia.edu/tag/06SY
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commute. If x1 → x and x2 → x lie above ring maps A1 → A and A2 → A then
taking the pushforward of ξ to A1×AA2 gives an object y as required by (S1). □

In the case that our cofibred category satisfies (S1) and (S2) we can characterize
the versal formal objects as follows.

Lemma 90.13.2.06IU Let F be a predeformation category satisfying (S1) and (S2). Let
ξ be a formal object of F corresponding to ξ : R|CΛ → F , see Remark 90.7.12.
Then ξ is versal if and only if the following two conditions hold:

(1) the map dξ : TR|CΛ → TF on tangent spaces is surjective, and
(2) given a diagram in F̂

y

��
ξ // x

lying over
B

f

��
R // A

in ĈΛ with B → A a small extension of Artinian rings, then there exists a
ring map R→ B such that

B

f

��
R

??

// A

commutes.

Proof. If ξ is versal then (1) holds by Lemma 90.8.8 and (2) holds by Remark
90.8.10. Assume (1) and (2) hold. By Remark 90.8.10 we must show that given a
diagram in F̂ as in (2), there exists ξ → y such that

y

��
ξ

@@

// x

commutes. Let b : R → B be the map guaranteed by (2). Denote y′ = b∗ξ and
choose a factorization ξ → y′ → x lying over R → B → A of the given morphism
ξ → x. By (S1) we obtain a commutative diagram

z //

��

y

��
y′ // x

lying over

B ×A B

��

// B

f

��
B

f // A.

Set I = Ker(f). Let g : B ×A B → k[I] be the ring map (u, v) 7→ u ⊕ (v − u),
cf. Lemma 90.10.8. By (1) there exists a morphism ξ → g∗z which lies over a
ring map i : R → k[ϵ]. Choose an Artinian quotient b1 : R → B1 such that both
b : R → B and i : R → k[ϵ] factor through R → B1, i.e., giving h : B1 → B and
i′ : B1 → k[ϵ]. Choose a pushforward y1 = b1,∗ξ, a factorization ξ → y1 → y′

lying over R → B1 → B of ξ → y′, and a factorization ξ → y1 → g∗z lying over

https://stacks.math.columbia.edu/tag/06IU
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R→ B1 → k[ϵ] of ξ → g∗z. Applying (S1) once more we obtain
z1 //

��

z //

��

y

��
y1 // y′ // x

lying over

B1 ×A B

��

// B ×A B //

��

B

f

��
B1 // B // A.

Note that the map g : B1 ×A B → k[I] of Lemma 90.10.8 (defined using h) is the
composition of B1 ×A B → B ×A B and the map g above. By construction there
exists a morphism y1 → g∗z1 ∼= g∗z! Hence Lemma 90.10.8 applies (to the outer
rectangles in the diagrams above) to give a morphism y1 → y and precomposing
with ξ → y1 gives the desired morphism ξ → y. □

If F has property (S1) then the “largest quotient where a lift exists” exists. Here
is a precise statement.

Lemma 90.13.3.06SZ Let F be a category cofibred in groupoids over CΛ which has (S1).
Let B → A be a surjection in CΛ with kernel I annihilated by mB . Let x ∈ F(A).
The set of ideals

J = {J ⊂ I | there exists an y → x lying over B/J → A}

has a smallest element.

Proof. Note that J is nonempty as I ∈ J . Also, if J ∈ J and J ⊂ J ′ ⊂ I then
J ′ ∈ J because we can pushforward the object y to an object y′ over B/J ′. Let J
and K be elements of the displayed set. We claim that J ∩K ∈ J which will prove
the lemma. Since I is a k-vector space we can find an ideal J ⊂ J ′ ⊂ I such that
J ∩K = J ′ ∩K and such that J ′ +K = I. By the above we may replace J by J ′

and assume that J +K = I. In this case
A/(J ∩K) = A/J ×A/I A/K.

Hence the existence of an element z ∈ F(A/(J∩K)) mapping to x follows, via (S1),
from the existence of the elements we have assumed exist over A/J and A/K. □

We will improve on the following result later.

Lemma 90.13.4.06IW Let F be a category cofibred in groupoids over CΛ. Assume the
following conditions hold:

(1) F is a predeformation category.
(2) F satisfies (S1).
(3) F satisfies (S2).
(4) dimk TF is finite.

Then F has a versal formal object.

Proof. Assume (1), (2), (3), and (4) hold. Choose an object R ∈ Ob(ĈΛ) such that
R|CΛ is smooth. See Lemma 90.9.5. Let r = dimk TF and put S = R[[X1, . . . , Xr]].
We are going to inductively construct for n ≥ 2 pairs (Jn, fn−1 : ξn → ξn−1) where
Jn ⊂ S is an decreasing sequence of ideals and fn−1 : ξn → ξn−1 is a morphism of
F lying over the projection S/Jn → S/Jn−1.
Step 1. Let J1 = mS . Let ξ1 be the unique (up to unique isomorphism) object of
F over k = S/J1 = S/mS

https://stacks.math.columbia.edu/tag/06SZ
https://stacks.math.columbia.edu/tag/06IW
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Step 2. Let J2 = m2
S + mRS. Then S/J2 = k[V ] with V = kX1 ⊕ . . . ⊕ kXr By

(S2) for F we get a bijection

F(S/J2) −→ TF ⊗k V,

see Lemmas 90.10.5 and 90.12.2. Choose a basis θ1, . . . , θr for TF and set ξ2 =∑
θi ⊗Xi ∈ Ob(F(S/J2)). The point of this choice is that

dξ2 : MorCΛ(S/J2, k[ϵ]) −→ TF

is surjective. Let f1 : ξ2 → ξ1 be the unique morphism.

Induction step. Assume (Jn, fn−1 : ξn → ξn−1) has been constructed for some
n ≥ 2. There is a minimal element Jn+1 of the set of ideals J ⊂ S satisfying: (a)
mSJn ⊂ J ⊂ Jn and (b) there exists a morphism ξn+1 → ξn lying over S/J →
S/Jn, see Lemma 90.13.3. Let fn : ξn+1 → ξn be any morphism of F lying over
S/Jn+1 → S/Jn.

Set J =
⋂
Jn. Set S = S/J . Set Jn = Jn/J . By Lemma 90.4.7 the sequence of

ideals (Jn) induces the mS-adic topology on S. Since (ξn, fn) is an object of F̂I(S),
where I is the filtration (Jn) of S, we see that (ξn, fn) induces an object ξ of F̂(S).
see Lemma 90.7.4.

We prove ξ is versal. For versality it suffices to check conditions (1) and (2) of
Lemma 90.13.2. Condition (1) follows from our choice of ξ2 in Step 2 above. Sup-
pose given a diagram in F̂

y

��
ξ // x

lying over

B

f

��
S // A

in ĈΛ with f : B → A a small extension of Artinian rings. We have to show there
is a map S → B fitting into the diagram on the right. Choose n such that S → A
factors through S → S/Jn. This is possible as the sequence (Jn) induces the mS-
adic topology as we saw above. The pushforward of ξ along S → S/Jn is ξn. We
may factor ξ → x as ξ → ξn → x hence we get a diagram in F

y

��
ξn // x

lying over

B

f

��
S/Jn // A.

To check condition (2) of Lemma 90.13.2 it suffices to complete the diagram

S/Jn+1

��

// B

f

��
S/Jn // A
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or equivalently, to complete the diagram

S/Jn ×A B

p1

��
S/Jn+1

88

// S/Jn.

If p1 has a section we are done. If not, by Lemma 90.3.8 (2) p1 is a small
extension, so by Lemma 90.3.12 (4) p1 is an essential surjection. Recall that
S = R[[X1, . . . , Xr]] and that we chose R such that R|CΛ is smooth. Hence there ex-
ists a map h : R→ B lifting the map R→ S → S/Jn → A. By the universal prop-
erty of a power series ring there is an R-algebra map h : S = R[[X1, . . . , Xr]]→ B
lifting the given map S → S/Jn → A. This induces a map g : S → S/Jn ×A B
making the solid square in the diagram

S

��

g
// S/Jn ×A B

p1

��
S/Jn+1

88

// S/Jn

commute. Then g is a surjection since p1 is an essential surjection. We claim the
ideal K = Ker(g) of S satisfies conditions (a) and (b) of the construction of Jn+1
in the induction step above. Namely, K ⊂ Jn is clear and mSJn ⊂ K as p1 is a
small extension; this proves (a). By (S1) applied to

y

��
ξn // x,

there exists a lifting of ξn to S/K ∼= S/Jn ×A B, so (b) holds. Since Jn+1 was the
minimal ideal with properties (a) and (b) this implies Jn+1 ⊂ K. Thus the desired
map S/Jn+1 → S/K ∼= S/Jn ×A B exists. □

Remark 90.13.5.0D3G Let F : CΛ → Sets be a predeformation functor satisfying (S1) and
(S2). The condition dimk TF < ∞ is precisely condition (H3) from Schlessinger’s
paper. Recall that (S1) and (S2) correspond to conditions (H1) and (H2), see
Remark 90.10.3. Thus Lemma 90.13.4 tells us

(H1) + (H2) + (H3)⇒ there exists a versal formal object
for predeformation functors. We will make the link with hulls in Remark 90.15.6.

90.14. Minimal versal formal objects

06T0 We do a little bit of work to try and understand (non)uniqueness of versal formal
objects. It turns out that if a predeformation category has a versal formal object,
then it has a minimal versal formal object and any two such are isomorphic. More-
over, all versal formal objects are “more or less” the same up to replacing the base
ring by a power series extension.
Let F be a category cofibred in groupoids over CΛ. For every object x of F lying
over A ∈ Ob(CΛ) consider the category Sx with objects

Ob(Sx) = {x′ → x | x′ → x lies over A′ ⊂ A}

https://stacks.math.columbia.edu/tag/0D3G
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and morphisms are morphisms over x. For every y → x in F lying over f : B → A
in CΛ there is a functor f∗ : Sy → Sx defined as follows: Given y′ → y lying over
B′ ⊂ B set A′ = f(B′) and let y′ → x′ be over B′ → f(B′) be the pushforward of
y′. By the axioms of a category cofibred in groupoids we obtain a unique morphism
x′ → x lying over f(B′)→ A such that

y′

��

// x′

��
y // x

commutes. Then x′ → x is an object of Sx. We say an object x′ → x of Sx is
minimal if any morphism (x′

1 → x) → (x′ → x) in Sx is an isomorphism, i.e.,
x′ and x′

1 are defined over the same subring of A. Since A has finite length as a
Λ-module we see that minimal objects always exist.

Lemma 90.14.1.06T1 Let F be a category cofibred in groupoids over CΛ which has (S1).
(1) For y → x in F a minimal object in Sy maps to a minimal object of Sx.
(2) For y → x in F lying over a surjection f : B → A in CΛ every minimal

object of Sx is the image of a minimal object of Sy.

Proof. Proof of (1). Say y → x lies over f : B → A. Let y′ → y lying over B′ ⊂ B
be a minimal object of Sy. Let

y′

��

// x′

��
y // x

lying over

B′

��

// f(B′)

��
B // A

be as in the construction of f∗ above. Suppose that (x′′ → x) → (x′ → x) is
a morphism of Sx with x′′ → x′ lying over A′′ ⊂ f(B′). By (S1) there exists
y′′ → y′ lying over B′ ×f(B′) A

′′ → B′. Since y′ → y is minimal we conclude that
B′ ×f(B′) A

′′ → B′ is an isomorphism, which implies that A′′ = f(B′), i.e., x′ → x
is minimal.
Proof of (2). Suppose f : B → A is surjective and y → x lies over f . Let
x′ → x be a minimal object of Sx lying over A′ ⊂ A. By (S1) there exists y′ → y
lying over B′ = f−1(A′) = B ×A A′ → B whose image in Sx is x′ → x. So
f∗(y′ → y) = x′ → x. Choose a morphism (y′′ → y)→ (y′ → y) in Sy with y′′ → y
a minimal object (this is possible by the remark on lengths above the lemma). Then
f∗(y′′ → y) is an object of Sx which maps to x′ → x (by functoriality of f∗) hence
is isomorphic to x′ → x by minimality of x′ → x. □

Lemma 90.14.2.06T2 Let F be a category cofibred in groupoids over CΛ which has (S1).
Let ξ be a versal formal object of F lying over R. There exists a morphism ξ′ → ξ
lying over R′ ⊂ R with the following minimality properties

(1) for every f : R→ A with A ∈ Ob(CΛ) the pushforwards

ξ′

��

// x′

��
ξ // x

lying over

R′

��

// f(R′)

��
R // A

https://stacks.math.columbia.edu/tag/06T1
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produce a minimal object x′ → x of Sx, and
(2) for any morphism of formal objects ξ′′ → ξ′ the corresponding morphism

R′′ → R′ is surjective.

Proof. Write ξ = (R, ξn, fn). Set R′
1 = k and ξ′

1 = ξ1. Suppose that we have
constructed minimal objects ξ′

m → ξm of Sξm lying over R′
m ⊂ R/mmR for m ≤ n

and morphisms f ′
m : ξ′

m+1 → ξ′
m compatible with fm for m ≤ n − 1. By Lemma

90.14.1 (2) there exists a minimal object ξ′
n+1 → ξn+1 lying over R′

n+1 ⊂ R/mn+1
R

whose image is ξ′
n → ξn over R′

n ⊂ R/mnR. This produces the commutative diagram

ξ′
n+1

f ′
n

//

��

ξ′
n

��
ξn+1

fn // ξn

by construction. Moreover the ring map R′
n+1 → R′

n is surjective. Set R′ =
limnR

′
n. Then R′ → R is injective.

However, it isn’t a priori clear that R′ is Noetherian. To prove this we use that ξ
is versal. Namely, versality implies that there exists a morphism ξ → ξ′

n in F̂ , see
Lemma 90.8.11. The corresponding map R→ R′

n has to be surjective (as ξ′
n → ξn

is minimal in Sξn). Thus the dimensions of the cotangent spaces are bounded and
Lemma 90.4.8 implies R′ is Noetherian, i.e., an object of ĈΛ. By Lemma 90.7.4
(plus the result on filtrations of Lemma 90.4.8) the sequence of elements ξ′

n defines
a formal object ξ′ over R′ and we have a map ξ′ → ξ.

By construction (1) holds for R → R/mnR for each n. Since each R → A as in (1)
factors through R→ R/mnR → A we see that (1) for x′ → x over f(R) ⊂ A follows
from the minimality of ξ′

n → ξn over R′
n → R/mnR by Lemma 90.14.1 (1).

If R′′ → R′ as in (2) is not surjective, then R′′ → R′ → R′
n would not be surjective

for some n and ξ′
n → ξn wouldn’t be minimal, a contradiction. This contradiction

proves (2). □

Lemma 90.14.3.06T3 Let F be a category cofibred in groupoids over CΛ which has (S1).
Let ξ be a versal formal object of F lying over R. Let ξ′ → ξ be a morphism of
formal objects lying over R′ ⊂ R as constructed in Lemma 90.14.2. Then

R ∼= R′[[x1, . . . , xr]]

is a power series ring over R′. Moreover, ξ′ is a versal formal object too.

Proof. By Lemma 90.8.11 there exists a morphism ξ → ξ′. By Lemma 90.14.2 the
corresponding map f : R → R′ induces a surjection f |R′ : R′ → R′. This is an
isomorphism by Algebra, Lemma 10.31.10. Hence I = Ker(f) is an ideal of R such
that R = R′ ⊕ I. Let x1, . . . , xn ∈ I be elements which form a basis for I/mRI.
Consider the map S = R′[[X1, . . . , Xr]] → R mapping Xi to xi. For every n ≥ 1
we get a surjection of Artinian R′-algebras B = S/mnS → R/mnR = A. Denote
y ∈ Ob(F(B), resp. x ∈ Ob(F(A)) the pushforward of ξ′ along R′ → S → B, resp.
R′ → S → A. Note that x is also the pushforward of ξ along R → A as ξ is the

https://stacks.math.columbia.edu/tag/06T3
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pushforward of ξ′ along R′ → R. Thus we have a solid diagram

y

��
ξ //

@@

x

lying over

S/mnS

��
R //

==

R/mnR

Because ξ is versal, using Remark 90.8.10 we obtain the dotted arrows fitting into
these diagrams. In particular, the maps S/mnS → R/mnR have sections hn : R/mnR →
S/mnS . It follows from Lemma 90.4.9 that S → R is an isomorphism.
As ξ is a pushforward of ξ′ along R′ → R we obtain from Remark 90.7.13 a com-
mutative diagram

R|CΛ
//

ξ !!

R′|CΛ

ξ′
}}

F
Since R′ → R has a left inverse (namely R→ R/I = R′) we see that R|CΛ → R′|CΛ

is essentially surjective. Hence by Lemma 90.8.7 we see that ξ′ is smooth, i.e., ξ′ is
a versal formal object. □

Motivated by the preceding lemmas we make the following definition.

Definition 90.14.4.06T4 Let F be a predeformation category. We say a versal formal
object ξ of F is minimal3 if for any morphism of formal objects ξ′ → ξ the underlying
map on rings is surjective. Sometimes a minimal versal formal object is called
miniversal.

The work in this section shows this definition is reasonable. First of all, the existence
of a versal formal object implies that F has (S1). Then the preceding lemmas show
there exists a minimal versal formal object. Finally, any two minimal versal formal
objects are isomorphic. Here is a summary of our results (with detailed proofs).

Lemma 90.14.5.06T5 Let F be a predeformation category which has a versal formal
object. Then

(1) F has a minimal versal formal object,
(2) minimal versal objects are unique up to isomorphism, and
(3) any versal object is the pushforward of a minimal versal object along a

power series ring extension.

Proof. Suppose F has a versal formal object ξ over R. Then it satisfies (S1), see
Lemma 90.13.1. Let ξ′ → ξ over R′ ⊂ R be any of the morphisms constructed in
Lemma 90.14.2. By Lemma 90.14.3 we see that ξ′ is versal, hence it is a minimal
versal formal object (by construction). This proves (1). Also, R ∼= R′[[x1, . . . , xn]]
which proves (3).
Suppose that ξi/Ri are two minimal versal formal objects. By Lemma 90.8.11 there
exist morphisms ξ1 → ξ2 and ξ2 → ξ1. The corresponding ring maps f : R1 → R2
and g : R2 → R1 are surjective by minimality. Hence the compositions g ◦f : R1 →
R1 and f ◦ g : R2 → R2 are isomorphisms by Algebra, Lemma 10.31.10. Thus f

3This may be nonstandard terminology. Many authors tie this notion in with properties of
tangent spaces. We will make the link in Section 90.15.
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and g are isomorphisms whence the maps ξ1 → ξ2 and ξ2 → ξ1 are isomorphisms
(because F̂ is cofibred in groupoids by Lemma 90.7.2). This proves (2) and finishes
the proof of the lemma. □

90.15. Miniversal formal objects and tangent spaces

06IL The general notion of minimality introduced in Definition 90.14.4 can sometimes
be deduced from the behaviour on tangent spaces. Let ξ be a formal object of the
predeformation category F and let ξ : R|CΛ → F be the corresponding morphism.
Then we can consider the following the condition

(90.15.0.1)06IM dξ : DerΛ(R, k)→ TF is bijective

and the condition

(90.15.0.2)06T6 dξ : DerΛ(R, k)→ TF is bijective on DerΛ(k, k)-orbits.

Here we are using the identification TR|CΛ = DerΛ(R, k) of Example 90.11.11 and
the action (90.12.6.2) of derivations on the tangent spaces. If k′ ⊂ k is separable,
then DerΛ(k, k) = 0 and the two conditions are equivalent. It turns out that, in the
presence of condition (S2) a versal formal object is minimal if and only if ξ satisfies
(90.15.0.2). Moreover, if ξ satisfies (90.15.0.1), then F satisfies (S2).

Lemma 90.15.1.06IR Let F be a predeformation category. Let ξ be a versal formal
object of F such that (90.15.0.2) holds. Then ξ is a minimal versal formal object.
In particular, such ξ are unique up to isomorphism.

Proof. If ξ is not minimal, then there exists a morphism ξ′ → ξ lying over R′ → R
such that R = R′[[x1, . . . , xn]] with n > 0, see Lemma 90.14.5. Thus dξ factors as

DerΛ(R, k)→ DerΛ(R′, k)→ TF

and we see that (90.15.0.2) cannot hold because D : f 7→ ∂/∂x1(f) mod mR is an
element of the kernel of the first arrow which is not in the image of DerΛ(k, k) →
DerΛ(R, k). □

Lemma 90.15.2.06IV Let F be a predeformation category. Let ξ be a versal formal
object of F such that (90.15.0.1) holds. Then

(1) F satisfies (S1).
(2) F satisfies (S2).
(3) dimk TF is finite.

Proof. Condition (S1) holds by Lemma 90.13.1. The first part of (S2) holds since
(S1) holds. Let

y
c
//

a

��

xϵ

e

��
x

d // x0

and

y′
c′
//

a′

��

xϵ

e

��
x

d // x0

lying over

A×k k[ϵ] //

��

k[ϵ]

��
A // k
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be diagrams as in the second part of (S2). As above we can find morphisms b : ξ → y
and b′ : ξ → y′ such that

ξ
b′
//

b

��

y′

a′

��
y

a // x

commutes. Let p : F → CΛ denote the structure morphism. Say p̂(ξ) = R, i.e., ξ
lies over R ∈ Ob(ĈΛ). We see that the pushforward of ξ via p(c) ◦ p(b) is xϵ and
that the pushforward of ξ via p(c′) ◦ p(b′) is xϵ. Since ξ satisfies (90.15.0.1), we see
that p(c) ◦ p(b) = p(c′) ◦ p(b′) as maps R → k[ϵ]. Hence p(b) = p(b′) as maps from
R → A×k k[ϵ]. Thus we see that y and y′ are isomorphic to the pushforward of ξ
along this map and we get a unique morphism y → y′ over A ×k k[ϵ] compatible
with b and b′ as desired.
Finally, by Example 90.11.11 we see dimk TF = dimk TR|CΛ is finite. □

Example 90.15.3.06T7 There exist predeformation categories which have a versal formal
object satisfying (90.15.0.2) but which do not satisfy (S2). A quick example is to
take F = k[ϵ]/G where G ⊂ AutCΛ(k[ϵ]) is a finite nontrivial subgroup. Namely,
the map k[ϵ] → F is smooth, but the tangent space of F does not have a natural
k-vector space structure (as it is a quotient of a k-vector space by a finite group).
Lemma 90.15.4.06T8 Let F be a predeformation category satisfying (S2) which has a
versal formal object. Then its minimal versal formal object satisfies (90.15.0.2).
Proof. Let ξ be a minimal versal formal object for F , see Lemma 90.14.5. Say ξ lies
over R ∈ Ob(ĈΛ). In order to parse (90.15.0.2) we point out that TF has a natural
k-vector space structure (see Lemma 90.12.2), that dξ : DerΛ(R, k)→ TF is linear
(see Lemma 90.12.4), and that the action of DerΛ(k, k) is given by addition (see
Lemma 90.12.6). Consider the diagram

Homk(mR/m2
R, k)

K // DerΛ(R, k)
dξ

//

OO

TF

DerΛ(k, k)

OO 77

The vector space K is the kernel of dξ. Note that the middle column is exact in the
middle as it is dual to the sequence (90.3.10.1). If (90.15.0.2) fails, then we can find
a nonzero element D ∈ K which does not map to zero in Homk(mR/m2

R, k). This
means there exists an t ∈ mR such that D(t) = 1. Set R′ = {a ∈ R | D(a) = 0}.
As D is a derivation this is a subring of R. Since D(t) = 1 we see that R′ → k is
surjective (compare with the proof of Lemma 90.3.12). Note that mR′ = Ker(D :
mR → k) is an ideal of R and m2

R ⊂ mR′ . Hence
mR/m

2
R = mR′/m2

R + kt

which implies that the map
R′/m2

R ×k k[ϵ]→ R/m2
R

https://stacks.math.columbia.edu/tag/06T7
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sending ϵ to t is an isomorphism. In particular there is a map R/m2
R → R′/m2

R.

Let ξ → y be a morphism lying over R → R/m2
R. Let y → x be a morphism lying

over R/m2
R → R′/m2

R. Let y → xϵ be a morphism lying over R/m2
R → k[ϵ]. Let x0

be the unique (up to unique isomorphism) object of F over k. By the axioms of a
category cofibred in groupoids we obtain a commutative diagram

y //

��

xϵ

��
x // x0

lying over

R′/m2
R ×k k[ϵ] //

��

k[ϵ]

��
R′/m2

R
// k.

Because D ∈ K we see that xϵ is isomorphic to 0 ∈ F(k[ϵ]), i.e., xϵ is the pushfor-
ward of x0 via k → k[ϵ], a 7→ a. Hence by Lemma 90.10.7 we see that there exists a
morphism x→ y. Since lengthΛ(R′/m2

R) < lengthΛ(R/m2
R) the corresponding ring

map R′/m2
R → R/m2

R is not surjective. This contradicts the minimality of ξ/R, see
part (1) of Lemma 90.14.2. This contradiction shows that such a D cannot exist,
hence we win. □

Theorem 90.15.5.06IX Let F be a predeformation category. Consider the following
conditions

(1) F has a minimal versal formal object satisfying (90.15.0.1),
(2) F has a minimal versal formal object satisfying (90.15.0.2),
(3) the following conditions hold:

(a) F satisfies (S1).
(b) F satisfies (S2).
(c) dimk TF is finite.

We always have
(1)⇒ (3)⇒ (2).

If k′ ⊂ k is separable, then all three are equivalent.

Proof. Lemma 90.15.2 shows that (1)⇒ (3). Lemmas 90.13.4 and 90.15.4 show that
(3) ⇒ (2). If k′ ⊂ k is separable then DerΛ(k, k) = 0 and we see that (90.15.0.1) =
(90.15.0.2), i.e., (1) is the same as (2).

An alternative proof of (3) ⇒ (1) in the classical case is to add a few words to the
proof of Lemma 90.13.4 to see that one can right away construct a versal object
which satisfies (90.15.0.1) in this case. This avoids the use of Lemma 90.13.4 in the
classical case. Details omitted. □

Remark 90.15.6.06IY Let F : CΛ → Sets be a predeformation functor satisfying (S1) and
(S2) and dimk TF <∞. Recall that these conditions correspond to the conditions
(H1), (H2), and (H3) from Schlessinger’s paper, see Remark 90.13.5. Now, in the
classical case (or if k′ ⊂ k is separable) following Schlessinger we introduce the
notion of a hull: a hull is a versal formal object ξ ∈ F̂ (R) such that dξ : TR|CΛ →
TF is an isomorphism, i.e., (90.15.0.1) holds. Thus Theorem 90.15.5 tells us

(H1) + (H2) + (H3)⇒ there exists a hull

in the classical case. In other words, our theorem recovers Schlessinger’s theorem
on the existence of hulls.

https://stacks.math.columbia.edu/tag/06IX
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Remark 90.15.7.06IZ Let F be a predeformation category. Recall that F → F is
smooth, see Remark 90.8.5. Hence if ξ ∈ F̂(R) is a versal formal object, then the
composition

R|CΛ −→ F −→ F

is smooth (Lemma 90.8.7) and we conclude that the image ξ of ξ in F is a versal
formal object. If (90.15.0.1) holds, then ξ induces an isomorphism TR|CΛ → TF
because F → F identifies tangent spaces. Hence in this case ξ is a hull for F ,
see Remark 90.15.6. By Theorem 90.15.5 we can always find such a ξ if k′ ⊂ k is
separable and F is a predeformation category satisfying (S1), (S2), and dimk TF <
∞.

Example 90.15.8.06T9 In Lemma 90.9.5 we constructed objects R ∈ ĈΛ such that R|CΛ

is smooth and such that

H1(Lk/Λ) = mR/m
2
R and ΩR/Λ ⊗R k = Ωk/Λ

Let us reinterpret this using the theorem above. Namely, consider F = CΛ as a
category cofibred in groupoids over itself (using the identity functor). Then F is
a predeformation category, satisfies (S1) and (S2), and we have TF = 0. Thus
F satisfies condition (3) of Theorem 90.15.5. The theorem implies that (2) holds,
i.e., we can find a minimal versal formal object ξ ∈ F̂(S) over some S ∈ ĈΛ
satisfying (90.15.0.2). Lemma 90.9.3 shows that Λ → S is formally smooth in
the mS-adic topology (because ξ : R|CΛ → F = CΛ is smooth). Now condition
(90.15.0.2) tells us that DerΛ(S, k) → 0 is bijective on DerΛ(k, k)-orbits. This
means the injection DerΛ(k, k)→ DerΛ(S, k) is also surjective. In other words, we
have ΩS/Λ ⊗S k = Ωk/Λ. Since Λ→ S is formally smooth in the mS-adic topology,
we can apply More on Algebra, Lemma 15.40.4 to conclude the exact sequence
(90.3.10.2) turns into a pair of identifications

H1(Lk/Λ) = mS/m
2
S and ΩS/Λ ⊗S k = Ωk/Λ

Reading the argument backwards, we find that the R constructed in Lemma 90.9.5
carries a minimal versal object. By the uniqueness of minimal versal objects
(Lemma 90.14.5) we also conclude R ∼= S, i.e., the two constructions give the
same answer.

90.16. Rim-Schlessinger conditions and deformation categories

06J1 There is a very natural property of categories fibred in groupoids over CΛ which is
easy to check in practice and which implies Schlessinger’s properties (S1) and (S2)
we have introduced earlier.

Definition 90.16.1.06J2 Let F be a category cofibered in groupoids over CΛ. We say
that F satisfies condition (RS) if for every diagram in F

x2

��
x1 // x

lying over

A2

��
A1 // A

https://stacks.math.columbia.edu/tag/06IZ
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in CΛ with A2 → A surjective, there exists a fiber product x1 ×x x2 in F such that
the diagram

x1 ×x x2 //

��

x2

��
x1 // x

lies over

A1 ×A A2 //

��

A2

��
A1 // A.

Lemma 90.16.2.06J3 Let F be a category cofibered in groupoids over CΛ satisfying
(RS). Given a commutative diagram in F

y //

��

x2

��
x1 // x

lying over

A1 ×A A2 //

��

A2

��
A1 // A.

with A2 → A surjective, then it is a fiber square.

Proof. Since F satisfies (RS), there exists a fiber product diagram

x1 ×x x2 //

��

x2

��
x1 // x

lying over

A1 ×A A2 //

��

A2

��
A1 // A.

The induced map y → x1 ×x x2 lies over id : A1 ×A A1 → A1 ×A A1, hence it is an
isomorphism. □

Lemma 90.16.3.06J4 Let F be a category cofibered in groupoids over CΛ. Then F
satisfies (RS) if the condition in Definition 90.16.1 is assumed to hold only when
A2 → A is a small extension.

Proof. Apply Lemma 90.3.3. The proof is similar to that of Lemma 90.8.2. □

Lemma 90.16.4.06J5 Let F be a category cofibered in groupoids over CΛ. The following
are equivalent

(1) F satisfies (RS),
(2) the functor F(A1 ×A A2) → F(A1) ×F(A) F(A2) see (90.10.1.1) is an

equivalence of categories whenever A2 → A is surjective, and
(3) same as in (2) whenever A2 → A is a small extension.

Proof. Assume (1). By Lemma 90.16.2 we see that every object of F(A1×A A2) is
of the form x1 ×x x2. Moreover

MorA1×AA2(x1 ×x x2, y1 ×y y2) = MorA1(x1, y1)×MorA(x,y) MorA2(x2, y2).

Hence we see that F(A1 ×A A2) is a 2-fibre product of F(A1) with F(A2) over
F(A) by Categories, Remark 4.31.5. In other words, we see that (2) holds.

The implication (2) ⇒ (3) is immediate.

Assume (3). Let q1 : A1 → A and q2 : A2 → A be given with q2 a small ex-
tension. We will use the description of the 2-fibre product F(A1) ×F(A) F(A2)
from Categories, Remark 4.31.5. Hence let y ∈ F(A1 ×A A2) correspond to

https://stacks.math.columbia.edu/tag/06J3
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(x1, x2, x, a1 : x1 → x, a2 : x2 → x). Let z be an object of F lying over C.
Then

MorF (z, y) = {(f, α) | f : C → A1 ×A A2, α : f∗z → y}
= {(f1, f2, α1, α2) | fi : C → Ai, αi : fi,∗z → xi,

q1 ◦ f1 = q2 ◦ f2, q1,∗α1 = q2,∗α2}
= MorF (z, x1)×MorF (z,x) MorF (z, x2)

whence y is a fibre product of x1 and x2 over x. Thus we see that F satisfies (RS)
in case A2 → A is a small extension. Hence (RS) holds by Lemma 90.16.3. □

Remark 90.16.5.06J6 When F is cofibered in sets, condition (RS) is exactly condition
(H4) from Schlessinger’s paper [Sch68, Theorem 2.11]. Namely, for a functor F :
CΛ → Sets, condition (RS) states: If A1 → A and A2 → A are maps in CΛ with
A2 → A surjective, then the induced map F (A1 ×A A2) → F (A1) ×F (A) F (A2) is
bijective.

Lemma 90.16.6.06J7 Let F be a category cofibered in groupoids over CΛ. The condition
(RS) for F implies both (S1) and (S2) for F .

Proof. Using the reformulation of Lemma 90.16.4 and the explanation of (S1) fol-
lowing Definition 90.10.1 it is immediate that (RS) implies (S1). This proves the
first part of (S2). The second part of (S2) follows because Lemma 90.16.2 tells us
that y = x1×d,x0,e x2 = y′ if y, y′ are as in the second part of the definition of (S2)
in Definition 90.10.1. (In fact the morphism y → y′ is compatible with both a, a′

and c, c′!) □

The following lemma is the analogue of Lemma 90.10.5. Recall that if F is a
category cofibred in groupoids over CΛ and x is an object of F lying over A, then
we denote AutA(x) = MorA(x, x) = MorF(A)(x, x). If x′ → x is a morphism of F
lying over A′ → A then there is a well defined map of groups AutA′(x′)→ AutA(x).

Lemma 90.16.7.06J8 Let F be a category cofibered in groupoids over CΛ satisfying
(RS). The following conditions are equivalent:

(1) F satisfies (RS).
(2) Let f1 : A1 → A and f2 : A2 → A be ring maps in CΛ with f2 surjective.

The induced map of sets of isomorphism classes

F(A1)×F(A) F(A2)→ F(A1)×F(A) F(A2)

is injective.
(3) For every morphism x′ → x in F lying over a surjective ring map A′ → A,

the map AutA′(x′)→ AutA(x) is surjective.
(4) For every morphism x′ → x in F lying over a small extension A′ → A,

the map AutA′(x′)→ AutA(x) is surjective.

Proof. We prove that (1) is equivalent to (2) and (2) is equivalent to (3). The
equivalence of (3) and (4) follows from Lemma 90.3.3.
Let f1 : A1 → A and f2 : A2 → A be ring maps in CΛ with f2 surjective. By
Remark 90.16.5 we see F satisfies (RS) if and only if the map

F(A1 ×A A2)→ F(A1)×F(A) F(A2)
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is bijective for any such f1, f2. This map is at least surjective since that is the
condition of (S1) and F satisfies (S1) by Lemmas 90.16.6 and 90.10.5. Moreover,
this map factors as

F(A1 ×A A2) −→ F(A1)×F(A) F(A2) −→ F(A1)×F(A) F(A2),
where the first map is a bijection since

F(A1 ×A A2) −→ F(A1)×F(A) F(A2)
is an equivalence by (RS) for F . Hence (1) is equivalent to (2).
Assume (2) holds. Let x′ → x be a morphism in F lying over a surjective ring map
f : A′ → A. Let a ∈ AutA(x). The objects

(x′, x′, a : x→ x), (x′, x′, id : x→ x)
of F(A′) ×F(A) F(A′) have the same image in F(A′) ×F(A) F(A′). By (2) there
exists maps b1, b2 : x′ → x′ such that

x
a
//

f∗b1

��

x

f∗b2

��
x

id // x

commutes. Hence b−1
2 ◦ b1 ∈ AutA′(x′) has image a ∈ AutA(x). Hence (3) holds.

Assume (3) holds. Suppose
(x1, x2, a : (f1)∗x1 → (f2)∗x2), (x′

1, x
′
2, a

′ : (f1)∗x
′
1 → (f2)∗x

′
2)

are objects of F(A1) ×F(A) F(A2) with the same image in F(A1) ×F(A) F(A2).
Then there are morphisms b1 : x1 → x′

1 in F(A1) and b2 : x2 → x′
2 in F(A2). By

(3) we can modify b2 by an automorphism of x2 over A2 so that the diagram

(f1)∗x1 a
//

(f1)∗b1

��

(f2)∗x2

(f2)∗b2

��
(f1)∗x

′
1

a′
// (f2)∗x

′
2.

commutes. This proves (x1, x2, a) ∼= (x′
1, x

′
2, a

′) in F(A1)×F(A) F(A2). Hence (2)
holds. □

Finally we define the notion of a deformation category.

Definition 90.16.8.06J9 A deformation category is a predeformation category F satis-
fying (RS). A morphism of deformation categories is a morphism of categories over
CΛ.

Remark 90.16.9.06JA We say that a functor F : CΛ → Sets is a deformation functor if
the associated cofibered set is a deformation category, i.e. if F (k) is a one element
set and F satisfies (RS). If F is a deformation category, then F is a predeformation
functor but not necessarily a deformation functor, as Lemma 90.16.7 shows.

Example 90.16.10.06JB A prorepresentable functor F is a deformation functor. Namely,
suppose R ∈ Ob(ĈΛ) and F (A) = MorĈΛ

(R,A). There is a unique morphism
R→ k, so F (k) is a one element set. Since

HomΛ(R,A1 ×A A2) = HomΛ(R,A1)×HomΛ(R,A) HomΛ(R,A2)
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the same is true for maps in ĈΛ and we see that F has (RS).

The following is one of our typical remarks on passing from a category cofibered
in groupoids to the predeformation category at a point over k: it says that this
process preserves (RS).

Lemma 90.16.11.06JC Let F be a category cofibered in groupoids over CΛ. Let x0 ∈
Ob(F(k)). Let Fx0 be the category cofibred in groupoids over CΛ constructed in
Remark 90.6.4. If F satisfies (RS), then so does Fx0 . In particular, Fx0 is a
deformation category.

Proof. Any diagram as in Definition 90.16.1 in Fx0 gives rise to a diagram in F
and the output of (RS) for this diagram in F can be viewed as an output for Fx0

as well. □

The following lemma is the analogue of the fact that 2-fibre products of algebraic
stacks are algebraic stacks.

Lemma 90.16.12.06L4 Let
H×F G //

��

G

g

��
H

f // F
be 2-fibre product of categories cofibered in groupoids over CΛ. If F ,G,H all satisfy
(RS), then H×F G satisfies (RS).

Proof. If A is an object of CΛ, then an object of the fiber category of H×F G over
A is a triple (u, v, a) where u ∈ H(A), v ∈ G(A), and a : f(u)→ g(v) is a morphism
in F(A). Consider a diagram in H×F G

(u2, v2, a2)

��
(u1, v1, a1) // (u, v, a)

lying over

A2

��
A1 // A

in CΛ with A2 → A surjective. Since H and G satisfy (RS), there are fiber products
u1 ×u u2 and v1 ×v v2 lying over A1 ×A A2. Since F satisfies (RS), Lemma 90.16.2
shows

f(u1 ×u u2) //

��

f(u2)

��
f(u1) // f(u)

and

g(v1 ×v v2) //

��

g(v2)

��
g(v1) // g(v)

are both fiber squares in F . Thus we can view a1 ×a a2 as a morphism from
f(u1 ×u u2) to g(v1 ×v v2) over A1 ×A A2. It follows that

(u1 ×u u2, v1 ×v v2, a1 ×a a2)

��

// (u2, v2, a2)

��
(u1, v1, a1) // (u, v, a)

is a fiber square in H×F G as desired. □
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90.17. Lifts of objects

06JD The content of this section is that the tangent space has a principal homogeneous
action on the set of lifts along a small extension in the case of a deformation
category.

Definition 90.17.1.06JE Let F be a category cofibered in groupoids over CΛ. Let f :
A′ → A be a map in CΛ. Let x ∈ F(A). The category Lift(x, f) of lifts of x along
f is the category with the following objects and morphisms.

(1) Objects: A lift of x along f is a morphism x′ → x lying over f .
(2) Morphisms: A morphism of lifts from a1 : x′

1 → x to a2 : x′
2 → x is a

morphism b : x′
1 → x′

2 in F(A′) such that a2 = a1 ◦ b.
The set Lift(x, f) of lifts of x along f is the set of isomorphism classes of Lift(x, f).

Remark 90.17.2.06JF When the map f : A′ → A is clear from the context, we may
write Lift(x,A′) and Lift(x,A′) in place of Lift(x, f) and Lift(x, f).

Remark 90.17.3.06JG Let F be a category cofibred in groupoids over CΛ. Let x0 ∈
Ob(F(k)). Let V be a finite dimensional vector space. Then Lift(x0, k[V ]) is the
set of isomorphism classes of Fx0(k[V ]) where Fx0 is the predeformation category
of objects in F lying over x0, see Remark 90.6.4. Hence if F satisfies (S2), then so
does Fx0 (see Lemma 90.10.6) and by Lemma 90.12.2 we see that

Lift(x0, k[V ]) = TFx0 ⊗k V

as k-vector spaces.

Remark 90.17.4.06JH Let F be a category cofibered in groupoids over CΛ satisfying
(RS). Let

A1 ×A A2 //

��

A2

��
A1 // A

be a fibre square in CΛ such that either A1 → A or A2 → A is surjective. Let
x ∈ Ob(F(A)). Given lifts x1 → x and x2 → x of x to A1 and A2, we get by (RS)
a lift x1 ×x x2 → x of x to A1 ×A A2. Conversely, by Lemma 90.16.2 any lift of x
to A1 ×A A2 is of this form. Hence a bijection

Lift(x,A1)× Lift(x,A2) −→ Lift(x,A1 ×A A2).

Similarly, if x1 → x is a fixed lifting of x to A1, then there is a bijection

Lift(x1, A1 ×A A2) −→ Lift(x,A2).

Now let
A′

1 ×A A2 //

��

A1 ×A A2 //

��

A2

��
A′

1
// A1 // A

be a composition of fibre squares in CΛ with both A′
1 → A1 and A1 → A surjective.

Let x1 → x be a morphism lying over A1 → A. Then by the above we have

https://stacks.math.columbia.edu/tag/06JE
https://stacks.math.columbia.edu/tag/06JF
https://stacks.math.columbia.edu/tag/06JG
https://stacks.math.columbia.edu/tag/06JH
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bijections
Lift(x1, A

′
1 ×A A2) = Lift(x1, A

′
1)× Lift(x1, A1 ×A A2)

= Lift(x1, A
′
1)× Lift(x,A2).

Lemma 90.17.5.06JI Let F be a deformation category. Let A′ → A be a surjective ring
map in CΛ whose kernel I is annihilated by mA′ . Let x ∈ Ob(F(A)). If Lift(x,A′)
is nonempty, then there is a free and transitive action of TF ⊗k I on Lift(x,A′).

Proof. Consider the ring map g : A′ ×A A′ → k[I] defined by the rule g(a1, a2) =
a1 ⊕ a2 − a1 (compare with Lemma 90.10.8). There is an isomorphism

A′ ×A A′ ∼−→ A′ ×k k[I]
given by (a1, a2) 7→ (a1, g(a1, a2)). This isomorphism commutes with the projec-
tions to A′ on the first factor, and hence with the projections of A′ ×A A′ and
A′ ×k k[I] to A. Thus there is a bijection
(90.17.5.1)06TA Lift(x,A′ ×A A′) −→ Lift(x,A′ ×k k[I])
By Remark 90.17.4 there is a bijection
(90.17.5.2)06TB Lift(x,A′)× Lift(x,A′) −→ Lift(x,A′ ×A A′)
There is a commutative diagram

A′ ×k k[I] //

��

A×k k[I] //

��

k[I]

��
A′ // A // k.

Thus if we choose a pushforward x → x0 of x along A → k, we obtain by the end
of Remark 90.17.4 a bijection
(90.17.5.3)06TC Lift(x,A′ ×k k[I]) −→ Lift(x,A′)× Lift(x0, k[I])
Composing (90.17.5.2), (90.17.5.1), and (90.17.5.3) we get a bijection

Φ : Lift(x,A′)× Lift(x,A′) −→ Lift(x,A′)× Lift(x0, k[I]).
This bijection commutes with the projections on the first factors. By Remark
90.17.3 we see that Lift(x0, k[I]) = TF ⊗k I. If pr2 is the second projection of
Lift(x,A′)× Lift(x,A′), then we get a map

a = pr2 ◦ Φ−1 : Lift(x,A′)× (TF ⊗k I) −→ Lift(x,A′).
Unwinding all the above we see that a(x′ → x, θ) is the unique lift x′′ → x such that
g∗(x′, x′′) = θ in Lift(x0, k[I]) = TF ⊗k I. To see this is an action of TF ⊗k I on
Lift(x,A′) we have to show the following: if x′, x′′, x′′′ are lifts of x and g∗(x′, x′′) =
θ, g∗(x′′, x′′′) = θ′, then g∗(x′, x′′′) = θ + θ′. This follows from the commutative
diagram

A′ ×A A′ ×A A′
(a1,a2,a3)7→(g(a1,a2),g(a2,a3))

//

(a1,a2,a3) 7→g(a1,a3)
,,

k[I]×k k[I] = k[I × I]

+
��

k[I]

The action is free and transitive because Φ is bijective. □

https://stacks.math.columbia.edu/tag/06JI
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Remark 90.17.6.06JJ The action of Lemma 90.17.5 is functorial. Let φ : F → G be a
morphism of deformation categories. Let A′ → A be a surjective ring map whose
kernel I is annihilated by mA′ . Let x ∈ Ob(F(A)). In this situation φ induces the
vertical arrows in the following commutative diagram

Lift(x,A′)× (TF ⊗k I)

(φ,dφ⊗idI)
��

// Lift(x,A′)

φ

��
Lift(φ(x), A′)× (TG ⊗k I) // Lift(φ(x), A′)

The commutativity follows as each of the maps (90.17.5.2), (90.17.5.1), and (90.17.5.3)
of the proof of Lemma 90.17.5 gives rise to a similar commutative diagram.

90.18. Schlessinger’s theorem on prorepresentable functors

06JK We deduce Schlessinger’s theorem characterizing prorepresentable functors on CΛ.

Lemma 90.18.1.06JL Let F,G : CΛ → Sets be deformation functors. Let φ : F → G
be a smooth morphism which induces an isomorphism dφ : TF → TG of tangent
spaces. Then φ is an isomorphism.

Proof. We prove F (A) → G(A) is a bijection for all A ∈ Ob(CΛ) by induction on
lengthA(A). For A = k the statement follows from the assumption that F and G
are deformation functors. Suppose that the statement holds for rings of length less
than n and let A′ be a ring of length n. Choose a small extension f : A′ → A. We
have a commutative diagram

F (A′) //

F (f)
��

G(A′)

G(f)
��

F (A) ∼ // G(A)

where the map F (A) → G(A) is a bijection. By smoothness of F → G, F (A′) →
G(A′) is surjective (Lemma 90.8.8). Thus we can check bijectivity by checking it on
fibers F (f)−1(x)→ G(f)−1(φ(x)) for x ∈ F (A) such that F (f)−1(x) is nonempty.
These fibers are precisely Lift(x,A′) and Lift(φ(x), A′) and by assumption we have
an isomorphism dφ⊗ id : TF ⊗kKer(f)→ TG⊗kKer(f). Thus, by Lemma 90.17.5
and Remark 90.17.6, for x ∈ F (A) such that F (f)−1(x) is nonempty the map
F (f)−1(x)→ G(f)−1(φ(x)) is a map of sets commuting with free transitive actions
by TF ⊗k Ker(f). Hence it is bijective. □

Note that in case k′ ⊂ k is separable condition (c) in the theorem below is empty.

Theorem 90.18.2.06JM Let F : CΛ → Sets be a functor. Then F is prorepresentable
if and only if (a) F is a deformation functor, (b) dimk TF is finite, and (c) γ :
DerΛ(k, k)→ TF is injective.

Proof. Assume F is prorepresentable by R ∈ ĈΛ. We see F is a deformation functor
by Example 90.16.10. We see dimk TF is finite by Example 90.11.11. Finally,
DerΛ(k, k) → TF is identified with DerΛ(k, k) → DerΛ(R, k) by Example 90.11.14
which is injective because R→ k is surjective.

https://stacks.math.columbia.edu/tag/06JJ
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Conversely, assume (a), (b), and (c) hold. By Lemma 90.16.6 we see that (S1) and
(S2) hold. Hence by Theorem 90.15.5 there exists a minimal versal formal object ξ
of F such that (90.15.0.2) holds. Say ξ lies over R. The map

dξ : DerΛ(R, k)→ TF

is bijective on DerΛ(k, k)-orbits. Since the action of DerΛ(k, k) on the left hand
side is free by (c) and Lemma 90.12.6 we see that the map is bijective. Thus we
see that ξ is an isomorphism by Lemma 90.18.1. □

90.19. Infinitesimal automorphisms

06JN Let F be a category cofibered in groupoids over CΛ. Given a morphism x′ → x in
F lying over A′ → A, there is an induced homomorphism

AutA′(x′)→ AutA(x).

Lemma 90.16.7 says that the cokernel of this homomorphism determines whether
condition (RS) on F passes to F . In this section we study the kernel of this
homomorphism. We will see that it also gives a measure of how far F is from F .

Definition 90.19.1.06JP Let F be a category cofibered in groupoids over CΛ. Let x′ → x
be a morphism in F lying over A′ → A. The kernel

Inf(x′/x) = Ker(AutA′(x′)→ AutA(x))

is the group of infinitesimal automorphisms of x′ over x.

Definition 90.19.2.06JQ Let F be a category cofibered in groupoids over CΛ. Let x0 ∈
Ob(F(k)). Assume a choice of pushforward x0 → x′

0 of x0 along the map k →
k[ϵ], a 7→ a has been made. Then there is a unique map x′

0 → x0 such that
x0 → x′

0 → x0 is the identity on x0. Then

Infx0(F) = Inf(x′
0/x0)

is the group of infinitesimal automorphisms of x0

Remark 90.19.3.06JR Up to canonical isomorphism Infx0(F) does not depend on the
choice of pushforward x0 → x′

0 because any two pushforwards are canonically iso-
morphic. Moreover, if y0 ∈ F(k) and x0 ∼= y0 in F(k), then Infx0(F) ∼= Infy0(F)
where the isomorphism depends (only) on the choice of an isomorphism x0 → y0.
In particular, Autk(x0) acts on Infx0(F).

Remark 90.19.4.06JS Assume F is a predeformation category. Then
(1) for x0 ∈ Ob(F(k)) the automorphism group Autk(x0) is trivial and hence

Infx0(F) = Autk[ϵ](x′
0), and

(2) for x0, y0 ∈ Ob(F(k)) there is a unique isomorphism x0 → y0 and hence
a canonical identification Infx0(F) = Infy0(F).

Since F(k) is nonempty, choosing x0 ∈ Ob(F(k)) and setting

Inf(F) = Infx0(F)

we get a well defined group of infinitesimal automorphisms of F . With this notation
we have Inf(Fx0) = Infx0(F). Please compare with the equality TFx0 = Tx0F in
Remark 90.12.5.

https://stacks.math.columbia.edu/tag/06JP
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We will see that Infx0(F) has a natural k-vector space structure when F satisfies
(RS). At the same time, we will see that if F satisfies (RS), then the infinitesimal
automorphisms Inf(x′/x) of a morphism x′ → x lying over a small extension are
governed by Infx0(F), where x0 is a pushforward of x to F(k). In order to do this,
we introduce the automorphism functor for any object x ∈ Ob(F) as follows.

Definition 90.19.5.06JT Let p : F → C be a category cofibered in groupoids over an
arbitrary base category C. Assume a choice of pushforwards has been made. Let
x ∈ Ob(F) and let U = p(x). Let U/C denote the category of objects under U . The
automorphism functor of x is the functor Aut(x) : U/C → Sets sending an object
f : U → V to AutV (f∗x) and sending a morphism

V ′ // V

U
f ′

``

f

??

to the homomorphism AutV ′(f ′
∗x)→ AutV (f∗x) coming from the unique morphism

f ′
∗x→ f∗x lying over V ′ → V and compatible with x→ f ′

∗x and x→ f∗x.

We will be concerned with the automorphism functors of objects in a category
cofibered in groupoids F over CΛ. If A ∈ Ob(CΛ), then the category A/CΛ is nothing
but the category CA, i.e. the category defined in Section 90.3 where we take Λ = A
and k = A/mA. Hence the automorphism functor of an object x ∈ Ob(F(A)) is a
functor Aut(x) : CA → Sets.

The following lemma could be deduced from Lemma 90.16.12 by thinking about
the “inertia” of a category cofibred in groupoids, see for example Stacks, Section
8.7 and Categories, Section 4.34. However, it is easier to see it directly.

Lemma 90.19.6.06JU Let F be a category cofibered in groupoids over CΛ satisfying
(RS). Let x ∈ Ob(F(A)). Then Aut(x) : CA → Sets satisfies (RS).

Proof. It follows that Aut(x) satisfies (RS) from the fully faithfulness of the functor
F(A1 ×A A2)→ F(A1)×F(A) F(A2) in Lemma 90.16.4. □

Lemma 90.19.7.06JV Let F be a category cofibered in groupoids over CΛ satisfying
(RS). Let x ∈ Ob(F(A)). Let x0 be a pushforward of x to F(k).

(1) Tidx0
Aut(x) has a natural k-vector space structure such that addition

agrees with composition in Tidx0
Aut(x). In particular, composition in

Tidx0
Aut(x) is commutative.

(2) There is a canonical isomorphism Tidx0
Aut(x)→ Tidx0

Aut(x0) of k-vector
spaces.

Proof. We apply Remark 90.6.4 to the functor Aut(x) : CA → Sets and the element
idx0 ∈ Aut(x)(k) to get a predeformation functor F = Aut(x)idx0

. By Lemmas
90.19.6 and 90.16.11 F is a deformation functor. By definition Tidx0

Aut(x) =
TF = F (k[ϵ]) which has a natural k-vector space structure specified by Lemma
90.11.8.

Addition is defined as the composition

F (k[ϵ])× F (k[ϵ]) −→ F (k[ϵ]×k k[ϵ]) −→ F (k[ϵ])

https://stacks.math.columbia.edu/tag/06JT
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where the first map is the inverse of the bijection guaranteed by (RS) and the second
is induced by the k-algebra map k[ϵ]×k k[ϵ]→ k[ϵ] which maps (ϵ, 0) and (0, ϵ) to
ϵ. If A → B is a ring map in CΛ, then F (A) → F (B) is a homomorphism where
F (A) = Aut(x)idx0

(A) and F (B) = Aut(x)idx0
(B) are groups under composition.

We conclude that + : F (k[ϵ])×F (k[ϵ])→ F (k[ϵ]) is a homomorphism where F (k[ϵ])
is regarded as a group under composition. With id ∈ F (k[ϵ]) the unit element we see
that +(v, id) = +(id, v) = v for any v ∈ F (k[ϵ]) because (id, v) is the pushforward
of v along the ring map k[ϵ] → k[ϵ] ×k k[ϵ] with ϵ 7→ (ϵ, 0). In general, given a
group G with multiplication ◦ and + : G × G → G is a homomorphism such that
+(g, 1) = +(1, g) = g, where 1 is the identity of G, then + = ◦. This shows addition
in the k-vector space structure on F (k[ϵ]) agrees with composition.

Finally, (2) is a matter of unwinding the definitions. Namely Tidx0
Aut(x) is the

set of automorphisms α of the pushforward of x along A → k → k[ϵ] which are
trivial modulo ϵ. On the other hand Tidx0

Aut(x0) is the set of automorphisms of
the pushforward of x0 along k → k[ϵ] which are trivial modulo ϵ. Since x0 is the
pushforward of x along A→ k the result is clear. □

Remark 90.19.8.06JW We point out some basic relationships between infinitesimal au-
tomorphism groups, liftings, and tangent spaces to automorphism functors. Let F
be a category cofibered in groupoids over CΛ. Let x′ → x be a morphism lying over
a ring map A′ → A. Then from the definitions we have an equality

Inf(x′/x) = Lift(idx, A′)

where the liftings are of idx as an object of Aut(x′). If x0 ∈ Ob(F(k)) and x′
0 is

the pushforward to F(k[ϵ]), then applying this to x′
0 → x0 we get

Infx0(F) = Lift(idx0 , k[ϵ]) = Tidx0
Aut(x0),

the last equality following directly from the definitions.

Lemma 90.19.9.06JX Let F be a category cofibered in groupoids over CΛ satisfying
(RS). Let x0 ∈ Ob(F(k)). Then Infx0(F) is equal as a set to Tidx0

Aut(x0), and so
has a natural k-vector space structure such that addition agrees with composition
of automorphisms.

Proof. The equality of sets is as in the end of Remark 90.19.8 and the statement
about the vector space structure follows from Lemma 90.19.7. □

Lemma 90.19.10.07W6 Let φ : F → G be a morphism of categories cofibred in groupoids
over CΛ satisfying (RS). Let x0 ∈ Ob(F(k)). Then φ induces a k-linear map
Infx0(F)→ Infφ(x0)(G).

Proof. It is clear that φ induces a morphism from Aut(x0) → Aut(φ(x0)) which
maps the identity to the identity. Hence this follows from the result for tangent
spaces, see Lemma 90.12.4. □

Lemma 90.19.11.06JY Let F be a category cofibered in groupoids over CΛ satisfying
(RS). Let x′ → x be a morphism lying over a surjective ring map A′ → A with
kernel I annihilated by mA′ . Let x0 be a pushforward of x to F(k). Then Inf(x′/x)
has a free and transitive action by Tidx0

Aut(x′)⊗k I = Infx0(F)⊗k I.

https://stacks.math.columbia.edu/tag/06JW
https://stacks.math.columbia.edu/tag/06JX
https://stacks.math.columbia.edu/tag/07W6
https://stacks.math.columbia.edu/tag/06JY


90.20. APPLICATIONS 6515

Proof. This is just the analogue of Lemma 90.17.5 in the setting of automorphism
sheaves. To be precise, we apply Remark 90.6.4 to the functor Aut(x′) : CA′ → Sets
and the element idx0 ∈ Aut(x)(k) to get a predeformation functor F = Aut(x′)idx0

.
By Lemmas 90.19.6 and 90.16.11 F is a deformation functor. Hence Lemma 90.17.5
gives a free and transitive action of TF⊗k I on Lift(idx, A′), because as Lift(idx, A′)
is a group it is always nonempty. Note that we have equalities of vector spaces

TF = Tidx0
Aut(x′)⊗k I = Infx0(F)⊗k I

by Lemma 90.19.7. The equality Inf(x′/x) = Lift(idx, A′) of Remark 90.19.8 finishes
the proof. □

Lemma 90.19.12.06JZ Let F be a category cofibered in groupoids over CΛ satisfying
(RS). Let x′ → x be a morphism in F lying over a surjective ring map. Let x0 be
a pushforward of x to F(k). If Infx0(F) = 0 then Inf(x′/x) = 0.

Proof. Follows from Lemmas 90.3.3 and 90.19.11. □

Lemma 90.19.13.06K0 Let F be a category cofibered in groupoids over CΛ satisfying
(RS). Let x0 ∈ Ob(F(k)). Then Infx0(F) = 0 if and only if the natural morphism
Fx0 → Fx0 of categories cofibered in groupoids is an equivalence.

Proof. The morphism Fx0 → Fx0 is an equivalence if and only if Fx0 is fibered in
setoids, cf. Categories, Section 4.39 (a setoid is by definition a groupoid in which
the only automorphism of any object is the identity). We prove that Infx0(F) = 0
if and only if this condition holds for Fx0 . Obviously if Fx0 is fibered in setoids
then Infx0(F) = 0. Conversely assume Infx0(F) = 0. Let A be an object of CΛ.
Then by Lemma 90.19.12, Inf(x/x0) = 0 for any object x → x0 of Fx0(A). Since
by definition Inf(x/x0) equals the group of automorphisms of x → x0 in Fx0(A),
this proves Fx0(A) is a setoid. □

90.20. Applications

0DYM We collect some results on deformation categories we will use later.

Lemma 90.20.1.06L5 Let f : H → F and g : G → F be 1-morphisms of deformation
categories. Then

(1) W = H×F G is a deformation category, and
(2) we have a 6-term exact sequence of vector spaces

0→ Inf(W)→ Inf(H)⊕ Inf(G)→ Inf(F)→ TW → TH⊕ TG → TF

Proof. Part (1) follows from Lemma 90.16.12 and the fact that W(k) is the fibre
product of two setoids with a unique isomorphism class over a setoid with a unique
isomorphism class.
Part (2). Let w0 ∈ Ob(W(k)) and let x0, y0, z0 be the image of w0 in F ,H,G. Then
Inf(W) = Infw0(W) and simlarly for H, G, and F , see Remark 90.19.4. We apply
Lemmas 90.12.4 and 90.19.10 to get all the linear maps except for the “boundary
map” δ : Infx0(F)→ TW. We will insert suitable signs later.
Construction of δ. Choose a pushforward w0 → w′

0 along k → k[ϵ]. Denote x′
0, y

′
0, z

′
0

the images of w′
0 in F ,H,G. In particular we obtain isomorphisms b′ : f(y′

0)→ x′
0

and c′ : x′
0 → g(z′

0). Denote b : f(y0) → x0 and c : x0 → g(z0) the pushforwards
along k[ϵ] → k. Observe that this means w′

0 = (k[ϵ], y′
0, z

′
0, c

′ ◦ b′) and w0 =

https://stacks.math.columbia.edu/tag/06JZ
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(k, y0, z0, c ◦ b) in terms of the explicit form of the fibre product of categories, see
Remarks 90.5.2 (13). Given α : x′

0 → x′
0 we set δ(α) = (k[ϵ], y′

0, z
′
0, c

′◦α◦b′) which is
indeed an object ofW over k[ϵ] and comes with a morphism (k[ϵ], y′

0, z
′
0, c

′◦α◦b′)→
w0 over k[ϵ] → k as α pushes forward to the identity over k. More generally, for
any k-vector space V we can define a map

Lift(idx0 , k[V ]) −→ Lift(w0, k[V ])
using exactly the same formulae. This construction is functorial in the vector space
V (details omitted). Hence δ is k-linear by an application of Lemma 90.11.5.
Having constructed these maps it is straightforward to show the sequence is exact.
Injectivity of the first map comes from the fact that f×g :W → H×G is faithful. If
(β, γ) ∈ Infy0(H)⊕Infz0(G) map to the same element of Infx0(F) then (β, γ) defines
an automorphism of w′

0 = (k[ϵ], y′
0, z

′
0, c

′ ◦ b′) whence exactness at the second spot.
If α as above gives the trivial deformation (k[ϵ], y′

0, z
′
0, c

′ ◦ α ◦ b′) of w0, then the
isomorphism w′

0 = (k[ϵ], y′
0, z

′
0, c

′ ◦ b′) → (k[ϵ], y′
0, z

′
0, c

′ ◦ α ◦ b′) produces a pair
(β, γ) which is a preimage of α. If w = (k[ϵ], y, z, ϕ) is a deformation of w0 such
that y′

0
∼= y and z ∼= z′

0 then the map

f(y′
0)→ f(y) ϕ−→ g(z)→ g(z′

0)
is an α which maps to w under δ. Finally, if y and z are deformations of y0 and z0
and there exists an isomorphism ϕ : f(y) → g(z) of deformations of f(y0) = x0 =
g(z0) then we get a preimage w = (k[ϵ], y, z, ϕ) of (x, y) in TW. This finishes the
proof. □

Lemma 90.20.2.0DYN Let H1 → G, H2 → G, and G → F be maps of categories cofibred
in groupoids over CΛ. Assume

(1) F and G are deformation categories,
(2) TG → TF is injective, and
(3) Inf(G)→ Inf(F) is surjective.

Then H1 ×G H2 → H1 ×F H2 is smooth.

Proof. Denote pi : Hi → G and q : G → F be the given maps. Let A′ → A be a
small extension in CΛ. An object of H1×FH2 over A′ is a triple (x′

1, x
′
2, a

′) where x′
i

is an object of Hi over A′ and a′ : q(p1(x′
1))→ q(p2(x′

2)) is a morphism of the fibre
category of F over A′. By pushforward along A′ → A we get (x1, x2, a). Lifting
this to an object of H1×GH2 over A means finding a morphism b : p1(x1)→ p2(x2)
over A with q(b) = a. Thus we have to show that we can lift b to a morphism
b′ : p1(x′

1)→ p2(x′
2) whose image under q is a′.

Observe that we can think of
p1(x′

1)→ p1(x1) b−→ p2(x2) and p2(x′
2)→ p2(x2)

as two objects of Lift(p2(x2), A′ → A). The functor q sends these objects to the
two objects

q(p1(x′
1))→ q(p1(x1)) b−→ q(p2(x2)) and q(p2(x′

2))→ q(p2(x2))
of Lift(q(p2(x2)), A′ → A) which are isomorphic using the map a′ : q(p1(x′

1)) →
q(p2(x′

2)). On the other hand, the functor
q : Lift(p2(x2), A′ → A)→ Lift(q(p2(x2)), A′ → A)

https://stacks.math.columbia.edu/tag/0DYN
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defines a injection on isomorphism classes by Lemma 90.17.5 and our assumption
on tangent spaces. Thus we see that there is a morphism b′ : p1(x′

1) → p2(x′
2)

whose pushforward to A is b. However, we may need to adjust our choice of b′

to achieve q(b′) = a′. For this it suffices to see that q : Inf(p2(x′
2)/p2(x2)) →

Inf(q(p2(x′
2))/q(p2(x2))) is surjective. This follows from our assumption on infini-

tesimal automorphisms and Lemma 90.19.11. □

Lemma 90.20.3.0DYP Let f : F → G be a map of deformation categories. Let x0 ∈
Ob(F(k)) with image y0 ∈ Ob(G(k)). If

(1) the map TF → TG is surjective, and
(2) for every small extension A′ → A in CΛ and x ∈ F(A) with image y ∈ G(A)

if there is a lift of y to A′, then there is a lift of x to A′,
then F → G is smooth (and vice versa).

Proof. Let A′ → A be a small extension. Let x ∈ F(A). Let y′ → f(x) be a
morphism in G over A′ → A. Consider the functor Lift(A′, x) → Lift(A′, f(x))
induced by f . We have to show that there exists an object x′ → x of Lift(A′, x)
mapping to y′ → f(x), see Lemma 90.8.2. By condition (2) we know that Lift(A′, x)
is not the empty category. By condition (2) and Lemma 90.17.5 we conlude that
the map on isomorphism classes is surjective as desired. □

Lemma 90.20.4.0E3R Let F → G → H be maps of categories cofibred in groupoids over
CΛ. If

(1) F , G are deformation categories
(2) the map TF → TG is surjective, and
(3) F → H is smooth.

Then F → G is smooth.

Proof. Let A′ → A be a small extension in CΛ and let x ∈ F(A) with image
y ∈ G(A). Assume there is a lift y′ ∈ G(A′). According to Lemma 90.20.3 all
we have to do is check that x has a lift too. Take the image z′ ∈ H(A′) of y′.
Since F → H is smooth, there is an x′ ∈ F(A′) mapping to both x ∈ F(A) and
z′ ∈ H(A′), see Definition 90.8.1. This finishes the proof. □

90.21. Groupoids in functors on an arbitrary category

06K2 We begin with generalities on groupoids in functors on an arbitrary category. In the
next section we will pass to the category CΛ. For clarity we shall sometimes refer
to an ordinary groupoid, i.e., a category whose morphisms are all isomorphisms, as
a groupoid category.

Definition 90.21.1.06K3 Let C be a category. The category of groupoids in functors on
C is the category with the following objects and morphisms.

(1) Objects: A groupoid in functors on C is a quintuple (U,R, s, t, c) where
U,R : C → Sets are functors and s, t : R → U and c : R ×s,U,t R → R
are morphisms with the following property: For any object T of C, the
quintuple

(U(T ), R(T ), s, t, c)
is a groupoid category.

https://stacks.math.columbia.edu/tag/0DYP
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(2) Morphisms: A morphism (U,R, s, t, c) → (U ′, R′, s′, t′, c′) of groupoids
in functors on C consists of morphisms U → U ′ and R → R′ with the
following property: For any object T of C, the induced maps U(T ) →
U ′(T ) and R(T )→ R′(T ) define a functor between groupoid categories

(U(T ), R(T ), s, t, c)→ (U ′(T ), R′(T ), s′, t′, c′).
Remark 90.21.2.06K4 A groupoid in functors on C amounts to the data of a functor
C → Groupoids, and a morphism of groupoids in functors on C amounts to a mor-
phism of the corresponding functors C → Groupoids (where Groupoids is regarded
as a 1-category). However, for our purposes it is more convenient to use the termi-
nology of groupoids in functors. In fact, thinking of a groupoid in functors as the
corresponding functor C → Groupoids, or equivalently as the category cofibered in
groupoids associated to that functor, can lead to confusion (Remark 90.23.2).
Remark 90.21.3.06K5 Let (U,R, s, t, c) be a groupoid in functors on a category C. There
are unique morphisms e : U → R and i : R → R such that for every object
T of C, e : U(T ) → R(T ) sends x ∈ U(T ) to the identity morphism on x and
i : R(T ) → R(T ) sends a ∈ U(T ) to the inverse of a in the groupoid category
(U(T ), R(T ), s, t, c). We will sometimes refer to s, t, c, e, and i as “source”, “target”,
“composition”, “identity”, and “inverse”.
Definition 90.21.4.06K6 Let C be a category. A groupoid in functors on C is representable
if it is isomorphic to one of the form (U,R, s, t, c) where U and R are objects of C
and the pushout R ⨿s,U,t R exists.
Remark 90.21.5.06K7 Hence a representable groupoid in functors on C is given by
objects U and R of C and morphisms s, t : U → R and c : R→ R⨿s,U,tR such that
(U,R, s, t, c) satisfies the condition of Definition 90.21.1. The reason for requiring
the existence of the pushout R ⨿s,U,t R is so that the composition morphism c is
defined at the level of morphisms in C. This requirement will always be satisfied
below when we consider representable groupoids in functors on ĈΛ, since by Lemma
90.4.3 the category ĈΛ admits pushouts.
Remark 90.21.6.06K8 We will say “let (U,R, s, t, c) be a groupoid in functors on C” to
mean that we have a representable groupoid in functors. Thus this means that U
and R are objects of C, there are morphisms s, t : U → R, the pushout R ⨿s,U,t R
exists, there is a morphism c : R → R ⨿s,U,t R, and (U,R, s, t, c) is a groupoid in
functors on C.
We introduce notation for restriction of groupoids in functors. This will be relevant
below in situations where we restrict from ĈΛ to CΛ.
Definition 90.21.7.06K9 Let (U,R, s, t, c) be a groupoid in functors on a category C. Let
C′ be a subcategory of C. The restriction (U,R, s, t, c)|C′ of (U,R, s, t, c) to C′ is the
groupoid in functors on C′ given by (U |C′ , R|C′ , s|C′ , t|C′ , c|C′).
Remark 90.21.8.06KA In the situation of Definition 90.21.7, we often denote s|C′ , t|C′ , c|C′

simply by s, t, c.
Definition 90.21.9.06KB Let (U,R, s, t, c) be a groupoid in functors on a category C.

(1) The assignment T 7→ (U(T ), R(T ), s, t, c) determines a functor C → Groupoids.
The quotient category cofibered in groupoids [U/R] → C is the category
cofibered in groupoids over C associated to this functor (as in Remarks
90.5.2 (9)).
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(2) The quotient morphism U → [U/R] is the morphism of categories cofibered
in groupoids over C defined by the rules
(a) x ∈ U(T ) maps to the object (T, x) ∈ Ob([U/R](T )), and
(b) x ∈ U(T ) and f : T → T ′ give rise to the morphism (f, idU(f)(x)) :

(T, x)→ (T,U(f)(x)) lying over f : T → T ′.

90.22. Groupoids in functors on the base category

06KC In this section we discuss groupoids in functors on CΛ. Our eventual goal is to
show that prorepresentable groupoids in functors on CΛ serve as “presentations”
for well-behaved deformation categories in the same way that smooth groupoids
in algebraic spaces serve as presentations for algebraic stacks, cf. Algebraic Stacks,
Section 94.16.
Definition 90.22.1.06KD A groupoid in functors on CΛ is prorepresentable if it is isomor-
phic to (R0, R1, s, t, c)|CΛ for some representable groupoid in functors (R0, R1, s, t, c)
on the category ĈΛ.
Let (U,R, s, t, c) be a groupoid in functors on CΛ. Taking completions, we get a
quintuple (Û , R̂, ŝ, t̂, ĉ). By Remark 90.7.10 completion as a functor on CofSet(CΛ)
is a right adjoint, so it commutes with limits. In particular, there is a canonical
isomorphism

̂R×s,U,t R −→ R̂×
ŝ,Û ,̂t

R̂,

so ĉ can be regarded as a functor R̂×
ŝ,Û ,̂t

R̂→ R̂. Then (Û , R̂, ŝ, t̂, ĉ) is a groupoid
in functors on ĈΛ, with identity and inverse morphisms being the completions of
those of (U,R, s, t, c).
Definition 90.22.2.06KE Let (U,R, s, t, c) be a groupoid in functors on CΛ. The com-
pletion (U,R, s, t, c)∧ of (U,R, s, t, c) is the groupoid in functors (Û , R̂, ŝ, t̂, ĉ) on ĈΛ
described above.
Remark 90.22.3.06KF Let (U,R, s, t, c) be a groupoid in functors on CΛ. Then there
is a canonical isomorphism (U,R, s, t, c)∧|CΛ

∼= (U,R, s, t, c), see Remark 90.7.7.
On the other hand, let (U,R, s, t, c) be a groupoid in functors on ĈΛ such that
U,R : ĈΛ → Sets both commute with limits, e.g. if U,R are representable. Then
there is a canonical isomorphism ((U,R, s, t, c)|CΛ)∧ ∼= (U,R, s, t, c). This follows
from Remark 90.7.11.
Lemma 90.22.4.06KG Let (U,R, s, t, c) be a groupoid in functors on CΛ.

(1) (U,R, s, t, c) is prorepresentable if and only if its completion is repre-
sentable as a groupoid in functors on ĈΛ.

(2) (U,R, s, t, c) is prorepresentable if and only if U and R are prorepre-
sentable.

Proof. Part (1) follows from Remark 90.22.3. For (2), the “only if” direction is
clear from the definition of a prorepresentable groupoid in functors. Conversely,
assume U and R are prorepresentable, say U ∼= R0|CΛ and R ∼= R1|CΛ for objects
R0 and R1 of ĈΛ. Since R0 ∼= R̂0|CΛ and R1 ∼= R̂1|CΛ by Remark 90.7.11 we see that
the completion (U,R, s, t, c)∧ is a groupoid in functors of the form (R0, R1, ŝ, t̂, ĉ).
By Lemma 90.4.3 the pushout R1 ×ŝ,R1 ,̂t

R1 exists. Hence (R0, R1, ŝ, t̂, ĉ) is a

https://stacks.math.columbia.edu/tag/06KD
https://stacks.math.columbia.edu/tag/06KE
https://stacks.math.columbia.edu/tag/06KF
https://stacks.math.columbia.edu/tag/06KG


90.24. DEFORMATION CATEGORIES AS QUOTIENTS OF GROUPOIDS IN FUNCTORS6520

representable groupoid in functors on ĈΛ. Finally, the restriction (R0, R1, s, t, c)|CΛ

gives back (U,R, s, t, c) by Remark 90.22.3 hence (U,R, s, t, c) is prorepresentable
by definition. □

90.23. Smooth groupoids in functors on the base category

06KH The notion of smoothness for groupoids in functors on CΛ is defined as follows.

Definition 90.23.1.06KI Let (U,R, s, t, c) be a groupoid in functors on CΛ. We say
(U,R, s, t, c) is smooth if s, t : R→ U are smooth.

Remark 90.23.2.06KJ We note that this terminology is potentially confusing: if (U,R, s, t, c)
is a smooth groupoid in functors, then the quotient [U/R] need not be a smooth
category cofibred in groupoids as defined in Definition 90.9.1. However smoothness
of (U,R, s, t, c) does imply (in fact is equivalent to) smoothness of the quotient
morphism U → [U/R] as we shall see in Lemma 90.23.4.

Remark 90.23.3.06KK Let (R0, R1, s, t, c)|CΛ be a prorepresentable groupoid in functors
on CΛ. Then (R0, R1, s, t, c)|CΛ is smooth if and only if R1 is a power series over R0
via both s and t. This follows from Lemma 90.8.6.

Lemma 90.23.4.06KL Let (U,R, s, t, c) be a groupoid in functors on CΛ. The following
are equivalent:

(1) The groupoid in functors (U,R, s, t, c) is smooth.
(2) The morphism s : R→ U is smooth.
(3) The morphism t : R→ U is smooth.
(4) The quotient morphism U → [U/R] is smooth.

Proof. Statement (2) is equivalent to (3) since the inverse i : R→ R of (U,R, s, t, c)
is an isomorphism and t = s ◦ i. By definition (1) is equivalent to (2) and (3)
together, hence it is equivalent to either of them individually.
Finally we prove (2) is equivalent to (4). Unwinding the definitions:

(2) Smoothness of s : R→ U amounts to the following condition: If f : B →
A is a surjective ring map in CΛ, a ∈ R(A), and y ∈ U(B) such that
s(a) = U(f)(y), then there exists a′ ∈ R(B) such that R(f)(a′) = a and
s(a′) = y.

(4) Smoothness of U → [U/R] amounts to the following condition: If f : B →
A is a surjective ring map in CΛ and (f, a) : (B, y)→ (A, x) is a morphism
of [U/R], then there exists x′ ∈ U(B) and b ∈ R(B) with s(b) = x′,
t(b) = y such that c(a,R(f)(b)) = e(x). Here e : U → R denotes the
identity and the notation (f, a) is as in Remarks 90.5.2 (9); in particular
a ∈ R(A) with s(a) = U(f)(y) and t(a) = x.

If (4) holds and f, a, y as in (2) are given, let x = t(a) so that we have a morphism
(f, a) : (B, y) → (A, x). Then (4) produces x′ and b, and a′ = i(b) satisfies the
requirements of (2). Conversely, assume (2) holds and let (f, a) : (B, y)→ (A, x) as
in (4) be given. Then (2) produces a′ ∈ R(B), and x′ = t(a′) and b = i(a′) satisfy
the requirements of (4). □

90.24. Deformation categories as quotients of groupoids in functors

06KS
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We discuss conditions on a groupoid in functors on CΛ which guarantee that the
quotient is a deformation category, and we calculate the tangent and infinitesimal
automorphism spaces of such a quotient.

Lemma 90.24.1.06KT Let (U,R, s, t, c) be a smooth groupoid in functors on CΛ. Assume
U and R satisfy (RS). Then [U/R] satisfies (RS).

Proof. Let
(A2, x2)

(f2,a2)
��

(A1, x1)
(f1,a1) // (A, x)

be a diagram in [U/R] such that f2 : A2 → A is surjective. The notation is as in
Remarks 90.5.2 (9). Hence f1 : A1 → A, f2 : A2 → A are maps in CΛ, x ∈ U(A),
x1 ∈ U(A1), x2 ∈ U(A2), and a1, a2 ∈ R(A) with s(a1) = U(f1)(x1), t(a1) = x and
s(a2) = U(f2)(x2), t(a2) = x. We construct a fiber product lying over A1 ×A A2
for this diagram in [U/R] as follows.

Let a = c(i(a1), a2), where i : R→ R is the inverse morphism. Then a ∈ R(A), x2 ∈
U(A2) and s(a) = U(f2)(x2). Hence an element (a, x2) ∈ R(A)×s,U(A),U(f2)U(A2).
By smoothness of s : R→ U there is an element ã ∈ R(A2) with R(f2)(ã) = a and
s(ã) = x2. In particular U(f2)(t(ã)) = t(a) = U(f1)(x1). Thus x1 and t(ã) define
an element

(x1, t(ã)) ∈ U(A1)×U(A) U(A2).
By the assumption that U satisfies (RS), we have an identification U(A1) ×U(A)
U(A2) = U(A1 ×A A2). Let us denote x1 × t(ã) ∈ U(A1 ×A A2) the element
corresponding to (x1, t(ã)) ∈ U(A1) ×U(A) U(A2). Let p1, p2 be the projections of
A1 ×A A2. We claim

(A1 ×A A2, x1 × t(ã))

(p1,e(x1))
��

(p2,i(̃a))
// (A2, x2)

(f2,a2)
��

(A1, x1)
(f1,a1) // (A, x)

is a fiber square in [U/R]. (Note e : U → R denotes the identity.)

The diagram is commutative because c(a2, R(f2)(i(ã))) = c(a2, i(a)) = a1. To
check it is a fiber square, let

(B, z)

(g1,b1)
��

(g2,b2)
// (A2, x2)

(f2,a2)
��

(A1, x1)
(f1,a1) // (A, x)

be a commutative diagram in [U/R]. We will show there is a unique morphism
(g, b) : (B, z) → (A1 ×A A2, x1 × t(ã)) compatible with the morphisms to (A1, x1)
and (A2, x2). We must take g = (g1, g2) : B → A1 ×A A2. Since by assumption
R satisfies (RS), we have an identification R(A1 ×A A2) = R(A1) ×R(A) R(A2).
Hence we can write b = (b′

1, b
′
2) for some b′

1 ∈ R(A1), b′
2 ∈ R(A2) which agree

in R(A). Then ((g1, g2), (b′
1, b

′
2)) : (B, z) → (A1 ×A A2, x1 × t(ã)) will commute
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with the projections if and only if b′
1 = b1 and b′

2 = c(ã, b2) proving unicity and
existence. □

Lemma 90.24.2.06KU Let (U,R, s, t, c) be a smooth groupoid in functors on CΛ. Assume
U and R are deformation functors. Then:

(1) The quotient [U/R] is a deformation category.
(2) The tangent space of [U/R] is

T [U/R] = Coker(ds− dt : TR→ TU).

(3) The space of infinitesimal automorphisms of [U/R] is

Inf([U/R]) = Ker(ds⊕ dt : TR→ TU ⊕ TU).

Proof. Since U and R are deformation functors [U/R] is a predeformation category.
Since (RS) holds for deformation functors by definition we see that (RS) holds for
[U/R] by Lemma 90.24.1. Hence [U/R] is a deformation category. Statements (2)
and (3) follow directly from the definitions. □

90.25. Presentations of categories cofibered in groupoids

06KW A presentation is defined as follows.

Definition 90.25.1.06KX Let F be a category cofibered in groupoids over a category C.
Let (U,R, s, t, c) be a groupoid in functors on C. A presentation of F by (U,R, s, t, c)
is an equivalence φ : [U/R]→ F of categories cofibered in groupoids over C.

The following two general lemmas will be used to get presentations.

Lemma 90.25.2.06KY Let F be category cofibered in groupoids over a category C. Let
U : C → Sets be a functor. Let f : U → F be a morphism of categories cofibered
in groupoids over C. Define R, s, t, c as follows:

(1) R : C → Sets is the functor U ×f,F,f U .
(2) t, s : R→ U are the first and second projections, respectively.
(3) c : R ×s,U,t R → R is the morphism given by projection onto the first

and last factors of U ×f,F,f U ×f,F,f U under the canonical isomorphism
R×s,U,t R→ U ×f,F,f U ×f,F,f U .

Then (U,R, s, t, c) is a groupoid in functors on C.

Proof. Omitted. □

Lemma 90.25.3.06KZ Let F be category cofibered in groupoids over a category C.
Let U : C → Sets be a functor. Let f : U → F be a morphism of categories
cofibered in groupoids over C. Let (U,R, s, t, c) be the groupoid in functors on C
constructed from f : U → F in Lemma 90.25.2. Then there is a natural morphism
[f ] : [U/R]→ F such that:

(1) [f ] : [U/R]→ F is fully faithful.
(2) [f ] : [U/R] → F is an equivalence if and only if f : U → F is essentially

surjective.

Proof. Omitted. □
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90.26. Presentations of deformation categories

06L0 According to the next lemma, a smooth morphism from a predeformation functor to
a predeformation category F gives rise to a presentation of F by a smooth groupoid
in functors.

Lemma 90.26.1.06L1 Let F be a category cofibered in groupoids over CΛ. Let U : CΛ →
Sets be a functor. Let f : U → F be a smooth morphism of categories cofibered in
groupoids. Then:

(1) If (U,R, s, t, c) is the groupoid in functors on CΛ constructed from f : U →
F in Lemma 90.25.2, then (U,R, s, t, c) is smooth.

(2) If f : U(k) → F(k) is essentially surjective, then the morphism [f ] :
[U/R]→ F of Lemma 90.25.3 is an equivalence.

Proof. From the construction of Lemma 90.25.2 we have a commutative diagram
R = U ×f,F,f U s

//

t

��

U

f

��
U

f // F
where t, s are the first and second projections. So t, s are smooth by Lemma 90.8.7.
Hence (1) holds.
If the assumption of (2) holds, then by Lemma 90.8.8 the morphism f : U → F is
essentially surjective. Hence by Lemma 90.25.3 the morphism [f ] : [U/R] → F is
an equivalence. □

Lemma 90.26.2.06L6 Let F be a deformation category. Let U : CΛ → Sets be a
deformation functor. Let f : U → F be a morphism of categories cofibered in
groupoids. Then U ×f,F,f U is a deformation functor with tangent space fitting
into an exact sequence of k-vector spaces

0→ Inf(F)→ T (U ×f,F,f U)→ TU ⊕ TU

Proof. Follows from Lemma 90.20.1 and the fact that Inf(U) = (0). □

Lemma 90.26.3.06L7 Let F be a deformation category. Let U : CΛ → Sets be a prorepre-
sentable functor. Let f : U → F be a morphism of categories cofibered in groupoids.
Let (U,R, s, t, c) be the groupoid in functors on CΛ constructed from f : U → F in
Lemma 90.25.2. If dimk Inf(F) <∞, then (U,R, s, t, c) is prorepresentable.

Proof. Note that U is a deformation functor by Example 90.16.10. By Lemma
90.26.2 we see that R = U ×f,F,f U is a deformation functor whose tangent space
TR = T (U×f,F,fU) sits in an exact sequence 0→ Inf(F)→ TR→ TU⊕TU . Since
we have assumed the first space has finite dimension and since TU has finite dimen-
sion by Example 90.11.11 we see that dimTR <∞. The map γ : DerΛ(k, k)→ TR
see (90.12.6.1) is injective because its composition with TR → TU is injective by
Theorem 90.18.2 for the prorepresentable functor U . Thus R is prorepresentable
by Theorem 90.18.2. It follows from Lemma 90.22.4 that (U,R, s, t, c) is prorepre-
sentable. □

Theorem 90.26.4.06L8 Let F be a category cofibered in groupoids over CΛ. Then F
admits a presentation by a smooth prorepresentable groupoid in functors on CΛ if
and only if the following conditions hold:
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(1) F is a deformation category.
(2) dimk TF is finite.
(3) dimk Inf(F) is finite.

Proof. Recall that a prorepresentable functor is a deformation functor, see Example
90.16.10. Thus if F is equivalent to a smooth prorepresentable groupoid in functors,
then conditions (1), (2), and (3) follow from Lemma 90.24.2 (1), (2), and (3).
Conversely, assume conditions (1), (2), and (3) hold. Condition (1) implies that
(S1) and (S2) are satisfied, see Lemma 90.16.6. By Lemma 90.13.4 there exists a
versal formal object ξ. Setting U = R|CΛ the associated map ξ : U → F is smooth
(this is the definition of a versal formal object). Let (U,R, s, t, c) be the groupoid
in functors constructed in Lemma 90.25.2 from the map ξ. By Lemma 90.26.1 we
see that (U,R, s, t, c) is a smooth groupoid in functors and that [U/R] → F is an
equivalence. By Lemma 90.26.3 we see that (U,R, s, t, c) is prorepresentable. Hence
[U/R]→ F is the desired presentation of F . □

90.27. Remarks regarding minimality

06TD The main theorem of this chapter is Theorem 90.26.4 above. It describes com-
pletely those categories cofibred in groupoids over CΛ which have a presentation by
a smooth prorepresentable groupoid in functors. In this section we briefly discuss
how the minimality discussed in Sections 90.14 and 90.15 can be used to obtain a
“minimal” smooth prorepresentable presentation.

Definition 90.27.1.06KM Let (U,R, s, t, c) be a smooth prorepresentable groupoid in
functors on CΛ.

(1) We say (U,R, s, t, c) is normalized if the groupoid (U(k[ϵ]), R(k[ϵ]), s, t, c)
is totally disconnected, i.e., there are no morphisms between distinct ob-
jects.

(2) We say (U,R, s, t, c) is minimal if the U → [U/R] is given by a minimal
versal formal object of [U/R].

The difference between the two notions is related to the difference between condi-
tions (90.15.0.1) and (90.15.0.2) and disappears when k′ ⊂ k is separable. Also a
normalized smooth prorepresentable groupoid in functors is minimal as the follow-
ing lemma shows. Here is a precise statement.

Lemma 90.27.2.06KN Let (U,R, s, t, c) be a smooth prorepresentable groupoid in func-
tors on CΛ.

(1) (U,R, s, t, c) is normalized if and only if the morphism U → [U/R] induces
an isomorphism on tangent spaces, and

(2) (U,R, s, t, c) is minimal if and only if the kernel of TU → T [U/R] is
contained in the image of DerΛ(k, k)→ TU .

Proof. Part (1) follows immediately from the definitions. To see part (2) set F =
[U/R]. Since F has a presentation it is a deformation category, see Theorem 90.26.4.
In particular it satisfies (RS), (S1), and (S2), see Lemma 90.16.6. Recall that
minimal versal formal objects are unique up to isomorphism, see Lemma 90.14.5.
By Theorem 90.15.5 a minimal versal object induces a map ξ : R|CΛ → F satisfying
(90.15.0.2). Since U ∼= R|CΛ over F we see that TU → TF = T [U/R] satisfies the
property as stated in the lemma. □

https://stacks.math.columbia.edu/tag/06KM
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The quotient of a minimal prorepresentable groupoid in functors on CΛ does not
admit autoequivalences which are not automorphisms. To prove this, we first note
the following lemma.

Lemma 90.27.3.06KP Let U : CΛ → Sets be a prorepresentable functor. Let φ : U →
U be a morphism such that dφ : TU → TU is an isomorphism. Then φ is an
isomorphism.

Proof. If U ∼= R|CΛ for some R ∈ Ob(ĈΛ), then completing φ gives a morphism
R → R. If f : R → R is the corresponding morphism in ĈΛ, then f induces an
isomorphism DerΛ(R, k)→ DerΛ(R, k), see Example 90.11.14. In particular f is a
surjection by Lemma 90.4.6. As a surjective endomorphism of a Noetherian ring
is an isomorphism (see Algebra, Lemma 10.31.10) we conclude f , hence R → R,
hence φ : U → U is an isomorphism. □

Lemma 90.27.4.06KQ Let (U,R, s, t, c) be a minimal smooth prorepresentable groupoid
in functors on CΛ. If φ : [U/R]→ [U/R] is an equivalence of categories cofibered in
groupoids, then φ is an isomorphism.

Proof. A morphism φ : [U/R] → [U/R] is the same thing as a morphism φ :
(U,R, s, t, c)→ (U,R, s, t, c) of groupoids in functors over CΛ as defined in Definition
90.21.1. Denote ϕ : U → U and ψ : R→ R the corresponding morphisms. Because
the diagram

DerΛ(k, k)

γ
&&

γ
xx

TU
dϕ

//

��

TU

��
T [U/R] dφ // T [U/R]

is commutative, since dφ is bijective, and since we have the characterization of
minimality in Lemma 90.27.2 we conclude that dϕ is injective (hence bijective by
dimension reasons). Thus ϕ : U → U is an isomorphism by Lemma 90.27.3. We
can use a similar argument, using the exact sequence

0→ Inf([U/R])→ TR→ TU ⊕ TU
of Lemma 90.26.2 to prove that ψ : R → R is an isomorphism. But is also a
consequence of the fact that R = U×[U/R]U and that φ and ϕ are isomorphisms. □

Lemma 90.27.5.06KR Let (U,R, s, t, c) and (U ′, R′, s′, t′, c′) be minimal smooth prorep-
resentable groupoids in functors on CΛ. If φ : [U/R]→ [U ′/R′] is an equivalence of
categories cofibered in groupoids, then φ is an isomorphism.

Proof. Let ψ : [U ′/R′]→ [U/R] be a quasi-inverse to φ. Then ψ ◦ φ and φ ◦ ψ are
isomorphisms by Lemma 90.27.4, hence φ and ψ are isomorphisms. □

The following lemma summarizes some of the things we have seen earlier in this
chapter.

Lemma 90.27.6.06L2 Let F be a deformation category such that dimk TF < ∞ and
dimk Inf(F) < ∞. Then there exists a minimal versal formal object ξ of F . Say
ξ lies over R ∈ Ob(ĈΛ). Let U = R|CΛ . Let f = ξ : U → F be the associated

https://stacks.math.columbia.edu/tag/06KP
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morphism. Let (U,R, s, t, c) be the groupoid in functors on CΛ constructed from f :
U → F in Lemma 90.25.2. Then (U,R, s, t, c) is a minimal smooth prorepresentable
groupoid in functors on CΛ and there is an equivalence [U/R]→ F .

Proof. As F is a deformation category it satisfies (S1) and (S2), see Lemma 90.16.6.
By Lemma 90.13.4 there exists a versal formal object. By Lemma 90.14.5 there
exists a minimal versal formal object ξ/R as in the statement of the lemma. Setting
U = R|CΛ the associated map ξ : U → F is smooth (this is the definition of a versal
formal object). Let (U,R, s, t, c) be the groupoid in functors constructed in Lemma
90.25.2 from the map ξ. By Lemma 90.26.1 we see that (U,R, s, t, c) is a smooth
groupoid in functors and that [U/R]→ F is an equivalence. By Lemma 90.26.3 we
see that (U,R, s, t, c) is prorepresentable. Finally, (U,R, s, t, c) is minimal because
U → [U/R] = F corresponds to the minimal versal formal object ξ. □

Presentations by minimal prorepresentable groupoids in functors satisfy the follow-
ing uniqueness property.

Lemma 90.27.7.06L3 Let F be category cofibered in groupoids over CΛ. Assume there
exist presentations of F by minimal smooth prorepresentable groupoids in func-
tors (U,R, s, t, c) and (U ′, R′, s′, t′, c′). Then (U,R, s, t, c) and (U ′, R′, s′, t′, c′) are
isomorphic.

Proof. Follows from Lemma 90.27.5 and the observation that a morphism [U/R]→
[U ′/R′] is the same thing as a morphism of groupoids in functors (by our explicit
construction of [U/R] in Definition 90.21.9). □

In summary we have proved the following theorem.

Theorem 90.27.8.06TE Let F be a category cofibered in groupoids over CΛ. Consider
the following conditions

(1) F admits a presentation by a normalized smooth prorepresentable groupoid
in functors on CΛ,

(2) F admits a presentation by a smooth prorepresentable groupoid in func-
tors on CΛ,

(3) F admits a presentation by a minimal smooth prorepresentable groupoid
in functors on CΛ, and

(4) F satisfies the following conditions
(a) F is a deformation category.
(b) dimk TF is finite.
(c) dimk Inf(F) is finite.

Then (2), (3), (4) are equivalent and are implied by (1). If k′ ⊂ k is separable,
then (1), (2), (3), (4) are all equivalent. Furthermore, the minimal smooth prorep-
resentable groupoids in functors which provide a presentation of F are unique up
to isomorphism.

Proof. We see that (1) implies (3) and is equivalent to (3) if k′ ⊂ k is separable
from Lemma 90.27.2. It is clear that (3) implies (2). We see that (2) implies (4) by
Theorem 90.26.4. We see that (4) implies (3) by Lemma 90.27.6. This proves all
the implications. The final uniqueness statement follows from Lemma 90.27.7. □
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90.28. Uniqueness of versal rings

0DQA Given R,S in ĈΛ we say maps f, g : R → S are formally homotopic if there exists
an r ≥ 0 and maps h : R → R[[t1, . . . , tr]] and k : R[[t1, . . . , tr]] → S in ĈΛ such
that for all a ∈ R we have

(1) h(a) mod (t1, . . . , tr) = a,
(2) f(a) = k(a),
(3) g(a) = k(h(a)).

We will say (r, h, k) is a formal homotopy between f and g.

Lemma 90.28.1.0DQB Being formally homotopic is an equivalence relation on sets of
morphisms in ĈΛ.

Proof. Suppose we have any r ≥ 1 and two maps h1, h2 : R → R[[t1, . . . , tr]] such
that h1(a) mod (t1, . . . , tr) = h2(a) mod (t1, . . . , tr) = a for all a ∈ R and a map
k : R[[t1, . . . , tr]]→ S. Then we claim k ◦ h1 is formally homotopic to k ◦ h2. The
symmetric inherent in this claim will show that our notion of formally homotopic
is symmetric. Namely, the map

Ψ : R[[t1, . . . , tr]] −→ R[[t1, . . . , tr]],
∑

aIt
I 7−→

∑
h1(aI)tI

is an isomorphism. Set h(a) = Ψ−1(h2(a)) for a ∈ R and k′ = k ◦ Ψ, then we see
that (r, h, k′) is a formal homotopy between k ◦ h1 and k ◦ h2, proving the claim
Say we have three maps f1, f2, f3 : R → S as above and a formal homotopy
(r1, h1, k1) between f1 and f2 and a formal homotopy (r2, h2, k2) between f3 and f2
(!). After relabeling the coordinates we may assume h2 : R→ R[[tr1+1, . . . , tr1+r2 ]]
and k2 : R[[tr1+1, . . . , tr1+r2 ]]→ S. By choosing a suitable isomorphism

R[[t1, . . . , tr1+r2 ]] −→ R[[tr1+1, . . . , tr1+r2 ]]⊗̂h2,R,h1R[[t1, . . . , tr1 ]]
we may fit these maps into a commutative diagram

R
h1

//

h2

��

R[[t1, . . . , tr1 ]]

h′
2
��

R[[tr1+1, . . . , tr1+r2 ]]
h′

1 // R[[t1, . . . , tr1+r2 ]]

with h′
2(ti) = ti for 1 ≤ i ≤ r1 and h′

1(ti) = ti for r1 + 1 ≤ i ≤ r2. Some details
omitted. Since this diagram is a pushout in the category ĈΛ (see proof of Lemma
90.4.3) and since k1 ◦ h1 = f2 = k2 ◦ h2 we conclude there exists a map

k : R[[t1, . . . , tr1+r2 ]]→ S

with k1 = k ◦ h′
2 and k2 = k ◦ h′

1. Denote h = h′
1 ◦ h2 = h′

2 ◦ h1. Then we have
(1) k(h′

1(a)) = k2(a) = f3(a), and
(2) k(h′

2(a)) = k1(a) = f1(a).
By the claim in the first paragraph of the proof this shows that f1 and f3 are
formally homotopic. □

Lemma 90.28.2.0DQC In the category ĈΛ, if f1, f2 : R→ S are formally homotopic and
g : S → S′ is a morphism, then g ◦ f1 and g ◦ f2 are formally homotopic.

Proof. Namely, if (r, h, k) is a formal homotopy between f1 and f2, then (r, h, g ◦k)
is a formal homotopy between g ◦ f1 and g ◦ f2. □

https://stacks.math.columbia.edu/tag/0DQB
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Lemma 90.28.3.0DQD Let F be a deformation category over CΛ with dimk TF <∞ and
dimk Inf(F) <∞. Let ξ be a versal formal object lying over R. Let η be a formal
object lying over S. Then any two maps

f, g : R→ S

such that f∗ξ ∼= η ∼= g∗ξ are formally homotopic.

Proof. By Theorem 90.26.4 and its proof, F has a presentation by a smooth prorep-
resentable groupoid

(R,R1, s, t, c, e, i)|CΛ

in functors on Cλ such that F . Then the maps s : R → R1 and t : R → R1
are formally smooth ring maps and e : R1 → R is a section. In particular, we
can choose an isomorphism R1 = R[[t1, . . . , tr]] for some r ≥ 0 such that s is the
embedding R ⊂ R[[t1, . . . , tr]] and t corresponds to a map h : R → R[[t1, . . . , tr]]
with h(a) mod (t1, . . . , tr) = a for all a ∈ R. The existence of the isomorphism
α : f∗ξ → g∗ξ means exactly that there is a map k : R1 → S such that f = k ◦ s
and g = k ◦ t. This exactly means that (r, h, k) is a formal homotopy between f
and g. □

Lemma 90.28.4.0DQE In the category ĈΛ, if f1, f2 : R→ S are formally homotopic and
p ⊂ R is a minimal prime ideal, then f1(p)S = f2(p)S as ideals.

Proof. Suppose (r, h, k) is a formal homotopy between f1 and f2. We claim that
pR[[t1, . . . , tr]] = h(p)R[[t1, . . . , tr]]. The claim implies the lemma by further com-
posing with k. To prove the claim, observe that the map p 7→ pR[[t1, . . . , tr]] is a
bijection between the minimal prime ideals of R and the minimal prime ideals of
R[[t1, . . . , tr]]. Finally, h(p)R[[t1, . . . , tr]] is a minimal prime as h is flat, and hence
of the form qR[[t1, . . . , tr]] for some minimal prime q ⊂ R by what we just said.
But since h mod (t1, . . . , tr) = idR by definition of a formal homotopy, we conclude
that q = p as desired. □

90.29. Change of residue field

07W7 In this section we quickly discuss what happens if we replace the residue field k by
a finite extension. Let Λ be a Noetherian ring and let Λ → k be a finite ring map
where k is a field. Throughout this whole chapter we have used CΛ to denote the
category of Artinian local Λ-algebras whose residue field is identified with k, see
Definition 90.3.1. However, since in this section we will discuss what happen when
we change k we will instead use the notation CΛ,k to indicate the dependence on k.

Situation 90.29.1.07W8 Let Λ be a Noetherian ring and let Λ → k → l be a finite ring
maps where k and l are fields. Thus l/k is a finite extensions of fields. A typical
object of CΛ,l will be denoted B and a typical object of CΛ,k will be denoted A. We
define
(90.29.1.1)07W9 CΛ,l −→ CΛ,k, B 7−→ B ×l k

Given a category cofibred in groupoids p : F → CΛ,k we obtain an associated
category cofibred in groupoids

pl/k : Fl/k −→ CΛ,l

by setting Fl/k(B) = F(B ×l k).

https://stacks.math.columbia.edu/tag/0DQD
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The functor (90.29.1.1) makes sense: because B ×l k ⊂ B we have

[k : k′] lengthB×lk(B ×l k) = lengthΛ(B ×l k)
≤ lengthΛ(B)
= [l : k′] lengthB(B) <∞

(see Lemma 90.3.4) hence B ×l k is Artinian (see Algebra, Lemma 10.53.6). Thus
B×lk is an Artinian local ring with residue field k. Note that (90.29.1.1) commutes
with fibre products

(B1 ×B B2)×l k = (B1 ×l k)×(B×lk) (B2 ×l k)

and transforms surjective ring maps into surjective ring maps. We use the “expen-
sive” notation Fl/k to prevent confusion with the construction of Remark 90.6.4.
Here are some elementary observations.

Lemma 90.29.2.07WA With notation and assumptions as in Situation 90.29.1.
(1) We have Fl/k = (F)l/k.
(2) If F is a predeformation category, then Fl/k is a predeformation category.
(3) If F satisfies (S1), then Fl/k satisfies (S1).
(4) If F satisfies (S2), then Fl/k satisfies (S2).
(5) If F satisfies (RS), then Fl/k satisfies (RS).

Proof. Part (1) is immediate from the definitions.

Since Fl/k(l) = F(k) part (2) follows from the definition, see Definition 90.6.2.

Part (3) follows as the functor (90.29.1.1) commutes with fibre products and trans-
forms surjective maps into surjective maps, see Definition 90.10.1.

Part (4). To see this consider a diagram

l[ϵ]

��
B // l

in CΛ,l as in Definition 90.10.1. Applying the functor (90.29.1.1) we obtain

k[lϵ]

��
B ×l k // k

where lϵ denotes the finite dimensional k-vector space lϵ ⊂ l[ϵ]. According to
Lemma 90.10.4 the condition of (S2) for F also holds for this diagram. Hence (S2)
holds for Fl/k.

Part (5) follows from the characterization of (RS) in Lemma 90.16.4 part (2) and
the fact that (90.29.1.1) commutes with fibre products. □

The following lemma applies in particular when F satisfies (S2) and is a predefor-
mation category, see Lemma 90.10.5.

https://stacks.math.columbia.edu/tag/07WA
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Lemma 90.29.3.07WB With notation and assumptions as in Situation 90.29.1. Assume
F is a predeformation category and F satisfies (S2). Then there is a canonical
l-vector space isomorphism

TF ⊗k l −→ TFl/k
of tangent spaces.

Proof. By Lemma 90.29.2 we may replace F by F . Moreover we see that TF , resp.
TFl/k has a canonical k-vector space structure, resp. l-vector space structure, see
Lemma 90.12.2. Then

TFl/k = Fl/k(l[ϵ]) = F(k[lϵ]) = TF ⊗k l
the last equality by Lemma 90.12.2. More generally, given a finite dimensional
l-vector space V we have

Fl/k(l[V ]) = F(k[Vk]) = TF ⊗k Vk
where Vk denotes V seen as a k-vector space. We conclude that the functors
V 7→ Fl/k(l[V ]) and V 7→ TF ⊗k Vk are canonically identified as functors to the
category of sets. By Lemma 90.11.4 we see there is at most one way to turn either
functor into an l-linear functor. Hence the isomorphisms are compatible with the
l-vector space structures and we win. □

Lemma 90.29.4.07WC With notation and assumptions as in Situation 90.29.1. Assume
F is a deformation category. Then there is a canonical l-vector space isomorphism

Inf(F)⊗k l −→ Inf(Fl/k)
of infinitesimal automorphism spaces.

Proof. Let x0 ∈ Ob(F(k)) and denote xl,0 the corresponding object of Fl/k over l.
Recall that Inf(F) = Infx0(F) and Inf(Fl/k) = Infxl,0(Fl/k), see Remark 90.19.4.
Recall that the vector space structure on Infx0(F) comes from identifying it with
the tangent space of the functor Aut(x0) which is defined on the category Ck,k of
Artinian local k-algebras with residue field k. Similarly, Infxl,0(Fl/k) is the tangent
space of Aut(xl,0) which is defined on the category Cl,l of Artinian local l-algebras
with residue field l. Unwinding the definitions we see that Aut(xl,0) is the restriction
of Aut(x0)l/k (which lives on Ck,l) to Cl,l. Since there is no difference between the
tangent space of Aut(x0)l/k seen as a functor on Ck,l or Cl,l, the lemma follows from
Lemma 90.29.3 and the fact that Aut(x0) satisfies (RS) by Lemma 90.19.6 (whence
we have (S2) by Lemma 90.16.6). □

Lemma 90.29.5.07WD With notation and assumptions as in Situation 90.29.1. If F → G
is a smooth morphism of categories cofibred in groupoids over CΛ,k, then Fl/k →
Gl/k is a smooth morphism of categories cofibred in groupoids over CΛ,l.

Proof. This follows immediately from the definitions and the fact that (90.29.1.1)
preserves surjections. □

There are many more things you can say about the relationship between F and
Fl/k (in particular about the relationship between versal deformations) and we will
add these here as needed.

Lemma 90.29.6.0DQF With notation and assumptions as in Situation 90.29.1. Let ξ be
a versal formal object for F lying over R ∈ Ob(ĈΛ,k). Then there exist
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(1) an S ∈ Ob(ĈΛ,l) and a local Λ-algebra homomorphism R → S which
is formally smooth in the mS-adic topology and induces the given field
extension l/k on residue fieds, and

(2) a versal formal object of Fl/k lying over S.

Proof. Construction of S. Choose a surjection R[x1, . . . , xn]→ l of R-algebras. The
kernel is a maximal ideal m. Set S equal to the m-adic completion of the Noetherian
ring R[x1, . . . , xn]. Then S is in ĈΛ,l by Algebra, Lemma 10.97.6. The map R→ S
is formally smooth in the mS-adic topology by More on Algebra, Lemmas 15.37.2
and 15.37.4 and the fact that R → R[x1, . . . , xn] is formally smooth. (Compare
with the proof Lemma 90.9.5.)
Since ξ is versal, the transformation ξ : R|CΛ,k → F is smooth. By Lemma 90.29.5
the induced map

(R|CΛ,k)l/k −→ Fl/k
is smooth. Thus it suffices to construct a smooth morphism S|CΛ,l → (R|CΛ,k)l/k.
To give such a map means for every object B of CΛ,l a map of sets

MorĈΛ,l
(S,B) −→ MorĈΛ,k

(R,B ×l k)

functorial in B. Given an element φ : S → B on the left hand side we send it to
the composition R→ S → B whose image is contained in the sub Λ-algebra B×l k.
Smoothness of the map means that given a surjection B′ → B and a commutative
diagram

S // B B

R

OO

// B′ ×l k

OO

// B′

OO

we have to find a ring map S → B′ fitting into the outer rectangle. The existence
of this map is guaranteed as we chose R→ S to be formally smooth in the mS-adic
topology, see More on Algebra, Lemma 15.37.5. □
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CHAPTER 91

Deformation Theory

08KW 91.1. Introduction

08KX The goal of this chapter is to give a (relatively) gentle introduction to deformation
theory of modules, morphisms, etc. In this chapter we deal with those results that
can be proven using the naive cotangent complex. In the chapter on the cotangent
complex we will extend these results a little bit. The advanced reader may wish to
consult the treatise by Illusie on this subject, see [Ill72].

91.2. Deformations of rings and the naive cotangent complex

08S3 In this section we use the naive cotangent complex to do a little bit of deformation
theory. We start with a surjective ring map A′ → A whose kernel is an ideal I of
square zero. Moreover we assume given a ring map A → B, a B-module N , and
an A-module map c : I → N . In this section we ask ourselves whether we can find
the question mark fitting into the following diagram

(91.2.0.1)08S4
0 // N // ? // B // 0

0 // I

c

OO

// A′

OO

// A

OO

// 0

and moreover how unique the solution is (if it exists). More precisely, we look for
a surjection of A′-algebras B′ → B whose kernel is an ideal of square zero and is
identified with N such that A′ → B′ induces the given map c. We will say B′ is a
solution to (91.2.0.1).

Lemma 91.2.1.08S5 Given a commutative diagram

0 // N2 // B′
2

// B2 // 0

0 // I2

c2

OO

// A′
2

OO

// A2

OO

// 0

0 // N1

GG

// B′
1

// B1

GG

// 0

0 // I1

GG

c1

OO

// A′
1

GG

OO

// A1

GG

OO

// 0

with front and back solutions to (91.2.0.1) we have

6534
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(1) There exist a canonical element in Ext1
B1

(NLB1/A1 , N2) whose vanishing
is a necessary and sufficient condition for the existence of a ring map
B′

1 → B′
2 fitting into the diagram.

(2) If there exists a map B′
1 → B′

2 fitting into the diagram the set of all such
maps is a principal homogeneous space under HomB1(ΩB1/A1 , N2).

Proof. Let E = B1 viewed as a set. Consider the surjection A1[E] → B1 with
kernel J used to define the naive cotangent complex by the formula

NLB1/A1 = (J/J2 → ΩA1[E]/A1 ⊗A1[E] B1)

in Algebra, Section 10.134. Since ΩA1[E]/A1 ⊗B1 is a free B1-module we have

Ext1
B1

(NLB1/A1 , N2) = HomB1(J/J2, N2)
HomB1(ΩA1[E]/A1 ⊗B1, N2)

We will construct an obstruction in the module on the right. Let J ′ = Ker(A′
1[E]→

B1). Note that there is a surjection J ′ → J whose kernel is I1A1[E]. For every
e ∈ E denote xe ∈ A1[E] the corresponding variable. Choose a lift ye ∈ B′

1 of
the image of xe in B1 and a lift ze ∈ B′

2 of the image of xe in B2. These choices
determine A′

1-algebra maps

A′
1[E]→ B′

1 and A′
1[E]→ B′

2

The first of these gives a map J ′ → N1, f ′ 7→ f ′(ye) and the second gives a map
J ′ → N2, f ′ 7→ f ′(ze). A calculation shows that these maps annihilate (J ′)2.
Because the left square of the diagram (involving c1 and c2) commutes we see that
these maps agree on I1A1[E] as maps into N2. Observe that B′

1 is the pushout
of J ′ → A′

1[B1] and J ′ → N1. Thus, if the maps J ′ → N1 → N2 and J ′ → N2
agree, then we obtain a map B′

1 → B′
2 fitting into the diagram. Thus we let the

obstruction be the class of the map

J/J2 → N2, f 7→ f ′(ze)− ν(f ′(ye))

where ν : N1 → N2 is the given map and where f ′ ∈ J ′ is a lift of f . This is
well defined by our remarks above. Note that we have the freedom to modify our
choices of ze into ze + δ2,e and ye into ye + δ1,e for some δi,e ∈ Ni. This will modify
the map above into

f 7→ f ′(ze + δ2,e)− ν(f ′(ye + δ1,e)) = f ′(ze)− ν(f ′(ze)) +
∑

(δ2,e − ν(δ1,e))
∂f

∂xe

This means exactly that we are modifying the map J/J2 → N2 by the composition
J/J2 → ΩA1[E]/A1 ⊗ B1 → N2 where the second map sends dxe to δ2,e − ν(δ1,e).
Thus our obstruction is well defined and is zero if and only if a lift exists.

Part (2) comes from the observation that given two maps φ,ψ : B′
1 → B′

2 fitting
into the diagram, then φ − ψ factors through a map D : B1 → N2 which is an
A1-derivation:

D(fg) = φ(f ′g′)− ψ(f ′g′)
= φ(f ′)φ(g′)− ψ(f ′)ψ(g′)
= (φ(f ′)− ψ(f ′))φ(g′) + ψ(f ′)(φ(g′)− ψ(g′))
= gD(f) + fD(g)
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Thus D corresponds to a unique B1-linear map ΩB1/A1 → N2. Conversely, given
such a linear map we get a derivation D and given a ring map ψ : B′

1 → B′
2 fitting

into the diagram the map ψ +D is another ring map fitting into the diagram. □

Lemma 91.2.2.08S7 If there exists a solution to (91.2.0.1), then the set of isomorphism
classes of solutions is principal homogeneous under Ext1

B(NLB/A, N).

Proof. We observe right away that given two solutions B′
1 and B′

2 to (91.2.0.1) we
obtain by Lemma 91.2.1 an obstruction element o(B′

1, B
′
2) ∈ Ext1

B(NLB/A, N) to
the existence of a map B′

1 → B′
2. Clearly, this element is the obstruction to the

existence of an isomorphism, hence separates the isomorphism classes. To finish
the proof it therefore suffices to show that given a solution B′ and an element
ξ ∈ Ext1

B(NLB/A, N) we can find a second solution B′
ξ such that o(B′, B′

ξ) = ξ.
Let E = B viewed as a set. Consider the surjection A[E]→ B with kernel J used
to define the naive cotangent complex by the formula

NLB/A = (J/J2 → ΩA[E]/A ⊗A[E] B)
in Algebra, Section 10.134. Since ΩA[E]/A ⊗B is a free B-module we have

Ext1
B(NLB/A, N) = HomB(J/J2, N)

HomB(ΩA[E]/A ⊗B,N)
Thus we may represent ξ as the class of a morphism δ : J/J2 → N .
For every e ∈ E denote xe ∈ A[E] the corresponding variable. Choose a lift ye ∈ B′

of the image of xe in B. These choices determine an A′-algebra map φ : A′[E]→ B′.
Let J ′ = Ker(A′[E] → B). Observe that φ induces a map φ|J′ : J ′ → N and that
B′ is the pushout, as in the following diagram

0 // N // B′ // B // 0

0 // J ′

φ|J′

OO

// A′[E]

OO

// B

=

OO

// 0

Let ψ : J ′ → N be the sum of the map φ|J′ and the composition

J ′ → J ′/(J ′)2 → J/J2 δ−→ N.

Then the pushout along ψ is an other ring extension B′
ξ fitting into a diagram as

above. A calculation shows that o(B′, B′
ξ) = ξ as desired. □

Lemma 91.2.3.0GPT Let A be a ring. Let B be an A-algebra. Let N be a B-module.
The set of isomorphism classes of extensions of A-algebras

0→ N → B′ → B → 0
where N is an ideal of square zero is canonically bijective to Ext1

B(NLB/A, N).

Proof. To prove this we apply the previous results to the case where (91.2.0.1) is
given by the diagram

0 // N // ? // B // 0

0 // 0

OO

// A

OO

id // A

OO

// 0

https://stacks.math.columbia.edu/tag/08S7
https://stacks.math.columbia.edu/tag/0GPT
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Thus our lemma follows from Lemma 91.2.2 and the fact that there exists a solution,
namely N ⊕B. (See remark below for a direct construction of the bijection.) □

Remark 91.2.4.0GPU Let A → B and N be as in Lemma 91.2.3. Let α : P → B be a
presentation of B over A, see Algebra, Section 10.134. With J = Ker(α) the naive
cotangent complex NL(α) associated to α is the complex J/J2 → ΩP/A ⊗P B. We
have

Ext1
B(NL(α), N) = Coker

(
HomB(ΩP/A ⊗P B,N)→ HomB(J/J2, N)

)
because ΩP/A is a free module. Consider a extension 0→ N → B′ → B → 0 as in
the lemma. Since P is a polynomial algebra over A we can lift α to an A-algebra
map α′ : P ′ → B′. Then α′|J : J → N factors as J → J/J2 → N as N has square
zero in B′. The lemma sends our extension to the class of this map J/J2 → N in
the displayed cokernel.

Lemma 91.2.5.0GPV Given ring maps A → B → C, a B-module M , a C-module N , a
B-linear map c : M → N , and extensions of A-algebras with square zero kernels

(a) 0→M → B′ → B → 0 corresponding to ξ ∈ Ext1
B(NLB/A,M), and

(b) 0→ N → C ′ → C → 0 corresponding to ζ ∈ Ext1
C(NLC/A, N).

See Lemma 91.2.3. Then there is an A-algebra map B′ → C ′ compatible with
B → C and c if and only if ξ and ζ map to the same element of Ext1

B(NLB/A, N).

Proof. The stament makes sense as we have the maps

Ext1
B(NLB/A,M)→ Ext1

B(NLB/A, N)

using the map M → N and

Ext1
C(NLC/A, N)→ Ext1

B(NLC/A, N)→ Ext1
B(NLB/A, N)

where the first arrows uses the restriction map D(C) → D(B) and the second
arrow uses the canonical map of complexes NLB/A → NLC/A. The statement of
the lemma can be deduced from Lemma 91.2.1 applied to the diagram

0 // N // C ′ // C // 0

0 // 0

OO

// A

OO

// A

OO

// 0

0 // M

FF

// B′ // B

GG

// 0

0 // 0

FF

OO

// A

FF

OO

// A

GG

OO

// 0

and a compatibility between the constructions in the proofs of Lemmas 91.2.3 and
91.2.1 whose statement and proof we omit. (See remark below for a direct argu-
ment.) □

Remark 91.2.6.0GPW Let A → B → C, M , N , c : M → N , 0 → M → B′ → B → 0,
ξ ∈ Ext1

B(NLB/A,M), 0 → N → C ′ → C → 0, and ζ ∈ Ext1
C(NLC/A, N) be as in

https://stacks.math.columbia.edu/tag/0GPU
https://stacks.math.columbia.edu/tag/0GPV
https://stacks.math.columbia.edu/tag/0GPW
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Lemma 91.2.5. Using pushout along c : M → N we can construct an extension
0 // N // B′

1
// B // 0

0 // M

c

OO

// B′

OO

// B

OO

// 0
by setting B′

1 = (N ×B′)/M where M is antidiagonally embedded. Using pullback
along B → C we can construct an extension

0 // N // C ′ // C // 0

0 // N

OO

// B′
2

OO

// B

OO

// 0

by setting B′
2 = C ′ ×C B (fibre product of rings). A simple diagram chase tells

us that there exists an A-algebra map B′ → C ′ compatible with B → C and c if
and only if B′

1 is isomorphic to B′
2 as A-algebra extensions of B by N . Thus to see

Lemma 91.2.5 is true, it suffices to show that B′
1 corresponds via the bijection of

Lemma 91.2.3 to the image of ξ by the map Ext1
B(NLB/A,M)→ Ext1

B(NLB/A, N)
and thatB′

2 correspond to the image of ζ by the map Ext1
C(NLC/A, N)→ Ext1

B(NLB/A, N).
The first of these two statements is immediate from the construction of the class in
Remark 91.2.4. For the second, choose a commutative diagram

Q
β
// C

P

φ

OO

α // B

OO

of A-algebras, such that α is a presentation of B over A and β is a presentation
of C over A. See Remark 91.2.4 and references therein. Set J = Ker(α) and
K = Ker(β). The map φ induces a map of complexes NL(α) → NL(β) and in
particular φ̄ : J/J2 → K/K2. Choose A-algebra homomorphism β′ : Q → C ′

which is a lift of β. Then α′ = (β′ ◦ φ, α) : P → B′
2 = C ′ ×C B is a lift of α. With

these choices the composition of the map K/K2 → N induced by β′ and the map
φ̄ : J/J2 → K/K2 is the restriction of α′ to J/J2. Unwinding the constructions of
our classes in Remark 91.2.4 this indeed shows that B′

2 correspond to the image of
ζ by the map Ext1

C(NLC/A, N)→ Ext1
B(NLB/A, N).

Lemma 91.2.7.0GPX Let 0 → I → A′ → A → 0, A → B, and c : I → N be as in
(91.2.0.1). Denote ξ ∈ Ext1

A(NLA/A′ , I) the element corresponding to the extension
A′ of A by I via Lemma 91.2.3. The set of isomorphism classes of solutions is
canonically bijective to the fibre of

Ext1
B(NLB/A′ , N)→ Ext1

A(NLA′/A, N)
over the image of ξ.
Proof. By Lemma 91.2.3 applied to A′ → B and the B-module N we see that
elements ζ of Ext1

B(NLB/A′ , N) parametrize extensions 0 → N → B′ → B → 0
of A′-algebras. By Lemma 91.2.5 applied to A′ → A → B and c : I → N we see
that there is an A′-algebra map A′ → B′ compatible with c and A → B if and
only if ζ maps to ξ. Of course this is the same thing as saying B′ is a solution of
(91.2.0.1). □

https://stacks.math.columbia.edu/tag/0GPX
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Remark 91.2.8.0GPY Observe that in the situation of Lemma 91.2.7 we have

Ext1
A(NLA′/A, N) = Ext1

B(NLA′/A⊗L
AB,N) = Ext1

B(NLA′/A⊗AB,N)
The first equality by More on Algebra, Lemma 15.60.3 and the second by More on
Algebra, Lemma 15.85.1. We have maps of complexes

NLA′/A⊗AB → NLB/A′ → NLB/A

which is close to being a distinguished triangle, see Algebra, Lemma 10.134.4. If it
were a distinguished triangle we would conclude that the image of ξ in Ext2

B(NLB/A, N)
would be the obstruction to the existence of a solution to (91.2.0.1).

If our ring map A → B is a local complete intersection, then there is a solutuion.
This is a kind of lifting result; observe that for syntomic ring maps we have proved
a rather strong lifting result in Smoothing Ring Maps, Proposition 16.3.2.

Lemma 91.2.9.08S6 If A → B is a local complete intersection ring map, then there
exists a solution to (91.2.0.1).

First proof. Write B = A[x1, . . . , xn]/J . By More on Algebra, Definition 15.33.2
the ideal J is Koszul-regular. This implies J is H1-regular and quasi-regular, see
More on Algebra, Section 15.32. Let J ′ ⊂ A′[x1, . . . , xn] be the inverse image of J .
Denote I[x1, . . . , xn] the kernel of A′[x1, . . . , xn]→ A[x1, . . . , xn]. By More on Alge-
bra, Lemma 15.32.5 we have I[x1, . . . , xn]∩(J ′)2 = J ′I[x1, . . . , xn] = JI[x1, . . . , xn].
Hence we obtain a short exact sequence

0→ I ⊗A B → J ′/(J ′)2 → J/J2 → 0
Since J/J2 is projective (More on Algebra, Lemma 15.32.3) we can choose a split-
ting of this sequence

J ′/(J ′)2 = I ⊗A B ⊕ J/J2

Let (J ′)2 ⊂ J ′′ ⊂ J ′ be the elements which map to the second summand in the
decomposition above. Then

0→ I ⊗A B → A′[x1, . . . , xn]/J ′′ → B → 0
is a solution to (91.2.0.1) with N = I ⊗A B. The general case is obtained by doing
a pushout along the given map I ⊗A B → N . □

Second proof. Please read Remark 91.2.8 before reading this proof. By More on
Algebra, Lemma 15.33.6 the maps NLA′/A⊗AB → NLB/A′ → NLB/A do form a
distinguished triangle in D(B). Hence it suffices to show that Ext2

B/A(NLB/A, N)
vanishes. By More on Algebra, Lemma 15.85.4 the complex NLB/A is perfect of
tor-amplitude in [−1, 0]. This implies our Ext2 vanishes for example by More on
Algebra, Lemma 15.76.1 part (1). □

91.3. Thickenings of ringed spaces

08KY In the following few sections we will use the following notions:
(1) A sheaf of ideals I ⊂ OX′ on a ringed space (X ′,OX′) is locally nilpotent

if any local section of I is locally nilpotent. Compare with Algebra, Item
29.

(2) A thickening of ringed spaces is a morphism i : (X,OX) → (X ′,OX′) of
ringed spaces such that
(a) i induces a homeomorphism X → X ′,

https://stacks.math.columbia.edu/tag/0GPY
https://stacks.math.columbia.edu/tag/08S6
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(b) the map i♯ : OX′ → i∗OX is surjective, and
(c) the kernel of i♯ is a locally nilpotent sheaf of ideals.

(3) A first order thickening of ringed spaces is a thickening i : (X,OX) →
(X ′,OX′) of ringed spaces such that Ker(i♯) has square zero.

(4) It is clear how to define morphisms of thickenings, morphisms of thicken-
ings over a base ringed space, etc.

If i : (X,OX) → (X ′,OX′) is a thickening of ringed spaces then we identify the
underlying topological spaces and think of OX , OX′ , and I = Ker(i♯) as sheaves
on X = X ′. We obtain a short exact sequence

0→ I → OX′ → OX → 0

of OX′ -modules. By Modules, Lemma 17.13.4 the category of OX -modules is equiv-
alent to the category of OX′ -modules annihilated by I. In particular, if i is a first
order thickening, then I is a OX -module.

Situation 91.3.1.08KZ A morphism of thickenings (f, f ′) is given by a commutative
diagram

(91.3.1.1)08L0

(X,OX)
i
//

f

��

(X ′,OX′)

f ′

��
(S,OS) t // (S′,OS′)

of ringed spaces whose horizontal arrows are thickenings. In this situation we set
I = Ker(i♯) ⊂ OX′ and J = Ker(t♯) ⊂ OS′ . As f = f ′ on underlying topological
spaces we will identify the (topological) pullback functors f−1 and (f ′)−1. Observe
that (f ′)♯ : f−1OS′ → OX′ induces in particular a map f−1J → I and therefore a
map of OX′ -modules

(f ′)∗J −→ I
If i and t are first order thickenings, then (f ′)∗J = f∗J and the map above becomes
a map f∗J → I.

Definition 91.3.2.08L1 In Situation 91.3.1 we say that (f, f ′) is a strict morphism of
thickenings if the map (f ′)∗J −→ I is surjective.

The following lemma in particular shows that a morphism (f, f ′) : (X ⊂ X ′) →
(S ⊂ S′) of thickenings of schemes is strict if and only if X = S ×S′ X ′.

Lemma 91.3.3.08L2 In Situation 91.3.1 the morphism (f, f ′) is a strict morphism of
thickenings if and only if (91.3.1.1) is cartesian in the category of ringed spaces.

Proof. Omitted. □

91.4. Modules on first order thickenings of ringed spaces

08L3 In this section we discuss some preliminaries to the deformation theory of modules.
Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed spaces. We will
freely use the notation introduced in Section 91.3, in particular we will identify the
underlying topological spaces. In this section we consider short exact sequences

(91.4.0.1)08L4 0→ K → F ′ → F → 0

https://stacks.math.columbia.edu/tag/08KZ
https://stacks.math.columbia.edu/tag/08L1
https://stacks.math.columbia.edu/tag/08L2
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of OX′ -modules, where F , K are OX -modules and F ′ is an OX′ -module. In this
situation we have a canonical OX -module map

cF ′ : I ⊗OX
F −→ K

where I = Ker(i♯). Namely, given local sections f of I and s of F we set cF ′(f⊗s) =
fs′ where s′ is a local section of F ′ lifting s.

Lemma 91.4.1.08L5 Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed
spaces. Assume given extensions

0→ K → F ′ → F → 0 and 0→ L → G′ → G → 0

as in (91.4.0.1) and maps φ : F → G and ψ : K → L.
(1) If there exists an OX′ -module map φ′ : F ′ → G′ compatible with φ and

ψ, then the diagram

I ⊗OX
F

cF′
//

1⊗φ
��

K

ψ

��
I ⊗OX

G
cG′ // L

is commutative.
(2) The set of OX′ -module maps φ′ : F ′ → G′ compatible with φ and ψ is, if

nonempty, a principal homogeneous space under HomOX
(F ,L).

Proof. Part (1) is immediate from the description of the maps. For (2), if φ′ and
φ′′ are two maps F ′ → G′ compatible with φ and ψ, then φ′ − φ′′ factors as

F ′ → F → L → G′

The map in the middle comes from a unique element of HomOX
(F ,L) by Modules,

Lemma 17.13.4. Conversely, given an element α of this group we can add the
composition (as displayed above with α in the middle) to φ′. Some details omitted.

□

Lemma 91.4.2.08L6 Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed
spaces. Assume given extensions

0→ K → F ′ → F → 0 and 0→ L → G′ → G → 0

as in (91.4.0.1) and maps φ : F → G and ψ : K → L. Assume the diagram

I ⊗OX
F

cF′
//

1⊗φ
��

K

ψ

��
I ⊗OX

G
cG′ // L

is commutative. Then there exists an element

o(φ,ψ) ∈ Ext1
OX

(F ,L)

whose vanishing is a necessary and sufficient condition for the existence of a map
φ′ : F ′ → G′ compatible with φ and ψ.

https://stacks.math.columbia.edu/tag/08L5
https://stacks.math.columbia.edu/tag/08L6
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Proof. We can construct explicitly an extension
0→ L → H → F → 0

by taking H to be the cohomology of the complex

K 1,−ψ−−−→ F ′ ⊕ G′ φ,1−−→ G
in the middle (with obvious notation). A calculation with local sections using the
assumption that the diagram of the lemma commutes shows that H is annihilated
by I. Hence H defines a class in

Ext1
OX

(F ,L) ⊂ Ext1
OX′ (F ,L)

Finally, the class of H is the difference of the pushout of the extension F ′ via ψ and
the pullback of the extension G′ via φ (calculations omitted). Thus the vanishing
of the class of H is equivalent to the existence of a commutative diagram

0 // K //

ψ

��

F ′ //

φ′

��

F //

φ

��

0

0 // L // G′ // G // 0
as desired. □

Lemma 91.4.3.08L7 Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed
spaces. Assume given OX -modules F , K and an OX -linear map c : I ⊗OX

F → K.
If there exists a sequence (91.4.0.1) with cF ′ = c then the set of isomorphism classes
of these extensions is principal homogeneous under Ext1

OX
(F ,K).

Proof. Assume given extensions
0→ K → F ′

1 → F → 0 and 0→ K → F ′
2 → F → 0

with cF ′
1

= cF ′
2

= c. Then the difference (in the extension group, see Homology,
Section 12.6) is an extension

0→ K → E → F → 0
where E is annihilated by I (local computation omitted). Hence the sequence is an
extension of OX -modules, see Modules, Lemma 17.13.4. Conversely, given such an
extension E we can add the extension E to the OX′ -extension F ′ without affecting
the map cF ′ . Some details omitted. □

Lemma 91.4.4.08L8 Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed
spaces. Assume given OX -modules F , K and an OX -linear map c : I ⊗OX

F → K.
Then there exists an element

o(F ,K, c) ∈ Ext2
OX

(F ,K)
whose vanishing is a necessary and sufficient condition for the existence of a se-
quence (91.4.0.1) with cF ′ = c.

Proof. We first show that if K is an injective OX -module, then there does exist a
sequence (91.4.0.1) with cF ′ = c. To do this, choose a flat OX′ -module H′ and a
surjection H′ → F (Modules, Lemma 17.17.6). Let J ⊂ H′ be the kernel. Since
H′ is flat we have

I ⊗OX′ H′ = IH′ ⊂ J ⊂ H′

https://stacks.math.columbia.edu/tag/08L7
https://stacks.math.columbia.edu/tag/08L8
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Observe that the map
IH′ = I ⊗OX′ H′ −→ I ⊗OX′ F = I ⊗OX

F
annihilates IJ . Namely, if f is a local section of I and s is a local section of H,
then fs is mapped to f ⊗ s where s is the image of s in F . Thus we obtain

IH′/IJ �
� //

��

J /IJ

γ

��
I ⊗OX

F c // K

a diagram of OX -modules. If K is injective as an OX -module, then we obtain the
dotted arrow. Denote γ′ : J → K the composition of γ with J → J /IJ . A local
calculation shows the pushout

0 // J //

γ′

��

H′ //

��

F // 0

0 // K // F ′ // F // 0
is a solution to the problem posed by the lemma.
General case. Choose an embedding K ⊂ K′ with K′ an injective OX -module. Let
Q be the quotient, so that we have an exact sequence

0→ K → K′ → Q→ 0
Denote c′ : I⊗OX

F → K′ be the composition. By the paragraph above there exists
a sequence

0→ K′ → E ′ → F → 0
as in (91.4.0.1) with cE′ = c′. Note that c′ composed with the map K′ → Q is zero,
hence the pushout of E ′ by K′ → Q is an extension

0→ Q→ D′ → F → 0
as in (91.4.0.1) with cD′ = 0. This means exactly that D′ is annihilated by I, in
other words, the D′ is an extension of OX -modules, i.e., defines an element

o(F ,K, c) ∈ Ext1
OX

(F ,Q) = Ext2
OX

(F ,K)
(the equality holds by the long exact cohomology sequence associated to the exact
sequence above and the vanishing of higher ext groups into the injective module
K′). If o(F ,K, c) = 0, then we can choose a splitting s : F → D′ and we can set

F ′ = Ker(E ′ → D′/s(F))
so that we obtain the following diagram

0 // K //

��

F ′ //

��

F // 0

0 // K′ // E ′ // F // 0
with exact rows which shows that cF ′ = c. Conversely, if F ′ exists, then the pushout
of F ′ by the map K → K′ is isomorphic to E ′ by Lemma 91.4.3 and the vanishing
of higher ext groups into the injective module K′. This gives a diagram as above,
which implies that D′ is split as an extension, i.e., the class o(F ,K, c) is zero. □
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Remark 91.4.5.08L9 Let (X,OX) be a ringed space. A first order thickening i :
(X,OX) → (X ′,OX′) is said to be trivial if there exists a morphism of ringed
spaces π : (X ′,OX′) → (X,OX) which is a left inverse to i. The choice of such
a morphism π is called a trivialization of the first order thickening. Given π we
obtain a splitting

(91.4.5.1)08LA OX′ = OX ⊕ I

as sheaves of algebras on X by using π♯ to split the surjection OX′ → OX . Con-
versely, such a splitting determines a morphism π. The category of trivialized first
order thickenings of (X,OX) is equivalent to the category of OX -modules.

Remark 91.4.6.08LB Let i : (X,OX) → (X ′,OX′) be a trivial first order thickening of
ringed spaces and let π : (X ′,OX′)→ (X,OX) be a trivialization. Then given any
triple (F ,K, c) consisting of a pair of OX -modules and a map c : I ⊗OX

F → K we
may set

F ′
c,triv = F ⊕K

and use the splitting (91.4.5.1) associated to π and the map c to define the OX′-
module structure and obtain an extension (91.4.0.1). We will call F ′

c,triv the trivial
extension of F byK corresponding to c and the trivialization π. Given any extension
F ′ as in (91.4.0.1) we can use π♯ : OX → OX′ to think of F ′ as an OX -module
extension, hence a class ξF ′ in Ext1

OX
(F ,K). Lemma 91.4.3 assures that F ′ 7→ ξF ′

induces a bijection{
isomorphism classes of extensions
F ′ as in (91.4.0.1) with c = cF ′

}
−→ Ext1

OX
(F ,K)

Moreover, the trivial extension F ′
c,triv maps to the zero class.

Remark 91.4.7.08LC Let (X,OX) be a ringed space. Let (X,OX)→ (X ′
i,OX′

i
), i = 1, 2

be first order thickenings with ideal sheaves Ii. Let h : (X ′
1,OX′

1
)→ (X ′

2,OX′
2
) be

a morphism of first order thickenings of (X,OX). Picture

(X,OX)

xx &&
(X ′

1,OX′
1
) h // (X ′

2,OX′
2
)

Observe that h♯ : OX′
2
→ OX′

1
in particular induces an OX -module map I2 → I1.

Let F be an OX -module. Let (Ki, ci), i = 1, 2 be a pair consisting of an OX -module
Ki and a map ci : Ii⊗OX

F → Ki. Assume furthermore given a map of OX -modules
K2 → K1 such that

I2 ⊗OX
F

c2
//

��

K2

��
I1 ⊗OX

F c1 // K1

is commutative. Then there is a canonical functoriality{
F ′

2 as in (91.4.0.1) with
c2 = cF ′

2
and K = K2

}
−→

{
F ′

1 as in (91.4.0.1) with
c1 = cF ′

1
and K = K1

}

https://stacks.math.columbia.edu/tag/08L9
https://stacks.math.columbia.edu/tag/08LB
https://stacks.math.columbia.edu/tag/08LC
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Namely, thinking of all sheaves OX , OX′
i
, F , Ki, etc as sheaves on X, we set given

F ′
2 the sheaf F ′

1 equal to the pushout, i.e., fitting into the following diagram of
extensions

0 // K2 //

��

F ′
2

//

��

F // 0

0 // K1 // F ′
1

// F // 0
We omit the construction of the OX′

1
-module structure on the pushout (this uses

the commutativity of the diagram involving c1 and c2).

Remark 91.4.8.08LD Let (X,OX), (X,OX) → (X ′
i,OX′

i
), Ii, and h : (X ′

1,OX′
1
) →

(X ′
2,OX′

2
) be as in Remark 91.4.7. Assume that we are given trivializations πi :

X ′
i → X such that π1 = h◦π2. In other words, assume h is a morphism of trivialized

first order thickening of (X,OX). Let (Ki, ci), i = 1, 2 be a pair consisting of an
OX -module Ki and a map ci : Ii ⊗OX

F → Ki. Assume furthermore given a map
of OX -modules K2 → K1 such that

I2 ⊗OX
F

c2
//

��

K2

��
I1 ⊗OX

F c1 // K1

is commutative. In this situation the construction of Remark 91.4.6 induces a
commutative diagram

{F ′
2 as in (91.4.0.1) with c2 = cF ′

2
and K = K2}

��

// Ext1
OX

(F ,K2)

��
{F ′

1 as in (91.4.0.1) with c1 = cF ′
1

and K = K1} // Ext1
OX

(F ,K1)

where the vertical map on the right is given by functoriality of Ext and the map
K2 → K1 and the vertical map on the left is the one from Remark 91.4.7.

Remark 91.4.9.08LE Let (X,OX) be a ringed space. We define a sequence of morphisms
of first order thickenings

(X ′
1,OX′

1
)→ (X ′

2,OX′
2
)→ (X ′

3,OX′
3
)

of (X,OX) to be a complex if the corresponding maps between the ideal sheaves
Ii give a complex of OX -modules I3 → I2 → I1 (i.e., the composition is zero).
In this case the composition (X ′

1,OX′
1
) → (X ′

3,OX′
3
) factors through (X,OX) →

(X ′
3,OX′

3
), i.e., the first order thickening (X ′

1,OX′
1
) of (X,OX) is trivial and comes

with a canonical trivialization π : (X ′
1,OX′

1
)→ (X,OX).

We say a sequence of morphisms of first order thickenings
(X ′

1,OX′
1
)→ (X ′

2,OX′
2
)→ (X ′

3,OX′
3
)

of (X,OX) is a short exact sequence if the corresponding maps between ideal sheaves
is a short exact sequence

0→ I3 → I2 → I1 → 0
of OX -modules.

https://stacks.math.columbia.edu/tag/08LD
https://stacks.math.columbia.edu/tag/08LE
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Remark 91.4.10.08LF Let (X,OX) be a ringed space. Let F be an OX -module. Let

(X ′
1,OX′

1
)→ (X ′

2,OX′
2
)→ (X ′

3,OX′
3
)

be a complex first order thickenings of (X,OX), see Remark 91.4.9. Let (Ki, ci),
i = 1, 2, 3 be pairs consisting of an OX -module Ki and a map ci : Ii ⊗OX

F → Ki.
Assume given a short exact sequence of OX -modules

0→ K3 → K2 → K1 → 0

such that
I2 ⊗OX

F
c2
//

��

K2

��
I1 ⊗OX

F c1 // K1

and

I3 ⊗OX
F

c3
//

��

K3

��
I2 ⊗OX

F c2 // K2

are commutative. Finally, assume given an extension

0→ K2 → F ′
2 → F → 0

as in (91.4.0.1) with K = K2 of OX′
2
-modules with cF ′

2
= c2. In this situation

we can apply the functoriality of Remark 91.4.7 to obtain an extension F ′
1 on

X ′
1 (we’ll describe F ′

1 in this special case below). By Remark 91.4.6 using the
canonical splitting π : (X ′

1,OX′
1
) → (X,OX) of Remark 91.4.9 we obtain ξF ′

1
∈

Ext1
OX

(F ,K1). Finally, we have the obstruction

o(F ,K3, c3) ∈ Ext2
OX

(F ,K3)

see Lemma 91.4.4. In this situation we claim that the canonical map

∂ : Ext1
OX

(F ,K1) −→ Ext2
OX

(F ,K3)

coming from the short exact sequence 0 → K3 → K2 → K1 → 0 sends ξF ′
1

to the
obstruction class o(F ,K3, c3).

To prove this claim choose an embedding j : K3 → K where K is an injective OX -
module. We can lift j to a map j′ : K2 → K. Set E ′

2 = j′
∗F ′

2 equal to the pushout
of F ′

2 by j′ so that cE′
2

= j′ ◦ c2. Picture:

0 // K2 //

j′

��

F ′
2

//

��

F //

��

0

0 // K // E ′
2

// F // 0

Set E ′
3 = E ′

2 but viewed as an OX′
3
-module via OX′

3
→ OX′

2
. Then cE′

3
= j ◦ c3. The

proof of Lemma 91.4.4 constructs o(F ,K3, c3) as the boundary of the class of the
extension of OX -modules

0→ K/K3 → E ′
3/K3 → F → 0

On the other hand, note that F ′
1 = F ′

2/K3 hence the class ξF ′
1

is the class of the
extension

0→ K2/K3 → F ′
2/K3 → F → 0

https://stacks.math.columbia.edu/tag/08LF
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seen as a sequence of OX -modules using π♯ where π : (X ′
1,OX′

1
)→ (X,OX) is the

canonical splitting. Thus finally, the claim follows from the fact that we have a
commutative diagram

0 // K2/K3 //

��

F ′
2/K3 //

��

F //

��

0

0 // K/K3 // E ′
3/K3 // F // 0

which is OX -linear (with the OX -module structures given above).

91.5. Infinitesimal deformations of modules on ringed spaces

08LG Let i : (X,OX)→ (X ′,OX′) be a first order thickening of ringed spaces. We freely
use the notation introduced in Section 91.3. Let F ′ be an OX′ -module and set
F = i∗F ′. In this situation we have a short exact sequence

0→ IF ′ → F ′ → F → 0
of OX′ -modules. Since I2 = 0 the OX′ -module structure on IF ′ comes from
a unique OX -module structure. Thus the sequence above is an extension as in
(91.4.0.1). As a special case, if F ′ = OX′ we have i∗OX′ = OX and IOX′ = I and
we recover the sequence of structure sheaves

0→ I → OX′ → OX → 0

Lemma 91.5.1.08LH Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed
spaces. Let F ′, G′ be OX′ -modules. Set F = i∗F ′ and G = i∗G′. Let φ : F → G
be an OX -linear map. The set of lifts of φ to an OX′-linear map φ′ : F ′ → G′ is, if
nonempty, a principal homogeneous space under HomOX

(F , IG′).

Proof. This is a special case of Lemma 91.4.1 but we also give a direct proof. We
have short exact sequences of modules

0→ I → OX′ → OX → 0 and 0→ IG′ → G′ → G → 0
and similarly for F ′. Since I has square zero the OX′ -module structure on I and
IG′ comes from a unique OX -module structure. It follows that

HomOX′ (F ′, IG′) = HomOX
(F , IG′) and HomOX′ (F ′,G) = HomOX

(F ,G)
The lemma now follows from the exact sequence

0→ HomOX′ (F ′, IG′)→ HomOX′ (F ′,G′)→ HomOX′ (F ′,G)
see Homology, Lemma 12.5.8. □

Lemma 91.5.2.08LI Let (f, f ′) be a morphism of first order thickenings of ringed spaces
as in Situation 91.3.1. Let F ′ be an OX′ -module and set F = i∗F ′. Assume that F
is flat over S and that (f, f ′) is a strict morphism of thickenings (Definition 91.3.2).
Then the following are equivalent

(1) F ′ is flat over S′, and
(2) the canonical map f∗J ⊗OX

F → IF ′ is an isomorphism.
Moreover, in this case the maps

f∗J ⊗OX
F → I ⊗OX

F → IF ′

are isomorphisms.

https://stacks.math.columbia.edu/tag/08LH
https://stacks.math.columbia.edu/tag/08LI
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Proof. The map f∗J → I is surjective as (f, f ′) is a strict morphism of thickenings.
Hence the final statement is a consequence of (2).
Proof of the equivalence of (1) and (2). We may check these conditions at stalks.
Let x ∈ X ⊂ X ′ be a point with image s = f(x) ∈ S ⊂ S′. Set A′ = OS′,s,
B′ = OX′,x, A = OS,s, and B = OX,x. Then A = A′/J and B = B′/I for some
square zero ideals. Since (f, f ′) is a strict morphism of thickenings we have I = JB′.
Let M ′ = F ′

x and M = Fx. Then M ′ is a B′-module and M is a B-module. Since
F = i∗F ′ we see that the kernel of the surjection M ′ → M is IM ′ = JM ′. Thus
we have a short exact sequence

0→ JM ′ →M ′ →M → 0
Using Sheaves, Lemma 6.26.4 and Modules, Lemma 17.16.1 to identify stalks of
pullbacks and tensor products we see that the stalk at x of the canonical map of
the lemma is the map

(J ⊗A B)⊗B M = J ⊗AM = J ⊗A′ M ′ −→ JM ′

The assumption that F is flat over S signifies that M is a flat A-module.

Assume (1). Flatness implies TorA
′

1 (M ′, A) = 0 by Algebra, Lemma 10.75.8. This
means J ⊗A′ M ′ →M ′ is injective by Algebra, Remark 10.75.9. Hence J ⊗AM →
JM ′ is an isomorphism.

Assume (2). Then J⊗A′M ′ →M ′ is injective. Hence TorA
′

1 (M ′, A) = 0 by Algebra,
Remark 10.75.9. Hence M ′ is flat over A′ by Algebra, Lemma 10.99.8. □

Lemma 91.5.3.08LJ Let (f, f ′) be a morphism of first order thickenings as in Situation
91.3.1. Let F ′, G′ be OX′ -modules and set F = i∗F ′ and G = i∗G′. Let φ : F → G
be an OX -linear map. Assume that G′ is flat over S′ and that (f, f ′) is a strict
morphism of thickenings. The set of lifts of φ to an OX′ -linear map φ′ : F ′ → G′

is, if nonempty, a principal homogeneous space under
HomOX

(F ,G ⊗OX
f∗J )

Proof. Combine Lemmas 91.5.1 and 91.5.2. □

Lemma 91.5.4.08LK Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed
spaces. Let F ′, G′ be OX′ -modules and set F = i∗F ′ and G = i∗G′. Let φ : F → G
be an OX -linear map. There exists an element

o(φ) ∈ Ext1
OX

(Li∗F ′, IG′)
whose vanishing is a necessary and sufficient condition for the existence of a lift of
φ to an OX′ -linear map φ′ : F ′ → G′.

Proof. It is clear from the proof of Lemma 91.5.1 that the vanishing of the boundary
of φ via the map

HomOX
(F ,G) = HomOX′ (F ′,G) −→ Ext1

OX′ (F ′, IG′)
is a necessary and sufficient condition for the existence of a lift. We conclude as

Ext1
OX′ (F ′, IG′) = Ext1

OX
(Li∗F ′, IG′)

the adjointness of i∗ = Ri∗ and Li∗ on the derived category (Cohomology, Lemma
20.28.1). □

https://stacks.math.columbia.edu/tag/08LJ
https://stacks.math.columbia.edu/tag/08LK
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Lemma 91.5.5.08LL Let (f, f ′) be a morphism of first order thickenings as in Situation
91.3.1. Let F ′, G′ be OX′ -modules and set F = i∗F ′ and G = i∗G′. Let φ : F → G
be an OX -linear map. Assume that F ′ and G′ are flat over S′ and that (f, f ′) is a
strict morphism of thickenings. There exists an element

o(φ) ∈ Ext1
OX

(F ,G ⊗OX
f∗J )

whose vanishing is a necessary and sufficient condition for the existence of a lift of
φ to an OX′ -linear map φ′ : F ′ → G′.

First proof. This follows from Lemma 91.5.4 as we claim that under the assump-
tions of the lemma we have

Ext1
OX

(Li∗F ′, IG′) = Ext1
OX

(F ,G ⊗OX
f∗J )

Namely, we have IG′ = G ⊗OX
f∗J by Lemma 91.5.2. On the other hand, observe

that
H−1(Li∗F ′) = TorOX′

1 (F ′,OX)
(local computation omitted). Using the short exact sequence

0→ I → OX′ → OX → 0
we see that this Tor1 is computed by the kernel of the map I ⊗OX

F → IF ′ which
is zero by the final assertion of Lemma 91.5.2. Thus τ≥−1Li

∗F ′ = F . On the other
hand, we have

Ext1
OX

(Li∗F ′, IG′) = Ext1
OX

(τ≥−1Li
∗F ′, IG′)

by the dual of Derived Categories, Lemma 13.16.1. □

Second proof. We can apply Lemma 91.4.2 as follows. Note that K = I ⊗OX
F

and L = I ⊗OX
G by Lemma 91.5.2, that cF ′ = 1 ⊗ 1 and cG′ = 1 ⊗ 1 and taking

ψ = 1⊗φ the diagram of the lemma commutes. Thus o(φ) = o(φ, 1⊗φ) works. □

Lemma 91.5.6.08LM Let (f, f ′) be a morphism of first order thickenings as in Situation
91.3.1. Let F be an OX -module. Assume (f, f ′) is a strict morphism of thickenings
and F flat over S. If there exists a pair (F ′, α) consisting of an OX′ -module F ′ flat
over S′ and an isomorphism α : i∗F ′ → F , then the set of isomorphism classes of
such pairs is principal homogeneous under Ext1

OX
(F , I ⊗OX

F).

Proof. If we assume there exists one such module, then the canonical map
f∗J ⊗OX

F → I ⊗OX
F

is an isomorphism by Lemma 91.5.2. Apply Lemma 91.4.3 with K = I ⊗OX
F and

c = 1. By Lemma 91.5.2 the corresponding extensions F ′ are all flat over S′. □

Lemma 91.5.7.08LN Let (f, f ′) be a morphism of first order thickenings as in Situation
91.3.1. Let F be an OX -module. Assume (f, f ′) is a strict morphism of thickenings
and F flat over S. There exists an OX′ -module F ′ flat over S′ with i∗F ′ ∼= F , if
and only if

(1) the canonical map f∗J ⊗OX
F → I ⊗OX

F is an isomorphism, and
(2) the class o(F , I⊗OX

F , 1) ∈ Ext2
OX

(F , I⊗OX
F) of Lemma 91.4.4 is zero.

Proof. This follows immediately from the characterization of OX′ -modules flat over
S′ of Lemma 91.5.2 and Lemma 91.4.4. □

https://stacks.math.columbia.edu/tag/08LL
https://stacks.math.columbia.edu/tag/08LM
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91.6. Application to flat modules on flat thickenings of ringed spaces

08VQ Consider a commutative diagram

(X,OX)
i
//

f

��

(X ′,OX′)

f ′

��
(S,OS) t // (S′,OS′)

of ringed spaces whose horizontal arrows are first order thickenings as in Situation
91.3.1. Set I = Ker(i♯) ⊂ OX′ and J = Ker(t♯) ⊂ OS′ . Let F be an OX -module.
Assume that

(1) (f, f ′) is a strict morphism of thickenings,
(2) f ′ is flat, and
(3) F is flat over S.

Note that (1) + (2) imply that I = f∗J (apply Lemma 91.5.2 to OX′). The theory
of the preceding section is especially nice under these assumptions. We summarize
the results already obtained in the following lemma.

Lemma 91.6.1.08VR In the situation above.
(1) There exists an OX′ -module F ′ flat over S′ with i∗F ′ ∼= F , if and only if

the class o(F , f∗J ⊗OX
F , 1) ∈ Ext2

OX
(F , f∗J ⊗OX

F) of Lemma 91.4.4
is zero.

(2) If such a module exists, then the set of isomorphism classes of lifts is
principal homogeneous under Ext1

OX
(F , f∗J ⊗OX

F).
(3) Given a lift F ′, the set of automorphisms of F ′ which pull back to idF is

canonically isomorphic to Ext0
OX

(F , f∗J ⊗OX
F).

Proof. Part (1) follows from Lemma 91.5.7 as we have seen above that I = f∗J .
Part (2) follows from Lemma 91.5.6. Part (3) follows from Lemma 91.5.3. □

Situation 91.6.2.08VS Let f : (X,OX) → (S,OS) be a morphism of ringed spaces.
Consider a commutative diagram

(X ′
1,O′

1)
h
//

f ′
1
��

(X ′
2,O′

2) //

f ′
2
��

(X ′
3,O′

3)

f ′
3
��

(S′
1,OS′

1
) // (S′

2,OS′
2
) // (S′

3,OS′
3
)

where (a) the top row is a short exact sequence of first order thickenings of X, (b)
the lower row is a short exact sequence of first order thickenings of S, (c) each f ′

i

restricts to f , (d) each pair (f, f ′
i) is a strict morphism of thickenings, and (e) each

f ′
i is flat. Finally, let F ′

2 be an O′
2-module flat over S′

2 and set F = F ′
2|X . Let

π : X ′
1 → X be the canonical splitting (Remark 91.4.9).

Lemma 91.6.3.08VT In Situation 91.6.2 the modules π∗F and h∗F ′
2 are O′

1-modules flat
over S′

1 restricting to F on X. Their difference (Lemma 91.6.1) is an element θ
of Ext1

OX
(F , f∗J1 ⊗OX

F) whose boundary in Ext2
OX

(F , f∗J3 ⊗OX
F) equals the

obstruction (Lemma 91.6.1) to lifting F to an O′
3-module flat over S′

3.

https://stacks.math.columbia.edu/tag/08VR
https://stacks.math.columbia.edu/tag/08VS
https://stacks.math.columbia.edu/tag/08VT
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Proof. Note that both π∗F and h∗F ′
2 restrict to F on X and that the kernels of

π∗F → F and h∗F ′
2 → F are given by f∗J1 ⊗OX

F . Hence flatness by Lemma
91.5.2. Taking the boundary makes sense as the sequence of modules

0→ f∗J3 ⊗OX
F → f∗J2 ⊗OX

F → f∗J1 ⊗OX
F → 0

is short exact due to the assumptions in Situation 91.6.2 and the fact that F is flat
over S. The statement on the obstruction class is a direct translation of the result
of Remark 91.4.10 to this particular situation. □

91.7. Deformations of ringed spaces and the naive cotangent complex

08U6 In this section we use the naive cotangent complex to do a little bit of deformation
theory. We start with a first order thickening t : (S,OS) → (S′,OS′) of ringed
spaces. We denote J = Ker(t♯) and we identify the underlying topological spaces
of S and S′. Moreover we assume given a morphism of ringed spaces f : (X,OX)→
(S,OS), an OX -module G, and an f -map c : J → G of sheaves of modules (Sheaves,
Definition 6.21.7 and Section 6.26). In this section we ask ourselves whether we can
find the question mark fitting into the following diagram

(91.7.0.1)08U7

0 // G // ? // OX // 0

0 // J

c

OO

// OS′

OO

// OS

OO

// 0

(where the vertical arrows are f -maps) and moreover how unique the solution is (if it
exists). More precisely, we look for a first order thickening i : (X,OX)→ (X ′,OX′)
and a morphism of thickenings (f, f ′) as in (91.3.1.1) where Ker(i♯) is identified
with G such that (f ′)♯ induces the given map c. We will say X ′ is a solution to
(91.7.0.1).

Lemma 91.7.1.08U8 Assume given a commutative diagram of morphisms of ringed
spaces

(91.7.1.1)08U9

(X2,OX2)
i2
//

f2

��
g

��

(X ′
2,OX′

2
)

f ′
2

��
(S2,OS2) t2 //

��

(S′
2,OS′

2
)

��

(X1,OX1)
i1
//

f1

��

(X ′
1,OX′

1
)

f ′
1

��
(S1,OS1) t1 // (S′

1,OS′
1
)

https://stacks.math.columbia.edu/tag/08U8
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whose horizontal arrows are first order thickenings. Set Gj = Ker(i♯j) and assume
given a g-map ν : G1 → G2 of modules giving rise to the commutative diagram

(91.7.1.2)08UA

0 // G2 // OX′
2

// OX2
// 0

0 // J2

c2

OO

// OS′
2

OO

// OS2

OO

// 0

0 // G1

FF

// OX′
1

// OX1

EE

// 0

0 // J1

FF

c1

OO

// OS′
1

EE

OO

// OS1

EE

OO

// 0

with front and back solutions to (91.7.0.1).
(1) There exist a canonical element in Ext1

OX2
(Lg∗ NLX1/S1 ,G2) whose van-

ishing is a necessary and sufficient condition for the existence of a mor-
phism of ringed spaces X ′

2 → X ′
1 fitting into (91.7.1.1) compatibly with

ν.
(2) If there exists a morphism X ′

2 → X ′
1 fitting into (91.7.1.1) compatibly

with ν the set of all such morphisms is a principal homogeneous space
under

HomOX1
(ΩX1/S1 , g∗G2) = HomOX2

(g∗ΩX1/S1 ,G2) = Ext0
OX2

(Lg∗ NLX1/S1 ,G2).

Proof. The naive cotangent complex NLX1/S1 is defined in Modules, Definition
17.31.6. The equalities in the last statement of the lemma follow from the fact that
g∗ is adjoint to g∗, the fact that H0(NLX1/S1) = ΩX1/S1 (by construction of the
naive cotangent complex) and the fact that Lg∗ is the left derived functor of g∗.
Thus we will work with the groups ExtkOX2

(Lg∗ NLX1/S1 ,G2), k = 0, 1 in the rest
of the proof. We first argue that we can reduce to the case where the underlying
topological spaces of all ringed spaces in the lemma is the same.
To do this, observe that g−1 NLX1/S1 is equal to the naive cotangent complex of the
homomorphism of sheaves of rings g−1f−1

1 OS1 → g−1OX1 , see Modules, Lemma
17.31.3. Moreover, the degree 0 term of NLX1/S1 is a flat OX1-module, hence the
canonical map

Lg∗ NLX1/S1 −→ g−1 NLX1/S1 ⊗g−1OX1
OX2

induces an isomorphism on cohomology sheaves in degrees 0 and −1. Thus we may
replace the Ext groups of the lemma with

Extkg−1OX1
(g−1 NLX1/S1 ,G2) = Extkg−1OX1

(NLg−1OX1/g
−1f−1

1 OS1
,G2)

The set of morphism of ringed spaces X ′
2 → X ′

1 fitting into (91.7.1.1) compatibly
with ν is in one-to-one bijection with the set of homomorphisms of g−1f−1

1 OS′
1
-

algebras g−1OX′
1
→ OX′

2
which are compatible with f ♯ and ν. In this way we see

that we may assume we have a diagram (91.7.1.2) of sheaves on X and we are
looking to find a homomorphism of sheaves of rings OX′

1
→ OX′

2
fitting into it.

In the rest of the proof of the lemma we assume all underlying topological spaces
are the same, i.e., we have a diagram (91.7.1.2) of sheaves on a space X and we are
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looking for homomorphisms of sheaves of rings OX′
1
→ OX′

2
fitting into it. As ext

groups we will use ExtkOX1
(NLOX1/OS1

,G2), k = 0, 1.
Step 1. Construction of the obstruction class. Consider the sheaf of sets

E = OX′
1
×OX2

OX′
2

This comes with a surjective map α : E → OX1 and hence we can use NL(α) instead
of NLOX1/OS1

, see Modules, Lemma 17.31.2. Set
I ′ = Ker(OS′

1
[E ]→ OX1) and I = Ker(OS1 [E ]→ OX1)

There is a surjection I ′ → I whose kernel is J1OS′
1
[E ]. We obtain two homomor-

phisms of OS′
2
-algebras

a : OS′
1
[E ]→ OX′

1
and b : OS′

1
[E ]→ OX′

2

which induce maps a|I′ : I ′ → G1 and b|I′ : I ′ → G2. Both a and b annihilate
(I ′)2. Moreover a and b agree on J1OS′

1
[E ] as maps into G2 because the left hand

square of (91.7.1.2) is commutative. Thus the difference b|I′ − ν ◦ a|I′ induces a
well defined OX1 -linear map

ξ : I/I2 −→ G2

which sends the class of a local section f of I to a(f ′)− ν(b(f ′)) where f ′ is a lift
of f to a local section of I ′. We let [ξ] ∈ Ext1

OX1
(NL(α),G2) be the image (see

below).
Step 2. Vanishing of [ξ] is necessary. Let us write Ω = ΩOS1 [E]/OS1

⊗OS1 [E] OX1 .
Observe that NL(α) = (I/I2 → Ω) fits into a distinguished triangle

Ω[0]→ NL(α)→ I/I2[1]→ Ω[1]
Thus we see that [ξ] is zero if and only if ξ is a composition I/I2 → Ω → G2 for
some map Ω → G2. Suppose there exists a homomorphisms of sheaves of rings
φ : OX′

1
→ OX′

2
fitting into (91.7.1.2). In this case consider the map OS′

1
[E ]→ G2,

f ′ 7→ b(f ′)−φ(a(f ′)). A calculation shows this annihilates J1OS′
1
[E ] and induces a

derivation OS1 [E ] → G2. The resulting linear map Ω → G2 witnesses the fact that
[ξ] = 0 in this case.
Step 3. Vanishing of [ξ] is sufficient. Let θ : Ω→ G2 be a OX1-linear map such that
ξ is equal to θ ◦ (I/I2 → Ω). Then a calculation shows that

b+ θ ◦ d : OS′
1
[E ]→ OX′

2

annihilates I ′ and hence defines a map OX′
1
→ OX′

2
fitting into (91.7.1.2).

Proof of (2) in the special case above. Omitted. Hint: This is exactly the same as
the proof of (2) of Lemma 91.2.1. □

Lemma 91.7.2.08UB Let X be a topological space. Let A → B be a homomorphism of
sheaves of rings. Let G be a B-module. Let ξ ∈ Ext1

B(NLB/A,G). There exists a
map of sheaves of sets α : E → B such that ξ ∈ Ext1

B(NL(α),G) is the class of a
map I/I2 → G (see proof for notation).

Proof. Recall that given α : E → B such that A[E ] → B is surjective with kernel
I the complex NL(α) = (I/I2 → ΩA[E]/A ⊗A[E] B) is canonically isomorphic to
NLB/A, see Modules, Lemma 17.31.2. Observe moreover, that Ω = ΩA[E]/A⊗A[E]B
is the sheaf associated to the presheaf U 7→

⊕
e∈E(U) B(U). In other words, Ω is

https://stacks.math.columbia.edu/tag/08UB


91.7. DEFORMATIONS OF RINGED SPACES AND THE NAIVE COTANGENT COMPLEX6554

the free B-module on the sheaf of sets E and in particular there is a canonical map
E → Ω.

Having said this, pick some E (for example E = B as in the definition of the naive
cotangent complex). The obstruction to writing ξ as the class of a map I/I2 → G is
an element in Ext1

B(Ω,G). Say this is represented by the extension 0→ G → H →
Ω→ 0 of B-modules. Consider the sheaf of sets E ′ = E ×Ω H which comes with an
induced map α′ : E ′ → B. Let I ′ = Ker(A[E ′] → B) and Ω′ = ΩA[E′]/A ⊗A[E′] B.
The pullback of ξ under the quasi-isomorphism NL(α′) → NL(α) maps to zero in
Ext1

B(Ω′,G) because the pullback of the extension H by the map Ω′ → Ω is split as
Ω′ is the free B-module on the sheaf of sets E ′ and since by construction there is a
commutative diagram

E ′ //

��

E

��
H // Ω

This finishes the proof. □

Lemma 91.7.3.08UC If there exists a solution to (91.7.0.1), then the set of isomorphism
classes of solutions is principal homogeneous under Ext1

OX
(NLX/S ,G).

Proof. We observe right away that given two solutions X ′
1 and X ′

2 to (91.7.0.1) we
obtain by Lemma 91.7.1 an obstruction element o(X ′

1, X
′
2) ∈ Ext1

OX
(NLX/S ,G) to

the existence of a map X ′
1 → X ′

2. Clearly, this element is the obstruction to the
existence of an isomorphism, hence separates the isomorphism classes. To finish
the proof it therefore suffices to show that given a solution X ′ and an element
ξ ∈ Ext1

OX
(NLX/S ,G) we can find a second solution X ′

ξ such that o(X ′, X ′
ξ) = ξ.

Pick α : E → OX as in Lemma 91.7.2 for the class ξ. Consider the surjec-
tion f−1OS [E ] → OX with kernel I and corresponding naive cotangent complex
NL(α) = (I/I2 → Ωf−1OS [E]/f−1OS

⊗f−1OS [E] OX). By the lemma ξ is the class of
a morphism δ : I/I2 → G. After replacing E by E ×OX

OX′ we may also assume
that α factors through a map α′ : E → OX′ .

These choices determine an f−1OS′ -algebra map φ : OS′ [E ] → OX′ . Let I ′ =
Ker(φ). Observe that φ induces a map φ|I′ : I ′ → G and that OX′ is the pushout,
as in the following diagram

0 // G // OX′ // OX // 0

0 // I ′

φ|I′

OO

// f−1OS′ [E ]

OO

// OX

=

OO

// 0

Let ψ : I ′ → G be the sum of the map φ|I′ and the composition

I ′ → I ′/(I ′)2 → I/I2 δ−→ G.

Then the pushout along ψ is an other ring extension OX′
ξ

fitting into a diagram as
above. A calculation (omitted) shows that o(X ′, X ′

ξ) = ξ as desired. □

https://stacks.math.columbia.edu/tag/08UC
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Lemma 91.7.4.0GPZ Let f : (X,OX)→ (S,OS) be a morphism of ringed spaces. Let G
be a OX -module. The set of isomorphism classes of extensions of f−1OS-algebras

0→ G → OX′ → OX → 0

where G is an ideal of square zero1 is canonically bijective to Ext1
OX

(NLX/S ,G).

Proof. To prove this we apply the previous results to the case where (91.7.0.1) is
given by the diagram

0 // G // ? // OX // 0

0 // 0

OO

// OS

OO

id // OS

OO

// 0

Thus our lemma follows from Lemma 91.7.3 and the fact that there exists a solution,
namely G ⊕OX . (See remark below for a direct construction of the bijection.) □

Remark 91.7.5.0GQ0 Let f : (X,OX)→ (S,OS) and G be as in Lemma 91.7.4. Consider
an extension 0→ G → OX′ → OX → 0 as in the lemma. We can choose a sheaf of
sets E and a commutative diagram

E

α′

��

α

""
OX′ // OX

such that f−1OS [E ]→ OX is surjective with kernel J . (For example you can take
any sheaf of sets surjecting onto OX′ .) Then

NLX/S ∼= NL(α) =
(
J /J 2 −→ Ωf−1OS [E]/f−1OS

⊗f−1OS [E] OX
)

See Modules, Section 17.31 and in particular Lemma 17.31.2. Of course α′ deter-
mines a map f−1OS [E ]→ OX′ which in turn determines a map

J /J 2 −→ G

which in turn determines the element of Ext1
OX

(NL(α),G) = Ext1
OX

(NLX/S ,G)
corresponding to OX′ by the bijection of the lemma.

Lemma 91.7.6.0GQ1 Let f : (X,OX) → (S,OS) and g : (Y,OY ) → (X,OX) be mor-
phisms of ringed spaces. Let F be a OX -module. Let G be a OY -module. Let
c : F → G be a g-map. Finally, consider

(a) 0→ F → OX′ → OX → 0 an extension of f−1OS-algebras corresponding
to ξ ∈ Ext1

OX
(NLX/S ,F), and

(b) 0 → G → OY ′ → OY → 0 an extension of g−1f−1OS-algebras corre-
sponding to ζ ∈ Ext1

OY
(NLY/S ,G).

See Lemma 91.7.4. Then there is an S-morphism g′ : Y ′ → X ′ compatible with g
and c if and only if ξ and ζ map to the same element of Ext1

OY
(Lg∗ NLX/S ,G).

1In other words, the set of isomorphism classes of first order thickenings i : X → X′ over S
endowed with an isomorphism G → Ker(i♯) of OX -modules.

https://stacks.math.columbia.edu/tag/0GPZ
https://stacks.math.columbia.edu/tag/0GQ0
https://stacks.math.columbia.edu/tag/0GQ1
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Proof. The stament makes sense as we have the maps
Ext1

OX
(NLX/S ,F)→ Ext1

OY
(Lg∗ NLX/S , Lg

∗F)→ Ext1
OY

(Lg∗ NLX/S ,G)

using the map Lg∗F → g∗F c−→ G and
Ext1

OY
(NLY/S ,G)→ Ext1

OY
(Lg∗ NLX/S ,G)

using the map Lg∗ NLX/S → NLY/S . The statement of the lemma can be deduced
from Lemma 91.7.1 applied to the diagram

0 // G // OY ′ // OY // 0

0 // 0

OO

// OS

OO

// OS

OO

// 0

0 // F

FF

// OX′ // OX

EE

// 0

0 // 0

FF

OO

// OS

EE

OO

// OS

EE

OO

// 0
and a compatibility between the constructions in the proofs of Lemmas 91.7.4 and
91.7.1 whose statement and proof we omit. (See remark below for a direct argu-
ment.) □

Remark 91.7.7.0GQ2 Let f : (X,OX)→ (S,OS), g : (Y,OY )→ (X,OX), F , G, c : F →
G, 0 → F → OX′ → OX → 0, ξ ∈ Ext1

OX
(NLX/S ,F), 0 → G → OY ′ → OY → 0,

and ζ ∈ Ext1
OY

(NLY/S ,G) be as in Lemma 91.7.6. Using pushout along c : g−1F →
G we can construct an extension

0 // G // O′
1

// g−1OX // 0

0 // g−1F

c

OO

// g−1OX′

OO

// g−1OX // 0

Using pullback along g♯ : g−1OX → OY we can construct an extension
0 // G // OY ′ // OY // 0

0 // G // O′
2

OO

// g−1OX

OO

// 0

A diagram chase tells us that there exists an S-morphism Y ′ → X ′ compatible with
g and c if and only if O′

1 is isomorphic to O′
2 as g−1f−1OS-algebra extensions of

g−1OX by G. By Lemma 91.7.4 these extensions are classified by the LHS of
Ext1

g−1OX
(NLg−1OX/g−1f−1OS

,G) = Ext1
OY

(Lg∗ NLX/S ,G)
Here the equality comes from tensor-hom adjunction and the equalities
NLg−1OX/g−1f−1OS

= g−1 NLX/S and Lg∗ NLX/S = g−1 NLX/S ⊗L
g−1OX

OY
For the first of these see Modules, Lemma 17.31.3; the second follows from the
definition of derived pullback. Thus, in order to see that Lemma 91.7.6 is true,
it suffices to show that O′

1 corresponds to the image of ξ and that O′
2 correspond

https://stacks.math.columbia.edu/tag/0GQ2
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to the image of ζ. The correspondence between ξ and O′
1 is immediate from the

construction of the class ξ in Remark 91.7.5. For the correspondence between ζ
and O′

2, we first choose a commutative diagram

E

β′

��

β

""
OY ′ // OY

such that g−1f−1OS [E ] → OY is surjective with kernel K. Next choose a commu-
tative diagram

E

β′

��

E ′
φ

oo

α′

��

α

##
OY ′ O′

2
oo // g−1OX

such that g−1f−1OS [E ′] → g−1OX is surjective with kernel J . (For example just
take E ′ = E ⨿ O′

2 as a sheaf of sets.) The map φ induces a map of complexes
NL(α) → NL(β) (notation as in Modules, Section 17.31) and in particular φ̄ :
J /J 2 → K/K2. Then NL(α) ∼= NLY/S and NL(β) ∼= NLg−1OX/g−1f−1OS

and the
map of complexes NL(α)→ NL(β) represents the map Lg∗ NLX/S → NLY/S used
in the statement of Lemma 91.7.6 (see first part of its proof). Now ζ corresponds
to the class of the map K/K2 → G induced by β′, see Remark 91.7.5. Similarly, the
extension O′

2 corresponds to the map J /J 2 → G induced by α′. The commutative
diagram above shows that this map is the composition of the map K/K2 → G
induced by β′ with the map φ̄ : J /J 2 → K/K2. This proves the compatibility we
were looking for.

Lemma 91.7.8.0GQ3 Let t : (S,OS) → (S′,OS′), J = Ker(t♯), f : (X,OX) → (S,OS),
G, and c : J → G be as in (91.7.0.1). Denote ξ ∈ Ext1

OS
(NLS/S′ ,J ) the element

corresponding to the extension OS′ of OS by J via Lemma 91.7.4. The set of
isomorphism classes of solutions is canonically bijective to the fibre of

Ext1
OX

(NLX/S′ ,G)→ Ext1
OX

(Lf∗ NLS/S′ ,G)

over the image of ξ.

Proof. By Lemma 91.7.4 applied to X → S′ and the OX -module G we see that
elements ζ of Ext1

OX
(NLX/S′ ,G) parametrize extensions 0→ G → OX′ → OX → 0

of f−1OS′ -algebras. By Lemma 91.7.6 applied to X → S → S′ and c : J → G we
see that there is an S′-morphism X ′ → S′ compatible with c and f : X → S if and
only if ζ maps to ξ. Of course this is the same thing as saying OX′ is a solution of
(91.7.0.1). □

Remark 91.7.9.0GQ4 In the situation of Lemma 91.7.8 we have maps of complexes

Lf∗ NLS′/S → NLX/S′ → NLX/S

These maps are closed to forming a distinguished triangle, see Modules, Lemma
17.31.7. If it were a distinguished triangle we would conclude that the image of
ξ in Ext2

OX
(NLX/S ,G) would be the obstruction to the existence of a solution to

(91.7.0.1).

https://stacks.math.columbia.edu/tag/0GQ3
https://stacks.math.columbia.edu/tag/0GQ4
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91.8. Deformations of schemes

0D13 In this section we spell out what the results in Section 91.7 mean for deformations
of schemes.

Lemma 91.8.1.0D14 Let S ⊂ S′ be a first order thickening of schemes. Let f : X → S
be a flat morphism of schemes. If there exists a flat morphism f ′ : X ′ → S′ of
schemes and an isomorphism a : X → X ′ ×S′ S over S, then

(1) the set of isomorphism classes of pairs (f ′ : X ′ → S′, a) is principal
homogeneous under Ext1

OX
(NLX/S , f∗CS/S′), and

(2) the set of automorphisms of φ : X ′ → X ′ over S′ which reduce to the
identity on X ′ ×S′ S is Ext0

OX
(NLX/S , f∗CS/S′).

Proof. First we observe that thickenings of schemes as defined in More on Mor-
phisms, Section 37.2 are the same things as morphisms of schemes which are thick-
enings in the sense of Section 91.3. We may think of X as a closed subscheme of
X ′ so that (f, f ′) : (X ⊂ X ′)→ (S ⊂ S′) is a morphism of first order thickenings.
Then we see from More on Morphisms, Lemma 37.10.1 (or from the more general
Lemma 91.5.2) that the ideal sheaf of X in X ′ is equal to f∗CS/S′ . Hence we have
a commutative diagram

0 // f∗CS/S′ // OX′ // OX // 0

0 // CS/S′

OO

// OS′

OO

// OS

OO

// 0

where the vertical arrows are f -maps; please compare with (91.7.0.1). Thus part
(1) follows from Lemma 91.7.3 and part (2) from part (2) of Lemma 91.7.1. (Note
that NLX/S as defined for a morphism of schemes in More on Morphisms, Section
37.13 agrees with NLX/S as used in Section 91.7.) □

91.9. Thickenings of ringed topoi

08M6 This section is the analogue of Section 91.3 for ringed topoi. In the following few
sections we will use the following notions:

(1) A sheaf of ideals I ⊂ O′ on a ringed topos (Sh(D),O′) is locally nilpotent
if any local section of I is locally nilpotent.

(2) A thickening of ringed topoi is a morphism i : (Sh(C),O) → (Sh(D),O′)
of ringed topoi such that
(a) i∗ is an equivalence Sh(C)→ Sh(D),
(b) the map i♯ : O′ → i∗O is surjective, and
(c) the kernel of i♯ is a locally nilpotent sheaf of ideals.

(3) A first order thickening of ringed topoi is a thickening i : (Sh(C),O) →
(Sh(D),O′) of ringed topoi such that Ker(i♯) has square zero.

(4) It is clear how to define morphisms of thickenings of ringed topoi, mor-
phisms of thickenings of ringed topoi over a base ringed topos, etc.

If i : (Sh(C),O)→ (Sh(D),O′) is a thickening of ringed topoi then we identify the
underlying topoi and think of O, O′, and I = Ker(i♯) as sheaves on C. We obtain
a short exact sequence

0→ I → O′ → O → 0

https://stacks.math.columbia.edu/tag/0D14
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of O′-modules. By Modules on Sites, Lemma 18.25.1 the category of O-modules is
equivalent to the category of O′-modules annihilated by I. In particular, if i is a
first order thickening, then I is a O-module.

Situation 91.9.1.08M7 A morphism of thickenings of ringed topoi (f, f ′) is given by a
commutative diagram

(91.9.1.1)08M8

(Sh(C),O)
i
//

f

��

(Sh(D),O′)

f ′

��
(Sh(B),OB) t // (Sh(B′),OB′)

of ringed topoi whose horizontal arrows are thickenings. In this situation we set
I = Ker(i♯) ⊂ O′ and J = Ker(t♯) ⊂ OB′ . As f = f ′ on underlying topoi we will
identify the pullback functors f−1 and (f ′)−1. Observe that (f ′)♯ : f−1OB′ → O′

induces in particular a map f−1J → I and therefore a map of O′-modules
(f ′)∗J −→ I

If i and t are first order thickenings, then (f ′)∗J = f∗J and the map above becomes
a map f∗J → I.

Definition 91.9.2.08M9 In Situation 91.9.1 we say that (f, f ′) is a strict morphism of
thickenings if the map (f ′)∗J −→ I is surjective.

91.10. Modules on first order thickenings of ringed topoi

08MA In this section we discuss some preliminaries to the deformation theory of modules.
Let i : (Sh(C,O)→ (Sh(D),O′) be a first order thickening of ringed topoi. We will
freely use the notation introduced in Section 91.9, in particular we will identify the
underlying topological topoi. In this section we consider short exact sequences
(91.10.0.1)08MB 0→ K → F ′ → F → 0
of O′-modules, where F , K are O-modules and F ′ is an O′-module. In this situation
we have a canonical O-module map

cF ′ : I ⊗O F −→ K

where I = Ker(i♯). Namely, given local sections f of I and s of F we set cF ′(f⊗s) =
fs′ where s′ is a local section of F ′ lifting s.

Lemma 91.10.1.08MC Let i : (Sh(C),O) → (Sh(D),O′) be a first order thickening of
ringed topoi. Assume given extensions

0→ K → F ′ → F → 0 and 0→ L → G′ → G → 0
as in (91.10.0.1) and maps φ : F → G and ψ : K → L.

(1) If there exists an O′-module map φ′ : F ′ → G′ compatible with φ and ψ,
then the diagram

I ⊗O F cF′
//

1⊗φ
��

K

ψ

��
I ⊗O G

cG′ // L
is commutative.

https://stacks.math.columbia.edu/tag/08M7
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(2) The set of O′-module maps φ′ : F ′ → G′ compatible with φ and ψ is, if
nonempty, a principal homogeneous space under HomO(F ,L).

Proof. Part (1) is immediate from the description of the maps. For (2), if φ′ and
φ′′ are two maps F ′ → G′ compatible with φ and ψ, then φ′ − φ′′ factors as

F ′ → F → L → G′

The map in the middle comes from a unique element of HomO(F ,L) by Modules
on Sites, Lemma 18.25.1. Conversely, given an element α of this group we can add
the composition (as displayed above with α in the middle) to φ′. Some details
omitted. □

Lemma 91.10.2.08MD Let i : (Sh(C),O) → (Sh(D),O′) be a first order thickening of
ringed topoi. Assume given extensions

0→ K → F ′ → F → 0 and 0→ L → G′ → G → 0

as in (91.10.0.1) and maps φ : F → G and ψ : K → L. Assume the diagram

I ⊗O F cF′
//

1⊗φ
��

K

ψ

��
I ⊗O G

cG′ // L

is commutative. Then there exists an element

o(φ,ψ) ∈ Ext1
O(F ,L)

whose vanishing is a necessary and sufficient condition for the existence of a map
φ′ : F ′ → G′ compatible with φ and ψ.

Proof. We can construct explicitly an extension

0→ L → H → F → 0

by taking H to be the cohomology of the complex

K 1,−ψ−−−→ F ′ ⊕ G′ φ,1−−→ G

in the middle (with obvious notation). A calculation with local sections using the
assumption that the diagram of the lemma commutes shows that H is annihilated
by I. Hence H defines a class in

Ext1
O(F ,L) ⊂ Ext1

O′(F ,L)

Finally, the class of H is the difference of the pushout of the extension F ′ via ψ and
the pullback of the extension G′ via φ (calculations omitted). Thus the vanishing
of the class of H is equivalent to the existence of a commutative diagram

0 // K //

ψ

��

F ′ //

φ′

��

F //

φ

��

0

0 // L // G′ // G // 0

as desired. □

https://stacks.math.columbia.edu/tag/08MD
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Lemma 91.10.3.08ME Let i : (Sh(C),O) → (Sh(D),O′) be a first order thickening of
ringed topoi. Assume given O-modules F , K and an O-linear map c : I⊗OF → K.
If there exists a sequence (91.10.0.1) with cF ′ = c then the set of isomorphism
classes of these extensions is principal homogeneous under Ext1

O(F ,K).

Proof. Assume given extensions
0→ K → F ′

1 → F → 0 and 0→ K → F ′
2 → F → 0

with cF ′
1

= cF ′
2

= c. Then the difference (in the extension group, see Homology,
Section 12.6) is an extension

0→ K → E → F → 0
where E is annihilated by I (local computation omitted). Hence the sequence is an
extension of O-modules, see Modules on Sites, Lemma 18.25.1. Conversely, given
such an extension E we can add the extension E to the O′-extension F ′ without
affecting the map cF ′ . Some details omitted. □

Lemma 91.10.4.08MF Let i : (Sh(C),O) → (Sh(D),O′) be a first order thickening of
ringed topoi. Assume given O-modules F , K and an O-linear map c : I⊗OF → K.
Then there exists an element

o(F ,K, c) ∈ Ext2
O(F ,K)

whose vanishing is a necessary and sufficient condition for the existence of a se-
quence (91.10.0.1) with cF ′ = c.

Proof. We first show that if K is an injective O-module, then there does exist a
sequence (91.10.0.1) with cF ′ = c. To do this, choose a flat O′-module H′ and a
surjection H′ → F (Modules on Sites, Lemma 18.28.8). Let J ⊂ H′ be the kernel.
Since H′ is flat we have

I ⊗O′ H′ = IH′ ⊂ J ⊂ H′

Observe that the map
IH′ = I ⊗O′ H′ −→ I ⊗O′ F = I ⊗O F

annihilates IJ . Namely, if f is a local section of I and s is a local section of H,
then fs is mapped to f ⊗ s where s is the image of s in F . Thus we obtain

IH′/IJ �
� //

��

J /IJ

γ

��
I ⊗O F

c // K

a diagram of O-modules. If K is injective as an O-module, then we obtain the
dotted arrow. Denote γ′ : J → K the composition of γ with J → J /IJ . A local
calculation shows the pushout

0 // J //

γ′

��

H′ //

��

F // 0

0 // K // F ′ // F // 0
is a solution to the problem posed by the lemma.

https://stacks.math.columbia.edu/tag/08ME
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General case. Choose an embedding K ⊂ K′ with K′ an injective O-module. Let
Q be the quotient, so that we have an exact sequence

0→ K → K′ → Q→ 0
Denote c′ : I ⊗O F → K′ be the composition. By the paragraph above there exists
a sequence

0→ K′ → E ′ → F → 0
as in (91.10.0.1) with cE′ = c′. Note that c′ composed with the map K′ → Q is
zero, hence the pushout of E ′ by K′ → Q is an extension

0→ Q→ D′ → F → 0
as in (91.10.0.1) with cD′ = 0. This means exactly that D′ is annihilated by I, in
other words, the D′ is an extension of O-modules, i.e., defines an element

o(F ,K, c) ∈ Ext1
O(F ,Q) = Ext2

O(F ,K)
(the equality holds by the long exact cohomology sequence associated to the exact
sequence above and the vanishing of higher ext groups into the injective module
K′). If o(F ,K, c) = 0, then we can choose a splitting s : F → D′ and we can set

F ′ = Ker(E ′ → D′/s(F))
so that we obtain the following diagram

0 // K //

��

F ′ //

��

F // 0

0 // K′ // E ′ // F // 0
with exact rows which shows that cF ′ = c. Conversely, if F ′ exists, then the pushout
of F ′ by the map K → K′ is isomorphic to E ′ by Lemma 91.10.3 and the vanishing
of higher ext groups into the injective module K′. This gives a diagram as above,
which implies that D′ is split as an extension, i.e., the class o(F ,K, c) is zero. □

Remark 91.10.5.08MG Let (Sh(C),O) be a ringed topos. A first order thickening i :
(Sh(C),O) → (Sh(D),O′) is said to be trivial if there exists a morphism of ringed
topoi π : (Sh(D),O′) → (Sh(C),O) which is a left inverse to i. The choice of such
a morphism π is called a trivialization of the first order thickening. Given π we
obtain a splitting
(91.10.5.1)08MH O′ = O ⊕ I

as sheaves of algebras on C by using π♯ to split the surjection O′ → O. Conversely,
such a splitting determines a morphism π. The category of trivialized first order
thickenings of (Sh(C),O) is equivalent to the category of O-modules.

Remark 91.10.6.08MI Let i : (Sh(C),O)→ (Sh(D),O′) be a trivial first order thickening
of ringed topoi and let π : (Sh(D),O′)→ (Sh(C),O) be a trivialization. Then given
any triple (F ,K, c) consisting of a pair of O-modules and a map c : I ⊗O F → K
we may set

F ′
c,triv = F ⊕K

and use the splitting (91.10.5.1) associated to π and the map c to define the O′-
module structure and obtain an extension (91.10.0.1). We will call F ′

c,triv the
trivial extension of F by K corresponding to c and the trivialization π. Given any

https://stacks.math.columbia.edu/tag/08MG
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extension F ′ as in (91.10.0.1) we can use π♯ : O → O′ to think of F ′ as an O-module
extension, hence a class ξF ′ in Ext1

O(F ,K). Lemma 91.10.3 assures that F ′ 7→ ξF ′

induces a bijection{
isomorphism classes of extensions
F ′ as in (91.10.0.1) with c = cF ′

}
−→ Ext1

O(F ,K)

Moreover, the trivial extension F ′
c,triv maps to the zero class.

Remark 91.10.7.08MJ Let (Sh(C),O) be a ringed topos. Let (Sh(C),O)→ (Sh(Di),O′
i),

i = 1, 2 be first order thickenings with ideal sheaves Ii. Let h : (Sh(D1),O′
1) →

(Sh(D2),O′
2) be a morphism of first order thickenings of (Sh(C),O). Picture

(Sh(C),O)

ww ''
(Sh(D1),O′

1) h // (Sh(D2),O′
2)

Observe that h♯ : O′
2 → O′

1 in particular induces an O-module map I2 → I1. Let
F be an O-module. Let (Ki, ci), i = 1, 2 be a pair consisting of an O-module Ki
and a map ci : Ii ⊗O F → Ki. Assume furthermore given a map of O-modules
K2 → K1 such that

I2 ⊗O F c2
//

��

K2

��
I1 ⊗O F

c1 // K1

is commutative. Then there is a canonical functoriality{
F ′

2 as in (91.10.0.1) with
c2 = cF ′

2
and K = K2

}
−→

{
F ′

1 as in (91.10.0.1) with
c1 = cF ′

1
and K = K1

}
Namely, thinking of all sheaves O, O′

i, F , Ki, etc as sheaves on C, we set given
F ′

2 the sheaf F ′
1 equal to the pushout, i.e., fitting into the following diagram of

extensions
0 // K2 //

��

F ′
2

//

��

F // 0

0 // K1 // F ′
1

// F // 0
We omit the construction of the O′

1-module structure on the pushout (this uses the
commutativity of the diagram involving c1 and c2).

Remark 91.10.8.08MK Let (Sh(C),O), (Sh(C),O)→ (Sh(Di),O′
i), Ii, and h : (Sh(D1),O′

1)→
(Sh(D2),O′

2) be as in Remark 91.10.7. Assume that we are given trivializations
πi : (Sh(Di),O′

i) → (Sh(C),O) such that π1 = h ◦ π2. In other words, assume h is
a morphism of trivialized first order thickenings of (Sh(C),O). Let (Ki, ci), i = 1, 2
be a pair consisting of an O-module Ki and a map ci : Ii ⊗O F → Ki. Assume
furthermore given a map of O-modules K2 → K1 such that

I2 ⊗O F c2
//

��

K2

��
I1 ⊗O F

c1 // K1

https://stacks.math.columbia.edu/tag/08MJ
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is commutative. In this situation the construction of Remark 91.10.6 induces a
commutative diagram

{F ′
2 as in (91.10.0.1) with c2 = cF ′

2
and K = K2}

��

// Ext1
O(F ,K2)

��
{F ′

1 as in (91.10.0.1) with c1 = cF ′
1

and K = K1} // Ext1
O(F ,K1)

where the vertical map on the right is given by functoriality of Ext and the map
K2 → K1 and the vertical map on the left is the one from Remark 91.10.7.

Remark 91.10.9.0CYC Let (Sh(C),O), (Sh(C),O)→ (Sh(Di),O′
i), Ii, and h : (Sh(D1),O′

1)→
(Sh(D2),O′

2) be as in Remark 91.10.7. Observe that h♯ : O′
2 → O′

1 in particular
induces an O-module map I2 → I1. Let F be an O-module. Let (Ki, ci), i = 1, 2
be a pair consisting of an O-module Ki and a map ci : Ii ⊗O F → Ki. Assume
furthermore given a map of O-modules K2 → K1 such that

I2 ⊗O F c2
//

��

K2

��
I1 ⊗O F

c1 // K1

is commutative. Then we claim the map

Ext2
O(F ,K2) −→ Ext2

O(F ,K1)

sends o(F ,K2, c2) to o(F ,K1, c1).

To prove this claim choose an embedding j2 : K2 → K′
2 where K′

2 is an injective
O-module. As in the proof of Lemma 91.10.4 we can choose an extension of O2-
modules

0→ K′
2 → E2 → F → 0

such that cE2 = j2 ◦ c2. The proof of Lemma 91.10.4 constructs o(F ,K2, c2) as the
Yoneda extension class (in the sense of Derived Categories, Section 13.27) of the
exact sequence of O-modules

0→ K2 → K′
2 → E2/K2 → F → 0

Let K′
1 be the cokernel of K2 → K1 ⊕ K′

2. There is an injection j1 : K1 → K′
1 and

a map K′
2 → K′

1 forming a commutative square. We form the pushout:

0 // K′
2

//

��

E2 //

��

F //

��

0

0 // K′
1

// E1 // F // 0

There is a canonical O1-module structure on E1 and for this structure we have
cE1 = j1 ◦ c1 (this uses the commutativity of the diagram involving c1 and c2
above). The procedure of Lemma 91.10.4 tells us that o(F ,K1, c1) is the Yoneda
extension class of the exact sequence of O-modules

0→ K1 → K′
1 → E1/K1 → F → 0

https://stacks.math.columbia.edu/tag/0CYC
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Since we have maps of exact sequences

0 // K2

��

// K′
2

��

// E2/K2 //

��

F // 0

0 // K2 // K′
2

// E2/K2 // F // 0

we conclude that the claim is true.

Remark 91.10.10.08ML Let (Sh(C),O) be a ringed topos. We define a sequence of
morphisms of first order thickenings

(Sh(D1),O′
1)→ (Sh(D2),O′

2)→ (Sh(D3),O′
3)

of (Sh(C),O) to be a complex if the corresponding maps between the ideal sheaves
Ii give a complex of O-modules I3 → I2 → I1 (i.e., the composition is zero). In this
case the composition (Sh(D1),O′

1) → (Sh(D3),O′
3) factors through (Sh(C),O) →

(Sh(D3),O′
3), i.e., the first order thickening (Sh(D1),O′

1) of (Sh(C),O) is trivial
and comes with a canonical trivialization π : (Sh(D1),O′

1)→ (Sh(C),O).
We say a sequence of morphisms of first order thickenings

(Sh(D1),O′
1)→ (Sh(D2),O′

2)→ (Sh(D3),O′
3)

of (Sh(C),O) is a short exact sequence if the corresponding maps between ideal
sheaves is a short exact sequence

0→ I3 → I2 → I1 → 0
of O-modules.

Remark 91.10.11.08MM Let (Sh(C),O) be a ringed topos. Let F be an O-module. Let

(Sh(D1),O′
1)→ (Sh(D2),O′

2)→ (Sh(D3),O′
3)

be a complex first order thickenings of (Sh(C),O), see Remark 91.10.10. Let (Ki, ci),
i = 1, 2, 3 be pairs consisting of an O-module Ki and a map ci : Ii ⊗O F → Ki.
Assume given a short exact sequence of O-modules

0→ K3 → K2 → K1 → 0
such that

I2 ⊗O F c2
//

��

K2

��
I1 ⊗O F

c1 // K1

and

I3 ⊗O F c3
//

��

K3

��
I2 ⊗O F

c2 // K2

are commutative. Finally, assume given an extension
0→ K2 → F ′

2 → F → 0
as in (91.10.0.1) with K = K2 of O′

2-modules with cF ′
2

= c2. In this situation we
can apply the functoriality of Remark 91.10.7 to obtain an extension F ′

1 of O′
1-

modules (we’ll describe F ′
1 in this special case below). By Remark 91.10.6 using

the canonical splitting π : (Sh(D1),O′
1)→ (Sh(C),O) of Remark 91.10.10 we obtain

ξF ′
1
∈ Ext1

O(F ,K1). Finally, we have the obstruction

o(F ,K3, c3) ∈ Ext2
O(F ,K3)

https://stacks.math.columbia.edu/tag/08ML
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see Lemma 91.10.4. In this situation we claim that the canonical map
∂ : Ext1

O(F ,K1) −→ Ext2
O(F ,K3)

coming from the short exact sequence 0 → K3 → K2 → K1 → 0 sends ξF ′
1

to the
obstruction class o(F ,K3, c3).
To prove this claim choose an embedding j : K3 → K where K is an injective O-
module. We can lift j to a map j′ : K2 → K. Set E ′

2 = j′
∗F ′

2 equal to the pushout
of F ′

2 by j′ so that cE′
2

= j′ ◦ c2. Picture:

0 // K2 //

j′

��

F ′
2

//

��

F //

��

0

0 // K // E ′
2

// F // 0

Set E ′
3 = E ′

2 but viewed as an O′
3-module via O′

3 → O′
2. Then cE′

3
= j ◦ c3. The

proof of Lemma 91.10.4 constructs o(F ,K3, c3) as the boundary of the class of the
extension of O-modules

0→ K/K3 → E ′
3/K3 → F → 0

On the other hand, note that F ′
1 = F ′

2/K3 hence the class ξF ′
1

is the class of the
extension

0→ K2/K3 → F ′
2/K3 → F → 0

seen as a sequence of O-modules using π♯ where π : (Sh(D1),O′
1) → (Sh(C),O) is

the canonical splitting. Thus finally, the claim follows from the fact that we have
a commutative diagram

0 // K2/K3 //

��

F ′
2/K3 //

��

F //

��

0

0 // K/K3 // E ′
3/K3 // F // 0

which is O-linear (with the O-module structures given above).

91.11. Infinitesimal deformations of modules on ringed topoi

08MN Let i : (Sh(C),O) → (Sh(D),O′) be a first order thickening of ringed topoi. We
freely use the notation introduced in Section 91.9. Let F ′ be an O′-module and set
F = i∗F ′. In this situation we have a short exact sequence

0→ IF ′ → F ′ → F → 0
of O′-modules. Since I2 = 0 the O′-module structure on IF ′ comes from a unique
O-module structure. Thus the sequence above is an extension as in (91.10.0.1).
As a special case, if F ′ = O′ we have i∗O′ = O and IO′ = I and we recover the
sequence of structure sheaves

0→ I → O′ → O → 0

Lemma 91.11.1.08MP Let i : (Sh(C),O) → (Sh(D),O′) be a first order thickening of
ringed topoi. Let F ′, G′ be O′-modules. Set F = i∗F ′ and G = i∗G′. Let φ : F → G
be an O-linear map. The set of lifts of φ to an O′-linear map φ′ : F ′ → G′ is, if
nonempty, a principal homogeneous space under HomO(F , IG′).

https://stacks.math.columbia.edu/tag/08MP
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Proof. This is a special case of Lemma 91.10.1 but we also give a direct proof. We
have short exact sequences of modules

0→ I → O′ → O → 0 and 0→ IG′ → G′ → G → 0
and similarly for F ′. Since I has square zero the O′-module structure on I and
IG′ comes from a unique O-module structure. It follows that

HomO′(F ′, IG′) = HomO(F , IG′) and HomO′(F ′,G) = HomO(F ,G)
The lemma now follows from the exact sequence

0→ HomO′(F ′, IG′)→ HomO′(F ′,G′)→ HomO′(F ′,G)
see Homology, Lemma 12.5.8. □

Lemma 91.11.2.08MQ Let (f, f ′) be a morphism of first order thickenings of ringed topoi
as in Situation 91.9.1. Let F ′ be an O′-module and set F = i∗F ′. Assume that
F is flat over OB and that (f, f ′) is a strict morphism of thickenings (Definition
91.9.2). Then the following are equivalent

(1) F ′ is flat over OB′ , and
(2) the canonical map f∗J ⊗O F → IF ′ is an isomorphism.

Moreover, in this case the maps
f∗J ⊗O F → I ⊗O F → IF ′

are isomorphisms.

Proof. The map f∗J → I is surjective as (f, f ′) is a strict morphism of thickenings.
Hence the final statement is a consequence of (2).
Proof of the equivalence of (1) and (2). By definition flatness overOB means flatness
over f−1OB. Similarly for flatness over f−1OB′ . Note that the strictness of (f, f ′)
and the assumption that F = i∗F ′ imply that

F = F ′/(f−1J )F ′

as sheaves on C. Moreover, observe that f∗J ⊗O F = f−1J ⊗f−1OB F . Hence the
equivalence of (1) and (2) follows from Modules on Sites, Lemma 18.28.15. □

Lemma 91.11.3.08VU Let (f, f ′) be a morphism of first order thickenings of ringed topoi
as in Situation 91.9.1. Let F ′ be an O′-module and set F = i∗F ′. Assume that
F ′ is flat over OB′ and that (f, f ′) is a strict morphism of thickenings. Then the
following are equivalent

(1) F ′ is an O′-module of finite presentation, and
(2) F is an O-module of finite presentation.

Proof. The implication (1) ⇒ (2) follows from Modules on Sites, Lemma 18.23.4.
For the converse, assume F of finite presentation. We may and do assume that
C = C′. By Lemma 91.11.2 we have a short exact sequence

0→ I ⊗OX
F → F ′ → F → 0

Let U be an object of C such that F|U has a presentation
O⊕m
U → O⊕n

U → F|U → 0
After replacing U by the members of a covering we may assume the map O⊕n

U →
F|U lifts to a map (O′

U )⊕n → F ′|U . The induced map I⊕n → I ⊗ F is surjective

https://stacks.math.columbia.edu/tag/08MQ
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by right exactness of ⊗. Thus after replacing U by the members of a covering we
can find a lift (O′|U )⊕m → (O′|U )⊕n of the given map O⊕m

U → O⊕n
U such that

(O′
U )⊕m → (O′

U )⊕n → F ′|U → 0
is a complex. Using right exactness of ⊗ once more it is seen that this complex is
exact. □

Lemma 91.11.4.08MR Let (f, f ′) be a morphism of first order thickenings as in Situation
91.9.1. Let F ′, G′ be O′-modules and set F = i∗F ′ and G = i∗G′. Let φ : F → G
be an O-linear map. Assume that G′ is flat over OB′ and that (f, f ′) is a strict
morphism of thickenings. The set of lifts of φ to an O′-linear map φ′ : F ′ → G′ is,
if nonempty, a principal homogeneous space under

HomO(F ,G ⊗O f∗J )

Proof. Combine Lemmas 91.11.1 and 91.11.2. □

Lemma 91.11.5.08MS Let i : (Sh(C),O) → (Sh(D),O′) be a first order thickening of
ringed topoi. Let F ′, G′ be O′-modules and set F = i∗F ′ and G = i∗G′. Let
φ : F → G be an O-linear map. There exists an element

o(φ) ∈ Ext1
O(Li∗F ′, IG′)

whose vanishing is a necessary and sufficient condition for the existence of a lift of
φ to an O′-linear map φ′ : F ′ → G′.

Proof. It is clear from the proof of Lemma 91.11.1 that the vanishing of the bound-
ary of φ via the map

HomO(F ,G) = HomO′(F ′,G) −→ Ext1
O′(F ′, IG′)

is a necessary and sufficient condition for the existence of a lift. We conclude as
Ext1

O′(F ′, IG′) = Ext1
O(Li∗F ′, IG′)

the adjointness of i∗ = Ri∗ and Li∗ on the derived category (Cohomology on Sites,
Lemma 21.19.1). □

Lemma 91.11.6.08MT Let (f, f ′) be a morphism of first order thickenings as in Situation
91.9.1. Let F ′, G′ be O′-modules and set F = i∗F ′ and G = i∗G′. Let φ : F → G
be an O-linear map. Assume that F ′ and G′ are flat over OB′ and that (f, f ′) is a
strict morphism of thickenings. There exists an element

o(φ) ∈ Ext1
O(F ,G ⊗O f∗J )

whose vanishing is a necessary and sufficient condition for the existence of a lift of
φ to an O′-linear map φ′ : F ′ → G′.

First proof. This follows from Lemma 91.11.5 as we claim that under the assump-
tions of the lemma we have

Ext1
O(Li∗F ′, IG′) = Ext1

O(F ,G ⊗O f∗J )
Namely, we have IG′ = G ⊗O f∗J by Lemma 91.11.2. On the other hand, observe
that

H−1(Li∗F ′) = TorO′

1 (F ′,O)
(local computation omitted). Using the short exact sequence

0→ I → O′ → O → 0

https://stacks.math.columbia.edu/tag/08MR
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we see that this Tor1 is computed by the kernel of the map I ⊗OF → IF ′ which is
zero by the final assertion of Lemma 91.11.2. Thus τ≥−1Li

∗F ′ = F . On the other
hand, we have

Ext1
O(Li∗F ′, IG′) = Ext1

O(τ≥−1Li
∗F ′, IG′)

by the dual of Derived Categories, Lemma 13.16.1. □

Second proof. We can apply Lemma 91.10.2 as follows. Note that K = I ⊗O F
and L = I ⊗O G by Lemma 91.11.2, that cF ′ = 1 ⊗ 1 and cG′ = 1 ⊗ 1 and taking
ψ = 1⊗φ the diagram of the lemma commutes. Thus o(φ) = o(φ, 1⊗φ) works. □

Lemma 91.11.7.08MU Let (f, f ′) be a morphism of first order thickenings as in Situation
91.9.1. Let F be an O-module. Assume (f, f ′) is a strict morphism of thickenings
and F flat over OB. If there exists a pair (F ′, α) consisting of an O′-module F ′ flat
over OB′ and an isomorphism α : i∗F ′ → F , then the set of isomorphism classes of
such pairs is principal homogeneous under Ext1

O(F , I ⊗O F).

Proof. If we assume there exists one such module, then the canonical map
f∗J ⊗O F → I ⊗O F

is an isomorphism by Lemma 91.11.2. Apply Lemma 91.10.3 with K = I ⊗OF and
c = 1. By Lemma 91.11.2 the corresponding extensions F ′ are all flat over OB′ . □

Lemma 91.11.8.08MV Let (f, f ′) be a morphism of first order thickenings as in Situation
91.9.1. Let F be an O-module. Assume (f, f ′) is a strict morphism of thickenings
and F flat over OB. There exists an O′-module F ′ flat over OB′ with i∗F ′ ∼= F , if
and only if

(1) the canonical map f∗J ⊗O F → I ⊗O F is an isomorphism, and
(2) the class o(F , I ⊗O F , 1) ∈ Ext2

O(F , I ⊗O F) of Lemma 91.10.4 is zero.

Proof. This follows immediately from the characterization of O′-modules flat over
OB′ of Lemma 91.11.2 and Lemma 91.10.4. □

91.12. Application to flat modules on flat thickenings of ringed topoi

08VV Consider a commutative diagram

(Sh(C),O)
i
//

f

��

(Sh(D),O′)

f ′

��
(Sh(B),OB) t // (Sh(B′),OB′)

of ringed topoi whose horizontal arrows are first order thickenings as in Situation
91.9.1. Set I = Ker(i♯) ⊂ O′ and J = Ker(t♯) ⊂ OB′ . Let F be an O-module.
Assume that

(1) (f, f ′) is a strict morphism of thickenings,
(2) f ′ is flat, and
(3) F is flat over OB.

Note that (1) + (2) imply that I = f∗J (apply Lemma 91.11.2 to O′). The theory
of the preceding section is especially nice under these assumptions. We summarize
the results already obtained in the following lemma.

Lemma 91.12.1.08VW In the situation above.

https://stacks.math.columbia.edu/tag/08MU
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(1) There exists an O′-module F ′ flat over OB′ with i∗F ′ ∼= F , if and only if
the class o(F , f∗J ⊗O F , 1) ∈ Ext2

O(F , f∗J ⊗O F) of Lemma 91.10.4 is
zero.

(2) If such a module exists, then the set of isomorphism classes of lifts is
principal homogeneous under Ext1

O(F , f∗J ⊗O F).
(3) Given a lift F ′, the set of automorphisms of F ′ which pull back to idF is

canonically isomorphic to Ext0
O(F , f∗J ⊗O F).

Proof. Part (1) follows from Lemma 91.11.8 as we have seen above that I = f∗J .
Part (2) follows from Lemma 91.11.7. Part (3) follows from Lemma 91.11.4. □

Situation 91.12.2.0CYD Let f : (Sh(C),O) → (Sh(B),OB) be a morphism of ringed
topoi. Consider a commutative diagram

(Sh(C′
1),O′

1)
h
//

f ′
1
��

(Sh(C′
2),O′

2)

f ′
2
��

(Sh(B′
1),OB′

1
) // (Sh(B′

2),OB′
2
)

where h is a morphism of first order thickenings of (Sh(C),O), the lower horizontal
arrow is a morphism of first order thickenings of (Sh(B),OB), each f ′

i restricts to f ,
both pairs (f, f ′

i) are strict morphisms of thickenings, and both f ′
i are flat. Finally,

let F be an O-module flat over OB.

Lemma 91.12.3.0CYE In Situation 91.12.2 the obstruction class o(F , f∗J2⊗OF , 1) maps
to the obstruction class o(F , f∗J1 ⊗O F , 1) under the canonical map

Ext2
O(F , f∗J2 ⊗O F)→ Ext2

O(F , f∗J1 ⊗O F)

Proof. Follows from Remark 91.10.9. □

Situation 91.12.4.08VX Let f : (Sh(C),O) → (Sh(B),OB) be a morphism of ringed
topoi. Consider a commutative diagram

(Sh(C′
1),O′

1)
h
//

f ′
1
��

(Sh(C′
2),O′

2) //

f ′
2
��

(Sh(C′
3),O′

3)

f ′
3
��

(Sh(B′
1),OB′

1
) // (Sh(B′

2),OB′
2
) // (Sh(B′

3),OB′
3
)

where (a) the top row is a short exact sequence of first order thickenings of (Sh(C),O),
(b) the lower row is a short exact sequence of first order thickenings of (Sh(B),OB),
(c) each f ′

i restricts to f , (d) each pair (f, f ′
i) is a strict morphism of thickenings,

and (e) each f ′
i is flat. Finally, let F ′

2 be an O′
2-module flat over OB′

2
and set

F = F ′
2⊗O. Let π : (Sh(C′

1),O′
1)→ (Sh(C),O) be the canonical splitting (Remark

91.10.10).

Lemma 91.12.5.08VY In Situation 91.12.4 the modules π∗F and h∗F ′
2 are O′

1-modules
flat over OB′

1
restricting to F on (Sh(C),O). Their difference (Lemma 91.12.1) is an

element θ of Ext1
O(F , f∗J1 ⊗O F) whose boundary in Ext2

O(F , f∗J3 ⊗O F) equals
the obstruction (Lemma 91.12.1) to lifting F to an O′

3-module flat over OB′
3
.

https://stacks.math.columbia.edu/tag/0CYD
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Proof. Note that both π∗F and h∗F ′
2 restrict to F on (Sh(C),O) and that the

kernels of π∗F → F and h∗F ′
2 → F are given by f∗J1 ⊗O F . Hence flatness by

Lemma 91.11.2. Taking the boundary makes sense as the sequence of modules

0→ f∗J3 ⊗O F → f∗J2 ⊗O F → f∗J1 ⊗O F → 0

is short exact due to the assumptions in Situation 91.12.4 and the fact that F is
flat over OB. The statement on the obstruction class is a direct translation of the
result of Remark 91.10.11 to this particular situation. □

91.13. Deformations of ringed topoi and the naive cotangent complex

08UE In this section we use the naive cotangent complex to do a little bit of deformation
theory. We start with a first order thickening t : (Sh(B),OB) → (Sh(B′),OB′) of
ringed topoi. We denote J = Ker(t♯) and we identify the underlying topoi of B
and B′. Moreover we assume given a morphism of ringed topoi f : (Sh(C),O) →
(Sh(B),OB), an O-module G, and a map f−1J → G of sheaves of f−1OB-modules.
In this section we ask ourselves whether we can find the question mark fitting into
the following diagram

(91.13.0.1)08UF

0 // G // ? // O // 0

0 // f−1J

c

OO

// f−1OB′

OO

// f−1OB

OO

// 0

and moreover how unique the solution is (if it exists). More precisely, we look for a
first order thickening i : (Sh(C),O) → (Sh(C′),O′) and a morphism of thickenings
(f, f ′) as in (91.9.1.1) where Ker(i♯) is identified with G such that (f ′)♯ induces the
given map c. We will say (Sh(C′),O′) is a solution to (91.13.0.1).

Lemma 91.13.1.08UG Assume given a commutative diagram of morphisms ringed topoi

(91.13.1.1)08UH

(Sh(C2),O2)
i2
//

f2

��
g

~~

(Sh(C′
2),O′

2)

f ′
2
��

(Sh(B2),OB2) t2 //

~~

(Sh(B′
2),OB′

2
)

~~

(Sh(C1),O1)
i1
//

f1

��

(Sh(C′
1),O′

1)

f ′
1
��

(Sh(B1),OB1) t1 // (Sh(B′
1),OB′

1
)

whose horizontal arrows are first order thickenings. Set Gj = Ker(i♯j) and assume
given a map of g−1O1-modules ν : g−1G1 → G2 giving rise to the commutative

https://stacks.math.columbia.edu/tag/08UG
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diagram

(91.13.1.2)08UI

0 // G2 // O′
2

// O2 // 0

0 // f−1
2 J2

c2

OO

// f−1
2 OB′

2

OO

// f−1
2 OB2

OO

// 0

0 // G1

CC

// O′
1

// O1

CC

// 0

0 // f−1
1 J1

CC

c1

OO

// f−1
1 OB′

1

CC

OO

// f−1
1 OB1

CC

OO

// 0

with front and back solutions to (91.13.0.1). (The north-north-west arrows are
maps on C2 after applying g−1 to the source.)

(1) There exist a canonical element in Ext1
O2

(Lg∗ NLO1/OB1
,G2) whose van-

ishing is a necessary and sufficient condition for the existence of a mor-
phism of ringed topoi (Sh(C′

2),O′
2)→ (Sh(C′

1),O′
1) fitting into (91.13.1.1)

compatibly with ν.
(2) If there exists a morphism (Sh(C′

2),O′
2)→ (Sh(C′

1),O′
1) fitting into (91.13.1.1)

compatibly with ν the set of all such morphisms is a principal homoge-
neous space under

HomO1(ΩO1/OB1
, g∗G2) = HomO2(g∗ΩO1/OB1

,G2) = Ext0
O2

(Lg∗ NLO1/OB1
,G2).

Proof. The proof of this lemma is identical to the proof of Lemma 91.7.1. We urge
the reader to read that proof instead of this one. We will identify the underlying
topoi for every thickening in sight (we have already used this convention in the
statement). The equalities in the last statement of the lemma are immediate from
the definitions. Thus we will work with the groups ExtkO2

(Lg∗ NLO1/OB1
,G2), k =

0, 1 in the rest of the proof. We first argue that we can reduce to the case where
the underlying topos of all ringed topoi in the lemma is the same.
To do this, observe that g−1 NLO1/OB1

is equal to the naive cotangent complex of
the homomorphism of sheaves of rings g−1f−1

1 OB1 → g−1O1, see Modules on Sites,
Lemma 18.33.5. Moreover, the degree 0 term of NLO1/OB1

is a flat O1-module,
hence the canonical map

Lg∗ NLO1/OB1
−→ g−1 NLO1/OB1

⊗g−1O1O2

induces an isomorphism on cohomology sheaves in degrees 0 and −1. Thus we may
replace the Ext groups of the lemma with

Extkg−1O1
(g−1 NLO1/OB1

,G2) = Extkg−1O1
(NLg−1O1/g−1f−1

1 OB1
,G2)

The set of morphism of ringed topoi (Sh(C′
2),O′

2) → (Sh(C′
1),O′

1) fitting into
(91.13.1.1) compatibly with ν is in one-to-one bijection with the set of homomor-
phisms of g−1f−1

1 OB′
1
-algebras g−1O′

1 → O′
2 which are compatible with f ♯ and ν.

In this way we see that we may assume we have a diagram (91.13.1.2) of sheaves
on a site C (with f1 = f2 = id on underlying topoi) and we are looking to find a
homomorphism of sheaves of rings O′

1 → O′
2 fitting into it.
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In the rest of the proof of the lemma we assume all underlying topological spaces are
the same, i.e., we have a diagram (91.13.1.2) of sheaves on a site C (with f1 = f2 = id
on underlying topoi) and we are looking for homomorphisms of sheaves of rings
O′

1 → O′
2 fitting into it. As ext groups we will use ExtkO1

(NLO1/OB1
,G2), k = 0, 1.

Step 1. Construction of the obstruction class. Consider the sheaf of sets

E = O′
1 ×O2 O′

2

This comes with a surjective map α : E → O1 and hence we can use NL(α) instead
of NLO1/OB1

, see Modules on Sites, Lemma 18.35.2. Set

I ′ = Ker(OB′
1
[E ]→ O1) and I = Ker(OB1 [E ]→ O1)

There is a surjection I ′ → I whose kernel is J1OB′
1
[E ]. We obtain two homomor-

phisms of OB′
2
-algebras

a : OB′
1
[E ]→ O′

1 and b : OB′
1
[E ]→ O′

2

which induce maps a|I′ : I ′ → G1 and b|I′ : I ′ → G2. Both a and b annihilate
(I ′)2. Moreover a and b agree on J1OB′

1
[E ] as maps into G2 because the left hand

square of (91.13.1.2) is commutative. Thus the difference b|I′ − ν ◦ a|I′ induces a
well defined O1-linear map

ξ : I/I2 −→ G2

which sends the class of a local section f of I to a(f ′)−ν(b(f ′)) where f ′ is a lift of
f to a local section of I ′. We let [ξ] ∈ Ext1

O1
(NL(α),G2) be the image (see below).

Step 2. Vanishing of [ξ] is necessary. Let us write Ω = ΩOB1 [E]/OB1
⊗OB1 [E] O1.

Observe that NL(α) = (I/I2 → Ω) fits into a distinguished triangle

Ω[0]→ NL(α)→ I/I2[1]→ Ω[1]

Thus we see that [ξ] is zero if and only if ξ is a composition I/I2 → Ω → G2 for
some map Ω → G2. Suppose there exists a homomorphisms of sheaves of rings
φ : O′

1 → O′
2 fitting into (91.13.1.2). In this case consider the map O′

1[E ] → G2,
f ′ 7→ b(f ′)−φ(a(f ′)). A calculation shows this annihilates J1OB′

1
[E ] and induces a

derivation OB1 [E ] → G2. The resulting linear map Ω → G2 witnesses the fact that
[ξ] = 0 in this case.

Step 3. Vanishing of [ξ] is sufficient. Let θ : Ω→ G2 be a O1-linear map such that
ξ is equal to θ ◦ (I/I2 → Ω). Then a calculation shows that

b+ θ ◦ d : OB′
1
[E ] −→ O′

2

annihilates I ′ and hence defines a map O′
1 → O′

2 fitting into (91.13.1.2).

Proof of (2) in the special case above. Omitted. Hint: This is exactly the same as
the proof of (2) of Lemma 91.2.1. □

Lemma 91.13.2.08UJ Let C be a site. Let A → B be a homomorphism of sheaves of
rings on C. Let G be a B-module. Let ξ ∈ Ext1

B(NLB/A,G). There exists a map
of sheaves of sets α : E → B such that ξ ∈ Ext1

B(NL(α),G) is the class of a map
I/I2 → G (see proof for notation).

https://stacks.math.columbia.edu/tag/08UJ
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Proof. Recall that given α : E → B such that A[E ] → B is surjective with ker-
nel I the complex NL(α) = (I/I2 → ΩA[E]/A ⊗A[E] B) is canonically isomor-
phic to NLB/A, see Modules on Sites, Lemma 18.35.2. Observe moreover, that
Ω = ΩA[E]/A⊗A[E] B is the sheaf associated to the presheaf U 7→

⊕
e∈E(U) B(U). In

other words, Ω is the free B-module on the sheaf of sets E and in particular there
is a canonical map E → Ω.

Having said this, pick some E (for example E = B as in the definition of the naive
cotangent complex). The obstruction to writing ξ as the class of a map I/I2 → G is
an element in Ext1

B(Ω,G). Say this is represented by the extension 0→ G → H →
Ω→ 0 of B-modules. Consider the sheaf of sets E ′ = E ×Ω H which comes with an
induced map α′ : E ′ → B. Let I ′ = Ker(A[E ′] → B) and Ω′ = ΩA[E′]/A ⊗A[E′] B.
The pullback of ξ under the quasi-isomorphism NL(α′) → NL(α) maps to zero in
Ext1

B(Ω′,G) because the pullback of the extension H by the map Ω′ → Ω is split as
Ω′ is the free B-module on the sheaf of sets E ′ and since by construction there is a
commutative diagram

E ′ //

��

E

��
H // Ω

This finishes the proof. □

Lemma 91.13.3.08UK If there exists a solution to (91.13.0.1), then the set of isomorphism
classes of solutions is principal homogeneous under Ext1

O(NLO/OB ,G).

Proof. We observe right away that given two solutions O′
1 and O′

2 to (91.13.0.1) we
obtain by Lemma 91.13.1 an obstruction element o(O′

1,O′
2) ∈ Ext1

O(NLO/OB ,G) to
the existence of a map O′

1 → O′
2. Clearly, this element is the obstruction to the

existence of an isomorphism, hence separates the isomorphism classes. To finish
the proof it therefore suffices to show that given a solution O′ and an element
ξ ∈ Ext1

O(NLO/OB ,G) we can find a second solution O′
ξ such that o(O′,O′

ξ) = ξ.

Pick α : E → O as in Lemma 91.13.2 for the class ξ. Consider the surjection
f−1OB[E ]→ O with kernel I and corresponding naive cotangent complex NL(α) =
(I/I2 → Ωf−1OB[E]/f−1OB⊗f−1OB[E]O). By the lemma ξ is the class of a morphism
δ : I/I2 → G. After replacing E by E ×O O′ we may also assume that α factors
through a map α′ : E → O′.

These choices determine an f−1OB′ -algebra map φ : OB′ [E ]→ O′. Let I ′ = Ker(φ).
Observe that φ induces a map φ|I′ : I ′ → G and that O′ is the pushout, as in the
following diagram

0 // G // O′ // O // 0

0 // I ′

φ|I′

OO

// f−1OB′ [E ]

OO

// O

=

OO

// 0

Let ψ : I ′ → G be the sum of the map φ|I′ and the composition

I ′ → I ′/(I ′)2 → I/I2 δ−→ G.

https://stacks.math.columbia.edu/tag/08UK
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Then the pushout along ψ is an other ring extension O′
ξ fitting into a diagram as

above. A calculation (omitted) shows that o(O′,O′
ξ) = ξ as desired. □

Lemma 91.13.4.0GQ5 Let f : (Sh(C),O)→ (Sh(B),OB) be a morphism of ringed topoi.
Let G be an O-module. The set of isomorphism classes of extensions of f−1OB-
algebras

0→ G → O′ → O → 0
where G is an ideal of square zero2 is canonically bijective to Ext1

O(NLO/OB ,G).

Proof. To prove this we apply the previous results to the case where (91.13.0.1) is
given by the diagram

0 // G // ? // O // 0

0 // 0

OO

// f−1OB

OO

id // f−1OB

OO

// 0

Thus our lemma follows from Lemma 91.13.3 and the fact that there exists a solu-
tion, namely G⊕O. (See remark below for a direct construction of the bijection.) □

Remark 91.13.5.0GQ6 Let f : (Sh(C),O) → (B,OB) and G be as in Lemma 91.13.4.
Consider an extension 0 → G → O′ → O → 0 as in the lemma. We can choose a
sheaf of sets E and a commutative diagram

E

α′

��
α

  
O′ // O

such that f−1OB[E ] → O is surjective with kernel J . (For example you can take
any sheaf of sets surjecting onto O′.) Then

NLO/OB
∼= NL(α) =

(
J /J 2 −→ Ωf−1OB[E]/f−1OB ⊗f−1OB[E] O

)
See Modules on Sites, Section 18.35 and in particular Lemma 18.35.2. Of course α′

determines a map f−1OB[E ]→ O′ which in turn determines a map

J /J 2 −→ G

which in turn determines the element of Ext1
O(NL(α),G) = Ext1

O(NLO/OB ,G) cor-
responding to O′ by the bijection of the lemma.

Lemma 91.13.6.0GQ7 Let f : (Sh(C),OC) → (Sh(B),OB) and g : (Sh(D),OD) →
(Sh(C),OC) be morphisms of ringed topoi. Let F be a OC-module. Let G be a
OD-module. Let c : g∗F → G be a OD-linear map. Finally, consider

(a) 0 → F → OC′ → OC → 0 an extension of f−1OB-algebras corresponding
to ξ ∈ Ext1

OC
(NLOC/OB ,F), and

(b) 0 → G → OD′ → OD → 0 an extension of g−1f−1OB-algebras corre-
sponding to ζ ∈ Ext1

OD
(NLOD/OB ,G).

2In other words, the set of isomorphism classes of first order thickenings i : (Sh(C),O) →
(Sh(C),O′) over (Sh(B),OB) endowed with an isomorphism G → Ker(i♯) of O-modules.

https://stacks.math.columbia.edu/tag/0GQ5
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See Lemma 91.13.4. Then there is a morphism

g′ : (Sh(D),OD′) −→ (Sh(C),OC′)

of ringed topoi over (Sh(B),OB) compatible with g and c if and only if ξ and ζ map
to the same element of Ext1

OD
(Lg∗ NLOC/OB ,G).

Proof. The stament makes sense as we have the maps

Ext1
OC

(NLOC/OB ,F)→ Ext1
OD

(Lg∗ NLOC/OB , Lg
∗F)→ Ext1

OD
(Lg∗ NLOC/OB ,G)

using the map Lg∗F → g∗F c−→ G and

Ext1
OY

(NLOD/OB ,G)→ Ext1
OY

(Lg∗ NLOC/OB ,G)

using the map Lg∗ NLOC/OB → NLOD/OB . The statement of the lemma can be
deduced from Lemma 91.13.1 applied to the diagram

0 // G // OD′ // OD // 0

0 // 0

OO

// g−1f−1OB

OO

// g−1f−1OB

OO

// 0

0 // F

EE

// OC′ // OC

??

// 0

0 // 0

EE

OO

// f−1OB

AA

OO

// f−1OB

??

OO

// 0

and a compatibility between the constructions in the proofs of Lemmas 91.13.4
and 91.13.1 whose statement and proof we omit. (See remark below for a direct
argument.) □

Remark 91.13.7.0GQ8 Let f : (Sh(C),OC)→ (Sh(B),OB), g : (Sh(D),OD)→ (Sh(C),OC),
F , G, c : g∗F → G, 0 → F → OC′ → OC → 0, ξ ∈ Ext1

OC
(NLOC/OB ,F),

0 → G → OD′ → OD → 0, and ζ ∈ Ext1
OD

(NLOD/OB ,G) be as in Lemma 91.13.6.
Using pushout along c : g−1F → G we can construct an extension

0 // G // O′
1

// g−1OC // 0

0 // g−1F

c

OO

// g−1OC′

OO

// g−1OC // 0

Using pullback along g♯ : g−1OC → OD we can construct an extension

0 // G // OD′ // OD // 0

0 // G // O′
2

OO

// g−1OC

OO

// 0

A diagram chase tells us that there exists a morphism g′ : (Sh(D),OD′)→ (Sh(C),OC′)
over (Sh(B),OB) compatible with g and c if and only if O′

1 is isomorphic to O′
2 as

https://stacks.math.columbia.edu/tag/0GQ8
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g−1f−1OB-algebra extensions of g−1OC by G. By Lemma 91.13.4 these extensions
are classified by the LHS of

Ext1
g−1OC

(NLg−1OC/g−1f−1OB ,G) = Ext1
OD

(Lg∗ NLOC/OB ,G)
Here the equality comes from tensor-hom adjunction and the equalities
NLg−1OC/g−1f−1OB = g−1 NLOC/OB and Lg∗ NLOC/OB = g−1 NLOC/OB ⊗

L
g−1OX

OY
For the first of these see Modules on Sites, Lemma 18.35.3; the second follows from
the definition of derived pullback. Thus, in order to see that Lemma 91.13.6 is true,
it suffices to show that O′

1 corresponds to the image of ξ and that O′
2 correspond

to the image of ζ. The correspondence between ξ and O′
1 is immediate from the

construction of the class ξ in Remark 91.13.5. For the correspondence between ζ
and O′

2, we first choose a commutative diagram

E

β′

��

β

""
OD′ // OD

such that g−1f−1OB[E ] → OD is surjective with kernel K. Next choose a commu-
tative diagram

E

β′

��

E ′
φ

oo

α′

��

α

##
OD′ O′

2
oo // g−1OC

such that g−1f−1OB[E ′] → g−1OC is surjective with kernel J . (For example
just take E ′ = E ⨿ O′

2 as a sheaf of sets.) The map φ induces a map of com-
plexes NL(α) → NL(β) (notation as in Modules, Section 17.31) and in particular
φ̄ : J /J 2 → K/K2. Then NL(α) ∼= NLOD/OB and NL(β) ∼= NLg−1OC/g−1f−1OB

and the map of complexes NL(α) → NL(β) represents the map Lg∗ NLOC/OB →
NLOD/OB used in the statement of Lemma 91.13.6 (see first part of its proof).
Now ζ corresponds to the class of the map K/K2 → G induced by β′, see Remark
91.13.5. Similarly, the extension O′

2 corresponds to the map J /J 2 → G induced
by α′. The commutative diagram above shows that this map is the composition of
the map K/K2 → G induced by β′ with the map φ̄ : J /J 2 → K/K2. This proves
the compatibility we were looking for.

Lemma 91.13.8.0GQ9 Let t : (Sh(B),OB)→ (Sh(B′),OB′), J = Ker(t♯), f : (Sh(C),O)→
(Sh(B),OB), G, and c : J → G be as in (91.13.0.1). Denote ξ ∈ Ext1

OB
(NLOB/OB′ ,J )

the element corresponding to the extension OB′ of OB by J via Lemma 91.13.4.
The set of isomorphism classes of solutions is canonically bijective to the fibre of

Ext1
O(NLO/OB′ ,G)→ Ext1

O(Lf∗ NLOB/OB′ ,G)
over the image of ξ.

Proof. By Lemma 91.13.4 applied to t ◦ f : (Sh(C),O) → (Sh(B′),OB′) and the
O-module G we see that elements ζ of Ext1

O(NLO/OB′ ,G) parametrize extensions
0→ G → O′ → O → 0 of f−1OB′ -algebras. By Lemma 91.13.6 applied to

(Sh(C),O) f−→ (Sh(B),OB) t−→ (Sh(B′),OB′)

https://stacks.math.columbia.edu/tag/0GQ9
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and c : J → G we see that there is an morphism

f ′ : (Sh(C),O′) −→ (Sh(B′),OB′)

over (Sh(B′),OB′) compatible with c and f if and only if ζ maps to ξ. Of course
this is the same thing as saying O′ is a solution of (91.13.0.1). □

91.14. Deformations of algebraic spaces

0D15 In this section we spell out what the results in Section 91.13 mean for deformations
of algebraic spaces.

Lemma 91.14.1.0D16 Let S be a scheme. Let i : Z → Z ′ be a morphism of algebraic
spaces over S. The following are equivalent

(1) i is a thickening of algebraic spaces as defined in More on Morphisms of
Spaces, Section 76.9, and

(2) the associated morphism ismall : (Sh(Zétale),OZ) → (Sh(Z ′
étale),OZ′) of

ringed topoi (Properties of Spaces, Lemma 66.21.3) is a thickening in the
sense of Section 91.9.

Proof. We stress that this is not a triviality.

Assume (1). By More on Morphisms of Spaces, Lemma 76.9.6 the morphism i
induces an equivalence of small étale sites and in particular of topoi. Of course i♯
is surjective with locally nilpotent kernel by definition of thickenings.

Assume (2). (This direction is less important and more of a curiosity.) For any
étale morphism Y ′ → Z ′ we see that Y = Z ×Z′ Y ′ has the same étale topos as
Y ′. In particular, Y ′ is quasi-compact if and only if Y is quasi-compact because
being quasi-compact is a topos theoretic notion (Sites, Lemma 7.17.3). Having
said this we see that Y ′ is quasi-compact and quasi-separated if and only if Y is
quasi-compact and quasi-separated (because you can characterize Y ′ being quasi-
separated by saying that for all Y ′

1 , Y
′

2 quasi-compact algebraic spaces étale over Y ′

we have that Y ′
1×Y ′ Y ′

2 is quasi-compact). Take Y ′ affine. Then the algebraic space
Y is quasi-compact and quasi-separated. For any quasi-coherent OY -module F we
have Hq(Y,F) = Hq(Y ′, (Y → Y ′)∗F) because the étale topoi are the same. Then
Hq(Y ′, (Y → Y ′)∗F) = 0 because the pushforward is quasi-coherent (Morphisms of
Spaces, Lemma 67.11.2) and Y is affine. It follows that Y ′ is affine by Cohomology
of Spaces, Proposition 69.16.7 (there surely is a proof of this direction of the lemma
avoiding this reference). Hence i is an affine morphism. In the affine case it follows
easily from the conditions in Section 91.9 that i is a thickening of algebraic spaces.

□

Lemma 91.14.2.0D17 Let S be a scheme. Let Y ⊂ Y ′ be a first order thickening of
algebraic spaces over S. Let f : X → Y be a flat morphism of algebraic spaces over
S. If there exists a flat morphism f ′ : X ′ → Y ′ of algebraic spaces over S and an
isomorphsm a : X → X ′ ×Y ′ Y over Y , then

(1) the set of isomorphism classes of pairs (f ′ : X ′ → Y ′, a) is principal
homogeneous under Ext1

OX
(NLX/Y , f∗CY/Y ′), and

(2) the set of automorphisms of φ : X ′ → X ′ over Y ′ which reduce to the
identity on X ′ ×Y ′ Y is Ext0

OX
(NLX/Y , f∗CY/Y ′).

https://stacks.math.columbia.edu/tag/0D16
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Proof. We will apply the material on deformations of ringed topoi to the small
étale topoi of the algebraic spaces in the lemma. We may think of X as a closed
subspace of X ′ so that (f, f ′) : (X ⊂ X ′)→ (Y ⊂ Y ′) is a morphism of first order
thickenings. By Lemma 91.14.1 this translates into a morphism of thickenings of
ringed topoi. Then we see from More on Morphisms of Spaces, Lemma 76.18.1 (or
from the more general Lemma 91.11.2) that the ideal sheaf of X in X ′ is equal to
f∗CY ′/Y and this is in fact equivalent to flatness of X ′ over Y ′. Hence we have a
commutative diagram

0 // f∗CY/Y ′ // OX′ // OX // 0

0 // f−1
smallCY/Y ′

OO

// f−1
smallOY ′

OO

// f−1
smallOY

OO

// 0

Please compare with (91.13.0.1). Observe that automorphisms φ as in (2) give
automorphisms φ♯ : OX′ → OX′ fitting in the diagram above. Conversely, an
automorphism α : OX′ → OX′ fitting into the diagram of sheaves above is equal to
φ♯ for some automorphism φ as in (2) by More on Morphisms of Spaces, Lemma
76.9.2. Finally, by More on Morphisms of Spaces, Lemma 76.9.7 if we find another
sheaf of rings A on Xétale fitting into the diagram

0 // f∗CY/Y ′ // A // OX // 0

0 // f−1
smallCY/Y ′

OO

// f−1
smallOY ′

OO

// f−1
smallOY

OO

// 0

then there exists a first order thickening X ⊂ X ′′ with OX′′ = A and applying
More on Morphisms of Spaces, Lemma 76.9.2 once more, we obtain a morphism
(f, f ′′) : (X ⊂ X ′′) → (Y ⊂ Y ′) with all the desired properties. Thus part (1)
follows from Lemma 91.13.3 and part (2) from part (2) of Lemma 91.13.1. (Note
that NLX/Y as defined for a morphism of algebraic spaces in More on Morphisms
of Spaces, Section 76.21 agrees with NLX/Y as used in Section 91.13.) □

Let S be a scheme. Let f : X → B be a morphism of algebraic spaces over S.
Let F → G be a homomorphism of OX -modules (not necessarily quasi-coherent).
Consider the functor

F :

 extensions of f−1OB algebras
0→ F → O′ → OX → 0

where F is an ideal of square zero

 −→
 extensions of f−1OB algebras

0→ G → O′ → OX → 0
where G is an ideal of square zero


given by pushout.

Lemma 91.14.3.0D3P In the situation above assume that X is quasi-compact and quasi-
separated and that DQX(F) → DQX(G) (Derived Categories of Spaces, Section
75.19) is an isomorphism. Then the functor F is an equivalence of categories.

Proof. Recall that NLX/B is an object of DQCoh(OX), see More on Morphisms of
Spaces, Lemma 76.21.4. Hence our assumption implies the maps

ExtiX(NLX/B ,F) −→ ExtiX(NLX/B ,G)

https://stacks.math.columbia.edu/tag/0D3P
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are isomorphisms for all i. This implies our functor is fully faithful by Lemma
91.13.1. On the other hand, the functor is essentially surjective by Lemma 91.13.3
because we have the solutions OX ⊕F and OX ⊕ G in both categories. □

Let S be a scheme. Let B ⊂ B′ be a first order thickening of algebraic spaces over
S with ideal sheaf J which we view either as a quasi-coherent OB-module or as
a quasi-coherent sheaf of ideals on B′, see More on Morphisms of Spaces, Section
76.9. Let f : X → B be a morphism of algebraic spaces over S. Let F → G be a
homomorphism of OX -modules (not necessarily quasi-coherent). Let c : f−1J → F
be a map of f−1OB-modules and denote c′ : f−1J → G the composition. Consider
the functor

FT : {solutions to (91.13.0.1) for F and c} −→ {solutions to (91.13.0.1) for G and c′}

given by pushout.

Lemma 91.14.4.0D3Q In the situation above assume that X is quasi-compact and quasi-
separated and that DQX(F) → DQX(G) (Derived Categories of Spaces, Section
75.19) is an isomorphism. Then the functor FT is an equivalence of categories.

Proof. A solution of (91.13.0.1) for F in particular gives an extension of f−1OB′-
algebras

0→ F → O′ → OX → 0
where F is an ideal of square zero. Similarly for G. Moreover, given such an
extension, we obtain a map cO′ : f−1J → F . Thus we are looking at the full
subcategory of such extensions of f−1OB′ -algebras with c = cO′ . Clearly, if O′′ =
F (O′) where F is the equivalence of Lemma 91.14.3 (applied to X → B′ this time),
then cO′′ is the composition of cO′ and the map F → G. This proves the lemma. □

91.15. Deformations of complexes

0DYQ This section is a warmup for the next one. We will use as much as possible the
material in the chapters on commutative algebra.

Lemma 91.15.1.0DYR Let R′ → R be a surjection of rings whose kernel is an ideal I of
square zero. For every K ∈ D−(R) there is a canonical map

ω(K) : K −→ K ⊗L
R I[2]

in D(R) with the following properties
(1) ω(K) = 0 if and only if there exists K ′ ∈ D(R′) with K ′ ⊗L

R′ R = K,
(2) given K → L in D−(R) the diagram

K

��

ω(K)
// K ⊗L

R I[2]

��
L

ω(L) // L⊗L
R I[2]

commutes, and
(3) formation of ω(K) is compatible with ring maps R′ → S′ (see proof for a

precise statement).

https://stacks.math.columbia.edu/tag/0D3Q
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Proof. Choose a bounded above complex K• of free R-modules representing K.
Then we can choose free R′-modules (K ′)n lifting Kn. We can choose R′-module
maps (d′)nK : (K ′)n → (K ′)n+1 lifting the differentials dnK : Kn → Kn+1 of K•.
Although the compositions

(d′)n+1
K ◦ (d′)nK : (K ′)n → (K ′)n+2

may not be zero, they do factor as

(K ′)n → Kn ωnK−−→ Kn+2 ⊗R I = I(K ′)n+2 → (K ′)n+2

because dn+1 ◦ dn = 0. A calculation shows that ωnK defines a map of complexes.
This map of complexes defines ω(K).

Let us prove this construction is compatible with a map of complexes α• : K• → L•

of bounded above free R-modules and given choices of lifts (K ′)n, (L′)n, (d′)nK , (d′)nL.
Namely, choose (α′)n : (K ′)n → (L′)n lifting the components αn : Kn → Ln. As
before we get a factorization

(K ′)n → Kn hn−−→ Ln+1 ⊗R I = I(L′)n+1 → (L′)n+2

of (d′)nL ◦ (α′)n − (α′)n+1 ◦ (d′)nK . Then it is an pleasant calculation to show that

ωnL ◦ αn = (dn+1
L ⊗ idI) ◦ hn + hn+1 ◦ dnK + (αn+2 ⊗ idI) ◦ ωnK

This proves the commutativity of the diagram in (2) of the lemma in this particular
case. Using this for two different choices of bounded above free complexes repre-
senting K, we find that ω(K) is well defined! And of course (2) holds in general as
well.

If K lifts to K ′ in D−(R′), then we can represent K ′ by a bounded above complex of
free R′-modules and we see immediately that ω(K) = 0. Conversely, going back to
our choices K•, (K ′)n, (d′)nK , if ω(K) = 0, then we can find gn : Kn → Kn+1⊗R I
with

ωn = (dn+1
K ⊗ idI) ◦ gn + gn+1 ◦ dnK

This means that with differentials (d′)nK + gn : (K ′)n → (K ′)n+1 we obtain a
complex of free R′-modules lifting K•. This proves (1).

Finally, part (3) means the following: Let R′ → S′ be a map of rings. Set S =
S′ ⊗R′ R and denote J = IS′ ⊂ S′ the square zero kernel of S′ → S. Then given
K ∈ D−(R) the statement is that we get a commutative diagram

K ⊗L
R S

��

ω(K)⊗id
// (K ⊗L

R I[2])⊗L
R S

��
K ⊗L

R S
ω(K⊗L

RS) // (K ⊗L
R S)⊗L

S J [2]

Here the right vertical arrow comes from

(K ⊗L
R I[2])⊗L

R S = (K ⊗L
R S)⊗L

S (I ⊗L
R S)[2] −→ (K ⊗L

R S)⊗L
S J [2]

Choose K•, (K ′)n, and (d′)nK as above. Then we can use K•⊗RS, (K ′)n⊗R′S′, and
(d′)nK ⊗ idS′ for the construction of ω(K ⊗L

R S). With these choices commutativity
is immediately verified on the level of maps of complexes. □
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91.16. Deformations of complexes on ringed topoi

0DIS This material is taken from [Lie06a].
The material in this section works in the setting of a first order thickening of ringed
topoi as defined in Section 91.9. However, in order to simplify the notation we
will assume the underlying sites C and D are the same. Moreover, the surjective
homomorphism O′ → O of sheaves of rings will be denoted O → O0 as is perhaps
more customary in the literature.

Lemma 91.16.1.0DIT Let C be a site. Let O → O0 be a surjection of sheaves of rings.
Assume given the following data

(1) flat O-modules Gn,
(2) maps of O-modules Gn → Gn+1,
(3) a complex K•

0 of O0-modules,
(4) maps of O-modules Gn → Kn0

such that
(a) Hn(K•

0) = 0 for n≫ 0,
(b) Gn = 0 for n≫ 0,
(c) with Gn0 = Gn ⊗O O0 the induced maps determine a complex G•

0 and a
map of complexes G•

0 → K•
0.

Then there exist
(i) flat O-modules Fn,
(ii) maps of O-modules Fn → Fn+1,
(iii) maps of O-modules Fn → Kn0 ,
(iv) maps of O-modules Gn → Fn,

such that Fn = 0 for n≫ 0, such that the diagrams

Gn //

��

Gn+1

��
Fn // Fn+1

commute for all n, such that the composition Gn → Fn → Kn0 is the given map
Gn → Kn0 , and such that with Fn0 = Fn ⊗O O0 we obtain a complex F•

0 and map
of complexes F•

0 → K•
0 which is a quasi-isomorphism.

Proof. We will prove by descending induction on e that we can find Fn, Gn → Fn,
and Fn → Fn+1 for n ≥ e fitting into a commutative diagram

. . . // Ge−1 //

��

Ge

��

//

��

Ge+1

��

//

��

. . .

Fe

��

// Fe+1

��

// . . .

. . . // Ke−1
0

// Ke0 // Ke+1
0

// . . .

such that F•
0 is a complex, the induced map F•

0 → K•
0 induces an isomorphism on

Hn for n > e and a surjection for n = e. For e ≫ 0 this is true because we can
take Fn = 0 for n ≥ e in that case by assumptions (a) and (b).

https://stacks.math.columbia.edu/tag/0DIT
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Induction step. We have to construct Fe−1 and the maps Ge−1 → Fe−1, Fe−1 →
Fe, and Fe−1 → Ke−1

0 . We will choose Fe−1 = A⊕B⊕C as a direct sum of three
pieces.

For the first we take A = Ge−1 and we choose our map Ge−1 → Fe−1 to be the
inclusion of the first summand. The maps A → Ke−1

0 and A → Fe will be the
obvious ones.

To choose B we consider the surjection (by induction hypothesis)

γ : Ker(Fe0 → Fe+1
0 ) −→ Ker(Ke0 → Ke+1

0 )/ Im(Ke−1
0 → Ke0)

We can choose a set I, for each i ∈ I an object Ui of C, and sections si ∈ Fe(Ui),
ti ∈ Ke−1

0 (Ui) such that
(1) si maps to a section of Ker(γ) ⊂ Ker(Fe0 → Fe+1

0 ),
(2) si and ti map to the same section of Ke0,
(3) the sections si generate Ker(γ) as an O0-module.

We omit giving the full justification for this; one uses that Fe → Fe0 is a surjective
maps of sheaves of sets. Then we set to put

B =
⊕

i∈I
jUi!OUi

and define the maps B → Fe and B → Ke−1
0 by using si and ti to determine where

to send the summand jUi!OUi .

With Fe−1 = A⊕B and maps as above, this produces a diagram as above for e−1
such that F•

0 → K•
0 induces an isomorphism on Hn for n ≥ e. To get the map to

be surjective on He−1 we choose the summand C as follows. Choose a set J , for
each j ∈ J an object Uj of C and a section tj of Ker(Ke−1

0 → Ke0) over Uj such that
these sections generate this kernel over O0. Then we put

C =
⊕

j∈J
jUj !OUj

and the zero map C → Fe and the map C → Ke−1
0 by using sj to determine where to

the summand jUj !OUj . This finishes the induction step by taking Fe−1 = A⊕B⊕C
and maps as indicated. □

Lemma 91.16.2.0DIU Let C be a site. Let O → O0 be a surjection of sheaves of rings
whose kernel is an ideal sheaf I of square zero. For every object K0 in D−(O0)
there is a canonical map

ω(K0) : K0 −→ K0 ⊗L
O0
I[2]

in D(O0) such that for any map K0 → L0 in D−(O0) the diagram

K0

��

ω(K0)
// (K0 ⊗L

O0
I)[2]

��
L0

ω(L0) // (L0 ⊗L
O0
I)[2]

commutes.

https://stacks.math.columbia.edu/tag/0DIU
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Proof. Represent K0 by any complex K•
0 of O0-modules. Apply Lemma 91.16.1

with Gn = 0 for all n. Denote d : Fn → Fn+1 the maps produced by the lemma.
Then we see that d ◦d : Fn → Fn+2 is zero modulo I. Since Fn is flat, we see that
IFn = Fn ⊗O I = Fn0 ⊗O0 I. Hence we obtain a canonical map of complexes

d ◦ d : F•
0 −→ (F•

0 ⊗O0 I)[2]
Since F•

0 is a bounded above complex of flat O0-modules, it is K-flat and may be
used to compute derived tensor product. Moreover, the map of complexes F•

0 → K•
0

is a quasi-isomorphism by construction. Therefore the source and target of the map
just constructed represent K0 and K0 ⊗L

O0
I[2] and we obtain our map ω(K0).

Let us show that this procedure is compatible with maps of complexes. Namely,
let L•

0 represent another object of D−(O0) and suppose that
K•

0 −→ L•
0

is a map of complexes. Apply Lemma 91.16.1 for the complex L•
0, the flat modules

Fn, the maps Fn → Fn+1, and the compositions Fn → Kn0 → Ln0 (we apologize
for the reversal of letters used). We obtain flat modules Gn, maps Fn → Gn, maps
Gn → Gn+1, and maps Gn → Ln0 with all properties as in the lemma. Then it is
clear that

F•
0

��

// (F•
0 ⊗O0 I)[2]

��
G•

0
// (G•

0 ⊗O0 I)[2]
is a commutative diagram of complexes.
To see that ω(K0) is well defined, suppose that we have two complexes K•

0 and (K′
0)•

of O0-modules representing K0 and two systems (Fn, d : Fn → Fn+1,Fn → Kn0 )
and ((F ′)n, d : (F ′)n → (F ′)n+1, (F ′)n → Kn0 ) as above. Then we can choose a
complex (K′′

0 )• and quasi-isomorphisms K•
0 → (K′′

0 )• and (K′
0)• → (K′′

0 )• realizing
the fact that both complexes represent K0 in the derived category. Next, we apply
the result of the previous paragraph to

(K0)• ⊕ (K′
0)• −→ (K′′

0 )•

This produces a commutative diagram

F•
0 ⊕ (F ′

0)•

��

// (F•
0 ⊗O0 I)[2]⊕ ((F ′

0)• ⊗O0 I)[2]

��
G•

0
// (G•

0 ⊗O0 I)[2]

Since the vertical arrows give quasi-isomorphisms on the summands we conclude
the desired commutativity in D(O0).
Having established well-definedness, the statement on compatibility with maps is a
consequence of the result in the second paragraph. □

Lemma 91.16.3.0DIV Let (C,O) be a ringed site. Let α : K → L be a map of D−(O).
Let F be a sheaf of O-modules. Let n ∈ Z.

(1) If Hi(α) is an isomorphism for i ≥ n, then Hi(α⊗L
O idF ) is an isomorphism

for i ≥ n.

https://stacks.math.columbia.edu/tag/0DIV
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(2) If Hi(α) is an isomorphism for i > n and surjective for i = n, then
Hi(α⊗L

O idF ) is an isomorphism for i > n and surjective for i = n.

Proof. Choose a distinguished triangle
K → L→ C → K[1]

In case (2) we see that Hi(C) = 0 for i ≥ n. Hence Hi(C ⊗L
O F) = 0 for i ≥ n

by (the dual of) Derived Categories, Lemma 13.16.1. This in turn shows that
Hi(α⊗L

O idF ) is an isomorphism for i > n and surjective for i = n. In case (1) we
moreover see that Hn−1(L)→ Hn−1(C) is surjective. Considering the diagram

Hn−1(L)⊗O F //

��

Hn−1(C)⊗O F

Hn−1(L⊗L
O F) // Hn−1(C ⊗L

O F)

we conclude the lower horizontal arrow is surjective. Combined with what was said
before this implies that Hn(α⊗L

O idF ) is an isomorphism. □

Lemma 91.16.4.0DIW Let C be a site. Let O → O0 be a surjection of sheaves of rings
whose kernel is an ideal sheaf I of square zero. For every object K0 in D−(O0) the
following are equivalent

(1) the class ω(K0) ∈ Ext2
O0

(K0,K0 ⊗O0 I) constructed in Lemma 91.16.2 is
zero,

(2) there exists K ∈ D−(O) with K ⊗L
O O0 = K0 in D(O0).

Proof. Let K be as in (2). Then we can represent K by a bounded above complex
F• of flat O-modules. Then F•

0 = F• ⊗O O0 represents K0 in D(O0). Since
dF• ◦ dF• = 0 as F• is a complex, we see from the very construction of ω(K0) that
it is zero.
Assume (1). Let Fn, d : Fn → Fn+1 be as in the construction of ω(K0). The
nullity of ω(K0) implies that the map

ω = d ◦ d : F•
0 −→ (F•

0 ⊗O0 I)[2]
is zero in D(O0). By definition of the derived category as the localization of the
homotopy category of complexes of O0-modules, there exists a quasi-isomorphism
α : G•

0 → F•
0 such that there exist O0-modules maps hn : Gn0 → Fn+1

0 ⊗O I with
ω ◦ α = dF•

0 ⊗I ◦ h+ h ◦ dG•
0

We set
Hn = Fn ×Fn

0
Gn0

and we define
d′ : Hn −→ Hn+1, (fn, gn0 ) 7−→ (d(fn)− hn(gn0 ), d(gn0 ))

with obvious notation using that Fn+1
0 ⊗O0 I = Fn+1 ⊗O I = IFn+1 ⊂ Fn+1.

Then one checks d′ ◦ d′ = 0 by our choice of hn and definition of ω. Hence H•

defines an object in D(O). On the other hand, there is a short exact sequence of
complexes of O-modules

0→ F•
0 ⊗O0 I → H• → G•

0 → 0

https://stacks.math.columbia.edu/tag/0DIW
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We still have to show that H• ⊗L
O O0 is isomorphic to K0. Choose a quasi-

isomorphism E• → H• where E• is a bounded above complex of flat O-modules.
We obtain a commutative diagram

0 // E• ⊗O I

β

��

// E•

γ

��

// E•
0

δ

��

// 0

0 // F•
0 ⊗O0 I // H• // G•

0
// 0

We claim that δ is a quasi-isomorphism. Since Hi(δ) is an isomorphism for i≫ 0,
we can use descending induction on n such that Hi(δ) is an isomorphism for i ≥ n.
Observe that E•⊗O I represents E•

0 ⊗L
O0
I, that F•

0 ⊗O0 I represents G•
0 ⊗L

O0
I, and

that β = δ⊗L
O0

idI as maps in D(O0). This is true because β = (α⊗ idI)◦(δ⊗ idI).
Suppose that Hi(δ) is an isomorphism in degrees ≥ n. Then the same is true for β
by what we just said and Lemma 91.16.3. Then we can look at the diagram

Hn−1(E• ⊗O I) //

Hn−1(β)
��

Hn−1(E•) //

��

Hn−1(E•
0 ) //

Hn−1(δ)
��

Hn(E• ⊗O I) //

Hn(β)
��

Hn(E•)

��
Hn−1(F•

0 ⊗O I) // Hn−1(H•) // Hn−1(G•
0 ) // Hn(F•

0 ⊗O I) // Hn(H•)

Using Homology, Lemma 12.5.19 we see that Hn−1(δ) is surjective. This in turn
implies that Hn−1(β) is surjective by Lemma 91.16.3. Using Homology, Lemma
12.5.19 again we see that Hn−1(δ) is an isomorphism. The claim holds by induction,
so δ is a quasi-isomorphism which is what we wanted to show. □

Lemma 91.16.5.0DIX Let C be a site. Let O → O0 be a surjection of sheaves of rings.
Assume given the following data

(1) a complex of O-modules F•,
(2) a complex K•

0 of O0-modules,
(3) a quasi-isomorphism K•

0 → F• ⊗O O0,
Then there exist a quasi-isomorphism G• → F• such that the map of complexes
G•⊗O O0 → F•⊗O O0 factors through K•

0 in the homotopy category of complexes
of O0-modules.

Proof. Set F•
0 = F• ⊗O O0. By Derived Categories, Lemma 13.9.8 there exists a

factorization
K•

0 → L•
0 → F•

0

of the given map such that the first arrow has an inverse up to homotopy and the
second arrow is termwise split surjective. Hence we may assume that K•

0 → F•
0 is

termwise surjective. In that case we take
Gn = Fn ×Fn

0
Kn0

and everything is clear. □

Lemma 91.16.6.0DIY Let C be a site. Let O → O0 be a surjection of sheaves of
rings whose kernel is an ideal sheaf I of square zero. Let K,L ∈ D−(O). Set
K0 = K ⊗L

O O0 and L0 = L ⊗L
O O0 in D−(O0). Given α0 : K0 → L0 in D(O0)

there is a canonical element
o(α0) ∈ Ext1

O0
(K0, L0 ⊗L

O0
I)

https://stacks.math.columbia.edu/tag/0DIX
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whose vanishing is necessary and sufficient for the existence of a map α : K → L
in D(O) with α0 = α⊗L

O id.

Proof. Finding α : K → L lifing α0 is the same as finding α : K → L such that
the composition K

α−→ L → L0 is equal to the composition K → K0
α0−→ L0. The

short exact sequence 0→ I → O → O0 → 0 gives rise to a canonical distinguished
triangle

L⊗L
O I → L→ L0 → (L⊗L

O I)[1]
in D(O). By Derived Categories, Lemma 13.4.2 the composition

K → K0
α0−→ L0 → (L⊗L

O I)[1]
is zero if and only if we can find α : K → L lifting α0. The composition is an
element in
HomD(O)(K, (L⊗L

O I)[1]) = HomD(O0)(K0, (L⊗L
O I)[1]) = Ext1

O0
(K0, L0 ⊗L

O0
I)

by adjunction. □

Lemma 91.16.7.0DIZ Let C be a site. Let O → O0 be a surjection of sheaves of
rings whose kernel is an ideal sheaf I of square zero. Let K0 ∈ D−(O). A lift
of K0 is a pair (K,α0) consisting of an object K in D−(O) and an isomorphism
α0 : K ⊗L

O O0 → K0 in D(O0).
(1) Given a lift (K,α) the group of automorphism of the pair is canonically

the cokernel of a map
Ext−1

O0
(K0,K0) −→ HomO0(K0,K0 ⊗L

O0
I)

(2) If there is a lift, then the set of isomorphism classes of lifts is principal
homogenenous under Ext1

O0
(K0,K0 ⊗L

O0
I).

Proof. An automorphism of (K,α) is a map φ : K → K in D(O) with φ⊗O idO0 =
id. This is the same thing as saying that

K
φ−id−−−→ K → K ⊗L

O O0

is zero. We conclude the group of automorphisms is the cokernel of a map
HomO(K,K0[−1]) −→ HomO(K,K0 ⊗L

O0
I)

by the distinguished triangle
K ⊗L

O I → K → K ⊗L
O O0 → (K ⊗L

O I)[1]
in D(O) and Derived Categories, Lemma 13.4.2. To translate into the groups in
the lemma use adjunction of the restriction functor D(O0)→ D(O) and −⊗OO0 :
D(O)→ D(O0). This proves (1).
Proof of (2). Assume that K0 = K ⊗L

O O0 in D(O). By Lemma 91.16.6 the map
sending a lift (K ′, α0) to the obstruction o(α0) to lifting α0 defines a canonical
injective map from the set of isomomorphism classes of pairs to Ext1

O0
(K0,K0⊗L

O0

I). To finish the proof we show that it is surjective. Pick ξ : K0 → (K0 ⊗L
O0
I)[1]

in the Ext1 of the lemma. Choose a bounded above complex F• of flat O-modules
representing K. The map ξ can be represented as t ◦ s−1 where s : K•

0 → F•
0 is a

quasi-isomorphism and t : K•
0 → F•

0 ⊗O0 I[1] is a map of complexes. By Lemma
91.16.5 we can assume there exists a quasi-isomorphism G• → F• of complexes of
O-modules such that G•

0 → F•
0 factors through s up to homotopy. We may and do

https://stacks.math.columbia.edu/tag/0DIZ
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replace G• by a bounded above complex of flat O-modules (by picking a qis from
such to G• and replacing). Then we see that ξ is represented by a map of complexes
t : G•

0 → F•
0 ⊗O0 I[1] and the quasi-isomorphism G•

0 → F•
0 . Set

Hn = Fn ×Fn
0
Gn0

with differentials
Hn → Hn+1, (fn, gn0 ) 7→ (d(fn) + t(gn0 ), d(gn0 ))

This makes sense as Fn+1
0 ⊗O0 I = Fn+1 ⊗O I = IFn+1 ⊂ Fn+1. We omit the

computation that shows that H• is a complex of O-modules. By construction there
is a short exact sequence

0→ F•
0 ⊗O0 I → H• → G•

0 → 0
of complexes of O-modules. Exactly as in the proof of Lemma 91.16.4 one shows
that this sequence induces an isomorphism α0 : H•⊗L

OO0 → G•
0 in D(O0). In other

words, we have produced a pair (H•, α0). We omit the verification that o(α0) = ξ;
hint: o(α0) can be computed explitly in this case as we have maps Hn → Fn
(not compatible with differentials) lifting the components of α0. This finishes the
proof. □
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CHAPTER 92

The Cotangent Complex

08P5 92.1. Introduction

08P6 The goal of this chapter is to construct the cotangent complex of a ring map, of a
morphism of schemes, and of a morphism of algebraic spaces. Some references are
the notes [Qui], the paper [Qui70], and the books [And67] and [Ill72].

92.2. Advice for the reader

08UM In writing this chapter we have tried to minimize the use of simplicial techniques.
We view the choice of a resolution P• of a ring B over a ring A as a tool to calculating
the homology of abelian sheaves on the category CB/A, see Remark 92.5.5. This
is similar to the role played by a “good cover” to compute cohomology using the
Čech complex. To read a bit on homology on categories, please visit Cohomology
on Sites, Section 21.39. The derived lower shriek functor Lπ! is to homology what
RΓ(CB/A,−) is to cohomology. The category CB/A, studied in Section 92.4, is the
opposite of the category of factorizations A → P → B where P is a polynomial
algebra over A. This category comes with maps of sheaves of rings

A −→ O −→ B

where over the object U = (P → B) we have O(U) = P . It turns out that we
obtain the cotangent complex of B over A as

LB/A = Lπ!(ΩO/A ⊗O B)

see Lemma 92.4.3. We have consistently tried to use this point of view to prove the
basic properties of cotangent complexes of ring maps. In particular, all of the results
can be proven without relying on the existence of standard resolutions, although we
have not done so. The theory is quite satisfactory, except that perhaps the proof of
the fundamental triangle (Proposition 92.7.4) uses just a little bit more theory on
derived lower shriek functors. To provide the reader with an alternative, we give a
rather complete sketch of an approach to this result based on simple properties of
standard resolutions in Remarks 92.7.5 and 92.7.6.

Our approach to the cotangent complex for morphisms of ringed topoi, morphisms
of schemes, morphisms of algebraic spaces, etc is to deduce as much as possible
from the case of “plain ring maps” discussed above.

92.3. The cotangent complex of a ring map

08PL Let A be a ring. Let AlgA be the category of A-algebras. Consider the pair
of adjoint functors (U, V ) where V : AlgA → Sets is the forgetful functor and
U : Sets→ AlgA assigns to a set E the polynomial algebra A[E] on E over A. Let

6590
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X• be the simplicial object of Fun(AlgA,AlgA) constructed in Simplicial, Section
14.34.

Consider an A-algebra B. Denote P• = X•(B) the resulting simplicial A-algebra.
Recall that P0 = A[B], P1 = A[A[B]], and so on. In particular each term Pn is a
polynomial A-algebra. Recall also that there is an augmentation

ϵ : P• −→ B

where we view B as a constant simplicial A-algebra.

Definition 92.3.1.08PM Let A → B be a ring map. The standard resolution of B over
A is the augmentation ϵ : P• → B with terms

P0 = A[B], P1 = A[A[B]], . . .

and maps as constructed above.

It will turn out that we can use the standard resolution to compute left derived
functors in certain settings.

Definition 92.3.2.08PN The cotangent complex LB/A of a ring map A → B is the
complex of B-modules associated to the simplicial B-module

ΩP•/A ⊗P•,ϵ B

where ϵ : P• → B is the standard resolution of B over A.

In Simplicial, Section 14.23 we associate a chain complex to a simplicial module,
but here we work with cochain complexes. Thus the term L−n

B/A in degree −n is
the B-module ΩPn/A ⊗Pn,ϵn B and LmB/A = 0 for m > 0.

Remark 92.3.3.08PP Let A → B be a ring map. Let A be the category of arrows
ψ : C → B of A-algebras and let S be the category of maps E → B where E is a
set. There are adjoint functors V : A → S (the forgetful functor) and U : S → A
which sends E → B to A[E] → B. Let X• be the simplicial object of Fun(A,A)
constructed in Simplicial, Section 14.34. The diagram

A

��

// Soo

��
AlgA // Setsoo

commutes. It follows that X•(idB : B → B) is equal to the standard resolution of
B over A.

Lemma 92.3.4.08S9 Let Ai → Bi be a system of ring maps over a directed index set I.
Then colimLBi/Ai = LcolimBi/ colimAi .

Proof. This is true because the forgetful functor V : A-Alg→ Sets and its adjoint
U : Sets → A-Alg commute with filtered colimits. Moreover, the functor B/A 7→
ΩB/A does as well (Algebra, Lemma 10.131.5). □

https://stacks.math.columbia.edu/tag/08PM
https://stacks.math.columbia.edu/tag/08PN
https://stacks.math.columbia.edu/tag/08PP
https://stacks.math.columbia.edu/tag/08S9
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92.4. Simplicial resolutions and derived lower shriek

08PQ Let A→ B be a ring map. Consider the category whose objects are A-algebra maps
α : P → B where P is a polynomial algebra over A (in some set1 of variables) and
whose morphisms s : (α : P → B)→ (α′ : P ′ → B) are A-algebra homomorphisms
s : P → P ′ with α′ ◦ s = α. Let C = CB/A denote the opposite of this category.
The reason for taking the opposite is that we want to think of objects (P, α) as
corresponding to the diagram of affine schemes

Spec(B)

��

// Spec(P )

yy
Spec(A)

We endow C with the chaotic topology (Sites, Example 7.6.6), i.e., we endow C with
the structure of a site where coverings are given by identities so that all presheaves
are sheaves. Moreover, we endow C with two sheaves of rings. The first is the sheaf
O which sends to object (P, α) to P . Then second is the constant sheaf B, which
we will denote B. We obtain the following diagram of morphisms of ringed topoi

(92.4.0.1)08PR

(Sh(C), B)
i
//

π

��

(Sh(C),O)

(Sh(∗), B)

The morphism i is the identity on underlying topoi and i♯ : O → B is the obvious
map. The map π is as in Cohomology on Sites, Example 21.39.1. An important
role will be played in the following by the derived functors Li∗ : D(O) −→ D(B)
left adjoint to Ri∗ = i∗ : D(B) → D(O) and Lπ! : D(B) −→ D(B) left adjoint to
π∗ = π−1 : D(B)→ D(B).

Lemma 92.4.1.08PS With notation as above let P• be a simplicial A-algebra endowed
with an augmentation ϵ : P• → B. Assume each Pn is a polynomial algebra over A
and ϵ is a trivial Kan fibration on underlying simplicial sets. Then

Lπ!(F) = F(P•, ϵ)

in D(Ab), resp. D(B) functorially in F in Ab(C), resp. Mod(B).

Proof. We will use the criterion of Cohomology on Sites, Lemma 21.39.7 to prove
this. Given an object U = (Q, β) of C we have to show that

S• = MorC((Q, β), (P•, ϵ))

is homotopy equivalent to a singleton. Write Q = A[E] for some set E (this is
possible by our choice of the category C). We see that

S• = MorSets((E, β|E), (P•, ϵ))

1It suffices to consider sets of cardinality at most the cardinality of B.

https://stacks.math.columbia.edu/tag/08PS
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Let ∗ be the constant simplicial set on a singleton. For b ∈ B let Fb,• be the
simplicial set defined by the cartesian diagram

Fb,• //

��

P•

ϵ

��
∗ b // B

With this notation S• =
∏
e∈E Fβ(e),•. Since we assumed ϵ is a trivial Kan fibration

we see that Fb,• → ∗ is a trivial Kan fibration (Simplicial, Lemma 14.30.3). Thus
S• → ∗ is a trivial Kan fibration (Simplicial, Lemma 14.30.6). Therefore S• is
homotopy equivalent to ∗ (Simplicial, Lemma 14.30.8). □

In particular, we can use the standard resolution of B over A to compute derived
lower shriek.

Lemma 92.4.2.08PT Let A → B be a ring map. Let ϵ : P• → B be the standard
resolution of B over A. Let π be as in (92.4.0.1). Then

Lπ!(F) = F(P•, ϵ)

in D(Ab), resp. D(B) functorially in F in Ab(C), resp. Mod(B).

First proof. We will apply Lemma 92.4.1. Since the terms Pn are polynomial alge-
bras we see the first assumption of that lemma is satisfied. The second assumption
is proved as follows. By Simplicial, Lemma 14.34.3 the map ϵ is a homotopy equiv-
alence of underlying simplicial sets. By Simplicial, Lemma 14.31.9 this implies ϵ
induces a quasi-isomorphism of associated complexes of abelian groups. By Sim-
plicial, Lemma 14.31.8 this implies that ϵ is a trivial Kan fibration of underlying
simplicial sets. □

Second proof. We will use the criterion of Cohomology on Sites, Lemma 21.39.7.
Let U = (Q, β) be an object of C. We have to show that

S• = MorC((Q, β), (P•, ϵ))

is homotopy equivalent to a singleton. Write Q = A[E] for some set E (this is
possible by our choice of the category C). Using the notation of Remark 92.3.3 we
see that

S• = MorS((E → B), i(P• → B))
By Simplicial, Lemma 14.34.3 the map i(P• → B) → i(B → B) is a homotopy
equivalence in S. Hence S• is homotopy equivalent to

MorS((E → B), (B → B)) = {∗}

as desired. □

Lemma 92.4.3.08PU Let A→ B be a ring map. Let π and i be as in (92.4.0.1). There
is a canonical isomorphism

LB/A = Lπ!(Li∗ΩO/A) = Lπ!(i∗ΩO/A) = Lπ!(ΩO/A ⊗O B)

in D(B).

https://stacks.math.columbia.edu/tag/08PT
https://stacks.math.columbia.edu/tag/08PU
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Proof. For an object α : P → B of the category C the module ΩP/A is a free P -
module. Thus ΩO/A is a flat O-module. Hence Li∗ΩO/A = i∗ΩO/A is the sheaf of
B-modules which associates to α : P → A the B-module ΩP/A⊗P,α B. By Lemma
92.4.2 we see that the right hand side is computed by the value of this sheaf on
the standard resolution which is our definition of the left hand side (Definition
92.3.2). □

Lemma 92.4.4.08QE If A → B is a ring map, then Lπ!(π−1M) = M with π as in
(92.4.0.1).

Proof. This follows from Lemma 92.4.1 which tells us Lπ!(π−1M) is computed by
(π−1M)(P•, ϵ) which is the constant simplicial object on M . □

Lemma 92.4.5.08QF If A→ B is a ring map, then H0(LB/A) = ΩB/A.

Proof. We will prove this by a direct calculation. We will use the identification of
Lemma 92.4.3. There is clearly a map from ΩO/A ⊗ B to the constant sheaf with
value ΩB/A. Thus this map induces a map

H0(LB/A) = H0(Lπ!(ΩO/A ⊗B)) = π!(ΩO/A ⊗B)→ ΩB/A
By choosing an object P → B of CB/A with P → B surjective we see that this map
is surjective (by Algebra, Lemma 10.131.6). To show that it is injective, suppose
that P → B is an object of CB/A and that ξ ∈ ΩP/A⊗P B is an element which maps
to zero in ΩB/A. We first choose factorization P → P ′ → B such that P ′ → B
is surjective and P ′ is a polynomial algebra over A. We may replace P by P ′.
If B = P/I, then the kernel ΩP/A ⊗P B → ΩB/A is the image of I/I2 (Algebra,
Lemma 10.131.9). Say ξ is the image of f ∈ I. Then we consider the two maps
a, b : P ′ = P [x]→ P , the first of which maps x to 0 and the second of which maps
x to f (in both cases P [x]→ B maps x to zero). We see that ξ and 0 are the image
of dx ⊗ 1 in ΩP ′/A ⊗P ′ B. Thus ξ and 0 have the same image in the colimit (see
Cohomology on Sites, Example 21.39.1) π!(ΩO/A ⊗B) as desired. □

Lemma 92.4.6.08QG If B is a polynomial algebra over the ring A, then with π as in
(92.4.0.1) we have that π! is exact and π!F = F(B → B).

Proof. This follows from Lemma 92.4.1 which tells us the constant simplicial algebra
on B can be used to compute Lπ!. □

Lemma 92.4.7.08QH If B is a polynomial algebra over the ring A, then LB/A is quasi-
isomorphic to ΩB/A[0].

Proof. Immediate from Lemmas 92.4.3 and 92.4.6. □

92.5. Constructing a resolution

08PV In the Noetherian finite type case we can construct a “small” simplicial resolution
for finite type ring maps.

Lemma 92.5.1.08PW Let A be a Noetherian ring. Let A → B be a finite type ring
map. Let A be the category of A-algebra maps C → B. Let n ≥ 0 and let P• be a
simplicial object of A such that

(1) P• → B is a trivial Kan fibration of simplicial sets,
(2) Pk is finite type over A for k ≤ n,
(3) P• = cosknsknP• as simplicial objects of A.

https://stacks.math.columbia.edu/tag/08QE
https://stacks.math.columbia.edu/tag/08QF
https://stacks.math.columbia.edu/tag/08QG
https://stacks.math.columbia.edu/tag/08QH
https://stacks.math.columbia.edu/tag/08PW
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Then Pn+1 is a finite type A-algebra.

Proof. Although the proof we give of this lemma is straightforward, it is a bit messy.
To clarify the idea we explain what happens for low n before giving the proof in
general. For example, if n = 0, then (3) means that P1 = P0 ×B P0. Since the ring
map P0 → B is surjective, this is of finite type over A by More on Algebra, Lemma
15.5.1.

If n = 1, then (3) means that

P2 = {(f0, f1, f2) ∈ P 3
1 | d0f0 = d0f1, d1f0 = d0f2, d1f1 = d1f2}

where the equalities take place in P0. Observe that the triple

(d0f0, d1f0, d1f1) = (d0f1, d0f2, d1f2)

is an element of the fibre product P0 ×B P0 ×B P0 over B because the maps di :
P1 → P0 are morphisms over B. Thus we get a map

ψ : P2 −→ P0 ×B P0 ×B P0

The fibre of ψ over an element (g0, g1, g2) ∈ P0 ×B P0 ×B P0 is the set of triples
(f0, f1, f2) of 1-simplices with (d0, d1)(f0) = (g0, g1), (d0, d1)(f1) = (g0, g2), and
(d0, d1)(f2) = (g1, g2). As P• → B is a trivial Kan fibration the map (d0, d1) :
P1 → P0 ×B P0 is surjective. Thus we see that P2 fits into the cartesian diagram

P2

��

// P 3
1

��
P0 ×B P0 ×B P0 // (P0 ×B P0)3

By More on Algebra, Lemma 15.5.2 we conclude. The general case is similar, but
requires a bit more notation.

The case n > 1. By Simplicial, Lemma 14.19.14 the condition P• = cosknsknP•
implies the same thing is true in the category of simplicial A-algebras and hence
in the category of sets (as the forgetful functor from A-algebras to sets commutes
with limits). Thus

Pn+1 = Mor(∆[n+ 1], P•) = Mor(skn∆[n+ 1], sknP•)

by Simplicial, Lemma 14.11.3 and Equation (14.19.0.1). We will prove by induction
on 1 ≤ k < m ≤ n+ 1 that the ring

Qk,m = Mor(skk∆[m], skkP•)

is of finite type over A. The case k = 1, 1 < m ≤ n + 1 is entirely similar to the
discussion above in the case n = 1. Namely, there is a cartesian diagram

Q1,m

��

// PN1

��
P0 ×B . . .×B P0 // (P0 ×B P0)N

where N =
(
m+1

2
)
. We conclude as before.



92.5. CONSTRUCTING A RESOLUTION 6596

Let 1 ≤ k0 ≤ n and assume Qk,m is of finite type over A for all 1 ≤ k ≤ k0 and
k < m ≤ n+ 1. For k0 + 1 < m ≤ n+ 1 we claim there is a cartesian square

Qk0+1,m

��

// PNk0+1

��
Qk0,m

// QNk0,k0+1

where N is the number of nondegenerate (k0 +1)-simplices of ∆[m]. Namely, to see
this is true, think of an element of Qk0+1,m as a function f from the (k0+1)-skeleton
of ∆[m] to P•. We can restrict f to the k0-skeleton which gives the left vertical
map of the diagram. We can also restrict to each nondegenerate (k0 + 1)-simplex
which gives the top horizontal arrow. Moreover, to give such an f is the same thing
as giving its restriction to k0-skeleton and to each nondegenerate (k0 + 1)-face,
provided these agree on the overlap, and this is exactly the content of the diagram.
Moreover, the fact that P• → B is a trivial Kan fibration implies that the map

Pk0 → Qk0,k0+1 = Mor(∂∆[k0 + 1], P•)

is surjective as every map ∂∆[k0 + 1] → B can be extended to ∆[k0 + 1] → B for
k0 ≥ 1 (small argument about constant simplicial sets omitted). Since by induction
hypothesis the rings Qk0,m, Qk0,k0+1 are finite type A-algebras, so is Qk0+1,m by
More on Algebra, Lemma 15.5.2 once more. □

Proposition 92.5.2.08PX Let A be a Noetherian ring. Let A → B be a finite type ring
map. There exists a simplicial A-algebra P• with an augmentation ϵ : P• → B
such that each Pn is a polynomial algebra of finite type over A and such that ϵ is
a trivial Kan fibration of simplicial sets.

Proof. Let A be the category of A-algebra maps C → B. In this proof our simplicial
objects and skeleton and coskeleton functors will be taken in this category.

Choose a polynomial algebra P0 of finite type over A and a surjection P0 → B. As
a first approximation we take P• = cosk0(P0). In other words, P• is the simplicial
A-algebra with terms Pn = P0×A . . .×AP0. (In the final paragraph of the proof this
simplicial object will be denoted P 0

• .) By Simplicial, Lemma 14.32.3 the map P• →
B is a trivial Kan fibration of simplicial sets. Also, observe that P• = cosk0sk0P•.

Suppose for some n ≥ 0 we have constructed P• (in the final paragraph of the proof
this will be Pn• ) such that

(a) P• → B is a trivial Kan fibration of simplicial sets,
(b) Pk is a finitely generated polynomial algebra for 0 ≤ k ≤ n, and
(c) P• = cosknsknP•

By Lemma 92.5.1 we can find a finitely generated polynomial algebra Q over A
and a surjection Q→ Pn+1. Since Pn is a polynomial algebra the A-algebra maps
si : Pn → Pn+1 lift to maps s′

i : Pn → Q. Set d′
j : Q→ Pn equal to the composition

of Q → Pn+1 and dj : Pn+1 → Pn. We obtain a truncated simplicial object P ′
• of

A by setting P ′
k = Pk for k ≤ n and P ′

n+1 = Q and morphisms d′
i = di and s′

i = si
in degrees k ≤ n − 1 and using the morphisms d′

j and s′
i in degree n. Extend this

to a full simplicial object P ′
• of A using coskn+1. By functoriality of the coskeleton

functors there is a morphism P ′
• → P• of simplicial objects extending the given

https://stacks.math.columbia.edu/tag/08PX
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morphism of (n+ 1)-truncated simplicial objects. (This morphism will be denoted
Pn+1

• → Pn• in the final paragraph of the proof.)

Note that conditions (b) and (c) are satisfied for P ′
• with n replaced by n+ 1. We

claim the map P ′
• → P• satisfies assumptions (1), (2), (3), and (4) of Simplicial,

Lemmas 14.32.1 with n+1 instead of n. Conditions (1) and (2) hold by construction.
By Simplicial, Lemma 14.19.14 we see that we have P• = coskn+1skn+1P• and
P ′

• = coskn+1skn+1P
′
• not only in A but also in the category of A-algebras, whence

in the category of sets (as the forgetful functor from A-algebras to sets commutes
with all limits). This proves (3) and (4). Thus the lemma applies and P ′

• → P• is
a trivial Kan fibration. By Simplicial, Lemma 14.30.4 we conclude that P ′

• → B is
a trivial Kan fibration and (a) holds as well.

To finish the proof we take the inverse limit P• = limPn• of the sequence of simplicial
algebras

. . .→ P 2
• → P 1

• → P 0
•

constructed above. The map P• → B is a trivial Kan fibration by Simplicial,
Lemma 14.30.5. However, the construction above stabilizes in each degree to a
fixed finitely generated polynomial algebra as desired. □

Lemma 92.5.3.08PY Let A be a Noetherian ring. Let A → B be a finite type ring
map. Let π, B be as in (92.4.0.1). If F is an B-module such that F(P, α) is a
finite B-module for all α : P = A[x1, . . . , xn] → B, then the cohomology modules
of Lπ!(F) are finite B-modules.

Proof. By Lemma 92.4.1 and Proposition 92.5.2 we can compute Lπ!(F) by a com-
plex constructed out of the values of F on finite type polynomial algebras. □

Lemma 92.5.4.08PZ Let A be a Noetherian ring. Let A→ B be a finite type ring map.
Then Hn(LB/A) is a finite B-module for all n ∈ Z.

Proof. Apply Lemmas 92.4.3 and 92.5.3. □

Remark 92.5.5 (Resolutions).08QI Let A → B be any ring map. Let us call an aug-
mented simplicial A-algebra ϵ : P• → B a resolution of B over A if each Pn is a
polynomial algebra and ϵ is a trivial Kan fibration of simplicial sets. If P• → B
is an augmentation of a simplicial A-algebra with each Pn a polynomial algebra
surjecting onto B, then the following are equivalent

(1) ϵ : P• → B is a resolution of B over A,
(2) ϵ : P• → B is a quasi-isomorphism on associated complexes,
(3) ϵ : P• → B induces a homotopy equivalence of simplicial sets.

To see this use Simplicial, Lemmas 14.30.8, 14.31.9, and 14.31.8. A resolution P• of
B over A gives a cosimplicial object U• of CB/A as in Cohomology on Sites, Lemma
21.39.7 and it follows that

Lπ!F = F(P•)
functorially in F , see Lemma 92.4.1. The (formal part of the) proof of Proposi-
tion 92.5.2 shows that resolutions exist. We also have seen in the first proof of
Lemma 92.4.2 that the standard resolution of B over A is a resolution (so that
this terminology doesn’t lead to a conflict). However, the argument in the proof
of Proposition 92.5.2 shows the existence of resolutions without appealing to the

https://stacks.math.columbia.edu/tag/08PY
https://stacks.math.columbia.edu/tag/08PZ
https://stacks.math.columbia.edu/tag/08QI
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simplicial computations in Simplicial, Section 14.34. Moreover, for any choice of
resolution we have a canonical isomorphism

LB/A = ΩP•/A ⊗P•,ϵ B

in D(B) by Lemma 92.4.3. The freedom to choose an arbitrary resolution can be
quite useful.

Lemma 92.5.6.08QJ Let A → B be a ring map. Let π, O, B be as in (92.4.0.1). For
any O-module F we have

Lπ!(F) = Lπ!(Li∗F) = Lπ!(F ⊗L
O B)

in D(Ab).

Proof. It suffices to verify the assumptions of Cohomology on Sites, Lemma 21.39.12
hold for O → B on CB/A. We will use the results of Remark 92.5.5 without further
mention. Choose a resolution P• of B over A to get a suitable cosimplicial object
U• of CB/A. Since P• → B induces a quasi-isomorphism on associated complexes
of abelian groups we see that Lπ!O = B. On the other hand Lπ!B is computed by
B(U•) = B. This verifies the second assumption of Cohomology on Sites, Lemma
21.39.12 and we are done with the proof. □

Lemma 92.5.7.08QK Let A → B be a ring map. Let π, O, B be as in (92.4.0.1). We
have

Lπ!(O) = Lπ!(B) = B and LB/A = Lπ!(ΩO/A ⊗O B) = Lπ!(ΩO/A)
in D(Ab).

Proof. This is just an application of Lemma 92.5.6 (and the first equality on the
right is Lemma 92.4.3). □

Here is a special case of the fundamental triangle that is easy to prove.

Lemma 92.5.8.08SA Let A→ B → C be ring maps. If B is a polynomial algebra over A,
then there is a distinguished triangle LB/A⊗L

BC → LC/A → LC/B → LB/A⊗L
BC[1]

in D(C).

Proof. We will use the observations of Remark 92.5.5 without further mention.
Choose a resolution ϵ : P• → C of C over B (for example the standard resolution).
SinceB is a polynomial algebra overA we see that P• is also a resolution of C overA.
Hence LC/A is computed by ΩP•/A⊗P•,ϵC and LC/B is computed by ΩP•/B⊗P•,ϵC.
Since for each n we have the short exact sequence 0 → ΩB/A ⊗B Pn → ΩPn/A →
ΩPn/B (Algebra, Lemma 10.138.9) and since LB/A = ΩB/A[0] (Lemma 92.4.7) we
obtain the result. □

Example 92.5.9.09D4 Let A→ B be a ring map. In this example we will construct an
“explicit” resolution P• of B over A of length 2. To do this we follow the procedure
of the proof of Proposition 92.5.2, see also the discussion in Remark 92.5.5.
We choose a surjection P0 = A[ui] → B where ui is a set of variables. Choose
generators ft ∈ P0, t ∈ T of the ideal Ker(P0 → B). We choose P1 = A[ui, xt] with
face maps d0 and d1 the unique A-algebra maps with dj(ui) = ui and d0(xt) = 0 and
d1(xt) = ft. The map s0 : P0 → P1 is the unique A-algebra map with s0(ui) = ui.
It is clear that

P1
d0−d1−−−−→ P0 → B → 0

https://stacks.math.columbia.edu/tag/08QJ
https://stacks.math.columbia.edu/tag/08QK
https://stacks.math.columbia.edu/tag/08SA
https://stacks.math.columbia.edu/tag/09D4


92.6. FUNCTORIALITY 6599

is exact, in particular the map (d0, d1) : P1 → P0 ×B P0 is surjective. Thus, if P•
denotes the 1-truncated simplicial A-algebra given by P0, P1, d0, d1, and s0, then
the augmentation cosk1(P•) → B is a trivial Kan fibration. The next step of the
procedure in the proof of Proposition 92.5.2 is to choose a polynomial algebra P2
and a surjection

P2 −→ cosk1(P•)2

Recall that
cosk1(P•)2 = {(g0, g1, g2) ∈ P 3

1 | d0(g0) = d0(g1), d1(g0) = d0(g2), d1(g1) = d1(g2)}
Thinking of gi ∈ P1 as a polynomial in xt the conditions are

g0(0) = g1(0), g0(ft) = g2(0), g1(ft) = g2(ft)
Thus cosk1(P•)2 contains the elements yt = (xt, xt, ft) and zt = (0, xt, xt). Every
element G in cosk1(P•)2 is of the form G = H + (0, 0, g) where H is in the image
of A[ui, yt, zt] → cosk1(P•)2. Here g ∈ P1 is a polynomial with vanishing constant
term such that g(ft) = 0 in P0. Observe that

(1) g = xtxt′ − ftxt′ and
(2) g =

∑
rtxt with rt ∈ P0 if

∑
rtft = 0 in P0

are elements of P1 of the desired form. Let

Rel = Ker(
⊕

t∈T
P0 −→ P0), (rt) 7−→

∑
rtft

We set P2 = A[ui, yt, zt, vr, wt,t′ ] where r = (rt) ∈ Rel, with map
P2 −→ cosk1(P•)2

given by yt 7→ (xt, xt, ft), zt 7→ (0, xt, xt), vr 7→ (0, 0,
∑
rtxt), and wt,t′ 7→

(0, 0, xtxt′ − ftxt′). A calculation (omitted) shows that this map is surjective.
Our choice of the map displayed above determines the maps d0, d1, d2 : P2 → P1.
Finally, the procedure in the proof of Proposition 92.5.2 tells us to choose the maps
s0, s1 : P1 → P2 lifting the two maps P1 → cosk1(P•)2. It is clear that we can take
si to be the unique A-algebra maps determined by s0(xt) = yt and s1(xt) = zt.

92.6. Functoriality

08QL In this section we consider a commutative square

(92.6.0.1)08QM
B // B′

A

OO

// A′

OO

of ring maps. We claim there is a canonical B-linear map of complexes
LB/A −→ LB′/A′

associated to this diagram. Namely, if P• → B is the standard resolution of B over
A and P ′

• → B′ is the standard resolution of B′ over A′, then there is a canonical
map P• → P ′

• of simplicial A-algebras compatible with the augmentations P• → B
and P ′

• → B′. This can be seen in terms of the construction of standard resolutions
in Simplicial, Section 14.34 but in the special case at hand it probably suffices to
say simply that the maps

P0 = A[B] −→ A′[B′] = P ′
0, P1 = A[A[B]] −→ A′[A′[B′]] = P ′

1,
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and so on are given by the given maps A → A′ and B → B′. The desired map
LB/A → LB′/A′ then comes from the associated maps ΩPn/A → ΩP ′

n/A
′ .

Another description of the functoriality map can be given as follows. Let C = CB/A
and C′ = C′

B′/A be the categories considered in Section 92.4. There is a functor

u : C −→ C′, (P, α) 7−→ (P ⊗A A′, c ◦ (α⊗ 1))

where c : B ⊗A A′ → B′ is the obvious map. As discussed in Cohomology on
Sites, Example 21.39.3 we obtain a morphism of topoi g : Sh(C) → Sh(C′) and a
commutative diagram of maps of ringed topoi

(92.6.0.2)08QN

(Sh(C′), B)

π

��

(Sh(C′), B′)

π

��

h
oo (Sh(C), B′)

π′

��

g
oo

(Sh(∗), B) (Sh(∗), B′)foo (Sh(∗), B′)oo

Here h is the identity on underlying topoi and given by the ring map B → B′ on
sheaves of rings. By Cohomology on Sites, Remark 21.38.7 given F on C and F ′

on C′ and a transformation t : F → g−1F ′ we obtain a canonical map Lπ!(F) →
Lπ′

!(F ′). If we apply this to the sheaves

F : (P, α) 7→ ΩP/A ⊗P B, F ′ : (P ′, α′) 7→ ΩP ′/A′ ⊗P ′ B′,

and the transformation t given by the canonical maps

ΩP/A ⊗P B −→ ΩP⊗AA′/A′ ⊗P⊗AA′ B′

to get a canonical map

Lπ!(ΩO/A ⊗O B) −→ Lπ′
!(ΩO′/A′ ⊗O′ B′)

By Lemma 92.4.3 this gives LB/A → LB′/A′ . We omit the verification that this
map agrees with the map defined above in terms of simplicial resolutions.

Lemma 92.6.1.08QP Assume (92.6.0.1) induces a quasi-isomorphism B ⊗L
A A′ = B′.

Then, with notation as in (92.6.0.2) and F ′ ∈ Ab(C′), we have Lπ!(g−1F ′) =
Lπ′

!(F ′).

Proof. We use the results of Remark 92.5.5 without further mention. We will apply
Cohomology on Sites, Lemma 21.39.8. Let P• → B be a resolution. If we can show
that u(P•) = P• ⊗A A′ → B′ is a quasi-isomorphism, then we are done. The
complex of A-modules s(P•) associated to P• (viewed as a simplicial A-module) is
a free A-module resolution of B. Namely, Pn is a free A-module and s(P•)→ B is
a quasi-isomorphism. Thus B ⊗L

A A
′ is computed by s(P•) ⊗A A′ = s(P• ⊗A A′).

Therefore the assumption of the lemma signifies that ϵ′ : P• ⊗A A′ → B′ is a
quasi-isomorphism. □

The following lemma in particular applies when A→ A′ is flat and B′ = B ⊗A A′

(flat base change).

Lemma 92.6.2.08QQ If (92.6.0.1) induces a quasi-isomorphism B ⊗L
A A

′ = B′, then the
functoriality map induces an isomorphism

LB/A ⊗L
B B

′ −→ LB′/A′

https://stacks.math.columbia.edu/tag/08QP
https://stacks.math.columbia.edu/tag/08QQ
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Proof. We will use the notation introduced in Equation (92.6.0.2). We have
LB/A ⊗L

B B
′ = Lπ!(ΩO/A ⊗O B)⊗L

B B
′ = Lπ!(Lh∗(ΩO/A ⊗O B))

the first equality by Lemma 92.4.3 and the second by Cohomology on Sites, Lemma
21.39.6. Since ΩO/A is a flat O-module, we see that ΩO/A⊗O B is a flat B-module.
Thus Lh∗(ΩO/A ⊗O B) = ΩO/A ⊗O B′ which is equal to g−1(ΩO′/A′ ⊗O′ B′) by
inspection. we conclude by Lemma 92.6.1 and the fact that LB′/A′ is computed by
Lπ′

!(ΩO′/A′ ⊗O′ B′). □

Remark 92.6.3.08SB Suppose that we are given a square (92.6.0.1) such that there exists
an arrow κ : B → A′ making the diagram commute:

B
β
//

κ   

B′

A

OO

α // A′

OO

In this case we claim the functoriality map P• → P ′
• is homotopic to the composition

P• → B → A′ → P ′
•. Namely, using κ the functoriality map factors as

P• → PA′/A′,• → P ′
•

where PA′/A′,• is the standard resolution of A′ over A′. Since A′ is the polynomial
algebra on the empty set over A′ we see from Simplicial, Lemma 14.34.3 that the
augmentation ϵA′/A′ : PA′/A′,• → A′ is a homotopy equivalence of simplicial rings.
Observe that the homotopy inverse map c : A′ → PA′/A′,• constructed in the proof
of that lemma is just the structure morphism, hence we conclude what we want
because the two compositions

P• // PA′/A′,•
id //

c◦ϵA′/A′
// PA′/A′,• // P ′

•

are the two maps discussed above and these are homotopic (Simplicial, Remark
14.26.5). Since the second map P• → P ′

• induces the zero map ΩP•/A → ΩP ′
•/A

′ we
conclude that the functoriality map LB/A → LB′/A′ is homotopic to zero in this
case.

Lemma 92.6.4.08SC Let A → B and A → C be ring maps. Then the map LB×C/A →
LB/A ⊕ LC/A is an isomorphism in D(B × C).

Proof. Although this lemma can be deduced from the fundamental triangle we will
give a direct and elementary proof of this now. Factor the ring map A→ B×C as
A → A[x] → B × C where x 7→ (1, 0). By Lemma 92.5.8 we have a distinguished
triangle

LA[x]/A ⊗L
A[x] (B × C)→ LB×C/A → LB×C/A[x] → LA[x]/A ⊗L

A[x] (B × C)[1]

in D(B × C). Similarly we have the distinguished triangles
LA[x]/A ⊗L

A[x] B → LB/A → LB/A[x] → LA[x]/A ⊗L
A[x] B[1]

LA[x]/A ⊗L
A[x] C → LC/A → LC/A[x] → LA[x]/A ⊗L

A[x] C[1]

Thus it suffices to prove the result for B×C over A[x]. Note that A[x]→ A[x, x−1] is
flat, that (B×C)⊗A[x]A[x, x−1] = B⊗A[x]A[x, x−1], and that C⊗A[x]A[x, x−1] = 0.
Thus by base change (Lemma 92.6.2) the map LB×C/A[x] → LB/A[x] ⊕ LC/A[x]

https://stacks.math.columbia.edu/tag/08SB
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becomes an isomorphism after inverting x. In the same way one shows that the
map becomes an isomorphism after inverting x− 1. This proves the lemma. □

92.7. The fundamental triangle

08QR In this section we consider a sequence of ring maps A→ B → C. It is our goal to
show that this triangle gives rise to a distinguished triangle
(92.7.0.1)08QS LB/A ⊗L

B C → LC/A → LC/B → LB/A ⊗L
B C[1]

in D(C). This will be proved in Proposition 92.7.4. For an alternative approach
see Remark 92.7.5.
Consider the category CC/B/A wich is the opposite of the category whose objects
are (P → B,Q→ C) where

(1) P is a polynomial algebra over A,
(2) P → B is an A-algebra homomorphism,
(3) Q is a polynomial algebra over P , and
(4) Q→ C is a P -algebra-homomorphism.

We take the opposite as we want to think of (P → B,Q→ C) as corresponding to
the commutative diagram

Spec(C)

��

// Spec(Q)

��
Spec(B)

��

// Spec(P )

yy
Spec(A)

Let CB/A, CC/A, CC/B be the categories considered in Section 92.4. There are
functors

u1 : CC/B/A → CB/A, (P → B,Q→ C) 7→ (P → B)
u2 : CC/B/A → CC/A, (P → B,Q→ C) 7→ (Q→ C)
u3 : CC/B/A → CC/B , (P → B,Q→ C) 7→ (Q⊗P B → C)

These functors induce corresponding morphisms of topoi gi. Let us denote Oi =
g−1
i O so that we get morphisms of ringed topoi

(92.7.0.2)08QT
g1 : (Sh(CC/B/A),O1) −→ (Sh(CB/A),O)
g2 : (Sh(CC/B/A),O2) −→ (Sh(CC/A),O)
g3 : (Sh(CC/B/A),O3) −→ (Sh(CC/B),O)

Let us denote π : Sh(CC/B/A) → Sh(∗), π1 : Sh(CB/A) → Sh(∗), π2 : Sh(CC/A) →
Sh(∗), and π3 : Sh(CC/B) → Sh(∗), so that π = πi ◦ gi. We will obtain our
distinguished triangle from the identification of the cotangent complex in Lemma
92.4.3 and the following lemmas.

Lemma 92.7.1.08QU With notation as in (92.7.0.2) set

Ω1 = ΩO/A ⊗O B on CB/A
Ω2 = ΩO/A ⊗O C on CC/A
Ω3 = ΩO/B ⊗O C on CC/B

https://stacks.math.columbia.edu/tag/08QU
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Then we have a canonical short exact sequence of sheaves of C-modules
0→ g−1

1 Ω1 ⊗B C → g−1
2 Ω2 → g−1

3 Ω3 → 0
on CC/B/A.

Proof. Recall that g−1
i is gotten by simply precomposing with ui. Given an object

U = (P → B,Q→ C) we have a split short exact sequence
0→ ΩP/A ⊗Q→ ΩQ/A → ΩQ/P → 0

for example by Algebra, Lemma 10.138.9. Tensoring with C over Q we obtain a
short exact sequence

0→ ΩP/A ⊗ C → ΩQ/A ⊗ C → ΩQ/P ⊗ C → 0
We have ΩP/A⊗C = ΩP/A⊗B⊗C whence this is the value of g−1

1 Ω1⊗BC on U . The
module ΩQ/A⊗C is the value of g−1

2 Ω2 on U . We have ΩQ/P ⊗C = ΩQ⊗PB/B ⊗C
by Algebra, Lemma 10.131.12 hence this is the value of g−1

3 Ω3 on U . Thus the
short exact sequence of the lemma comes from assigning to U the last displayed
short exact sequence. □

Lemma 92.7.2.08QV With notation as in (92.7.0.2) suppose that C is a polynomial
algebra over B. Then Lπ!(g−1

3 F) = Lπ3,!F = π3,!F for any abelian sheaf F on
CC/B
Proof. Write C = B[E] for some set E. Choose a resolution P• → B of B over A.
For every n consider the object Un = (Pn → B,Pn[E] → C) of CC/B/A. Then U•
is a cosimplicial object of CC/B/A. Note that u3(U•) is the constant cosimplicial
object of CC/B with value (C → C). We will prove that the object U• of CC/B/A
satisfies the hypotheses of Cohomology on Sites, Lemma 21.39.7. This implies the
lemma as it shows that Lπ!(g−1

3 F) is computed by the constant simplicial abelian
group F(C → C) which is the value of Lπ3,!F = π3,!F by Lemma 92.4.6.
Let U = (β : P → B, γ : Q→ C) be an object of CC/B/A. We may write P = A[S]
and Q = A[S ⨿ T ] by the definition of our category CC/B/A. We have to show that

MorCC/B/A(U•, U)
is homotopy equivalent to a singleton simplicial set ∗. Observe that this simplicial
set is the product ∏

s∈S
Fs ×

∏
t∈T

F ′
t

where Fs is the corresponding simplicial set for Us = (A[{s}] → B,A[{s}] → C)
and F ′

t is the corresponding simplicial set for Ut = (A→ B,A[{t}]→ C). Namely,
the object U is the product

∏
Us ×

∏
Ut in CC/B/A. It suffices each Fs and F ′

t is
homotopy equivalent to ∗, see Simplicial, Lemma 14.26.10. The case of Fs follows
as P• → B is a trivial Kan fibration (as a resolution) and Fs is the fibre of this
map over β(s). (Use Simplicial, Lemmas 14.30.3 and 14.30.8). The case of F ′

t is
more interesting. Here we are saying that the fibre of

P•[E] −→ C = B[E]
over γ(t) ∈ C is homotopy equivalent to a point. In fact we will show this map is
a trivial Kan fibration. Namely, P• → B is a trivial can fibration. For any ring R
we have

R[E] = colimΣ⊂Map(E,Z≥0) finite
∏

I∈Σ
R

https://stacks.math.columbia.edu/tag/08QV
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(filtered colimit). Thus the displayed map of simplicial sets is a filtered colimit of
trivial Kan fibrations, whence a trivial Kan fibration by Simplicial, Lemma 14.30.7.

□

Lemma 92.7.3.08QW With notation as in (92.7.0.2) we have Lgi,!◦g−1
i = id for i = 1, 2, 3

and hence also Lπ! ◦ g−1
i = Lπi,! for i = 1, 2, 3.

Proof. Proof for i = 1. We claim the functor CC/B/A is a fibred category over CB/A
Namely, suppose given (P → B,Q → C) and a morphism (P ′ → B) → (P → B)
of CB/A. Recall that this means we have an A-algebra homomorphism P → P ′

compatible with maps to B. Then we set Q′ = Q ⊗P P ′ with induced map to C
and the morphism

(P ′ → B,Q′ → C) −→ (P → B,Q→ C)
in CC/B/A (note reversal arrows again) is strongly cartesian in CC/B/A over CB/A.
Moreover, observe that the fibre category of u1 over P → B is the category CC/P .
Let F be an abelian sheaf on CB/A. Since we have a fibred category we may apply
Cohomology on Sites, Lemma 21.40.2. Thus Lng1,!g

−1
1 F is the (pre)sheaf which

assigns to U ∈ Ob(CB/A) the nth homology of g−1
1 F restricted to the fibre category

over U . Since these restrictions are constant the desired result follows from Lemma
92.4.4 via our identifications of fibre categories above.
The case i = 2. We claim CC/B/A is a fibred category over CC/A is a fibred category.
Namely, suppose given (P → B,Q → C) and a morphism (Q′ → C) → (Q → C)
of CC/A. Recall that this means we have a B-algebra homomorphism Q → Q′

compatible with maps to C. Then
(P → B,Q′ → C) −→ (P → B,Q→ C)

is strongly cartesian in CC/B/A over CC/A. Note that the fibre category of u2 over
Q → C has an final (beware reversal arrows) object, namely, (A → B,Q → C).
Let F be an abelian sheaf on CC/A. Since we have a fibred category we may
apply Cohomology on Sites, Lemma 21.40.2. Thus Lng2,!g

−1
2 F is the (pre)sheaf

which assigns to U ∈ Ob(CC/A) the nth homology of g−1
1 F restricted to the fibre

category over U . Since these restrictions are constant the desired result follows
from Cohomology on Sites, Lemma 21.39.5 because the fibre categories all have
final objects.
The case i = 3. In this case we will apply Cohomology on Sites, Lemma 21.40.3
to u = u3 : CC/B/A → CC/B and F ′ = g−1

3 F for some abelian sheaf F on CC/B .
Suppose U = (Q → C) is an object of CC/B . Then IU = CQ/B/A (again beware
of reversal of arrows). The sheaf F ′

U is given by the rule (P → B,Q → Q) 7→
F(Q⊗PB → C). In other words, this sheaf is the pullback of a sheaf on CQ/C via the
morphism Sh(CQ/B/A)→ Sh(CQ/B). Thus Lemma 92.7.2 shows that Hn(IU ,F ′

U ) =
0 for n > 0 and equal to F(Q → C) for n = 0. The aforementioned Cohomology
on Sites, Lemma 21.40.3 implies that Lg3,!(g−1

3 F) = F and the proof is done. □

Proposition 92.7.4.08QX Let A → B → C be ring maps. There is a canonical distin-
guished triangle

LB/A ⊗L
B C → LC/A → LC/B → LB/A ⊗L

B C[1]
in D(C).

https://stacks.math.columbia.edu/tag/08QW
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Proof. Consider the short exact sequence of sheaves of Lemma 92.7.1 and apply
the derived functor Lπ! to obtain a distinguished triangle

Lπ!(g−1
1 Ω1 ⊗B C)→ Lπ!(g−1

2 Ω2)→ Lπ!(g−1
3 Ω3)→ Lπ!(g−1

1 Ω1 ⊗B C)[1]

in D(C). Using Lemmas 92.7.3 and 92.4.3 we see that the second and third terms
agree with LC/A and LC/B and the first one equals

Lπ1,!(Ω1 ⊗B C) = Lπ1,!(Ω1)⊗L
B C = LB/A ⊗L

B C

The first equality by Cohomology on Sites, Lemma 21.39.6 (and flatness of Ω1 as a
sheaf of modules over B) and the second by Lemma 92.4.3. □

Remark 92.7.5.08SD We sketch an alternative, perhaps simpler, proof of the existence of
the fundamental triangle. Let A→ B → C be ring maps and assume that B → C
is injective. Let P• → B be the standard resolution of B over A and let Q• → C
be the standard resolution of C over B. Picture

P• : A[A[A[B]]]

��

//
//
//
A[A[B]]

��

//
//oo

oo
A[B]

��

oo // B

Q• : A[A[A[C]]]
//
//
//
A[A[C]] //

//oo
oo

A[C]oo // C

Observe that since B → C is injective, the ring Qn is a polynomial algebra over Pn
for all n. Hence we obtain a cosimplicial object in CC/B/A (beware reversal arrows).
Now set Q• = Q•⊗P• B. The key to the proof of Proposition 92.7.4 is to show that
Q• is a resolution of C over B. This follows from Cohomology on Sites, Lemma
21.39.12 applied to C = ∆, O = P•, O′ = B, and F = Q• (this uses that Qn is flat
over Pn; see Cohomology on Sites, Remark 21.39.11 to relate simplicial modules to
sheaves). The key fact implies that the distinguished triangle of Proposition 92.7.4
is the distinguished triangle associated to the short exact sequence of simplicial
C-modules

0→ ΩP•/A ⊗P• C → ΩQ•/A ⊗Q• C → ΩQ•/B
⊗Q•

C → 0

which is deduced from the short exact sequences 0 → ΩPn/A ⊗Pn Qn → ΩQn/A →
ΩQn/Pn → 0 of Algebra, Lemma 10.138.9. Namely, by Remark 92.5.5 and the key
fact the complex on the right hand side represents LC/B in D(C).

If B → C is not injective, then we can use the above to get a fundamental triangle
for A → B → B × C. Since LB×C/B → LB/B ⊕ LC/B and LB×C/A → LB/A ⊕
LC/A are quasi-isomorphism in D(B ×C) (Lemma 92.6.4) this induces the desired
distinguished triangle in D(C) by tensoring with the flat ring map B × C → C.

Remark 92.7.6.08SE Let A → B → C be ring maps with B → C injective. Recall
the notation P•, Q•, Q• of Remark 92.7.5. Let R• be the standard resolution of
C over B. In this remark we explain how to get the canonical identification of
ΩQ•/B

⊗Q•
C with LC/B = ΩR•/B ⊗R• C. Let S• → B be the standard resolution

of B over B. Note that the functoriality map S• → R• identifies Rn as a polynomial
algebra over Sn because B → C is injective. For example in degree 0 we have the
map B[B] → B[C], in degree 1 the map B[B[B]] → B[B[C]], and so on. Thus
R• = R• ⊗S• B is a simplicial polynomial algebra over B as well and it follows (as

https://stacks.math.columbia.edu/tag/08SD
https://stacks.math.columbia.edu/tag/08SE
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in Remark 92.7.5) from Cohomology on Sites, Lemma 21.39.12 that R• → C is a
resolution. Since we have a commutative diagram

Q• // R•

P•

OO

// S•

OO

// B

we obtain a canonical map Q• = Q• ⊗P• B → R•. Thus the maps
LC/B = ΩR•/B ⊗R• C −→ ΩR•/B

⊗R•
C ←− ΩQ•/B

⊗Q•
C

are quasi-isomorphisms (Remark 92.5.5) and composing one with the inverse of the
other gives the desired identification.

92.8. Localization and étale ring maps

08QY In this section we study what happens if we localize our rings. Let A → A′ → B
be ring maps such that B = B ⊗L

A A
′. This happens for example if A′ = S−1A is

the localization of A at a multiplicative subset S ⊂ A. In this case for an abelian
sheaf F ′ on CB/A′ the homology of g−1F ′ over CB/A agrees with the homology of
F ′ over CB/A′ , see Lemma 92.6.1 for a precise statement.

Lemma 92.8.1.08QZ Let A → A′ → B be ring maps such that B = B ⊗L
A A

′. Then
LB/A = LB/A′ in D(B).

Proof. According to the discussion above (i.e., using Lemma 92.6.1) and Lemma
92.4.3 we have to show that the sheaf given by the rule (P → B) 7→ ΩP/A⊗P B on
CB/A is the pullback of the sheaf given by the rule (P → B) 7→ ΩP/A′ ⊗P B. The
pullback functor g−1 is given by precomposing with the functor u : CB/A → CB/A′ ,
(P → B) 7→ (P ⊗A A′ → B). Thus we have to show that

ΩP/A ⊗P B = ΩP⊗AA′/A′ ⊗(P⊗AA′) B

By Algebra, Lemma 10.131.12 the right hand side is equal to
(ΩP/A ⊗A A′)⊗(P⊗AA′) B

Since P is a polynomial algebra over A the module ΩP/A is free and the equality is
obvious. □

Lemma 92.8.2.08R0 Let A→ B be a ring map such that B = B⊗L
AB. Then LB/A = 0

in D(B).

Proof. This is true because LB/A = LB/B = 0 by Lemmas 92.8.1 and 92.4.7. □

Lemma 92.8.3.08R1 Let A→ B be a ring map such that TorAi (B,B) = 0 for i > 0 and
such that LB/B⊗AB = 0. Then LB/A = 0 in D(B).

Proof. By Lemma 92.6.2 we see that LB/A⊗L
B (B⊗AB) = LB⊗AB/B . Now we use

the distinguished triangle (92.7.0.1)
LB⊗AB/B ⊗

L
(B⊗AB) B → LB/B → LB/B⊗AB → LB⊗AB/B ⊗

L
(B⊗AB) B[1]

associated to the ring maps B → B⊗AB → B and the vanishing of LB/B (Lemma
92.4.7) and LB/B⊗AB (assumed) to see that

0 = LB⊗AB/B ⊗
L
(B⊗AB) B = LB/A ⊗L

B (B ⊗A B)⊗L
(B⊗AB) B = LB/A

https://stacks.math.columbia.edu/tag/08QZ
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as desired. □

Lemma 92.8.4.08R2 The cotangent complex LB/A is zero in each of the following cases:
(1) A → B and B ⊗A B → B are flat, i.e., A → B is weakly étale (More on

Algebra, Definition 15.104.1),
(2) A→ B is a flat epimorphism of rings,
(3) B = S−1A for some multiplicative subset S ⊂ A,
(4) A→ B is unramified and flat,
(5) A→ B is étale,
(6) A→ B is a filtered colimit of ring maps for which the cotangent complex

vanishes,
(7) B is a henselization of a local ring of A,
(8) B is a strict henselization of a local ring of A, and
(9) add more here.

Proof. In case (1) we may apply Lemma 92.8.2 to the surjective flat ring map
B ⊗A B → B to conclude that LB/B⊗AB = 0 and then we use Lemma 92.8.3 to
conclude. The cases (2) – (5) are each special cases of (1). Part (6) follows from
Lemma 92.3.4. Parts (7) and (8) follows from the fact that (strict) henselizations
are filtered colimits of étale ring extensions of A, see Algebra, Lemmas 10.155.7
and 10.155.11. □

Lemma 92.8.5.08R3 Let A → B → C be ring maps such that LC/B = 0. Then
LC/A = LB/A ⊗L

B C.

Proof. This is a trivial consequence of the distinguished triangle (92.7.0.1). □

Lemma 92.8.6.08SF Let A→ B be ring maps and S ⊂ A, T ⊂ B multiplicative subsets
such that S maps into T . Then LT−1B/S−1A = LB/A ⊗B T−1B in D(T−1B).

Proof. Lemma 92.8.5 shows that LT−1B/A = LB/A ⊗B T−1B and Lemma 92.8.1
shows that LT−1B/A = LT−1B/S−1A. □

Lemma 92.8.7.08UN Let A → B be a local ring homomorphism of local rings. Let
Ah → Bh, resp. Ash → Bsh be the induced maps of henselizations, resp. strict
henselizations. Then
LBh/Ah = LBh/A = LB/A ⊗L

B B
h resp. LBsh/Ash = LBsh/A = LB/A ⊗L

B B
sh

in D(Bh), resp. D(Bsh).

Proof. The complexes LAh/A, LAsh/A, LBh/B , and LBsh/B are all zero by Lemma
92.8.4. Using the fundamental distinguished triangle (92.7.0.1) for A → B → Bh

we obtain LBh/A = LB/A⊗L
BB

h. Using the fundamental triangle for A→ Ah → Bh

we obtain LBh/Ah = LBh/A. Similarly for strict henselizations. □

92.9. Smooth ring maps

08R4 Let C → B be a surjection of rings with kernel I. Let us call such a ring map
“weakly quasi-regular” if I/I2 is a flat B-module and TorC∗ (B,B) is the exterior
algebra on I/I2. The generalization to “smooth ring maps” of what is done in
Lemma 92.8.4 for “étale ring maps” is to look at flat ring maps A → B such that
the multiplication map B ⊗A B → B is weakly quasi-regular. For the moment we
just stick to smooth ring maps.

https://stacks.math.columbia.edu/tag/08R2
https://stacks.math.columbia.edu/tag/08R3
https://stacks.math.columbia.edu/tag/08SF
https://stacks.math.columbia.edu/tag/08UN


92.10. POSITIVE CHARACTERISTIC 6608

Lemma 92.9.1.08R5 If A→ B is a smooth ring map, then LB/A = ΩB/A[0].

Proof. We have the agreement in cohomological degree 0 by Lemma 92.4.5. Thus
it suffices to prove the other cohomology groups are zero. It suffices to prove this
locally on Spec(B) as LBg/A = (LB/A)g for g ∈ B by Lemma 92.8.5. Thus we may
assume that A→ B is standard smooth (Algebra, Lemma 10.137.10), i.e., that we
can factor A → B as A → A[x1, . . . , xn] → B with A[x1, . . . , xn] → B étale. In
this case Lemmas 92.8.4 and Lemma 92.8.5 show that LB/A = LA[x1,...,xn]/A ⊗ B
whence the conclusion by Lemma 92.4.7. □

92.10. Positive characteristic

0G5X In this section we fix a prime number p. If A is a ring with p = 0 in A, then
FA : A→ A denotes the Frobenius endomorphism a 7→ ap.

Lemma 92.10.1.0G5Y Let A→ B be a ring map with p = 0 in A. Let P• be the standard
resolution of B over A. The map P• → P• induced by the diagram

B
FB

// B

A

OO

FA // A

OO

discussed in Section 92.6 is homotopic to the Frobenius endomorphism P• → P•
given by Frobenius on each Pn.

Proof. Let A be the category of Fp-algebra maps A→ B. Let S be the category of
pairs (A,E) where A is an Fp-algebra and E is a set. Consider the adjoint functors

V : A → S, (A→ B) 7→ (A,B)
and

U : S → A, (A,E) 7→ (A→ A[E])
Let X be the simplicial object in in the category of functors fromA toA constructed
in Simplicial, Section 14.34. It is clear that P• = X(A → B) because if we fix A
then.
Set Y = U ◦ V . Recall that X is constructed from Y and certain maps and has
terms Xn = Y ◦ . . . ◦ Y with n + 1 terms; the construction is given in Simplicial,
Example 14.33.1 and please see proof of Simplicial, Lemma 14.34.2 for details.
Let f : idA → idA be the Frobenius endomorphism of the identity functor. In other
words, we set fA→B = (FA, FB) : (A → B) → (A → B). Then our two maps on
X(A → B) are given by the natural transformations f ⋆ 1X and 1X ⋆ f . Details
omitted. Thus we conclude by Simplicial, Lemma 14.33.6. □

Lemma 92.10.2.0G5Z Let p be a prime number. Let A → B be a ring homomorphism
and assume that p = 0 in A. The map LB/A → LB/A of Section 92.6 induced by
the Frobenius maps FA and FB is homotopic to zero.

Proof. Let P• be the standard resolution of B over A. By Lemma 92.10.1 the map
P• → P• induced by FA and FB is homotopic to the map FP• : P• → P• given by
Frobenius on each term. Hence we obtain what we want as clearly FP• induces the
zero zero map ΩPn/A → ΩPn/A (since the derivative of a pth power is zero). □

https://stacks.math.columbia.edu/tag/08R5
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Lemma 92.10.3.0G60 Let p be a prime number. Let A → B be a ring homomorphism
and assume that p = 0 in A. If A and B are perfect, then LB/A is zero in D(B).

Proof. The map (FA, FB) : (A→ B)→ (A→ B) is an isomorphism hence induces
an isomorphism on LB/A and on the other hand induces zero on LB/A by Lemma
92.10.2. □

92.11. Comparison with the naive cotangent complex

08R6 The naive cotangent complex was introduced in Algebra, Section 10.134.

Remark 92.11.1.08R7 Let A → B be a ring map. Working on CB/A as in Section 92.4
let J ⊂ O be the kernel of O → B. Note that Lπ!(J ) = 0 by Lemma 92.5.7.
Set Ω = ΩO/A ⊗O B so that LB/A = Lπ!(Ω) by Lemma 92.4.3. It follows that
Lπ!(J → Ω) = Lπ!(Ω) = LB/A. Thus, for any object U = (P → B) of CB/A we
obtain a map
(92.11.1.1)08R8 (J → ΩP/A ⊗P B) −→ LB/A

where J = Ker(P → B) in D(A), see Cohomology on Sites, Remark 21.39.4.
Continuing in this manner, note that Lπ!(J ⊗L

O B) = Lπ!(J ) = 0 by Lemma
92.5.6. Since TorO

0 (J , B) = J /J 2 the spectral sequence
Hp(CB/A,TorO

q (J , B))⇒ Hp+q(CB/A,J ⊗L
O B) = 0

(dual of Derived Categories, Lemma 13.21.3) implies that H0(CB/A,J /J 2) = 0
and H1(CB/A,J /J 2) = 0. It follows that the complex of B-modules J /J 2 → Ω
satisfies τ≥−1Lπ!(J /J 2 → Ω) = τ≥−1LB/A. Thus, for any object U = (P → B) of
CB/A we obtain a map
(92.11.1.2)08R9 (J/J2 → ΩP/A ⊗P B) −→ τ≥−1LB/A

in D(B), see Cohomology on Sites, Remark 21.39.4.

The first case is where we have a surjection of rings.

Lemma 92.11.2.08RA Let A → B be a surjective ring map with kernel I. Then
H0(LB/A) = 0 and H−1(LB/A) = I/I2. This isomorphism comes from the map
(92.11.1.2) for the object (A→ B) of CB/A.

Proof. We will show below (using the surjectivity of A → B) that there exists a
short exact sequence

0→ π−1(I/I2)→ J /J 2 → Ω→ 0
of sheaves on CB/A. Taking Lπ! and the associated long exact sequence of homology,
and using the vanishing of H1(CB/A,J /J 2) and H0(CB/A,J /J 2) shown in Remark
92.11.1 we obtain what we want using Lemma 92.4.4.
What is left is to verify the local statement mentioned above. For every object
U = (P → B) of CB/A we can choose an isomorphism P = A[E] such that the
map P → B maps each e ∈ E to zero. Then J = J (U) ⊂ P = O(U) is equal to
J = IP + (e; e ∈ E). The value on U of the short sequence of sheaves above is the
sequence

0→ I/I2 → J/J2 → ΩP/A ⊗P B → 0
Verification omitted (hint: the only tricky point is that IP ∩J2 = IJ ; which follows
for example from More on Algebra, Lemma 15.30.9). □

https://stacks.math.columbia.edu/tag/0G60
https://stacks.math.columbia.edu/tag/08R7
https://stacks.math.columbia.edu/tag/08RA
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Lemma 92.11.3.08RB Let A→ B be a ring map. Then τ≥−1LB/A is canonically quasi-
isomorphic to the naive cotangent complex.

Proof. Consider P = A[B] → B with kernel I. The naive cotangent complex
NLB/A of B over A is the complex I/I2 → ΩP/A ⊗P B, see Algebra, Definition
10.134.1. Observe that in (92.11.1.2) we have already constructed a canonical map

c : NLB/A −→ τ≥−1LB/A

Consider the distinguished triangle (92.7.0.1)

LP/A ⊗L
P B → LB/A → LB/P → (LP/A ⊗L

P B)[1]

associated to the ring maps A → A[B] → B. We know that LP/A = ΩP/A[0] =
NLP/A inD(P ) (Lemma 92.4.7 and Algebra, Lemma 10.134.3) and that τ≥−1LB/P =
I/I2[1] = NLB/P in D(B) (Lemma 92.11.2 and Algebra, Lemma 10.134.6). To
show c is a quasi-isomorphism it suffices by Algebra, Lemma 10.134.4 and the long
exact cohomology sequence associated to the distinguished triangle to show that
the maps LP/A → LB/A → LB/P are compatible on cohomology groups with the
corresponding maps NLP/A → NLB/A → NLB/P of the naive cotangent complex.
We omit the verification. □

Remark 92.11.4.08UP We can make the comparison map of Lemma 92.11.3 explicit
in the following way. Let P• be the standard resolution of B over A. Let I =
Ker(A[B] → B). Recall that P0 = A[B]. The map of the lemma is given by the
commutative diagram

LB/A

��

. . . // ΩP2/A ⊗P2 B //

��

ΩP1/A ⊗P1 B //

��

ΩP0/A ⊗P0 B

��
NLB/A . . . // 0 // I/I2 // ΩP0/A ⊗P0 B

We construct the downward arrow with target I/I2 by sending df ⊗ b to the class
of (d0(f)−d1(f))b in I/I2. Here di : P1 → P0, i = 0, 1 are the two face maps of the
simplicial structure. This makes sense as d0 − d1 maps P1 into I = Ker(P0 → B).
We omit the verification that this rule is well defined. Our map is compatible with
the differential ΩP1/A ⊗P1 B → ΩP0/A ⊗P0 B as this differential maps df ⊗ b to
d(d0(f)− d1(f))⊗ b. Moreover, the differential ΩP2/A⊗P2 B → ΩP1/A⊗P1 B maps
df⊗b to d(d0(f)−d1(f)+d2(f))⊗b which are annihilated by our downward arrow.
Hence a map of complexes. We omit the verification that this is the same as the
map of Lemma 92.11.3.

Remark 92.11.5.09D5 Adopt notation as in Remark 92.11.1. The arguments given there
show that the differential

H2(CB/A,J /J 2) −→ H0(CB/A,TorO
1 (J , B))

of the spectral sequence is an isomorphism. Let C′
B/A denote the full subcategory

of CB/A consisting of surjective maps P → B. The agreement of the cotangent
complex with the naive cotangent complex (Lemma 92.11.3) shows that we have
an exact sequence of sheaves

0→ H1(LB/A)→ J /J 2 d−→ Ω→ H2(LB/A)→ 0

https://stacks.math.columbia.edu/tag/08RB
https://stacks.math.columbia.edu/tag/08UP
https://stacks.math.columbia.edu/tag/09D5
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on C′
B/A. It follows that Ker(d) and Coker(d) on the whole category CB/A have van-

ishing higher homology groups, since these are computed by the homology groups
of constant simplicial abelian groups by Lemma 92.4.1. Hence we conclude that

Hn(CB/A,J /J 2)→ Hn(LB/A)
is an isomorphism for all n ≥ 2. Combined with the remark above we obtain the
formula H2(LB/A) = H0(CB/A,TorO

1 (J , B)).

92.12. A spectral sequence of Quillen

08RC In this section we discuss a spectral sequence relating derived tensor product to the
cotangent complex.

Lemma 92.12.1.08RD Notation and assumptions as in Cohomology on Sites, Example
21.39.1. Assume C has a cosimplicial object as in Cohomology on Sites, Lemma
21.39.7. Let F be a flatB-module such thatH0(C,F) = 0. ThenHl(C,Symk

B(F)) =
0 for l < k.

Proof. We drop the subscript B from tensor products, wedge powers, and symmetric
powers. We will prove the lemma by induction on k. The cases k = 0, 1 follow from
the assumptions. If k > 1 consider the exact complex

. . .→ ∧2F ⊗ Symk−2F → F ⊗ Symk−1F → SymkF → 0
with differentials as in the Koszul complex. If we think of this as a resolution of
SymkF , then this gives a first quadrant spectral sequence

Ep,q1 = Hp(C,∧q+1F ⊗ Symk−q−1F)⇒ Hp+q(C,Symk(F))
By Cohomology on Sites, Lemma 21.39.10 we have

Lπ!(∧q+1F ⊗ Symk−q−1F) = Lπ!(∧q+1F)⊗L
B Lπ!(Symk−q−1F))

It follows (from the construction of derived tensor products) that the induction
hypothesis combined with the vanishing of H0(C,∧q+1(F)) = 0 will prove what we
want. This is true because ∧q+1(F) is a quotient of F⊗q+1 and H0(C,F⊗q+1) is a
quotient of H0(C,F)⊗q+1 which is zero. □

Remark 92.12.2.08SG In the situation of Lemma 92.12.1 one can show thatHk(C,Symk(F)) =
∧kB(H1(C,F)). Namely, it can be deduced from the proof that Hk(C,Symk(F)) is
the Sk-coinvariants of

H−k(Lπ!(F)⊗L
B Lπ!(F)⊗L

B . . .⊗L
B Lπ!(F)) = H1(C,F)⊗k

Thus our claim is that this action is given by the usual action of Sk on the tensor
product multiplied by the sign character. To prove this one has to work through
the sign conventions in the definition of the total complex associated to a multi-
complex. We omit the verification.

Lemma 92.12.3.08RE Let A be a ring. Let P = A[E] be a polynomial ring. Set
I = (e; e ∈ E) ⊂ P . The maps TorPi (A, In+1)→ TorPi (A, In) are zero for all i and
n.

Proof. Denote xe ∈ P the variable corresponding to e ∈ E. A free resolution of A
over P is given by the Koszul complex K• on the xe. Here Ki has basis given by
wedges e1∧ . . .∧ei, e1, . . . , ei ∈ E and d(e) = xe. Thus K•⊗P In = InK• computes
TorPi (A, In). Observe that everything is graded with deg(xe) = 1, deg(e) = 1, and

https://stacks.math.columbia.edu/tag/08RD
https://stacks.math.columbia.edu/tag/08SG
https://stacks.math.columbia.edu/tag/08RE


92.12. A SPECTRAL SEQUENCE OF QUILLEN 6612

deg(a) = 0 for a ∈ A. Suppose ξ ∈ In+1Ki is a cocycle homogeneous of degree m.
Note that m ≥ i+ 1 +n. Then ξ = dη for some η ∈ Ki+1 as K• is exact in degrees
> 0. (The case i = 0 is left to the reader.) Now deg(η) = m ≥ i + 1 + n. Hence
writing η in terms of the basis we see the coordinates are in In. Thus ξ maps to
zero in the homology of InK• as desired. □

Theorem 92.12.4 (Quillen spectral sequence).08RF Let A→ B be a surjective ring map.
Consider the sheaf Ω = ΩO/A ⊗O B of B-modules on CB/A, see Section 92.4. Then
there is a spectral sequence with E1-page

Ep,q1 = H−p−q(CB/A,Symp
B(Ω))⇒ TorA−p−q(B,B)

with dr of bidegree (r,−r + 1). Moreover, Hi(CB/A,Symk
B(Ω)) = 0 for i < k.

Proof. Let I ⊂ A be the kernel of A → B. Let J ⊂ O be the kernel of O → B.
Then IO ⊂ J . Set K = J /IO and O = O/IO.
For every object U = (P → B) of CB/A we can choose an isomorphism P = A[E]
such that the map P → B maps each e ∈ E to zero. Then J = J (U) ⊂ P = O(U)
is equal to J = IP+(e; e ∈ E). Moreover O(U) = B[E] and K = K(U) = (e; e ∈ E)
is the ideal generated by the variables in the polynomial ring B[E]. In particular
it is clear that

K/K2 d−→ ΩP/A ⊗P B
is a bijection. In other words, Ω = K/K2 and Symk

B(Ω) = Kk/Kk+1. Note that
π!(Ω) = ΩB/A = 0 (Lemma 92.4.5) as A → B is surjective (Algebra, Lemma
10.131.4). By Lemma 92.12.1 we conclude that

Hi(CB/A,Kk/Kk+1) = Hi(CB/A,Symk
B(Ω)) = 0

for i < k. This proves the final statement of the theorem.
The approach to the theorem is to note that

B ⊗L
A B = Lπ!(O)⊗L

A B = Lπ!(O ⊗L
A B) = Lπ!(O)

The first equality by Lemma 92.5.7, the second equality by Cohomology on Sites,
Lemma 21.39.6, and the third equality as O is flat over A. The sheaf O has a
filtration

. . . ⊂ K3 ⊂ K2 ⊂ K ⊂ O
This induces a filtration F on a complex C representing Lπ!(O) with F pC repre-
senting Lπ!(Kp) (construction of C and F omitted). Consider the spectral sequence
of Homology, Section 12.24 associated to (C,F ). It has E1-page

Ep,q1 = H−p−q(CB/A,Kp/Kp+1) ⇒ H−p−q(CB/A,O) = TorA−p−q(B,B)

and differentials Ep,qr → Ep+r,q−r+1
r . To show convergence we will show that for

every k there exists a c such that Hi(CB/A,Kn) = 0 for i < k and n > c2.
Given k ≥ 0 set c = k2. We claim that

Hi(CB/A,Kn+c)→ Hi(CB/A,Kn)
is zero for i < k and all n ≥ 0. Note that Kn/Kn+c has a finite filtration whose
successive quotients Km/Km+1, n ≤ m < n+ c have Hi(CB/A,Km/Km+1) = 0 for

2A posteriori the “correct” vanishing Hi(CB/A,Kn) = 0 for i < n can be concluded.

https://stacks.math.columbia.edu/tag/08RF


92.12. A SPECTRAL SEQUENCE OF QUILLEN 6613

i < n (see above). Hence the claim implies Hi(CB/A,Kn+c) = 0 for i < k and all
n ≥ k which is what we need to show.
Proof of the claim. Recall that for any O-module F the map F → F ⊗L

O B induces
an isomorphism on applying Lπ!, see Lemma 92.5.6. Consider the map

Kn+k ⊗L
O B −→ Kn ⊗L

O B

We claim that this map induces the zero map on cohomology sheaves in degrees
0,−1, . . . ,−k + 1. If this second claim holds, then the k-fold composition

Kn+c ⊗L
O B −→ Kn ⊗L

O B

factors through τ≤−kKn ⊗L
O B hence induces zero on Hi(CB/A,−) = Liπ!(−) for

i < k, see Derived Categories, Lemma 13.12.5. By the remark above this means
the same thing is true for Hi(CB/A,Kn+c)→ Hi(CB/A,Kn) which proves the (first)
claim.
Proof of the second claim. The statement is local, hence we may work over an
object U = (P → B) as above. We have to show the maps

TorPi (B,Kn+k)→ TorPi (B,Kn)
are zero for i < k. There is a spectral sequence

TorPa (P/IP,TorP/IPb (B,Kn))⇒ TorPa+b(B,Kn),
see More on Algebra, Example 15.62.2. Thus it suffices to prove the maps

TorP/IPi (B,Kn+1)→ TorP/IPi (B,Kn)
are zero for all i. This is Lemma 92.12.3. □

Remark 92.12.5.08RG In the situation of Theorem 92.12.4 let I = Ker(A → B). Then
H−1(LB/A) = H1(CB/A,Ω) = I/I2, see Lemma 92.11.2. HenceHk(CB/A,Symk(Ω)) =
∧kB(I/I2) by Remark 92.12.2. Thus the E1-page looks like

B
0
0 I/I2

0 H−2(LB/A)
0 H−3(LB/A) ∧2(I/I2)
0 H−4(LB/A) H3(CB/A,Sym2(Ω))
0 H−5(LB/A) H4(CB/A,Sym2(Ω)) ∧3(I/I2)

with horizontal differential. Thus we obtain edge maps TorAi (B,B)→ H−i(LB/A),
i > 0 and ∧iB(I/I2)→ TorAi (B,B). Finally, we have TorA1 (B,B) = I/I2 and there
is a five term exact sequence

TorA3 (B,B)→ H−3(LB/A)→ ∧2
B(I/I2)→ TorA2 (B,B)→ H−2(LB/A)→ 0

of low degree terms.

Remark 92.12.6.09D6 Let A → B be a ring map. Let P• be a resolution of B over A
(Remark 92.5.5). Set Jn = Ker(Pn → B). Note that

TorPn2 (B,B) = TorPn1 (Jn, B) = Ker(Jn ⊗Pn Jn → J2
n).

Hence H2(LB/A) is canonically equal to

Coker(TorP1
2 (B,B)→ TorP0

2 (B,B))

https://stacks.math.columbia.edu/tag/08RG
https://stacks.math.columbia.edu/tag/09D6
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by Remark 92.11.5. To make this more explicit we choose P2, P1, P0 as in Example
92.5.9. We claim that

TorP1
2 (B,B) = ∧2(

⊕
t∈T

B) ⊕
⊕

t∈T
J0 ⊕ TorP0

2 (B,B)

Namely, the basis elements xt∧xt′ of the first summand corresponds to the element
xt⊗xt′−xt′⊗xt of J1⊗P1 J1. For f ∈ J0 the element xt⊗f of the second summand
corresponds to the element xt ⊗ s0(f)− s0(f)⊗ xt of J1 ⊗P1 J1. Finally, the map
TorP0

2 (B,B) → TorP1
2 (B,B) is given by s0. The map d0 − d1 : TorP1

2 (B,B) →
TorP0

2 (B,B) is zero on the last summand, maps xt⊗ f to f ⊗ ft− ft⊗ f , and maps
xt ∧ xt′ to ft ⊗ ft′ − ft′ ⊗ ft. All in all we conclude that there is an exact sequence

∧2
B(J0/J

2
0 )→ TorP0

2 (B,B)→ H−2(LB/A)→ 0

In this way we obtain a direct proof of a consequence of Quillen’s spectral sequence
discussed in Remark 92.12.5.

92.13. Comparison with Lichtenbaum-Schlessinger

09AM Let A → B be a ring map. In [LS67] there is a fairly explicit determination
of τ≥−2LB/A which is often used in calculations of versal deformation spaces of
singularities. The construction follows. Choose a polynomial algebra P over A and
a surjection P → B with kernel I. Choose generators ft, t ∈ T for I which induces a
surjection F =

⊕
t∈T P → I with F a free P -module. Let Rel ⊂ F be the kernel of

F → I, in other words Rel is the set of relations among the ft. Let TrivRel ⊂ Rel
be the submodule of trivial relations, i.e., the submodule of Rel generated by the
elements (. . . , ft′ , 0, . . . , 0,−ft, 0, . . .). Consider the complex of B-modules

(92.13.0.1)09CD Rel/TrivRel −→ F ⊗P B −→ ΩP/A ⊗P B

where the last term is placed in degree 0. The first map is the obvious one and the
second map sends the basis element corresponding to t ∈ T to dft ⊗ 1.

Definition 92.13.1.09CE Let A→ B be a ring map. Let M be a (B,B)-bimodule over A.
An A-biderivation is an A-linear map λ : B →M such that λ(xy) = xλ(y)+λ(x)y.

For a polynomial algebra the biderivations are easy to describe.

Lemma 92.13.2.09CF Let P = A[S] be a polynomial ring over A. Let M be a (P, P )-
bimodule over A. Given ms ∈ M for s ∈ S, there exists a unique A-biderivation
λ : P →M mapping s to ms for s ∈ S.

Proof. We set
λ(s1 . . . st) =

∑
s1 . . . si−1msisi+1 . . . st

in M . Extending by A-linearity we obtain a biderivation. □

Here is the comparison statement. The reader may also read about this in [And74,
page 206, Proposition 12] or in the paper [DRGV92] which extends the complex
(92.13.0.1) by one term and the comparison to τ≥−3.

Lemma 92.13.3.09CG In the situation above denote L the complex (92.13.0.1). There is
a canonical map LB/A → L in D(B) which induces an isomorphism τ≥−2LB/A → L
in D(B).

https://stacks.math.columbia.edu/tag/09CE
https://stacks.math.columbia.edu/tag/09CF
https://stacks.math.columbia.edu/tag/09CG
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Proof. Let P• → B be a resolution of B over A (Remark 92.5.5). We will identify
LB/A with ΩP•/A ⊗B. To construct the map we make some choices.
Choose an A-algebra map ψ : P0 → P compatible with the given maps P0 → B
and P → B.
Write P1 = A[S] for some set S. For s ∈ S we may write

ψ(d0(s)− d1(s)) =
∑

ps,tft

for some ps,t ∈ P . Think of F =
⊕

t∈T P as a (P1, P1)-bimodule via the maps
(ψ ◦ d0, ψ ◦ d1). By Lemma 92.13.2 we obtain a unique A-biderivation λ : P1 → F
mapping s to the vector with coordinates ps,t. By construction the composition

P1 −→ F −→ P

sends f ∈ P1 to ψ(d0(f) − d1(f)) because the map f 7→ ψ(d0(f) − d1(f)) is an
A-biderivation agreeing with the composition on generators.
For g ∈ P2 we claim that λ(d0(g)− d1(g) + d2(g)) is an element of Rel. Namely, by
the last remark of the previous paragraph the image of λ(d0(g)− d1(g) + d2(g)) in
P is

ψ((d0 − d1)(d0(g)− d1(g) + d2(g)))
which is zero by Simplicial, Section 14.23).
The choice of ψ determines a map

dψ ⊗ 1 : ΩP0/A ⊗B −→ ΩP/A ⊗B
Composing λ with the map F → F ⊗ B gives a usual A-derivation as the two
P1-module structures on F ⊗B agree. Thus λ determines a map

λ : ΩP1/A ⊗B −→ F ⊗B
Finally, We obtain a B-linear map

q : ΩP2/A ⊗B −→ Rel/TrivRel

by mapping dg to the class of λ(d0(g)− d1(g) + d2(g)) in the quotient.
The diagram

ΩP3/A ⊗B //

��

ΩP2/A ⊗B //

q

��

ΩP1/A ⊗B //

λ

��

ΩP0/A ⊗B

dψ⊗1
��

0 // Rel/TrivRel // F ⊗B // ΩP/A ⊗B

commutes (calculation omitted) and we obtain the map of the lemma. By Remark
92.11.4 and Lemma 92.11.3 we see that this map induces isomorphismsH1(LB/A)→
H1(L) and H0(LB/A)→ H0(L).
It remains to see that our map LB/A → L induces an isomorphism H2(LB/A) →
H2(L). Choose a resolution of B over A with P0 = P = A[ui] and then P1 and P2
as in Example 92.5.9. In Remark 92.12.6 we have constructed an exact sequence

∧2
B(J0/J

2
0 )→ TorP0

2 (B,B)→ H−2(LB/A)→ 0
where P0 = P and J0 = Ker(P → B) = I. Calculating the Tor group using the
short exact sequences 0 → I → P → B → 0 and 0 → Rel → F → I → 0 we find
that TorP2 (B,B) = Ker(Rel ⊗ B → F ⊗ B). The image of the map ∧2

B(I/I2) →
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TorP2 (B,B) under this identification is exactly the image of TrivRel⊗B. Thus we
see that H2(LB/A) ∼= H2(L).

Finally, we have to check that our map LB/A → L actually induces this iso-
morphism. We will use the notation and results discussed in Example 92.5.9
and Remarks 92.12.6 and 92.11.5 without further mention. Pick an element ξ
of TorP0

2 (B,B) = Ker(I ⊗P I → I2). Write ξ =
∑
ht′,tft′ ⊗ ft for some ht′,t ∈ P .

Tracing through the exact sequences above we find that ξ corresponds to the
image in Rel ⊗ B of the element r ∈ Rel ⊂ F =

⊕
t∈T P with tth coordi-

nate rt =
∑
t′∈T ht′,tft′ . On the other hand, ξ corresponds to the element of

H2(LB/A) = H2(Ω) which is the image via d : H2(J /J 2) → H2(Ω) of the bound-
ary of ξ under the 2-extension

0→ TorO
2 (B,B)→ J ⊗O J → J → J /J 2 → 0

We compute the successive transgressions of our element. First we have

ξ = (d0 − d1)(−
∑

s0(ht′,tft′)⊗ xt)

and next we have ∑
s0(ht′,tft′)xt = d0(vr)− d1(vr) + d2(vr)

by our choice of the variables v in Example 92.5.9. We may choose our map λ
above such that λ(ui) = 0 and λ(xt) = −et where et ∈ F denotes the basis vector
corresponding to t ∈ T . Hence the construction of our map q above sends dvr to

λ(
∑

s0(ht′,tft′)xt) =
∑

t

(∑
t′
ht′,tft′

)
et

matching the image of ξ in Rel ⊗ B (the two minus signs we found above cancel
out). This agreement finishes the proof. □

Remark 92.13.4 (Functoriality of the Lichtenbaum-Schlessinger complex).09D7 Consider
a commutative square

A′ // B′

A

OO

// B

OO

of ring maps. Choose a factorization

A′ // P ′ // B′

A

OO

// P

OO

// B

OO

with P a polynomial algebra over A and P ′ a polynomial algebra over A′. Choose
generators ft, t ∈ T for Ker(P → B). For t ∈ T denote f ′

t the image of ft in P ′.
Choose f ′

s ∈ P ′ such that the elements f ′
t for t ∈ T ′ = T ⨿ S generate the kernel

of P ′ → B′. Set F =
⊕

t∈T P and F ′ =
⊕

t′∈T ′ P ′. Let Rel = Ker(F → P ) and
Rel′ = Ker(F ′ → P ′) where the maps are given by multiplication by ft, resp. f ′

t

on the coordinates. Finally, set TrivRel, resp. TrivRel′ equal to the submodule
of Rel, resp. TrivRel generated by the elements (. . . , ft′ , 0, . . . , 0,−ft, 0, . . .) for

https://stacks.math.columbia.edu/tag/09D7
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t, t′ ∈ T , resp. T ′. Having made these choices we obtain a canonical commutative
diagram

L′ : Rel′/TrivRel′ // F ′ ⊗P ′ B′ // ΩP ′/A′ ⊗P ′ B′

L :

OO

Rel/TrivRel //

OO

F ⊗P B //

OO

ΩP/A ⊗P B

OO

Moreover, tracing through the choices made in the proof of Lemma 92.13.3 the
reader sees that one obtains a commutative diagram

LB′/A′ // L′

LB/A //

OO

L

OO

92.14. The cotangent complex of a local complete intersection

08SH If A → B is a local complete intersection map, then LB/A is a perfect complex.
The key to proving this is the following lemma.

Lemma 92.14.1.08SI Let A = Z[x1, . . . , xn]→ B = Z be the ring map which sends xi
to 0 for i = 1, . . . , n. Let I = (x1, . . . , xn) ⊂ A. Then LB/A is quasi-isomorphic to
I/I2[1].

Proof. There are several ways to prove this. For example one can explicitly con-
struct a resolution of B over A and compute. We will use (92.7.0.1). Namely,
consider the distinguished triangle
LZ[x1,...,xn]/Z⊗Z[x1,...,xn]Z→ LZ/Z → LZ/Z[x1,...,xn] → LZ[x1,...,xn]/Z⊗Z[x1,...,xn]Z[1]
The complex LZ[x1,...,xn]/Z is quasi-isomorphic to ΩZ[x1,...,xn]/Z by Lemma 92.4.7.
The complex LZ/Z is zero in D(Z) by Lemma 92.8.4. Thus we see that LB/A has
only one nonzero cohomology group which is as described in the lemma by Lemma
92.11.2. □

Lemma 92.14.2.08SJ Let A→ B be a surjective ring map whose kernel I is generated
by a Koszul-regular sequence (for example a regular sequence). Then LB/A is
quasi-isomorphic to I/I2[1].

Proof. Let f1, . . . , fr ∈ I be a Koszul regular sequence generating I. Consider the
ring map Z[x1, . . . , xr]→ A sending xi to fi. Since x1, . . . , xr is a regular sequence
in Z[x1, . . . , xr] we see that the Koszul complex on x1, . . . , xr is a free resolution
of Z = Z[x1, . . . , xr]/(x1, . . . , xr) over Z[x1, . . . , xr] (see More on Algebra, Lemma
15.30.2). Thus the assumption that f1, . . . , fr is Koszul regular exactly means that
B = A ⊗L

Z[x1,...,xr] Z. Hence LB/A = LZ/Z[x1,...,xr] ⊗L
Z B by Lemmas 92.6.2 and

92.14.1. □

Lemma 92.14.3.08SK Let A → B be a surjective ring map whose kernel I is Koszul.
Then LB/A is quasi-isomorphic to I/I2[1].

Proof. Locally on Spec(A) the ideal I is generated by a Koszul regular sequence,
see More on Algebra, Definition 15.32.1. Hence this follows from Lemma 92.6.2. □

https://stacks.math.columbia.edu/tag/08SI
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Proposition 92.14.4.08SL Let A→ B be a local complete intersection map. Then LB/A
is a perfect complex with tor amplitude in [−1, 0].

Proof. Choose a surjection P = A[x1, . . . , xn] → B with kernel J . By Lemma
92.11.3 we see that J/J2 →

⊕
Bdxi is quasi-isomorphic to τ≥−1LB/A. Note that

J/J2 is finite projective (More on Algebra, Lemma 15.32.3), hence τ≥−1LB/A is
a perfect complex with tor amplitude in [−1, 0]. Thus it suffices to show that
Hi(LB/A) = 0 for i ̸∈ [−1, 0]. This follows from (92.7.0.1)

LP/A ⊗L
P B → LB/A → LB/P → LP/A ⊗L

P B[1]

and Lemma 92.14.3 to see that Hi(LB/P ) is zero unless i ∈ {−1, 0}. (We also use
Lemma 92.4.7 for the term on the left.) □

92.15. Tensor products and the cotangent complex

09D8 Let R be a ring and let A, B be R-algebras. In this section we discuss LA⊗RB/R.
Most of the information we want is contained in the following diagram
(92.15.0.1)

09D9

LA/R ⊗L
A (A⊗R B) // LA⊗RB/B

// E

LA/R ⊗L
A (A⊗R B) // LA⊗RB/R

//

OO

LA⊗RB/A

OO

LB/R ⊗L
B (A⊗R B)

OO

LB/R ⊗L
B (A⊗R B)

OO

Explanation: The middle row is the fundamental triangle (92.7.0.1) for the ring
maps R→ A→ A⊗RB. The middle column is the fundamental triangle (92.7.0.1)
for the ring maps R→ B → A⊗RB. Next, E is an object of D(A⊗RB) which “fits”
into the upper right corner, i.e., which turns both the top row and the right column
into distinguished triangles. Such an E exists by Derived Categories, Proposition
13.4.23 applied to the lower left square (with 0 placed in the missing spot). To
be more explicit, we could for example define E as the cone (Derived Categories,
Definition 13.9.1) of the map of complexes

LA/R ⊗L
A (A⊗R B)⊕ LB/R ⊗L

B (A⊗R B) −→ LA⊗RB/R

and get the two maps with target E by an application of TR3. In the Tor indepen-
dent case the object E is zero.

Lemma 92.15.1.09DA If A and B are Tor independent R-algebras, then the object E in
(92.15.0.1) is zero. In this case we have

LA⊗RB/R = LA/R ⊗L
A (A⊗R B)⊕ LB/R ⊗L

B (A⊗R B)
which is represented by the complex LA/R⊗RB⊕LB/R⊗R A of A⊗RB-modules.

Proof. The first two statements are immediate from Lemma 92.6.2. The last state-
ment follows as LA/R is a complex of free A-modules, hence LA/R ⊗L

A (A⊗R B) is
represented by LA/R ⊗A (A⊗R B) = LA/R ⊗R B □

In general we can say this about the object E.

https://stacks.math.columbia.edu/tag/08SL
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Lemma 92.15.2.09DB Let R be a ring and let A, B be R-algebras. The object E in
(92.15.0.1) satisfies

Hi(E) =
{

0 if i ≥ −1
TorR1 (A,B) if i = −2

Proof. We use the description of E as the cone on LB/R⊗L
B (A⊗RB)→ LA⊗RB/A.

By Lemma 92.13.3 the canonical truncations τ≥−2LB/R and τ≥−2LA⊗RB/A are com-
puted by the Lichtenbaum-Schlessinger complex (92.13.0.1). These isomorphisms
are compatible with functoriality (Remark 92.13.4). Thus in this proof we work
with the Lichtenbaum-Schlessinger complexes.

Choose a polynomial algebra P over R and a surjection P → B. Choose generators
ft ∈ P , t ∈ T of the kernel of this surjection. Let Rel ⊂ F =

⊕
t∈T P be the

kernel of the map F → P which maps the basis vector corresponding to t to ft. Set
PA = A ⊗R P and FA = A ⊗R F = PA ⊗P F . Let RelA be the kernel of the map
FA → PA. Using the exact sequence

0→ Rel→ F → P → B → 0

and standard short exact sequences for Tor we obtain an exact sequence

A⊗R Rel→ RelA → TorR1 (A,B)→ 0

Note that PA → A⊗R B is a surjection whose kernel is generated by the elements
1 ⊗ ft in PA. Denote TrivRelA ⊂ RelA the PA-submodule generated by the ele-
ments (. . . , 1⊗ ft′ , 0, . . . , 0,−1⊗ ft⊗ 1, 0, . . .). Since TrivRel⊗R A→ TrivRelA is
surjective, we find a canonical exact sequence

A⊗R (Rel/TrivRel)→ RelA/TrivRelA → TorR1 (A,B)→ 0

The map of Lichtenbaum-Schlessinger complexes is given by the diagram

RelA/TrivRelA // FA ⊗PA (A⊗R B) // ΩPA/A⊗RB ⊗PA (A⊗R B)

Rel/TrivRel //

−2

OO

F ⊗P B //

−1

OO

ΩP/A ⊗P B

0

OO

Note that vertical maps −1 and −0 induce an isomorphism after applying the
functor A ⊗R − = PA ⊗P − to the source and the vertical map −2 gives exactly
the map whose cokernel is the desired Tor module as we saw above. □

92.16. Deformations of ring maps and the cotangent complex

08SM This section is the continuation of Deformation Theory, Section 91.2 which we urge
the reader to read first. We start with a surjective ring map A′ → A whose kernel
is an ideal I of square zero. Moreover we assume given a ring map A → B, a
B-module N , and an A-module map c : I → N . In this section we ask ourselves
whether we can find the question mark fitting into the following diagram

(92.16.0.1)08SN
0 // N // ? // B // 0

0 // I

c

OO

// A′

OO

// A

OO

// 0

https://stacks.math.columbia.edu/tag/09DB
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and moreover how unique the solution is (if it exists). More precisely, we look for
a surjection of A′-algebras B′ → B whose kernel is an ideal of square zero and is
identified with N such that A′ → B′ induces the given map c. We will say B′ is a
solution to (92.16.0.1).

Lemma 92.16.1.08SP In the situation above we have
(1) There is a canonical element ξ ∈ Ext2

B(LB/A, N) whose vanishing is a suffi-
cient and necessary condition for the existence of a solution to (92.16.0.1).

(2) If there exists a solution, then the set of isomorphism classes of solutions
is principal homogeneous under Ext1

B(LB/A, N).
(3) Given a solution B′, the set of automorphisms of B′ fitting into (92.16.0.1)

is canonically isomorphic to Ext0
B(LB/A, N).

Proof. Via the identificationsNLB/A = τ≥−1LB/A (Lemma 92.11.3) andH0(LB/A) =
ΩB/A (Lemma 92.4.5) we have seen parts (2) and (3) in Deformation Theory, Lem-
mas 91.2.1 and 91.2.2.
Proof of (1). Roughly speaking, this follows from the discussion in Deformation
Theory, Remark 91.2.8 by replacing the naive cotangent complex by the full cotan-
gent complex. Here is a more detailed explanation. By Deformation Theory,
Lemma 91.2.7 and Remark 91.2.8 there exists an element

ξ′ ∈ Ext1
A(NLA/A′ , N) = Ext1

B(NLA/A′ ⊗L
AB,N) = Ext1

B(LA/A′ ⊗L
A B,N)

(for the equalities see Deformation Theory, Remark 91.2.8 and use that NLA′/A =
τ≥−1LA′/A) such that a solution exists if and only if this element is in the image of
the map

Ext1
B(NLB/A′ , N) = Ext1

B(LB/A′ , N) −→ Ext1
B(LA/A′ ⊗L

A B,N)
The distinguished triangle (92.7.0.1) for A′ → A → B gives rise to a long exact
sequence

. . .→ Ext1
B(LB/A′ , N)→ Ext1

B(LA/A′ ⊗L
A B,N)→ Ext2

B(LB/A, N)→ . . .

Hence taking ξ the image of ξ′ works. □

92.17. The Atiyah class of a module

09DC Let A → B be a ring map. Let M be a B-module. Let P → B be an object of
CB/A (Section 92.4). Consider the extension of principal parts

0→ ΩP/A ⊗P M → P 1
P/A(M)→M → 0

see Algebra, Lemma 10.133.6. This sequence is functorial in P by Algebra, Remark
10.133.7. Thus we obtain a short exact sequence of sheaves of O-modules

0→ ΩO/A ⊗O M → P 1
O/A(M)→M → 0

on CB/A. We have Lπ!(ΩO/A ⊗O M) = LB/A ⊗B M = LB/A ⊗L
B M by Lemma

92.4.2 and the flatness of the terms of LB/A. We have Lπ!(M) = M by Lemma
92.4.4. Thus a distinguished triangle

(92.17.0.1)09DD LB/A ⊗L
B M → Lπ!

(
P 1

O/A(M)
)
→M → LB/A ⊗L

B M [1]

in D(B). Here we use Cohomology on Sites, Remark 21.39.13 to get a distinguished
triangle in D(B) and not just in D(A).

https://stacks.math.columbia.edu/tag/08SP
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Definition 92.17.1.09DE Let A → B be a ring map. Let M be a B-module. The map
M → LB/A ⊗L

B M [1] in (92.17.0.1) is called the Atiyah class of M .

92.18. The cotangent complex

08UQ In this section we discuss the cotangent complex of a map of sheaves of rings on
a site. In later sections we specialize this to obtain the cotangent complex of a
morphism of ringed topoi, a morphism of ringed spaces, a morphism of schemes, a
morphism of algebraic space, etc.
Let C be a site and let Sh(C) denote the associated topos. Let A denote a sheaf
of rings on C. Let A-Alg be the category of A-algebras. Consider the pair of
adjoint functors (U, V ) where V : A-Alg → Sh(C) is the forgetful functor and
U : Sh(C) → A-Alg assigns to a sheaf of sets E the polynomial algebra A[E ] on
E over A. Let X• be the simplicial object of Fun(A-Alg,A-Alg) constructed in
Simplicial, Section 14.34.
Now assume that A → B is a homomorphism of sheaves of rings. Then B is an
object of the category A-Alg. Denote P• = X•(B) the resulting simplicial A-
algebra. Recall that P0 = A[B], P1 = A[A[B]], and so on. Recall also that there is
an augmentation

ϵ : P• −→ B
where we view B as a constant simplicial A-algebra.
Definition 92.18.1.08SR Let C be a site. Let A → B be a homomorphism of sheaves of
rings on C. The standard resolution of B over A is the augmentation ϵ : P• → B
with terms

P0 = A[B], P1 = A[A[B]], . . .

and maps as constructed above.
With this definition in hand the cotangent complex of a map of sheaves of rings is
defined as follows. We will use the module of differentials as defined in Modules on
Sites, Section 18.33.
Definition 92.18.2.08SS Let C be a site. Let A → B be a homomorphism of sheaves of
rings on C. The cotangent complex LB/A is the complex of B-modules associated
to the simplicial module

ΩP•/A ⊗P•,ϵ B
where ϵ : P• → B is the standard resolution of B over A. We usually think of LB/A
as an object of D(B).
These constructions satisfy a functoriality similar to that discussed in Section 92.6.
Namely, given a commutative diagram

(92.18.2.1)08ST
B // B′

A

OO

// A′

OO

of sheaves of rings on C there is a canonical B-linear map of complexes
LB/A −→ LB′/A′

constructed as follows. If P• → B is the standard resolution of B over A and
P ′

• → B′ is the standard resolution of B′ over A′, then there is a canonical map

https://stacks.math.columbia.edu/tag/09DE
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P• → P ′
• of simplicial A-algebras compatible with the augmentations P• → B and

P ′
• → B′. The maps

P0 = A[B] −→ A′[B′] = P ′
0, P1 = A[A[B]] −→ A′[A′[B′]] = P ′

1

and so on are given by the given maps A → A′ and B → B′. The desired map
LB/A → LB′/A′ then comes from the associated maps on sheaves of differentials.

Lemma 92.18.3.08SV Let f : Sh(D)→ Sh(C) be a morphism of topoi. Let A → B be a
homomorphism of sheaves of rings on C. Then f−1LB/A = Lf−1B/f−1A.

Proof. The diagram
A-Alg

f−1

��

// Sh(C)oo

f−1

��
f−1A-Alg // Sh(D)oo

commutes. □

Lemma 92.18.4.08SW Let C be a site. Let A → B be a homomorphism of sheaves of rings
on C. Then Hi(LB/A) is the sheaf associated to the presheaf U 7→ Hi(LB(U)/A(U)).

Proof. Let C′ be the site we get by endowing C with the chaotic topology (presheaves
are sheaves). There is a morphism of topoi f : Sh(C) → Sh(C′) where f∗ is the
inclusion of sheaves into presheaves and f−1 is sheafification. By Lemma 92.18.3 it
suffices to prove the result for C′, i.e., in case C has the chaotic topology.
If C carries the chaotic topology, then LB/A(U) is equal to LB(U)/A(U) because

A-Alg

sections over U
��

// Sh(C)oo

sections over U
��

A(U)-Alg // Setsoo

commutes. □

Remark 92.18.5.08SX It is clear from the proof of Lemma 92.18.4 that for any U ∈ Ob(C)
there is a canonical map LB(U)/A(U) → LB/A(U) of complexes of B(U)-modules.
Moreover, these maps are compatible with restriction maps and the complex LB/A
is the sheafification of the rule U 7→ LB(U)/A(U).

Lemma 92.18.6.08UR Let C be a site. Let A → B be a homomorphism of sheaves of
rings on C. Then H0(LB/A) = ΩB/A.

Proof. Follows from Lemmas 92.18.4 and 92.4.5 and Modules on Sites, Lemma
18.33.4. □

Lemma 92.18.7.08SY Let C be a site. Let A → B and A → B′ be homomorphisms of
sheaves of rings on C. Then

LB×B′/A −→ LB/A ⊕ LB′/A

is an isomorphism in D(B × B′).

Proof. By Lemma 92.18.4 it suffices to prove this for ring maps. In the case of rings
this is Lemma 92.6.4. □

https://stacks.math.columbia.edu/tag/08SV
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The fundamental triangle for the cotangent complex of sheaves of rings is an easy
consequence of the result for homomorphisms of rings.

Lemma 92.18.8.08SZ Let D be a site. Let A → B → C be homomorphisms of sheaves
of rings on D. There is a canonical distinguished triangle

LB/A ⊗L
B C → LC/A → LC/B → LB/A ⊗L

B C[1]

in D(C).

Proof. We will use the method described in Remarks 92.7.5 and 92.7.6 to construct
the triangle; we will freely use the results mentioned there. As in those remarks we
first construct the triangle in case B → C is an injective map of sheaves of rings. In
this case we set

(1) P• is the standard resolution of B over A,
(2) Q• is the standard resolution of C over A,
(3) R• is the standard resolution of C over B,
(4) S• is the standard resolution of B over B,
(5) Q• = Q• ⊗P• B, and
(6) R• = R• ⊗S• B.

The distinguished triangle is the distinguished triangle associated to the short exact
sequence of simplicial C-modules

0→ ΩP•/A ⊗P• C → ΩQ•/A ⊗Q• C → ΩQ•/B ⊗Q•
C → 0

The first two terms are equal to the first two terms of the triangle of the state-
ment of the lemma. The identification of the last term with LC/B uses the quasi-
isomorphisms of complexes

LC/B = ΩR•/B ⊗R• C −→ ΩR•/B ⊗R•
C ←− ΩQ•/B ⊗Q•

C

All the constructions used above can first be done on the level of presheaves and then
sheafified. Hence to prove sequences are exact, or that map are quasi-isomorphisms
it suffices to prove the corresponding statement for the ring maps A(U)→ B(U)→
C(U) which are known. This finishes the proof in the case that B → C is injective.

In general, we reduce to the case where B → C is injective by replacing C by B × C
if necessary. This is possible by the argument given in Remark 92.7.5 by Lemma
92.18.7. □

Lemma 92.18.9.08T0 Let C be a site. Let A → B be a homomorphism of sheaves of
rings on C. If p is a point of C, then (LB/A)p = LBp/Ap

.

Proof. This is a special case of Lemma 92.18.3. □

For the construction of the naive cotangent complex and its properties we refer to
Modules on Sites, Section 18.35.

Lemma 92.18.10.08US Let C be a site. Let A → B be a homomorphism of sheaves of
rings on C. There is a canonical map LB/A → NLB/A which identifies the naive
cotangent complex with the truncation τ≥−1LB/A.

https://stacks.math.columbia.edu/tag/08SZ
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Proof. Let P• be the standard resolution of B over A. Let I = Ker(A[B] → B).
Recall that P0 = A[B]. The map of the lemma is given by the commutative diagram

LB/A

��

. . . // ΩP2/A ⊗P2 B //

��

ΩP1/A ⊗P1 B //

��

ΩP0/A ⊗P0 B

��
NLB/A . . . // 0 // I/I2 // ΩP0/A ⊗P0 B

We construct the downward arrow with target I/I2 by sending a local section df⊗b
to the class of (d0(f) − d1(f))b in I/I2. Here di : P1 → P0, i = 0, 1 are the two
face maps of the simplicial structure. This makes sense as d0 − d1 maps P1 into
I = Ker(P0 → B). We omit the verification that this rule is well defined. Our map
is compatible with the differential ΩP1/A ⊗P1 B → ΩP0/A ⊗P0 B as this differential
maps a local section df ⊗ b to d(d0(f) − d1(f)) ⊗ b. Moreover, the differential
ΩP2/A⊗P2B → ΩP1/A⊗P1B maps a local section df⊗b to d(d0(f)−d1(f)+d2(f))⊗b
which are annihilated by our downward arrow. Hence a map of complexes.

To see that our map induces an isomorphism on the cohomology sheaves H0 and
H−1 we argue as follows. Let C′ be the site with the same underlying category as
C but endowed with the chaotic topology. Let f : Sh(C)→ Sh(C′) be the morphism
of topoi whose pullback functor is sheafification. Let A′ → B′ be the given map,
but thought of as a map of sheaves of rings on C′. The construction above gives a
map LB′/A′ → NLB′/A′ on C′ whose value over any object U of C′ is just the map

LB(U)/A(U) → NLB(U)/A(U)

of Remark 92.11.4 which induces an isomorphism onH0 andH−1. Since f−1LB′/A′ =
LB/A (Lemma 92.18.3) and f−1 NLB′/A′ = NLB/A (Modules on Sites, Lemma
18.35.3) the lemma is proved. □

92.19. The Atiyah class of a sheaf of modules

09DF Let C be a site. Let A → B be a homomorphism of sheaves of rings. Let F be a
sheaf of B-modules. Let P• → B be the standard resolution of B over A (Section
92.18). For every n ≥ 0 consider the extension of principal parts

(92.19.0.1)09DG 0→ ΩPn/A ⊗Pn F → P1
Pn/A(F)→ F → 0

see Modules on Sites, Lemma 18.34.6. The functoriality of this construction (Mod-
ules on Sites, Remark 18.34.7) tells us (92.19.0.1) is the degree n part of a short
exact sequence of simplicial P•-modules (Cohomology on Sites, Section 21.41). Us-
ing the functor Lπ! : D(P•)→ D(B) of Cohomology on Sites, Remark 21.41.3 (here
we use that P• → A is a resolution) we obtain a distinguished triangle

(92.19.0.2)09DH LB/A ⊗L
B F → Lπ!

(
P1

P•/A(F)
)
→ F → LB/A ⊗L

B F [1]

in D(B).

Definition 92.19.1.09DI Let C be a site. Let A → B be a homomorphism of sheaves of
rings. Let F be a sheaf of B-modules. The map F → LB/A ⊗L

B F [1] in (92.19.0.2)
is called the Atiyah class of F .

https://stacks.math.columbia.edu/tag/09DI
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92.20. The cotangent complex of a morphism of ringed spaces

08UT The cotangent complex of a morphism of ringed spaces is defined in terms of the
cotangent complex we defined above.
Definition 92.20.1.08UU Let f : (X,OX) → (S,OS) be a morphism of ringed spaces.
The cotangent complex Lf of f is Lf = LOX/f−1OS

. We will also use the notation
Lf = LX/S = LOX/OS

.

More precisely, this means that we consider the cotangent complex (Definition
92.18.2) of the homomorphism f ♯ : f−1OS → OX of sheaves of rings on the site
associated to the topological space X (Sites, Example 7.6.4).
Lemma 92.20.2.08UV Let f : (X,OX)→ (S,OS) be a morphism of ringed spaces. Then
H0(LX/S) = ΩX/S .
Proof. Special case of Lemma 92.18.6. □

Lemma 92.20.3.08T4 Let f : X → Y and g : Y → Z be morphisms of ringed spaces.
Then there is a canonical distinguished triangle

Lf∗LY/Z → LX/Z → LX/Y → Lf∗LY/Z [1]
in D(OX).
Proof. Set h = g ◦ f so that h−1OZ = f−1g−1OZ . By Lemma 92.18.3 we have
f−1LY/Z = Lf−1OY /h−1OZ

and this is a complex of flat f−1OY -modules. Hence the
distinguished triangle above is an example of the distinguished triangle of Lemma
92.18.8 with A = h−1OZ , B = f−1OY , and C = OX . □

Lemma 92.20.4.08UW Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. There
is a canonical map LX/Y → NLX/Y which identifies the naive cotangent complex
with the truncation τ≥−1LX/Y .
Proof. Special case of Lemma 92.18.10. □

92.21. Deformations of ringed spaces and the cotangent complex

08UX This section is the continuation of Deformation Theory, Section 91.7 which we urge
the reader to read first. We briefly recall the setup. We have a first order thickening
t : (S,OS) → (S′,OS′) of ringed spaces with J = Ker(t♯), a morphism of ringed
spaces f : (X,OX) → (S,OS), an OX -module G, and an f -map c : J → G of
sheaves of modules. We ask whether we can find the question mark fitting into the
following diagram

(92.21.0.1)08UY

0 // G // ? // OX // 0

0 // J

c

OO

// OS′

OO

// OS

OO

// 0
and moreover how unique the solution is (if it exists). More precisely, we look for
a first order thickening i : (X,OX) → (X ′,OX′) and a morphism of thickenings
(f, f ′) as in Deformation Theory, Equation (91.3.1.1) where Ker(i♯) is identified
with G such that (f ′)♯ induces the given map c. We will say X ′ is a solution to
(92.21.0.1).
Lemma 92.21.1.08UZ In the situation above we have

https://stacks.math.columbia.edu/tag/08UU
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(1) There is a canonical element ξ ∈ Ext2
OX

(LX/S ,G) whose vanishing is a suf-
ficient and necessary condition for the existence of a solution to (92.21.0.1).

(2) If there exists a solution, then the set of isomorphism classes of solutions
is principal homogeneous under Ext1

OX
(LX/S ,G).

(3) Given a solution X ′, the set of automorphisms of X ′ fitting into (92.21.0.1)
is canonically isomorphic to Ext0

OX
(LX/S ,G).

Proof. Via the identificationsNLX/S = τ≥−1LX/S (Lemma 92.20.4) andH0(LX/S) =
ΩX/S (Lemma 92.20.2) we have seen parts (2) and (3) in Deformation Theory, Lem-
mas 91.7.1 and 91.7.3.
Proof of (1). Roughly speaking, this follows from the discussion in Deformation
Theory, Remark 91.7.9 by replacing the naive cotangent complex by the full cotan-
gent complex. Here is a more detailed explanation. By Deformation Theory,
Lemma 91.7.8 there exists an element

ξ′ ∈ Ext1
OX

(Lf∗ NLS/S′ ,G) = Ext1
OX

(Lf∗LS/S′ ,G)
such that a solution exists if and only if this element is in the image of the map

Ext1
OX

(NLX/S′ ,G) = Ext1
OX

(LX/S′ ,G) −→ Ext1
OX

(Lf∗LS/S′ ,G)
The distinguished triangle of Lemma 92.20.3 for X → S → S′ gives rise to a long
exact sequence

. . .→ Ext1
OX

(LX/S′ ,G)→ Ext1
OX

(Lf∗LS/S′ ,G)→ Ext2
OX

(LX/S ,G)→ . . .

Hence taking ξ the image of ξ′ works. □

92.22. The cotangent complex of a morphism of ringed topoi

08SQ The cotangent complex of a morphism of ringed topoi is defined in terms of the
cotangent complex we defined above.

Definition 92.22.1.08SU Let (f, f ♯) : (Sh(C),OC) → (Sh(D),OD) be a morphism of
ringed topoi. The cotangent complex Lf of f is Lf = LOC/f−1OD . We sometimes
write Lf = LOC/OD .

This definition applies to many situations, but it doesn’t always produce the thing
one expects. For example, if f : X → Y is a morphism of schemes, then f induces a
morphism of big étale sites fbig : (Sch/X)étale → (Sch/Y )étale which is a morphism
of ringed topoi (Descent, Remark 35.8.4). However, Lfbig = 0 since (fbig)♯ is an
isomorphism. On the other hand, if we take Lf where we think of f as a morphism
between the underlying Zariski ringed topoi, then Lf does agree with the cotangent
complex LX/Y (as defined below) whose zeroth cohomology sheaf is ΩX/Y .

Lemma 92.22.2.08V0 Let f : (Sh(C),O)→ (Sh(B),OB) be a morphism of ringed topoi.
Then H0(Lf ) = Ωf .

Proof. Special case of Lemma 92.18.6. □

Lemma 92.22.3.08V1 Let f : (Sh(C1),O1) → (Sh(C2),O2) and g : (Sh(C2),O2) →
(Sh(C3),O3) be morphisms of ringed topoi. Then there is a canonical distinguished
triangle

Lf∗Lg → Lg◦f → Lf → Lf∗Lg[1]
in D(O1).

https://stacks.math.columbia.edu/tag/08SU
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Proof. Set h = g ◦ f so that h−1O3 = f−1g−1O3. By Lemma 92.18.3 we have
f−1Lg = Lf−1O2/h−1O3 and this is a complex of flat f−1O2-modules. Hence the
distinguished triangle above is an example of the distinguished triangle of Lemma
92.18.8 with A = h−1O3, B = f−1O2, and C = O1. □

Lemma 92.22.4.08V2 Let f : (Sh(C),O)→ (Sh(B),OB) be a morphism of ringed topoi.
There is a canonical map Lf → NLf which identifies the naive cotangent complex
with the truncation τ≥−1Lf .

Proof. Special case of Lemma 92.18.10. □

92.23. Deformations of ringed topoi and the cotangent complex

08V3 This section is the continuation of Deformation Theory, Section 91.13 which we
urge the reader to read first. We briefly recall the setup. We have a first order
thickening t : (Sh(B),OB) → (Sh(B′),OB′) of ringed topoi with J = Ker(t♯), a
morphism of ringed topoi f : (Sh(C),O) → (Sh(B),OB), an O-module G, and a
map f−1J → G of sheaves of f−1OB-modules. We ask whether we can find the
question mark fitting into the following diagram

(92.23.0.1)08V4

0 // G // ? // O // 0

0 // f−1J

c

OO

// f−1OB′

OO

// f−1OB

OO

// 0

and moreover how unique the solution is (if it exists). More precisely, we look for a
first order thickening i : (Sh(C),O) → (Sh(C′),O′) and a morphism of thickenings
(f, f ′) as in Deformation Theory, Equation (91.9.1.1) where Ker(i♯) is identified
with G such that (f ′)♯ induces the given map c. We will say (Sh(C′),O′) is a
solution to (92.23.0.1).

Lemma 92.23.1.08V5 In the situation above we have
(1) There is a canonical element ξ ∈ Ext2

O(Lf ,G) whose vanishing is a suffi-
cient and necessary condition for the existence of a solution to (92.23.0.1).

(2) If there exists a solution, then the set of isomorphism classes of solutions
is principal homogeneous under Ext1

O(Lf ,G).
(3) Given a solution X ′, the set of automorphisms of X ′ fitting into (92.23.0.1)

is canonically isomorphic to Ext0
O(Lf ,G).

Proof. Via the identifications NLf = τ≥−1Lf (Lemma 92.22.4) and H0(Lf ) = Ωf
(Lemma 92.22.2) we have seen parts (2) and (3) in Deformation Theory, Lemmas
91.13.1 and 91.13.3.

Proof of (1). To match notation with Deformation Theory, Section 91.13 we will
write NLf = NLO/OB and Lf = LO/OB and similarly for the morphisms t and t◦f .
By Deformation Theory, Lemma 91.13.8 there exists an element

ξ′ ∈ Ext1
O(Lf∗ NLOB/OB′ ,G) = Ext1

O(Lf∗LOB/OB′ ,G)

such that a solution exists if and only if this element is in the image of the map

Ext1
O(NLO/OB′ ,G) = Ext1

O(LO/OB′ ,G) −→ Ext1
O(Lf∗LOB/OB′ ,G)

https://stacks.math.columbia.edu/tag/08V2
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The distinguished triangle of Lemma 92.22.3 for f and t gives rise to a long exact
sequence

. . .→ Ext1
O(LO/OB′ ,G)→ Ext1

O(Lf∗LOB/OB′ ,G)→ Ext1
O(LO/OB ,G)

Hence taking ξ the image of ξ′ works. □

92.24. The cotangent complex of a morphism of schemes

08T1 As promised above we define the cotangent complex of a morphism of schemes as
follows.

Definition 92.24.1.08T2 Let f : X → Y be a morphism of schemes. The cotangent
complex LX/Y of X over Y is the cotangent complex of f as a morphism of ringed
spaces (Definition 92.20.1).

In particular, the results of Section 92.20 apply to cotangent complexes of mor-
phisms of schemes. The next lemma shows this definition is compatible with the
definition for ring maps and it also implies that LX/Y is an object of DQCoh(OX).

Lemma 92.24.2.08T3 Let f : X → Y be a morphism of schemes. Let U = Spec(A) ⊂ X
and V = Spec(B) ⊂ Y be affine opens such that f(U) ⊂ V . There is a canonical
map

L̃B/A −→ LX/Y |U
of complexes which is an isomorphism in D(OU ). This map is compatible with
restricting to smaller affine opens of X and Y .

Proof. By Remark 92.18.5 there is a canonical map of complexes LOX(U)/f−1OY (U) →
LX/Y (U) of B = OX(U)-modules, which is compatible with further restrictions.
Using the canonical map A → f−1OY (U) we obtain a canonical map LB/A →
LOX(U)/f−1OY (U) of complexes of B-modules. Using the universal property of the˜ functor (see Schemes, Lemma 26.7.1) we obtain a map as in the statement of
the lemma. We may check this map is an isomorphism on cohomology sheaves by
checking it induces isomorphisms on stalks. This follows immediately from Lemmas
92.18.9 and 92.8.6 (and the description of the stalks of OX and f−1OY at a point
p ∈ Spec(B) as Bp and Aq where q = A ∩ p; references used are Schemes, Lemma
26.5.4 and Sheaves, Lemma 6.21.5). □

Lemma 92.24.3.08V6 Let Λ be a ring. Let X be a scheme over Λ. Then

LX/ Spec(Λ) = LOX/Λ

where Λ is the constant sheaf with value Λ on X.

Proof. Let p : X → Spec(Λ) be the structure morphism. Let q : Spec(Λ) → (∗,Λ)
be the obvious morphism. By the distinguished triangle of Lemma 92.20.3 it suffices
to show that Lq = 0. To see this it suffices to show for p ∈ Spec(Λ) that

(Lq)p = LOSpec(Λ),p/Λ = LΛp/Λ

(Lemma 92.18.9) is zero which follows from Lemma 92.8.4. □
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92.25. The cotangent complex of a scheme over a ring

08V7 Let Λ be a ring and let X be a scheme over Λ. Write LX/ Spec(Λ) = LX/Λ which is
justified by Lemma 92.24.3. In this section we give a description of LX/Λ similar to
Lemma 92.4.3. Namely, we construct a category CX/Λ fibred over XZar and endow
it with a sheaf of (polynomial) Λ-algebras O such that

LX/Λ = Lπ!(ΩO/Λ ⊗O OX).

We will later use the category CX/Λ to construct a naive obstruction theory for the
stack of coherent sheaves.

Let Λ be a ring. Let X be a scheme over Λ. Let CX/Λ be the category whose objects
are commutative diagrams

(92.25.0.1)08V8

X

��

Uoo

��
Spec(Λ) Aoo

of schemes where
(1) U is an open subscheme of X,
(2) there exists an isomorphism A = Spec(P ) where P is a polynomial algebra

over Λ (on some set of variables).
In other words, A is an (infinite dimensional) affine space over Spec(Λ). Morphisms
are given by commutative diagrams. Recall that XZar denotes the small Zariski
site X. There is a forgetful functor

u : CX/Λ → XZar, (U → A) 7→ U

Observe that the fibre category over U is canonically equivalent to the category
COX(U)/Λ introduced in Section 92.4.

Lemma 92.25.1.08V9 In the situation above the category CX/Λ is fibred over XZar.

Proof. Given an object U → A of CX/Λ and a morphism U ′ → U of XZar consider
the object U ′ → A of CX/Λ where U ′ → A is the composition of U → A and
U ′ → U . The morphism (U ′ → A) → (U → A) of CX/Λ is strongly cartesian over
XZar. □

We endow CX/Λ with the topology inherited from XZar (see Stacks, Section 8.10).
The functor u defines a morphism of topoi π : Sh(CX/Λ) → Sh(XZar). The site
CX/Λ comes with several sheaves of rings.

(1) The sheaf O given by the rule (U → A) 7→ Γ(A,OA).
(2) The sheaf OX = π−1OX given by the rule (U → A) 7→ OX(U).
(3) The constant sheaf Λ.

We obtain morphisms of ringed topoi

(92.25.1.1)08VA

(Sh(CX/Λ),OX)
i
//

π

��

(Sh(CX/Λ),O)

(Sh(XZar),OX)

https://stacks.math.columbia.edu/tag/08V9
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The morphism i is the identity on underlying topoi and i♯ : O → OX is the obvious
map. The map π is a special case of Cohomology on Sites, Situation 21.38.1. An
important role will be played in the following by the derived functors Li∗ : D(O) −→
D(OX) left adjoint to Ri∗ = i∗ : D(OX) → D(O) and Lπ! : D(OX) −→ D(OX)
left adjoint to π∗ = π−1 : D(OX) → D(OX). We can compute Lπ! thanks to our
earlier work.

Remark 92.25.2.08VB In the situation above, for every U ⊂ X open let P•,U be the
standard resolution of OX(U) over Λ. Set An,U = Spec(Pn,U ). Then A•,U is a
cosimplicial object of the fibre category COX(U)/Λ of CX/Λ over U . Moreover, as
discussed in Remark 92.5.5 we have that A•,U is a cosimplicial object of COX(U)/Λ
as in Cohomology on Sites, Lemma 21.39.7. Since the construction U 7→ A•,U
is functorial in U , given any (abelian) sheaf F on CX/Λ we obtain a complex of
presheaves

U 7−→ F(A•,U )
whose cohomology groups compute the homology of F on the fibre category. We
conclude by Cohomology on Sites, Lemma 21.40.2 that the sheafification computes
Lnπ!(F). In other words, the complex of sheaves whose term in degree −n is the
sheafification of U 7→ F(An,U ) computes Lπ!(F).

With this remark out of the way we can state the main result of this section.

Lemma 92.25.3.08T9 In the situation above there is a canonical isomorphism
LX/Λ = Lπ!(Li∗ΩO/Λ) = Lπ!(i∗ΩO/Λ) = Lπ!(ΩO/Λ ⊗O OX)

in D(OX).

Proof. We first observe that for any object (U → A) of CX/Λ the value of the sheaf
O is a polynomial algebra over Λ. Hence ΩO/Λ is a flat O-module and we conclude
the second and third equalities of the statement of the lemma hold.
By Remark 92.25.2 the object Lπ!(ΩO/Λ ⊗O OX) is computed as the sheafification
of the complex of presheaves

U 7→
(
ΩO/Λ ⊗O OX

)
(A•,U ) = ΩP•,U/Λ ⊗P•,U OX(U) = LOX(U)/Λ

using notation as in Remark 92.25.2. Now Remark 92.18.5 shows that Lπ!(ΩO/Λ⊗O
OX) computes the cotangent complex of the map of rings Λ→ OX on X. This is
what we want by Lemma 92.24.3. □

92.26. The cotangent complex of a morphism of algebraic spaces

08VC We define the cotangent complex of a morphism of algebraic spaces using the as-
sociated morphism between the small étale sites.

Definition 92.26.1.08VD Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The cotangent complex LX/Y of X over Y is the cotangent complex
of the morphism of ringed topoi fsmall between the small étale sites of X and Y
(see Properties of Spaces, Lemma 66.21.3 and Definition 92.22.1).

In particular, the results of Section 92.22 apply to cotangent complexes of mor-
phisms of algebraic spaces. The next lemmas show this definition is compatible
with the definition for ring maps and for schemes and that LX/Y is an object of
DQCoh(OX).
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Lemma 92.26.2.08VE Let S be a scheme. Consider a commutative diagram

U

p

��

g
// V

q

��
X

f // Y

of algebraic spaces over S with p and q étale. Then there is a canonical identification
LX/Y |Uétale = LU/V in D(OU ).

Proof. Formation of the cotangent complex commutes with pullback (Lemma 92.18.3)
and we have p−1

smallOX = OU and g−1
smallOVétale = p−1

smallf
−1
smallOYétale because

q−1
smallOYétale = OVétale (Properties of Spaces, Lemma 66.26.1). Tracing through

the definitions we conclude that LX/Y |Uétale = LU/V . □

Lemma 92.26.3.08VF Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume X and Y representable by schemes X0 and Y0. Then there
is a canonical identification LX/Y = ϵ∗LX0/Y0 in D(OX) where ϵ is as in Derived
Categories of Spaces, Section 75.4 and LX0/Y0 is as in Definition 92.24.1.

Proof. Let f0 : X0 → Y0 be the morphism of schemes corresponding to f . There
is a canonical map ϵ−1f−1

0 OY0 → f−1
smallOY compatible with ϵ♯ : ϵ−1OX0 → OX

because there is a commutative diagram

X0,Zar

f0

��

Xétaleϵ
oo

f

��
Y0,Zar Yétale

ϵoo

see Derived Categories of Spaces, Remark 75.6.3. Thus we obtain a canonical map

ϵ−1LX0/Y0 = ϵ−1LOX0/f
−1
0 OY0

= Lϵ−1OX0/ϵ
−1f−1

0 OY0
−→ LOX/f

−1
small

OY
= LX/Y

by the functoriality discussed in Section 92.18 and Lemma 92.18.3. To see that
the induced map ϵ∗LX0/Y0 → LX/Y is an isomorphism we may check on stalks at
geometric points (Properties of Spaces, Theorem 66.19.12). We will use Lemma
92.18.9 to compute the stalks. Let x : Spec(k) → X0 be a geometric point lying
over x ∈ X0, with y = f ◦ x lying over y ∈ Y0. Then

LX/Y,x = LOX,x/OY,y

and
(ϵ∗LX0/Y0)x = LX0/Y0,x ⊗OX0,x

OX,x = LOX0,x/OY0,y
⊗OX0,x

OX,x
Some details omitted (hint: use that the stalk of a pullback is the stalk at the image
point, see Sites, Lemma 7.34.2, as well as the corresponding result for modules, see
Modules on Sites, Lemma 18.36.4). Observe that OX,x is the strict henselization
of OX0,x and similarly for OY,y (Properties of Spaces, Lemma 66.22.1). Thus the
result follows from Lemma 92.8.7. □

Lemma 92.26.4.08VG Let Λ be a ring. Let X be an algebraic space over Λ. Then

LX/ Spec(Λ) = LOX/Λ

where Λ is the constant sheaf with value Λ on Xétale.
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Proof. Let p : X → Spec(Λ) be the structure morphism. Let q : Spec(Λ)étale →
(∗,Λ) be the obvious morphism. By the distinguished triangle of Lemma 92.22.3 it
suffices to show that Lq = 0. To see this it suffices to show (Properties of Spaces,
Theorem 66.19.12) for a geometric point t : Spec(k)→ Spec(Λ) that

(Lq)t = LOSpec(Λ)étale,t
/Λ

(Lemma 92.18.9) is zero. Since OSpec(Λ)étale,t is a strict henselization of a local ring
of Λ (Properties of Spaces, Lemma 66.22.1) this follows from Lemma 92.8.4. □

92.27. The cotangent complex of an algebraic space over a ring

08VH Let Λ be a ring and let X be an algebraic space over Λ. Write LX/ Spec(Λ) = LX/Λ
which is justified by Lemma 92.26.4. In this section we give a description of LX/Λ
similar to Lemma 92.4.3. Namely, we construct a category CX/Λ fibred over Xétale

and endow it with a sheaf of (polynomial) Λ-algebras O such that
LX/Λ = Lπ!(ΩO/Λ ⊗O OX).

We will later use the category CX/Λ to construct a naive obstruction theory for the
stack of coherent sheaves.
Let Λ be a ring. Let X be an algebraic space over Λ. Let CX/Λ be the category
whose objects are commutative diagrams

(92.27.0.1)08VI

X

��

Uoo

��
Spec(Λ) Aoo

of schemes where
(1) U is a scheme,
(2) U → X is étale,
(3) there exists an isomorphism A = Spec(P ) where P is a polynomial algebra

over Λ (on some set of variables).
In other words, A is an (infinite dimensional) affine space over Spec(Λ). Morphisms
are given by commutative diagrams. Recall that Xétale denotes the small étale site
of X whose objects are schemes étale over X. There is a forgetful functor

u : CX/Λ → Xétale, (U → A) 7→ U

Observe that the fibre category over U is canonically equivalent to the category
COX(U)/Λ introduced in Section 92.4.

Lemma 92.27.1.08VJ In the situation above the category CX/Λ is fibred over Xétale.

Proof. Given an object U → A of CX/Λ and a morphism U ′ → U of Xétale consider
the object U ′ → A of CX/Λ where U ′ → A is the composition of U → A and
U ′ → U . The morphism (U ′ → A) → (U → A) of CX/Λ is strongly cartesian over
Xétale. □

We endow CX/Λ with the topology inherited from Xétale (see Stacks, Section 8.10).
The functor u defines a morphism of topoi π : Sh(CX/Λ) → Sh(Xétale). The site
CX/Λ comes with several sheaves of rings.

(1) The sheaf O given by the rule (U → A) 7→ Γ(A,OA).

https://stacks.math.columbia.edu/tag/08VJ
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(2) The sheaf OX = π−1OX given by the rule (U → A) 7→ OX(U).
(3) The constant sheaf Λ.

We obtain morphisms of ringed topoi

(92.27.1.1)08VK

(Sh(CX/Λ),OX)
i
//

π

��

(Sh(CX/Λ),O)

(Sh(Xétale),OX)

The morphism i is the identity on underlying topoi and i♯ : O → OX is the obvious
map. The map π is a special case of Cohomology on Sites, Situation 21.38.1. An
important role will be played in the following by the derived functors Li∗ : D(O) −→
D(OX) left adjoint to Ri∗ = i∗ : D(OX) → D(O) and Lπ! : D(OX) −→ D(OX)
left adjoint to π∗ = π−1 : D(OX) → D(OX). We can compute Lπ! thanks to our
earlier work.

Remark 92.27.2.08VL In the situation above, for every object U → X of Xétale let P•,U
be the standard resolution of OX(U) over Λ. Set An,U = Spec(Pn,U ). Then A•,U
is a cosimplicial object of the fibre category COX(U)/Λ of CX/Λ over U . Moreover, as
discussed in Remark 92.5.5 we have that A•,U is a cosimplicial object of COX(U)/Λ
as in Cohomology on Sites, Lemma 21.39.7. Since the construction U 7→ A•,U
is functorial in U , given any (abelian) sheaf F on CX/Λ we obtain a complex of
presheaves

U 7−→ F(A•,U )

whose cohomology groups compute the homology of F on the fibre category. We
conclude by Cohomology on Sites, Lemma 21.40.2 that the sheafification computes
Lnπ!(F). In other words, the complex of sheaves whose term in degree −n is the
sheafification of U 7→ F(An,U ) computes Lπ!(F).

With this remark out of the way we can state the main result of this section.

Lemma 92.27.3.08VM In the situation above there is a canonical isomorphism

LX/Λ = Lπ!(Li∗ΩO/Λ) = Lπ!(i∗ΩO/Λ) = Lπ!(ΩO/Λ ⊗O OX)

in D(OX).

Proof. We first observe that for any object (U → A) of CX/Λ the value of the sheaf
O is a polynomial algebra over Λ. Hence ΩO/Λ is a flat O-module and we conclude
the second and third equalities of the statement of the lemma hold.

By Remark 92.27.2 the object Lπ!(ΩO/Λ ⊗O OX) is computed as the sheafification
of the complex of presheaves

U 7→
(
ΩO/Λ ⊗O OX

)
(A•,U ) = ΩP•,U/Λ ⊗P•,U OX(U) = LOX(U)/Λ

using notation as in Remark 92.27.2. Now Remark 92.18.5 shows that Lπ!(ΩO/Λ⊗O
OX) computes the cotangent complex of the map of rings Λ→ OX on Xétale. This
is what we want by Lemma 92.26.4. □

https://stacks.math.columbia.edu/tag/08VL
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92.28. Fibre products of algebraic spaces and the cotangent complex

09DJ Let S be a scheme. Let X → B and Y → B be morphisms of algebraic spaces over
S. Consider the fibre product X×B Y with projection morphisms p : X×B Y → X
and q : X×B Y → Y . In this section we discuss LX×BY/B . Most of the information
we want is contained in the following diagram

(92.28.0.1)09DK

Lp∗LX/B // LX×BY/Y
// E

Lp∗LX/B // LX×BY/B
//

OO

LX×BY/X

OO

Lq∗LY/B

OO

Lq∗LY/B

OO

Explanation: The middle row is the fundamental triangle of Lemma 92.22.3 for the
morphisms X×B Y → X → B. The middle column is the fundamental triangle for
the morphisms X×B Y → Y → B. Next, E is an object of D(OX×BY ) which “fits”
into the upper right corner, i.e., which turns both the top row and the right column
into distinguished triangles. Such an E exists by Derived Categories, Proposition
13.4.23 applied to the lower left square (with 0 placed in the missing spot). To
be more explicit, we could for example define E as the cone (Derived Categories,
Definition 13.9.1) of the map of complexes

Lp∗LX/B ⊕ Lq∗LY/B −→ LX×BY/B

and get the two maps with target E by an application of TR3. In the Tor indepen-
dent case the object E is zero.

Lemma 92.28.1.09DL In the situation above, if X and Y are Tor independent over B,
then the object E in (92.28.0.1) is zero. In this case we have

LX×BY/B = Lp∗LX/B ⊕ Lq∗LY/B

Proof. Choose a scheme W and a surjective étale morphism W → B. Choose a
scheme U and a surjective étale morphism U → X ×BW . Choose a scheme V and
a surjective étale morphism V → Y ×BW . Then U ×W V → X ×B Y is surjective
étale too. Hence it suffices to prove that the restriction of E to U ×W V is zero. By
Lemma 92.26.3 and Derived Categories of Spaces, Lemma 75.20.3 this reduces us
to the case of schemes. Taking suitable affine opens we reduce to the case of affine
schemes. Using Lemma 92.24.2 we reduce to the case of a tensor product of rings,
i.e., to Lemma 92.15.1. □

In general we can say the following about the object E.

Lemma 92.28.2.09DM Let S be a scheme. Let X → B and Y → B be morphisms
of algebraic spaces over S. The object E in (92.28.0.1) satisfies Hi(E) = 0 for
i = 0,−1 and for a geometric point (x, y) : Spec(k)→ X ×B Y we have

H−2(E)(x,y) = TorR1 (A,B)⊗A⊗RB C

where R = OB,b, A = OX,x, B = OY,y, and C = OX×BY,(x,y).

https://stacks.math.columbia.edu/tag/09DL
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Proof. The formation of the cotangent complex commutes with taking stalks and
pullbacks, see Lemmas 92.18.9 and 92.18.3. Note that C is a henselization of A⊗RB.
LC/R = LA⊗RB/R ⊗A⊗RB C by the results of Section 92.8. Thus the stalk of E at
our geometric point is the cone of the map LA/R ⊗ C → LA⊗RB/R ⊗ C. Therefore
the results of the lemma follow from the case of rings, i.e., Lemma 92.15.2. □
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CHAPTER 93

Deformation Problems

0DVK 93.1. Introduction

0DVL The goal of this chapter is to work out examples of the general theory developed
in the chapters Formal Deformation Theory, Deformation Theory, The Cotangent
Complex.
Section 3 of the paper [Sch68] by Schlessinger discusses some examples as well.

93.2. Examples of deformation problems

06LA List of things that should go here:
(1) Deformations of schemes:

(a) The Rim-Schlessinger condition.
(b) Computing the tangent space.
(c) Computing the infinitesimal deformations.
(d) The deformation category of an affine hypersurface.

(2) Deformations of sheaves (for example fix X/S, a finite type point s of S,
and a quasi-coherent sheaf Fs over Xs).

(3) Deformations of algebraic spaces (very similar to deformations of schemes;
maybe even easier?).

(4) Deformations of maps (eg morphisms between schemes; you can fix both
or one of the target and/or source).

(5) Add more here.

93.3. General outline

0DVM This section lays out the procedure for discussing the next few examples.
Step I. For each section we fix a Noetherian ring Λ and we fix a finite ring map
Λ → k where k is a field. As usual we let CΛ = CΛ,k be our base category, see
Formal Deformation Theory, Definition 90.3.1.
Step II. In each section we define a category F cofibred in groupoids over CΛ.
Occassionally we will consider instead a functor F : CΛ → Sets.
Step III. We explain to what extent F satisfies the Rim-Schlesssinger condition
(RS) discussed in Formal Deformation Theory, Section 90.16. Similarly, we may
discuss to what extent our F satisfies (S1) and (S2) or to what extent F satisfies
the corresponding Schlessinger’s conditions (H1) and (H2). See Formal Deformation
Theory, Section 90.10.
Step IV. Let x0 be an object of F(k), in other words an object of F over k. In this
chapter we will use the notation

Def x0 = Fx0

6637



93.4. FINITE PROJECTIVE MODULES 6638

to denote the predeformation category constructed in Formal Deformation Theory,
Remark 90.6.4. If F satisfies (RS), then Def x0 is a deformation category (Formal
Deformation Theory, Lemma 90.16.11) and satisfies (S1) and (S2) (Formal Defor-
mation Theory, Lemma 90.16.6). If (S1) and (S2) are satisfied, then an important
question is whether the tangent space

TDef x0 = Tx0F = TFx0

(see Formal Deformation Theory, Remark 90.12.5 and Definition 90.12.1) is finite
dimensional. Namely, this insures that Def x0 has a versal formal object (Formal
Deformation Theory, Lemma 90.13.4).
Step V. If F passes Step IV, then the next question is whether the k-vector space

Inf(Def x0) = Infx0(F)
of infinitesimal automorphisms of x0 is finite dimensional. Namely, if true, this
implies that Def x0 admits a presentation by a smooth prorepresentable groupoid
in functors on CΛ, see Formal Deformation Theory, Theorem 90.26.4.

93.4. Finite projective modules

0DVN This section is just a warmup. Of course finite projective modules should not have
any “moduli”.

Example 93.4.1 (Finite projective modules).0D3I Let F be the category defined as
follows

(1) an object is a pair (A,M) consisting of an object A of CΛ and a finite
projective A-module M , and

(2) a morphism (f, g) : (B,N) → (A,M) consists of a morphism f : B → A
in CΛ together with a map g : N → M which is f -linear and induces an
isomorpism N ⊗B,f A ∼= M .

The functor p : F → CΛ sends (A,M) to A and (f, g) to f . It is clear that p is
cofibred in groupoids. Given a finite dimensional k-vector space V , let x0 = (k, V )
be the corresponding object of F(k). We set

Def V = Fx0

Since every finite projective module over a local ring is finite free (Algebra, Lemma
10.78.2) we see that

isomorphism classes
of objects of F(A) =

∐
n≥0
{∗}

Although this means that the deformation theory of F is essentially trivial, we still
work through the steps outlined in Section 93.3 to provide an easy example.

Lemma 93.4.2.0DVP Example 93.4.1 satisfies the Rim-Schlessinger condition (RS). In
particular, Def V is a deformation category for any finite dimensional vector space
V over k.

Proof. Let A1 → A and A2 → A be morphisms of CΛ. Assume A2 → A is surjective.
According to Formal Deformation Theory, Lemma 90.16.4 it suffices to show that
the functor F(A1 ×A A2)→ F(A1)×F(A) F(A2) is an equivalence of categories.
Thus we have to show that the category of finite projective modules over A1×AA2
is equivalent to the fibre product of the categories of finite projective modules over

https://stacks.math.columbia.edu/tag/0D3I
https://stacks.math.columbia.edu/tag/0DVP
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A1 and A2 over the category of finite projective modules over A. This is a special
case of More on Algebra, Lemma 15.6.9. We recall that the inverse functor sends
the triple (M1,M2, φ) where M1 is a finite projective A1-module, M2 is a finite
projective A2-module, and φ : M1 ⊗A1 A → M2 ⊗A2 A is an isomorphism of A-
module, to the finite projective A1 ×A A2-module M1 ×φM2. □

Lemma 93.4.3.0DVQ In Example 93.4.1 let V be a finite dimensional k-vector space.
Then

TDef V = (0) and Inf(Def V ) = Endk(V )
are finite dimensional.

Proof. With F as in Example 93.4.1 set x0 = (k, V ) ∈ Ob(F(k)). Recall that
TDef V = Tx0F is the set of isomorphism classes of pairs (x, α) consisting of an
object x of F over the dual numbers k[ϵ] and a morphism α : x → x0 of F lying
over k[ϵ]→ k.
Up to isomorphism, there is a unique pair (M,α) consisting of a finite projective
module M over k[ϵ] and k[ϵ]-linear map α : M → V which induces an isomorphism
M ⊗k[ϵ] k → V . For example, if V = k⊕n, then we take M = k[ϵ]⊕n with the
obvious map α.
Similarly, Inf(Def V ) = Infx0(F) is the set of automorphisms of the trivial defor-
mation x′

0 of x0 over k[ϵ]. See Formal Deformation Theory, Definition 90.19.2 for
details.
Given (M,α) as in the second paragraph, we see that an element of Infx0(F) is an
automorphism γ : M → M with γ mod ϵ = id. Then we can write γ = idM + ϵψ
where ψ : M/ϵM → M/ϵM is k-linear. Using α we can think of ψ as an element
of Endk(V ) and this finishes the proof. □

93.5. Representations of a group

0DVR The deformation theory of representations can be very interesting.

Example 93.5.1 (Representations of a group).0D3J Let Γ be a group. Let F be the
category defined as follows

(1) an object is a triple (A,M, ρ) consisting of an object A of CΛ, a finite
projective A-module M , and a homomorphism ρ : Γ→ GLA(M), and

(2) a morphism (f, g) : (B,N, τ) → (A,M, ρ) consists of a morphism f :
B → A in CΛ together with a map g : N → M which is f -linear and
Γ-equivariant and induces an isomorpism N ⊗B,f A ∼= M .

The functor p : F → CΛ sends (A,M, ρ) to A and (f, g) to f . It is clear that
p is cofibred in groupoids. Given a finite dimensional k-vector space V and a
representation ρ0 : Γ→ GLk(V ), let x0 = (k, V, ρ0) be the corresponding object of
F(k). We set

Def V,ρ0 = Fx0

Since every finite projective module over a local ring is finite free (Algebra, Lemma
10.78.2) we see that

isomorphism classes
of objects of F(A) =

∐
n≥0

GLn(A)-conjugacy classes of
homomorphisms ρ : Γ→ GLn(A)

This is already more interesting than the discussion in Section 93.4.

https://stacks.math.columbia.edu/tag/0DVQ
https://stacks.math.columbia.edu/tag/0D3J
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Lemma 93.5.2.0DVS Example 93.5.1 satisfies the Rim-Schlessinger condition (RS). In
particular, Def V,ρ0 is a deformation category for any finite dimensional representa-
tion ρ0 : Γ→ GLk(V ).

Proof. Let A1 → A and A2 → A be morphisms of CΛ. Assume A2 → A is surjective.
According to Formal Deformation Theory, Lemma 90.16.4 it suffices to show that
the functor F(A1 ×A A2)→ F(A1)×F(A) F(A2) is an equivalence of categories.

Consider an object
((A1,M1, ρ1), (A2,M2, ρ2), (idA, φ))

of the category F(A1)×F(A)F(A2). Then, as seen in the proof of Lemma 93.4.2, we
can consider the finite projective A1×AA2-module M1×φM2. Since φ is compatible
with the given actions we obtain

ρ1 × ρ2 : Γ −→ GLA1×AA2(M1 ×φM2)

Then (M1×φM2, ρ1×ρ2) is an object of F(A1×AA2). This construction determines
a quasi-inverse to our functor. □

Lemma 93.5.3.0DVT In Example 93.5.1 let ρ0 : Γ → GLk(V ) be a finite dimensional
representation. Then

TDef V,ρ0 = Ext1
k[Γ](V, V ) = H1(Γ,Endk(V )) and Inf(Def V,ρ0) = H0(Γ,Endk(V ))

Thus Inf(Def V,ρ0) is always finite dimensional and TDef V,ρ0 is finite dimensional if
Γ is finitely generated.

Proof. We first deal with the infinitesimal automorphisms. Let M = V ⊗k k[ϵ] with
induced action ρ′

0 : Γ → GLn(M). Then an infinitesimal automorphism, i.e., an
element of Inf(Def V,ρ0), is given by an automorphism γ = id + ϵψ : M → M as in
the proof of Lemma 93.4.3, where moreover ψ has to commute with the action of
Γ (given by ρ0). Thus we see that

Inf(Def V,ρ0) = H0(Γ,Endk(V ))

as predicted in the lemma.

Next, let (k[ϵ],M, ρ) be an object of F over k[ϵ] and let α : M → V be a Γ-
equivariant map inducing an isomorphism M/ϵM → V . Since M is free as a
k[ϵ]-module we obtain an extension of Γ-modules

0→ V →M
α−→ V → 0

We omit the detailed construction of the map on the left. Conversely, if we have
an extension of Γ-modules as above, then we can use this to make a k[ϵ]-module
structure on M and get an object of F(k[ϵ]) together with a map α as above. It
follows that

TDef V,ρ0 = Ext1
k[Γ](V, V )

as predicted in the lemma. This is equal to H1(Γ,Endk(V )) by Étale Cohomology,
Lemma 59.57.4.

The statement on dimensions follows from Étale Cohomology, Lemma 59.57.5. □

https://stacks.math.columbia.edu/tag/0DVS
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In Example 93.5.1 if Γ is finitely generated and (V, ρ0) is a finite dimensional rep-
resentation of Γ over k, then Def V,ρ0 admits a presentation by a smooth prorepre-
sentable groupoid in functors over CΛ and a fortiori has a (minimal) versal formal
object. This follows from Lemmas 93.5.2 and 93.5.3 and the general discussion in
Section 93.3.

Lemma 93.5.4.0ET1 In Example 93.5.1 assume Γ finitely generated. Let ρ0 : Γ →
GLk(V ) be a finite dimensional representation. Assume Λ is a complete local ring
with residue field k (the classical case). Then the functor

F : CΛ −→ Sets, A 7−→ Ob(Def V,ρ0(A))/ ∼=
of isomorphism classes of objects has a hull. If H0(Γ,Endk(V )) = k, then F is
prorepresentable.

Proof. The existence of a hull follows from Lemmas 93.5.2 and 93.5.3 and Formal
Deformation Theory, Lemma 90.16.6 and Remark 90.15.7.
Assume H0(Γ,Endk(V )) = k. To see that F is prorepresentable it suffices to
show that F is a deformation functor, see Formal Deformation Theory, Theorem
90.18.2. In other words, we have to show F satisfies (RS). For this we can use the
criterion of Formal Deformation Theory, Lemma 90.16.7. The required surjectivity
of automorphism groups will follow if we show that

A · idM = EndA[Γ](M)
for any object (A,M, ρ) of F such thatM⊗Ak is isomorphic to V as a representation
of Γ. Since the left hand side is contained in the right hand side, it suffices to show
lengthAEndA[Γ](M) ≤ lengthAA. Choose pairwise distinct ideals (0) = In ⊂ . . . ⊂
I1 ⊂ A with n = length(A). By correspondingly filtering M , we see that it suffices
to prove HomA[Γ](M, ItM/It+1M) has length 1. Since ItM/It+1M ∼= M ⊗A k and
since any A[Γ]-module map M → M ⊗A k factors uniquely through the quotient
map M →M ⊗A k to give an element of

EndA[Γ](M ⊗A k) = Endk[Γ](V ) = k

we conclude. □

93.6. Continuous representations

0DVU A very interesting thing one can do is to take an infinite Galois group and study
the deformation theory of its representations, see [Maz89].

Example 93.6.1 (Representations of a topological group).0D3K Let Γ be a topological
group. Let F be the category defined as follows

(1) an object is a triple (A,M, ρ) consisting of an object A of CΛ, a finite pro-
jective A-module M , and a continuous homomorphism ρ : Γ → GLA(M)
where GLA(M) is given the discrete topology1, and

(2) a morphism (f, g) : (B,N, τ) → (A,M, ρ) consists of a morphism f :
B → A in CΛ together with a map g : N → M which is f -linear and
Γ-equivariant and induces an isomorpism N ⊗B,f A ∼= M .

1An alternative would be to require the A-module M with G-action given by ρ is an A-G-
module as defined in Étale Cohomology, Definition 59.57.1. However, since M is a finite A-module,
this is equivalent.

https://stacks.math.columbia.edu/tag/0ET1
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The functor p : F → CΛ sends (A,M, ρ) to A and (f, g) to f . It is clear that p is
cofibred in groupoids. Given a finite dimensional k-vector space V and a continuous
representation ρ0 : Γ→ GLk(V ), let x0 = (k, V, ρ0) be the corresponding object of
F(k). We set

Def V,ρ0 = Fx0

Since every finite projective module over a local ring is finite free (Algebra, Lemma
10.78.2) we see that

isomorphism classes
of objects of F(A) =

∐
n≥0

GLn(A)-conjugacy classes of
continuous homomorphisms ρ : Γ→ GLn(A)

Lemma 93.6.2.0DVV Example 93.6.1 satisfies the Rim-Schlessinger condition (RS). In
particular, Def V,ρ0 is a deformation category for any finite dimensional continuous
representation ρ0 : Γ→ GLk(V ).

Proof. The proof is exactly the same as the proof of Lemma 93.5.2. □

Lemma 93.6.3.0DVW In Example 93.6.1 let ρ0 : Γ → GLk(V ) be a finite dimensional
continuous representation. Then

TDef V,ρ0 = H1(Γ,Endk(V )) and Inf(Def V,ρ0) = H0(Γ,Endk(V ))
Thus Inf(Def V,ρ0) is always finite dimensional and TDef V,ρ0 is finite dimensional if
Γ is topologically finitely generated.

Proof. The proof is exactly the same as the proof of Lemma 93.5.3. □

In Example 93.6.1 if Γ is topologically finitely generated and (V, ρ0) is a finite
dimensional continuous representation of Γ over k, then Def V,ρ0 admits a presenta-
tion by a smooth prorepresentable groupoid in functors over CΛ and a fortiori has
a (minimal) versal formal object. This follows from Lemmas 93.6.2 and 93.6.3 and
the general discussion in Section 93.3.

Lemma 93.6.4.0ET2 In Example 93.6.1 assume Γ is topologically finitely generated. Let
ρ0 : Γ → GLk(V ) be a finite dimensional representation. Assume Λ is a complete
local ring with residue field k (the classical case). Then the functor

F : CΛ −→ Sets, A 7−→ Ob(Def V,ρ0(A))/ ∼=
of isomorphism classes of objects has a hull. If H0(Γ,Endk(V )) = k, then F is
prorepresentable.

Proof. The proof is exactly the same as the proof of Lemma 93.5.4. □

93.7. Graded algebras

0DVX We will use the example in this section in the proof that the stack of polarized
proper schemes is an algebraic stack. For this reason we will consider commutative
graded algebras whose homogeneous parts are finite projective modules (sometimes
called “locally finite”).

Example 93.7.1 (Graded algebras).0D3L Let F be the category defined as follows
(1) an object is a pair (A,P ) consisting of an object A of CΛ and a graded

A-algebra P such that Pd is a finite projective A-module for all d ≥ 0,
and

https://stacks.math.columbia.edu/tag/0DVV
https://stacks.math.columbia.edu/tag/0DVW
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(2) a morphism (f, g) : (B,Q) → (A,P ) consists of a morphism f : B → A
in CΛ together with a map g : Q → P which is f -linear and induces an
isomorpism Q⊗B,f A ∼= P .

The functor p : F → CΛ sends (A,P ) to A and (f, g) to f . It is clear that p is
cofibred in groupoids. Given a graded k-algebra P with dimk(Pd) < ∞ for all
d ≥ 0, let x0 = (k, P ) be the corresponding object of F(k). We set

Def P = Fx0

Lemma 93.7.2.0DVY Example 93.7.1 satisfies the Rim-Schlessinger condition (RS). In
particular, Def P is a deformation category for any graded k-algebra P .

Proof. Let A1 → A and A2 → A be morphisms of CΛ. Assume A2 → A is surjective.
According to Formal Deformation Theory, Lemma 90.16.4 it suffices to show that
the functor F(A1 ×A A2)→ F(A1)×F(A) F(A2) is an equivalence of categories.
Consider an object

((A1, P1), (A2, P2), (idA, φ))
of the category F(A1)×F(A) F(A2). Then we consider P1 ×φ P2. Since φ : P1 ⊗A1

A→ P2⊗A2 A is an isomorphism of graded algebras, we see that the graded pieces
of P1×φP2 are finite projective A1×AA2-modules, see proof of Lemma 93.4.2. Thus
P1×φP2 is an object of F(A1×AA2). This construction determines a quasi-inverse
to our functor and the proof is complete. □

Lemma 93.7.3.0DVZ In Example 93.7.1 let P be a graded k-algebra. Then
TDef P and Inf(Def P ) = Derk(P, P )

are finite dimensional if P is finitely generated over k.

Proof. We first deal with the infinitesimal automorphisms. Let Q = P⊗kk[ϵ]. Then
an element of Inf(Def P ) is given by an automorphism γ = id+ ϵδ : Q→ Q as above
where now δ : P → P . The fact that γ is graded implies that δ is homogeneous
of degree 0. The fact that γ is k-linear implies that δ is k-linear. The fact that γ
is multiplicative implies that δ is a k-derivation. Conversely, given a k-derivation
δ : P → P homogeneous of degree 0, we obtain an automorphism γ = id + ϵδ as
above. Thus we see that

Inf(Def P ) = Derk(P, P )
as predicted in the lemma. Clearly, if P is generated in degrees Pi, 0 ≤ i ≤ N , then
δ is determined by the linear maps δi : Pi → Pi for 0 ≤ i ≤ N and we see that

dimk Derk(P, P ) <∞
as desired.
To finish the proof of the lemma we show that there is a finite dimensional defor-
mation space. To do this we choose a presentation

k[X1, . . . , Xn]/(F1, . . . , Fm) −→ P

of graded k-algebras where deg(Xi) = di and Fj is homogeneous of degree ej .
Let Q be any graded k[ϵ]-algebra finite free in each degree which comes with an
isomorphsm α : Q/ϵQ→ P so that (Q,α) defines an element of TDef P . Choose a
homogeneous element qi ∈ Q of degree di mapping to the image of Xi in P . Then
we obtain

k[ϵ][X1, . . . , Xn] −→ Q, Xi 7−→ qi
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and since P = Q/ϵQ this map is surjective by Nakayama’s lemma. A small diagram
chase shows we can choose homogeneous elements Fϵ,j ∈ k[ϵ][X1, . . . , Xn] of degree
ej mapping to zero in Q and mapping to Fj in k[X1, . . . , Xn]. Then

k[ϵ][X1, . . . , Xn]/(Fϵ,1, . . . , Fϵ,m) −→ Q

is a presentation of Q by flatness of Q over k[ϵ]. Write
Fϵ,j = Fj + ϵGj

There is some ambiguity in the vector (G1, . . . , Gm). First, using different choices
of Fϵ,j we can modify Gj by an arbitrary element of degree ej in the kernel of
k[X1, . . . , Xn]→ P . Hence, instead of (G1, . . . , Gm), we remember the element

(g1, . . . , gm) ∈ Pe1 ⊕ . . .⊕ Pem
where gj is the image of Gj in Pej . Moreover, if we change our choice of qi into
qi + ϵpi with pi of degree di then a computation (omitted) shows that gj changes
into

gnewj = gj −
∑n

i=1
pi∂Fj/∂Xi

We conclude that the isomorphism class of Q is determined by the image of the
vector (G1, . . . , Gm) in the k-vector space

W = Coker(Pd1 ⊕ . . .⊕ Pdn
(
∂Fj
∂Xi

)
−−−−→ Pe1 ⊕ . . .⊕ Pem)

In this way we see that we obtain an injection
TDef P −→W

Since W visibly has finite dimension, we conclude that the lemma is true. □

In Example 93.7.1 if P is a finitely generated graded k-algebra, then Def P admits
a presentation by a smooth prorepresentable groupoid in functors over CΛ and a
fortiori has a (minimal) versal formal object. This follows from Lemmas 93.7.2 and
93.7.3 and the general discussion in Section 93.3.

Lemma 93.7.4.0ET3 In Example 93.7.1 assume P is a finitely generated graded k-
algebra. Assume Λ is a complete local ring with residue field k (the classical case).
Then the functor

F : CΛ −→ Sets, A 7−→ Ob(Def P (A))/ ∼=
of isomorphism classes of objects has a hull.

Proof. This follows immediately from Lemmas 93.7.2 and 93.7.3 and Formal De-
formation Theory, Lemma 90.16.6 and Remark 90.15.7. □

93.8. Rings

0DY0 The deformation theory of rings is the same as the deformation theory of affine
schemes. For rings and schemes when we talk about deformations it means we are
thinking about flat deformations.

Example 93.8.1 (Rings).0DY1 Let F be the category defined as follows
(1) an object is a pair (A,P ) consisting of an object A of CΛ and a flat A-

algebra P , and
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(2) a morphism (f, g) : (B,Q) → (A,P ) consists of a morphism f : B → A
in CΛ together with a map g : Q → P which is f -linear and induces an
isomorpism Q⊗B,f A ∼= P .

The functor p : F → CΛ sends (A,P ) to A and (f, g) to f . It is clear that p is
cofibred in groupoids. Given a k-algebra P , let x0 = (k, P ) be the corresponding
object of F(k). We set

Def P = Fx0

Lemma 93.8.2.0DY2 Example 93.8.1 satisfies the Rim-Schlessinger condition (RS). In
particular, Def P is a deformation category for any k-algebra P .

Proof. Let A1 → A and A2 → A be morphisms of CΛ. Assume A2 → A is surjective.
According to Formal Deformation Theory, Lemma 90.16.4 it suffices to show that
the functor F(A1 ×A A2) → F(A1) ×F(A) F(A2) is an equivalence of categories.
This is a special case of More on Algebra, Lemma 15.7.7. □

Lemma 93.8.3.0DY3 In Example 93.8.1 let P be a k-algebra. Then

TDef P = Ext1
P (NLP/k, P ) and Inf(Def P ) = Derk(P, P )

Proof. Recall that Inf(Def P ) is the set of automorphisms of the trivial deformation
P [ϵ] = P ⊗k k[ϵ] of P to k[ϵ] equal to the identity modulo ϵ. By Deformation
Theory, Lemma 91.2.1 this is equal to HomP (ΩP/k, P ) which in turn is equal to
Derk(P, P ) by Algebra, Lemma 10.131.3.
Recall that TDef P is the set of isomorphism classes of flat deformations Q of P
to k[ϵ], more precisely, the set of isomorphism classes of Def P (k[ϵ]). Recall that a
k[ϵ]-algebra Q with Q/ϵQ = P is flat over k[ϵ] if and only if

0→ P
ϵ−→ Q→ P → 0

is exact. This is proven in More on Morphisms, Lemma 37.10.1 and more generally
in Deformation Theory, Lemma 91.5.2. Thus we may apply Deformation Theory,
Lemma 91.2.2 to see that the set of isomorphism classes of such deformations is
equal to Ext1

P (NLP/k, P ). □

Lemma 93.8.4.0DZL In Example 93.8.1 let P be a smooth k-algebra. Then TDef P = (0).

Proof. By Lemma 93.8.3 we have to show Ext1
P (NLP/k, P ) = (0). Since k → P is

smooth NLP/k is quasi-isomorphic to the complex consisting of a finite projective
P -module placed in degree 0. □

Lemma 93.8.5.0DY4 In Lemma 93.8.3 if P is a finite type k-algebra, then
(1) Inf(Def P ) is finite dimensional if and only if dim(P ) = 0, and
(2) TDef P is finite dimensional if Spec(P ) → Spec(k) is smooth except at a

finite number of points.

Proof. Proof of (1). We view Derk(P, P ) as a P -module. If it has finite dimension
over k, then it has finite length as a P -module, hence it is supported in finitely
many closed points of Spec(P ) (Algebra, Lemma 10.52.11). Since Derk(P, P ) =
HomP (ΩP/k, P ) we see that Derk(P, P )p = Derk(Pp, Pp) for any prime p ⊂ P (this
uses Algebra, Lemmas 10.131.8, 10.131.15, and 10.10.2). Let p be a minimal prime
ideal of P corresponding to an irreducible component of dimension d > 0. Then Pp

is an Artinian local ring essentially of finite type over k with residue field and ΩPp/k
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is nonzero for example by Algebra, Lemma 10.140.3. Any nonzero finite module
over an Artinian local ring has both a sub and a quotient module isomorphic to the
residue field. Thus we find that Derk(Pp, Pp) = HomPp

(ΩPp/k, Pp) is nonzero too.
Combining all of the above we find that (1) is true.
Proof of (2). For a prime p of P we will use that NLPp/k = (NLP/k)p (Algebra,
Lemma 10.134.13) and we will use that Ext1

P (NLP/k, P )p = Ext1
Pp

(NLPp/k, Pp)
(More on Algebra, Lemma 15.65.4). Given a prime p ⊂ P then k → P is smooth at
p if and only if (NLP/k)p is quasi-isomorphic to a finite projective module placed
in degree 0 (this follows immediately from the definition of a smooth ring map but
it also follows from the stronger Algebra, Lemma 10.137.12).
Assume that P is smooth over k at all but finitely many primes. Then these “bad”
primes are maximal ideals m1, . . . ,mn ⊂ P by Algebra, Lemma 10.61.3 and the fact
that the “bad” primes form a closed subset of Spec(P ). For p ̸∈ {m1, . . . ,mn} we
have Ext1

P (NLP/k, P )p = 0 by the results above. Thus Ext1
P (NLP/k, P ) is a finite

P -module whose support is contained in {m1, . . . ,mr}. By Algebra, Proposition
10.63.6 for example, we find that the dimension over k of Ext1

P (NLP/k, P ) is a finite
integer combination of dimk κ(mi) and hence finite by the Hilbert Nullstellensatz
(Algebra, Theorem 10.34.1). □

In Example 93.8.1, let P be a finite type k-algebra. Then Def P admits a presen-
tation by a smooth prorepresentable groupoid in functors over CΛ if and only if
dim(P ) = 0. Furthermore, Def P has a versal formal object if Spec(P ) → Spec(k)
has finitely many singular points. This follows from Lemmas 93.8.2 and 93.8.5 and
the general discussion in Section 93.3.
Lemma 93.8.6.0ET4 In Example 93.8.1 assume P is a finite type k-algebra such that
Spec(P ) → Spec(k) is smooth except at a finite number of points. Assume Λ is a
complete local ring with residue field k (the classical case). Then the functor

F : CΛ −→ Sets, A 7−→ Ob(Def P (A))/ ∼=
of isomorphism classes of objects has a hull.
Proof. This follows immediately from Lemmas 93.8.2 and 93.8.5 and Formal De-
formation Theory, Lemma 90.16.6 and Remark 90.15.7. □

Lemma 93.8.7.0DYS In Example 93.8.1 let P be a k-algebra. Let S ⊂ P be a multi-
plicative subset. There is a natural functor

Def P −→ Def S−1P

of deformation categories.
Proof. Given a deformation of P we can take the localization of it to get a defor-
mation of the localization; this is clear and we encourage the reader to skip the
proof. More precisely, let (A,Q) → (k, P ) be a morphism in F , i.e., an object of
Def P . Let SQ ⊂ Q be the inverse image of S. Then Hence (A,S−1

Q Q)→ (k, S−1P )
is the desired object of Def S−1P . □

Lemma 93.8.8.0DYT In Example 93.8.1 let P be a k-algebra. Let J ⊂ P be an ideal.
Denote (Ph, Jh) the henselization of the pair (P, J). There is a natural functor

Def P −→ Def Ph
of deformation categories.
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Proof. Given a deformation of P we can take the henselization of it to get a defor-
mation of the henselization; this is clear and we encourage the reader to skip the
proof. More precisely, let (A,Q) → (k, P ) be a morphism in F , i.e., an object of
Def P . Denote JQ ⊂ Q the inverse image of J in Q. Let (Qh, JhQ) be the henseliza-
tion of the pair (Q, JQ). Recall that Q → Qh is flat (More on Algebra, Lemma
15.12.2) and hence Qh is flat over A. By More on Algebra, Lemma 15.12.7 we see
that the map Qh → Ph induces an isomorphism Qh⊗A k = Qh⊗Q P = Ph. Hence
(A,Qh)→ (k, Ph) is the desired object of Def Ph . □

Lemma 93.8.9.0DYU In Example 93.8.1 let P be a k-algebra. Assume P is a local ring
and let P sh be a strict henselization of P . There is a natural functor

Def P −→ Def P sh
of deformation categories.
Proof. Given a deformation of P we can take the strict henselization of it to get
a deformation of the strict henselization; this is clear and we encourage the reader
to skip the proof. More precisely, let (A,Q)→ (k, P ) be a morphism in F , i.e., an
object of Def P . Since the kernel of the surjection Q→ P is nilpotent, we find that
Q is a local ring with the same residue field as P . Let Qsh be the strict henselization
of Q. Recall that Q → Qsh is flat (More on Algebra, Lemma 15.45.1) and hence
Qsh is flat over A. By Algebra, Lemma 10.156.4 we see that the map Qsh → P sh

induces an isomorphism Qsh ⊗A k = Qsh ⊗Q P = P sh. Hence (A,Qsh)→ (k, P sh)
is the desired object of Def P sh . □

Lemma 93.8.10.0DYV In Example 93.8.1 let P be a k-algebra. Assume P Noetherian
and let J ⊂ P be an ideal. Denote P∧ the J-adic completion. There is a natural
functor

Def P −→ Def P∧

of deformation categories.
Proof. Given a deformation of P we can take the completion of it to get a defor-
mation of the completion; this is clear and we encourage the reader to skip the
proof. More precisely, let (A,Q) → (k, P ) be a morphism in F , i.e., an object of
Def P . Observe that Q is a Noetherian ring: the kernel of the surjective ring map
Q → P is nilpotent and finitely generated and P is Noetherian; apply Algebra,
Lemma 10.97.5. Denote JQ ⊂ Q the inverse image of J in Q. Let Q∧ be the
JQ-adic completion of Q. Recall that Q → Q∧ is flat (Algebra, Lemma 10.97.2)
and hence Q∧ is flat over A. The induced map Q∧ → P∧ induces an isomor-
phism Q∧ ⊗A k = Q∧ ⊗Q P = P∧ by Algebra, Lemma 10.97.1 for example. Hence
(A,Q∧)→ (k, P∧) is the desired object of Def P∧ . □

Lemma 93.8.11.0DY5 In Lemma 93.8.3 if P = k[[x1, . . . , xn]]/(f) for some nonzero
f ∈ (x1, . . . , xn)2, then

(1) Inf(Def P ) is finite dimensional if and only if n = 1, and
(2) TDef P is finite dimensional if√

(f, ∂f/∂x1, . . . , ∂f/∂xn) = (x1, . . . , xn)
Proof. Proof of (1). Consider the derivations ∂/∂xi of k[[x1, . . . , xn]] over k. Write
fi = ∂f/∂xi. The derivation

θ =
∑

hi∂/∂xi
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of k[[x1, . . . , xn]] induces a derivation of P = k[[x1, . . . , xn]]/(f) if and only if∑
hifi ∈ (f). Moreover, the induced derivation of P is zero if and only if hi ∈ (f)

for i = 1, . . . , n. Thus we find

Ker((f1, . . . , fn) : P⊕n −→ P ) ⊂ Derk(P, P )

The left hand side is a finite dimensional k-vector space only if n = 1; we omit
the proof. We also leave it to the reader to see that the right hand side has finite
dimension if n = 1. This proves (1).

Proof of (2). Let Q be a flat deformation of P over k[ϵ] as in the proof of Lemma
93.8.3. Choose lifts qi ∈ Q of the image of xi in P . Then Q is a complete local ring
with maximal ideal generated by q1, . . . , qn and ϵ (small argument omitted). Thus
we get a surjection

k[ϵ][[x1, . . . , xn]] −→ Q, xi 7−→ qi

Choose an element of the form f + ϵg ∈ k[ϵ][[x1, . . . , xn]] mapping to zero in Q.
Observe that g is well defined modulo (f). Since Q is flat over k[ϵ] we get

Q = k[ϵ][[x1, . . . , xn]]/(f + ϵg)

Finally, if we changing the choice of qi amounts to changing the coordinates xi into
xi + ϵhi for some hi ∈ k[[x1, . . . , xn]]. Then f + ϵg changes into f + ϵ(g +

∑
hifi)

where fi = ∂f/∂xi. Thus we see that the isomorphism class of the deformation Q
is determined by an element of

k[[x1, . . . , xn]]/(f, ∂f/∂x1, . . . , ∂f/∂xn)

This has finite dimension over k if and only if its support is the closed point of
k[[x1, . . . , xn]] if and only if

√
(f, ∂f/∂x1, . . . , ∂f/∂xn) = (x1, . . . , xn). □

93.9. Schemes

0DY6 The deformation theory of schemes.

Example 93.9.1 (Schemes).0DY7 Let F be the category defined as follows
(1) an object is a pair (A,X) consisting of an object A of CΛ and a scheme X

flat over A, and
(2) a morphism (f, g) : (B, Y ) → (A,X) consists of a morphism f : B → A

in CΛ together with a morphism g : X → Y such that

X
g

//

��

Y

��
Spec(A) f // Spec(B)

is a cartesian commutative diagram of schemes.
The functor p : F → CΛ sends (A,X) to A and (f, g) to f . It is clear that
p is cofibred in groupoids. Given a scheme X over k, let x0 = (k,X) be the
corresponding object of F(k). We set

DefX = Fx0

Lemma 93.9.2.0DY8 Example 93.9.1 satisfies the Rim-Schlessinger condition (RS). In
particular, DefX is a deformation category for any scheme X over k.
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Proof. Let A1 → A and A2 → A be morphisms of CΛ. Assume A2 → A is surjective.
According to Formal Deformation Theory, Lemma 90.16.4 it suffices to show that
the functor F(A1 ×A A2) → F(A1) ×F(A) F(A2) is an equivalence of categories.
Observe that

Spec(A) //

��

Spec(A2)

��
Spec(A1) // Spec(A1 ×A A2)

is a pushout diagram as in More on Morphisms, Lemma 37.14.3. Thus the lemma
is a special case of More on Morphisms, Lemma 37.14.6. □

Lemma 93.9.3.0DY9 In Example 93.9.1 let X be a scheme over k. Then

Inf(DefX) = Ext0
OX

(NLX/k,OX) = HomOX
(ΩX/k,OX) = Derk(OX ,OX)

and
TDefX = Ext1

OX
(NLX/k,OX)

Proof. Recall that Inf(DefX) is the set of automorphisms of the trivial deformation
X ′ = X ×Spec(k) Spec(k[ϵ]) of X to k[ϵ] equal to the identity modulo ϵ. By De-
formation Theory, Lemma 91.8.1 this is equal to Ext0

OX
(NLX/k,OX). The equal-

ity Ext0
OX

(NLX/k,OX) = HomOX
(ΩX/k,OX) follows from More on Morphisms,

Lemma 37.13.3. The equality HomOX
(ΩX/k,OX) = Derk(OX ,OX) follows from

Morphisms, Lemma 29.32.2.
Recall that Tx0DefX is the set of isomorphism classes of flat deformations X ′ of X to
k[ϵ], more precisely, the set of isomorphism classes of DefX(k[ϵ]). Thus the second
statement of the lemma follows from Deformation Theory, Lemma 91.8.1. □

Lemma 93.9.4.0DYA In Lemma 93.9.3 if X is proper over k, then Inf(DefX) and TDefX
are finite dimensional.

Proof. By the lemma we have to show Ext1
OX

(NLX/k,OX) and Ext0
OX

(NLX/k,OX)
are finite dimensional. By More on Morphisms, Lemma 37.13.4 and the fact that X
is Noetherian, we see that NLX/k has coherent cohomology sheaves zero except in
degrees 0 and −1. By Derived Categories of Schemes, Lemma 36.11.7 the displayed
Ext-groups are finite k-vector spaces and the proof is complete. □

In Example 93.9.1 if X is a proper scheme over k, then DefX admits a presentation
by a smooth prorepresentable groupoid in functors over CΛ and a fortiori has a
(minimal) versal formal object. This follows from Lemmas 93.9.2 and 93.9.4 and
the general discussion in Section 93.3.

Lemma 93.9.5.0ET5 In Example 93.9.1 assume X is a proper k-scheme. Assume Λ is a
complete local ring with residue field k (the classical case). Then the functor

F : CΛ −→ Sets, A 7−→ Ob(DefX(A))/ ∼=
of isomorphism classes of objects has a hull. If Derk(OX ,OX) = 0, then F is
prorepresentable.

Proof. The existence of a hull follows immediately from Lemmas 93.9.2 and 93.9.4
and Formal Deformation Theory, Lemma 90.16.6 and Remark 90.15.7.
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Assume Derk(OX ,OX) = 0. Then DefX and F are equivalent by Formal Deforma-
tion Theory, Lemma 90.19.13. Hence F is a deformation functor (because DefX is
a deformation category) with finite tangent space and we can apply Formal Defor-
mation Theory, Theorem 90.18.2. □

Lemma 93.9.6.0DYW In Example 93.9.1 let X be a scheme over k. Let U ⊂ X be an
open subscheme. There is a natural functor

DefX −→ Def U
of deformation categories.

Proof. Given a deformation of X we can take the corresponding open of it to get
a deformation of U . We omit the details. □

Lemma 93.9.7.0DYX In Example 93.9.1 let X = Spec(P ) be an affine scheme over k.
With Def P as in Example 93.8.1 there is a natural equivalence

DefX −→ Def P
of deformation categories.

Proof. The functor sends (A, Y ) to Γ(Y,OY ). This works because any deformation
of X is affine by More on Morphisms, Lemma 37.2.3. □

Lemma 93.9.8.0DZM In Example 93.9.1 let X be a scheme over k Let p ∈ X be a point.
With Def OX,p

as in Example 93.8.1 there is a natural functor
DefX −→ Def OX,p

of deformation categories.

Proof. Choose an affine open U = Spec(P ) ⊂ X containing p. Then OX,p is
a localization of P . We combine the functors from Lemmas 93.9.6, 93.9.7, and
93.8.7. □

Situation 93.9.9.0DYY Let Λ→ k be as in Section 93.3. Let X be a scheme over k which
has an affine open covering X = U1 ∪ U2 with U12 = U1 ∩ U2 affine too. Write
U1 = Spec(P1), U2 = Spec(P2) and U12 = Spec(P12). Let DefX , Def U1 , Def U2 , and
Def U12 be as in Example 93.9.1 and let Def P1 , Def P2 , and Def P12 be as in Example
93.8.1.

Lemma 93.9.10.0DYZ In Situation 93.9.9 there is an equivalence
DefX = Def P1 ×DefP12

Def P2

of deformation categories, see Examples 93.9.1 and 93.8.1.

Proof. It suffices to show that the functors of Lemma 93.9.6 define an equivalence
DefX −→ Def U1 ×DefU12

Def U2

because then we can apply Lemma 93.9.7 to translate into rings. To do this we
construct a quasi-inverse. Denote Fi : Def Ui → Def U12 the functor of Lemma
93.9.6. An object of the RHS is given by an A in CΛ, objects (A, V1)→ (k, U1) and
(A, V2)→ (k, U2), and a morphism

g : F1(A, V1)→ F2(A, V2)
Now Fi(A, Vi) = (A, Vi,3−i) where Vi,3−i ⊂ Vi is the open subscheme whose base
change to k is U12 ⊂ Ui. The morphism g defines an isomorphism V1,2 → V2,1 of
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schemes overA compatible with id : U12 → U12 over k. Thus ({1, 2}, Vi, Vi,3−i, g, g
−1)

is a glueing data as in Schemes, Section 26.14. Let Y be the glueing, see Schemes,
Lemma 26.14.1. Then Y is a scheme over A and the compatibilities mentioned
above show that there is a canonical isomorphism Y ×Spec(A) Spec(k) = X. Thus
(A, Y )→ (k,X) is an object of DefX . We omit the verification that this construc-
tion is a functor and is quasi-inverse to the given one. □

93.10. Morphisms of Schemes

0E3S The deformation theory of morphisms of schemes. Of course this is just an example
of deformations of diagrams of schemes.

Example 93.10.1 (Morphisms of schemes).0E3T Let F be the category defined as follows
(1) an object is a pair (A,X → Y ) consisting of an object A of CΛ and a

morphism X → Y of schemes over A with both X and Y flat over A, and
(2) a morphism (f, g, h) : (A′, X ′ → Y ′) → (A,X → Y ) consists of a mor-

phism f : A′ → A in CΛ together with morphisms of schemes g : X → X ′

and h : Y → Y ′ such that
X

g
//

��

X ′

��
Y

h
//

��

Y ′

��
Spec(A) f // Spec(A′)

is a commutative diagram of schemes where both squares are cartesian.
The functor p : F → CΛ sends (A,X → Y ) to A and (f, g, h) to f . It is clear
that p is cofibred in groupoids. Given a morphism of schemes X → Y over k, let
x0 = (k,X → Y ) be the corresponding object of F(k). We set

DefX→Y = Fx0

Lemma 93.10.2.0E3U Example 93.10.1 satisfies the Rim-Schlessinger condition (RS). In
particular, DefX→Y is a deformation category for any morphism of schemes X → Y
over k.

Proof. Let A1 → A and A2 → A be morphisms of CΛ. Assume A2 → A is surjective.
According to Formal Deformation Theory, Lemma 90.16.4 it suffices to show that
the functor F(A1 ×A A2) → F(A1) ×F(A) F(A2) is an equivalence of categories.
Observe that

Spec(A) //

��

Spec(A2)

��
Spec(A1) // Spec(A1 ×A A2)

is a pushout diagram as in More on Morphisms, Lemma 37.14.3. Thus the lemma
follows immediately from More on Morphisms, Lemma 37.14.6 as this describes
the category of schemes flat over A1 ×A A2 as the fibre product of the category of
schemes flat over A1 with the category of schemes flat over A2 over the category of
schemes flat over A. □
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Lemma 93.10.3.0E3V In Example 93.9.1 let f : X → Y be a morphism of schemes over
k. There is a canonical exact sequence of k-vector spaces

0 // Inf(DefX→Y ) // Inf(DefX ×Def Y ) // Derk(OY , f∗OX)

rr
TDefX→Y

// T (DefX ×Def Y ) // Ext1
OX

(Lf∗ NLY/k,OX)

Proof. The obvious map of deformation categories DefX→Y → DefX ×Def Y gives
two of the arrows in the exact sequence of the lemma. Recall that Inf(DefX→Y ) is
the set of automorphisms of the trivial deformation

f ′ : X ′ = X ×Spec(k) Spec(k[ϵ]) f×id−−−→ Y ′ = Y ×Spec(k) Spec(k[ϵ])

of X → Y to k[ϵ] equal to the identity modulo ϵ. This is clearly the same thing
as pairs (α, β) ∈ Inf(DefX × Def Y ) of infinitesimal automorphisms of X and Y
compatible with f ′, i.e., such that f ′ ◦α = β ◦ f ′. By Deformation Theory, Lemma
91.7.1 for an arbitrary pair (α, β) the difference between the morphism f ′ : X ′ → Y ′

and the morphism β−1 ◦ f ′ ◦ α : X ′ → Y ′ defines an elment in

Derk(OY , f∗OX) = HomOY
(ΩY/k, f∗OX)

Equality by More on Morphisms, Lemma 37.13.3. This defines the last top hori-
zontal arrow and shows exactness in the first two places. For the map

Derk(OY , f∗OX)→ TDefX→Y

we interpret elements of the source as morphisms fϵ : X ′ → Y ′ over Spec(k[ϵ])
equal to f modulo ϵ using Deformation Theory, Lemma 91.7.1. We send fϵ to the
isomorphism class of (fϵ : X ′ → Y ′) in TDefX→Y . Note that (fϵ : X ′ → Y ′) is
isomorphic to the trivial deformation (f ′ : X ′ → Y ′) exactly when fϵ = β−1 ◦ f ◦α
for some pair (α, β) which implies exactness in the third spot. Clearly, if some first
order deformation (fϵ : Xϵ → Yϵ) maps to zero in T (DefX × Def Y ), then we can
choose isomorphisms X ′ → Xϵ and Y ′ → Yϵ and we conclude we are in the image
of the south-west arrow. Therefore we have exactness at the fourth spot. Finally,
given two first order deformations Xϵ, Yϵ of X, Y there is an obstruction in

ob(Xϵ, Yϵ) ∈ Ext1
OX

(Lf∗ NLY/k,OX)

which vanishes if and only if f : X → Y lifts to Xϵ → Yϵ, see Deformation Theory,
Lemma 91.7.1. This finishes the proof. □

Lemma 93.10.4.0E3W In Lemma 93.10.3 if X and Y are both proper over k, then
Inf(DefX→Y ) and TDefX→Y are finite dimensional.

Proof. Omitted. Hint: argue as in Lemma 93.9.4 and use the exact sequence of the
lemma. □

In Example 93.10.1 if X → Y is a morphism of proper schemes over k, then DefX→Y

admits a presentation by a smooth prorepresentable groupoid in functors over CΛ
and a fortiori has a (minimal) versal formal object. This follows from Lemmas
93.10.2 and 93.10.4 and the general discussion in Section 93.3.
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Lemma 93.10.5.0ET6 In Example 93.10.1 assume X → Y is a morphism of proper k-
schemes. Assume Λ is a complete local ring with residue field k (the classical case).
Then the functor

F : CΛ −→ Sets, A 7−→ Ob(DefX→Y (A))/ ∼=
of isomorphism classes of objects has a hull. If Derk(OX ,OX) = Derk(OY ,OY ) = 0,
then F is prorepresentable.

Proof. The existence of a hull follows immediately from Lemmas 93.10.2 and 93.10.4
and Formal Deformation Theory, Lemma 90.16.6 and Remark 90.15.7.
Assume Derk(OX ,OX) = Derk(OY ,OY ) = 0. Then the exact sequence of Lemma
93.10.3 combined with Lemma 93.9.3 shows that Inf(DefX→Y ) = 0. Then DefX→Y

and F are equivalent by Formal Deformation Theory, Lemma 90.19.13. Hence F
is a deformation functor (because DefX→Y is a deformation category) with finite
tangent space and we can apply Formal Deformation Theory, Theorem 90.18.2. □

Lemma 93.10.6.0E3X This is discussed in
[Vak06, Section 5.3]
and [Ran89,
Theorem 3.3].

In Example 93.9.1 let f : X → Y be a morphism of schemes over
k. If f∗OX = OY and R1f∗OX = 0, then the morphism of deformation categories

DefX→Y → DefX
is an equivalence.

Proof. We construct a quasi-inverse to the forgetful functor of the lemma. Namely,
suppose that (A,U) is an object of DefX . The given map X → U is a finite order
thickening and we can use it to identify the underlying topological spaces of U and
X, see More on Morphisms, Section 37.2. Thus we may and do think of OU as a
sheaf of A-algebras on X; moreover the fact that U → Spec(A) is flat, means that
OU is flat as a sheaf of A-modules. In particular, we have a filtration

0 = mnAOU ⊂ mn−1
A OU ⊂ . . . ⊂ m2

AOU ⊂ mAOU ⊂ OU
with subquotients equal to OX ⊗k miA/mi+1

A by flatness, see More on Morphisms,
Lemma 37.10.1 or the more general Deformation Theory, Lemma 91.5.2. Set

OV = f∗OU
viewed as sheaf of A-algebras on Y . Since R1f∗OX = 0 we find by the description
above that R1f∗(miAOU/mi+1

A OU ) = 0 for all i. This implies that the sequences
0→ (f∗OX)⊗k miA/mi+1

A → f∗(OU/mi+1
A OU )→ f∗(OU/miAOU )→ 0

are exact for all i. Reading the references given above backwards (and using induc-
tion) we find that OV is a flat sheaf of A-algebras with OV /mAOV = OY . Using
More on Morphisms, Lemma 37.2.2 we find that (Y,OV ) is a scheme, call it V . The
equality OV = f∗OU defines a morphism of ringed spaces U → V which is easily
seen to be a morphism of schemes. This finishes the proof by the flatness already
established. □

93.11. Algebraic spaces

0E3Y The deformation theory of algebraic spaces.

Example 93.11.1 (Algebraic spaces).0E3Z Let F be the category defined as follows
(1) an object is a pair (A,X) consisting of an object A of CΛ and an algebraic

space X flat over A, and
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(2) a morphism (f, g) : (B, Y )→ (A,X) consists of a morphism f : B → A in
CΛ together with a morphism g : X → Y of algebraic spaces over Λ such
that

X
g

//

��

Y

��
Spec(A) f // Spec(B)

is a cartesian commutative diagram of algebraic spaces.
The functor p : F → CΛ sends (A,X) to A and (f, g) to f . It is clear that p is
cofibred in groupoids. Given an algebraic space X over k, let x0 = (k,X) be the
corresponding object of F(k). We set

DefX = Fx0

Lemma 93.11.2.0E40 Example 93.11.1 satisfies the Rim-Schlessinger condition (RS). In
particular, DefX is a deformation category for any algebraic space X over k.

Proof. Let A1 → A and A2 → A be morphisms of CΛ. Assume A2 → A is surjective.
According to Formal Deformation Theory, Lemma 90.16.4 it suffices to show that
the functor F(A1 ×A A2) → F(A1) ×F(A) F(A2) is an equivalence of categories.
Observe that

Spec(A) //

��

Spec(A2)

��
Spec(A1) // Spec(A1 ×A A2)

is a pushout diagram as in Pushouts of Spaces, Lemma 81.6.2. Thus the lemma is
a special case of Pushouts of Spaces, Lemma 81.6.7. □

Lemma 93.11.3.0E41 In Example 93.11.1 let X be an algebraic space over k. Then

Inf(DefX) = Ext0
OX

(NLX/k,OX) = HomOX
(ΩX/k,OX) = Derk(OX ,OX)

and
TDefX = Ext1

OX
(NLX/k,OX)

Proof. Recall that Inf(DefX) is the set of automorphisms of the trivial deformation
X ′ = X ×Spec(k) Spec(k[ϵ]) of X to k[ϵ] equal to the identity modulo ϵ. By De-
formation Theory, Lemma 91.14.2 this is equal to Ext0

OX
(NLX/k,OX). The equal-

ity Ext0
OX

(NLX/k,OX) = HomOX
(ΩX/k,OX) follows from More on Morphisms of

Spaces, Lemma 76.21.4. The equality HomOX
(ΩX/k,OX) = Derk(OX ,OX) fol-

lows from More on Morphisms of Spaces, Definition 76.7.2 and Modules on Sites,
Definition 18.33.3.

Recall that Tx0DefX is the set of isomorphism classes of flat deformations X ′ of X to
k[ϵ], more precisely, the set of isomorphism classes of DefX(k[ϵ]). Thus the second
statement of the lemma follows from Deformation Theory, Lemma 91.14.2. □

Lemma 93.11.4.0E42 In Lemma 93.11.3 if X is proper over k, then Inf(DefX) and
TDefX are finite dimensional.
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Proof. By the lemma we have to show Ext1
OX

(NLX/k,OX) and Ext0
OX

(NLX/k,OX)
are finite dimensional. By More on Morphisms of Spaces, Lemma 76.21.5 and the
fact that X is Noetherian, we see that NLX/k has coherent cohomology sheaves
zero except in degrees 0 and −1. By Derived Categories of Spaces, Lemma 75.8.4
the displayed Ext-groups are finite k-vector spaces and the proof is complete. □

In Example 93.11.1 if X is a proper algebraic space over k, then DefX admits
a presentation by a smooth prorepresentable groupoid in functors over CΛ and a
fortiori has a (minimal) versal formal object. This follows from Lemmas 93.11.2
and 93.11.4 and the general discussion in Section 93.3.

Lemma 93.11.5.0ET7 In Example 93.11.1 assume X is a proper algebraic space over k.
Assume Λ is a complete local ring with residue field k (the classical case). Then
the functor

F : CΛ −→ Sets, A 7−→ Ob(DefX(A))/ ∼=
of isomorphism classes of objects has a hull. If Derk(OX ,OX) = 0, then F is
prorepresentable.

Proof. The existence of a hull follows immediately from Lemmas 93.11.2 and 93.11.4
and Formal Deformation Theory, Lemma 90.16.6 and Remark 90.15.7.
Assume Derk(OX ,OX) = 0. Then DefX and F are equivalent by Formal Deforma-
tion Theory, Lemma 90.19.13. Hence F is a deformation functor (because DefX is
a deformation category) with finite tangent space and we can apply Formal Defor-
mation Theory, Theorem 90.18.2. □

93.12. Deformations of completions

0DZ0 In this section we compare the deformation problem posed by an algebra and its
completion. We first discuss “liftability”.

Lemma 93.12.1.0DZ1 Let A′ → A be a surjection of rings with nilpotent kernel. Let
A′ → P ′ be a flat ring map. Set P = P ′ ⊗A′ A. Let M be an A-flat P -module.
Then the following are equivalent

(1) there is an A′-flat P ′-module M ′ with M ′ ⊗P ′ P = M , and
(2) there is an object K ′ ∈ D−(P ′) with K ′ ⊗L

P ′ P = M .

Proof. Suppose that M ′ is as in (1). Then
M = M ′ ⊗P P ′ = M ′ ⊗A′ A = M ′ ⊗L

A A
′ = M ′ ⊗L

P ′ P

The first two equalities are clear, the third holds because M ′ is flat over A′, and
the fourth holds by More on Algebra, Lemma 15.61.2. Thus (2) holds. Conversely,
suppose K ′ is as in (2). We may and do assume M is nonzero. Let t be the
largest integer such that Ht(K ′) is nonzero (exists because M is nonzero). Then
Ht(K ′) ⊗P ′ P = Ht(K ′ ⊗L

P ′ P ) is zero if t > 0. Since the kernel of P ′ → P is
nilpotent this implies Ht(K ′) = 0 by Nakayama’s lemma a contradiction. Hence
t = 0 (the case t < 0 is absurd as well). Then M ′ = H0(K ′) is a P ′-module such
that M = M ′ ⊗P ′ P and the spectral sequence for Tor gives an injective map

TorP
′

1 (M ′, P )→ H−1(M ′ ⊗L
P ′ P ) = 0

By the reference on derived base change above 0 = TorP
′

1 (M ′, P ) = TorA
′

1 (M ′, A).
We conclude that M ′ is A′-flat by Algebra, Lemma 10.99.8. □
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Lemma 93.12.2.0DZ2 Consider a commutative diagram of Noetherian rings

A′

��

// P ′

��

// Q′

��
A // P // Q

with cartesian squares, with flat horizontal arrows, and with surjective vertial ar-
rows whose kernels are nilpotent. Let J ′ ⊂ P ′ be an ideal such that P ′/J ′ =
Q′/J ′Q′. Let M be an A-flat P -module. Assume for all g ∈ J ′ there exists an
A′-flat (P ′)g-module lifting Mg. Then the following are equivalent

(1) M has an A′-flat lift to a P ′-module, and
(2) M ⊗P Q has an A′-flat lift to a Q′-module.

Proof. Let I = Ker(A′ → A). By induction on the integer n > 1 such that In = 0
we reduce to the case where I is an ideal of square zero; details omitted. We
translate the condition of liftability of M into the problem of finding an object of
D−(P ′) as in Lemma 93.12.1. The obstruction to doing this is the element

ω(M) ∈ Ext2
P (M,M ⊗L

P IP ) = Ext2
P (M,M ⊗P IP )

constructed in Deformation Theory, Lemma 91.15.1. The equality in the displayed
formula holds as M⊗L

P IP = M⊗P IP since M and P are A-flat2. The obstruction
for lifting M ⊗P Q is similarly the element

ω(M ⊗P Q) ∈ Ext2
Q(M ⊗P Q, (M ⊗P Q)⊗Q IQ)

which is the image of ω(M) by the functoriality of the construction ω(−) of Defor-
mation Theory, Lemma 91.15.1. By More on Algebra, Lemma 15.99.2 we have

Ext2
Q(M ⊗P Q, (M ⊗P Q)⊗Q IQ) = Ext2

P (M,M ⊗P IP )⊗P Q
here we use that P is Noetherian and M finite. Our assumption on P ′ → Q′

guarantees that for an P -module E the map E → E ⊗P Q is bijective on J ′-power
torsion, see More on Algebra, Lemma 15.89.3. Thus we conclude that it suffices to
show ω(M) is J ′-power torsion. In other words, it suffices to show that ω(M) dies
in

Ext2
P (M,M ⊗P IP )g = Ext2

Pg (Mg,Mg ⊗Pg IPg)
for all g ∈ J ′. Howeover, by the compatibility of formation of ω(M) with base
change again, we conclude that this is true as Mg is assumed to have a lift (of
course you have to use the whole string of equivalences again). □

Lemma 93.12.3.0DZ3 Let A′ → A be a surjective map of Noetherian rings with nilpotent
kernel. Let A→ B be a finite type flat ring map. Let b ⊂ B be an ideal such that
Spec(B)→ Spec(A) is syntomic on the complement of V (b). Then B has a flat lift
to A′ if and only if the b-adic completion B∧ has a flat lift to A′.
Proof. Choose an A-algebra surjection P = A[x1, . . . , xn] → B. Let p ⊂ P be the
inverse image of b. Set P ′ = A′[x1, . . . , xn] and denote p′ ⊂ P ′ the inverse image
of p. (Of course p and p′ do not designate prime ideals here.) We will denote P∧

and (P ′)∧ the respective completions.

2Choose a resolution F• → I by free A-modules. Since A → P is flat, P ⊗A F• is a free
resolution of IP . Hence M ⊗L

P IP is represented by M ⊗P P ⊗A F• = M ⊗A F•. This only has
cohomology in degree 0 as M is A-flat.
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Suppose A′ → B′ is a flat lift of A→ B, in other words, A′ → B′ is flat and there
is an A-algebra isomorphism B = B′ ⊗A′ A. Then we can choose an A′-algebra
map P ′ → B′ lifting the given surjection P → B. By Nakayama’s lemma (Algebra,
Lemma 10.20.1) we find that B′ is a quotient of P ′. In particular, we find that we
can endow B′ with an A′-flat P ′-module structure lifting B as an A-flat P -module.
Conversely, if we can lift B to a P ′-module M ′ flat over A′, then M ′ is a cyclic
module M ′ ∼= P ′/J ′ (using Nakayama again) and setting B′ = P ′/J ′ we find a flat
lift of B as an algebra.
Set C = B∧ and c = bC. Suppose that A′ → C ′ is a flat lift of A → C. Then C ′

is complete with respect to the inverse image c′ of c (Algebra, Lemma 10.97.10).
We choose an A′-algebra map P ′ → C ′ lifting the A-algebra map P → C. These
maps pass through completions to give surjections P∧ → C and (P ′)∧ → C ′ (for
the second again using Nakayama’s lemma). In particular, we find that we can
endow C ′ with an A′-flat (P ′)∧-module structure lifting C as an A-flat P∧-module.
Conversely, if we can lift C to a (P ′)∧-module N ′ flat over A′, then N ′ is a cyclic
module N ′ ∼= (P ′)∧/J̃ (using Nakayama again) and setting C ′ = (P ′)∧/J̃ we find
a flat lift of C as an algebra.
Observe that P ′ → (P ′)∧ is a flat ring map which induces an isomorphism P ′/p′ =
(P ′)∧/p′(P ′)∧. We conclude that our lemma is a consequence of Lemma 93.12.2
provided we can show that Bg lifts to an A′-flat P ′

g-module for g ∈ p′. However, the
ring map A→ Bg is syntomic and hence lifts to an A′-flat algebra B′ by Smoothing
Ring Maps, Proposition 16.3.2. Since A′ → P ′

g is smooth, we can lift Pg → Bg to
a surjective map P ′

g → B′ as before and we get what we want. □

Notation. Let A → B be a ring map. Let N be a B-module. We denote
ExalA(B,N) the set of isomorphism classes of extensions

0→ N → C → B → 0
of A-algebras such that N is an ideal of square zero in C. Given a second such
0 → N → C ′ → B → 0 an isomorphism is a A-algebra isomorpism C → C ′ such
that the diagram

0 // N //

id
��

C //

��

B //

id
��

0

0 // N // C ′ // B // 0
commutes. The assignment N 7→ ExalA(B,N) is a functor which transforms prod-
ucts into products. Hence this is an additive functor and ExalA(B,N) has a nat-
ural B-module structure. In fact, by Deformation Theory, Lemma 91.2.2 we have
ExalA(B,N) = Ext1

B(NLB/A, N).
Lemma 93.12.4.0DZ4 Let k be a field. Let B be a finite type k-algebra. Let J ⊂ B be
an ideal such that Spec(B)→ Spec(k) is smooth on the complement of V (J). Let
N be a finite B-module. Then there is a canonical bijection

Exalk(B,N)→ Exalk(B∧, N∧)
Here B∧ and N∧ are the J-adic completions.
Proof. The map is given by completion: given 0 → N → C → B → 0 in
Exalk(B,N) we send it to the completion C∧ of C with respect to the inverse
image of J . Compare with the proof of Lemma 93.8.10.
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Since k → B is of finite presentation the complex NLB/k can be represented by a
complex N−1 → N0 where N i is a finite B-module, see Algebra, Section 10.134 and
in particular Algebra, Lemma 10.134.2. As B is Noetherian, this means that NLB/k
is pseudo-coherent. For g ∈ J the k-algebra Bg is smooth and hence (NLB/k)g =
NLBg/k is quasi-isomorphic to a finite projective B-module sitting in degree 0.
Thus ExtiB(NLB/k, N)g = 0 for i ≥ 1 and any B-module N . By More on Algebra,
Lemma 15.102.1 we conclude that

Ext1
B(NLB/k, N) −→ limn Ext1

B(NLB/k, N/JnN)

is an isomorphism for any finite B-module N .

Injectivity of the map. Suppose that 0 → N → C → B → 0 is in Exalk(B,N)
and maps to zero in Exalk(B∧, N∧). Choose a splitting C∧ = B∧ ⊕N∧. Then the
induced map C → C∧ → N∧ gives maps C → N/JnN for all n. Hence we see that
our element is in the kernel of the maps

Ext1
B(NLB/k, N)→ Ext1

B(NLB/k, N/JnN)

for all n. By the previous paragraph we conclude that our element is zero.

Surjectivity of the map. Let 0 → N∧ → C ′ → B∧ → 0 be an element of
Exalk(B∧, N∧). Pulling back by B → B∧ we get an element 0 → N∧ → C ′′ →
B → 0 in Exalk(B,N∧). we have

Ext1
B(NLB/k, N∧) = Ext1

B(NLB/k, N)⊗B B∧ = Ext1
B(NLB/k, N)

The first equality as N∧ = N ⊗B B∧ (Algebra, Lemma 10.97.1) and More on
Algebra, Lemma 15.65.3. The second equality because Ext1

B(NLB/k, N) is J-power
torsion (see above), B → B∧ is flat and induces an isomorphism B/J → B∧/JB∧,
and More on Algebra, Lemma 15.89.3. Thus we can find a C ∈ Exalk(B,N)
mapping to C ′′ in Exalk(B,N∧). Thus

0→ N∧ → C ′ → B∧ → 0 and 0→ N∧ → C∧ → B∧ → 0

are two elements of Exalk(B∧, N∧) mapping to the same element of Exalk(B,N∧).
Taking the difference we get an element 0→ N∧ → C ′ → B∧ → 0 of Exalk(B∧, N∧)
whose image in Exalk(B,N∧) is zero. This means there exists

0 // N∧ // C ′ // B∧ // 0

B

σ

OO ==

Let J ′ ⊂ C ′ be the inverse image of JB∧ ⊂ B∧. To finish the proof it suffices to
note that σ is continuous for the J-adic topology on B and the J ′-adic topology on
C ′ and that C ′ is J ′-adically complete by Algebra, Lemma 10.97.10 (here we also
use that C ′ is Noetherian; small detail omitted). Namely, this means that σ factors
through the completion B∧ and C ′ = 0 in Exalk(B∧, N∧). □

Lemma 93.12.5.0DZ5 In Example 93.8.1 let P be a k-algebra. Let J ⊂ P be an ideal.
Denote P∧ the J-adic completion. If

(1) k → P is of finite type, and
(2) Spec(P )→ Spec(k) is smooth on the complement of V (J).
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then the functor between deformation categories of Lemma 93.8.10
Def P −→ Def P∧

is smooth and induces an isomorphism on tangent spaces.

Proof. We know that Def P and Def P∧ are deformation categories by Lemma 93.8.2.
Thus it suffices to check our functor identifies tangent spaces and a correspondence
between liftability, see Formal Deformation Theory, Lemma 90.20.3. The property
on liftability is proven in Lemma 93.12.3 and the isomorphism on tangent spaces is
the special case of Lemma 93.12.4 where N = B. □

93.13. Deformations of localizations

0DZ6 In this section we compare the deformation problem posed by an algebra and its
localization at a multiplicative subset. We first discuss “liftability”.

Lemma 93.13.1.0DZ7 Let A′ → A be a surjective map of Noetherian rings with nilpotent
kernel. Let A → B be a finite type flat ring map. Let S ⊂ B be a multiplicative
subset such that if Spec(B)→ Spec(A) is not syntomic at q, then S ∩ q = ∅. Then
B has a flat lift to A′ if and only if S−1B has a flat lift to A′.

Proof. This proof is the same as the proof of Lemma 93.12.3 but easier. We suggest
the reader to skip the proof. Choose an A-algebra surjection P = A[x1, . . . , xn]→
B. Let SP ⊂ P be the inverse image of S. Set P ′ = A′[x1, . . . , xn] and denote
SP ′ ⊂ P ′ the inverse image of SP .
Suppose A′ → B′ is a flat lift of A→ B, in other words, A′ → B′ is flat and there
is an A-algebra isomorphism B = B′ ⊗A′ A. Then we can choose an A′-algebra
map P ′ → B′ lifting the given surjection P → B. By Nakayama’s lemma (Algebra,
Lemma 10.20.1) we find that B′ is a quotient of P ′. In particular, we find that we
can endow B′ with an A′-flat P ′-module structure lifting B as an A-flat P -module.
Conversely, if we can lift B to a P ′-module M ′ flat over A′, then M ′ is a cyclic
module M ′ ∼= P ′/J ′ (using Nakayama again) and setting B′ = P ′/J ′ we find a flat
lift of B as an algebra.
Set C = S−1B. Suppose that A′ → C ′ is a flat lift of A → C. Elements of C ′

which map to invertible elements of C are invertible. We choose an A′-algebra
map P ′ → C ′ lifting the A-algebra map P → C. By the remark above these
maps pass through localizations to give surjections S−1

P P → C and S−1
P ′ P ′ → C ′

(for the second use Nakayama’s lemma). In particular, we find that we can endow
C ′ with an A′-flat S−1

P ′ P ′-module structure lifting C as an A-flat S−1
P P -module.

Conversely, if we can lift C to a S−1
P ′ P ′-module N ′ flat over A′, then N ′ is a cyclic

module N ′ ∼= S−1
P ′ P ′/J̃ (using Nakayama again) and setting C ′ = S−1

P ′ P ′/J̃ we find
a flat lift of C as an algebra.
The syntomic locus of a morphism of schemes is open by definition. Let JB ⊂ B
be an ideal cutting out the set of points in Spec(B) where Spec(B) → Spec(A) is
not syntomic. Denote JP ⊂ P and JP ′ ⊂ P ′ the corresponding ideals. Observe
that P ′ → S−1

P ′ P ′ is a flat ring map which induces an isomorphism P ′/JP ′ =
S−1
P ′ P ′/JP ′S−1

P ′ P ′ by our assumption on S in the lemma, namely, the assumption
in the lemma is exactly that B/JB = S−1(B/JB). We conclude that our lemma is
a consequence of Lemma 93.12.2 provided we can show that Bg lifts to an A′-flat
P ′
g-module for g ∈ JB . However, the ring map A → Bg is syntomic and hence

https://stacks.math.columbia.edu/tag/0DZ7


93.14. DEFORMATIONS OF HENSELIZATIONS 6660

lifts to an A′-flat algebra B′ by Smoothing Ring Maps, Proposition 16.3.2. Since
A′ → P ′

g is smooth, we can lift Pg → Bg to a surjective map P ′
g → B′ as before

and we get what we want. □

Lemma 93.13.2.0DZ8 Let k be a field. Let B be a finite type k-algebra. Let S ⊂ B be a
multiplicative subset ideal such that if Spec(B)→ Spec(k) is not smooth at q then
S ∩ q = ∅. Let N be a finite B-module. Then there is a canonical bijection

Exalk(B,N)→ Exalk(S−1B,S−1N)

Proof. This proof is the same as the proof of Lemma 93.12.4 but easier. We suggest
the reader to skip the proof. The map is given by localization: given 0 → N →
C → B → 0 in Exalk(B,N) we send it to the localization S−1

C C of C with respect
to the inverse image SC ⊂ C of S. Compare with the proof of Lemma 93.8.7.

The smooth locus of a morphism of schemes is open by definition. Let J ⊂ B
be an ideal cutting out the set of points in Spec(B) where Spec(B) → Spec(A)
is not smooth. Since k → B is of finite presentation the complex NLB/k can be
represented by a complex N−1 → N0 where N i is a finite B-module, see Algebra,
Section 10.134 and in particular Algebra, Lemma 10.134.2. As B is Noetherian,
this means that NLB/k is pseudo-coherent. For g ∈ J the k-algebra Bg is smooth
and hence (NLB/k)g = NLBg/k is quasi-isomorphic to a finite projective B-module
sitting in degree 0. Thus ExtiB(NLB/k, N)g = 0 for i ≥ 1 and any B-module N .
Finally, we have

Ext1
S−1B(NLS−1B/k, S

−1N) = Ext1
B(NLB/k, N)⊗B S−1B = Ext1

B(NLB/k, N)

The first equality by More on Algebra, Lemma 15.99.2 and Algebra, Lemma 10.134.13.
The second because Ext1

B(NLB/k, N) is J-power torsion and elements of S act in-
vertibly on J-power torsion modules. This concludes the proof by the description
of ExalA(B,N) as Ext1

B(NLB/A, N) given just above Lemma 93.12.4. □

Lemma 93.13.3.0DZ9 In Example 93.8.1 let P be a k-algebra. Let S ⊂ P be a multi-
plicative subset. If

(1) k → P is of finite type, and
(2) Spec(P )→ Spec(k) is smooth at all points of V (g) for all g ∈ S.

then the functor between deformation categories of Lemma 93.8.7

Def P −→ Def S−1P

is smooth and induces an isomorphism on tangent spaces.

Proof. We know that Def P and Def S−1P are deformation categories by Lemma
93.8.2. Thus it suffices to check our functor identifies tangent spaces and a cor-
respondence between liftability, see Formal Deformation Theory, Lemma 90.20.3.
The property on liftability is proven in Lemma 93.13.1 and the isomorphism on
tangent spaces is the special case of Lemma 93.13.2 where N = B. □

93.14. Deformations of henselizations

0DZA In this section we compare the deformation problem posed by an algebra and its
completion. We first discuss “liftability”.
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Lemma 93.14.1.0DZB Let A′ → A be a surjective map of Noetherian rings with nilpotent
kernel. Let A→ B be a finite type flat ring map. Let b ⊂ B be an ideal such that
Spec(B) → Spec(A) is syntomic on the complement of V (b). Let (Bh, bh) be the
henselization of the pair (B, b). Then B has a flat lift to A′ if and only if Bh has
a flat lift to A′.
First proof. This proof is a cheat. Namely, if B has a flat lift B′, then taking the
henselization (B′)h we obtain a flat lift of Bh (compare with the proof of Lemma
93.8.8). Conversely, suppose that C ′ is an A′-flat lift of (B′)h. Then let c′ ⊂ C ′ be
the inverse image of the ideal bh. Then the completion (C ′)∧ of C ′ with respect to
c′ is a lift of B∧ (details omitted). Hence we see that B has a flat lift by Lemma
93.12.3. □

Second proof. Choose an A-algebra surjection P = A[x1, . . . , xn]→ B. Let p ⊂ P
be the inverse image of b. Set P ′ = A′[x1, . . . , xn] and denote p′ ⊂ P ′ the inverse
image of p. (Of course p and p′ do not designate prime ideals here.) We will denote
Ph and (P ′)h the respective henselizations. We will use that taking henselizations
is functorial and that the henselization of a quotient is the corresponding quotient
of the henselization, see More on Algebra, Lemmas 15.11.16 and 15.12.7.
Suppose A′ → B′ is a flat lift of A→ B, in other words, A′ → B′ is flat and there
is an A-algebra isomorphism B = B′ ⊗A′ A. Then we can choose an A′-algebra
map P ′ → B′ lifting the given surjection P → B. By Nakayama’s lemma (Algebra,
Lemma 10.20.1) we find that B′ is a quotient of P ′. In particular, we find that we
can endow B′ with an A′-flat P ′-module structure lifting B as an A-flat P -module.
Conversely, if we can lift B to a P ′-module M ′ flat over A′, then M ′ is a cyclic
module M ′ ∼= P ′/J ′ (using Nakayama again) and setting B′ = P ′/J ′ we find a flat
lift of B as an algebra.
Set C = Bh and c = bC. Suppose that A′ → C ′ is a flat lift of A → C. Then C ′

is henselian with respect to the inverse image c′ of c (by More on Algebra, Lemma
15.11.9 and the fact that the kernel of C ′ → C is nilpotent). We choose an A′-
algebra map P ′ → C ′ lifting the A-algebra map P → C. These maps pass through
henselizations to give surjections Ph → C and (P ′)h → C ′ (for the second again
using Nakayama’s lemma). In particular, we find that we can endow C ′ with an A′-
flat (P ′)h-module structure lifting C as an A-flat Ph-module. Conversely, if we can
lift C to a (P ′)h-module N ′ flat over A′, then N ′ is a cyclic module N ′ ∼= (P ′)h/J̃
(using Nakayama again) and setting C ′ = (P ′)h/J̃ we find a flat lift of C as an
algebra.
Observe that P ′ → (P ′)h is a flat ring map which induces an isomorphism P ′/p′ =
(P ′)h/p′(P ′)h (More on Algebra, Lemma 15.12.2). We conclude that our lemma is
a consequence of Lemma 93.12.2 provided we can show that Bg lifts to an A′-flat
P ′
g-module for g ∈ p′. However, the ring map A→ Bg is syntomic and hence lifts to

an A′-flat algebra B′ by Smoothing Ring Maps, Proposition 16.3.2. Since A′ → P ′
g

is smooth, we can lift Pg → Bg to a surjective map P ′
g → B′ as before and we get

what we want. □

Lemma 93.14.2.0DZC Let k be a field. Let B be a finite type k-algebra. Let J ⊂ B be
an ideal such that Spec(B)→ Spec(k) is smooth on the complement of V (J). Let
N be a finite B-module. Then there is a canonical bijection

Exalk(B,N)→ Exalk(Bh, Nh)
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Here (Bh, Jh) is the henselization of (B, J) and Nh = N ⊗B Bh.

Proof. This proof is the same as the proof of Lemma 93.12.4 but easier. We suggest
the reader to skip the proof. The map is given by henselization: given 0 → N →
C → B → 0 in Exalk(B,N) we send it to the henselization Ch of C with respect
to the inverse image JC ⊂ C of J . Compare with the proof of Lemma 93.8.8.
Since k → B is of finite presentation the complex NLB/k can be represented by a
complex N−1 → N0 where N i is a finite B-module, see Algebra, Section 10.134 and
in particular Algebra, Lemma 10.134.2. As B is Noetherian, this means that NLB/k
is pseudo-coherent. For g ∈ J the k-algebra Bg is smooth and hence (NLB/k)g =
NLBg/k is quasi-isomorphic to a finite projective B-module sitting in degree 0. Thus
ExtiB(NLB/k, N)g = 0 for i ≥ 1 and any B-module N . Finally, we have

Ext1
Bh(NLBh/k, Nh) = Ext1

Bh(NLB/k⊗BBh, N ⊗B Bh)
= Ext1

B(NLB/k, N)⊗B Bh

= Ext1
B(NLB/k, N)

The first equality by More on Algebra, Lemma 15.33.8 (or rather its analogue for
henselizations of pairs). The second by More on Algebra, Lemma 15.99.2. The
third because Ext1

B(NLB/k, N) is J-power torsion, the map B → Bh is flat and
induces an isomorphism B/J → Bh/JBh (More on Algebra, Lemma 15.12.2), and
More on Algebra, Lemma 15.89.3. This concludes the proof by the description of
ExalA(B,N) as Ext1

B(NLB/A, N) given just above Lemma 93.12.4. □

Lemma 93.14.3.0DZD In Example 93.8.1 let P be a k-algebra. Let J ⊂ P be an ideal.
Denote (Ph, Jh) the henselization of the pair (P, J). If

(1) k → P is of finite type, and
(2) Spec(P )→ Spec(k) is smooth on the complement of V (J),

then the functor between deformation categories of Lemma 93.8.8
Def P −→ Def Ph

is smooth and induces an isomorphism on tangent spaces.

Proof. We know that Def P and Def Ph are deformation categories by Lemma 93.8.2.
Thus it suffices to check our functor identifies tangent spaces and a correspondence
between liftability, see Formal Deformation Theory, Lemma 90.20.3. The property
on liftability is proven in Lemma 93.14.1 and the isomorphism on tangent spaces is
the special case of Lemma 93.14.2 where N = B. □

93.15. Application to isolated singularities

0DZE We apply the discussion above to study the deformation theory of a finite type
algebra with finitely many singular points.

Lemma 93.15.1.0DZF In Example 93.8.1 let P be a k-algebra. Assume that k → P is
of finite type and that Spec(P )→ Spec(k) is smooth except at the maximal ideals
m1, . . . ,mn of P . Let Pmi , Phmi , P

∧
mi be the local ring, henselization, completion.

Then the maps of deformation categories
Def P →

∏
Def Pmi

→
∏
Def Phmi →

∏
Def P∧

mi

are smooth and induce isomorphisms on their finite dimensional tangent spaces.
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Proof. The tangent space is finite dimensional by Lemma 93.8.5. The functors
between the categories are constructed in Lemmas 93.8.7, 93.8.8, and 93.8.10 (we
omit some verifications of the form: the completion of the henselization is the
completion).
Set J = m1∩. . .∩mn and apply Lemma 93.12.5 to get that Def P → Def P∧ is smooth
and induces an isomorphism on tangent spaces where P∧ is the J-adic completion
of P . However, since P∧ =

∏
P∧
mi we see that the map Def P →

∏
Def P∧

mi
is smooth

and induces an isomorphism on tangent spaces.
Let (Ph, Jh) be the henselization of the pair (P, J). Then Ph =

∏
Phmi (look

at idempotents and use More on Algebra, Lemma 15.11.6). Hence we can apply
Lemma 93.14.3 to conclude as in the case of completion.
To get the final case it suffices to show that Def Pmi

→ Def P∧
mi

is smooth and
induce isomorphisms on tangent spaces for each i separately. To do this, we may
replace P by a principal localization whose only singular point is a maximal ideal
m (corresponding to mi in the original P ). Then we can apply Lemma 93.13.3 with
multiplicative subset S = P \m to conclude. Minor details omitted. □

93.16. Unobstructed deformation problems

0DZG Let p : F → CΛ be a category cofibred in groupoids. Recall that we say F is smooth
or unobstructed if p is smooth. This means that given a surjection φ : A′ → A
in CΛ and x ∈ Ob(F(A)) there exists a morphism f : x′ → x in F with p(f) =
φ. See Formal Deformation Theory, Section 90.9. In this section we give some
geometrically meaningful examples.

Lemma 93.16.1.0DZH In Example 93.8.1 let P be a local complete intersection over k
(Algebra, Definition 10.135.1). Then Def P is unobstructed.

Proof. Let (A,Q) → (k, P ) be an object of Def P . Then we see that A → Q is
a syntomic ring map by Algebra, Definition 10.136.1. Hence for any surjection
A′ → A in CΛ we see that there is a morphism (A′, Q′)→ (A,Q) lifting A′ → A by
Smoothing Ring Maps, Proposition 16.3.2. This proves the lemma. □

Lemma 93.16.2.0DZN In Situation 93.9.9 if U12 → Spec(k) is smooth, then the morphism
DefX −→ Def U1 ×Def U2 = Def P1 ×Def P2

is smooth. If in addition U1 is a local complete intersection over k, then
DefX −→ Def U2 = Def P2

is smooth.

Proof. The equality signs hold by Lemma 93.9.7. Let us think of CΛ as a deforma-
tion category over CΛ as in Formal Deformation Theory, Section 90.9. Then

Def P1 ×Def P2 = Def P1 ×CΛ Def P2 ,

see Formal Deformation Theory, Remarks 90.5.2 (14). Using Lemma 93.9.10 the
first statement is that the functor

Def P1 ×DefP12
Def P2 −→ Def P1 ×CΛ Def P2

is smooth. This follows from Formal Deformation Theory, Lemma 90.20.2 as long
as we can show that TDef P12 = (0). This vanishing follows from Lemma 93.8.4 as
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P12 is smooth over k. For the second statement it suffices to show that Def P1 → CΛ
is smooth, see Formal Deformation Theory, Lemma 90.8.7. In other words, we have
to show Def P1 is unobstructed, which is Lemma 93.16.1. □

Lemma 93.16.3.0DZP In Example 93.9.1 let X be a scheme over k. Assume
(1) X is separated, finite type over k and dim(X) ≤ 1,
(2) X → Spec(k) is smooth except at the closed points p1, . . . , pn ∈ X.

Let OX,p1 , OhX,p1
, O∧

X,p1
be the local ring, henselization, completion. Consider the

maps of deformation categories
DefX −→

∏
Def OX,pi

−→
∏
Def Oh

X,pi

−→
∏
Def O∧

X,pi

The first arrow is smooth and the second and third arrows are smooth and induce
isomorphisms on tangent spaces.
Proof. Choose an affine open U2 ⊂ X containing p1, . . . , pn and the generic point
of every irreducible component of X. This is possible by Varieties, Lemma 33.43.3
and Properties, Lemma 28.29.5. Then X \ U2 is finite and we can choose an affine
open U1 ⊂ X \ {p1, . . . , pn} such that X = U1 ∪ U2. Set U12 = U1 ∩ U2. Then U1
and U12 are smooth affine schemes over k. We conclude that

DefX −→ Def U2

is smooth by Lemma 93.16.2. Applying Lemmas 93.9.7 and 93.15.1 we win. □

Lemma 93.16.4.0DZQ In Example 93.9.1 let X be a scheme over k. Assume
(1) X is separated, finite type over k and dim(X) ≤ 1,
(2) X is a local complete intersection over k, and
(3) X → Spec(k) is smooth except at finitely many points.

Then DefX is unobstructed.
Proof. Let p1, . . . , pn ∈ X be the points where X → Spec(k) isn’t smooth. Choose
an affine open U2 ⊂ X containing p1, . . . , pn and the generic point of every irre-
ducible component of X. This is possible by Varieties, Lemma 33.43.3 and Prop-
erties, Lemma 28.29.5. Then X \ U2 is finite and we can choose an affine open
U1 ⊂ X \ {p1, . . . , pn} such that X = U1 ∪ U2. Set U12 = U1 ∩ U2. Then U1 and
U12 are smooth affine schemes over k. We conclude that

DefX −→ Def U2

is smooth by Lemma 93.16.2. Applying Lemmas 93.9.7 and 93.16.1 we win. □

93.17. Smoothings

0E7S Suppose given a finite type scheme or algebraic space X over a field k. It is often
useful to find a flat morphism of finite type Y → Spec(k[[t]]) whose generic fibre
is smooth and whose special fibre is isomorphic to X. Such a thing is called a
smoothing ofX. In this section we will find a smoothing for 1-dimensional separated
X which have isolated local complete intersection singularities.
Lemma 93.17.1.0E7T Let k be a field. Set S = Spec(k[[t]]) and Sn = Spec(k[t]/(tn)).
Let Y → S be a proper, flat morphism of schemes whose special fibre X is Cohen-
Macaulay and equidimensional of dimension d. Denote Xn = Y ×S Sn. If for some
n ≥ 1 the dth Fitting ideal of ΩXn/Sn contains tn−1, then the generic fibre of Y → S
is smooth.
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Proof. By More on Morphisms, Lemma 37.22.7 we see that Y → S is a Cohen-
Macaulay morphism. By Morphisms, Lemma 29.29.4 we see that Y → S has
relative dimension d. By Divisors, Lemma 31.10.3 the dth Fitting ideal I ⊂ OY of
ΩY/S cuts out the singular locus of the morphism Y → S. In other words, V (I) ⊂ Y
is the closed subset of points where Y → S is not smooth. By Divisors, Lemma
31.10.1 formation of this Fitting ideal commutes with base change. By assumption
we see that tn−1 is a section of I + tnOY . Thus for every x ∈ X = V (t) ⊂ Y we
conclude that tn−1 ∈ Ix where Ix is the stalk at x. This implies that V (I) ⊂ V (t) in
an open neighbourhood of X in Y . Since Y → S is proper, this implies V (I) ⊂ V (t)
as desired. □

Lemma 93.17.2.0E7U Let k be a field. Let 1 ≤ c ≤ n be integers. Let f1, . . . , fc ∈
k[x1, . . . xn] be elements. Let aij , 0 ≤ i ≤ n, 1 ≤ j ≤ c be variables. Consider

gj = fj + a0j + a1jx1 + . . .+ anjxn ∈ k[aij ][x1, . . . , xn]

Denote Y ⊂ An+c(n+1)
k the closed subscheme cut out by g1, . . . , gc. Denote π :

Y → Ac(n+1)
k the projection onto the affine space with variables aij . Then there is

a nonempty Zariski open of Ac(n+1)
k over which π is smooth.

Proof. Recall that the set of points where π is smooth is open. Thus the comple-
ment, i.e., the singular locus, is closed. By Chevalley’s theorem (in the form of
Morphisms, Lemma 29.22.2) the image of the singular locus is constructible. Hence
if the generic point of Ac(n+1)

k is not in the image of the singular locus, then the
lemma follows (by Topology, Lemma 5.15.15 for example). Thus we have to show
there is no point y ∈ Y where π is not smooth mapping to the generic point of
Ac(n+1)
k . Consider the matrix of partial derivatives

(∂gj
∂xi

) = (∂fj
∂xi

+ aij)

The image of this matrix in κ(y) must have rank < c since otherwise π would be
smooth at y, see discussion in Smoothing Ring Maps, Section 16.2. Thus we can
find λ1, . . . , λc ∈ κ(y) not all zero such that the vector (λ1, . . . , λc) is in the kernel
of this matrix. After renumbering we may assume λ1 ̸= 0. Dividing by λ1 we may
assume our vector has the form (1, λ2, . . . , λc). Then we obtain

ai1 = − ∂fj
∂x1
−
∑

j=2,...,c
λj(

∂fj
∂xi

+ aij)

in κ(y) for i = 1, . . . , n. Moreover, since y ∈ Y we also have

a0j = −fj − a1jx1 − . . .− anjxn

in κ(y). This means that the subfield of κ(y) generated by aij is contained in the
subfield of κ(y) generated by the images of x1, . . . , xn, λ2, . . . , λc, and aij except for
ai1 and a0j . We count and we see that the transcendence degree of this is at most
c(n+ 1)− 1. Hence y cannot map to the generic point as desired. □

Lemma 93.17.3.0E7V Let k be a field. Let A be a global complete interesection over k.
There exists a flat finite type ring map k[[t]]→ B with B/tB ∼= A such that B[1/t]
is smooth over k((t)).
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Proof. Write A = k[x1, . . . , xn]/(f1, . . . , fc) as in Algebra, Definition 10.135.1. We
are going to choose aij ∈ (t) ⊂ k[[t]] and set

gj = fj + a0j + a1jx1 + . . .+ anjxn ∈ k[[t]][x1, . . . , xn]
After doing this we take B = k[[t]][x1, . . . , xn]/(g1, . . . , gc). We claim that k[[t]]→
B is flat at every prime ideal lying over (t). Namely, the elements f1, . . . , fc form
a regular sequence in the local ring at any prime ideal p of k[x1, . . . , xn] containing
f1, . . . , fc (Algebra, Lemma 10.135.4). Thus g1, . . . , gc is locally a lift of a regular
sequence and we can apply Algebra, Lemma 10.99.3. Flatness at primes lying over
(0) ⊂ k[[t]] is automatic because k((t)) = k[[t]](0) is a field. Thus B is flat over
k[[t]].
All that remains is to show that for suitable choices of aij the generic fibre B(0) is
smooth over k((t)). For this we have to show that we can choose our aij so that
the induced morphism

(aij) : Spec(k[[t]]) −→ Ac(n+1)
k

maps into the nonempty Zariski open of Lemma 93.17.2. This is clear because there
is no nonzero polynomial in the aij which vanishes on (t)⊕c(n+1). (We leave this as
an exercise to the reader.) □

Lemma 93.17.4.0E7W Let k be a field. Let A be a finite dimensional k-algebra which
is a local complete intersection over k. Then there is a finite flat k[[t]]-algebra B
with B/tB ∼= A and B[1/t] étale over k((t)).

Proof. Since A is Artinian (Algebra, Lemma 10.53.2), we can write A as a product
of local Artinian rings (Algebra, Lemma 10.53.6). Thus it suffices to prove the
lemma if A is local (this uses that being a local complete intersection is preserved
under taking principal localizations, see Algebra, Lemma 10.135.2). In this case A
is a global complete intersection. Consider the algebra B constructed in Lemma
93.17.3. Then k[[t]] → B is quasi-finite at the unique prime of B lying over (t)
(Algebra, Definition 10.122.3). Observe that k[[t]] is a henselian local ring (Algebra,
Lemma 10.153.9). Thus B = B′×C where B′ is finite over k[[t]] and C has no prime
lying over (t), see Algebra, Lemma 10.153.3. Then B′ is the ring we are looking for
(recall that étale is the same thing as smooth of relative dimension 0). □

Lemma 93.17.5.0E7X Let k be a field. Let A be a k-algebra. Assume
(1) A is a local ring essentially of finite type over k,
(2) A is a complete intersection over k (Algebra, Definition 10.135.5).

Set d = dim(A) + trdegk(κ) where κ is the residue field of A. Then there exists an
integer n and a flat, essentially of finite type ring map k[[t]] → B with B/tB ∼= A
such that tn is in the dth Fitting ideal of ΩB/k[[t]].

Proof. By Algebra, Lemma 10.135.7 we can write A as the localization at a prime
p of a global complete intersection P over k. Observe that dim(P ) = d by Algebra,
Lemma 10.116.3. By Lemma 93.17.3 we can find a flat, finite type ring map k[[t]]→
Q such that P ∼= Q/tQ and such that k((t)) → Q[1/t] is smooth. It follows from
the construction of Q in the lemma that k[[t]] → Q is a relative global complete
intersection of relative dimension d; alternatively, Algebra, Lemma 10.136.15 tells us
that Q or a suitable principal localization of Q is such a global complete intersection.
Hence by Divisors, Lemma 31.10.3 the dth Fitting ideal I ⊂ Q of ΩQ/k[[t]] cuts out

https://stacks.math.columbia.edu/tag/0E7W
https://stacks.math.columbia.edu/tag/0E7X
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the singular locus of Spec(Q) → Spec(k[[t]]). Thus tn ∈ I for some n. Let q ⊂ Q
be the inverse image of p. Set B = Qq. The lemma is proved. □

Lemma 93.17.6.0E7Y Let X be a scheme over a field k. Assume
(1) X is proper over k,
(2) X is a local complete intersection over k,
(3) X has dimension ≤ 1, and
(4) X → Spec(k) is smooth except at finitely many points.

Then there exists a flat projective morphism Y → Spec(k[[t]]) whose generic fibre
is smooth and whose special fibre is isomorphic to X.

Proof. Observe that X is Cohen-Macaulay, see Algebra, Lemma 10.135.3. Thus
X = X ′ ⨿ X ′′ with dim(X ′) = 0 and X ′′ equidimensional of dimension 1, see
Morphisms, Lemma 29.29.4. Since X ′ is finite over k (Varieties, Lemma 33.20.2)
we can find Y ′ → Spec(k[[t]]) with special fibre X ′ and generic fibre smooth by
Lemma 93.17.4. Thus it suffices to prove the lemma for X ′′. After replacing X by
X ′′ we have X is Cohen-Macaulay and equidimensional of dimension 1.
We are going to use deformation theory for the situation Λ = k → k. Let
p1, . . . , pr ∈ X be the closed singular points of X, i.e., the points where X →
Spec(k) isn’t smooth. For each i we pick an integer ni and a flat, essentially of
finite type ring map

k[[t]] −→ Bi

with Bi/tBi ∼= OX,pi such that tni is in the 1st Fitting ideal of ΩBi/k[[t]]. This is
possible by Lemma 93.17.5. Observe that the system (Bi/tnBi) defines a formal
object of Def OX,pi

over k[[t]]. By Lemma 93.16.3 the map

DefX −→
∏

i=1,...,r
Def OX,pi

is a smooth map between deformation categories. Hence by Formal Deformation
Theory, Lemma 90.8.8 there exists a formal object (Xn) in DefX mapping to the
formal object

∏
i(Bi/tn) by the arrow above. By More on Morphisms of Spaces,

Lemma 76.43.5 there exists a projective scheme Y over k[[t]] and compatible isomor-
phisms Y ×Spec(k[[t]])Spec(k[t]/(tn)) ∼= Xn. By More on Morphisms, Lemma 37.12.4
we see that Y → Spec(k[[t]]) is flat. Since X is Cohen-Macaulay and equidimen-
sional of dimension 1 we may apply Lemma 93.17.1 to check Y has smooth generic
fibre3. Choose n strictly larger than the maximum of the integers ni found above.
It we can show tn−1 is in the first Fitting ideal of ΩXn/Sn with Sn = Spec(k[t]/(tn)),
then the proof is done. To do this it suffices to prove this is true in each of the
local rings of Xn at closed points p. However, if p corresponds to a smooth point
for X → Spec(k), then ΩXn/Sn,p is free of rank 1 and the first Fitting ideal is equal
to the local ring. If p = pi for some i, then

ΩXn/Sn,pi = Ω(Bi/tnBi)/(k[t]/(tn)) = ΩBi/k[[t]]/t
nΩBi/k[[t]]

Since taking Fitting ideals commutes with base change (with already used this but
in this algebraic setting it follows from More on Algebra, Lemma 15.8.4), and since
n− 1 ≥ ni we see that tn−1 is in the Fitting ideal of this module over Bi/tnBi as
desired. □

3Warning: in general it is not true that the local ring of Y at the point pi is isomorphic to
Bi. We only know that this is true after dividing by tn on both sides!

https://stacks.math.columbia.edu/tag/0E7Y
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Lemma 93.17.7.0E7Z Let k be a field and let X be a scheme over k. Assume
(1) X is separated, finite type over k and dim(X) ≤ 1,
(2) X is a local complete intersection over k, and
(3) X → Spec(k) is smooth except at finitely many points.

Then there exists a flat, separated, finite type morphism Y → Spec(k[[t]]) whose
generic fibre is smooth and whose special fibre is isomorphic to X.

Proof. If X is reduced, then we can choose an embedding X ⊂ X as in Varieties,
Lemma 33.43.6. Writing X = X \{x1, . . . , xn} we see that OX,xi is a discrete valu-
ation ring and hence in particular a local complete intersection (Algebra, Definition
10.135.5). Thus X is a local complete intersection over k because this holds over
the open X and at the points xi by Algebra, Lemma 10.135.7. Thus we may apply
Lemma 93.17.6 to find a projective flat morphism Y → Spec(k[[t]]) whose generic
fibre is smooth and whose special fibre is X. Then we remove x1, . . . , xn from Y
to obtain Y .
In the general case, write X = X ′ ⨿X ′′ where with dim(X ′) = 0 and X ′′ equidi-
mensional of dimension 1. Then X ′′ is reduced and the first paragraph applies to
it. On the other hand, X ′ can be dealt with as in the proof of Lemma 93.17.6.
Some details omitted. □
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CHAPTER 94

Algebraic Stacks

026K 94.1. Introduction

026L This is where we define algebraic stacks and make some very elementary obser-
vations. The general philosophy will be to have no separation conditions whatso-
ever and add those conditions necessary to make lemmas, propositions, theorems
true/provable. Thus the notions discussed here differ slightly from those in other
places in the literature, e.g., [LMB00].

This chapter is not an introduction to algebraic stacks. For an informal discussion
of algebraic stacks, please take a look at Introducing Algebraic Stacks, Section
105.1.

94.2. Conventions

026M The conventions we use in this chapter are the same as those in the chapter on
algebraic spaces. For convenience we repeat them here.

We work in a suitable big fppf site Schfppf as in Topologies, Definition 34.7.6. So,
if not explicitly stated otherwise all schemes will be objects of Schfppf . We discuss
what changes if you change the big fppf site in Section 94.18.

We will always work relative to a base S contained in Schfppf . And we will then
work with the big fppf site (Sch/S)fppf , see Topologies, Definition 34.7.8. The
absolute case can be recovered by taking S = Spec(Z).

If U, T are schemes over S, then we denote U(T ) for the set of T -valued points over
S. In a formula: U(T ) = MorS(T,U).

Note that any fpqc covering is a universal effective epimorphism, see Descent,
Lemma 35.13.7. Hence the topology on Schfppf is weaker than the canonical topol-
ogy and all representable presheaves are sheaves.

94.3. Notation

0400 We use the letters S, T, U, V,X, Y to indicate schemes. We use the letters X ,Y,Z
to indicate categories (fibred, fibred in groupoids, stacks, ...) over (Sch/S)fppf . We
use small case letters f , g for functors such as f : X → Y over (Sch/S)fppf . We
use capital F , G, H for algebraic spaces over S, and more generally for presheaves
of sets on (Sch/S)fppf . (In future chapters we will revert to using also X, Y , etc
for algebraic spaces.)

The reason for these choices is that we want to clearly distinguish between the
different types of objects in this chapter, to build the foundations.

6671
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94.4. Representable categories fibred in groupoids

02ZQ Let S be a scheme contained in Schfppf . The basic object of study in this chapter
will be a category fibred in groupoids p : X → (Sch/S)fppf , see Categories, Defini-
tion 4.35.1. We will often simply say “let X be a category fibred in groupoids over
(Sch/S)fppf” to indicate this situation. A 1-morphism X → Y of categories fibred
in groupoids over (Sch/S)fppf will be a 1-morphism in the 2-category of categories
fibred in groupoids over (Sch/S)fppf , see Categories, Definition 4.35.6. It is simply
a functor X → Y over (Sch/S)fppf . We recall this is really a (2, 1)-category and
that all 2-fibre products exist.

Let X be a category fibred in groupoids over (Sch/S)fppf . Recall that X is said to
be representable if there exists a scheme U ∈ Ob((Sch/S)fppf ) and an equivalence

j : X −→ (Sch/U)fppf

of categories over (Sch/S)fppf , see Categories, Definition 4.40.1. We will sometimes
say that X is representable by a scheme to distinguish from the case where X is
representable by an algebraic space (see below).

If X ,Y are fibred in groupoids and representable by U, V , then we have

(94.4.0.1)04SR MorCat/(Sch/S)fppf (X ,Y)
/

2-isomorphism = MorSch/S(U, V )

see Categories, Lemma 4.40.3. More precisely, any 1-morphism X → Y gives rise
to a morphism U → V . Conversely, given a morphism of schemes U → V over
S there exists a 1-morphism ϕ : X → Y which gives rise to U → V and which is
unique up to unique 2-isomorphism.

94.5. The 2-Yoneda lemma

04SS Let U ∈ Ob((Sch/S)fppf ), and let X be a category fibred in groupoids over
(Sch/S)fppf . We will frequently use the 2-Yoneda lemma, see Categories, Lemma
4.41.2. Technically it says that there is an equivalence of categories

MorCat/(Sch/S)fppf ((Sch/U)fppf ,X ) −→ XU , f 7−→ f(U/U).

It says that 1-morphisms (Sch/U)fppf → X correspond to objects x of the fibre
category XU . Namely, given a 1-morphism f : (Sch/U)fppf → X we obtain the
object x = f(U/U) ∈ Ob(XU ). Conversely, given a choice of pullbacks for X
as in Categories, Definition 4.33.6, and an object x of XU , we obtain a functor
(Sch/U)fppf → X defined by the rule

(φ : V → U) 7−→ φ∗x

on objects. By abuse of notation we use x : (Sch/U)fppf → X to indicate this
functor. It indeed has the property that x(U/U) = x and moreover, given any
other functor f with f(U/U) = x there exists a unique 2-isomorphism x → f .
In other words the functor x is well determined by the object x up to unique
2-isomorphism.

We will use this without further mention in the following.
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94.6. Representable morphisms of categories fibred in groupoids

04ST Let X , Y be categories fibred in groupoids over (Sch/S)fppf . Let f : X → Y
be a representable 1-morphism, see Categories, Definition 4.42.3. This means
that for every U ∈ Ob((Sch/S)fppf ) and any y ∈ Ob(YU ) the 2-fibre product
(Sch/U)fppf ×y,Y X is representable. Choose a representing object Vy and an
equivalence

(Sch/Vy)fppf −→ (Sch/U)fppf ×y,Y X .
The projection (Sch/Vy)fppf → (Sch/U)fppf ×Y Y → (Sch/U)fppf comes from a
morphism of schemes fy : Vy → U , see Section 94.4. We represent this by the
diagram

(94.6.0.1)0401

Vy //

fy

��

(Sch/Vy)fppf

��

// X

f

��
U // (Sch/U)fppf

y // Y

where the squiggly arrows represent the 2-Yoneda embedding. Here are some lem-
mas about this notion that work in great generality (namely, they work for cate-
gories fibred in groupoids over any base category which has fibre products).

Lemma 94.6.1.02ZR Let f : X → Y be a morphism of (Sch/S)fppf . Then the 1-
morphism induced by f

(Sch/X)fppf −→ (Sch/Y )fppf
is a representable 1-morphism.

Proof. This is formal and relies only on the fact that the category (Sch/S)fppf has
fibre products. □

Lemma 94.6.2.0456 Let S be an object of Schfppf . Consider a 2-commutative diagram

X ′ //

f ′

��

X

f

��
Y ′ // Y

of 1-morphisms of categories fibred in groupoids over (Sch/S)fppf . Assume the
horizontal arrows are equivalences. Then f is representable if and only if f ′ is
representable.

Proof. Omitted. □

Lemma 94.6.3.02ZS Let S be a scheme contained in Schfppf . Let X ,Y,Z be categories
fibred in groupoids over (Sch/S)fppf Let f : X → Y, g : Y → Z be representable
1-morphisms. Then

g ◦ f : X −→ Z
is a representable 1-morphism.

Proof. This is entirely formal and works in any category. □

https://stacks.math.columbia.edu/tag/02ZR
https://stacks.math.columbia.edu/tag/0456
https://stacks.math.columbia.edu/tag/02ZS
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Lemma 94.6.4.02ZT Let S be a scheme contained in Schfppf . Let X ,Y,Z be categories
fibred in groupoids over (Sch/S)fppf Let f : X → Y be a representable 1-morphism.
Let g : Z → Y be any 1-morphism. Consider the fibre product diagram

Z ×g,Y,f X
g′
//

f ′

��

X

f

��
Z

g // Y

Then the base change f ′ is a representable 1-morphism.

Proof. This is entirely formal and works in any category. □

Lemma 94.6.5.02ZU Let S be a scheme contained in Schfppf . Let Xi,Yi be categories
fibred in groupoids over (Sch/S)fppf , i = 1, 2. Let fi : Xi → Yi, i = 1, 2 be
representable 1-morphisms. Then

f1 × f2 : X1 ×X2 −→ Y1 × Y2

is a representable 1-morphism.

Proof. Write f1 × f2 as the composition X1 ×X2 → Y1 ×X2 → Y1 × Y2. The first
arrow is the base change of f1 by the map Y1 × X2 → Y1, and the second arrow
is the base change of f2 by the map Y1 × Y2 → Y2. Hence this lemma is a formal
consequence of Lemmas 94.6.3 and 94.6.4. □

94.7. Split categories fibred in groupoids

04SU Let S be a scheme contained in Schfppf . Recall that given a “presheaf of groupoids”

F : (Sch/S)oppfppf −→ Groupoids

we get a category fibred in groupoids SF over (Sch/S)fppf , see Categories, Example
4.37.1. Any category fibred in groupoids isomorphic (!) to one of these is called a
split category fibred in groupoids. Any category fibred in groupoids is equivalent
to a split one.

If F is a presheaf of sets then SF is fibred in sets, see Categories, Definition 4.38.2,
and Categories, Example 4.38.5. The rule F 7→ SF is in some sense fully faithful
on presheaves, see Categories, Lemma 4.38.6. If F,G are presheaves, then

SF×G = SF ×(Sch/S)fppf SG

and if F → H and G→ H are maps of presheaves of sets, then

SF×HG = SF ×SH SG

where the right hand sides are 2-fibre products. This is immediate from the defini-
tions as the fibre categories of SF ,SG,SH have only identity morphisms.

An even more special case is where F = hX is a representable presheaf. In this
case we have ShX = (Sch/X)fppf , see Categories, Example 4.38.7.

We will use the notation SF without further mention in the following.

https://stacks.math.columbia.edu/tag/02ZT
https://stacks.math.columbia.edu/tag/02ZU


94.9. MORPHISMS REPRESENTABLE BY ALGEBRAIC SPACES 6675

94.8. Categories fibred in groupoids representable by algebraic spaces

02ZV A slightly weaker notion than being representable is the notion of being repre-
sentable by algebraic spaces which we discuss in this section. This discussion might
have been avoided had we worked with some category Spacesfppf of algebraic spaces
instead of the category Schfppf . However, it seems to us natural to consider the
category of schemes as the natural collection of “test objects” over which the fibre
categories of an algebraic stack are defined.

In analogy with Categories, Definitions 4.40.1 we make the following definition.

Definition 94.8.1.04SV Let S be a scheme contained in Schfppf . A category fibred in
groupoids p : X → (Sch/S)fppf is called representable by an algebraic space over
S if there exists an algebraic space F over S and an equivalence j : X → SF of
categories over (Sch/S)fppf .

We continue our abuse of notation in suppressing the equivalence j whenever we
encounter such a situation. It follows formally from the above that if X is repre-
sentable (by a scheme), then it is representable by an algebraic space. Here is the
analogue of Categories, Lemma 4.40.2.

Lemma 94.8.2.02ZX Let S be a scheme contained in Schfppf . Let p : X → (Sch/S)fppf
be a category fibred in groupoids. Then X is representable by an algebraic space
over S if and only if the following conditions are satisfied:

(1) X is fibred in setoids1, and
(2) the presheaf U 7→ Ob(XU )/∼= is an algebraic space.

Proof. Omitted, but see Categories, Lemma 4.40.2. □

If X ,Y are fibred in groupoids and representable by algebraic spaces F,G over S,
then we have

(94.8.2.1)04SW MorCat/(Sch/S)fppf (X ,Y)
/

2-isomorphism = MorSch/S(F,G)

see Categories, Lemma 4.39.6. More precisely, any 1-morphism X → Y gives rise to
a morphism F → G. Conversely, given a morphism of sheaves F → G over S there
exists a 1-morphism ϕ : X → Y which gives rise to F → G and which is unique up
to unique 2-isomorphism.

94.9. Morphisms representable by algebraic spaces

04SX In analogy with Categories, Definition 4.42.3 we make the following definition.

Definition 94.9.1.02ZW Let S be a scheme contained in Schfppf . A 1-morphism f :
X → Y of categories fibred in groupoids over (Sch/S)fppf is called representable
by algebraic spaces if for any U ∈ Ob((Sch/S)fppf ) and any y : (Sch/U)fppf → Y
the category fibred in groupoids

(Sch/U)fppf ×y,Y X

over (Sch/U)fppf is representable by an algebraic space over U .

1This means that it is fibred in groupoids and objects in the fibre categories have no nontrivial
automorphisms, see Categories, Definition 4.38.2.

https://stacks.math.columbia.edu/tag/04SV
https://stacks.math.columbia.edu/tag/02ZX
https://stacks.math.columbia.edu/tag/02ZW
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Choose an algebraic space Fy over U which represents (Sch/U)fppf×y,YX . We may
think of Fy as an algebraic space over S which comes equipped with a canonical
morphism fy : Fy → U over S, see Spaces, Section 65.16. Here is the diagram

(94.9.1.1)0402

Fy

fy

��

(Sch/U)fppf ×y,Y Xoo

pr0

��

pr1
// X

f

��
U (Sch/U)fppfoo y // Y

where the squiggly arrows represent the construction which associates to a stack
fibred in setoids its associated sheaf of isomorphism classes of objects. The right
square is 2-commutative, and is a 2-fibre product square.
Here is the analogue of Categories, Lemma 4.42.5.
Lemma 94.9.2.02ZY Let S be a scheme contained in Schfppf . Let f : X → Y be a
1-morphism of categories fibred in groupoids over (Sch/S)fppf . The following are
necessary and sufficient conditions for f to be representable by algebraic spaces:

(1) for each scheme U/S the functor fU : XU −→ YU between fibre categories
is faithful, and

(2) for each U and each y ∈ Ob(YU ) the presheaf
(h : V → U) 7−→ {(x, ϕ) | x ∈ Ob(XV ), ϕ : h∗y → f(x)}/ ∼=

is an algebraic space over U .
Here we have made a choice of pullbacks for Y.
Proof. This follows from the description of fibre categories of the 2-fibre products
(Sch/U)fppf×y,YX in Categories, Lemma 4.42.1 combined with Lemma 94.8.2. □

Here are some lemmas about this notion that work in great generality.
Lemma 94.9.3.0457 Let S be an object of Schfppf . Consider a 2-commutative diagram

X ′ //

f ′

��

X

f

��
Y ′ // Y

of 1-morphisms of categories fibred in groupoids over (Sch/S)fppf . Assume the
horizontal arrows are equivalences. Then f is representable by algebraic spaces if
and only if f ′ is representable by algebraic spaces.
Proof. Omitted. □

Lemma 94.9.4.02ZZ Let S be an object of Schfppf . Let f : X → Y be a 1-morphism
of categories fibred in groupoids over S. If X and Y are representable by algebraic
spaces over S, then the 1-morphism f is representable by algebraic spaces.
Proof. Omitted. This relies only on the fact that the category of algebraic spaces
over S has fibre products, see Spaces, Lemma 65.7.3. □

Lemma 94.9.5.0458 Let S be an object of Schfppf . Let a : F → G be a map of
presheaves of sets on (Sch/S)fppf . Denote a′ : SF → SG the associated map of
categories fibred in sets. Then a is representable by algebraic spaces (see Bootstrap,
Definition 80.3.1) if and only if a′ is representable by algebraic spaces.

https://stacks.math.columbia.edu/tag/02ZY
https://stacks.math.columbia.edu/tag/0457
https://stacks.math.columbia.edu/tag/02ZZ
https://stacks.math.columbia.edu/tag/0458
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Proof. Omitted. □

Lemma 94.9.6.04SY Let S be an object of Schfppf . Let f : X → Y be a 1-morphism
of categories fibred in setoids over (Sch/S)fppf . Let F , resp. G be the presheaf
which to T associates the set of isomorphism classes of objects of XT , resp. YT . Let
a : F → G be the map of presheaves corresponding to f . Then a is representable by
algebraic spaces (see Bootstrap, Definition 80.3.1) if and only if f is representable
by algebraic spaces.

Proof. Omitted. Hint: Combine Lemmas 94.9.3 and 94.9.5. □

Lemma 94.9.7.0302 Let S be a scheme contained in Schfppf . Let X ,Y,Z be categories
fibred in groupoids over (Sch/S)fppf . Let f : X → Y be a 1-morphism representable
by algebraic spaces. Let g : Z → Y be any 1-morphism. Consider the fibre product
diagram

Z ×g,Y,f X
g′
//

f ′

��

X

f

��
Z

g // Y
Then the base change f ′ is a 1-morphism representable by algebraic spaces.

Proof. This is formal. □

Lemma 94.9.8.0300 Let S be a scheme contained in Schfppf . Let X ,Y,Z be categories
fibred in groupoids over (Sch/S)fppf Let f : X → Y, g : Z → Y be 1-morphisms.
Assume

(1) f is representable by algebraic spaces, and
(2) Z is representable by an algebraic space over S.

Then the 2-fibre product Z ×g,Y,f X is representable by an algebraic space.

Proof. This is a reformulation of Bootstrap, Lemma 80.3.6. First note that Z×g,Y,f
X is fibred in setoids over (Sch/S)fppf . Hence it is equivalent to SF for some
presheaf F on (Sch/S)fppf , see Categories, Lemma 4.39.5. Moreover, let G be an
algebraic space which represents Z. The 1-morphism Z ×g,Y,f X → Z is repre-
sentable by algebraic spaces by Lemma 94.9.7. And Z ×g,Y,f X → Z corresponds
to a morphism F → G by Categories, Lemma 4.39.6. Then F → G is representable
by algebraic spaces by Lemma 94.9.6. Hence Bootstrap, Lemma 80.3.6 implies that
F is an algebraic space as desired. □

Let S, X , Y, Z, f , g be as in Lemma 94.9.8. Let F and G be algebraic spaces
over S such that F represents Z ×g,Y,f X and G represents Z. The 1-morphism
f ′ : Z ×g,Y,f X → Z corresponds to a morphism f ′ : F → G of algebraic spaces by
(94.8.2.1). Thus we have the following diagram

(94.9.8.1)0403

F

f ′

��

Z ×g,Y,f Xoo

��

// X

f

��
G Zoo g // Y

where the squiggly arrows represent the construction which associates to a stack
fibred in setoids its associated sheaf of isomorphism classes of objects.

https://stacks.math.columbia.edu/tag/04SY
https://stacks.math.columbia.edu/tag/0302
https://stacks.math.columbia.edu/tag/0300
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Lemma 94.9.9.0301 Let S be a scheme contained in Schfppf . Let X ,Y,Z be categories
fibred in groupoids over (Sch/S)fppf . If f : X → Y, g : Y → Z are 1-morphisms
representable by algebraic spaces, then

g ◦ f : X −→ Z
is a 1-morphism representable by algebraic spaces.

Proof. This follows from Lemma 94.9.8. Details omitted. □

Lemma 94.9.10.0303 Let S be a scheme contained in Schfppf . Let Xi,Yi be categories
fibred in groupoids over (Sch/S)fppf , i = 1, 2. Let fi : Xi → Yi, i = 1, 2 be
1-morphisms representable by algebraic spaces. Then

f1 × f2 : X1 ×X2 −→ Y1 × Y2

is a 1-morphism representable by algebraic spaces.

Proof. Write f1 × f2 as the composition X1 ×X2 → Y1 ×X2 → Y1 × Y2. The first
arrow is the base change of f1 by the map Y1 × X2 → Y1, and the second arrow
is the base change of f2 by the map Y1 × Y2 → Y2. Hence this lemma is a formal
consequence of Lemmas 94.9.9 and 94.9.7. □

Lemma 94.9.11.0CKY Lemma in an email
of Matthew
Emerton dated June
15, 2016

Let S be a scheme contained in Schfppf . Let X → Z and Y → Z
be 1-morphisms of categories fibred in groupoids over (Sch/S)fppf . If X → Z is
representable by algebraic spaces and Y is a stack in groupoids, then X ×Z Y is a
stack in groupoids.

Proof. The property of a morphism being representable by algebraic spaces is pre-
served under base-change (Lemma 94.9.8), and so, passing to the base-change
X ×Z Y over Y, we may reduce to the case of a morphism of categories fibred
in groupoids X → Y which is representable by algebraic spaces, and whose target
is a stack in groupoids; our goal is then to prove that X is also a stack in groupoids.
This follows from Stacks, Lemma 8.6.11 whose assumptions are satisfied as a result
of Lemma 94.9.2. □

94.10. Properties of morphisms representable by algebraic spaces

03YJ Here is the definition that makes this work.

Definition 94.10.1.03YK Let S be a scheme contained in Schfppf . Let f : X → Y
be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf . Assume f is
representable by algebraic spaces. Let P be a property of morphisms of algebraic
spaces which

(1) is preserved under any base change, and
(2) is fppf local on the base, see Descent on Spaces, Definition 74.10.1.

In this case we say that f has property P if for every U ∈ Ob((Sch/S)fppf ) and
any y ∈ YU the resulting morphism of algebraic spaces fy : Fy → U , see diagram
(94.9.1.1), has property P.

It is important to note that we will only use this definition for properties of mor-
phisms that are stable under base change, and local in the fppf topology on the
target. This is not because the definition doesn’t make sense otherwise; rather it
is because we may want to give a different definition which is better suited to the
property we have in mind.

https://stacks.math.columbia.edu/tag/0301
https://stacks.math.columbia.edu/tag/0303
https://stacks.math.columbia.edu/tag/0CKY
https://stacks.math.columbia.edu/tag/03YK
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Lemma 94.10.2.0459 Let S be an object of Schfppf . Let P be as in Definition 94.10.1.
Consider a 2-commutative diagram

X ′ //

f ′

��

X

f

��
Y ′ // Y

of 1-morphisms of categories fibred in groupoids over (Sch/S)fppf . Assume the
horizontal arrows are equivalences and f (or equivalently f ′) is representable by
algebraic spaces. Then f has P if and only if f ′ has P.

Proof. Note that this makes sense by Lemma 94.9.3. Proof omitted. □

Here is a sanity check.

Lemma 94.10.3.045A Let S be a scheme contained in Schfppf . Let a : F → G be a
map of presheaves on (Sch/S)fppf . Let P be as in Definition 94.10.1. Assume a is
representable by algebraic spaces. Then a : F → G has property P (see Bootstrap,
Definition 80.4.1) if and only if the corresponding morphism SF → SG of categories
fibred in groupoids has property P.

Proof. Note that the lemma makes sense by Lemma 94.9.5. Proof omitted. □

Lemma 94.10.4.04TC Let S be an object of Schfppf . Let P be as in Definition 94.10.1.
Let f : X → Y be a 1-morphism of categories fibred in setoids over (Sch/S)fppf .
Let F , resp. G be the presheaf which to T associates the set of isomorphism classes
of objects of XT , resp. YT . Let a : F → G be the map of presheaves corresponding
to f . Then a has P if and only if f has P.

Proof. The lemma makes sense by Lemma 94.9.6. The lemma follows on combining
Lemmas 94.10.2 and 94.10.3. □

Lemma 94.10.5.045B Let S be a scheme contained in Schfppf . Let X , Y, Z be categories
fibred in groupoids over (Sch/S)fppf . Let P be a property as in Definition 94.10.1
which is stable under composition. Let f : X → Y, g : Y → Z be 1-morphisms
which are representable by algebraic spaces. If f and g have property P so does
g ◦ f : X → Z.

Proof. Note that the lemma makes sense by Lemma 94.9.9. Proof omitted. □

Lemma 94.10.6.045C Let S be a scheme contained in Schfppf . Let X ,Y,Z be categories
fibred in groupoids over (Sch/S)fppf . Let P be a property as in Definition 94.10.1.
Let f : X → Y be a 1-morphism representable by algebraic spaces. Let g : Z → Y
be any 1-morphism. Consider the 2-fibre product diagram

Z ×g,Y,f X
g′
//

f ′

��

X

f

��
Z

g // Y

If f has P, then the base change f ′ has P.

Proof. The lemma makes sense by Lemma 94.9.7. Proof omitted. □

https://stacks.math.columbia.edu/tag/0459
https://stacks.math.columbia.edu/tag/045A
https://stacks.math.columbia.edu/tag/04TC
https://stacks.math.columbia.edu/tag/045B
https://stacks.math.columbia.edu/tag/045C
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Lemma 94.10.7.045D Let S be a scheme contained in Schfppf . Let X ,Y,Z be categories
fibred in groupoids over (Sch/S)fppf . Let P be a property as in Definition 94.10.1.
Let f : X → Y be a 1-morphism representable by algebraic spaces. Let g : Z → Y
be any 1-morphism. Consider the fibre product diagram

Z ×g,Y,f X
g′
//

f ′

��

X

f

��
Z

g // Y
Assume that for every scheme U and object x of YU , there exists an fppf covering
{Ui → U} such that x|Ui is in the essential image of the functor g : ZUi → YUi . In
this case, if f ′ has P, then f has P.

Proof. Proof omitted. Hint: Compare with the proof of Spaces, Lemma 65.5.6. □

Lemma 94.10.8.045E Let S be a scheme contained in Schfppf . Let P be a property as
in Definition 94.10.1 which is stable under composition. Let Xi,Yi be categories
fibred in groupoids over (Sch/S)fppf , i = 1, 2. Let fi : Xi → Yi, i = 1, 2 be 1-
morphisms representable by algebraic spaces. If f1 and f2 have property P so does
f1 × f2 : X1 ×X2 → Y1 × Y2.

Proof. The lemma makes sense by Lemma 94.9.10. Proof omitted. □

Lemma 94.10.9.045F Let S be a scheme contained in Schfppf . Let X , Y be categories
fibred in groupoids over (Sch/S)fppf . Let f : X → Y be a 1-morphism representable
by algebraic spaces. Let P, P ′ be properties as in Definition 94.10.1. Suppose that
for any morphism of algebraic spaces a : F → G we have P(a) ⇒ P ′(a). If f has
property P then f has property P ′.

Proof. Formal. □

Lemma 94.10.10.05UK Let S be a scheme contained in Schfppf . Let j : X → Y be
a 1-morphism of categories fibred in groupoids over (Sch/S)fppf . Assume j is
representable by algebraic spaces and a monomorphism (see Definition 94.10.1 and
Descent on Spaces, Lemma 74.11.30). Then j is fully faithful on fibre categories.

Proof. We have seen in Lemma 94.9.2 that j is faithful on fibre categories. Consider
a scheme U , two objects u, v of XU , and an isomorphism t : j(u)→ j(v) in YU . We
have to construct an isomorphism in XU between u and v. By the 2-Yoneda lemma
(see Section 94.5) we think of u, v as 1-morphisms u, v : (Sch/U)fppf → X and we
consider the 2-fibre product

(Sch/U)fppf ×j◦v,Y X .
By assumption this is representable by an algebraic space Fj◦v, over U and the mor-
phism Fj◦v → U is a monomorphism. But since (1U , v, 1j(v)) gives a 1-morphism
of (Sch/U)fppf into the displayed 2-fibre product, we see that Fj◦v = U (here we
use that if V → U is a monomorphism of algebraic spaces which has a section, then
V = U). Therefore the 1-morphism projecting to the first coordinate

(Sch/U)fppf ×j◦v,Y X → (Sch/U)fppf
is an equivalence of fibre categories. Since (1U , u, t) and (1U , v, 1j(v)) give two
objects in ((Sch/U)fppf ×j◦v,Y X )U which have the same first coordinate, there

https://stacks.math.columbia.edu/tag/045D
https://stacks.math.columbia.edu/tag/045E
https://stacks.math.columbia.edu/tag/045F
https://stacks.math.columbia.edu/tag/05UK
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must be a 2-morphism between them in the 2-fibre product. This is by definition a
morphism t̃ : u→ v such that j(t̃) = t. □

Here is a characterization of those categories fibred in groupoids for which the
diagonal is representable by algebraic spaces.
Lemma 94.10.11.045G Let S be a scheme contained in Schfppf . Let X be a category
fibred in groupoids over (Sch/S)fppf . The following are equivalent:

(1) the diagonal X → X ×X is representable by algebraic spaces,
(2) for every scheme U over S, and any x, y ∈ Ob(XU ) the sheaf Isom(x, y)

is an algebraic space over U ,
(3) for every scheme U over S, and any x ∈ Ob(XU ) the associated 1-

morphism x : (Sch/U)fppf → X is representable by algebraic spaces,
(4) for every pair of schemes T1, T2 over S, and any xi ∈ Ob(XTi), i = 1, 2 the

2-fibre product (Sch/T1)fppf ×x1,X ,x2 (Sch/T2)fppf is representable by an
algebraic space,

(5) for every representable category fibred in groupoids U over (Sch/S)fppf
every 1-morphism U → X is representable by algebraic spaces,

(6) for every pair T1, T2 of representable categories fibred in groupoids over
(Sch/S)fppf and any 1-morphisms xi : Ti → X , i = 1, 2 the 2-fibre product
T1 ×x1,X ,x2 T2 is representable by an algebraic space,

(7) for every category fibred in groupoids U over (Sch/S)fppf which is repre-
sentable by an algebraic space every 1-morphism U → X is representable
by algebraic spaces,

(8) for every pair T1, T2 of categories fibred in groupoids over (Sch/S)fppf
which are representable by algebraic spaces, and any 1-morphisms xi :
Ti → X the 2-fibre product T1×x1,X ,x2 T2 is representable by an algebraic
space.

Proof. The equivalence of (1) and (2) follows from Stacks, Lemma 8.2.5 and the
definitions. Let us prove the equivalence of (1) and (3). Write C = (Sch/S)fppf
for the base category. We will use some of the observations of the proof of the
similar Categories, Lemma 4.42.6. We will use the symbol ∼= to mean “equivalence
of categories fibred in groupoids over C = (Sch/S)fppf”. Assume (1). Suppose given
U and x as in (3). For any scheme V and y ∈ Ob(XV ) we see (compare reference
above) that

C/U ×x,X ,y C/V ∼= (C/U ×S V )×(x,y),X ×X ,∆ X
which is representable by an algebraic space by assumption. Conversely, assume
(3). Consider any scheme U over S and a pair (x, x′) of objects of X over U . We
have to show that X ×∆,X ×X ,(x,x′) U is representable by an algebraic space. This
is clear because (compare reference above)

X ×∆,X ×X ,(x,x′) C/U ∼= (C/U ×x,X ,x′ C/U)×C/U×SU,∆ C/U
and the right hand side is representable by an algebraic space by assumption and
the fact that the category of algebraic spaces over S has fibre products and contains
U and S.
The equivalences (3)⇔ (4), (5)⇔ (6), and (7)⇔ (8) are formal. The equivalences
(3)⇔ (5) and (4)⇔ (6) follow from Lemma 94.9.3. Assume (3), and let U → X be
as in (7). To prove (7) we have to show that for every scheme V and 1-morphism
y : (Sch/V )fppf → X the 2-fibre product (Sch/V )fppf ×y,X U is representable by

https://stacks.math.columbia.edu/tag/045G
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an algebraic space. Property (3) tells us that y is representable by algebraic spaces
hence Lemma 94.9.8 implies what we want. Finally, (7) directly implies (3). □

In the situation of the lemma, for any 1-morphism x : (Sch/U)fppf → X as in
the lemma, it makes sense to say that x has property P, for any property as in
Definition 94.10.1. In particular this holds for P = “surjective”, P = “smooth”,
and P = “étale”, see Descent on Spaces, Lemmas 74.11.6, 74.11.26, and 74.11.28.
We will use these three cases in the definitions of algebraic stacks below.

94.11. Stacks in groupoids

0304 Let S be a scheme contained in Schfppf . Recall that a category p : X → (Sch/S)fppf
over (Sch/S)fppf is said to be a stack in groupoids (see Stacks, Definition 8.5.1) if
and only if

(1) p : X → (Sch/S)fppf is fibred in groupoids over (Sch/S)fppf ,
(2) for all U ∈ Ob((Sch/S)fppf ), for all x, y ∈ Ob(XU ) the presheaf Isom(x, y)

is a sheaf on the site (Sch/U)fppf , and
(3) for all coverings U = {Ui → U} in (Sch/S)fppf , all descent data (xi, ϕij)

for U are effective.
For examples see Examples of Stacks, Section 95.9 ff.

94.12. Algebraic stacks

026N Here is the definition of an algebraic stack. We remark that condition (2) implies
we can make sense out of the condition in part (3) that (Sch/U)fppf → X is smooth
and surjective, see discussion following Lemma 94.10.11.

Definition 94.12.1.026O Let S be a base scheme contained in Schfppf . An algebraic
stack over S is a category

p : X → (Sch/S)fppf
over (Sch/S)fppf with the following properties:

(1) The category X is a stack in groupoids over (Sch/S)fppf .
(2) The diagonal ∆ : X → X ×X is representable by algebraic spaces.
(3) There exists a scheme U ∈ Ob((Sch/S)fppf ) and a 1-morphism (Sch/U)fppf →
X which is surjective and smooth2.

There are some differences with other definitions found in the literature.
The first is that we require X to be a stack in groupoids in the fppf topology,
whereas in many references the étale topology is used. It somehow seems to us that
the fppf topology is the natural topology to work with. In the end the resulting
2-category of algebraic stacks ends up being the same. This is explained in Criteria
for Representability, Section 97.19.
The second is that we only require the diagonal map of X to be representable by
algebraic spaces, whereas in most references some other conditions are imposed.
Our point of view is to try to prove a certain number of the results that follow only
assuming that the diagonal of X be representable by algebraic spaces, and simply
add an additional hypothesis wherever this is necessary. It has the added benefit

2In future chapters we will denote this simply U → X as is customary in the literature.
Another good alternative would be to formulate this condition as the existence of a representable
category fibred in groupoids U and a surjective smooth 1-morphism U → X .

https://stacks.math.columbia.edu/tag/026O
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that any algebraic space (as defined in Spaces, Definition 65.6.1) gives rise to an
algebraic stack.
The third is that in some papers it is required that there exists a scheme U and a
surjective and étale morphism U → X . In the groundbreaking paper [DM69] where
algebraic stacks were first introduced Deligne and Mumford used this definition
and showed that the moduli stack of stable genus g > 1 curves is an algebraic
stack which has an étale covering by a scheme. Michael Artin, see [Art74], realized
that many natural results on algebraic stacks generalize to the case where one only
assume a smooth covering by a scheme. Hence our choice above. To distinguish
the two cases one sees the terms “Deligne-Mumford stack” and “Artin stack” used
in the literature. We will reserve the term “Artin stack” for later use (insert future
reference here), and continue to use “algebraic stack”, but we will use “Deligne-
Mumford stack” to indicate those algebraic stacks which have an étale covering by
a scheme.

Definition 94.12.2.03YO Let S be a scheme contained in Schfppf . Let X be an algebraic
stack over S. We say X is a Deligne-Mumford stack if there exists a scheme U and
a surjective étale morphism (Sch/U)fppf → X .

We will compare our notion of a Deligne-Mumford stack with the notion as defined
in the paper by Deligne and Mumford later (see insert future reference here).
The category of algebraic stacks over S forms a 2-category. Here is the precise
definition.

Definition 94.12.3.03YP Let S be a scheme contained in Schfppf . The 2-category of
algebraic stacks over S is the sub 2-category of the 2-category of categories fibred
in groupoids over (Sch/S)fppf (see Categories, Definition 4.35.6) defined as follows:

(1) Its objects are those categories fibred in groupoids over (Sch/S)fppf which
are algebraic stacks over S.

(2) Its 1-morphisms f : X → Y are any functors of categories over (Sch/S)fppf ,
as in Categories, Definition 4.32.1.

(3) Its 2-morphisms are transformations between functors over (Sch/S)fppf ,
as in Categories, Definition 4.32.1.

In other words this 2-category is the full sub 2-category of Cat/(Sch/S)fppf whose
objects are algebraic stacks. Note that every 2-morphism is automatically an iso-
morphism. Hence this is actually a (2, 1)-category and not just a 2-category.
We will see later (insert future reference here) that this 2-category has 2-fibre
products.
Similar to the remark above the 2-category of algebraic stacks over S is a full sub
2-category of the 2-category of categories fibred in groupoids over (Sch/S)fppf . It
turns out that it is closed under equivalences. Here is the precise statement.

Lemma 94.12.4.03YQ Let S be a scheme contained in Schfppf . Let X , Y be categories
over (Sch/S)fppf . Assume X , Y are equivalent as categories over (Sch/S)fppf .
Then X is an algebraic stack if and only if Y is an algebraic stack. Similarly, X is
a Deligne-Mumford stack if and only if Y is a Deligne-Mumford stack.

Proof. Assume X is an algebraic stack (resp. a Deligne-Mumford stack). By Stacks,
Lemma 8.5.4 this implies that Y is a stack in groupoids over Schfppf . Choose an

https://stacks.math.columbia.edu/tag/03YO
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equivalence f : X → Y over Schfppf . This gives a 2-commutative diagram

X
f

//

∆X

��

Y

∆Y

��
X × X

f×f // Y × Y
whose horizontal arrows are equivalences. This implies that ∆Y is representable by
algebraic spaces according to Lemma 94.9.3. Finally, let U be a scheme over S, and
let x : (Sch/U)fppf → X be a 1-morphism which is surjective and smooth (resp.
étale). Considering the diagram

(Sch/U)fppf id
//

x

��

(Sch/U)fppf
f◦x
��

X
f // Y

and applying Lemma 94.10.2 we conclude that f ◦x is surjective and smooth (resp.
étale) as desired. □

94.13. Algebraic stacks and algebraic spaces

03YR In this section we discuss some simple criteria which imply that an algebraic stack
is an algebraic space. The main result is that this happens exactly when objects of
fibre categories have no nontrivial automorphisms. This is not a triviality! Before
we come to this we first do a sanity check.

Lemma 94.13.1.03YS Let S be a scheme contained in Schfppf .
(1) A category fibred in groupoids p : X → (Sch/S)fppf which is representable

by an algebraic space is a Deligne-Mumford stack.
(2) If F is an algebraic space over S, then the associated category fibred in

groupoids p : SF → (Sch/S)fppf is a Deligne-Mumford stack.
(3) If X ∈ Ob((Sch/S)fppf ), then (Sch/X)fppf → (Sch/S)fppf is a Deligne-

Mumford stack.

Proof. It is clear that (2) implies (3). Parts (1) and (2) are equivalent by Lemma
94.12.4. Hence it suffices to prove (2). First, we note that SF is stack in sets since
F is a sheaf (Stacks, Lemma 8.6.3). A fortiori it is a stack in groupoids. Second
the diagonal morphism SF → SF × SF is the same as the morphism SF → SF×F
which comes from the diagonal of F . Hence this is representable by algebraic spaces
according to Lemma 94.9.4. Actually it is even representable (by schemes), as the
diagonal of an algebraic space is representable, but we do not need this. Let U be
a scheme and let hU → F be a surjective étale morphism. We may think of this
as a surjective étale morphism of algebraic spaces. Hence by Lemma 94.10.3 the
corresponding 1-morphism (Sch/U)fppf → SF is surjective and étale. □

The following result says that a Deligne-Mumford stack whose inertia is trivial
“is” an algebraic space. This lemma will be obsoleted by the stronger Proposition
94.13.3 below which says that this holds more generally for algebraic stacks...

Lemma 94.13.2.045H Let S be a scheme contained in Schfppf . Let X be an algebraic
stack over S. The following are equivalent

(1) X is a Deligne-Mumford stack and is a stack in setoids,

https://stacks.math.columbia.edu/tag/03YS
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(2) X is a Deligne-Mumford stack such that the canonical 1-morphism IX →
X is an equivalence, and

(3) X is representable by an algebraic space.

Proof. The equivalence of (1) and (2) follows from Stacks, Lemma 8.7.2. The
implication (3)⇒ (1) follows from Lemma 94.13.1. Finally, assume (1). By Stacks,
Lemma 8.6.3 there exists a sheaf F on (Sch/S)fppf and an equivalence j : X → SF .
By Lemma 94.9.5 the fact that ∆X is representable by algebraic spaces, means
that ∆F : F → F × F is representable by algebraic spaces. Let U be a scheme,
and let x : (Sch/U)fppf → X be a surjective étale morphism. The composition
j ◦ x : (Sch/U)fppf → SF corresponds to a morphism hU → F of sheaves. By
Bootstrap, Lemma 80.5.1 this morphism is representable by algebraic spaces. Hence
by Lemma 94.10.4 we conclude that hU → F is surjective and étale. Finally, we
apply Bootstrap, Theorem 80.6.1 to see that F is an algebraic space. □

Proposition 94.13.3.04SZ Let S be a scheme contained in Schfppf . Let X be an algebraic
stack over S. The following are equivalent

(1) X is a stack in setoids,
(2) the canonical 1-morphism IX → X is an equivalence, and
(3) X is representable by an algebraic space.

Proof. The equivalence of (1) and (2) follows from Stacks, Lemma 8.7.2. The im-
plication (3) ⇒ (1) follows from Lemma 94.13.2. Finally, assume (1). By Stacks,
Lemma 8.6.3 there exists an equivalence j : X → SF where F is a sheaf on
(Sch/S)fppf . By Lemma 94.9.5 the fact that ∆X is representable by algebraic
spaces, means that ∆F : F → F ×F is representable by algebraic spaces. Let U be
a scheme and let x : (Sch/U)fppf → X be a surjective smooth morphism. The com-
position j ◦ x : (Sch/U)fppf → SF corresponds to a morphism hU → F of sheaves.
By Bootstrap, Lemma 80.5.1 this morphism is representable by algebraic spaces.
Hence by Lemma 94.10.4 we conclude that hU → F is surjective and smooth. In
particular it is surjective, flat and locally of finite presentation (by Lemma 94.10.9
and the fact that a smooth morphism of algebraic spaces is flat and locally of finite
presentation, see Morphisms of Spaces, Lemmas 67.37.5 and 67.37.7). Finally, we
apply Bootstrap, Theorem 80.10.1 to see that F is an algebraic space. □

94.14. 2-Fibre products of algebraic stacks

04TD The 2-category of algebraic stacks has products and 2-fibre products. The first
lemma is really a special case of Lemma 94.14.3 but its proof is slightly easier.

Lemma 94.14.1.04TE Let S be a scheme contained in Schfppf . Let X , Y be algebraic
stacks over S. Then X ×(Sch/S)fppf Y is an algebraic stack, and is a product in the
2-category of algebraic stacks over S.

Proof. An object of X ×(Sch/S)fppf Y over T is just a pair (x, y) where x is an object
of XT and y is an object of YT . Hence it is immediate from the definitions that
X ×(Sch/S)fppf Y is a stack in groupoids. If (x, y) and (x′, y′) are two objects of
X ×(Sch/S)fppf Y over T , then

Isom((x, y), (x′, y′)) = Isom(x, x′)× Isom(y, y′).

https://stacks.math.columbia.edu/tag/04SZ
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Hence it follows from the equivalences in Lemma 94.10.11 and the fact that the cat-
egory of algebraic spaces has products that the diagonal of X×(Sch/S)fppf Y is repre-
sentable by algebraic spaces. Finally, suppose that U, V ∈ Ob((Sch/S)fppf ), and let
x, y be surjective smooth morphisms x : (Sch/U)fppf → X , y : (Sch/V )fppf → Y.
Note that

(Sch/U ×S V )fppf = (Sch/U)fppf ×(Sch/S)fppf (Sch/V )fppf .

The object (pr∗
Ux, pr∗

V y) of X ×(Sch/S)fppf Y over (Sch/U ×S V )fppf thus defines a
1-morphism

(Sch/U ×S V )fppf −→ X ×(Sch/S)fppf Y
which is the composition of base changes of x and y, hence is surjective and smooth,
see Lemmas 94.10.6 and 94.10.5. We conclude that X ×(Sch/S)fppf Y is indeed an
algebraic stack. We omit the verification that it really is a product. □

Lemma 94.14.2.04TF Let S be a scheme contained in Schfppf . Let Z be a stack in
groupoids over (Sch/S)fppf whose diagonal is representable by algebraic spaces.
Let X , Y be algebraic stacks over S. Let f : X → Z, g : Y → Z be 1-morphisms
of stacks in groupoids. Then the 2-fibre product X ×f,Z,g Y is an algebraic stack.

Proof. We have to check conditions (1), (2), and (3) of Definition 94.12.1. The first
condition follows from Stacks, Lemma 8.5.6.

The second condition we have to check is that the Isom-sheaves are representable by
algebraic spaces. To do this, suppose that T is a scheme over S, and u, v are objects
of (X ×f,Z,g Y)T . By our construction of 2-fibre products (which goes all the way
back to Categories, Lemma 4.32.3) we may write u = (x, y, α) and v = (x′, y′, α′).
Here α : f(x)→ g(y) and similarly for α′. Then it is clear that

Isom(u, v)

��

// Isom(y, y′)

ϕ 7→g(ϕ)◦α
��

Isom(x, x′)
ψ 7→α′◦f(ψ) // Isom(f(x), g(y′))

is a cartesian diagram of sheaves on (Sch/T )fppf . Since by assumption the sheaves
Isom(y, y′), Isom(x, x′), Isom(f(x), g(y′)) are algebraic spaces (see Lemma 94.10.11)
we see that Isom(u, v) is an algebraic space.

Let U, V ∈ Ob((Sch/S)fppf ), and let x, y be surjective smooth morphisms x :
(Sch/U)fppf → X , y : (Sch/V )fppf → Y. Consider the morphism

(Sch/U)fppf ×f◦x,Z,g◦y (Sch/V )fppf −→ X ×f,Z,g Y.

As the diagonal of Z is representable by algebraic spaces the source of this arrow
is representable by an algebraic space F , see Lemma 94.10.11. Moreover, the mor-
phism is the composition of base changes of x and y, hence surjective and smooth,
see Lemmas 94.10.6 and 94.10.5. Choosing a scheme W and a surjective étale mor-
phism W → F we see that the composition of the displayed 1-morphism with the
corresponding 1-morphism

(Sch/W )fppf −→ (Sch/U)fppf ×f◦x,Z,g◦y (Sch/V )fppf
is surjective and smooth which proves the last condition. □

https://stacks.math.columbia.edu/tag/04TF
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Lemma 94.14.3.04T2 Let S be a scheme contained in Schfppf . Let X ,Y,Z be algebraic
stacks over S. Let f : X → Z, g : Y → Z be 1-morphisms of algebraic stacks. Then
the 2-fibre product X ×f,Z,g Y is an algebraic stack. It is also the 2-fibre product
in the 2-category of algebraic stacks over (Sch/S)fppf .

Proof. The fact that X ×f,Z,g Y is an algebraic stack follows from the stronger
Lemma 94.14.2. The fact that X ×f,Z,g Y is a 2-fibre product in the 2-category of
algebraic stacks over S follows formally from the fact that the 2-category of algebraic
stacks over S is a full sub 2-category of the 2-category of stacks in groupoids over
(Sch/S)fppf . □

94.15. Algebraic stacks, overhauled

04T0 Some basic results on algebraic stacks.

Lemma 94.15.1.04T1 Let S be a scheme contained in Schfppf . Let f : X → Y be
a 1-morphism of algebraic stacks over S. Let V ∈ Ob((Sch/S)fppf ). Let y :
(Sch/V )fppf → Y be surjective and smooth. Then there exists an object U ∈
Ob((Sch/S)fppf ) and a 2-commutative diagram

(Sch/U)fppf a
//

x

��

(Sch/V )fppf
y

��
X

f // Y
with x surjective and smooth.

Proof. First choose W ∈ Ob((Sch/S)fppf ) and a surjective smooth 1-morphism
z : (Sch/W )fppf → X . As Y is an algebraic stack we may choose an equivalence

j : SF −→ (Sch/W )fppf ×f◦z,Y,y (Sch/V )fppf
where F is an algebraic space. By Lemma 94.10.6 the morphism SF → (Sch/W )fppf
is surjective and smooth as a base change of y. Hence by Lemma 94.10.5 we see
that SF → X is surjective and smooth. Choose an object U ∈ Ob((Sch/S)fppf )
and a surjective étale morphism U → F . Then applying Lemma 94.10.5 once more
we obtain the desired properties. □

This lemma is a generalization of Proposition 94.13.3.

Lemma 94.15.2.04Y5 Let S be a scheme contained in Schfppf . Let f : X → Y be a
1-morphism of algebraic stacks over S. The following are equivalent:

(1) for U ∈ Ob((Sch/S)fppf ) the functor f : XU → YU is faithful,
(2) the functor f is faithful, and
(3) f is representable by algebraic spaces.

Proof. Parts (1) and (2) are equivalent by general properties of 1-morphisms of
categories fibred in groupoids, see Categories, Lemma 4.35.9. We see that (3)
implies (2) by Lemma 94.9.2. Finally, assume (2). Let U be a scheme. Let y ∈
Ob(YU ). We have to prove that

W = (Sch/U)fppf ×y,Y X
is representable by an algebraic space over U . Since (Sch/U)fppf is an algebraic
stack we see from Lemma 94.14.3 that W is an algebraic stack. On the other hand
the explicit description of objects of W as triples (V, x, α : y(V ) → f(x)) and the

https://stacks.math.columbia.edu/tag/04T2
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fact that f is faithful, shows that the fibre categories of W are setoids. Hence
Proposition 94.13.3 guarantees that W is representable by an algebraic space. □

Lemma 94.15.3.05UL Let S be a scheme contained in Schfppf . Let u : U → X be a
1-morphism of stacks in groupoids over (Sch/S)fppf . If

(1) U is representable by an algebraic space, and
(2) u is representable by algebraic spaces, surjective and smooth,

then X is an algebraic stack over S.

Proof. We have to show that ∆ : X → X ×X is representable by algebraic spaces,
see Definition 94.12.1. Given two schemes T1, T2 over S denote Ti = (Sch/Ti)fppf
the associated representable fibre categories. Suppose given 1-morphisms fi : Ti →
X . According to Lemma 94.10.11 it suffices to prove that the 2-fibered product
T1 ×X T2 is representable by an algebraic space. By Stacks, Lemma 8.6.8 this
is in any case a stack in setoids. Thus T1 ×X T2 corresponds to some sheaf F
on (Sch/S)fppf , see Stacks, Lemma 8.6.3. Let U be the algebraic space which
represents U . By assumption

T ′
i = U ×u,X ,fi Ti

is representable by an algebraic space T ′
i over S. Hence T ′

1 ×U T ′
2 is representable

by the algebraic space T ′
1 ×U T ′

2. Consider the commutative diagram

T1 ×X T2 //

��

T1

��

T ′
1 ×U T ′

2

88

//

��

T ′
1

??

��

T2 // X

T ′
2

//

88

U

??

In this diagram the bottom square, the right square, the back square, and the
front square are 2-fibre products. A formal argument then shows that T ′

1 ×U T ′
2 →

T1 ×X T2 is the “base change” of U → X , more precisely the diagram

T ′
1 ×U T ′

2

��

// U

��
T1 ×X T2 // X

is a 2-fibre square. Hence T ′
1 ×U T ′

2 → F is representable by algebraic spaces,
smooth, and surjective, see Lemmas 94.9.6, 94.9.7, 94.10.4, and 94.10.6. Therefore
F is an algebraic space by Bootstrap, Theorem 80.10.1 and we win. □

An application of Lemma 94.15.3 is that something which is an algebraic space over
an algebraic stack is an algebraic stack. This is the analogue of Bootstrap, Lemma
80.3.6. Actually, it suffices to assume the morphism X → Y is “algebraic”, as we
will see in Criteria for Representability, Lemma 97.8.2.

https://stacks.math.columbia.edu/tag/05UL
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Lemma 94.15.4.05UM Let S be a scheme contained in Schfppf . Let X → Y be a
morphism of stacks in groupoids over (Sch/S)fppf . Assume that

(1) X → Y is representable by algebraic spaces, and
(2) Y is an algebraic stack over S.

Then X is an algebraic stack over S.

Proof. Let V → Y be a surjective smooth 1-morphism from a representable stack
in groupoids to Y. This exists by Definition 94.12.1. Then the 2-fibre product
U = V ×Y X is representable by an algebraic space by Lemma 94.9.8. The 1-
morphism U → X is representable by algebraic spaces, smooth, and surjective, see
Lemmas 94.9.7 and 94.10.6. By Lemma 94.15.3 we conclude that X is an algebraic
stack. □

Lemma 94.15.5.05UN Removing the
hypothesis that j is
a monomorphism
was observed in an
email from Matthew
Emerton dates June
15, 2016

Let S be a scheme contained in Schfppf . Let j : X → Y be
a 1-morphism of categories fibred in groupoids over (Sch/S)fppf . Assume j is
representable by algebraic spaces. Then, if Y is a stack in groupoids (resp. an
algebraic stack), so is X .

Proof. The statement on algebraic stacks will follow from the statement on stacks
in groupoids by Lemma 94.15.4. If j is representable by algebraic spaces, then j is
faithful on fibre categories and for each U and each y ∈ Ob(YU ) the presheaf

(h : V → U) 7−→ {(x, ϕ) | x ∈ Ob(XV ), ϕ : h∗y → f(x)}/ ∼=
is an algebraic space over U . See Lemma 94.9.2. In particular this presheaf is a
sheaf and the conclusion follows from Stacks, Lemma 8.6.11. □

94.16. From an algebraic stack to a presentation

04T3 Given an algebraic stack over S we obtain a groupoid in algebraic spaces over S
whose associated quotient stack is the algebraic stack.
Recall that if (U,R, s, t, c) is a groupoid in algebraic spaces over S then [U/R]
denotes the quotient stack associated to this datum, see Groupoids in Spaces, Def-
inition 78.20.1. In general [U/R] is not an algebraic stack. In particular the stack
[U/R] occurring in the following lemma is in general not algebraic.

Lemma 94.16.1.04T4 Let S be a scheme contained in Schfppf . Let X be an algebraic
stack over S. Let U be an algebraic stack over S which is representable by an
algebraic space. Let f : U → X be a 1-morphism. Then

(1) the 2-fibre product R = U ×f,X ,f U is representable by an algebraic space,
(2) there is a canonical equivalence

U ×f,X ,f U ×f,X ,f U = R×pr1,U,pr0 R,
(3) the projection pr02 induces via (2) a 1-morphism

pr02 : R×pr1,U,pr0 R −→ R
(4) let U , R be the algebraic spaces representing U ,R and t, s : R → U and

c : R ×s,U,t R→ R are the morphisms corresponding to the 1-morphisms
pr0,pr1 : R → U and pr02 : R×pr1,U,pr0R → R above, then the quintuple
(U,R, s, t, c) is a groupoid in algebraic spaces over S,

(5) the morphism f induces a canonical 1-morphism fcan : [U/R] → X of
stacks in groupoids over (Sch/S)fppf , and

https://stacks.math.columbia.edu/tag/05UM
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(6) the 1-morphism fcan : [U/R]→ X is fully faithful.

Proof. Proof of (1). By definition ∆X is representable by algebraic spaces so Lemma
94.10.11 applies to show that U → X is representable by algebraic spaces. Hence
the result follows from Lemma 94.9.8.
Let T be a scheme over S. By construction of the 2-fibre product (see Categories,
Lemma 4.32.3) we see that the objects of the fibre category RT are triples (a, b, α)
where a, b ∈ Ob(UT ) and α : f(a)→ f(b) is a morphism in the fibre category XT .
Proof of (2). The equivalence comes from repeatedly applying Categories, Lemmas
4.31.8 and 4.31.10. Let us identify U ×X U ×X U with (U ×X U) ×X U . If T is
a scheme over S, then on fibre categories over T this equivalence maps the object
((a, b, α), c, β) on the left hand side to the object ((a, b, α), (b, c, β)) of the right hand
side.
Proof of (3). The 1-morphism pr02 is constructed in the proof of Categories, Lemma
4.31.9. In terms of the description of objects of the fibre category above we see that
((a, b, α), (b, c, β)) maps to (a, c, β ◦ α).
Unfortunately, this is not compatible with our conventions on groupoids where we
always have j = (t, s) : R → U , and we “think” of a T -valued point r of R as a
morphism r : s(r)→ t(r). However, this does not affect the proof of (4), since the
opposite of a groupoid is a groupoid. But in the proof of (5) it is responsible for
the inverses in the displayed formula below.
Proof of (4). Recall that the sheaf U is isomorphic to the sheaf T 7→ Ob(UT )/∼=, and
similarly for R, see Lemma 94.8.2. It follows from Categories, Lemma 4.39.8 that
this description is compatible with 2-fibre products so we get a similar matching
of R ×pr1,U,pr0 R and R ×s,U,t R. The morphisms t, s : R → U and c : R ×s,U,t
R → R we get from the general equality (94.8.2.1). Explicitly these maps are the
transformations of functors that come from letting pr0, pr0, pr02 act on isomorphism
classes of objects of fibre categories. Hence to show that we obtain a groupoid in
algebraic spaces it suffices to show that for every scheme T over S the structure

(Ob(UT )/∼=,Ob(RT )/∼=,pr1,pr0,pr02)
is a groupoid which is clear from our description of objects of RT above.
Proof of (5). We will eventually apply Groupoids in Spaces, Lemma 78.23.2 to
obtain the functor [U/R] → X . Consider the 1-morphism f : U → X . We have a
2-arrow τ : f ◦ pr1 → f ◦ pr0 by definition of R as the 2-fibre product. Namely, on
an object (a, b, α) of R over T it is the map α−1 : b→ a. We claim that

τ ◦ idpr02 = (τ ⋆ idpr0) ◦ (τ ⋆ idpr1).
This identity says that given an object ((a, b, α), (b, c, β)) of R×pr1,U,pr0 R over T ,
then the composition of

c
β−1
// b

α−1
// a

is the same as the arrow (β ◦ α)−1 : a → c. This is clearly true, hence the claim
holds. In this way we see that all the assumption of Groupoids in Spaces, Lemma
78.23.2 are satisfied for the structure (U ,R,pr0,pr1,pr02) and the 1-morphism f
and the 2-morphism τ . Except, to apply the lemma we need to prove this holds for
the structure (SU ,SR, s, t, c) with suitable morphisms.
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Now there should be some general abstract nonsense argument which transfer these
data between the two, but it seems to be quite long. Instead, we use the following
trick. Pick a quasi-inverse j−1 : SU → U of the canonical equivalence j : U → SU
which comes from U(T ) = Ob(UT )/∼=. This just means that for every scheme T/S
and every object a ∈ UT we have picked out a particular element of its isomorphism
class, namely j−1(j(a)). Using j−1 we may therefore see SU as a subcategory of
U . Having chosen this subcategory we can consider those objects (a, b, α) of RT
such that a, b are objects of (SU )T , i.e., such that j−1(j(a)) = a and j−1(j(b)) = b.
Then it is clear that this forms a subcategory of R which maps isomorphically to
SR via the canonical equivalence R → SR. Moreover, this is clearly compatible
with forming the 2-fibre product R×pr1,U,pr0 R. Hence we see that we may simply
restrict f to SU and restrict τ to a transformation between functors SR → X . Hence
it is clear that the displayed equality of Groupoids in Spaces, Lemma 78.23.2 holds
since it holds even as an equality of transformations of functors R×pr1,U,pr0R → X
before restricting to the subcategory SR×s,U,tR.
This proves that Groupoids in Spaces, Lemma 78.23.2 applies and we get our desired
morphism of stacks fcan : [U/R] → X . We briefly spell out how fcan is defined in
this special case. On an object a of SU over T we have fcan(a) = f(a), where we
think of SU ⊂ U by the chosen embedding above. If a, b are objects of SU over
T , then a morphism φ : a → b in [U/R] is by definition an object of the form
φ = (b, a, α) of R over T . (Note switch.) And the rule in the proof of Groupoids
in Spaces, Lemma 78.23.2 is that

(94.16.1.1)04TG fcan(φ) =
(
f(a) α−1

−−→ f(b)
)
.

Proof of (6). Both [U/R] and X are stacks. Hence given a scheme T/S and objects
a, b of [U/R] over T we obtain a transformation of fppf sheaves

Isom(a, b) −→ Isom(fcan(a), fcan(b))
on (Sch/T )fppf . We have to show that this is an isomorphism. We may work fppf
locally on T , hence we may assume that a, b come from morphisms a, b : T → U .
By the embedding SU ⊂ U above we may also think of a, b as objects of U over T .
In Groupoids in Spaces, Lemma 78.22.1 we have seen that the left hand sheaf is
represented by the algebraic space

R×(t,s),U×SU,(b,a) T

over T . On the other hand, the right hand side is by Stacks, Lemma 8.2.5 equal to
the sheaf associated to the following stack in setoids:
X ×X ×X ,(f◦b,f◦a) T = X ×X ×X ,(f,f) (U ×U)×U×U,(b,a) T = R×(pr0,pr1),U×U,(b,a) T

which is representable by the fibre product displayed above. At this point we have
shown that the two Isom-sheaves are isomorphic. Our 1-morphism fcan : [U/R]→
X induces this isomorphism on Isom-sheaves by Equation (94.16.1.1). □

We can use the previous very abstract lemma to produce presentations.

Lemma 94.16.2.04T5 Let S be a scheme contained in Schfppf . Let X be an algebraic
stack over S. Let U be an algebraic space over S. Let f : SU → X be a surjective
smooth morphism. Let (U,R, s, t, c) be the groupoid in algebraic spaces and fcan :
[U/R]→ X be the result of applying Lemma 94.16.1 to U and f . Then

https://stacks.math.columbia.edu/tag/04T5
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(1) the morphisms s, t are smooth, and
(2) the 1-morphism fcan : [U/R]→ X is an equivalence.

Proof. The morphisms s, t are smooth by Lemmas 94.10.2 and 94.10.3. As the
1-morphism f is smooth and surjective it is clear that given any scheme T and any
object a ∈ Ob(XT ) there exists a smooth and surjective morphism T ′ → T such
that a|′T comes from an object of [U/R]T ′ . Since fcan : [U/R]→ X is fully faithful,
we deduce that [U/R] → X is essentially surjective as descent data on objects are
effective on both sides, see Stacks, Lemma 8.4.8. □

Remark 94.16.3.04WY If the morphism f : SU → X of Lemma 94.16.2 is only assumed
surjective, flat and locally of finite presentation, then it will still be the case that
fcan : [U/R]→ X is an equivalence. In this case the morphisms s, t will be flat and
locally of finite presentation, but of course not smooth in general.

Lemma 94.16.2 suggests the following definitions.

Definition 94.16.4.04TH Let S be a scheme. Let B be an algebraic space over S. Let
(U,R, s, t, c) be a groupoid in algebraic spaces over B. We say (U,R, s, t, c) is a
smooth groupoid3 if s, t : R→ U are smooth morphisms of algebraic spaces.

Definition 94.16.5.04TI Let X be an algebraic stack over S. A presentation of X is given
by a smooth groupoid (U,R, s, t, c) in algebraic spaces over S, and an equivalence
f : [U/R]→ X .

We have seen above that every algebraic stack has a presentation. Our next task
is to show that every smooth groupoid in algebraic spaces over S gives rise to an
algebraic stack.

94.17. The algebraic stack associated to a smooth groupoid

04TJ In this section we start with a smooth groupoid in algebraic spaces and we show
that the associated quotient stack is an algebraic stack.

Lemma 94.17.1.04WZ Let S be a scheme contained in Schfppf . Let (U,R, s, t, c) be a
groupoid in algebraic spaces over S. Then the diagonal of [U/R] is representable
by algebraic spaces.

Proof. It suffices to show that the Isom-sheaves are algebraic spaces, see Lemma
94.10.11. This follows from Bootstrap, Lemma 80.11.5. □

Lemma 94.17.2.04X0 Let S be a scheme contained in Schfppf . Let (U,R, s, t, c) be a
smooth groupoid in algebraic spaces over S. Then the morphism SU → [U/R] is
smooth and surjective.

Proof. Let T be a scheme and let x : (Sch/T )fppf → [U/R] be a 1-morphism. We
have to show that the projection

SU ×[U/R] (Sch/T )fppf −→ (Sch/T )fppf
is surjective and smooth. We already know that the left hand side is representable
by an algebraic space F , see Lemmas 94.17.1 and 94.10.11. Hence we have to show
the corresponding morphism F → T of algebraic spaces is surjective and smooth.

3This terminology might be a bit confusing: it does not imply that [U/R] is smooth over
anything.

https://stacks.math.columbia.edu/tag/04WY
https://stacks.math.columbia.edu/tag/04TH
https://stacks.math.columbia.edu/tag/04TI
https://stacks.math.columbia.edu/tag/04WZ
https://stacks.math.columbia.edu/tag/04X0


94.18. CHANGE OF BIG SITE 6693

Since we are working with properties of morphisms of algebraic spaces which are
local on the target in the fppf topology we may check this fppf locally on T . By
construction, there exists an fppf covering {Ti → T} of T such that x|(Sch/Ti)fppf
comes from a morphism xi : Ti → U . (Note that F ×T Ti represents the 2-fibre
product SU ×[U/R] (Sch/Ti)fppf so everything is compatible with the base change
via Ti → T .) Hence we may assume that x comes from x : T → U . In this case we
see that
SU ×[U/R] (Sch/T )fppf = (SU ×[U/R] SU )×SU (Sch/T )fppf = SR ×SU (Sch/T )fppf
The first equality by Categories, Lemma 4.31.10 and the second equality by Groupoids
in Spaces, Lemma 78.22.2. Clearly the last 2-fibre product is represented by the
algebraic space F = R ×s,U,x T and the projection R ×s,U,x T → T is smooth as
the base change of the smooth morphism of algebraic spaces s : R → U . It is also
surjective as s has a section (namely the identity e : U → R of the groupoid). This
proves the lemma. □

Here is the main result of this section.

Theorem 94.17.3.04TK Let S be a scheme contained in Schfppf . Let (U,R, s, t, c) be a
smooth groupoid in algebraic spaces over S. Then the quotient stack [U/R] is an
algebraic stack over S.

Proof. We check the three conditions of Definition 94.12.1. By construction we
have that [U/R] is a stack in groupoids which is the first condition.
The second condition follows from the stronger Lemma 94.17.1.
Finally, we have to show there exists a scheme W over S and a surjective smooth
1-morphism (Sch/W )fppf −→ X . First choose W ∈ Ob((Sch/S)fppf ) and a sur-
jective étale morphism W → U . Note that this gives a surjective étale morphism
SW → SU of categories fibred in sets, see Lemma 94.10.3. Of course then SW → SU
is also surjective and smooth, see Lemma 94.10.9. Hence SW → SU → [U/R] is
surjective and smooth by a combination of Lemmas 94.17.2 and 94.10.5. □

94.18. Change of big site

04X1 In this section we briefly discuss what happens when we change big sites. The
upshot is that we can always enlarge the big site at will, hence we may assume any
set of schemes we want to consider is contained in the big fppf site over which we
consider our algebraic space. We encourage the reader to skip this section.
Pullbacks of stacks is defined in Stacks, Section 8.12.

Lemma 94.18.1.04X2 Suppose given big sites Schfppf and Sch′
fppf . Assume that Schfppf

is contained in Sch′
fppf , see Topologies, Section 34.12. Let S be an object of Schfppf .

Let f : (Sch′/S)fppf → (Sch/S)fppf the morphism of sites corresponding to the
inclusion functor u : (Sch/S)fppf → (Sch′/S)fppf . Let X be a stack in groupoids
over (Sch/S)fppf .

(1) if X is representable by some X ∈ Ob((Sch/S)fppf ), then f−1X is repre-
sentable too, in fact it is representable by the same scheme X, now viewed
as an object of (Sch′/S)fppf ,

(2) if X is representable by F ∈ Sh((Sch/S)fppf ) which is an algebraic space,
then f−1X is representable by the algebraic space f−1F ,

https://stacks.math.columbia.edu/tag/04TK
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(3) if X is an algebraic stack, then f−1X is an algebraic stack, and
(4) if X is a Deligne-Mumford stack, then f−1X is a Deligne-Mumford stack

too.

Proof. Let us prove (3). By Lemma 94.16.2 we may write X = [U/R] for some
smooth groupoid in algebraic spaces (U,R, s, t, c). By Groupoids in Spaces, Lemma
78.28.1 we see that f−1[U/R] = [f−1U/f−1R]. Of course (f−1U, f−1R, f−1s, f−1t, f−1c)
is a smooth groupoid in algebraic spaces too. Hence (3) is proved.
Now the other cases (1), (2), (4) each mean that X has a presentation [U/R]
of a particular kind, and hence translate into the same kind of presentation for
f−1X = [f−1U/f−1R]. Whence the lemma is proved. □

It is not true (in general) that the restriction of an algebraic space over the bigger
site is an algebraic space over the smaller site (simply by reasons of cardinality).
Hence we can only ever use a simple lemma of this kind to enlarge the base category
and never to shrink it.

Lemma 94.18.2.04X3 Suppose Schfppf is contained in Sch′
fppf . Let S be an object

of Schfppf . Denote Algebraic-Stacks/S the 2-category of algebraic stacks over
S defined using Schfppf . Similarly, denote Algebraic-Stacks′/S the 2-category of
algebraic stacks over S defined using Sch′

fppf . The rule X 7→ f−1X of Lemma
94.18.1 defines a functor of 2-categories

Algebraic-Stacks/S −→ Algebraic-Stacks′/S

which defines equivalences of morphism categories
MorAlgebraic-Stacks/S(X ,Y) −→ MorAlgebraic-Stacks′/S(f−1X , f−1Y)

for every objects X ,Y of Algebraic-Stacks/S. An object X ′ of Algebraic-Stacks′/S
is equivalence to f−1X for some X in Algebraic-Stacks/S if and only if it has a
presentation X = [U ′/R′] with U ′, R′ isomorphic to f−1U , f−1R for some U,R ∈
Spaces/S.

Proof. The statement on morphism categories is a consequence of the more general
Stacks, Lemma 8.12.12. The characterization of the “essential image” follows from
the description of f−1 in the proof of Lemma 94.18.1. □

94.19. Change of base scheme

04X4 In this section we briefly discuss what happens when we change base schemes. The
upshot is that given a morphism S → S′ of base schemes, any algebraic stack over
S can be viewed as an algebraic stack over S′.

Lemma 94.19.1.04X5 Let Schfppf be a big fppf site. Let S → S′ be a morphism of this
site. The constructions A and B of Stacks, Section 8.13 above give isomorphisms
of 2-categories{

2-category of algebraic
stacks X over S

}
↔

 2-category of pairs (X ′, f) consisting of an
algebraic stack X ′ over S′ and a morphism

f : X ′ → (Sch/S)fppf of algebraic stacks over S′


Proof. The statement makes sense as the functor j : (Sch/S)fppf → (Sch/S′)fppf
is the localization functor associated to the object S/S′ of (Sch/S′)fppf . By Stacks,
Lemma 8.13.2 the only thing to show is that the constructions A and B preserve
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the subcategories of algebraic stacks. For example, if X = [U/R] then construction
A applied to X just produces X ′ = X . Conversely, if X ′ = [U ′/R′] the morphism p
induces morphisms of algebraic spaces U ′ → S and R′ → S, and then X = [U ′/R′]
but now viewed as a stack over S. Hence the lemma is clear. □

Definition 94.19.2.04X6 Let Schfppf be a big fppf site. Let S → S′ be a morphism of
this site. If p : X → (Sch/S)fppf is an algebraic stack over S, then X viewed as an
algebraic stack over S′ is the algebraic stack

X −→ (Sch/S′)fppf
gotten by applying construction A of Lemma 94.19.1 to X .

Conversely, what if we start with an algebraic stack X ′ over S′ and we want to get
an algebraic stack over S? Well, then we consider the 2-fibre product

X ′
S = (Sch/S)fppf ×(Sch/S′)fppf X

′

which is an algebraic stack over S′ according to Lemma 94.14.3. Moreover, it comes
equipped with a natural 1-morphism p : X ′

S → (Sch/S)fppf and hence by Lemma
94.19.1 it corresponds in a canonical way to an algebraic stack over S.

Definition 94.19.3.04X7 Let Schfppf be a big fppf site. Let S → S′ be a morphism of
this site. Let X ′ be an algebraic stack over S′. The change of base of X ′ is the
algebraic stack X ′

S over S described above.
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CHAPTER 95

Examples of Stacks

04SL 95.1. Introduction

04SM This is a discussion of examples of stacks in algebraic geometry. Some of them
are algebraic stacks, some are not. We will discuss which are algebraic stacks in a
later chapter. This means that in this chapter we mainly worry about the descent
conditions. See [Vis04] for example.

Some of the notation, conventions and terminology in this chapter is awkward and
may seem backwards to the more experienced reader. This is intentional. Please
see Quot, Section 99.2 for an explanation.

95.2. Notation

04SN In this chapter we fix a suitable big fppf site Schfppf as in Topologies, Definition
34.7.6. So, if not explicitly stated otherwise all schemes will be objects of Schfppf .
We will always work relative to a base S contained in Schfppf . And we will then
work with the big fppf site (Sch/S)fppf , see Topologies, Definition 34.7.8. The
absolute case can be recovered by taking S = Spec(Z).

95.3. Examples of stacks

04SQ We first give some important examples of stacks over (Sch/S)fppf .

95.4. Quasi-coherent sheaves

03YL We define a category QCoh as follows:
(1) An object ofQCoh is a pair (X,F), where X/S is an object of (Sch/S)fppf ,

and F is a quasi-coherent OX -module, and
(2) a morphism (f, φ) : (Y,G) → (X,F) is a pair consisting of a morphism

f : Y → X of schemes over S and an f -map (see Sheaves, Section 6.26)
φ : F → G.

(3) The composition of morphisms

(Z,H) (g,ψ)−−−→ (Y,G) (f,ϕ)−−−→ (X,F)

is (f ◦ g, ψ ◦ ϕ) where ψ ◦ ϕ is the composition of f -maps.
Thus QCoh is a category and

p : QCoh → (Sch/S)fppf , (X,F) 7→ X

is a functor. Note that the fibre category of QCoh over a scheme X is the opposite
of the category QCoh(OX) of quasi-coherent OX -modules. We remark for later use

6697



95.5. THE STACK OF FINITELY GENERATED QUASI-COHERENT SHEAVES 6698

that given (X,F), (Y,G) ∈ Ob(QCoh) we have

(95.4.0.1)04U2 MorQCoh((Y,G), (X,F)) =
∐

f∈MorS(Y,X)
MorQCoh(OY )(f∗F ,G)

See the discussion on f -maps of modules in Sheaves, Section 6.26.
The category QCoh is not a stack over (Sch/S)fppf because its collection of objects
is a proper class. On the other hand we will see that it does satisfy all the axioms
of a stack. We will get around the set theoretical issue in Section 95.5.

Lemma 95.4.1.04U3 A morphism (f, φ) : (Y,G)→ (X,F) of QCoh is strongly cartesian
if and only if the map φ induces an isomorphism f∗F → G.

Proof. Let (X,F) ∈ Ob(QCoh). Let f : Y → X be a morphism of (Sch/S)fppf .
Note that there is a canonical f -map c : F → f∗F and hence we get a morphism
(f, c) : (Y, f∗F) → (X,F). We claim that (f, c) is strongly cartesian. Namely, for
any object (Z,H) of QCoh we have

MorQCoh((Z,H), (Y, f∗F)) =
∐

g∈MorS(Z,Y )
MorQCoh(OZ)(g∗f∗F ,H)

=
∐

g∈MorS(Z,Y )
MorQCoh(OZ)((f ◦ g)∗F ,H)

= MorQCoh((Z,H), (X,F))×MorS(Z,X) MorS(Z, Y )
where we have used Equation (95.4.0.1) twice. This proves that the condition of
Categories, Definition 4.33.1 holds for (f, c), and hence our claim is true. Now
by Categories, Lemma 4.33.2 we see that isomorphisms are strongly cartesian and
compositions of strongly cartesian morphisms are strongly cartesian which proves
the “if” part of the lemma. For the converse, note that given (X,F) and f : Y → X,
if there exists a strongly cartesian morphism lifting f with target (X,F) then it has
to be isomorphic to (f, c) (see discussion following Categories, Definition 4.33.1).
Hence the "only if" part of the lemma holds. □

Lemma 95.4.2.03YM The functor p : QCoh → (Sch/S)fppf satisfies conditions (1), (2)
and (3) of Stacks, Definition 8.4.1.

Proof. It is clear from Lemma 95.4.1 thatQCoh is a fibred category over (Sch/S)fppf .
Given covering U = {Xi → X}i∈I of (Sch/S)fppf the functor

QCoh(OX) −→ DD(U)
is fully faithful and essentially surjective, see Descent, Proposition 35.5.2. Hence
Stacks, Lemma 8.4.2 applies to show that QCoh satisfies all the axioms of a stack.

□

95.5. The stack of finitely generated quasi-coherent sheaves

0404 It turns out that we can get a stack of quasi-coherent sheaves if we only consider
finite type quasi-coherent modules. Let us denote

pfg : QCohfg → (Sch/S)fppf
the full subcategory of QCoh over (Sch/S)fppf consisting of pairs (T,F) such that
F is a quasi-coherent OT -module of finite type.

Lemma 95.5.1.04U4 The functor pfg : QCohfg → (Sch/S)fppf satisfies conditions (1),
(2) and (3) of Stacks, Definition 8.4.1.

https://stacks.math.columbia.edu/tag/04U3
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Proof. We will verify assumptions (1), (2), (3) of Stacks, Lemma 8.4.3 to prove this.
By Lemma 95.4.1 a morphism (Y,G) → (X,F) is strongly cartesian if and only if
it induces an isomorphism f∗F → G. By Modules, Lemma 17.9.2 the pullback of
a finite type OX -module is of finite type. Hence assumption (1) of Stacks, Lemma
8.4.3 holds. Assumption (2) holds trivially. Finally, to prove assumption (3) we
have to show: If F is a quasi-coherent OX -module and {fi : Xi → X} is an fppf
covering such that each f∗

i F is of finite type, then F is of finite type. Considering
the restriction of F to an affine open of X this reduces to the following algebra
statement: Suppose that R→ S is a finitely presented, faithfully flat ring map and
M an R-module. If M ⊗R S is a finitely generated S-module, then M is a finitely
generated R-module. A stronger form of the algebra fact can be found in Algebra,
Lemma 10.83.2. □

Lemma 95.5.2.04U5 Let (X,OX) be a ringed space.
(1) The category of finite type OX -modules has a set of isomorphism classes.
(2) The category of finite type quasi-coherent OX -modules has a set of iso-

morphism classes.

Proof. Part (2) follows from part (1) as the category in (2) is a full subcategory
of the category in (1). Consider any open covering U : X =

⋃
i∈I Ui. Denote

ji : Ui → X the inclusion maps. Consider any map r : I → N. If F is an OX -
module whose restriction to Ui is generated by at most r(i) sections from F(Ui),
then F is a quotient of the sheaf

HU,r =
⊕

i∈I
ji,!O⊕r(i)

Ui

By definition, if F is of finite type, then there exists some open covering with U
whose index set is I = X such that this condition is true. Hence it suffices to show
that there is a set of possible choices for U (obvious), a set of possible choices for
r : I → N (obvious), and a set of possible quotient modules of HU,r for each U
and r. In other words, it suffices to show that given an OX -module H there is at
most a set of isomorphism classes of quotients. This last assertion becomes obvious
by thinking of the kernels of a quotient map H → F as being parametrized by a
subset of the power set of

∏
U⊂X openH(U). □

Lemma 95.5.3.04U6 There exists a subcategory QCohfg,small ⊂ QCohfg with the fol-
lowing properties:

(1) the inclusion functor QCohfg,small → QCohfg is fully faithful and essen-
tially surjective, and

(2) the functor pfg,small : QCohfg,small → (Sch/S)fppf turns QCohfg,small
into a stack over (Sch/S)fppf .

Proof. We have seen in Lemmas 95.5.1 and 95.5.2 that pfg : QCohfg → (Sch/S)fppf
satisfies (1), (2) and (3) of Stacks, Definition 8.4.1 as well as the additional condition
(4) of Stacks, Remark 8.4.9. Hence we obtain QCohfg,small from the discussion in
that remark. □

We will often perform the replacement
QCohfg ⇝ QCohfg,small

without further remarking on it, and by abuse of notation we will simply denote
QCohfg this replacement.
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Remark 95.5.4.04U7 Note that the whole discussion in this section works if we want
to consider those quasi-coherent sheaves which are locally generated by at most κ
sections, for some infinite cardinal κ, e.g., κ = ℵ0.

95.6. Finite étale covers

0BLY We define a category FÉt as follows:
(1) An object of FÉt is a finite étale morphism Y → X of schemes (by our

conventions this means a finite étale morphism in (Sch/S)fppf ),
(2) A morphism (b, a) : (Y → X) → (Y ′ → X ′) of FÉt is a commutative

diagram
Y

��

b
// Y ′

��
X

a
// X ′

in the category of schemes.
Thus FÉt is a category and

p : FÉt→ (Sch/S)fppf , (Y → X) 7→ X

is a functor. Note that the fibre category of FÉt over a scheme X is just the
category FÉtX studied in Fundamental Groups, Section 58.5.

Lemma 95.6.1.0BLZ The functor

p : FÉt −→ (Sch/S)fppf
defines a stack over (Sch/S)fppf .

Proof. Fppf descent for finite étale morphisms follows from Descent, Lemmas 35.37.1,
35.23.23, and 35.23.29. Details omitted. □

95.7. Algebraic spaces

04SP We define a category Spaces as follows:
(1) An object of Spaces is a morphism X → U of algebraic spaces over S,

where U is representable by an object of (Sch/S)fppf , and
(2) a morphism (f, g) : (X → U)→ (Y → V ) is a commutative diagram

X

��

f
// Y

��
U

g // V

of morphisms of algebraic spaces over S.
Thus Spaces is a category and

p : Spaces → (Sch/S)fppf , (X → U) 7→ U

is a functor. Note that the fibre category of Spaces over a scheme U is just the
category Spaces/U of algebraic spaces over U (see Topologies on Spaces, Section
73.2). Hence we sometimes think of an object of Spaces as a pair X/U consisting of

https://stacks.math.columbia.edu/tag/04U7
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a scheme U and an algebraic space X over U . We remark for later use that given
(X/U), (Y/V ) ∈ Ob(Spaces) we have

(95.7.0.1)04U8 MorSpaces(X/U, Y/V ) =
∐

g∈MorS(U,V )
MorSpaces/U (X,U ×g,V Y )

The category Spaces is almost, but not quite a stack over (Sch/S)fppf . The problem
is a set theoretical issue as we will explain below.

Lemma 95.7.1.04U9 A morphism (f, g) : X/U → Y/V of Spaces is strongly cartesian if
and only if the map f induces an isomorphism X → U ×g,V Y .

Proof. Let Y/V ∈ Ob(Spaces). Let g : U → V be a morphism of (Sch/S)fppf . Note
that the projection p : U ×g,V Y → Y gives rise a morphism (p, g) : U ×g,V Y/U →
Y/V of Spaces. We claim that (p, g) is strongly cartesian. Namely, for any object
Z/W of Spaces we have

MorSpaces(Z/W,U ×g,V Y/U) =
∐

h∈MorS(W,U)
MorSpaces/W (Z,W ×h,U U ×g,V Y )

=
∐

h∈MorS(W,U)
MorSpaces/W (Z,W ×g◦h,V Y )

= MorSpaces(Z/W, Y/V )×MorS(W,V ) MorS(W,U)
where we have used Equation (95.7.0.1) twice. This proves that the condition of
Categories, Definition 4.33.1 holds for (p, g), and hence our claim is true. Now
by Categories, Lemma 4.33.2 we see that isomorphisms are strongly cartesian and
compositions of strongly cartesian morphisms are strongly cartesian which proves
the “if” part of the lemma. For the converse, note that given Y/V and g : U → V ,
if there exists a strongly cartesian morphism lifting g with target Y/V then it has
to be isomorphic to (p, g) (see discussion following Categories, Definition 4.33.1).
Hence the "only if" part of the lemma holds. □

Lemma 95.7.2.04UA The functor p : Spaces → (Sch/S)fppf satisfies conditions (1) and
(2) of Stacks, Definition 8.4.1.

Proof. It is follows from Lemma 95.7.1 that Spaces is a fibred category over (Sch/S)fppf
which proves (1). Suppose that {Ui → U}i∈I is a covering of (Sch/S)fppf . Sup-
pose that X,Y are algebraic spaces over U . Finally, suppose that φi : XUi → YUi
are morphisms of Spaces/Ui such that φi and φj restrict to the same morphisms
XUi×UUj → YUi×UUj of algebraic spaces over Ui ×U Uj . To prove (2) we have to
show that there exists a unique morphism φ : X → Y over U whose base change
to Ui is equal to φi. As a morphism from X to Y is the same thing as a map of
sheaves this follows directly from Sites, Lemma 7.26.1. □

Remark 95.7.3.04UB Ignoring set theoretical difficulties1 Spaces also satisfies descent for
objects and hence is a stack. Namely, we have to show that given

(1) an fppf covering {Ui → U}i∈I ,
(2) for each i ∈ I an algebraic space Xi/Ui, and
(3) for each i, j ∈ I an isomorphism φij : Xi ×U Uj → Ui ×U Xj of algebraic

spaces over Ui×U Uj satisfying the cocycle condition over Ui×U Uj×U Uk,

1The difficulty is not that Spaces is a proper class, since by our definition of an algebraic
space over S there is only a set worth of isomorphism classes of algebraic spaces over S. It is
rather that arbitrary disjoint unions of algebraic spaces may end up being too large, hence lie
outside of our chosen “partial universe” of sets.
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https://stacks.math.columbia.edu/tag/04UA
https://stacks.math.columbia.edu/tag/04UB
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there exists an algebraic space X/U and isomorphisms XUi
∼= Xi over Ui recovering

the isomorphisms φij . First, note that by Sites, Lemma 7.26.4 there exists a sheaf
X on (Sch/U)fppf recovering the Xi and the φij . Then by Bootstrap, Lemma
80.11.1 we see that X is an algebraic space (if we ignore the set theoretic condition
of that lemma). We will use this argument in the next section to show that if we
consider only algebraic spaces of finite type, then we obtain a stack.

95.8. The stack of finite type algebraic spaces

04UC It turns out that we can get a stack of spaces if we only consider spaces of finite
type. Let us denote

pft : Spacesft → (Sch/S)fppf
the full subcategory of Spaces over (Sch/S)fppf consisting of pairs X/U such that
X → U is a morphism of finite type.

Lemma 95.8.1.04UD The functor pft : Spacesft → (Sch/S)fppf satisfies the conditions
(1), (2) and (3) of Stacks, Definition 8.4.1.

Proof. We are going to write this out in ridiculous detail (which may make it hard
to see what is going on).
We have seen in Lemma 95.7.1 that a morphism (f, g) : X/U → Y/V of Spaces is
strongly cartesian if the induced morphism f : X → U ×V Y is an isomorphism.
Note that if Y → V is of finite type then also U×V Y → U is of finite type, see Mor-
phisms of Spaces, Lemma 67.23.3. So if (f, g) : X/U → Y/V of Spaces is strongly
cartesian in Spaces and Y/V is an object of Spacesft then automatically also X/U
is an object of Spacesft, and of course (f, g) is also strongly cartesian in Spacesft.
In this way we conclude that Spacesft is a fibred category over (Sch/S)fppf . This
proves (1).
The argument above also shows that the inclusion functor Spacesft → Spaces trans-
forms strongly cartesian morphisms into strongly cartesian morphisms. In other
words Spacesft → Spaces is a 1-morphism of fibred categories over (Sch/S)fppf .
Let U ∈ Ob((Sch/S)fppf ). Let X,Y be algebraic spaces of finite type over U . By
Stacks, Lemma 8.2.3 we obtain a map of presheaves

MorSpacesft(X,Y ) −→ MorSpaces(X,Y )
which is an isomorphism as Spacesft is a full subcategory of Spaces. Hence the left
hand side is a sheaf, because in Lemma 95.7.2 we showed the right hand side is a
sheaf. This proves (2).
To prove condition (3) of Stacks, Definition 8.4.1 we have to show the following:
Given

(1) a covering {Ui → U}i∈I of (Sch/S)fppf ,
(2) for each i ∈ I an algebraic space Xi of finite type over Ui, and
(3) for each i, j ∈ I an isomorphism φij : Xi ×U Uj → Ui ×U Xj of algebraic

spaces over Ui×U Uj satisfying the cocycle condition over Ui×U Uj×U Uk,
there exists an algebraic space X of finite type over U and isomorphisms XUi

∼= Xi

over Ui recovering the isomorphisms φij . This follows from Bootstrap, Lemma
80.11.3 part (2). By Descent on Spaces, Lemma 74.11.10 we see that X → U is of
finite type which concludes the proof. □

https://stacks.math.columbia.edu/tag/04UD
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Lemma 95.8.2.04UE There exists a subcategory Spacesft,small ⊂ Spacesft with the
following properties:

(1) the inclusion functor Spacesft,small → Spacesft is fully faithful and essen-
tially surjective, and

(2) the functor pft,small : Spacesft,small → (Sch/S)fppf turns Spacesft,small
into a stack over (Sch/S)fppf .

Proof. We have seen in Lemmas 95.8.1 that pft : Spacesft → (Sch/S)fppf satisfies
(1), (2) and (3) of Stacks, Definition 8.4.1. The additional condition (4) of Stacks,
Remark 8.4.9 holds because every algebraic space X over S is of the form U/R
for U,R ∈ Ob((Sch/S)fppf ), see Spaces, Lemma 65.9.1. Thus there is only a set
worth of isomorphism classes of objects. Hence we obtain Spacesft,small from the
discussion in that remark. □

We will often perform the replacement
Spacesft ⇝ Spacesft,small

without further remarking on it, and by abuse of notation we will simply denote
Spacesft this replacement.

Remark 95.8.3.04UF Note that the whole discussion in this section works if we want to
consider those algebraic spaces X/U which are locally of finite type such that the
inverse image in X of an affine open of U can be covered by countably many affines.
If needed we can also introduce the notion of a morphism of κ-type (meaning some
bound on the number of generators of ring extensions and some bound on the
cardinality of the affines over a given affine in the base) where κ is a cardinal, and
then we can produce a stack

Spacesκ −→ (Sch/S)fppf
in exactly the same manner as above (provided we make sure that Sch is large
enough depending on κ).

95.9. Examples of stacks in groupoids

04UG The examples above are examples of stacks which are not stacks in groupoids. In
the rest of this chapter we give algebraic geometric examples of stacks in groupoids.

95.10. The stack associated to a sheaf

0305 Let F : (Sch/S)oppfppf → Sets be a presheaf. We obtain a category fibred in sets
pF : SF → (Sch/S)fppf ,

see Categories, Example 4.38.5. This is a stack in sets if and only if F is a sheaf,
see Stacks, Lemma 8.6.3.

95.11. The stack in groupoids of finitely generated quasi-coherent sheaves

03YN Let p : QCohfg → (Sch/S)fppf be the stack introduced in Section 95.5 (using the
abuse of notation introduced there). We can turn this into a stack in groupoids
p′ : QCoh′

fg → (Sch/S)fppf by the procedure of Categories, Lemma 4.35.3, see
Stacks, Lemma 8.5.3. In this particular case this simply means QCoh′

fg has the
same objects as QCohfg but the morphisms are pairs (f, g) : (U,F) → (U ′,F ′)
where g is an isomorphism g : f∗F ′ → F .

https://stacks.math.columbia.edu/tag/04UE
https://stacks.math.columbia.edu/tag/04UF
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95.12. The stack in groupoids of finite type algebraic spaces

04UH Let p : Spacesft → (Sch/S)fppf be the stack introduced in Section 95.8 (using the
abuse of notation introduced there). We can turn this into a stack in groupoids
p′ : Spaces′

ft → (Sch/S)fppf by the procedure of Categories, Lemma 4.35.3, see
Stacks, Lemma 8.5.3. In this particular case this simply means Spaces′

ft has the
same objects as Spacesft, i.e., finite type morphisms X → U where X is an algebraic
space over S and U is a scheme over S. But the morphisms (f, g) : X/U → Y/V
are now commutative diagrams

X

��

f
// Y

��
U

g // V

which are cartesian.

95.13. Quotient stacks

04UI Let (U,R, s, t, c) be a groupoid in algebraic spaces over S. In this case the quotient
stack

[U/R] −→ (Sch/S)fppf
is a stack in groupoids by construction, see Groupoids in Spaces, Definition 78.20.1.
It is even the case that the Isom-sheaves are representable by algebraic spaces, see
Bootstrap, Lemma 80.11.5. These quotient stacks are of fundamental importance
to the theory of algebraic stacks.
A special case of the construction above is the quotient stack

[X/G] −→ (Sch/S)fppf
associated to a datum (B,G/B,m,X/B, a). Here

(1) B is an algebraic space over S,
(2) (G,m) is a group algebraic space over B,
(3) X is an algebraic space over B, and
(4) a : G×B X → X is an action of G on X over B.

Namely, by Groupoids in Spaces, Definition 78.20.1 the stack in groupoids [X/G]
is the quotient stack [X/G×BX] given above. It behooves us to spell out what the
category [X/G] really looks like. We will do this in Section 95.15.

95.14. Classifying torsors

036Z We want to carefuly explain a number of variants of what it could mean to study
the stack of torsors for a group algebraic space G or a sheaf of groups G.

95.14.1. Torsors for a sheaf of groups.04UJ Let G be a sheaf of groups on (Sch/S)fppf .
For U ∈ Ob((Sch/S)fppf ) we denote G|U the restriction of G to (Sch/U)fppf . We
define a category G-Torsors as follows:

(1) An object of G-Torsors is a pair (U,F) where U is an object of (Sch/S)fppf
and F is a G|U -torsor, see Cohomology on Sites, Definition 21.4.1.

(2) A morphism (U,F) → (V,H) is given by a pair (f, α), where f : U → V
is a morphism of schemes over S, and α : f−1H → F is an isomorphism
of G|U -torsors.



95.14. CLASSIFYING TORSORS 6705

Thus G-Torsors is a category and
p : G-Torsors −→ (Sch/S)fppf , (U,F) 7−→ U

is a functor. Note that the fibre category of G-Torsors over U is the category of
G|U -torsors which is a groupoid.

Lemma 95.14.2.04UK Up to a replacement as in Stacks, Remark 8.4.9 the functor
p : G-Torsors −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf .

Proof. The most difficult part of the proof is to show that we have descent for
objects. Let {Ui → U}i∈I be a covering of (Sch/S)fppf . Suppose that for each i we
are given a G|Ui-torsor Fi, and for each i, j ∈ I an isomorphism φij : Fi|Ui×UUj →
Fj |Ui×UUj of G|Ui×UUj -torsors satisfying a suitable cocycle condition on Ui ×U
Uj ×U Uk. Then by Sites, Section 7.26 we obtain a sheaf F on (Sch/U)fppf whose
restriction to each Ui recovers Fi as well as recovering the descent data. By the
equivalence of categories in Sites, Lemma 7.26.5 the action maps G|Ui × Fi → Fi
glue to give a map a : G|U ×F → F . Now we have to show that a is an action and
that F becomes a G|U -torsor. Both properties may be checked locally, and hence
follow from the corresponding properties of the actions G|Ui×Fi → Fi. This proves
that descent for objects holds in G-Torsors. Some details omitted. □

95.14.3. Variant on torsors for a sheaf.04UL The construction of Subsection 95.14.1 can
be generalized slightly. Namely, let G → B be a map of sheaves on (Sch/S)fppf
and let

m : G ×B G −→ G
be a group law on G/B. In other words, the pair (G,m) is a group object of the topos
Sh((Sch/S)fppf )/B. See Sites, Section 7.30 for information regarding localizations
of topoi. In this setting we can define a category G/B-Torsors as follows (where we
use the Yoneda embedding to think of schemes as sheaves):

(1) An object of G/B-Torsors is a triple (U, b,F) where
(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a section of B over U , and
(c) F is a U ×b,B G-torsor over U .

(2) A morphism (U, b,F) → (U ′, b′,F ′) is given by a pair (f, g), where f :
U → U ′ is a morphism of schemes over S such that b = b′ ◦ f , and
g : f−1F ′ → F is an isomorphism of U ×b,B G-torsors.

Thus G/B-Torsors is a category and
p : G/B-Torsors −→ (Sch/S)fppf , (U, b,F) 7−→ U

is a functor. Note that the fibre category of G/B-Torsors over U is the disjoint
union over b : U → B of the categories of U ×b,B G-torsors, hence is a groupoid.
In the special case B = S we recover the category G-Torsors introduced in Subsec-
tion 95.14.1.

Lemma 95.14.4.04UM Up to a replacement as in Stacks, Remark 8.4.9 the functor
p : G/B-Torsors −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf .

https://stacks.math.columbia.edu/tag/04UK
https://stacks.math.columbia.edu/tag/04UM
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Proof. This proof is a repeat of the proof of Lemma 95.14.2. The reader is en-
couraged to read that proof first since the notation is less cumbersome. The
most difficult part of the proof is to show that we have descent for objects. Let
{Ui → U}i∈I be a covering of (Sch/S)fppf . Suppose that for each i we are given a
pair (bi,Fi) consisting of a morphism bi : Ui → B and a Ui ×bi,B G-torsor Fi, and
for each i, j ∈ I we have bi|Ui×UUj = bj |Ui×UUj and we are given an isomorphism
φij : Fi|Ui×UUj → Fj |Ui×UUj of (Ui ×U Uj) ×B G-torsors satisfying a suitable co-
cycle condition on Ui ×U Uj ×U Uk. Then by Sites, Section 7.26 we obtain a sheaf
F on (Sch/U)fppf whose restriction to each Ui recovers Fi as well as recovering
the descent data. By the sheaf axiom for B the morphisms bi come from a unique
morphism b : U → B. By the equivalence of categories in Sites, Lemma 7.26.5 the
action maps (Ui ×bi,B G) ×Ui Fi → Fi glue to give a map (U ×b,B G) × F → F .
Now we have to show that this is an action and that F becomes a U ×b,B G-torsor.
Both properties may be checked locally, and hence follow from the corresponding
properties of the actions on the Fi. This proves that descent for objects holds in
G/B-Torsors. Some details omitted. □

95.14.5. Principal homogeneous spaces.04UN Let B be an algebraic space over S. Let
G be a group algebraic space over B. We define a category G-Principal as follows:

(1) An object of G-Principal is a triple (U, b,X) where
(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a morphism over S, and
(c) X is a principal homogeneousGU -space over U whereGU = U×b,BG.

See Groupoids in Spaces, Definition 78.9.3.
(2) A morphism (U, b,X) → (U ′, b′, X ′) is given by a pair (f, g), where f :

U → U ′ is a morphism of schemes over B, and g : X → U ×f,U ′ X ′ is an
isomorphism of principal homogeneous GU -spaces.

Thus G-Principal is a category and
p : G-Principal −→ (Sch/S)fppf , (U, b,X) 7−→ U

is a functor. Note that the fibre category of G-Principal over U is the disjoint union
over b : U → B of the categories of principal homogeneous U ×b,B G-spaces, hence
is a groupoid.
In the special case S = B the objects are simply pairs (U,X) where U is a scheme
over S, and X is a principal homogeneous GU -space over U . Moreover, morphisms
are simply cartesian diagrams

X

��

g
// X ′

��
U

f // U ′

where g is G-equivariant.

Remark 95.14.6.04UP We conjecture that up to a replacement as in Stacks, Remark
8.4.9 the functor

p : G-Principal −→ (Sch/S)fppf
defines a stack in groupoids over (Sch/S)fppf . This would follow if one could show
that given

(1) a covering {Ui → U}i∈I of (Sch/S)fppf ,

https://stacks.math.columbia.edu/tag/04UP
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(2) an group algebraic space H over U ,
(3) for every i a principal homogeneous HUi-space Xi over Ui, and
(4) H-equivariant isomorphisms φij : Xi,Ui×UUj → Xj,Ui×UUj satisfying the

cocycle condition,
there exists a principal homogeneous H-space X over U which recovers (Xi, φij).
The technique of the proof of Bootstrap, Lemma 80.11.8 reduces this to a set
theoretical question, so the reader who ignores set theoretical questions will “know”
that the result is true. In https://math.columbia.edu/~dejong/wordpress/?p=
591 there is a suggestion as to how to approach this problem.

95.14.7. Variant on principal homogeneous spaces.04UQ Let S be a scheme. Let B = S.
Let G be a group scheme over B = S. In this setting we can define a full subcategory
G-Principal-Schemes ⊂ G-Principal whose objects are pairs (U,X) where U is an
object of (Sch/S)fppf and X → U is a principal homogeneous G-space over U
which is representable, i.e., a scheme.
It is in general not the case that G-Principal-Schemes is a stack in groupoids over
(Sch/S)fppf . The reason is that in general there really do exist principal homoge-
neous spaces which are not schemes, hence descent for objects will not be satisfied
in general.

95.14.8. Torsors in fppf topology.04UR Let B be an algebraic space over S. Let G be a
group algebraic space over B. We define a category G-Torsors as follows:

(1) An object of G-Torsors is a triple (U, b,X) where
(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a morphism, and
(c) X is an fppf GU -torsor over U where GU = U ×b,B G.

See Groupoids in Spaces, Definition 78.9.3.
(2) A morphism (U, b,X) → (U ′, b′, X ′) is given by a pair (f, g), where f :

U → U ′ is a morphism of schemes over B, and g : X → U ×f,U ′ X ′ is an
isomorphism of GU -torsors.

Thus G-Torsors is a category and
p : G-Torsors −→ (Sch/S)fppf , (U, a,X) 7−→ U

is a functor. Note that the fibre category of G-Torsors over U is the disjoint union
over b : U → B of the categories of fppf U ×b,B G-torsors, hence is a groupoid.
In the special case S = B the objects are simply pairs (U,X) where U is a scheme
over S, and X is an fppf GU -torsor over U . Moreover, morphisms are simply
cartesian diagrams

X

��

g
// X ′

��
U

f // U ′

where g is G-equivariant.

Lemma 95.14.9.04US Up to a replacement as in Stacks, Remark 8.4.9 the functor
p : G-Torsors −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf .

https://math.columbia.edu/~dejong/wordpress/?p=591
https://math.columbia.edu/~dejong/wordpress/?p=591
https://stacks.math.columbia.edu/tag/04US


95.15. QUOTIENTS BY GROUP ACTIONS 6708

Proof. The most difficult part of the proof is to show that we have descent for
objects, which is Bootstrap, Lemma 80.11.8. We omit the proof of axioms (1) and
(2) of Stacks, Definition 8.5.1. □

Lemma 95.14.10.04UT Let B be an algebraic space over S. Let G be a group algebraic
space over B. Denote G, resp. B the algebraic space G, resp. B seen as a sheaf on
(Sch/S)fppf . The functor

G-Torsors −→ G/B-Torsors

which associates to a triple (U, b,X) the triple (U, b,X ) where X is X viewed as a
sheaf is an equivalence of stacks in groupoids over (Sch/S)fppf .

Proof. We will use the result of Stacks, Lemma 8.4.8 to prove this. The functor is
fully faithful since the category of algebraic spaces over S is a full subcategory of
the category of sheaves on (Sch/S)fppf . Moreover, all objects (on both sides) are
locally trivial torsors so condition (2) of the lemma referenced above holds. Hence
the functor is an equivalence. □

95.14.11. Variant on torsors in fppf topology.04UU Let S be a scheme. Let B = S. Let
G be a group scheme over B = S. In this setting we can define a full subcategory
G-Torsors-Schemes ⊂ G-Torsors whose objects are pairs (U,X) where U is an object
of (Sch/S)fppf and X → U is an fppf G-torsor over U which is representable, i.e.,
a scheme.

It is in general not the case that G-Torsors-Schemes is a stack in groupoids over
(Sch/S)fppf . The reason is that in general there really do exist fppf G-torsors
which are not schemes, hence descent for objects will not be satisfied in general.

95.15. Quotients by group actions

04UV At this point we have introduced enough notation that we can work out in more
detail what the stacks [X/G] of Section 95.13 look like.

Situation 95.15.1.04WL Here
(1) S is a scheme contained in Schfppf ,
(2) B is an algebraic space over S,
(3) (G,m) is a group algebraic space over B,
(4) π : X → B is an algebraic space over B, and
(5) a : G×B X → X is an action of G on X over B.

In this situation we construct a category [[X/G]]2 as follows:
(1) An object of [[X/G]] consists of a quadruple (U, b, P, φ : P → X) where

(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a morphism over S,
(c) P is an fppf GU -torsor over U where GU = U ×b,B G, and

2The notation [[X/G]] with double brackets serves to distinguish this category from the stack
[X/G] introduced earlier. In Proposition 95.15.3 we show that the two are canonically equivalent.
Afterwards we will use the notation [X/G] to indicate either.

https://stacks.math.columbia.edu/tag/04UT
https://stacks.math.columbia.edu/tag/04WL
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(d) φ : P → X is a G-equivariant morphism fitting into the commutative
diagram

P

��

φ
// X

��
U

b // B

(2) A morphism of [[X/G]] is a pair (f, g) : (U, b, P, φ)→ (U ′, b′, P ′, φ′) where
f : U → U ′ is a morphism of schemes over B and g : P → P ′ is a G-
equivariant morphism over f which induces an isomorphism P ∼= U ×f,U ′

P ′, and has the property that φ = φ′ ◦ g. In other words (f, g) fits into
the following commutative diagram

P

�� φ

**

g // P ′

��

φ′

&&
U

b
**

f // U ′

b′

&&

X

��
B

Thus [[X/G]] is a category and

p : [[X/G]] −→ (Sch/S)fppf , (U, b, P, φ) 7−→ U

is a functor. Note that the fibre category of [[X/G]] over U is the disjoint union
over b ∈ MorS(U,B) of fppf U ×b,B G-torsors P endowed with a G-equivariant
morphism to X. Hence the fibre categories of [[X/G]] are groupoids.

Note that the functor

[[X/G]] −→ G-Torsors, (U, b, P, φ) 7−→ (U, b, P )

is a 1-morphism of categories over (Sch/S)fppf .

Lemma 95.15.2.0370 Up to a replacement as in Stacks, Remark 8.4.9 the functor

p : [[X/G]] −→ (Sch/S)fppf
defines a stack in groupoids over (Sch/S)fppf .

Proof. The most difficult part of the proof is to show that we have descent for
objects. Suppose that {Ui → U}i∈I is a covering in (Sch/S)fppf . Let ξi =
(Ui, bi, Pi, φi) be objects of [[X/G]] over Ui, and let φij : pr∗

0ξi → pr∗
1ξj be a

descent datum. This in particular implies that we get a descent datum on the
triples (Ui, bi, Pi) for the stack in groupoids G-Torsors by applying the functor
[[X/G]] → G-Torsors above. We have seen that G-Torsors is a stack in groupoids
(Lemma 95.14.9). Hence we may assume that bi = b|Ui for some morphism
b : U → B, and that Pi = Ui ×U P for some fppf GU = U ×b,B G-torsor P
over U . The morphisms φi are compatible with the canonical descent datum on
the restrictions Ui ×U P and hence define a morphism φ : P → X. (For example
you can use Sites, Lemma 7.26.5 or you can use Descent on Spaces, Lemma 74.7.2
to get φ.) This proves descent for objects. We omit the proof of axioms (1) and
(2) of Stacks, Definition 8.5.1. □

https://stacks.math.columbia.edu/tag/0370
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Proposition 95.15.3.04WM In Situation 95.15.1 there exists a canonical equivalence
[X/G] −→ [[X/G]]

of stacks in groupoids over (Sch/S)fppf .

Proof. We write this out in detail, to make sure that all the definitions work out
in exactly the correct manner. Recall that [X/G] is the quotient stack associated
to the groupoid in algebraic spaces (X,G ×B X, s, t, c), see Groupoids in Spaces,
Definition 78.20.1. This means that [X/G] is the stackification of the category
fibred in groupoids [X/pG] associated to the functor

(Sch/S)fppf −→ Groupoids, U 7−→ (X(U), G(U)×B(U) X(U), s, t, c)
where s(g, x) = x, t(g, x) = a(g, x), and c((g, x), (g′, x′)) = (m(g, g′), x′). By the
construction of Categories, Example 4.37.1 an object of [X/pG] is a pair (U, x)
with x ∈ X(U) and a morphism (f, g) : (U, x) → (U ′, x′) of [X/pG] is given by a
morphism of schemes f : U → U ′ and an element g ∈ G(U) such that a(g, x) = x′◦f .
Hence we can define a 1-morphism of stacks in groupoids

Fp : [X/pG] −→ [[X/G]]
by the following rules: On objects we set

Fp(U, x) = (U, π ◦ x,G×B,π◦x U, a ◦ (idG × x))
This makes sense because the diagram

G×B,π◦x U

��

idG×x
// G×B,π X a

// X

π

��
U

π◦x // B

commutes, and the two horizontal arrows are G-equivariant if we think of the fibre
products as trivial G-torsors over U , resp. X. On morphisms (f, g) : (U, x) →
(U ′, x′) we set Fp(f, g) = (f,Rg−1) where Rg−1 denotes right translation by the
inverse of g. More precisely, the morphism Fp(f, g) : Fp(U, x)→ Fp(U ′, x′) is given
by the cartesian diagram

G×B,π◦x U

��

Rg−1

// G×B,π◦x′ U ′

��
U

f // U ′

where Rg−1 on T -valued points is given by
Rg−1(g′, u) = (m(g′, i(g(u))), f(u))

To see that this works we have to verify that
a ◦ (idG × x) = a ◦ (idG × x′) ◦Rg−1

which is true because the right hand side applied to the T -valued point (g′, u) gives
the desired equality

a((idG × x′)(m(g′, i(g(u))), f(u))) = a(m(g′, i(g(u))), x′(f(u)))
= a(g′, a(i(g(u)), x′(f(u))))
= a(g′, x(u))

https://stacks.math.columbia.edu/tag/04WM
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because a(g, x) = x′ ◦ f and hence a(i(g), x′ ◦ f) = x.
By the universal property of stackification from Stacks, Lemma 8.9.2 we obtain a
canonical extension F : [X/G] → [[X/G]] of the 1-morphism Fp above. We first
prove that F is fully faithful. To do this, since both source and target are stacks in
groupoids, it suffices to prove that the Isom-sheaves are identified under F . Pick a
scheme U and objects ξ, ξ′ of [X/G] over U . We want to show that

F : Isom[X/G](ξ, ξ′) −→ Isom[[X/G]](F (ξ), F (ξ′))
is an isomorphism of sheaves. To do this it suffices to work locally on U , and hence
we may assume that ξ, ξ′ come from objects (U, x), (U, x′) of [X/pG] over U ; this
follows directly from the construction of the stackification, and it is also worked
out in detail in Groupoids in Spaces, Section 78.24. Either by directly using the
description of morphisms in [X/pG] above, or using Groupoids in Spaces, Lemma
78.22.1 we see that in this case

Isom[X/G](ξ, ξ′) = U ×(x,x′),X×SX,(s,t) (G×B X)
A T -valued point of this fibre product corresponds to a pair (u, g) with u ∈ U(T ),
and g ∈ G(T ) such that a(g, x◦u) = x′◦u. (Note that this implies π◦x◦u = π◦x′◦
u.) On the other hand, a T -valued point of Isom[[X/G]](F (ξ), F (ξ′)) by definition
corresponds to a morphism u : T → U such that π ◦ x ◦ u = π ◦ x′ ◦ u : T → B and
an isomorphism

R : G×B,π◦x◦u T −→ G×B,π◦x′◦u T

of trivial GT -torsors compatible with the given maps to X. Since the torsors are
trivial we see that R = Rg−1 (right multiplication) by some g ∈ G(T ). Compat-
ibility with the maps a ◦ (1G, x ◦ u), a ◦ (1G, x′ ◦ u) : G ×B T → X is equivalent
to the condition that a(g, x ◦ u) = x′ ◦ u. Hence we obtain the desired equality of
Isom-sheaves.
Now that we know that F is fully faithful we see that Stacks, Lemma 8.4.8 applies.
Thus to show that F is an equivalence it suffices to show that objects of [[X/G]]
are fppf locally in the essential image of F . This is clear as fppf torsors are fppf
locally trivial, and hence we win. □

Lemma 95.15.4.0CQJ Let S be a scheme. Let B be an algebraic space over S. Let G
be a group algebraic space over B. Then the stacks in groupoids

[B/G], [[B/G]], G-Torsors, G/B-Torsors
are all canonically equivalent. If G → B is flat and locally of finite presentation,
then these are also equivalent to G-Principal.

Proof. The equivalence G-Torsors → G/B-Torsors is given in Lemma 95.14.10.
The equivalence [B/G] → [[B/G]] is given in Proposition 95.15.3. Unwinding the
definition of [[B/G]] given in Section 95.15 we see that [[B//G]] = G-Torsors.
Finally, assume G → B is flat and locally of finite presentation. To show that the
natural functor G-Torsors→ G-Principal is an equivalence it suffices to show that
for a scheme U over B a principal homogeneous GU -space X → U is fppf locally
trivial. By our definition of principal homogeneous spaces (Groupoids in Spaces,
Definition 78.9.3) there exists an fpqc covering {Ui → U} such that Ui ×U X ∼=
G ×B Ui as algebraic spaces over Ui. This implies that X → U is surjective, flat,
and locally of finite presentation, see Descent on Spaces, Lemmas 74.11.6, 74.11.13,

https://stacks.math.columbia.edu/tag/0CQJ
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and 74.11.10. Choose a scheme W and a surjective étale morphism W → X. Then
it follows from what we just said that {W → U} is an fppf covering such that
XW →W has a section. Hence X is an fppf GU -torsor. □

Remark 95.15.5.0371 Let S be a scheme. Let G be an abstract group. Let X be an
algebraic space over S. Let G → AutS(X) be a group homomorphism. In this
setting we can define [[X/G]] similarly to the above as follows:

(1) An object of [[X/G]] consists of a triple (U,P, φ : P → X) where
(a) U is an object of (Sch/S)fppf ,
(b) P is a sheaf on (Sch/U)fppf which comes with an action of G that

turns it into a torsor under the constant sheaf with value G, and
(c) φ : P → X is a G-equivariant map of sheaves.

(2) A morphism (f, g) : (U,P, φ) → (U ′, P ′, φ′) is given by a morphism of
schemes f : T → T ′ and a G-equivariant isomorphism g : P → f−1P ′

such that φ = φ′ ◦ g.
In exactly the same manner as above we obtain a functor

[[X/G]] −→ (Sch/S)fppf
which turns [[X/G]] into a stack in groupoids over (Sch/S)fppf . The constant
sheaf G is (provided the cardinality of G is not too large) representable by GS
on (Sch/S)fppf and this version of [[X/G]] is equivalent to the stack [[X/GS ]]
introduced above.

95.16. The Picard stack

0372 In this section we introduce the Picard stack in complete generality. In the chap-
ter on Quot and Hilb we will show that it is an algebraic stack under suitable
hypotheses, see Quot, Section 99.10.

Let S be a scheme. Let π : X → B be a morphism of algebraic spaces over S. We
define a category PicX/B as follows:

(1) An object is a triple (U, b,L), where
(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a morphism over S, and
(c) L is in invertible sheaf on the base change XU = U ×b,B X.

(2) A morphism (f, g) : (U, b,L) → (U ′, b′,L′) is given by a morphism of
schemes f : U → U ′ over B and an isomorphism g : f∗L′ → L.

The composition of (f, g) : (U, b,L) → (U ′, b′,L′) with (f ′, g′) : (U ′, b′,L′) →
(U ′′, b′′,L′′) is given by (f ◦ f ′, g ◦ f∗(g′)). Thus we get a category PicX/B and

p : PicX/B −→ (Sch/S)fppf , (U, b,L) 7−→ U

is a functor. Note that the fibre category of PicX/B over U is the disjoint union
over b ∈ MorS(U,B) of the categories of invertible sheaves on XU = U ×b,B X.
Hence the fibre categories are groupoids.

Lemma 95.16.1.04WN Up to a replacement as in Stacks, Remark 8.4.9 the functor

PicX/B −→ (Sch/S)fppf
defines a stack in groupoids over (Sch/S)fppf .

https://stacks.math.columbia.edu/tag/0371
https://stacks.math.columbia.edu/tag/04WN
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Proof. As usual, the hardest part is to show descent for objects. To see this let
{Ui → U} be a covering of (Sch/S)fppf . Let ξi = (Ui, bi,Li) be an object of
PicX/B lying over Ui, and let φij : pr∗

0ξi → pr∗
1ξj be a descent datum. This implies

in particular that the morphisms bi are the restrictions of a morphism b : U → B.
Write XU = U ×b,B X and Xi = Ui ×bi,B X = Ui ×U U ×b,B X = Ui ×U XU .
Observe that Li is an invertible OXi-module. Note that {Xi → XU} forms an fppf
covering as well. Moreover, the descent datum φij translates into a descent datum
on the invertible sheaves Li relative to the fppf covering {Xi → XU}. Hence by
Descent on Spaces, Proposition 74.4.1 we obtain a unique invertible sheaf L on XU

which recovers Li and the descent data over Xi. The triple (U, b,L) is therefore
the object of PicX/B over U we were looking for. Details omitted. □

95.17. Examples of inertia stacks

0373 Here are some examples of inertia stacks.

Example 95.17.1.0374 Let S be a scheme. Let G be a commutative group. Let X → S
be a scheme over S. Let a : G ×X → X be an action of G on X. For g ∈ G we
denote g : X → X the corresponding automorphism. In this case the inertia stack
of [X/G] (see Remark 95.15.5) is given by

I[X/G] =
∐

g∈G
[Xg/G],

where, given an element g of G, the symbol Xg denotes the scheme Xg = {x ∈ X |
g(x) = x}. In a formula Xg is really the fibre product

Xg = X ×(1,1),X×SX,(g,1) X.

Indeed, for any S-scheme T , a T -point on the inertia stack of [X/G] consists of
a triple (P/T, ϕ, α) consisting of an fppf G-torsor P → T together with a G-
equivariant morphism ϕ : P → X, together with an automorphism α of P → T over
T such that ϕ ◦ α = ϕ. Since G is a sheaf of commutative groups, α is, locally in
the fppf topology over T , given by multiplication by some element g of G. The con-
dition that ϕ ◦α = ϕ means that ϕ factors through the inclusion of Xg in X, i.e., ϕ
is obtained by composing that inclusion with a morphism P → Xγ . The above dis-
cussion allows us to define a morphism of fibred categories I[X/G] →

∐
g∈G[Xg/G]

given on T -points by the discussion above. We omit showing that this is an equiv-
alence.

Example 95.17.2.0375 Let f : X → S be a morphism of schemes. Assume that for any
T → S the base change fT : XT → T has the property that the map OT → fT,∗OXT
is an isomorphism. (This implies that f is cohomologically flat in dimension 0
(insert future reference here) but is stronger.) Consider the Picard stack PicX/S ,
see Section 95.16. The points of its inertia stack over an S-scheme T consist of
pairs (L, α) where L is a line bundle on XT and α is an automorphism of that line
bundle. I.e., we can think of α as an element of H0(XT ,OXT )× = H0(T,O∗

T ) by
our condition. Note that H0(T,O∗

T ) = Gm,S(T ), see Groupoids, Example 39.5.1.
Hence the inertia stack of PicX/S is

IPicX/S = Gm,S ×S PicX/S .

as a stack over (Sch/S)fppf .

https://stacks.math.columbia.edu/tag/0374
https://stacks.math.columbia.edu/tag/0375
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95.18. Finite Hilbert stacks

05WA We formulate this in somewhat greater generality than is perhaps strictly needed.
Fix a 1-morphism

F : X −→ Y
of stacks in groupoids over (Sch/S)fppf . For each integer d ≥ 1 consider a category
Hd(X/Y) defined as follows:

(1) An object (U,Z, y, x, α) where U,Z are objects of in (Sch/S)fppf and Z
is a finite locally free of degree d over U , where y ∈ Ob(YU ), x ∈ Ob(XZ)
and α : y|Z → F (x) is an isomorphism3.

(2) A morphism (U,Z, y, x, α)→ (U ′, Z ′, y′, x′, α′) is given by a morphism of
schemes f : U → U ′, a morphism of schemes g : Z → Z ′ which induces an
isomorphism Z → Z ′ ×U U ′, and isomorphisms b : y → f∗y′, a : x→ g∗x′

inducing a commutative diagram

y|Z α
//

b|Z
��

F (x)

F (a)
��

f∗y′|Z
α′

// F (g∗x′)

It is clear from the definitions that there is a canonical forgetful functor

p : Hd(X/Y) −→ (Sch/S)fppf
which assigns to the quintuple (U,Z, y, x, α) the scheme U and to the morphism
(f, g, b, a) : (U,Z, y, x, α)→ (U ′, Z ′, y′, x′, α′) the morphism f : U → U ′.

Lemma 95.18.1.05WB The category Hd(X/Y) endowed with the functor p above defines
a stack in groupoids over (Sch/S)fppf .

Proof. As usual, the hardest part is to show descent for objects. To see this let
{Ui → U} be a covering of (Sch/S)fppf . Let ξi = (Ui, Zi, yi, xi, αi) be an object
of Hd(X/Y) lying over Ui, and let φij : pr∗

0ξi → pr∗
1ξj be a descent datum. First,

observe that φij induces a descent datum (Zi/Ui, φij) which is effective by Descent,
Lemma 35.37.1 This produces a scheme Z/U which is finite locally free of degree d
by Descent, Lemma 35.23.30. From now on we identify Zi with Z×U Ui. Next, the
objects yi in the fibre categories YUi descend to an object y in YU because Y is a

3This means the data gives rise, via the 2-Yoneda lemma (Categories, Lemma 4.41.2), to a
2-commutative diagram

(Sch/Z)fppf x
//

��

X

F

��
(Sch/U)fppf

y // Y

of stacks in groupoids over (Sch/S)fppf . Alternatively, we may picture α as a 2-morphism

(Sch/Z)fppf

y◦(Z→U)
**

F◦x

44�� α Y.

https://stacks.math.columbia.edu/tag/05WB
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stack in groupoids. Similarly the objects xi in the fibre categories XZi descend to an
object x in XZ because X is a stack in groupoids. Finally, the given isomorphisms

αi : (y|Z)Zi = yi|Zi −→ F (xi) = F (x|Zi)
glue to a morphism α : y|Z → F (x) as the Y is a stack and hence IsomY(y|Z , F (x))
is a sheaf. Details omitted. □

Definition 95.18.2.05WC We will denote Hd(X/Y) the degree d finite Hilbert stack of X
over Y constructed above. If Y = S we write Hd(X ) = Hd(X/Y). If X = Y = S
we denote it Hd.

Note that given F : X → Y as above we have the following natural 1-morphisms of
stacks in groupoids over (Sch/S)fppf :

(95.18.2.1)05WD

Hd(X )

%%

Hd(X/Y)

��

oo // Y

Hd
Each of the arrows is given by a "forgetful functor".

Lemma 95.18.3.05XV The 1-morphism Hd(X/Y)→ Hd(X ) is faithful.

Proof. To check that Hd(X/Y) → Hd(X ) is faithful it suffices to prove that it is
faithful on fibre categories. Suppose that ξ = (U,Z, y, x, α) and ξ′ = (U,Z ′, y′, x′, α′)
are two objects of Hd(X/Y) over the scheme U . Let (g, b, a), (g′, b′, a′) : ξ → ξ′ be
two morphisms in the fibre category of Hd(X/Y) over U . The image of these mor-
phisms in Hd(X ) agree if and only if g = g′ and a = a′. Then the commutative
diagram

y|Z α
//

b|Z , b′|Z
��

F (x)

F (a)=F (a′)
��

y′|Z
α′

// F (g∗x′) = F ((g′)∗x′)
implies that b|Z = b′|Z . Since Z → U is finite locally free of degree d we see
{Z → U} is an fppf covering, hence b = b′. □
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CHAPTER 96

Sheaves on Algebraic Stacks

06TF 96.1. Introduction

06TG There is a myriad of ways to think about sheaves on algebraic stacks. In this chapter
we discuss one approach, which is particularly well adapted to our foundations for
algebraic stacks. Whenever we introduce a type of sheaves we will indicate the
precise relationship with similar notions in the literature. The goal of this chapter
is to state those results that are either obviously true or straightforward to prove
and leave more intricate constructions till later.

In fact, it turns out that to develop a fully fledged theory of constructible étale
sheaves and/or an adequate discussion of derived categories of complexesO-modules
whose cohomology sheaves are quasi-coherent takes a significant amount of work,
see [Ols07b]. We will return to this in Cohomology of Stacks, Section 103.1.

In the literature and in research papers on sheaves on algebraic stacks the lisse-étale
site of an algebraic stack often plays a prominent role. However, it is a problematic
beast, because it turns out that a morphism of algebraic stacks does not induce a
morphism of lisse-étale topoi. We have therefore made the design decision to avoid
any mention of the lisse-étale site as long as possible. Arguments that traditionally
use the lisse-étale site will be replaced by an argument using a Čech covering in the
site Xsmooth defined below.

Some of the notation, conventions and terminology in this chapter is awkward and
may seem backwards to the more experienced reader. This is intentional. Please
see Quot, Section 99.2 for an explanation.

96.2. Conventions

06TH The conventions we use in this chapter are the same as those in the chapter on
algebraic stacks, see Algebraic Stacks, Section 94.2. For convenience we repeat
them here.

We work in a suitable big fppf site Schfppf as in Topologies, Definition 34.7.6. So,
if not explicitly stated otherwise all schemes will be objects of Schfppf . We record
what changes if you change the big fppf site elsewhere (insert future reference here).

We will always work relative to a base S contained in Schfppf . And we will then
work with the big fppf site (Sch/S)fppf , see Topologies, Definition 34.7.8. The
absolute case can be recovered by taking S = Spec(Z).

96.3. Presheaves

06TI

6718
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In this section we define presheaves on categories fibred in groupoids over (Sch/S)fppf ,
but most of the discussion works for categories over any base category. This section
also serves to introduce the notation we will use later on.

Definition 96.3.1.06TJ Let p : X → (Sch/S)fppf be a category fibred in groupoids.
(1) A presheaf on X is a presheaf on the underlying category of X .
(2) A morphism of presheaves on X is a morphism of presheaves on the un-

derlying category of X .
We denote PSh(X ) the category of presheaves on X .

This defines presheaves of sets. Of course we can also talk about presheaves of
pointed sets, abelian groups, groups, monoids, rings, modules over a fixed ring,
and lie algebras over a fixed field, etc. The category of abelian presheaves, i.e.,
presheaves of abelian groups, is denoted PAb(X ).

Let f : X → Y be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf .
Recall that this means just that f is a functor over (Sch/S)fppf . The material in
Sites, Section 7.19 provides us with a pair of adjoint functors1

(96.3.1.1)06TK fp : PSh(Y) −→ PSh(X ) and pf : PSh(X ) −→ PSh(Y).

The adjointness is

MorPSh(X )(fpG,F) = MorPSh(Y)(G, pfF)

where F ∈ Ob(PSh(X )) and G ∈ Ob(PSh(Y)). We call fpG the pullback of G. It
follows from the definitions that

fpG(x) = G(f(x))

for any x ∈ Ob(X ). The presheaf pfF is called the pushforward of F . It is described
by the formula

(pfF)(y) = limf(x)→y F(x).
The rest of this section should probably be moved to the chapter on sites and in
any case should be skipped on a first reading.

Lemma 96.3.2.06TL Let f : X → Y and g : Y → Z be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . Then (g ◦ f)p = fp ◦ gp and there is a canonical
isomorphism p(g ◦ f) → pg ◦ pf compatible with adjointness of (fp, pf), (gp, pg),
and ((g ◦ f)p, p(g ◦ f)).

Proof. Let H be a presheaf on Z. Then (g ◦ f)pH = fp(gpH) is given by the
equalities

(g ◦ f)pH(x) = H((g ◦ f)(x)) = H(g(f(x))) = fp(gpH)(x).

We omit the verification that this is compatible with restriction maps.

Next, we define the transformation p(g◦f)→ pg◦pf . Let F be a presheaf on X . If z
is an object of Z then we get a category J of quadruples (x, f(x)→ y, y, g(y)→ z)
and a category I of pairs (x, g(f(x)) → z). There is a canonical functor J → I

1These functors will be denoted f−1 and f∗ after Lemma 96.4.4 has been proved.

https://stacks.math.columbia.edu/tag/06TJ
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sending the object (x, α : f(x)→ y, y, β : g(y)→ z) to (x, β ◦ f(α) : g(f(x))→ z).
This gives the arrow in

(p(g ◦ f)F)(z) = limg(f(x))→z F(x)
= limI F
→ limJ F

= limg(y)→z

(
limf(x)→y F(x)

)
= (pg ◦ pfF)(x)

by Categories, Lemma 4.14.9. We omit the verification that this is compatible with
restriction maps. An alternative to this direct construction is to define p(g ◦ f) ∼=
pg ◦ pf as the unique map compatible with the adjointness properties. This also
has the advantage that one does not need to prove the compatibility.
Compatibility with adjointness of (fp, pf), (gp, pg), and ((g ◦ f)p, p(g ◦ f)) means
that given presheaves H and F as above we have a commutative diagram

MorPSh(X )(fpgpH,F) MorPSh(Y)(gpH, pfF) MorPSh(Y)(H, pgpfF)

MorPSh(X )((g ◦ f)pG,F) MorPSh(Y)(G, p(g ◦ f)F)

OO

Proof omitted. □

Lemma 96.3.3.06TM Let f, g : X → Y be 1-morphisms of categories fibred in groupoids
over (Sch/S)fppf . Let t : f → g be a 2-morphism of categories fibred in groupoids
over (Sch/S)fppf . Assigned to t there are canonical isomorphisms of functors

tp : gp −→ fp and pt : pf −→ pg

which compatible with adjointness of (fp, pf) and (gp, pg) and with vertical and
horizontal composition of 2-morphisms.

Proof. Let G be a presheaf on Y. Then tp : gpG → fpG is given by the family of
maps

gpG(x) = G(g(x)) G(tx)−−−→ G(f(x)) = fpG(x)
parametrized by x ∈ Ob(X ). This makes sense as tx : f(x) → g(x) and G is
a contravariant functor. We omit the verification that this is compatible with
restriction mappings.
To define the transformation pt for y ∈ Ob(Y) define fyI, resp. gyI to be the category
of pairs (x, ψ : f(x)→ y), resp. (x, ψ : g(x)→ y), see Sites, Section 7.19. Note that
t defines a functor yt : gyI → f

yI given by the rule

(x, g(x)→ y) 7−→ (x, f(x) tx−→ g(x)→ y).
Note that for F a presheaf on X the composition of yt with F : fyIopp → Sets,
(x, f(x) → y) 7→ F(x) is equal to F : gyIopp → Sets. Hence by Categories, Lemma
4.14.9 we get for every y ∈ Ob(Y) a canonical map

(pfF)(y) = limf
yI F −→ limg

yI F = (pgF)(y)

We omit the verification that this is compatible with restriction mappings. An
alternative to this direct construction is to define pt as the unique map compatible
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with the adjointness properties of the pairs (fp, pf) and (gp, pg) (see below). This
also has the advantage that one does not need to prove the compatibility.

Compatibility with adjointness of (fp, pf) and (gp, pg) means that given presheaves
G and F as above we have a commutative diagram

MorPSh(X )(fpG,F)

−◦tp

��

MorPSh(Y)(G, pfF)

pt◦−
��

MorPSh(X )(gpG,F) MorPSh(Y)(G, pgF)

Proof omitted. Hint: Work through the proof of Sites, Lemma 7.19.2 and observe
the compatibility from the explicit description of the horizontal and vertical maps
in the diagram.

We omit the verification that this is compatible with vertical and horizontal com-
positions. Hint: The proof of this for tp is straightforward and one can conclude
that this holds for the pt maps using compatibility with adjointness. □

96.4. Sheaves

06TN We first make an observation that is important and trivial (especially for those
readers who do not worry about set theoretical issues).

Consider a big fppf site Schfppf as in Topologies, Definition 34.7.6 and denote its
underlying category Schα. Besides being the underlying category of a fppf site, the
category Schα can also can serve as the underlying category for a big Zariski site,
a big étale site, a big smooth site, and a big syntomic site, see Topologies, Remark
34.11.1. We denote these sites SchZar, Schétale, Schsmooth, and Schsyntomic. In this
situation, since we have defined the big Zariski site (Sch/S)Zar of S, the big étale
site (Sch/S)étale of S, the big smooth site (Sch/S)smooth of S, the big syntomic site
(Sch/S)syntomic of S, and the big fppf site (Sch/S)fppf of S as the localizations
(see Sites, Section 7.25) SchZar/S, Schétale/S, Schsmooth/S, Schsyntomic/S, and
Schfppf/S of these (absolute) big sites we see that all of these have the same
underlying category, namely Schα/S.

It follows that if we have a category p : X → (Sch/S)fppf fibred in groupoids,
then X inherits a Zariski, étale, smooth, syntomic, and fppf topology, see Stacks,
Definition 8.10.2.

Definition 96.4.1.06TP Let X be a category fibred in groupoids over (Sch/S)fppf .
(1) The associated Zariski site, denoted XZar, is the structure of site on X

inherited from (Sch/S)Zar.
(2) The associated étale site, denoted Xétale, is the structure of site on X

inherited from (Sch/S)étale.
(3) The associated smooth site, denoted Xsmooth, is the structure of site on
X inherited from (Sch/S)smooth.

(4) The associated syntomic site, denoted Xsyntomic, is the structure of site
on X inherited from (Sch/S)syntomic.

(5) The associated fppf site, denoted Xfppf , is the structure of site on X
inherited from (Sch/S)fppf .
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This definition makes sense by the discussion above. If X is an algebraic stack, the
literature calls Xfppf (or a site equivalent to it) the big fppf site of X and similarly
for the other ones. We may occasionally use this terminology to distinguish this
construction from others.

Remark 96.4.2.06TQ We only use this notation when the symbol X refers to a category
fibred in groupoids, and not a scheme, an algebraic space, etc. In this way we will
avoid confusion with the small étale site of a scheme, or algebraic space which is
denoted Xétale (in which case we use a roman capital instead of a calligraphic one).

Now that we have these topologies defined we can say what it means to have a
sheaf on X , i.e., define the corresponding topoi.

Definition 96.4.3.06TR Let X be a category fibred in groupoids over (Sch/S)fppf . Let
F be a presheaf on X .

(1) We say F is a Zariski sheaf, or a sheaf for the Zariski topology if F is a
sheaf on the associated Zariski site XZar.

(2) We say F is an étale sheaf, or a sheaf for the étale topology if F is a sheaf
on the associated étale site Xétale.

(3) We say F is a smooth sheaf, or a sheaf for the smooth topology if F is a
sheaf on the associated smooth site Xsmooth.

(4) We say F is a syntomic sheaf, or a sheaf for the syntomic topology if F
is a sheaf on the associated syntomic site Xsyntomic.

(5) We say F is an fppf sheaf, or a sheaf, or a sheaf for the fppf topology if
F is a sheaf on the associated fppf site Xfppf .

A morphism of sheaves is just a morphism of presheaves. We denote these categories
of sheaves Sh(XZar), Sh(Xétale), Sh(Xsmooth), Sh(Xsyntomic), and Sh(Xfppf ).

Of course we can also talk about sheaves of pointed sets, abelian groups, groups,
monoids, rings, modules over a fixed ring, and lie algebras over a fixed field, etc. The
category of abelian sheaves, i.e., sheaves of abelian groups, is denoted Ab(Xfppf )
and similarly for the other topologies. If X is an algebraic stack, then Sh(Xfppf )
is equivalent (modulo set theoretical problems) to what in the literature would be
termed the category of sheaves on the big fppf site of X . Similar for other topologies.
We may occasionally use this terminology to distinguish this construction from
others.
Since the topologies are listed in increasing order of strength we have the following
strictly full inclusions

Sh(Xfppf ) ⊂ Sh(Xsyntomic) ⊂ Sh(Xsmooth) ⊂ Sh(Xétale) ⊂ Sh(XZar) ⊂ PSh(X )
We sometimes write Sh(Xfppf ) = Sh(X ) and Ab(Xfppf ) = Ab(X ) in accordance
with our terminology that a sheaf on X is an fppf sheaf on X .
With this setup functoriality of these topoi is straightforward, and moreover, is
compatible with the inclusion functors above.

Lemma 96.4.4.06TS Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. The functors pf
and fp of (96.3.1.1) transform τ sheaves into τ sheaves and define a morphism of
topoi f : Sh(Xτ )→ Sh(Yτ ).

Proof. This follows immediately from Stacks, Lemma 8.10.3. □
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In other words, pushforward and pullback of presheaves as defined in Section 96.3
also produces pushforward and pullback of τ -sheaves. Having said all of the above
we see that we can write fp = f−1 and pf = f∗ without any possibility of confusion.

Definition 96.4.5.06TT Let f : X → Y be a morphism of categories fibred in groupoids
over (Sch/S)fppf . We denote

f = (f−1, f∗) : Sh(Xfppf ) −→ Sh(Yfppf )
the associated morphism of fppf topoi constructed above. Similarly for the associ-
ated Zariski, étale, smooth, and syntomic topoi.

As discussed in Sites, Section 7.44 the same formula (on the underlying sheaf of
sets) defines pushforward and pullback for sheaves (for one of our topologies) of
pointed sets, abelian groups, groups, monoids, rings, modules over a fixed ring, and
lie algebras over a fixed field, etc.

96.5. Computing pushforward

06W5 Let f : X → Y be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf .
Let F be a presheaf on X . Let y ∈ Ob(Y). We can compute f∗F(y) in the following
way. Suppose that y lies over the scheme V and using the 2-Yoneda lemma think
of y as a 1-morphism. Consider the projection

pr : (Sch/V )fppf ×y,Y X −→ X
Then we have a canonical identification

(96.5.0.1)06W6 f∗F(y) = Γ
(

(Sch/V )fppf ×y,Y X , pr−1F
)

Namely, objects of the 2-fibre product are triples (h : U → V, x, f(x) → h∗y).
Dropping the h from the notation we see that this is equivalent to the data of an
object x of X and a morphism α : f(x)→ y of Y. Since f∗F(y) = limf(x)→y F(x)
by definition the equality follows.
As a consequence we have the following “base change” result for pushforwards. This
result is trivial and hinges on the fact that we are using “big” sites.

Lemma 96.5.1.075B Let S be a scheme. Let

Y ′ ×Y X
g′

//

f ′

��

X

f

��
Y ′ g // Y

be a 2-cartesian diagram of categories fibred in groupoids over S. Then we have a
canonical isomorphism

g−1f∗F −→ f ′
∗(g′)−1F

functorial in the presheaf F on X .

Proof. Given an object y′ of Y ′ over V there is an equivalence
(Sch/V )fppf ×g(y′),Y X = (Sch/V )fppf ×y′,Y′ (Y ′ ×Y X )

Hence by (96.5.0.1) a bijection g−1f∗F(y′)→ f ′
∗(g′)−1F(y′). We omit the verifica-

tion that this is compatible with restriction mappings. □
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In the case of a representable morphism of categories fibred in groupoids this for-
mula (96.5.0.1) simplifies. We suggest the reader skip the rest of this section.

Lemma 96.5.2.06W7 Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . The following are equivalent

(1) f is representable, and
(2) for every y ∈ Ob(Y) the functor X opp → Sets, x 7→ MorY(f(x), y) is

representable.

Proof. According to the discussion in Algebraic Stacks, Section 94.6 we see that f
is representable if and only if for every y ∈ Ob(Y) lying over U the 2-fibre product
(Sch/U)fppf×y,YX is representable, i.e., of the form (Sch/Vy)fppf for some scheme
Vy over U . Objects in this 2-fibre products are triples (h : V → U, x, α : f(x) →
h∗y) where α lies over idV . Dropping the h from the notation we see that this is
equivalent to the data of an object x of X and a morphism f(x) → y. Hence the
2-fibre product is representable by Vy and f(xy) → y where xy is an object of X
over Vy if and only if the functor in (2) is representable by xy with universal object
a map f(xy)→ y. □

Let
X

f
//

p
%%

Y

q
yy

(Sch/S)fppf
be a 1-morphism of categories fibred in groupoids. Assume f is representable.
For every y ∈ Ob(Y) we choose an object u(y) ∈ Ob(X ) representing the functor
x 7→ MorY(f(x), y) of Lemma 96.5.2 (this is possible by the axiom of choice). The
objects come with canonical morphisms f(u(y)) → y by construction. For every
morphism β : y′ → y in Y we obtain a unique morphism u(β) : u(y′)→ u(y) in X
such that the diagram

f(u(y′))

��

f(u(β))
// f(u(y))

��
y′ // y

commutes. In other words, u : Y → X is a functor. In fact, we can say a little bit
more. Namely, suppose that V ′ = q(y′), V = q(y), U ′ = p(u(y′)) and U = p(u(y)).
Then

U ′
p(u(β))

//

��

U

��
V ′ q(β) // V

is a fibre product square. This is true because U ′ → U represents the base change
(Sch/V ′)fppf ×y′,Y X → (Sch/V )fppf ×y,Y X of V ′ → V .

Lemma 96.5.3.06W8 Let f : X → Y be a representable 1-morphism of categories fibred in
groupoids over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Then
the functor u : Yτ → Xτ is continuous and defines a morphism of sites Xτ → Yτ
which induces the same morphism of topoi Sh(Xτ ) → Sh(Yτ ) as the morphism f
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constructed in Lemma 96.4.4. Moreover, f∗F(y) = F(u(y)) for any presheaf F on
X .

Proof. Let {yi → y} be a τ -covering in Y. By definition this simply means that
{q(yi)→ q(y)} is a τ -covering of schemes. By the final remark above the lemma we
see that {p(u(yi)) → p(u(y))} is the base change of the τ -covering {q(yi) → q(y)}
by p(u(y)) → q(y), hence is itself a τ -covering by the axioms of a site. Hence
{u(yi)→ u(y)} is a τ -covering of X . This proves that u is continuous.
Let’s use the notation up, us, u

p, us of Sites, Sections 7.5 and 7.13. If we can show
the final assertion of the lemma, then we see that f∗ = up = us (by continuity of u
seen above) and hence by adjointness f−1 = us which will prove us is exact, hence
that u determines a morphism of sites, and the equality will be clear as well. To
see that f∗F(y) = F(u(y)) note that by definition

f∗F(y) = (pfF)(y) = limf(x)→y F(x).
Since u(y) is a final object in the category the limit is taken over we conclude. □

96.6. The structure sheaf

06TU Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Let p : X → (Sch/S)fppf be a
category fibred in groupoids. The 2-category of categories fibred in groupoids over
(Sch/S)fppf has a final object, namely, id : (Sch/S)fppf → (Sch/S)fppf and p is
a 1-morphism from X to this final object. Hence any presheaf G on (Sch/S)fppf
gives a presheaf p−1G on X defined by the rule p−1G(x) = G(p(x)). Moreover, the
discussion in Section 96.4 shows that p−1G is a τ sheaf whenever G is a τ -sheaf.
Recall that the site (Sch/S)fppf is a ringed site with structure sheaf O defined by
the rule

(Sch/S)opp −→ Rings, U/S 7−→ Γ(U,OU )
see Descent, Definition 35.8.2.

Definition 96.6.1.06TV Let p : X → (Sch/S)fppf be a category fibred in groupoids. The
structure sheaf of X is the sheaf of rings OX = p−1O.

For an object x of X lying over U we have OX (x) = O(U) = Γ(U,OU ). Needless to
say OX is also a Zariski, étale, smooth, and syntomic sheaf, and hence each of the
sites XZar, Xétale, Xsmooth, Xsyntomic, and Xfppf is a ringed site. This construction
is functorial as well.

Lemma 96.6.2.06TW Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. There is a canon-
ical identification f−1OY = OX which turns f : Sh(Xτ )→ Sh(Yτ ) into a morphism
of ringed topoi.

Proof. Denote p : X → (Sch/S)fppf and q : Y → (Sch/S)fppf the structural
functors. Then p = q◦f , hence p−1 = f−1◦q−1 by Lemma 96.3.2. SinceOX = p−1O
and OY = q−1O the result follows. □

Remark 96.6.3.06TX In the situation of Lemma 96.6.2 the morphism of ringed topoi
f : Sh(Xτ ) → Sh(Yτ ) is flat as is clear from the equality f−1OX = OY . This is a
bit counter intuitive, for example because a closed immersion of algebraic stacks is
typically not flat (as a morphism of algebraic stacks). However, exactly the same
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thing happens when taking a closed immersion i : X → Y of schemes: in this case
the associated morphism of big τ -sites i : (Sch/X)τ → (Sch/Y )τ also is flat.

96.7. Sheaves of modules

06WA Since we have a structure sheaf we have modules.

Definition 96.7.1.06WB Let X be a category fibred in groupoids over (Sch/S)fppf .
(1) A presheaf of modules on X is a presheaf of OX -modules. The category

of presheaves of modules is denoted PMod(OX ).
(2) We say a presheaf of modules F is an OX -module, or more precisely a

sheaf of OX -modules if F is an fppf sheaf. The category of OX -modules
is denoted Mod(OX ).

These (pre)sheaves of modules occur in the literature as (pre)sheaves ofOX -modules
on the big fppf site of X . We will occasionally use this terminology if we want to
distinguish these categories from others. We will also encounter presheaves of mod-
ules which are sheaves in the Zariski, étale, smooth, or syntomic topologies (without
necessarily being sheaves). If need be these will be denoted Mod(Xétale,OX ) and
similarly for the other topologies.

Next, we address functoriality – first for presheaves of modules. Let

X
f

//

p
%%

Y

q
yy

(Sch/S)fppf

be a 1-morphism of categories fibred in groupoids. The functors f−1, f∗ on abelian
presheaves extend to functors
(96.7.1.1)

06WD f−1 : PMod(OY) −→ PMod(OX ) and f∗ : PMod(OX ) −→ PMod(OY)

This is immediate for f−1 because f−1G(x) = G(f(x)) which is a module over
OY(f(x)) = O(q(f(x))) = O(p(x)) = OX (x). Alternatively it follows because
f−1OY = OX and because f−1 commutes with limits (on presheaves). Since f∗ is
a right adjoint it commutes with all limits (on presheaves) in particular products.
Hence we can extend f∗ to a functor on presheaves of modules as in the proof of
Modules on Sites, Lemma 18.12.1. We claim that the functors (96.7.1.1) form an
adjoint pair of functors:

MorPMod(OX )(f−1G,F) = MorPMod(OY )(G, f∗F).

As f−1OY = OX this follows from Modules on Sites, Lemma 18.12.3 by endowing
X and Y with the chaotic topology.

Next, we discuss functoriality for modules, i.e., for sheaves of modules in the fppf
topology. Denote by f also the induced morphism of ringed topoi, see Lemma
96.6.2 (for the fppf topologies right now). Note that the functors f−1 and f∗
of (96.7.1.1) preserve the subcategories of sheaves of modules, see Lemma 96.4.4.
Hence it follows immediately that

(96.7.1.2)06WE f−1 : Mod(OY) −→ Mod(OX ) and f∗ : Mod(OX ) −→ Mod(OY)
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form an adjoint pair of functors:
MorMod(OX )(f−1G,F) = MorMod(OY )(G, f∗F).

By uniqueness of adjoints we conclude that f∗ = f−1 where f∗ is as defined in
Modules on Sites, Section 18.13 for the morphism of ringed topoi f above. Of
course we could have seen this directly because f∗(−) = f−1(−) ⊗f−1OY OX and
because f−1OY = OX .
Similarly for sheaves of modules in the Zariski, étale, smooth, syntomic topology.

96.8. Representable categories

076N In this short section we compare our definitions with what happens in case the
algebraic stacks in question are representable.

Lemma 96.8.1.075I Let S be a scheme. Let X be a category fibred in groupoids over
(Sch/S). Assume X is representable by a scheme X. For τ ∈ {Zar, étale, smooth,
syntomic, fppf} there is a canonical equivalence

(Xτ ,OX ) = ((Sch/X)τ ,OX)
of ringed sites.

Proof. This follows by choosing an equivalence (Sch/X)τ → X of categories fibred
in groupoids over (Sch/S)fppf and using the functoriality of the construction X ⇝
Xτ . □

Lemma 96.8.2.075J Let S be a scheme. Let f : X → Y be a morphism of categories
fibred in groupoids over S. Assume X , Y are representable by schemes X, Y .
Let f : X → Y be the morphism of schemes corresponding to f . For τ ∈ {Zar,
étale, smooth, syntomic, fppf} the morphism of ringed topoi f : (Sh(Xτ ),OX ) →
(Sh(Yτ ),OY) agrees with the morphism of ringed topoi f : (Sh((Sch/X)τ ),OX)→
(Sh((Sch/Y )τ ),OY ) via the identifications of Lemma 96.8.1.

Proof. Follows by unwinding the definitions. □

96.9. Restriction

075C A trivial but useful observation is that the localization of a category fibred in
groupoids at an object is equivalent to the big site of the scheme it lies over.

Lemma 96.9.1.06W0 Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
τ ∈ {Zar, étale, smooth, syntomic, fppf}. Let x ∈ Ob(X ) lying over U = p(x).
The functor p induces an equivalence of sites Xτ/x→ (Sch/U)τ .

Proof. Special case of Stacks, Lemma 8.10.4. □

We use the lemma above to talk about the pullback and the restriction of a
(pre)sheaf to a scheme.

Definition 96.9.2.06W1 Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
x ∈ Ob(X ) lying over U = p(x). Let F be a presheaf on X .

(1) The pullback x−1F of F is the restriction F|(X/x) viewed as a presheaf on
(Sch/U)fppf via the equivalence X/x→ (Sch/U)fppf of Lemma 96.9.1.

(2) The restriction of F to Uétale is x−1F|Uétale , abusively written F|Uétale .
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This notation makes sense because to the object x the 2-Yoneda lemma, see Alge-
braic Stacks, Section 94.5 associates a 1-morphism x : (Sch/U)fppf → X/x which
is quasi-inverse to p : X/x → (Sch/U)fppf . Hence x−1F truly is the pullback of
F via this 1-morphism. In particular, by the material above, if F is a sheaf (or a
Zariski, étale, smooth, syntomic sheaf), then x−1F is a sheaf on (Sch/U)fppf (or
on (Sch/U)Zar, (Sch/U)étale, (Sch/U)smooth, (Sch/U)syntomic).
Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let φ : x → y
be a morphism of X lying over the morphism of schemes a : U → V . Recall
that a induces a morphism of small étale sites asmall : Uétale → Vétale, see Étale
Cohomology, Section 59.34. Let F be a presheaf on X . Let F|Uétale and F|Vétale
be the restrictions of F via x and y. There is a natural comparison map
(96.9.2.1)06W2 cφ : F|Vétale −→ asmall,∗(F|Uétale)
of presheaves on Uétale. Namely, if V ′ → V is étale, set U ′ = V ′ ×V U and define
cφ on sections over V ′ via

asmall,∗(F|Uétale)(V ′) F|Uétale(U ′) F(x′)

F|Vétale(V ′)

cφ

OO

F(y′)

F(φ′)

OO

Here φ′ : x′ → y′ is a morphism of X fitting into a commutative diagram

x′ //

φ′

��

x

φ

��
y′ // y

lying over
U ′ //

��

U

a

��
V ′ // V

The existence and uniqueness of φ′ follow from the axioms of a category fibred in
groupoids. We omit the verification that cφ so defined is indeed a map of presheaves
(i.e., compatible with restriction mappings) and that it is functorial in F . In case
F is a sheaf for the étale topology we obtain a comparison map
(96.9.2.2)06W3 cφ : a−1

small(F|Vétale) −→ F|Uétale
which is also denoted cφ as indicated (this is the customary abuse of notation in
not distinguishing between adjoint maps).

Lemma 96.9.3.075D Let F be an étale sheaf on X → (Sch/S)fppf .
(1) If φ : x→ y and ψ : y → z are morphisms of X lying over a : U → V and

b : V →W , then the composition

a−1
small(b

−1
small(F|Wétale

))
a−1
small

cψ−−−−−−→ a−1
small(F|Vétale)

cφ−→ F|Uétale
is equal to cψ◦φ via the identification

(b ◦ a)−1
small(F|Wétale

) = a−1
small(b

−1
small(F|Wétale

)).
(2) If φ : x → y lies over an étale morphism of schemes a : U → V , then

(96.9.2.2) is an isomorphism.
(3) Suppose f : Y → X is a 1-morphism of categories fibred in groupoids over

(Sch/S)fppf and y is an object of Y lying over the scheme U with image
x = f(y). Then there is a canonical identification f−1F|Uétale = F|Uétale .
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(4) Moreover, given ψ : y′ → y in Y lying over a : U ′ → U the comparison
map cψ : a−1

small(f−1F|Uétale) → f−1F|U ′
étale

is equal to the comparison
map cf(ψ) : a−1

smallF|Uétale → F|U ′
étale

via the identifications in (3).

Proof. The verification of these properties is omitted. □

Next, we turn to the restriction of (pre)sheaves of modules.

Lemma 96.9.4.06W9 Let p : X → (Sch/S)fppf be a category fibred in groupoids.
Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Let x ∈ Ob(X ) lying over U =
p(x). The equivalence of Lemma 96.9.1 extends to an equivalence of ringed sites
(Xτ/x,OX |x)→ ((Sch/U)τ ,O).

Proof. This is immediate from the construction of the structure sheaves. □

Let X be a category fibred in groupoids over (Sch/S)fppf . Let F be a (pre)sheaf
of modules on X as in Definition 96.7.1. Let x be an object of X lying over U .
Then Lemma 96.9.4 guarantees that the restriction x−1F is a (pre)sheaf of modules
on (Sch/U)fppf . We will sometimes write x∗F = x−1F in this case. Similarly, if
F is a sheaf for the Zariski, étale, smooth, or syntomic topology, then x−1F is
as well. Moreover, the restriction F|Uétale = x−1F|Uétale to U is a presheaf of
OUétale -modules. If F is a sheaf for the étale topology, then F|Uétale is a sheaf of
modules. Moreover, if φ : x→ y is a morphism of X lying over a : U → V then the
comparison map (96.9.2.2) is compatible with a♯small (see Descent, Remark 35.8.4)
and induces a comparison map
(96.9.4.1)06WC cφ : a∗

small(F|Vétale) −→ F|Uétale
of OUétale -modules. Note that the properties (1), (2), (3), and (4) of Lemma 96.9.3
hold in the setting of étale sheaves of modules as well. We will use this in the
following without further mention.

Lemma 96.9.5.06W4 Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
τ ∈ {Zar, étale, smooth, syntomic, fppf}. The site Xτ has enough points.

Proof. By Sites, Lemma 7.38.5 we have to show that there exists a family of objects
x of X such that Xτ/x has enough points and such that the sheaves h#

x cover the
final object of the category of sheaves. By Lemma 96.9.1 and Étale Cohomology,
Lemma 59.30.1 we see that Xτ/x has enough points for every object x and we
win. □

96.10. Restriction to algebraic spaces

076P In this section we consider sheaves on categories representable by algebraic spaces.
The following lemma is the analogue of Topologies, Lemma 34.4.14 for algebraic
spaces.

Lemma 96.10.1.073M Let S be a scheme. Let X → (Sch/S)fppf be a category fibred in
groupoids. Assume X is representable by an algebraic space F . Then there exists
a continuous and cocontinuous functor Fétale → Xétale which induces a morphism
of ringed sites

πF : (Xétale,OX ) −→ (Fétale,OF )
and a morphism of ringed topoi

iF : (Sh(Fétale),OF ) −→ (Sh(Xétale),OX )

https://stacks.math.columbia.edu/tag/06W9
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such that πF ◦ iF = id. Moreover πF,∗ = i−1
F .

Proof. Choose an equivalence j : SF → X , see Algebraic Stacks, Sections 94.7 and
94.8. An object of Fétale is a scheme U together with an étale morphism φ : U → F .
Then φ is an object of SF over U . Hence j(φ) is an object of X over U . In this
way j induces a functor u : Fétale → X . It is clear that u is continuous and
cocontinuous for the étale topology on X . Since j is an equivalence, the functor u
is fully faithful. Also, fibre products and equalizers exist in Fétale and u commutes
with them because these are computed on the level of underlying schemes in Fétale.
Thus Sites, Lemmas 7.21.5, 7.21.6, and 7.21.7 apply. In particular u defines a
morphism of topoi iF : Sh(Fétale) → Sh(Xétale) and there exists a left adjoint iF,!
of i−1

F which commutes with fibre products and equalizers.
We claim that iF,! is exact. If this is true, then we can define πF by the rules
π−1
F = iF,! and πF,∗ = i−1

F and everything is clear. To prove the claim, note that
we already know that iF,! is right exact and preserves fibre products. Hence it
suffices to show that iF,!∗ = ∗ where ∗ indicates the final object in the category of
sheaves of sets. Let U be a scheme and let φ : U → F be surjective and étale. Set
R = U ×F U . Then

hR
//
// hU // ∗

is a coequalizer diagram in Sh(Fétale). Using the right exactness of iF,!, using
iF,! = (up )#, and using Sites, Lemma 7.5.6 we see that

hu(R)
//
// hu(U) // iF,!∗

is a coequalizer diagram in Sh(Fétale). Using that j is an equivalence and that
F = U/R it follows that the coequalizer in Sh(Xétale) of the two maps hu(R) →
hu(U) is ∗. We omit the proof that these morphisms are compatible with structure
sheaves. □

Remark 96.10.2.0GQA The constructions in Lemma 96.10.1 are compatible with étale
localization. Here is a precise formulation. Let S be a scheme. Let f : X → Y be
a morphism of categories fibred in groupoids over (Sch/S)fppf . Assume X , Y are
representable by algebraic spaces F , G, and that the induced morphism f : F → G
of algebraic spaces is étale. Denote fsmall : Fétale → Gétale the corresponding
morphism of ringed topoi. Then

(Sh(Fétale),OF )
fsmall

//

iF

��

(Sh(Gétale),OG)

iG

��
(Sh(Xétale),OX )

πF

��

f
// (Sh(Yétale),OY)

πG

��
(Sh(Fétale),OF ) fsmall // (Sh(Gétale),OG)

is a commutative diagram of ringed topoi. We omit the details.

Assume X is an algebraic stack represented by the algebraic space F . Let j : SF →
X be an equivalence and denote u : Fétale → Xétale the functor of the proof of
Lemma 96.10.1 above. Given a sheaf F on Xétale we have

πF,∗F(U) = i−1
F F(U) = F(u(U)).

https://stacks.math.columbia.edu/tag/0GQA
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This is why we often think of i−1
F as a restriction functor similarly to Definition

96.9.2 and to the restriction of a sheaf on the big étale site of a scheme to the small
étale site of a scheme. We often use the notation

(96.10.2.1)075K F|Fétale = i−1
F F = πF,∗F

in this situation.

Lemma 96.10.3.073N Let S be a scheme. Let f : X → Y be a morphism of categories
fibred in groupoids over (Sch/S)fppf . Assume X , Y are representable by algebraic
spaces F , G. Denote f : F → G the induced morphism of algebraic spaces, and
fsmall : Fétale → Gétale the corresponding morphism of ringed topoi. Then

(Sh(Xétale),OX )

πF

��

f
// (Sh(Yétale),OY)

πG

��
(Sh(Fétale),OF ) fsmall // (Sh(Gétale),OG)

is a commutative diagram of ringed topoi.

Proof. This is similar to Topologies, Lemma 34.4.17 (3) but there is a small snag
due to the fact that F → G may not be representable by schemes. In particular we
don’t get a commutative diagram of ringed sites, but only a commutative diagram
of ringed topoi.

Before we start the proof proper, we choose equivalences j : SF → X and j′ :
SG → Y which induce functors u : Fétale → X and u′ : Gétale → Y as in the
proof of Lemma 96.10.1. Because of the 2-functoriality of sheaves on categories
fibred in groupoids over Schfppf (see discussion in Section 96.3) we may assume
that X = SF and Y = SG and that f : SF → SG is the functor associated to the
morphism f : F → G. Correspondingly we will omit u and u′ from the notation,
i.e., given an object U → F of Fétale we denote U/F the corresponding object of
X . Similarly for G.

Let G be a sheaf on Xétale. To prove (2) we compute πG,∗f∗G and fsmall,∗πF,∗G.
To do this let V → G be an object of Gétale. Then

πG,∗f∗G(V ) = f∗G(V/G) = Γ
(

(Sch/V )fppf ×Y X , pr−1G
)

see (96.5.0.1). The fibre product in the formula is

(Sch/V )fppf ×Y X = (Sch/V )fppf ×SG SF = SV×GF

i.e., it is the split category fibred in groupoids associated to the algebraic space
V ×G F . And pr−1G is a sheaf on SV×GF for the étale topology.

In particular, if V ×G F is representable, i.e., if it is a scheme, then πG,∗f∗G(V ) =
G(V ×G F/F ) and also

fsmall,∗πF,∗G(V ) = πF,∗G(V ×G F ) = G(V ×G F/F )

which proves the desired equality in this special case.

In general, choose a scheme U and a surjective étale morphism U → V ×G F . Set
R = U ×V×GF U . Then U/V ×G F and R/V ×G F are objects of the fibre product

https://stacks.math.columbia.edu/tag/073N
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category above. Since pr−1G is a sheaf for the étale topology on SV×GF the diagram

Γ
(

(Sch/V )fppf ×Y X , pr−1G
)

// pr−1G(U/V ×G F ) //
// pr−1G(R/V ×G F )

is an equalizer diagram. Note that pr−1G(U/V×GF ) = G(U/F ) and pr−1G(R/V×G
F ) = G(R/F ) by the definition of pullbacks. Moreover, by the material in Proper-
ties of Spaces, Section 66.18 (especially, Properties of Spaces, Remark 66.18.4 and
Lemma 66.18.8) we see that there is an equalizer diagram

fsmall,∗πF,∗G(V ) // πF,∗G(U/F ) //
// πF,∗G(R/F )

Since we also have πF,∗G(U/F ) = G(U/F ) and πF,∗G(U/F ) = G(U/F ) we obtain
a canonical identification fsmall,∗πF,∗G(V ) = πG,∗f∗G(V ). We omit the proof that
this is compatible with restriction mappings and that it is functorial in G. □

Let f : X → Y and f : F → G be as in the second part of the lemma above. A
consequence of the lemma, using (96.10.2.1), is that

(96.10.3.1)075M (f∗F)|Gétale = fsmall,∗(F|Fétale)

for any sheaf F on Xétale. Moreover, if F is a sheaf of O-modules, then (96.10.3.1)
is an isomorphism of OG-modules on Gétale.

Finally, suppose that we have a 2-commutative diagram

U a //

f ��

|� φ

V
g

��
X

of 1-morphisms of categories fibred in groupoids over (Sch/S)fppf , that F is a sheaf
on Xétale, and that U ,V are representable by algebraic spaces U, V . Then we obtain
a comparison map

(96.10.3.2)076Q cφ : a−1
small(g

−1F|Vétale) −→ f−1F|Uétale

where a : U → V denotes the morphism of algebraic spaces corresponding to a.
This is the analogue of (96.9.2.2). We define cφ as the adjoint to the map

g−1F|Vétale −→ asmall,∗(f−1F|Uétale) = (a∗f
−1F)|Vétale

(equality by (96.10.3.1)) which is the restriction to V (96.10.2.1) of the map

g−1F → a∗a
−1g−1F = a∗f

−1F

where the last equality uses the 2-commutativity of the diagram above. In case F
is a sheaf of OX -modules cφ induces a comparison map

(96.10.3.3)076R cφ : a∗
small(g∗F|Vétale) −→ f∗F|Uétale

of OUétale -modules. This is the analogue of (96.9.4.1). Note that the properties (1),
(2), (3), and (4) of Lemma 96.9.3 hold in this setting as well.
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96.11. Quasi-coherent modules

06WF At this point we can apply the general definition of a quasi-coherent module to the
situation discussed in this chapter.

Definition 96.11.1.06WG Let p : X → (Sch/S)fppf be a category fibred in groupoids.
A quasi-coherent module on X , or a quasi-coherent OX -module is a quasi-coherent
module on the ringed site (Xfppf ,OX ) as in Modules on Sites, Definition 18.23.1.
The category of quasi-coherent sheaves on X is denoted QCoh(OX ).

If X is an algebraic stack, then this definition agrees with all definitions in the
literature in the sense that QCoh(OX ) is equivalent (modulo set theoretic issues) to
any variant of this category defined in the literature. For example, we will match our
definition with the definition in [Ols07b, Definition 6.1] in Cohomology on Stacks,
Lemma 96.12.2. We will also see alternative constructions of this category later on.
In general (as is the case for morphisms of schemes) the pushforward of quasi-
coherent sheaf along a 1-morphism is not quasi-coherent. Pullback does preserve
quasi-coherence.

Lemma 96.11.2.06WH Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . The pullback functor f∗ = f−1 : Mod(OY) → Mod(OX ) pre-
serves quasi-coherent sheaves.

Proof. This is a general fact, see Modules on Sites, Lemma 18.23.4. □

It turns out that quasi-coherent sheaves have a very simple characterization in
terms of their pullbacks. See also Lemma 96.12.2 for a characterization in terms of
restrictions.

Lemma 96.11.3.06WI Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
F be a sheaf of OX -modules. Then F is quasi-coherent if and only if x∗F is a
quasi-coherent sheaf on (Sch/U)fppf for every object x of X with U = p(x).

Proof. By Lemma 96.11.2 the condition is necessary. Conversely, since x∗F is just
the restriction to Xfppf/x we see that it is sufficient directly from the definition of
a quasi-coherent sheaf (and the fact that the notion of being quasi-coherent is an
intrinsic property of sheaves of modules, see Modules on Sites, Section 18.18). □

Lemma 96.11.4.0EM8 Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
F be a presheaf of modules on X . The following are equivalent

(1) F is an object of Mod(XZar,OX ) and F is a quasi-coherent module on
(XZar,OX ) in the sense of Modules on Sites, Definition 18.23.1,

(2) F is an object of Mod(Xétale,OX ) and F is a quasi-coherent module on
(Xétale,OX ) in the sense of Modules on Sites, Definition 18.23.1, and

(3) F is a quasi-coherent module on X in the sense of Definition 96.11.1.

Proof. Assume either (1), (2), or (3) holds. Let x be an object of X lying over
the scheme U . Recall that x∗F = x−1F is just the restriction to X/x = (Sch/U)τ
where τ = fppf , τ = étale, or τ = Zar, see Section 96.9. By the definition of
quasi-coherent modules on a ringed site this restriction is quasi-coherent provided
F is. By Descent, Proposition 35.8.9 we see that x∗F is the sheaf associated to
a quasi-coherent OU -module and is therefore a quasi-coherent module in the fppf,
étale, and Zariski topology; here we also use Descent, Lemma 35.8.1 and Definition

https://stacks.math.columbia.edu/tag/06WG
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35.8.2. Since this holds for every object x of X , we see that F is a sheaf in any of
the three topologies. Moreover, we find that F is quasi-coherent in any of the three
topologies directly from the definition of being quasi-coherent and the fact that x
is an arbitrary object of X . □

96.12. Locally quasi-coherent modules

0GQB Although there is a variant for the Zariski topology, it seems that the étale topology
is the natural topology to use in the following definition.

Definition 96.12.1.06WJ Let p : X → (Sch/S)fppf be a category fibred in groupoids.
Let F be a presheaf of OX -modules. We say F is locally quasi-coherent2 if F is a
sheaf for the étale topology and for every object x of X the restriction x∗F|Uétale
is a quasi-coherent sheaf. Here U = p(x).

We use LQCoh(OX ) to indicate the category of locally quasi-coherent modules. We
now have the following diagram of categories of modules

QCoh(OX ) //

��

Mod(OX )

��
LQCoh(OX ) // Mod(Xétale,OX )

where the arrows are strictly full embeddings. It turns out that many results
for quasi-coherent sheaves have a counter part for locally quasi-coherent modules.
Moreover, from many points of view (as we shall see later) this is a natural category
to consider. For example the quasi-coherent sheaves are exactly those locally quasi-
coherent modules that are “cartesian”, i.e., satisfy the second condition of the
lemma below.

Lemma 96.12.2.06WK Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let F
be a presheaf of OX -modules. Then F is quasi-coherent if and only if the following
two conditions hold

(1) F is locally quasi-coherent, and
(2) for any morphism φ : x → y of X lying over f : U → V the comparison

map cφ : f∗
smallF|Vétale → F|Uétale of (96.9.4.1) is an isomorphism.

Proof. Assume F is quasi-coherent. Then F is a sheaf for the fppf topology, hence
a sheaf for the étale topology. Moreover, any pullback of F to a ringed topos is
quasi-coherent, hence the restrictions x∗F|Uétale are quasi-coherent. This proves F
is locally quasi-coherent. Let y be an object of X with V = p(y). We have seen
that X/y = (Sch/V )fppf . By Descent, Proposition 35.8.9 it follows that y∗F is the
quasi-coherent module associated to a (usual) quasi-coherent module FV on the
scheme V . Hence certainly the comparison maps (96.9.4.1) are isomorphisms.
Conversely, suppose that F satisfies (1) and (2). Let y be an object of X with
V = p(y). Denote FV the quasi-coherent module on the scheme V corresponding
to the restriction y∗F|Vétale which is quasi-coherent by assumption (1), see Descent,
Proposition 35.8.9. Condition (2) now signifies that the restrictions x∗F|Uétale for
x over y are each isomorphic to the (étale sheaf associated to the) pullback of FV
via the corresponding morphism of schemes U → V . Hence y∗F is the sheaf on

2This is nonstandard notation.
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(Sch/V )fppf associated to FV . Hence it is quasi-coherent (by Descent, Proposition
35.8.9 again) and we see that F is quasi-coherent on X by Lemma 96.11.3. □

Lemma 96.12.3.06WL Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . The pullback functor f∗ = f−1 : Mod(Yétale,OY)→ Mod(Xétale,OX )
preserves locally quasi-coherent sheaves.

Proof. Let G be locally quasi-coherent on Y. Choose an object x of X lying over
the scheme U . The restriction x∗f∗G|Uétale equals (f ◦ x)∗G|Uétale hence is a quasi-
coherent sheaf by assumption on G. □

Lemma 96.12.4.06WM Let p : X → (Sch/S)fppf be a category fibred in groupoids.
(1) The category LQCoh(OX ) has colimits and they agree with colimits in

the category Mod(Xétale,OX ).
(2) The category LQCoh(OX ) is abelian with kernels and cokernels computed

in Mod(Xétale,OX ), in other words the inclusion functor is exact.
(3) Given a short exact sequence 0→ F1 → F2 → F3 → 0 of Mod(Xétale,OX )

if two out of three are locally quasi-coherent so is the third.
(4) Given F ,G in LQCoh(OX ) the tensor product F⊗OXG in Mod(Xétale,OX )

is an object of LQCoh(OX ).
(5) Given F ,G in LQCoh(OX ) with F of finite presentation on Xétale the

sheaf HomOX (F ,G) in Mod(Xétale,OX ) is an object of LQCoh(OX ).

Proof. In the arguments below x denotes an arbitrary object of X lying over the
scheme U . To show that an object H of Mod(Xétale,OX ) is in LQCoh(OX ) we
will show that the restriction x∗H|Uétale = H|Uétale is a quasi-coherent object of
Mod(Uétale,OU ).

Proof of (1). Let I → LQCoh(OX ), i 7→ Fi be a diagram. Consider the object F =
colimi Fi of Mod(Xétale,OX ). The pullback functor x∗ commutes with all colimits
as it is a left adjoint. Hence x∗F = colimi x

∗Fi. Similarly we have x∗F|Uétale =
colimi x

∗Fi|Uétale . Now by assumption each x∗Fi|Uétale is quasi-coherent. Hence
colimi x

∗Fi|Uétale is quasi-coherent by Descent, Lemma 35.10.3. Thus x∗F|Uétale is
quasi-coherent as desired.

Proof of (2). It follows from (1) that cokernels exist in LQCoh(OX ) and agree with
the cokernels computed in Mod(Xétale,OX ). Let φ : F → G be a morphism of
LQCoh(OX ) and let K = Ker(φ) computed in Mod(Xétale,OX ). If we can show
that K is a locally quasi-coherent module, then the proof of (2) is complete. To see
this, note that kernels are computed in the category of presheaves (no sheafification
necessary). Hence K|Uétale is the kernel of the map F|Uétale → G|Uétale , i.e., is
the kernel of a map of quasi-coherent sheaves on Uétale whence quasi-coherent by
Descent, Lemma 35.10.3. This proves (2).

Proof of (3). Let 0 → F1 → F2 → F3 → 0 be a short exact sequence of
Mod(Xétale,OX ). Since we are using the étale topology, the restriction 0→ F1|Uétale →
F2|Uétale → F3|Uétale → 0 is a short exact sequence too. Hence (3) follows from the
corresponding statement in Descent, Lemma 35.10.3.

Proof of (4). Let F and G be in LQCoh(OX ). Since restriction to Uétale is given
by pullback along the morphism of ringed topoi Uétale → (Sch/U)étale → Xétale
we see that the restriction of the tensor product F ⊗OX G to Uétale is equal to

https://stacks.math.columbia.edu/tag/06WL
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F|Uétale ⊗OU
G|Uétale , see Modules on Sites, Lemma 18.26.2. Since F|Uétale and

G|Uétale are quasi-coherent, so is their tensor product, see Descent, Lemma 35.10.3.
Proof of (5). Let F and G be in LQCoh(OX ) with F of finite presentation. Since
(Sch/U)étale = Xétale/x is a localization of Xétale at an object we see that the
restriction of HomOX (F ,G) to (Sch/U)étale is equal to

H = HomO|(Sch/U)étale
(F|(Sch/U)étale ,G|(Sch/U)étale)

by Modules on Sites, Lemma 18.27.2. The morphism of ringed topoi (Uétale,OU )→
((Sch/U)étale,O) is flat as the pullback of O is OU . Hence the pullback of H by
this morphism is equal to HomOU

(F|Uétale ,G|Uétale) by Modules on Sites, Lemma
18.31.4. In other words, the restriction ofHomOX (F ,G) to Uétale isHomOU

(F|Uétale ,G|Uétale).
Since F|Uétale and G|Uétale are quasi-coherent, so is HomOU

(F|Uétale ,G|Uétale), see
Descent, Lemma 35.10.3. We conclude as before. □

In the generality discussed here the category of quasi-coherent sheaves is not abelian.
See Examples, Section 110.13. Here is what we can prove without any further work.

Lemma 96.12.5.06WN Let p : X → (Sch/S)fppf be a category fibred in groupoids.
(1) The category QCoh(OX ) has colimits and they agree with colimits in the

categories Mod(XZar,OX ), Mod(Xétale,OX ), Mod(OX ), and LQCoh(OX ).
(2) Given F ,G in QCoh(OX ) the tensor products F ⊗OX G computed in

Mod(XZar,OX ), Mod(Xétale,OX ), or Mod(OX ) agree and the common
value is an object of QCoh(OX ).

(3) Given F ,G in QCoh(OX ) with F finite locally free (in fppf, or equivalently
étale, or equivalently Zariski topology) the internal homs HomOX (F ,G)
computed in Mod(XZar,OX ), Mod(Xétale,OX ), or Mod(OX ) agree and
the common value is an object of QCoh(OX ).

Proof. Let x be an arbitrary object of X lying over the scheme U . Let τ ∈
{Zariski, étale, fppf}. To show that an object H of Mod(Xτ ,OX ) is in QCoh(OX )
it suffices show that the restriction x∗H (Section 96.9) is a quasi-coherent object
of Mod((Sch/U)τ ,O). See Lemmas 96.11.3 and 96.11.4. Similarly for being finite
locally free. Recall that (Sch/U)τ = Xτ/x is a localization of Xτ at an object.
Hence restriction commutes with colimits, tensor products, and forming internal
hom (see Modules on Sites, Lemmas 18.14.3, 18.26.2, and 18.27.2). This reduces
the lemma to Descent, Lemma 35.10.6. □

96.13. Stackification and sheaves

06WP It turns out that the category of sheaves on a category fibred in groupoids only
“knows about” the stackification.

Lemma 96.13.1.06WQ Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . If f induces an equivalence of stackifications, then the morphism
of topoi f : Sh(Xfppf )→ Sh(Yfppf ) is an equivalence.

Proof. We may assume Y is the stackification of X . We claim that f : X → Y
is a special cocontinuous functor, see Sites, Definition 7.29.2 which will prove the
lemma. By Stacks, Lemma 8.10.3 the functor f is continuous and cocontinuous.
By Stacks, Lemma 8.8.1 we see that conditions (3), (4), and (5) of Sites, Lemma
7.29.1 hold. □

https://stacks.math.columbia.edu/tag/06WN
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Lemma 96.13.2.06WR Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . If f induces an equivalence of stackifications, then f∗ induces
equivalences Mod(OX )→ Mod(OY) and QCoh(OX )→ QCoh(OY).
Proof. We may assume Y is the stackification of X . The first assertion is clear
from Lemma 96.13.1 and OX = f−1OY . Pullback of quasi-coherent sheaves are
quasi-coherent, see Lemma 96.11.2. Hence it suffices to show that if f∗G is quasi-
coherent, then G is. To see this, let y be an object of Y. Translating the condition
that Y is the stackification of X we see there exists an fppf covering {yi → y} in Y
such that yi ∼= f(xi) for some xi object of X . Say xi and yi lie over the scheme Ui.
Then f∗G being quasi-coherent, means that x∗

i f
∗G is quasi-coherent. Since x∗

i f
∗G

is isomorphic to y∗
i G (as sheaves on (Sch/Ui)fppf we see that y∗

i G is quasi-coherent.
It follows from Modules on Sites, Lemma 18.23.3 that the restriction of G to Y/y
is quasi-coherent. Hence G is quasi-coherent by Lemma 96.11.3. □

96.14. Quasi-coherent sheaves and presentations

06WS Let us first match quasi-coherent sheaves with our previously defined notions for
schemes and algebraic spaces.
Lemma 96.14.1.0GQC Let S be a scheme. Let X → (Sch/S)fppf be a category fibred
in groupoids wich is representable by an algebraic space F . If F is in LQCoh(OX )
then the restriction F|Fétale (96.10.2.1) is quasi-coherent.
Proof. Let U be a scheme étale over F . Then F|Uétale = (F|Fétale)|Uétale . This is
clear but see also Remark 96.10.2. Thus the assertion follows from the definitions.

□

Lemma 96.14.2.0GQD Let S be a scheme. Let X → (Sch/S)fppf be a category fibred in
groupoids wich is representable by an algebraic space F . The functor (96.10.2.1)
defines an equivalence

QCoh(OX )→ QCoh(OF ), F 7−→ F|Fétale
with quasi-inverse given by G 7→ π∗

FG. This equivalence is compatible with pullback
for morphisms between categories fibred in groupoids representable by algebraic
spaces.
Proof. By Lemma 96.11.4 we may work with the étale topology. We will use the
notation and results of Lemma 96.10.1 without further mention. Recall that the
restriction functor Mod(Xétale,OX ) → Mod(Fétale,OF ), F 7→ F|Fétale is given by
i∗F . By Lemma 96.14.1 or by Modules on Sites, Lemma 18.23.4 we see that F|Fétale
is quasi-coherent if F is quasi-coherent. Hence we get a functor as indicated in the
statement of the lemma and we get a functor π∗

F in the opposite direction. Since
πF ◦ iF = id we see that i∗Fπ∗

FG = G.
For F in Mod(Xétale,OX ) there is a canonical map π∗

F (F|Fétale)→ F , namely the
map adjoint to the identification F|Fétale = πF,∗F . We will show that this map
is an isomorphism if F is a quasi-coherent module on X . Choose a scheme U
and a surjective étale morphism U → F . Denote x : U → X the corresponding
object of X over U . It suffices to show that π∗

F (F|Fétale) → F is an isomorphism
after restricting to Xétale/x = (Sch/U)étale. Since U → F is étale, it follows from
Remark 96.10.2 that

π∗
F (F|Fétale)|Xétale/x = π∗

U (F|Uétale)

https://stacks.math.columbia.edu/tag/06WR
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and that the restriction of the map π∗
F (F|Fétale)→ F to Xétale/x = (Sch/U)étale is

equal to the corresponding map π∗
U (F|Uétale)→ F|(Sch/U)étale . Since we have seen

the result is true for schemes in Descent, Section 35.83 we conclude.
Compatibility with pullbacks follows from the fact that the quasi-inverse is given
by π∗

F and the commutative diagram of ringed topoi in Lemma 96.10.3. □

In Groupoids in Spaces, Definition 78.12.1 we have the defined the notion of a quasi-
coherent module on an arbitrary groupoid. The following (formal) proposition tells
us that we can study quasi-coherent sheaves on quotient stacks in terms of quasi-
coherent modules on presentations.

Proposition 96.14.3.06WT Let (U,R, s, t, c) be a groupoid in algebraic spaces over S. Let
X = [U/R] be the quotient stack. The category of quasi-coherent modules on X is
equivalent to the category of quasi-coherent modules on (U,R, s, t, c).

Proof. We will construct quasi-inverse functors
QCoh(OX )←→ QCoh(U,R, s, t, c).

where QCoh(U,R, s, t, c) denotes the category of quasi-coherent modules on the
groupoid (U,R, s, t, c).
Let F be an object of QCoh(OX ). Denote U , R the categories fibred in groupoids
corresponding to U and R. Denote x the (defining) object of X over U . Recall that
we have a 2-commutative diagram

R
s
//

t

��

U

x

��
U x // X

See Groupoids in Spaces, Lemma 78.20.3. By Lemma 96.3.3 the 2-arrow inherent in
the diagram induces an isomorphism α : t∗x∗F → s∗x∗F which satisfies the cocycle
condition over R ×s,U,t R; this is a consequence of Groupoids in Spaces, Lemma
78.23.1. Thus if we set G = x∗F|Uétale then the equivalence of categories in Lemma
96.14.2 (used several times compatibly with pullbacks) gives an isomorphism α :
t∗smallG → s∗

smallG satisfying the cocycle condition on R ×s,U,t R, i.e., (G, α) is an
object of QCoh(U,R, s, t, c). The rule F 7→ (G, α) is our functor from left to right.
Construction of the functor in the other direction. Let (G, α) be an object of
QCoh(U,R, s, t, c). According to Lemma 96.13.2 the stackification map [U/pR] →
[U/R] (see Groupoids in Spaces, Definition 78.20.1) induces an equivalence of cat-
egories of quasi-coherent sheaves. Thus it suffices to construct a quasi-coherent
module F on [U/pR].
Recall that an object x = (T, u) of [U/pR] is given by a scheme T and a morphism
u : T → U . A morphism (T, u)→ (T ′, u′) is given by a pair (f, r) where f : T → T ′

and r : T → R with s ◦ r = u and t ◦ r = u′ ◦ f . Let us call a special morphism any

3Namely, if U is a scheme and F is quasi-coherent on (Sch/U)étale, then F = Ha for
some quasi-coherent module H on the scheme U by Descent, Proposition 35.8.9. In other words,
F = (idétale,Zar)∗H by Descent, Remark 35.8.6 with notation as in Descent, Lemma 35.8.5.
Then we have idétale,Zar = πU ◦ idsmall,étale,Zar and hence we see that F = π∗

UG where G =
(idsmall,étale,Zar)∗H is quasi-coherent. Then π∗

U i
∗
UF = π∗

U i
∗
Uπ

∗
UG = π∗

UG = F as desired.

https://stacks.math.columbia.edu/tag/06WT
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morphism of the form (f, e ◦ u′ ◦ f) : (T, u′ ◦ f) → (T ′, u′). The category of (T, u)
with special morphisms is just the category of schemes over U .
With this notation in place, given an object (T, u) of [U/pR], we set

F(T, u) := Γ(T, u∗
smallG).

Given a morphism (f, r) : (T, u)→ (T ′, u′) we get a map
F(T ′, u′) = Γ(T ′, (u′)∗

smallG)
→ Γ(T, f∗

small(u′)∗
smallG) = Γ(T, (u′ ◦ f)∗

smallG)
= Γ(T, (t ◦ r)∗

smallG) = Γ(T, r∗
smallt

∗
smallG)

→ Γ(T, r∗
smalls

∗
smallG) = Γ(T, (s ◦ r)∗

smallG)
= Γ(T, u∗

smallG)
= F(T, u)

where the first arrow is pullback along f and the second arrow is α. Note that if
(T, r) is a special morphism, then this map is just pullback along f as e∗

smallα = id
by the axioms of a sheaf of quasi-coherent modules on a groupoid. The cocycle
condition implies that F is a presheaf of modules (details omitted). We see that
the restriction of F to (Sch/T )fppf is quasi-coherent by the simple description of
the restriction maps of F in case of a special morphism. Hence F is a sheaf on
[U/pR] and quasi-coherent (Lemma 96.11.3).
We omit the verification that the functors constructed above are quasi-inverse to
each other. □

We finish this section with a technical lemma on maps out of quasi-coherent sheaves.
It is an analogue of Schemes, Lemma 26.7.1. We will see later (Criteria for Repre-
sentability, Theorem 97.17.2) that the assumptions on the groupoid imply that X
is an algebraic stack.

Lemma 96.14.4.076S Let (U,R, s, t, c) be a groupoid in algebraic spaces over S. Assume
s, t are flat and locally of finite presentation. Let X = [U/R] be the quotient stack.
Denote x the object of X over U . Let F be a quasi-coherent OX -module, and let
H be any object of Mod(OX ). The map

HomOX (F ,H) −→ HomOU
(x∗F|Uétale , x∗H|Uétale), ϕ 7−→ x∗ϕ|Uétale

is injective and its image consists of exactly those φ : x∗F|Uétale → x∗H|Uétale which
give rise to a commutative diagram

s∗
small(x∗F|Uétale) //

s∗
smallφ

��

(x ◦ s)∗F|Rétale = (x ◦ t)∗F|Rétale t∗small(x∗F|Uétale)oo

t∗smallφ

��
s∗
small(x∗H|Uétale) // (x ◦ s)∗H|Rétale = (x ◦ t)∗H|Rétale t∗small(x∗H|Uétale)oo

of modules onRétale where the horizontal arrows are the comparison maps (96.10.3.3).

Proof. According to Lemma 96.13.2 the stackification map [U/pR] → [U/R] (see
Groupoids in Spaces, Definition 78.20.1) induces an equivalence of categories of
quasi-coherent sheaves and of fppf O-modules. Thus it suffices to prove the lemma
with X = [U/pR]. By Proposition 96.14.3 and its proof there exists a quasi-coherent
module (G, α) on (U,R, s, t, c) such that F is given by the rule F(T, u) = Γ(T, u∗G).

https://stacks.math.columbia.edu/tag/076S
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In particular x∗F|Uétale = G and it is clear that the map of the statement of the
lemma is injective. Moreover, given a map φ : G → x∗H|Uétale and given any object
y = (T, u) of [U/pR] we can consider the map

F(y) = Γ(T, u∗G) u∗
smallφ−−−−−→ Γ(T, u∗

smallx
∗H|Uétale)→ Γ(T, y∗H|Tétale) = H(y)

where the second arrow is the comparison map (96.9.4.1) for the sheaf H. This
assignment is compatible with the restriction mappings of the sheaves F and G
for morphisms of [U/pR] if the cocycle condition of the lemma is satisfied. Proof
omitted. Hint: the restriction maps of F are made explicit in terms of (G, α) in the
proof of Proposition 96.14.3. □

96.15. Quasi-coherent sheaves on algebraic stacks

06WU Let X be an algebraic stack over S. By Algebraic Stacks, Lemma 94.16.2 we can
find an equivalence [U/R]→ X where (U,R, s, t, c) is a smooth groupoid in algebraic
spaces. Then

QCoh(OX ) ∼= QCoh(O[U/R]) ∼= QCoh(U,R, s, t, c)
where the second equivalence is Proposition 96.14.3. Hence the category of quasi-
coherent sheaves on an algebraic stack is equivalent to the category of quasi-coherent
modules on a smooth groupoid in algebraic spaces. In particular, by Groupoids in
Spaces, Lemma 78.12.6 we see that QCoh(OX ) is abelian!
There is something slightly disconcerting about our current setup. It is that the
fully faithful embedding

QCoh(OX ) −→ Mod(OX )
is in general not exact. However, exactly the same thing happens for schemes: for
most schemes X the embedding

QCoh(OX) ∼= QCoh((Sch/X)fppf ,OX) −→ Mod((Sch/X)fppf ,OX)
isn’t exact, see Descent, Lemma 35.10.2. Parenthetically, the example in the
proof of Descent, Lemma 35.10.2 shows that in general the strictly full embedding
QCoh(OX )→ LQCoh(OX ) isn’t exact either.
We collect all the results obtained so far in a single statement.

Lemma 96.15.1.06WV Let X be an algebraic stack over S.
(1) If [U/R]→ X is a presentation of X then there is a canonical equivalence

QCoh(OX ) ∼= QCoh(U,R, s, t, c).
(2) The category QCoh(OX ) is abelian.
(3) The inclusion functor QCoh(OX )→ Mod(OX ) is right exact but not exact

in general.
(4) The category QCoh(OX ) has colimits and they agree with colimits in the

category Mod(OX ).
(5) Given F ,G in QCoh(OX ) the tensor product F ⊗OX G in Mod(OX ) is an

object of QCoh(OX ).
(6) Given F ,G in QCoh(OX ) with F finite locally free the sheafHomOX (F ,G)

in Mod(OX ) is an object of QCoh(OX ).
(7) Given a short exact sequence 0→ F1 → F2 → F3 → 0 in Mod(OX ) with
F1 and F3 quasi-coherent, then F2 is quasi-coherent.

https://stacks.math.columbia.edu/tag/06WV
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Proof. Properties (4), (5), and (6) were proven in Lemma 96.12.5. Part (1) is
Proposition 96.14.3. Part (2) follows from part (1) and Groupoids in Spaces, Lemma
78.12.6 as discussed above. Right exactness of the inclusion functor in (3) follows
from (4); please compare with Homology, Lemma 12.7.2. For the nonexactness of
the inclusion functor in part (3) see Descent, Lemma 35.10.2. To see (7) observe that
it suffices to check the restriction of F2 to the big site of a scheme is quasi-coherent
(Lemma 96.11.3), hence this follows from the corresponding part of Descent, Lemma
35.10.2. □

Next we construct the coherator for modules on an algebraic stack.

Proposition 96.15.2.0781 Let X be an algebraic stack over S.
(1) The category QCoh(OX ) is a Grothendieck abelian category. Conse-

quently, QCoh(OX ) has enough injectives and all limits.
(2) The inclusion functor QCoh(OX )→ Mod(OX ) has a right adjoint4

Q : Mod(OX ) −→ QCoh(OX )
such that for every quasi-coherent sheaf F the adjunction mappingQ(F)→
F is an isomorphism.

Proof. This proof is a repeat of the proof in the case of schemes, see Proper-
ties, Proposition 28.23.4 and the case of algebraic spaces, see Properties of Spaces,
Proposition 66.32.2. We advise the reader to read either of those proofs first.
Part (1) means QCoh(OX ) (a) has all colimits, (b) filtered colimits are exact,
and (c) has a generator, see Injectives, Section 19.10. By Lemma 96.15.1 colimits
in QCoh(OX) exist and agree with colimits in Mod(OX). By Modules on Sites,
Lemma 18.14.2 filtered colimits are exact. Hence (a) and (b) hold.
Choose a presentation X = [U/R] so that (U,R, s, t, c) is a smooth groupoid in
algebraic spaces and in particular s and t are flat morphisms of algebraic spaces.
By Lemma 96.15.1 above we have QCoh(OX ) = QCoh(U,R, s, t, c). By Groupoids
in Spaces, Lemma 78.14.2 there exists a set T and a family (Ft)t∈T of quasi-coherent
sheaves on X such that every quasi-coherent sheaf on X is the directed colimit of
its subsheaves which are isomorphic to one of the Ft. Thus

⊕
t Ft is a generator of

QCoh(OX) and we conclude that (c) holds. The assertions on limits and injectives
hold in any Grothendieck abelian category, see Injectives, Theorem 19.11.7 and
Lemma 19.13.2.
Proof of (2). To construct Q we use the following general procedure. Given an
object F of Mod(OX ) we consider the functor

QCoh(OX )opp −→ Sets, G 7−→ HomX (G,F)
This functor transforms colimits into limits, hence is representable, see Injectives,
Lemma 19.13.1. Thus there exists a quasi-coherent sheaf Q(F) and a functorial
isomorphism HomX (G,F) = HomX (G, Q(F)) for G in QCoh(OX ). By the Yoneda
lemma (Categories, Lemma 4.3.5) the construction F ⇝ Q(F) is functorial in
F . By construction Q is a right adjoint to the inclusion functor. The fact that
Q(F)→ F is an isomorphism when F is quasi-coherent is a formal consequence of
the fact that the inclusion functor QCoh(OX )→ Mod(OX ) is fully faithful. □

4This functor is sometimes called the coherator.
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96.16. Cohomology

075E Let S be a scheme and let X be a category fibred in groupoids over (Sch/S)fppf .
For any τ ∈ {Zariski, étale, smooth, syntomic, fppf} the categories Ab(Xτ ) and
Mod(Xτ ,OX ) have enough injectives, see Injectives, Theorems 19.7.4 and 19.8.4.
Thus we can use the machinery of Cohomology on Sites, Section 21.2 to define the
cohomology groups

Hp(Xτ ,F) = Hp
τ (X ,F) and Hp(x,F) = Hp

τ (x,F)
for any x ∈ Ob(X ) and any object F of Ab(Xτ ) or Mod(Xτ ,OX ). Moreover, if
f : X → Y is a 1-morphism of categories fibred in groupoids over (Sch/S)fppf ,
then we obtain the higher direct images Rif∗F in Ab(Yτ ) or Mod(Yτ ,OY). Of
course, as explained in Cohomology on Sites, Section 21.3 there are also derived
versions of Hp(−) and Rif∗.

Lemma 96.16.1.075F Let S be a scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let x ∈ Ob(X ) be
an object lying over the scheme U . Let F be an object of Ab(Xτ ) or Mod(Xτ ,OX ).
Then

Hp
τ (x,F) = Hp((Sch/U)τ , x−1F)

and if τ = étale, then we also have
Hp
étale(x,F) = Hp(Uétale,F|Uétale).

Proof. The first statement follows from Cohomology on Sites, Lemma 21.7.1 and
the equivalence of Lemma 96.9.4. The second statement follows from the first
combined with Étale Cohomology, Lemma 59.20.3. □

96.17. Injective sheaves

06WW The pushforward of an injective abelian sheaf or module is injective.

Lemma 96.17.1.06WX Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}.

(1) f∗I is injective in Ab(Yτ ) for I injective in Ab(Xτ ), and
(2) f∗I is injective in Mod(Yτ ,OY) for I injective in Mod(Xτ ,OX ).

Proof. This follows formally from the fact that f−1 is an exact left adjoint of f∗,
see Homology, Lemma 12.29.1. □

In the rest of this section we prove that pullback f−1 has a left adjoint f! on abelian
sheaves and modules. If f is representable (by schemes or by algebraic spaces), then
it will turn out that f! is exact and f−1 will preserve injectives. We first prove a
few preliminary lemmas about fibre products and equalizers in categories fibred in
groupoids and their behaviour with respect to morphisms.

Lemma 96.17.2.06WY Let p : X → (Sch/S)fppf be a category fibred in groupoids.
(1) The category X has fibre products.
(2) If the Isom-presheaves of X are representable by algebraic spaces, then X

has equalizers.
(3) If X is an algebraic stack (or more generally a quotient stack), then X

has equalizers.
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Proof. Part (1) follows Categories, Lemma 4.35.15 as (Sch/S)fppf has fibre prod-
ucts.
Let a, b : x → y be morphisms of X . Set U = p(x) and V = p(y). The category
of schemes has equalizers hence we can let W → U be the equalizer of p(a) and
p(b). Denote c : z → x a morphism of X lying over W → U . The equalizer
of a and b, if it exists, is the equalizer of a ◦ c and b ◦ c. Thus we may assume
that p(a) = p(b) = f : U → V . As X is fibred in groupoids, there exists a unique
automorphism i : x→ x in the fibre category of X over U such that a◦ i = b. Again
the equalizer of a and b is the equalizer of idx and i. Recall that the IsomX (x)
is the presheaf on (Sch/U)fppf which to T/U associates the set of automorphisms
of x|T in the fibre category of X over T , see Stacks, Definition 8.2.2. If IsomX (x)
is representable by an algebraic space G → U , then we see that idx and i define
morphisms e, i : U → G over U . Set M = U ×e,G,i U , which by Morphisms of
Spaces, Lemma 67.4.7 is a scheme. Then it is clear that x|M → x is the equalizer
of the maps idx and i in X . This proves (2).
If X = [U/R] for some groupoid in algebraic spaces (U,R, s, t, c) over S, then
the hypothesis of (2) holds by Bootstrap, Lemma 80.11.5. If X is an algebraic
stack, then we can choose a presentation [U/R] ∼= X by Algebraic Stacks, Lemma
94.16.2. □

Lemma 96.17.3.06WZ Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf .

(1) The functor f transforms fibre products into fibre products.
(2) If f is faithful, then f transforms equalizers into equalizers.

Proof. By Categories, Lemma 4.35.15 we see that a fibre product in X is any
commutative square lying over a fibre product diagram in (Sch/S)fppf . Similarly
for Y. Hence (1) is clear.
Let x → x′ be the equalizer of two morphisms a, b : x′ → x′′ in X . We will show
that f(x) → f(x′) is the equalizer of f(a) and f(b). Let y → f(x) be a morphism
of Y equalizing f(a) and f(b). Say x, x′, x′′ lie over the schemes U,U ′, U ′′ and y
lies over V . Denote h : V → U ′ the image of y → f(x) in the category of schemes.
The morphism y → f(x) is isomorphic to f(h∗x′)→ f(x′) by the axioms of fibred
categories. Hence, as f is faithful, we see that h∗x′ → x′ equalizes a and b. Thus
we obtain a unique morphism h∗x′ → x whose image y = f(h∗x′) → f(x) is the
desired morphism in Y. □

Lemma 96.17.4.06X0 Let f : X → Y, g : Z → Y be faithful 1-morphisms of categories
fibred in groupoids over (Sch/S)fppf .

(1) the functor X ×Y Z → Y is faithful, and
(2) if X ,Z have equalizers, so does X ×Y Z.

Proof. We think of objects in X ×Y Z as quadruples (U, x, z, α) where α : f(x)→
g(z) is an isomorphism over U , see Categories, Lemma 4.32.3. A morphism (U, x, z, α)→
(U ′, x′, z′, α′) is a pair of morphisms a : x → x′ and b : z → z′ compatible with α
and α′. Thus it is clear that if f and g are faithful, so is the functor X ×Y Z → Y.
Now, suppose that (a, b), (a′, b′) : (U, x, z, α) → (U ′, x′, z′, α′) are two morphisms
of the 2-fibre product. Then consider the equalizer x′′ → x of a and a′ and the
equalizer z′′ → z of b and b′. Since f commutes with equalizers (by Lemma 96.17.3)
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we see that f(x′′)→ f(x) is the equalizer of f(a) and f(a′). Similarly, g(z′′)→ g(z)
is the equalizer of g(b) and g(b′). Picture

f(x′′) //

α′′

��

f(x)

α

��

f(a) //
f(a′)

// f(x′)

α′

��
g(z′′) // g(z)

g(b) //
g(b′)

// g(z′)

It is clear that the dotted arrow exists and is an isomorphism. However, it is not
a priori the case that the image of α′′ in the category of schemes is the identity
of its source. On the other hand, the existence of α′′ means that we can assume
that x′′ and z′′ are defined over the same scheme and that the morphisms x′′ → x
and z′′ → z have the same image in the category of schemes. Redoing the diagram
above we see that the dotted arrow now does project to an identity morphism and
we win. Some details omitted. □

As we are working with big sites we have the following somewhat counter intuitive
result (which also holds for morphisms of big sites of schemes). Warning: This
result isn’t true if we drop the hypothesis that f is faithful.

Lemma 96.17.5.06X1 Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. The functor f−1 :
Ab(Yτ )→ Ab(Xτ ) has a left adjoint f! : Ab(Xτ )→ Ab(Yτ ). If f is faithful and X
has equalizers, then

(1) f! is exact, and
(2) f−1I is injective in Ab(Xτ ) for I injective in Ab(Yτ ).

Proof. By Stacks, Lemma 8.10.3 the functor f is continuous and cocontinuous.
Hence by Modules on Sites, Lemma 18.16.2 the functor f−1 : Ab(Yτ ) → Ab(Xτ )
has a left adjoint f! : Ab(Xτ ) → Ab(Yτ ). To see (1) we apply Modules on Sites,
Lemma 18.16.3 and to see that the hypotheses of that lemma are satisfied use Lem-
mas 96.17.2 and 96.17.3 above. Part (2) follows from this formally, see Homology,
Lemma 12.29.1. □

Lemma 96.17.6.06X2 Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. The functor f∗ :
Mod(Yτ ,OY)→ Mod(Xτ ,OX ) has a left adjoint f! : Mod(Xτ ,OX )→ Mod(Yτ ,OY)
which agrees with the functor f! of Lemma 96.17.5 on underlying abelian sheaves.
If f is faithful and X has equalizers, then

(1) f! is exact, and
(2) f−1I is injective in Mod(Xτ ,OX ) for I injective in Mod(Yτ ,OX ).

Proof. Recall that f is a continuous and cocontinuous functor of sites and that
f−1OY = OX . Hence Modules on Sites, Lemma 18.41.1 implies f∗ has a left
adjoint fMod

! . Let x be an object of X lying over the scheme U . Then f induces
an equivalence of ringed sites

X/x −→ Y/f(x)
as both sides are equivalent to (Sch/U)τ , see Lemma 96.9.4. Modules on Sites,
Remark 18.41.2 shows that f! agrees with the functor on abelian sheaves.

https://stacks.math.columbia.edu/tag/06X1
https://stacks.math.columbia.edu/tag/06X2
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Assume now that X has equalizers and that f is faithful. Lemma 96.17.5 tells
us that f! is exact. Finally, Homology, Lemma 12.29.1 implies the statement on
pullbacks of injective modules. □

96.18. The Čech complex

06X3 To compute the cohomology of a sheaf on an algebraic stack we compare it to the
cohomology of the sheaf restricted to coverings of the given algebraic stack.
Throughout this section the situation will be as follows. We are given a 1-morphism
of categories fibred in groupoids

(96.18.0.1)06X4

U
f

//

q %%

X

pyy
(Sch/S)fppf

We are going to think about U as a “covering” of X . Hence we want to consider
the simplicial object

U ×X U ×X U
////// U ×X U //// U

in the category of categories fibred in groupoids over (Sch/S)fppf . However, since
this is a (2, 1)-category and not a category, we should say explicitly what we mean.
Namely, we let Un be the category with objects (u0, . . . , un, x, α0, . . . , αn) where
αi : f(ui) → x is an isomorphism in X . We denote fn : Un → X the 1-morphism
which assigns to (u0, . . . , un, x, α0, . . . , αn) the object x. Note that U0 = U and
f0 = f . Given a map φ : [m] → [n] we consider the 1-morphism Uφ : Un −→ Un
given by

(u0, . . . , un, x, α0, . . . , αn) 7−→ (uφ(0), . . . , uφ(m), x, αφ(0), . . . , αφ(m))
on objects. All of these 1-morphisms compose correctly on the nose (no 2-morphisms
required) and all of these 1-morphisms are 1-morphisms over X . We denote U• this
simplicial object. If F is a presheaf of sets on X , then we obtain a cosimplicial set

Γ(U0, f
−1
0 F) // // Γ(U1, f

−1
1 F) // //// Γ(U2, f

−1
2 F)

Here the arrows are the pullback maps along the given morphisms of the simplicial
object. If F is a presheaf of abelian groups, this is a cosimplicial abelian group.
Let U → X be as above and let F be an abelian presheaf on X . The Čech complex
associated to the situation is denoted Č•(U → X ,F). It is the cochain complex
associated to the cosimplicial abelian group above, see Simplicial, Section 14.25. It
has terms

Čn(U → X ,F) = Γ(Un, f−1
n F).

The boundary maps are the maps

dn =
∑n+1

i=0
(−1)iδn+1

i : Γ(Un, f−1
n F) −→ Γ(Un+1, f

−1
n+1F)

where δn+1
i corresponds to the map [n] → [n + 1] omitting the index i. Note that

the map Γ(X ,F) → Γ(U0, f
−1
0 F0) is in the kernel of the differential d0. Hence we

define the extended Čech complex to be the complex
. . .→ 0→ Γ(X ,F)→ Γ(U0, f

−1
0 F0)→ Γ(U1, f

−1
1 F1)→ . . .



96.18. THE ČECH COMPLEX 6746

with Γ(X ,F) placed in degree −1. The extended Čech complex is acyclic if and
only if the canonical map

Γ(X ,F)[0] −→ Č•(U → X ,F)

is a quasi-isomorphism of complexes.

Lemma 96.18.1.06X5 Generalities on Čech complexes.
(1) If

V
g

��

h
// U

f

��
Y e // X

is 2-commutative diagram of categories fibred in groupoids over (Sch/S)fppf ,
then there is a morphism of Čech complexes

Č•(U → X ,F) −→ Č•(V → Y, e−1F)

(2) if h and e are equivalences, then the map of (1) is an isomorphism,
(3) if f, f ′ : U → X are 2-isomorphic, then the associated Čech complexes are

isomorphic.

Proof. In the situation of (1) let t : f ◦ h → e ◦ g be a 2-morphism. The map on
complexes is given in degree n by pullback along the 1-morphisms Vn → Un given
by the rule

(v0, . . . , vn, y, β0, . . . , βn) 7−→ (h(v0), . . . , h(vn), e(y), e(β0) ◦ tv0 , . . . , e(βn) ◦ tvn).

For (2), note that pullback on global sections is an isomorphism for any presheaf
of sets when the pullback is along an equivalence of categories. Part (3) follows on
combining (1) and (2). □

Lemma 96.18.2.06X6 If there exists a 1-morphism s : X → U such that f ◦ s is 2-
isomorphic to idX then the extended Čech complex is homotopic to zero.

Proof. Set U ′ = U ×X X equal to the fibre product as described in Categories,
Lemma 4.32.3. Set f ′ : U ′ → X equal to the second projection. Then U → U ′,
u 7→ (u, f(x), 1) is an equivalence over X , hence we may replace (U , f) by (U ′, f ′)
by Lemma 96.18.1. The advantage of this is that now f ′ has a section s′ such that
f ′ ◦ s′ = idX on the nose. Namely, if t : s ◦ f → idX is a 2-isomorphism then we
can set s′(x) = (s(x), x, tx). Thus we may assume that f ◦ s = idX .

In the case that f ◦ s = idX the result follows from general principles. We give
the homotopy explicitly. Namely, for n ≥ 0 define sn : Un → Un+1 to be the
1-morphism defined by the rule on objects

(u0, . . . , un, x, α0, . . . , αn) 7−→ (u0, . . . , un, s(x), x, α0, . . . , αn, idx).

Define
hn+1 : Γ(Un+1, f

−1
n+1F) −→ Γ(Un, f−1

n F)
as pullback along sn. We also set s−1 = s and h0 : Γ(U0, f

−1
0 F) → Γ(X ,F) equal

to pullback along s−1. Then the family of maps {hn}n≥0 is a homotopy between 1
and 0 on the extended Čech complex. □

https://stacks.math.columbia.edu/tag/06X5
https://stacks.math.columbia.edu/tag/06X6
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96.19. The relative Čech complex

06X7 Let f : U → X be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf
as in (96.18.0.1). Consider the associated simplicial object U• and the maps fn :
Un → X . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Finally, suppose that F is
a sheaf (of sets) on Xτ . Then

f0,∗f
−1
0 F

// // f1,∗f
−1
1 F

////// f2,∗f
−1
2 F

is a cosimplicial sheaf on Xτ where we use the pullback maps introduced in Sites,
Section 7.45. If F is an abelian sheaf, then fn,∗f

−1
n F form a cosimplicial abelian

sheaf on Xτ . The associated complex (see Simplicial, Section 14.25)
. . .→ 0→ f0,∗f

−1
0 F → f1,∗f

−1
1 F → f2,∗f

−1
2 F → . . .

is called the relative Čech complex associated to the situation. We will denote this
complex K•(f,F). The extended relative Čech complex is the complex

. . .→ 0→ F → f0,∗f
−1
0 F → f1,∗f

−1
1 F → f2,∗f

−1
2 F → . . .

with F in degree −1. The extended relative Čech complex is acyclic if and only if
the map F [0]→ K•(f,F) is a quasi-isomorphism of complexes of sheaves.

Remark 96.19.1.06X8 We can define the complex K•(f,F) also if F is a presheaf, only
we cannot use the reference to Sites, Section 7.45 to define the pullback maps. To
explain the pullback maps, suppose given a commutative diagram

V

g ��

h
// U

f��
X

of categories fibred in groupoids over (Sch/S)fppf and a presheaf G on U we can
define the pullback map f∗G → g∗h

−1G as the composition
f∗G −→ f∗h∗h

−1G = g∗h
−1G

where the map comes from the adjunction map G → h∗h
−1G. This works because

in our situation the functors h∗ and h−1 are adjoint in presheaves (and agree with
their counter parts on sheaves). See Sections 96.3 and 96.4.

Lemma 96.19.2.06X9 Generalities on relative Čech complexes.
(1) If

V
g

��

h
// U

f

��
Y e // X

is 2-commutative diagram of categories fibred in groupoids over (Sch/S)fppf ,
then there is a morphism e−1K•(f,F)→ K•(g, e−1F).

(2) if h and e are equivalences, then the map of (1) is an isomorphism,
(3) if f, f ′ : U → X are 2-isomorphic, then the associated relative Čech com-

plexes are isomorphic,

Proof. Literally the same as the proof of Lemma 96.18.1 using the pullback maps
of Remark 96.19.1. □

https://stacks.math.columbia.edu/tag/06X8
https://stacks.math.columbia.edu/tag/06X9
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Lemma 96.19.3.06XA If there exists a 1-morphism s : X → U such that f ◦ s is 2-
isomorphic to idX then the extended relative Čech complex is homotopic to zero.

Proof. Literally the same as the proof of Lemma 96.18.2. □

Remark 96.19.4.06XB Let us “compute” the value of the relative Čech complex on an
object x of X . Say p(x) = U . Consider the 2-fibre product diagram (which serves
to introduce the notation g : V → Y)

V

g

��

(Sch/U)fppf ×x,X U //

��

U

f

��
Y (Sch/U)fppf x // X

Note that the morphism Vn → Un of the proof of Lemma 96.18.1 induces an equiv-
alence Vn = (Sch/U)fppf ×x,X Un. Hence we see from (96.5.0.1) that

Γ(x,K•(f,F)) = Č•(V → Y, x−1F)
In words: The value of the relative Čech complex on an object x of X is the Čech
complex of the base change of f to X/x ∼= (Sch/U)fppf . This implies for example
that Lemma 96.18.2 implies Lemma 96.19.3 and more generally that results on the
(usual) Čech complex imply results for the relative Čech complex.

Lemma 96.19.5.06XC Let
V
g

��

h
// U

f

��
Y e // X

be a 2-fibre product of categories fibred in groupoids over (Sch/S)fppf and let F be
an abelian presheaf on X . Then the map e−1K•(f,F) → K•(g, e−1F) of Lemma
96.19.2 is an isomorphism of complexes of abelian presheaves.

Proof. Let y be an object of Y lying over the scheme T . Set x = e(y). We are
going to show that the map induces an isomorphism on sections over y. Note that
Γ(y, e−1K•(f,F)) = Γ(x,K•(f,F)) = Č•((Sch/T )fppf×x,XU → (Sch/T )fppf , x−1F)
by Remark 96.19.4. On the other hand,

Γ(y,K•(g, e−1F)) = Č•((Sch/T )fppf ×y,Y V → (Sch/T )fppf , y−1e−1F)
also by Remark 96.19.4. Note that y−1e−1F = x−1F and since the diagram is
2-cartesian the 1-morphism

(Sch/T )fppf ×y,Y V → (Sch/T )fppf ×x,X U
is an equivalence. Hence the map on sections over y is an isomorphism by Lemma
96.18.1. □

Exactness can be checked on a “covering”.

Lemma 96.19.6.06XD Let f : U → X be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Let

F → G → H
be a complex in Ab(Xτ ). Assume that

https://stacks.math.columbia.edu/tag/06XA
https://stacks.math.columbia.edu/tag/06XB
https://stacks.math.columbia.edu/tag/06XC
https://stacks.math.columbia.edu/tag/06XD
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(1) for every object x of X there exists a covering {xi → x} in Xτ such that
each xi is isomorphic to f(ui) for some object ui of U , and

(2) f−1F → f−1G → f−1H is exact.
Then the sequence F → G → H is exact.

Proof. Let x be an object of X lying over the scheme T . Consider the sequence
x−1F → x−1G → x−1H of abelian sheaves on (Sch/T )τ . It suffices to show this
sequence is exact. By assumption there exists a τ -covering {Ti → T} such that x|Ti
is isomorphic to f(ui) for some object ui of U over Ti and moreover the sequence
u−1
i f−1F → u−1

i f−1G → u−1
i f−1H of abelian sheaves on (Sch/Ti)τ is exact. Since

u−1
i f−1F = x−1F|(Sch/Ti)τ we conclude that the sequence x−1F → x−1G → x−1H

become exact after localizing at each of the members of a covering, hence the
sequence is exact. □

Proposition 96.19.7.06XE Let f : U → X be a 1-morphism of categories fibred in
groupoids over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. If

(1) F is an abelian sheaf on Xτ , and
(2) for every object x of X there exists a covering {xi → x} in Xτ such that

each xi is isomorphic to f(ui) for some object ui of U ,
then the extended relative Čech complex

. . .→ 0→ F → f0,∗f
−1
0 F → f1,∗f

−1
1 F → f2,∗f

−1
2 F → . . .

is exact in Ab(Xτ ).

Proof. By Lemma 96.19.6 it suffices to check exactness after pulling back to U . By
Lemma 96.19.5 the pullback of the extended relative Čech complex is isomorphic
to the extend relative Čech complex for the morphism U ×X U → U and an abelian
sheaf on Uτ . Since there is a section ∆U/X : U → U ×X U exactness follows from
Lemma 96.19.3. □

Using this we can construct the Čech-to-cohomology spectral sequence as follows.
We first give a technical, precise version. In the next section we give a version that
applies only to algebraic stacks.

Lemma 96.19.8.06XF Let f : U → X be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Assume

(1) F is an abelian sheaf on Xτ ,
(2) for every object x of X there exists a covering {xi → x} in Xτ such that

each xi is isomorphic to f(ui) for some object ui of U ,
(3) the category U has equalizers, and
(4) the functor f is faithful.

Then there is a first quadrant spectral sequence of abelian groups
Ep,q1 = Hq((Up)τ , f−1

p F)⇒ Hp+q(Xτ ,F)
converging to the cohomology of F in the τ -topology.

Proof. Before we start the proof we make some remarks. By Lemma 96.17.4 (and
induction) all of the categories fibred in groupoids Up have equalizers and all of the
morphisms fp : Up → X are faithful. Let I be an injective object of Ab(Xτ ). By
Lemma 96.17.5 we see f−1

p I is an injective object of Ab((Up)τ ). Hence fp,∗f−1
p I is

https://stacks.math.columbia.edu/tag/06XE
https://stacks.math.columbia.edu/tag/06XF
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an injective object of Ab(Xτ ) by Lemma 96.17.1. Hence Proposition 96.19.7 shows
that the extended relative Čech complex

. . .→ 0→ I → f0,∗f
−1
0 I → f1,∗f

−1
1 I → f2,∗f

−1
2 I → . . .

is an exact complex in Ab(Xτ ) all of whose terms are injective. Taking global
sections of this complex is exact and we see that the Čech complex Č•(U → X , I)
is quasi-isomorphic to Γ(Xτ , I)[0].
With these preliminaries out of the way consider the two spectral sequences asso-
ciated to the double complex (see Homology, Section 12.25)

Č•(U → X , I•)
where F → I• is an injective resolution in Ab(Xτ ). The discussion above shows that
Homology, Lemma 12.25.4 applies which shows that Γ(Xτ , I•) is quasi-isomorphic
to the total complex associated to the double complex. By our remarks above
the complex f−1

p I• is an injective resolution of f−1
p F . Hence the other spectral

sequence is as indicated in the lemma. □

To be sure there is a version for modules as well.

Lemma 96.19.9.06XG Let f : U → X be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Assume

(1) F is an object of Mod(Xτ ,OX ),
(2) for every object x of X there exists a covering {xi → x} in Xτ such that

each xi is isomorphic to f(ui) for some object ui of U ,
(3) the category U has equalizers, and
(4) the functor f is faithful.

Then there is a first quadrant spectral sequence of Γ(OX )-modules
Ep,q1 = Hq((Up)τ , f∗

pF)⇒ Hp+q(Xτ ,F)
converging to the cohomology of F in the τ -topology.

Proof. The proof of this lemma is identical to the proof of Lemma 96.19.8 except
that it uses an injective resolution in Mod(Xτ ,OX ) and it uses Lemma 96.17.6
instead of Lemma 96.17.5. □

Here is a lemma that translates a more usual kind of covering in the kinds of
coverings we have encountered above.

Lemma 96.19.10.06XH Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf .

(1) Assume that f is representable by algebraic spaces, surjective, flat, and
locally of finite presentation. Then for any object y of Y there exists an
fppf covering {yi → y} and objects xi of X such that f(xi) ∼= yi in Y.

(2) Assume that f is representable by algebraic spaces, surjective, and smooth.
Then for any object y of Y there exists an étale covering {yi → y} and
objects xi of X such that f(xi) ∼= yi in Y.

Proof. Proof of (1). Suppose that y lies over the scheme V . We may think of y as a
morphism (Sch/V )fppf → Y. By definition the 2-fibre product X ×Y (Sch/V )fppf
is representable by an algebraic space W and the morphism W → V is surjective,
flat, and locally of finite presentation. Choose a scheme U and a surjective étale

https://stacks.math.columbia.edu/tag/06XG
https://stacks.math.columbia.edu/tag/06XH
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morphism U → W . Then U → V is also surjective, flat, and locally of finite
presentation (see Morphisms of Spaces, Lemmas 67.39.7, 67.39.8, 67.5.4, 67.28.2,
and 67.30.3). Hence {U → V } is an fppf covering. Denote x the object of X over
U corresponding to the 1-morphism (Sch/U)fppf → X . Then {f(x) → y} is the
desired fppf covering of Y.
Proof of (2). Suppose that y lies over the scheme V . We may think of y as a
morphism (Sch/V )fppf → Y. By definition the 2-fibre product X ×Y (Sch/V )fppf
is representable by an algebraic space W and the morphism W → V is surjective
and smooth. Choose a scheme U and a surjective étale morphism U → W . Then
U → V is also surjective and smooth (see Morphisms of Spaces, Lemmas 67.39.6,
67.5.4, and 67.37.2). Hence {U → V } is a smooth covering. By More on Morphisms,
Lemma 37.38.7 there exists an étale covering {Vi → V } such that each Vi → V
factors through U . Denote xi the object of X over Vi corresponding to the 1-
morphism

(Sch/Vi)fppf → (Sch/U)fppf → X .
Then {f(xi)→ y} is the desired étale covering of Y. □

Lemma 96.19.11.072D Let f : U → X and g : X → Y be composable 1-morphisms of cat-
egories fibred in groupoids over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic,
fppf}. Assume

(1) F is an abelian sheaf on Xτ ,
(2) for every object x of X there exists a covering {xi → x} in Xτ such that

each xi is isomorphic to f(ui) for some object ui of U ,
(3) the category U has equalizers, and
(4) the functor f is faithful.

Then there is a first quadrant spectral sequence of abelian sheaves on Yτ
Ep,q1 = Rq(g ◦ fp)∗f

−1
p F ⇒ Rp+qg∗F

where all higher direct images are computed in the τ -topology.

Proof. Note that the assumptions on f : U → X and F are identical to those in
Lemma 96.19.8. Hence the preliminary remarks made in the proof of that lemma
hold here also. These remarks imply in particular that

0→ g∗I → (g ◦ f0)∗f
−1
0 I → (g ◦ f1)∗f

−1
1 I → . . .

is exact if I is an injective object of Ab(Xτ ). Having said this, consider the two
spectral sequences of Homology, Section 12.25 associated to the double complex
C•,• with terms

Cp,q = (g ◦ fp)∗Iq

where F → I• is an injective resolution in Ab(Xτ ). The first spectral sequence
implies, via Homology, Lemma 12.25.4, that g∗I• is quasi-isomorphic to the total
complex associated to C•,•. Since f−1

p I• is an injective resolution of f−1
p F (see

Lemma 96.17.5) the second spectral sequence has terms Ep,q1 = Rq(g ◦ fp)∗f
−1
p F

as in the statement of the lemma. □

Lemma 96.19.12.072E Let f : U → X and g : X → Y be composable 1-morphisms of cat-
egories fibred in groupoids over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic,
fppf}. Assume

(1) F is an object of Mod(Xτ ,OX ),

https://stacks.math.columbia.edu/tag/072D
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(2) for every object x of X there exists a covering {xi → x} in Xτ such that
each xi is isomorphic to f(ui) for some object ui of U ,

(3) the category U has equalizers, and
(4) the functor f is faithful.

Then there is a first quadrant spectral sequence in Mod(Yτ ,OY)
Ep,q1 = Rq(g ◦ fp)∗f

−1
p F ⇒ Rp+qg∗F

where all higher direct images are computed in the τ -topology.

Proof. The proof is identical to the proof of Lemma 96.19.11 except that it uses an
injective resolution in Mod(Xτ ,OX ) and it uses Lemma 96.17.6 instead of Lemma
96.17.5. □

96.20. Cohomology on algebraic stacks

06XI Let X be an algebraic stack over S. In the sections above we have seen how to
define sheaves for the étale, ..., fppf topologies on X . In fact, we have constructed
a site Xτ for each τ ∈ {Zar, étale, smooth, syntomic, fppf}. There is a notion of
an abelian sheaf F on these sites. In the chapter on cohomology of sites we have
explained how to define cohomology. Putting all of this together, let’s define the
derived global sections or total cohomology

RΓZar(X ,F), RΓétale(X ,F), . . . , RΓfppf (X ,F)
as Γ(Xτ , I•) where F → I• is an injective resolution in Ab(Xτ ). The ith coho-
mology group of F is the ith cohomology of the total cohomology. We will denote
this

Hi
Zar(X ,F), Hi

étale(X ,F), . . . ,Hi
fppf (X ,F).

It will turn out that Hi
étale = Hi

smooth because of More on Morphisms, Lemma
37.38.7.
If F is a presheaf of OX -modules which is a sheaf in the τ -topology, then we
use injective resolutions in Mod(Xτ ,OX ) to compute its total cohomology, resp.
cohomology groups; the end result is quasi-isomorphic, resp. isomorphic to the co-
homology of F viewed as a sheaf of abelian groups by the very general Cohomology
on Sites, Lemma 21.12.4.
So far our only tool to compute cohomology groups is the result on Čech complexes
proved above. We rephrase it here in the language of algebraic stacks for the étale
and the fppf topology. Let f : U → X be a 1-morphism of algebraic stacks. Recall
that

fp : Up = U ×X . . .×X U −→ X
is the structure morphism where there are (p+ 1)-factors. Also, recall that a sheaf
on X is a sheaf for the fppf topology. Note that if U is an algebraic space, then f :
U → X is representable by algebraic spaces, see Algebraic Stacks, Lemma 94.10.11.
Thus the proposition applies in particular to a smooth cover of the algebraic stack
X by a scheme.

Proposition 96.20.1.06XJ Let f : U → X be a 1-morphism of algebraic stacks.
(1) Let F be an abelian étale sheaf on X . Assume that f is representable by

algebraic spaces, surjective, and smooth. Then there is a spectral sequence
Ep,q1 = Hq

étale(Up, f
−1
p F)⇒ Hp+q

étale(X ,F)

https://stacks.math.columbia.edu/tag/06XJ
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(2) Let F be an abelian sheaf on X . Assume that f is representable by
algebraic spaces, surjective, flat, and locally of finite presentation. Then
there is a spectral sequence

Ep,q1 = Hq
fppf (Up, f−1

p F)⇒ Hp+q
fppf (X ,F)

Proof. To see this we will check the hypotheses (1) – (4) of Lemma 96.19.8. The
1-morphism f is faithful by Algebraic Stacks, Lemma 94.15.2. This proves (4).
Hypothesis (3) follows from the fact that U is an algebraic stack, see Lemma 96.17.2.
To see (2) apply Lemma 96.19.10. Condition (1) is satisfied by fiat. □

96.21. Higher direct images and algebraic stacks

072F Let g : X → Y be a 1-morphism of algebraic stacks over S. In the sections above
we have constructed a morphism of ringed topoi g : Sh(Xτ ) → Sh(Yτ ) for each
τ ∈ {Zar, étale, smooth, syntomic, fppf}. In the chapter on cohomology of sites
we have explained how to define higher direct images. Hence the total direct image
Rg∗F is defined as g∗I• where F → I• is an injective resolution in Ab(Xτ ). The
ith higher direct image Rig∗F is the ith cohomology of the total direct image.
Important: it matters which topology τ is used here!
If F is a presheaf of OX -modules which is a sheaf in the τ -topology, then we use
injective resolutions in Mod(Xτ ,OX ) to compute total direct image and higher
direct images.
So far our only tool to compute the higher direct images of g∗ is the result on Čech
complexes proved above. This requires the choice of a “covering” f : U → X . If
U is an algebraic space, then f : U → X is representable by algebraic spaces, see
Algebraic Stacks, Lemma 94.10.11. Thus the proposition applies in particular to a
smooth cover of the algebraic stack X by a scheme.

Proposition 96.21.1.072G Let f : U → X and g : X → Y be composable 1-morphisms
of algebraic stacks.

(1) Assume that f is representable by algebraic spaces, surjective and smooth.
(a) If F is in Ab(Xétale) then there is a spectral sequence

Ep,q1 = Rq(g ◦ fp)∗f
−1
p F ⇒ Rp+qg∗F

in Ab(Yétale) with higher direct images computed in the étale topol-
ogy.

(b) If F is in Mod(Xétale,OX ) then there is a spectral sequence
Ep,q1 = Rq(g ◦ fp)∗f

−1
p F ⇒ Rp+qg∗F

in Mod(Yétale,OY).
(2) Assume that f is representable by algebraic spaces, surjective, flat, and

locally of finite presentation.
(a) If F is in Ab(X ) then there is a spectral sequence

Ep,q1 = Rq(g ◦ fp)∗f
−1
p F ⇒ Rp+qg∗F

in Ab(Y) with higher direct images computed in the fppf topology.
(b) If F is in Mod(OX ) then there is a spectral sequence

Ep,q1 = Rq(g ◦ fp)∗f
−1
p F ⇒ Rp+qg∗F

in Mod(OY).

https://stacks.math.columbia.edu/tag/072G
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Proof. To see this we will check the hypotheses (1) – (4) of Lemma 96.19.11 and
Lemma 96.19.12. The 1-morphism f is faithful by Algebraic Stacks, Lemma 94.15.2.
This proves (4). Hypothesis (3) follows from the fact that U is an algebraic stack,
see Lemma 96.17.2. To see (2) apply Lemma 96.19.10. Condition (1) is satisfied by
fiat in all four cases. □

Here is a description of higher direct images for a morphism of algebraic stacks.

Lemma 96.21.2.075G Let S be a scheme. Let f : X → Y be a 1-morphism of algebraic
stacks5 over S. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let F be an
object of Ab(Xτ ) or Mod(Xτ ,OX ). Then the sheaf Rif∗F is the sheaf associated
to the presheaf

y 7−→ Hi
τ

(
(Sch/V )fppf ×y,Y X , pr−1F

)
Here y is an object of Y lying over the scheme V .

Proof. Choose an injective resolution F [0] → I•. By the formula for pushforward
(96.5.0.1) we see that Rif∗F is the sheaf associated to the presheaf which associates
to y the cohomology of the complex

Γ
(

(Sch/V )fppf ×y,Y X , pr−1Ii−1
)

↓
Γ
(

(Sch/V )fppf ×y,Y X , pr−1Ii
)

↓
Γ
(

(Sch/V )fppf ×y,Y X , pr−1Ii+1
)

Since pr−1 is exact, it suffices to show that pr−1 preserves injectives. This follows
from Lemmas 96.17.5 and 96.17.6 as well as the fact that pr is a representable
morphism of algebraic stacks (so that pr is faithful by Algebraic Stacks, Lemma
94.15.2 and that (Sch/V )fppf ×y,Y X has equalizers by Lemma 96.17.2). □

Here is a trivial base change result.

Lemma 96.21.3.075H Let S be a scheme. Let τ ∈ {Zariski, étale, smooth, syntomic,
fppf}. Let

Y ′ ×Y X
g′

//

f ′

��

X

f

��
Y ′ g // Y

be a 2-cartesian diagram of algebraic stacks over S. Then the base change map is
an isomorphism

g−1Rf∗F −→ Rf ′
∗(g′)−1F

functorial for F in Ab(Xτ ) or F in Mod(Xτ ,OX ).

Proof. The isomorphism g−1f∗F = f ′
∗(g′)−1F is Lemma 96.5.1 (and it holds for

arbitrary presheaves). For the total direct images, there is a base change map
because the morphisms g and g′ are flat, see Cohomology on Sites, Section 21.15.

5This result should hold for any 1-morphism of categories fibred in groupoids over
(Sch/S)fppf .

https://stacks.math.columbia.edu/tag/075G
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To see that this map is a quasi-isomorphism we can use that for an object y′ of Y ′

over a scheme V there is an equivalence
(Sch/V )fppf ×g(y′),Y X = (Sch/V )fppf ×y′,Y′ (Y ′ ×Y X )

We conclude that the induced map g−1Rif∗F → Rif ′
∗(g′)−1F is an isomorphism

by Lemma 96.21.2. □

96.22. Comparison

073L In this section we collect some results on comparing cohomology defined using stacks
and using algebraic spaces.

Lemma 96.22.1.075L Let S be a scheme. Let X be an algebraic stack over S repre-
sentable by the algebraic space F .

(1) If I injective in Ab(Xétale), then I|Fétale is injective in Ab(Fétale),
(2) If I• is a K-injective complex in Ab(Xétale), then I•|Fétale is a K-injective

complex in Ab(Fétale).
The same does not hold for modules.

Proof. This follows formally from the fact that the restriction functor πF,∗ = i−1
F

(see Lemma 96.10.1) is right adjoint to the exact functor π−1
F , see Homology, Lemma

12.29.1 and Derived Categories, Lemma 13.31.9. To see that the lemma does not
hold for modules, we refer the reader to Étale Cohomology, Lemma 59.99.1. □

Lemma 96.22.2.075N Let S be a scheme. Let f : X → Y be a morphism of algebraic
stacks over S. Assume X , Y are representable by algebraic spaces F , G. Denote
f : F → G the induced morphism of algebraic spaces.

(1) For any F ∈ Ab(Xétale) we have
(Rf∗F)|Gétale = Rfsmall,∗(F|Fétale)

in D(Gétale).
(2) For any object F of Mod(Xétale,OX ) we have

(Rf∗F)|Gétale = Rfsmall,∗(F|Fétale)
in D(OG).

Proof. Part (1) follows immediately from Lemma 96.22.1 and (96.10.3.1) on choos-
ing an injective resolution of F .
Part (2) can be proved as follows. In Lemma 96.10.3 we have seen that πG ◦ f =
fsmall ◦πF as morphisms of ringed sites. Hence we obtain RπG,∗◦Rf∗ = Rfsmall,∗◦
RπF,∗ by Cohomology on Sites, Lemma 21.19.2. Since the restriction functors πF,∗
and πG,∗ are exact, we conclude. □

Lemma 96.22.3.075P Let S be a scheme. Consider a 2-fibre product square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of algebraic stacks over S. Assume that f is representable by algebraic spaces and
that Y ′ is representable by an algebraic space G′. Then X ′ is representable by an

https://stacks.math.columbia.edu/tag/075L
https://stacks.math.columbia.edu/tag/075N
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algebraic space F ′ and denoting f ′ : F ′ → G′ the induced morphism of algebraic
spaces we have

g−1(Rf∗F)|G′
étale

= Rf ′
small,∗((g′)−1F|F ′

étale
)

for any F in Ab(Xétale) or in Mod(Xétale,OX )

Proof. Follows formally on combining Lemmas 96.21.3 and 96.22.2. □

96.23. Change of topology

075Q Here is a technical lemma which tells us that the fppf cohomology of a locally quasi-
coherent sheaf is equal to its étale cohomology provided the comparison maps are
isomorphisms for morphisms of X lying over flat morphisms.

Lemma 96.23.1.076T Let S be a scheme. Let X be an algebraic stack over S. Let F
be a presheaf of OX -modules. Assume

(a) F is locally quasi-coherent, and
(b) for any morphism φ : x→ y of X which lies over a morphism of schemes

f : U → V which is flat and locally of finite presentation the comparison
map cφ : f∗

smallF|Vétale → F|Uétale of (96.9.4.1) is an isomorphism.
Then F is a sheaf for the fppf topology.

Proof. Let {xi → x} be an fppf covering of X lying over the fppf covering {fi : Ui →
U} of schemes over S. By assumption the restriction G = F|Uétale is quasi-coherent
and the comparison maps f∗

i,smallG → F|Ui,étale are isomorphisms. Hence the sheaf
condition for F and the covering {xi → x} is equivalent to the sheaf condition for
Ga on (Sch/U)fppf and the covering {Ui → U} which holds by Descent, Lemma
35.8.1. □

Lemma 96.23.2.075R Let S be a scheme. Let X be an algebraic stack over S. Let F
be a presheaf OX -module such that

(a) F is locally quasi-coherent, and
(b) for any morphism φ : x→ y of X which lies over a morphism of schemes

f : U → V which is flat and locally of finite presentation, the comparison
map cφ : f∗

smallF|Vétale → F|Uétale of (96.9.4.1) is an isomorphism.
Then F is an OX -module and we have the following

(1) If ϵ : Xfppf → Xétale is the comparison morphism, then Rϵ∗F = ϵ∗F .
(2) The cohomology groups Hp

fppf (X ,F) are equal to the cohomology groups
computed in the étale topology on X . Similarly for the cohomology groups
Hp
fppf (x,F) and the derived versions RΓ(X ,F) and RΓ(x,F).

(3) If f : X → Y is a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf then Rif∗F is equal to the fppf-sheafification of the higher
direct image computed in the étale cohomology. Similarly for derived
pullback.

Proof. The assertion that F is an OX -module follows from Lemma 96.23.1. Note
that ϵ is a morphism of sites given by the identity functor on X . The sheaf Rpϵ∗F
is therefore the sheaf associated to the presheaf x 7→ Hp

fppf (x,F), see Cohomology
on Sites, Lemma 21.7.4. To prove (1) it suffices to show that Hp

fppf (x,F) = 0
for p > 0 whenever x lies over an affine scheme U . By Lemma 96.16.1 we have
Hp
fppf (x,F) = Hp((Sch/U)fppf , x−1F). Combining Descent, Lemma 35.12.4 with

https://stacks.math.columbia.edu/tag/076T
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Cohomology of Schemes, Lemma 30.2.2 we see that these cohomology groups are
zero.
We have seen above that ϵ∗F and F are the sheaves on Xétale and Xfppf corre-
sponding to the same presheaf on X (and this is true more generally for any sheaf
in the fppf topology on X ). We often abusively identify F and ϵ∗F and this is the
sense in which parts (2) and (3) of the lemma should be understood. Thus part
(2) follows formally from (1) and the Leray spectral sequence, see Cohomology on
Sites, Lemma 21.14.6.
Finally we prove (3). The sheaf Rif∗F (resp. Rfétale,∗F) is the sheaf associated to
the presheaf

y 7−→ Hi
τ

(
(Sch/V )fppf ×y,Y X , pr−1F

)
where τ is fppf (resp. étale), see Lemma 96.21.2. Note that pr−1F satisfies prop-
erties (a) and (b) also (by Lemmas 96.12.3 and 96.9.3), hence these two presheaves
are equal by (2). This immediately implies (3). □

We will use the following lemma to compare étale cohomology of sheaves on alge-
braic stacks with cohomology on the lisse-étale topos.

Lemma 96.23.3.07AK Let S be a scheme. Let X be an algebraic stack over S. Let
τ = étale (resp. τ = fppf). Let X ′ ⊂ X be a full subcategory with the following
properties

(1) if x → x′ is a morphism of X which lies over a smooth (resp. flat and
locally finitely presented) morphism of schemes and x′ ∈ Ob(X ′), then
x ∈ Ob(X ′), and

(2) there exists an object x ∈ Ob(X ′) lying over a scheme U such that the
associated 1-morphism x : (Sch/U)fppf → X is smooth and surjective.

We get a site X ′
τ by declaring a covering of X ′ to be any family of morphisms

{xi → x} in X ′ which is a covering in Xτ . Then the inclusion functor X ′ → Xτ is
fully faithful, cocontinuous, and continuous, whence defines a morphism of topoi

g : Sh(X ′
τ ) −→ Sh(Xτ )

and Hp(X ′
τ , g

−1F) = Hp(Xτ ,F) for all p ≥ 0 and all F ∈ Ab(Xτ ).

Proof. Note that assumption (1) implies that if {xi → x} is a covering of Xτ and
x ∈ Ob(X ′), then we have xi ∈ Ob(X ′). Hence we see that X ′ → X is continuous
and cocontinuous as the coverings of objects of X ′

τ agree with their coverings seen
as objects of Xτ . We obtain the morphism g and the functor g−1 is identified with
the restriction functor, see Sites, Lemma 7.21.5.
In particular, if {xi → x} is a covering in X ′

τ , then for any abelian sheaf F on X
then

Ȟp({xi → x}, g−1F) = Ȟp({xi → x},F)
Thus if I is an injective abelian sheaf on Xτ then we see that the higher Čech coho-
mology groups are zero (Cohomology on Sites, Lemma 21.10.2). HenceHp(x, g−1I) =
0 for all objects x of X ′ (Cohomology on Sites, Lemma 21.10.9). In other words
injective abelian sheaves on Xτ are right acyclic for the functor H0(x, g−1−). It
follows that Hp(x, g−1F) = Hp(x,F) for all F ∈ Ab(X ) and all x ∈ Ob(X ′).
Choose an object x ∈ X ′ lying over a scheme U as in assumption (2). In particular
X/x→ X is a morphism of algebraic stacks which representable by algebraic spaces,

https://stacks.math.columbia.edu/tag/07AK
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surjective, and smooth. (Note that X/x is equivalent to (Sch/U)fppf , see Lemma
96.9.1.) The map of sheaves

hx −→ ∗
in Sh(Xτ ) is surjective. Namely, for any object x′ of X there exists a τ -covering
{x′

i → x′} such that there exist morphisms x′
i → x, see Lemma 96.19.10. Since g is

exact, the map of sheaves
g−1hx −→ ∗ = g−1∗

in Sh(X ′
τ ) is surjective also. Let hx,n be the (n + 1)-fold product hx × . . . × hx.

Then we have spectral sequences
(96.23.3.1)07AL Ep,q1 = Hq(hx,p,F)⇒ Hp+q(Xτ ,F)
and
(96.23.3.2)07AM Ep,q1 = Hq(g−1hx,p, g

−1F)⇒ Hp+q(X ′
τ , g

−1F)
see Cohomology on Sites, Lemma 21.13.2.
Case I: X has a final object x which is also an object of X ′. This case follows
immediately from the discussion in the second paragraph above.
Case II: X is representable by an algebraic space F . In this case the sheaves hx,n are
representable by an object xn in X . (Namely, if SF = X and x : U → F is the given
object, then hx,n is representable by the object U×F . . .×F U → F of SF .) It follows
that Hq(hx,p,F) = Hq(xp,F). The morphisms xn → x lie over smooth morphisms
of schemes, hence xn ∈ X ′ for all n. Hence Hq(g−1hx,p, g

−1F) = Hq(xp, g−1F).
Thus in the two spectral sequences (96.23.3.1) and (96.23.3.2) above the Ep,q1 terms
agree by the discussion in the second paragraph. The lemma follows in Case II as
well.
Case III: X is an algebraic stack. We claim that in this case the cohomology groups
Hq(hx,p,F) and Hq(g−1hx,n, g

−1F) agree by Case II above. Once we have proved
this the result will follow as before.
Namely, consider the category X/hx,n, see Sites, Lemma 7.30.3. Since hx,n is the
(n+1)-fold product of hx an object of this category is an (n+2)-tuple (y, s0, . . . , sn)
where y is an object of X and each si : y → x is a morphism of X . This is a category
over (Sch/S)fppf . There is an equivalence

X/hx,n −→ (Sch/U)fppf ×X . . .×X (Sch/U)fppf =: Un
over (Sch/S)fppf . Namely, if x : (Sch/U)fppf → X also denotes the 1-morphism
associated with x and p : X → (Sch/S)fppf the structure functor, then we can think
of (y, s0, . . . , sn) as (y, f0, . . . , fn, α0, . . . , αn) where y is an object of X , fi : p(y)→
p(x) is a morphism of schemes, and αi : y → x(fi) an isomorphism. The category
of 2n+3-tuples (y, f0, . . . , fn, α0, . . . , αn) is an incarnation of the (n+1)-fold fibred
product Un of algebraic stacks displayed above, as we discussed in Section 96.18.
By Cohomology on Sites, Lemma 21.13.3 we have

Hp(Un,F|Un) = Hp(X/hx,n,F|X/hx,n) = Hp(hx,n,F).
Finally, we discuss the “primed” analogue of this. Namely, X ′/hx,n corresponds,
via the equivalence above to the full subcategory U ′

n ⊂ Un consisting of those
tuples (y, f0, . . . , fn, α0, . . . , αn) with y ∈ X ′. Hence certainly property (1) of the
statement of the lemma holds for the inclusion U ′

n ⊂ Un. To see property (2) choose
an object ξ = (y, s0, . . . , sn) which lies over a scheme W such that (Sch/W )fppf →
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Un is smooth and surjective (this is possible as Un is an algebraic stack). Then
(Sch/W )fppf → Un → (Sch/U)fppf is smooth as a composition of base changes of
the morphism x : (Sch/U)fppf → X , see Algebraic Stacks, Lemmas 94.10.6 and
94.10.5. Thus axiom (1) for X implies that y is an object of X ′ whence ξ is an
object of U ′

n. Using again
Hp(U ′

n,F|U ′
n
) = Hp(X ′/hx,n,F|X ′/hx,n) = Hp(g−1hx,n, g

−1F).
we now can use Case II for U ′

n ⊂ Un to conclude. □

96.24. Restricting to affines

0H08 In this section, given a category X fibred in groupoids over (Sch/S)fppf we will
consider the full subcategory Xaffine of X consisting of objects x lying over affine
schemes U . We will see how, for any topology τ finer than the Zariski topology,
the category of sheaves on X and Xaffine,τ agree.
Definition 96.24.1.0H09 Let p : X → (Sch/S)fppf be a category fibred in groupoids.
The associated affine site is the full subcategory Xaffine of X whose objects are
those x ∈ Ob(X ) lying over a scheme U such that U is affine. The topology on
Xaffine will be the chaotic one, i.e., such that sheaves on Xaffine are the same as
presheaves.
Thus the functor p : X → (Sch/S)fppf restricts to a functor

p : Xaffine −→ (Aff/S)fppf
where the notation on the right hand side is the one introduced in Topologies,
Definition 34.7.8. It is clear that Xaffine is fibred in groupoids over (Aff/S)fppf . It
follows that Xaffine inherits a Zariski, étale, smooth, syntomic, and fppf topology
from (Aff/S)Zar, (Aff/S)étale, (Aff/S)smooth, (Aff/S)syntomic, and (Aff/S)fppf , see
Stacks, Definition 8.10.2.
Definition 96.24.2.0H0A Let p : X → (Sch/S)fppf be a category fibred in groupoids.

(1) The associated affine Zariski site Xaffine,Zar is the structure of site on
Xaffine inherited from (Aff/S)Zar.

(2) The associated affine étale site Xaffine,étale is the structure of site on
Xaffine inherited from (Aff/S)étale.

(3) The associated affine smooth site Xaffine,smooth is the structure of site on
Xaffine inherited from (Aff/S)smooth.

(4) The associated affine syntomic site Xaffine,syntomic is the structure of site
on Xaffine inherited from (Aff/S)syntomic.

(5) The associated affine fppf site Xaffine,fppf is the structure of site on
Xaffine inherited from (Aff/S)fppf .

This definition makes sense by the discussion above. For each τ ∈ {Zariski, étale, smooth, syntomic, fppf}
a family of morphisms {xi → x}i∈I with fixed target in Xaffine is a covering in
Xaffine,τ if and only if the family of morphisms {p(xi)→ p(x)}i∈I of affine schemes
is a standard τ -covering as defined in Topologies, Definitions 34.3.4, 34.4.5, 34.5.5,
34.6.5, and 34.7.5.
Lemma 96.24.3.0H0B Let p : X → (Sch/S)fppf be a category fibred in groupoids.
Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. The functor Xaffine,τ → Xτ
is a special cocontinuous functor. Hence it induces an equivalence of topoi from
Sh(Xaffine,τ ) to Sh(Xτ ).

https://stacks.math.columbia.edu/tag/0H09
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Proof. Omitted. Hint: the proof is exactly the same as the proof of Topologies,
Lemmas 34.3.10, 34.4.11, 34.5.9, 34.6.9, and 34.7.11. □

Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let us denote O
the restriction of OX to Xaffine. Then O is a sheaf in the Zariski, étale, smooth,
syntomic, and fppf topologies on Xaffine. Furthermore, the equivalence of topoi of
Lemma 96.24.3 extends to an equivalence
(96.24.3.1)0H0C (Sh(Xaffine,τ ),O) −→ (Sh(Xτ ),OX )
of ringed topoi for τ ∈ {Zariski, étale, smooth, syntomic, fppf}.

96.25. Quasi-coherent modules and affines

0H0D Let p : X → (Sch/S)fppf be a category fibred in groupoids. In Section 96.24 we
have associated to this a ringed site (Xaffine,O).

Lemma 96.25.1.0H0E Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
F be an O-module on Xaffine. The following are equivalent

(1) for every morphism x→ x′ of Xaffine the map F(x′)⊗O(x′)O(x)→ F(x)
is an isomorphism,

(2) F is a quasi-coherent module on (Xaffine,O) in the sense of Modules on
Sites, Definition 18.23.1,

(3) F is a sheaf for the Zariski topology on Xaffine and a quasi-coherent
module on (Xaffine,Zar,O) in the sense of Modules on Sites, Definition
18.23.1,

(4) same as in (3) for the étale topology,
(5) same as in (3) for the smooth topology,
(6) same as in (3) for the syntomic topology,
(7) same as in (3) for the fppf topology, and
(8) F corresponds to a quasi-coherent module on X via the equivalence (96.24.3.1).

Proof. To make sense out of part (2), recall that Xaffine is a site gotten by endowing
the category Xaffine with the chaotic topology (Definition 96.24.1) and hence a
sheaf of O-modules F is the same thing as a presheaf of O-modules. Conditions
(1) and (2) are equivalent by Modules on Sites, Lemma 18.24.2. Observe that
for τ ∈ {Zariski, étale, smooth, syntomic, fppf} the presheaf F is a τ -sheaf if
and only if for all x ∈ Ob(Xaffine) the restriction to Xaffine/x is a τ -sheaf. Set
U = p(x). Similarly to the discussion in Section 96.9 the object x of Xaffine induces
an equivalence Xaffine,étale/x → (Aff/U)étale of sites. In this way we see that the
equivalence of (1) with (3) – (7) follows from Descent, Lemma 35.11.1 applied to
each of these sites. The equivalence of (8) and (7) is immediate from the fact that
“being quasi-coherent” is an intrinsic property of sheaves of modules, see Modules
on Sites, Section 18.18 □

Lemma 96.25.2.0H0F Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
F be an O-module on Xaffine. The following are equivalent

(1) for every morphism x → x′ of Xaffine such that p(x) → p(x′) is an étale
morphism (of affine schemes), the map F(x′) ⊗O(x′) O(x) → F(x) is an
isomorphism,

(2) F is a sheaf for the étale topology on Xaffine and for every object x of
Xaffine the restriction x∗F|Uaffine,étale is quasi-coherent where U = p(x),

https://stacks.math.columbia.edu/tag/0H0E
https://stacks.math.columbia.edu/tag/0H0F
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(3) F corresponds to a locally quasi-coherent module on X via the equivalence
(96.24.3.1) for the étale topology.

Proof. To make sense out of condition (2), recall that Uaffine,étale is the full sub-
category of Uétale consisting of affine objects, see Topologies, Definition 34.4.8.
Similarly to the discussion in Section 96.9 the object x of Xaffine induces an equiv-
alence Xaffine,étale/x → (Aff/U)étale of sites. Then x∗F is the sheaf of modules
on (Aff/U)étale corresponding to the restriction F|Xaffine,étale/x. Finally, using the
continuous and cocontinuous inclusion functor Uaffine,étale → (Aff/U)étale we can
further restrict and obtain x∗F|Uaffine,étale .

The equivalence of (1) and (2) follows from the remarks above and Descent, Lemma
35.11.2 applied to the restriction of F to Uaffine,étale for every object x of X lying
over an affine scheme U . The equivalence of (2) and (3) is immediate from the
definitions and the fact that quasi-coherent modules on Uaffine,étale and Uétale
correspond (again by Descent, Lemma 35.11.2 for example). □

96.26. Quasi-coherent objects in the derived category

0H0G Algebraic geometers have contemplated invariants for non-representable functors X
(valued in sets or groupoids) on Sch/S for decades. For instance, before the notion
of a stack was invented, Mumford defined [Mum65] the Picard groupoid Pic(X)
for the moduli functor X of elliptic curves as the 2-limit Pic(U) over the category
of all schemes U equipped with a map to X (i.e., with a family of elliptic curves).
Similarly, Beilinson-Drinfeld defined [BD] the category QCoh(X) for an ind-scheme
X = colimXi as the 2-limit lim QCoh(Xi). This strategy is sufficient for defining
1-categorical invariants like QCoh(−), but inadequate for derived categorical ones
(such as the quasi-coherent derived category) as 2-limits of triangulated categories
are poorly behaved. With the advent of higher categorical technology and derived
algebraic geometry, this problem can be resolved gracefully: one can define the
quasi-coherent derived∞-category Dqc(X) of the functor X as the limit limDqc(U),
where U ranges over all derived affines over X (see [Lur04]).

The goal of this section is to attach a triangulated category QC (X) to a functor
X (valued in sets or groupoids) as above. In fact, the construction works for any
category p : X → (Sch/S)fppf fibred in groupoids (not just split ones). In good
cases, the category QC (X ) can be shown to agree with the homotopy category of
Dqc(X ), though it is outside the scope of this document to explain this comparison.
The salient features of the construction are:

(a) QC (X ) is a full subcategory of D(Xaffine,O) by construction,
(b) QC (X ) agrees with DQCoh(OX) when X is representable by the algebraic

space X,
(c) QC (X ) agrees with DQCoh(OX ) when X is an algebraic stack,
(d) when X = Spf(A) is an affine formal algebraic space attached to a noe-

therian ring A equipped with the I-adic topology for an ideal I, the trian-
gulated category QC (X) agrees with the full subcategory Dcomp(A, I) ⊂
D(A) of derived complete objects.

These results are proven in Proposition 96.26.4, Derived Categories of Stacks,
Proposition 104.8.4, and Proposition 96.26.5.
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As a motivation for the precise definition of QC (X ) we point the reader to the
characterization, in Lemma 96.25.1, of quasi-coherent modules on X as presheaves
of O-modules on Xaffine which satisfy a kind of base change property.

Definition 96.26.1.0H0H Let p : X → (Sch/S)fppf be a category fibred in groupoids.
Let O be the sheaf of rings on Xaffine introduced in Section 96.24. We define
the triangulated category of quasi-coherent objects in the derived category by the
formula

QC (X ) = QC (Xaffine,O)
where the right hand side is as defined in Cohomology on Sites, Definition 21.43.1.

Note that this makes sense as Xaffine is a category and is viewed as a site by
endowing it with the chaotic topology and O is a sheaf of rings on this category,
exactly as required in Cohomology on Sites, Definition 21.43.1.
The relationship of this definition with the category of quasi-coherent modules on X
is not so clear in general! For example, suppose thatM is an object of QC (X ). Then
the cohomology sheaves Hi(M) of M are (pre)sheaves of O-modules on Xaffine,
but in general they are not quasi-coherent. The last nonvanishing cohomology sheaf
is quasi-coherent however.

Lemma 96.26.2.0H0I In the situation of Definition 96.26.1 suppose that M is an object
of QC (X ) and b ∈ Z such that Hi(M) = 0 for all i > b. Then Hb(M) is a
quasi-coherent module on (Xaffine,O), see Lemma 96.25.1.

Proof. Special case of Cohomology on Sites, Lemma 21.43.3. □

Lemma 96.26.3.0H0J Let S be a scheme. Let X → (Sch/S)fppf be a category fibred
in groupoids. The comparision morphism ϵ : Xaffine,étale → Xaffine satisfies the
assumptions and conclusions of Cohomology on Sites, Lemma 21.43.12.

Proof. Assumption (1) holds by definition of Xaffine. For condition (2) we use
that for x ∈ Ob(X ) lying over the affine scheme U = p(x) we have an equivalence
Xaffine,étale/x = (Aff/U)étale compatible with structure sheaves; see discussion
in Section 96.9. Thus it suffices to show: given an affine scheme U = Spec(R)
and a complex of R-modules M• the total cohomology of the complex of modules
on (Aff/U)étale associated to M• is quasi-isomorphic to M•. This follows from a
combination of: Derived Categories of Schemes, Lemma 36.3.5 (total cohomology
of complexes of modules over affines in the Zariski topology), Derived Categories of
Spaces, Remark 75.6.3 (agreement between total cohomology in small Zariski and
étale topologies for quasi-coherent complexes of modules), and Étale Cohomology,
Lemma 59.99.3 (to see that the étale cohomology of a complex of modules on the
big étale site of a scheme may be computed after restricting to the small étale
site). □

If we apply the definition in case our category fibred in groupoids X is representable
by an algebraic space X, then we recover DQCoh(OX). We will later state and prove
the analogous result for algebraic stacks (insert future reference here).

Proposition 96.26.4.0H0K Let S be a scheme. Let X → (Sch/S)fppf be a category fibred
in groupoids. Assume X is representable by an algebraic space X. Then QC (X ) is
canonically equivalent to DQCoh(OX).

https://stacks.math.columbia.edu/tag/0H0H
https://stacks.math.columbia.edu/tag/0H0I
https://stacks.math.columbia.edu/tag/0H0J
https://stacks.math.columbia.edu/tag/0H0K
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Proof. Denote Xaffine the category of affine schemes étale over X endowed with
the chaotic topology and its structure sheaf OX , see Derived Categories of Spaces,
Section 75.30. The functor u : Xétale → Xétale of Lemma 96.10.1 gives rise to a
functor Xaffine → Xaffine. This is compatible with structure sheaves and produces
a functor

G : QC (X ) = QC (Xaffine,O) −→ QC (Xaffine,OX)
See Cohomology on Sites, Lemma 21.43.10. By Derived Categories of Spaces,
Lemma 75.30.1 the triangulated category QC (Xaffine,OX) is equivalent toDQCoh(OX).
Hence it suffices to prove that G is an equivalence.
Consider the flat comparision morphisms ϵX : Xaffine,étale → Xaffine and ϵX :
Xaffine,étale → Xaffine of ringed sites. Lemma 96.26.3 and (the proof of) Derived
Categories of Spaces, Lemma 75.30.1 show that the functors ϵ∗X and ϵ∗X identify
QC (Xaffine,O) and QC (Xaffine,OX) with subcategoriesQX ⊂ D(Xaffine,étale,O)
and QX ⊂ D(Xaffine,étale,OX). With these identifications the functor G in the
first paragraph is induced by the functor

Li∗X = RπX,∗ : D(Xaffine,étale,O) −→ D(Xaffine,étale,OX)
where iX and πX are the morphisms from Lemma 96.10.1 but with the étale
sites replaced by the corresponding affine ones. The reader can show that this
replacement is permissible either by reproving the lemma for the affine sites di-
rectly or by using the equivalences of topoi Sh(Xaffine,étale) = Sh(Xétale) and
Sh(Xaffine,étale) = Sh(Xétale). The lemma also tells us Li∗X has a left adjoint

Lπ∗
X : D(Xaffine,étale,OX) −→ D(Xaffine,étale,O)

and moreover we have Li∗X ◦Lπ∗
X = id since πX ◦ iX is the identity. Thus it suffices

to show that (a) Lπ∗
X sends QX into QX and (b) the kernel of Li∗X is 0. See Derived

Categories, Lemma 13.7.2.
Proof of (a). By Derived Categories of Spaces, Lemma 75.30.1 we have QX =
DQCoh(Xaffine,étale,OX). Let K be an object of QX . Let x be an object of
Xaffine,étale lying over the affine scheme U = p(x). Denote f : U → X the
morphism corresponding to x. Then we see that

RΓ(x, Lπ∗
XK) = RΓ(U,Lf∗K)

This follows from transitivity of pullbacks; see discussion in Section 96.10. Next,
suppose that x → x′ is a morphism of Xaffine,étale lying over the morphism h :
U → U ′ of affine schemes. As before denote f : U → X and f ′ : U ′ → X the
morphisms corresponding to x and x′ so that we have f = f ′ ◦ h. Then

RΓ(x, Lπ∗
XK) = RΓ(U,Lf∗K)

= RΓ(U,Lh∗L(f ′)∗K)
= RΓ(U ′, L(f ′)∗K)⊗L

O(U ′) O(U)
= RΓ(x′, Lπ∗

XK)⊗L
O(x′) O(x)

and hence we have (a) by the footnote in the statement of Cohomology on Sites,
Lemma 21.43.12. The third equality is Derived Categories of Schemes, Lemma
36.3.8.
Proof of (b). Let M be an object of QX such that Li∗XM = 0. Let x′ be an
object of Xaffine,étale lying over the affine scheme U ′ = p(x′) and assume that
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the corresponding morphism f ′ : U ′ → X is étale. Then f ′ : U ′ → X is an
object of Xaffine,étale and the condition Li∗XM = 0 implies that M |U ′

étale
= 0. In

particular, we see that RΓ(x′,M) = 0. However, for an arbitrary object x of the
site Xaffine,étale there exists a covering {xi → x} such that for each i there is a
morphism xi → x′

i with x′
i corresponding to an object of Xaffine,étale. Now since

M is in QX we have
RΓ(xi,M) = RΓ(x′

i,M)⊗L
O(x′

i
) O(xi) = 0

and we conclude that M is zero as desired. □

To show that the construction produces an interesting category in another case, let
us state and prove a characterization of QC (Spf(A)) for the formal spectrum of a
Noetherian adic ring A.

Proposition 96.26.5.0H0L Let S be a scheme. Let X = Spf(A) where A is an an adic
Noetherian topological S-algebra with ideal of definition I, see More on Algebra,
Definition 15.36.1 and Formal Spaces, Definition 87.9.9. Let p : X → (Sch/S)fppf
the be category fibred in sets associated to the functor X, see Categories, Exam-
ple 4.38.5. Then QC (X ) is canonically equivalent to the category Dcomp(A, I) of
objects of D(A) which are derived complete with respect to I.

Proof. Recall that X = colim Spec(A/In) as an fppf sheaf. An object of Xaffine is
the same thing as an affine scheme U = Spec(R) with a given morphism f : U →
X. By Formal Spaces, Lemma 87.9.4 there exists an n ≥ 1 such that f factors
through the monomorphism Spec(A/In) → X. Consider the full subcategory C ⊂
Xaffine consisting of the objects Spec(A/In)→ X. By the remarks just made and
Differential Graded Sheaves, Lemma 24.34.1 restriction to C is an exact equivalence
QC (X ) → QC (C,O|C). For simplicity, let us assume that In ̸= In+1 for all n ≥
1. Then (C,O|C) is isomorphic as a ringed site to the ringed site (N, (A/In)),
see Differential Graded Sheaves, Section 24.35. Hence we conclude by Differential
Graded Sheaves, Proposition 24.35.4. □

The following lemma will be used in comparing QC (X ) to DQCoh(OX ) when X is
an algebraic stack.

Lemma 96.26.6.0H0X Let S be a scheme. Let X → (Sch/S)fppf be a category fibred
in groupoids. The comparision morphism ϵ : Xaffine,fppf → Xaffine satisfies the
assumptions and conclusions of Cohomology on Sites, Lemma 21.43.12.

Proof. The proof is exactly the same as the proof of Lemma 96.26.3. Assumption
(1) holds by definition of Xaffine. For condition (2) we use that for x ∈ Ob(X )
lying over the affine scheme U = p(x) we have an equivalence Xaffine,étale/x =
(Aff/U)étale compatible with structure sheaves; see discussion in Section 96.9. Thus
it suffices to show: given an affine scheme U = Spec(R) and a complex of R-modules
M• the total cohomology of the complex of modules on (Aff/U)fppf associated to
M• is quasi-isomorphic to M•. This is Étale Cohomology, Lemma 59.101.3. □

96.27. Other chapters
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(4) Categories
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CHAPTER 97

Criteria for Representability

05XE 97.1. Introduction

05XF The purpose of this chapter is to find criteria guaranteeing that a stack in groupoids
over the category of schemes with the fppf topology is an algebraic stack. His-
torically, this often involved proving that certain functors were representable, see
Grothendieck’s lectures [Gro95a], [Gro95b], [Gro95e], [Gro95f], [Gro95c], and [Gro95d].
This explains the title of this chapter. Another important source of this material
comes from the work of Artin, see [Art69b], [Art70], [Art73], [Art71b], [Art71a],
[Art69a], [Art69c], and [Art74].
Some of the notation, conventions and terminology in this chapter is awkward and
may seem backwards to the more experienced reader. This is intentional. Please
see Quot, Section 99.2 for an explanation.

97.2. Conventions

05XG The conventions we use in this chapter are the same as those in the chapter on
algebraic stacks, see Algebraic Stacks, Section 94.2.

97.3. What we already know

05XH The analogue of this chapter for algebraic spaces is the chapter entitled “Bootstrap”,
see Bootstrap, Section 80.1. That chapter already contains some representability
results. Moreover, some of the preliminary material treated there we already have
worked out in the chapter on algebraic stacks. Here is a list:

(1) We discuss morphisms of presheaves representable by algebraic spaces in
Bootstrap, Section 80.3. In Algebraic Stacks, Section 94.9 we discuss
the notion of a 1-morphism of categories fibred in groupoids being repre-
sentable by algebraic spaces.

(2) We discuss properties of morphisms of presheaves representable by alge-
braic spaces in Bootstrap, Section 80.4. In Algebraic Stacks, Section 94.10
we discuss properties of 1-morphisms of categories fibred in groupoids rep-
resentable by algebraic spaces.

(3) We proved that if F is a sheaf whose diagonal is representable by algebraic
spaces and which has an étale covering by an algebraic space, then F is an
algebraic space, see Bootstrap, Theorem 80.6.1. (This is a weak version
of the result in the next item on the list.)

(4)05XI We proved that if F is a sheaf and if there exists an algebraic space U and
a morphism U → F which is representable by algebraic spaces, surjective,
flat, and locally of finite presentation, then F is an algebraic space, see
Bootstrap, Theorem 80.10.1.

6767
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(5) We have also proved the “smooth” analogue of (4) for algebraic stacks:
If X is a stack in groupoids over (Sch/S)fppf and if there exists a stack
in groupoids U over (Sch/S)fppf which is representable by an algebraic
space and a 1-morphism u : U → X which is representable by algebraic
spaces, surjective, and smooth then X is an algebraic stack, see Algebraic
Stacks, Lemma 94.15.3.

Our first task now is to prove the analogue of (4) for algebraic stacks in general; it
is Theorem 97.16.1.

97.4. Morphisms of stacks in groupoids

05XJ This section is preliminary and should be skipped on a first reading.

Lemma 97.4.1.05XK Let X → Y → Z be 1-morphisms of categories fibred in groupoids
over (Sch/S)fppf . If X → Z and Y → Z are representable by algebraic spaces and
étale so is X → Y.

Proof. Let U be a representable category fibred in groupoids over S. Let f : U → Y
be a 1-morphism. We have to show that X ×Y U is representable by an algebraic
space and étale over U . Consider the composition h : U → Z. Then

X ×Z U −→ Y ×Z U

is a 1-morphism between categories fibres in groupoids which are both representable
by algebraic spaces and both étale over U . Hence by Properties of Spaces, Lemma
66.16.6 this is represented by an étale morphism of algebraic spaces. Finally, we
obtain the result we want as the morphism f induces a morphism U → Y×Z U and
we have

X ×Y U = (X ×Z U)×(Y×Z U) U .
□

Lemma 97.4.2.05XL Let X ,Y,Z be stacks in groupoids over (Sch/S)fppf . Suppose that
X → Y and Z → Y are 1-morphisms. If

(1) Y, Z are representable by algebraic spaces Y , Z over S,
(2) the associated morphism of algebraic spaces Y → Z is surjective, flat and

locally of finite presentation, and
(3) Y ×Z X is a stack in setoids,

then X is a stack in setoids.

Proof. This is a special case of Stacks, Lemma 8.6.10. □

The following lemma is the analogue of Algebraic Stacks, Lemma 94.15.3 and will
be superseded by the stronger Theorem 97.16.1.

Lemma 97.4.3.05XW Let S be a scheme. Let u : U → X be a 1-morphism of stacks in
groupoids over (Sch/S)fppf . If

(1) U is representable by an algebraic space, and
(2) u is representable by algebraic spaces, surjective, flat and locally of finite

presentation,
then ∆ : X → X ×X representable by algebraic spaces.

https://stacks.math.columbia.edu/tag/05XK
https://stacks.math.columbia.edu/tag/05XL
https://stacks.math.columbia.edu/tag/05XW
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Proof. Given two schemes T1, T2 over S denote Ti = (Sch/Ti)fppf the associated
representable fibre categories. Suppose given 1-morphisms fi : Ti → X . According
to Algebraic Stacks, Lemma 94.10.11 it suffices to prove that the 2-fibered product
T1 ×X T2 is representable by an algebraic space. By Stacks, Lemma 8.6.8 this
is in any case a stack in setoids. Thus T1 ×X T2 corresponds to some sheaf F
on (Sch/S)fppf , see Stacks, Lemma 8.6.3. Let U be the algebraic space which
represents U . By assumption

T ′
i = U ×u,X ,fi Ti

is representable by an algebraic space T ′
i over S. Hence T ′

1 ×U T ′
2 is representable

by the algebraic space T ′
1 ×U T ′

2. Consider the commutative diagram
T1 ×X T2 //

��

T1

��

T ′
1 ×U T ′

2

88

//

��

T ′
1

??

��

T2 // X

T ′
2

//

88

U

??

In this diagram the bottom square, the right square, the back square, and the
front square are 2-fibre products. A formal argument then shows that T ′

1 ×U T ′
2 →

T1 ×X T2 is the “base change” of U → X , more precisely the diagram

T ′
1 ×U T ′

2

��

// U

��
T1 ×X T2 // X

is a 2-fibre square. Hence T ′
1 ×U T ′

2 → F is representable by algebraic spaces,
flat, locally of finite presentation and surjective, see Algebraic Stacks, Lemmas
94.9.6, 94.9.7, 94.10.4, and 94.10.6. Therefore F is an algebraic space by Bootstrap,
Theorem 80.10.1 and we win. □

Lemma 97.4.4.07WG Let X be a category fibred in groupoids over (Sch/S)fppf . The
following are equivalent

(1) ∆∆ : X → X ×X ×X X is representable by algebraic spaces,
(2) for every 1-morphism V → X ×X with V representable (by a scheme) the

fibre product Y = X ×∆,X ×X V has diagonal representable by algebraic
spaces.

Proof. Although this is a bit of a brain twister, it is completely formal. Namely,
recall that X ×X ×X X = IX is the inertia of X and that ∆∆ is the identity section
of IX , see Categories, Section 4.34. Thus condition (1) says the following: Given
a scheme V , an object x of X over V , and a morphism α : x → x of XV the
condition “α = idx” defines an algebraic space over V . (In other words, there exists
a monomorphism of algebraic spaces W → V such that a morphism of schemes
f : T → V factors through W if and only if f∗α = idf∗x.)

https://stacks.math.columbia.edu/tag/07WG
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On the other hand, let V be a scheme and let x, y be objects of X over V . Then
(x, y) define a morphism V = (Sch/V )fppf → X × X . Next, let h : V ′ → V be
a morphism of schemes and let α : h∗x → h∗y and β : h∗x → h∗y be morphisms
of XV ′ . Then (α, β) define a morphism V ′ = (Sch/V )fppf → Y × Y. Condition
(2) now says that (with any choices as above) the condition “α = β” defines an
algebraic space over V .
To see the equivalence, given (α, β) as in (2) we see that (1) implies that “α−1 ◦β =
idh∗x” defines an algebraic space. The implication (2) ⇒ (1) follows by taking
h = idV and β = idx. □

97.5. Limit preserving on objects

06CT Let S be a scheme. Let p : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . We will say that p is limit preserving on objects if the following
condition holds: Given any data consisting of

(1) an affine scheme U = limi∈I Ui which is written as the directed limit of
affine schemes Ui over S,

(2) an object yi of Y over Ui for some i,
(3) an object x of X over U , and
(4) an isomorphism γ : p(x)→ yi|U ,

then there exists an i′ ≥ i, an object xi′ of X over Ui′ , an isomorphism β : xi′ |U → x,
and an isomorphism γi′ : p(xi′)→ yi|Ui′ such that

(97.5.0.1)06CU

p(xi′ |U )

p(β)
��

γi′ |U
// (yi|Ui′ )|U

p(x) γ // yi|U
commutes. In this situation we say that “(i′, xi′ , β, γi′) is a solution to the problem
posed by our data (1), (2), (3), (4)”. The motivation for this definition comes from
Limits of Spaces, Lemma 70.3.2.

Lemma 97.5.1.06CV Let p : X → Y and q : Z → Y be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . If p : X → Y is limit preserving on objects, then so
is the base change p′ : X ×Y Z → Z of p by q.

Proof. This is formal. Let U = limi∈I Ui be the directed limit of affine schemes
Ui over S, let zi be an object of Z over Ui for some i, let w be an object of
X ×Y Z over U , and let δ : p′(w) → zi|U be an isomorphism. We may write
w = (U, x, z, α) for some object x of X over U and object z of Z over U and
isomorphism α : p(x) → q(z). Note that p′(w) = z hence δ : z → zi|U . Set
yi = q(zi) and γ = q(δ) ◦ α : p(x)→ yi|U . As p is limit preserving on objects there
exists an i′ ≥ i and an object xi′ of X over Ui′ as well as isomorphisms β : xi′ |U → x
and γi′ : p(xi′)→ yi|Ui′ such that (97.5.0.1) commutes. Then we consider the object
wi′ = (Ui′ , xi′ , zi|Ui′ , γi′) of X ×Y Z over Ui′ and define isomorphisms

wi′ |U = (U, xi′ |U , zi|U , γi′ |U ) (β,δ−1)−−−−−→ (U, x, z, α) = w

and
p′(wi′) = zi|Ui′

id−→ zi|Ui′ .
These combine to give a solution to the problem. □
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Lemma 97.5.2.06CW Let p : X → Y and q : Y → Z be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . If p and q are limit preserving on objects, then so
is the composition q ◦ p.

Proof. This is formal. Let U = limi∈I Ui be the directed limit of affine schemes Ui
over S, let zi be an object of Z over Ui for some i, let x be an object of X over U ,
and let γ : q(p(x)) → zi|U be an isomorphism. As q is limit preserving on objects
there exist an i′ ≥ i, an object yi′ of Y over Ui′ , an isomorphism β : yi′ |U → p(x),
and an isomorphism γi′ : q(yi′)→ zi|Ui′ such that (97.5.0.1) is commutative. As p
is limit preserving on objects there exist an i′′ ≥ i′, an object xi′′ of X over Ui′′ , an
isomorphism β′ : xi′′ |U → x, and an isomorphism γ′

i′′ : p(xi′′) → yi′ |Ui′′ such that
(97.5.0.1) is commutative. The solution is to take xi′′ over Ui′′ with isomorphism

q(p(xi′′))
q(γ′

i′′ )
−−−−→ q(yi′)|Ui′′

γi′ |U
i′′−−−−→ zi|Ui′′

and isomorphism β′ : xi′′ |U → x. We omit the verification that (97.5.0.1) is com-
mutative. □

Lemma 97.5.3.06CX Let p : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . If p is representable by algebraic spaces, then the following are
equivalent:

(1) p is limit preserving on objects, and
(2) p is locally of finite presentation (see Algebraic Stacks, Definition 94.10.1).

Proof. Assume (2). Let U = limi∈I Ui be the directed limit of affine schemes Ui
over S, let yi be an object of Y over Ui for some i, let x be an object of X over U ,
and let γ : p(x)→ yi|U be an isomorphism. Let Xyi denote an algebraic space over
Ui representing the 2-fibre product

(Sch/Ui)fppf ×yi,Y,p X .

Note that ξ = (U,U → Ui, x, γ
−1) defines an object of this 2-fibre product over

U . Via the 2-Yoneda lemma ξ corresponds to a morphism fξ : U → Xyi over Ui.
By Limits of Spaces, Proposition 70.3.10 there exists an i′ ≥ i and a morphism
fi′ : Ui′ → Xyi such that fξ is the composition of fi′ and the projection morphism
U → Ui′ . Also, the 2-Yoneda lemma tells us that fi′ corresponds to an object ξi′ =
(Ui′ , Ui′ → Ui, xi′ , α) of the displayed 2-fibre product over Ui′ whose restriction to
U recovers ξ. In particular we obtain an isomorphism γ : xi′ |U → x. Note that
α : yi|Ui′ → p(xi′). Hence we see that taking xi′ , the isomorphism γ : xi′ |U → x,
and the isomorphism β = α−1 : p(xi′)→ yi|Ui′ is a solution to the problem.

Assume (1). Choose a scheme T and a 1-morphism y : (Sch/T )fppf → Y. Let Xy

be an algebraic space over T representing the 2-fibre product (Sch/T )fppf ×y,Y,pX .
We have to show that Xy → T is locally of finite presentation. To do this we will
use the criterion in Limits of Spaces, Remark 70.3.11. Consider an affine scheme
U = limi∈I Ui written as the directed limit of affine schemes over T . Pick any
i ∈ I and set yi = y|Ui . Also denote i′ an element of I which is bigger than
or equal to i. By the 2-Yoneda lemma morphisms U → Xy over T correspond
bijectively to isomorphism classes of pairs (x, α) where x is an object of X over U
and α : y|U → p(x) is an isomorphism. Of course giving α is, up to an inverse,
the same thing as giving an isomorphism γ : p(x)→ yi|U . Similarly for morphisms
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Ui′ → Xy over T . Hence (1) guarantees that the canonical map
colimi′≥iXy(Ui′) −→ Xy(U)

is surjective in this situation. It follows from Limits of Spaces, Lemma 70.3.12 that
Xy → T is locally of finite presentation. □

Lemma 97.5.4.06CY Let p : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Assume p is representable by algebraic spaces and an open
immersion. Then p is limit preserving on objects.

Proof. This follows from Lemma 97.5.3 and (via the general principle Algebraic
Stacks, Lemma 94.10.9) from the fact that an open immersion of algebraic spaces
is locally of finite presentation, see Morphisms of Spaces, Lemma 67.28.11. □

Let S be a scheme. In the following lemma we need the notion of the size of an
algebraic space X over S. Namely, given a cardinal κ we will say X has size(X) ≤ κ
if and only if there exists a scheme U with size(U) ≤ κ (see Sets, Section 3.9) and
a surjective étale morphism U → X.

Lemma 97.5.5.07WH Let S be a scheme. Let κ = size(T ) for some T ∈ Ob((Sch/S)fppf ).
Let f : X → Y be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf
such that

(1) Y → (Sch/S)fppf is limit preserving on objects,
(2) for an affine scheme V locally of finite presentation over S and y ∈ Ob(YV )

the fibre product (Sch/V )fppf ×y,Y X is representable by an algebraic
space of size ≤ κ1,

(3) X and Y are stacks for the Zariski topology.
Then f is representable by algebraic spaces.

Proof. Let V be a scheme over S and y ∈ YV . We have to prove (Sch/V )fppf×y,YX
is representable by an algebraic space.
Case I: V is affine and maps into an affine open Spec(Λ) ⊂ S. Then we can write
V = limVi with each Vi affine and of finite presentation over Spec(Λ), see Algebra,
Lemma 10.127.2. Then y comes from an object yi over Vi for some i by assumption
(1). By assumption (3) the fibre product (Sch/Vi)fppf ×yi,Y X is representable by
an algebraic space Zi. Then (Sch/V )fppf ×y,Y X is representable by Z ×Vi V .
Case II: V is general. Choose an affine open covering V =

⋃
i∈I Vi such that each

Vi maps into an affine open of S. We first claim that Z = (Sch/V )fppf ×y,Y X is
a stack in setoids for the Zariski topology. Namely, it is a stack in groupoids for
the Zariski topology by Stacks, Lemma 8.5.6. Then suppose that z is an object
of Z over a scheme T . Denote g : T → V the morphism corresponding to the
projection of z in (Sch/V )fppf . Consider the Zariski sheaf I = IsomZ(z, z). By
Case I we see that I |g−1(Vi) = ∗ (the singleton sheaf). Hence I = ∗. Thus Z
is fibred in setoids. To finish the proof we have to show that the Zariski sheaf
Z : T 7→ Ob(ZT )/ ∼= is an algebraic space, see Algebraic Stacks, Lemma 94.8.2.
There is a map p : Z → V (transformation of functors) and by Case I we know that
Zi = p−1(Vi) is an algebraic space. The morphisms Zi → Z are representable by
open immersions and

∐
Zi → Z is surjective (in the Zariski topology). Hence Z is

1The condition on size can be dropped by those ignoring set theoretic issues.
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a sheaf for the fppf topology by Bootstrap, Lemma 80.3.11. Thus Spaces, Lemma
65.8.5 applies and we conclude that Z is an algebraic space2. □

Lemma 97.5.6.07WI Let S be a scheme. Let f : X → Y be a 1-morphism of categories
fibred in groupoids over (Sch/S)fppf . Let P be a property of morphisms of algebraic
spaces as in Algebraic Stacks, Definition 94.10.1. If

(1) f is representable by algebraic spaces,
(2) Y → (Sch/S)fppf is limit preserving on objects,
(3) for an affine scheme V locally of finite presentation over S and y ∈ YV the

resulting morphism of algebraic spaces fy : Fy → V , see Algebraic Stacks,
Equation (94.9.1.1), has property P.

Then f has property P.

Proof. Let V be a scheme over S and y ∈ YV . We have to show that Fy → V
has property P. Since P is fppf local on the base we may assume that V is an
affine scheme which maps into an affine open Spec(Λ) ⊂ S. Thus we can write
V = limVi with each Vi affine and of finite presentation over Spec(Λ), see Algebra,
Lemma 10.127.2. Then y comes from an object yi over Vi for some i by assumption
(2). By assumption (3) the morphism Fyi → Vi has property P. As P is stable
under arbitrary base change and since Fy = Fyi ×Vi V we conclude that Fy → V
has property P as desired. □

97.6. Formally smooth on objects

06CZ Let S be a scheme. Let p : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . We will say that p is formally smooth on objects if the following
condition holds: Given any data consisting of

(1) a first order thickening U ⊂ U ′ of affine schemes over S,
(2) an object y′ of Y over U ′,
(3) an object x of X over U , and
(4) an isomorphism γ : p(x)→ y′|U ,

then there exists an object x′ of X over U ′ with an isomorphism β : x′|U → x and
an isomorphism γ′ : p(x′)→ y′ such that

(97.6.0.1)06D0

p(x′|U )

p(β)
��

γ′|U
// y′|U

p(x) γ // y′|U

commutes. In this situation we say that “(x′, β, γ′) is a solution to the problem
posed by our data (1), (2), (3), (4)”.

Lemma 97.6.1.06D1 Let p : X → Y and q : Z → Y be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . If p : X → Y is formally smooth on objects, then
so is the base change p′ : X ×Y Z → Z of p by q.

2To see that the set theoretic condition of that lemma is satisfied we argue as follows:
First choose the open covering such that |I| ≤ size(V ). Next, choose schemes Ui of size
≤ max(κ, size(V )) and surjective étale morphisms Ui → Zi; we can do this by assumption (2) and
Sets, Lemma 3.9.6 (details omitted). Then Sets, Lemma 3.9.9 implies that

∐
Ui is an object of

(Sch/S)fppf . Hence
∐
Zi is an algebraic space by Spaces, Lemma 65.8.4.
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Proof. This is formal. Let U ⊂ U ′ be a first order thickening of affine schemes over
S, let z′ be an object of Z over U ′, let w be an object of X ×Y Z over U , and let
δ : p′(w)→ z′|U be an isomorphism. We may write w = (U, x, z, α) for some object
x of X over U and object z of Z over U and isomorphism α : p(x) → q(z). Note
that p′(w) = z hence δ : z → z|U . Set y′ = q(z′) and γ = q(δ) ◦ α : p(x) → y′|U .
As p is formally smooth on objects there exists an object x′ of X over U ′ as well
as isomorphisms β : x′|U → x and γ′ : p(x′) → y′ such that (97.6.0.1) commutes.
Then we consider the object w = (U ′, x′, z′, γ′) of X ×Y Z over U ′ and define
isomorphisms

w′|U = (U, x′|U , z′|U , γ′|U ) (β,δ−1)−−−−−→ (U, x, z, α) = w

and
p′(w′) = z′ id−→ z′.

These combine to give a solution to the problem. □

Lemma 97.6.2.06D2 Let p : X → Y and q : Y → Z be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . If p and q are formally smooth on objects, then so
is the composition q ◦ p.

Proof. This is formal. Let U ⊂ U ′ be a first order thickening of affine schemes
over S, let z′ be an object of Z over U ′, let x be an object of X over U , and let
γ : q(p(x)) → z′|U be an isomorphism. As q is formally smooth on objects there
exist an object y′ of Y over U ′, an isomorphism β : y′|U → p(x), and an isomorphism
γ′ : q(y′) → z′ such that (97.6.0.1) is commutative. As p is formally smooth on
objects there exist an object x′ of X over U ′, an isomorphism β′ : x′|U → x, and
an isomorphism γ′′ : p(x′) → y′ such that (97.6.0.1) is commutative. The solution
is to take x′ over U ′ with isomorphism

q(p(x′)) q(γ′′)−−−→ q(y′) γ′

−→ z′

and isomorphism β′ : x′|U → x. We omit the verification that (97.6.0.1) is commu-
tative. □

Note that the class of formally smooth morphisms of algebraic spaces is stable
under arbitrary base change and local on the target in the fpqc topology, see More
on Morphisms of Spaces, Lemma 76.19.3 and 76.19.11. Hence condition (2) in the
lemma below makes sense.

Lemma 97.6.3.06D3 Let p : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . If p is representable by algebraic spaces, then the following are
equivalent:

(1) p is formally smooth on objects, and
(2) p is formally smooth (see Algebraic Stacks, Definition 94.10.1).

Proof. Assume (2). Let U ⊂ U ′ be a first order thickening of affine schemes over
S, let y′ be an object of Y over U ′, let x be an object of X over U , and let
γ : p(x) → y′|U be an isomorphism. Let Xy′ denote an algebraic space over U ′

representing the 2-fibre product
(Sch/U ′)fppf ×y′,Y,p X .

Note that ξ = (U,U → U ′, x, γ−1) defines an object of this 2-fibre product over U .
Via the 2-Yoneda lemma ξ corresponds to a morphism fξ : U → Xy′ over U ′. As
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Xy′ → U ′ is formally smooth by assumption there exists a morphism f ′ : U ′ → Xy′

such that fξ is the composition of f ′ and the morphism U → U ′. Also, the 2-
Yoneda lemma tells us that f ′ corresponds to an object ξ′ = (U ′, U ′ → U ′, x′, α)
of the displayed 2-fibre product over U ′ whose restriction to U recovers ξ. In
particular we obtain an isomorphism γ : x′|U → x. Note that α : y′ → p(x′).
Hence we see that taking x′, the isomorphism γ : x′|U → x, and the isomorphism
β = α−1 : p(x′)→ y′ is a solution to the problem.
Assume (1). Choose a scheme T and a 1-morphism y : (Sch/T )fppf → Y. Let Xy be
an algebraic space over T representing the 2-fibre product (Sch/T )fppf×y,Y,pX . We
have to show that Xy → T is formally smooth. Hence it suffices to show that given
a first order thickening U ⊂ U ′ of affine schemes over T , then Xy(U ′)→ Xy(U ′) is
surjective (morphisms in the category of algebraic spaces over T ). Set y′ = y|U ′ .
By the 2-Yoneda lemma morphisms U → Xy over T correspond bijectively to
isomorphism classes of pairs (x, α) where x is an object of X over U and α : y|U →
p(x) is an isomorphism. Of course giving α is, up to an inverse, the same thing as
giving an isomorphism γ : p(x)→ y′|U . Similarly for morphisms U ′ → Xy over T .
Hence (1) guarantees the surjectivity of Xy(U ′)→ Xy(U ′) in this situation and we
win. □

97.7. Surjective on objects

06D4 Let S be a scheme. Let p : X → Y be a 1-morphism of categories fibred in
groupoids over (Sch/S)fppf . We will say that p is surjective on objects if the
following condition holds: Given any data consisting of

(1) a field k over S, and
(2) an object y of Y over Spec(k),

then there exists an extension K/k of fields over S, an object x of X over Spec(K)
such that p(x) ∼= y|Spec(K).

Lemma 97.7.1.06D5 Let p : X → Y and q : Z → Y be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . If p : X → Y is surjective on objects, then so is the
base change p′ : X ×Y Z → Z of p by q.

Proof. This is formal. Let z be an object of Z over a field k. As p is surjective
on objects there exists an extension K/k and an object x of X over K and an
isomorphism α : p(x) → q(z)|Spec(K). Then w = (Spec(K), x, z|Spec(K), α) is an
object of X ×Y Z over K with p′(w) = z|Spec(K). □

Lemma 97.7.2.06D6 Let p : X → Y and q : Y → Z be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . If p and q are surjective on objects, then so is the
composition q ◦ p.

Proof. This is formal. Let z be an object of Z over a field k. As q is surjective on
objects there exists a field extension K/k and an object y of Y over K such that
q(y) ∼= x|Spec(K). As p is surjective on objects there exists a field extension L/K
and an object x of X over L such that p(x) ∼= y|Spec(L). Then the field extension
L/k and the object x of X over L satisfy q(p(x)) ∼= z|Spec(L) as desired. □

Lemma 97.7.3.06D7 Let p : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . If p is representable by algebraic spaces, then the following are
equivalent:

https://stacks.math.columbia.edu/tag/06D5
https://stacks.math.columbia.edu/tag/06D6
https://stacks.math.columbia.edu/tag/06D7


97.8. ALGEBRAIC MORPHISMS 6776

(1) p is surjective on objects, and
(2) p is surjective (see Algebraic Stacks, Definition 94.10.1).

Proof. Assume (2). Let k be a field and let y be an object of Y over k. Let Xy

denote an algebraic space over k representing the 2-fibre product
(Sch/ Spec(k))fppf ×y,Y,p X .

As we’ve assumed that p is surjective we see that Xy is not empty. Hence we
can find a field extension K/k and a K-valued point x of Xy. Via the 2-Yoneda
lemma this corresponds to an object x of X over K together with an isomorphism
p(x) ∼= y|Spec(K) and we see that (1) holds.
Assume (1). Choose a scheme T and a 1-morphism y : (Sch/T )fppf → Y. Let Xy

be an algebraic space over T representing the 2-fibre product (Sch/T )fppf ×y,Y,pX .
We have to show that Xy → T is surjective. By Morphisms of Spaces, Definition
67.5.2 we have to show that |Xy| → |T | is surjective. This means exactly that given
a field k over T and a morphism t : Spec(k)→ T there exists a field extension K/k
and a morphism x : Spec(K)→ Xy such that

Spec(K)

��

x
// Xy

��
Spec(k) t // T

commutes. By the 2-Yoneda lemma this means exactly that we have to find k ⊂ K
and an object x of X over K such that p(x) ∼= t∗y|Spec(K). Hence (1) guarantees
that this is the case and we win. □

97.8. Algebraic morphisms

05XX The following notion is occasionally useful.

Definition 97.8.1.06CF Let S be a scheme. Let F : X → Y be a 1-morphism of stacks
in groupoids over (Sch/S)fppf . We say that F is algebraic if for every scheme T
and every object ξ of Y over T the 2-fibre product

(Sch/T )fppf ×ξ,Y X
is an algebraic stack over S.

With this terminology in place we have the following result that generalizes Alge-
braic Stacks, Lemma 94.15.4.

Lemma 97.8.2.05XY Let S be a scheme. Let F : X → Y be a 1-morphism of stacks in
groupoids over (Sch/S)fppf . If

(1) Y is an algebraic stack, and
(2) F is algebraic (see above),

then X is an algebraic stack.

Proof. By assumption (1) there exists a scheme T and an object ξ of Y over T
such that the corresponding 1-morphism ξ : (Sch/T )fppf → Y is smooth an sur-
jective. Then U = (Sch/T )fppf ×ξ,Y X is an algebraic stack by assumption (2).
Choose a scheme U and a surjective smooth 1-morphism (Sch/U)fppf → U . The
projection U −→ X is, as the base change of the morphism ξ : (Sch/T )fppf → Y,
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surjective and smooth, see Algebraic Stacks, Lemma 94.10.6. Then the composition
(Sch/U)fppf → U → X is surjective and smooth as a composition of surjective and
smooth morphisms, see Algebraic Stacks, Lemma 94.10.5. Hence X is an algebraic
stack by Algebraic Stacks, Lemma 94.15.3. □

Lemma 97.8.3.06CG Let S be a scheme. Let F : X → Y be a 1-morphism of stacks
in groupoids over (Sch/S)fppf . If X is an algebraic stack and ∆ : Y → Y × Y is
representable by algebraic spaces, then F is algebraic.

Proof. Choose a representable stack in groupoids U and a surjective smooth 1-
morphism U → X . Let T be a scheme and let ξ be an object of Y over T . The
morphism of 2-fibre products

(Sch/T )fppf ×ξ,Y U −→ (Sch/T )fppf ×ξ,Y X

is representable by algebraic spaces, surjective, and smooth as a base change of
U → X , see Algebraic Stacks, Lemmas 94.9.7 and 94.10.6. By our condition on
the diagonal of Y we see that the source of this morphism is representable by an
algebraic space, see Algebraic Stacks, Lemma 94.10.11. Hence the target is an
algebraic stack by Algebraic Stacks, Lemma 94.15.3. □

Lemma 97.8.4.0D3R Let S be a scheme. Let F : X → Y be a 1-morphism of stacks in
groupoids over (Sch/S)fppf . If F is algebraic and ∆ : Y → Y × Y is representable
by algebraic spaces, then ∆ : X → X ×X is representable by algebraic spaces.

Proof. Assume F is algebraic and ∆ : Y → Y × Y is representable by algebraic
spaces. Take a scheme U over S and two objects x1, x2 of X over U . We have to
show that Isom(x1, x2) is an algebraic space over U , see Algebraic Stacks, Lemma
94.10.11. Set yi = F (xi). We have a morphism of sheaves of sets

f : Isom(x1, x2)→ Isom(y1, y2)

and the target is an algebraic space by assumption. Thus it suffices to show that
f is representable by algebraic spaces, see Bootstrap, Lemma 80.3.6. Thus we can
choose a scheme V over U and an isomorphism β : y1,V → y2,V and we have to
show the functor

(Sch/V )fppf → Sets, T/V 7→ {α : x1,T → x2,T in XT | F (α) = β|T }

is an algebraic space. Consider the objects z1 = (V, x1,V , id) and z2 = (V, x2,V , β)
of

Z = (Sch/V )fppf ×y1,V ,Y X
Then it is straightforward to verify that the functor above is equal to Isom(z1, z2)
on (Sch/V )fppf . Hence this is an algebraic space by our assumption that F is
algebraic (and the definition of algebraic stacks). □

97.9. Spaces of sections

05XZ Given morphisms W → Z → U we can consider the functor that associates to a
scheme U ′ over U the set of sections σ : ZU ′ →WU ′ of the base change WU ′ → ZU ′

of the morphism W → Z. In this section we prove some preliminary lemmas on
this functor.
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Lemma 97.9.1.05XQ Let Z → U be a finite morphism of schemes. Let W be an algebraic
space and let W → Z be a surjective étale morphism. Then there exists a surjective
étale morphism U ′ → U and a section

σ : ZU ′ →WU ′

of the morphism WU ′ → ZU ′ .

Proof. We may choose a separated scheme W ′ and a surjective étale morphism
W ′ → W . Hence after replacing W by W ′ we may assume that W is a separated
scheme. Write f : W → Z and π : Z → U . Note that f ◦π : W → U is separated as
W is separated (see Schemes, Lemma 26.21.13). Let u ∈ U be a point. Clearly it
suffices to find an étale neighbourhood (U ′, u′) of (U, u) such that a section σ exists
over U ′. Let z1, . . . , zr be the points of Z lying above u. For each i choose a point
wi ∈ W which maps to zi. We may pick an étale neighbourhood (U ′, u′) → (U, u)
such that the conclusions of More on Morphisms, Lemma 37.41.5 hold for both
Z → U and the points z1, . . . , zr and W → U and the points w1, . . . , wr. Hence,
after replacing (U, u) by (U ′, u′) and relabeling, we may assume that all the field
extensions κ(zi)/κ(u) and κ(wi)/κ(u) are purely inseparable, and moreover that
there exist disjoint union decompositions

Z = V1 ⨿ . . .⨿ Vr ⨿A, W = W1 ⨿ . . .⨿Wr ⨿B

by open and closed subschemes with zi ∈ Vi, wi ∈Wi and Vi → U , Wi → U finite.
After replacing U by U \ π(A) we may assume that A = ∅, i.e., Z = V1 ⨿ . . .⨿ Vr.
After replacing Wi by Wi ∩ f−1(Vi) and B by B ∪

⋃
Wi ∩ f−1(Z \ Vi) we may

assume that f maps Wi into Vi. Then fi = f |Wi
: Wi → Vi is a morphism of

schemes finite over U , hence finite (see Morphisms, Lemma 29.44.14). It is also
étale (by assumption), f−1

i ({zi}) = wi, and induces an isomorphism of residue
fields κ(zi) = κ(wi) (because both are purely inseparable extensions of κ(u) and
κ(wi)/κ(zi) is separable as f is étale). Hence by Étale Morphisms, Lemma 41.14.2
we see that fi is an isomorphism in a neighbourhood V ′

i of zi. Since π : Z → U is
closed, after shrinking U , we may assume that Wi → Vi is an isomorphism. This
proves the lemma. □

Lemma 97.9.2.05XR Let Z → U be a finite locally free morphism of schemes. Let W
be an algebraic space and let W → Z be an étale morphism. Then the functor

F : (Sch/U)oppfppf −→ Sets,
defined by the rule

U ′ 7−→ F (U ′) = {σ : ZU ′ →WU ′ section of WU ′ → ZU ′}

is an algebraic space and the morphism F → U is étale.

Proof. Assume first that W → Z is also separated. Let U ′ be a scheme over U and
let σ ∈ F (U ′). By Morphisms of Spaces, Lemma 67.4.7 the morphism σ is a closed
immersion. Moreover, σ is étale by Properties of Spaces, Lemma 66.16.6. Hence
σ is also an open immersion, see Morphisms of Spaces, Lemma 67.51.2. In other
words, Zσ = σ(ZU ′) ⊂WU ′ is an open subspace such that the morphism Zσ → ZU ′

is an isomorphism. In particular, the morphism Zσ → U ′ is finite. Hence we obtain
a transformation of functors

F −→ (W/U)fin, σ 7−→ (U ′ → U,Zσ)

https://stacks.math.columbia.edu/tag/05XQ
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where (W/U)fin is the finite part of the morphism W → U introduced in More on
Groupoids in Spaces, Section 79.12. It is clear that this transformation of functors
is injective (since we can recover σ from Zσ as the inverse of the isomorphism
Zσ → ZU ′). By More on Groupoids in Spaces, Proposition 79.12.11 we know that
(W/U)fin is an algebraic space étale over U . Hence to finish the proof in this case
it suffices to show that F → (W/U)fin is representable and an open immersion.
To see this suppose that we are given a morphism of schemes U ′ → U and an open
subspace Z ′ ⊂WU ′ such that Z ′ → U ′ is finite. Then it suffices to show that there
exists an open subscheme U ′′ ⊂ U ′ such that a morphism T → U ′ factors through
U ′′ if and only if Z ′ ×U ′ T maps isomorphically to Z ×U ′ T . This follows from
More on Morphisms of Spaces, Lemma 76.49.6 (here we use that Z → B is flat and
locally of finite presentation as well as finite). Hence we have proved the lemma in
case W → Z is separated as well as étale.
In the general case we choose a separated scheme W ′ and a surjective étale mor-
phism W ′ →W . Note that the morphisms W ′ →W and W → Z are separated as
their source is separated. Denote F ′ the functor associated to W ′ → Z → U as in
the lemma. In the first paragraph of the proof we showed that F ′ is representable
by an algebraic space étale over U . By Lemma 97.9.1 the map of functors F ′ → F
is surjective for the étale topology on Sch/U . Moreover, if U ′ and σ : ZU ′ → WU ′

define a point ξ ∈ F (U ′), then the fibre product
F ′′ = F ′ ×F,ξ U ′

is the functor on Sch/U ′ associated to the morphisms
W ′
U ′ ×WU′ ,σ ZU ′ → ZU ′ → U ′.

Since the first morphism is separated as a base change of a separated morphism, we
see that F ′′ is an algebraic space étale over U ′ by the result of the first paragraph.
It follows that F ′ → F is a surjective étale transformation of functors, which is
representable by algebraic spaces. Hence F is an algebraic space by Bootstrap,
Theorem 80.10.1. Since F ′ → F is an étale surjective morphism of algebraic spaces
it follows that F → U is étale because F ′ → U is étale. □

97.10. Relative morphisms

05Y0 We continue the discussion started in More on Morphisms, Section 37.68.
Let S be a scheme. Let Z → B and X → B be morphisms of algebraic spaces over
S. Given a scheme T we can consider pairs (a, b) where a : T → B is a morphism
and b : T ×a,B Z → T ×a,B X is a morphism over T . Picture

(97.10.0.1)05Y1

T ×a,B Z

$$

b
// T ×a,B X

zz

Z

��

X

��
T

a // B

Of course, we can also think of b as a morphism b : T ×a,B Z → X such that

T ×a,B Z //

��

b **
Z

��

X

��
T

a // B
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commutes. In this situation we can define a functor
(97.10.0.2)05Y2 MorB(Z,X) : (Sch/S)opp −→ Sets, T 7−→ {(a, b) as above}
Sometimes we think of this as a functor defined on the category of schemes over B,
in which case we drop a from the notation.

Lemma 97.10.1.05Y3 Let S be a scheme. Let Z → B and X → B be morphisms of
algebraic spaces over S. Then

(1) MorB(Z,X) is a sheaf on (Sch/S)fppf .
(2) If T is an algebraic space over S, then there is a canonical bijection

MorSh((Sch/S)fppf )(T,MorB(Z,X)) = {(a, b) as in (97.10.0.1)}

Proof. Let T be an algebraic space over S. Let {Ti → T} be an fppf covering of T
(as in Topologies on Spaces, Section 73.7). Suppose that (ai, bi) ∈ MorB(Z,X)(Ti)
such that (ai, bi)|Ti×TTj = (aj , bj)|Ti×TTj for all i, j. Then by Descent on Spaces,
Lemma 74.7.2 there exists a unique morphism a : T → B such that ai is the
composition of Ti → T and a. Then {Ti ×ai,B Z → T ×a,B Z} is an fppf covering
too and the same lemma implies there exists a unique morphism b : T ×a,B Z →
T ×a,B X such that bi is the composition of Ti ×ai,B Z → T ×a,B Z and b. Hence
(a, b) ∈ MorB(Z,X)(T ) restricts to (ai, bi) over Ti for all i.
Note that the result of the preceding paragraph in particular implies (1).
Let T be an algebraic space over S. In order to prove (2) we will construct mutually
inverse maps between the displayed sets. In the following when we say “pair” we
mean a pair (a, b) fitting into (97.10.0.1).
Let v : T → MorB(Z,X) be a natural transformation. Choose a scheme U and a
surjective étale morphism p : U → T . Then v(p) ∈ MorB(Z,X)(U) corresponds
to a pair (aU , bU ) over U . Let R = U ×T U with projections t, s : R → U . As
v is a transformation of functors we see that the pullbacks of (aU , bU ) by s and t
agree. Hence, since {U → T} is an fppf covering, we may apply the result of the
first paragraph that deduce that there exists a unique pair (a, b) over T .
Conversely, let (a, b) be a pair over T . Let U → T , R = U ×T U , and t, s : R→ U
be as above. Then the restriction (a, b)|U gives rise to a transformation of functors
v : hU → MorB(Z,X) by the Yoneda lemma (Categories, Lemma 4.3.5). As the
two pullbacks s∗(a, b)|U and t∗(a, b)|U are equal, we see that v coequalizes the two
maps ht, hs : hR → hU . Since T = U/R is the fppf quotient sheaf by Spaces,
Lemma 65.9.1 and since MorB(Z,X) is an fppf sheaf by (1) we conclude that v
factors through a map T → MorB(Z,X).
We omit the verification that the two constructions above are mutually inverse. □

Lemma 97.10.2.05Y4 Let S be a scheme. Let Z → B, X → B, and B′ → B be
morphisms of algebraic spaces over S. Set Z ′ = B′×B Z and X ′ = B′×BX. Then

MorB′(Z ′, X ′) = B′ ×B MorB(Z,X)
in Sh((Sch/S)fppf ).

Proof. The equality as functors follows immediately from the definitions. The
equality as sheaves follows from this because both sides are sheaves according to
Lemma 97.10.1 and the fact that a fibre product of sheaves is the same as the
corresponding fibre product of pre-sheaves (i.e., functors). □

https://stacks.math.columbia.edu/tag/05Y3
https://stacks.math.columbia.edu/tag/05Y4


97.10. RELATIVE MORPHISMS 6781

Lemma 97.10.3.05Y5 Let S be a scheme. Let Z → B and X ′ → X → B be morphisms
of algebraic spaces over S. Assume

(1) X ′ → X is étale, and
(2) Z → B is finite locally free.

Then MorB(Z,X ′) → MorB(Z,X) is representable by algebraic spaces and étale.
If X ′ → X is also surjective, then MorB(Z,X ′)→ MorB(Z,X) is surjective.

Proof. Let U be a scheme and let ξ = (a, b) be an element of MorB(Z,X)(U). We
have to prove that the functor

hU ×ξ,MorB(Z,X) MorB(Z,X ′)

is representable by an algebraic space étale over U . Set ZU = U ×a,B Z and
W = ZU ×b,X X ′. Then W → ZU → U is as in Lemma 97.9.2 and the sheaf F
defined there is identified with the fibre product displayed above. Hence the first
assertion of the lemma. The second assertion follows from this and Lemma 97.9.1
which guarantees that F → U is surjective in the situation above. □

Proposition 97.10.4.05Y7 Let S be a scheme. Let Z → B and X → B be morphisms
of algebraic spaces over S. If Z → B is finite locally free then MorB(Z,X) is an
algebraic space.

Proof. Choose a scheme B′ =
∐
B′
i which is a disjoint union of affine schemes B′

i

and an étale surjective morphism B′ → B. We may also assume that B′
i ×B Z

is the spectrum of a ring which is finite free as a Γ(B′
i,OB′

i
)-module. By Lemma

97.10.2 and Spaces, Lemma 65.5.5 the morphism MorB′(Z ′, X ′) → MorB(Z,X)
is surjective étale. Hence by Bootstrap, Theorem 80.10.1 it suffices to prove the
proposition when B = B′ is a disjoint union of affine schemes B′

i so that each
B′
i ×B Z is finite free over B′

i. Then it actually suffices to prove the result for the
restriction to each B′

i. Thus we may assume that B is affine and that Γ(Z,OZ) is
a finite free Γ(B,OB)-module.

Choose a scheme X ′ which is a disjoint union of affine schemes and a surjective étale
morphismX ′ → X. By Lemma 97.10.3 the morphism MorB(Z,X ′)→ MorB(Z,X)
is representable by algebraic spaces, étale, and surjective. Hence by Bootstrap,
Theorem 80.10.1 it suffices to prove the proposition when X is a disjoint union of
affine schemes. This reduces us to the case discussed in the next paragraph.

Assume X =
∐
i∈I Xi is a disjoint union of affine schemes, B is affine, and that

Γ(Z,OZ) is a finite free Γ(B,OB)-module. For any finite subset E ⊂ I set

FE = MorB(Z,
∐

i∈E
Xi).

By More on Morphisms, Lemma 37.68.1 we see that FE is an algebraic space.
Consider the morphism ∐

E⊂I finite
FE −→ MorB(Z,X)

Each of the morphisms FE → MorB(Z,X) is an open immersion, because it is
simply the locus parametrizing pairs (a, b) where b maps into the open subscheme∐
i∈E Xi of X. Moreover, if T is quasi-compact, then for any pair (a, b) the image

https://stacks.math.columbia.edu/tag/05Y5
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of b is contained in
∐
i∈E Xi for some E ⊂ I finite. Hence the displayed arrow is in

fact an open covering and we win3 by Spaces, Lemma 65.8.5. □

97.11. Restriction of scalars

05Y8 Suppose X → Z → B are morphisms of algebraic spaces over S. Given a scheme T
we can consider pairs (a, b) where a : T → B is a morphism and b : T ×a,B Z → X
is a morphism over Z. Picture

(97.11.0.1)05Y9

X

��
T ×a,B Z

��

b

::

// Z

��
T

a // B

In this situation we can define a functor
(97.11.0.2)05YA ResZ/B(X) : (Sch/S)opp −→ Sets, T 7−→ {(a, b) as above}
Sometimes we think of this as a functor defined on the category of schemes over B,
in which case we drop a from the notation.
Lemma 97.11.1.05YB Let S be a scheme. Let X → Z → B be morphisms of algebraic
spaces over S. Then

(1) ResZ/B(X) is a sheaf on (Sch/S)fppf .
(2) If T is an algebraic space over S, then there is a canonical bijection

MorSh((Sch/S)fppf )(T,ResZ/B(X)) = {(a, b) as in (97.11.0.1)}
Proof. Let T be an algebraic space over S. Let {Ti → T} be an fppf covering of T
(as in Topologies on Spaces, Section 73.7). Suppose that (ai, bi) ∈ ResZ/B(X)(Ti)
such that (ai, bi)|Ti×TTj = (aj , bj)|Ti×TTj for all i, j. Then by Descent on Spaces,
Lemma 74.7.2 there exists a unique morphism a : T → B such that ai is the
composition of Ti → T and a. Then {Ti ×ai,B Z → T ×a,B Z} is an fppf covering
too and the same lemma implies there exists a unique morphism b : T ×a,B Z → X
such that bi is the composition of Ti ×ai,B Z → T ×a,B Z and b. Hence (a, b) ∈
ResZ/B(X)(T ) restricts to (ai, bi) over Ti for all i.
Note that the result of the preceding paragraph in particular implies (1).
Let T be an algebraic space over S. In order to prove (2) we will construct mutually
inverse maps between the displayed sets. In the following when we say “pair” we
mean a pair (a, b) fitting into (97.11.0.1).
Let v : T → ResZ/B(X) be a natural transformation. Choose a scheme U and a
surjective étale morphism p : U → T . Then v(p) ∈ ResZ/B(X)(U) corresponds to
a pair (aU , bU ) over U . Let R = U ×T U with projections t, s : R → U . As v is a
transformation of functors we see that the pullbacks of (aU , bU ) by s and t agree.
Hence, since {U → T} is an fppf covering, we may apply the result of the first
paragraph that deduce that there exists a unique pair (a, b) over T .

3Modulo some set theoretic arguments. Namely, we have to show that
∐
FE is an algebraic

space. This follows because |I| ≤ size(X) and size(FE) ≤ size(X) as follows from the explicit
description of FE in the proof of More on Morphisms, Lemma 37.68.1. Some details omitted.

https://stacks.math.columbia.edu/tag/05YB
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Conversely, let (a, b) be a pair over T . Let U → T , R = U ×T U , and t, s : R→ U
be as above. Then the restriction (a, b)|U gives rise to a transformation of functors
v : hU → ResZ/B(X) by the Yoneda lemma (Categories, Lemma 4.3.5). As the
two pullbacks s∗(a, b)|U and t∗(a, b)|U are equal, we see that v coequalizes the two
maps ht, hs : hR → hU . Since T = U/R is the fppf quotient sheaf by Spaces,
Lemma 65.9.1 and since ResZ/B(X) is an fppf sheaf by (1) we conclude that v
factors through a map T → ResZ/B(X).

We omit the verification that the two constructions above are mutually inverse. □

Of course the sheaf ResZ/B(X) comes with a natural transformation of functors
ResZ/B(X)→ B. We will use this without further mention in the following.

Lemma 97.11.2.05YC Let S be a scheme. Let X → Z → B and B′ → B be morphisms
of algebraic spaces over S. Set Z ′ = B′ ×B Z and X ′ = B′ ×B X. Then

ResZ′/B′(X ′) = B′ ×B ResZ/B(X)

in Sh((Sch/S)fppf ).

Proof. The equality as functors follows immediately from the definitions. The
equality as sheaves follows from this because both sides are sheaves according to
Lemma 97.11.1 and the fact that a fibre product of sheaves is the same as the
corresponding fibre product of pre-sheaves (i.e., functors). □

Lemma 97.11.3.05YD Let S be a scheme. Let X ′ → X → Z → B be morphisms of
algebraic spaces over S. Assume

(1) X ′ → X is étale, and
(2) Z → B is finite locally free.

Then ResZ/B(X ′) → ResZ/B(X) is representable by algebraic spaces and étale. If
X ′ → X is also surjective, then ResZ/B(X ′)→ ResZ/B(X) is surjective.

Proof. Let U be a scheme and let ξ = (a, b) be an element of ResZ/B(X)(U). We
have to prove that the functor

hU ×ξ,ResZ/B(X) ResZ/B(X ′)

is representable by an algebraic space étale over U . Set ZU = U ×a,B Z and
W = ZU ×b,X X ′. Then W → ZU → U is as in Lemma 97.9.2 and the sheaf F
defined there is identified with the fibre product displayed above. Hence the first
assertion of the lemma. The second assertion follows from this and Lemma 97.9.1
which guarantees that F → U is surjective in the situation above. □

At this point we can use the lemmas above to prove that ResZ/B(X) is an algebraic
space whenever Z → B is finite locally free in almost exactly the same way as in
the proof that MorB(Z,X) is an algebraic spaces, see Proposition 97.10.4. Instead
we will directly deduce this result from the following lemma and the fact that
MorB(Z,X) is an algebraic space.

https://stacks.math.columbia.edu/tag/05YC
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Lemma 97.11.4.05YE Let S be a scheme. Let X → Z → B be morphisms of algebraic
spaces over S. The following diagram

MorB(Z,X) // MorB(Z,Z)

ResZ/B(X) //

OO

B

idZ

OO

is a cartesian diagram of sheaves on (Sch/S)fppf .

Proof. Omitted. Hint: Exercise in the functorial point of view in algebraic geome-
try. □

Proposition 97.11.5.05YF Let S be a scheme. Let X → Z → B be morphisms of
algebraic spaces over S. If Z → B is finite locally free then ResZ/B(X) is an
algebraic space.

Proof. By Proposition 97.10.4 the functors MorB(Z,X) and MorB(Z,Z) are al-
gebraic spaces. Hence this follows from the cartesian diagram of Lemma 97.11.4
and the fact that fibre products of algebraic spaces exist and are given by the
fibre product in the underlying category of sheaves of sets (see Spaces, Lemma
65.7.2). □

97.12. Finite Hilbert stacks

05XM In this section we prove some results concerning the finite Hilbert stacks Hd(X/Y)
introduced in Examples of Stacks, Section 95.18.

Lemma 97.12.1.05XN Consider a 2-commutative diagram

X ′
G
//

F ′

��

X

F

��
Y ′ H // Y

of stacks in groupoids over (Sch/S)fppf with a given 2-isomorphism γ : H ◦ F ′ →
F ◦G. In this situation we obtain a canonical 1-morphism Hd(X ′/Y ′)→ Hd(X/Y).
This morphism is compatible with the forgetful 1-morphisms of Examples of Stacks,
Equation (95.18.2.1).

Proof. We map the object (U,Z, y′, x′, α′) to the object (U,Z,H(y′), G(x′), γ ⋆ idH ⋆
α′) where ⋆ denotes horizontal composition of 2-morphisms, see Categories, Defi-
nition 4.28.1. To a morphism (f, g, b, a) : (U1, Z1, y

′
1, x

′
1, α

′
1) → (U2, Z2, y

′
2, x

′
2, α

′
2)

we assign (f, g,H(b), G(a)). We omit the verification that this defines a functor
between categories over (Sch/S)fppf . □

Lemma 97.12.2.05XP In the situation of Lemma 97.12.1 assume that the given square
is 2-cartesian. Then the diagram

Hd(X ′/Y ′) //

��

Hd(X/Y)

��
Y ′ // Y

is 2-cartesian.

https://stacks.math.columbia.edu/tag/05YE
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Proof. We get a 2-commutative diagram by Lemma 97.12.1 and hence we get a
1-morphism (i.e., a functor)

Hd(X ′/Y ′) −→ Y ′ ×Y Hd(X/Y)
We indicate why this functor is essentially surjective. Namely, an object of the
category on the right hand side is given by a scheme U over S, an object y′ of Y ′

U ,
an object (U,Z, y, x, α) of Hd(X/Y) over U and an isomorphism H(y′)→ y in YU .
The assumption means exactly that there exists an object x′ of X ′

Z such that there
exist isomorphisms G(x′) ∼= x and α′ : y′|Z → F ′(x′) compatible with α. Then we
see that (U,Z, y′, x′, α′) is an object of Hd(X ′/Y ′) over U . Details omitted. □

Lemma 97.12.3.05YG In the situation of Lemma 97.12.1 assume
(1) Y ′ = Y and H = idY ,
(2) G is representable by algebraic spaces and étale.

Then Hd(X ′/Y) → Hd(X/Y) is representable by algebraic spaces and étale. If G
is also surjective, then Hd(X ′/Y)→ Hd(X/Y) is surjective.

Proof. Let U be a scheme and let ξ = (U,Z, y, x, α) be an object of Hd(X/Y) over
U . We have to prove that the 2-fibre product
(97.12.3.1)05XT (Sch/U)fppf ×ξ,Hd(X/Y) Hd(X ′/Y)
is representable by an algebraic space étale over U . An object of this over U ′

corresponds to an object x′ in the fibre category of X ′ over ZU ′ such that G(x′) ∼=
x|ZU′ . By assumption the 2-fibre product

(Sch/Z)fppf ×x,X X ′

is representable by an algebraic space W such that the projection W → Z is étale.
Then (97.12.3.1) is representable by the algebraic space F parametrizing sections of
W → Z over U introduced in Lemma 97.9.2. Since F → U is étale we conclude that
Hd(X ′/Y) → Hd(X/Y) is representable by algebraic spaces and étale. Finally, if
X ′ → X is surjective also, then W → Z is surjective, and hence F → U is surjective
by Lemma 97.9.1. Thus in this case Hd(X ′/Y)→ Hd(X/Y) is also surjective. □

Lemma 97.12.4.05XS In the situation of Lemma 97.12.1. Assume that G, H are rep-
resentable by algebraic spaces and étale. Then Hd(X ′/Y ′) → Hd(X/Y) is rep-
resentable by algebraic spaces and étale. If also H is surjective and the induced
functor X ′ → Y ′ ×Y X is surjective, then Hd(X ′/Y ′)→ Hd(X/Y) is surjective.

Proof. Set X ′′ = Y ′ ×Y X . By Lemma 97.4.1 the 1-morphism X ′ → X ′′ is rep-
resentable by algebraic spaces and étale (in particular the condition in the second
statement of the lemma that X ′ → X ′′ be surjective makes sense). We obtain a
2-commutative diagram

X ′ //

��

X ′′ //

��

X

��
Y ′ // Y ′ // Y

It follows from Lemma 97.12.2 that Hd(X ′′/Y ′) is the base change of Hd(X/Y) by
Y ′ → Y. In particular we see that Hd(X ′′/Y ′) → Hd(X/Y) is representable by
algebraic spaces and étale, see Algebraic Stacks, Lemma 94.10.6. Moreover, it is
also surjective if H is. Hence if we can show that the result holds for the left square

https://stacks.math.columbia.edu/tag/05YG
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in the diagram, then we’re done. In this way we reduce to the case where Y ′ = Y
which is the content of Lemma 97.12.3. □

Lemma 97.12.5.05YH Let F : X → Y be a 1-morphism of stacks in groupoids over
(Sch/S)fppf . Assume that ∆ : Y → Y × Y is representable by algebraic spaces.
Then

Hd(X/Y) −→ Hd(X )× Y
see Examples of Stacks, Equation (95.18.2.1) is representable by algebraic spaces.

Proof. Let U be a scheme and let ξ = (U,Z, p, x, 1) be an object of Hd(X ) =
Hd(X/S) over U . Here p is just the structure morphism of U . The fifth component
1 exists and is unique since everything is over S. Also, let y be an object of Y over
U . We have to show the 2-fibre product

(97.12.5.1)05YI (Sch/U)fppf ×ξ×y,Hd(X )×Y Hd(X/Y)

is representable by an algebraic space. To explain why this is so we introduce

I = IsomY(y|Z , F (x))

which is an algebraic space over Z by assumption. Let a : U ′ → U be a scheme
over U . What does it mean to give an object of the fibre category of (97.12.5.1)
over U ′? Well, it means that we have an object ξ′ = (U ′, Z ′, y′, x′, α′) of Hd(X/Y)
over U ′ and isomorphisms (U ′, Z ′, p′, x′, 1) ∼= (U,Z, p, x, 1)|U ′ and y′ ∼= y|U ′ . Thus
ξ′ is isomorphic to (U ′, U ′ ×a,U Z, a∗y, x|U ′×a,UZ , α) for some morphism

α : a∗y|U ′×a,UZ −→ F (x|U ′×a,UZ)

in the fibre category of Y over U ′ ×a,U Z. Hence we can view α as a morphism
b : U ′×a,U Z → I. In this way we see that (97.12.5.1) is representable by ResZ/U (I)
which is an algebraic space by Proposition 97.11.5. □

The following lemma is a (partial) generalization of Lemma 97.12.3.

Lemma 97.12.6.05YJ Let F : X → Y and G : X ′ → X be 1-morphisms of stacks in
groupoids over (Sch/S)fppf . If G is representable by algebraic spaces, then the
1-morphism

Hd(X ′/Y) −→ Hd(X/Y)
is representable by algebraic spaces.

Proof. Let U be a scheme and let ξ = (U,Z, y, x, α) be an object of Hd(X/Y) over
U . We have to prove that the 2-fibre product

(97.12.6.1)05YK (Sch/U)fppf ×ξ,Hd(X/Y) Hd(X ′/Y)

is representable by an algebraic space étale over U . An object of this over a : U ′ → U
corresponds to an object x′ of X ′ over U ′ ×a,U Z such that G(x′) ∼= x|U ′×a,UZ . By
assumption the 2-fibre product

(Sch/Z)fppf ×x,X X ′

is representable by an algebraic space X over Z. It follows that (97.12.6.1) is
representable by ResZ/U (X), which is an algebraic space by Proposition 97.11.5. □

https://stacks.math.columbia.edu/tag/05YH
https://stacks.math.columbia.edu/tag/05YJ
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Lemma 97.12.7.06CH Let F : X → Y be a 1-morphism of stacks in groupoids over
(Sch/S)fppf . Assume F is representable by algebraic spaces and locally of finite
presentation. Then

p : Hd(X/Y)→ Y
is limit preserving on objects.

Proof. This means we have to show the following: Given
(1) an affine scheme U = limi Ui which is written as the directed limit of affine

schemes Ui over S,
(2) an object yi of Y over Ui for some i, and
(3) an object Ξ = (U,Z, y, x, α) of Hd(X/Y) over U such that y = yi|U ,

then there exists an i′ ≥ i and an object Ξi′ = (Ui′ , Zi′ , yi′ , xi′ , αi′) of Hd(X/Y)
over Ui′ with Ξi′ |U = Ξ and yi′ = yi|Ui′ . Namely, the last two equalities will take
care of the commutativity of (97.5.0.1).

Let Xyi → Ui be an algebraic space representing the 2-fibre product

(Sch/Ui)fppf ×yi,Y,F X .

Note that Xyi → Ui is locally of finite presentation by our assumption on F . Write
Ξ. It is clear that ξ = (Z,Z → Ui, x, α) is an object of the 2-fibre product displayed
above, hence ξ gives rise to a morphism fξ : Z → Xyi of algebraic spaces over Ui
(since Xyi is the functor of isomorphisms classes of objects of (Sch/Ui)fppf×y,Y,FX ,
see Algebraic Stacks, Lemma 94.8.2). By Limits, Lemmas 32.10.1 and 32.8.8 there
exists an i′ ≥ i and a finite locally free morphism Zi′ → Ui′ of degree d whose base
change to U is Z. By Limits of Spaces, Proposition 70.3.10 we may, after replacing
i′ by a bigger index, assume there exists a morphism fi′ : Zi′ → Xyi such that

Z

��

//

fξ

((
Zi′

��

fi′
// Xyi

��
U // Ui′ // Ui

is commutative. We set Ξi′ = (Ui′ , Zi′ , yi′ , xi′ , αi′) where
(1) yi′ is the object of Y over Ui′ which is the pullback of yi to Ui′ ,
(2) xi′ is the object of X over Zi′ corresponding via the 2-Yoneda lemma to

the 1-morphism

(Sch/Zi′)fppf → SXyi → (Sch/Ui)fppf ×yi,Y,F X → X

where the middle arrow is the equivalence which defines Xyi (notation as
in Algebraic Stacks, Sections 94.8 and 94.7).

(3) αi′ : yi′ |Zi′ → F (xi′) is the isomorphism coming from the 2-commutativity
of the diagram

(Sch/Zi′)fppf //

))

(Sch/Ui)fppf ×yi,Y,F X //

��

X

F

��
(Sch/Ui′)fppf // Y

https://stacks.math.columbia.edu/tag/06CH
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Recall that fξ : Z → Xyi was the morphism corresponding to the object ξ =
(Z,Z → Ui, x, α) of (Sch/Ui)fppf ×yi,Y,F X over Z. By construction fi′ is the
morphism corresponding to the object ξi′ = (Zi′ , Zi′ → Ui, xi′ , αi′). As fξ =
fi′ ◦ (Z → Zi′) we see that the object ξi′ = (Zi′ , Zi′ → Ui, xi′ , αi′) pulls back to ξ
over Z. Thus xi′ pulls back to x and αi′ pulls back to α. This means that Ξi′ pulls
back to Ξ over U and we win. □

97.13. The finite Hilbert stack of a point

05YL Let d ≥ 1 be an integer. In Examples of Stacks, Definition 95.18.2 we defined a
stack in groupoids Hd. In this section we prove that Hd is an algebraic stack. We
will throughout assume that S = Spec(Z). The general case will follow from this by
base change. Recall that the fibre category of Hd over a scheme T is the category
of finite locally free morphisms π : Z → T of degree d. Instead of classifying these
directly we first study the quasi-coherent sheaves of algebras π∗OZ .

Let R be a ring. Let us temporarily make the following definition: A free d-
dimensional algebra over R is given by a commutative R-algebra structure m on
R⊕d such that e1 = (1, 0, . . . , 0) is a unit4. We think of m as an R-linear map

m : R⊕d ⊗R R⊕d −→ R⊕d

such that m(e1, x) = m(x, e1) = x and such that m defines a commutative and
associative ring structure. If we write m(ei, ej) =

∑
akijek then we see this boils

down to the conditions
∑
l a
l
ija

m
lk =

∑
l a
m
il a

l
jk ∀i, j, k,m

akij = akji ∀i, j, k
aji1 = δij ∀i, j

where δij is the Kronecker δ-function. OK, so let’s define

Runiv = Z[akij ]/J

where the ideal J is the ideal generated by the relations displayed above. Denote

muniv : R⊕d
univ ⊗Runiv R

⊕d
univ −→ R⊕d

univ

the free d-dimensional algebra m over Runiv whose structure constants are the
classes of akij modulo J . Then it is clear that given any free d-dimensional algebra
m over a ring R there exists a unique Z-algebra homomorphism ψ : Runiv → R
such that ψ∗muniv = m (this means that m is what you get by applying the base
change functor −⊗Runiv R to muniv). In other words, setting X = Spec(Runiv) we
obtain a canonical identification

X(T ) = {free d-dimensional algebras m over R}

for varying T = Spec(R). By Zariski localization we obtain the following seemingly
more general identification

(97.13.0.1)05YM X(T ) = {free d-dimensional algebras m over Γ(T,OT )}

for any scheme T .

4It may be better to think of this as a pair consisting of a multiplication map m : R⊕d ⊗R
R⊕d → R⊕d and a ring map ψ : R→ R⊕d satisfying a bunch of axioms.
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Next we talk a little bit about isomorphisms of free d-dimensional R-algebras.
Namely, suppose that m, m′ are two free d-dimensional algebras over a ring R. An
isomorphism from m to m′ is given by an invertible R-linear map

φ : R⊕d −→ R⊕d

such that φ(e1) = e1 and such that
m ◦ φ⊗ φ = φ ◦m′.

Note that we can compose these so that the collection of free d-dimensional algebras
over R becomes a category. In this way we obtain a functor
(97.13.0.2)05YN FAd : Schoppfppf −→ Groupoids
from the category of schemes to groupoids: to a scheme T we associate the set of
free d-dimensional algebras over Γ(T,OT ) endowed with the structure of a category
using the notion of isomorphisms just defined.
The above suggests we consider the functor G in groups which associates to any
scheme T the group

G(T ) = {g ∈ GLd(Γ(T,OT )) | g(e1) = e1}
It is clear that G ⊂ GLd (see Groupoids, Example 39.5.4) is the closed subgroup
scheme cut out by the equations x11 = 1 and xi1 = 0 for i > 1. Hence G is a
smooth affine group scheme over Spec(Z). Consider the action

a : G×Spec(Z) X −→ X

which associates to a T -valued point (g,m) with T = Spec(R) on the left hand side
the free d-dimensional algebra over R given by

a(g,m) = g−1 ◦m ◦ g ⊗ g.
Note that this means that g defines an isomorphism m→ a(g,m) of d-dimensional
free R-algebras. We omit the verification that a indeed defines an action of the
group scheme G on the scheme X.

Lemma 97.13.1.05YP The functor in groupoids FAd defined in (97.13.0.2) is isomorphic
(!) to the functor in groupoids which associates to a scheme T the category with

(1) set of objects is X(T ),
(2) set of morphisms is G(T )×X(T ),
(3) s : G(T )×X(T )→ X(T ) is the projection map,
(4) t : G(T )×X(T )→ X(T ) is a(T ), and
(5) composition G(T )×X(T )×s,X(T ),tG(T )×X(T )→ G(T )×X(T ) is given

by ((g,m), (g′,m′)) 7→ (gg′,m′).

Proof. We have seen the rule on objects in (97.13.0.1). We have also seen above that
g ∈ G(T ) can be viewed as a morphism from m to a(g,m) for any free d-dimensional
algebra m. Conversely, any morphism m→ m′ is given by an invertible linear map
φ which corresponds to an element g ∈ G(T ) such that m′ = a(g,m). □

In fact the groupoid (X,G×X, s, t, c) described in the lemma above is the groupoid
associated to the action a : G ×X → X as defined in Groupoids, Lemma 39.16.1.
Since G is smooth over Spec(Z) we see that the two morphisms s, t : G×X → X
are smooth: by symmetry it suffices to prove that one of them is, and s is the base
change of G → Spec(Z). Hence (G × X,X, s, t, c) is a smooth groupoid scheme,

https://stacks.math.columbia.edu/tag/05YP
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and the quotient stack [X/G] is an algebraic stack by Algebraic Stacks, Theorem
94.17.3.

Proposition 97.13.2.05YQ The stack Hd is equivalent to the quotient stack [X/G] de-
scribed above. In particular Hd is an algebraic stack.

Proof. Note that by Groupoids in Spaces, Definition 78.20.1 the quotient stack
[X/G] is the stackification of the category fibred in groupoids associated to the
“presheaf in groupoids” which associates to a scheme T the groupoid

(X(T ), G(T )×X(T ), s, t, c).
Since this “presheaf in groupoids” is isomorphic to FAd by Lemma 97.13.1 it suf-
fices to prove that the Hd is the stackification of (the category fibred in groupoids
associated to the “presheaf in groupoids”) FAd. To do this we first define a functor

Spec : FAd −→ Hd
Recall that the fibre category of Hd over a scheme T is the category of finite locally
free morphisms Z → T of degree d. Thus given a scheme T and a free d-dimensional
Γ(T,OT )-algebra m we may assign to this the object

Z = Spec
T

(A)

of Hd,T where A = O⊕d
T endowed with a OT -algebra structure via m. Moreover, if

m′ is a second such free d-dimensional Γ(T,OT )-algebra and if φ : m → m′ is an
isomorphism of these, then the induced OT -linear map φ : O⊕d

T → O⊕d
T induces an

isomorphism
φ : A′ −→ A

of quasi-coherent OT -algebras. Hence
Spec

T
(φ) : Spec

T
(A) −→ Spec

T
(A′)

is a morphism in the fibre category Hd,T . We omit the verification that this con-
struction is compatible with base change so we get indeed a functor Spec : FAd →
Hd as claimed above.
To show that Spec : FAd → Hd induces an equivalence between the stackification
of FAd and Hd it suffices to check that

(1) Isom(m,m′) = Isom(Spec(m),Spec(m′)) for any m,m′ ∈ FAd(T ).
(2) for any scheme T and any object Z → T of Hd,T there exists a covering
{Ti → T} such that Z|Ti is isomorphic to Spec(m) for some m ∈ FAd(Ti),
and

see Stacks, Lemma 8.9.1. The first statement follows from the observation that any
isomorphism

Spec
T

(A) −→ Spec
T

(A′)
is necessarily given by a global invertible matrix g when A = A′ = O⊕d

T as modules.
To prove the second statement let π : Z → T be a finite locally free morphism of
degree d. Then A is a locally free sheaf OT -modules of rank d. Consider the
element 1 ∈ Γ(T,A). This element is nonzero in A⊗OT,t

κ(t) for every t ∈ T since
the scheme Zt = Spec(A ⊗OT,t

κ(t)) is nonempty being of degree d > 0 over κ(t).
Thus 1 : OT → A can locally be used as the first basis element (for example you can
use Algebra, Lemma 10.79.4 parts (1) and (2) to see this). Thus, after localizing
on T we may assume that there exists an isomorphism φ : A → O⊕d

T such that

https://stacks.math.columbia.edu/tag/05YQ
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1 ∈ Γ(A) corresponds to the first basis element. In this situation the multiplication
map A ⊗OT

A → A translates via φ into a free d-dimensional algebra m over
Γ(T,OT ). This finishes the proof. □

97.14. Finite Hilbert stacks of spaces

05YR The finite Hilbert stack of an algebraic space is an algebraic stack.

Lemma 97.14.1.05YS Let S be a scheme. Let X be an algebraic space over S. Then
Hd(X) is an algebraic stack.

Proof. The 1-morphism
Hd(X) −→ Hd

is representable by algebraic spaces according to Lemma 97.12.6. The stack Hd is
an algebraic stack according to Proposition 97.13.2. Hence Hd(X) is an algebraic
stack by Algebraic Stacks, Lemma 94.15.4. □

This lemma allows us to bootstrap.

Lemma 97.14.2.06CI Let S be a scheme. Let F : X → Y be a 1-morphism of stacks in
groupoids over (Sch/S)fppf such that

(1) X is representable by an algebraic space, and
(2) F is representable by algebraic spaces, surjective, flat, and locally of finite

presentation.
Then Hd(X/Y) is an algebraic stack.

Proof. Choose a representable stack in groupoids U over S and a 1-morphism f :
U → Hd(X ) which is representable by algebraic spaces, smooth, and surjective.
This is possible because Hd(X ) is an algebraic stack by Lemma 97.14.1. Consider
the 2-fibre product

W = Hd(X/Y)×Hd(X ),f U .

Since U is representable (in particular a stack in setoids) it follows from Examples
of Stacks, Lemma 95.18.3 and Stacks, Lemma 8.6.7 that W is a stack in setoids.
The 1-morphism W → Hd(X/Y) is representable by algebraic spaces, smooth, and
surjective as a base change of the morphism f (see Algebraic Stacks, Lemmas 94.9.7
and 94.10.6). Thus, if we can show that W is representable by an algebraic space,
then the lemma follows from Algebraic Stacks, Lemma 94.15.3.

The diagonal of Y is representable by algebraic spaces according to Lemma 97.4.3.
We may apply Lemma 97.12.5 to see that the 1-morphism

Hd(X/Y) −→ Hd(X )× Y

is representable by algebraic spaces. Consider the 2-fibre product

V = Hd(X/Y)×(Hd(X )×Y),f×F (U × X ).

The projection morphism V → U × X is representable by algebraic spaces as a
base change of the last displayed morphism. Hence V is an algebraic space (see

https://stacks.math.columbia.edu/tag/05YS
https://stacks.math.columbia.edu/tag/06CI
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Bootstrap, Lemma 80.3.6 or Algebraic Stacks, Lemma 94.9.8). The 1-morphism
V → U fits into the following 2-cartesian diagram

V

��

// X

F

��
W // Y

because
Hd(X/Y)×(Hd(X )×Y),f×F (U × X ) = (Hd(X/Y)×Hd(X ),f U)×Y,F X .

Hence V → W is representable by algebraic spaces, surjective, flat, and locally of
finite presentation as a base change of F . It follows that the same thing is true
for the corresponding sheaves of sets associated to V and W, see Algebraic Stacks,
Lemma 94.10.4. Thus we conclude that the sheaf associated to W is an algebraic
space by Bootstrap, Theorem 80.10.1. □

97.15. LCI locus in the Hilbert stack

06CJ Please consult Examples of Stacks, Section 95.18 for notation. Fix a 1-morphism F :
X −→ Y of stacks in groupoids over (Sch/S)fppf . Assume that F is representable
by algebraic spaces. Fix d ≥ 1. Consider an object (U,Z, y, x, α) of Hd. There is
an induced 1-morphism

(Sch/Z)fppf −→ (Sch/U)fppf ×y,Y,F X
(by the universal property of 2-fibre products) which is representable by a morphism
of algebraic spaces over U . Namely, since F is representable by algebraic spaces,
we may choose an algebraic space Xy over U which represents the 2-fibre product
(Sch/U)fppf ×y,Y,F X . Since α : y|Z → F (x) is an isomorphism we see that
ξ = (Z,Z → U, x, α) is an object of the 2-fibre product (Sch/U)fppf ×y,Y,F X over
Z. Hence ξ gives rise to a morphism xα : Z → Xy of algebraic spaces over U as
Xy is the functor of isomorphisms classes of objects of (Sch/U)fppf ×y,Y,F X , see
Algebraic Stacks, Lemma 94.8.2. Here is a picture
(97.15.0.1)

06CK

Z
xα
//

  

Xy

��
U

(Sch/Z)fppf

))

x,α
// (Sch/U)fppf ×y,Y,F X //

��

X

F

��
(Sch/U)fppf

y // Y

We remark that if (f, g, b, a) : (U,Z, y, x, α) → (U ′, Z ′, y′, x′, α′) is a morphism
between objects of Hd, then the morphism x′

α′ : Z ′ → X ′
y′ is the base change of the

morphism xα by the morphism g : U ′ → U (details omitted).
Now assume moreover that F is flat and locally of finite presentation. In this
situation we define a full subcategory

Hd,lci(X/Y) ⊂ Hd(X/Y)
consisting of those objects (U,Z, y, x, α) of Hd(X/Y) such that the corresponding
morphism xα : Z → Xy is unramified and a local complete intersection morphism
(see Morphisms of Spaces, Definition 67.38.1 and More on Morphisms of Spaces,
Definition 76.48.1 for definitions).
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Lemma 97.15.1.06CL Let S be a scheme. Fix a 1-morphism F : X −→ Y of stacks in
groupoids over (Sch/S)fppf . Assume F is representable by algebraic spaces, flat,
and locally of finite presentation. Then Hd,lci(X/Y) is a stack in groupoids and
the inclusion functor

Hd,lci(X/Y) −→ Hd(X/Y)
is representable and an open immersion.

Proof. Let Ξ = (U,Z, y, x, α) be an object of Hd. It follows from the remark
following (97.15.0.1) that the pullback of Ξ by U ′ → U belongs to Hd,lci(X/Y) if
and only if the base change of xα is unramified and a local complete intersection
morphism. Note that Z → U is finite locally free (hence flat, locally of finite
presentation and universally closed) and that Xy → U is flat and locally of finite
presentation by our assumption on F . Then More on Morphisms of Spaces, Lemmas
76.49.1 and 76.49.7 imply exists an open subscheme W ⊂ U such that a morphism
U ′ → U factors through W if and only if the base change of xα via U ′ → U is
unramified and a local complete intersection morphism. This implies that

(Sch/U)fppf ×Ξ,Hd(X/Y) Hd,lci(X/Y)
is representable by W . Hence the final statement of the lemma holds. The first
statement (thatHd,lci(X/Y) is a stack in groupoids) follows from this and Algebraic
Stacks, Lemma 94.15.5. □

Local complete intersection morphisms are “locally unobstructed”. This holds in
much greater generality than the special case that we need in this chapter here.

Lemma 97.15.2.06D8 Let U ⊂ U ′ be a first order thickening of affine schemes. Let
X ′ be an algebraic space flat over U ′. Set X = U ×U ′ X ′. Let Z → U be finite
locally free of degree d. Finally, let f : Z → X be unramified and a local complete
intersection morphism. Then there exists a commutative diagram

(Z ⊂ Z ′)

&&

(f,f ′)
// (X ⊂ X ′)

xx
(U ⊂ U ′)

of algebraic spaces over U ′ such that Z ′ → U ′ is finite locally free of degree d and
Z = U ×U ′ Z ′.

Proof. By More on Morphisms of Spaces, Lemma 76.48.12 the conormal sheaf CZ/X
of the unramified morphism Z → X is a finite locally free OZ-module and by More
on Morphisms of Spaces, Lemma 76.48.13 we have an exact sequence

0→ i∗CX/X′ → CZ/X′ → CZ/X → 0
of conormal sheaves. Since Z is affine this sequence is split. Choose a splitting

CZ/X′ = i∗CX/X′ ⊕ CZ/X
Let Z ⊂ Z ′′ be the universal first order thickening of Z over X ′ (see More on
Morphisms of Spaces, Section 76.15). Denote I ⊂ OZ′′ the quasi-coherent sheaf of
ideals corresponding to Z ⊂ Z ′′. By definition we have CZ/X′ is I viewed as a sheaf
on Z. Hence the splitting above determines a splitting

I = i∗CX/X′ ⊕ CZ/X

https://stacks.math.columbia.edu/tag/06CL
https://stacks.math.columbia.edu/tag/06D8
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Let Z ′ ⊂ Z ′′ be the closed subscheme cut out by CZ/X ⊂ I viewed as a quasi-
coherent sheaf of ideals on Z ′′. It is clear that Z ′ is a first order thickening of
Z and that we obtain a commutative diagram of first order thickenings as in the
statement of the lemma.
Since X ′ → U ′ is flat and since X = U ×U ′ X ′ we see that CX/X′ is the pullback
of CU/U ′ to X, see More on Morphisms of Spaces, Lemma 76.18.1. Note that by
construction CZ/Z′ = i∗CX/X′ hence we conclude that CZ/Z′ is isomorphic to the
pullback of CU/U ′ to Z. Applying More on Morphisms of Spaces, Lemma 76.18.1
once again (or its analogue for schemes, see More on Morphisms, Lemma 37.10.1) we
conclude that Z ′ → U ′ is flat and that Z = U ×U ′ Z ′. Finally, More on Morphisms,
Lemma 37.10.3 shows that Z ′ → U ′ is finite locally free of degree d. □

Lemma 97.15.3.06D9 Let F : X → Y be a 1-morphism of stacks in groupoids over
(Sch/S)fppf . Assume F is representable by algebraic spaces, flat, and locally of
finite presentation. Then

p : Hd,lci(X/Y)→ Y
is formally smooth on objects.
Proof. We have to show the following: Given

(1) an object (U,Z, y, x, α) of Hd,lci(X/Y) over an affine scheme U ,
(2) a first order thickening U ⊂ U ′, and
(3) an object y′ of Y over U ′ such that y′|U = y,

then there exists an object (U ′, Z ′, y′, x′, α′) of Hd,lci(X/Y) over U ′ with Z =
U ×U ′ Z ′, with x = x′|Z , and with α = α′|U . Namely, the last two equalities will
take care of the commutativity of (97.6.0.1).
Consider the morphism xα : Z → Xy constructed in Equation (97.15.0.1). De-
note similarly X ′

y′ the algebraic space over U ′ representing the 2-fibre product
(Sch/U ′)fppf ×y′,Y,F X . By assumption the morphism X ′

y′ → U ′ is flat (and lo-
cally of finite presentation). As y′|U = y we see that Xy = U ×U ′ X ′

y′ . Hence
we may apply Lemma 97.15.2 to find Z ′ → U ′ finite locally free of degree d with
Z = U ×U ′ Z ′ and with Z ′ → X ′

y′ extending xα. By construction the morphism
Z ′ → X ′

y′ corresponds to a pair (x′, α′). It is clear that (U ′, Z ′, y′, x′, α′) is an ob-
ject of Hd(X/Y) over U ′ with Z = U ×U ′ Z ′, with x = x′|Z , and with α = α′|U . As
we’ve seen in Lemma 97.15.1 that Hd,lci(X/Y) ⊂ Hd(X/Y) is an “open substack”
it follows that (U ′, Z ′, y′, x′, α′) is an object of Hd,lci(X/Y) as desired. □

Lemma 97.15.4.06DA Let F : X → Y be a 1-morphism of stacks in groupoids over
(Sch/S)fppf . Assume F is representable by algebraic spaces, flat, surjective, and
locally of finite presentation. Then∐

d≥1
Hd,lci(X/Y) −→ Y

is surjective on objects.
Proof. It suffices to prove the following: For any field k and object y of Y over
Spec(k) there exists an integer d ≥ 1 and an object (U,Z, y, x, α) of Hd,lci(X/Y)
with U = Spec(k). Namely, in this case we see that p is surjective on objects in the
strong sense that an extension of the field is not needed.
Denote Xy the algebraic space over U = Spec(k) representing the 2-fibre product
(Sch/U ′)fppf ×y′,Y,F X . By assumption the morphism Xy → Spec(k) is surjective
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and locally of finite presentation (and flat). In particular Xy is nonempty. Choose a
nonempty affine scheme V and an étale morphism V → Xy. Note that V → Spec(k)
is (flat), surjective, and locally of finite presentation (by Morphisms of Spaces,
Definition 67.28.1). Pick a closed point v ∈ V where V → Spec(k) is Cohen-
Macaulay (i.e., V is Cohen-Macaulay at v), see More on Morphisms, Lemma 37.22.7.
Applying More on Morphisms, Lemma 37.23.4 we find a regular immersion Z → V
with Z = {v}. This implies Z → V is a closed immersion. Moreover, it follows
that Z → Spec(k) is finite (for example by Algebra, Lemma 10.122.1). Hence Z →
Spec(k) is finite locally free of some degree d. Now Z → Xy is unramified as the
composition of a closed immersion followed by an étale morphism (see Morphisms
of Spaces, Lemmas 67.38.3, 67.39.10, and 67.38.8). Finally, Z → Xy is a local
complete intersection morphism as a composition of a regular immersion of schemes
and an étale morphism of algebraic spaces (see More on Morphisms, Lemma 37.62.9
and Morphisms of Spaces, Lemmas 67.39.6 and 67.37.8 and More on Morphisms of
Spaces, Lemmas 76.48.6 and 76.48.5). The morphism Z → Xy corresponds to an
object x of X over Z together with an isomorphism α : y|Z → F (x). We obtain
an object (U,Z, y, x, α) of Hd(X/Y). By what was said above about the morphism
Z → Xy we see that it actually is an object of the subcategory Hd,lci(X/Y) and
we win. □

97.16. Bootstrapping algebraic stacks

06DB The following theorem is one of the main results of this chapter.

Theorem 97.16.1.06DC Let S be a scheme. Let F : X → Y be a 1-morphism of stacks
in groupoids over (Sch/S)fppf . If

(1) X is representable by an algebraic space, and
(2) F is representable by algebraic spaces, surjective, flat and locally of finite

presentation,
then Y is an algebraic stack.

Proof. By Lemma 97.4.3 we see that the diagonal of Y is representable by algebraic
spaces. Hence we only need to verify the existence of a 1-morphism f : V → Y
of stacks in groupoids over (Sch/S)fppf with V representable and f surjective and
smooth. By Lemma 97.14.2 we know that∐

d≥1
Hd(X/Y)

is an algebraic stack. It follows from Lemma 97.15.1 and Algebraic Stacks, Lemma
94.15.5 that ∐

d≥1
Hd,lci(X/Y)

is an algebraic stack as well. Choose a representable stack in groupoids V over
(Sch/S)fppf and a surjective and smooth 1-morphism

V −→
∐

d≥1
Hd,lci(X/Y).

We claim that the composition

V −→
∐

d≥1
Hd,lci(X/Y) −→ Y

https://stacks.math.columbia.edu/tag/06DC
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is smooth and surjective which finishes the proof of the theorem. In fact, the
smoothness will be a consequence of Lemmas 97.12.7 and 97.15.3 and the surjec-
tivity a consequence of Lemma 97.15.4. We spell out the details in the following
paragraph.
By construction V →

∐
d≥1Hd,lci(X/Y) is representable by algebraic spaces, surjec-

tive, and smooth (and hence also locally of finite presentation and formally smooth
by the general principle Algebraic Stacks, Lemma 94.10.9 and More on Morphisms
of Spaces, Lemma 76.19.6). Applying Lemmas 97.5.3, 97.6.3, and 97.7.3 we see that
V →

∐
d≥1Hd,lci(X/Y) is limit preserving on objects, formally smooth on objects,

and surjective on objects. The 1-morphism
∐
d≥1Hd,lci(X/Y)→ Y is

(1) limit preserving on objects: this is Lemma 97.12.7 for Hd(X/Y) → Y
and we combine it with Lemmas 97.15.1, 97.5.4, and 97.5.2 to get it for
Hd,lci(X/Y)→ Y,

(2) formally smooth on objects by Lemma 97.15.3, and
(3) surjective on objects by Lemma 97.15.4.

Using Lemmas 97.5.2, 97.6.2, and 97.7.2 we conclude that the composition V →
Y is limit preserving on objects, formally smooth on objects, and surjective on
objects. Using Lemmas 97.5.3, 97.6.3, and 97.7.3 we see that V → Y is locally of
finite presentation, formally smooth, and surjective. Finally, using (via the general
principle Algebraic Stacks, Lemma 94.10.9) the infinitesimal lifting criterion (More
on Morphisms of Spaces, Lemma 76.19.6) we see that V → Y is smooth and we
win. □

97.17. Applications

06FG Our first task is to show that the quotient stack [U/R] associated to a “flat and
locally finitely presented groupoid” is an algebraic stack. See Groupoids in Spaces,
Definition 78.20.1 for the definition of the quotient stack. The following lemma is
preliminary and is the analogue of Algebraic Stacks, Lemma 94.17.2.
Lemma 97.17.1.06FH Let S be a scheme contained in Schfppf . Let (U,R, s, t, c) be
a groupoid in algebraic spaces over S. Assume s, t are flat and locally of finite
presentation. Then the morphism SU → [U/R] is flat, locally of finite presentation,
and surjective.
Proof. Let T be a scheme and let x : (Sch/T )fppf → [U/R] be a 1-morphism. We
have to show that the projection

SU ×[U/R] (Sch/T )fppf −→ (Sch/T )fppf
is surjective, flat, and locally of finite presentation. We already know that the left
hand side is representable by an algebraic space F , see Algebraic Stacks, Lemmas
94.17.1 and 94.10.11. Hence we have to show the corresponding morphism F → T
of algebraic spaces is surjective, locally of finite presentation, and flat. Since we are
working with properties of morphisms of algebraic spaces which are local on the
target in the fppf topology we may check this fppf locally on T . By construction,
there exists an fppf covering {Ti → T} of T such that x|(Sch/Ti)fppf comes from
a morphism xi : Ti → U . (Note that F ×T Ti represents the 2-fibre product
SU ×[U/R] (Sch/Ti)fppf so everything is compatible with the base change via Ti →
T .) Hence we may assume that x comes from x : T → U . In this case we see that
SU ×[U/R] (Sch/T )fppf = (SU ×[U/R] SU )×SU (Sch/T )fppf = SR ×SU (Sch/T )fppf

https://stacks.math.columbia.edu/tag/06FH
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The first equality by Categories, Lemma 4.31.10 and the second equality by Groupoids
in Spaces, Lemma 78.22.2. Clearly the last 2-fibre product is represented by the
algebraic space F = R ×s,U,x T and the projection R ×s,U,x T → T is flat and
locally of finite presentation as the base change of the flat locally finitely presented
morphism of algebraic spaces s : R → U . It is also surjective as s has a section
(namely the identity e : U → R of the groupoid). This proves the lemma. □

Here is the first main result of this section.

Theorem 97.17.2.06FI Let S be a scheme contained in Schfppf . Let (U,R, s, t, c) be
a groupoid in algebraic spaces over S. Assume s, t are flat and locally of finite
presentation. Then the quotient stack [U/R] is an algebraic stack over S.

Proof. We check the two conditions of Theorem 97.16.1 for the morphism
(Sch/U)fppf −→ [U/R].

The first is trivial (as U is an algebraic space). The second is Lemma 97.17.1. □

97.18. When is a quotient stack algebraic?

06PI In Groupoids in Spaces, Section 78.20 we have defined the quotient stack [U/R]
associated to a groupoid (U,R, s, t, c) in algebraic spaces. Note that [U/R] is a stack
in groupoids whose diagonal is representable by algebraic spaces (see Bootstrap,
Lemma 80.11.5 and Algebraic Stacks, Lemma 94.10.11) and such that there exists
an algebraic space U and a 1-morphism (Sch/U)fppf → [U/R] which is an “fppf
surjection” in the sense that it induces a map on presheaves of isomorphism classes
of objects which becomes surjective after sheafification. However, it is not the
case that [U/R] is an algebraic stack in general. This is not a contradiction with
Theorem 97.16.1 as the 1-morphism (Sch/U)fppf → [U/R] may not be flat and
locally of finite presentation.
The easiest way to make examples of non-algebraic quotient stacks is to look at
quotients of the form [S/G] where S is a scheme and G is a group scheme over S
acting trivially on S. Namely, we will see below (Lemma 97.18.3) that if [S/G] is
algebraic, then G→ S has to be flat and locally of finite presentation. An explicit
example can be found in Examples, Section 110.52.

Lemma 97.18.1.06PJ Let S be a scheme and let B be an algebraic space over S. Let
(U,R, s, t, c) be a groupoid in algebraic spaces over B. The quotient stack [U/R]
is an algebraic stack if and only if there exists a morphism of algebraic spaces
g : U ′ → U such that

(1) the composition U ′ ×g,U,t R→ R
s−→ U is a surjection of sheaves, and

(2) the morphisms s′, t′ : R′ → U ′ are flat and locally of finite presentation
where (U ′, R′, s′, t′, c′) is the restriction of (U,R, s, t, c) via g.

Proof. First, assume that g : U ′ → U satisfies (1) and (2). Property (1) implies
that [U ′/R′]→ [U/R] is an equivalence, see Groupoids in Spaces, Lemma 78.25.2.
By Theorem 97.17.2 the quotient stack [U ′/R′] is an algebraic stack. Hence [U/R]
is an algebraic stack too, see Algebraic Stacks, Lemma 94.12.4.
Conversely, assume that [U/R] is an algebraic stack. We may choose a scheme W
and a surjective smooth 1-morphism

f : (Sch/W )fppf −→ [U/R].
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By the 2-Yoneda lemma (Algebraic Stacks, Section 94.5) this corresponds to an
object ξ of [U/R] over W . By the description of [U/R] in Groupoids in Spaces,
Lemma 78.24.1 we can find a surjective, flat, locally finitely presented morphism
b : U ′ → W of schemes such that ξ′ = b∗ξ corresponds to a morphism g : U ′ → U .
Note that the 1-morphism

f ′ : (Sch/U ′)fppf −→ [U/R].

corresponding to ξ′ is surjective, flat, and locally of finite presentation, see Alge-
braic Stacks, Lemma 94.10.5. Hence (Sch/U ′)fppf ×[U/R] (Sch/U ′)fppf which is
represented by the algebraic space

Isom[U/R](pr∗
0ξ

′,pr∗
1ξ

′) = (U ′ ×S U ′)×(g◦pr0,g◦pr1),U×SU R = R′

(see Groupoids in Spaces, Lemma 78.22.1 for the first equality; the second is the
definition of restriction) is flat and locally of finite presentation over U ′ via both s′

and t′ (by base change, see Algebraic Stacks, Lemma 94.10.6). By this description
of R′ and by Algebraic Stacks, Lemma 94.16.1 we obtain a canonical fully faithful
1-morphism [U ′/R′] → [U/R]. This 1-morphism is essentially surjective because
f ′ is flat, locally of finite presentation, and surjective (see Stacks, Lemma 8.4.8);
another way to prove this is to use Algebraic Stacks, Remark 94.16.3. Finally,
we can use Groupoids in Spaces, Lemma 78.25.2 to conclude that the composition
U ′ ×g,U,t R→ R

s−→ U is a surjection of sheaves. □

Lemma 97.18.2.06PK Let S be a scheme and let B be an algebraic space over S. Let
G be a group algebraic space over B. Let X be an algebraic space over B and let
a : G×B X → X be an action of G on X over B. The quotient stack [X/G] is an
algebraic stack if and only if there exists a morphism of algebraic spaces φ : X ′ → X
such that

(1) G×B X ′ → X, (g, x′) 7→ a(g, φ(x′)) is a surjection of sheaves, and
(2) the two projections X ′′ → X ′ of the algebraic space X ′′ given by the rule

T 7−→ {(x′
1, g, x

′
2) ∈ (X ′ ×B G×B X ′)(T ) | φ(x′

1) = a(g, φ(x′
2))}

are flat and locally of finite presentation.

Proof. This lemma is a special case of Lemma 97.18.1. Namely, the quotient stack
[X/G] is by Groupoids in Spaces, Definition 78.20.1 equal to the quotient stack
[X/G×BX] of the groupoid in algebraic spaces (X,G×BX, s, t, c) associated to the
group action in Groupoids in Spaces, Lemma 78.15.1. There is one small observation
that is needed to get condition (1). Namely, the morphism s : G×B X → X is the
second projection and the morphism t : G ×B X → X is the action morphism a.
Hence the morphism h : U ′×g,U,tR→ R

s−→ U from Lemma 97.18.1 corresponds to
the morphism

X ′ ×φ,X,a (G×B X) pr1−−→ X

in the current setting. However, because of the symmetry given by the inverse of
G this morphism is isomorphic to the morphism

(G×B X)×pr1,X,φ X
′ a−→ X

of the statement of the lemma. Details omitted. □
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Lemma 97.18.3.06PL Let S be a scheme and let B be an algebraic space over S. Let
G be a group algebraic space over B. Endow B with the trivial action of G. Then
the quotient stack [B/G] is an algebraic stack if and only if G is flat and locally of
finite presentation over B.

Proof. If G is flat and locally of finite presentation over B, then [B/G] is an alge-
braic stack by Theorem 97.17.2.
Conversely, assume that [B/G] is an algebraic stack. By Lemma 97.18.2 and be-
cause the action is trivial, we see there exists an algebraic space B′ and a morphism
B′ → B such that (1) B′ → B is a surjection of sheaves and (2) the projections

B′ ×B G×B B′ → B′

are flat and locally of finite presentation. Note that the base change B′ ×B G ×B
B′ → G ×B B′ of B′ → B is a surjection of sheaves also. Thus it follows from
Descent on Spaces, Lemma 74.8.1 that the projection G ×B B′ → B′ is flat and
locally of finite presentation. By (1) we can find an fppf covering {Bi → B} such
that Bi → B factors through B′ → B. Hence G×B Bi → Bi is flat and locally of
finite presentation by base change. By Descent on Spaces, Lemmas 74.11.13 and
74.11.10 we conclude that G→ B is flat and locally of finite presentation. □

Later we will see that the quotient stack of a smooth S-space by a group algebraic
space G is smooth, even when G is not smooth (Morphisms of Stacks, Lemma
101.33.7).

97.19. Algebraic stacks in the étale topology

076U Let S be a scheme. Instead of working with stacks in groupoids over the big fppf
site (Sch/S)fppf we could work with stacks in groupoids over the big étale site
(Sch/S)étale. All of the material in Algebraic Stacks, Sections 94.4, 94.5, 94.6,
94.7, 94.8, 94.9, 94.10, and 94.11 makes sense for categories fibred in groupoids
over (Sch/S)étale. Thus we get a second notion of an algebraic stack by working in
the étale topology. This notion is (a priori) weaker than the notion introduced in
Algebraic Stacks, Definition 94.12.1 since a stack in the fppf topology is certainly
a stack in the étale topology. However, the notions are equivalent as is shown by
the following lemma.

Lemma 97.19.1.076V Denote the common underlying category of Schfppf and Schétale
by Schα (see Sheaves on Stacks, Section 96.4 and Topologies, Remark 34.11.1). Let
S be an object of Schα. Let

p : X → Schα/S
be a category fibred in groupoids with the following properties:

(1) X is a stack in groupoids over (Sch/S)étale,
(2) the diagonal ∆ : X → X ×X is representable by algebraic spaces5, and
(3) there exists U ∈ Ob(Schα/S) and a 1-morphism (Sch/U)étale → X which

is surjective and smooth.
Then X is an algebraic stack in the sense of Algebraic Stacks, Definition 94.12.1.

5Here we can either mean sheaves in the étale topology whose diagonal is representable and
which have an étale surjective covering by a scheme or algebraic spaces as defined in Algebraic
Spaces, Definition 65.6.1. Namely, by Bootstrap, Lemma 80.12.1 there is no difference.
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Proof. Note that properties (2) and (3) of the lemma and the corresponding prop-
erties (2) and (3) of Algebraic Stacks, Definition 94.12.1 are independent of the
topology. This is true because these properties involve only the notion of a 2-
fibre product of categories fibred in groupoids, 1- and 2-morphisms of categories
fibred in groupoids, the notion of a 1-morphism of categories fibred in groupoids
representable by algebraic spaces, and what it means for such a 1-morphism to be
surjective and smooth. Thus all we have to prove is that an étale stack in groupoids
X with properties (2) and (3) is also an fppf stack in groupoids.
Using (2) let R be an algebraic space representing

(Schα/U)×X (Schα/U)
By (3) the projections s, t : R → U are smooth. Exactly as in the proof of Alge-
braic Stacks, Lemma 94.16.1 there exists a groupoid in spaces (U,R, s, t, c) and a
canonical fully faithful 1-morphism [U/R]étale → X where [U/R]étale is the étale
stackification of presheaf in groupoids

T 7−→ (U(T ), R(T ), s(T ), t(T ), c(T ))
Claim: If V → T is a surjective smooth morphism from an algebraic space V to
a scheme T , then there exists an étale covering {Ti → T} refining the covering
{V → T}. This follows from More on Morphisms, Lemma 37.38.7 or the more
general Sheaves on Stacks, Lemma 96.19.10. Using the claim and arguing exactly as
in Algebraic Stacks, Lemma 94.16.2 it follows that [U/R]étale → X is an equivalence.
Next, let [U/R] denote the quotient stack in the fppf topology which is an algebraic
stack by Algebraic Stacks, Theorem 94.17.3. Thus we have 1-morphisms

U → [U/R]étale → [U/R].
Both U → [U/R]étale ∼= X and U → [U/R] are surjective and smooth (the
first by assumption and the second by the theorem) and in both cases the fibre
product U ×X U and U ×[U/R] U is representable by R. Hence the 1-morphism
[U/R]étale → [U/R] is fully faithful (since morphisms in the quotient stacks are
given by morphisms into R, see Groupoids in Spaces, Section 78.24).
Finally, for any scheme T and morphism t : T → [U/R] the fibre product V =
T ×U/R U is an algebraic space surjective and smooth over T . By the claim above
there exists an étale covering {Ti → T}i∈I and morphisms Ti → V over T . This
proves that the object t of [U/R] over T comes étale locally from U . We conclude
that [U/R]étale → [U/R] is an equivalence of stacks in groupoids over (Sch/S)étale
by Stacks, Lemma 8.4.8. This concludes the proof. □
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CHAPTER 98

Artin’s Axioms

07SZ 98.1. Introduction

07T0 In this chapter we discuss Artin’s axioms for the representability of functors by
algebraic spaces. As references we suggest the papers [Art69b], [Art70], [Art74].
Some of the notation, conventions, and terminology in this chapter is awkward and
may seem backwards to the more experienced reader. This is intentional. Please
see Quot, Section 99.2 for an explanation.
Let S be a locally Noetherian base scheme. Let

p : X −→ (Sch/S)fppf
be a category fibred in groupoids. Let x0 be an object of X over a field k of
finite type over S. Throughout this chapter an important role is played by the
predeformation category (see Formal Deformation Theory, Definition 90.6.2)

FX ,k,x0 −→ {Artinian local S-algebras with residue field k}

associated to x0 over k. We introduce the Rim-Schlessinger condition (RS) for X
and show it guarantees that FX ,k,x0 is a deformation category, i.e., FX ,k,x0 satisies
(RS) itself. We discuss how FX ,k,x0 changes if one replaces k by a finite extension
and we discuss tangent spaces.
Next, we discuss formal objects ξ = (ξn) of X which are inverse systems of objects
lying over the quotients R/mn where R is a Noetherian complete local S-algebra
whose residue field is of finite type over S. This is the same thing as having a formal
object in FX ,k,x0 for some x0 and k. A formal object is called effective when there
is an object of X over R which gives rise to the inverse system. A formal object of
X is called versal if it gives rise to a versal formal object of FX ,k,x0 . Finally, given
a finite type S-scheme U , an object x of X over U , and a closed point u0 ∈ U we
say x is versal at u0 if the induced formal object over the complete local ring O∧

U,u0
is versal.
Having worked through this material we can state Artin’s celebrated theorem: our
X is an algebraic stack if the following are true

(1) OS,s is a G-ring for all s ∈ S,
(2) ∆ : X → X ×X is representable by algebraic spaces,
(3) X is a stack for the étale topology,
(4) X is limit preserving,
(5) X satisfies (RS),
(6) tangent spaces and spaces of infinitesimal automorphisms of the deforma-

tion categories FX ,k,x0 are finite dimensional,
(7) formal objects are effective,

6803
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(8) X satisfies openness of versality.
This is Lemma 98.17.1; see also Proposition 98.17.2 for a slight improvement. There
is an analogous proposition characterizing which functors F : (Sch/S)oppfppf → Sets
are algebraic spaces, see Section 98.16.

Here is a rough outline of the proof of Artin’s theorem. First we show that there
are plenty of versal formal objects using (RS) and the finite dimensionality of tan-
gent and aut spaces, see for example Formal Deformation Theory, Lemma 90.27.6.
These formal objects are effective by assumption. Effective formal objects can be
“approximated” by objects x over finite type S-schemes U , see Lemma 98.10.1.
This approximation uses the local rings of S are G-rings and that X is limit pre-
serving; it is perhaps the most difficult part of the proof relying as it does on general
Néron desingularization to approximate formal solutions of algebraic equations over
a Noetherian local G-ring by solutions in the henselization. Next openness of ver-
sality implies we may (after shrinking U) assume x is versal at every closed point
of U . Having done all of this we show that U → X is a smooth morphism. Taking
sufficiently many U → X we show that we obtain a “smooth atlas” for X which
shows that X is an algebraic stack.

In checking Artin’s axioms for a given category X fibred in groupoids, the most
difficult step is often to verify openness of versality. For the discussion that follows,
assume that X/S already satisfies the other conditions listed above. In this chapter
we offer two methods that will allow the reader to prove X satisfies openness of
versality:

(1) The first is to assume a stronger Rim-Schlessinger condition, called (RS*)
and to assume a stronger version of formal effectiveness, essentially requir-
ing objects over inverse systems of thickenings to be effective. It turns out
that under these assumptions, openness of versality comes for free, see
Lemma 98.20.3. Please observe that here we are using in an essential
manner that X is defined on that category of all schemes over S, not just
the category of Noetherian schemes!

(2) The second, following Artin, is to require X to come equipped with an
obstruction theory. If said obstruction theory “commutes with products”
in a suitable sense, then X satisfies openness of versality, see Lemma
98.22.2.

Obstruction theories can be axiomatized in many different ways and indeed many
variants (often adapted to specific moduli stacks) can be found in the literature.
We explain a variant using the derived category (which often arises naturally from
deformation theory computations done in the literature) in Lemma 98.24.4.

In Section 98.26 we discuss what needs to be modified to make things work for
functors defined on the category (Noetherian/S)étale of locally Noetherian schemes
over S.

In the final section of this chapter as an application of Artin’s axioms we prove
Artin’s theorem on the existence of contractions, see Section 98.27. The theorem
says roughly that given an algebraic space X ′ separated of finite type over S, a
closed subset T ′ ⊂ |X ′|, and a formal modification

f : X ′
/T ′ −→ X
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where X is a Noetherian formal algebraic space over S, there exists a proper mor-
phism f : X ′ → X which “realizes the contraction”. By this we mean that there
exists an identification X = X/T such that f = f/T ′ : X ′

/T ′ → X/T where T = f(T ′)
and moreover f is an isomorphism over X \ T . The proof proceeds by defining a
functor F on the category of locally Noetherian schemes over S and proving Artin’s
axioms for F . Amusingly, in this application of Artin’s axioms, openness of versal-
ity is not the hardest thing to prove, instead the proof that F is limit preserving
requires a lot of work and preliminary results.

98.2. Conventions

07T1 The conventions we use in this chapter are the same as those in the chapter on
algebraic stacks, see Algebraic Stacks, Section 94.2. In this chapter the base scheme
S will often be locally Noetherian (although we will always reiterate this condition
when stating results).

98.3. Predeformation categories

07T2 Let S be a locally Noetherian base scheme. Let
p : X −→ (Sch/S)fppf

be a category fibred in groupoids. Let k be a field and let Spec(k) → S be a
morphism of finite type (see Morphisms, Lemma 29.16.1). We will sometimes simply
say that k is a field of finite type over S. Let x0 be an object of X lying over Spec(k).
Given S, X , k, and x0 we will construct a predeformation category, as defined in
Formal Deformation Theory, Definition 90.6.2. The construction will resemble the
construction of Formal Deformation Theory, Remark 90.6.4.
First, by Morphisms, Lemma 29.16.1 we may pick an affine open Spec(Λ) ⊂ S such
that Spec(k) → S factors through Spec(Λ) and the associated ring map Λ → k
is finite. This provides us with the category CΛ, see Formal Deformation Theory,
Definition 90.3.1. The category CΛ, up to canonical equivalence, does not depend
on the choice of the affine open Spec(Λ) of S. Namely, CΛ is equivalent to the
opposite of the category of factorizations
(98.3.0.1)07T3 Spec(k)→ Spec(A)→ S

of the structure morphism such that A is an Artinian local ring and such that
Spec(k) → Spec(A) corresponds to a ring map A → k which identifies k with the
residue field of A.
We let F = FX ,k,x0 be the category whose

(1) objects are morphisms x0 → x of X where p(x) = Spec(A) with A an
Artinian local ring and p(x0)→ p(x)→ S a factorization as in (98.3.0.1),
and

(2) morphisms (x0 → x)→ (x0 → x′) are commutative diagrams

x x′oo

x0

`` >>

in X . (Note the reversal of arrows.)
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If x0 → x is an object of F then writing p(x) = Spec(A) we obtain an object A of
CΛ. We often say that x0 → x or x lies over A. A morphism of F between objects
x0 → x lying over A and x0 → x′ lying over A′ corresponds to a morphism x′ → x
of X , hence a morphism p(x′ → x) : Spec(A′)→ Spec(A) which in turn corresponds
to a ring map A→ A′. As X is a category over the category of schemes over S we
see that A→ A′ is Λ-algebra homomorphism. Thus we obtain a functor
(98.3.0.2)07T4 p : F = FX ,k,x0 −→ CΛ.

We will use the notation F(A) to denote the fibre category over an object A of CΛ.
An object of F(A) is simply a morphism x0 → x of X such that x lies over Spec(A)
and x0 → x lies over Spec(k)→ Spec(A).

Lemma 98.3.1.07T5 The functor p : F → CΛ defined above is a predeformation category.

Proof. We have to show that F is (a) cofibred in groupoids over CΛ and (b) that
F(k) is a category equivalent to a category with a single object and a single mor-
phism.
Proof of (a). The fibre categories of F over CΛ are groupoids as the fibre categories
of X are groupoids. Let A→ A′ be a morphism of CΛ and let x0 → x be an object of
F(A). Because X is fibred in groupoids, we can find a morphism x′ → x lying over
Spec(A′) → Spec(A). Since the composition A → A′ → k is equal the given map
A → k we see (by uniqueness of pullbacks up to isomorphism) that the pullback
via Spec(k)→ Spec(A′) of x′ is x0, i.e., that there exists a morphism x0 → x′ lying
over Spec(k)→ Spec(A′) compatible with x0 → x and x′ → x. This proves that F
has pushforwards. We conclude by (the dual of) Categories, Lemma 4.35.2.
Proof of (b). If A = k, then Spec(k) = Spec(A) and since X is fibred in groupoids
over (Sch/S)fppf we see that given any object x0 → x in F(k) the morphism x0 → x
is an isomorphism. Hence every object of F(k) is isomorphic to x0 → x0. Clearly
the only self morphism of x0 → x0 in F is the identity. □

Let S be a locally Noetherian base scheme. Let F : X → Y be a 1-morphism
between categories fibred in groupoids over (Sch/S)fppf . Let k is a field of finite
type over S. Let x0 be an object of X lying over Spec(k). Set y0 = F (x0) which is
an object of Y lying over Spec(k). Then F induces a functor
(98.3.1.1)07WJ F : FX ,k,x0 −→ FY,k,y0

of categories cofibred over CΛ. Namely, to the object x0 → x of FX ,k,x0(A) we
associate the object F (x0)→ F (x) of FY,k,y0(A).

Lemma 98.3.2.07WK Let S be a locally Noetherian scheme. Let F : X → Y be a
1-morphism of categories fibred in groupoids over (Sch/S)fppf . Assume either

(1) F is formally smooth on objects (Criteria for Representability, Section
97.6),

(2) F is representable by algebraic spaces and formally smooth, or
(3) F is representable by algebraic spaces and smooth.

Then for every finite type field k over S and object x0 of X over k the functor
(98.3.1.1) is smooth in the sense of Formal Deformation Theory, Definition 90.8.1.

Proof. Case (1) is a matter of unwinding the definitions. Assumption (2) implies
(1) by Criteria for Representability, Lemma 97.6.3. Assumption (3) implies (2)

https://stacks.math.columbia.edu/tag/07T5
https://stacks.math.columbia.edu/tag/07WK
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by More on Morphisms of Spaces, Lemma 76.19.6 and the principle of Algebraic
Stacks, Lemma 94.10.9. □

Lemma 98.3.3.07WL Let S be a locally Noetherian scheme. Let

W

��

// Z

��
X // Y

be a 2-fibre product of categories fibred in groupoids over (Sch/S)fppf . Let k be a
finite type field over S and w0 an object of W over k. Let x0, z0, y0 be the images
of w0 under the morphisms in the diagram. Then

FW,k,w0

��

// FZ,k,z0

��
FX ,k,x0

// FY,k,y0

is a fibre product of predeformation categories.

Proof. This is a matter of unwinding the definitions. Details omitted. □

98.4. Pushouts and stacks

07WM In this section we show that algebraic stacks behave well with respect to certain
pushouts. The results in this section hold over any base scheme.
The following lemma is also correct when Y , X ′, X, Y ′ are algebraic spaces, see
(insert future reference here).

Lemma 98.4.1.07WN Let S be a scheme. Let

X //

��

X ′

��
Y // Y ′

be a pushout in the category of schemes over S where X → X ′ is a thickening and
X → Y is affine, see More on Morphisms, Lemma 37.14.3. Let Z be an algebraic
stack over S. Then the functor of fibre categories

ZY ′ −→ ZY ×ZX ZX′

is an equivalence of categories.

Proof. Let y′ be an object of left hand side. The sheaf Isom(y′, y′) on the category
of schemes over Y ′ is representable by an algebraic space I over Y ′, see Algebraic
Stacks, Lemma 94.10.11. We conclude that the functor of the lemma is fully faithful
as Y ′ is the pushout in the category of algebraic spaces as well as the category of
schemes, see Pushouts of Spaces, Lemma 81.6.1.
Let (y, x′, f) be an object of the right hand side. Here f : y|X → x′|X is an
isomorphism. To finish the proof we have to construct an object y′ of ZY ′ whose
restrictions to Y and X ′ agree with y and x′ in a manner compatible with f . In

https://stacks.math.columbia.edu/tag/07WL
https://stacks.math.columbia.edu/tag/07WN
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fact, it suffices to construct y′ fppf locally on Y ′, see Stacks, Lemma 8.4.8. Choose a
representable algebraic stack W and a surjective smooth morphism W → Z. Then

(Sch/Y )fppf ×y,Z W and (Sch/X ′)fppf ×x′,Z W

are algebraic stacks representable by algebraic spaces V and U ′ smooth over Y and
X ′. The isomorphism f induces an isomorphism φ : V ×Y X → U ′ ×X′ X over
X. By Pushouts of Spaces, Lemmas 81.6.2 and 81.6.7 we see that the pushout
V ′ = V ⨿V×YX U ′ is an algebraic space smooth over Y ′ whose base change to Y
and X ′ recovers V and U ′ in a manner compatible with φ.

LetW be the algebraic space representingW. The projections V →W and U ′ →W
agree as morphisms over V ×Y X ∼= U ′ ×X′ X hence the universal property of the
pushout determines a morphism of algebraic spaces V ′ →W . Choose a scheme Y ′

1
and a surjective étale morphism Y ′

1 → V ′. Set Y1 = Y ×Y ′ Y ′
1 , X ′

1 = X ′ ×Y ′ Y ′
1 ,

X1 = X ×Y ′ Y ′
1 . The composition

(Sch/Y ′
1)→ (Sch/V ′)→ (Sch/W ) =W → Z

corresponds by the 2-Yoneda lemma to an object y′
1 of Z over Y ′

1 whose restriction
to Y1 and X ′

1 agrees with y|Y1 and x′|X′
1

in a manner compatible with f |X1 . Thus
we have constructed our desired object smooth locally over Y ′ and we win. □

98.5. The Rim-Schlessinger condition

06L9 The motivation for the following definition comes from Lemma 98.4.1 and Formal
Deformation Theory, Definition 90.16.1 and Lemma 90.16.4.

Definition 98.5.1.07WP Let S be a locally Noetherian scheme. Let Z be a category
fibred in groupoids over (Sch/S)fppf . We say Z satisfies condition (RS) if for every
pushout

X //

��

X ′

��
Y // Y ′ = Y ⨿X X ′

in the category of schemes over S where
(1) X, X ′, Y , Y ′ are spectra of local Artinian rings,
(2) X, X ′, Y , Y ′ are of finite type over S, and
(3) X → X ′ (and hence Y → Y ′) is a closed immersion

the functor of fibre categories

ZY ′ −→ ZY ×ZX ZX′

is an equivalence of categories.

If A is an Artinian local ring with residue field k, then any morphism Spec(A)→ S
is affine and of finite type if and only if the induced morphism Spec(k) → S is of
finite type, see Morphisms, Lemmas 29.11.13 and 29.16.2.

Lemma 98.5.2.07WQ Let X be an algebraic stack over a locally Noetherian base S. Then
X satisfies (RS).

Proof. Immediate from the definitions and Lemma 98.4.1. □

https://stacks.math.columbia.edu/tag/07WP
https://stacks.math.columbia.edu/tag/07WQ
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Lemma 98.5.3.07WR Let S be a scheme. Let p : X → Y and q : Z → Y be 1-morphisms
of categories fibred in groupoids over (Sch/S)fppf . If X , Y, and Z satisfy (RS),
then so does X ×Y Z.
Proof. This is formal. Let

X //

��

X ′

��
Y // Y ′ = Y ⨿X X ′

be a diagram as in Definition 98.5.1. We have to show that
(X ×Y Z)Y ′ −→ (X ×Y Z)Y ×(X ×Y Z)X (X ×Y Z)X′

is an equivalence. Using the definition of the 2-fibre product this becomes
(98.5.3.1)07WS XY ′ ×YY ′ ZY ′ −→ (XY ×YY ZY )×(XX×YXZX) (XX′ ×YX′ ZX′).
We are given that each of the functors

XY ′ → XY ×YY ZY , YY ′ → XX ×YX ZX , ZY ′ → XX′ ×YX′ ZX′

are equivalences. An object of the right hand side of (98.5.3.1) is a system
((xY , zY , ϕY ), (xX′ , zX′ , ϕX′), (α, β)).

Then (xY , xY ′ , α) is isomorphic to the image of an object xY ′ in XY ′ and (zY , zY ′ , β)
is isomorphic to the image of an object zY ′ of ZY ′ . The pair of morphisms (ϕY , ϕX′)
corresponds to a morphism ψ between the images of xY ′ and zY ′ in YY ′ . Then
(xY ′ , zY ′ , ψ) is an object of the left hand side of (98.5.3.1) mapping to the given
object of the right hand side. This proves that (98.5.3.1) is essentially surjective.
We omit the proof that it is fully faithful. □

98.6. Deformation categories

07WT We match the notation introduced above with the notation from the chapter “For-
mal Deformation Theory”.
Lemma 98.6.1.07WU Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf satisfying (RS). For any field k of finite type over S
and any object x0 of X lying over k the predeformation category p : FX ,k,x0 → CΛ
(98.3.0.2) is a deformation category, see Formal Deformation Theory, Definition
90.16.8.
Proof. Set F = FX ,k,x0 . Let f1 : A1 → A and f2 : A2 → A be ring maps in CΛ
with f2 surjective. We have to show that the functor

F(A1 ×A A2) −→ F(A1)×F(A) F(A2)
is an equivalence, see Formal Deformation Theory, Lemma 90.16.4. Set X =
Spec(A), X ′ = Spec(A2), Y = Spec(A1) and Y ′ = Spec(A1 ×A A2). Note that
Y ′ = Y ⨿XX ′ in the category of schemes, see More on Morphisms, Lemma 37.14.3.
We know that in the diagram of functors of fibre categories

XY ′ //

��

XY ×XX XX′

��
XSpec(k) XSpec(k)

https://stacks.math.columbia.edu/tag/07WR
https://stacks.math.columbia.edu/tag/07WU
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the top horizontal arrow is an equivalence by Definition 98.5.1. Since F(B) is the
category of objects of XSpec(B) with an identification with x0 over k we win. □

Remark 98.6.2.07WV Let S be a locally Noetherian scheme. Let X be fibred in groupoids
over (Sch/S)fppf . Let k be a field of finite type over S and x0 an object of X over k.
Let p : F → CΛ be as in (98.3.0.2). If F is a deformation category, i.e., if F satisfies
the Rim-Schlessinger condition (RS), then we see that F satisfies Schlessinger’s
conditions (S1) and (S2) by Formal Deformation Theory, Lemma 90.16.6. Let F
be the functor of isomorphism classes, see Formal Deformation Theory, Remarks
90.5.2 (10). Then F satisfies (S1) and (S2) as well, see Formal Deformation Theory,
Lemma 90.10.5. This holds in particular in the situation of Lemma 98.6.1.

98.7. Change of field

07WW This section is the analogue of Formal Deformation Theory, Section 90.29. As
pointed out there, to discuss what happens under change of field we need to write
CΛ,k instead of CΛ. In the following lemma we use the notation Fl/k introduced in
Formal Deformation Theory, Situation 90.29.1.
Lemma 98.7.1.07WX Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf . Let k be a field of finite type over S and let l/k be
a finite extension. Let x0 be an object of F lying over Spec(k). Denote xl,0 the
restriction of x0 to Spec(l). Then there is a canonical functor

(FX ,k,x0)l/k −→ FX ,l,xl,0

of categories cofibred in groupoids over CΛ,l. If X satisfies (RS), then this functor
is an equivalence.
Proof. Consider a factorization

Spec(l)→ Spec(B)→ S

as in (98.3.0.1). By definition we have
(FX ,k,x0)l/k(B) = FX ,k,x0(B ×l k)

see Formal Deformation Theory, Situation 90.29.1. Thus an object of this is a
morphism x0 → x of X lying over the morphism Spec(k)→ Spec(B×lk). Choosing
pullback functor for X we can associate to x0 → x the morphism xl,0 → xB where
xB is the restriction of x to Spec(B) (via the morphism Spec(B) → Spec(B ×l k)
coming from B×l k ⊂ B). This construction is functorial in B and compatible with
morphisms.
Next, assume X satisfies (RS). Consider the diagrams

l Boo

k

OO

B ×l koo

OO

and

Spec(l)

��

// Spec(B)

��
Spec(k) // Spec(B ×l k)

The diagram on the left is a fibre product of rings. The diagram on the right
is a pushout in the category of schemes, see More on Morphisms, Lemma 37.14.3.
These schemes are all of finite type over S (see remarks following Definition 98.5.1).
Hence (RS) kicks in to give an equivalence of fibre categories

XSpec(B×lk) −→ XSpec(k) ×XSpec(l) XSpec(B)

https://stacks.math.columbia.edu/tag/07WV
https://stacks.math.columbia.edu/tag/07WX
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This implies that the functor defined above gives an equivalence of fibre categories.
Hence the functor is an equivalence on categories cofibred in groupoids by (the dual
of) Categories, Lemma 4.35.9. □

98.8. Tangent spaces

07WY Let S be a locally Noetherian scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . Let k be a field of finite type over S and let x0 be an object of X
over k. In Formal Deformation Theory, Section 90.12 we have defined the tangent
space

(98.8.0.1)07WZ TFX ,k,x0 =
{

isomorphism classes of morphisms
x0 → x over Spec(k)→ Spec(k[ϵ])

}
of the predeformation category FX ,k,x0 . In Formal Deformation Theory, Section
90.19 we have defined
(98.8.0.2)07X0 Inf(FX ,k,x0) = Ker

(
AutSpec(k[ϵ])(x′

0)→ AutSpec(k)(x0)
)

where x′
0 is the pullback of x0 to Spec(k[ϵ]). If X satisfies the Rim-Schlessinger

condition (RS), then TFX ,k,x0 comes equipped with a natural k-vector space struc-
ture by Formal Deformation Theory, Lemma 90.12.2 (assumptions hold by Lemma
98.6.1 and Remark 98.6.2). Moreover, Formal Deformation Theory, Lemma 90.19.9
shows that Inf(FX ,k,x0) has a natural k-vector space structure such that addition
agrees with composition of automorphisms. A natural condition is to ask these
vector spaces to have finite dimension.
The following lemma tells us this is true if X is locally of finite type over S (see
Morphisms of Stacks, Section 101.17).

Lemma 98.8.1.07X1 Let S be a locally Noetherian scheme. Assume
(1) X is an algebraic stack,
(2) U is a scheme locally of finite type over S, and
(3) (Sch/U)fppf → X is a smooth surjective morphism.

Then, for any F = FX ,k,x0 as in Section 98.3 the tangent space TF and infinitesimal
automorphism space Inf(F) have finite dimension over k.

Proof. Let us write U = (Sch/U)fppf . By our definition of algebraic stacks the
1-morphism U → X is representable by algebraic spaces. Hence in particular the
2-fibre product

Ux0 = (Sch/ Spec(k))fppf ×X U
is representable by an algebraic space Ux0 over Spec(k). Then Ux0 → Spec(k)
is smooth and surjective (in particular Ux0 is nonempty). By Spaces over Fields,
Lemma 72.16.2 we can find a finite extension l/k and a point Spec(l) → Ux0 over
k. We have

(FX ,k,x0)l/k = FX ,l,xl,0

by Lemma 98.7.1 and the fact that X satisfies (RS). Thus we see that
TF ⊗k l ∼= TFX ,l,xl,0 and Inf(F)⊗k l ∼= Inf(FX ,l,xl,0)

by Formal Deformation Theory, Lemmas 90.29.3 and 90.29.4 (these are applicable
by Lemmas 98.5.2 and 98.6.1 and Remark 98.6.2). Hence it suffices to prove that
TFX ,l,xl,0 and Inf(FX ,l,xl,0) have finite dimension over l. Note that xl,0 comes from
a point u0 of U over l.

https://stacks.math.columbia.edu/tag/07X1
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We interrupt the flow of the argument to show that the lemma for infinitesimal
automorphisms follows from the lemma for tangent spaces. Namely, letR = U×XU .
Let r0 be the l-valued point (u0, u0, idx0) of R. Combining Lemma 98.3.3 and
Formal Deformation Theory, Lemma 90.26.2 we see that

Inf(FX ,l,xl,0) ⊂ TFR,l,r0

Note that R is an algebraic stack, see Algebraic Stacks, Lemma 94.14.2. Also, R
is representable by an algebraic space R smooth over U (via either projection, see
Algebraic Stacks, Lemma 94.16.2). Hence, choose an scheme U ′ and a surjective
étale morphism U ′ → R we see that U ′ is smooth over U , hence locally of finite
type over S. As (Sch/U ′)fppf → R is surjective and smooth, we have reduced the
question to the case of tangent spaces.

The functor (98.3.1.1)
FU,l,u0 −→ FX ,l,xl,0

is smooth by Lemma 98.3.2. The induced map on tangent spaces

TFU,l,u0 −→ TFX ,l,xl,0

is l-linear (by Formal Deformation Theory, Lemma 90.12.4) and surjective (as
smooth maps of predeformation categories induce surjective maps on tangent spaces
by Formal Deformation Theory, Lemma 90.8.8). Hence it suffices to prove that the
tangent space of the deformation space associated to the representable algebraic
stack U at the point u0 is finite dimensional. Let Spec(R) ⊂ U be an affine open
such that u0 : Spec(l) → U factors through Spec(R) and such that Spec(R) → S
factors through Spec(Λ) ⊂ S. Let mR ⊂ R be the kernel of the Λ-algebra map
φ0 : R→ l corresponding to u0. Note that R, being of finite type over the Noether-
ian ring Λ, is a Noetherian ring. Hence mR = (f1, . . . , fn) is a finitely generated
ideal. We have

TFU,l,u0 = {φ : R→ l[ϵ] | φ is a Λ-algebra map and φ mod ϵ = φ0}

An element of the right hand side is determined by its values on f1, . . . , fn hence
the dimension is at most n and we win. Some details omitted. □

Lemma 98.8.2.07X2 Let S be a locally Noetherian scheme. Let p : X → Y and
q : Z → Y be 1-morphisms of categories fibred in groupoids over (Sch/S)fppf .
Assume X , Y, Z satisfy (RS). Let k be a field of finite type over S and let w0 be
an object of W = X ×Y Z over k. Denote x0, y0, z0 the objects of X ,Y,Z you get
from w0. Then there is a 6-term exact sequence

0 // Inf(FW,k,w0) // Inf(FX ,k,x0)⊕ Inf(FZ,k,z0) // Inf(FY,k,y0)

rr
TFW,k,w0

// TFX ,k,x0 ⊕ TFZ,k,z0
// TFY,k,y0

of k-vector spaces.

Proof. By Lemma 98.5.3 we see that W satisfies (RS) and hence the lemma makes
sense. To see the lemma is true, apply Lemmas 98.3.3 and 98.6.1 and Formal
Deformation Theory, Lemma 90.20.1. □

https://stacks.math.columbia.edu/tag/07X2
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98.9. Formal objects

07X3 In this section we transfer some of the notions already defined in the chapter “For-
mal Deformation Theory” to the current setting. In the following we will say “R
is an S-algebra” to indicate that R is a ring endowed with a morphism of schemes
Spec(R)→ S.

Definition 98.9.1.07X4 Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf
be a category fibred in groupoids.

(1) A formal object ξ = (R, ξn, fn) of X consists of a Noetherian complete
local S-algebra R, objects ξn of X lying over Spec(R/mnR), and morphisms
fn : ξn → ξn+1 of X lying over Spec(R/mn) → Spec(R/mn+1) such that
R/m is a field of finite type over S.

(2) A morphism of formal objects a : ξ = (R, ξn, fn) → η = (T, ηn, gn) is
given by morphisms an : ξn → ηn such that for every n the diagram

ξn
fn

//

an

��

ξn+1

an+1

��
ηn

gn // ηn+1

is commutative. Applying the functor p we obtain a compatible collection
of morphisms Spec(R/mnR) → Spec(T/mnT ) and hence a morphism a0 :
Spec(R)→ Spec(T ) over S. We say that a lies over a0.

Thus we obtain a category of formal objects of X .

Remark 98.9.2.0CXH Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be
a category fibred in groupoids. Let ξ = (R, ξn, fn) be a formal object. Set k = R/m
and x0 = ξ1. The formal object ξ defines a formal object ξ of the predeformation
category FX ,k,x0 . This follows immediately from Definition 98.9.1 above, Formal
Deformation Theory, Definition 90.7.1, and our construction of the predeformation
category FX ,k,x0 in Section 98.3.

If F : X → Y is a 1-morphism of categories fibred in groupoids over (Sch/S)fppf ,
then F induces a functor between categories of formal objects as well.

Lemma 98.9.3.07X5 Let S be a locally Noetherian scheme. Let F : X → Y be a 1-
morphism of categories fibred in groupoids over (Sch/S)fppf . Let η = (R, ηn, gn)
be a formal object of Y and let ξ1 be an object of X with F (ξ1) ∼= η1. If F is
formally smooth on objects (see Criteria for Representability, Section 97.6), then
there exists a formal object ξ = (R, ξn, fn) of X such that F (ξ) ∼= η.

Proof. Note that each of the morphisms Spec(R/mn) → Spec(R/mn+1) is a first
order thickening of affine schemes over S. Hence the assumption on F means
that we can successively lift ξ1 to objects ξ2, ξ3, . . . of X endowed with compatible
isomorphisms ηn|Spec(R/mn−1) ∼= ηn−1 and F (ηn) ∼= ξn. □

Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be a category
fibred in groupoids. Suppose that x is an object of X over R, where R is a Noe-
therian complete local S-algebra with residue field of finite type over S. Then
we can consider the system of restrictions ξn = x|Spec(R/mn) endowed with the
natural morphisms ξ1 → ξ2 → . . . coming from transitivity of restriction. Thus

https://stacks.math.columbia.edu/tag/07X4
https://stacks.math.columbia.edu/tag/0CXH
https://stacks.math.columbia.edu/tag/07X5


98.9. FORMAL OBJECTS 6814

ξ = (R, ξn, ξn → ξn+1) is a formal object of X . This construction is functorial in
the object x. Thus we obtain a functor
(98.9.3.1)

07X6

objects x of X such that p(x) = Spec(R)
where R is Noetherian complete local

with R/m of finite type over S

 −→ {
formal objects of X

}
To be precise the left hand side is the full subcategory of X consisting of objects
as indicated and the right hand side is the category of formal objects of X as in
Definition 98.9.1.

Definition 98.9.4.07X7 Let S be a locally Noetherian scheme. Let X be a category
fibred in groupoids over (Sch/S)fppf . A formal object ξ = (R, ξn, fn) of X is called
effective if it is in the essential image of the functor (98.9.3.1).

If the category fibred in groupoids is an algebraic stack, then every formal object
is effective as follows from the next lemma.

Lemma 98.9.5.07X8 Let S be a locally Noetherian scheme. Let X be an algebraic stack
over S. The functor (98.9.3.1) is an equivalence.

Proof. Case I: X is representable (by a scheme). Say X = (Sch/X)fppf for some
scheme X over S. Unwinding the definitions we have to prove the following: Given
a Noetherian complete local S-algebra R with R/m of finite type over S we have

MorS(Spec(R), X) −→ lim MorS(Spec(R/mn), X)

is bijective. This follows from Formal Spaces, Lemma 87.33.2.

Case II. X is representable by an algebraic space. Say X is representable by X.
Again we have to show that

MorS(Spec(R), X) −→ lim MorS(Spec(R/mn), X)

is bijective for R as above. This is Formal Spaces, Lemma 87.33.3.

Case III: General case of an algebraic stack. A general remark is that the left and
right hand side of (98.9.3.1) are categories fibred in groupoids over the category
of affine schemes over S which are spectra of Noetherian complete local rings with
residue field of finite type over S. We will also see in the proof below that they
form stacks for a certain topology on this category.

We first prove fully faithfulness. Let R be a Noetherian complete local S-algebra
with k = R/m of finite type over S. Let x, x′ be objects of X over R. As X is an
algebraic stack Isom(x, x′) is representable by an algebraic space I over Spec(R),
see Algebraic Stacks, Lemma 94.10.11. Applying Case II to I over Spec(R) implies
immediately that (98.9.3.1) is fully faithful on fibre categories over Spec(R). Hence
the functor is fully faithful by Categories, Lemma 4.35.9.

Essential surjectivity. Let ξ = (R, ξn, fn) be a formal object of X . Choose a scheme
U over S and a surjective smooth morphism f : (Sch/U)fppf → X . For every n
consider the fibre product

(Sch/ Spec(R/mn))fppf ×ξn,X ,f (Sch/U)fppf

https://stacks.math.columbia.edu/tag/07X7
https://stacks.math.columbia.edu/tag/07X8
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By assumption this is representable by an algebraic space Vn surjective and smooth
over Spec(R/mn). The morphisms fn : ξn → ξn+1 induce cartesian squares

Vn+1

��

Vn

��

oo

Spec(R/mn+1) Spec(R/mn)oo

of algebraic spaces. By Spaces over Fields, Lemma 72.16.2 we can find a finite
separable extension k′/k and a point v′

1 : Spec(k′) → V1 over k. Let R ⊂ R′

be the finite étale extension whose residue field extension is k′/k (exists and is
unique by Algebra, Lemmas 10.153.7 and 10.153.9). By the infinitesimal lifting
criterion of smoothness (see More on Morphisms of Spaces, Lemma 76.19.6) applied
to Vn → Spec(R/mn) for n = 2, 3, 4, . . . we can successively find morphisms v′

n :
Spec(R′/(m′)n)→ Vn over Spec(R/mn) fitting into commutative diagrams

Spec(R′/(m′)n+1)

v′
n+1

��

Spec(R′/(m′)n)

v′
n

��

oo

Vn+1 Vnoo

Composing with the projection morphisms Vn → U we obtain a compatible system
of morphisms u′

n : Spec(R′/(m′)n) → U . By Case I the family (u′
n) comes from a

unique morphism u′ : Spec(R′) → U . Denote x′ the object of X over Spec(R′) we
get by applying the 1-morphism f to u′. By construction, there exists a morphism
of formal objects

(98.9.3.1)(x′) = (R′, x′|Spec(R′/(m′)n), . . .) −→ (R, ξn, fn)
lying over Spec(R′) → Spec(R). Note that R′ ⊗R R′ is a finite product of spectra
of Noetherian complete local rings to which our current discussion applies. Denote
p0, p1 : Spec(R′ ⊗R R′) → Spec(R′) the two projections. By the fully faithfulness
shown above there exists a canonical isomorphism φ : p∗

0x
′ → p∗

1x
′ because we

have such isomorphisms over Spec((R′ ⊗R R′)/mn(R′ ⊗R R′)). We omit the proof
that the isomorphism φ satisfies the cocycle condition (see Stacks, Definition 8.3.1).
Since {Spec(R′) → Spec(R)} is an fppf covering we conclude that x′ descends to
an object x of X over Spec(R). We omit the proof that xn is the restriction of x
to Spec(R/mn). □

Lemma 98.9.6.07X9 Let S be a scheme. Let p : X → Y and q : Z → Y be 1-morphisms
of categories fibred in groupoids over (Sch/S)fppf . If the functor (98.9.3.1) is an
equivalence for X , Y, and Z, then it is an equivalence for X ×Y Z.

Proof. The left and the right hand side of (98.9.3.1) for X ×Y Z are simply the
2-fibre products of the left and the right hand side of (98.9.3.1) for X , Z over Y.
Hence the result follows as taking 2-fibre products is compatible with equivalences
of categories, see Categories, Lemma 4.31.7. □

98.10. Approximation

07XA A fundamental insight of Michael Artin is that you can approximate objects of a
limit preserving stack. Namely, given an object x of the stack over a Noetherian
complete local ring, you can find an object xA over an algebraic ring which is “close

https://stacks.math.columbia.edu/tag/07X9
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to” x. Here an algebraic ring means a finite type S-algebra and close means adically
close. In this section we present this in a simple, yet general form.
To formulate the result we need to pull together some definitions from different
places in the Stacks project. First, in Criteria for Representability, Section 97.5
we introduced limit preserving on objects for 1-morphisms of categories fibred in
groupoids over the category of schemes. In More on Algebra, Definition 15.50.1 we
defined the notion of a G-ring. Let S be a locally Noetherian scheme. Let A be
an S-algebra. We say that A is of finite type over S or is a finite type S-algebra if
Spec(A)→ S is of finite type. In this case A is a Noetherian ring. Finally, given a
ring A and ideal I we denote GrI(A) =

⊕
In/In+1.

Lemma 98.10.1.07XB Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf
be a category fibred in groupoids. Let x be an object of X lying over Spec(R) where
R is a Noetherian complete local ring with residue field k of finite type over S. Let
s ∈ S be the image of Spec(k)→ S. Assume that (a) OS,s is a G-ring and (b) p is
limit preserving on objects. Then for every integer N ≥ 1 there exist

(1) a finite type S-algebra A,
(2) a maximal ideal mA ⊂ A,
(3) an object xA of X over Spec(A),
(4) an S-isomorphism R/mNR

∼= A/mNA ,
(5) an isomorphism x|Spec(R/mN

R
)
∼= xA|Spec(A/mN

A
) compatible with (4), and

(6) an isomorphism GrmR(R) ∼= GrmA(A) of graded k-algebras.

Proof. Choose an affine open Spec(Λ) ⊂ S such that k is a finite Λ-algebra, see
Morphisms, Lemma 29.16.1. We may and do replace S by Spec(Λ).
We may write R as a directed colimit R = colimCj where each Cj is a finite
type Λ-algebra (see Algebra, Lemma 10.127.2). By assumption (b) the object x is
isomorphic to the restriction of an object over one of the Cj . Hence we may choose
a finite type Λ-algebra C, a Λ-algebra map C → R, and an object xC of X over
Spec(C) such that x = xC |Spec(R). The choice of C is a bookkeeping device and
could be avoided. For later use, let us write C = Λ[y1, . . . , yu]/(f1, . . . , fv) and we
denote ai ∈ R the image of yi under the map C → R. Set mC = C ∩mR.
Choose a Λ-algebra surjection Λ[x1, . . . , xs] → k and denote m′ the kernel. By
the universal property of polynomial rings we may lift this to a Λ-algebra map
Λ[x1, . . . , xs] → R. We add some variables (i.e., we increase s a bit) mapping to
generators of mR. Having done this we see that Λ[x1, . . . , xs]→ R/m2

R is surjective.
Then we see that
(98.10.1.1)07XC P = Λ[x1, . . . , xs]∧m′ −→ R

is a surjective map of Noetherian complete local rings, see for example Formal
Deformation Theory, Lemma 90.4.2.
Choose lifts ai ∈ P of ai we found above. Choose generators b1, . . . , br ∈ P for the
kernel of (98.10.1.1). Choose cji ∈ P such that

fj(a1, . . . , au) =
∑

cjibi

in P which is possible by the choices made so far. Choose generators

k1, . . . , kt ∈ Ker(P⊕r (b1,...,br)−−−−−−→ P )

https://stacks.math.columbia.edu/tag/07XB
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and write ki = (ki1, . . . , kir) and K = (kij) so that

P⊕t K−→ P⊕r (b1,...,br)−−−−−−→ P → R→ 0

is an exact sequence of P -modules. In particular we have
∑
kijbj = 0. After

possibly increasing N we may assume N − 1 works in the Artin-Rees lemma for
the first two maps of this exact sequence (see More on Algebra, Section 15.4 for
terminology).

By assumption OS,s = ΛΛ∩m′ is a G-ring. Hence by More on Algebra, Proposition
15.50.10 the ring Λ[x1, . . . , xs]m′ is a G-ring. Hence by Smoothing Ring Maps,
Theorem 16.13.2 there exist an étale ring map

Λ[x1, . . . , xs]m′ → B,

a maximal ideal mB of B lying over m′, and elements a′
i, b

′
i, c

′
ij , k

′
ij ∈ B′ such that

(1) κ(m′) = κ(mB) which implies that Λ[x1, . . . , xs]m′ ⊂ BmB ⊂ P and P is
identified with the completion of B at mB , see remark preceding Smooth-
ing Ring Maps, Theorem 16.13.2,

(2) ai − a′
i, bi − b′

i, cij − c′
ij , kij − k′

ij ∈ (m′)NP , and
(3) fj(a′

1, . . . , a
′
u) =

∑
c′
jib

′
i and

∑
k′
ijb

′
j = 0.

Set A = B/(b′
1, . . . , b

′
r) and denote mA the image of mB in A. (Note that A is

essentially of finite type over Λ; at the end of the proof we will show how to obtain
an A which is of finite type over Λ.) There is a ring map C → A sending yi 7→ a′

i

because the a′
i satisfy the desired equations modulo (b′

1, . . . , b
′
r). Note that A/mNA =

R/mNR as quotients of P = B∧ by property (2) above. Set xA = xC |Spec(A). Since
the maps

C → A→ A/mNA
∼= R/mNR and C → R→ R/mNR

are equal we see that xA and x agree modulo mNR via the isomorphism A/mNA =
R/mNR . At this point we have shown properties (1) – (5) of the statement of the
lemma. To see (6) note that

P⊕t K−→ P⊕r (b1,...,br)−−−−−−→ P and P⊕t K′

−−→ P⊕r (b′
1,...,b

′
r)−−−−−−→ P

are two complexes of P -modules which are congruent modulo (m′)N with the first
one being exact. By our choice of N above we see from More on Algebra, Lemma
15.4.2 that R = P/(b1, . . . , br) and P/(b′

1, . . . , b
′
r) = B∧/(b′

1, . . . , b
′
r) = A∧ have

isomorphic associated graded algebras, which is what we wanted to show.

This last paragraph of the proof serves to clean up the issue that A is essentially
of finite type over S and not yet of finite type. The construction above gives
A = B/(b′

1, . . . , b
′
r) and mA ⊂ A with B étale over Λ[x1, . . . , xs]m′ . Hence A is of

finite type over the Noetherian ring Λ[x1, . . . , xs]m′ . Thus we can write A = (A0)m′

for some finite type Λ[x1, . . . , xn] algebra A0. Then A = colim(A0)f where f ∈
Λ[x1, . . . , xn] \ m′, see Algebra, Lemma 10.9.9. Because p : X → (Sch/S)fppf is
limit preserving on objects, we see that xA comes from some object x(A0)f over
Spec((A0)f ) for an f as above. After replacing A by (A0)f and xA by x(A0)f and
mA by (A0)f ∩mA the proof is finished. □



98.11. LIMIT PRESERVING 6818

98.11. Limit preserving

07XK The morphism p : X → (Sch/S)fppf is limit preserving on objects, as defined in
Criteria for Representability, Section 97.5, if the functor of the definition below is
essentially surjective. However, the example in Examples, Section 110.53 shows
that this isn’t equivalent to being limit preserving.
Definition 98.11.1.07XL Let S be a scheme. Let X be a category fibred in groupoids
over (Sch/S)fppf . We say X is limit preserving if for every affine scheme T over S
which is a limit T = limTi of a directed inverse system of affine schemes Ti over S,
we have an equivalence

colimXTi −→ XT
of fibre categories.
We spell out what this means. First, given objects x, y of X over Ti we should have

MorXT (x|T , y|T ) = colimi′≥i MorXT
i′

(x|Ti′ , y|Ti′ )
and second every object of XT is isomorphic to the restriction of an object over Ti
for some i. Note that the first condition means that the presheaves IsomX (x, y)
(see Stacks, Definition 8.2.2) are limit preserving.
Lemma 98.11.2.07XM Let S be a scheme. Let p : X → Y and q : Z → Y be 1-morphisms
of categories fibred in groupoids over (Sch/S)fppf .

(1) If X → (Sch/S)fppf and Z → (Sch/S)fppf are limit preserving on objects
and Y is limit preserving, then X ×Y Z → (Sch/S)fppf is limit preserving
on objects.

(2) If X , Y, and Z are limit preserving, then so is X ×Y Z.
Proof. This is formal. Proof of (1). Let T = limi∈I Ti be the directed limit of
affine schemes Ti over S. We will prove that the functor colimXTi → XT is essen-
tially surjective. Recall that an object of the fibre product over T is a quadruple
(T, x, z, α) where x is an object of X lying over T , z is an object of Z lying over T ,
and α : p(x)→ q(z) is a morphism in the fibre category of Y over T . By assumption
on X and Z we can find an i and objects xi and zi over Ti such that xi|T ∼= T and
zi|T ∼= z. Then α corresponds to an isomorphism p(xi)|T → q(zi)|T which comes
from an isomorphism αi′ : p(xi)|Ti′ → q(zi)|Ti′ by our assumption on Y. After
replacing i by i′, xi by xi|Ti′ , and zi by zi|Ti′ we see that (Ti, xi, zi, αi) is an object
of the fibre product over Ti which restricts to an object isomorphic to (T, x, z, α)
over T as desired.
We omit the arguments showing that colimXTi → XT is fully faithful in (2). □

Lemma 98.11.3.07XN Let S be a scheme. Let X be an algebraic stack over S. Then the
following are equivalent

(1) X is a stack in setoids and X → (Sch/S)fppf is limit preserving on objects,
(2) X is a stack in setoids and limit preserving,
(3) X is representable by an algebraic space locally of finite presentation.

Proof. Under each of the three assumptions X is representable by an algebraic
space X over S, see Algebraic Stacks, Proposition 94.13.3. It is clear that (1) and
(2) are equivalent as a functor between setoids is an equivalence if and only if it is
surjective on isomorphism classes. Finally, (1) and (3) are equivalent by Limits of
Spaces, Proposition 70.3.10. □

https://stacks.math.columbia.edu/tag/07XL
https://stacks.math.columbia.edu/tag/07XM
https://stacks.math.columbia.edu/tag/07XN
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Lemma 98.11.4.0CXI Let S be a scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . Assume ∆ : X → X × X is representable by algebraic spaces and X
is limit preserving. Then ∆ is locally of finite type.
Proof. We apply Criteria for Representability, Lemma 97.5.6. Let V be an affine
scheme V locally of finite presentation over S and let θ be an object of X × X
over V . Let Fθ be an algebraic space representing X ×∆,X ×X ,θ (Sch/V )fppf and
let fθ : Fθ → V be the canonical morphism (see Algebraic Stacks, Section 94.9).
It suffices to show that Fθ → V has the corresponding properties. By Lemmas
98.11.2 and 98.11.3 we see that Fθ → S is locally of finite presentation. It follows
that Fθ → V is locally of finite type by Morphisms of Spaces, Lemma 67.23.6. □

98.12. Versality

07XD In the previous section we explained how to approximate objects over complete
local rings by algebraic objects. But in order to show that a stack X is an algebraic
stack, we need to find smooth 1-morphisms from schemes towards X . Since we are
not going to assume a priori that X has a representable diagonal, we cannot even
speak about smooth morphisms towards X . Instead, borrowing terminology from
deformation theory, we will introduce versal objects.
Definition 98.12.1.0CXJ Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf
be a category fibred in groupoids. Let ξ = (R, ξn, fn) be a formal object. Set
k = R/m and x0 = ξ1. We will say that ξ is versal if ξ as a formal object of FX ,k,x0

(Remark 98.9.2) is versal in the sense of Formal Deformation Theory, Definition
90.8.9.
We briefly spell out what this means. With notation as in the definition, sup-
pose given morphisms ξ1 = x0 → y → z of X lying over closed immersions
Spec(k) → Spec(A) → Spec(B) where A,B are Artinian local rings with residue
field k. Suppose given an n ≥ 1 and a commutative diagram

y

~~
ξn ξ1

OO

oo

lying over

Spec(A)

xx
Spec(R/mn) Spec(k)

OO

oo

Versality means that for any data as above there exists anm ≥ n and a commutative
diagram

z

~~

y

~~

OO

ξm ξnoo ξ1

OO

oo

lying over

Spec(B)

ww

Spec(A)

xx

OO

Spec(R/mm) Spec(R/mn)oo Spec(k)

OO

oo

Please compare with Formal Deformation Theory, Remark 90.8.10.
Let S be a locally Noetherian scheme. Let U be a scheme over S with structure
morphism U → S locally of finite type. Let u0 ∈ U be a finite type point of
U , see Morphisms, Definition 29.16.3. Set k = κ(u0). Note that the composition

https://stacks.math.columbia.edu/tag/0CXI
https://stacks.math.columbia.edu/tag/0CXJ
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Spec(k) → S is also of finite type, see Morphisms, Lemma 29.15.3. Let p : X →
(Sch/S)fppf be a category fibred in groupoids. Let x be an object of X which lies
over U . Denote x0 the pullback of x by u0. By the 2-Yoneda lemma x corresponds
to a 1-morphism

x : (Sch/U)fppf −→ X ,
see Algebraic Stacks, Section 94.5. We obtain a morphism of predeformation cate-
gories

(98.12.1.1)07XE x̂ : F(Sch/U)fppf ,k,u0 −→ FX ,k,x0 ,

over CΛ see (98.3.1.1).

Definition 98.12.2.07XF Let S be a locally Noetherian scheme. Let X be fibred in
groupoids over (Sch/S)fppf . Let U be a scheme locally of finite type over S. Let x
be an object of X lying over U . Let u0 be finite type point of U . We say x is versal
at u0 if the morphism x̂ (98.12.1.1) is smooth, see Formal Deformation Theory,
Definition 90.8.1.

This definition matches our notion of versality for formal objects of X .

Lemma 98.12.3.0CXK With notation as in Definition 98.12.2. Let R = O∧
U,u0

. Let ξ be
the formal object of X over R associated to x|Spec(R), see (98.9.3.1). Then

x is versal at u0 ⇔ ξ is versal

Proof. Observe that OU,u0 is a Noetherian local S-algebra with residue field k.
Hence R = O∧

U,u0
is an object of C∧

Λ , see Formal Deformation Theory, Definition
90.4.1. Recall that ξ is versal if ξ : R|CΛ → FX ,k,x0 is smooth and x is versal
at u0 if x̂ : F(Sch/U)fppf ,k,u0 → FX ,k,x0 is smooth. There is an identification of
predeformation categories

R|CΛ = F(Sch/U)fppf ,k,u0 ,

see Formal Deformation Theory, Remark 90.7.12 for notation. Namely, given an
Artinian local S-algebra A with residue field identified with k we have

MorC∧
Λ

(R,A) = {φ ∈ MorS(Spec(A), U) | φ|Spec(k) = u0}

Unwinding the definitions the reader verifies that the resulting map

R|CΛ = F(Sch/U)fppf ,k,u0
x̂−→ FX ,k,x0 ,

is equal to ξ and we see that the lemma is true. □

Here is a sanity check.

Lemma 98.12.4.0CXL Let S be a locally Noetherian scheme. Let f : U → V be a
morphism of schemes locally of finite type over S. Let u0 ∈ U be a finite type
point. The following are equivalent

(1) f is smooth at u0,
(2) f viewed as an object of (Sch/V )fppf over U is versal at u0.

Proof. This is a restatement of More on Morphisms, Lemma 37.12.1. □

It turns out that this notion is well behaved with respect to field extensions.

https://stacks.math.columbia.edu/tag/07XF
https://stacks.math.columbia.edu/tag/0CXK
https://stacks.math.columbia.edu/tag/0CXL
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Lemma 98.12.5.07XG Let S, X , U , x, u0 be as in Definition 98.12.2. Let l be a field
and let ul,0 : Spec(l) → U be a morphism with image u0 such that l/k = κ(u0) is
finite. Set xl,0 = x0|Spec(l). If X satisfies (RS) and x is versal at u0, then

F(Sch/U)fppf ,l,ul,0 −→ FX ,l,xl,0

is smooth.
Proof. Note that (Sch/U)fppf satisfies (RS) by Lemma 98.5.2. Hence the functor
of the lemma is the functor

(F(Sch/U)fppf ,k,u0)l/k −→ (FX ,k,x0)l/k
associated to x̂, see Lemma 98.7.1. Hence the lemma follows from Formal Defor-
mation Theory, Lemma 90.29.5. □

The following lemma is another sanity check. It more or less signifies that if x is
versal at u0 as in Definition 98.12.2, then x viewed as a morphism from U to X is
smooth whenever we make a base change by a scheme.
Lemma 98.12.6.0CXM Let S, X , U , x, u0 be as in Definition 98.12.2. Assume

(1) ∆ : X → X ×X is representable by algebraic spaces,
(2) ∆ is locally of finite type (for example if X is limit preserving), and
(3) X has (RS).

Let V be a scheme locally of finite type over S and let y be an object of X over V .
Form the 2-fibre product

Z //

��

(Sch/U)fppf
x

��
(Sch/V )fppf

y // X

Let Z be the algebraic space representing Z and let z0 ∈ |Z| be a finite type point
lying over u0. If x is versal at u0, then the morphism Z → V is smooth at z0.
Proof. (The parenthetical remark in the statement holds by Lemma 98.11.4.) Ob-
serve that Z exists by assumption (1) and Algebraic Stacks, Lemma 94.10.11. By
assumption (2) we see that Z → V ×S U is locally of finite type. Choose a scheme
W , a closed point w0 ∈W , and an étale morphism W → Z mapping w0 to z0, see
Morphisms of Spaces, Definition 67.25.2. Then W is locally of finite type over S
and w0 is a finite type point of W . Let l = κ(z0). Denote zl,0, vl,0, ul,0, and xl,0 the
objects of Z, (Sch/V )fppf , (Sch/U)fppf , and X over Spec(l) obtained by pullback
to Spec(l) = w0. Consider

F(Sch/W )fppf ,l,w0
// FZ,l,zl,0

��

// F(Sch/U)fppf ,l,ul,0

��
F(Sch/V )fppf ,l,vl,0

// FX ,l,xl,0

By Lemma 98.3.3 the square is a fibre product of predeformation categories. By
Lemma 98.12.5 we see that the right vertical arrow is smooth. By Formal Defor-
mation Theory, Lemma 90.8.7 the left vertical arrow is smooth. By Lemma 98.3.2
we see that the left horizontal arrow is smooth. We conclude that the map

F(Sch/W )fppf ,l,w0 → F(Sch/V )fppf ,l,vl,0

https://stacks.math.columbia.edu/tag/07XG
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is smooth by Formal Deformation Theory, Lemma 90.8.7. Thus we conclude that
W → V is smooth at w0 by More on Morphisms, Lemma 37.12.1. This exactly
means that Z → V is smooth at z0 and the proof is complete. □

We restate the approximation result in terms of versal objects.

Lemma 98.12.7.07XH Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf
be a category fibred in groupoids. Let ξ = (R, ξn, fn) be a formal object of X with
ξ1 lying over Spec(k)→ S with image s ∈ S. Assume

(1) ξ is versal,
(2) ξ is effective,
(3) OS,s is a G-ring, and
(4) p : X → (Sch/S)fppf is limit preserving on objects.

Then there exist a morphism of finite type U → S, a finite type point u0 ∈ U with
residue field k, and an object x of X over U such that x is versal at u0 and such
that x|Spec(OU,u0/m

n
u0 ) ∼= ξn.

Proof. Choose an object xR of X lying over Spec(R) whose associated formal object
is ξ. Let N = 2 and apply Lemma 98.10.1. We obtain A,mA, xA, . . .. Let η =
(A∧, ηn, gn) be the formal object associated to xA|Spec(A∧). We have a diagram

η

��
ξ //

;;

ξ2 = η2

lying over

A∧

��
R //

88

R/m2
R = A/m2

A

The versality of ξ means exactly that we can find the dotted arrows in the diagrams,
because we can successively find morphisms ξ → η3, ξ → η4, and so on by Formal
Deformation Theory, Remark 90.8.10. The corresponding ring map R → A∧ is
surjective by Formal Deformation Theory, Lemma 90.4.2. On the other hand, we
have dimk m

n
R/m

n+1
R = dimk m

n
A/m

n+1
A for all n by construction. Hence R/mnR

and A/mnA have the same (finite) length as Λ-modules by additivity of length and
Formal Deformation Theory, Lemma 90.3.4. It follows that R/mnR → A/mnA is an
isomorphism for all n, hence R→ A∧ is an isomorphism. Thus η is isomorphic to a
versal object, hence versal itself. By Lemma 98.12.3 we conclude that xA is versal
at the point u0 of U = Spec(A) corresponding to mA. □

Example 98.12.8.07XI In this example we show that the local ring OS,s has to be a
G-ring in order for the result of Lemma 98.12.7 to be true. Namely, let Λ be a
Noetherian ring and let m be a maximal ideal of Λ. Set R = Λ∧

m. Let Λ→ C → R
be a factorization with C of finite type over Λ. Set S = Spec(Λ), U = S \ {m}, and
S′ = U ⨿ Spec(C). Consider the functor F : (Sch/S)oppfppf → Sets defined by the
rule

F (T ) =
{
∗ if T → S factors through S′

∅ else
Let X = SF is the category fibred in sets associated to F , see Algebraic Stacks,
Section 94.7. Then X → (Sch/S)fppf is limit preserving on objects and there exists
an effective, versal formal object ξ over R. Hence if the conclusion of Lemma 98.12.7
holds for X , then there exists a finite type ring map Λ → A and a maximal ideal
mA lying over m such that

https://stacks.math.columbia.edu/tag/07XH
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(1) κ(m) = κ(mA),
(2) Λ→ A and mA satisfy condition (4) of Algebra, Lemma 10.141.2, and
(3) there exists a Λ-algebra map C → A.

Thus Λ→ A is smooth at mA by the lemma cited. Slicing A we may assume that
Λ → A is étale at mA, see for example More on Morphisms, Lemma 37.38.5 or
argue directly. Write C = Λ[y1, . . . , yn]/(f1, . . . , fm). Then C → R corresponds to
a solution in R of the system of equations f1 = . . . = fm = 0, see Smoothing Ring
Maps, Section 16.13. Thus if the conclusion of Lemma 98.12.7 holds for every X
as above, then a system of equations which has a solution in R has a solution in
the henselization of Λm. In other words, the approximation property holds for Λhm.
This implies that Λhm is a G-ring (insert future reference here; see also discussion in
Smoothing Ring Maps, Section 16.1) which in turn implies that Λm is a G-ring.

98.13. Openness of versality

07XP Next, we come to openness of versality.

Definition 98.13.1.07XQ Let S be a locally Noetherian scheme.
(1) Let X be a category fibred in groupoids over (Sch/S)fppf . We say X

satisfies openness of versality if given a scheme U locally of finite type
over S, an object x of X over U , and a finite type point u0 ∈ U such that
x is versal at u0, then there exists an open neighbourhood u0 ∈ U ′ ⊂ U
such that x is versal at every finite type point of U ′.

(2) Let f : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . We say f satisfies openness of versality if given a scheme U
locally of finite type over S, an object y of Y over U , openness of versality
holds for (Sch/U)fppf ×Y X .

Openness of versality is often the hardest to check. The following example shows
that requiring this is necessary however.

Example 98.13.2.07XR Let k be a field and set Λ = k[s, t]. Consider the functor
F : Λ-algebras −→ Sets defined by the rule

F (A) =

∗ if there exist f1, . . . , fn ∈ A such that
A = (s, t, f1, . . . , fn) and fis = 0 ∀i

∅ else
Geometrically F (A) = ∗ means there exists a quasi-compact open neighbourhood
W of V (s, t) ⊂ Spec(A) such that s|W = 0. Let X ⊂ (Sch/ Spec(Λ))fppf be
the full subcategory consisting of schemes T which have an affine open covering
T =

⋃
Spec(Aj) with F (Aj) = ∗ for all j. Then X satisfies [0], [1], [2], [3], and [4]

but not [5]. Namely, over U = Spec(k[s, t]/(s)) there exists an object x which is
versal at u0 = (s, t) but not at any other point. Details omitted.

Let S be a locally Noetherian scheme. Let f : X → Y be a 1-morphism of categories
fibred in groupoids over (Sch/S)fppf . Consider the following property

(98.13.2.1)07XS for all fields k of finite type over S and all x0 ∈ Ob(XSpec(k)) the
map FX ,k,x0 → FY,k,f(x0) of predeformation categories is smooth

We formulate some lemmas around this concept. First we link it with (openness
of) versality.

https://stacks.math.columbia.edu/tag/07XQ
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Lemma 98.13.3.07XT Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf . Let U be a scheme locally of finite type over S. Let
x be an object of X over U . Assume that x is versal at every finite type point of U
and that X satisfies (RS). Then x : (Sch/U)fppf → X satisfies (98.13.2.1).

Proof. Let Spec(l)→ U be a morphism with l of finite type over S. Then the image
u0 ∈ U is a finite type point of U and l/κ(u0) is a finite extension, see discussion
in Morphisms, Section 29.16. Hence we see that F(Sch/U)fppf ,l,ul,0 → FX ,l,xl,0 is
smooth by Lemma 98.12.5. □

Lemma 98.13.4.07XU Let S be a locally Noetherian scheme. Let f : X → Y and
g : Y → Z be composable 1-morphisms of categories fibred in groupoids over
(Sch/S)fppf . If f and g satisfy (98.13.2.1) so does g ◦ f .

Proof. This follows formally from Formal Deformation Theory, Lemma 90.8.7. □

Lemma 98.13.5.07XV Let S be a locally Noetherian scheme. Let f : X → Y and Z → Y
be 1-morphisms of categories fibred in groupoids over (Sch/S)fppf . If f satisfies
(98.13.2.1) so does the projection X ×Y Z → Z.

Proof. Follows immediately from Lemma 98.3.3 and Formal Deformation Theory,
Lemma 90.8.7. □

Lemma 98.13.6.07XW Let S be a locally Noetherian scheme. Let f : X → Y be a
1-morphisms of categories fibred in groupoids over (Sch/S)fppf . If f is formally
smooth on objects, then f satisfies (98.13.2.1). If f is representable by algebraic
spaces and smooth, then f satisfies (98.13.2.1).

Proof. A reformulation of Lemma 98.3.2. □

Lemma 98.13.7.07XX Let S be a locally Noetherian scheme. Let f : X → Y be a
1-morphism of categories fibred in groupoids over (Sch/S)fppf . Assume

(1) f is representable by algebraic spaces,
(2) f satisfies (98.13.2.1),
(3) X → (Sch/S)fppf is limit preserving on objects, and
(4) Y is limit preserving.

Then f is smooth.

Proof. The key ingredient of the proof is More on Morphisms, Lemma 37.12.1
which (almost) says that a morphism of schemes of finite type over S satisfying
(98.13.2.1) is a smooth morphism. The other arguments of the proof are essentially
bookkeeping.

Let V be a scheme over S and let y be an object of Y over V . Let Z be an
algebraic space representing the 2-fibre product Z = X ×f,X ,y (Sch/V )fppf . We
have to show that the projection morphism Z → V is smooth, see Algebraic Stacks,
Definition 94.10.1. In fact, it suffices to do this when V is an affine scheme locally
of finite presentation over S, see Criteria for Representability, Lemma 97.5.6. Then
(Sch/V )fppf is limit preserving by Lemma 98.11.3. Hence Z → S is locally of finite
presentation by Lemmas 98.11.2 and 98.11.3. Choose a scheme W and a surjective
étale morphism W → Z. Then W is locally of finite presentation over S.

https://stacks.math.columbia.edu/tag/07XT
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Since f satisfies (98.13.2.1) we see that so does Z → (Sch/V )fppf , see Lemma
98.13.5. Next, we see that (Sch/W )fppf → Z satisfies (98.13.2.1) by Lemma
98.13.6. Thus the composition

(Sch/W )fppf → Z → (Sch/V )fppf
satisfies (98.13.2.1) by Lemma 98.13.4. More on Morphisms, Lemma 37.12.1 shows
that the composition W → Z → V is smooth at every finite type point w0 of W .
Since the smooth locus is open we conclude that W → V is a smooth morphism
of schemes by Morphisms, Lemma 29.16.7. Thus we conclude that Z → V is a
smooth morphism of algebraic spaces by definition. □

The lemma below is how we will use openness of versality.

Lemma 98.13.8.07XY Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf
be a category fibred in groupoids. Let k be a finite type field over S and let x0 be
an object of X over Spec(k) with image s ∈ S. Assume

(1) ∆ : X → X ×X is representable by algebraic spaces,
(2) X satisfies axioms [1], [2], [3] (see Section 98.14),
(3) every formal object of X is effective,
(4) openness of versality holds for X , and
(5) OS,s is a G-ring.

Then there exist a morphism of finite type U → S and an object x of X over U
such that

x : (Sch/U)fppf −→ X
is smooth and such that there exists a finite type point u0 ∈ U whose residue field
is k and such that x|u0

∼= x0.

Proof. By axiom [2], Lemma 98.6.1, and Remark 98.6.2 we see that FX ,k,x0 satisfies
(S1) and (S2). Since also the tangent space has finite dimension by axiom [3] we
deduce from Formal Deformation Theory, Lemma 90.13.4 that FX ,k,x0 has a versal
formal object ξ. Assumption (3) says ξ is effective. By axiom [1] and Lemma
98.12.7 there exists a morphism of finite type U → S, an object x of X over U , and
a finite type point u0 of U with residue field k such that x is versal at u0 and such
that x|Spec(k) ∼= x0. By openness of versality we may shrink U and assume that x
is versal at every finite type point of U . We claim that

x : (Sch/U)fppf −→ X
is smooth which proves the lemma. Namely, by Lemma 98.13.3 x satisfies (98.13.2.1)
whereupon Lemma 98.13.7 finishes the proof. □

98.14. Axioms

07XJ Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be a category
fibred in groupoids. Here are the axioms we will consider on X .

[-1] a set theoretic condition1 to be ignored by readers who are not interested
in set theoretical issues,

[0] X is a stack in groupoids for the étale topology,

1The condition is the following: the supremum of all the cardinalities |Ob(XSpec(k))/ ∼= |
and |Arrows(XSpec(k))| where k runs over the finite type fields over S is ≤ than the size of some
object of (Sch/S)fppf .

https://stacks.math.columbia.edu/tag/07XY
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[1] X is limit preserving,
[2] X satisfies the Rim-Schlessinger condition (RS),
[3] the spaces TFX ,k,x0 and Inf(FX ,k,x0) are finite dimensional for every k

and x0, see (98.8.0.1) and (98.8.0.2),
[4] the functor (98.9.3.1) is an equivalence,
[5] X and ∆ : X → X ×X satisfy openness of versality.

98.15. Axioms for functors

07XZ Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor. Denote X = SF the
category fibred in sets associated to F , see Algebraic Stacks, Section 94.7. In this
section we provide a translation between the material above as it applies to X , to
statements about F .

Let S be a locally Noetherian scheme. Let F : (Sch/S)oppfppf → Sets be a functor.
Let k be a field of finite type over S. Let x0 ∈ F (Spec(k)). The associated
predeformation category (98.3.0.2) corresponds to the functor

Fk,x0 : CΛ −→ Sets, A 7−→ {x ∈ F (Spec(A)) | x|Spec(k) = x0}.

Recall that we do not distinguish between categories cofibred in sets over CΛ and
functor CΛ → Sets, see Formal Deformation Theory, Remarks 90.5.2 (11). Given a
transformation of functors a : F → G, setting y0 = a(x0) we obtain a morphism

Fk,x0 −→ Gk,y0

see (98.3.1.1). Lemma 98.3.2 tells us that if a : F → G is formally smooth (in the
sense of More on Morphisms of Spaces, Definition 76.13.1), then Fk,x0 −→ Gk,y0 is
smooth as in Formal Deformation Theory, Remark 90.8.4.

Lemma 98.4.1 says that if Y ′ = Y ⨿X X ′ in the category of schemes over S where
X → X ′ is a thickening and X → Y is affine, then the map

F (Y ⨿X X ′)→ F (Y )×F (X) F (X ′)

is a bijection, provided that F is an algebraic space. We say a general functor
F satisfies the Rim-Schlessinger condition or we say F satisfies (RS) if given any
pushout Y ′ = Y ⨿X X ′ where Y,X,X ′ are spectra of Artinian local rings of finite
type over S, then

F (Y ⨿X X ′)→ F (Y )×F (X) F (X ′)
is a bijection. Thus every algebraic space satisfies (RS).

Lemma 98.6.1 says that given a functor F which satisfies (RS), then all Fk,x0 are
deformation functors as in Formal Deformation Theory, Definition 90.16.8, i.e., they
satisfy (RS) as in Formal Deformation Theory, Remark 90.16.5. In particular the
tangent space

TFk,x0 = {x ∈ F (Spec(k[ϵ])) | x|Spec(k) = x0}
has the structure of a k-vector space by Formal Deformation Theory, Lemma
90.12.2.

Lemma 98.8.1 says that an algebraic space F locally of finite type over S gives rise
to deformation functors Fk,x0 with finite dimensional tangent spaces TFk,x0 .
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A formal object2 ξ = (R, ξn) of F consists of a Noetherian complete local S-
algebra R whose residue field is of finite type over S, together with elements
ξn ∈ F (Spec(R/mn)) such that ξn+1|Spec(R/mn) = ξn. A formal object ξ defines a
formal object ξ of FR/m,ξ1 . We say ξ is versal if and only if it is versal in the sense
of Formal Deformation Theory, Definition 90.8.9. A formal object ξ = (R, ξn) is
called effective if there exists an x ∈ F (Spec(R)) such that ξn = x|Spec(R/mn) for all
n ≥ 1. Lemma 98.9.5 says that if F is an algebraic space, then every formal object
is effective.

Let U be a scheme locally of finite type over S and let x ∈ F (U). Let u0 ∈
U be a finite type point. We say that x is versal at u0 if and only if ξ =
(O∧

U,u0
, x|Spec(OU,u0/m

n
u0 )) is a versal formal object in the sense described above.

Let S be a locally Noetherian scheme. Let F : (Sch/S)oppfppf → Sch be a functor.
Here are the axioms we will consider on F .

[-1] a set theoretic condition3 to be ignored by readers who are not interested
in set theoretical issues,

[0] F is a sheaf for the étale topology,
[1] F is limit preserving,
[2] F satisfies the Rim-Schlessinger condition (RS),
[3] every tangent space TFk,x0 is finite dimensional,
[4] every formal object is effective,
[5] F satisfies openness of versality.

Here limit preserving is the notion defined in Limits of Spaces, Definition 70.3.1
and openness of versality means the following: Given a scheme U locally of finite
type over S, given x ∈ F (U), and given a finite type point u0 ∈ U such that x is
versal at u0, then there exists an open neighbourhood u0 ∈ U ′ ⊂ U such that x is
versal at every finite type point of U ′.

98.16. Algebraic spaces

07Y0 The following is our first main result on algebraic spaces.

Proposition 98.16.1.07Y1 Let S be a locally Noetherian scheme. Let F : (Sch/S)oppfppf →
Sets be a functor. Assume that

(1) ∆ : F → F × F is representable by algebraic spaces,
(2) F satisfies axioms [-1], [0], [1], [2], [3], [4], [5] (see Section 98.15), and
(3) OS,s is a G-ring for all finite type points s of S.

Then F is an algebraic space.

Proof. Lemma 98.13.8 applies to F . Using this we choose, for every finite type field
k over S and x0 ∈ F (Spec(k)), an affine scheme Uk,x0 of finite type over S and a
smooth morphism Uk,x0 → F such that there exists a finite type point uk,x0 ∈ Uk,x0

with residue field k such that x0 is the image of uk,x0 . Then

U =
∐

k,x0
Uk,x0 −→ F

2This is what Artin calls a formal deformation.
3The condition is the following: the supremum of all the cardinalities |F (Spec(k))| where k

runs over the finite type fields over S is ≤ than the size of some object of (Sch/S)fppf .

https://stacks.math.columbia.edu/tag/07Y1
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is smooth4. To finish the proof it suffices to show this map is surjective, see Boot-
strap, Lemma 80.12.3 (this is where we use axiom [0]). By Criteria for Repre-
sentability, Lemma 97.5.6 it suffices to show that U ×F V → V is surjective for
those V → F where V is an affine scheme locally of finite presentation over S. Since
U ×F V → V is smooth the image is open. Hence it suffices to show that the image
of U×F V → V contains all finite type points of V , see Morphisms, Lemma 29.16.7.
Let v0 ∈ V be a finite type point. Then k = κ(v0) is a finite type field over S. De-
note x0 the composition Spec(k) v0−→ V → F . Then (uk,x0 , v0) : Spec(k)→ U ×F V
is a point mapping to v0 and we win. □

Lemma 98.16.2.07Y2 Let S be a locally Noetherian scheme. Let a : F → G be a
transformation of functors (Sch/S)oppfppf → Sets. Assume that

(1) a is injective,
(2) F satisfies axioms [0], [1], [2], [4], and [5],
(3) OS,s is a G-ring for all finite type points s of S,
(4) G is an algebraic space locally of finite type over S,

Then F is an algebraic space.

Proof. By Lemma 98.8.1 the functor G satisfies [3]. As F → G is injective, we
conclude that F also satisfies [3]. Moreover, as F → G is injective, we see that given
schemes U , V and morphisms U → F and V → F , then U ×F V = U ×G V . Hence
∆ : F → F × F is representable (by schemes) as this holds for G by assumption.
Thus Proposition 98.16.1 applies5. □

98.17. Algebraic stacks

07Y3 Proposition 98.17.2 is our first main result on algebraic stacks.

Lemma 98.17.1.07Y4 Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf
be a category fibred in groupoids. Assume that

(1) ∆ : X → X ×X is representable by algebraic spaces,
(2) X satisfies axioms [-1], [0], [1], [2], [3] (see Section 98.14),
(3) every formal object of X is effective,
(4) X satisfies openness of versality, and
(5) OS,s is a G-ring for all finite type points s of S.

Then X is an algebraic stack.

Proof. Lemma 98.13.8 applies to X . Using this we choose, for every finite type field
k over S and every isomorphism class of object x0 ∈ Ob(XSpec(k)), an affine scheme
Uk,x0 of finite type over S and a smooth morphism (Sch/Uk,x0)fppf → X such that
there exists a finite type point uk,x0 ∈ Uk,x0 with residue field k such that x0 is the
image of uk,x0 . Then

(Sch/U)fppf → X , with U =
∐

k,x0
Uk,x0

4Set theoretical remark: This coproduct is (isomorphic) to an object of (Sch/S)fppf as we
have a bound on the index set by axiom [-1], see Sets, Lemma 3.9.9.

5The set theoretic condition [-1] holds for F as it holds for G. Details omitted.
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is smooth6. To finish the proof it suffices to show this map is surjective, see Criteria
for Representability, Lemma 97.19.1 (this is where we use axiom [0]). By Crite-
ria for Representability, Lemma 97.5.6 it suffices to show that (Sch/U)fppf ×X
(Sch/V )fppf → (Sch/V )fppf is surjective for those y : (Sch/V )fppf → X where V
is an affine scheme locally of finite presentation over S. By assumption (1) the fibre
product (Sch/U)fppf ×X (Sch/V )fppf is representable by an algebraic space W .
Then W → V is smooth, hence the image is open. Hence it suffices to show that
the image of W → V contains all finite type points of V , see Morphisms, Lemma
29.16.7. Let v0 ∈ V be a finite type point. Then k = κ(v0) is a finite type field
over S. Denote x0 = y|Spec(k) the pullback of y by v0. Then (uk,x0 , v0) will give a
morphism Spec(k)→W whose composition with W → V is v0 and we win. □

Proposition 98.17.2.07Y5 Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf
be a category fibred in groupoids. Assume that

(1) ∆∆ : X → X ×X ×X X is representable by algebraic spaces,
(2) X satisfies axioms [-1], [0], [1], [2], [3], [4], and [5] (see Section 98.14),
(3) OS,s is a G-ring for all finite type points s of S.

Then X is an algebraic stack.

Proof. We first prove that ∆ : X → X ×X is representable by algebraic spaces. To
do this it suffices to show that

Y = X ×∆,X ×X ,y (Sch/V )fppf
is representable by an algebraic space for any affine scheme V locally of finite
presentation over S and object y of X ×X over V , see Criteria for Representability,
Lemma 97.5.57. Observe that Y is fibred in setoids (Stacks, Lemma 8.2.5) and let
Y : (Sch/S)oppfppf → Sets, T 7→ Ob(YT )/ ∼= be the functor of isomorphism classes.
We will apply Proposition 98.16.1 to see that Y is an algebraic space.

Note that ∆Y : Y → Y × Y (and hence also Y → Y × Y ) is representable by
algebraic spaces by condition (1) and Criteria for Representability, Lemma 97.4.4.
Observe that Y is a sheaf for the étale topology by Stacks, Lemmas 8.6.3 and 8.6.7,
i.e., axiom [0] holds. Also Y is limit preserving by Lemma 98.11.2, i.e., we have [1].
Note that Y has (RS), i.e., axiom [2] holds, by Lemmas 98.5.2 and 98.5.3. Axiom
[3] for Y follows from Lemmas 98.8.1 and 98.8.2. Axiom [4] follows from Lemmas
98.9.5 and 98.9.6. Axiom [5] for Y follows directly from openness of versality for
∆X which is part of axiom [5] for X . Thus all the assumptions of Proposition
98.16.1 are satisfied and Y is an algebraic space.

At this point it follows from Lemma 98.17.1 that X is an algebraic stack. □

98.18. Strong Rim-Schlessinger

0CXN In the rest of this chapter the following strictly stronger version of the Rim-
Schlessinger conditions will play an important role.

6Set theoretical remark: This coproduct is (isomorphic to) an object of (Sch/S)fppf as we
have a bound on the index set by axiom [-1], see Sets, Lemma 3.9.9.

7The set theoretic condition in Criteria for Representability, Lemma 97.5.5 will hold: the size
of the algebraic space Y representing Y is suitably bounded. Namely, Y → S will be locally of
finite type and Y will satisfy axiom [-1]. Details omitted.

https://stacks.math.columbia.edu/tag/07Y5
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Definition 98.18.1.07Y8 Let S be a scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . We say X satisfies condition (RS*) if given a fibre product diagram

B′ // B

A′ = A×B B′

OO

// A

OO

of S-algebras, with B′ → B surjective with square zero kernel, the functor of fibre
categories

XSpec(A′) −→ XSpec(A) ×XSpec(B) XSpec(B′)

is an equivalence of categories.

We make some observations: with A→ B ← B′ as in Definition 98.18.1
(1) we have Spec(A′) = Spec(A)⨿Spec(B) Spec(B′) in the category of schemes,

see More on Morphisms, Lemma 37.14.3, and
(2) if X is an algebraic stack, then X satisfies (RS*) by Lemma 98.18.2.

If S is locally Noetherian, then
(3) if A, B, B′ are of finite type over S and B is finite over A, then A′ is of

finite type over S8, and
(4) if X satisfies (RS*), then X satisfies (RS) because (RS) covers exactly

those cases of (RS*) where A, B, B′ are Artinian local.

Lemma 98.18.2.0CXP Let X be an algebraic stack over a base S. Then X satisfies (RS*).

Proof. This is implied by Lemma 98.4.1, see remarks following Definition 98.18.1.
□

Lemma 98.18.3.0CXQ Let S be a scheme. Let p : X → Y and q : Z → Y be 1-morphisms
of categories fibred in groupoids over (Sch/S)fppf . If X , Y, and Z satisfy (RS*),
then so does X ×Y Z.

Proof. The proof is exactly the same as the proof of Lemma 98.5.3. □

98.19. Versality and generalizations

0G2I We prove that versality is preserved under generalizations for stacks which have
(RS*) and are limit preserving. We suggest skipping this section on a first reading.

Lemma 98.19.1.0G2J Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf having (RS*). Let x be an object of X over an affine
scheme U of finite type over S. Let u ∈ U be a finite type point such that x is not
versal at u. Then there exists a morphism x→ y of X lying over U → T satisfying

(1) the morphism U → T is a first order thickening,
(2) we have a short exact sequence

0→ κ(u)→ OT → OU → 0

8If Spec(A) maps into an affine open of S this follows from More on Algebra, Lemma 15.5.1.
The general case follows using More on Algebra, Lemma 15.5.3.

https://stacks.math.columbia.edu/tag/07Y8
https://stacks.math.columbia.edu/tag/0CXP
https://stacks.math.columbia.edu/tag/0CXQ
https://stacks.math.columbia.edu/tag/0G2J
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(3) there does not exist a pair (W,α) consisting of an open neighbourhood
W ⊂ T of u and a morphism β : y|W → x such that the composition

x|U∩W
restriction of x→y−−−−−−−−−−−→ y|W

β−→ x

is the canonical morphism x|U∩W → x.

Proof. Let R = O∧
U,u. Let k = κ(u) be the residue field of R. Let ξ be the formal

object of X over R associated to x. Since x is not versal at u, we see that ξ is
not versal, see Lemma 98.12.3. By the discussion following Definition 98.12.1 this
means we can find morphisms ξ1 → xA → xB of X lying over closed immersions
Spec(k) → Spec(A) → Spec(B) where A,B are Artinian local rings with residue
field k, an n ≥ 1 and a commutative diagram

xA

~~
ξn ξ1

OO

oo

lying over

Spec(A)

xx
Spec(R/mn) Spec(k)

OO

oo

such that there does not exist an m ≥ n and a commutative diagram

xB

}}

xA

~~

OO

ξm ξnoo ξ1

OO

oo

lying over

Spec(B)

ww

Spec(A)

xx

OO

Spec(R/mm) Spec(R/mn)oo Spec(k)

OO

oo

We may moreover assume that B → A is a small extension, i.e., that the kernel
I of the surjection B → A is isomorphic to k as an A-module. This follows from
Formal Deformation Theory, Remark 90.8.10. Then we simply define

T = U ⨿Spec(A) Spec(B)
By property (RS*) we find y over T whose restriction to Spec(B) is xB and whose
restriction to U is x (this gives the arrow x → y lying over U → T ). To finish the
proof we verify conditions (1), (2), and (3).
By the construction of the pushout we have a commutative diagram

0 // I // B // A // 0

0 // I //

OO

Γ(T,OT ) //

OO

Γ(U,OU ) //

OO

0

with exact rows. This immediately proves (1) and (2). To finish the proof we will
argue by contradiction. Assume we have a pair (W,β) as in (3). Since Spec(B)→ T
factors through W we get the morphism

xB → y|W
β−→ x

Since B is Artinian local with residue field k = κ(u) we see that xB → x lies over a
morphism Spec(B)→ U which factors through Spec(OU,u/mmu ) for some m ≥ n. In
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other words, xB → x factors through ξm giving a map xB → ξm. The compatibility
condition on the morphism α in condition (3) translates into the condition that

xB

��

xA

��

oo

ξm ξnoo

is commutative. This gives the contradiction we were looking for. □

Lemma 98.19.2.0G2K Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf . Assume

(1) ∆ : X → X ×X is representable by algebraic spaces,
(2) X has (RS*),
(3) X is limit preserving.

Let x be an object of X over a scheme U of finite type over S. Let u ⇝ u0 be a
specialization of finite type points of U such that x is versal at u0. Then x is versal
at u.

Proof. After shrinking U we may assume U is affine and U maps into an affine open
Spec(Λ) of S. If x is not versal at u then we may pick x→ y lying over U → T as
in Lemma 98.19.1. Write U = Spec(R0) and T = Spec(R). The morphism U → T
corresponds to a surjective ring map R → R0 whose kernel is an ideal of square
zero. By assumption (3) we get that y comes from an object x′ over U ′ = Spec(R′)
for some finite type Λ-subalgebra R′ ⊂ R. After increasing R′ we may and do
assume that R′ → R0 is surjective, so that U ⊂ U ′ is a first order thickening. Thus
we now have

x→ y → x′ lying over U → T → U ′

By assumption (1) there is an algebraic space Z over S representing
(Sch/U)fppf ×x,X ,x′ (Sch/U ′)fppf

see Algebraic Stacks, Lemma 94.10.11. By construction of 2-fibre products, a V -
valued point of Z corresponds to a triple (a, a′, α) consisting of morphisms a : V →
U , a′ : V → U ′ and a morphism α : a∗x → (a′)∗x′. We obtain a commutative
diagram

U

��

��

''
Z

p′
//

p

��

U ′

��
U // S

The morphism i : U → Z comes the isomorphism x→ x′|U . Let z0 = i(u0) ∈ Z. By
Lemma 98.12.6 we see that Z → U ′ is smooth at z0. After replacing U by an affine
open neighbourhood of u0, replacing U ′ by the corresponding open, and replacing
Z by the intersection of the inverse images of these opens by p and p′, we reach the
situation where Z → U ′ is smooth along i(U). Since u⇝ u0 the point u is in this
open. Condition (3) of Lemma 98.19.1 is clearly preserved by shrinking U (all of
the schemes U , T , U ′ have the same underlying topological space). Since U → U ′

is a first order thickening of affine schemes, we can choose a morphism i′ : U ′ → Z

https://stacks.math.columbia.edu/tag/0G2K
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such that p′ ◦ i′ = idU ′ and whose restriction to U is i (More on Morphisms of
Spaces, Lemma 76.19.6). Pulling back the universal morphism p∗x→ (p′)∗x′ by i′
we obtain a morphism

x′ → x

lying over p ◦ i′ : U ′ → U such that the composition
x→ x′ → x

is the identity. Recall that we have y → x′ lying over the morphism T → U ′.
Composing we get a morphism y → x whose existence contradicts condition (3) of
Lemma 98.19.1. This contradiction finishes the proof. □

98.20. Strong formal effectiveness

0CXR In this section we demonstrate how a strong version of effectiveness of formal objects
implies openness of versality. The proof of [Bha16, Theorem 1.1] shows that quasi-
compact and quasi-separated algebraic spaces satisfy the strong formal effectiveness
discussed in Remark 98.20.2. In addition, the theory we develop is nonempty: we
use it later to show openness of versality for the stack of coherent sheaves and for
moduli of complexes, see Quot, Theorems 99.6.1 and 99.16.12.

Lemma 98.20.1.0G2S Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf having (RS*). Let x be an object of X over an affine
scheme U of finite type over S. Let un ∈ U , n ≥ 1 be finite type points such that
(a) there are no specializations un ⇝ um for n ̸= m, and (b) x is not versal at un
for all n. Then there exist morphisms

x→ x1 → x2 → . . . in X lying over U → U1 → U2 → . . .

over S such that
(1) for each n the morphism U → Un is a first order thickening,
(2) for each n we have a short exact sequence

0→ κ(un)→ OUn → OUn−1 → 0
with U0 = U for n = 1,

(3) for each n there does not exist a pair (W,α) consisting of an open neigh-
bourhood W ⊂ Un of un and a morphism α : xn|W → x such that the
composition

x|U∩W
restriction of x→xn−−−−−−−−−−−−→ xn|W

α−→ x

is the canonical morphism x|U∩W → x.

Proof. Since there are no specializations among the points un (and in particular
the un are pairwise distinct), for every n we can find an open U ′ ⊂ U such that
un ∈ U ′ and ui ̸∈ U ′ for i = 1, . . . , n− 1. By Lemma 98.19.1 for each n ≥ 1 we can
find

x→ yn in X lying over U → Tn

such that
(1) the morphism U → Tn is a first order thickening,
(2) we have a short exact sequence

0→ κ(un)→ OTn → OU → 0

https://stacks.math.columbia.edu/tag/0G2S
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(3) there does not exist a pair (W,α) consisting of an open neighbourhood
W ⊂ Tn of un and a morphism β : yn|W → x such that the composition

x|U∩W
restriction of x→yn−−−−−−−−−−−−→ yn|W

β−→ x

is the canonical morphism x|U∩W → x.
Thus we can define inductively

U1 = T1, Un+1 = Un ⨿U Tn+1

Setting x1 = y1 and using (RS*) we find inductively xn+1 over Un+1 restricting
to xn over Un and yn+1 over Tn+1. Property (1) for U → Un follows from the
construction of the pushout in More on Morphisms, Lemma 37.14.3. Property (2)
for Un similarly follows from property (2) for Tn by the construction of the pushout.
After shrinking to an open neighbourhood U ′ of un as discussed above, property (3)
for (Un, xn) follows from property (3) for (Tn, yn) simply because the corresponding
open subschemes of Tn and Un are isomorphic. Some details omitted. □

Remark 98.20.2 (Strong effectiveness).0CXT Let S be a locally Noetherian scheme. Let
X be a category fibred in groupoids over (Sch/S)fppf . Assume we have

(1) an affine open Spec(Λ) ⊂ S,
(2) an inverse system (Rn) of Λ-algebras with surjective transition maps

whose kernels are locally nilpotent,
(3) a system (ξn) of objects of X lying over the system (Spec(Rn)).

In this situation, set R = limRn. We say that (ξn) is effective if there exists an
object ξ of X over Spec(R) whose restriction to Spec(Rn) gives the system (ξn).

It is not the case that every algebraic stack X over S satisfies a strong effectiveness
axiom of the form: every system (ξn) as in Remark 98.20.2 is effective. An example
is given in Examples, Section 110.72.

Lemma 98.20.3.0CXU Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf . Assume

(1) ∆ : X → X ×X is representable by algebraic spaces,
(2) X has (RS*),
(3) X is limit preserving,
(4) systems (ξn) as in Remark 98.20.2 where Ker(Rm → Rn) is an ideal of

square zero for all m ≥ n are effective.
Then X satisfies openness of versality.

Proof. Choose a scheme U locally of finite type over S, a finite type point u0 of U ,
and an object x of X over U such that x is versal at u0. After shrinking U we may
assume U is affine and U maps into an affine open Spec(Λ) of S. Let E ⊂ U be the
set of finite type points u such that x is not versal at u. By Lemma 98.19.2 if u ∈ E
then u0 is not a specialization of u. If openness of versality does not hold, then u0
is in the closure E of E. By Properties, Lemma 28.5.13 we may choose a countable
subset E′ ⊂ E with the same closure as E. By Properties, Lemma 28.5.12 we may
assume there are no specializations among the points of E′. Observe that E′ has to
be (countably) infinite as u0 isn’t the specialization of any point of E′ as pointed
out above. Thus we can write E′ = {u1, u2, u3, . . .}, there are no specializations
among the ui, and u0 is in the closure of E′.

https://stacks.math.columbia.edu/tag/0CXT
https://stacks.math.columbia.edu/tag/0CXU
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Choose x → x1 → x2 → . . . lying over U → U1 → U2 → . . . as in Lemma 98.20.1.
Write Un = Spec(Rn) and U = Spec(R0). Set R = limRn. Observe that R → R0
is surjective with kernel an ideal of square zero. By assumption (4) we get ξ over
Spec(R) whose base change to Rn is xn. By assumption (3) we get that ξ comes
from an object ξ′ over U ′ = Spec(R′) for some finite type Λ-subalgebra R′ ⊂ R.
After increasing R′ we may and do assume that R′ → R0 is surjective, so that
U ⊂ U ′ is a first order thickening. Thus we now have

x→ x1 → x2 → . . .→ ξ′ lying over U → U1 → U2 → . . .→ U ′

By assumption (1) there is an algebraic space Z over S representing
(Sch/U)fppf ×x,X ,ξ′ (Sch/U ′)fppf

see Algebraic Stacks, Lemma 94.10.11. By construction of 2-fibre products, a T -
valued point of Z corresponds to a triple (a, a′, α) consisting of morphisms a : T →
U , a′ : T → U ′ and a morphism α : a∗x → (a′)∗ξ′. We obtain a commutative
diagram

U

��

��

''
Z

p′
//

p

��

U ′

��
U // S

The morphism i : U → Z comes the isomorphism x→ ξ′|U . Let z0 = i(u0) ∈ Z. By
Lemma 98.12.6 we see that Z → U ′ is smooth at z0. After replacing U by an affine
open neighbourhood of u0, replacing U ′ by the corresponding open, and replacing
Z by the intersection of the inverse images of these opens by p and p′, we reach
the situation where Z → U ′ is smooth along i(U). Note that this also involves
replacing un by a subsequence, namely by those indices such that un is in the open.
Moreover, condition (3) of Lemma 98.20.1 is clearly preserved by shrinking U (all of
the schemes U , Un, U ′ have the same underlying topological space). Since U → U ′

is a first order thickening of affine schemes, we can choose a morphism i′ : U ′ → Z
such that p′ ◦ i′ = idU ′ and whose restriction to U is i (More on Morphisms of
Spaces, Lemma 76.19.6). Pulling back the universal morphism p∗x→ (p′)∗ξ′ by i′
we obtain a morphism

ξ′ → x

lying over p ◦ i′ : U ′ → U such that the composition
x→ ξ′ → x

is the identity. Recall that we have x1 → ξ′ lying over the morphism U1 → U ′.
Composing we get a morphism x1 → x whose existence contradicts condition (3)
of Lemma 98.20.1. This contradiction finishes the proof. □

Remark 98.20.4.0CXV There is a way to deduce openness of versality of the diagonal
of an category fibred in groupoids from a strong formal effectiveness axiom. Let
S be a locally Noetherian scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . Assume

(1) ∆∆ : X → X ×X ×X X is representable by algebraic spaces,
(2) X has (RS*),

https://stacks.math.columbia.edu/tag/0CXV
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(3) X is limit preserving,
(4) given an inverse system (Rn) of S-algebras as in Remark 98.20.2 where

Ker(Rm → Rn) is an ideal of square zero for all m ≥ n the functor
XSpec(limRn) −→ limn XSpec(Rn)

is fully faithful.
Then ∆ : X → X × X satisfies openness of versality. This follows by applying
Lemma 98.20.3 to fibre products of the form X ×∆,X ×X ,y (Sch/V )fppf for any
affine scheme V locally of finite presentation over S and object y of X × X over
V . If we ever need this, we will change this remark into a lemma and provide a
detailed proof.

98.21. Infinitesimal deformations

07Y6 In this section we discuss a generalization of the notion of the tangent space in-
troduced in Section 98.8. To do this intelligently, we borrow some notation from
Formal Deformation Theory, Sections 90.11, 90.17, and 90.19.
Let S be a scheme. Let X be a category fibred in groupoids over (Sch/S)fppf .
Given a homomorphism A′ → A of S-algebras and an object x of X over Spec(A)
we write Lift(x,A′) for the category of lifts of x to Spec(A′). An object of Lift(x,A′)
is a morphism x → x′ of X lying over Spec(A) → Spec(A′) and morphisms of
Lift(x,A′) are defined as commutative diagrams. The set of isomorphism classes
of Lift(x,A′) is denoted Lift(x,A′). See Formal Deformation Theory, Definition
90.17.1 and Remark 90.17.2. If A′ → A is surjective with locally nilpotent kernel
we call an element x′ of Lift(x,A′) a (infinitesimal) deformation of x. In this case
the group of infinitesimal automorphisms of x′ over x is the kernel

Inf(x′/x) = Ker
(

AutXSpec(A′)(x
′)→ AutXSpec(A)(x)

)
Note that an element of Inf(x′/x) is the same thing as a lift of idx over Spec(A′)
for (the category fibred in sets associated to) AutX (x′). Compare with Formal
Deformation Theory, Definition 90.19.1 and Formal Deformation Theory, Remark
90.19.8.
If M is an A-module we denote A[M ] the A-algebra whose underlying A-module
is A⊕M and whose multiplication is given by (a,m) · (a′,m′) = (aa′, am′ + a′m).
When M = A this is the ring of dual numbers over A, which we denote A[ϵ]
as is customary. There is an A-algebra map A[M ] → A. The pullback of x to
Spec(A[M ]) is called the trivial deformation of x to Spec(A[M ]).

Lemma 98.21.1.07Y7 Let S be a scheme. Let f : X → Y be a 1-morphism of categories
fibred in groupoids over (Sch/S)fppf . Let

B′ // B

A′

OO

// A

OO

be a commutative diagram of S-algebras. Let x be an object of X over Spec(A),
let y be an object of Y over Spec(B), and let ϕ : f(x)|Spec(B) → y be a morphism
of Y over Spec(B). Then there is a canonical functor

Lift(x,A′) −→ Lift(y,B′)

https://stacks.math.columbia.edu/tag/07Y7
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of categories of lifts induced by f and ϕ. The construction is compatible with
compositions of 1-morphisms of categories fibred in groupoids in an obvious manner.

Proof. This lemma proves itself. □

Let S be a base scheme. Let X be a category fibred in groupoids over (Sch/S)fppf .
We define a category whose objects are pairs (x,A′ → A) where

(1) A′ → A is a surjection of S-algebras whose kernel is an ideal of square
zero,

(2) x is an object of X lying over Spec(A).
A morphism (y,B′ → B)→ (x,A′ → A) is given by a commutative diagram

B′ // B

A′

OO

// A

OO

of S-algebras together with a morphism x|Spec(B) → y over Spec(B). Let us call
this the category of deformation situations.

Lemma 98.21.2.07Y9 Let S be a scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . Assume X satisfies condition (RS*). Let A be an S-algebra and let
x be an object of X over Spec(A).

(1) There exists an A-linear functor Infx : ModA → ModA such that given a
deformation situation (x,A′ → A) and a lift x′ there is an isomorphism
Infx(I)→ Inf(x′/x) where I = Ker(A′ → A).

(2) There exists an A-linear functor Tx : ModA → ModA such that
(a) given M in ModA there is a bijection Tx(M)→ Lift(x,A[M ]),
(b) given a deformation situation (x,A′ → A) there is an action

Tx(I)× Lift(x,A′)→ Lift(x,A′)
where I = Ker(A′ → A). It is simply transitive if Lift(x,A′) ̸= ∅.

Proof. We define Infx as the functor
ModA −→ Sets, M −→ Inf(x′

M/x) = Lift(idx, A[M ])
mapping M to the group of infinitesimal automorphisms of the trivial deformation
x′
M of x to Spec(A[M ]) or equivalently the group of lifts of idx in AutX (x′

M ). We
define Tx as the functor

ModA −→ Sets, M −→ Lift(x,A[M ])
of isomorphism classes of infintesimal deformations of x to Spec(A[M ]). We ap-
ply Formal Deformation Theory, Lemma 90.11.4 to Infx and Tx. This lemma is
applicable, since (RS*) tells us that

Lift(x,A[M ×N ]) = Lift(x,A[M ])× Lift(x,A[N ])
as categories (and trivial deformations match up too).
Let (x,A′ → A) be a deformation situation. Consider the ring map g : A′×AA′ →
A[I] defined by the rule g(a1, a2) = a1 ⊕ a2 − a1. There is an isomorphism

A′ ×A A′ −→ A′ ×A A[I]

https://stacks.math.columbia.edu/tag/07Y9
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given by (a1, a2) 7→ (a1, g(a1, a2)). This isomorphism commutes with the projec-
tions to A′ on the first factor, and hence with the projections to A. Thus applying
(RS*) twice we find equivalences of categories

Lift(x,A′)× Lift(x,A′) = Lift(x,A′ ×A A′)
= Lift(x,A′ ×A A[I])
= Lift(x,A′)× Lift(x,A[I])

Using these maps and projection onto the last factor of the last product we see that
we obtain “difference maps”

Inf(x′/x)× Inf(x′/x) −→ Infx(I) and Lift(x,A′)× Lift(x,A′) −→ Tx(I)
These difference maps satisfy the transitivity rule “(x′

1−x′
2) + (x′

2−x′
3) = x′

1−x′
3”

because
A′ ×A A′ ×A A′

(a1,a2,a3) 7→(g(a1,a2),g(a2,a3))
//

(a1,a2,a3) 7→g(a1,a3)
,,

A[I]×A A[I] = A[I × I]

+
��

A[I]

is commutative. Inverting the string of equivalences above we obtain an action
which is free and transitive provided Inf(x′/x), resp. Lift(x,A′) is nonempty. Note
that Inf(x′/x) is always nonempty as it is a group. □

Remark 98.21.3 (Functoriality).07YA Assumptions and notation as in Lemma 98.21.2.
Suppose A→ B is a ring map and y = x|Spec(B). Let M ∈ ModA, N ∈ ModB and
let M → N an A-linear map. Then there are canonical maps Infx(M) → Infy(N)
and Tx(M)→ Ty(N) simply because there is a pullback functor

Lift(x,A[M ])→ Lift(y,B[N ])
coming from the ring map A[M ] → B[N ]. Similarly, given a morphism of de-
formation situations (y,B′ → B) → (x,A′ → A) we obtain a pullback functor
Lift(x,A′) → Lift(y,B′). Since the construction of the action, the addition, and
the scalar multiplication on Infx and Tx use only morphisms in the categories of
lifts (see proof of Formal Deformation Theory, Lemma 90.11.4) we see that the
constructions above are functorial. In other words we obtain A-linear maps

Infx(M)→ Infy(N) and Tx(M)→ Ty(N)
such that the diagrams

Infy(J) // Inf(y′/y)

Infx(I) //

OO

Inf(x′/x)

OO

and

Ty(J)× Lift(y,B′) // Lift(y,B′)

Tx(I)× Lift(x,A′) //

OO

Lift(x,A′)

OO

commute. Here I = Ker(A′ → A), J = Ker(B′ → B), x′ is a lift of x to A′ (which
may not always exist) and y′ = x′|Spec(B′).

Remark 98.21.4 (Automorphisms).07YB Assumptions and notation as in Lemma 98.21.2.
Let x′, x′′ be lifts of x to A′. Then we have a composition map

Inf(x′/x)×MorLift(x,A′)(x′, x′′)× Inf(x′′/x) −→ MorLift(x,A′)(x′, x′′).

https://stacks.math.columbia.edu/tag/07YA
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Since Lift(x,A′) is a groupoid, if MorLift(x,A′)(x′, x′′) is nonempty, then this defines
a simply transitive left action of Inf(x′/x) on MorLift(x,A′)(x′, x′′) and a simply tran-
sitive right action by Inf(x′′/x). Now the lemma says that Inf(x′/x) = Infx(I) =
Inf(x′′/x). We claim that the two actions described above agree via these identifi-
cations. Namely, either x′ ̸∼= x′′ in which the claim is clear, or x′ ∼= x′′ and in that
case we may assume that x′′ = x′ in which case the result follows from the fact
that Inf(x′/x) is commutative. In particular, we obtain a well defined action

Infx(I)×MorLift(x,A′)(x′, x′′) −→ MorLift(x,A′)(x′, x′′)
which is simply transitive as soon as MorLift(x,A′)(x′, x′′) is nonempty.

Remark 98.21.5.07YE Let S be a scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . Let A be an S-algebra. There is a notion of a short exact sequence

(x,A′
1 → A)→ (x,A′

2 → A)→ (x,A′
3 → A)

of deformation situations: we ask the corresponding maps between the kernels
Ii = Ker(A′

i → A) give a short exact sequence
0→ I3 → I2 → I1 → 0

of A-modules. Note that in this case the map A′
3 → A′

1 factors through A, hence
there is a canonical isomorphism A′

1 = A[I1].

Lemma 98.21.6.0DNN Let S be a scheme. Let p : X → Y and q : Z → Y be 1-morphisms
of categories fibred in groupoids over (Sch/S)fppf . Assume X , Y, Z satisfy (RS*).
Let A be an S-algebra and let w be an object ofW = X ×YZ over A. Denote x, y, z
the objects of X ,Y,Z you get from w. For any A-module M there is a 6-term exact
sequence

0 // Infw(M) // Infx(M)⊕ Infz(M) // Infy(M)

ss
Tw(M) // Tx(M)⊕ Tz(M) // Ty(M)

of A-modules.

Proof. By Lemma 98.18.3 we see that W satisfies (RS*) and hence Tw(M) and
Infw(M) are defined. The horizontal arrows are defined using the functoriality of
Lemma 98.21.1.
Definition of the “boundary” map δ : Infy(M) → Tw(M). Choose isomorphisms
p(x) → y and y → q(z) such that w = (x, z, p(x) → y → q(z)) in the description
of the 2-fibre product of Categories, Lemma 4.35.7 and more precisely Categories,
Lemma 4.32.3. Let x′, y′, z′, w′ denote the trivial deformation of x, y, z, w over
A[M ]. By pullback we get isomorphisms y′ → p(x′) and q(z′) → y′. An element
α ∈ Infy(M) is the same thing as an automorphism α : y′ → y′ over A[M ] which
restricts to the identity on y over A. Thus setting

δ(α) = (x′, z′, p(x′)→ y′ α−→ y′ → q(z′))
we obtain an object of Tw(M). This is a map of A-modules by Formal Deformation
Theory, Lemma 90.11.5.
The rest of the proof is exactly the same as the proof of Formal Deformation Theory,
Lemma 90.20.1. □

https://stacks.math.columbia.edu/tag/07YE
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Remark 98.21.7 (Compatibility with previous tangent spaces).0D18 Let S be a locally
Noetherian scheme. Let X be a category fibred in groupoids over (Sch/S)fppf .
Assume X has (RS*). Let k be a field of finite type over S and let x0 be an object
of X over Spec(k). Then we have equalities of k-vector spaces

TFX ,k,x0 = Tx0(k) and Inf(FX ,k,x0) = Infx0(k)
where the spaces on the left hand side of the equality signs are given in (98.8.0.1)
and (98.8.0.2) and the spaces on the right hand side are given by Lemma 98.21.2.

Remark 98.21.8 (Canonical element).07YC Assumptions and notation as in Lemma
98.21.2. Choose an affine open Spec(Λ) ⊂ S such that Spec(A) → S corresponds
to a ring map Λ→ A. Consider the ring map

A −→ A[ΩA/Λ], a 7−→ (a,dA/Λ(a))
Pulling back x along the corresponding morphism Spec(A[ΩA/Λ]) → Spec(A) we
obtain a deformation xcan of x over A[ΩA/Λ]. We call this the canonical element

xcan ∈ Tx(ΩA/Λ) = Lift(x,A[ΩA/Λ]).
Next, assume that Λ is Noetherian and Λ → A is of finite type. Let k = κ(p) be
a residue field at a finite type point u0 of U = Spec(A). Let x0 = x|u0 . By (RS*)
and the fact that A[k] = A ×k k[k] the space Tx(k) is the tangent space to the
deformation functor FX ,k,x0 . Via

TFU,k,u0 = DerΛ(A, k) = HomA(ΩA/Λ, k)
(see Formal Deformation Theory, Example 90.11.11) and functoriality of Tx the
canonical element produces the map on tangent spaces induced by the object x
over U . Namely, θ ∈ TFU,k,u0 maps to Tx(θ)(xcan) in Tx(k) = TFX ,k,x0 .

Remark 98.21.9 (Canonical automorphism).07YD Let S be a locally Noetherian scheme.
Let X be a category fibred in groupoids over (Sch/S)fppf . Assume X satisfies
condition (RS*). Let A be an S-algebra such that Spec(A) → S maps into an
affine open and let x, y be objects of X over Spec(A). Further, let A→ B be a ring
map and let α : x|Spec(B) → y|Spec(B) be a morphism of X over Spec(B). Consider
the ring map

B −→ B[ΩB/A], b 7−→ (b,dB/A(b))
Pulling back α along the corresponding morphism Spec(B[ΩB/A]) → Spec(B) we
obtain a morphism αcan between the pullbacks of x and y over B[ΩB/A]. On
the other hand, we can pullback α by the morphism Spec(B[ΩB/A]) → Spec(B)
corresponding to the injection of B into the first summand of B[ΩB/A]. By the
discussion of Remark 98.21.4 we can take the difference

φ(x, y, α) = αcan − α|Spec(B[ΩB/A]) ∈ Infx|Spec(B)(ΩB/A).
We will call this the canonical automorphism. It depends on all the ingredients A,
x, y, A→ B and α.

98.22. Obstruction theories

07YF In this section we describe what an obstruction theory is. Contrary to the spaces of
infinitesimal deformations and infinitesimal automorphisms, an obstruction theory
is an additional piece of data. The formulation is motivated by the results of Lemma
98.21.2 and Remark 98.21.3.

https://stacks.math.columbia.edu/tag/0D18
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Definition 98.22.1.07YG Let S be a locally Noetherian base. Let X be a category fibred
in groupoids over (Sch/S)fppf . An obstruction theory is given by the following
data

(1) for every S-algebra A such that Spec(A) → S maps into an affine open
and every object x of X over Spec(A) an A-linear functor

Ox : ModA → ModA
of obstruction modules,

(2) for (x,A) as in (1), a ring map A → B, M ∈ ModA, N ∈ ModB , and an
A-linear map M → N an induced A-linear map Ox(M)→ Oy(N) where
y = x|Spec(B), and

(3) for every deformation situation (x,A′ → A) an obstruction element ox(A′) ∈
Ox(I) where I = Ker(A′ → A).

These data are subject to the following conditions
(i) the functoriality maps turn the obstruction modules into a functor from

the category of triples (x,A,M) to sets,
(ii) for every morphism of deformation situations (y,B′ → B)→ (x,A′ → A)

the element ox(A′) maps to oy(B′), and
(iii) we have

Lift(x,A′) ̸= ∅ ⇔ ox(A′) = 0
for every deformation situation (x,A′ → A).

This last condition explains the terminology. The module Ox(A′) is called the
obstruction module. The element ox(A′) is the obstruction. Most obstruction
theories have additional properties, and in order to make them useful additional
conditions are needed. Moreover, this is just a sample definition, for example in
the definition we could consider only deformation situations of finite type over S.
One of the main reasons for introducing obstruction theories is to check openness of
versality. An example of this type of result is Lemma 98.22.2 below. The initial idea
to do this is due to Artin, see the papers of Artin mentioned in the introduction.
It has been taken up for example in the work by Flenner [Fle81], Hall [Hal17],
Hall and Rydh [HR12], Olsson [Ols06a], Olsson and Starr [OS03], and Lieblich
[Lie06a] (random order of references). Moreover, for particular categories fibred in
groupoids, often authors develop a little bit of theory adapted to the problem at
hand. We will develop this theory later (insert future reference here).

Lemma 98.22.2.0CYF This is [Hal17,
Theorem 4.4]

Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf . Assume

(1) ∆ : X → X ×X is representable by algebraic spaces,
(2) X has (RS*),
(3) X is limit preserving,
(4) there exists an obstruction theory9,
(5) for an object x of X over Spec(A) and A-modules Mn, n ≥ 1 we have

(a) Tx(
∏
Mn) =

∏
Tx(Mn),

(b) Ox(
∏
Mn)→

∏
Ox(Mn) is injective.

9Analyzing the proof the reader sees that in fact it suffices to check the functoriality (ii) of
obstruction classes in Definition 98.22.1 for maps (y,B′ → B) → (x,A′ → A) with B = A and
y = x.

https://stacks.math.columbia.edu/tag/07YG
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Then X satisfies openness of versality.

Proof. We prove this by verifying condition (4) of Lemma 98.20.3. Let (ξn) and
(Rn) be as in Remark 98.20.2 such that Ker(Rm → Rn) is an ideal of square zero
for all m ≥ n. Set A = R1 and x = ξ1. Denote Mn = Ker(Rn → R1). Then Mn is
an A-module. Set R = limRn. Let

R̃ = {(r1, r2, r3 . . .) ∈
∏

Rn such that all have the same image in A}

Then R̃ → A is surjective with kernel M =
∏
Mn. There is a map R → R̃ and a

map R̃ → A[M ], (r1, r2, r3, . . .) 7→ (r1, r2 − r1, r3 − r2, . . .). Together these give a
short exact sequence

(x,R→ A)→ (x, R̃→ A)→ (x,A[M ])

of deformation situations, see Remark 98.21.5. The associated sequence of kernels
0 → limMn → M → M → 0 is the canonical sequence computing the limit of the
system of modules (Mn).

Let ox(R̃) ∈ Ox(M) be the obstruction element. Since we have the lifts ξn we see
that ox(R̃) maps to zero in Ox(Mn). By assumption (5)(b) we see that ox(R̃) = 0.
Choose a lift ξ̃ of x to Spec(R̃). Let ξ̃n be the restriction of ξ̃ to Spec(Rn). There
exists elements tn ∈ Tx(Mn) such that tn·ξ̃n = ξn by Lemma 98.21.2 part (2)(b). By
assumption (5)(a) we can find t ∈ Tx(M) mapping to tn in Tx(Mn). After replacing
ξ̃ by t · ξ̃ we find that ξ̃ restricts to ξn over Spec(Rn) for all n. In particular, since
ξn+1 restricts to ξn over Spec(Rn), the restriction ξ of ξ̃ to Spec(A[M ]) has the
property that it restricts to the trivial deformation over Spec(A[Mn]) for all n.
Hence by assumption (5)(a) we find that ξ is the trivial deformation of x. By
axiom (RS*) applied to R = R̃ ×A[M ] A this implies that ξ̃ is the pullback of a
deformation ξ of x over R. This finishes the proof. □

Example 98.22.3.07YH Let S = Spec(Λ) for some Noetherian ring Λ. Let W → S be a
morphism of schemes. Let F be a quasi-coherent OW -module flat over S. Consider
the functor

F : (Sch/S)oppfppf −→ Sets, T/S −→ H0(WT ,FT )
where WT = T ×S W is the base change and FT is the pullback of F to WT . If
T = Spec(A) we will write WT = WA, etc. Let X → (Sch/S)fppf be the category
fibred in groupoids associated to F . Then X has an obstruction theory. Namely,

(1) given A over Λ and x ∈ H0(WA,FA) we set Ox(M) = H1(WA,FA⊗AM),
(2) given a deformation situation (x,A′ → A) we let ox(A′) ∈ Ox(A) be the

image of x under the boundary map

H0(WA,FA) −→ H1(WA,FA ⊗A I)

coming from the short exact sequence of modules

0→ FA ⊗A I → FA′ → FA → 0.

We have omitted some details, in particular the construction of the short exact
sequence above (it uses that WA and WA′ have the same underlying topological
space) and the explanation for why flatness of F over S implies that the sequence
above is short exact.

https://stacks.math.columbia.edu/tag/07YH
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Example 98.22.4 (Key example).07YI Let S = Spec(Λ) for some Noetherian ring Λ.
Say X = (Sch/X)fppf with X = Spec(R) and R = Λ[x1, . . . , xn]/J . The naive
cotangent complex NLR/Λ is (canonically) homotopy equivalent to

J/J2 −→
⊕

i=1,...,n
Rdxi,

see Algebra, Lemma 10.134.2. Consider a deformation situation (x,A′ → A). De-
note I the kernel of A′ → A. The object x corresponds to (a1, . . . , an) with ai ∈ A
such that f(a1, . . . , an) = 0 in A for all f ∈ J . Set

Ox(A′) = HomR(J/J2, I)/HomR(R⊕n, I)
= Ext1

R(NLR/Λ, I)
= Ext1

A(NLR/Λ⊗RA, I).

Choose lifts a′
i ∈ A′ of ai in A. Then ox(A′) is the class of the map J/J2 → I

defined by sending f ∈ J to f(a′
1, . . . , a

′
n) ∈ I. We omit the verification that ox(A′)

is independent of choices. It is clear that if ox(A′) = 0 then the map lifts. Finally,
functoriality is straightforward. Thus we obtain an obstruction theory. We observe
that ox(A′) can be described a bit more canonically as the composition

NLR/Λ → NLA/Λ → NLA/A′ = I[1]

in D(A), see Algebra, Lemma 10.134.6 for the last identification.

98.23. Naive obstruction theories

07YJ The title of this section refers to the fact that we will use the naive cotangent
complex in this section. Let (x,A′ → A) be a deformation situation for a given
category fibred in groupoids over a locally Noetherian scheme S. The key Example
98.22.4 suggests that any obstruction theory should be closely related to maps in
D(A) with target the naive cotangent complex of A. Working this out we find a
criterion for versality in Lemma 98.23.3 which leads to a criterion for openness of
versality in Lemma 98.23.4. We introduce a notion of a naive obstruction theory
in Definition 98.23.5 to try to formalize the notion a bit further.

In the following we will use the naive cotangent complex as defined in Algebra,
Section 10.134. In particular, if A′ → A is a surjection of Λ-algebras with square
zero kernel I, then there are maps

NLA′/Λ → NLA/Λ → NLA/A′

whose composition is homotopy equivalent to zero (see Algebra, Remark 10.134.5).
This doesn’t form a distinguished triangle in general as we are using the naive
cotangent complex and not the full one. There is a homotopy equivalenceNLA/A′ →
I[1] (the complex consisting of I placed in degree−1, see Algebra, Lemma 10.134.6).
Finally, note that there is a canonical map NLA/Λ → ΩA/Λ.

Lemma 98.23.1.07YK Let A → k be a ring map with k a field. Let E ∈ D−(A). Then
ExtiA(E, k) = Homk(H−i(E ⊗L k), k).

Proof. Omitted. Hint: Replace E by a bounded above complex of free A-modules
and compute both sides. □

https://stacks.math.columbia.edu/tag/07YI
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Lemma 98.23.2.07YL Let Λ → A → k be finite type ring maps of Noetherian rings
with k = κ(p) for some prime p of A. Let ξ : E → NLA/Λ be morphism of D−(A)
such that H−1(ξ ⊗L k) is not surjective. Then there exists a surjection A′ → A of
Λ-algebras such that

(a) I = Ker(A′ → A) has square zero and is isomorphic to k as an A-module,
(b) ΩA′/Λ ⊗ k = ΩA/Λ ⊗ k, and
(c) E → NLA/A′ is zero.

Proof. Let f ∈ A, f ̸∈ p. Suppose that A′′ → Af satisfies (a), (b), (c) for the
induced map E ⊗A Af → NLAf/Λ, see Algebra, Lemma 10.134.13. Then we can
set A′ = A′′ ×Af A and get a solution. Namely, it is clear that A′ → A satisfies
(a) because Ker(A′ → A) = Ker(A′′ → A) = I. Pick f ′′ ∈ A′′ lifting f . Then the
localization of A′ at (f ′′, f) is isomorphic to A′′ (for example by More on Algebra,
Lemma 15.5.3). Thus (b) and (c) are clear for A′ too. In this way we see that we
may replace A by the localization Af (finitely many times). In particular (after
such a replacement) we may assume that p is a maximal ideal of A, see Morphisms,
Lemma 29.16.1.
Choose a presentation A = Λ[x1, . . . , xn]/J . Then NLA/Λ is (canonically) homo-
topy equivalent to

J/J2 −→
⊕

i=1,...,n
Adxi,

see Algebra, Lemma 10.134.2. After localizing if necessary (using Nakayama’s
lemma) we can choose generators f1, . . . , fm of J such that fj ⊗ 1 form a ba-
sis for J/J2 ⊗A k. Moreover, after renumbering, we can assume that the im-
ages of df1, . . . ,dfr form a basis for the image of J/J2 ⊗ k →

⊕
kdxi and that

dfr+1, . . . ,dfm map to zero in
⊕
kdxi. With these choices the space

H−1(NLA/Λ⊗L
Ak) = H−1(NLA/Λ⊗Ak)

has basis fr+1⊗ 1, . . . , fm⊗ 1. Changing basis once again we may assume that the
image of H−1(ξ ⊗L k) is contained in the k-span of fr+1 ⊗ 1, . . . , fm−1 ⊗ 1. Set

A′ = Λ[x1, . . . , xn]/(f1, . . . , fm−1, pfm)
By construction A′ → A satisfies (a). Since dfm maps to zero in

⊕
kdxi we see

that (b) holds. Finally, by construction the induced map E → NLA/A′ = I[1]
induces the zero map H−1(E ⊗L

A k)→ I ⊗A k. By Lemma 98.23.1 we see that the
composition is zero. □

The following lemma is our key technical result.

Lemma 98.23.3.07YM Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf satisfying (RS*). Let U = Spec(A) be an affine
scheme of finite type over S which maps into an affine open Spec(Λ). Let x be an
object of X over U . Let ξ : E → NLA/Λ be a morphism of D−(A). Assume

(i) for every deformation situation (x,A′ → A) we have: x lifts to Spec(A′)
if and only if E → NLA/Λ → NLA/A′ is zero, and

(ii) there is an isomorphism of functors Tx(−)→ Ext0
A(E,−) such that E →

NLA/Λ → Ω1
A/Λ corresponds to the canonical element (see Remark 98.21.8).

Let u0 ∈ U be a finite type point with residue field k = κ(u0). Consider the
following statements

https://stacks.math.columbia.edu/tag/07YL
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(1) x is versal at u0, and
(2) ξ : E → NLA/Λ induces a surjection H−1(E ⊗L

A k) → H−1(NLA/Λ⊗L
Ak)

and an injection H0(E ⊗L
A k)→ H0(NLA/Λ⊗L

Ak).
Then we always have (2) ⇒ (1) and we have (1) ⇒ (2) if u0 is a closed point.

Proof. Let p = Ker(A→ k) be the prime corresponding to u0.

Assume that x versal at u0 and that u0 is a closed point of U . If H−1(ξ ⊗L
A k) is

not surjective, then let A′ → A be an extension with kernel I as in Lemma 98.23.2.
Because u0 is a closed point, we see that I is a finite A-module, hence that A′ is a
finite type Λ-algebra (this fails if u0 is not closed). In particular A′ is Noetherian.
By property (c) for A′ and (i) for ξ we see that x lifts to an object x′ over A′.
Let p′ ⊂ A′ be kernel of the surjective map to k. By Artin-Rees (Algebra, Lemma
10.51.2) there exists an n > 1 such that (p′)n ∩ I = 0. Then we see that

B′ = A′/(p′)n −→ A/pn = B

is a small, essential extension of local Artinian rings, see Formal Deformation The-
ory, Lemma 90.3.12. On the other hand, as x is versal at u0 and as x′|Spec(B′) is a
lift of x|Spec(B), there exists an integer m ≥ n and a map q : A/pm → B′ such that
the composition A/pm → B′ → B is the quotient map. Since the maximal ideal of
B′ has nth power equal to zero, this q factors through B which contradicts the fact
that B′ → B is an essential surjection. This contradiction shows that H−1(ξ⊗L

A k)
is surjective.

Assume that x versal at u0. By Lemma 98.23.1 the map H0(ξ ⊗L
A k) is dual to the

map Ext0
A(NLA/Λ, k)→ Ext0

A(E, k). Note that

Ext0
A(NLA/Λ, k) = DerΛ(A, k) and Tx(k) = Ext0

A(E, k)

Condition (ii) assures us the map Ext0
A(NLA/Λ, k) → Ext0

A(E, k) sends a tangent
vector θ to U at u0 to the corresponding infinitesimal deformation of x0, see Remark
98.21.8. Hence if x is versal, then this map is surjective, see Formal Deformation
Theory, Lemma 90.13.2. Hence H0(ξ ⊗L

A k) is injective. This finishes the proof of
(1) ⇒ (2) in case u0 is a closed point.

For the rest of the proof assume H−1(E ⊗L
A k) → H−1(NLA/Λ⊗L

Ak) is surjective
and H0(E ⊗L

A k) → H0(NLA/Λ⊗L
Ak) injective. Set R = A∧

p and let η be the
formal object over R associated to x|Spec(R). The map dη on tangent spaces is
surjective because it is identified with the dual of the injective map H0(E ⊗L

A

k)→ H0(NLA/Λ⊗L
Ak) (see previous paragraph). According to Formal Deformation

Theory, Lemma 90.13.2 it suffices to prove the following: Let C ′ → C be a small
extension of finite type Artinian local Λ-algebras with residue field k. Let R→ C be
a Λ-algebra map compatible with identifications of residue fields. Let y = x|Spec(C)
and let y′ be a lift of y to C ′. To show: we can lift the Λ-algebra map R → C to
R→ C ′.

Observe that it suffices to lift the Λ-algebra map A → C. Let I = Ker(C ′ → C).
Note that I is a 1-dimensional k-vector space. The obstruction ob to lifting A→ C
is an element of Ext1

A(NLA/Λ, I), see Example 98.22.4. By Lemma 98.23.1 and our
assumption the map ξ induces an injection

Ext1
A(NLA/Λ, I) −→ Ext1

A(E, I)
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By the construction of ob and (i) the image of ob in Ext1
A(E, I) is the obstruction

to lifting x to A ×C C ′. By (RS*) the fact that y/C lifts to y′/C ′ implies that x
lifts to A×C C ′. Hence ob = 0 and we are done. □

The key lemma above allows us to conclude that we have openness of versality in
some cases.

Lemma 98.23.4.07YN Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf satisfying (RS*). Let U = Spec(A) be an affine
scheme of finite type over S which maps into an affine open Spec(Λ). Let x be an
object of X over U . Let ξ : E → NLA/Λ be a morphism of D−(A). Assume

(i) for every deformation situation (x,A′ → A) we have: x lifts to Spec(A′)
if and only if E → NLA/Λ → NLA/A′ is zero,

(ii) there is an isomorphism of functors Tx(−)→ Ext0
A(E,−) such that E →

NLA/Λ → Ω1
A/Λ corresponds to the canonical element (see Remark 98.21.8),

(iii) the cohomology groups of E are finite A-modules.
If x is versal at a closed point u0 ∈ U , then there exists an open neighbourhood
u0 ∈ U ′ ⊂ U such that x is versal at every finite type point of U ′.

Proof. Let C be the cone of ξ so that we have a distinguished triangle
E → NLA/Λ → C → E[1]

in D−(A). By Lemma 98.23.3 the assumption that x is versal at u0 implies that
H−1(C ⊗L k) = 0. By More on Algebra, Lemma 15.76.4 there exists an f ∈ A not
contained in the prime corresponding to u0 such that H−1(C ⊗L

A M) = 0 for any
Af -module M . Using Lemma 98.23.3 again we see that we have versality for all
finite type points of the open D(f) ⊂ U . □

The technical lemmas above suggest the following definition.

Definition 98.23.5.07YP Let S be a locally Noetherian base. Let X be a category fibred
in groupoids over (Sch/S)fppf . Assume that X satisfies (RS*). A naive obstruction
theory is given by the following data

(1)07YQ for every S-algebra A such that Spec(A) → S maps into an affine open
Spec(Λ) ⊂ S and every object x of X over Spec(A) we are given an object
Ex ∈ D−(A) and a map ξx : E → NLA/Λ,

(2)07YR given (x,A) as in (1) there are transformations of functors

Infx(−)→ Ext−1
A (Ex,−) and Tx(−)→ Ext0

A(Ex,−)
(3)07YS for (x,A) as in (1) and a ring map A → B setting y = x|Spec(B) there is

a functoriality map Ex → Ey in D(A).
These data are subject to the following conditions

(i) in the situation of (3) the diagram

Ey
ξy

// NLB/Λ

Ex

OO

ξx // NLA/Λ

OO

is commutative in D(A),

https://stacks.math.columbia.edu/tag/07YN
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(ii) given (x,A) as in (1) and A → B → C setting y = x|Spec(B) and z =
x|Spec(C) the composition of the functoriality maps Ex → Ey and Ey → Ez
is the functoriality map Ex → Ez,

(iii) the maps of (2) are isomorphisms compatible with the functoriality maps
and the maps of Remark 98.21.3,

(iv) the composition Ex → NLA/Λ → ΩA/Λ corresponds to the canonical
element of Tx(ΩA/Λ) = Ext0(Ex,ΩA/Λ), see Remark 98.21.8,

(v) given a deformation situation (x,A′ → A) with I = Ker(A′ → A) the
composition Ex → NLA/Λ → NLA/A′ is zero in

HomA(Ex, NLA/Λ) = Ext0
A(Ex, NLA/A′) = Ext1

A(Ex, I)
if and only if x lifts to A′.

Thus we see in particular that we obtain an obstruction theory as in Section 98.22
by setting Ox(−) = Ext1

A(Ex,−).

Lemma 98.23.6.07YT Let S and X be as in Definition 98.23.5 and let X be endowed
with a naive obstruction theory. Let A → B and y → x be as in (3). Let k be a
B-algebra which is a field. Then the functoriality map Ex → Ey induces bijections

Hi(Ex ⊗L
A k)→ Hi(Ey ⊗L

B k)
for i = 0, 1.

Proof. Let z = x|Spec(k). Then (RS*) implies that
Lift(x,A[k]) = Lift(z, k[k]) and Lift(y,B[k]) = Lift(z, k[k])

because A[k] = A ×k k[k] and B[k] = B ×k k[k]. Hence the properties of a naive
obstruction theory imply that the functoriality map Ex → Ey induces bijections
ExtiA(Ex, k)→ ExtiB(Ey, k) for i = −1, 0. By Lemma 98.23.1 our maps Hi(Ex ⊗L

A

k) → Hi(Ey ⊗L
B k), i = 0, 1 induce isomorphisms on dual vector spaces hence are

isomorphisms. □

Lemma 98.23.7.07YU Let S be a locally Noetherian scheme. Let p : X → (Sch/S)oppfppf

be a category fibred in groupoids. Assume that X satisfies (RS*) and that X has
a naive obstruction theory. Then openness of versality holds for X provided the
complexes Ex of Definition 98.23.5 have finitely generated cohomology groups for
pairs (A, x) where A is of finite type over S.

Proof. Let U be a scheme locally of finite type over S, let x be an object of X over
U , and let u0 be a finite type point of U such that x is versal at u0. We may first
shrink U to an affine scheme such that u0 is a closed point and such that U → S
maps into an affine open Spec(Λ). Say U = Spec(A). Let ξx : Ex → NLA/Λ be the
obstruction map. At this point we may apply Lemma 98.23.4 to conclude. □

98.24. A dual notion

07YV Let (x,A′ → A) be a deformation situation for a given category X fibred in
groupoids over a locally Noetherian scheme S. Assume X has an obstruction the-
ory, see Definition 98.22.1. In practice one often has a complex K• of A-modules
and isomorphisms of functors

Infx(−)→ H0(K• ⊗L
A −), Tx(−)→ H1(K• ⊗L

A −), Ox(−)→ H2(K• ⊗L
A −)

https://stacks.math.columbia.edu/tag/07YT
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In this section we formalize this a little bit and show how this leads to a verification
of openness of versality in some cases.

Example 98.24.1.07YW Let Λ, S,W,F be as in Example 98.22.3. Assume that W → S
is proper and F coherent. By Cohomology of Schemes, Remark 30.22.2 there exists
a finite complex of finite projective Λ-modules N• which universally computes the
cohomology of F . In particular the obstruction spaces from Example 98.22.3 are
Ox(M) = H1(N• ⊗Λ M). Hence with K• = N• ⊗Λ A[−1] we see that Ox(M) =
H2(K• ⊗L

AM).

Situation 98.24.2.07YX Let S be a locally Noetherian scheme. Let X be a category
fibred in groupoids over (Sch/S)fppf . Assume that X has (RS*) so that we can
speak of the functor Tx(−), see Lemma 98.21.2. Let U = Spec(A) be an affine
scheme of finite type over S which maps into an affine open Spec(Λ). Let x be an
object of X over U . Assume we are given

(1) a complex of A-modules K•,
(2) a transformation of functors Tx(−)→ H1(K• ⊗L

A −),
(3) for every deformation situation (x,A′ → A) with kernel I = Ker(A′ → A)

an element ox(A′) ∈ H2(K• ⊗L
A I)

satisfying the following (minimal) conditions
(i) the transformation Tx(−)→ H1(K• ⊗L

A −) is an isomorphism,
(ii) given a morphism (x,A′′ → A) → (x,A′ → A) of deformation situations

the element ox(A′) maps to the element ox(A′′) via the map H2(K• ⊗L
A

I)→ H2(K• ⊗L
A I

′) where I ′ = Ker(A′′ → A), and
(iii) x lifts to an object over Spec(A′) if and only if ox(A′) = 0.

It is possible to incorporate infinitesimal automorphisms as well, but we refrain
from doing so in order to get the sharpest possible result.

In Situation 98.24.2 an important role will be played by K•⊗L
ANLA/Λ. Suppose we

are given an element ξ ∈ H1(K•⊗L
ANLA/Λ). Then (1) for any surjection A′ → A of

Λ-algebras with kernel I of square zero the canonical map NLA/Λ → NLA/A′ = I[1]
sends ξ to an element ξA′ ∈ H2(K• ⊗L

A I) and (2) the map NLA/Λ → ΩA/Λ sends
ξ to an element ξcan of H1(K• ⊗L

A ΩA/Λ).

Lemma 98.24.3.07YY In Situation 98.24.2. Assume furthermore that
(iv) given a short exact sequence of deformation situations as in Remark

98.21.5 and a lift x′
2 ∈ Lift(x,A′

2) then ox(A′
3) ∈ H2(K• ⊗L

A I3) equals ∂θ
where θ ∈ H1(K• ⊗L

A I1) is the element corresponding to x′
2|Spec(A′

1) via
A′

1 = A[I1] and the given map Tx(−)→ H1(K• ⊗L
A −).

In this case there exists an element ξ ∈ H1(K• ⊗L
A NLA/Λ) such that

(1) for every deformation situation (x,A′ → A) we have ξA′ = ox(A′), and
(2) ξcan matches the canonical element of Remark 98.21.8 via the given trans-

formation Tx(−)→ H1(K• ⊗L
A −).

Proof. Choose a α : Λ[x1, . . . , xn]→ A with kernel J . Write P = Λ[x1, . . . , xn]. In
the rest of this proof we work with

NL(α) = (J/J2 −→
⊕

Adxi)

https://stacks.math.columbia.edu/tag/07YW
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which is permissible by Algebra, Lemma 10.134.2 and More on Algebra, Lemma
15.58.2. Consider the element ox(P/J2) ∈ H2(K• ⊗L

A J/J2) and consider the
quotient

C = (P/J2 ×
⊕

Adxi)/(J/J2)
where J/J2 is embedded diagonally. Note that C → A is a surjection with kernel⊕
Adxi. Moreover there is a section A → C to C → A given by mapping the

class of f ∈ P to the class of (f, df) in the pushout. For later use, denote xC the
pullback of x along the corresponding morphism Spec(C)→ Spec(A). Thus we see
that ox(C) = 0. We conclude that ox(P/J2) maps to zero in H2(K•⊗L

A

⊕
Adxi). It

follows that there exists some element ξ ∈ H1(K•⊗L
ANL(α)) mapping to ox(P/J2).

Note that for any deformation situation (x,A′ → A) there exists a Λ-algebra map
P/J2 → A′ compatible with the augmentations to A. Hence the element ξ satis-
fies the first property of the lemma by construction and property (ii) of Situation
98.24.2.
Note that our choice of ξ was well defined up to the choice of an element of
H1(K• ⊗L

A

⊕
Adxi). We will show that after modifying ξ by an element of the

aforementioned group we can arrange it so that the second assertion of the lemma
is true. Let C ′ ⊂ C be the image of P/J2 under the Λ-algebra map P/J2 → C
(inclusion of first factor). Observe that Ker(C ′ → A) = Im(J/J2 →

⊕
Adxi). Set

C = A[ΩA/Λ]. The map P/J2 ×
⊕
Adxi → C, (f,

∑
fidxi) 7→ (f mod J,

∑
fidxi)

factors through a surjective map C → C. Then
(x,C → A)→ (x,C → A)→ (x,C ′ → A)

is a short exact sequence of deformation situations. The associated splitting C =
A[ΩA/Λ] (from Remark 98.21.5) equals the given splitting above. Moreover, the
section A → C composed with the map C → C is the map (1,d) : A → A[ΩA/Λ]
of Remark 98.21.8. Thus xC restricts to the canonical element xcan of Tx(ΩA/Λ) =
Lift(x,A[ΩA/Λ]). By condition (iv) we conclude that ox(P/J2) maps to ∂xcan in

H1(K• ⊗L
A Im(J/J2 →

⊕
Adxi))

By construction ξ maps to ox(P/J2). It follows that xcan and ξcan map to the
same element in the displayed group which means (by the long exact cohomology
sequence) that they differ by an element of H1(K• ⊗L

A

⊕
Adxi) as desired. □

Lemma 98.24.4.07YZ In Situation 98.24.2 assume that (iv) of Lemma 98.24.3 holds and
that K• is a perfect object of D(A). In this case, if x is versal at a closed point
u0 ∈ U then there exists an open neighbourhood u0 ∈ U ′ ⊂ U such that x is versal
at every finite type point of U ′.

Proof. We may assume that K• is a finite complex of finite projective A-modules.
Thus the derived tensor product with K• is the same as simply tensoring with K•.
Let E• be the dual perfect complex to K•, see More on Algebra, Lemma 15.74.15.
(So En = HomA(K−n, A) with differentials the transpose of the differentials of
K•.) Let E ∈ D−(A) denote the object represented by the complex E•[−1]. Let
ξ ∈ H1(Tot(K• ⊗A NLA/Λ)) be the element constructed in Lemma 98.24.3 and
denote ξ : E = E•[−1] → NLA/Λ the corresponding map (loc.cit.). We claim that
the pair (E, ξ) satisfies all the assumptions of Lemma 98.23.4 which finishes the
proof.

https://stacks.math.columbia.edu/tag/07YZ
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Namely, assumption (i) of Lemma 98.23.4 follows from conclusion (1) of Lemma
98.24.3 and the fact that H2(K• ⊗L

A −) = Ext1(E,−) by loc.cit. Assumption
(ii) of Lemma 98.23.4 follows from conclusion (2) of Lemma 98.24.3 and the fact
that H1(K• ⊗L

A −) = Ext0(E,−) by loc.cit. Assumption (iii) of Lemma 98.23.4 is
clear. □

98.25. Limit preserving functors on Noetherian schemes

0GE1 It is sometimes convenient to consider functors or stacks defined only on the full
subcategory of (locally) Noetherian schemes. In this section we discuss this in the
case of algebraic spaces.

Let S be a locally Noetherian scheme. Let us be a bit pedantic in order to line
up our categories correctly; people who are ignoring set theoretical issues can just
replace the sets of schemes we choose by the collection of all schemes in what
follows. As in Topologies, Remark 34.11.1 we choose a category Schα of schemes
containing S such that we obtain big sites (Sch/S)Zar, (Sch/S)étale, (Sch/S)smooth,
(Sch/S)syntomic, and (Sch/S)fppf all with the same underlying category Schα/S.
Denote

Noetherianα ⊂ Schα
the full subcategory consisting of locally Noetherian schemes. This determines a
full subcategory

Noetherianα/S ⊂ Schα/S
For τ ∈ {Zariski, étale, smooth, syntomic, fppf} we have

(1) if f : X → Y is a morphism of Schα/S with Y in Noetherianα/S and f
locally of finite type, then X is in Noetherianα/S,

(2) for morphisms f : X → Y and g : Z → Y of Noetherianα/S with f locally
of finite type the fibre product X×Y Z in Noetherianα/S exists and agrees
with the fibre product in Schα/S,

(3) if {Xi → X}i∈I is a covering of (Sch/S)τ and X is in Noetherianα/S,
then the objects Xi are in Noetherianα/S

(4) the category Noetherianα/S endowed with the set of coverings of (Sch/S)τ
whose objects are in Noetherianα/S is a site we will denote (Noetherian/S)τ ,

(5) the inclusion functor (Noetherian/S)τ → (Sch/S)τ is fully faithful, con-
tinuous, and cocontinuous.

By Sites, Lemmas 7.21.1 and 7.21.5 we obtain a morphism of topoi

gτ : Sh((Noetherian/S)τ ) −→ Sh((Sch/S)τ )

whose pullback functor is the restriction of sheaves along the inclusion functor
(Noetherian/S)τ → (Sch/S)τ .

Remark 98.25.1 (Warning).0GE2 The site (Noetherian/S)τ does not have fibre products.
Hence we have to be careful in working with sheaves. For example, the continuous
inclusion functor (Noetherian/S)τ → (Sch/S)τ does not define a morphism of sites.
See Examples, Section 110.59 for an example in case τ = fppf .

Let F : (Noetherian/S)oppτ → Sets be a functor. We say F is limit preserving if
for any directed limit of affine schemes X = limXi of (Noetherian/S)τ we have
F (X) = colimF (Xi).

https://stacks.math.columbia.edu/tag/0GE2
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Lemma 98.25.2.0GE3 Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Restricting
along the inclusion functor (Noetherian/S)τ → (Sch/S)τ defines an equivalence of
categories between

(1) the category of limit preserving sheaves on (Sch/S)τ and
(2) the category of limit preserving sheaves on (Noetherian/S)τ

Proof. Let F : (Noetherian/S)oppτ → Sets be a functor which is both limit preserv-
ing and a sheaf. By Topologies, Lemmas 34.13.1 and 34.13.3 there exists a unique
functor F ′ : (Sch/S)oppτ → Sets which is limit preserving, a sheaf, and restricts to
F . In fact, the construction of F ′ in Topologies, Lemma 34.13.1 is functorial in F
and this construction is a quasi-inverse to restriction. Some details omitted. □

Lemma 98.25.3.0GE4 Let X be an object of (Noetherian/S)τ . If the functor of points
hX : (Noetherian/S)oppτ → Sets is limit preserving, then X is locally of finite
presentation over S.
Proof. Let V ⊂ X be an affine open subscheme which maps into an affine open
U ⊂ S. We may write V = limVi as a directed limit of affine schemes Vi of finite
presentation over U , see Algebra, Lemma 10.127.2. By assumption, the arrow
V → X factors as V → Vi → X for some i. After increasing i we may assume
Vi → X factors through V as the inverse image of V ⊂ X in Vi eventually becomes
equal to Vi by Limits, Lemma 32.4.11. Then the identity morphism V → V factors
through Vi for some i in the category of schemes over U . Thus V → U is of finite
presentation; the corresponding algebra fact is that if B is an A-algebra such that
id : B → B factors through a finitely presented A-algebra, then B is of finite
presentation over A (nice exercise). Hence X is locally of finite presentation over
S. □

The following lemma has a variant for transformations representable by algebraic
spaces.
Lemma 98.25.4.0GE5 Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let F ′, G′ :
(Sch/S)oppτ → Sets be limit preserving and sheaves. Let a′ : F ′ → G′ be a trans-
formation of functors. Denote a : F → G the restriction of a′ : F ′ → G′ to
(Noetherian/S)τ . The following are equivalent

(1) a′ is representable (as a transformation of functors, see Categories, Defi-
nition 4.6.4), and

(2) for every object V of (Noetherian/S)τ and every map V → G the fibre
product F ×G V : (Noetherian/S)oppτ → Sets is a representable functor,
and

(3) same as in (2) but only for V affine finite type over S mapping into an
affine open of S.

Proof. Assume (1). By Limits of Spaces, Lemma 70.3.4 the transformation a′ is
limit preserving10. Take ξ : V → G as in (2). Denote V ′ = V but viewed as an
object of (Sch/S)τ . Since G is the restriction of G′ to (Noetherian/S)τ we see that
ξ ∈ G(V ) corresponds to ξ′ ∈ G′(V ′). By assumption V ′×ξ′,G′F ′ is representable by
a scheme U ′. The morphism of schemes U ′ → V ′ corresponding to the projection
V ′ ×ξ′,G′ F ′ → V ′ is locally of finite presentation by Limits of Spaces, Lemma

10This makes sense even if τ ̸= fppf as the underlying category of (Sch/S)τ equals the
underlying category of (Sch/S)fppf and the statement doesn’t refer to the topology.
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70.3.5 and Limits, Proposition 32.6.1. Hence U ′ is a locally Noetherian scheme and
therefore U ′ is isomorphic to an object U of (Noetherian/S)τ . Then U represents
F ×G V as desired.

The implication (2) ⇒ (3) is immediate. Assume (3). We will prove (1). Let T
be an object of (Sch/S)τ and let T → G′ be a morphism. We have to show the
functor F ′ ×G′ T is representable by a scheme X over T . Let B be the set of affine
opens of T which map into an affine open of S. This is a basis for the topology of
T . Below we will show that for W ∈ B the fibre product F ′×G′ W is representable
by a scheme XW over W . If W1 ⊂ W2 in B, then we obtain an isomorphism
XW1 → XW2 ×W2 W1 because both XW1 and XW2 ×W2 W1 represent the functor
F ′ ×G′ W1. These isomorphisms are canonical and satisfy the cocycle condition
mentioned in Constructions, Lemma 27.2.1. Hence we can glue the schemes XW to
a scheme X over T . Compatibility of the glueing maps with the maps XW → F ′

provide us with a map X → F ′. The resulting map X → F ′×G′T is an isomorphism
as we may check this locally on T (as source and target of this arrow are sheaves
for the Zariski topology).

Let W be an affine scheme which maps into an affine open U ⊂ S. Let W → G′

be a map. Still assuming (3) we have to show that F ′ ×G′ W is representable by a
scheme. We may write W = limV ′

i as a directed limit of affine schemes V ′
i of finite

presentation over U , see Algebra, Lemma 10.127.2. Since V ′
i is of finite type over

an Noetherian scheme, we see that V ′
i is a Noetherian scheme. Denote Vi = V ′

i

but viewed as an object of (Noetherian/S)τ . As G′ is limit preserving can choose
an i and a map V ′

i → G′ such that W → G′ is the composition W → V ′
i → G′.

Since G is the restriction of G′ to (Noetherian/S)τ the morphism V ′
i → G′ is the

same thing as a morphism Vi → G (see above). By assumption (3) the functor
F ×G Vi is representable by an object Xi of (Noetherian/S)τ . The functor F ×G Vi
is limit preserving as it is the restriction of F ′ ×G′ V ′

i and this functor is limit
preserving by Limits of Spaces, Lemma 70.3.6, the assumption that F ′ and G′

are limit preserving, and Limits, Remark 32.6.2 which tells us that the functor of
points of V ′

i is limit preserving. By Lemma 98.25.3 we conclude that Xi is locally
of finite presentation over S. Denote X ′

i = Xi but viewed as an object of (Sch/S)τ .
Then we see that F ′ ×G′ V ′

i and the functors of points hX′
i

are both extensions of
hXi : (Noetherian/S)oppτ → Sets to limit preserving sheaves on (Sch/S)τ . By the
equivalence of categories of Lemma 98.25.2 we deduce that X ′

i represents F ′×G′ V ′
i .

Then finally
F ′ ×G′ W = F ′ ×G′ V ′

i ×V ′
i
W = X ′

i ×V ′
i
W

is representable as desired. □

98.26. Algebraic spaces in the Noetherian setting

0GE6 Let S be a locally Noetherian scheme. Let (Noetherian/S)étale ⊂ (Sch/S)étale
denote the site studied in Section 98.25. Let F : (Noetherian/S)oppétale → Sets be a
functor, i.e., F is a presheaf on (Noetherian/S)étale. In this setting all the axioms
[-1], [0], [1], [2], [3], [4], [5] of Section 98.15 make sense. We will review them one
by one and make sure the reader knows exactly what we mean.

Axiom [-1]. This is a set theoretic condition to be ignored by readers who are
not interested in set theoretic questions. It makes sense for F since it concerns
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the evaluation of F on spectra of fields of finite type over S which are objects of
(Noetherian/S)étale.
Axiom [0]. This is the axiom that F is a sheaf on (Noetherian/S)oppétale, i.e., satisfies
the sheaf condition for étale coverings.
Axiom [1]. This is the axiom that F is limit preserving as defined in Section 98.25:
for any directed limit of affine schemes X = limXi of (Noetherian/S)étale we have
F (X) = colimF (Xi).
Axiom [2]. This is the axiom that F satisfies the Rim-Schlessinger condition (RS).
Looking at the definition of condition (RS) in Definition 98.5.1 and the discussion in
Section 98.15 we see that this means: given any pushout Y ′ = Y ⨿X X ′ of schemes
of finite type over S where Y,X,X ′ are spectra of Artinian local rings, then

F (Y ⨿X X ′)→ F (Y )×F (X) F (X ′)
is a bijection. This condition makes sense as the schemes X, X ′, Y , and Y ′ are in
(Noetherian/S)étale since they are of finite type over S.
Axiom [3]. This is the axiom that every tangent space TFk,x0 is finite dimensional.
This makes sense as the tangent spaces TFk,x0 are constructed from evaluations
of F at Spec(k) and Spec(k[ϵ]) with k a field of finite type over S and hence are
obtained by evaluating at objects of the category (Noetherian/S)étale.
Axiom [4]. This is axiom that the every formal object is effective. Looking at
the discussion in Sections 98.9 and 98.15 we see that this involves evaluating our
functor at Noetherian schemes only and hence this condition makes sense for F .
Axiom [5]. This is the axiom stating that F satisfies openness of versality. Recall
that this means the following: Given a scheme U locally of finite type over S, given
x ∈ F (U), and given a finite type point u0 ∈ U such that x is versal at u0, then
there exists an open neighbourhood u0 ∈ U ′ ⊂ U such that x is versal at every
finite type point of U ′. As before, verifying this only involves evaluating our functor
at Noetherian schemes.

Proposition 98.26.1.0GE7 Let S be a locally Noetherian scheme. Let F : (Noetherian/S)oppétale →
Sets be a functor. Assume that

(1) ∆ : F → F × F is representable (as a transformation of functors, see
Categories, Definition 4.6.4),

(2) F satisfies axioms [-1], [0], [1], [2], [3], [4], [5] (see above), and
(3) OS,s is a G-ring for all finite type points s of S.

Then there exists a unique algebraic space F ′ : (Sch/S)oppfppf → Sets whose restric-
tion to (Noetherian/S)étale is F (see proof for elucidation).

Proof. Recall that the sites (Sch/S)fppf and (Sch/S)étale have the same underlying
category, see discussion in Section 98.25. Similarly the sites (Noetherian/S)étale and
(Noetherian/S)fppf have the same underlying categories. By axioms [0] and [1] the
functor F is a sheaf and limit preserving. Let F ′ : (Sch/S)oppétale → Sets be the
unique extension of F which is a sheaf (for the étale topology) and which is limit
preserving, see Lemma 98.25.2. Then F ′ satisfies axioms [0] and [1] as given in
Section 98.15. By Lemma 98.25.4 we see that ∆′ : F ′ → F ′ × F ′ is representable
(by schemes). On the other hand, it is immediately clear that F ′ satisfies axioms
[-1], [2], [3], [4], [5] of Section 98.15 as each of these involves only evaluating F ′ at

https://stacks.math.columbia.edu/tag/0GE7
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objects of (Noetherian/S)étale and we’ve assumed the corresponding conditions for
F . Whence F ′ is an algebraic space by Proposition 98.16.1. □

98.27. Artin’s theorem on contractions

0GH7 In this section we will freely use the language of formal algebraic spaces, see For-
mal Spaces, Section 87.1. Artin’s theorem on contractions is one of the two main
theorems of Artin’s paper [Art70]; the first one is his theorem on dilatations which
we stated and proved in Algebraization of Formal Spaces, Section 88.29.

Situation 98.27.1.0GH8 Let S be a locally Noetherian scheme. Let X ′ be an algebraic
space locally of finite type over S. Let T ′ ⊂ |X ′| be a closed subset. Let U ′ ⊂ X ′

be the open subspace with |U ′| = |X ′| \ T ′. Let W be a locally Noetherian formal
algebraic space over S with Wred locally of finite type over S. Finally, we let

g : X ′
/T ′ −→W

be a formal modification, see Algebraization of Formal Spaces, Definition 88.24.1.
Recall that X ′

/T ′ denotes the formal completion of X ′ along T ′, see Formal Spaces,
Section 87.14.

In the situation above our goal is to prove that there exists a proper morphism
f : X ′ → X of algebraic spaces over S, a closed subset T ⊂ |X|, and an isomorphism
a : X/T →W of formal algebraic spaces such that

(1) T ′ is the inverse image of T by |f | : |X ′| → |X|,
(2) f : X ′ → X maps U ′ isomorphically to an open subspace U of X, and
(3) g = a ◦ f/T where f/T : X ′

/T ′ → X/T is the induced morphism.
Let us say that (f : X ′ → X,T, a) is a solution.
We will follow Artin’s strategy by constructing a functor F on the category of locally
Noetherian schemes over S, showing that F is an algebraic space using Proposition
98.26.1, and proving that setting X = F works.

Remark 98.27.2.0GH9 In particular, we cannot prove that the desired result is true for
every Situation 98.27.1 because we will need to assume the local rings of S are
G-rings. If you can prove the result in general or if you have a counter example,
please let us know at stacks.project@gmail.com.

In Situation 98.27.1 let V be a locally Noetherian scheme over S. The value of our
functor F on V will be all triples

(Z, u′ : V \ Z → U ′, x̂ : V/Z →W )
satisfying the following conditions

(1) Z ⊂ V is a closed subset,
(2) u′ : V \ Z → U ′ is a morphism over S,
(3) x̂ : V/Z →W is an adic morphism of formal algebraic spaces over S,
(4) u′ and x̂ are compatible (see below).

The compatibility condition is the following: pulling back the formal modification
g we obtain a formal modification

X ′
/T ′ ×g,W,x̂ V/Z −→ V/Z

See Algebraization of Formal Spaces, Lemma 88.24.4. By the main theorem on
dilatations (Algebraization of Formal Spaces, Theorem 88.29.1), there is a unique

https://stacks.math.columbia.edu/tag/0GH8
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proper morphism V ′ → V of algebraic spaces which is an isomorphism over V \ Z
such that V ′

/Z → V/Z is isomorphic to the displayed arrow. In other words, for some
morphism x̂′ : V ′

/Z → X ′
/T ′ we have a cartesian diagram

V ′
/Z

//

x̂′

��

V/Z

x̂

��
X ′
/T ′

g // W

of formal algebraic spaces. We will think of V \Z as an open subspace of V ′ without
further mention. The compatibility condition is that there should be a morphism
x′ : V ′ → X ′ restricting to u′ and x̂ over V \Z ⊂ V ′ and V ′

/Z . In other words, such
that the diagram

V \ Z //

u′

��

V ′

x′

��

V ′
/Z

oo

x̂′

��

// V/Z

x̂

��
U ′ // X ′ X ′

/T ′
g //oo W

is commutative. Observe that by Algebraization of Formal Spaces, Lemma 88.25.5
the morphism x′ is unique if it exists. We will indicate this situation by saying
“V ′ → V , x̂′, and x′ witness the compatibility between u′ and x̂”.

Remark 98.27.3.0GID In Situation 98.27.1 let V be a locally Noetherian scheme over S.
Let (Z, u′, x̂) be a triple satisfying (1), (2), and (3) above. We want to explain a
way to think about the compatibility condition (4). It will not be mathematically
precise as we are going use a fictitious category AnS of analytic spaces over S and
a fictitious analytification functor{

locally Noetherian formal
algebraic spaces over S

}
−→ AnS , Y 7−→ Y an

For example if Y = Spf(k[[t]]) over S = Spec(k), then Y an should be thought of as
an open unit disc. If Y = Spec(k), then Y an is a single point. The category AnS
should have open and closed immersions and we should be able to take the open
complement of a closed. Given Y the morphism Yred → Y should induces a closed
immersion Y anred → Y an. We set Y rig = Y an \ Y anred equal to its open complement.
If Y is an algebraic space and if Z ⊂ Y is closed, then the morphism Y/Z → Y
should induce an open immersion Y an/Z → Y an which in turn should induce an open
immersion

can : (Y/Z)rig −→ (Y \ Z)an

Also, given a formal modification g : Y ′ → Y of locally Noetherian formal algebraic
spaces, the induced morphism grig : (Y ′)rig → Y rig should be an isomorphism.
Given AnS and the analytification functor, we can consider the requirement that

(V/Z)rig
can

//

(grig)−1◦x̂an

��

(V \ Z)an

(u′)an

��
(X ′

/T ′)rig can // (X ′ \ T ′)an

https://stacks.math.columbia.edu/tag/0GID
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commutes. This makes sense as grig : (X ′
T ′)rig → W rig is an isomorphism and

U ′ = X ′ \T ′. Finally, under some assumptions of faithfulness of the analytification
functor, this requirement will be equivalent to the compatibility condition formu-
lated above. We hope this will motivate the reader to think of the compatibility of
u′ and x̂ as the requirement that some maps be equal, rather than asking for the
existence of a certain commutative diagram.

Lemma 98.27.4.0GHA In Situation 98.27.1 the rule F that sends a locally Noetherian
scheme V over S to the set of triples (Z, u′, x̂) satisfying the compatibility condition
and which sends a a morphism φ : V2 → V1 of locally Noetherian schemes over S
to the map

F (φ) : F (V1) −→ F (V2)
sending an element (Z1, u

′
1, x̂1) of F (V1) to (Z2, u

′
2, x̂2) in F (V2) given by

(1) Z2 ⊂ V2 is the inverse image of Z1 by φ,
(2) u′

2 is the composition of u′
1 and φ|V2\Z2 : V2 \ Z2 → V1 \ Z1,

(3) x̂2 is the composition of x̂1 and φ/Z2 : V2,/Z2 → V1,/Z1

is a contravariant functor.

Proof. To see the compatibility condition between u′
2 and x̂2, let V ′

1 → V1, x̂′
1, and

x′
1 witness the compatibility between u′

1 and x̂1. Set V ′
2 = V2 ×V1 V

′
1 , set x̂′

2 equal
to the composition of x̂′

1 and V ′
2,/Z2

→ V ′
1,/Z1

, and set x′
2 equal to the composition

of x′
1 and V ′

2 → V ′
1 . Then V ′

2 → V2, x̂′
2, and x′

2 witness the compatibility between
u′

2 and x̂2. We omit the detailed verification. □

Lemma 98.27.5.0GHB In Situation 98.27.1 if there exists a solution (f : X ′ → X,T, a)
then there is a functorial bijection F (V ) = MorS(V,X) on the category of locally
Noetherian schemes V over S.

Proof. Let V be a locally Noetherian scheme over S. Let x : V → X be a morphism
over S. Then we get an element (Z, u′, x̂) in F (V ) as follows

(1) Z ⊂ V is the inverse image of T by x,
(2) u′ : V \ Z → U ′ = U is the restriction of x to V \ Z,
(3) x̂ : V/Z →W is the composition of x/Z : V/Z → X/T with the isomorphism

a : X/T →W .
This triple satisfies the compatibility condition because we can take V ′ = V ×x,XX ′,
we can take x̂′ the completion of the projection x′ : V ′ → X ′.

Conversely, suppose given an element (Z, u′, x̂) of F (V ). We claim there is a unique
morphism x : V → X compatible with u′ and x̂. Namely, let V ′ → V , x̂′, and
x′ witness the compatibility between u′ and x̂. Then Algebraization of Formal
Spaces, Proposition 88.26.1 is exactly the result we need to find a unique morphism
x : V → X agreeing with x̂ over V/Z and with x′ over V ′ (and a fortiori agreeing
with u′ over V \ Z).

We omit the verification that the two constructions above define inverse bijections
between their respective domains. □

Lemma 98.27.6.0GHC In Situation 98.27.1 if there exists an algebraic space X locally of
finite type over S and a functorial bijection F (V ) = MorS(V,X) on the category
of locally Noetherian schemes V over S, then X is a solution.

https://stacks.math.columbia.edu/tag/0GHA
https://stacks.math.columbia.edu/tag/0GHB
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Proof. We have to construct a proper morphism f : X ′ → X, a closed subset
T ⊂ |X|, and an isomorphism a : X/T →W with properties (1), (2), (3) listed just
below Situation 98.27.1.

The discussion in this proof is a bit pedantic because we want to carefully match the
underlying categories. In this paragraph we explain how the adventurous reader
can proceed less timidly. Namely, the reader may extend our definition of the
functor F to all locally Noetherian algebraic spaces over S. Doing so the reader
may then conclude that F and X agree as functors on the category of these algebraic
spaces, i.e., X represents F . Then one considers the universal object (T, u′, x̂) in
F (X). Then the reader will find that for the triple X ′′ → X, x̂′, x′ witnessing the
compatibility between u′ and x̂ the morphism x′ : X ′′ → X ′ is an isomorphism and
this will produce f : X ′ → X by inverting x′. Finally, we already have T ⊂ |X|
and the reader may show that x̂ is an isomorphism which can served as the last
ingredient namely a.

Denote hX(−) = MorS(−, X) the functor of points of X restricted to the category
(Noetherian/S)étale of Section 98.25. By Limits of Spaces, Remark 70.3.11 the
algebraic spaces X and X ′ are limit preserving. Hence so are the restrictions hX
and hX′ . To construct f it therefore suffices to construct a transformation hX′ →
hX = F , see Lemma 98.25.2. Thus let V → S be an object of (Noetherian/S)étale
and let x̃ : V → X ′ be in hX′(V ). Then we get an element (Z, u′, x̂) in F (V ) as
follows

(1) Z ⊂ V is the inverse image of T ′ by x̃,
(2) u′ : V \ Z → U ′ is the restriction of x̃ to V \ Z,
(3) x̂ : V/Z →W is the composition of x/Z : V/Z → X ′

/T ′ with g : X ′
/T ′ →W .

This triple satisfies the compatibility condition: first we always obtain V ′ → V
and x̂′ : V ′

/Z′ → X ′
/T ′ for free (see discussion preceding Lemma 98.27.4). Then

we just define x′ : V ′ → X ′ to be the composition of V ′ → V and the morphism
x̃ : V → X ′. We omit the verification that this works.

If ξ : V → X is an étale morphism where V is a scheme, then we obtain ξ =
(Z, u′, x̂) ∈ F (V ) = hX(V ) = X(V ). Of course, if φ : V ′ → V is a further étale
morphism of schemes, then (Z, u′, x̂) pulled back to F (V ′) corresponds to ξ ◦ φ.
The closed subset T ⊂ |X| is just defined as the closed subset such that ξ : V → X
for ξ = (Z, u′, x̂) pulls T back to Z

Consider Noetherian schemes V over S and a morphism ξ : V → X corresponding
to (Z, u′, x̂) as above. Then we see that ξ(V ) is set theoretically contained in T
if and only if V = Z (as topological spaces). Hence we see that X/T agrees with
W as a functor. This produces the isomorphism a : X/T → W . (We’ve omitted a
small detail here which is that for the locally Noetherian formal algebraic spaces
X/T and W it suffices to check one gets an isomorphism after evaluating on locally
Noetherian schemes over S.)

We omit the proof of conditions (1), (2), and (3). □

Remark 98.27.7.0GHD In Situation 98.27.1. Let V be a locally Noetherian scheme over
S. Let (Zi, u′

i, x̂i) ∈ F (V ) for i = 1, 2. Let V ′
i → V , x̂′

i and x′
i witness the

compatibility between u′
i and x̂i for i = 1, 2.

https://stacks.math.columbia.edu/tag/0GHD
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Set V ′ = V ′
1 ×V V ′

2 . Let E′ → V ′ denote the equalizer of the morphisms

V ′ → V ′
1
x′

1−→ X ′ and V ′ → V ′
2
x′

2−→ X ′

Set Z = Z1 ∩ Z2. Let EW → V/Z be the equalizer of the morphisms

V/Z → V/Z1
x̂1−→W and V/Z → V/Z2

x̂2−→W

Observe that E′ → V is separated and locally of finite type and that EW is a locally
Noetherian formal algebraic space separated over V . The compatibilities between
the various morphisms involved show that

(1) Im(E′ → V ) ∩ (Z1 ∪ Z2) is contained in Z = Z1 ∩ Z2,
(2) the morphism E′×V (V \Z)→ V \Z is a monomorphism and is equal to

the equalizer of the restrictions of u′
1 and u′

2 to V \ (Z1 ∪ Z2),
(3) the morphism E′

/Z → V/Z factors through EW and the diagram

E′
/Z

//

��

X ′
/T ′

g

��
EW // W

is cartesian. In particular, the morphism E′
/Z → EW is a formal modifi-

cation as the base change of g,
(4) E′, (E′ → V )−1Z, and E′

/Z → EW is a triple as in Situation 98.27.1 with
base scheme the locally Noetherian scheme V ,

(5) given a morphism φ : A→ V of locally Noetherian schemes, the following
are equivalent
(a) (Z1, u

′
1, x̂1) and (Z2, u

′
2, x̂2) restrict to the same element of F (A),

(b) A\φ−1(Z)→ V \Z factors through E′×V (V \Z) and A/φ−1(Z) → V/Z
factors through EW .

We conclude, using Lemmas 98.27.5 and 98.27.6, that if there is a solution E → V
for the triple in (4), then E represents F ×∆,F×F V on the category of locally
Noetherian schemes over V .

Lemma 98.27.8.0GHE In Situation 98.27.1 assume given a closed subset Z ⊂ S such that
(1) the inverse image of Z in X ′ is T ′,
(2) U ′ → S \ Z is a closed immersion,
(3) W → S/Z is a closed immersion.

Then there exists a solution (f : X ′ → X,T, a) and moreover X → S is a closed
immersion.

Proof. Suppose we have a closed subscheme X ⊂ S such that X ∩ (S \Z) = U ′ and
X/Z = W . Then X represents the functor F (some details omitted) and hence is a
solution. To find X is clearly a local question on S. In this way we reduce to the
case discussed in the next paragraph.

Assume S = Spec(A) is affine. Let I ⊂ A be the radical ideal cutting out Z. Write
I = (f1, . . . , fr). By assumption we are given

(1) the closed immersion U ′ → S \Z determines ideals Ji ⊂ A[1/fi] such that
Ji and Jj generate the same ideal in A[1/fifj ],

https://stacks.math.columbia.edu/tag/0GHE
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(2) the closed immersion W → S/Z is the map Spf(A∧/J ′) → Spf(A∧) for
some ideal J ′ ⊂ A∧ in the I-adic completion A∧ of A.

To finish the proof we need to find an ideal J ⊂ A such that Ji = J [1/fi] and
J ′ = JA∧. By More on Algebra, Proposition 15.89.15 it suffices to show that Ji
and J ′ generate the same ideal in A∧[1/fi] for all i.
Recall that A′ = H0(X ′,O) is a finite A-algebra whose formation commutes with
flat base change (Cohomology of Spaces, Lemmas 69.20.3 and 69.11.2). Denote
J ′′ = Ker(A → A′)11. We have Ji = J ′′A[1/fi] as follows from base change to the
spectrum of A[1/fi]. Observe that we have a commutative diagram

X ′

��

X ′
/T ′ ×S/Z Spf(A∧)oo

��

X ′
/T ′ ×W Spf(A∧/J ′)

��
Spec(A) Spf(A∧)oo Spf(A∧/J ′)oo

The middle vertical arrow is the completion of the left vertical arrow along the
obvious closed subsets. By the theorem on formal functions we have

(A′)∧ = Γ(X ′ ×S Spec(A∧),O) = limH0(X ′ ×S Spec(A/In),O)
See Cohomology of Spaces, Theorem 69.22.5. From the diagram we conclude that
J ′ maps to zero in (A′)∧. Hence J ′ ⊂ J ′′A∧. Consider the arrows

X ′
/T ′ → Spf(A∧/J ′′A∧)→ Spf(A∧/J ′) = W

We know the composition g is a formal modification (in particular rig-étale and
rig-surjective) and the second arrow is a closed immersion (in particular an adic
monomorphism). Hence X ′

/T ′ → Spf(A∧/J ′′A∧) is rig-surjective and rig-étale,
see Algebraization of Formal Spaces, Lemmas 88.21.5 and 88.20.8. Applying Al-
gebraization of Formal Spaces, Lemmas 88.21.14 and 88.21.6 we conclude that
Spf(A∧/J ′′A∧) → W is rig-étale and rig-surjective. By Algebraization of Formal
Spaces, Lemma 88.21.13 we conclude that InJ ′′A∧ ⊂ J ′ for some n > 0. It follows
that J ′′A∧[1/fi] = J ′A∧[1/fi] and we deduce JiA∧[1/fi] = J ′A∧[1/fi] for all i as
desired. □

Lemma 98.27.9.0GHF In Situation 98.27.1 assume X ′ → S and W → S are separated.
Then the diagonal ∆ : F → F × F is representable by closed immersions.

Proof. Combine Lemma 98.27.8 with the discussion in Remark 98.27.7. □

Lemma 98.27.10.0GHG In Situation 98.27.1 the functor F satisfies the sheaf property
for all étale coverings of locally Noetherian schemes over S.

Proof. Omitted. Hint: morphisms may be defined étale locally. □

Lemma 98.27.11.0GI5 In Situation 98.27.1 the functor F is limit preserving: for any
directed limit V = limVλ of Noetherian affine schemes over S we have F (V ) =
colimF (Vλ).

Proof. This is an absurdly long proof. Much of it consists of standard arguments
on limits and étale localization. We urge the reader to skip ahead to the last part
of the proof where something interesting happens.

11Contrary to what the reader may expect, the ideals J and J ′′ won’t agreee in general.
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Let V = limλ∈Λ Vi be a directed limit of schemes over S with V and Vλ Noetherian
and with affine transition morphisms. See Limits, Section 32.2 for material on
limits of schemes. We will prove that colimF (Vλ)→ F (V ) is bijective.
Proof of injectivity: notation. Let λ ∈ Λ and ξλ,1, ξλ,2 ∈ F (Vλ) be elements
which restrict to the same element of F (V ). Write ξλ,1 = (Zλ,1, u′

λ,1, x̂λ,1) and
ξλ,2 = (Zλ,2, u′

λ,2, x̂λ,2).
Proof of injectivity: agreement of Zλ,i. Since Zλ,1 and Zλ,2 restrict to the same
closed subset of V , we may after increasing i assume Zλ,1 = Zλ,2, see Limits, Lemma
32.4.2 and Topology, Lemma 5.14.2. Let us denote the common value Zλ ⊂ Vλ, for
µ ≥ λ denote Zµ ⊂ Vµ the inverse image in Vµ and and denote Z the inverse image
in V . We will use below that Z = limµ≥λ Zµ as schemes if we view Z and Zµ as
reduced closed subschemes.
Proof of injectivity: agreement of u′

λ,i. Since U ′ is locally of finite type over S and
since the restrictions of u′

λ,1 and u′
λ,2 to V \Z are the same, we may after increasing

λ assume u′
λ,1 = u′

λ,2, see Limits, Proposition 32.6.1. Let us denote the common
value u′

λ and denote u′ the restriction to V \ Z.
Proof of injectivity: restatement. At this point we have ξλ,1 = (Zλ, u′

λ, x̂λ,1) and
ξλ,2 = (Zλ, u′

λ, x̂λ,2). The main problem we face in this part of the proof is to show
that the morphisms x̂λ,1 and x̂λ,2 become the same after increasing λ.
Proof of injectivity: agreement of x̂λ,i|Zλ . Consider the morpisms x̂λ,1|Zλ , x̂λ,2|Zλ :
Zλ → Wred. These morphisms restrict to the same morphism Z → Wred. Since
Wred is a scheme locally of finite type over S we see using Limits, Proposition 32.6.1
that after replacing λ by a bigger index we may assume x̂λ,1|Zλ = x̂λ,2|Zλ : Zλ →
Wred.
Proof of injectivity: end. Next, we are going to apply the discussion in Remark
98.27.7 to Vλ and the two elements ξλ,1, ξλ,2 ∈ F (Vλ). This gives us

(1) eλ : E′
λ → Vλ separated and locally of finite type,

(2) e−1
λ (Vλ \ Zλ)→ Vλ \ Zλ is an isomorphism,

(3) a monomorphism EW,λ → Vλ,/Zλ which is the equalizer of x̂λ,1 and x̂λ,2,
(4) a formal modification E′

λ,/Zλ
→ EW,λ

Assertion (2) holds by assertion (2) in Remark 98.27.7 and the preparatory work
we did above getting u′

λ,1 = u′
λ,2 = u′

λ. Since Zλ = (Vλ,/Zλ)red factors through
EW,λ because x̂λ,1|Zλ = x̂λ,2|Zλ we see from Formal Spaces, Lemma 87.27.7 that
EW,λ → Vλ,/Zλ is a closed immersion. Then we see from assertion (4) in Remark
98.27.7 and Lemma 98.27.8 applied to the triple E′

λ, e−1
λ (Zλ), E′

λ,/Zλ
→ EW,λ over

Vλ that there exists a closed immersion Eλ → Vλ which is a solution for this triple.
Next we use assertion (5) in Remark 98.27.7 which combined with Lemma 98.27.5
says that Eλ is the “equalizer” of ξλ,1 and ξλ,2. In particular, we see that V → Vλ
factors through Eλ. Then using Limits, Proposition 32.6.1 once more we find µ ≥ λ
such that Vµ → Vλ factors through Eλ and hence the pullbacks of ξλ,1 and ξλ,2 to
Vµ are the same as desired.
Proof of surjectivity: statement. Let ξ = (Z, u′, x̂) be an element of F (V ). We
have to find a λ ∈ Λ and an element ξλ ∈ F (Vλ) restricting to ξ.
Proof of surjectivity: the question is étale local. By the unicity proved in the
previous part of the proof and by the sheaf property of F in Lemma 98.27.10, the
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problem is local on V in the étale topology. More precisely, let v ∈ V . We claim
it suffices to find an étale morphism (Ṽ , ṽ) → (V, v) and some λ, some an étale
morphism Ṽλ → Vλ, and some element ξ̃λ ∈ F (Ṽλ) such that Ṽ = Ṽλ ×Vλ V and
ξ|U = ξ̃λ|U . We omit a detailed proof of this claim12.
Proof of surjectivity: rephrasing the problem. Recall that any étale morphism
(Ṽ , ṽ) → (V, v) with Ṽ affine is the base change of an étale morphism Ṽλ → Vλ
with Ṽλ affine for some λ, see for example Topologies, Lemma 34.13.2. Given Ṽλ
we have Ṽ = limµ≥λ Ṽλ ×Vλ Vµ. Hence given (Ṽ , ṽ) → (V, v) étale with Ṽ affine,
we may replace (V, v) by (Ṽ , ṽ) and ξ by the restriction of ξ to Ṽ .
Proof of surjectivity: reduce to base being affine. In particular, suppose S̃ ⊂ S is
an affine open subscheme such that v ∈ V maps to a point of S̃. Then we may
according to the previous paragraph, replace V by Ṽ = S̃×S V . Of course, if we do
this, it suffices to solve the problem for the functor F restricted to the category of
locally Noetherian schemes over S̃. This functor is of course the functor associated
to the whole situation base changed to S̃. Thus we may and do assume S = Spec(R)
is a Noetherian affine scheme for the rest of the proof.
Proof of surjectivity: easy case. If v ∈ V \ Z, then we can take Ṽ = V \ Z. This
descends to an open subscheme Ṽλ ⊂ Vλ for some λ by Limits, Lemma 32.4.11.
Next, after increasing λ we may assume there is a morphism u′

λ : Ṽλ → U ′ restricting
to u′. Taking ξ̃λ = (∅, u′

λ, ∅) gives the desired element of F (Ṽλ).
Proof of surjectivity: hard case and reduction to affine W . The most difficult case
comes from considering v ∈ Z ⊂ V . We claim that we can reduce this to the case
where W is an affine formal scheme; we urge the reader to skip this argument13.
Namely, we can choose an étale morphism W̃ → W where W̃ is an affine formal
algebraic space such that the image of v by x̂ : V/Z →W is in the image of W̃ →W
(on reductions). Then the morphisms

p : W̃ ×W,g X ′
/T ′ −→ X ′

/T ′

and
q : W̃ ×W,x̂ V/Z → V/Z

are étale morphisms of locally Noetherian formal algebraic spaces. By (an easy
case of) Algebraization of Formal Spaces, Theorem 88.27.4 there exists a morphism
X̃ ′ → X ′ of algebraic spaces which is locally of finite type, is an isomorphism over
U ′, and such that X̃ ′

/T ′ → X ′
/T ′ is isomorphic to p. By Algebraization of Formal

Spaces, Lemma 88.28.5 the morphism X̃ ′ → X ′ is étale. Denote T̃ ′ ⊂ |X̃ ′| the
inverse image of T ′. Denote Ũ ′ ⊂ X̃ ′ the complementary open subspace. Denote
g̃′ : X̃ ′

/T̃ ′ → W̃ the formal modification which is the base change of g by W̃ → W .
Then we see that

X̃ ′, T̃ ′, Ũ ′, W̃ , g̃ : X̃ ′
/T̃ ′ → W̃

12To prove this one assembles a collection of the morphisms Ṽ → V into a finite étale
covering and shows that the corresponding morphisms Ṽλ → Vλ form an étale covering as well
(after increasing λ). Next one uses the injectivity to see that the elements ξ̃λ glue (after increasing
λ) and one uses the sheaf property for F to descend these elements to an element of F (Vλ).

13Artin’s approach to the proof of this lemma is to work around this and consequently he
can avoid proving the injectivity first. Namely, Artin consistently works with a finite affine étale
coverings of all spaces in sight keeping track of the maps between them during the proof. In
hindsight that might be preferable to what we do here.



98.27. ARTIN’S THEOREM ON CONTRACTIONS 6862

is another example of Situation 98.27.1. Denote F̃ the functor constructed from
this triple. There is a transformation of functors

F̃ −→ F

constructed using the morphisms X̃ ′ → X ′ and W̃ → W in the obvious manner;
details omitted.
Proof of surjectivity: hard case and reduction to affine W , part 2. By the same
theorem as used above, there exists a morphism Ṽ → V of algebraic spaces which
is locally of finite type, is an isomorphism over V \ Z and such that Ṽ/Z → V/Z is
isomorphic to q. Denote Z̃ ⊂ Ṽ the inverse image of Z. By Algebraization of Formal
Spaces, Lemmas 88.28.5 and 88.28.3 the morphism Ṽ → V is étale and separated.
In particular Ṽ is a (locally Noetherian) scheme, see for example Morphisms of
Spaces, Proposition 67.50.2. We have the morphism u′ which we may view as a
morphism

ũ′ : Ṽ \ Z̃ −→ Ũ ′

where Ũ ′ ⊂ X̃ ′ is the open mapping isomorphically to U ′. We have a morphism
˜̂x : Ṽ/Z̃ = W̃ ×W,x̂ V/Z −→ W̃

Namely, here we just use the projection. Thus we have the triple
ξ̃ = (Z̃, ũ′, ˜̂x) ∈ F̃ (Ṽ )

We omit proving the compatibility condition; hints: if V ′ → V , x̂′, and x′ witness
the compatibility between u′ and x̂, then one sets Ṽ ′ = V ′×V Ṽ which comes with
morphsms ˜̂x′ and x̃′ and show this works. The image of ξ̃ under the transformation
F̃ → F is the restriction of ξ to Ṽ .
Proof of surjectivity: hard case and reduction to affine W , part 3. By our choice of
W̃ → W , there is an affine open Ṽopen ⊂ Ṽ (we’re running out of notation) whose
image in V contains our chosen point v ∈ V . Now by the case studied in the next
paragraph and the remarks made earlier, we can descend ξ̃|Ṽopen to some element
ξ̃λ of F̃ over Ṽλ,open for some étale morphism Ṽλ,open → Vλ whose base change to
V is Ṽopen. Applying the transformation of functors F̃ → F we obtain the element
of F (Ṽλ,open) we were looking for. This reduces us to the case discussed in the next
paragraph.
Proof of surjectivity: the case of an affine W . We have v ∈ Z ⊂ V and W is an
affine formal algebraic space. Recall that

ξ = (Z, u′, x̂) ∈ F (V )
We may still replace V by an étale neighbourhood of v. In particular we may and
do assume V and Vλ are affine.
Proof of surjectivity: descending Z. We can find a λ and a closed subscheme
Zλ ⊂ Vλ such that Z is the base change of Zλ to V . See Limits, Lemma 32.10.1.
Warning: we don’t know (and in general it won’t be true) that Zλ is a reduced
closed subscheme of Vλ. For µ ≥ λ denote Zµ ⊂ Vµ the scheme theoretic inverse
image in Vµ. We will use below that Z = limµ≥λ Zµ as schemes.
Proof of surjectivity: descending u′. Since U ′ is locally of finite type over S we may
assume after increasing λ that there exists a morphism u′

λ : Vλ \ Zλ → U ′ whose
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restriction to V \Z is u′. See Limits, Proposition 32.6.1. For µ ≥ λ we will denote
u′
µ the restriction of u′

λ to Vµ \ Zµ.
Proof of surjectivity: descending a witness. Let V ′ → V , x̂′, and x′ witness the
compatibility between u′ and x̂. Using the same references as above we may assume
(after increasing λ) that there exists a morphism V ′

λ → Vλ of finite type whose base
change to V is V ′ → V . After increasing λ we may assume V ′

λ → Vλ is proper
(Limits, Lemma 32.13.1). Next, we may assume V ′

λ → Vλ is an isomorphism over
Vλ \ Zλ (Limits, Lemma 32.8.11). Next, we may assume there is a morphism
x′
λ : V ′

λ → X ′ whose restriction to V ′ is x′. Increasing λ again we may assume x′
λ

agrees with u′
λ over Vλ \Zλ. For µ ≥ λ we denote V ′

µ and x′
µ the base change of V ′

λ

and the restriction of x′
λ.

Proof of surjectivity: algebra. Write W = Spf(B), V = Spec(A), and for µ ≥ λ
write Vµ = Spec(Aµ). Denote Iµ ⊂ Aµ and I ⊂ A the ideals cutting out Zµ and Z.
Then IλAµ = Iµ and IλA = I. The morphism x̂ determines and is determined by
a continuous ring map

(x̂)♯ : B −→ A∧

where A∧ is the I-adic completion of A. To finish the proof we have to show that
this map descends to a map into A∧

µ for some sufficiently large µ where A∧
µ is

the Iµ-adic completion of Aµ. This is a nontrivial fact; Artin writes in his paper
[Art70]: “Since the data (3.5) involve I-adic completions, which do not commute
with direct limits, the verification is somewhat delicate. It is an algebraic analogue
of a convergence proof in analysis.”
Proof of surjectivity: algebra, more rings. Let us denote

Cµ = Γ(V ′
µ,O) and C = Γ(V ′,O)

Observe that A→ C and Aµ → Cµ are finite ring maps as V ′ → V and V ′
µ → Vµ are

proper morphisms, see Cohomology of Spaces, Lemma 69.20.3. Since V = limVµ
and V ′ = limV ′

µ we have
A = colimAµ and C = colimCµ

by Limits, Lemma 32.4.714. For an element a ∈ I, resp. a ∈ Iµ the maps Aa → Ca,
resp. (Aµ)a → (Cµ)a are isomorphisms by flat base change (Cohomology of Spaces,
Lemma 69.11.2). Hence the kernel and cokernel of A → C is supported on V (I)
and similarly for Aµ → Cµ. We conclude the kernel and cokernel of A → C are
annihilated by a power of I and the kernel and cokernel of Aµ → Cµ are annihilated
by a power of Iµ, see Algebra, Lemma 10.62.4.
Proof of surjectivity: algebra, more ring maps. Denote Zn ⊂ V the nth infinitesimal
neighbourhood of Z and denote Zµ,n ⊂ Vµ the nth infinitesimal neighbourhoof of
Zµ. By the theorem on formal functions (Cohomology of Spaces, Theorem 69.22.5)
we have

C∧ = limnH
0(V ′ ×V Zn,O) and C∧

µ = limnH
0(V ′

µ ×Vµ Zµ,n,O)
where C∧ and C∧

µ are the completion with respect to I and Iµ. Combining the
completion of the morphism x′

µ : V ′
µ → X ′ with the morphism g : X ′

/T ′ → W we
obtain

g ◦ x′
µ,/Zµ

: V ′
µ,/Zµ

= colimV ′
µ ×Vµ Zµ,n −→W

14We don’t know that Cµ = Cλ ⊗Aλ Aµ as the various morphisms aren’t flat.
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and hence by the description of the completion C∧
µ above we obtain a continuous

ring homomorphism
(g ◦ x′

µ,/Zµ
)♯ : B −→ C∧

µ

The fact that V ′ → V , x̂′, x′ witnesses the compatibility between u′ and x̂ implies
the commutativity of the following diagram

C∧
µ

// C∧

B

(g◦x′
µ,/Zµ

)♯
OO

(x̂)♯ // A∧

OO

Proof of surjectivity: more algebra arguments. Recall that the finite A-modules
Ker(A→ C) and Coker(A→ C) are annihilated by a power of I and similarly the
finite Aµ-modules Ker(Aµ → Cµ) and Coker(Aµ → Cµ) are annihilated by a power
of Iµ. This implies that these modules are equal to their completions. Since I-adic
completion on the category of finite A-modules is exact (see Algebra, Section 10.97)
it follows that we have

Coker(A∧ → C∧) = Coker(A→ C)
and similarly for kernels and for the maps Aµ → Cµ. Of course we also have
Ker(A→ C) = colim Ker(Aµ → Cµ) and Coker(A→ C) = colim Coker(Aµ → Cµ)
Recall that S = Spec(R) is affine. All of the ring maps above are R-algebra ho-
momorphisms as all of the morphisms are morphisms over S. By Algebraization of
Formal Spaces, Lemma 88.12.5 we see that B is topologically of finite type over R.
Say B is topologically generated by b1, . . . , bn. Pick some µ (for example λ) and
consider the elements

images of (g ◦ x′
µ,/Zµ

)♯(b1), . . . , (g ◦ x′
µ,/Zµ

)♯(bn) in Coker(Aµ → Cµ)

The image of these elements in Coker(α) are zero by the commutativity of the
square above. Since Coker(A → C) = colim Coker(Aµ → Cµ) and these cokernels
are equal to their completions we see that after increasing µ we may assume these
images are all zero. This means that the continuous homomorphism (g ◦ x′

µ,/Zµ
)♯

has image contained in Im(Aµ → Cµ). Choose elements aµ,j ∈ (Aµ)∧ mapping to
(g ◦ x′

µ,/Zµ
)♯(b1) in (Cµ)∧. Then aµ,j ∈ A∧

µ and (x̂)♯(bj) ∈ A∧ map to the same
element of C∧ by the commutativity of the square above. Since Ker(A → C) =
colim Ker(Aµ → Cµ) and these kernels are equal to their completions, we may after
increasing µ adjust our choices of aµ,j such that the image of aµ,j in A∧ is equal to
(x̂)♯(bj).
Proof of surjectivity: final algebra arguments. Let b ⊂ B be the ideal of topolog-
ically nilpotent elements. Let J ⊂ R[x1, . . . , xn] be the ideal consisting of those
h(x1, . . . , xn) such that h(b1, . . . , bn) ∈ b. Then we get a continuous surjection of
topological R-algebras

Φ : R[x1, . . . , xn]∧ −→ B, xj 7−→ bj

where the completion on the left hand side is with respect to J . Since R[x1, . . . , xn]
is Noetherian we can choose generators h1, . . . , hm for J . By the commutativ-
ity of the square above we see that hj(aµ,1, . . . , aµ,n) is an element of A∧

µ whose
image in A∧ is contained in IA∧. Namely, the ring map (x̂)♯ is continuous and
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IA∧ is the ideal of topological nilpotent elements of A∧ because A∧/IA∧ = A/I
is reduced. (See Algebra, Section 10.97 for results on completion in Noetherian
rings.) Since A/I = colimAµ/Iµ we conclude that after increasing µ we may as-
sume hj(aµ,1, . . . , aµ,n) is in IµA

∧
µ . In particular the elements hj(aµ,1, . . . , aµ,n)

of A∧
µ are topologically nilpotent in A∧

µ . Thus we obtain a continuous R-algebra
homomorphism

Ψ : R[x1, . . . , xn]∧ −→ A∧
µ , xj 7−→ aµ,j

In order to conclude what we want, we need to see if Ker(Φ) is annihilated by
Ψ. This may not be true, but we can achieve this after increasing µ. Indeed,
since R[x1, . . . , xn]∧ is Noetherian, we can choose generators g1, . . . , gl of the ideal
Ker(Φ). Then we see that

Ψ(g1), . . . ,Ψ(gl) ∈ Ker(A∧
µ → C∧

µ ) = Ker(Aµ → Cµ)
map to zero in Ker(A→ C) = colim Ker(Aµ → Cµ). Hence increasing µ as before
we get the desired result.
Proof of surjectivity: mopping up. The continuous ring homomorphism B → (Aµ)∧

constructed above determines a morphism x̂µ : Vµ,/Zµ → W . The compatibility of
x̂µ and u′

µ follows from the fact that the ring map B → (Aµ)∧ is by construction
compatible with the ring map Aµ → Cµ. In fact, the compatibility will be witnessed
by the proper morphism V ′

µ → Vµ and the morphisms x′
µ and x̂′

µ = x′
µ,/Zµ

we used
in the construction. This finishes the proof. □

Lemma 98.27.12.0GI6 In Situation 98.27.1 the functor F satisfies the Rim-Schlessinger
condition (RS).

Proof. Recall that the condition only involves the evaluation F (V ) of the functor
F on schemes V over S which are spectra of Artinian local rings and the restriction
maps F (V2)→ F (V1) for morphisms V1 → V2 of schemes over S which are spectra
of Artinian local rings. Thus let V/S be the spetruim of an Artinian local ring. If
ξ = (Z, u′, x̂) ∈ F (V ) then either Z = ∅ or Z = V (set theoretically). In the first
case we see that x̂ is a morphism from the empty formal algebraic space into W .
In the second case we see that u′ is a morphism from the empty scheme into X ′

and we see that x̂ : V →W is a morphism into W . We conclude that
F (V ) = U ′(V )⨿W (V )

and moreover for V1 → V2 as above the induced map F (V2)→ F (V1) is compatible
with this decomposition. Hence it suffices to prove that both U ′ and W satisfy the
Rim-Schlessinger condition. For U ′ this follows from Lemma 98.5.2. To see that it
is true for W , we write W = colimWn as in Formal Spaces, Lemma 87.20.11. Say
V = Spec(A) with (A,m) an Artinian local ring. Pick n ≥ 1 such that mn = 0.
Then we have W (V ) = Wn(V ). Hence we see that the Rim-Schlessinger condition
for W follows from the Rim-Schlessinger condition for Wn for all n (which in turn
follows from Lemma 98.5.2). □

Lemma 98.27.13.0GI7 In Situation 98.27.1 the tangent spaces of the functor F are finite
dimensional.

Proof. In the proof of Lemma 98.27.12 we have seen that F (V ) = U ′(V ) ⨿W (V )
if V is the spectrum of an Artinian local ring. The tangent spaces are computed
entirely from evaluations of F on such schemes over S. Hence it suffices to prove

https://stacks.math.columbia.edu/tag/0GI6
https://stacks.math.columbia.edu/tag/0GI7
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that the tangent spaces of the functors U ′ and W are finite dimensional. For U ′

this follows from Lemma 98.8.1. Write W = colimWn as in the proof of Lemma
98.27.12. Then we see that the tangent spaces of W are equal to the tangent spaces
of W2, as to get at the tangent space we only need to evaluate W on spectra of
Artinian local rings (A,m) with m2 = 0. Then again we see that the tangent spaces
of W2 have finite dimension by Lemma 98.8.1. □

Lemma 98.27.14.0GI8 In Situation 98.27.1 assume X ′ → S is separated. Then every
formal object for F is effective.

Proof. A formal object ξ = (R, ξn) of F consists of a Noetherian complete local
S-algebra R whose residue field is of finite type over S, together with elements
ξn ∈ F (Spec(R/mn)) for all n such that ξn+1|Spec(R/mn) = ξn. By the discussion
in the proof of Lemma 98.27.12 we see that either ξ is a formal object of U ′ or a
formal object of W . In the first case we see that ξ is effective by Lemma 98.9.5.
The second case is the interesting case. Set V = Spec(R). We will construct an
element (Z, u′, x̂) ∈ F (V ) whose image in F (Spec(R/mn)) is ξn for all n ≥ 1.

We may view the collection of elements ξn as a morphism

ξ : Spf(R) −→W

of locally Noetherian formal algebraic spaces over S. Observe that ξ is not an adic
morphism in general. To fix this, let I ⊂ R be the ideal corresponding to the formal
closed subspace

Spf(R)×ξ,W Wred ⊂ Spf(R)
Note that I ⊂ mR. Set Z = V (I) ⊂ V = Spec(R). Since R is mR-adically complete
it is a fortiori I-adically complete (Algebra, Lemma 10.96.8). Moreover, we claim
that for each n ≥ 1 the morphism

ξ|Spf(R/In) : Spf(R/In) −→W

actually comes from a morphism

ξ′
n : Spec(R/In) −→W

Namely, this follows from writing W = colimWn as in the proof of Lemma 98.27.12,
noticing that ξ|Spf(R/In) maps intoWn, and applying Formal Spaces, Lemma 87.33.3
to algebraize this to a morphism Spec(R/In) → Wn as desired. Let us denote
Spf′(R) = V/Z the formal spectrum of R endowed with the I-adic topology –
equivalently the formal completion of V along Z. Using the morphisms ξ′

n we
obtain an adic morphism

x̂ = (ξ′
n) : Spf′(R) −→W

of locally Noetherian formal algebraic spaces over S. Consider the base change

Spf′(R)×x̂,W,g X ′
/T ′ −→ Spf′(R)

This is a formal modification by Algebraization of Formal Spaces, Lemma 88.24.4.
Hence by the main theorem on dilatations (Algebraization of Formal Spaces, The-
orem 88.29.1) we obtain a proper morphism

V ′ −→ V = Spec(R)

https://stacks.math.columbia.edu/tag/0GI8
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which is an isomorphism over Spec(R) \ V (I) and whose completion recovers the
formal modification above, in other words

V ′ ×Spec(R) Spec(R/In) = Spec(R/In)×ξ′
n,W,g

X ′
/T ′

This in particular tells us we have a compatible system of morphisms
V ′ ×Spec(R) Spec(R/In) −→ X ′ ×S Spec(R/In)

Hence by Grothendieck’s algebraization theorem (in the form of More on Morphisms
of Spaces, Lemma 76.43.3) we obtain a morphism

x′ : V ′ → X ′

over S recovering the morphisms displayed above. Then finally setting u′ : V \Z →
X ′ the restriction of x′ to V \ Z ⊂ V ′ gives the third component of our desired
element (Z, u′, x̂) ∈ F (V ). □

Lemma 98.27.15.0GI9 Let S be a locally Noetherian scheme. Let V be a scheme
locally of finite type over S. Let Z ⊂ V be closed. Let W be a locally Noetherian
formal algebraic space over S such that Wred is locally of finite type over S. Let
g : V/Z →W be an adic morphism of formal algebraic spaces over S. Let v ∈ V be
a closed point such that g is versal at v (as in Section 98.15). Then after replacing
V by an open neighbourhood of v the morphism g is smooth (see proof).

Proof. Since g is adic it is representable by algebraic spaces (Formal Spaces, Section
87.23). Thus by saying g is smooth we mean that g should be smooth in the sense
of Bootstrap, Definition 80.4.1.
Write W = colimWn as in Formal Spaces, Lemma 87.20.11. Set Vn = V/Z×x̂,WWn.
Then Vn is a closed subscheme with underlying set Z. Smoothness of V → W is
equivalent to the smoothness of all the morphisms Vn → Wn (this holds because
any morphism T →W with T a quasi-compact scheme factors through Wn for some
n). We know that the morphism Vn →Wn is smooth at v by Lemma 98.12.615. Of
course this means that given any n we can shrink V such that Vn →Wn is smooth.
The problem is to find an open which works for all n at the same time.
The question is local on V , hence we may assume S = Spec(R) and V = Spec(A)
are affine.
In this paragraph we reduce to the case where W is an affine formal algebraic space.
Choose an affine formal scheme W ′ and an étale morphism W ′ →W such that the
image of v in Wred is in the image of W ′

red →Wred. Then V/Z×g,WW ′ → V/Z is an
adic étale morphism of formal algebraic spaces over S and V/Z ×g,W W ′ is an affine
fromal algebraic space. By Algebraization of Formal Spaces, Lemma 88.25.1 there
exists an étale morphism φ : V ′ → V of affine schemes such that the completion
of V ′ along Z ′ = φ−1(Z) is isomorphic to V/Z ×g,W W ′ over V/Z . Observe that v
is the image of some v′ ∈ V ′. Since smoothness is preserved under base change we
see that V ′

n → W ′
n is smooth for all n. In the next paragraph we show that after

replacing V ′ by an open neighbourhood of v′ the morphisms V ′
n →W ′

n are smooth
for all n. Then, after we replace V by the open image of V ′ → V , we obtain that
Vn →Wn is smooth by étale descent of smoothness. Some details omitted.

15The lemma applies since the diagonal of W is representable by algebraic spaces and locally
of finite type, see Formal Spaces, Lemma 87.15.5 and we have seen that W has (RS) in the proof
of Lemma 98.27.12.

https://stacks.math.columbia.edu/tag/0GI9


98.27. ARTIN’S THEOREM ON CONTRACTIONS 6868

Assume S = Spec(R), V = Spec(A), Z = V (I), and W = Spf(B). Let v correspond
to the maximal ideal I ⊂ m ⊂ A. We are given an adic continuous R-algebra
homomorphism

B −→ A∧

Let b ⊂ B be the ideal of topologically nilpotent elements (this is the maximal
ideal of definition of the Noetherian adic topological ring B). Observe that bA∧

and IA∧ are both ideals of definition of the Noetherian adic ring A∧. Also, mA∧

is a maximal ideal of A∧ containing both bA∧ and IA∧. We are given that
Bn = B/bn → A∧/bnA∧ = An

is smooth at m for all n. By the discussion above we may and do assume that
B1 → A1 is a smooth ring map. Denote m1 ⊂ A1 the maximal ideal corresponing
to m. Since smoothness implies flatness, we see that: for all n ≥ 1 the map

bn/bn+1 ⊗B1 (A1)m1 −→
(
bnA∧/bn+1A∧)

m1

is an isomorphism (see Algebra, Lemma 10.99.9). Consider the Rees algebra

B′ =
⊕

n≥0
bn/bn+1

which is a finite type graded algebra over the Noetherian ring B1 and the Rees
algebra

A′ =
⊕

n≥0
bnA∧/bn+1A∧

which is a a finite type graded algebra over the Noetherian ring A1. Consider the
homomorphism of graded A1-algebras

Ψ : B′ ⊗B1 A1 −→ A′

By the above this map is an isomorphism after localizing at the maximal ideal m1 of
A1. Hence Ker(Ψ), resp. Coker(Ψ) is a finite module over B′⊗B1A1, resp. A′ whose
localization at m1 is zero. It follows that after replacing A1 (and correspondingly
A) by a principal localization we may assume Ψ is an isomorphism. (This is the
key step of the proof.) Then working backwards we see that Bn → An is flat,
see Algebra, Lemma 10.99.9. Hence An → Bn is smooth (as a flat ring map with
smooth fibres, see Algebra, Lemma 10.137.17) and the proof is complete. □

Lemma 98.27.16.0GIA In Situation 98.27.1 the functor F satisfies openness of versality.

Proof. We have to show the following. Given a scheme V locally of finite type over
S, given ξ ∈ F (V ), and given a finite type point v0 ∈ V such that ξ is versal at v0,
after replacing V by an open neighbourhood of v0 we have that ξ is versal at every
finite type point of V . Write ξ = (Z, u′, x̂).
First case: v0 ̸∈ Z. Then we can first replace V by V \ Z. Hence we see that
ξ = (∅, u′, ∅) and the morphism u′ : V → X ′ is versal at v0. By More on Morphisms
of Spaces, Lemma 76.20.1 this means that u′ : V → X ′ is smooth at v0. Since the
set of a points where a morphism is smooth is open, we can after shrinking V
assume u′ is smooth. Then the same lemma tells us that ξ is versal at every point
as desired.
Second case: v0 ∈ Z. Write W = colimWn as in Formal Spaces, Lemma 87.20.11.
By Lemma 98.27.15 we may assume x̂ : V/Z →W is a smooth morphism of formal
algebraic spaces. It follows immediately that ξ = (Z, u′, x̂) is versal at all finite
type points of Z. Let V ′ → V , x̂′, and x′ witness the compatibility between u′ and

https://stacks.math.columbia.edu/tag/0GIA
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x̂. We see that x̂′ : V ′
/Z → X ′

/T ′ is smooth as a base change of x̂. Since x̂′ is the
completion of x′ : V ′ → X ′ this implies that x′ : V ′ → X ′ is smooth at all points
of (V ′ → V )−1(Z) = |x′|−1(T ′) ⊂ |V ′| by the already used More on Morphisms
of Spaces, Lemma 76.20.1. Since the set of smooth points of a morphism is open,
we see that the closed set of points B ⊂ |V ′| where x′ is not smooth does not
meet (V ′ → V )−1(Z). Since V ′ → V is proper and hence closed, we see that
(V ′ → V )(B) ⊂ V is a closed subset not meeting Z. Hence after shrinking V we
may assume B = ∅, i.e., x′ is smooth. By the discussion in the previous paragraph
this exactly means that ξ is versal at all finite type points of V not contained in Z
and the proof is complete. □

Here is the final result.

Theorem 98.27.17.0GIB [Art70, Theorem
3.1]

Let S be a locally Noetherian scheme such that OS,s is a G-ring
for all finite type points s ∈ S. Let X ′ be an algebraic space locally of finite type
over S. Let T ′ ⊂ |X ′| be a closed subset. Let W be a locally Noetherian formal
algebraic space over S with Wred locally of finite type over S. Finally, we let

g : X ′
/T ′ −→W

be a formal modification, see Algebraization of Formal Spaces, Definition 88.24.1. If
X ′ and W are separated16 over S, then there exists a proper morphism f : X ′ → X
of algebraic spaces over S, a closed subset T ⊂ |X|, and an isomorphism a : X/T →
W of formal algebraic spaces such that

(1) T ′ is the inverse image of T by |f | : |X ′| → |X|,
(2) f : X ′ → X maps X ′ \ T ′ isomorphically to X \ T , and
(3) g = a ◦ f/T where f/T : X ′

/T ′ → X/T is the induced morphism.
In other words, (f : X ′ → X,T, a) is a solution as defined earlier in this section.

Proof. Let F be the functor constructed using X ′, T ′, W , g in this section. By
Lemma 98.27.6 it suffices to show that F corresponds to an algebraic space X
locally of finite type over S. In order to do this, we will apply Proposition 98.26.1.
Namely, by Lemma 98.27.9 the diagonal of F is representable by closed immersions
and by Lemmas 98.27.10, 98.27.11, 98.27.12, 98.27.13, 98.27.14, and 98.27.16 we
have axioms [0], [1], [2], [3], [4], and [5]. □

Remark 98.27.18.0GIC The proof of Theorem 98.27.17 uses that X ′ and W are separated
over S in two places. First, the proof uses this in showing ∆ : F → F × F
is representable by algebraic spaces. This use of the assumption can be entirely
avoided by proving that ∆ is representable by applying the theorem in the separated
case to the triples E′, (E′ → V )−1Z, and E′

/Z → EW found in Remark 98.27.7
(this is the usual bootstrap procedure for the diagonal). Thus the proof of Lemma
98.27.14 is the only place in our proof of Theorem 98.27.17 where we really need
to use that X ′ → S is separated. The reader checks that we use the assumption
only to obtain the morphism x′ : V ′ → X ′. The existence of x′ can be shown, using
results in the literature, if X ′ → S is quasi-separated, see More on Morphisms of
Spaces, Remark 76.43.4. We conclude the theorem holds as stated with “separated”
replaced by “quasi-separated”. If we ever need this we will precisely state and
carefully prove this here.

16See Remark 98.27.18.

https://stacks.math.columbia.edu/tag/0GIB
https://stacks.math.columbia.edu/tag/0GIC
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CHAPTER 99

Quot and Hilbert Spaces

05X4 99.1. Introduction

05X5 As initially conceived, the purpose of this chapter was to write about Quot and
Hilbert functors and to prove that these are algebraic spaces provided certain tech-
nical conditions are satisfied. This material, in the setting of schemes, is covered in
Grothendieck’s lectures in the séminair Bourbaki, see [Gro95a], [Gro95b], [Gro95e],
[Gro95f], [Gro95c], and [Gro95d]. For projective schemes the Quot and Hilbert
schemes live inside Grassmannians of spaces of sections of suitable very ample in-
vertible sheaves, and this provides a method of construction for these schemes. Our
approach is different: we use Artin’s axioms to prove Quot and Hilb are algebraic
spaces.

Upon further consideration, it turned out to be more convenient for the development
of theory in the Stacks project, to start the discussion with the stack CohX/B of
coherent sheaves (with proper support over the base) as introduced in [Lie06b].
For us f : X → B is a morphism of algebraic spaces satisfying suitable technical
conditions, although this can be generalized (see below). Given modules F and
G on X, under suitably hypotheses, the functor T/B 7→ HomXT (FT ,GT ) is an
algebraic space Hom(F ,G) over B. See Section 99.3. The subfunctor Isom(F ,G)
of isomorphisms is shown to be an algebraic space in Section 99.4. This is used in
the next sections to show the diagonal of the stack CohX/B is representable. We
prove CohX/B is an algebraic stack in Section 99.5 when X → B is flat and in
Section 99.6 in general. Please see the introduction of this section for pointers to
the literature.

Having proved this, it is rather straightforward to prove that QuotF/X/B , HilbX/B ,
and PicX/B are algebraic spaces and that PicX/B is an algebraic stack. See Sections
99.8, 99.9, 99.11, and 99.10.

In the usual manner we deduce that the functor MorB(Z,X) of relative morphisms
is an algebraic space (under suitable hypotheses) in Section 99.12.

In Section 99.13 we prove that the stack in groupoids

Spaces′
fp,flat,proper

parametrizing flat families of proper algebraic spaces satisfies all of Artin’s axioms
(including openness of versality) except for formal effectiveness. We’ve chosen the
very awkward notation for this stack intentionally, because the reader should be
carefull in using its properties.

In Section 99.14 we prove that the stack Polarized parametrizing flat families of
polarized proper algebraic spaces is an algebraic stack. Because of our work on flat

6872



99.3. THE HOM FUNCTOR 6873

families of proper algebraic spaces, this comes down to proving formal effective-
ness for polarized schemes which is often known as Grothendieck’s algebraization
theorem.

In Section 99.15 we prove that the stack Curves parametrizing families of curves is
algebraic.

In Section 99.16 we study moduli of complexes on a proper morphism and we obtain
an algebraic stack ComplexesX/B . The idea of the statement and the proof are taken
from [Lie06a].

What is not in this chapter? There is almost no discussion of the properties the
resulting moduli spaces and moduli stacks possess (beyond their algebraicity); to
read about this we refer to Moduli Stacks, Section 108.1. In most of the results
discussed, we can generalize the constructions by considering a morphism X → B of
algebraic stacks instead of a morphism X → B of algebraic space. We will discuss
this (insert future reference here). In the case of Hilbert spaces there is a more
general notion of “Hilbert stacks” which we will discuss in a separate chapter, see
(insert future reference here).

99.2. Conventions

05X6 We have intentionally placed this chapter, as well as the chapters “Examples of
Stacks”, “Sheaves on Algebraic Stacks”, “Criteria for Representability”, and “Artin’s
Axioms” before the general development of the theory of algebraic stacks. The rea-
son for this is that starting with the next chapter (see Properties of Stacks, Section
100.2) we will no longer distinguish between a scheme and the algebraic stack it
gives rise to. Thus our language will become more flexible and easier for a human
to parse, but also less precise. These first few chapters, including the initial chap-
ter “Algebraic Stacks”, lay the groundwork that later allow us to ignore some of
the very technical distinctions between different ways of thinking about algebraic
stacks. But especially in the chapters “Artin’s Axioms” and “Criteria of Repre-
sentability” we need to be very precise about what objects exactly we are working
with, as we are trying to show that certain constructions produce algebraic stacks
or algebraic spaces.

Unfortunately, this means that some of the notation, conventions and terminology
is awkward and may seem backwards to the more experienced reader. We hope the
reader will forgive us!

The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

99.3. The Hom functor

08JS In this section we study the functor of homomorphisms defined below.
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Situation 99.3.1.08JT Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let F , G be quasi-coherent OX -modules. For any scheme T over
B we will denote FT and GT the base changes of F and G to T , in other words,
the pullbacks via the projection morphism XT = X ×B T → X. We consider the
functor

(99.3.1.1)08JU Hom(F ,G) : (Sch/B)opp −→ Sets, T −→ HomOXT
(FT ,GT )

In Situation 99.3.1 we sometimes think of Hom(F ,G) as a functor (Sch/S)opp →
Sets endowed with a morphism Hom(F ,G)→ B. Namely, if T is a scheme over S,
then an element of Hom(F ,G)(T ) consists of a pair (h, u), where h is a morphism
h : T → B and u : FT → GT is an OXT -module map where XT = T ×h,B X and
FT and GT are the pullbacks to XT . In particular, when we say that Hom(F ,G) is
an algebraic space, we mean that the corresponding functor (Sch/S)opp → Sets is
an algebraic space.

Lemma 99.3.2.08JV In Situation 99.3.1 the functor Hom(F ,G) satisfies the sheaf prop-
erty for the fpqc topology.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over B. Set Xi = XTi =
X×STi and Fi = uTi and Gi = GTi . Note that {Xi → XT }i∈I is an fpqc covering of
XT , see Topologies on Spaces, Lemma 73.9.3. Thus a family of maps ui : Fi → Gi
such that ui and uj restrict to the same map on XTi×TTj comes from a unique map
u : FT → GT by descent (Descent on Spaces, Proposition 74.4.1). □

Sanity check: Hom sheaf plays the same role among algebraic spaces over S.

Lemma 99.3.3.0D3S In Situation 99.3.1. Let T be an algebraic space over S. We have

MorSh((Sch/S)fppf )(T,Hom(F ,G)) = {(h, u) | h : T → B, u : FT → GT }

where FT ,GT denote the pullbacks of F and G to the algebraic space X ×B,h T .

Proof. Choose a scheme U and a surjective étale morphism p : U → T . Let
R = U ×T U with projections t, s : R→ U .

Let v : T → Hom(F ,G) be a natural transformation. Then v(p) corresponds to a
pair (hU , uU ) over U . As v is a transformation of functors we see that the pullbacks
of (hU , uU ) by s and t agree. Since T = U/R (Spaces, Lemma 65.9.1), we obtain a
morphism h : T → B such that hU = h ◦ p. Then FU is the pullback of FT to XU

and similarly for GU . Hence uU descends to a OXT -module map u : FT → GT by
Descent on Spaces, Proposition 74.4.1.

Conversely, let (h, u) be a pair over T . Then we get a natural transformation
v : T → Hom(F ,G) by sending a morphism a : T ′ → T where T ′ is a scheme to
(h ◦a, a∗u). We omit the verification that the construction of this and the previous
paragraph are mutually inverse. □

Remark 99.3.4.08JW In Situation 99.3.1 let B′ → B be a morphism of algebraic spaces
over S. Set X ′ = X ×B B′ and denote F ′, G′ the pullback of F , G to X ′. Then we
obtain a functor Hom(F ′,G′) : (Sch/B′)opp → Sets associated to the base change
f ′ : X ′ → B′. For a scheme T over B′ it is clear that we have

Hom(F ′,G′)(T ) = Hom(F ,G)(T )

https://stacks.math.columbia.edu/tag/08JT
https://stacks.math.columbia.edu/tag/08JV
https://stacks.math.columbia.edu/tag/0D3S
https://stacks.math.columbia.edu/tag/08JW
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where on the right hand side we think of T as a scheme over B via the composition
T → B′ → B. This trivial remark will occasionally be useful to change the base
algebraic space.

Lemma 99.3.5.08K3 In Situation 99.3.1 let {Xi → X}i∈I be an fppf covering and for
each i, j ∈ I let {Xijk → Xi×X Xj} be an fppf covering. Denote Fi, resp. Fijk the
pullback of F to Xi, resp. Xijk. Similarly define Gi and Gijk. For every scheme T
over B the diagram

Hom(F ,G)(T ) // ∏
i Hom(Fi,Gi)(T )

pr∗
0 //

pr∗
1

//
∏
i,j,k Hom(Fijk,Gijk)(T )

presents the first arrow as the equalizer of the other two.

Proof. Let ui : Fi,T → Gi,T be an element in the equalizer of pr∗
0 and pr∗

1. Since the
base change of an fppf covering is an fppf covering (Topologies on Spaces, Lemma
73.7.3) we see that {Xi,T → XT }i∈I and {Xijk,T → Xi,T ×XT Xj,T } are fppf
coverings. Applying Descent on Spaces, Proposition 74.4.1 we first conclude that
ui and uj restrict to the same morphism over Xi,T ×XT Xj,T , whereupon a second
application shows that there is a unique morphism u : FT → GT restricting to ui
for each i. This finishes the proof. □

Lemma 99.3.6.08K4 In Situation 99.3.1. If F is of finite presentation and f is quasi-
compact and quasi-separated, then Hom(F ,G) is limit preserving.

Proof. Let T = limi∈I Ti be a directed limit of affine B-schemes. We have to show
that

Hom(F ,G)(T ) = colim Hom(F ,G)(Ti)
Pick 0 ∈ I. We may replace B by T0, X by XT0 , F by FT0 , G by GT0 , and I by
{i ∈ I | i ≥ 0}. See Remark 99.3.4. Thus we may assume B = Spec(R) is affine.
When B is affine, then X is quasi-compact and quasi-separated. Choose a surjective
étale morphism U → X where U is an affine scheme (Properties of Spaces, Lemma
66.6.3). Since X is quasi-separated, the scheme U ×X U is quasi-compact and
we may choose a surjective étale morphism V → U ×X U where V is an affine
scheme. Applying Lemma 99.3.5 we see that Hom(F ,G) is the equalizer of two
maps between

Hom(F|U ,G|U ) and Hom(F|V ,G|V )
This reduces us to the case that X is affine.
In the affine case the statement of the lemma reduces to the following problem:
Given a ring map R → A, two A-modules M , N and a directed system of R-
algebras C = colimCi. When is it true that the map

colim HomA⊗RCi(M ⊗R Ci, N ⊗R Ci) −→ HomA⊗RC(M ⊗R C,N ⊗R C)
is bijective? By Algebra, Lemma 10.127.5 this holds if M ⊗R C is of finite presen-
tation over A⊗R C, i.e., when M is of finite presentation over A. □

Lemma 99.3.7.08K5 Let S be a scheme. Let B be an algebraic space over S. Let
i : X ′ → X be a closed immersion of algebraic spaces over B. Let F be a quasi-
coherent OX -module and let G′ be a quasi-coherent OX′ -module. Then

Hom(F , i∗G′) = Hom(i∗F ,G′)

https://stacks.math.columbia.edu/tag/08K3
https://stacks.math.columbia.edu/tag/08K4
https://stacks.math.columbia.edu/tag/08K5
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as functors on (Sch/B).

Proof. Let g : T → B be a morphism where T is a scheme. Denote iT : X ′
T → XT

the base change of i. Denote h : XT → X and h′ : X ′
T → X ′ the projections.

Observe that (h′)∗i∗F = i∗Th
∗F . As a closed immersion is affine (Morphisms of

Spaces, Lemma 67.20.6) we have h∗i∗G = iT,∗(h′)∗G by Cohomology of Spaces,
Lemma 69.11.1. Thus we have

Hom(F , i∗G′)(T ) = HomOXT
(h∗F , h∗i∗G′)

= HomOXT
(h∗F , iT,∗(h′)∗G)

= HomOX′
T

(i∗Th∗F , (h′)∗G)

= HomOX′
T

((h′)∗i∗F , (h′)∗G)

= Hom(i∗F ,G′)(T )
as desired. The middle equality follows from the adjointness of the functors iT,∗
and i∗T . □

Lemma 99.3.8.08JX Let S be a scheme. Let B be an algebraic space over S. Let K be
a pseudo-coherent object of D(OB).

(1) If for all g : T → B in (Sch/B) the cohomology sheaf H−1(Lg∗K) is zero,
then the functor

(Sch/B)opp −→ Sets, (g : T → B) 7−→ H0(T,H0(Lg∗K))
is an algebraic space affine and of finite presentation over B.

(2) If for all g : T → B in (Sch/B) the cohomology sheaves Hi(Lg∗K) are
zero for i < 0, then K is perfect, K locally has tor amplitude in [0, b], and
the functor

(Sch/B)opp −→ Sets, (g : T → B) 7−→ H0(T, Lg∗K)
is an algebraic space affine and of finite presentation over B.

Proof. Under the assumptions of (2) we have H0(T, Lg∗K) = H0(T,H0(Lg∗K)).
Let us prove that the rule T 7→ H0(T,H0(Lg∗K)) satisfies the sheaf property for
the fppf topology. To do this assume we have an fppf covering {hi : Ti → T} of
a scheme g : T → B over B. Set gi = g ◦ hi. Note that since hi is flat, we have
Lh∗

i = h∗
i and h∗

i commutes with taking cohomology. Hence
H0(Ti, H0(Lg∗

iK)) = H0(Ti, H0(h∗
iLg

∗K)) = H0(T, h∗
iH

0(Lg∗K))
Similarly for the pullback to Ti×T Tj . Since Lg∗K is a pseudo-coherent complex on
T (Cohomology on Sites, Lemma 21.45.3) the cohomology sheaf F = H0(Lg∗K) is
quasi-coherent (Derived Categories of Spaces, Lemma 75.13.6). Hence by Descent
on Spaces, Proposition 74.4.1 we see that

H0(T,F) = Ker(
∏

H0(Ti, h∗
iF)→

∏
H0(Ti ×T Tj , (Ti ×T Tj → T )∗F))

In this way we see that the rules in (1) and (2) satisfy the sheaf property for fppf
coverings. This means we may apply Bootstrap, Lemma 80.11.2 to see it suffices
to prove the representability étale locally on B. Moreover, we may check whether
the end result is affine and of finite presentation étale locally on B, see Morphisms
of Spaces, Lemmas 67.20.3 and 67.28.4. Hence we may assume that B is an affine
scheme.

https://stacks.math.columbia.edu/tag/08JX
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Assume B = Spec(A) is an affine scheme. By the results of Derived Categories
of Spaces, Lemmas 75.13.6, 75.4.2, and 75.13.2 we deduce that in the rest of the
proof we may think of K as a perfect object of the derived category of complexes of
modules on B in the Zariski topology. By Derived Categories of Schemes, Lemmas
36.10.1, 36.3.5, and 36.10.2 we can find a pseudo-coherent complexM• ofA-modules
such that K is the corresponding object of D(OB). Our assumption on pullbacks
implies that M• ⊗L

A κ(p) has vanishing H−1 for all primes p ⊂ A. By More on
Algebra, Lemma 15.76.4 we can write

M• = τ≥0M
• ⊕ τ≤−1M

•

with τ≥0M
• perfect with Tor amplitude in [0, b] for some b ≥ 0 (here we also have

used More on Algebra, Lemmas 15.74.12 and 15.66.16). Note that in case (2) we
also see that τ≤−1M

• = 0 in D(A) whence M• and K are perfect with tor amplitude
in [0, b]. For any B-scheme g : T → B we have

H0(T,H0(Lg∗K)) = H0(T,H0(Lg∗τ≥0K))

(by the dual of Derived Categories, Lemma 13.16.1) hence we may replace K by
τ≥0K and correspondingly M• by τ≥0M

•. In other words, we may assume M• has
tor amplitude in [0, b].

Assume M• has tor amplitude in [0, b]. We may assume M• is a bounded above
complex of finite free A-modules (by our definition of pseudo-coherent complexes,
see More on Algebra, Definition 15.64.1 and the discussion following the definition).
By More on Algebra, Lemma 15.66.2 we see that M = Coker(M−1 → M0) is flat.
By Algebra, Lemma 10.78.2 we see that M is finite locally free. Hence M• is
quasi-isomorphic to

M →M1 →M2 → . . .→Md → 0 . . .

Note that this is a K-flat complex (Cohomology, Lemma 20.26.9), hence derived
pullback of K via a morphism T → B is computed by the complex

g∗M̃ → g∗M̃1 → . . .

Thus it suffices to show that the functor

(g : T → B) 7−→ Ker(Γ(T, g∗M̃)→ Γ(T, g∗(M̃1))

is representable by an affine scheme of finite presentation over B.

We may still replace B by the members of an affine open covering in order to prove
this last statement. Hence we may assume that M is finite free (recall that M1 is
finite free to begin with). Write M = A⊕n and M1 = A⊕m. Let the map M →M1

be given by the m × n matrix (aij) with coefficients in A. Then M̃ = O⊕n
B and

M̃1 = O⊕m
B . Thus the functor above is equal to the functor

(g : T → B) 7−→ {(f1, . . . , fn) ∈ Γ(T,OT ) |
∑

g♯(aij)fi = 0, j = 1, . . . ,m}

Clearly this is representable by the affine scheme

Spec
(
A[x1, . . . , xn]/(

∑
aijxi; j = 1, . . . ,m)

)
and the lemma has been proved. □
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The functor Hom(F ,G) is representable in a number of situations. All of our results
will be based on the following basic case. The proof of this lemma as given below
is in some sense the natural generalization to the proof of [DG67, III, Cor 7.7.8].

Lemma 99.3.9.08JY In Situation 99.3.1 assume that
(1) B is a Noetherian algebraic space,
(2) f is locally of finite type and quasi-separated,
(3) F is a finite type OX -module, and
(4) G is a finite type OX -module, flat over B, with support proper over B.

Then the functor Hom(F ,G) is an algebraic space affine and of finite presentation
over B.

Proof. We may replace X by a quasi-compact open neighbourhood of the support of
G, hence we may assume X is Noetherian. In this case X and f are quasi-compact
and quasi-separated. Choose an approximation P → F by a perfect complex P
of the triple (X,F ,−1), see Derived Categories of Spaces, Definition 75.14.1 and
Theorem 75.14.7). Then the induced map

HomOX
(F ,G) −→ HomD(OX)(P,G)

is an isomorphism because P → F induces an isomorphism H0(P ) → F and
Hi(P ) = 0 for i > 0. Moreover, for any morphism g : T → B denote h : XT =
T ×B X → X the projection and set PT = Lh∗P . Then it is equally true that

HomOXT
(FT ,GT ) −→ HomD(OXT

)(PT ,GT )

is an isomorphism, as PT = Lh∗P → Lh∗F → FT induces an isomorphism
H0(PT ) → FT (because h∗ is right exact and Hi(P ) = 0 for i > 0). Thus it
suffices to prove the result for the functor

T 7−→ HomD(OXT
)(PT ,GT ).

By the Leray spectral sequence (see Cohomology on Sites, Remark 21.14.4) we have
HomD(OXT

)(PT ,GT ) = H0(XT , RHom(PT ,GT )) = H0(T,RfT,∗RHom(PT ,GT ))

where fT : XT → T is the base change of f . By Derived Categories of Spaces,
Lemma 75.21.5 we have

RfT,∗RHom(PT ,GT ) = Lg∗Rf∗RHom(P,G).
By Derived Categories of Spaces, Lemma 75.22.3 the object K = Rf∗RHom(P,G)
of D(OB) is perfect. This means we can apply Lemma 99.3.8 as long as we
can prove that the cohomology sheaf Hi(Lg∗K) is 0 for all i < 0 and g : T →
B as above. This is clear from the last displayed formula as the cohomology
sheaves of RfT,∗RHom(PT ,GT ) are zero in negative degrees due to the fact that
RHom(PT ,GT ) has vanishing cohomology sheaves in negative degrees as PT is per-
fect with vanishing cohomology sheaves in positive degrees. □

Here is a cheap consequence of Lemma 99.3.9.

Proposition 99.3.10.08K6 In Situation 99.3.1 assume that
(1) f is of finite presentation, and
(2) G is a finitely presented OX -module, flat over B, with support proper over

B.

https://stacks.math.columbia.edu/tag/08JY
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Then the functor Hom(F ,G) is an algebraic space affine over B. If F is of finite
presentation, then Hom(F ,G) is of finite presentation over B.

Proof. By Lemma 99.3.2 the functor Hom(F ,G) satisfies the sheaf property for
fppf coverings. This mean we may1 apply Bootstrap, Lemma 80.11.1 to check
the representability étale locally on B. Moreover, we may check whether the end
result is affine or of finite presentation étale locally on B, see Morphisms of Spaces,
Lemmas 67.20.3 and 67.28.4. Hence we may assume that B is an affine scheme.

Assume B is an affine scheme. As f is of finite presentation, it follows X is quasi-
compact and quasi-separated. Thus we can write F = colimFi as a filtered colimit
of OX -modules of finite presentation (Limits of Spaces, Lemma 70.9.1). It is clear
that

Hom(F ,G) = lim Hom(Fi,G)
Hence if we can show that each Hom(Fi,G) is representable by an affine scheme,
then we see that the same thing holds for Hom(F ,G). Use the material in Limits,
Section 32.2 and Limits of Spaces, Section 70.4. Thus we may assume that F is of
finite presentation.

Say B = Spec(R). Write R = colimRi with each Ri a finite type Z-algebra. Set
Bi = Spec(Ri). By the results of Limits of Spaces, Lemmas 70.7.1 and 70.7.2 we
can find an i, a morphism of algebraic spaces Xi → Bi, and finitely presented
OXi-modules Fi and Gi such that the base change of (Xi,Fi,Gi) to B recovers
(X,F ,G). By Limits of Spaces, Lemma 70.6.12 we may, after increasing i, assume
that Gi is flat over Bi. By Limits of Spaces, Lemma 70.12.3 we may similarly
assume the scheme theoretic support of Gi is proper over Bi. At this point we can
apply Lemma 99.3.9 to see that Hi = Hom(Fi,Gi) is an algebraic space affine of
finite presentation over Bi. Pulling back to B (using Remark 99.3.4) we see that
Hi ×Bi B = Hom(F ,G) and we win. □

99.4. The Isom functor

08K7 In Situation 99.3.1 we can consider the subfunctor

Isom(F ,G) ⊂ Hom(F ,G)

whose value on a scheme T over B is the set of invertible OXT -homomorphisms
u : FT → GT .

We sometimes think of Isom(F ,G) as a functor (Sch/S)opp → Sets endowed with
a morphism Isom(F ,G) → B. Namely, if T is a scheme over S, then an element
of Isom(F ,G)(T ) consists of a pair (h, u), where h is a morphism h : T → B and
u : FT → GT is an OXT -module isomorphism where XT = T ×h,B X and FT and
GT are the pullbacks to XT . In particular, when we say that Isom(F ,G) is an
algebraic space, we mean that the corresponding functor (Sch/S)opp → Sets is an
algebraic space.

Lemma 99.4.1.08K8 In Situation 99.3.1 the functor Isom(F ,G) satisfies the sheaf prop-
erty for the fpqc topology.

1We omit the verification of the set theoretical condition (3) of the referenced lemma.
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Proof. We have already seen that Hom(F ,G) satisfies the sheaf property. Hence
it remains to show the following: Given an fpqc covering {Ti → T}i∈I of schemes
over B and an OXT -linear map u : FT → GT such that uTi is an isomorphism
for all i, then u is an isomorphism. Since {Xi → XT }i∈I is an fpqc covering of
XT , see Topologies on Spaces, Lemma 73.9.3, this follows from Descent on Spaces,
Proposition 74.4.1. □

Sanity check: Isom sheaf plays the same role among algebraic spaces over S.

Lemma 99.4.2.0D3T In Situation 99.3.1. Let T be an algebraic space over S. We have
MorSh((Sch/S)fppf )(T, Isom(F ,G)) = {(h, u) | h : T → B, u : FT → GT isomorphism}
where FT ,GT denote the pullbacks of F and G to the algebraic space X ×B,h T .

Proof. Observe that the left and right hand side of the equality are subsets of the
left and right hand side of the equality in Lemma 99.3.3. We omit the verification
that these subsets correspond under the identification given in the proof of that
lemma. □

Proposition 99.4.3.08K9 In Situation 99.3.1 assume that
(1) f is of finite presentation, and
(2) F and G are finitely presented OX -modules, flat over B, with support

proper over B.
Then the functor Isom(F ,G) is an algebraic space affine of finite presentation over
B.

Proof. We will use the abbreviations H = Hom(F ,G), I = Hom(F ,F), H ′ =
Hom(G,F), and I ′ = Hom(G,G). By Proposition 99.3.10 the functors H, I, H ′, I ′

are algebraic spaces and the morphisms H → B, I → B, H ′ → B, and I ′ → B are
affine and of finite presentation. The composition of maps gives a morphism

c : H ′ ×B H −→ I ×B I ′, (u′, u) 7−→ (u ◦ u′, u′ ◦ u)
of algebraic spaces over B. Since I ×B I ′ → B is separated, the section σ : B →
I ×B I ′ corresponding to (idF , idG) is a closed immersion (Morphisms of Spaces,
Lemma 67.4.7). Moreover, σ is of finite presentation (Morphisms of Spaces, Lemma
67.28.9). Hence

Isom(F ,G) = (H ′ ×B H)×c,I×BI′,σ B

is an algebraic space affine of finite presentation over B as well. Some details
omitted. □

99.5. The stack of coherent sheaves

08KA In this section we prove that the stack of coherent sheaves on X/B is algebraic
under suitable hypotheses. This is a special case of [Lie06b, Theorem 2.1.1] which
treats the case of the stack of coherent sheaves on an Artin stack over a base.

Situation 99.5.1.08KB Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Assume that f is of finite presentation. We denote CohX/B the
category whose objects are triples (T, g,F) where

(1) T is a scheme over S,
(2) g : T → B is a morphism over S, and setting XT = T ×g,B X

https://stacks.math.columbia.edu/tag/0D3T
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(3) F is a quasi-coherent OXT -module of finite presentation, flat over T , with
support proper over T .

A morphism (T, g,F)→ (T ′, g′,F ′) is given by a pair (h, φ) where
(1) h : T → T ′ is a morphism of schemes over B (i.e., g′ ◦ h = g), and
(2) φ : (h′)∗F ′ → F is an isomorphism of OXT -modules where h′ : XT → XT ′

is the base change of h.

Thus CohX/B is a category and the rule
p : CohX/B −→ (Sch/S)fppf , (T, g,F) 7−→ T

is a functor. For a scheme T over S we denote CohX/B,T the fibre category of p
over T . These fibre categories are groupoids.

Lemma 99.5.2.08W5 In Situation 99.5.1 the functor p : CohX/B −→ (Sch/S)fppf is fibred
in groupoids.

Proof. We show that p is fibred in groupoids by checking conditions (1) and (2) of
Categories, Definition 4.35.1. Given an object (T ′, g′,F ′) of CohX/B and a morphism
h : T → T ′ of schemes over S we can set g = h ◦ g′ and F = (h′)∗F ′ where
h′ : XT → XT ′ is the base change of h. Then it is clear that we obtain a morphism
(T, g,F)→ (T ′, g′,F ′) of CohX/B lying over h. This proves (1). For (2) suppose we
are given morphisms

(h1, φ1) : (T1, g1,F1)→ (T, g,F) and (h2, φ2) : (T2, g2,F2)→ (T, g,F)
of CohX/B and a morphism h : T1 → T2 such that h2 ◦ h = h1. Then we can let φ
be the composition

(h′)∗F2
(h′)∗φ−1

2−−−−−−→ (h′)∗(h2)∗F = (h1)∗F φ1−→ F1

to obtain the morphism (h, φ) : (T1, g1,F1)→ (T2, g2,F2) that witnesses the truth
of condition (2). □

Lemma 99.5.3.08W6 In Situation 99.5.1. Denote X = CohX/B . Then ∆ : X → X ×X is
representable by algebraic spaces.

Proof. Consider two objects x = (T, g,F) and y = (T, h,G) of X over a scheme T .
We have to show that IsomX (x, y) is an algebraic space over T , see Algebraic Stacks,
Lemma 94.10.11. If for a : T ′ → T the restrictions x|T ′ and y|T ′ are isomorphic
in the fibre category XT ′ , then g ◦ a = h ◦ a. Hence there is a transformation of
presheaves

IsomX (x, y) −→ Equalizer(g, h)
Since the diagonal of B is representable (by schemes) this equalizer is a scheme.
Thus we may replace T by this equalizer and the sheaves F and G by their pullbacks.
Thus we may assume g = h. In this case we have IsomX (x, y) = Isom(F ,G) and
the result follows from Proposition 99.4.3. □

Lemma 99.5.4.08KC In Situation 99.5.1 the functor p : CohX/B −→ (Sch/S)fppf is a
stack in groupoids.

Proof. To prove that CohX/B is a stack in groupoids, we have to show that the
presheaves Isom are sheaves and that descent data are effective. The statement on
Isom follows from Lemma 99.5.3, see Algebraic Stacks, Lemma 94.10.11. Let us
prove the statement on descent data. Suppose that {ai : Ti → T} is an fppf covering

https://stacks.math.columbia.edu/tag/08W5
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of schemes over S. Let (ξi, φij) be a descent datum for {Ti → T} with values in
CohX/B . For each i we can write ξi = (Ti, gi,Fi). Denote pr0 : Ti ×T Tj → Ti
and pr1 : Ti ×T Tj → Tj the projections. The condition that ξi|Ti×TTj = ξj |Ti×TTj
implies in particular that gi ◦ pr0 = gj ◦ pr1. Thus there exists a unique morphism
g : T → B such that gi = g ◦ ai, see Descent on Spaces, Lemma 74.7.2. Denote
XT = T ×g,B X. Set Xi = XTi = Ti ×gi,B X = Ti ×ai,T XT and

Xij = XTi ×XT XTj = Xi ×XT Xj

with projections pri and prj to Xi and Xj . Observe that the pullback of (Ti, gi,Fi)
by pr0 : Ti×T Tj → Ti is given by (Ti×T Tj , gi ◦pr0,pr∗

iFi). Hence a descent datum
for {Ti → T} in CohX/B is given by the objects (Ti, g ◦ ai,Fi) and for each pair i, j
an isomorphism of OXij -modules

φij : pr∗
iFi −→ pr∗

jFj

satisfying the cocycle condition over (the pullback of X to) Ti ×T Tj ×T Tk. Ok,
and now we simply use that {Xi → XT } is an fppf covering so that we can view
(Fi, φij) as a descent datum for this covering. By Descent on Spaces, Proposition
74.4.1 this descent datum is effective and we obtain a quasi-coherent sheaf F over
XT restricting to Fi on Xi. By Morphisms of Spaces, Lemma 67.31.5 we see that
F is flat over T and Descent on Spaces, Lemma 74.6.2 guarantees that Q is of finite
presentation as an OXT -module. Finally, by Descent on Spaces, Lemma 74.11.19
we see that the scheme theoretic support of F is proper over T as we’ve assumed the
scheme theoretic support of Fi is proper over Ti (note that taking scheme theoretic
support commutes with flat base change by Morphisms of Spaces, Lemma 67.30.10).
In this way we obtain our desired object over T . □

Remark 99.5.5.08LP In Situation 99.5.1 the rule (T, g,F) 7→ (T, g) defines a 1-morphism

CohX/B −→ SB

of stacks in groupoids (see Lemma 99.5.4, Algebraic Stacks, Section 94.7, and Ex-
amples of Stacks, Section 95.10). Let B′ → B be a morphism of algebraic spaces
over S. Let SB′ → SB be the associated 1-morphism of stacks fibred in sets. Set
X ′ = X×BB′. We obtain a stack in groupoids CohX′/B′ → (Sch/S)fppf associated
to the base change f ′ : X ′ → B′. In this situation the diagram

CohX′/B′ //

��

CohX/B

��
SB′ // SB

or in
another
notation

CohX′/B′ //

��

CohX/B

��
Sch/B′ // Sch/B

is 2-fibre product square. This trivial remark will occasionally be useful to change
the base algebraic space.

Lemma 99.5.6.08KD In Situation 99.5.1 assume that B → S is locally of finite pre-
sentation. Then p : CohX/B → (Sch/S)fppf is limit preserving (Artin’s Axioms,
Definition 98.11.1).

Proof. Write B(T ) for the discrete category whose objects are the S-morphisms
T → B. Let T = limTi be a filtered limit of affine schemes over S. Assigning to an

https://stacks.math.columbia.edu/tag/08LP
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object (T, h,F) of CohX/B,T the object h of B(T ) gives us a commutative diagram
of fibre categories

colim CohX/B,Ti //

��

CohX/B,T

��
colimB(Ti) // B(T )

We have to show the top horizontal arrow is an equivalence. Since we have assumed
that B is locally of finite presentation over S we see from Limits of Spaces, Remark
70.3.11 that the bottom horizontal arrow is an equivalence. This means that we
may assume T = limTi be a filtered limit of affine schemes over B. Denote gi :
Ti → B and g : T → B the corresponding morphisms. Set Xi = Ti ×gi,B X and
XT = T ×g,B X. Observe that XT = colimXi and that the algebraic spaces Xi

and XT are quasi-separated and quasi-compact (as they are of finite presentation
over the affines Ti and T ). By Limits of Spaces, Lemma 70.7.2 we see that

colim FP(Xi) = FP(XT ).

where FP(W ) is short hand for the category of finitely presented OW -modules. The
results of Limits of Spaces, Lemmas 70.6.12 and 70.12.3 tell us the same thing is
true if we replace FP(Xi) and FP(XT ) by the full subcategory of objects flat over
Ti and T with scheme theoretic support proper over Ti and T . This proves the
lemma. □

Lemma 99.5.7.08LQ In Situation 99.5.1. Let

Z //

��

Z ′

��
Y // Y ′

be a pushout in the category of schemes over S where Z → Z ′ is a thickening and
Z → Y is affine, see More on Morphisms, Lemma 37.14.3. Then the functor on
fibre categories

CohX/B,Y ′ −→ CohX/B,Y ×CohX/B,Z CohX/B,Z′

is an equivalence.

Proof. Observe that the corresponding map

B(Y ′) −→ B(Y )×B(Z) B(Z ′)

is a bijection, see Pushouts of Spaces, Lemma 81.6.1. Thus using the commutative
diagram

CohX/B,Y ′ //

��

CohX/B,Y ×CohX/B,Z CohX/B,Z′

��
B(Y ′) // B(Y )×B(Z) B(Z ′)

we see that we may assume that Y ′ is a scheme over B′. By Remark 99.5.5 we may
replace B by Y ′ and X by X ×B Y ′. Thus we may assume B = Y ′. In this case
the statement follows from Pushouts of Spaces, Lemma 81.6.6. □

https://stacks.math.columbia.edu/tag/08LQ
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Lemma 99.5.8.08W7 Let
X

��

i
// X ′

��
T // T ′

be a cartesian square of algebraic spaces where T → T ′ is a first order thickening.
Let F ′ be an OX′ -module flat over T ′. Set F = i∗F ′. The following are equivalent

(1) F ′ is a quasi-coherent OX′ -module of finite presentation,
(2) F ′ is an OX′ -module of finite presentation,
(3) F is a quasi-coherent OX -module of finite presentation,
(4) F is an OX -module of finite presentation,

Proof. Recall that a finitely presented module is quasi-coherent hence the equiva-
lence of (1) and (2) and (3) and (4). The equivalence of (2) and (4) is a special
case of Deformation Theory, Lemma 91.11.3. □

Lemma 99.5.9.08W8 In Situation 99.5.1 assume that S is a locally Noetherian scheme
and B → S is locally of finite presentation. Let k be a finite type field over S and
let x0 = (Spec(k), g0,G0) be an object of X = CohX/B over k. Then the spaces
TFX ,k,x0 and Inf(FX ,k,x0) (Artin’s Axioms, Section 98.8) are finite dimensional.
Proof. Observe that by Lemma 99.5.7 our stack in groupoids X satisfies property
(RS*) defined in Artin’s Axioms, Section 98.21. In particular X satisfies (RS).
Hence all associated predeformation categories are deformation categories (Artin’s
Axioms, Lemma 98.6.1) and the statement makes sense.
In this paragraph we show that we can reduce to the case B = Spec(k). Set
X0 = Spec(k) ×g0,B X and denote X0 = CohX0/k. In Remark 99.5.5 we have seen
that X0 is the 2-fibre product of X with Spec(k) over B as categories fibred in
groupoids over (Sch/S)fppf . Thus by Artin’s Axioms, Lemma 98.8.2 we reduce
to proving that B, Spec(k), and X0 have finite dimensional tangent spaces and
infinitesimal automorphism spaces. The tangent space of B and Spec(k) are finite
dimensional by Artin’s Axioms, Lemma 98.8.1 and of course these have vanishing
Inf. Thus it suffices to deal with X0.
Let k[ϵ] be the dual numbers over k. Let Spec(k[ϵ])→ B be the composition of g0 :
Spec(k) → B and the morphism Spec(k[ϵ]) → Spec(k) coming from the inclusion
k → k[ϵ]. Set X0 = Spec(k)×BX and Xϵ = Spec(k[ϵ])×BX. Observe that Xϵ is a
first order thickening of X0 flat over the first order thickening Spec(k)→ Spec(k[ϵ]).
Unwinding the definitions and using Lemma 99.5.8 we see that TFX0,k,x0 is the set
of lifts of G0 to a flat module on Xϵ. By Deformation Theory, Lemma 91.12.1 we
conclude that

TFX0,k,x0 = Ext1
OX0

(G0,G0)
Here we have used the identification ϵk[ϵ] ∼= k of k[ϵ]-modules. Using Deformation
Theory, Lemma 91.12.1 once more we see that

Inf(FX ,k,x0) = Ext0
OX0

(G0,G0)
These spaces are finite dimensional over k as G0 has support proper over Spec(k).
Namely, X0 is of finite presentation over Spec(k), hence Noetherian. Since G0 is
of finite presentation it is a coherent OX0 -module. Thus we may apply Derived
Categories of Spaces, Lemma 75.8.4 to conclude the desired finiteness. □
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Lemma 99.5.10.08W9 In Situation 99.5.1 assume that S is a locally Noetherian scheme
and that f : X → B is separated. Let X = CohX/B . Then the functor Artin’s
Axioms, Equation (98.9.3.1) is an equivalence.

Proof. Let A be an S-algebra which is a complete local Noetherian ring with max-
imal ideal m whose residue field k is of finite type over S. We have to show that
the category of objects over A is equivalent to the category of formal objects over
A. Since we know this holds for the category SB fibred in sets associated to B by
Artin’s Axioms, Lemma 98.9.5, it suffices to prove this for those objects lying over
a given morphism Spec(A)→ B.

Set XA = Spec(A)×BX and Xn = Spec(A/mn)×BX. By Grothendieck’s existence
theorem (More on Morphisms of Spaces, Theorem 76.42.11) we see that the category
of coherent modules F on XA with support proper over Spec(A) is equivalent to the
category of systems (Fn) of coherent modules Fn on Xn with support proper over
Spec(A/mn). The equivalence sends F to the system (F ⊗AA/mn). See discussion
in More on Morphisms of Spaces, Remark 76.42.12. To finish the proof of the
lemma, it suffices to show that F is flat over A if and only if all F ⊗AA/mn are flat
over A/mn. This follows from More on Morphisms of Spaces, Lemma 76.24.3. □

Lemma 99.5.11.08WA In Situation 99.5.1 assume that S is a locally Noetherian scheme,
S = B, and f : X → B is flat. Let X = CohX/B . Then we have openness of
versality for X (see Artin’s Axioms, Definition 98.13.1).

First proof. This proof is based on the criterion of Artin’s Axioms, Lemma 98.24.4.
Let U → S be of finite type morphism of schemes, x an object of X over U and
u0 ∈ U a finite type point such that x is versal at u0. After shrinking U we may
assume that u0 is a closed point (Morphisms, Lemma 29.16.1) and U = Spec(A)
with U → S mapping into an affine open Spec(Λ) of S. Let F be the coherent
module on XA = Spec(A)×S X flat over A corresponding to the given object x.

According to Deformation Theory, Lemma 91.12.1 we have an isomorphism of func-
tors

Tx(M) = Ext1
XA(F ,F ⊗AM)

and given any surjection A′ → A of Λ-algebras with square zero kernel I we have
an obstruction class

ξA′ ∈ Ext2
XA(F ,F ⊗A I)

This uses that for any A′ → A as above the base change XA′ = Spec(A′)×B X is
flat over A′. Moreover, the construction of the obstruction class is functorial in the
surjection A′ → A (for fixed A) by Deformation Theory, Lemma 91.12.3. Apply
Derived Categories of Spaces, Lemma 75.23.3 to the computation of the Ext groups
ExtiXA(F ,F ⊗AM) for i ≤ m with m = 2. We find a perfect object K ∈ D(A) and
functorial isomorphisms

Hi(K ⊗L
AM) −→ ExtiXA(F ,F ⊗AM)

for i ≤ m compatible with boundary maps. This object K, together with the
displayed identifications above gives us a datum as in Artin’s Axioms, Situation
98.24.2. Finally, condition (iv) of Artin’s Axioms, Lemma 98.24.3 holds by Defor-
mation Theory, Lemma 91.12.5. Thus Artin’s Axioms, Lemma 98.24.4 does indeed
apply and the lemma is proved. □
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Second proof. This proof is based on Artin’s Axioms, Lemma 98.22.2. Conditions
(1), (2), and (3) of that lemma correspond to Lemmas 99.5.3, 99.5.7, and 99.5.6.
We have constructed an obstruction theory in the chapter on deformation theory.
Namely, given an S-algebra A and an object x of CohX/B over Spec(A) given by
F on XA we set Ox(M) = Ext2

XA(F ,F ⊗AM) and if A′ → A is a surjection with
kernel I, then as obstruction element we take the element

ox(A′) = o(F ,F ⊗A I, 1) ∈ Ox(I) = Ext2
XA(F ,F ⊗A I)

of Deformation Theory, Lemma 91.12.1. All properties of an obstruction theory
as defined in Artin’s Axioms, Definition 98.22.1 follow from this lemma except for
functoriality of obstruction classes as formulated in condition (ii) of the definition.
But as stated in the footnote to assumption (4) of Artin’s Axioms, Lemma 98.22.2
it suffices to check functoriality of obstruction classes for a fixed A which follows
from Deformation Theory, Lemma 91.12.3. Deformation Theory, Lemma 91.12.1
also tells us that Tx(M) = Ext1

XA(F ,F ⊗AM) for any A-module M .
To finish the proof it suffices to show that Tx(

∏
Mn) =

∏
Tx(Mn) andOx(

∏
Mn) =∏

Ox(M). Apply Derived Categories of Spaces, Lemma 75.23.3 to the computation
of the Ext groups ExtiXA(F ,F ⊗A M) for i ≤ m with m = 2. We find a perfect
object K ∈ D(A) and functorial isomorphisms

Hi(K ⊗L
AM) −→ ExtiXA(F ,F ⊗AM)

for i = 1, 2. A straightforward argument shows that
Hi(K ⊗L

A

∏
Mn) =

∏
Hi(K ⊗L

AMn)

whenever K is a pseudo-coherent object of D(A). In fact, this property (for all i)
characterizes pseudo-coherent complexes, see More on Algebra, Lemma 15.65.5. □

Theorem 99.5.12 (Algebraicity of the stack of coherent sheaves; flat case).08WC Let S
be a scheme. Let f : X → B be a morphism of algebraic spaces over S. Assume
that f is of finite presentation, separated, and flat2. Then CohX/B is an algebraic
stack over S.
Proof. Set X = CohX/B . We have seen that X is a stack in groupoids over
(Sch/S)fppf with diagonal representable by algebraic spaces (Lemmas 99.5.4 and
99.5.3). Hence it suffices to find a scheme W and a surjective and smooth morphism
W → X .
Let B′ be a scheme and let B′ → B be a surjective étale morphism. Set X ′ =
B′ ×B X and denote f ′ : X ′ → B′ the projection. Then X ′ = CohX′/B′ is equal
to the 2-fibre product of X with the category fibred in sets associated to B′ over
the category fibred in sets associated to B (Remark 99.5.5). By the material in
Algebraic Stacks, Section 94.10 the morphism X ′ → X is surjective and étale.
Hence it suffices to prove the result for X ′. In other words, we may assume B is a
scheme.
Assume B is a scheme. In this case we may replace S by B, see Algebraic Stacks,
Section 94.19. Thus we may assume S = B.
Assume S = B. Choose an affine open covering S =

⋃
Ui. Denote Xi the restriction

of X to (Sch/Ui)fppf . If we can find schemes Wi over Ui and surjective smooth

2This assumption is not necessary. See Section 99.6.
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morphisms Wi → Xi, then we set W =
∐
Wi and we obtain a surjective smooth

morphism W → X . Thus we may assume S = B is affine.
Assume S = B is affine, say S = Spec(Λ). Write Λ = colim Λi as a filtered colimit
with each Λi of finite type over Z. For some i we can find a morphism of algebraic
spaces Xi → Spec(Λi) which is of finite presentation, separated, and flat and whose
base change to Λ is X. See Limits of Spaces, Lemmas 70.7.1, 70.6.9, and 70.6.12.
If we show that CohXi/ Spec(Λi) is an algebraic stack, then it follows by base change
(Remark 99.5.5 and Algebraic Stacks, Section 94.19) that X is an algebraic stack.
Thus we may assume that Λ is a finite type Z-algebra.
Assume S = B = Spec(Λ) is affine of finite type over Z. In this case we will
verify conditions (1), (2), (3), (4), and (5) of Artin’s Axioms, Lemma 98.17.1 to
conclude that X is an algebraic stack. Note that Λ is a G-ring, see More on Algebra,
Proposition 15.50.12. Hence all local rings of S are G-rings. Thus (5) holds. By
Lemma 99.5.11 we have that X satisfies openness of versality, hence (4) holds.
To check (2) we have to verify axioms [-1], [0], [1], [2], and [3] of Artin’s Axioms,
Section 98.14. We omit the verification of [-1] and axioms [0], [1], [2], [3] correspond
respectively to Lemmas 99.5.4, 99.5.6, 99.5.7, 99.5.9. Condition (3) follows from
Lemma 99.5.10. Finally, condition (1) is Lemma 99.5.3. This finishes the proof of
the theorem. □

99.6. The stack of coherent sheaves in the non-flat case

08WB In Theorem 99.5.12 the assumption that f : X → B is flat is not necessary. In this
section we give a different proof which avoids the flatness assumption and avoids
checking openness of versality by using the results in Flatness on Spaces, Section
77.12 and Artin’s Axioms, Section 98.20.
For a different approach to this problem the reader may wish to consult [Art69b]
and follow the method discussed in the papers [OS03], [Lie06b], [Ols05], [HR13],
[HR10], [Ryd11]. Some of these papers deal with the more general case of the stack
of coherent sheaves on an algebraic stack over an algebraic stack and others deal
with similar problems in the case of Hilbert stacks or Quot functors. Our strategy
will be to show algebraicity of some cases of Hilbert stacks and Quot functors as a
consequence of the algebraicity of the stack of coherent sheaves.

Theorem 99.6.1 (Algebraicity of the stack of coherent sheaves; general case).09DS Let
S be a scheme. Let f : X → B be morphism of algebraic spaces over S. Assume
that f is of finite presentation and separated. Then CohX/B is an algebraic stack
over S.

Proof. Only the last step of the proof is different from the proof in the flat case,
but we repeat all the arguments here to make sure everything works.
Set X = CohX/B . We have seen that X is a stack in groupoids over (Sch/S)fppf
with diagonal representable by algebraic spaces (Lemmas 99.5.4 and 99.5.3). Hence
it suffices to find a scheme W and a surjective and smooth morphism W → X .
Let B′ be a scheme and let B′ → B be a surjective étale morphism. Set X ′ =
B′ ×B X and denote f ′ : X ′ → B′ the projection. Then X ′ = CohX′/B′ is equal
to the 2-fibre product of X with the category fibred in sets associated to B′ over
the category fibred in sets associated to B (Remark 99.5.5). By the material in
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Algebraic Stacks, Section 94.10 the morphism X ′ → X is surjective and étale.
Hence it suffices to prove the result for X ′. In other words, we may assume B is a
scheme.

Assume B is a scheme. In this case we may replace S by B, see Algebraic Stacks,
Section 94.19. Thus we may assume S = B.

Assume S = B. Choose an affine open covering S =
⋃
Ui. Denote Xi the restriction

of X to (Sch/Ui)fppf . If we can find schemes Wi over Ui and surjective smooth
morphisms Wi → Xi, then we set W =

∐
Wi and we obtain a surjective smooth

morphism W → X . Thus we may assume S = B is affine.

Assume S = B is affine, say S = Spec(Λ). Write Λ = colim Λi as a filtered colimit
with each Λi of finite type over Z. For some i we can find a morphism of algebraic
spaces Xi → Spec(Λi) which is separated and of finite presentation and whose base
change to Λ is X. See Limits of Spaces, Lemmas 70.7.1 and 70.6.9. If we show that
CohXi/ Spec(Λi) is an algebraic stack, then it follows by base change (Remark 99.5.5
and Algebraic Stacks, Section 94.19) that X is an algebraic stack. Thus we may
assume that Λ is a finite type Z-algebra.

Assume S = B = Spec(Λ) is affine of finite type over Z. In this case we will
verify conditions (1), (2), (3), (4), and (5) of Artin’s Axioms, Lemma 98.17.1 to
conclude that X is an algebraic stack. Note that Λ is a G-ring, see More on
Algebra, Proposition 15.50.12. Hence all local rings of S are G-rings. Thus (5)
holds. To check (2) we have to verify axioms [-1], [0], [1], [2], and [3] of Artin’s
Axioms, Section 98.14. We omit the verification of [-1] and axioms [0], [1], [2], [3]
correspond respectively to Lemmas 99.5.4, 99.5.6, 99.5.7, 99.5.9. Condition (3) is
Lemma 99.5.10. Condition (1) is Lemma 99.5.3.

It remains to show condition (4) which is openness of versality. To see this we will
use Artin’s Axioms, Lemma 98.20.3. We have already seen that X has diagonal
representable by algebraic spaces, has (RS*), and is limit preserving (see lemmas
used above). Hence we only need to see that X satisfies the strong formal effec-
tiveness formulated in Artin’s Axioms, Lemma 98.20.3. This is Flatness on Spaces,
Theorem 77.12.8 and the proof is complete. □

99.7. The functor of quotients

082L In this section we discuss some generalities regarding the functor QF/X/B defined
below. The notation QuotF/X/B is reserved for a subfunctor of QF/X/B . We urge
the reader to skip this section on a first reading.

Situation 99.7.1.082M Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module. For any scheme T over B
we will denote XT the base change of X to T and FT the pullback of F via the
projection morphism XT = X ×B T → X. Given such a T we set

QF/X/B(T ) =
{

quotients FT → Q where Q is a
quasi-coherent OXT -module flat over T

}
We identify quotients if they have the same kernel. Suppose that T ′ → T is a
morphism of schemes over B and FT → Q is an element of QF/X/B(T ). Then the
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pullback Q′ = (XT ′ → XT )∗Q is a quasi-coherent OXT ′ -module flat over T ′ by
Morphisms of Spaces, Lemma 67.31.3. Thus we obtain a functor
(99.7.1.1)082N QF/X/B : (Sch/B)opp −→ Sets

This is the functor of quotients of F/X/B. We define a subfunctor

(99.7.1.2)0CZL Qfp
F/X/B : (Sch/B)opp −→ Sets

which assigns to T the subset of QF/X/B(T ) consisting of those quotients FT → Q
such that Q is of finite presentation as an OXT -module. This is a subfunctor by
Properties of Spaces, Section 66.30.

In Situation 99.7.1 we sometimes think of QF/X/B as a functor (Sch/S)opp → Sets
endowed with a morphism QF/X/S → B. Namely, if T is a scheme over S, then an
element of QF/X/B(T ) is a pair (h,Q) where h a morphism h : T → B and Q is a
T -flat quotient FT → Q of finite presentation on XT = X ×B,h T . In particular,
when we say that QF/X/S is an algebraic space, we mean that the corresponding
functor (Sch/S)opp → Sets is an algebraic space. Similar remarks apply to Qfp

F/X/B .

Remark 99.7.2.08IT In Situation 99.7.1 let B′ → B be a morphism of algebraic spaces
over S. Set X ′ = X ×B B′ and denote F ′ the pullback of F to X ′. Thus we have
the functor QF ′/X′/B′ on the category of schemes over B′. For a scheme T over B′

it is clear that we have
QF ′/X′/B′(T ) = QF/X/B(T )

where on the right hand side we think of T as a scheme over B via the composition
T → B′ → B. Similar remarks apply to Qfp

F/X/B . These trivial remarks will
occasionally be useful to change the base algebraic space.

Remark 99.7.3.08IU Let S be a scheme, X an algebraic space over S, and F a quasi-
coherent OX -module. Suppose that {fi : Xi → X}i∈I is an fpqc covering and for
each i, j ∈ I we are given an fpqc covering {Xijk → Xi ×X Xj}. In this situation
we have a bijection{

quotients F → Q where
Q is a quasi-coherent

}
−→

families of quotients f∗
i F → Qi where

Qi is quasi-coherent and Qi and Qj
restrict to the same quotient on Xijk


Namely, let (f∗

i F → Qi)i∈I be an element of the right hand side. Then since
{Xijk → Xi ×X Xj} is an fpqc covering we see that the pullbacks of Qi and Qj
restrict to the same quotient of the pullback of F to Xi×XXj (by fully faithfulness
in Descent on Spaces, Proposition 74.4.1). Hence we obtain a descent datum for
quasi-coherent modules with respect to {Xi → X}i∈I . By Descent on Spaces,
Proposition 74.4.1 we find a map of quasi-coherent OX -modules F → Q whose
restriction to Xi recovers the given maps f∗

i F → Qi. Since the family of morphisms
{Xi → X} is jointly surjective and flat, for every point x ∈ |X| there exists an i
and a point xi ∈ |Xi| mapping to x. Note that the induced map on local rings
OX,x → OXi,xi is faithfully flat, see Morphisms of Spaces, Section 67.30. Thus we
see that F → Q is surjective.

Lemma 99.7.4.082P In Situation 99.7.1. The functors QF/X/B and Qfp
F/X/B satisfy the

sheaf property for the fpqc topology.
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Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over S. Set Xi = XTi =
X ×S Ti and Fi = FTi . Note that {Xi → XT }i∈I is an fpqc covering of XT

(Topologies on Spaces, Lemma 73.9.3) and that XTi×TTi′ = Xi ×XT Xi′ . Suppose
that Fi → Qi is a collection of elements of QF/X/B(Ti) such that Qi and Qi′
restrict to the same element of QF/X/B(Ti ×T Ti′). By Remark 99.7.3 we obtain
a surjective map of quasi-coherent OXT -modules FT → Q whose restriction to Xi

recovers the given quotients. By Morphisms of Spaces, Lemma 67.31.5 we see that
Q is flat over T . Finally, in the case of Qfp

F/X/B , i.e., if Qi are of finite presentation,
then Descent on Spaces, Lemma 74.6.2 guarantees that Q is of finite presentation
as an OXT -module. □

Sanity check: QF/X/B , Qfp
F/X/B play the same role among algebraic spaces over S.

Lemma 99.7.5.0D3U In Situation 99.7.1. Let T be an algebraic space over S. We have

MorSh((Sch/S)fppf )(T,QF/X/B) =
{

(h,FT → Q) where h : T → B and
Q is quasi-coherent and flat over T

}
where FT denotes the pullback of F to the algebraic space X×B,h T . Similarly, we
have

MorSh((Sch/S)fppf )(T,Qfp
F/X/B) =

{
(h,FT → Q) where h : T → B and

Q is of finite presentation and flat over T

}
Proof. Choose a scheme U and a surjective étale morphism p : U → T . Let
R = U ×T U with projections t, s : R→ U .
Let v : T → QF/X/B be a natural transformation. Then v(p) corresponds to a
pair (hU ,FU → QU ) over U . As v is a transformation of functors we see that the
pullbacks of (hU ,FU → QU ) by s and t agree. Since T = U/R (Spaces, Lemma
65.9.1), we obtain a morphism h : T → B such that hU = h ◦ p. By Descent on
Spaces, Proposition 74.4.1 the quotient QU descends to a quotient FT → Q over
XT . Since U → T is surjective and flat, it follows from Morphisms of Spaces,
Lemma 67.31.5 that Q is flat over T .
Conversely, let (h,FT → Q) be a pair over T . Then we get a natural transformation
v : T → QF/X/B by sending a morphism a : T ′ → T where T ′ is a scheme to
(h ◦ a,FT ′ → a∗Q). We omit the verification that the construction of this and the
previous paragraph are mutually inverse.
In the case of Qfp

F/X/B we add: given a morphism h : T → B, a quasi-coherent
sheaf on XT is of finite presentation as an OXT -module if and only if the pullback
to XU is of finite presentation as an OXU -module. This follows from the fact that
XU → XT is surjective and étale and Descent on Spaces, Lemma 74.6.2. □

Lemma 99.7.6.08IV In Situation 99.7.1 let {Xi → X}i∈I be an fpqc covering and for
each i, j ∈ I let {Xijk → Xi ×X Xj} be an fpqc covering. Denote Fi, resp. Fijk
the pullback of F to Xi, resp. Xijk. For every scheme T over B the diagram

QF/X/B(T ) // ∏
iQFi/Xi/B(T )

pr∗
0 //

pr∗
1

//
∏
i,j,kQFijk/Xijk/B(T )

presents the first arrow as the equalizer of the other two. The same is true for the
functor Qfp

F/X/B .

https://stacks.math.columbia.edu/tag/0D3U
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Proof. Let Fi,T → Qi be an element in the equalizer of pr∗
0 and pr∗

1. By Remark
99.7.3 we obtain a surjection FT → Q of quasi-coherent OXT -modules whose re-
striction to Xi,T recovers Fi → Qi. By Morphisms of Spaces, Lemma 67.31.5 we
see that Q is flat over T as desired. In the case of the functor Qfp

F/X/B , i.e., if Qi
is of finite presentation, then Q is of finite presentation too by Descent on Spaces,
Lemma 74.6.2. □

Lemma 99.7.7.082Q In Situation 99.7.1 assume also that (a) f is quasi-compact and
quasi-separated and (b) F is of finite presentation. Then the functor Qfp

F/X/B is
limit preserving in the following sense: If T = limTi is a directed limit of affine
schemes over B, then Qfp

F/X/B(T ) = colim Qfp
F/X/B(Ti).

Proof. Let T = limTi be as in the statement of the lemma. Choose i0 ∈ I and
replace I by {i ∈ I | i ≥ i0}. We may set B = S = Ti0 and we may replace X
by XT0 and F by the pullback to XT0 . Then XT = limXTi , see Limits of Spaces,
Lemma 70.4.1. Let FT → Q be an element of Qfp

F/X/B(T ). By Limits of Spaces,
Lemma 70.7.2 there exists an i and a map FTi → Qi of OXTi -modules of finite
presentation whose pullback to XT is the given quotient map.

We still have to check that, after possibly increasing i, the map FTi → Qi is
surjective and Qi is flat over Ti. To do this, choose an affine scheme U and a
surjective étale morphism U → X (see Properties of Spaces, Lemma 66.6.3). We
may check surjectivity and flatness over Ti after pulling back to the étale cover
UTi → XTi (by definition). This reduces us to the case where X = Spec(B0) is
an affine scheme of finite presentation over B = S = T0 = Spec(A0). Writing
Ti = Spec(Ai), then T = Spec(A) with A = colimAi we have reached the following
algebra problem. Let Mi → Ni be a map of finitely presented B0 ⊗A0 Ai-modules
such that Mi ⊗Ai A → Ni ⊗Ai A is surjective and Ni ⊗Ai A is flat over A. Show
that for some i′ ≥ i Mi⊗AiAi′ → Ni⊗AiAi′ is surjective and Ni⊗AiAi′ is flat over
A. The first follows from Algebra, Lemma 10.127.5 and the second from Algebra,
Lemma 10.168.1. □

Lemma 99.7.8.08IW In Situation 99.7.1. Let

Z //

��

Z ′

��
Y // Y ′

be a pushout in the category of schemes over B where Z → Z ′ is a thickening and
Z → Y is affine, see More on Morphisms, Lemma 37.14.3. Then the natural map

QF/X/B(Y ′) −→ QF/X/B(Y )×QF/X/B(Z) QF/X/B(Z ′)

is bijective. If X → B is locally of finite presentation, then the same thing is true
for QfpF/X/B .

Proof. Let us construct an inverse map. Namely, suppose we have FY → A, FZ′ →
B′, and an isomorphismA|XZ → B′|XZ compatible with the given surjections. Then
we apply Pushouts of Spaces, Lemma 81.6.6 to get a quasi-coherent module A′ on
XY ′ flat over Y ′. Since this sheaf is constructed as a fibre product (see proof of
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cited lemma) there is a canonical map FY ′ → A′. That this map is surjective can
be seen because it factors as

FY ′

↓
(XY → XY ′)∗FY ×(XZ→XY ′ )∗FZ (XZ′ → XY ′)∗FZ′

↓
A′ = (XY → XY ′)∗A×(XZ→XY ′ )∗A|XZ (XZ′ → XY ′)∗B′

and the first arrow is surjective by More on Algebra, Lemma 15.6.5 and the second
by More on Algebra, Lemma 15.6.6.

In the case of QfpF/X/B all we have to show is that the construction above produces
a finitely presented module. This is explained in More on Algebra, Remark 15.7.8
in the commutative algebra setting. The current case of modules over algebraic
spaces follows from this by étale localization. □

Remark 99.7.9 (Obstructions for quotients).0CZU In Situation 99.7.1 assume that F is
flat over B. Let T ⊂ T ′ be an first order thickening of schemes over B with ideal
sheaf J . Then XT ⊂ XT ′ is a first order thickening of algebraic spaces whose ideal
sheaf I is a quotient of f∗

TJ . We will think of sheaves on XT ′ , resp. T ′ as sheaves
on XT , resp. T using the fundamental equivalence described in More on Morphisms
of Spaces, Section 76.9. Let

0→ K → FT → Q→ 0

define an element x of QF/X/B(T ). Since FT ′ is flat over T ′ we have a short exact
sequence

0→ f∗
TJ ⊗OXT

FT
i−→ FT ′

π−→ FT → 0
and we have f∗

TJ ⊗OXT
FT = I⊗OXT

FT , see Deformation Theory, Lemma 91.11.2.
Let us use the abbreviation f∗

TJ ⊗OXT
G = G ⊗OT

J for an OXT -module G. Since
Q is flat over T , we obtain a short exact sequence

0→ K⊗OT
J → FT ⊗OT

J → Q⊗OT
J →→ 0

Combining the above we obtain an canonical extension

0→ Q⊗OT
J → π−1(K)/i(K ⊗OT

J )→ K → 0

of OXT -modules. This defines a canonical class

ox(T ′) ∈ Ext1
OXT

(K,Q⊗OT
J )

If ox(T ′) is zero, then we obtain a splitting of the short exact sequence defining it,
in other words, we obtain a OXT ′ -submodule K′ ⊂ π−1(K) sitting in a short exact
sequence 0→ K⊗OT

J → K′ → K → 0. Then it follows from the lemma reference
above that Q′ = FT ′/K′ is a lift of x to an element of QF/X/B(T ′). Conversely,
the reader sees that the existence of a lift implies that ox(T ′) is zero. Moreover,
if x ∈ QfpF/X/B(T ), then automatically x′ ∈ QfpF/X/B(T ′) by Deformation Theory,
Lemma 91.11.3. If we ever need this remark we will turn this remark into a lemma,
precisely formulate the result and give a detailed proof (in fact, all of the above
works in the setting of arbitrary ringed topoi).

https://stacks.math.columbia.edu/tag/0CZU


99.8. THE QUOT FUNCTOR 6893

Remark 99.7.10 (Deformations of quotients).0CZV In Situation 99.7.1 assume that F
is flat over B. We continue the discussion of Remark 99.7.9. Assume ox(T ′) = 0.
Then we claim that the set of lifts x′ ∈ QF/X/B(T ′) is a principal homogeneous
space under the group

HomOXT
(K,Q⊗OT

J )
Namely, given any FT ′ → Q′ flat over T ′ lifting the quotient Q we obtain a com-
mutative diagram with exact rows and columns

0

��

0

��

0

��
0 // K ⊗ J //

��

FT ⊗ J //

��

Q⊗ J //

��

0

0 // K′ //

��

FT ′ //

��

Q′ //

��

0

0 // K

��

// FT

��

// Q

��

// 0

0 0 0

(to see this use the observations made in the previous remark). Given a map
φ : K → Q ⊗ J we can consider the subsheaf K′

φ ⊂ FT ′ consisting of those local
sections s whose image in FT is a local section k of K and whose image in Q′ is the
local section φ(k) of Q⊗ J . Then set Q′

φ = FT ′/K′
φ. Conversely, any second lift

of x corresponds to one of the qotients constructed in this manner. If we ever need
this remark we will turn this remark into a lemma, precisely formulate the result
and give a detailed proof (in fact, all of the above works in the setting of arbitrary
ringed topoi).

99.8. The Quot functor

09TQ In this section we prove the Quot functor is an algebraic space.

Situation 99.8.1.09TR Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Assume that f is of finite presentation. Let F be a quasi-coherent
OX -module. For any scheme T over B we will denote XT the base change of X
to T and FT the pullback of F via the projection morphism XT = X ×S T → X.
Given such a T we set

QuotF/X/B(T ) =

quotients FT → Q where Q is a quasi-coherent
OXT -module of finite presentation, flat over T

with support proper over T


By Derived Categories of Spaces, Lemma 75.7.8 this is a subfunctor of the functor
QfpF/X/B we discussed in Section 99.7. Thus we obtain a functor

(99.8.1.1)09TS QuotF/X/B : (Sch/B)opp −→ Sets

This is the Quot functor associated to F/X/B.
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In Situation 99.8.1 we sometimes think of QuotF/X/B as a functor (Sch/S)opp →
Sets endowed with a morphism QuotF/X/B → B. Namely, if T is a scheme over S,
then an element of QuotF/X/B(T ) is a pair (h,Q) where h is a morphism h : T → B
and Q is a finitely presented, T -flat quotient FT → Q on XT = X ×B,h T with
support proper over T . In particular, when we say that QuotF/X/B is an algebraic
space, we mean that the corresponding functor (Sch/S)opp → Sets is an algebraic
space.

Lemma 99.8.2.09TT In Situation 99.8.1. The functor QuotF/X/B satisfies the sheaf
property for the fpqc topology.

Proof. In Lemma 99.7.4 we have seen that the functor Qfp
F/X/S is a sheaf. Recall

that for a scheme T over S the subset QuotF/X/S(T ) ⊂ QF/X/S(T ) picks out those
quotients whose support is proper over T . This defines a subsheaf by the result of
Descent on Spaces, Lemma 74.11.19 combined with Morphisms of Spaces, Lemma
67.30.10 which shows that taking scheme theoretic support commutes with flat base
change. □

Sanity check: QuotF/X/B plays the same role among algebraic spaces over S.

Lemma 99.8.3.0D3V In Situation 99.8.1. Let T be an algebraic space over S. We have

MorSh((Sch/S)fppf )(T,QuotF/X/B) =

 (h,FT → Q) where h : T → B and
Q is of finite presentation and

flat over T with support proper over T


where FT denotes the pullback of F to the algebraic space X ×B,h T .

Proof. Observe that the left and right hand side of the equality are subsets of the
left and right hand side of the second equality in Lemma 99.7.5. To see that these
subsets correspond under the identification given in the proof of that lemma it
suffices to show: given h : T → B, a surjective étale morphism U → T , a finite
type quasi-coherent OXT -module Q the following are equivalent

(1) the scheme theoretic support of Q is proper over T , and
(2) the scheme theoretic support of (XU → XT )∗Q is proper over U .

This follows from Descent on Spaces, Lemma 74.11.19 combined with Morphisms
of Spaces, Lemma 67.30.10 which shows that taking scheme theoretic support com-
mutes with flat base change. □

Proposition 99.8.4.09TU Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf on X. If f is of finite presentation
and separated, then QuotF/X/B is an algebraic space. If F is of finite presentation,
then QuotF/X/B → B is locally of finite presentation.

Proof. By Lemma 99.8.2 we have that QuotF/X/B is a sheaf in the fppf topology.
Let QuotF/X/B be the stack in groupoids corresponding to QuotF/X/S , see Alge-
braic Stacks, Section 94.7. By Algebraic Stacks, Proposition 94.13.3 it suffices to
show that QuotF/X/B is an algebraic stack. Consider the 1-morphism of stacks in
groupoids

QuotF/X/S −→ CohX/B
on (Sch/S)fppf which associates to the quotient FT → Q the module Q. By
Theorem 99.6.1 we know that CohX/B is an algebraic stack. By Algebraic Stacks,
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Lemma 94.15.4 it suffices to show that this 1-morphism is representable by algebraic
spaces.
Let T be a scheme over S and let the object (h,G) of CohX/B over T correspond to
a 1-morphism ξ : (Sch/T )fppf → CohX/B . The 2-fibre product

Z = (Sch/T )fppf ×ξ,CohX/B QuotF/X/S

is a stack in setoids, see Stacks, Lemma 8.6.7. The corresponding sheaf of sets (i.e.,
functor, see Stacks, Lemmas 8.6.7 and 8.6.2) assigns to a scheme T ′/T the set of
surjections u : FT ′ → GT ′ of quasi-coherent modules on XT ′ . Thus we see that Z
is representable by an open subspace (by Flatness on Spaces, Lemma 77.9.3) of the
algebraic space Hom(FT ,G) from Proposition 99.3.10. □

Remark 99.8.5 (Quot via Artin’s axioms).0CZW Let S be a Noetherian scheme all of
whose local rings are G-rings. Let X be an algebraic space over S whose structure
morphism f : X → S is of finite presentation and separated. Let F be a finitely
presented quasi-coherent sheaf on X flat over S. In this remark we sketch how one
can use Artin’s axioms to prove that QuotF/X/S is an algebraic space locally of
finite presentation over S and avoid using the algebraicity of the stack of coherent
sheaves as was done in the proof of Proposition 99.8.4.
We check the conditions listed in Artin’s Axioms, Proposition 98.16.1. Repre-
sentability of the diagonal of QuotF/X/S can be seen as follows: suppose we have
two quotients FT → Qi, i = 1, 2. Denote K1 the kernel of the first one. Then
we have to show that the locus of T over which u : K1 → Q2 becomes zero is
representable. This follows for example from Flatness on Spaces, Lemma 77.8.6
or from a discussion of the Hom sheaf earlier in this chapter. Axioms [0] (sheaf),
[1] (limits), [2] (Rim-Schlessinger) follow from Lemmas 99.8.2, 99.7.7, and 99.7.8
(plus some extra work to deal with the properness condition). Axiom [3] (finite
dimensionality of tangent spaces) follows from the description of the infinitesimal
deformations in Remark 99.7.10 and finiteness of cohomology of coherent sheaves on
proper algebraic spaces over fields (Cohomology of Spaces, Lemma 69.20.2). Axiom
[4] (effectiveness of formal objects) follows from Grothendieck’s existence theorem
(More on Morphisms of Spaces, Theorem 76.42.11). As usual, the trickiest to verify
is axiom [5] (openness of versality). One can for example use the obstruction theory
described in Remark 99.7.9 and the description of deformations in Remark 99.7.10
to do this using the criterion in Artin’s Axioms, Lemma 98.22.2. Please compare
with the second proof of Lemma 99.5.11.

99.9. The Hilbert functor

0CZX In this section we prove the Hilb functor is an algebraic space.

Situation 99.9.1.0CZY Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Assume that f is of finite presentation. For any scheme T over B
we will denote XT the base change of X to T . Given such a T we set

HilbX/B(T ) =
{

closed subspaces Z ⊂ XT such that Z → T
is of finite presentation, flat, and proper

}
Since base change preserves the required properties (Spaces, Lemma 65.12.3 and
Morphisms of Spaces, Lemmas 67.28.3, 67.30.4, and 67.40.3) we obtain a functor
(99.9.1.1)0CZZ HilbX/B : (Sch/B)opp −→ Sets
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This is the Hilbert functor associated to X/B.
In Situation 99.9.1 we sometimes think of HilbX/B as a functor (Sch/S)opp → Sets
endowed with a morphism HilbX/S → B. Namely, if T is a scheme over S, then
an element of HilbX/B(T ) is a pair (h, Z) where h is a morphism h : T → B and
Z ⊂ XT = X ×B,h T is a closed subscheme, flat, proper, and of finite presentation
over T . In particular, when we say that HilbX/B is an algebraic space, we mean
that the corresponding functor (Sch/S)opp → Sets is an algebraic space.
Of course the Hilbert functor is just a special case of the Quot functor.
Lemma 99.9.2.0D00 In Situation 99.9.1 we have HilbX/B = QuotOX/X/B .
Proof. Let T be a scheme over B. Given an element Z ∈ HilbX/B(T ) we can con-
sider the quotient OXT → i∗OZ where i : Z → XT is the inclusion morphism. Note
that i∗OZ is quasi-coherent. Since Z → T and XT → T are of finite presentation,
we see that i is of finite presentation (Morphisms of Spaces, Lemma 67.28.9), hence
i∗OZ is an OXT -module of finite presentation (Descent on Spaces, Lemma 74.6.7).
Since Z → T is proper we see that i∗OZ has support proper over T (as defined in
Derived Categories of Spaces, Section 75.7). Since OZ is flat over T and i is affine,
we see that i∗OZ is flat over T (small argument omitted). Hence OXT → i∗OZ is
an element of QuotOX/X/B(T ).
Conversely, given an element OXT → Q of QuotOX/X/B(T ), we can consider the
closed immersion i : Z → XT corresponding to the quasi-coherent ideal sheaf
I = Ker(OXT → Q) (Morphisms of Spaces, Lemma 67.13.1). By construction of
Z we see that Q = i∗OZ . Then we can read the arguments given above backwards
to see that Z defines an element of HilbX/B(T ). For example, I is quasi-coherent
of finite type (Modules on Sites, Lemma 18.24.1) hence i : Z → XT is of finite
presentation (Morphisms of Spaces, Lemma 67.28.12) hence Z → T is of finite
presentation (Morphisms of Spaces, Lemma 67.28.2). Properness of Z → T follows
from the discussion in Derived Categories of Spaces, Section 75.7. Flatness of
Z → T follows from flatness of Q over T .
We omit the (immediate) verification that the two constructions given above are
mutually inverse. □

Sanity check: HilbX/B sheaf plays the same role among algebraic spaces over S.
Lemma 99.9.3.0D3W In Situation 99.9.1. Let T be an algebraic space over S. We have

MorSh((Sch/S)fppf )(T,HilbX/B) =
{

(h, Z) where h : T → B, Z ⊂ XT

finite presentation, flat, proper over T

}
where XT = X ×B,h T .
Proof. By Lemma 99.9.2 we have HilbX/B = QuotOX/X/B . Thus we can apply
Lemma 99.8.3 to see that the left hand side is bijective with the set of surjections
OXT → Q which are finitely presented, flat over T , and have support proper over
T . Arguing exactly as in the proof of Lemma 99.9.2 we see that such quotients
correspond exactly to the closed immersions Z → XT such that Z → T is proper,
flat, and of finite presentation. □

Proposition 99.9.4.0D01 Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. If f is of finite presentation and separated, then HilbX/B is an
algebraic space locally of finite presentation over B.
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Proof. Immediate consequence of Lemma 99.9.2 and Proposition 99.8.4. □

99.10. The Picard stack

0D02 The Picard stack for a morphism of algebraic spaces was introduced in Examples of
Stacks, Section 95.16. We will deduce it is an open substack of the stack of coherent
sheaves (in good cases) from the following lemma.

Lemma 99.10.1.0D03 Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S which is flat, of finite presentation, and proper. The natural map

PicX/B −→ CohX/B
is representable by open immersions.

Proof. Observe that the map simply sends a triple (T, g,L) as in Examples of
Stacks, Section 95.16 to the same triple (T, g,L) but where now we view this as a
triple of the kind described in Situation 99.5.1. This works because the invertible
OXT -module L is certainly a finitely presentedOXT -module, it is flat over T because
XT → T is flat, and the support is proper over T as XT → T is proper (Morphisms
of Spaces, Lemmas 67.30.4 and 67.40.3). Thus the statement makes sense.
Having said this, it is clear that the content of the lemma is the following: given
an object (T, g,F) of CohX/B there is an open subscheme U ⊂ T such that for a
morphism of schemes T ′ → T the following are equivalent

(a) T ′ → T factors through U ,
(b) the pullback FT ′ of F by XT ′ → XT is invertible.

Let W ⊂ |XT | be the set of points x ∈ |XT | such that F is locally free in a
neighbourhood of x. By More on Morphisms of Spaces, Lemma 76.23.8. W is
open and formation of W commutes with arbitrary base change. Clearly, if T ′ → T
satisfies (b), then |XT ′ | → |XT | maps into W . Hence we may replace T by the open
T \ fT (|XT | \W ) in order to construct U . After doing so we reach the situation
where F is finite locally free. In this case we get a disjoint union decomposition
XT = X0 ⨿X1 ⨿X2 ⨿ . . . into open and closed subspaces such that the restriction
of F is locally free of rank i on Xi. Then clearly

U = T \ fT (|X0| ∪ |X2| ∪ |X3| ∪ . . .)
works. (Note that if we assume that T is quasi-compact, then XT is quasi-compact
hence only a finite number of Xi are nonempty and so U is indeed open.) □

Proposition 99.10.2.0D04 Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. If f is flat, of finite presentation, and proper, then PicX/B is an
algebraic stack.

Proof. Immediate consequence of Lemma 99.10.1, Algebraic Stacks, Lemma 94.15.4
and either Theorem 99.5.12 or Theorem 99.6.1 □

99.11. The Picard functor

0D24 In this section we revisit the Picard functor discussed in Picard Schemes of Curves,
Section 44.4. The discussion will be more general as we want to study the Picard
functor of a morphism of algebraic spaces as in the section on the Picard stack, see
Section 99.10.
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Let S be a scheme and let X be an algebraic space over S. An invertible sheaf on X
is an invertible OX -module on Xétale, see Modules on Sites, Definition 18.32.1. The
group of isomorphism classes of invertible modules is denoted Pic(X), see Modules
on Sites, Definition 18.32.6. Given a morphism f : X → Y of algebraic spaces
over S pullback defines a group homomorphism Pic(Y )→ Pic(X). The assignment
X ⇝ Pic(X) is a contravariant functor from the category of schemes to the category
of abelian groups. This functor is not representable, but it turns out that a relative
variant of this construction sometimes is representable.

Situation 99.11.1.0D25 Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. We define

PicX/B : (Sch/B)opp −→ Sets
as the fppf sheafification of the functor which to a scheme T over B associates the
group Pic(XT ).

In Situation 99.11.1 we sometimes think of PicX/B as a functor (Sch/S)opp → Sets
endowed with a morphism PicX/B → B. In this point of view, we define PicX/B to
be the fppf sheafification of the functor

T/S 7−→ {(h,L) | h : T → B, L ∈ Pic(X ×B,h T )}
In particular, when we say that PicX/B is an algebraic space, we mean that the
corresponding functor (Sch/S)opp → Sets is an algebraic space.
An often used remark is that if T is a scheme over B, then PicXT /T is the restriction
of PicX/B to (Sch/T )fppf .

Lemma 99.11.2.0D26 In Situation 99.11.1 the functor PicX/B is the sheafification of the
functor T 7→ Ob(PicX/B,T )/ ∼=.

Proof. Since the fibre category PicX/B,T of the Picard stack PicX/B over T is the
category of invertible sheaves on XT (see Section 99.10 and Examples of Stacks,
Section 95.16) this is immediate from the definitions. □

It turns out to be nontrivial to see what the value of PicX/B is on schemes T over
B. Here is a lemma that helps with this task.

Lemma 99.11.3.0D27 In Situation 99.11.1. If OT → fT,∗OXT is an isomorphism for all
schemes T over B, then

0→ Pic(T )→ Pic(XT )→ PicX/B(T )
is an exact sequence for all T .

Proof. We may replace B by T and X by XT and assume that B = T to simplify
the notation. Let N be an invertible OB-module. If f∗N ∼= OX , then we see that
f∗f

∗N ∼= f∗OX ∼= OB by assumption. Since N is locally trivial, we see that the
canonical map N → f∗f

∗N is locally an isomorphism (because OB → f∗f
∗OB is

an isomorphism by assumption). Hence we conclude that N → f∗f
∗N → OB is an

isomorphism and we see that N is trivial. This proves the first arrow is injective.
Let L be an invertible OX -module which is in the kernel of Pic(X)→ PicX/B(B).
Then there exists an fppf covering {Bi → B} such that L pulls back to the trivial
invertible sheaf on XBi . Choose a trivializing section si. Then pr∗

0si and pr∗
1sj are
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both trivialising sections of L over XBi×BBj and hence differ by a multiplicative
unit

fij ∈ Γ(XSi×BBj ,O∗
XBi×BBj

) = Γ(Bi ×B Bj ,O∗
Bi×NBj )

(equality by our assumption on pushforward of structure sheaves). Of course these
elements satisfy the cocycle condition on Bi ×B Bj ×B Bk, hence they define a
descent datum on invertible sheaves for the fppf covering {Bi → B}. By Descent,
Proposition 35.5.2 there is an invertible OB-module N with trivializations over Bi
whose associated descent datum is {fij}. (The proposition applies because B is a
scheme by the replacement performed at the start of the proof.) Then f∗N ∼= L as
the functor from descent data to modules is fully faithful. □

Lemma 99.11.4.0D28 In Situation 99.11.1 let σ : B → X be a section. Assume that
OT → fT,∗OXT is an isomorphism for all T over B. Then

0→ Pic(T )→ Pic(XT )→ PicX/B(T )→ 0
is a split exact sequence with splitting given by σ∗

T : Pic(XT )→ Pic(T ).

Proof. Denote K(T ) = Ker(σ∗
T : Pic(XT ) → Pic(T )). Since σ is a section of f we

see that Pic(XT ) is the direct sum of Pic(T ) and K(T ). Thus by Lemma 99.11.3 we
see that K(T ) ⊂ PicX/B(T ) for all T . Moreover, it is clear from the construction
that PicX/B is the sheafification of the presheaf K. To finish the proof it suffices
to show that K satisfies the sheaf condition for fppf coverings which we do in the
next paragraph.
Let {Ti → T} be an fppf covering. Let Li be elements of K(Ti) which map to the
same elements of K(Ti ×T Tj) for all i and j. Choose an isomorphism αi : OTi →
σ∗
Ti
Li for all i. Choose an isomorphism

φij : Li|XTi×T Tj
−→ Lj |XTi×T Tj

If the map
αj |Ti×TTj ◦ σ∗

Ti×TTjφij ◦ αi|Ti×TTj : OTi×TTj → OTi×TTj
is not equal to multiplication by 1 but some uij , then we can scale φij by u−1

ij to
correct this. Having done this, consider the self map

φki|XTi×T Tj×T Tk
◦ φjk|XTi×T Tj×T Tk

◦ φij |XTi×T Tj×T Tk
on Li|XTi×T Tj×T Tk

which is given by multiplication by some section fijk of the structure sheaf of
XTi×TTj×TTk . By our choice of φij we see that the pullback of this map by σ is
equal to multiplication by 1. By our assumption on functions on X, we see that
fijk = 1. Thus we obtain a descent datum for the fppf covering {XTi → X}. By
Descent on Spaces, Proposition 74.4.1 there is an invertible OXT -module L and an
isomorphism α : OT → σ∗

TL whose pullback to XTi recovers (Li, αi) (small detail
omitted). Thus L defines an object of K(T ) as desired. □

In Situation 99.11.1 let σ : B → X be a section. We denote PicX/B,σ the category
defined as follows:

(1) An object is a quadruple (T, h,L, α), where (T, h,L) is an object of PicX/B
over T and α : OT → σ∗

TL is an isomorphism.
(2) A morphism (g, φ) : (T, h,L, α) → (T ′, h′,L′, α′) is given by a morphism

of schemes g : T → T ′ with h = h′◦g and an isomorphism φ : (g′)∗L′ → L
such that σ∗

Tφ ◦ g∗α′ = α. Here g′ : XT ′ → XT is the base change of g.
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There is a natural faithful forgetful functor
PicX/B,σ −→ PicX/B

In this way we view PicX/B,σ as a category over (Sch/S)fppf .

Lemma 99.11.5.0D29 In Situation 99.11.1 let σ : B → X be a section. Then PicX/B,σ
as defined above is a stack in groupoids over (Sch/S)fppf .

Proof. We already know that PicX/B is a stack in groupoids over (Sch/S)fppf by
Examples of Stacks, Lemma 95.16.1. Let us show descent for objects for PicX/B,σ.
Let {Ti → T} be an fppf covering and let ξi = (Ti, hi,Li, αi) be an object of
PicX/B,σ lying over Ti, and let φij : pr∗

0ξi → pr∗
1ξj be a descent datum. Applying

the result for PicX/B we see that we may assume we have an object (T, h,L) of
PicX/B over T which pulls back to ξi for all i. Then we get

αi : OTi → σ∗
TiLi = (Ti → T )∗σ∗

TL
Since the maps φij are compatible with the αi we see that αi and αj pullback to the
same map on Ti×T Tj . By descent of quasi-coherent sheaves (Descent, Proposition
35.5.2, we see that the αi are the restriction of a single map α : OT → σ∗

TL as
desired. We omit the proof of descent for morphisms. □

Lemma 99.11.6.0D2A In Situation 99.11.1 let σ : B → X be a section. The morphism
PicX/B,σ → PicX/B is representable, surjective, and smooth.

Proof. Let T be a scheme and let (Sch/T )fppf → PicX/B be given by the object
ξ = (T, h,L) of PicX/B over T . We have to show that

(Sch/T )fppf ×ξ,PicX/B PicX/B,σ
is representable by a scheme V and that the corresponding morphism V → T is
surjective and smooth. See Algebraic Stacks, Sections 94.6, 94.9, and 94.10. The
forgetful functor PicX/B,σ → PicX/B is faithful on fibre categories and for T ′/T
the set of isomorphism classes is the set of isomorphisms

α′ : OT ′ −→ (T ′ → T )∗σ∗
TL

See Algebraic Stacks, Lemma 94.9.2. We know this functor is representable by
an affine scheme U of finite presentation over T by Proposition 99.4.3 (applied to
id : T → T and OT and σ∗L). Working Zariski locally on T we may assume
that σ∗

TL is isomorphic to OT and then we see that our functor is representable
by Gm × T over T . Hence U → T Zariski locally on T looks like the projection
Gm × T → T which is indeed smooth and surjective. □

Lemma 99.11.7.0D2B In Situation 99.11.1 let σ : B → X be a section. If OT → fT,∗OXT
is an isomorphism for all T over B, then PicX/B,σ → (Sch/S)fppf is fibred in setoids
with set of isomorphism classes over T given by∐

h:T→B
Ker(σ∗

T : Pic(X ×B,h T )→ Pic(T ))

Proof. If ξ = (T, h,L, α) is an object of PicX/B,σ over T , then an automorphism φ
of ξ is given by multiplication with an invertible global section u of the structure
sheaf of XT such that moreover σ∗

Tu = 1. Then u = 1 by our assumption thatOT →
fT,∗OXT is an isomorphism. Hence PicX/B,σ is fibred in setoids over (Sch/S)fppf .
Given T and h : T → B the set of isomorphism classes of pairs (L, α) is the same
as the set of isomorphism classes of L with σ∗

TL ∼= OT (isomorphism not specified).
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This is clear because any two choices of α differ by a global unit on T and this is
the same thing as a global unit on XT . □

Proposition 99.11.8.0D2C Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Assume that

(1) f is flat, of finite presentation, and proper, and
(2) OT → fT,∗OXT is an isomorphism for all schemes T over B.

Then PicX/B is an algebraic space.
In the situation of the proposition the algebraic stack PicX/B is a gerbe over the
algebraic space PicX/B . After developing the general theory of gerbes, this provides
a shorter proof of the proposition (but using more general theory).

Proof. There exists a surjective, flat, finitely presented morphism B′ → B of al-
gebraic spaces such that the base change X ′ = X ×B B′ over B′ has a section:
namely, we can take B′ = X. Observe that PicX′/B′ = B′ ×B PicX/B . Hence
PicX′/B′ → PicX/B is representable by algebraic spaces, surjective, flat, and finitely
presented. Hence, if we can show that PicX′/B′ is an algebraic space, then it follows
that PicX/B is an algebraic space by Bootstrap, Theorem 80.10.1. In this way we
reduce to the case described in the next paragraph.
In addition to the assumptions of the proposition, assume that we have a section
σ : B → X. By Proposition 99.10.2 we see that PicX/B is an algebraic stack. By
Lemma 99.11.6 and Algebraic Stacks, Lemma 94.15.4 we see that PicX/B,σ is an
algebraic stack. By Lemma 99.11.7 and Algebraic Stacks, Lemma 94.8.2 we see
that T 7→ Ker(σ∗

T : Pic(XT ) → Pic(T )) is an algebraic space. By Lemma 99.11.4
this functor is the same as PicX/B . □

Lemma 99.11.9.0D2D With assumptions and notation as in Proposition 99.11.8. Then
the diagonal PicX/B → PicX/B×BPicX/B is representable by immersions. In other
words, PicX/B → B is locally separated.
Proof. Let T be a scheme over B and let s, t ∈ PicX/B(T ). We want to show that
there exists a locally closed subscheme Z ⊂ T such that s|Z = t|Z and such that a
morphism T ′ → T factors through Z if and only if s|T ′ = t|T ′ .
We first reduce the general problem to the case where s and t come from invertible
modules on XT . We suggest the reader skip this step. Choose an fppf covering
{Ti → T}i∈I such that s|Ti and t|Ti come from Pic(XTi) for all i. Suppose that
we can show the result for all the pairs s|Ti , t|Ti . Then we obtain locally closed
subschemes Zi ⊂ Ti with the desired universal property. It follows that Zi and
Zj have the same scheme theoretic inverse image in Ti ×T Tj . This determines
a descend datum on Zi/Ti. Since Zi → Ti is locally quasi-finite, it follows from
More on Morphisms, Lemma 37.57.1 that we obtain a locally quasi-finite morphism
Z → T recovering Zi → Ti by base change. Then Z → T is an immersion by
Descent, Lemma 35.24.1. Finally, because PicX/B is an fppf sheaf, we conclude
that s|Z = t|Z and that Z satisfies the universal property mentioned above.
Assume s and t come from invertible modules V, W on XT . Set L = V ⊗W⊗−1

We are looking for a locally closed subscheme Z of T such that T ′ → T factors
through Z if and only if LXT ′ is the pullback of an invertible sheaf on T ′, see
Lemma 99.11.3. Hence the existence of Z follows from More on Morphisms of
Spaces, Lemma 76.53.1. □
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99.12. Relative morphisms

0D19 We continue the discussion from Criteria for Representability, Section 97.10. In
that section, starting with a scheme S and morphisms of algebraic spaces Z → B
and X → B over S we constructed a functor

MorB(Z,X) : (Sch/B)opp −→ Sets, T 7−→ {f : ZT → XT }

We sometimes think of MorB(Z,X) as a functor (Sch/S)opp → Sets endowed with
a morphism MorB(Z,X)→ B. Namely, if T is a scheme over S, then an element of
MorB(Z,X)(T ) is a pair (f, h) where h is a morphism h : T → B and f : Z×B,hT →
X ×B,h T is a morphism of algebraic spaces over T . In particular, when we say
that MorB(Z,X) is an algebraic space, we mean that the corresponding functor
(Sch/S)opp → Sets is an algebraic space.

Lemma 99.12.1.0D1A Let S be a scheme. Consider morphisms of algebraic spaces Z → B
and X → B over S. If X → B is separated and Z → B is of finite presentation,
flat, and proper, then there is a natural injective transformation of functors

MorB(Z,X) −→ HilbZ×BX/B

which maps a morphism f : ZT → XT to its graph.

Proof. Given a scheme T over B and a morphism fT : ZT → XT over T , the graph
of f is the morphism Γf = (id, f) : ZT → ZT ×T XT = (Z ×B X)T . Recall that
being separated, flat, proper, or finite presentation are properties of morphisms of
algebraic spaces which are stable under base change (Morphisms of Spaces, Lemmas
67.4.4, 67.30.4, 67.40.3, and 67.28.3). Hence Γf is a closed immersion by Morphisms
of Spaces, Lemma 67.4.6. Moreover, Γf (ZT ) is flat, proper, and of finite presen-
tation over T . Thus Γf (ZT ) defines an element of HilbZ×BX/B(T ). To show the
transformation is injective it suffices to show that two morphisms with the same
graph are the same. This is true because if Y ⊂ (Z ×B X)T is the graph of a mor-
phism f , then we can recover f by using the inverse of pr1|Y : Y → ZT composed
with pr2|Y . □

Lemma 99.12.2.0D1B Assumption and notation as in Lemma 99.12.1. The transforma-
tion MorB(Z,X) −→ HilbZ×BX/B is representable by open immersions.

Proof. Let T be a scheme over B and let Y ⊂ (Z ×B X)T be an element of
HilbZ×BX/B(T ). Then we see that Y is the graph of a morphism ZT → XT over
T if and only if k = pr1|Y : Y → ZT is an isomorphism. By More on Morphisms
of Spaces, Lemma 76.49.6 there exists an open subscheme V ⊂ T such that for any
morphism of schemes T ′ → T we have kT ′ : YT ′ → ZT ′ is an isomorphism if and
only if T ′ → T factors through V . This proves the lemma. □

Proposition 99.12.3.0D1C Let S be a scheme. Let Z → B and X → B be morphisms of
algebraic spaces over S. Assume X → B is of finite presentation and separated and
Z → B is of finite presentation, flat, and proper. Then MorB(Z,X) is an algebraic
space locally of finite presentation over B.

Proof. Immediate consequence of Lemma 99.12.2 and Proposition 99.9.4. □
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99.13. The stack of algebraic spaces

0D1D This section continuous the discussion started in Examples of Stacks, Sections 95.7,
95.8, and 95.12. Working over Z, the discussion therein shows that we have a stack
in groupoids

p′
ft : Spaces′

ft −→ Schfppf
parametrizing (nonflat) families of finite type algebraic spaces. More precisely, an
object3 of Spaces′

ft is a finite type morphism X → S from an algebraic space X to
a scheme S and a morphism (X ′ → S′)→ (X → S) is given by a pair (f, g) where
f : X ′ → X is a morphism of algebraic spaces and g : S′ → S is a morphism of
schemes which fit into a commutative diagram

X ′

��

f
// X

��
S′ g // S

inducing an isomorphism X ′ → S′ ×S X, in other words, the diagram is cartesian
in the category of algebraic spaces. The functor p′

ft sends (X → S) to S and sends
(f, g) to g. We define a full subcategory

Spaces′
fp,flat,proper ⊂ Spaces′

ft

consisting of objects X → S of Spaces′
ft such that X → S is of finite presentation,

flat, and proper. We denote

p′
fp,flat,proper : Spaces′

fp,flat,proper −→ Schfppf
the restriction of the functor p′

ft to the indicated subcategory. We first review the
results already obtained in the references listed above, and then we start adding
further results.

Lemma 99.13.1.0D1E The category Spaces′
ft is fibred in groupoids over Schfppf . The

same is true for Spaces′
fp,flat,proper.

Proof. We have seen this in Examples of Stacks, Section 95.12 for the case of
Spaces′

ft and this easily implies the result for the other case. However, let us also
prove this directly by checking conditions (1) and (2) of Categories, Definition
4.35.1.

Condition (1). Let X → S be an object of Spaces′
ft and let S′ → S be a morphism

of schemes. Then we set X ′ = S′ ×S X. Note that X ′ → S′ is of finite type by
Morphisms of Spaces, Lemma 67.23.3. to obtain a morphism (X ′ → S′) → (X →
S) lying over S′ → S. Argue similarly for the other case using Morphisms of Spaces,
Lemmas 67.28.3, 67.30.4, and 67.40.3.

Condition (2). Consider morphisms (f, g) : (X ′ → S′) → (X → S) and (a, b) :
(Y → T )→ (X → S) of Spaces′

ft. Given a morphism h : T → S′ with g ◦ h = b we
have to show there is a unique morphism (k, h) : (Y → T )→ (X ′ → S′) of Spaces′

ft

such that (f, g)◦ (k, h) = (a, b). This is clear from the fact that X ′ = S′×SX. The
same therefore works for any full subcategory of Spaces′

ft satisfying (1). □

3We always perform a replacement as in Examples of Stacks, Lemma 95.8.2.
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Lemma 99.13.2.0D1F The diagonal

∆ : Spaces′
fp,flat,proper −→ Spaces′

fp,flat,proper × Spaces′
fp,flat,proper

is representable by algebraic spaces.

Proof. We will use criterion (2) of Algebraic Stacks, Lemma 94.10.11. Let S be a
scheme and let X and Y be algebraic spaces of finite presentation over S, flat over
S, and proper over S. We have to show that the functor

IsomS(X,Y ) : (Sch/S)fppf −→ Sets, T 7−→ {f : XT → YT isomorphism}

is an algebraic space. An elementary argument shows that IsomS(X,Y ) sits in a
fibre product

IsomS(X,Y ) //

��

S

(id,id)
��

MorS(X,Y )×MorS(Y,X) // MorS(X,X)×MorS(Y, Y )

The bottom arrow sends (φ,ψ) to (ψ◦φ,φ◦ψ). By Proposition 99.12.3 the functors
on the bottom row are algebraic spaces over S. Hence the result follows from the
fact that the category of algebraic spaces over S has fibre products. □

Lemma 99.13.3.0D1G The category Spaces′
ft is a stack in groupoids over Schfppf . The

same is true for Spaces′
fp,flat,proper.

Proof. The reason this lemma holds is the slogan: any fppf descent datum for
algebraic spaces is effective, see Bootstrap, Section 80.11. More precisely, the lemma
for Spaces′

ft follows from Examples of Stacks, Lemma 95.8.1 as we saw in Examples
of Stacks, Section 95.12. However, let us review the proof. We need to check
conditions (1), (2), and (3) of Stacks, Definition 8.5.1.

Property (1) we have seen in Lemma 99.13.1.

Property (2) follows from Lemma 99.13.2 in the case of Spaces′
fp,flat,proper. In the

case of Spaces′
ft it follows from Examples of Stacks, Lemma 95.7.2 (and this is really

the “correct” reference).

Condition (3) for Spaces′
ft is checked as follows. Suppose given

(1) an fppf covering {Ui → U}i∈I in Schfppf ,
(2) for each i ∈ I an algebraic space Xi of finite type over Ui, and
(3) for each i, j ∈ I an isomorphism φij : Xi ×U Uj → Ui ×U Xj of algebraic

spaces over Ui×U Uj satisfying the cocycle condition over Ui×U Uj×U Uk.
We have to show there exists an algebraic space X of finite type over U and iso-
morphisms XUi

∼= Xi over Ui recovering the isomorphisms φij . This follows from
Bootstrap, Lemma 80.11.3 part (2). By Descent on Spaces, Lemma 74.11.11 we see
that X → U is of finite type. In the case of Spaces′

fp,flat,proper one additionally uses
Descent on Spaces, Lemma 74.11.12, 74.11.13, and 74.11.19 in the last step. □

Sanity check: the stacks Spaces′
ft and Spaces′

fp,flat,proper play the same role among
algebraic spaces.
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Lemma 99.13.4.0E93 Let T be an algebraic space over Z. Let ST denote the corre-
sponding algebraic stack (Algebraic Stacks, Sections 94.7, 94.8, and 94.13). We
have an equivalence of categories{

morphisms of algebraic spaces
X → T of finite type

}
−→ MorCat/Schfppf (ST ,Spaces′

ft)

and an equivalence of categories{
morphisms of algebraic spaces X → T
of finite presentation, flat, and proper

}
−→ MorCat/Schfppf (ST ,Spaces′

fp,flat,proper)

Proof. We are going to deduce this lemma from the fact that it holds for schemes
(essentially by construction of the stacks) and the fact that fppf descent data for
algebraic spaces over algerbaic spaces are effective. We strongly encourage the
reader to skip the proof.

The construction from left to right in either arrow is straightforward: given X → T
of finite type the functor ST → Spaces′

ft assigns to U/T the base change XU → U .
We will explain how to construct a quasi-inverse.

If T is a scheme, then there is a quasi-inverse by the 2-Yoneda lemma, see Cate-
gories, Lemma 4.41.2. Let p : U → T be a surjective étale morphism where U is a
scheme. Let R = U ×T U with projections s, t : R → U . Observe that we obtain
morphisms

SU×TU×TU

//
//
//
SR

//
// SU // ST

satisfying various compatibilities (on the nose).

Let G : ST → Spaces′
ft be a functor over Schfppf . The restriction of G to SU

via the map displayed above corresponds to a finite type morphism XU → U of
algebraic spaces via the 2-Yoneda lemma. Since p ◦ s = p ◦ t we see that R×s,U XU

and R ×t,U XU both correspond to the restriction of G to SR. Thus we obtain a
canonical isomorphism φ : XU ×U,t R → R ×s,U XU over R. This isomorphism
satisfies the cocycle condition by the various compatibilities of the diagram given
above. Thus a descent datum which is effective by Bootstrap, Lemma 80.11.3 part
(2). In other words, we obtain an object X → T of the right hand side category.
We omit checking the construction G⇝ X is functorial and that it is quasi-inverse
to the other construction. In the case of Spaces′

fp,flat,proper one additionally uses
Descent on Spaces, Lemma 74.11.12, 74.11.13, and 74.11.19 in the last step to see
that X → T is of finite presentation, flat, and proper. □

Remark 99.13.5.0D1H Let B be an algebraic space over Spec(Z). Let B-Spaces′
ft be

the category consisting of pairs (X → S, h : S → B) where X → S is an object of
Spaces′

ft and h : S → B is a morphism. A morphism (X ′ → S′, h′) → (X → S, h)
in B-Spaces′

ft is a morphism (f, g) in Spaces′
ft such that h◦g = h′. In this situation

the diagram
B-Spaces′

ft
//

��

Spaces′
ft

��
(Sch/B)fppf // Schfppf
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is 2-fibre product square. This trivial remark will occasionally be useful to deduce
results from the absolute case Spaces′

ft to the case of families over a given base
algebraic space. Of course, a similar construction works for B-Spaces′

fp,flat,proper

Lemma 99.13.6.0D1I The stack p′
fp,flat,proper : Spaces′

fp,flat,proper → Schfppf is limit
preserving (Artin’s Axioms, Definition 98.11.1).

Proof. Let T = limTi be the limits of a directed inverse system of affine schemes.
By Limits of Spaces, Lemma 70.7.1 the category of algebraic spaces of finite presen-
tation over T is the colimit of the categories of algebraic spaces of finite presentation
over Ti. To finish the proof use that flatness and properness descends through the
limit, see Limits of Spaces, Lemmas 70.6.12 and 70.6.13. □

Lemma 99.13.7.0D1J Let
T //

��

T ′

��
S // S′

be a pushout in the category of schemes where T → T ′ is a thickening and T → S is
affine, see More on Morphisms, Lemma 37.14.3. Then the functor on fibre categories

Spaces′
fp,flat,proper,S′

↓
Spaces′

fp,flat,proper,S ×Spaces′
fp,flat,proper,T

Spaces′
fp,flat,proper,T ′

is an equivalence.

Proof. The functor is an equivalence if we drop “proper” from the list of conditions
and replace “of finite presentation” by “locally of finite presentation”, see Pushouts
of Spaces, Lemma 81.6.7. Thus it suffices to show that given a morphism X ′ → S′

of an algebraic space to S′ which is flat and locally of finite presentation, then
X ′ → S′ is proper if and only if S×S′ X ′ → S and T ′×S′ X ′ → T ′ are proper. One
implication follows from the fact that properness is preserved under base change
(Morphisms of Spaces, Lemma 67.40.3) and the other from the fact that properness
of S ×S′ X ′ → S implies properness of X ′ → S′ by More on Morphisms of Spaces,
Lemma 76.10.2. □

Lemma 99.13.8.0D1K Let k be a field and let x = (X → Spec(k)) be an object of
X = Spaces′

fp,flat,proper over Spec(k).
(1) If k is of finite type over Z, then the vector spaces TFX ,k,x and Inf(FX ,k,x)

(see Artin’s Axioms, Section 98.8) are finite dimensional, and
(2) in general the vector spaces Tx(k) and Infx(k) (see Artin’s Axioms, Section

98.21) are finite dimensional.

Proof. The discussion in Artin’s Axioms, Section 98.8 only applies to fields of finite
type over the base scheme Spec(Z). Our stack satisfies (RS*) by Lemma 99.13.7
and we may apply Artin’s Axioms, Lemma 98.21.2 to get the vector spaces Tx(k)
and Infx(k) mentioned in (2). Moreover, in the finite type case these spaces agree
with the ones mentioned in (1) by Artin’s Axioms, Remark 98.21.7. With this
out of the way we can start the proof. Observe that the first order thickening
Spec(k) → Spec(k[ϵ]) = Spec(k[k]) has conormal module k. Hence the formula
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in Deformation Theory, Lemma 91.14.2 describing infinitesimal deformations of X
and infinitesimal automorphisms of X become

Tx(k) = Ext1
OX

(NLX/k,OX) and Infx(k) = Ext0
OX

(NLX/k,OX)
By More on Morphisms of Spaces, Lemma 76.21.5 and the fact thatX is Noetherian,
we see that NLX/k has coherent cohomology sheaves zero except in degrees 0 and
−1. By Derived Categories of Spaces, Lemma 75.8.4 the displayed Ext-groups are
finite k-vector spaces and the proof is complete. □

Beware that openness of versality (as proved in the next lemma) is a bit strange
because our stack does not satisfy formal effectiveness, see Examples, Section
110.70. Later we will apply the openness of versality to suitable substacks of
Spaces′

fp,flat,proper which do satisfy formal effectiveness to conclude that these
stacks are algebraic.

Lemma 99.13.9.0D3X The stack in groupoids X = Spaces′
fp,flat,proper satisfies openness

of versality over Spec(Z). Similarly, after base change (Remark 99.13.5) openness
of versality holds over any Noetherian base scheme S.

Proof. For the “usual” proof of this fact, please see the discussion in the remark
following this proof. We will prove this using Artin’s Axioms, Lemma 98.20.3. We
have already seen that X has diagonal representable by algebraic spaces, has (RS*),
and is limit preserving, see Lemmas 99.13.2, 99.13.7, and 99.13.6. Hence we only
need to see that X satisfies the strong formal effectiveness formulated in Artin’s
Axioms, Lemma 98.20.3.
Let (Rn) be an inverse system of rings such that Rn → Rm is surjective with square
zero kernel for all n ≥ m. Let Xn → Spec(Rn) be a finitely presented, flat, proper
morphism where Xn is an algebraic space and let Xn+1 → Xn be a morphism over
Spec(Rn+1) inducing an isomorphism Xn = Xn+1 ×Spec(Rn+1) Spec(Rn). We have
to find a flat, proper, finitely presented morphism X → Spec(limRn) whose source
is an algebraic space such that Xn is the base change of X for all n.
Let In = Ker(Rn → R1). We may think of (X1 ⊂ Xn) → (Spec(R1) ⊂ Spec(Rn))
as a morphism of first order thickenings. (Please read some of the material on
thickenings of algebraic spaces in More on Morphisms of Spaces, Section 76.9 before
continuing.) The structure sheaf of Xn is an extension

0→ OX1 ⊗R1 In → OXn → OX1 → 0
over 0→ In → Rn → R1, see More on Morphisms of Spaces, Lemma 76.18.1. Let’s
consider the extension

0→ limOX1 ⊗R1 In → limOXn → OX1 → 0
over 0 → lim In → limRn → R1 → 0. The displayed sequence is exact as the
R1 lim of the system of kernels is zero by Derived Categories of Spaces, Lemma
75.5.4. Observe that the map

OX1 ⊗R1 lim In −→ limOX1 ⊗R1 In

induces an isomorphism upon applying the functor DQX , see Derived Categories
of Spaces, Lemma 75.25.6. Hence we obtain a unique extension

0→ OX1 ⊗R1 lim In → O′ → OX1 → 0
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over 0 → lim In → limRn → R1 → 0 by the equivalence of categories of Deforma-
tion Theory, Lemma 91.14.4. The sheaf O′ determines a first order thickening of
algebraic spaces X1 ⊂ X over Spec(R1) ⊂ Spec(limRn) by More on Morphisms of
Spaces, Lemma 76.9.7. Observe that X → Spec(limRn) is flat by the already used
More on Morphisms of Spaces, Lemma 76.18.1. By More on Morphisms of Spaces,
Lemma 76.18.3 we see that X → Spec(limRn) is proper and of finite presentation.
This finishes the proof. □

Remark 99.13.10.0D1P Lemma 99.13.9 can also be shown using either Artin’s Axioms,
Lemma 98.24.4 (as in the first proof of Lemma 99.5.11), or using an obstruction
theory as in Artin’s Axioms, Lemma 98.22.2 (as in the second proof of Lemma
99.5.11). In both cases one uses the deformation and obstruction theory developed
in Cotangent, Section 92.23 to translate the needed properties of deformations and
obstructions into Ext-groups to which Derived Categories of Spaces, Lemma 75.23.3
can be applied. The second method (using an obstruction theory and therefore
using the full cotangent complex) is perhaps the “standard” method used in most
references.

99.14. The stack of polarized proper schemes

0D1L To study the stack of polarized proper schemes it suffices to work over Z as we can
later pullback to any scheme or algebraic space we want (see Remark 99.14.5).

Situation 99.14.1.0D1M We define a category Polarized as follows. Objects are pairs
(X → S,L) where

(1) X → S is a morphism of schemes which is proper, flat, and of finite
presentation, and

(2) L is an invertible OX -module which is relatively ample on X/S (Mor-
phisms, Definition 29.37.1).

A morphism (X ′ → S′,L′) → (X → S,L) between objects is given by a triple
(f, g, φ) where f : X ′ → X and g : S′ → S are morphisms of schemes which fit into
a commutative diagram

X ′

��

f
// X

��
S′ g // S

inducing an isomorphism X ′ → S′ ×S X, in other words, the diagram is cartesian,
and φ : f∗L → L′ is an isomorphism. Composition is defined in the obvious manner
(see Examples of Stacks, Sections 95.7 and 95.4). The forgetful functor

p : Polarized −→ Schfppf , (X → S,L) 7−→ S

is how we view Polarized as a category over Schfppf (see Section 99.2 for notation).

In the previous section we have done a substantial amount of work on the stack
Spaces′

fp,flat,proper of finitely presented, flat, proper algebraic spaces. To use this
material we consider the forgetful functor
(99.14.1.1)0D3Y Polarized −→ Spaces′

fp,flat,proper, (X → S,L) 7−→ (X → S)
This functor will be a useful tool in what follows. Observe that if (X → S) is in
the essential image of (99.14.1.1), then X and S are schemes.
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Lemma 99.14.2.0D3Z The category Polarized is fibred in groupoids over Spaces′
fp,flat,proper.

The category Polarized is fibred in groupoids over Schfppf .

Proof. We check conditions (1) and (2) of Categories, Definition 4.35.1.
Condition (1). Let (X → S,L) be an object of Polarized and let (X ′ → S′) →
(X → S) be a morphism of Spaces′

fp,flat,proper. Then we let L′ be the pullback
of L to X ′. Observe that X,S, S′ are schemes, hence X ′ is a scheme as well (as
the fibre product of schemes). Then L′ is ample on X ′/S′ by Morphisms, Lemma
29.37.9. In this way we obtain a morphism (X ′ → S′,L′)→ (X → S,L) lying over
(X ′ → S′)→ (X → S).
Condition (2). Consider morphisms (f, g, φ) : (X ′ → S′,L′) → (X → S,L) and
(a, b, ψ) : (Y → T,N )→ (X → S,L) of Polarized. Given a morphism (k, h) : (Y →
T )→ (X ′ → S′) of Spaces′

fp,flat,proper with (f, g) ◦ (k, h) = (a, b) we have to show
there is a unique morphism (k, h, χ) : (Y → T,N ) → (X ′ → S′,L′) of Polarized
such that (f, g, φ) ◦ (k, h, χ) = (a, b, ψ). We can just take

χ = ψ ◦ (k∗φ)−1

This proves condition (2). A composition of functors defining fibred categories
defines a fibred category, see Categories, Lemma 4.33.12. This we see that Polarized
is fibred in groupoids over Schfppf (strictly speaking we should check the fibre
categories are groupoids and apply Categories, Lemma 4.35.2). □

Lemma 99.14.3.0D40 The category Polarized is a stack in groupoids over Spaces′
fp,flat,proper

(endowed with the inherited topology, see Stacks, Definition 8.10.2). The category
Polarized is a stack in groupoids over Schfppf .

Proof. We prove Polarized is a stack in groupoids over Spaces′
fp,flat,proper by check-

ing conditions (1), (2), and (3) of Stacks, Definition 8.5.1. We have already seen
(1) in Lemma 99.14.2.
A covering of Spaces′

fp,flat,proper comes about in the following manner: Let X → S

be an object of Spaces′
fp,flat,proper. Suppose that {Si → S}i∈I is a covering of

Schfppf . Set Xi = Si ×S X. Then {(Xi → Si) → (X → S)}i∈I is a covering
of Spaces′

fp,flat,proper and every covering of Spaces′
fp,flat,proper is isomorphic to

one of these. Set Sij = Si ×S Sj and Xij = Sij ×S X so that (Xij → Sij) =
(Xi → Si) ×(X→S) (Xj → Sj). Next, suppose that L,N are ample invertible
sheaves on X/S so that (X → S,L) and (X → S,N ) are two objects of Polarized
over the object (X → S). To check descent for morphisms, we assume we have
morphisms (id, id, φi) from (Xi → Si,L|Xi) to (Xi → Si,N|Xi) whose base changes
to morphisms from (Xij → Sij ,L|Xij ) to (Xij → Sij ,N|Xij ) agree. Then φi :
L|Xi → N|Xi are isomorphisms of invertible modules over Xi such that φi and φj
restrict to the same isomorphisms over Xij . By descent for quasi-coherent sheaves
(Descent on Spaces, Proposition 74.4.1) we obtain a unique isomorphism φ : L → N
whose restriction to Xi recovers φi.
Decent for objects is proved in exactly the same manner. Namely, suppose that
{(Xi → Si)→ (X → S)}i∈I is a covering of Spaces′

fp,flat,proper as above. Suppose
we have objects (Xi → Si,Li) of Polarized lying over (Xi → Si) and a descent
datum

(id, id, φij) : (Xij → Sij ,Li|Xij )→ (Xij → Sij ,Lj |Xij )
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satisfying the obvious cocycle condition over (Xijk → Sijk) for every triple of
indices. Then by descent for quasi-coherent sheaves (Descent on Spaces, Proposition
74.4.1) we obtain a unique invertible OX -module L and isomorphisms L|Xi → Li
recovering the descent datum φij . To show that (X → S,L) is an object of Polarized
we have to prove that L is ample. This follows from Descent on Spaces, Lemma
74.13.1.
Since we already have seen that Spaces′

fp,flat,proper is a stack in groupoids over
Schfppf (Lemma 99.13.3) it now follows formally that Polarized is a stack in
groupoids over Schfppf . See Stacks, Lemma 8.10.6. □

Sanity check: the stack Polarized plays the same role among algebraic spaces.

Lemma 99.14.4.0E94 Let T be an algebraic space over Z. Let ST denote the corre-
sponding algebraic stack (Algebraic Stacks, Sections 94.7, 94.8, and 94.13). We
have an equivalence of categories(X → T,L) where X → T is a morphism

of algebraic spaces, is proper, flat, and of
finite presentation and L ample on X/T

 −→ MorCat/Schfppf (ST ,Polarized)

Proof. Omitted. Hints: Argue exactly as in the proof of Lemma 99.13.4 and use
Descent on Spaces, Proposition 74.4.1 to descent the invertible sheaf in the con-
struction of the quasi-inverse functor. The relative ampleness property descends by
Descent on Spaces, Lemma 74.13.1. □

Remark 99.14.5.0D1N Let B be an algebraic space over Spec(Z). Let B-Polarized be the
category consisting of triples (X → S,L, h : S → B) where (X → S,L) is an object
of Polarized and h : S → B is a morphism. A morphism (X ′ → S′,L′, h′)→ (X →
S,L, h) in B-Polarized is a morphism (f, g, φ) in Polarized such that h ◦ g = h′. In
this situation the diagram

B-Polarized //

��

Polarized

��
(Sch/B)fppf // Schfppf

is 2-fibre product square. This trivial remark will occasionally be useful to deduce
results from the absolute case Polarized to the case of families over a given base
algebraic space.

Lemma 99.14.6.0D41 The functor (99.14.1.1) defines a 1-morphism
Polarized → Spaces′

fp,flat,proper

of stacks in groupoids over Schfppf which is algebraic in the sense of Criteria for
Representability, Definition 97.8.1.

Proof. By Lemmas 99.13.3 and 99.14.3 the statement makes sense. To prove it, we
choose a scheme S and an object ξ = (X → S) of Spaces′

fp,flat,proper over S. We
have to show that

X = (Sch/S)fppf ×ξ,Spaces′
fp,flat,proper

Polarized

is an algebraic stack over S. Observe that an object of X is given by a pair
(T/S,L) where T is a scheme over S and L is an invertible OXT -module which is

https://stacks.math.columbia.edu/tag/0E94
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ample on XT /T . Morphisms are defined in the obvious manner. In particular, we
see immediately that we have an inclusion

X ⊂ PicX/S
of categories over (Sch/S)fppf , inducing equality on morphism sets. Since PicX/S
is an algebraic stack by Proposition 99.10.2 it suffices to show that the inclusion
above is representable by open immersions. This is exactly the content of Descent
on Spaces, Lemma 74.13.2. □

Lemma 99.14.7.0D42 The diagonal

∆ : Polarized −→ Polarized × Polarized

is representable by algebraic spaces.

Proof. This is a formal consequence of Lemmas 99.14.6 and 99.13.2. See Criteria
for Representability, Lemma 97.8.4. □

Lemma 99.14.8.0D43 The stack in groupoids Polarized is limit preserving (Artin’s Ax-
ioms, Definition 98.11.1).

Proof. Let I be a directed set and let (Ai, φii′) be a system of rings over I. Set
S = Spec(A) and Si = Spec(Ai). We have to show that on fibre categories we have

PolarizedS = colimPolarizedSi
We know that the category of schemes of finite presentation over S is the colimit of
the category of schemes of finite presentation over Si, see Limits, Lemma 32.10.1.
Moreover, givenXi → Si of finite presentation, with limitX → S, then the category
of invertibleOX -modules L is the colimit of the categories of invertibleOXi-modules
Li, see Limits, Lemma 32.10.2 and 32.10.3. If X → S is proper and flat, then
for sufficiently large i the morphism Xi → Si is proper and flat too, see Limits,
Lemmas 32.13.1 and 32.8.7. Finally, if L is ample on X then Li is ample on Xi for
i sufficiently large, see Limits, Lemma 32.4.15. Putting everything together finishes
the proof. □

Lemma 99.14.9.0D44 In Situation 99.5.1. Let

T //

��

T ′

��
S // S′

be a pushout in the category of schemes where T → T ′ is a thickening and T → S is
affine, see More on Morphisms, Lemma 37.14.3. Then the functor on fibre categories

PolarizedS′ −→ PolarizedS ×PolarizedT PolarizedT ′

is an equivalence.

Proof. By More on Morphisms, Lemma 37.14.6 there is an equivalence

flat-lfpS′ −→ flat-lfpS ×flat-lfpT flat-lfpT ′

where flat-lfpS signifies the category of schemes flat and locally of finite presentation
over S. Let X ′/S′ on the left hand side correspond to the triple (X/S, Y ′/T ′, φ)

https://stacks.math.columbia.edu/tag/0D42
https://stacks.math.columbia.edu/tag/0D43
https://stacks.math.columbia.edu/tag/0D44
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on the right hand side. Set Y = T ×T ′ Y ′ which is isomorphic with T ×S X via φ.
Then More on Morphisms, Lemma 37.14.5 shows that we have an equivalence

QCoh-flatX′/S′ −→ QCoh-flatX/S ×QCoh-flatY/T QCoh-flatY ′/T ′

where QCoh-flatX/S signifies the category of quasi-coherent OX -modules flat over
S. Since X → S, Y → T , X ′ → S′, Y ′ → T ′ are flat, this will in particular apply
to invertible modules to give an equivalence of categories

Pic(X ′) −→ Pic(X)×Pic(Y ) Pic(Y ′)
where Pic(X) signifies the category of invertible OX -modules. There is a small
point here: one has to show that if an object F ′ of QCoh-flatX′/S′ pulls back to
invertible modules on X and Y ′, then F ′ is an invertible OX′ -module. It follows
from the cited lemma that F ′ is an OX′ -module of finite presentation. By More
on Morphisms, Lemma 37.16.7 it suffices to check the restriction of F ′ to fibres
of X ′ → S′ is invertible. But the fibres of X ′ → S′ are the same as the fibres of
X → S and hence these restrictions are invertible.
Having said the above we obtain an equivalence of categories if we drop the assump-
tion (for the category of objects over S) that X → S be proper and the assumption
that L be ample. Now it is clear that if X ′ → S′ is proper, then X → S and Y ′ → T ′

are proper (Morphisms, Lemma 29.41.5). Conversely, if X → S and Y ′ → T ′ are
proper, then X ′ → S′ is proper by More on Morphisms, Lemma 37.3.3. Similarly,
if L′ is ample on X ′/S′, then L′|X is ample on X/S and L′|Y ′ is ample on Y ′/T ′

(Morphisms, Lemma 29.37.9). Finally, if L′|X is ample on X/S and L′|Y ′ is ample
on Y ′/T ′, then L′ is ample on X ′/S′ by More on Morphisms, Lemma 37.3.2. □

Lemma 99.14.10.0D4S Let k be a field and let x = (X → Spec(k),L) be an object of
X = Polarized over Spec(k).

(1) If k is of finite type over Z, then the vector spaces TFX ,k,x and Inf(FX ,k,x)
(see Artin’s Axioms, Section 98.8) are finite dimensional, and

(2) in general the vector spaces Tx(k) and Infx(k) (see Artin’s Axioms, Section
98.21) are finite dimensional.

Proof. The discussion in Artin’s Axioms, Section 98.8 only applies to fields of finite
type over the base scheme Spec(Z). Our stack satisfies (RS*) by Lemma 99.14.9
and we may apply Artin’s Axioms, Lemma 98.21.2 to get the vector spaces Tx(k)
and Infx(k) mentioned in (2). Moreover, in the finite type case these spaces agree
with the ones mentioned in part (1) by Artin’s Axioms, Remark 98.21.7. With this
out of the way we can start the proof.
One proof is to use an argument as in the proof of Lemma 99.13.8; this would
require us to develop a deformation theory for pairs consisting of a scheme and a
quasi-coherent module. Another proof would be the use the result from Lemma
99.13.8, the algebraicity of Polarized → Spaces′

fp,flat,proper, and a computation of
the deformation space of an invertible module. However, what we will do instead
is to translate the question into a deformation question on graded k-algebras and
deduce the result that way.
Let Ck be the category of Artinian local k-algebras A with residue field k. We get
a predeformation category p : F → Ck from our object x of X over k, see Artin’s
Axioms, Section 98.3. Thus F(A) is the category of triples (XA,LA, α), where
(XA,LA) is an object of Polarized over A and α is an isomorphism (XA,LA)×Spec(A)

https://stacks.math.columbia.edu/tag/0D4S
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Spec(k) ∼= (X,L). On the other hand, let q : G → Ck be the category cofibred in
groupoids defined in Deformation Problems, Example 93.7.1. Choose d0 ≫ 0 (we’ll
see below how large). Let P be the graded k-algebra

P = k ⊕
⊕

d≥d0
H0(X,L⊗d)

Then y = (k, P ) is an object of G(k). Let Gy be the predeformation category of
Formal Deformation Theory, Remark 90.6.4. Given (XA,FA, α) as above we set

Q = A⊕
⊕

d≥d0
H0(XA,L⊗d

A )

The isomorphism α induces a map β : Q→ P . By deformation theory of projective
schemes (More on Morphisms, Lemma 37.10.6) we obtain a 1-morphism

F −→ Gy, (XA,FA, α) 7−→ (Q, β : Q→ P )
of categories cofibred in groupoids over Ck. In fact, this functor is an equivalence
with quasi-inverse given by Q 7→ Proj

A
(Q). Namely, the scheme XA = Proj

A
(Q)

is flat over A by Divisors, Lemma 31.30.6. Set LA = OXA(1); this is flat over A
by the same lemma. We get an isomorphism (XA,LA) ×Spec(A) Spec(k) = (X,L)
from β. Then we can deduce all the desired properties of the pair (XA,LA) from
the corresponding properties of (X,L) using the techniques in More on Morphisms,
Sections 37.3 and 37.10. Some details omitted.
In conclusion, we see that TF = TGy = TyG and Inf(F) = Infy(G). These vector
spaces are finite dimensional by Deformation Problems, Lemma 93.7.3 and the proof
is complete. □

Lemma 99.14.11 (Strong formal effectiveness for polarized schemes).0D4T Let (Rn) be
an inverse system of rings with surjective transition maps whose kernels are locally
nilpotent. Set R = limRn. Set Sn = Spec(Rn) and S = Spec(R). Consider a
commutative diagram

X1
i1
//

��

X2
i2
//

��

X3 //

��

. . .

S1 // S2 // S3 // . . .

of schemes with cartesian squares. Suppose given (Ln, φn) where each Ln is an
invertible sheaf on Xn and φn : i∗nLn+1 → Ln is an isomorphism. If

(1) Xn → Sn is proper, flat, of finite presentation, and
(2) L1 is ample on X1

then there exists a morphism of schemes X → S proper, flat, and of finite presenta-
tion and an ample invertible OX -module L and isomorphisms Xn

∼= X ×S Sn and
Ln ∼= L|Xn compatible with the morphisms in and φn.

Proof. Choose d0 for X1 → S1 and L1 as in More on Morphisms, Lemma 37.10.6.
For any n ≥ 1 set

An = Rn ⊕
⊕

d≥d0
H0(Xn,L⊗d

n )
By the lemma each An is a finitely presented graded Rn-algebra whose homogeneous
parts (An)d are finite projective Rn-modules such that Xn = Proj(An) and Ln =
OProj(An)(1). The lemma also guarantees that the maps

A1 ← A2 ← A3 ← . . .

https://stacks.math.columbia.edu/tag/0D4T
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induce isomorphisms An = Am ⊗Rm Rn for n ≤ m. We set

B =
⊕

d≥0
Bd with Bd = limn(An)d

By More on Algebra, Lemma 15.13.3 we see that Bd is a finite projective R-module
and that B ⊗R Rn = An. Thus the scheme

X = Proj(B) and L = OX(1)

is flat over S and L is a quasi-coherent OX -module flat over S, see Divisors, Lemma
31.30.6. Because formation of Proj commutes with base change (Constructions,
Lemma 27.11.6) we obtain canonical isomorphisms

X ×S Sn = Xn and L|Xn ∼= Ln
compatible with the transition maps of the system. Thus we may think of X1 ⊂ X
as a closed subscheme. Below we will show that B is of finite presentation over
R. By Divisors, Lemmas 31.30.4 and 31.30.7 this implies that X → S is of finite
presentation and proper and that L = OX(1) is of finite presentation as an OX -
module. Since the restriction of L to the base change X1 → S1 is invertible,
we see from More on Morphisms, Lemma 37.16.8 that L is invertible on an open
neighbourhood of X1 in X. Since X → S is closed and since Ker(R → R1) is
contained in the Jacobson radical (More on Algebra, Lemma 15.11.3) we see that
any open neighbourhood of X1 in X is equal to X. Thus L is invertible. Finally, the
set of points in S where L is ample on the fibre is open in S (More on Morphisms,
Lemma 37.50.3) and contains S1 hence equals S. Thus X → S and L have all the
properties required of them in the statement of the lemma.

We prove the claim above. Choose a presentation A1 = R1[X1, . . . , Xs]/(F1, . . . , Ft)
where Xi are variables having degrees di and Fj are homogeneous polynomials in
Xi of degree ej . Then we can choose a map

Ψ : R[X1, . . . , Xs] −→ B

lifting the map R1[X1, . . . , Xs] → A1. Since each Bd is finite projective over R
we conclude from Nakayama’s lemma (Algebra, Lemma 10.20.1 using again that
Ker(R→ R1) is contained in the Jacobson radical of R) that Ψ is surjective. Since
− ⊗R R1 is right exact we can find G1, . . . , Gt ∈ Ker(Ψ) mapping to F1, . . . , Ft
in R1[X1, . . . , Xs]. Observe that Ker(Ψ)d is a finite projective R-module for all
d ≥ 0 as the kernel of the surjection R[X1, . . . , Xs]d → Bd of finite projective R-
modules. We conclude from Nakayama’s lemma once more that Ker(Ψ) is generated
by G1, . . . , Gt. □

Lemma 99.14.12.0D4U Consider the stack Polarized over the base scheme Spec(Z). Then
every formal object is effective.

Proof. For definitions of the notions in the lemma, please see Artin’s Axioms, Sec-
tion 98.9. From the definitions we see the lemma follows immediately from the
more general Lemma 99.14.11. □

Lemma 99.14.13.0D4V The stack in groupoids Polarized satisfies openness of versality
over Spec(Z). Similarly, after base change (Remark 99.14.5) openness of versality
holds over any Noetherian base scheme S.

https://stacks.math.columbia.edu/tag/0D4U
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Proof. This follows from Artin’s Axioms, Lemma 98.20.3 and Lemmas 99.14.7,
99.14.9, 99.14.8, and 99.14.11. For the “usual” proof of this fact, please see the
discussion in the remark following this proof. □

Remark 99.14.14.0D4W Lemma 99.14.13 can also be shown using an obstruction theory
as in Artin’s Axioms, Lemma 98.22.2 (as in the second proof of Lemma 99.5.11).
To do this one has to generalize the deformation and obstruction theory developed
in Cotangent, Section 92.23 to the case of pairs of algebraic spaces and quasi-
coherent modules. Another possibility is to use that the 1-morphism Polarized →
Spaces′

fp,flat,proper is algebraic (Lemma 99.14.6) and the fact that we know openness
of versality for the target (Lemma 99.13.9 and Remark 99.13.10).

Theorem 99.14.15 (Algebraicity of the stack of polarized schemes).0D4X The stack
Polarized (Situation 99.14.1) is algebraic. In fact, for any algebraic space B the
stack B-Polarized (Remark 99.14.5) is algebraic.

Proof. The absolute case follows from Artin’s Axioms, Lemma 98.17.1 and Lemmas
99.14.7, 99.14.9, 99.14.8, 99.14.12, and 99.14.13. The case over B follows from
this, the description of B-Polarized as a 2-fibre product in Remark 99.14.5, and
the fact that algebraic stacks have 2-fibre products, see Algebraic Stacks, Lemma
94.14.3. □

99.15. The stack of curves

0D4Y In this section we prove the stack of curves is algebraic. For a further discussion of
moduli of curves, we refer the reader to Moduli of Curves, Section 109.1.
A curve in the Stacks project is a variety of dimension 1. However, when we speak
of families of curves, we often allow the fibres to be reducible and/or nonreduced.
In this section, the stack of curves will “parametrize proper schemes of dimension
≤ 1”. However, it turns out that in order to get the correct notion of a family we
need to allow the total space of our family to be an algebraic space. This leads to
the following definition.

Situation 99.15.1.0D4Z We define a category Curves as follows:
(1) Objects are families of curves. More precisely, an object is a morphism

f : X → S where the base S is a scheme, the total space X is an alge-
braic space, and f is flat, proper, of finite presentation, and has relative
dimension ≤ 1 (Morphisms of Spaces, Definition 67.33.2).

(2) A morphism (X ′ → S′) → (X → S) between objects is given by a pair
(f, g) where f : X ′ → X is a morphism of algebraic spaces and g : S′ → S
is a morphism of schemes which fit into a commutative diagram

X ′

��

f
// X

��
S′ g // S

inducing an isomorphism X ′ → S′ ×S X, in other words, the diagram is
cartesian.

The forgetful functor
p : Curves −→ Schfppf , (X → S) 7−→ S

https://stacks.math.columbia.edu/tag/0D4W
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is how we view Curves as a category over Schfppf (see Section 99.2 for notation).

It follows from Spaces over Fields, Lemma 72.9.3 and more generally More on
Morphisms of Spaces, Lemma 76.43.6 that if S is the spectrum of a field, or an
Artinian local ring, or a Noetherian complete local ring, then for any family of
curves X → S the total space X is a scheme. On the other hand, there are families
of curves over A1

k where the total space is not a scheme, see Examples, Section
110.66.

It is clear that

(99.15.1.1)0D50 Curves ⊂ Spaces′
fp,flat,proper

and that an object X → S of Spaces′
fp,flat,proper is in Curves if and only if X → S

has relative dimension ≤ 1. We will use this to verify Artin’s axioms for Curves.

Lemma 99.15.2.0D51 The category Curves is fibred in groupoids over Schfppf .

Proof. Using the embedding (99.15.1.1), the description of the image, and the corre-
sponding fact for Spaces′

fp,flat,proper (Lemma 99.13.1) this reduces to the following
statement: Given a morphism

X ′ //

��

X

��
S′ // S

in Spaces′
fp,flat,proper (recall that this implies in particular the diagram is cartesian)

if X → S has relative dimension ≤ 1, then X ′ → S′ has relative dimension ≤ 1.
This follows from Morphisms of Spaces, Lemma 67.34.3. □

Lemma 99.15.3.0D52 The category Curves is a stack in groupoids over Schfppf .

Proof. Using the embedding (99.15.1.1), the description of the image, and the corre-
sponding fact for Spaces′

fp,flat,proper (Lemma 99.13.3) this reduces to the following
statement: Given an object X → S of Spaces′

fp,flat,proper and an fppf covering
{Si → S}i∈I the following are equivalent:

(1) X → S has relative dimension ≤ 1, and
(2) for each i the base change Xi → Si has relative dimension ≤ 1.

This follows from Morphisms of Spaces, Lemma 67.34.3. □

Lemma 99.15.4.0D53 The diagonal

∆ : Curves −→ Curves × Curves

is representable by algebraic spaces.

Proof. This is immediate from the fully faithful embedding (99.15.1.1) and the
corresponding fact for Spaces′

fp,flat,proper (Lemma 99.13.2). □

Remark 99.15.5.0D54 Let B be an algebraic space over Spec(Z). Let B-Curves be the
category consisting of pairs (X → S, h : S → B) where X → S is an object of
Curves and h : S → B is a morphism. A morphism (X ′ → S′, h′)→ (X → S, h) in

https://stacks.math.columbia.edu/tag/0D51
https://stacks.math.columbia.edu/tag/0D52
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B-Curves is a morphism (f, g) in Curves such that h ◦ g = h′. In this situation the
diagram

B-Curves //

��

Curves

��
(Sch/B)fppf // Schfppf

is 2-fibre product square. This trivial remark will occasionally be useful to deduce
results from the absolute case Curves to the case of families of curves over a given
base algebraic space.

Lemma 99.15.6.0D55 The stack Curves → Schfppf is limit preserving (Artin’s Axioms,
Definition 98.11.1).

Proof. Using the embedding (99.15.1.1), the description of the image, and the cor-
responding fact for Spaces′

fp,flat,proper (Lemma 99.13.6) this reduces to the follow-
ing statement: Let T = limTi be the limits of a directed inverse system of affine
schemes. Let i ∈ I and let Xi → Ti be an object of Spaces′

fp,flat,proper over Ti.
Assume that T ×Ti Xi → T has relative dimension ≤ 1. Then for some i′ ≥ i the
morphism Ti′ ×Ti Xi → Ti has relative dimension ≤ 1. This follows from Limits of
Spaces, Lemma 70.6.14. □

Lemma 99.15.7.0D56 Let
T //

��

T ′

��
S // S′

be a pushout in the category of schemes where T → T ′ is a thickening and T → S is
affine, see More on Morphisms, Lemma 37.14.3. Then the functor on fibre categories

CurvesS′ −→ CurvesS ×CurvesT CurvesT ′

is an equivalence.

Proof. Using the embedding (99.15.1.1), the description of the image, and the corre-
sponding fact for Spaces′

fp,flat,proper (Lemma 99.13.7) this reduces to the following
statement: given a morphism X ′ → S′ of an algebraic space to S′ which is of finite
presentation, flat, proper then X ′ → S′ has relative dimension ≤ 1 if and only if
S ×S′ X ′ → S and T ′ ×S′ X ′ → T ′ have relative dimension ≤ 1. One implication
follows from the fact that having relative dimension ≤ 1 is preserved under base
change (Morphisms of Spaces, Lemma 67.34.3). The other follows from the fact
that having relative dimension ≤ 1 is checked on the fibres and that the fibres of
X ′ → S′ (over points of the scheme S′) are the same as the fibres of S ×S′ X ′ → S
since S → S′ is a thickening by More on Morphisms, Lemma 37.14.3. □

Lemma 99.15.8.0D57 Let k be a field and let x = (X → Spec(k)) be an object of
X = Curves over Spec(k).

(1) If k is of finite type over Z, then the vector spaces TFX ,k,x and Inf(FX ,k,x)
(see Artin’s Axioms, Section 98.8) are finite dimensional, and

(2) in general the vector spaces Tx(k) and Infx(k) (see Artin’s Axioms, Section
98.21) are finite dimensional.
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Proof. This is immediate from the fully faithful embedding (99.15.1.1) and the
corresponding fact for Spaces′

fp,flat,proper (Lemma 99.13.8). □

Lemma 99.15.9.0D58 Consider the stack Curves over the base scheme Spec(Z). Then
every formal object is effective.

Proof. For definitions of the notions in the lemma, please see Artin’s Axioms,
Section 98.9. Let (A,m, κ) be a Noetherian complete local ring. Let (Xn →
Spec(A/mn)) be a formal object of Curves over A. By More on Morphisms of
Spaces, Lemma 76.43.5 there exists a projective morphism X → Spec(A) and a
compatible system of ismomorphisms X ×Spec(A) Spec(A/mn) ∼= Xn. By More on
Morphisms, Lemma 37.12.4 we see that X → Spec(A) is flat. By More on Mor-
phisms, Lemma 37.30.6 we see that X → Spec(A) has relative dimension ≤ 1. This
proves the lemma. □

Lemma 99.15.10.0D59 The stack in groupoids X = Curves satisfies openness of versality
over Spec(Z). Similarly, after base change (Remark 99.15.5) openness of versality
holds over any Noetherian base scheme S.

Proof. This is immediate from the fully faithful embedding (99.15.1.1) and the
corresponding fact for Spaces′

fp,flat,proper (Lemma 99.13.9). □

Theorem 99.15.11 (Algebraicity of the stack of curves).0D5A See [dJHS11,
Proposition 3.3,
page 8] and [Smy13,
Appendix B by Jack
Hall, Theorem B.1].

The stack Curves (Situation
99.15.1) is algebraic. In fact, for any algebraic space B the stack B-Curves (Remark
99.15.5) is algebraic.

Proof. The absolute case follows from Artin’s Axioms, Lemma 98.17.1 and Lemmas
99.15.4, 99.15.7, 99.15.6, 99.15.9, and 99.15.10. The case over B follows from this,
the description of B-Curves as a 2-fibre product in Remark 99.15.5, and the fact that
algebraic stacks have 2-fibre products, see Algebraic Stacks, Lemma 94.14.3. □

Lemma 99.15.12.0D5B The 1-morphism (99.15.1.1)

Curves −→ Spaces′
fp,flat,proper

is representable by open and closed immersions.

Proof. Since (99.15.1.1) is a fully faithful embedding of categories it suffices to show
the following: given an object X → S of Spaces′

fp,flat,proper there exists an open
and closed subscheme U ⊂ S such that a morphism S′ → S factors through U if
and only if the base change X ′ → S′ of X → S has relative dimension ≤ 1. This
follows immediately from More on Morphisms of Spaces, Lemma 76.31.5. □

Remark 99.15.13.0D5C Consider the 2-fibre product

Curves ×Spaces′
fp,flat,proper

Polarized //

��

Polarized

��
Curves // Spaces′

fp,flat,proper

This fibre product parametrized polarized curves, i.e., families of curves endowed
with a relatively ample invertible sheaf. It turns out that the left vertical arrow

PolarizedCurves −→ Curves

https://stacks.math.columbia.edu/tag/0D58
https://stacks.math.columbia.edu/tag/0D59
https://stacks.math.columbia.edu/tag/0D5A
https://stacks.math.columbia.edu/tag/0D5B
https://stacks.math.columbia.edu/tag/0D5C
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is algebraic, smooth, and surjective. Namely, this 1-morphism is algebraic (as base
change of the arrow in Lemma 99.14.6), every point is in the image, and there
are no obstructions to deforming invertible sheaves on curves (see proof of Lemma
99.15.9). This gives another approach to the algebraicity of Curves. Namely, by
Lemma 99.15.12 we see that PolarizedCurves is an open and closed substack of the
algebraic stack Polarized and any stack in groupoids which is the target of a smooth
algebraic morphism from an algebraic stack is an algebraic stack.

99.16. Moduli of complexes on a proper morphism

0DLB The title and the material of this section are taken from [Lie06a]. Let S be a scheme
and let f : X → B be a proper, flat, finitely presented morphism of algebraic spaces.
We will prove that there is an algebraic stack

ComplexesX/B
parametrizing “families” of objects of Db

Coh of the fibres with vanishing negative
self-exts. More precisely a family is given by a relatively perfect object of the
derived category of the total space; this somewhat technical notion is studied in
More on Morphisms of Spaces, Section 76.52.

Already if X is a proper algebraic space over a field k we obtain a very interesting
algebraic stack. Namely, there is an embedding

CohX/k −→ ComplexesX/k

since for any O-module F (on any ringed topos) we have ExtiO(F ,F) = 0 for
i < 0. Although this certainly shows our stack is nonempty, the true motivation for
the study of ComplexesX/k is that there are often objects of the derived category
Db

Coh(OX) with vanishing negative self-exts and nonvanishing cohomology sheaves
in more than one degree. For example, X could be derived equivalent to another
proper algebraic space Y over k, i.e., we have a k-linear equivalence

F : Db
Coh(OY ) −→ Db

Coh(OX)

There are cases where this happens and F is not given by an automorphism between
X and Y ; for example in the case of an abelian variety and its dual. In this situation
F induces an isomorphism of algebraic stacks

ComplexesY/k −→ ComplexesX/k
(insert future reference here) and in particular the stack of coherent sheaves on Y
maps into the stack of complexes on X. Turning this around, if we can understand
well enough the geometry of ComplexesX/k, then we can try to use this to study all
possible derived equivalent Y .

Lemma 99.16.1.0DLC Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is proper, flat, and of finite presentation. Let K,E ∈
D(OX). Assume K is pseudo-coherent and E is Y -perfect (More on Morphisms of
Spaces, Definition 76.52.1). For a field k and a morphism y : Spec(k)→ Y denote
Ky, Ey the pullback to the fibre Xy.

(1) There is an open W ⊂ Y characterized by the property

y ∈ |W | ⇔ ExtiOXy
(Ky, Ey) = 0 for i < 0.

https://stacks.math.columbia.edu/tag/0DLC
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(2) For any morphism V → Y factoring through W we have
ExtiOXV

(KV , EV ) = 0 for i < 0

where XV is the base change of X and KV and EV are the derived pull-
backs of K and E to XV .

(3) The functor V 7→ HomOXV
(KV , EV ) is a sheaf on (Spaces/W )fppf repre-

sentable by an algebraic space affine and of finite presentation over W .

Proof. For any morphism V → Y the complex KV is pseudo-coherent (Cohomology
on Sites, Lemma 21.45.3) and EV is V -perfect (More on Morphisms of Spaces,
Lemma 76.52.6). Another observation is that given y : Spec(k) → Y and a field
extension k′/k with y′ : Spec(k′)→ Y the induced morphism, we have

ExtiOX
y′

(Ky′ , Ey′) = ExtiOXy
(Ky, Ey)⊗k k′

by Derived Categories of Schemes, Lemma 36.22.6. Thus the vanishing in (1) is
really a property of the induced point y ∈ |Y |. We will use these two observations
without further mention in the proof.
Assume first Y is an affine scheme. Then we may apply More on Morphisms of
Spaces, Lemma 76.52.11 and find a pseudo-coherent L ∈ D(OY ) which “universally
computes” Rf∗RHom(K,E) in the sense described in that lemma. Unwinding the
definitions, we obtain for a point y ∈ Y the equality

Extiκ(y)(L⊗L
OY

κ(y), κ(y)) = ExtiOXy
(Ky, Ey)

We conclude that
Hi(L⊗L

OY
κ(y)) = 0 for i > 0⇔ ExtiOXy

(Ky, Ey) = 0 for i < 0.

By Derived Categories of Schemes, Lemma 36.31.1 the set W of y ∈ Y where this
happens defines an open of Y . This open W then satisfies the requirement in (1)
for all morphisms from spectra of fields, by the “universality” of L.
Let’s go back to Y a general algebraic space. Choose an étale covering {Vi → Y }
by affine schemes Vi. Then we see that the subset W ⊂ |Y | pulls back to the
corresponding subset Wi ⊂ |Vi| for XVi , KVi , EVi . By the previous paragraph we
find that Wi is open, hence W is open. This proves (1) in general. Moreover, parts
(2) and (3) are entirely formulated in terms of the category Spaces/W and the
restrictions XW , KW , EW . This reduces us to the case W = Y .
Assume W = Y . We claim that for any algebraic space V over Y we have
RfV,∗RHom(KV , EV ) has vanishing cohomology sheaves in degrees < 0. This
will prove (2) because

ExtiOXV
(KV , EV ) = Hi(XV , RHom(KV , EV )) = Hi(V,RfV,∗RHom(KV , EV ))

by Cohomology on Sites, Lemmas 21.35.1 and 21.20.5 and the vanishing of the
cohomology sheaves implies the cohomology group Hi is zero for i < 0 by Derived
Categories, Lemma 13.16.1.
To prove the claim, we may work étale locally on V . In particular, we may assume
Y is affine and W = Y . Let L ∈ D(OY ) be as in the second paragraph of the
proof. For an algebraic space V over Y denote LV the derived pullback of L to V .
(An important feature we will use is that L “works” for all algebraic spaces V over
Y and not just affine V .) As W = Y we have Hi(L) = 0 for i > 0 (use More on
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Algebra, Lemma 15.75.5 to go from fibres to stalks). Hence Hi(LV ) = 0 for i > 0.
The property defining L is that

RfV,∗RHom(KV , EV ) = RHom(LV ,OV )
Since LV sits in degrees ≤ 0, we conclude that RHom(LV ,OV ) sits in degrees ≥ 0
thereby proving the claim. This finishes the proof of (2).
Assume W = Y but make no assumptions on the algebraic space Y . Since we have
(2), we see from Simplicial Spaces, Lemma 85.35.1 that the functor F given by
F (V ) = HomOXV

(KV , EV ) is a sheaf4 on (Spaces/Y )fppf . Thus to prove that F
is an algebraic space and that F → Y is affine and of finite presentation, we may
work étale locally on Y ; see Bootstrap, Lemma 80.11.2 and Morphisms of Spaces,
Lemmas 67.20.3 and 67.28.4. We conclude that it suffices to prove F is an affine
algebraic space of finite presentation over Y when Y is an affine scheme. In this
case we go back to our pseudo-coherent complex L ∈ D(OY ). Since Hi(L) = 0 for
i > 0, we can represent L by a complex of the form

. . .→ O⊕m1
Y → O⊕m0

Y → 0→ . . .

with the last term in degree 0, see More on Algebra, Lemma 15.64.5. Combining
the two displayed formulas earlier in the proof we find that

F (V ) = Ker(HomV (O⊕m0
V ,OV )→ HomV (O⊕m1

V ,OV ))
In other words, there is a fibre product diagram

F

��

// Y

0
��

Am0
Y

// Am1
Y

which proves what we want. □

Lemma 99.16.2.0DLD Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is proper, flat, and of finite presentation. Let E ∈ D(OX).
Assume

(1) E is S-perfect (More on Morphisms of Spaces, Definition 76.52.1), and
(2) for every point s ∈ S we have

ExtiOXs
(Es, Es) = 0 for i < 0

where Es is the pullback to the fibre Xs.
Then

(a) (1) and (2) are preserved by arbitrary base change V → Y ,
(b) ExtiOXV

(EV , EV ) = 0 for i < 0 and all V over Y ,
(c) V 7→ HomOXV

(EV , EV ) is representable by an algebraic space affine and
of finite presentation over Y .

Here XV is the base change of X and EV is the derived pullback of E to XV .

Proof. Immediate consequence of Lemma 99.16.1. □

4To check the sheaf property for a covering {Vi → V }i∈I first consider the Čech fppf hyper-
covering a : V• → V with Vn =

∐
i0...in

Vi0 ×V . . .×V Vin and then set U• = V• ×a,V XV . Then
U• → XV is an fppf hypercovering to which we may apply Simplicial Spaces, Lemma 85.35.1.

https://stacks.math.columbia.edu/tag/0DLD
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Situation 99.16.3.0DLE Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Assume f is proper, flat, and of finite presentation. We denote
ComplexesX/B the category whose objects are triples (T, g, E) where

(1) T is a scheme over S,
(2) g : T → B is a morphism over S, and setting XT = T ×g,B X
(3) E is an object of D(OXT ) satisfying conditions (1) and (2) of Lemma

99.16.2.
A morphism (T, g, E)→ (T ′, g′, E′) is given by a pair (h, φ) where

(1) h : T → T ′ is a morphism of schemes over B (i.e., g′ ◦ h = g), and
(2) φ : L(h′)∗E′ → E is an isomorphism of D(OXT ) where h′ : XT → XT ′ is

the base change of h.

Thus ComplexesX/B is a category and the rule
p : ComplexesX/B −→ (Sch/S)fppf , (T, g, E) 7−→ T

is a functor. For a scheme T over S we denote ComplexesX/B,T the fibre category
of p over T . These fibre categories are groupoids.

Lemma 99.16.4.0DLF In Situation 99.16.3 the functor p : ComplexesX/B −→ (Sch/S)fppf
is fibred in groupoids.

Proof. We show that p is fibred in groupoids by checking conditions (1) and (2) of
Categories, Definition 4.35.1. Given an object (T ′, g′, E′) of ComplexesX/B and a
morphism h : T → T ′ of schemes over S we can set g = h ◦ g′ and E = L(h′)∗E′

where h′ : XT → XT ′ is the base change of h. Then it is clear that we obtain a
morphism (T, g, E) → (T ′, g′, E′) of ComplexesX/B lying over h. This proves (1).
For (2) suppose we are given morphisms

(h1, φ1) : (T1, g1, E1)→ (T, g, E) and (h2, φ2) : (T2, g2, E2)→ (T, g, E)
of ComplexesX/B and a morphism h : T1 → T2 such that h2 ◦ h = h1. Then we can
let φ be the composition

L(h′)∗E2
L(h′)∗φ−1

2−−−−−−−→ L(h′)∗L(h2)∗E = L(h1)∗E
φ1−→ E1

to obtain the morphism (h, φ) : (T1, g1, E1)→ (T2, g2, E2) that witnesses the truth
of condition (2). □

Lemma 99.16.5.0DLG In Situation 99.16.3. Denote X = ComplexesX/B . Then ∆ : X →
X ×X is representable by algebraic spaces.

Proof. Consider two objects x = (T, g, E) and y = (T, g′, E′) of X over a scheme T .
We have to show that IsomX (x, y) is an algebraic space over T , see Algebraic Stacks,
Lemma 94.10.11. If for h : T ′ → T the restrictions x|T ′ and y|T ′ are isomorphic
in the fibre category XT ′ , then g ◦ h = g′ ◦ h. Hence there is a transformation of
presheaves

IsomX (x, y) −→ Equalizer(g, g′)
Since the diagonal of B is representable (by schemes) this equalizer is a scheme.
Thus we may replace T by this equalizer and E and E′ by their pullbacks. Thus
we may assume g = g′.
Assume g = g′. After replacing B by T and X by XT we arrive at the following
problem. Given E,E′ ∈ D(OX) satisfying conditions (1), (2) of Lemma 99.16.2

https://stacks.math.columbia.edu/tag/0DLE
https://stacks.math.columbia.edu/tag/0DLF
https://stacks.math.columbia.edu/tag/0DLG
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we have to show that Isom(E,E′) is an algebraic space. Here Isom(E,E′) is the
functor

(Sch/B)opp → Sets, T 7→ {φ : ET → E′
T isomorphism in D(OXT )}

where ET and E′
T are the derived pullbacks of E and E′ to XT . Now, let W ⊂

B, resp. W ′ ⊂ B be the open subspace of B associated to E,E′, resp. to E′, E
by Lemma 99.16.1. Clearly, if there exists an isomorphism ET → E′

T as in the
definition of Isom(E,E′), then we see that T → B factors into both W and W ′

(because we have condition (1) for E and E′ and we’ll obviously have Et ∼= E′
t so

no nonzero maps Et[i] → Et or E′
t[i] → Et over the fibre Xt for i > 0. Thus we

may replace B by the open W ∩W ′. In this case the functor H = Hom(E,E′)
(Sch/B)opp → Sets, T 7→ HomOXT

(ET , E′
T )

is an algebraic space affine and of finite presentation over B by Lemma 99.16.1.
The same is true for H ′ = Hom(E′, E), I = Hom(E,E), and I ′ = Hom(E′, E′).
Therefore we can repeat the argument of the proof of Proposition 99.4.3 to see that

Isom(E,E′) = (H ′ ×B H)×c,I×BI′,σ B

for some morphisms c and σ. Thus Isom(E,E′) is an algebraic space. □

Lemma 99.16.6.0DLH In Situation 99.16.3 the functor p : ComplexesX/B −→ (Sch/S)fppf
is a stack in groupoids.

Proof. To prove that ComplexesX/B is a stack in groupoids, we have to show that
the presheaves Isom are sheaves and that descent data are effective. The statement
on Isom follows from Lemma 99.16.5, see Algebraic Stacks, Lemma 94.10.11. Let
us prove the statement on descent data.
Suppose that {ai : Ti → T} is an fppf covering of schemes over S. Let (ξi, φij) be
a descent datum for {Ti → T} with values in ComplexesX/B . For each i we can
write ξi = (Ti, gi, Ei). Denote pr0 : Ti ×T Tj → Ti and pr1 : Ti ×T Tj → Tj the
projections. The condition that ξi|Ti×TTj ∼= ξj |Ti×TTj implies in particular that
gi ◦ pr0 = gj ◦ pr1. Thus there exists a unique morphism g : T → B such that
gi = g ◦ ai, see Descent on Spaces, Lemma 74.7.2. Denote XT = T ×g,B X. Set
Xi = XTi = Ti ×gi,B X = Ti ×ai,T XT and

Xij = XTi ×XT XTj = Xi ×XT Xj

with projections pri and prj to Xi and Xj . Observe that the pullback of (Ti, gi, Ei)
by pr0 : Ti ×T Tj → Ti is given by (Ti ×T Tj , gi ◦ pr0, Lpr∗

iEi). Hence a descent
datum for {Ti → T} in ComplexesX/B is given by the objects (Ti, g ◦ ai, Ei) and for
each pair i, j an isomorphism in DOXij )

φij : Lpr∗
iEi −→ Lpr∗

jEj

satisfying the cocycle condition over the pullback of X to Ti ×T Tj ×T Tk. Using
the vanishing of negative Exts provided by (b) of Lemma 99.16.2, we may apply
Simplicial Spaces, Lemma 85.35.2 to obtain descent5 for these complexes. In other
words, we find there exists an object E in DQCoh(OXT ) restricting to Ei on XTi

compatible with φij . Recall that being T -perfect signifies being pseudo-coherent

5To check this, first consider the Čech fppf hypercovering a : T• → T with Tn =∐
i0...in

Ti0 ×T . . . ×T Tin and then set U• = T• ×a,T XT . Then U• → XT is an fppf hy-
percovering to which we may apply Simplicial Spaces, Lemma 85.35.2.

https://stacks.math.columbia.edu/tag/0DLH
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and having locally finite tor dimension over f−1OT . Thus E is T -perfect by an
application of More on Morphisms of Spaces, Lemmas 76.54.1 and 76.54.2. Finally,
we have to check condition (2) from Lemma 99.16.2 for E. This immediately follows
from the description of the open W in Lemma 99.16.1 and the fact that (2) holds
for Ei on XTi/Ti. □

Remark 99.16.7.0DLI In Situation 99.16.3 the rule (T, g, E) 7→ (T, g) defines a 1-
morphism

ComplexesX/B −→ SB
of stacks in groupoids (see Lemma 99.16.6, Algebraic Stacks, Section 94.7, and
Examples of Stacks, Section 95.10). Let B′ → B be a morphism of algebraic spaces
over S. Let SB′ → SB be the associated 1-morphism of stacks fibred in sets. Set
X ′ = X ×B B′. We obtain a stack in groupoids ComplexesX′/B′ → (Sch/S)fppf
associated to the base change f ′ : X ′ → B′. In this situation the diagram

ComplexesX′/B′ //

��

ComplexesX/B

��
SB′ // SB

or in
another
notation

ComplexesX′/B′ //

��

ComplexesX/B

��
Sch/B′ // Sch/B

is 2-fibre product square. This trivial remark will occasionally be useful to change
the base algebraic space.

Lemma 99.16.8.0DLJ In Situation 99.16.3 assume that B → S is locally of finite presen-
tation. Then p : ComplexesX/B → (Sch/S)fppf is limit preserving (Artin’s Axioms,
Definition 98.11.1).

Proof. Write B(T ) for the discrete category whose objects are the S-morphisms
T → B. Let T = limTi be a filtered limit of affine schemes over S. Assigning to
an object (T, h,E) of ComplexesX/B,T the object h of B(T ) gives us a commutative
diagram of fibre categories

colim ComplexesX/B,Ti //

��

ComplexesX/B,T

��
colimB(Ti) // B(T )

We have to show the top horizontal arrow is an equivalence. Since we have assume
that B is locally of finite presentation over S we see from Limits of Spaces, Remark
70.3.11 that the bottom horizontal arrow is an equivalence. This means that we
may assume T = limTi be a filtered limit of affine schemes over B. Denote gi :
Ti → B and g : T → B the corresponding morphisms. Set Xi = Ti ×gi,B X and
XT = T ×g,B X. Observe that XT = colimXi. By More on Morphisms of Spaces,
Lemma 76.52.9 the category of T -perfect objects of D(OXT ) is the colimit of the
categories of Ti-perfect objects of D(OXTi ). Thus all we have to prove is that given
an Ti-perfect object Ei of D(OXTi ) such that the derived pullback E of Ei to XT

satisfies condition (2) of Lemma 99.16.2, then after increasing i we have that Ei
satisfies condition (2) of Lemma 99.16.2. Let W ⊂ |Ti| be the open constructed in
Lemma 99.16.1 for Ei and Ei. By assumption on E we find that T → Ti factors
through T . Hence there is an i′ ≥ i such that Ti′ → Ti factors through W , see
Limits, Lemma 32.4.10 Then i′ works by construction of W . □

https://stacks.math.columbia.edu/tag/0DLI
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Lemma 99.16.9.0DLK In Situation 99.16.3. Let

Z //

��

Z ′

��
Y // Y ′

be a pushout in the category of schemes over S where Z → Z ′ is a finite order
thickening and Z → Y is affine, see More on Morphisms, Lemma 37.14.3. Then the
functor on fibre categories

ComplexesX/B,Y ′ −→ ComplexesX/B,Y ×ComplexesX/B,Z ComplexesX/B,Z′

is an equivalence.

Proof. Observe that the corresponding map
B(Y ′) −→ B(Y )×B(Z) B(Z ′)

is a bijection, see Pushouts of Spaces, Lemma 81.6.1. Thus using the commutative
diagram

ComplexesX/B,Y ′ //

��

ComplexesX/B,Y ×ComplexesX/B,Z ComplexesX/B,Z′

��
B(Y ′) // B(Y )×B(Z) B(Z ′)

we see that we may assume that Y ′ is a scheme over B′. By Remark 99.16.7 we
may replace B by Y ′ and X by X ×B Y ′. Thus we may assume B = Y ′.
Assume B = Y ′. We first prove fully faithfulness of our functor. To do this, let
ξ1, ξ2 be two objects of ComplexesX/B over Y ′. Then we have to show that

Isom(ξ1, ξ2)(Y ′) −→ Isom(ξ1, ξ2)(Y )×Isom(ξ1,ξ2)(Z) Isom(ξ1, ξ2)(Z ′)
is bijective. However, we already know that Isom(ξ1, ξ2) is an algebraic space over
B = Y ′. Thus this bijectivity follows from Artin’s Axioms, Lemma 98.4.1 (or the
aforementioned Pushouts of Spaces, Lemma 81.6.1).
Essential surjectivity. Let (EY , EZ′ , α) be a triple, where EY ∈ D(OY ) and EZ′ ∈
D(OXZ′ ) are objects such that (Y, Y → B,EY ) is an object of ComplexesX/B over
Y , such that (Z ′, Z ′ → B,EZ′) is an object of ComplexesX/B over Z ′, and α :
L(XZ → XY )∗EY → L(XZ → XZ′)∗EZ′ is an isomorphism in D(OZ′). That is to
say

((Y, Y → B,EY ), (Z ′, Z ′ → B,EZ′), α)
is an object of the target of the arrow of our lemma. Observe that the diagram

XZ
//

��

XZ′

��
XY

// XY ′

is a pushout with XZ → XY affine and XZ → XZ′ a thickening (see Pushouts of
Spaces, Lemma 81.6.7). Hence by Pushouts of Spaces, Lemma 81.8.1 we find an
object EY ′ ∈ D(OXY ′ ) together with isomorphisms L(XY → XY ′)∗EY ′ → EY and

https://stacks.math.columbia.edu/tag/0DLK
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L(XZ′ → XY ′)∗EY ′ → EZ compatible with α. Clearly, if we show that EY ′ is Y ′-
perfect, then we are done, because property (2) of Lemma 99.16.2 is a property on
points (and Y and Y ′ have the same points). This follows from More on Morphisms
of Spaces, Lemma 76.54.4. □

Lemma 99.16.10.0DLL In Situation 99.16.3 assume that S is a locally Noetherian scheme
and B → S is locally of finite presentation. Let k be a finite type field over S and let
x0 = (Spec(k), g0, E0) be an object of X = ComplexesX/B over k. Then the spaces
TFX ,k,x0 and Inf(FX ,k,x0) (Artin’s Axioms, Section 98.8) are finite dimensional.

Proof. Observe that by Lemma 99.16.9 our stack in groupoids X satisfies property
(RS*) defined in Artin’s Axioms, Section 98.18. In particular X satisfies (RS).
Hence all associated predeformation categories are deformation categories (Artin’s
Axioms, Lemma 98.6.1) and the statement makes sense.
In this paragraph we show that we can reduce to the case B = Spec(k). Set
X0 = Spec(k)×g0,BX and denote X0 = ComplexesX0/k. In Remark 99.16.7 we have
seen that X0 is the 2-fibre product of X with Spec(k) over B as categories fibred
in groupoids over (Sch/S)fppf . Thus by Artin’s Axioms, Lemma 98.8.2 we reduce
to proving that B, Spec(k), and X0 have finite dimensional tangent spaces and
infinitesimal automorphism spaces. The tangent space of B and Spec(k) are finite
dimensional by Artin’s Axioms, Lemma 98.8.1 and of course these have vanishing
Inf. Thus it suffices to deal with X0.
Let k[ϵ] be the dual numbers over k. Let Spec(k[ϵ])→ B be the composition of g0 :
Spec(k) → B and the morphism Spec(k[ϵ]) → Spec(k) coming from the inclusion
k → k[ϵ]. Set X0 = Spec(k)×BX and Xϵ = Spec(k[ϵ])×BX. Observe that Xϵ is a
first order thickening of X0 flat over the first order thickening Spec(k)→ Spec(k[ϵ]).
Observe that X0 and Xϵ give rise to canonically equivalent small étale topoi, see
More on Morphisms of Spaces, Section 76.9. By More on Morphisms of Spaces,
Lemma 76.54.4 we see that TFX0,k,x0 is the set of isomorphism classes of lifts of
E0 to Xϵ in the sense of Deformation Theory, Lemma 91.16.7. We conclude that

TFX0,k,x0 = Ext1
OX0

(E0, E0)

Here we have used the identification ϵk[ϵ] ∼= k of k[ϵ]-modules. Using Deformation
Theory, Lemma 91.16.7 once more we see that there is a surjection

Inf(FX ,k,x0)← Ext0
OX0

(E0, E0)

of k-vector spaces. As E0 is pseudo-coherent it lies in D−
Coh(OX0) by Derived

Categories of Spaces, Lemma 75.13.7. Since E0 locally has finite tor dimension
and X0 is quasi-compact we see E0 ∈ Db

Coh(OX0). Thus the Exts above are finite
dimensional k-vector spaces by Derived Categories of Spaces, Lemma 75.8.4. □

Lemma 99.16.11.0DLM In Situation 99.16.3 assume B = S is locally Noetherian. Then
strong formal effectiveness in the sense of Artin’s Axioms, Remark 98.20.2 holds
for p : ComplexesX/S → (Sch/S)fppf .

Proof. Let (Rn) be an inverse system of S-algebras with surjective transition maps
whose kernels are locally nilpotent. Set R = limRn. Let (ξn) be a system of objects
of ComplexesX/B lying over (Spec(Rn)). We have to show (ξn) is effective, i.e., there
exists an object ξ of ComplexesX/B lying over Spec(R).

https://stacks.math.columbia.edu/tag/0DLL
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Write XR = Spec(R) ×S X and Xn = Spec(Rn) ×S X. Of course Xn is the base
change of XR by R → Rn. Since S = B, we see that ξn corresponds simply to
an Rn-perfect object En ∈ D(OXn) satisfying condition (2) of Lemma 99.16.2. In
particular En is pseudo-coherent. The isomorphisms ξn+1|Spec(Rn) ∼= ξn correspond
to isomorphisms L(Xn → Xn+1)∗En+1 → En. Therefore by Flatness on Spaces,
Theorem 77.13.6 we find a pseudo-coherent object E of D(OXR) with En equal to
the derived pullback of E for all n compatible with the transition isomorphisms.
Observe that (R,Ker(R → R1)) is a henselian pair, see More on Algebra, Lemma
15.11.3. In particular, Ker(R → R1) is contained in the Jacobson radical of R.
Then we may apply More on Morphisms of Spaces, Lemma 76.54.5 to see that E
is R-perfect.
Finally, we have to check condition (2) of Lemma 99.16.2. By Lemma 99.16.1 the
set of points t of Spec(R) where the negative self-exts of Et vanish is an open. Since
this condition is true in V (Ker(R → R1)) and since Ker(R → R1) is contained in
the Jacobson radical of R we conclude it holds for all points. □

Theorem 99.16.12 (Algebraicity of moduli of complexes on a proper morphism).
0DLN [Lie06a]Let S be a scheme. Let f : X → B be morphism of algebraic spaces over S.

Assume that f is proper, flat, and of finite presentation. Then ComplexesX/B is an
algebraic stack over S.

Proof. Set X = ComplexesX/B . We have seen that X is a stack in groupoids
over (Sch/S)fppf with diagonal representable by algebraic spaces (Lemmas 99.16.6
and 99.16.5). Hence it suffices to find a scheme W and a surjective and smooth
morphism W → X .
Let B′ be a scheme and let B′ → B be a surjective étale morphism. Set X ′ =
B′ ×B X and denote f ′ : X ′ → B′ the projection. Then X ′ = ComplexesX′/B′ is
equal to the 2-fibre product of X with the category fibred in sets associated to B′

over the category fibred in sets associated to B (Remark 99.16.7). By the material
in Algebraic Stacks, Section 94.10 the morphism X ′ → X is surjective and étale.
Hence it suffices to prove the result for X ′. In other words, we may assume B is a
scheme.
Assume B is a scheme. In this case we may replace S by B, see Algebraic Stacks,
Section 94.19. Thus we may assume S = B.
Assume S = B. Choose an affine open covering S =

⋃
Ui. Denote Xi the restriction

of X to (Sch/Ui)fppf . If we can find schemes Wi over Ui and surjective smooth
morphisms Wi → Xi, then we set W =

∐
Wi and we obtain a surjective smooth

morphism W → X . Thus we may assume S = B is affine.
Assume S = B is affine, say S = Spec(Λ). Write Λ = colim Λi as a filtered colimit
with each Λi of finite type over Z. For some i we can find a morphism of algebraic
spaces Xi → Spec(Λi) which is proper, flat, of finite presentation and whose base
change to Λ is X. See Limits of Spaces, Lemmas 70.7.1, 70.6.12, and 70.6.13. If we
show that ComplexesXi/ Spec(Λi) is an algebraic stack, then it follows by base change
(Remark 99.16.7 and Algebraic Stacks, Section 94.19) that X is an algebraic stack.
Thus we may assume that Λ is a finite type Z-algebra.
Assume S = B = Spec(Λ) is affine of finite type over Z. In this case we will
verify conditions (1), (2), (3), (4), and (5) of Artin’s Axioms, Lemma 98.17.1 to

https://stacks.math.columbia.edu/tag/0DLN
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conclude that X is an algebraic stack. Note that Λ is a G-ring, see More on
Algebra, Proposition 15.50.12. Hence all local rings of S are G-rings. Thus (5)
holds. To check (2) we have to verify axioms [-1], [0], [1], [2], and [3] of Artin’s
Axioms, Section 98.14. We omit the verification of [-1] and axioms [0], [1], [2], [3]
correspond respectively to Lemmas 99.16.6, 99.16.8, 99.16.9, 99.16.10. Condition
(3) follows from Lemma 99.16.11. Condition (1) is Lemma 99.16.5.
It remains to show condition (4) which is openness of versality. To see this we will
use Artin’s Axioms, Lemma 98.20.3. We have already seen that X has diagonal
representable by algebraic spaces, has (RS*), and is limit preserving (see lemmas
used above). Hence we only need to see that X satisfies the strong formal effec-
tiveness formulated in Artin’s Axioms, Lemma 98.20.3. This follows from Lemma
99.16.11 and the proof is complete. □
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CHAPTER 100

Properties of Algebraic Stacks

04X8 100.1. Introduction

04X9 Please see Algebraic Stacks, Section 94.1 for a brief introduction to algebraic stacks,
and please read some of that chapter for our foundations of algebraic stacks. The in-
tent is that in that chapter we are careful to distinguish between schemes, algebraic
spaces, algebraic stacks, and starting with this chapter we employ the customary
abuse of language where all of these concepts are used interchangeably.

The goal of this chapter is to introduce some basic notions and properties of al-
gebraic stacks. A fundamental reference for the case of quasi-separated algebraic
stacks with representable diagonal is [LMB00].

100.2. Conventions and abuse of language

04XA We choose a big fppf site Schfppf . All schemes are contained in Schfppf . And all
rings A considered have the property that Spec(A) is (isomorphic) to an object of
this big site.

We also fix a base scheme S, by the conventions above an element of Schfppf . The
reader who is only interested in the absolute case can take S = Spec(Z).

Here are our conventions regarding algebraic stacks:
(1) When we say algebraic stack we will mean an algebraic stacks over S, i.e.,

a category fibred in groupoids p : X → (Sch/S)fppf which satisfies the
conditions of Algebraic Stacks, Definition 94.12.1.

(2) We will say f : X → Y is a morphism of algebraic stacks to indicate a 1-
morphism of algebraic stacks over S, i.e., a 1-morphism of categories fibred
in groupoids over (Sch/S)fppf , see Algebraic Stacks, Definition 94.12.3.

(3) A 2-morphism α : f → g will indicate a 2-morphism in the 2-category of
algebraic stacks over S, see Algebraic Stacks, Definition 94.12.3.

(4) Given morphisms X → Z and Y → Z of algebraic stacks we abusively
call the 2-fibre product X ×Z Y the fibre product.

(5) We will write X ×S Y for the product of the algebraic stacks X , Y.
(6) We will often abuse notation and say two algebraic stacks X and Y are

isomorphic if they are equivalent in this 2-category.
Here are our conventions regarding algebraic spaces.

(1) If we say X is an algebraic space then we mean that X is an algebraic space
over S, i.e., X is a presheaf on (Sch/S)fppf which satisfies the conditions
of Spaces, Definition 65.6.1.

(2) A morphism of algebraic spaces f : X → Y is a morphism of algebraic
spaces over S as defined in Spaces, Definition 65.6.3.

6930
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(3) We will not distinguish between an algebraic space X and the algebraic
stack SX → (Sch/S)fppf it gives rise to, see Algebraic Stacks, Lemma
94.13.1.

(4) In particular, a morphism f : X → Y from X to an algebraic stack
Y means a morphism f : SX → Y of algebraic stacks. Similarly for
morphisms Y → X.

(5) Moreover, given an algebraic stack X we say X is an algebraic space
to indicate that X is representable by an algebraic space, see Algebraic
Stacks, Definition 94.8.1.

(6) We will use the following notational convention: If we indicate an algebraic
stack by a roman capital (such as X,Y, Z,A,B, . . .) then it will be the
case that its inertia stack is trivial, and hence it is an algebraic space, see
Algebraic Stacks, Proposition 94.13.3.

Here are our conventions regarding schemes.
(1) If we say X is a scheme then we mean that X is a scheme over S, i.e., X

is an object of (Sch/S)fppf .
(2) By a morphism of schemes we mean a morphism of schemes over S.
(3) We will not distinguish between a scheme X and the algebraic stack SX →

(Sch/S)fppf it gives rise to, see Algebraic Stacks, Lemma 94.13.1.
(4) In particular, a morphism f : X → Y from a scheme X to an algebraic

stack Y means a morphism f : SX → Y of algebraic stacks. Similarly for
morphisms Y → X.

(5) Moreover, given an algebraic stack X we say X is a scheme to indicate
that X is representable, see Algebraic Stacks, Section 94.4.

Here are our conventions regarding morphisms of algebraic stacks:
(1) A morphism f : X → Y of algebraic stacks is representable, or repre-

sentable by schemes if for every scheme T and morphism T → Y the fibre
product T ×Y X is a scheme. See Algebraic Stacks, Section 94.6.

(2) A morphism f : X → Y of algebraic stacks is representable by algebraic
spaces if for every scheme T and morphism T → Y the fibre product
T ×Y X is an algebraic space. See Algebraic Stacks, Definition 94.9.1. In
this case Z ×Y X is an algebraic space whenever Z → Y is a morphism
whose source is an algebraic space, see Algebraic Stacks, Lemma 94.9.8.

(3) We may abuse notation and say that a diagram of algebraic stacks com-
mutes if the diagram is 2-commutative in the 2-category of algebraic
stacks.

Note that every morphism X → Y from an algebraic space to an algebraic stack is
representable by algebraic spaces, see Algebraic Stacks, Lemma 94.10.11. We will
use this basic result without further mention.

100.3. Properties of morphisms representable by algebraic spaces

04XB We will study properties of (arbitrary) morphisms of algebraic stacks in its own
chapter. For morphisms representable by algebraic spaces we know what it means
to be surjective, smooth, or étale, etc. This applies in particular to morphisms
X → Y from algebraic spaces to algebraic stacks. In this section, we recall how
this works, we list the properties to which this applies, and we prove a few easy
lemmas.
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Our first lemma says a morphism is representable by algebraic spaces if it is so after
a base change by a flat, locally finitely presented, surjective morphism.

Lemma 100.3.1.04ZP Let f : X → Y be a morphism of algebraic stacks. Let W be
an algebraic space and let W → Y be surjective, locally of finite presentation, and
flat. The following are equivalent

(1) f is representable by algebraic spaces, and
(2) W ×Y X is an algebraic space.

Proof. The implication (1) ⇒ (2) is Algebraic Stacks, Lemma 94.9.8. Conversely,
let W → Y be as in (2). To prove (1) it suffices to show that f is faithful on
fibre categories, see Algebraic Stacks, Lemma 94.15.2. Assumption (2) implies in
particular that W ×Y X → W is faithful. Hence the faithfulness of f follows from
Stacks, Lemma 8.6.9. □

Let P be a property of morphisms of algebraic spaces which is fppf local on the
target and preserved by arbitrary base change. Let f : X → Y be a morphism of
algebraic stacks representable by algebraic spaces. Then we say f has property P
if and only if for every scheme T and morphism T → Y the morphism of algebraic
spaces T ×Y X → T has property P , see Algebraic Stacks, Definition 94.10.1.

It turns out that if f : X → Y is representable by algebraic spaces and has property
P , then for any morphism of algebraic stacks Y ′ → Y the base change Y ′×YX → Y ′

has property P , see Algebraic Stacks, Lemmas 94.9.7 and 94.10.6. If the property
P is preserved under compositions, then this holds also in the setting of morphisms
of algebraic stacks representable by algebraic spaces, see Algebraic Stacks, Lemmas
94.9.9 and 94.10.5. Moreover, in this case products X1×X2 → Y1×Y2 of morphisms
representable by algebraic spaces having property P have property P, see Algebraic
Stacks, Lemma 94.10.8.

Finally, if we have two properties P, P ′ of morphisms of algebraic spaces which are
fppf local on the target and preserved by arbitrary base change and if P (f) ⇒
P ′(f) for every morphism f , then the same implication holds for the corresponding
property of morphisms of algebraic stacks representable by algebraic spaces, see
Algebraic Stacks, Lemma 94.10.9. We will use this without further mention in the
following and in the following chapters.

The discussion above applies to each of the following properties of morphisms of
algebraic spaces

(1) quasi-compact, see Morphisms of Spaces, Lemma 67.8.4 and Descent on
Spaces, Lemma 74.11.1,

(2) quasi-separated, see Morphisms of Spaces, Lemma 67.4.4 and Descent on
Spaces, Lemma 74.11.2,

(3) universally closed, see Morphisms of Spaces, Lemma 67.9.3 and Descent
on Spaces, Lemma 74.11.3,

(4) universally open, see Morphisms of Spaces, Lemma 67.6.3 and Descent on
Spaces, Lemma 74.11.4,

(5) universally submersive, see Morphisms of Spaces, Lemma 67.7.3 and De-
scent on Spaces, Lemma 74.11.5,

(6) universal homeomorphism, see Morphisms of Spaces, Lemma 67.53.4 and
Descent on Spaces, Lemma 74.11.8,

https://stacks.math.columbia.edu/tag/04ZP


100.3. PROPERTIES OF MORPHISMS REPRESENTABLE BY ALGEBRAIC SPACES 6933

(7) surjective, see Morphisms of Spaces, Lemma 67.5.5 and Descent on Spaces,
Lemma 74.11.6,

(8) universally injective, see Morphisms of Spaces, Lemma 67.19.5 and De-
scent on Spaces, Lemma 74.11.7,

(9) locally of finite type, see Morphisms of Spaces, Lemma 67.23.3 and De-
scent on Spaces, Lemma 74.11.9,

(10) locally of finite presentation, see Morphisms of Spaces, Lemma 67.28.3
and Descent on Spaces, Lemma 74.11.10,

(11) finite type, see Morphisms of Spaces, Lemma 67.23.3 and Descent on
Spaces, Lemma 74.11.11,

(12) finite presentation, see Morphisms of Spaces, Lemma 67.28.3 and Descent
on Spaces, Lemma 74.11.12,

(13) flat, see Morphisms of Spaces, Lemma 67.30.4 and Descent on Spaces,
Lemma 74.11.13,

(14) open immersion, see Morphisms of Spaces, Section 67.12 and Descent on
Spaces, Lemma 74.11.14,

(15) isomorphism, see Descent on Spaces, Lemma 74.11.15,
(16) affine, see Morphisms of Spaces, Lemma 67.20.5 and Descent on Spaces,

Lemma 74.11.16,
(17) closed immersion, see Morphisms of Spaces, Section 67.12 and Descent on

Spaces, Lemma 74.11.17,
(18) separated, see Morphisms of Spaces, Lemma 67.4.4 and Descent on Spaces,

Lemma 74.11.18,
(19) proper, see Morphisms of Spaces, Lemma 67.40.3 and Descent on Spaces,

Lemma 74.11.19,
(20) quasi-affine, see Morphisms of Spaces, Lemma 67.21.5 and Descent on

Spaces, Lemma 74.11.20,
(21) integral, see Morphisms of Spaces, Lemma 67.45.5 and Descent on Spaces,

Lemma 74.11.22,
(22) finite, see Morphisms of Spaces, Lemma 67.45.5 and Descent on Spaces,

Lemma 74.11.23,
(23) (locally) quasi-finite, see Morphisms of Spaces, Lemma 67.27.4 and De-

scent on Spaces, Lemma 74.11.24,
(24) syntomic, see Morphisms of Spaces, Lemma 67.36.3 and Descent on Spaces,

Lemma 74.11.25,
(25) smooth, see Morphisms of Spaces, Lemma 67.37.3 and Descent on Spaces,

Lemma 74.11.26,
(26) unramified, see Morphisms of Spaces, Lemma 67.38.4 and Descent on

Spaces, Lemma 74.11.27,
(27) étale, see Morphisms of Spaces, Lemma 67.39.4 and Descent on Spaces,

Lemma 74.11.28,
(28) finite locally free, see Morphisms of Spaces, Lemma 67.46.5 and Descent

on Spaces, Lemma 74.11.29,
(29) monomorphism, see Morphisms of Spaces, Lemma 67.10.5 and Descent on

Spaces, Lemma 74.11.30,
(30) immersion, see Morphisms of Spaces, Section 67.12 and Descent on Spaces,

Lemma 74.12.1,
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(31) locally separated, see Morphisms of Spaces, Lemma 67.4.4 and Descent
on Spaces, Lemma 74.12.2,

Lemma 100.3.2.04XC Let P be a property of morphisms of algebraic spaces as above.
Let f : X → Y be a morphism of algebraic stacks representable by algebraic spaces.
The following are equivalent:

(1) f has P ,
(2) for every algebraic space Z and morphism Z → Y the morphism Z×YX →

Z has P .

Proof. The implication (2) ⇒ (1) is immediate. Assume (1). Let Z → Y be as in
(2). Choose a scheme U and a surjective étale morphism U → Z. By assumption
the morphism U ×Y X → U has P . But the diagram

U ×Y X

��

// Z ×Y X

��
U // Z

is cartesian, hence the right vertical arrow has P as {U → Z} is an fppf covering. □

The following lemma tells us it suffices to check P after a base change by a surjective,
flat, locally finitely presented morphism.

Lemma 100.3.3.04XD Let P be a property of morphisms of algebraic spaces as above. Let
f : X → Y be a morphism of algebraic stacks representable by algebraic spaces. Let
W be an algebraic space and let W → Y be surjective, locally of finite presentation,
and flat. Set V = W ×Y X . Then

(f has P )⇔ (the projection V →W has P ).

Proof. The implication from left to right follows from Lemma 100.3.2. Assume
V → W has P . Let T be a scheme, and let T → Y be a morphism. Consider the
commutative diagram

T ×Y X

��

T ×Y V

��

oo // V

��
T T ×Y Woo // W

of algebraic spaces. The squares are cartesian. The bottom left morphism is a
surjective, flat morphism which is locally of finite presentation, hence {T×YV → T}
is an fppf covering. Hence the fact that the right vertical arrow has property P
implies that the left vertical arrow has property P . □

Lemma 100.3.4.06TY Let P be a property of morphisms of algebraic spaces as above.
Let f : X → Y be a morphism of algebraic stacks representable by algebraic spaces.
Let Z → Y be a morphism of algebraic stacks which is representable by algebraic
spaces, surjective, flat, and locally of finite presentation. Set W = Z ×Y X . Then

(f has P )⇔ (the projection W → Z has P ).

Proof. Choose an algebraic space W and a morphism W → Z which is surjective,
flat, and locally of finite presentation. By the discussion above the composition
W → Y is also surjective, flat, and locally of finite presentation. Denote V =

https://stacks.math.columbia.edu/tag/04XC
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W ×ZW = V ×Y X . By Lemma 100.3.3 we see that f has P if and only if V →W
does and that W → Z has P if and only if V →W does. The lemma follows. □

Lemma 100.3.5.06M2 Let P be a property of morphisms of algebraic spaces as above.
Let τ ∈ {étale, smooth, syntomic, fppf}. Let X → Y and Y → Z be morphisms of
algebraic stacks representable by algebraic spaces. Assume

(1) X → Y is surjective and étale, smooth, syntomic, or flat and locally of
finite presentation,

(2) the composition has P , and
(3) P is local on the source in the τ topology.

Then Y → Z has property P .

Proof. Let Z be a scheme and let Z → Z be a morphism. Set X = X ×Z Z,
Y = Y ×Z Z. By (1) {X → Y } is a τ covering of algebraic spaces and by (2)
X → Z has property P . By (3) this implies that Y → Z has property P and we
win. □

Lemma 100.3.6.04Y6 Let g : X ′ → X be a morphism of algebraic stacks which is
representable by algebraic spaces. Let [U/R] → X be a presentation. Set U ′ =
U ×X X ′, and R′ = R ×X X ′. Then there exists a groupoid in algebraic spaces of
the form (U ′, R′, s′, t′, c′), a presentation [U ′/R′]→ X ′, and the diagram

[U ′/R′]

[pr]
��

// X ′

g

��
[U/R] // X

is 2-commutative where the morphism [pr] comes from a morphism of groupoids
pr : (U ′, R′, s′, t′, c′)→ (U,R, s, t, c).

Proof. Since U → Y is surjective and smooth, see Algebraic Stacks, Lemma 94.17.2
the base change U ′ → X ′ is also surjective and smooth. Hence, by Algebraic Stacks,
Lemma 94.16.2 it suffices to show that R′ = U ′ ×X ′ U ′ in order to get a smooth
groupoid (U ′, R′, s′, t′, c′) and a presentation [U ′/R′]→ X ′. Using that R = V ×YV
(see Groupoids in Spaces, Lemma 78.22.2) this follows from

R′ = U ×X U ×X X ′ = (U ×X X ′)×X ′ (U ×X X ′)
see Categories, Lemmas 4.31.8 and 4.31.10. Clearly the projection morphisms U ′ →
U and R′ → R give the desired morphism of groupoids pr : (U ′, R′, s′, t′, c′) →
(U,R, s, t, c). Hence the morphism [pr] of quotient stacks by Groupoids in Spaces,
Lemma 78.21.1.
We still have to show that the diagram 2-commutes. It is clear that the diagram

U ′

prU
��

f ′
// X ′

g

��
U

f // X
2-commutes where prU : U ′ → U is the projection. There is a canonical 2-arrow
τ : f ◦t→ f ◦s in Mor(R,X ) coming from R = U×X U , t = pr0, and s = pr1. Using
the isomorphism R′ → U ′×X ′U ′ we get similarly an isomorphism τ ′ : f ′◦t′ → f ′◦s′.

https://stacks.math.columbia.edu/tag/06M2
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Note that g ◦ f ′ ◦ t′ = f ◦ t ◦ prR and g ◦ f ′ ◦ s′ = f ◦ s ◦ prR, where prR : R′ → R
is the projection. Thus it makes sense to ask if

(100.3.6.1)04Y7 τ ⋆ idprR = idg ⋆ τ ′.

Now we make two claims: (1) if Equation (100.3.6.1) holds, then the diagram 2-
commutes, and (2) Equation (100.3.6.1) holds. We omit the proof of both claims.
Hints: part (1) follows from the construction of f = fcan and f ′ = f ′

can in Al-
gebraic Stacks, Lemma 94.16.1. Part (2) follows by carefuly working through the
definitions. □

Remark 100.3.7.04ZQ Let Y be an algebraic stack. Consider the following 2-category:
(1) An object is a morphism f : X → Y which is representable by algebraic

spaces,
(2) a 1-morphism (g, β) : (f1 : X1 → Y) → (f2 : X2 → Y) consists of a

morphism g : X1 → X2 and a 2-morphism β : f1 → f2 ◦ g, and
(3) a 2-morphism between (g, β), (g′, β′) : (f1 : X1 → Y) → (f2 : X2 → Y) is

a 2-morphism α : g → g′ such that (idf2 ⋆ α) ◦ β = β′.
Let us denote this 2-category Spaces/Y by analogy with the notation of Topolo-
gies on Spaces, Section 73.2. Now we claim that in this 2-category the morphism
categories

MorSpaces/Y((f1 : X1 → Y), (f2 : X2 → Y))
are all setoids. Namely, a 2-morphism α is a rule which to each object x1 of X1
assigns an isomorphism αx1 : g(x1) −→ g′(x1) in the relevant fibre category of X2
such that the diagram

f2(x1)
βx1

yy

β′
x1

%%
f2(g(x1))

f2(αx1 ) // f2(g′(x1))

commutes. But since f2 is faithful (see Algebraic Stacks, Lemma 94.15.2) this
means that if αx1 exists, then it is unique! In other words the 2-category Spaces/Y
is very close to being a category. Namely, if we replace 1-morphisms by isomorphism
classes of 1-morphisms we obtain a category. We will often perform this replacement
without further mention.

100.4. Points of algebraic stacks

04XE Let X be an algebraic stack. Let K,L be two fields and let p : Spec(K) → X and
q : Spec(L)→ X be morphisms. We say that p and q are equivalent if there exists
a field Ω and a 2-commutative diagram

Spec(Ω) //

��

Spec(L)

q

��
Spec(K) p // X .

Lemma 100.4.1.04XF The notion above does indeed define an equivalence relation on
morphisms from spectra of fields into the algebraic stack X .

https://stacks.math.columbia.edu/tag/04ZQ
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Proof. It is clear that the relation is reflexive and symmetric. Hence we have to
prove that it is transitive. This comes down to the following: Given a diagram

Spec(Ω)
b
//

a

��

Spec(L)

q

��

Spec(Ω′)
b′

oo

a′

��
Spec(K) p // X Spec(K ′)p′

oo

with both squares 2-commutative we have to show that p is equivalent to p′. By
the 2-Yoneda lemma (see Algebraic Stacks, Section 94.5) the morphisms p, p′, and
q are given by objects x, x′, and y in the fibre categories of X over Spec(K),
Spec(K ′), and Spec(L). The 2-commutativity of the squares means that there are
isomorphisms α : a∗x → b∗y and α′ : (a′)∗x′ → (b′)∗y in the fibre categories of
X over Spec(Ω) and Spec(Ω′). Choose any field Ω′′ and embeddings Ω → Ω′′ and
Ω′ → Ω′′ agreeing on L. Then we can extend the diagram above to

Spec(Ω′′)
c

xx
q′

��

c′

&&
Spec(Ω)

b
//

a

��

Spec(L)

q

��

Spec(Ω′)
b′

oo

a′

��
Spec(K) p // X Spec(K ′)p′

oo

with commutative triangles and

(q′)∗(α′)−1 ◦ (q′)∗α : (a ◦ c)∗x −→ (a′ ◦ c′)∗x′

is an isomorphism in the fibre category over Spec(Ω′′). Hence p is equivalent to p′

as desired. □

Definition 100.4.2.04XG Let X be an algebraic stack. A point of X is an equivalence
class of morphisms from spectra of fields into X . The set of points of X is denoted
|X |.

This agrees with our definition of points of algebraic spaces, see Properties of Spaces,
Definition 66.4.1. Moreover, for a scheme we recover the usual notion of points,
see Properties of Spaces, Lemma 66.4.2. If f : X → Y is a morphism of algebraic
stacks then there is an induced map |f | : |X | → |Y| which maps a representa-
tive x : Spec(K) → X to the representative f ◦ x : Spec(K) → Y. This is well
defined: namely 2-isomorphic 1-morphisms remain 2-isomorphic after pre- or post-
composing by a 1-morphism because you can horizontally pre- or post-compose by
the identity of the given 1-morphism. This holds in any (strict) (2, 1)-category. If

X

��

// Y

��
W // Z

https://stacks.math.columbia.edu/tag/04XG
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is a 2-commutative diagram of algebraic stacks, then the diagram of sets

|X |

��

// |Y|

��
|W| // |Z|

is commutative. In particular, if X → Y is an equivalence then |X | → |Y| is a
bijection.

Lemma 100.4.3.04XH Let
Z ×Y X //

��

X

��
Z // Y

be a fibre product of algebraic stacks. Then the map of sets of points
|Z ×Y X| −→ |Z| ×|Y| |X |

is surjective.

Proof. Namely, suppose given fieldsK, L and morphisms Spec(K)→ X , Spec(L)→
Z, then the assumption that they agree as elements of |Y| means that there is a
common extension M/K and M/L such that Spec(M)→ Spec(K)→ X → Y and
Spec(M)→ Spec(L)→ Z → Y are 2-isomorphic. And this is exactly the condition
which says you get a morphism Spec(M)→ Z ×Y X . □

Lemma 100.4.4.04XI Let f : X → Y be a morphism of algebraic stacks which is
representable by algebraic spaces. The following are equivalent:

(1) |f | : |X | → |Y| is surjective, and
(2) f is surjective (in the sense of Section 100.3).

Proof. Assume (1). Let T → Y be a morphism whose source is a scheme. To
prove (2) we have to show that the morphism of algebraic spaces T ×Y X → T is
surjective. By Morphisms of Spaces, Definition 67.5.2 this means we have to show
that |T ×Y X| → |T | is surjective. Applying Lemma 100.4.3 we see that this follows
from (1).
Conversely, assume (2). Let y : Spec(K)→ Y be a morphism from the spectrum of a
field into Y. By assumption the morphism Spec(K)×y,Y X → Spec(K) of algebraic
spaces is surjective. By Morphisms of Spaces, Definition 67.5.2 this means there
exists a field extension K ′/K and a morphism Spec(K ′) → Spec(K) ×y,Y X such
that the left square of the diagram

Spec(K ′) //

��

Spec(K)×y,Y X

��

// X

��
Spec(K) Spec(K) y // Y

is commutative. This shows that |X| → |Y| is surjective. □

Here is a lemma explaining how to compute the set of points in terms of a presen-
tation.

https://stacks.math.columbia.edu/tag/04XH
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Lemma 100.4.5.04XJ Let X be an algebraic stack. Let X = [U/R] be a presentation of
X , see Algebraic Stacks, Definition 94.16.5. Then the image of |R| → |U | × |U | is
an equivalence relation and |X | is the quotient of |U | by this equivalence relation.

Proof. The assumption means that we have a smooth groupoid (U,R, s, t, c) in
algebraic spaces, and an equivalence f : [U/R] → X . We may assume X = [U/R].
The induced morphism p : U → X is smooth and surjective, see Algebraic Stacks,
Lemma 94.17.2. Hence |U | → |X | is surjective by Lemma 100.4.4. Note that
R = U ×X U , see Groupoids in Spaces, Lemma 78.22.2. Hence Lemma 100.4.3
implies the map

|R| −→ |U | ×|X | |U |
is surjective. Hence the image of |R| → |U |×|U | is exactly the set of pairs (u1, u2) ∈
|U | × |U | such that u1 and u2 have the same image in |X |. Combining these two
statements we get the result of the lemma. □

Remark 100.4.6.04XK The result of Lemma 100.4.5 can be generalized as follows. Let
X be an algebraic stack. Let U be an algebraic space and let f : U → X be a
surjective morphism (which makes sense by Section 100.3). Let R = U ×X U , let
(U,R, s, t, c) be the groupoid in algebraic spaces, and let fcan : [U/R] → X be the
canonical morphism as constructed in Algebraic Stacks, Lemma 94.16.1. Then the
image of |R| → |U | × |U | is an equivalence relation and |X | = |U |/|R|. The proof
of Lemma 100.4.5 works without change. (Of course in general [U/R] is not an
algebraic stack, and in general fcan is not an isomorphism.)

Lemma 100.4.7.04XL There exists a unique topology on the sets of points of algebraic
stacks with the following properties:

(1) for every morphism of algebraic stacks X → Y the map |X | → |Y| is
continuous, and

(2) for every morphism U → X which is flat and locally of finite presentation
with U an algebraic space the map of topological spaces |U | → |X | is
continuous and open.

Proof. Choose a morphism p : U → X which is surjective, flat, and locally of
finite presentation with U an algebraic space. Such exist by the definition of an
algebraic stack, as a smooth morphism is flat and locally of finite presentation (see
Morphisms of Spaces, Lemmas 67.37.5 and 67.37.7). We define a topology on |X |
by the rule: W ⊂ |X | is open if and only if |p|−1(W ) is open in |U |. To show that
this is independent of the choice of p, let p′ : U ′ → X be another morphism which
is surjective, flat, locally of finite presentation from an algebraic space to X . Set
U ′′ = U ×X U ′ so that we have a 2-commutative diagram

U ′′ //

��

U ′

��
U // X

As U → X and U ′ → X are surjective, flat, locally of finite presentation we see
that U ′′ → U ′ and U ′′ → U are surjective, flat and locally of finite presentation,
see Lemma 100.3.2. Hence the maps |U ′′| → |U ′| and |U ′′| → |U | are continuous,
open and surjective, see Morphisms of Spaces, Definition 67.5.2 and Lemma 67.30.6.
This clearly implies that our definition is independent of the choice of p : U → X .

https://stacks.math.columbia.edu/tag/04XJ
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Let f : X → Y be a morphism of algebraic stacks. By Algebraic Stacks, Lemma
94.15.1 we can find a 2-commutative diagram

U

x

��

a
// V

y

��
X

f // Y

with surjective smooth vertical arrows. Consider the associated commutative dia-
gram

|U |

|x|
��

|a|
// |V |

|y|
��

|X |
|f | // |Y|

of sets. If W ⊂ |Y| is open, then by the definition above this means exactly that
|y|−1(W ) is open in |V |. Since |a| is continuous we conclude that |a|−1|y|−1(W ) =
|x|−1|f |−1(W ) is open in |W | which means by definition that |f |−1(W ) is open in
|X |. Thus |f | is continuous.

Finally, we have to show that if U is an algebraic space, and U → X is flat and
locally of finite presentation, then |U | → |X | is open. Let V → X be surjective,
flat, and locally of finite presentation with V an algebraic space. Consider the
commutative diagram

|U ×X V |
e
//

f
&&

|U | ×|X | |V |

c

��

d
// |V |

b

��
|U | a // |X |

Now the morphism U ×X V → U is surjective, i.e, f : |U ×X V | → |U | is surjective.
The left top horizontal arrow is surjective, see Lemma 100.4.3. The morphism
U×X V → V is flat and locally of finite presentation, hence d◦e : |U×X V | → |V | is
open, see Morphisms of Spaces, Lemma 67.30.6. PickW ⊂ |U | open. The properties
above imply that b−1(a(W )) = (d ◦ e)(f−1(W )) is open, which by construction
means that a(W ) is open as desired. □

Definition 100.4.8.04Y8 Let X be an algebraic stack. The underlying topological space
of X is the set of points |X | endowed with the topology constructed in Lemma
100.4.7.

This definition does not conflict with the already existing topology on |X | if X is
an algebraic space.

Lemma 100.4.9.04Y9 Let X be an algebraic stack. Every point of |X | has a fundamental
system of quasi-compact open neighbourhoods. In particular |X | is locally quasi-
compact in the sense of Topology, Definition 5.13.1.

Proof. This follows formally from the fact that there exists a scheme U and a
surjective, open, continuous map U → |X | of topological spaces. Namely, if U →
X is surjective and smooth, then Lemma 100.4.7 guarantees that |U | → |X | is
continuous, surjective, and open. □

https://stacks.math.columbia.edu/tag/04Y8
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100.5. Surjective morphisms

04ZR Let f : X → Y be a morphism of algebraic stacks which is representable by al-
gebraic spaces. In Section 100.3 we have already defined what it means for f to
be surjective. In Lemma 100.4.4 we have seen that this is equivalent to requiring
|f | : |X | → |Y| to be surjective. This clears the way for the following definition.

Definition 100.5.1.04ZS Let f : X → Y be a morphism of algebraic stacks. We say f is
surjective if the map |f | : |X | → |Y| of associated topological spaces is surjective.

Here are some lemmas.

Lemma 100.5.2.04ZT The composition of surjective morphisms is surjective.

Proof. Omitted. □

Lemma 100.5.3.04ZU The base change of a surjective morphism is surjective.

Proof. Omitted. Hint: Use Lemma 100.4.3. □

Lemma 100.5.4.06PM Let f : X → Y be a morphism of algebraic stacks. Let Y ′ → Y
be a surjective morphism of algebraic stacks. If the base change f ′ : Y ′×Y X → Y ′

of f is surjective, then f is surjective.

Proof. Immediate from Lemma 100.4.3. □

Lemma 100.5.5.06PN Let X → Y → Z be morphisms of algebraic stacks. If X → Z is
surjective so is Y → Z.

Proof. Immediate. □

100.6. Quasi-compact algebraic stacks

04YA The following definition is equivalent with the definition for algebraic spaces by
Properties of Spaces, Lemma 66.5.2.

Definition 100.6.1.04YB Let X be an algebraic stack. We say X is quasi-compact if and
only if |X | is quasi-compact.

Lemma 100.6.2.04YC Let X be an algebraic stack. The following are equivalent:
(1) X is quasi-compact,
(2) there exists a surjective smooth morphism U → X with U an affine

scheme,
(3) there exists a surjective smooth morphism U → X with U a quasi-compact

scheme,
(4) there exists a surjective smooth morphism U → X with U a quasi-compact

algebraic space, and
(5) there exists a surjective morphism U → X of algebraic stacks such that U

is quasi-compact.

Proof. We will use Lemma 100.4.4. Suppose U and U → X are as in (5). Then since
|U| → |X | is surjective and continuous we conclude that |X | is quasi-compact. Thus
(5) implies (1). The implications (2) ⇒ (3) ⇒ (4) ⇒ (5) are immediate. Assume
(1), i.e., X is quasi-compact, i.e., that |X | is quasi-compact. Choose a scheme U
and a surjective smooth morphism U → X . Then since |U | → |X | is open we see
that there exists a quasi-compact open U ′ ⊂ U such that |U ′| → |X| is surjective

https://stacks.math.columbia.edu/tag/04ZS
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(and still smooth). Choose a finite affine open covering U ′ = U1 ∪ . . . ∪ Un. Then
U1⨿. . .⨿Un → X is a surjective smooth morphism whose source is an affine scheme
(Schemes, Lemma 26.6.8). Hence (2) holds. □

Lemma 100.6.3.04YD A finite disjoint union of quasi-compact algebraic stacks is a quasi-
compact algebraic stack.

Proof. This is clear from the corresponding topological fact. □

100.7. Properties of algebraic stacks defined by properties of schemes

04YE Any smooth local property of schemes gives rise to a corresponding property of
algebraic stacks via the following lemma. Note that a property of schemes which
is smooth local is also étale local as any étale covering is also a smooth covering.
Hence for a smooth local property P of schemes we know what it means to say that
an algebraic space has P , see Properties of Spaces, Section 66.7.

Lemma 100.7.1.04YF Let P be a property of schemes which is local in the smooth topol-
ogy, see Descent, Definition 35.15.1. Let X be an algebraic stack. The following
are equivalent

(1) for some scheme U and some surjective smooth morphism U → X the
scheme U has property P,

(2) for every scheme U and every smooth morphism U → X the scheme U
has property P,

(3) for some algebraic space U and some surjective smooth morphism U → X
the algebraic space U has property P, and

(4) for every algebraic space U and every smooth morphism U → X the
algebraic space U has property P.

If X is a scheme this is equivalent to P(U). If X is an algebraic space this is
equivalent to X having property P.

Proof. Let U → X surjective and smooth with U an algebraic space. Let V → X
be a smooth morphism with V an algebraic space. Choose schemes U ′ and V ′ and
surjective étale morphisms U ′ → U and V ′ → V . Finally, choose a scheme W and a
surjective étale morphism W → V ′×X U

′. Then W → V ′ and W → U ′ are smooth
morphisms of schemes as compositions of étale and smooth morphisms of algebraic
spaces, see Morphisms of Spaces, Lemmas 67.39.6 and 67.37.2. Moreover, W → V ′

is surjective as U ′ → X is surjective. Hence, we have
P(U)⇔ P(U ′)⇒ P(W )⇒ P(V ′)⇔ P(V )

where the equivalences are by definition of property P for algebraic spaces, and the
two implications come from Descent, Definition 35.15.1. This proves (3) ⇒ (4).
The implications (2) ⇒ (1), (1) ⇒ (3), and (4) ⇒ (2) are immediate. □

Definition 100.7.2.04YG Let X be an algebraic stack. Let P be a property of schemes
which is local in the smooth topology. We say X has property P if any of the
equivalent conditions of Lemma 100.7.1 hold.

Remark 100.7.3.04YH Here is a list of properties which are local for the smooth topology
(keep in mind that the fpqc, fppf, and syntomic topologies are stronger than the
smooth topology):

(1) locally Noetherian, see Descent, Lemma 35.16.1,
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(2) Jacobson, see Descent, Lemma 35.16.2,
(3) locally Noetherian and (Sk), see Descent, Lemma 35.17.1,
(4) Cohen-Macaulay, see Descent, Lemma 35.17.2,
(5) reduced, see Descent, Lemma 35.18.1,
(6) normal, see Descent, Lemma 35.18.2,
(7) locally Noetherian and (Rk), see Descent, Lemma 35.18.3,
(8) regular, see Descent, Lemma 35.18.4,
(9) Nagata, see Descent, Lemma 35.18.5.

Any smooth local property of germs of schemes gives rise to a corresponding prop-
erty of algebraic stacks. Note that a property of germs which is smooth local is
also étale local. Hence for a smooth local property of germs of schemes P we know
what it means to say that an algebraic space X has property P at x ∈ |X|, see
Properties of Spaces, Section 100.7.

Lemma 100.7.4.04YI Let X be an algebraic stack. Let x ∈ |X | be a point of X . Let P
be a property of germs of schemes which is smooth local, see Descent, Definition
35.21.1. The following are equivalent

(1) for any smooth morphism U → X with U a scheme and u ∈ U with
a(u) = x we have P(U, u),

(2) for some smooth morphism U → X with U a scheme and some u ∈ U
with a(u) = x we have P(U, u),

(3) for any smooth morphism U → X with U an algebraic space and u ∈ |U |
with a(u) = x the algebraic space U has property P at u, and

(4) for some smooth morphism U → X with U a an algebraic space and some
u ∈ |U | with a(u) = x the algebraic space U has property P at u.

If X is representable, then this is equivalent to P(X , x). If X is an algebraic space
then this is equivalent to X having property P at x.

Proof. Let a : U → X and u ∈ |U | as in (3). Let b : V → X be another smooth
morphism with V an algebraic space and v ∈ |V | with b(v) = x also. Choose a
scheme U ′, an étale morphism U ′ → U and u′ ∈ U ′ mapping to u. Choose a scheme
V ′, an étale morphism V ′ → V and v′ ∈ V ′ mapping to v. By Lemma 100.4.3 there
exists a point w ∈ |V ′ ×X U ′| mapping to u′ and v′. Choose a scheme W and a
surjective étale morphism W → V ′ ×X U ′. We may choose a w ∈ |W | mapping
to w (see Properties of Spaces, Lemma 66.4.4). Then W → V ′ and W → U ′ are
smooth morphisms of schemes as compositions of étale and smooth morphisms of
algebraic spaces, see Morphisms of Spaces, Lemmas 67.39.6 and 67.37.2. Hence

P(U, u)⇔ P(U ′, u′)⇔ P(W,w)⇔ P(V ′, v′)⇔ P(V, v)

The outer two equivalences by Properties of Spaces, Definition 66.7.5 and the other
two by what it means to be a smooth local property of germs of schemes. This
proves (4) ⇒ (3).

The implications (1) ⇒ (2), (2) ⇒ (4), and (3) ⇒ (1) are immediate. □

Definition 100.7.5.04YJ Let P be a property of germs of schemes which is smooth local.
Let X be an algebraic stack. Let x ∈ |X |. We say X has property P at x if any of
the equivalent conditions of Lemma 100.7.4 holds.
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100.8. Monomorphisms of algebraic stacks

04ZV We define a monomorphism of algebraic stacks in the following way. We will see in
Lemma 100.8.4 that this is compatible with the corresponding 2-category theoretic
notion.
Definition 100.8.1.04ZW Let f : X → Y be a morphism of algebraic stacks. We say f is
a monomorphism if it is representable by algebraic spaces and a monomorphism in
the sense of Section 100.3.
First some basic lemmas.
Lemma 100.8.2.04ZX Let X → Y be a morphism of algebraic stacks. Let Z → Y be a
monomorphism. Then Z ×Y X → X is a monomorphism.
Proof. This follows from the general discussion in Section 100.3. □

Lemma 100.8.3.04ZY Compositions of monomorphisms of algebraic stacks are monomor-
phisms.
Proof. This follows from the general discussion in Section 100.3 and Morphisms of
Spaces, Lemma 67.10.4. □

Lemma 100.8.4.04ZZ Let f : X → Y be a morphism of algebraic stacks. The following
are equivalent:

(1) f is a monomorphism,
(2) f is fully faithful,
(3) the diagonal ∆f : X → X ×Y X is an equivalence, and
(4) there exists an algebraic space W and a surjective, flat morphism W → Y

which is locally of finite presentation such that V = X×YW is an algebraic
space, and the morphism V →W is a monomorphism of algebraic spaces.

Proof. The equivalence of (1) and (4) follows from the general discussion in Section
100.3 and in particular Lemmas 100.3.1 and 100.3.3.
The equivalence of (2) and (3) is Categories, Lemma 4.35.10.
Assume the equivalent conditions (2) and (3). Then f is representable by algebraic
spaces according to Algebraic Stacks, Lemma 94.15.2. Moreover, the 2-Yoneda
lemma combined with the fully faithfulness implies that for every scheme T the
functor

Mor(T,X ) −→ Mor(T,Y)
is fully faithful. Hence given a morphism y : T → Y there exists up to unique
2-isomorphism at most one morphism x : T → X such that y ∼= f ◦x. In particular,
given a morphism of schemes h : T ′ → T there exists at most one lift h̃ : T ′ →
T ×Y X of h. Thus T ×Y X → T is a monomorphism of algebraic spaces, which
proves that (1) holds.
Finally, assume that (1) holds. Then for any scheme T and morphism y : T → Y the
fibre product T ×Y X is an algebraic space, and T ×Y X → T is a monomorphism.
Hence there exists up to unique isomorphism exactly one pair (x, α) where x : T →
X is a morphism and α : f ◦x→ y is a 2-morphism. Applying the 2-Yoneda lemma
this says exactly that f is fully faithful, i.e., that (2) holds. □

Lemma 100.8.5.0500 A monomorphism of algebraic stacks induces an injective map of
sets of points.
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Proof. Let f : X → Y be a monomorphism of algebraic stacks. Suppose that
xi : Spec(Ki)→ X be morphisms such that f ◦x1 and f ◦x2 define the same element
of |Y|. Applying the definition we find a common extension Ω with corresponding
morphisms ci : Spec(Ω)→ Spec(Ki) and a 2-isomorphism β : f ◦x1◦c1 → f ◦x1◦c2.
As f is fully faithful, see Lemma 100.8.4, we can lift β to an isomorphism α :
x1 ◦ c1 → x1 ◦ c2. Hence x1 and x2 define the same point of |X | as desired. □

Lemma 100.8.6.0CBB Let X → X ′ → Y be morphisms of algebraic stacks. If X → X ′

is a monomorphism then the canonical diagram

X //

��

X ×Y X

��
X ′ // X ′ ×Y X ′

is a fibre product square.

Proof. We have X = X ×X ′ X by Lemma 100.8.4. Thus the result by applying
Categories, Lemma 4.31.13. □

100.9. Immersions of algebraic stacks

04YK Immersions of algebraic stacks are defined as follows.

Definition 100.9.1.04YL Immersions.
(1) A morphism of algebraic stacks is called an open immersion if it is repre-

sentable, and an open immersion in the sense of Section 100.3.
(2) A morphism of algebraic stacks is called a closed immersion if it is repre-

sentable, and a closed immersion in the sense of Section 100.3.
(3) A morphism of algebraic stacks is called an immersion if it is representable,

and an immersion in the sense of Section 100.3.

This is not the most convenient way to think about immersions for us. For us it
is a little bit more convenient to think of an immersion as a morphism of algebraic
stacks which is representable by algebraic spaces and is an immersion in the sense
of Section 100.3. Similarly for closed and open immersions. Since this is clearly
equivalent to the notion just defined we shall use this characterization without
further mention. We prove a few simple lemmas about this notion.

Lemma 100.9.2.0501 Let X → Y be a morphism of algebraic stacks. Let Z → Y be
a (closed, resp. open) immersion. Then Z ×Y X → X is a (closed, resp. open)
immersion.

Proof. This follows from the general discussion in Section 100.3. □

Lemma 100.9.3.0502 Compositions of immersions of algebraic stacks are immersions.
Similarly for closed immersions and open immersions.

Proof. This follows from the general discussion in Section 100.3 and Spaces, Lemma
65.12.2. □

Lemma 100.9.4.0503 Let f : X → Y be a morphism of algebraic stacks. let W be an
algebraic space and let W → Y be a surjective, flat morphism which is locally of
finite presentation. The following are equivalent:

https://stacks.math.columbia.edu/tag/0CBB
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(1) f is an (open, resp. closed) immersion, and
(2) V = W ×Y X is an algebraic space, and V →W is an (open, resp. closed)

immersion.

Proof. This follows from the general discussion in Section 100.3 and in particular
Lemmas 100.3.1 and 100.3.3. □

Lemma 100.9.5.0504 An immersion is a monomorphism.

Proof. See Morphisms of Spaces, Lemma 67.10.7. □

Lemma 100.9.6.0H20 If f : X → Y is an immersion, then |f | : |X | → |Y| is a homeo-
morphism onto a locally closed subset. If f is a closed, resp. open immersion, then
|f | is closed, resp. open.

Proof. Omitted. □

The following two lemmas explain how to think about immersions in terms of
presentations.

Lemma 100.9.7.0505 Let (U,R, s, t, c) be a smooth groupoid in algebraic spaces. Let
i : Z → [U/R] be an immersion. Then there exists an R-invariant locally closed
subspace Z ⊂ U and a presentation [Z/RZ ]→ Z where RZ is the restriction of R
to Z such that

[Z/RZ ]

$$

// Z

i}}
[U/R]

is 2-commutative. If i is a closed (resp. open) immersion then Z is a closed (resp.
open) subspace of U .

Proof. By Lemma 100.3.6 we get a commutative diagram

[U ′/R′]

$$

// Z

}}
[U/R]

where U ′ = Z ×[U/R] U and R′ = Z ×[U/R] R. Since Z → [U/R] is an immersion
we see that U ′ → U is an immersion of algebraic spaces. Let Z ⊂ U be the locally
closed subspace such that U ′ → U factors through Z and induces an isomorphism
U ′ → Z. It is clear from the construction of R′ that R′ = U ′ ×U,t R = R ×s,U U ′.
This implies that Z ∼= U ′ is R-invariant and that the image of R′ → R identifies R′

with the restriction RZ = s−1(Z) = t−1(Z) of R to Z. Hence the lemma holds. □

Lemma 100.9.8.04YN Let (U,R, s, t, c) be a smooth groupoid in algebraic spaces. Let
X = [U/R] be the associated algebraic stack, see Algebraic Stacks, Theorem 94.17.3.
Let Z ⊂ U be an R-invariant locally closed subspace. Then

[Z/RZ ] −→ [U/R]
is an immersion of algebraic stacks, where RZ is the restriction of R to Z. If Z ⊂ U
is open (resp. closed) then the morphism is an open (resp. closed) immersion of
algebraic stacks.
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Proof. Recall that by Groupoids in Spaces, Definition 78.18.1 (see also discussion
following the definition) we have RZ = s−1(Z) = t−1(Z) as locally closed subspaces
of R. Hence the two morphisms RZ → Z are smooth as base changes of s and
t. Hence (Z,RZ , s|RZ , t|RZ , c|RZ×s,Z,tRZ ) is a smooth groupoid in algebraic spaces,
and we see that [Z/RZ ] is an algebraic stack, see Algebraic Stacks, Theorem 94.17.3.
The assumptions of Groupoids in Spaces, Lemma 78.25.3 are all satisfied and it
follows that we have a 2-fibre square

Z

��

// [Z/RZ ]

��
U // [U/R]

It follows from this and Lemma 100.3.1 that [Z/RZ ] → [U/R] is representable by
algebraic spaces, whereupon it follows from Lemma 100.3.3 that the right vertical
arrow is an immersion (resp. closed immersion, resp. open immersion) if and only
if the left vertical arrow is. □

We can define open, closed, and locally closed substacks as follows.

Definition 100.9.9.04YM Let X be an algebraic stack.
(1) An open substack of X is a strictly full subcategory X ′ ⊂ X such that X ′

is an algebraic stack and X ′ → X is an open immersion.
(2) A closed substack of X is a strictly full subcategory X ′ ⊂ X such that X ′

is an algebraic stack and X ′ → X is a closed immersion.
(3) A locally closed substack of X is a strictly full subcategory X ′ ⊂ X such

that X ′ is an algebraic stack and X ′ → X is an immersion.

This definition should be used with caution. Namely, if f : X → Y is an equivalence
of algebraic stacks and X ′ ⊂ X is an open substack, then it is not necessarily the
case that the subcategory f(X ′) is an open substack of Y. The problem is that it
may not be a strictly full subcategory; but this is also the only problem. Here is a
formal statement.

Lemma 100.9.10.0506 For any immersion i : Z → X there exists a unique locally
closed substack X ′ ⊂ X such that i factors as the composition of an equivalence
i′ : Z → X ′ followed by the inclusion morphism X ′ → X . If i is a closed (resp.
open) immersion, then X ′ is a closed (resp. open) substack of X .

Proof. Omitted. □

Lemma 100.9.11.0507 Let [U/R] → X be a presentation of an algebraic stack. There
is a canonical bijection
locally closed substacks Z of X −→ R-invariant locally closed subspaces Z of U

which sends Z to U ×X Z. Moreover, a morphism of algebraic stacks f : Y → X
factors through Z if and only if Y ×X U → U factors through Z. Similarly for
closed substacks and open substacks.

Proof. By Lemmas 100.9.7 and 100.9.8 we find that the map is a bijection. If
Y → X factors through Z then of course the base change Y ×X U → U factors
through Z. Converse, suppose that Y → X is a morphism such that Y ×X U → U
factors through Z. We will show that for every scheme T and morphism T → Y,

https://stacks.math.columbia.edu/tag/04YM
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given by an object y of the fibre category of Y over T , the object y is in fact in the
fibre category of Z over T . Namely, the fibre product T ×X U is an algebraic space
and T ×X U → T is a surjective smooth morphism. Hence there is an fppf covering
{Ti → T} such that Ti → T factors through T ×X U → T for all i. Then Ti → X
factors through Y ×X U and hence through Z ⊂ U . Thus y|Ti is an object of Z (as
Z is the fibre product of U with Z over X ). Since Z is a strictly full substack, we
conclude that y is an object of Z as desired. □

Lemma 100.9.12.06FJ Let X be an algebraic stack. The rule U 7→ |U| defines an
inclusion preserving bijection between open substacks of X and open subsets of
|X |.
Proof. Choose a presentation [U/R] → X , see Algebraic Stacks, Lemma 94.16.2.
By Lemma 100.9.11 we see that open substacks correspond to R-invariant open
subschemes of U . On the other hand Lemmas 100.4.5 and 100.4.7 guarantee these
correspond bijectively to open subsets of |X |. □

Lemma 100.9.13.05UP Let X be an algebraic stack. Let U be an algebraic space and
U → X a surjective smooth morphism. For an open immersion V ↪→ U , there
exists an algebraic stack Y, an open immersion Y → X , and a surjective smooth
morphism V → Y.
Proof. We define a category fibred in groupoids Y by letting the fiber category YT
over an object T of (Sch/S)fppf be the full subcategory of XT consisting of all
y ∈ Ob(XT ) such that the projection morphism V ×X ,y T → T surjective. Now for
any morphism x : T → X , the 2-fibred product T ×x,X Y has fiber category over
T ′ consisting of triples (f : T ′ → T, y ∈ XT ′ , f∗x ≃ y) such that V ×X ,y T

′ → T ′

is surjective. Note that T ×x,X Y is fibered in setoids since Y → X is faithful (see
Stacks, Lemma 8.6.7). Now the isomorphism f∗x ≃ y gives the diagram

V ×X ,y T
′

��

// V ×X ,x T //

��

V

��
T ′ f // T

x // X
where both squares are cartesian. The morphism V ×X ,x T → T is smooth by base
change, and hence open. Let T0 ⊂ T be its image. From the cartesian squares we
deduce that V ×X ,y T

′ → T ′ is surjective if and only if f lands in T0. Therefore
T ×x,X Y is representable by T0, so the inclusion Y → X is an open immersion. By
Algebraic Stacks, Lemma 94.15.5 we conclude that Y is an algebraic stack. Lastly
if we denote the morphism V → X by g, we have V ×X V → V is surjective (the
diagonal gives a section). Hence g is in the image of YV → XV , i.e., we obtain a
morphism g′ : V → Y fitting into the commutative diagram

V //

g′

��

U

��
Y // X

Since V ×g,X Y → V is a monomorphism, it is in fact an isomorphism since (1, g′)
defines a section. Therefore g′ : V → Y is a smooth morphism, as it is the base
change of the smooth morphism g : V → X . It is surjective by our construction of
Y which finishes the proof of the lemma. □
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Lemma 100.9.14.05UQ Let X be an algebraic stack and Xi ⊂ X a collection of open
substacks indexed by i ∈ I. Then there exists an open substack, which we denote⋃
i∈I Xi ⊂ X , such that the Xi are open substacks covering it.

Proof. We define a fibred subcategory X ′ =
⋃
i∈I Xi by letting the fiber category

over an object T of (Sch/S)fppf be the full subcategory of XT consisting of all
x ∈ Ob(XT ) such that the morphism

∐
i∈I(Xi ×X T ) → T is surjective. Let

xi ∈ Ob((Xi)T ). Then (xi, 1) gives a section of Xi ×X T → T , so we have an
isomorphism. Thus Xi ⊂ X ′ is a full subcategory. Now let x ∈ Ob(XT ). Then
Xi ×X T is representable by an open subscheme Ti ⊂ T . The 2-fibred product
X ′ ×X T has fiber over T ′ consisting of (y ∈ XT ′ , f : T ′ → T, f∗x ≃ y) such
that

∐
(Xi ×X ,y T

′) → T ′ is surjective. The isomorphism f∗x ≃ y induces an
isomorphism Xi ×X ,y T

′ ≃ Ti ×T T ′. Then the Ti ×T T ′ cover T ′ if and only if f
lands in

⋃
Ti. Therefore we have a diagram

Ti //

��

⋃
Ti //

��

T

��
Xi // X ′ // X

with both squares cartesian. By Algebraic Stacks, Lemma 94.15.5 we conclude that
X ′ ⊂ X is algebraic and an open substack. It is also clear from the cartesian squares
above that the morphism

∐
i∈I Xi → X ′ which finishes the proof of the lemma. □

Lemma 100.9.15.05UR Let X be an algebraic stack and X ′ ⊂ X a quasi-compact open
substack. Suppose that we have a collection of open substacks Xi ⊂ X indexed by
i ∈ I such that X ′ ⊂

⋃
i∈I Xi, where we define the union as in Lemma 100.9.14.

Then there exists a finite subset I ′ ⊂ I such that X ′ ⊂
⋃
i∈I′ Xi.

Proof. Since X is algebraic, there exists a scheme U with a surjective smooth
morphism U → X . Let Ui ⊂ U be the open subscheme representing Xi ×X U and
U ′ ⊂ U the open subscheme representing X ′ ×X U . By hypothesis, U ′ ⊂

⋃
i∈I Ui.

From the proof of Lemma 100.6.2, there is a quasi-compact open V ⊂ U ′ such that
V → X ′ is a surjective smooth morphism. Therefore there exists a finite subset
I ′ ⊂ I such that V ⊂

⋃
i∈I′ Ui. We claim that X ′ ⊂

⋃
i∈I′ Xi. Take x ∈ Ob(X ′

T )
for T ∈ Ob((Sch/S)fppf ). Since X ′ → X is a monomorphism, we have cartesian
squares

V ×X T //

��

T

x

��

T

x

��
V // X ′ // X

By base change, V ×X T → T is surjective. Therefore
⋃
i∈I′ Ui ×X T → T is also

surjective. Let Ti ⊂ T be the open subscheme representing Xi ×X T . By a formal
argument, we have a Cartesian square

Ui ×Xi Ti //

��

U ×X T

��
Ti // T

https://stacks.math.columbia.edu/tag/05UQ
https://stacks.math.columbia.edu/tag/05UR


100.9. IMMERSIONS OF ALGEBRAIC STACKS 6950

where the vertical arrows are surjective by base change. Since Ui×Xi Ti ≃ Ui×X T ,
we find that

⋃
i∈I′ Ti = T . Hence x is an object of (

⋃
i∈I′ Xi)T by definition of

the union. Observe that the inclusion X ′ ⊂
⋃
i∈I′ Xi is automatically an open

substack. □

Lemma 100.9.16.05WE Let X be an algebraic stack. Let Xi, i ∈ I be a set of open
substacks of X . Assume

(1) X =
⋃
i∈I Xi, and

(2) each Xi is an algebraic space.
Then X is an algebraic space.

Proof. Apply Stacks, Lemma 8.6.10 to the morphism
∐
i∈I Xi → X and the mor-

phism id : X → X to see that X is a stack in setoids. Hence X is an algebraic
space, see Algebraic Stacks, Proposition 94.13.3. □

Lemma 100.9.17.05WF Let X be an algebraic stack. Let Xi, i ∈ I be a set of open
substacks of X . Assume

(1) X =
⋃
i∈I Xi, and

(2) each Xi is a scheme
Then X is a scheme.

Proof. By Lemma 100.9.16 we see that X is an algebraic space. Since any algebraic
space has a largest open subspace which is a scheme, see Properties of Spaces,
Lemma 66.13.1 we see that X is a scheme. □

The following lemma is the analogue of More on Groupoids, Lemma 40.6.1.

Lemma 100.9.18.06M3 Let P,Q,R be properties of morphisms of algebraic spaces.
Assume

(1) P,Q,R are fppf local on the target and stable under arbitrary base change,
(2) smooth⇒ R,
(3) for any morphism f : X → Y which has Q there exists a largest open

subspace W (P, f) ⊂ X such that f |W (P,f) has P, and
(4) for any morphism f : X → Y which has Q, and any morphism Y ′ → Y

which has R we have Y ′×Y W (P, f) = W (P, f ′), where f ′ : XY ′ → Y ′ is
the base change of f .

Let f : X → Y be a morphism of algebraic stacks representable by algebraic spaces.
Assume f has Q. Then

(A) there exists a largest open substack X ′ ⊂ X such that f |X ′ has P, and
(B) if Z → Y is a morphism of algebraic stacks representable by algebraic

spaces which has R then Z ×Y X ′ is the largest open substack of Z ×Y X
over which the base change idZ × f has property P.

Proof. Choose a scheme V and a surjective smooth morphism V → Y. Set U =
V ×Y X and let f ′ : U → V be the base change of f . The morphism of algebraic
spaces f ′ : U → V has property Q. Thus we obtain the open W (P, f ′) ⊂ U
by assumption (3). Note that U ×X U = (V ×Y V ) ×Y X hence the morphism
f ′′ : U ×X U → V ×Y V is the base change of f via either projection V ×Y V → V .
By our choice of V these projections are smooth, hence have property R by (2).
Thus by (4) we see that the inverse images of W (P, f ′) under the two projections
pri : U ×X U → U agree. In other words, W (P, f ′) is an R-invariant subspace of U
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(where R = U ×X U). Let X ′ be the open substack of X corresponding to W (P, f)
via Lemma 100.9.7. By construction W (P, f ′) = X ′×Y V hence f |X ′ has property
P by Lemma 100.3.3. Also, X ′ is the largest open substack such that f |X ′ has P
as the same maximality holds for W (P, f). This proves (A).

Finally, if Z → Y is a morphism of algebraic stacks representable by algebraic
spaces which has R then we set T = V ×Y Z and we see that T → V is a morphism
of algebraic spaces having property R. Set f ′

T : T ×V U → T the base change of
f ′. By (4) again we see that W (P, f ′

T ) is the inverse image of W (P, f) in T ×V U .
This implies (B); some details omitted. □

Remark 100.9.19.06M4 Warning: Lemma 100.9.18 should be used with care. For ex-
ample, it applies to P =“flat”, Q =“empty”, and R =“flat and locally of finite
presentation”. But given a morphism of algebraic spaces f : X → Y the largest
open subspace W ⊂ X such that f |W is flat is not the set of points where f is flat!

Remark 100.9.20.06M5 Notwithstanding the warning in Remark 100.9.19 there are some
cases where Lemma 100.9.18 can be used without causing ambiguity. We give a
list. In each case we omit the verification of assumptions (1) and (2) and we give
references which imply (3) and (4). Here is the list:

(1)06M6 Q =“locally of finite type”, R = ∅, and P =“relative dimension ≤ d”.
See Morphisms of Spaces, Definition 67.33.2 and Morphisms of Spaces,
Lemmas 67.34.4 and 67.34.3.

(2)06M7 Q =“locally of finite type”, R = ∅, and P =“locally quasi-finite”. This
is the case d = 0 of the previous item, see Morphisms of Spaces, Lemma
67.34.6. On the other hand, properties (3) and (4) are spelled out in
Morphisms of Spaces, Lemma 67.34.7.

(3)06M8 Q =“locally of finite type”, R = ∅, and P =“unramified”. This is Mor-
phisms of Spaces, Lemma 67.38.10.

(4)06M9 Q =“locally of finite presentation”, R =“flat and locally of finite presenta-
tion”, and P =“flat”. See More on Morphisms of Spaces, Theorem 76.22.1
and Lemma 76.22.2. Note that here W (P, f) is always exactly the set of
points where the morphism f is flat because we only consider this open
when f has Q (see loc.cit.).

(5)06MA Q =“locally of finite presentation”, R =“flat and locally of finite presen-
tation”, and P =“étale”. This follows on combining (3) and (4) because
an unramified morphism which is flat and locally of finite presentation is
étale, see Morphisms of Spaces, Lemma 67.39.12.

(6) Add more here as needed (compare with the longer list at More on Groupoids,
Remark 40.6.3).

100.10. Reduced algebraic stacks

0508 We have already defined reduced algebraic stacks in Section 100.7.

Lemma 100.10.1.0509 Let X be an algebraic stack. Let T ⊂ |X | be a closed subset.
There exists a unique closed substack Z ⊂ X with the following properties: (a) we
have |Z| = T , and (b) Z is reduced.

Proof. Let U → X be a surjective smooth morphism, where U is an algebraic space.
Set R = U ×X U , so that there is a presentation [U/R]→ X , see Algebraic Stacks,
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Lemma 94.16.2. As usual we denote s, t : R → U the two smooth projection mor-
phisms. By Lemma 100.4.5 we see that T corresponds to a closed subset T ′ ⊂ |U |
such that |s|−1(T ′) = |t|−1(T ′). Let Z ⊂ U be the reduced induced algebraic space
structure on T ′, see Properties of Spaces, Definition 66.12.5. The fibre products
Z ×U,t R and R ×s,U Z are closed subspaces of R (Spaces, Lemma 65.12.3). The
projections Z ×U,t R→ Z and R×s,U Z → Z are smooth by Morphisms of Spaces,
Lemma 67.37.3. Thus as Z is reduced, it follows that Z ×U,t R and R ×s,U Z are
reduced, see Remark 100.7.3. Since

|Z ×U,t R| = |t|−1(T ′) = |s|−1(T ′) = R×s,U Z
we conclude from the uniqueness in Properties of Spaces, Lemma 66.12.3 that
Z ×U,t R = R ×s,U Z. Hence Z is an R-invariant closed subspace of U . By
the correspondence of Lemma 100.9.11 we obtain a closed substack Z ⊂ X with
Z = Z ×X U . Then [Z/RZ ] → Z is a presentation (Lemma 100.9.7). Then
|Z| = |Z|/|RZ | = |T ′|/ ∼ is the given closed subset T . We omit the proof of
unicity. □

Lemma 100.10.2.050A Let X be an algebraic stack. If X ′ ⊂ X is a closed substack, X
is reduced and |X ′| = |X |, then X ′ = X .
Proof. Choose a presentation [U/R]→ X with U a scheme. As X is reduced, we see
that U is reduced (by definition of reduced algebraic stacks). By Lemma 100.9.11
X ′ corresponds to an R-invariant closed subscheme Z ⊂ U . But now |Z| ⊂ |U |
is the inverse image of |X ′|, and hence |Z| = |U |. Hence Z is a closed subscheme
of U whose underlying sets of points agree. By Schemes, Lemma 26.12.7 the map
idU : U → U factors through Z → U , and hence Z = U , i.e., X ′ = X . □

Lemma 100.10.3.050B Let X , Y be algebraic stacks. Let Z ⊂ X be a closed substack
Assume Y is reduced. A morphism f : Y → X factors through Z if and only if
f(|Y|) ⊂ |Z|.
Proof. Assume f(|Y|) ⊂ |Z|. Consider Y ×X Z → Y. There is an equivalence
Y×X Z → Y ′ where Y ′ is a closed substack of Y, see Lemmas 100.9.2 and 100.9.10.
Using Lemmas 100.4.3, 100.8.5, and 100.9.5 we see that |Y ′| = |Y|. Hence we have
reduced the lemma to Lemma 100.10.2. □

Definition 100.10.4.050C Let X be an algebraic stack. Let Z ⊂ |X | be a closed subset.
An algebraic stack structure on Z is given by a closed substack Z of X with |Z| equal
to Z. The reduced induced algebraic stack structure on Z is the one constructed in
Lemma 100.10.1. The reduction Xred of X is the reduced induced algebraic stack
structure on |X |.
In fact we can use this to define the reduced induced algebraic stack structure on
a locally closed subset.
Remark 100.10.5.06FK Let X be an algebraic stack. Let T ⊂ |X | be a locally closed
subset. Let ∂T be the boundary of T in the topological space |X |. In a formula

∂T = T \ T.
Let U ⊂ X be the open substack of X with |U| = |X |\∂T , see Lemma 100.9.12. Let
Z be the reduced closed substack of U with |Z| = T obtained by taking the reduced
induced closed subspace structure, see Definition 100.10.4. By construction Z → U
is a closed immersion of algebraic stacks and U → X is an open immersion, hence
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Z → X is an immersion of algebraic stacks by Lemma 100.9.3. Note that Z is a
reduced algebraic stack and that |Z| = T as subsets of |X|. We sometimes say Z
is the reduced induced substack structure on T .

100.11. Residual gerbes

06ML In the Stacks project we would like to define the residual gerbe of an algebraic stack
X at a point x ∈ |X | to be a monomorphism of algebraic stacks mx : Zx → X where
Zx is a reduced algebraic stack having a unique point which is mapped by mx to
x. It turns out that there are many issues with this notion; existence is not clear
in general and neither is uniqueness. We resolve the uniqueness issue by imposing
a slightly stronger condition on the algebraic stacks Zx. We discuss this in more
detail by working through a few simple lemmas regarding reduced algebraic stacks
having a unique point.

Lemma 100.11.1.06MM Let Z be an algebraic stack. Let k be a field and let Spec(k)→ Z
be surjective and flat. Then any morphism Spec(k′) → Z where k′ is a field is
surjective and flat.

Proof. Consider the fibre square

T

��

// Spec(k)

��
Spec(k′) // Z

Note that T → Spec(k′) is flat and surjective hence T is not empty. On the other
hand T → Spec(k) is flat as k is a field. Hence T → Z is flat and surjective. It
follows from Morphisms of Spaces, Lemma 67.31.5 (via the discussion in Section
100.3) that Spec(k′) → Z is flat. It is clear that it is surjective as by assumption
|Z| is a singleton. □

Lemma 100.11.2.06MN Let Z be an algebraic stack. The following are equivalent
(1) Z is reduced and |Z| is a singleton,
(2) there exists a surjective flat morphism Spec(k) → Z where k is a field,

and
(3) there exists a locally of finite type, surjective, flat morphism Spec(k)→ Z

where k is a field.

Proof. Assume (1). Let W be a scheme and let W → Z be a surjective smooth
morphism. Then W is a reduced scheme. Let η ∈W be a generic point of an irre-
ducible component of W . Since W is reduced we have OW,η = κ(η). It follows that
the canonical morphism η = Spec(κ(η))→W is flat. We see that the composition
η → Z is flat (see Morphisms of Spaces, Lemma 67.30.3). It is also surjective as
|Z| is a singleton. In other words (2) holds.
Assume (2). Let W be a scheme and let W → Z be a surjective smooth morphism.
Choose a field k and a surjective flat morphism Spec(k)→ Z. Then W ×Z Spec(k)
is an algebraic space smooth over k, hence regular (see Spaces over Fields, Lemma
72.16.1) and in particular reduced. Since W ×Z Spec(k)→W is surjective and flat
we conclude that W is reduced (Descent on Spaces, Lemma 74.9.2). In other words
(1) holds.
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It is clear that (3) implies (2). Finally, assume (2). Pick a nonempty affine scheme
W and a smooth morphism W → Z. Pick a closed point w ∈W and set k = κ(w).
The composition

Spec(k) w−→W −→ Z
is locally of finite type by Morphisms of Spaces, Lemmas 67.23.2 and 67.37.6. It is
also flat and surjective by Lemma 100.11.1. Hence (3) holds. □

The following lemma singles out a slightly better class of singleton algebraic stacks
than the preceding lemma.

Lemma 100.11.3.06MP Let Z be an algebraic stack. The following are equivalent
(1) Z is reduced, locally Noetherian, and |Z| is a singleton, and
(2) there exists a locally finitely presented, surjective, flat morphism Spec(k)→
Z where k is a field.

Proof. Assume (2) holds. By Lemma 100.11.2 we see that Z is reduced and |Z|
is a singleton. Let W be a scheme and let W → Z be a surjective smooth mor-
phism. Choose a field k and a locally finitely presented, surjective, flat morphism
Spec(k)→ Z. ThenW×Z Spec(k) is an algebraic space smooth over k, hence locally
Noetherian (see Morphisms of Spaces, Lemma 67.23.5). SinceW×ZSpec(k)→W is
flat, surjective, and locally of finite presentation, we see that {W ×Z Spec(k)→W}
is an fppf covering and we conclude thatW is locally Noetherian (Descent on Spaces,
Lemma 74.9.3). In other words (1) holds.
Assume (1). Pick a nonempty affine scheme W and a smooth morphism W → Z.
Pick a closed point w ∈ W and set k = κ(w). Because W is locally Noetherian
the morphism w : Spec(k) → W is of finite presentation, see Morphisms, Lemma
29.21.7. Hence the composition

Spec(k) w−→W −→ Z
is locally of finite presentation by Morphisms of Spaces, Lemmas 67.28.2 and
67.37.5. It is also flat and surjective by Lemma 100.11.1. Hence (2) holds. □

Lemma 100.11.4.06MQ Let Z ′ → Z be a monomorphism of algebraic stacks. Assume
there exists a field k and a locally finitely presented, surjective, flat morphism
Spec(k)→ Z. Then either Z ′ is empty or Z ′ → Z is an equivalence.

Proof. We may assume that Z ′ is nonempty. In this case the fibre product T =
Z ′×Z Spec(k) is nonempty, see Lemma 100.4.3. Now T is an algebraic space and the
projection T → Spec(k) is a monomorphism. Hence T = Spec(k), see Morphisms
of Spaces, Lemma 67.10.8. We conclude that Spec(k) → Z factors through Z ′.
Suppose the morphism z : Spec(k)→ Z is given by the object ξ over Spec(k). We
have just seen that ξ is isomorphic to an object ξ′ of Z ′ over Spec(k). Since z is
surjective, flat, and locally of finite presentation we see that every object of Z over
any scheme is fppf locally isomorphic to a pullback of ξ, hence also to a pullback
of ξ′. By descent of objects for stacks in groupoids this implies that Z ′ → Z
is essentially surjective (as well as fully faithful, see Lemma 100.8.4). Hence we
win. □

Lemma 100.11.5.06MR Let Z be an algebraic stack. Assume Z satisfies the equivalent
conditions of Lemma 100.11.2. Then there exists a unique strictly full subcategory
Z ′ ⊂ Z such that Z ′ is an algebraic stack which satisfies the equivalent conditions of
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Lemma 100.11.3. The inclusion morphism Z ′ → Z is a monomorphism of algebraic
stacks.
Proof. The last part is immediate from the first part and Lemma 100.8.4. Pick a
field k and a morphism Spec(k) → Z which is surjective, flat, and locally of finite
type. Set U = Spec(k) and R = U ×Z U . The projections s, t : R → U are locally
of finite type. Since U is the spectrum of a field, it follows that s, t are flat and
locally of finite presentation (by Morphisms of Spaces, Lemma 67.28.7). We see
that Z ′ = [U/R] is an algebraic stack by Criteria for Representability, Theorem
97.17.2. By Algebraic Stacks, Lemma 94.16.1 we obtain a canonical morphism

f : Z ′ −→ Z
which is fully faithful. Hence this morphism is representable by algebraic spaces,
see Algebraic Stacks, Lemma 94.15.2 and a monomorphism, see Lemma 100.8.4. By
Criteria for Representability, Lemma 97.17.1 the morphism U → Z ′ is surjective,
flat, and locally of finite presentation. Hence Z ′ is an algebraic stack which satisfies
the equivalent conditions of Lemma 100.11.3. By Algebraic Stacks, Lemma 94.12.4
we may replace Z ′ by its essential image in Z. Hence we have proved all the
assertions of the lemma except for the uniqueness of Z ′ ⊂ Z. Suppose that Z ′′ ⊂ Z
is a second such algebraic stack. Then the projections

Z ′ ←− Z ′ ×Z Z ′′ −→ Z ′′

are monomorphisms. The algebraic stack in the middle is nonempty by Lemma
100.4.3. Hence the two projections are isomorphisms by Lemma 100.11.4 and we
win. □

Example 100.11.6.06MS Here is an example where the morphism constructed in Lemma
100.11.5 isn’t an isomorphism. This example shows that imposing that residual
gerbes are locally Noetherian is necessary in Definition 100.11.8. In fact, the ex-
ample is even an algebraic space! Let Gal(Q/Q) be the absolute Galois group of
Q with the pro-finite topology. Let

U = Spec(Q)×Spec(Q) Spec(Q) = Gal(Q/Q)× Spec(Q)
(we omit a precise explanation of the meaning of the last equal sign). Let G
denote the absolute Galois group Gal(Q/Q) with the discrete topology viewed as a
constant group scheme over Spec(Q), see Groupoids, Example 39.5.6. Then G acts
freely and transitively on U . Let X = U/G, see Spaces, Definition 65.14.4. Then X
is a non-noetherian reduced algebraic space with exactly one point. Furthermore,
X has a (locally) finite type point:

x : Spec(Q) −→ U −→ X

Indeed, every point of U is actually closed! As X is an algebraic space over Q it
follows that x is a monomorphism. So x is the morphism constructed in Lemma
100.11.5 but x is not an isomorphism. In fact Spec(Q) → X is the residual gerbe
of X at x.
It will turn out later that under mild assumptions on the algebraic stack X the
equivalent conditions of the following lemma are satisfied for every point x ∈ |X |
(see Morphisms of Stacks, Section 101.31).
Lemma 100.11.7.06MT Let X be an algebraic stack. Let x ∈ |X | be a point. The
following are equivalent
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(1) there exists an algebraic stack Z and a monomorphism Z → X such that
|Z| is a singleton and such that the image of |Z| in |X | is x,

(2) there exists a reduced algebraic stack Z and a monomorphism Z → X
such that |Z| is a singleton and such that the image of |Z| in |X | is x,

(3) there exists an algebraic stack Z, a monomorphism f : Z → X , and a
surjective flat morphism z : Spec(k) → Z where k is a field such that
x = f(z).

Moreover, if these conditions hold, then there exists a unique strictly full subcat-
egory Zx ⊂ X such that Zx is a reduced, locally Noetherian algebraic stack and
|Zx| is a singleton which maps to x via the map |Zx| → |X |.

Proof. If Z → X is as in (1), then Zred → X is as in (2). (See Section 100.10
for the notion of the reduction of an algebraic stack.) Hence (1) implies (2). It is
immediate that (2) implies (1). The equivalence of (2) and (3) is immediate from
Lemma 100.11.2.
At this point we’ve seen the equivalence of (1) – (3). Pick a monomorphism f :
Z → X as in (2). Note that this implies that f is fully faithful, see Lemma
100.8.4. Denote Z ′ ⊂ X the essential image of the functor f . Then f : Z → Z ′

is an equivalence and hence Z ′ is an algebraic stack, see Algebraic Stacks, Lemma
94.12.4. Apply Lemma 100.11.5 to get a strictly full subcategory Zx ⊂ Z ′ as in the
statement of the lemma. This proves all the statements of the lemma except for
uniqueness.
In order to prove the uniqueness suppose that Zx ⊂ X and Z ′

x ⊂ X are two strictly
full subcategories as in the statement of the lemma. Then the projections

Z ′
x ←− Z ′

x ×X Zx −→ Zx
are monomorphisms. The algebraic stack in the middle is nonempty by Lemma
100.4.3. Hence the two projections are isomorphisms by Lemma 100.11.4 and we
win. □

Having explained the above we can now make the following definition.

Definition 100.11.8.06MU Let X be an algebraic stack. Let x ∈ |X |.
(1) We say the residual gerbe of X at x exists if the equivalent conditions (1),

(2), and (3) of Lemma 100.11.7 hold.
(2) If the residual gerbe of X at x exists, then the residual gerbe of X at x1

is the strictly full subcategory Zx ⊂ X constructed in Lemma 100.11.7.

In particular we know that Zx (if it exists) is a locally Noetherian, reduced algebraic
stack and that there exists a field and a surjective, flat, locally finitely presented
morphism

Spec(k) −→ Zx.
We will see in Morphisms of Stacks, Lemma 101.28.12 that Zx is a gerbe. Existence
of residual gerbes is discussed in Morphisms of Stacks, Section 101.31.

1This clashes with [LMB00] in spirit, but not in fact. Namely, in Chapter 11 they associate
to any point on any quasi-separated algebraic stack a gerbe (not necessarily algebraic) which they
call the residual gerbe. We will see in Morphisms of Stacks, Lemma 101.31.1 that on a quasi-
separated algebraic stack every point has a residual gerbe in our sense which is then equivalent
to theirs. For more information on this topic see [Ryd10, Appendix B].
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Example 100.11.9.0H21 Let X be a scheme and let x ∈ X be a point. Then the
monomorphism x→ X is the residual gerbe of X at x where we, as usual, identify
x with the scheme x = Spec(κ(x)). If X is an algebraic space and x ∈ |X|, then
the residual gerbe at x (which is called the residual space) always exists, see Decent
Spaces, Section 68.13.
The residual gerbe, if it exists, is a regular algebraic stack by the following lemma.
Lemma 100.11.10.06MV A reduced, locally Noetherian algebraic stack Z such that |Z|
is a singleton is regular.
Proof. Let W → Z be a surjective smooth morphism where W is a scheme. Let k
be a field and let Spec(k)→ Z be surjective, flat, and locally of finite presentation
(see Lemma 100.11.3). The algebraic space T = W ×Z Spec(k) is smooth over k in
particular regular, see Spaces over Fields, Lemma 72.16.1. Since T →W is locally
of finite presentation, flat, and surjective it follows that W is regular, see Descent
on Spaces, Lemma 74.9.4. By definition this means that Z is regular. □

Lemma 100.11.11.06MW Let X be an algebraic stack. Let x ∈ |X |. Assume that the
residual gerbe Zx of X exists. Let f : Spec(K) → X be a morphism where K is a
field in the equivalence class of x. Then f factors through the inclusion morphism
Zx → X .
Proof. Choose a field k and a surjective flat locally finite presentation morphism
Spec(k) → Zx. Set T = Spec(K) ×X Zx. By Lemma 100.4.3 we see that T
is nonempty. As Zx → X is a monomorphism we see that T → Spec(K) is a
monomorphism. Hence by Morphisms of Spaces, Lemma 67.10.8 we see that T =
Spec(K) which proves the lemma. □

Lemma 100.11.12.06MX Let X be an algebraic stack. Let x ∈ |X |. Let Z be an algebraic
stack satisfying the equivalent conditions of Lemma 100.11.3 and let Z → X be a
monomorphism such that the image of |Z| → |X | is x. Then the residual gerbe Zx
of X at x exists and Z → X factors as Z → Zx → X where the first arrow is an
equivalence.
Proof. Let Zx ⊂ X be the full subcategory corresponding to the essential image
of the functor Z → X . Then Z → Zx is an equivalence, hence Zx is an algebraic
stack, see Algebraic Stacks, Lemma 94.12.4. Since Zx inherits all the properties of
Z from this equivalence it is clear from the uniqueness in Lemma 100.11.7 that Zx
is the residual gerbe of X at x. □

Lemma 100.11.13.0DTH Let f : X → Y be a morphism of algebraic stacks. Let x ∈ |X |
with image y ∈ |Y|. If the residual gerbes Zx ⊂ X and Zy ⊂ Y of x and y exist,
then f induces a commutative diagram

X

f

��

Zxoo

��
Y Zyoo

Proof. Choose a field k and a surjective, flat, locally finitely presented morphism
Spec(k) → Zx. The morphism Spec(k) → Y factors through Zy by Lemma
100.11.11. Thus Zx ×Y Zy is a nonempty substack of Zx hence equal to Zx by
Lemma 100.11.4. □
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Lemma 100.11.14.0DTI Let f : X → Y be a morphism of algebraic stacks. Let x ∈ |X |
with image y ∈ |Y|. Assume the residual gerbes Zx ⊂ X and Zy ⊂ Y of x and y
exist and that there exists a morphism Spec(k) → X in the equivalence class of x
such that

Spec(k)×X Spec(k) −→ Spec(k)×Y Spec(k)
is an isomorphism. Then Zx → Zy is an isomorphism.

Proof. Let k′/k be an extension of fields. Then

Spec(k′)×X Spec(k′) −→ Spec(k′)×Y Spec(k′)

is the base change of the morphism in the lemma by the faithfully flat morphism
Spec(k′ ⊗ k′) → Spec(k ⊗ k). Thus the property described in the lemma is inde-
pendent of the choice of the morphism Spec(k) → X in the equivalence class of
x. Thus we may assume that Spec(k)→ Zx is surjective, flat, and locally of finite
presentation. In this situation we have

Zx = [Spec(k)/R]

with R = Spec(k) ×X Spec(k). See proof of Lemma 100.11.5. Since also R =
Spec(k)×Y Spec(k) we conclude that the morphism Zx → Zy of Lemma 100.11.13
is fully faithful by Algebraic Stacks, Lemma 94.16.1. We conclude for example by
Lemma 100.11.12. □

100.12. Dimension of a stack

0AFL We can define the dimension of an algebraic stack X at a point x, using the notion of
dimension of an algebraic space at a point (Properties of Spaces, Definition 66.9.1).
In the following lemma the output may be∞ either because X is not quasi-compact
or because we run into the phenomenon described in Examples, Section 110.15.

Lemma 100.12.1.0AFM Let X be a locally Noetherian algebraic stack over a scheme S.
Let x ∈ |X | be a point of X . Let [U/R]→ X be a presentation (Algebraic Stacks,
Definition 94.16.5) where U is a scheme. Let u ∈ U be a point that maps to x. Let
e : U → R be the “identity” map and let s : R→ U be the “source” map, which is
a smooth morphism of algebraic spaces. Let Ru be the fiber of s : R → U over u.
The element

dimx(X ) = dimu(U)− dime(u)(Ru) ∈ Z ∪∞
is independent of the choice of presentation and the point u over x.

Proof. Since R→ U is smooth, the scheme Ru is smooth over κ(u) and hence has
finite dimension. On the other hand, the scheme U is locally Noetherian, but this
does not guarantee that dimu(U) is finite. Thus the difference is an element of
Z ∪ {∞}.

Let [U ′/R′] → X and u′ ∈ U ′ be a second presentation where U ′ is a scheme and
u′ maps to x. Consider the algebraic space P = U ×X U ′. By Lemma 100.4.3 there
exists a p ∈ |P | mapping to u and u′. Since P → U and P → U ′ are smooth we see
that dimp(P ) = dimu(U) + dimp(Pu) and dimp(P ) = dimu′(U ′) + dimp(Pu′), see
Morphisms of Spaces, Lemma 67.37.10. Note that

R′
u′ = Spec(κ(u′))×X U ′ and Pu = Spec(κ(u))×X U ′
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Let us represent p ∈ |P | by a morphism Spec(Ω)→ P . Since p maps to both u and
u′ it induces a 2-morphism between the compositions Spec(Ω)→ Spec(κ(u′))→ X
and Spec(Ω)→ Spec(κ(u))→ X which in turn defines an isomorphism

Spec(Ω)×Spec(κ(u′)) R
′
u′ ∼= Spec(Ω)×Spec(κ(u)) Pu

as algebraic spaces over Spec(Ω) mapping the Ω-rational point (1, e′(u′)) to (1, p)
(some details omitted). We conclude that

dime′(u′)(R′
u′) = dimp(Pu)

by Morphisms of Spaces, Lemma 67.34.3. By symmetry we have dime(u)(Ru) =
dimp(Pu′). Putting everything together we obtain the independence of choices. □

We can use the lemma above to make the following definition.

Definition 100.12.2.0AFN Let X be a locally Noetherian algebraic stack over a scheme
S. Let x ∈ |X | be a point of X . Let [U/R] → X be a presentation (Algebraic
Stacks, Definition 94.16.5) where U is a scheme and let u ∈ U be a point that maps
to x. We define the dimension of X at x to be the element dimx(X ) ∈ Z ∪∞ such
that

dimx(X ) = dimu(U)− dime(u)(Ru).
with notation as in Lemma 100.12.1.

The dimension of a stack at a point agrees with the usual notion when X is a scheme
(Topology, Definition 5.10.1), or more generally when X is a locally Noetherian
algebraic space (Properties of Spaces, Definition 66.9.1).

Definition 100.12.3.0AFP Let S be a scheme. Let X be a locally Noetherian algebraic
stack over S. The dimension dim(X ) of X is defined to be

dim(X ) = supx∈|X | dimx(X )

This definition of dimension agrees with the usual notion if X is a scheme (Proper-
ties, Lemma 28.10.2) or an algebraic space (Properties of Spaces, Definition 66.9.2).

Remark 100.12.4.0AFQ If X is a nonempty stack of finite type over a field, then dim(X )
is an integer. For an arbitrary locally Noetherian algebraic stack X , dim(X ) is in
Z ∪ {±∞}, and dim(X ) = −∞ if and only if X is empty.

Example 100.12.5.0AFR Let X be a scheme of finite type over a field k, and let G be
a group scheme of finite type over k which acts on X. Then the dimension of the
quotient stack [X/G] is equal to dim(X) − dim(G). In particular, the dimension
of the classifying stack BG = [Spec(k)/G] is −dim(G). Thus the dimension of an
algebraic stack can be a negative integer, in contrast to what happens for schemes
or algebraic spaces.

100.13. Local irreducibility

0DQG We have defined the geometric number of branches of a scheme at a point in Prop-
erties, Section 28.15 and for an algebraic space at a point in Properties of Spaces,
Section 66.23. Let n ∈ N. For a local ring A set

Pn(A) = the number of geometric branches of A is n
For a smooth ring map A→ B and a prime ideal q of B lying over p of A we have

Pn(Ap)⇔ Pn(Bq)
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by More on Algebra, Lemma 15.106.8. As in Properties of Spaces, Remark 66.7.6
we may use Pn to define an étale local property Pn of germs (U, u) of schemes by
setting Pn(U, u) = Pn(OU,u). The corresponding property Pn of an algebraic space
X at a point x (see Properties of Spaces, Definition 66.7.5) is just the property “the
number of geometric branches of X at x is n”, see Properties of Spaces, Definition
66.23.4. Moreover, the property Pn is smooth local, see Descent, Definition 35.21.1.
This follows either from the equivalence displayed above or More on Morphisms,
Lemma 37.36.4. Thus Definition 100.7.5 applies and we obtain a notion for algebraic
stacks at a point.

Definition 100.13.1.0DQH Let X be an algebraic stack. Let x ∈ |X |.
(1) The number of geometric branches of X at x is either n ∈ N if the

equivalent conditions of Lemma 100.7.4 hold for Pn defined above, or else
∞.

(2) We say X is geometrically unibranch at x if the number of geometric
branches of X at x is 1.

100.14. Finiteness conditions and points

0DTJ This section is the analogue of Decent Spaces, Section 68.4 for points of algebraic
stacks.

Lemma 100.14.1.0DTK Let X be an algebraic stack. Let x ∈ |X | be a point. The
following are equivalent

(1) some morphism Spec(k) → X in the equivalence class of x is quasi-
compact, and

(2) any morphism Spec(k)→ X in the equivalence class of x is quasi-compact.

Proof. Let Spec(k) → X be in the equivalence class of x. Let k′/k be a field
extension. Then we have to show that Spec(k) → X is quasi-compact if and only
if Spec(k′)→ X is quasi-compact. This follows from Morphisms of Spaces, Lemma
67.8.6 and the principle of Algebraic Stacks, Lemma 94.10.9. □

Sometimes people say that a point x ∈ |X | satisfying the equivalent conditions of
Lemma 100.14.1 is a “quasi-compact point”.
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CHAPTER 101

Morphisms of Algebraic Stacks

04XM 101.1. Introduction

04XN In this chapter we introduce some types of morphisms of algebraic stacks. A refer-
ence in the case of quasi-separated algebraic stacks with representable diagonal is
[LMB00].
The goal is to extend the definition of each of the types of morphisms of algebraic
spaces to morphisms of algebraic stacks. Each case is slightly different and it seems
best to treat them all separately.
For morphisms of algebraic stacks which are representable by algebraic spaces we
have already defined a large number of types of morphisms, see Properties of Stacks,
Section 100.3. For each corresponding case in this chapter we have to make sure
the definition in the general case is compatible with the definition given there.

101.2. Conventions and abuse of language

04XP We continue to use the conventions and the abuse of language introduced in Prop-
erties of Stacks, Section 100.2.

101.3. Properties of diagonals

04XQ The diagonal of an algebraic stack is closely related to the Isom-sheaves, see Al-
gebraic Stacks, Lemma 94.10.11. By the second defining property of an algebraic
stack these Isom-sheaves are always algebraic spaces.

Lemma 101.3.1.04XR Let X be an algebraic stack. Let T be a scheme and let x, y be
objects of the fibre category of X over T . Then the morphism IsomX (x, y)→ T is
locally of finite type.

Proof. By Algebraic Stacks, Lemma 94.16.2 we may assume that X = [U/R] for
some smooth groupoid in algebraic spaces. By Descent on Spaces, Lemma 74.11.9
it suffices to check the property fppf locally on T . Thus we may assume that x, y
come from morphisms x′, y′ : T → U . By Groupoids in Spaces, Lemma 78.22.1
we see that in this case IsomX (x, y) = T ×(y′,x′),U×SU R. Hence it suffices to
prove that R → U ×S U is locally of finite type. This follows from the fact that
the composition s : R → U ×S U → U is smooth (hence locally of finite type,
see Morphisms of Spaces, Lemmas 67.37.5 and 67.28.5) and Morphisms of Spaces,
Lemma 67.23.6. □

Lemma 101.3.2.04YP Let X be an algebraic stack. Let T be a scheme and let x, y be
objects of the fibre category of X over T . Then

(1) IsomX (y, y) is a group algebraic space over T , and
(2) IsomX (x, y) is a pseudo torsor for IsomX (y, y) over T .

6963
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Proof. See Groupoids in Spaces, Definitions 78.5.1 and 78.9.1. The lemma follows
immediately from the fact that X is a stack in groupoids. □

Let f : X → Y be a morphism of algebraic stacks. The diagonal of f is the
morphism

∆f : X −→ X ×Y X
Here are two properties that every diagonal morphism has.

Lemma 101.3.3.04XS Let f : X → Y be a morphism of algebraic stacks. Then
(1) ∆f is representable by algebraic spaces, and
(2) ∆f is locally of finite type.

Proof. Let T be a scheme and let a : T → X ×Y X be a morphism. By definition
of the fibre product and the 2-Yoneda lemma the morphism a is given by a triple
a = (x, x′, α) where x, x′ are objects of X over T , and α : f(x) → f(x′) is a
morphism in the fibre category of Y over T . By definition of an algebraic stack
the sheaves IsomX (x, x′) and IsomY(f(x), f(x′)) are algebraic spaces over T . In
this language α defines a section of the morphism IsomY(f(x), f(x′)) → T . A T ′-
valued point of X ×X ×Y X ,a T for T ′ → T a scheme over T is the same thing as an
isomorphism x|T ′ → x′|T ′ whose image under f is α|T ′ . Thus we see that

(101.3.3.1)04XT

X ×X ×Y X ,a T

��

// IsomX (x, x′)

��
T

α // IsomY(f(x), f(x′))

is a fibre square of sheaves over T . In particular we see that X ×X ×Y X ,a T is an
algebraic space which proves part (1) of the lemma.
To prove the second statement we have to show that the left vertical arrow of
Diagram (101.3.3.1) is locally of finite type. By Lemma 101.3.1 the algebraic space
IsomX (x, x′) and is locally of finite type over T . Hence the right vertical arrow
of Diagram (101.3.3.1) is locally of finite type, see Morphisms of Spaces, Lemma
67.23.6. We conclude by Morphisms of Spaces, Lemma 67.23.3. □

Lemma 101.3.4.04YQ Let f : X → Y be a morphism of algebraic stacks which is
representable by algebraic spaces. Then

(1) ∆f is representable (by schemes),
(2) ∆f is locally of finite type,
(3) ∆f is a monomorphism,
(4) ∆f is separated, and
(5) ∆f is locally quasi-finite.

Proof. We have already seen in Lemma 101.3.3 that ∆f is representable by algebraic
spaces. Hence the statements (2) – (5) make sense, see Properties of Stacks, Section
100.3. Also Lemma 101.3.3 guarantees (2) holds. Let T → X ×Y X be a morphism
and contemplate Diagram (101.3.3.1). By Algebraic Stacks, Lemma 94.9.2 the right
vertical arrow is injective as a map of sheaves, i.e., a monomorphism of algebraic
spaces. Hence also the morphism T ×X ×Y X X → T is a monomorphism. Thus
(3) holds. We already know that T ×X ×Y X X → T is locally of finite type. Thus
Morphisms of Spaces, Lemma 67.27.10 allows us to conclude that T ×X ×Y X X → T
is locally quasi-finite and separated. This proves (4) and (5). Finally, Morphisms
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of Spaces, Proposition 67.50.2 implies that T ×X ×Y X X is a scheme which proves
(1). □

Lemma 101.3.5.04YS Let f : X → Y be a morphism of algebraic stacks representable
by algebraic spaces. Then the following are equivalent

(1) f is separated,
(2) ∆f is a closed immersion,
(3) ∆f is proper, or
(4) ∆f is universally closed.

Proof. The statements “f is separated”, “∆f is a closed immersion”, “∆f is univer-
sally closed”, and “∆f is proper” refer to the notions defined in Properties of Stacks,
Section 100.3. Choose a scheme V and a surjective smooth morphism V → Y. Set
U = X ×Y V which is an algebraic space by assumption, and the morphism U → X
is surjective and smooth. By Categories, Lemma 4.31.14 and Properties of Stacks,
Lemma 100.3.3 we see that for any property P (as in that lemma) we have: ∆f has
P if and only if ∆U/V : U → U ×V U has P . Hence the equivalence of (2), (3) and
(4) follows from Morphisms of Spaces, Lemma 67.40.9 applied to U → V . Moreover,
if (1) holds, then U → V is separated and we see that ∆U/V is a closed immersion,
i.e., (2) holds. Finally, assume (2) holds. Let T be a scheme, and a : T → Y a
morphism. Set T ′ = X ×Y T . To prove (1) we have to show that the morphism of
algebraic spaces T ′ → T is separated. Using Categories, Lemma 4.31.14 once more
we see that ∆T ′/T is the base change of ∆f . Hence our assumption (2) implies that
∆T ′/T is a closed immersion, hence T ′ → T is separated as desired. □

Lemma 101.3.6.04YT Let f : X → Y be a morphism of algebraic stacks representable
by algebraic spaces. Then the following are equivalent

(1) f is quasi-separated,
(2) ∆f is quasi-compact, or
(3) ∆f is of finite type.

Proof. The statements “f is quasi-separated”, “∆f is quasi-compact”, and “∆f is of
finite type” refer to the notions defined in Properties of Stacks, Section 100.3. Note
that (2) and (3) are equivalent in view of the fact that ∆f is locally of finite type by
Lemma 101.3.4 (and Algebraic Stacks, Lemma 94.10.9). Choose a scheme V and a
surjective smooth morphism V → Y. Set U = X ×Y V which is an algebraic space
by assumption, and the morphism U → X is surjective and smooth. By Categories,
Lemma 4.31.14 and Properties of Stacks, Lemma 100.3.3 we see that we have: ∆f

is quasi-compact if and only if ∆U/V : U → U ×V U is quasi-compact. If (1) holds,
then U → V is quasi-separated and we see that ∆U/V is quasi-compact, i.e., (2)
holds. Assume (2) holds. Let T be a scheme, and a : T → Y a morphism. Set
T ′ = X ×Y T . To prove (1) we have to show that the morphism of algebraic spaces
T ′ → T is quasi-separated. Using Categories, Lemma 4.31.14 once more we see
that ∆T ′/T is the base change of ∆f . Hence our assumption (2) implies that ∆T ′/T

is quasi-compact, hence T ′ → T is quasi-separated as desired. □

Lemma 101.3.7.04YU Let f : X → Y be a morphism of algebraic stacks representable
by algebraic spaces. Then the following are equivalent

(1) f is locally separated, and
(2) ∆f is an immersion.
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Proof. The statements “f is locally separated”, and “∆f is an immersion” refer to
the notions defined in Properties of Stacks, Section 100.3. Proof omitted. Hint:
Argue as in the proofs of Lemmas 101.3.5 and 101.3.6. □

101.4. Separation axioms

04YV Let X = [U/R] be a presentation of an algebraic stack. Then the properties of
the diagonal of X over S, are the properties of the morphism j : R → U ×S U .
For example, if X = [S/G] for some smooth group G in algebraic spaces over S
then j is the structure morphism G→ S. Hence the diagonal is not automatically
separated itself (contrary to what happens in the case of schemes and algebraic
spaces). To say that [S/G] is quasi-separated over S should certainly imply that
G→ S is quasi-compact, but we hesitate to say that [S/G] is quasi-separated over S
without also requiring the morphism G→ S to be quasi-separated. In other words,
requiring the diagonal morphism to be quasi-compact does not really agree with
our intuition for a “quasi-separated algebraic stack”, and we should also require the
diagonal itself to be quasi-separated.
What about “separated algebraic stacks”? We have seen in Morphisms of Spaces,
Lemma 67.40.9 that an algebraic space is separated if and only if the diagonal is
proper. This is the condition that is usually used to define separated algebraic
stacks too. In the example [S/G] → S above this means that G → S is a proper
group scheme. This means algebraic stacks of the form [Spec(k)/E] are proper
over k where E is an elliptic curve over k (insert future reference here). In certain
situations it may be more natural to assume the diagonal is finite.
Definition 101.4.1.04YW Let f : X → Y be a morphism of algebraic stacks.

(1) We say f is DM if ∆f is unramified1.
(2) We say f is quasi-DM if ∆f is locally quasi-finite2.
(3) We say f is separated if ∆f is proper.
(4) We say f is quasi-separated if ∆f is quasi-compact and quasi-separated.

In this definition we are using that ∆f is representable by algebraic spaces and
we are using Properties of Stacks, Section 100.3 to make sense out of imposing
conditions on ∆f . We note that these definitions do not conflict with the already
existing notions if f is representable by algebraic spaces, see Lemmas 101.3.6 and
101.3.5. There is an interesting way to characterize these conditions by looking at
higher diagonals, see Lemma 101.6.5.
Definition 101.4.2.050D Let X be an algebraic stack over the base scheme S. Denote
p : X → S the structure morphism.

(1) We say X is DM over S if p : X → S is DM.
(2) We say X is quasi-DM over S if p : X → S is quasi-DM.

1The letters DM stand for Deligne-Mumford. If f is DM then given any scheme T and any
morphism T → Y the fibre product XT = X ×Y T is an algebraic stack over T whose diagonal is
unramified, i.e., XT is DM. This implies XT is a Deligne-Mumford stack, see Theorem 101.21.6.
In other words a DM morphism is one whose “fibres” are Deligne-Mumford stacks. This hopefully
at least motivates the terminology.

2If f is quasi-DM, then the “fibres” XT of X → Y are quasi-DM. An algebraic stack X is
quasi-DM exactly if there exists a scheme U and a surjective flat morphism U → X of finite
presentation which is locally quasi-finite, see Theorem 101.21.3. Note the similarity to being
Deligne-Mumford, which is defined in terms of having an étale covering by a scheme.
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(3) We say X is separated over S if p : X → S is separated.
(4) We say X is quasi-separated over S if p : X → S is quasi-separated.
(5) We say X is DM if X is DM3 over Spec(Z).
(6) We say X is quasi-DM if X is quasi-DM over Spec(Z).
(7) We say X is separated if X is separated over Spec(Z).
(8) We say X is quasi-separated if X is quasi-separated over Spec(Z).

In the last 4 definitions we view X as an algebraic stack over Spec(Z) via Algebraic
Stacks, Definition 94.19.2.

Thus in each case we have an absolute notion and a notion relative to our given base
scheme (mention of which is usually suppressed by our abuse of notation introduced
in Properties of Stacks, Section 100.2). We will see that (1) ⇔ (5) and (2) ⇔ (6)
in Lemma 101.4.13. We spend some time proving some standard results on these
notions.

Lemma 101.4.3.050E Let f : X → Y be a morphism of algebraic stacks.
(1) If f is separated, then f is quasi-separated.
(2) If f is DM, then f is quasi-DM.
(3) If f is representable by algebraic spaces, then f is DM.

Proof. To see (1) note that a proper morphism of algebraic spaces is quasi-compact
and quasi-separated, see Morphisms of Spaces, Definition 67.40.1. To see (2) note
that an unramified morphism of algebraic spaces is locally quasi-finite, see Mor-
phisms of Spaces, Lemma 67.38.7. Finally (3) follows from Lemma 101.3.4. □

Lemma 101.4.4.050F All of the separation axioms listed in Definition 101.4.1 are stable
under base change.

Proof. Let f : X → Y and Y ′ → Y be morphisms of algebraic stacks. Let f ′ :
Y ′ ×Y X → Y ′ be the base change of f by Y ′ → Y. Then ∆f ′ is the base change
of ∆f by the morphism X ′ ×Y′ X ′ → X ×Y X , see Categories, Lemma 4.31.14.
By the results of Properties of Stacks, Section 100.3 each of the properties of the
diagonal used in Definition 101.4.1 is stable under base change. Hence the lemma
is true. □

Lemma 101.4.5.06TZ Let f : X → Y be a morphism of algebraic stacks. Let W → Y be
a surjective, flat, and locally of finite presentation where W is an algebraic space.
If the base change W ×Y X →W has one of the separation properties of Definition
101.4.1 then so does f .

Proof. Denote g : W ×Y X → W the base change. Then ∆g is the base change of
∆f by the morphism q : W ×Y (X ×Y X ) → X ×Y X . Since q is the base change
of W → Y we see that q is representable by algebraic spaces, surjective, flat, and
locally of finite presentation. Hence the result follows from Properties of Stacks,
Lemma 100.3.4. □

Lemma 101.4.6.050G Let S be a scheme. The property of being quasi-DM over S,
quasi-separated over S, or separated over S (see Definition 101.4.2) is stable under
change of base scheme, see Algebraic Stacks, Definition 94.19.3.

Proof. Follows immediately from Lemma 101.4.4. □

3Theorem 101.21.6 shows that this is equivalent to X being a Deligne-Mumford stack.

https://stacks.math.columbia.edu/tag/050E
https://stacks.math.columbia.edu/tag/050F
https://stacks.math.columbia.edu/tag/06TZ
https://stacks.math.columbia.edu/tag/050G


101.4. SEPARATION AXIOMS 6968

Lemma 101.4.7.050H Let f : X → Z, g : Y → Z and Z → T be morphisms of algebraic
stacks. Consider the induced morphism i : X ×Z Y → X ×T Y. Then

(1) i is representable by algebraic spaces and locally of finite type,
(2) if ∆Z/T is quasi-separated, then i is quasi-separated,
(3) if ∆Z/T is separated, then i is separated,
(4) if Z → T is DM, then i is unramified,
(5) if Z → T is quasi-DM, then i is locally quasi-finite,
(6) if Z → T is separated, then i is proper, and
(7) if Z → T is quasi-separated, then i is quasi-compact and quasi-separated.

Proof. The following diagram
X ×Z Y

i
//

��

X ×T Y

��
Z

∆Z/T //// Z ×T Z
is a 2-fibre product diagram, see Categories, Lemma 4.31.13. Hence i is the base
change of the diagonal morphism ∆Z/T . Thus the lemma follows from Lemma
101.3.3, and the material in Properties of Stacks, Section 100.3. □

Lemma 101.4.8.050I Let T be an algebraic stack. Let g : X → Y be a morphism of
algebraic stacks over T . Consider the graph i : X → X ×T Y of g. Then

(1) i is representable by algebraic spaces and locally of finite type,
(2) if Y → T is DM, then i is unramified,
(3) if Y → T is quasi-DM, then i is locally quasi-finite,
(4) if Y → T is separated, then i is proper, and
(5) if Y → T is quasi-separated, then i is quasi-compact and quasi-separated.

Proof. This is a special case of Lemma 101.4.7 applied to the morphism X =
X ×Y Y → X ×T Y. □

Lemma 101.4.9.050J Let f : X → T be a morphism of algebraic stacks. Let s : T → X
be a morphism such that f ◦ s is 2-isomorphic to idT . Then

(1) s is representable by algebraic spaces and locally of finite type,
(2) if f is DM, then s is unramified,
(3) if f is quasi-DM, then s is locally quasi-finite,
(4) if f is separated, then s is proper, and
(5) if f is quasi-separated, then s is quasi-compact and quasi-separated.

Proof. This is a special case of Lemma 101.4.8 applied to g = s and Y = T in
which case i : T → T ×T X is 2-isomorphic to s. □

Lemma 101.4.10.050K All of the separation axioms listed in Definition 101.4.1 are stable
under composition of morphisms.

Proof. Let f : X → Y and g : Y → Z be morphisms of algebraic stacks to which
the axiom in question applies. The diagonal ∆X/Z is the composition

X −→ X ×Y X −→ X ×Z X .
Our separation axiom is defined by requiring the diagonal to have some property P.
By Lemma 101.4.7 above we see that the second arrow also has this property. Hence
the lemma follows since the composition of morphisms which are representable by
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algebraic spaces with property P also is a morphism with property P, see our
general discussion in Properties of Stacks, Section 100.3 and Morphisms of Spaces,
Lemmas 67.38.3, 67.27.3, 67.40.4, 67.8.5, and 67.4.8. □

Lemma 101.4.11.050L Let f : X → Y be a morphism of algebraic stacks over the base
scheme S.

(1) If Y is DM over S and f is DM, then X is DM over S.
(2) If Y is quasi-DM over S and f is quasi-DM, then X is quasi-DM over S.
(3) If Y is separated over S and f is separated, then X is separated over S.
(4) If Y is quasi-separated over S and f is quasi-separated, then X is quasi-

separated over S.
(5) If Y is DM and f is DM, then X is DM.
(6) If Y is quasi-DM and f is quasi-DM, then X is quasi-DM.
(7) If Y is separated and f is separated, then X is separated.
(8) If Y is quasi-separated and f is quasi-separated, then X is quasi-separated.

Proof. Parts (1), (2), (3), and (4) follow immediately from Lemma 101.4.10 and
Definition 101.4.2. For (5), (6), (7), and (8) think of X and Y as algebraic stacks
over Spec(Z) and apply Lemma 101.4.10. Details omitted. □

The following lemma is a bit different to the analogue for algebraic spaces. To
compare take a look at Morphisms of Spaces, Lemma 67.4.10.

Lemma 101.4.12.050M Let f : X → Y and g : Y → Z be morphisms of algebraic stacks.
(1) If g ◦ f is DM then so is f .
(2) If g ◦ f is quasi-DM then so is f .
(3) If g ◦ f is separated and ∆g is separated, then f is separated.
(4) If g ◦ f is quasi-separated and ∆g is quasi-separated, then f is quasi-

separated.

Proof. Consider the factorization
X → X ×Y X → X ×Z X

of the diagonal morphism of g ◦ f . Both morphisms are representable by algebraic
spaces, see Lemmas 101.3.3 and 101.4.7. Hence for any scheme T and morphism
T → X ×Y X we get morphisms of algebraic spaces

A = X ×(X ×Z X ) T −→ B = (X ×Y X )×(X ×Z X ) T −→ T.

If g ◦ f is DM (resp. quasi-DM), then the composition A→ T is unramified (resp.
locally quasi-finite). Hence (1) (resp. (2)) follows on applying Morphisms of Spaces,
Lemma 67.38.11 (resp. Morphisms of Spaces, Lemma 67.27.8). This proves (1) and
(2).
Proof of (4). Assume g ◦ f is quasi-separated and ∆g is quasi-separated. Consider
the factorization

X → X ×Y X → X ×Z X
of the diagonal morphism of g ◦ f . Both morphisms are representable by algebraic
spaces and the second one is quasi-separated, see Lemmas 101.3.3 and 101.4.7.
Hence for any scheme T and morphism T → X ×Y X we get morphisms of algebraic
spaces

A = X ×(X ×Z X ) T −→ B = (X ×Y X )×(X ×Z X ) T −→ T
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such that B → T is quasi-separated. The composition A→ T is quasi-compact and
quasi-separated as we have assumed that g ◦ f is quasi-separated. Hence A → B
is quasi-separated by Morphisms of Spaces, Lemma 67.4.10. And A→ B is quasi-
compact by Morphisms of Spaces, Lemma 67.8.9. Thus f is quasi-separated.

Proof of (3). Assume g ◦ f is separated and ∆g is separated. Consider the factor-
ization

X → X ×Y X → X ×Z X
of the diagonal morphism of g ◦ f . Both morphisms are representable by algebraic
spaces and the second one is separated, see Lemmas 101.3.3 and 101.4.7. Hence for
any scheme T and morphism T → X ×Y X we get morphisms of algebraic spaces

A = X ×(X ×Z X ) T −→ B = (X ×Y X )×(X ×Z X ) T −→ T

such that B → T is separated. The composition A → T is proper as we have
assumed that g ◦ f is quasi-separated. Hence A → B is proper by Morphisms of
Spaces, Lemma 67.40.6 which means that f is separated. □

Lemma 101.4.13.050N Let X be an algebraic stack over the base scheme S.
(1) X is DM ⇔ X is DM over S.
(2) X is quasi-DM ⇔ X is quasi-DM over S.
(3) If X is separated, then X is separated over S.
(4) If X is quasi-separated, then X is quasi-separated over S.

Let f : X → Y be a morphism of algebraic stacks over the base scheme S.
(5) If X is DM over S, then f is DM.
(6) If X is quasi-DM over S, then f is quasi-DM.
(7) If X is separated over S and ∆Y/S is separated, then f is separated.
(8) If X is quasi-separated over S and ∆Y/S is quasi-separated, then f is

quasi-separated.

Proof. Parts (5), (6), (7), and (8) follow immediately from Lemma 101.4.12 and
Spaces, Definition 65.13.2. To prove (3) and (4) think of X and Y as algebraic
stacks over Spec(Z) and apply Lemma 101.4.12. Similarly, to prove (1) and (2),
think of X as an algebraic stack over Spec(Z) consider the morphisms

X −→ X ×S X −→ X ×Spec(Z) X

Both arrows are representable by algebraic spaces. The second arrow is unramified
and locally quasi-finite as the base change of the immersion ∆S/Z. Hence the
composition is unramified (resp. locally quasi-finite) if and only if the first arrow
is unramified (resp. locally quasi-finite), see Morphisms of Spaces, Lemmas 67.38.3
and 67.38.11 (resp. Morphisms of Spaces, Lemmas 67.27.3 and 67.27.8). □

Lemma 101.4.14.06MB Let X be an algebraic stack. Let W be an algebraic space, and
let f : W → X be a surjective, flat, locally finitely presented morphism.

(1) If f is unramified (i.e., étale, i.e., X is Deligne-Mumford), then X is DM.
(2) If f is locally quasi-finite, then X is quasi-DM.

Proof. Note that if f is unramified, then it is étale by Morphisms of Spaces, Lemma
67.39.12. This explains the parenthetical remark in (1). Assume f is unramified
(resp. locally quasi-finite). We have to show that ∆X : X → X × X is unramified
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(resp. locally quasi-finite). Note that W ×W → X ×X is also surjective, flat, and
locally of finite presentation. Hence it suffices to show that

W ×X ×X ,∆X X = W ×X W −→W ×W
is unramified (resp. locally quasi-finite), see Properties of Stacks, Lemma 100.3.3.
By assumption the morphism pri : W ×X W → W is unramified (resp. locally
quasi-finite). Hence the displayed arrow is unramified (resp. locally quasi-finite)
by Morphisms of Spaces, Lemma 67.38.11 (resp. Morphisms of Spaces, Lemma
67.27.8). □

Lemma 101.4.15.06MY A monomorphism of algebraic stacks is separated and DM. The
same is true for immersions of algebraic stacks.

Proof. If f : X → Y is a monomorphism of algebraic stacks, then ∆f is an isomor-
phism, see Properties of Stacks, Lemma 100.8.4. Since an isomorphism of algebraic
spaces is proper and unramified we see that f is separated and DM. The second
assertion follows from the first as an immersion is a monomorphism, see Properties
of Stacks, Lemma 100.9.5. □

Lemma 101.4.16.06MZ Let X be an algebraic stack. Let x ∈ |X |. Assume the residual
gerbe Zx of X at x exists. If X is DM, resp. quasi-DM, resp. separated, resp.
quasi-separated, then so is Zx.

Proof. This is true because Zx → X is a monomorphism hence DM and separated
by Lemma 101.4.15. Apply Lemma 101.4.11 to conclude. □

101.5. Inertia stacks

050P The (relative) inertia stack of a stack in groupoids is defined in Stacks, Section
8.7. The actual construction, in the setting of fibred categories, and some of its
properties is in Categories, Section 4.34.

Lemma 101.5.1.050Q Let X be an algebraic stack. Then the inertia stack IX is an
algebraic stack as well. The morphism

IX −→ X
is representable by algebraic spaces and locally of finite type. More generally, let
f : X → Y be a morphism of algebraic stacks. Then the relative inertia IX/Y is an
algebraic stack and the morphism

IX/Y −→ X
is representable by algebraic spaces and locally of finite type.

Proof. By Categories, Lemma 4.34.1 there are equivalences
IX → X ×∆,X ×SX ,∆ X and IX/Y → X ×∆,X ×Y X ,∆ X

which shows that the inertia stacks are algebraic stacks. Let T → X be a morphism
given by the object x of the fibre category of X over T . Then we get a 2-fibre product
square

IsomX (x, x)

��

// IX

��
T

x // X
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This follows immediately from the definition of IX . Since IsomX (x, x) is always an
algebraic space locally of finite type over T (see Lemma 101.3.1) we conclude that
IX → X is representable by algebraic spaces and locally of finite type. Finally, for
the relative inertia we get

IsomX (x, x)

��

Koo

��

// IX/Y

��
IsomY(f(x), f(x)) T

eoo x // X

with both squares 2-fibre products. This follows from Categories, Lemma 4.34.3.
The left vertical arrow is a morphism of algebraic spaces locally of finite type over
T , and hence is locally of finite type, see Morphisms of Spaces, Lemma 67.23.6.
Thus K is an algebraic space and K → T is locally of finite type. This proves the
assertion on the relative inertia. □

Remark 101.5.2.050R Let f : X → Y be a morphism of algebraic stacks. In Properties
of Stacks, Remark 100.3.7 we have seen that the 2-category of morphisms Z → X
representable by algebraic spaces with target X forms a category. In this category
the inertia stack of X/Y is a group object. Recall that an object of IX/Y is just a
pair (x, α) where x is an object of X and α is an automorphism of x in the fibre
category of X that x lives in with f(α) = id. The composition

c : IX/Y ×X IX/Y −→ IX/Y

is given by the rule on objects
((x, α), (x′, α′), β) 7→ (x, α ◦ β−1 ◦ α′ ◦ β)

which makes sense as β : x → x′ is an isomorphism in the fibre category by our
definition of fibre products. The neutral element e : X → IX/Y is given by the
functor x 7→ (x, idx). We omit the proof that the axioms of a group object hold.

Let f : X → Y be a morphism of algebraic stacks and let IX/Y be its inertia stack.
Let T be a scheme and let x be an object of X over T . Set y = f(x). We have
seen in the proof of Lemma 101.5.1 that for any scheme T and object x of X over
T there is an exact sequence of sheaves of groups
(101.5.2.1)0CPJ 0→ IsomX/Y(x, x)→ IsomX (x, x)→ IsomY(y, y)
The group structure on the second and third term is the one defined in Lemma
101.3.2 and the sequence gives a meaning to the first term. Also, there is a canonical
cartesian square

IsomX/Y(x, x)

��

// IX/Y

��
T

x // X
In fact, the group structure on IX/Y discussed in Remark 101.5.2 induces the group
structure on IsomX/Y(x, x). This allows us to define the sheaf IsomX/Y(x, x) also
for morphisms from algebraic spaces to X . We formalize this in the following
definition.

Definition 101.5.3.06PP Let f : X → Y be a morphism of algebraic stacks. Let Z be an
algebraic space.
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(1) Let x : Z → X be a morphism. We set

IsomX/Y(x, x) = Z ×x,X IX/Y

We endow it with the structure of a group algebraic space over Z by
pulling back the composition law discussed in Remark 101.5.2. We will
sometimes refer to IsomX/Y(x, x) as the relative sheaf of automorphisms
of x.

(2) Let x1, x2 : Z → X be morphisms. Set yi = f ◦ xi. Let α : y1 → y2 be a
2-morphism. Then α determines a morphism ∆α : Z → Z ×y1,Y,y2 Z and
we set

Isomα
X/Y(x1, x2) = (Z ×x1,X ,x2 Z)×Z×y1,Y,y2Z,∆α Z.

We will sometimes refer to Isomα
X/Y(x1, x2) as the relative sheaf of iso-

morphisms from x1 to x2.
If Y = Spec(Z) or more generally when Y is an algebraic space, then we use
the notation IsomX (x, x) and IsomX (x1, x2) and we use the terminology sheaf of
automorphisms of x and sheaf of isomorphisms from x1 to x2.

Lemma 101.5.4.0CPK Let f : X → Y be a morphism of algebraic stacks. Let Z be an
algebraic space and let xi : Z → X , i = 1, 2 be morphisms. Then

(1) IsomX/Y(x2, x2) is a group algebraic space over Z,
(2) there is an exact sequence of groups

0→ IsomX/Y(x2, x2)→ IsomX (x2, x2)→ IsomY(f ◦ x2, f ◦ x2)

(3) there is a map of algebraic spaces IsomX (x1, x2)→ IsomY(f ◦ x1, f ◦ x2)
such that for any 2-morphism α : f ◦ x1 → f ◦ x2 we obtain a cartesian
diagram

Isomα
X/Y(x1, x2)

��

// Z

α

��
IsomX (x1, x2) // IsomY(f ◦ x1, f ◦ x2)

(4) for any 2-morphism α : f ◦x1 → f ◦x2 the algebraic space Isomα
X/Y(x1, x2)

is a pseudo torsor for IsomX/Y(x2, x2) over Z.

Proof. Part (1) follows from Definition 101.5.3. Part (2) comes from the exact
sequence (101.5.2.1) étale locally on Z. Part (3) can be seen by unwinding the
definitions. Locally on Z in the étale topology part (4) reduces to part (2) of
Lemma 101.3.2. □

Lemma 101.5.5.06PQ Let π : X → Y and f : Y ′ → Y be morphisms of algebraic stacks.
Set X ′ = X ×Y Y ′. Then both squares in the diagram

IX ′/Y′ //

Categories, Equation (4.34.2.3)
��

X ′
π′
//

��

Y ′

f

��
IX/Y // X π // Y

are fibre product squares.
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Proof. The inertia stack IX ′/Y′ is defined as the category of pairs (x′, α′) where x′

is an object of X ′ and α′ is an automorphism of x′ with π′(α′) = id, see Categories,
Section 4.34. Suppose that x′ lies over the scheme U and maps to the object x of
X . By the construction of the 2-fibre product in Categories, Lemma 4.32.3 we see
that x′ = (U, x, y′, β) where y′ is an object of Y ′ over U and β is an isomorphism
β : π(x)→ f(y′) in the fibre category of Y over U . By the very construction of the
2-fibre product the automorphism α′ is a pair (α, γ) where α is an automorphism of
x over U and γ is an automorphism of y′ over U such that α and γ are compatible
via β. The condition π′(α′) = id signifies that γ = id whereupon the condition
that α, β, γ are compatible is exactly the condition π(α) = id, i.e., means exactly
that (x, α) is an object of IX/Y . In this way we see that the left square is a fibre
product square (some details omitted). □

Lemma 101.5.6.06R5 Let f : X → Y be a monomorphism of algebraic stacks. Then the
diagram

IX //

��

X

��
IY // Y

is a fibre product square.

Proof. This follows immediately from the fact that f is fully faithful (see Properties
of Stacks, Lemma 100.8.4) and the definition of the inertia in Categories, Section
4.34. Namely, an object of IX over a scheme T is the same thing as a pair (x, α)
consisting of an object x of X over T and a morphism α : x → x in the fibre
category of X over T . As f is fully faithful we see that α is the same thing as a
morphism β : f(x) → f(x) in the fibre category of Y over T . Hence we can think
of objects of IX over T as triples ((y, β), x, γ) where y is an object of Y over T ,
β : y → y in YT and γ : y → f(x) is an isomorphism over T , i.e., an object of
IY ×Y X over T . □

Lemma 101.5.7.06PR Let X be an algebraic stack. Let [U/R] → X be a presenta-
tion. Let G/U be the stabilizer group algebraic space associated to the groupoid
(U,R, s, t, c). Then

G

��

// U

��
IX // X

is a fibre product diagram.

Proof. Immediate from Groupoids in Spaces, Lemma 78.26.2. □

101.6. Higher diagonals

04YX Let f : X → Y be a morphism of algebraic stacks. In this situation it makes sense
to consider not only the diagonal

∆f : X → X ×Y X
but also the diagonal of the diagonal, i.e., the morphism

∆∆f
: X −→ X ×(X ×Y X ) X
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Because of this we sometimes use the following terminology. We denote ∆f,0 =
f the zeroth diagonal, we denote ∆f,1 = ∆f the first diagonal, and we denote
∆f,2 = ∆∆f

the second diagonal. Note that ∆f,1 is representable by algebraic
spaces and locally of finite type, see Lemma 101.3.3. Hence ∆f,2 is representable, a
monomorphism, locally of finite type, separated, and locally quasi-finite, see Lemma
101.3.4.

We can describe the second diagonal using the relative inertia stack. Namely, the
fibre product X ×(X ×Y X ) X is equivalent to the relative inertia stack IX/Y by
Categories, Lemma 4.34.1. Moreover, via this identification the second diagonal
becomes the neutral section

∆f,2 = e : X → IX/Y

of the relative inertia stack. By analogy with what happens for groupoids in alge-
braic spaces (Groupoids in Spaces, Lemma 78.29.2) we have the following equiva-
lences.

Lemma 101.6.1.0CL0 Let f : X → Y be a morphism of algebraic stacks.
(1) The following are equivalent

(a) IX/Y → X is separated,
(b) ∆f,1 = ∆f : X → X ×Y X is separated, and
(c) ∆f,2 = e : X → IX/Y is a closed immersion.

(2) The following are equivalent
(a) IX/Y → X is quasi-separated,
(b) ∆f,1 = ∆f : X → X ×Y X is quasi-separated, and
(c) ∆f,2 = e : X → IX/Y is a quasi-compact.

(3) The following are equivalent
(a) IX/Y → X is locally separated,
(b) ∆f,1 = ∆f : X → X ×Y X is locally separated, and
(c) ∆f,2 = e : X → IX/Y is an immersion.

(4) The following are equivalent
(a) IX/Y → X is unramified,
(b) f is DM.

(5) The following are equivalent
(a) IX/Y → X is locally quasi-finite,
(b) f is quasi-DM.

Proof. Proof of (1), (2), and (3). Choose an algebraic space U and a surjective
smooth morphism U → X . Then G = U ×X IX/Y is an algebraic space over U
(Lemma 101.5.1). In fact, G is a group algebraic space over U by the group law on
relative inertia constructed in Remark 101.5.2. Moreover, G → IX/Y is surjective
and smooth as a base change of U → X . Finally, the base change of e : X → IX/Y
by G → IX/Y is the identity U → G of G/U . Thus the equivalence of (a) and (c)
follows from Groupoids in Spaces, Lemma 78.6.1. Since ∆f,2 is the diagonal of ∆f

we have (b) ⇔ (c) by definition.

Proof of (4) and (5). Recall that (4)(b) means ∆f is unramified and (5)(b) means
that ∆f is locally quasi-finite. Choose a scheme Z and a morphism a : Z → X×YX .
Then a = (x1, x2, α) where xi : Z → X and α : f ◦ x1 → f ◦ x2 is a 2-morphism.
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Recall that
Isomα

X/Y(x1, x2)

��

// Z

��
X

∆f // X ×Y X

and

IsomX/Y(x2, x2)

��

// Z

x2

��
IX/Y // X

are cartesian squares. By Lemma 101.5.4 the algebraic space Isomα
X/Y(x1, x2) is

a pseudo torsor for IsomX/Y(x2, x2) over Z. Thus the equivalences in (4) and (5)
follow from Groupoids in Spaces, Lemma 78.9.5. □

Lemma 101.6.2.04YY Let f : X → Y be a morphism of algebraic stacks. The following
are equivalent:

(1) the morphism f is representable by algebraic spaces,
(2) the second diagonal of f is an isomorphism,
(3) the group stack IX/Y is trivial over X , and
(4) for a scheme T and a morphism x : T → X the kernel of IsomX (x, x) →

IsomY(f(x), f(x)) is trivial.

Proof. We first prove the equivalence of (1) and (2). Namely, f is representable by
algebraic spaces if and only if f is faithful, see Algebraic Stacks, Lemma 94.15.2. On
the other hand, f is faithful if and only if for every object x of X over a scheme T the
functor f induces an injection IsomX (x, x)→ IsomY(f(x), f(x)), which happens if
and only if the kernel K is trivial, which happens if and only if e : T → K is an
isomorphism for every x : T → X . Since K = T ×x,X IX/Y as discussed above, this
proves the equivalence of (1) and (2). To prove the equivalence of (2) and (3), by
the discussion above, it suffices to note that a group stack is trivial if and only if its
identity section is an isomorphism. Finally, the equivalence of (3) and (4) follows
from the definitions: in the proof of Lemma 101.5.1 we have seen that the kernel
in (4) corresponds to the fibre product T ×x,X IX/Y over T . □

This lemma leads to the following hierarchy for morphisms of algebraic stacks.

Lemma 101.6.3.0AHJ A morphism f : X → Y of algebraic stacks is
(1) a monomorphism if and only if ∆f,1 is an isomorphism, and
(2) representable by algebraic spaces if and only if ∆f,1 is a monomorphism.

Moreover, the second diagonal ∆f,2 is always a monomorphism.

Proof. Recall from Properties of Stacks, Lemma 100.8.4 that a morphism of alge-
braic stacks is a monomorphism if and only if its diagonal is an isomorphism of
stacks. Thus Lemma 101.6.2 can be rephrased as saying that a morphism is rep-
resentable by algebraic spaces if the diagonal is a monomorphism. In particular,
it shows that condition (3) of Lemma 101.3.4 is actually an if and only if, i.e., a
morphism of algebraic stacks is representable by algebraic spaces if and only if its
diagonal is a monomorphism. □

Lemma 101.6.4.04YZ Let f : X → Y be a morphism of algebraic stacks. Then
(1) ∆f,1 separated ⇔ ∆f,2 closed immersion ⇔ ∆f,2 proper ⇔ ∆f,2 univer-

sally closed,
(2) ∆f,1 quasi-separated ⇔ ∆f,2 finite type ⇔ ∆f,2 quasi-compact, and
(3) ∆f,1 locally separated ⇔ ∆f,2 immersion.
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Proof. Follows from Lemmas 101.3.5, 101.3.6, and 101.3.7 applied to ∆f,1. □

The following lemma is kind of cute and it may suggest a generalization of these
conditions to higher algebraic stacks.

Lemma 101.6.5.04Z0 Let f : X → Y be a morphism of algebraic stacks. Then
(1) f is separated if and only if ∆f,1 and ∆f,2 are universally closed, and
(2) f is quasi-separated if and only if ∆f,1 and ∆f,2 are quasi-compact.
(3) f is quasi-DM if and only if ∆f,1 and ∆f,2 are locally quasi-finite.
(4) f is DM if and only if ∆f,1 and ∆f,2 are unramified.

Proof. Proof of (1). Assume that ∆f,2 and ∆f,1 are universally closed. Then ∆f,1
is separated and universally closed by Lemma 101.6.4. By Morphisms of Spaces,
Lemma 67.9.7 and Algebraic Stacks, Lemma 94.10.9 we see that ∆f,1 is quasi-
compact. Hence it is quasi-compact, separated, universally closed and locally of
finite type (by Lemma 101.3.3) so proper. This proves “⇐” of (1). The proof of
the implication in the other direction is omitted.

Proof of (2). This follows immediately from Lemma 101.6.4.

Proof of (3). This follows from the fact that ∆f,2 is always locally quasi-finite by
Lemma 101.3.4 applied to ∆f = ∆f,1.

Proof of (4). This follows from the fact that ∆f,2 is always unramified as Lemma
101.3.4 applied to ∆f = ∆f,1 shows that ∆f,2 is locally of finite type and a
monomorphism. See More on Morphisms of Spaces, Lemma 76.14.8. □

Lemma 101.6.6.0CPL Let f : X → Y be a separated (resp. quasi-separated, resp. quasi-
DM, resp. DM) morphism of algebraic stacks. Then

(1) given algebraic spaces Ti, i = 1, 2 and morphisms xi : Ti → X , with
yi = f ◦ xi the morphism

T1 ×x1,X ,x2 T2 −→ T1 ×y1,Y,y2 T2

is proper (resp. quasi-compact and quasi-separated, resp. locally quasi-
finite, resp. unramified),

(2) given an algebraic space T and morphisms xi : T → X , i = 1, 2, with
yi = f ◦ xi the morphism

IsomX (x1, x2) −→ IsomY(y1, y2)

is proper (resp. quasi-compact and quasi-separated, resp. locally quasi-
finite, resp. unramified).

Proof. Proof of (1). Observe that the diagram

T1 ×x1,X ,x2 T2

��

// T1 ×y1,Y,y2 T2

��
X // X ×Y X

is cartesian. Hence this follows from the fact that f is separated (resp. quasi-
separated, resp. quasi-DM, resp. DM) if and only if the diagonal is proper (resp.
quasi-compact and quasi-separated, resp. locally quasi-finite, resp. unramified).
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Proof of (2). This is true because
IsomX (x1, x2) = (T ×x1,X ,x2 T )×T×T,∆T

T

hence the morphism in (2) is a base change of the morphism in (1). □

101.7. Quasi-compact morphisms

050S Let f be a morphism of algebraic stacks which is representable by algebraic spaces.
In Properties of Stacks, Section 100.3 we have defined what it means for f to be
quasi-compact. Here is another characterization.

Lemma 101.7.1.050T Let f : X → Y be a morphism of algebraic stacks which is
representable by algebraic spaces. The following are equivalent:

(1) f is quasi-compact (as in Properties of Stacks, Section 100.3), and
(2) for every quasi-compact algebraic stack Z and any morphism Z → Y the

algebraic stack Z ×Y X is quasi-compact.

Proof. Assume (1), and let Z → Y be a morphism of algebraic stacks with Z quasi-
compact. By Properties of Stacks, Lemma 100.6.2 there exists a quasi-compact
scheme U and a surjective smooth morphism U → Z. Since f is representable by
algebraic spaces and quasi-compact we see by definition that U×YX is an algebraic
space, and that U ×Y X → U is quasi-compact. Hence U ×Y X is a quasi-compact
algebraic space. The morphism U ×Y X → Z ×Y X is smooth and surjective (as
the base change of the smooth and surjective morphism U → Z). Hence Z ×Y X
is quasi-compact by another application of Properties of Stacks, Lemma 100.6.2
Assume (2). Let Z → Y be a morphism, where Z is a scheme. We have to show
that the morphism of algebraic spaces p : Z ×Y X → Z is quasi-compact. Let
U ⊂ Z be affine open. Then p−1(U) = U ×Y Z and the algebraic space U ×Y Z
is quasi-compact by assumption (2). Hence p is quasi-compact, see Morphisms of
Spaces, Lemma 67.8.8. □

This motivates the following definition.

Definition 101.7.2.050U Let f : X → Y be a morphism of algebraic stacks. We say f is
quasi-compact if for every quasi-compact algebraic stack Z and morphism Z → Y
the fibre product Z ×Y X is quasi-compact.

By Lemma 101.7.1 above this agrees with the already existing notion for morphisms
of algebraic stacks representable by algebraic spaces. In particular this notion
agrees with the notions already defined for morphisms between algebraic stacks
and schemes.

Lemma 101.7.3.050V The base change of a quasi-compact morphism of algebraic stacks
by any morphism of algebraic stacks is quasi-compact.

Proof. Omitted. □

Lemma 101.7.4.050W The composition of a pair of quasi-compact morphisms of algebraic
stacks is quasi-compact.

Proof. Omitted. □

Lemma 101.7.5.0CL1 A closed immersion of algebraic stacks is quasi-compact.
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Proof. This follows from the fact that immersions are always representable and the
corresponding fact for closed immersion of algebraic spaces. □

Lemma 101.7.6.050X Let
X

f
//

p
��

Y

q
��

Z
be a 2-commutative diagram of morphisms of algebraic stacks. If f is surjective
and p is quasi-compact, then q is quasi-compact.

Proof. Let T be a quasi-compact algebraic stack, and let T → Z be a morphism. By
Properties of Stacks, Lemma 100.5.3 the morphism T ×Z X → T ×Z Y is surjective
and by assumption T ×Z X is quasi-compact. Hence T ×Z Y is quasi-compact by
Properties of Stacks, Lemma 100.6.2. □

Lemma 101.7.7.050Y Let f : X → Y and g : Y → Z be morphisms of algebraic stacks.
If g ◦ f is quasi-compact and g is quasi-separated then f is quasi-compact.

Proof. This is true because f equals the composition (1, f) : X → X ×Z Y →
Y. The first map is quasi-compact by Lemma 101.4.9 because it is a section of
the quasi-separated morphism X ×Z Y → X (a base change of g, see Lemma
101.4.4). The second map is quasi-compact as it is the base change of f , see
Lemma 101.7.3. And compositions of quasi-compact morphisms are quasi-compact,
see Lemma 101.7.4. □

Lemma 101.7.8.075S Let f : X → Y be a morphism of algebraic stacks.
(1) If X is quasi-compact and Y is quasi-separated, then f is quasi-compact.
(2) If X is quasi-compact and quasi-separated and Y is quasi-separated, then

f is quasi-compact and quasi-separated.
(3) A fibre product of quasi-compact and quasi-separated algebraic stacks is

quasi-compact and quasi-separated.

Proof. Part (1) follows from Lemma 101.7.7. Part (2) follows from (1) and Lemma
101.4.12. For (3) let X → Y and Z → Y be morphisms of quasi-compact and
quasi-separated algebraic stacks. Then X ×Y Z → Z is quasi-compact and quasi-
separated as a base change of X → Y using (2) and Lemmas 101.7.3 and 101.4.4.
Hence X ×Y Z is quasi-compact and quasi-separated as an algebraic stack quasi-
compact and quasi-separated over Z, see Lemmas 101.4.11 and 101.7.4. □

Lemma 101.7.9.0CL2 Let f : X → Y be a quasi-compact morphism of algebraic stacks.
Let y ∈ |Y| be a point in the closure of the image of |f |. There exists a valuation
ring A with fraction field K and a commutative diagram

Spec(K) //

��

X

��
Spec(A) // Y

such that the closed point of Spec(A) maps to y.
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Proof. Choose an affine scheme V and a point v ∈ V and a smooth morphism
V → Y sending v to y. Consider the base change diagram

V ×Y X //

g

��

X

f

��
V // Y

Recall that |V ×Y X| → |V | ×|Y| |X | is surjective (Properties of Stacks, Lemma
100.4.3). Because |V | → |Y| is open (Properties of Stacks, Lemma 100.4.7) we
conclude that v is in the closure of the image of |g|. Thus it suffices to prove the
lemma for the quasi-compact morphism g (Lemma 101.7.3) which we do in the next
paragraph.

Assume Y = Y is an affine scheme. Then X is quasi-compact as f is quasi-compact
(Definition 101.7.2). Choose an affine scheme W and a surjective smooth morphism
W → X . Then the image of |f | is the image of W → Y . By Morphisms, Lemma
29.6.5 we can choose a diagram

Spec(K) //

��

W

��

// X

��
Spec(A) // Y // Y

such that the closed point of Spec(A) maps to y. Composing with W → X we
obtain a solution. □

Lemma 101.7.10.0DTL Let f : X → Y be a morphism of algebraic stacks. Let W → Y
be surjective, flat, and locally of finite presentation where W is an algebraic space.
If the base change W ×Y X →W is quasi-compact, then f is quasi-compact.

Proof. Assume W ×Y X → W is quasi-compact. Let Z → Y be a morphism with
Z a quasi-compact algebraic stack. Choose a scheme U and a surjective smooth
morphism U → W ×Y Z. Since U → Z is flat, surjective, and locally of finite
presentation and Z is quasi-compact, we can find a quasi-compact open subscheme
U ′ ⊂ U such that U ′ → Z is surjective. Then U ′×Y X = U ′×W (W ×Y X ) is quasi-
compact by assumption and surjects onto Z×Y X . Hence Z×Y X is quasi-compact
as desired. □

101.8. Noetherian algebraic stacks

050Z We have already defined locally Noetherian algebraic stacks in Properties of Stacks,
Section 100.7.

Definition 101.8.1.0510 Let X be an algebraic stack. We say X is Noetherian if X is
quasi-compact, quasi-separated and locally Noetherian.

Note that a Noetherian algebraic stack X is not just quasi-compact and locally
Noetherian, but also quasi-separated. In the language of Section 101.6 if we denote
p : X → Spec(Z) the “absolute” structure morphism (i.e., the structure morphism
of X viewed as an algebraic stack over Z), then

X Noetherian⇔ X locally Noetherian and ∆p,0,∆p,1,∆p,2 quasi-compact.

https://stacks.math.columbia.edu/tag/0DTL
https://stacks.math.columbia.edu/tag/0510


101.9. AFFINE MORPHISMS 6981

This will later mean that an algebraic stack of finite type over a Noetherian algebraic
stack is not automatically Noetherian.

Lemma 101.8.2.0CPM Let j : X → Y be an immersion of algebraic stacks.
(1) If Y is locally Noetherian, then X is locally Noetherian and j is quasi-

compact.
(2) If Y is Noetherian, then X is Noetherian.

Proof. Choose a scheme V and a surjective smooth morphism V → Y. Then
U = X ×Y V is a scheme and V → U is an immersion, see Properties of Stacks,
Definition 100.9.1. Recall that Y is locally Noetherian if and only if V is locally
Noetherian. In this case U is locally Noetherian too (Morphisms, Lemmas 29.15.5
and 29.15.6) and U → V is quasi-compact (Properties, Lemma 28.5.3). This shows
that j is quasi-compact (Lemma 101.7.10) and that X is locally Noetherian. Finally,
if Y is Noetherian, then we see from the above that X is quasi-compact and locally
Noetherian. To finish the proof observe that j is separated and hence X is quasi-
separated because Y is so by Lemma 101.4.11. □

Lemma 101.8.3.0DQI Let X be an algebraic stack.
(1) If X is locally Noetherian then |X | is a locally Noetherian topological

space.
(2) If X is quasi-compact and locally Noetherian, then |X | is a Noetherian

topological space.

Proof. Assume X is locally Noetherian. Choose a scheme U and a surjective smooth
morphism U → X . As X is locally Noetherian we see that U is locally Noetherian.
By Properties, Lemma 28.5.5 this means that |U | is a locally Noetherian topological
space. Since |U | → |X | is open and surjective we conclude that |X | is locally
Noetherian by Topology, Lemma 5.9.3. This proves (1). If X is quasi-compact and
locally Noetherian, then |X | is quasi-compact and locally Noetherian. Hence |X | is
Noetherian by Topology, Lemma 5.12.14. □

Lemma 101.8.4.0GVX Let X be a locally Noetherian algebraic stack. Then |X | is quasi-
sober (Topology, Definition 5.8.6).

Proof. We have to prove that every irreducible closed subset T ⊂ |X | has a generic
point. Choose an affine scheme U and a smooth morphism f : U → X such that
f−1(T ) ⊂ |U | is nonempty. Since U is Noetherian, the closed subset f−1(T ) has
finitely many irreducible components (Topology, Lemma 5.9.2). Say f−1(T ) =
Z1 ∪ . . . ∪ Zn is the decomposition into irreducible components. As f is open, the
image of f |f−1(T ) : f−1(T )→ T contains a nonempty open subset of T . Since T is
irreducible, this means that f(f−1(T )) is dense. Since T is irreducible, it follows
that f(Zi) is dense for some i. Then if ξi ∈ Zi is the generic point we see that f(ξi)
is a generic point of T . □

101.9. Affine morphisms

0CHP Affine morphisms of algebraic stacks are defined as follows.

Definition 101.9.1.0CHQ A morphism of algebraic stacks is said to be affine if it is
representable and affine in the sense of Properties of Stacks, Section 100.3.
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For us it is a little bit more convenient to think of an affine morphism of algebraic
stacks as a morphism of algebraic stacks which is representable by algebraic spaces
and affine in the sense of Properties of Stacks, Section 100.3. (Recall that the default
for “representable” in the Stacks project is representable by schemes.) Since this
is clearly equivalent to the notion just defined we shall use this characterization
without further mention. We prove a few simple lemmas about this notion.

Lemma 101.9.2.0CHR Let X → Y be a morphism of algebraic stacks. Let Z → Y be an
affine morphism of algebraic stacks. Then Z ×Y X → X is an affine morphism of
algebraic stacks.

Proof. This follows from the discussion in Properties of Stacks, Section 100.3. □

Lemma 101.9.3.0CHS Compositions of affine morphisms of algebraic stacks are affine.

Proof. This follows from the discussion in Properties of Stacks, Section 100.3 and
Morphisms of Spaces, Lemma 67.20.4. □

Lemma 101.9.4.0GQE Let
X

f
//

a
��

Y

b��
Z

be a commutative diagram of morphisms of algebraic stacks. If a is affine and ∆b

is affine, then f is affine.

Proof. The base change pr2 : X ×Z Y → Y of a is affine by Lemma 101.9.2. The
morphism (1, f) : X → X ×Z Y is the base change of ∆b : Y → Y ×Z Y by the
morphism X ×Z Y → Y ×Z Y (see material in Categories, Section 4.31). Hence it
is affine by Lemma 101.9.2. The composition f = pr2 ◦ (1, f) of affine morphisms
is affine by Lemma 101.9.3 and the proof is done. □

101.10. Integral and finite morphisms

0CHT Integral and finite morphisms of algebraic stacks are defined as follows.

Definition 101.10.1.0CHU Let f : X → Y be a morphism of algebraic stacks.
(1) We say f is integral if f is representable and integral in the sense of

Properties of Stacks, Section 100.3.
(2) We say f is finite if f is representable and finite in the sense of Properties

of Stacks, Section 100.3.

For us it is a little bit more convenient to think of an integral, resp. finite mor-
phism of algebraic stacks as a morphism of algebraic stacks which is representable
by algebraic spaces and integral, resp. finite in the sense of Properties of Stacks,
Section 100.3. (Recall that the default for “representable” in the Stacks project is
representable by schemes.) Since this is clearly equivalent to the notion just defined
we shall use this characterization without further mention. We prove a few simple
lemmas about this notion.

Lemma 101.10.2.0CHV Let X → Y be a morphism of algebraic stacks. Let Z → Y be an
integral (or finite) morphism of algebraic stacks. Then Z ×Y X → X is an integral
(or finite) morphism of algebraic stacks.
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Proof. This follows from the discussion in Properties of Stacks, Section 100.3. □

Lemma 101.10.3.0CHW Compositions of integral, resp. finite morphisms of algebraic
stacks are integral, resp. finite.
Proof. This follows from the discussion in Properties of Stacks, Section 100.3 and
Morphisms of Spaces, Lemma 67.45.4. □

101.11. Open morphisms

06U0 Let f be a morphism of algebraic stacks which is representable by algebraic spaces.
In Properties of Stacks, Section 100.3 we have defined what it means for f to be
universally open. Here is another characterization.
Lemma 101.11.1.06U1 Let f : X → Y be a morphism of algebraic stacks which is
representable by algebraic spaces. The following are equivalent

(1) f is universally open (as in Properties of Stacks, Section 100.3), and
(2) for every morphism of algebraic stacks Z → Y the morphism of topological

spaces |Z ×Y X| → |Z| is open.
Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a surjective
smooth morphism V → Z. By assumption the morphism V ×Y X → V of algebraic
spaces is universally open, in particular the map |V ×Y X| → |V | is open. By
Properties of Stacks, Section 100.4 in the commutative diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover
|V ×Y X| −→ |V | ×|Z| |Z ×Y X|

is surjective. Hence as the left vertical arrow is open it follows that the right
vertical arrow is open. This proves (2). The implication (2)⇒ (1) follows from the
definitions. □

Thus we may use the following natural definition.
Definition 101.11.2.06U2 Let f : X → Y be a morphism of algebraic stacks.

(1) We say f is open if the map of topological spaces |X | → |Y| is open.
(2) We say f is universally open if for every morphism of algebraic stacks
Z → Y the morphism of topological spaces

|Z ×Y X| → |Z|
is open, i.e., the base change Z ×Y X → Z is open.

Lemma 101.11.3.06U3 The base change of a universally open morphism of algebraic
stacks by any morphism of algebraic stacks is universally open.
Proof. This is immediate from the definition. □

Lemma 101.11.4.06U4 The composition of a pair of (universally) open morphisms of
algebraic stacks is (universally) open.
Proof. Omitted. □
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101.12. Submersive morphisms

06U5 Let f be a morphism of algebraic stacks which is representable by algebraic spaces.
In Properties of Stacks, Section 100.3 we have defined what it means for f to be
universally submersive. Here is another characterization.

Lemma 101.12.1.0CHX Let f : X → Y be a morphism of algebraic stacks which is
representable by algebraic spaces. The following are equivalent

(1) f is universally submersive (as in Properties of Stacks, Section 100.3), and
(2) for every morphism of algebraic stacks Z → Y the morphism of topological

spaces |Z ×Y X| → |Z| is submersive.

Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a sur-
jective smooth morphism V → Z. By assumption the morphism V ×Y X → V of
algebraic spaces is universally submersive, in particular the map |V ×Y X| → |V |
is submersive. By Properties of Stacks, Section 100.4 in the commutative diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover

|V ×Y X| −→ |V | ×|Z| |Z ×Y X|

is surjective. Hence as the left vertical arrow is submersive it follows that the right
vertical arrow is submersive. This proves (2). The implication (2) ⇒ (1) follows
from the definitions. □

Thus we may use the following natural definition.

Definition 101.12.2.06U6 Let f : X → Y be a morphism of algebraic stacks.
(1) We say f is submersive4 if the continuous map |X | → |Y| is submersive,

see Topology, Definition 5.6.3.
(2) We say f is universally submersive if for every morphism of algebraic

stacks Y ′ → Y the base change Y ′ ×Y X → Y ′ is submersive.

We note that a submersive morphism is in particular surjective.

Lemma 101.12.3.0CHY The base change of a universally submersive morphism of alge-
braic stacks by any morphism of algebraic stacks is universally submersive.

Proof. This is immediate from the definition. □

Lemma 101.12.4.0CHZ The composition of a pair of (universally) submersive morphisms
of algebraic stacks is (universally) submersive.

Proof. Omitted. □

4This is very different from the notion of a submersion of differential manifolds.
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101.13. Universally closed morphisms

0511 Let f be a morphism of algebraic stacks which is representable by algebraic spaces.
In Properties of Stacks, Section 100.3 we have defined what it means for f to be
universally closed. Here is another characterization.

Lemma 101.13.1.0512 Let f : X → Y be a morphism of algebraic stacks which is
representable by algebraic spaces. The following are equivalent

(1) f is universally closed (as in Properties of Stacks, Section 100.3), and
(2) for every morphism of algebraic stacks Z → Y the morphism of topological

spaces |Z ×Y X| → |Z| is closed.

Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a surjective
smooth morphism V → Z. By assumption the morphism V ×Y X → V of algebraic
spaces is universally closed, in particular the map |V ×Y X| → |V | is closed. By
Properties of Stacks, Section 100.4 in the commutative diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover
|V ×Y X| −→ |V | ×|Z| |Z ×Y X|

is surjective. Hence as the left vertical arrow is closed it follows that the right
vertical arrow is closed. This proves (2). The implication (2) ⇒ (1) follows from
the definitions. □

Thus we may use the following natural definition.

Definition 101.13.2.0513 Let f : X → Y be a morphism of algebraic stacks.
(1) We say f is closed if the map of topological spaces |X | → |Y| is closed.
(2) We say f is universally closed if for every morphism of algebraic stacks
Z → Y the morphism of topological spaces

|Z ×Y X| → |Z|
is closed, i.e., the base change Z ×Y X → Z is closed.

Lemma 101.13.3.0514 The base change of a universally closed morphism of algebraic
stacks by any morphism of algebraic stacks is universally closed.

Proof. This is immediate from the definition. □

Lemma 101.13.4.0515 The composition of a pair of (universally) closed morphisms of
algebraic stacks is (universally) closed.

Proof. Omitted. □

Lemma 101.13.5.0CL3 Let f : X → Y be a morphism of algebraic stacks. The following
are equivalent

(1) f is universally closed,
(2) for every scheme Z and every morphism Z → Y the projection |Z×YX| →
|Z| is closed,
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(3) for every affine scheme Z and every morphism Z → Y the projection
|Z ×Y X| → |Z| is closed, and

(4) there exists an algebraic space V and a surjective smooth morphism V →
Y such that V ×Y X → V is a universally closed morphism of algebraic
stacks.

Proof. We omit the proof that (1) implies (2), and that (2) implies (3).

Assume (3). Choose a surjective smooth morphism V → Y. We are going to show
that V ×Y X → V is a universally closed morphism of algebraic stacks. Let Z → V
be a morphism from an algebraic stack to V . Let W → Z be a surjective smooth
morphism where W =

∐
Wi is a disjoint union of affine schemes. Then we have

the following commutative diagram∐
i |Wi ×Y X|

��

|W ×Y X| //

��

|Z ×Y X|

��

|Z ×V (V ×Y X )|

vv∐
|Wi| |W | // |Z|

We have to show the south-east arrow is closed. The middle horizontal arrows are
surjective and open (Properties of Stacks, Lemma 100.4.7). By assumption (3),
and the fact that Wi is affine we see that the left vertical arrows are closed. Hence
it follows that the right vertical arrow is closed.

Assume (4). We will show that f is universally closed. Let Z → Y be a morphism
of algebraic stacks. Consider the diagram

|(V ×Y Z)×V (V ×Y X )|

))

|V ×Y X| //

��

|Z ×Y X|

��
|V ×Y Z| // |Z|

The south-west arrow is closed by assumption. The horizontal arrows are surjective
and open because the corresponding morphisms of algebraic stacks are surjective
and smooth (see reference above). It follows that the right vertical arrow is closed.

□

101.14. Universally injective morphisms

0CI0 Let f be a morphism of algebraic stacks which is representable by algebraic spaces.
In Properties of Stacks, Section 100.3 we have defined what it means for f to be
universally injective. Here is another characterization.

Lemma 101.14.1.0CI1 Let f : X → Y be a morphism of algebraic stacks which is
representable by algebraic spaces. The following are equivalent

(1) f is universally injective (as in Properties of Stacks, Section 100.3), and
(2) for every morphism of algebraic stacks Z → Y the map |Z ×Y X| → |Z|

is injective.

Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a surjective
smooth morphism V → Z. By assumption the morphism V ×Y X → V of algebraic

https://stacks.math.columbia.edu/tag/0CI1
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spaces is universally injective, in particular the map |V ×Y X| → |V | is injective.
By Properties of Stacks, Section 100.4 in the commutative diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover
|V ×Y X| −→ |V | ×|Z| |Z ×Y X|

is surjective. Hence as the left vertical arrow is injective it follows that the right
vertical arrow is injective. This proves (2). The implication (2) ⇒ (1) follows from
the definitions. □

Thus we may use the following natural definition.

Definition 101.14.2.0CI2 Let f : X → Y be a morphism of algebraic stacks. We say f
is universally injective if for every morphism of algebraic stacks Z → Y the map

|Z ×Y X| → |Z|
is injective.

Lemma 101.14.3.0CI3 The base change of a universally injective morphism of algebraic
stacks by any morphism of algebraic stacks is universally injective.

Proof. This is immediate from the definition. □

Lemma 101.14.4.0CI4 The composition of a pair of universally injective morphisms of
algebraic stacks is universally injective.

Proof. Omitted. □

Lemma 101.14.5.0CPN Let f : X → Y be a morphism of algebraic stacks. The following
are equivalent

(1) f is universally injective,
(2) ∆ : X → X ×Y X is surjective, and
(3) for an algebraically closed field, for x1, x2 : Spec(k) → X , and for a 2-

arrow β : f ◦ x1 → f ◦ x2 there is a 2-arrow α : x1 → x2 with β = idf ⋆ α.

Proof. (1)⇒ (2). If f is universally injective, then the first projection |X ×Y X| →
|X | is injective, which implies that |∆| is surjective.
(2) ⇒ (1). Assume ∆ is surjective. Then any base change of ∆ is surjective (see
Properties of Stacks, Section 100.5). Since the diagonal of a base change of f is
a base change of ∆, we see that it suffices to show that |X | → |Y| is injective. If
not, then by Properties of Stacks, Lemma 100.4.3 we find that the first projection
|X ×Y X| → |X | is not injective. Of course this means that |∆| is not surjective.
(3)⇒ (2). Let t ∈ |X ×Y X|. Then we can represent t by a morphism t : Spec(k)→
X ×YX with k an algebraically closed field. By our construction of 2-fibre products
we can represent t by (x1, x2, β) where x1, x2 : Spec(k)→ X and β : f ◦x1 → f ◦x2
is a 2-morphism. Then (3) implies that there is a 2-morphism α : x1 → x2 mapping
to β. This exactly means that ∆(x1) = (x1, x1, id) is isomorphic to t. Hence (2)
holds.
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(2) ⇒ (3). Let x1, x2 : Spec(k) → X be morphisms with k an algebraically closed
field. Let β : f ◦ x1 → f ◦ x2 be a 2-morphism. As in the previous paragraph, we
obtain a morphism t = (x1, x2, β) : Spec(k)→ X ×Y X . By Lemma 101.3.3

T = X ×∆,X ×Y X ,t Spec(k)
is an algebraic space locally of finite type over Spec(k). Condition (2) implies that T
is nonempty. Then since k is algebraically closed, there is a k-point in T . Unwinding
the definitions this means there is a morphism α : x1 → x2 in Mor(Spec(k),X ) such
that β = idf ⋆ α. □

Lemma 101.14.6.0DTM Let f : X → Y be a universally injective morphism of algebraic
stacks. Let y : Spec(k)→ Y be a morphism where k is an algebraically closed field.
If y is in the image of |X | → |Y|, then there is a morphism x : Spec(k) → X with
y = f ◦ x.

Proof. We first remark this lemma is not a triviality, because the assumption that
y is in the image of |f | means only that we can lift y to a morphism into X
after possibly replacing k by an extension field. To prove the lemma we may base
change f by y, hence we may assume we have a nonempty algebraic stack X and a
universally injective morphism X → Spec(k) and we want to find a k-valued point
of X . We may replace X by its reduction. We may choose a field k′ and a surjective,
flat, locally finite type morphism Spec(k′) → X , see Properties of Stacks, Lemma
100.11.2. Since X → Spec(k) is universally injective, we find that

Spec(k′)×X Spec(k′)→ Spec(k′ ⊗k k′)
is surjective as the base change of the surjective morphism ∆ : X → X ×Spec(k) X
(Lemma 101.14.5). Since k is algebraically closed k′ ⊗k k′ is a domain (Algebra,
Lemma 10.49.4). Let ξ ∈ Spec(k′) ×X Spec(k′) be a point mapping to the generic
point of Spec(k′⊗kk′). Let U be the reduced induced closed subscheme structure on
the connected component of Spec(k′)×X Spec(k′) containing ξ. Then the two pro-
jections U → Spec(k′) are locally of finite type, as this was true for the projections
Spec(k′)×X Spec(k′) → Spec(k′) as base changes of the morphism Spec(k′) → X .
Applying Varieties, Proposition 33.31.1 we find that the integral closures of the two
images of k′ in Γ(U,OU ) are equal. Looking in κ(ξ) means that any element of the
form λ⊗ 1 is algebraically dependend on the subfield

1⊗ k′ ⊂ (fraction field of k′ ⊗k k′) ⊂ κ(ξ).
Since k is algebraically closed, this is only possible if k′ = k and the proof is
complete. □

Lemma 101.14.7.0DTN Let f : X → Y be a morphism of algebraic stacks. The following
are equivalent:

(1) f is universally injective,
(2) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y
X → Z is universally injective, and

(3) add more here.

Proof. The implication (1) ⇒ (2) is immediate. Assume (2) holds. We will show
that ∆f : X → X×YX is surjective, which implies (1) by Lemma 101.14.5. Consider
an affine scheme V and a smooth morphism V → Y. Since g : V ×Y X → V is
universally injective by (2), we see that ∆g is surjective. However, ∆g is the base
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change of ∆f by the smooth morphism V → Y. Since the collection of these
morphisms V → Y are jointly surjective, we conclude ∆f is surjective. □

Lemma 101.14.8.0DTP Let f : X → Y be a morphism of algebraic stacks. Let W → Y
be surjective, flat, and locally of finite presentation where W is an algebraic space.
If the base change W ×Y X → W is universally injective, then f is universally
injective.
Proof. Observe that the diagonal ∆g of the morphism g : W ×Y X →W is the base
change of ∆f by W → Y. Hence if ∆g is surjective, then so is ∆f by Properties of
Stacks, Lemma 100.3.3. Thus the lemma follows from the characterization (2) in
Lemma 101.14.5. □

101.15. Universal homeomorphisms

0CI5 Let f be a morphism of algebraic stacks which is representable by algebraic spaces.
In Properties of Stacks, Section 100.3 we have defined what it means for f to be a
universal homeomorphism. Here is another characterization.
Lemma 101.15.1.0CI6 Let f : X → Y be a morphism of algebraic stacks which is
representable by algebraic spaces. The following are equivalent

(1) f is a universal homeomorphism (Properties of Stacks, Section 100.3), and
(2) for every morphism of algebraic stacks Z → Y the map of topological

spaces |Z ×Y X| → |Z| is a homeomorphism.
Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a surjective
smooth morphism V → Z. By assumption the morphism V ×Y X → V of algebraic
spaces is a universal homeomorphism, in particular the map |V ×Y X| → |V | is
a homeomorphism. By Properties of Stacks, Section 100.4 in the commutative
diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover
|V ×Y X| −→ |V | ×|Z| |Z ×Y X|

is surjective. Hence as the left vertical arrow is a homeomorphism it follows that
the right vertical arrow is a homeomorphism. This proves (2). The implication (2)
⇒ (1) follows from the definitions. □

Thus we may use the following natural definition.
Definition 101.15.2.0CI7 Let f : X → Y be a morphism of algebraic stacks. We say f
is a universal homeomorphism if for every morphism of algebraic stacks Z → Y the
map of topological spaces

|Z ×Y X| → |Z|
is a homeomorphism.
Lemma 101.15.3.0CI8 The base change of a universal homeomorphism of algebraic
stacks by any morphism of algebraic stacks is a universal homeomorphism.
Proof. This is immediate from the definition. □
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Lemma 101.15.4.0CI9 The composition of a pair of universal homeomorphisms of alge-
braic stacks is a universal homeomorphism.

Proof. Omitted. □

Lemma 101.15.5.0DTQ Let f : X → Y be a morphism of algebraic stacks. Let W → Y be
surjective, flat, and locally of finite presentation where W is an algebraic space. If
the base change W ×Y X →W is a universal homeomorphism, then f is a universal
homeomorphism.

Proof. Assume g : W ×Y X → W is a universal homeomorphism. Then g is
universally injective, hence f is universally injective by Lemma 101.14.8. On the
other hand, let Z → Y be a morphism with Z an algebraic stack. Choose a scheme
U and a surjective smooth morphism U →W ×Y Z. Consider the diagram

W ×Y X

g

��

U ×Y X

��

oo // Z ×Y X

��
W Uoo // Z

The middle vertical arrow induces a homeomorphism on topological space by as-
sumption on g. The morphism U → Z and U ×Y X → Z ×Y X are surjective, flat,
and locally of finite presentation hence induce open maps on topological spaces.
We conclude that |Z ×Y X| → |Z| is open. Surjectivity is easy to prove; we omit
the proof. □

101.16. Types of morphisms smooth local on source-and-target

06FL Given a property of morphisms of algebraic spaces which is smooth local on the
source-and-target, see Descent on Spaces, Definition 74.20.1 we may use it to define
a corresponding property of morphisms of algebraic stacks, namely by imposing
either of the equivalent conditions of the lemma below.

Lemma 101.16.1.06FM Let P be a property of morphisms of algebraic spaces which is
smooth local on the source-and-target. Let f : X → Y be a morphism of algebraic
stacks. Consider commutative diagrams

U

a

��

h
// V

b

��
X

f // Y
where U and V are algebraic spaces and the vertical arrows are smooth. The
following are equivalent

(1) for any diagram as above such that in addition U → X ×Y V is smooth
the morphism h has property P, and

(2) for some diagram as above with a : U → X surjective the morphism h has
property P.

If X and Y are representable by algebraic spaces, then this is also equivalent to
f (as a morphism of algebraic spaces) having property P. If P is also preserved
under any base change, and fppf local on the base, then for morphisms f which are
representable by algebraic spaces this is also equivalent to f having property P in
the sense of Properties of Stacks, Section 100.3.

https://stacks.math.columbia.edu/tag/0CI9
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Proof. Let us prove the implication (1) ⇒ (2). Pick an algebraic space V and a
surjective and smooth morphism V → Y. Pick an algebraic space U and a surjective
and smooth morphism U → X ×Y V . Note that U → X is surjective and smooth
as well, as a composition of the base change X ×Y V → X and the chosen map
U → X ×Y V . Hence we obtain a diagram as in (1). Thus if (1) holds, then
h : U → V has property P, which means that (2) holds as U → X is surjective.

Conversely, assume (2) holds and let U, V, a, b, h be as in (2). Next, let U ′, V ′, a′, b′, h′

be any diagram as in (1). Picture

U

��

h
// V

��
X

f // Y

U ′

��

h′
// V ′

��
X

f // Y

To show that (2) implies (1) we have to prove that h′ has P. To do this consider
the commutative diagram

U

h

��

U ×X U ′

��

oo

(h,h′)

~~

// U ′

h′

��

U ×Y V ′

cc

��
V V ×Y V ′oo // V ′

of algebraic spaces. Note that the horizontal arrows are smooth as base changes of
the smooth morphisms V → Y, V ′ → Y, U → X , and U ′ → X . Note that

U ×X U ′

��

// U ′

��
U ×Y V ′ // X ×Y V ′

is cartesian, hence the left vertical arrow is smooth as U ′, V ′, a′, b′, h′ is as in (1).
Since P is smooth local on the target by Descent on Spaces, Lemma 74.20.2 part
(2) we see that the base change U×Y V

′ → V ×Y V
′ has P. Since P is smooth local

on the source by Descent on Spaces, Lemma 74.20.2 part (1) we can precompose
by the smooth morphism U ×X U ′ → U ×Y V ′ and conclude (h, h′) has P. Since
V ×Y V

′ → V ′ is smooth we conclude U ×X U ′ → V ′ has P by Descent on Spaces,
Lemma 74.20.2 part (3). Finally, since U ×X U ′ → U ′ is surjective and smooth and
P is smooth local on the source (same lemma) we conclude that h′ has P. This
finishes the proof of the equivalence of (1) and (2).

If X and Y are representable, then Descent on Spaces, Lemma 74.20.3 applies which
shows that (1) and (2) are equivalent to f having P.

Finally, suppose f is representable, and U, V, a, b, h are as in part (2) of the lemma,
and that P is preserved under arbitrary base change. We have to show that for
any scheme Z and morphism Z → X the base change Z ×Y X → Z has property
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P. Consider the diagram

Z ×Y U

��

// Z ×Y V

��
Z ×Y X // Z

Note that the top horizontal arrow is a base change of h and hence has property
P. The left vertical arrow is smooth and surjective and the right vertical arrow is
smooth. Thus Descent on Spaces, Lemma 74.20.3 kicks in and shows that Z×YX →
Z has property P. □

Definition 101.16.2.06FN Let P be a property of morphisms of algebraic spaces which is
smooth local on the source-and-target. We say a morphism f : X → Y of algebraic
stacks has property P if the equivalent conditions of Lemma 101.16.1 hold.

Remark 101.16.3.06FP Let P be a property of morphisms of algebraic spaces which
is smooth local on the source-and-target and stable under composition. Then the
property of morphisms of algebraic stacks defined in Definition 101.16.2 is stable
under composition. Namely, let f : X → Y and g : Y → Z be morphisms of
algebraic stacks having property P. Choose an algebraic space W and a surjective
smooth morphism W → Z. Choose an algebraic space V and a surjective smooth
morphism V → Y×Z W . Finally, choose an algebraic space U and a surjective and
smooth morphism U → X ×Y V . Then the morphisms V → W and U → V have
property P by definition. Whence U → W has property P as we assumed that P
is stable under composition. Thus, by definition again, we see that g ◦ f : X → Z
has property P.

Remark 101.16.4.06FQ Let P be a property of morphisms of algebraic spaces which
is smooth local on the source-and-target and stable under base change. Then the
property of morphisms of algebraic stacks defined in Definition 101.16.2 is stable
under base change. Namely, let f : X → Y and g : Y ′ → Y be morphisms of
algebraic stacks and assume f has property P. Choose an algebraic space V and a
surjective smooth morphism V → Y. Choose an algebraic space U and a surjective
smooth morphism U → X ×Y V . Finally, choose an algebraic space V ′ and a
surjective and smooth morphism V ′ → Y ′ ×Y V . Then the morphism U → V has
property P by definition. Whence V ′ ×V U → V ′ has property P as we assumed
that P is stable under base change. Considering the diagram

V ′ ×V U //

��

Y ′ ×Y X //

��

X

��
V ′ // Y ′ // Y

we see that the left top horizontal arrow is smooth and surjective, whence by
definition we see that the projection Y ′ ×Y X → Y ′ has property P.

Remark 101.16.5.06PS Let P,P ′ be properties of morphisms of algebraic spaces which
are smooth local on the source-and-target. Suppose that we have P ⇒ P ′ for
morphisms of algebraic spaces. Then we also have P ⇒ P ′ for the properties of
morphisms of algebraic stacks defined in Definition 101.16.2 using P and P ′. This
is clear from the definition.

https://stacks.math.columbia.edu/tag/06FN
https://stacks.math.columbia.edu/tag/06FP
https://stacks.math.columbia.edu/tag/06FQ
https://stacks.math.columbia.edu/tag/06PS


101.17. MORPHISMS OF FINITE TYPE 6993

101.17. Morphisms of finite type

06FR The property “locally of finite type” of morphisms of algebraic spaces is smooth
local on the source-and-target, see Descent on Spaces, Remark 74.20.5. It is also
stable under base change and fpqc local on the target, see Morphisms of Spaces,
Lemma 67.23.3 and Descent on Spaces, Lemma 74.11.9. Hence, by Lemma 101.16.1
above, we may define what it means for a morphism of algebraic spaces to be locally
of finite type as follows and it agrees with the already existing notion defined in
Properties of Stacks, Section 100.3 when the morphism is representable by algebraic
spaces.

Definition 101.17.1.06FS Let f : X → Y be a morphism of algebraic stacks.
(1) We say f locally of finite type if the equivalent conditions of Lemma

101.16.1 hold with P = locally of finite type.
(2) We say f is of finite type if it is locally of finite type and quasi-compact.

Lemma 101.17.2.06FT The composition of finite type morphisms is of finite type. The
same holds for locally of finite type.

Proof. Combine Remark 101.16.3 with Morphisms of Spaces, Lemma 67.23.2. □

Lemma 101.17.3.06FU A base change of a finite type morphism is finite type. The same
holds for locally of finite type.

Proof. Combine Remark 101.16.4 with Morphisms of Spaces, Lemma 67.23.3. □

Lemma 101.17.4.06FV An immersion is locally of finite type.

Proof. Combine Remark 101.16.5 with Morphisms of Spaces, Lemma 67.23.7. □

Lemma 101.17.5.06R6 Let f : X → Y be a morphism of algebraic stacks. If f is locally
of finite type and Y is locally Noetherian, then X is locally Noetherian.

Proof. Let
U

��

// V

��
X // Y

be a commutative diagram where U , V are schemes, V → Y is surjective and
smooth, and U → V ×Y X is surjective and smooth. Then U → V is locally of
finite type. If Y is locally Noetherian, then V is locally Noetherian. By Morphisms,
Lemma 29.15.6 we see that U is locally Noetherian, which means that X is locally
Noetherian. □

The following two lemmas will be improved on later (after we have discussed mor-
phisms of algebraic stacks which are locally of finite presentation).

Lemma 101.17.6.06U7 Let f : X → Y be a morphism of algebraic stacks. Let W → Y
be a surjective, flat, and locally of finite presentation where W is an algebraic space.
If the base change W ×Y X →W is locally of finite type, then f is locally of finite
type.

https://stacks.math.columbia.edu/tag/06FS
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Proof. Choose an algebraic space V and a surjective smooth morphism V → Y.
Choose an algebraic space U and a surjective smooth morphism U → V ×Y X . We
have to show that U → V is locally of finite presentation. Now we base change
everything by W → Y: Set U ′ = W ×Y U , V ′ = W ×Y V , X ′ = W ×Y X , and
Y ′ = W ×Y Y = W . Then it is still true that U ′ → V ′ ×Y′ X ′ is smooth by base
change. Hence by our definition of locally finite type morphisms of algebraic stacks
and the assumption that X ′ → Y ′ is locally of finite type, we see that U ′ → V ′ is
locally of finite type. Then, since V ′ → V is surjective, flat, and locally of finite
presentation as a base change of W → Y we see that U → V is locally of finite type
by Descent on Spaces, Lemma 74.11.9 and we win. □

Lemma 101.17.7.06U8 Let X → Y → Z be morphisms of algebraic stacks. Assume
X → Z is locally of finite type and that X → Y is representable by algebraic
spaces, surjective, flat, and locally of finite presentation. Then Y → Z is locally of
finite type.

Proof. Choose an algebraic space W and a surjective smooth morphism W → Z.
Choose an algebraic space V and a surjective smooth morphism V → W ×Z Y.
Set U = V ×Y X which is an algebraic space. We know that U → V is surjective,
flat, and locally of finite presentation and that U → W is locally of finite type.
Hence the lemma reduces to the case of morphisms of algebraic spaces. The case
of morphisms of algebraic spaces is Descent on Spaces, Lemma 74.16.2. □

Lemma 101.17.8.06U9 Let f : X → Y, g : Y → Z be morphisms of algebraic stacks. If
g ◦ f : X → Z is locally of finite type, then f : X → Y is locally of finite type.

Proof. We can find a diagram

U //

��

V //

��

W

��
X // Y // Z

where U , V , W are schemes, the vertical arrow W → Z is surjective and smooth,
the arrow V → Y ×Z W is surjective and smooth, and the arrow U → X ×Y V
is surjective and smooth. Then also U → X ×Z V is surjective and smooth (as a
composition of a surjective and smooth morphism with a base change of such). By
definition we see that U → W is locally of finite type. Hence U → V is locally of
finite type by Morphisms, Lemma 29.15.8 which in turn means (by definition) that
X → Y is locally of finite type. □

101.18. Points of finite type

06FW Let X be an algebraic stack. A finite type point x ∈ |X | is a point which can be
represented by a morphism Spec(k)→ X which is locally of finite type. Finite type
points are a suitable replacement of closed points for algebraic spaces and algebraic
stacks. There are always “enough of them” for example.

Lemma 101.18.1.06FX Let X be an algebraic stack. Let x ∈ |X |. The following are
equivalent:

(1) There exists a morphism Spec(k)→ X which is locally of finite type and
represents x.

https://stacks.math.columbia.edu/tag/06U8
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(2) There exists a scheme U , a closed point u ∈ U , and a smooth morphism
φ : U → X such that φ(u) = x.

Proof. Let u ∈ U and U → X be as in (2). Then Spec(κ(u))→ U is of finite type,
and U → X is representable and locally of finite type (by Morphisms of Spaces,
Lemmas 67.39.8 and 67.28.5). Hence we see (1) holds by Lemma 101.17.2.
Conversely, assume Spec(k) → X is locally of finite type and represents x. Let
U → X be a surjective smooth morphism where U is a scheme. By assumption
U ×X Spec(k)→ U is a morphism of algebraic spaces which is locally of finite type.
Pick a finite type point v of U ×X Spec(k) (there exists at least one, see Morphisms
of Spaces, Lemma 67.25.3). By Morphisms of Spaces, Lemma 67.25.4 the image
u ∈ U of v is a finite type point of U . Hence by Morphisms, Lemma 29.16.4 after
shrinking U we may assume that u is a closed point of U , i.e., (2) holds. □

Definition 101.18.2.06FY Let X be an algebraic stack. We say a point x ∈ |X | is a finite
type point5 if the equivalent conditions of Lemma 101.18.1 are satisfied. We denote
Xft-pts the set of finite type points of X .

We can describe the set of finite type points as follows.

Lemma 101.18.3.06FZ Let X be an algebraic stack. We have

Xft-pts =
⋃

φ:U→X smooth
|φ|(U0)

where U0 is the set of closed points of U . Here we may let U range over all schemes
smooth over X or over all affine schemes smooth over X .

Proof. Immediate from Lemma 101.18.1. □

Lemma 101.18.4.06G0 Let f : X → Y be a morphism of algebraic stacks. If f is locally
of finite type, then f(Xft-pts) ⊂ Yft-pts.

Proof. Take x ∈ Xft-pts. Represent x by a locally finite type morphism x : Spec(k)→
X . Then f ◦x is locally of finite type by Lemma 101.17.2. Hence f(x) ∈ Yft-pts. □

Lemma 101.18.5.06G1 Let f : X → Y be a morphism of algebraic stacks. If f is locally
of finite type and surjective, then f(Xft-pts) = Yft-pts.

Proof. We have f(Xft-pts) ⊂ Yft-pts by Lemma 101.18.4. Let y ∈ |Y| be a finite type
point. Represent y by a morphism Spec(k)→ Y which is locally of finite type. As
f is surjective the algebraic stack Xk = Spec(k)×Y X is nonempty, therefore has a
finite type point x ∈ |Xk| by Lemma 101.18.3. Now Xk → X is a morphism which
is locally of finite type as a base change of Spec(k)→ Y (Lemma 101.17.3). Hence
the image of x in X is a finite type point by Lemma 101.18.4 which maps to y by
construction. □

Lemma 101.18.6.06G2 Let X be an algebraic stack. For any locally closed subset
T ⊂ |X | we have

T ̸= ∅ ⇒ T ∩ Xft-pts ̸= ∅.
In particular, for any closed subset T ⊂ |X | we see that T ∩ Xft-pts is dense in T .

5This is a slight abuse of language as it would perhaps be more correct to say “locally finite
type point”.
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Proof. Let i : Z → X be the reduced induced substack structure on T , see Proper-
ties of Stacks, Remark 100.10.5. An immersion is locally of finite type, see Lemma
101.17.4. Hence by Lemma 101.18.4 we see Zft-pts ⊂ Xft-pts ∩ T . Finally, any
nonempty affine scheme U with a smooth morphism towards Z has at least one
closed point, hence Z has at least one finite type point by Lemma 101.18.3. The
lemma follows. □

Here is another, more technical, characterization of a finite type point on an al-
gebraic stack. It tells us in particular that the residual gerbe of X at x exists
whenever x is a finite type point!

Lemma 101.18.7.06G3 Let X be an algebraic stack. Let x ∈ |X |. The following are
equivalent:

(1) x is a finite type point,
(2) there exists an algebraic stack Z whose underlying topological space |Z|

is a singleton, and a morphism f : Z → X which is locally of finite type
such that {x} = |f |(|Z|), and

(3) the residual gerbe Zx of X at x exists and the inclusion morphism Zx → X
is locally of finite type.

Proof. (All of the morphisms occurring in this paragraph are representable by al-
gebraic spaces, hence the conventions and results of Properties of Stacks, Section
100.3 are applicable.) Assume x is a finite type point. Choose an affine scheme
U , a closed point u ∈ U , and a smooth morphism φ : U → X with φ(u) = x, see
Lemma 101.18.3. Set u = Spec(κ(u)) as usual. Set R = u×X u so that we obtain
a groupoid in algebraic spaces (u,R, s, t, c), see Algebraic Stacks, Lemma 94.16.1.
The projection morphisms R→ u are the compositions

R = u×X u→ u×X U → u×X X = u

where the first arrow is of finite type (a base change of the closed immersion of
schemes u → U) and the second arrow is smooth (a base change of the smooth
morphism U → X ). Hence s, t : R → u are locally of finite type (as compositions,
see Morphisms of Spaces, Lemma 67.23.2). Since u is the spectrum of a field, it
follows that s, t are flat and locally of finite presentation (by Morphisms of Spaces,
Lemma 67.28.7). We see that Z = [u/R] is an algebraic stack by Criteria for
Representability, Theorem 97.17.2. By Algebraic Stacks, Lemma 94.16.1 we obtain
a canonical morphism

f : Z −→ X

which is fully faithful. Hence this morphism is representable by algebraic spaces, see
Algebraic Stacks, Lemma 94.15.2 and a monomorphism, see Properties of Stacks,
Lemma 100.8.4. It follows that the residual gerbe Zx ⊂ X of X at x exists and
that f factors through an equivalence Z → Zx, see Properties of Stacks, Lemma
100.11.12. By construction the diagram

u

��

// U

��
Z

f // X

https://stacks.math.columbia.edu/tag/06G3
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is commutative. By Criteria for Representability, Lemma 97.17.1 the left vertical
arrow is surjective, flat, and locally of finite presentation. Consider

u×X U

��

// Z ×X U //

��

U

��
u // Z

f // X

As u → X is locally of finite type, we see that the base change u ×X U → U is
locally of finite type. Moreover, u ×X U → Z ×X U is surjective, flat, and locally
of finite presentation as a base change of u → Z. Thus {u ×X U → Z ×X U} is
an fppf covering of algebraic spaces, and we conclude that Z ×X U → U is locally
of finite type by Descent on Spaces, Lemma 74.16.1. By definition this means that
f is locally of finite type (because the vertical arrow Z ×X U → Z is smooth as a
base change of U → X and surjective as Z has only one point). Since Z = Zx we
see that (3) holds.

It is clear that (3) implies (2). If (2) holds then x is a finite type point of X
by Lemma 101.18.4 and Lemma 101.18.6 to see that Zft-pts is nonempty, i.e., the
unique point of Z is a finite type point of Z. □

101.19. Automorphism groups

0DTR Let X be an algebraic stack. Let x ∈ |X | correspond to x : Spec(k) → X . In this
situation we often use the phrase “let Gx/k be the automorphism group algebraic
space of x”. This just means that

Gx = IsomX (x, x) = Spec(k)×X IX

is the group algebraic space of automorphism of x. This is a group algebraic
space over Spec(k). If k′/k is an extension of fields then the automorphism group
algebraic space of the induced morphism x′ : Spec(k′) → X is the base change of
Gx to Spec(k′).

Lemma 101.19.1.0DTS In the situation above Gx is a scheme if one of the following
holds

(1) ∆ : X → X ×X is quasi-separated
(2) ∆ : X → X ×X is locally separated,
(3) X is quasi-DM,
(4) IX → X is quasi-separated,
(5) IX → X is locally separated, or
(6) IX → X is locally quasi-finite.

Proof. Observe that (1)⇒ (4), (2)⇒ (5), and (3)⇒ (6) by Lemma 101.6.1. In case
(4) we see that Gx is a quasi-separated algebraic space and in case (5) we see that
Gx is a locally separated algebraic space. In both cases Gx is a decent algebraic
space (Decent Spaces, Section 68.6 and Lemma 68.15.2). Then Gx is separated by
More on Groupoids in Spaces, Lemma 79.9.4 whereupon we conclude that Gx is a
scheme by More on Groupoids in Spaces, Proposition 79.10.3. In case (6) we see
that Gx → Spec(k) is locally quasi-finite and hence Gx is a scheme by Spaces over
Fields, Lemma 72.10.8. □

https://stacks.math.columbia.edu/tag/0DTS
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Lemma 101.19.2.0DTT Let X be an algebraic stack. Let x ∈ |X | be a point. Let
P be a property of algebraic spaces over fields which is invariant under ground
field extensions; for example P (X/k) = X → Spec(k) is finite. The following are
equivalent

(1) for some morphism x : Spec(k) → X in the class of x the automorphism
group algebraic space Gx/k has P , and

(2) for any morphism x : Spec(k) → X in the class of x the automorphism
group algebraic space Gx/k has P .

Proof. Omitted. □

Remark 101.19.3.0DTU Let P be a property of algebraic spaces over fields which is
invariant under ground field extensions. Given an algebraic stack X and x ∈ |X |,
we say the automorphism group of X at x has P if the equivalent conditions of
Lemma 101.19.2 are satisfied. For example, we say the automorphism group of X
at x is finite, if Gx → Spec(k) is finite whenever x : Spec(k)→ X is a representative
of x. Similarly for smooth, proper, etc. (There is clearly an abuse of language going
on here, but we believe it will not cause confusion or imprecision.)

Lemma 101.19.4.0DTV Let f : X → Y be a morphism of algebraic stacks. Let x ∈ |X |
be a point. The following are equivalent

(1) for some morphism x : Spec(k)→ X in the class of x setting y = f ◦x the
map Gx → Gy of automorphism group algebraic spaces is an isomorphism,
and

(2) for any morphism x : Spec(k)→ X in the class of x setting y = f ◦ x the
map Gx → Gy of automorphism group algebraic spaces is an isomorphism.

Proof. This comes down to the fact that being an isomorphism is fpqc local on
the target, see Descent on Spaces, Lemma 74.11.15. Namely, suppose that k′/k
is an extension of fields and denote x′ : Spec(k′) → X the composition and set
y′ = f ◦ x′. Then the morphism Gx′ → Gy′ is the base change of Gx → Gy by
Spec(k′)→ Spec(k). Hence Gx → Gy is an isomorphism if and only if Gx′ → Gy′ is
an isomorphism. Thus we see that the property propagates through the equivalence
class if it holds for one. □

Remark 101.19.5.0DTW Let f : X → Y be a morphism of algebraic stacks. Let x ∈ |X |
be a point. To indicate the equivalent conditions of Lemma 101.19.4 are satisfied
for f and x in the literature the terminology f is stabilizer preserving at x or f
is fixed-point reflecting at x is used. We prefer to say f induces an isomorphism
between automorphism groups at x and f(x).

101.20. Presentations and properties of algebraic stacks

0DTX Let (U,R, s, t, c) be a groupoid in algebraic spaces. If s, t : R → U are flat and
locally of finite presentation, then the quotient stack [U/R] is an algebraic stack,
see Criteria for Representability, Theorem 97.17.2. In this section we study what
properties of (U,R, s, t, c) imply for the algebraic stack [U/R].

Lemma 101.20.1.0DTY Let (U,R, s, t, c) be a groupoid in algebraic spaces such that
s, t : R→ U are flat and locally of finite presentation. Consider the algebraic stack
X = [U/R] (see above).

(1) If R→ U × U is separated, then ∆X is separated.
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(2) If U , R are separated, then ∆X is separated.
(3) If R→ U × U is locally quasi-finite, then X is quasi-DM.
(4) If s, t : R→ U are locally quasi-finite, then X is quasi-DM.
(5) If R→ U × U is proper, then X is separated.
(6) If s, t : R→ U are proper and U is separated, then X is separated.
(7) Add more here.

Proof. Observe that the morphism U → X is surjective, flat, and locally of finite
presentation by Criteria for Representability, Lemma 97.17.1. Hence the same is
true for U × U → X ×X . We have the cartesian diagram

R = U ×X U //

��

U × U

��
X // X × X

(see Groupoids in Spaces, Lemma 78.22.2). Thus we see that ∆X has one of the
properties listed in Properties of Stacks, Section 100.3 if and only if the morphism
R→ U ×U does, see Properties of Stacks, Lemma 100.3.3. This explains why (1),
(3), and (5) are true. The condition in (2) implies R → U × U is separated hence
(2) follows from (1). The condition in (4) implies the condition in (3) hence (4)
follows from (3). The condition in (6) implies the condition in (5) by Morphisms
of Spaces, Lemma 67.40.6 hence (6) follows from (5). □

Lemma 101.20.2.0DTZ Let (U,R, s, t, c) be a groupoid in algebraic spaces such that
s, t : R→ U are flat and locally of finite presentation. Consider the algebraic stack
X = [U/R] (see above). Then the image of |R| → |U | × |U | is an equivalence
relation and |X | is the quotient of |U | by this equivalence relation.

Proof. The induced morphism p : U → X is surjective, flat, and locally of finite
presentation, see Criteria for Representability, Lemma 97.17.1. Hence |U | → |X |
is surjective by Properties of Stacks, Lemma 100.4.4. Note that R = U ×X U , see
Groupoids in Spaces, Lemma 78.22.2. Hence Properties of Stacks, Lemma 100.4.3
implies the map

|R| −→ |U | ×|X | |U |

is surjective. Hence the image of |R| → |U |×|U | is exactly the set of pairs (u1, u2) ∈
|U | × |U | such that u1 and u2 have the same image in |X |. Combining these two
statements we get the result of the lemma. □

101.21. Special presentations of algebraic stacks

06MC In this section we prove two important theorems. The first is the characterization
of quasi-DM stacks X as the stacks of the form X = [U/R] with s, t : R→ U locally
quasi-finite (as well as flat and locally of finite presentation). The second is the
statement that DM algebraic stacks are Deligne-Mumford.

The following lemma gives a criterion for when a “slice” of a presentation is still
flat over the algebraic stack.

https://stacks.math.columbia.edu/tag/0DTZ
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Lemma 101.21.1.06MD Let X be an algebraic stack. Consider a cartesian diagram

U

��

F
p

oo

��
X Spec(k)oo

where U is an algebraic space, k is a field, and U → X is flat and locally of finite
presentation. Let f1, . . . , fr ∈ Γ(U,OU ) and z ∈ |F | such that f1, . . . , fr map to
a regular sequence in the local ring OF,z. Then, after replacing U by an open
subspace containing p(z), the morphism

V (f1, . . . , fr) −→ X
is flat and locally of finite presentation.

Proof. Choose a scheme W and a surjective smooth morphism W → X . Choose an
extension of fields k′/k and a morphism w : Spec(k′) → W such that Spec(k′) →
W → X is 2-isomorphic to Spec(k′) → Spec(k) → X . This is possible as W → X
is surjective. Consider the commutative diagram

U

��

U ×X Wpr0
oo

��

F ′
p′

oo

��
X Woo Spec(k′)oo

both of whose squares are cartesian. By our choice of w we see that F ′ = F×Spec(k)
Spec(k′). Thus F ′ → F is surjective and we can choose a point z′ ∈ |F ′| mapping to
z. Since F ′ → F is flat we see that OF,z → OF ′,z′ is flat, see Morphisms of Spaces,
Lemma 67.30.8. Hence f1, . . . , fr map to a regular sequence in OF ′,z′ , see Algebra,
Lemma 10.68.5. Note that U ×X W →W is a morphism of algebraic spaces which
is flat and locally of finite presentation. Hence by More on Morphisms of Spaces,
Lemma 76.28.1 we see that there exists an open subspace U ′ of U ×X W containing
p(z′) such that the intersection U ′∩(V (f1, . . . , fr)×X W ) is flat and locally of finite
presentation over W . Note that pr0(U ′) is an open subspace of U containing p(z)
as pr0 is smooth hence open. Now we see that U ′ ∩ (V (f1, . . . , fr)×X W ) → X is
flat and locally of finite presentation as the composition

U ′ ∩ (V (f1, . . . , fr)×X W )→W → X .
Hence Properties of Stacks, Lemma 100.3.5 implies pr0(U ′)∩ V (f1, . . . , fr)→ X is
flat and locally of finite presentation as desired. □

Lemma 101.21.2.06ME Let X be an algebraic stack. Consider a cartesian diagram

U

��

F
p

oo

��
X Spec(k)oo

where U is an algebraic space, k is a field, and U → X is locally of finite type. Let
z ∈ |F | be such that dimz(F ) = 0. Then, after replacing U by an open subspace
containing p(z), the morphism

U −→ X

https://stacks.math.columbia.edu/tag/06MD
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is locally quasi-finite.

Proof. Since f : U → X is locally of finite type there exists a maximal open
W (f) ⊂ U such that the restriction f |W (f) : W (f) → X is locally quasi-finite,
see Properties of Stacks, Remark 100.9.20 (2). Hence all we need to do is prove
that p(z) is a point of W (f). Moreover, the remark referenced above also shows
the formation of W (f) commutes with arbitrary base change by a morphism which
is representable by algebraic spaces. Hence it suffices to show that the morphism
F → Spec(k) is locally quasi-finite at z. This follows immediately from Morphisms
of Spaces, Lemma 67.34.6. □

A quasi-DM stack has a locally quasi-finite “covering” by a scheme.

Theorem 101.21.3.06MF Let X be an algebraic stack. The following are equivalent
(1) X is quasi-DM, and
(2) there exists a scheme W and a surjective, flat, locally finitely presented,

locally quasi-finite morphism W → X .

Proof. The implication (2) ⇒ (1) is Lemma 101.4.14. Assume (1). Let x ∈ |X |
be a finite type point. We will produce a scheme over X which “works” in a
neighbourhood of x. At the end of the proof we will take the disjoint union of all
of these to conclude.
Let U be an affine scheme, U → X a smooth morphism, and u ∈ U a closed point
which maps to x, see Lemma 101.18.1. Denote u = Spec(κ(u)) as usual. Consider
the following commutative diagram

u

��

Roo

��
U

��

F

��

p
oo

X uoo

with both squares fibre product squares, in particular R = u ×X u. In the proof
of Lemma 101.18.7 we have seen that (u,R, s, t, c) is a groupoid in algebraic spaces
with s, t locally of finite type. Let G → u be the stabilizer group algebraic space
(see Groupoids in Spaces, Definition 78.16.2). Note that

G = R×(u×u) u = (u×X u)×(u×u) u = X ×X ×X u.

As X is quasi-DM we see that G is locally quasi-finite over u. By More on Groupoids
in Spaces, Lemma 79.9.11 we have dim(R) = 0.
Let e : u→ R be the identity of the groupoid. Thus both compositions u→ R→ u
are equal to the identity morphism of u. Note that R ⊂ F is a closed subspace
as u ⊂ U is a closed subscheme. Hence we can also think of e as a point of F .
Consider the maps of étale local rings

OU,u
p♯−→ OF,e −→ OR,e

Note that OR,e has dimension 0 by the result of the first paragraph. On the other
hand, the kernel of the second arrow is p♯(mu)OF,e as R is cut out in F by mu.

https://stacks.math.columbia.edu/tag/06MF
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Thus we see that
mz =

√
p♯(mu)OF,e

On the other hand, as the morphism U → X is smooth we see that F → u is a
smooth morphism of algebraic spaces. This means that F is a regular algebraic
space (Spaces over Fields, Lemma 72.16.1). Hence OF,e is a regular local ring
(Properties of Spaces, Lemma 66.25.1). Note that a regular local ring is Cohen-
Macaulay (Algebra, Lemma 10.106.3). Let d = dim(OF,e). By Algebra, Lemma
10.104.10 we can find f1, . . . , fd ∈ OU,u whose images φ(f1), . . . , φ(fd) form a reg-
ular sequence in OF,z. By Lemma 101.21.1 after shrinking U we may assume that
Z = V (f1, . . . , fd) → X is flat and locally of finite presentation. Note that by
construction FZ = Z ×X u is a closed subspace of F = U ×X u, that e is a point of
this closed subspace, and that

dim(OFZ ,e) = 0.
By Morphisms of Spaces, Lemma 67.34.1 it follows that dime(FZ) = 0 because
the transcendence degree of e relative to u is zero. Hence it follows from Lemma
101.21.2 that after possibly shrinking U the morphism Z → X is locally quasi-finite.
We conclude that for every finite type point x of X there exists a locally quasi-
finite, flat, locally finitely presented morphism fx : Zx → X with x in the image of
|fx|. Set W =

∐
x Zx and f =

∐
fx. Then f is flat, locally of finite presentation,

and locally quasi-finite. In particular the image of |f | is open, see Properties of
Stacks, Lemma 100.4.7. By construction the image contains all finite type points
of X , hence f is surjective by Lemma 101.18.6 (and Properties of Stacks, Lemma
100.4.4). □

Lemma 101.21.4.06N0 Let Z be a DM, locally Noetherian, reduced algebraic stack
with |Z| a singleton. Then there exists a field k and a surjective étale morphism
Spec(k)→ Z.

Proof. By Properties of Stacks, Lemma 100.11.3 there exists a field k and a surjec-
tive, flat, locally finitely presented morphism Spec(k) → Z. Set U = Spec(k) and
R = U×Z U so we obtain a groupoid in algebraic spaces (U,R, s, t, c), see Algebraic
Stacks, Lemma 94.9.2. Note that by Algebraic Stacks, Remark 94.16.3 we have an
equivalence

fcan : [U/R] −→ Z
The projections s, t : R → U are locally of finite presentation. As Z is DM we see
that the stabilizer group algebraic space

G = U ×U×U R = U ×U×U (U ×Z U) = U ×Z×Z,∆Z Z
is unramified over U . In particular dim(G) = 0 and by More on Groupoids in
Spaces, Lemma 79.9.11 we have dim(R) = 0. This implies that R is a scheme, see
Spaces over Fields, Lemma 72.9.1. By Varieties, Lemma 33.20.2 we see that R (and
also G) is the disjoint union of spectra of Artinian local rings finite over k via either
s or t. Let P = Spec(A) ⊂ R be the open and closed subscheme whose underlying
point is the identity e of the groupoid scheme (U,R, s, t, c). As s◦e = t◦e = idSpec(k)
we see that A is an Artinian local ring whose residue field is identified with k via
either s♯ : k → A or t♯ : k → A. Note that s, t : Spec(A) → Spec(k) are finite (by
the lemma referenced above). Since G→ Spec(k) is unramified we see that

G ∩ P = P ×U×U U = Spec(A⊗k⊗k k)

https://stacks.math.columbia.edu/tag/06N0
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is unramified over k. On the other hand A ⊗k⊗k k is local as a quotient of A and
surjects onto k. We conclude that A ⊗k⊗k k = k. It follows that P → U × U is
universally injective (as P has only one point with residue field k), unramified (by
the computation of the fibre over the unique image point above), and of finite type
(because s, t are) hence a monomorphism (see Étale Morphisms, Lemma 41.7.1).
Thus s|P , t|P : P → U define a finite flat equivalence relation. Thus we may apply
Groupoids, Proposition 39.23.9 to conclude that U/P exists and is a scheme U .
Moreover, U → U is finite locally free and P = U ×U U . In fact U = Spec(k0)
where k0 ⊂ k is the ring of R-invariant functions. As k is a field it follows from the
definition Groupoids, Equation (39.23.0.1) that k0 is a field.

We claim that

(101.21.4.1)06N1 Spec(k0) = U = U/P → [U/R] = Z

is the desired surjective étale morphism. It follows from Properties of Stacks,
Lemma 100.11.1 that this morphism is surjective. Thus it suffices to show that
(101.21.4.1) is étale6. Instead of proving the étaleness directly we first apply
Bootstrap, Lemma 80.9.1 to see that there exists a groupoid scheme (U,R, s, t, c)
such that (U,R, s, t, c) is the restriction of (U,R, s, t, c) via the quotient morphism
U → U . (We verified all the hypothesis of the lemma above except for the assertion
that j : R → U × U is separated and locally quasi-finite which follows from the
fact that R is a separated scheme locally quasi-finite over k.) Since U → U is finite
locally free we see that [U/R]→ [U/R] is an equivalence, see Groupoids in Spaces,
Lemma 78.25.2.

Note that s, t are the base changes of the morphisms s, t by U → U . As {U → U} is
an fppf covering we conclude s, t are flat, locally of finite presentation, and locally
quasi-finite, see Descent, Lemmas 35.23.15, 35.23.11, and 35.23.24. Consider the
commutative diagram

U ×U U

##

P //

��

R

��
U

e // R

It is a general fact about restrictions that the outer four corners form a cartesian
diagram. By the equality we see the inner square is cartesian. Since P is open in
R we conclude that e is an open immersion by Descent, Lemma 35.23.16.

But of course, if e is an open immersion and s, t are flat and locally of finite
presentation then the morphisms t, s are étale. For example you can see this by
applying More on Groupoids, Lemma 40.4.1 which shows that ΩR/U = 0 implies
that s, t : R → U is unramified (see Morphisms, Lemma 29.35.2), which in turn
implies that s, t are étale (see Morphisms, Lemma 29.36.16). Hence Z = [U/R] is
an étale presentation of the algebraic stack Z and we conclude that U → Z is étale
by Properties of Stacks, Lemma 100.3.3. □

6We urge the reader to find his/her own proof of this fact. In fact the argument has a lot
in common with the final argument of the proof of Bootstrap, Theorem 80.10.1 hence probably
should be isolated into its own lemma somewhere.
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Lemma 101.21.5.06N2 Let X be an algebraic stack. Consider a cartesian diagram

U

��

F
p

oo

��
X Spec(k)oo

where U is an algebraic space, k is a field, and U → X is flat and locally of finite
presentation. Let z ∈ |F | be such that F → Spec(k) is unramified at z. Then, after
replacing U by an open subspace containing p(z), the morphism

U −→ X
is étale.
Proof. Since f : U → X is flat and locally of finite presentation there exists a
maximal open W (f) ⊂ U such that the restriction f |W (f) : W (f) → X is étale,
see Properties of Stacks, Remark 100.9.20 (5). Hence all we need to do is prove
that p(z) is a point of W (f). Moreover, the remark referenced above also shows
the formation of W (f) commutes with arbitrary base change by a morphism which
is representable by algebraic spaces. Hence it suffices to show that the morphism
F → Spec(k) is étale at z. Since it is flat and locally of finite presentation as a
base change of U → X and since F → Spec(k) is unramified at z by assumption,
this follows from Morphisms of Spaces, Lemma 67.39.12. □

A DM stack is a Deligne-Mumford stack.
Theorem 101.21.6.06N3 Let X be an algebraic stack. The following are equivalent

(1) X is DM,
(2) X is Deligne-Mumford, and
(3) there exists a scheme W and a surjective étale morphism W → X .

Proof. Recall that (3) is the definition of (2), see Algebraic Stacks, Definition
94.12.2. The implication (3) ⇒ (1) is Lemma 101.4.14. Assume (1). Let x ∈ |X |
be a finite type point. We will produce a scheme over X which “works” in a neigh-
bourhood of x. At the end of the proof we will take the disjoint union of all of
these to conclude.
By Lemma 101.18.7 the residual gerbe Zx of X at x exists and Zx → X is locally
of finite type. By Lemma 101.4.16 the algebraic stack Zx is DM. By Lemma
101.21.4 there exists a field k and a surjective étale morphism z : Spec(k)→ Zx. In
particular the composition x : Spec(k)→ X is locally of finite type (by Morphisms
of Spaces, Lemmas 67.23.2 and 67.39.9).
Pick a scheme U and a smooth morphism U → X such that x is in the image of
|U | → |X |. Consider the following fibre square

U

��

Foo

��
X Spec(k)xoo

in other words F = U ×X ,x Spec(k). By Properties of Stacks, Lemma 100.4.3 we
see that F is nonempty. As Zx → X is a monomorphism we have

Spec(k)×z,Zx,z Spec(k) = Spec(k)×x,X ,x Spec(k)

https://stacks.math.columbia.edu/tag/06N2
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with étale projection maps to Spec(k) by construction of z. Since

F ×U F = (Spec(k)×X Spec(k))×Spec(k) F

we see that the projections maps F ×U F → F are étale as well. It follows that
∆F/U : F → F ×U F is étale (see Morphisms of Spaces, Lemma 67.39.11). By
Morphisms of Spaces, Lemma 67.51.2 this implies that ∆F/U is an open immersion,
which finally implies by Morphisms of Spaces, Lemma 67.38.9 that F → U is
unramified.

Pick a nonempty affine scheme V and an étale morphism V → F . (This could be
avoided by working directly with F , but it seems easier to explain what’s going on
by doing so.) Picture

U

��

Foo

��

Voo

{{
X Spec(k)xoo

Then V → Spec(k) is a smooth morphism of schemes and V → U is an unramified
morphism of schemes (see Morphisms of Spaces, Lemmas 67.37.2 and 67.38.3). Pick
a closed point v ∈ V with k ⊂ κ(v) finite separable, see Varieties, Lemma 33.25.6.
Let u ∈ U be the image point. The local ring OV,v is regular (see Varieties, Lemma
33.25.3) and the local ring homomorphism

φ : OU,u −→ OV,v
coming from the morphism V → U is such that φ(mu)OV,v = mv, see Mor-
phisms, Lemma 29.35.14. Hence we can find f1, . . . , fd ∈ OU,u such that the images
φ(f1), . . . , φ(fd) form a basis for mv/m

2
v over κ(v). Since OV,v is a regular local

ring this implies that φ(f1), . . . , φ(fd) form a regular sequence in OV,v (see Alge-
bra, Lemma 10.106.3). After replacing U by an open neighbourhood of u we may
assume f1, . . . , fd ∈ Γ(U,OU ). After replacing U by a possibly even smaller open
neighbourhood of u we may assume that V (f1, . . . , fd) → X is flat and locally of
finite presentation, see Lemma 101.21.1. By construction

V (f1, . . . , fd)×X Spec(k)←− V (f1, . . . , fd)×U V

is étale and V (f1, . . . , fd)×UV is the closed subscheme T ⊂ V cut out by f1|V , . . . , fd|V .
Hence by construction v ∈ T and

OT,v = OV,v/(φ(f1), . . . , φ(fd)) = κ(v)

a finite separable extension of k. It follows that T → Spec(k) is unramified at v, see
Morphisms, Lemma 29.35.14. By definition of an unramified morphism of algebraic
spaces this means that V (f1, . . . , fd) ×X Spec(k) → Spec(k) is unramified at the
image of v in V (f1, . . . , fd)×X Spec(k). Applying Lemma 101.21.5 we see that on
shrinking U to yet another open neighbourhood of u the morphism V (f1, . . . , fd)→
X is étale.

We conclude that for every finite type point x of X there exists an étale morphism
fx : Wx → X with x in the image of |fx|. Set W =

∐
xWx and f =

∐
fx. Then

f is étale. In particular the image of |f | is open, see Properties of Stacks, Lemma
100.4.7. By construction the image contains all finite type points of X , hence f is
surjective by Lemma 101.18.6 (and Properties of Stacks, Lemma 100.4.4). □
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Here is a useful corollary which tells us that the “fibres” of a DM morphism of
algebraic stacks are Deligne-Mumford.

Lemma 101.21.7.0CIA Let f : X → Y be a DM morphism of algebraic stacks. Then
(1) For every DM algebraic stack Z and morphism Z → Y there exists a

scheme and a surjective étale morphism U → X ×Y Z.
(2) For every algebraic space Z and morphism Z → Y there exists a scheme

and a surjective étale morphism U → X ×Y Z.

Proof. Proof of (1). As f is DM we see that the base change X ×YZ → Z is DM by
Lemma 101.4.4. Since Z is DM this implies that X×YZ is DM by Lemma 101.4.11.
Hence there exists a scheme U and a surjective étale morphism U → X ×Y Z, see
Theorem 101.21.6. Part (2) is a special case of (1) since an algebraic space (when
viewed as an algebraic stack) is DM by Lemma 101.4.3. □

101.22. The Deligne-Mumford locus

0DSL Every algebraic stack has a largest open substack which is a Deligne-Mumford
stack; this is more or less clear but we also write out the proof below. Of course
this substack may be empty, for example if X = [Spec(Z)/Gm,Z]. Below we will
characterize the points of the DM locus.

Lemma 101.22.1.0DSM Let X be an algebraic stack. There exist open substacks
X ′′ ⊂ X ′ ⊂ X

such that X ′′ is DM, X ′ is quasi-DM, and such that these are the largest open
substacks with these properties.

Proof. All we are really saying here is that if U ⊂ X and V ⊂ X are open substacks
which are DM, then the open substack W ⊂ X with |W| = |U| ∪ |V| is DM as well.
(Similarly for quasi-DM.) Although this is a cheat, let us use Theorem 101.21.6 to
prove this. By that theorem we can choose schemes U and V and surjective étale
morphisms U → U and V → V. Then of course U ⨿ V → W is surjective and
étale. The quasi-DM case is proven by exactly the same method using Theorem
101.21.3. □

Lemma 101.22.2.0DSN Let X be an algebraic stack. Let x ∈ |X | correspond to x :
Spec(k)→ X . Let Gx/k be the automorphism group algebraic space of x. Then

(1) x is in the DM locus of X if and only if Gx → Spec(k) is unramified, and
(2) x is in the quasi-DM locus of X if and only if Gx → Spec(k) is locally

quasi-finite.

Proof. Proof of (2). Choose a scheme U and a surjective smooth morphism U → X .
Consider the fibre product

G //

��

IX

��
U // X

Recall that G is the automorphism group algebraic space of U → X . By Groupoids
in Spaces, Lemma 78.6.3 there is a maximal open subscheme U ′ ⊂ U such that
GU ′ → U ′ is locally quasi-finite. Moreover, formation of U ′ commutes with arbi-
trary base change. In particular the two inverse images of U ′ in R = U ×X U are

https://stacks.math.columbia.edu/tag/0CIA
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the same open subspace of R (since after all the two maps R → X are isomorphic
and hence have isomorphic automorphism group spaces). Hence U ′ is the inverse
image of an open substack X ′ ⊂ X by Properties of Stacks, Lemma 100.9.11 and
we have a cartesian diagram

GU ′ //

��

IX ′

��
U ′ // X ′

Thus the morphism IX ′ → X ′ is locally quasi-finite and we conclude that X ′ is
quasi-DM by Lemma 101.6.1 part (5). On the other hand, if W ⊂ X is an open
substack which is quasi-DM, then the inverse image W ⊂ U ofW must be contained
in U ′ by our construction of U ′ since IW = W ×X IX is locally quasi-finite over
W. Thus X ′ is the quasi-DM locus. Finally, choose a field extension K/k and a
2-commutative diagram

Spec(K) //

��

Spec(k)

x

��
U // X

Then we find an isomorphism Gx ×Spec(k) Spec(K) ∼= G ×U Spec(K) of group
algebraic spaces over K. Hence Gx is locally quasi-finite over k if and only if
Spec(K)→ U maps into U ′ (use the commutation of formation of U ′ and Groupoids
in Spaces, Lemma 78.6.3 applied to Spec(K)→ Spec(k) and Gx to see this). This
finishes the proof of (2). The proof of (1) is exactly the same. □

101.23. Locally quasi-finite morphisms

06PT The property “locally quasi-finite” of morphisms of algebraic spaces is not smooth
local on the source-and-target so we cannot use the material in Section 101.16 to
define locally quasi-finite morphisms of algebraic stacks. We do already know what
it means for a morphism of algebraic stacks representable by algebraic spaces to
be locally quasi-finite, see Properties of Stacks, Section 100.3. To find a condition
suitable for general morphisms we make the following observation.
Lemma 101.23.1.06UA Let f : X → Y be a morphism of algebraic stacks. Assume f is
representable by algebraic spaces. The following are equivalent

(1) f is locally quasi-finite (as in Properties of Stacks, Section 100.3), and
(2) f is locally of finite type and for every morphism Spec(k)→ Y where k is

a field the space |Spec(k)×Y X| is discrete.
Proof. Assume (1). In this case the morphism of algebraic spaces Xk → Spec(k)
is locally quasi-finite as a base change of f . Hence |Xk| is discrete by Morphisms
of Spaces, Lemma 67.27.5. Conversely, assume (2). Pick a surjective smooth mor-
phism V → Y where V is a scheme. It suffices to show that the morphism of alge-
braic spaces V ×Y X → V is locally quasi-finite, see Properties of Stacks, Lemma
100.3.3. The morphism V ×Y X → V is locally of finite type by assumption. For
any morphism Spec(k)→ V where k is a field

Spec(k)×V (V ×Y X ) = Spec(k)×Y X
has a discrete space of points by assumption. Hence we conclude that V ×Y X → V
is locally quasi-finite by Morphisms of Spaces, Lemma 67.27.5. □

https://stacks.math.columbia.edu/tag/06UA
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A morphism of algebraic stacks which is representable by algebraic spaces is quasi-
DM, see Lemma 101.4.3. Combined with the lemma above we see that the following
definition does not conflict with the already existing notion in the case of morphisms
representable by algebraic spaces.

Definition 101.23.2.06PU Let f : X → Y be a morphism of algebraic stacks. We say f is
locally quasi-finite if f is quasi-DM, locally of finite type, and for every morphism
Spec(k)→ Y where k is a field the space |Xk| is discrete.

The condition that f be quasi-DM is natural. For example, let k be a field and
consider the morphism π : [Spec(k)/Gm] → Spec(k) which has singleton fibres
and is locally of finite type. As we will see later this morphism is smooth of
relative dimension −1, and we’d like our locally quasi-finite morphisms to have
relative dimension 0. Also, note that the section Spec(k) → [Spec(k)/Gm] does
not have discrete fibres, hence is not locally quasi-finite, and we’d like to have the
following permanence property for locally quasi-finite morphisms: If f : X → X ′

is a morphism of algebraic stacks locally quasi-finite over the algebraic stack Y,
then f is locally quasi-finite (in fact something a bit stronger holds, see Lemma
101.23.8).
Another justification for the definition above is Lemma 101.23.7 below which char-
acterizes being locally quasi-finite in terms of the existence of suitable “presenta-
tions” or “coverings” of X and Y.

Lemma 101.23.3.06UB A base change of a locally quasi-finite morphism is locally quasi-
finite.

Proof. We have seen this for quasi-DM morphisms in Lemma 101.4.4 and for locally
finite type morphisms in Lemma 101.17.3. It is immediate that the condition on
fibres is inherited by a base change. □

Lemma 101.23.4.06UC Let X → Spec(k) be a locally quasi-finite morphism where X is
an algebraic stack and k is a field. Let f : V → X be a locally quasi-finite morphism
where V is a scheme. Then V → Spec(k) is locally quasi-finite.

Proof. By Lemma 101.17.2 we see that V → Spec(k) is locally of finite type. As-
sume, to get a contradiction, that V → Spec(k) is not locally quasi-finite. Then
there exists a nontrivial specialization v ⇝ v′ of points of V , see Morphisms,
Lemma 29.20.6. In particular trdegk(κ(v)) > trdegk(κ(v′)), see Morphisms, Lemma
29.28.7. Because |X | is discrete we see that |f |(v) = |f |(v′). Consider R = V ×X V .
Then R is an algebraic space and the projections s, t : R→ V are locally quasi-finite
as base changes of V → X (which is representable by algebraic spaces so this follows
from the discussion in Properties of Stacks, Section 100.3). By Properties of Stacks,
Lemma 100.4.3 we see that there exists an r ∈ |R| such that s(r) = v and t(r) = v′.
By Morphisms of Spaces, Lemma 67.33.3 we see that the transcendence degree of
v/k is equal to the transcendence degree of r/k is equal to the transcendence degree
of v′/k. This contradiction proves the lemma. □

Lemma 101.23.5.06UD A composition of a locally quasi-finite morphisms is locally quasi-
finite.

Proof. We have seen this for quasi-DM morphisms in Lemma 101.4.10 and for
locally finite type morphisms in Lemma 101.17.2. Let X → Y and Y → Z be
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locally quasi-finite. Let k be a field and let Spec(k)→ Z be a morphism. It suffices
to show that |Xk| is discrete. By Lemma 101.23.3 the morphisms Xk → Yk and
Yk → Spec(k) are locally quasi-finite. In particular we see that Yk is a quasi-DM
algebraic stack, see Lemma 101.4.13. By Theorem 101.21.3 we can find a scheme
V and a surjective, flat, locally finitely presented, locally quasi-finite morphism
V → Yk. By Lemma 101.23.4 we see that V is locally quasi-finite over k, in
particular |V | is discrete. The morphism V ×Yk Xk → Xk is surjective, flat, and
locally of finite presentation hence |V ×Yk Xk| → |Xk| is surjective and open. Thus
it suffices to show that |V ×Yk Xk| is discrete. Note that V is a disjoint union of
spectra of Artinian local k-algebras Ai with residue fields ki, see Varieties, Lemma
33.20.2. Thus it suffices to show that each

|Spec(Ai)×Yk Xk| = |Spec(ki)×Yk Xk| = |Spec(ki)×Y X|

is discrete, which follows from the assumption that X → Y is locally quasi-finite. □

Before we characterize locally quasi-finite morphisms in terms of coverings we do
it for quasi-DM morphisms.

Lemma 101.23.6.06UE Let f : X → Y be a morphism of algebraic stacks. The following
are equivalent

(1) f is quasi-DM,
(2) for any morphism V → Y with V an algebraic space there exists a

surjective, flat, locally finitely presented, locally quasi-finite morphism
U → X ×Y V where U is an algebraic space, and

(3) there exist algebraic spaces U , V and a morphism V → Y which is surjec-
tive, flat, and locally of finite presentation, and a morphism U → X ×Y V
which is surjective, flat, locally of finite presentation, and locally quasi-
finite.

Proof. The implication (2) ⇒ (3) is immediate.
Assume (1) and let V → Y be as in (2). Then X ×Y V → V is quasi-DM, see
Lemma 101.4.4. By Lemma 101.4.3 the algebraic space V is DM, hence quasi-DM.
Thus X ×Y V is quasi-DM by Lemma 101.4.11. Hence we may apply Theorem
101.21.3 to get the morphism U → X ×Y V as in (2).
Assume (3). Let V → Y and U → X×YV be as in (3). To prove that f is quasi-DM
it suffices to show that X ×Y V → V is quasi-DM, see Lemma 101.4.5. By Lemma
101.4.14 we see that X ×Y V is quasi-DM. Hence X ×Y V → V is quasi-DM by
Lemma 101.4.13 and (1) holds. This finishes the proof of the lemma. □

Lemma 101.23.7.06UF Let f : X → Y be a morphism of algebraic stacks. The following
are equivalent

(1) f is locally quasi-finite,
(2) f is quasi-DM and for any morphism V → Y with V an algebraic space

and any locally quasi-finite morphism U → X×YV where U is an algebraic
space the morphism U → V is locally quasi-finite,

(3) for any morphism V → Y from an algebraic space V there exists a sur-
jective, flat, locally finitely presented, and locally quasi-finite morphism
U → X ×Y V where U is an algebraic space such that U → V is locally
quasi-finite,

https://stacks.math.columbia.edu/tag/06UE
https://stacks.math.columbia.edu/tag/06UF


101.23. LOCALLY QUASI-FINITE MORPHISMS 7010

(4) there exists algebraic spaces U , V , a surjective, flat, and locally of finite
presentation morphism V → Y, and a morphism U → X ×Y V which is
surjective, flat, locally of finite presentation, and locally quasi-finite such
that U → V is locally quasi-finite.

Proof. Assume (1). Then f is quasi-DM by assumption. Let V → Y and U →
X ×Y V be as in (2). By Lemma 101.23.5 the composition U → X ×Y V → V is
locally quasi-finite. Thus (1) implies (2).
Assume (2). Let V → Y be as in (3). By Lemma 101.23.6 we can find an algebraic
space U and a surjective, flat, locally finitely presented, locally quasi-finite mor-
phism U → X ×Y V . By (2) the composition U → V is locally quasi-finite. Thus
(2) implies (3).
It is immediate that (3) implies (4).
Assume (4). We will prove (1) holds, which finishes the proof. By Lemma 101.23.6
we see that f is quasi-DM. To prove that f is locally of finite type it suffices to
prove that g : X ×Y V → V is locally of finite type, see Lemma 101.17.6. Then
it suffices to check that g precomposed with h : U → X ×Y V is locally of finite
type, see Lemma 101.17.7. Since g ◦ h : U → V was assumed to be locally quasi-
finite this holds, hence f is locally of finite type. Finally, let k be a field and let
Spec(k) → Y be a morphism. Then V ×Y Spec(k) is a nonempty algebraic space
which is locally of finite presentation over k. Hence we can find a finite extension
k′/k and a morphism Spec(k′)→ V such that

Spec(k′) //

��

V

��
Spec(k) // Y

commutes (details omitted). Then Xk′ → Xk is representable (by schemes), surjec-
tive, and finite locally free. In particular |Xk′ | → |Xk| is surjective and open. Thus
it suffices to prove that |Xk′ | is discrete. Since

U ×V Spec(k′) = U ×X ×YV Xk′

we see that U×V Spec(k′)→ Xk′ is surjective, flat, and locally of finite presentation
(as a base change of U → X ×Y V ). Hence |U×V Spec(k′)| → |Xk′ | is surjective and
open. Thus it suffices to show that |U ×V Spec(k′)| is discrete. This follows from
the fact that U → V is locally quasi-finite (either by our definition above or from
the original definition for morphisms of algebraic spaces, via Morphisms of Spaces,
Lemma 67.27.5). □

Lemma 101.23.8.06UG Let X → Y → Z be morphisms of algebraic stacks. Assume
that X → Z is locally quasi-finite and Y → Z is quasi-DM. Then X → Y is locally
quasi-finite.

Proof. Write X → Y as the composition
X −→ X ×Z Y −→ Y

The second arrow is locally quasi-finite as a base change of X → Z, see Lemma
101.23.3. The first arrow is locally quasi-finite by Lemma 101.4.8 as Y → Z is
quasi-DM. Hence X → Y is locally quasi-finite by Lemma 101.23.5. □
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101.24. Quasi-finite morphisms

0G2L We have defined “locally quasi-finite” morphisms of algebraic stacks in Section
101.23 and “quasi-compact” morphisms of algebraic stacks in Section 101.7. Since
a morphism of algebraic spaces is by definition quasi-finite if and only if it is both
locally quasi-finite and quasi-compact (Morphisms of Spaces, Definition 67.27.1),
we may define what it means for a morphism of algebraic stacks to be quasi-finite
as follows and it agrees with the already existing notion defined in Properties of
Stacks, Section 100.3 when the morphism is representable by algebraic spaces.

Definition 101.24.1.0G2M [Ryd08]Let f : X → Y be a morphism of algebraic stacks. We say
f is quasi-finite if f is locally quasi-finite (Definition 101.23.2) and quasi-compact
(Definition 101.7.2).

Lemma 101.24.2.0G2N The composition of quasi-finite morphisms is quasi-finite.

Proof. Combine Lemmas 101.23.5 and 101.7.4. □

Lemma 101.24.3.0G2P A base change of a quasi-finite morphism is quasi-finite.

Proof. Combine Lemmas 101.23.3 and 101.7.3. □

Lemma 101.24.4.0G2Q Let f : X → Y and g : Y → Z be morphisms of algebraic stacks.
If g ◦ f is quasi-finite and g is quasi-separated and quasi-DM then f is quasi-finite.

Proof. Combine Lemmas 101.23.8 and 101.7.7. □

101.25. Flat morphisms

06PV The property “being flat” of morphisms of algebraic spaces is smooth local on the
source-and-target, see Descent on Spaces, Remark 74.20.5. It is also stable under
base change and fpqc local on the target, see Morphisms of Spaces, Lemma 67.30.4
and Descent on Spaces, Lemma 74.11.13. Hence, by Lemma 101.16.1 above, we may
define what it means for a morphism of algebraic spaces to be flat as follows and
it agrees with the already existing notion defined in Properties of Stacks, Section
100.3 when the morphism is representable by algebraic spaces.

Definition 101.25.1.06PW Let f : X → Y be a morphism of algebraic stacks. We say f
is flat if the equivalent conditions of Lemma 101.16.1 hold with P = flat.

Lemma 101.25.2.06PX The composition of flat morphisms is flat.

Proof. Combine Remark 101.16.3 with Morphisms of Spaces, Lemma 67.30.3. □

Lemma 101.25.3.06PY A base change of a flat morphism is flat.

Proof. Combine Remark 101.16.4 with Morphisms of Spaces, Lemma 67.30.4. □

Lemma 101.25.4.06PZ Let f : X → Y be a morphism of algebraic stacks. Let Z → Y
be a surjective flat morphism of algebraic stacks. If the base change Z ×Y X → Z
is flat, then f is flat.

Proof. Choose an algebraic space W and a surjective smooth morphism W → Z.
Then W → Z is surjective and flat (Morphisms of Spaces, Lemma 67.37.7) hence
W → Y is surjective and flat (by Properties of Stacks, Lemma 100.5.2 and Lemma
101.25.2). Since the base change of Z ×Y X → Z by W → Z is a flat morphism
(Lemma 101.25.3) we may replace Z by W .
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Choose an algebraic space V and a surjective smooth morphism V → Y. Choose
an algebraic space U and a surjective smooth morphism U → V ×Y X . We have
to show that U → V is flat. Now we base change everything by W → Y: Set
U ′ = W ×Y U , V ′ = W ×Y V , X ′ = W ×Y X , and Y ′ = W ×Y Y = W . Then it is
still true that U ′ → V ′ ×Y′ X ′ is smooth by base change. Hence by our definition
of flat morphisms of algebraic stacks and the assumption that X ′ → Y ′ is flat, we
see that U ′ → V ′ is flat. Then, since V ′ → V is surjective as a base change of
W → Y we see that U → V is flat by Morphisms of Spaces, Lemma 67.31.3 (2) and
we win. □

Lemma 101.25.5.06Q0 Let X → Y → Z be morphisms of algebraic stacks. If X → Z is
flat and X → Y is surjective and flat, then Y → Z is flat.

Proof. Choose an algebraic space W and a surjective smooth morphism W → Z.
Choose an algebraic space V and a surjective smooth morphism V → W ×Z Y.
Choose an algebraic space U and a surjective smooth morphism U → V ×Y X . We
know that U → V is flat and that U →W is flat. Also, as X → Y is surjective we
see that U → V is surjective (as a composition of surjective morphisms). Hence the
lemma reduces to the case of morphisms of algebraic spaces. The case of morphisms
of algebraic spaces is Morphisms of Spaces, Lemma 67.31.5. □

Lemma 101.25.6.0DN5 Let f : X → Y be a flat morphism of algebraic stacks. Let
Spec(A) → Y be a morphism where A is a valuation ring. If the closed point of
Spec(A) maps to a point of |Y| in the image of |X | → |Y|, then there exists a
commutative diagram

Spec(A′) //

��

X

��
Spec(A) // Y

where A → A′ is an extension of valuation rings (More on Algebra, Definition
15.123.1).

Proof. The base change XA → Spec(A) is flat (Lemma 101.25.3) and the closed
point of Spec(A) is in the image of |XA| → |Spec(A)| (Properties of Stacks, Lemma
100.4.3). Thus we may assume Y = Spec(A). Let U → X be a surjective smooth
morphism where U is a scheme. Then we can apply Morphisms of Spaces, Lemma
67.42.4 to the morphism U → Spec(A) to conclude. □

101.26. Flat at a point

0CIB We still have to develop the general machinery needed to say what it means for a
morphism of algebraic stacks to have a given property at a point. For the moment
the following lemma is sufficient.

Lemma 101.26.1.0CIC Let f : X → Y be a morphism of algebraic stacks. Let x ∈ |X |.
Consider commutative diagrams

U

a

��

h
// V

b

��
X

f // Y

with points

u ∈ |U |

��
x ∈ |X |
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where U and V are algebraic spaces, b is flat, and (a, h) : U → X ×Y V is flat. The
following are equivalent

(1) h is flat at u for one diagram as above,
(2) h is flat at u for every diagram as above.

Proof. Suppose we are given a second diagram U ′, V ′, u′, a′, b′, h′ as in the lemma.
Then we can consider

U

��

U ×X U ′oo

��

// U ′

��
V V ×Y V ′oo // V ′

By Properties of Stacks, Lemma 100.4.3 there is a point u′′ ∈ |U ×X U ′| mapping
to u and u′. If h is flat at u, then the base change U ×V (V ×Y V ′)→ V ×Y V ′ is
flat at any point over u, see Morphisms of Spaces, Lemma 67.31.3. On the other
hand, the morphism

U ×X U ′ → U ×X (X ×Y V ′) = U ×Y V ′ = U ×V (V ×Y V ′)
is flat as a base change of (a′, h′), see Lemma 101.25.3. Composing and using
Morphisms of Spaces, Lemma 67.31.4 we conclude that U ×X U ′ → V ×Y V

′ is flat
at u′′. Then we can use composition by the flat map V ×Y V ′ → V ′ to conclude
that U ×X U ′ → V ′ is flat at u′′. Finally, since U ×X U ′ → U ′ is flat at u′′ and u′′

maps to u′ we conclude that U ′ → V ′ is flat at u′ by Morphisms of Spaces, Lemma
67.31.5. □

Definition 101.26.2.0CID Let f : X → Y be a morphism of algebraic stacks. Let x ∈ |X |.
We say f is flat at x if the equivalent conditions of Lemma 101.26.1 hold.

101.27. Morphisms of finite presentation

06Q1 The property “locally of finite presentation” of morphisms of algebraic spaces is
smooth local on the source-and-target, see Descent on Spaces, Remark 74.20.5.
It is also stable under base change and fpqc local on the target, see Morphisms
of Spaces, Lemma 67.28.3 and Descent on Spaces, Lemma 74.11.10. Hence, by
Lemma 101.16.1 above, we may define what it means for a morphism of algebraic
stacks to be locally of finite presentation as follows and it agrees with the already
existing notion defined in Properties of Stacks, Section 100.3 when the morphism
is representable by algebraic spaces.

Definition 101.27.1.06Q2 Let f : X → Y be a morphism of algebraic stacks.
(1) We say f locally of finite presentation if the equivalent conditions of

Lemma 101.16.1 hold with P = locally of finite presentation.
(2) We say f is of finite presentation if it is locally of finite presentation,

quasi-compact, and quasi-separated.

Note that a morphism of finite presentation is not just a quasi-compact morphism
which is locally of finite presentation.

Lemma 101.27.2.06Q3 The composition of finitely presented morphisms is of finite
presentation. The same holds for morphisms which are locally of finite presentation.

Proof. Combine Remark 101.16.3 with Morphisms of Spaces, Lemma 67.28.2. □
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Lemma 101.27.3.06Q4 A base change of a finitely presented morphism is of finite pre-
sentation. The same holds for morphisms which are locally of finite presentation.
Proof. Combine Remark 101.16.4 with Morphisms of Spaces, Lemma 67.28.3. □

Lemma 101.27.4.06Q5 A morphism which is locally of finite presentation is locally of
finite type. A morphism of finite presentation is of finite type.
Proof. Combine Remark 101.16.5 with Morphisms of Spaces, Lemma 67.28.5. □

Lemma 101.27.5.0DQJ Let f : X → Y be a morphism of algebraic stacks.
(1) If Y is locally Noetherian and f locally of finite type then f is locally of

finite presentation.
(2) If Y is locally Noetherian and f of finite type and quasi-separated then f

is of finite presentation.
Proof. Assume f : X → Y locally of finite type and Y locally Noetherian. This
means there exists a diagram as in Lemma 101.16.1 with h locally of finite type and
surjective vertical arrow a. By Morphisms of Spaces, Lemma 67.28.7 h is locally of
finite presentation. Hence X → Y is locally of finite presentation by definition. This
proves (1). If f is of finite type and quasi-separated then it is also quasi-compact
and quasi-separated and (2) follows immediately. □

Lemma 101.27.6.06Q6 Let f : X → Y and g : Y → Z be morphisms of algebraic stacks
If g◦f is locally of finite presentation and g is locally of finite type, then f is locally
of finite presentation.
Proof. Choose an algebraic space W and a surjective smooth morphism W → Z.
Choose an algebraic space V and a surjective smooth morphism V → Y ×Z W .
Choose an algebraic space U and a surjective smooth morphism U → X ×Y V .
The lemma follows upon applying Morphisms of Spaces, Lemma 67.28.9 to the
morphisms U → V →W . □

Lemma 101.27.7.0CMG Let f : X → Y be a morphism of algebraic stacks with diagonal
∆ : X → X×YX . If f is locally of finite type then ∆ is locally of finite presentation.
If f is quasi-separated and locally of finite type, then ∆ is of finite presentation.
Proof. Note that ∆ is a morphism over X (via the second projection). If f is
locally of finite type, then X is of finite presentation over X and pr2 : X ×Y X → X
is locally of finite type by Lemma 101.17.3. Thus the first statement holds by
Lemma 101.27.6. The second statement follows from the first and the definitions
(because f being quasi-separated means by definition that ∆f is quasi-compact and
quasi-separated). □

Lemma 101.27.8.06Q7 An open immersion is locally of finite presentation.
Proof. In view of Properties of Stacks, Definition 100.9.1 this follows from Mor-
phisms of Spaces, Lemma 67.28.11. □

Lemma 101.27.9.0CPP Let P be a property of morphisms of algebraic spaces which is
fppf local on the target and preserved by arbitrary base change. Let f : X → Y
be a morphism of algebraic stacks representable by algebraic spaces. Let Z → Y
be a morphism of algebraic stacks which is surjective, flat, and locally of finite
presentation. Set W = Z ×Y X . Then

(f has P )⇔ (the projection W → Z has P ).
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For the meaning of this statement see Properties of Stacks, Section 100.3.

Proof. Choose an algebraic space W and a morphism W → Z which is surjective,
flat, and locally of finite presentation. By Properties of Stacks, Lemma 100.5.2 and
Lemmas 101.25.2 and 101.27.2 the composition W → Y is also surjective, flat, and
locally of finite presentation. Denote V = W ×Z W = V ×Y X . By Properties of
Stacks, Lemma 100.3.3 we see that f has P if and only if V → W does and that
W → Z has P if and only if V →W does. The lemma follows. □

Lemma 101.27.10.0DN6 Let P be a property of morphisms of algebraic spaces which is
smooth local on the source-and-target and fppf local on the target. Let f : X → Y
be a morphism of algebraic stacks. Let Z → Y be a surjective, flat, locally finitely
presented morphism of algebraic stacks. If the base change Z ×Y X → Z has P,
then f has P.

Proof. Assume Z ×Y X → Z has P. Choose an algebraic space W and a surjective
smooth morphism W → Z. Observe that W ×Z Z ×Y X = W ×Y X . Thus by
the very definition of what it means for Z ×Y X → Z to have P (see Definition
101.16.2 and Lemma 101.16.1) we see that W ×Y X → W has P. On the other
hand, W → Z is surjective, flat, and locally of finite presentation (Morphisms of
Spaces, Lemmas 67.37.7 and 67.37.5) hence W → Y is surjective, flat, and locally of
finite presentation (by Properties of Stacks, Lemma 100.5.2 and Lemmas 101.25.2
and 101.27.2). Thus we may replace Z by W .
Choose an algebraic space V and a surjective smooth morphism V → Y. Choose
an algebraic space U and a surjective smooth morphism U → V ×Y X . We have
to show that U → V has P. Now we base change everything by W → Y: Set
U ′ = W ×Y U , V ′ = W ×Y V , X ′ = W ×Y X , and Y ′ = W ×Y Y = W . Then
it is still true that U ′ → V ′ ×Y′ X ′ is smooth by base change. Hence by Lemma
101.16.1 used in the definition of X ′ → Y ′ = W having P we see that U ′ → V ′ has
P. Then, since V ′ → V is surjective, flat, and locally of finite presentation as a
base change of W → Y we see that U → V has P as P is local in the fppf topology
on the target. □

Lemma 101.27.11.06Q8 Let f : X → Y be a morphism of algebraic stacks. Let Z → Y
be a surjective, flat, locally finitely presented morphism of algebraic stacks. If the
base change Z ×Y X → Z is locally of finite presentation, then f is locally of finite
presentation.

Proof. The property “locally of finite presentation” satisfies the conditions of Lemma
101.27.10. Smooth local on the source-and-target we have seen in the introduc-
tion to this section and fppf local on the target is Descent on Spaces, Lemma
74.11.10. □

Lemma 101.27.12.06Q9 Let X → Y → Z be morphisms of algebraic stacks. If X → Z
is locally of finite presentation and X → Y is surjective, flat, and locally of finite
presentation, then Y → Z is locally of finite presentation.

Proof. Choose an algebraic space W and a surjective smooth morphism W → Z.
Choose an algebraic space V and a surjective smooth morphism V → W ×Z Y.
Choose an algebraic space U and a surjective smooth morphism U → V ×Y X . We
know that U → V is flat and locally of finite presentation and that U → W is
locally of finite presentation. Also, as X → Y is surjective we see that U → V is
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surjective (as a composition of surjective morphisms). Hence the lemma reduces
to the case of morphisms of algebraic spaces. The case of morphisms of algebraic
spaces is Descent on Spaces, Lemma 74.16.1. □

Lemma 101.27.13.06QA Let f : X → Y be a morphism of algebraic stacks which is
surjective, flat, and locally of finite presentation. Then for every scheme U and
object y of Y over U there exists an fppf covering {Ui → U} and objects xi of X
over Ui such that f(xi) ∼= y|Ui in YUi .

Proof. We may think of y as a morphism U → Y. By Properties of Stacks, Lemma
100.5.3 and Lemmas 101.27.3 and 101.25.3 we see that X ×Y U → U is surjective,
flat, and locally of finite presentation. Let V be a scheme and let V → X ×Y U
smooth and surjective. Then V → X ×Y U is also surjective, flat, and locally of
finite presentation (see Morphisms of Spaces, Lemmas 67.37.7 and 67.37.5). Hence
also V → U is surjective, flat, and locally of finite presentation, see Properties of
Stacks, Lemma 100.5.2 and Lemmas 101.27.2, and 101.25.2. Hence {V → U} is the
desired fppf covering and x : V → X is the desired object. □

Lemma 101.27.14.07AN Let fj : Xj → X , j ∈ J be a family of morphisms of algebraic
stacks which are each flat and locally of finite presentation and which are jointly
surjective, i.e., |X | =

⋃
|fj |(|Xj |). Then for every scheme U and object x of X over

U there exists an fppf covering {Ui → U}i∈I , a map a : I → J , and objects xi of
Xa(i) over Ui such that fa(i)(xi) ∼= y|Ui in XUi .

Proof. Apply Lemma 101.27.13 to the morphism
∐
j∈J Xj → X . (There is a slight

set theoretic issue here – due to our setup of things – which we ignore.) To finish,
note that a morphism xi : Ui →

∐
j∈J Xj is given by a disjoint union decomposition

Ui =
∐
Ui,j and morphisms Ui,j → Xj . Then the fppf covering {Ui,j → U} and

the morphisms Ui,j → Xj do the job. □

Lemma 101.27.15.06R7 Let f : X → Y be flat and locally of finite presentation. Then
|f | : |X | → |Y| is open.

Proof. Choose a scheme V and a smooth surjective morphism V → Y. Choose a
scheme U and a smooth surjective morphism U → V ×Y X . By assumption the
morphism of schemes U → V is flat and locally of finite presentation. Hence U → V
is open by Morphisms, Lemma 29.25.10. By construction of the topology on |Y|
the map |V | → |Y| is open. The map |U | → |X | is surjective. The result follows
from these facts by elementary topology. □

Lemma 101.27.16.0DQK Let f : X → Y be a morphism of algebraic stacks. Let Z → Y
be a surjective, flat, locally finitely presented morphism of algebraic stacks. If the
base change Z ×Y X → Z is quasi-compact, then f is quasi-compact.

Proof. We have to show that given Y ′ → Y with Y ′ quasi-compact, we have Y ′×YX
is quasi-compact. Denote Z ′ = Z ×Y Y ′. Then |Z ′| → |Y ′| is open, see Lemma
101.27.15. Hence we can find a quasi-compact open substack W ⊂ Z ′ mapping
onto Y ′. Because Z ×Y X → Z is quasi-compact, we know that

W ×Z Z ×Y X =W ×Y X

is quasi-compact. And the map W ×Y X → Y ′ ×Y X is surjective, hence we win.
Some details omitted. □
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Lemma 101.27.17.0CPQ Let f : X → Y, g : Y → Z be composable morphisms of
algebraic stacks with composition h = g ◦ f : X → Z. If f is surjective, flat,
locally of finite presentation, and universally injective and if h is separated, then g
is separated.

Proof. Consider the diagram

X
∆
//

##

X ×Y X //

��

X ×Z X

��
Y // Y ×Z Y

The square is cartesian. We have to show the bottom horizontal arrow is proper.
We already know that it is representable by algebraic spaces and locally of finite
type (Lemma 101.3.3). Since the right vertical arrow is surjective, flat, and locally
of finite presentation it suffices to show the top right horizontal arrow is proper
(Lemma 101.27.9). Since h is separated, the composition of the top horizontal
arrows is proper.

Since f is universally injective ∆ is surjective (Lemma 101.14.5). Since the com-
position of ∆ with the projection X ×Y X → X is the identity, we see that ∆
is universally closed. By Morphisms of Spaces, Lemma 67.9.8 we conclude that
X ×Y X → X ×Z X is separated as X → X ×Z X is separated. Here we use that
implications between properties of morphisms of algebraic spaces can be transferred
to the same implications between properties of morphisms of algebraic stacks repre-
sentable by algebraic spaces; this is discussed in Properties of Stacks, Section 100.3.
Finally, we use the same principle to conlude that X ×Y X → X ×Z X is proper
from Morphisms of Spaces, Lemma 67.40.7. □

101.28. Gerbes

06QB An important type of algebraic stack are the stacks of the form [B/G] where B is an
algebraic space and G is a flat and locally finitely presented group algebraic space
over B (acting trivially on B), see Criteria for Representability, Lemma 97.18.3. It
turns out that an algebraic stack is a gerbe when it locally in the fppf topology is
of this form, see Lemma 101.28.7. In this section we briefly discuss this notion and
the corresponding relative notion.

Definition 101.28.1.06QC Let f : X → Y be a morphism of algebraic stacks. We say X
is a gerbe over Y if X is a gerbe over Y as stacks in groupoids over (Sch/S)fppf ,
see Stacks, Definition 8.11.4. We say an algebraic stack X is a gerbe if there exists
a morphism X → X where X is an algebraic space which turns X into a gerbe over
X.

The condition that X be a gerbe over Y is defined purely in terms of the topology
and category theory underlying the given algebraic stacks; but as we will see later
this condition has geometric consequences. For example it implies that X → Y
is surjective, flat, and locally of finite presentation, see Lemma 101.28.8. The
absolute notion is trickier to parse, because it may not be at first clear that X is
well determined. Actually, it is.
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Lemma 101.28.2.06QD Let X be an algebraic stack. If X is a gerbe, then the sheafifi-
cation of the presheaf

(Sch/S)oppfppf → Sets, U 7→ Ob(XU )/∼=
is an algebraic space and X is a gerbe over it.

Proof. (In this proof the abuse of language introduced in Section 101.2 really pays
off.) Choose a morphism π : X → X where X is an algebraic space which turns
X into a gerbe over X. It suffices to prove that X is the sheafification of the
presheaf F displayed in the lemma. It is clear that there is a map c : F → X.
We will use Stacks, Lemma 8.11.3 properties (2)(a) and (2)(b) to see that the map
c# : F# → X is surjective and injective, hence an isomorphism, see Sites, Lemma
7.11.2. Surjective: Let T be a scheme and let f : T → X. By property (2)(a) there
exists an fppf covering {hi : Ti → T} and morphisms xi : Ti → X such that f ◦ hi
corresponds to π ◦ xi. Hence we see that f |Ti is in the image of c. Injective: Let T
be a scheme and let x, y : T → X be morphisms such that c ◦ x = c ◦ y. By (2)(b)
we can find a covering {Ti → T} and morphisms x|Ti → y|Ti in the fibre category
XTi . Hence the restrictions x|Ti , y|Ti are equal in F(Ti). This proves that x, y give
the same section of F# over T as desired. □

Lemma 101.28.3.06QE Let
X ′ //

��

X

��
Y ′ // Y

be a fibre product of algebraic stacks. If X is a gerbe over Y, then X ′ is a gerbe
over Y ′.

Proof. Immediate from the definitions and Stacks, Lemma 8.11.5. □

Lemma 101.28.4.06R8 Let X → Y and Y → Z be morphisms of algebraic stacks. If X
is a gerbe over Y and Y is a gerbe over Z, then X is a gerbe over Z.

Proof. Immediate from Stacks, Lemma 8.11.6. □

Lemma 101.28.5.06QF Let
X ′ //

��

X

��
Y ′ // Y

be a fibre product of algebraic stacks. If Y ′ → Y is surjective, flat, and locally of
finite presentation and X ′ is a gerbe over Y ′, then X is a gerbe over Y.

Proof. Follows immediately from Lemma 101.27.13 and Stacks, Lemma 8.11.7. □

Lemma 101.28.6.06QG Let π : X → U be a morphism from an algebraic stack to an
algebraic space and let x : U → X be a section of π. Set G = IsomX (x, x), see
Definition 101.5.3. If X is a gerbe over U , then

(1) there is a canonical equivalence of stacks in groupoids
xcan : [U/G] −→ X .

where [U/G] is the quotient stack for the trivial action of G on U ,
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(2) G→ U is flat and locally of finite presentation, and
(3) U → X is surjective, flat, and locally of finite presentation.

Proof. Set R = U×x,X ,xU . The morphism R→ U×U factors through the diagonal
∆U : U → U × U as it factors through U ×U U = U . Hence R = G because

G = IsomX (x, x)
= U ×x,X IX

= U ×x,X (X ×∆,X ×SX ,∆ X )
= (U ×x,X ,x U)×U×U,∆U

U

= R×U×U,∆U
U

= R

for the fourth equality use Categories, Lemma 4.31.12. Let t, s : R → U be the
projections. The composition law c : R ×s,U,t R → R constructed on R in Al-
gebraic Stacks, Lemma 94.16.1 agrees with the group law on G (proof omitted).
Thus Algebraic Stacks, Lemma 94.16.1 shows we obtain a canonical fully faithful
1-morphism

xcan : [U/G] −→ X
of stacks in groupoids over (Sch/S)fppf . To see that it is an equivalence it suffices
to show that it is essentially surjective. To do this it suffices to show that any
object of X over a scheme T comes fppf locally from x via a morphism T → U ,
see Stacks, Lemma 8.4.8. However, this follows the condition that π turns X into
a gerbe over U , see property (2)(a) of Stacks, Lemma 8.11.3.
By Criteria for Representability, Lemma 97.18.3 we conclude that G → U is flat
and locally of finite presentation. Finally, U → X is surjective, flat, and locally of
finite presentation by Criteria for Representability, Lemma 97.17.1. □

Lemma 101.28.7.06QH Let π : X → Y be a morphism of algebraic stacks. The following
are equivalent

(1) X is a gerbe over Y, and
(2) there exists an algebraic space U , a group algebraic space G flat and

locally of finite presentation over U , and a surjective, flat, and locally
finitely presented morphism U → Y such that X ×Y U ∼= [U/G] over U .

Proof. Assume (2). By Lemma 101.28.5 to prove (1) it suffices to show that [U/G]
is a gerbe over U . This is immediate from Groupoids in Spaces, Lemma 78.27.2.
Assume (1). Any base change of π is a gerbe, see Lemma 101.28.3. As a first step
we choose a scheme V and a surjective smooth morphism V → Y. Thus we may
assume that π : X → V is a gerbe over a scheme. This means that there exists an
fppf covering {Vi → V } such that the fibre category XVi is nonempty, see Stacks,
Lemma 8.11.3 (2)(a). Note that U =

∐
Vi → V is surjective, flat, and locally of

finite presentation. Hence we may replace V by U and assume that π : X → U is a
gerbe over a scheme U and that there exists an object x of X over U . By Lemma
101.28.6 we see that X = [U/G] over U for some flat and locally finitely presented
group algebraic space G over U . □

Lemma 101.28.8.06QI Let π : X → Y be a morphism of algebraic stacks. If X is a
gerbe over Y, then π is surjective, flat, and locally of finite presentation.
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Proof. By Properties of Stacks, Lemma 100.5.4 and Lemmas 101.25.4 and 101.27.11
it suffices to prove to the lemma after replacing π by a base change with a surjective,
flat, locally finitely presented morphism Y ′ → Y. By Lemma 101.28.7 we may
assume Y = U is an algebraic space and X = [U/G] over U . Then U → [U/G] is
surjective, flat, and locally of finite presentation, see Lemma 101.28.6. This implies
that π is surjective, flat, and locally of finite presentation by Properties of Stacks,
Lemma 100.5.5 and Lemmas 101.25.5 and 101.27.12. □

Proposition 101.28.9.06QJ Let X be an algebraic stack. The following are equivalent
(1) X is a gerbe, and
(2) IX → X is flat and locally of finite presentation.

Proof. Assume (1). Choose a morphism X → X into an algebraic space X which
turns X into a gerbe over X. Let X ′ → X be a surjective, flat, locally finitely
presented morphism and set X ′ = X ′ ×X X . Note that X ′ is a gerbe over X ′ by
Lemma 101.28.3. Then both squares in

IX ′ //

��

X ′ //

��

X ′

��
IX // X // X

are fibre product squares, see Lemma 101.5.5. Hence to prove IX → X is flat
and locally of finite presentation it suffices to do so after such a base change by
Lemmas 101.25.4 and 101.27.11. Thus we can apply Lemma 101.28.7 to assume that
X = [U/G]. By Lemma 101.28.6 we see G is flat and locally of finite presentation
over U and that x : U → [U/G] is surjective, flat, and locally of finite presentation.
Moreover, the pullback of IX by x is G and we conclude that (2) holds by descent
again, i.e., by Lemmas 101.25.4 and 101.27.11.
Conversely, assume (2). Choose a smooth presentation X = [U/R], see Algebraic
Stacks, Section 94.16. Denote G → U the stabilizer group algebraic space of the
groupoid (U,R, s, t, c, e, i), see Groupoids in Spaces, Definition 78.16.2. By Lemma
101.5.7 we see that G→ U is flat and locally of finite presentation as a base change
of IX → X , see Lemmas 101.25.3 and 101.27.3. Consider the following action

a : G×U,t R→ R, (g, r) 7→ c(g, r)
of G on R. This action is free on T -valued points for any scheme T as R is a
groupoid. Hence R′ = R/G is an algebraic space and the quotient morphism
π : R → R′ is surjective, flat, and locally of finite presentation by Bootstrap,
Lemma 80.11.7. The projections s, t : R → U are G-invariant, hence we obtain
morphisms s′, t′ : R′ → U such that s = s′ ◦ π and t = t′ ◦ π. Since s, t : R → U
are flat and locally of finite presentation we conclude that s′, t′ are flat and locally
of finite presentation, see Morphisms of Spaces, Lemmas 67.31.5 and Descent on
Spaces, Lemma 74.16.1. Consider the morphism

j′ = (t′, s′) : R′ −→ U × U.

We claim this is a monomorphism. Namely, suppose that T is a scheme and that
a, b : T → R′ are morphisms which have the same image in U × U . By definition
of the quotient R′ = R/G there exists an fppf covering {hj : Tj → T} such that
a ◦ hj = π ◦ aj and b ◦ hj = π ◦ bj for some morphisms aj , bj : Tj → R. Since
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aj , bj have the same image in U × U we see that gj = c(aj , i(bj)) is a Tj-valued
point of G such that c(gj , bj) = aj . In other words, aj and bj have the same image
in R′ and the claim is proved. Since j : R → U × U is a pre-equivalence relation
(see Groupoids in Spaces, Lemma 78.11.2) and R → R′ is surjective (as a map of
sheaves) we see that j′ : R′ → U × U is an equivalence relation. Hence Bootstrap,
Theorem 80.10.1 shows that X = U/R′ is an algebraic space. Finally, we claim
that the morphism

X = [U/R] −→ X = U/R′

turns X into a gerbe over X. This follows from Groupoids in Spaces, Lemma
78.27.1 as R → R′ is surjective, flat, and locally of finite presentation (if needed
use Bootstrap, Lemma 80.4.6 to see this implies the required hypothesis). □

Lemma 101.28.10.0CPR Let f : X → Y be a morphism of algebraic stacks which makes
X a gerbe over Y. Then

(1) IX/Y → X is flat and locally of finite presentation,
(2) X → X ×Y X is surjective, flat, and locally of finite presentation,
(3) given algebraic spaces Ti, i = 1, 2 and morphisms xi : Ti → X , with

yi = f ◦ xi the morphism
T1 ×x1,X ,x2 T2 −→ T1 ×y1,Y,y2 T2

is surjective, flat, and locally of finite presentation,
(4) given an algebraic space T and morphisms xi : T → X , i = 1, 2, with

yi = f ◦ xi the morphism
IsomX (x1, x2) −→ IsomY(y1, y2)

is surjective, flat, and locally of finite presentation.

Proof. Proof of (1). Choose a scheme Y and a surjective smooth morphism Y → Y.
Set X ′ = X ×Y Y . By Lemma 101.5.5 we obtain cartesian squares

IX ′ //

��

X ′ //

��

Y

��
IX/Y // X // Y

By Lemmas 101.25.4 and 101.27.11 it suffices to prove that IX ′ → X ′ is flat and
locally of finite presentation. This follows from Proposition 101.28.9 (because X ′

is a gerbe over Y by Lemma 101.28.3).
Proof of (2). With notation as above, note that we may assume that X ′ = [Y/G]
for some group algebraic space G flat and locally of finite presentation over Y , see
Lemma 101.28.7. The base change of the morphism ∆ : X → X ×YX over Y by the
morphism Y → Y is the morphism ∆′ : X ′ → X ′ ×Y X ′. Hence it suffices to show
that ∆′ is surjective, flat, and locally of finite presentation (see Lemmas 101.25.4
and 101.27.11). In other words, we have to show that

[Y/G] −→ [Y/G×Y G]
is surjective, flat, and locally of finite presentation. This is true because the base
change by the surjective, flat, locally finitely presented morphism Y → [Y/G×Y G]
is the morphism G→ Y .
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Proof of (3). Observe that the diagram

T1 ×x1,X ,x2 T2

��

// T1 ×y1,Y,y2 T2

��
X // X ×Y X

is cartesian. Hence (3) follows from (2).
Proof of (4). This is true because

IsomX (x1, x2) = (T ×x1,X ,x2 T )×T×T,∆T
T

hence the morphism in (4) is a base change of the morphism in (3). □

Proposition 101.28.11.0CPS Let f : X → Y be a morphism of algebraic stacks. The
following are equivalent

(1) X is a gerbe over Y, and
(2) f : X → Y and ∆ : X → X ×Y X are surjective, flat, and locally of finite

presentation.

Proof. The implication (1) ⇒ (2) follows from Lemmas 101.28.8 and 101.28.10.
Assume (2). It suffices to prove (1) for the base change of f by a surjective, flat,
and locally finitely presented morphism Y ′ → Y, see Lemma 101.28.5 (note that
the base change of the diagonal of f is the diagonal of the base change). Thus we
may assume Y is a scheme Y . In this case IX → X is a base change of ∆ and we
conclude that X is a gerbe by Proposition 101.28.9. We still have to show that X
is a gerbe over Y . Let X → X be the morphism of Lemma 101.28.2 turning X
into a gerbe over the algebraic space X classifying isomorphism classes of objects
of X . It is clear that f : X → Y factors as X → X → Y . Since f is surjective, flat,
and locally of finite presentation, we conclude that X → Y is surjective as a map
of fppf sheaves (for example use Lemma 101.27.13). On the other hand, X → Y
is injective too: for any scheme T and any two T -valued points x1, x2 of X which
map to the same point of Y , we can first fppf locally on T lift x1, x2 to objects
ξ1, ξ2 of X over T and second deduce that ξ1 and ξ2 are fppf locally isomorphic
by our assumption that ∆ : X → X ×Y X is surjective, flat, and locally of finite
presentation. Whence x1 = x2 by construction of X. Thus X = Y and the proof
is complete. □

At this point we have developed enough machinery to prove that residual gerbes
(when they exist) are gerbes.

Lemma 101.28.12.06QK Let Z be a reduced, locally Noetherian algebraic stack such that
|Z| is a singleton. Then Z is a gerbe over a reduced, locally Noetherian algebraic
space Z with |Z| a singleton.

Proof. By Properties of Stacks, Lemma 100.11.3 there exists a surjective, flat, lo-
cally finitely presented morphism Spec(k) → Z where k is a field. Then IZ ×Z
Spec(k) → Spec(k) is representable by algebraic spaces and locally of finite type
(as a base change of IZ → Z, see Lemmas 101.5.1 and 101.17.3). Therefore it is
locally of finite presentation, see Morphisms of Spaces, Lemma 67.28.7. Of course
it is also flat as k is a field. Hence we may apply Lemmas 101.25.4 and 101.27.11
to see that IZ → Z is flat and locally of finite presentation. We conclude that Z
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is a gerbe by Proposition 101.28.9. Let π : Z → Z be a morphism to an algebraic
space such that Z is a gerbe over Z. Then π is surjective, flat, and locally of finite
presentation by Lemma 101.28.8. Hence Spec(k)→ Z is surjective, flat, and locally
of finite presentation as a composition, see Properties of Stacks, Lemma 100.5.2 and
Lemmas 101.25.2 and 101.27.2. Hence by Properties of Stacks, Lemma 100.11.3 we
see that |Z| is a singleton and that Z is locally Noetherian and reduced. □

Lemma 101.28.13.06R9 Let f : X → Y be a morphism of algebraic stacks. If X is a
gerbe over Y then f is a universal homeomorphism.

Proof. By Lemma 101.28.3 the assumption on f is preserved under base change.
Hence it suffices to show that the map |X | → |Y| is a homeomorphism of topological
spaces. Let k be a field and let y be an object of Y over Spec(k). By Stacks, Lemma
8.11.3 property (2)(a) there exists an fppf covering {Ti → Spec(k)} and objects xi
of X over Ti with f(xi) ∼= y|Ti . Choose an i such that Ti ̸= ∅. Choose a morphism
Spec(K) → Ti for some field K. Then k ⊂ K and xi|K is an object of X lying
over y|K . Thus we see that |Y| → |X |. is surjective. The map |Y| → |X | is also
injective. Namely, if x, x′ are objects of X over Spec(k) whose images f(x), f(x′)
become isomorphic (over an extension) in Y, then Stacks, Lemma 8.11.3 property
(2)(b) guarantees the existence of an extension of k over which x and x′ become
isomorphic (details omitted). Hence |X | → |Y| is continuous and bijective and
it suffices to show that it is also open. This follows from Lemmas 101.28.8 and
101.27.15. □

Lemma 101.28.14.0DQL Let f : X → Y be a morphism of algebraic stacks such that X
is a gerbe over Y. If ∆X is quasi-compact, so is ∆Y .

Proof. Consider the diagram
X // X ×Y X //

��

X × X

��
Y // Y × Y

By Proposition 101.28.11 we find that the arrow on the top left is surjective. Since
the composition of the top horizontal arrows is quasi-compact, we conclude that
the top right arrow is quasi-compact by Lemma 101.7.6. The square is cartesian
and the right vertical arrow is surjective, flat, and locally of finite presentation.
Thus we conclude by Lemma 101.27.16. □

The following lemma tells us that residual gerbes exist for all points on any algebraic
stack which is a gerbe.

Lemma 101.28.15.06RA Let X be an algebraic stack. If X is a gerbe then for every
x ∈ |X | the residual gerbe of X at x exists.

Proof. Let π : X → X be a morphism from X into an algebraic space X which
turns X into a gerbe over X. Let Zx → X be the residual space of X at x, see
Decent Spaces, Definition 68.13.6. Let Z = X ×X Zx. By Lemma 101.28.3 the
algebraic stack Z is a gerbe over Zx. Hence |Z| = |Zx| (Lemma 101.28.13) is
a singleton. Since Z → Zx is locally of finite presentation as a base change of
π (see Lemmas 101.28.8 and 101.27.3) we see that Z is locally Noetherian, see
Lemma 101.17.5. Thus the residual gerbe Zx of X at x exists and is equal to
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Zx = Zred the reduction of the algebraic stack Z. Namely, we have seen above
that |Zred| is a singleton mapping to x ∈ |X |, it is reduced by construction, and
it is locally Noetherian (as the reduction of a locally Noetherian algebraic stack is
locally Noetherian, details omitted). □

101.29. Stratification by gerbes

06RB The goal of this section is to show that many algebraic stacks X have a “stratifica-
tion” by locally closed substacks Xi ⊂ X such that each Xi is a gerbe. This shows
that in some sense gerbes are the building blocks out of which any algebraic stack
is constructed. Note that by stratification we only mean that

|X | =
⋃

i
|Xi|

is a stratification of the topological space associated to X and nothing more (in
this section). Hence it is harmless to replace X by its reduction (see Properties of
Stacks, Section 100.10) in order to study this stratification.
The following proposition tells us there is (almost always) a dense open substack
of the reduction of X

Proposition 101.29.1.06RC Let X be a reduced algebraic stack such that IX → X is
quasi-compact. Then there exists a dense open substack U ⊂ X which is a gerbe.

Proof. According to Proposition 101.28.9 it is enough to find a dense open substack
U such that IU → U is flat and locally of finite presentation. Note that IU =
IX ×X U , see Lemma 101.5.5.
Choose a presentation X = [U/R]. Let G → U be the stabilizer group algebraic
space of the groupoid R. By Lemma 101.5.7 we see thatG→ U is the base change of
IX → X hence quasi-compact (by assumption) and locally of finite type (by Lemma
101.5.1). Let W ⊂ U be the largest open (possibly empty) subscheme such that
the restriction GW →W is flat and locally of finite presentation (we omit the proof
that W exists; hint: use that the properties are local). By Morphisms of Spaces,
Proposition 67.32.1 we see that W ⊂ U is dense. Note that W ⊂ U is R-invariant
by More on Groupoids in Spaces, Lemma 79.6.2. Hence W corresponds to an
open substack U ⊂ X by Properties of Stacks, Lemma 100.9.11. Since |U | → |X |
is open and |W | ⊂ |U | is dense we conclude that U is dense in X . Finally, the
morphism IU → U is flat and locally of finite presentation because the base change
by the surjective smooth morphism W → U is the morphism GW → W which is
flat and locally of finite presentation by construction. See Lemmas 101.25.4 and
101.27.11. □

The above proposition immediately implies that any point has a residual gerbe on
an algebraic stack with quasi-compact inertia, as we will show in Lemma 101.31.1.
It turns out that there doesn’t always exist a finite stratification by gerbes. Here
is an example.

Example 101.29.2.06RE Let k be a field. Take U = Spec(k[x0, x1, x2, . . .]) and let Gm

act by t(x0, x1, x2, . . .) = (tx0, t
px1, t

p2
x2, . . .) where p is a prime number. Let

X = [U/Gm]. This is an algebraic stack. There is a stratification of X by strata
(1) X0 is where x0 is not zero,
(2) X1 is where x0 is zero but x1 is not zero,
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(3) X2 is where x0, x1 are zero, but x2 is not zero,
(4) and so on, and
(5) X∞ is where all the xi are zero.

Each stratum is a gerbe over a scheme with group µpi for Xi and Gm for X∞. The
strata are reduced locally closed substacks. There is no coarser stratification with
the same properties.

Nonetheless, using transfinite induction we can use Proposition 101.29.1 find pos-
sibly infinite stratifications by gerbes...!

Lemma 101.29.3.06RF Let X be an algebraic stack such that IX → X is quasi-compact.
Then there exists a well-ordered index set I and for every i ∈ I a reduced locally
closed substack Ui ⊂ X such that

(1) each Ui is a gerbe,
(2) we have |X | =

⋃
i∈I |Ui|,

(3) Ti = |X | \
⋃
i′<i |Ui′ | is closed in |X | for all i ∈ I, and

(4) |Ui| is open in Ti.
We can moreover arrange it so that either (a) |Ui| ⊂ Ti is dense, or (b) Ui is quasi-
compact. In case (a), if we choose Ui as large as possible (see proof for details),
then the stratification is canonical.

Proof. Let T ⊂ |X | be a nonempty closed subset. We are going to find (resp. choose)
for every such T a reduced locally closed substack U(T ) ⊂ X with |U(T )| ⊂ T open
dense (resp. nonempty quasi-compact). Namely, by Properties of Stacks, Lemma
100.10.1 there exists a unique reduced closed substack X ′ ⊂ X such that T = |X ′|.
Note that IX ′ = IX ×X X ′ by Lemma 101.5.6. Hence IX ′ → X ′ is quasi-compact
as a base change, see Lemma 101.7.3. Therefore Proposition 101.29.1 implies there
exists a dense maximal (see proof proposition) open substack U ⊂ X ′ which is a
gerbe. In case (a) we set U(T ) = U (this is canonical) and in case (b) we simply
choose a nonempty quasi-compact open U(T ) ⊂ U , see Properties of Stacks, Lemma
100.4.9 (we can do this for all T simultaneously by the axiom of choice).
Using transfinite recursion we construct for every ordinal α a closed subset Tα ⊂ |X |.
For α = 0 we set T0 = |X |. Given Tα set

Tα+1 = Tα \ |U(Tα)|.
If β is a limit ordinal we set

Tβ =
⋂

α<β
Tα.

We claim that Tα = ∅ for all α large enough. Namely, assume that Tα ̸= ∅ for all α.
Then we obtain an injective map from the class of ordinals into the set of subsets
of |X | which is a contradiction.
The claim implies the lemma. Namely, let

I = {α | Uα ̸= ∅}.
This is a well-ordered set by the claim. For i = α ∈ I we set Ui = Uα. So Ui
is a reduced locally closed substack and a gerbe, i.e., (1) holds. By construction
Ti = Tα if i = α ∈ I, hence (3) holds. Also, (4) and (a) or (b) hold by our choice of
U(T ) as well. Finally, to see (2) let x ∈ |X |. There exists a smallest ordinal β with
x ̸∈ Tβ (because the ordinals are well-ordered). In this case β has to be a successor

https://stacks.math.columbia.edu/tag/06RF


101.30. THE TOPOLOGICAL SPACE OF AN ALGEBRAIC STACK 7026

ordinal by the definition of Tβ for limit ordinals. Hence β = α+ 1 and x ∈ |U(Tα)|
and we win. □

Remark 101.29.4.06RG We can wonder about the order type of the canonical strat-
ifications which occur as output of the stratifications of type (a) constructed in
Lemma 101.29.3. A natural guess is that the well-ordered set I has cardinal-
ity at most ℵ0. We have no idea if this is true or false. If you do please email
stacks.project@gmail.com.

101.30. The topological space of an algebraic stack

0DQM In this section we apply the previous results to the topological space |X | associated
to an algebraic stack.

Lemma 101.30.1.0DQN Let X be a quasi-compact algebraic stack whose diagonal ∆ is
quasi-compact. Then |X | is a spectral topological space.

Proof. Choose an affine scheme U and a surjective smooth morphism U → X ,
see Properties of Stacks, Lemma 100.6.2. Then |U | → |X | is continuous, open,
and surjective, see Properties of Stacks, Lemma 100.4.7. Hence the quasi-compact
opens of |X | form a basis for the topology. For W1,W2 ⊂ |X | quasi-compact open,
we may choose a quasi-compact opens V1, V2 of U mapping to W1 and W2. Since
∆ is quasi-compact, we see that

V1 ×X V2 = (V1 × V2)×X ×X ,∆ X

is quasi-compact. Then image of |V1 ×X V2| in |X | is W1 ∩W2 by Properties of
Stacks, Lemma 100.4.3. Thus W1 ∩W2 is quasi-compact. To finish the proof, it
suffices to show that |X | is sober, see Topology, Definition 5.23.1.

Let T ⊂ |X | be an irreducible closed subset. We have to show T has a unique
generic point. Let Z ⊂ X be the reduced induced closed substack corresponding to
T , see Properties of Stacks, Definition 100.10.4. Since Z → X is a closed immersion,
we see that ∆Z is quasi-compact: first show that Z → X × X is quasi-compact as
the composition of Z → X with ∆, then write Z → X × X as the composition of
∆Z and Z×Z → X ×X and use Lemma 101.7.7 and the fact that Z×Z → X ×X
is separated. Thus we reduce to the case discussed in the next paragraph.

Assume X is quasi-compact, ∆ is quasi-compact, X is reduced, and |X | irreducible.
We have to show |X | has a unique generic point. Since IX → X is a base change
of ∆, we see that IX → X is quasi-compact (Lemma 101.7.3). Thus there exists
a dense open substack U ⊂ X which is a gerbe by Proposition 101.29.1. In other
words, |U| ⊂ |X | is open dense. Thus we may assume that X is a gerbe. Say
X → X turns X into a gerbe over the algebraic space X. Then |X | ∼= |X| by
Lemma 101.28.13. In particular, X is quasi-compact. By Lemma 101.28.14 we see
that X has quasi-compact diagonal, i.e., X is a quasi-separated algebraic space.
Then |X| is spectral by Properties of Spaces, Lemma 66.15.2 which implies what
we want is true. □

Lemma 101.30.2.0DQP Let X be a quasi-compact and quasi-separated algebraic stack.
Then |X | is a spectral topological space.

Proof. This is a special case of Lemma 101.30.1. □
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Lemma 101.30.3.0DQQ Let X be an algebraic stack whose diagonal is quasi-compact
(for example if X is quasi-separated). Then there is an open covering |X | =

⋃
Ui

with Ui spectral. In particular |X | is a sober topological space.

Proof. Immediate consequence of Lemma 101.30.1. □

101.31. Existence of residual gerbes

06UH The definition of a residual gerbe of a point on an algebraic stack is Properties of
Stacks, Definition 100.11.8. We have already shown that residual gerbes exist for
finite type points (Lemma 101.18.7) and for any point of a gerbe (Lemma 101.28.15).
In this section we prove that residual gerbes exist on many algebraic stacks. First,
here is the promised application of Proposition 101.29.1.

Lemma 101.31.1.06RD Let X be an algebraic stack such that IX → X is quasi-compact.
Then the residual gerbe of X at x exists for every x ∈ |X |.

Proof. Let T = {x} ⊂ |X | be the closure of x. By Properties of Stacks, Lemma
100.10.1 there exists a reduced closed substack X ′ ⊂ X such that T = |X ′|. Note
that IX ′ = IX ×X X ′ by Lemma 101.5.6. Hence IX ′ → X ′ is quasi-compact as
a base change, see Lemma 101.7.3. Therefore Proposition 101.29.1 implies there
exists a dense open substack U ⊂ X ′ which is a gerbe. Note that x ∈ |U| because
{x} ⊂ T is a dense subset too. Hence a residual gerbe Zx ⊂ U of U at x exists by
Lemma 101.28.15. It is immediate from the definitions that Zx → X is a residual
gerbe of X at x. □

If the stack is quasi-DM then residual gerbes exist too. In particular, residual
gerbes always exist for Deligne-Mumford stacks.

Lemma 101.31.2.06UI Let X be a quasi-DM algebraic stack. Then the residual gerbe
of X at x exists for every x ∈ |X |.

Proof. Choose a scheme U and a surjective, flat, locally finite presented, and locally
quasi-finite morphism U → X , see Theorem 101.21.3. Set R = U ×X U . The
projections s, t : R→ U are surjective, flat, locally of finite presentation, and locally
quasi-finite as base changes of the morphism U → X . There is a canonical morphism
[U/R]→ X (see Algebraic Stacks, Lemma 94.16.1) which is an equivalence because
U → X is surjective, flat, and locally of finite presentation, see Algebraic Stacks,
Remark 94.16.3. Thus we may assume that X = [U/R] where (U,R, s, t, c) is a
groupoid in algebraic spaces such that s, t : R → U are surjective, flat, locally of
finite presentation, and locally quasi-finite. Set

U ′ =
∐

u∈U lying over x
Spec(κ(u)).

The canonical morphism U ′ → U is a monomorphism. Let
R′ = U ′ ×X U ′ = R×(U×U) (U ′ × U ′)

Because U ′ → U is a monomorphism we see that both projections s′, t′ : R′ → U ′

factor as a monomorphism followed by a locally quasi-finite morphism. Hence, as
U ′ is a disjoint union of spectra of fields, using Spaces over Fields, Lemma 72.10.9
we conclude that the morphisms s′, t′ : R′ → U ′ are locally quasi-finite. Again
since U ′ is a disjoint union of spectra of fields, the morphisms s′, t′ are also flat.
Finally, s′, t′ locally quasi-finite implies s′, t′ locally of finite type, hence s′, t′ locally
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of finite presentation (because U ′ is a disjoint union of spectra of fields in particular
locally Noetherian, so that Morphisms of Spaces, Lemma 67.28.7 applies). Hence
Z = [U ′/R′] is an algebraic stack by Criteria for Representability, Theorem 97.17.2.
As R′ is the restriction of R by U ′ → U we see Z → X is a monomorphism by
Groupoids in Spaces, Lemma 78.25.1 and Properties of Stacks, Lemma 100.8.4.
Since Z → X is a monomorphism we see that |Z| → |X | is injective, see Properties
of Stacks, Lemma 100.8.5. By Properties of Stacks, Lemma 100.4.3 we see that

|U ′| = |Z ×X U ′| −→ |Z| ×|X | |U ′|

is surjective which implies (by our choice of U ′) that |Z| → |X | has image {x}. We
conclude that |Z| is a singleton. Finally, by construction U ′ is locally Noetherian
and reduced, i.e., Z is reduced and locally Noetherian. This means that the essential
image of Z → X is the residual gerbe of X at x, see Properties of Stacks, Lemma
100.11.12. □

Lemma 101.31.3.0H22 Let X be a locally Noetherian algebraic stack. Then the residual
gerbe of X at x exists for every x ∈ |X |.

Proof. Choose an affine scheme U and a smooth morphism U → X such that x is
in the image of the open continuous map |U | → |X |. We may and do replace X
with the open substack corresponding to the image of |U | → |X |, see Properties of
Stacks, Lemma 100.9.12. Thus we may assume X = [U/R] for a smooth groupoid
(U,R, s, t, c) in algebraic spaces where U is a Noetherian affine scheme, see Algebraic
Stacks, Section 94.16.
Let E ⊂ |U | be the inverse image of {x} ⊂ |X |. Of course E ̸= ∅. Since |U |
is a Noetherian topological space, we can choose an element u ∈ E such that
{u}∩E = {u}. As usual, we think of u = Spec(κ(u)) as the spectrum of its residue
field. Let us write

F = u×U,t R = u×X U and R′ = (u× u)×(U×U),(t,s) R = u×X u

Furthermore, denote Z = {u} ⊂ U with the reduced induced scheme structure.
Denote p : F → U the morphism induced by the second projection (using s : R→ U
in the first fibre product description of F ). Then E is the set theoretic image of
p. The morphism R′ → F is a monomorphism which factors through the inverse
image p−1(Z) of Z. This inverse image p−1(Z) ⊂ F is a closed subscheme and the
restriction p|p−1(Z) : p−1(Z)→ Z has image set theoretically contained in {u} ⊂ Z
by our careful choice of u ∈ E above. Since u = limW where the limit is over the
nonempty affine open subschemes of the irreducible reduced scheme Z, we conclude
that the morphism p|p−1(Z) : p−1(Z) → Z factors through the morphism u → Z.
Clearly this implies that R′ = p−1(Z). In particular the morphism t′ : R′ → u is
locally of finite presentation as the composition of the closed immersion p−1(Z)→ F
of locally Noetherian algebraic spaces with the smooth morphism pr1 : F → u; use
Morphisms of Spaces, Lemmas 67.23.5, 67.28.12, and 67.28.2. Hence the restriction
(u,R′, s′, t′, c′) of (U,R, s, t, c) by u→ U is a groupoid in algebraic spaces where s′

and t′ are flat and locally of finite presentation. Therefore Z = [u/R′] is an algebraic
stack by Criteria for Representability, Theorem 97.17.2. As R′ is the restriction of
R by u → U we see Z → X is a monomorphism by Groupoids in Spaces, Lemma
78.25.1 and Properties of Stacks, Lemma 100.8.4. Then Z is (isomorphic to) the
residual gerbe by the material in Properties of Stacks, Section 100.11. □
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101.32. Étale local structure

0DU0 In this section we start discussing what we can say about the étale local structure
of an algebraic stack.

Lemma 101.32.1.0DU1 Let Y be an algebraic space. Let (U,R, s, t, c) be a groupoid in
algebraic spaces over Y . Assume U → Y is flat and locally of finite presentation
and R → U ×Y U an open immersion. Then X = [U/R] = U/R is an algebraic
space and X → Y is étale.

Proof. The quotient stack [U/R] is an algebraic stacks by Criteria for Representabil-
ity, Theorem 97.17.2. On the other hand, since R → U × U is a monomorphism,
it is an algebraic space (by our abuse of language and Algebraic Stacks, Proposi-
tion 94.13.3) and of course it is equal to the algebraic space U/R (of Bootstrap,
Theorem 80.10.1). Since U → X is surjective, flat, and locally of finite presena-
tion (Bootstrap, Lemma 80.11.6) we conclude that X → Y is flat and locally of
finite presentation by Morphisms of Spaces, Lemma 67.31.5 and Descent on Spaces,
Lemma 74.8.2. Finally, consider the cartesian diagram

R

��

// U ×Y U

��
X // X ×Y X

Since the right vertical arrow is surjective, flat, and locally of finite presentation
(small detail omitted), we find that X → X ×Y X is an open immersion as the top
horizonal arrow has this property by assumption (use Properties of Stacks, Lemma
100.3.3). Thus X → Y is unramified by Morphisms of Spaces, Lemma 67.38.9. We
conclude by Morphisms of Spaces, Lemma 67.39.12. □

Lemma 101.32.2.0DU2 Let S be a scheme. Let (U,R, s, t, c) be a groupoid in algebraic
spaces over S. Assume s, t are flat and locally of finite presentation. Let P ⊂ R
be an open subspace such that (U,P, s|P , t|P , c|P×s,U,tP ) is a groupoid in algebraic
spaces over S. Then

[U/P ] −→ [U/R]
is a morphism of algebraic stacks which is representable by algebraic spaces, sur-
jective, and étale.

Proof. Since P ⊂ R is open, we see that s|P and t|P are flat and locally of finite
presentation. Thus [U/R] and [U/P ] are algebraic stacks by Criteria for Repre-
sentability, Theorem 97.17.2. To see that the morphism is representable by alge-
braic spaces, it suffices to show that [U/P ]→ [U/R] is faithful on fibre categories,
see Algebraic Stacks, Lemma 94.15.2. This follows immediately from the fact that
P → R is a monomorphism and the explicit description of quotient stacks given in
Groupoids in Spaces, Lemma 78.24.1. Having said this, we know what it means for
[U/P ] → [U/R] to be surjective and étale by Algebraic Stacks, Definition 94.10.1.
Surjectivity follows for example from Criteria for Representability, Lemma 97.7.3
and the description of objects of quotient stacks (see lemma cited above) over spec-
tra of fields. It remains to prove that our morphism is étale.
To do this it suffices to show that U ×[U/R] [U/P ] → U is étale, see Properties of
Stacks, Lemma 100.3.3. By Groupoids in Spaces, Lemma 78.21.2 the fibre product

https://stacks.math.columbia.edu/tag/0DU1
https://stacks.math.columbia.edu/tag/0DU2


101.32. ÉTALE LOCAL STRUCTURE 7030

is equal to [R/P ×s,U,t R] with morphism to U induced by s : R → U . The maps
s′, t′ : P ×s,U,t R → R are given by s′ : (p, r) 7→ r and t′ : (p, r) 7→ c(p, r). Since
P ⊂ R is open we conclude that (t′, s′) : P ×s,U,t R → R ×s,U,s R is an open
immersion. Thus we may apply Lemma 101.32.1 to conclude. □

Lemma 101.32.3.0DU3 Let X be an algebraic stack. Assume X is quasi-DM with
separated diagonal (equivalently IX → X is locally quasi-finite and separated).
Let x ∈ |X |. Then there exists a morphism of algebraic stacks

U −→ X

with the following properties
(1) there exists a point u ∈ |U| mapping to x,
(2) U → X is representable by algebraic spaces and étale,
(3) U = [U/R] where (U,R, s, t, c) is a groupoid scheme with U , R affine, and

s, t finite, flat, and locally of finite presentation.

Proof. (The parenthetical statement follows from the equivalences in Lemma 101.6.1).
Choose an affine scheme U and a flat, locally finitely presented, locally quasi-finite
morphism U → X such that x is the image of some point u ∈ U . This is possible
by Theorem 101.21.3 and the assumption that X is quasi-DM. Let (U,R, s, t, c) be
the groupoid in algebraic spaces we obtain by setting R = U ×X U , see Algebraic
Stacks, Lemma 94.16.1. Let X ′ ⊂ X be the open substack corresponding to the
open image of |U | → |X | (Properties of Stacks, Lemmas 100.4.7 and 100.9.12).
Clearly, we may replace X by the open substack X ′. Thus we may assume U → X
is surjective and then Algebraic Stacks, Remark 94.16.3 gives X = [U/R]. Observe
that s, t : R → U are flat, locally of finite presentation, and locally quasi-finite.
Since R = U × U ×(X ×X ) X and since the diagonal of X is separated, we find that
R is separated. Hence s, t : R→ U are separated. It follows that R is a scheme by
Morphisms of Spaces, Proposition 67.50.2 applied to s : R→ U .

Above we have verified all the assumptions of More on Groupoids in Spaces, Lemma
79.15.13 are satisfied for (U,R, s, t, c) and u. Hence we can find an elementary étale
neighbourhood (U ′, u′) → (U, u) such that the restriction R′ of R to U ′ is quasi-
split over u. Note that R′ = U ′ ×X U ′ (small detail omitted; hint: transitivity
of fibre products). Replacing (U,R, s, t, c) by (U ′, R′, s′, t′, c′) and shrinking X as
above, we may assume that (U,R, s, t, c) has a quasi-splitting over u (the point u
is irrelevant from now on as can be seen from the footnote in More on Groupoids
in Spaces, Definition 79.15.1). Let P ⊂ R be a quasi-splitting of R over u. Apply
Lemma 101.32.2 to see that

U = [U/P ] −→ [U/R] = X

has all the desired properties. □

Lemma 101.32.4.0DU4 Let X be an algebraic stack. Assume X is quasi-DM with
separated diagonal (equivalently IX → X is locally quasi-finite and separated). Let
x ∈ |X |. Assume the automorphism group of X at x is finite (Remark 101.19.3).
Then there exists a morphism of algebraic stacks

g : U −→ X

with the following properties
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(1) there exists a point u ∈ |U| mapping to x and g induces an isomorphism
between automorphism groups at u and x (Remark 101.19.5),

(2) U → X is representable by algebraic spaces and étale,
(3) U = [U/R] where (U,R, s, t, c) is a groupoid scheme with U , R affine, and

s, t finite, flat, and locally of finite presentation.

Proof. Observe that Gx is a group scheme by Lemma 101.19.1. The first part of the
proof is exactly the same as the first part of the proof of Lemma 101.32.3. Thus we
may assume X = [U/R] where (U,R, s, t, c) and u ∈ U mapping to x satisfy all the
assumptions of More on Groupoids in Spaces, Lemma 79.15.13. Our assumption on
Gx implies that Gu is finite over u. Hence all the assumptions of More on Groupoids
in Spaces, Lemma 79.15.12 are satisfied. Hence we can find an elementary étale
neighbourhood (U ′, u′) → (U, u) such that the restriction R′ of R to U ′ is split
over u. Note that R′ = U ′ ×X U ′ (small detail omitted; hint: transitivity of fibre
products). Replacing (U,R, s, t, c) by (U ′, R′, s′, t′, c′) and shrinking X as above,
we may assume that (U,R, s, t, c) has a splitting over u. Let P ⊂ R be a splitting
of R over u. Apply Lemma 101.32.2 to see that

U = [U/P ] −→ [U/R] = X
is representable by algebraic spaces and étale. By construction Gu is contained in
P , hence this morphism defines an isomorphism on automorphism groups at u as
desired. □

Lemma 101.32.5.0DU5 Let X be an algebraic stack. Assume X is quasi-DM with
separated diagonal (equivalently IX → X is locally quasi-finite and separated). Let
x ∈ |X |. Assume x can be represented by a quasi-compact morphism Spec(k)→ X .
Then there exists a morphism of algebraic stacks

g : U −→ X
with the following properties

(1) there exists a point u ∈ |U| mapping to x and g induces an isomorphism
between the residual gerbes at u and x,

(2) U → X is representable by algebraic spaces and étale,
(3) U = [U/R] where (U,R, s, t, c) is a groupoid scheme with U , R affine, and

s, t finite, flat, and locally of finite presentation.

Proof. The first part of the proof is exactly the same as the first part of the proof of
Lemma 101.32.3. Thus we may assume X = [U/R] where (U,R, s, t, c) and u ∈ U
mapping to x satisfy all the assumptions of More on Groupoids in Spaces, Lemma
79.15.13. Observe that u = Spec(κ(u)) → X is quasi-compact, see Properties of
Stacks, Lemma 100.14.1. Consider the cartesian diagram

F

��

// U

��
u

u // X
Since U is an affine scheme and F → U is quasi-compact, we see that F is quasi-
compact. Since U → X is locally quasi-finite, we see that F → u is locally quasi-
finite. Hence F → u is quasi-finite and F is an affine scheme whose underlying
topological space is finite discrete (Spaces over Fields, Lemma 72.10.8). Observe
that we have a monomorphism u×X u→ F . In particular the set {r ∈ R : s(r) =
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u, t(r) = u} which is the image of |u×X u| → |R| is finite. we conclude that all the
assumptions of More on Groupoids in Spaces, Lemma 79.15.11 hold.
Thus we can find an elementary étale neighbourhood (U ′, u′) → (U, u) such that
the restriction R′ of R to U ′ is strongly split over u′. Note that R′ = U ′ ×X U ′

(small detail omitted; hint: transitivity of fibre products). Replacing (U,R, s, t, c)
by (U ′, R′, s′, t′, c′) and shrinking X as above, we may assume that (U,R, s, t, c)
has a strong splitting over u. Let P ⊂ R be a strong splitting of R over u. Apply
Lemma 101.32.2 to see that

U = [U/P ] −→ [U/R] = X
is representable by algebraic spaces and étale. Since P ⊂ R is open and contains
{r ∈ R : s(r) = u, t(r) = u} by construction we see that u ×U u → u ×X u is
an isomorphism. The statement on residual gerbes then follows from Properties of
Stacks, Lemma 100.11.14 (we observe that the residual gerbes in question exist by
Lemma 101.31.2). □

101.33. Smooth morphisms

075T The property “being smooth” of morphisms of algebraic spaces is smooth local on
the source-and-target, see Descent on Spaces, Remark 74.20.5. It is also stable
under base change and fpqc local on the target, see Morphisms of Spaces, Lemma
67.37.3 and Descent on Spaces, Lemma 74.11.26. Hence, by Lemma 101.16.1 above,
we may define what it means for a morphism of algebraic spaces to be smooth as
follows and it agrees with the already existing notion defined in Properties of Stacks,
Section 100.3 when the morphism is representable by algebraic spaces.

Definition 101.33.1.075U Let f : X → Y be a morphism of algebraic stacks. We say f
is smooth if the equivalent conditions of Lemma 101.16.1 hold with P = smooth.

Lemma 101.33.2.075V The composition of smooth morphisms is smooth.

Proof. Combine Remark 101.16.3 with Morphisms of Spaces, Lemma 67.37.2. □

Lemma 101.33.3.075W A base change of a smooth morphism is smooth.

Proof. Combine Remark 101.16.4 with Morphisms of Spaces, Lemma 67.37.3. □

Lemma 101.33.4.0DN7 Let f : X → Y be a morphism of algebraic stacks. Let Z → Y
be a surjective, flat, locally finitely presented morphism of algebraic stacks. If the
base change Z ×Y X → Z is smooth, then f is smooth.

Proof. The property “smooth” satisfies the conditions of Lemma 101.27.10. Smooth
local on the source-and-target we have seen in the introduction to this section and
fppf local on the target is Descent on Spaces, Lemma 74.11.26. □

Lemma 101.33.5.0DNP A smooth morphism of algebraic stacks is locally of finite pre-
sentation.

Proof. Omitted. □

Lemma 101.33.6.0DZR Let f : X → Y be a morphism of algebraic stacks. There is
a maximal open substack U ⊂ X such that f |U : U → Y is smooth. Moreover,
formation of this open commutes with

(1) precomposing by smooth morphisms,
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(2) base change by morphisms which are flat and locally of finite presentation,
(3) base change by flat morphisms provided f is locally of finite presentation.

Proof. Choose a commutative diagram
U

a

��

h
// V

b

��
X

f // Y
where U and V are algebraic spaces, the vertical arrows are smooth, and a : U → X
surjective. There is a maximal open subspace U ′ ⊂ U such that hU ′ : U ′ → V is
smooth, see Morphisms of Spaces, Lemma 67.37.9. Let U ⊂ X be the open substack
corresponding to the image of |U ′| → |X | (Properties of Stacks, Lemmas 100.4.7
and 100.9.12). By the equivalence in Lemma 101.16.1 we find that f |U : U → Y is
smooth and that U is the largest open substack with this property.
Assertion (1) follows from the fact that being smooth is smooth local on the source
(this property was used to even define smooth morphisms of algebraic stacks).
Assertions (2) and (3) follow from the case of algebraic spaces, see Morphisms of
Spaces, Lemma 67.37.9. □

Lemma 101.33.7.0DLS Let X → Y be a smooth morphism of algebraic spaces. Let G
be a group algebraic space over Y which is flat and locally of finite presentation
over Y . Let G act on X over Y . Then the quotient stack [X/G] is smooth over Y .

This holds even if G is not smooth over S!

Proof. The quotient [X/G] is an algebraic stack by Criteria for Representability,
Theorem 97.17.2. The smoothness of [X/G] over Y follows from the fact that
smoothness descends under fppf coverings: Choose a surjective smooth morphism
U → [X/G] where U is a scheme. Smoothness of [X/G] over Y is equivalent to
smoothness of U over Y . Observe that U ×[X/G] X is smooth over X and hence
smooth over Y (because compositions of smooth morphisms are smooth). On the
other hand, U ×[X/G] X → U is locally of finite presentation, flat, and surjective
(because it is the base change of X → [X/G] which has those properties for example
by Criteria for Representability, Lemma 97.17.1). Therefore we may apply Descent
on Spaces, Lemma 74.8.4. □

Lemma 101.33.8.0DN8 Let π : X → Y be a morphism of algebraic stacks. If X is a
gerbe over Y, then π is surjective and smooth.

Proof. We have seen surjectivity in Lemma 101.28.8. By Lemma 101.33.4 it suffices
to prove to the lemma after replacing π by a base change with a surjective, flat,
locally finitely presented morphism Y ′ → Y. By Lemma 101.28.7 we may assume
Y = U is an algebraic space and X = [U/G] over U with G→ U flat and locally of
finite presentation. Then we win by Lemma 101.33.7. □

101.34. Types of morphisms étale-smooth local on source-and-target

0CIE Given a property of morphisms of algebraic spaces which is étale-smooth local on
the source-and-target, see Descent on Spaces, Definition 74.21.1 we may use it to
define a corresponding property of DM morphisms of algebraic stacks, namely by
imposing either of the equivalent conditions of the lemma below.
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Lemma 101.34.1.0CIF Let P be a property of morphisms of algebraic spaces which is
étale-smooth local on the source-and-target. Let f : X → Y be a DM morphism of
algebraic stacks. Consider commutative diagrams

U

a

��

h
// V

b

��
X

f // Y

where U and V are algebraic spaces, V → Y is smooth, and U → X ×Y V is étale.
The following are equivalent

(1) for any diagram as above the morphism h has property P, and
(2) for some diagram as above with a : U → X surjective the morphism h has

property P.
If X and Y are representable by algebraic spaces, then this is also equivalent to
f (as a morphism of algebraic spaces) having property P. If P is also preserved
under any base change, and fppf local on the base, then for morphisms f which are
representable by algebraic spaces this is also equivalent to f having property P in
the sense of Properties of Stacks, Section 100.3.

Proof. Let us prove the implication (1) ⇒ (2). Pick an algebraic space V and a
surjective and smooth morphism V → Y. As f is DM there exists a scheme U and
a surjective étale morphism U → V ×Y X , see Lemma 101.21.7. Thus we see that
(2) holds. Note that U → X is surjective and smooth as well, as a composition of
the base change X ×Y V → X and the chosen map U → X ×Y V . Hence we obtain
a diagram as in (1). Thus if (1) holds, then h : U → V has property P, which
means that (2) holds as U → X is surjective.
Conversely, assume (2) holds and let U, V, a, b, h be as in (2). Next, let U ′, V ′, a′, b′, h′

be any diagram as in (1). Picture

U

��

h
// V

��
X

f // Y

U ′

��

h′
// V ′

��
X

f // Y

To show that (2) implies (1) we have to prove that h′ has P. To do this consider
the commutative diagram

U

h

��

U ×X U ′oo

(h,h′)
��

// U ′

h′

��
V V ×Y V ′oo // V ′

of algebraic spaces. Note that the horizontal arrows are smooth as base changes
of the smooth morphisms V → Y, V ′ → Y, U → X , and U ′ → X . Note that the
squares

U

��

U ×X U ′oo

��

U ×X U ′

��

// U ′

��
V ×Y X V ×Y U ′oo U ×Y V ′ // X ×Y V ′
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are cartesian, hence the vertical arrows are étale by our assumptions on U ′, V ′, a′, b′, h′

and U, V, a, b, h. Since P is smooth local on the target by Descent on Spaces, Lemma
74.21.2 part (2) we see that the base change t : U ×Y V ′ → V ×Y V ′ of h has P.
Since P is étale local on the source by Descent on Spaces, Lemma 74.21.2 part (1)
and s : U ×X U ′ → U ×Y V ′ is étale, we see the morphism (h, h′) = t ◦ s has P.
Consider the diagram

U ×X U ′
(h,h′)

//

��

V ×Y V ′

��
U ′ h′

// V ′

The left vertical arrow is surjective, the right vertical arrow is smooth, and the
induced morphism

U ×X U ′ −→ U ′ ×V ′ (V ×Y V ′) = V ×Y U ′

is étale as seen above. Hence by Descent on Spaces, Definition 74.21.1 part (3) we
conclude that h′ has P. This finishes the proof of the equivalence of (1) and (2).
If X and Y are representable, then Descent on Spaces, Lemma 74.21.3 applies which
shows that (1) and (2) are equivalent to f having P.
Finally, suppose f is representable, and U, V, a, b, h are as in part (2) of the lemma,
and that P is preserved under arbitrary base change. We have to show that for
any scheme Z and morphism Z → X the base change Z ×Y X → Z has property
P. Consider the diagram

Z ×Y U

��

// Z ×Y V

��
Z ×Y X // Z

Note that the top horizontal arrow is a base change of h and hence has property
P. The left vertical arrow is surjective, the induced morphism

Z ×Y U −→ (Z ×Y X )×Z (Z ×Y V )
is étale, and the right vertical arrow is smooth. Thus Descent on Spaces, Lemma
74.21.3 kicks in and shows that Z ×Y X → Z has property P. □

Definition 101.34.2.0CIG Let P be a property of morphisms of algebraic spaces which
is étale-smooth local on the source-and-target. We say a DM morphism f : X → Y
of algebraic stacks has property P if the equivalent conditions of Lemma 101.16.1
hold.

Remark 101.34.3.0CIH Let P be a property of morphisms of algebraic spaces which is
étale-smooth local on the source-and-target and stable under composition. Then
the property of DM morphisms of algebraic stacks defined in Definition 101.34.2 is
stable under composition. Namely, let f : X → Y and g : Y → Z be DM morphisms
of algebraic stacks having property P. By Lemma 101.4.10 the composition g ◦ f
is DM. Choose an algebraic space W and a surjective smooth morphism W →
Z. Choose an algebraic space V and a surjective étale morphism V → Y ×Z W
(Lemma 101.21.7). Choose an algebraic space U and a surjective étale morphism
U → X ×Y V . Then the morphisms V → W and U → V have property P by
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definition. Whence U → W has property P as we assumed that P is stable under
composition. Thus, by definition again, we see that g ◦ f : X → Z has property P.

Remark 101.34.4.0CII Let P be a property of morphisms of algebraic spaces which is
étale-smooth local on the source-and-target and stable under base change. Then
the property of DM morphisms of algebraic stacks defined in Definition 101.34.2 is
stable under arbitrary base change. Namely, let f : X → Y be a DM morphism
of algebraic stacks and g : Y ′ → Y be a morphism of algebraic stacks and assume
f has property P. Then the base change Y ′ ×Y X → Y ′ is a DM morphism by
Lemma 101.4.4. Choose an algebraic space V and a surjective smooth morphism
V → Y. Choose an algebraic space U and a surjective étale morphism U → X×Y V
(Lemma 101.21.7). Finally, choose an algebraic space V ′ and a surjective and
smooth morphism V ′ → Y ′ ×Y V . Then the morphism U → V has property P by
definition. Whence V ′ ×V U → V ′ has property P as we assumed that P is stable
under base change. Considering the diagram

V ′ ×V U //

��

Y ′ ×Y X //

��

X

��
V ′ // Y ′ // Y

we see that the left top horizontal arrow is surjective and
V ′ ×V U → V ′ ×Y (Y ′ ×Y′ X ) = V ′ ×V (X ×Y V )

is étale as a base change of U → X ×Y V , whence by definition we see that the
projection Y ′ ×Y X → Y ′ has property P.

Remark 101.34.5.0CIJ Let P,P ′ be properties of morphisms of algebraic spaces which
are étale-smooth local on the source-and-target. Suppose that we have P ⇒ P ′ for
morphisms of algebraic spaces. Then we also have P ⇒ P ′ for the properties of
morphisms of algebraic stacks defined in Definition 101.34.2 using P and P ′. This
is clear from the definition.

101.35. Étale morphisms

0CIK An étale morphism of algebraic stacks should not be defined as a smooth morphism
of relative dimension 0. Namely, the morphism

[A1
k/Gm,k] −→ Spec(k)

is smooth of relative dimension 0 for any choice of action of the group scheme Gm,k

on A1
k. This does not correspond to our usual idea that étale morphisms should

identify tangent spaces. The example above isn’t quasi-finite, but the morphism
X = [Spec(k)/µp,k] −→ Spec(k)

is smooth and quasi-finite (Section 101.23). However, if the characteristic of k is
p > 0, then we see that the representable morphism Spec(k)→ X isn’t étale as the
base change µp,k = Spec(k)×X Spec(k)→ Spec(k) is a morphism from a nonreduced
scheme to the spectrum of a field. Thus if we define an étale morphism as smooth
and locally quasi-finite, then the analogue of Morphisms of Spaces, Lemma 67.39.11
would fail.
Instead, our approach will be to start with the requirements that “étaleness” should
be a property preserved under base change and that if X → X is an étale morphism
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from an algebraic stack to a scheme, then X should be Deligne-Mumford. In other
words, we will require étale morphisms to be DM and we will use the material in
Section 101.34 to define étale morphisms of algebraic stacks.
In Lemma 101.36.10 we will characterize étale morphisms of algebraic stacks as
morphisms which are (a) locally of finite presentation, (b) flat, and (c) have étale
diagonal.
The property “étale” of morphisms of algebraic spaces is étale-smooth local on the
source-and-target, see Descent on Spaces, Remark 74.21.5. It is also stable under
base change and fpqc local on the target, see Morphisms of Spaces, Lemma 67.39.4
and Descent on Spaces, Lemma 74.11.28. Hence, by Lemma 101.34.1 above, we may
define what it means for a morphism of algebraic spaces to be étale as follows and it
agrees with the already existing notion defined in Properties of Stacks, Section 100.3
when the morphism is representable by algebraic spaces because such a morphism
is automatically DM by Lemma 101.4.3.

Definition 101.35.1.0CIL Let f : X → Y be a morphism of algebraic stacks. We say
f is étale if f is DM and the equivalent conditions of Lemma 101.34.1 hold with
P = étale.

We will use without further mention that this agrees with the already existing
notion of étale morphisms in case f is representable by algebraic spaces or if X and
Y are representable by algebraic spaces.

Lemma 101.35.2.0CIM The composition of étale morphisms is étale.

Proof. Combine Remark 101.34.3 with Morphisms of Spaces, Lemma 67.39.3. □

Lemma 101.35.3.0CIN A base change of an étale morphism is étale.

Proof. Combine Remark 101.34.4 with Morphisms of Spaces, Lemma 67.39.4. □

Lemma 101.35.4.0CIP An open immersion is étale.

Proof. Let j : U → X be an open immersion of algebraic stacks. Since j is repre-
sentable, it is DM by Lemma 101.4.3. On the other hand, if X → X is a smooth and
surjective morphism where X is a scheme, then U = U ×X X is an open subscheme
of X. Hence U → X is étale (Morphisms, Lemma 29.36.9) and we conclude that j
is étale from the definition. □

Lemma 101.35.5.0CIQ Let f : X → Y be a morphism of algebraic stacks. The following
are equivalent

(1) f is étale,
(2) f is DM and for any morphism V → Y where V is an algebraic space

and any étale morphism U → V ×Y X where U is an algebraic space, the
morphism U → V is étale,

(3) there exists some surjective, locally of finite presentation, and flat mor-
phism W → Y where W is an algebraic space and some surjective étale
morphism T → W ×Y X where T is an algebraic space such that the
morphism T →W is étale.

Proof. Assume (1). Then f is DM and since being étale is preserved by base change,
we see that (2) holds.
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Assume (2). Choose a scheme V and a surjective étale morphism V → Y. Choose
a scheme U and a surjective étale morphism U → V ×Y X (Lemma 101.21.7). Thus
we see that (3) holds.
Assume W → Y and T →W ×Y X are as in (3). We first check f is DM. Namely,
it suffices to check W ×Y X →W is DM, see Lemma 101.4.5. By Lemma 101.4.12
it suffices to check W ×Y X is DM. This follows from the existence of T →W ×Y X
by (the easy direction of) Theorem 101.21.6.
Assume f is DM and W → Y and T →W×YX are as in (3). Let V be an algebraic
space, let V → Y be surjective smooth, let U be an algebraic space, and let U →
V ×Y X is surjective and étale (Lemma 101.21.7). We have to check that U → V is
étale. It suffices to prove U×YW → V ×YW is étale by Descent on Spaces, Lemma
74.11.28. We may replace X ,Y,W, T, U, V by X ×Y W,W,W, T, U ×Y W,V ×Y W
(small detail omitted). Thus we may assume that Y = Y is an algebraic space,
there exists an algebraic space T and a surjective étale morphism T → X such that
T → Y is étale, and U and V are as before. In this case we know that

U → V is étale⇔ X → Y is étale⇔ T → Y is étale
by the equivalence of properties (1) and (2) of Lemma 101.34.1 and Definition
101.35.1. This finishes the proof. □

Lemma 101.35.6.0CIR Let X ,Y be algebraic stacks étale over an algebraic stack Z.
Any morphism X → Y over Z is étale.

Proof. The morphism X → Y is DM by Lemma 101.4.12. Let W → Z be a
surjective smooth morphism whose source is an algebraic space. Let V → Y ×Z W
be a surjective étale morphism whose source is an algebraic space (Lemma 101.21.7).
Let U → X ×Y V be a surjective étale morphism whose source is an algebraic space
(Lemma 101.21.7). Then

U −→ X ×Z W

is surjective étale as the composition of U → X ×Y V and the base change of
V → Y ×Z W by X ×Z W → Y ×Z W . Hence it suffices to show that U → W is
étale. Since U → W and V → W are étale because X → Z and Y → Z are étale,
this follows from the version of the lemma for algebraic spaces, namely Morphisms
of Spaces, Lemma 67.39.11. □

101.36. Unramified morphisms

0CIS For a justification of our choice of definition of unramified morphisms we refer the
reader to the discussion in the section on étale morphisms Section 101.35.
In Lemma 101.36.9 we will characterize unramified morphisms of algebraic stacks
as morphisms which are locally of finite type and have étale diagonal.
The property “unramified” of morphisms of algebraic spaces is étale-smooth local
on the source-and-target, see Descent on Spaces, Remark 74.21.5. It is also stable
under base change and fpqc local on the target, see Morphisms of Spaces, Lemma
67.38.4 and Descent on Spaces, Lemma 74.11.27. Hence, by Lemma 101.34.1 above,
we may define what it means for a morphism of algebraic spaces to be unramified as
follows and it agrees with the already existing notion defined in Properties of Stacks,
Section 100.3 when the morphism is representable by algebraic spaces because such
a morphism is automatically DM by Lemma 101.4.3.
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Definition 101.36.1.0CIT Let f : X → Y be a morphism of algebraic stacks. We say
f is unramified if f is DM and the equivalent conditions of Lemma 101.34.1 hold
with P =“unramified”.

We will use without further mention that this agrees with the already existing
notion of unramified morphisms in case f is representable by algebraic spaces or if
X and Y are representable by algebraic spaces.

Lemma 101.36.2.0CIU The composition of unramified morphisms is unramified.

Proof. Combine Remark 101.34.3 with Morphisms of Spaces, Lemma 67.38.3. □

Lemma 101.36.3.0CIV A base change of an unramified morphism is unramified.

Proof. Combine Remark 101.34.4 with Morphisms of Spaces, Lemma 67.38.4. □

Lemma 101.36.4.0CIW An étale morphism is unramified.

Proof. Follows from Remark 101.34.5 and Morphisms of Spaces, Lemma 67.39.10.
□

Lemma 101.36.5.0CIX An immersion is unramified.

Proof. Let j : Z → X be an immersion of algebraic stacks. Since j is representable,
it is DM by Lemma 101.4.3. On the other hand, ifX → X is a smooth and surjective
morphism where X is a scheme, then Z = Z ×X X is a locally closed subscheme of
X. Hence Z → X is unramified (Morphisms, Lemmas 29.35.7 and 29.35.8) and we
conclude that j is unramified from the definition. □

Lemma 101.36.6.0CIY Let f : X → Y be a morphism of algebraic stacks. The following
are equivalent

(1) f is unramified,
(2) f is DM and for any morphism V → Y where V is an algebraic space

and any étale morphism U → V ×Y X where U is an algebraic space, the
morphism U → V is unramified,

(3) there exists some surjective, locally of finite presentation, and flat mor-
phism W → Y where W is an algebraic space and some surjective étale
morphism T → W ×Y X where T is an algebraic space such that the
morphism T →W is unramified.

Proof. Assume (1). Then f is DM and since being unramified is preserved by base
change, we see that (2) holds.
Assume (2). Choose a scheme V and a surjective étale morphism V → Y. Choose
a scheme U and a surjective étale morphism U → V ×Y X (Lemma 101.21.7). Thus
we see that (3) holds.
Assume W → Y and T →W ×Y X are as in (3). We first check f is DM. Namely,
it suffices to check W ×Y X →W is DM, see Lemma 101.4.5. By Lemma 101.4.12
it suffices to check W ×Y X is DM. This follows from the existence of T →W ×Y X
by (the easy direction of) Theorem 101.21.6.
Assume f is DM and W → Y and T → W ×Y X are as in (3). Let V be an
algebraic space, let V → Y be surjective smooth, let U be an algebraic space, and
let U → V ×Y X is surjective and étale (Lemma 101.21.7). We have to check that
U → V is unramified. It suffices to prove U ×Y W → V ×Y W is unramified by
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Descent on Spaces, Lemma 74.11.27. We may replace X ,Y,W, T, U, V by X ×Y
W,W,W, T, U ×Y W,V ×Y W (small detail omitted). Thus we may assume that
Y = Y is an algebraic space, there exists an algebraic space T and a surjective étale
morphism T → X such that T → Y is unramified, and U and V are as before. In
this case we know that

U → V is unramified⇔ X → Y is unramified⇔ T → Y is unramified

by the equivalence of properties (1) and (2) of Lemma 101.34.1 and Definition
101.36.1. This finishes the proof. □

Lemma 101.36.7.0H2Z An unramified morphism of algebraic stacks is locally quasi-finite.

Proof. This follows from Lemma 101.36.6 (characterizing unramified morphisms),
Lemma 101.23.7 (characterizing locally quasi-finite morphisms), and Morphisms of
Spaces, Lemma 67.38.7 (the corresponding result for algebraic spaces). □

Lemma 101.36.8.0CIZ Let X → Y → Z be morphisms of algebraic stacks. If X → Z is
unramified and Y → Z is DM, then X → Y is unramified.

Proof. Assume X → Z is unramified. By Lemma 101.4.12 the morphism X → Y
is DM. Choose a commutative diagram

U

��

// V

��

// W

��
X // Y // Z

with U, V,W algebraic spaces, with W → Z surjective smooth, V → Y ×Z W
surjective étale, and U → X ×Y V surjective étale (see Lemma 101.21.7). Then also
U → X ×Z W is surjective and étale. Hence we know that U → W is unramified
and we have to show that U → V is unramified. This follows from Morphisms of
Spaces, Lemma 67.38.11. □

Lemma 101.36.9.0CJ0 Let f : X → Y be a morphism of algebraic stacks. The following
are equivalent

(1) f is unramified, and
(2) f is locally of finite type and its diagonal is étale.

Proof. Assume f is unramified. Then f is DM hence we can choose algebraic spaces
U , V , a smooth surjective morphism V → Y and a surjective étale morphism
U → X ×Y V (Lemma 101.21.7). Since f is unramified the induced morphism
U → V is unramified. Thus U → V is locally of finite type (Morphisms of Spaces,
Lemma 67.38.6) and we conclude that f is locally of finite type. The diagonal
∆ : X → X ×Y X is a morphism of algebraic stacks over Y. The base change of ∆
by the surjective smooth morphism V → Y is the diagonal of the base change of f ,
i.e., of XV = X ×Y V → V . In other words, the diagram

XV //

��

XV ×V XV

��
X // X ×Y X
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is cartesian. Since the right vertical arrow is surjective and smooth it suffices to
show that the top horizontal arrow is étale by Properties of Stacks, Lemma 100.3.4.
Consider the commutative diagram

U

��

// U ×V U

��
XV // XV ×V XV

All arrows are representable by algebraic spaces, the vertical arrows are étale, the
left one is surjective, and the top horizontal arrow is an open immersion by Mor-
phisms of Spaces, Lemma 67.38.9. This implies what we want: first we see that
U → XV ×V XV is étale as a composition of étale morphisms, and then we can use
Properties of Stacks, Lemma 100.3.5 to see that XV → XV ×V XV is étale because
being étale (for morphisms of algebraic spaces) is local on the source in the étale
topology (Descent on Spaces, Lemma 74.19.1).

Assume f is locally of finite type and that its diagonal is étale. Then f is DM by
definition (as étale morphisms of algebraic spaces are unramified). As above this
means we can choose algebraic spaces U , V , a smooth surjective morphism V → Y
and a surjective étale morphism U → X ×Y V (Lemma 101.21.7). To finish the
proof we have to show that U → V is unramified. We already know that U → V is
locally of finite type. Arguing as above we find a commutative diagram

U

��

// U ×V U

��
XV // XV ×V XV

where all arrows are representable by algebraic spaces, the vertical arrows are étale,
and the lower horizontal one is étale as a base change of ∆. It follows that U →
U ×V U is étale for example by Lemma 101.35.67. Thus U → U ×V U is an étale
monomorphism hence an open immersion (Morphisms of Spaces, Lemma 67.51.2).
Then U → V is unramified by Morphisms of Spaces, Lemma 67.38.9. □

Lemma 101.36.10.0CJ1 Let f : X → Y be a morphism of algebraic stacks. The following
are equivalent

(1) f is étale, and
(2) f is locally of finite presentation, flat, and unramified,
(3) f is locally of finite presentation, flat, and its diagonal is étale.

Proof. The equivalence of (2) and (3) follows immediately from Lemma 101.36.9.
Thus in each case the morphism f is DM. Then we can choose Then we can choose
algebraic spaces U , V , a smooth surjective morphism V → Y and a surjective
étale morphism U → X ×Y V (Lemma 101.21.7). To finish the proof we have to
show that U → V is étale if and only if it is locally of finite presentation, flat,
and unramified. This follows from Morphisms of Spaces, Lemma 67.39.12 (and the
more trivial Morphisms of Spaces, Lemmas 67.39.10, 67.39.8, and 67.39.7). □

7It is quite easy to deduce this directly from Morphisms of Spaces, Lemma 67.39.11.
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101.37. Proper morphisms

0CL4 The notion of a proper morphism plays an important role in algebraic geometry.
Here is the definition of a proper morphism of algebraic stacks.

Definition 101.37.1.0CL5 Let f : X → Y be a morphism of algebraic stacks. We say f
is proper if f is separated, finite type, and universally closed.

This does not conflict with the already existing notion of a proper morphism of
algebraic spaces: a morphism of algebraic spaces is proper if and only if it is sepa-
rated, finite type, and universally closed (Morphisms of Spaces, Definition 67.40.1)
and we’ve already checked the compatibility of these notions in Lemma 101.3.5,
Section 101.17, and Lemmas 101.13.1. Similarly, if f : X → Y is a morphism of
algebraic stacks which is representable by algebraic spaces then we have defined
what it means for f to be proper in Properties of Stacks, Section 100.3. However,
the discussion in that section shows that this is equivalent to requiring f to be
separated, finite type, and universally closed and the same references as above give
the compatibility.

Lemma 101.37.2.0CL6 A base change of a proper morphism is proper.

Proof. See Lemmas 101.4.4, 101.17.3, and 101.13.3. □

Lemma 101.37.3.0CL7 A composition of proper morphisms is proper.

Proof. See Lemmas 101.4.10, 101.17.2, and 101.13.4. □

Lemma 101.37.4.0CL8 A closed immersion of algebraic stacks is a proper morphism of
algebraic stacks.

Proof. A closed immersion is by definition representable (Properties of Stacks, Def-
inition 100.9.1). Hence this follows from the discussion in Properties of Stacks,
Section 100.3 and the corresponding result for morphisms of algebraic spaces, see
Morphisms of Spaces, Lemma 67.40.5. □

Lemma 101.37.5.0CPT Consider a commutative diagram

X //

��

Y

��
Z

of algebraic stacks.
(1) If X → Z is universally closed and Y → Z is separated, then the morphism
X → Y is universally closed. In particular, the image of |X | in |Y| is closed.

(2) If X → Z is proper and Y → Z is separated, then the morphism X → Y
is proper.

Proof. Assume X → Z is universally closed and Y → Z is separated. We factor the
morphism as X → X ×Z Y → Y. The first morphism is proper (Lemma 101.4.8)
hence universally closed. The projection X ×Z Y → Y is the base change of a uni-
versally closed morphism and hence universally closed, see Lemma 101.13.3. Thus
X → Y is universally closed as the composition of universally closed morphisms,
see Lemma 101.13.4. This proves (1). To deduce (2) combine (1) with Lemmas
101.4.12, 101.7.7, and 101.17.8. □
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Lemma 101.37.6.0CQK Let Z be an algebraic stack. Let f : X → Y be a morphism of
algebraic stacks over Z. If X is universally closed over Z and f is surjective then Y
is universally closed over Z. In particular, if also Y is separated and of finite type
over Z, then Y is proper over Z.

Proof. Assume X is universally closed and f surjective. Denote p : X → Z,
q : Y → Z the structure morphisms. Let Z ′ → Z be a morphism of algebraic
stacks. The base change f ′ : X ′ → Y ′ of f by Z ′ → Z is surjective (Properties of
Stacks, Lemma 100.5.3) and the base change p′ : X ′ → Z ′ of p is closed. If T ⊂ |Y ′|
is closed, then (f ′)−1(T ) ⊂ |X ′| is closed, hence p′((f ′)−1(T )) = q′(T ) is closed. So
q′ is closed. □

101.38. Scheme theoretic image

0CMH Here is the definition.

Definition 101.38.1.0CMI Let f : X → Y be a morphism of algebraic stacks. The scheme
theoretic image of f is the smallest closed substack Z ⊂ Y through which f factors8.

We often denote f : X → Z the factorization of f . If the morphism f is not quasi-
compact, then (in general) the construction of the scheme theoretic image does not
commute with restriction to open substacks of Y. However, if f is quasi-compact
then the scheme theoretic image commutes with flat base change (Lemma 101.38.5).

Lemma 101.38.2.0CMJ Let f : X → Y be a morphism of algebraic stacks. Let g :W → X
be a morphism of algebraic stacks which is surjective, flat, and locally of finite
presentation. Then the scheme theoretic image of f exists if and only if the scheme
theoretic image of f ◦ g exists and if so then these scheme theoretic images are the
same.

Proof. Assume Z ⊂ Y is a closed substack and f ◦ g factors through Z. To prove
the lemma it suffices to show that f factors through Z. Consider a scheme T and
a morphism T → X given by an object x of the fibre category of X over T . We will
show that f(x) is in fact in the fibre category of Z over T . Namely, the projection
T ×X W → T is a surjective, flat, locally finitely presented morphism. Hence there
is an fppf covering {Ti → T} such that Ti → T factors through T ×X W → T for
all i. Then Ti → X factors through W and hence Ti → Y factors through Z. Thus
x|Ti is an object of Z. Since Z is a strictly full substack, we conclude that x is an
object of Z as desired. □

Lemma 101.38.3.0CPU Let f : Y → X be a morphism of algebraic stacks. Then the
scheme theoretic image of f exists.

Proof. Choose a scheme V and a surjective smooth morphism V → Y. By Lemma
101.38.2 we may replace Y by V . Thus it suffices to show that if X → X is a
morphism from a scheme to an algebraic stack, then the scheme theoretic image
exists. Choose a scheme U and a surjective smooth morphism U → X . Set R =
U ×X U . We have X = [U/R] by Algebraic Stacks, Lemma 94.16.2. By Properties
of Stacks, Lemma 100.9.11 the closed substacks Z of X are in 1-to-1 correspondence
with R-invariant closed subschemes Z ⊂ U . Let Z1 ⊂ U be the scheme theoretic
image of X ×X U → U . Observe that X → X factors through Z if and only if

8We will see in Lemma 101.38.3 that the scheme theoretic image always exists.

https://stacks.math.columbia.edu/tag/0CQK
https://stacks.math.columbia.edu/tag/0CMI
https://stacks.math.columbia.edu/tag/0CMJ
https://stacks.math.columbia.edu/tag/0CPU


101.38. SCHEME THEORETIC IMAGE 7044

X ×X U → U factors through the corresponding R-invariant closed subscheme Z
(details omitted; hint: this follows because X×X U → X is surjective and smooth).
Thus we have to show that there exists a smallest R-invariant closed subscheme
Z ⊂ U containing Z1.
Let I1 ⊂ OU be the quasi-coherent ideal sheaf corresponding to the closed sub-
scheme Z1 ⊂ U . Let Zα, α ∈ A be the set of all R-invariant closed subschemes
of U containing Z1. For α ∈ A, let Iα ⊂ OU be the quasi-coherent ideal sheaf
corresponding to the closed subscheme Zα ⊂ U . The containment Z1 ⊂ Zα means
Iα ⊂ I1. The R-invariance of Zα means that

s−1Iα · OR = t−1Iα · OR
as (quasi-coherent) ideal sheaves on (the algebraic space) R. Consider the image

I = Im
(⊕

α∈A
Iα → I1

)
= Im

(⊕
α∈A
Iα → OX

)
Since direct sums of quasi-coherent sheaves are quasi-coherent and since images of
maps between quasi-coherent sheaves are quasi-coherent, we find that I is quasi-
coherent. Since pull back is exact and commutes with direct sums we find

s−1I · OR = t−1I · OR
Hence I defines an R-invariant closed subscheme Z ⊂ U which is contained in every
Zα and containes Z1 as desired. □

Lemma 101.38.4.0CPV Let
X1

��

f1

// Y1

��
X2

f2 // Y2

be a commutative diagram of algebraic stacks. Let Zi ⊂ Yi, i = 1, 2 be the scheme
theoretic image of fi. Then the morphism Y1 → Y2 induces a morphism Z1 → Z2
and a commutative diagram

X1 //

��

Z1

��

// Y1

��
X2 // Z2 // Y2

Proof. The scheme theoretic inverse image of Z2 in Y1 is a closed substack of Y1
through which f1 factors. Hence Z1 is contained in this. This proves the lemma. □

Lemma 101.38.5.0CMK Let f : X → Y be a quasi-compact morphism of algebraic stacks.
Then formation of the scheme theoretic image commutes with flat base change.

Proof. Let Y ′ → Y be a flat morphism of algebraic stacks. Choose a scheme V
and a surjective smooth morphism V → Y. Choose a scheme V ′ and a surjective
smooth morphism V ′ → Y ′ ×Y V . We may and do assume that V =

∐
i∈I Vi is a

disjoint union of affine schemes and that V ′ =
∐
i∈I
∐
j∈Ji Vi,j is a disjoint union

of affine schemes with each Vi,j mapping into Vi. Let
(1) Z ⊂ Y be the scheme theoretic image of f ,
(2) Z ′ ⊂ Y ′ be the scheme theoretic image of the base change of f by Y ′ → Y,
(3) Z ⊂ V be the scheme theoretic image of the base change of f by V → Y,
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(4) Z ′ ⊂ V ′ be the scheme theoretic image of the base change of f by V ′ → Y.
If we can show that (a) Z = V ×Y Z, (b) Z ′ = V ′ ×Y′ Z ′, and (c) Z ′ = V ′ ×V Z
then the lemma follows: the inclusion Z ′ → Z ×Y Y ′ (Lemma 101.38.4) has to
be an isomorphism because after base change by the surjective smooth morphism
V ′ → Y ′ it is.
Proof of (a). Set R = V ×Y V . By Properties of Stacks, Lemma 100.9.11 the rule
Z 7→ Z ×Y V defines a 1-to-1 correspondence between closed substacks of Y and
R-invariant closed subspaces of V . Moreover, f : X → Y factors through Z if and
only if the base change g : X ×Y V → V factors through Z ×Y V . We claim: the
scheme theoretic image Z ⊂ V of g is R-invariant. The claim implies (a) by what
we just said.
For each i the morphism X ×Y Vi → Vi is quasi-compact and hence X ×Y Vi is
quasi-compact. Thus we can choose an affine scheme Wi and a surjective smooth
morphism Wi → X ×Y Vi. Observe that W =

∐
Wi is a scheme endowed with a

smooth and surjective morphism W → X ×Y V such that the composition W → V
with g is quasi-compact. Let Z → V be the scheme theoretic image of W → V , see
Morphisms, Section 29.6 and Morphisms of Spaces, Section 67.16. It follows from
Lemma 101.38.2 that Z ⊂ V is the scheme theoretic image of g. To show that Z is
R-invariant we claim that both

pr−1
0 (Z),pr−1

1 (Z) ⊂ R = V ×Y V

are the scheme theoretic image of X ×Y R→ R. Namely, we first use Morphisms of
Spaces, Lemma 67.30.12 to see that pr−1

0 (Z) is the scheme theoretic image of the
composition

W ×V,pr0 R = W ×Y V → X ×Y R→ R

Since the first arrow here is surjective and smooth we see that pr−1
0 (Z) is the scheme

theoretic image of X ×Y R→ R. The same argument applies that pr−1
1 (Z). Hence

Z is R-invariant.
Statement (b) is proved in exactly the same way as one proves (a).
Proof of (c). Let Zi ⊂ Vi be the scheme theoretic image of X ×Y Vi → Vi and let
Zi,j ⊂ Vi,j be the scheme theoretic image of X ×Y Vi,j → Vi,j . Clearly it suffices
to show that the inverse image of Zi in Vi,j is Zi,j . Above we’ve seen that Zi is
the scheme theoretic image of Wi → Vi and by the same token Zi,j is the scheme
theoretic image of Wi ×Vi Vi,j → Vi,j . Hence the equality follows from the case of
schemes (Morphisms, Lemma 29.25.16) and the fact that Vi,j → Vi is flat. □

Lemma 101.38.6.0CML Let f : X → Y be a quasi-compact morphism of algebraic stacks.
Let Z ⊂ Y be the scheme theoretic image of f . Then |Z| is the closure of the image
of |f |.

Proof. Let z ∈ |Z| be a point. Choose an affine scheme V , a point v ∈ V , and
a smooth morphism V → Y mapping v to z. Then X ×Y V is a quasi-compact
algebraic stack. Hence we can find an affine scheme W and a surjective smooth
morphism W → X ×Y V . By Lemma 101.38.5 the scheme theoretic image of
X ×Y V → V is Z = Z ×Y V . Hence the inverse image of |Z| in |V | is |Z|
by Properties of Stacks, Lemma 100.4.3. By Lemma 101.38.2 Z is the scheme
theoretic image of W → V . By Morphisms of Spaces, Lemma 67.16.3 we see that
the image of |W | → |Z| is dense. Hence the image of |X ×Y V | → |Z| is dense.
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Observe that v ∈ Z. Since |V | → |Y| is open, a topology argument tells us that z
is in the closure of the image of |f | as desired. □

Lemma 101.38.7.0CPW Let f : X → Y be a morphism of algebraic stacks which is
representable by algebraic spaces and separated. Let V ⊂ Y be an open substack
such that V → Y is quasi-compact. Let s : V → X be a morphism such that
f ◦ s = idV . Let Y ′ be the scheme theoretic image of s. Then Y ′ → Y is an
isomorphism over V.

Proof. By Lemma 101.7.7 the morphism s : V → Y is quasi-compact. Hence the
construction of the scheme theoretic image Y ′ of s commutes with flat base change
by Lemma 101.38.5. Thus to prove the lemma we may assume Y is representable by
an algebraic space and we reduce to the case of algebraic spaces which is Morphisms
of Spaces, Lemma 67.16.7. □

101.39. Valuative criteria

0CL9 We need to be careful when stating the valuative criterion. Namely, in the for-
mulation we need to speak about commutative diagrams but we are working in a
2-category and we need to make sure the 2-morphisms compose correctly as well!

Definition 101.39.1.0CLA Let f : X → Y be a morphism of algebraic stacks. Consider
a 2-commutative solid diagram

(101.39.1.1)0CLB

Spec(K)
x
//

j

��

X

f

��
Spec(A) y //

;;

Y

where A is a valuation ring with field of fractions K. Let
γ : y ◦ j −→ f ◦ x

be a 2-morphism witnessing the 2-commutativity of the diagram. (Notation as in
Categories, Sections 4.28 and 4.29.) Given (101.39.1.1) and γ a dotted arrow is a
triple (a, α, β) consisting of a morphism a : Spec(A)→ X and 2-arrows α : a◦j → x,
β : y → f ◦ a such that γ = (idf ⋆ α) ◦ (β ⋆ idj), in other words such that

f ◦ a ◦ j
idf⋆α

$$
y ◦ j

β⋆idj
::

γ // f ◦ x

is commutative. A morphism of dotted arrows (a, α, β) → (a′, α′, β′) is a 2-arrow
θ : a→ a′ such that α = α′ ◦ (θ ⋆ idj) and β′ = (idf ⋆ θ) ◦ β.

The preceding definition is a special case of Categories, Definition 4.44.1. The
category of dotted arrows depends on γ in general. If Y is representable by an
algebraic space (or if automorphism groups of objects over fields are trivial), then
of course there is at most one γ and one does not need to check the commutativity
of the triangle. More generally, we have Lemma 101.39.3. The commutativity of
the triangle is important in the proof of compatibility with base change, see proof
of Lemma 101.39.4.
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Lemma 101.39.2.0CLC In the situation of Definition 101.39.1 the category of dotted
arrows is a groupoid. If ∆f is separated, then it is a setoid.
Proof. Since 2-arrows are invertible it is clear that the category of dotted arrows
is a groupoid. Given a dotted arrow (a, α, β) an automorphism of (a, α, β) is a 2-
morphism θ : a→ a satisfying two conditions. The first condition β = (idf ⋆ θ) ◦ β
signifies that θ defines a morphism (a, θ) : Spec(A)→ IX/Y . The second condition
α = α ◦ (θ ⋆ idj) implies that the restriction of (a, θ) to Spec(K) is the identity.
Picture

IX/Y

��

Spec(K)

j

��

(a◦j,id)oo

X Spec(A)aoo

(a,θ)
hh

In other words, if G→ Spec(A) is the group algebraic space we get by pulling back
the relative inertia by a, then θ defines a point θ ∈ G(A) whose image in G(K)
is trivial. Certainly, if the identity e : Spec(A) → G is a closed immersion, then
this can happen only if θ is the identity. Looking at Lemma 101.6.1 we obtain the
result we want. □

Lemma 101.39.3.0CLD In Definition 101.39.1 assume IY → Y is proper (for example
if Y is separated or if Y is separated over an algebraic space). Then the category
of dotted arrows is independent (up to noncanonical equivalence) of the choice of
γ and the existence of a dotted arrow (for some and hence equivalently all γ) is
equivalent to the existence of a diagram

Spec(K)
x
//

j

��

X

f

��
Spec(A) y //

a

;;

Y

with 2-commutative triangles (without checking the 2-morphisms compose cor-
rectly).
Proof. Let γ, γ′ : y ◦ j −→ f ◦ x be two 2-morphisms. Then γ−1 ◦ γ′ is an au-
tomorphism of y over Spec(K). Hence if IsomY(y, y) → Spec(A) is proper, then
by the valuative criterion of properness (Morphisms of Spaces, Lemma 67.44.1) we
can find δ : y → y whose restriction to Spec(K) is γ−1 ◦ γ′. Then we can use δ to
define an equivalence between the category of dotted arrows for γ to the category
of dotted arrows for γ′ by sending (a, α, β) to (a, α, β ◦ δ). The final statement is
clear. □

Lemma 101.39.4.0CLE Assume given a 2-commutative diagram

Spec(K)
x′
//

j

��

X ′

p

��

q
// X

f

��
Spec(A) y′

// Y ′ g // Y

with the right square 2-cartesian. Choose a 2-arrow γ′ : y′◦j → p◦x′. Set x = q◦x′,
y = g ◦y′ and let γ : y ◦ j → f ◦x be the composition of γ′ with the 2-arrow implicit
in the 2-commutativity of the right square. Then the category of dotted arrows for
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the left square and γ′ is equivalent to the category of dotted arrows for the outer
rectangle and γ.
Proof. (We do not know how to prove the analogue of this lemma if instead of the
category of dotted arrows we look at the set of isomorphism classes of morphisms
producing two 2-commutative triangles as in Lemma 101.39.3; in fact this analogue
may very well be wrong.) First proof: this lemma is a special case of Categories,
Lemma 4.44.2. Second proof: we are allowed to replace X ′ by the 2-fibre product
Y ′ ×Y X as described in Categories, Lemma 4.32.3. Then the object x′ becomes
the triple (y′ ◦ j, x, γ). Then we can go from a dotted arrow (a, α, β) for the outer
rectangle to a dotted arrow (a′, α′, β′) for the left square by taking a′ = (y′, a, β)
and α′ = (idy′◦j , α) and β′ = idy′ . Details omitted. □

Lemma 101.39.5.0CLF Assume given a 2-commutative diagram

Spec(K)
x
//

j

��

X

f

��
Y

g

��
Spec(A) z // Z

Choose a 2-arrow γ : z ◦ j → g ◦ f ◦ x. Let C be the category of dotted arrows for
the outer rectangle and γ. Let C′ be the category of dotted arrows for the square

Spec(K)
f◦x
//

j

��

Y

g

��
Spec(A) z // Z

and γ. Then C is equivalent to a category C′′ which has the following property:
there is a functor C′′ → C′ which turns C′′ into a category fibred in groupoids over
C′ and whose fibre categories are categories of dotted arrows for certain squares of
the form

Spec(K)
x
//

j

��

X

f

��
Spec(A) y // Y

and some choices of y ◦ j → f ◦ x.
Proof. This lemma is a special case of Categories, Lemma 4.44.3. □

Definition 101.39.6.0CLG Let f : X → Y be a morphism of algebraic stacks. We
say f satisfies the uniqueness part of the valuative criterion if for every diagram
(101.39.1.1) and γ as in Definition 101.39.1 the category of dotted arrows is either
empty or a setoid with exactly one isomorphism class.
Lemma 101.39.7.0CLH The base change of a morphism of algebraic stacks which satisfies
the uniqueness part of the valuative criterion by any morphism of algebraic stacks is
a morphism of algebraic stacks which satisfies the uniqueness part of the valuative
criterion.
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Proof. Follows from Lemma 101.39.4 and the definition. □

Lemma 101.39.8.0CLI The composition of morphisms of algebraic stacks which satisfy
the uniqueness part of the valuative criterion is another morphism of algebraic
stacks which satisfies the uniqueness part of the valuative criterion.

Proof. Follows from Lemma 101.39.5 and the definition. □

Lemma 101.39.9.0CLJ Let f : X → Y be a morphism of algebraic stacks which is
representable by algebraic spaces. Then the following are equivalent

(1) f satisfies the uniqueness part of the valuative criterion,
(2) for every scheme T and morphism T → Y the morphism X ×Y T → T

satisfies the uniqueness part of the valuative criterion as a morphism of
algebraic spaces.

Proof. Follows from Lemma 101.39.4 and the definition. □

Definition 101.39.10.0CLK Let f : X → Y be a morphism of algebraic stacks. We say f
satisfies the existence part of the valuative criterion if for every diagram (101.39.1.1)
and γ as in Definition 101.39.1 there exists an extension K ′/K of fields, a valuation
ring A′ ⊂ K ′ dominating A such that the category of dotted arrows for the outer
rectangle of the diagram

Spec(K ′) //
x′

&&

j′

��

Spec(K)

j

��

x
// X

f

��
Spec(A′) //

y′
88Spec(A) y // Y

with induced 2-arrow γ′ : y′ ◦ j′ → f ◦ x′ is nonempty.

We have already seen in the case of morphisms of algebraic spaces, that it is nec-
essary to allow extensions of the fractions fields in order to get the correct notion
of the valuative criterion. See Morphisms of Spaces, Example 67.41.6. Still, for
morphisms between separated algebraic spaces, such an extension is not needed
(Morphisms of Spaces, Lemma 67.41.5). However, for morphisms between alge-
braic stacks, an extension may be needed even if X and Y are both separated. For
example consider the morphism of algebraic stacks

[Spec(C)/G]→ Spec(C)
over the base scheme Spec(C) where G is a group of order 2. Both source and target
are separated algebraic stacks and the morphism is proper. Whence it satisfies the
uniqueness and existence parts of the valuative criterion (see Lemma 101.43.1). But
on the other hand, there is a diagram

Spec(K) //

��

[Spec(C)/G]

��
Spec(A) // Spec(C)

where no dotted arrow exists with A = C[[t]] and K = C((t)). Namely, the top
horizontal arrow is given by a G-torsor over the spectrum of K = C((t)). Since
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any G-torsor over the strictly henselian local ring A = C[[t]] is trivial, we see that
if a dotted arrow always exists, then every G-torsor over K is trivial. This is not
true because G = {+1,−1} and by Kummer theory G-torsors over K are classified
by K∗/(K∗)2 which is nontrivial.

Lemma 101.39.11.0CLL The base change of a morphism of algebraic stacks which satis-
fies the existence part of the valuative criterion by any morphism of algebraic stacks
is a morphism of algebraic stacks which satisfies the existence part of the valuative
criterion.

Proof. Follows from Lemma 101.39.4 and the definition. □

Lemma 101.39.12.0CLM The composition of morphisms of algebraic stacks which satisfy
the existence part of the valuative criterion is another morphism of algebraic stacks
which satisfies the existence part of the valuative criterion.

Proof. Follows from Lemma 101.39.5 and the definition. □

Lemma 101.39.13.0CLN Let f : X → Y be a morphism of algebraic stacks which is
representable by algebraic spaces. Then the following are equivalent

(1) f satisfies the existence part of the valuative criterion,
(2) for every scheme T and morphism T → Y the morphism X ×Y T → T

satisfies the existence part of the valuative criterion as a morphism of
algebraic spaces.

Proof. Follows from Lemma 101.39.4 and the definition. □

Lemma 101.39.14.0CLP A closed immersion of algebraic stacks satisfies both the exis-
tence and uniqueness part of the valuative criterion.

Proof. Omitted. Hint: reduce to the case of a closed immersion of schemes by
Lemmas 101.39.9 and 101.39.13. □

101.40. Valuative criterion for second diagonal

0CLQ The converse statement has already been proved in Lemma 101.39.2. The criterion
itself is the following.

Lemma 101.40.1.0CLR Let f : X → Y be a morphism of algebraic stacks. If ∆f is
quasi-separated and if for every diagram (101.39.1.1) and choice of γ as in Definition
101.39.1 the category of dotted arrows is a setoid, then ∆f is separated.

Proof. We are going to write out a detailed proof, but we strongly urge the reader
to find their own proof, inspired by reading the argument given in the proof of
Lemma 101.39.2.

Assume ∆f is quasi-separated and for every diagram (101.39.1.1) and choice of γ as
in Definition 101.39.1 the category of dotted arrows is a setoid. By Lemma 101.6.1
it suffices to show that e : X → IX/Y is a closed immersion. By Lemma 101.6.4 it in
fact suffices to show that e = ∆f,2 is universally closed. Either of these lemmas tells
us that e = ∆f,2 is quasi-compact by our assumption that ∆f is quasi-separated.
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In this paragraph we will show that e satisfies the existence part of the valuative
criterion. Consider a 2-commutative solid diagram

Spec(K)
x

//

j

��

X

e

��
Spec(A)

(a,θ) // IX/Y

and let α : (a, θ) ◦ j → e ◦ x be any 2-morphism witnessing the 2-commutativity
of the diagram (we use α instead of the letter γ used in Definition 101.39.1). Note
that f ◦ θ = id; we will use this below. Observe that e ◦x = (x, idx) and (a, θ) ◦ j =
(a ◦ j, θ ⋆ idj). Thus we see that α is a 2-arrow α : a ◦ j → x compatible with θ ⋆ idj
and idx. Set y = f ◦ x and β = idf◦a. Reading the arguments given in the proof of
Lemma 101.39.2 backwards, we see that θ is an automorphism of the dotted arrow
(a, α, β) with

γ : y ◦ j → f ◦ x equal to idf ⋆ α : f ◦ a ◦ j → f ◦ x

On the other hand, ida is an automorphism too, hence we conclude θ = ida from
the assumption on f . Then we can take as dotted arrow for the displayed diagram
above the morphism a : Spec(A) → X with 2-morphisms (a, ida) ◦ j → (x, idx)
given by α and (a, θ)→ e ◦ a given by ida.
By Lemma 101.39.11 any base change of e satisfies the existence part of the valuative
criterion. Since e is representable by algebraic spaces, it suffices to show that e is
universally closed after a base change by a morphism I → IX/Y which is surjective
and smooth and with I an algebraic space (see Properties of Stacks, Section 100.3).
This base change e′ : X ′ → I ′ is a quasi-compact morphism of algebraic spaces
which satisfies the existence part of the valuative criterion and hence is universally
closed by Morphisms of Spaces, Lemma 67.42.1. □

101.41. Valuative criterion for the diagonal

0CLS The result is Lemma 101.41.2. We first state and prove a formal helper lemma.

Lemma 101.41.1.0E8L Let f : X → Y be a morphism of algebraic stacks. Consider a
2-commutative solid diagram

Spec(K)
x

//

j

��

X

∆f

��
Spec(A)

(a1,a2,φ) //

66

X ×Y X

where A is a valuation ring with field of fractions K. Let γ : (a1, a2, φ)◦j −→ ∆f ◦x
be a 2-morphism witnessing the 2-commutativity of the diagram. Then

(1) Writing γ = (α1, α2) with αi : ai ◦ j → x we obtain two dotted arrows
(a1, α1, id) and (a2, α2, φ) in the diagram

Spec(K)
x
//

j

��

X

f

��
Spec(A) f◦a1 //

;;

Y

https://stacks.math.columbia.edu/tag/0E8L
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(2) The category of dotted arrows for the original diagram and γ is a setoid
whose set of isomorphism classes of objects equal to the set of morphisms
(a1, α1, id)→ (a2, α2, φ) in the category of dotted arrows.

Proof. Since ∆f is representable by algebraic spaces (hence the diagonal of ∆f

is separated), we see that the category of dotted arrows in the first commutative
diagram of the lemma is a setoid by Lemma 101.39.2. All the other statements of
the lemma are consequences of 2-diagramatic computations which we omit. □

Lemma 101.41.2.0CLT Let f : X → Y be a morphism of algebraic stacks. Assume f is
quasi-separated. If f satisfies the uniqueness part of the valuative criterion, then f
is separated.

Proof. The assumption on f means that ∆f is quasi-compact and quasi-separated
(Definition 101.4.1). We have to show that ∆f is proper. Lemma 101.40.1 says that
∆f is separated. By Lemma 101.3.3 we know that ∆f is locally of finite type. To
finish the proof we have to show that ∆f is universally closed. A formal argument
(see Lemma 101.41.1) shows that the uniqueness part of the valuative criterion
implies that we have the existence of a dotted arrow in any solid diagram like so:

Spec(K)

��

// X

∆f

��
Spec(A) //

99

X ×Y X

Using that this property is preserved by any base change we conclude that any
base change by ∆f by an algebraic space mapping into X ×Y X has the existence
part of the valuative criterion and we conclude is universally closed by the valua-
tive criterion for morphisms of algebraic spaces, see Morphisms of Spaces, Lemma
67.42.1. □

Here is a converse.

Lemma 101.41.3.0CLU Let f : X → Y be a morphism of algebraic stacks. If f is
separated, then f satisfies the uniqueness part of the valuative criterion.

Proof. Since f is separated we see that all categories of dotted arrows are setoids
by Lemma 101.39.2. Consider a diagram

Spec(K)
x
//

j

��

X

f

��
Spec(A) y //

;;

Y

and a 2-morphism γ : y ◦ j → f ◦ x as in Definition 101.39.1. Consider two objects
(a, α, β) and (a′, β′, α′) of the category of dotted arrows. To finish the proof we
have to show these objects are isomorphic. The isomorphism

f ◦ a β−1

−−→ y
β′

−→ f ◦ a′

means that (a, a′, β′ ◦β−1) is a morphism Spec(A)→ X ×Y X . On the other hand,
α and α′ define a 2-arrow

(a, a′, β′ ◦ β−1) ◦ j = (a ◦ j, a′ ◦ j, (β′ ⋆ idj) ◦ (β ⋆ idj)−1) (α,α′)−−−−→ (x, x, id) = ∆f ◦ x

https://stacks.math.columbia.edu/tag/0CLT
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Here we use that both (a, α, β) and (a′, α′, β′) are dotted arrows with respect to γ.
We obtain a commutative diagram

Spec(K)

j

��

x
// X

∆f

��
Spec(A)

(a,a′,β′◦β−1) // X ×Y X

with 2-commutativity witnessed by (α, α′). Now ∆f is representable by algebraic
spaces (Lemma 101.3.3) and proper as f is separated. Hence by Lemma 101.39.13
and the valuative criterion for properness for algebraic spaces (Morphisms of Spaces,
Lemma 67.44.1) we see that there exists a dotted arrow. Unwinding the construc-
tion, we see that this means (a, α, β) and (a′, α′, β′) are isomorphic in the category
of dotted arrows as desired. □

101.42. Valuative criterion for universal closedness

0CLV Here is a statement.

Lemma 101.42.1.0CLW Let f : X → Y be a morphism of algebraic stacks. Assume
(1) f is quasi-compact, and
(2) f satisfies the existence part of the valuative criterion.

Then f is universally closed.

Proof. By Lemmas 101.7.3 and 101.39.11 properties (1) and (2) are preserved under
any base change. By Lemma 101.13.5 we only have to show that |T ×Y X| → |T | is
closed, whenever T is an affine scheme mapping into Y. Hence it suffices to show:
if f : X → Y is a quasi-compact morphism from an algebraic stack to an affine
scheme satisfying the existence part of the valuative criterion, then |f | is closed.
Let T ⊂ |X | be a closed subset. We have to show that f(T ) is closed to finish the
proof.

Let Z ⊂ X be the reduced induced algebraic stack structure on T (Properties
of Stacks, Definition 100.10.4). Then i : Z → X is a closed immersion and we
have to show that the image of |Z| → |Y | is closed. Since closed immersions are
quasi-compact (Lemma 101.7.5) and satisfies the existence part of the valuative
criterion (Lemma 101.39.14) and since compositions of quasi-compact morphisms
are quasi-compact (Lemma 101.7.4) and since compositions preserve the property
of satisfying the existence part of the valuative criterion (Lemma 101.39.12) we
conclude that it suffices to show: if f : X → Y is a quasi-compact morphism from
an algebraic stack to an affine scheme satisfying the existence part of the valuative
criterion, then |f |(|X |) is closed.

Since X is quasi-compact (being quasi-compact over the affine Y ), we can choose an
affine scheme U and a surjective smooth morphism U → X (Properties of Stacks,
Lemma 100.6.2). Suppose that y ∈ Y is in the closure of the image of U → Y (in
other words, in the closure of the image of |f |). Then by Morphisms, Lemma 29.6.5

https://stacks.math.columbia.edu/tag/0CLW
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we can find a valuation ring A with fraction field K and a commutative diagram

Spec(K) //

��

U

��
Spec(A) // Y

such that the closed point of Spec(A) maps to y. By assumption we get an extension
K ′/K and a valuation ring A′ ⊂ K ′ dominating A and the dotted arrow in the
following diagram

Spec(K ′) //

��

Spec(K) //

��

U

��

// X

f

��
Spec(A′) //

33

Spec(A) // Y Y

Thus y is in the image of |f | and we win. □

Here is a converse.

Lemma 101.42.2.0CLX Let f : X → Y be a morphism of algebraic stacks. Assume
(1) f is quasi-separated, and
(2) f is universally closed.

Then f satisfies the existence part of the valuative criterion.

Proof. Consider a solid diagram

Spec(K)
x
//

j

��

X

f

��
Spec(A) y //

;;

Y

where A is a valuation ring with field of fractions K and γ : y ◦ j −→ f ◦ x as
in Definition 101.39.1. By Lemma 101.39.4 in order to find a dotted arrow (after
possibly replacing K by an extension and A by a valuation ring dominating it)
we may replace Y by Spec(A) and X by Spec(A) ×Y X . Of course we use here
that being quasi-separated and universally closed are preserved under base change.
Thus we reduce to the case discussed in the next paragraph.

Consider a solid diagram

Spec(K)
x

//

j

��

X

f

��
Spec(A)

99

Spec(A)

where A is a valuation ring with field of fractions K as in Definition 101.39.1. By
Lemma 101.7.7 and the fact that f is quasi-separated we have that the morphism x
is quasi-compact. Since f is universally closed, we have in particular that |f |({x})
is closed in Spec(A). Since this image contains the generic point of Spec(A) there

https://stacks.math.columbia.edu/tag/0CLX
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exists a point x′ ∈ |X | in the closure of x mapping to the closed point of Spec(A).
By Lemma 101.7.9 we can find a commutative diagram

Spec(K ′) //

��

Spec(K)

��
Spec(A′) // X

such that the closed point of Spec(A′) maps to x′ ∈ |X |. It follows that Spec(A′)→
Spec(A) maps the closed point to the closed point, i.e., A′ dominates A and this
finishes the proof. □

101.43. Valuative criterion for properness

0CLY Here is the statement.

Lemma 101.43.1.0CLZ Let f : X → Y be a morphism of algebraic stacks. Assume f is
of finite type and quasi-separated. Then the following are equivalent

(1) f is proper, and
(2) f satisfies both the uniqueness and existence parts of the valuative crite-

rion.

Proof. A proper morphism is the same thing as a separated, finite type, and univer-
sally closed morphism. Thus this lemma follows from Lemmas 101.41.2, 101.41.3,
101.42.1, and 101.42.2. □

101.44. Local complete intersection morphisms

0CJ2 The property “being a local complete intersection morphism” of morphisms of al-
gebraic spaces is smooth local on the source-and-target, see Descent on Spaces,
Lemma 74.20.4 and More on Morphisms of Spaces, Lemmas 76.48.9 and 76.48.10.
By Lemma 101.16.1 above, we may define what it means for a morphism of alge-
braic spaces to be a local complete intersection morphism as follows and it agrees
with the already existing notion defined in More on Morphisms of Spaces, Section
76.48 when both source and target are algebraic spaces.

Definition 101.44.1.0CJ3 Let f : X → Y be a morphism of algebraic stacks. We say f
is a local complete intersection morphism or Koszul if the equivalent conditions of
Lemma 101.16.1 hold with P = local complete intersection.

Lemma 101.44.2.0CJ4 The composition of local complete intersection morphisms is a
local complete intersection.

Proof. Combine Remark 101.16.3 with More on Morphisms of Spaces, Lemma
76.48.5. □

Lemma 101.44.3.0CJ5 A flat base change of a local complete intersection morphism is
a local complete intersection morphism.

Proof. Omitted. Hint: Argue exactly as in Remark 101.16.4 (but only for flat
Y ′ → Y) using More on Morphisms of Spaces, Lemma 76.48.4. □

https://stacks.math.columbia.edu/tag/0CLZ
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Lemma 101.44.4.0CJ6 Let
X

f
//

��

Y

��
Z

be a commutative diagram of morphisms of algebraic stacks. Assume Y → Z is
smooth and X → Z is a local complete intersection morphism. Then f : X → Y is
a local complete intersection morphism.

Proof. Choose a scheme W and a surjective smooth morphism W → Z. Choose a
scheme V and a surjective smooth morphism V → W ×Z Y. Choose a scheme U
and a surjective smooth morphism U → V ×Y X . Then U →W is a local complete
intersection morphism of schemes and V → W is a smooth morphism of schemes.
By the result for schemes (More on Morphisms, Lemma 37.62.10) we conclude that
U → V is a local complete intersection morphism. By definition this means that f
is a local complete intersection morphism. □

101.45. Stabilizer preserving morphisms

0DU6 In the literature a morphism f : X → Y of algebraic stacks is said to be stabilizer
preserving or fixed-point reflecting if the induced morphism IX → X ×Y IY is an
isomorphism. Such a morphism induces an isomorphism between automorphism
groups (Remark 101.19.5) in every point of X . In this section we prove some
simple lemmas around this concept.

Lemma 101.45.1.0DU7 Let f : X → Y be a morphism of algebraic stacks. If IX →
X ×Y IY is an isomorphism, then f is representable by algebraic spaces.

Proof. Immediate from Lemma 101.6.2. □

Remark 101.45.2.0DU8 Let f : X → Y be a morphism of algebraic stacks. Let U → X
be a morphism whose source is an algebraic space. Let G→ H be the pullback of
the morphism IX → X ×Y IY to U . If ∆f is unramified, étale, etc, so is G → H.
This is true because

U ×X U //

��

X

∆f

��
U ×Y U // X ×Y X

is cartesian and the morphism G→ H is the base change of the left vertical arrow
by the diagonal U → U × U . Compare with the proof of Lemma 101.6.6.

Lemma 101.45.3.0DU9 Let f : X → Y be an unramified morphism of algebraic stacks.
The following are equivalent

(1) IX → X ×Y IY is an isomorphism, and
(2) f induces an isomorphism between automorphism groups at x and f(x)

(Remark 101.19.5) for all x ∈ |X |.

Proof. Choose a scheme U and a surjective smooth morphism U → X . Denote
G → H the pullback of the morphism IX → X ×Y IY to U . By Remark 101.45.2
and Lemma 101.36.9 the morphism G→ H is étale. Condition (1) is equivalent to
the condition that G→ H is an isomorphism (this follows for example by applying

https://stacks.math.columbia.edu/tag/0CJ6
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Properties of Stacks, Lemma 100.3.3). Condition (2) is equivalent to the condition
that for every u ∈ U the morphism Gu → Hu of fibres is an isomorphism. Thus (1)
⇒ (2) is trivial. If (2) holds, then G→ H is a surjective, universally injective, étale
morphism of algebraic spaces. Such a morphism is an isomorphism by Morphisms
of Spaces, Lemma 67.51.2. □

Lemma 101.45.4.0DUA [Ryd07a,
Proposition 3.5] and
[Alp10, Proposition
2.5]

Let f : X → Y be a morphism of algebraic stacks. Assume
(1) f is representable by algebraic spaces and unramified, and
(2) IY → Y is proper.

Then the set of x ∈ |X | such that f induces an isomorphism between automor-
phism groups at x and f(x) (Remark 101.19.5) is open. Letting U ⊂ X be the
corresponding open substack, the morphism IU → U ×Y IY is an isomorphism.
Proof. Choose a scheme U and a surjective smooth morphism U → X . Denote
G → H the pullback of the morphism IX → X ×Y IY to U . By Remark 101.45.2
and Lemma 101.36.9 the morphism G → H is étale. Since f is representable by
algebraic spaces, we see that G → H is a monomorphism. Hence G → H is an
open immersion, see Morphisms of Spaces, Lemma 67.51.2. By assumption H → U
is proper.
With these preparations out of the way, we can prove the lemma as follows. The
inverse image of the subset of |X | of the lemma is clearly the set of u ∈ U such that
Gu → Hu is an isomorphism (since after all Gu is an open sub group algebraic space
of Hu). This is an open subset because the complement is the image of the closed
subset |H| \ |G| and |H| → |U | is closed. By Properties of Stacks, Lemma 100.9.12
we can consider the corresponding open substack U of X . The final statement of
the lemma follows from applying Lemma 101.45.3 to U → Y. □

Lemma 101.45.5.0DUB Let
X ′ //

f ′

��

X

f

��
Y ′ // Y

be a cartesian diagram of algebraic stacks.
(1) Let x′ ∈ |X ′| with image x ∈ |X |. If f induces an isomorphism between

automorphism groups at x and f(x) (Remark 101.19.5), then f ′ induces
an isomorphism between automorphism groups at x′ and f(x′).

(2) If IX → X ×Y IY is an isomorphism, then IX ′ → X ′ ×Y′ IY′ is an
isomorphism.

Proof. Omitted. □

Lemma 101.45.6.0DUC Let
X ′ //

f ′

��

X

f

��
Y ′ g // Y

be a cartesian diagram of algebraic stacks. If f induces an isomorphism between
automorphism groups at points (Remark 101.19.5), then

Mor(Spec(k),X ′) −→ Mor(Spec(k),Y ′)×Mor(Spec(k),X )

https://stacks.math.columbia.edu/tag/0DUA
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is injective on isomorphism classes for any field k.

Proof. We have to show that given (y′, x) there is at most one x′ mapping to it.
By our construction of 2-fibre products, a morphism x′ is given by a triple (x, y′, α)
where α : g◦y′ → f ◦x is a 2-morphism. Now, suppose we have a second such triple
(x, y′, β). Then α and β differ by a k-valued point ϵ of the automorphism group
algebraic space Gf(x). Since f induces an isomorphism Gx → Gf(x) by assumption,
this means we can lift ϵ to a k-valued point γ of Gx. Then (γ, id) : (x, y′, α) →
(x, y′, β) is an isomorphism as desired. □

Lemma 101.45.7.0DUD Let f : X → Y be a morphism of algebraic stacks. Assume f is
étale, f induces an isomorphism between automorphism groups at points (Remark
101.19.5), and for every algebraically closed field k the functor

f : Mor(Spec(k),X ) −→ Mor(Spec(k),Y)
is an equivalence. Then f is an isomorphism.

Proof. By Lemma 101.14.5 we see that f is universally injective. Combining Lem-
mas 101.45.1 and 101.45.3 we see that f is representable by algebraic spaces. Hence
f is an open immersion by Morphisms of Spaces, Lemma 67.51.2. To finish we re-
mark that the condition in the lemma also guarantees that f is surjective. □

101.46. Normalization

0GMH This section is the analogue of Morphisms of Spaces, Section 67.49.

Lemma 101.46.1.0GMI Let X be an algebraic stack. The following are equivalent
(1) there is a surjective smooth morphism U → X where U is a scheme

such that every quasi-compact open of U has finitely many irreducible
components,

(2) for every scheme U and every smooth morphism U → X every quasi-
compact open of U has finitely many irreducible components,

(3) for every algebraic space Y and smooth morphism Y → X the space Y
satisfies the equivalent conditions of Morphisms of Spaces, Lemma 67.49.1,
and

(4) for every quasi-compact algebraic stack Y smooth over X the space |Y|
has finitely many irreducible components.

Proof. The equivalence of (1), (2), and (3) follow from Descent, Lemma 35.16.3,
Properties of Stacks, Lemma 100.7.1, and Morphisms of Spaces, Lemma 67.49.1.
It is also clear from these references that condition (4) implies condition (1). Con-
versely, assume the equivalent conditions (1), (2), and (3) hold and let Y → X be a
smooth morphism of algebraic stacks with Y quasi-compact. Then we can choose
an affine scheme V and a surjective smooth morphism V → Y by Properties of
Stacks, Lemma 100.6.2. Since V has finitely many irreducible components by (2)
and since |V | → |Y| is surjective and continuous, we conclude that |Y| has finitely
many irreducible components by Topology, Lemma 5.8.5. □

Lemma 101.46.2.0GMJ Let X be an algebraic stack satisfying the equivalent conditions
of Lemma 101.46.1. Then there exists an integral morphism of algebraic stacks

X ν −→ X

https://stacks.math.columbia.edu/tag/0DUD
https://stacks.math.columbia.edu/tag/0GMI
https://stacks.math.columbia.edu/tag/0GMJ


101.47. POINTS AND SPECIALIZATIONS 7059

such that for every scheme U and smooth morphism U → X the fibre product
X ν ×X U is the normalization of U .

Proof. Let U → X be a surjective smooth morphism where U is a scheme. Set R =
U ×X U . Recall that we obtain a smooth groupoid (U,R, s, t, c) in algebraic spaces
and a presentation X = [U/R] of X , see Algebraic Stacks, Lemmas 94.16.1 and
94.16.2 and Definition 94.16.5. The assumption on X means that the normalization
Uν of U is defined, see Morphisms, Definition 29.54.1. By Morphisms of Spaces,
Lemma 67.49.5 taking normalization commutes with smooth morphisms of algebraic
spaces. Thus we see that the normalization Rν of R is isomorphic to both R×s,UUν
and Uν ×U,t R. Thus we obtain two smooth morphisms sν : Rν → Uν and tν :
Rν → Uν of algebraic spaces. A formal computation with fibre products shows that
Rν ×sν ,Uν ,tν Rν is the normalization of R ×s,U,t R. Hence the smooth morphism
c : R ×s,U,t R → R extends to cν as well. Similarly, the inverse i : R → R
(an isomorphism) induces an isomorphism iν : Rν → Rν . Finally, the identity
e : U → R lifts to eν : Uν → Rν for example because e is a section of s and
Rν = R×U,sUν . We claim that (Uν , Rν , sν , tν , cν) is a smooth groupoid in algebraic
spaces. To see this involves checking the axioms (1), (2)(a), (2)(b), (3)(a), and
(3)(b) of Groupoids, Section 39.13 for (Uν , Rν , sν , tν , cν , eν , iν). For example, for
(1) we have to see that the two morphisms a, b : Rν ×sν ,Uν ,tν Rν ×sν ,Uν ,tν Rν → Rν

we obtain are the same. This holds because we know that the corresponding pair
of morphisms R ×s,U,t R ×s,U,t R → R are the same and the morphisms a and b
are the unique extensions of this morphism to the normalizations. Similarly for the
other axioms.
Consider the algebraic stack X ν = [Uν/Rν ] (Algebraic Stacks, Theorem 94.17.3).
Since we have a morphism (Uν , Rν , sν , tν , cν) → (U,R, s, t, c) of groupoids in al-
gebraic spaces, we obtain a morphism ν : X ν → X of algebraic stacks. Since
Rν = R ×s,U Uν we see that Uν = X ν ×X U by Groupoids in Spaces, Lemma
78.25.3. In particular, as Uν → U is integral, we see that ν is integral. We omit
the verification that the base change property stated in the lemma holds for every
smooth morphism from a scheme to X . □

This leads us to the following definition.

Definition 101.46.3.0GMK Let X be an algebraic stack satisfying the equivalent conditions
of Lemma 101.46.1. We define the normalization of X as the morphism

ν : X ν −→ X
constructed in Lemma 101.46.2.

101.47. Points and specializations

0GVY This section is the analogue of Decent Spaces, Section 68.7.

Lemma 101.47.1.0GVZ Let X be an algebraic stack. Let f : U → X be a smooth
morphism where U is an algebraic space. Let x′ ⇝ x be a specialization of points
of |X |. Let u ∈ |U | with f(u) = x. If (X , x′) satisfy the equivalent conditions of
Properties of Stacks, Lemma 100.14.1, then there exists a specialization u′ ⇝ u in
|U | with f(u′) = x′.

Proof. Choose an étale morphism (U1, u1) → (U, u) where U1 is an affine scheme.
Then we may and do replace U by U1. Thus we may assume U is an affine scheme.
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Consider the algebraic space R = U ×X U with smooth projections t, s : R → U .
Choose a point w ∈ U mapping to x′; this is possible as f : |U | → |X | is open. By
our assumption on x′ the fibre F ′ = t−1(w) = R ×t,U w of t : R → U over w is a
quasi-compact algebraic space. Choose an affine scheme T and a surjective étale
morphism T → F ′. The fact that x′ ⇝ x means that u is in the closure of the
image of the morphism

T → F ′ → R
s−→ U

Namely, this image is the fibre of |U | → |X ′| over x′; if some u ∈ V ⊂ |U | open is
disjoint from this fibre, then f(V ) is an open neighbourhood of x not containing x′;
contradiction. Thus by Morphisms, Lemma 29.6.5 we see that there exists u′ ∈ |U |
in the fibre of |U | → |X | over x′ which specializes to u. □

101.48. Decent algebraic stacks

0GW0 This section is the analogue of Decent Spaces, Section 68.6. In particular, the
following definition is compatible with the notion of a decent algebraic space defined
there.

Definition 101.48.1.0GW1 Let X be an algebraic stack. We say X is decent if for every
x ∈ |X | the equivalent conditions of Properties of Stacks, Lemma 100.14.1 are
satisfied.

Some people would rephrase this definition by saying that every point of X is
quasi-compact. A slightly stronger condition would be to ask that any morphism
Spec(k) → X in the equivalence class of x is quasi-separated as well as quasi-
compact.

Lemma 101.48.2.0GW2 A quasi-separated algebraic stack X is decent. More generally,
if ∆ : X → X ×X is quasi-compact, then X is decent.

Proof. Namely, if X is quasi-separated, then any morphism f : T → X whose
source is a quasi-compact scheme T , is quasi-compact, see Lemma 101.7.7. If ∆ is
on known to be quasi-compact, then one uses the description

T ×f,X ,f ′ T ′ = (T × T ′)×(f,f ′),X ×X ,∆ X
to prove this. Details omitted. □

Lemma 101.48.3.0GW3 Let f : X → Y be a morphism of algebraic stacks. Assume Y is
decent and f is representable (by schemes) or f is representable by algebraic spaces
and quasi-separated. Then X is decent.

Proof. Let x ∈ |X | with image y ∈ |Y|. Choose a morphism y : Spec(k)→ Y in the
equivalence class defining y. Set Xy = Spec(k) ×y,Y X . Choose a point x′ ∈ |Xy|
mapping to x, see Properties of Stacks, Lemma 100.4.3. Choose a morphism x′ :
Spec(k′)→ Xy in the equivalence class of x′. Diagram

Spec(k′)
x′

// Xy //

��

X

��
Spec(k) y // Y

The morphism y is quasi-compact if Y is decent. Hence Xy → X is quasi-compact
as a base change (Lemma 101.7.3). Thus to conclude it suffices to prove that x′ is
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quasi-compact (Lemma 101.7.4). If f is representable, then Xy is a scheme and x′ is
quasi-compact. If f is representable by algebraic spaces and quasi-separated, then
Xy is a quasi-separated algebraic space and hence decent (Decent Spaces, Lemma
68.17.2). □

Lemma 101.48.4.0GW4 Let f : X → Y be a morphism of algebraic stacks. If f is
quasi-compact and surjective and X is decent, then Y is decent.

Proof. Let x : Spec(k)→ X be a morphism where k is a field and denote y = f ◦x.
Since f is surjective, every point of |Y| arises in this manner, see Properties of
Stacks, Lemma 100.4.4. Consider an affine scheme T and morphism T → Y. It
suffices to show that T ×Y,y Spec(k) is quasi-compact, see Lemma 101.7.10. We
have

(T ×Y X )×X ,x Spec(k) = T ×Y,y Spec(k)
The morphism T ×Y X → T is quasi-compact hence T ×Y X is quasi-compact.
Since x is a quasi-compact morphism as X is decent we see that the displayed fibre
product is quasi-compact. □

Lemma 101.48.5.0GW5 Let f : X → Y be a morphism of algebraic stacks. If X is a
gerbe over Y and X is decent, then Y is decent.

Proof. Assume X is a gerbe over Y and X is decent. Note that f is a univer-
sal homeomorphism by Lemma 101.28.13. Thus the lemma follows from Lemma
101.48.4. □

101.49. Points on decent stacks

0GW6 This section is the analogue of Decent Spaces, Section 68.12. We do not know
whether or not the topological space associated to a decent algebraic stack is always
sober; see Proposition 101.49.3 for a slightly weaker result.

Lemma 101.49.1.0GW7 Let X be a decent algebraic stack. Then |X | is Kolmogorov (see
Topology, Definition 5.8.6).

Proof. Let x1, x2 ∈ |X | with x1 ⇝ x2 and x2 ⇝ x1. We have to show that x1 = x2.
Let Z ⊂ X be the reduced closed substack with |Z| equal to {x1} = {x2}. By
Lemma 101.48.3 we see that Z is decent. After replacing X by Z we reduce to the
case discussed in the next paragraph.
Assume |X | is irreducible with generic points x1 and x2. Pick an affine scheme U
and u1, u2 ∈ U and a smooth morphism f : U → X such that f(ui) = xi. Then we
find a third point u3 ∈ U which is the generic point of an irreducible component
of U whose image x3 ∈ |X | is also a generic point of |X |. Namely, we can simply
choose u3 any generic point of an irreducible component passing through u1 (or u2
if you like). In the next paragraph we will show that x1 = x3 and x2 = x3 which
will prove what we want.
By symmetry it suffices to prove that x1 = x3. Since x1 is a generic point of |X |
we have a specialization x1 ⇝ x3. By Lemma 101.47.1 we can find a specialization
u′

1 ⇝ u3 in U (!) mapping to x1 ⇝ x3. However, u3 is the generic point of an
irreducible component and hence u′

1 = u3 as desired. □

Lemma 101.49.2.0GW8 Let X be a decent, locally Noetherian algebraic stack. Then |X |
is a sober locally Noetherian topological space.
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Proof. By Lemma 101.8.3 the topological space |X | is locally Noetherian. By
Lemma 101.49.1 the topological space |X | is Kolmogorov. By Lemma 101.8.4 the
topological space |X | is quasi-sober. This finishes the proof, see Topology, Defini-
tion 5.8.6. □

Proposition 101.49.3.0GW9 Let X be a decent algebraic stack such that IX → X is
quasi-compact. Then |X | is sober.

Proof. By Lemma 101.49.1 we know that |X | is Kolmogorov (in fact we will reprove
this). Let T ⊂ |X | be an irreducible closed subset. We have to show T has a generic
point. Let Z ⊂ X be the reduced induced closed substack corresponding to T , see
Properties of Stacks, Definition 100.10.4. Since Z → X is a closed immersion, we
see that Z is a decent algebraic stack, see Lemma 101.48.3. Also, the morphism
IZ → Z is the base change of IX → X (Lemma 101.5.6). Hence IZ → Z is
quasi-compact (Lemma 101.7.3). Thus we reduce to the case discussed in the next
paragraph.
Assume X is decent, IX → X is quasi-compact, X is reduced, and |X | irreducible.
We have to show |X | has a generic point. By Proposition 101.29.1. there exists a
dense open substack U ⊂ X which is a gerbe. In other words, |U| ⊂ |X | is open
dense. Thus we may assume that X is a gerbe in addition to all the other properties.
Say X → X turns X into a gerbe over the algebraic space X. Then |X | ∼= |X| by
Lemma 101.28.13. In particular, X is quasi-compact and |X| is irreducible. Also,
by Lemma 101.48.5 we see that X is a decent algebraic space. Then |X | = |X|
is sober by Decent Spaces, Proposition 68.12.4 and hence has a (unique) generic
point. □

101.50. Integral algebraic stacks

0GWA This section is the analogue of Spaces over Fields, Section 72.4. Motivated by the
considerations in that section and by the result of Proposition 101.49.3 we define an
integral algebraic stack as follows (and it does not conflict with the already existing
definitions of integral schemes and integral algebraic spaces).

Definition 101.50.1.0GWB We say an algebraic stack X is integral if it is reduced, decent,
IX → X is quasi-compact, and |X | is irreducible.

Note that if X is quasi-separated, then for it to be integral, it suffices that X is
reduced and that |X | is irreducible, see Lemma 101.50.3.

Lemma 101.50.2.0GWC Let X be an integral algebraic stack. Then
(1) |X | is sober, irreducible, and has a unique generic point,
(2) there exists an open substack U ⊂ X which is a gerbe over an integral

scheme U .

Proof. Proposition 101.49.3 tells us that |X | is sober. Of course it is also irreducible
and hence has a unique generic point x (by the definition of sobriety). Proposition
101.29.1 shows the existence of a dense open U ⊂ X which is a gerbe over an
algebraic space U . Then U is a decent algebraic space by Lemma 101.48.5 (and
the fact that U is decent by Lemma 101.48.3). Since |U | = |U| we see that |U |
is irreducible. Finally, since U is reduced the morphism U → U factors through
Ured, see Properties of Stacks, Lemma 100.10.3. Now since U → U is flat, locally
of finite presentation, and surjective (Lemma 101.28.8), this implies that U = Ured,
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i.e., U is reduced (small detail omitted). It follows that U is an integral algebraic
space, see Spaces over Fields, Definition 72.4.1. Then finally, we may replace U
(and correspondingly U) by an open subspace and assume that U is an integral
scheme, see discussion in Spaces over Fields, Section 72.4. □

Lemma 101.50.3.0GWD Let X be an algebraic stack which is reduced and quasi-separated
and whose associated topological space |X | is irreducible. Then X is integral.

Proof. If X is quasi-separated, then X is decent by Lemma 101.48.2. If X is
quasi-separated, then ∆ : X → X × X is quasi-compact, hence IX → X is quasi-
compact as the base change of ∆ by ∆, see Lemma 101.7.3. Thus we see that all
the hypotheses of Definition 101.50.1 hold (and we also see that we may replace
“quasi-separated” by “∆X is quasi-compact”). □

Lemma 101.50.4.0GWE Let X be a decent algebraic stack such that IX → X is quasi-
compact. There are canonical bijections between the following sets:

(1) the set of points of X , i.e., |X |,
(2) the set of irreducible closed subsets of |X |,
(3) the set of integral closed substacks of X .

The bijection from (1) to (2) sends x to {x}. The bijection from (3) to (2) sends
Z to |Z|.

Proof. Our map defines a bijection between (1) and (2) as |X | is sober by Propo-
sition 101.49.3. Given T ⊂ |X | closed and irreducible, there is a unique reduced
closed substack Z ⊂ X such that |Z| = T , namely, Z is the reduced induced
subspace structure on T , see Properties of Stacks, Definition 100.10.4. Then Z is
an integral algebraic stack because it is decent (Lemma 101.48.3), the morphism
IZ → Z is quasi-compact (as the base change of IX → X , see Lemma 101.5.6), Z
is reduced, and |Z| is irreducible. □

101.51. Residual gerbes

0H23 This section is the continuation of Properties of Stacks, Section 100.11.

Lemma 101.51.1.0H24 Let π : X → Y be a morphism of algebraic stacks. Let x ∈ |X |
with image y ∈ |Y|. Assume the residual gerbe Zy ⊂ Y of Y at y exists and that
X is a gerbe over Y. Then Zx = Zy ×Y X is the residual gerbe of X at x.

Proof. The morphism Zx → X is a monomorphism as the base change of the
monomorphism Zy → Y. The morphism π is a univeral homeomorphism by Lemma
101.28.13 and hence |Zx| = {x}. Finally, the morphism Zx → Zy is smooth as a
base change of the smooth morphism π, see Lemma 101.33.8. Hence as Zy is
reduced and locally Noetherian, so is Zx (details omitted). Thus Zx is the residual
gerbe of X at x by Properties of Stacks, Definition 100.11.8. □

Lemma 101.51.2.0H25 Let f : Y → X be a morphism of algebraic stacks. Let x ∈ |X |
be a point. Assume

(1) X is decent or locally Noetherian (or both),
(2) IX → X is quasi-compact,
(3) |f |(|Y|) is contained in {x} ⊂ |X |, and
(4) Y is reduced.
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Then f factors through the residual gerbe Zx of X at x (whose existence is guar-
anteed by Lemma 101.31.1 or 101.31.3).

Proof. Let T = {x} ⊂ |X | be the closure of x. By Properties of Stacks, Lemma
100.10.1 there exists a reduced closed substack X ′ ⊂ X such that T = |X ′|. By
Properties of Stacks, Lemma 100.10.3 the morphism f factors through X ′. If X is
decent, then by Lemma 101.48.3 the stack X ′ is decent. If X is locally Noetherian,
then X ′ is locally Noetherian (details omitted). Note that IX ′ → X ′ is the base
change of IX → X by Lemma 101.5.6 we see that IX ′ → X ′ is quasi-compact by
Lemma 101.7.3. This reduces us to the case discussed in the next paragraph.
Assume X is reduced and x ∈ |X | is a generic point. By Proposition 101.29.1
implies there exists a dense open substack U ⊂ X ′ which is a gerbe. Note that
x ∈ |U|. Repeating the arguments above we reduce to the case discussed in the
next paragraph.
Assume X → X is a gerbe over the algebraic space X. If X is decent, then by
Lemmas 101.28.13 and 101.48.4 the space X is decent. If X is locally Noetherian,
then X is locally Noetherian by fppf descent (details omitted). Hence the corre-
sponding result holds for X, see Decent Spaces, Lemma 68.13.10 or 68.13.9 (small
detail omitted). Applying Lemma 101.51.1 we conclude that the result holds for X
as well. □

Remark 101.51.3.0H26 We do not know whether Lemma 101.51.2 holds if we only
assume X is locally Noetherian, i.e., we drop the assumption on the inertia being
quasi-compact. In this case, if x is a closed point, this is certainly true as follows
from the following much simpler lemma.

Lemma 101.51.4.0H27 Let X be a locally Noetherian algebraic stack. Let x ∈ |X | with
residual gerbe Zx ⊂ X (Lemma 101.31.3). Then x is a closed point of |X | if and
only if the morphism Zx → X is a closed immersion.

Proof. If Zx → X is a closed immersion, then x is a closed point of |X |, see
for example Lemma 101.37.4. Conversely, assume x is a closed point of |X |. Let
Z ⊂ X be the reduced closed substack with |Z| = {x} (Properties of Stacks, Lemma
100.10.1). Then Z is a locally Noetherian algebraic stack by Lemmas 101.17.4 and
101.17.5. Since also Z is reduced and |Z| = {x} it follows that Z = Zx is the
residual gerbe by definition. □
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CHAPTER 102

Limits of Algebraic Stacks

0CMM 102.1. Introduction

0CMN In this chapter we put material related to limits of algebraic stacks. Many results
on limits of algebraic stacks and algebraic spaces have been obtained by David
Rydh in [Ryd08].

102.2. Conventions

0CMP We continue to use the conventions and the abuse of language introduced in Prop-
erties of Stacks, Section 100.2.

102.3. Morphisms of finite presentation

0CMQ This section is the analogue of Limits of Spaces, Section 70.3. There we defined
what it means for a transformation of functors on Sch to be limit preserving (we
suggest looking at the characterization in Limits of Spaces, Lemma 70.3.2). In
Criteria for Representability, Section 97.5 we defined the notion “limit preserving
on objects”. Recall that in Artin’s Axioms, Section 98.11 we have defined what it
means for a category fibred in groupoids over Sch to be limit preserving. Combining
these we get the following notion.

Definition 102.3.1.0CMR Let S be a scheme. Let f : X → Y be a 1-morphism of
categories fibred in groupoids over (Sch/S)fppf . We say f is limit preserving if for
every directed limit U = limUi of affine schemes over S the diagram

colimXUi //

f

��

XU

f

��
colimYUi // YU

of fibre categories is 2-cartesian.

Lemma 102.3.2.0CMS Let S be a scheme. Let f : X → Y be a 1-morphism of categories
fibred in groupoids over (Sch/S)fppf . If f is limit preserving (Definition 102.3.1),
then f is limit preserving on objects (Criteria for Representability, Section 97.5).

Proof. If for every directed limit U = limUi of affine schemes over U , the functor
colimXUi −→ (colimYUi)×YU XU

is essentially surjective, then f is limit preserving on objects. □

Lemma 102.3.3.0CMT Let p : X → Y and q : Z → Y be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . If p : X → Y is limit preserving, then so is the base
change p′ : X ×Y Z → Z of p by q.

7067
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Proof. This is formal. Let U = limi∈I Ui be the directed limit of affine schemes Ui
over S. For each i we have

(X ×Y Z)Ui = XUi ×YUi ZUi
Filtered colimits commute with 2-fibre products of categories (details omitted)
hence if p is limit preserving we get

colim(X ×Y Z)Ui = colimXUi ×colim YUi colimZUi
= XU ×YU colimYUi ×colim YUi colimZUi
= XU ×YU colimZUi
= XU ×YU ZU ×ZU colimZUi
= (X ×Y Z)U ×ZU colimZUi

as desired. □

Lemma 102.3.4.0CMU Let p : X → Y and q : Y → Z be 1-morphisms of categories
fibred in groupoids over (Sch/S)fppf . If p and q are limit preserving, then so is the
composition q ◦ p.

Proof. This is formal. Let U = limi∈I Ui be the directed limit of affine schemes Ui
over S. If p and q are limit preserving we get

colimXUi = XU ×YU colimYUi
= XU ×YU YU ×ZU colimZUi
= XU ×ZU colimZUi

as desired. □

Lemma 102.3.5.0CMV Let p : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . If p is representable by algebraic spaces, then the following are
equivalent:

(1) p is limit preserving,
(2) p is limit preserving on objects, and
(3) p is locally of finite presentation (see Algebraic Stacks, Definition 94.10.1).

Proof. In Criteria for Representability, Lemma 97.5.3 we have seen that (2) and
(3) are equivalent. Thus it suffices to show that (1) and (2) are equivalent. One
direction we saw in Lemma 102.3.2. For the other direction, let U = limi∈I Ui be
the directed limit of affine schemes Ui over S. We have to show that

colimXUi −→ XU ×YU colimYUi
is an equivalence. Since we are assuming (2) we know that it is essentially surjective.
Hence we need to prove it is fully faithful. Since p is faithful on fibre categories
(Algebraic Stacks, Lemma 94.9.2) we see that the functor is faithful. Let xi and
x′
i be objects in the fibre category of X over Ui. The functor above sends xi to

(xi|U , p(xi), can) where can is the canonical isomorphism p(xi|U )→ p(xi)|U . Thus
we assume given a morphism

(α, βi) : (xi|U , p(xi), can) −→ (x′
i|U , p(x′

i), can)
in the category of the right hand side of the first displayed arrow of this proof.
Our task is to produce an i′ ≥ i and a morphism xi|Ui′ → x′

i|Ui′ which maps to
(α, βi|Ui′ ).
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Set yi = p(xi) and y′
i = p(x′

i). By (Algebraic Stacks, Lemma 94.9.2) the functor
Xyi : (Sch/Ui)opp → Sets, V/Ui 7→ {(x, ϕ) | x ∈ Ob(XV ), ϕ : f(x)→ yi|V }/ ∼=

is an algebraic space over Ui and the same is true for the analogously defined functor
Xy′

i
. Since (2) is equivalent to (3) we see that Xy′

i
is locally of finite presentation

over Ui. Observe that (xi, id) and (x′
i, id) define Ui-valued points of Xyi and Xy′

i
.

There is a transformation of functors
βi : Xyi → Xy′

i
, (x/V, ϕ) 7→ (x/V, βi|V ◦ ϕ)

in other words, this is a morphism of algebraic spaces over Ui. We claim that

U

��

// Ui

(x′
i,id)

��
Ui

(xi,id)// Xyi

βi // Xy′
i

commutes. Namely, this is equivalent to the condition that the pairs (xi|U , βi|U ) and
(x′
i|U , id) as in the definition of the functor Xy′

i
are isomorphic. And the morphism

α : xi|U → x′
i|U exactly produces such an isomorphism. Arguing backwards the

reader sees that if we can find an i′ ≥ i such that the diagram

Ui′

��

// Ui

(x′
i,id)

��
Ui

(xi,id)// Xyi

βi // Xy′
i

commutes, then we obtain an isomorphism xi|Ui′ → x′
i|Ui′ which is a solution to

the problem posed in the preceding paragraph. However, the diagonal morphism
∆ : Xy′

i
→ Xy′

i
×Ui Xy′

i

is locally of finite presentation (Morphisms of Spaces, Lemma 67.28.10) hence the
fact that U → Ui equalizes the two morphisms toXy′

i
, means that for some i′ ≥ i the

morphism Ui′ → Ui equalizes the two morphisms, see Limits of Spaces, Proposition
70.3.10. □

Lemma 102.3.6.0CMW Let p : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . The following are equivalent

(1) the diagonal ∆ : X → X ×Y X is limit preserving, and
(2) for every directed limit U = limUi of affine schemes over S the functor

colimXUi −→ XU ×YU colimYUi
is fully faithful.

In particular, if p is limit preserving, then ∆ is too.

Proof. Let U = limUi be a directed limit of affine schemes over S. We claim that
the functor

colimXUi −→ XU ×YU colimYUi
is fully faithful if and only if the functor

colimXUi −→ XU ×(X ×Y X )U colim(X ×Y X )Ui
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is an equivalence. This will prove the lemma. Since (X ×Y X )U = XU ×YU XU and
(X ×Y X )Ui = XUi ×YUi XUi this is a purely category theoretic assertion which we
discuss in the next paragraph.
Let I be a filtered index category. Let (Ci) and (Di) be systems of groupoids over
I. Let p : (Ci)→ (Di) be a map of systems of groupoids over I. Suppose we have a
functor p : C → D of groupoids and functors f : colim Ci → C and g : colimDi → D
fitting into a commutative diagram

colim Ci
p

��

f
// C

p

��
colimDi

g // D

Then we claim that
A : colim Ci −→ C ×D colimDi

is fully faithful if and only if the functor
B : colim Ci −→ C ×∆,C×DC,f×gf colim(Ci ×Di Ci)

is an equivalence. Set C′ = colim Ci and D′ = colimDi. Since 2-fibre products
commute with filtered colimits we see that A and B become the functors

A′ : C′ → C ×D D′ and B′ : C′ −→ C ×∆,C×DC,f×gf (C′ ×D′ C′)
Thus it suffices to prove that if

C′

p

��

f
// C

p

��
D′ g // D

is a commutative diagram of groupoids, then A′ is fully faithful if and only if B′

is an equivalence. This follows from Categories, Lemma 4.35.10 (with trivial, i.e.,
punctual, base category) because

C ×∆,C×DC,f×gf (C′ ×D′ C′) = C′ ×A′,C×DD′,A′ C′

This finishes the proof. □

Lemma 102.3.7.0CMX Let S be a scheme. Let X be an algebraic stack over S. If X → S
is locally of finite presentation, then X is limit preserving in the sense of Artin’s
Axioms, Definition 98.11.1 (equivalently: the morphism X → S is limit preserving).

Proof. Choose a surjective smooth morphism U → X for some scheme U . Then
U → S is locally of finite presentation, see Morphisms of Stacks, Section 101.27. We
can write X = [U/R] for some smooth groupoid in algebraic spaces (U,R, s, t, c),
see Algebraic Stacks, Lemma 94.16.2. Since U is locally of finite presentation over
S it follows that the algebraic space R is locally of finite presentation over S.
Recall that [U/R] is the stack in groupoids over (Sch/S)fppf obtained by stacky-
fying the category fibred in groupoids whose fibre category over T is the groupoid
(U(T ), R(T ), s, t, c). Since U and R are limit preserving as functors (Limits of
Spaces, Proposition 70.3.10) this category fibred in groupoids is limit preserving.
Thus it suffices to show that fppf stackyfication preserves the property of being
limit preserving. This is true (hint: use Topologies, Lemma 34.13.2). However, we

https://stacks.math.columbia.edu/tag/0CMX


102.3. MORPHISMS OF FINITE PRESENTATION 7071

give a direct proof below using that in this case we know what the stackyfication
amounts to.
Let T = limTλ be a directed limit of affine schemes over S. We have to show that
the functor

colim[U/R]Tλ −→ [U/R]T
is an equivalence of categories. Let us show this functor is essentially surjective.
Let x ∈ Ob([U/R]T ). In Groupoids in Spaces, Lemma 78.24.1 the reader finds a
description of the category [U/R]T . In particular x corresponds to an fppf covering
{Ti → T}i∈I and a [U/R]-descent datum (ui, rij) relative to this covering. After
refining this covering we may assume it is a standard fppf covering of the affine
scheme T . By Topologies, Lemma 34.13.2 we may choose a λ and a standard fppf
covering {Tλ,i → Tλ}i∈I whose base change to T is equal to {Ti → T}i∈I . For
each i, after increasing λ, we can find a uλ,i : Tλ,i → U whose composition with
Ti → Tλ,i is the given morphism ui (this is where we use that U is limit preserving).
Similarly, for each i, j, after increasing λ, we can find a rλ,ij : Tλ,i ×Tλ Tλ,j → R
whose composition with Tij → Tλ,ij is the given morphism rij (this is where we use
that R is limit preserving). After increasing λ we can further assume that

s ◦ rλ,ij = uλ,i ◦ pr0 and t ◦ rλ,ij = uλ,j ◦ pr1,

and
c ◦ (rλ,jk ◦ pr12, rλ,ij ◦ pr01) = rλ,ik ◦ pr02.

In other words, we may assume that (uλ,i, rλ,ij) is a [U/R]-descent datum relative
to the covering {Tλ,i → Tλ}i∈I . Then we obtain a corresponding object of [U/R]
over Tλ whose pullback to T is isomorphic to x as desired. The proof of fully
faithfulness works in exactly the same way using the description of morphisms in
the fibre categories of [U/T ] given in Groupoids in Spaces, Lemma 78.24.1. □

Proposition 102.3.8.0CMY This is a special
case of [EG15,
Lemma 2.3.15]

Let f : X → Y be a morphism of algebraic stacks. The
following are equivalent

(1) f is limit preserving,
(2) f is limit preserving on objects, and
(3) f is locally of finite presentation.

Proof. Assume (3). Let T = limTi be a directed limit of affine schemes. Consider
the functor

colimXTi −→ XT ×YT colimYTi
Let (x, yi, β) be an object on the right hand side, i.e., x ∈ Ob(XT ), yi ∈ Ob(YTi),
and β : f(x)→ yi|T in YT . Then we can consider (x, yi, β) as an object of the alge-
braic stack Xyi = X ×Y,yi Ti over T . Since Xyi → Ti is locally of finite presentation
(as a base change of f) we see that it is limit preserving by Lemma 102.3.7. This
means that (x, yi, β) comes from an object over Ti′ for some i′ ≥ i and unwind-
ing the definitions we find that (x, yi, β) is in the essential image of the displayed
functor. In other words, the displayed functor is essentially surjective. Another
formulation is that this means f is limit preserving on objects. Now we apply this
to the diagonal ∆ of f . Namely, by Morphisms of Stacks, Lemma 101.27.7 the
morphism ∆ is locally of finite presentation. Thus the argument above shows that
∆ is limit preserving on objects. By Lemma 102.3.5 this implies that ∆ is limit
preserving. By Lemma 102.3.6 we conclude that the displayed functor above is fully
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faithful. Thus it is an equivalence (as we already proved essential surjectivity) and
we conclude that (1) holds.
The implication (1) ⇒ (2) is trivial. Assume (2). Choose a scheme V and a
surjective smooth morphism V → Y. By Criteria for Representability, Lemma
97.5.1 the base change X×Y V → V is limit preserving on objects. Choose a scheme
U and a surjective smooth morphism U → X ×Y V . Since a smooth morphism is
locally of finite presentation, we see that U → X ×Y V is limit preserving (first
part of the proof). By Criteria for Representability, Lemma 97.5.2 we find that the
composition U → V is limit preserving on objects. We conclude that U → V is
locally of finite presentation, see Criteria for Representability, Lemma 97.5.3. This
is exactly the condition that f is locally of finite presentation, see Morphisms of
Stacks, Definition 101.27.1. □

102.4. Descending properties

0CPX This section is the analogue of Limits, Section 32.4.

Situation 102.4.1.0CPY Let Y = limi∈I Yi be a limit of a directed system of algebraic
spaces with affine transition morphisms. We assume that Xi is quasi-compact and
quasi-separated for all i ∈ I. We also choose an element 0 ∈ I.

Lemma 102.4.2.0CPZ In Situation 102.4.1 assume that X0 → Y0 is a morphism from
algebraic stack to Y0. Assume X0 is quasi-compact and quasi-separated. If Y ×Y0

X0 → Y is separated, then Yi ×Y0 X0 → Yi is separated for all sufficiently large
i ∈ I.

Proof. Write X = Y ×Y0 X0 and Xi = Yi ×Y0 X0. Choose an affine scheme U0 and
a surjective smooth morphism U0 → X0. Set U = Y ×Y0 U0 and Ui = Yi ×Y0 U0.
Then U and Ui are affine and U → X and Ui → Xi are smooth and surjective. Set
R0 = U0 ×X0 U0. Set R = Y ×Y0 R0 and Ri = Yi ×Y0 R0. Then R = U ×X U and
Ri = Ui ×Xi Ui.
With this notation note that X → Y is separated implies that R→ U×Y U is proper
as the base change of X → X ×Y X by U ×Y U → X ×Y X . Conversely, we see that
Xi → Yi is separated if Ri → Ui ×Yi Ui is proper because Ui ×Yi Ui → Xi ×Yi Xi
is surjective and smooth, see Properties of Stacks, Lemma 100.3.3. Observe that
R0 → U0 ×Y0 U0 is locally of finite type and that R0 is quasi-compact and quasi-
separated. By Limits of Spaces, Lemma 70.6.13 we see that Ri → Ui ×Yi Ui is
proper for large enough i which finishes the proof. □

102.5. Descending relative objects

0CN3 This section is the analogue of Limits of Spaces, Section 70.7.

Lemma 102.5.1.0CN4 Let I be a directed set. Let (Xi, fii′) be an inverse system of
algebraic spaces over I. Assume

(1) the morphisms fii′ : Xi → Xi′ are affine,
(2) the spaces Xi are quasi-compact and quasi-separated.

Let X = limXi. If X is an algebraic stack of finite presentation over X, then
there exists an i ∈ I and an algebraic stack Xi of finite presentation over Xi with
X ∼= Xi ×Xi X as algebraic stacks over X.
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Proof. By Morphisms of Stacks, Definition 101.27.1 the morphism X → X is quasi-
compact, locally of finite presentation, and quasi-separated. Since X is quasi-
compact and X → X is quasi-compact, we see that X is quasi-compact (Morphisms
of Stacks, Definition 101.7.2). Hence we can find an affine scheme U and a surjective
smooth morphism U → X (Properties of Stacks, Lemma 100.6.2). Set R = U×X U .
We obtain a smooth groupoid in algebraic spaces (U,R, s, t, c) over X such that X =
[U/R], see Algebraic Stacks, Lemma 94.16.2. Since X → X is quasi-separated and
X is quasi-separated we see that X is quasi-separated (Morphisms of Stacks, Lemma
101.4.10). Thus R → U × U is quasi-compact and quasi-separated (Morphisms
of Stacks, Lemma 101.4.7) and hence R is a quasi-separated and quasi-compact
algebraic space. On the other hand U → X is locally of finite presentation and hence
also R → X is locally of finite presentation (because s : R → U is smooth hence
locally of finite presentation). Thus (U,R, s, t, c) is a groupoid object in the category
of algebraic spaces which are of finite presentation over X. By Limits of Spaces,
Lemma 70.7.1 there exists an i and a groupoid in algebraic spaces (Ui, Ri, si, ti, ci)
over Xi whose pullback to X is isomorphic to (U,R, s, t, c). After increasing i
we may assume that si and ti are smooth, see Limits of Spaces, Lemma 70.6.3.
The quotient stack Xi = [Ui/Ri] is an algebraic stack (Algebraic Stacks, Theorem
94.17.3).
There is a morphism [U/R] → [Ui/Ri], see Groupoids in Spaces, Lemma 78.21.1.
We claim that combined with the morphisms [U/R] → X and [Ui/Ri] → Xi

(Groupoids in Spaces, Lemma 78.20.2) we obtain an isomorphism (i.e., equivalence)
[U/R] −→ [Ui/Ri]×Xi X

The corresponding map
[U/pR] −→ [Ui/pRi]×Xi X

on the level of “presheaves of groupoids” as in Groupoids in Spaces, Equation
(78.20.0.1) is an isomorphism. Thus the claim follows from the fact that stackifica-
tion commutes with fibre products, see Stacks, Lemma 8.8.4. □

102.6. Finite type closed in finite presentation

0CQ0 This section is the analogue of Limits of Spaces, Section 70.11.

Lemma 102.6.1.0CQ1 Let f : X → Y be a morphism from an algebraic stack to an
algebraic space. Assume:

(1) f is of finite type and quasi-separated,
(2) Y is quasi-compact and quasi-separated.

Then there exists a morphism of finite presentation f ′ : X ′ → Y and a closed
immersion X → X ′ of algebraic stacks over Y .

Proof. Write Y = limi∈I Yi as a limit of algebraic spaces over a directed set I
with affine transition morphisms and with Yi Noetherian, see Limits of Spaces,
Proposition 70.8.1. We will use the material from Limits of Spaces, Section 70.23.
Choose a presentation X = [U/R]. Denote (U,R, s, t, c, e, i) the corresponding
groupoid in algebraic spaces over Y . We may and do assume U is affine. Then U ,
R, R×s,U,tR are quasi-separated algebraic spaces of finite type over Y . We have two
morpisms s, t : R→ U , three morphisms c : R×s,U,t R→ R, pr1 : R×s,U,t R→ R,
pr2 : R ×s,U,t R → R, a morphism e : U → R, and finally a morphism i : R → R.

https://stacks.math.columbia.edu/tag/0CQ1
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These morphisms satisfy a list of axioms which are detailed in Groupoids, Section
39.13.

According to Limits of Spaces, Remark 70.23.5 we can find an i0 ∈ I and inverse
systems

(1) (Ui)i≥i0 ,
(2) (Ri)i≥i0 ,
(3) (Ti)i≥i0

over (Yi)i≥i0 such that U = limi≥i0 Ui, R = limi≥i0 Ri, and R×s,U,t R = limi≥i0 Ti
and such that there exist morphisms of systems

(1) (si)i≥i0 : (Ri)i≥i0 → (Ui)i≥i0 ,
(2) (ti)i≥i0 : (Ri)i≥i0 → (Ui)i≥i0 ,
(3) (ci)i≥i0 : (Ti)i≥i0 → (Ri)i≥i0 ,
(4) (pi)i≥i0 : (Ti)i≥i0 → (Ri)i≥i0 ,
(5) (qi)i≥i0 : (Ti)i≥i0 → (Ri)i≥i0 ,
(6) (ei)i≥i0 : (Ui)i≥i0 → (Ri)i≥i0 ,
(7) (ii)i≥i0 : (Ri)i≥i0 → (Ri)i≥i0

with s = limi≥i0 si, t = limi≥i0 ti, c = limi≥i0 ci, pr1 = limi≥i0 pi, pr2 = limi≥i0 qi,
e = limi≥i0 ei, and i = limi≥i0 ii. By Limits of Spaces, Lemma 70.23.7 we see that
we may assume that si and ti are smooth (this may require increasing i0). By Limits
of Spaces, Lemma 70.23.6 we may assume that the maps R→ U ×Ui,si Ri given by
s and R → Ri and R → U ×Ui,ti Ri given by t and R → Ri are isomorphisms for
all i ≥ i0. By Limits of Spaces, Lemma 70.23.9 we see that we may assume that
the diagrams

Ti qi
//

pi

��

Ri

ti

��
Ri

si // Ui

are cartesian. The uniqueness of Limits of Spaces, Lemma 70.23.4 then guaran-
tees that for a sufficiently large i the relations between the morphisms s, t, c, e, i
mentioned above are satisfied by si, ti, ci, ei, ii. Fix such an i.

It follows that (Ui, Ri, si, ti, ci, ei, ii) is a smooth groupoid in algebraic spaces over
Yi. Hence Xi = [Ui/Ri] is an algebraic stack (Algebraic Stacks, Theorem 94.17.3).
The morphism of groupoids

(U,R, s, t, c, e, i)→ (Ui, Ri, si, ti, ci, ei, ii)

over Y → Yi determines a commutative diagram

X

��

// Xi

��
Y // Yi

(Groupoids in Spaces, Lemma 78.21.1). We claim that the morphism X → Y ×YiXi
is a closed immersion. The claim finishes the proof because the algebraic stack
Xi → Yi is of finite presentation by construction. To prove the claim, note that the
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left diagram
U

��

// Ui

��
X // Xi

U

��

// Y ×Yi Ui

��
X // Y ×Yi Xi

is cartesian by Groupoids in Spaces, Lemma 78.25.3 and the results mentioned
above. Hence the right commutative diagram is cartesian too. Then the desired
result follows from the fact that U → Y ×YiUi is a closed immersion by construction
of the inverse system (Ui) in Limits of Spaces, Lemma 70.23.3, the fact that Y ×Yi
Ui → Y ×Yi Xi is smooth and surjective, and Properties of Stacks, Lemma 100.9.4.

□

There is a version for separated algebraic stacks.

Lemma 102.6.2.0CQ2 Let f : X → Y be a morphism from an algebraic stack to an
algebraic space. Assume:

(1) f is of finite type and separated,
(2) Y is quasi-compact and quasi-separated.

Then there exists a separated morphism of finite presentation f ′ : X ′ → Y and a
closed immersion X → X ′ of algebraic stacks over Y .

Proof. First we use exactly the same procedure as in the proof of Lemma 102.6.1
(and we borrow its notation) to construct the embedding X → X ′ as a morphism
X → X ′ = Y ×Yi Xi with Xi = [Ui/Ri]. Thus it is enough to show that Xi → Yi
is separated for sufficiently large i. In other words, it is enough to show that Xi →
Xi×YiXi is proper for i sufficiently large. Since the morphism Ui×YiUi → Xi×YiXi
is surjective and smooth and since Ri = Xi×Xi×YiXi Ui×Yi Ui it is enough to show
that the morphism (si, ti) : Ri → Ui ×Yi Ui is proper for i sufficiently large, see
Properties of Stacks, Lemma 100.3.3. We prove this in the next paragraph.
Observe that U ×Y U → Y is quasi-separated and of finite type. Hence we can
use the construction of Limits of Spaces, Remark 70.23.5 to find an i1 ∈ I and an
inverse system (Vi)i≥i1 with U ×Y U = limi≥i1 Vi. By Limits of Spaces, Lemma
70.23.9 for i sufficiently large the functoriality of the construction applied to the
projections U ×Y U → U gives closed immersions

Vi → Ui ×Yi Ui
(There is a small mismatch here because in truth we should replace Yi by the scheme
theoretic image of Y → Yi, but clearly this does not change the fibre product.) On
the other hand, by Limits of Spaces, Lemma 70.23.8 the functoriality applied to
the proper morphism (s, t) : R → U ×Y U (here we use that X is separated) leads
to morphisms Ri → Vi which are proper for large enough i. Composing these
morphisms we obtain a proper morphisms Ri → Ui ×Yi Ui for all i large enough.
The functoriality of the construction of Limits of Spaces, Remark 70.23.5 shows
that this is the morphism is the same as (si, ti) for large enough i and the proof is
complete. □

102.7. Universally closed morphisms

0H28 This section is the analogue of Limits of Spaces, Section 70.20.
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Lemma 102.7.1.0H29 Let g : Z → Y be a morphism of affine schemes. Let f : X → Y
be a quasi-compact morphism of algebraic stacks. Let z ∈ Z and let T ⊂ |X ×Y Z|
be a closed subset with z ̸∈ Im(T → |Z|). If X is quasi-compact, then there exist
an open neighbourhood V ⊂ Z of z, a commutative diagram

V

��

a
// Z ′

b

��
Z

g // Y,

and a closed subset T ′ ⊂ |X ×Y Z ′| such that
(1) Z ′ is an affine scheme of finite presentation over Y ,
(2) with z′ = a(z) we have z′ ̸∈ Im(T ′ → |Z ′|), and
(3) the inverse image of T in |X ×Y V | maps into T ′ via |X ×Y V | → |X ×Y Z ′|.

Proof. We will deduce this from the corresponding result for morphisms of schemes.
Since X is quasi-compact, we may choose an affine scheme W and a surjective
smooth morphism W → X . Let TW ⊂ |W ×Y Z| be the inverse image of T . Then
z is not in the image of TW . By the schemes case (Limits, Lemma 32.14.1) we can
find an open neighbourhood V ⊂ Z of z a commutative diagram of schemes

V

��

a
// Z ′

b

��
Z

g // Y,

and a closed subset T ′ ⊂ |W ×Y Z ′| such that
(1) Z ′ is an affine scheme of finite presentation over Y ,
(2) with z′ = a(z) we have z′ ̸∈ Im(T ′ → |Z ′|), and
(3) T1 = TW ∩ |W ×Y V | maps into T ′ via |W ×Y V | → |W ×Y Z ′|.

The commutative diagram

W ×Y Z

��

W ×Y Voo
a1

//

c

��

W ×Y Z ′

q

��
X ×Y Z X ×Y Voo a2 // X ×Y Z ′

has cartesian squares and the vertical maps are surjective, smooth, and a fortiori
open. Looking at the left hand square we see that T1 = TW ∩ |W ×Y V | is the
inverse image of T2 = T ∩ |X ×Y V | by c. By Properties of Stacks, Lemma 100.4.3
we get a1(T1) = q−1(a2(T2)). By Topology, Lemma 5.6.4 we get

q−1
(
a2(T2)

)
= q−1(a2(T2)) = a1(T1) ⊂ T ′

As q is surjective the image of a2(T2) → |Z ′| does not contain z′ since the same
is true for T ′. Thus we can take the diagram with Z ′, V, a, b above and the closed
subset a2(T2) ⊂ |X ×Y Z ′| as a solution to the problem posed by the lemma. □

Lemma 102.7.2.0H2A Let f : X → Y be a quasi-compact morphism of algebraic stacks.
The following are equivalent

(1) f is universally closed,
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(2) for every morphism Z → Y which is locally of finite presentation and
where Z is an affine scheme the map |X ×Y Z| → |Z| is closed, and

(3) there exists a scheme V and a surjective smooth morphism V → Y such
that |An × (X ×Y V )| → |An × V | is closed for all n ≥ 0.

Proof. It is clear that (1) implies (2).
Assume (2). Choose a scheme V which is the disjoint union of affine schemes and a
surjective smooth morphism V → Y. In order to show that f is universally closed,
it suffices to show that the base change X ×Y V → V of f is universally closed, see
Morphisms of Stacks, Lemma 101.13.5. Note that property (2) holds for this base
change. Hence in order to prove that (2) implies (1) we may assume Y = Y is an
affine scheme.
Assume (2) and assume Y = Y is an affine scheme. If f is not universally closed,
then there exists an affine scheme Z over Y such that |X ×Y Z| → |Z| is not
closed, see Morphisms of Stacks, Lemma 101.13.5. This means that there exists
some closed subset T ⊂ |X ×Y Z| such that Im(T → |Z|) is not closed. Pick z ∈ |Z|
in the closure of the image of T but not in the image. Apply Lemma 102.7.1. We
find an open neighbourhood V ⊂ Z, a commutative diagram

V

��

a
// Z ′

b

��
Z

g // Y,

and a closed subset T ′ ⊂ |X ×Y Z ′| such that
(1) Z ′ is an affine scheme of finite presentation over Y ,
(2) with z′ = a(z) we have z′ ̸∈ Im(T ′ → |Z ′|), and
(3) the inverse image of T in |X ×Y V | maps into T ′ via |X ×Y V | → |X ×Y Z ′|.

We claim that z′ is in the closure of Im(T ′ → |Z ′|). This implies that |X ×Y Z ′| →
|Z ′| is not closed and this is absurd as we assumed (2), in other words, the claim
shows that (2) implies (1). To see the claim is true we contemplate the following
commutative diagram

X ×Y Z

��

X ×Y Voo

��

// X ×Y Z ′

��
Z Voo a // Z ′

Let TV ⊂ |X ×Y V | be the inverse image of T . By Properties of Stacks, Lemma
100.4.3 the image of TV in |V | is the inverse image of the image of T in |Z|. Then
since z is in the closure of the image of T → |Z| and since |V | → |Z| is open, we
see that z is in the closure of the image of TV → |V |. Since the image of TV in
|X ×Y Z ′| is contained in |T ′| it follows immediately that z′ = a(z) is in the closure
of the image of T ′.
It is clear that (1) implies (3). Let V → Y be as in (3). If we can show that
X ×Y V → V is universally closed, then f is universally closed by Morphisms of
Stacks, Lemma 101.13.5. Thus it suffices to show that f : X → Y satisfies (2)
if f is a quasi-compact morphism of algebraic stacks, Y = Y is a scheme, and
|An×X| → |An×Y | is closed for all n. Let Z → Y be locally of finite presentation
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where Z is an affine scheme. We have to show the map |X ×Y Z| → |Z| is closed.
Since Y is a scheme, Z is affine, and Z → Y is locally of finite presentation we
can find an immersion Z → An×Y , see Morphisms, Lemma 29.39.2. Consider the
cartesian diagram

X ×Y Z

��

// An ×X

��
Z // An × Y

inducing the
cartesian square

|X ×Y Z|

��

// |An ×X|

��
|Z| // |An × Y |

of topological spaces whose horizontal arrows are homeomorphisms onto locally
closed subsets (Properties of Stacks, Lemma 100.9.6). Thus every closed subset T
of |X×Y Z| is the pullback of a closed subset T ′ of |An×Y |. Since the assumption
is that the image of T ′ in |An × X| is closed we conclude that the image of T in
|Z| is closed as desired. □
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CHAPTER 103

Cohomology of Algebraic Stacks

073P 103.1. Introduction

073Q In this chapter we write about cohomology of algebraic stacks. This means in
particular cohomology of quasi-coherent sheaves, i.e., we prove analogues of the
results in the chapters entitled “Cohomology of Schemes” and “Cohomology of
Algebraic Spaces”. The results in this chapter are different from those in [LMB00]
mainly because we consistently use the “big sites”. Before reading this chapter
please take a quick look at the chapter “Sheaves on Algebraic Stacks” in order
to become familiar with the terminology introduced there, see Sheaves on Stacks,
Section 96.1.

103.2. Conventions and abuse of language

073R We continue to use the conventions and the abuse of language introduced in Prop-
erties of Stacks, Section 100.2.

103.3. Notation

073S Different topologies. If we indicate an algebraic stack by a calligraphic letter, such as
X ,Y,Z, then the notation XZar,Xétale,Xsmooth,Xsyntomic,Xfppf indicates the site
introduced in Sheaves on Stacks, Definition 96.4.1. (Think “big site”.) Correspond-
ingly the structure sheaf of X is a sheaf on Xfppf . On the other hand, algebraic
spaces and schemes are usually indicated by roman capitals, such as X,Y, Z, and
in this case Xétale indicates the small étale site of X (as defined in Topologies,
Definition 34.4.8 or Properties of Spaces, Definition 66.18.1). It seems that the
distinction should be clear enough.
The default topology is the fppf topology. Hence we will sometimes say “sheaf
on X ” or “sheaf of OX -modules” when we mean sheaf on Xfppf or object of
Mod(Xfppf ,OX ).
If f : X → Y is a morphism of algebraic stacks, then the functors f∗ and f−1

defined on presheaves preserves sheaves for any of the topologies mentioned above.
In particular when we discuss the pushforward or pullback of a sheaf we don’t
have to mention which topology we are working with. The same isn’t true when
we compute cohomology groups and/or higher direct images. In this case we will
always mention which topology we are working with.
Suppose that f : X → Y is a morphism from an algebraic space X to an algebraic
stack Y. Let G be a sheaf on Yτ for some topology τ . In this case f−1G is a sheaf
for the τ topology on SX (the algebraic stack associated to X) because (by our
conventions) f really is a 1-morphism f : SX → Y. If τ = étale or stronger, then
we write f−1G|Xétale to denote the restriction to the étale site of X, see Sheaves on
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Stacks, Section 96.22. If G is an OX -module we sometimes write f∗G and f∗G|Xétale
instead.

103.4. Pullback of quasi-coherent modules

076W Let f : X → Y be a morphism of algebraic stacks. It is a very general fact that
quasi-coherent modules on ringed topoi are compatible with pullbacks. In particular
the pullback f∗ preserves quasi-coherent modules and we obtain a functor

f∗ : QCoh(OY) −→ QCoh(OX ),
see Sheaves on Stacks, Lemma 96.11.2. In general this functor isn’t exact, but if f
is flat then it is.

Lemma 103.4.1.076X If f : X → Y is a flat morphism of algebraic stacks then f∗ :
QCoh(OY)→ QCoh(OX ) is an exact functor.

Proof. Choose a scheme V and a surjective smooth morphism V → Y. Choose
a scheme U and a surjective smooth morphism U → V ×Y X . Then U → X is
still smooth and surjective as a composition of two such morphisms. From the
commutative diagram

U

��

f ′
// V

��
X

f // Y
we obtain a commutative diagram

QCoh(OU ) QCoh(OV )oo

QCoh(OX )

OO

QCoh(OY)oo

OO

of abelian categories. Our proof that the bottom two categories in this diagram
are abelian showed that the vertical functors are faithful exact functors (see proof
of Sheaves on Stacks, Lemma 96.15.1). Since f ′ is a flat morphism of schemes (by
our definition of flat morphisms of algebraic stacks) we see that (f ′)∗ is an exact
functor on quasi-coherent sheaves on V . Thus we win. □

Lemma 103.4.2.0GQF Let X be an algebraic stack. Let I be a set and for i ∈ I let
xi : Ui → X be an object of X . Assume that xi is flat and

∐
xi :

∐
Ui → X is

surjective. Let φ : F → G be an arrow of QCoh(OX ). Denote φi the restriction
of φ to (Ui)étale. Then φ is injective, resp. surjective, resp. an isomorphism if and
only if each φi is so.

Proof. Choose a scheme U and a surjective smooth morphism x : U → X . We may
and do think of x as an object of X . This produces a presentation X = [U/R] for
some groupoid in spaces (U,R, s, t, c) and correspondingly an equivalence

QCoh(OX ) = QCoh(U,R, s, t, c)
See discussion in Sheaves on Stacks, Section 96.15. The structure of abelian cate-
gory on the right hand is such that φ is injective, resp. surjective, resp. an isomor-
phism if and only if the restriction φ|Uétale is so, see Groupoids in Spaces, Lemma
78.12.6.

https://stacks.math.columbia.edu/tag/076X
https://stacks.math.columbia.edu/tag/0GQF
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For each i we choose an étale covering {Wi,j → V ×X Ui}j∈Ji by schemes. Denote
gi,j : Wi,j → V and hi,j : Wi,j → Ui the obvious arrows. Each of the morphisms of
schemes gi,j : Wi,j → U is flat and they are jointly surjective. Similarly, for each
fixed i the morphisms of schemes hi,j : Wi,j → Ui are flat and jointly surjective.
By Sheaves on Stacks, Lemma 96.12.2 the pullback by (gi,j)small of the restriction
φ|Uétale is the restriction φ|(Wi,j)étale and the pullback by (hi,j)small of the restriction
φ|(Ui)étale is the restriction φ|(Wi,j)étale . Pullback of quasi-coherent modules by a
flat morphism of schemes is exact and pullback by a jointly surjective family of
flat morphisms of schemes reflects injective, resp. surjective, resp. bijective maps of
quasi-coherent modules (in fact this holds for all modules as we can check exactness
at stalks). Thus we see
φ|Uétale injective⇔ φ|(Wi,j)étale injective for all i, j ⇔ φ|(Ui)étale injective for all i

This finishes the proof. □

103.5. Higher direct images of types of modules

076Y The following lemma is the basis for our understanding of higher direct images
of certain types of sheaves of modules. There are two versions: one for the étale
topology and one for the fppf topology.

Lemma 103.5.1.076Z Let M be a rule which associates to every algebraic stack X a
subcategory MX of Mod(Xétale,OX ) such that

(1) MX is a weak Serre subcategory of Mod(Xétale,OX ) (see Homology, Def-
inition 12.10.1) for all algebraic stacks X ,

(2) for a smooth morphism of algebraic stacks f : Y → X the functor f∗ maps
MX into MY ,

(3) if fi : Xi → X is a family of smooth morphisms of algebraic stacks with
|X | =

⋃
|fi|(|Xi|), then an object F of Mod(Xétale,OX ) is in MX if and

only if f∗
i F is in MXi for all i, and

(4) if f : Y → X is a morphism of algebraic stacks such that X and Y are
representable by affine schemes, then Rif∗ maps MY into MX .

Then for any quasi-compact and quasi-separated morphism f : Y → X of algebraic
stacks Rif∗ mapsMY intoMX . (Higher direct images computed in étale topology.)

Proof. Let f : Y → X be a quasi-compact and quasi-separated morphism of alge-
braic stacks and let F be an object of MY . Choose a surjective smooth morphism
U → X where U is representable by a scheme. By Sheaves on Stacks, Lemma
96.21.3 taking higher direct images commutes with base change. Assumption (2)
shows that the pullback of F to U ×X Y is in MU×X Y because the projection
U ×X Y → Y is smooth as a base change of a smooth morphism. Hence (3) shows
we may replace Y → X by the projection U ×X Y → U . In other words, we may
assume that X is representable by a scheme. Using (3) once more, we see that
the question is Zariski local on X , hence we may assume that X is representable
by an affine scheme. Since f is quasi-compact this implies that also Y is quasi-
compact. Thus we may choose a surjective smooth morphism g : V → Y where V
is representable by an affine scheme.
In this situation we have the spectral sequence

Ep,q2 = Rq(f ◦ gp)∗g
∗
pF ⇒ Rp+qf∗F

https://stacks.math.columbia.edu/tag/076Z
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of Sheaves on Stacks, Proposition 96.21.1. Recall that this is a first quadrant
spectral sequence hence we may use the last part of Homology, Lemma 12.25.3.
Note that the morphisms

gp : Vp = V ×Y . . .×Y V −→ Y
are smooth as compositions of base changes of the smooth morphism g. Thus the
sheaves g∗

pF are in MVp by (2). Hence it suffices to prove that the higher direct
images of objects of MVp under the morphisms

Vp = V ×Y . . .×Y V −→ X
are in MX . The algebraic stacks Vp are quasi-compact and quasi-separated by
Morphisms of Stacks, Lemma 101.7.8. Of course each Vp is representable by an
algebraic space (the diagonal of the algebraic stack Y is representable by algebraic
spaces). This reduces us to the case where Y is representable by an algebraic space
and X is representable by an affine scheme.
In the situation where Y is representable by an algebraic space and X is repre-
sentable by an affine scheme, we choose anew a surjective smooth morphism V → Y
where V is representable by an affine scheme. Going through the argument above
once again we once again reduce to the morphisms Vp → X . But in the current
situation the algebraic stacks Vp are representable by quasi-compact and quasi-
separated schemes (because the diagonal of an algebraic space is representable by
schemes).
Thus we may assume Y is representable by a scheme and X is representable by
an affine scheme. Choose (again) a surjective smooth morphism V → Y where V
is representable by an affine scheme. In this case all the algebraic stacks Vp are
representable by separated schemes (because the diagonal of a scheme is separated).
Thus we may assume Y is representable by a separated scheme and X is repre-
sentable by an affine scheme. Choose (yet again) a surjective smooth morphism
V → Y where V is representable by an affine scheme. In this case all the algebraic
stacks Vp are representable by affine schemes (because the diagonal of a separated
scheme is a closed immersion hence affine) and this case is handled by assumption
(4). This finishes the proof. □

Here is the version for the fppf topology.

Lemma 103.5.2.0770 Let M be a rule which associates to every algebraic stack X a
subcategory MX of Mod(OX ) such that

(1) OX is a weak Serre subcategory of Mod(OX ) for all algebraic stacks X ,
(2) for a smooth morphism of algebraic stacks f : Y → X the functor f∗ maps
MX into MY ,

(3) if fi : Xi → X is a family of smooth morphisms of algebraic stacks with
|X | =

⋃
|fi|(|Xi|), then an object F of Mod(OX ) is in MX if and only if

f∗
i F is in MXi for all i, and

(4) if f : Y → X is a morphism of algebraic stacks and X and Y are repre-
sentable by affine schemes, then Rif∗ maps MY into MX .

Then for any quasi-compact and quasi-separated morphism f : Y → X of algebraic
stacks Rif∗ mapsMY intoMX . (Higher direct images computed in fppf topology.)

Proof. Identical to the proof of Lemma 103.5.1. □

https://stacks.math.columbia.edu/tag/0770
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103.6. Locally quasi-coherent modules

075X Let X be an algebraic stack. Let F be a presheaf of OX -modules. We can ask
whether F is locally quasi-coherent, see Sheaves on Stacks, Definition 96.12.1.
Briefly, this means F is an OX -module for the étale topology such that for any
morphism f : U → X the restriction f∗F|Uétale is quasi-coherent on Uétale. (The
actual definition is slightly different, but equivalent.) A useful fact is that

LQCoh(OX ) ⊂ Mod(Xétale,OX )
is a weak Serre subcategory, see Sheaves on Stacks, Lemma 96.12.4.
Lemma 103.6.1.075Y Let X be an algebraic stack. Let fj : Xj → X be a family of
smooth morphisms of algebraic stacks with |X | =

⋃
|fj |(|Xj |). Let F be a sheaf of

OX -modules on Xétale. If each f−1
j F is locally quasi-coherent, then so is F .

Proof. We may replace each of the algebraic stacks Xj by a scheme Uj (using that
any algebraic stack has a smooth covering by a scheme and that compositions of
smooth morphisms are smooth, see Morphisms of Stacks, Lemma 101.33.2). The
pullback of F to (Sch/Uj)étale is still locally quasi-coherent, see Sheaves on Stacks,
Lemma 96.12.3. Then f =

∐
fj : U =

∐
Uj → X is a surjective smooth morphism.

Let x be an object of X . By Sheaves on Stacks, Lemma 96.19.10 there exists an étale
covering {xi → x}i∈I such that each xi lifts to an object ui of (Sch/U)étale. This
just means that x, xi live over schemes V , Vi, that {Vi → V } is an étale covering,
and that xi comes from a morphism ui : Vi → U . The restriction x∗

iF|Vi,étale is
equal to the restriction of f∗F to Vi,étale, see Sheaves on Stacks, Lemma 96.9.3.
Hence x∗F|Vétale is a sheaf on the small étale site of V which is quasi-coherent when
restricted to Vi,étale for each i. This implies that it is quasi-coherent (as desired),
for example by Properties of Spaces, Lemma 66.29.6. □

Lemma 103.6.2.075Z Let f : X → Y be a quasi-compact and quasi-separated morphism
of algebraic stacks. Let F be a locally quasi-coherent OX -module on Xétale. Then
Rif∗F (computed in the étale topology) is locally quasi-coherent on Yétale.
Proof. We will use Lemma 103.5.1 to prove this. We will check its assumptions (1)
– (4). Parts (1) and (2) follows from Sheaves on Stacks, Lemma 96.12.4. Part (3)
follows from Lemma 103.6.1. Thus it suffices to show (4).
Suppose f : X → Y is a morphism of algebraic stacks such that X and Y are
representable by affine schemes X and Y . Choose any object y of Y lying over a
scheme V . For clarity, denote V = (Sch/V )fppf the algebraic stack corresponding
to V . Consider the cartesian diagram

Z

��

g
//

f ′

��

X

f

��
V

y // Y
Thus Z is representable by the scheme Z = V ×Y X and f ′ is quasi-compact and
separated (even affine). By Sheaves on Stacks, Lemma 96.22.3 we have

Rif∗F|Vétale = Rif ′
small,∗

(
g∗F|Zétale

)
The right hand side is a quasi-coherent sheaf on Vétale by Cohomology of Spaces,
Lemma 69.3.1. This implies the left hand side is quasi-coherent which is what we
had to prove. □

https://stacks.math.columbia.edu/tag/075Y
https://stacks.math.columbia.edu/tag/075Z
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Lemma 103.6.3.07AP Let X be an algebraic stack. Let fj : Xj → X be a family of flat
and locally finitely presented morphisms of algebraic stacks with |X | =

⋃
|fj |(|Xj |).

Let F be a sheaf of OX -modules on Xfppf . If each f−1
j F is locally quasi-coherent,

then so is F .

Proof. First, suppose there is a morphism a : U → X which is surjective, flat,
locally of finite presentation, quasi-compact, and quasi-separated such that a∗F is
locally quasi-coherent. Then there is an exact sequence

0→ F → a∗a
∗F → b∗b

∗F
where b is the morphism b : U ×X U → X , see Sheaves on Stacks, Proposition
96.19.7 and Lemma 96.19.10. Moreover, the pullback b∗F is the pullback of a∗F
via one of the projection morphisms, hence is locally quasi-coherent (Sheaves on
Stacks, Lemma 96.12.3). The modules a∗a

∗F and b∗b
∗F are locally quasi-coherent

by Lemma 103.6.2. (Note that a∗ and b∗ don’t care about which topology is used
to calculate them.) We conclude that F is locally quasi-coherent, see Sheaves on
Stacks, Lemma 96.12.4.
We are going to reduce the proof of the general case the situation in the first
paragraph. Let x be an object of X lying over the scheme U . We have to show that
F|Uétale is a quasi-coherent OU -module. It suffices to do this (Zariski) locally on U ,
hence we may assume that U is affine. By Morphisms of Stacks, Lemma 101.27.14
there exists an fppf covering {ai : Ui → U} such that each x◦ai factors through some
fj . Hence a∗

iF is locally quasi-coherent on (Sch/Ui)fppf . After refining the covering
we may assume {Ui → U}i=1,...,n is a standard fppf covering. Then x∗F is an fppf
module on (Sch/U)fppf whose pullback by the morphism a : U1 ⨿ . . . ⨿ Un → U
is locally quasi-coherent. Hence by the first paragraph we see that x∗F is locally
quasi-coherent, which certainly implies that F|Uétale is quasi-coherent. □

103.7. Flat comparison maps

0760 Let X be an algebraic stack and let F be an object of Mod(Xétale,OX ). Given an
object x of X lying over the scheme U the restriction F|Uétale is the restriction of
x−1F to the small étale site of U , see Sheaves on Stacks, Definition 96.9.2. Next,
let φ : x→ x′ be a morphism of X lying over a morphism of schemes f : U → U ′.
Thus a 2-commutative diagram

U

x
��

f
// U ′

x′
~~

X
Associated to φ we obtain a comparison map between restrictions
(103.7.0.1)0761 cφ : f∗

small(F|U ′
étale

) −→ F|Uétale
see Sheaves on Stacks, Equation (96.9.4.1). In this situation we can consider the
following property of F .

Definition 103.7.1.0762 Let X be an algebraic stack and let F in Mod(Xétale,OX ).
We say F has the flat base change property1 if and only if cφ is an isomorphism
whenever f is flat.

1This may be nonstandard notation.

https://stacks.math.columbia.edu/tag/07AP
https://stacks.math.columbia.edu/tag/0762
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Here is a lemma with some properties of this notion.

Lemma 103.7.2.0764 Let X be an algebraic stack. Let F be an OX -module on Xétale.
(1) If F has the flat base change property then for any morphism g : Y → X

of algebraic stacks, the pullback g∗F does too.
(2) The full subcategory of Mod(Xétale,OX ) consisting of modules with the

flat base change property is a weak Serre subcategory.
(3) Let fi : Xi → X be a family of smooth morphisms of algebraic stacks such

that |X | =
⋃
i |fi|(|Xi|). If each f∗

i F has the flat base change property
then so does F .

(4) The category of OX -modules on Xétale with the flat base change property
has colimits and they agree with colimits in Mod(Xétale,OX ).

(5) Given F and G in Mod(Xétale,OX ) with the flat base change property
then the tensor product F ⊗OX G has the flat base change property.

(6) Given F and G in Mod(Xétale,OX ) with F of finite presentation and G
having the flat base change property then the sheaf HomOX (F ,G) has the
flat base change property.

Proof. Let g : Y → X be as in (1). Let y be an object of Y lying over a scheme V .
By Sheaves on Stacks, Lemma 96.9.3 we have (g∗F)|Vétale = F|Vétale . Moreover a
comparison mapping for the sheaf g∗F on Y is a special case of a comparison map
for the sheaf F on X , see Sheaves on Stacks, Lemma 96.9.3. In this way (1) is clear.

Proof of (2). We use the characterization of weak Serre subcategories of Homology,
Lemma 12.10.3. Kernels and cokernels of maps between sheaves having the flat
base change property also have the flat base change property. This is clear because
f∗
small is exact for a flat morphism of schemes and since the restriction functors

(−)|Uétale are exact (because we are working in the étale topology). Finally, if
0 → F1 → F2 → F3 → 0 is a short exact sequence of Mod(Xétale,OX ) and the
outer two sheaves have the flat base change property then the middle one does as
well, again because of the exactness of f∗

small and the restriction functors (and the
5 lemma).

Proof of (3). Let fi : Xi → X be a jointly surjective family of smooth morphisms of
algebraic stacks and assume each f∗

i F has the flat base change property. By part
(1), the definition of an algebraic stack, and the fact that compositions of smooth
morphisms are smooth (see Morphisms of Stacks, Lemma 101.33.2) we may assume
that each Xi is representable by a scheme. Let φ : x → x′ be a morphism of X
lying over a flat morphism a : U → U ′ of schemes. By Sheaves on Stacks, Lemma
96.19.10 there exists a jointly surjective family of étale morphisms U ′

i → U ′ such
that U ′

i → U ′ → X factors through Xi. Thus we obtain commutative diagrams

Ui = U ×U ′ U ′
i ai

//

��

U ′
i

x′
i

//

��

Xi

fi

��
U

a // U ′ x′
// X

Note that each ai is a flat morphism of schemes as a base change of a. Denote
ψi : xi → x′

i the morphism of Xi lying over ai with target x′
i. By assumption the

comparison maps cψi : (ai)∗
small

(
f∗
i F|(U ′

i
)étale

)
→ f∗

i F|(Ui)étale is an isomorphism.
Because the vertical arrows U ′

i → U ′ and Ui → U are étale, the sheaves f∗
i F|(U ′

i
)étale

https://stacks.math.columbia.edu/tag/0764
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and f∗
i F|(Ui)étale are the restrictions of F|U ′

étale
and F|Uétale and the map cψi is the

restriction of cφ to (Ui)étale, see Sheaves on Stacks, Lemma 96.9.3. Since {Ui → U}
is an étale covering, this implies that the comparison map cφ is an isomorphism
which is what we wanted to prove.
Proof of (4). Let I → Mod(Xétale,OX ), i 7→ Fi be a diagram and assume each Fi
has the flat base change property. Let φ : x → x′ be a morphism of X lying over
the flat morphism of schemes f : U → U ′. Recall that colimi Fi is the sheafification
of the presheaf colimit. As we are using the étale topology, it is clear that

(colimi Fi)|Uétale = colimi Fi|Uétale
and similarly for the restriction to U ′

étale. Hence
f∗
small((colimi Fi)|U ′

étale
) = f∗

small(colimi Fi|U ′
étale

)
= colimi f

∗
small(Fi|U ′

étale
)

colim cφ−−−−−→ colimi Fi|Uétale
= (colimi Fi)|Uétale

For the second equality we used that f∗
small commutes with colimits (as a left

adjoint). The arrow is an isomorphism as each Fi has the flat base change property.
Thus the colimit has the flat base change property and (4) is true.
Part (5) holds because tensor products commute with pullbacks, see Modules on
Sites, Lemma 18.26.2. Details omitted.
Let F and G be as in (6). Since F is quasi-coherent it has the flat base change
property by Sheaves on Stacks, Lemma 96.12.2. Let φ : x → x′ be a morphism of
X lying over the flat morphism of schemes f : U → U ′. As we are using the étale
topology, we have

HomOX (F ,G)|Uétale = HomOU
(F|Uétale ,G|Uétale)

and similarly for the restriction to U ′
étale (details omitted). Hence

f∗
small(HomOX (F ,G)|U ′

étale
) = f∗

small(HomOU′ (F|U ′
étale

,G|U ′
étale

))
= HomOU′ (f∗

small(F|U ′
étale

), f∗
small(G|U ′

étale
))

cφ−→ HomOU
(F|Uétale ,G|Uétale)

= HomOX (F ,G)|Uétale
Here the second equality is Modules on Sites, Lemma 18.31.4 which uses that
f : U → U ′ is flat and hence the morphism of ringed sites fsmall is flat too. The
arrow is an isomorphism as both F and G have the flat base change property. Thus
our Hom has the flat base change property too as desired. □

Lemma 103.7.3.0765 Let f : X → Y be a quasi-compact and quasi-separated morphism
of algebraic stacks. Let F be an object of Mod(Xétale,OX ) which is locally quasi-
coherent and has the flat base change property. Then each Rif∗F (computed in
the étale topology) has the flat base change property.

Proof. We will use Lemma 103.5.1 to prove this. For every algebraic stack X
let LQCohfbc(OX ) denote the full subcategory of Mod(Xétale,OX ) consisting of
locally quasi-coherent sheaves with the flat base change property. Once we verify
conditions (1) – (4) of Lemma 103.5.1 the lemma will follow. Properties (1), (2),

https://stacks.math.columbia.edu/tag/0765


103.8. LOCALLY QUASI-COHERENT MODULES WITH THE FLAT BASE CHANGE PROPERTY7088

and (3) follow from Sheaves on Stacks, Lemmas 96.12.3 and 96.12.4 and Lemmas
103.6.1 and 103.7.2. Thus it suffices to show part (4).
Suppose f : X → Y is a morphism of algebraic stacks such that X and Y are
representable by affine schemes X and Y . In this case, suppose that ψ : y → y′ is
a morphism of Y lying over a flat morphism b : V → V ′ of schemes. For clarity
denote V = (Sch/V )fppf and V ′ = (Sch/V ′)fppf the corresponding algebraic stacks.
Consider the diagram of algebraic stacks

Z

f ′′

��

a
// Z ′

x′
//

f ′

��

X

f

��
V b // V ′ y′

// Y
with both squares cartesian. As f is representable by schemes (and quasi-compact
and separated – even affine) we see that Z and Z ′ are representable by schemes Z
and Z ′ and in fact Z = V ×V ′ Z ′. Since F has the flat base change property we
see that

a∗
small

(
F|Z′

étale

)
−→ F|Zétale

is an isomorphism. Moreover,
Rif∗F|V ′

étale
= Ri(f ′)small,∗

(
F|Z′

étale

)
and

Rif∗F|Vétale = Ri(f ′′)small,∗
(
F|Zétale

)
by Sheaves on Stacks, Lemma 96.22.3. Hence we see that the comparison map

cψ : b∗
small(Rif∗F|V ′

étale
) −→ Rif∗F|Vétale

is an isomorphism by Cohomology of Spaces, Lemma 69.11.2. Thus Rif∗F has the
flat base change property. Since Rif∗F is locally quasi-coherent by Lemma 103.6.2
we win. □

103.8. Locally quasi-coherent modules with the flat base change property

0GQG Let X be an algebraic stack. We2 will denote
LQCohfbc(OX ) ⊂ Mod(Xétale,OX )

the full subcategory whose objects are étale OX -modules F which are both locally
quasi-coherent (Section 103.6) and have the flat base change property (Section
103.7). We have

QCoh(OX ) ⊂ LQCohfbc(OX )
by Sheaves on Stacks, Lemma 96.12.2.
Proposition 103.8.1.0771 Summary of results on locally quasi-coherent modules having
the flat base change property.

(1) Let X be an algebraic stack. If F is in LQCohfbc(OX ), then F is a sheaf
for the fppf topology, i.e., it is an object of Mod(OX ).

(2) The category LQCohfbc(OX ) is a weak Serre subcategory of both Mod(OX )
and Mod(Xétale,OX ).

(3) Pullback f∗ along any morphism of algebraic stacks f : X → Y induces a
functor f∗ : LQCohfbc(OY)→ LQCohfbc(OX ).

2Apologies for the horrendous notation.

https://stacks.math.columbia.edu/tag/0771
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(4) If f : X → Y is a quasi-compact and quasi-separated morphism of alge-
braic stacks and F is an object of LQCohfbc(OX ), then
(a) the total direct image Rf∗F and the higher direct images Rif∗F can

be computed in either the étale or the fppf topology with the same
result, and

(b) each Rif∗F is an object of LQCohfbc(OY).
(5) The category LQCohfbc(OX ) has colimits and they agree with colimits in

Mod(Xétale,OX ) as well as in Mod(OX ).
(6) Given F and G in LQCohfbc(OX ) then the tensor product F ⊗OX G is in

LQCohfbc(OX ).
(7) Given F of finite presentation and G in LQCohfbc(OX ) thenHomOX (F ,G)

is in LQCohfbc(OX ).

Proof. Part (1) is Sheaves on Stacks, Lemma 96.23.1.

Part (2) for the embedding LQCohfbc(OX ) ⊂ Mod(Xétale,OX ) we have seen in
the proof of Lemma 103.7.3. Let us prove (2) for the embedding LQCohfbc(OX ) ⊂
Mod(OX ). Let φ : F → G be a morphism between objects of LQCohfbc(OX ). Since
Ker(φ) is the same whether computed in the étale or the fppf topology, we see that
Ker(φ) is in LQCohfbc(OX ) by the étale case. On the other hand, the cokernel
computed in the fppf topology is the fppf sheafification of the cokernel computed in
the étale topology. However, this étale cokernel is in LQCohfbc(OX ) hence an fppf
sheaf by (1) and we see that the cokernel is in LQCohfbc(OX ). Finally, suppose
that

0→ F1 → F2 → F3 → 0
is an exact sequence in Mod(OX ) (i.e., using the fppf topology) with F1, F2 in
LQCohfbc(OX ). In order to show that F2 is an object of LQCohfbc(OX ) it suffices
to show that the sequence is also exact in the étale topology. To do this it suffices to
show that any element ofH1

fppf (x,F1) becomes zero on the members of an étale cov-
ering of x (for any object x of X ). This is true because H1

fppf (x,F1) = H1
étale(x,F1)

by Sheaves on Stacks, Lemma 96.23.2 and because of locality of cohomology, see
Cohomology on Sites, Lemma 21.7.3. This proves (2).

Part (3) follows from Lemma 103.7.2 and Sheaves on Stacks, Lemma 96.12.3.

Part (4)(b) for Rif∗F computed in the étale cohomology follows from Lemma
103.7.3. Whereupon part (4)(a) follows from Sheaves on Stacks, Lemma 96.23.2
combined with (1) above.

Part (5) for the étale topology follows from Sheaves on Stacks, Lemma 96.12.4 and
Lemma 103.7.2. The fppf version then follows as the colimit in the étale topology
is already an fppf sheaf by part (1).

Parts (6) and (7) follow from the corresponding parts of Lemma 103.7.2 and Sheaves
on Stacks, Lemma 96.12.4. □

Lemma 103.8.2.07AQ Let X be an algebraic stack.
(1) Let fj : Xj → X be a family of smooth morphisms of algebraic stacks

with |X | =
⋃
|fj |(|Xj |). Let F be a sheaf of OX -modules on Xétale. If

each f−1
j F is in LQCohfpc(OXi), then F is in LQCohfbc(OX ).

https://stacks.math.columbia.edu/tag/07AQ
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(2) Let fj : Xj → X be a family of flat and locally finitely presented mor-
phisms of algebraic stacks with |X | =

⋃
|fj |(|Xj |). Let F be a sheaf of

OX -modules on Xfppf . If each f−1
j F is in LQCohfbc(OXi), then F is in

LQCohfbc(OX ).

Proof. Part (1) follows from a combination of Lemmas 103.6.1 and 103.7.2. The
proof of (2) is analogous to the proof of Lemma 103.6.3. Let F of a sheaf of
OX -modules on Xfppf .

First, suppose there is a morphism a : U → X which is surjective, flat, locally
of finite presentation, quasi-compact, and quasi-separated such that a∗F is locally
quasi-coherent and has the flat base change property. Then there is an exact se-
quence

0→ F → a∗a
∗F → b∗b

∗F
where b is the morphism b : U ×X U → X , see Sheaves on Stacks, Proposition
96.19.7 and Lemma 96.19.10. Moreover, the pullback b∗F is the pullback of a∗F
via one of the projection morphisms, hence is locally quasi-coherent and has the
flat base change property, see Proposition 103.8.1. The modules a∗a

∗F and b∗b
∗F

are locally quasi-coherent and have the flat base change property by Proposition
103.8.1. We conclude that F is locally quasi-coherent and has the flat base change
property by Proposition 103.8.1.

Choose a scheme U and a surjective smooth morphism x : U → X . By part (1)
it suffices to show that x∗F is locally quasi-coherent and has the flat base change
property. Again by part (1) it suffices to do this (Zariski) locally on U , hence we
may assume that U is affine. By Morphisms of Stacks, Lemma 101.27.14 there
exists an fppf covering {ai : Ui → U} such that each x◦ai factors through some fj .
Hence the module a∗

iF on (Sch/Ui)fppf is locally quasi-coherent and has the flat
base change property. After refining the covering we may assume {Ui → U}i=1,...,n
is a standard fppf covering. Then x∗F is an fppf module on (Sch/U)fppf whose
pullback by the morphism a : U1 ⨿ . . . ⨿ Un → U is locally quasi-coherent and has
the flat base change property. Hence by the previous paragraph we see that x∗F
is locally quasi-coherent and has the flat base change property as desired. □

Lemma 103.8.3.0GQH Let f : X → Y be a morphism of algebraic stacks which is
quasi-compact, quasi-separated, and representable by algebraic spaces. Let F be
in LQCohfbc(OX ). Then for an object y : V → Y of Y we have

(Rif∗F)|Vétale = Rif ′
small,∗(F|Uétale)

where f ′ : U = V ×Y X → V is the base change of f .

Proof. By Sheaves on Stacks, Lemma 96.21.3 we can reduce to the case where X
is represented by U and Y is represented by V . Of course this also uses that the
pullback of F to U is in LQCohfbc(OU ) by Proposition 103.8.1. Then the result
follows from Sheaves on Stacks, Lemma 96.22.2 and the fact that Rif∗ may be
computed in the étale topology by Proposition 103.8.1. □

Lemma 103.8.4.0GQI Let f : X → Y be an affine morphism of algebraic stacks. The
functor f∗ : LQCohfbc(OX ) → LQCohfbc(OY) is exact and commutes with direct
sums. The functors Rif∗ for i > 0 vanish on LQCohfbc(OX ).

https://stacks.math.columbia.edu/tag/0GQH
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Proof. The functors exist by Proposition 103.8.1. By Lemma 103.8.3 this reduces
to the case of an affine morphism of algebraic spaces taking higher direct images
in the setting of quasi-coherent modules on algebraic spaces. By the discussion in
Cohomology of Spaces, Section 69.3 we reduce to the case of an affine morphism of
schemes. For affine morphisms of schemes we have the vanishing of higher direct
images on quasi-coherent modules by Cohomology of Schemes, Lemma 30.2.3. The
vanishing for R1f∗ implies exactness of f∗. Commuting with direct sums follows
from Morphisms, Lemma 29.11.6 for example. □

103.9. Parasitic modules

0772 The following definition is compatible with Descent, Definition 35.12.1.

Definition 103.9.1.0773 Let X be an algebraic stack. A presheaf of OX -modules F is
parasitic if we have F(x) = 0 for any object x of X which lies over a scheme U such
that the corresponding morphism x : U → X is flat.

Here is a lemma with some properties of this notion.

Lemma 103.9.2.0774 Let X be an algebraic stack. Let F be a presheaf of OX -modules.
(1) If F is parasitic and g : Y → X is a flat morphism of algebraic stacks,

then g∗F is parasitic.
(2) For τ ∈ {Zariski, étale, smooth, syntomic, fppf} we have

(a) the τ sheafification of a parasitic presheaf of modules is parasitic, and
(b) the full subcategory of Mod(Xτ ,OX ) consisting of parasitic modules

is a Serre subcategory.
(3) Suppose F is a sheaf for the étale topology. Let fi : Xi → X be a family

of smooth morphisms of algebraic stacks such that |X | =
⋃
i |fi|(|Xi|). If

each f∗
i F is parasitic then so is F .

(4) Suppose F is a sheaf for the fppf topology. Let fi : Xi → X be a family of
flat and locally finitely presented morphisms of algebraic stacks such that
|X | =

⋃
i |fi|(|Xi|). If each f∗

i F is parasitic then so is F .

Proof. To see part (1) let y be an object of Y which lies over a scheme V such that
the corresponding morphism y : V → Y is flat. Then g(y) : V → Y → X is flat as
a composition of flat morphisms (see Morphisms of Stacks, Lemma 101.25.2) hence
F(g(y)) is zero by assumption. Since g∗F = g−1F(y) = F(g(y)) we conclude g∗F
is parasitic.
To see part (2)(a) note that if {xi → x} is a τ -covering of X , then each of the
morphisms xi → x lies over a flat morphism of schemes. Hence if x lies over a
scheme U such that x : U → X is flat, so do all of the objects xi. Hence the
presheaf F+ (see Sites, Section 7.10) is parasitic if the presheaf F is parasitic. This
proves (2)(a) as the sheafification of F is (F+)+.
Let F be a parasitic τ -module. It is immediate from the definitions that any
submodule of F is parasitic. On the other hand, if F ′ ⊂ F is a submodule, then it
is equally clear that the presheaf x 7→ F(x)/F ′(x) is parasitic. Hence the quotient
F/F ′ is a parasitic module by (2)(a). Finally, we have to show that given a short
exact sequence 0 → F1 → F2 → F3 → 0 with F1 and F3 parasitic, then F2 is
parasitic. This follows immediately on evaluating on x lying over a scheme flat over
X . This proves (2)(b), see Homology, Lemma 12.10.2.
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Let fi : Xi → X be a jointly surjective family of smooth morphisms of algebraic
stacks and assume each f∗

i F is parasitic. Let x be an object of X which lies over
a scheme U such that x : U → X is flat. Consider a surjective smooth covering
Wi → U ×x,X Xi. Denote yi : Wi → Xi the projection. It follows that {fi(yi)→ x}
is a covering for the smooth topology on X . Since a composition of flat morphisms
is flat we see that f∗

i F(yi) = 0. On the other hand, as we saw in the proof of
(1), we have f∗

i F(yi) = F(fi(yi)). Hence we see that for some smooth covering
{xi → x}i∈I in X we have F(xi) = 0. This implies F(x) = 0 because the smooth
topology is the same as the étale topology, see More on Morphisms, Lemma 37.38.7.
Namely, {xi → x}i∈I lies over a smooth covering {Ui → U}i∈I of schemes. By the
lemma just referenced there exists an étale covering {Vj → U}j∈J which refines
{Ui → U}i∈I . Denote x′

j = x|Vj . Then {x′
j → x} is an étale covering in X refining

{xi → x}i∈I . This means the map F(x) →
∏
j∈J F(x′

j), which is injective as F
is a sheaf in the étale topology, factors through F(x)→

∏
i∈I F(xi) which is zero.

Hence F(x) = 0 as desired.
Proof of (4): omitted. Hint: similar, but simpler, than the proof of (3). □

Parasitic modules are preserved under absolutely any pushforward.

Lemma 103.9.3.0775 Let τ ∈ {étale, fppf}. Let X be an algebraic stack. Let F be a
parasitic object of Mod(Xτ ,OX ).

(1) Hi
τ (X ,F) = 0 for all i.

(2) Let f : X → Y be a morphism of algebraic stacks. Then Rif∗F (computed
in τ -topology) is a parasitic object of Mod(Yτ ,OY).

Proof. We first reduce (2) to (1). By Sheaves on Stacks, Lemma 96.21.2 we see
that Rif∗F is the sheaf associated to the presheaf

y 7−→ Hi
τ

(
V ×y,Y X , pr−1F

)
Here y is a typical object of Y lying over the scheme V . By Lemma 103.9.2 it
suffices to show that these cohomology groups are zero when y : V → Y is flat.
Note that pr : V ×y,YX → X is flat as a base change of y. Hence by Lemma 103.9.2
we see that pr−1F is parasitic. Thus it suffices to prove (1).
To see (1) we can use the spectral sequence of Sheaves on Stacks, Proposition
96.20.1 to reduce this to the case where X is an algebraic stack representable by an
algebraic space. Note that in the spectral sequence each f−1

p F = f∗
pF is a parasitic

module by Lemma 103.9.2 because the morphisms fp : Up = U ×X . . . ×X U → X
are flat. Reusing this spectral sequence one more time (as in the proof of Lemma
103.5.1) we reduce to the case where the algebraic stack X is representable by a
scheme X. Then Hi

τ (X ,F) = Hi((Sch/X)τ ,F). In this case the vanishing follows
easily from an argument with Čech coverings, see Descent, Lemma 35.12.2. □

The following lemma is one of the major reasons we care about parasitic modules.
To understand the statement, recall that the functors QCoh(OX )→ Mod(Xétale,OX )
and QCoh(OX )→ Mod(OX ) aren’t exact in general.

Lemma 103.9.4.0776 Let X be an algebraic stack. Let α : F → G and β : G → H be
maps in QCoh(OX ) with β ◦ α = 0. The following are equivalent:

(1) in the abelian category QCoh(OX ) the complex F → G → H is exact at
G,

https://stacks.math.columbia.edu/tag/0775
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(2) Ker(β)/ Im(α) computed in either Mod(Xétale,OX ) or Mod(Xfppf ,OX ) is
parasitic.

Proof. We have QCoh(OX ) ⊂ LQCohfbc(OX ), see Section 103.8. Hence Ker(β)/ Im(α)
computed in Mod(Xétale,OX ) or Mod(Xfppf ,OX ) agree, see Proposition 103.8.1.
From now on we will use the étale topology on X .
Let E be the cohomology of F → G → H computed in the abelian category
QCoh(OX ). Let x : U → X be a flat morphism where U is a scheme. As we are us-
ing the étale topology, the restriction functor Mod(Xétale,OX )→ Mod(Uétale,OU )
is exact. On the other hand, by Lemma 103.4.1 and Sheaves on Stacks, Lemma
96.14.2 the restriction functor

QCoh(OX ) x∗

−→ QCoh((Sch/U)étale,O)
−|Uétale−−−−−→ QCoh(Uétale,OU )

is exact too. We conclude that E|Uétale = (Ker(β)/ Im(α))|Uétale .
If (1) holds, then E = 0 hence Ker(β)/ Im(α) restricts to zero on Uétale for all
U flat over X and this is the definition of a parasitic module. If (2) holds, then
Ker(β)/ Im(α) restricts to zero on Uétale for all U flat over X hence E restricts to
zero on Uétale for all U flat over X . This certainly implies that the quasi-coherent
module E is zero, for example apply Lemma 103.4.2 to the map 0→ E . □

103.10. Quasi-coherent modules

0777 We have seen that the category of quasi-coherent modules on an algebraic stack is
equivalent to the category of quasi-coherent modules on a presentation, see Sheaves
on Stacks, Section 96.15. This fact is the basis for the following.

Lemma 103.10.1.0778 Let X be an algebraic stack. Let LQCohfbc(OX ) be the category
of locally quasi-coherent modules with the flat base change property, see Section
103.8. The inclusion functor i : QCoh(OX )→ LQCohfbc(OX ) has a right adjoint

Q : LQCohfbc(OX )→ QCoh(OX )
such that Q ◦ i is the identity functor.

Proof. Choose a scheme U and a surjective smooth morphism f : U → X . Set
R = U ×X U so that we obtain a smooth groupoid (U,R, s, t, c) in algebraic spaces
with the property that X = [U/R], see Algebraic Stacks, Lemma 94.16.2. We may
and do replace X by [U/R]. By Sheaves on Stacks, Proposition 96.14.3 there is an
equivalence

q1 : QCoh(U,R, s, t, c) −→ QCoh(OX )
Let us construct a functor

q2 : LQCohfbc(OX ) −→ QCoh(U,R, s, t, c)
by the following rule: if F is an object of LQCohfbc(OX ) then we set

q2(F) = (f∗F|Uétale , α)
where α is the isomorphism

t∗small(f∗F|Uétale)→ t∗f∗F|Rétale → s∗f∗F|Rétale → s∗
small(f∗F|Uétale)

where the outer two morphisms are the comparison maps. Note that q2(F) is
quasi-coherent precisely because F is locally quasi-coherent and that we used (and
needed) the flat base change property in the construction of the descent datum
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α. We omit the verification that the cocycle condition (see Groupoids in Spaces,
Definition 78.12.1) holds. Looking at the proof of Sheaves on Stacks, Proposition
96.14.3 we see that q2 ◦ i is the quasi-inverse to q1. We define Q = q1 ◦ q2. Let F
be an object of LQCohfbc(OX ) and let G be an object of QCoh(OX ). We have

MorLQCohfbc(OX )(i(G),F) = MorQCoh(U,R,s,t,c)(q2(i(G)), q2(F))
= MorQCoh(OX )(G, Q(F))

where the first equality is Sheaves on Stacks, Lemma 96.14.4 and the second equality
holds because q1◦i and q2 are quasi-inverse equivalences of categories. The assertion
Q ◦ i ∼= id is a formal consequence of the fact that i is fully faithful. □

Lemma 103.10.2.0779 Let X be an algebraic stack. Let Q : LQCohfbc(OX ) →
QCoh(OX ) be the functor constructed in Lemma 103.10.1.

(1) The kernel ofQ is exactly the collection of parasitic objects of LQCohfbc(OX ).
(2) For any object F of LQCohfbc(OX ) both the kernel and the cokernel of

the adjunction map Q(F)→ F are parasitic.
(3) The functor Q is exact and commutes with all limits and colimits.

Proof. Write X = [U/R] as in the proof of Lemma 103.10.1. Let F be an object
of LQCohfbc(OX ). It is clear from the proof of Lemma 103.10.1 that F is in the
kernel of Q if and only if F|Uétale = 0. In particular, if F is parasitic then F is in
the kernel. Next, let x : V → X be a flat morphism, where V is a scheme. Set
W = V ×X U and consider the diagram

W

p

��

q
// V

��
U // X

Note that the projection p : W → U is flat and the projection q : W → V is smooth
and surjective. This implies that q∗

small is a faithful functor on quasi-coherent
modules. By assumption F has the flat base change property so that we obtain
p∗
smallF|Uétale ∼= q∗

smallF|Vétale . Thus if F is in the kernel of Q, then F|Vétale = 0
which completes the proof of (1).
Part (2) follows from the discussion above and the fact that the map Q(F) → F
becomes an isomorphism after restricting to Uétale.
To see part (3) note that Q is left exact as a right adjoint. Let 0→ F → G → H → 0
be a short exact sequence in LQCohfbc(OX ). Consider the following commutative
diagram

0 // Q(F) //

a

��

Q(G) //

b

��

Q(H) //

c

��

0

0 // F // G // H // 0
Since the kernels and cokernels of a, b, and c are parasitic by part (2) and since
the bottom row is a short exact sequence, we see that the top row as a complex of
OX -modules has parasitic cohomology sheaves (details omitted; this uses that the
category of parasitic modules is a Serre subcategory of the category of all modules).
By left exactness of Q we see that only exactness at Q(H) is at issue. However, the
cokernelQ of Q(G)→ Q(H)) may be computed either in Mod(OX ) or in QCoh(OX )
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with the same result because the inclusion functor QCoh(OX ) → LQCohfbc(OX )
is a left adjoint and hence right exact. Hence Q = Q(Q) is both quasi-coherent and
parasitic, whence 0 by part (1) as desired.

As a right adjoint Q commutes with all limits. Since Q is exact, to show that Q
commutes with all colimits it suffices to show that Q commutes with direct sums, see
Categories, Lemma 4.14.12. Let Fi, i ∈ I be a family of objects of LQCohfbc(OX ).
To see that Q(

⊕
Fi) is equal to

⊕
Q(Fi) we look at the construction of Q in the

proof of Lemma 103.10.1. This uses a presentation X = [U/R] where U is a scheme.
Then Q(F) is computed by first taking the pair (F|Uétale , α) in QCoh(U,R, s, t, c)
and then using the equivalence QCoh(U,R, s, t, c) ∼= QCoh(OX ). Since the restric-
tion functor Mod(OX )→ Mod(OUétale), F 7→ F|Uétale commutes with direct sums,
the desired equality is clear. □

Lemma 103.10.3.0GQJ Let f : X → Y be a flat morphism of algebraic stacks. Then
QX ◦ f∗ = f∗ ◦QY where QX and QY are as in Lemma 103.10.1.

Proof. Observe that f∗ preserves both QCoh and LQCohfbc, see Sheaves on Stacks,
Lemma 96.11.2 and Proposition 103.8.1. If F is in LQCohfbc(OY) then QY(F)→ F
has parasitic kernel and cokernel by Lemma 103.10.2. As f is flat we get that
f∗QY(F) → f∗F has parasitic kernel and cokernel by Lemma 103.9.2. Thus the
induced map f∗QY(F)→ QX (f∗F) has parasitic kernel and cokernel and hence is
an isomorphism for example by Lemma 103.9.4. □

Lemma 103.10.4.0GQK Let X be an algebraic stack. Let x be an object of X lying over
the scheme U such that x : U → X is flat. Then for F in QCohfbc(OX ) we have
Q(F)|Uétale = F|Uétale .

Proof. True because the kernel and cokernel of Q(F)→ F are parasitic, see Lemma
103.10.2. □

Remark 103.10.5.0GQL Let X be an algebraic stack. The category QCoh(OX ) is abelian,
the inclusion functor QCoh(OX ) → Mod(OX ) is right exact, but not exact in
general, see Sheaves on Stacks, Lemma 96.15.1. We can use the functor Q from
Lemmas 103.10.1 and 103.10.2 to understand this. Namely, let φ : F → G be a
map of quasi-coherent OX -modules. Then

(1) the cokernel Coker(φ) computed in Mod(OX ) is quasi-coherent and is the
cokernel of φ in QCoh(OX ),

(2) the image Im(φ) computed in Mod(OX ) is quasi-coherent and is the image
of φ in QCoh(OX ), and

(3) the kernel Ker(φ) computed in Mod(OX ) is in LQCohfbc(OX ) by Propo-
sition 103.8.1 and Q(Ker(φ)) is the kernel in QCoh(OX ).

This follows from the references given.

Remark 103.10.6.0GQM Let X be an algebraic stack. Given two quasi-coherent OX -
modules F and G the tensor product module F⊗OX G is quasi-coherent, see Sheaves
on Stacks, Lemma 96.15.1 part (5). Similarly, given two locally quasi-coherent
modules with the flat base change property, their tensor product has the same
property, see Proposition 103.8.1. Thus the inclusion functors

QCoh(OX )→ LQCohfbc(OX )→ Mod(OX )
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are functors of symmetric monoidal categories. What is more interesting is that
the functor

Q : LQCohfbc(OX ) −→ QCoh(OX )
is a functor of symmetric monoidal categories as well. Namely, given F and G in
LQCohfbc(OX ) we obtain

Q(F)⊗OX Q(G) //

((

F ⊗OX G

Q(F ⊗OX G)

77

where the south-west arrow comes from the universal property of the north-west
arrow (and the fact already mentioned that the object in the upper left corner is
quasi-coherent). If we restrict this diagram to Uétale for U → X flat, then all three
arrows become isomorphisms (see Lemmas 103.10.1 and 103.10.2 and Definition
103.9.1). Hence Q(F)⊗OX Q(G)→ Q(F⊗OX G) is an isomorphism, see for example
Lemma 103.4.2.
Remark 103.10.7.07B2 Let X be an algebraic stack. Let Parasitic(OX ) ⊂ Mod(OX )
denote the full subcategory consiting of parasitic modules. The results of Lemmas
103.10.1 and 103.10.2 imply that

QCoh(OX ) = LQCohfbc(OX )/Parasitic(OX ) ∩ LQCohfbc(OX )
in words: the category of quasi-coherent modules is the category of locally quasi-
coherent modules with the flat base change property divided out by the Serre sub-
category consisting of parasitic objects. See Homology, Lemma 12.10.6. The exis-
tence of the inclusion functor i : QCoh(OX )→ LQCohfbc(OX ) which is left adjoint
to the quotient functor is a key feature of the situation. In Derived Categories of
Stacks, Section 104.5 and especially Lemma 104.5.4 we prove that a similar result
holds on the level of derived categories.
Lemma 103.10.8.0GQN Let X be an algebraic stack. Let F be an OX -module of fi-
nite presentation and let G be a quasi-coherent OX -module. The internal homs
HomOX (F ,G) computed in Mod(Xétale,OX ) or Mod(OX ) agree and the common
value is an object of LQCohfbc(OX ). The quasi-coherent module hom(F ,G) =
Q(HomOX (F ,G)) has the following universal property

HomX (H, hom(F ,G)) = HomX (H⊗OX F ,G)
for H in QCoh(OX ).
Proof. The construction of HomOX (F ,G) in Modules on Sites, Section 18.27 de-
pends only on F and G as presheaves of modules; the output Hom is a sheaf
for the fppf topology because F and G are assumed sheaves in the fppf topology,
see Modules on Sites, Lemma 18.27.1. By Sheaves on Stacks, Lemma 96.12.4 we
see that HomOX (F ,G) is locally quasi-coherent. By Lemma 103.7.2 we see that
HomOX (F ,G) has the flat base change property. Hence HomOX (F ,G) is an object
of LQCohfbc(OX ) and it makes sense to apply the functor Q of Lemma 103.10.1 to
it. By the universal property of Q we have

HomX (H, Q(HomOX (F ,G))) = HomX (H,HomOX (F ,G))
for H quasi-coherent, hence the displayed formula of the lemma follows from Mod-
ules on Sites, Lemma 18.27.6. □

https://stacks.math.columbia.edu/tag/07B2
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Lemma 103.10.9.0GQP Let f : X → Y be a flat morphism of algebraic stacks. Let F
be an OY -module of finite presentation and let G be a quasi-coherent OY -module.
Then f∗hom(F ,G) = hom(f∗F , f∗G) with notation as in Lemma 103.10.8.

Proof. We have f∗HomOY (F ,G) = HomOX (f∗F , f∗G) by Modules on Sites, Lemma
18.31.4. (Observe that this step is not where the flatness of f is used as the mor-
phism of ringed topoi associated to f is always flat, see Sheaves on Stacks, Remark
96.6.3.) Then apply Lemma 103.10.3 (and here we do use flatness of f). □

103.11. Pushforward of quasi-coherent modules

070A Let f : X → Y be a morphism of algebraic stacks. Consider the pushforward
f∗ : Mod(OX ) −→ Mod(OY)

It turns out that this functor almost never preserves the subcategories of quasi-
coherent sheaves. For example, consider the morphism of schemes

j : X = A2
k \ {0} −→ A2

k = Y.

Associated to this we have the corresponding morphism of algebraic stacks
f = jbig : X = (Sch/X)fppf → (Sch/Y )fppf = Y

The pushforward f∗OX of the structure sheaf has global sections k[x, y]. Hence if
f∗OX is quasi-coherent on Y then we would have f∗OX = OY . However, consider
T = Spec(k)→ A2

k = Y mapping to 0. Then Γ(T, f∗OX ) = 0 because X ×Y T = ∅
whereas Γ(T,OY) = k. On the positive side, for any flat morphism T → Y we
have the equality Γ(T, f∗OX ) = Γ(T,OY) as follows from Cohomology of Schemes,
Lemma 30.5.2 using that j is quasi-compact and quasi-separated.
Let f : X → Y be a quasi-compact and quasi-separated morphism of algebraic
stacks. We work around the problem mentioned above using the following three
observations:

(1) f∗ does preserve locally quasi-coherent modules (Lemma 103.6.2),
(2) f∗ transforms a quasi-coherent sheaf into a locally quasi-coherent sheaf

whose flat comparison maps are isomorphisms (Lemma 103.7.3), and
(3) locally quasi-coherent OY -modules with the flat base change property give

rise to quasi-coherent modules on a presentation of Y and hence quasi-
coherent modules on Y, see Sheaves on Stacks, Section 96.15.

Thus we obtain a functor
fQCoh,∗ : QCoh(OX ) −→ QCoh(OY)

which is a right adjoint to f∗ : QCoh(OY)→ QCoh(OX ) such that moreover
Γ(y, f∗F) = Γ(y, fQCoh,∗F)

for any y ∈ Ob(Y) such that the associated 1-morphism y : V → Y is flat, see
Lemma 103.11.2. Moreover, a similar construction will produce functors RifQCoh,∗.
However, these results will not be sufficient to produce a total direct image functor
(of complexes with quasi-coherent cohomology sheaves).

Proposition 103.11.1.077A Let f : X → Y be a quasi-compact and quasi-separated
morphism of algebraic stacks. The functor f∗ : QCoh(OY) → QCoh(OX ) has a
right adjoint

fQCoh,∗ : QCoh(OX ) −→ QCoh(OY)

https://stacks.math.columbia.edu/tag/0GQP
https://stacks.math.columbia.edu/tag/077A
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which can be defined as the composition

QCoh(OX )→ LQCohfbc(OX ) f∗−→ LQCohfbc(OY) Q−→ QCoh(OY)

where the functors f∗ and Q are as in Proposition 103.8.1 and Lemma 103.10.1.
Moreover, if we define RifQCoh,∗ as the composition

QCoh(OX )→ LQCohfbc(OX ) Rif∗−−−→ LQCohfbc(OY) Q−→ QCoh(OY)

then the sequence of functors {RifQCoh,∗}i≥0 forms a cohomological δ-functor.

Proof. This is a combination of the results mentioned in the statement. The ad-
jointness can be shown as follows: Let F be a quasi-coherent OX -module and let
G be a quasi-coherent OY -module. Then we have

MorQCoh(OX )(f∗G,F) = MorLQCohfbc(OY )(G, f∗F)
= MorQCoh(OY )(G, Q(f∗F))
= MorQCoh(OY )(G, fQCoh,∗F)

the first equality by adjointness of f∗ and f∗ (for arbitrary sheaves of modules).
By Proposition 103.8.1 we see that f∗F is an object of LQCohfbc(OY) (and can be
computed in either the fppf or étale topology) and we obtain the second equality
by Lemma 103.10.1. The third equality is the definition of fQCoh,∗.

To see that {RifQCoh,∗}i≥0 is a cohomological δ-functor as defined in Homology,
Definition 12.12.1 let

0→ F1 → F2 → F3 → 0
be a short exact sequence of QCoh(OX ). This sequence may not be an exact
sequence in Mod(OX ) but we know that it is up to parasitic modules, see Lemma
103.9.4. Thus we may break up the sequence into short exact sequences

0→ P1 → F1 → I2 → 0
0→ I2 → F2 → Q2 → 0
0→ P2 → Q2 → I3 → 0
0→ I3 → F3 → P3 → 0

of Mod(OX ) with Pi parasitic. Note that each of the sheaves Pj , Ij , Qj is an object
of LQCohfbc(OX ), see Proposition 103.8.1. Applying Rif∗ we obtain long exact
sequences

0→ f∗P1 → f∗F1 → f∗I2 → R1f∗P1 → . . .
0→ f∗I2 → f∗F2 → f∗Q2 → R1f∗I2 → . . .
0→ f∗P2 → f∗Q2 → f∗I3 → R1f∗P2 → . . .
0→ f∗I3 → f∗F3 → f∗P3 → R1f∗I3 → . . .

where are the terms are objects of LQCohfbc(OY) by Proposition 103.8.1. By
Lemma 103.9.3 the sheaves Rif∗Pj are parasitic, hence vanish on applying the
functor Q, see Lemma 103.10.2. Since Q is exact the maps

Q(Rif∗F3) ∼= Q(Rif∗I3) ∼= Q(Rif∗Q2)→ Q(Ri+1f∗I2) ∼= Q(Ri+1f∗F1)

can serve as the connecting map which turns the family of functors {RifQCoh,∗}i≥0
into a cohomological δ-functor. □
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Lemma 103.11.2.0GQQ Let f : X → Y be a quasi-compact and quasi-separated mor-
phism of algebraic stacks. Let y : V → Y in Ob(Y) with y a flat morphism.
Let F be in QCoh(OX ). Then (f∗F)(y) = (fQCoh,∗F)(y) and (Rif∗F)(y) =
(RifQCoh,∗F)(y) for all i ∈ Z.

Proof. This follows from the construction of the functors RifQCoh,∗ in Proposi-
tion 103.11.1, the definition of parasitic modules in Definition 103.9.1, and Lemma
103.10.2 part (2). □

Remark 103.11.3.0GQR Let f : X → Y be a quasi-compact and quasi-separated mor-
phism of algebraic stacks. Let F and G be in QCoh(OX ). Then there is a canonical
commutative diagram

fQCoh,∗F ⊗OY fQCoh,∗G //

��

f∗F ⊗OY f∗G

c

��
fQCoh,∗(F ⊗OX G) // f∗(F ⊗OX G)

The vertical arrow c on the right is the naive relative cup product (in degree
0), see Cohomology on Sites, Section 21.33. The source and target of c are in
LQCohfbc(OX ), see Proposition 103.8.1. Applying Q to c we obtain the left vertical
arrow as Q commutes with tensor products, see Remark 103.10.6. This construction
is functorial in F and G.

Lemma 103.11.4.0782 Let f : X → Y be a quasi-compact and quasi-separated mor-
phism of algebraic stacks. Let F be a quasi-coherent sheaf on X . Then there exists
a spectral sequence with E2-page

Ep,q2 = Hp(Y, RqfQCoh,∗F)
converging to Hp+q(X ,F).

Proof. By Cohomology on Sites, Lemma 21.14.5 the Leray spectral sequence with
Ep,q2 = Hp(Y, Rqf∗F)

converges to Hp+q(X ,F). The kernel and cokernel of the adjunction map
RqfQCoh,∗F −→ Rqf∗F

are parasitic modules on Y (Lemma 103.10.2) hence have vanishing cohomology
(Lemma 103.9.3). It follows formally that Hp(Y, RqfQCoh,∗F) = Hp(Y, Rqf∗F)
and we win. □

Lemma 103.11.5.0783 Let f : X → Y and g : Y → Z be quasi-compact and quasi-
separated morphisms of algebraic stacks. Let F be a quasi-coherent sheaf on X .
Then there exists a spectral sequence with E2-page

Ep,q2 = RpgQCoh,∗(RqfQCoh,∗F)
converging to Rp+q(g ◦ f)QCoh,∗F .

Proof. By Cohomology on Sites, Lemma 21.14.7 the Leray spectral sequence with
Ep,q2 = Rpg∗(Rqf∗F)

converges to Rp+q(g ◦ f)∗F . By the results of Proposition 103.8.1 all the terms of
this spectral sequence are objects of LQCohfbc(OZ). Applying the exact functor

https://stacks.math.columbia.edu/tag/0GQQ
https://stacks.math.columbia.edu/tag/0GQR
https://stacks.math.columbia.edu/tag/0782
https://stacks.math.columbia.edu/tag/0783
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QZ : LQCohfbc(OZ) → QCoh(OZ) we obtain a spectral sequence in QCoh(OZ)
covering to Rp+q(g ◦ f)QCoh,∗F . Hence the result follows if we can show that

QZ(Rpg∗(Rqf∗F)) = QZ(Rpg∗(QX (Rqf∗F))

This follows from the fact that the kernel and cokernel of the map

QX (Rqf∗F) −→ Rqf∗F

are parasitic (Lemma 103.10.2) and that Rpg∗ transforms parasitic modules into
parasitic modules (Lemma 103.9.3). □

To end this section we make explicit the spectral sequences associated to a smooth
covering by a scheme. Please compare with Sheaves on Stacks, Sections 96.20 and
96.21.

Proposition 103.11.6.0784 Let f : U → X be a morphism of algebraic stacks. Assume
f is representable by algebraic spaces, surjective, flat, and locally of finite presen-
tation. Let F be a quasi-coherent OX -module. Then there is a spectral sequence

Ep,q2 = Hq(Up, f∗
pF)⇒ Hp+q(X ,F)

where fp is the morphism U ×X . . .×X U → X (p+ 1 factors).

Proof. This is a special case of Sheaves on Stacks, Proposition 96.20.1. □

Proposition 103.11.7.0785 Let f : U → X and g : X → Y be composable morphisms of
algebraic stacks. Assume that

(1) f is representable by algebraic spaces, surjective, flat, locally of finite
presentation, quasi-compact, and quasi-separated, and

(2) g is quasi-compact and quasi-separated.
If F is in QCoh(OX ) then there is a spectral sequence

Ep,q2 = Rq(g ◦ fp)QCoh,∗f
∗
pF ⇒ Rp+qgQCoh,∗F

in QCoh(OY).

Proof. Note that each of the morphisms fp : U ×X . . .×X U → X is quasi-compact
and quasi-separated, hence g ◦ fp is quasi-compact and quasi-separated, hence the
assertion makes sense (i.e., the functors Rq(g ◦ fp)QCoh,∗ are defined). There is a
spectral sequence

Ep,q2 = Rq(g ◦ fp)∗f
−1
p F ⇒ Rp+qg∗F

by Sheaves on Stacks, Proposition 96.21.1. Applying the exact functor QY :
LQCohfbc(OY)→ QCoh(OY) gives the desired spectral sequence in QCoh(OY). □

103.12. Further remarks on quasi-coherent modules

0GQS In this section we collect some results that to help understand how to use quasi-
coherent modules on algebraic stacks.

Let f : U → X be a morphism of algebraic stacks. Assume U is represented by the
algebraic space U . Consider the functor

a : Mod(Xétale,OX ) −→ Mod(Uétale,OU ), F 7−→ f∗F|Uétale

https://stacks.math.columbia.edu/tag/0784
https://stacks.math.columbia.edu/tag/0785
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given by pullback (Sheaves on Stacks, Section 96.7) followed by restriction (Sheaves
on Stacks, Section 96.10). Applying this functor to locally quasi-coherent modules
we obtain a functor

b : LQCoh(OX ) −→ QCoh(Uétale,OU )
See Sheaves on Stacks, Lemmas 96.12.3 and 96.14.1. We can further limit our
functor to even smaller subcategories to obtain

c : LQCohfbc(OX ) −→ QCoh(Uétale,OU )
and

d : QCoh(OX ) −→ QCoh(Uétale,OU )
About these functors we can say the following:3

(1) The functor a is exact. Namely, pullback f∗ = f−1 is exact (Sheaves
on Stacks, Section 96.7) and restriction to Uétale is exact, see Sheaves on
Stacks, Equation (96.10.2.1).

(2) The functor b is exact. Namely, by Sheaves on Stacks, Lemma 96.12.4 the
inclusion LQCoh(OX )→ Mod(Xétale,OX ) is exact.

(3) The functor c is exact. Namely, by Proposition 103.8.1 the inclusion
functor LQCohfbc(OX )→ Mod(Xétale,OX ) is exact.

(4) The functor d is right exact but not exact in general. Namely, by Sheaves
on Stacks, Lemma 96.12.5 the inclusion functor QCoh(OX )→ Mod(Xétale,OX )
is right exact. We omit giving an example showing non-exactness.

(5) If f is flat, then d is exact. This follows on combining Lemma 103.4.1 and
Sheaves on Stacks, Lemma 96.14.2.

(6) If f is flat, then c kills parasitic objects. Namely, f∗ preserves parasitic
object by Lemma 103.9.2. Then for any scheme V étale over U and hence
flat over X we see that 0 = f∗F|Vétale = c(F)|Vétale by the compatibility
of restriction with étale localization Sheaves on Stacks, Remark 96.10.2.
Hence clearly c(F) = 0.

(7) If f is flat, then c = d ◦Q. Namely, the kernel and cokernel of Q(F)→ F
are parasitic by Lemma 103.10.2. Thus, since c is exact (3) and kills par-
asitic objects (6), we see that c applied to Q(F)→ F is an isomorphism.

(8) The functors a, b, c, d commute with colimits and arbitrary direct sums.
This is true for f∗ and restriction as left adjoints and hence it holds for
a. Then it follows for b, c, d by the references given above.

(9) The functors a, b, c, d commute with tensor products.
(10) If f is flat and surjective, F is in LQCohfbc(OX ), and c(F) = 0, then

F is parasitic. Namely, by (7) we get d(Q(F)) = 0. We may assume
U is a scheme by the compatibility of restriction with étale localization
(see reference above). Then Lemma 103.4.2 applied to 0 → Q(F) and
the morphism f : U → X shows that Q(F) = 0. Thus F is parasitic by
Lemma 103.10.2.

(11) If f is flat and surjective, then the functor d reflects exactness. More pre-
cisely, let F• be a complex in QCoh(OX ). Then F• is exact in QCoh(OX )
if and only if d(F•) is exact. Namely, we have seen one implication in (5).
For the other, suppose that Hi(d(F•)) = 0. Then G = Hi(F•) is an

3We suggest working out why these statements are true on a napkin instead of following the
references given.
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object of QCoh(OX ) with d(G) = 0. Hence G is both quasi-coherent and
parasitic by (10), whence 0 for example by Remark 103.10.7.

(12)0GQT If f is flat, F ,G ∈ Ob(QCoh(OX )), and F of finite presentation and let
then we have

d(hom(F ,G)) = HomOU
(d(F), d(G))

with notation as in Lemma 103.10.8. Perhaps the easiest way to see this
is as follows

d(hom(F ,G)) = d(Q(HomOX (F ,G)))
= c(HomOX (F ,G))
= f∗HomOX (F ,G)|Uétale
= HomOU (f∗F , f∗G)|Uétale
= HomOU

(f∗F|Uétale , f∗G|Uétale)
The first equality by construction of hom. The second equality by (7).
The third equality by definition of c. The fourth equality by Modules on
Sites, Lemma 18.31.4. The final equality by the same reference applied to
the flat morphism of ringed topoi iU (Uétale,OU )→ (Uétale,OU ) of Sheaves
on Stacks, Lemma 96.10.1.

(13) add more here.

103.13. Colimits and cohomology

0GQU The following lemma in particular applies to diagrams of quasi-coherent sheaves.

Lemma 103.13.1.0GQV Let X be a quasi-compact and quasi-separated algebraic stack.
Then

colimiH
p(X ,Fi) −→ Hp(X , colimi Fi)

is an isomorphism for every filtered diagram of abelian sheaves on X . The same is
true for abelian sheaves on Xétale taking cohomology in the étale topology.

Proof. Let τ = fppf , resp. τ = étale. The lemma follows from Cohomology on
Sites, Lemma 21.16.2 applied to the site Xτ . In order to check the assumptions we
use Cohomology on Sites, Remark 21.16.3. Namely, let B ⊂ Ob(Xτ ) be the set of
objects lying over affine schemes. In other words, an element of B is a morphism
x : U → X with U affine. We check each of the conditions (1) – (4) of the remark
in turn:

(1) Since X is quasi-compact, there exists a surjetive and smooth morphism
x : U → X with U affine (Properties of Stacks, Lemma 100.6.2). Then
h#
x → ∗ is a surjective map of sheaves on Xτ .

(2) Since coverings in Xτ are fppf, resp. étale coverings, we see that every
covering of U ∈ B is refined by a finite affine fppf covering, see Topologies,
Lemma 34.7.4, resp. Lemma 34.4.4.

(3) Let x : U → X and x′ : U ′ → X be in B. The product h#
x × h#

x′ in
Sh(Xτ ) is equal to the sheaf on Xτ determined by the algebraic space
W = U ×x,X ,x′ U ′ over X : for an object y : V → X of Xτ we have
(h#
x ×h

#
x′)(y) = {f : V →W | y = x◦pr1 ◦f = x′ ◦pr2 ◦f}. The algebraic

space W is quasi-compact because X is quasi-separated, see Morphisms of
Stacks, Lemma 101.7.8 for example. Hence we can choose an affine scheme

https://stacks.math.columbia.edu/tag/0GQV
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U ′′ and a surjective étale morphism U ′′ → W . Denote x′′ : U ′′ → X the
composition of U ′′ →W and W → X . Then h#

x′′ → h#
x ×h

#
x′ is surjective

as desired.
(4) Let x : U → X and x′ : U ′ → X be in B. Let a, b : U → U ′ be a morphism

over X , i.e., a, b : x → x′ is a morphism in Xτ . Then the equalizer of
ha and hb is represented by the equalizer of a, b : U → U ′ which is affine
scheme over X and hence in B.

This finished the proof. □

Lemma 103.13.2.0GQW Let f : X → Y be a quasi-compact and quasi-separated mor-
phism of algebraic stacks. Let F = colimFi be a filtered colimit of abelian sheaves
on X . Then for any p ≥ 0 we have

Rpf∗F = colimRpf∗Fi.
The same is true for abelian sheaves on Xétale taking higher direct images in the
étale topology.

Proof. We will prove this for the fppf topology; the proof for the étale topology is
the same. Recall that Rif∗F is the sheaf on Yfppf associated to the presheaf

(y : V → Y) 7−→ Hi(V ×y,Y X ,pr−1F)
See Sheaves on Stacks, Lemma 96.21.2. Recall that the colimit is the sheaf as-
sociated to the presheaf colimit. When V is affine, the fibre product V ×Y X
is quasi-compact and quasi-separated. Hence we can apply Lemma 103.13.1 to
Hp(V ×Y X ,−) where V is affine. Since every V has an fppf covering by affine
objects this proves the lemma. Some details omitted. □

Lemma 103.13.3.0GQX Let f : X → Y be a quasi-compact and quasi-separated mor-
phism of algebraic stacks. The functor fQCoh,∗ and the functors RifQCoh,∗ commute
with direct sums and filtered colimits.

Proof. The functors f∗ and Rif∗ commute with direct sums and filtered colimits
on all modules by Lemma 103.13.2. The lemma follows as fQCoh,∗ = Q ◦ f∗ and
RifQCoh,∗ = Q ◦Rif∗ and Q commutes with all colimits, see Lemma 103.10.2. □

Lemma 103.13.4.0GQY Let f : X → Y be an affine morphism of algebraic stacks. The
functors RifQCoh,∗, i > 0 vanish and the functor fQCoh,∗ is exact and commutes
with direct sums and all colimits.

Proof. Since we have RifQCoh,∗ = Q ◦ Rif∗ we obtain the vanishing from Lemma
103.8.4. The vanishing implies that fQCoh,∗ is exact as {RifQCoh,∗}i≥0 form a δ-
functor, see Proposition 103.11.1. Then fQCoh,∗ commutes with direct sums for
example by Lemma 103.13.3. An exact functor which commutes with direct sums
commutes with all colimits. □

The following lemma tells us that finitely presented modules behave as expected in
quasi-compact and quasi-separated algebraic stacks.

Lemma 103.13.5.0GQZ Let X be a quasi-compact and quasi-separated algebraic stack.
Let I be a directed set and let (Fi, φii′) be a system over I of OX -modules. Let G
be an OX -module of finite presentation. Then we have

colimi HomX (G,Fi) = HomX (G, colimi Fi).

https://stacks.math.columbia.edu/tag/0GQW
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In particular, HomX (G,−) commutes with filtered colimits in QCoh(OX ).

Proof. The displayed equality is a special case of Modules on Sites, Lemma 18.27.12.
In order to apply it, we need to check the hypotheses of Sites, Lemma 7.17.8 part (4)
for the site Xfppf . In order to do this, we will check hypotheses (2)(a), (2)(b), (2)(c)
of Sites, Remark 7.17.9. Namely, let B ⊂ Ob(Xfppf ) be the set of objects lying over
affine schemes. In other words, an element of B is a morphism x : U → X with U
affine. We check each of the conditions (2)(a), (2)(b), and (2)(c) of the remark in
turn:

(1) Since X is quasi-compact, there exists a surjetive and smooth morphism
x : U → X with U affine (Properties of Stacks, Lemma 100.6.2). Then
h#
x → ∗ is a surjective map of sheaves on Xfppf .

(2) Since coverings in Xfppf are fppf coverings, we see that every covering of
U ∈ B is refined by a finite affine fppf covering, see Topologies, Lemma
34.7.4.

(3) Let x : U → X and x′ : U ′ → X be in B. The product h#
x × h#

x′

in Sh(Xfppf ) is equal to the sheaf on Xfppf determined by the algebraic
space W = U×x,X ,x′U ′ over X : for an object y : V → X of Xfppf we have
(h#
x ×h

#
x′)(y) = {f : V →W | y = x◦pr1 ◦f = x′ ◦pr2 ◦f}. The algebraic

space W is quasi-compact because X is quasi-separated, see Morphisms of
Stacks, Lemma 101.7.8 for example. Hence we can choose an affine scheme
U ′′ and a surjective étale morphism U ′′ → W . Denote x′′ : U ′′ → X the
composition of U ′′ →W and W → X . Then h#

x′′ → h#
x ×h

#
x′ is surjective

as desired.
For the final statement, observe that the inclusion functor QCoh(OX)→ Mod(OX)
commutes with colimits and that finitely presented modules are quasi-coherent. See
Sheaves on Stacks, Lemma 96.15.1. □

103.14. The lisse-étale and the flat-fppf sites

0786 In the book [LMB00] many of the results above are proved using the lisse-étale
site of an algebraic stack. We define this site here. In Examples, Section 110.58
we show that the lisse-étale site isn’t functorial. We also define its analogue, the
flat-fppf site, which is better suited to the development of algebraic stacks as given
in the Stacks project (because we use the fppf topology as our base topology). Of
course the flat-fppf site isn’t functorial either.

Definition 103.14.1.0787 Let X be an algebraic stack.
(1) The lisse-étale site of X is the full subcategory Xlisse,étale4 of X whose

objects are those x ∈ Ob(X ) lying over a scheme U such that x : U → X
is smooth. A covering of Xlisse,étale is a family of morphisms {xi → x}i∈I
of Xlisse,étale which forms a covering of Xétale.

(2) The flat-fppf site of X is the full subcategory Xflat,fppf of X whose objects
are those x ∈ Ob(X ) lying over a scheme U such that x : U → X is flat. A
covering of Xflat,fppf is a family of morphisms {xi → x}i∈I of Xflat,fppf
which forms a covering of Xfppf .

4In the literature the site is denoted Lis-ét(X ) or Lis-Et(X ) and the associated topos is
denoted Xlis-ét or Xlis-et. In the Stacks project our convention is to name the site and denote the
corresponding topos by Sh(C).

https://stacks.math.columbia.edu/tag/0787
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We denote OXlisse,étale the restriction of OX to the lisse-étale site and similarly for
OXflat,fppf . The relationship between the lisse-étale site and the étale site is as
follows (we mainly stick to “topological” properties in this lemma).

Lemma 103.14.2.0788 Let X be an algebraic stack.
(1) The inclusion functor Xlisse,étale → Xétale is fully faithful, continuous and

cocontinuous. It follows that
(a) there is a morphism of topoi

g : Sh(Xlisse,étale) −→ Sh(Xétale)
with g−1 given by restriction,

(b) the functor g−1 has a left adjoint gSh! on sheaves of sets,
(c) the adjunction maps g−1g∗ → id and id→ g−1gSh! are isomorphisms,
(d) the functor g−1 has a left adjoint g! on abelian sheaves,
(e) the adjunction map id→ g−1g! is an isomorphism, and
(f) we have g−1OX = OXlisse,étale hence g induces a flat morphism of

ringed topoi such that g−1 = g∗.
(2) The inclusion functor Xflat,fppf → Xfppf is fully faithful, continuous and

cocontinuous. It follows that
(a) there is a morphism of topoi

g : Sh(Xflat,fppf ) −→ Sh(Xfppf )
with g−1 given by restriction,

(b) the functor g−1 has a left adjoint gSh! on sheaves of sets,
(c) the adjunction maps g−1g∗ → id and id→ g−1gSh! are isomorphisms,
(d) the functor g−1 has a left adjoint g! on abelian sheaves,
(e) the adjunction map id→ g−1g! is an isomorphism, and
(f) we have g−1OX = OXflat,fppf hence g induces a flat morphism of

ringed topoi such that g−1 = g∗.

Proof. In both cases it is immediate that the functor is fully faithful, continuous,
and cocontinuous (see Sites, Definitions 7.13.1 and 7.20.1). Hence properties (a),
(b), (c) follow from Sites, Lemmas 7.21.5 and 7.21.7. Parts (d), (e) follow from
Modules on Sites, Lemmas 18.16.2 and 18.16.4. Part (f) is immediate. □

Lemma 103.14.3.0GR0 Let X be an algebraic stack. Notation as in Lemma 103.14.2.
(1) For an abelian sheaf F on Xétale we have

(a) Hp(Xétale,F) = Hp(Xlisse,étale, g−1F), and
(b) Hp(x,F) = Hp(Xlisse,étale/x, g−1F) for any object x of Xlisse,étale.
The same holds for sheaves of modules.

(2) For an abelian sheaf F on Xfppf we have
(a) Hp(Xfppf ,F) = Hp(Xflat,fppf , g−1F), and
(b) Hp(x,F) = Hp(Xflat,fppf/x, g−1F) for any object x of Xflat,fppf .
The same holds for sheaves of modules.

Proof. Part (1)(a) follows from Sheaves on Stacks, Lemma 96.23.3 applied to the
inclusion functor Xlisse,étale → Xétale. Part (1)(b) follows from part (1)(a). Namely,
if x lies over the scheme U , then the site Xétale/x is equivalent to (Sch/U)étale and
Xlisse,étale is equivalent to Ulisse,étale. Part (2) is proved in the same manner. □

Lemma 103.14.4.0789 Let X be an algebraic stack. Notation as in Lemma 103.14.2.
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(1) There exists a functor
g! : Mod(Xlisse,étale,OXlisse,étale) −→ Mod(Xétale,OX )

which is left adjoint to g∗. Moreover it agrees with the functor g! on
abelian sheaves and g∗g! = id.

(2) There exists a functor
g! : Mod(Xflat,fppf ,OXflat,fppf ) −→ Mod(Xfppf ,OX )

which is left adjoint to g∗. Moreover it agrees with the functor g! on
abelian sheaves and g∗g! = id.

Proof. In both cases, the existence of the functor g! follows from Modules on Sites,
Lemma 18.41.1. To see that g! agrees with the functor on abelian sheaves we will
show the maps Modules on Sites, Equation (18.41.2.1) are isomorphisms.
Lisse-étale case. Let x ∈ Ob(Xlisse,étale) lying over a scheme U with x : U → X
smooth. Consider the induced fully faithful functor

g′ : Xlisse,étale/x −→ Xétale/x
The right hand side is identified with (Sch/U)étale and the left hand side with
the full subcategory of schemes U ′/U such that the composition U ′ → U → X is
smooth. Thus Étale Cohomology, Lemma 59.49.2 applies.
Flat-fppf case. Let x ∈ Ob(Xflat,fppf ) lying over a scheme U with x : U → X flat.
Consider the induced fully faithful functor

g′ : Xflat,fppf/x −→ Xfppf/x
The right hand side is identified with (Sch/U)fppf and the left hand side with the
full subcategory of schemes U ′/U such that the composition U ′ → U → X is flat.
Thus Étale Cohomology, Lemma 59.49.2 applies.
In both cases the equality g∗g! = id follows from g∗ = g−1 and the equality for
abelian sheaves in Lemma 103.14.2. □

Lemma 103.14.5.078A Let X be an algebraic stack. Notation as in Lemmas 103.14.2
and 103.14.4.

(1) We have g!OXlisse,étale = OX .
(2) We have g!OXflat,fppf = OX .

Proof. In this proof we write C = Xétale (resp. C = Xfppf ) and we denote C′ =
Xlisse,étale (resp. C′ = Xflat,fppf ). Then C′ is a full subcategory of C. In this proof
we will think of objects V of C as schemes over X and objects U of C′ as schemes
smooth (resp. flat) over X . Finally, we write O = OX and O′ = OXlisse,étale
(resp. O′ = OXflat,fppf ). In the notation above we have O(V ) = Γ(V,OV ) and
O′(U) = Γ(U,OU ). Consider the O-module homomorphism g!O′ → O adjoint to
the identification O′ = g−1O.
Recall that g!O′ is the sheaf associated to the presheaf gp!O′ given by the rule

V 7−→ colimV→U O′(U)
where the colimit is taken in the category of abelian groups (Modules on Sites,
Definition 18.16.1). Below we will use frequently that if

V → U → U ′
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are morphisms and if f ′ ∈ O′(U ′) restricts to f ∈ O′(U), then (V → U, f) and
(V → U ′, f ′) define the same element of the colimit. Also, g!O′ → O maps the
element (V → U, f) simply to the pullback of f to V .
Let us prove that g!O′ → O is surjective. Let h ∈ O(V ) for some object V of
C. It suffices to show that h is locally in the image. Choose an object U of C′

corresponding to a surjective smooth morphism U → X . Since U ×X V → V
is surjective smooth, after replacing V by the members of an étale covering of
V we may assume there exists a morphism V → U , see Topologies on Spaces,
Lemma 73.4.4. Using h we obtain a morphism V → U × A1 such that writing
A1 = Spec(Z[t]) the element t ∈ O(U ×A1) pulls back to h. Since U ×A1 is an
object of C′ we see that (V → U ×A1, t) is an element of the colimit above which
maps to h ∈ O(V ) as desired.
Suppose that s ∈ g!O′(V ) is a section mapping to zero in O(V ). To finish the proof
we have to show that s is zero. After replacing V by the members of a covering we
may assume s is an element of the colimit

colimV→U O′(U)
Say s =

∑
(φi, si) is a finite sum with φi : V → Ui, Ui smooth (resp. flat) over X ,

and si ∈ Γ(Ui,OUi). Choose a scheme W surjective étale over the algebraic space
U = U1 ×X . . .×X Un. Note that W is still smooth (resp. flat) over X , i.e., defines
an object of C′. The fibre product

V ′ = V ×(φ1,...,φn),U W

is surjective étale over V , hence it suffices to show that s maps to zero in g!O′(V ′).
Note that the restriction

∑
(φi, si)|V ′ corresponds to the sum of the pullbacks of

the functions si to W . In other words, we have reduced to the case of (φ, s) where
φ : V → U is a morphism with U in C′ and s ∈ O′(U) restricts to zero in O(V ).
By the commutative diagram

V
(φ,0)

//

φ

''

U ×A1

U

(id,0)

OO

we see that ((φ, 0) : V → U ×A1,pr∗
2x) represents zero in the colimit above. Hence

we may replace U by U × A1, φ by (φ, 0) and s by pr∗
1s + pr∗

2x. Thus we may
assume that the vanishing locus Z : s = 0 in U of s is smooth (resp. flat) over X .
Then we see that (V → Z, 0) and (φ, s) have the same value in the colimit, i.e., we
see that the element s is zero as desired. □

The lisse-étale and the flat-fppf sites can be used to characterize parasitic modules
as follows.

Lemma 103.14.6.07AR Let X be an algebraic stack.
(1) Let F be an OX -module with the flat base change property on Xétale.

The following are equivalent
(a) F is parasitic, and
(b) g∗F = 0 where g : Sh(Xlisse,étale) → Sh(Xétale) is as in Lemma

103.14.2.
(2) Let F be an OX -module on Xfppf . The following are equivalent
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(a) F is parasitic, and
(b) g∗F = 0 where g : Sh(Xflat,fppf ) → Sh(Xfppf ) is as in Lemma

103.14.2.

Proof. Part (2) is immediate from the definitions (this is one of the advantages
of the flat-fppf site over the lisse-étale site). The implication (1)(a) ⇒ (1)(b) is
immediate as well. To see (1)(b) ⇒ (1)(a) let U be a scheme and let x : U → X
be a surjective smooth morphism. Then x is an object of the lisse-étale site of X .
Hence we see that (1)(b) implies that F|Uétale = 0. Let V → X be an flat morphism
where V is a scheme. Set W = U ×X V and consider the diagram

W

p

��

q
// V

��
U // X

Note that the projection p : W → U is flat and the projection q : W → V is smooth
and surjective. This implies that q∗

small is a faithful functor on quasi-coherent
modules. By assumption F has the flat base change property so that we obtain
p∗
smallF|Uétale ∼= q∗

smallF|Vétale . Thus if F is in the kernel of g∗, then F|Vétale = 0
as desired. □

103.15. Functoriality of the lisse-étale and flat-fppf sites

0GR1 The lisse-étale site is functorial for smooth morphisms of algebraic stacks and the
flat-fppf site is functorial for flat morphisms of algebraic stacks. We warn the
reader that the lisse-étale and flat-fppf topoi are not functorial with respect to all
morphisms of algebraic stacks, see Examples, Section 110.58.

Lemma 103.15.1.07AT Let f : X → Y be a morphism of algebraic stacks.
(1) If f is smooth, then f restricts to a continuous and cocontinuous functor
Xlisse,étale → Ylisse,étale which gives a morphism of ringed topoi fitting
into the following commutative diagram

Sh(Xlisse,étale)
g′

//

f ′

��

Sh(Xétale)

f

��
Sh(Ylisse,étale)

g // Sh(Yétale)

We have f ′
∗(g′)−1 = g−1f∗ and g′

!(f ′)−1 = f−1g!.
(2) If f is flat, then f restricts to a continuous and cocontinuous functor
Xflat,fppf → Yflat,fppf which gives a morphism of ringed topoi fitting
into the following commutative diagram

Sh(Xflat,fppf )
g′
//

f ′

��

Sh(Xfppf )

f

��
Sh(Yflat,fppf ) g // Sh(Yfppf )

We have f ′
∗(g′)−1 = g−1f∗ and g′

!(f ′)−1 = f−1g!.
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Proof. The initial statement comes from the fact that if x ∈ Ob(X ) lies over a
scheme U such that x : U → X is smooth (resp. flat) and if f is smooth (resp. flat)
then f(x) : U → Y is smooth (resp. flat), see Morphisms of Stacks, Lemmas 101.33.2
and 101.25.2. The induced functor Xlisse,étale → Ylisse,étale (resp. Xflat,fppf →
Yflat,fppf ) is continuous and cocontinuous by our definition of coverings in these
categories. Finally, the commutativity of the diagram is a consequence of the fact
that the horizontal morphisms are given by the inclusion functors (see Lemma
103.14.2) and Sites, Lemma 7.21.2.

To show that f ′
∗(g′)−1 = g−1f∗ let F be a sheaf on Xétale (resp. Xfppf ). There is

a canonical pullback map

g−1f∗F −→ f ′
∗(g′)−1F

see Sites, Section 7.45. We claim this map is an isomorphism. To prove this pick
an object y of Ylisse,étale (resp. Yflat,fppf ). Say y lies over the scheme V such that
y : V → Y is smooth (resp. flat). Since g−1 is the restriction we find that(

g−1f∗F
)

(y) = Γ(V ×y,Y X , pr−1F)

by Sheaves on Stacks, Equation (96.5.0.1). Let (V ×y,Y X )′ ⊂ V ×y,Y X be the
full subcategory consisting of objects z : W → V ×y,Y X such that the induced
morphism W → X is smooth (resp. flat). Denote

pr′ : (V ×y,Y X )′ −→ Xlisse,étale (resp. Xflat,fppf )

the restriction of the functor pr used in the formula above. Exactly the same
argument that proves Sheaves on Stacks, Equation (96.5.0.1) shows that for any
sheaf H on Xlisse,étale (resp. Xflat,fppf ) we have

(103.15.1.1)07AU f ′
∗H(y) = Γ((V ×y,Y X )′, (pr′)−1H)

Since (g′)−1 is restriction we see that(
f ′

∗(g′)−1F
)

(y) = Γ((V ×y,Y X )′, pr−1F|(V×y,Y X )′)

By Sheaves on Stacks, Lemma 96.23.3 we see that

Γ((V ×y,Y X )′, pr−1F|(V×y,Y X )′) = Γ(V ×y,Y X , pr−1F)

are equal as desired; although we omit the verification of the assumptions of the
lemma we note that the fact that V → Y is smooth (resp. flat) is used to verify the
second condition.

Finally, the equality g′
!(f ′)−1 = f−1g! follows formally from the equality f ′

∗(g′)−1 =
g−1f∗ by the adjointness of f−1 and f∗, the adjointness of g! and g−1, and their
“primed” versions. □

Lemma 103.15.2.0GR2 With assumptions and notation as in Lemma 103.15.1. Let H
be an abelian sheaf on Xlisse,étale (resp. Xflat,fppf ). Then

(103.15.2.1)07AW Rpf ′
∗H = sheaf associated to y 7−→ Hp((V ×y,Y X )′, (pr′)−1H)

Here y is an object of Ylisse,étale (resp. Yflat,fppf ) lying over the scheme V and the
notation (V ×y,Y X )′ and pr′ are explained in the proof.
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Proof. As in the proof of Lemma 103.15.1 let (V ×y,Y X )′ ⊂ V ×y,Y X be the full
subcategory consisting of objects (x, φ) where x is an object of Xlisse,étale (resp.
Xflat,fppf ) and φ : f(x) → y is a morphism in Y. By Equation (103.15.1.1) we
have

f ′
∗H(y) = Γ((V ×y,Y X )′, (pr′)−1H)

where pr′ is the projection. For an object (x, φ) of (V ×y,Y X )′ we can think of
φ as a section of (f ′)−1hy over x. Thus (V ×Y X )′ is the localization of the site
Xlisse,étale (resp. Xflat,fppf ) at the sheaf of sets (f ′)−1hy, see Sites, Lemma 7.30.3.
The morphism

pr′ : (V ×y,Y X )′ → Xlisse,étale (resp. pr′ : (V ×y,Y X )′ → Xflat,fppf )
is the localization morphism. In particular, the pullback (pr′)−1 preserves injective
abelian sheaves, see Cohomology on Sites, Lemma 21.13.3.
Choose an injective resolution H → I• on Xlisse,étale (resp. Xflat,fppf ). By the
formula for pushforward we see that Rif ′

∗H is the sheaf associated to the presheaf
which associates to y the cohomology of the complex

Γ
(

(V ×y,Y X )′, (pr′)−1Ii−1
)

↓
Γ
(

(V ×y,Y X )′, (pr′)−1Ii
)

↓
Γ
(

(V ×y,Y X )′, (pr′)−1Ii+1
)

Since (pr′)−1 is exact and preserves injectives the complex (pr′)−1I• is an injective
resolution of (pr′)−1H and the proof is complete. □

Lemma 103.15.3.0GR3 With assumptions and notation as in Lemma 103.15.1 the canon-
ical (base change) map

g−1Rf∗F −→ Rf ′
∗(g′)−1F

is an isomorphism for any abelian sheaf F on Xétale (resp. Xfppf ).

Proof. Comparing the formula for g−1Rpf∗F and Rpf ′
∗(g′)−1F given in Sheaves

on Stacks, Lemma 96.21.2 and Lemma 103.15.2 we see that it suffices to show
Hp((V ×y,Y X )′, pr−1F|(V×y,Y X )′) = Hp

τ (V ×y,Y X , pr−1F)
where τ = étale (resp. τ = fppf). Here y is an object of Y lying over a scheme
V such that the morphism y : V → Y is smooth (resp. flat). This equality follows
from Sheaves on Stacks, Lemma 96.23.3. Although we omit the verification of the
assumptions of the lemma, we note that the fact that V → Y is smooth (resp. flat)
is used to verify the second condition. □

103.16. Quasi-coherent modules and the lisse-étale and flat-fppf sites

07AY In this section we explain how to think of quasi-coherent modules on an algebraic
stack in terms of its lisse-étale or flat-fppf site.

Lemma 103.16.1.07AZ Let X be an algebraic stack.
(1) Let fj : Xj → X be a family of smooth morphisms of algebraic stacks

with |X | =
⋃
|fj |(|Xj |). Let F be a sheaf of OX -modules on Xétale. If

each f−1
j F is quasi-coherent, then so is F .
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(2) Let fj : Xj → X be a family of flat and locally finitely presented mor-
phisms of algebraic stacks with |X | =

⋃
|fj |(|Xj |). Let F be a sheaf of

OX -modules on Xfppf . If each f−1
j F is quasi-coherent, then so is F .

Proof. Proof of (1). We may replace each of the algebraic stacks Xj by a scheme
Uj (using that any algebraic stack has a smooth covering by a scheme and that
compositions of smooth morphisms are smooth, see Morphisms of Stacks, Lemma
101.33.2). The pullback of F to (Sch/Uj)étale is still quasi-coherent, see Modules
on Sites, Lemma 18.23.4. Then f =

∐
fj : U =

∐
Uj → X is a smooth surjective

morphism. Let x : V → X be an object of X . By Sheaves on Stacks, Lemma
96.19.10 there exists an étale covering {xi → x}i∈I such that each xi lifts to an
object ui of (Sch/U)étale. This just means that xi lives over a scheme Vi, that
{Vi → V } is an étale covering, and that xi comes from a morphism ui : Vi → U .
Then x∗

iF = u∗
i f

∗F is quasi-coherent. This implies that x∗F on (Sch/V )étale is
quasi-coherent, for example by Modules on Sites, Lemma 18.23.3. By Sheaves on
Stacks, Lemma 96.11.4 we see that x∗F is an fppf sheaf and since x was arbitrary
we see that F is a sheaf in the fppf topology. Applying Sheaves on Stacks, Lemma
96.11.3 we see that F is quasi-coherent.

Proof of (2). This is proved using exactly the same argument, which we fully write
out here. We may replace each of the algebraic stacks Xj by a scheme Uj (using
that any algebraic stack has a smooth covering by a scheme and that flat and
locally finite presented morphisms are preserved by composition, see Morphisms of
Stacks, Lemmas 101.25.2 and 101.27.2). The pullback of F to (Sch/Uj)étale is still
locally quasi-coherent, see Sheaves on Stacks, Lemma 96.11.2. Then f =

∐
fj :

U =
∐
Uj → X is a surjective, flat, and locally finitely presented morphism. Let

x : V → X be an object of X . By Sheaves on Stacks, Lemma 96.19.10 there exists
an fppf covering {xi → x}i∈I such that each xi lifts to an object ui of (Sch/U)étale.
This just means that xi lives over a scheme Vi, that {Vi → V } is an fppf covering,
and that xi comes from a morphism ui : Vi → U . Then x∗

iF = u∗
i f

∗F is quasi-
coherent. This implies that x∗F on (Sch/V )étale is quasi-coherent, for example by
Modules on Sites, Lemma 18.23.3. By Sheaves on Stacks, Lemma 96.11.3 we see
that F is quasi-coherent. □

We recall that we have defined the notion of a quasi-coherent module on any ringed
topos in Modules on Sites, Section 18.23.

Lemma 103.16.2.07B0 Let X be an algebraic stack. Notation as in Lemma 103.14.2.
(1) Let H be a quasi-coherent OXlisse,étale -module on the lisse-étale site of X .

Then g!H is a quasi-coherent module on X .
(2) Let H be a quasi-coherent OXflat,fppf -module on the flat-fppf site of X .

Then g!H is a quasi-coherent module on X .

Proof. Pick a scheme U and a surjective smooth morphism x : U → X . By Modules
on Sites, Definition 18.23.1 there exists an étale (resp. fppf) covering {Ui → U}i∈I
such that each pullback f−1

i H has a global presentation (see Modules on Sites,
Definition 18.17.1). Here fi : Ui → X is the composition Ui → U → X which is
a morphism of algebraic stacks. (Recall that the pullback “is” the restriction to
X/fi, see Sheaves on Stacks, Definition 96.9.2 and the discussion following.) Since
each fi is smooth (resp. flat) by Lemma 103.15.1 we see that f−1

i g!H = gi,!(f ′
i)−1H.
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Using Lemma 103.16.1 we reduce the statement of the lemma to the case where H
has a global presentation. Say we have⊕

j∈J
O −→

⊕
i∈I
O −→ H −→ 0

of O-modules where O = OXlisse,étale (resp. O = OXflat,fppf ). Since g! commutes
with arbitrary colimits (as a left adjoint functor, see Lemma 103.14.4 and Cate-
gories, Lemma 4.24.5) we conclude that there exists an exact sequence⊕

j∈J
g!O −→

⊕
i∈I

g!O −→ g!H −→ 0

Lemma 103.14.5 shows that g!O = OX . In case (2) we are done. In case (1) we
apply Sheaves on Stacks, Lemma 96.11.4 to conclude. □

Lemma 103.16.3.07B1 Let X be an algebraic stack.
(1) With g as in Lemma 103.14.2 for the lisse-étale site we have

(a) the functors g−1 and g! define mutually inverse functors

QCoh(OX )
g−1
// QCoh(Xlisse,étale,OXlisse,étale)

g!
oo

(b) if F is in LQCohfbc(OX ) then g−1F is in QCoh(OXlisse,étale) and
(c) Q(F) = g!g

−1F where Q is as in Lemma 103.10.1.
(2) With g as in Lemma 103.14.2 for the flat-fppf site we have

(a) the functors g−1 and g! define mutually inverse functors

QCoh(OX )
g−1
// QCoh(Xflat,fppf ,OXflat,fppf )

g!
oo

(b) if F is in LQCohfbc(OX ) then g−1F is in QCoh(OXflat,fppf ) and
(c) Q(F) = g!g

−1F where Q is as in Lemma 103.10.1.

Proof. Pullback by any morphism of ringed topoi preserves categories of quasi-
coherent modules, see Modules on Sites, Lemma 18.23.4. Hence g−1 preserves the
categories of quasi-coherent modules; here we use that QCoh(OX ) = QCoh(Xétale,OX )
by Sheaves on Stacks, Lemma 96.11.4. The same is true for g! by Lemma 103.16.2.
We know that H → g−1g!H is an isomorphism by Lemma 103.14.2. Conversely, if
F is in QCoh(OX ) then the map g!g

−1F → F is a map of quasi-coherent modules
on X whose restriction to any scheme smooth over X is an isomorphism. Then the
discussion in Sheaves on Stacks, Sections 96.14 and 96.15 (comparing with quasi-
coherent modules on presentations) shows it is an isomorphism. This proves (1)(a)
and (2)(a).

Let F be an object of LQCohfbc(OX ). By Lemma 103.10.2 the kernel and cokernel
of the map Q(F)→ F are parasitic. Hence by Lemma 103.14.6 and since g∗ = g−1

is exact, we conclude g∗Q(F) → g∗F is an isomorphism. Thus g∗F is quasi-
coherent. This proves (1)(b) and (2)(b). Finally, (1)(c) and (2)(c) follow because
g!g

∗Q(F)→ Q(F) is an isomorphism by our arguments above. □

Lemma 103.16.4.07B4 Let X be an algebraic stack.
(1) QCoh(OXlisse,étale) is a weak Serre subcategory of Mod(OXlisse,étale).
(2) QCoh(OXflat,fppf ) is a weak Serre subcategory of Mod(OXflat,fppf ).
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Proof. We will verify conditions (1), (2), (3), (4) of Homology, Lemma 12.10.3.
Since 0 is a quasi-coherent module on any ringed site we see that (1) holds.
By definition QCoh(O) is a strictly full subcategory Mod(O), so (2) holds.
Let φ : G → F be a morphism of quasi-coherent modules on Xlisse,étale or Xflat,fppf .
We have g∗g!F = F and similarly for G and φ, see Lemma 103.14.4. By Lemma
103.16.2 we see that g!F and g!G are quasi-coherent OX -modules. By Sheaves on
Stacks, Lemma 96.15.1 we have that Coker(g!φ) is a quasi-coherent module on X
(and the cokernel in the category of quasi-coherent modules on X ). Since g∗ is
exact (see Lemma 103.14.2) g∗ Coker(g!φ) = Coker(g∗g!φ) = Coker(φ) is quasi-
coherent too (see Lemma 103.16.3). By Proposition 103.8.1 the kernel Ker(g!φ) is
in LQCohfbc(OX ). Since g∗ is exact, we have g∗ Ker(g!φ) = Ker(g∗g!φ) = Ker(φ).
Since g∗ maps objects of LQCohfbc(OX ) to quasi-coherent modules by Lemma
103.16.3 we conclude that Ker(φ) is quasi-coherent as well. This proves (3).
Finally, suppose that

0→ F → E → G → 0
is an extension of OXlisse,étale -modules (resp. OXflat,fppf -modules) with F and G
quasi-coherent. To prove (4) and finish the proof we have to show that E is quasi-
coherent on Xlisse,étale (resp. Xflat,fppf ). Let U be an object of Xlisse,étale (resp.
Xflat,fppf ; we think of U as a scheme smooth (resp. flat) over X . We have to show
that the restriction of E to Ulisse,étale (resp. = Uflat,fppf ) is quasi-coherent. Thus
we may assume that X = U is a scheme. Because G is quasi-coherent on Ulisse,étale
(resp. Uflat,fppf ), we may assume, after replacing U by the members of an étale
(resp. fppf) covering, that G has a presentation⊕

j∈J
O −→

⊕
i∈I
O −→ G −→ 0

on Ulisse,étale (resp. Uflat,fppf ) where O is the structure sheaf on the site. We may
also assume U is affine. Since F is quasi-coherent, we have

H1(Ulisse,étale,F) = 0, resp. H1(Uflat,fppf ,F) = 0
Namely, F is the pullback of a quasi-coherent module F ′ on the big site of U (by
Lemma 103.16.3), cohomology of F and F ′ agree (by Lemma 103.14.3), and we
know that the cohomology of F ′ on the big site of the affine scheme U is zero (to
get this in the current situation you have to combine Descent, Propositions 35.8.9
and 35.9.3 with Cohomology of Schemes, Lemma 30.2.2). Thus we can lift the map⊕

i∈I O → G to E . A diagram chase shows that we obtain an exact sequence⊕
j∈J
O → F ⊕

⊕
i∈I
O → E → 0

By (3) proved above, we conclude that E is quasi-coherent as desired. □

103.17. Coherent sheaves on locally Noetherian stacks

0GR4 This section is the analogue of Cohomology of Spaces, Section 69.12. We have
defined the notion of a coherent module on any ringed topos in Modules on Sites,
Section 18.23. However, for any algebraic stack X the category of coherent OX -
modules is zero, essentially because the site X contains too many non-Noetherian
objects (even if X is itself locally Noetherian). Instead, we will define coherent
modules using the following lemma.
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Lemma 103.17.1.0GR5 Let X be a locally Noetherian algebraic stack. Let F be an
OX -module. The following are equivalent

(1) F is a quasi-coherent, finite type OX -module,
(2) F is an OX -module of finite presentation,
(3) F is quasi-coherent and for any morphism f : U → X where U is a locally

Noetherian algebraic space, the pullback f∗F|Uétale is coherent, and
(4) F is quasi-coherent and there exists an algebraic space U and a morphism

f : U → X which is locally of finite type, flat, and surjective, such that
the pullback f∗F|Uétale is coherent.

Proof. Let f : U → X be as in (4). Then U is locally Noetherian (Morphisms of
Stacks, Lemma 101.17.5) and we see that the statement of the lemma makes sense.
Additionally, f is locally of finite presentation by Morphisms of Stacks, Lemma
101.27.5. Let x be an object of X lying over the scheme V . In order to prove (2)
we have to show that, after replacing V by the members of an fppf covering of V ,
the restriction x∗F has a global finite presentation on X/x ∼= (Sch/V )fppf . The
projection W = U ×X V → V is locally of finite presentation, flat, and surjective.
Hence we may replace V by the members of an étale covering of W by schemes and
assume we have a morphism h : V → U with f ◦ h = x. Since F is quasi-coherent,
we see that the restriction x∗F is the pullback of h∗

small(f∗F)|Uétale by πV , see
Sheaves on Stacks, Lemma 96.14.2. Since f∗F|Uétale locally in the étale topology
has a finite presentation by assumption, we conclude (4) ⇒ (2).
Part (2) implies (1) for any ringed topos (immediate from the definition). The
properties “finite type” and “quasi-coherent” are preserved under pullback by any
morphism of ringed topoi, see Modules on Sites, Lemma 18.23.4. Hence (1) implies
(3), see Cohomology of Spaces, Lemma 69.12.2. Finally, (3) trivially implies (4). □

Definition 103.17.2.0GR6 Let X be a locally Noetherian algebraic stack. An OX -module
F is called coherent if F satisfies one (and hence all) of the equivalent conditions
of Lemma 103.17.1. The category of coherent OX -modules is denote Coh(OX ).
Lemma 103.17.3.0GR7 Let X be a locally Noetherian algebraic stack. The module OX
is coherent, any invertible OX -module is coherent, and more generally any finite
locally free OX -module is coherent.
Proof. Follows from the definition and Cohomology of Spaces, Lemma 69.12.2. □

Lemma 103.17.4.0GR8 Let f : X → Y be a morphism of locally Noetherian algebraic
stacks. Then f∗ sends coherent modules on Y to coherent modules on X .
Proof. Immediate from the definition and the fact that pullback for any morphism
of ringed topoi preserves finitely presented modules, see Modules on Sites, Lemma
18.23.4. □

Lemma 103.17.5.0GR9 Let X be a locally Noetherian algebraic stack. The category of
coherent OX -modules is abelian. If φ : F → G is a map of coherent OX -modules,
then

(1) the cokernel Coker(φ) computed in Mod(OX ) is a coherent OX -module,
(2) the image Im(φ) computed in Mod(OX ) is a coherent OX -module, and
(3) the kernel Ker(φ) computed in Mod(OX ) may not be coherent, but it is

in LQCohfbc(OX ) and Q(Ker(φ)) is coherent and is the kernel of φ in
Coh(OX ).

https://stacks.math.columbia.edu/tag/0GR5
https://stacks.math.columbia.edu/tag/0GR6
https://stacks.math.columbia.edu/tag/0GR7
https://stacks.math.columbia.edu/tag/0GR8
https://stacks.math.columbia.edu/tag/0GR9
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The inclusion functor Coh(OX )→ QCoh(OX ) is exact.
Proof. The rules given for taking kernels, images, and cokernels in Coh(OX ) agree
with the prescription for quasi-coherent modules in Remark 103.10.5. Hence the
lemma will follow if we can show that the quasi-coherent modules Coker(φ), Im(φ),
and Q(Ker(φ)) are coherent. By Lemma 103.17.1 it suffices to prove this after
restricting to Uétale for some surjective smooth morphism f : U → X . The func-
tor F 7→ f∗F|Uétale is exact. Hence f∗ Coker(φ) and f∗ Im(φ) are the cokernel
and image of a map between coherent OU -modules hence coherent as desired.
The functor F 7→ f∗F|Uétale kills parasitic modules by Lemma 103.9.2. Hence
f∗Q(Ker(φ))|Uétale = f∗ Ker(φ)|Uétale by part (2) of Lemma 103.10.2. Thus we
conclude that Q(Ker(φ)) is coherent in the same way. □

Lemma 103.17.6.0GRA Let X be a locally Noetherian algebraic stack. Given a short
exact sequence 0 → F1 → F2 → F3 → 0 in Mod(OX ) with F1 and F3 coherent,
then F2 is coherent.
Proof. By Sheaves on Stacks, Lemma 96.15.1 part (7) we see that F2 is quasi-
coherent. Then we can check that F2 is coherent by restricting to Uétale for some
U → X surjective and smooth. This follows from Cohomology of Spaces, Lemma
69.12.3. Some details omitted. □

Coherent modules form a Serre subcategory of the category of quasi-coherent OX -
modules. This does not hold for modules on a general ringed topos.
Lemma 103.17.7.0GRB Let X be a locally Noetherian algebraic stack. Then Coh(OX )
is a Serre subcategory of QCoh(OX ). Let φ : F → G be a map of quasi-coherent
OX -modules. We have

(1) if F is coherent and φ surjective, then G is coherent,
(2) if F is coherent, then Im(φ) is coherent, and
(3) if G coherent and Ker(φ) parasitic, then F is coherent.

Proof. Choose a scheme U and a surjective smooth morphism f : U → X . Then
the functor f∗ : QCoh(OX )→ QCoh(OU ) is exact (Lemma 103.4.1) and moreover
by definition Coh(OX ) is the full subcategory of QCoh(OX ) consisting of objects F
such that f∗F is in Coh(OU ). The statement that Coh(OX ) is a Serre subcategory
of QCoh(OX ) follows immediately from this and the corresponding fact for U , see
Cohomology of Spaces, Lemmas 69.12.3 and 69.12.4. We omit the proof of (1), (2),
and (3). Hint: compare with the proof of Lemma 103.17.5. □

Let X be a locally Noetherian algebraic stack. Let U be an algebraic space and let
f : U → X be surjective, locally of finite presentation, and flat. Observe that U is
locally Noetherian (Morphisms of Stacks, Lemma 101.17.5). Let (U,R, s, t, c) be the
groupoid in algebraic spaces and fcan : [U/R] → X the isomorphism constructed
in Algebraic Stacks, Lemma 94.16.1 and Remark 94.16.3. As in Sheaves on Stacks,
Section 96.15 we obtain equivalences

QCoh(OX ) ∼= QCoh(O[U/R]) ∼= QCoh(U,R, s, t, c)
where the second equivalence is Sheaves on Stacks, Proposition 96.14.3. Recall that
in Groupoids in Spaces, Section 78.13 we have defined the full subcategory

Coh(U,R, s, t, c) ⊂ QCoh(U,R, s, t, c)
of coherent modules as those (G, α) such that G is a coherent OU -module.

https://stacks.math.columbia.edu/tag/0GRA
https://stacks.math.columbia.edu/tag/0GRB
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Lemma 103.17.8.0GRC In the situation discussed above, the equivalence QCoh(OX ) ∼=
QCoh(U,R, s, t, c) sends coherent sheaves to coherent sheaves and vice versa, i.e.,
induces an equivalence Coh(OX ) ∼= Coh(U,R, s, t, c).

Proof. This is immediate from the definition of coherent OX -modules. For book-
keeping purposes: the material above uses Morphisms of Stacks, Lemma 101.17.5,
Algebraic Stacks, Lemma 94.16.1 and Remark 94.16.3, Sheaves on Stacks, Section
96.15, Sheaves on Stacks, Proposition 96.14.3, and Groupoids in Spaces, Section
78.13. □

Lemma 103.17.9.0GRD Let X be a locally Noetherian algebraic stack. Let F and G be
coherent be OX -modules. Then the internal hom hom(F ,G) constructed in Lemma
103.10.8 is a coherent OX -module.

Proof. Let U → X be a smooth surjective morphism from a scheme. By item (12)
in Section 103.12 we see that the restriction of hom(F ,G) to U is the Hom sheaf
of the restrictions. Hence this lemma follows from the case of algebraic spaces, see
Cohomology of Spaces, Lemma 69.12.5. □

103.18. Coherent sheaves on Noetherian stacks

0GRE This section is the analogue of Cohomology of Spaces, Section 69.13.

Lemma 103.18.1.0GRF Let X be a Noetherian algebraic stack. Every quasi-coherent
OX -module is the filtered colimit of its coherent submodules.

Proof. Let F be a quasi-coherent OX -module. If G,H ⊂ F are coherent OX -
submodules then the image of G ⊕ H → F is another coherent OX -submodule
which contains both of them, see Lemma 103.17.7. In this way we see that the
system is directed. Hence it now suffices to show that F can be written as a filtered
colimit of coherent modules, as then we can take the images of these modules in F
to conclude there are enough of them.
Let U be an affine scheme and U → X a surjective smooth morphism (Properties of
Stacks, Lemma 100.6.2). Set R = U×XU so that X = [U/R] as in Algebraic Stacks,
Lemma 94.16.2. By Lemma 103.17.8 we have QCoh(OX) = QCoh(U,R, s, t, c) and
Coh(OX) = Coh(U,R, s, t, c). In this way we reduce to the problem of proving the
corresponding thing for QCoh(U,R, s, t, c). This is Groupoids in Spaces, Lemma
78.13.4; we check its assumptions in the next paragraph.
We urge the reader to skip the rest of the proof. The affine scheme U is Noe-
therian; this follows from our definition of X being locally Noetherian, see Proper-
ties of Stacks, Definition 100.7.2 and Remark 100.7.3. The projection morphisms
s, t : R → U are smooth (see reference given above) and quasi-separated and
quasi-compact (Morphisms of Stacks, Lemma 101.7.8). In particular, R is a quasi-
compact and quasi-separated algebraic space smooth over U and hence Noetherian
(Morphisms of Spaces, Lemma 67.28.6). □

103.19. Other chapters

Preliminaries

(1) Introduction
(2) Conventions

(3) Set Theory
(4) Categories
(5) Topology
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https://stacks.math.columbia.edu/tag/0GRF
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CHAPTER 104

Derived Categories of Stacks

08MW 104.1. Introduction

08MX In this chapter we write about derived categories associated to algebraic stacks.
This means in particular derived categories of quasi-coherent sheaves, i.e., we prove
analogues of the results on schemes (see Derived Categories of Schemes, Section
36.1) and algebraic spaces (see Derived Categories of Spaces, Section 75.1). The
results in this chapter are different from those in [LMB00] mainly because we con-
sistently use the “big sites”. Before reading this chapter please take a quick look at
the chapters “Sheaves on Algebraic Stacks” and “Cohomology of Algebraic Stacks”
where the terminology we use here is introduced.

104.2. Conventions, notation, and abuse of language

08MY We continue to use the conventions and the abuse of language introduced in Prop-
erties of Stacks, Section 100.2. We use notation as explained in Cohomology of
Stacks, Section 103.3.

104.3. The lisse-étale and the flat-fppf sites

08MZ The section is the analogue of Cohomology of Stacks, Section 103.14 for derived
categories.

Lemma 104.3.1.07AS Let X be an algebraic stack. Notation as in Cohomology of Stacks,
Lemmas 103.14.2 and 103.14.4.

(1) The functor g! : Ab(Xlisse,étale)→ Ab(Xétale) has a left derived functor
Lg! : D(Xlisse,étale) −→ D(Xétale)

which is left adjoint to g−1 and such that g−1Lg! = id.
(2) The functor g! : Mod(Xlisse,étale,OXlisse,étale) → Mod(Xétale,OX ) has a

left derived functor
Lg! : D(OXlisse,étale) −→ D(Xétale,OX )

which is left adjoint to g∗ and such that g∗Lg! = id.
(3) The functor g! : Ab(Xflat,fppf )→ Ab(Xfppf ) has a left derived functor

Lg! : D(Xflat,fppf ) −→ D(Xfppf )
which is left adjoint to g−1 and such that g−1Lg! = id.

(4) The functor g! : Mod(Xflat,fppf ,OXflat,fppf )→ Mod(Xfppf ,OX ) has a left
derived functor

Lg! : D(OXflat,fppf ) −→ D(OX )
which is left adjoint to g∗ and such that g∗Lg! = id.

7119
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Warning: It is not clear (a priori) that Lg! on modules agrees with Lg! on abelian
sheaves, see Cohomology on Sites, Remark 21.37.3.

Proof. The existence of the functor Lg! and adjointness to g∗ is Cohomology on
Sites, Lemma 21.37.2. (For the case of abelian sheaves use the constant sheaf Z
as the structure sheaves.) Moreover, it is computed on a complex H• by taking
a suitable left resolution K• → H• and applying the functor g! to K•. Since
g−1g!K• = K• by Cohomology of Stacks, Lemmas 103.14.4 and 103.14.2 we see
that the final assertion holds in each case. □

Lemma 104.3.2.07AV With assumptions and notation as in Cohomology of Stacks,
Lemma 103.15.1. We have

g−1 ◦Rf∗ = Rf ′
∗ ◦ (g′)−1 and L(g′)! ◦ (f ′)−1 = f−1 ◦ Lg!

on unbounded derived categories (both for the case of modules and for the case of
abelian sheaves).

Proof. Let τ = étale (resp. τ = fppf). Let F be an abelian sheaf on Xτ . By
Cohomology of Stacks, Lemma 103.15.3 the canonical (base change) map

g−1Rf∗F −→ Rf ′
∗(g′)−1F

is an isomorphism. The rest of the proof is formal. Since cohomology of abelian
groups and sheaves of modules agree we also conclude that g−1Rf∗F = Rf ′

∗(g′)−1F
when F is a sheaf of modules on Xτ .
Next we show that for G (either sheaf of modules or abelian groups) on Ylisse,étale
(resp. Yflat,fppf ) the canonical map

L(g′)!(f ′)−1G → f−1Lg!G
is an isomorphism. To see this it is enough to prove for any injective sheaf I on Xτ
the induced map

Hom(L(g′)!(f ′)−1G, I[n])← Hom(f−1Lg!G, I[n])
is an isomorphism for all n ∈ Z. (Hom’s taken in suitable derived categories.) By
the adjointness of f−1 and Rf∗, the adjointness of Lg! and g−1, and their “primed”
versions this follows from the isomorphism g−1Rf∗I → Rf ′

∗(g′)−1I proved above.
In the case of a bounded complex G• (of modules or abelian groups) on Ylisse,étale
(resp. Yfppf ) the canonical map
(104.3.2.1)07AX L(g′)!(f ′)−1G• → f−1Lg!G•

is an isomorphism as follows from the case of a sheaf by the usual arguments
involving truncations and the fact that the functors L(g′)!(f ′)−1 and f−1Lg! are
exact functors of triangulated categories.
Suppose that G• is a bounded above complex (of modules or abelian groups) on
Ylisse,étale (resp. Yfppf ). The canonical map (104.3.2.1) is an isomorphism because
we can use the stupid truncations σ≥−n (see Homology, Section 12.15) to write
G• as a colimit G• = colimG•

n of bounded complexes. This gives a distinguished
triangle ⊕

n≥1
G•
n →

⊕
n≥1
G•
n → G• → . . .

and each of the functors L(g′)!, (f ′)−1, f−1, Lg! commutes with direct sums (of
complexes).

https://stacks.math.columbia.edu/tag/07AV
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If G• is an arbitrary complex (of modules or abelian groups) on Ylisse,étale (resp.
Yfppf ) then we use the canonical truncations τ≤n (see Homology, Section 12.15) to
write G• as a colimit of bounded above complexes and we repeat the argument of
the paragraph above.

Finally, by the adjointness of f−1 and Rf∗, the adjointness of Lg! and g−1, and
their “primed” versions we conclude that the first identity of the lemma follows
from the second in full generality. □

Lemma 104.3.3.07B3 Let X be an algebraic stack. Notation as in Cohomology of Stacks,
Lemma 103.14.2.

(1) Let H be a quasi-coherent OXlisse,étale -module on the lisse-étale site of X .
For all p ∈ Z the sheaf Hp(Lg!H) is a locally quasi-coherent module with
the flat base change property on X .

(2) Let H be a quasi-coherent OXflat,fppf -module on the flat-fppf site of X .
For all p ∈ Z the sheaf Hp(Lg!H) is a locally quasi-coherent module with
the flat base change property on X .

Proof. Pick a scheme U and a surjective smooth morphism x : U → X . By Modules
on Sites, Definition 18.23.1 there exists an étale (resp. fppf) covering {Ui → U}i∈I
such that each pullback f−1

i H has a global presentation (see Modules on Sites,
Definition 18.17.1). Here fi : Ui → X is the composition Ui → U → X which is
a morphism of algebraic stacks. (Recall that the pullback “is” the restriction to
X/fi, see Sheaves on Stacks, Definition 96.9.2 and the discussion following.) After
refining the covering we may assume each Ui is an affine scheme. Since each fi is
smooth (resp. flat) by Lemma 104.3.2 we see that f−1

i Lg!H = Lgi,!(f ′
i)−1H. Using

Cohomology of Stacks, Lemma 103.8.2 we reduce the statement of the lemma to
the case where H has a global presentation and where X = (Sch/X)fppf for some
affine scheme X = Spec(A).

Say our presentation looks like⊕
j∈J
O −→

⊕
i∈I
O −→ H −→ 0

where O = OXlisse,étale (resp. O = OXflat,fppf ). Note that the site Xlisse,étale (resp.
Xflat,fppf ) has a final object, namely X/X which is quasi-compact (see Cohomology
on Sites, Section 21.16). Hence we have

Γ(
⊕

i∈I
O) =

⊕
i∈I

A

by Sites, Lemma 7.17.7. Hence the map in the presentation corresponds to a similar
presentation ⊕

j∈J
A −→

⊕
i∈I

A −→M −→ 0

of an A-module M . Moreover, H is equal to the restriction to the lisse-étale (resp.
flat-fppf) site of the quasi-coherent sheaf Ma associated to M . Choose a resolution

. . .→ F2 → F1 → F0 →M → 0

by free A-modules. The complex

. . .O ⊗A F2 → O⊗A F1 → O⊗A F0 → H→ 0

https://stacks.math.columbia.edu/tag/07B3
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is a resolution of H by free O-modules because for each object U/X of Xlisse,étale
(resp. Xflat,fppf ) the structure morphism U → X is flat. Hence by construction
the value of Lg!H is

. . .→ OX ⊗A F2 → OX ⊗A F1 → OX ⊗A F0 → 0→ . . .

Since this is a complex of quasi-coherent modules on Xétale (resp. Xfppf ) it follows
from Cohomology of Stacks, Proposition 103.8.1 that Hp(Lg!H) is quasi-coherent.

□

104.4. Cohomology and the lisse-étale and flat-fppf sites

0H0Y We have already seen that cohomology of a sheaf on an algebraic stack X can be
computed on flat-fppf site. In this section we prove the same is true for (possibly)
unbounded objects of the direct category of X .

Lemma 104.4.1.0H0Z Let X be an algebraic stack. We have Lg!Z = Z for either Lg! as
in Lemma 104.3.1 part (1) or Lg! as in Lemma 104.3.1 part (3).

Proof. We prove this for the comparison between the flat-fppf site with the fppf site;
the case of the lisse-étale site is exactly the same. We have to show that Hi(Lg!Z)
is 0 for i ̸= 0 and that the canonical map H0(Lg!Z) → Z is an isomorphism. Let
f : U → X be a surjective, flat morphism where U is a scheme such that f is
also locally of finite presentation. (For example, pick a presentation U → X and
let U be the algebraic stack corresponding to U .) By Sheaves on Stacks, Lemmas
96.19.6 and 96.19.10 it suffices to show that the pullback f−1Hi(Lg!Z) is 0 for
i ̸= 0 and that the pullback H0(Lg!Z) → f−1Z is an isomorphism. By Lemma
104.3.2 we find f−1Lg!Z = L(g′)!Z where g′ : Sh(Uflat,fppf ) → Sh(Ufppf ) is the
corresponding comparision morphism for U . This reduces us to the case studied in
the next paragraph.

Assume X = (Sch/X)fppf for some scheme X. In this case the category Xflat,fppf
has a final object e, namely X/X, and moreover the functor u : Xflat,fppf → Xfppf
sends e to the final object. Since Z is the free abelian sheaf on the final object
(provided the final object exists) we find that Lg!Z = Z by the very construction
of Lg! in Cohomology on Sites, Lemma 21.37.2. □

Lemma 104.4.2.0H10 Let X be an algebraic stack. Notation as in Lemma 104.3.1.
(1) For K in D(Xétale) we have

(a) RΓ(Xétale,K) = RΓ(Xlisse,étale, g−1K), and
(b) RΓ(x,K) = RΓ(Xlisse,étale/x, g−1K) for any object x of Xlisse,étale.

(2) For K in D(Xfppf ) we have
(a) RΓ(Xfppf ,K) = RΓ(Xflat,fppf , g−1K), and
(b) Hp(x,K) = RΓ(Xflat,fppf/x, g−1K) for any object x of Xflat,fppf .

In both cases, the same holds for modules, since we have g−1 = g∗ and there is no
difference in computing cohomology by Cohomology on Sites, Lemma 21.20.7.

Proof. We prove this for the comparison between the flat-fppf site with the fppf
site; the case of the lisse-étale site is exactly the same. By Lemma 104.4.1 we have

https://stacks.math.columbia.edu/tag/0H0Z
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Lg!Z = Z. Then we obtain
RΓ(Xfppf ,K) = RHom(Z,K)

= RHom(Lg!Z,K)
= RHom(Z, g−1K)
= RΓ(Xlisse,étale, g−1K)

This proves (1)(a). Part (1)(b) follows from part (1)(a). Namely, if x lies over the
scheme U , then the site Xétale/x is equivalent to (Sch/U)étale and Xlisse,étale is
equivalent to Ulisse,étale. □

104.5. Derived categories of quasi-coherent modules

07B5 Let X be an algebraic stack. As the inclusion functor QCoh(OX )→ Mod(OX ) isn’t
exact, we cannot define DQCoh(OX ) as the full subcategory of D(OX ) consisting of
complexes with quasi-coherent cohomology sheaves. Instead we define the derived
category of quasi-coherent modules as a quotient by analogy with Cohomology of
Stacks, Remark 103.10.7.
Recall that LQCohfbc(OX ) ⊂ Mod(OX ) denotes the full subcategory of locally
quasi-coherent OX -modules with the flat base change property, see Cohomology of
Stacks, Section 103.8. We will abbreviate

DLQCohfbc(OX ) = DLQCohfbc(OX )(OX )
From Derived Categories, Lemma 13.17.1 and Cohomology of Stacks, Proposition
103.8.1 part (2) we deduce that DLQCohfbc(OX ) is a strictly full, saturated trian-
gulated subcategory of D(OX ).
Let Parasitic(OX ) ⊂ Mod(OX ) denote the full subcategory of parasiticOX -modules,
see Cohomology of Stacks, Section 103.9. Let us abbreviate

DParasitic(OX ) = DParasitic(OX )(OX )
As before this is a strictly full, saturated triangulated subcategory of D(OX ) since
Parasitic(OX ) is a Serre subcategory of Mod(OX ), see Cohomology of Stacks,
Lemma 103.9.2.
The intersection of the weak Serre subcategories Parasitic(OX ) ∩ LQCohfbc(OX )
of Mod(OX ) is another one. Let us similarly abbreviate

DParasitic∩LQCohfbc(OX ) = DParasitic(OX )∩LQCohfbc(OX )(OX )
= DParasitic(OX ) ∩DLQCohfbc(OX )

As before this is a strictly full, saturated triangulated subcategory of D(OX ). Hence
a fortiori it is a strictly full, saturated triangulated subcategory of DLQCohfbc(OX ).

Definition 104.5.1.07B6 Let X be an algebraic stack. With notation as above we define
the derived category of OX -modules with quasi-coherent cohomology sheaves as the
Verdier quotient1

DQCoh(OX ) = DLQCohfbc(OX )/DParasitic∩LQCohfbc(OX )

1This definition is different from the one in the literature, see [Ols07b, 6.3], but it agrees with
that definition by Lemma 104.5.3.

https://stacks.math.columbia.edu/tag/07B6
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The Verdier quotient is defined in Derived Categories, Section 13.6. A morphism
a : E → E′ of DLQCohfbc(OX ) becomes an isomorphism in DQCoh(OX ) if and only
if the cone C(a) has parasitic cohomology sheaves, see Derived Categories, Lemma
13.6.10.
Consider the functors

DLQCohfbc(OX ) Hi−−→ LQCohfbc(OX ) Q−→ QCoh(OX )

Note that Q annihilates the subcategory Parasitic(OX ) ∩ LQCohfbc(OX ), see Co-
homology of Stacks, Lemma 103.10.2. By Derived Categories, Lemma 13.6.8 we
obtain a cohomological functor
(104.5.1.1)07B7 Hi : DQCoh(OX ) −→ QCoh(OX )

Moreover, note that E ∈ DQCoh(OX ) is zero if and only if Hi(E) = 0 for all
i ∈ Z since the kernel of Q is exactly equal to Parasitic(OX ) ∩ LQCohfbc(OX ) by
Cohomology of Stacks, Lemma 103.10.2.
Note that the categories Parasitic(OX ) ∩ LQCohfbc(OX ) and LQCohfbc(OX ) are
also weak Serre subcategories of the abelian category Mod(Xétale,OX ) of modules
in the étale topology, see Cohomology of Stacks, Proposition 103.8.1 and Lemma
103.9.2. Hence the statement of the following lemma makes sense.

Lemma 104.5.2.07B8 Let X be an algebraic stack. Abbreviate PX = Parasitic(OX ) ∩
LQCohfbc(OX ). The comparison morphism ϵ : Xfppf → Xétale induces a commu-
tative diagram

DParasitic∩LQCohfbc(OX ) // DLQCohfbc(OX ) // D(OX )

DPX (Xétale,OX ) //

ϵ∗

OO

DLQCohfbc(OX )(Xétale,OX ) //

ϵ∗

OO

D(Xétale,OX )

ϵ∗

OO

Moreover, the left two vertical arrows are equivalences of triangulated categories,
hence we also obtain an equivalence

DLQCohfbc(OX )(Xétale,OX )/DPX (Xétale,OX ) −→ DQCoh(OX )

Proof. Since ϵ∗ is exact it is clear that we obtain a diagram as in the statement of
the lemma. We will show the middle vertical arrow is an equivalence by applying
Cohomology on Sites, Lemma 21.29.1 to the following situation: C = X , τ = fppf ,
τ ′ = étale, O = OX , A = LQCohfbc(OX ), and B is the set of objects of X lying
over affine schemes. To see the lemma applies we have to check conditions (1),
(2), (3), (4). Conditions (1) and (2) are clear from the discussion above (explicitly
this follows from Cohomology of Stacks, Proposition 103.8.1). Condition (3) holds
because every scheme has a Zariski open covering by affines. Condition (4) follows
from Descent, Lemma 35.12.4.
We omit the verification that the equivalence of categories ϵ∗ : DLQCohfbc(OX )(Xétale,OX )→
DLQCohfbc(OX ) induces an equivalence of the subcategories of complexes with par-
asitic cohomology sheaves. □

Let X be an algebraic stack. By Cohomology of Stacks, Lemma 103.16.4 the cate-
gory of quasi-coherent modules QCoh(OXlisse,étale) forms a weak Serre subcategory
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of Mod(OXlisse,étale) and the category of quasi-coherent modules QCoh(OXflat,fppf )
forms a weak Serre subcategory of Mod(OXflat,fppf ). Thus we can consider

DQCoh(OXlisse,étale) = DQCoh(OXlisse,étale )(OXlisse,étale) ⊂ D(OXlisse,étale)

and similarly
DQCoh(OXflat,fppf ) = DQCoh(OXflat,fppf )(OXflat,fppf ) ⊂ D(OXflat,fppf )

As above these are strictly full, saturated triangulated subcategories. It turns out
that DQCoh(OX ) is equivalent to either of these.

Lemma 104.5.3.07B9 Let X be an algebraic stack. Set PX = Parasitic(OX )∩LQCohfbc(OX ).
(1) Let F• be an object of DLQCohfbc(OX )(Xétale,OX ). With g as in Coho-

mology of Stacks, Lemma 103.14.2 for the lisse-étale site we have
(a) g∗F• is in DQCoh(OXlisse,étale),
(b) g∗F• = 0 if and only if F• is in DPX (Xétale,OX ),
(c) Lg!H• is in DLQCohfbc(OX )(Xétale,OX ) forH• in DQCoh(OXlisse,étale),

and
(d) the functors g∗ and Lg! define mutually inverse functors

DQCoh(OX )
g∗
//
DQCoh(OXlisse,étale)

Lg!

oo

(2) Let F• be an object of DLQCohfbc(OX ). With g as in Cohomology of
Stacks, Lemma 103.14.2 for the flat-fppf site we have
(a) g∗F• is in DQCoh(OXflat,fppf ),
(b) g∗F• = 0 if and only if F• is in DPX (OX ),
(c) Lg!H• is in DLQCohfbc(OX ) for H• in DQCoh(OXflat,fppf ), and
(d) the functors g∗ and Lg! define mutually inverse functors

DQCoh(OX )
g∗
//
DQCoh(OXflat,fppf )

Lg!

oo

Proof. The functor g∗ = g−1 is exact, hence (1)(a), (2)(a), (1)(b), and (2)(b) follow
from Cohomology of Stacks, Lemmas 103.16.3 and 103.14.6.
Proof of (1)(c) and (2)(c). The construction of Lg! in Lemma 104.3.1 (via Coho-
mology on Sites, Lemma 21.37.2 which in turn uses Derived Categories, Proposition
13.29.2) shows that Lg! on any object H• of D(OXlisse,étale) is computed as

Lg!H• = colim g!K•
n = g! colimK•

n

(termwise colimits) where the quasi-isomorphism colimK•
n → H• induces quasi-

isomorphisms K•
n → τ≤nH•. Since the inclusion functors

LQCohfbc(OX ) ⊂ Mod(Xétale,OX ) and LQCohfbc(OX ) ⊂ Mod(OX )
are compatible with filtered colimits we see that it suffices to prove (c) on bounded
above complexes H• in DQCoh(OXlisse,étale) and in DQCoh(OXflat,fppf ). In this case
to show that Hn(Lg!H•) is in LQCohfbc(OX ) we can argue by induction on the
integer m such that Hi = 0 for i > m. If m < n, then Hn(Lg!H•) = 0 and the
result holds. In general consider the distinguished triangle

τ≤m−1H• → H• → Hm(H•)[−m]→ . . .

https://stacks.math.columbia.edu/tag/07B9
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(Derived Categories, Remark 13.12.4) and apply the functor Lg!. Since LQCohfbc(OX )
is a weak Serre subcategory of the module category it suffices to prove (c) for two
out of three. We have the result for Lg!τ≤m−1H• by induction and we have the
result for Lg!H

m(H•)[−m] by Lemma 104.3.3. Whence (c) holds.
Let us prove (2)(d). By (2)(a) and (2)(b) the functor g−1 = g∗ induces a functor

c : DQCoh(OX ) −→ DQCoh(OXflat,fppf )
see Derived Categories, Lemma 13.6.8. Thus we have the following diagram of
triangulated categories

DLQCohfbc(OX )
g−1

))

q
// DQCoh(OX )

c
vv

DQCoh(OXflat,fppf )
Lg!

ii

where q is the quotient functor, the inner triangle is commutative, and g−1Lg! = id.
For any object of E of DLQCohfbc(OX ) the map a : Lg!g

−1E → E maps to a quasi-
isomorphism in D(OXflat,fppf ). Hence the cone on a maps to zero under g−1 and
by (2)(b) we see that q(a) is an isomorphism. Thus q ◦ Lg! is a quasi-inverse to c.
In the case of the lisse-étale site exactly the same argument as above proves that

DLQCohfbc(OX )(Xétale,OX )/DPX (Xétale,OX )
is equivalent to DQCoh(OXlisse,étale). Applying the last equivalence of Lemma
104.5.2 finishes the proof. □

The following lemma tells us that the quotient functorDLQCohfbc(OX )→ DQCoh(OX )
has a left adjoint. See Remark 104.5.5.

Lemma 104.5.4.07BA Let X be an algebraic stack. Let E be an object ofDLQCohfbc(OX ).
There exists a canonical distinguished triangle

E′ → E → P → E′[1]
in DLQCohfbc(OX ) such that P is in DParasitic∩LQCohfbc(OX ) and

HomD(OX )(E′, P ′) = 0
for all P ′ in DParasitic∩LQCohfbc(OX ).

Proof. Consider the morphism of ringed topoi g : Sh(Xflat,fppf ) −→ Sh(Xfppf )
studied in Cohomology of Stacks, Section 103.14. Set E′ = Lg!g

∗E and let P
be the cone on the adjunction map E′ → E, see Lemma 104.3.1 part (4). By
Lemma 104.5.3 parts (2)(a) and (2)(c) we have that E′ is in DLQCohfbc(OX ).
Hence also P is in DLQCohfbc(OX ). The map g∗E′ → g∗E is an isomorphism
as g∗Lg! = id by Lemma 104.3.1 part (4). Hence g∗P = 0 and whence P is an
object of DParasitic∩LQCohfbc(OX ) by Lemma 104.5.3 part (2)(b). Finally, for P ′ in
DParasitic∩LQCohfbc(OX ) we have

Hom(E′, P ′) = Hom(Lg!g
∗E,P ′) = Hom(g∗E, g∗P ′) = 0

as g∗P ′ = 0 by Lemma 104.5.3 part (2)(b). The distinguished triangle E′ →
E → P → E′[1] is canonical (more precisely unique up to isomorphism of triangles
induces the identity on E) by the discussion in Derived Categories, Section 13.40.

□

https://stacks.math.columbia.edu/tag/07BA
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Remark 104.5.5.0H11 The result of Lemma 104.5.4 tells us that
DParasitic∩LQCohfbc(OX ) ⊂ DLQCohfbc(OX )

is a left admissible subcategory, see Derived Categories, Section 13.40. In partic-
ular, if A ⊂ DLQCohfbc(OX ) denotes its left orthogonal, then Derived Categories,
Proposition 13.40.10 implies that A is right admissible in DLQCohfbc(OX ) and that
the composition

A −→ DLQCohfbc(OX ) −→ DQCoh(OX )
is an equivalence. This means that we can view DQCoh(OX ) as a strictly full
saturated triangulated subcategory of DLQCohfbc(OX ) and also of D(Xfppf ,OX ).

104.6. Derived pushforward of quasi-coherent modules

07BB As a first application of the material above we construct the derived pushforward.
In Examples, Section 110.60 the reader can find an example of a quasi-compact
and quasi-separated morphism f : X → Y of algebraic stacks such that the direct
image functor Rf∗ does not induce a functor DQCoh(OX ) → DQCoh(OY). Thus
restricting to bounded below complexes is necessary.

Proposition 104.6.1.07BC Let f : X → Y be a quasi-compact and quasi-separated
morphism of algebraic stacks. The functor Rf∗ induces a commutative diagram

D+
Parasitic∩LQCohfbc(OX ) //

Rf∗

��

D+
LQCohfbc(OX ) //

Rf∗

��

D(OX )

Rf∗

��
D+

Parasitic∩LQCohfbc(OY) // D+
LQCohfbc(OY) // D(OY)

and hence induces a functor
RfQCoh,∗ : D+

QCoh(OX ) −→ D+
QCoh(OY)

on quotient categories. Moreover, the functor RifQCoh of Cohomology of Stacks,
Proposition 103.11.1 are equal to Hi ◦RfQCoh,∗ with Hi as in (104.5.1.1).

Proof. We have to show thatRf∗E is an object ofD+
LQCohfbc(OY) for E inD+

LQCohfbc(OX ).
This follows from Cohomology of Stacks, Proposition 103.8.1 and the spectral se-
quence Rif∗H

j(E)⇒ Ri+jf∗E. The case of parasitic modules works the same way
using Cohomology of Stacks, Lemma 103.9.3. The final statement is clear from the
definition of Hi in (104.5.1.1). □

104.7. Derived pullback of quasi-coherent modules

07BD Derived pullback of complexes with quasi-coherent cohomology sheaves exists in
general.

Proposition 104.7.1.07BE Let f : X → Y be a morphism of algebraic stacks. The exact
functor f∗ induces a commutative diagram

DLQCohfbc(OX ) // D(OX )

DLQCohfbc(OY) //

f∗

OO

D(OY)

f∗

OO
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The composition

DLQCohfbc(OY) f∗

−→ DLQCohfbc(OX ) qX−−→ DQCoh(OX )

is left derivable with respect to the localization DLQCohfbc(OY)→ DQCoh(OY) and
we may define Lf∗

QCoh as its left derived functor

Lf∗
QCoh : DQCoh(OY) −→ DQCoh(OX )

(see Derived Categories, Definitions 13.14.2 and 13.14.9). If f is quasi-compact and
quasi-separated, then Lf∗

QCoh and RfQCoh,∗ satisfy the following adjointness:

HomDQCoh(OX )(Lf∗
QCohA,B) = HomDQCoh(OY )(A,RfQCoh,∗B)

for A ∈ DQCoh(OY) and B ∈ D+
QCoh(OX ).

Proof. To prove the first statement, we have to show that f∗E is an object of
DLQCohfbc(OX ) for E in DLQCohfbc(OY). Since f∗ = f−1 is exact this follows
immediately from the fact that f∗ maps LQCohfbc(OY) into LQCohfbc(OX ) by
Cohomology of Stacks, Proposition 103.8.1.

SetD = DLQCohfbc(OY). Let S be the collection of morphisms inD whose cone is an
object of DParasitic∩LQCohfbc(OY). Set D′ = DQCoh(OX ). Set F = qX ◦f∗ : D → D′.
Then D, S,D′, F are as in Derived Categories, Situation 13.14.1 and Definition
13.14.2. Let us prove that LF (E) is defined for any object E of D. Namely,
consider the triangle

E′ → E → P → E′[1]
constructed in Lemma 104.5.4. Note that s : E′ → E is an element of S. We claim
that E′ computes LF . Namely, suppose that s′ : E′′ → E is another element of S,
i.e., fits into a triangle E′′ → E → P ′ → E′′[1] with P ′ in DParasitic∩LQCohfbc(OY).
By Lemma 104.5.4 (and its proof) we see that E′ → E factors through E′′ → E.
Thus we see that E′ → E is cofinal in the system S/E. Hence it is clear that E′

computes LF .

To see the final statement, write B = qX (H) and A = qY(E). Choose E′ → E as
above. We will use on the one hand that RfQCoh,∗(B) = qY(Rf∗H) and on the
other that Lf∗

QCoh(A) = qX (f∗E′).

HomDQCoh(OX )(Lf∗
QCohA,B) = HomDQCoh(OX )(qX (f∗E′), qX (H))

= colimH→H′ HomD(OX )(f∗E′, H ′)
= colimH→H′ HomD(OY )(E′, Rf∗H

′)
= HomD(OY )(E′, Rf∗H)
= HomDQCoh(OY )(A,RfQCoh,∗B)

Here the colimit is over morphisms s : H → H ′ in D+
LQCohfbc(OX ) whose cone P (s)

is an object of D+
Parasitic∩LQCohfbc(OX ). The first equality we’ve seen above. The

second equality holds by construction of the Verdier quotient. The third equal-
ity holds by Cohomology on Sites, Lemma 21.19.1. Since Rf∗P (s) is an object of
D+

Parasitic∩LQCohfbc(OY) by Proposition 104.6.1 we see that HomD(OY )(E′, Rf∗P (s)) =
0. Thus the fourth equality holds. The final equality holds by construction of
E′. □
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104.8. Quasi-coherent objects in the derived category

0H12 This section is the continuation of Sheaves on Stacks, Section 96.26. Let X be an
algebraic stack. In that section we defined a triangulated category

QC (X ) = QC (Xaffine,O)
and we proved that if X is representable by an algebraic space X then QC (X ) is
equivalent to DQCoh(OX). It turns out that we have developed just enough theory
to prove the same thing is true for any algebraic stack.

Lemma 104.8.1.0H13 Let X be an algebraic stack. Let K be an object of D(Xfppf )
whose cohomology sheaves are parasitic. Then RΓ(x,K) = 0 for all objects x of X
lying over a scheme U such that U → X is flat.

Proof. Denote g : Sh(Xflat,fppf ) → Sh(Xfppf ) the morphism of topoi discussed in
Section 104.3. Let x be an object of X lying over a scheme U such that U → X
is flat, i.e., x is an object of Xflat,fppf . By Lemma 104.4.2 part (2)(b) we have
RΓ(x,K) = RΓ(Xflat,fppf/x, g−1K). However, our assumption means that the
cohomology sheaves of the object g−1K of D(Xflat,fppf ) are zero, see Cohomology
of Stacks, Definition 103.9.1. Hence g−1K = 0 and we win. □

Lemma 104.8.2.0H14 Let X be an algebraic stack. Let K be an object of D(Xfppf )
such that RΓ(x,K) = 0 for all objects x of X lying over an affine scheme U such
that U → X is flat. Then Hi(X ,K) = 0 for all i.

Proof. Denote g : Sh(Xflat,fppf ) → Sh(Xfppf ) the morphism of topoi discussed in
Section 104.3. By Lemma 104.4.2 part (2)(b) our assumption means that g−1K
has vanishing cohomology over every object of Xflat,fppf which lies over an affine
scheme. Since every object x of Xflat,fppf has a covering by such objects, we
conclude that g−1K has vanishing cohomology sheaves, i.e., we conclude g−1K = 0.
Then of course RΓ(Xflat,fppf , g−1K) = 0 which in turn implies what we want by
Lemma 104.4.2 part (2)(a). □

Lemma 104.8.3.0H15 Let X be an algebraic stack. LetK be an object ofDQCoh(OXflat,fppf ).
Then Lg!K satisfies the following property: for any morphism x → x′ of Xaffine
the map

RΓ(x′, Lg!K)⊗L
O(x′) O(x) −→ RΓ(x, Lg!K)

is a quasi-isomorphism.

Proof. By Lemma 104.5.3 part (2)(c) the object Lg!K is in DLQCohfbc(OX ). It
follows readily from this that the map displayed in the lemma is an isomorphism if
O(x′)→ O(x) is a flat ring map; we omit the details.
In this paragraph we argue that the question is local for the étale topology. Let x→
x′ be a general morphism of Xaffine. Let {x′

i → x′} be a covering in Xaffine,étale.
Set xi = x×x′ x′

i so that {xi → x} is a covering of Xaffine,étale too. Then O(x′)→∏
O(x′

i) is a faithfully flat étale ring map and∏
O(xi) = O(x)⊗O(x′)

(∏
O(x′

i)
)

Thus a simple algebra argument we omit shows that it suffices to prove the result
in the statement of the lemma holds for each of the morphisms xi → x′

i in Xaffine.
In other words, the problem is local in the étale topology.

https://stacks.math.columbia.edu/tag/0H13
https://stacks.math.columbia.edu/tag/0H14
https://stacks.math.columbia.edu/tag/0H15


104.8. QUASI-COHERENT OBJECTS IN THE DERIVED CATEGORY 7130

Choose a scheme X and a surjective smooth morphism f : X → X . We may view
f as an object of X (by our abuse of notation) and then (Sch/X)fppf = X/f ,
see Sheaves on Stacks, Section 96.9. By Sheaves on Stacks, Lemma 96.19.10 for
example, there exist an étale covering {x′

i → x′} such that x′
i : U ′

i = p(x′
i) → X

factors through f . By the result of the previous paragraph, we may assume that
x → x′ is a morphism which is the image of a morphism U → U ′ of (Aff/X)fppf
by the functor (Sch/X)fppf → X . At this point we see use that the restriction to
(Sch/X)fppf of Lg!K is equal to f∗Lg!K = L(g′)!(f ′)∗K by Lemma 104.3.2. This
reduces us to the case discussed in the next paragraph.

Assume X = (Sch/X)fppf and x → x′ corresponds to the morphism of affine
schemes U → U ′. We may still work étale (or Zariski) locally on U ′ and hence we
may assume U ′ → X factors through some affine open of X. This reduces us to
the case discussed in the next paragraph.

Assume X = (Sch/X)fppf where X = Spec(R) is an affine scheme and x → x′

corresponds to the morphism of affine schemes U → U ′. Let M• be a complex of R-
modules representing RΓ(X,K). By the construction in More on Algebra, Lemma
15.59.10 we may assume M• = colimP •

n where each P •
n is a bounded above complex

of free R-modules. Details omitted; see also More on Algebra, Remark 15.59.11.
Consider the complex of modules M•

flat,fppf on Xflat,fppf = (Sch/X)flat,fppf given
by the rule

U 7−→ Γ(U,M• ⊗R OU )
This is a complex of sheaves by the discussion in Descent, Section 35.8. There is a
canonical map M•

flat,fppf → K which by our initial remarks of the proof produces
an isomorphism on sections over the affine objects of Xflat,fppf . Since every object
of Xflat,fppf has a covering by affine objects we see that M•

flat,fppf agrees with K.

Let M•
fppf be the complex of modules on Xfppf given by the same formula as

displayed above. Recall that Lg!O = g!O = O. Since Lg! is the left derived functor
of g! we conclude that Lg!P

•
n,flat,fppf = P •

n,fppf . Since the functor Lg! commutes
with homotopy colimits (or by its construction in Cohomology on Sites, Lemma
21.37.2) and since M• = colimP •

n we conclude that Lg!M
•
flat,fppf = M•

fppf . Say
U = Spec(A), U ′ = Spec(A′) and U → U ′ corresponds to the ring map A′ → A.
From the above we see that

RΓ(U,Lg!K) = M• ⊗R A and RΓ(U ′, Lg!K) = M• ⊗R A′

Since M• is a K-flat complex of R-modules, by transitivity of tensor product it
follows that

RΓ(U ′, Lg!K)⊗L
A′ A −→ RΓ(U,Lg!K)

is a quasi-isomorphism as desired. □

Proposition 104.8.4.0H16 Let X be an algebraic stack. Then QC (X ) is canonically
equivalent to DQCoh(OX ).

Proof. By Sheaves on Stacks, Lemma 96.26.6 pullback by the comparison mor-
phism ϵ : Xaffine,fppf → Xaffine identifies QC (X ) with a full subcategory QX ⊂
D(Xaffine,fppf ,O). Using the equivalence of ringed topoi in Sheaves on Stacks,
Equation (96.24.3.1) we may and do view QX as a full subcategory of D(Xfppf ,O).

https://stacks.math.columbia.edu/tag/0H16
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Similarly by Lemma 104.5.4 and Remark 104.5.5 we find that DQCoh(OX ) may be
viewed as the left orthogonalA of the left admissible subcategoryDParasitic∩LQCohfbc(OX )
of DLQCohfbc(OX ).
To finish we will show that QX is equal to A as subcategories of D(Xfppf ,O).
Step 1: QX is contained in DLQCohfbc(OX ). An object K of QX is characterized
by the property that K, viewed as an object of D(Xaffine,fppf ,O) satisfies Rϵ∗K
is an object of QC (Xaffine,O). This in turn means exactly that for all morphisms
x→ x′ of Xaffine the map

RΓ(x′,K)⊗L
O(x′) O(x) −→ RΓ(x,K)

is an isomorphism, see footnote in statement of Cohomology on Sites, Lemma
21.43.12. Now, if x′ → x lies over a flat morphism of affine schemes, then this
means that

Hi(x′,K)⊗O(x′) O(x) ∼= Hi(x,K)
This clearly means that Hi(K) is a sheaf for the étale topology (Sheaves on Stacks,
Lemma 96.25.1) and that it has the flat base change property (small detail omitted).
Step 2: QX is contained in A. To see this it suffices to show that for K in QX we
have Hom(K,P ) = 0 for all P in DParasitic∩LQCohfbc(OX ). Consider the object

H = RHomOX (K,P )
Let x be an object of X which lies over an affine scheme U = p(x). By Cohomology
on Sites, Lemma 21.35.1 we have the first equality in

RΓ(x,H) = RHomOX (K|X/x, P |X/x) = RHomO(K|Xaffine/x, P |Xaffine/x)
The second equality stems from the fact that the topos of the site X/x is equivalent
to the topos of the site Xaffine/x, see Sheaves on Stacks, Equation (96.24.3.1). We
may write K = ϵ∗N for some N in QC (O). Then by Cohomology on Sites, Lemma
21.43.13 we see that

RΓ(x,H) = RHomD(O(x))(RΓ(x,N), RΓ(x, P ))
By Lemma 104.8.1 we see that RΓ(x, P ) = 0 if U → X is flat and hence RΓ(x,H) =
0 under the same hypothesis. By Lemma 104.8.2 we conclude that RΓ(X , H) = 0
and therefore Hom(K,P ) = 0.
Step 3: A is contained in QX . Let K be an object of A and let x → x′ be a
morphism of Xaffine. We have to show that

RΓ(x′,K)⊗L
O(x′) O(x) −→ RΓ(x,K)

is a quasi-isomorphism, see footnote in statement of Cohomology on Sites, Lemma
21.43.12. By the proof of Lemma 104.5.4 and the discussion in Remark 104.5.5
we see that A is the image of the restriction of Lg! to DQCoh(OXflat,fppf ). Thus
we may assume K = Lg!M for some M in DQCoh(OXflat,fppf ). Then the desired
equality follow from Lemma 104.8.3. □
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CHAPTER 105

Introducing Algebraic Stacks

072H 105.1. Why read this?

072I We give an informal introduction to algebraic stacks. The goal is to quickly intro-
duce a simple language which you can use to think about local and global properties
of your favorite moduli problem. Having done this it should be possible to ask your-
self well-posed questions about moduli problems and to start solving them, whilst
assuming a general theory exists. If you end up with an interesting result, you can
go back to the general theory in the other parts of the stacks project and fill in the
gaps as needed.

The point of view we take here is close to the point of view taken in [KM85] and
[Mum65].

105.2. Preliminary

072J Let S be a scheme. An elliptic curve over S is a triple (E, f, 0) where E is a scheme
and f : E → S and 0 : S → E are morphisms of schemes such that

(1) f : E → S is proper, smooth of relative dimension 1,
(2) for every s ∈ S the fibre Es is a connected curve of genus 1, i.e., H0(Es,O)

and H1(Es,O) both are 1-dimensional κ(s)-vector spaces, and
(3) 0 is a section of f .

Given elliptic curves (E, f, 0)/S and (E′, f ′, 0′)/S′ a morphism of elliptic curves
over a : S → S′ is a morphism α : E → E′ such that the diagram

E
α

//

f

��

E′

f ′

��
S

0

77

a // S′

0′

ff

is commutative and the inner square is cartesian, in other words the morphism α
induces an isomorphism E → S ×S′ E′. We are going to define the stack of elliptic
curves M1,1. In the rest of the Stacks project we work out the method introduced
in Deligne and Mumford’s paper [DM69] which consists in presenting M1,1 as a
category endowed with a functor

p :M1,1 −→ Sch, (E, f, 0)/S 7−→ S

This means you work with fibred categories over the categories of schemes, topolo-
gies, stacks fibred in groupoids, coverings, etc, etc. In this chapter we throw all of
that out of the window and we think about it a bit differently – probably closer to
how the initiators of the theory started thinking about it themselves.

7134
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105.3. The moduli stack of elliptic curves

072K Here is what we are going to do:
(1) Start with your favorite category of schemes Sch.
(2) Add a new symbol M1,1.
(3) A morphism S →M1,1 is an elliptic curve (E, f, 0) over S.
(4) A diagram

S
a

//

(E,f,0) !!

S′

(E′,F ′,0′)||
M1,1

is commutative if and only if there exists a morphism α : E → E′ of
elliptic curves over a : S → S′. We say α witnesses the commutativity of
the diagram.

(5) Note that commutative diagrams glue as follows

S
a

//

(E,f,0)
))

S′

(E′,F ′,0′)
��

a′
// S′′

(E′′,F ′′,0′′)uu
M1,1

because α′ ◦ α witnesses the commutativity of the outer triangle if α and
α′ witness the commutativity of the left and right triangles.

(6) The composition

S
a−→ S′ (E′,f ′,0′)−−−−−−→M1,1

is given by (E′ ×S′ S, f ′ ×S′ S, 0′ ×S′ S).
At the end of this procedure we have enlarged the category Sch of schemes with
exactly one object...
Except that we haven’t defined what a morphism fromM1,1 to a scheme T is. The
answer is that it is the weakest possible notion such that compositions make sense.
Thus a morphism F :M1,1 → T is a rule which to every elliptic curve (E, f, 0)/S
associates a morphism F (E, f, 0) : S → T such that given any commutative diagram

S
a

//

(E,f,0) !!

S′

(E′,F ′,0′)||
M1,1

the diagram
S

a
//

F (E,f,0) ��

S′

F (E′,F ′,0′)��
T

is commutative also. An example is the j-invariant
j :M1,1 −→ A1

Z

which you may have heard of. Aha, so now we’re done...
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Except, no we’re not! We still have to define a notion of morphismsM1,1 →M1,1.
This we do in exactly the same way as before, i.e., a morphism F :M1,1 →M1,1
is a rule which to every elliptic curve (E, f, 0)/S associates another elliptic curve
F (E, f, 0) preserving commutativity of diagrams as above. However, since I don’t
know of a nontrivial example of such a functor, I’ll just define the set of morphisms
from M1,1 to itself to consist of the identity for now.
I hope you see how to add other objects to this enlarged category. Somehow it seems
intuitively clear that given any “well-behaved” moduli problem we can perform the
construction above and add an object to our category. In fact, much of modern
day algebraic geometry takes place in such a universe where Sch is enlarged with
countably many (explicitly constructed) moduli stacks.
You may object that the category we obtain isn’t a category because there is a
“vagueness” about when diagrams commute and which combinations of diagrams
continue to commute as we have to produce a witness to the commutativity. How-
ever, it turns out that this, the idea of having witnesses to commutativity, is a valid
approach to 2-categories! Thus we stick with it.

105.4. Fibre products

072L The question we pose here is what should be the fibre product
?

""||
S

(E,f,0) !!

S′

(E′,f ′,0′)||
M1,1

The answer: A morphism from a scheme T into ? should be a triple (a, a′, α) where
a : T → S, a′ : T → S′ are morphisms of schemes and where α : E ×S,a T →
E′×S′,a′ T is an isomorphism of elliptic curves over T . This makes sense because of
our definition of composition and commutative diagrams earlier in the discussion.

Lemma 105.4.1 (Key fact).072M The functor Schopp → Sets, T 7→ {(a, a′, α) as above}
is representable by a scheme S ×M1,1 S

′.

Proof. Idea of proof. Relate this functor to
IsomS×S′(E × S′, S × E′)

and use Grothendieck’s theory of Hilbert schemes. □

Remark 105.4.2.072N We have the formula S ×M1,1 S
′ = (S × S′) ×M1,1×M1,1 M1,1.

Hence the key fact is a property of the diagonal ∆M1,1 of M1,1.

In any case the key fact allows us to make the following definition.

Definition 105.4.3.072P We say a morphism S →M1,1 is smooth if for every morphism
S′ →M1,1 the projection morphism

S ×M1,1 S
′ −→ S′

is smooth.

https://stacks.math.columbia.edu/tag/072M
https://stacks.math.columbia.edu/tag/072N
https://stacks.math.columbia.edu/tag/072P
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Note that this is compatible with the notion of a smooth morphism of schemes as
the base change of a smooth morphism is smooth. Moreover, it is clear how to
extend this definition to other properties of morphisms into M1,1 (or your own
favorite moduli stack). In particular we will use it below for surjective morphisms.

105.5. The definition

072Q We’ll formulate it as a definition and not as a result since we expect the reader to
try out other cases (not just the stack M1,1 and not just Sch the category of all
schemes).

Definition 105.5.1.072R We say M1,1 is an algebraic stack if and only if
(1) We have descent for objects for the étale topology on Sch.
(2) The key fact holds.
(3) there exists a surjective and smooth morphism S →M1,1.

The first condition is a “sheaf property”. We’re going to spell it out since there is
a technical point we should make. Suppose given a scheme S and an étale covering
{Si → S} and morphisms ei : Si →M1,1 such that the diagrams

Si ×S Sj

ei◦pr1 $$

id
// Si ×S Sj

ej◦pr2zz
M1,1

commute. The sheaf condition does not guarantee the existence of a morphism
e : S → M1,1 in this situation. Namely, we need to pick witnesses αij for the
diagrams above and require that

pr∗
02αik = pr∗

12αjk ◦ pr∗
01αij

as witnesses over Si ×S Sj ×S Sk. I think it is clear what this means... If not, then
I’m afraid you’ll have to read some of the material on categories fibred in groupoids,
etc. In any case, the displayed equation is often called the cocycle condition. A
more precise statement of the “sheaf property” is: given {Si → S}, ei : Si →M1,1
and witnesses αij satisfying the cocycle condition, there exists a unique (up to
unique isomorphism) e : S →M1,1 with ei ∼= e|Si recovering the αij .
As you can see even formulating a precise statement takes a bit of work. The proof
of this “sheaf property” relies on a fundamental technique in algebraic geometry,
namely descent theory. My suggestion is to initially simply accept the “sheaf prop-
erty” holds, and see what it implies in practice. In fact, a certain amount of mental
agility is required to boil the “sheaf property” down to a manageable statement
that you can fit on a napkin. Perhaps the simplest variant which is already a bit
interesting is the following: Suppose we have a finite Galois extension L/K of fields
with Galois group G = Gal(L/K). Set T = Spec(L) and S = Spec(K). Then
{T → S} is an étale covering. Let (E, f, 0) be an elliptic curve over L. (Yes, this
just means that E ⊂ P2

L is given by a Weierstrass equation and 0 is the usual point
at infinity.) Denote Eσ = E ×T,Spec(σ) T the base change. (Yes, this corresponds
to applying σ to the coefficients of the Weierstrass equation, or is it σ−1?) Now,
suppose moreover that for every σ ∈ G we are given an isomorphism

ασ : E −→ Eσ

https://stacks.math.columbia.edu/tag/072R
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over T . The cocycle condition above means in this situation that
(ατ )σ ◦ ασ = ατσ

for σ, τ ∈ G. If you’ve ever done any group cohomology then this should be familiar.
Anyway, the “glueing” condition on M1,1 says that if you have a solution to this
set of equations, then there exists an elliptic curve E′ over S such that E ∼= E′×S T
(it says a little bit more because it also tells you how to recover the ασ).
Challenge: Can you prove this entirely using only elliptic curves defined in terms
of Weierstrass equations?

105.6. A smooth cover

072S The last thing we have to do is find a smooth cover ofM1,1. In fact, in some sense
the existence of a smooth cover implies1 the key fact! In the case of elliptic curves
we use the Weierstrass equation to construct one.
Set

W = Spec(Z[a1, a2, a3, a4, a6, 1/∆])
where ∆ ∈ Z[a1, a2, a3, a4, a6] is a certain polynomial (see below). Set

P2
W ⊃ EW : zy2 + a1xyz + a3yz

2 = x3 + a2x
2z + a4xz

2 + a6z
3.

Denote fW : EW → W the projection. Finally, denote 0W : W → EW the section
of fW given by (0 : 1 : 0). It turns out that there is a degree 12 homogeneous
polynomial ∆ in ai where deg(ai) = i such that EW →W is smooth. You can find
it explicitly by computing partials of the Weierstrass equation – of course you can
also look it up. You can also use pari/gp to compute it for you. Here it is

∆ = −a6a
6
1 + a4a3a

5
1 + ((−a2

3 − 12a6)a2 + a2
4)a4

1+
(8a4a3a2 + (a3

3 + 36a6a3))a3
1+

((−8a2
3 − 48a6)a2

2 + 8a2
4a2 + (−30a4a

2
3 + 72a6a4))a2

1+
(16a4a3a

2
2 + (36a3

3 + 144a6a3)a2 − 96a2
4a3)a1+

(−16a2
3 − 64a6)a3

2 + 16a2
4a

2
2 + (72a4a

2
3 + 288a6a4)a2+

− 27a4
3 − 216a6a

2
3 − 64a3

4 − 432a2
6

You may recognize the last two terms from the case y2 = x3 + Ax + B having
discriminant −64A3 − 432B2 = −16(4A3 + 27B2).

Lemma 105.6.1.072T The morphism W
(EW ,fW ,0W )−−−−−−−−→M1,1 is smooth and surjective.

Proof. Surjectivity follows from the fact that every elliptic curve over a field has
a Weierstrass equation. We give a rough sketch of one way to prove smoothness.
Consider the sub group scheme

H =


u2 s 0

0 u3 0
r t 1

∣∣∣∣∣∣ u unit
s, r, t arbitrary

 ⊂ GL3,Z

1This is a bit of a cheat because in checking the smoothness you have to prove something
close to the key fact – after all smoothness is defined in terms of fibre products. The advantage is
that you only have to prove the existence of these fibre products in the case that on one side you
have the morphism that you are trying to show provides the smooth cover.

https://stacks.math.columbia.edu/tag/072T
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There is an action H ×W → W of H on the Weierstrass scheme W . To find the
equations for this action write out what a coordinate change given by a matrix
in H does to the general Weierstrass equation. Then it turns out the following
statements hold

(1) any elliptic curve (E, f, 0)/S has Zariski locally on S a Weierstrass equa-
tion,

(2) any two Weierstrass equations for (E, f, 0) differ (Zariski locally) by an
element of H.

Considering the fibre product S×M1,1 W = IsomS×W (E×W,S×EW ) we conclude
that this means that the morphism W →M1,1 is an H-torsor. Since H → Spec(Z)
is smooth, and since torsors over smooth group schemes are smooth we win. □

Remark 105.6.2.072U The argument sketched above actually shows thatM1,1 = [W/H]
is a global quotient stack. It is true about 50% of the time that an argument proving
a moduli stack is algebraic will show that it is a global quotient stack.

105.7. Properties of algebraic stacks

072V Ok, so now we know that M1,1 is an algebraic stack. What can we do with this?
Well, it isn’t so much the fact that it is an algebraic stack that helps us here, but
more the point of view that properties ofM1,1 should be encoded in the properties
of morphisms S →M1,1, i.e., in families of elliptic curves. We list some examples

Local properties:

M1,1 → Spec(Z) is smooth⇔W → Spec(Z) is smooth

Idea. Local properties of an algebraic stack are encoded in the local properties of
its smooth cover.

Global properties:
M1,1 is quasi-compact⇐W is quasi-compact
M1,1 is irreducible⇐W is irreducible

Idea. Some global properties of an algebraic stack can be read off from the corre-
sponding property of a suitable2 smooth cover.

Quasi-coherent sheaves:

QCoh(OM1,1) = H-equivariant quasi-coherent modules on W

Idea. On the one hand a quasi-coherent module on M1,1 should correspond to a
quasi-coherent sheaf FS,e on S for each morphism e : S →M1,1. In particular for
the morphism (EW , fW , 0W ) : W → M1,1. Since this morphism is H-equivariant
we see the quasi-coherent module FW we obtain is H-equivariant. Conversely,
given an H-equivariant module we can recover the sheaves FS,e by descent theory
starting with the observation that S ×e,M1,1 W is an H-torsor.

Picard group:
Pic(M1,1) = PicH(W ) = Z/12Z

2I suppose that it is possible an irreducible algebraic stack exists which doesn’t have an
irreducible smooth cover – but if so it is going to be quite nasty!

https://stacks.math.columbia.edu/tag/072U
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Idea. We have seen the first equality above. Note that Pic(W ) = 0 because the
ring Z[a1, a2, a3, a4, a6, 1/∆] has trivial class group. There is an exact sequence

Z∆→ PicH(A5
Z)→ PicH(W )→ 0

The middle group equals Hom(H,Gm) = Z. The image ∆ is 12 because ∆ has
degree 12. This argument is roughly correct, see [FO10].
Étale cohomology: Let Λ be a ring. There is a first quadrant spectral sequence
converging to Hp+q

étale(M1,1,Λ) with E2-page
Ep,q2 = Hq

étale(W ×H × . . .×H,Λ) (p factors H)
Idea. Note that

W ×M1,1 W ×M1,1 . . .×M1,1 W = W ×H × . . .×H

because W →M1,1 is a H-torsor. The spectral sequence is the Čech-to-cohomology
spectral sequence for the smooth cover {W → M1,1}. For example we see that
H0
étale(M1,1,Λ) = Λ because W is connected, and H1

étale(M1,1,Λ) = 0 because
H1
étale(W,Λ) = 0 (of course this requires a proof). Of course, the smooth covering

W →M1,1 may not be “optimal” for the computation of étale cohomology.
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CHAPTER 106

More on Morphisms of Stacks

0BPK 106.1. Introduction

0BPL In this chapter we continue our study of properties of morphisms of algebraic stacks.
A reference in the case of quasi-separated algebraic stacks with representable diag-
onal is [LMB00].

106.2. Conventions and abuse of language

0BPM We continue to use the conventions and the abuse of language introduced in Prop-
erties of Stacks, Section 100.2.

106.3. Thickenings

0BPN The following terminology may not be completely standard, but it is convenient.
If Y is a closed substack of an algebraic stack X , then the morphism Y → X is
representable.

Definition 106.3.1.0BPP Thickenings.
(1) We say an algebraic stack X ′ is a thickening of an algebraic stack X if X

is a closed substack of X ′ and the associated topological spaces are equal.
(2) Given two thickenings X ⊂ X ′ and Y ⊂ Y ′ a morphism of thickenings is a

morphism f ′ : X ′ → Y ′ of algebraic stacks such that f ′|X factors through
the closed substack Y. In this situation we set f = f ′|X : X → Y and we
say that (f, f ′) : (X ⊂ X ′)→ (Y ⊂ Y ′) is a morphism of thickenings.

(3) Let Z be an algebraic stack. We similarly define thickenings over Z and
morphisms of thickenings over Z. This means that the algebraic stacks
X ′ and Y ′ are endowed with a structure morphism to Z and that f ′ fits
into a suitable 2-commutative diagram of algebraic stacks.

Let X ⊂ X ′ be a thickening of algebraic stacks. Let U ′ be a scheme and let U ′ → X ′

be a surjective smooth morphism. Setting U = X ×X ′ U ′ we obtain a morphism of
thickenings

(U ⊂ U ′) −→ (X ⊂ X ′)
and U → X is a surjective smooth morphism. We can often deduce properties of
the thickening X ⊂ X ′ from the corresponding properties of the thickening U ⊂ U ′.
Sometimes, by abuse of language, we say that a morphism X → X ′ is a thickening
if it is a closed immersion inducing a bijection |X | → |X ′|.

Lemma 106.3.2.0CJ7 Let i : X → X ′ be a morphism of algebraic stacks. The following
are equivalent

(1) i is a thickening of algebraic stacks (abuse of language as above), and

7142
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(2) i is representable by algebraic spaces and is a thickening in the sense of
Properties of Stacks, Section 100.3.

In this case i is a closed immersion and a universal homeomorphism.
Proof. By More on Morphisms of Spaces, Lemmas 76.9.10 and 76.9.8 the property
P that a morphism of algebraic spaces is a (first order) thickening is fpqc local
on the base and stable under base change. Thus the discussion in Properties of
Stacks, Section 100.3 indeed applies. Having said this the equivalence of (1) and
(2) follows from the fact that P = P1 + P2 where P1 is the property of being a
closed immersion and P2 is the property of being surjective. (Strictly speaking,
the reader should also consult More on Morphisms of Spaces, Definition 76.9.1,
Properties of Stacks, Definition 100.9.1 and the discussion following, Morphisms
of Spaces, Lemma 67.5.1, Properties of Stacks, Section 100.5 to see that all the
concepts all match up.) The final assertion is clear from the foregoing. □

We will use the lemma without further mention. Using the same references More
on Morphisms of Spaces, Lemmas 76.9.10 and 76.9.8 as used in the lemma, allows
us to define a first order thickening as follows.
Definition 106.3.3.0BPQ We say an algebraic stack X ′ is a first order thickening of an
algebraic stack X if X is a closed substack of X ′ and X → X ′ is a first order
thickening in the sense of Properties of Stacks, Section 100.3.
If (U ⊂ U ′)→ (X ⊂ X ′) is a smooth cover by a scheme as above, then this simply
means that U ⊂ U ′ is a first order thickening. Next we formulate the obligatory
lemmas.
Lemma 106.3.4.0BPR Let Y ⊂ Y ′ be a thickening of algebraic stacks. Let X ′ → Y ′ be a
morphism of algebraic stacks and set X = Y ×Y′ X ′. Then (X ⊂ X ′) → (Y ⊂ Y ′)
is a morphism of thickenings. If Y ⊂ Y ′ is a first order thickening, then X ⊂ X ′ is
a first order thickening.
Proof. See discussion above, Properties of Stacks, Section 100.3, and More on Mor-
phisms of Spaces, Lemma 76.9.8. □

Lemma 106.3.5.0BPS If X ⊂ X ′ and X ′ ⊂ X ′′ are thickenings of algebraic stacks, then
so is X ⊂ X ′′.
Proof. See discussion above, Properties of Stacks, Section 100.3, and More on Mor-
phisms of Spaces, Lemma 76.9.9 □

Example 106.3.6.0BPT Let X ′ be an algebraic stack. Then X ′ is a thickening of the
reduction X ′

red, see Properties of Stacks, Definition 100.10.4. Moreover, if X ⊂ X ′

is a thickening of algebraic stacks, then X ′
red = Xred ⊂ X . In other words, X = X ′

red

if and only if X is a reduced algebraic stack.
Lemma 106.3.7.0BPU Let (f, f ′) : (X ⊂ X ′)→ (Y ⊂ Y ′) be a morphism of thickenings
of algebraic stacks. Then X ×Y X → X ′ ×Y′ X ′ is a thickening and the canonical
diagram

X
∆
//

��

X ×Y X

��
X ′ ∆′

// X ′ ×Y′ X ′

is cartesian.

https://stacks.math.columbia.edu/tag/0BPQ
https://stacks.math.columbia.edu/tag/0BPR
https://stacks.math.columbia.edu/tag/0BPS
https://stacks.math.columbia.edu/tag/0BPT
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Proof. Since X → Y ′ factors through the closed substack Y we see that X ×Y X =
X ×Y′ X . Hence X ×Y X → X ′ ×Y′ X ′ is isomorphic to the composition

X ×Y′ X → X ×Y′ X ′ → X ′ ×Y′ X ′

both of which are thickenings as base changes of thickenings (Lemma 106.3.4).
Hence so is the composition (Lemma 106.3.5). Since X → X ′ is a monomorphism,
the final statement of the lemma follows from Properties of Stacks, Lemma 100.8.6
applied to X → X ′ → Y ′. □

Lemma 106.3.8.0BPV Let (f, f ′) : (X ⊂ X ′)→ (Y ⊂ Y ′) be a morphism of thickenings
of algebraic stacks. Let ∆ : X → X ×Y X and ∆′ : X ′ → X ′ ×Y′ X ′ be the
corresponding diagonal morphisms. Then each property from the following list is
satisfied by ∆ if and only if it is satisfied by ∆′: (a) representable by schemes,
(b) affine, (c) surjective, (d) quasi-compact, (e) universally closed, (f) integral, (g)
quasi-separated, (h) separated, (i) universally injective, (j) universally open, (k)
locally quasi-finite, (l) finite, (m) unramified, (n) monomorphism, (o) immersion,
(p) closed immersion, and (q) proper.

Proof. Observe that
(∆,∆′) : (X ⊂ X ′) −→ (X ×Y X ⊂ X ′ ×Y′ X ′)

is a morphism of thickenings (Lemma 106.3.7). Moreover ∆ and ∆′ are repre-
sentable by algebraic spaces by Morphisms of Stacks, Lemma 101.3.3. Hence, via
the discussion in Properties of Stacks, Section 100.3 the lemma follows for cases (a),
(b), (c), (d), (e), (f), (g), (h), (i), and (j) by using More on Morphisms of Spaces,
Lemma 76.10.1.
Lemma 106.3.7 tells us that X = (X ×Y X )×(X ′×Y′ X ′)X ′. Moreover, ∆ and ∆′ are
locally of finite type by the aforementioned Morphisms of Stacks, Lemma 101.3.3.
Hence the result for cases (k), (l), (m), (n), (o), (p), and (q) by using More on
Morphisms of Spaces, Lemma 76.10.3. □

As a consequence we obtain the following pleasing result.

Lemma 106.3.9.0BPW [Con07a, Theorem
2.2.5]

Let X ⊂ X ′ be a thickening of algebraic stacks. Then
(1) X is an algebraic space if and only if X ′ is an algebraic space,
(2) X is a scheme if and only if X ′ is a scheme,
(3) X is DM if and only if X ′ is DM,
(4) X is quasi-DM if and only if X ′ is quasi-DM,
(5) X is separated if and only if X ′ is separated,
(6) X is quasi-separated if and only if X ′ is quasi-separated, and
(7) add more here.

Proof. In each case we reduce to a question about the diagonal and then we use
Lemma 106.3.8 applied to the morphism of thickenings

(X ⊂ X ′)→ (Spec(Z) ⊂ Spec(Z))
We do this after viewing X ⊂ X ′ as a thickening of algebraic stacks over Spec(Z)
via Algebraic Stacks, Definition 94.19.2.
Case (1). An algebraic stack is an algebraic space if and only if its diagonal is a
monomorphism, see Morphisms of Stacks, Lemma 101.6.3 (this also follows imme-
diately from Algebraic Stacks, Proposition 94.13.3).

https://stacks.math.columbia.edu/tag/0BPV
https://stacks.math.columbia.edu/tag/0BPW
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Case (2). By (1) we may assume that X and X ′ are algebraic spaces and then we
can use More on Morphisms of Spaces, Lemma 76.9.5.

Case (3) – (6). Each of these cases corresponds to a condition on the diagonal, see
Morphisms of Stacks, Definitions 101.4.1 and 101.4.2. □

106.4. Morphisms of thickenings

0CJ8 If (f, f ′) : (X ⊂ X ′) → (Y ⊂ Y ′) is a morphism of thickenings of algebraic stacks,
then often properties of the morphism f are inherited by f ′. There are several
variants.

Lemma 106.4.1.0CJ9 Let (f, f ′) : (X ⊂ X ′)→ (Y ⊂ Y ′) be a morphism of thickenings
of algebraic stacks. Then

(1) f is an affine morphism if and only if f ′ is an affine morphism,
(2) f is a surjective morphism if and only if f ′ is a surjective morphism,
(3) f is quasi-compact if and only if f ′ quasi-compact,
(4) f is universally closed if and only if f ′ is universally closed,
(5) f is integral if and only if f ′ is integral,
(6) f is universally injective if and only if f ′ is universally injective,
(7) f is universally open if and only if f ′ is universally open,
(8) f is quasi-DM if and only if f ′ is quasi-DM,
(9) f is DM if and only if f ′ is DM,

(10) f is (quasi-)separated if and only if f ′ is (quasi-)separated,
(11) f is representable if and only if f ′ is representable,
(12) f is representable by algebraic spaces if and only if f ′ is representable by

algebraic spaces,
(13) add more here.

Proof. By Lemma 106.3.2 the morphisms X → X ′ and Y → Y ′ are universal
homeomorphisms. Thus any condition on |f | : |X | → |Y| is equivalent with the
corresponding condition on |f ′| : |X ′| → |Y ′| and the same is true after arbitrary
base change by a morphism Z ′ → Y ′. This proves that (2), (3), (4), (6), (7) hold.

In cases (8), (9), (10), (12) we can translate the conditions on f and f ′ into condi-
tions on the diagonals ∆ and ∆′ as in Lemma 106.3.8. See Morphisms of Stacks, Def-
inition 101.4.1 and Lemma 101.6.3. Hence these cases follow from Lemma 106.3.8.

Proof of (11). If f ′ is representable, then so is f , because for a scheme T and a
morphism T → Y we have X ×Y T = X ×X ′ (X ′ ×Y′ T ) and X → X ′ is a closed
immersion (hence representable). Conversely, assume f is representable, and let
T ′ → Y ′ be a morphism where T ′ is a scheme. Then

X ×Y (Y ×Y′ T ′) = X ×X ′ (X ′ ×Y′ T ′)→ X ′ ×Y′ T ′

is a thickening (by Lemma 106.3.4) and the source is a scheme. Hence the target
is a scheme by Lemma 106.3.9.

In cases (1) and (5) if either f or f ′ has the stated property, then both f and f ′ are
representable by (11). In this case choose an algebraic space V ′ and a surjective
smooth morphism V ′ → Y ′. Set V = Y×Y′ V ′, U ′ = X ′×Y′ V ′, and U = X ×Y′ V ′.
Then the desired results follow from the corresponding results for the morphism
(U ⊂ U ′) → (V ⊂ V ′) of thickenings of algebraic spaces via the principle of

https://stacks.math.columbia.edu/tag/0CJ9
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Properties of Stacks, Lemma 100.3.3. See More on Morphisms of Spaces, Lemma
76.10.1 for the corresponding results in the case of algebraic spaces. □

106.5. Infinitesimal deformations of algebraic stacks

0CJA This section is the analogue of More on Morphisms of Spaces, Section 76.18.

Lemma 106.5.1.0CJB Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(B ⊂ B′)

of thickenings of algebraic stacks. Assume
(1) Y ′ → B′ is locally of finite type,
(2) X ′ → B′ is flat and locally of finite presentation,
(3) f is flat, and
(4) X = B ×B′ X ′ and Y = B ×B′ Y ′.

Then f ′ is flat and for all y′ ∈ |Y ′| in the image of |f ′| the morphism Y ′ → B′ is
flat at y′.

Proof. Choose an algebraic space U ′ and a surjective smooth morphism U ′ → B′.
Choose an algebraic space V ′ and a surjective smooth morphism V ′ → U ′ ×B′ Y ′.
Choose an algebraic space W ′ and a surjective smooth morphism W ′ → V ′×Y′ X ′.
Let U, V,W be the base change of U ′, V ′,W ′ by B → B′. Then flatness of f ′ is
equivalent to flatness of W ′ → V ′ and we are given that W → V is flat. Hence we
may apply the lemma in the case of algebraic spaces to the diagram

(W ⊂W ′) //

&&

(V ⊂ V ′)

xx
(U ⊂ U ′)

of thickenings of algebraic spaces. See More on Morphisms of Spaces, Lemma
76.18.4. The statement about flatness of Y ′/B′ at points in the image of |f ′| follows
in the same manner. □

Lemma 106.5.2.0CJC Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(B ⊂ B′)

of thickenings of algebraic stacks. Assume Y ′ → B′ locally of finite type, X ′ → B′

flat and locally of finite presentation, X = B ×B′ X ′, and Y = B ×B′ Y ′. Then
(1) f is flat if and only if f ′ is flat,0CJD
(2) f is an isomorphism if and only if f ′ is an isomorphism,0CJE
(3) f is an open immersion if and only if f ′ is an open immersion,0CJF
(4) f is a monomorphism if and only if f ′ is a monomorphism,0CJG
(5) f is locally quasi-finite if and only if f ′ is locally quasi-finite,0CJH

https://stacks.math.columbia.edu/tag/0CJB
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(6) f is syntomic if and only if f ′ is syntomic,0CJI
(7) f is smooth if and only if f ′ is smooth,0CJJ
(8) f is unramified if and only if f ′ is unramified,0CJK
(9) f is étale if and only if f ′ is étale,0CJL

(10) f is finite if and only if f ′ is finite, and0CJM
(11) add more here.

Proof. In case (1) this follows from Lemma 106.5.1.
In cases (6), (7) this can be proved by the method used in the proof of Lemma
106.5.1. Namely, choose an algebraic space U ′ and a surjective smooth morphism
U ′ → B′. Choose an algebraic space V ′ and a surjective smooth morphism V ′ →
U ′×B′ Y ′. Choose an algebraic space W ′ and a surjective smooth morphism W ′ →
V ′ ×Y′ X ′. Let U, V,W be the base change of U ′, V ′,W ′ by B → B′. Then the
property for f , resp. f ′ is equivalent to the property for of W ′ → V ′, resp. W → V .
Hence we may apply the lemma in the case of algebraic spaces to the diagram

(W ⊂W ′) //

&&

(V ⊂ V ′)

xx
(U ⊂ U ′)

of thickenings of algebraic spaces. See More on Morphisms of Spaces, Lemma
76.18.5.
In cases (8) and (9) we first see that the assumption for f or f ′ implies that both
f and f ′ are DM morphisms of algebraic stacks, see Lemma 106.4.1. Then we can
choose an algebraic space U ′ and a surjective smooth morphism U ′ → B′. Choose
an algebraic space V ′ and a surjective smooth morphism V ′ → U ′ ×B′ Y ′. Choose
an algebraic space W ′ and a surjective étale(!) morphism W ′ → V ′ ×Y′ X ′. Let
U, V,W be the base change of U ′, V ′,W ′ by B → B′. Then W → V ×Y X is
surjective étale as well. Hence the property for f , resp. f ′ is equivalent to the
property for of W ′ → V ′, resp. W → V . Hence we may apply the lemma in the
case of algebraic spaces to the diagram

(W ⊂W ′) //

&&

(V ⊂ V ′)

xx
(U ⊂ U ′)

of thickenings of algebraic spaces. See More on Morphisms of Spaces, Lemma
76.18.5.
In cases (2), (3), (4), (10) we first conclude by Lemma 106.4.1 that f and f ′ are
representable by algebraic spaces. Thus we may choose an algebraic space U ′ and a
surjective smooth morphism U ′ → B′, an algebraic space V ′ and a surjective smooth
morphism V ′ → U ′×B′Y ′, and then W ′ = V ′×Y′X ′ will be an algebraic space. Let
U, V,W be the base change of U ′, V ′,W ′ by B → B′. Then W = V ×Y X as well.
Then we have to see that W ′ → V ′ is an isomorphism, resp. an open immersion,
resp. a monomorphism, resp. finite, if and only if W → V has the same property.
See Properties of Stacks, Lemma 100.3.3. Thus we conclude by applying the results
for algebraic spaces as above.
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In the case (5) we first observe that f and f ′ are locally of finite type by Morphisms
of Stacks, Lemma 101.17.8. On the other hand, the morphism f is quasi-DM if and
only if f ′ is by Lemma 106.4.1. The last thing to check to see if f or f ′ is locally
quasi-finite (Morphisms of Stacks, Definition 101.23.2) is a condition on underlying
topological spaces which holds for f if and only if it holds for f ′ by the discussion
in the first paragraph of the proof. □

106.6. Lifting affines

0CJN Consider a solid diagram
W

��

// W ′

��
X // X ′

where X ⊂ X ′ is a thickening of algebraic stacks, W is an affine scheme and W → X
is smooth. The question we address in this section is whether we can find W ′ and
the dotted arrows so that the square is cartesian and W ′ → X ′ is smooth. We do
not know the answer in general, but if X ⊂ X ′ is a first order thickening we will
prove the answer is yes.

To study this problem we introduce the following category.

Remark 106.6.1 (Category of lifts).0CJP Consider a diagram

W

x

��
X // X ′

where X ⊂ X ′ is a thickening of algebraic stacks, W is an algebraic space, and
W → X is smooth. We will construct a category C and a functor

p : C −→Wspaces,étale

(see Properties of Spaces, Definition 66.18.2 for notation) as follows. An object of
C will be a system (U,U ′, a, i, x′, α) which forms a commutative diagram

(106.6.1.1)0CJQ

U

a

��

i
// U ′

x′

��

W

x

��
X // X ′

with commutativity witnessed by the 2-morphism α : x ◦ a → x′ ◦ i such that U
and U ′ are algebraic spaces, a : U → W is étale, x′ : U ′ → X ′ is smooth, and such
that U = X ×X ′ U ′. In particular U ⊂ U ′ is a thickening. A morphism

(U,U ′, a, i, x′, α)→ (V, V ′, b, j, y′, β)

is given by (f, f ′, γ) where f : U → V is a morphism over W , f ′ : U ′ → V ′ is
a morphism whose restriction to U gives f , and γ : x′ ◦ f ′ → y′ is a 2-morphism

https://stacks.math.columbia.edu/tag/0CJP
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witnessing the commutativity in right triangle of the diagram below

(106.6.1.2)0CJR

V
f

~~
b

��

j
// V ′

f ′

~~

y′

		

U

a

��

i
// U ′

x′

��

W

x

��
X // X ′

Finally, we require that γ is compatible with α and β: in the calculus of 2-categories
of Categories, Sections 4.28 and 4.29 this reads

β = (γ ⋆ idj) ◦ (α ⋆ idf )

(more succinctly: β = j∗γ ◦ f∗α). Another formulation is that objects are com-
mutative diagrams (106.6.1.1) with some additional properties and morphisms are
commutative diagrams (106.6.1.2) in the category Spaces/X ′ introduced in Prop-
erties of Stacks, Remark 100.3.7. This makes it clear that C is a category and that
the rule p : C →Wspaces,étale sending (U,U ′, a, i, x′, α) to a : U →W is a functor.

Lemma 106.6.2.0CJS For any morphism (106.6.1.2) the map f ′ : V ′ → U ′ is étale.

Proof. Namely f : V → U is étale as a morphism in Wspaces,étale and we can apply
Lemma 106.5.2 because U ′ → X ′ and V ′ → X ′ are smooth and U = X ×X ′ U ′ and
V = X ×X ′ V ′. □

Lemma 106.6.3.0CJT The category p : C →Wspaces,étale constructed in Remark 106.6.1
is fibred in groupoids.

Proof. We claim the fibre categories of p are groupoids. If (f, f ′, γ′) as in (106.6.1.2)
is a morphism such that f : U → V is an isomorphism, then f ′ is an isomorphism
by Lemma 106.5.2 and hence (f, f ′, γ′) is an isomorphism.

Consider a morphism f : V → U in Wspaces,étale and an object ξ = (U,U ′, a, i, x′, α)
of C over U . We are going to construct the “pullback” f∗ξ over V . Namely, set
b = a◦f . Let f ′ : V ′ → U ′ be the étale morphism whose restriction to V is f (More
on Morphisms of Spaces, Lemma 76.8.2). Denote j : V → V ′ the corresponding
thickening. Let y′ = x′ ◦ f ′ and γ = id : x′ ◦ f ′ → y′. Set

β = α ⋆ idf : x ◦ b = x ◦ a ◦ f → x′ ◦ i ◦ f = x′ ◦ f ′ ◦ j = y′ ◦ j

It is clear that (f, f ′, γ) : (V, V ′, b, j, y′, β) → (U,U ′, a, i, x′, α) is a morphism as in
(106.6.1.2). The morphisms (f, f ′, γ) so constructed are strongly cartesian (Cate-
gories, Definition 4.33.1). We omit the detailed proof, but essentially the reason
is that given a morphism (g, g′, ϵ) : (Y, Y ′, c, k, z′, δ) → (U,U ′, a, i, x′, α) in C such
that g factors as g = f ◦ h for some h : Y → V , then we get a unique factorization
g′ = f ′◦h′ from More on Morphisms of Spaces, Lemma 76.8.2 and after that one can
produce the necessary ζ such that (h, h′, ζ) : (Y, Y ′, c, k, z′, δ)→ (V, V ′, b, j, y′, β) is
a morphism of C with (g, g′, ϵ) = (f, f ′, γ) ◦ (h, h′, ζ).

https://stacks.math.columbia.edu/tag/0CJS
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Therefore p : C →Wétale is a fibred category (Categories, Definition 4.33.5). Com-
bined with the fact that the fibre categories are groupoids seen above we conclude
that p : C →Wétale is fibred in groupoids by Categories, Lemma 4.35.2. □

Lemma 106.6.4.0CJU The category p : C →Wspaces,étale constructed in Remark 106.6.1
is a stack in groupoids.

Proof. By Lemma 106.6.3 we see the first condition of Stacks, Definition 8.5.1
holds. As is customary we check descent of objects and we leave it to the reader
to check descent of morphisms. Thus suppose we have a : U →W in Wspaces,étale,
a covering {Uk → U}k∈K in Wspaces,étale, objects ξk = (Uk, U ′

k, ak, ik, x
′
k, αk) of C

over Uk, and morphisms

φkk′ = (fkk′ , f ′
kk′ , γkk′) : ξk|Uk×UUk′ → ξk′ |Uk×UUk′

between restrictions satisfying the cocycle condition. In order to prove effectivity
we may first refine the covering. Hence we may assume each Uk is a scheme (even
an affine scheme if you like). Let us write

ξk|Uk×UUk′ = (Uk ×U Uk′ , U ′
kk′ , akk′ , x′

kk′ , αkk′)

Then we get an étale (by Lemma 106.6.2) morphism skk′ : U ′
kk′ → U ′

k as the second
component of the morphism ξk|Uk×UUk′ → ξk of C. Similarly we obtain an étale
morphism tkk′ : U ′

kk′ → U ′
k′ by looking at the second component of the composition

ξk|Uk×UUk′
φkk′−−−→ ξk′ |Uk×UUk′ → ξk′

We claim that

j :
∐

(k,k′)∈K×K
U ′
kk′

(
∐

skk′ ,
∐

tkk′ )
−−−−−−−−−−→ (

∐
k∈K

U ′
k)× (

∐
k∈K

U ′
k)

is an étale equivalence relation. First, we have already seen that the components
s, t of the displayed morphism are étale. The base change of the morphism j by
(
∐
Uk)× (

∐
Uk)→ (

∐
U ′
k)× (

∐
U ′
k) is a monomorphism because it is the map∐

(k,k′)∈K×K
Uk ×U Uk′ −→ (

∐
k∈K

Uk)× (
∐

k∈K
Uk)

Hence j is a monomorphism by More on Morphisms, Lemma 37.3.4. Finally, sym-
metry of the relation j comes from the fact that φ−1

kk′ is the “flip” of φk′k (see
Stacks, Remarks 8.3.2) and transitivity comes from the cocycle condition (details
omitted). Thus the quotient of

∐
U ′
k by j is an algebraic space U ′ (Spaces, Theo-

rem 65.10.5). Above we have already shown that there is a thickening i : U → U ′

as we saw that the restriction of j on
∐
Uk gives (

∐
Uk)×U (

∐
Uk). Finally, if we

temporarily view the 1-morphisms x′
k : U ′

k → X ′ as objects of the stack X ′ over
U ′
k then we see that these come endowed with a descent datum with respect to

the étale covering {U ′
k → U ′} given by the third component γkk′ of the morphisms

φkk′ in C. Since X ′ is a stack this descent datum is effective and translating back
we obtain a 1-morphism x′ : U ′ → X ′ such that the compositions U ′

k → U ′ → X ′

come equipped with isomorphisms to x′
k compatible with γkk′ . This means that

the morphisms αk : x ◦ ak → x′
k ◦ ik glue to a morphism α : x ◦ a → x′ ◦ i. Then

ξ = (U,U ′, a, i, x′, α) is the desired object over U . □

https://stacks.math.columbia.edu/tag/0CJU
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Lemma 106.6.5.0CJV Let X ⊂ X ′ be a thickening of algebraic stacks. Let W be an
algebraic space and let W → X be a smooth morphism. There exists an étale
covering {Wi →W}i∈I and for each i a cartesian diagram

Wi
//

��

W ′
i

��
X // X ′

with W ′
i → X ′ smooth.

Proof. Choose a scheme U ′ and a surjective smooth morphism U ′ → X ′. As usual
we set U = X ×X ′ U ′. Then U → X is a surjective smooth morphism. Therefore
the base change

V = W ×X U −→W

is a surjective smooth morphism of algebraic spaces. By Topologies on Spaces,
Lemma 73.4.4 we can find an étale covering {Wi →W} such that Wi →W factors
through V →W . After covering Wi by affines (Properties of Spaces, Lemma 66.6.1)
we may assume each Wi is affine. We may and do replace W by Wi which reduces
us to the situation discussed in the next paragraph.

Assume W is affine and the given morphism W → X factors through U . Picture

W
i−→ U → X

Since W and U are smooth over X we see that i is locally of finite type (Mor-
phisms of Stacks, Lemma 101.17.8). After replacing U by An

U we may assume
that i is an immersion, see Morphisms, Lemma 29.39.2. By Morphisms of Stacks,
Lemma 101.44.4 the morphism i is a local complete intersection. Hence i is a
Koszul-regular immersion (as defined in Divisors, Definition 31.21.1) by More on
Morphisms, Lemma 37.62.3.

We may still replace W by an affine open covering. For every point w ∈ W we
can choose an affine open U ′

w ⊂ U ′ such that if Uw ⊂ U is the corresponding affine
open, then w ∈ i−1(Uw) and i−1(Uw) → Uw is a closed immersion cut out by a
Koszul-regular sequence f1, . . . , fr ∈ Γ(Uw,OUw). This follows from the definition
of Koszul-regular immersions and Divisors, Lemma 31.20.7. SetWw = i−1(Uw); this
is an affine open neighbourhood of w ∈W . Choose lifts f ′

1, . . . , f
′
r ∈ Γ(U ′

w,OU ′
w

) of
f1, . . . , fr. This is possible as Uw → U ′

w is a closed immersion of affine schemes. Let
W ′
w ⊂ U ′

w be the closed subscheme cut out by f ′
1, . . . , f

′
r. We claim that W ′

w → X ′

is smooth. The claim finishes the proof as Ww = X ×X ′ W ′
w by construction.

To check the claim it suffices to check that the base change W ′
w ×X ′ X ′ → X ′ is

smooth for every affine scheme X ′ smooth over X ′. Choose an étale morphism

Y ′ → U ′
w ×X ′ X ′

with Y ′ affine. Because U ′
w ×X ′ X ′ is covered by the images of such morphisms,

it is enough to show that the closed subscheme Z ′ of Y ′ cut out by f ′
1, . . . , f

′
r is

https://stacks.math.columbia.edu/tag/0CJV
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smooth over X ′. Picture

Z ′ //

��

Y ′

��
W ′
w ×X ′ X ′

��

// U ′
w ×X ′ X ′

��

// X ′

W ′
w = V (f ′

1, . . . , f
′
r) // U ′

w

Set X = X ×X ′ X ′, Y = X ×X′ Y ′ = X ×X ′ Y ′, and Z = Y ×Y ′ Z ′ = X ×X′ Z ′ =
X ×X ′ Z ′. Then (Z ⊂ Z ′) → (Y ⊂ Y ′) ⊂ (X ⊂ X ′) are (cartesian) morphisms
of thickenings of affine schemes and we are given that Z → X and Y ′ → X ′

are smooth. Finally, the sequence of functions f ′
1, . . . , f

′
r map to a Koszul-regular

sequence in Γ(Y ′,OY ′) by More on Algebra, Lemma 15.30.5 because Y ′ → U ′
w is

smooth and hence flat. By More on Algebra, Lemma 15.31.6 (and the fact that
Koszul-regular sequences are quasi-regular sequences by More on Algebra, Lemmas
15.30.2, 15.30.3, and 15.30.6) we conclude that Z ′ → X ′ is smooth as desired. □

Lemma 106.6.6.0CJW Let X ⊂ X ′ be a thickening of algebraic stacks. Consider a
commutative diagram

W ′′

x′′

��

Woo //

x

��

W ′

x′

��
X ′ Xoo // X ′

with cartesian squares where W ′,W,W ′′ are algebraic spaces and the vertical arrows
are smooth. Then there exist

(1) an étale covering {f ′
k : W ′

k →W ′}k∈K ,
(2) étale morphisms f ′′

k : W ′
k →W ′′, and

(3) 2-morphisms γk : x′′ ◦ f ′′
k → x′ ◦ f ′

k

such that (a) (f ′
k)−1(W ) = (f ′′

k )−1(W ), (b) f ′
k|(f ′

k
)−1(W ) = f ′′

k |(f ′′
k

)−1(W ), and (c)
pulling back γk to the closed subscheme of (a) agrees with the 2-morphism given
by the commutativity of the initial diagram over W .

Proof. Denote i : W → W ′ and i′′ : W → W ′′ the given thickenings. The commu-
tativity of the diagram in the statement of the lemma means there is a 2-morphism
δ : x′ ◦ i′ → x′′ ◦ i′′ This is the 2-morphism referred to in part (c) of the statement.
Consider the algebraic space

I ′ = W ′ ×x′,X ′,x′′ W ′′

with projections p′ : I ′ →W ′ and q′ : I ′ →W ′′. Observe that there is a “universal”
2-morphism γ : x′ ◦ p′ → x′′ ◦ q′ (we will use this later). The choice of δ defines a
morphism

W
δ

// I ′

p′~~ q′ !!
W ′ W ′′

https://stacks.math.columbia.edu/tag/0CJW
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such that the compositions W → I ′ → W ′ and W → I ′ → W ′′ are i : W → W ′

and i′ : W → W ′′. Since x′′ is smooth, the morphism p′ : I ′ → W ′ is smooth as a
base change of x′′.
Suppose we can find an étale covering {f ′

k : W ′
k →W ′} and morphisms δk : W ′

k → I ′

such that the restriction of δk to Wk = (f ′
k)−1 is equal to δ ◦ fk where fk = f ′

k|Wk
.

Picture
Wk

fk //

��

W
δ // I ′

p′

��
W ′
k

f ′
k //

δk

66

W ′

In other words, we want to be able to extend the given section δ : W → I ′ of p′ to
a section over W ′ after possibly replacing W ′ by an étale covering.
If this is true, then we can set f ′′

k = q′ ◦ δk and γk = γ ⋆ idδk (more succinctly
γk = δ∗

kγ). Namely, the only thing left to show at this is that the morphism f ′′
k is

étale. By construction the morphism x′ ◦p′ is 2-isomorphic to x′′ ◦q′. Hence x′′ ◦f ′′
k

is 2-isomorphic to x′ ◦ f ′
k. We conclude that the composition

W ′
k

f ′′
k−−→W ′′ x′′

−−→ X ′

is smooth because x′ ◦ f ′
k is so. As fk is étale we conclude f ′′

k is étale by Lemma
106.5.2.
If the thickening is a first order thickening, then we can choose any étale covering
{W ′

k → W ′} with W ′
k affine. Namely, since p′ is smooth we see that p′ is formally

smooth by the infinitesimal lifting criterion (More on Morphisms of Spaces, Lemma
76.19.6). As Wk is affine and as Wk → W ′

k is a first order thickening (as a base
change of X → X ′, see Lemma 106.3.4) we get δk as desired.
In the general case the existence of the covering and the morphisms δk follows from
More on Morphisms of Spaces, Lemma 76.19.7. □

Lemma 106.6.7.0CJX The category p : C →Wspaces,étale constructed in Remark 106.6.1
is a gerbe.

Proof. In Lemma 106.6.4 we have seen that it is a stack in groupoids. Thus it
remains to check conditions (2) and (3) of Stacks, Definition 8.11.1. Condition (2)
follows from Lemma 106.6.5. Condition (3) follows from Lemma 106.6.6. □

Lemma 106.6.8.0CKG In Remark 106.6.1 assume X ⊂ X ′ is a first order thickening.
Then

(1) the automorphism sheaves of objects of the gerbe p : C → Wspaces,étale

constructed in Remark 106.6.1 are abelian, and
(2) the sheaf of groups G constructed in Stacks, Lemma 8.11.8 is a quasi-

coherent OW -module.

Proof. We will prove both statements at the same time. Namely, given an object
ξ = (U,U ′, a, i, x′, α) we will endow Aut(ξ) with the structure of a quasi-coherent
OU -module on Uspaces,étale and we will show that this structure is compatible with
pullbacks. This will be sufficient by glueing of sheaves (Sites, Section 7.26) and
the construction of G in the proof of Stacks, Lemma 8.11.8 as the glueing of the

https://stacks.math.columbia.edu/tag/0CJX
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automorphism sheaves Aut(ξ) and the fact that it suffices to check a module is quasi-
coherent after going to an étale covering (Properties of Spaces, Lemma 66.29.6).

We will describe the sheaf Aut(ξ) using the same method as used in the proof of
Lemma 106.6.6. Consider the algebraic space

I ′ = U ′ ×x′,X ′,x′ U ′

with projections p′ : I ′ → U ′ and q′ : I ′ → U ′. Over I ′ there is a universal
2-morphism γ : x′ ◦ p′ → x′ ◦ q′. The identity x′ → x′ defines a diagonal morphism

U ′
∆′

// I ′

p′~~ q′   
U ′ U ′

such that the compositions U ′ → I ′ → U ′ and U ′ → I ′ → U ′ are the identity
morphisms. We will denote the base change of U ′, I ′, p′, q′,∆′ to X by U, I, p, q,∆.
Since W ′ → X ′ is smooth, we see that p′ : I ′ → U ′ is smooth as a base change.

A section of Aut(ξ) over U is a morphism δ′ : U ′ → I ′ such that δ′|U = ∆ and such
that p′ ◦ δ′ = idU ′ . To be explicit, (idU , q′ ◦ δ′, (δ′)∗γ) : ξ → ξ is a formula for the
corresponding automorphism. More generally, if f : V → U is an étale morphism,
then there is a thickening j : V → V ′ and an étale morphism f ′ : V ′ → U ′ whose
restriction to V is f and f∗ξ corresponds to (V, V ′, a ◦ f, j, x′ ◦ f ′, f∗α), see proof
of Lemma 106.6.3. a section of Aut(ξ) over V is a morphism δ′ : V ′ → I ′ such that
δ′|V = ∆ ◦ f and p′ ◦ δ′ = f ′1.

We conclude that Aut(ξ) as a sheaf of sets agrees with the sheaf defined in More
on Morphisms of Spaces, Remark 76.17.7 for the thickenings (U ⊂ U ′) and (I ⊂ I ′)
over (U ⊂ U ′) via idU ′ and p′. The diagonal ∆′ is a section of this sheaf and by
acting on this section using More on Morphisms of Spaces, Lemma 76.17.5 we get
an isomorphism

(106.6.8.1)0CKH HomOU
(∆∗ΩI/U , CU/U ′) −→ Aut(ξ)

on Uspaces,étale. There three things left to check
(1) the construction of (106.6.8.1) commutes with étale localization,
(2) HomOU

(∆∗ΩI/U , CU/U ′) is a quasi-coherent module on U ,
(3) the composition in Aut(ξ) corresponds to addition of sections in this quasi-

coherent module.

1A formula for the corresponding automorphism is (idV , h′, (δ′)∗γ). Here h′ : V ′ → V ′ is the
unique (iso)morphism such that h′|V = idV and such that

V ′
h′
//

q′◦δ′
  

V ′

f ′

��
U ′

commutes. Uniqueness and existence of h′ by topological invariance of the étale site, see More on
Morphisms of Spaces, Theorem 76.8.1. The reader may feel we should instead look at morphisms
δ′′ : V ′ → V ′ ×X ′ V ′ with δ′′ ◦ j = ∆V ′/X ′ and pr1 ◦ δ′′ = idV ′ . This would be fine too:
as V ′ ×X ′ V ′ → I′ is étale, the same topological invariance tells us that sending δ′′ to δ′ =
(V ′ ×X ′ V ′ → I′) ◦ δ′′ is a bijection between the two sets of morphisms.
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We will check these in order.
To see (1) we have to show that if f : V → U is étale, then (106.6.8.1) constructed
using ξ over U , restricts to the map (106.6.8.1)

HomOV
(∆∗

V ΩV×XV/V , CV/V ′)→ Aut(ξ|V )
constructed using ξ|V over V on Vspaces,étale. This follows from the discussion in
the footnote above and More on Morphisms of Spaces, Lemma 76.17.8.
Proof of (2). Since p′ is smooth, the morphism I → U is smooth, and hence the
relative module of differentials ΩI/U is finite locally free (More on Morphisms of
Spaces, Lemma 76.7.16). On the other hand, CU/U ′ is quasi-coherent (More on
Morphisms of Spaces, Definition 76.5.1). By Properties of Spaces, Lemma 66.29.7
we conclude.
Proof of (3). There exists a morphism c′ : I ′×p′,U ′,q′I ′ → I ′ such that (U ′, I ′, p′, q′, c′)
is a groupoid in algebraic spaces with identity ∆′. See Algebraic Stacks, Lemma
94.16.1 for example. Composition in Aut(ξ) is induced by the morphism c′ as
follows. Suppose we have two morphisms

δ′
1, δ

′
2 : U ′ −→ I ′

corresponding to sections of Aut(ξ) over U as above, in other words, we have δ′
i|U =

∆U and p′ ◦ δ′
i = idU ′ . Then the composition in Aut(ξ) is

δ′
1 ◦ δ′

2 = c′(δ′
1 ◦ q′ ◦ δ′

2, δ
′
2)

We omit the detailed verification2. Thus we are in the situation described in More
on Groupoids in Spaces, Section 79.5 and the desired result follows from More on
Groupoids in Spaces, Lemma 79.5.2. □

Proposition 106.6.9 (Emerton).0CKI Email of Matthew
Emerton dated
April 27, 2016.

Let X ⊂ X ′ be a first order thickening of algebraic
stacks. Let W be an affine scheme and let W → X be a smooth morphism. Then
there exists a cartesian diagram

W

��

// W ′

��
X // X ′

with W ′ → X ′ smooth and W ′ affine.
Proof. Consider the category p : C → Wspaces,étale introduced in Remark 106.6.1.
The proposition states that there exists an object of C lying over W . Namely, if
we have such an object (W,W ′, a, i, y′, α) then W = X ×X ′ W ′. Hence W →W ′ is
a thickening of algebraic spaces so W ′ is affine by More on Morphisms of Spaces,
Lemma 76.9.5 and More on Morphisms, Lemma 37.2.3.
Lemma 106.6.7 tells us C is a gerbe over Wspaces,étale. This means we can étale
locally find a solution and these local solutions are étale locally isomorphic; this
part does not require the assumption that the thickening is first order. By Lemma
106.6.8 the automorphism sheaves of objects of our gerbe are abelian and fit together
to form a quasi-coherent module G on Wspaces,étale. We will verify conditions (1)
and (2) of Cohomology on Sites, Lemma 21.11.1 to conclude the existence of an

2The reader can see immediately that it is necessary to precompose δ′
1 by q′ ◦ δ′

2 to get a well
defined U ′-valued point of the fibre product I′ ×p′,U′,q′ I′.

https://stacks.math.columbia.edu/tag/0CKI
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object of C lying over W . Condition (1) is true: the étale coverings {Wi → W}
with each Wi affine are cofinal in the collection of all coverings. For such a covering
Wi and Wi ×W Wj are affine and H1(Wi,G) and H1(Wi ×W Wj ,G) are zero: the
cohomology of a quasi-coherent module over an affine algebraic space is zero for
example by Cohomology of Spaces, Proposition 69.7.2. Finally, condition (2) is that
H2(W,G) = 0 for our quasi-coherent sheaf G which again follows from Cohomology
of Spaces, Proposition 69.7.2. This finishes the proof. □

106.7. Infinitesimal deformations

0DNQ We continue the discussion from Artin’s Axioms, Section 98.21.

Lemma 106.7.1.0DNR Let X be an algebraic stack over a scheme S. Assume IX → X is
locally of finite presentation. Let A → B be a flat S-algebra homomorphism. Let
x be an object of X over A and set y = x|B . Then Infx(M)⊗AB = Infy(M ⊗AB).

Proof. Recall that Infx(M) is the set of automorphisms of the trivial deformation
of x to A[M ] which induce the identity automorphism of x over A. The trivial
deformation is the pullback of x to Spec(A[M ]) via Spec(A[M ]) → Spec(A). Let
G→ Spec(A) be the automorphism group algebraic space of x (this exists because
X is an algebraic space). Let e : Spec(A) → G be the neutral element. The
discussion in More on Morphisms of Spaces, Section 76.17 gives

Infx(M) = HomA(e∗ΩG/A,M)

By the same token

Infy(M ⊗A B) = HomB(e∗
BΩGB/B ,M ⊗A B)

Since G → Spec(A) is locally of finite presentation by assumption, we see that
ΩG/A is locally of finite presentation, see More on Morphisms of Spaces, Lemma
76.7.15. Hence e∗ΩG/A is a finitely presented A-module. Moreover, ΩGB/B is the
pullback of ΩG/A by More on Morphisms of Spaces, Lemma 76.7.12. Therefore
e∗
BΩGB/B = e∗ΩG/A ⊗A B. we conclude by More on Algebra, Lemma 15.65.4. □

Lemma 106.7.2.0DNS Let X be an algebraic stack over a base scheme S. Assume
IX → X is locally of finite presentation. Let (A′ → A, x) be a deformation situation.
Then the functor

F : B′ 7−→ {lifts of x|B′⊗A′A to B′}/isomorphisms

is a sheaf on the site (Aff/Spec(A′))fppf of Topologies, Definition 34.7.8.

Proof. Let {T ′
i → T ′}i=1,...n be a standard fppf covering of affine schemes over A′.

Write T ′ = Spec(B′). As usual denote

T ′
i0...ip = T ′

i0 ×T ′ . . .×T ′ T ′
ip = Spec(B′

i0...ip)

where the ring is a suitable tensor product. Set B = B′ ⊗A′ A and Bi0...ip =
B′
i0...ip

⊗A′ A. Denote y = x|B and yi0...ip = x|Bi0...ip . Let γi ∈ F (B′
i) such that γi0

and γi1 map to the same element of F (B′
i0i1

). We have to find a unique γ ∈ F (B′)
mapping to γi in F (B′

i).

Choose an actual object y′
i of Lift(yi, B′

i) in the isomorphism class γi. Choose
isomorphisms φi0i1 : y′

i0
|B′
i0i1
→ y′

i1
|B′
i0i1

in the category Lift(yi0i1 , B′
i0i1

). If the

https://stacks.math.columbia.edu/tag/0DNR
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maps φi0i1 satisfy the cocycle condition, then we obtain our object γ because X is
a stack in the fppf topology. The cocycle condition is that the composition

y′
i0 |B′

i0i1i2

φi0i1 |B′
i0i1i2−−−−−−−−→ y′

i1 |B′
i0i1i2

φi1i2 |B′
i0i1i2−−−−−−−−→ y′

i2 |B′
i0i1i2

φi2i0 |B′
i0i1i2−−−−−−−−→ y′

i0 |B′
i0i1i2

is the identity. If not, then these maps give elements
δi0i1i2 ∈ Infyi0i1i2 (Ji0i1i2) = Infy(J)⊗B Bi0i1i2

Here J = Ker(B′ → B) and Ji0...ip = Ker(B′
i0...ip

→ Bi0...ip). The equality in
the displayed equation holds by Lemma 106.7.1 applied to B′ → B′

i0...ip
and y and

yi0...ip , the flatness of the maps B′ → B′
i0...ip

which also guarantees that Ji0...ip =
J ⊗B′ B′

i0...ip
. A computation (omitted) shows that δi0i1i2 gives a 2-cocycle in the

Čech complex∏
Infy(J)⊗B Bi0 →

∏
Infy(J)⊗B Bi0i1 →

∏
Infy(J)⊗B Bi0i1i2 → . . .

By Descent, Lemma 35.9.2 this complex is acyclic in positive degrees and has H0 =
Infy(J). Since Infyi0i1 (Ji0i1) acts on morphisms (Artin’s Axioms, Remark 98.21.4)
this means we can modify our choice of φi0i1 to get to the case where δi0i1i2 = 0.
Uniqueness. We still have to show there is at most one γ restricting to γi for all i.
Suppose we have objects y′, z′ of Lift(y,B′) and isomorphisms ψi : y′|B′

i
→ z′|B′

i
in

Lift(yi, B′
i). Then we can consider

ψ−1
i1
◦ ψi0 ∈ Infyi0i1 (Ji0i1) = Infy(J)⊗B Bi0i1

Arguing as before, the obstruction to finding an isomorphism between y′ and z′ over
B′ is an element in the H1 of the Čech complex displayed above which is zero. □

Lemma 106.7.3.0DNT Let X be an algebraic stack over a scheme S whose structure
morphism X → S is locally of finite presentation. Let A → B be a flat S-algebra
homomorphism. Let x be an object of X over A. Then Tx(M)⊗AB = Ty(M⊗AB).

Proof. Choose a scheme U and a surjective smooth morphism U → X . We first
reduce the lemma to the case where x lifts to U . Recall that Tx(M) is the set of
isomorphism classes of lifts of x to A[M ]. Therefore Lemma 106.7.23 says that the
rule

A1 7→ Tx|A1
(M ⊗A A1)

is a sheaf on the small étale site of Spec(A); the tensor product is needed to make
A[M ] → A1[M ⊗A A1] a flat ring map. We may choose a faithfully flat étale ring
map A→ A1 such that x|A1 lifts to a morphism u1 : Spec(A1)→ U , see for example
Sheaves on Stacks, Lemma 96.19.10. Write A2 = A1 ⊗A A1 and set B1 = B ⊗A A1
and B2 = B ⊗A A2. Consider the diagram

0 // Ty(M ⊗A B) // Ty|B1
(M ⊗A B1) // Ty|B2

(M ⊗A B2)

0 // Tx(M) //

OO

Tx|A1
(M ⊗A A1) //

OO

Tx|A2
(M ⊗A A2)

OO

3This lemma applies: ∆ : X → X ×S X is locally of finite presentation by Morphisms of
Stacks, Lemma 101.27.6 and the assumption that X → S is locally of finite presentation. Therefore
IX → X is locally of finite presentation as a base change of ∆.

https://stacks.math.columbia.edu/tag/0DNT
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The rows are exact by the sheaf condition. We have M ⊗ABi = (M ⊗AAi)⊗Ai Bi.
Thus if we prove the result for the middle and right vertical arrow, then the result
follows. This reduces us to the case discussed in the next paragraph.

Assume that x is the image of a morphism u : Spec(A) → U . Observe that
Tu(M) → Tx(M) is surjective since U → X is smooth and representable by alge-
braic spaces, see Criteria for Representability, Lemma 97.6.3 (see discussion pre-
ceding it for explanation) and More on Morphisms of Spaces, Lemma 76.19.6. Set
R = U ×X U . Recall that we obtain a groupoid (U,R, s, t, c, e, i) in algebraic spaces
with X = [U/R]. By Artin’s Axioms, Lemma 98.21.6 we have an exact sequence

Te◦u(M)→ Tu(M)⊕ Tu(M)→ Tx(M)→ 0

where the zero on the right was shown above. A similar sequence holds for the
base change to B. Thus the result we want follows if we can prove the result of the
lemma for Tu(M) and Te◦u(M). This reduces us to the case discussed in the next
paragraph.

Assume that X = X is an algebraic space locally of finite presentation over S.
Then we have

Tx(M) = HomA(x∗ΩX/S ,M)
by the discussion in More on Morphisms of Spaces, Section 76.17. By the same
token

Ty(M ⊗A B) = HomB(y∗ΩX/S ,M ⊗A B)
Since X → S is locally of finite presentation, we see that ΩX/S is locally of finite
presentation, see More on Morphisms of Spaces, Lemma 76.7.15. Hence x∗ΩX/S
is a finitely presented A-module. Clearly, we have y∗ΩX/S = x∗ΩX/S ⊗A B. we
conclude by More on Algebra, Lemma 15.65.4. □

Lemma 106.7.4.0DNU Let X be an algebraic stack over a scheme S whose structure
morphism X → S is locally of finite presentation. Let (A′ → A, x) be a deformation
situation. If there exists a faithfully flat finitely presented A′-algebra B′ and an
object y′ of X over B′ lifting x|B′⊗A′A, then there exists an object x′ over A′ lifting
x.

Proof. Let I = Ker(A′ → A). Set B′
1 = B′ ⊗A′ B′ and B′

2 = B′ ⊗A′ B′ ⊗A′ B′.
Let J = IB′, J1 = IB′

1, J2 = IB′
2 and B = B′/J , B1 = B′

1/J1, B2 = B′
2/J2. Set

y = x|B , y1 = x|B1 , y2 = x|B2 . Let F be the fppf sheaf of Lemma 106.7.2 (which
applies, see footnote in the proof of Lemma 106.7.3). Thus we have an equalizer
diagram

F (A′) // F (B′) //
// F (B′

1)

On the other hand, we have F (B′) = Lift(y,B′), F (B′
1) = Lift(y1, B

′
1), and

F (B′
2) = Lift(y2, B

′
2) in the terminology from Artin’s Axioms, Section 98.21. These

sets are nonempty and are (canonically) principal homogeneous spaces for Ty(J),
Ty1(J1), Ty2(J2), see Artin’s Axioms, Lemma 98.21.2. Thus the difference of the
two images of y′ in F (B′

1) is an element

δ1 ∈ Ty1(J1) = Tx(I)⊗A B1

The equality in the displayed equation holds by Lemma 106.7.3 applied to A′ → B′
1

and x and y1, the flatness of A′ → B′
1 which also guarantees that J1 = I ⊗A′ B′

1.

https://stacks.math.columbia.edu/tag/0DNU
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We have similar equalities for B′ and B′
2. A computation (omitted) shows that δ1

gives a 1-cocycle in the Čech complex
Tx(I)⊗A B → Tx(I)⊗A B1 → Tx(I)⊗A B2 → . . .

By Descent, Lemma 35.9.2 this complex is acyclic in positive degrees and has H0 =
Tx(I). Thus we may choose an element in Tx(I)⊗A B = Ty(J) whose boundary is
δ1. Replacing y′ by the result of this element acting on it, we find a new choice y′

with δ1 = 0. Thus y′ maps to the same element under the two maps F (B′)→ F (B′
1)

and we obtain an element o F (A′) by the sheaf condition. □

106.8. Formally smooth morphisms

0DNV In this section we introduce the notion of a formally smooth morphism X → Y of
algebraic stacks. Such a morphism is characterized by the property that T -valued
points of X lift to infinitesimal thickenings of T provided T is affine. The main
result is that a morphism which is formally smooth and locally of finite presentation
is smooth, see Lemma 106.8.7. It turns out that this criterion is often easier to use
than the Jacobian criterion.

Definition 106.8.1.0DNW A morphism f : X → Y of algebraic stacks is said to be formally
smooth if it is formally smooth on objects as a 1-morphism in categories fibred in
groupoids as explained in Criteria for Representability, Section 97.6.

We translate the condition of the definition into the language we are currently using
(see Properties of Stacks, Section 100.2). Let f : X → Y be a morphism of algebraic
stacks. Consider a 2-commutative solid diagram

(106.8.1.1)0DNX

T
x
//

i
��

X

f

��
T ′ y //

>>

Y
where i : T → T ′ is a first order thickening of affine schemes. Let

γ : y ◦ i −→ f ◦ x
be a 2-morphism witnessing the 2-commutativity of the diagram. (Notation as in
Categories, Sections 4.28 and 4.29.) Given (106.8.1.1) and γ a dotted arrow is a
triple (x′, α, β) consisting of a morphism x′ : T ′ → X and 2-arrows α : x′ ◦ i → x,
β : y → f ◦ x′ such that γ = (idf ⋆ α) ◦ (β ⋆ idi), in other words such that

f ◦ x′ ◦ i
idf⋆α

$$
y ◦ i

β⋆idi
::

γ // f ◦ x

is commutative. A morphism of dotted arrows (x′
1, α1, β1) → (x′

2, α2, β2) is a 2-
arrow θ : x′

1 → x′
2 such that α1 = α2 ◦ (θ ⋆ idi) and β2 = (idf ⋆ θ) ◦ β1.

The category of dotted arrows just described is a special case of Categories, Defi-
nition 4.44.1.

Lemma 106.8.2.0DNY A morphism f : X → Y of algebraic stacks is formally smooth
(Definition 106.8.1) if and only if for every diagram (106.8.1.1) and γ the category
of dotted arrows is nonempty.

https://stacks.math.columbia.edu/tag/0DNW
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Proof. Translation between different languages omitted. □

Lemma 106.8.3.0H1I The base change of a formally smooth morphism of algebraic
stacks by any morphism of algebraic stacks is formally smooth.

Proof. Follows from Categories, Lemma 4.44.2 and the definition. □

Lemma 106.8.4.0H1J The composition of formally smooth morphisms of algebraic stacks
is formally smooth.

Proof. Follows from Categories, Lemma 4.44.3 and the definition. □

Lemma 106.8.5.0H1K Let f : X → Y be a morphism of algebraic stacks which is
representable by algebraic spaces. Then the following are equivalent

(1) f is formally smooth,
(2) for every scheme T and morphism T → Y the morphism X ×Y T → T is

formally smooth as a morphism of algebraic spaces.

Proof. Follows from Categories, Lemma 4.44.2 and the definition. □

Lemma 106.8.6.0DNZ Let T → T ′ be a first order thickening of affine schemes. Let X ′

be an algebraic stack over T ′ whose structure morphism X ′ → T ′ is smooth. Let
x : T → X ′ be a morphism over T ′. Then there exists a morphsm x′ : T ′ → X ′

over T ′ with x′|T = x.

Proof. We may apply the result of Lemma 106.7.4. Thus it suffices to construct a
smooth surjective morphism W ′ → T ′ with W ′ affine such that x|T×W ′T ′ lifts to
W ′. (We urge the reader to find their own proof of this fact using the analogous
result for algebraic spaces already established.) We choose a scheme U ′ and a
surjective smooth morphism U ′ → X ′. Observe that U ′ → T ′ is smooth and that
the projection T ×X ′ U ′ → T is surjective smooth. Choose an affine scheme W and
an étale morphism W → T ×X ′ U ′ such that W → T is surjective. Then W → T
is a smooth morphism of affine schemes. After replacing W by a disjoint union of
principal affine opens, we may assume there exists a smooth morphism of affines
W ′ → T ′ such that W = T ×T ′ W ′, see Algebra, Lemma 10.137.20. By More on
Morphisms of Spaces, Lemma 76.19.6 we can find a morphism W ′ → U ′ over T ′

lifting the given morphism W → U ′. This finishes the proof. □

The following lemma is the main result of this section. It implies, combined with
Limits of Stacks, Proposition 102.3.8, that we can recognize whether a morphism
of algebraic stacks f : X → Y is smooth in terms of “simple” properties of the
1-morphism of stacks in groupoids X → Y.

Lemma 106.8.7 (Infinitesimal lifting criterion).0DP0 Let f : X → Y be a morphism of
algebraic stacks. The following are equivalent:

(1) The morphism f is smooth.
(2) The morphism f is locally of finite presentation and formally smooth.

Proof. Assume f is smooth. Then f is locally of finite presentation by Morphisms
of Stacks, Lemma 101.33.5. Hence it suffices given a diagram (106.8.1.1) and a
γ : y ◦ i → f ◦ x to find a dotted arrow (see Lemma 106.8.2). Forming fibre

https://stacks.math.columbia.edu/tag/0H1I
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products we obtain
T

��

// T ′ ×Y X

��

// X

��
T ′ // T ′ // Y

Thus we see it is sufficient to find a dotted arrow in the left square. Since T ′×YX →
T ′ is smooth (Morphisms of Stacks, Lemma 101.33.3) existence of a dotted arrow
in the left square is guaranteed by Lemma 106.8.6.
Conversely, suppose that f is locally of finite presentation and formally smooth.
Choose a scheme U and a surjective smooth morphism U → X . Then a : U → X
and b : U → Y are representable by algebraic spaces and locally of finite presen-
tation (use Morphisms of Stacks, Lemma 101.27.2 and the fact seen above that
a smooth morphism is locally of finite presentation). We will apply the general
principle of Algebraic Stacks, Lemma 94.10.9 with as input the equivalence of More
on Morphisms of Spaces, Lemma 76.19.6 and simultaneously use the translation of
Criteria for Representability, Lemma 97.6.3. We first apply this to a to see that a is
formally smooth on objects. Next, we use that f is formally smooth on objects by
assumption (see Lemma 106.8.2) and Criteria for Representability, Lemma 97.6.2
to see that b = f ◦a is formally smooth on objects. Then we apply the principle once
more to conclude that b is smooth. This means that f is smooth by the definition
of smoothness for morphisms of algebraic stacks and the proof is complete. □

106.9. Blowing up and flatness

0CQ3 This section quickly discusses what you can deduce from More on Morphisms of
Spaces, Sections 76.38 and 76.39 for algebraic stacks over algebraic spaces.

Lemma 106.9.1.0CQ4 Let f : X → Y be a morphism from an algebraic stack to an
algebraic space. Let V ⊂ Y be an open subspace. Assume

(1) Y is quasi-compact and quasi-separated,
(2) f is of finite type and quasi-separated,
(3) V is quasi-compact, and
(4) XV is flat and locally of finite presentation over V .

Then there exists a V -admissible blowup Y ′ → Y and a closed substack X ′ ⊂ XY ′

with X ′
V = XV such that X ′ → Y ′ is flat and of finite presentation.

Proof. Observe that X is quasi-compact. Choose an affine scheme U and a surjec-
tive smooth morphism U → X . Let R = U ×X U so that we obtain a groupoid
(U,R, s, t, c) in algebraic spaces over Y with X = [U/R] (Algebraic Stacks, Lemma
94.16.2). We may apply More on Morphisms of Spaces, Lemma 76.39.1 to U → Y
and the open V ⊂ Y . Thus we obtain a V -admissible blowup Y ′ → Y such that the
strict transform U ′ ⊂ UY ′ is flat and of finite presentation over Y ′. Let R′ ⊂ RY ′

be the strict transform of R. Since s and t are smooth (and in particular flat) it
follows from Divisors on Spaces, Lemma 71.18.4 that we have cartesian diagrams

R′ //

��

RY ′

sY ′

��
U ′ // UY ′

and

R′ //

��

RY ′

tY ′

��
U ′ // UY ′

https://stacks.math.columbia.edu/tag/0CQ4
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In other words, U ′ is an RY ′ -invariant closed subspace of UY ′ . Thus U ′ defines a
closed substack X ′ ⊂ XY ′ by Properties of Stacks, Lemma 100.9.11. The morphism
X ′ → Y ′ is flat and locally of finite presentation because this is true for U ′ → Y ′. On
the other hand, we already know X ′ → Y ′ is quasi-compact and quasi-separated
(by our assumptions on f and because this is true for closed immersions). This
finishes the proof. □

106.10. Chow’s lemma for algebraic stacks

0CQ5 In this section we discuss Chow’s lemma for algebraic stacks.

Lemma 106.10.1.0CQ6 Let Y be a quasi-compact and quasi-separated algebraic space.
Let V ⊂ Y be a quasi-compact open. Let f : X → V be surjective, flat, and locally
of finite presentation. Then there exists a finite surjective morphism g : Y ′ → Y
such that V ′ = g−1(V )→ Y factors Zariski locally through f .

Proof. We first prove this when Y is a scheme. We may choose a scheme U and
a surjective smooth morphism U → X . Then {U → V } is an fppf covering of
schemes. By More on Morphisms, Lemma 37.48.6 there exists a finite surjective
morphism V ′ → V such that V ′ → V factors Zariski locally through U . By More
on Morphisms, Lemma 37.48.4 we can find a finite surjective morphism Y ′ → Y
whose restriction to V is V ′ → V as desired.
If Y is an algebraic space, then we see the lemma is true by first doing a finite base
change by a finite surjective morphism Y ′ → Y where Y ′ is a scheme. See Limits
of Spaces, Proposition 70.16.1. □

Lemma 106.10.2.0CQ7 Let f : X → Y be a morphism from an algebraic stack to an
algebraic space. Let V ⊂ Y be an open subspace. Assume

(1) f is separated and of finite type,
(2) Y is quasi-compact and quasi-separated,
(3) V is quasi-compact, and
(4) XV is a gerbe over V .

Then there exists a commutative diagram

Z

g ��

Z
j

oo

g

��

h
// X

f��
Y

with j an open immersion, g and h proper, and such that |V | is contained in the
image of |g|.

Proof. Suppose we have a commutative diagram
X ′

f ′

��

// X

f

��
Y ′ // Y

and a quasi-compact open V ′ ⊂ Y ′, such that Y ′ → Y is a proper morphism of
algebraic spaces, X ′ → X is a proper morphism of algebraic stacks, V ′ ⊂ Y ′ maps
surjectively onto V , and X ′

V ′ is a gerbe over V ′. Then it suffices to prove the lemma
for the pair (f ′ : X ′ → Y ′, V ′). Some details omitted.
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Overall strategy of the proof. We will reduce to the case where the image of f is
open and f has a section over this open by repeatedly applying the above remark.
Each step is straightforward, but there are quite a few of them which makes the
proof a bit involved.
Using Limits of Spaces, Proposition 70.16.1 we reduce to the case where Y is a
scheme. (Let Y ′ → Y be a finite surjective morphism where Y ′ is a scheme. Set
X ′ = XY ′ and apply the initial remark of the proof.)
Using Lemma 106.9.1 (and Morphisms of Stacks, Lemma 101.28.8 to see that a
gerbe is flat and locally of finite presentation) we reduce to the case where f is flat
and of finite presentation.
Since f is flat and locally of finite presentation, we see that the image of |f | is an
open W ⊂ Y . Since X is quasi-compact (as f is of finite type and Y is quasi-
compact) we see that W is quasi-compact. By Lemma 106.10.1 we can find a finite
surjective morphism g : Y ′ → Y such that g−1(W ) → Y factors Zariski locally
through X → Y . After replacing Y by Y ′ and X by X ×Y Y ′ we reduce to the
situation described in the next paragraph.
Assume there exists n ≥ 0, quasi-compact opens Wi ⊂ Y , i = 1, . . . , n, and mor-
phisms xi : Wi → X such that (a) f ◦ xi = idWi

, (b) W =
⋃
i=1,...,nWi contains

V , and (c) W is the image of |f |. We will use induction on n. The base case is
n = 0: this implies V = ∅ and in this case we can take Z = ∅. If n > 0, then for
i = 1, . . . , n consider the reduced closed subschemes Yi with underlying topological
space Y \Wi. Consider the finite morphism

Y ′ = Y ⨿
∐

i=1,...,n
Yi −→ Y

and the quasi-compact open

V ′ = (W1 ∩ . . . ∩Wn ∩ V )⨿
∐

i=1,...,n
(V ∩ Yi).

By the initial remark of the proof, if we can prove the lemma for the pairs
(X → Y,W1 ∩ . . . ∩Wn ∩ V ) and (X ×Y Yi → Yi, V ∩ Yi), i = 1, . . . , n

then the result is true. Here we use the settheoretic equality V = (W1 ∩ . . .∩Wn ∩
V )∪

⋃
i=1,...n(V ∩Yi). The induction hypothesis applies to the second type of pairs

above. Hence we reduce to the situation described in the next paragraph.
Assume there exists n ≥ 0, quasi-compact opens Wi ⊂ Y , i = 1, . . . , n, and mor-
phisms xi : Wi → X such that (a) f ◦ xi = idWi

, (b) W =
⋃
i=1,...,nWi contains V ,

(c) W is the image of |f |, and (d) V ⊂W1 ∩ . . . ∩Wn. The morphisms
Tij = IsomX (xi|Wi∩Wj∩V , xj |Wi∩Wj∩V ) −→Wi ∩Wj ∩ V

are surjective, flat, and locally of finite presentation (Morphisms of Stacks, Lemma
101.28.10). We apply Lemma 106.10.1 to each quasi-compact open Wi ∩Wj ∩ V
and the morphisms Tij →Wi ∩Wj ∩V to get finite surjective morphisms Y ′

ij → Y .
After replacing Y by the fibre product of all of the Y ′

ij over Y we reduce to the
situation described in the next paragraph.
Assume there exists n ≥ 0, quasi-compact opens Wi ⊂ Y , i = 1, . . . , n, and mor-
phisms xi : Wi → X such that (a) f ◦ xi = idWi

, (b) W =
⋃
i=1,...,nWi contains V ,

(c) W is the image of |f |, (d) V ⊂ W1 ∩ . . . ∩Wn, and (e) xi and xj are Zariski
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locally isomorphic over Wi ∩Wj ∩ V . Let y ∈ V be arbitrary. Suppose that we
can find a quasi-compact open neighbourhood y ∈ Vy ⊂ V such that the lemma is
true for the pair (X → Y, Vy), say with solution Zy, Zy, gy, gy, hy. Since V is quasi-
compact, we can find a finite number y1, . . . , ym such that V = Vy1 ∪ . . . ∪ Vym .
Then it follows that setting

Z =
∐

Zyj , Z =
∐

Zyj , g =
∐

gyj , g =
∐

gyj , h =
∐

hyj

is a solution for the lemma. Given y by condition (e) we can choose a quasi-
compact open neighbourhood y ∈ Vy ⊂ V and isomorphisms φi : x1|Vy → xi|Vy for
i = 2, . . . , n. Set φij = φj ◦ φ−1

i . This leads us to the situation described in the
next paragraph.

Assume there exists n ≥ 0, quasi-compact opens Wi ⊂ Y , i = 1, . . . , n, and mor-
phisms xi : Wi → X such that (a) f ◦ xi = idWi , (b) W =

⋃
i=1,...,nWi contains V ,

(c) W is the image of |f |, (d) V ⊂ W1 ∩ . . . ∩Wn, and (f) there are isomorphisms
φij : xi|V → xj |V satisfying φjk ◦ φij = φik. The morphisms

Iij = IsomX (xi|Wi∩Wj
, xj |Wi∩Wj

) −→Wi ∩Wj

are proper because f is separated (Morphisms of Stacks, Lemma 101.6.6). Observe
that φij defines a section V → Iij of Iij →Wi∩Wj over V . By More on Morphisms
of Spaces, Lemma 76.39.6 we can find V -admissible blowups pij : Yij → Y such
that sij extends to p−1

ij (Wi ∩Wj). After replacing Y by the fibre product of all the
Yij over Y we get to the situation described in the next paragraph.

Assume there exists n ≥ 0, quasi-compact opens Wi ⊂ Y , i = 1, . . . , n, and mor-
phisms xi : Wi → X such that (a) f ◦ xi = idWi , (b) W =

⋃
i=1,...,nWi contains V ,

(c) W is the image of |f |, (d) V ⊂ W1 ∩ . . . ∩Wn, and (g) there are isomorphisms
φij : xi|Wi∩Wj

→ xj |Wi∩Wj
satisfying

φjk|V ◦ φij |V = φik|V .

After replacing Y by another V -admissible blowup if necessary we may assume that
V is dense and scheme theoretically dense in Y and hence in any open subspace of
Y containing V . After such a replacement we conclude that

φjk|Wi∩Wj∩Wk
◦ φij |Wi∩Wj∩Wk

= φik|Wi∩Wj∩Wk

by appealing to Morphisms of Spaces, Lemma 67.17.8 and the fact that Iik →
Wi∩Wj is proper (hence separated). Of course this means that (xi, φij) is a desent
datum and we obtain a morphism x : W → X agreeing with xi over Wi because X
is a stack. Since x is a section of the separated morphism X → W we see that x
is proper (Morphisms of Stacks, Lemma 101.4.9). Thus the lemma now holds with
Z = Y , Z = W , g = idY , g = idW , h = x. □

Theorem 106.10.3 (Chow’s lemma).0CQ8 This is a result due
to Ofer Gabber, see
[Ols05, Theorem
1.1]

Let f : X → Y be a morphism from an
algebraic stack to an algebraic space. Assume

(1) Y is quasi-compact and quasi-separated,
(2) f is separated of finite type.

https://stacks.math.columbia.edu/tag/0CQ8
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Then there exists a commutative diagram

X

��

Xoo

��

// X

��
Y

where X → X is proper surjective, X → X is an open immersion, and X → Y is
proper morphism of algebraic spaces.

Proof. The rough idea is to use that X has a dense open which is a gerbe (Mor-
phisms of Stacks, Proposition 101.29.1) and appeal to Lemma 106.10.2. The reason
this does not work is that the open may not be quasi-compact and one runs into
technical problems. Thus we first do a (standard) reduction to the Noetherian case.
First we choose a closed immersion X → X ′ where X ′ is an algebraic stack separated
and of finite type over Y . See Limits of Stacks, Lemma 102.6.2. Clearly it suffices
to prove the theorem for X ′, hence we may assume X → Y is separated and of
finite presentation.
Assume X → Y is separated and of finite presentation. By Limits of Spaces,
Proposition 70.8.1 we can write Y = limYi as the directed limit of a system of
Noetherian algebraic spaces with affine transition morphisms. By Limits of Stacks,
Lemma 102.5.1 there is an i and a morphism Xi → Yi of finite presentation from
an algebraic stack to Yi such that X = Y ×Yi Xi. After increasing i we may assume
that Xi → Yi is separated, see Limits of Stacks, Lemma 102.4.2. Then it suffices to
prove the theorem for Xi → Yi. This reduces us to the case discussed in the next
paragraph.
Assume Y is Noetherian. We may replace X by its reduction (Properties of Stacks,
Definition 100.10.4). This reduces us to the case discussed in the next paragraph.
Assume Y is Noetherian and X is reduced. Since X → Y is separated and Y quasi-
separated, we see that X is quasi-separated as an algebraic stack. Hence the inertia
IX → X is quasi-compact. Thus by Morphisms of Stacks, Proposition 101.29.1
there exists a dense open substack V ⊂ X which is a gerbe. Let V → V be the
morphism which expresses V as a gerbe over the algebraic space V . See Morphisms
of Stacks, Lemma 101.28.2 for a construction of V → V . This construction in
particular shows that the morphism V → Y factors as V → V → Y . Picture

V //

��

X

��
V // Y

Since the morphism V → V is surjective, flat, and of finite presentation (Morphisms
of Stacks, Lemma 101.28.8) and since V → Y is locally of finite presentation, it
follows that V → Y is locally of finite presentation (Morphisms of Stacks, Lemma
101.27.12). Note that V → V is a universal homeomorphism (Morphisms of Stacks,
Lemma 101.28.13). Since V is quasi-compact (see Morphisms of Stacks, Lemma
101.8.2) we see that V is quasi-compact. Finally, since V → Y is separated the
same is true for V → Y by Morphisms of Stacks, Lemma 101.27.17 applied to
V → V → Y (whose assumptions are satisfied as we’ve already seen).
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All of the above means that the assumptions of Limits of Spaces, Lemma 70.13.3
apply to the morphism V → Y . Thus we can find a dense open subspace V ′ ⊂ V
and an immersion V ′ → Pn

Y over Y . Clearly we may replace V by V ′ and V by the
inverse image of V ′ in V (recall that |V| = |V | as we’ve seen above). Thus we may
assume we have a diagram

V //

��

X

��
V // Pn

Y
// Y

where the arrow V → Pn
Y is an immersion. Let X ′ be the scheme theoretic image

of the morphism
j : V −→ Pn

Y ×Y X
and let Y ′ be the scheme theoretic image of the morphism V → Pn

Y . We obtain a
commutative diagram

V //

��

X ′ //

��

Pn
Y ×Y X

��

// X

��
V // Y ′ // Pn

Y
// Y

(See Morphisms of Stacks, Lemma 101.38.4). We claim that V = V ×Y ′X ′ and that
Lemma 106.10.2 applies to the morphism X ′ → Y ′ and the open subspace V ⊂ Y ′.
If the claim is true, then we obtain

X

g   

Xoo

g

��

h
// X ′

f~~
Y ′

with X → X an open immersion, g and h proper, and such that |V | is contained in
the image of |g|. Then the composition X → X ′ → X is proper (as a composition of
proper morphisms) and its image contains |V|, hence this composition is surjective.
As well, X → Y ′ → Y is proper as a composition of proper morphisms.

The last step is to prove the claim. Observe that X ′ → Y ′ is separated and of
finite type, that Y ′ is quasi-compact and quasi-separated, and that V is quasi-
compact (we omit checking all the details completely). Next, we observe that
b : X ′ → X is an isomorphism over V by Morphisms of Stacks, Lemma 101.38.7. In
particular V is identified with an open substack of X ′. The morphism j is quasi-
compact (source is quasi-compact and target is quasi-separated), so formation of
the scheme theoretic image of j commutes with flat base change by Morphisms
of Stacks, Lemma 101.38.5. In particular we see that V ×Y ′ X ′ is the scheme
theoretic image of V → V ×Y ′ X ′. However, by Morphisms of Stacks, Lemma
101.37.5 the image of |V| → |V ×Y ′ X ′| is closed (use that V → V is a universal
homeomorphism as we’ve seen above and hence is universally closed). Also the
image is dense (combine what we just said with Morphisms of Stacks, Lemma
101.38.6) we conclude |V| = |V ×Y ′ X ′|. Thus V → V ×Y ′ X ′ is an isomorphism
and the proof of the claim is complete. □
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106.11. Noetherian valuative criterion

0CQL In this section we will discuss (refined) valuative criteria for morphisms of algebraic
stacks using only discrete valuation rings in the Noetherian setting. There are many
different variants and we will add more here over time as needed.

Let f : X → Y be a morphism of algebraic stacks (or algebraic spaces or schemes).
A refined valuative criterion is one where we are given a morphism U → X (with
some properties) and we only look at existence or uniqueness of dotted arrows in
solid diagrams of the form

Spec(K)

��

// U // X

��
Spec(A) //

66

Y

We use this terminology below to describe the results we have obtained sofar.

Non-Noetherian valuative criteria for morphisms of algebraic stacks
(1) Morphisms of Stacks, Section 101.40 (for separatedness of the diagonal),
(2) Morphisms of Stacks, Section 101.41 (for separatedness),
(3) Morphisms of Stacks, Section 101.42 (for universal closedness),
(4) Morphisms of Stacks, Section 101.43 (for properness).

For algebraic spaces we have the following valuative criteria
(1) Morphisms of Spaces, Section 67.42 (for universal closedness),
(2) Morphisms of Spaces, Lemma 67.42.5 (refined for universal closedness)
(3) Morphisms of Spaces, Section 67.43 (for separatedness),
(4) Morphisms of Spaces, Section 67.44 (for properness),
(5) Decent Spaces, Section 68.16 (for universal closedness for decent spaces),
(6) Decent Spaces, Lemma 68.17.11 (for universal closedness for decent mor-

phisms between algebraic spaces),
(7) Cohomology of Spaces, Section 69.19 contains Noetherian valuative crite-

ria
(a) Cohomology of Spaces, Lemma 69.19.1 (for separatedness using dis-

crete valuation rings),
(b) Cohomology of Spaces, Lemma 69.19.2 (for properness using discrete

valuation rings),
(c) Cohomology of Spaces, Remark 69.19.3 (discusses how to reduce to

complete discrete valuation rings),
(8) Limits of Spaces, Section 70.21 discussing Noetherian valuative criteria

(a) Limits of Spaces, Lemma 70.21.2 (for separatedness using discrete
valuation rings and generic points)

(b) Limits of Spaces, Lemma 70.21.3 (for properness using discrete val-
uation rings and generic points)

(c) Limits of Spaces, Lemma 70.21.4 (for universal closedness using dis-
crete valuation rings).

(9) Limits of Spaces, Section 70.22 discussing refined Noetherian valuative
criteria
(a) Limits of Spaces, Lemmas 70.22.1 and 70.22.3 (refined for properness

using discrete valuation rings),
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(b) Limits of Spaces, Lemma 70.22.2 (refined for separatedness using
discrete valuation rings),

For schemes we have the following valuative criteria
(1) Schemes, Section 26.20 (for universal closedness)
(2) Schemes, Section 26.22 (for separatedness),
(3) Morphisms, Section 29.42 (for properness)
(4) Morphisms, Lemma 29.42.2 (refined for universal closedness),
(5) Limits, Section 32.15 discussing Noetherian valuative criteria

(a) Limits, Lemma 32.15.2 (for separatedness using discrete valuation
rings and generic points)

(b) Limits, Lemma 32.15.3 (for properness using discrete valuation rings
and generic points)

(c) Limits, Lemma 32.15.4 (for universal closedness using discrete valu-
ation rings).

(6) Limits, Section 32.16 discussing refined Noetherian valuative criteria
(a) Limits, Lemmas 32.16.1 and 32.16.3 (refined for properness using

discrete valuation rings),
(b) Limits, Lemma 32.16.2 (refined for separatedness using discrete val-

uation rings),
(7) Limits, Section 32.17 discussing valuative criteria over a Noetherian base

where one can get discrete valuation rings essentially of finite type over
the base.

This ends our list of previous results.
Many of the results in this section can (and perhaps should) be proved by appealing
to the following lemma, although we have not always done so.

Lemma 106.11.1.0H2B Let f : X → Y be a morphism of algebraic stacks. Assume f
finite type and Y locally Noetherian. Let y ∈ |Y| be a point in the closure of the
image of |f |. Then there exists a commutative diagram

Spec(K) //

��

X

f

��
Spec(A) // Y

of algebraic stacks where A is a discrete valuation ring and K is its field of fractions
mapping the closed point of Spec(A) to y.

Proof. Choose an affine scheme V , a point v ∈ V and a smooth morphism V → Y
mapping v to y. The map |V | → |Y| is open and by Properties of Stacks, Lemma
100.4.3 the image of |X ×Y V | → |V | is the inverse image of the image of |f |. We
conclude that the point v is in the closure of the image of |X ×Y V | → |V |. If we
prove the lemma for X ×Y V → V and the point v, then the lemma follows for f
and y. In this way we reduce to the situation described in the next paragraph.
Assume we have f : X → Y and y ∈ |Y | as in the lemma where Y is a Noetherian
affine scheme. Since f is quasi-compact, we conclude that X is quasi-compact.
Hence we can choose an affine scheme W and a surjective smooth morphism W →
X . Then the image of |f | is the same as the image of |W | → |Y |. In this way we
reduce to the case of schemes which is Limits, Lemma 32.15.1. □

https://stacks.math.columbia.edu/tag/0H2B
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Lemma 106.11.2.0E80 Let f : X → Y be a morphism of algebraic stacks. Assume
(1) Y is locally Noetherian,
(2) f is locally of finite type and quasi-separated,
(3) for every commutative diagram

Spec(K)
x

//

j

��

X

f

��
Spec(A) y //

;;

Y

where A is a discrete valuation ring and K its fraction field and any 2-
arrow γ : y ◦ j → f ◦ x the category of dotted arrows (Morphisms of
Stacks, Definition 101.39.1) is either empty or a setoid with exactly one
isomorphism class.

Then f is separated.

Proof. To prove that f is separated we have to show that ∆ : X → X ×Y X is
proper. We already know that ∆ is representable by algebraic spaces, locally of
finite type (Morphisms of Stacks, Lemma 101.3.3) and quasi-compact and quasi-
separated (by definition of f being quasi-separated). Choose a scheme U and a
surjective smooth morphism U → X ×Y X . Set

V = X ×∆,X ×Y X U

It suffices to show that the morphism of algebraic spaces V → U is proper (Prop-
erties of Stacks, Lemma 100.3.3). Observe that U is locally Noetherian (use Mor-
phisms of Stacks, Lemma 101.17.5 and the fact that U → Y is locally of finite type)
and V → U is of finite type and quasi-separated (as the base change of ∆ and
properties of ∆ listed above). Applying Cohomology of Spaces, Lemma 69.19.2 it
suffices to show: Given a commutative diagram

Spec(K)
v

//

j

��

V

g

��

// X

∆
��

Spec(A) u //

;; 55

U // X ×Y X

where A is a discrete valuation ring and K its fraction field, there is a unique dashed
arrow making the diagram commute. By Morphisms of Stacks, Lemma 101.39.4
the categories of dashed and dotted arrows are equivalent. Assumption (3) implies
there is a unique dotted arrow up to isomorphism, see Morphisms of Stacks, Lemma
101.41.1. We conclude there is a unique dashed arrow as desired. □

Lemma 106.11.3.0CQM Let f : X → Y and h : U → X be morphisms of algebraic
stacks. Assume that Y is locally Noetherian, that f and h are of finite type, that
f is separated, and that the image of |h| : |U| → |X | is dense in |X |. If given any
2-commutative diagram

Spec(K)
u
//

j

��

U
h
// X

f

��
Spec(A) y // Y

https://stacks.math.columbia.edu/tag/0E80
https://stacks.math.columbia.edu/tag/0CQM
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where A is a discrete valuation ring with field of fractions K and γ : y ◦j → f ◦h◦u
there exist an extension K ′/K of fields, a valuation ring A′ ⊂ K ′ dominating A
such that the category of dotted arrows for the induced diagram

Spec(K ′)
x′
//

j′

��

X

f

��
Spec(A′) y′

//

;;

Y

with induced 2-arrow γ′ : y′ ◦ j′ → f ◦ x′ is nonempty (Morphisms of Stacks,
Definition 101.39.1), then f is proper.

Proof. It suffices to prove that f is universally closed. Let V → Y be a smooth
morphism where V is an affine scheme. By Properties of Stacks, Lemma 100.4.3
the image I of |U ×Y V | → |X ×Y V | is the inverse image of the image of |h|. Since
|X ×Y V | → |X | is open (Morphisms of Stacks, Lemma 101.27.15) we conclude that
I is dense in |X ×Y V |. Also since the category of dotted arrows behaves well with
respect to base change (Morphisms of Stacks, Lemma 101.39.4) the assumption on
existence of dotted arrows (after extension) is inherited by the morphisms U ×Y
V → X ×Y V → V . Therefore the assumptions of the lemma are satisfied for the
morphisms U ×Y V → X ×Y V → V . Hence we may assume Y is an affine scheme.

Assume Y = Y is an affine scheme. (From now on we no longer have to worry
about the 2-arrows γ and γ′, see Morphisms of Stacks, Lemma 101.39.3.) Then U
is quasi-compact. Choose an affine scheme U and a surjective smooth morphism
U → U . Then we may and do replace U by U . Thus we may assume that U is an
affine scheme.

Assume Y = Y and U = U are affine schemes. By Chow’s lemma (Theorem
106.10.3) we can choose a surjective proper morphism X → X where X is an
algebraic space. We will use below that X → Y is separated as a composition of
separated morphisms. Consider the algebraic space W = X ×X U . The projection
morphism W → X is of finite type. We may replace X by the scheme theoretic
image of W → X and hence we may assume that the image of |W | in |X| is dense in
|X| (here we use that the image of |h| is dense in |X |, so after this replacement, the
morphism X → X is still surjective). We claim that for every solid commutative
diagram

Spec(K) //

��

W // X

��
Spec(A) //

66

Y

where A is a discrete valuation ring with field of fractionsK, there exists a dotted ar-
row making the diagram commute. First, it is enough to prove there exists a dotted
arrow after replacing K by an extension and A by a valuation ring in this extension
dominating A, see Morphisms of Spaces, Lemma 67.41.4. By the assumption of
the lemma we get an extension K ′/K and a valuation ring A′ ⊂ K ′ dominating
A and an arrow Spec(A′) → X lifting the composition Spec(A′) → Spec(A) → Y
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and compatible with the composition Spec(K ′) → Spec(K) → W → X. Be-
cause X → X is proper, we can use the valuative criterion of properness (Mor-
phisms of Stacks, Lemma 101.43.1) to find an extension K ′′/K ′ and a valua-
tion ring A′′ ⊂ K ′′ dominating A′ and a morphism Spec(A′′) → X lifting the
composition Spec(A′′) → Spec(A′) → X and compatible with the composition
Spec(K ′′) → Spec(K ′) → Spec(K) → X. Then K ′′/K and A′′ ⊂ K ′′ and the
morphism Spec(A′′) → X is a solution to the problem posed above and the claim
holds.

The claim implies the morphism X → Y is proper by the case of the lemma for
algebraic spaces (Limits of Spaces, Lemma 70.22.1). By Morphisms of Stacks,
Lemma 101.37.6 we conclude that X → Y is proper as desired. □

Lemma 106.11.4.0E95 Let f : X → Y and h : U → X be morphisms of algebraic
stacks. Assume that Y is locally Noetherian, that f is locally of finite type and
quasi-separated, that h is of finite type, and that the image of |h| : |U| → |X | is
dense in |X |. If given any 2-commutative diagram

Spec(K)
u
//

j

��

U
h
// X

f

��
Spec(A) y //

66

Y

where A is a discrete valuation ring with field of fractions K and γ : y ◦ j →
f ◦h ◦u, the category of dotted arrows is either empty or a setoid with exactly one
isomorphism class, then f is separated.

Proof. We have to prove ∆ is a proper morphism. Assume first that ∆ is separated.
Then we may apply Lemma 106.11.3 to the morphisms U → X and ∆ : X →
X ×Y X . Observe that ∆ is quasi-compact as f is quasi-separated. Of course ∆
is locally of finite type (true for any diagonal morphism, see Morphisms of Stacks,
Lemma 101.3.3). Finally, suppose given a 2-commutative diagram

Spec(K)
u
//

j

��

U
h

// X

∆
��

Spec(A) y //

55

X ×Y X

where A is a discrete valuation ring with field of fractions K and γ : y◦j → ∆◦h◦u.
By Morphisms of Stacks, Lemma 101.41.1 and the assumption in the lemma we
find there exists a unique dotted arrow. This proves the last assumption of Lemma
106.11.3 holds and the result follows.

In the general case, it suffices to prove ∆ is separated since then we’ll be back in
the previous case. In fact, we claim that the assumptions of the lemma hold for

U → X and ∆ : X → X ×Y X

Namely, since ∆ is representable by algebraic spaces, the category of dotted arrows
for a diagram as in the previous paragraph is a setoid (see for example Morphisms
of Stacks, Lemma 101.39.2). The argument in the preceding paragraph shows these
categories are either empty or have one isomorphism class. Thus ∆ is separated. □

https://stacks.math.columbia.edu/tag/0E95
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Lemma 106.11.5.0H2C Let f : X → Y be a morphism of algebraic stacks. Assume that
Y is locally Noetherian and that f is of finite type. If given any 2-commutative
diagram

Spec(K)
x
//

j

��

X

f

��
Spec(A) y // Y

where A is a discrete valuation ring with field of fractions K and γ : y ◦ j → f ◦ x
there exist an extension K ′/K of fields, a valuation ring A′ ⊂ K ′ dominating A
such that the category of dotted arrows for the induced diagram

Spec(K ′)
x′
//

j′

��

X

f

��
Spec(A′) y′

//

;;

Y

with induced 2-arrow γ′ : y′ ◦ j′ → f ◦ x′ is nonempty (Morphisms of Stacks,
Definition 101.39.1), then f is universally closed.

Proof. Let V → Y be a smooth morphism where V is an affine scheme. The cat-
egory of dotted arrows behaves well with respect to base change (Morphisms of
Stacks, Lemma 101.39.4). Hence the assumption on existence of dotted arrows
(after extension) is inherited by the morphism X ×Y V → V . Therefore the as-
sumptions of the lemma are satisfied for the morphism X ×Y V → V . Hence we
may assume Y is an affine scheme.

Assume Y = Y is a Noetherian affine scheme. (From now on we no longer have to
worry about the 2-arrows γ and γ′, see Morphisms of Stacks, Lemma 101.39.3.) To
prove that f is universally closed it suffices to show that |X ×An| → |Y ×An| is
closed for all n by Limits of Stacks, Lemma 102.7.2. Since the assumption in the
lemma is inherited by the product morphism X ×An → Y ×An (details omitted)
we reduce to proving that |X | → |Y | is closed.

Assume Y is a Noetherian affine scheme. Let T ⊂ |X | be a closed subset. We have
to show that the image of T in |Y | is closed. We may replace X by the reduced
induced closed subspace structure on T ; we omit the verification that property on
the existence of dotted arrows is preserved by this replacement. Thus we reduce to
proving that the image of |X | → |Y | is closed.

Let y ∈ |Y | be a point in the closure of the image of |X | → |Y |. By Lemma 106.11.1
we may choose a commutative diagram

Spec(K) //

��

X

f

��
Spec(A) // Y

where A is a discrete valuation ring and K is its field of fractions mapping the
closed point of Spec(A) to y. It follows immediately from the assumption in the
lemma that y is in the image of |X | → |Y | and the proof is complete. □

https://stacks.math.columbia.edu/tag/0H2C
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106.12. Moduli spaces

0DUF This section discusses morphisms f : X → Y from algebraic stacks to algebraic
spaces. Under suitable hypotheses Y is called a moduli space for X . If X = [U/R]
is a presentation, then we obtain an R-invariant morphism U → Y and (under
suitable hypotheses) Y is a quotient of the groupoid (U,R, s, t, c). A discussion of
the different types of quotients can be found starting with Quotients of Groupoids,
Section 83.1.

Definition 106.12.1.0DUG Let X be an algebraic stack. Let f : X → Y be a morphism
to an algebraic space Y .

(1) We say f is a categorical moduli space if any morphism X → W to an
algebraic space W factors uniquely through f .

(2) We say f is a uniform categorical moduli space if for any flat morphism
Y ′ → Y of algebraic spaces the base change f ′ : Y ′ ×Y X → Y ′ is a
categorical moduli space.

Let C be a full subcategory of the category of algebraic spaces.
(3) We say f is a categorical moduli space in C if Y ∈ Ob(C) and any mor-

phism X →W with W ∈ Ob(C) factors uniquely through f .
(4) We say is a uniform categorical moduli space in C if Y ∈ Ob(C) and for

every flat morphism Y ′ → Y in C the base change f ′ : Y ′ ×Y X → Y ′ is
a categorical moduli space in C.

By the Yoneda lemma a categorical moduli space, if it exists, is unique. Let us
match this with the language introduced for quotients.

Lemma 106.12.2.0DUH Let (U,R, s, t, c) be a groupoid in algebraic spaces with s, t : R→
U flat and locally of finite presentation. Consider the algebraic stack X = [U/R].
Given an algebraic space Y there is a 1-to-1 correspondence between morphisms
f : X → Y and R-invariant morphisms ϕ : U → Y .

Proof. Criteria for Representability, Theorem 97.17.2 tells us X is an algebraic
stack. Given a morphism f : X → Y we let ϕ : U → Y be the composition U →
X → Y . Since R = U ×X U (Groupoids in Spaces, Lemma 78.22.2) it is immediate
that ϕ is R-invariant. Conversely, if ϕ : U → Y is an R-invariant morphism towards
an algebraic space, we obtain a morphism f : X → Y by Groupoids in Spaces,
Lemma 78.23.2. You can also construct f from ϕ using the explicit description of
the quotient stack in Groupoids in Spaces, Lemma 78.24.1. □

Lemma 106.12.3.0DUI With assumption and notation as in Lemma 106.12.2. Then f
is a (uniform) categorical moduli space if and only if ϕ is a (uniform) categorical
quotient. Similarly for moduli spaces in a full subcategory.

Proof. It is immediate from the 1-to-1 correspondence established in Lemma 106.12.2
that f is a categorical moduli space if and only if ϕ is a categorical quotient
(Quotients of Groupoids, Definition 83.4.1). If Y ′ → Y is a morphism, then
U ′ = Y ′ ×Y U → Y ′ ×Y X = X ′ is a surjective, flat, locally finitely presented mor-
phism as a base change of U → X (Criteria for Representability, Lemma 97.17.1).
And R′ = Y ′ ×Y R is equal to U ′ ×X ′ U ′ by transitivity of fibre products. Hence
X ′ = [U ′/R′], see Algebraic Stacks, Remark 94.16.3. Thus the base change of our
situation to Y ′ is another situation as in the statement of the lemma. From this it

https://stacks.math.columbia.edu/tag/0DUG
https://stacks.math.columbia.edu/tag/0DUH
https://stacks.math.columbia.edu/tag/0DUI
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immediately follows that f is a uniform categorical moduli space if and only if ϕ is
a uniform categorical quotient. □

Lemma 106.12.4.0DUJ Let f : X → Y be a morphism from an algebraic stack to an
algebraic space. If for every affine scheme Y ′ and flat morphism Y ′ → Y the base
change f ′ : Y ′ ×Y X → Y ′ is a categorical moduli space, then f is a uniform
categorical moduli space.

Proof. Choose an étale covering {Yi → Y } where Yi is an affine scheme. For each
i and j choose a affine open covering Yi ×Y Yj =

⋃
Yijk. Set Xi = Yi ×Y X and

Xijk = Yijk ×Y X . Let g : X → W be a morphism towards an algebraic space.
Then we consider the diagram

Xi //

��

X

��

g
// W

Yi //

77

Y

The assumption that Xi → Yi is a categorical moduli space, produces a unique
dotted arrow hi : Yi → W . The assumption that Xijk → Yijk is a categorical
moduli space, implies the restriction of hi and hj to Yijk are equal. Hence hi and
hj agree on Yi ×Y Yj . Since Y =

∐
Yi/
∐
Yi ×Y Yj (by Spaces, Section 65.9) we

conclude that there is a unique morphism Y →W through which g factors. Thus f
is a categorical moduli space. The same argument applies after a flat base change,
hence f is a uniform categorical moduli space. □

106.13. The Keel-Mori theorem

0DUK In this section we start discussing the theorem of Keel and Mori in the setting of
algebraic stacks. For a discussion of the literature, please see Guide to Literature,
Subsection 112.5.2.

Definition 106.13.1.0DUL Let X be an algebraic stack. We say X is well-nigh affine if
there exists an affine scheme U and a surjective, flat, finite, and finitely presented
morphism U → X .

We give this property a somewhat ridiculous name because we do not intend to use
it too much.

Lemma 106.13.2.0DUM Let X be an algebraic stack. The following are equivalent
(1) X is well-nigh affine, and
(2) there exists a groupoid scheme (U,R, s, t, c) with U and R affine and

s, t : R→ U finite locally free such that X = [U/R].
If true then X is quasi-compact, quasi-DM, and separated.

Proof. Assume X is well-nigh affine. Choose an affine scheme U and a surjective,
flat, finite, and finitely presented morphism U → X . Set R = U ×X U . Then we
obtain a groupoid (U,R, s, t, c) in algebraic spaces and an isomorphism [U/R]→ X ,
see Algebraic Stacks, Lemma 94.16.1 and Remark 94.16.3. Since s, t : R → U are
flat, finite, and finitely presented morphisms (as base changes of U → X ) we see
that s, t are finite locally free (Morphisms, Lemma 29.48.2). This implies that R is
affine (as finite morphisms are affine) and hence (2) holds.

https://stacks.math.columbia.edu/tag/0DUJ
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Suppose that we have a groupoid scheme (U,R, s, t, c) with U and R are affine and
s, t : R → U finite locally free. Set X = [U/R]. Then X is an algebraic stack by
Criteria for Representability, Theorem 97.17.2 (strictly speaking we don’t need this
here, but it can’t be stressed enough that this is true). The morphism U → X is
surjective, flat, and locally of finite presentation by Criteria for Representability,
Lemma 97.17.1. Thus we can check whether U → X is finite by checking whether
the projection U ×X U → U has this property, see Properties of Stacks, Lemma
100.3.3. Since U ×X U = R by Groupoids in Spaces, Lemma 78.22.2 we see that
this is true. Thus X is well-nigh affine.

Proof of the final statement. We see that X is quasi-compact by Properties of
Stacks, Lemma 100.6.2. We see that X = [U/R] is quasi-DM and separated by
Morphisms of Stacks, Lemma 101.20.1. □

Lemma 106.13.3.0DUN Let the algebraic stack X be well-nigh affine.
(1) If X is an algebraic space, then it is affine.
(2) If X ′ → X is an affine morphism of algebraic stacks, then X ′ is well-nigh

affine.

Proof. Part (1) follows from immediately from Limits of Spaces, Lemma 70.15.1.
However, this is overkill, since (1) also follows from Lemma 106.13.2 combined with
Groupoids, Proposition 39.23.9.

To prove (2) we choose an affine scheme U and a surjective, flat, finite, and finitely
presented morphism U → X . Then U ′ = X ′ ×X U admits an affine morphism to
U (Morphisms of Stacks, Lemma 101.9.2). Therefore U ′ is an affine scheme. Of
course U ′ → X ′ is surjective, flat, finite, and finitely presented as a base change of
U → X . □

Lemma 106.13.4.0DUP Let the algebraic stack X be well-nigh affine. There exists a
uniform categorical moduli space

f : X −→M

in the category of affine schemes. Moreover f is separated, quasi-compact, and a
universal homeomorphism.

Proof. Write X = [U/R] with (U,R, s, t, c) as in Lemma 106.13.2. Let C be the ring
of R-invariant functions on U , see Groupoids, Section 39.23. We set M = Spec(C).
The R-invariant morphism U → M corresponds to a morphism f : X → M by
Lemma 106.12.2. The characterization of morphisms into affine schemes given in
Schemes, Lemma 26.6.4 immediately guarantees that ϕ : U → M is a categorical
quotient in the category of affine schemes. Hence f is a categorical moduli space
in the category of affine schemes (Lemma 106.12.3).

Since X is separated by Lemma 106.13.2 we find that f is separated by Morphisms
of Stacks, Lemma 101.4.12.

Since U → X is surjective and since U → M is quasi-compact, we see that f is
quasi-compact by Morphisms of Stacks, Lemma 101.7.6.

By Groupoids, Lemma 39.23.4 the composition

U → X →M

https://stacks.math.columbia.edu/tag/0DUN
https://stacks.math.columbia.edu/tag/0DUP


106.13. THE KEEL-MORI THEOREM 7176

is an integral morphism of affine schemes. In particular, it is universally closed
(Morphisms, Lemma 29.44.7). Since U → X is surjective, it follows that X → M
is universally closed (Morphisms of Stacks, Lemma 101.37.6). To conclude that
X → M is a universal homeomorphism, it is enough to show that it is universally
bijective, i.e., surjective and universally injective.

We have |X | = |U |/|R| by Morphisms of Stacks, Lemma 101.20.2. Thus |f | is
surjective and even bijective by Groupoids, Lemma 39.23.6.

Let C → C ′ be a ring map. Let (U ′, R′, s′, t′, c′) be the base change of (U,R, s, t, c)
by M ′ = Spec(C ′)→M . Setting X ′ = [U ′/R′], we observe that M ′×M X = X ′ by
Quotients of Groupoids, Lemma 83.3.6. Let C1 be the ring of R′-invariant functions
on U ′. Set M1 = Spec(C1) and consider the diagram

X ′

f ′

��

// X

f

��

M1

��
M ′ // M

By Groupoids, Lemma 39.23.5 and Algebra, Lemma 10.46.11 the morphism M1 →
M ′ is a homeomorphism. On the other hand, the previous paragraph applied to
(U ′, R′, s′, t′, c′) shows that |f ′| is bijective. We conclude that f induces a bijection
on points after any base change by an affine scheme. Thus f is universally injective
by Morphisms of Stacks, Lemma 101.14.7.

Finally, we still have to show that f is a uniform moduli space in the category
of affine schemes. This follows from the discussion above and the fact that if the
ring map C → C ′ is flat, then C ′ → C1 is an isomorphism by Groupoids, Lemma
39.23.5. □

Lemma 106.13.5.0DUQ Let h : X ′ → X be a morphism of algebraic stacks. Assume X ′

and X are well-nigh affine, h is étale, and h induces isomorphisms on automorphism
groups (Morphisms of Stacks, Remark 101.19.5). Then there exists a cartesian
diagram

X ′

��

// X

��
M ′ // M

where M ′ →M is étale and the vertical arrows are the moduli spaces constructed
in Lemma 106.13.4.

Proof. Observe that h is representable by algebraic spaces by Morphisms of Stacks,
Lemmas 101.45.3 and 101.45.1. Choose an affine scheme U and a surjective, flat,
finite, and finitely presented morphism U → X . Then U ′ = X ′×X U is an algebraic
space with a finite (in particular affine) morphism U ′ → X ′. By Lemma 106.13.3
we conclude that U ′ is affine. Setting R = U ×X U and R′ = U ′ ×X ′ U ′ we obtain
groupoids (U,R, s, t, c) and (U ′, R′, s′, t′, c′) such that X = [U/R] and X ′ = [U ′/R′],

https://stacks.math.columbia.edu/tag/0DUQ
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see proof of Lemma 106.13.2. we see that the diagrams

R′

s′

��

f
// R

s

��
U ′ f // U

R′

t′

��

f
// R

t

��
U ′ f // U

G′

��

f
// G

��
U ′ f // U

are cartesian where G and G′ are the stabilizer group schemes. This follows for the
first two by transitivity of fibre products and for the last one this follows because it
is the pullback of the isomorphism IX ′ → X ′×X IX (by the already used Morphisms
of Stacks, Lemma 101.45.3). Recall that M , resp. M ′ was constructed in Lemma
106.13.4 as the spectrum of the ring of R-invariant functions on U , resp. the ring
of R′-invariant functions on U ′. Thus M ′ → M is étale and U ′ = M ′ ×M U by
Groupoids, Lemma 39.23.7. It follows that R′ = M ′ ×M U , in other words the
groupoid (U ′, R′, s′, t′, c′) is the base change of (U,R, s, t, c) by M ′ → M . This
implies that the diagram in the lemma is cartesian by Quotients of Groupoids,
Lemma 83.3.6. □

Lemma 106.13.6.0DUR Let the algebraic stack X be well-nigh affine. The morphism
f : X −→M

of Lemma 106.13.4 is a uniform categorical moduli space.

Proof. We already know that M is a uniform categorical moduli space in the cate-
gory of affine schemes. By Lemma 106.12.4 it suffices to show that the base change
f ′ : M ′×MX →M ′ is a categorical moduli space for any flat morphism M ′ →M of
affine schemes. Observe that X ′ = M ′×M X is well-nigh affine by Lemma 106.13.3.
This after replacing X by X ′ and M by M ′, we reduce to proving f is a categorical
moduli space.
Let g : X → Y be a morphism where Y is an algebraic space. We have to show
that g = h ◦ f for a unique morphism h : M → Y .
Uniqueness. Suppose we have two morphisms hi : M → Y with g = h1 ◦f = h2 ◦f .
Let M ′ ⊂M be the equalizer of h1 and h2. Then M ′ →M is a monomorphism and
f : X → M factors through M ′. Thus M ′ → M is a universal homeomorphism.
We conclude M ′ is affine (Morphisms, Lemma 29.45.5). But then since f : X →M
is a categorical moduli space in the category of affine schemes, we see M ′ = M .
Existence. Below we will show that for every p ∈M there exists a cartesian square

X ′ //

��

X

��
M ′ // M

with M ′ → M an étale morphism of affines and p in the image such that the
composition X ′ → X → Y factors through M ′. This means we can construct the
map h : M → Y étale locally on M . Since Y is a sheaf for the étale topology and
by the uniqueness shown above, this is enough (small detail omitted).
Let y ∈ |Y | be the image of p. Let (V, v) → (Y, y) be an étale morphism with V
affine. Consider X ′ = V ×Y X . Observe that X ′ → X is separated and étale as the
base change of V → Y . Moreover, X ′ → X induces isomorphisms on automorphism

https://stacks.math.columbia.edu/tag/0DUR
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groups (Morphisms of Stacks, Remark 101.19.5) as this is true for V → Y , see
Morphisms of Stacks, Lemma 101.45.5. Choose a presentation X = [U/R] as in
Lemma 106.13.2. Set U ′ = X ′×X U = V ×Y U and choose u′ ∈ U ′ mapping to p and
v (possible by Properties of Spaces, Lemma 66.4.3). Since U ′ → U is separated and
étale we see that every finite set of points of U ′ is contained in an affine open, see
More on Morphisms, Lemma 37.45.1. On the other hand, the morphism U ′ → X ′

is surjective, finite, flat, and locally of finite presentation. Setting R′ = U ′ ×X ′ U ′

we see that s′, t′ : R′ → U ′ are finite locally free. By Groupoids, Lemma 39.24.1
there exists an R′-invariant affine open subscheme U ′′ ⊂ U ′ containing u′. Let
X ′′ ⊂ X ′ be the corresponding open substack. Then X ′′ is well-nigh affine. By
Lemma 106.13.5 we obtain a cartesian square

X ′′ //

��

X

��
M ′′ // M

with M ′′ →M étale. Since X ′′ →M ′′ is a categorical moduli space in the category
of affine schemes we obtain a morphism M ′′ → V such that the composition X ′′ →
X ′ → V is equal to the composition X ′′ → M ′′ → V . This proves our claim and
finishes the proof. □

Lemma 106.13.7.0DUS Let h : X ′ → X be a morphism of algebraic stacks. Assume
X is well-nigh affine, h is étale, h is separated, and h induces isomorphisms on
automorphism groups (Morphisms of Stacks, Remark 101.19.5). Then there exists
a cartesian diagram

X ′

��

// X

��
M ′ // M

where M ′ → M is a separated étale morphism of schemes and X → M is the
moduli space constructed in Lemma 106.13.4.

Proof. Choose an affine scheme U and a surjective, flat, finite, and locally finitely
presented morphism U → X . Since h is representable by algebraic spaces (Mor-
phisms of Stacks, Lemmas 101.45.3 and 101.45.1) we see that U ′ = X ′ ×X U is an
algebraic space. Since U ′ → U is separated and étale, we see that U ′ is a scheme
and that every finite set of points of U ′ is contained in an affine open, see Mor-
phisms of Spaces, Lemma 67.51.1 and More on Morphisms, Lemma 37.45.1. Setting
R′ = U ′ ×X ′ U ′ we see that s′, t′ : R′ → U ′ are finite locally free. By Groupoids,
Lemma 39.24.1 there exists an open covering U ′ =

⋃
U ′
i by R′-invariant affine open

subschemes U ′
i ⊂ U ′. Let X ′

i ⊂ X ′ be the corresponding open substacks. These are
well-nigh affine as U ′

i → X ′
i is surjective, flat, finite and of finite presentation. By

Lemma 106.13.5 we obtain cartesian diagrams

X ′
i

//

��

X

��
M ′
i

// M

https://stacks.math.columbia.edu/tag/0DUS


106.13. THE KEEL-MORI THEOREM 7179

with M ′
i →M an étale morphism of affine schemes and vertical arrows as in Lemma

106.13.4. Observe that X ′
ij = X ′

i ∩ X ′
j is an open subspace of X ′

i and X ′
j . Hence

we get corresponding open subschemes Vij ⊂ M ′
i and Vji ⊂ M ′

j . By the result of
Lemma 106.13.6 we see that both X ′

ij → Vij and X ′
ji → Vji are categorical moduli

spaces! Thus we get a unique isomorphism φij : Vij → Vji such that

X ′
i

��

X ′
i ∩ X ′

j
//oo

{{ ##

X ′
j

��
M ′
i Vijoo φij // Vji // M ′

j

is commutative. These isomorphisms satisfy the cocyclce condition of Schemes,
Section 26.14 by a computation (and another application of the previous lemma)
which we omit. Thus we can glue the affine schemes in to scheme M ′, see Schemes,
Lemma 26.14.1. Let us identify the M ′

i with their image in M ′. We claim there is
a morphism X ′ →M ′ fitting into cartesian diagrams

X ′
i

//

��

X ′

��
M ′
i

// M ′

This is clear from the description of the morphisms into the glued scheme M ′ in
Schemes, Lemma 26.14.1 and the fact that to give a morphism X ′ → M ′ is the
same thing as given a morphism T → M ′ for any morphism T → X ′. Similarly,
there is a morphism M ′ →M restricting to the given morphisms M ′

i →M on M ′
i .

The morphism M ′ →M is étale (being étale on the members of an étale covering)
and the fibre product property holds as it can be checked on members of the (affine)
open covering M ′ =

⋃
M ′
i . Finally, M ′ →M is separated because the composition

U ′ → X ′ → M ′ is surjective and universally closed and we can apply Morphisms,
Lemma 29.41.11. □

Lemma 106.13.8.0DUE Let X be an algebraic stack. Assume IX → X is finite. Then
there exist a set I and for i ∈ I a morphism of algebraic stacks

gi : Xi −→ X
with the following properties

(1) |X | =
⋃
|gi|(|Xi|),

(2) Xi is well-nigh affine,
(3) IXi → Xi ×X IX is an isomorphism, and
(4) gi : Xi → X is representable by algebraic spaces, separated, and étale,

Proof. For any x ∈ |X | we can choose g : U → X , U = [U/R], and u as in Morphisms
of Stacks, Lemma 101.32.4. Then by Morphisms of Stacks, Lemma 101.45.4 we see
that there exists an open substack U ′ ⊂ U containing u such that IU ′ → U ′ ×X IX
is an isomorphism. Let U ′ ⊂ U be the R-invariant open corresponding to the open
substack U ′. Let u′ ∈ U ′ be a point of U ′ mapping to u. Observe that t(s−1({u′}))
is finite as s : R → U is finite. By Properties, Lemma 28.29.5 and Groupoids,
Lemma 39.24.1 we can find an R-invariant affine open U ′′ ⊂ U ′ containing u′. Let
R′′ be the restriction of R to U ′′. Then U ′′ = [U ′′/R′′] is an open substack of U ′

containing u, is well-nigh affine, IU ′′ → U ′′×X IX is an isomorphism, and U ′′ → X

https://stacks.math.columbia.edu/tag/0DUE
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and is representable by algebraic spaces and étale. Finally, U ′′ → X is separated
as U ′′ is separated (Lemma 106.13.2) the diagonal of X is separated (Morphisms
of Stacks, Lemma 101.6.1) and separatedness follows from Morphisms of Stacks,
Lemma 101.4.12. Since the point x ∈ |X | is arbitrary the proof is complete. □

Theorem 106.13.9 (Keel-Mori).0DUT Let X be an algebraic stack. Assume IX → X is
finite. Then there exists a uniform categorical moduli space

f : X −→M

and f is separated, quasi-compact, and a universal homeomorphism.

Proof. We choose a set I4 and for i ∈ I a morphism of algebraic stacks gi : Xi → X
as in Lemma 106.13.8; we will use all of the properties listed in this lemma without
further mention. Let

fi : Xi →Mi

be as in Lemma 106.13.4. Consider the stacks
Xij = Xi ×gi,X ,gj Xj

for i, j ∈ I. The projections Xij → Xi and Xij → Xj are separated by Morphisms
of Stacks, Lemma 101.4.4, étale by Morphisms of Stacks, Lemma 101.35.3, and
induce isomorphisms on automorphism groups (as in Morphisms of Stacks, Remark
101.19.5) by Morphisms of Stacks, Lemma 101.45.5. Thus we may apply Lemma
106.13.7 to find a commutative diagram

Xi

fi

��

Xij

fij

��

oo // Xj

fj

��
Mi Mij
oo // Mj

with cartesian squares where Mij → Mi and Mij → Mj are separated étale mor-
phisms of schemes; here we also use that fi is a uniform categorical quotient by
Lemma 106.13.6. Claim: ∐

Mij −→
∐

Mi ×
∐

Mi

is an étale equivalence relation.
Proof of the claim. Set R =

∐
Mij and U =

∐
Mi. We have already seen that

t : R→ U and s : R→ U are étale. Let us construct a morphism c : R×s,U,tR→ R
compatible with pr13 : U × U × U → U × U . Namely, for i, j, k ∈ I we consider

Xijk = Xi ×gi,X ,gj Xj ×gj ,X ,gk Xk = Xij ×Xj Xjk
Arguing exactly as in the previous paragraph, we find that Mijk = Mij ×Mj

Mjk

is a categorical moduli space for Xijk. In particular, there is a canonical morphism
Mijk = Mij×Mj

Mjk →Mik coming from the projection Xijk → Xik. Putting these
morphisms together we obtain the morphism c. In a similar fashion we construct a
morphism e : U → R compatible with ∆ : U → U × U and i : R → R compatible
with the flip U × U → U × U . Let k be an algebraically closed field. Then

Mor(Spec(k),Xi)→ Mor(Spec(k),Mi) = Mi(k)

4The reader who is still keeping track of set theoretic issues should make sure I is not too
large.

https://stacks.math.columbia.edu/tag/0DUT
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is bijective on isomorphism classes and the same remains true after any base change
by a morphism M ′ → M . This follows from our choice of fi and Morphisms of
Stacks, Lemmas 101.14.5 and 101.14.6. By construction of 2-fibred products the
diagram

Mor(Spec(k),Xij)

��

// Mor(Spec(k),Xj)

��
Mor(Spec(k),Xi) // Mor(Spec(k),X )

is a fibre product of categories. By our choice of gi the functors in this diagram
induce bijections on automorphism groups. It follows that this diagram induces a
fibre product diagram on sets of isomorphism classes! Thus we see that

R(k) = U(k)×| Mor(Spec(k),X )| U(k)

where |Mor(Spec(k),X )| denotes the set of isomorphism classes. In particular, for
any algebraically closed field k the map on k-valued point is an equivalence relation.
We conclude the claim holds by Groupoids, Lemma 39.3.5.

Let M = U/R be the algebraic space which is the quotient of the above étale
equivalence relation, see Spaces, Theorem 65.10.5. There is a canonical morphism
f : X →M fitting into commutative diagrams

(106.13.9.1)0DUU Xi gi
//

fi

��

X

f

��
Mi

// M

Namely, such a morphism f is given by a functor

f : Mor(T,X ) −→ Mor(T,M)

for any scheme T compatible with base change. Let a : T → X be an object of
the left hand side. We obtain an étale covering {Ti → T} with Ti = Xi ×X T and
morphisms ai : Ti → Xi. Then we get bi = fi ◦ ai : Ti → Mi. Since Ti ×T Tj =
Xij ×X T we moreover get a morphism aij : Ti ×T Tj → Xij . Setting bij = fij ◦ aij
we find that bi × bj factors through the monomorphism Mij → Mi ×Mj . Hence
the morphisms

Ti
bi−→Mi →M

agree on Ti ×T Tj . As M is a sheaf for the étale topology, we see that these
morphisms glue to a unique morphism b = f(a) : T →M . We omit the verification
that this construction is compatible with base change and we omit the verification
that the diagrams (106.13.9.1) commute.

Claim: the diagrams (106.13.9.1) are cartesian. To see this we study the induced
morphism

hi : Xi −→Mi ×M X
This is a morphism of stacks étale over X and hence hi is étale (Morphisms of
Stacks, Lemma 101.35.6). Since gi is separated, we see hi is separated (use Mor-
phisms of Stacks, Lemma 101.4.12 and the fact seen above that the diagonal of X
is separated). The morphism hi induces isomorphisms on automorphism groups
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(Morphisms of Stacks, Remark 101.19.5) as this is true for gi. For an algebraically
closed field k the diagram

Mor(Spec(k),Mi ×M X ) //

��

Mor(Spec(k),X )

��
Mi(k) // M(k)

is a catesian diagram of categories and the top arrow induces bijections on auto-
morphism groups. On the other hand, we have

M(k) = U(k)/R(k) = U(k)/U(k)×| Mor(Spec(k),X )| U(k) = |Mor(Spec(k),X )|

by what we said above. Thus the right vertical arrow in the cartesian diagram
above is a bijection on isomorphism classes. We conclude that |Mor(Spec(k),Mi×M
X )| →Mi(k) is bijective. Review: hi is a separated, étale, induces isomorphisms on
automorphism groups (as in Morphisms of Stacks, Remark 101.19.5), and induces
an equivalence on fibre categories over algebraically closed fields. Hence it is an
isomorphism by Morphisms of Stacks, Lemma 101.45.7.

From the claim we get in particular the following: we have a surjective étale mor-
phism U → M such that the base change of f is separated, quasi-compact, and
a universal homeomorphism. It follows that f is separated, quasi-compact, and
a universal homeomorphism. See Morphisms of Stacks, Lemma 101.4.5, 101.7.10,
and 101.15.5

To finish the proof we have to show that f : X →M is a uniform categorical moduli
space. To prove this it suffices to show that given a flat morphism M ′ → M of
algebraic spaces, the base change

M ′ ×M X −→M ′

is a categorical moduli space. Thus we consider a morphism

θ : M ′ ×M X −→ E

where E is an algebraic space. For each i we know that fi is a uniform categorical
moduli space. Hence we obtain

M ′ ×M Xi

��

// M ′ ×M X

θ

��
M ′ ×M Mi

ψi // E

Since {M ′ ×M Mi → M ′} is an étale covering, to obtain the desired morphism
ψ : M ′ → E it suffices to show that ψi and ψj agree over M ′ ×M Mi ×M Mj =
M ′ ×M Mij . This follows easily from the fact that fij : Xij = Xi ×X Xj → Mij is
a uniform categorical quotient; details omitted. Then finally one shows that ψ fits
into the commutative diagram

M ′ ×M X

��

θ

$$
M ′ ψ // E
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because “{M ′ ×M Xi →M ′ ×M X} is an étale covering” and the morphisms ψi fit
into the corresponding commutative diagrams by construction. This finishes the
proof of the Keel-Mori theorem. □

The following lemma emphasizes the étale local nature of the construction.

Lemma 106.13.10.0DUV Let h : X ′ → X be a morphism of algebraic stacks. Assume
(1) IX → X is finite,
(2) h is étale, separated, and induces isomorphisms on automorphism groups

(Morphisms of Stacks, Remark 101.19.5).
Then there exists a cartesian diagram

X ′

��

// X

��
M ′ // M

where M ′ →M is a separated étale morphism of algebraic spaces and the vertical
arrows are the moduli spaces constructed in Theorem 106.13.9.

Proof. By Morphisms of Stacks, Lemma 101.45.3 we see that IX ′ → X ′ ×X IX
is an isomorphism. Hence IX ′ → X ′ is finite as a base change of IX → X . Let
f ′ : X ′ →M ′ and f : X →M be as in Theorem 106.13.9. We obtain a commutative
diagram as in the lemma because f ′ is categorical moduli space. Choose I and
g′
i : X ′

i → X ′ as in Lemma 106.13.8. Observe that gi = h ◦ g′
i is étale, separated,

and induces isomorphisms on automorphism groups (Morphisms of Stacks, Remark
101.19.5). Let f ′

i : X ′
i → M ′

i be as in Lemma 106.13.4. In the proof of Theorem
106.13.9 we have seen that the diagrams

X ′
i

f ′
i

��

g′
i

// X ′

f ′

��
M ′
i

// M ′

and X ′
i

f ′
i

��

gi
// X

f

��
M ′
i

// M

are cartesian and that M ′
i →M ′ and M ′

i →M are étale (this also follows directly
from the properties of the morphisms g′

i, gi, f
′, f ′

i , f listed sofar by arguing in exactly
the same way). This first implies that M ′ →M is étale and second that the diagram
in the lemma is cartesian. We still need to show that M ′ →M is separated. To do
this we contemplate the diagram

X ′ //

��

X ′ ×X X ′

��
M ′ // M ′ ×M M ′

The top horizontal arrow is universally closed as X ′ → X is separated. The vertical
arrows are as in Theorem 106.13.9 (as flat base changes of X →M) hence universal
homeomorphisms. Thus the lower horizontal arrow is universally closed. This
(combined with it being an étale monomorphism of algebraic spaces) proves it is a
closed immersion as desired. □
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106.14. Properties of moduli spaces

0DUW Once the existence of a moduli space has been proven, it becomes possible (and is
usually straightforward) to esthablish properties of these moduli spaces.

Lemma 106.14.1.0DUX Let p : X → Y be a morphism of an algebraic stack to an
algebraic space. Assume

(1) IX → X is finite,
(2) Y is locally Noetherian, and
(3) p is locally of finite type.

Let f : X → M be the moduli space constructed in Theorem 106.13.9. Then
M → Y is locally of finite type.

Proof. Since f is a uniform categorical moduli space we obtain the morphism M →
Y . It suffices to check that M → Y is locally of finite type étale locally on M and
Y . Since f is a uniform categorical moduli space, we may first replace Y by an
affine scheme étale over Y . Next, we may choose I and gi : Xi → X as in Lemma
106.13.8. Then by Lemma 106.13.10 we reduce to the case X = Xi. In other
words, we may assume X is well-nigh affine. In this case we have Y = Spec(A0),
we have X = [U/R] with U = Spec(A) and M = Spec(C) where C ⊂ A is the
set of R-invariant functions on U . See Lemmas 106.13.2 and 106.13.4. Then A0
is Noetherian and A0 → A is of finite type. Moreover A is integral over C by
Groupoids, Lemma 39.23.4, hence finite over C (being of finite type over A0). Thus
we may finally apply Algebra, Lemma 10.51.7 to conclude. □

Lemma 106.14.2.0DUY Let X be an algebraic stack. Assume IX → X is finite. Let
f : X →M be the moduli space constructed in Theorem 106.13.9.

(1) If X is quasi-separated, then M is quasi-separated.
(2) If X is separated, then M is separated.
(3) Add more here, for example relative versions of the above.

Proof. To prove this consider the following diagram

X

f

��

∆X

// X × X

f×f
��

M
∆M // M ×M

Since f is a universal homeomorphism, we see that f × f is a universal homeomor-
phism.

If X is separated, then ∆X is proper, hence ∆X is universally closed, hence ∆M is
universally closed, hence M is separated by Morphisms of Spaces, Lemma 67.40.9.

If X is quasi-separated, then ∆X is quasi-compact, hence ∆M is quasi-compact,
hence M is quasi-separated. □

Lemma 106.14.3.0DUZ Let p : X → Y be a morphism from an algebraic stack to an
algebraic space. Assume

(1) IX → X is finite,
(2) p is proper, and
(3) Y is locally Noetherian.
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Let f : X → M be the moduli space constructed in Theorem 106.13.9. Then
M → Y is proper.

Proof. By Lemma 106.14.1 we see that M → Y is locally of finite type. By Lemma
106.14.2 we see that M → Y is separated. Of course M → Y is quasi-compact
and universally closed as these are topological properties and X → Y has these
properties and X →M is a universal homeomorphism. □

106.15. Stacks and fpqc coverings

0GRG Certain algebraic stacks satisfy fpqc descent. The analogue of this section for
algebraic spaces is Properties of Spaces, Section 66.17.

Proposition 106.15.1.0GRH Proposition 3.3.6 of
“Intro to Algebraic
Stacks” by Anatoly
Preygel.

Let X be an algebraic stack with quasi-affine5 diagonal.
Then X satisfies descent for fpqc coverings.

Proof. Our conventions are that X is a stack in groupoids p : X → (Sch/S)fppf
over the category of schemes over a base scheme S endowed with the fppf topology.
The statement means the following: given an fpqc covering U = {Ui → U}i∈I of
schemes over S the functor

XU −→ DD(U)
is an equivalence. Here on the left we have the category of objects of X over U and
on the right we have the category of descent data in X relative to U . See discussion
in Stacks, Section 8.3.
Fully faithfulness. Suppose we have two objects x, y of X over U . Then I =
Isom(x, y) is an algebraic space over U . Hence a collection of sections of I over Ui
whose restrictions to Ui×U Uj agree, come from a unique section over U by the ana-
logue of the proposition for algebraic spaces, see Properties of Spaces, Proposition
66.17.1. Thus our functor is fully faithful.
Essential surjectivity. Here we are given objects xi over Ui and isomorphisms φij :
pr∗

0xi → pr∗
1xj over Ui ×U Uj satisfying the cocyle condition over Ui ×U Uj ×U Uk.

Let W be an affine scheme and let W → X be a morphism. For each i we can form
Wi = Ui ×xi,X W

The projection Wi → Ui is quasi-affine as the diagonal of X is quasi-affine. For
each pair i, j ∈ I the isomorphism φij induces an isomorphism
Wi ×U Uj = (Ui ×U Uj)×xi◦pr0,X W → (Ui ×U Uj)×xj◦pr1,X W = Ui ×U Wj

Moreover, these isomorphisms satisfy the cocycle condition over Ui ×U Uj ×U Uk.
In other words, these isomorphisms define a descent datum on the schemes Wi/Ui
relative to U . By Descent, Lemma 35.38.1 we see that this descent datum is ef-
fective6. We conclude that there exists a quasi-affine morphism W ′ → U and a
commutative diagram

W ′

��

Wi
oo

��

// W

��
U Uioo xi // X

5It suffices to assume ind-quasi-affine.
6Or use More on Groupoids, Lemma 40.15.3 in the case of ind-quasi-affine diagonal.
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whose squares are cartesian. Since {Wi → W ′}i∈I is the base change of U by
W ′ → U we conclude that it is an fpqc covering. Since W satisfies the sheaf
condition for fpqc coverings, we obtain a unique morphism W ′ → W such that
Wi → W ′ → W is the given morphism Wi → W . In other words, we have the
commutative diagrams

Wi

��

// W ′

��

// W

��
Ui //

xi

66U X

compatible with the isomorphisms φij and whose square and rectangle are cartesian.
Choose a collection of affine schemes Wα, α ∈ A and smooth morphisms Wα → X
such that

∐
Wα → X is surjective. By the procedure of the preceding paragraph

we produce a diagram
Wα,i

��

// W ′
α

��

// Wα

��
Ui //

xi

66U X

for each α. Then the morphisms W ′
α → U are smooth and jointly surjective.

Denote xα the object of X over W ′
α corresponding to W ′

α → Wα → X . Since
X is an fppf stack and since {W ′

α → U} is an fppf covering, it suffices to show
that there are isomorphisms pr∗

0xα → pr∗
1xβ over W ′

α ×U W ′
β satisfying the cocycle

condition. However, after pulling back to Wα,i we do have such isomorphisms over
Wα,i×UiWβ,i = Ui×U (W ′

α×U W ′
β) since the pullback of xα to Wα,i is isomorphic

to the pullback of xi to Wα,i. Since {Ui ×U (W ′
α ×U W ′

β) → W ′
α ×U W ′

β}i∈I is an
fpqc covering and by the aforementioned compatibility of the diagrams above with
φij these isomorphisms descend to W ′

α ×U W ′
β and the proof is complete. □

106.16. Tensor functors

0GRI Let f : Y → X be a morphism of Noetherian algebraic stacks. The pullback functor
f∗ : Coh(OX ) −→ Coh(OY)

is a right exact tensor functor: it is additive, right exact, and commutes with tensor
products of coherent modules. We can ask to what extent any right exact tensor
functor F : Coh(OX )→ Coh(OY) comes from a morphism f : Y → X . The reader
may consult [HR19] for a very general result of this nature. The aim of this section
is to give a short proof of Theorem 106.16.8 as an introduction to these ideas.
We begin with some lemmas.

Lemma 106.16.1.0GRJ Let X and Y be Noetherian algebraic stacks. Any right exact
tensor functor F : Coh(OX ) → Coh(OY) extends uniquely to a right exact tensor
functor F : QCoh(OX )→ QCoh(OY) commuting with all colimits.

Proof. The existence and uniqueness of the extension is a general fact, see Cate-
gories, Lemma 4.26.2. To see that the lemma applies observe that coherent modules
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on locally Noetherian algebraic stacks are by definition modules of finite presenta-
tion, see Cohomology of Stacks, Definition 103.17.2. Hence a coherent module on X
is a categorically compact object of QCoh(OX ) by Cohomology of Stacks, Lemma
103.13.5. Finally, every quasi-coherent module is a filtered colimit of its coherent
submodules by Cohomology of Stacks, Lemma 103.18.1.

Since F is additive, also the extension of F is additive (details omitted). Since
F is a tensor functor and since colimits of modules commute with taking tensor
products, also the extension of F is a tensor functor (details omitted).

In this paragraph we show the extension commutes with arbitrary direct sums. If
F =

⊕
j∈J Hj with Hj quasi-coherent, then F = colimJ′⊂J finite

⊕
j∈J′ Hj . Denot-

ing the extension of F also by F we obtain

F (F) = colimJ′⊂J finite F (
⊕

j∈J′
Hj)

= colimJ′⊂J finite
⊕

j∈J′
F (Hj)

=
⊕

j∈J
F (Hj)

Thus F commutes with arbitrary direct sums.

In this paragraph we show that the extension is right exact. Suppose 0 → F →
F ′ → F ′′ → 0 is a short exact sequence of quasi-coherent OX -modules. Then we
write F ′ =

⋃
F ′
i as the union of its coherent submodules (see reference given above).

Denote F ′′
i ⊂ F ′′ the image of F ′

i and denote Fi = F ∩F ′
i = Ker(F ′

i → F ′′
i ). Then

it is clear that F =
⋃
Fi and F ′′ =

⋃
F ′′
i and that we have short exact sequences

0→ Fi → F ′
i → F ′′

i → 0

Since the extension commutes with filtered colimits we have F (F) = colimi∈I F (Fi),
F (F ′) = colimi∈I F (F ′

i), and F (F ′′) = colimi∈I F (F ′′
i ). Since filtered colimits of

sheaves of modules is exact we conclude that the extension of F is right exact.

The proof is finished as a right exact functor which commutes with all coproducts
commutes with all colimits, see Categories, Lemma 4.14.12. □

Lemma 106.16.2.0GRK Let X be an algebraic stack with affine diagonal. Let B be a
ring. Let F : QCoh(OX )→ ModB be a right exact tensor functor which commutes
with direct sums. Let g : U → X be a morphism with U = Spec(A) affine. Then

(1) C = F (gQCoh,∗OU ) is a commutative B-algebra and
(2) there is a ring map A→ C

such that F ◦ gQCoh,∗ : ModA → ModB sends M to M ⊗A C seen as B-module.

Proof. We note that g is quasi-compact and quasi-separated, see Morphisms of
Stacks, Lemma 101.7.8. In Cohomology of Stacks, Proposition 103.11.1 we have
constructed the functor gQCoh,∗ : QCoh(OU ) → QCoh(OX ). By Cohomology of
Stacks, Remarks 103.11.3 and 103.10.6 we obtain a multiplication

µ : gQCoh,∗OU ⊗OX gQCoh,∗OU −→ gQCoh,∗OU
which turns gQCoh,∗OU into a commutative OX -algebra. Hence C = F (gQCoh,∗OU )
is a commutative algebra object in ModB , in other words, C is a commutative B-
algebra. Observe that we have a map κ : A → EndOX (gQCoh,∗OU ) such that for
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any a ∈ A the diagram
gQCoh,∗OU ⊗OX gQCoh,∗OU

κ(r)⊗1
��

µ
// gQCoh,∗OU

κ(r)
��

gQCoh,∗OU ⊗OX gQCoh,∗OU
µ // gQCoh,∗OU

commutes. It follows that we get a map κ′ = F (κ) : A → EndB(C) such that
κ′(a)(c)c′ = κ′(a)(cc′) and of course this means that a 7→ κ′(a)(1) is a ring map
A→ C.
The morphism g : U → X is affine, see Morphisms of Stacks, Lemma 101.9.4.
Hence gQCoh,∗ is exact and commutes with direct sums by Cohomology of Stacks,
Lemma 103.13.4. Thus F ◦ gQCoh,∗ : ModA → ModB is a right exact functor which
commutes with direct sums and which sends A to C. By Functors and Morphisms,
Lemma 56.3.1 we see that the functor F ◦gQCoh,∗ sends an A-module M to M⊗AC
viewed as a B-module. □

Lemma 106.16.3.0GRL Notation as in Lemma 106.16.2. Assume X is Noetherian and g
is surjective and flat. Then B → C is universally injective.

Proof. Consider the natural map 1 : OX → gQCoh,∗OU in QCoh(OX ). Pulling back
to U and using adjunction we find that the composition

OU = g∗OX
g∗1−−→ g∗gQCoh,∗OU → OU

is the identity in QCoh(OU ). Write gQCoh,∗OU = colimFi as a filtered colimit
of coherent OX -modules, see Cohomology of Stacks, Lemma 103.18.1. For i large
enough the map 1 : OX → gQCoh,∗OU factors through Fi, see Cohomology of
Stacks, Lemma 103.13.5. Say s : OX → Fi is the factorization. Then

OU
g∗s−−→ g∗Fi → g∗gQCoh,∗OU → OU

is the identity. In other words, we see that s becomes the inclusion of a direct
summand upon pullback to U . Set F∨

i = hom(Fi,OX ) with notation as in Co-
homology of Stacks, Lemma 103.10.8. In particular there is an evaluation map
ev : Fi ⊗OX F∨

i → OX . Evaluation at s defines a map s∨ : F∨
i → OX . Dual

to the statement about s we see that g∗(s∨) is surjective, see see Cohomology of
Stacks, Section 103.12 for compatibility of hom and ⊗ with restriction to U . Since
g is surjective and flat, we conclude that s∨ is surjective (see locus citatus). Since
F is right exact, we conclude that F (F∨

i ) → F (OX ) = B is surjective. Choose
λ ∈ F (F∨

i ) mapping to 1 ∈ B. Denote e = F (s)(1) ∈ F (Fi) the image of 1 by the
map F (s) : B = F (OX )→ F (Fi). Then the map

F (ev) : F (Fi)⊗B F (F∨
i ) = F (Fi ⊗OX F∨

i ) −→ F (OX ) = B

sends e⊗ λ to 1 by construction. Hence the map B → F (Fi), b 7→ be is universally
injective because we have the one-sided inverse F (Fi) → B, ξ 7→ F (ev)(ξ ⊗ λ).
Since this is true for all i large enough we conclude. □

Lemma 106.16.4.0GRM Let B → C be a ring map. If
(1) the coprojections C → C ⊗B C are flat and
(2) B → C is universally injective,

then B → C is faithfully flat.
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Proof. The map Spec(C)→ Spec(B) is surjective as B → C is universally injective.
Thus it suffices to show that B → C is flat which follows from Descent, Theorem
35.4.25. □

The following very simple version of Künneth should become obsoleted when we
write a section on Künneth theorems for cohomology of quasi-coherent modues on
algebraic stacks.

Lemma 106.16.5.0GRN Let a : Y → X and b : Z → X be representable by schemes,
quasi-compact, quasi-separated, and flat. Then aQCoh,∗OY ⊗OX bQCoh,∗OZ =
fQCoh,∗OY×X Z where f : Y ×X Z → X is the obvious morphism.

Proof. We abbreviate P = Y ×X Z. Since a ◦ pr1 = f and b ◦ pr2 = f we obtain
maps a∗OY → f∗OP and b∗OZ → f∗OP (using relative pullback maps, see Sites,
Section 7.45). Hence we obtain a relative cup product

µ : a∗OY ⊗OX b∗OZ −→ f∗OY×X Z

Applying Q and its compatibility with tensor products (Cohomology of Stacks, Re-
mark 103.10.6) we obtain an arrowQ(µ) : aQCoh,∗OY⊗OX bQCoh,∗OZ → fQCoh,∗OY×X Z
in QCoh(OX ). Next, choose a scheme U and a surjective smooth morphism U → X .
It suffices to prove the restriction of Q(µ) to Uétale is an isomorphism, see Co-
homology of Stacks, Section 103.12. In turn, by the material in the same sec-
tion, it suffices to prove the restriction of µ to Uétale is an isomorphism (this uses
that the source and target of µ are locally quasi-coherent modules with the base
change property). Moreover, we may compute pushforwards in the étale topol-
ogy, see Cohomology of Stacks, Proposition 103.8.1. Then finally, we see that
a∗OY |Uétale = (V → U)small,∗OV where V = U×X Y. Similarly for b∗ and f∗. Thus
the result follows from the Künneth formula for flat, quasi-compact, quasi-separated
morphisms of schemes, see Derived Categories of Schemes, Lemma 36.23.1. □

Lemma 106.16.6.0GRP Let X be an algebraic stack with affine diagonal. Let B be a
ring. Let fi : Spec(B) → X , i = 1, 2 be two morphisms. Let t : f∗

1 → f∗
2 be

an isomorphism of the tensor functors f∗
i : QCoh(OX ) → ModB . Then there is a

2-arrow f1 → f2 inducing t.

Proof. Choose an affine scheme U = Spec(A) and a surjective smooth morphism
g : U → X , see Properties of Stacks, Lemma 100.6.2. Since the diagonal of X is
affine, we see that Ui = Spec(B) ×fi,X ,g U is affine. Say Ui = Spec(Ci). Then Ci
is the B-algebra endowed with ring map A → Ci constructed in Lemma 106.16.2
using the functor F = f∗

i . Therefore t induces an isomorphism C1 → C2 of B-
algebras, compatible with the ring maps A→ C1 and A→ C2. In other words, we
have a commutative diagrams

Ui //

��

U

g

��
Spec(B) fi // X

U2

{{
∼=
�� ��

Spec(B) U1oo // U

This already shows that the objects f1 and f2 of X over Spec(B) become isomorphic
after the smooth covering {U1 → Spec(B)}. To show that this descends to an
isomorphism of f1 and f2 over Spec(B), we have to show that our isomorphism
(which comes from the commutative diagrams above) is compatible with the descent
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data over U1 ×Spec(B) U1. For this we observe that U ×X U is affine too, that we
have the morphism g′ : U ×X U → X , and that

Ui ×Spec(B) Ui = Spec(B)×fi,X ,g′ (U ×X U)

It follows that the isomorphism C1⊗BC1 → C2⊗BC2 coming from the isomorphism
C1 → C2 is compatible with the morphisms Ui×Spec(B)Ui → U×X U . Some details
omitted. □

Lemma 106.16.7.0GRQ Let X be a Noetherian algebraic stack with affine diagonal. Let
B be a ring. Let F : QCoh(OX ) → ModB be a right exact tensor functor which
commutes with direct sums. Then F comes from a unique morphism Spec(B)→ X .

Proof. Choose a surjective smooth morphism g : U → X with U = Spec(A) affine,
see Properties of Stacks, Lemma 100.6.2. Apply Lemma 106.16.2 to get the finite
type commutative B-algebra C = F (gQCoh,∗OU ) and the ring map A → C. By
Lemma 106.16.3 the ring map B → C is universally injective. Consider the algebra

C ⊗B C = F (gQCoh,∗OU ⊗OX gQCoh,∗OU )

Since g is flat, quasi-compact, and quasi-separated by Lemma 106.16.5 we have the
first equality in

gQCoh,∗OU ⊗OX gQCoh,∗OU = fQCoh,∗OU×XU = gQCoh,∗(pr2,∗OU×XU )

where f : U ×X U → X is the obvious morphism and pr2 : U ×X U → U is
the second projection. The second equality follows from Cohomology of Stacks,
Lemma 103.11.5 and f = g ◦ pr2. Since the diagonal of X is affine, we see that
U ×X U = Spec(R) is affine. Let us use pr2 : A → R to view R as an A-algebra.
All in all we obtain

C ⊗B C = F (gQCoh,∗OU ⊗OX gQCoh,∗OU ) = F (gQCoh,∗(pr2,∗OU×XU )) = R⊗A C

where the final equality follows from the final statement of Lemma 106.16.2. Since
A → R is flat (because pr2 is flat as a base change of U → X ), we conclude that
C ⊗B C is flat over C. By Lemma 106.16.4 we conclude that B → C is faithfully
flat.

We claim there is a solid commutative diagram

Spec(C ⊗B C)

����

// U ×X U

����
Spec(C)

��

// U

��
Spec(B) // X

The arrow Spec(C) → U = Spec(A) comes from the ring map A → C in the
statement of Lemma 106.16.2. The arrow Spec(C⊗B C)→ U ×X U simlarly comes
from the ring map R → C ⊗B C. To verify the top square commutes use Lemma
106.16.6; details omitted. We conclude we get the dotted arrow Spec(B) → X by
Proposition 106.15.1.
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The statement that F is the functor corresponding to pullback by the dotted arrow
is also clear from this and the corresponding statement in Lemma 106.16.2. Details
omitted. □

For a ring B let us denote ModfgB the category of finitely generated B-modules
(AKA finite B-modules).

Theorem 106.16.8.0GRR Let X be a Noetherian algebraic stack with affine diagonal.
Let B be a Noetherian ring. Let F : Coh(OX ) → ModfgB be a right exact tensor
functor. Then F comes from a unique morphism Spec(B)→ X .

Proof. By Lemma 106.16.1 we can extend F uniquely to a right exact tensor functor
F : QCoh(OX ) → ModB commuting with all direct susms. Then we can apply
Lemma 106.16.7. □
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CHAPTER 107

The Geometry of Algebraic Stacks

0DQR 107.1. Introduction

0DQS This chapter discusses a few geometric properties of algebraic stacks. The initial
versions of Sections 107.3 and 107.5 were written by Matthew Emerton and Toby
Gee and can be found in their original form in [EG17].

107.2. Versal rings

0DQT In this section we elucidate the relationship between deformation rings and local
rings on algebraic stacks of finite type over a locally Noetherian base.

Situation 107.2.1.0DQU Here X is an algebraic stack locally of finite type over a locally
Noetherian scheme S.

Here is the definition.

Definition 107.2.2.0DQV In Situation 107.2.1 let x0 : Spec(k)→ X be a morphism, where
k is a finite type field over S. A versal ring to X at x0 is a complete Noetherian
local S-algebra A with residue field k such that there exists a versal formal object
(A, ξn, fn) as in Artin’s Axioms, Definition 98.12.1 with ξ1 ∼= x0 (a 2-isomorphism).

We want to prove that versal rings exist and are unique up to smooth factors. To
do this, we will use the predeformation categories of Artin’s Axioms, Section 98.3.
These are always deformation categories in our situation.

Lemma 107.2.3.0DQW In Situation 107.2.1 let x0 : Spec(k)→ X be a morphism, where
k is a finite type field over S. Then FX ,k,x0 is a deformation category and TFX ,k,x0

and Inf(FX ,k,x0) are finite dimensional k-vector spaces.

Proof. Choose an affine open Spec(Λ) ⊂ S such that Spec(k)→ S factors through
it. By Artin’s Axioms, Section 98.3 we obtain a predeformation category FX ,k,x0

over the category CΛ. (As pointed out in locus citatus this category only depends
on the morphism Spec(k) → S and not on the choice of Λ.) By Artin’s Axioms,
Lemmas 98.6.1 and 98.5.2 FX ,k,x0 is actually a deformation category. By Artin’s
Axioms, Lemma 98.8.1 we find that TFX ,k,x0 and Inf(FX ,k,x0) are finite dimensional
k-vector spaces. □

Lemma 107.2.4.0DQX In Situation 107.2.1 let x0 : Spec(k)→ X be a morphism, where
k is a finite type field over S. Then a versal ring to X at x0 exists. Given a pair A,
A′ of these, then A ∼= A′[[t1, . . . , tr]] or A′ ∼= A[[t1, . . . , tr]] as S-algebras for some
r.

Proof. By Lemma 107.2.3 and Formal Deformation Theory, Lemma 90.13.4 (note
that the assumptions of this lemma hold by Formal Deformation Theory, Lemmas
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90.16.6 and Definition 90.16.8). By the uniquness result of Formal Deformation
Theory, Lemma 90.14.5 there exists a “minimal” versal ring A of X at x0 such that
any other versal ring of X at x0 is isomorphic to A[[t1, . . . , tr]] for some r. This
clearly implies the second statement. □

Lemma 107.2.5.0DQY In Situation 107.2.1 let x0 : Spec(k)→ X be a morphism, where
k is a finite type field over S. Let l/k be a finite extension of fields and denote
xl,0 : Spec(l) → X the induced morphism. Given a versal ring A to X at x0 there
exists a versal ring A′ to X at xl,0 such that there is a S-algebra map A → A′

which induces the given field extension l/k and is formally smooth in the mA′ -adic
topology.

Proof. Follows immediately from Artin’s Axioms, Lemma 98.7.1 and Formal De-
formation Theory, Lemma 90.29.6. (We also use that X satisfies (RS) by Artin’s
Axioms, Lemma 98.5.2.) □

Lemma 107.2.6.0DQZ In Situation 107.2.1 let x : U → X be a morphism where U is a
scheme locally of finite type over S. Let u0 ∈ U be a finite type point. Set k = κ(u0)
and denote x0 : Spec(k)→ X the induced map. The following are equivalent

(1) x is versal at u0 (Artin’s Axioms, Definition 98.12.2),
(2) x̂ : FU,k,u0 → FX ,k,x0 is smooth,
(3) the formal object associated to x|Spec(O∧

U,u0
) is versal, and

(4) there is an open neighbourhood U ′ ⊂ U of x such that x|U ′ : U ′ → X is
smooth.

Moreover, in this case the completion O∧
U,u0

is a versal ring to X at x0.

Proof. Since U → S is locally of finite type (as a composition of such morphisms),
we see that Spec(k) → S is of finite type (again as a composition). Thus the
statement makes sense. The equivalence of (1) and (2) is the definition of x being
versal at u0. The equivalence of (1) and (3) is Artin’s Axioms, Lemma 98.12.3.
Thus (1), (2), and (3) are equivalent.
If x|U ′ is smooth, then the functor x̂ : FU,k,u0 → FX ,k,x0 is smooth by Artin’s
Axioms, Lemma 98.3.2. Thus (4) implies (1), (2), and (3). For the converse,
assume x is versal at u0. Choose a surjective smooth morphism y : V → X where
V is a scheme. Set Z = V ×X U and pick a finite type point z0 ∈ |Z| lying over
u0 (this is possible by Morphisms of Spaces, Lemma 67.25.5). By Artin’s Axioms,
Lemma 98.12.6 the morphism Z → V is smooth at z0. By definition we can find
an open neighbourhood W ⊂ Z of z0 such that W → V is smooth. Since Z → U is
open, let U ′ ⊂ U be the image of W . Then we see that U ′ → X is smooth by our
definition of smooth morphisms of stacks.
The final statement follows from the definitions as O∧

U,u0
prorepresents FU,k,u0 . □

Lemma 107.2.7.0DZS In Situation 107.2.1. Let x0 : Spec(k) → X be a morphism such
that Spec(k)→ S is of finite type with image s. Let A be a versal ring to X at x0.
The following are equivalent

(1) x0 is in the smooth locus of X → S (Morphisms of Stacks, Lemma
101.33.6),

(2) OS,s → A is formally smooth in the mA-adic topology, and
(3) FX ,k,x0 is unobstructed.
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Proof. The equivalence of (2) and (3) follows immediately from Formal Deformation
Theory, Lemma 90.9.4.

Note that OS,s → A is formally smooth in the mA-adic topology if and only if
OS,s → A′ = A[[t1, . . . , tr]] is formally smooth in the mA′ -adic topology. Hence
(2) does not depend on the choice of our versal ring by Lemma 107.2.4. Next, let
l/k be a finite extension and choose A → A′ as in Lemma 107.2.5. If OS,s → A is
formally smooth in the mA-adic topology, then OS,s → A′ is formally smooth in the
mA′ -adic topology, see More on Algebra, Lemma 15.37.7. Conversely, if OS,s → A′

is formally smooth in the mA′ -adic topology, then O∧
S,s → A′ and A → A′ are

regular (More on Algebra, Proposition 15.49.2) and hence O∧
S,s → A is regular

(More on Algebra, Lemma 15.41.7), hence OS,s → A is formally smooth in the
mA-adic topology (same lemma as before). Thus the equivalence of (2) and (1)
holds for k and x0 if and only if it holds for l and x0,l.

Choose a scheme U and a smooth morphism U → X such that Spec(k) ×X U is
nonempty. Choose a finite extension l/k and a point w0 : Spec(l)→ Spec(k)×X U .
Let u0 ∈ U be the image of w0. We may apply the above to l/k and to l/κ(u0) to
see that we can reduce to u0. Thus we may assume A = O∧

U,u0
, see Lemma 107.2.6.

Observe that x0 is in the smooth locus of X → S if and only if u0 is in the smooth
locus of U → S, see for example Morphisms of Stacks, Lemma 101.33.6. Thus the
equivalence of (1) and (2) follows from More on Algebra, Lemma 15.38.6. □

We recall a consequence of Artin approximation.

Lemma 107.2.8.0DR0 In Situation 107.2.1. Let x0 : Spec(k) → X be a morphism such
that Spec(k)→ S is of finite type with image s. Let A be a versal ring to X at x0.
If OS,s is a G-ring, then we may find a smooth morphism U → X whose source is
a scheme and a point u0 ∈ U with residue field k, such that

(1) Spec(k)→ U → X coincides with the given morphism x0,
(2) there is an isomorphism O∧

U,u0
∼= A.

Proof. Let (ξn, fn) be the versal formal object over A. By Artin’s Axioms, Lemma
98.9.5 we know that ξ = (A, ξn, fn) is effective. By assumption X is locally of finite
presentation over S (use Morphisms of Stacks, Lemma 101.27.5), and hence limit
preserving by Limits of Stacks, Proposition 102.3.8. Thus Artin approximation as
in Artin’s Axioms, Lemma 98.12.7 shows that we may find a morphism U → X
with source a finite type S-scheme, containing a point u0 ∈ U of residue field k
satisfying (1) and (2) such that U → X is versal at u0. By Lemma 107.2.6 after
shrinking U we may assume U → X is smooth. □

Remark 107.2.9 (Upgrading versal rings).0DR1 In Situation 107.2.1 let x0 : Spec(k)→ X
be a morphism, where k is a finite type field over S. Let A be a versal ring to X at
x0. By Artin’s Axioms, Lemma 98.9.5 our versal formal object in fact comes from
a morphism

Spec(A) −→ X
over S. Moreover, the results above each can be upgraded to be compatible with
this morphism. Here is a list:

(1) in Lemma 107.2.4 the isomorphismA ∼= A′[[t1, . . . , tr]] orA′ ∼= A[[t1, . . . , tr]]
may be chosen compatible with these morphisms,

https://stacks.math.columbia.edu/tag/0DR0
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(2) in Lemma 107.2.5 the homomorphism A→ A′ may be chosen compatible
with these morphisms,

(3) in Lemma 107.2.6 the morphism Spec(O∧
U,u0

) → X is the composition of
the canonical map Spec(O∧

U,u0
)→ U and the given map U → X ,

(4) in Lemma 107.2.8 the isomorphismO∧
U,u0
∼= Amay be chosen so Spec(A)→

X corresponds to the canonical map in the item above.
In each case the statement follows from the fact that our maps are compatible
with versal formal elements; we note however that the implied diagrams are 2-
commutative only up to a (noncanonical) choice of a 2-arrow. Still, this means that
the implied map A′ → A or A → A′ in (1) is well defined up to formal homotopy,
see Formal Deformation Theory, Lemma 90.28.3.

Lemma 107.2.10.0DR2 In Situation 107.2.1 let x0 : Spec(k)→ X be a morphism, where
k is a finite type field over S. Let A be a versal ring to X at x0. Then the morphism
Spec(A)→ X of Remark 107.2.9 is flat.

Proof. If the local ring of S at the image point is a G-ring, then this follows im-
mediately from Lemma 107.2.8 and the fact that the map from a Noetherian local
ring to its completion is flat. In general we prove it as follows.

Step I. If A and A′ are two versal rings to X at x0, then the result is true for A
if and only if it is true for A′. Namely, after possible swapping A and A′, we may
assume there is a formally smooth map φ : A→ A′ such that the composition

Spec(A′)→ Spec(A)→ X

is the morphism Spec(A′) → X , see Lemma 107.2.4 and Remark 107.2.9. Since
A → A′ is faithfully flat we obtain the equivalence from Morphisms of Stacks,
Lemmas 101.25.2 and 101.25.5.

Step II. Let l/k be a finite extension of fields. Let xl,0 : Spec(l) → X be the
induced morphism. Let A be a versal ring to X at x0 and let A → A′ be as in
Lemma 107.2.5. Then again the composition

Spec(A′)→ Spec(A)→ X

is the morphism Spec(A′) → X , see Remark 107.2.9. Arguing as before and using
step I to see choice of versal rings is irrelevant, we see that the lemma holds for x0
if and only if it holds for xl,0.

Step III. Choose a scheme U and a surjective smooth morphism U → X . Then we
can choose a finite type point z0 on Z = U ×X x0 (this is a nonempty algebraic
space). Let u0 ∈ U be the image of z0 in U . Choose a scheme and a surjective étale
map W → Z such that z0 is the image of a closed point w0 ∈ W (see Morphisms
of Spaces, Section 67.25). Since W → Spec(k) and W → U are of finite type, we
see that κ(w0)/k and κ(w0)/κ(u0) are finite extensions of fields (see Morphisms,
Section 29.16). Applying Step II twice we may replace x0 by u0 → U → X . Then
we see our morphism is the composition

Spec(O∧
U,u0

)→ U → X

The first arrow is flat because completion of Noetherian local rings are flat (Algebra,
Lemma 10.97.2) and the second arrow is flat as a smooth morphism is flat. The
composition is flat as composition preserves flatness. □

https://stacks.math.columbia.edu/tag/0DR2
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Remark 107.2.11.0DR3 In Situation 107.2.1 let x0 : Spec(k) → X be a morphism,
where k is a finite type field over S. By Lemma 107.2.3 and Formal Deformation
Theory, Theorem 90.26.4 we know that FX ,k,x0 has a presentation by a smooth
prorepresentable groupoid in functors on CΛ. Unwinding the definitions, this means
we can choose

(1) a Noetherian complete local Λ-algebra A with residue field k and a versal
formal object ξ of FX ,k,x0 over A,

(2) a Noetherian complete local Λ-algebra B with residue field k and an iso-
morphism

B|CΛ −→ A|CΛ ×ξ,FX ,k,x0 ,ξ
A|CΛ

The projections correspond to formally smooth maps t : A → B and s : A → B
(because ξ is versal). There is a map c : B → B⊗̂s,A,tB which turns (A,B, s, t, c)
into a cogroupoid in the category of Noetherian complete local Λ-algebras with
residue field k (on prorepresentable functors this map is constructed in Formal
Deformation Theory, Lemma 90.25.2). Finally, the cited theorem tells us that ξ
induces an equivalence

[A|CΛ/B|CΛ ] −→ FX ,k,x0

of groupoids cofibred over CΛ. In fact, we also get an equivalence

[A/B] −→ F̂X ,k,x0

of groupoids cofibred over the completed category ĈΛ (see discussion in Formal
Deformation Theory, Section 90.22 as to why this works). Of course A is a versal
ring to X at x0.

107.3. Multiplicities of components of algebraic stacks

0DR4 If X is a locally Noetherian scheme, then we may write X (thought of simply as
a topological space) as a union of irreducible components, say X =

⋃
Ti. Each

irreducible component is the closure of a unique generic point ξi, and the local ring
OX,ξi is a local Artin ring. We may define the multiplicity of X along Ti or the
multiplicity of Ti in X by

mTi,X = lengthOX,ξi
OX,ξi

In other words, it is the length of the local Artinian ring. Please compare with
Chow Homology, Section 42.9.
Our goal here is to generalise this definition to locally Noetherian algebraic stacks.
If X is a stack, then its topological space |X | (see Properties of Stacks, Definition
100.4.8) is locally Noetherian (Morphisms of Stacks, Lemma 101.8.3). The irre-
ducible components of |X | are sometimes referred to as the irreducible components
of X . If X is quasi-separated, then |X | is sober (Morphisms of Stacks, Lemma
101.30.3), but it need not be in the non-quasi-separated case. Consider for exam-
ple the non-quasi-separated algebraic space X = A1

C/Z. Furthermore, there is no
structure sheaf on |X | whose stalks can be used to define multiplicities.

Lemma 107.3.1.0DR5 Let f : U → X be a smooth morphism from a scheme to a locally
Noetherian algebraic stack. The closure of the image of any irreducible component
of |U | is an irreducible component of |X |. If U → X is surjective, then all irreducible
components of |X | are obtained in this way.

https://stacks.math.columbia.edu/tag/0DR3
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Proof. The map |U | → |X | is continuous and open by Properties of Stacks, Lemma
100.4.7. Let T ⊂ |U | be an irreducible component. Since U is locally Noetherian,
we can find a nonempty affine open W ⊂ U contained in T . Then f(T ) ⊂ |X |
is irreducible and contains the nonempty open subset f(W ). Thus the closure of
f(T ) is irreducible and contains a nonempty open. It follows that this closure is an
irreducible component.
Assume U → X is surjective and let Z ⊂ |X | be an irreducible component. Choose
a Noetherian open subset V of |X | meeting Z. After removing the other irreducible
components from V we may assume that V ⊂ Z. Take an irreducible component
of the nonempty open f−1(V ) ⊂ |U | and let T ⊂ |U | be its closure. This is an
irreducible component of |U | and the closure of f(T ) must agree with Z by our
choice of T . □

The preceding lemma applies in particular in the case of smooth morphisms be-
tween locally Noetherian schemes. This particular case is implicitly invoked in the
statement of the following lemma.

Lemma 107.3.2.0DR6 Let U → X be a smooth morphism of locally Noetherian schemes.
Let T ′ is an irreducible component of U . Let T be the irreducible component of X
obtained as the closure of the image of T ′. Then mT ′,U = mT,X .

Proof. Write ξ′ for the generic point of T ′, and ξ for the generic point of T . Let
A = OX,ξ and B = OU,ξ′ . We need to show that lengthAA = lengthBB. Since
A → B is a flat local homomorphism of rings (since smooth morphisms are flat),
we have

lengthA(A)lengthB(B/mAB) = lengthB(B)
by Algebra, Lemma 10.52.13. Thus it suffices to show mAB = mB , or equivalently,
that B/mAB is reduced. Since U → X is smooth, so is its base change Uξ →
Specκ(ξ). As Uξ is a smooth scheme over a field, it is reduced, and thus so its local
ring at any point (Varieties, Lemma 33.25.4). In particular,

B/mAB = OU,ξ′/mX,ξOU,ξ′ = OUξ,ξ′

is reduced, as required. □

Using this result, we may show that there exists a good notion of multiplicity by
looking smooth locally.

Lemma 107.3.3.0DR7 Let U1 → X and U2 → X be two smooth morphisms from schemes
to a locally Noetherian algebraic stack X . Let T ′

1 and T ′
2 be irreducible components

of |U1| and |U2| respectively. Assume the closures of the images of T ′
1 and T ′

2 are
the same irreducible component T of |X |. Then mT ′

1,U1 = mT ′
2,U2 .

Proof. Let V1 and V2 be dense subsets of T ′
1 and T ′

2, respectively, that are open
in U1 and U2 respectively (see proof of Lemma 107.3.1). The images of |V1| and
|V2| in |X | are non-empty open subsets of the irreducible subset T , and therefore
have non-empty intersection. By Properties of Stacks, Lemma 100.4.3, the map
|V1 ×X V2| → |V1| ×|X | |V2| is surjective. Consequently V1 ×X V2 is a non-empty
algebraic space; we may therefore choose an étale surjection V → V1 ×X V2 whose
source is a (non-empty) scheme. If we let T ′ be any irreducible component of V ,
then Lemma 107.3.1 shows that the closure of the image of T ′ in U1 (respectively
U2) is equal to T ′

1 (respectively T ′
2).

https://stacks.math.columbia.edu/tag/0DR6
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Applying Lemma 107.3.2 twice we find that
mT ′

1,U1 = mT ′,V = mT ′
2,U2 ,

as required. □

At this point we have done enough work to show the following definition makes
sense.
Definition 107.3.4.0DR8 Let X be a locally Noetherian algebraic stack. Let T ⊂ |X | be
an irreducible component. The multiplicity of T in X is defined as mT,X = mT ′,U

where f : U → X is a smooth morphism from a scheme and T ′ ⊂ |U | is an
irreducible component with f(T ′) ⊂ T .
This is independent of the choice of f : U → X and the choice of the irreducible
component T ′ mapping to T by Lemmas 107.3.1 and 107.3.3.
As a closing remark, we note that it is sometimes convenient to think of an ir-
reducible component of X as a closed substack. To this end, if T ⊂ |X | is an
irreducible component, then we may consider the unique reduced closed substack
T ⊂ X with |T | = T , see Properties of Stacks, Definition 100.10.4. If X is quasi-
separated, then an irreducible component is an integral stack; see Morphisms of
Stacks, Section 101.50 for further discussion.

107.4. Formal branches and multiplicities

0DR9 It will be convenient to have a comparison between the notion of multiplicity of
an irreducible component given by Definition 107.3.4 and the related notion of
multiplicities of irreducible components of (the spectra of) versal rings of X at
finite type points.
In Situation 107.2.1 let x0 : Spec(k) → X be a morphism, where k is a finite type
field over S. Let A, A′ be versal rings to X at x0. After possibly swapping A and A′,
we know there is a formally smooth1 map φ : A→ A′ compatible with versal formal
objects, see Lemma 107.2.4 and Remark 107.2.9. Moreover, φ is well defined up to
formal homotopy, see Formal Deformation Theory, Lemma 90.28.3. In particular,
we find that φ(p)A′ is a well defined ideal of A′ by Formal Deformation Theory,
Lemma 90.28.4. Since A → A′ is formally smooth, in fact φ(p)A′ is a minimal
prime of A′ and every minimal prime of A′ is of this form for a unique minimal
prime p ⊂ A (all of this is easy to prove by writing A′ as a power series ring over A).
Therefore, recalling that minimal primes correspond to irreducible components, the
following definition makes sense.
Definition 107.4.1.0DRA Let X be an algebraic stack locally of finite type over a locally
Noetherian scheme S. Let x0 : Spec(k) → X is a morphism where k is a field of
finite type over S. The formal branches of X through x0 is the set of irreducible
components of Spec(A) for any choice of versal ring to X at x0 identified for different
choices of A by the procedure described above.
Suppose in the situation of Definition 107.4.1 we are given a finite extension l/k.
Set xl,0 : Spec(l)→ X equal to the composition of Spec(l)→ Spec(k) with x0. Let
A→ A′ be as in Lemma 107.2.5. Since A→ A′ is faithfully flat, the morphism

Spec(A′)→ Spec(A)

1In the sense that A′ becomes isomorphic to a power series ring over A.

https://stacks.math.columbia.edu/tag/0DR8
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sends (generic points of) irreducible components to (generic points of) irreducible
components. This will be a surjective map, but in general this map will not be a
bijection. In other words, we obtain a surjective map

formal branches of X through xl,0 −→ formal branches of X through x0

It turns out that if l/k is purely inseparable, then the map is injective as well (we’ll
add a precise statement and proof here if we ever need this).

Lemma 107.4.2.0DRB In the situation of Definition 107.4.1 there is a canonical surjection
from the set of formal branches of X through x0 to the set of irreducible components
of |X | containing x0 in |X |.

Proof. Let A be as in Definition 107.4.1 and let Spec(A) → X be as in Remark
107.2.9. We claim that the generic point of an irreducible component of Spec(A)
maps to a generic point of an irreducible component of |X |. Choose a scheme U
and a surjective smooth morphism U → X . Consider the diagram

Spec(A)×X U

p

��

q
// U

f

��
Spec(A) j // X

By Lemma 107.2.10 we see that j is flat. Hence q is flat. On the other hand, f
is surjective smooth hence p is surjective smooth. This implies that any generic
point η ∈ Spec(A) of an irreducible component is the image of a codimension 0
point η′ of the algebraic space Spec(A) ×X U (see Properties of Spaces, Section
66.11 for notation and use going down on étale local rings). Since q is flat, q(η′)
is a codimension 0 point of U (same argument). Since U is a scheme, q(η′) is the
generic point of an irreducible component of U . Thus the closure of the image of
q(η′) in |X | is an irreducible component by Lemma 107.3.1 as claimed.

Clearly the claim provides a mechanism for defining the desired map. To see that
it is surjective, we choose u0 ∈ U mapping to x0 in |X |. Choose an affine open
U ′ ⊂ U neighbourhood of u0. After shrinking U ′ we may assume every irreducible
component of U ′ passes through u0. Then we may replace X by the open substack
corresponding to the image of |U ′| → |X |. Thus we may assume U is affine has a
point u0 mapping to x0 ∈ |X | and every irreducible component of U passes through
u0. By Properties of Stacks, Lemma 100.4.3 there is a point t ∈ |Spec(A) ×X U |
mapping to the closed point of Spec(A) and to u0. Using going down for the flat
local ring homomorphisms

A −→ OSpec(A)×XU,t
←− OU,u0

we see that every minimal prime of OU,u0 is the image of a minimal prime of the
local ring in the middle and such a minimal prime maps to a minimal prime of A.
This proves the surjectivity. Some details omitted. □

Let A be a Noetherian complete local ring. Then the irreducible components of
Spec(A) have multiplicities, see introduction to Section 107.3. If A′ = A[[t1, . . . , tr]],
then the morphism Spec(A′)→ Spec(A) induces a bijection on irreducible compo-
nents preserving multiplicities (we omit the easy proof). This and the discussion
preceding Definition 107.4.1 mean that the following definition makes sense.

https://stacks.math.columbia.edu/tag/0DRB
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Definition 107.4.3.0DRC Let X be an algebraic stack locally of finite type over a locally
Noetherian scheme S. Let x0 : Spec(k) → X is a morphism where k is a field
of finite type over S. The multiplicity of a formal branch of X through x0 is the
multiplicity of the corresponding irreducible component of Spec(A) for any choice
of versal ring to X at x0 (see discussion above).

Lemma 107.4.4.0DRD Let X be an algebraic stack locally of finite type over a locally
Noetherian scheme S. Let x0 : Spec(k) → X is a morphism where k is a field of
finite type over S with image s ∈ S. If OS,s is a G-ring, then the map of Lemma
107.4.2 preserves multiplicities.

Proof. By Lemma 107.2.8 we may assume there is a smooth morphism U → X
where U is a scheme and a k-valued point u0 of U such that O∧

U,u0
is a versal ring to

X at x0. By construction of our map in the proof of Lemma 107.4.2 (which simplifies
greatly because A = O∧

U,u0
) we find that it suffices to show: the multiplicity of an

irreducible component of U passing through u0 is the same as the multiplicity of
any irreducible component of Spec(O∧

U,u0
) mapping into it.

Translated into commutative algebra we find the following: Let C = OU,u0 . This
is essentially of finite type over OS,s and hence is a G-ring (More on Algebra,
Proposition 15.50.10). Then A = C∧. Therefore C → A is a regular ring map. Let
q ⊂ C be a minimal prime and let p ⊂ A be a minimal prime lying over q. Then

R = Cp −→ Ap = R′

is a regular ring map of Artinian local rings. For such a ring map it is always the
case that

lengthRR = lengthR′R′

This is what we have to show because the left hand side is the multiplicity of our
component on U and the right hand side is the multiplicity of our component on
Spec(A). To see the equality, first we use that

lengthR(R)lengthR′(R′/mRR
′) = lengthR′(R′)

by Algebra, Lemma 10.52.13. Thus it suffices to show mRR
′ = mR′ , which is a

consequence of being a regular homomorphism of zero dimensional local rings. □

107.5. Dimension theory of algebraic stacks

0DRE The main results on the dimension theory of algebraic stacks in the literature that
we are aware of are those of [Oss15], which makes a study of the notions of codimen-
sion and relative dimension. We make a more detailed examination of the notion
of the dimension of an algebraic stack at a point, and prove various results relating
the dimension of the fibres of a morphism at a point in the source to the dimension
of its source and target. We also prove a result (Lemma 107.6.4 below) which allow
us (under suitable hypotheses) to compute the dimension of an algebraic stack at
a point in terms of a versal ring.
While we haven’t always tried to optimise our results, we have largely tried to
avoid making unnecessary hypotheses. However, in some of our results, in which
we compare certain properties of an algebraic stack to the properties of a versal ring
to this stack at a point, we have restricted our attention to the case of algebraic
stacks that are locally finitely presented over a locally Noetherian scheme base,
all of whose local rings are G-rings. This gives us the convenience of having Artin
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approximation available to compare the geometry of the versal ring to the geometry
of the stack itself. However, this restrictive hypothesis may not be necessary for
the truth of all of the various statements that we prove. Since it is satisfied in the
applications that we have in mind, though, we have been content to make it when
it helps.
If X is a scheme, then we define the dimension dim(X) of X to be the Krull
dimension of the topological space underlying X, while if x is a point of X, then we
define the dimension dimx(X) of X at x to be the minimum of the dimensions of
the open subsets U of X containing x, see Properties, Definition 28.10.1. One has
the relation dim(X) = supx∈X dimx(X), see Properties, Lemma 28.10.2. If X is
locally Noetherian, then dimx(X) coincides with the supremum of the dimensions
at x of the irreducible components of X passing through x.
If X is an algebraic space and x ∈ |X|, then we define dimxX = dimu U, where U is
any scheme admitting an étale surjection U → X, and u ∈ U is any point lying over
x, see Properties of Spaces, Definition 66.9.1. We set dim(X) = supx∈|X| dimx(X),
see Properties of Spaces, Definition 66.9.2.

Remark 107.5.1.0DRF In general, the dimension of the algebraic space X at a point x
may not coincide with the dimension of the underlying topological space |X| at x.
E.g. if k is a field of characteristic zero and X = A1

k/Z, then X has dimension 1 (the
dimension of A1

k) at each of its points, while |X| has the indiscrete topology, and
hence is of Krull dimension zero. On the other hand, in Algebraic Spaces, Example
65.14.9 there is given an example of an algebraic space which is of dimension 0
at each of its points, while |X| is irreducible of Krull dimension 1, and admits a
generic point (so that the dimension of |X| at any of its points is 1); see also the
discussion of this example in Properties of Spaces, Section 66.9.
On the other hand, if X is a decent algebraic space, in the sense of Decent Spaces,
Definition 68.6.1 (in particular, if X is quasi-separated; see Decent Spaces, Section
68.6) then in fact the dimension of X at x does coincide with the dimension of |X|
at x; see Decent Spaces, Lemma 68.12.5.

In order to define the dimension of an algebraic stack, it will be useful to first have
the notion of the relative dimension, at a point in the source, of a morphism whose
source is an algebraic space, and whose target is an algebraic stack. The definition
is slightly involved, just because (unlike in the case of schemes) the points of an
algebraic stack, or an algebraic space, are not describable as morphisms from the
spectrum of a field, but only as equivalence classes of such.

Definition 107.5.2.0DRG If f : T → X is a locally of finite type morphism from an
algebraic space to an algebraic stack, and if t ∈ |T | is a point with image x ∈ |X |,
then we define the relative dimension of f at t, denoted dimt(Tx), as follows: choose
a morphism Spec k → X , with source the spectrum of a field, which represents x,
and choose a point t′ ∈ |T ×X Spec k| mapping to t under the projection to |T |
(such a point t′ exists, by Properties of Stacks, Lemma 100.4.3); then

dimt(Tx) = dimt′(T ×X Spec k).

Note that since T is an algebraic space and X is an algebraic stack, the fibre product
T ×X Spec k is an algebraic space, and so the quantity on the right hand side of
this proposed definition is in fact defined (see discussion above).
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Remark 107.5.3.0DRH (1) One easily verifies (for example, by using the invariance of
the relative dimension of locally of finite type morphisms of schemes under base-
change; see for example Morphisms, Lemma 29.28.3) that dimt(Tx) is well-defined,
independently of the choices used to compute it.
(2) In the case that X is also an algebraic space, it is straightforward to confirm that
this definition agrees with the definition of relative dimension given in Morphisms
of Spaces, Definition 67.33.1.

We next recall the following lemma, on which our study of the dimension of a locally
Noetherian algebraic stack is founded.

Lemma 107.5.4.0DRI If f : U → X is a smooth morphism of locally Noetherian algebraic
spaces, and if u ∈ |U | with image x ∈ |X|, then

dimu(U) = dimx(X) + dimu(Ux)
where dimu(Ux) is defined via Definition 107.5.2.

Proof. See Morphisms of Spaces, Lemma 67.37.10 noting that the definition of
dimu(Ux) used here coincides with the definition used there, by Remark 107.5.3
(2). □

Lemma 107.5.5.0DRJ If X is a locally Noetherian algebraic stack and x ∈ |X |. Let
U → X be a smooth morphism from an algebraic space to X , let u be any point of
|U | mapping to x. Then we have

dimx(X ) = dimu(U)− dimu(Ux)
where the relative dimension dimu(Ux) is defined by Definition 107.5.2 and the
dimension of X at x is as in Properties of Stacks, Definition 100.12.2.

Proof. Lemma 107.5.4 can be used to verify that the right hand side dimu(U) +
dimu(Ux) is independent of the choice of the smooth morphism U → X and u ∈ |U |.
We omit the details. In particular, we may assume U is a scheme. In this case we
can compute dimu(Ux) by choosing the representative of x to be the composite
Specκ(u) → U → X , where the first morphism is the canonical one with image
u ∈ U . Then, if we write R = U ×X U , and let e : U → R denote the di-
agonal morphism, the invariance of relative dimension under base-change shows
that dimu(Ux) = dime(u)(Ru). Thus we see that the right hand side is equal to
dimu(U)− dime(u)(Ru) = dimx(X ) as desired. □

Remark 107.5.6.0DRK For Deligne–Mumford stacks which are suitably decent (e.g. quasi-
separated), it will again be the case that dimx(X ) coincides with the topologically
defined quantity dimx |X |. However, for more general Artin stacks, this will typ-
ically not be the case. For example, if X = [A1/Gm] (over some field, with the
quotient being taken with respect to the usual multiplication action of Gm on A1),
then |X | has two points, one the specialisation of the other (corresponding to the
two orbits of Gm on A1), and hence is of dimension 1 as a topological space; but
dimx(X ) = 0 for both points x ∈ |X |. (An even more extreme example is given by
the classifying space [Spec k/Gm], whose dimension at its unique point is equal to
−1.)

We can now extend Definition 107.5.2 to the context of (locally finite type) mor-
phisms between (locally Noetherian) algebraic stacks.
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Definition 107.5.7.0DRL If f : T → X is a locally of finite type morphism between
locally Noetherian algebraic stacks, and if t ∈ |T | is a point with image x ∈ |X |,
then we define the relative dimension of f at t, denoted dimt(Tx), as follows: choose
a morphism Spec k → X , with source the spectrum of a field, which represents x,
and choose a point t′ ∈ |T ×X Spec k| mapping to t under the projection to |T |
(such a point t′ exists, by Properties of Stacks, Lemma 100.4.3; then

dimt(Tx) = dimt′(T ×X Spec k).

Note that since T is an algebraic stack and X is an algebraic stack, the fibre product
T ×X Spec k is an algebraic stack, which is locally Noetherian by Morphisms of
Stacks, Lemma 101.17.5. Thus the quantity on the right side of this proposed
definition is defined by Properties of Stacks, Definition 100.12.2.

Remark 107.5.8.0DRM Standard manipulations show that dimt(Tx) is well-defined, in-
dependently of the choices made to compute it.

We now establish some basic properties of relative dimension, which are obvious
generalisations of the corresponding statements in the case of morphisms of schemes.

Lemma 107.5.9.0DRN Suppose given a Cartesian square of morphisms of locally Noe-
therian stacks

T ′

��

// T

��
X ′ // X

in which the vertical morphisms are locally of finite type. If t′ ∈ |T ′|, with images
t, x′, and x in |T |, |X ′|, and |X | respectively, then dimt′(T ′

x′) = dimt(Tx).

Proof. Both sides can (by definition) be computed as the dimension of the same
fibre product. □

Lemma 107.5.10.0DRP If f : U → X is a smooth morphism of locally Noetherian
algebraic stacks, and if u ∈ |U| with image x ∈ |X |, then

dimu(U) = dimx(X ) + dimu(Ux).

Proof. Choose a smooth surjective morphism V → U whose source is a scheme,
and let v ∈ |V | be a point mapping to u. Then the composite V → U → X is also
smooth, and by Lemma 107.5.4 we have dimx(X ) = dimv(V ) − dimv(Vx), while
dimu(U) = dimv(V )− dimv(Vu). Thus

dimu(U)− dimx(X ) = dimv(Vx)− dimv(Vu).

Choose a representative Spec k → X of x and choose a point v′ ∈ |V ×X Spec k| lying
over v, with image u′ in |U ×X Spec k|; then by definition dimu(Ux) = dimu′(U ×X
Spec k), and dimv(Vx) = dimv′(V ×X Spec k).
Now V ×X Spec k → U ×X Spec k is a smooth surjective morphism (being the base-
change of such a morphism) whose source is an algebraic space (since V and Spec k
are schemes, and X is an algebraic stack). Thus, again by definition, we have

dimu′(U ×X Spec k) = dimv′(V ×X Spec k)− dimv′(V ×X Spec k)u′)
= dimv(Vx)− dimv′((V ×X Spec k)u′).
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Now V ×X Spec k ∼= V ×U (U ×X Spec k), and so Lemma 107.5.9 shows that
dimv′((V ×X Spec k)u′) = dimv(Vu). Putting everything together, we find that

dimu(U)− dimx(X ) = dimu(Ux),
as required. □

Lemma 107.5.11.0DRQ Let f : T → X be a locally of finite type morphism of algebraic
stacks.

(1) The function t 7→ dimt(Tf(t)) is upper semi-continuous on |T |.
(2) If f is smooth, then the function t 7→ dimt(Tf(t)) is locally constant on
|T |.

Proof. Suppose to begin with that T is a scheme T , let U → X be a smooth
surjective morphism whose source is a scheme, and let T ′ = T×XU . Let f ′ : T ′ → U
be the pull-back of f over U , and let g : T ′ → T be the projection.
Lemma 107.5.9 shows that dimt′(T ′

f ′(t′)) = dimg(t′)(Tf(g(t′))), for t′ ∈ T ′, while,
since g is smooth and surjective (being the base-change of a smooth surjective mor-
phism) the map induced by g on underlying topological spaces is continuous and
open (by Properties of Spaces, Lemma 66.4.6), and surjective. Thus it suffices to
note that part (1) for the morphism f ′ follows from Morphisms of Spaces, Lemma
67.34.4, and part (2) from either of Morphisms, Lemma 29.29.4 or Morphisms,
Lemma 29.34.12 (each of which gives the result for schemes, from which the analo-
gous results for algebraic spaces can be deduced exactly as in Morphisms of Spaces,
Lemma 67.34.4.
Now return to the general case, and choose a smooth surjective morphism h : V →
T whose source is a scheme. If v ∈ V , then, essentially by definition, we have

dimh(v)(Tf(h(v))) = dimv(Vf(h(v)))− dimv(Vh(v)).
Since V is a scheme, we have proved that the first of the terms on the right hand
side of this equality is upper semi-continuous (and even locally constant if f is
smooth), while the second term is in fact locally constant. Thus their difference is
upper semi-continuous (and locally constant if f is smooth), and hence the func-
tion dimh(v)(Tf(h(v))) is upper semi-continuous on |V | (and locally constant if f
is smooth). Since the morphism |V | → |T | is open and surjective, the lemma
follows. □

Before continuing with our development, we prove two lemmas related to the di-
mension theory of schemes.
To put the first lemma in context, we note that if X is a finite dimensional scheme,
then since dimX is defined to equal the supremum of the dimensions dimxX, there
exists a point x ∈ X such that dimxX = dimX. The following lemma shows that
we may furthermore take the point x to be of finite type.

Lemma 107.5.12.0DRR If X is a finite dimensional scheme, then there exists a closed
(and hence finite type) point x ∈ X such that dimxX = dimX.

Proof. Let d = dimX, and choose a maximal strictly decreasing chain of irreducible
closed subsets of X, say
(107.5.12.1)0DRS Z0 ⊃ Z1 ⊃ . . . ⊃ Zd.
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The subset Zd is a minimal irreducible closed subset of X, and thus any point of
Zd is a generic point of Zd. Since the underlying topological space of the scheme
X is sober, we conclude that Zd is a singleton, consisting of a single closed point
x ∈ X. If U is any neighbourhood of x, then the chain

U ∩ Z0 ⊃ U ∩ Z1 ⊃ . . . ⊃ U ∩ Zd = Zd = {x}
is then a strictly descending chain of irreducible closed subsets of U , showing that
dimU ≥ d. Thus we find that dimxX ≥ d. The other inequality being obvious,
the lemma is proved. □

The next lemma shows that dimxX is a constant function on an irreducible scheme
satisfying some mild additional hypotheses.

Lemma 107.5.13.0DRT If X is an irreducible, Jacobson, catenary, and locally Noetherian
scheme of finite dimension, then dimU = dimX for every non-empty open subset
U of X. Equivalently, dimxX is a constant function on X.

Proof. The equivalence of the two claims follows directly from the definitions. Sup-
pose, then, that U ⊂ X is a non-empty open subset. Certainly dimU ≤ dimX,
and we have to show that dimU ≥ dimX. Write d = dimX, and choose a maximal
strictly decreasing chain of irreducible closed subsets of X, say

X = Z0 ⊃ Z1 ⊃ . . . ⊃ Zd.
Since X is Jacobson, the minimal irreducible closed subset Zd is equal to {x} for
some closed point x.
If x ∈ U, then

U = U ∩ Z0 ⊃ U ∩ Z1 ⊃ . . . ⊃ U ∩ Zd = {x}
is a strictly decreasing chain of irreducible closed subsets of U , and so we conclude
that dimU ≥ d, as required. Thus we may suppose that x ̸∈ U.
Consider the flat morphism SpecOX,x → X. The non-empty (and hence dense)
open subset U of X pulls back to an open subset V ⊂ SpecOX,x. Replacing U by
a non-empty quasi-compact, and hence Noetherian, open subset, we may assume
that the inclusion U → X is a quasi-compact morphism. Since the formation
of scheme-theoretic images of quasi-compact morphisms commutes with flat base-
change Morphisms, Lemma 29.25.16 we see that V is dense in SpecOX,x, and so
in particular non-empty, and of course x ̸∈ V. (Here we use x also to denote the
closed point of SpecOX,x, since its image is equal to the given point x ∈ X.) Now
SpecOX,x \ {x} is Jacobson Properties, Lemma 28.6.4 and hence V contains a
closed point z of SpecOX,x \ {x}. The closure in X of the image of z is then an
irreducible closed subset Z of X containing x, whose intersection with U is non-
empty, and for which there is no irreducible closed subset properly contained in Z
and properly containing {x} (because pull-back to SpecOX,x induces a bijection
between irreducible closed subsets of X containing x and irreducible closed subsets
of SpecOX,x). Since U ∩ Z is a non-empty closed subset of U , it contains a point
u that is closed in X (since X is Jacobson), and since U ∩ Z is a non-empty (and
hence dense) open subset of the irreducible set Z (which contains a point not lying
in U , namely x), the inclusion {u} ⊂ U ∩ Z is proper.
As X is catenary, the chain

X = Z0 ⊃ Z ⊃ {x} = Zd
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can be refined to a chain of length d+ 1, which must then be of the form

X = Z0 ⊃W1 ⊃ . . . ⊃Wd−1 = Z ⊃ {x} = Zd.

Since U ∩ Z is non-empty, we then find that

U = U ∩ Z0 ⊃ U ∩W1 ⊃ . . . ⊃ U ∩Wd−1 = U ∩ Z ⊃ {u}

is a strictly decreasing chain of irreducible closed subsets of U of length d + 1,
showing that dimU ≥ d, as required. □

We will prove a stack-theoretic analogue of Lemma 107.5.13 in Lemma 107.5.17 be-
low, but before doing so, we have to introduce an additional definition, necessitated
by the fact that the notion of a scheme being catenary is not an étale local one (see
the example of Algebra, Remark 10.164.8 which makes it difficult to define what it
means for an algebraic space or algebraic stack to be catenary (see the discussion of
[Oss15, page 3]). For certain aspects of dimension theory, the following definition
seems to provide a good substitute for the missing notion of a catenary algebraic
stack.

Definition 107.5.14.0DRU We say that a locally Noetherian algebraic stack X is pseudo-
catenary if there exists a smooth and surjective morphism U → X whose source is
a universally catenary scheme.

Example 107.5.15.0DRV If X is locally of finite type over a universally catenary locally
Noetherian scheme S, and U → X is a smooth surjective morphism whose source
is a scheme, then the composite U → X → S is locally of finite type, and so U is
universally catenary Morphisms, Lemma 29.17.2. Thus X is pseudo-catenary.

The following lemma shows that the property of being pseudo-catenary passes
through finite-type morphisms.

Lemma 107.5.16.0DRW If X is a pseudo-catenary locally Noetherian algebraic stack, and
if Y → X is a locally of finite type morphism, then there exists a smooth surjective
morphism V → Y whose source is a universally catenary scheme; thus Y is again
pseudo-catenary.

Proof. By assumption we may find a smooth surjective morphism U → X whose
source is a universally catenary scheme. The base-change U ×X Y is then an al-
gebraic stack; let V → U ×X Y be a smooth surjective morphism whose source
is a scheme. The composite V → U ×X Y → Y is then smooth and surjec-
tive (being a composite of smooth and surjective morphisms), while the morphism
V → U ×X Y → U is locally of finite type (being a composite of morphisms that
are locally finite type). Since U is universally catenary, we see that V is universally
catenary (by Morphisms, Lemma 29.17.2), as claimed. □

We now study the behaviour of the function dimx(X ) on |X | (for some locally
Noetherian stack X ) with respect to the irreducible components of |X |, as well as
various related topics.

Lemma 107.5.17.0DRX If X is a Jacobson, pseudo-catenary, and locally Noetherian
algebraic stack for which |X | is irreducible, then dimx(X ) is a constant function on
|X |.
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Proof. It suffices to show that dimx(X ) is locally constant on |X |, since it will
then necessarily be constant (as |X | is connected, being irreducible). Since X is
pseudo-catenary, we may find a smooth surjective morphism U → X with U being
a universally catenary scheme. If {Ui} is an cover of U by quasi-compact open
subschemes, we may replace U by

∐
Ui,, and it suffices to show that the function

u 7→ dimf(u)(X ) is locally constant on Ui. Since we check this for one Ui at a
time, we now drop the subscript, and write simply U rather than Ui. Since U is
quasi-compact, it is the union of a finite number of irreducible components, say
T1 ∪ . . . ∪ Tn. Note that each Ti is Jacobson, catenary, and locally Noetherian,
being a closed subscheme of the Jacobson, catenary, and locally Noetherian scheme
U .
By Lemma 107.5.4, we have dimf(u)(X ) = dimu(U)−dimu(Uf(u)). Lemma 107.5.11
(2) shows that the second term in the right hand expression is locally constant on
U , as f is smooth, and hence we must show that dimu(U) is locally constant on
U . Since dimu(U) is the maximum of the dimensions dimu Ti, as Ti ranges over
the components of U containing u, it suffices to show that if a point u lies on two
distinct components, say Ti and Tj (with i ̸= j), then dimu Ti = dimu Tj , and then
to note that t 7→ dimt T is a constant function on an irreducible Jacobson, catenary,
and locally Noetherian scheme T (as follows from Lemma 107.5.13).
Let V = Ti \ (

⋃
i′ ̸=i Ti′) and W = Tj \ (

⋃
i′ ̸=j Ti′). Then each of V and W is

a non-empty open subset of U , and so each has non-empty open image in |X |.
As |X | is irreducible, these two non-empty open subsets of |X | have a non-empty
intersection. Let x be a point lying in this intersection, and let v ∈ V and w ∈ W
be points mapping to x. We then find that

dimTi = dimV = dimv(U) = dimx(X ) + dimv(Ux)
and similarly that

dimTj = dimW = dimw(U) = dimx(X ) + dimw(Ux).
Since u 7→ dimu(Uf(u)) is locally constant on U , and since Ti ∪ Tj is connected
(being the union of two irreducible, hence connected, sets that have non-empty in-
tersection), we see that dimv(Ux) = dimw(Ux), and hence, comparing the preceding
two equations, that dimTi = dimTj , as required. □

Lemma 107.5.18.0DRY If Z ↪→ X is a closed immersion of locally Noetherian algebraic
stacks, and if z ∈ |Z| has image x ∈ |X |, then dimz(Z) ≤ dimx(X ).

Proof. Choose a smooth surjective morphism U → X whose source is a scheme;
the base-changed morphism V = U ×X Z → Z is then also smooth and surjective,
and the projection V → U is a closed immersion. If v ∈ |V | maps to z ∈ |Z|, and
if we let u denote the image of v in |U |, then clearly dimv(V ) ≤ dimu(U), while
dimv(Vz) = dimu(Ux), by Lemma 107.5.9. Thus

dimz(Z) = dimv(V )− dimv(Vz) ≤ dimu(U)− dimu(Ux) = dimx(X ),
as claimed. □

Lemma 107.5.19.0DRZ If X is a locally Noetherian algebraic stack, and if x ∈ |X |, then
dimx(X ) = supT {dimx(T )}, where T runs over all the irreducible components of
|X | passing through x (endowed with their induced reduced structure).
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Proof. Lemma 107.5.18 shows that dimx(T ) ≤ dimx(X ) for each irreducible com-
ponent T passing through the point x. Thus to prove the lemma, it suffices to show
that
(107.5.19.1)0DS0 dimx(X ) ≤ sup

T
{dimx(T )}.

Let U → X be a smooth cover by a scheme. If T is an irreducible component
of U then we let T denote the closure of its image in X , which is an irreducible
component of X . Let u ∈ U be a point mapping to x. Then we have dimx(X ) =
dimu U − dimu Ux = supT dimu T − dimu Ux, where the supremum is over the
irreducible components of U passing through u. Choose a component T for which
the supremum is achieved, and note that dimx(T ) = dimu T−dimu Tx. The desired
inequality (107.5.19.1) now follows from the evident inequality dimu Tx ≤ dimu Ux.
(Note that if Spec k → X is a representative of x, then T ×X Spec k is a closed
subspace of U ×X Spec k.) □

Lemma 107.5.20.0DS1 If X is a locally Noetherian algebraic stack, and if x ∈ |X |, then
for any open substack V of X containing x, there is a finite type point x0 ∈ |V|
such that dimx0(X ) = dimx(V).

Proof. Choose a smooth surjective morphism f : U → X whose source is a scheme,
and consider the function u 7→ dimf(u)(X ); since the morphism |U | → |X | induced
by f is open (as f is smooth) as well as surjective (by assumption), and takes finite
type points to finite type points (by the very definition of the finite type points
of |X |), it suffices to show that for any u ∈ U , and any open neighbourhood of
u, there is a finite type point u0 in this neighbourhood such that dimf(u0)(X ) =
dimf(u)(X ). Since, with this reformulation of the problem, the surjectivity of f is
no longer required, we may replace U by the open neighbourhood of the point u
in question, and thus reduce to the problem of showing that for each u ∈ U , there
is a finite type point u0 ∈ U such that dimf(u0)(X ) = dimf(u)(X ). By Lemma
107.5.4 dimf(u)(X ) = dimu(U) − dimu(Uf(u)), while dimf(u0)(X ) = dimu0(U) −
dimu0(Uf(u0)). Since f is smooth, the expression dimu0(Uf(u0)) is locally constant
as u0 varies over U (by Lemma 107.5.11 (2)), and so shrinking U further around
u if necessary, we may assume it is constant. Thus the problem becomes to show
that we may find a finite type point u0 ∈ U for which dimu0(U) = dimu(U). Since
by definition dimu U is the minimum of the dimensions dimV , as V ranges over
the open neighbourhoods V of u in U , we may shrink U down further around u so
that dimu U = dimU . The existence of desired point u0 then follows from Lemma
107.5.12. □

Lemma 107.5.21.0DS2 Let T ↪→ X be a locally of finite type monomorphism of algebraic
stacks, with X (and thus also T ) being Jacobson, pseudo-catenary, and locally
Noetherian. Suppose further that T is irreducible of some (finite) dimension d, and
that X is reduced and of dimension less than or equal to d. Then there is a non-
empty open substack V of T such that the induced monomorphism V ↪→ X is an
open immersion which identifies V with an open subset of an irreducible component
of X .

Proof. Choose a smooth surjective morphism f : U → X with source a scheme,
necessarily reduced since X is, and write U ′ = T ×XU . The base-changed morphism
U ′ → U is a monomorphism of algebraic spaces, locally of finite type, and thus

https://stacks.math.columbia.edu/tag/0DS1
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representable Morphisms of Spaces, Lemma 67.51.1 and 67.27.10; since U is a
scheme, so is U ′. The projection f ′ : U ′ → T is again a smooth surjection. Let u′ ∈
U ′, with image u ∈ U . Lemma 107.5.9 shows that dimu′(U ′

f(u′)) = dimu(Uf(u)),
while dimf ′(u′)(T ) = d ≥ dimf(u)(X ) by Lemma 107.5.17 and our assumptions on
T and X . Thus we see that
(107.5.21.1)

0DS3 dimu′(U ′) = dimu′(U ′
f(u′))+dimf ′(u′)(T ) ≥ dimu(Uf(u))+dimf(u)(X ) = dimu(U).

Since U ′ → U is a monomorphism, locally of finite type, it is in particular unrami-
fied, and so by the étale local structure of unramified morphisms Étale Morphisms,
Lemma 41.17.3, we may find a commutative diagram

V ′ //

��

V

��
U ′ // U

in which the scheme V ′ is non-empty, the vertical arrows are étale, and the upper
horizontal arrow is a closed immersion. Replacing V by a quasi-compact open subset
whose image has non-empty intersection with the image of U ′, and replacing V ′ by
the preimage of V , we may further assume that V (and thus V ′) is quasi-compact.
Since V is also locally Noetherian, it is thus Noetherian, and so is the union of
finitely many irreducible components.
Since étale morphisms preserve pointwise dimension Descent, Lemma 35.21.2 we
deduce from (107.5.21.1) that for any point v′ ∈ V ′, with image v ∈ V , we have
dimv′(V ′) ≥ dimv(V ). In particular, the image of V ′ can’t be contained in the
intersection of two distinct irreducible components of V , and so we may find at
least one irreducible open subset of V which has non-empty intersection with V ′;
replacing V by this subset, we may assume that V is integral (being both reduced
and irreducible). From the preceding inequality on dimensions, we conclude that
the closed immersion V ′ ↪→ V is in fact an isomorphism. If we let W denote the
image of V ′ in U ′, then W is a non-empty open subset of U ′ (as étale morphisms are
open), and the induced monomorphism W → U is étale (since it is so étale locally
on the source, i.e. after pulling back to V ′), and hence is an open immersion (being
an étale monomorphism). Thus, if we let V denote the image of W in T , then V
is a dense (equivalently, non-empty) open substack of T , whose image is dense in
an irreducible component of X . Finally, we note that the morphism is V → X is
smooth (since its composite with the smooth morphism W → V is smooth), and
also a monomorphism, and thus is an open immersion. □

Lemma 107.5.22.0DS4 Let f : T → X be a locally of finite type morphism of Ja-
cobson, pseudo-catenary, and locally Noetherian algebraic stacks, whose source
is irreducible and whose target is quasi-separated, and let Z ↪→ X denote the
scheme-theoretic image of T . Then for all t ∈ |T |, we have that dimt(Tf(t)) ≥
dim T − dimZ, and there is a non-empty (equivalently, dense) open subset of |T |
over which equality holds.

Proof. Replacing X by Z, we may and do assume that f is scheme theoretically
dominant, and also that X is irreducible. By the upper semi-continuity of fibre
dimensions (Lemma 107.5.11 (1)), it suffices to prove that the equality dimt(Tf(t)) =
dim T − dimZ holds for t lying in some non-empty open substack of T . For this

https://stacks.math.columbia.edu/tag/0DS4
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reason, in the argument we are always free to replace T by a non-empty open
substack.

Let T ′ → T be a smooth surjective morphism whose source is a scheme, and let
T be a non-empty quasi-compact open subset of T ′. Since Y is quasi-separated,
we find that T → Y is quasi-compact (by Morphisms of Stacks, Lemma 101.7.7,
applied to the morphisms T → Y → Spec Z). Thus, if we replace T by the image
of T in T , then we may assume (appealing to Morphisms of Stacks, Lemma 101.7.6
that the morphism f : T → X is quasi-compact.

If we choose a smooth surjection U → X with U a scheme, then Lemma 107.3.1
ensures that we may find an irreducible open subset V of U such that V → X
is smooth and scheme-theoretically dominant. Since scheme-theoretic dominance
for quasi-compact morphisms is preserved by flat base-change, the base-change
T ×X V → V of the scheme-theoretically dominant morphism f is again scheme-
theoretically dominant. We let Z denote a scheme admitting a smooth surjection
onto this fibre product; then Z → T ×X V → V is again scheme-theoretically
dominant. Thus we may find an irreducible component C of Z which scheme-
theoretically dominates V . Since the composite Z → T ×X V → T is smooth, and
since T is irreducible, Lemma 107.3.1 shows that any irreducible component of the
source has dense image in |T |. We now replace C by a non-empty open subset W
which is disjoint from every other irreducible component of Z, and then replace
T and X by the images of W and V (and apply Lemma 107.5.17 to see that this
doesn’t change the dimension of either T or X ). If we let W denote the image
of the morphism W → T ×X V , then W is open in T ×X V (since the morphism
W → T ×X V is smooth), and is irreducible (being the image of an irreducible
scheme). Thus we end up with a commutative diagram

W

!!

// W //

��

V

��
T // X

in which W and V are schemes, the vertical arrows are smooth and surjective,
the diagonal arrows and the left-hand upper horizontal arroware smooth, and the
induced morphism W → T ×X V is an open immersion. Using this diagram,
together with the definitions of the various dimensions involved in the statement
of the lemma, we will reduce our verification of the lemma to the case of schemes,
where it is known.

Fix w ∈ |W | with image w′ ∈ |W|, image t ∈ |T |, image v in |V |, and image x in
|X |. Essentially by definition (using the fact that W is open in T ×X V , and that
the fibre of a base-change is the base-change of the fibre), we obtain the equalities

dimv Vx = dimw′Wt

and
dimt Tx = dimw′Wv.

By Lemma 107.5.4 (the diagonal arrow and right-hand vertical arrow in our diagram
realise W and V as smooth covers by schemes of the stacks T and X ), we find that

dimt T = dimwW − dimwWt
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and
dimx X = dimv V − dimv Vx.

Combining the equalities, we find that

dimt Tx−dimt T + dimx X = dimw′Wv−dimwW + dimwWt+ dimv V −dimw′Wt

Since W → W is a smooth surjection, the same is true if we base-change over the
morphism Specκ(v) → V (thinking of W → W as a morphism over V ), and from
this smooth morphism we obtain the first of the following two equalities

dimwWv − dimw′Wv = dimw(Wv)w′ = dimwWw′ ;

the second equality follows via a direct comparison of the two fibres involved. Sim-
ilarly, if we think of W → W as a morphism of schemes over T , and base-change
over some representative of the point t ∈ |T |, we obtain the equalities

dimwWt − dimw′Wt = dimw(Wt)w′ = dimwWw′ .

Putting everything together, we find that

dimt Tx − dimt T + dimx X = dimwWv − dimwW + dimv V.

Our goal is to show that the left-hand side of this equality vanishes for a non-empty
open subset of t. As w varies over a non-empty open subset of W , its image t ∈ |T |
varies over a non-empty open subset of |T | (as W → T is smooth).

We are therefore reduced to showing that if W → V is a scheme-theoretically
dominant morphism of irreducible locally Noetherian schemes that is locally of
finite type, then there is a non-empty open subset of points w ∈ W such that
dimwWv = dimwW − dimv V (where v denotes the image of w in V ). This is a
standard fact, whose proof we recall for the convenience of the reader.

We may replace W and V by their underlying reduced subschemes without altering
the validity (or not) of this equation, and thus we may assume that they are in
fact integral schemes. Since dimwWv is locally constant on W, replacing W by
a non-empty open subset if necessary, we may assume that dimwWv is constant,
say equal to d. Choosing this open subset to be affine, we may also assume that
the morphism W → V is in fact of finite type. Replacing V by a non-empty open
subset if necessary (and then pulling back W over this open subset; the resulting
pull-back is non-empty, since the flat base-change of a quasi-compact and scheme-
theoretically dominant morphism remains scheme-theoretically dominant), we may
furthermore assume that W is flat over V . The morphism W → V is thus of
relative dimension d in the sense of Morphisms, Definition 29.29.1 and it follows
from Morphisms, Lemma 29.29.6 that dimw(W ) = dimv(V ) + d, as required. □

Remark 107.5.23.0DS5 We note that in the context of the preceding lemma, it need not
be that dim T ≥ dimZ; this does not contradict the inequality in the statement of
the lemma, because the fibres of the morphism f are again algebraic stacks, and
so may have negative dimension. This is illustrated by taking k to be a field, and
applying the lemma to the morphism [Spec k/Gm]→ Spec k.

If the morphism f in the statement of the lemma is assumed to be quasi-DM
(in the sense of Morphisms of Stacks, Definition 101.4.1; e.g. morphisms that are
representable by algebraic spaces are quasi-DM), then the fibres of the morphism

https://stacks.math.columbia.edu/tag/0DS5
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over points of the target are quasi-DM algebraic stacks, and hence are of non-
negative dimension. In this case, the lemma implies that indeed dim T ≥ dimZ.
In fact, we obtain the following more general result.

Lemma 107.5.24.0DS6 Let f : T → X be a locally of finite type morphism of Jacobson,
pseudo-catenary, and locally Noetherian algebraic stacks which is quasi-DM, whose
source is irreducible and whose target is quasi-separated, and let Z ↪→ X denote
the scheme-theoretic image of T . Then dimZ ≤ dim T , and furthermore, exactly
one of the following two conditions holds:

(1) for every finite type point t ∈ |T |, we have dimt(Tf(t)) > 0, in which case
dimZ < dim T ; or

(2) T and Z are of the same dimension.

Proof. As was observed in the preceding remark, the dimension of a quasi-DM stack
is always non-negative, from which we conclude that dimt Tf(t) ≥ 0 for all t ∈ |T |,
with the equality

dimt Tf(t) = dimt T − dimf(t)Z
holding for a dense open subset of points t ∈ |T |. □

107.6. The dimension of the local ring

0DS7 An algebraic stack doesn’t really have local rings in the usual sense, but we can
define the dimension of the local ring as follows.

Lemma 107.6.1.0DS8 Let X be a locally Noetherian algebraic stack. Let U → X be a
smooth morphism and let u ∈ U . Then

dim(OU,u)− dim(ORu,e(u)) = 2 dim(OU,u)− dim(OR,e(u))
Here R = U ×X U with projections s, t : R→ U and diagonal e : U → R and Ru is
the fibre of s : R→ U over u.

Proof. This is true because s : OU,u → OR,e(u) is a flat local homomorphism of
Noetherian local rings and hence

dim(OR,e(u)) = dim(OU,u) + dim(ORu,e(u))
by Algebra, Lemma 10.112.7. □

Lemma 107.6.2.0DS9 Let X be a locally Noetherian algebraic stack. Let x ∈ |X | be
a finite type point Morphisms of Stacks, Definition 101.18.2). Let d ∈ Z. The
following are equivalent

(1) there exists a scheme U , a smooth morphism U → X , and a finite type
point u ∈ U mapping to x such that 2 dim(OU,u)−dim(OR,e(u)) = d, and

(2) for any scheme U , a smooth morphism U → X , and finite type point
u ∈ U mapping to x we have 2 dim(OU,u)− dim(OR,e(u)) = d.

Here R = U ×X U with projections s, t : R→ U and diagonal e : U → R and Ru is
the fibre of s : R→ U over u.

Proof. Suppose we have two smooth neighbourhoods (U, u) and (U ′, u′) of x with
u and u′ finite type points. After shrinking U and U ′ we may assume that u and u′

are closed points (by definition of finite type points). Then we choose a surjective
étale morphism W → U ×X U ′. Let Wu be the fibre of W → U over u and let Wu′

be the fibre of W → U ′ over u′. Since u and u′ map to the same point of |X | we see

https://stacks.math.columbia.edu/tag/0DS6
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that Wu ∩Wu′ is nonempty. Hence we may choose a closed point w ∈W mapping
to both u and u′. This reduces us to the discussion in the next paragraph.

Assume (U ′, u′) → (U, u) is a smooth morphism of smooth neightbourhoods of x
with u and u′ closed points. Goal: prove the invariant defined for (U, u) is the same
as the invariant defined for (U ′, u′). To see this observe that OU,u → OU ′,u′ is a
flat local homomorphism of Noetherian local rings and hence

dim(OU ′,u′) = dim(OU,u) + dim(OU ′
u,u

′)

by Algebra, Lemma 10.112.7. (We omit working through all the steps to relate
properties of local rings and their strict henselizations, see More on Algebra, Section
15.45). On the other hand we have

R′ = U ′ ×U,t R×s,U U ′

Thus we see that

dim(OR′,e(u′)) = dim(OR,e(u)) + dim(OU ′
u×uU ′

u,(u′,u′))

To prove the lemma it suffices to show that

dim(OU ′
u×uU ′

u,(u′,u′)) = 2 dim(OU ′
u,u

′)

Observe that this isn’t always true (example: if U ′
u is a curve and u′ is the generic

point of this curve). However, we know that u′ is a closed point of the algebraic
space U ′

u locally of finite type over u. In this case the equality holds because, first
dim(u′,u′)(U ′

u ×u U ′
u) = 2 dimu′(U ′

u) by Varieties, Lemma 33.20.5 and second the
agreement of dimension with dimension of local rings in closed points of locally
algebraic schemes, see Varieties, Lemma 33.20.3. We omit the translation of these
results for schemes into the language of algebraic spaces. □

Definition 107.6.3.0DSA Let X be a locally Noetherian algebraic stack. Let x ∈ |X |
be a finite type point. The dimension of the local ring of X at x is d ∈ Z if the
equivalent conditions of Lemma 107.6.2 are satisfied.

To be sure, this is motivated by Lemma 107.6.1 and Properties of Stacks, Definition
100.12.2. We close this section by establishing a formula allowing us to compute
dimx(X ) in terms of properties of the versal ring to X at x.

Lemma 107.6.4.0DSB Suppose that X is an algebraic stack, locally of finite type over a
locally Noetherian scheme S. Let x0 : Spec(k) → X be a morphism where k is a
field of finite type over S. Represent FX ,k,x0 as in Remark 107.2.11 by a cogroupoid
(A,B, s, t, c) of Noetherian complete local S-algebras with residue field k. Then

the dimension of the local ring of X at x0 = 2 dimA− dimB

Proof. Let s ∈ S be the image of x0. If OS,s is a G-ring (a condition that is
almost always satisfied in practice), then we can prove the lemma as follows. By
Lemma 107.2.8, we may find a smooth morphism U → X , whose source is a scheme,
containing a point u0 ∈ U of residue field k, such that induced morphism Spec(k)→
U → X coincides with x0 and such that A = O∧

U,u0
. Write R = U ×X U . Then we

may identify O∧
R,e(u0) with B. Hence the equality follows from the definitions.

In the rest of this proof we explain how to prove the lemma in general, but we urge
the reader to skip this.

https://stacks.math.columbia.edu/tag/0DSA
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First let us show that the right hand side is independent of the choice of (A,B, s, t, c).
Namely, suppose that (A′, B′, s′, t′, c′) is a second choice. Since A and A′ are versal
rings to X at x0, we can choose, after possibly switching A and A′, a formally
smooth map A→ A′ compatible with the given versal formal objects ξ and ξ′ over
A and A′. Recall that ĈΛ has coproducts and that these are given by completed
tensor product over Λ, see Formal Deformation Theory, Lemma 90.4.4. Then B
prorepresents the functor of isomorphisms between the two pushforwards of ξ to
A⊗̂ΛA. Similarly for B′. We conclude that

B′ = B ⊗(A⊗̂ΛA) (A′⊗̂ΛA
′)

It is straightforward to see that
A⊗̂ΛA −→ A⊗̂ΛA

′ −→ A′⊗̂ΛA
′

is formally smooth of relative dimension equal to 2 times the relative dimension
of the formally smooth map A → A′. (This follows from general principles, but
also because in this particular case A′ is a power series ring over A in r variables.)
Hence B → B′ is formally smooth of relative dimension 2(dim(A′) − dim(A)) as
desired.
Next, let l/k be a finite extension. let xl,0 : Spec(l)→ X be the induced point. We
claim that the right hand side of the formula is the same for x0 as it is for xl,0.
This can be shown by choosing A → A′ as in Lemma 107.2.5 and arguing exactly
as in the preceding paragraph. We omit the details.
Finally, arguing as in the proof of Lemma 107.2.10 we can use the compatibilities in
the previous two paragraphs to reduce to the case (discussed in the first paragraph)
where A is the complete local ring of U at u0 for some scheme smooth over X and
finite type point u0. Details omitted. □
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CHAPTER 108

Moduli Stacks

0DLT 108.1. Introduction

0DLU In this chapter we verify basic properties of moduli spaces and moduli stacks
such as Hom, Isom, CohX/B , QuotF/X/B , HilbX/B , PicX/B , PicX/B , MorB(Z,X),
Spaces′

fp,flat,proper, Polarized, and ComplexesX/B . We have already shown these
algebraic spaces or algebraic stacks under suitable hypotheses, see Quot, Sections
99.3, 99.4, 99.5, 99.6, 99.8, 99.9, 99.10, 99.11, 99.12, 99.13, 99.14, and 99.16. The
stack of curves, denoted Curves and introduced in Quot, Section 99.15, is discussed
in the chapter on moduli of curves, see Moduli of Curves, Section 109.3.

In some sense this chapter is following the footsteps of Grothendieck’s lectures
[Gro95a], [Gro95b], [Gro95e], [Gro95f], [Gro95c], and [Gro95d].

108.2. Conventions and abuse of language

0DLV We continue to use the conventions and the abuse of language introduced in Prop-
erties of Stacks, Section 100.2. Unless otherwise mentioned our base scheme will
be Spec(Z).

108.3. Properties of Hom and Isom

0DLW Let f : X → B be a morphism of algebraic spaces which is of finite presentation.
Assume F and G are quasi-coherent OX -modules. If G is of finite presentation, flat
over B with support proper over B, then the functor Hom(F ,G) defined by

T/B 7−→ HomOXT
(FT ,GT )

is an algebraic space affine over B. If F is of finite presentation, then Hom(F ,G)→
B is of finite presentation. See Quot, Proposition 99.3.10.

If both F and G are of finite presentation, flat over B with support proper over B,
then the subfunctor

Isom(F ,G) ⊂ Hom(F ,G)
is an algebraic space affine of finite presentation over B. See Quot, Proposition
99.4.3.

108.4. Properties of the stack of coherent sheaves

0DLX Let f : X → B be a morphism of algebraic spaces which is separated and of
finite presentation. Then the stack CohX/B parametrizing flat families of coherent
modules with proper support is algebraic. See Quot, Theorem 99.6.1.

Lemma 108.4.1.0DLY The diagonal of CohX/B over B is affine and of finite presentation.

7218

https://stacks.math.columbia.edu/tag/0DLY


108.4. PROPERTIES OF THE STACK OF COHERENT SHEAVES 7219

Proof. The representability of the diagonal by algebraic spaces was shown in Quot,
Lemma 99.5.3. From the proof we find that we have to show Isom(F ,G) → T is
affine and of finite presentation for a pair of finitely presented OXT -modules F , G
flat over T with support proper over T . This was discussed in Section 108.3. □

Lemma 108.4.2.0DLZ The morphism CohX/B → B is quasi-separated and locally of
finite presentation.

Proof. To check CohX/B → B is quasi-separated we have to show that its diagonal
is quasi-compact and quasi-separated. This is immediate from Lemma 108.4.1. To
prove that CohX/B → B is locally of finite presentation, we have to show that
CohX/B → B is limit preserving, see Limits of Stacks, Proposition 102.3.8. This
follows from Quot, Lemma 99.5.6 (small detail omitted). □

Lemma 108.4.3.0DM0 Assume X → B is proper as well as of finite presentation. Then
CohX/B → B satisfies the existence part of the valuative criterion (Morphisms of
Stacks, Definition 101.39.10).

Proof. Taking base change, this immediately reduces to the following problem:
given a valuation ring R with fraction field K and an algebraic space X proper
over R and a coherent OXK -module FK , show there exists a finitely presented
OX -module F flat over R whose generic fibre is FK . Observe that by Flatness on
Spaces, Theorem 77.4.5 any finite type quasi-coherent OX -module F flat over R is
of finite presentation. Denote j : XK → X the embedding of the generic fibre. As
a base change of the affine morphism Spec(K)→ Spec(R) the morphism j is affine.
Thus j∗FK is quasi-coherent. Write

j∗FK = colimFi
as a filtered colimit of its finite type quasi-coherent OX -submodules, see Limits of
Spaces, Lemma 70.9.2. Since j∗FK is a sheaf of K-vector spaces over X, it is flat
over Spec(R). Thus each Fi is flat over R as flatness over a valuation ring is the
same as being torsion free (More on Algebra, Lemma 15.22.10) and torsion freeness
is inherited by submodules. Finally, we have to show that the map j∗Fi → FK is
an isomorphism for some i. Since j∗j∗FK = FK (small detail omitted) and since
j∗ is exact, we see that j∗Fi → FK is injective for all i. Since j∗ commutes with
colimits, we have FK = j∗j∗FK = colim j∗Fi. Since FK is coherent (i.e., finitely
presented), there is an i such that j∗Fi contains all the (finitely many) generators
over an affine étale cover of X. Thus we get surjectivity of j∗Fi → FK for i large
enough. □

Lemma 108.4.4.0DN9 Let B be an algebraic space. Let π : X → Y be a quasi-finite
morphism of algebraic spaces which are separated and of finite presentation over
B. Then π∗ induces a morphism CohX/B → CohY/B .

Proof. Let (T → B,F) be an object of CohX/B . We claim
(a) (T → B, πT,∗F) is an object of CohY/B and
(b) for T ′ → T we have πT ′,∗(XT ′ → XT )∗F = (YT ′ → YT )∗πT,∗F .

Part (b) guarantees that this construction defines a functor CohX/B → CohY/B as
desired.
Let i : Z → XT be the closed subspace cut out by the zeroth fitting ideal of
F (Divisors on Spaces, Section 71.5). Then Z → B is proper by assumption
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(see Derived Categories of Spaces, Section 75.7). On the other hand i is of finite
presentation (Divisors on Spaces, Lemma 71.5.2 and Morphisms of Spaces, Lemma
67.28.12). There exists a quasi-coherent OZ-module G of finite type with i∗G =
F (Divisors on Spaces, Lemma 71.5.3). In fact G is of finite presentation as an
OZ-module by Descent on Spaces, Lemma 74.6.7. Observe that G is flat over B,
for example because the stalks of G and F agree (Morphisms of Spaces, Lemma
67.13.6). Observe that πT ◦ i : Z → YT is quasi-finite as a composition of quasi-
finite morphisms and that πT,∗F = (πT ◦ i)∗G). Since i is affine, formation of i∗
commutes with base change (Cohomology of Spaces, Lemma 69.11.1). Therefore
we may replace B by T , X by Z, F by G, and Y by YT to reduce to the case
discussed in the next paragraph.
Assume that X → B is proper. Then π is proper by Morphisms of Spaces, Lemma
67.40.6 and hence finite by More on Morphisms of Spaces, Lemma 76.35.1. Since a
finite morphism is affine we see that (b) holds by Cohomology of Spaces, Lemma
69.11.1. On the other hand, π is of finite presentation by Morphisms of Spaces,
Lemma 67.28.9. Thus πT,∗F is of finite presentation by Descent on Spaces, Lemma
74.6.7. Finally, πT,∗F is flat over B for example by looking at stalks using Coho-
mology of Spaces, Lemma 69.4.2. □

Lemma 108.4.5.0DNA Let B be an algebraic space. Let π : X → Y be an open immersion
of algebraic spaces which are separated and of finite presentation over B. Then the
morphism CohX/B → CohY/B of Lemma 108.4.4 is an open immersion.

Proof. Omitted. Hint: If F is an object of CohY/B over T and for t ∈ T we have
Supp(Ft) ⊂ |Xt|, then the same is true for t′ ∈ T in a neighbourhood of t. □

Lemma 108.4.6.0DNB Let B be an algebraic space. Let π : X → Y be a closed immersion
of algebraic spaces which are separated and of finite presentation over B. Then the
morphism CohX/B → CohY/B of Lemma 108.4.4 is a closed immersion.

Proof. Let I ⊂ OY be the sheaf of ideals cutting out X as a closed subspace of
Y . Recall that π∗ induces an equivalence between the category of quasi-coherent
OX -modules and the category of quasi-coherent OY -modules annihilated by I, see
Morphisms of Spaces, Lemma 67.14.1. The same, mutatis mutandis, is true after
base by T → B with I replaced by the ideal sheaf IT = Im((YT → Y )∗I → OYT ).
Analyzing the proof of Lemma 108.4.4 we find that the essential image of CohX/B →
CohY/B is exactly the objects ξ = (T → B,F) where F is annihilated by IT . In
other words, ξ is in the essential image if and only if the multiplication map

F ⊗OYT
(YT → Y )∗I −→ F

is zero and similarly after any further base change T ′ → T . Note that
(YT ′ → YT )∗(F ⊗OYT

(YT → Y )∗I) = (YT ′ → YT )∗F ⊗OY
T ′

(YT ′ → Y )∗I)

Hence the vanishing of the multiplication map on T ′ is representable by a closed
subspace of T by Flatness on Spaces, Lemma 77.8.6. □

Situation 108.4.7 (Numerical invariants).0DNC Let f : X → B be as in the introduction
to this section. Let I be a set and for i ∈ I let Ei ∈ D(OX) be perfect. Given an
object (T → B,F) of CohX/B denote Ei,T the derived pullback of Ei to XT . The
object

Ki = RfT,∗(Ei,T ⊗L
OXT

F)
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of D(OT ) is perfect and its formation commutes with base change, see Derived
Categories of Spaces, Lemma 75.25.1. Thus the function

χi : |T | −→ Z, χi(t) = χ(Xt, Ei,t ⊗L
OXt
Ft) = χ(Ki ⊗L

OT
κ(t))

is locally constant by Derived Categories of Spaces, Lemma 75.26.3. Let P : I → Z
be a map. Consider the substack

CohPX/B ⊂ CohX/B
consisting of flat families of coherent sheaves with proper support whose numerical
invariants agree with P . More precisely, an object (T → B,F) of CohX/B is in
CohPX/B if and only if χi(t) = P (i) for all i ∈ I and t ∈ T .

Lemma 108.4.8.0DND In Situation 108.4.7 the stack CohPX/B is algebraic and

CohPX/B −→ CohX/B

is a flat closed immersion. If I is finite or B is locally Noetherian, then CohPX/B is
an open and closed substack of CohX/B .

Proof. This is immediately clear if I is finite, because the functions t 7→ χi(t) are
locally constant. If I is infinite, then we write

I =
⋃

I′⊂I finite
I ′

and we denote P ′ = P |I′ . Then we have

CohPX/B =
⋂

I′⊂I finite
CohP

′

X/B

Therefore, CohPX/B is always an algebraic stack and the morphism CohPX/B ⊂ CohX/B
is always a flat closed immersion, but it may no longer be an open substack. (We
leave it to the reader to make examples). However, if B is locally Noetherian, then
so is CohX/B by Lemma 108.4.2 and Morphisms of Stacks, Lemma 101.17.5. Hence
if U → CohX/B is a smooth surjective morphism where U is a locally Noetherian
scheme, then the inverse images of the open and closed substacks CohP

′

X/B have
an open intersection in U (because connected components of locally Noetherian
topological spaces are open). Thus the result in this case. □

Lemma 108.4.9.0DNE Let f : X → B be as in the introduction to this section. Let
E1, . . . , Er ∈ D(OX) be perfect. Let I = Z⊕r and consider the map

I −→ D(OX), (n1, . . . , nr) 7−→ E⊗n1
1 ⊗ . . .⊗ E⊗nr

r

Let P : I → Z be a map. Then CohPX/B ⊂ CohX/B as defined in Situation 108.4.7 is
an open and closed substack.

Proof. We may work étale locally on B, hence we may assume that B is affine.
In this case we may perform absolute Noetherian reduction; we suggest the reader
skip the proof. Namely, say B = Spec(Λ). Write Λ = colim Λi as a filtered colimit
with each Λi of finite type over Z. For some i we can find a morphism of algebraic
spaces Xi → Spec(Λi) which is separated and of finite presentation and whose base
change to Λ is X. See Limits of Spaces, Lemmas 70.7.1 and 70.6.9. Then after
increasing i we may assume there exist perfect objects E1,i, . . . , Er,i in D(OXi)
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whose derived pullback to X are isomorphic to E1, . . . , Er, see Derived Categories
of Spaces, Lemma 75.24.3. Clearly we have a cartesian square

CohPX/B //

��

CohX/B

��
CohPXi/ Spec(Λi)

// CohXi/ Spec(Λi)

and hence we may appeal to Lemma 108.4.8 to finish the proof. □

Example 108.4.10 (Coherent sheaves with fixed Hilbert polynomial).0DNF Let f : X →
B be as in the introduction to this section. Let L be an invertible OX -module. Let
P : Z→ Z be a numerical polynomial. Then we can consider the open and closed
algebraic substack

CohPX/B = CohP,LX/B ⊂ CohX/B
consisting of flat families of coherent sheaves with proper support whose numerical
invariants agree with P : an object (T → B,F) of CohX/B lies in CohPX/B if and only
if

P (n) = χ(Xt,Ft ⊗OXt
L⊗n
t )

for all n ∈ Z and t ∈ T . Of course this is a special case of Situation 108.4.7 where
I = Z → D(OX) is given by n 7→ L⊗n. It follows from Lemma 108.4.9 that this
is an open and closed substack. Since the functions n 7→ χ(Xt,Ft ⊗OXt

L⊗n
t ) are

always numerical polynomials (Spaces over Fields, Lemma 72.18.1) we conclude
that

CohX/B =
∐

P numerical polynomial
CohPX/B

is a disjoint union decomposition.

108.5. Properties of Quot

0DM1 Let f : X → B be a morphism of algebraic spaces which is separated and of
finite presentation. Let F be a quasi-coherent OX -module. Then QuotF/X/B is an
algebraic space. If F is of finite presentation, then QuotF/X/B → B is locally of
finite presentation. See Quot, Proposition 99.8.4.

Lemma 108.5.1.0DM2 The diagonal of QuotF/X/B → B is a closed immersion. If F is
of finite type, then the diagonal is a closed immersion of finite presentation.

Proof. Suppose we have a scheme T/B and two quotients FT → Qi, i = 1, 2
corresponding to T -valued points of QuotF/X/B over B. Denote K1 the kernel
of the first one and set u : K1 → Q2 the composition. By Flatness on Spaces,
Lemma 77.8.6 there is a closed subspace of T such that T ′ → T factors through
it if and only if the pullback uT ′ is zero. This proves the diagonal is a closed
immersion. Moreover, if F is of finite type, then K1 is of finite type (Modules on
Sites, Lemma 18.24.1) and we see that the diagonal is of finite presentation by the
same lemma. □

Lemma 108.5.2.0DM3 The morphism QuotF/X/B → B is separated. If F is of finite
presentation, then it is also locally of finite presentation.
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Proof. To check QuotF/X/B → B is separated we have to show that its diagonal is
a closed immersion. This is true by Lemma 108.5.1. The second statement is part
of Quot, Proposition 99.8.4. □

Lemma 108.5.3.0DM4 Assume X → B is proper as well as of finite presentation and F
quasi-coherent of finite type. Then QuotF/X/B → B satisfies the existence part of
the valuative criterion (Morphisms of Spaces, Definition 67.41.1).

Proof. Taking base change, this immediately reduces to the following problem:
given a valuation ring R with fraction field K, an algebraic space X proper over R, a
finite type quasi-coherent OX -module F , and a coherent quotient FK → QK , show
there exists a quotient F → Q where Q is a finitely presented OX -module flat over
R whose generic fibre is QK . Observe that by Flatness on Spaces, Theorem 77.4.5
any finite type quasi-coherent OX -module F flat over R is of finite presentation.
We first solve the existence of Q affine locally.

Affine locally we arrive at the following problem: let R→ A be a finitely presented
ring map, let M be a finite A-module, let φ : MK → NK be an AK-quotient
module. Then we may consider

L = {x ∈M | φ(x⊗ 1) = 0}

The M → M/L is an A-module quotient which is torsion free as an R-module.
Hence it is flat as an R-module (More on Algebra, Lemma 15.22.10). Since M is
finite as an A-module so is L and we conclude that L is of finite presentation as an
A-module (by the reference above). Clearly M/L is the unqiue such quotient with
(M/L)K = NK .

The uniqueness in the construction of the previous paragraph guarantees these
quotients glue and give the desired Q. Here is a bit more detail. Choose a surjective
étale morphism U → X where U is an affine scheme. Use the above construction to
construct a quotient F|U → QU which is quasi-coherent, is flat over R, and recovers
QK |U on the generic fibre. Since X is separated, we see that U ×X U is an affine
scheme étale over X as well. Then F|U×XU → pr∗

1QU and F|U×XU → pr∗
2QU agree

as quotients by the uniquess in the construction. Hence we may descend F|U → QU
to a surjection F → Q as desired (Properties of Spaces, Proposition 66.32.1). □

Lemma 108.5.4.0DP1 Let B be an algebraic space. Let π : X → Y be an affine quasi-
finite morphism of algebraic spaces which are separated and of finite presentation
over B. Let F be a quasi-coherent OX -module. Then π∗ induces a morphism
QuotF/X/B → Quotπ∗F/Y/B .

Proof. Set G = π∗F . Since π is affine we see that for any scheme T over B we
have GT = πT,∗FT by Cohomology of Spaces, Lemma 69.11.1. Moreover πT is
affine, hence πT,∗ is exact and transforms quotients into quotients. Observe that a
quasi-coherent quotient FT → Q defines a point of QuotX/B if and only if Q defines
an object of CohX/B over T (similarly for G and Y ). Since we’ve seen in Lemma
108.4.4 that π∗ induces a morphism CohX/B → CohY/B we see that if FT → Q is in
QuotF/X/B(T ), then GT → πT,∗Q is in QuotG/Y/B(T ). □

Lemma 108.5.5.0DP2 Let B be an algebraic space. Let π : X → Y be an affine open
immersion of algebraic spaces which are separated and of finite presentation over
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B. Let F be a quasi-coherent OX -module. Then the morphism QuotF/X/B →
Quotπ∗F/Y/B of Lemma 108.5.4 is an open immersion.

Proof. Omitted. Hint: If (π∗F)T → Q is an element of Quotπ∗F/Y/B(T ) and for
t ∈ T we have Supp(Qt) ⊂ |Xt|, then the same is true for t′ ∈ T in a neighbourhood
of t. □

Lemma 108.5.6.0DP3 Let B be an algebraic space. Let j : X → Y be an open immersion
of algebraic spaces which are separated and of finite presentation over B. Let G be
a quasi-coherent OY -module and set F = j∗G. Then there is an open immersion

QuotF/X/B −→ QuotG/Y/B

of algebraic spaces over B.

Proof. If FT → Q is an element of QuotF/X/B(T ) then we can consider GT →
jT,∗FT → jT,∗Q. Looking at stalks one finds that this is surjective. By Lemma
108.4.4 we see that jT,∗Q is finitely presented, flat over B with support proper over
B. Thus we obtain a T -valued point of QuotG/Y/B . This defines the morphism of
the lemma. We omit the proof that this is an open immersion. Hint: If GT → Q
is an element of QuotG/Y/B(T ) and for t ∈ T we have Supp(Qt) ⊂ |Xt|, then the
same is true for t′ ∈ T in a neighbourhood of t. □

Lemma 108.5.7.0DP4 Let B be an algebraic space. Let π : X → Y be a closed immersion
of algebraic spaces which are separated and of finite presentation over B. Let F be
a quasi-coherent OX -module. Then the morphism QuotF/X/B → Quotπ∗F/Y/B of
Lemma 108.5.4 is an isomorphism.

Proof. For every scheme T over B the morphism πT : XT → YT is a closed immer-
sion. Then πT,∗ is an equivalence of categories between QCoh(OXT ) and the full
subcategory of QCoh(OYT ) whose objects are those quasi-coherent modules anni-
hilated by the ideal sheaf of XT , see Morphisms of Spaces, Lemma 67.14.1. Since a
qotient of (π∗F)T is annihilated by this ideal we obtain the bijectivity of the map
QuotF/X/B(T )→ Quotπ∗F/Y/B(T ) for all T as desired. □

Lemma 108.5.8.0DP5 Let X → B be as in the introduction to this section. Let F → G
be a surjection of quasi-coherent OX -modules. Then there is a canonical closed
immersion QuotG/X/B → QuotF/X/B .

Proof. Let K = Ker(F → G). By right exactness of pullbacks we find that KT →
FT → GT → 0 is an exact sequecnce for all schemes T over B. In particular,
a quotient of GT determines a quotient of FT and we obtain our transformation
of functors QuotG/X/B → QuotF/X/B . This transformation is a closed immersion
by Flatness on Spaces, Lemma 77.8.6. Namely, given an element FT → Q of
QuotF/X/B(T ), then we see that the pull back to T ′/T is in the image of the
transformation if and only if KT ′ → QT ′ is zero. □

Remark 108.5.9 (Numerical invariants).0DP6 Let f : X → B and F be as in the
introduction to this section. Let I be a set and for i ∈ I let Ei ∈ D(OX) be
perfect. Let P : I → Z be a function. Recall that we have a morphism

QuotF/X/B −→ CohX/B
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which sends the element FT → Q of QuotF/X/B(T ) to the object Q of CohX/B
over T , see proof of Quot, Proposition 99.8.4. Hence we can form the fibre product
diagram

QuotPF/X/B //

��

CohPX/B

��
QuotF/X/B

// CohX/B
This is the defining diagram for the algebraic space in the upper left corner. The
left vertical arrow is a flat closed immersion which is an open and closed immersion
for example if I is finite, or B is locally Noetherian, or I = Z and Ei = L⊗i

for some invertible OX -module L (in the last case we sometimes use the notation
QuotP,LF/X/B). See Situation 108.4.7 and Lemmas 108.4.8 and 108.4.9 and Example
108.4.10.

Lemma 108.5.10.0DP7 Let f : X → B and F be as in the introduction to this section.
Let L be an invertible OX -module. Then tensoring with L defines an isomorphism

QuotF/X/B −→ QuotF⊗OXL/X/B

Given a numerical polynomial P (t), then setting P ′(t) = P (t+ 1) this map induces
an isomorphism QuotPF/X/B −→ QuotP

′

F⊗OXL/X/B of open and closed substacks.

Proof. Set G = F ⊗OX
L. Observe that GT = FT ⊗OXT

LT . If FT → Q is an
element of QuotF/X/B(T ), then we send it to the element GT → Q ⊗OXT

LT of
QuotF⊗OXL/X/B(T ). This is compatible with pullbacks and hence defines a trans-
formation of functors as desired. Since there is an obvious inverse transformation,
it is an isomorphism. We omit the proof of the final statement. □

Lemma 108.5.11.0DP8 Let f : X → B and F be as in the introduction to this section.
Let L be an invertible OX -module. Then

QuotP,LF/X/B = QuotP
′,L⊗n

F/X/B

where P ′(t) = P (nt).

Proof. Follows immediately after unwinding all the definitions. □

108.6. Boundedness for Quot

0DP9 Contrary to what happens classically, we already know the Quot functor is an
algebraic space, but we don’t know that it is ever represented by a finite type
algebraic space.

Lemma 108.6.1.0DPA Let n ≥ 0, r ≥ 1, P ∈ Q[t]. The algebraic space

X = QuotPO⊕r
PnZ

/PnZ/Z

parametrizing quotients of O⊕r
PnZ

with Hilbert polynomial P is proper over Spec(Z).

Proof. We already know that X → Spec(Z) is separated and locally of finite pre-
sentation (Lemma 108.5.2). We also know that X → Spec(Z) satisfies the existence
part of the valuative criterion, see Lemma 108.5.3. By the valuative criterion for
properness, it suffices to prove our Quot space is quasi-compact, see Morphisms
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of Spaces, Lemma 67.44.1. Thus it suffices to find a quasi-compact scheme T and
a surjective morphism T → X. Let m be the integer found in Varieties, Lemma
33.35.18. Let

N = r

(
m+ n

n

)
− P (m)

We will write Pn for Pn
Z = Proj(Z[T0, . . . , Tn]) and unadorned products will mean

products over Spec(Z). The idea of the proof is to construct a “universal” map
Ψ : OT×Pn(−m)⊕N −→ O⊕r

T×Pn

over an affine scheme T and show that every point of X corresponds to a cokernel
of this in some point of T .
Definition of T and Ψ. We take T = Spec(A) where

A = Z[ai,j,E ]
where i ∈ {1, . . . , r}, j ∈ {1, . . . , N} and E = (e0, . . . , en) runs through the multi-
indices of total degree |E| =

∑
k=0,...n ek = m. Then we define Ψ to be the map

whose (i, j) matrix entry is the map∑
E=(e0,...,en)

ai,j,ET
e0
0 . . . T enn : OT×Pn(−m) −→ OT×Pn

where the sum is over E as above (but i and j are fixed of course).
Consider the quotient Q = Coker(Ψ) on T ×Pn. By More on Morphisms, Lemma
37.54.1 there exists a t ≥ 0 and closed subschemes

T = T0 ⊃ T1 ⊃ . . . ⊃ Tt = ∅
such that the pullback Qp of Q to (Tp \ Tp+1)×Pn is flat over Tp \ Tp+1. Observe
that we have an exact sequence

O(Tp\Tp+1)×Pn(−m)⊕N → O⊕r
(Tp\Tp+1)×Pn → Qp → 0

by pulling back the exact sequence defining Q = Coker(Ψ). Therefore we obtain a
morphism ∐

(Tp \ Tp+1) −→ QuotO⊕r/P/Z ⊃ QuotPO⊕r/P/Z = X

Since the left hand side is a Noetherian scheme and the inclusion on the right hand
side is open, it suffices to show that any point of X is in the image of this morphism.
Let k be a field and let x ∈ X(k). Then x corresponds to a surjection O⊕r

Pn
k
→ F of

coherent OPn
k
-modules such that the Hilbert polynomial of F is P . Consider the

short exact sequence
0→ K → O⊕r

Pn
k
→ F → 0

By Varieties, Lemma 33.35.18 and our choice of m we see that K is m-regular. By
Varieties, Lemma 33.35.12 we see that K(m) is globally generated. By Varieties,
Lemma 33.35.10 and the definition of m-regularity we see that Hi(Pn

k ,K(m)) = 0
for i > 0. Hence we see that

dimkH
0(Pn

k ,K(m)) = χ(K(m)) = χ(OPn
k
(m)⊕r)− χ(F(m)) = N

by our choice of N . This gives a surjection
O⊕N

Pn
k
−→ K(m)
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Twisting back down and using the short exact sequence above we see that F is the
cokernel of a map

Ψx : OPn
k
(−m)⊕N → O⊕r

Pn
k

There is a unique ring map τ : A → k such that the base change of Ψ by the
corresponding morphism t = Spec(τ) : Spec(k) → T is Ψx. This is true be-
cause the entries of the N × r matrix defining Ψx are homogeneous polynomials∑
λi,j,ET

e0
0 . . . T enn of degree m in T0, . . . , Tn with coefficients λi,j,E ∈ k and we can

set τ(ai,j,E) = λi,j,E . Then t ∈ Tp \ Tp+1 for some p and the image of t under the
morphism above is x as desired. □

Lemma 108.6.2.0DPB Let B be an algebraic space. Let X = B × Pn
Z. Let L be

the pullback of OPn(1) to X. Let F be an OX -module of finite presentation. The
algebraic space QuotPF/X/B parametrizing quotients of F having Hilbert polynomial
P with respect to L is proper over B.

Proof. The question is étale local over B, see Morphisms of Spaces, Lemma 67.40.2.
Thus we may assume B is an affine scheme. In this case L is an ample invertible
module on X (by Constructions, Lemma 27.10.6 and the definition of ample invert-
ible modules in Properties, Definition 28.26.1). Thus we can find r′ ≥ 0 and r ≥ 0
and a surjection

O⊕r
X −→ F ⊗OX

L⊗r′

by Properties, Proposition 28.26.13. By Lemma 108.5.10 we may replace F by
F⊗OX

L⊗r′ and P (t) by P (t+r′). By Lemma 108.5.8 we obtain a closed immersion

QuotPF/X/B −→ QuotPO⊕r
X
/X/B

Since we’ve shown that QuotPO⊕r
X
/X/B

→ B is proper in Lemma 108.6.1 we conclude.
□

Lemma 108.6.3.0DPC Let f : X → B be a proper morphism of finite presentation of
algebraic spaces. Let F be a finitely presented OX -module. Let L be an invertible
OX -module ample on X/B, see Divisors on Spaces, Definition 71.14.1. The alge-
braic space QuotPF/X/B parametrizing quotients of F having Hilbert polynomial P
with respect to L is proper over B.

Proof. The question is étale local over B, see Morphisms of Spaces, Lemma 67.40.2.
Thus we may assume B is an affine scheme. Then we can find a closed immersion
i : X → Pn

B such that i∗OPn
B

(1) ∼= L⊗d for some d ≥ 1. See Morphisms, Lemma
29.39.3. Changing L into L⊗d and the numerical polynomial P (t) into P (dt) leaves
QuotPF/X/B unaffected; some details omitted. Hence we may assume L = i∗OPn

B
(1).

Then the isomorphism QuotF/X/B → Quoti∗F/Pn
B
/B of Lemma 108.5.7 induces an

isomorphism QuotPF/X/B ∼= QuotPi∗F/Pn
B
/B . Since QuotPi∗F/Pn

B
/B is proper over B

by Lemma 108.6.2 we conclude. □

Lemma 108.6.4.0DPD Let f : X → B be a separated morphism of finite presentation of
algebraic spaces. Let F be a finitely presented OX -module. Let L be an invertible
OX -module ample on X/B, see Divisors on Spaces, Definition 71.14.1. The alge-
braic space QuotPF/X/B parametrizing quotients of F having Hilbert polynomial P
with respect to L is separated of finite presentation over B.
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Proof. We have already seen that QuotF/X/B → B is separated and locally of finite
presentation, see Lemma 108.5.2. Thus it suffices to show that the open subspace
QuotPF/X/B of Remark 108.5.9 is quasi-compact over B.

The question is étale local on B (Morphisms of Spaces, Lemma 67.8.8). Thus we
may assume B is affine.
Assume B = Spec(Λ). Write Λ = colim Λi as the colimit of its finite type Z-
subalgebras. Then we can find an i and a system Xi,Fi,Li as in the lemma over
Bi = Spec(Λi) whose base change to B gives X,F ,L. This follows from Limits of
Spaces, Lemmas 70.7.1 (to find Xi), 70.7.2 (to find Fi), 70.7.3 (to find Li), and
70.5.9 (to make Xi separated). Because

QuotF/X/B = B ×Bi QuotFi/Xi/Bi

and similarly for QuotPF/X/B we reduce to the case discussed in the next paragraph.
Assume B is affine and Noetherian. We may replace L by a positive power, see
Lemma 108.5.11. Thus we may assume there exists an immersion i : X → Pn

B such
that i∗OPn(1) = L. By Morphisms, Lemma 29.7.7 there exists a closed subscheme
X ′ ⊂ Pn

B such that i factors through an open immersion j : X → X ′. By Properties,
Lemma 28.22.5 there exists a finitely presented OX′ -module G such that j∗G = F .
Thus we obtain an open immersion

QuotF/X/B −→ QuotG/X′/B

by Lemma 108.5.6. Clearly this open immersion sends QuotPF/X/B into QuotPG/X′/B .
Now QuotPG/X′/B is proper over B by Lemma 108.6.3. Therefore it is Noetherian
and since any open of a Noetherian algebraic space is quasi-compact we win. □

108.7. Properties of the Hilbert functor

0DM5 Let f : X → B be a morphism of algebraic spaces which is separated and of finite
presentation. Then HilbX/B is an algebraic space locally of finite presentation over
B. See Quot, Proposition 99.9.4.

Lemma 108.7.1.0DM6 The diagonal of HilbX/B → B is a closed immersion of finite
presentation.

Proof. In Quot, Lemma 99.9.2 we have seen that HilbX/B = QuotOX/X/B . Hence
this follows from Lemma 108.5.1. □

Lemma 108.7.2.0DM7 The morphism HilbX/B → B is separated and locally of finite
presentation.

Proof. To check HilbX/B → B is separated we have to show that its diagonal is a
closed immersion. This is true by Lemma 108.7.1. The second statement is part of
Quot, Proposition 99.9.4. □

Lemma 108.7.3.0DM8 Assume X → B is proper as well as of finite presentation. Then
HilbX/B → B satisfies the existence part of the valuative criterion (Morphisms of
Spaces, Definition 67.41.1).

Proof. In Quot, Lemma 99.9.2 we have seen that HilbX/B = QuotOX/X/B . Hence
this follows from Lemma 108.5.3. □
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Lemma 108.7.4.0DPE Let B be an algebraic space. Let π : X → Y be an open immersion
of algebraic spaces which are separated and of finite presentation over B. Then π
induces an open immersion HilbX/B → HilbY/B .

Proof. Omitted. Hint: If Z ⊂ XT is a closed subscheme which is proper over T ,
then Z is also closed in YT . Thus we obtain the transformation HilbX/B → HilbY/B .
If Z ⊂ YT is an element of HilbY/B(T ) and for t ∈ T we have |Zt| ⊂ |Xt|, then the
same is true for t′ ∈ T in a neighbourhood of t. □

Lemma 108.7.5.0DPF Let B be an algebraic space. Let π : X → Y be a closed immersion
of algebraic spaces which are separated and of finite presentation over B. Then π
induces a closed immersion HilbX/B → HilbY/B .

Proof. Since π is a closed immersion, it is immediate that given a closed subscheme
Z ⊂ XT , we can view Z as a closed subscheme of XT . Thus we obtain the trans-
formation HilbX/B → HilbY/B . This transformation is immediately seen to be
a monomorphism. To prove that it is a closed immersion, you can use Lemma
108.5.8 for the map OY → OX and the identifications HilbX/B = QuotOX/X/B ,
HilbY/B = QuotOY /Y/B of Quot, Lemma 99.9.2. □

Remark 108.7.6 (Numerical invariants).0DPG Let f : X → B be as in the introduction
to this section. Let I be a set and for i ∈ I let Ei ∈ D(OX) be perfect. Let
P : I → Z be a function. Recall that HilbX/B = QuotOX/X/B , see Quot, Lemma
99.9.2. Thus we can define

HilbPX/B = QuotPOX/X/B

where QuotPOX/X/B is as in Remark 108.5.9. The morphism

HilbPX/B −→ HilbX/B

is a flat closed immersion which is an open and closed immersion for example if I
is finite, or B is locally Noetherian, or I = Z and Ei = L⊗i for some invertible
OX -module L. In the last case we sometimes use the notation HilbP,LX/B .

Lemma 108.7.7.0DPH Let f : X → B be a proper morphism of finite presentation of
algebraic spaces. Let L be an invertible OX -module ample on X/B, see Divisors
on Spaces, Definition 71.14.1. The algebraic space HilbPX/B parametrizing closed
subschemes having Hilbert polynomial P with respect to L is proper over B.

Proof. Recall that HilbX/B = QuotOX/X/B , see Quot, Lemma 99.9.2. Thus this
lemma is an immediate consequence of Lemma 108.6.3. □

Lemma 108.7.8.0DPI Let f : X → B be a separated morphism of finite presentation of
algebraic spaces. Let L be an invertible OX -module ample on X/B, see Divisors
on Spaces, Definition 71.14.1. The algebraic space HilbPX/B parametrizing closed
subschemes having Hilbert polynomial P with respect to L is separated of finite
presentation over B.

Proof. Recall that HilbX/B = QuotOX/X/B , see Quot, Lemma 99.9.2. Thus this
lemma is an immediate consequence of Lemma 108.6.4. □
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108.8. Properties of the Picard stack

0DM9 Let f : X → B be a morphism of algebraic spaces which is flat, proper, and of finite
presentation. Then the stack PicX/B parametrizing invertible sheaves on X/B is
algebraic, see Quot, Proposition 99.10.2.

Lemma 108.8.1.0DMA The diagonal of PicX/B over B is affine and of finite presentation.

Proof. In Quot, Lemma 99.10.1 we have seen that PicX/B is an open substack of
CohX/B . Hence this follows from Lemma 108.4.1. □

Lemma 108.8.2.0DMB The morphism PicX/B → B is quasi-separated and locally of finite
presentation.

Proof. In Quot, Lemma 99.10.1 we have seen that PicX/B is an open substack of
CohX/B . Hence this follows from Lemma 108.4.2. □

Lemma 108.8.3.0DNG Assume X → B is smooth in addition to being proper. Then
PicX/B → B satisfies the existence part of the valuative criterion (Morphisms of
Stacks, Definition 101.39.10).

Proof. Taking base change, this immediately reduces to the following problem:
given a valuation ring R with fraction field K and an algebraic space X proper and
smooth over R and an invertible OXK -module LK , show there exists an invertible
OX -module L whose generic fibre is LK . Observe that XK is Noetherian, separated,
and regular (use Morphisms of Spaces, Lemma 67.28.6 and Spaces over Fields,
Lemma 72.16.1). Thus we can write LK as the difference in the Picard group
of OXK (DK) and OXK (D′

K) for two effective Cartier divisors DK , D
′
K in XK ,

see Divisors on Spaces, Lemma 71.8.4. Finally, we know that DK and D′
K are

restrictions of effective Cartier divisors D,D′ ⊂ X, see Divisors on Spaces, Lemma
71.8.5. □

Lemma 108.8.4.0DNH Assume fT,∗OXT ∼= OT for all schemes T over B. Then the inertia
stack of PicX/B is equal to Gm × PicX/B .

Proof. This is explained in Examples of Stacks, Example 95.17.2. □

Lemma 108.8.5.0DPJ Assume f : X → B has relative dimension ≤ 1 in addition to the
other assumptions in this section. Then PicX/B → B is smooth.

Proof. We already know that PicX/B → B is locally of finite presentation, see
Lemma 108.8.2. Thus it suffices to show that PicX/B → B is formally smooth,
see More on Morphisms of Stacks, Lemma 106.8.7. Taking base change, this im-
mediately reduces to the following problem: given a first order thickening T ⊂ T ′

of affine schemes, given X ′ → T ′ proper, flat, of finite presentation and of relative
dimension ≤ 1, and for X = T ×T ′ X ′ given an invertible OX -module L, prove that
there exists an invertible OX′ -module L′ whose restriction to X is L. Since T ⊂ T ′

is a first order thickening, the same is true for X ⊂ X ′, see More on Morphisms of
Spaces, Lemma 76.9.8. By More on Morphisms of Spaces, Lemma 76.11.1 we see
that it suffices to show H2(X, I) = 0 where I is the quasi-coherent ideal cutting
out X in X ′. Denote f : X → T the structure morphism. By Cohomology of
Spaces, Lemma 69.22.9 we see that Rpf∗I = 0 for p > 1. Hence we get the desired
vanishing by Cohomology of Spaces, Lemma 69.3.2 (here we finally use that T is
affine). □
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108.9. Properties of the Picard functor

0DMD Let f : X → B be a morphism of algebraic spaces which is flat, proper, and of
finite presentation such that moreover for every T/B the canonical map

OT −→ fT,∗OXT
is an isomorphism. Then the Picard functor PicX/B is an algebraic space, see Quot,
Proposition 99.11.8. There is a closed relationship with the Picard stack.

Lemma 108.9.1.0DME The morphism PicX/B → PicX/B turns the Picard stack into a
gerbe over the Picard functor.

Proof. The definition of PicX/B → PicX/B being a gerbe is given in Morphisms of
Stacks, Definition 101.28.1, which in turn refers to Stacks, Definition 8.11.4. To
prove it, we will check conditions (2)(a) and (2)(b) of Stacks, Lemma 8.11.3. This
follows immediately from Quot, Lemma 99.11.2; here is a detailed explanation.
Condition (2)(a). Suppose that ξ ∈ PicX/B(U) for some scheme U over B. Since
PicX/B is the fppf sheafification of the rule T 7→ Pic(XT ) on schemes over B (Quot,
Situation 99.11.1), we see that there exists an fppf covering {Ui → U} such that
ξ|Ui corresponds to some invertible module Li on XUi . Then (Ui → B,Li) is an
object of PicX/B over Ui mapping to ξ|Ui .
Condition (2)(b). Suppose that U is a scheme over B and L,N are invertible
modules on XU which map to the same element of PicX/B(U). Then there exists
an fppf covering {Ui → U} such that L|XUi is isomorphic to N|XUi . Thus we find
isomorphisms between (U → B,L)|Ui → (U → B,N )|Ui as desired. □

Lemma 108.9.2.0DMF The diagonal of PicX/B over B is a quasi-compact immersion.

Proof. The diagonal is an immersion by Quot, Lemma 99.11.9. To finish we show
that the diagonal is quasi-compact. The diagonal of PicX/B is quasi-compact by
Lemma 108.8.1 and PicX/B is a gerbe over PicX/B by Lemma 108.9.1. We conclude
by Morphisms of Stacks, Lemma 101.28.14. □

Lemma 108.9.3.0DNI The morphism PicX/B → B is quasi-separated and locally of finite
presentation.

Proof. To check PicX/B → B is quasi-separated we have to show that its diag-
onal is quasi-compact. This is immediate from Lemma 108.9.2. Since the mor-
phism PicX/B → PicX/B is surjective, flat, and locally of finite presentation (by
Lemma 108.9.1 and Morphisms of Stacks, Lemma 101.28.8) it suffices to prove that
PicX/B → B is locally of finite presentation, see Morphisms of Stacks, Lemma
101.27.12. This follows from Lemma 108.8.2. □

Lemma 108.9.4.0DNJ Assume the geometric fibres of X → B are integral in addition to
the other assumptions in this section. Then PicX/B → B is separated.

Proof. Since PicX/B → B is quasi-separated, it suffices to check the uniqueness
part of the valuative criterion, see Morphisms of Spaces, Lemma 67.43.2. This
immediately reduces to the following problem: given

(1) a valuation ring R with fraction field K,
(2) an algebraic space X proper and flat over R with integral geometric fibre,
(3) an element a ∈ PicX/R(R) with a|Spec(K) = 0,

https://stacks.math.columbia.edu/tag/0DME
https://stacks.math.columbia.edu/tag/0DMF
https://stacks.math.columbia.edu/tag/0DNI
https://stacks.math.columbia.edu/tag/0DNJ


108.10. PROPERTIES OF RELATIVE MORPHISMS 7232

then we have to prove a = 0. Applying Morphisms of Stacks, Lemma 101.25.6 to the
surjective flat morphism PicX/R → PicX/R (surjective and flat by Lemma 108.9.1
and Morphisms of Stacks, Lemma 101.28.8) after replacing R by an extension we
may assume a is given by an invertible OX -module L. Since a|Spec(K) = 0 we find
LK ∼= OXK by Quot, Lemma 99.11.3.

Denote f : X → Spec(R) the structure morphism. Let η, 0 ∈ Spec(R) be the
generic and closed point. Consider the perfect complexes K = Rf∗L and M =
Rf∗(L⊗−1) on Spec(R), see Derived Categories of Spaces, Lemma 75.25.4. Consider
the functions βK,i, βM,i : Spec(R) → Z of Derived Categories of Spaces, Lemma
75.26.1 associated to K and M . Since the formation of K amd M commutes with
base change (see lemma cited above) we find βK,0(η) = βM,0(β) = 1 by Spaces
over Fields, Lemma 72.14.3 and our assumption on the fibres of f . By upper semi-
continuity we find βK,0(0) ≥ 1 and βM,0 ≥ 1. By Spaces over Fields, Lemma 72.14.4
we conclude that the restriction of L to the special fibre X0 is trivial. In turn this
gives βK,0(0) = βM,0 = 1 as above. Then by More on Algebra, Lemma 15.75.5 we
can represent K by a complex of the form

. . .→ 0→ R→ R⊕βK,1(0) → R⊕βK,2(0) → . . .

Now R→ R⊕βK,1(0) is zero because βK,0(η) = 1. In other words K = R ⊕ τ≥1(K)
in D(R) where τ≥1(K) has tor amplitude in [1, b] for some b ∈ Z. Hence there is
a global section s ∈ H0(X,L) whose restriction s0 to X0 is nonvanishing (again
because formation of K commutes with base change). Then s : OX → L is a map
of invertible sheaves whose restriction to X0 is an isomorphism and hence is an
isomorphism as desired. □

Lemma 108.9.5.0DPK Assume f : X → B has relative dimension ≤ 1 in addition to the
other assumptions in this section. Then PicX/B → B is smooth.

Proof. By Lemma 108.8.5 we know that PicX/B → B is smooth. The morphism
PicX/B → PicX/B is surjective and smooth by combining Lemma 108.9.1 with
Morphisms of Stacks, Lemma 101.33.8. Thus if U is a scheme and U → PicX/B
is surjective and smooth, then U → PicX/B is surjective and smooth and U → B
is surjective and smooth (because these properties are preserved by composition).
Thus PicX/B → B is smooth for example by Descent on Spaces, Lemma 74.8.3. □

108.10. Properties of relative morphisms

0DPL Let B be an algebraic space. Let X and Y be algebraic spaces over B such that
Y → B is flat, proper, and of finite presentation and X → B is separated and
of finite presentation. Then the functor MorB(Y,X) of relative morphisms is an
algebraic space locally of finite presentation over B. See Quot, Proposition 99.12.3.

Lemma 108.10.1.0DPM The diagonal of MorB(Y,X)→ B is a closed immersion of finite
presentation.

Proof. There is an open immersion MorB(Y,X)→ HilbY×BX/B , see Quot, Lemma
99.12.2. Thus the lemma follows from Lemma 108.7.1. □

Lemma 108.10.2.0DPN The morphism MorB(Y,X) → B is separated and locally of
finite presentation.
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Proof. To check MorB(Y,X) → B is separated we have to show that its diagonal
is a closed immersion. This is true by Lemma 108.10.1. The second statement is
part of Quot, Proposition 99.12.3. □

Lemma 108.10.3.0DPP With B,X, Y as in the introduction of this section, in addition
assume X → B is proper. Then the subfunctor IsomB(Y,X) ⊂ MorB(Y,X) of
isomorphisms is an open subspace.

Proof. Follows immediately from More on Morphisms of Spaces, Lemma 76.49.6.
□

Remark 108.10.4 (Numerical invariants).0DPQ Let B,X, Y be as in the introduction to
this section. Let I be a set and for i ∈ I let Ei ∈ D(OY×BX) be perfect. Let
P : I → Z be a function. Recall that

MorB(Y,X) ⊂ HilbY×BX/B

is an open subspace, see Quot, Lemma 99.12.2. Thus we can define

MorPB(Y,X) = MorB(Y,X) ∩HilbPY×BX/B

where HilbPY×BX/B is as in Remark 108.7.6. The morphism

MorPB(Y,X) −→ MorB(Y,X)

is a flat closed immersion which is an open and closed immersion for example if
I is finite, or B is locally Noetherian, or I = Z, Ei = L⊗i for some invertible
OY×BX -module L. In the last case we sometimes use the notation MorP,LB (Y,X).

Lemma 108.10.5.0DPR With B,X, Y as in the introduction of this section, let L be
ample on X/B and let N be ample on Y/B. See Divisors on Spaces, Definition
71.14.1. Let P be a numerical polynomial. Then

MorP,MB (Y,X) −→ B

is separated and of finite presentation where M = pr∗
1N ⊗OY×BX

pr∗
2L.

Proof. By Lemma 108.10.2 the morphism MorB(Y,X)→ B is separated and locally
of finite presentation. Thus it suffices to show that the open and closed subspace
MorP,MB (Y,X) of Remark 108.10.4 is quasi-compact over B.

The question is étale local on B (Morphisms of Spaces, Lemma 67.8.8). Thus we
may assume B is affine.

Assume B = Spec(Λ). Note that X and Y are schemes and that L and N are ample
invertible sheaves on X and Y (this follows immediately from the definitions). Write
Λ = colim Λi as the colimit of its finite type Z-subalgebras. Then we can find an i
and a system Xi, Yi,Li,Ni as in the lemma over Bi = Spec(Λi) whose base change
to B gives X,Y,L,N . This follows from Limits, Lemmas 32.10.1 (to find Xi, Yi),
32.10.3 (to find Li, Ni), 32.8.6 (to make Xi → Bi separated), 32.13.1 (to make
Yi → Bi proper), and 32.4.15 (to make Li, Ni ample). Because

MorB(Y,X) = B ×Bi MorBi(Yi, Xi)

and similarly for MorPB(Y,X) we reduce to the case discussed in the next paragraph.
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Assume B is a Noetherian affine scheme. By Properties, Lemma 28.26.15 we see
thatM is ample. By Lemma 108.7.8 we see that HilbP,MY×BX/B is of finite presenta-
tion over B and hence Noetherian. By construction

MorP,MB (Y,X) = MorB(Y,X) ∩HilbP,MY×BX/B

is an open subspace of HilbP,MY×BX/B and hence quasi-compact (as an open of a
Noetherian algebraic space is quasi-compact). □

108.11. Properties of the stack of polarized proper schemes

0DPS In this section we discuss properties of the moduli stack

Polarized −→ Spec(Z)

whose category of sections over a scheme S is the category of proper, flat, finitely
presented scheme over S endowed with a relatively ample invertible sheaf. This is
an algebraic stack by Quot, Theorem 99.14.15.

Lemma 108.11.1.0DPT The diagonal of Polarized is separated and of finite presentation.

Proof. Recall that Polarized is a limit preserving algebraic stack, see Quot, Lemma
99.14.8. By Limits of Stacks, Lemma 102.3.6 this implies that ∆ : Polarized →
Polarized × Polarized is limit preserving. Hence ∆ is locally of finite presentation
by Limits of Stacks, Proposition 102.3.8.

Let us prove that ∆ is separated. To see this, it suffices to show that given an
affine scheme U and two objects υ = (Y,N ) and χ = (X,L) of Polarized over U ,
the algebraic space

IsomPolarized(υ, χ)
is separated. The rule which to an isomorphism υT → χT assigns the underlying
isomorphism YT → XT defines a morphism

IsomPolarized(υ, χ) −→ IsomU (Y,X)

Since we have seen in Lemmas 108.10.2 and 108.10.3 that the target is a separated
algebraic space, it suffices to prove that this morphism is separated. Given an
isomorphism f : YT → XT over some scheme T/U , then clearly

IsomPolarized(υ, χ)×IsomU (Y,X),[f ] T = Isom(NT , f∗LT )

Here [f ] : T → IsomU (Y,X) indicates the T -valued point corresponding to f and
Isom(NT , f∗LT ) is the algebraic space discussed in Section 108.3. Since this alge-
braic space is affine over U , the claim implies ∆ is separated.

To finish the proof we show that ∆ is quasi-compact. Since ∆ is representable by
algebraic spaces, it suffice to check the base change of ∆ by a surjective smooth
morphism U → Polarized ×Polarized is quasi-compact (see for example Properties
of Stacks, Lemma 100.3.3). We can assume U =

∐
Ui is a disjoint union of affine

opens. Since Polarized is limit preserving (see above), we see that Polarized →
Spec(Z) is locally of finite presentation, hence Ui → Spec(Z) is locally of finite pre-
sentation (Limits of Stacks, Proposition 102.3.8 and Morphisms of Stacks, Lemmas
101.27.2 and 101.33.5). In particular, Ui is Noetherian affine. This reduces us to
the case discussed in the next paragraph.
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In this paragraph, given a Noetherian affine scheme U and two objects υ = (Y,N )
and χ = (X,L) of Polarized over U , we show the algebraic space

IsomPolarized(υ, χ)
is quasi-compact. Since the connected components of U are open and closed we
may replace U by these. Thus we may and do assume U is connected. Let u ∈ U be
a point. Let P be the Hilbert polynomial n 7→ χ(Yu,N⊗n

u ), see Varieties, Lemma
33.45.1. Since U is connected and since the functions u 7→ χ(Yu,N⊗n

u ) are locally
constant (see Derived Categories of Schemes, Lemma 36.32.2) we see that we get
the same Hilbert polynomial in every point of U . SetM = pr∗

1N ⊗OY×UX
pr∗

2L on
Y ×U X. Given (f, φ) ∈ IsomPolarized(υ, χ)(T ) for some scheme T over U then for
every t ∈ T we have

χ(Yt, (id× f)∗M⊗n) = χ(Yt,N⊗n
t ⊗OYt

f∗
t L⊗n

t ) = χ(Yt,N⊗2n
t ) = P (2n)

where in the middle equality we use the isomorphism φ : f∗LT → NT . Setting
P ′(t) = P (2t) we find that the morphism

IsomPolarized(υ, χ) −→ IsomU (Y,X)
(see earlier) has image contained in the intersection

IsomU (Y,X) ∩MorP
′,M

U (Y,X)
The intersection is an intersection of open subspaces of MorU (Y,X) (see Lemma
108.10.3 and Remark 108.10.4). Now MorP

′,M
U (Y,X) is a Noetherian algebraic

space as it is of finite presentation over U by Lemma 108.10.5. Thus the intersection
is a Noetherian algebraic space too. Since the morphism

IsomPolarized(υ, χ) −→ IsomU (Y,X) ∩MorP
′,M

U (Y,X)
is affine (see above) we conclude. □

Lemma 108.11.2.0DPU The morphism Polarized → Spec(Z) is quasi-separated and lo-
cally of finite presentation.

Proof. To check Polarized → Spec(Z) is quasi-separated we have to show that its
diagonal is quasi-compact and quasi-separated. This is immediate from Lemma
108.11.1. To prove that Polarized → Spec(Z) is locally of finite presentation, it
suffices to show that Polarized is limit preserving, see Limits of Stacks, Proposition
102.3.8. This is Quot, Lemma 99.14.8. □

Lemma 108.11.3.0E96 Let n ≥ 1 be an integer and let P be a numerical polynomial.
Let

T ⊂ |Polarized|
be a subset with the following property: for every ξ ∈ T there exists a field k and
an object (X,L) of Polarized over k representing ξ such that

(1) the Hilbert polynomial of L on X is P , and
(2) there exists a closed immersion i : X → Pn

k such that i∗OPn(1) ∼= L.
Then T is a Noetherian topological space, in particular quasi-compact.

Proof. Observe that |Polarized| is a locally Noetherian topological space, see Mor-
phisms of Stacks, Lemma 101.8.3 (this also uses that Spec(Z) is Noetherian and
hence Polarized is a locally Noetherian algebraic stack by Lemma 108.11.2 and Mor-
phisms of Stacks, Lemma 101.17.5). Thus any quasi-compact subset of |Polarized|

https://stacks.math.columbia.edu/tag/0DPU
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is a Noetherian topological space and any subset of such is also Noetherian, see
Topology, Lemmas 5.9.4 and 5.9.2. Thus all we have to do is a find a quasi-compact
subset containing T .

By Lemma 108.7.7 the algebraic space

H = HilbP,O(1)
PnZ/ Spec(Z)

is proper over Spec(Z). By Quot, Lemma 99.9.31 the identity morphism of H
corresponds to a closed subspace

Z ⊂ Pn
H

which is proper, flat, and of finite presentation over H and such that the restriction
N = O(1)|Z is relatively ample on Z/H and has Hilbert polynomial P on the fibres
of Z → H. In particular, the pair (Z → H,N ) defines a morphism

H −→ Polarized

which sends a morphism of schemes U → H to the classifying morphism of the
family (ZU → U,NU ), see Quot, Lemma 99.14.4. Since H is a Noetherian algebraic
space (as it is proper over Z)) we see that |H| is Noetherian and hence quasi-
compact. The map

|H| −→ |Polarized|
is continuous, hence the image is quasi-compact. Thus it suffices to prove T is
contained in the image of |H| → |Polarized|. However, assumptions (1) and (2)
exactly express the fact that this is the case: any choice of a closed immersion
i : X → Pn

k with i∗OPn(1) ∼= L we get a k-valued point of H by the moduli
interpretation of H. This finishes the proof of the lemma. □

108.12. Properties of moduli of complexes on a proper morphism

0DPV Let f : X → B be a morphism of algebraic spaces which is proper, flat, and of finite
presentation. Then the stack ComplexesX/B parametrizing relatively perfect com-
plexes with vanishing negative self-exts is algebraic. See Quot, Theorem 99.16.12.

Lemma 108.12.1.0DPW The diagonal of ComplexesX/B over B is affine and of finite
presentation.

Proof. The representability of the diagonal by algebraic spaces was shown in Quot,
Lemma 99.16.5. From the proof we find that we have to show: given a scheme T
over B and objects E,E′ ∈ D(OXT ) such that (T,E) and (T,E′) are objects of the
fibre category of ComplexesX/B over T , then Isom(E,E′)→ T is affine and of finite
presentation. Here Isom(E,E′) is the functor

(Sch/T )opp → Sets, T ′ 7→ {φ : ET ′ → E′
T ′ isomorphism in D(OXT ′ )}

where ET ′ and E′
T ′ are the derived pullbacks of E and E′ to XT ′ . Consider the

functor H = Hom(E,E′) defined by the rule

(Sch/T )opp → Sets, T ′ 7→ HomOX
T ′

(ET , E′
T )

1We will see later (insert future reference here) that H is a scheme and hence the use of this
lemma and Quot, Lemma 99.14.4 isn’t necessary.

https://stacks.math.columbia.edu/tag/0DPW
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By Quot, Lemma 99.16.1 this is an algebraic space affine and of finite presen-
tation over T . The same is true for H ′ = Hom(E′, E), I = Hom(E,E), and
I ′ = Hom(E′, E′). Therefore we see that

Isom(E,E′) = (H ′ ×T H)×c,I×T I′,σ T

where c(φ′, φ) = (φ ◦ φ′, φ′ ◦ φ) and σ = (id, id) (compare with the proof of Quot,
Proposition 99.4.3). Thus Isom(E,E′) is affine over T as a fibre product of schemes
affine over T . Similarly, Isom(E,E′) is of finite presentation over T . □

Lemma 108.12.2.0DPX The morphism ComplexesX/B → B is quasi-separated and locally
of finite presentation.

Proof. To check ComplexesX/B → B is quasi-separated we have to show that its
diagonal is quasi-compact and quasi-separated. This is immediate from Lemma
108.12.1. To prove that ComplexesX/B → B is locally of finite presentation, we
have to show that ComplexesX/B → B is limit preserving, see Limits of Stacks,
Proposition 102.3.8. This follows from Quot, Lemma 99.16.8 (small detail omitted).

□
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CHAPTER 109

Moduli of Curves

0DMG 109.1. Introduction

0DMH In this chapter we discuss some of the familiar moduli stacks of curves. A reference
is the celebrated article of Deligne and Mumford, see [DM69].

109.2. Conventions and abuse of language

0DMI We continue to use the conventions and the abuse of language introduced in Prop-
erties of Stacks, Section 100.2. Unless otherwise mentioned our base scheme will
be Spec(Z).

109.3. The stack of curves

0DMJ This section is the continuation of Quot, Section 99.15. Let Curves be the stack
whose category of sections over a scheme S is the category of families of curves
over S. It is somewhat important to keep in mind that a family of curves is a
morphism f : X → S where X is an algebraic space (!) and f is flat, proper, of
finite presentation and of relative dimension ≤ 1. We already know that Curves is
an algebraic stack over Z, see Quot, Theorem 99.15.11. If we did not allow algebraic
spaces in the definition of our stack, then this theorem would be false.
Often base change is denoted by a subscript, but we cannot use this notation for
Curves because CurvesS is our notation for the fibre category over S. This is why
in Quot, Remark 99.15.5 we used B-Curves for the base change

B-Curves = Curves ×B
to the algebraic space B. The product on the right is over the final object, i.e.,
over Spec(Z). The object on the left is the stack classifying families of curves on
the category of schemes over B. In particular, if k is a field, then

k-Curves = Curves × Spec(k)
is the moduli stack classifying families of curves on the category of schemes over k.
Before we continue, here is a sanity check.

Lemma 109.3.1.0DMK Let T → B be a morphism of algebraic spaces. The category
MorB(T,B-Curves) = Mor(T, Curves)

is the category of families of curves over T .

Proof. A family of curves over T is a morphism f : X → T of algebraic spaces,
which is flat, proper, of finite presentation, and has relative dimension ≤ 1 (Mor-
phisms of Spaces, Definition 67.33.2). This is exactly the same as the definition in
Quot, Situation 99.15.1 except that T the base is allowed to be an algebraic space.
Our default base category for algebraic stacks/spaces is the category of schemes,

7239
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hence the lemma does not follow immediately from the definitions. Having said
this, we encourage the reader to skip the proof.

By the product description of B-Curves given above, it suffices to prove the lemma in
the absolute case. Choose a scheme U and a surjective étale morphism p : U → T .
Let R = U ×T U with projections s, t : R→ U .

Let v : T → Curves be a morphism. Then v ◦ p corresponds to a family of curves
XU → U . The canonical 2-morphism v ◦ p ◦ t → v ◦ p ◦ s is an isomorphism
φ : XU ×U,s R → XU ×U,t R. This isomorphism satisfies the cocycle condition on
R×s,t R. By Bootstrap, Lemma 80.11.3 we obtain a morphism of algebraic spaces
X → T whose pullback to U is equal to XU compatible with φ. Since {U → T}
is an étale covering, we see that X → T is flat, proper, of finite presentation by
Descent on Spaces, Lemmas 74.11.13, 74.11.19, and 74.11.12. Also X → T has
relative dimension ≤ 1 because this is an étale local property. Hence X → T is a
family of curves over T .

Conversely, let X → T be a family of curves. Then the base change XU determines
a morphism w : U → Curves and the canonical isomorphism XU×U,sR→ XU×U,tR
determines a 2-arrow w◦s→ w◦t satisfying the cocycle condition. Thus a morphism
v : T = [U/R] → Curves by the universal property of the quotient [U/R], see
Groupoids in Spaces, Lemma 78.23.2. (Actually, it is much easier in this case to
go back to before we introduced our abuse of language and direct construct the
functor Sch/T → Curves which “is” the morphism T → Curves.)

We omit the verification that the constructions given above extend to morphisms
between objects and are mutually quasi-inverse. □

109.4. The stack of polarized curves

0DPY In this section we work out some of the material discussed in Quot, Remark 99.15.13.
Consider the 2-fibre product

Curves ×Spaces′
fp,flat,proper

Polarized //

��

Polarized

��
Curves // Spaces′

fp,flat,proper

We denote this 2-fibre product by

PolarizedCurves = Curves ×Spaces′
fp,flat,proper

Polarized

This fibre product parametrizes polarized curves, i.e., families of curves endowed
with a relatively ample invertible sheaf. More precisely, an object of PolarizedCurves
is a pair (X → S,L) where

(1) X → S is a morphism of schemes which is proper, flat, of finite presenta-
tion, and has relative dimension ≤ 1, and

(2) L is an invertible OX -module which is relatively ample on X/S.
A morphism (X ′ → S′,L′) → (X → S,L) between objects of PolarizedCurves is
given by a triple (f, g, φ) where f : X ′ → X and g : S′ → S are morphisms of
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schemes which fit into a commutative diagram

X ′

��

f
// X

��
S′ g // S

inducing an isomorphism X ′ → S′ ×S X, in other words, the diagram is cartesian,
and φ : f∗L → L′ is an isomorphism. Composition is defined in the obvious manner.

Lemma 109.4.1.0DPZ The morphism PolarizedCurves→ Polarized is an open and closed
immersion.

Proof. This is true because the 1-morphism Curves → Spaces′
fp,flat,proper is repre-

sentable by open and closed immersions, see Quot, Lemma 99.15.12. □

Lemma 109.4.2.0DQ0 The morphism PolarizedCurves → Curves is smooth and surjec-
tive.

Proof. Surjective. Given a field k and a proper algebraic space X over k of dimen-
sion ≤ 1, i.e., an object of Curves over k. By Spaces over Fields, Lemma 72.9.3 the
algebraic space X is a scheme. Hence X is a proper scheme of dimension ≤ 1 over
k. By Varieties, Lemma 33.43.4 we see that X is H-projective over κ. In particular,
there exists an ample invertible OX -module L on X. Then (X,L) is an object of
PolarizedCurves over k which maps to X.

Smooth. Let X → S be an object of Curves, i.e., a morphism S → Curves. It is
clear that

PolarizedCurves×Curves S ⊂ PicX/S
is the substack of objects (T/S,L/XT ) such that L is ample on XT /T . This is an
open substack by Descent on Spaces, Lemma 74.13.2. Since PicX/S → S is smooth
by Moduli Stacks, Lemma 108.8.5 we win. □

Lemma 109.4.3.0E6F Let X → S be a family of curves. Then there exists an étale
covering {Si → S} such that Xi = X ×S Si is a scheme. We may even assume Xi

is H-projective over Si.

Proof. This is an immediate corollary of Lemma 109.4.2. Namely, unwinding the
definitions, this lemma gives there is a surjective smooth morphism S′ → S such
that X ′ = X ×S S′ comes endowed with an invertible OX′ -module L′ which is
ample on X ′/S′. Then we can refine the smooth covering {S′ → S} by an étale
covering {Si → S}, see More on Morphisms, Lemma 37.38.7. After replacing Si by
a suitable open covering we may assume Xi → Si is H-projective, see Morphisms,
Lemmas 29.43.6 and 29.43.4 (this is also discussed in detail in More on Morphisms,
Section 37.50). □

109.5. Properties of the stack of curves

0DSP The following lemma isn’t true for moduli of surfaces, see Remark 109.5.2.

Lemma 109.5.1.0DSQ The diagonal of Curves is separated and of finite presentation.

https://stacks.math.columbia.edu/tag/0DPZ
https://stacks.math.columbia.edu/tag/0DQ0
https://stacks.math.columbia.edu/tag/0E6F
https://stacks.math.columbia.edu/tag/0DSQ
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Proof. Recall that Curves is a limit preserving algebraic stack, see Quot, Lemma
99.15.6. By Limits of Stacks, Lemma 102.3.6 this implies that ∆ : Polarized →
Polarized × Polarized is limit preserving. Hence ∆ is locally of finite presentation
by Limits of Stacks, Proposition 102.3.8.

Let us prove that ∆ is separated. To see this, it suffices to show that given a scheme
U and two objects Y → U and X → U of Curves over U , the algebraic space

IsomU (Y,X)

is separated. This we have seen in Moduli Stacks, Lemmas 108.10.2 and 108.10.3
that the target is a separated algebraic space.

To finish the proof we show that ∆ is quasi-compact. Since ∆ is representable by
algebraic spaces, it suffices to check the base change of ∆ by a surjective smooth
morphism U → Curves × Curves is quasi-compact (see for example Properties of
Stacks, Lemma 100.3.3). We choose U =

∐
Ui to be a disjoint union of affine opens

with a surjective smooth morphism

U −→ PolarizedCurves× PolarizedCurves

Then U → Curves × Curves will be surjective and smooth since PolarizedCurves→
Curves is surjective and smooth by Lemma 109.4.2. Since PolarizedCurves is limit
preserving (by Artin’s Axioms, Lemma 98.11.2 and Quot, Lemmas 99.15.6, 99.14.8,
and 99.13.6), we see that PolarizedCurves → Spec(Z) is locally of finite presenta-
tion, hence Ui → Spec(Z) is locally of finite presentation (Limits of Stacks, Propo-
sition 102.3.8 and Morphisms of Stacks, Lemmas 101.27.2 and 101.33.5). In par-
ticular, Ui is Noetherian affine. This reduces us to the case discussed in the next
paragraph.

In this paragraph, given a Noetherian affine scheme U and two objects (Y,N ) and
(X,L) of PolarizedCurves over U , we show the algebraic space

IsomU (Y,X)

is quasi-compact. Since the connected components of U are open and closed we
may replace U by these. Thus we may and do assume U is connected. Let u ∈ U
be a point. Let Q, P be the Hilbert polynomials of these families, i.e.,

Q(n) = χ(Yu,N⊗n
u ) and P (n) = χ(Xu,L⊗n

u )

see Varieties, Lemma 33.45.1. Since U is connected and since the functions u 7→
χ(Yu,N⊗n

u ) and u 7→ χ(Xu,L⊗n
u ) are locally constant (see Derived Categories of

Schemes, Lemma 36.32.2) we see that we get the same Hilbert polynomial in every
point of U . Set

M = pr∗
1N ⊗OY×UX

pr∗
2L

on Y ×U X. Given (f, φ) ∈ IsomU (Y,X)(T ) for some scheme T over U then for
every t ∈ T we have

χ(Yt, (id× f)∗M⊗n) = χ(Yt,N⊗n
t ⊗OYt

f∗
t L⊗n

t )
= n deg(Nt) + n deg(f∗

t Lt) + χ(Yt,OYt)
= Q(n) + ndeg(Lt)
= Q(n) + P (n)− P (0)
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by Riemann-Roch for proper curves, more precisely by Varieties, Definition 33.44.1
and Lemma 33.44.7 and the fact that ft is an isomorphism. Setting P ′(t) = Q(t) +
P (t)− P (0) we find

IsomU (Y,X) = IsomU (Y,X) ∩MorP
′,M

U (Y,X)
The intersection is an intersection of open subspaces of MorU (Y,X), see Moduli
Stacks, Lemma 108.10.3 and Remark 108.10.4. Now MorP

′,M
U (Y,X) is a Noetherian

algebraic space as it is of finite presentation over U by Moduli Stacks, Lemma
108.10.5. Thus the intersection is a Noetherian algebraic space too and the proof
is finished. □

Remark 109.5.2.0DSR The boundedness argument in the proof of Lemma 109.5.1 does
not work for moduli of surfaces and in fact, the result is wrong, for example be-
cause K3 surfaces over fields can have infinite discrete automorphism groups. The
“reason” the argument does not work is that on a projective surface S over a field,
given ample invertible sheaves N and L with Hilbert polynomials Q and P , there
is no a priori bound on the Hilbert polynomial of N ⊗OS

L. In terms of intersection
theory, if H1, H2 are ample effective Cartier divisors on S, then there is no (upper)
bound on the intersection number H1 ·H2 in terms of H1 ·H1 and H2 ·H2.

Lemma 109.5.3.0DSS The morphism Curves → Spec(Z) is quasi-separated and locally
of finite presentation.

Proof. To check Curves → Spec(Z) is quasi-separated we have to show that its
diagonal is quasi-compact and quasi-separated. This is immediate from Lemma
109.5.1. To prove that Curves → Spec(Z) is locally of finite presentation, it suffices
to show that Curves is limit preserving, see Limits of Stacks, Proposition 102.3.8.
This is Quot, Lemma 99.15.6. □

109.6. Open substacks of the stack of curves

0E0E Below we will often characterize an open substack of Curves by a propery P of
morphisms of algebraic spaces. To see that P defines an open substack it suffices
to check

(o) given a family of curves f : X → S there exists a largest open subscheme
S′ ⊂ S such that f |f−1(S′) : f−1(S′)→ S′ has P and such that formation
of S′ commutes with arbitrary base change.

Namely, suppose (o) holds. Choose a scheme U and a surjective smooth morphism
m : U → Curves. Let R = U ×Curves U and denote t, s : R→ U the projections. Re-
call that Curves = [U/R] is a presentation, see Algebraic Stacks, Lemma 94.16.2 and
Definition 94.16.5. By construction of Curves as the stack of curves, the morphism
m is the classifying morphism for a family of curves C → U . The 2-commutativity
of the diagram

R
s
//

t

��

U

��
U // Curves

implies that C ×U,s R ∼= C ×U,t R (isomorphism of families of curves over R). Let
W ⊂ U be the largest open subscheme such that f |f−1(W ) : f−1(W )→W has P as
in (o). Since formation of W commutes with base change according to (o) and by

https://stacks.math.columbia.edu/tag/0DSR
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the isomorphism above we find that s−1(W ) = t−1(W ). Thus W ⊂ U corresponds
to an open substack

CurvesP ⊂ Curves
according to Properties of Stacks, Lemma 100.9.8.
Continuing with the setup of the previous paragrpah, we claim the open substack
CurvesP has the following two universal properties:

(1) given a family of curves X → S the following are equivalent
(a) the classifying morphism S → Curves factors through CurvesP ,
(b) the morphism X → S has P ,

(2) given X a proper scheme over a field k of dimension ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through CurvesP ,
(b) the morphism X → Spec(k) has P .

This follows by considering the 2-fibre product
T

p
//

q

��

U

��
S // Curves

Observe that T → S is surjective and smooth as the base change of U → Curves.
Thus the open S′ ⊂ S given by (o) is determined by its inverse image in T . However,
by the invariance under base change of these opens in (o) and because X ×S T ∼=
C ×U T by the 2-commutativity, we find q−1(S′) = p−1(W ) as opens of T . This
immediately implies (1). Part (2) is a special case of (1).
Given two properties P and Q of morphisms of algebraic spaces, supposing we
already have established CurvesQ is an open substack of Curves, then we can use
exactly the same method to prove openness of CurvesQ,P ⊂ CurvesQ. We omit a
precise explanation.

109.7. Curves with finite reduced automorphism groups

0DST Let X be a proper scheme over a field k of dimension ≤ 1, i.e., an object of Curves
over k. By Lemma 109.5.1 the automorphism group algebraic space Aut(X) is
finite type and separated over k. In particular, Aut(X) is a group scheme, see More
on Groupoids in Spaces, Lemma 79.10.2. If the characteristic of k is zero, then
Aut(X) is reduced and even smooth over k (Groupoids, Lemma 39.8.2). However,
in general Aut(X) is not reduced, even if X is geometrically reduced.

Example 109.7.1 (Non-reduced automorphism group).0DSU Let k be an algebraically
closed field of characteristic 2. Set Y = Z = P1

k. Choose three pairwise distinct k-
valued points a, b, c in A1

k. Thinking of A1
k ⊂ P1

k = Y = Z as an open subschemes,
we get a closed immersion

T = Spec(k[t]/(t− a)2)⨿ Spec(k[t]/(t− b)2)⨿ Spec(k[t]/(t− c)2) −→ P1
k

Let X be the pushout in the diagram
T //

��

Y

��
Z // X

https://stacks.math.columbia.edu/tag/0DSU
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Let U ⊂ X be the affine open part which is the image of A1
k ⨿A1

k. Then we have
an equalizer diagram

OX(U) // k[t]× k[t] //
// k[t]/(t− a)2 × k[t]/(t− b)2 × k[t]/(t− c)2

Over the dual numbers A = k[ϵ] we have a nontrivial automorphism of this equalizer
diagram sending t to t+ ϵ. We leave it to the reader to see that this automorphism
extends to an automorphism of X over A. On the other hand, the reader easily
shows that the automorphism group of X over k is finite. Thus Aut(X) must be
non-reduced.

Let X be a proper scheme over a field k of dimension ≤ 1, i.e., an object of Curves
over k. If Aut(X) is geometrically reduced, then it need not be the case that it has
dimension 0, even if X is smooth and geometrically connected.

Example 109.7.2 (Smooth positive dimensional automorphism group).0DSV Let k be
an algebraically closed field. If X is a smooth genus 0, resp. 1 curve, then the
automorphism group has dimension 3, resp. 1. Namely, in the genus 0 case we have
X ∼= P1

k by Algebraic Curves, Proposition 53.10.4. Since
Aut(P1

k) = PGL2,k

as functors we see that the dimension is 3. On the other hand, if the genus of X is
1, then we see that the map X = Hilb1

X/k → Pic1
X/k is an isomorphism, see Picard

Schemes of Curves, Lemma 44.6.7 and Algebraic Curves, Theorem 53.2.6. Thus X
has the structure of an abelian variety (since Pic1

X/k
∼= Pic0

X/k). In particular the
(co)tangent bundle of X are trivial (Groupoids, Lemma 39.6.3). We conclude that
dimkH

0(X,TX) = 1 hence dim Aut(X) ≤ 1. On the other hand, the translations
(viewing X as a group scheme) provide a 1-dimensional piece of Aut(X) and we
conlude its dimension is indeed 1.

It turns out that there is an open substack of Curves parametrizing curves whose
automorphism group is geometrically reduced and finite. Here is a precise state-
ment.

Lemma 109.7.3.0DSW There exist an open substack CurvesDM ⊂ Curves with the follow-
ing properties

(1) CurvesDM ⊂ Curves is the maximal open substack which is DM,
(2) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through CurvesDM ,
(b) the group algebraic space AutS(X) is unramified over S,

(3) given X a proper scheme over a field k of dimension ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through CurvesDM ,
(b) Aut(X) is geometrically reduced over k and has dimension 0,
(c) Aut(X)→ Spec(k) is unramified.

Proof. The existence of an open substack with property (1) is Morphisms of Stacks,
Lemma 101.22.1. The points of this open substack are characterized by (3)(c) by
Morphisms of Stacks, Lemma 101.22.2. The equivalence of (3)(b) and (3)(c) is the
statement that an algebraic space G which is locally of finite type, geometrically
reduced, and of dimension 0 over a field k, is unramified over k. First, G is a scheme
by Spaces over Fields, Lemma 72.9.1. Then we can take an affine open in G and

https://stacks.math.columbia.edu/tag/0DSV
https://stacks.math.columbia.edu/tag/0DSW


109.8. COHEN-MACAULAY CURVES 7246

observe that it will be proper over k and apply Varieties, Lemma 33.9.3. Minor
details omitted.
Part (2) is true because (3) holds. Namely, the morphism AutS(X)→ S is locally
of finite type. Thus we can check whether AutS(X)→ S is unramified at all points
of AutS(X) by checking on fibres at points of the scheme S, see Morphisms of
Spaces, Lemma 67.38.10. But after base change to a point of S we fall back into
the equivalence of (3)(a) and (3)(c). □

Lemma 109.7.4.0E6G Let X be a proper scheme over a field k of dimension ≤ 1. Then
properties (3)(a), (b), (c) are also equivalent to Derk(OX ,OX) = 0.

Proof. In the discussion above we have seen that G = Aut(X) is a group scheme
over Spec(k) which is finite type and separated; this uses Lemma 109.5.1 and More
on Groupoids in Spaces, Lemma 79.10.2. Then G is unramified over k if and
only if ΩG/k = 0 (Morphisms, Lemma 29.35.2). By Groupoids, Lemma 39.6.3 the
vanishing holds if TG/k,e = 0, where TG/k,e is the tangent space to G at the identity
element e ∈ G(k), see Varieties, Definition 33.16.3 and the formula in Varieties,
Lemma 33.16.4. Since κ(e) = k the tangent space is defined in terms of morphisms
α : Spec(k[ϵ]) → G = Aut(X) whose restriction to Spec(k) is e. It follows that it
suffices to show any automorphism

α : X ×Spec(k) Spec(k[ϵ]) −→ X ×Spec(k) Spec(k[ϵ])
over Spec(k[ϵ]) whose restriction to Spec(k) is idX . Such automorphisms are called
infinitesimal automorphisms.
The infinitesimal automorphisms of X correspond 1-to-1 with derivations of OX
over k. This follows from More on Morphisms, Lemmas 37.9.1 and 37.9.2 (we only
need the first one as we don’t care about the reverse direction; also, please look at
More on Morphisms, Remark 37.9.7 for an elucidation). For a different argument
proving this equality we refer the reader to Deformation Problems, Lemma 93.9.3.

□

109.8. Cohen-Macaulay curves

0E0H There is an open substack of Curves parametrizing the Cohen-Macaulay “curves”.

Lemma 109.8.1.0E0I There exist an open substack CurvesCM ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through CurvesCM ,
(b) the morphism X → S is Cohen-Macaulay,

(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through CurvesCM ,
(b) X is Cohen-Macaulay.

Proof. Let f : X → S be a family of curves. By More on Morphisms of Spaces,
Lemma 76.26.7 the set

W = {x ∈ |X| : f is Cohen-Macaulay at x}
is open in |X| and formation of this open commutes with arbitrary base change.
Since f is proper the subset

S′ = S \ f(|X| \W )
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of S is open and X ×S S′ → S′ is Cohen-Macaulay. Moreover, formation of S′

commutes with arbitrary base change because this is true for W Thus we get the
open substack with the desired properties by the method discussed in Section 109.6.

□

Lemma 109.8.2.0E1F There exist an open substack CurvesCM,1 ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through CurvesCM,1,
(b) the morphism X → S is Cohen-Macaulay and has relative dimension

1 (Morphisms of Spaces, Definition 67.33.2),
(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors through CurvesCM,1,
(b) X is Cohen-Macaulay and X is equidimensional of dimension 1.

Proof. By Lemma 109.8.1 it is clear that we have CurvesCM,1 ⊂ CurvesCM if it
exists. Let f : X → S be a family of curves such that f is a Cohen-Macaulay mor-
phism. By More on Morphisms of Spaces, Lemma 76.26.8 we have a decomposition

X = X0 ⨿X1

by open and closed subspaces such that X0 → S has relative dimension 0 and
X1 → S has relative dimension 1. Since f is proper the subset

S′ = S \ f(|X0|)
of S is open and X ×S S′ → S′ is Cohen-Macaulay and has relative dimension
1. Moreover, formation of S′ commutes with arbitrary base change because this is
true for the decomposition above (as relative dimension behaves well with respect
to base change, see Morphisms of Spaces, Lemma 67.34.3). Thus we get the open
substack with the desired properties by the method discussed in Section 109.6. □

109.9. Curves of a given genus

0E6H The convention in the Stacks project is that the genus g of a proper 1-dimensional
scheme X over a field k is defined only if H0(X,OX) = k. In this case g =
dimkH

1(X,OX). See Algebraic Curves, Section 53.8. The conditions needed to
define the genus define an open substack which is then a disjoint union of open
substacks, one for each genus.
Lemma 109.9.1.0E6I There exist an open substack Curvesh0,1 ⊂ Curves such that

(1) given a family of curves f : X → S the following are equivalent
(a) the classifying morphism S → Curves factors through Curvesh0,1,
(b) f∗OX = OS , this holds after arbitrary base change, and the fibres of

f have dimension 1,
(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvesh0,1,
(b) H0(X,OX) = k and dim(X) = 1.

Proof. Given a family of curves X → S the set of s ∈ S where κ(s) = H0(Xs,OXs)
is open in S by Derived Categories of Spaces, Lemma 75.26.2. Also, the set of
points in S where the fibre has dimension 1 is open by More on Morphisms of
Spaces, Lemma 76.31.5. Moreover, if f : X → S is a family of curves all of whose
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fibres have dimension 1 (and in particular f is surjective), then condition (1)(b) is
equivalent to κ(s) = H0(Xs,OXs) for every s ∈ S, see Derived Categories of Spaces,
Lemma 75.26.7. Thus we see that the lemma follows from the general discussion in
Section 109.6. □

Lemma 109.9.2.0E6J We have Curvesh0,1 ⊂ CurvesCM,1 as open substacks of Curves.

Proof. See Algebraic Curves, Lemma 53.6.1 and Lemmas 109.9.1 and 109.8.2. □

Lemma 109.9.3.0E1J Let f : X → S be a family of curves such that κ(s) = H0(Xs,OXs)
for all s ∈ S, i.e., the classifying morphism S → Curves factors through Curvesh0,1

(Lemma 109.9.1). Then
(1) f∗OX = OS and this holds universally,
(2) R1f∗OX is a finite locally free OS-module,
(3) for any morphism h : S′ → S if f ′ : X ′ → S′ is the base change, then

h∗(R1f∗OX) = R1f ′
∗OX′ .

Proof. We apply Derived Categories of Spaces, Lemma 75.26.7. This proves part
(1). It also implies that locally on S we can write Rf∗OX = OS ⊕ P where P is
perfect of tor amplitude in [1,∞). Recall that formation of Rf∗OX commutes with
arbitrary base change (Derived Categories of Spaces, Lemma 75.25.4). Thus for
s ∈ S we have

Hi(P ⊗L
OS

κ(s)) = Hi(Xs,OXs) for i ≥ 1
This is zero unless i = 1 since Xs is a 1-dimensional Noetherian scheme, see Coho-
mology, Proposition 20.20.7. Then P = H1(P )[−1] and H1(P ) is finite locally free
for example by More on Algebra, Lemma 15.75.6. Since everything is compatible
with base change we also see that (3) holds. □

Lemma 109.9.4.0E6K There is a decomposition into open and closed substacks

Curvesh0,1 =
∐

g≥0
Curvesg

where each Curvesg is characterized as follows:
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesg,
(b) f∗OX = OS , this holds after arbitrary base change, the fibres of f

have dimension 1, and R1f∗OX is a locally free OS-module of rank
g,

(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvesg,
(b) dim(X) = 1, k = H0(X,OX), and the genus of X is g.

Proof. We already have the existence of Curvesh0,1 as an open substack of Curves
characterized by the conditions of the lemma not involving R1f∗ or H1, see Lemma
109.9.1. The existence of the decomposition into open and closed substacks follows
immediately from the discussion in Section 109.6 and Lemma 109.9.3. This proves
the characterization in (1). The characterization in (2) follows from the definition
of the genus in Algebraic Curves, Definition 53.8.1. □
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109.10. Geometrically reduced curves

0E0F There is an open substack of Curves parametrizing the geometrically reduced “curves”.

Lemma 109.10.1.0E0G There exist an open substack Curvesgeomred ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesgeomred,
(b) the fibres of the morphism X → S are geometrically reduced (More

on Morphisms of Spaces, Definition 76.29.2),
(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvesgeomred,
(b) X is geometrically reduced over k.

Proof. Let f : X → S be a family of curves. By More on Morphisms of Spaces,
Lemma 76.29.6 the set

E = {s ∈ S : the fibre of X → S at s is geometrically reduced}
is open in S. Formation of this open commutes with arbitrary base change by More
on Morphisms of Spaces, Lemma 76.29.3. Thus we get the open substack with the
desired properties by the method discussed in Section 109.6. □

Lemma 109.10.2.0E1G We have Curvesgeomred ⊂ CurvesCM as open substacks of Curves.

Proof. This is true because a reduced Noetherian scheme of dimension≤ 1 is Cohen-
Macaulay. See Algebra, Lemma 10.157.3. □

109.11. Geometrically reduced and connected curves

0E1H There is an open substack of Curves parametrizing the geometrically reduced and
connected “curves”. We will get rid of 0-dimensional objects right away.

Lemma 109.11.1.0E1I There exist an open substack Curvesgrc,1 ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesgrc,1,
(b) the geometric fibres of the morphism X → S are reduced, connected,

and have dimension 1,
(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvesgrc,1,
(b) X is geometrically reduced, geometrically connected, and has dimen-

sion 1.

Proof. By Lemmas 109.10.1, 109.10.2, 109.8.1, and 109.8.2 it is clear that we have
Curvesgrc,1 ⊂ Curvesgeomred ∩ CurvesCM,1

if it exists. Let f : X → S be a family of curves such that f is Cohen-Macaulay, has
geometrically reduced fibres, and has relative dimension 1. By More on Morphisms
of Spaces, Lemma 76.36.9 in the Stein factorization

X → T → S

the morphism T → S is étale. This implies that there is an open and closed
subscheme S′ ⊂ S such that X ×S S′ → S′ has geometrically connected fibres (in
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the decomposition of Morphisms, Lemma 29.48.5 for the finite locally free morphism
T → S this corresponds to S1). Formation of this open commutes with arbitrary
base change because the number of connected components of geometric fibres is
invariant under base change (it is also true that the Stein factorization commutes
with base change in our particular case but we don’t need this to conclude). Thus
we get the open substack with the desired properties by the method discussed in
Section 109.6. □

Lemma 109.11.2.0E6L We have Curvesgrc,1 ⊂ Curvesh0,1 as open substacks of Curves. In
particular, given a family of curves f : X → S whose geometric fibres are reduced,
connected and of dimension 1, then R1f∗OX is a finite locally free OS-module
whose formation commutes with arbitrary base change.

Proof. This follows from Varieties, Lemma 33.9.3 and Lemmas 109.9.1 and 109.11.1.
The final statement follows from Lemma 109.9.3. □

Lemma 109.11.3.0E1K There is a decomposition into open and closed substacks

Curvesgrc,1 =
∐

g≥0
Curvesgrc,1g

where each Curvesgrc,1g is characterized as follows:
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesgrc,1g ,
(b) the geometric fibres of the morphism f : X → S are reduced, con-

nected, of dimension 1 and R1f∗OX is a locally free OS-module of
rank g,

(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvesgrc,1g ,
(b) X is geometrically reduced, geometrically connected, has dimension

1, and has genus g.

Proof. First proof: set Curvesgrc,1g = Curvesgrc,1 ∩ Curvesg and combine Lemmas
109.11.2 and 109.9.4. Second proof: The existence of the decomposition into open
and closed substacks follows immediately from the discussion in Section 109.6 and
Lemma 109.11.2. This proves the characterization in (1). The characterization
in (2) follows as well since the genus of a geometrically reduced and connected
proper 1-dimensional scheme X/k is defined (Algebraic Curves, Definition 53.8.1
and Varieties, Lemma 33.9.3) and is equal to dimkH

1(X,OX). □

109.12. Gorenstein curves

0E1L There is an open substack of Curves parametrizing the Gorenstein “curves”.

Lemma 109.12.1.0E1M There exist an open substack CurvesGorenstein ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through CurvesGorenstein,
(b) the morphism X → S is Gorenstein,

(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through CurvesGorenstein,
(b) X is Gorenstein.
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Proof. Let f : X → S be a family of curves. By More on Morphisms of Spaces,
Lemma 76.27.7 the set

W = {x ∈ |X| : f is Gorenstein at x}
is open in |X| and formation of this open commutes with arbitrary base change.
Since f is proper the subset

S′ = S \ f(|X| \W )
of S is open and X×S S′ → S′ is Gorenstein. Moreover, formation of S′ commutes
with arbitrary base change because this is true for W Thus we get the open substack
with the desired properties by the method discussed in Section 109.6. □

Lemma 109.12.2.0E6M There exist an open substack CurvesGorenstein,1 ⊂ Curves such
that

(1) given a family of curves X → S the following are equivalent
(a) the classifying morphism S → Curves factors through CurvesGorenstein,1,
(b) the morphism X → S is Gorenstein and has relative dimension 1

(Morphisms of Spaces, Definition 67.33.2),
(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors through CurvesGorenstein,1,
(b) X is Gorenstein and X is equidimensional of dimension 1.

Proof. Recall that a Gorenstein scheme is Cohen-Macaulay (Duality for Schemes,
Lemma 48.24.2) and that a Gorenstein morphism is a Cohen-Macaulay morphism
(Duality for Schemes, Lemma 48.25.4. Thus we can set CurvesGorenstein,1 equal to
the intersection of CurvesGorenstein and CurvesCM,1 inside of Curves and use Lemmas
109.12.1 and 109.8.2. □

109.13. Local complete intersection curves

0E0J There is an open substack of Curves parametrizing the local complete intersection
“curves”.

Lemma 109.13.1.0DZV There exist an open substack Curveslci ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curveslci,
(b) X → S is a local complete intersection morphism, and
(c) X → S is a syntomic morphism.

(2) given X a proper scheme over a field k of dimension ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curveslci,
(b) X is a local complete intersection over k.

Proof. Recall that being a syntomic morphism is the same as being flat and a local
complete intersection morphism, see More on Morphisms of Spaces, Lemma 76.48.6.
Thus (1)(b) is equivalent to (1)(c). In Section 109.6 we have seen it suffices to show
that given a family of curves f : X → S, there is an open subscheme S′ ⊂ S
such that S′ ×S X → S′ is a local complete intersection morphism and such that
formation of S′ commutes with arbitrary base change. This follows from the more
general More on Morphisms of Spaces, Lemma 76.49.7. □
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109.14. Curves with isolated singularities

0E0K We can look at the open substack of Curves parametrizing “curves” with only a finite
number of singular points (these may correspond to 0-dimensional components in
our setup).

Lemma 109.14.1.0DZW There exist an open substack Curves+ ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curves+,
(b) the singular locus of X → S endowed with any/some closed subspace

structure is finite over S.
(2) given X a proper scheme over a field k of dimension ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curves+,
(b) X → Spec(k) is smooth except at finitely many points.

Proof. To prove the lemma it suffices to show that given a family of curves f :
X → S, there is an open subscheme S′ ⊂ S such that the fibre of S′ ×S X → S′

have property (2). (Formation of the open will automatically commute with base
change.) By definition the locus T ⊂ |X| of points where X → S is not smooth is
closed. Let Z ⊂ X be the closed subspace given by the reduced induced algebraic
space structure on T (Properties of Spaces, Definition 66.12.5). Now if s ∈ S is
a point where Zs is finite, then there is an open neighbourhood Us ⊂ S of s such
that Z∩f−1(Us)→ Us is finite, see More on Morphisms of Spaces, Lemma 76.35.2.
This proves the lemma. □

109.15. The smooth locus of the stack of curves

0DZT The morphism
Curves −→ Spec(Z)

is smooth over a maximal open substack, see Morphisms of Stacks, Lemma 101.33.6.
We want to give a criterion for when a curve is in this locus. We will do this using
a bit of deformation theory.

Let k be a field. Let X be a proper scheme of dimension ≤ 1 over k. Choose a
Cohen ring Λ for k, see Algebra, Lemma 10.160.6. Then we are in the situation
described in Deformation Problems, Example 93.9.1 and Lemma 93.9.2. Thus we
obtain a deformation category DefX on the category CΛ of Artinian local Λ-algebras
with residue field k.

Lemma 109.15.1.0DZU In the situation above the following are equivalent
(1) the classifying morphism Spec(k) → Curves factors through the open

where Curves → Spec(Z) is smooth,
(2) the deformation category DefX is unobstructed.

Proof. Since Curves −→ Spec(Z) is locally of finite presentation (Lemma 109.5.3)
formation of the open substack where Curves −→ Spec(Z) is smooth commutes with
flat base change (Morphisms of Stacks, Lemma 101.33.6). Since the Cohen ring Λ
is flat over Z, we may work over Λ. In other words, we are trying to prove that

Λ-Curves −→ Spec(Λ)
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is smooth in an open neighbourhood of the point x0 : Spec(k)→ Λ-Curves defined
by X/k if and only if DefX is unobstructed.
The lemma now follows from Geometry of Stacks, Lemma 107.2.7 and the equality

DefX = FΛ-Curves,k,x0

This equality is not completely trivial to esthablish. Namely, on the left hand side
we have the deformation category classifying all flat deformations Y → Spec(A) of
X as a scheme over A ∈ Ob(CΛ). On the right hand side we have the deformation
category classifying all flat morphisms Y → Spec(A) with special fibre X where
Y is an algebraic space and Y → Spec(A) is proper, of finite presentation, and of
relative dimension ≤ 1. Since A is Artinian, we find that Y is a scheme for example
by Spaces over Fields, Lemma 72.9.3. Thus it remains to show: a flat deformation
Y → Spec(A) of X as a scheme over an Artinian local ring A with residue field k
is proper, of finite presentation, and of relative dimension ≤ 1. Relative dimension
is defined in terms of fibres and hence holds automatically for Y/A since it holds
for X/k. The morphism Y → Spec(A) is proper and locally of finite presentation
as this is true for X → Spec(k), see More on Morphisms, Lemma 37.10.3. □

Here is a “large” open of the stack of curves which is contained in the smooth locus.
Lemma 109.15.2.0DZX The open substack

Curveslci+ = Curveslci ∩ Curves+ ⊂ Curves
has the following properties

(1) Curveslci+ → Spec(Z) is smooth,
(2) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curveslci+,
(b) X → S is a local complete intersection morphism and the singular

locus of X → S endowed with any/some closed subspace structure is
finite over S,

(3) given X a proper scheme over a field k of dimension ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curveslci+,
(b) X is a local complete intersection over k and X → Spec(k) is smooth

except at finitely many points.
Proof. If we can show that there is an open substack Curveslci+ whose points are
characterized by (2), then we see that (1) holds by combining Lemma 109.15.1 with
Deformation Problems, Lemma 93.16.4. Since

Curveslci+ = Curveslci ∩ Curves+

inside Curves, we conclude by Lemmas 109.13.1 and 109.14.1. □

109.16. Smooth curves

0DZY In this section we study open substacks of Curves parametrizing smooth “curves”.
Lemma 109.16.1.0DZZ There exist an open substacks

Curvessmooth,1 ⊂ Curvessmooth ⊂ Curves
such that

(1) given a family of curves f : X → S the following are equivalent

https://stacks.math.columbia.edu/tag/0DZX
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(a) the classifying morphism S → Curves factors through Curvessmooth,
resp. Curvessmooth,1,

(b) f is smooth, resp. smooth of relative dimension 1,
(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvessmooth,

resp. Curvessmooth,1,
(b) X is smooth over k, resp. X is smooth over k and X is equidimen-

sional of dimension 1.
Proof. To prove the statements regarding Curvessmooth it suffices to show that given
a family of curves f : X → S, there is an open subscheme S′ ⊂ S such that
S′ ×S X → S′ is smooth and such that the formation of this open commutes
with base change. We know that there is a maximal open U ⊂ X such that
U → S is smooth and that formation of U commutes with arbitrary base change,
see Morphisms of Spaces, Lemma 67.37.9. If T = |X| \ |U | then f(T ) is closed in S
as f is proper. Setting S′ = S \ f(T ) we obtain the desired open.
Let f : X → S be a family of curves with f smooth. Then the fibres Xs are smooth
over κ(s) and hence Cohen-Macaulay (for example you can see this using Algebra,
Lemmas 10.137.5 and 10.135.3). Thus we see that we may set

Curvessmooth,1 = Curvessmooth ∩ CurvesCM,1

and the desired equivalences follow from what we’ve already shown for Curvessmooth
and Lemma 109.8.2. □

Lemma 109.16.2.0E1N The morphism Curvessmooth → Spec(Z) is smooth.

Proof. Follows immediately from the observation that Curvessmooth ⊂ Curveslci+
and Lemma 109.15.2. □

Lemma 109.16.3.0E81 There exist an open substack Curvessmooth,h0 ⊂ Curves such that
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvessmooth,
(b) f∗OX = OS , this holds after any base change, and f is smooth of

relative dimension 1,
(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvessmooth,h0,
(b) X is smooth, dim(X) = 1, and k = H0(X,OX),
(c) X is smooth, dim(X) = 1, and X is geometrically connected,
(d) X is smooth, dim(X) = 1, and X is geometrically integral, and
(e) Xk is a smooth curve.

Proof. If we set
Curvessmooth,h0 = Curvessmooth ∩ Curvesh0,1

then we see that (1) holds by Lemmas 109.9.1 and 109.16.1. In fact, this also gives
the equivalence of (2)(a) and (2)(b). To finish the proof we have to show that (2)(b)
is equivalent to each of (2)(c), (2)(d), and (2)(e).
A smooth scheme over a field is geometrically normal (Varieties, Lemma 33.25.4),
smoothness is preserved under base change (Morphisms, Lemma 29.34.5), and being
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smooth is fpqc local on the target (Descent, Lemma 35.23.27). Keeping this in
mind, the equivalence of (2)(b), (2)(c), 2(d), and (2)(e) follows from Varieties,
Lemma 33.10.7. □

Definition 109.16.4.0E82 [DM69]We denote M and we name it the moduli stack of smooth
proper curves the algebraic stack Curvessmooth,h0 parametrizing families of curves
introduced in Lemma 109.16.3. For g ≥ 0 we denoteMg and we name it the moduli
stack of smooth proper curves of genus g the algebraic stack introduced in Lemma
109.16.5.

Here is the obligatory lemma.

Lemma 109.16.5.0E83 There is a decomposition into open and closed substacks

M =
∐

g≥0
Mg

where each Mg is characterized as follows:
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Mg,
(b) X → S is smooth, f∗OX = OS , this holds after any base change, and

R1f∗OX is a locally free OS-module of rank g,
(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Mg,
(b) X is smooth, dim(X) = 1, k = H0(X,OX), and X has genus g,
(c) X is smooth, dim(X) = 1, X is geometrically connected, and X has

genus g,
(d) X is smooth, dim(X) = 1, X is geometrically integral, and X has

genus g, and
(e) Xk is a smooth curve of genus g.

Proof. Combine Lemmas 109.16.3 and 109.9.4. You can also use Lemma 109.11.3
instead. □

Lemma 109.16.6.0E84 The morphisms M→ Spec(Z) and Mg → Spec(Z) are smooth.

Proof. SinceM is an open substack of Curveslci+ this follows from Lemma 109.15.2.
□

109.17. Density of smooth curves

0E85 The title of this section is misleading as we don’t claim Curvessmooth is dense in
Curves. In fact, this is false as was shown by Mumford in [Mum75]. However, we
will see that the smooth “curves” are dense in a large open.

Lemma 109.17.1.0E86 The inclusion

|Curvessmooth| ⊂ |Curveslci+|
is that of an open dense subset.

Proof. By the very construction of the topology on |Curveslci+| in Properties of
Stacks, Section 100.4 we find that |Curvessmooth| is an open subset. Let ξ ∈
|Curveslci+| be a point. Then there exists a field k and a scheme X over k with
X proper over k, with dim(X) ≤ 1, with X a local complete intersection over k,
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and with X is smooth over k except at finitely many points, such that ξ is the
equivalence class of the classifying morphism Spec(k) → Curveslci+ determined by
X. See Lemma 109.15.2. By Deformation Problems, Lemma 93.17.6 there exists a
flat projective morphism Y → Spec(k[[t]]) whose generic fibre is smooth and whose
special fibre is isomorphic to X. Consider the classifying morphism

Spec(k[[t]]) −→ Curveslci+

determined by Y . The image of the closed point is ξ and the image of the generic
point is in |Curvessmooth|. Since the generic point specializes to the closed point in
|Spec(k[[t]])| we conclude that ξ is in the closure of |Curvessmooth| as desired. □

109.18. Nodal curves

0DSX In algebraic geometry a special role is played by nodal curves. We suggest the
reader take a brief look at some of the discussion in Algebraic Curves, Sections
53.19 and 53.20 and More on Morphisms of Spaces, Section 76.55.

Lemma 109.18.1.0DSY There exist an open substack Curvesnodal ⊂ Curves such that
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesnodal,
(b) f is at-worst-nodal of relative dimension 1,

(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvesnodal,
(b) the singularities of X are at-worst-nodal and X is equidimensional

of dimension 1.

Proof. In fact, it suffices to show that given a family of curves f : X → S, there
is an open subscheme S′ ⊂ S such that S′ ×S X → S′ is at-worst-nodal of relative
dimension 1 and such that formation of S′ commutes with arbitrary base change.
By More on Morphisms of Spaces, Lemma 76.55.4 there is a maximal open sub-
space X ′ ⊂ X such that f |X′ : X ′ → S is at-worst-nodal of relative dimension 1.
Moreover, formation of X ′ commutes with base change. Hence we can take

S′ = S \ |f |(|X| \ |X ′|)

This is open because a proper morphism is universally closed by definition. □

Lemma 109.18.2.0E00 The morphism Curvesnodal → Spec(Z) is smooth.

Proof. Follows immediately from the observation that Curvesnodal ⊂ Curveslci+ and
Lemma 109.15.2. □

109.19. The relative dualizing sheaf

0E6N This section serves mainly to introduce notation in the case of families of curves.
Most of the work has already been done in the chapter on duality.

Let f : X → S be a family of curves. There exists an object ω•
X/S in DQCoh(OX),

called the relative dualizing complex, having the following property: for every base

https://stacks.math.columbia.edu/tag/0DSY
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change diagram
XU

f ′

��

g′
// X

f

��
U

g // S

with U = Spec(A) affine the complex ω•
XU/U

= L(g′)∗ω•
X/S represents the functor

DQCoh(OXU ) −→ ModA, K 7−→ HomU (Rf∗K,OU )
More precisely, let (ω•

X/S , τ) be the relative dualizing complex of the family as
defined in Duality for Spaces, Definition 86.9.1. Existence is shown in Duality for
Spaces, Lemma 86.9.5. Moreover, formation of (ω•

X/S , τ) commutes with arbitrary
base change (essentially by definition; a precise reference is Duality for Spaces,
Lemma 86.9.6). From now on we will identify the base change of ω•

X/S with the
relative dualizing complex of the base changed family without further mention.
Let {Si → S} be an étale covering with Si affine such that Xi = X ×S Si is a
scheme, see Lemma 109.4.3. By Duality for Spaces, Lemma 86.10.1 we find that
ω•
Xi/Si

agrees with the relative dualizing complex for the proper, flat, and finitely
presented morphism fi : Xi → Si of schemes discussed in Duality for Schemes,
Remark 48.12.5. Thus to prove a property of ω•

X/S which is étale local, we may
assume X → S is a morphism of schemes and use the theory developped in the
chapter on duality for schemes. More generally, for any base change of X which is a
scheme, the relative dualizing complex agrees with the relative dualizing complex of
Duality for Schemes, Remark 48.12.5. From now on we will use this identification
without further mention.
In particular, let Spec(k) → S be a morphism where k is a field. Denote Xk the
base change (this is a scheme by Spaces over Fields, Lemma 72.9.3). Then ω•

Xk/k
is

isomorphic to the complex ω•
Xk

of Algebraic Curves, Lemma 53.4.1 (both represent
the same functor and so we can use the Yoneda lemma, but really this holds be-
cause of the remarks above). We conclude that the cohomology sheaves Hi(ω•

Xk/k
)

are nonzero only for i = 0,−1. If Xk is Cohen-Macaulay and equidimensional of
dimension 1, then we only have H−1 and if Xk is in addition Gorenstein, then
H−1(ωXk/k) is invertible, see Algebraic Curves, Lemmas 53.4.2 and 53.5.2.

Lemma 109.19.1.0E6P Let X → S be a family of curves with Cohen-Macaulay fibres
equidimensional of dimension 1 (Lemma 109.8.2). Then ω•

X/S = ωX/S [1] where
ωX/S is a pseudo-coherent OX -module flat over S whose formation commutes with
arbitrary base change.

Proof. We urge the reader to deduce this directly from the discussion above of what
happens after base change to a field. Our proof will use a somewhat cumbersome
reduction to the Noetherian schemes case.
Once we show ω•

X/S = ωX/S [1] with ωX/S flat over S, the statement on base change
will follow as we already know that formation of ω•

X/S commutes with arbitrary
base change. Moreover, the pseudo-coherence will be automatic as ω•

X/S is pseudo-
coherent by definition. Vanishing of the other cohomology sheaves and flatness may
be checked étale locally. Thus we may assume f : X → S is a morphism of schemes
with S affine (see discussion above). Write S = limSi as a cofiltered limit of affine

https://stacks.math.columbia.edu/tag/0E6P
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schemes Si of finite type over Z. Since CurvesCM,1 is locally of finite presentation
over Z (as an open substack of Curves, see Lemmas 109.8.2 and 109.5.3), we can find
an i and a family of curves Xi → Si whose pullback is X → S (Limits of Stacks,
Lemma 102.3.5). After increasing i if necessary we may assume Xi is a scheme,
see Limits of Spaces, Lemma 70.5.11. Since formation of ω•

X/S commutes with
arbitrary base change, we may replace S by Si. Doing so we may and do assume Si
is Noetherian. Then f is clearly a Cohen-Macaulay morphism (More on Morphisms,
Definition 37.22.1) by our assumption on the fibres. Also then ω•

X/S = f !OS by the
very construction of f ! in Duality for Schemes, Section 48.16. Thus the lemma by
Duality for Schemes, Lemma 48.23.3. □

Definition 109.19.2.0E6Q Let f : X → S be a family of curves with Cohen-Macaulay
fibres equidimensional of dimension 1 (Lemma 109.8.2). Then the OX -module

ωX/S = H−1(ω•
X/S)

studied in Lemma 109.19.1 is called the relative dualizing sheaf of f .

In the situation of Definition 109.19.2 the relative dualizing sheaf ωX/S has the
following property (which moreover characterizes it locally on S): for every base
change diagram

XU

f ′

��

g′
// X

f

��
U

g // S

with U = Spec(A) affine the module ωXU/U = (g′)∗ωX/S represents the functor

QCoh(OXU ) −→ ModA, F 7−→ HomA(H1(X,F), A)

This follows immediately from the corresponding property of the relative dualizing
complex given above. In particular, if A = k is a field, then we recover the dualizing
module ofXk as introduced and studied in Algebraic Curves, Lemmas 53.4.1, 53.4.2,
and 53.5.2.

Lemma 109.19.3.0E6R Let X → S be a family of curves with Gorenstein fibres equidi-
mensional of dimension 1 (Lemma 109.12.2). Then the relative dualizing sheaf
ωX/S is an invertible OX -module whose formation commutes with arbitrary base
change.

Proof. This is true because the pullback of the relative dualizing module to a fibre
is invertible by the discussion above. Alternatively, you can argue exactly as in the
proof of Lemma 109.19.1 and deduce the result from Duality for Schemes, Lemma
48.25.10. □

109.20. Prestable curves

0E6S The following definition is equivalent to what appears to be the generally accepted
notion of a prestable family of curves.

Definition 109.20.1.0E6T Let f : X → S be a family of curves. We say f is a prestable
family of curves if

(1) f is at-worst-nodal of relative dimension 1, and
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(2) f∗OX = OS and this holds after any base change1.

Let X be a proper scheme over a field k with dim(X) ≤ 1. Then X → Spec(k) is a
family of curves and hence we can ask whether or not it is prestable2 in the sense
of the definition. Unwinding the definitions we see the following are equivalent

(1) X is prestable,
(2) the singularities ofX are at-worst-nodal, dim(X) = 1, and k = H0(X,OX),
(3) Xk is connected and it is smooth over k apart from a finite number of

nodes (Algebraic Curves, Definition 53.16.2).
This shows that our definition agrees with most definitions one finds in the litera-
ture.

Lemma 109.20.2.0E6U There exist an open substack Curvesprestable ⊂ Curves such that
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesprestable,
(b) X → S is a prestable family of curves,

(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvesprestable,
(b) the singularities of X are at-worst-nodal, dim(X) = 1, and k =

H0(X,OX).

Proof. Given a family of curves X → S we see that it is prestable if and only
if the classifying morphism factors both through Curvesnodal and Curvesh0,1. An
alternative is to use Curvesgrc,1 (since a nodal curve is geometrically reduced hence
has H0 equal to the ground field if and only if it is connected). In a formula

Curvesprestable = Curvesnodal ∩ Curvesh0,1 = Curvesnodal ∩ Curvesgrc,1

Thus the lemma follows from Lemmas 109.9.1 and 109.18.1. □

For each genus g ≥ 0 we have the algebraic stack classifying the prestable curves of
genus g. In fact, from now on we will say that X → S is a prestable family of curves
of genus g if and only if the classifying morphism S → Curves factors through the
open substack Curvesprestableg of Lemma 109.20.3.

Lemma 109.20.3.0E6V There is a decomposition into open and closed substacks

Curvesprestable =
∐

g≥0
Curvesprestableg

where each Curvesprestableg is characterized as follows:
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesprestableg ,
(b) X → S is a prestable family of curves and R1f∗OX is a locally free
OS-module of rank g,

(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are
equivalent

1In fact, it suffices to require f∗OX = OS because the Stein factorization of f is étale in this
case, see More on Morphisms of Spaces, Lemma 76.36.9. The condition may also be replaced by
asking the geometric fibres to be connected, see Lemma 109.11.2.

2We can’t use the term “prestable curve” here because curve implies irreducible. See discus-
sion in Algebraic Curves, Section 53.20.
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(a) the classifying morphism Spec(k)→ Curves factors through Curvesprestableg ,
(b) the singularities ofX are at-worst-nodal, dim(X) = 1, k = H0(X,OX),

and the genus of X is g.

Proof. Since we have seen that Curvesprestable is contained in Curvesh0,1, this follows
from Lemmas 109.20.2 and 109.9.4. □

Lemma 109.20.4.0E6W The morphisms Curvesprestable → Spec(Z) and Curvesprestableg →
Spec(Z) are smooth.

Proof. Since Curvesprestable is an open substack of Curvesnodal this follows from
Lemma 109.18.2. □

109.21. Semistable curves

0E6X The following lemma will help us understand families of semistable curves.

Lemma 109.21.1.0E6Y Let f : X → S be a prestable family of curves of genus g ≥ 1.
Let s ∈ S be a point of the base scheme. Let m ≥ 2. The following are equivalent

(1) Xs does not have a rational tail (Algebraic Curves, Example 53.22.1), and
(2) f∗f∗ω

⊗m
X/S → ω⊗m

X/S , is surjective over f−1(U) for some s ∈ U ⊂ S open.

Proof. Assume (2). Using the material in Section 109.19 we conclude that ω⊗m
Xs

is
globally generated. However, if C ⊂ Xs is a rational tail, then deg(ωXs |C) < 0 by
Algebraic Curves, Lemma 53.22.2 hence H0(C,ωXs |C) = 0 by Varieties, Lemma
33.44.12 which contradicts the fact that it is globally generated. This proves (1).

Assume (1). First assume that g ≥ 2. Assumption (1) implies ω⊗m
Xs

is globally
generated, see Algebraic Curves, Lemma 53.22.6. Moreover, we have

Homκ(s)(H1(Xs, ω
⊗m
Xs

), κ(s)) = H0(Xs, ω
⊗1−m
Xs

)

by duality, see Algebraic Curves, Lemma 53.4.2. Since ω⊗m
Xs

is globally generated we
find that the restriction to each irreducible component has nonegative degree. Hence
the restriction of ω⊗1−m

Xs
to each irreducible component has nonpositive degree.

Since deg(ω⊗1−m
Xs

) = (1 − m)(2g − 2) < 0 by Riemann-Roch (Algebraic Curves,
Lemma 53.5.2) we conclude that the H0 is zero by Varieties, Lemma 33.44.13. By
cohomology and base change we conclude that

E = Rf∗ω
⊗m
X/S

is a perfect complex whose formation commutes with arbitrary base change (Derived
Categories of Spaces, Lemma 75.25.4). The vanishing proved above tells us that
E ⊗L κ(s) is equal to H0(Xs, ω

⊗m
Xs

) placed in degree 0. After shrinking S we
find E = f∗ω

⊗m
X/S is a locally free OS-module placed in degree 0 (and its formation

commutes with arbitrary base change as we’ve already said), see Derived Categories
of Spaces, Lemma 75.26.5. The map f∗f∗ω

⊗m
X/S → ω⊗m

X/S is surjective after restricting
to Xs. Thus it is surjective in an open neighbourhood of Xs. Since f is proper,
this open neighbourhood contains f−1(U) for some open neighbourhood U of s in
S.
Assume (1) and g = 1. By Algebraic Curves, Lemma 53.22.6 the assumption (1)
means that ωXs is isomorphic to OXs . If we can show that after shrinking S the
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invertible sheaf ωX/S because trivial, then we are done. We may assume S is affine.
After shrinking S further, we can write

Rf∗OX = (OS
0−→ OS)

sitting in degrees 0 and 1 compatibly with further base change, see Lemma 109.9.3.
By duality this means that

Rf∗ωX/S = (OS
0−→ OS)

sitting in degrees 0 and 13. In particular we obtain an isomorphism OS → f∗ωX/S
which is compatible with base change since formation of Rf∗ωX/S is compatible
with base change (see reference given above). By adjointness, we get a global
section σ ∈ Γ(X,ωX/S). The restriction of this section to the fibre Xs is nonzero
(a basis element in fact) and as ωXs is trivial on the fibres, this section is nonwhere
zero on Xs. Thus it nowhere zero in an open neighbourhood of Xs. Since f is
proper, this open neighbourhood contains f−1(U) for some open neighbourhood U
of s in S. □

Motivated by Lemma 109.21.1 we make the following definition.

Definition 109.21.2.0E6Z Let f : X → S be a family of curves. We say f is a semistable
family of curves if

(1) X → S is a prestable family of curves, and
(2) Xs has genus ≥ 1 and does not have a rational tail for all s ∈ S.

In particular, a prestable family of curves of genus 0 is never semistable. Let X be
a proper scheme over a field k with dim(X) ≤ 1. Then X → Spec(k) is a family
of curves and hence we can ask whether or not it is semistable. Unwinding the
definitions we see the following are equivalent

(1) X is semistable,
(2) X is prestable, has genus ≥ 1, and does not have a rational tail,
(3) Xk is connected, is smooth over k apart from a finite number of nodes,

has genus ≥ 1, and has no irreducible component isomorphic to P1
k

which
meets the rest of Xk in only one point.

To see the equivalence of (2) and (3) use that X has no rational tails if and only if
Xk has no rational tails by Algebraic Curves, Lemma 53.22.6. This shows that our
definition agrees with most definitions one finds in the literature.

Lemma 109.21.3.0E70 There exist an open substack Curvessemistable ⊂ Curves such that
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvessemistable,
(b) X → S is a semistable family of curves,

(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvessemistable,
(b) the singularities ofX are at-worst-nodal, dim(X) = 1, k = H0(X,OX),

the genus of X is ≥ 1, and X has no rational tails,

3Use that Rf∗ω•
X/S

= Rf∗RHomOX (OX .ω•
X/S

) = RHomOS (Rf∗OX ,OS) by Duality for
Spaces, Lemma 86.3.3 and Remark 86.3.5 and then that ω•

X/S
= ωX/S [1] by our definitions in

Section 109.19.
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(c) the singularities ofX are at-worst-nodal, dim(X) = 1, k = H0(X,OX),
and ω⊗m

Xs
is globally generated for m ≥ 2.

Proof. The equivalence of (2)(b) and (2)(c) is Algebraic Curves, Lemma 53.22.6.
In the rest of the proof we will work with (2)(b) in accordance with Definition
109.21.2.
By the discussion in Section 109.6 it suffices to look at families f : X → S of
prestable curves. By Lemma 109.21.1 we obtain the desired openness of the locus in
question. Formation of this open commutes with arbitrary base change, because the
(non)existence of rational tails is insensitive to ground field extensions by Algebraic
Curves, Lemma 53.22.6. □

Lemma 109.21.4.0E71 There is a decomposition into open and closed substacks

Curvessemistable =
∐

g≥1
Curvessemistableg

where each Curvessemistableg is characterized as follows:
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvessemistableg ,
(b) X → S is a semistable family of curves and R1f∗OX is a locally free
OS-module of rank g,

(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvessemistableg ,
(b) the singularities ofX are at-worst-nodal, dim(X) = 1, k = H0(X,OX),

the genus of X is g, and X has no rational tail,
(c) the singularities ofX are at-worst-nodal, dim(X) = 1, k = H0(X,OX),

the genus of X is g, and ω⊗m
Xs

is globally generated for m ≥ 2.

Proof. Combine Lemmas 109.21.3 and 109.20.3. □

Lemma 109.21.5.0E72 The morphisms Curvessemistable → Spec(Z) and Curvessemistableg →
Spec(Z) are smooth.

Proof. Since Curvessemistable is an open substack of Curvesnodal this follows from
Lemma 109.18.2. □

109.22. Stable curves

0E73 The following lemma will help us understand families of stable curves.

Lemma 109.22.1.0E74 Let f : X → S be a prestable family of curves of genus g ≥ 2.
Let s ∈ S be a point of the base scheme. The following are equivalent

(1) Xs does not have a rational tail and does not have a rational bridge
(Algebraic Curves, Examples 53.22.1 and 53.23.1), and

(2) ωX/S is ample on f−1(U) for some s ∈ U ⊂ S open.

Proof. Assume (2). Then ωXs is ample on Xs. By Algebraic Curves, Lemmas
53.22.2 and 53.23.2 we conclude that (1) holds (we also use the characterization of
ample invertible sheaves in Varieties, Lemma 33.44.15).
Assume (1). Then ωXs is ample on Xs by Algebraic Curves, Lemmas 53.23.6. We
conclude by Descent on Spaces, Lemma 74.13.2. □
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Motivated by Lemma 109.22.1 we make the following definition.

Definition 109.22.2.0E75 Let f : X → S be a family of curves. We say f is a stable
family of curves if

(1) X → S is a prestable family of curves, and
(2) Xs has genus ≥ 2 and does not have a rational tails or bridges for all

s ∈ S.

In particular, a prestable family of curves of genus 0 or 1 is never stable. Let X be
a proper scheme over a field k with dim(X) ≤ 1. Then X → Spec(k) is a family of
curves and hence we can ask whether or not it is stable. Unwinding the definitions
we see the following are equivalent

(1) X is stable,
(2) X is prestable, has genus ≥ 2, does not have a rational tail, and does not

have a rational bridge,
(3) X is geometrically connected, is smooth over k apart from a finite number

of nodes, and ωX is ample.
To see the equivalence of (2) and (3) use Lemma 109.22.1 above. This shows that
our definition agrees with most definitions one finds in the literature.

Lemma 109.22.3.0E76 There exist an open substack Curvesstable ⊂ Curves such that
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesstable,
(b) X → S is a stable family of curves,

(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvesstable,
(b) the singularities ofX are at-worst-nodal, dim(X) = 1, k = H0(X,OX),

the genus of X is ≥ 2, and X has no rational tails or bridges,
(c) the singularities ofX are at-worst-nodal, dim(X) = 1, k = H0(X,OX),

and ωXs is ample.

Proof. By the discussion in Section 109.6 it suffices to look at families f : X → S of
prestable curves. By Lemma 109.22.1 we obtain the desired openness of the locus
in question. Formation of this open commutes with arbitrary base change, either
because the (non)existence of rational tails or bridges is insensitive to ground field
extensions by Algebraic Curves, Lemmas 53.22.6 and 53.23.6 or because ampleness
is insenstive to base field extensions by Descent, Lemma 35.25.6. □

Definition 109.22.4.0E77 [DM69]We denoteM and we name the moduli stack of stable curves
the algebraic stack Curvesstable parametrizing stable families of curves introduced
in Lemma 109.22.3. For g ≥ 2 we denote Mg and we name the moduli stack of
stable curves of genus g the algebraic stack introduced in Lemma 109.22.5.

Here is the obligatory lemma.

Lemma 109.22.5.0E78 There is a decomposition into open and closed substacks

M =
∐

g≥2
Mg

where each Mg is characterized as follows:
(1) given a family of curves f : X → S the following are equivalent
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(a) the classifying morphism S → Curves factors through Mg,
(b) X → S is a stable family of curves and R1f∗OX is a locally free
OS-module of rank g,

(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Mg,
(b) the singularities ofX are at-worst-nodal, dim(X) = 1, k = H0(X,OX),

the genus of X is g, and X has no rational tails or bridges.
(c) the singularities ofX are at-worst-nodal, dim(X) = 1, k = H0(X,OX),

the genus of X is g, and ωXs is ample.

Proof. Combine Lemmas 109.22.3 and 109.20.3. □

Lemma 109.22.6.0E79 The morphisms M→ Spec(Z) and Mg → Spec(Z) are smooth.

Proof. SinceM is an open substack of Curvesnodal this follows from Lemma 109.18.2.
□

Lemma 109.22.7.0E7A The stacks M and Mg are open substacks of CurvesDM . In
particular, M and Mg are DM (Morphisms of Stacks, Definition 101.4.2) as well
as Deligne-Mumford stacks (Algebraic Stacks, Definition 94.12.2).

Proof. Proof of the first assertion. Let X be a scheme proper over a field k whose
singularities are at-worst-nodal, dim(X) = 1, k = H0(X,OX), the genus of X is
≥ 2, and X has no rational tails or bridges. We have to show that the classifying
morphism Spec(k)→M→ Curves factors through CurvesDM . We may first replace
k by the algebraic closure (since we already know the relevant stacks are open
substacks of the algebraic stack Curves). By Lemmas 109.22.3, 109.7.3, and 109.7.4
it suffices to show that Derk(OX ,OX) = 0. This is proven in Algebraic Curves,
Lemma 53.25.3.
Since CurvesDM is the maximal open substack of Curves which is DM, we see this
is true also for the open substack M of CurvesDM . Finally, a DM algebraic stack
is Deligne-Mumford by Morphisms of Stacks, Theorem 101.21.6. □

Lemma 109.22.8.0E87 Let g ≥ 2. The inclusion

|Mg| ⊂ |Mg|
is that of an open dense subset.

Proof. Since Mg ⊂ Curveslci+ is open and since Curvessmooth ∩ Mg = Mg this
follows immediately from Lemma 109.17.1. □

109.23. Contraction morphisms

0E7B We urge the reader to familiarize themselves with Algebraic Curves, Sections 53.22,
53.23, and 53.24 before continuing here. The main result of this section is the
existence of a “stabilization” morphism

Curvesprestableg −→Mg

See Lemma 109.23.5. Loosely speaking, this morphism sends the moduli point of a
nodal genus g curve to the moduli point of the associated stable curve constructed
in Algebraic Curves, Lemma 53.24.2.
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Lemma 109.23.1.0E88 Let S be a scheme and s ∈ S a point. Let f : X → S and g : Y →
S be families of curves. Let c : X → Y be a morphism over S. If cs,∗OXs = OYs
and R1cs,∗OXs = 0, then after replacing S by an open neighbourhood of s we have
OY = c∗OX and R1c∗OX = 0 and this remains true after base change by any
morphism S′ → S.
Proof. Let (U, u) → (S, s) be an étale neighbourhood such that OYU = (XU →
YU )∗OXU and R1(XU → YU )∗OXU = 0 and the same is true after base change by
U ′ → U . Then we replace S by the open image of U → S. Given S′ → S we set
U ′ = U ×S S′ and we obtain étale coverings {U ′ → S′} and {YU ′ → YS′}. Thus
the truth of the statement for the base change of c by S′ → S follows from the
truth of the statement for the base change of XU → YU by U ′ → U . In other
words, the question is local in the étale topology on S. Thus by Lemma 109.4.3
we may assume X and Y are schemes. By More on Morphisms, Lemma 37.72.7
there exists an open subscheme V ⊂ Y containing Ys such that c∗OX |V = OV and
R1c∗OX |V = 0 and such that this remains true after any base change by S′ → S.
Since g : Y → S is proper, we can find an open neighbourhood U ⊂ S of s such
that g−1(U) ⊂ V . Then U works. □

Lemma 109.23.2.0E89 Let S be a scheme and s ∈ S a point. Let f : X → S and
gi : Yi → S, i = 1, 2 be families of curves. Let ci : X → Yi be morphisms over S.
Assume there is an isomorphism Y1,s ∼= Y2,s of fibres compatible with c1,s and c2,s.
If c1,s,∗OXs = OY1,s and R1c1,s,∗OXs = 0, then there exist an open neighbourhood
U of s and an isomorphism Y1,U ∼= Y2,U of families of curves over U compatible
with the given isomorphism of fibres and with c1 and c2.
Proof. Recall thatOS,s = colimOS(U) where the colimit is over the system of affine
neighbourhoods U of s. Thus the category of algebraic spaces of finite presentation
over the local ring is the colimit of the categories of algebraic spaces of finite pre-
sentation over the affine neighbourhoods of s. See Limits of Spaces, Lemma 70.7.1.
In this way we reduce to the case where S is the spectrum of a local ring and s is
the closed point.
Assume S = Spec(A) where A is a local ring and s is the closed point. Write
A = colimAj with Aj local Noetherian (say essentially of finite type over Z) and
local transition homomorphisms. Set Sj = Spec(Aj) with closed point sj . We can
find a j and families of curves Xj → Sj , Yj,i → Sj , see Lemma 109.5.3 and Limits
of Stacks, Lemma 102.3.5. After possibly increasing j we can find morphisms cj,i :
Xj → Yj,i whose base change to s is ci, see Limits of Spaces, Lemma 70.7.1. Since
κ(s) = colim κ(sj) we can similarly assume there is an isomorphism Yj,1,sj

∼= Yj,2,sj
compatible with cj,1,sj and cj,2,sj . Finally, the assumptions c1,s,∗OXs = OY1,s and
R1c1,s,∗OXs = 0 are inherited by cj,1,sj because {sj → s} is an fpqc covering and
c1,s is the base of cj,1,sj by this covering (details omitted). In this way we reduce
the lemma to the case discussed in the next paragraph.
Assume S is the spectrum of a Noetherian local ring Λ and s is the closed point.
Consider the scheme theoretic image Z of

(c1, c2) : X −→ Y1 ×S Y2

The statement of the lemma is equivalent to the assertion that Z maps isomorphi-
cally to Y1 and Y2 via the projection morphisms. Since taking the scheme theoretic
image of this morphism commutes with flat base change (Morphisms of Spaces,
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Lemma 67.30.12, we may replace Λ by its completion (More on Algebra, Section
15.43).
Assume S is the spectrum of a complete Noetherian local ring Λ. Observe that X,
Y1, Y2 are schemes in this case (More on Morphisms of Spaces, Lemma 76.43.6).
Denote Xn, Y1,n, Y2,n the base changes of X, Y1, Y2 to Spec(Λ/mn+1). Recall that
the arrow

DefXs→Y2,s
∼= DefXs→Y1,s −→ DefXs

is an equivalence, see Deformation Problems, Lemma 93.10.6. Thus there is an iso-
morphism of formal objects (Xn → Y1,n) ∼= (Xn → Y2,n) of DefXs→Y1,s . Finally, by
Grothendieck’s algebraization theorem (Cohomology of Schemes, Lemma 30.28.3)
this produces an isomorphism Y1 → Y2 compatible with c1 and c2. □

Lemma 109.23.3.0E7C Let f : X → S be a family of curves. Let s ∈ S be a point. Let
h0 : Xs → Y0 be a morphism to a proper scheme Y0 over κ(s) such that h0,∗OXs =
OY0 and R1h0,∗OXs = 0. Then there exist an elementary étale neighbourhood
(U, u) → (S, s), a family of curves Y → U , and a morphism h : XU → Y over U
whose fibre in u is isomorphic to h0.

Proof. We first do some reductions; we urge the reader to skip ahead. The question
is local on S, hence we may assume S is affine. Write S = limSi as a cofiltered
limit of affine schemes Si of finite type over Z. For some i we can find a family of
curves Xi → Si whose base change is X → S. This follows from Lemma 109.5.3
and Limits of Stacks, Lemma 102.3.5. Let si ∈ Si be the image of s. Observe that
κ(s) = colim κ(si) and that Xs is a scheme (Spaces over Fields, Lemma 72.9.3).
After increasing i we may assume there exists a morphism hi,0 : Xi,si → Yi of
finite type schemes over κ(si) whose base change to κ(s) is h0, see Limits, Lemma
32.10.1. After increasing i we may assume Yi is proper over κ(si), see Limits,
Lemma 32.13.1. Let gi,0 : Y0 → Yi,0 be the projection. Observe that this is a
faithfully flat morphism as the base change of Spec(κ(s)) → Spec(κ(si)). By flat
base change we have

h0,∗OXs = g∗
i,0hi,0,∗OXi,si and R1h0,∗OXs = g∗

i,0Rhi,0,∗OXi,si
see Cohomology of Schemes, Lemma 30.5.2. By faithful flatness we see that Xi →
Si, si ∈ Si, and Xi,si → Yi satisfies all the assumptions of the lemma. This reduces
us to the case discussed in the next paragraph.
Assume S is affine of finite type over Z. Let OhS,s be the henselization of the
local ring of S at s. Observe that OhS,s is a G-ring by More on Algebra, Lemma
15.50.8 and Proposition 15.50.12. Suppose we can construct a family of curves
Y ′ → Spec(OhS,s) and a morphism

h′ : X ×S Spec(OhS,s) −→ Y ′

over Spec(OhS,s) whose base change to the closed point is h0. This will be enough.
Namely, first we use that

OhS,s = colim(U,u)OU (U)
where the colimit is over the filtered category of elementary étale neighbourhoods
(More on Morphisms, Lemma 37.35.5). Next, we use again that given Y ′ we can
descend it to Y → U for some U (see references given above). Then we use Limits,
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Lemma 32.10.1 to descend h′ to some h. This reduces us to the case discussed in
the next paragraph.
Assume S = Spec(Λ) where (Λ,m, κ) is a henselian Noetherian local G-ring and s
is the closed point of S. Recall that the map

DefXs→Y0 → DefXs
is an equivalence, see Deformation Problems, Lemma 93.10.6. (This is the only
important step in the proof; everything else is technique.) Denote Λ∧ the m-adic
completion. The pullbacks Xn of X to Λ/mn+1 define a formal object ξ of DefXs
over Λ∧. From the equivalence we obtain a formal object ξ′ of DefXs→Y0 over Λ∧.
Thus we obtain a huge commutative diagram

. . . // Xn
//

��

Xn−1 //

��

. . . // Xs

��
. . . // Yn //

��

Yn−1 //

��

. . . // Y0

��
. . . // Spec(Λ/mn+1) // Spec(Λ/mn) // . . . // Spec(κ)

The formal object (Yn) comes from a family of curves Y ′ → Spec(Λ∧) by Quot,
Lemma 99.15.9. By More on Morphisms of Spaces, Lemma 76.43.3 we get a mor-
phism h′ : XΛ∧ → Y ′ inducing the given morphisms Xn → Yn for all n and in
particular the given morphism Xs → Y0.
To finish we do a standard algebraization/approximation argument. First, we ob-
serve that we can find a finitely generated Λ-subalgebra Λ ⊂ A ⊂ Λ∧, a family of
curves Y ′′ → Spec(A) and a morphism h′′ : XA → Y ′′ over A whose base change to
Λ∧ is h′. This is true because Λ∧ is the filtered colimit of these rings A and we can
argue as before using that Curves is locally of finite presentation (which gives us Y ′′

over A by Limits of Stacks, Lemma 102.3.5) and using Limits of Spaces, Lemma
70.7.1 to descend h′ to some h′′. Then we can apply the approximation property
for G-rings (in the form of Smoothing Ring Maps, Theorem 16.13.1) to find a map
A → Λ which induces the same map A → κ as we obtain from A → Λ∧. Base
changing h′′ to Λ the proof is complete. □

Lemma 109.23.4.0E8A Let f : X → S be a prestable family of curves of genus g ≥ 2.
There is a factorization X → Y → S of f where g : Y → S is a stable family of
curves and c : X → Y has the following properties

(1) OY = c∗OX and R1c∗OX = 0 and this remains true after base change by
any morphism S′ → S, and

(2) for any s ∈ S the morphism cs : Xs → Ys is the contraction of rational
tails and bridges discussed in Algebraic Curves, Section 53.24.

Moreover c : X → Y is unique up to unique isomorphism.

Proof. Let s ∈ S. Let c0 : Xs → Y0 be the contraction of Algebraic Curves, Section
53.24 (more precisely Algebraic Curves, Lemma 53.24.2). By Lemma 109.23.3 there
exists an elementary étale neighbourhood (U, u) and a morphism c : XU → Y of
families of curves over U which recovers c0 as the fibre at u. Since ωY0 is ample,
after possibly shrinking U , we see that Y → U is a stable family of genus g by the
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openness inherent in Lemmas 109.22.3 and 109.22.5. After possibly shrinking U
once more, assertion (1) of the lemma for c : XU → Y follows from Lemma 109.23.1.
Moreover, part (2) holds by the uniqueness in Algebraic Curves, Lemma 53.24.2.
We conclude that a morphism c as in the lemma exists étale locally on S. More
precisely, there exists an étale covering {Ui → S} and morphisms ci : XUi → Yi
over Ui where Yi → Ui is a stable family of curves having properties (1) and (2)
stated in the lemma.
To finish the proof it suffices to prove uniqueness of c : X → Y (up to unique
isomorphism). Namely, once this is done, then we obtain isomorphisms

φij : Yi ×Ui (Ui ×S Uj) −→ Yi ×Uj (Ui ×S Uj)
satisfying the cocycle condition (by uniqueness) over Ui×Uj ×Uk. SinceMg is an
algebraic stack, we have effectiveness of descent data and we obtain Y → S. The
morphisms ci descend to a morphism c : X → Y over S. Finally, properties (1)
and (2) for c are immediate from properties (1) and (2) for ci.
Finally, if c1 : X → Yi, i = 1, 2 are two morphisms towards stably families of curves
over S satisfying (1) and (2), then we obtain a morphism Y1 → Y2 compatible
with c1 and c2 at least locally on S by Lemma 109.23.3. We omit the verification
that these morphisms are unique (hint: this follows from the fact that the scheme
theoretic image of c1 is Y1). Hence these locally given morphisms glue and the
proof is complete. □

Lemma 109.23.5.0E8B Let g ≥ 2. There is a morphism of algebraic stacks over Z

stabilization : Curvesprestableg −→Mg

which sends a prestable family of curves X → S of genus g to the stable family
Y → S asssociated to it in Lemma 109.23.4.
Proof. To see this is true, it suffices to check that the construction of Lemma
109.23.4 is compatible with base change (and isomorphisms but that’s immediate),
see the (abuse of) language for algebraic stacks introduced in Properties of Stacks,
Section 100.2. To see this it suffices to check properties (1) and (2) of Lemma
109.23.4 are stable under base change. This is immediately clear for (1). For
(2) this follows either from the fact that the contractions of Algebraic Curves,
Lemmas 53.22.6 and 53.23.6 are stable under ground field extensions, or because
the conditions characterizing the morphisms on fibres in Algebraic Curves, Lemma
53.24.2 are preserved under ground field extensions. □

109.24. Stable reduction theorem

0E8C In the chapter on semistable reduction we have proved the celebrated theorem on
semistable reduction of curves. Let K be the fraction field of a discrete valuation
ringR. Let C be a projective smooth curve overK withK = H0(C,OC). According
to Semistable Reduction, Definition 55.14.6 we say C has semistable reduction if
either there is a prestable family of curves over R with generic fibre C, or some
(equivalently any) minimal regular model of C over R is prestable. In this section
we show that for curves of genus g ≥ 2 this is also equivalent to stable reduction.
Lemma 109.24.1.0E8D Let R be a discrete valuation ring with fraction field K. Let C
be a smooth projective curve over K with K = H0(C,OC) having genus g ≥ 2.
The following are equivalent
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(1) C has semistable reduction (Semistable Reduction, Definition 55.14.6), or
(2) there is a stable family of curves over R with generic fibre C.

Proof. Since a stable family of curves is also prestable, it is immediate that (2)
implies (1). Conversely, given a prestable family of curves over R with generic fibre
C, we can contract it to a stable family of curves by Lemma 109.23.4. Since the
generic fibre already is stable, it does not get changed by this procedure and the
proof is complete. □

The following lemma tells us the stable family of curves over R promised in Lemma
109.24.1 is unique up to unique isomorphism.
Lemma 109.24.2.0E97 Let R be a discrete valuation ring with fraction field K. Let C
be a smooth proper curve over K with K = H0(C,OC) and genus g. If X and
X ′ are models of C (Semistable Reduction, Section 55.8) and X and X ′ are stable
families of genus g curves over R, then there exists an unique isomorphism X → X ′

of models.
Proof. Let Y be the minimal model for C. Recall that Y exists, is unique, and is at-
worst-nodal of relative dimension 1 over R, see Semistable Reduction, Proposition
55.8.6 and Lemmas 55.10.1 and 55.14.5 (applies because we have X). There is a
contraction morphism

Y −→ Z

such that Z is a stable family of curves of genus g over R (Lemma 109.23.4). We
claim there is a unique isomorphism of models X → Z. By symmetry the same is
true for X ′ and this will finish the proof.
By Semistable Reduction, Lemma 55.14.3 there exists a sequence

Xm → . . .→ X1 → X0 = X

such that Xi+1 → Xi is the blowing up of a closed point xi where Xi is singular,
Xi → Spec(R) is at-worst-nodal of relative dimension 1, and Xm is regular. By
Semistable Reduction, Lemma 55.8.5 there is a sequence

Xm = Yn → Yn−1 → . . .→ Y1 → Y0 = Y

of proper regular models of C, such that each morphism is a contraction of an
exceptional curve of the first kind4. By Semistable Reduction, Lemma 55.14.4 each
Yi is at-worst-nodal of relative dimension 1 over R. To prove the claim it suffices
to show that there is an isomorphism X → Z compatible with the morphisms
Xm → X and Xm = Yn → Y → Z. Let s ∈ Spec(R) be the closed point. By either
Lemma 109.23.2 or Lemma 109.23.4 we reduce to proving that the morphisms
Xm,s → Xs and Xm,s → Zs are both equal to the canonical morphism of Algebraic
Curves, Lemma 53.24.2.
For a morphism c : U → V of schemes over κ(s) we say c has property (*) if
dim(Uv) ≤ 1 for v ∈ V , OV = c∗OU , and R1c∗OU = 0. This property is stable
under composition. Since both Xs and Zs are stable genus g curves over κ(s),
it suffices to show that each of the morphisms Ys → Zs, Xi+1,s → Xi,s, and
Yi+1,s → Yi,s, satisfy property (*), see Algebraic Curves, Lemma 53.24.2.
Property (*) holds for Ys → Zs by construction.

4In fact we have Xm = Y , i.e., Xm does not contain any exceptional curves of the first kind.
We encourage the reader to think this through as it simplifies the proof somewhat.
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The morphisms c : Xi+1,s → Xi,s are constructed and studied in the proof of
Semistable Reduction, Lemma 55.14.3. It suffices to check (*) étale locally on Xi,s.
Hence it suffices to check (*) for the base change of the morphism “X1 → X0” in
Semistable Reduction, Example 55.14.1 to R/πR. We leave the explicit calculation
to the reader.

The morphism c : Yi+1,s → Yi,s is the restriction of the blow down of an exceptional
curve E ⊂ Yi+1 of the first kind, i.e., b : Yi+1 → Yi is a contraction of E, i.e., b is
a blowing up of a regular point on the surface Yi (Resolution of Surfaces, Section
54.16). Then OYi = b∗OYi+1 and R1b∗OYi+1 = 0, see for example Resolution of Sur-
faces, Lemma 54.3.4. We conclude that OYi,s = c∗OYi+1,s and R1c∗OYi+1,s = 0 by
More on Morphisms, Lemmas 37.72.1, 37.72.2, and 37.72.4 (only gives surjectivity
of OYi,s → c∗OYi+1,s but injectivity follows easily from the fact that Yi,s is reduced
and c changes things only over one closed point). This finishes the proof. □

From Lemma 109.24.1 and Semistable Reduction, Theorem 55.18.1 we immediately
deduce the stable reduction theorem.

Theorem 109.24.3.0E98 [DM69, Corollary
2.7]

Let R be a discrete valuation ring with fraction field K. Let C
be a smooth projective curve over K with H0(C,OC) = K and genus g ≥ 2. Then

(1) there exists an extension of discrete valuation rings R ⊂ R′ inducing a
finite separable extension of fraction fields K ′/K and a stable family of
curves Y → Spec(R′) of genus g with YK′ ∼= CK′ over K ′, and

(2) there exists a finite separable extension L/K and a stable family of curves
Y → Spec(A) of genus g where A ⊂ L is the integral closure of R in L
such that YL ∼= CL over L.

Proof. Part (1) is an immediate consequence of Lemma 109.24.1 and Semistable
Reduction, Theorem 55.18.1.

Proof of (2). Let L/K be the finite separable extension found in part (3) of
Semistable Reduction, Theorem 55.18.1. Let A ⊂ L be the integral closure of
R. Recall that A is a Dedekind domain finite over R with finitely many maxi-
mal ideals m1, . . . ,mn, see More on Algebra, Remark 15.111.6. Set S = Spec(A),
Si = Spec(Ami), U = Spec(L), and Ui = Si \ {mi}. Observe that U ∼= Ui for
i = 1, . . . , n. Set X = CL viewed as a scheme over the open subscheme U of S.
By our choice of L and A and Lemma 109.24.1 we have stable families of curves
Xi → Si and isomorphisms X ×U Ui ∼= Xi ×Si Ui. By Limits of Spaces, Lemma
70.18.4 we can find a finitely presented morphism Y → S whose base change to Si is
isomorphic to Xi for i = 1, . . . , n. Alternatively, you can use that S =

⋃
i=1,...,n Si

is an open covering of S and Si ∩ Sj = U for i ̸= j and use n − 1 applications of
Limits of Spaces, Lemma 70.18.1 to get Y → S whose base change to Si is isomor-
phic to Xi for i = 1, . . . , n. Clearly Y → S is the stable family of curves we were
looking for. □

109.25. Properties of the stack of stable curves

0E99 In this section we prove the basic structure result for Mg for g ≥ 2.

Lemma 109.25.1.0E9A Let g ≥ 2. The stack Mg is separated.

https://stacks.math.columbia.edu/tag/0E98
https://stacks.math.columbia.edu/tag/0E9A
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Proof. The statement means that the morphism Mg → Spec(Z) is separated. We
will prove this using the refined Noetherian valuative criterion as stated in More
on Morphisms of Stacks, Lemma 106.11.4
Since Mg is an open substack of Curves, we see Mg → Spec(Z) is quasi-separated
and locally of finite presentation by Lemma 109.5.3. In particular the stack Mg is
locally Noetherian (Morphisms of Stacks, Lemma 101.17.5). By Lemma 109.22.8
the open immersion Mg → Mg has dense image. Also, Mg → Mg is quasi-
compact (Morphisms of Stacks, Lemma 101.8.2), hence of finite type. Thus all
the preliminary assumptions of More on Morphisms of Stacks, Lemma 106.11.4 are
satisfied for the morphisms

Mg →Mg and Mg → Spec(Z)
and it suffices to check the following: given any 2-commutative diagram

Spec(K) //

��

Mg
//Mg

��
Spec(R) //

55

Spec(Z)

where R is a discrete valuation ring with field of fractions K the category of dotted
arrows is either empty or a setoid with exactly one isomorphism class. (Observe
that we don’t need to worry about 2-arrows too much, see Morphisms of Stacks,
Lemma 101.39.3). Unwinding what this means using that Mg, resp. Mg are the
algebraic stacks parametrizing smooth, resp. stable families of genus g curves, we
find that what we have to prove is exactly the uniqueness result stated and proved
in Lemma 109.24.2. □

Lemma 109.25.2.0E9B Let g ≥ 2. The stack Mg is quasi-compact.

Proof. We will use the notation from Section 109.4. Consider the subset
T ⊂ |PolarizedCurves|

of points ξ such that there exists a field k and a pair (X,L) over k representing ξ
with the following two properties

(1) X is a stable genus g curve, and
(2) L = ω⊗3

X .
Clearly, under the continuous map

|PolarizedCurves| −→ |Curves|
the image of the set T is exactly the open subset

|Mg| ⊂ |Curves|
Thus it suffices to show that T is quasi-compact. By Lemma 109.4.1 we see that

|PolarizedCurves| ⊂ |Polarized|
is an open and closed immersion. Thus it suffices to prove quasi-compactness of T
as a subset of |Polarized|. For this we use the criterion of Moduli Stacks, Lemma
108.11.3. First, we observe that for (X,L) as above the Hilbert polynomial P is the
function P (t) = (6g−6)t+(1−g) by Riemann-Roch, see Algebraic Curves, Lemma
53.5.2. Next, we observe that H1(X,L) = 0 and L is very ample by Algebraic

https://stacks.math.columbia.edu/tag/0E9B
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Curves, Lemma 53.24.3. This means exactly that with n = P (3) − 1 there is a
closed immersion

i : X −→ Pn
k

such that L = i∗OP1
k
(1) as desired. □

Here is the main theorem of this section.

Theorem 109.25.3.0E9C Let g ≥ 2. The algebraic stackMg is a Deligne-Mumford stack,
proper and smooth over Spec(Z). Moreover, the locus Mg parametrizing smooth
curves is a dense open substack.

Proof. Most of the properties mentioned in the statement have already been shown.
Smoothness is Lemma 109.22.6. Deligne-Mumford is Lemma 109.22.7. Openness
of Mg is Lemma 109.22.8. We know that Mg → Spec(Z) is separated by Lemma
109.25.1 and we know that Mg is quasi-compact by Lemma 109.25.2. Thus, to
show that Mg → Spec(Z) is proper and finish the proof, we may apply More on
Morphisms of Stacks, Lemma 106.11.3 to the morphisms Mg → Mg and Mg →
Spec(Z). Thus it suffices to check the following: given any 2-commutative diagram

Spec(K) //

j

��

Mg
//Mg

��
Spec(A) // Spec(Z)

where A is a discrete valuation ring with field of fractionsK, there exist an extension
K ′/K of fields, a valuation ring A′ ⊂ K ′ dominating A such that the category of
dotted arrows for the induced diagram

Spec(K ′) //

j′

��

Mg

��
Spec(A′) //

99

Spec(Z)

is nonempty (Morphisms of Stacks, Definition 101.39.1). (Observe that we don’t
need to worry about 2-arrows too much, see Morphisms of Stacks, Lemma 101.39.3).
Unwinding what this means using that Mg, resp. Mg are the algebraic stacks
parametrizing smooth, resp. stable families of genus g curves, we find that what we
have to prove is exactly the result contained in the stable reduction theorem, i.e.,
Theorem 109.24.3. □
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CHAPTER 110

Examples

026Z 110.1. Introduction

0270 This chapter will contain examples which illuminate the theory.

110.2. An empty limit

0AKK This example is due to Waterhouse, see [Wat72]. Let S be an uncountable set.
For every finite subset T ⊂ S consider the set MT of injective maps T → N. For
T ⊂ T ′ ⊂ S finite the restriction MT ′ → MT is surjective. Thus we have an
inverse system over the directed partially ordered set of finite subsets of S with
surjective transition maps. But limMT = ∅ as an element in the limit would define
an injective map S → N.

110.3. A zero limit

0ANX Let (Si)i∈I be a directed inverse system of nonempty sets with surjective transition
maps and with limSi = ∅, see Section 110.2. Let K be a field and set

Vi =
⊕

s∈Si
K

Then the transition maps Vi → Vj are surjective for i ≥ j. However, limVi = 0.
Namely, if v = (vi) is an element of the limit, then the support of vi would be a
finite subset Ti ⊂ Si with limTi ̸= ∅, see Categories, Lemma 4.21.7.

For each i consider the unique K-linear map Vi → K which sends each basis vector
s ∈ Si to 1. Let Wi ⊂ Vi be the kernel. Then

0→ (Wi)→ (Vi)→ (K)→ 0

is a nonsplit short exact sequence of inverse systems of vector spaces over the
directed set I. Hence Wi is a directed system of K-vector spaces with surjective
transition maps, vanishing limit, and nonvanishing R1 lim.

110.4. Non-quasi-compact inverse limit of quasi-compact spaces

09ZJ Let N denote the set of natural numbers. For every integer n, let In denote the set
of all natural numbers > n. Define Tn to be the unique topology on N with basis
{1}, . . . , {n}, In. Denote by Xn the topological space (N, Tn). For each m < n, the
identity map,

fn,m : Xn −→ Xm

is continuous. Obviously for m < n < p, the composition fp,n ◦ fn,m equals fp,m.
So ((Xn), (fn,m)) is a directed inverse system of quasi-compact topological spaces.

7276
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Let T be the discrete topology on N, and let X be (N, T ). Then for every integer
n, the identity map,

fn : X −→ Xn

is continuous. We claim that this is the inverse limit of the directed system above.
Let (Y, S) be any topological space. For every integer n, let

gn : (Y, S) −→ (N, Tn)
be a continuous map. Assume that for every m < n we have fn,m ◦ gn = gm, i.e.,
the system (gn) is compatible with the directed system above. In particular, all of
the set maps gn are equal to a common set map

g : Y −→ N.

Moreover, for every integer n, since {n} is open in Xn, also g−1({n}) = g−1
n ({n}) is

open in Y . Therefore the set map g is continuous for the topology S on Y and the
topology T on N. Thus (X, (fn)) is the inverse limit of the directed system above.
However, clearly X is not quasi-compact, since the infinite open covering by single-
ton sets has no inverse limit.

Lemma 110.4.1.09ZK There exists an inverse system of quasi-compact topological spaces
over N whose limit is not quasi-compact.

Proof. See discussion above. □

110.5. The structure sheaf on the fibre product

0FLS Let X,Y, S, a, b, p, q, f be as in the introduction to Derived Categories of Schemes,
Section 36.23. Picture:

X ×S Y

p
{{

q
##

f

��

X

a
$$

Y

b
zz

S

Then we have a canonical map
can : p−1OX ⊗f−1OS

q−1OY −→ OX×SY

which is not an isomorphism in general.
For example, let S = Spec(R), X = Spec(C), and Y = Spec(C). Then X ×S Y =
Spec(C) ⨿ Spec(C) is a discrete space with two points and the sheaves p−1OX ,
q−1OY and f−1OS are the constant sheaves with values C, C, and R. Hence the
source of can is the constant sheaf with value C ⊗R C on the discrete space with
two points. Thus its global sections have dimension 8 as an R-vector space whereas
taking global sections of the target of can we obtain C×C which has dimension 4
as an R-vector space.
Another example is the following. Let k be an algebraically closed field. Consider
S = Spec(k), X = A1

k, and Y = A1
k. Then for U ⊂ X ×S Y = A2

k nonempty open
the images p(U) ⊂ X = A1

k and q(U) ⊂ A1
k are open and the reader can show that(

p−1OX ⊗f−1OS
q−1OY

)
(U) = OX(p(U))⊗k OY (q(U))

https://stacks.math.columbia.edu/tag/09ZK
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This is not equal to OX×SY (U) if U is the complement of an irreducible curve C
in X ×S Y = A2

k such that both p|C and q|C are nonconstant.
Returning to the general case, let z = (x, y, s, p) be a point of X×SY as in Schemes,
Lemma 26.17.5. Then on stalks at z the map can gives the map

canz : OX,x ⊗OS,s
OY,y −→ OX×SY,z

This is a flat ring homomorphism as the target is a localization of the source (details
omitted; hint reduce to the case that X, Y , and S are affine). Observe that the
source is in general not a local ring, and this gives another way to see that can is
not an isomorphism in general.
More generally, suppose we have an OX -module F and an OY -module G. Then
there is a canonical map

p−1F ⊗f−1OS
q−1G

= p−1(F ⊗OX
OX)⊗f−1OS

q−1(OY ⊗OY
G)

= p−1F ⊗p−1OX
p−1OX ⊗f−1OS

q−1OY ⊗q−1OY
q−1G

can−−→ p−1F ⊗q−1OX
OX×SY ⊗q−1OY

q−1G
= p−1F ⊗q−1OX

OX×SY ⊗OX×SY
OX×SY ⊗q−1OY

q−1G
= p∗F ⊗OX×SY

q∗G
which is rarely an isomorphism.

110.6. A nonintegral connected scheme whose local rings are domains

0568 We give an example of an affine scheme X = Spec(A) which is connected, all of
whose local rings are domains, but which is not integral. Connectedness of X means
A has no nontrivial idempotents, see Algebra, Lemma 10.21.3. The local rings of
X are domains if, whenever fg = 0 in A, every point of X has a neighborhood
where either f or g vanishes. As long as A is not a domain, then X is not integral
(Properties, Definition 28.3.1).
Roughly speaking, the construction is as follows: let X0 be the cross (the union of
coordinate axes) on the affine plane. Then let X1 be the (reduced) full preimage of
X0 on the blowup of the plane (X1 has three rational components forming a chain).
Then blow up the resulting surface at the two singularities of X1, and let X2 be
the reduced preimage of X1 (which has five rational components), etc. Take X to
be the inverse limit. The only problem with this construction is that blowups glue
in a projective line, so X1 is not affine. Let us correct this by glueing in an affine
line instead (so our scheme will be an open subset in what was described above).
Here is a completely algebraic construction: For every k ≥ 0, let Ak be the following
ring: its elements are collections of polynomials pi ∈ C[x] where i = 0, . . . , 2k such
that pi(1) = pi+1(0). Set Xk = Spec(Ak). Observe that Xk is a union of 2k+1 affine
lines that meet transversally in a chain. Define a ring homomorphism Ak → Ak+1
by

(p0, . . . , p2k) 7−→ (p0, p0(1), p1, p1(1), . . . , p2k),
in other words, every other polynomial is constant. This identifies Ak with a subring
of Ak+1. Let A be the direct limit of Ak (basically, their union). Set X = Spec(A).
For every k, we have a natural embedding Ak → A, that is, a map X → Xk. Each
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Ak is connected but not integral; this implies that A is connected but not integral.
It remains to show that the local rings of A are domains.

Take f, g ∈ A with fg = 0 and x ∈ X. Let us construct a neighborhood of x
on which one of f and g vanishes. Choose k such that f, g ∈ Ak−1 (note the
k − 1 index). Let y be the image of x in Xk. It suffices to prove that y has a
neighborhood on which either f or g viewed as sections of OXk vanishes. If y is a
smooth point of Xk, that is, it lies on only one of the 2k + 1 lines, this is obvious.
We can therefore assume that y is one of the 2k singular points, so two components
of Xk pass through y. However, on one of these two components (the one with odd
index), both f and g are constant, since they are pullbacks of functions on Xk−1.
Since fg = 0 everywhere, either f or g (say, f) vanishes on the other component.
This implies that f vanishes on both components, as required.

110.7. Noncomplete completion

05JA Let R be a ring and let m be a maximal ideal. Consider the completion

R∧ = limR/mn.

Note that R∧ is a local ring with maximal ideal m′ = Ker(R∧ → R/m). Namely,
if x = (xn) ∈ R∧ is not in m′, then y = (x−1

n ) ∈ R∧ satisfies xy = 1, whence R∧

is local by Algebra, Lemma 10.18.2. Now it is always true that R∧ complete in its
limit topology (see the discussion in More on Algebra, Section 15.36). But beyond
that, we have the following questions:

(1) Is it true that mR∧ = m′?
(2) Is R∧ viewed as an R∧-module m′-adically complete?
(3) Is R∧ viewed as an R-module m-adically complete?

It turns out that these questions all have a negative answer. The example below
was taken from an unpublished note of Bart de Smit and Hendrik Lenstra. See also
[Bou61, Exercise III.2.12] and [Yek11, Example 1.8]

Let k be a field, R = k[x1, x2, x3, . . .], and m = (x1, x2, x3, . . .). We will think of an
element f of R∧ as a (possibly) infinite sum

f =
∑

aIx
I

(using multi-index notation) such that for each d ≥ 0 there are only finitely many
nonzero aI for |I| = d. The maximal ideal m′ ⊂ R∧ is the collection of f with zero
constant term. In particular, the element

f = x1 + x2
2 + x3

3 + . . .

is in m′ but not in mR∧ which shows that (1) is false in this example. However, if
(1) is false, then (3) is necessarily false because m′ = Ker(R∧ → R/m) and we can
apply Algebra, Lemma 10.96.5 with n = 1.

To finish we prove that R∧ is not m′-adically complete. For n ≥ 1 let Kn =
Ker(R∧ → R/mn). Then we have short exact sequences

0→ Kn/(m′)n → R∧/(m′)n → R/mn → 0
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The projection map R∧ → R/mn+1 sends (m′)n onto mn/mn+1. It follows that
Kn+1 → Kn/(m′)n is surjective. Hence the inverse system (Kn/(m′)n) has surjec-
tive transition maps and taking inverse limits we obtain an exact sequence

0→ limKn/(m′)n → limR∧/(m′)n → limR/mn → 0
by Algebra, Lemma 10.87.1. Thus we see that R∧ is complete with respect to m′ if
and only if Kn = (m′)n for all n ≥ 1.
To show that R∧ is not m′-adically complete in our example we show that K2 =
Ker(R∧ → R/m2) is not equal to (m′)2. Note that an element of (m′)2 can be
written as a finite sum
(110.7.0.1)05JB

∑
i=1,...,t

figi

with fi, gi ∈ R∧ having vanishing constant terms. To get an example we are going
to choose an z ∈ K2 of the form

z = z1 + z2 + z3 + . . .

with the following properties
(1) there exist sequences 1 < d1 < d2 < d3 < . . . and 0 < n1 < n2 < n3 < . . .

such that zi ∈ k[xni , xni+1, . . . , xni+1−1] homogeneous of degree di, and
(2) in the ring k[[xni , xni+1, . . . , xni+1−1]] the element zi cannot be written as

a sum (110.7.0.1) with t ≤ i.
Clearly this implies that z is not in (m′)2 because the image of the relation (110.7.0.1)
in the ring k[[xni , xni+1, . . . , xni+1−1]] for i large enough would produce a contra-
diction. Hence it suffices to prove that for all t > 0 there exists a d ≫ 0 and an
integer n such that we can find an homogeneous element z ∈ k[x1, . . . , xn] of degree
d which cannot be written as a sum (110.7.0.1) for the given t in k[[x1, . . . , xn]].
Take n > 2t and any d > 1 prime to the characteristic of k and set z =

∑
i=1,...,n x

d
i .

Then the vanishing locus of the ideal

( ∂z
∂x1

, . . . ,
∂z

∂xn
) = (dxd−1

1 , . . . , dxd−1
n )

consists of one point. On the other hand,
∂(
∑
i=1,...,t figi)
∂xj

∈ (f1, . . . , ft, g1, . . . , gt)

by the Leibniz rule and hence the vanishing locus of these derivatives contains at
least

V (f1, . . . , ft, g1, . . . , gt) ⊂ Spec(k[[x1, . . . , xn]]).
Hence this is a contradiction as the dimension of V (f1, . . . , ft, g1, . . . , gt) is at least
n− 2t ≥ 1.

Lemma 110.7.1.05JC There exists a local ring R and a maximal ideal m such that the
completion R∧ of R with respect to m has the following properties

(1) R∧ is local, but its maximal ideal is not equal to mR∧,
(2) R∧ is not a complete local ring, and
(3) R∧ is not m-adically complete as an R-module.

Proof. This follows from the discussion above as (with R = k[x1, x2, x3, . . .]) the
completion of the localization Rm is equal to the completion of R. □

https://stacks.math.columbia.edu/tag/05JC
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110.8. Noncomplete quotient

05JD Let k be a field. Let
R = k[t, z1, z2, z3, . . . , w1, w2, w3, . . . , x]/(zit− xiwi, ziwj)

Note that in particular zizjt = 0 in this ring. Any element f of R can be uniquely
written as a finite sum

f =
∑

i=0,...,d
fix

i

where each fi ∈ k[t, zi, wj ] has no terms involving the products zit or ziwj . More-
over, if f is written in this way, then f ∈ (xn) if and only if fi = 0 for i < n. So x
is a nonzerodivisor and

⋂
(xn) = 0. Let R∧ be the completion of R with respect to

the ideal (x). Note that R∧ is (x)-adically complete, see Algebra, Lemma 10.96.3.
By the above we see that an element of R∧ can be uniquely written as an infinite
sum

f =
∑∞

i=0
fix

i

where each fi ∈ k[t, zi, wj ] has no terms involving the products zit or ziwj . Consider
the element

f =
∑∞

i=1
xiwi = xw1 + x2w2 + x3w3 + . . .

i.e., we have fn = wn. Note that f ∈ (t, xn) for every n because xmwm ∈ (t) for
all m. We claim that f ̸∈ (t). To prove this assume that tg = f where g =

∑
glx

l

in canonical form as above. Since tzizj = 0 we may as well assume that none of
the gl have terms involving the products zizj . Examining the process to get tg in
canonical form we see the following: Given any term cm of gl where c ∈ k and m
is a monomial in t, zi, wj and we make the following replacement

(1) if the monomial m does not involve any zi, then ctm is a term of fl, and
(2) if the monomial m does involve a zi then it is equal to m = zi and we see

that cwi is term of fl+i.
Since g0 is a polynomial only finitely many of the variables zi occur in it. Pick n
such that zn does not occur in g0. Then the rules above show that wn does not
occur in fn which is a contradiction. It follows that R∧/(t) is not complete, see
Algebra, Lemma 10.96.10.

Lemma 110.8.1.05JE There exists a ring R complete with respect to a principal ideal
I and a principal ideal J such that R/J is not I-adically complete.

Proof. See discussion above. □

110.9. Completion is not exact

05JF A quick example is the following. Suppose that R = k[t]. Let P = K =
⊕

n∈N R
and M =

⊕
n∈N R/(tn). Then there is a short exact sequence 0 → K → P →

M → 0 where the first map is given by multiplication by tn on the nth summand.
We claim that 0 → K∧ → P∧ → M∧ → 0 is not exact in the middle. Namely,
ξ = (t2, t3, t4, . . .) ∈ P∧ maps to zero in M∧ but is not in the image of K∧ → P∧,
because it would be the image of (t, t, t, . . .) which is not an element of K∧.
A “smaller” example is the following. In the situation of Lemma 110.8.1 the short
exact sequence 0 → J → R → R/J → 0 does not remain exact after completion.
Namely, if f ∈ J is a generator, then f : R → J is surjective, hence R → J∧

is surjective, hence the image of J∧ → R is (f) = J but the fact that R/J is

https://stacks.math.columbia.edu/tag/05JE
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noncomplete means that the kernel of the surjection R→ (R/J)∧ is strictly bigger
than J , see Algebra, Lemmas 10.96.1 and 10.96.10. By the same token the sequence
R→ R→ R/(f)→ 0 does not remain exact on completion.

Lemma 110.9.1.05JG Completion is not an exact functor in general; it is not even right
exact in general. This holds even when I is finitely generated on the category of
finitely presented modules.

Proof. See discussion above. □

110.10. The category of complete modules is not abelian

07JQ Let R be a ring and let I ⊂ R be a finitely generated ideal. Consider the category A
of I-adically complete R-modules, see Algebra, Definition 10.96.2. Let φ : M → N
be a morphism of A. The cokernel of φ in A is the completion (Coker(φ))∧ of the
usual cokernel (as I is finitely generated this completion is complete, see Algebra,
Lemma 10.96.3). Let K = Ker(φ). We claim that K is complete and hence is the
kernel of φ in A. Namely, let K∧ be the completion. As M is complete we obtain
a factorization

K → K∧ →M
φ−→ N

Since φ is continuous for the I-adic topology, K → K∧ has dense image, and
K = Ker(φ) we conclude that K∧ maps into K. Thus K∧ = K ⊕ C and K is a
direct summand of a complete module, hence complete.
We will give an example that shows that Im ̸= Coim in general. We take R = Zp =
limn Z/pnZ to be the ring of p-adic integers and we take I = (p). Consider the
map

diag(1, p, p2, . . .) :
(⊕

n≥1
Zp
)∧
−→

∏
n≥1

Zp
where the left hand side is the p-adic completion of the direct sum. Hence an
element of the left hand side is a vector (x1, x2, x3, . . .) with xi ∈ Zp with p-adic
valuation vp(xi) → ∞ as i → ∞. This maps to (x1, px2, p

2x3, . . .). Hence we
see that (1, p, p2, . . .) is in the closure of the image but not in the image. By our
description of kernels and cokernels above it is clear that Im ̸= Coim for this map.

Lemma 110.10.1.07JR Let R be a ring and let I ⊂ R be a finitely generated ideal.
The category of I-adically complete R-modules has kernels and cokernels but is not
abelian in general.

Proof. See above. □

110.11. The category of derived complete modules

0ARC Please read More on Algebra, Section 15.92 before reading this section.
Let A be a ring, let I be an ideal of A, and denote C the category of derived
complete modules as defined in More on Algebra, Definition 15.91.4.
Let T be a set and let Mt, t ∈ T be a family of derived complete modules. We claim
that in general

⊕
Mt is not a derived complete module. For a specific example, let

A = Zp and I = (p) and consider
⊕

n∈N Zp. The map from
⊕

n∈N Zp to its p-adic
completion isn’t surjective. This means that

⊕
n∈N Zp cannot be derived complete

as this would imply otherwise, see More on Algebra, Lemma 15.91.3. Hence the

https://stacks.math.columbia.edu/tag/05JG
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inclusion functor C → ModA does not commute with either direct sums or (filtered)
colimits.
Assume I is finitely generated. By the discussion in More on Algebra, Section 15.92
the category C has arbitrary colimits. However, we claim that filtered colimits are
not exact in the category C. Namely, suppose that A = Zp and I = (p). One
has inclusions fn : Zp/pZp → Zp/pnZp of p-adically complete A-modules given by
multiplication by pn−1. There are commutative diagrams

Zp/pZp
fn

//

1
��

Zp/pnZp

p

��
Zp/pZp

fn+1// Zp/pn+1Zp

We claim: the colimit of these inclusions in the category C gives the map Zp/pZp →
0. Namely, the colimit in ModA of the system on the right is Qp/Zp. Thus the
colimit in C is

H0((Qp/Zp)∧) = H0(Zp[1]) = 0
by More on Algebra, Section 15.92 where ∧ is derived completion. This proves our
claim.

Lemma 110.11.1.0ARD Let A be a ring and let I ⊂ A be an ideal. The category C of
derived complete modules is abelian and the inclusion functor F : C → ModA is
exact and commutes with arbitrary limits. If I is finitely generated, then C has
arbitrary direct sums and colimits, but F does not commute with these in general.
Finally, filtered colimits are not exact in C in general, hence C is not a Grothendieck
abelian category.

Proof. See More on Algebra, Lemma 15.92.1 and discussion above. □

110.12. Nonflat completions

0AL8 The completion of a ring with respect to an ideal isn’t always flat, contrary to
the Noetherian case. We have seen two examples of this phenomenon in More on
Algebra, Example 15.90.10. In this section we give two more examples.

Lemma 110.12.1.0AL9 Let R be a ring. Let M be an R-module which is countable.
Then M is a finite R-module if and only if M ⊗R RN →MN is surjective.

Proof. If M is a finite module, then the map is surjective by Algebra, Proposi-
tion 10.89.2. Conversely, assume the map is surjective. Let m1,m2,m3, . . . be an
enumeration of the elements of M . Let

∑
j=1,...,m xj ⊗ aj be an element of the

tensor product mapping to the element (mn) ∈MN. Then we see that x1, . . . , xm
generate M over R as in the proof of Algebra, Proposition 10.89.2. □

Lemma 110.12.2.0ALA Let R be a countable ring. Let M be a countable R-module.
Then M is finitely presented if and only if the canonical map M ⊗R RN →MN is
an isomorphism.

Proof. If M is a finitely presented module, then the map is an isomorphism by
Algebra, Proposition 10.89.3. Conversely, assume the map is an isomorphism. By
Lemma 110.12.1 the module M is finite. Choose a surjection R⊕m → M with
kernel K. Then K is countable as a submodule of R⊕m. Arguing as in the proof

https://stacks.math.columbia.edu/tag/0ARD
https://stacks.math.columbia.edu/tag/0AL9
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of Algebra, Proposition 10.89.3 we see that K ⊗R RN → KN is surjective. Hence
we conclude that K is a finite R-module by Lemma 110.12.1. Thus M is finitely
presented. □

Lemma 110.12.3.0ALB Let R be a countable ring. Then R is coherent if and only if RN

is a flat R-module.

Proof. If R is coherent, then RN is a flat module by Algebra, Proposition 10.90.6.
Assume RN is flat. Let I ⊂ R be a finitely generated ideal. To prove the lemma we
show that I is finitely presented as an R-module. Namely, the map I⊗RRN → RN

is injective as RN is flat and its image is IN by Lemma 110.12.1. Thus we conclude
by Lemma 110.12.2. □

Let R be a countable ring. Observe that R[[x]] is isomorphic to RN as an R-module.
By Lemma 110.12.3 we see that R→ R[[x]] is flat if and only if R is coherent. There
are plenty of noncoherent countable rings, for example

R = k[y, z, a1, b1, a2, b2, a3, b3, . . .]/(a1y + b1z, a2y + b2z, a3y + b3z, . . .)
where k is a countable field. This ring is not coherent because the ideal (y, z) of R
is not a finitely presented R-module. Note that R[[x]] is the completion of R[x] by
the principal ideal (x).

Lemma 110.12.4.0ALC There exists a ring such that the completion R[[x]] of R[x] at
(x) is not flat over R and a fortiori not flat over R[x].

Proof. See discussion above. □

It turns out there is a ring R such that R[[x]] is flat over R, but R[[x]] is not flat
over R[x]. See this post by Badam Baplan. Namely, let R be a valuation ring.
Then R is coherent (Algebra, Example 10.90.2) and hence R[[x]] is flat over R by
Algebra, Proposition 10.90.6. On the other hand, we have the following lemma.

Lemma 110.12.5.0F1Y Let R be a domain with fraction field K. If R[[x]] is flat over
R[x], then R is normal if and only if R is completely normal (Algebra, Definition
10.37.3).

Proof. Suppose we have α ∈ K and a nonzero r ∈ R such that rαn ∈ R for all
n ≥ 1. Then we consider f =

∑
rαn−1xn in R[[x]]. Write α = a/b for a, b ∈ R

with b nonzero. Then we see that (ax− b)f = −rb. It follows that rb is in the ideal
(ax − b)R[[x]]. Let S = {h ∈ R[x] : h(0) = 1}. This is a multiplicative subset and
flatness of R[x] → R[[x]] implies that S−1R[x] → R[[x]] is faithfully flat (details
omitted; hint: use Algebra, Lemma 10.39.16). Hence

S−1R/(ax− b)S−1R→ R[[x]]/(ax− b)R[[x]]
is injective. We conclude that hrb = (ax−b)g for some h ∈ S and g ∈ R[x]. Writing
h = 1 + h1x+ . . .+ hdx

d shows that we obtain
1 + h1x+ . . .+ hdx

d = (1/r)(αx− 1)g
This factorization inK[x] gives a corresponding factorization inK[x−1] which shows
that α is the root of a monic polynomial with coefficients in R as desired. □

Lemma 110.12.6.0F1Z If R is a valuation ring of dimension > 1, then R[[x]] is flat over
R but not flat over R[x].

https://stacks.math.columbia.edu/tag/0ALB
https://stacks.math.columbia.edu/tag/0ALC
https://math.stackexchange.com/users/164860/badam-baplan
https://stacks.math.columbia.edu/tag/0F1Y
https://stacks.math.columbia.edu/tag/0F1Z
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Proof. The arguments above show that this is true if we can show that R is not
completely normal (valuation rings are normal, see Algebra, Lemma 10.50.3). Let
p ⊂ m ⊂ R be a chain of primes. Pick nonzero x ∈ p and y ∈ m\p. Then xy−n ∈ R
for all n ≥ 1 (if not then yn/x ∈ R which is absurd because y ̸∈ p). Hence 1/y is
almost integral over R but not in R. □

Next, we will construct an example where the completion of a localization is nonflat.
To do this consider the ring

R = k[y, z, a1, a2, a3, . . .]/(yai, aiaj)
Denote f ∈ R the residue class of z. We claim the ring map
(110.12.6.1)0ALD R[[x]] −→ Rf [[x]]

isn’t flat. Let I be the kernel of y : R[[x]]→ R[[x]]. A typical element g of I looks
like g =

∑
gn,mamx

n where gn,m ∈ k[z] and for a given n only a finite number
of nonzero gn,m. Let J be the kernel of y : Rf [[x]] → Rf [[x]]. We claim that
J ̸= IRf [[x]]. Namely, if this were true then we would have∑

z−nanx
n =

∑
i=1,...,m

higi

for some m ≥ 1, gi ∈ I, and hi ∈ Rf [[x]]. Say hi = h̄i mod (y, a1, a2, a3, . . .) with
h̄i ∈ k[z, 1/z][[x]]. Looking at the coefficient of an and using the description of the
elements gi above we would get

z−nxn =
∑

h̄iḡi,n

for some ḡi,n ∈ k[z][[x]]. This would mean that all z−nxn are contained in the finite
k[z][[x]]-module generated by the elements h̄i. Since k[z][[x]] is Noetherian this
implies that the R[z][[x]]-submodule of k[z, 1/z][[x]] generated by 1, z−1x, z−2x2, . . .
is finite. By Algebra, Lemma 10.36.2 we would conclude that z−1x is integral over
k[z][[x]] which is absurd. On the other hand, if (110.12.6.1) were flat, then we would
get J = IRf [[x]] by tensoring the exact sequence 0 → I → R[[x]] y−→ R[[x]] with
Rf [[x]].

Lemma 110.12.7.0ALE There exists a ring A complete with respect to a principal ideal
I and an element f ∈ A such that the I-adic completion A∧

f of Af is not flat over
A.

Proof. Set A = R[[x]] and I = (x) and observe that Rf [[x]] is the completion of
R[[x]]f . □

110.13. Nonabelian category of quasi-coherent modules

0ALF In Sheaves on Stacks, Section 96.11 we defined the category of quasi-coherent mod-
ules on a category fibred in groupoids over Sch. Although we show in Sheaves
on Stacks, Section 96.15 that this category is abelian for algebraic stacks, in this
section we show that this is not the case for formal algebraic spaces.
Namely, consider Zp viewed as topological ring using the p-adic topology. Let
X = Spf(Zp), see Formal Spaces, Definition 87.9.9. Then X is a sheaf in sets on
(Sch/Z)fppf and gives rise to a stack in setoids X , see Stacks, Lemma 8.6.2. Thus
the discussion of Sheaves on Stacks, Section 96.15 applies.

https://stacks.math.columbia.edu/tag/0ALE
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Let F be a quasi-coherent module on X . Since X = colim Spec(Z/pnZ) it is clear
from Sheaves on Stacks, Lemma 96.12.2 that F is given by a sequence (Fn) where

(1) Fn is a quasi-coherent module on Spec(Z/pnZ), and
(2) the transition maps give isomorphisms Fn = Fn+1/p

nFn+1.
Converting into modules we see that F corresponds to a system (Mn) where each
Mn is an abelian group annihilated by pn and the transition maps induce isomor-
phisms Mn = Mn+1/p

nMn+1. In this situation the module M = limMn is a
p-adically complete module and Mn = M/pnM , see Algebra, Lemma 10.98.2. We
conclude that the category of quasi-coherent modules on X is equivalent to the
category of p-adically complete abelian groups. This category is not abelian, see
Section 110.10.

Lemma 110.13.1.0ALG The category of quasi-coherent1 modules on a formal algebraic
space X is not abelian in general, even if X is a Noetherian affine formal algebraic
space.

Proof. See discussion above. □

110.14. Regular sequences and base change

063Z We are going to construct a ring R with a regular sequence (x, y, z) such that there
exists a nonzero element δ ∈ R/zR with xδ = yδ = 0.
To construct our example we first construct a peculiar module E over the ring
k[x, y, z] where k is any field. Namely, E will be a push-out as in the following
diagram

xk[x,y,z,y−1]
xyk[x,y,z]

//

z/x

��

k[x,y,z,x−1,y−1]
yk[x,y,z,x−1]

//

��

k[x,y,z,x−1,y−1]
yk[x,y,z,x−1]+xk[x,y,z,y−1]

��
k[x,y,z,y−1]
yzk[x,y,z]

// E // k[x,y,z,x−1,y−1]
yk[x,y,z,x−1]+xk[x,y,z,y−1]

where the rows are short exact sequences (we dropped the outer zeros due to type-
setting problems). Another way to describe E is as

E = {(f, g) | f ∈ k[x, y, z, x−1, y−1], g ∈ k[x, y, z, y−1]}/ ∼
where (f, g) ∼ (f ′, g′) if and only if there exists a h ∈ k[x, y, z, y−1] such that

f = f ′ + xh mod yk[x, y, z, x−1], g = g′ − zh mod yzk[x, y, z]
We claim: (a) x : E → E is injective, (b) y : E/xE → E/xE is injective, (c)
E/(x, y)E = 0, (d) there exists a nonzero element δ ∈ E/zE such that xδ = yδ = 0.
To prove (a) suppose that (f, g) is a pair that gives rise to an element of E and
that (xf, xg) ∼ 0. Then there exists a h ∈ k[x, y, z, y−1] such that xf + xh ∈
yk[x, y, z, x−1] and xg − zh ∈ yzk[x, y, z]. We may assume that h =

∑
ai,j,kx

iyjzk

is a sum of monomials where only j ≤ 0 occurs. Then xg − zh ∈ yzk[x, y, z]
implies that only i > 0 occurs, i.e., h = xh′ for some h′ ∈ k[x, y, z, y−1]. Then
(f, g) ∼ (f +xh′, g− zh′) and we see that we may assume that g = 0 and h = 0. In

1With quasi-coherent modules as defined above. Due to how things are setup in the Stacks
project, this is really the correct definition; as seen above our definition agrees with what one
would naively have defined to be quasi-coherent modules on Spf(A), namely complete A-modules.

https://stacks.math.columbia.edu/tag/0ALG
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this case xf ∈ yk[x, y, z, x−1] implies f ∈ yk[x, y, z, x−1] and we see that (f, g) ∼ 0.
Thus x : E → E is injective.

Since multiplication by x is an isomorphism on k[x,y,z,x−1,y−1]
yk[x,y,z,x−1] we see that E/xE is

isomorphic to
k[x, y, z, y−1]

yzk[x, y, z] + xk[x, y, z, y−1] + zk[x, y, z, y−1] = k[x, y, z, y−1]
xk[x, y, z, y−1] + zk[x, y, z, y−1]

and hence multiplication by y is an isomorphism on E/xE. This clearly implies (b)
and (c).
Let e ∈ E be the equivalence class of (1, 0). Suppose that e ∈ zE. Then there exist
f ∈ k[x, y, z, x−1, y−1], g ∈ k[x, y, z, y−1], and h ∈ k[x, y, z, y−1] such that

1 + zf + xh ∈ yk[x, y, z, x−1], 0 + zg − zh ∈ yzk[x, y, z].
This is impossible: the monomial 1 cannot occur in zf , nor in xh. On the other
hand, we have ye = 0 and xe = (x, 0) ∼ (0,−z) = z(0,−1). Hence setting δ equal
to the congruence class of e in E/zE we obtain (d).

Lemma 110.14.1.0640 There exists a local ring R and a regular sequence x, y, z (in the
maximal ideal) such that there exists a nonzero element δ ∈ R/zR with xδ = yδ = 0.

Proof. Let R = k[x, y, z]⊕ E where E is the module above considered as a square
zero ideal. Then it is clear that x, y, z is a regular sequence in R, and that the
element δ ∈ E/zE ⊂ R/zR gives an element with the desired properties. To get a
local example we may localize R at the maximal ideal m = (x, y, z, E). The sequence
x, y, z remains a regular sequence (as localization is exact), and the element δ
remains nonzero as it is supported at m. □

Lemma 110.14.2.0641 There exists a local homomorphism of local rings A→ B and a
regular sequence x, y in the maximal ideal of B such that B/(x, y) is flat over A,
but such that the images x, y of x, y in B/mAB do not form a regular sequence,
nor even a Koszul-regular sequence.

Proof. Set A = k[z](z) and let B = (k[x, y, z]⊕E)(x,y,z,E). Since x, y, z is a regular
sequence in B, see proof of Lemma 110.14.1, we see that x, y is a regular sequence
in B and that B/(x, y) is a torsion free A-module, hence flat. On the other hand,
there exists a nonzero element δ ∈ B/mAB = B/zB which is annihilated by x, y.
Hence H2(K•(B/mAB, x, y)) ̸= 0. Thus x, y is not Koszul-regular, in particular it
is not a regular sequence, see More on Algebra, Lemma 15.30.2. □

110.15. A Noetherian ring of infinite dimension

02JC A Noetherian local ring has finite dimension as we saw in Algebra, Proposition
10.60.9. But there exist Noetherian rings of infinite dimension. See [Nag62b, Ap-
pendix, Example 1].
Namely, let k be a field, and consider the ring

R = k[x1, x2, x3, . . .].
Let pi = (x2i−1 , x2i−1+1, . . . , x2i−1) for i = 1, 2, . . . which are prime ideals of R. Let
S be the multiplicative subset

S =
⋂

i≥1
(R \ pi).

https://stacks.math.columbia.edu/tag/0640
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Consider the ring A = S−1R. We claim that
(1) The maximal ideals of the ring A are the ideals mi = piA.
(2) We have Ami = Rpi which is a Noetherian local ring of dimension 2i.
(3) The ring A is Noetherian.

Hence it is clear that this is the example we are looking for. Details omitted.

110.16. Local rings with nonreduced completion

02JD In Algebra, Example 10.119.5 we gave an example of a characteristic p Noetherian
local domain R of dimension 1 whose completion is nonreduced. In this section
we present the example of [FR70, Proposition 3.1] which gives a similar ring in
characteristic zero.
Let C{x} be the ring of convergent power series over the field C of complex numbers.
The ring of all power series C[[x]] is its completion. Let K = C{x}[1/x] be the
field of convergent Laurent series. The K-module ΩK/C of algebraic differentials
of K over C is an infinite dimensional K-vector space (proof omitted). We may
choose fn ∈ xC{x}, n ≥ 1 such that dx, df1,df2, . . . are part of a basis of ΩK/C.
Thus we can find a C-derivation

D : C{x} −→ C((x))
such that D(x) = 0 and D(fi) = x−n. Let

A = {f ∈ C{x} | D(f) ∈ C[[x]]}
We claim that

(1) C{x} is integral over A,
(2) A is a local domain,
(3) dim(A) = 1,
(4) the maximal ideal of A is generated by x and xf1,
(5) A is Noetherian, and
(6) the completion of A is equal to the ring of dual numbers over C[[x]].

Since the dual numbers are nonreduced the ring A gives the example.
Note that if 0 ̸= f ∈ xC{x} then we may write D(f) = h/fn for some n ≥ 0 and
h ∈ C[[x]]. Hence D(fn+1/(n + 1)) ∈ C[[x]] and D(fn+2/(n + 2)) ∈ C[[x]]. Thus
we see fn+1, fn+2 ∈ A! In particular we see (1) holds. We also conclude that the
fraction field of A is equal to the fraction field of C{x}. It also follows immediately
that A∩xC{x} is the set of nonunits of A, hence A is a local domain of dimension 1.
If we can show (4) then it will follow that A is Noetherian (proof omitted). Suppose
that f ∈ A ∩ xC{x}. Write D(f) = h, h ∈ C[[x]]. Write h = c + xh′ with c ∈ C,
h′ ∈ C[[x]]. Then D(f−cxf1) = c+xh′−c = xh′. On the other hand f−cxf1 = xg
with g ∈ C{x}, but by the computation above we have D(g) = h′ ∈ C[[x]] and
hence g ∈ A. Thus f = cxf1 + xg ∈ (x, xf1) as desired.
Finally, why is the completion of A nonreduced? Denote Â the completion of A.
Of course this maps surjectively to the completion C[[x]] of C{x} because x ∈ A.
Denote this map ψ : Â → C[[x]]. Above we saw that mA = (x, xf1) and hence
D(mnA) ⊂ (xn−1) by an easy computation. Thus D : A→ C[[x]] is continuous and
gives rise to a continuous derivation D̂ : Â → C[[x]] over ψ. Hence we get a ring
map

ψ + ϵD̂ : Â −→ C[[x]][ϵ].
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Since Â is a one dimensional Noetherian complete local ring, if we can show this
arrow is surjective then it will follow that Â is nonreduced. Actually the map is an
isomorphism but we omit the verification of this. The subring C[x](x) ⊂ A gives
rise to a map i : C[[x]] → Â on completions such that i ◦ ψ = id and such that
D ◦ i = 0 (as D(x) = 0 by construction). Consider the elements xnfn ∈ A. We
have

(ψ + ϵD)(xnfn) = xnfn + ϵ

for all n ≥ 1. Surjectivity easily follows from these remarks.

110.17. Another local ring with nonreduced completion

0GHH In this section we make an example of a Noetherian local domain of dimension 2
complete with respect to a principal ideal such that the recompletion of a localiza-
tion is nonreduced.
Let p be a prime number. Let k be a field of characteristic p such that k has
infinite degree over its subfield kp of pth powers. For example k = Fp(t1, t2, t3, . . .).
Consider the ring

A =
{∑

ai,jx
iyj ∈ k[[x, y]] such that for all n ≥ 0 we have

[kp(an,n, an,n+1, an+1,n, an,n+2, an+2,n, . . .) : kp] <∞

}
As a set we have

kp[[x, y]] ⊂ A ⊂ k[[x, y]]
Every element f of A can be uniquely written as a series

f = f0 + f1xy + f2(xy)2 + f3(xy)3 + . . .

with
fn = an,n + an,n+1y + an+1,nx+ an,n+2y

2 + an+2,nx
2 + . . .

and the condition in the formula defining A means that the coefficients of fn gen-
erate a finite extension of kp. From this presentation it is clear that A is an
kp[[x, y]]-subalgebra of k[[x, y]] complete with respect to the ideal xy. Moreover,
we clearly have

A/xyA = C ×k D
where kp[[x]] ⊂ C ⊂ k[[x]] and kp[[y]] ⊂ D ⊂ k[[y]] are the subrings of power series
from Algebra, Example 10.119.5. Hence C and D are dvrs and we see that A/xyA
is Noetherian. By Algebra, Lemma 10.97.5 we conclude that A is Noetherian. Since
dim(k[[x, y]]) = 2 using Algebra, Lemma 10.112.4 we conclude that dim(A) = 2.
Let f =

∑
aix

i be a power series such that kp(a0, a1, a2, . . .) has infinite degree
over kp. Then f ̸∈ A but fp ∈ A. We set

B = A[f ] ⊂ k[[x, y]]
Since B is finite over A we see that B is Noetherian. Also, B is complete with
respect to the ideal generated by xy, see Algebra, Lemma 10.97.1. In fact B is free
over A with basis 1, f, f2, . . . , fp−1; we omit the proof.
We claim the ring

(By)∧ = (B[1/y])∧ = limB[1/y]/(xy)nB[1/y] = limB[1/y]/xnB[1/y]
is nonreduced. Namely, this ring is free over

(Ay)∧ = (A[1/y])∧ = limA[1/y]/(xy)nA[1/y] = limA[1/y]/xnA[1/y]
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with basis 1, f, . . . , fp−1. However, there is an element g ∈ (Ay)∧ such that fp = gp.
Namely, we can just take g =

∑
aix

i (the same expression as we used for f) which
makes sense in (Ay)∧. Hence we see that

(By)∧ = (Ay)∧[f ]/(fp − gp) ∼= (Ay)∧[τ ]/(τp)
is nonreduced. In fact, this example shows slightly more. Namely, observe that
(Ay)∧ is a dvr with uniformizer x and residue field the fraction field of the dvr D
given above. Hence we see that even

(By)∧[1/(xy)] = ((By)∧)xy
is nonreduced. This produces an example of the following kind.

Lemma 110.17.1.0GHI There exists a local Noetherian 2-dimensional domain (B,m)
complete with respect to a principal ideal I = (b) and an element f ∈ m, f ̸∈ I
such that the I-adic completion C = (Bf )∧ of the principal localization Bf is
nonreduced and even such that Cb = C[1/b] = (Bf )∧[1/b] is nonreduced.

Proof. See discussion above. □

110.18. A non catenary Noetherian local ring

02JE Even though there is a succesful dimension theory of Noetherian local rings there
are non-catenary Noetherian local rings. An example may be found in [Nag62b,
Appendix, Example 2]. In fact, we will present this example in the simplest case.
Namely, we will construct a local Noetherian domain A of dimension 2 which is not
universally catenary. (Note that A is automatically catenary, see Exercises, Exercise
111.18.3.) The existence of a Noetherian local ring which is not universally catenary
implies the existence of a Noetherian local ring which is not catenary – and we spell
this out at the end of this section in the particular example at hand.
Let k be a field, and consider the formal power series ring k[[x]] in one variable over
k. Let

z =
∑∞

i=1
aix

i

be a formal power series. We assume z as an element of the Laurent series field
k((x)) = k[[x]][1/x] is transcendental over k(x). Put

zj = x−j(z −
∑

i=1,...,j−1
aix

i) =
∑∞

i=j
aix

i−j ∈ k[[x]].

Note that z = xz1. Let R be the subring of k[[x]] generated by x, z and all of the
zj , in other words

R = k[x, z1, z2, z3, . . .] ⊂ k[[x]].
Consider the ideals m = (x) and n = (x− 1, z1, z2, . . .) of R.
We have xzj+1 + aj = zj . Hence R/m = k and m is a maximal ideal. Moreover,
any element of R not in m maps to a unit in k[[x]] and hence Rm ⊂ k[[x]]. In fact
it is easy to deduce that Rm is a discrete valuation ring and residue field k.
We claim that

R/(x− 1) = k[x, z1, z2, z3, . . .]/(x− 1) ∼= k[z].
Namely, the relation above implies that zj+1 = zj − aj − (x− 1)zj+1, and hence we
may express the class of zj+1 in terms of zj in the quotient R/(x − 1). Since the
fraction field of R has transcendence degree 2 over k by construction we see that

https://stacks.math.columbia.edu/tag/0GHI
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z is transcendental over k in R/(x − 1), whence the desired isomorphism. Hence
n = (x− 1, z) and is a maximal ideal. In fact the map

k[x, x−1, z](x−1,z) −→ Rn

is an isomorphism (since x−1 is invertible in Rn and since zj+1 = x−1zj − aj =
. . . = fj(x, x−1, z)). This shows that Rn is a regular local ring of dimension 2 and
residue field k.

Let S be the multiplicative subset

S = (R \m) ∩ (R \ n) = R \ (m ∪ n)

and set B = S−1R. We claim that
(1) The ring B is a k-algebra.
(2) The maximal ideals of the ring B are the two ideals mB and nB.
(3) The residue field at these maximal ideals is k.
(4) We have BmB = Rm and BnB = Rn which are Noetherian regular local

rings of dimensions 1 and 2.
(5) The ring B is Noetherian.

We omit the details of the verifications.

Whenever given a k-algebra B with the properties listed above we get an example
as follows. Take A = k + rad(B) ⊂ B with rad(B) = mB ∩ nB the Jacobson
radical. It is easy to see that B is finite over A and hence A is Noetherian by
Eakin’s theorem (see [Eak68], or [Nag62b, Appendix A1], or insert future reference
here). Also A is a local domain with the same fraction field as B and residue field
k. Since the dimension of B is 2 we see that A has dimension 2 as well, by Algebra,
Lemma 10.112.4.

IfA were universally catenary then the dimension formula, Algebra, Lemma 10.113.1
would give dim(BmB) = 2 contradiction.

Note that B is generated by one element over A. Hence B = A[x]/p for some prime
p of A[x]. Let m′ ⊂ A[x] be the maximal ideal corresponding to mB. Then on the
one hand dim(A[x]m′) = 3 and on the other hand

(0) ⊂ pA[x]m′ ⊂ m′A[x]m′

is a maximal chain of primes. Hence A[x]m′ is an example of a non catenary
Noetherian local ring.

110.19. Existence of bad local Noetherian rings

0AL7 Let (A,m, κ) be a Noetherian complete local ring. In [Lec86a] it was shown that
A is the completion of a Noetherian local domain if depth(A) ≥ 1 and A contains
either Q or Fp as a subring, or contains Z as a subring and A is torsion free as a Z-
module. This produces many examples of Noetherian local domains with “bizarre”
properties.

Applying this for example to A = C[[x, y]]/(y2) we find a Noetherian local domain
whose completion is nonreduced. Please compare with Section 110.16.

In [LLPY01] conditions were found that characterize when A is the completion of
a reduced local Noetherian ring.
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In [Hei93] it was shown that A is the completion of a local Noetherian UFD R if
depth(A) ≥ 2 and A contains either Q or Fp as a subring, or contains Z as a subring
and A is torsion free as a Z-module. In particular R is normal (Algebra, Lemma
10.120.11) hence the henselization of R is a normal domain too (More on Algebra,
Lemma 15.45.6). Thus A as above is the completion of a henselian Noetherian local
normal domain (because the completion of R and its henselization agree, see More
on Algebra, Lemma 15.45.3).
Apply this to find a Noetherian local UFDR such thatR∧ ∼= C[[x, y, z, w]]/(wx,wy).
Note that Spec(R∧) is the union of a regular 2-dimensional and a regular 3-
dimensional component. The ring R cannot be universally catenary: Let

X −→ Spec(R)
be the blowing up of the maximal ideal. Then X is an integral scheme. There is a
closed point x ∈ X such that dim(OX,x) = 2, namely, on the level of the complete
local ring we pick x to lie on the strict transform of the 2-dimensional component
and not on the strict transform of the 3-dimensional component. By Morphisms,
Lemma 29.52.1 we see that R is not universally catenary. Please compare with
Section 110.18.
The ring above is catenary (being a 3-dimensional local Noetherian UFD). However,
in [Ogo80] the author constructs a normal local Noetherian domain R with R∧ ∼=
C[[x, y, z, w]]/(wx,wy) such that R is not catenary. See also [Hei82] and [Lec86b].
In [Hei94] it was shown that A is the completion of a local Noetherian ring R with
an isolated singularity provided A contains either Q or Fp as a subring or A has
residue characteristic p > 0 and p cannot map to a nonzero zerodivisor in any
proper localization of A. Here we say a Noetherian local ring R has an isolated
singularity if Rp is a regular local ring for all nonmaximal primes p ⊂ R.
The papers [Nis12] and [Nis16] contain long lists of “bad” Noetherian local rings
with given completions. In particular it constructs an example of a 2-dimensional
Nagata local normal domain whose completion is C[[x, y, z]]/(yz) and one whose
completion is C[[x, y, z]]/(y2 − z3).
As an aside, in [Loe03] it was shown that A is the completion of an excellent
Noetherian local domain if A is reduced, equidimensional, and no integer in A is
a zero divisor. However, this doesn’t lead to “bad” Noetherian local rings as we
obtain excellent ones!

110.20. Dimension in Noetherian Jacobson rings

0EEH Let k be the algebraic closure of a finite field. Let A = k[x, y] and X = Spec(A).
Let C = V (x) be the y-axis (this could be any other 1-dimensional integral closed
subscheme of X). Let C1, C2, C3, . . . be an enumeration of the other integral closed
subschemes of X of dimension 1. Let p1, p2, p3, . . . be an enumeration of the closed
points of C.
Claim: for every n there exists an irreducible closed Zn ⊂ X of dimension 1 such
that

{pn} = Zn ∩ (C ∪ C1 ∪ . . . ∪ Cn)
set theoretically. To do this set Y = C ∪ C1 ∪ C2 ∪ . . . ∪ Cn. This is a reduced
affine algebraic scheme of dimension 1 over k. It is enough to find f ∈ k[x, y] with
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V (f) ∩ Y = {pn} set theoretically because then we can take Zn to be a suitable
irreducible component of V (f). Since the restriction map

k[x, y] −→ Γ(Y,OY )
is surjective, it suffices to find a regular function g on Y whose zero set is {pn} set
theoretically. To see this is possible, we choose an effective Cartier divisor D ⊂ Y
whose support is pn (this is possible by Varieties, Lemma 33.38.3). Thus it suffices
to show that OX(ND) ∼= OX for some N > 0. But the Picard group of an affine
1-dimensional algebraic scheme over the algebraic closure of a finite field is torsion
(insert future reference here) and we conclude the claim is true.
Choose Zn as above for all n. Since k[x, y] is a UFD we may write Zn = V (fn)
for some irreducible element fn ∈ A. Let S ⊂ k[x, y] be the multiplicative subset
generated by f1, f2, f3, . . .. Consider the Noetherian ring B = S−1A.
Obviously, the ring map A → B identifies local rings and induces an injection
Spec(B)→ Spec(A). Moreover, looking at the curve C1 we see that only the points
of C∩C1 are removed when passing from Spec(A) to Spec(B). In particular, we see
that Spec(B) has an infinite number of maximal ideals corresponding to maximal
ideals of A. On the other hand, xB is a maximal ideal because the spectrum
of B/xB consists of a unique prime ideal as we removed all the closed points of
C = V (x) (but not the generic point). Finally, for i ≥ 1 consider the curve Ci.
Write Ci = V (gi) for gi ∈ A irreducible. If Ci = Zn for some n, then giB is the
unit ideal. If not, then all but finitely many of the closed points of Ci survive the
passage from A to B: namely, only the points of (Z1 ∪ . . . ∪ Zi−1 ∪ C) ∩ Ci are
removed from Ci.
The structure of the prime spectrum of B given above shows that B is Jacobson by
Algebra, Lemma 10.61.4. The maximal ideals are the maximal ideals of A which
are in Spec(B) (and there an inifinitude of these) together with the maximal ideal
xB. Thus we see that we have local rings of dimensions 1 and 2.

Lemma 110.20.1.0EEI There exists a Jacobson, universally catenary, Noetherian domain
B with maximal ideals m1,m2 such that dim(Bm1) = 1 and dim(Bm2) = 2.

Proof. The construction of B is given above. We just point out that B is universally
catenary by Algebra, Lemma 10.105.4 and Morphisms, Lemma 29.17.5. □

110.21. Underlying space Noetherian not Noetherian

0G61 We give two examples to show that a scheme whose underlying topological space
is Noetherian may not be a Noetherian scheme.

Example 110.21.1.0G62 Let k be a field, and let A = k[x1, x2, x3, . . . ]/(x2
1, x

2
2, x

2
3, . . . ).

Any prime ideal of A contains the nilpotents x1, x2, x3, . . . , so p = (x1, x2, x3, . . . )
is the only prime ideal of A. Therefore the underlying topological space of SpecA
is a single point and in particular is Noetherian. However p is clearly not finitely
generated.

Example 110.21.2.0G63 Let k be a field, and let A ⊆ k[x, y] be the subring generated
by k and the monomials {xyi}i≥0. The prime ideals of A that do not contain x
are in one-to-one correspondence with the prime ideals of Ax ∼= k[x, x−1, y]. If p
is a prime ideal that does contain x, then it contains every xyi, i ≥ 0, because

https://stacks.math.columbia.edu/tag/0EEI
https://stacks.math.columbia.edu/tag/0G62
https://stacks.math.columbia.edu/tag/0G63
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(xyi)2 = x(xy2i) ∈ p and p is radical. Consequently p = ({xyi}i≥0). Therefore the
underlying topological space of SpecA is Noetherian, since it consists of the points
of the Noetherian scheme Spec(A[x, x−1, y]) and the prime ideal p. But the ring A
is non-Noetherian because p is not finitely generated. Note that in this example, A
also has the property of being a domain.

110.22. Non-quasi-affine variety with quasi-affine normalization

0271 The existence of an example of this kind is mentioned in [DG67, II Remark 6.6.13].
They refer to the fifth volume of EGA for such an example, but the fifth volume
did not appear.
Let k be a field. Let Y = A2

k \{(0, 0)}. We are going to construct a finite surjective
birational morphism π : Y −→ X with X a variety over k such that X is not
quasi-affine. Namely, consider the following curves in Y :

C1 : x = 0
C2 : y = 0

Note that C1∩C2 = ∅. We choose the isomorphism φ : C1 → C2, (0, y) 7→ (y−1, 0).
We claim there is a unique morphism π : Y → X as above such that

C1
id //

φ
// Y

π // X

is a coequalizer diagram in the category of varieties (and even in the category of
schemes). Accepting this for the moment let us show that such an X cannot be
quasi-affine. Namely, it is clear that we would get

Γ(X,OX) = {f ∈ k[x, y] | f(0, y) = f(y−1, 0)} = k ⊕ (xy) ⊂ k[x, y].
In particular these functions do not separate the points (1, 0) and (−1, 0) whose
images in X (we will see below) are distinct (if the characteristic of k is not 2).
To show that X exists consider the Zariski open D(x + y) ⊂ Y of Y . This is
the spectrum of the ring k[x, y, 1/(x + y)] and the curves C1, C2 are completely
contained in D(x+ y). Moreover the morphism

C1 ⨿ C2 −→ D(x+ y) ∩ Y = Spec(k[x, y, 1/(x+ y)])
is a closed immersion. It follows from More on Algebra, Lemma 15.5.1 that the
ring

A = {f ∈ k[x, y, 1/(x+ y)] | f(0, y) = f(y−1, 0)}
is of finite type over k. On the other hand we have the open D(xy) ⊂ Y of Y which
is disjoint from the curves C1 and C2. It is the spectrum of the ring

B = k[x, y, 1/xy].
Note that we have Axy ∼= Bx+y (since A clearly contains the elements xyP (x, y) any
polynomial P and the element xy/(x+ y)). The scheme X is obtained by glueing
the affine schemes Spec(A) and Spec(B) using the isomorphism Axy ∼= Bx+y and
hence is clearly of finite type over k. To see that it is separated one has to show
that the ring map A ⊗k B → Bx+y is surjective. To see this use that A ⊗k B
contains the element xy/(x + y) ⊗ 1/xy which maps to 1/(x + y). The morphism
Y → X is given by the natural maps D(x+ y)→ Spec(A) and D(xy)→ Spec(B).
Since these are both finite we deduce that Y → X is finite as desired. We omit
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the verification that X is indeed the coequalizer of the displayed diagram above,
however, see (insert future reference for pushouts in the category of schemes here).
Note that the morphism π : Y → X does map the points (1, 0) and (−1, 0) to
distinct points in X because the function (x+y3)/(x+y)2 ∈ A has value 1/1, resp.
−1/(−1)2 = −1 which are always distinct (unless the characteristic is 2 – please
find your own points for characteristic 2). We summarize this discussion in the
form of a lemma.

Lemma 110.22.1.0272 Let k be a field. There exists a variety X whose normalization
is quasi-affine but which is itself not quasi-affine.

Proof. See discussion above and (insert future reference on normalization here). □

110.23. Taking scheme theoretic images

0GIK Let k be a field. Let t be a variable. Let Y = Spec(k[t]) andX =
∐
n≥1 Spec(k[t]/(tn)).

Denote f : X → Y the morphism using the closed immersion Spec(k[t]/(tn)) →
Spec(k[t]) for each n ≥ 1. In this case we have

(1) The scheme theoretic image (Morphisms, Definition 29.6.2) of f is Y . On
the other hand, the image of f is the closed point t = 0 in Y . Thus the
underlying closed subset of the scheme theoretic image of f is not equal
to the closure of the image of f .

(2) The formation of the scheme theoretic image does not commute with
restriction to the open subscheme V = Spec(k[t, 1/t]) ⊂ Y . Namely, the
preimage of V in X is empty and hence the scheme theoretic image of
f |f−1(V ) : f−1(V )→ V is the empty scheme. This is not equal to Y ∩ V .

110.24. Images of locally closed subsets

0GZL Chevalley’s theorem says that the image of a constructible set by a finitely presented
morphism of affine schemes is constructible, see Algebra, Theorem 10.29.10 and
Morphisms, Section 29.22. We will see the same thing does not hold for images of
locally closed subsets.
Let k be a field of characteristic 0. Consider the projection morphism
f : X = Spec(k[t, x1, x2, . . . , y1, y2, . . .]) −→ Spec(k[x1, x2, . . . , y1, y2, . . .]) = Y

This is a morphism of finite presentation. Let Z be the closed subset of X defined
by

x1(t− 1) = 0, x2(t− 1)(t− 2) = 0, x3(t− 1)(t− 2)(t− 3) = 0, . . .

Let U =
⋃
j≥1 Uj be the open of X defined by

Uj = points where yj(t− 1)(t− 2)...(t− j) is nonzero
Then we have

f(Z ∩ Uj) = points where x1, . . . , xj are zero and yj is nonzero
We claim that B = f(Z∩U) =

⋃
j≥1 f(Z∩Uj) is not a finite union of locally closed

subsets of Y .
Proof of the claim. Suppose that B = A1∪ · · ·∪Am is a finite cover of B by locally
closed subsets of Y . We will show by induction on n that m ≥ n. The base case
n = 1 is OK as B is nonempty. Assume n > 1 and that the induction hypothesis

https://stacks.math.columbia.edu/tag/0272
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holds for n − 1. Since the closure of B is (x1 = 0), one of the Ai must contain
some nonempty open subset of (x1 = 0). Then Ai must be open in (x1 = 0).
But any such open subset cannot contain a point with y1 = 0; indeed, for points
of B, y1 = 0 forces x2 = 0, and this shows B contains no neighborhood of (x, y)
inside (x1 = 0). Therefore, the remaining m−1 elements restrict to a constructible
cover of B ∩ (y1 = 0). However, observe that the right shift map xi 7→ xi+1,
yi 7→ yi+1 identifies B with B ∩ (y1 = 0)! Thus by induction hypothesis, we see
that m− 1 ≥ n− 1 and we conclde m ≥ n. This finishes the proof of the induction
step and thereby establishes the claim.

Lemma 110.24.1.0GZM There exists a morphism f : X → Y of finite presentation
between affine schemes and a locally closed subset T of X such that f(T ) is not a
finite union of locally closed subsets of Y .

Proof. See discussion above. □

110.25. A locally closed subscheme which is not open in closed

078B This is a copy of Morphisms, Example 29.3.4. Here is an example of an immersion
which is not a composition of an open immersion followed by a closed immersion.
Let k be a field. Let X = Spec(k[x1, x2, x3, . . .]). Let U =

⋃∞
n=1 D(xn). Then

U → X is an open immersion. Consider the ideals
In = (xn1 , xn2 , . . . , xnn−1, xn − 1, xn+1, xn+2, . . .) ⊂ k[x1, x2, x3, . . .][1/xn].

Note that Ink[x1, x2, x3, . . .][1/xnxm] = (1) for any m ̸= n. Hence the quasi-
coherent ideals Ĩn on D(xn) agree on D(xnxm), namely Ĩn|D(xnxm) = OD(xnxm) if
n ̸= m. Hence these ideals glue to a quasi-coherent sheaf of ideals I ⊂ OU . Let
Z ⊂ U be the closed subscheme corresponding to I. Thus Z → X is an immersion.
We claim that we cannot factor Z → X as Z → Z → X, where Z → X is closed and
Z → Z is open. Namely, Z would have to be defined by an ideal I ⊂ k[x1, x2, x3, . . .]
such that In = Ik[x1, x2, x3, . . .][1/xn]. But the only element f ∈ k[x1, x2, x3, . . .]
which ends up in all In is 0! Hence I does not exist.
The morphism Z → X also gives an example of bad behaviour of scheme theoretic
images of immersions. Namely, the arguments above show that the scheme theoretic
image of the immersion Z → X is X. On the other hand, we see

(1) Z is not topologically dense in X, and
(2) the scheme theoretic image of Z = Z ∩U → U is just Z. This is not equal

to U ∩X = U and hence formation of the scheme theoretic image in this
case does not commute with restrictions to opens.

110.26. Nonexistence of suitable opens

086G This section complements the results of Properties, Section 28.29.
Let k be a field and let A = k[z1, z2, z3, . . .]/I where I is the ideal generated by
all pairwise products zizj , i ̸= j, i, j ∈ N. Set S = Spec(A). Let s ∈ S be the
closed point corresponding to the maximal ideal (zi). We claim there is no quasi-
compact open V ⊂ S \ {s} which is dense in S \ {s}. Note that S \ {s} =

⋃
D(zi).

Each D(zi) is open and irreducible with generic point ηi. We conclude that ηi ∈ V
for all i. However, a principal affine open of S \ {s} is of the form D(f) where

https://stacks.math.columbia.edu/tag/0GZM
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f ∈ (z1, z2, . . .). Then f ∈ (z1, . . . , zn) for some n and we see that D(f) contains
only finitely many of the points ηi. Thus V cannot be quasi-compact.
Let k be a field and let B = k[x, z1, z2, z3, . . .]/J where J is the ideal generated
by the products xzi, i ∈ N and by all pairwise products zizj , i ̸= j, i, j ∈ N.
Set T = Spec(B). Consider the principal open U = D(x). We claim there is no
quasi-compact open V ⊂ S such that V ∩U = ∅ and V ∪U is dense in S. Let t ∈ T
be the closed point corresponding to the maximal ideal (x, zi). The closure of U in
T is U = U ∪{t}. Hence V ⊂

⋃
iD(zi) is a quasi-compact open. By the arguments

of the previous paragraph we see that V cannot be dense in
⋃
D(zi).

Lemma 110.26.1.086H Nonexistence quasi-compact opens of affines:
(1) There exist an affine scheme S and affine open U ⊂ S such that there is

no quasi-compact open V ⊂ S with U ∩ V = ∅ and U ∪ V dense in S.
(2) There exists an affine scheme S and a closed point s ∈ S such that S \{s}

does not contain a quasi-compact dense open.
Proof. See discussion above. □

Let X be the glueing of two copies of the affine scheme T (see above) along the
affine open U . Thus there is a morphism π : X → T and X = U1 ∪ U2 such
that π maps Ui isomorphically to T and U1 ∩ U2 isomorphically to U . Note that
X is quasi-separated (by Schemes, Lemma 26.21.6) and quasi-compact. We claim
there does not exist a separated, dense, quasi-compact open W ⊂ X. Namely,
consider the two closed points x1 ∈ U1, x2 ∈ U2 mapping to the closed point t ∈ T
introduced above. Let η̃ ∈ U1 ∩ U2 be the generic point mapping to the (unique)
generic point η of U . Note that η̃ ⇝ x1 and η̃ ⇝ x2 lying over the specialization
η ⇝ s. Since π|W : W → T is separated we conclude that we cannot have both x1
and x2 ∈W (by the valuative criterion of separatedness Schemes, Lemma 26.22.2).
Say x1 ̸∈W . Then W ∩U1 is a quasi-compact (as X is quasi-separated) dense open
of U1 which does not contain x1. Now observe that there exists an isomorphism
(T, t) ∼= (S, s) of schemes (by sending x to z1 and zi to zi+1). Hence by the first
paragraph of this section we arrive at a contradiction.
Lemma 110.26.2.086I There exists a quasi-compact and quasi-separated scheme X
which does not contain a separated quasi-compact dense open.
Proof. See discussion above. □

110.27. Nonexistence of quasi-compact dense open subscheme

087H Let X be a quasi-compact and quasi-separated algebraic space over a field k. We
know that the schematic locus X ′ ⊂ X is a dense open subspace, see Properties
of Spaces, Proposition 66.13.3. In fact, this result holds when X is reasonable, see
Decent Spaces, Proposition 68.10.1. A natural question is whether one can find
a quasi-compact dense open subscheme of X. It turns out this is not possible in
general.
Assume the characteristic of k is not 2. Let B = k[x, z1, z2, z3, . . .]/J where J is
the ideal generated by the products xzi, i ∈ N and by all pairwise products zizj ,
i ̸= j, i, j ∈ N. Set U = Spec(B). Denote 0 ∈ U the closed point all of whose
coordinates are zero. Set

j : R = ∆⨿ Γ −→ U ×k U

https://stacks.math.columbia.edu/tag/086H
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where ∆ is the image of the diagonal morphism of U over k and

Γ = {((x, 0, 0, 0, . . .), (−x, 0, 0, 0, . . .)) | x ∈ A1
k, x ̸= 0}.

It is clear that s, t : R → U are étale, and hence j is an étale equivalence relation.
The quotient X = U/R is an algebraic space (Spaces, Theorem 65.10.5). Note that
j is not an immersion because (0, 0) ∈ ∆ is in the closure of Γ. Hence X is not a
scheme. On the other hand, X is quasi-separated as R is quasi-compact. Denote
0X the image of the point 0 ∈ U . We claim that X \ {0X} is a scheme, namely

X \ {0X} = Spec
(
k[x2, x−2]

)
⨿ Spec (k[z1, z2, z3, . . .]/(zizj)) \ {0}

(details omitted). On the other hand, we have seen in Section 110.26 that the
scheme on the right hand side does not contain a quasi-compact dense open.

Lemma 110.27.1.087I There exists a quasi-compact and quasi-separated algebraic space
which does not contain a quasi-compact dense open subscheme.

Proof. See discussion above. □

Using the construction of Spaces, Example 65.14.2 in the same manner as we used
the construction of Spaces, Example 65.14.1 above, one obtains an example of a
quasi-compact, quasi-separated, and locally separated algebraic space which does
not contain a quasi-compact dense open subscheme.

110.28. Affines over algebraic spaces

088V Suppose that f : Y → X is a morphism of schemes with f locally of finite type and
Y affine. Then there exists an immersion Y → An

X of Y into affine n-space over
X. See the slightly more general Morphisms, Lemma 29.39.2.

Now suppose that f : Y → X is a morphism of algebraic spaces with f locally of
finite type and Y an affine scheme. Then it is not true in general that we can find
an immersion of Y into affine n-space over X.

A first (nasty) counter example is Y = Spec(k) and X = [A1
k/Z] where k is a field

of characteristic zero and Z acts on A1
k by translation (n, t) 7→ t + n. Namely, for

any morphism Y → An
X over X we can pullback to the covering A1

k of X and we
get an infinite disjoint union of A1

k’s mapping into An+1
k which is not an immersion.

A second counter example is Y = A1
k → X = A1

k/R with R = {(t, t)}⨿{(t,−t), t ̸=
0}. Namely, in this case the morphism Y → An

X would be given by some regu-
lar functions f1, . . . , fn on Y and hence the fibre product of Y with the covering
An+1
k → An

X would be the scheme

{(f1(t), . . . , fn(t), t)} ⨿ {(f1(t), . . . , fn(t),−t), t ̸= 0}

with obvious morphism to An+1
k which is not an immersion. Note that this gives a

counter example with X quasi-separated.

Lemma 110.28.1.088W There exists a finite type morphism of algebraic spaces Y → X
with Y affine and X quasi-separated, such that there does not exist an immersion
Y → An

X over X.

Proof. See discussion above. □
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110.29. Pushforward of quasi-coherent modules

078C In Schemes, Lemma 26.24.1 we proved that f∗ transforms quasi-coherent modules
into quasi-coherent modules when f is quasi-compact and quasi-separated. Here
are some examples to show that these conditions are both necessary.

Suppose that Y = Spec(A) is an affine scheme and that X =
∐
n∈N Y . We claim

that f∗OX is not quasi-coherent where f : X → Y is the obvious morphism.
Namely, for a ∈ A we have

f∗OX(D(a)) =
∏

n∈N
Aa

Hence, in order for f∗OX to be quasi-coherent we would need∏
n∈N

Aa =
(∏

n∈N
A
)
a

for all a ∈ A. This isn’t true in general, for example if A = Z and a = 2, then
(1, 1/2, 1/4, 1/8, . . .) is an element of the left hand side which is not in the right
hand side. Note that f is a non-quasi-compact separated morphism.

Let k be a field. Set

A = k[t, z, x1, x2, x3, . . .]/(tx1z, t
2x2

2z, t
3x3

3z, . . .)

Let Y = Spec(A). Let V ⊂ Y be the open subscheme V = D(x1) ∪ D(x2) ∪ . . ..
Let X be two copies of Y glued along V . Let f : X → Y be the obvious morphism.
Then we have an exact sequence

0→ f∗OX → OY ⊕OY
(1,−1)−−−−→ j∗OV

where j : V → Y is the inclusion morphism. Since

A −→
∏

Axn

is injective (details omitted) we see that Γ(Y, f∗OX) = A. On the other hand, the
kernel of the map

At −→
∏

Atxn

is nonzero because it contains the element z. Hence Γ(D(t), f∗OX) is strictly bigger
than At because it contains (z, 0). Thus we see that f∗OX is not quasi-coherent.
Note that f is quasi-compact but non-quasi-separated.

Lemma 110.29.1.078D Schemes, Lemma 26.24.1 is sharp in the sense that one can
neither drop the assumption of quasi-compactness nor the assumption of quasi-
separatedness.

Proof. See discussion above. □

110.30. A nonfinite module with finite free rank 1 stalks

065J Let R = Q[x]. Set M =
∑
n∈N

1
x−nR as a submodule of the fraction field of R.

Then M is not finitely generated, but for every prime p of R we have Mp
∼= Rp as

an Rp-module.

An example of a similar flavor is R = Z and M =
∑
p prime

1
pZ ⊂ Q, which equals

the set of fractions a
b with b nonzero and squarefree.
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110.31. A noninvertible ideal invertible in stalks

0CBZ Let A be a domain and let I ⊂ A be a nonzero ideal. Recall that when we say I is
invertible, we mean that I is invertible as an A-module. We are going to make an
example of this situation where I is not invertible, yet Iq = (f) ⊂ Aq is a (nonzero)
principal ideal for every prime ideal q ⊂ A. In the literature the property that Iq is
principal for all primes q is sometimes expressed by saying “I is a locally principal
ideal”. We can’t use this terminology as our “local” always means “local in the
Zariski topology” (or whatever topology we are currently working with).
Let R = Q[x] and let M =

∑ 1
x−nR be the module constructed in Section 110.30.

Consider the ring2

A = Sym∗
R(M)

and the ideal I = MA =
⊕

d≥1 Symd
R(M). Since M is not finitely generated as

an R-module we see that I cannot be generated by finitely many elements as an
ideal in A. Since an invertible module is finitely generated, this means that I is
not invertible. On the other hand, let p ⊂ R be a prime ideal. By construction
Mp
∼= Rp. Hence

Ap = Sym∗
Rp

(Mp) ∼= Sym∗
Rp

(Rp) = Rp[T ]
as a graded Rp-algebra. It follows that Ip ⊂ Ap is generated by the nonzerodivisor
T . Thus certainly for any prime ideal q ⊂ A we see that Iq is generated by a single
element.

Lemma 110.31.1.0CC0 There exists a domain A and a nonzero ideal I ⊂ A such that
Iq ⊂ Aq is a principal ideal for all primes q ⊂ A but I is not an invertible A-module.

Proof. See discussion above. □

110.32. A finite flat module which is not projective

052H This is a copy of Algebra, Remark 10.78.4. It is not true that a finite R-module
which is R-flat is automatically projective. A counter example is where R = C∞(R)
is the ring of infinitely differentiable functions on R, and M = Rm = R/I where
m = {f ∈ R | f(0) = 0} and I = {f ∈ R | ∃ϵ, ϵ > 0 : f(x) = 0 ∀x, |x| < ϵ}.
The morphism Spec(R/I)→ Spec(R) is also an example of a flat closed immersion
which is not open.

Lemma 110.32.1.05FY Strange flat modules.
(1) There exists a ring R and a finite flat R-module M which is not projective.
(2) There exists a closed immersion which is flat but not open.

Proof. See discussion above. □

110.33. A projective module which is not locally free

05WG We give two examples. One where the rank is between 0 and 1 and one where the
rank is ℵ0.

Lemma 110.33.1.05WH Let R be a ring. Let I ⊂ R be an ideal generated by a countable
collection of idempotents. Then I is projective as an R-module.

2The ring A is an example of a non-Noetherian domain whose local rings are Noetherian.
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Proof. Say I = (e1, e2, e3, . . .) with en an idempotent of R. After inductively
replacing en+1 by en + (1 − en)en+1 we may assume that (e1) ⊂ (e2) ⊂ (e3) ⊂ . . .
and hence I =

⋃
n≥1(en) = colimn enR. In this case

HomR(I,M) = HomR(colimn enR,M) = limn HomR(enR,M) = limn enM

Note that the transition maps en+1M → enM are given by multiplication by en
and are surjective. Hence by Algebra, Lemma 10.86.4 the functor HomR(I,M) is
exact, i.e., I is a projective R-module. □

Suppose that P ⊂ Q is an inclusion of R-modules with Q a finite R-module and P
locally free, see Algebra, Definition 10.78.1. Suppose that Q can be generated by
N elements as an R-module. Then it follows from Algebra, Lemma 10.15.7 that P
is finite locally free (with the free parts having rank at most N). And in this case
P is a finite R-module, see Algebra, Lemma 10.78.2.
Combining this with the above we see that a non-finitely-generated ideal which is
generated by a countable collection of idempotents is projective but not locally free.
An explicit example is R =

∏
n∈N F2 and I the ideal generated by the idempotents
en = (1, 1, . . . , 1, 0, . . .)

where the sequence of 1’s has length n.

Lemma 110.33.2.05WJ There exists a ring R and an ideal I such that I is projective as
an R-module but not locally free as an R-module.

Proof. See above. □

Lemma 110.33.3.05WK Let K be a field. Let Ci, i = 1, . . . , n be smooth, projective,
geometrically irreducible curves over K. Let Pi ∈ Ci(K) be a rational point and
let Qi ∈ Ci be a point such that [κ(Qi) : K] = 2. Then [P1 × . . . × Pn] is nonzero
in CH0(U1 ×K . . .×K Un) where Ui = Ci \ {Qi}.

Proof. There is a degree map deg : CH0(C1 ×K . . . ×K Cn) → Z Because each Qi
has degree 2 over K we see that any zero cycle supported on the “boundary”

C1 ×K . . .×K Cn \ U1 ×K . . .×K Un

has degree divisible by 2. □

We can construct another example of a projective but not locally free module
using the lemma above as follows. Let Cn, n = 1, 2, 3, . . . be smooth, projective,
geometrically irreducible curves over Q each with a pair of points Pn, Qn ∈ Cn such
that κ(Pn) = Q and κ(Qn) is a quadratic extension of Q. Set Un = Cn \ {Qn};
this is an affine curve. Let Ln be the inverse of the ideal sheaf of Pn on Un. Note
that c1(Ln) = [Pn] in the group of zero cycles CH0(Un). Set An = Γ(Un,OUn). Let
Ln = Γ(Un,Ln) which is a locally free module of rank 1 over An. Set

Bn = A1 ⊗Q A2 ⊗Q . . .⊗Q An

so that Spec(Bn) = U1 × . . .× Un all products over Spec(Q). For i ≤ n we set
Ln,i = A1 ⊗Q . . .⊗Q Mi ⊗Q . . .⊗Q An

which is a locally free Bn-module of rank 1. Note that this is also the global sections
of pr∗

iLn. Set
B∞ = colimnBn and L∞,i = colimn Ln,i

https://stacks.math.columbia.edu/tag/05WJ
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Finally, set
M =

⊕
i≥1

L∞,i.

This is a direct sum of finite locally free modules, hence projective. We claim that
M is not locally free. Namely, suppose that f ∈ B∞ is a nonzero function such that
Mf is free over (B∞)f . Let e1, e2, . . . be a basis. Choose n ≥ 1 such that f ∈ Bn.
Choose m ≥ n+ 1 such that e1, . . . , en+1 are in⊕

1≤i≤m
Lm,i.

Because the elements e1, . . . , en+1 are part of a basis after a faithfully flat base
change we conclude that the Chern classes

ci(pr∗
1L1 ⊕ . . .⊕ pr∗

mLm), i = m,m− 1, . . . ,m− n
are zero in the chow group of

D(f) ⊂ U1 × . . .× Um
Since f is the pullback of a function on U1× . . .×Un this implies in particular that

cm−n(O⊕n
W ⊕ pr∗

1Ln+1 ⊕ . . .⊕ pr∗
m−nLm) = 0.

on the variety
W = (Cn+1 × . . .× Cm)K

over the field K = Q(C1 × . . .× Cn). In other words the cycle
[(Pn+1 × . . .× Pm)K ]

is zero in the chow group of zero cycles on W . This contradicts Lemma 110.33.3
above because the points Qi, n + 1 ≤ i ≤ m induce corresponding points Q′

i on
(Cn)K and as K/Q is geometrically irreducible we have [κ(Q′

i) : K] = 2.

Lemma 110.33.4.05WL There exists a countable ring R and a projective module M
which is a direct sum of countably many locally free rank 1 modules such that M
is not locally free.

Proof. See above. □

110.34. Zero dimensional local ring with nonzero flat ideal

05FZ In [Laz67] and [Laz69] there is an example of a zero dimensional local ring with a
nonzero flat ideal. Here is the construction. Let k be a field. Let Xi, Yi, i ≥ 1 be
variables. Take R = k[Xi, Yi]/(Xi − YiXi+1, Y

2
i ). Denote xi, resp. yi the image of

Xi, resp. Yi in this ring. Note that
xi = yixi+1 = yiyi+1xi+2 = yiyi+1yi+2xi+3 = . . .

in this ring. The ring R has only one prime ideal, namely m = (xi, yi). We claim
that the ideal I = (xi) is flat as an R-module.
Note that the annihilator of xi in R is the ideal (x1, x2, x3, . . . , yi, yi+1, yi+2, . . .).
Consider the R-module M generated by elements ei, i ≥ 1 and relations ei = yiei+1.
Then M is flat as it is the colimit colimiR of copies of R with transition maps

R
y1−→ R

y2−→ R
y3−→ . . .

Note that the annihilator of ei in M is the ideal (x1, x2, x3, . . . , yi, yi+1, yi+2, . . .).
Since every element of M , resp. I can be written as fei, resp. hxi for some f, h ∈ R
we see that the map M → I, ei → xi is an isomorphism and I is flat.
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Lemma 110.34.1.05G0 There exists a local ring R with a unique prime ideal and a
nonzero ideal I ⊂ R which is a flat R-module

Proof. See discussion above. □

110.35. An epimorphism of zero-dimensional rings which is not surjective

06RH In [Laz68] and [Laz69] one can find the following example. Let k be a field. Consider
the ring homomorphism

k[x1, x2, . . . , z1, z2, . . .]/(x4i
i , z

4i
i ) −→ k[x1, x2, . . . , y1, y2, . . .]/(x4i

i , yi − xi+1y
2
i+1)

which maps xi to xi and zi to xiyi. Note that y4i+1

i is zero in the right hand side
but that y1 is not zero (details omitted). This map is not surjective: we can think
of the above as a map of Z-graded algebras by setting deg(xi) = −1, deg(zi) = 0,
and deg(yi) = 1 and then it is clear that y1 is not in the image. Finally, the map
is an epimorphism because

yi−1 ⊗ 1 = xiy
2
i ⊗ 1 = yi ⊗ xiyi = xiyi ⊗ yi = 1⊗ xiy2

i .

hence the tensor product of the target over the source is isomorphic to the target.

Lemma 110.35.1.06RI There exists an epimorphism of local rings of dimension 0 which
is not a surjection.

Proof. See discussion above. □

110.36. Finite type, not finitely presented, flat at prime

05G1 Let k be a field. Consider the local ring A0 = k[x, y](x,y). Denote p0,n = (y + xn +
x2n+1). This is a prime ideal. Set

A = A0[z1, z2, z3, . . .]/(znzm, zn(y + xn + x2n+1))

Note that A → A0 is a surjection whose kernel is an ideal of square zero. Hence
A is also a local ring and the prime ideals of A are in one-to-one correspondence
with the prime ideals of A0. Denote pn the prime ideal of A corresponding to p0,n.
Observe that pn is the annihilator of zn in A. Let

C = A[z]/(xz2 + z + y)[ 1
2zx+ 1]

Note that A→ C is an étale ring map, see Algebra, Example 10.137.8. Let q ⊂ C
be the maximal ideal generated by x, y, z and all zn. As A→ C is flat we see that
the annihilator of zn in C is pnC. We compute

C/pnC = A0[z]/(xz2 + z + y, y + xn + x2n+1)[1/(2zx+ 1)]
= k[x](x)[z]/(xz2 + z − xn − x2n+1)[1/(2zx+ 1)]
= k[x](x)[z]/(z − xn)× k[x](x)[z]/(xz + xn+1 + 1)[1/(2zx+ 1)]
= k[x](x) × k(x)

because (z − xn)(xz + xn+1 + 1) = xz2 + z − xn − x2n+1. Hence we see that
pnC = rn ∩ qn with rn = pnC + (z − xn)C and qn = pnC + (xz + xn+1 + 1)C.
Since qn + rn = C we also get pnC = rnqn. It follows that qn is the annihilator
of ξn = (z − xn)zn. Observe that on the one hand rn ⊂ q, and on the other hand
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qn + q = C. This follows for example because qn is a maximal ideal of C distinct
from q. Similarly we have qn + qm = C for n ̸= m. At this point we let

B = Im(C −→ Cq)
We observe that the elements ξn map to zero in B as xz + xn+1 + 1 is not in q.
Denote q′ ⊂ B the image of q. By construction B is a finite type A-algebra, with
Bq′ ∼= Cq. In particular we see that Bq′ is flat over A.
We claim there does not exist an element g′ ∈ B, g′ ̸∈ q′ such that Bg′ is of finite
presentation over A. We sketch a proof of this claim. Choose an element g ∈ C
which maps to g′ ∈ B. Consider the map Cg → Bg′ . By Algebra, Lemma 10.6.3
we see that Bg is finitely presented over A if and only if the kernel of Cg → Bg′ is
finitely generated. But the element g ∈ C is not contained in q, hence maps to a
nonzero element of A0[z]/(xz2 + z + y). Hence g can only be contained in finitely
many of the prime ideals qn, because the primes (y + xn + x2n+1, xz + xn+1 + 1)
are an infinite collection of codimension 1 points of the 2-dimensional irreducible
Noetherian space Spec(k[x, y, z]/(xz2 + z + y)). The map⊕

g ̸∈qn
C/qn −→ Cg, (cn) −→

∑
cnξn

is injective and its image is the kernel of Cg → Bg′ . We omit the proof of this
statement. (Hint: Write A = A0 ⊕ I as an A0-module where I is the kernel of
A → A0. Similarly, write C = C0 ⊕ IC. Write IC =

⊕
Czn ∼=

⊕
(C/rn ⊕ C/qn)

and study the effect of multiplication by g on the summands.) This concludes the
sketch of the proof of the claim. This also proves that Bg′ is not flat over A for any
g′ as above. Namely, if it were flat, then the annihilator of the image of zn in Bg′

would be pnBg′ , and would not contain z − xn.
As a consequence we can answer (negatively) a question posed in [GR71, Part I,
Remarques (3.4.7) (v)]. Here is a precise statement.
Lemma 110.36.1.05G2 There exists a local ring A, a finite type ring map A → B and
a prime q lying over mA such that Bq is flat over A, and for any element g ∈ B,
g ̸∈ q the ring Bg is neither finitely presented over A nor flat over A.
Proof. See discussion above. □

110.37. Finite type, flat and not of finite presentation

05LB In this section we give some examples of ring maps and morphisms which are of
finite type and flat but not of finite presentation.
Let R be a ring which has an ideal I such that R/I is a finite flat module but not
projective, see Section 110.32 for an explicit example. Note that this means that I is
not finitely generated, see Algebra, Lemma 10.108.5. Note that I = I2, see Algebra,
Lemma 10.108.2. The base ring in our examples will be R and correspondingly the
base scheme S = Spec(R).
Consider the ring map R→ R⊕R/Iϵ where ϵ2 = 0 by convention. This is a finite,
flat ring map which is not of finite presentation. All the fibre rings are complete
intersections and geometrically irreducible.
Let A = R[x, y]/(xy, ay; a ∈ I). Note that as an R-module we have A =

⊕
i≥0 Ry

i⊕⊕
j>0 R/Ix

j . Hence R → A is a flat finite type ring map which is not of finite
presentation. Each fibre ring is isomorphic to either κ(p)[x, y]/(xy) or κ(p)[x].
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We can turn the previous example into a projective morphism by taking B =
R[X0, X1, X2]/(X1X2, aX2; a ∈ I). In this case X = Proj(B) → S is a proper flat
morphism which is not of finite presentation such that for each s ∈ S the fibre Xs is
isomorphic either to P1

s or to the closed subscheme of P2
s defined by the vanishing

of X1X2 (this is a projective nodal curve of arithmetic genus 0).
Let M = R ⊕ R ⊕ R/I. Set B = SymR(M) the symmetric algebra on M . Set
X = Proj(B). Then X → S is a proper flat morphism, not of finite presentation
such that for s ∈ S the geometric fibre is isomorphic to either P1

s or P2
s. In

particular these fibres are smooth and geometrically irreducible.

Lemma 110.37.1.05LC There exist examples of
(1) a flat finite type ring map with geometrically irreducible complete inter-

section fibre rings which is not of finite presentation,
(2) a flat finite type ring map with geometrically connected, geometrically

reduced, dimension 1, complete intersection fibre rings which is not of
finite presentation,

(3) a proper flat morphism of schemes X → S each of whose fibres is isomor-
phic to either P1

s or to the vanishing locus of X1X2 in P2
s which is not of

finite presentation, and
(4) a proper flat morphism of schemes X → S each of whose fibres is isomor-

phic to either P1
s or P2

s which is not of finite presentation.

Proof. See discussion above. □

110.38. Topology of a finite type ring map

05JH Let A→ B be a local map of local domains. If A is Noetherian, A→ B is essentially
of finite type, and A/mA ⊂ B/mB is finite then there exists a prime q ⊂ B, q ̸= mB
such that A → B/q is the localization of a quasi-finite ring map. See More on
Morphisms, Lemma 37.52.6.
In this section we give an example that shows this result is false A is no longer
Noetherian. Namely, let k be a field and set

A = {a0 + a1x+ a2x
2 + . . . | a0 ∈ k, ai ∈ k((y)) for i ≥ 1}

and
C = {a0 + a1x+ a2x

2 + . . . | a0 ∈ k[y], ai ∈ k((y)) for i ≥ 1}.
The inclusion A→ C is of finite type as C is generated by y over A. We claim that
A is a local ring with maximal ideal m = {a1x+a2x

2 + . . . ∈ A} and no prime ideals
besides (0) and m. Namely, an element f = a0 + a1x+ a2x

2 + . . . of A is invertible
as soon as a0 ̸= 0. If q ⊂ A is a nonzero prime ideal, and f = aix

i + . . . ∈ q,
then using properties of power series one sees that for any g ∈ k((y)) the element
gi+1xi+1 ∈ q, i.e., gx ∈ q. This proves that q = m.
As to the spectrum of the ring C, arguing in the same way as above we see that
any nonzero prime ideal contains the prime p = {a1x+ a2x

2 + . . . ∈ C} which lies
over m. Thus the only prime of C which lies over (0) is (0). Set mC = yC + p and
B = CmC . Then A→ B is the desired example.

Lemma 110.38.1.05JI There exists a local homomorphism A → B of local domains
which is essentially of finite type and such that A/mA → B/mB is finite such that

https://stacks.math.columbia.edu/tag/05LC
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for every prime q ̸= mB of B the ring map A → B/q is not the localization of a
quasi-finite ring map.

Proof. See the discussion above. □

110.39. Pure not universally pure

05JJ Let k be a field. Let
R = k[[x, xy, xy2, . . .]] ⊂ k[[x, y]].

In other words, a power series f ∈ k[[x, y]] is in R if and only if f(0, y) is a constant.
In particular R[1/x] = k[[x, y]][1/x] and R/xR is a local ring with a maximal ideal
whose square is zero. Denote R[y] ⊂ k[[x, y]] the set of power series f ∈ k[[x, y]]
such that f(0, y) is a polynomial in y. Then R → R[y] is a finite type but not
finitely presented ring map which induces an isomorphism after inverting x. Also
there is a surjection R[y]/xR[y]→ k[y] whose kernel has square zero. Consider the
finitely presented ring map R→ S = R[t]/(xt− xy). Again R[1/x]→ S[1/x] is an
isomorphism and in this case S/xS ∼= (R/xR)[t]/(xy) maps onto k[t] with nilpotent
kernel. There is a surjection S → R[y], t 7−→ y which induces an isomorphism on
inverting x and a surjection with nilpotent kernel modulo x. Hence the kernel
of S → R[y] is locally nilpotent. In particular S → R[y] induces a universal
homeomorphism on spectra.
First we claim that S is an S-module which is relatively pure over R. Since on
inverting x we obtain an isomorphism we only need to check this at the maximal
ideal m ⊂ R. Since R is complete with respect to its maximal ideal it is henselian
hence we need only check that every prime p ⊂ R, p ̸= m, the unique prime q of
S lying over p satisfies mS + q ̸= S. Since p ̸= m it corresponds to a unique prime
ideal of k[[x, y]][1/x]. Hence either p = (0) or p = (f) for some irreducible element
f ∈ k[[x, y]] which is not associated to x (here we use that k[[x, y]] is a UFD – insert
future reference here). In the first case q = (0) and the result is clear. In the second
case we may multiply f by a unit so that f ∈ R[y] (Weierstrass preparation; details
omitted). Then it is easy to see that R[y]/fR[y] ∼= k[[x, y]]/(f) hence f defines a
prime ideal of R[y] and mR[y] + fR[y] ̸= R[y]. Since S → R[y] induces a universal
homeomorphism on spectra we deduce the desired result for S also.
Second we claim that S is not universally relatively pure over R. Namely, to see
this it suffices to find a valuation ring O and a local ring map R → O such that
Spec(R[y]⊗RO)→ Spec(O) does not hit the closed point of Spec(O). Equivalently,
we have to find φ : R → O such that φ(x) ̸= 0 and v(φ(x)) > v(φ(xy)) where v is
the valuation of O. (Because this means that the valuation of y is negative.) To do
this consider the ring map

R −→ {a0 + a1x+ a2x
2 + . . . | a0 ∈ k[y−1], ai ∈ k((y))}

defined in the obvious way. We can find a valuation ring O dominating the local-
ization of the right hand side at the maximal ideal (y−1, x) and we win.

Lemma 110.39.1.05JK There exists a morphism of affine schemes of finite presentation
X → S and an OX -module F of finite presentation such that F is pure relative to
S, but not universally pure relative to S.

Proof. See discussion above. □

https://stacks.math.columbia.edu/tag/05JK
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110.40. A formally smooth non-flat ring map

057V Let k be a field. Consider the k-algebra k[Q]. This is the k-algebra with basis
xα, α ∈ Q and multiplication determined by xαxβ = xα+β . (In particular x0 = 1.)
Consider the k-algebra homomorphism

k[Q] −→ k, xα 7−→ 1.
It is surjective with kernel J generated by the elements xα − 1. Let us compute
J/J2. Note that multiplication by xα on J/J2 is the identity map. Denote zα the
class of xα − 1 modulo J2. These classes generate J/J2. Since

(xα − 1)(xβ − 1) = xα+β − xα − xβ + 1 = (xα+β − 1)− (xα − 1)− (xβ − 1)
we see that zα+β = zα + zβ in J/J2. A general element of J/J2 is of the form∑
λαzα with λα ∈ k (only finitely many nonzero). Note that if the characteristic

of k is p > 0 then
0 = pzα/p = zα/p + . . .+ zα/p = zα

and we see that J/J2 = 0. If the characteristic of k is zero, then
J/J2 = Q⊗Z k ∼= k

(details omitted) is not zero.
We claim that k[Q]→ k is a formally smooth ring map if the characteristic of k is
positive. Namely, suppose given a solid commutative diagram

k //

!!

A

k[Q]

OO

φ // A′

OO

with A′ → A a surjection whose kernel I has square zero. To show that k[Q]→ k
is formally smooth we have to prove that φ factors through k. Since φ(xα − 1)
maps to zero in A we see that φ induces a map φ : J/J2 → I whose vanishing is
the obstruction to the desired factorization. Since J/J2 = 0 if the characteristic
is p > 0 we get the result we want, i.e., k[Q] → k is formally smooth in this case.
Finally, this ring map is not flat, for example as the nonzerodivisor x2−1 is mapped
to zero.
Lemma 110.40.1.057W There exists a formally smooth ring map which is not flat.
Proof. See discussion above. □

110.41. A formally étale non-flat ring map

060H In this section we give a counterexample to the final sentence in [DG67, 0, Example
19.10.3(i)] (this was not one of the items caught in their later errata lists). Consider
A→ A/J for a local ring A and a nonzero proper ideal J such that J2 = J (so J isn’t
finitely generated); the valuation ring of an algebraically closed non-archimedean
field with J its maximal ideal is a source of such (A, J). These non-flat quotient
maps are formally étale. Namely, suppose given a commutative diagram

A/J // R/I

A

OO

φ // R

OO

https://stacks.math.columbia.edu/tag/057W
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where I is an ideal of the ring R with I2 = 0. Then A → R factors uniquely
through A/J because

φ(J) = φ(J2) ⊂ (φ(J)A)2 ⊂ I2 = 0.

Hence this also provides a counterexample to the formally étale case of the “struc-
ture theorem” for locally finite type and formally étale morphisms in [DG67, IV,
Theorem 18.4.6(i)] (but not a counterexample to part (ii), which is what people
actually use in practice). The error in the proof of the latter is that the very last
step of the proof is to invoke the incorrect [DG67, 0, Example 19.3.10(i)], which is
how the counterexample just mentioned creeps in.

Lemma 110.41.1.060I There exist formally étale nonflat ring maps.

Proof. See discussion above. □

110.42. A formally étale ring map with nontrivial cotangent complex

06E5 Let k be a field. Consider the ring

R = k[{xn}n≥1, {yn}n≥1]/(x1y1, x
m
nm − xn, ymnm − yn)

Let A be the localization at the maximal ideal generated by all xn, yn and denote
J ⊂ A the maximal ideal. Set B = A/J . By construction J2 = J and hence
A→ B is formally étale (see Section 110.41). We claim that the element x1⊗ y1 is
a nonzero element in the kernel of

J ⊗A J −→ J.

Namely, (A, J) is the colimit of the localizations (An, Jn) of the rings

Rn = k[xn, yn]/(xnnynn)

at their corresponding maximal ideals. Then x1 ⊗ y1 corresponds to the element
xnn ⊗ ynn ∈ Jn ⊗An Jn and is nonzero (by an explicit computation which we omit).
Since ⊗ commutes with colimits we conclude. By [Ill72, III Section 3.3] we see
that J is not weakly regular. Hence by [Ill72, III Proposition 3.3.3] we see that
the cotangent complex LB/A is not zero. In fact, we can be more precise. We
have H0(LB/A) = ΩB/A and H1(LB/A) = 0 because J/J2 = 0. But from the five-
term exact sequence of Quillen’s fundamental spectral sequence (see Cotangent,
Remark 92.12.5 or [Rei, Corollary 8.2.6]) and the nonvanishing of TorA2 (B,B) =
Ker(J ⊗A J → J) we conclude that H2(LB/A) is nonzero.

Lemma 110.42.1.06E6 There exists a formally étale surjective ring map A → B with
LB/A not equal to zero.

Proof. See discussion above. □

110.43. Flat and formally unramified is not formally étale

0G64 In More on Morphisms, Lemma 37.8.7 it is shown that an unramified flat morphism
of schemes X → S is formally étale. The goal of this section is to give two examples
that illustrate that we cannot replace ‘unramified’ by ‘formally unramified’. The
first example exploits special properties of perfect rings, while the second example
shows the result fails even for maps of Noetherian regular rings.
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Lemma 110.43.1.0G65 Let A = Fp[T ] be the polynomial ring in one variable over Fp.
Let Aperf denote the perfect closure of A. Then A → Aperf is flat and formally
unramified, but not formally étale.

Proof. Note that under the Frobenius map FA : A → A, the target copy of A is a
free-module over the domain with basis {1, T, . . . , T p−1}. Thus, FA is faithfully flat,
and consequently, so is A→ Aperf since it is a colimit of faithfully flat maps. Since
Aperf is a perfect ring, the relative Frobenius FAperf/A is a surjection. In other
words, Aperf = A[Apperf ], which readily implies ΩAperf/A = 0. Then A → Aperf is
formally unramified by More on Morphisms, Lemma 37.6.7
It suffices to show that A → Aperf is not formally smooth. Note that since A
is a smooth Fp-algebra, the cotangent complex LA/FP ≃ ΩA/Fp [0] is concentrated
in degree 0, see Cotangent, Lemma 92.9.1. Moreover, LAperf/Fp = 0 in D(Aperf )
by Cotangent, Lemma 92.10.3. Consider the distinguished triangle of cotangent
complexes

LA/Fp ⊗A Aperf → LAperf/Fp → LAperf/A → (LA/Fp ⊗A Aperf )[1]
in D(Aperf ), see Cotangent, Section 92.7. We find LAperf/A = ΩA/Fp ⊗A Aperf [1],
that is, LAperf/A is equal to a free rank 1 Aperf module placed in degree −1. Thus
A → Aperf is not formally smooth by More on Morphisms, Lemma 37.13.5 and
Cotangent, Lemma 92.11.3. □

The next example also involves rings of prime characteristic, but is perhaps a little
more surprising. The drawback is that it requires more knowledge of characteristic
p phenomena than the previous example. Recall that we say a ring A of prime
characteristic is F -finite if the Frobenius map on A is finite.

Lemma 110.43.2.0G66 Let (A,m, κ) be a Noetherian local ring of prime characteristic
p > 0 such that [κ : κp] <∞. Then the canonical map A→ A∧ to the completion
of A is flat and formally unramified. However, if A is regular but not excellent,
then this map is not formally étale.

Proof. Flatness of the completion is Algebra, Lemma 10.97.2. To show that the
map is formally unramified, it suffices to show that ΩA∧/A = 0, see Algebra, Lemma
10.148.2.
We sketch a proof. Choose x1, . . . , xr ∈ A which map to a p-basis x1, . . . , xr
of κ, i.e., such that κ is minimally generated by xi over κp. Choose a minimal
set of generators y1, . . . , ys of m. For each n the elements x1, . . . , xr, y1, . . . , ys
generate A/mn over (A/mn)p by Frobenius. Some details omitted. We conclude
that F : A∧ → A∧ is finite. Hence ΩA∧/A is a finite A∧-module. On the other hand,
for any a ∈ A∧ and n we can find a0 ∈ A such that a − a0 ∈ mnA∧. We conclude
that d(a) ∈

⋂
mnΩA∧/A which implies that d(a) is zero by Algebra, Lemma 10.51.4.

Thus ΩA∧/A = 0.
SupposeA is regular. Then, using the Cohen structure theorem x1, . . . , xr, y1, . . . , ys
is a p-basis for the ring A∧, i.e., we have

A∧ =
⊕

I,J
(A∧)pxi11 . . . xirr y

j1
1 . . . yjss

with I = (i1, . . . , ir), J = (j1, . . . , js) and 0 ≤ ia, jb ≤ p−1. Details omitted. In par-
ticular, we see that ΩA∧ is a freeA∧-module with basis d(x1), . . . ,d(xr),d(y1), . . . ,d(ys).

https://stacks.math.columbia.edu/tag/0G65
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Now if A → A∧ is formally étale or even just formally smooth, then we see
that NLA∧/A has vanishing cohomology in degrees −1, 0 by Algebra, Proposition
10.138.8. It follows from the Jacobi-Zariski sequence (Algebra, Lemma 10.134.4)
for the ring maps Fp → A → A∧ that we get an isomorphism ΩA ⊗A A∧ ∼= ΩA∧ .
Hence we find that ΩA is free on d(x1), . . . ,d(xr),d(y1), . . . ,d(ys). Looking at frac-
tion fields and using that A is normal we conclude that a ∈ A is a pth power if
and only if its image in A∧ is a pth power (details omitted; use Algebra, Lemma
10.158.2). A second consequence is that the operators ∂/∂xa and ∂/∂yb are defined
on A.
We will show that the above lead to the conclusion that A is finite over Ap with p-
basis x1, . . . , xr, y1, . . . , ys. This will contradict the non-excellency of A by a result
of Kunz, see [Kun76, Corollary 2.6]. Namely, say a ∈ A and write

a =
∑

I,J
(aI,J)pxi11 . . . xirr y

j1
1 . . . yjss

with aI,J ∈ A∧. To finish the proof it suffices to show that aI,J ∈ A. Applying the
operator

(∂/∂x1)p−1 . . . (∂/∂xr)p−1(∂/∂y1)p−1 . . . (∂/∂ys)p−1

to both sides we conclude that apI,J ∈ A where I = (p − 1, . . . , p − 1) and J =
(p− 1, . . . , p− 1). By our remark above, this also implies aI,J ∈ A. After replacing
a by a′ = a − apI,Jx

IyJ we can use a 1-order lower differential operators to get
another coefficient aI,J to be in A. Etc. □

Remark 110.43.3.0G67 Non-excellent regular rings whose residue fields have a finite
p-basis can be constructed even in the function field of P2

k, over a characteristic p
field k = k. See [DS18, §4.1].

The proof of Lemma 110.43.2 actually shows a little more.

Lemma 110.43.4.0G68 Let (A,m, κ) be a regular local ring of characteristic p > 0.
Suppose [κ : κp] <∞. Then A is excellent if and only if A→ A∧ is formally étale.

Proof. The backward implication follows from Lemma 110.43.2. For the forward
implication, note that we already know from Lemma 110.43.2 that A→ A∧ is for-
mally unramified or equivalently that ΩA∧/A is zero. Thus, it suffices to show that
the completion map is formally smooth when A is excellent. By Néron-Popescu
desingularization A→ A∧ can be written as a filtered colimit of smooth A-algebras
(Smoothing Ring Maps, Theorem 16.12.1). Hence NLA∧/A has vanishing coho-
mology in degree −1. Thus A → A∧ is formally smooth by Algebra, Proposition
10.138.8. □

110.44. Ideals generated by sets of idempotents and localization

04QK Let R be a ring. Consider the ring
B(R) = R[xn;n ∈ Z]/(xn(xn − 1), xnxm;n ̸= m)

It is easy to show that every prime q ⊂ B(R) is either of the form
q = pB(R) + (xn;n ∈ Z)

or of the form
q = pB(R) + (xn − 1) + (xm;n ̸= m,m ∈ Z).

https://stacks.math.columbia.edu/tag/0G67
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Hence we see that

Spec(B(R)) = Spec(R)⨿
∐

n∈Z
Spec(R)

where the topology is not just the disjoint union topology. It has the following
properties: Each of the copies indexed by n ∈ Z is an open subscheme, namely
it is the standard open D(xn). The "central" copy of Spec(R) is in the closure of
the union of any infinitely many of the other copies of Spec(R). Note that this
last copy of Spec(R) is cut out by the ideal (xn, n ∈ Z) which is generated by the
idempotents xn. Hence we see that if Spec(R) is connected, then the decomposition
above is exactly the decomposition of Spec(B(R)) into connected components.

Next, let A = C[x, y]/((y−x2 + 1)(y+x2− 1)). The spectrum of A consists of two
irreducible components C1 = Spec(A1), C2 = Spec(A2) with A1 = C[x, y]/(y −
x2 + 1) and A2 = C[x, y]/(y + x2 − 1). Note that these are parametrized by
(x, y) = (t, t2−1) and (x, y) = (t,−t2+1) which meet in P = (−1, 0) and Q = (1, 0).
We can make a twisted version of B(A) where we glue B(A1) to B(A2) in the
following way: Above P we let xn ∈ B(A1)⊗κ(P ) correspond to xn ∈ B(A2)⊗κ(P ),
but above Q we let xn ∈ B(A1) ⊗ κ(Q) correspond to xn+1 ∈ B(A2) ⊗ κ(Q).
Let Btwist(A) denote the resulting A-algebra. Details omitted. By construction
Btwist(A) is Zariski locally over A isomorphic to the untwisted version. Namely,
this happens over both the principal open Spec(A) \ {P} and the principal open
Spec(A)\{Q}. However, our choice of glueing produces enough "monodromy" such
that Spec(Btwist(A)) is connected (details omitted). Finally, there is a central
copy of Spec(A)→ Spec(Btwist(A)) which gives a closed subscheme whose ideal is
Zariski locally on Btwist(A) cut out by ideals generated by idempotents, but not
globally (as Btwist(A) has no nontrivial idempotents).

Lemma 110.44.1.04QL There exists an affine scheme X = Spec(A) and a closed sub-
scheme T ⊂ X such that T is Zariski locally on X cut out by ideals generated by
idempotents, but T is not cut out by an ideal generated by idempotents.

Proof. See above. □

110.45. A ring map which identifies local rings which is not ind-étale

09AN Note that the ring map R→ B(R) constructed in Section 110.44 is a colimit of finite
products of copies of R. Hence R→ B(R) is ind-Zariski, see Pro-étale Cohomology,
Definition 61.4.1. Next, consider the ring map A → Btwist(A) constructed in
Section 110.44. Since this ring map is Zariski locally on Spec(A) isomorphic to an
ind-Zariski ring map R→ B(R) we conclude that it identifies local rings (see Pro-
étale Cohomology, Lemma 61.4.6). The discussion in Section 110.44 shows there is
a section Btwist(A) → A whose kernel is not generated by idempotents. Now, if
A → Btwist(A) were ind-étale, i.e., Btwist(A) = colimAi with A → Ai étale, then
the kernel of Ai → A would be generated by an idempotent (Algebra, Lemmas
10.143.8 and 10.143.9). This would contradict the result mentioned above.

Lemma 110.45.1.09AP There is a ring map A→ B which identifies local rings but which
is not ind-étale. A fortiori it is not ind-Zariski.

Proof. See discussion above. □
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110.46. Non flasque quasi-coherent sheaf associated to injective module

0273 For more examples of this type see [BGI71, Exposé II, Appendix I] where Illusie
explains some examples due to Verdier.
Consider the affine scheme X = Spec(A) where

A = k[x, y, z1, z2, . . .]/(xnzn)
is the ring from Properties, Example 28.25.2. Set I = (x) ⊂ A. Consider the quasi-
compact open U = D(x) of X. We have seen in loc. cit. that there is a section
s ∈ OX(U) which does not come from an A-module map In → A for any n ≥ 0.
Let α : A→ J be the embedding of A into an injective A-module. Let Q = J/α(A)
and denote β : J → Q the quotient map. We claim that the map

Γ(X, J̃) −→ Γ(U, J̃)
is not surjective. Namely, we claim that α(s) is not in the image. To see this, we
argue by contradiction. So assume that x ∈ J is an element which restricts to α(s)
over U . Then β(x) ∈ Q is an element which restricts to 0 over U . Hence we know
that Inβ(x) = 0 for some n, see Properties, Lemma 28.25.1. This implies that we
get a morphism φ : In → A, h 7→ α−1(hx). It is easy to see that this morphism
φ gives rise to the section s via the map of Properties, Lemma 28.25.1 which is a
contradiction.
Lemma 110.46.1.0274 There exists an affine scheme X = Spec(A) and an injective A-
module J such that J̃ is not a flasque sheaf on X. Even the restriction Γ(X, J̃)→
Γ(U, J̃) with U a standard open need not be surjective.
Proof. See above. □

In fact, we can use a similar construction to get an example of an injective mod-
ule whose associated quasi-coherent sheaf has nonzero cohomology over a quasi-
compact open. Namely, we start with the ring

A = k[x, y, w1, u1, w2, u2, . . .]/(xnwn, ynun, u2
n, w

2
n)

where k is a field. Choose an injective map A→ I where I is an injective A-module.
We claim that the element 1/xy in Axy ⊂ Ixy is not in the image of Ix ⊕ Iy → Ixy.
Arguing by contradiction, suppose that

1
xy

= i

xn
+ j

yn

for some n ≥ 1 and i, j ∈ I. Clearing denominators we obtain
(xy)n+m−1 = xmyn+mi+ xn+mymj

for some m ≥ 0. Multiplying with un+mwn+m we see that un+mwn+m(xy)n+m−1 =
0 in A which is the desired contradiction. Let U = D(x) ∪D(y) ⊂ X = Spec(A).
For any A-module M we have an exact sequence

0→ H0(U, M̃)→Mx ⊕My →Mxy → H1(U, M̃)→ 0

by Mayer-Vietoris. We conclude that H1(U, Ĩ) is nonzero.
Lemma 110.46.2.0CRZ There exists an affine scheme X = Spec(A) whose underlying
topological space is Noetherian and an injective A-module I such that Ĩ has non-
vanishing H1 on some quasi-compact open U of X.
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Proof. See above. Note that Spec(A) = Spec(k[x, y]) as topological spaces. □

110.47. A non-separated flat group scheme

06E7 Every group scheme over a field is separated, see Groupoids, Lemma 39.7.3. This
is not true for group schemes over a base.
Let k be a field. Let S = Spec(k[x]) = A1

k. Let G be the affine line with 0 doubled
(see Schemes, Example 26.14.3) seen as a scheme over S. Thus a fibre of G→ S is
either a singleton or a set with two elements (one in U and one in V ). Thus we can
endow these fibres with the structure of a group (by letting the element in U be
the zero of the group structure). More precisely, G has two opens U, V which map
isomorphically to S such that U ∩ V is mapped isomorphically to S \ {0}. Then

G×S G = U ×S U ∪ V ×S U ∪ U ×S V ∪ V ×S V

where each piece is isomorphic to S. Hence we can define a multiplication m :
G ×S G → G as the unique S-morphism which maps the first and the last piece
into U and the two middle pieces into V . This matches the pointwise description
given above. We omit the verification that this defines a group scheme structure.

Lemma 110.47.1.06E8 There exists a flat group scheme of finite type over the affine line
which is not separated.

Proof. See the discussion above. □

Lemma 110.47.2.08IX There exists a flat group scheme of finite type over the infinite
dimensional affine space which is not quasi-separated.

Proof. The same construction as above can be carried out with the infinite dimen-
sional affine space S = A∞

k = Spec k[x1, x2, . . .] as the base and the origin 0 ∈ S
corresponding to the maximal ideal (x1, x2, . . .) as the closed point which is doubled
in G. The resulting group scheme G → S is not quasi-separated as explained in
Schemes, Example 26.21.4. □

110.48. A non-flat group scheme with flat identity component

06RJ Let X → S be a monomorphism of schemes. Let G = S⨿X. Let m : G×S G→ G
be the S-morphism

G×S G = X ×S X ⨿X ⨿X ⨿ S −→ G = X ⨿ S

which maps the summands X ×S X and S into S and maps the summands X into
X by the identity morphism. This defines a group law. To see this we have to show
that m ◦ (m × idG) = m ◦ (idG ×m) as maps G ×S G ×S G → G. Decomposing
G ×S G ×S G into components as above, we see that we need to verify this for
the restriction to each of the 8-pieces. Each piece is isomorphic to either S, X,
X ×S X, or X ×S X ×S X. Moreover, both maps map these pieces to S, X, S,
X respectively. Having said this, the fact that X → S is a monomorphism implies
that X×SX ∼= X and X×SX×SX ∼= X and that there is in each case exactly one
S-morphism S → S or X → X. Thus we see that m ◦ (m× idG) = m ◦ (idG ×m).
Thus taking X → S to be any nonflat monomorphism of schemes (e.g., a closed
immersion) we get an example of a group scheme over a base S whose identity
component is S (hence flat) but which is not flat.

https://stacks.math.columbia.edu/tag/06E8
https://stacks.math.columbia.edu/tag/08IX
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Lemma 110.48.1.06RK There exists a group scheme G over a base S whose identity
component is flat over S but which is not flat over S.

Proof. See discussion above. □

110.49. A non-separated group algebraic space over a field

06E9 Every group scheme over a field is separated, see Groupoids, Lemma 39.7.3. This
is not true for group algebraic spaces over a field (but see end of this section for
positive results).

Let k be a field of characteristic zero. Consider the algebraic space G = A1
k/Z

from Spaces, Example 65.14.8. By construction G is the fppf sheaf associated to
the presheaf

T 7−→ Γ(T,OT )/Z
on the category of schemes over k. The obvious addition rule on the presheaf
induces an addition m : G × G → G which turns G into a group algebraic space
over Spec(k). Note that G is not separated (and not even quasi-separated or locally
separated). On the other hand G→ Spec(k) is of finite type!

Lemma 110.49.1.06EA There exists a group algebraic space of finite type over a field
which is not separated (and not even quasi-separated or locally separated).

Proof. See discussion above. □

Positive results: If the group algebraic space G is either quasi-separated, or locally
separated, or more generally a decent algebraic space, then G is in fact separated,
see More on Groupoids in Spaces, Lemma 79.9.4. Moreover, a finite type, sepa-
rated group algebraic space over a field is in fact a scheme by More on Groupoids
in Spaces, Lemma 79.10.2. The idea of the proof is that the schematic locus is
open dense, see Properties of Spaces, Proposition 66.13.3 or Decent Spaces, The-
orem 68.10.2. By translating this open we see that every point of G has an open
neighbourhood which is a scheme.

110.50. Specializations between points in fibre étale morphism

06UJ If f : X → Y is an étale, or more generally a locally quasi-finite morphism of
schemes, then there are no specializations between points of fibres, see Morphisms,
Lemma 29.20.8. However, for morphisms of algebraic spaces this doesn’t hold in
general.

To give an example, let k be a field. Set

P = k[u, u−1, y, {xn}n∈Z].

Consider the action of Z on P by k-algebra maps generated by the automorphism
τ given by the rules τ(u) = u, τ(y) = uy, and τ(xn) = xn+1. For d ≥ 1 set
Id = ((1− ud)y, xn − xn+d, n ∈ Z). Then V (Id) ⊂ Spec(P ) is the fix point locus of
τd. Let S ⊂ P be the multiplicative subset generated by y and all 1 − ud, d ∈ N.
Then we see that Z acts freely on U = Spec(S−1P ). Let X = U/Z be the quotient
algebraic space, see Spaces, Definition 65.14.4.

https://stacks.math.columbia.edu/tag/06RK
https://stacks.math.columbia.edu/tag/06EA
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Consider the prime ideals pn = (xn, xn+1, . . .) in S−1P . Note that τ(pn) = pn+1.
Hence each of these define point ξn ∈ U whose image in X is the same point x of
X. Moreover we have the specializations

. . .⇝ ξn ⇝ ξn−1 ⇝ . . .

We conclude that U → X is an example of the promised type.

Lemma 110.50.1.06UK There exists an étale morphism of algebraic spaces f : X → Y
and a nontrivial specialization of points x⇝ x′ in |X| with f(x) = f(x′) in |Y |.

Proof. See discussion above. □

110.51. A torsor which is not an fppf torsor

04AF In Groupoids, Remark 39.11.5 we raise the question whether any G-torsor is a G-
torsor for the fppf topology. In this section we show that this is not always the
case.
Let k be a field. All schemes and stacks are over k in what follows. Let G→ Spec(k)
be the group scheme

G = (µ2,k)∞ = µ2,k ×k µ2,k ×k µ2,k ×k . . . = limn(µ2,k)n

where µ2,k is the group scheme of second roots of unity over Spec(k), see Groupoids,
Example 39.5.2. As an inverse limit of affine schemes we see that G is an affine
group scheme. In fact it is the spectrum of the ring k[t1, t2, t3, . . .]/(t2i − 1). The
multiplication map m : G×k G→ G is on the algebra level given by ti 7→ ti ⊗ ti.
We claim that any G-torsor over k is of the form

P = Spec(k[x1, x2, x3, . . .]/(x2
i − ai))

for certain ai ∈ k∗ and with G-action G ×k P → P given by xi → ti ⊗ xi on the
algebra level. We omit the proof. Actually for the example we only need that P
is a G-torsor which is clear since over k′ = k(√a1,

√
a2, . . .) the scheme P becomes

isomorphic to G in a G-equivariant manner. Note that P is trivial if and only if
k′ = k since if P has a k-rational point then all of the ai are squares.
We claim that P is an fppf torsor if and only if the field extension k′ = k(√a1,

√
a2, . . .)/k

is finite. If k′ is finite over k, then {Spec(k′)→ Spec(k)} is an fppf covering which
trivializes P and we see that P is indeed an fppf torsor. Conversely, suppose that P
is an fppf G-torsor. This means that there exists an fppf covering {Si → Spec(k)}
such that each PSi is trivial. Pick an i such that Si is not empty. Let s ∈ Si be a
closed point. By Varieties, Lemma 33.14.1 the field extension κ(s)/k is finite, and
by construction Pκ(s) has a κ(s)-rational point. Thus we see that k ⊂ k′ ⊂ κ(s)
and k′ is finite over k.
To get an explicit example take k = Q and ai = i for example (or ai is the ith
prime if you like).

Lemma 110.51.1.077B Let S be a scheme. Let G be a group scheme over S. The stack
G-Principal classifying principal homogeneous G-spaces (see Examples of Stacks,
Subsection 95.14.5) and the stack G-Torsors classifying fppf G-torsors (see Exam-
ples of Stacks, Subsection 95.14.8) are not equivalent in general.

Proof. The discussion above shows that the functor G-Torsors→ G-Principal isn’t
essentially surjective in general. □

https://stacks.math.columbia.edu/tag/06UK
https://stacks.math.columbia.edu/tag/077B
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110.52. Stack with quasi-compact flat covering which is not algebraic

04AG In this section we briefly describe an example due to Brian Conrad. You can find
the example online at this location. Our example is slightly different.

Let k be an algebraically closed field. All schemes and stacks are over k in what
follows. LetG→ Spec(k) be an affine group scheme. In Examples of Stacks, Lemma
95.15.4 we have given several different equivalent ways to view X = [Spec(k)/G]
as a stack in groupoids over (Sch/ Spec(k))fppf . In particular X classifies fppf G-
torsors. More precisely, a 1-morphism T → X corresponds to an fppf GT -torsor
P over T and 2-arrows correspond to isomorphisms of torsors. It follows that the
diagonal 1-morphism

∆ : X −→ X ×Spec(k) X
is representable and affine. Namely, given any pair of fppf GT -torsors P1, P2 over
a scheme T/k the scheme Isom(P1, P2) is affine over T . The trivial G-torsor over
Spec(k) defines a 1-morphism

f : Spec(k) −→ X .

We claim that this is a surjective 1-morphism. The reason is simply that by defi-
nition for any 1-morphism T → X there exists a fppf covering {Ti → T} such that
PTi is isomorphic to the trivial GTi-torsor. Hence the compositions Ti → T → X
factor through f . Thus it is clear that the projection T ×X Spec(k)→ T is surjec-
tive (which is how we define the property that f is surjective, see Algebraic Stacks,
Definition 94.10.1). In a similar way you show that f is quasi-compact and flat
(details omitted). We also record here the observation that

Spec(k)×X Spec(k) ∼= G

as schemes over k.

Suppose there exists a surjective smooth morphism p : U → X where U is a scheme.
Consider the fibre product

W

��

// U

��
Spec(k) // X

Then we see that W is a nonempty smooth scheme over k which hence has a k-point.
This means that we can factor f through U . Hence we obtain

G ∼= Spec(k)×X Spec(k) ∼= (Spec(k)×k Spec(k))×(U×kU) (U ×X U)

and since the projections U ×X U → U were assumed smooth we conclude that
U ×X U → U ×k U is locally of finite type, see Morphisms, Lemma 29.15.8. It
follows that in this case G is locally of finite type over k. Altogether we have
proved the following lemma (which can be significantly generalized).

Lemma 110.52.1.04AH Let k be a field. Let G be an affine group scheme over k. If the
stack [Spec(k)/G] has a smooth covering by a scheme, then G is of finite type over
k.

Proof. See discussion above. □

https://mathoverflow.net/questions/15082/fpqc-covers-of-stacks/15269#15269
https://stacks.math.columbia.edu/tag/04AH
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To get an explicit example as in the title of this section, take for example G =
(µ2,k)∞ the group scheme of Section 110.51, which is not locally of finite type over
k. By the discussion above we see that X = [Spec(k)/G] has properties (1) and (2)
of Algebraic Stacks, Definition 94.12.1, but not property (3). Hence X is not an
algebraic stack. On the other hand, there does exist a scheme U and a surjective,
flat, quasi-compact morphism U → X , namely the morphism f : Spec(k) → X we
studied above.

110.53. Limit preserving on objects, not limit preserving

07Z0 Let S be a nonempty scheme. Let G be an injective abelian sheaf on (Sch/S)fppf .
We obtain a stack in groupoids

G-Torsors −→ (Sch/S)fppf
over S, see Examples of Stacks, Lemma 95.14.2. This stack is limit preserving on
objects over (Sch/S)fppf (see Criteria for Representability, Section 97.5) because
every G-torsor is trivial. On the other hand, G-Torsors is in general not limit
preserving (see Artin’s Axioms, Definition 98.11.1) as G need not be limit preserving
as a sheaf. For example, take any nonzero injective sheaf I and set G =

∏
n∈Z I to

get an example.

Lemma 110.53.1.07Z1 Let S be a nonempty scheme. There exists a stack in groupoids
p : X → (Sch/S)fppf such that p is limit preserving on objects, but X is not limit
preserving.

Proof. See discussion above. □

110.54. A non-algebraic classifying stack

077C Let S = Spec(Fp) and let µp denote the group scheme of pth roots of unity over S.
In Groupoids in Spaces, Section 78.20 we have introduced the quotient stack [S/µp]
and in Examples of Stacks, Section 95.15 we have shown [S/µp] is the classifying
stack for fppf µp-torsors: Given a scheme T over S the category MorS(T, [S/µp]) is
canonically equivalent to the category of fppf µp-torsors over T . Finally, in Criteria
for Representability, Theorem 97.17.2 we have seen that [S/µp] is an algebraic stack.
Now we can ask the question: “How about the category fibred in groupoids S
classifying étale µp-torsors?” (In other words S is a category over Sch/S whose
fibre category over a scheme T is the category of étale µp-torsors over T .)
The first objection is that this isn’t a stack for the fppf topology, because descent
for objects isn’t going to hold. For example the µp-torsor Spec(Fp(t)[x]/(xp − t))
over T = Spec(Fp(T )) is fppf locally trivial, but not étale locally trivial.
A fix for this first problem is to work with the étale topology and in this case
descent for objects does work. Indeed it is true that S is a stack in groupoids over
(Sch/S)étale. Moreover, it is also the case that the diagonal ∆ : S → S × S is
representable (by schemes). This is true because given two µp-torsors (whether
they be étale locally trivial or not) the sheaf of isomorphisms between them is
representable by a scheme.
Thus we can finally ask if there exists a scheme U and a smooth and surjective
1-morphism U → S. We will show in two ways that this is impossible: by a direct

https://stacks.math.columbia.edu/tag/07Z1
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argument (which we advise the reader to skip) and by an argument using a general
result.
Direct argument (sketch): Note that the 1-morphism S → Spec(Fp) satisfies the
infinitesimal lifting criterion for formal smoothness. This is true because given a
first order infinitesimal thickening of schemes T → T ′ the kernel of µp(T ′)→ µp(T )
is isomorphic to the sections of the ideal sheaf of T in T ′, and hence H1

étale(T, µp) =
H1
étale(T ′, µp). Moreover, S is a limit preserving stack. Hence if U → S is smooth,

then U → Spec(Fp) is limit preserving and satisfies the infinitesimal lifting criterion
for formal smoothness. This implies that U is smooth over Fp. In particular U
is reduced, hence H1

étale(U, µp) = 0. Thus U → S factors as U → Spec(Fp) → S
and the first arrow is smooth. By descent of smoothness, we see that U → S being
smooth would imply Spec(Fp) → S is smooth. However, this is not the case as
Spec(Fp)×S Spec(Fp) is µp which is not smooth over Spec(Fp).
Structural argument: In Criteria for Representability, Section 97.19 we have seen
that we can think of algebraic stacks as those stacks in groupoids for the étale
topology with diagonal representable by algebraic spaces having a smooth covering.
Hence if a smooth surjective U → S exists then S is an algebraic stack, and in
particular satisfies descent in the fppf topology. But we’ve seen above that S does
not satisfies descent in the fppf topology.
Loosely speaking the arguments above show that the classifying stack in the étale
topology for étale locally trivial torsors for a group scheme G over a base B is
algebraic if and only if G is smooth over B. One of the advantages of working
with the fppf topology is that it suffices to assume that G → B is flat and locally
of finite presentation. In fact the quotient stack (for the fppf topology) [B/G] is
algebraic if and only if G→ B is flat and locally of finite presentation, see Criteria
for Representability, Lemma 97.18.3.

110.55. Sheaf with quasi-compact flat covering which is not algebraic

078E Consider the functor F = (P1)∞, i.e., for a scheme T the value F (T ) is the set of
f = (f1, f2, f3, . . .) where each fi : T → P1 is a morphism of schemes. Note that
P1 satisfies the sheaf property for fpqc coverings, see Descent, Lemma 35.13.7. A
product of sheaves is a sheaf, so F also satisfies the sheaf property for the fpqc
topology. The diagonal of F is representable: if f : T → F and g : S → F
are morphisms, then T ×F S is the scheme theoretic intersection of the closed
subschemes T ×fi,P1,gi S inside the scheme T × S. Consider the group scheme SL2
which comes with a surjective smooth affine morphism SL2 → P1. Next, consider
U = (SL2)∞ with its canonical (product) morphism U → F . Note that U is an
affine scheme. We claim the morphism U → F is flat, surjective, and universally
open. Namely, suppose f : T → F is a morphism. Then Z = T ×F U is the infinite
fibre product of the schemes Zi = T ×fi,P1 SL2 over T . Each of the morphisms
Zi → T is surjective smooth and affine which implies that

Z = Z1 ×T Z2 ×T Z3 ×T . . .
is a scheme flat and affine over Z. A simple limit argument shows that Z → T is
open as well.
On the other hand, we claim that F isn’t an algebraic space. Namely, if F where an
algebraic space it would be a quasi-compact and separated (by our description of
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fibre products over F ) algebraic space. Hence cohomology of quasi-coherent sheaves
would vanish above a certain cutoff (see Cohomology of Spaces, Proposition 69.7.2
and remarks preceding it). But clearly by taking the pullback of O(−2,−2, . . . ,−2)
under the projection

(P1)∞ −→ (P1)n

(which has a section) we can obtain a quasi-coherent sheaf whose cohomology is
nonzero in degree n. Altogether we obtain an answer to a question asked by Anton
Geraschenko on mathoverflow.

Lemma 110.55.1.078F There exists a functor F : Schopp → Sets which satisfies the sheaf
condition for the fpqc topology, has representable diagonal ∆ : F → F × F , and
such that there exists a surjective, flat, universally open, quasi-compact morphism
U → F where U is a scheme, but such that F is not an algebraic space.

Proof. See discussion above. □

110.56. Sheaves and specializations

05LD In the following we fix a big étale site Schétale as constructed in Topologies, Defi-
nition 34.4.6. Moreover, a scheme will be an object of this site. Recall that if x, x′

are points of a scheme X we say x is a specialization of x′ or we write x′ ⇝ x if
x ∈ {x′}. This is true in particular if x = x′.
Consider the functor F : Schétale → Ab defined by the following rules:

F (X) =
∏

x∈X

∏
x′∈X,x′⇝x,x′ ̸=x

Z/2Z

Given a scheme X we denote |X| the underlying set of points. An element a ∈ F (X)
will be viewed as a map of sets |X|×|X| → Z/2Z, (x, x′) 7→ a(x, x′) which is zero if
x = x′ or if x is not a specialization of x′. Given a morphism of schemes f : X → Y
we define

F (f) : F (Y ) −→ F (X)
by the rule that for b ∈ F (Y ) we set

F (f)(b)(x, x′) =
{

0 if x is not a specialization of x′

b(f(x), f(x′)) else.
Note that this really does define an element of F (X). We claim that if f : X → Y
and g : Y → Z are composable morphisms then F (f) ◦ F (g) = F (g ◦ f). Namely,
let c ∈ F (Z) and let x′ ⇝ x be a specialization of points in X, then

F (g ◦ f)(x, x′) = c(g(f(x)), g(f(x′))) = F (g)(F (f)(c))(x, x′)
because f(x′)⇝ f(x). (This also works if f(x) = f(x′).)
Let G be the sheafification of F in the étale topology.
I claim that if X is a scheme and x′ ⇝ x is a specialization and x′ ̸= x, then
G(X) ̸= 0. Namely, let a ∈ F (X) be an element such that when we think of a as a
function |X| × |X| → Z/2Z it is nonzero at (x, x′). Let {fi : Ui → X} be an étale
covering of X. Then we can pick an i and a point ui ∈ Ui with fi(ui) = x. Since
generalizations lift along flat morphisms (see Morphisms, Lemma 29.25.9) we can
find a specialization u′

i ⇝ ui with fi(u′
i) = x′. By our construction above we see

that F (fi)(a) ̸= 0. Hence a determines a nonzero element of G(X).

https://stacks.math.columbia.edu/tag/078F
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Note that if X = Spec(k) where k is a field (or more generally a ring all of whose
prime ideals are maximal), then F (X) = 0 and for every étale morphism U → X
we have F (U) = 0 because there are no specializations between distinct points in
fibres of an étale morphism. Hence G(X) = 0.
Suppose that X ⊂ X ′ is a thickening, see More on Morphisms, Definition 37.2.1.
Then the category of schemes étale over X ′ is equivalent to the category of schemes
étale over X by the base change functor U ′ 7→ U = U ′×X′X, see Étale Cohomology,
Theorem 59.45.2. Since it is always the case that F (U) = F (U ′) in this situation
we see that also G(X) = G(X ′).
As a variant we can consider the presheaf Fn which associates to a scheme X
the collection of maps a : |X|n+1 → Z/2Z where a(x0, . . . , xn) is nonzero only if
xn ⇝ . . .⇝ x0 is a sequence of specializations and xn ̸= xn−1 ̸= . . . ̸= x0. Let Gn
be the sheaf associated to Fn. In exactly the same way as above one shows that
Gn is nonzero if dim(X) ≥ n and is zero if dim(X) < n.
Lemma 110.56.1.05LE There exists a sheaf of abelian groups G on Schétale with the
following properties

(1) G(X) = 0 whenever dim(X) < n,
(2) G(X) is not zero if dim(X) ≥ n, and
(3) if X ⊂ X ′ is a thickening, then G(X) = G(X ′).

Proof. See the discussion above. □

Remark 110.56.2.05LF Here are some remarks:
(1) The presheaves F and Fn are separated presheaves.
(2) It turns out that F , Fn are not sheaves.
(3) One can show that G, Gn is actually a sheaf for the fppf topology.

We will prove these results if we need them.

110.57. Sheaves and constructible functions

05LG In the following we fix a big étale site Schétale as constructed in Topologies, Defini-
tion 34.4.6. Moreover, a scheme will be an object of this site. In this section we say
that a constructible partition of a scheme X is a locally finite disjoint union decom-
position X =

∐
i∈I Xi such that each Xi ⊂ X is a locally constructible subset of X.

Locally finite means that for any quasi-compact open U ⊂ X there are only finitely
many i ∈ I such that Xi ∩ U is not empty. Note that if f : X → Y is a morphism
of schemes and Y =

∐
Yj is a constructible partition, then X =

∐
f−1(Yj) is a

constructible partition of X. Given a set S and a scheme X a constructible function
f : |X| → S is a map such that X =

∐
s∈S f

−1(s) is a constructible partition of
X. If G is an (abstract group) and a, b : |X| → G are constructible functions, then
ab : |X| → G, x 7→ a(x)b(x) is a constructible function too. The reason is that
given any two constructible partitions there is a third one refining both.
Let A be any abelian group. For any scheme X we define

F (X) = {a : |X| → A | a is a constructible function}
{locally constant functions |X| → A}

We think of an element a of F (X) simply as a function well defined up to adding
a locally constant one. Given a morphism of schemes f : X → Y and an element
b ∈ F (Y ), then we define F (f)(b) = b ◦ f . Thus F is a presheaf on Schétale.

https://stacks.math.columbia.edu/tag/05LE
https://stacks.math.columbia.edu/tag/05LF
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Note that if {fi : Ui → X} is an fppf covering, and a ∈ F (X) is such that F (fi)(a) =
0 in F (Ui), then a ◦ fi is a locally constant function for each i. This means in turn
that a is a locally constant function as the morphisms fi are open. Hence a = 0 in
F (X). Thus we see that F is a separated presheaf (in the fppf topology hence a
fortiori in the étale topology).

Let G be the sheafification of F in the étale topology. Since F is separated, and
since F (X) ̸= 0 for example when X is the spectrum of a discrete valuation ring,
we see that G is not zero.

Let X = Spec(k) where k is a field. Then any étale covering of X can be dominated
by a covering {Spec(k′)→ Spec(k)} with k′/k a finite separable extension of fields.
Since F (Spec(k′)) = 0 we see that G(X) = 0.

Suppose that X ⊂ X ′ is a thickening, see More on Morphisms, Definition 37.2.1.
Then the category of schemes étale over X ′ is equivalent to the category of schemes
étale over X by the base change functor U ′ 7→ U = U ′×X′X, see Étale Cohomology,
Theorem 59.45.2. Since F (U) = F (U ′) in this situation we see that also G(X) =
G(X ′).

The sheaf G is limit preserving, see Limits of Spaces, Definition 70.3.1. Namely, let
R be a ring which is written as a directed colimit R = colimiRi of rings. Set X =
Spec(R) and Xi = Spec(Ri), so that X = limiXi. Then G(X) = colimiG(Xi). To
prove this one first proves that a constructible partition of Spec(R) comes from a
constructible partitions of some Spec(Ri). Hence the result for F . To get the result
for the sheafification, use that any étale ring map R→ R′ comes from an étale ring
map Ri → R′

i for some i. Details omitted.

Lemma 110.57.1.05LH There exists a sheaf of abelian groups G on Schétale with the
following properties

(1) G(Spec(k)) = 0 whenever k is a field,
(2) G is limit preserving,
(3) if X ⊂ X ′ is a thickening, then G(X) = G(X ′), and
(4) G is not zero.

Proof. See discussion above. □

110.58. The lisse-étale site is not functorial

07BF The lisse-étale site Xlisse,étale of X is the category of schemes smooth over X
endowed with (usual) étale coverings, see Cohomology of Stacks, Section 103.14.
Let f : X → Y be a morphism of schemes. There is a functor

u : Ylisse,étale −→ Xlisse,étale, V/Y 7−→ V ×Y X

which is continuous. Hence we obtain an adjoint pair of functors

us : Sh(Xlisse,étale) −→ Sh(Ylisse,étale), us : Sh(Ylisse,étale) −→ Sh(Xlisse,étale),

see Sites, Section 7.13. We claim that, in general, u does not define a morphism
of sites, see Sites, Definition 7.14.1. In other words, we claim that us is not left
exact in general. Note that representable presheaves are sheaves on lisse-étale sites.

https://stacks.math.columbia.edu/tag/05LH
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Hence, by Sites, Lemma 7.13.5 we see that ushV = hV×YX . Now consider two
morphisms

V1

  

a //

b
// V2

~~
Y

of schemes V1, V2 smooth over Y . Now if us is left exact, then we would have
usEqualizer(ha, hb : hV1 → hV2) = Equalizer(ha×1, hb×1 : hV1×YX → hV2×YX)

We will take the morphisms a, b : V1 → V2 such that there exists no morphism from
a scheme smooth over Y into (a = b) ⊂ V1, i.e., such that the left hand side is
the empty sheaf, but such that after base change to X the equalizer is nonempty
and smooth over X. A silly example is to take X = Spec(Fp), Y = Spec(Z) and
V1 = V2 = A1

Z with morphisms a(x) = x and b(x) = x+ p. Note that the equalizer
of a and b is the fibre of A1

Z over (p).

Lemma 110.58.1.07BG The lisse-étale site is not functorial, even for morphisms of
schemes.

Proof. See discussion above. □

110.59. Sheaves on the category of Noetherian schemes

0GE8 Let S be a locally Noetherian scheme. As in Artin’s Axioms, Section 98.25 consider
the inclusion functor

u : (Noetherian/S)fppf −→ (Sch/S)fppf
of the fppf site of locally Noetherian schemes over S into a big fppf site of S. As
explained in the section referenced, this functor is continuous. Hence we obtain an
adjoint pair of functors

us : Sh((Sch/S)fppf ) −→ Sh((Noetherian/S)fppf )
and

us : Sh((Noetherian/S)fppf ) −→ Sh((Sch/S)fppf )
see Sites, Section 7.13. However, we claim that u in general does not define a
morphism of sites, see Sites, Definition 7.14.1. In other words, we claim that the
functor us is not left exact in general.
Let p be a prime number and set S = Spec(Fp). Consider the injective map of
sheaves

a : F −→ G
on (Noetherian/S)fppf defined as follows: for U a locally Noetherian scheme over
S we define

G(U) = Γ(U,OU )∗ = MorS(U,Gm,S)
and we take

F(U) = {f ∈ G(U) | fppf locally f has arbitrary p-power roots}
A Noetherian Fp-algebra A has a nilpotent nilradical I ⊂ A, the p-power roots of 1
in A are of the elements of the form 1 + a, a ∈ I, and hence no-nontrivial p-power
root of 1 has arbitrary p-power roots. We conclude that F(U) is a p-torsion free

https://stacks.math.columbia.edu/tag/07BG
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abelian group for any locally Noetherian scheme U ; some details omitted. It follows
that p : F → F is an injective map of abelian sheaves on (Noetherian/S)fppf .
To get a contradiction, assume us is exact. Then p : usF → usF is injective too
and we find that (usF)(V ) is a p-torsion free abelian group for any V over S. Since
representable presheaves are sheaves on fppf sites, by Sites, Lemma 7.13.5, we see
that usG is represented by Gm,S . Using that usF → usG is injective, we find a
p-torsion free subgroup

(usF)(V ) ⊂ Γ(V,OV )∗

for every scheme V over S with the following property: for every morphism V → U
of schemes over S with U locally Noetherian the subgroup

F(U) ⊂ Γ(U,OU )∗

maps into the subgroup (usF)(V ) by the restriction mapping Γ(U,OU )∗ → Γ(V,OV )∗.
The actual contradiction now is obtained as follows: let k =

⋃
n≥0 Fp(t1/p

n) and
set

B = k ⊗Fp(t) k

and V = Spec(B). Since we have the two projection morphisms V → Spec(k)
corresponding to the two coprojections k → B and since Spec(k) is Noetherian, we
conclude the subgroup

(usF)(V ) ⊂ B∗

contains k∗ ⊗ 1 and 1⊗ k∗. This is a contradiction because
(t1/p ⊗ 1) · (1⊗ t−1/p) = t1/p ⊗ t−1/p

is a nontrivial p-torsion unit of B.

Lemma 110.59.1.0GE9 With S = Spec(Fp) the inclusion functor (Noetherian/S)fppf →
(Sch/S)fppf does not define a morphism of sites.

Proof. See discussion above. □

110.60. Derived pushforward of quasi-coherent modules

07DC Let k be a field of characteristic p > 0. Let S = Spec(k[x]). Let G = Z/pZ viewed
either as an abstract group or as a constant group scheme over S. Consider the
algebraic stack X = [S/G] where G acts trivially on S, see Examples of Stacks,
Remark 95.15.5 and Criteria for Representability, Lemma 97.18.3. Consider the
structure morphism

f : X −→ S

This morphism is quasi-compact and quasi-separated. Hence we get a functor
RfQCoh,∗ : D+

QCoh(OX ) −→ D+
QCoh(OS),

see Derived Categories of Stacks, Proposition 104.6.1. Let’s compute RfQCoh,∗OX .
Since DQCoh(OS) is equivalent to the derived category of k[x]-modules (see Derived
Categories of Schemes, Lemma 36.3.5) this is equivalent to computing RΓ(X ,OX ).
For this we can use the covering S → X and the spectral sequence

Hq(S ×X . . .×X S,O)⇒ Hp+q(X ,OX )
see Cohomology of Stacks, Proposition 103.11.6. Note that

S ×X . . .×X S = S ×Gp

https://stacks.math.columbia.edu/tag/0GE9
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which is affine. Thus the complex

k[x]→ Map(G, k[x])→ Map(G2, k[x])→ . . .

computes RΓ(X ,OX ). Here for φ ∈ Map(Gp−1, k[x]) its differential is the map
which sends (g1, . . . , gp) to

φ(g2, . . . , gp) +
∑p−1

i=1
(−1)iφ(g1, . . . , gi + gi+1, . . . , gp) + (−1)pφ(g1, . . . , gp−1).

This is just the complex computing the group cohomology of G acting trivially on
k[x] (insert future reference here). The cohomology of the cyclic group G on k[x] is
exactly one copy of k[x] in each cohomological degree ≥ 0 (insert future reference
here). We conclude that

Rf∗OX =
⊕

n≥0
OS [−n]

Now, consider the complex

E =
⊕

m≥0
OX [m]

This is an object of DQCoh(OX ). We interrupt the discussion for a general result.

Lemma 110.60.1.08IY Let X be an algebraic stack. Let K be an object of D(OX )
whose cohomology sheaves are locally quasi-coherent (Sheaves on Stacks, Definition
96.12.1) and satisfy the flat base change property (Cohomology of Stacks, Definition
103.7.1). Then there exists a distinguished triangle

K →
∏

n≥0
τ≥−nK →

∏
n≥0

τ≥−nK → K[1]

in D(OX ). In other words, K is the derived limit of its canonical truncations.

Proof. Recall that we work on the “big fppf site” Xfppf of X (by our conventions
for sheaves of OX -modules in the chapters Sheaves on Stacks and Cohomology on
Stacks). Let B be the set of objects x of Xfppf which lie over an affine scheme U .
Combining Sheaves on Stacks, Lemmas 96.23.2, 96.16.1, Descent, Lemma 35.12.4,
and Cohomology of Schemes, Lemma 30.2.2 we see that Hp(x,F) = 0 if F is
locally quasi-coherent and x ∈ B. Now the claim follows from Cohomology on
Sites, Lemma 21.23.10 with d = 0. □

Lemma 110.60.2.08IZ Let X be an algebraic stack. If Fn is a collection of locally
quasi-coherent sheaves with the flat base change property on X , then ⊕nFn[n] →∏
n Fn[n] is an isomorphism in D(OX ).

Proof. This is true because by Lemma 110.60.1 we see that the direct sum is iso-
morphic to the product. □

We continue our discussion. Since a quasi-coherent module is locally quasi-coherent
and satisfies the flat base change property (Sheaves on Stacks, Lemma 96.12.2) we
get

E =
∏

m≥0
OX [m]

Since cohomology commutes with limits we see that

Rf∗E =
∏

m≥0

(⊕
n≥0
OS [m− n]

)
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https://stacks.math.columbia.edu/tag/08IZ


110.62. WEAKLY ASSOCIATED POINTS AND SCHEME THEORETIC DENSITY 7325

Note that this complex is not an object of DQCoh(OS) because the cohomology
sheaf in degree 0 is an infinite product of copies of OS which is not even a locally
quasi-coherent OS-module.

Lemma 110.60.3.07DD A quasi-compact and quasi-separated morphism f : X → Y of
algebraic stacks need not induce a functor Rf∗ : DQCoh(OX )→ DQCoh(OY).

Proof. See discussion above. □

110.61. A big abelian category

07JS The purpose of this section is to give an example of a “big” abelian category A
and objects M,N such that the collection of isomorphism classes of extensions
ExtA(M,N) is not a set. The example is due to Freyd, see [Fre64, page 131,
Exercise A].
We define A as follows. An object of A consists of a triple (M,α, f) where M is
an abelian group and α is an ordinal and f : α→ End(M) is a map. A morphism
(M,α, f)→ (M ′, α′, f ′) is given by a homomorphism of abelian groups φ : M →M ′

such that for any ordinal β we have
φ ◦ f(β) = f ′(β) ◦ φ

Here the rule is that we set f(β) = 0 if β is not in α and similarly we set f ′(β) equal
to zero if β is not an element of α′. We omit the verification that the category so
defined is abelian.
Consider the object Z = (Z, ∅, f), i.e., all the operators are zero. The observation is
that computed in A the group Ext1

A(Z,Z) is a proper class and not a set. Namely,
for each ordinal α we can find an extension (M,α+1, f) of Z by Z whose underlying
group is M = Z⊕ Z and where the value of f is always zero except for

f(α) =
(

0 1
0 0

)
.

This clearly produces a proper class of isomorphism classes of extensions. In partic-
ular, the derived category of A has proper classes for its collections of morphism, see
Derived Categories, Lemma 13.27.6. This means that some care has to be exercised
when defining Verdier quotients of triangulated categories.

Lemma 110.61.1.07JT There exists a “big” abelian category A whose Ext-groups are
proper classes.

Proof. See discussion above. □

110.62. Weakly associated points and scheme theoretic density

084J Let k be a field. Let R = k[z, xi, yi]/(z2, zxiyi) where i runs over the elements of
N. Note that R = R0 ⊕M0 where R0 = k[xi, yi] is a subring and M0 is an ideal of
square zero with M0 ∼= R0/(xiyi) as R0-module. The prime p = (z, xi) is weakly
associated to R as an R-module (Algebra, Definition 10.66.1). Indeed, the element
z in Rp is nonzero but annihilated by pRp. On the other hand, consider the open
subscheme

U =
⋃
D(xi) ⊂ Spec(R) = S

We claim that U ⊂ S is scheme theoretically dense (Morphisms, Definition 29.7.1).
To prove this it suffices to show that OS → j∗OU is injective where j : U → S is the

https://stacks.math.columbia.edu/tag/07DD
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inclusion morphism, see Morphisms, Lemma 29.7.5. Translated back into algebra,
we have to show that for all g ∈ R the map

Rg −→
∏

Rxig

is injective. Write g = g0 +m0 with g0 ∈ R0 and m0 ∈M0. Then Rg = Rg0 (details
omitted). Hence we may assume g ∈ R0. We may also assume g is not zero. Now
Rg = (R0)g⊕(M0)g. Since R0 is a domain, the map (R0)g →

∏
(R0)xig is injective.

If g ∈ (xiyi) then (M0)g = 0 and there is nothing to prove. If g ̸∈ (xiyi) then, since
(xiyi) is a radical ideal of R0, we have to show that M0 →

∏
(M0)xig is injective.

The kernel of R0 →M0 → (M0)xn is (xiyi, yn). Since (xiyi, yn) is a radical ideal, if
g ̸∈ (xiyi, yn) then the kernel of R0 →M0 → (M0)xng is (xiyi, yn). As g ̸∈ (xiyi, yn)
for all n ≫ 0 we conclude that the kernel is contained in

⋂
n≫0(xiyi, yn) = (xiyi)

as desired.

Second example due to Ofer Gabber. Let k be a field and let R, resp. R′ be the
ring of functions N → k, resp. the ring of eventually constant functions N → k.
Then Spec(R), resp. Spec(R′) is the Stone-Čech compactification3 βN, resp. the
one point compactification4 N∗ = N∪ {∞}. All points are weakly associated since
all primes are minimal in the rings R and R′.

Lemma 110.62.1.084K There exists a reduced scheme X and a schematically dense open
U ⊂ X such that some weakly associated point x ∈ X is not in U .

Proof. In the first example we have p ̸∈ U by construction. In Gabber’s examples
the schemes Spec(R) or Spec(R′) are reduced. □

110.63. Example of non-additivity of traces

087J Let k be a field and let R = k[ϵ] be the ring of dual numbers over k. In other words,
R = k[x]/(x2) and ϵ is the congruence class of x in R. Consider the short exact
sequence of complexes

0

��

// R

ϵ

��

1
// R

��
R

1 // R // 0
Here the columns are the complexes, the first row is placed in degree 0, and the
second row in degree 1. Denote the first complex (i.e., the left column) by A•, the
second by B• and the third C•. We claim that the diagram

(110.63.0.1)087K
A•

1+ϵ
��

// B• //

1
��

C•

1
��

A• // B• // C•

3Every element f ∈ R is of the form ue where u is a unit and e is an idempotent. Then
Algebra, Lemma 10.26.5 shows Spec(R) is Hausdorff. On the other hand, N with the discrete
topology can be viewed as a dense open subset. Given a set map N → X to a Hausdorff, quasi-
compact topological space X, we obtain a ring map C0(X; k)→ R where C0(X; k) is the k-algebra
of locally constant maps X → k. This gives Spec(R)→ Spec(C0(X; k)) = X proving the universal
property.

4Here one argues that there is really only one extra maximal ideal in R′.

https://stacks.math.columbia.edu/tag/084K
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commutes in K(R), i.e., is a diagram of complexes commuting up to homotopy.
Namely, the square on the right commutes and the one on the left is off by the
homotopy 1 : A1 → B0. On the other hand,

TrA•(1 + ϵ) + TrC•(1) ̸= TrB•(1).

Lemma 110.63.1.087L There exists a ring R, a distinguished triangle (K,L,M,α, β, γ)
in the homotopy category K(R), and an endomorphism (a, b, c) of this distinguished
triangle, such that K, L, M are perfect complexes and TrK(a) + TrM (c) ̸= TrL(b).

Proof. Consider the example above. The map γ : C• → A•[1] is given by multipli-
cation by ϵ in degree 0, see Derived Categories, Definition 13.10.1. Hence it is also
true that

C•

��

γ
// A•[1]

��
C• γ // A•[1]

commutes in K(R) as ϵ(1+ϵ) = ϵ. Thus we indeed have a morphism of distinguished
triangles. □

110.64. Being projective is not local on the base

08J0 In the chapter on descent we have seen that many properties of morphisms are
local on the base, even in the fpqc topology. See Descent, Sections 35.22, 35.23,
and 35.24. This is not true for projectivity of morphisms.

Lemma 110.64.1.08J1 The properties
P(f) =“f is projective”, and
P(f) =“f is quasi-projective”

are not Zariski local on the base. A fortiori, they are not fpqc local on the base.

Proof. Following Hironaka [Har77, Example B.3.4.1], we define a proper morphism
of smooth complex 3-folds f : VY → Y which is Zariski-locally projective, but not
projective. Since f is proper and not projective, it is also not quasi-projective.
Let Y be projective 3-space over the complex numbers C. Let C and D be smooth
conics in Y such that the closed subscheme C ∩D is reduced and consists of two
complex points P and Q. (For example, let C = {[x, y, z, w] : xy = z2, w = 0},
D = {[x, y, z, w] : xy = w2, z = 0}, P = [1, 0, 0, 0], and Q = [0, 1, 0, 0].) On Y −Q,
first blow up the curve C, and then blow up the strict transform of the curve D
(Divisors, Definition 31.33.1). On Y −P , first blow up the curve D, and then blow
up the strict transform of the curve C. Over Y − P −Q, the two varieties we have
constructed are canonically isomorphic, and so we can glue them over Y − P −Q.
The result is a smooth proper 3-fold VY over C. The morphism f : VY → Y is
proper and Zariski-locally projective (since it is a blowup over Y − P and over
Y −Q), by Divisors, Lemma 31.32.13. We will show that VY is not projective over
C. That will imply that f is not projective.
To do this, let L be the inverse image in VY of a complex point of C − P − Q,
and M the inverse image of a complex point of D − P − Q. Then L and M are
isomorphic to the projective line P1

C. Next, let E be the inverse image in VY of
C ∪D ⊂ Y in VY ; thus E → C ∪D is a proper morphism, with fibers isomorphic to
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P1 over (C ∪D)− {P,Q}. The inverse image of P in E is a union of two lines L0
and M0, and we have rational equivalences of cycles L ∼ L0 +M0 and M ∼M0 on
E (using that C and D are isomorphic to P1). Note the asymmetry resulting from
the order in which we blew up the two curves. Near Q, the opposite happens. So
the inverse image of Q is the union of two lines L′

0 and M ′
0, and we have rational

equivalences L ∼ L′
0 and M ∼ L′

0 + M ′
0 on E. Combining these equivalences, we

find that L0 + M ′
0 ∼ 0 on E and hence on VY . If VY were projective over C, it

would have an ample line bundle H, which would have degree > 0 on all curves in
VY . In particular H would have positive degree on L0 +M ′

0, contradicting that the
degree of a line bundle is well-defined on 1-cycles modulo rational equivalence on a
proper scheme over a field (Chow Homology, Lemma 42.20.3 and Lemma 42.28.2).
So VY is not projective over C. □

In different terminology, Hironaka’s 3-fold VY is a small resolution of the blowup
Y ′ of Y along the reduced subscheme C ∪ D; here Y ′ has two node singularities.
If we define Z by blowing up Y along C and then along the strict transform of D,
then Z is a smooth projective 3-fold, and the non-projective 3-fold VY differs from
Z by a “flop” over Y − P .

110.65. Non-effective descent data for projective schemes

08KE In the chapter on descent we have seen that descent data for schemes relative
to an fpqc morphism are effective for several classes of morphisms. In particular,
affine morphisms and more generally quasi-affine morphisms satisfy descent for fpqc
coverings (Descent, Lemma 35.38.1). This is not true for projective morphisms.

Lemma 110.65.1.08KF There is an etale covering X → S of schemes and a descent
datum (V/X,φ) relative to X → S such that V → X is projective, but the descent
datum is not effective in the category of schemes.

Proof. We imitate Hironaka’s example of a smooth separated complex algebraic
space of dimension 3 which is not a scheme [Har77, Example B.3.4.2].
Consider the action of the group G = Z/2 = {1, g} on projective 3-space P3 over
the complex numbers by

g[x, y, z, w] = [y, x, w, z].
The action is free outside the two disjoint lines L1 = {[x, x, z, z]} and L2 =
{[x,−x, z,−z]} in P3. Let Y = P3− (L1 ∪L2). There is a smooth quasi-projective
scheme S = Y/G over C such that Y → S is a G-torsor (Groupoids, Definition
39.11.3). Explicitly, we can define S as the image of the open subset Y in P3 under
the morphism

P3 → Proj C[x, y, z, w]G

= Proj C[u0, u1, v0, v1, v2]/(v0v1 = v2
2),

where u0 = x+y, u1 = z+w, v0 = (x−y)2, v1 = (z−w)2, and v2 = (x−y)(z−w),
and the ring is graded with u0, u1 in degree 1 and v0, v1, v2 in degree 2.
Let C = {[x, y, z, w] : xy = z2, w = 0} and D = {[x, y, z, w] : xy = w2, z = 0}.
These are smooth conic curves in P3, contained in the G-invariant open subset
Y , with g(C) = D. Also, C ∩ D consists of the two points P := [1, 0, 0, 0] and
Q := [0, 1, 0, 0], and these two points are switched by the action of G.

https://stacks.math.columbia.edu/tag/08KF
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Let VY → Y be the scheme which over Y − P is defined by blowing up D and
then the strict transform of C, and over Y − Q is defined by blowing up C and
then the strict transform of D. (This is the same construction as in the proof of
Lemma 110.64.1, except that Y here denotes an open subset of P3 rather than all
of P3.) Then the action of G on Y lifts to an action of G on VY , which switches
the inverse images of Y − P and Y − Q. This action of G on VY gives a descent
datum (VY /Y, φY ) on VY relative to the G-torsor Y → S. The morphism VY → Y
is proper but not projective, as shown in the proof of Lemma 110.64.1.
Let X be the disjoint union of the open subsets Y − P and Y − Q; then we have
surjective etale morphisms X → Y → S. Let V be the pullback of VY → Y to X;
then the morphism V → X is projective, since VY → Y is a blowup over each of
the open subsets Y −P and Y −Q. Moreover, the descent datum (VY /Y, φY ) pulls
back to a descent datum (V/X,φ) relative to the etale covering X → S.
Suppose that this descent datum is effective in the category of schemes. That is,
there is a scheme U → S which pulls back to the morphism V → X together with
its descent datum. Then U would be the quotient of VY by its G-action.

V //

��

X

��
VY //

��

Y

��
U // S

Let E be the inverse image of C ∪ D ⊂ Y in VY ; thus E → C ∪ D is a proper
morphism, with fibers isomorphic to P1 over (C ∪D)− {P,Q}. The inverse image
of P in E is a union of two lines L0 and M0. It follows that the inverse image of Q =
g(P ) in E is the union of two lines L′

0 = g(M0) and M ′
0 = g(L0). As shown in the

proof of Lemma 110.64.1, we have a rational equivalence L0 +M ′
0 = L0 +g(L0) ∼ 0

on E.
By descent of closed subschemes, there is a curve L1 ⊂ U (isomorphic to P1) whose
inverse image in VY is L0 ∪ g(L0). (Use Descent, Lemma 35.37.1, noting that a
closed immersion is an affine morphism.) Let R be a complex point of L1. Since
we assumed that U is a scheme, we can choose a function f in the local ring OU,R
that vanishes at R but not on the whole curve L1. Let Dloc be an irreducible
component of the closed subset {f = 0} in SpecOU,R; then Dloc has codimension
1. The closure of Dloc in U is an irreducible divisor DU in U which contains the
point R but not the whole curve L1. The inverse image of DU in VY is an effective
divisor D which intersects L0∪g(L0) but does not contain either curve L0 or g(L0).
Since the complex 3-fold VY is smooth, O(D) is a line bundle on VY . We use
here that a regular local ring is factorial, or in other words is a UFD, see More on
Algebra, Lemma 15.121.2. The restriction of O(D) to the proper surface E ⊂ VY is
a line bundle which has positive degree on the 1-cycle L0+g(L0), by our information
on D. Since L0 + g(L0) ∼ 0 on E, this contradicts that the degree of a line bundle
is well-defined on 1-cycles modulo rational equivalence on a proper scheme over a
field (Chow Homology, Lemma 42.20.3 and Lemma 42.28.2). Therefore the descent
datum (V/X,φ) is in fact not effective; that is, U does not exist as a scheme. □
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In this example, the descent datum is effective in the category of algebraic spaces.
More precisely, U exists as a smooth separated algebraic space of dimension 3 over
C, for example by Algebraic Spaces, Lemma 65.14.3. Hironaka’s 3-fold U is a
small resolution of the blowup S′ of the smooth quasi-projective 3-fold S along the
irreducible nodal curve (C ∪D)/G; the 3-fold S′ has a node singularity. The other
small resolution of S′ (differing from U by a “flop”) is again an algebraic space
which is not a scheme.

110.66. A family of curves whose total space is not a scheme

0D5D In Quot, Section 99.15 we define a family of curves over a scheme S to be a proper,
flat, finitely presented morphism of relative dimension ≤ 1 from an algebraic space
X to S. If S is the spectrum of a complete Noetherian local ring, then X is a
scheme, see More on Morphisms of Spaces, Lemma 76.43.6. In this section we show
this is not true in general.
Let k be a field. We start with a proper flat morphism

Y −→ A1
k

and a point y ∈ Y (k) lying over 0 ∈ A1
k(k) with the following properties

(1) the fibre Y0 is a smooth geometrically irreducible curve over k,
(2) for any proper closed subscheme T ⊂ Y dominating A1

k the intersection
T ∩ Y0 contains at least one point distinct from y.

Given such a surface we construct our example as follows.

Y

  

Z

��

oo // X

~~
A1
k

Here Z → Y is the blowup of Y in y. Let E ⊂ Z be the exceptional divisor and
let C ⊂ Z be the strict transform of Y0. We have Z0 = E ∪C scheme theoretically
(to see this use that Y is smooth at y and moreover Y → A1

k is smooth at y). By
Artin’s results ([Art70]; use Semistable Reduction, Lemma 55.9.7 to see that the
normal bundle of C is negative) we can blow down the curve C in Z to obtain an
algebraic space X as in the diagram. Let x ∈ X(k) be the image of C.
We claim that X is not a scheme. Namely, if it were a scheme, then there would be
an affine open neighbourhood U ⊂ X of x. Set T = X \ U . Then T dominates A1

k

(as the fibres of X → A1
k are proper of dimension 1 and the fibres of U → A1

k are
affine hence different). Let T ′ ⊂ Z be the closed subscheme mapping isomorphically
to T (as x ̸∈ T ). Then the image of T ′ in X contradicts condition (2) above (as
T ′ ∩ Z0 is contained in the exceptional divisor E of the blowing up Z → Y ).
To finish the discussion we need to construct our Y . We will assume the character-
istic of k is not 3. Write A1

k = Spec(k[t]) and take
Y : T 3

0 + T 3
1 + T 3

2 − tT0T1T2 = 0
in P2

k[t]. The fibre of this for t = 0 is a smooth projective genus 1 curve. On the
affine piece V+(T0) we get the affine equation

1 + x3 + y3 − txy = 0
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which defines a smooth surface over k. Since the same is true on the other affine
pieces by symmetry we see that Y is a smooth surface. Finally, we see from the affine
equation also that the fraction field is k(x, y) hence Y is a rational surface. Now
the Picard group of a rational surface is finitely generated (insert future reference
here). Hence in order to choose y ∈ Y0(k) with property (2) it suffices to choose y
such that
(110.66.0.1)0DYB OY0(ny) ̸∈ Im(Pic(Y )→ Pic(Y0)) for all n > 0
Namely, the sum of the 1-dimensional irreducible components of a T contradicting
(2) would give an effective Cartier divisor intersection Y0 in the divisor ny for some
n ≥ 1 and we would conclude that OY0(ny) is in the image of the restriction map.
Observe that since Y0 has genus ≥ 1 the map

Y0(k)→ Pic(Y0), y 7→ OY0(y)
is injective. Now if k is an uncountable algebraically closed field, then using the
countability of Pic(Y ) and the remark just made, we can find a y ∈ Y0(k) satisfying
(110.66.0.1) and hence (2).

Lemma 110.66.1.0D5E There exists a field k and a family of curves X → A1
k such that

X is not a scheme.

Proof. See discussion above. □

110.67. Derived base change

08J2 Let R → R′ be a ring map. In More on Algebra, Section 15.60 we construct a
derived base change functor − ⊗L

R R
′ : D(R) → D(R′). Next, let R → A be a

second ring map. Picture

A // A⊗R R′ A′

R

OO

// R′

OO ::

Given an A-module M the tensor product M ⊗R R′ is a A ⊗R R′-module, i.e., an
A′-module. For the ring map A→ A′ there is a derived functor

−⊗L
A A

′ : D(A) −→ D(A′)
but this functor does not agree with − ⊗L

R R
′ in general. More precisely, for K ∈

D(A) the canonical map
K ⊗L

R R
′ −→ K ⊗L

A A
′

inD(R′) constructed in More on Algebra, Equation (15.61.0.1) isn’t an isomorphism
in general. Thus one may wonder if there exists a “derived base change functor”
T : D(A) → D(A′), i.e., a functor such that T (K) maps to K ⊗L

R R
′ in D(R′). In

this section we show it does not exist in general.
Let k be a field. Set R = k[x, y]. Set R′ = R/(xy) and A = R/(x2). The object
A⊗L

R R
′ in D(R′) is represented by

x2 : R′ −→ R′

and we have H0(A⊗L
RR

′) = A⊗RR′. We claim that there does not exist an object
E of D(A⊗RR′) mapping to A⊗L

RR
′ in D(R′). Namely, for such an E the module

H0(E) would be free, hence E would decompose as H0(E)[0]⊕H−1(E)[1]. But it

https://stacks.math.columbia.edu/tag/0D5E
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is easy to see that A⊗L
R R

′ is not isomorphic to the sum of its cohomology groups
in D(R′).
Lemma 110.67.1.08J3 Let R → R′ and R → A be ring maps. In general there does
not exist a functor T : D(A)→ D(A⊗RR′) of triangulated categories such that an
A-module M gives an object T (M) of D(A⊗R R′) which maps to M ⊗L

R R
′ under

the map D(A⊗R R′)→ D(R′).
Proof. See discussion above. □

110.68. An interesting compact object

09R4 Let R be a ring. Let (A,d) be a differential graded R-algebra. If A = R, then
we know that every compact object of D(A,d) = D(R) is represented by a finite
complex of finite projective modules. In other words, compact objects are per-
fect, see More on Algebra, Proposition 15.78.3. The analogue in the language of
differential graded modules would be the question: “Is every compact object of
D(A,d) represented by a differential graded A-module P which is finite and graded
projective?”
For general differential graded algebras, this is not true. Namely, let k be a field of
characteristic 2 (so we don’t have to worry about signs). Let A = k[x, y]/(y2) with

(1) x of degree 0
(2) y of degree −1,
(3) d(x) = 0, and
(4) d(y) = x2 + x.

Then x : A→ A is a projector in K(A,d). Hence we see that
A = Ker(x)⊕ Im(1− x)

in K(A,d), see Differential Graded Algebra, Lemma 22.5.4 and Derived Categories,
Lemma 13.4.14. It is clear that A is a compact object of D(A,d). Then Ker(x) is
a compact object of D(A,d) as follows from Derived Categories, Lemma 13.37.2.
Next, suppose that M is a differential graded (right) A-module representing Ker(x)
and suppose that M is finite and projective as a graded A-module. Because every
finite graded projective module over k[x, y]/(y2) is graded free, we see that M is
finite free as a graded k[x, y]/(y2)-module (i.e., when we forget the differential). We
set N = M/M(x2 + x). Consider the exact sequence

0→M
x2+x−−−→M → N → 0

Since x2 +x is of degree 0, in the center of A, and d(x2 +x) = 0 we see that this is a
short exact sequence of differential graded A-modules. Moreover, as d(y) = x2 + x
we see that the differential on N is linear. The maps

H−1(N)→ H0(M) and H0(M)→ H0(N)
are isomorphisms as H∗(M) = H0(M) = k since M ∼= Ker(x) in D(A,d). A
computation of the boundary map shows that H∗(N) = k[x, y]/(x, y2) as a graded
module; we omit the details. Since N is a free k[x, y]/(y2, x2 + x)-module we have
a resolution

. . .→ N [2] y−→ N [1] y−→ N → N/Ny → 0
compatible with differentials. Since N is bounded and since H0(N) = k[x, y]/(x, y2)
it follows from Homology, Lemma 12.25.3 that H0(N/Ny) = k[x]/(x). But as

https://stacks.math.columbia.edu/tag/08J3
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N/Ny is a finite complex of free k[x]/(x2 + x) = k × k-modules, we see that its
cohomology has to have even dimension, a contradiction.

Lemma 110.68.1.09R5 There exists a differential graded algebra (A,d) and a compact
object E of D(A,d) such that E cannot be represented by a finite and graded
projective differential graded A-module.

Proof. See discussion above. □

110.69. Two differential graded categories

09R6 In this section we construct two differential graded categories satisfying axioms (A),
(B), and (C) as in Differential Graded Algebra, Situation 22.27.2 whose objects do
not come with a Z-grading.
Example I. Let X be a topological space. Denote Z the constant sheaf with value
Z. Let A be an Z-torsor. In this setting we say a sheaf of abelian groups F is A-
graded if given a local section a ∈ A(U) there is a projector pa : F|U → F|U such
that whenever we have a local isomorphism Z|U → A|U then F|U =

⊕
n∈Z pn(F).

Another way to say this is that locally on X the abelian sheaf F has a Z-grading,
but on overlaps the different choices of gradings differ by a shift in degree given by
the transition functions for the torsor A. We say that a pair (F ,d) is an A-graded
complex of abelian sheaves, if F is an A-graded abelian sheaf and d : F → F is a
differential, i.e., d2 = 0 such that pa+1 ◦ d = d ◦ pa for every local section a of A.
In other words, d(pa(F)) is contained in pa+1(F).
Next, consider the category A with

(1) objects are A-graded complexes of abelian sheaves, and
(2) for objects (F ,d), (G,d) we set

HomA((F ,d), (G,d)) =
⊕

Homn(F ,G)

where Homn(F ,G) is the group of maps of abelian sheaves f such that
f(pa(F)) ⊂ pa+n(G) for all local sections a of A. As differential we take
d(f) = d ◦ f − (−1)nf ◦ d, see Differential Graded Algebra, Example
22.26.6.

We omit the verification that this is indeed a differential graded category satisfying
(A), (B), and (C). All the properties may be verified locally on X where one just
recovers the differential graded category of complexes of abelian sheaves. Thus we
obtain a triangulated category K(A).
Twisted derived category of X. Observe that given an object (F ,d) of A, there is
a well defined A-graded cohomology sheaf H(F ,d). Hence it is clear what is meant
by a quasi-isomorphism in K(A). We can invert quasi-isomorphisms to obtain the
derived category D(A) of complexes of A-graded sheaves. If A is the trivial torsor,
then D(A) is equal to D(X), but for nonzero torsors, one obtains a kind of twisted
derived category of X.
Example II. Let C be a smooth curve over a perfect field k of characteristic 2.
Then ΩC/k comes endowed with a canonical square root. Namely, we can write
ΩC/k = L⊗2 such that for every local function f on C the section d(f) is equal to
s⊗2 for some local section s of L. The “reason” is that

d(a0 + a1t+ . . .+ adt
d) = (

∑
i odd

a
1/2
i t(i−1)/2)2dt

https://stacks.math.columbia.edu/tag/09R5


110.70. THE STACK OF PROPER ALGEBRAIC SPACES IS NOT ALGEBRAIC 7334

(insert future reference here). This in particular determines a canonical connection
∇can : ΩC/k −→ ΩC/k ⊗OC

ΩC/k
whose 2-curvature is zero (namely, the unique connection such that the squares
have derivative equal to zero). Observe that the category of vector bundles with
connections is a tensor category, hence we also obtain canonical connections ∇can
on the invertible sheaves Ω⊗n

C/k for all n ∈ Z.

Let A be the category with
(1) objects are pairs (F ,∇) consisting of a finite locally free sheaf F endowed

with a connection
∇ : F −→ F ⊗OC

ΩC/k
whose 2-curvature is zero, and

(2) morphisms between (F ,∇F ) and (G,∇G) are given by

HomA((F ,∇F ), (G,∇G)) =
⊕

HomOC
(F ,G ⊗OC

Ω⊗n
C/k)

For an element f : F → G ⊗ Ω⊗n
C/k of degree n we set

d(f) = ∇G⊗Ω⊗n
C/k
◦ f + f ◦ ∇F

with suitable identifications.
We omit the verification that this forms a differential graded category with prop-
erties (A), (B), (C). Thus we obtain a triangulated homotopy category K(A).
If C = P1

k, then K(A) is the zero category. However, if C is a smooth proper curve
of genus > 1, then K(A) is not zero. Namely, suppose that N is an invertible sheaf
of degree 0 ≤ d < g− 1 with a nonzero section σ. Then set (F ,∇F ) = (OC ,d) and
(G,∇G) = (N⊗2,∇can). We see that

Homn
A((F ,∇F ), (G,∇G)) =

 0 if n < 0
Γ(C,N⊗2) if n = 0

Γ(C,N⊗2 ⊗ ΩC/k) if n = 1

The first 0 because the degree of N⊗2⊗Ω⊗−1
C/k is negative by the condition d < g−1.

Now, the section σ⊗2 has derivative equal zero, hence the homomorphism group
HomK(A)((F ,∇F ), (G,∇G))

is nonzero.

110.70. The stack of proper algebraic spaces is not algebraic

0D1Q In Quot, Section 99.13 we introduced and studied the stack in groupoids
p′
fp,flat,proper : Spaces′

fp,flat,proper −→ Schfppf
the stack whose category of sections over a scheme S is the category of flat, proper,
finitely presented algebraic spaces over S. We proved that this satisfies many of
Artin’s axioms. In this section we why this stack is not algebraic by showing that
formal effectiveness fails in general.
The canonical example uses that the universal deformation space of an abelian
variety of dimension g has g2 formal parameters whereas any effective formal de-
formation can be defined over a complete local ring of dimension ≤ g(g+1)/2. Our
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example will be constructed by writing down a suitable non-effective deformation
of a K3 surface. We will only sketch the argument and not give all the details.

Let k = C be the field of complex numbers. Let X ⊂ P3
k be a smooth degree 4

surface over k. We have ωX ∼= Ω2
X/k
∼= OX . Finally, we have dimkH

0(X,TX/k) = 0,
dimkH

1(X,TX/k) = 20, and dimkH
2(X,TX/k) = 0. Since LX/k = ΩX/k because

X is smooth over k, and since ExtiOX
(ΩX/k,OX) = Hi(X,TX/k), and because we

have Cotangent, Lemma 92.23.1 we find that there is a universal deformation of X
over

k[[x1, . . . , x20]]

Suppose that this universal deformation is effective (as in Artin’s Axioms, Section
98.9). Then we would get a flat, proper morphism

f : Y −→ Spec(k[[x1, . . . , x20]])

where Y is an algebraic space recovering the universal deformation. This is im-
possible for the following reason. Since Y is separated we can find an affine open
subscheme V ⊂ Y . Since the special fibre X of Y is smooth, we see that f is smooth.
Hence Y is regular being smooth over regular and it follows that the complement
D of V in Y is an effective Cartier divisor. Then OY (D) is a nontrivial element
of Pic(Y ) (to prove this you show that the complement of a nonempty affine open
in a proper smooth algebraic space over a field is always a nontrivial in the Picard
group and you apply this to the generic fibre of f). Finally, to get a contradiction,
we show that Pic(Y ) = 0. Namely, the map Pic(Y )→ Pic(X) is injective, because
H1(X,OX) = 0 (hence all deformations of OX to Y × Spec(k[[xi]]/mn) are trivial)
and Grothendieck’s existence theorem (which says that coherent modules giving
rise to the same sheaves on thickenings are isomorphic). If X is general enough,
then Pic(X) = Z generated by OX(1). Hence it suffices to show that OX(n), n > 0
does not deform to the first order neighbourhood5. Consider the cup-product

H1(X,ΩX/k)×H1(X,TX/k) −→ H2(X,OX)

This is a nondegenerate pairing by coherent duality. A computation shows that
the Chern class c1(OX(n)) ∈ H1(X,ΩX/k) in Hodge cohomology is nonzero. Hence
there is a first order deformation whose cup product with c1(OX(n)) is nonzero.
Then finally, one shows this cup product is the obstruction class to lifting.

Lemma 110.70.1.0D1R The stack in groupoids

p′
fp,flat,proper : Spaces′

fp,flat,proper −→ Schfppf

whose category of sections over a scheme S is the category of flat, proper, finitely
presented algebraic spaces over S (see Quot, Section 99.13) is not an algebraic stack.

Proof. If it was an algebraic stack, then every formal object would be effective, see
Artin’s Axioms, Lemma 98.9.5. The discussion above show this is not the case after
base change to Spec(C). Hence the conclusion. □

5This argument works as long as the map c1 : Pic(X)→ H1(X,ΩX/k) is injective, which is
true for k any field of characteristic zero and any smooth hypersurface X of degree 4 in P3

k.

https://stacks.math.columbia.edu/tag/0D1R
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110.71. An example of a non-algebraic Hom-stack

0AF8 Let Y,Z be algebraic stacks over a scheme S. The Hom-stack MorS(Y,Z) is the
stack in groupoids over S whose category of sections over a scheme T is given by
the category

MorT (Y ×S T,Z ×S T )
whose objects are 1-morphisms and whose morphisms are 2-morphisms. We omit
the proof this is indeed a stack in groupoids over (Sch/S)fppf (insert future ref-
erence here). Of course, in general the Hom-stack will not be algebraic. In this
section we give an example where it is not true and where Y is representable by a
proper flat scheme over S and Z is smooth and proper over S.
Let k be an algebraically closed field which is not the algebraic closure of a finite
field. Let S = Spec(k[[t]]) and Sn = Spec(k[t]/(tn)) ⊂ S. Let f : X → S be a map
satisfying the following

(1) f is projective and flat, and its fibres are geometrically connected curves,
(2) the fibre X0 = X ×S S0 is a nodal curve with smooth irreducible compo-

nents whose dual graph has a loop consisting of rational curves,
(3) X is a regular scheme.

To make such a surface X we can take for example
X : T0T1T2 − t(T 3

0 + T 3
1 + T 3

2 ) = 0
in P2

k[[t]]. Let A0 be a non-zero abelian variety over k for example an elliptic curve.
Let A = A0×Spec(k) S be the constant abelian scheme over S associated to A0. We
will show that the stack X = MorS(X, [S/A])) is not algebraic.
Recall that [S/A] is on the one hand the quotient stack of A acting trivially on S
and on the other hand equal to the stack classifying fppf A-torsors, see Examples
of Stacks, Proposition 95.15.3. Observe that [S/A] = [Spec(k)/A0]×Spec(k) S. This
allows us to describe the fibre category over a scheme T as follows

XT = MorS(X, [S/A])T
= MorT (X ×S T, [S/A]×S T )
= MorS(X ×S T, [S/A])
= MorSpec(k)(X ×S T, [Spec(k)/A0])

for any S-scheme T . In other words, the groupoid XT is the groupoid of fppf A0-
torsors on X ×S T . Before we discuss why X is not an algebraic stack, we need a
few lemmas.

Lemma 110.71.1.0AF9 Let W be a two dimensional regular integral Noetherian scheme
with function fieldK. LetG→W be an abelian scheme. Then the mapH1

fppf (W,G)→
H1
fppf (Spec(K), G) is injective.

Sketch of proof. Let P → W be an fppf G-torsor which is trivial in the generic
point. Then we have a morphism Spec(K)→ P over W and we can take its scheme
theoretic image Z ⊂ P . Since P → W is proper (as a torsor for a proper group
algebraic space over W ) we see that Z → W is a proper birational morphism. By
Spaces over Fields, Lemma 72.3.2 the morphism Z →W is finite away from finitely
many closed points of W . By (insert future reference on resolving indeterminacies
of morphisms by blowing quadratic transformations for surfaces) the irreducible

https://stacks.math.columbia.edu/tag/0AF9


110.71. AN EXAMPLE OF A NON-ALGEBRAIC HOM-STACK 7337

components of the geometric fibres of Z → W are rational curves. By More on
Groupoids in Spaces, Lemma 79.11.3 there are no nonconstant morphisms from
rational curves to group schemes or torsors over such. Hence Z → W is finite,
whence Z is a scheme and Z → W is an isomorphism by Morphisms, Lemma
29.54.8. In other words, the torsor P is trivial. □

Lemma 110.71.2.0AFA Let G be a smooth commutative group algebraic space over a
field K. Then H1

fppf (Spec(K), G) is torsion.
Proof. Every G-torsor P over Spec(K) is smooth over K as a form of G. Hence
P has a point over a finite separable extension L/K. Say [L : K] = n. Let [n](P )
denote the G-torsor whose class is n times the class of P in H1

fppf (Spec(K), G).
There is a canonical morphism

P ×Spec(K) . . .×Spec(K) P → [n](P )
of algebraic spaces over K. This morphism is symmetric as G is abelian. Hence it
factors through the quotient

(P ×Spec(K) . . .×Spec(K) P )/Sn
On the other hand, the morphism Spec(L)→ P defines a morphism

(Spec(L)×Spec(K) . . .×Spec(K) Spec(L))/Sn −→ (P ×Spec(K) . . .×Spec(K) P )/Sn
and the reader can verify that the scheme on the left has a K-rational point. Thus
we see that [n](P ) is the trivial torsor. □

To prove X = MorS(X, [S/A]) is not an algebraic stack, by Artin’s Axioms, Lemma
98.9.5, it is enough to show the following.
Lemma 110.71.3.0AFB The canonical map X (S)→ limX (Sn) is not essentially surjec-
tive.
Sketch of proof. Unwinding definitions, it is enough to check that H1(X,A0) →
limH1(Xn, A0) is not surjective. As X is regular and projective, by Lemmas
110.71.2 and 110.71.1 each A0-torsor over X is torsion. In particular, the group
H1(X,A0) is torsion. It is thus enough to show: (a) the group H1(X0, A0) is
non-torsion, and (b) the maps H1(Xn+1, A0) → H1(Xn, A0) are surjective for all
n.
Ad (a). One constructs a nontorsion A0-torsor P0 on the nodal curve X0 by glueing
trivial A0-torsors on each component of X0 using non-torsion points on A0 as the
isomorphisms over the nodes. More precisely, let x ∈ X0 be a node which occurs
in a loop consisting of rational curves. Let X ′

0 → X0 be the normalization of
X0 in X0 \ {x}. Let x′, x′′ ∈ X ′

0 be the two points mapping to x0. Then we take
A0×Spec(k)X

′
0 and we identify A0×x′ with A0×{x′′} using translation A0 → A0 by

a nontorsion point a0 ∈ A0(k) (there is such a nontorsion point as k is algebraically
closed and not the algebraic closure of a finite field – this is actually not trivial to
prove). One can show that the glueing is an algebraic space (in fact one can show
it is a scheme) and that it is an nontorsion A0-torsor over X0. The reason that it is
nontorsion is that if [n](P0) has a section, then that section produces a morphism
s : X ′

0 → A0 such that [n](a0) = s(x′)− s(x′′) in the group law on A0(k). However,
since the irreducible components of the loop are rational to section s is constant on
them ( More on Groupoids in Spaces, Lemma 79.11.3). Hence s(x′) = s(x′′) and
we obtain a contradiction.

https://stacks.math.columbia.edu/tag/0AFA
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Ad (b). Deformation theory shows that the obstruction to deforming an A0-torsor
Pn → Xn to an A0-torsor Pn+1 → Xn+1 lies in H2(X0, ω) for a suitable vector
bundle ω on X0. The latter vanishes as X0 is a curve, proving the claim. □

Proposition 110.71.4.0AFC The stack X = MorS(X, [S/A]) is not algebraic.

Proof. See discussion above. □

Remark 110.71.5.0AFD Proposition 110.71.4 contradicts [Aok06b, Theorem 1.1]. The
problem is the non-effectivity of formal objects for MorS(X, [S/A]). The same
problem is mentioned in the Erratum [Aok06a] to [Aok06b]. Unfortunately, the
Erratum goes on to assert that MorS(Y,Z) is algebraic if Z is separated, which
also contradicts Proposition 110.71.4 as [S/A] is separated.

110.72. An algebraic stack not satisfying strong formal effectiveness

0CXW This is [Bha16, Example 4.12]. Let k be an algebraically closed field. Let A be an
abelian variety over k. Assume that A(k) is not torsion (this always holds if k is
not the algebraic closure of a finite field). Let X = [Spec(k)/A]. We claim there
exists an ideal I ⊂ k[x, y] such that

XSpec(k[x,y]∧) −→ limXSpec(k[x,y]/In)

is not essentially surjective. Namely, let I be the ideal generated by xy(x+ y − 1).
Then X0 = V (I) consists of three copies of A1

k glued into a triangle at three
points. Hence we can make an infinite order torsor P0 for A over X0 by taking the
trivial torsor over the irreducible components of X0 and glueing using translation
by nontorsion points. Exactly as in the proof of Lemma 110.71.3 we can lift P0 to
a torsor Pn over Xn = Spec(k[x, y]/In). Since k[x, y]∧ is a two dimensional regular
domain we see that any torsor P for A over Spec(k[x, y]∧) is torsion (Lemmas
110.71.1 and 110.71.2). Hence the system of torsors is not in the image of the
displayed functor.

Lemma 110.72.1.0CXX Let k be an algebraically closed field which is not the closure of a
finite field. Let A be an abelian variety over k. Let X = [Spec(k)/A]. There exists
an inverse system of k-algebras Rn with surjective transition maps whose kernels
are locally nilpotent and a system (ξn) of X lying over the system (Spec(Rn)) such
that this system is not effective in the sense of Artin’s Axioms, Remark 98.20.2.

Proof. See discussion above. □

110.73. A counter example to Grothendieck’s existence theorem

0ARE Let k be a field and let A = k[[t]]. Let X be the glueing of U = Spec(A[x]) and
V = Spec(A[y]) by the identification

U \ {0U} −→ V \ {0V }
sending x to y where 0U ∈ U and OV ∈ V are the points corresponding to the
maximal ideals (x, t) and (y, t). SetAn = A/(tn) and setXn = X×Spec(A)Spec(An).
Let Fn be the coherent sheaf on Xn corresponding to the An[x]-module An[x]/(x) ∼=
An and the An[y] module 0 with obvious glueing. Let I ⊂ OX be the sheaf of ideals
generate by t. Then (Fn) is an object of the category Cohsupport proper over A(X, I)
defined in Cohomology of Schemes, Section 30.27. On the other hand, this object
is not in the image of the functor Cohomology of Schemes, Equation (30.27.0.1).

https://stacks.math.columbia.edu/tag/0AFC
https://stacks.math.columbia.edu/tag/0AFD
https://stacks.math.columbia.edu/tag/0CXX
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Namely, if it where there would be a finite A[x]-module M , a finite A[y]-module N
and an isomorphism M [1/t] ∼= N [1/t] such that M/tnM ∼= An[x]/(x) and N/tnN =
0 for all n. It is easy to see that this is impossible.

Lemma 110.73.1.0ARF Counter examples to algebraization of coherent sheaves.
(1) Grothendieck’s existence theorem as stated in Cohomology of Schemes,

Theorem 30.27.1 is false if we drop the assumption that X → Spec(A) is
separated.

(2) The stack of coherent sheaves CohX/B of Quot, Theorems 99.6.1 and
99.5.12 is in general not algebraic if we drop the assumption that X → S
is separated

(3) The functor QuotF/X/B of Quot, Proposition 99.8.4 is not an algebraic
space in general if we drop the assumption that X → B is separated.

Proof. Part (1) we saw above. This shows that CohX/A fails axiom [4] of Artin’s
Axioms, Section 98.14. Hence it cannot be an algebraic stack by Artin’s Axioms,
Lemma 98.9.5. In this way we see that (2) is true. To see (3), note that there are
compatible surjections OXn → Fn for all n. Thus we see that QuotOX/X/A fails
axiom [4] and we see that (3) is true as before. □

110.74. Affine formal algebraic spaces

0ANY Let K be a field and let (Vi)i∈I be a directed inverse system of nonzero vector
spaces over K with surjective transition maps and with limVi = 0, see Section
110.3. Let Ri = K ⊕ Vi as K-algebra where Vi is an ideal of square zero. Then Ri
is an inverse system of K-algebras with surjective transition maps with nilpotent
kernels and with limRi = K. The affine formal algebraic space X = colim Spec(Ri)
is an example of an affine formal algebraic space which is not McQuillan.

Lemma 110.74.1.0CBC There exists an affine formal algebraic space which is not Mc-
Quillan.

Proof. See discussion above. □

Let 0→Wi → Vi → K → 0 be a system of exact sequences as in Section 110.3. Let
Ai = K[Vi]/(ww′;w,w′ ∈ Wi). Then there is a compatible system of surjections
Ai → K[t] with nilpotent kernels and the transition maps Ai → Aj are surjective
with nilpotent kernels as well. Recall that Vi is free over K with basis given by
s ∈ Si. Then, if the characteristic of K is zero, the degree d part of Ai is free over K
with basis given by sd, s ∈ Si each of which map to td. Hence the inverse system of
the degree d parts of the Ai is isomorphic to the inverse system of the vector spaces
Vi. As limVi = 0 we conclude that limAi = K, at least when the characteristic of
K is zero. This gives an example of an affine formal algebraic space whose “regular
functions” do not separate points.

Lemma 110.74.2.0CBD There exists an affine formal algebraic space X whose regular
functions do not separate points, in the following sense: If we write X = colimXλ

as in Formal Spaces, Definition 87.9.1 then lim Γ(Xλ,OXλ) is a field, but Xred has
infinitely many points.

Proof. See discussion above. □

https://stacks.math.columbia.edu/tag/0ARF
https://stacks.math.columbia.edu/tag/0CBC
https://stacks.math.columbia.edu/tag/0CBD
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Let K, I, and (Vi) be as above. Consider systems
Φ = (Λ, Ji ⊂ Λ, (Mi)→ (Vi))

where Λ is an augmented K-algebra, Ji ⊂ Λ for i ∈ I is an ideal of square zero,
(Mi) → (Vi) is a map of inverse systems of K-vector spaces such that Mi → Vi is
surjective for each i, such thatMi has a Λ-module structure, such that the transition
maps Mi →Mj , i > j are Λ-linear, and such that JjMi ⊂ Ker(Mi →Mj) for i > j.
Claim: There exists a system as above such that Mj = Mi/JjMi for all i > j.
If the claim is true, then we obtain a representable morphism

colimi∈I Spec(Λ/Ji ⊕Mi) −→ Spf(lim Λ/Ji)
of affine formal algebraic spaces whose source is not McQuillan but the target
is. Here Λ/Ji ⊕Mi has the usual Λ/Ji-algebra structure where Mi is an ideal of
square zero. Representability translates exactly into the condition that Mi/JjMi =
Mj for i > j. The source of the morphism is not McQuillan as the projections
limi∈IMi → Mi are not be surjective. This is true because the maps limVi → Vi
are not surjective and we have the surjection Mi → Vi. Some details omitted.
Proof of the claim. First, note that there exists at least one system, namely

Φ0 = (K,Ji = (0), (Vi)
id−→ (Vi))

Given a system Φ we will prove there exists a morphism of systems Φ→ Φ′ (mor-
phisms of systems defined in the obvious manner) such that Ker(Mi/JjMi →Mj)
maps to zero in M ′

i/J
′
jM

′
i . Once this is done we can do the usual trick of setting

Φn = (Φn−1)′ inductively for n ≥ 1 and taking Φ = colim Φn to get a system with
the desired properties. Details omitted.
Construction of Φ′ given Φ. Consider the set U of triples u = (i, j, ξ) where i > j
and ξ ∈ Ker(Mi →Mj). We will let s, t : U → I denote the maps s(i, j, ξ) = i and
t(i, j, ξ) = j. Then we set ξu ∈Ms(u) the third component of u. We take

Λ′ = Λ[xu;u ∈ U ]/(xuxu′ ;u, u′ ∈ U)
with augmentation Λ′ → K given by the augmentation of Λ and sending xu to zero.
We take J ′

k = JkΛ′ + (xu, t(u)≥k). We set

M ′
i = Mi ⊕

⊕
s(u)≥i

Kϵi,u

As transition maps M ′
i → M ′

j for i > j we use the given map Mi → Mj and we
send ϵi,u to ϵj,u. The map M ′

i → Vi induces the given map Mi → Vi and sends ϵi,u
to zero. Finally, we let Λ′ act on M ′

i as follows: for λ ∈ Λ we act by the Λ-module
structure on Mi and via the augmentation Λ→ K on ϵi,u. The element xu acts as
0 on Mi for all i. Finally, we define

xuϵi,u = image of ξu in Mi

and we set all other products xu′ϵi,u equal to zero. The displayed formula makes
sense because s(u) ≥ i and ξu ∈Ms(u). The main things the check are J ′

jM
′
i ⊂M ′

i

maps to zero in M ′
j for i > j and that Ker(Mi → Mj) maps to zero in M ′

i/JjM
′
i .

The reason for the last fact is that ξ = x(i,j,ξ)ϵi,(i,j,ξ) ∈ J ′
jM

′
i for any ξ ∈ Ker(Mi →

Mj). We omit the details.

Lemma 110.74.3.0CBE There exists a representable morphism f : X → Y of affine
formal algebraic spaces with Y McQuillan, but X not McQuillan.

https://stacks.math.columbia.edu/tag/0CBE
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Proof. See discussion above. □

110.75. Flat maps are not directed limits of finitely presented flat maps

0ATE The goal of this section is to give an example of a flat ring map which is not a
filtered colimit of flat and finitely presented ring maps. In [Gab96] it is shown that
if A is a nonexcellent local ring of dimension 1 and residue characteristic zero, then
the (flat) ring map A → A∧ to its completion is not a filtered colimit of finite
type flat ring maps. The example in this section will have a source which is an
excellent ring. We encourage the reader to submit other examples; please email
stacks.project@gmail.com if you have one.
For the construction, fix a prime p, and let A = Fp[x1, . . . , xn]. Choose an absolute
integral closure A+ of A, i.e., A+ is the integral closure of A in an algebraic closure
of its fraction field. In [HH92, §6.7] it is shown that A→ A+ is flat.
We claim that the A-algebra A+ is not a filtered colimit of finitely presented flat
A-algebras if n ≥ 3.
We sketch the argument in the case n = 3, and we leave the generalization to higher
n to the reader. It is enough to prove the analogous statement for the map R→ R+,
where R is the strict henselization of A at the origin and R+ is its absolute integral
closure. Observe that R is a henselian regular local ring whose residue field k is an
algebraic closure of Fp.
Choose an ordinary abelian surface X over k and a very ample line bundle L on
X. The section ring Γ∗(X,L) =

⊕
nH

0(X,Ln) is the coordinate ring of the affine
cone over X with respect to L. It is a normal ring for L sufficiently positive.
Let S denote the henselization of Γ∗(X,L) at vertex of the cone. Then S is a
henselian Noetherian normal domain of dimension 3. We obtain a finite injective
map R → S as the henselization of a Noether normalization for the finite type
k-algebra Γ∗(X,L). As R+ is an absolute integral closure of R, we can also fix an
embedding S → R+. Thus R+ is also the absolute integral closure of S. To show
R+ is not a filtered colimit of flat R-algebras, it suffices to show:

(1) If there exists a factorization S → P → R+ with P flat and finite type
over R, then there exists a factorization S → T → R+ with T finite flat
over R.

(2) For any factorization S → T → R+ with S → T finite, the ring T is not
R-flat.

Indeed, since S is finitely presented over R, if one could write R+ = colimi Pi as a
filtered colimit of finitely presented flat R-algebras Pi, then S → R+ would factor as
S → Pi → R+ for i≫ 0, which contradicts the above pair of assertions. Assertion
(1) follows from the fact that R is henselian and a slicing argument, see More on
Morphisms, Lemma 37.23.5. Part (2) was proven in [Bha12]; for the convenience
of the reader, we recall the argument.
Let U ⊂ Spec(S) be the punctured spectrum, so there are natural maps X ←
U ⊂ Spec(S). The first map gives an identification H1(U,OU ) ≃ H1(X,OX). By
passing to the Witt vectors of the perfection and using the Artin-Schreier sequence6,

6Here we use that S is a strictly henselian local ring of characteristic p and hence S → S,
f 7→ fp−f is surjective. Also S is a normal domain and hence Γ(U,OU ) = S. Thus H1

étale(U,Z/p)
is the kernel of the map H1(U,OU )→ H1(U,OU ) induced by f 7→ fp − f .

mailto:stacks.project@gmail.com
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this gives an identification H1
étale(U,Zp) ≃ H1

étale(X,Zp). In particular, this group
is a finite free Zp-module of rank 2 (since X is ordinary). To get a contradiction
assume there exists an R-flat T as in (2) above. Let V ⊂ Spec(T ) denote the
preimage of U , and write f : V → U for the induced finite surjective map. Since U
is normal, there is a trace map f∗Zp → Zp on Uétale whose composition with the
pullback Zp → f∗Zp is multiplication by d = deg(f). Passing to cohomology, and
using that H1

étale(U,Zp) is nontorsion, then shows that H1
étale(V,Zp) is nonzero.

Since H1
étale(V,Zp) ≃ limH1

étale(V,Z/pn) as there is no R1 lim interference, the
group H1(Vétale,Z/p) must be non-zero. Since T is R-flat we have Γ(V,OV ) = T
which is strictly henselian and the Artin-Schreier sequence shows H1(V,OV ) ̸= 0.
This is equivalent to H2

m(T ) ̸= 0, where m ⊂ R is the maximal ideal. Thus, we
obtain a contradiction since T is finite flat (i.e., finite free) as an R-module and
H2

m(R) = 0. This contradiction proves (2).

Lemma 110.75.1.0ATF There exists a commutative ring A and a flat A-algebra B which
cannot be written as a filtered colimit of finitely presented flat A-algebras. In fact,
we may either choose A to be a finite type Fp-algebra or a 1-dimensional Noetherian
local ring with residue field of characteristic 0.

Proof. See discussion above. □

110.76. The category of modules modulo torsion modules

0B0J The category of torsion groups is a Serre subcategory (Homology, Definition 12.10.1)
of the category of all abelian groups. More generally, for any ring A, the category of
torsion A-modules is a Serre subcategory of the category of all A-modules, see More
on Algebra, Section 15.53. If A is a domain, then the quotient category (Homology,
Lemma 12.10.6) is equivalent to the category of vector spaces over the fraction field.
This follows from the following more general proposition.

Proposition 110.76.1.0EA5 Let A be a ring. Let S be a multiplicative subset of A. Let
ModA denote the category of A-modules and T its Serre subcategory of modules for
which any element is annihilated by some element of S. Then there is a canonical
equivalence ModA/T → ModS−1A.

Proof. The functor ModA → ModS−1A given by M 7→ M ⊗A S−1A is exact (by
Algebra, Proposition 10.9.12) and maps modules in T to zero. Thus, by the univer-
sal property given in Homology, Lemma 12.10.6, the functor descends to a functor
ModA/T → ModS−1A.
Conversely, any A-module M with M ⊗A S−1A = 0 is an object of T , since M ⊗A
S−1A ∼= S−1M (Algebra, Lemma 10.12.15). Thus Homology, Lemma 12.10.7 shows
that the functor ModA/T → ModS−1A is faithful.
Furthermore, this embedding is essentially surjective: a preimage to an S−1A-
module N is NA, that is N regarded as an A-module, since the canonical map
NA ⊗A S−1A → N which maps x ⊗ a/s to (a/s) · x is an isomorphism of S−1A-
modules. □

Proposition 110.76.2.0B0K Let A be a ring. Let Q(A) denote its total quotient ring
(as in Algebra, Example 10.9.8). Let ModA denote the category of A-modules and
T its Serre subcategory of torsion modules. Let ModQ(A) denote the category of
Q(A)-modules. Then there is a canonical equivalence ModA/T → ModQ(A).

https://stacks.math.columbia.edu/tag/0ATF
https://stacks.math.columbia.edu/tag/0EA5
https://stacks.math.columbia.edu/tag/0B0K
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Proof. Follows immediately from applying Proposition 110.76.1 to the multiplica-
tive subset S = {f ∈ A | f is not a zerodivisor in A}, since a module is a torsion
module if and only if all of its elements are each annihilated by some element of
S. □

Proposition 110.76.3.0B0L Let A be a Noetherian integral domain. LetK denote its field
of fractions. Let ModfgA denote the category of finitely generated A-modules and
T fg its Serre subcategory of finitely generated torsion modules. Then ModfgA /T fg
is canonically equivalent to the category of finite dimensional K-vector spaces.

Proof. The equivalence given in Proposition 110.76.2 restricts along the embedding
ModfgA /T fg → ModA/T to an equivalence ModfgA /T fg → VectfdK . The Noetherian
assumption guarantees that ModfgA is an abelian category (see More on Algebra,
Section 15.53) and that the canonical functor ModfgA /T fg → ModA/T is full (else
torsion submodules of finitely generated modules might not be objects of T fg). □

Proposition 110.76.4.0B0M The quotient of the category of abelian groups modulo its
Serre subcategory of torsion groups is the category of Q-vector spaces.

Proof. The claim follows directly from Proposition 110.76.2. □

110.77. Different colimit topologies

0B2Y This example is [TSH98, Example 1.2, page 553]. Let Gn = Q×Rn, n ≥ 1 seen as a
topological group for addition endowed with the usual (Euclidean) topology. Con-
sider the closed embeddings Gn → Gn+1 mapping (x0, . . . , xn) to (x0, . . . , xn, 0).
We claim that G = colimGn endowed with the topology

U ⊂ G open⇔ Gn ∩ U open ∀n

is not a topological group.

To see this we consider the set

U = {(x0, x1, x2, . . .) such that |xj | < | cos(jx0)| for j > 0}

Using that jx0 is never an integral multiple of π/2 as π is not rational it is easy
to show that U ∩ Gn is open. Since 0 ∈ U , if the topology above made G into a
topological group, then there would be an open neighbourhood V ⊂ G of 0 such
that V + V ⊂ U . Then, for every j ≥ 0 there would exist ϵj > 0 such that
(0, . . . , 0, xj , 0, . . .) ∈ V for |xj | < ϵj . Since V + V ⊂ U we would have

(x0, 0, . . . , 0, xj , 0, . . .) ∈ U

for |x0| < ϵ0 and |xj | < ϵj . However, if we take j large enough such that jϵ0 > π/2,
then we can choose x0 ∈ Q such that | cos(jx0)| is smaller than ϵj , hence there
exists an xj with | cos(jx0)| < |xj | < ϵj . This contradiction proves the claim.

Lemma 110.77.1.0B2Z There exists a system G1 → G2 → G3 → . . . of (abelian)
topological groups such that colimGn taken in the category of topological spaces
is different from colimGn taken in the category of topological groups.

Proof. See discussion above. □

https://stacks.math.columbia.edu/tag/0B0L
https://stacks.math.columbia.edu/tag/0B0M
https://stacks.math.columbia.edu/tag/0B2Z
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110.78. Universally submersive but not V covering

0EU8 Let A be a valuation ring. Let p ⊂ A be a prime ideal which is neither the minimal
prime nor the maximal ideal. (A good case to keep in mind is when A has three
prime ideals and p is the one in the “middle”.) Consider the morphism of affine
schemes

Spec(Ap)⨿ Spec(A/p) −→ Spec(A)
We claim this is universally submersive. In order to prove this, let Spec(B) →
Spec(A) be a morphism of affine schemes given by the ring map A→ B. Then we
have to show that

Spec(Bp)⨿ Spec(B/pB)→ Spec(B)
is submersive. First of all it is surjective. Next, suppose that T ⊂ Spec(B) is a
subset such that T1 = Spec(Bp) ∩ T and T2 = Spec(B/pB) ∩ T are closed. Then
we see that T is the image of the spectrum of a B-algebra because both T1 and
T2 are spectra of B-algebras. Hence to show that T is closed it suffices to show
that T is stable under specialization, see Algebra, Lemma 10.41.5. To see this,
suppose that p ⇝ q is a specialization of points in Spec(B) with p ∈ T . Let A′

be a valuation ring and let Spec(A′) → Spec(B) be a morphism such that the
generic point η of Spec(A′) maps to p and the closed point s of Spec(A′) maps to
q, see Schemes, Lemma 26.20.4. Observe that the image of the composition γ :
Spec(A′)→ Spec(A) is exactly the set of points ξ ∈ Spec(A) with γ(η)⇝ ξ ⇝ γ(s)
(details omitted). If p ̸∈ Im(γ), then we see that either both p, q ∈ Spec(Bp) or
both p, q ∈ Spec(B/pB). In this case the fact that T1, resp. T2 is closed implies that
q ∈ T1, resp. q ∈ T2 and hence q ∈ T . Finally, suppose p ∈ Im(γ), say p = γ(r).
Then we have specializations p ⇝ r and r ⇝ q. In this case p, r ∈ Spec(Bp) and
r, q ∈ Spec(B/pB). Then we fist conclude r ∈ T1 ⊂ T , then r ∈ T2 as r maps to p,
and then q ∈ T2 ⊂ T as desired.
On the other hand, we claim that the singleton family

{Spec(Ap)⨿ Spec(A/p) −→ Spec(A)}
is not a V covering. See Topologies, Definition 34.10.7. Namely, if it where a V
covering, there would be an extension of valuation ring A ⊂ B such that Spec(B)→
Spec(A) factors through Spec(Ap) ⨿ Spec(A/p). This would imply Spec(A′) is
disconnected which is absurd.

Lemma 110.78.1.0EU9 There exists a morphism X → Y of affine schemes which is
universally submersive such that {X → Y } is not a V covering.

Proof. See discussion above. □

110.79. The spectrum of the integers is not quasi-compact

0EUE Of course the title of this section doesn’t refer to the spectrum of the integers
as a topological space, because any spectrum is quasi-compact as a topological
space (Algebra, Lemma 10.17.10). No, it refers to the spectrum of the integers in
the canonical topology on the category of schemes, and the definition of a quasi-
compact object in a site (Sites, Definition 7.17.1).
Let U be a nonprincipal ultrafilter on the set P of prime numbers. For a subset
T ⊂ P we denote T c = P \ T the complement. For A ∈ U let SA ⊂ Z be the

https://stacks.math.columbia.edu/tag/0EU9
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multiplicative subset generated by p ∈ A. Set

ZA = S−1
A Z

Observe that Spec(ZA) = {(0)}∪Ac ⊂ Spec(Z) if we think of P as the set of closed
points of Spec(Z). If A,B ∈ U , then A ∩B ∈ U and A ∪B ∈ U and we have

ZA∩B = ZA ×ZA∪B ZB

(fibre product of rings). In particular, for any integer n and elements A1, . . . , An ∈
U the morphisms

Spec(ZA1)⨿ . . .⨿ Spec(ZAn) −→ Spec(Z)

factors through Spec(Z[1/p]) for some p (namely for any p ∈ A1 ∩ . . . ∩ An). We
conclude that the family of flat morphisms {Spec(ZA) → Spec(Z)}A∈U is jointly
surjective, but no finite subset is.

For a Z-module M we set

MA = S−1
A M = M ⊗Z ZA

Claim I: for every Z-module M we have

M = Equalizer
( ∏

A∈U MA
//
//
∏
A,B∈U MA∪B

)
First, assume M is torsion free. Then MA ⊂MP for all A ∈ U . Hence we see that
we have to prove

M =
⋂

A∈U
MA inside MP = M ⊗Q

Namely, since U is nonprincipal, for any prime p we have {p}c ∈ U . Also, M{p}c =
M(p) is equal to the localization at the prime (p). Thus the above is clear because
already M(2) ∩M(3) = M . Next, assume M is torsion. Then we have

M =
⊕

p∈P
M [p∞]

and correspondingly we have

MA =
⊕

p ̸∈A
M [p∞]

because we are localizing at the primes in A. Suppose that (xA) ∈
∏
MA is in the

equalizer. Denote xp = x{p}c ∈M [p∞]. Then the equalizer property says

xA = (xp)p ̸∈A

and in particular it says that xp is zero for all but a finite number of p ̸∈ A. To
finish the proof in the torsion case it suffices to show that xp is zero for all but a
finite number of primes p. If not write {p ∈ P | xp ̸= 0} = T ⨿ T ′ as the disjoint
union of two infinite sets. Then either T ̸∈ U or T ′ ̸∈ U because U is an ultrafilter
(namely if both T, T ′ are in U then U contains T ∩T ′ = ∅ which is not allowed). Say
T ̸∈ U . Then T = Ac and this contradicts the finiteness mentioned above. Finally,
suppose that M is a general module. Then we look at the short exact sequence

0→Mtors →M →M/Mtors → 0
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and we look at the following large diagram

Mtors
//

��

∏
A∈U Mtors,A

//
//

��

∏
A,B∈U Mtors,A∪B

��
M //

��

∏
A∈U MA

//
//

��

∏
A,B∈U MA∪B

��
M/Mtors

// ∏
A∈U (M/Mtors)A

//
//
∏
A,B∈U (M/Mtors)A∪B

Doing a diagram chase using exactness of the columns and the result for the torsion
module Mtors and the torsion free module M/Mtors proving Claim I for M . This
gives an example of the phenomenon in the following lemma.

Lemma 110.79.1.0EUF There exists a ring A and an infinite family of flat ring maps
{A→ Ai}i∈I such that for every A-module M

M = Equalizer
( ∏

i∈IM ⊗A Ai
//
//
∏
i,j∈IM ⊗A Ai ⊗A Aj

)
but there is no finite subfamily where the same thing is true.

Proof. See discussion above. □

We continue working with our nonprincipal ultrafilter U on the set P of prime
numbers. Let R be a ring. Denote RA = S−1

A R = R ⊗ ZA for A ∈ U . Claim II:
given closed subsets TA ⊂ Spec(RA), A ∈ U such that

(Spec(RA∪B)→ Spec(RA))−1TA = (Spec(RA∪B)→ Spec(RB))−1TB

for all A,B ∈ U , there is a closed subset T ⊂ Spec(R) with TA = (Spec(RA) →
Spec(R))−1(T ) for all A ∈ U . Let IA ⊂ RA for A ∈ U be the radical ideal cutting
out TA. Then the glueing condition implies S−1

A∪BIA = S−1
A∪BIB in RA∪B for all

A,B ∈ U (because localization preserves being a radical ideal). Let I ′ ⊂ R be the
set of elements mapping into IP ⊂ RP = R⊗Q. Then we see for A ∈ U that

(1) IA ⊂ I ′
A = S−1

A I ′, and
(2) MA = I ′

A/IA is a torsion module.
Of course we obtain canonical identifications S−1

A∪BMA = S−1
A∪BMB for A,B ∈ U .

Decomposing the torsion modules MA into their p-primary components, the reader
easily shows that there exist p-power torsion R-modules Mp such that

MA =
⊕

p ̸∈A
Mp

compatible with the canonical identifications given above. Setting M =
⊕

p∈P Mp

we find canonical isomorphisms MA = S−1
A M compatible with the above canonical

identifications. Then we get a canonical map
I ′ −→M

of R-modules wich recovers the map IA → MA for all A ∈ U . This is true by all
the compatibilities mentioned above and the claim proved previously that M is the
equalizer of the two maps from

∏
A∈U MA to

∏
A,B∈U MA∪B . Let I = Ker(I ′ →

M). Then I is an ideal and T = V (I) is a closed subset which recovers the closed
subsets TA for all A ∈ U . This proves Claim II.

https://stacks.math.columbia.edu/tag/0EUF
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Lemma 110.79.2.0EUG The scheme Spec(Z) is not quasi-compact in the canonical topol-
ogy on the category of schemes.

Proof. With notation as above consider the family of morphisms
W = {Spec(ZA)→ Spec(Z)}A∈U

By Descent, Lemma 35.13.5 and the two claims proved above this is a universal
effective epimorphism. In any category with fibre products, the universal effective
epimorphisms give C the structure of a site (modulo some set theoretical issues
which are easy to fix) defining the canonical topology. Thus W is a covering for
the canonical topology. On the other hand, we have seen above that any finite
subfamily

{Spec(ZAi)→ Spec(Z)}i=1,...,n, n ∈ N, A1, . . . , An ∈ U
factors through Spec(Z[1/p]) for some p. Hence this finite family cannot be a uni-
versal effective epimorphism and more generally no universal effective epimorphism
{gj : Tj → Spec(Z)} can refine {Spec(ZAi) → Spec(Z)}i=1,...,n. By Sites, Defini-
tion 7.17.1 this means that Spec(Z) is not quasi-compact in the canonical topology.
To see that our notion of quasi-compactness agrees with the usual topos theoretic
definition, see Sites, Lemma 7.17.3. □
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CHAPTER 111

Exercises

0275 111.1. Algebra

0276 This first section just contains some assorted questions.

Exercise 111.1.1.02CG Let A be a ring, and m a maximal ideal. In A[X] let m̃1 = (m, X)
and m̃2 = (m, X − 1). Show that

A[X]m̃1
∼= A[X]m̃2 .

Exercise 111.1.2.02CH Find an example of a non Noetherian ring R such that every
finitely generated ideal of R is finitely presented as an R-module. (A ring is said
to be coherent if the last property holds.)

Exercise 111.1.3.02CI Suppose that (A,m, k) is a Noetherian local ring. For any finite
A-module M define r(M) to be the minimum number of generators of M as an
A-module. This number equals dimkM/mM = dimkM ⊗A k by NAK.

(1) Show that r(M ⊗A N) = r(M)r(N).
(2) Let I ⊂ A be an ideal with r(I) > 1. Show that r(I2) < r(I)2.
(3) Conclude that if every ideal in A is a flat module, then A is a PID (or a

field).

Exercise 111.1.4.02CJ Let k be a field. Show that the following pairs of k-algebras are
not isomorphic:

(1) k[x1, . . . , xn] and k[x1, . . . , xn+1] for any n ≥ 1.
(2) k[a, b, c, d, e, f ]/(ab+ cd+ ef) and k[x1, . . . , xn] for n = 5.
(3) k[a, b, c, d, e, f ]/(ab+ cd+ ef) and k[x1, . . . , xn] for n = 6.

Remark 111.1.5.02CK Of course the idea of this exercise is to find a simple argument
in each case rather than applying a “big” theorem. Nonetheless it is good to be
guided by general principles.

Exercise 111.1.6.02CL Algebra. (Silly and should be easy.)
(1) Give an example of a ring A and a nonsplit short exact sequence of A-

modules
0→M1 →M2 →M3 → 0.

(2) Give an example of a nonsplit sequence of A-modules as above and a
faithfully flat A→ B such that

0→M1 ⊗A B →M2 ⊗A B →M3 ⊗A B → 0.
is split as a sequence of B-modules.

Exercise 111.1.7.02CM Suppose that k is a field having a primitive nth root of unity ζ.
This means that ζn = 1, but ζm ̸= 1 for 0 < m < n.
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(1) Show that the characteristic of k is prime to n.
(2) Suppose that a ∈ k is an element of k which is not an dth power in k for

any divisor d of n for n ≥ d > 1. Show that k[x]/(xn−a) is a field. (Hint:
Consider a splitting field for xn − a and use Galois theory.)

Exercise 111.1.8.02CN Let ν : k[x] \ {0} → Z be a map with the following properties:
ν(fg) = ν(f) + ν(g) whenever f , g not zero, and ν(f + g) ≥ min(ν(f), ν(g))
whenever f , g, f + g are not zero, and ν(c) = 0 for all c ∈ k∗.

(1) Show that if f , g, and f + g are nonzero and ν(f) ̸= ν(g) then we have
equality ν(f + g) = min(ν(f), ν(g)).

(2) Show that if f =
∑
aix

i, f ̸= 0, then ν(f) ≥ min({iν(x)}ai ̸=0). When
does equality hold?

(3) Show that if ν attains a negative value then ν(f) = −ndeg(f) for some
n ∈ N.

(4) Suppose ν(x) ≥ 0. Show that {f | f = 0, or ν(f) > 0} is a prime ideal of
k[x].

(5) Describe all possible ν.
Let A be a ring. An idempotent is an element e ∈ A such that e2 = e. The elements
1 and 0 are always idempotent. A nontrivial idempotent is an idempotent which is
not equal to zero. Two idempotents e, e′ ∈ A are called orthogonal if ee′ = 0.
Exercise 111.1.9.078G Let A be a ring. Show that A is a product of two nonzero rings
if and only if A has a nontrivial idempotent.
Exercise 111.1.10.078H Let A be a ring and let I ⊂ A be a locally nilpotent ideal. Show
that the map A→ A/I induces a bijection on idempotents. (Hint: It may be easier
to prove this when I is nilpotent. Do this first. Then use “absolute Noetherian
reduction” to reduce to the nilpotent case.)

111.2. Colimits

0277
Definition 111.2.1.078I A directed set is a nonempty set I endowed with a preorder ≤
such that given any pair i, j ∈ I there exists a k ∈ I such that i ≤ k and j ≤ k.
A system of rings over I is given by a ring Ai for each i ∈ I and a map of rings
φij : Ai → Aj whenever i ≤ j such that the composition Ai → Aj → Ak is equal
to Ai → Ak whenever i ≤ j ≤ k.
One similarly defines systems of groups, modules over a fixed ring, vector spaces
over a field, etc.
Exercise 111.2.2.078J Let I be a directed set and let (Ai, φij) be a system of rings over
I. Show that there exists a ring A and maps φi : Ai → A such that φj ◦ φij = φi
for all i ≤ j with the following universal property: Given any ring B and maps
ψi : Ai → B such that ψj ◦ φij = ψi for all i ≤ j, then there exists a unique ring
map ψ : A→ B such that ψi = ψ ◦ φi.
Definition 111.2.3.078K The ring A constructed in Exercise 111.2.2 is called the colimit
of the system. Notation colimAi.
Exercise 111.2.4.078L Let (I,≥) be a directed set and let (Ai, φij) be a system of rings
over I with colimit A. Prove that there is a bijection

Spec(A) = {(pi)i∈I | pi ⊂ Ai and pi = φ−1
ij (pj) ∀i ≤ j} ⊂

∏
i∈I

Spec(Ai)

https://stacks.math.columbia.edu/tag/02CN
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The set on the right hand side of the equality is the limit of the sets Spec(Ai).
Notation lim Spec(Ai).

Exercise 111.2.5.078M Let (I,≥) be a directed set and let (Ai, φij) be a system of rings
over I with colimit A. Suppose that Spec(Aj) → Spec(Ai) is surjective for all
i ≤ j. Show that Spec(A)→ Spec(Ai) is surjective for all i. (Hint: You can try to
use Tychonoff, but there is also a basically trivial direct algebraic proof based on
Algebra, Lemma 10.17.9.)

Exercise 111.2.6.078N Let A ⊂ B be an integral ring extension. Prove that Spec(B)→
Spec(A) is surjective. Use the exercises above, the fact that this holds for a finite
ring extension (proved in the lectures), and by proving that B = colimBi is a
directed colimit of finite extensions A ⊂ Bi.

Exercise 111.2.7.02CO Let (I,≥) be a directed set. Let A be a ring and let (Ni, φi,i′) be a
directed system of A-modules indexed by I. Suppose that M is another A-module.
Prove that

colimi∈IM ⊗A Ni ∼= M ⊗A
(

colimi∈I Ni

)
.

Definition 111.2.8.0278 A module M over R is said to be of finite presentation over R
if it is isomorphic to the cokernel of a map of finite free modules R⊕n → R⊕m.

Exercise 111.2.9.02CP Prove that any module over any ring is
(1) the colimit of its finitely generated submodules, and
(2) in some way a colimit of finitely presented modules.

111.3. Additive and abelian categories

057X
Exercise 111.3.1.057Y Let k be a field. Let C be the category of filtered vector spaces
over k, see Homology, Definition 12.19.1 for the definition of a filtered object of any
category.

(1) Show that this is an additive category (explain carefuly what the direct
sum of two objects is).

(2) Let f : (V, F ) → (W,F ) be a morphism of C. Show that f has a kernel
and cokernel (explain precisely what the kernel and cokernel of f are).

(3) Give an example of a map of C such that the canonical map Coim(f) →
Im(f) is not an isomorphism.

Exercise 111.3.2.057Z Let R be a Noetherian domain. Let C be the category of finitely
generated torsion free R-modules.

(1) Show that this is an additive category.
(2) Let f : N → M be a morphism of C. Show that f has a kernel and

cokernel (make sure you define precisely what the kernel and cokernel of
f are).

(3) Give an example of a Noetherian domain R and a map of C such that the
canonical map Coim(f)→ Im(f) is not an isomorphism.

Exercise 111.3.3.0580 Give an example of a category which is additive and has kernels
and cokernels but which is not as in Exercises 111.3.1 and 111.3.2.

https://stacks.math.columbia.edu/tag/078M
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111.4. Tensor product

0CYG Tensor products are introduced in Algebra, Section 10.12. Let R be a ring. Let
ModR be the category of R-modules. We will say that a functor F : ModR → ModR

(1) is additive if F : HomR(M,N) → HomR(F (M), F (N)) is a homomor-
phism of abelian groups for any R-modules M,N , see Homology, Defini-
tion 12.3.1.

(2) R-linear if F : HomR(M,N) → HomR(F (M), F (N)) is R-linear for any
R-modules M,N ,

(3) right exact if for any short exact sequence 0→M1 →M2 →M3 → 0 the
sequence F (M1)→ F (M2)→ F (M3)→ 0 is exact,

(4) left exact if for any short exact sequence 0 → M1 → M2 → M3 → 0 the
sequence 0→ F (M1)→ F (M2)→ F (M3) is exact,

(5) commutes with direct sums, if given a set I and R-modules Mi the maps
F (Mi)→ F (

⊕
Mi) induce an isomorphism

⊕
F (Mi) = F (

⊕
Mi).

Exercise 111.4.1.0CYH Let R be a ring. With notation as above.
(1) Give an example of a ring R and an additive functor F : ModR → ModR

which is not R-linear.
(2) Let N be an R-module. Show that the functor F (M) = M ⊗R N is

R-linear, right exact, and commutes with direct sums,
(3) Conversely, show that any functor F : ModR → ModR which is R-linear,

right exact, and commutes with direct sums is of the form F (M) = M ⊗R
N for some R-module N .

(4) Show that if in (3) we drop the assumption that F commutes with direct
sums, then the conclusion no longer holds.

111.5. Flat ring maps

0279
Exercise 111.5.1.02CQ Let S be a multiplicative subset of the ring A.

(1) For an A-module M show that S−1M = S−1A⊗AM .
(2) Show that S−1A is flat over A.

Exercise 111.5.2.02CR Find an injection M1 →M2 of A-modules such that M1 ⊗N →
M2 ⊗N is not injective in the following cases:

(1) A = k[x, y] and N = (x, y) ⊂ A. (Here and below k is a field.)
(2) A = k[x, y] and N = A/(x, y).

Exercise 111.5.3.02CS Give an example of a ring A and a finite A-module M which is
a flat but not a projective A-module.

Remark 111.5.4.02CT If M is of finite presentation and flat over A, then M is projective
over A. Thus your example will have to involve a ring A which is not Noetherian.
I know of an example where A is the ring of C∞-functions on R.

Exercise 111.5.5.02CU Find a flat but not free module over Z(2).

Exercise 111.5.6.02CV Flat deformations.
(1) Suppose that k is a field and k[ϵ] is the ring of dual numbers k[ϵ] =

k[x]/(x2) and ϵ = x̄. Show that for any k-algebra A there is a flat k[ϵ]-
algebra B such that A is isomorphic to B/ϵB.

https://stacks.math.columbia.edu/tag/0CYH
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(2) Suppose that k = Fp = Z/pZ and
A = k[x1, x2, x3, x4, x5, x6]/(xp1, x

p
2, x

p
3, x

p
4, x

p
5, x

p
6).

Show that there exists a flat Z/p2Z-algebra B such that B/pB is isomor-
phic to A. (So here p plays the role of ϵ.)

(3) Now let p = 2 and consider the same question for k = F2 = Z/2Z and
A = k[x1, x2, x3, x4, x5, x6]/(x2

1, x
2
2, x

2
3, x

2
4, x

2
5, x

2
6, x1x2 + x3x4 + x5x6).

However, in this case show that there does not exist a flat Z/4Z-algebra
B such that B/2B is isomorphic to A. (Find the trick! The same example
works in arbitrary characteristic p > 0, except that the computation is
more difficult.)

Exercise 111.5.7.02CW Let (A,m, k) be a local ring and let k′/k be a finite field extension.
Show there exists a flat, local map of local rings A → B such that mB = mB and
B/mB is isomorphic to k′ as k-algebra. (Hint: first do the case where k ⊂ k′ is
generated by a single element.)

Remark 111.5.8.02CX The same result holds for arbitrary field extensions K/k.

111.6. The Spectrum of a ring

027A
Exercise 111.6.1.02CY Compute Spec(Z) as a set and describe its topology.

Exercise 111.6.2.02CZ Let A be any ring. For f ∈ A we define D(f) := {p ⊂ A | f ̸∈ p}.
Prove that the open subsets D(f) form a basis of the topology of Spec(A).

Exercise 111.6.3.02D0 Prove that the map I 7→ V (I) defines a natural bijection

{I ⊂ A with I =
√
I} −→ {T ⊂ Spec(A) closed}

Definition 111.6.4.027B A topological space X is called quasi-compact if for any open
covering X =

⋃
i∈I Ui there is a finite subset {i1, . . . , in} ⊂ I such that X =

Ui1 ∪ . . . Uin .

Exercise 111.6.5.02D1 Prove that Spec(A) is quasi-compact for any ring A.

Definition 111.6.6.027C A topological space X is said to verify the separation axiom
T0 if for any pair of points x, y ∈ X, x ̸= y there is an open subset of X containing
one but not the other. We say that X is Hausdorff if for any pair x, y ∈ X, x ̸= y
there are disjoint open subsets U, V such that x ∈ U and y ∈ V .

Exercise 111.6.7.02D2 Show that Spec(A) is not Hausdorff in general. Prove that
Spec(A) is T0. Give an example of a topological space X that is not T0.

Remark 111.6.8.02D3 Usually the word compact is reserved for quasi-compact and
Hausdorff spaces.

Definition 111.6.9.027D A topological space X is called irreducible if X is not empty
and if X = Z1 ∪ Z2 with Z1, Z2 ⊂ X closed, then either Z1 = X or Z2 = X.
A subset T ⊂ X of a topological space is called irreducible if it is an irreducible
topological space with the topology induced from X. This definition implies T is
irreducible if and only if the closure T̄ of T in X is irreducible.

https://stacks.math.columbia.edu/tag/02CW
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Exercise 111.6.10.02D4 Prove that Spec(A) is irreducible if and only if Nil(A) is a prime
ideal and that in this case it is the unique minimal prime ideal of A.

Exercise 111.6.11.02D5 Prove that a closed subset T ⊂ Spec(A) is irreducible if and
only if it is of the form T = V (p) for some prime ideal p ⊂ A.

Definition 111.6.12.027E A point x of an irreducible topological space X is called a
generic point of X if X is equal to the closure of the subset {x}.

Exercise 111.6.13.02D6 Show that in a T0 space X every irreducible closed subset has
at most one generic point.

Exercise 111.6.14.02D7 Prove that in Spec(A) every irreducible closed subset does have
a generic point. In fact show that the map p 7→ {p} is a bijection of Spec(A) with
the set of irreducible closed subsets of X.

Exercise 111.6.15.02D8 Give an example to show that an irreducible subset of Spec(Z)
does not necessarily have a generic point.

Definition 111.6.16.027F A topological space X is called Noetherian if any decreasing
sequence Z1 ⊃ Z2 ⊃ Z3 ⊃ . . . of closed subsets of X stabilizes. (It is called Artinian
if any increasing sequence of closed subsets stabilizes.)

Exercise 111.6.17.02D9 Show that if the ring A is Noetherian then the topological space
Spec(A) is Noetherian. Give an example to show that the converse is false. (The
same for Artinian if you like.)

Definition 111.6.18.027G A maximal irreducible subset T ⊂ X is called an irreducible
component of the space X. Such an irreducible component of X is automatically a
closed subset of X.

Exercise 111.6.19.02DA Prove that any irreducible subset of X is contained in an irre-
ducible component of X.

Exercise 111.6.20.02DB Prove that a Noetherian topological space X has only finitely
many irreducible components, say X1, . . . , Xn, and that X = X1 ∪X2 ∪ . . . ∪Xn.
(Note that any X is always the union of its irreducible components, but that if
X = R with its usual topology for instance then the irreducible components of X
are the one point subsets. This is not terribly interesting.)

Exercise 111.6.21.02DC Show that irreducible components of Spec(A) correspond to
minimal primes of A.

Definition 111.6.22.027H A point x ∈ X is called closed if {x} = {x}. Let x, y be points
of X. We say that x is a specialization of y, or that y is a generalization of x if
x ∈ {y}.

Exercise 111.6.23.02DD Show that closed points of Spec(A) correspond to maximal
ideals of A.

Exercise 111.6.24.02DE Show that p is a generalization of q in Spec(A) if and only if p ⊂
q. Characterize closed points, maximal ideals, generic points and minimal prime
ideals in terms of generalization and specialization. (Here we use the terminology
that a point of a possibly reducible topological space X is called a generic point if
it is a generic points of one of the irreducible components of X.)

https://stacks.math.columbia.edu/tag/02D4
https://stacks.math.columbia.edu/tag/02D5
https://stacks.math.columbia.edu/tag/027E
https://stacks.math.columbia.edu/tag/02D6
https://stacks.math.columbia.edu/tag/02D7
https://stacks.math.columbia.edu/tag/02D8
https://stacks.math.columbia.edu/tag/027F
https://stacks.math.columbia.edu/tag/02D9
https://stacks.math.columbia.edu/tag/027G
https://stacks.math.columbia.edu/tag/02DA
https://stacks.math.columbia.edu/tag/02DB
https://stacks.math.columbia.edu/tag/02DC
https://stacks.math.columbia.edu/tag/027H
https://stacks.math.columbia.edu/tag/02DD
https://stacks.math.columbia.edu/tag/02DE


111.7. LOCALIZATION 7355

Exercise 111.6.25.02DF Let I and J be ideals of A. What is the condition for V (I) and
V (J) to be disjoint?

Definition 111.6.26.027I A topological space X is called connected if it is nonempty
and not the union of two nonempty disjoint open subsets. A connected component
of X is a maximal connected subset. Any point of X is contained in a connected
component of X and any connected component of X is closed in X. (But in general
a connected component need not be open in X.)

Exercise 111.6.27.02DG Let A be a nonzero ring. Show that Spec(A) is disconnected iff
A ∼= B × C for certain nonzero rings B,C.

Exercise 111.6.28.02DH Let T be a connected component of Spec(A). Prove that T
is stable under generalization. Prove that T is an open subset of Spec(A) if A is
Noetherian. (Remark: This is wrong when A is an infinite product of copies of F2
for example. The spectrum of this ring consists of infinitely many closed points.)

Exercise 111.6.29.02DI Compute Spec(k[x]), i.e., describe the prime ideals in this ring,
describe the possible specializations, and describe the topology. (Work this out
when k is algebraically closed but also when k is not.)

Exercise 111.6.30.02DJ Compute Spec(k[x, y]), where k is algebraically closed. [Hint:
use the morphism φ : Spec(k[x, y]) → Spec(k[x]); if φ(p) = (0) then localize with
respect to S = {f ∈ k[x] | f ̸= 0} and use result of lecture on localization and
Spec.] (Why do you think algebraic geometers call this affine 2-space?)

Exercise 111.6.31.02DK Compute Spec(Z[y]). [Hint: as above.] (Affine 1-space over Z.)

111.7. Localization

0766
Exercise 111.7.1.0767 Let A be a ring. Let S ⊂ A be a multiplicative subset. Let M
be an A-module. Let N ⊂ S−1M be an S−1A-submodule. Show that there exists
an A-submodule N ′ ⊂ M such that N = S−1N ′. (This useful result applies in
particular to ideals of S−1A.)

Exercise 111.7.2.0768 Let A be a ring. Let M be an A-module. Let m ∈M .
(1) Show that I = {a ∈ A | am = 0} is an ideal of A.
(2) For a prime p of A show that the image of m in Mp is zero if and only if

I ̸⊂ p.
(3) Show that m is zero if and only if the image of m is zero in Mp for all

primes p of A.
(4) Show that m is zero if and only if the image of m is zero in Mm for all

maximal ideals m of A.
(5) Show that M = 0 if and only if Mm is zero for all maximal ideals m.

Exercise 111.7.3.0769 Find a pair (A, f) where A is a domain with three or more
pairwise distinct primes and f ∈ A is an element such that the principal localization
Af = {1, f, f2, . . .}−1A is a field.

Exercise 111.7.4.076A Let A be a ring. Let M be a finite A-module. Let S ⊂ A be a
multiplicative set. Assume that S−1M = 0. Show that there exists an f ∈ S such
that the principal localization Mf = {1, f, f2, . . .}−1M is zero.
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Exercise 111.7.5.076B Give an example of a triple (A, I, S) where A is a ring, 0 ̸= I ̸= A
is a proper nonzero ideal, and S ⊂ A is a multiplicative subset such that A/I ∼=
S−1A as A-algebras.

111.8. Nakayama’s Lemma

076C
Exercise 111.8.1.076D Let A be a ring. Let I be an ideal of A. Let M be an A-module.
Let x1, . . . , xn ∈M . Assume that

(1) M/IM is generated by x1, . . . , xn,
(2) M is a finite A-module,
(3) I is contained in every maximal ideal of A.

Show that x1, . . . , xn generate M . (Suggested solution: Reduce to a localization
at a maximal ideal of A using Exercise 111.7.2 and exactness of localization. Then
reduce to the statement of Nakayama’s lemma in the lectures by looking at the
quotient of M by the submodule generated by x1, . . . , xn.)

111.9. Length

027J
Definition 111.9.1.076E Let A be a ring. Let M be an A-module. The length of M as
an R-module is

lengthA(M) = sup{n | ∃ 0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M, Mi ̸= Mi+1}.
In other words, the supremum of the lengths of chains of submodules.

Exercise 111.9.2.076F Show that a module M over a ring A has length 1 if and only if
it is isomorphic to A/m for some maximal ideal m in A.

Exercise 111.9.3.076G Compute the length of the following modules over the following
rings. Briefly(!) explain your answer. (Please feel free to use additivity of the
length function in short exact sequences, see Algebra, Lemma 10.52.3).

(1) The length of Z/120Z over Z.
(2) The length of C[x]/(x100 + x+ 1) over C[x].
(3) The length of R[x]/(x4 + 2x2 + 1) over R[x].

Exercise 111.9.4.02DL Let A = k[x, y](x,y) be the local ring of the affine plane at
the origin. Make any assumption you like about the field k. Suppose that f =
x3 + x2y2 + y100 and g = y3 − x999. What is the length of A/(f, g) as an A-
module? (Possible way to proceed: think about the ideal that f and g generate in
quotients of the form A/mnA = k[x, y]/(x, y)n for varying n. Try to find n such that
A/(f, g) + mnA

∼= A/(f, g) + mn+1
A and use NAK.)

111.10. Associated primes

0CR7 Associated primes are discussed in Algebra, Section 10.63

Exercise 111.10.1.0CR8 Compute the set of associated primes for each of the following
modules.

(1) R = k[x, y] and M = R/(xy(x+ y)),
(2) R = Z[x] and M = R/(300x+ 75), and
(3) R = k[x, y, z] and M = R/(x3, x2y, xz).
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Here as usual k is a field.

Exercise 111.10.2.0CR9 Give an example of a Noetherian ring R and a prime ideal p
such that p is not the only associated prime of R/p2.

Exercise 111.10.3.0CRA Let R be a Noetherian ring with incomparable prime ideals p,
q, i.e., p ̸⊂ q and q ̸⊂ p.

(1) Show that for N = R/(p ∩ q) we have Ass(N) = {p, q}.
(2) Show by an example that the module M = R/pq can have an associated

prime not equal to p or q.

111.11. Ext groups

0CRB Ext groups are defined in Algebra, Section 10.71.

Exercise 111.11.1.0CRC Compute all the Ext groups Exti(M,N) of the given modules
in the category of Z-modules (also known as the category of abelian groups).

(1) M = Z and N = Z,
(2) M = Z/4Z and N = Z/8Z,
(3) M = Q and N = Z/2Z, and
(4) M = Z/2Z and N = Q/Z.

Exercise 111.11.2.0CRD Let R = k[x, y] where k is a field.
(1) Show by hand that the Koszul complex

0→ R

(
y
−x

)
−−−−−→ R⊕2 (x,y)−−−→ R

f 7→f(0,0)−−−−−−→ k → 0
is exact.

(2) Compute ExtiR(k, k) where k = R/(x, y) as an R-module.

Exercise 111.11.3.0CRE Give an example of a Noetherian ring R and finite modules M ,
N such that ExtiR(M,N) is nonzero for all i ≥ 0.

Exercise 111.11.4.0CRF Give an example of a ringR and ideal I such that Ext1
R(R/I,R/I)

is not a finite R-module. (We know this cannot happen if R is Noetherian by Al-
gebra, Lemma 10.71.9.)

111.12. Depth

0CS0 Depth is defined in Algebra, Section 10.72 and further studied in Dualizing Com-
plexes, Section 47.11.

Exercise 111.12.1.0CS1 Let R be a ring, I ⊂ R an ideal, and M an R-module. Compute
depthI(M) in the following cases.

(1) R = Z, I = (30), M = Z,
(2) R = Z, I = (30), M = Z/(300),
(3) R = Z, I = (30), M = Z/(7),
(4) R = k[x, y, z]/(x2 + y2 + z2), I = (x, y, z), M = R,
(5) R = k[x, y, z, w]/(xz, xw, yz, yw), I = (x, y, z, w), M = R.

Here k is a field. In the last two cases feel free to localize at the maximal ideal I.

Exercise 111.12.2.0CS2 Give an example of a Noetherian local ring (R,m, κ) of depth
≥ 1 and a prime ideal p such that
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(1) depthm(R) ≥ 1,
(2) depthp(Rp) = 0, and
(3) dim(Rp) ≥ 1.

If we don’t ask for (3) then the exercise is too easy. Why?

Exercise 111.12.3.0CS3 Let (R,m) be a local Noetherian domain. Let M be a finite
R-module.

(1) If M is torsion free, show that M has depth at least 1 over R.
(2) Give an example with depth equal to 1.

Exercise 111.12.4.0CS4 For every m ≥ n ≥ 0 give an example of a Noetherian local ring
R with dim(R) = m and depth(R) = n.

Exercise 111.12.5.0CSZ Let (R,m) be a Noetherian local ring. Let M be a finite R-
module. Show that there exists a canonical short exact sequence

0→ K →M → Q→ 0
such that the following are true

(1) depth(Q) ≥ 1,
(2) K is zero or Supp(K) = {m}, and
(3) lengthR(K) <∞.

Hint: using the Noetherian property show that there exists a maximal submodule
K as in (2) and then show that Q = M/K satisfies (1) and K satisfies (3).

Exercise 111.12.6.0CT0 Let (R,m) be a Noetherian local ring. Let M be a finite R-
module of depth ≥ 2. Let N ⊂M be a nonzero submodule.

(1) Show that depth(N) ≥ 1.
(2) Show that depth(N) = 1 if and only if the quotient module M/N has

depth(M/N) = 0.
(3) Show there exists a submodule N ′ ⊂ M with N ⊂ N ′ of finite colength,

i.e., lengthR(N ′/N) < ∞, such that N ′ has depth ≥ 2. Hint: Apply
Exercise 111.12.5 to M/N and choose N ′ to be the inverse image of K.

Exercise 111.12.7.0CT1 Let (R,m) be a Noetherian local ring. Assume that R is reduced,
i.e., R has no nonzero nilpotent elements. Assume moreover that R has two distinct
minimal primes p and q.

(1) Show that the sequence of R-modules
0→ R→ R/p⊕R/q→ R/p + q→ 0

is exact (check at all the spots). The maps are x 7→ (x mod p, x mod q)
and (y mod p, z mod q) 7→ (y − z mod p + q).

(2) Show that if depth(R) ≥ 2, then dim(R/p + q) ≥ 1.
(3) Show that if depth(R) ≥ 2, then U = Spec(R) \ {m} is a connected

topological space.
This proves a very special case of Hartshorne’s connectedness theorem which says
that the punctured spectrum U of a local Noetherian ring of depth ≥ 2 is connected.

Exercise 111.12.8.0CT2 Let (R,m) be a Noetherian local ring. Let x, y ∈ m be a regular
sequence of length 2. For any n ≥ 2 show that there do not exist a, b ∈ R with

xn−1yn−1 = axn + byn
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Suggestion: First try for n = 2 to see how to argue. Remark: There is a vast
generalization of this result called the monomial conjecture.

111.13. Cohen-Macaulay modules and rings

0CT3 Cohen-Macaulay modules are studied in Algebra, Section 10.103 and Cohen-Macaulay
rings are studied in Algebra, Section 10.104.

Exercise 111.13.1.0CT4 In the following cases, please answer yes or no. No explanation
or proof necessary.

(1) Let p be a prime number. Is the local ring Z(p) a Cohen-Macaulay local
ring?

(2) Let p be a prime number. Is the local ring Z(p) a regular local ring?
(3) Let k be a field. Is the local ring k[x](x) a Cohen-Macaulay local ring?
(4) Let k be a field. Is the local ring k[x](x) a regular local ring?
(5) Let k be a field. Is the local ring (k[x, y]/(y2−x3))(x,y) = k[x, y](x,y)/(y2−

x3) a Cohen-Macaulay local ring?
(6) Let k be a field. Is the local ring (k[x, y]/(y2, xy))(x,y) = k[x, y](x,y)/(y2, xy)

a Cohen-Macaulay local ring?

111.14. Singularities

027K
Exercise 111.14.1.02DM Let k be any field. Suppose that A = k[[x, y]]/(f) and B =
k[[u, v]]/(g), where f = xy and g = uv + δ with δ ∈ (u, v)3. Show that A and B
are isomorphic rings.

Remark 111.14.2.02DN A singularity on a curve over a field k is called an ordinary
double point if the complete local ring of the curve at the point is of the form
k′[[x, y]]/(f), where (a) k′ is a finite separable extension of k, (b) the initial term
of f has degree two, i.e., it looks like q = ax2 + bxy + cy2 for some a, b, c ∈ k′ not
all zero, and (c) q is a nondegenerate quadratic form over k′ (in char 2 this means
that b is not zero). In general there is one isomorphism class of such rings for each
isomorphism class of pairs (k′, q).

Exercise 111.14.3.0D1S Let R be a ring. Let n ≥ 1. Let A, B be n × n matrices
with coefficients in R such that AB = f1n×n for some nonzerodivisor f in R. Set
S = R/(f). Show that

. . .→ S⊕n B−→ S⊕n A−→ S⊕n B−→ S⊕n → . . .

is exact.

111.15. Constructible sets

0FJ3 Let k be an algebraically closed field, for example the field C of complex numbers.
Let n ≥ 0. A polynomial f ∈ k[x1, . . . , xn] gives a function f : kn → k by
evaluation. A subset Z ⊂ kn is called an algebraic set if it is the common vanishing
set of a collection of polynomials.

Exercise 111.15.1.0FJ4 Prove that an algebraic set can always be written as the zero
locus of finitely many polynomials.
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With notation as above a subset E ⊂ kn is called constructible if it is a finite union
of sets of the form Z ∩ {f ̸= 0} where f is a polynomial.
Exercise 111.15.2.0FJ5 Show the following

(1) the complement of a constructible set is a constructible set,
(2) a finite union of constructible sets is a constructible set,
(3) a finite intersection of constructible sets is a constructible set, and
(4) any constructible set E can be written as a finite disjoint union E =

∐
Ei

with each Ei of the form Z ∩ {f ̸= 0} where Z is an algebraic set and f
is a polynomial.

Exercise 111.15.3.0FJ6 Let R be a ring. Let f = adx
d + ad−1x

d−1 + . . . + a0 ∈ R[x].
(As usual this notation means a0, . . . , ad ∈ R.) Let g ∈ R[x]. Prove that we can
find N ≥ 0 and r, q ∈ R[x] such that

aNd g = qf + r

with deg(r) < d, i.e., for some ci ∈ R we have r = c0 + c1x+ . . .+ cd−1x
d−1.

111.16. Hilbert Nullstellensatz

027L
Exercise 111.16.1.02DO A silly argument using the complex numbers! Let C be the
complex number field. Let V be a vector space over C. The spectrum of a linear
operator T : V → V is the set of complex numbers λ ∈ C such that the operator
T − λidV is not invertible.

(1) Show that C(X) has uncountable dimension over C.
(2) Show that any linear operator on V has a nonempty spectrum if the

dimension of V is finite or countable.
(3) Show that if a finitely generated C-algebra R is a field, then the map

C→ R is an isomorphism.
(4) Show that any maximal ideal m of C[x1, . . . , xn] is of the form (x1 −

α1, . . . , xn − αn) for some αi ∈ C.
Remark 111.16.2.027M Let k be a field. Then for every integer n ∈ N and every maximal
ideal m ⊂ k[x1, . . . , xn] the quotient k[x1, . . . , xn]/m is a finite field extension of k.
This will be shown later in the course. Of course (please check this) it implies a
similar statement for maximal ideals of finitely generated k-algebras. The exercise
above proves it in the case k = C.
Exercise 111.16.3.02DP Let k be a field. Please use Remark 111.16.2.

(1) Let R be a k-algebra. Suppose that dimk R <∞ and that R is a domain.
Show that R is a field.

(2) Suppose that R is a finitely generated k-algebra, and f ∈ R not nilpotent.
Show that there exists a maximal ideal m ⊂ R with f ̸∈ m.

(3) Show by an example that this statement fails when R is not of finite type
over a field.

(4) Show that any radical ideal I ⊂ C[x1, . . . , xn] is the intersection of the
maximal ideals containing it.

Remark 111.16.4.02DQ This is the Hilbert Nullstellensatz. Namely it says that the closed
subsets of Spec(k[x1, . . . , xn]) (which correspond to radical ideals by a previous
exercise) are determined by the closed points contained in them.
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Exercise 111.16.5.02DR Let A = C[x11, x12, x21, x22, y11, y12, y21, y22]. Let I be the ideal
of A generated by the entries of the matrix XY , with

X =
(
x11 x12
x21 x22

)
and Y =

(
y11 y12
y21 y22

)
.

Find the irreducible components of the closed subset V (I) of Spec(A). (I mean
describe them and give equations for each of them. You do not have to prove that
the equations you write down define prime ideals.) Hints:

(1) You may use the Hilbert Nullstellensatz, and it suffices to find irreducible
locally closed subsets which cover the set of closed points of V (I).

(2) There are two easy components.
(3) An image of an irreducible set under a continuous map is irreducible.

111.17. Dimension

02LT
Exercise 111.17.1.076H Construct a ring A with finitely many prime ideals having
dimension > 1.

Exercise 111.17.2.076I Let f ∈ C[x, y] be a nonconstant polynomial. Show that
C[x, y]/(f) has dimension 1.

Exercise 111.17.3.02LU Let (R,m) be a Noetherian local ring. Let n ≥ 1. Let m′ =
(m, x1, . . . , xn) in the polynomial ring R[x1, . . . , xn]. Show that

dim(R[x1, . . . , xn]m′) = dim(R) + n.

111.18. Catenary rings

027N
Definition 111.18.1.027O A Noetherian ring A is said to be catenary if for any triple of
prime ideals p1 ⊂ p2 ⊂ p3 we have

ht(p3/p1) = ht(p3/p2) + ht(p2/p1).
Here ht(p/q) means the height of p/q in the ring A/q. In a formula

ht(p/q) = dim(Ap/qAp) = dim((A/q)p) = dim((A/q)p/q)
A topological space X is catenary, if given T ⊂ T ′ ⊂ X with T and T ′ closed and
irreducible, then there exists a maximal chain of irreducible closed subsets

T = T0 ⊂ T1 ⊂ . . . ⊂ Tn = T ′

and every such chain has the same (finite) length.

Exercise 111.18.2.0CT5 Show that the notion of catenary defined in Algebra, Definition
10.105.1 agrees with the notion of Definition 111.18.1 for Noetherian rings.

Exercise 111.18.3.02DS Show that a Noetherian local domain of dimension 2 is catenary.

Exercise 111.18.4.077D Let k be a field. Show that a finite type k-algebra is catenary.

Exercise 111.18.5.0CT6 Give an example of a finite, sober, catenary topological space
X which does not have a dimension function δ : X → Z. Here δ : X → Z is a
dimension function if for x, y ∈ X we have

(1) x⇝ y and x ̸= y implies δ(x) > δ(y),
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(2) x ⇝ y and δ(x) ≥ δ(y) + 2 implies there exists a z ∈ X with x ⇝ z ⇝ y
and δ(x) > δ(z) > δ(y).

Describe your space clearly and succintly explain why there cannot be a dimension
function.

111.19. Fraction fields

027P
Exercise 111.19.1.02DT Consider the domain

Q[r, s, t]/(s2 − (r − 1)(r − 2)(r − 3), t2 − (r + 1)(r + 2)(r + 3)).

Find a domain of the form Q[x, y]/(f) with isomorphic field of fractions.

111.20. Transcendence degree

077E
Exercise 111.20.1.077F Let K ′/K/k be field extensions with K ′ algebraic over K.
Prove that trdegk(K) = trdegk(K ′). (Hint: Show that if x1, . . . , xd ∈ K are
algebraically independent over k and d < trdegk(K ′) then k(x1, . . . , xd) ⊂ K cannot
be algebraic.)

Exercise 111.20.2.0CVP Let k be a field. Let K/k be a finitely generated extension
of transcendence degree d. If V,W ⊂ K are finite dimensional k-subvector spaces
denote

VW = {f ∈ K | f =
∑

i=1,...,n
viwi for some n and vi ∈ V,wi ∈W}

This is a finite dimensional k-subvector space. Set V 2 = V V , V 3 = V V 2, etc.
(1) Show you can find V ⊂ K and ϵ > 0 such that dimV n ≥ ϵnd for all n ≥ 1.
(2) Conversely, show that for every finite dimensional V ⊂ K there exists

a C > 0 such that dimV n ≤ Cnd for all n ≥ 1. (One possible way
to proceed: First do this for subvector spaces of k[x1, . . . , xd]. Then do
this for subvector spaces of k(x1, . . . , xd). Finally, if K/k(x1, . . . , xd) is
a finite extension choose a basis of K over k(x1, . . . , xd) and argue using
expansion in terms of this basis.)

(3) Conclude that you can redefine the transcendence degree in terms of
growth of powers of finite dimensional subvector spaces of K.

This is related to Gelfand-Kirillov dimension of (noncommutative) algebras over k.

111.21. Dimension of fibres

0CVQ Some questions related to the dimension formula, see Algebra, Section 10.113.

Exercise 111.21.1.0CVR Let k be your favorite algebraically closed field. Below k[x] and
k[x, y] denote the polynomial rings.

(1) For every integer n ≥ 0 find a finite type extension k[x] ⊂ A of domains
such that the spectrum of A/xA has exactly n irreducible components.

(2) Make an example of a finite type extension k[x] ⊂ A of domains such that
the spectrum of A/(x− α)A is nonempty and reducible for every α ∈ k.
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(3) Make an example of a finite type extension k[x, y] ⊂ A of domains such
that the spectrum of A/(x − α, y − β)A is irreducible1 for all (α, β) ∈
k2 \ {(0, 0)} and the spectrum of A/(x, y)A is nonempty and reducible.

Exercise 111.21.2.0CVS Let k be your favorite algebraically closed field. Let n ≥ 1. Let
k[x1, . . . , xn] be the polynomial ring. Set m = (x1, . . . , xn). Let k[x1, . . . , xn] ⊂ A
be a finite type extension of domains. Set d = dim(A).

(1) Show that d− 1 ≥ dim(A/mA) ≥ d− n if A/mA ̸= 0.
(2) Show by example that every value can occur.
(3) Show by example that Spec(A/mA) can have irreducible components of

different dimensions.

111.22. Finite locally free modules

027Q
Definition 111.22.1.027R Let A be a ring. Recall that a finite locally free A-module
M is a module such that for every p ∈ Spec(A) there exists an f ∈ A, f ̸∈ p such
that Mf is a finite free Af -module. We say M is an invertible module if M is finite
locally free of rank 1, i.e., for every p ∈ Spec(A) there exists an f ∈ A, f ̸∈ p such
that Mf

∼= Af as an Af -module.

Exercise 111.22.2.078P Prove that the tensor product of finite locally free modules
is finite locally free. Prove that the tensor product of two invertible modules is
invertible.

Definition 111.22.3.078Q Let A be a ring. The class group of A, sometimes called the
Picard group of A is the set Pic(A) of isomorphism classes of invertible A-modules
endowed with a group operation defined by tensor product (see Exercise 111.22.2).

Note that the class group of A is trivial exactly when every invertible module is
isomorphic to a free module of rank 1.

Exercise 111.22.4.078R Show that the class groups of the following rings are trivial
(1) a polynomial ring A = k[x] where k is a field,
(2) the integers A = Z,
(3) a polynomial ring A = k[x, y] where k is a field, and
(4) the quotient k[x, y]/(xy) where k is a field.

Exercise 111.22.5.078S Show that the class group of the ring A = k[x, y]/(y2 − f(x))
where k is a field of characteristic not 2 and where f(x) = (x− t1) . . . (x− tn) with
t1, . . . , tn ∈ k distinct and n ≥ 3 an odd integer is not trivial. (Hint: Show that the
ideal (y, x− t1) defines a nontrivial element of Pic(A).)

Exercise 111.22.6.02DU Let A be a ring.
(1) Suppose that M is a finite locally free A-module, and suppose that φ :

M →M is an endomorphism. Define/construct the trace and determinant
of φ and prove that your construction is “functorial in the triple (A,M,φ)”.

(2) Show that if M,N are finite locally free A-modules, and if φ : M → N and
ψ : N →M then Trace(φ◦ψ) = Trace(ψ ◦φ) and det(φ◦ψ) = det(ψ ◦φ).

(3) In case M is finite locally free show that Trace defines an A-linear map
EndA(M)→ A and det defines a multiplicative map EndA(M)→ A.

1Recall that irreducible implies nonempty.
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Exercise 111.22.7.02DV Now suppose that B is an A-algebra which is finite locally free
as an A-module, in other words B is a finite locally free A-algebra.

(1) Define TraceB/A and NormB/A using Trace and det from Exercise 111.22.6.
(2) Let b ∈ B and let π : Spec(B) → Spec(A) be the induced morphism.

Show that π(V (b)) = V (NormB/A(b)). (Recall that V (f) = {p | f ∈ p}.)
(3) (Base change.) Suppose that i : A→ A′ is a ring map. Set B′ = B⊗AA′.

Indicate why i(NormB/A(b)) equals NormB′/A′(b⊗ 1).
(4) Compute NormB/A(b) when B = A×A×A× . . .×A and b = (a1, . . . , an).
(5) Compute the norm of y − y3 under the finite flat map Q[x] → Q[y],

x→ yn. (Hint: use the “base change” A = Q[x] ⊂ A′ = Q(ζn)(x1/n).)

111.23. Glueing

027S
Exercise 111.23.1.02DW Suppose that A is a ring and M is an A-module. Let fi, i ∈ I
be a collection of elements of A such that

Spec(A) =
⋃
D(fi).

(1) Show that if Mfi is a finite Afi-module, then M is a finite A-module.
(2) Show that if Mfi is a flat Afi-module, then M is a flat A-module. (This

is kind of silly if you think about it right.)

Remark 111.23.2.02DX In algebraic geometric language this means that the property of
“being finitely generated” or “being flat” is local for the Zariski topology (in a suit-
able sense). You can also show this for the property “being of finite presentation”.

Exercise 111.23.3.078T Suppose that A → B is a ring map. Let fi ∈ A, i ∈ I and
gj ∈ B, j ∈ J be collections of elements such that

Spec(A) =
⋃
D(fi) and Spec(B) =

⋃
D(gj).

Show that if Afi → Bfigj is of finite type for all i, j then A→ B is of finite type.

111.24. Going up and going down

027T
Definition 111.24.1.027U Let ϕ : A→ B be a homomorphism of rings. We say that the
going-up theorem holds for ϕ if the following condition is satisfied:

(GU) for any p, p′ ∈ Spec(A) such that p ⊂ p′, and for any P ∈ Spec(B) lying
over p, there exists P ′ ∈ Spec(B) lying over p′ such that P ⊂ P ′.

Similarly, we say that the going-down theorem holds for ϕ if the following condition
is satisfied:

(GD) for any p, p′ ∈ Spec(A) such that p ⊂ p′, and for any P ′ ∈ Spec(B) lying
over p′, there exists P ∈ Spec(B) lying over p such that P ⊂ P ′.

Exercise 111.24.2.02DY In each of the following cases determine whether (GU), (GD)
holds, and explain why. (Use any Prop/Thm/Lemma you can find, but check the
hypotheses in each case.)

(1) k is a field, A = k, B = k[x].
(2) k is a field, A = k[x], B = k[x, y].
(3) A = Z, B = Z[1/11].
(4) k is an algebraically closed field, A = k[x, y], B = k[x, y, z]/(x2−y, z2−x).

https://stacks.math.columbia.edu/tag/02DV
https://stacks.math.columbia.edu/tag/02DW
https://stacks.math.columbia.edu/tag/02DX
https://stacks.math.columbia.edu/tag/078T
https://stacks.math.columbia.edu/tag/027U
https://stacks.math.columbia.edu/tag/02DY


111.26. HILBERT FUNCTIONS 7365

(5) A = Z, B = Z[i, 1/(2 + i)].
(6) A = Z, B = Z[i, 1/(14 + 7i)].
(7) k is an algebraically closed field, A = k[x], B = k[x, y, 1/(xy−1)]/(y2−y).

Exercise 111.24.3.0FKE Let A be a ring. Let B = A[x] be the polynomial algebra in
one variable over A. Let f = a0 + a1x + . . . + arx

r ∈ B = A[x]. Prove carefully
that the image of D(f) in Spec(A) is equal to D(a0) ∪ . . . ∪D(ar).

Exercise 111.24.4.02DZ Let k be an algebraically closed field. Compute the image in
Spec(k[x, y]) of the following maps:

(1) Spec(k[x, yx−1])→ Spec(k[x, y]), where k[x, y] ⊂ k[x, yx−1] ⊂ k[x, y, x−1].
(Hint: To avoid confusion, give the element yx−1 another name.)

(2) Spec(k[x, y, a, b]/(ax− by − 1))→ Spec(k[x, y]).
(3) Spec(k[t, 1/(t− 1)])→ Spec(k[x, y]), induced by x 7→ t2, and y 7→ t3.
(4) k = C (complex numbers), Spec(k[s, t]/(s3 + t3 − 1)) → Spec(k[x, y]),

where x 7→ s2, y 7→ t2.

Remark 111.24.5.02E0 Finding the image as above usually is done by using elimination
theory.

111.25. Fitting ideals

027V
Exercise 111.25.1.02E1 Let R be a ring and let M be a finite R-module. Choose a
presentation ⊕

j∈J
R −→ R⊕n −→M −→ 0.

of M . Note that the map R⊕n →M is given by a sequence of elements x1, . . . , xn
of M . The elements xi are generators of M . The map

⊕
j∈J R → R⊕n is given

by a n × J matrix A with coefficients in R. In other words, A = (aij)i=1,...,n,j∈J .
The columns (a1j , . . . , anj), j ∈ J of A are said to be the relations. Any vector
(ri) ∈ R⊕n such that

∑
rixi = 0 is a linear combination of the columns of A. Of

course any finite R-module has a lot of different presentations.
(1) Show that the ideal generated by the (n − k) × (n − k) minors of A is

independent of the choice of the presentation. This ideal is the kth Fitting
ideal of M . Notation Fitk(M).

(2) Show that Fit0(M) ⊂ Fit1(M) ⊂ Fit2(M) ⊂ . . .. (Hint: Use that a
determinant can be computed by expanding along a column.)

(3) Show that the following are equivalent:
(a) Fitr−1(M) = (0) and Fitr(M) = R, and
(b) M is locally free of rank r.

111.26. Hilbert functions

027W
Definition 111.26.1.027X A numerical polynomial is a polynomial f(x) ∈ Q[x] such that
f(n) ∈ Z for every integer n.

Definition 111.26.2.027Y A graded module M over a ring A is an A-module M endowed
with a direct sum decomposition

⊕
n∈Z Mn into A-submodules. We will say that M

is locally finite if all of the Mn are finite A-modules. Suppose that A is a Noetherian
ring and that φ is a Euler-Poincaré function on finite A-modules. This means that
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for every finitely generated A-module M we are given an integer φ(M) ∈ Z and for
every short exact sequence

0 −→M ′ −→M −→M ′′ −→ 0
we have φ(M) = φ(M ′) + φ(M ′′). The Hilbert function of a locally finite graded
module M (with respect to φ) is the function χφ(M,n) = φ(Mn). We say that
M has a Hilbert polynomial if there is some numerical polynomial Pφ such that
χφ(M,n) = Pφ(n) for all sufficiently large integers n.
Definition 111.26.3.027Z A graded A-algebra is a graded A-module B =

⊕
n≥0 Bn

together with an A-bilinear map
B ×B −→ B, (b, b′) 7−→ bb′

that turns B into an A-algebra so that Bn ·Bm ⊂ Bn+m. Finally, a graded module
M over a graded A-algebra B is given by a graded A-module M together with a
(compatible) B-module structure such that Bn ·Md ⊂Mn+d. Now you can define
homomorphisms of graded modules/rings, graded submodules, graded ideals, exact
sequences of graded modules, etc, etc.
Exercise 111.26.4.02E2 Let A = k a field. What are all possible Euler-Poincaré functions
on finite A-modules in this case?
Exercise 111.26.5.02E3 Let A = Z. What are all possible Euler-Poincaré functions on
finite A-modules in this case?
Exercise 111.26.6.02E4 Let A = k[x, y]/(xy) with k algebraically closed. What are all
possible Euler-Poincaré functions on finite A-modules in this case?
Exercise 111.26.7.02E5 Suppose that A is Noetherian. Show that the kernel of a map
of locally finite graded A-modules is locally finite.
Exercise 111.26.8.02E6 Let k be a field and let A = k and B = k[x, y] with grading
determined by deg(x) = 2 and deg(y) = 3. Let φ(M) = dimk(M). Compute the
Hilbert function of B as a graded k-module. Is there a Hilbert polynomial in this
case?
Exercise 111.26.9.02E7 Let k be a field and let A = k and B = k[x, y]/(x2, xy) with
grading determined by deg(x) = 2 and deg(y) = 3. Let φ(M) = dimk(M). Com-
pute the Hilbert function of B as a graded k-module. Is there a Hilbert polynomial
in this case?
Exercise 111.26.10.02E8 Let k be a field and let A = k. Let φ(M) = dimk(M).
Fix d ∈ N. Consider the graded A-algebra B = k[x, y, z]/(xd + yd + zd), where
x, y, z each have degree 1. Compute the Hilbert function of B. Is there a Hilbert
polynomial in this case?

111.27. Proj of a ring

0280
Definition 111.27.1.0281 Let R be a graded ring. A homogeneous ideal is simply an
ideal I ⊂ R which is also a graded submodule of R. Equivalently, it is an ideal
generated by homogeneous elements. Equivalently, if f ∈ I and

f = f0 + f1 + . . .+ fn

is the decomposition of f into homogeneous pieces in R then fi ∈ I for each i.
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Definition 111.27.2.0282 We define the homogeneous spectrum Proj(R) of the graded
ring R to be the set of homogeneous, prime ideals p of R such that R+ ̸⊂ p. Note
that Proj(R) is a subset of Spec(R) and hence has a natural induced topology.

Definition 111.27.3.0283 Let R = ⊕d≥0Rd be a graded ring, let f ∈ Rd and assume
that d ≥ 1. We define R(f) to be the subring of Rf consisting of elements of the
form r/fn with r homogeneous and deg(r) = nd. Furthermore, we define

D+(f) = {p ∈ Proj(R)|f ̸∈ p}.
Finally, for a homogeneous ideal I ⊂ R we define V+(I) = V (I) ∩ Proj(R).

Exercise 111.27.4.02E9 On the topology on Proj(R). With definitions and notation as
above prove the following statements.

(1) Show that D+(f) is open in Proj(R).
(2) Show that D+(ff ′) = D+(f) ∩D+(f ′).
(3) Let g = g0 + . . . + gm be an element of R with gi ∈ Ri. Express D(g) ∩

Proj(R) in terms ofD+(gi), i ≥ 1 andD(g0)∩Proj(R). No proof necessary.
(4) Let g ∈ R0 be a homogeneous element of degree 0. Express D(g)∩Proj(R)

in terms of D+(fα) for a suitable family fα ∈ R of homogeneous elements
of positive degree.

(5) Show that the collection {D+(f)} of opens forms a basis for the topology
of Proj(R).

(6)078U Show that there is a canonical bijection D+(f) → Spec(R(f)). (Hint:
Imitate the proof for Spec but at some point thrown in the radical of an
ideal.)

(7) Show that the map from (6) is a homeomorphism.
(8) Give an example of an R such that Proj(R) is not quasi-compact. No

proof necessary.
(9) Show that any closed subset T ⊂ Proj(R) is of the form V+(I) for some

homogeneous ideal I ⊂ R.

Remark 111.27.5.02EA There is a continuous map Proj(R) −→ Spec(R0).

Exercise 111.27.6.02EB If R = A[X] with deg(X) = 1, show that the natural map
Proj(R)→ Spec(A) is a bijection and in fact a homeomorphism.

Exercise 111.27.7.02EC Blowing up: part I. In this exercise R = BlI(A) = A⊕I⊕I2⊕. . ..
Consider the natural map b : Proj(R)→ Spec(A). Set U = Spec(A)− V (I). Show
that

b : b−1(U) −→ U

is a homeomorphism. Thus we may think of U as an open subset of Proj(R). Let
Z ⊂ Spec(A) be an irreducible closed subscheme with generic point ξ ∈ Z. Assume
that ξ ̸∈ V (I), in other words Z ̸⊂ V (I), in other words ξ ∈ U , in other words
Z ∩ U ̸= ∅. We define the strict transform Z ′ of Z to be the closure of the unique
point ξ′ lying above ξ. Another way to say this is that Z ′ is the closure in Proj(R)
of the locally closed subset Z ∩ U ⊂ U ⊂ Proj(R).

Exercise 111.27.8.02ED Blowing up: Part II. Let A = k[x, y] where k is a field, and let
I = (x, y). Let R be the blowup algebra for A and I.

(1) Show that the strict transforms of Z1 = V ({x}) and Z2 = V ({y}) are
disjoint.
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(2) Show that the strict transforms of Z1 = V ({x}) and Z2 = V ({x − y2})
are not disjoint.

(3) Find an ideal J ⊂ A such that V (J) = V (I) and such that the strict
transforms of Z1 = V ({x}) and Z2 = V ({x− y2}) in the blowup along J
are disjoint.

Exercise 111.27.9.02EE Let R be a graded ring.
(1) Show that Proj(R) is empty if Rn = (0) for all n >> 0.
(2) Show that Proj(R) is an irreducible topological space if R is a domain

and R+ is not zero. (Recall that the empty topological space is not irre-
ducible.)

Exercise 111.27.10.02EF Blowing up: Part III. Consider A, I and U , Z as in the
definition of strict transform. Let Z = V (p) for some prime ideal p. Let Ā = A/p
and let Ī be the image of I in Ā.

(1) Show that there exists a surjective ring map R := BlI(A)→ R̄ := BlĪ(Ā).
(2) Show that the ring map above induces a bijective map from Proj(R̄) onto

the strict transform Z ′ of Z. (This is not so easy. Hint: Use 5(b) above.)
(3) Conclude that the strict transform Z ′ = V+(P ) where P ⊂ R is the

homogeneous ideal defined by Pd = Id ∩ p.
(4) Suppose that Z1 = V (p) and Z2 = V (q) are irreducible closed subsets

defined by prime ideals such that Z1 ̸⊂ Z2, and Z2 ̸⊂ Z1. Show that
blowing up the ideal I = p + q separates the strict transforms of Z1 and
Z2, i.e., Z ′

1 ∩ Z ′
2 = ∅. (Hint: Consider the homogeneous ideal P and Q

from part (c) and consider V (P +Q).)

111.28. Cohen-Macaulay rings of dimension 1

0284
Definition 111.28.1.0285 A Noetherian local ring A is said to be Cohen-Macaulay of
dimension d if it has dimension d and there exists a system of parameters x1, . . . , xd
for A such that xi is a nonzerodivisor in A/(x1, . . . , xi−1) for i = 1, . . . , d.

Exercise 111.28.2.02EG Cohen-Macaulay rings of dimension 1. Part I: Theory.
(1) Let (A,m) be a local Noetherian with dimA = 1. Show that if x ∈ m is

not a zerodivisor then
(a) dimA/xA = 0, in other words A/xA is Artinian, in other words {x}

is a system of parameters for A.
(b) A is has no embedded prime.

(2) Conversely, let (A,m) be a local Noetherian ring of dimension 1. Show
that if A has no embedded prime then there exists a nonzerodivisor in m.

Exercise 111.28.3.02EH Cohen-Macaulay rings of dimension 1. Part II: Examples.
(1) Let A be the local ring at (x, y) of k[x, y]/(x2, xy).

(a) Show that A has dimension 1.
(b) Prove that every element of m ⊂ A is a zerodivisor.
(c) Find z ∈ m such that dimA/zA = 0 (no proof required).

(2) Let A be the local ring at (x, y) of k[x, y]/(x2). Find a nonzerodivisor in
m (no proof required).
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Exercise 111.28.4.02EI Local rings of embedding dimension 1. Suppose that (A,m, k)
is a Noetherian local ring of embedding dimension 1, i.e.,

dimk m/m
2 = 1.

Show that the function f(n) = dimk m
n/mn+1 is either constant with value 1, or

its values are
1, 1, . . . , 1, 0, 0, 0, 0, 0, . . .

Exercise 111.28.5.02EJ Regular local rings of dimension 1. Suppose that (A,m, k) is a
regular Noetherian local ring of dimension 1. Recall that this means that A has
dimension 1 and embedding dimension 1, i.e.,

dimk m/m
2 = 1.

Let x ∈ m be any element whose class in m/m2 is not zero.
(1) Show that for every element y of m there exists an integer n such that y

can be written as y = uxn with u ∈ A∗ a unit.
(2) Show that x is a nonzerodivisor in A.
(3) Conclude that A is a domain.

Exercise 111.28.6.02EK Let (A,m, k) be a Noetherian local ring with associated graded
Grm(A).

(1) Suppose that x ∈ md maps to a nonzerodivisor x̄ ∈ md/md+1 in degree d
of Grm(A). Show that x is a nonzerodivisor.

(2) Suppose the depth of A is at least 1. Namely, suppose that there exists
a nonzerodivisor y ∈ m. In this case we can do better: assume just that
x ∈ md maps to the element x̄ ∈ md/md+1 in degree d of Grm(A) which is
a nonzerodivisor on sufficiently high degrees: ∃N such that for all n ≥ N
the map of multiplication by x̄

mn/mn+1 −→ mn+d/mn+d+1

is injective. Then show that x is a nonzerodivisor.

Exercise 111.28.7.02EL Suppose that (A,m, k) is a Noetherian local ring of dimension
1. Assume also that the embedding dimension of A is 2, i.e., assume that

dimk m/m
2 = 2.

Notation: f(n) = dimk m
n/mn+1. Pick generators x, y ∈ m and write Grm(A) =

k[x̄, ȳ]/I for some homogeneous ideal I.
(1) Show that there exists a homogeneous element F ∈ k[x̄, ȳ] such that I ⊂

(F ) with equality in all sufficiently high degrees.
(2) Show that f(n) ≤ n+ 1.
(3) Show that if f(n) < n+ 1 then n ≥ deg(F ).
(4) Show that if f(n) < n+ 1, then f(n+ 1) ≤ f(n).
(5) Show that f(n) = deg(F ) for all n >> 0.

Exercise 111.28.8.02EM Cohen-Macaulay rings of dimension 1 and embedding dimension
2. Suppose that (A,m, k) is a Noetherian local ring which is Cohen-Macaulay of
dimension 1. Assume also that the embedding dimension of A is 2, i.e., assume
that

dimk m/m
2 = 2.
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Notations: f , F , x, y ∈ m, I as in Ex. 6 above. Please use any results from the
problems above.

(1) Suppose that z ∈ m is an element whose class in m/m2 is a linear form
αx̄+ βȳ ∈ k[x̄, ȳ] which is coprime with f .
(a) Show that z is a nonzerodivisor on A.
(b) Let d = deg(F ). Show that mn = zn+1−dmd−1 for all sufficiently

large n. (Hint: First show zn+1−dmd−1 → mn/mn+1 is surjective by
what you know about Grm(A). Then use NAK.)

(2) What condition on k guarantees the existence of such a z? (No proof
required; it’s too easy.)
Now we are going to assume there exists a z as above. This turns out to be
a harmless assumption (in the sense that you can reduce to the situation
where it holds in order to obtain the results in parts (d) and (e) below).

(3) Now show that mℓ = zℓ−d+1md−1 for all ℓ ≥ d.
(4) Conclude that I = (F ).
(5) Conclude that the function f has values

2, 3, 4, . . . , d− 1, d, d, d, d, d, d, d, . . .

Remark 111.28.9.02EN This suggests that a local Noetherian Cohen-Macaulay ring of
dimension 1 and embedding dimension 2 is of the form B/FB, where B is a 2-
dimensional regular local ring. This is more or less true (under suitable “niceness”
properties of the ring).

111.29. Infinitely many primes

0286 A section with a collection of strange questions on rings where infinitely many
primes are not invertible.

Exercise 111.29.1.02EO Give an example of a finite type Z-algebra R with the following
two properties:

(1) There is no ring map R→ Q.
(2) For every prime p there exists a maximal ideal m ⊂ R such that R/m ∼= Fp.

Exercise 111.29.2.02EP For f ∈ Z[x, u] we define fp(x) = f(x, xp) mod p ∈ Fp[x]. Give
an example of an f ∈ Z[x, u] such that the following two properties hold:

(1) There exist infinitely many p such that fp does not have a zero in Fp.
(2) For all p >> 0 the polynomial fp either has a linear or a quadratic factor.

Exercise 111.29.3.02EQ For f ∈ Z[x, y, u, v] we define fp(x, y) = f(x, y, xp, yp) mod p ∈
Fp[x, y]. Give an “interesting” example of an f such that fp is reducible for all
p >> 0. For example, f = xv − yu with fp = xyp − xpy = xy(xp−1 − yp−1) is
“uninteresting”; any f depending only on x, u is “uninteresting”, etc.

Remark 111.29.4.02ER Let h ∈ Z[y] be a monic polynomial of degree d. Then:
(1) The map A = Z[x]→ B = Z[y], x 7→ h is finite locally free of rank d.
(2) For all primes p the map Ap = Fp[x] → Bp = Fp[y], y 7→ h(y) mod p is

finite locally free of rank d.

Exercise 111.29.5.02ES Let h,A,B,Ap, Bp be as in the remark. For f ∈ Z[x, u] we define
fp(x) = f(x, xp) mod p ∈ Fp[x]. For g ∈ Z[y, v] we define gp(y) = g(y, yp) mod p ∈
Fp[y].
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(1) Give an example of a h and g such that there does not exist a f with the
property

fp = NormBp/Ap(gp).
(2) Show that for any choice of h and g as above there exists a nonzero f such

that for all p we have
NormBp/Ap(gp) divides fp.

If you want you can restrict to the case h = yn, even with n = 2, but it is
true in general.

(3) Discuss the relevance of this to Exercises 6 and 7 of the previous set.

Exercise 111.29.6.02ET Unsolved problems. They may be really hard or they may be
easy. I don’t know.

(1) Is there any f ∈ Z[x, u] such that fp is irreducible for an infinite number
of p? (Hint: Yes, this happens for f(x, u) = u − x − 1 and also for
f(x, u) = u2 − x2 + 1.)

(2) Let f ∈ Z[x, u] nonzero, and suppose degx(fp) = dp+d′ for all large p. (In
other words degu(f) = d and the coefficient c of ud in f has degx(c) = d′.)
Suppose we can write d = d1 + d2 and d′ = d′

1 + d′
2 with d1, d2 > 0 and

d′
1, d

′
2 ≥ 0 such that for all sufficiently large p there exists a factorization

fp = f1,pf2,p

with degx(f1,p) = d1p + d′
1. Is it true that f comes about via a norm

construction as in Exercise 4? (More precisely, are there a h and g such
that NormBp/Ap(gp) divides fp for all p >> 0.)

(3) Analogous question to the one in (b) but now with f ∈ Z[x1, x2, u1, u2]
irreducible and just assuming that fp(x1, x2) = f(x1, x2, x

p
1, x

p
2) mod p

factors for all p >> 0.

111.30. Filtered derived category

0287 In order to do the exercises in this section, please read the material in Homology,
Section 12.19. We will say A is a filtered object of A, to mean that A comes
endowed with a filtration F which we omit from the notation.

Exercise 111.30.1.0288 Let A be an abelian category. Let I be a filtered object of A.
Assume that the filtration on I is finite and that each grp(I) is an injective object
of A. Show that there exists an isomorphism I ∼=

⊕
grp(I) with filtration F p(I)

corresponding to
⊕

p′≥p grp(I).

Exercise 111.30.2.0289 Let A be an abelian category. Let I be a filtered object of A.
Assume that the filtration on I is finite. Show the following are equivalent:

(1) For any solid diagram
A

α
//

��

B

��
I

of filtered objects with (i) the filtrations on A and B are finite, and (ii)
gr(α) injective the dotted arrow exists making the diagram commute.

(2) Each grpI is injective.
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Note that given a morphism α : A→ B of filtered objects with finite filtrations to
say that gr(α) injective is the same thing as saying that α is a strict monomorphism
in the category Fil(A). Namely, being a monomorphism means Ker(α) = 0 and
strict means that this also implies Ker(gr(α)) = 0. See Homology, Lemma 12.19.13.
(We only use the term “injective” for a morphism in an abelian category, although it
makes sense in any additive category having kernels.) The exercises above justifies
the following definition.

Definition 111.30.3.028A Let A be an abelian category. Let I be a filtered object of A.
Assume the filtration on I is finite. We say I is filtered injective if each grp(I) is
an injective object of A.

We make the following definition to avoid having to keep saying “with a finite
filtration” everywhere.

Definition 111.30.4.028B Let A be an abelian category. We denote Filf (A) the full sub-
category of Fil(A) whose objects consist of those A ∈ Ob(Fil(A)) whose filtration
is finite.

Exercise 111.30.5.028C Let A be an abelian category. Assume A has enough injectives.
Let A be an object of Filf (A). Show that there exists a strict monomorphism
α : A→ I of A into a filtered injective object I of Filf (A).

Definition 111.30.6.028D Let A be an abelian category. Let α : K• → L• be a morphism
of complexes of Fil(A). We say that α is a filtered quasi-isomorphism if for each
p ∈ Z the morphism grp(K•)→ grp(L•) is a quasi-isomorphism.

Definition 111.30.7.028E Let A be an abelian category. Let K• be a complex of Filf (A).
We say that K• is filtered acyclic if for each p ∈ Z the complex grp(K•) is acyclic.

Exercise 111.30.8.028F Let A be an abelian category. Let α : K• → L• be a morphism
of bounded below complexes of Filf (A). (Note the superscript f .) Show that the
following are equivalent:

(1) α is a filtered quasi-isomorphism,
(2) for each p ∈ Z the map α : F pK• → F pL• is a quasi-isomorphism,
(3) for each p ∈ Z the map α : K•/F pK• → L•/F pL• is a quasi-isomorphism,

and
(4) the cone of α (see Derived Categories, Definition 13.9.1) is a filtered acyclic

complex.
Moreover, show that if α is a filtered quasi-isomorphism then α is also a usual
quasi-isomorphism.

Exercise 111.30.9.028G Let A be an abelian category. Assume A has enough injectives.
Let A be an object of Filf (A). Show there exists a complex I• of Filf (A), and a
morphism A[0]→ I• such that

(1) each Ip is filtered injective,
(2) Ip = 0 for p < 0, and
(3) A[0]→ I• is a filtered quasi-isomorphism.

Exercise 111.30.10.028H Let A be an abelian category. Assume A has enough injectives.
Let K• be a bounded below complex of objects of Filf (A). Show there exists a
filtered quasi-isomorphism α : K• → I• with I• a complex of Filf (A) having filtered
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injective terms In, and bounded below. In fact, we may choose α such that each
αn is a strict monomorphism.

Exercise 111.30.11.028I Let A be an abelian category. Consider a solid diagram

K•
α
//

γ

��

L•

β}}
I•

of complexes of Filf (A). AssumeK•, L• and I• are bounded below and assume each
In is a filtered injective object. Also assume that α is a filtered quasi-isomorphism.

(1) There exists a map of complexes β making the diagram commute up to
homotopy.

(2) If α is a strict monomorphism in every degree then we can find a β which
makes the diagram commute.

Exercise 111.30.12.028J Let A be an abelian category. Let K•, K• be complexes of
Filf (A). Assume

(1) K• bounded below and filtered acyclic, and
(2) I• bounded below and consisting of filtered injective objects.

Then any morphism K• → I• is homotopic to zero.

Exercise 111.30.13.028K Let A be an abelian category. Consider a solid diagram

K•
α
//

γ

��

L•

βi}}
I•

of complexes of Filf (A). Assume K•, L• and I• bounded below and each In a
filtered injective object. Also assume α a filtered quasi-isomorphism. Any two
morphisms β1, β2 making the diagram commute up to homotopy are homotopic.

111.31. Regular functions

078V
Exercise 111.31.1.0E9D Consider the affine curve X given by the equation t2 = s5 + 8
in C2 with coordinates s, t. Let x ∈ X be the point with coordinates (1, 3). Let
U = X \{x}. Prove that there is a regular function on U which is not the restriction
of a regular function on C2, i.e., is not the restriction of a polynomial in s and t to
U .

Exercise 111.31.2.0E9E Let n ≥ 2. Let E ⊂ Cn be a finite subset. Show that any
regular function on Cn \ E is a polynomial.

Exercise 111.31.3.0E9F Let X ⊂ Cn be an affine variety. Let us say X is a cone if
x = (a1, . . . , an) ∈ X and λ ∈ C implies (λa1, . . . , λan) ∈ X. Of course, if p ⊂
C[x1, . . . , xn] is a prime ideal generated by homogeneous polynomials in x1, . . . , xn,
then the affine variety X = V (p) ⊂ Cn is a cone. Show that conversely the prime
ideal p ⊂ C[x1, . . . , xn] corresponding to a cone can be generated by homogeneous
polynomials in x1, . . . , xn.
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Exercise 111.31.4.0E9G Give an example of an affine variety X ⊂ Cn which is a cone
(see Exercise 111.31.3) and a regular function f on U = X \ {(0, . . . , 0)} which is
not the restriction of a polynomial function on Cn.
Exercise 111.31.5.078W In this exercise we try to see what happens with regular functions
over non-algebraically closed fields. Let k be a field. Let Z ⊂ kn be a Zariski locally
closed subset, i.e., there exist ideals I ⊂ J ⊂ k[x1, . . . , xn] such that

Z = {a ∈ kn | f(a) = 0 ∀ f ∈ I, ∃ g ∈ J, g(a) ̸= 0}.
A function φ : Z → k is said to be regular if for every z ∈ Z there exists a Zariski
open neighbourhood z ∈ U ⊂ Z and polynomials f, g ∈ k[x1, . . . , xn] such that
g(u) ̸= 0 for all u ∈ U and such that φ(u) = f(u)/g(u) for all u ∈ U .

(1) If k = k̄ and Z = kn show that regular functions are given by polynomials.
(Only do this if you haven’t seen this argument before.)

(2) If k is finite show that (a) every function φ is regular, (b) the ring of
regular functions is finite dimensional over k. (If you like you can take
Z = kn and even n = 1.)

(3) If k = R give an example of a regular function on Z = R which is not
given by a polynomial.

(4) If k = Qp give an example of a regular function on Z = Qp which is not
given by a polynomial.

111.32. Sheaves

028L A morphism f : X → Y of a category C is an monomorphism if for every pair of
morphisms a, b : W → X we have f ◦ a = f ◦ b ⇒ a = b. A monomorphism in the
category of sets is an injective map of sets.
Exercise 111.32.1.078X Carefully prove that a map of sheaves of sets is an monomor-
phism (in the category of sheaves of sets) if and only if the induced maps on all the
stalks are injective.
A morphism f : X → Y of a category C is an isomorphism if there exists a morphism
g : Y → X such that f ◦ g = idY and g ◦ f = idX . An isomorphism in the category
of sets is a bijective map of sets.
Exercise 111.32.2.078Y Carefully prove that a map of sheaves of sets is an isomorphism
(in the category of sheaves of sets) if and only if the induced maps on all the stalks
are bijective.
A morphism f : X → Y of a category C is an epimorphism if for every pair of
morphisms a, b : Y → Z we have a ◦ f = b ◦ f ⇒ a = b. An epimorphism in the
category of sets is a surjective map of sets.
Exercise 111.32.3.02EU Carefully prove that a map of sheaves of sets is an epimorphism
(in the category of sheaves of sets) if and only if the induced maps on all the stalks
are surjective.
Exercise 111.32.4.02EV Let f : X → Y be a map of topological spaces. Prove pushfor-
ward f∗ and pullback f−1 for sheaves of sets form an adjoint pair of functors.
Exercise 111.32.5.02EW Let j : U → X be an open immersion. Show that

(1) Pullback j−1 : Sh(X) → Sh(U) has a left adjoint j! : Sh(U) → Sh(X)
called extension by the empty set.
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(2) Characterize the stalks of j!(G) for G ∈ Sh(U).
(3) Pullback j−1 : Ab(X) → Ab(U) has a left adjoint j! : Ab(U) → Ab(X)

called extension by zero.
(4) Characterize the stalks of j!(G) for G ∈ Ab(U).

Observe that extension by zero differs from extension by the empty set!

Exercise 111.32.6.028M Let X = R with the usual topology. Let OX = Z/2Z
X

. Let
i : Z = {0} → X be the inclusion and let OZ = Z/2Z

Z
. Prove the following (the

first three follow from the definitions but if you are not clear on the definitions you
should elucidate them):

(1) i∗OZ is a skyscraper sheaf.
(2) There is a canonical surjective map from Z/2Z

X
→ i∗Z/2Z

Z
. Denote the

kernel I ⊂ OX .
(3) I is an ideal sheaf of OX .
(4) The sheaf I on X cannot be locally generated by sections (as in Modules,

Definition 17.8.1.)

Exercise 111.32.7.028N Let X be a topological space. Let F be an abelian sheaf on X.
Show that F is the quotient of a (possibly very large) direct sum of sheaves all of
whose terms are of the form

j!(ZU )
where U ⊂ X is open and ZU denotes the constant sheaf with value Z on U .

Remark 111.32.8.02EX Let X be a topological space. In the category of abelian sheaves
the direct sum of a family of sheaves {Fi}i∈I is the sheaf associated to the presheaf
U 7→ ⊕Fi(U). Consequently the stalk of the direct sum at a point x is the direct
sum of the stalks of the Fi at x.

Exercise 111.32.9.078Z Let X be a topological space. Suppose we are given a collection
of abelian groups Ax indexed by x ∈ X. Show that the rule U 7→

∏
x∈U Ax with

obvious restriction mappings defines a sheaf G of abelian groups. Show, by an
example, that usually it is not the case that Gx = Ax for x ∈ X.

Exercise 111.32.10.0790 Let X, Ax, G be as in Exercise 111.32.9. Let B be a basis for
the topology of X, see Topology, Definition 5.5.1. For U ∈ B let AU be a subgroup
AU ⊂ G(U) =

∏
x∈U Ax. Assume that for U ⊂ V with U, V ∈ B the restriction

maps AV into AU . For U ⊂ X open set

F(U) =
{

(sx)x∈U

∣∣∣∣ for every x in U there exists V ∈ B
x ∈ V ⊂ U such that (sy)y∈V ∈ AV

}
Show that F defines a sheaf of abelian groups on X. Show, by an example, that it
is usually not the case that F(U) = AU for U ∈ B.

Exercise 111.32.11.0E9H Give an example of a topological space X and a functor

F : Sh(X) −→ Sets

which is exact (commutes with finite products and equalizers and commutes with
finite coproducts and coequalizers, see Categories, Section 4.23), but there is no
point x ∈ X such that F is isomorphic to the stalk functor F 7→ Fx.
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111.33. Schemes

028O Let LRS be the category of locally ringed spaces. An affine scheme is an object in
LRS isomorphic in LRS to a pair of the form (Spec(A),OSpec(A)). A scheme is an
object (X,OX) of LRS such that every point x ∈ X has an open neighbourhood
U ⊂ X such that the pair (U,OX |U ) is an affine scheme.
Exercise 111.33.1.028P Find a 1-point locally ringed space which is not a scheme.

Exercise 111.33.2.028Q Suppose that X is a scheme whose underlying topological space
has 2 points. Show that X is an affine scheme.
Exercise 111.33.3.03KB Suppose that X is a scheme whose underlying topological space
is a finite discrete set. Show that X is an affine scheme.
Exercise 111.33.4.028R Show that there exists a non-affine scheme having three points.

Exercise 111.33.5.028S Suppose that X is a nonempty quasi-compact scheme. Show
that X has a closed point.
Remark 111.33.6.02EY When (X,OX) is a ringed space and U ⊂ X is an open subset
then (U,OX |U ) is a ringed space. Notation: OU = OX |U . There is a canonical
morphisms of ringed spaces

j : (U,OU ) −→ (X,OX).
If (X,OX) is a locally ringed space, so is (U,OU ) and j is a morphism of locally
ringed spaces. If (X,OX) is a scheme so is (U,OU ) and j is a morphism of schemes.
We say that (U,OU ) is an open subscheme of (X,OX) and that j is an open im-
mersion. More generally, any morphism j′ : (V,OV )→ (X,OX) that is isomorphic
to a morphism j : (U,OU )→ (X,OX) as above is called an open immersion.
Exercise 111.33.7.028T Give an example of an affine scheme (X,OX) and an open
U ⊂ X such that (U,OX |U) is not an affine scheme.
Exercise 111.33.8.028U Given an example of a pair of affine schemes (X,OX), (Y,OY ),
an open subscheme (U,OX |U ) of X and a morphism of schemes (U,OX |U ) →
(Y,OY ) that does not extend to a morphism of schemes (X,OX)→ (Y,OY ).
Exercise 111.33.9.028V (This is pretty hard.) Given an example of a scheme X, and
open subscheme U ⊂ X and a closed subscheme Z ⊂ U such that Z does not
extend to a closed subscheme of X.
Exercise 111.33.10.028W Give an example of a scheme X, a field K, and a morphism of
ringed spaces Spec(K)→ X which is NOT a morphism of schemes.
Exercise 111.33.11.028X Do all the exercises in [Har77, Chapter II], Sections 1 and 2...
Just kidding!
Definition 111.33.12.028Y A scheme X is called integral if X is nonempty and for every
nonempty affine open U ⊂ X the ring Γ(U,OX) = OX(U) is a domain.
Exercise 111.33.13.028Z Give an example of a morphism of integral schemes f : X → Y
such that the induced maps OY,f(x) → OX,x are surjective for all x ∈ X, but f is
not a closed immersion.
Exercise 111.33.14.0290 Give an example of a fibre product X ×S Y such that X and
Y are affine but X ×S Y is not.
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Remark 111.33.15.02EZ It turns out this cannot happen with S separated. Do you
know why?

Exercise 111.33.16.0291 Give an example of a scheme V which is integral 1-dimensional
scheme of finite type over Q such that Spec(C)×Spec(Q) V is not integral.

Exercise 111.33.17.0292 Give an example of a scheme V which is integral 1-dimensional
scheme of finite type over a field k such that Spec(k′)×Spec(k) V is not reduced for
some finite field extension k′/k.

Remark 111.33.18.02F0 If your scheme is affine then dimension is the same as the Krull
dimension of the underlying ring. So you can use last semesters results to compute
dimension.

111.34. Morphisms

0293 An important question is, given a morphism π : X → S, whether the morphism
has a section or a rational section. Here are some example exercises.

Exercise 111.34.1.0294 Consider the morphism of schemes

π : X = Spec(C[x, t, 1/xt]) −→ S = Spec(C[t]).

(1) Show there does not exist a morphism σ : S → X such that π ◦ σ = idS .
(2) Show there does exist a nonempty open U ⊂ S and a morphism σ : U → X

such that π ◦ σ = idU .

Exercise 111.34.2.0295 Consider the morphism of schemes

π : X = Spec(C[x, t]/(x2 + t)) −→ S = Spec(C[t]).

Show there does not exist a nonempty open U ⊂ S and a morphism σ : U → X
such that π ◦ σ = idU .

Exercise 111.34.3.0296 Let A,B,C ∈ C[t] be nonzero polynomials. Consider the mor-
phism of schemes

π : X = Spec(C[x, y, t]/(A+Bx2 + Cy2)) −→ S = Spec(C[t]).

Show there does exist a nonempty open U ⊂ S and a morphism σ : U → X
such that π ◦ σ = idU . (Hint: Symbolically, write x = X/Z, y = Y/Z for some
X,Y, Z ∈ C[t] of degree ≤ d for some d, and work out the condition that this solves
the equation. Then show, using dimension theory, that if d >> 0 you can find
nonzero X,Y, Z solving the equation.)

Remark 111.34.4.02F1 Exercise 111.34.3 is a special case of “Tsen’s theorem”. Exercise
111.34.5 shows that the method is limited to low degree equations (conics when the
base and fibre have dimension 1).

Exercise 111.34.5.0297 Consider the morphism of schemes

π : X = Spec(C[x, y, t]/(1 + tx3 + t2y3)) −→ S = Spec(C[t])

Show there does not exist a nonempty open U ⊂ S and a morphism σ : U → X
such that π ◦ σ = idU .
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Exercise 111.34.6.0298 Consider the schemes

X = Spec(C[{xi}8
i=1, s, t]/(1+sx3

1+s2x3
2+tx3

3+stx3
4+s2tx3

5+t2x3
6+st2x3

7+s2t2x3
8))

and
S = Spec(C[s, t])

and the morphism of schemes
π : X −→ S

Show there does not exist a nonempty open U ⊂ S and a morphism σ : U → X
such that π ◦ σ = idU .

Exercise 111.34.7.0299 (For the number theorists.) Give an example of a closed sub-
scheme

Z ⊂ Spec
(

Z[x, 1
x(x− 1)(2x− 1) ]

)
such that the morphism Z → Spec(Z) is finite and surjective.

Exercise 111.34.8.029A If you do not like number theory, you can try the variant where
you look at

Spec
(

Fp[t, x,
1

x(x− t)(tx− 1) ]
)
−→ Spec(Fp[t])

and you try to find a closed subscheme of the top scheme which maps finite surjec-
tively to the bottom one. (There is a theoretical reason for having a finite ground
field here; although it may not be necessary in this particular case.)

Remark 111.34.9.02F2 The interpretation of the results of Exercise 111.34.7 and 111.34.8
is that given the morphism X → S all of whose fibres are nonempty, there exists a
finite surjective morphism S′ → S such that the base change XS′ → S′ does have
a section. This is not a general fact, but it holds if the base is the spectrum of a
dedekind ring with finite residue fields at closed points, and the morphism X → S
is flat with geometrically irreducible generic fibre. See Exercise 111.34.10 below for
an example where it doesn’t work.

Exercise 111.34.10.029B Prove there exist a f ∈ C[x, t] which is not divisible by t− α
for any α ∈ C such that there does not exist any Z ⊂ Spec(C[x, t, 1/f ]) which
maps finite surjectively to Spec(C[t]). (I think that f(x, t) = (xt − 2)(x − t + 3)
works. To show any candidate has the required property is not so easy I think.)

Exercise 111.34.11.0EG6 Let A→ B be a finite type ring map. Suppose that Spec(B)→
Spec(A) factors through a closed immersion Spec(B)→ Pn

A for some n. Prove that
A → B is a finite ring map, i.e., that B is finite as an A-module. Hint: if A is
Noetherian (please just assume this) you can argue using that Hi(Z,OZ) for i ∈ Z
is a finite A-module for every closed subscheme Z ⊂ Pn

A.

Exercise 111.34.12.0EG7 Let k be an algebraically closed field. Let f : X → Y be a
morphism of projective varieties such that f−1({y}) is finite for every closed point
y ∈ Y . Prove that f is finite as a morphism of schemes. Hints: (a) being finite
is a local property, (b) try to reduce to Exercise 111.34.11, and (c) use a closed
immersion X → Pn

k to get a closed immersion X → Pn
Y over Y .
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111.35. Tangent Spaces

029C
Definition 111.35.1.029D For any ring R we denote R[ϵ] the ring of dual numbers. As
an R-module it is free with basis 1, ϵ. The ring structure comes from setting ϵ2 = 0.

Exercise 111.35.2.029E Let f : X → S be a morphism of schemes. Let x ∈ X be a
point, let s = f(x). Consider the solid commutative diagram

Spec(κ(x)) //

''

**Spec(κ(x)[ϵ]) //

��

X

��
Spec(κ(s)) // S

with the curved arrow being the canonical morphism of Spec(κ(x)) into X. If
κ(x) = κ(s) show that the set of dotted arrows which make the diagram commute
are in one to one correspondence with the set of linear maps

Homκ(x)(
mx

m2
x + msOX,x

, κ(x))

In other words: describe such a bijection. (This works more generally if κ(x) ⊃ κ(s)
is a separable algebraic extension.)

Definition 111.35.3.029F Let f : X → S be a morphism of schemes. Let x ∈ X. We
dub the set of dotted arrows of Exercise 111.35.2 the tangent space of X over S
and we denote it TX/S,x. An element of this space is called a tangent vector of X/S
at x.

Exercise 111.35.4.029G For any field K prove that the diagram

Spec(K) //

��

Spec(K[ϵ1])

��
Spec(K[ϵ2]) // Spec(K[ϵ1, ϵ2]/(ϵ1ϵ2))

is a pushout diagram in the category of schemes. (Here ϵ2i = 0 as before.)

Exercise 111.35.5.029H Let f : X → S be a morphism of schemes. Let x ∈ X. Define
addition of tangent vectors, using Exercise 111.35.4 and a suitable morphism

Spec(K[ϵ]) −→ Spec(K[ϵ1, ϵ2]/(ϵ1ϵ2)).
Similarly, define scalar multiplication of tangent vectors (this is easier). Show that
TX/S,x becomes a κ(x)-vector space with your constructions.

Exercise 111.35.6.029I Let k be a field. Consider the structure morphism f : X =
A1
k → Spec(k) = S.

(1) Let x ∈ X be a closed point. What is the dimension of TX/S,x?
(2) Let η ∈ X be the generic point. What is the dimension of TX/S,η?
(3) Consider now X as a scheme over Spec(Z). What are the dimensions of

TX/Z,x and TX/Z,η?

Remark 111.35.7.02F3 Exercise 111.35.6 explains why it is necessary to consider the
tangent space of X over S to get a good notion.
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Exercise 111.35.8.029J Consider the morphism of schemes
f : X = Spec(Fp(t)) −→ Spec(Fp(tp)) = S

Compute the tangent space of X/S at the unique point of X. Isn’t that weird?
What do you think happens if you take the morphism of schemes corresponding to
Fp[tp]→ Fp[t]?

Exercise 111.35.9.029K Let k be a field. Compute the tangent space of X/k at the point
x = (0, 0) where X = Spec(k[x, y]/(x2 − y3)).

Exercise 111.35.10.029L Let f : X → Y be a morphism of schemes over S. Let x ∈ X
be a point. Set y = f(x). Assume that the natural map κ(y) → κ(x) is bijective.
Show, using the definition, that f induces a natural linear map

df : TX/S,x −→ TY/S,y.

Match it with what happens on local rings via Exercise 111.35.2 in case κ(x) = κ(s).

Exercise 111.35.11.029M Let k be an algebraically closed field. Let
f : An

k −→ Am
k

(x1, . . . , xn) 7−→ (f1(xi), . . . , fm(xi))
be a morphism of schemes over k. This is given by m polynomials f1, . . . , fm in n
variables. Consider the matrix

A =
(
∂fj
∂xi

)
Let x ∈ An

k be a closed point. Set y = f(x). Show that the map on tangent spaces
TAn

k
/k,x → TAm

k
/k,y is given by the value of the matrix A at the point x.

111.36. Quasi-coherent Sheaves

029N
Definition 111.36.1.029O LetX be a scheme. A sheaf F ofOX -modules is quasi-coherent
if for every affine open Spec(R) = U ⊂ X the restriction F|U is of the form M̃ for
some R-module M .

It is enough to check this conditions on the members of an affine open covering of
X. See Schemes, Section 26.24 for more results.

Definition 111.36.2.029P Let X be a topological space. Let x, x′ ∈ X. We say x is a
specialization of x′ if and only if x ∈ {x′}.

Exercise 111.36.3.029Q Let X be a scheme. Let x, x′ ∈ X. Let F be a quasi-coherent
sheaf of OX -modules. Suppose that (a) x is a specialization of x′ and (b) Fx′ ̸= 0.
Show that Fx ̸= 0.

Exercise 111.36.4.029R Find an example of a scheme X, points x, x′ ∈ X, a sheaf of
OX -modules F such that (a) x is a specialization of x′ and (b) Fx′ ̸= 0 and Fx = 0.

Definition 111.36.5.029S A scheme X is called locally Noetherian if and only if for
every point x ∈ X there exists an affine open Spec(R) = U ⊂ X such that R is
Noetherian. A scheme is Noetherian if it is locally Noetherian and quasi-compact.

If X is locally Noetherian then any affine open of X is the spectrum of a Noetherian
ring, see Properties, Lemma 28.5.2.
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Definition 111.36.6.029T Let X be a locally Noetherian scheme. Let F be a quasi-
coherent sheaf of OX -modules. We say F is coherent if for every point x ∈ X there
exists an affine open Spec(R) = U ⊂ X such that F|U is isomorphic to M̃ for some
finite R-module M .

Exercise 111.36.7.029U Let X = Spec(R) be an affine scheme.
(1) Let f ∈ R. Let G be a quasi-coherent sheaf of OD(f)-modules on the open

subscheme D(f). Show that G = F|D(f) for some quasi-coherent sheaf of
OX -modules F .

(2) Let I ⊂ R be an ideal. Let i : Z → X be the closed subscheme of X
corresponding to I. Let G be a quasi-coherent sheaf of OZ-modules on
the closed subscheme Z. Show that G = i∗F for some quasi-coherent sheaf
of OX -modules F . (Why is this silly?)

(3) Assume that R is Noetherian. Let f ∈ R. Let G be a coherent sheaf of
OD(f)-modules on the open subscheme D(f). Show that G = F|D(f) for
some coherent sheaf of OX -modules F .

Remark 111.36.8.029V If U → X is a quasi-compact immersion then any quasi-coherent
sheaf on U is the restriction of a quasi-coherent sheaf on X. If X is a Noetherian
scheme, and U ⊂ X is open, then any coherent sheaf on U is the restriction of a
coherent sheaf on X. Of course the exercise above is easier, and shouldn’t use these
general facts.

111.37. Proj and projective schemes

029W
Exercise 111.37.1.029X Give examples of graded rings S such that

(1) Proj(S) is affine and nonempty, and
(2) Proj(S) is integral, nonempty but not isomorphic to Pn

A for any n ≥ 0,
any ring A.

Exercise 111.37.2.029Y Give an example of a nonconstant morphism of schemes P1
C →

P5
C over Spec(C).

Exercise 111.37.3.029Z Give an example of an isomorphism of schemes
P1

C → Proj(C[X0, X1, X2]/(X2
0 +X2

1 +X2
2 ))

Exercise 111.37.4.02A0 Give an example of a morphism of schemes f : X → A1
C =

Spec(C[T ]) such that the (scheme theoretic) fibre Xt of f over t ∈ A1
C is (a)

isomorphic to P1
C when t is a closed point not equal to 0, and (b) not isomorphic

to P1
C when t = 0. We will call X0 the special fibre of the morphism. This can be

done in many, many ways. Try to give examples that satisfy (each of) the following
additional restraints (unless it isn’t possible):

(1) Can you do it with special fibre projective?
(2) Can you do it with special fibre irreducible and projective?
(3) Can you do it with special fibre integral and projective?
(4) Can you do it with special fibre smooth and projective?
(5) Can you do it with f a flat morphism? This just means that for every

affine open Spec(A) ⊂ X the induced ring map C[t]→ A is flat, which in
this case means that any nonzero polynomial in t is a nonzerodivisor on
A.
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(6) Can you do it with f a flat and projective morphism?
(7) Can you do it with f flat, projective and special fibre reduced?
(8) Can you do it with f flat, projective and special fibre irreducible?
(9) Can you do it with f flat, projective and special fibre integral?

What do you think happens when you replace P1
C with another variety over C?

(This can get very hard depending on which of the variants above you ask for.)

Exercise 111.37.5.02A1 Let n ≥ 1 be any positive integer. Give an example of a
surjective morphism X → Pn

C with X affine.

Exercise 111.37.6.02A2 Maps of Proj. Let R and S be graded rings. Suppose we have
a ring map

ψ : R→ S

and an integer e ≥ 1 such that ψ(Rd) ⊂ Sde for all d ≥ 0. (By our conventions this
is not a homomorphism of graded rings, unless e = 1.)

(1) For which elements p ∈ Proj(S) is there a well-defined corresponding point
in Proj(R)? In other words, find a suitable open U ⊂ Proj(S) such that
ψ defines a continuous map rψ : U → Proj(R).

(2) Give an example where U ̸= Proj(S).
(3) Give an example where U = Proj(S).
(4) (Do not write this down.) Convince yourself that the continuous map

U → Proj(R) comes canonically with a map on sheaves so that rψ is a
morphism of schemes:

Proj(S) ⊃ U −→ Proj(R).

(5) What can you say about this map if R =
⊕

d≥0 Sde (as a graded ring with
Se, S2e, etc in degree 1, 2, etc) and ψ is the inclusion mapping?

Notation. Let R be a graded ring as above and let n ≥ 0 be an integer. Let
X = Proj(R). Then there is a unique quasi-coherent OX -module OX(n) on X such
that for every homogeneous element f ∈ R of positive degree we have OX |D+(f) is
the quasi-coherent sheaf associated to the R(f) = (Rf )0-module (Rf )n (=elements
homogeneous of degree n in Rf = R[1/f ]). See [Har77, page 116+]. Note that
there are natural maps

OX(n1)⊗OX
OX(n2) −→ OX(n1 + n2)

Exercise 111.37.7.02A3 Pathologies in Proj. Give examples of R as above such that
(1) OX(1) is not an invertible OX -module.
(2) OX(1) is invertible, but the natural map OX(1)⊗OX

OX(1)→ OX(2) is
NOT an isomorphism.

Exercise 111.37.8.02A4 Let S be a graded ring. Let X = Proj(S). Show that any finite
set of points of X is contained in a standard affine open.

Exercise 111.37.9.02A5 Let S be a graded ring. Let X = Proj(S). Let Z,Z ′ ⊂ X be
two closed subschemes. Let φ : Z → Z ′ be an isomorphism. Assume Z ∩ Z ′ = ∅.
Show that for any z ∈ Z there exists an affine open U ⊂ X such that z ∈ U ,
φ(z) ∈ U and φ(Z ∩U) = Z ′∩U . (Hint: Use Exercise 111.37.8 and something akin
to Schemes, Lemma 26.11.5.)
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111.38. Morphisms from the projective line

0DJ0 In this section we study morphisms from P1 to projective schemes.

Exercise 111.38.1.0DJ1 Let k be a field. Let k[t] ⊂ k(t) be the inclusion of the polyno-
mial ring into its fraction field. Let X be a finite type scheme over k. Show that
for any morphism

φ : Spec(k(t)) −→ X

over k, there exist a nonzero f ∈ k[t] and a morphism ψ : Spec(k[t, 1/f ])→ X over
k such that φ is the composition

Spec(k(t)) −→ Spec(k[t, 1/f ]) −→ X

Exercise 111.38.2.0DJ2 Let k be a field. Let k[t] ⊂ k(t) be the inclusion of the polyno-
mial ring into its fraction field. Show that for any morphism

φ : Spec(k(t)) −→ Pn
k

over k, there exists a morphism ψ : Spec(k[t]) → Pn
k over k such that φ is the

composition
Spec(k(t)) −→ Spec(k[t]) −→ Pn

k

Hint: the image of φ is in a standard open D+(Ti) for some i; then show that you
can “clear denominators”.

Exercise 111.38.3.0DJ3 Let k be a field. Let k[t] ⊂ k(t) be the inclusion of the polyno-
mial ring into its fraction field. Let X be a projective scheme over k. Show that
for any morphism

φ : Spec(k(t)) −→ X

over k, there exists a morphism ψ : Spec(k[t]) → X over k such that φ is the
composition

Spec(k(t)) −→ Spec(k[t]) −→ X

Hint: use Exercise 111.38.2.

Exercise 111.38.4.0DJ4 Let k be a field. Let X be a projective scheme over k. Let K
be the function field of P1

k (see hint below). Show that for any morphism
φ : Spec(K) −→ X

over k, there exists a morphism ψ : P1
k → X over k such that φ is the composition

Spec(k(t)) −→ P1
k −→ X

Hint: use Exercise 111.38.3 for each of the two pieces of the affine open covering
P1
k = D+(T0)∪D+(T1), use that D+(T0) is the spectrum of a polynomial ring and

that K is the fraction field of this polynomial ring.

111.39. Morphisms from surfaces to curves

02A6
Exercise 111.39.1.02A7 Let R be a ring. Let R → k be a map from R to a field. Let
n ≥ 0. Show that

MorSpec(R)(Spec(k),Pn
R) = (kn+1 \ {0})/k∗

where k∗ acts via scalar multiplication on kn+1. From now on we denote (x0 :
. . . : xn) the morphism Spec(k)→ Pn

k corresponding to the equivalence class of the
element (x0, . . . , xn) ∈ kn+1 \ {0}.
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Exercise 111.39.2.02A8 Let k be a field. Let Z ⊂ P2
k be an irreducible and reduced

closed subscheme. Show that either (a) Z is a closed point, or (b) there exists an
homogeneous irreducible F ∈ k[X0, X1, X2] of degree > 0 such that Z = V+(F ), or
(c) Z = P2

k. (Hint: Look on a standard affine open.)

Exercise 111.39.3.02A9 Let k be a field. Let Z1, Z2 ⊂ P2
k be irreducible closed sub-

schemes of the form V+(F ) for some homogeneous irreducible Fi ∈ k[X0, X1, X2]
of degree > 0. Show that Z1 ∩ Z2 is not empty. (Hint: Use dimension theory to
estimate the dimension of the local ring of k[X0, X1, X2]/(F1, F2) at 0.)

Exercise 111.39.4.02AA Show there does not exist a nonconstant morphism of schemes
P2

C → P1
C over Spec(C). Here a constant morphism is one whose image is a single

point. (Hint: If the morphism is not constant consider the fibres over 0 and ∞ and
argue that they have to meet to get a contradiction.)

Exercise 111.39.5.02AB Let k be a field. Suppose that X ⊂ P3
k is a closed subscheme

given by a single homogeneous equation F ∈ k[X0, X1, X2, X3]. In other words,

X = Proj(k[X0, X1, X2, X3]/(F )) ⊂ P3
k

as explained in the course. Assume that

F = X0G+X1H

for some homogeneous polynomials G,H ∈ k[X0, X1, X2, X3] of positive degree.
Show that if X0, X1, G,H have no common zeros then there exists a nonconstant
morphism

X −→ P1
k

of schemes over Spec(k) which on field points (see Exercise 111.39.1) looks like
(x0 : x1 : x2 : x3) 7→ (x0 : x1) whenever x0 or x1 is not zero.

111.40. Invertible sheaves

02AC
Definition 111.40.1.02AD Let X be a locally ringed space. An invertible OX -module on
X is a sheaf of OX -modules L such that every point has an open neighbourhood
U ⊂ X such that L|U is isomorphic to OU as OU -module. We say that L is trivial
if it is isomorphic to OX as a OX -module.

Exercise 111.40.2.02AE General facts.
(1) Show that an invertible OX -module on a scheme X is quasi-coherent.
(2) SupposeX → Y is a morphism of locally ringed spaces, and L an invertible
OY -module. Show that f∗L is an invertible OX module.

Exercise 111.40.3.02AF Algebra.
(1) Show that an invertible OX -module on an affine scheme Spec(A) corre-

sponds to an A-module M which is (i) finite, (ii) projective, (iii) locally
free of rank 1, and hence (iv) flat, and (v) finitely presented. (Feel free to
quote things from last semesters course; or from algebra books.)

(2) Suppose that A is a domain and that M is a module as in (a). Show
that M is isomorphic as an A-module to an ideal I ⊂ A such that IAp is
principal for every prime p.
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Definition 111.40.4.02AG Let R be a ring. An invertible module M is an R-module M
such that M̃ is an invertible sheaf on the spectrum of R. We say M is trivial if
M ∼= R as an R-module.
In other words, M is invertible if and only if it satisfies all of the following conditions:
it is flat, of finite presentation, projective, and locally free of rank 1. (Of course it
suffices for it to be locally free of rank 1).
Exercise 111.40.5.02AH Simple examples.

(1)02AI Let k be a field. Let A = k[x]. Show that X = Spec(A) has only trivial
invertible OX -modules. In other words, show that every invertible A-
module is free of rank 1.

(2)02AJ Let A be the ring
A = {f ∈ k[x] | f(0) = f(1)}.

Show there exists a nontrivial invertible A-module, unless k = F2. (Hint:
Think about Spec(A) as identifying 0 and 1 in A1

k = Spec(k[x]).)
(3)02AK Same question as in (2) for the ring A = k[x2, x3] ⊂ k[x] (except now

k = F2 works as well).
Exercise 111.40.6.02AL Higher dimensions.

(1) Prove that every invertible sheaf on two dimensional affine space is trivial.
More precisely, let A2

k = Spec(k[x, y]) where k is a field. Show that every
invertible sheaf on A2

k is trivial. (Hint: One way to do this is to consider
the corresponding module M , to look at M ⊗k[x,y] k(x)[y], and then use
Exercise 111.40.5 (1) to find a generator for this; then you still have to
think. Another way to is to use Exercise 111.40.3 and use what we know
about ideals of the polynomial ring: primes of height one are generated
by an irreducible polynomial; then you still have to think.)

(2) Prove that every invertible sheaf on any open subscheme of two dimen-
sional affine space is trivial. More precisely, let U ⊂ A2

k be an open
subscheme where k is a field. Show that every invertible sheaf on U is
trivial. Hint: Show that every invertible sheaf on U extends to one on
A2
k. Not easy; but you can find it in [Har77].

(3) Find an example of a nontrivial invertible sheaf on a punctured cone over a
field. More precisely, let k be a field and let C = Spec(k[x, y, z]/(xy−z2)).
Let U = C \ {(x, y, z)}. Find a nontrivial invertible sheaf on U . Hint: It
may be easier to compute the group of isomorphism classes of invertible
sheaves on U than to just find one. Note that U is covered by the opens
Spec(k[x, y, z, 1/x]/(xy−z2)) and Spec(k[x, y, z, 1/y]/(xy−z2)) which are
“easy” to deal with.

Definition 111.40.7.02AM Let X be a locally ringed space. The Picard group of X
is the set Pic(X) of isomorphism classes of invertible OX -modules with addition
given by tensor product. See Modules, Definition 17.25.9. For a ring R we set
Pic(R) = Pic(Spec(R)).
Exercise 111.40.8.02AN Let R be a ring.

(1) Show that if R is a Noetherian normal domain, then Pic(R) = Pic(R[t]).
[Hint: There is a map R[t] → R, t 7→ 0 which is a left inverse to the
map R → R[t]. Hence it suffices to show that any invertible R[t]-module
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M such that M/tM ∼= R is free of rank 1. Let K be the fraction field
of R. Pick a trivialization K[t] → M ⊗R[t] K[t] which is possible by
Exercise 111.40.5 (1). Adjust it so it agrees with the trivialization of
M/tM above. Show that it is in fact a trivialization of M over R[t] (this
is where normality comes in).]

(2) Let k be a field. Show that Pic(k[x2, x3, t]) ̸= Pic(k[x2, x3]).

111.41. Čech Cohomology

02AO
Exercise 111.41.1.02F4 Čech cohomology. Here k is a field.

(1) Let X be a scheme with an open covering U : X = U1 ∪ U2, with U1 =
Spec(k[x]), U2 = Spec(k[y]) with U1∩U2 = Spec(k[z, 1/z]) and with open
immersions U1 ∩U2 → U1 resp. U1 ∩U2 → U2 determined by x 7→ z resp.
y 7→ z (and I really mean this). (We’ve seen in the lectures that such an
X exists; it is the affine line with zero doubled.) Compute Ȟ1(U ,O); eg.
give a basis for it as a k-vectorspace.

(2) For each element in Ȟ1(U ,O) construct an exact sequence of sheaves of
OX -modules

0→ OX → E → OX → 0
such that the boundary δ(1) ∈ Ȟ1(U ,O) equals the given element. (Part
of the problem is to make sense of this. See also below. It is also OK to
show abstractly such a thing has to exist.)

Definition 111.41.2.02AP (Definition of delta.) Suppose that
0→ F1 → F2 → F3 → 0

is a short exact sequence of abelian sheaves on any topological space X. The
boundary map δ : H0(X,F3) → Ȟ1(X,F1) is defined as follows. Take an element
τ ∈ H0(X,F3). Choose an open covering U : X =

⋃
i∈I Ui such that for each i

there exists a section τ̃i ∈ F2 lifting the restriction of τ to Ui. Then consider the
assignment

(i0, i1) 7−→ τ̃i0 |Ui0i1 − τ̃i1 |Ui0i1 .
This is clearly a 1-coboundary in the Čech complex Č∗(U ,F2). But we observe that
(thinking of F1 as a subsheaf of F2) the RHS always is a section of F1 over Ui0i1 .
Hence we see that the assignment defines a 1-cochain in the complex Č∗(U ,F2).
The cohomology class of this 1-cochain is by definition δ(τ).

111.42. Cohomology

0D8P
Exercise 111.42.1.0D8Q Let X = R with the usual Euclidean topology. Using only
formal properties of cohomology (functoriality and the long exact cohomology se-
quence) show that there exists a sheaf F on X with nonzero H1(X,F).

Exercise 111.42.2.0D8R Let X = U ∪ V be a topological space written as the union of
two opens. Then we have a long exact Mayer-Vietoris sequence

0→ H0(X,F)→ H0(U,F)⊕H0(V,F)→ H0(U ∩ V,F)→ H1(X,F)→ . . .

What property of injective sheaves is essential for the construction of the Mayer-
Vietoris long exact sequence? Why does it hold?

https://stacks.math.columbia.edu/tag/02F4
https://stacks.math.columbia.edu/tag/02AP
https://stacks.math.columbia.edu/tag/0D8Q
https://stacks.math.columbia.edu/tag/0D8R
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Exercise 111.42.3.0D8S Let X be a topological space.
(1) Show that Hi(X,F) is zero for i > 0 if X has 2 or fewer points.
(2) What if X has 3 points?

Exercise 111.42.4.0D8T Let X be the spectrum of a local ring. Show that Hi(X,F) is
zero for i > 0 and any sheaf of abelian groups F .

Exercise 111.42.5.0D8U Let f : X → Y be an affine morphism of schemes. Prove that
Hi(X,F) = Hi(Y, f∗F) for any quasi-coherent OX -module F . Feel free to impose
some further conditions on X and Y and use the agreement of Čech cohomology
with cohomology for quasi-coherent sheaves and affine open coverings of separated
schemes.

Exercise 111.42.6.0D8V Let A be a ring. Let Pn
A = Proj(A[T0, . . . , Tn]) be projective

space over A. Let An+1
A = Spec(A[T0, . . . , Tn]) and let

U =
⋃

i=0,...,n
D(Ti) ⊂ An+1

A

be the complement of the image of the closed immersion 0 : Spec(A) → An+1
A .

Construct an affine surjective morphism

f : U −→ Pn
A

and prove that f∗OU =
⊕

d∈ZOPn
A

(d). More generally, show that for a graded
A[T0, . . . , Tn]-module M one has

f∗(M̃ |U ) =
⊕

d∈Z
M̃(d)

where on the left hand side we have the quasi-coherent sheaf M̃ associated to M
on An+1

A and on the right we have the quasi-coherent sheaves M̃(d) associated to
the graded module M(d).

Exercise 111.42.7.0D8W Let A be a ring and let Pn
A = Proj(A[T0, . . . , Tn]) be projective

space over A. Carefully compute the cohomology of the Serre twists OPn
A

(d) of
the structure sheaf on Pn

A. Feel free to use Čech cohomology and the agreement
of Čech cohomology with cohomology for quasi-coherent sheaves and affine open
coverings of separated schemes.

Exercise 111.42.8.0D8X Let A be a ring and let Pn
A = Proj(A[T0, . . . , Tn]) be projective

space over A. Let F ∈ A[T0, . . . , Tn] be homogeneous of degree d. Let X ⊂ Pn
A be

the closed subscheme corresponding to the graded ideal (F ) of A[T0, . . . , Tn]. What
can you say about Hi(X,OX)?

Exercise 111.42.9.0D8Y Let R be a ring such that for any left exact functor F : ModR →
Ab we have RiF = 0 for i > 0. Show that R is a finite product of fields.

111.43. More cohomology

0DAI
Exercise 111.43.1.0DAJ Let k be a field. Let X ⊂ Pn

k be the “coordinate cross”. Namely,
let X be defined by the homogeneous equations

TiTj = 0 for i > j > 0

https://stacks.math.columbia.edu/tag/0D8S
https://stacks.math.columbia.edu/tag/0D8T
https://stacks.math.columbia.edu/tag/0D8U
https://stacks.math.columbia.edu/tag/0D8V
https://stacks.math.columbia.edu/tag/0D8W
https://stacks.math.columbia.edu/tag/0D8X
https://stacks.math.columbia.edu/tag/0D8Y
https://stacks.math.columbia.edu/tag/0DAJ
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where as usual we write Pn
k = Proj(k[T0, . . . , Tn]). In other words, X is the closed

subscheme corresponding to the quotient k[T0, . . . , Tn]/(TiTj ; i > j > 0) of the
polynomial ring. Compute Hi(X,OX) for all i. Hint: use Čech cohomology.
Exercise 111.43.2.0DAK Let A be a ring. Let I = (f1, . . . , ft) be a finitely generated ideal
of A. Let U ⊂ Spec(A) be the complement of V (I). For any A-module M write
down a complex of A-modules (in terms of A, f1, . . . , ft, M) whose cohomology
groups give Hn(U, M̃).
Exercise 111.43.3.0DAL Let k be a field. Let U ⊂ Ad

k be the complement of the closed
point 0 of Ad

k. Compute Hn(U,OU ) for all n.

Exercise 111.43.4.0DAM Let k be a field. Find explicitly a scheme X projective over k
of dimension 1 with H0(X,OX) = k and dimkH

1(X,OX) = 100.
Exercise 111.43.5.0DAN Let f : X → Y be a finite locally free morphism of degree 2.
Assume that X and Y are integral schemes and that 2 is invertible in the structure
sheaf of Y , i.e., 2 ∈ Γ(Y,OY ) is invertible. Show that the OY -module map

f ♯ : OY −→ f∗OX
has a left inverse, i.e., there is an OY -module map τ : f∗OX → OY with τ ◦f ♯ = id.
Conclude that Hn(Y,OY )→ Hn(X,OX) is injective2.
Exercise 111.43.6.0DAP Let X be a scheme (or a locally ringed space). The rule U 7→
OX(U)∗ defines a sheaf of groups denoted O∗

X . Briefly explain why the Picard
group of X (Definition 111.40.7) is equal to H1(X,O∗

X).

Exercise 111.43.7.0DAQ Give an example of an affine scheme X with nontrivial Pic(X).
Conclude using Exercise 111.43.6 that H1(X,−) is not the zero functor for any
such X.
Exercise 111.43.8.0DAR Let A be a ring. Let I = (f1, . . . , ft) be a finitely generated
ideal of A. Let U ⊂ Spec(A) be the complement of V (I). Given a quasi-coherent
OSpec(A)-module F and ξ ∈ Hp(U,F) with p > 0, show that there exists n > 0
such that fni ξ = 0 for i = 1, . . . , t. Hint: One possible way to proceed is to use the
complex you found in Exercise 111.43.2.
Exercise 111.43.9.0DAS Let A be a ring. Let I = (f1, . . . , ft) be a finitely generated
ideal of A. Let U ⊂ Spec(A) be the complement of V (I). Let M be an A-module
whose I-torsion is zero, i.e., 0 = Ker((f1, . . . , ft) : M → M⊕t). Show that there is
a canonical isomorphism

H0(U, M̃) = colim HomA(In,M).
Warning: this is not trivial.
Exercise 111.43.10.0DAT Let A be a Noetherian ring. Let I be an ideal of A. Let M be
an A-module. Let M [I∞] be the set of I-power torsion elements defined by

M [I∞] = {x ∈M | there exists an n ≥ 1 such that Inx = 0}
Set M ′ = M/M [I∞]. Then the I-power torsion of M ′ is zero. Show that

colim HomA(In,M) = colim HomA(In,M ′).

2There does exist a finite locally free morphism X → Y between integral schemes of degree
2 where the map H1(Y,OY )→ H1(X,OX) is not injective.

https://stacks.math.columbia.edu/tag/0DAK
https://stacks.math.columbia.edu/tag/0DAL
https://stacks.math.columbia.edu/tag/0DAM
https://stacks.math.columbia.edu/tag/0DAN
https://stacks.math.columbia.edu/tag/0DAP
https://stacks.math.columbia.edu/tag/0DAQ
https://stacks.math.columbia.edu/tag/0DAR
https://stacks.math.columbia.edu/tag/0DAS
https://stacks.math.columbia.edu/tag/0DAT
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Warning: this is not trivial. Hints: (1) try to reduce to M finite, (2) show any
element of Ext1

A(In, N) maps to zero in Ext1
A(In+m, N) for some m > 0 if N =

M [I∞] and M finite, (3) show the same thing as in (2) for HomA(In, N), (3)
consider the long exact sequence

0→ HomA(In,M [I∞])→ HomA(In,M)→ HomA(In,M ′)→ Ext1
A(In,M [I∞])

for M finite and compare with the sequence for In+m to conclude.

111.44. Cohomology revisited

0DB3
Exercise 111.44.1.0DB4 Make an example of a field k, a curve X over k, an invertible
OX -module L and a cohomology class ξ ∈ H1(X,L) with the following property:
for every surjective finite morphism π : Y → X of schemes the element ξ pulls
back to a nonzero element of H1(Y, π∗L). Hint: construct X, k, L such that there
is a short exact sequence 0 → L → OX → i∗OZ → 0 where Z ⊂ X is a closed
subscheme consisting of more than 1 closed point. Then look at what happens
when you pullback.

Exercise 111.44.2.0DB5 Let k be an algebraically closed field. Let X be a projective
1-dimensional scheme. Suppose that X contains a cycle of curves, i.e., suppose
there exist an n ≥ 2 and pairwise distinct 1-dimensional integral closed subschemes
C1, . . . , Cn and pairwise distinct closed points x1, . . . , xn ∈ X such that xn ∈
Cn ∩C1 and xi ∈ Ci ∩Ci+1 for i = 1, . . . , n− 1. Prove that H1(X,OX) is nonzero.
Hint: Let F be the image of the map OX →

⊕
OCi , and show H1(X,F) is

nonzero using that κ(xi) = k and H0(Ci,OCi) = k. Also use that H2(X,−) = 0
by Grothendieck’s theorem.

Exercise 111.44.3.0DB6 Let X be a projective surface over an algebraically closed field
k. Prove there exists a proper closed subscheme Z ⊂ X such that H1(Z,OZ) is
nonzero. Hint: Use Exercise 111.44.2.

Exercise 111.44.4.0DB7 Let X be a projective surface over an algebraically closed field
k. Show that for every n ≥ 0 there exists a proper closed subscheme Z ⊂ X such
that dimkH

1(Z,OZ) > n. Only explain how to do this by modifying the arguments
in Exercise 111.44.3 and 111.44.2; don’t give all the details.

Exercise 111.44.5.0DB8 Let X be a projective surface over an algebraically closed field
k. Prove there exists a coherent OX -module F such that H2(X,F) is nonzero.
Hint: Use the result of Exercise 111.44.4 and a cleverly chosen exact sequence.

Exercise 111.44.6.0DB9 Let X and Y be schemes over a field k (feel free to assume X and
Y are nice, for example qcqs or projective over k). Set X × Y = X ×Spec(k) Y with
projections p : X × Y → X and q : X × Y → Y . For a quasi-coherent OX -module
F and a quasi-coherent OY -module G prove that

Hn(X × Y, p∗F ⊗OX×Y q
∗G) =

⊕
a+b=n

Ha(X,F)⊗k Hb(Y,G)

or just show that this holds when one takes dimensions. Extra points for “clean”
solutions.

https://stacks.math.columbia.edu/tag/0DB4
https://stacks.math.columbia.edu/tag/0DB5
https://stacks.math.columbia.edu/tag/0DB6
https://stacks.math.columbia.edu/tag/0DB7
https://stacks.math.columbia.edu/tag/0DB8
https://stacks.math.columbia.edu/tag/0DB9
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Exercise 111.44.7.0DBA Let k be a field. Let X = P|1 × P1 be the product of the
projective line over k with itself with projections p : X → P1

k and q : X → P1
k. Let

O(a, b) = p∗OP1
k
(a)⊗OX

q∗OP1
k
(b)

Compute the dimensions ofHi(X,O(a, b)) for all i, a, b. Hint: Use Exercise 111.44.6.

111.45. Cohomology and Hilbert polynomials

0DCD
Situation 111.45.1.0DCE Let k be a field. Let X = Pn

k be n-dimensional projective
space. Let F be a coherent OX -module. Recall that

χ(X,F) =
∑n

i=0
(−1)i dimkH

i(X,F)

Recall that the Hilbert polynomial of F is the function
t 7−→ χ(X,F(t))

We also recall that F(t) = F ⊗OX
OX(t) where OX(t) is the tth twist of the

structure sheaf as in Constructions, Definition 27.10.1. In Varieties, Subsection
33.35.13 we have proved the Hilbert polynomial is a polynomial in t.

Exercise 111.45.2.0DCF In Situation 111.45.1.
(1) If P (t) is the Hilbert polynomial of F , what is the Hilbert polynomial of
F(−13).

(2) If Pi is the Hilbert polynomial of Fi, what is the Hilbert polynomial of
F1 ⊕F2.

(3) If Pi is the Hilbert polynomial of Fi and F is the kernel of a surjective
map F1 → F2, what is the Hilbert polynomial of F?

Exercise 111.45.3.0DCG In Situation 111.45.1 assume n ≥ 1. Find a coherent sheaf
whose Hilbert polynomial is t− 101.

Exercise 111.45.4.0DCH In Situation 111.45.1 assume n ≥ 2. Find a coherent sheaf
whose Hilbert polynomial is t2/2 + t/2 − 1. (This is a bit tricky; it suffices if you
just show there is such a coherent sheaf.)

Exercise 111.45.5.0DCI In Situation 111.45.1 assume n ≥ 2 and k algebraically closed.
Let C ⊂ X be an integral closed subscheme of dimension 1. In other words, C is a
projective curve. Let dt+ e be the Hilbert polynomial of OC viewed as a coherent
sheaf on X.

(1) Give an upper bound on e. (Hints: Use that OC(t) only has cohomology
in degrees 0 and 1 and study H0(C,OC).)

(2) Pick a global section s of OX(1) which intersects C transversally, i.e., such
that there are pairwise distinct closed points c1, . . . , cr ∈ C and a short
exact sequence

0→ OC
s−→ OC(1)→

⊕
i=1,...,r

kci → 0

where kci is the skyscraper sheaf with value k in ci. (Such an s exists;
please just use this.) Show that r = d. (Hint: twist the sequence and see
what you get.)

(3) Twisting the short exact sequence gives a k-linear map φt : Γ(C,OC(t))→⊕
i=1,...,d k for any t. Show that if this map is surjective for t ≥ d− 1.

https://stacks.math.columbia.edu/tag/0DBA
https://stacks.math.columbia.edu/tag/0DCE
https://stacks.math.columbia.edu/tag/0DCF
https://stacks.math.columbia.edu/tag/0DCG
https://stacks.math.columbia.edu/tag/0DCH
https://stacks.math.columbia.edu/tag/0DCI
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(4) Give a lower bound on e in terms of d. (Hint: show that H1(C,OC(d −
2)) = 0 using the result of (3) and use vanishing.)

Exercise 111.45.6.0DCJ In Situation 111.45.1 assume n = 2. Let s1, s2, s3 ∈ Γ(X,OX(2))
be three quadric equations. Consider the coherent sheaf

F = Coker
(
OX(−2)⊕3 s1,s2,s3−−−−−→ OX

)
List the possible Hilbert polynomials of such F . (Try to visualize intersections of
quadrics in the projective plane.)

111.46. Curves

0EG8
Exercise 111.46.1.0EG9 Let k be an algebraically closed field. Let X be a projective
curve over k. Let L be an invertible OX -module. Let s0, . . . , sn ∈ H0(X,L) be
global sections of L. Prove there is a natural closed subscheme

Z ⊂ Pn ×X

such that the closed point ((λ0 : . . . : λn), x) is in Z if and only if the section
λ0s0 + . . .+ λnsn vanishes at x. (Hint: describe Z affine locally.)

Exercise 111.46.2.0EGA Let k be an algebraically closed field. Let X be a smooth curve
over k. Let r ≥ 1. Show that the closed subset

D ⊂ X ×Xr = Xr+1

whose closed points are the tuples (x, x1, . . . , xr) with x = xi for some i, has an
invertible ideal sheaf. In other words, show that D is an effective Cartier divisor.
Hints: reduce to r = 1 and use that X is a smooth curves to say something about
the diagonal (look in books for this).

Exercise 111.46.3.0EGB Let k be an algebraically closed field. Let X be a smooth
projective curve over k. Let T be a scheme of finite type over k and let

D1 ⊂ X × T and D2 ⊂ X × T

be two effective Cartier divisors such that for t ∈ T the fibres Di,t ⊂ Xt are not
dense (i.e., do not contain the generic point of the curve Xt). Prove that there is
a canonical closed subscheme Z ⊂ T such that a closed point t ∈ T is in Z if and
only if for the scheme theoretic fibres D1,t, D2,t of D1, D2 we have

D1,t ⊂ D2,t

as closed subschemes of Xt. Hints: Show that, possibly after shrinking T , you
may assume T = Spec(A) is affine and there is an affine open U ⊂ X such that
Di ⊂ U × T . Then show that M1 = Γ(D1,OD1) is a finite locally free A-module
(here you will need some nontrivial algebra — ask your friends). After shrinking T
you may assume M1 is a free A-module. Then look at

Γ(U × T, ID2)→M1 = A⊕N

and you define Z as the closed subscheme cut out by the ideal generated by coeffi-
cients of vectors in the image of this map. Explain why this works (this will require
perhaps a bit more commutative algebra).

https://stacks.math.columbia.edu/tag/0DCJ
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Exercise 111.46.4.0EGC Let k be an algebraically closed field. Let X be a smooth
projective curve over k. Let L be an invertible OX -module. Let s0, . . . , sn ∈
H0(X,L) be global sections of L. Let r ≥ 1. Prove there is a natural closed
subscheme

Z ⊂ Pn ×X × . . .×X = Pn ×Xr

such that the closed point ((λ0 : . . . : λn), x1, . . . , xr) is in Z if and only if the
section sλ = λ0s0 + . . .+ λnsn vanishes on the divisor D = x1 + . . .+ xr, i.e., the
section sλ is in L(−D). Hint: explain how this follows by combining then results
of Exercises 111.46.2 and 111.46.3.
Exercise 111.46.5.0EGD Let k be an algebraically closed field. Let X be a smooth
projective curve over k. Let L be an invertible OX -module. Show that there is a
natural closed subset

Z ⊂ Xr

such that a closed point (x1, . . . , xr) of Xr is in Z if and only if L(−x1 − . . .− xr)
has a nonzero global section. Hint: use Exercise 111.46.4.
Exercise 111.46.6.0EGE Let k be an algebraically closed field. Let X be a smooth
projective curve over k. Let r ≥ s be integers. Show that there is a natural closed
subset

Z ⊂ Xr ×Xs

such that a closed point (x1, . . . , xr, y1, . . . , ys) of Xr × Xs is in Z if and only if
x1 + . . . + xr − y1 − . . . − ys is linearly equivalent to an effective divisor. Hint:
Choose an auxilliary invertible module L of very high degree so that L(−D) has a
nonvanshing section for any effective divisor D of degree r. Then use the result of
Exercise 111.46.5 twice.
Exercise 111.46.7.0EGR Choose your favorite algebraically closed field k. As best as you
can determine all possible grd that can exist on some curve of genus 7. While doing
this also try to

(1) determine in which cases the grd is base point free, and
(2) determine in which cases the grd gives a closed embedding in Pr.

Do the same thing if you assume your curve is “general” (make up your own notion
of general – this may be easier than the question above). Do the same thing if you
assume your curve is hyperelliptic. Do the same thing if you assume your curve is
trigonal (and not hyperelliptic). Etc.

111.47. Moduli

0EGN In this section we consider some naive approaches to moduli of algebraic geometric
objects.
Let k be an algebraically closed field. Suppose that M is a moduli problem over
k. We won’t define exactly what this means here, but in each exercise it should
be clear what we mean. To understand the following it suffices to know what the
objects of M over k are, what the isomorphisms between objects of M over k are,
and what the families of object of M over a variety are. Then we say the number
of moduli of M is d ≥ 0 if the following are true

(1) there is a finite number of families Xi → Vi, i = 1, . . . , n such that every
object of M over k is isomorphic to a fibre of one of these and such that
max dim(Vi) = d, and

https://stacks.math.columbia.edu/tag/0EGC
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(2) there is no way to do this with a smaller d.
This is really just a very rough approximation of better notions in the literature.

Exercise 111.47.1.0EGP Let k be an algebraically closed field. Let d ≥ 1 and n ≥ 1. Let
us say the moduli of hypersurfaces of degree d in Pn is given by

(1) an object is a hypersurface X ⊂ Pn
k of degree d,

(2) an isomorphism between two objects X ⊂ Pn
k and Y ⊂ Pn

k is an element
g ∈ PGLn(k) such that g(X) = Y , and

(3) a family of hypersurfaces over a variety V is a closed subscheme X ⊂ Pn
V

such that for all v ∈ V the scheme theoretic fibre Xv of X → V is a
hypersurfaces in Pn

v .
Compute (if you can – these get progressively harder)

(1) the number of moduli when n = 1 and d arbitrary,
(2) the number of moduli when n = 2 and d = 1,
(3) the number of moduli when n = 2 and d = 2,
(4) the number of moduli when n ≥ 1 and d = 2,
(5) the number of moduli when n = 2 and d = 3,
(6) the number of moduli when n = 3 and d = 3, and
(7) the number of moduli when n = 2 and d = 4.

Exercise 111.47.2.0EGQ Let k be an algebraically closed field. Let g ≥ 2. Let us say the
moduli of hyperelliptic curves of genus g is given by

(1) an object is a smooth projective hyperelliptic curve X of genus g,
(2) an isomorphism between two objects X and Y is an isomorphism X → Y

of schemes over k, and
(3) a family of hyperelliptic curves of genus g over a variety V is a proper

flat3 morphism X → Y such that all scheme theoretic fibres of X → V
are smooth projective hyperelliptic curves of genus g.

Show that the number of moduli is 2g − 1.

111.48. Global Exts

0DD0
Exercise 111.48.1.0DD1 Let k be a field. Let X = P3

k. Let L ⊂ X and P ⊂ X be a line
and a plane, viewed as closed subschemes cut out by 1, resp., 2 linear equations.
Compute the dimensions of

ExtiX(OL,OP )
for all i. Make sure to do both the case where L is contained in P and the case
where L is not contained in P .

Exercise 111.48.2.0DD2 Let k be a field. Let X = Pn
k . Let Z ⊂ X be a closed k-rational

point viewed as a closed subscheme. For example the point with homogeneous
coordinates (1 : 0 : . . . : 0). Compute the dimensions of

ExtiX(OZ ,OZ)

for all i.

3You can drop this assumption without changing the answer to the question.
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Exercise 111.48.3.0DD3 Let X be a ringed space. Define cup-product maps

ExtiX(G,H)× ExtjX(F ,G) −→ Exti+jX (F ,H)
for OX -modules F ,G,H. (Hint: this is a super general thing.)

Exercise 111.48.4.0DD4 Let X be a ringed space. Let E be a finite locally free OX -
module with dual E∨ = HomOX

(E ,OX). Prove the following statements
(1) ExtiOX

(F ⊗OX
E ,G) = ExtiOX

(F , E∨ ⊗OX
G) = ExtiOX

(F ,G)⊗OX
E∨, and

(2) ExtiX(F ⊗OX
E ,G) = ExtiX(F , E∨ ⊗OX

G).
Here F and G are OX -modules. Conclude that

ExtiX(E ,G) = Hi(X, E∨ ⊗OX
G)

Exercise 111.48.5.0DD5 Let X be a ringed space. Let E be a finite locally free OX -
module. Construct a trace map

ExtiX(E , E)→ Hi(X,OX)
for all i. Generalize to a trace map

ExtiX(E , E ⊗OX
F)→ Hi(X,F)

for any OX -module F .

Exercise 111.48.6.0DD6 Let k be a field. Let X = Pd
k. Set ωX/k = OX(−d− 1). Prove

that for finite locally free modules E , F the cup product on Ext combined with the
trace map on Ext
ExtiX(E ,F⊗OX

ωX/k)×Extd−i
X (F , E)→ ExtdX(F ,F⊗OX

ωX/k)→ Hd(X,ωX/k) = k

produces a nondegenerate pairing. Hint: you can either reprove duality in this
setting or you can reduce to cohomology of sheaves and apply the Serre duality
theorem as proved in the lectures.

111.49. Divisors

02AQ We collect all relevant definitions here in one spot for convenience.

Definition 111.49.1.02AR Throughout, let S be any scheme and let X be a Noetherian,
integral scheme.

(1) A Weil divisor on X is a formal linear combination Σni[Zi] of prime divi-
sors Zi with integer coefficients.

(2) A prime divisor is a closed subscheme Z ⊂ X, which is integral with
generic point ξ ∈ Z such that OX,ξ has dimension 1. We will use the
notation OX,Z = OX,ξ when ξ ∈ Z ⊂ X is as above. Note that OX,Z ⊂
K(X) is a subring of the function field of X.

(3) The Weil divisor associated to a rational function f ∈ K(X)∗ is the sum
ΣvZ(f)[Z]. Here vZ(f) is defined as follows
(a) If f ∈ O∗

X,Z then vZ(f) = 0.
(b) If f ∈ OX,Z then

vZ(f) = lengthOX,Z
(OX,Z/(f)).

(c) If f = a
b with a, b ∈ OX,Z then

vZ(f) = lengthOX,Z
(OX,Z/(a))− lengthOX,Z

(OX,Z/(b)).

https://stacks.math.columbia.edu/tag/0DD3
https://stacks.math.columbia.edu/tag/0DD4
https://stacks.math.columbia.edu/tag/0DD5
https://stacks.math.columbia.edu/tag/0DD6
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(4) An effective Cartier divisor on a scheme S is a closed subscheme D ⊂ S
such that every point d ∈ D has an affine open neighbourhood Spec(A) =
U ⊂ S in S so that D ∩ U = Spec(A/(f)) with f ∈ A a nonzerodivisor.

(5) The Weil divisor [D] associated to an effective Cartier divisor D ⊂ X of
our Noetherian integral scheme X is defined as the sum ΣvZ(D)[Z] where
vZ(D) is defined as follows
(a) If the generic point ξ of Z is not in D then vZ(D) = 0.
(b) If the generic point ξ of Z is in D then

vZ(D) = lengthOX,Z
(OX,Z/(f))

where f ∈ OX,Z = OX,ξ is the nonzerodivisor which defines D in an
affine neighbourhood of ξ (as in (4) above).

(6) Let S be a scheme. The sheaf of total quotient rings KS is the sheaf
of OS-algebras which is the sheafification of the pre-sheaf K′ defined as
follows. For U ⊂ S open we set K′(U) = S−1

U OS(U) where SU ⊂ OS(U)
is the multiplicative subset consisting of sections f ∈ OS(U) such that the
germ of f in OS,u is a nonzerodivisor for every u ∈ U . In particular the
elements of SU are all nonzerodivisors. Thus OS is a subsheaf of KS , and
we get a short exact sequence

0→ O∗
S → K∗

S → K∗
S/O∗

S → 0.
(7) A Cartier divisor on a scheme S is a global section of the quotient sheaf
K∗
S/O∗

S .
(8) The Weil divisor associated to a Cartier divisor τ ∈ Γ(X,K∗

X/O∗
X) over

our Noetherian integral scheme X is the sum ΣvZ(τ)[Z] where vZ(τ) is
defined as by the following recipe
(a) If the germ of τ at the generic point ξ of Z is zero – in other words

the image of τ in the stalk (K∗/O∗)ξ is “zero” – then vZ(τ) = 0.
(b) Find an affine open neighbourhood Spec(A) = U ⊂ X so that τ |U is

the image of a section f ∈ K(U) and moreover f = a/b with a, b ∈ A.
Then we set
vZ(f) = lengthOX,Z

(OX,Z/(a))− lengthOX,Z
(OX,Z/(b)).

Remarks 111.49.2.02F5 Here are some trivial remarks.
(1) On a Noetherian integral scheme X the sheaf KX is constant with value

the function field K(X).
(2) To make sense out of the definitions above one needs to show that

lengthO(O/(ab)) = lengthO(O/(a)) + lengthO(O/(b))
for any pair (a, b) of nonzero elements of a Noetherian 1-dimensional local
domain O. This will be done in the lectures.

Exercise 111.49.3.02F6 (On any scheme.) Describe how to assign a Cartier divisor to
an effective Cartier divisor.

Exercise 111.49.4.02F7 (On an integral scheme.) Describe how to assign a Cartier
divisor D to a rational function f such that the Weil divisor associated to D and
to f agree. (This is silly.)

Exercise 111.49.5.02F8 Give an example of a Weil divisor on a variety which is not the
Weil divisor associated to any Cartier divisor.

https://stacks.math.columbia.edu/tag/02F5
https://stacks.math.columbia.edu/tag/02F6
https://stacks.math.columbia.edu/tag/02F7
https://stacks.math.columbia.edu/tag/02F8
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Exercise 111.49.6.02F9 Give an example of a Weil divisor D on a variety which is not
the Weil divisor associated to any Cartier divisor but such that nD is the Weil
divisor associated to a Cartier divisor for some n > 1.

Exercise 111.49.7.02FA Give an example of a Weil divisor D on a variety which is not
the Weil divisor associated to any Cartier divisor and such that nD is NOT the
Weil divisor associated to a Cartier divisor for any n > 1. (Hint: Consider a cone,
for example X : xy − zw = 0 in A4

k. Try to show that D = [x = 0, z = 0] works.)

Exercise 111.49.8.02FB On a separated scheme X of finite type over a field: Give an
example of a Cartier divisor which is not the difference of two effective Cartier
divisors. Hint: Find some X which does not have any nonempty effective Cartier
divisors for example the scheme constructed in [Har77, III Exercise 5.9]. There is
even an example with X a variety – namely the variety of Exercise 111.49.9.

Exercise 111.49.9.02AS Example of a nonprojective proper variety. Let k be a field. Let
L ⊂ P3

k be a line and let C ⊂ P3
k be a nonsingular conic. Assume that C ∩ L = ∅.

Choose an isomorphism φ : L→ C. Let X be the k-variety obtained by glueing C
to L via φ. In other words there is a surjective proper birational morphism

π : P3
k −→ X

and an open U ⊂ X such that π : π−1(U) → U is an isomorphism, π−1(U) =
P3
k \ (L ∪ C) and such that π|L = π|C ◦ φ. (These conditions do not yet uniquely

define X. In order to do this you need to specify the structure sheaf of X along
points of Z = X \ U .) Show X exists, is a proper variety, but is not projective.
(Hint: For existence use the result of Exercise 111.37.9. For non-projectivity use
that Pic(P3

k) = Z to show that X cannot have an ample invertible sheaf.)

111.50. Differentials

02AT Definitions and results. Kähler differentials.
(1) Let R → A be a ring map. The module of Kähler differentials of A over

R is denoted ΩA/R. It is generated by the elements da, a ∈ A subject to
the relations:
d(a1 + a2) = da1 + da2, d(a1a2) = a1da2 + a2da1, dr = 0

The canonical universal R-derivation d : A→ ΩA/R maps a 7→ da.
(2) Consider the short exact sequence

0→ I → A⊗R A→ A→ 0
which defines the ideal I. There is a canonical derivation d : A → I/I2

which maps a to the class of a ⊗ 1 − 1 ⊗ a. This is another presentation
of the module of derivations of A over R, in other words

(I/I2,d) ∼= (ΩA/R,d).
(3) For multiplicative subsets SR ⊂ R and SA ⊂ A such that SR maps into

SA we have
ΩS−1

A
A/S−1

R
R = S−1

A ΩA/R.
(4) If A is a finitely presented R-algebra then ΩA/R is a finitely presented

A-module. Hence in this case the fitting ideals of ΩA/R are defined.

https://stacks.math.columbia.edu/tag/02F9
https://stacks.math.columbia.edu/tag/02FA
https://stacks.math.columbia.edu/tag/02FB
https://stacks.math.columbia.edu/tag/02AS
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(5) Let f : X → S be a morphism of schemes. There is a quasi-coherent sheaf
of OX -modules ΩX/S and a OS-linear derivation

d : OX −→ ΩX/S
such that for any affine opens Spec(A) = U ⊂ X, Spec(R) = V ⊂ S with
f(U) ⊂ V we have

Γ(Spec(A),ΩX/S) = ΩA/R
compatibly with d.

Exercise 111.50.1.02FC Let k[ϵ] be the ring of dual numbers over the field k, i.e., ϵ2 = 0.
(1) Consider the ring map

R = k[ϵ]→ A = k[x, ϵ]/(ϵx)
Show that the Fitting ideals of ΩA/R are (starting with the zeroth Fitting
ideal)

(ϵ), A,A, . . .
(2) Consider the map R = k[t] → A = k[x, y, t]/(x(y − t)(y − 1), x(x − t)).

Show that the Fitting ideals of ΩA/R in A are (assume characteristic k is
zero for simplicity)

x(2x− t)(2y − t− 1)A, (x, y, t) ∩ (x, y − 1, t), A, A, . . .
So the 0-the Fitting ideal is cut out by a single element of A, the 1st
Fitting ideal defines two closed points of Spec(A), and the others are all
trivial.

(3) Consider the map R = k[t] → A = k[x, y, t]/(xy − tn). Compute the
Fitting ideals of ΩA/R.

Remark 111.50.2.02FD The kth Fitting ideal of ΩX/S is commonly used to define the
singular scheme of the morphism X → S when X has relative dimension k over
S. But as part (a) shows, you have to be careful doing this when your family does
not have “constant” fibre dimension, e.g., when it is not flat. As part (b) shows,
flatness doesn’t guarantee it works either (and yes this is a flat family). In “good
cases” – such as in (c) – for families of curves you expect the 0-th Fitting ideal to
be zero and the 1st Fitting ideal to define (scheme-theoretically) the singular locus.

Exercise 111.50.3.02FE Suppose that R is a ring and
A = R[x1, . . . , xn]/(f1, . . . , fn).

Note that we are assuming that A is presented by the same number of equations
as variables. Thus the matrix of partial derivatives

(∂fi/∂xj)
is n × n, i.e., a square matrix. Assume that its determinant is invertible as an
element in A. Note that this is exactly the condition that says that ΩA/R = (0)
in this case of n-generators and n relations. Let π : B′ → B be a surjection of
R-algebras whose kernel J has square zero (as an ideal in B′). Let φ : A → B
be a homomorphism of R-algebras. Show there exists a unique homomorphism of
R-algebras φ′ : A→ B′ such that φ = π ◦ φ′.

Exercise 111.50.4.02FF Find a generalization of the result of Exercise 111.50.3 to the
case where A = R[x, y]/(f).

https://stacks.math.columbia.edu/tag/02FC
https://stacks.math.columbia.edu/tag/02FD
https://stacks.math.columbia.edu/tag/02FE
https://stacks.math.columbia.edu/tag/02FF
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Exercise 111.50.5.0D1T Let k be a field, let f1, . . . , fc ∈ k[x1, . . . , xn], and let A =
k[x1, . . . , xn]/(f1, . . . , fc). Assume that fj(0, . . . , 0) = 0. This means that m =
(x1, . . . , xn)A is a maximal ideal. Prove that the local ring Am is regular if the
rank of the matrix

(∂fj/∂xi)|(x1,...,xn)=(0,...,0)

is c. What is the dimension of Am in this case? Show that the converse is false
by giving an example where Am is regular but the rank is less than c; what is the
dimension of Am in your example?

111.51. Schemes, Final Exam, Fall 2007

02AU These were the questions in the final exam of a course on Schemes, in the Spring
of 2007 at Columbia University.
Exercise 111.51.1 (Definitions).02FG Provide definitions of the following concepts.

(1) X is a scheme
(2) the morphism of schemes f : X → Y is finite
(3) the morphisms of schemes f : X → Y is of finite type
(4) the scheme X is Noetherian
(5) the OX -module L on the scheme X is invertible
(6) the genus of a nonsingular projective curve over an algebraically closed

field
Exercise 111.51.2.02FH Let X = Spec(Z[x, y]), and let F be a quasi-coherent OX -
module. Suppose that F is zero when restricted to the standard affine open D(x).

(1) Show that every global section s of F is killed by some power of x, i.e.,
xns = 0 for some n ∈ N.

(2) Do you think the same is true if we do not assume that F is quasi-coherent?
Exercise 111.51.3.02FI Suppose that X → Spec(R) is a proper morphism and that R
is a discrete valuation ring with residue field k. Suppose that X ×Spec(R) Spec(k)
is the empty scheme. Show that X is the empty scheme.
Exercise 111.51.4.02FJ Consider the projective4 variety

P1 ×P1 = P1
C ×Spec(C) P1

C

over the field of complex numbers C. It is covered by four affine pieces, corre-
sponding to pairs of standard affine pieces of P1

C. For example, suppose we use
homogeneous coordinates X0, X1 on the first factor and Y0, Y1 on the second. Set
x = X1/X0, and y = Y1/Y0. Then the 4 affine open pieces are the spectra of the
rings

C[x, y], C[x−1, y], C[x, y−1], C[x−1, y−1].
Let X ⊂ P1×P1 be the closed subscheme which is the closure of the closed subset
of the first affine piece given by the equation

y3(x4 + 1) = x4 − 1.
(1) Show that X is contained in the union of the first and the last of the 4

affine open pieces.
(2) Show that X is a nonsingular projective curve.

4The projective embedding is ((X0, X1), (Y0, Y1)) 7→ (X0Y0, X0Y1, X1Y0, X1Y1) in other
words (x, y) 7→ (1, y, x, xy).

https://stacks.math.columbia.edu/tag/0D1T
https://stacks.math.columbia.edu/tag/02FG
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(3) Consider the morphism pr2 : X → P1 (projection onto the first factor).
On the first affine piece it is the map (x, y) 7→ x. Briefly explain why it
has degree 3.

(4) Compute the ramification points and ramification indices for the map
pr2 : X → P1.

(5) Compute the genus of X.

Exercise 111.51.5.02FK Let X → Spec(Z) be a morphism of finite type. Suppose that
there is an infinite number of primes p such that X×Spec(Z) Spec(Fp) is not empty.

(1) Show that X ×Spec(Z) Spec(Q) is not empty.
(2) Do you think the same is true if we replace the condition “finite type” by

the condition “locally of finite type”?

111.52. Schemes, Final Exam, Spring 2009

02AV These were the questions in the final exam of a course on Schemes, in the Spring
of 2009 at Columbia University.

Exercise 111.52.1.02AW Let X be a Noetherian scheme. Let F be a coherent sheaf on
X. Let x ∈ X be a point. Assume that Supp(F) = {x}.

(1) Show that x is a closed point of X.
(2) Show that H0(X,F) is not zero.
(3) Show that F is generated by global sections.
(4) Show that Hp(X,F) = 0 for p > 0.

Remark 111.52.2.02AX Let k be a field. Let P2
k = Proj(k[X0, X1, X2]). Any invertible

sheaf on P2
k is isomorphic to OP2

k
(n) for some n ∈ Z. Recall that

Γ(P2
k,OP2

k
(n)) = k[X0, X1, X2]n

is the degree n part of the polynomial ring. For a quasi-coherent sheaf F on P2
k set

F(n) = F ⊗OP2
k

OP2
k
(n) as usual.

Exercise 111.52.3.02AY Let k be a field. Let E be a vector bundle on P2
k, i.e., a finite

locally free OP2
k
-module. We say E is split if E is isomorphic to a direct sum

invertible OP2
k
-modules.

(1) Show that E is split if and only if E(n) is split.
(2) Show that if E is split then H1(P2

k, E(n)) = 0 for all n ∈ Z.
(3) Let

φ : OP2
k
−→ OP2

k
(1)⊕OP2

k
(1)⊕OP2

k
(1)

be given by linear forms L0, L1, L2 ∈ Γ(P2
k,OP2

k
(1)). Assume Li ̸= 0 for

some i. What is the condition on L0, L1, L2 such that the cokernel of φ
is a vector bundle? Why?

(4) Given an example of such a φ.
(5) Show that Coker(φ) is not split (if it is a vector bundle).

Remark 111.52.4.02AZ Freely use the following facts on dimension theory (and add
more if you need more).

(1) The dimension of a scheme is the supremum of the length of chains of
irreducible closed subsets.

https://stacks.math.columbia.edu/tag/02FK
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(2) The dimension of a finite type scheme over a field is the maximum of the
dimensions of its affine opens.

(3) The dimension of a Noetherian scheme is the maximum of the dimensions
of its irreducible components.

(4) The dimension of an affine scheme coincides with the dimension of the
corresponding ring.

(5) Let k be a field and let A be a finite type k-algebra. If A is a domain, and
x ̸= 0, then dim(A) = dim(A/xA) + 1.

Exercise 111.52.5.02B0 Let k be a field. Let X be a projective, reduced scheme over
k. Let f : X → P1

k be a morphism of schemes over k. Assume there exists an
integer d ≥ 0 such that for every point t ∈ P1

k the fibre Xt = f−1(t) is irreducible
of dimension d. (Recall that an irreducible space is not empty.)

(1) Show that dim(X) = d+ 1.
(2) Let X0 ⊂ X be an irreducible component of X of dimension d+ 1. Prove

that for every t ∈ P1
k the fibre X0,t has dimension d.

(3) What can you conclude about Xt and X0,t from the above?
(4) Show that X is irreducible.

Remark 111.52.6.02B1 Given a projective scheme X over a field k and a coherent sheaf
F on X we set

χ(X,F) =
∑

i≥0
(−1)i dimkH

i(X,F).

Exercise 111.52.7.02B2 Let k be a field. Write P3
k = Proj(k[X0, X1, X2, X3]). Let

C ⊂ P3
k be a type (5, 6) complete intersection curve. This means that there exist

F ∈ k[X0, X1, X2, X3]5 and G ∈ k[X0, X1, X2, X3]6 such that
C = Proj(k[X0, X1, X2, X3]/(F,G))

is a variety of dimension 1. (Variety implies reduced and irreducible, but feel free
to assume C is nonsingular if you like.) Let i : C → P3

k be the corresponding closed
immersion. Being a complete intersection also implies that

0 // OP3
k
(−11)

(
−G
F

)
// OP3

k
(−5)⊕OP3

k
(−6)

(F,G) // OP3
k

// i∗OC // 0

is an exact sequence of sheaves. Please use these facts to:
(1) compute χ(C, i∗OP3

k
(n)) for any n ∈ Z, and

(2) compute the dimension of H1(C,OC).

Exercise 111.52.8.02B3 Let k be a field. Consider the rings
A = k[x, y]/(xy)
B = k[u, v]/(uv)
C = k[t, t−1]× k[s, s−1]

and the k-algebra maps
A −→ C, x 7→ (t, 0), y 7→ (0, s)
B −→ C, u 7→ (t−1, 0), v 7→ (0, s−1)

It is a true fact that these maps induce isomorphisms Ax+y → C and Bu+v → C.
Hence the maps A→ C and B → C identify Spec(C) with open subsets of Spec(A)

https://stacks.math.columbia.edu/tag/02B0
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111.53. SCHEMES, FINAL EXAM, FALL 2010 7401

and Spec(B). Let X be the scheme obtained by glueing Spec(A) and Spec(B) along
Spec(C):

X = Spec(A)⨿Spec(C) Spec(B).
As we saw in the course such a scheme exists and there are affine opens Spec(A) ⊂ X
and Spec(B) ⊂ X whose overlap is exactly Spec(C) identified with an open of each
of these using the maps above.

(1) Why is X separated?
(2) Why is X of finite type over k?
(3) Compute H1(X,OX), or what is its dimension?
(4) What is a more geometric way to describe X?

111.53. Schemes, Final Exam, Fall 2010

069Q These were the questions in the final exam of a course on Schemes, in the Fall of
2010 at Columbia University.

Exercise 111.53.1 (Definitions).069R Provide definitions of the following concepts.
(1) a separated scheme,
(2) a quasi-compact morphism of schemes,
(3) an affine morphism of schemes,
(4) a multiplicative subset of a ring,
(5) a Noetherian scheme,
(6) a variety.

Exercise 111.53.2.069S Prime avoidance.
(1) Let A be a ring. Let I ⊂ A be an ideal and let q1, q2 be prime ideals such

that I ̸⊂ qi. Show that I ̸⊂ q1 ∪ q2.
(2) What is a geometric interpretation of (1)?
(3) Let X = Proj(S) for some graded ring S. Let x1, x2 ∈ X. Show that

there exists a standard open D+(F ) which contains both x1 and x2.

Exercise 111.53.3.069T Why is a composition of affine morphisms affine?

Exercise 111.53.4 (Examples).069U Give examples of the following:
(1) A reducible projective scheme over a field k.
(2) A scheme with 100 points.
(3) A non-affine morphism of schemes.

Exercise 111.53.5.069V Chevalley’s theorem and the Hilbert Nullstellensatz.
(1) Let p ⊂ Z[x1, . . . , xn] be a maximal ideal. What does Chevalley’s theorem

imply about p ∩ Z?
(2) In turn, what does the Hilbert Nullstellensatz imply about κ(p)?

Exercise 111.53.6.069W Let A be a ring. Let S = A[X] as a graded A-algebra where X
has degree 1. Show that Proj(S) ∼= Spec(A) as schemes over A.

Exercise 111.53.7.069X Let A → B be a finite ring map. Show that Spec(B) is a
H-projective scheme over Spec(A).

Exercise 111.53.8.069Y Give an example of a scheme X over a field k such that X
is irreducible and such that for some finite extension k′/k the base change Xk′ =
X ×Spec(k) Spec(k′) is connected but reducible.

https://stacks.math.columbia.edu/tag/069R
https://stacks.math.columbia.edu/tag/069S
https://stacks.math.columbia.edu/tag/069T
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https://stacks.math.columbia.edu/tag/069V
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https://stacks.math.columbia.edu/tag/069X
https://stacks.math.columbia.edu/tag/069Y
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111.54. Schemes, Final Exam, Spring 2011

069Z These were the questions in the final exam of a course on Schemes, in the Spring
of 2011 at Columbia University.

Exercise 111.54.1 (Definitions).06A0 Provide definitions of the italicized concepts.
(1) a separated scheme,
(2) a universally closed morphism of schemes,
(3) A dominates B for local rings A,B contained in a common field,
(4) the dimension of a scheme X,
(5) the codimension of an irreducible closed subscheme Y of a scheme X,

Exercise 111.54.2 (Results).06A1 State something formally equivalent to the fact dis-
cussed in the course.

(1) The valuative criterion of properness for a morphism X → Y of varieties
for example.

(2) The relationship between dim(X) and the function field k(X) of X for a
variety X over a field k.

(3) Fill in the blank: The category of nonsingular projective curves over k
and nonconstant morphisms is anti-equivalent to . . . . . . . . ..

(4) Noether normalization.
(5) Jacobian criterion.

Exercise 111.54.3.06A2 Let k be a field. Let F ∈ k[X0, X1, X2] be a homogeneous form
of degree d. Assume that C = V+(F ) ⊂ P2

k is a smooth curve over k. Denote
i : C → P2

k the corresponding closed immersion.
(1) Show that there is a short exact sequence

0→ OP2
k
(−d)→ OP2

k
→ i∗OC → 0

of coherent sheaves on P2
k: tell me what the maps are and briefly why it

is exact.
(2) Conclude that H0(C,OC) = k.
(3) Compute the genus of C.
(4) Assume now that P = (0 : 0 : 1) is not on C. Prove that π : C → P1

k

given by (a0 : a1 : a2) 7→ (a0 : a1) has degree d.
(5) Assume k is algebraically closed, assume all ramification indices (the “ei”)

are 1 or 2, and assume the characteristic of k is not equal to 2. How many
ramification points does π : C → P1

k have?
(6) In terms of F , what do you think is a set of equations of the set of

ramification points of π?
(7) Can you guess KC?

Exercise 111.54.4.06A3 Let k be a field. Let X be a “triangle” over k, i.e., you get X by
glueing three copies of A1

k to each other by identifying 0 on the first copy to 1 on the
second copy, 0 on the second copy to 1 on the third copy, and 0 on the third copy to
1 on the first copy. It turns out that X is isomorphic to Spec(k[x, y]/(xy(x+y+1)));
feel free to use this. Compute the Picard group of X.

Exercise 111.54.5.06A4 Let k be a field. Let π : X → Y be a finite birational morphism
of curves with X a projective nonsingular curve over k. It follows from the material
in the course that Y is a proper curve and that π is the normalization morphism
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of Y . We have also seen in the course that there exists a dense open V ⊂ Y such
that U = π−1(V ) is a dense open in X and π : U → V is an isomorphism.

(1) Show that there exists an effective Cartier divisor D ⊂ X such that D ⊂ U
and such that OX(D) is ample on X.

(2) Let D be as in (1). Show that E = π(D) is an effective Cartier divisor on
Y .

(3) Briefly indicate why
(a) the map OY → π∗OX has a coherent cokernel Q which is supported

in Y \ V , and
(b) for every n there is a corresponding map OY (nE) → π∗OX(nD)

whose cokernel is isomorphic to Q.
(4) Show that dimkH

0(X,OX(nD)) − dimkH
0(Y,OY (nE)) is bounded (by

what?) and conclude that the invertible sheaf OY (nE) has lots of sections
for large n (why?).

111.55. Schemes, Final Exam, Fall 2011

07DE These were the questions in the final exam of a course on Commutative Algebra,
in the Fall of 2011 at Columbia University.

Exercise 111.55.1 (Definitions).07DF Provide definitions of the italicized concepts.
(1) a Noetherian ring,
(2) a Noetherian scheme,
(3) a finite ring homomorphism,
(4) a finite morphism of schemes,
(5) the dimension of a ring.

Exercise 111.55.2 (Results).07DG State something formally equivalent to the fact dis-
cussed in the course.

(1) Zariski’s Main Theorem.
(2) Noether normalization.
(3) Chinese remainder theorem.
(4) Going up for finite ring maps.

Exercise 111.55.3.07DH Let (A,m, κ) be a Noetherian local ring whose residue field has
characteristic not 2. Suppose that m is generated by three elements x, y, z and that
x2 + y2 + z2 = 0 in A.

(1) What are the possible values of dim(A)?
(2) Give an example to show that each value is possible.
(3) Show that A is a domain if dim(A) = 2. (Hint: look at

⊕
n≥0 m

n/mn+1.)

Exercise 111.55.4.07DI Let A be a ring. Let S ⊂ T ⊂ A be multiplicative subsets.
Assume that

{q | q ∩ S = ∅} = {q | q ∩ T = ∅}.
Show that S−1A→ T−1A is an isomorphism.

Exercise 111.55.5.07DJ Let k be an algebraically closed field. Let

V0 = {A ∈ Mat(3× 3, k) | rank(A) = 1} ⊂ Mat(3× 3, k) = k9.

(1) Show that V0 is the set of closed points of a (Zariski) locally closed subset
V ⊂ A9

k.

https://stacks.math.columbia.edu/tag/07DF
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(2) Is V irreducible?
(3) What is dim(V )?

Exercise 111.55.6.07DK Prove that the ideal (x2, xy, y2) in C[x, y] cannot be generated
by 2 elements.

Exercise 111.55.7.07DL Let f ∈ C[x, y] be a nonconstant polynomial. Show that for
some α, β ∈ C the C-algebra map

C[t] −→ C[x, y]/(f), t 7−→ αx+ βy

is finite.

Exercise 111.55.8.07DM Show that given finitely many points p1, . . . , pn ∈ C2 the scheme
A2

C \ {p1, . . . , pn} is a union of two affine opens.

Exercise 111.55.9.07DN Show that there exists a surjective morphism of schemes A1
C →

P1
C. (Surjective just means surjective on underlying sets of points.)

Exercise 111.55.10.07DP Let k be an algebraically closed field. Let A ⊂ B be an
extension of domains which are both finite type k-algebras. Prove that the image
of Spec(B) → Spec(A) contains a nonempty open subset of Spec(A) using the
following steps:

(1) Prove it if A→ B is also finite.
(2) Prove it in case the fraction field of B is a finite extension of the fraction

field of A.
(3) Reduce the statement to the previous case.

111.56. Schemes, Final Exam, Fall 2013

09TV These were the questions in the final exam of a course on Commutative Algebra,
in the Fall of 2013 at Columbia University.

Exercise 111.56.1 (Definitions).09TW Provide definitions of the italicized concepts.
(1) a radical ideal of a ring,
(2) a finite type ring homomorphism,
(3) a differential a la Weil,
(4) a scheme.

Exercise 111.56.2 (Results).09TX State something formally equivalent to the fact dis-
cussed in the course.

(1) result on hilbert polynomials of graded modules.
(2) dimension of a Noetherian local ring (R,m) and

⊕
n≥0 m

n/mn+1.
(3) Riemann-Roch.
(4) Clifford’s theorem.
(5) Chevalley’s theorem.

Exercise 111.56.3.09TY Let A → B be a ring map. Let S ⊂ A be a multiplicative
subset. Assume that A → B is of finite type and S−1A → S−1B is surjective.
Show that there exists an f ∈ S such that Af → Bf is surjective.

Exercise 111.56.4.09TZ Give an example of an injective local homomorphism A→ B of
local rings, such that Spec(B)→ Spec(A) is not surjective.
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Situation 111.56.5 (Notation plane curve).09U0 Let k be an algebraically closed field.
Let F (X0, X1, X2) ∈ k[X0, X1, X2] be an irreducible polynomial homogeneous of
degree d. We let

D = V (F ) ⊂ P2

be the projective plane curve given by the vanishing of F . Set x = X1/X0 and y =
X2/X0 and f(x, y) = X−d

0 F (X0, X1, X2) = F (1, x, y). We denote K the fraction
field of the domain k[x, y]/(f). We let C be the abstract curve corresponding to
K. Recall (from the lectures) that there is a surjective map C → D which is
bijective over the nonsingular locus of D and an isomorphism if D is nonsingular.
Set fx = ∂f/∂x and fy = ∂f/∂y. Finally, we denote ω = dx/fy = −dy/fx the
element of ΩK/k discussed in the lectures. Denote KC the divisor of zeros and poles
of ω.

Exercise 111.56.6.09U1 In Situation 111.56.5 assume d ≥ 3 and that the curve D has
exactly one singular point, namely P = (1 : 0 : 0). Assume further that we have
the expansion

f(x, y) = xy + h.o.t

around P = (0, 0). Then C has two points v and w lying over P characterized by
v(x) = 1, v(y) > 1 and w(x) > 1, w(y) = 1

(1) Show that the element ω = dx/fy = −dy/fx of ΩK/k has a first order
pole at both v and w. (The behaviour of ω at nonsingular points is as
discussed in the lectures.)

(2) In the lectures we have shown that ω vanishes to order d−3 at the divisor
X0 = 0 pulled back to C under the map C → D. Combined with the
information of (1) what is the degree of the divisor of zeros and poles of
ω on C?

(3) What is the genus of the curve C?

Exercise 111.56.7.09U2 In Situation 111.56.5 assume d = 5 and that the curve C = D
is nonsingular. In the lectures we have shown that the genus of C is 6 and that the
linear system KC is given by

L(KC) = {hω | h ∈ k[x, y], deg(h) ≤ 2}
where deg indicates total degree5. Let P1, P2, P3, P4, P5 ∈ D be pairwise distinct
points lying in the affine open X0 ̸= 0. We denote

∑
Pi = P1 + P2 + P3 + P4 + P5

the corresponding divisor of C.
(1) Describe L(KC −

∑
Pi) in terms of polynomials.

(2) What are the possibilities for l(
∑
Pi)?

Exercise 111.56.8.09U3 Write down an F as in Situation 111.56.5 with d = 100 such
that the genus of C is 0.

Exercise 111.56.9.09U4 Let k be an algebraically closed field. Let K/k be finitely
generated field extension of transcendence degree 1. Let C be the abstract curve
corresponding to K. Let V ⊂ K be a grd and let Φ : C → Pr be the corresponding
morphism. Show that the image of C is contained in a quadric6 if V is a complete

5We get ≤ 2 because d− 3 = 5− 3 = 2.
6A quadric is a degree 2 hypersurface, i.e., the zero set in Pr of a degree 2 homogeneous

polynomial.
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linear system and d is large enough relative to the genus of C. (Extra credit: good
bound on the degree needed.)

Exercise 111.56.10.09U5 Notation as in Situation 111.56.5. Let U ⊂ P2
k be the open

subscheme whose complement is D. Describe the k-algebra A = OP2
k
(U). Give an

upper bound for the number of generators of A as a k-algebra.

111.57. Schemes, Final Exam, Spring 2014

0AAL These were the questions in the final exam of a course on Schemes, in the Spring
of 2014 at Columbia University.

Exercise 111.57.1 (Definitions).0AAM Let (X,OX) be a scheme. Provide definitions of
the italicized concepts.

(1) the local ring of X at a point x,
(2) a quasi-coherent sheaf of OX -modules,
(3) a coherent sheaf of OX -modules (please assume X is locally Noetherian,
(4) an affine open of X,
(5) a finite morphism of schemes X → Y .

Exercise 111.57.2 (Theorems).0AAN Precisely state a nontrivial fact discussed in the
lectures related to each item.

(1) on birational invariance of pluri-genera of varieties,
(2) being an affine morphism is a local property,
(3) the topology of a scheme theoretic fibre of a morphism, and
(4) valuative criterion of properness.

Exercise 111.57.3.0AAP Let X = A2
C where C is the field of complex numbers. A line

will mean a closed subscheme of X defined by one linear equation ax+by+c = 0 for
some a, b, c ∈ C with (a, b) ̸= (0, 0). A curve will mean an irreducible (so nonempty)
closed subscheme C ⊂ X of dimension 1. A quadric will mean a curve defined by
one quadratic equation ax2 + bxy+ cy2 +dx+ey+f = 0 for some a, b, c, d, e, f ∈ C
and (a, b, c) ̸= (0, 0, 0).

(1) Find a curve C such that every line has nonempty intersection with C.
(2) Find a curve C such that every line and every quadric has nonempty

intersection with C.
(3) Show that for every curve C there exists another curve such that C∩C ′ =
∅.

Exercise 111.57.4.0AAQ Let k be a field. Let b : X → A2
k be the blow up of the affine

plane in the origin. In other words, if A2
k = Spec(k[x, y]), then X = Proj(

⊕
n≥0 m

n)
where m = (x, y) ⊂ k[x, y]. Prove the following statements

(1) the scheme theoretic fibre E of b over the origin is isomorphic to P1
k,

(2) E is an effective Cartier divisor on X,
(3) the restriction of OX(−E) to E is a line bundle of degree 1.

(Recall that OX(−E) is the ideal sheaf of E in X.)

Exercise 111.57.5.0AAR Let k be a field. Let X be a projective variety over k. Show there
exists an affine variety U over k and a surjective morphism of varieties U → X.
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Exercise 111.57.6.0AAS Let k be a field of characteristic p > 0 different from 2, 3.
Consider the closed subscheme X of Pn

k defined by∑
i=0,...,n

Xi = 0,
∑

i=0,...,n
X2
i = 0,

∑
i=0,...,n

X3
i = 0

For which pairs (n, p) is this variety singular?

111.58. Commutative Algebra, Final Exam, Fall 2016

0D5F These were the questions in the final exam of a course on Commutative Algebra,
in the Fall of 2016 at Columbia University.

Exercise 111.58.1 (Definitions).0D5G Let R be a ring. Provide definitions of the italicized
concepts.

(1) the local ring of R at a prime p,
(2) a finite R-module,
(3) a finitely presented R-module,
(4) R is regular,
(5) R is catenary,
(6) R is Cohen-Macaulay.

Exercise 111.58.2 (Theorems).0D5H Precisely state a nontrivial fact discussed in the
lectures related to each item.

(1) regular rings,
(2) associated primes of Cohen-Macaulay modules,
(3) dimension of a finite type domain over a field, and
(4) Chevalley’s theorem.

Exercise 111.58.3.0D5I Let A→ B be a ring map such that
(1) A is local with maximal ideal m,
(2) A→ B is a finite7 ring map,
(3) A→ B is injective (we think of A as a subring of B).

Show that there is a prime ideal q ⊂ B with m = A ∩ q.

Exercise 111.58.4.0D5J Let k be a field. Let R = k[x, y, z, w]. Consider the ideal
I = (xy, xz, xw). What are the irreducible components of V (I) ⊂ Spec(R) and
what are their dimensions?

Exercise 111.58.5.0D5K Let k be a field. Let A = k[x, x−1] and B = k[y]. Show that
any k-algebra map φ : A→ B maps x to a constant.

Exercise 111.58.6.0D5L Consider the ring R = Z[x, y]/(xy−7). Prove that R is regular.

Given a Noetherian local ring (R,m, κ) for n ≥ 0 we let φR(n) = dimκ(mn/mn+1).

Exercise 111.58.7.0D5M Does there exist a Noetherian local ring R with φR(n) = n+ 1
for all n ≥ 0?

Exercise 111.58.8.0D5N Let R be a Noetherian local ring. Suppose that φR(0) = 1,
φR(1) = 3, φR(2) = 5. Show that φR(3) ≤ 7.

7Recall that this means B is finite as an A-module.
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111.59. Schemes, Final Exam, Spring 2017

0DSZ These were the questions in the final exam of a course on schemes, in the Spring of
2017 at Columbia University.

Exercise 111.59.1 (Definitions).0DT0 Let f : X → Y be a morphism of schemes. Provide
brief definitions of the italicized concepts.

(1) the scheme theoretic fibre of f at y ∈ Y ,
(2) f is a finite morphism,
(3) a quasi-coherent OX -module,
(4) X is variety,
(5) f is a smooth morphism,
(6) f is a proper morphism.

Exercise 111.59.2 (Theorems).0DT1 Precisely but briefly state a nontrivial fact discussed
in the lectures related to each item.

(1) pushforward of quasi-coherent sheaves,
(2) cohomology of coherent sheaves on projective varieties,
(3) Serre duality for a projective scheme over a field, and
(4) Riemann-Hurwitz.

Exercise 111.59.3.0DT2 Let k be an algebraically closed field. Let ℓ > 100 be a prime
number different from the characteristic of k. Let X be the nonsingular projective
model of the affine curve given by the equation

yℓ = x(x− 1)3

in A2
k. Answer the following questions:
(1) What is the genus of X?
(2) Give an upper bound for the gonality8 of X.

Exercise 111.59.4.0DT3 Let k be an algebraically closed field. Let X be a reduced, pro-
jective scheme over k all of whose irreducible components have the same dimension
1. Let ωX/k be the relative dualizing module. Show that if dimkH

1(X,ωX/k) > 1,
then X is disconnected.

Exercise 111.59.5.0DT4 Give an example of a scheme X and a nontrivial invertible
OX -module L such that both H0(X,L) and H0(X,L⊗−1) are nonzero.

Exercise 111.59.6.0DT5 Let k be an algebraically closed field. Let g ≥ 3. Let X and
X ′ be smooth projective curves over k of genus g and g + 1. Let Y ⊂ X ×X ′ be a
curve such that the projections Y → X and Y → X ′ are nonconstant. Prove that
the nonsingular projective model of Y has genus ≥ 2g + 1.

Exercise 111.59.7.0DT6 Let k be a finite field. Let g > 1. Sketch a proof of the following:
there are only a finite number of isomorphism classes of smooth projective curves
over k of genus g. (You will get credit for even just trying to answer this.)

111.60. Commutative Algebra, Final Exam, Fall 2017

0EEJ These were the questions in the final exam of a course on commutative algebra, in
the Fall of 2017 at Columbia University.

8The gonality is the smallest degree of a nonconstant morphism from X to P1
k.
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Exercise 111.60.1 (Definitions).0EEK Provide brief definitions of the italicized concepts.
(1) the left adjoint of a functor F : A → B,
(2) the transcendence degree of an extension L/K of fields,
(3) a regular function on a classical affine variety X ⊂ kn,
(4) a sheaf on a topological space,
(5) a local ring, and
(6) a morphism of schemes f : X → Y being affine.

Exercise 111.60.2 (Theorems).0EEL Precisely but briefly state a nontrivial fact discussed
in the lectures related to each item (if there is more than one then just pick one of
them).

(1) Yoneda lemma,
(2) Mayer-Vietoris,
(3) dimension and cohomology,
(4) Hilbert polynomial, and
(5) duality for projective space.

Exercise 111.60.3.0EEM Let k be an algebraically closed field. Consider the closed
subset X of k5 with Zariski topology and coordinates x1, x2, x3, x4, x5 given by the
equations

x2
1 − x4 = 0, x5

2 − x5 = 0, x2
3 + x3 + x4 + x5 = 0

What is the dimension of X and why?

Exercise 111.60.4.0EEN Let k be a field. Let X = P1
k be the projective space of

dimension 1 over k. Let E be a finite locally free OX -module. For d ∈ Z denote
E(d) = E ⊗OX

OX(d) the dth Serre twist of E and hi(X, E(d)) = dimkH
i(X, E(d)).

(1) Why is there no E with h0(X, E) = 5 and h0(X, E(1)) = 4?
(2) Why is there no E with h1(X, E(1)) = 5 and h1(X, E) = 4?
(3) For which a ∈ Z can there exist a vector bundle E on X with

h0(X, E) = 1 h1(X, E) = 1
h0(X, E(1)) = 2 h1(X, E(1)) = 0
h0(X, E(2)) = 4 h1(X, E(2)) = a

Partial answers are welcomed and encouraged.

Exercise 111.60.5.0EEP Let X be a topological space which is the union X = Y ∪ Z
of two closed subsets Y and Z whose intersection is denoted W = Y ∩ Z. Denote
i : Y → X, j : Z → X, and k : W → X the inclusion maps.

(1) Show that there is a short exact sequence of sheaves
0→ ZX → i∗(ZY )⊕ j∗(ZZ)→ k∗(ZW )→ 0

where ZX denotes the constant sheaf with value Z on X, etc.
(2) What can you conclude about the relationship between the cohomology

groups of X, Y , Z, W with Z-coefficients?

Exercise 111.60.6.0EEQ Let k be a field. Let A = k[x1, x2, x3, . . .] be the polynomial
ring in infinitely many variables. Denote m the maximal ideal of A generated by
all the variables. Let X = Spec(A) and U = X \ {m}.

(1) Show H1(U,OU ) = 0. Hint: Čech cohomology computation.
(2) What is your guess for Hi(U,OU ) for i ≥ 1?
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Exercise 111.60.7.0EER Let A be a local ring. Let a ∈ A be a nonzerodivisor. Let
I, J ⊂ A be ideals such that IJ = (a). Show that the ideal I is principal, i.e.,
generated by one element (which will turn out to be a nonzerodivisor).

111.61. Schemes, Final Exam, Spring 2018

0ELF These were the questions in the final exam of a course on schemes, in the Spring of
2018 at Columbia University.

Exercise 111.61.1 (Definitions).0ELG Provide brief definitions of the italicized concepts.
Let k be an algebraically closed field. Let X be a projective curve over k.

(1) a smooth algebra over k,
(2) the degree of an invertible OX -module on X,
(3) the genus of X,
(4) the Weil divisor class group of X,
(5) X is hyperelliptic, and
(6) the intersection number of two curves on a smooth projective surface over

k.

Exercise 111.61.2 (Theorems).0ELH Precisely but briefly state a nontrivial fact discussed
in the lectures related to each item (if there is more than one then just pick one of
them).

(1) Riemann-Hurwitz theorem,
(2) Clifford’s theorem,
(3) factorization of maps between smooth projective surfaces,
(4) Hodge index theorem, and
(5) Riemann hypothesis for curves over finite fields.

Exercise 111.61.3.0ELI Let k be an algebraically closed field. Let X ⊂ P3
k be a smooth

curve of degree d and genus ≥ 2. Assume X is not contained in a plane and that
there is a line ℓ in P3

k meeting X in d− 2 points. Show that X is hyperelliptic.

Exercise 111.61.4.0ELJ Let k be an algebraically closed field. Let X be a projective
curve with pairwise distinct singular points p1, . . . , pn. Explain why the genus of
the normalization of X is at most −n+ dimkH

1(X,OX).

Exercise 111.61.5.0ELK Let k be a field. Let X = Spec(k[x, y]) be affine 2 space. Let
I = (x3, x2y, xy2, y3) ⊂ k[x, y].

Let Y ⊂ X be the closed subscheme corresponding to I. Let b : X ′ → X be the
blowing up of the ideal (x, y), i.e., the blow up of affine space at the origin.

(1) Show that the scheme theoretic inverse image b−1Y ⊂ X ′ is an effective
Cartier divisor.

(2) Given an example of an ideal J ⊂ k[x, y] with I ⊂ J ⊂ (x, y) such that
if Z ⊂ X is the closed subscheme corresponding to J , then the scheme
theoretic inverse image b−1Z is not an effective Cartier divisor.

Exercise 111.61.6.0ELL Let k be an algebraically closed field. Consider the following
types of surfaces

(1) S = C1 × C2 where C1 and C2 are smooth projective curves,
(2) S = C1×C2 where C1 and C2 are smooth projective curves and the genus

of C1 is > 0,

https://stacks.math.columbia.edu/tag/0EER
https://stacks.math.columbia.edu/tag/0ELG
https://stacks.math.columbia.edu/tag/0ELH
https://stacks.math.columbia.edu/tag/0ELI
https://stacks.math.columbia.edu/tag/0ELJ
https://stacks.math.columbia.edu/tag/0ELK
https://stacks.math.columbia.edu/tag/0ELL
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(3) S ⊂ P3
k is a hypersurface of degree 4, and

(4) S ⊂ P3
k is a smooth hypersurface of degree 4.

For each type briefly indicate why or why not the class of surfaces of this type
contains rational surfaces.
Exercise 111.61.7.0ELM Let k be an algebraically closed field. Let S ⊂ P3

k be a smooth
hypersurface of degree d. Assume that S contains a line ℓ. What is the self square
of ℓ viewed as a divisor on S?

111.62. Commutative Algebra, Final Exam, Fall 2019

0FWJ These were the questions in the final exam of a course on commutative algebra, in
the Fall of 2019 at Columbia University.
Exercise 111.62.1 (Definitions).0FWK Provide brief definitions of the italicized concepts.

(1) a constructible subset of a Noetherian topological space,
(2) the localization of an R-module M at a prime p,
(3) the length of a module over a Noetherian local ring (A,m, κ),
(4) a projective module over a ring R, and
(5) a Cohen-Macaulay module over a Noetherian local ring (A,m, κ).

Exercise 111.62.2 (Theorems).0FWL Precisely but briefly state a nontrivial fact discussed
in the lectures related to each item (if there is more than one then just pick one of
them).

(1) images of constructible sets,
(2) Hilbert Nullstellensatz,
(3) dimension of finite type algebras over fields,
(4) Noether normalization, and
(5) regular local rings.

For a ring R and an ideal I ⊂ R recall that V (I) denotes the set of p ∈ Spec(R)
with I ⊂ p.
Exercise 111.62.3 (Making primes).0FWM Construct infinitely many distinct prime ideals
p ⊂ C[x, y] such that V (p) contains (x, y) and (x− 1, y − 1).
Exercise 111.62.4 (No prime).0FWN Let R = C[x, y, z]/(xy). Argue briefly there does not
exist a prime ideal p ⊂ R such that V (p) contains (x, y−1, z−5) and (x−1, y, z−7).
Exercise 111.62.5 (Frobenius).0FWP Let p be a prime number (you may assume p = 2
to simplify the formulas). Let R be a ring such that p = 0 in R.

(1) Show that the map F : R→ R, x 7→ xp is a ring homomorphism.
(2) Show that Spec(F ) : Spec(R)→ Spec(R) is the identity map.

Recall that a specialization x⇝ y of points of a topological space simply means y
is in the closure of x. We say x ⇝ y is an immediate specialization if there does
not exist a z different from x and y such that x⇝ z and z ⇝ y.
Exercise 111.62.6 (Dimension).0FWQ Suppose we have a sober topological space X con-
taining 5 distinct points x, y, z, u, v having the following specializations

x

��

// u voo

��
y // z

https://stacks.math.columbia.edu/tag/0ELM
https://stacks.math.columbia.edu/tag/0FWK
https://stacks.math.columbia.edu/tag/0FWL
https://stacks.math.columbia.edu/tag/0FWM
https://stacks.math.columbia.edu/tag/0FWN
https://stacks.math.columbia.edu/tag/0FWP
https://stacks.math.columbia.edu/tag/0FWQ
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What is the minimal dimension such an X can have? If X is the spectrum of a
finite type algebra over a field and x⇝ u is an immediate specialization, what can
you say about the specialization v ⇝ z?

Exercise 111.62.7 (Tor computation).0FWR Let R = C[x, y, z]. Let M = R/(x, z) and
N = R/(y, z). For which i ∈ Z is TorRi (M,N) nonzero?

Exercise 111.62.8.0FWS Let A → B be a flat local homomorphism of local Noetherian
rings. Show that if A has depth k, then B has depth at least k.

111.63. Algebraic Geometry, Final Exam, Spring 2020

0G12 These were the questions in the final exam of a course on Algebraic Geometry, in
the Spring of 2020 at Columbia University.

Exercise 111.63.1 (Definitions).0G13 Provide brief definitions of the italicized concepts.
(1) a scheme,
(2) a morphism of schemes,
(3) a quasi-coherent module on a scheme,
(4) a variety over a field k,
(5) a curve over a field k,
(6) a finite morphism of schemes,
(7) the cohomology of a sheaf of abelian groups F over a topological space

X,
(8) a dualizing sheaf on a scheme X of dimension d proper over a field k, and
(9) a rational map from a variety X to a variety Y .

Exercise 111.63.2 (Theorems).0G14 Precisely but briefly state a nontrivial fact discussed
in the lectures related to each item (if there is more than one then just pick one of
them).

(1) cohomology of abelian sheaves on a Noetherian topological space X of
dimension d,

(2) sheaf of differentials Ω1
X/k of a smooth variety over a field k,

(3) dualizing sheaf ωX of a smooth projective variety X over the field k,
(4) a smooth proper genus 0 curve over an algebraically closed field k, and
(5) the genus of a plane curve of degree d.

Exercise 111.63.3.0G15 Let k be a field. Let X be a scheme over k. Assume X = X1∪X2
is an open covering with X1, X2 both isomorphic to P1

k and X1∩X2 isomorphic to
A1
k. (Such a scheme exists, for example you can take P1

k with ∞ doubled.) Show
that dimkH

1(X,OX) is infinite.

Exercise 111.63.4.0G16 Let k be an algebraically closed field. Let Y be a smooth
projective curve of genus 10. Find a good lower bound for the genus of a smooth
projective curve X such that there exists a nonconstant morphism f : X → Y
which is not an isomorphism.

Exercise 111.63.5.0G17 Let k be an algebraically closed field of characteristic 0. Let

X : T d0 + T d1 − T d2 = 0 ⊂ P2
k

be the Fermat curve of degree d ≥ 3. Consider the closed points p = [1 : 0 : 1] and
q = [0 : 1 : 1] on X. Set D = [p]− [q].

https://stacks.math.columbia.edu/tag/0FWR
https://stacks.math.columbia.edu/tag/0FWS
https://stacks.math.columbia.edu/tag/0G13
https://stacks.math.columbia.edu/tag/0G14
https://stacks.math.columbia.edu/tag/0G15
https://stacks.math.columbia.edu/tag/0G16
https://stacks.math.columbia.edu/tag/0G17
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(1) Show that D is nontrivial in the Weil divisor class group.
(2) Show that dD is trivial in the Weil divisor class group. (Hint: try to show

that both d[p] and d[q] are the intersection of X with a line in the plane.)
Exercise 111.63.6.0G18 Let k be an algebraically closed field. Consider the 2-uple
embedding

φ : P2 −→ P5

In terms of the material/notation in the lectures this is the morphism
φ = φOP2 (2) : P2 −→ P(Γ(P2,OP2(2)))

In terms of homogeneous coordinates it is given by
[a0 : a1 : a2] 7−→ [a2

0 : a0a1 : a0a2 : a2
1 : a1a2 : a2

2]
It is a closed immersion (please just use this). Let I ⊂ k[T0, . . . , T5] be the ho-
mogeneous ideal of φ(P2), i.e., the elements of the homogeneous part Id are the
homogeneous polynomials F (T0, . . . , T5) of degree d which restrict to zero on the
closed subscheme φ(P2). Compute dimk Id as a function of d.
Exercise 111.63.7.0G19 Let k be an algebraically closed field. Let X be a proper scheme
of dimension d over k with dualizing module ωX . You are given the following
information:

(1) ExtiX(F , ωX)×Hd−i(X,F)→ Hd(X,ωX) t−→ k is nondegenerate for all i
and for all coherent OX -modules F , and

(2) ωX is finite locally free of some rank r.
Show that r = 1. (Hint: see what happens if you take F a suitable module
supported at a closed point.)

111.64. Commutative Algebra, Final Exam, Fall 2021

0GRS These were the questions in the final exam of a course on commutative algebra, in
the Fall of 2021 at Columbia University.
Exercise 111.64.1 (Definitions).0GRT Provide brief definitions of the italicized concepts.

(1) a multiplicative subset of a ring A,
(2) an Artinian ring A,
(3) the spectrum of a ring A as a topological space,
(4) a flat ring map A→ B,
(5) the height of a prime ideal p in A, and
(6) the functors TorAi (−,−) over a ring A.

Exercise 111.64.2 (Theorems).0GRU Precisely but briefly state a nontrivial fact discussed
in the lectures related to each item (if there is more than one then just pick one of
them).

(1) Artinian rings,
(2) flatness and prime ideals,
(3) lengths of A/mn for (A,m) Noetherian local,
(4) the dimension formula for universally catenary Noetherian rings,
(5) completion of a Noetherian local ring, and
(6) Matlis duality for Artinian local rings.

Exercise 111.64.3 (Units).0GRV What is the structure of the group of units of Z[x, 1/x]
as an abelian group? No explanation necessary.

https://stacks.math.columbia.edu/tag/0G18
https://stacks.math.columbia.edu/tag/0G19
https://stacks.math.columbia.edu/tag/0GRT
https://stacks.math.columbia.edu/tag/0GRU
https://stacks.math.columbia.edu/tag/0GRV
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Exercise 111.64.4 (Ideals).0GRW Let A = F2[x, y]/(x2, xy, y2) and denote x and y the
images of x and y in A. List the ideals of A. No explanation necessary.

Exercise 111.64.5 (Tor and Ext).0GRX Let (A,m, κ) be a Noetherian local ring. Set
φ(n) = dimκm

n/mn+1.
(1) Show that TorA1 (A/mn, κ) has dimension φ(n) as a κ-vector space.
(2) Show that Ext1

A(A/mn, κ) has dimension φ(n) as a κ-vector space.

Exercise 111.64.6 (Two vectors).0GRY LetA = Z[a1, a2, a3, b1, b2, b3]. Set a = (a1, a2, a3)
and b = (b1, b2, b3) in A⊕3. Consider the set

Z = {p ∈ Spec(A) | a, b map to linearly dependent vectors of κ(p)⊕3}
(1) Prove the Z is a closed subset of Spec(A).
(2) What is the dimension dim(Z) of Z?
(3) What would happen to dim(Z) if we replaced Z by a field?

Exercise 111.64.7 (Injectives).0GRZ Let (A,m, κ) be an Artinian local ring. Assume A
is injective as an A-module. Show that HomA(κ,A) has dimension 1 has a κ-vector
space.

111.65. Algebraic Geometry, Final Exam, Spring 2022

0GY8 These were the questions in the final exam of a course on Algebraic Geometry, in
the Spring of 2022 at Columbia University.

Exercise 111.65.1 (Definitions).0GY9 Provide brief definitions of the italicized concepts.
(1) a scheme,
(2) a quasi-coherent module on a scheme X,
(3) a flat morphism of schemes X → Y ,
(4) a finite morphism of schemes X → Y ,
(5) a group scheme G over a base scheme S,
(6) a family of varieties over a base scheme S,
(7) the degree of a closed point x on a variety X over the field k,
(8) the usual logarithmic height of a point p = (a0 : . . . : an) in Pn(Q), and
(9) a Ci field.

Exercise 111.65.2 (Theorems).0GYA Precisely but briefly state a nontrivial fact discussed
in the lectures related to each item (if there is more than one then just pick one of
them).

(1) morphisms from a scheme X to the affine scheme Spec(A),
(2) cohomology of a quasi-coherent module F on an affine scheme X,
(3) the Picard group of P1

k where k is a field,
(4) the dimensions of fibres of a flat proper morphism X → S for S Noether-

ian,
(5) Gm-equivariant modules on a scheme S, and
(6) Bezout’s theorem on intersections (restrict to a special case if you like).

Exercise 111.65.3 (Cubic hypersurfaces).0GYB Let F ∈ C[T0, . . . , Tn] be homogeneous
of degree 3. Given 3 vectors x, y, z ∈ Cn+1 consider the condition

(∗) F (λx+ µy + νz) = 0 in C[λ, µ, ν]
(1) What is the dimension of the space of all choices of x, y, z?

https://stacks.math.columbia.edu/tag/0GRW
https://stacks.math.columbia.edu/tag/0GRX
https://stacks.math.columbia.edu/tag/0GRY
https://stacks.math.columbia.edu/tag/0GRZ
https://stacks.math.columbia.edu/tag/0GY9
https://stacks.math.columbia.edu/tag/0GYA
https://stacks.math.columbia.edu/tag/0GYB
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(2) How many equations on the coordinates of x, y, and z is condition (*)?
(3) What is the expected dimension of the space of all triples x, y, z such that

(*) is true?
(4) What is the dimension of the space of all triples such that x, y, z are

linearly dependent?
(5) Conclude that on a hypersurface of degree 3 in Pn we expect to find a

linear subspace of dimension 2 provided n ≥ a where it is up to you to
find a.

Exercise 111.65.4 (Heights).0GYC Let K be a field. Let hn : Pn(K) → R, n ≥ 0 be a
collection of functions satisfying the 2 axioms we discussed in the lectures. Let X
be a projective variety over K. Let L be an invertible OX -module and recall that
we have constructed in the lectures an associated height function hL : X(K)→ R.
Let α : X → X be an automorphism of X over K.

(1) Prove that P 7→ hL(α(P )) differs from the function hα∗L by a bounded
amount. (Hint: recall that if there is a morphism φ : X → Pn with
L = φ∗OPn(1), then by construction hL(P ) = hn(φ(P )) and play around
with that. In general write L as a difference of two of these.)

(2) Assume that hL(P ) − hL(α(P )) is unbounded on X(K). Show that hN
with N = L ⊗ α∗L⊗−1 is unbounded on X(K).

(3) Assume X is an elliptic curve and that L is a symmetric ample invertible
module on X such that hL is unbounded on X(K). Show that there
exists an invertible module N of degree 0 such that hN is unbounded.
(Hints: Recall that X is an abelian variety of dimension 1. Thus hL is
quadratic up to a constant by results in the lectures. Choose a suitable
point P0 ∈ X(K). Let α : X → X be translation by P0. Consider
P 7→ hL(P )− hL(P + P0). Apply the results you proved above.)

Exercise 111.65.5 (Monomorphisms).0GYD Let f : X → Y be a monomorphism in
the category of schemes: for any pair of morphisms a, b : T → X of schemes if
f ◦ a = f ◦ b, then a = b. Show that f is injective on points. Does you argument
say anything else?

Exercise 111.65.6 (Fixed points).0GYE Let k be an algebraically closed field.
(1) If G = Gm,k show that if G acts on a projective variety X over k, then

the action has a fixed point, i.e., prove there exists a point x ∈ X(k) such
that a(g, x) = x for all g ∈ G(k).

(2) Same with G = (Gm,k)n equal to the product of n ≥ 1 copies of the
multiplicative group.

(3) Give an example of an action of a connected group scheme G on a smooth
projective variety X which does not have a fixed point.

111.66. Other chapters
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CHAPTER 112

A Guide to the Literature

03B0 112.1. Short introductory articles

03B1
• Barbara Fantechi: Stacks for Everybody [Fan01]
• Dan Edidin: What is a stack? [Edi03]
• Dan Edidin: Notes on the construction of the moduli space of curves

[Edi00]
• Angelo Vistoli: Intersection theory on algebraic stacks and on their moduli

spaces, and especially the appendix. [Vis89]

112.2. Classic references

03B2
• Mumford: Picard groups of moduli problems [Mum65]

Mumford never uses the term “stack” here but the concept is im-
plicit in the paper; he computes the picard group of the moduli
stack of elliptic curves.

• Deligne, Mumford: The irreducibility of the space of curves of given genus
[DM69]

This influential paper introduces “algebraic stacks” in the sense
which are now universally called Deligne-Mumford stacks (stacks
with representable diagonal which admit étale presentations by
schemes). There are many foundational results without proof.
The paper uses stacks to give two proofs of the irreducibility of
the moduli space of curves of genus g.

• Artin: Versal deformations and algebraic stacks [Art74]
This paper introduces “algebraic stacks” which generalize Deligne-
Mumford stacks and are now commonly referred to as Artin
stacks, stacks with representable diagonal which admit smooth
presentations by schemes. This paper gives deformation-theoretic
criterion known as Artin’s criterion which allows one to prove
that a given moduli stack is an Artin stack without explicitly
exhibiting a presentation.

112.3. Books and online notes

03B3
• Laumon, Moret-Bailly: Champs Algébriques [LMB00]

This book is currently the most exhaustive reference on stacks
containing many foundational results. It assumes the reader is

7418
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familiar with algebraic spaces and frequently references Knut-
son’s book [Knu71]. There is an error in chapter 12 concerning
the functoriality of the lisse-étale site of an algebraic stack. One
doesn’t need to worry about this as the error has been patched
by Martin Olsson (see [Ols07b]) and the results in the remaining
chapters (after perhaps slight modification) are correct.

• The Stacks Project Authors: Stacks Project [Aut].
You are reading it!

• Anton Geraschenko: Lecture notes for Martin Olsson’s class on stacks
[Ols07a]

This course systematically develops the theory of algebraic spaces
before introducing algebraic stacks (first defined in Lecture 27!).
In addition to basic properties, the course covers the equiva-
lence between being Deligne-Mumford and having unramified
diagonal, the lisse-étale site on an Artin stack, the theory of
quasi-coherent sheaves, the Keel-Mori theorem, cohomological
descent, and gerbes (and their relation to the Brauer group).
There are also some exercises.

• Behrend, Conrad, Edidin, Fantechi, Fulton, Göttsche, and Kresch: Alge-
braic stacks, online notes for a book being currently written [BCE+07]

The aim of this book is to give a friendly introduction to stacks
without assuming a sophisticated background with a focus on
examples and applications. Unlike [LMB00], it is not assumed
that the reader has digested the theory of algebraic spaces. In-
stead, Deligne-Mumford stacks are introduced with algebraic
spaces being a special case with part of the goal being to de-
velop enough theory to prove the assertions in [DM69]. The
general theory of Artin stacks is to be developed in the second
part. Only a fraction of the book is now available on Kresch’s
website.

• Olsson, Martin: Algebraic spaces and stacks, [Ols16]
Highly recommended introduction to algebraic spaces and alge-
braic stacks starting at the level of somebody who has mastered
Hartshorne’s book on algebraic geometry.

112.4. Related references on foundations of stacks

03B4
• Vistoli: Notes on Grothendieck topologies, fibered categories and descent

theory [Vis05]
Contains useful facts on fibered categories, stacks and descent
theory in the fpqc topology as well as rigorous proofs.

• Knutson: Algebraic Spaces [Knu71]
This book, which evolved from his PhD thesis under Michael
Artin, contains the foundations of the theory of algebraic spaces.
The book [LMB00] frequently references this text. See also
Artin’s papers on algebraic spaces: [Art69a], [Art69b], [Art69c],
[Art70], [Art71b], [Art71a], [Art73], and [Art74]
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• Grothendieck et al, Théorie des Topos et Cohomologie Étale des Schémas
I, II, III also known as SGA4 [AGV71]

Volume 1 contains many general facts on universes, sites and
fibered categories. The word “champ” (French for “stack”) ap-
pears in Deligne’s Exposé XVIII.

• Jean Giraud: Cohomologie non abélienne [Gir65]
The book discusses fibered categories, stacks, torsors and gerbes
over general sites but does not discuss algebraic stacks. For
instance, if G is a sheaf of abelian groups on X, then in the
same way H1(X,G) can be identified with G-torsors, H2(X,G)
can be identified with an appropriately defined set of G-gerbes.
When G is not abelian, then H2(X,G) is defined as the set of
G-gerbes.

• Kelly and Street: Review of the elements of 2-categories [KS74]
The category of stacks form a 2-category although a simple type
of 2-category where are 2-morphisms are invertible. This is a
reference on general 2-categories. I have never used this so I
cannot say how useful it is. Also note that [Aut] contains some
basics on 2-categories.

112.5. Papers in the literature

03B6 Below is a list of research papers which contain fundamental results on stacks and
algebraic spaces. The intention of the summaries is to indicate only the results of
the paper which contribute toward stack theory; in many cases these results are
subsidiary to the main goals of the paper. We divide the papers into categories
with some papers falling into multiple categories.

112.5.1. Deformation theory and algebraic stacks.04UW The first three papers by Artin
do not contain anything on stacks but they contain powerful results with the first
two papers being essential for [Art74].

• Artin: Algebraic approximation of structures over complete local rings
[Art69a]

It is proved that under mild hypotheses any effective formal
deformation can be approximated: if F : (Sch/S)→ (Sets) is a
contravariant functor locally of finite presentation with S finite
type over a field or excellent DVR, s ∈ S, and ξ̂ ∈ F (ÔS,s)
is an effective formal deformation, then for any n > 0, there
exists an residually trivial étale neighborhood (S′, s′) → (S, s)
and ξ′ ∈ F (S′) such that ξ′ and ξ̂ agree up to order n (ie. have
the same restriction in F (OS,s/mn)).

• Artin: Algebraization of formal moduli I [Art69b]
It is proved that under mild hypotheses any effective formal
versal deformation is algebraizable. Let F : (Sch/S) → (Sets)
be a contravariant functor locally of finite presentation with S
finite type over a field or excellent DVR, s ∈ S be a locally
closed point, Â be a complete Noetherian local OS-algebra with
residue field k′ a finite extension of k(s), and ξ̂ ∈ F (Â) be an
effective formal versal deformation of an element ξ0 ∈ F (k′).
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Then there is a scheme X finite type over S and a closed point
x ∈ X with residue field k(x) = k′ and an element ξ ∈ F (X)
such that there is an isomorphism ÔX,x ∼= Â identifying the
restrictions of ξ and ξ̂ in each F (Â/mn). The algebraization is
unique if ξ̂ is a universal deformation. Applications are given to
the representability of the Hilbert and Picard schemes.

• Artin: Algebraization of formal moduli. II [Art70]
Vaguely, it is shown that if one can contract a closed subset Y ′ ⊂
X ′ formally locally around Y ′, then exists a global morphism
X ′ → X contracting Y with X an algebraic space.

• Artin: Versal deformations and algebraic stacks [Art74]
This momentous paper builds on his work in [Art69a] and [Art69b].
This paper introduces Artin’s criterion which allows one to prove
algebraicity of a stack by verifying deformation-theoretic prop-
erties. More precisely (but not very precisely), Artin constructs
a presentation of a limit preserving stack X locally around a
point x ∈ X (k) as follows: assuming the stack X satisfies Sch-
lessinger’s criterion([Sch68]), there exists a formal versal defor-
mation ξ̂ ∈ limX (Â/mn) of x. Assuming that formal deforma-
tions are effective (i.e., X (Â)→ limX (Â/mn) is bijective), then
one obtains an effective formal versal deformation ξ ∈ X (Â).
Using results in [Art69b], one produces a finite type scheme U
and an element ξU : U → X which is formally versal at a point
u ∈ U over x. Then if we assume X admits a deformation
and obstruction theory satisfying certain conditions (ie. com-
patibility with étale localization and completion as well as con-
structibility condition), then it is shown in section 4 that formal
versality is an open condition so that after shrinking U , U → X
is smooth. Artin also presents a proof that any stack admitting
an fppf presentation by a scheme admits a smooth presentation
by a scheme so that in particular one can form quotient stacks
by flat, separated, finitely presented group schemes.

• Conrad, de Jong: Approximation of Versal Deformations [CdJ02]
This paper offers an approach to Artin’s algebraization result
by applying Popescu’s powerful result: if A is a Noetherian ring
and B a Noetherian A-algebra, then the map A→ B is a regular
morphism if and only if B is a direct limit of smooth A-algebras.
It is not hard to see that Popescu’s result implies Artin’s ap-
proximation over an arbitrary excellent scheme (the excellence
hypothesis implies that for a local ring A, the map Ah → Â
from the henselization to the completion is regular). The pa-
per uses Popescu’s result to give a “groupoid” generalization
of the main theorem in [Art69b] which is valid over arbitrary
excellent base schemes and for arbitrary points s ∈ S. In par-
ticular, the results in [Art74] hold under an arbitrary excellent
base. They discuss the étale-local uniqueness of the algebraiza-
tion and whether the automorphism group of the object acts
naturally on the henselization of the algebraization.
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• Jason Starr: Artin’s axioms, composition, and moduli spaces [Sta06]
The paper establishes that Artin’s axioms for algebraization are
compatible with the composition of 1-morphisms.

• Martin Olsson: Deformation theory of representable morphism of alge-
braic stacks [Ols06a]

This generalizes standard deformation theory results for mor-
phisms of schemes to representable morphisms of algebraic stacks
in terms of the cotangent complex. These results cannot be
viewed as consequences of Illusie’s general theory as the cotan-
gent complex of a representable morphism X → X is not defined
in terms of cotangent complex of a morphism of ringed topoi
(because the lisse-étale site is not functorial).

112.5.2. Coarse moduli spaces.04UX Papers discussing coarse moduli spaces.
• Keel, Mori: Quotients in Groupoids [KM97]

It had apparently long been “folklore” that separated Deligne-
Mumford stacks admitted coarse moduli spaces. A rigorous (al-
though terse) proof of the following theorem is presented here: if
X is an Artin stack locally of finite type over a Noetherian base
scheme such that the inertia stack IX → X is finite, then there
exists a coarse moduli space ϕ : X → Y with ϕ separated and Y
an algebraic space locally of finite type over S. The hypothesis
that the inertia is finite is precisely the right condition: there
exists a coarse moduli space ϕ : X → Y with ϕ separated if and
only if the inertia is finite.

• Conrad: The Keel-Mori Theorem via Stacks [Con05b]
Keel and Mori’s paper [KM97] is written in the groupoid lan-
guage and some find it challenging to grasp. Brian Conrad
presents a stack-theoretic version of the proof which is quite
transparent although it uses the sophisticated language of stacks.
Conrad also removes the Noetherian hypothesis.

• Rydh: Existence of quotients by finite groups and coarse moduli spaces
[Ryd07a]

Rydh removes the hypothesis from [KM97] and [Con05b] that
X be finitely presented over some base.

• Abramovich, Olsson, Vistoli: Tame stacks in positive characteristic [AOV08]
They define a tame Artin stack as an Artin stack with finite
inertia such that if ϕ : X → Y is the coarse moduli space, ϕ∗ is
exact on quasi-coherent sheaves. They prove that for an Artin
stack with finite inertia, the following are equivalent: X is tame
if and only if the stabilizers of X are linearly reductive if and only
if X is étale locally on the coarse moduli space a quotient of an
affine scheme by a linearly reductive group scheme. For a tame
Artin stack, the coarse moduli space is particularly nice. For
instance, the coarse moduli space commutes with arbitrary base
change while a general coarse moduli space for an Artin stack
with finite inertia will only commute with flat base change.

• Alper: Good moduli spaces for Artin stacks [Alp08]
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For general Artin stacks with infinite affine stabilizer groups
(which are necessarily non-separated), coarse moduli spaces of-
ten do not exist. The simplest example is [A1/Gm]. It is defined
here that a quasi-compact morphism ϕ : X → Y is a good mod-
uli space if OY → ϕ∗OX is an isomorphism and ϕ∗ is exact on
quasi-coherent sheaves. This notion generalizes a tame Artin
stack in [AOV08] as well as encapsulates Mumford’s geometric
invariant theory: if G is a reductive group acting linearly on
X ⊂ Pn, then the morphism from the quotient stack of the
semi-stable locus to the GIT quotient [Xss/G] → X//G is a
good moduli space. The notion of a good moduli space has
many nice geometric properties: (1) ϕ is surjective, universally
closed, and universally submersive, (2) ϕ identifies points in Y
with points in X up to closure equivalence, (3) ϕ is universal
for maps to algebraic spaces, (4) good moduli spaces are sta-
ble under arbitrary base change, and (5) a vector bundle on an
Artin stack descends to the good moduli space if and only if the
representations are trivial at closed points.

112.5.3. Intersection theory.04UY Papers discussing intersection theory on algebraic stacks.
• Vistoli: Intersection theory on algebraic stacks and on their moduli spaces

[Vis89]
This paper develops the foundations for intersection theory with
rational coefficients for Deligne-Mumford stacks. If X is a sep-
arated Deligne-Mumford stack, the chow group CH∗(X ) with
rational coefficients is defined as the free abelian group of inte-
gral closed substacks of dimension k up to rational equivalence.
There is a flat pullback, a proper push-forward and a gener-
alized Gysin homomorphism for regular local embeddings. If
ϕ : X → Y is a moduli space (ie. a proper morphism with is
bijective on geometric points), there is an induced push-forward
CH∗(X )→ CHk(Y ) which is an isomorphism.

• Edidin, Graham: Equivariant Intersection Theory [EG98]
The purpose of this article is to develop intersection theory with
integral coefficients for a quotient stack [X/G] of an action of an
algebraic group G on an algebraic space X or, in other words,
to develop a G-equivariant intersection theory of X. Equivari-
ant chow groups defined using only invariant cycles does not
produce a theory with nice properties. Instead, generalizing To-
taro’s definition in the case of BG and motivated by the fact that
if V → X is a vector bundle then CHi(X) ∼= CHi(V ) naturally,
the authors define CHG

i (X) as follows: Let dim(X) = n and
dim(G) = g. For each i, choose a l-dimensional G-representation
V where G acts freely on an open subset U ⊂ V whose comple-
ment as codimension d > n− i. So XG = [X ×U/G] is an alge-
braic space (it can even be chosen to be a scheme). Then they
define CHG

i (X) = CHi+l−g(XG). For the quotient stack, one
defines CHi([X/G]) = CHG

i+g(X) = CHi+l(XG). In particular,
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CHi([X/G]) = 0 for i > dim[X/G] = n− g but can be non-zero
for i≪ 0. For example CHi(BGm) = Z for i ≤ 0. They estab-
lish that these equivariant Chow groups enjoy the same functo-
rial properties as ordinary Chow groups. Furthermore, they es-
tablish that if [X/G] ∼= [Y/H] that CHi([X/G]) = CHi([Y/H])
so that the definition is independent on how the stack is pre-
sented as a quotient stack.

• Kresch: Cycle Groups for Artin Stacks [Kre99]
Kresch defines Chow groups for arbitrary Artin stacks agreeing
with Edidin and Graham’s definition in [EG98] in the case of
quotient stack. For algebraic stacks with affine stabilizer groups,
the theory satisfies the usual properties.

• Behrend and Fantechi: The intrinsic normal cone [BF97]
Generalizing a construction due to Li and Tian, Behrend and
Fantechi construct a virtual fundamental class for a Deligne-
Mumford stack.

112.5.4. Quotient stacks.04UZ Quotient stacks1 form a very important subclass of Artin
stacks which include almost all moduli stacks studied by algebraic geometers. The
geometry of a quotient stack [X/G] is the G-equivariant geometry of X. It is often
easier to show properties are true for quotient stacks and some results are only
known to be true for quotient stacks. The following papers address: When is an
algebraic stack a global quotient stack? Is an algebraic stack “locally” a quotient
stack?

• Laumon, Moret-Bailly: [LMB00, Chapter 6]
Chapter 6 contains several facts about the local and global struc-
ture of algebraic stacks. It is proved that an algebraic stack X
over S is a quotient stack [Y/G] with Y an algebraic space (resp.
scheme, resp. affine scheme) and G a finite group if and only
if there exists an algebraic space (resp. scheme, resp. affine
scheme) Y ′ and an finite étale morphism Y ′ → X . It is shown
that any Deligne-Mumford stack over S and x : Spec(K) →
X admits an representable, étale and separated morphism ϕ :
[X/G]→ X where G is a finite group acting on an affine scheme
over S such that Spec(K) = [X/G]×X Spec(K). The existence
of presentations with geometrically connected fibers is also dis-
cussed in detail.

• Edidin, Hassett, Kresch, Vistoli: Brauer Groups and Quotient stacks
[EHKV01]

First, they establish some fundamental (although not very dif-
ficult) facts concerning when a given algebraic stack (always
assumed finite type over a Noetherian scheme in this paper) is a
quotient stack. For an algebraic stack X : X is a quotient stack
if and only if there exists a vector bundle V → X such that for
every geometric point, the stabilizer acts faithfully on the fiber

1In the literature, quotient stack often means a stack of the form [X/G] with X an algebraic
space and G a subgroup scheme of GLn rather than an arbitrary flat group scheme.
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if and only if there exists a vector bundle V → X and a lo-
cally closed substack V 0 ⊂ V such that V 0 is representable and
surjects onto X . They establish that an algebraic stack is a quo-
tient stack if there exists finite flat cover by an algebraic space.
Any smooth Deligne-Mumford stack with generically trivial sta-
bilizer is a quotient stack. They show that a Gm-gerbe over
a Noetherian scheme X corresponding to β ∈ H2(X,Gm) is a
quotient stack if and only if β is in the image of the Brauer map
Br(X) → Br′(X). They use this to produce a non-separated
Deligne-Mumford stack that is not a quotient stack.

• Totaro: The resolution property for schemes and stacks [Tot04]
A stack has the resolution property if every coherent sheaf is the
quotient of a vector bundle. The first main theorem is that if
X is a normal Noetherian algebraic stack with affine stabilizer
groups at closed points, then the following are equivalent: (1) X
has the resolution property and (2) X = [Y/GLn] with Y quasi-
affine. In the case X is finite type over a field, then (1) and (2)
are equivalent to: (3) X = [Spec(A)/G] with G an affine group
scheme finite type over k. The implication that quotient stacks
have the resolution property was proven by Thomason. The
second main theorem is that if X is a smooth Deligne-Mumford
stack over a field which has a finite and generically trivial stabi-
lizer group IX → X and whose coarse moduli space is a scheme
with affine diagonal, then X has the resolution property. An-
other cool result states that if X is a Noetherian algebraic stack
satisfying the resolution property, then X has affine diagonal if
and only if the closed points have affine stabilizer.

• Kresch: On the Geometry of Deligne-Mumford Stacks [Kre09]
This article summarizes general structure results of Deligne-
Mumford stacks (of finite type over a field) and contains some
interesting results concerning quotient stacks. It is shown that
any smooth, separated, generically tame Deligne-Mumford stack
with quasi-projective coarse moduli space is a quotient stack
[Y/G] with Y quasi-projective and G an algebraic group. If
X is a Deligne-Mumford stack whose coarse moduli space is a
scheme, then X is Zariski-locally a quotient stack if and only if
it admits a Zariski-open covering by stack quotients of schemes
by finite groups. If X is a Deligne-Mumford stack proper over a
field of characteristic 0 with coarse moduli space Y , then: Y is
projective and X is a quotient stack if and only if Y is projec-
tive and X possesses a generating sheaf if and only if X admits
a closed embedding into a smooth proper DM stack with pro-
jective coarse moduli space. This motivates a definition that
a Deligne-Mumford stack is projective if there exists a closed
embedding into a smooth, proper Deligne-Mumford stack with
projective coarse moduli space.

• Kresch, Vistoli On coverings of Deligne-Mumford stacks and surjectivity
of the Brauer map [KV04]
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It is shown that in characteristic 0 and for a fixed n, the follow-
ing two statements are equivalent: (1) every smooth Deligne-
Mumford stack of dimension n is a quotient stack and (2) the
Azumaya Brauer group coincides with the cohomological Brauer
group for smooth schemes of dimension n.

• Kresch: Cycle Groups for Artin Stacks [Kre99]
It is shown that a reduced Artin stack finite type over a field
with affine stabilizer groups admits a stratification by quotient
stacks.

• Abramovich-Vistoli: Compactifying the space of stable maps [AV02]
Lemma 2.2.3 establishes that for any separated Deligne-Mumford
stack is étale-locally on the coarse moduli space a quotient stack
[U/G] where U affine and G a finite group. [Ols06b, Theorem
2.12] shows in this argument G is even the stabilizer group.

• Abramovich, Olsson, Vistoli: Tame stacks in positive characteristic [AOV08]
This paper shows that a tame Artin stack is étale locally on the
coarse moduli space a quotient stack of an affine by the stabilizer
group.

• Alper: On the local quotient structure of Artin stacks [Alp10]
It is conjectured that for an Artin stack X and a closed point
x ∈ X with linearly reductive stabilizer, then there is an étale
morphism [V/Gx] → X with V an algebraic space. Some evi-
dence for this conjecture is given. A simple deformation theory
argument (based on ideas in [AOV08]) shows that it is true
formally locally. A stack-theoretic proof of Luna’s étale slice
theorem is presented proving that for stacks X = [Spec(A)/G]
with G linearly reductive, then étale locally on the GIT quotient
Spec(AG), X is a quotient stack by the stabilizer.

112.5.5. Cohomology.04V0 Papers discussing cohomology of sheaves on algebraic stacks.
• Olsson: Sheaves on Artin stacks [Ols07b]

This paper develops the theory of quasi-coherent and constructible
sheaves proving basic cohomological properties. This paper cor-
rects a mistake in [LMB00] in the functoriality of the lisse-
étale site. The cotangent complex is constructed. In addition,
the following theorems are proved: Grothendieck’s Fundamental
Theorem for proper morphisms, Grothendieck’s Existence The-
orem, Zariski’s Connectedness Theorem and finiteness theorem
for proper pushforwards of coherent and constructible sheaves.

• Behrend: Derived l-adic categories for algebraic stacks [Beh03]
Proves the Lefschetz trace formula for algebraic stacks.

• Behrend: Cohomology of stacks [Beh04]
Defines the de Rham cohomology for differentiable stacks and
singular cohomology for topological stacks.

• Faltings: Finiteness of coherent cohomology for proper fppf stacks [Fal03]
Proves coherence for direct images of coherent sheaves for proper
morphisms.

• Abramovich, Corti, Vistoli: Twisted bundles and admissible covers [ACV03]
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The appendix contains the proper base change theorem for étale
cohomology for tame Deligne-Mumford stacks.

112.5.6. Existence of finite covers by schemes.04V1 The existence of finite covers of
Deligne-Mumford stacks by schemes is an important result. In intersection theory
on Deligne-Mumford stacks, it is an essential ingredient in defining proper push-
forward for non-representable morphisms. There are several results about Mg

relying on the existence of a finite cover by a smooth scheme which was proven by
Looijenga. Perhaps the first result in this direction is [Ses72, Theorem 6.1] which
treats the equivariant setting.

• Vistoli: Intersection theory on algebraic stacks and on their moduli spaces
[Vis89]

If X is a Deligne-Mumford stack with a moduli space (ie. a
proper morphism which is bijective on geometric points), then
there exists a finite morphism X → X from a scheme X.

• Laumon, Moret-Bailly: [LMB00, Chapter 16]
As an application of Zariski’s main theorem, Theorem 16.6 es-
tablishes: if X is a Deligne-Mumford stack finite type over a
Noetherian scheme, then there exists a finite, surjective, generi-
cally étale morphism Z → X with Z a scheme. It is also shown
in Corollary 16.6.2 that any Noetherian normal algebraic space
is isomorphic to the algebraic space quotient X ′/G for a finite
group G acting a normal scheme X.

• Edidin, Hassett, Kresch, Vistoli: Brauer Groups and Quotient stacks
[EHKV01]

Theorem 2.7 states: if X is an algebraic stack of finite type over a
Noetherian ground scheme S, then the diagonal X → X ×S X is
quasi-finite if and only if there exists a finite surjective morphism
X → F from a scheme X.

• Kresch, Vistoli: On coverings of Deligne-Mumford stacks and surjectivity
of the Brauer map [KV04]

It is proved here that any smooth, separated Deligne-Mumford
stack finite type over a field with quasi-projective coarse moduli
space admits a finite, flat cover by a smooth quasi-projective
scheme.

• Olsson: On proper coverings of Artin stacks [Ols05]
Proves that if X is an Artin stack separated and finite type
over S, then there exists a proper surjective morphism X → X
from a scheme X quasi-projective over S. As an application,
Olsson proves coherence and constructibility of direct image
sheaves under proper morphisms. As an application, he proves
Grothendieck’s existence theorem for proper Artin stacks.

• Rydh: Noetherian approximation of algebraic spaces and stacks [Ryd08]
Theorem B of this paper is as follows. Let X be a quasi-compact
algebraic stack with quasi-finite and separated diagonal (resp. a
quasi-compact Deligne-Mumford stack with quasi-compact and
separated diagonal). Then there exists a scheme Z and a finite,
finitely presented and surjective morphism Z → X that is flat
(resp. étale) over a dense quasi-compact open substack U ⊂ X.
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112.5.7. Rigidification.04V2 Rigidification is a process for removing a flat subgroup from
the inertia. For example, if X is a projective variety, the morphism from the Picard
stack to the Picard scheme is a rigidification of the group of automorphism Gm.

• Abramovich, Corti, Vistoli: Twisted bundles and admissible covers [ACV03]
Let X be an algebraic stack over S and H be a flat, finitely
presented separated group scheme over S. Assume that for every
object ξ ∈ X (T ) there is an embedding H(T ) ↪→ AutX (T )(ξ)
which is compatible under pullbacks in the sense that for every
arrow ϕ : ξ → ξ′ over f : T → T ′ and g ∈ H(T ′), g ◦ϕ = ϕ◦f∗g.
Then there exists an algebraic stack X/H and a morphism ρ :
X → X/H which is an fppf gerbe such that for every ξ ∈ X (T ),
the morphism AutX (T )(ξ) → AutX/H(T )(ξ) is surjective with
kernel H(T ).

• Romagny: Group actions on stacks and applications [Rom05]
Discusses how group actions behave with respect to rigidifica-
tions.

• Abramovich, Graber, Vistoli: Gromov-Witten theory for Deligne-Mumford
stacks [AGV08]

The appendix gives a summary of rigidification as in [ACV03]
with two alternative interpretations. This paper also contains
constructions for gluing algebraic stacks along closed substacks
and for taking roots of line bundles.

• Abramovich, Olsson, Vistoli: Tame stacks in positive characteristic ([AOV08])
The appendix handles the more complicated situation where the
flat subgroup stack of the inertia H ⊂ IX is normal but not
necessarily central.

112.5.8. Stacky curves.04V3 Papers discussing stacky curves.
• Abramovich, Vistoli: Compactifying the space of stable maps [AV02]

This paper introduces twisted curves. The moduli space of sta-
ble maps from stable curves into an algebraic stack is typically
not compact. By using maps from twisted curves, the authors
construct a moduli stack which is proper when the target is a
tame Deligne-Mumford stack whose coarse moduli space is pro-
jective.

• Behrend, Noohi: Uniformization of Deligne-Mumford curves [BN06]
Proves a uniformization theorem of Deligne-Mumford analytic
curves.

112.5.9. Hilbert, Quot, Hom and branchvariety stacks.04V4 Papers discussing Hilbert
schemes and the like.

• Vistoli: The Hilbert stack and the theory of moduli of families [Vis91]
If X is a algebraic stack separated and locally of finite type
over a locally Noetherian and locally separated algebraic space
S, Vistoli defines the Hilbert stack Hilb(F/S) parameterizing
finite and unramified morphisms from proper schemes. It is
claimed without proof that Hilb(F/S) is an algebraic stack. As
a consequence, it is proved that with X as above, the Hom stack
HomS(T,X ) is an algebraic stack if T is proper and flat over S.
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• Olsson, Starr: Quot functors for Deligne-Mumford stacks [OS03]
If X is a Deligne-Mumford stack separated and locally of fi-
nite presentation over an algebraic space S and F is a locally
finitely-presented OX -module, the quot functor Quot(F/X/S)
is represented by an algebraic space separated and locally of
finite presentation over S. This paper also defines generating
sheaves and proves existence of a generating sheaf for tame, sep-
arated Deligne-Mumford stacks which are global quotient stacks
of a scheme by a finite group.

• Olsson: Hom-stacks and Restrictions of Scalars [Ols06b]
Suppose X and Y are Artin stacks locally of finite presentation
over an algebraic space S with finite diagonal with X proper and
flat over S such that fppf-locally on S, X admits a finite finitely
presented flat cover by an algebraic space (eg. X is Deligne-
Mumford or a tame Artin stack). Then HomS(X ,Y) is an Artin
stack locally of finite presentation over S.

• Alexeev and Knutson: Complete moduli spaces of branchvarieties ([AK10])
They define a branchvariety of Pn as a finite morphism X → Pn

from a reduced scheme X. They prove that the moduli stack of
branchvarieties with fixed Hilbert polynomial and total degrees
of i-dimensional components is a proper Artin stack with finite
stabilizer. They compare the stack of branchvarieties with the
Hilbert scheme, Chow scheme and moduli space of stable maps.

• Lieblich: Remarks on the stack of coherent algebras [Lie06b]
This paper constructs a generalization of Alexeev and Knutson’s
stack of branch-varieties over a scheme Y by building the stack
as a stack of algebras over the structure sheaf of Y . Existence
proofs of Quot and Hom spaces are given.

• Starr: Artin’s axioms, composition, and moduli spaces [Sta06]
As an application of the main result, a common generalization of
Vistoli’s Hilbert stack [Vis91] and Alexeev and Knutson’s stack
of branchvarieties [AK10] is provided. If X is an algebraic stack
locally of finite type over an excellent scheme S with finite di-
agonal, then the stack H parameterizing morphisms g : T → X
from a proper algebraic space T with a G-ample line bundle L
is an Artin stack locally of finite type over S.

• Lundkvist and Skjelnes: Non-effective deformations of Grothendieck’s
Hilbert functor [LS08]

Shows that the Hilbert functor of a non-separated scheme is not
represented since there are non-effective deformations.

• Halpern-Leistner and Preygel: Mapping stacks and categorical notions of
properness [HLP14]

This paper gives a proof that the Hom stack is algebraic under
some hypotheses on source and target which are more general
than, or at least different from, the ones in Olsson’s paper.

112.5.10. Toric stacks.04V5 Toric stacks provide a great class of examples and a natural
testing ground for conjectures due to the dictionary between the geometry of a toric



112.5. PAPERS IN THE LITERATURE 7430

stack and the combinatorics of its stacky fan in a similar way that toric varieties
provide examples and counterexamples in scheme theory.

• Borisov, Chen and Smith: The orbifold Chow ring of toric Deligne-Mumford
stacks [BCS05]

Inspired by Cox’s construction for toric varieties, this paper de-
fines smooth toric DM stacks as explicit quotient stacks associ-
ated to a combinatorial object called a stacky fan.

• Iwanari: The category of toric stacks [Iwa09]
This paper defines a toric triple as a smooth Deligne-Mumford
stack X with an open immersion Gm ↪→ X with dense image
(and therefore X is an orbifold) and an action X ×Gm → X .
It is shown that there is an equivalence between the 2-category
of toric triples and the 1-category of stacky fans. The relation-
ship between toric triples and the definition of smooth toric DM
stacks in [BCS05] is discussed.

• Iwanari: Integral Chow rings for toric stacks [Iwa07]
Generalizes Cox’s ∆-collections for toric varieties to toric orb-
ifolds.

• Perroni: A note on toric Deligne-Mumford stacks [Per08]
Generalizes Cox’s ∆-collections and Iwanari’s paper [Iwa07] to
general smooth toric DM stacks.

• Fantechi, Mann, and Nironi: Smooth toric DM stacks [FMN07]
This paper defines a smooth toric DM stack as a smooth DM
stack X with the action of a DM torus T (ie. a Picard stack
isomorphic to T ×BG with G finite) having an open dense orbit
isomorphic to T . They give a “bottom-up description” and prove
an equivalence between smooth toric DM stacks and stacky fans.

• Geraschenko and Satriano: Toric Stacks I and II [GS11a] and [GS11b]
These papers define a toric stack as the stack quotient of a toric
variety by a subgroup of its torus. A generically stacky toric
stack is defined as a torus invariant substack of a toric stack.
This definition encompasses and extends previous definitions of
toric stacks. The first paper develops a dictionary between the
combinatorics of stacky fans and the geometry of the correspond-
ing stacks. It also gives a moduli interpretation of smooth toric
stacks, generalizing the one in [Per08]. The second paper proves
an intrinsic characterization of toric stacks.

112.5.11. Theorem on formal functions and Grothendieck’s Existence Theorem.
04V6 These papers give generalizations of the theorem on formal functions [DG67, III.4.1.5]

(sometimes referred to Grothendieck’s Fundamental Theorem for proper morphisms)
and Grothendieck’s Existence Theorem [DG67, III.5.1.4].

• Knutson: Algebraic spaces [Knu71, Chapter V]
Generalizes these theorems to algebraic spaces.

• Abramovich-Vistoli: Compactifying the space of stable maps [AV02, A.1.1]
Generalizes these theorems to tame Deligne-Mumford stacks

• Olsson and Starr: Quot functors for Deligne-Mumford stacks [OS03]
Generalizes these theorems to separated Deligne-Mumford stacks.
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• Olsson: On proper coverings of Artin stacks [Ols05]
Provides a generalization to proper Artin stacks.

• Conrad: Formal GAGA on Artin stacks [Con05a]
Provides a generalization to proper Artin stacks and proves a
formal GAGA theorem.

• Olsson: Sheaves on Artin stacks [Ols07b]
Provides another proof for the generalization to proper Artin
stacks.

112.5.12. Group actions on stacks.04V7 Actions of groups on algebraic stacks naturally
appear. For instance, symmetric group Sn acts onMg,n and for an action of a group
G on a scheme X, the normalizer of G in Aut(X) acts on [X/G]. Furthermore,
torus actions on stacks often appear in Gromov-Witten theory.

• Romagny: Group actions on stacks and applications [Rom05]
This paper makes precise what it means for a group to act on
an algebraic stack and proves existence of fixed points as well as
existence of quotients for actions of group schemes on algebraic
stacks. See also Romagny’s earlier note [Rom03].

112.5.13. Taking roots of line bundles.04V8 This useful construction was discovered in-
dependently by Cadman and by Abramovich, Graber and Vistoli. Given a scheme
X with an effective Cartier divisor D, the rth root stack is an Artin stack branched
over X at D with a µr stabilizer over D and scheme-like away from D.

• Charles Cadman Using Stacks to Impose Tangency Conditions on Curves
[Cad07]
• Abramovich, Graber, Vistoli: Gromov-Witten theory for Deligne-Mumford

stacks [AGV08]

112.5.14. Other papers.04V9 Potpourri of other papers.
• Lieblich: Moduli of twisted sheaves [Lie07]

This paper contains a summary of gerbes and twisted sheaves.
If X → X is a µn-gerbe with X a projective relative surface
with smooth connected geometric fibers, it is shown that the
stack of semistable X -twisted sheaves is an Artin stack locally
of finite presentation over S. This paper also develops the theory
of associated points and purity of sheaves on Artin stacks.

• Lieblich, Osserman: Functorial reconstruction theorem for stacks [LO08b]
Proves some surprising and interesting results on when an alge-
braic stack can be reconstructed from its associated functor.

• David Rydh: Noetherian approximation of algebraic spaces and stacks
[Ryd08]

This paper shows that every quasi-compact algebraic stack with
quasi-finite diagonal can be approximated by a Noetherian stack.
There are applications to removing the Noetherian hypothesis
in results of Chevalley, Serre, Zariski and Chow.

112.6. Stacks in other fields

03B5
• Behrend and Noohi: Uniformization of Deligne-Mumford curves [BN06]
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Gives an overview and comparison of topological, analytic and
algebraic stacks.

• Behrang Noohi: Foundations of topological stacks I [Noo05]
• David Metzler: Topological and smooth stacks [Met05]

112.7. Higher stacks

05BF
• Lurie: Higher topos theory [Lur09f]
• Lurie: Derived Algebraic Geometry I - V [Lur09a], [Lur09b], [Lur09c],

[Lur09d], [Lur09e]
• Toën: Higher and derived stacks: a global overview [Toë09]
• Toën and Vezzosi: Homotopical algebraic geometry I, II [TV05], [TV08]
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CHAPTER 113

Desirables

02B4 113.1. Introduction

02B5 This is basically just a list of things that we want to put in the stacks project. As
we add material to the Stacks project continuously this is always somewhat behind
the current state of the Stacks project. In fact, it may have been a mistake to try
and list things we should add, because it seems impossible to keep it up to date.
Last updated: Thursday, August 31, 2017.

113.2. Conventions

02B7 We should have a chapter with a short list of conventions used in the document.
This chapter already exists, see Conventions, Section 2.1, but a lot more could be
added there. Especially useful would be to find “hidden” conventions and tacit
assumptions and put those there.

113.3. Sites and Topoi

02BA We have a chapter on sites and sheaves, see Sites, Section 7.1. We have a chapter on
ringed sites (and topoi) and modules on them, see Modules on Sites, Section 18.1.
We have a chapter on cohomology in this setting, see Cohomology on Sites, Section
21.1. But a lot more could be added, especially in the chapter on cohomology.

113.4. Stacks

02BB We have a chapter on (abstract) stacks, see Stacks, Section 8.1. It would be nice if
(1) improve the discussion on “stackyfication”,
(2) give examples of stackyfication,
(3) more examples in general,
(4) improve the discussion of gerbes.

Example result which has not been added yet: Given a sheaf of abelian groups F
over C the set of equivalence classes of gerbes banded by F is bijective to H2(C,F).

113.5. Simplicial methods

03MZ We have a chapter on simplicial methods, see Simplicial, Section 14.1. This has to
be reviewed and improved. The discussion of the relationship between simplicial
homotopy (also known as combinatorial homotopy) and Kan complexes should be
improved upon. There is a chapter on simplicial spaces, see Simplicial Spaces,
Section 85.1. This chapter briefly discusses simplicial topological spaces, simplicial
sites, and simplicial topoi. We can further develop “simplicial algebraic geometry”
to discuss simplicial schemes (or simplicial algebraic spaces, or simplicial algebraic
stacks) and treat geometric questions, their cohomology, etc.

7434
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113.6. Cohomology of schemes

02BE There is already a chapter on cohomology of quasi-coherent sheaves, see Cohomol-
ogy of Schemes, Section 30.1. We have a chapter discussing the derived category
of quasi-coherent sheaves on a scheme, see Derived Categories of Schemes, Section
36.1. We have a chapter discussing duality for Noetherian schemes and relative
duality for morphisms of schemes, see Duality for Schemes, Section 48.1. We also
have chapters on étale cohomology of schemes and on crystalline cohomology of
schemes. But most of the material in these chapters is very basic and a lot more
could/should be added there.

113.7. Deformation theory à la Schlessinger

02BF We have a chapter on this material, see Formal Deformation Theory, Section 90.1.
We have a chapter discussing examples of the general theory, see Deformation
Problems, Section 93.1. We have a chapter, see Deformation Theory, Section 91.1
which discusses deformations of rings (and modules), deformations of ringed spaces
(and sheaves of modules), deformations of ringed topoi (and sheaves of modules).
In this chapter we use the naive cotangent complex to describe obstructions, first
order deformations, and infinitesimal automorphisms. This material has found
some applications to algebraicity of moduli stacks in later chapters. There is also
a chapter discussing the full cotangent complex, see Cotangent, Section 92.1.

113.8. Definition of algebraic stacks

02BK An algebraic stack is a stack in groupoids over the category of schemes with the fppf
topology that has a diagonal representable by algebraic spaces and is the target of
a surjective smooth morphism from a scheme. See Algebraic Stacks, Section 94.12.
A “Deligne-Mumford stack” is an algebraic stack for which there exists a scheme
and a surjective étale morphism from that scheme to it as in the paper [DM69] of
Deligne and Mumford, see Algebraic Stacks, Definition 94.12.2. We will reserve the
term “Artin stack” for a stack such as in the papers by Artin, see [Art69b], [Art70],
and [Art74]. A possible definition is that an Artin stack is an algebraic stack X
over a locally Noetherian scheme S such that X → S is locally of finite type1.

113.9. Examples of schemes, algebraic spaces, algebraic stacks

02BL The Stacks project currently contains two chapters discussing moduli stacks and
their properties, see Moduli Stacks, Section 108.1 and Moduli of Curves, Section
109.1. Over time we intend to add more, for example:

(1) Ag, i.e., principally polarized abelian schemes of genus g,
(2) A1 =M1,1, i.e., 1-pointed smooth projective genus 1 curves,
(3) Mg,n, i.e., smooth projective genus g-curves with n pairwise distinct la-

beled points,
(4) Mg,n, i.e., stable n-pointed nodal projective genus g-curves,
(5) HomS(X ,Y), moduli of morphisms (with suitable conditions on the stacks
X , Y and the base scheme S),

1Namely, these are exactly the algebraic stacks over S satisfying Artin’s axioms [-1], [0], [1],
[2], [3], [4], [5] of Artin’s Axioms, Section 98.14.
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(6) BunG(X) = HomS(X,BG), the stack of G-bundles of the geometric Lang-
lands programme (with suitable conditions on the scheme X, the group
scheme G, and the base scheme S),

(7) PicX/S , i.e., the Picard stack associated to an algebraic stack over a base
scheme (or space).

More generally, the Stacks project is somewhat lacking in geometrically meaningful
examples.

113.10. Properties of algebraic stacks

02BM This is perhaps one of the easier projects to work on, as most of the basic theory is
there now. Of course these things are really properties of morphisms of stacks. We
can define singularities (up to smooth factors) etc. Prove that a connected normal
stack is irreducible, etc.

113.11. Lisse étale site of an algebraic stack

02BN This has been introduced in Cohomology of Stacks, Section 103.14. An example
to show that it is not functorial with respect to 1-morphisms of algebraic stacks is
discussed in Examples, Section 110.58. Of course a lot more could be said about
this, but it turns out to be very useful to prove things using the “big” étale site as
much as possible.

113.12. Things you always wanted to know but were afraid to ask

02BO There are going to be lots of lemmas that you use over and over again that are
useful but aren’t really mentioned specifically in the literature, or it isn’t easy to
find references for. Bag of tricks.
Example: Given two groupoids in schemes R⇒ U and R′ ⇒ U ′ what does it mean
to have a 1-morphism [U/R]→ [U ′/R′] purely in terms of groupoids in schemes.

113.13. Quasi-coherent sheaves on stacks

02BP These are defined and discussed in the chapter Cohomology of Stacks, Section 103.1.
Derived categories of modules are discussed in the chapter Derived Categories of
Stacks, Section 104.1. A lot more could be added to these chapters.

113.14. Flat and smooth

02BR Artin’s theorem that having a flat surjection from a scheme is a replacement for the
smooth surjective condition. This is now available as Criteria for Representability,
Theorem 97.16.1.

113.15. Artin’s representability theorem

02BS This is discussed in the chapter Artin’s Axioms, Section 98.1. We also have an
application, see Quot, Theorem 99.5.12. There should be a lot more applications
and the chapter itself has to be cleaned up as well.

113.16. DM stacks are finitely covered by schemes

02BT We already have the corresponding result for algebraic spaces, see Limits of Spaces,
Section 70.16. What is missing is the result for DM and quasi-DM stacks.
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113.17. Martin Olsson’s paper on properness

02BU This proves two notions of proper are the same. The first part of this is now
available in the form of Chow’s lemma for algebraic stacks, see More on Morphisms
of Stacks, Theorem 106.10.3. As a consequence we show that it suffices to use
DVR’s in checking the valuative criterion for properness for algebraic stacks in
certain cases, see More on Morphisms of Stacks, Section 106.11.

113.18. Proper pushforward of coherent sheaves

02BV We can start working on this now that we have Chow’s lemma for algebraic stacks,
see previous section.

113.19. Keel and Mori

02BW See [KM97]. Their result has been added in More on Morphisms of Stacks, Section
106.13.

113.20. Add more here

02BX Actually, no we should never have started this list as part of the Stacks project
itself! There is a todo list somewhere else which is much easier to update.
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CHAPTER 114

Coding Style

02BY 114.1. List of style comments

02BZ These will be changed over time, but having some here now will hopefully encourage
a consistent LaTeX style. We will call “code1” the contents of the source files.

(1) Keep all lines in all tex files to at most 80 characters.
(2) Do not use indentation in the tex file. Use syntax highlighting in your

editor, instead of indentation, to visualize environments, etc.
(3) Use

\medskip\noindent
to start a new paragraph, and use
\noindent
to start a new paragraph just after an environment.

(4) Do not break the code for mathematical formulas across lines if possible.
If the complete code complete with enclosing dollar signs does not fit on
the line, then start with the first dollar sign on the first character of the
next line. If it still does not fit, find a mathematically reasonable spot to
break the code.

(5) Displayed math equations should be coded as follows
$$
...
...
$$
In other words, start with a double dollar sign on a line by itself and end
similarly.

(6) Do not use any macros. Rationale: This makes it easier to read the tex file,
and start editing an arbitrary part without having to learn innumerable
macros. And it doesn’t make it harder or more timeconsuming to write.
Of course the disadvantage is that the same mathematical object may be
TeXed differently in different places in the text, but this should be easy
to spot.

(7) The theorem environments we use are: “theorem”, “proposition”, “lemma”
(plain), “definition”, “example”, “exercise”, “situation” (definition), “re-
mark”, “remarks” (remark). Of course there is also a “proof” environment.

(8) An environment “foo” should be coded as follows
\begin{foo}
...

1It is all Knuth’s fault. See [Knu79].
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...
\end{foo}
similarly to the way displayed equations are coded.

(9) Instead of a “corollary”, just use “lemma” environment since likely the
result will be used to prove the next bigger theorem anyway.

(10) Directly following each lemma, proposition, or theorem is the proof of said
lemma, proposition, or theorem. No nested proofs please.

(11) The files preamble.tex, chapters.tex and fdl.tex are special tex files. Apart
from these, each tex file has the following structure
\input{preamble}
\begin{document}
\title{Title}
\maketitle
\tableofcontents
...
...
\input{chapters}
\bibliography{my}
\bibliographystyle{amsalpha}
\end{document}

(12) Try to add labels to lemmas, propositions, theorems, and even remarks,
exercise, and other environments. If labelling a lemma use something like
\begin{lemma}
\label{lemma-bar}
...
\end{lemma}
Similarly for all other environments. In other words, the label of a envi-
ronment named “foo” starts with “foo-”. In addition to this please make
all labels consist only of lower case letters, digits, and the symbol “-”.

(13) Never refer to “the lemma above” (or proposition, etc). Instead use:
Lemma \ref{lemma-bar} above
This means that later moving lemmas around is basically harmless.

(14) Cross-file referencing. To reference a lemma labeled “lemma-bar” in the
file foo.tex which has title “Foo”, please use the following code
Foo, Lemma \ref{foo-lemma-bar}
If this does not work, then take a look at the file preamble.tex to find the
correct expression to use. This will produce the “Foo, Lemma <link>” in
the output file so it will be clear that the link points out of the file.

(15) If at all possible avoid forward references in proof environments. (It should
be possible to write an automated test for this.)

(16) Do not start any sentence with a mathematical symbol.
(17) Do not have a sentence of the type “This follows from the following” just

before a lemma, proposition, or theorem. Every sentence ends with a
period.

(18) State all hypotheses in each lemma, proposition, theorem. This makes it
easier for readers to see if a given lemma, proposition, or theorem applies
to their particular problem.
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(19) Keep proofs short; less than 1 page in pdf or dvi. You can always achieve
this by splitting out the proof in lemmas etc.

(20) In a defining property foobar use
{\it foobar}
in the code inside the definition environment. Similarly if the definition
occurs in the text of the document. This will make it easier for the reader
to see what it is that is being defined.

(21) Put any definition that will be used outside the section it is in, in its
own definition environment. Temporary definitions may be made in the
text. A tricky case is that of mathematical constructions (which are often
definitions involving interrelated lemmas). Maybe a good solution is to
have them in their own short section so users can refer to the section
instead of a definition.

(22) Do not number equations unless they are actually being referenced some-
where in the text. We can always add labels later.

(23) In statements of lemmas, propositions and theorems and in proofs keep
the sentences short. For example, instead of “Let R be a ring and let
M be an R-module.” write “Let R be a ring. Let M be an R-module.”.
Rationale: This makes it easier to parse the trickier parts of proofs and
statements.

(24) Use the
\section
command to make sections, but try to avoid using subsections and sub-
subsections.

(25) Avoid using complicated latex constructions.
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CHAPTER 115

Obsolete

073T 115.1. Introduction

073U In this chapter we put some lemmas that have become “obsolete” (see [Mil17]).

115.2. Preliminaries

0G5K
Remark 115.2.1.0EGF The information which used to be contained in this remark is
now subsumed in the combination of Categories, Lemmas 4.24.4 and 4.24.3.

115.3. Homological algebra

0BFJ
Remark 115.3.1.076K The following remarks are obsolete as they are subsumed in
Homology, Lemmas 12.24.11 and 12.25.3. Let A be an abelian category. Let C ⊂ A
be a weak Serre subcategory (see Homology, Definition 12.10.1). Suppose that K•,•

is a double complex to which Homology, Lemma 12.25.3 applies such that for some
r ≥ 0 all the objects ′Ep,qr belong to C. Then all the cohomology groups Hn(sK•)
belong to C. Namely, the assumptions imply that the kernels and images of ′dp,qr
are in C. Whereupon we see that each ′Ep,qr+1 is in C. By induction we see that
each ′Ep,q∞ is in C. Hence each Hn(sK•) has a finite filtration whose subquotients
are in C. Using that C is closed under extensions we conclude that Hn(sK•) is in
C as claimed. The same result holds for the second spectral sequence associated
to K•,•. Similarly, if (K•, F ) is a filtered complex to which Homology, Lemma
12.24.11 applies and for some r ≥ 0 all the objects Ep,qr belong to C, then each
Hn(K•) is an object of C.

115.4. Obsolete algebra lemmas

088X
Lemma 115.4.1.055Z Let M be an R-module of finite presentation. For any surjection
α : R⊕n →M the kernel of α is a finite R-module.

Proof. This is a special case of Algebra, Lemma 10.5.3. □

Lemma 115.4.2.00I5 Let φ : R→ S be a ring map. If
(1) for any x ∈ S there exists n > 0 such that xn is in the image of φ, and
(2) for any x ∈ Ker(φ) there exists n > 0 such that xn = 0,

then φ induces a homeomorphism on spectra. Given a prime number p such that
(a) S is generated as an R-algebra by elements x such that there exists an

n > 0 with xp
n ∈ φ(R) and pnx ∈ φ(R), and

(b) the kernel of φ is generated by nilpotent elements,

7443
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then (1) and (2) hold, and for any ring map R → R′ the ring map R′ → R′ ⊗R S
also satisfies (a), (b), (1), and (2) and in particular induces a homeomorphism on
spectra.

Proof. This is a combination of Algebra, Lemmas 10.46.3 and 10.46.7. □

The following technical lemma says that you can lift any sequence of relations from
a fibre to the whole space of a ring map which is essentially of finite type, in a
suitable sense.

Lemma 115.4.3.00SX Let R→ S be a ring map. Let p ⊂ R be a prime. Let q ⊂ S be a
prime lying over p. Assume Sq is essentially of finite type over Rp. Assume given

(1) an integer n ≥ 0,
(2) a prime a ⊂ κ(p)[x1, . . . , xn],
(3) a surjective κ(p)-homomorphism

ψ : (κ(p)[x1, . . . , xn])a −→ Sq/pSq,

and
(4) elements f1, . . . , fe in Ker(ψ).

Then there exist
(1) an integer m ≥ 0,
(2) and element g ∈ S, g ̸∈ q,
(3) a map

Ψ : R[x1, . . . , xn, xn+1, . . . , xn+m] −→ Sg,

and
(4) elements f1, . . . , fe, fe+1, . . . , fe+m of Ker(Ψ)

such that
(1) the following diagram commutes

R[x1, . . . , xn+m]

Ψ
��

xn+j 7→0
// (κ(p)[x1, . . . , xn])a

ψ

��
Sg // Sq/pSq

,

(2) the element fi, i ≤ n maps to a unit times f i in the local ring
(κ(p)[x1, . . . , xn+m])(a,xn+1,...,xn+m),

(3) the element fe+j maps to a unit times xn+j in the same local ring, and
(4) the induced mapR[x1, . . . , xn+m]b → Sq is surjective, where b = Ψ−1(qSg).

Proof. We claim that it suffices to prove the lemma in case R and S are local with
maximal ideals p and q. Namely, suppose we have constructed

Ψ′ : Rp[x1, . . . , xn+m] −→ Sq

and f ′
1, . . . , f

′
e+m ∈ Rp[x1, . . . , xn+m] with all the required properties. Then there

exists an element f ∈ R, f ̸∈ p such that each ff ′
k comes from an element fk ∈

R[x1, . . . , xn+m]. Moreover, for a suitable g ∈ S, g ̸∈ q the elements Ψ′(xi) are
the image of elements yi ∈ Sg. Let Ψ be the R-algebra map defined by the rule
Ψ(xi) = yi. Since Ψ(fi) is zero in the localization Sq we may after possibly replacing
g assume that Ψ(fi) = 0. This proves the claim.

https://stacks.math.columbia.edu/tag/00SX
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Thus we may assume R and S are local with maximal ideals p and q. Pick
y1, . . . , yn ∈ S such that yi mod pS = ψ(xi). Let yn+1, . . . , yn+m ∈ S be ele-
ments which generate an R-subalgebra of which S is the localization. These exist
by the assumption that S is essentially of finite type over R. Since ψ is surjective we
may write yn+j mod pS = ψ(hj) for some hj ∈ κ(p)[x1, . . . , xn]a. Write hj = gj/d,
gj ∈ κ(p)[x1, . . . , xn] for some common denominator d ∈ κ(p)[x1, . . . , xn], d ̸∈ a.
Choose lifts Gj , D ∈ R[x1, . . . , xn] of gj and d. Set y′

n+j = D(y1, . . . , yn)yn+j −
Gj(y1, . . . , yn). By construction y′

n+j ∈ pS. It is clear that y1, . . . , yn, y
′
n, . . . , y

′
n+m

generate an R-subalgebra of S whose localization is S. We define

Ψ : R[x1, . . . , xn+m]→ S

to be the map that sends xi to yi for i = 1, . . . , n and xn+j to y′
n+j for j = 1, . . . ,m.

Properties (1) and (4) are clear by construction. Moreover the ideal b maps onto
the ideal (a, xn+1, . . . , xn+m) in the polynomial ring κ(p)[x1, . . . , xn+m].

Denote J = Ker(Ψ). We have a short exact sequence

0→ Jb → R[x1, . . . , xn+m]b → Sq → 0.

The surjectivity comes from our choice of y1, . . . , yn, y
′
n, . . . , y

′
n+m above. This

implies that

Jb/pJb → κ(p)[x1, . . . , xn+m](a,xn+1,...,xn+m) → Sq/pSq → 0

is exact. By construction xi maps to ψ(xi) and xn+j maps to zero under the last
map. Thus it is easy to choose fi as in (2) and (3) of the lemma. □

Remark 115.4.4 (Projective resolutions).01DE Let R be a ring. For any set S we let
F (S) denote the free R-module on S. Then any left R-module has the following
two step resolution

F (M ×M)⊕ F (R×M)→ F (M)→M → 0.

The first map is given by the rule

[m1,m2]⊕ [r,m] 7→ [m1 +m2]− [m1]− [m2] + [rm]− r[m].

Lemma 115.4.5.02CA Let S be a multiplicative set of A. Then the map

f : Spec(S−1A) −→ Spec(A)

induced by the canonical ring map A→ S−1A is a homeomorphism onto its image
and Im(f) = {p ∈ Spec(A) : p ∩ S = ∅}.

Proof. This is a duplicate of Algebra, Lemma 10.17.5. □

Lemma 115.4.6.05IP Let A → B be a finite type, flat ring map with A an integral
domain. Then B is a finitely presented A-algebra.

Proof. Special case of More on Flatness, Proposition 38.13.10. □

Lemma 115.4.7.053F Let R be a domain with fraction field K. Let S = R[x1, . . . , xn]
be a polynomial ring over R. Let M be a finite S-module. Assume that M is flat
over R. If for every subring R ⊂ R′ ⊂ K, R ̸= R′ the module M ⊗R R′ is finitely
presented over S ⊗R R′, then M is finitely presented over S.

https://stacks.math.columbia.edu/tag/01DE
https://stacks.math.columbia.edu/tag/02CA
https://stacks.math.columbia.edu/tag/05IP
https://stacks.math.columbia.edu/tag/053F
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Proof. This lemma is true because M is finitely presented even without the as-
sumption that M ⊗RR′ is finitely presented for every R′ as in the statement of the
lemma. This follows from More on Flatness, Proposition 38.13.10. Originally this
lemma had an erroneous proof (thanks to Ofer Gabber for finding the gap) and
was used in an alternative proof of the proposition cited. To reinstate this lemma,
we need a correct argument in case R is a local normal domain using only results
from the chapters on commutative algebra; please email stacks.project@gmail.com
if you have an argument. □

Lemma 115.4.8.02TQ Let A→ B be a ring map. Let f ∈ B. Assume that
(1) A→ B is flat,
(2) f is a nonzerodivisor, and
(3) A→ B/fB is flat.

Then for every ideal I ⊂ A the map f : B/IB → B/IB is injective.

Proof. Note that IB = I⊗AB and I(B/fB) = I⊗AB/fB by the flatness of B and
B/fB over A. In particular IB/fIB ∼= I ⊗A B/fB maps injectively into B/fB.
Hence the result follows from the snake lemma applied to the diagram

0 // I ⊗A B //

f

��

B //

f

��

B/IB //

f

��

0

0 // I ⊗A B // B // B/IB // 0

with exact rows. □

Lemma 115.4.9.051A If R→ S is a faithfully flat ring map then for every R-module M
the map M → S ⊗RM , x 7→ 1⊗ x is injective.

Proof. This lemma is a duplicate of Algebra, Lemma 10.82.11. □

Remark 115.4.10.07C2 This reference/tag used to refer to a Section in the chapter
Smoothing Ring Maps, but the material has since been subsumed in Algebra, Sec-
tion 10.127.

Lemma 115.4.11.07K3 Let (R,m) be a reduced Noetherian local ring of dimension 1 and
let x ∈ m be a nonzerodivisor. Let q1, . . . , qr be the minimal primes of R. Then

lengthR(R/(x)) =
∑

i
ordR/qi(x)

Proof. Special (very easy) case of Chow Homology, Lemma 42.3.2. □

Lemma 115.4.12.0AXG Let A be a Noetherian local normal domain of dimension 2.
For f ∈ m nonzero denote div(f) =

∑
ni(pi) the divisor associated to f on the

punctured spectrum of A. We set |f | =
∑
ni. There exist integers N and M such

that |f + g| ≤M for all g ∈ mN .

Proof. Pick h ∈ m such that f, h is a regular sequence in A (this follows from
Algebra, Lemmas 10.157.4 and 10.72.7). We will prove the lemma with M =
lengthA(A/(f, h)) and with N any integer such that mN ⊂ (f, h). Such an integer
N exists because

√
(f, h) = m. Note that M = lengthA(A/(f+g, h)) for all g ∈ mN

because (f, h) = (f+g, h). This moreover implies that f+g, h is a regular sequence

mailto:stacks.project@gmail.com
https://stacks.math.columbia.edu/tag/02TQ
https://stacks.math.columbia.edu/tag/051A
https://stacks.math.columbia.edu/tag/07C2
https://stacks.math.columbia.edu/tag/07K3
https://stacks.math.columbia.edu/tag/0AXG
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in A too, see Algebra, Lemma 10.104.2. Now suppose that div(f + g) =
∑
mj(qj).

Then consider the map

c : A/(f + g) −→
∏

A/q
(mj)
j

where q
(mj)
j is the symbolic power, see Algebra, Section 10.64. Since A is normal,

we see that Aqi is a discrete valuation ring and hence

Aqi/(f + g) = Aqi/q
mi
i Aqi = (A/q(mi)

i )qi
Since V (f + g, h) = {m} this implies that c becomes an isomorphism on inverting
h (small detail omitted). Since h is a nonzerodivisor on A/(f + g) we see that
the length of A/(f + g, h) equals the Herbrand quotient eA(A/(f + g), 0, h) as
defined in Chow Homology, Section 42.2. Similarly the length of A/(h, q(mj)

j ) equals
eA(A/q(mj)

j , 0, h). Then we have
M = lengthA(A/(f + g, h)

= eA(A/(f + g), 0, h)

=
∑

i
eA(A/q(mj)

j , 0, h)

=
∑

i

∑
m=0,...,mj−1

eA(q(m)
j /q

(m+1)
j , 0, h)

The equalities follow from Chow Homology, Lemmas 42.2.3 and 42.2.4 using in
particular that the cokernel of c has finite length as discussed above. It is straight-
forward to prove that eA(q(m)/q(m+1), 0, h) is at least 1 by Nakayama’s lemma.
This finishes the proof of the lemma. □

Lemma 115.4.13.0BJK Let A → B be a flat local homomorphism of Noetherian local
rings. If A and B/mAB are Gorenstein, then B is Gorenstein.

Proof. Follows immediately from Dualizing Complexes, Lemma 47.21.8. □

Lemma 115.4.14.0DXL Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal.
Let M be a finite A-module. Let s be an integer. Assume

(1) A has a dualizing complex,
(2) if p ̸∈ V (I) and V (p) ∩ V (I) ̸= {m}, then depthAp

(Mp) + dim(A/p) > s.
Then there exists an n > 0 and an ideal J ⊂ A with V (J) ∩ V (I) = {m} such that
JIn annihilates Hi

m(M) for i ≤ s.

Proof. According to Local Cohomology, Lemma 51.9.4 we have to show this for the
finite A-module Ei = Ext−i

A (M,ω•
A) for i ≤ s. The support Z of E0 ⊕ . . . ⊕ Es is

closed in Spec(A) and does not contain any prime as in (2). Hence it is contained
in V (JIn) for some J as in the statement of the lemma. □

Lemma 115.4.15.0EFS Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal.
Let M be a finite A-module. Let s and d be integers. Assume

(a) A has a dualizing complex,
(b) cd(A, I) ≤ d,
(c) if p ̸∈ V (I) then depthAp

(Mp) > s or depthAp
(Mp) + dim(A/p) > d+ s.

Then the assumptions of Algebraic and Formal Geometry, Lemma 52.10.4 hold for
A, I,m,M and Hi

m(M)→ limHi
m(M/InM) is an isomorphism for i ≤ s and these

modules are annihilated by a power of I.

https://stacks.math.columbia.edu/tag/0BJK
https://stacks.math.columbia.edu/tag/0DXL
https://stacks.math.columbia.edu/tag/0EFS
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Proof. The assumptions of Algebraic and Formal Geometry, Lemma 52.10.4 by the
more general Algebraic and Formal Geometry, Lemma 52.10.5. Then the conclusion
of Algebraic and Formal Geometry, Lemma 52.10.4 gives the second statement. □

Lemma 115.4.16.0EFZ In Algebraic and Formal Geometry, Situation 52.10.1 we have
Hs

a(M) = limHs
a(M/InM).

Proof. This is immediate from Algebraic and Formal Geometry, Theorem 52.10.8.
The original version of this lemma, which had additional assumptions, was super-
seded by the this theorem. □

Lemma 115.4.17.0EKR Let A be a Noetherian ring. Let f ∈ a be an element of an ideal
of A. Let U = Spec(A) \ V (a). Assume

(1) A has a dualizing complex and is complete with respect to f ,
(2) Af is (S2) and for every minimal prime p ⊂ A, f ̸∈ p and q ∈ V (p)∩V (a)

we have dim((A/p)q) ≥ 3.
Then the completion functor

Coh(OU ) −→ Coh(U, IOU ), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects.
Proof. This lemma is a special case of Algebraic and Formal Geometry, Lemma
52.15.6. □

115.5. Lemmas related to ZMT

073V The lemmas in this section were originally used in the proof of the (algebraic version
of) Zariski’s Main Theorem, Algebra, Theorem 10.123.12.
Lemma 115.5.1.00PU Let R be a ring and let φ : R[x] → S be a ring map. Let t ∈ S.
If t is integral over R[x], then there exists an ℓ ≥ 0 such that for every a ∈ R the
element φ(a)ℓt is integral over φa : R[y]→ S, defined by y 7→ φ(ax) and r 7→ φ(r)
for r ∈ R.
Proof. Say td +

∑
i<d φ(fi)ti = 0 with fi ∈ R[x]. Let ℓ be the maximum degree in

x of all the fi. Multiply the equation by φ(a)ℓ to get φ(a)ℓtd +
∑
i<d φ(aℓfi)ti = 0.

Note that each φ(aℓfi) is in the image of φa. The result follows from Algebra,
Lemma 10.123.1. □

Lemma 115.5.2.00PR Let φ : R→ S be a ring map. Suppose t ∈ S satisfies the relation
φ(a0) + φ(a1)t + . . . + φ(an)tn = 0. Set un = φ(an), un−1 = unt + φ(an−1), and
so on till u1 = u2t+φ(a1). Then all of un, un−1, . . . , u1 and unt, un−1t, . . . , u1t are
integral over R, and the ideals (φ(a0), . . . , φ(an)) and (un, . . . , u1) of S are equal.
Proof. We prove this by induction on n. As un = φ(an) we conclude from Algebra,
Lemma 10.123.1 that unt is integral over R. Of course un = φ(an) is integral over
R. Then un−1 = unt + φ(an−1) is integral over R (see Algebra, Lemma 10.36.7)
and we have

φ(a0) + φ(a1)t+ . . .+ φ(an−1)tn−1 + un−1t
n−1 = 0.

Hence by the induction hypothesis applied to the map S′ → S where S′ is the
integral closure of R in S and the displayed equation we see that un−1, . . . , u1 and
un−1t, . . . , u1t are all in S′ too. The statement on the ideals is immediate from the
shape of the elements and the fact that u1t+ φ(a0) = 0. □

https://stacks.math.columbia.edu/tag/0EFZ
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Lemma 115.5.3.00PS Let φ : R→ S be a ring map. Suppose t ∈ S satisfies the relation
φ(a0) + φ(a1)t + . . . + φ(an)tn = 0. Let J ⊂ S be an ideal such that for at least
one i we have φ(ai) ̸∈ J . Then there exists a u ∈ S, u ̸∈ J such that both u and ut
are integral over R.

Proof. This is immediate from Lemma 115.5.2 since one of the elements ui will not
be in J . □

The following two lemmas are a way of describing closed subschemes of P1
R cut out

by one (nondegenerate) equation.

Lemma 115.5.4.00Q4 Let R be a ring. Let F (X,Y ) ∈ R[X,Y ] be homogeneous of
degree d. Assume that for every prime p of R at least one coefficient of F is not in
p. Let S = R[X,Y ]/(F ) as a graded ring. Then for all n ≥ d the R-module Sn is
finite locally free of rank d.

Proof. The R-module Sn has a presentation
R[X,Y ]n−d → R[X,Y ]n → Sn → 0.

Thus by Algebra, Lemma 10.79.4 it is enough to show that multiplication by F
induces an injective map κ(p)[X,Y ] → κ(p)[X,Y ] for all primes p. This is clear
from the assumption that F does not map to the zero polynomial mod p. The
assertion on ranks is clear from this as well. □

Lemma 115.5.5.00Q5 Let k be a field. Let F,G ∈ k[X,Y ] be homogeneous of degrees
d, e. Assume F,G relatively prime. Then multiplication by G is injective on S =
k[X,Y ]/(F ).

Proof. This is one way to define “relatively prime”. If you have another definition,
then you can show it is equivalent to this one. □

Lemma 115.5.6.00Q6 Let R be a ring. Let F (X,Y ) ∈ R[X,Y ] be homogeneous of
degree d. Let S = R[X,Y ]/(F ) as a graded ring. Let p ⊂ R be a prime such that
some coefficient of F is not in p. There exists an f ∈ R f ̸∈ p, an integer e, and a
G ∈ R[X,Y ]e such that multiplication byG induces isomorphisms (Sn)f → (Sn+e)f
for all n ≥ d.

Proof. During the course of the proof we may replace R by Rf for f ∈ R, f ̸∈ p
(finitely often). As a first step we do such a replacement such that some coefficient
of F is invertible in R. In particular the modules Sn are now locally free of rank
d for n ≥ d by Lemma 115.5.4. Pick any G ∈ R[X,Y ]e such that the image of
G in κ(p)[X,Y ] is relatively prime to the image of F (X,Y ) (this is possible for
some e). Apply Algebra, Lemma 10.79.4 to the map induced by multiplication by
G from Sd → Sd+e. By our choice of G and Lemma 115.5.5 we see Sd ⊗ κ(p) →
Sd+e ⊗ κ(p) is bijective. Thus, after replacing R by Rf for a suitable f we may
assume that G : Sd → Sd+e is bijective. This in turn implies that the image of G
in κ(p′)[X,Y ] is relatively prime to the image of F for all primes p′ of R. And then
by Algebra, Lemma 10.79.4 again we see that all the maps G : Sd → Sd+e, n ≥ d
are isomorphisms. □

Remark 115.5.7.00Q7 Let R be a ring. Suppose that we have F ∈ R[X,Y ]d and
G ∈ R[X,Y ]e such that, setting S = R[X,Y ]/(F ) we have (1) Sn is finite locally
free of rank d for all n ≥ d, and (2) multiplication by G defines isomorphisms

https://stacks.math.columbia.edu/tag/00PS
https://stacks.math.columbia.edu/tag/00Q4
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Sn → Sn+e for all n ≥ d. In this case we may define a finite, locally free R-algebra
A as follows:

(1) as an R-module A = Sed, and
(2) multiplication A × A → A is given by the rule that H1H2 = H3 if and

only if GdH3 = H1H2 in S2ed.
This makes sense because multiplication by Gd induces a bijective map Sde → S2de.
It is easy to see that this defines a ring structure. Note the confusing fact that the
element Gd defines the unit element of the ring A.

Lemma 115.5.8.00Q3 Let R be a ring, let f ∈ R. Suppose we have S, S′ and the solid
arrows forming the following commutative diagram of rings

S′′

!!

��

R //

==

��

S

��
Rf // S′ // Sf

Assume that Rf → S′ is finite. Then we can find a finite ring map R → S′′ and
dotted arrows as in the diagram such that S′ = (S′′)f .

Proof. Namely, suppose that S′ is generated by xi over Rf , i = 1, . . . , w. Let
Pi(t) ∈ Rf [t] be a monic polynomial such that Pi(xi) = 0. Say Pi has degree
di > 0. Write Pi(t) = tdi +

∑
j<di

(aij/fn)tj for some uniform n. Also write the
image of xi in Sf as gi/fn for suitable gi ∈ S. Then we know that the element ξi =
fndigdii +

∑
j<di

fn(di−j)aijg
j
i of S is killed by a power of f . Hence upon increasing

n to n′, which replaces gi by fn′−ngi we may assume ξi = 0. Then S′ is generated
by the elements fnxi, each of which is a zero of the monic polynomial Qi(t) = tdi +∑
j<di

fn(di−j)aijt
j with coefficients in R. Also, by construction Qi(fngi) = 0 in S.

Thus we get a finite R-algebra S′′ = R[z1, . . . , zw]/(Q1(z1), . . . , Qw(zw)) which fits
into a commutative diagram as above. The map α : S′′ → S maps zi to fngi and
the map β : S′′ → S′ maps zi to fnxi. It may not yet be the case that β induces an
isomorphism (S′′)f ∼= S′. For the moment we only know that this map is surjective.
The problem is that there could be elements h/fn ∈ (S′′)f which map to zero in S′

but are not zero. In this case β(h) is an element of S such that fNβ(h) = 0 for some
N . Thus fNh is an element ot the ideal J = {h ∈ S′′ | α(h) = 0 and β(h) = 0} of
S′′. OK, and it is easy to see that S′′/J does the job. □

115.6. Formally smooth ring maps

07GD
Lemma 115.6.1.00TO Let R be a ring. Let S be a R-algebra. If S is of finite presentation
and formally smooth over R then S is smooth over R.

Proof. See Algebra, Proposition 10.138.13. □

Remark 115.6.2.0AKC This tag used to refer to an equation in the proof of Algebraization
of Formal Spaces, Proposition 88.6.3 which became unused because of a rearrange-
ment of the material.

https://stacks.math.columbia.edu/tag/00Q3
https://stacks.math.columbia.edu/tag/00TO
https://stacks.math.columbia.edu/tag/0AKC
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Remark 115.6.3.0AKD This tag used to refer to an equation in the proof of Algebraization
of Formal Spaces, Proposition 88.6.3 which became unused because of a rearrange-
ment of the material.

Remark 115.6.4.0AKE This tag used to refer to an equation in the proof of Algebraization
of Formal Spaces, Proposition 88.6.3 which became unused because of a rearrange-
ment of the material.

Remark 115.6.5.0AKF This tag used to refer to an equation in the proof of Algebraization
of Formal Spaces, Proposition 88.6.3 which became unused because of a rearrange-
ment of the material.

Remark 115.6.6.0AM9 This tag used to refer to an equation in the proof of Algebraization
of Formal Spaces, Lemma 88.9.1 which became unused because of a rearrangement
of the material.

Lemma 115.6.7.0AK9 Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let t be the
minimal number of generators for I. Let C be a Noetherian I-adically complete
A-algebra. There exists an integer d ≥ 0 depending only on I ⊂ A → C with the
following property: given

(1) c ≥ 0 and B in Algebraization of Formal Spaces, Equation (88.2.0.2) such
that for a ∈ Ic multiplication by a on NL∧

B/A is zero in D(B),
(2) an integer n > 2tmax(c, d),
(3) an A/In-algebra map ψn : B/InB → C/InC,

there exists a map φ : B → C of A-algebras such that ψn mod Im−c = φ mod Im−c

with m = ⌊nt ⌋.

Proof. This lemma has been obsoleted by the stronger Algebraization of Formal
Spaces, Lemma 88.5.3. In fact, we will deduce the lemma from it.

Let I ⊂ A → C be given as in the statement above. Denote d(GrI(C)) and
q(GrI(C)) the integers found in Local Cohomology, Section 51.22. Observe that t
is an upper bound for the minimal number of generators of IC and hence we have
d(GrI(C))+1 ≤ t, see discussion in Local Cohomology, Section 51.22. We may and
do assume t ≥ 1 since otherwise the lemma does not say anything. We claim that
the lemma is true with

d = q(GrI(C))

Namely, suppose that c, B, n, ψn are as in the statement above. Then we see that

n > 2tmax(c, d)⇒ n ≥ 2tc+ 1⇒ n ≥ 2(d(GrI(C)) + 1)c+ 1

On the other hand, we have

n > 2tmax(c, d)⇒ n > t(c+ d)⇒ n ≥ q(C) + tc ≥ q(GrI(C)) + (d(GrI(C)) + 1)c

Hence the assumptions of Algebraization of Formal Spaces, Lemma 88.5.3 are sat-
isfied and we obtain an A-algebra homomorphism φ : B → C which is congruent

https://stacks.math.columbia.edu/tag/0AKD
https://stacks.math.columbia.edu/tag/0AKE
https://stacks.math.columbia.edu/tag/0AKF
https://stacks.math.columbia.edu/tag/0AM9
https://stacks.math.columbia.edu/tag/0AK9
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with ψn module In−(d(GrI(C))+1)cC. Since

n− (d(GrI(C)) + 1)c = n

t
+ (t− 1)n

t
− (d(GrI(C)) + 1)c

≥ n

t
+ (d(GrI(C))n

t
− (d(GrI(C)) + 1)c

>
n

t
+ d(GrI(C))2tc

t
− (d(GrI(C)) + 1)c

= n

t
+ 2d(GrI(C))c− (d(GrI(C)) + 1)c

= n

t
+ d(GrI(C))c− c

≥ m− c

we see that we have the congruence of φ and ψn module Im−cC as desired. □

115.7. Sites and sheaves

0EGM
Remark 115.7.1 (No map from lower shriek to pushforward).0931 Let U be an object
of a site C. For any abelian sheaf G on C/U one may wonder whether there is a
canonical map

c : jU !G −→ jU∗G
To construct such a thing is the same as constructing a map j−1

U jU !G → G. Note
that restriction commutes with sheafification. Thus we can use the presheaf of
Modules on Sites, Lemma 18.19.2. Hence it suffices to define for V/U a map⊕

φ∈MorC(V,U)
G(V φ−→ U) −→ G(V/U)

compatible with restrictions. It looks like we can take the which is zero on all
summands except for the one where φ is the structure morphism φ0 : V → U
where we take 1. However, this isn’t compatible with restriction mappings: namely,
if α : V ′ → V is a morphism of C, then denote V ′/U the object of C/U with structure
morphism φ′

0 = φ0 ◦ α. We need to check that the diagram⊕
φ∈MorC(V,U) G(V φ−→ U)

��

// G(V/U)

��⊕
φ′∈MorC(V ′,U) G(V ′ φ′

−→ U) // G(V ′/U)

commutes. The problem here is that there may be a morphism φ : V → U different
from φ0 such that φ ◦ α = φ′

0. Thus the left vertical arrow will send the summand
corresponding to φ into the summand on which the lower horizontal arrow is equal
to 1 and almost surely the diagram doesn’t commute.

115.8. Cohomology

0BM0 Obsolete lemmas about cohomology.

Lemma 115.8.1.0EH4 Let I be an ideal of a ring A. Let X be a scheme over Spec(A).
Let

. . .→ F3 → F2 → F1

https://stacks.math.columbia.edu/tag/0931
https://stacks.math.columbia.edu/tag/0EH4


115.8. COHOMOLOGY 7453

be an inverse system of OX -modules such that Fn = Fn+1/I
nFn+1. Assume⊕

n≥0
H1(X, InFn+1)

satisfies the ascending chain condition as a graded
⊕

n≥0 I
n/In+1-module. Then

the inverse system Mn = Γ(X,Fn) satisfies the Mittag-Leffler condition.

Proof. This is a special case of the more general Cohomology, Lemma 20.35.1. □

Lemma 115.8.2.0EH5 Let I be an ideal of a ring A. Let X be a scheme over Spec(A).
Let

. . .→ F3 → F2 → F1

be an inverse system of OX -modules such that Fn = Fn+1/I
nFn+1. Given n define

H1
n =

⋂
m≥n

Im
(
H1(X, InFm+1)→ H1(X, InFn+1)

)
If
⊕
H1
n satisfies the ascending chain condition as a graded

⊕
n≥0 I

n/In+1-module,
then the inverse system Mn = Γ(X,Fn) satisfies the Mittag-Leffler condition.

Proof. This is a special case of the more general Cohomology, Lemma 20.35.2. □

Lemma 115.8.3.0EI7 Let I be a finitely generated ideal of a ring A. Let X be a scheme
over Spec(A). Let

. . .→ F3 → F2 → F1

be an inverse system of OX -modules such that Fn = Fn+1/I
nFn+1. Assume⊕

n≥0
H0(X, InFn+1)

satisfies the ascending chain condition as a graded
⊕

n≥0 I
n/In+1-module. Then

the limit topology on M = lim Γ(X,Fn) is the I-adic topology.

Proof. This is a special case of the more general Cohomology, Lemma 20.35.3. □

Lemma 115.8.4.06YW Let (Sh(C),OC) be a ringed topos. For any complex ofOC-modules
G• there exists a quasi-isomorphism K• → G• such that f∗K• is a K-flat complex
of OD-modules for any morphism f : (Sh(D),OD)→ (Sh(C),OC) of ringed topoi.

Proof. This follows from Cohomology on Sites, Lemmas 21.17.11 and 21.18.1. □

Remark 115.8.5.06YX This remark used to discuss what we know about pullbacks of
K-flat complexes being K-flat or not, but is now obsoleted by Cohomology on Sites,
Lemma 21.18.1.

The following lemma computes the cohomology sheaves of the derived limit in a
special case.

Lemma 115.8.6.0A08 Let (C,O) be a ringed site. Let (Kn) be an inverse system of
objects of D(O). Let B ⊂ Ob(C) be a subset. Let d ∈ N. Assume

(1) Kn is an object of D+(O) for all n,
(2) for q ∈ Z there exists n(q) such that Hq(Kn+1)→ Hq(Kn) is an isomor-

phism for n ≥ n(q),
(3) every object of C has a covering whose members are elements of B,
(4) for every U ∈ B we have Hp(U,Hq(Kn)) = 0 for p > d and all q.

Then we have Hm(R limKn) = limHm(Kn) for all m ∈ Z.

https://stacks.math.columbia.edu/tag/0EH5
https://stacks.math.columbia.edu/tag/0EI7
https://stacks.math.columbia.edu/tag/06YW
https://stacks.math.columbia.edu/tag/06YX
https://stacks.math.columbia.edu/tag/0A08
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Proof. Set K = R limKn. Let U ∈ B. For each n there is a spectral sequence
Hp(U,Hq(Kn))⇒ Hp+q(U,Kn)

which converges as Kn is bounded below, see Derived Categories, Lemma 13.21.3.
If we fix m ∈ Z, then we see from our assumption (4) that only Hp(U,Hq(Kn))
contribute to Hm(U,Kn) for 0 ≤ p ≤ d and m − d ≤ q ≤ m. By assumption
(2) this implies that Hm(U,Kn+1) → Hm(U,Kn) is an isomorphism as soon as
n ≥ max n(m), . . . , n(m− d). The functor RΓ(U,−) commutes with derived limits
by Injectives, Lemma 19.13.6. Thus we have

Hm(U,K) = Hm(R limRΓ(U,Kn))
On the other hand we have just seen that the complexes RΓ(U,Kn) have eventually
constant cohomology groups. Thus by More on Algebra, Remark 15.86.10 we find
that Hm(U,K) is equal to Hm(U,Kn) for all n ≫ 0 for some bound independent
of U ∈ B. Pick such an n. Finally, recall that Hm(K) is the sheafification of
the presheaf U 7→ Hm(U,K) and Hm(Kn) is the sheafification of the presheaf
U 7→ Hm(U,Kn). On the elements of B these presheaves have the same values.
Therefore assumption (3) guarantees that the sheafifications are the same too. The
lemma follows. □

Lemma 115.8.7.0D7P In Simplicial Spaces, Situation 85.3.3 let a0 be an augmentation
towards a site D as in Simplicial Spaces, Remark 85.4.1. Suppose given strictly full
weak Serre subcategories

A ⊂ Ab(D), An ⊂ Ab(Cn)
Then

(1) the collection of abelian sheaves F on Ctotal whose restriction to Cn is in
An for all n is a strictly full weak Serre subcategory Atotal ⊂ Ab(Ctotal).

If a−1
n sends A into An for all n, then

(2) a−1 sends A into Atotal and
(3) a−1 sends DA(D) into DAtotal

(Ctotal).
If Rqan,∗ sends An into A for all n, q, then

(4) Rqa∗ sends Atotal into A for all q, and
(5) Ra∗ sends D+

Atotal
(Ctotal) into D+

A(D).

Proof. The only interesting assertions are (4) and (5). Part (4) follows from
the spectral sequence in Simplicial Spaces, Lemma 85.9.3 and Homology, Lemma
12.24.11. Then part (5) follows by considering the spectral sequence associated to
the canonical filtration on an object K of D+

Atotal
(Ctotal) given by truncations. We

omit the details. □

Remark 115.8.8.01DY This tag used to refer to a section of the chapter on cohomology
listing topics to be treated.

Remark 115.8.9.01FS This tag used to refer to a section of the chapter on cohomology
listing topics to be treated.

Remark 115.8.10.0DCV This tag used to refer to the special case of Cohomology on
Sites, Lemma 21.30.3 pertaining to the situation described in Cohomology on Sites,
Lemma 21.31.9.

https://stacks.math.columbia.edu/tag/0D7P
https://stacks.math.columbia.edu/tag/01DY
https://stacks.math.columbia.edu/tag/01FS
https://stacks.math.columbia.edu/tag/0DCV
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Remark 115.8.11.0DCW This tag used to refer to the special case of Cohomology on
Sites, Lemma 21.30.4 pertaining to the situation described in Cohomology on Sites,
Lemma 21.31.9.
Remark 115.8.12.0DCX This tag used to refer to the special case of Cohomology on
Sites, Lemma 21.30.7 pertaining to the situation described in Cohomology on Sites,
Lemma 21.31.9.
Remark 115.8.13.0DDP This tag used to refer to the special case of Cohomology on
Sites, Lemma 21.30.3 pertaining to the situation described in Étale Cohomology,
Lemma 59.100.5.
Remark 115.8.14.0DDQ This tag used to refer to the special case of Cohomology on
Sites, Lemma 21.30.4 pertaining to the situation described in Étale Cohomology,
Lemma 59.100.5.
Remark 115.8.15.0DDR This tag used to refer to the special case of Cohomology on
Sites, Lemma 21.30.7 pertaining to the situation described in Étale Cohomology,
Lemma 59.100.5.
Remark 115.8.16.0DDZ This tag used to refer to the special case of Cohomology on
Sites, Lemma 21.30.3 pertaining to the situation described in Étale Cohomology,
Lemma 59.102.4.
Remark 115.8.17.0DE0 This tag used to refer to the special case of Cohomology on
Sites, Lemma 21.30.4 pertaining to the situation described in Étale Cohomology,
Lemma 59.102.4.
Remark 115.8.18.0DE1 This tag used to refer to the special case of Cohomology on
Sites, Lemma 21.30.5 pertaining to the situation described in Étale Cohomology,
Lemma 59.102.4.
Remark 115.8.19.0DE2 This tag used to refer to the special case of Cohomology on
Sites, Lemma 21.30.6 pertaining to the situation described in Étale Cohomology,
Lemma 59.102.4.
Remark 115.8.20.0DE3 This tag used to refer to the special case of Cohomology on
Sites, Lemma 21.30.7 pertaining to the situation described in Étale Cohomology,
Lemma 59.102.4.
Remark 115.8.21.0EWB This tag used to refer to the special case of Cohomology on
Sites, Lemma 21.30.3 pertaining to the situation described in Étale Cohomology,
Lemma 59.103.4.
Remark 115.8.22.0EWC This tag used to refer to the special case of Cohomology on
Sites, Lemma 21.30.4 pertaining to the situation described in Étale Cohomology,
Lemma 59.103.4.
Remark 115.8.23.0EWD This tag used to refer to the special case of Cohomology on
Sites, Lemma 21.30.5 pertaining to the situation described in Étale Cohomology,
Lemma 59.103.4.
Remark 115.8.24.0EWE This tag used to refer to the special case of Cohomology on
Sites, Lemma 21.30.7 pertaining to the situation described in Étale Cohomology,
Lemma 59.103.4.

https://stacks.math.columbia.edu/tag/0DCW
https://stacks.math.columbia.edu/tag/0DCX
https://stacks.math.columbia.edu/tag/0DDP
https://stacks.math.columbia.edu/tag/0DDQ
https://stacks.math.columbia.edu/tag/0DDR
https://stacks.math.columbia.edu/tag/0DDZ
https://stacks.math.columbia.edu/tag/0DE0
https://stacks.math.columbia.edu/tag/0DE1
https://stacks.math.columbia.edu/tag/0DE2
https://stacks.math.columbia.edu/tag/0DE3
https://stacks.math.columbia.edu/tag/0EWB
https://stacks.math.columbia.edu/tag/0EWC
https://stacks.math.columbia.edu/tag/0EWD
https://stacks.math.columbia.edu/tag/0EWE
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Remark 115.8.25.03TU This tag used to be in the chapter on étale cohomology, but
is no longer suitable there because of a reorganization. The content of the tag
was the following: Étale Cohomology, Lemma 59.77.3 can be used to prove that if
f : X → Y is a separated, finite type morphism of schemes and Y is Noetherian,
then Rf! induces a functor Dctf (Xétale,Λ) → Dctf (Yétale,Λ). An example of this
argument, when Y is the spectrum of a field and X is a curve is given in The Trace
Formula, Proposition 64.13.1.

Lemma 115.8.26.0F5D Let f : X → Y be a locally quasi-finite morphism of schemes.
There exists a unique functor f ! : Ab(Yétale)→ Ab(Xétale) such that

(1) for any open j : U → X with f ◦ j separated there is a canonical isomor-
phism j! ◦ f ! = (f ◦ j)!, and

(2) these isomorphisms for U ⊂ U ′ ⊂ X are compatible with the isomorphisms
in More Étale Cohomology, Lemma 63.6.3.

Proof. Immediate consequence of More Étale Cohomology, Lemmas 63.6.1 and
63.6.3. □

Proposition 115.8.27.0F5E Let f : X → Y be a locally quasi-finite morphism. There ex-
ist adjoint functors f! : Ab(Xétale) → Ab(Yétale) and f ! : Ab(Yétale) → Ab(Xétale)
with the following properties

(1) the functor f ! is the one constructed in More Étale Cohomology, Lemma
63.6.1,

(2) for any open j : U → X with f ◦ j separated there is a canonical isomor-
phism f! ◦ j! = (f ◦ j)!, and

(3) these isomorphisms for U ⊂ U ′ ⊂ X are compatible with the isomorphisms
in More Étale Cohomology, Lemma 63.3.13.

Proof. See More Étale Cohomology, Sections 63.4 and 63.6. □

Lemma 115.8.28.0F5G Let f : X → Y be a morphism of schemes which is locally quasi-
finite. For an abelian group A and a geometric point y : Spec(k) → Y we have
f !(y∗A) =

∏
f(x)=y x∗A.

Proof. Follows from the corresponding statement in More Étale Cohomology, Lemma
63.6.1. □

Lemma 115.8.29.0F5K Let f : X → Y and g : Y → Z be composable locally quasi-finite
morphisms of schemes. Then g! ◦ f! = (g ◦ f)! and f ! ◦ g! = (g ◦ f)!.

Proof. Combination of More Étale Cohomology, Lemmas 63.4.12 and 63.6.3. □

115.9. Differential graded algebra

0FU5
Lemma 115.9.1.0BYY Let (A,d) and (B, d) be differential graded algebras. Let N be
a differential graded (A,B)-bimodule with property (P). Let M be a differential
graded A-module with property (P). Then Q = M ⊗A N is a differential graded
B-module which represents M ⊗L

A N in D(B) and which has a filtration

0 = F−1Q ⊂ F0Q ⊂ F1Q ⊂ . . . ⊂ Q

https://stacks.math.columbia.edu/tag/03TU
https://stacks.math.columbia.edu/tag/0F5D
https://stacks.math.columbia.edu/tag/0F5E
https://stacks.math.columbia.edu/tag/0F5G
https://stacks.math.columbia.edu/tag/0F5K
https://stacks.math.columbia.edu/tag/0BYY
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by differential graded submodules such that Q =
⋃
FpQ, the inclusions FiQ →

Fi+1Q are admissible monomorphisms, the quotients Fi+1Q/FiQ are isomorphic as
differential graded B-modules to a direct sum of (A⊗R B)[k].

Proof. Choose filtrations F• on M and N . Then consider the filtration on Q =
M ⊗A N given by

Fn(Q) =
∑

i+j=n
Fi(M)⊗A Fj(N)

This is clearly a differential graded B-submodule. We see that

Fn(Q)/Fn−1(Q) =
⊕

i+j=n
Fi(M)/Fi−1(M)⊗A Fj(N)/Fj−1(N)

for example because the filtration of M is split in the category of graded A-modules.
Since by assumption the quotients on the right hand side are isomorphic to direct
sums of shifts of A and A⊗R B and since A⊗A (A⊗R B) = A⊗R B, we conclude
that the left hand side is a direct sum of shifts of A⊗RB as a differential graded B-
module. (Warning: Q does not have a structure of (A,B)-bimodule.) This proves
the first statement of the lemma. The second statement is immediate from the
definition of the functor in Differential Graded Algebra, Lemma 22.33.2. □

115.10. Simplicial methods

08Q0
Lemma 115.10.1.01AA Assumptions and notation as in Simplicial, Lemma 14.32.1.
There exists a section g : U → V to the morphism f and the composition g ◦ f
is homotopy equivalent to the identity on V . In particular, the morphism f is a
homotopy equivalence.

Proof. Immediate from Simplicial, Lemmas 14.32.1 and 14.30.8. □

Lemma 115.10.2.018W Let C be a category with finite coproducts and finite limits. Let
X be an object of C. Let k ≥ 0. The canonical map

Hom(∆[k], X) −→ cosk1sk1 Hom(∆[k], X)
is an isomorphism.

Proof. For any simplicial object V we have
Mor(V, cosk1sk1 Hom(∆[k], X)) = Mor(sk1V, sk1 Hom(∆[k], X))

= Mor(i1!sk1V,Hom(∆[k], X))
= Mor(i1!sk1V ×∆[k], X)

The first equality by the adjointness of sk and cosk, the second equality by the
adjointness of i1! and sk1, and the first equality by Simplicial, Definition 14.17.1
where the last X denotes the constant simplicial object with value X. By Simplicial,
Lemma 14.20.2 an element in this set depends only on the terms of degree 0 and
1 of i1!sk1V × ∆[k]. These agree with the degree 0 and 1 terms of V × ∆[k], see
Simplicial, Lemma 14.21.3. Thus the set above is equal to Mor(V × ∆[k], X) =
Mor(V,Hom(∆[k], X)). □

Lemma 115.10.3.018X Let C be a category. Let X be an object of C such that the self
products X × . . . ×X exist. Let k ≥ 0 and let C[k] be as in Simplicial, Example
14.5.6. With notation as in Simplicial, Lemma 14.15.2 the canonical map

Hom(C[k], X)1 −→ (cosk0sk0 Hom(C[k], X))1

https://stacks.math.columbia.edu/tag/01AA
https://stacks.math.columbia.edu/tag/018W
https://stacks.math.columbia.edu/tag/018X
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is identified with the map ∏
α:[k]→[1]

X −→ X ×X

which is the projection onto the factors where α is a constant map.
Proof. This is shown in the proof of Hypercoverings, Lemma 25.7.3. □

115.11. Results on schemes

07VA Lemmas that seem superfluous.
Lemma 115.11.1.03H1 Let (R,m, κ) be a local ring. Let X ⊂ Pn

R be a closed subscheme.
Assume that R = Γ(X,OX). Then the special fibre Xk is geometrically connected.
Proof. This is a special case of More on Morphisms, Theorem 37.53.5. □

Lemma 115.11.2.01YJ Let X be a Noetherian scheme. Let Z0 ⊂ X be an irreducible
closed subset with generic point ξ. Let P be a property of coherent sheaves on X
such that

(1) For any short exact sequence of coherent sheaves if two out of three of
them have property P then so does the third.

(2) If P holds for a direct sum of coherent sheaves then it holds for both.
(3) For every integral closed subscheme Z ⊂ Z0 ⊂ X, Z ̸= Z0 and every

quasi-coherent sheaf of ideals I ⊂ OZ we have P for (Z → X)∗I.
(4) There exists some coherent sheaf G on X such that

(a) Supp(G) = Z0,
(b) Gξ is annihilated by mξ, and
(c) property P holds for G.

Then property P holds for every coherent sheaf F on X whose support is contained
in Z0.
Proof. The proof is a variant on the proof of Cohomology of Schemes, Lemma
30.12.5. In exactly the same manner as in that proof we see that any coherent
sheaf whose support is strictly contained in Z0 has property P.
Consider a coherent sheaf G as in (3). By Cohomology of Schemes, Lemma 30.12.2
there exists a sheaf of ideals I on Z0 and a short exact sequence

0→ ((Z0 → X)∗I)⊕r → G → Q→ 0
where the support of Q is strictly contained in Z0. In particular r > 0 and I
is nonzero because the support of G is equal to Z. Since Q has property P we
conclude that also ((Z0 → X)∗I)⊕r has property P. By (2) we deduce property P
for (Z0 → X)∗I. Slotting this into the proof of Cohomology of Schemes, Lemma
30.12.5 at the appropriate point gives the lemma. Some details omitted. □

Lemma 115.11.3.01YK Let X be a Noetherian scheme. Let P be a property of coherent
sheaves on X such that

(1) For any short exact sequence of coherent sheaves if two out of three of
them have property P then so does the third.

(2) If P holds for a direct sum of coherent sheaves then it holds for both.
(3) For every integral closed subscheme Z ⊂ X with generic point ξ there

exists some coherent sheaf G such that
(a) Supp(G) = Z,

https://stacks.math.columbia.edu/tag/03H1
https://stacks.math.columbia.edu/tag/01YJ
https://stacks.math.columbia.edu/tag/01YK
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(b) Gξ is annihilated by mξ, and
(c) property P holds for G.

Then property P holds for every coherent sheaf on X.

Proof. This follows from Lemma 115.11.2 in exactly the same way that Cohomology
of Schemes, Lemma 30.12.6 follows from Cohomology of Schemes, Lemma 30.12.5.

□

Lemma 115.11.4.01XP Let X be a scheme. Let L be an invertible OX -module. Let
s ∈ Γ(X,L) be a section. Let F ′ ⊂ F be quasi-coherent OX -modules. Assume that

(1) X is quasi-compact,
(2) F is of finite type, and
(3) F ′|Xs = F|Xs .

Then there exists an n ≥ 0 such that multiplication by sn on F factors through F ′.

Proof. In other words we claim that snF ⊂ F ′ ⊗OX
L⊗n for some n ≥ 0. In other

words, we claim that the quotient map F → F/F ′ becomes zero after multiplying
by a power of s. This follows from Properties, Lemma 28.17.3. □

Lemma 115.11.5.0CC3 Let f : X → Y be a morphism schemes. Assume
(1) X and Y are integral schemes,
(2) f is locally of finite type and dominant,
(3) f is either quasi-compact or separated,
(4) f is generically finite, i.e., one of (1) – (5) of Morphisms, Lemma 29.51.7

holds.
Then there is a nonempty open V ⊂ Y such that f−1(V )→ V is finite locally free
of degree deg(X/Y ). In particular, the degrees of the fibres of f−1(V ) → V are
bounded by deg(X/Y ).

Proof. We may choose V such that f−1(V )→ V is finite. Then we may shrink V
and assume that f−1(V ) → V is flat and of finite presentation by generic flatness
(Morphisms, Proposition 29.27.1). Then the morphism is finite locally free by
Morphisms, Lemma 29.48.2. Since V is irreducible the morphism has a fixed degree.
The final statement follows from this and Morphisms, Lemma 29.57.3. □

115.12. Derived categories of varieties

0GXZ Some lemma which were originally part of the chapter on derived categories of
varieties but are no longer needed.

Lemma 115.12.1.0G04 Let k be a field. Let X be a separated scheme of finite type
over k which is regular. Let F : Dperf (OX) → Dperf (OX) be a k-linear exact
functor. Assume for every coherent OX -module F with dim(Supp(F)) = 0 there is
an isomorphism of k-vector spaces

HomX(F ,M) = HomX(F , F (M))
functorial in M in Dperf (OX). Then there exists an automorphism f : X → X over
k which induces the identity on the underlying topological space1 and an invertible
OX -module L such that F and F ′(M) = f∗M ⊗L

OX
L are siblings.

1This often forces f to be the identity, see Varieties, Lemma 33.32.1.

https://stacks.math.columbia.edu/tag/01XP
https://stacks.math.columbia.edu/tag/0CC3
https://stacks.math.columbia.edu/tag/0G04
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Proof. By Derived Categories of Varieties, Lemma 57.11.2 we conclude that for ev-
ery coherent OX -module F whose support is a closed point there are isomorphisms

H0(X,M ⊗L
OX
F) = H0(X,F (M)⊗L

OX
F)

functorial in M .

Let x ∈ X be a closed point and apply the above with F = Ox the skyscraper sheaf
with value κ(x) at x. We find

dimκ(x) TorOX,x
p (Mx, κ(x)) = dimκ(x) TorOX,x

p (F (M)x, κ(x))

for all p ∈ Z. In particular, if Hi(M) = 0 for i > 0, then Hi(F (M)) = 0 for i > 0
by Derived Categories of Varieties, Lemma 57.11.3.

If E is locally free of rank r, then F (E) is locally free of rank r. This is true because
a perfect complex K over OX,x with

dimκ(x) TorOX,x

i (K,κ(x)) =
{
r if i = 0
0 if i ̸= 0

is equal to a free module of rank r placed in degree 0. See for example More on
Algebra, Lemma 15.75.6.

If M is supported on a closed subscheme Z ⊂ X, then F (M) is also supported on
Z. This is clear because we will have M ⊗L

OX
Ox = 0 for x ̸∈ Z and hence the same

will be true for F (M) and hence we get the conclusion from Derived Categories of
Varieties, Lemma 57.11.3.

In particular F (Ox) is supported at {x}. Let i ∈ Z be the minimal integer such
that Hi(Ox) ̸= 0. We know that i ≤ 0. If i < 0, then there is a morphism
Ox[−i] → F (Ox) which contradicts the fact that all morphisms Ox[−i] → Ox are
zero. Thus F (Ox) = H[0] where H is a skyscraper sheaf at x.

Let G be a coherent OX -module with dim(Supp(G)) = 0. Then there exists a
filtration

0 = G0 ⊂ G1 ⊂ . . . ⊂ Gn = G
such that for n ≥ i ≥ 1 the quotient Gi/Gi−1 is isomorphic to Oxi for some closed
point xi ∈ X. Then we get distinguished triangles

F (Gi−1)→ F (Gi)→ F (Oxi)

and using induction we find that F (Gi) is a coherent sheaf placed in degree 0.

Let G be a coherent OX -module. We know that Hi(F (G)) = 0 for i > 0. To get
a contradiction assume that Hi(F (G)) is nonzero for some i < 0. We choose i
minimal with this property so that we have a morphism Hi(F (G))[−i] → F (G) in
Dperf (OX). Choose a closed point x ∈ X in the support of Hi(F (G)). By More on
Algebra, Lemma 15.100.2 there exists an n > 0 such that

Hi(F (G))x ⊗OX,x
OX,x/mnx −→ TorOX,x

−i (F (G)x,OX,x/mnx)

is nonzero. Next, we take m ≥ 1 and we consider the short exact sequence

0→ mmx G → G → G/mmx G → 0
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By the above we know that F (G/mmx G) is a sheaf placed in degree 0. Hence
Hi(F (mmx G))→ Hi(F (G)) is an isomorphism. Consider the commutative diagram

Hi(F (mmx G))x ⊗OX,x
OX,x/mnx //

��

TorOX,x

−i (F (mmx G)x,OX,x/mnx)

��
Hi(F (G))x ⊗OX,x

OX,x/mnx // TorOX,x

−i (F (G)x,OX,x/mnx)

Since the left vertical arrow is an isomorphism and the bottom arrow is nonzero,
we conclude that the right vertical arrow is nonzero for all m ≥ 1. On the other
hand, by the first paragraph of the proof, we know this arrow is isomorphic to the
arrow

TorOX,x

−i (mmx Gx,OX,x/mnx) −→ TorOX,x

−i (Gx,OX,x/mnx)
However, this arrow is zero for m≫ n by More on Algebra, Lemma 15.102.2 which
is the contradiction we’re looking for.

Thus we know that F preserves coherent modules. By Derived Categories of Vari-
eties, Lemma 57.12.2 we find F is a sibling to the Fourier-Mukai functor F ′ given
by a coherent OX×X -module K flat over X via pr1 and finite over X via pr2. Since
F (OX) is an invertible OX -module L placed in degree 0 we see that

L ∼= F (OX) ∼= F ′(OX) ∼= pr2,∗K

Thus by Functors and Morphisms, Lemma 56.7.6 there is a morphism s : X →
X ×X with pr2 ◦ s = idX such that K = s∗L. Set f = pr1 ◦ s. Then we have

F ′(M) = Rpr2,∗(Lpr∗
1K ⊗K)

= Rpr2,∗(Lpr∗
1M ⊗ s∗L)

= Rpr2,∗(Rs∗(Lf∗M ⊗ L))
= Lf∗M ⊗ L

where we have used Derived Categories of Schemes, Lemma 36.22.1 in the third
step. Since for all closed points x ∈ X the module F (Ox) is supported at x, we see
that f induces the identity on the underlying topological space of X. We still have
to show that f is an isomorphism which we will do in the next paragraph.

Let x ∈ X be a closed point. For n ≥ 1 denote Ox,n the skyscaper sheaf at x with
value OX,x/mnx . We have

HomX(Ox,m,Ox,n) ∼= HomX(Ox,m, F (Ox,n)) ∼= HomX(Ox,m, f∗Ox,n ⊗ L)

functorially with respect to OX -module homomorphisms between the Ox,n. (The
first isomorphism exists by assumption and the second isomorphism because F
and F ′ are siblings.) For m ≥ n we have OX,x/mn = HomX(Ox,m,Ox,n) via the
action on Ox,n we conclude that f ♯ : OX,x/mnx → OX,x/mnx is bijective for all n.
Thus f induces isomorphisms on complete local rings at closed points and hence
is étale (Étale Morphisms, Lemma 41.11.3). Looking at closed points we see that
∆f : X → X ×f,X,f X (which is an open immersion as f is étale) is bijective
hence an isomorphism. Hence f is a monomorphism. Finally, we conclude f is an
isomorphism as Descent, Lemma 35.25.1 tells us it is an open immersion. □
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115.13. Representability in the regular proper case

0FYI This section is obsolete because we improved Derived Categories of Varieties, The-
orem 57.6.3 to apply to all proper schemes over a field (whereas before we only
proved it for projective schemes over a field).

Lemma 115.13.1.0FYJ The proof given
here follows the
argument given in
[MS20, Remark 3.4]

Let f : X ′ → X be a proper birational morphism of integral
Noetherian schemes with X regular. The map OX → Rf∗OX′ canonically splits in
D(OX).

Proof. Set E = Rf∗OX′ in D(OX). Observe that E is in Db
Coh(OX) by Derived

Categories of Schemes, Lemma 36.11.3. By Derived Categories of Schemes, Lemma
36.11.8 we find that E is a perfect object of D(OX). Since OX′ is a sheaf of
algebras, we have the relative cup product µ : E ⊗L

OX
E → E by Cohomology,

Remark 20.28.7. Let σ : E ⊗ E∨ → E∨ ⊗ E be the commutativity constraint on
the symmetric monoidal category D(OX) (Cohomology, Lemma 20.50.6). Denote
η : OX → E ⊗ E∨ and ϵ : E∨ ⊗ E → OX the maps constructed in Cohomology,
Example 20.50.7. Then we can consider the map

E
η⊗1−−→ E ⊗ E∨ ⊗ E σ⊗1−−−→ E∨ ⊗ E ⊗ E 1⊗µ−−−→ E∨ ⊗ E ϵ−→ OX

We claim that this map is a one sided inverse to the map in the statement of the
lemma. To see this it suffices to show that the composition OX → OX is the
identity map. This we may do in the generic point of X (or on an open subscheme
of X over which f is an isomorphism). In this case E = OX and µ is the usual
multiplication map and the result is clear. □

Lemma 115.13.2.0FYK Let X be a proper scheme over a field k which is regular. Let
K ∈ Ob(DQCoh(OX)). The following are equivalent

(1) K ∈ Db
Coh(OX) = Dperf (OX), and

(2)
∑
i∈Z dimk ExtiX(E,K) <∞ for all perfect E in D(OX).

Proof. The equality in (1) holds by Derived Categories of Schemes, Lemma 36.11.8.
The implication (1) ⇒ (2) follows from Derived Categories of Varieties, Lemma
57.5.3. The implication (2)⇒ (1) follows from More on Morphisms, Lemma 37.69.6.

□

Lemma 115.13.3.0FYL Let X be a proper scheme over a field k which is regular.
(1) Let F : Dperf (OX)opp → Vectk be a k-linear cohomological functor such

that ∑
n∈Z

dimk F (E[n]) <∞

for all E ∈ Dperf (OX). Then F is isomorphic to a functor of the form
E 7→ HomX(E,K) for some K ∈ Dperf (OX).

(2) Let G : Dperf (OX)→ Vectk be a k-linear homological functor such that∑
n∈Z

dimkG(E[n]) <∞

for all E ∈ Dperf (OX). Then G is isomorphic to a functor of the form
E 7→ HomX(K,E) for some K ∈ Dperf (OX).

Proof. This follows from Derived Categories of Varieties, Theorem 57.6.3 and Lemma
57.6.4. We also give another proof below.

https://stacks.math.columbia.edu/tag/0FYJ
https://stacks.math.columbia.edu/tag/0FYK
https://stacks.math.columbia.edu/tag/0FYL
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Proof of (1). The derived category DQCoh(OX) has direct sums, is compactly gener-
ated, and Dperf (OX) is the full subcategory of compact objects, see Derived Cate-
gories of Schemes, Lemma 36.3.1, Theorem 36.15.3, and Proposition 36.17.1. By De-
rived Categories of Varieties, Lemma 57.6.2 we may assume F (E) = HomX(E,K)
for some K ∈ Ob(DQCoh(OX)). Then it follows that K is in Db

Coh(OX) by Lemma
115.13.2.
Proof of (2). Consider the contravariant functor E 7→ E∨ on Dperf (OX), see
Cohomology, Lemma 20.50.5. This functor is an exact anti-self-equivalence of
Dperf (OX). Hence we may apply part (1) to the functor F (E) = G(E∨) to
find K ∈ Dperf (OX) such that G(E∨) = HomX(E,K). It follows that G(E) =
HomX(E∨,K) = HomX(K∨, E) and we conclude that taking K∨ works. □

115.14. Functor of quotients

08J4
Lemma 115.14.1.082R Let S = Spec(R) be an affine scheme. Let X be an algebraic
space over S. Let qi : F → Qi, i = 1, 2 be surjective maps of quasi-coherent OX -
modules. Assume Q1 flat over S. Let T → S be a quasi-compact morphism of
schemes such that there exists a factorization

FT
q2,T

""

q1,T

||
Q1,T Q2,Too

Then exists a closed subscheme Z ⊂ S such that (a) T → S factors through Z
and (b) q1,Z factors through q2,Z . If Ker(q2) is a finite type OX -module and X
quasi-compact, then we can take Z → S of finite presentation.

Proof. Apply Flatness on Spaces, Lemma 77.8.2 to the map Ker(q2)→ Q1. □

115.15. Spaces and fpqc coverings

0ARG The material here was made obsolete by Gabber’s argument showing that alge-
braic spaces satisfy the sheaf condition with respect to fpqc coverings. Please visit
Properties of Spaces, Section 66.17.

Lemma 115.15.1.03W9 Let S be a scheme. Let X be an algebraic space over S. Let
{fi : Ti → T}i∈I be a fpqc covering of schemes over S. Then the map

MorS(T,X) −→
∏

i∈I
MorS(Ti, X)

is injective.

Proof. Immediate consequence of Properties of Spaces, Proposition 66.17.1. □

Lemma 115.15.2.03WA Let S be a scheme. Let X be an algebraic space over S. Let
X =

⋃
j∈J Xj be a Zariski covering, see Spaces, Definition 65.12.5. If each Xj

satisfies the sheaf property for the fpqc topology then X satisfies the sheaf property
for the fpqc topology.

Proof. This is true because all algebraic spaces satisfy the sheaf property for the
fpqc topology, see Properties of Spaces, Proposition 66.17.1. □

https://stacks.math.columbia.edu/tag/082R
https://stacks.math.columbia.edu/tag/03W9
https://stacks.math.columbia.edu/tag/03WA
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Lemma 115.15.3.03WB Let S be a scheme. Let X be an algebraic space over S. If X is
Zariski locally quasi-separated over S, then X satisfies the sheaf condition for the
fpqc topology.

Proof. Immediate consequence of the general Properties of Spaces, Proposition
66.17.1. □

Remark 115.15.4.03WC This remark used to discuss to what extend the original proof
of Lemma 115.15.3 (of December 18, 2009) generalizes.

115.16. Very reasonable algebraic spaces

07T6 Material that is somewhat obsolete.

Lemma 115.16.1.03IN Let S be a scheme. Let X be a reasonable algebraic space over
S. Then |X| is Kolmogorov (see Topology, Definition 5.8.6).

Proof. Follows from the definitions and Decent Spaces, Lemma 68.12.3. □

In the rest of this section we make some remarks about very reasonable algebraic
spaces. If there exists a scheme U and a surjective, étale, quasi-compact morphism
U → X, then X is very reasonable, see Decent Spaces, Lemma 68.4.7.

Lemma 115.16.2.03I9 A scheme is very reasonable.

Proof. This is true because the identity map is a quasi-compact, surjective étale
morphism. □

Lemma 115.16.3.03IA Let S be a scheme. Let X be an algebraic space over S. If there
exists a Zariski open covering X =

⋃
Xi such that each Xi is very reasonable, then

X is very reasonable.

Proof. This is case (ϵ) of Decent Spaces, Lemma 68.5.2. □

Lemma 115.16.4.03IB An algebraic space which is Zariski locally quasi-separated is very
reasonable. In particular any quasi-separated algebraic space is very reasonable.

Proof. This is one of the implications of Decent Spaces, Lemma 68.5.1. □

Lemma 115.16.5.03JF Let S be a scheme. Let X, Y be algebraic spaces over S. Let
Y → X be a representable morphism. If X is very reasonable, so is Y .

Proof. This is case (ϵ) of Decent Spaces, Lemma 68.5.3. □

Remark 115.16.6.03IC Very reasonable algebraic spaces form a strictly larger collection
than Zariski locally quasi-separated algebraic spaces. Consider an algebraic space
of the form X = [U/G] (see Spaces, Definition 65.14.4) where G is a finite group
acting without fixed points on a non-quasi-separated scheme U . Namely, in this
case U ×X U = U ×G and clearly both projections to U are quasi-compact, hence
X is very reasonable. On the other hand, the diagonal U ×X U → U × U is not
quasi-compact, hence this algebraic space is not quasi-separated. Now, take U
the infinite affine space over a field k of characteristic ̸= 2 with zero doubled, see
Schemes, Example 26.21.4. Let 01, 02 be the two zeros of U . Let G = {+1,−1},
and let −1 act by −1 on all coordinates, and by switching 01 and 02. Then [U/G]
is very reasonable but not Zariski locally quasi-separated (details omitted).

https://stacks.math.columbia.edu/tag/03WB
https://stacks.math.columbia.edu/tag/03WC
https://stacks.math.columbia.edu/tag/03IN
https://stacks.math.columbia.edu/tag/03I9
https://stacks.math.columbia.edu/tag/03IA
https://stacks.math.columbia.edu/tag/03IB
https://stacks.math.columbia.edu/tag/03JF
https://stacks.math.columbia.edu/tag/03IC
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Warning: The following lemma should be used with caution, as the schemes Ui in
it are not necessarily separated or even quasi-separated.

Lemma 115.16.7.03K7 Let S be a scheme. Let X be a very reasonable algebraic space
over S. There exists a set of schemes Ui and morphisms Ui → X such that

(1) each Ui is a quasi-compact scheme,
(2) each Ui → X is étale,
(3) both projections Ui ×X Ui → Ui are quasi-compact, and
(4) the morphism

∐
Ui → X is surjective (and étale).

Proof. Decent Spaces, Definition 68.6.1 says that there exist Ui → X such that
(2), (3) and (4) hold. Fix i, and set Ri = Ui ×X Ui, and denote s, t : Ri → Ui
the projections. For any affine open W ⊂ Ui the open W ′ = t(s−1(W )) ⊂ Ui is a
quasi-compact Ri-invariant open (see Groupoids, Lemma 39.19.2). Hence W ′ is a
quasi-compact scheme, W ′ → X is étale, and W ′ ×X W ′ = s−1(W ′) = t−1(W ′) so
both projections W ′ ×X W ′ → W ′ are quasi-compact. This means the family of
W ′ → X, where W ⊂ Ui runs through the members of affine open coverings of the
Ui gives what we want. □

115.17. Obsolete lemmas on algebraic spaces

0D45 Lemmas that seem superfluous or are no longer used in the text.

Lemma 115.17.1.07V2 In Cohomology of Spaces, Situation 69.16.1 the morphism p :
X → Spec(A) is surjective.

Proof. This lemma was originally used in the proof of Cohomology of Spaces,
Proposition 69.16.7 but now is a consequence of it. □

Lemma 115.17.2.07V3 In Cohomology of Spaces, Situation 69.16.1 the morphism p :
X → Spec(A) is universally closed.

Proof. This lemma was originally used in the proof of Cohomology of Spaces,
Proposition 69.16.7 but now is a consequence of it. □

Remark 115.17.3.0AKU This tag used to refer to an equation in the proof of Formal
Spaces, Lemma 87.20.4.

Remark 115.17.4.0AKV This tag used to refer to an equation in the proof of Formal
Spaces, Lemma 87.20.4.

115.18. Obsolete lemmas on algebraic stacks

0G2T Lemmas that seem superfluous or are no longer used in the text.

Lemma 115.18.1.0CXS Let S be a locally Noetherian scheme. Let X be a category
fibred in groupoids over (Sch/S)fppf having (RS*). Let x be an object of X over
an affine scheme U of finite type over S. Let un ∈ U , n ≥ 1 be pairwise distinct
finite type points such that x is not versal at un for all n. After replacing un by a
subsequence, there exist morphisms

x→ x1 → x2 → . . . in X lying over U → U1 → U2 → . . .

over S such that
(1) for each n the morphism U → Un is a first order thickening,

https://stacks.math.columbia.edu/tag/03K7
https://stacks.math.columbia.edu/tag/07V2
https://stacks.math.columbia.edu/tag/07V3
https://stacks.math.columbia.edu/tag/0AKU
https://stacks.math.columbia.edu/tag/0AKV
https://stacks.math.columbia.edu/tag/0CXS
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(2) for each n we have a short exact sequence
0→ κ(un)→ OUn → OUn−1 → 0

with U0 = U for n = 1,
(3) for each n there does not exist a pair (W,α) consisting of an open neigh-

bourhood W ⊂ Un of un and a morphism α : xn|W → x such that the
composition

x|U∩W
restriction of x→xn−−−−−−−−−−−−→ xn|W

α−→ x

is the canonical morphism x|U∩W → x.

Proof. This lemma was originally used in the proof of a criterion for openness of
versality (Artin’s Axioms, Lemma 98.20.3) but it got replaced by Artin’s Axioms,
Lemma 98.20.1 from which it readily follows. Namely, after replacing un, n ≥ 1
by a subsequence we may and do assume that there are no specializations among
these points, see Properties, Lemma 28.5.11. Then we can apply Artin’s Axioms,
Lemma 98.20.1 to finish the proof. □

115.19. Variants of cotangent complexes for schemes

08T5 This section gives an alternative construction of the cotangent complex of a mor-
phism of schemes. This section is currently in the obsolete chapter as we can get
by with the easier version discussed in Cotangent, Section 92.25 for applications.
Let f : X → Y be a morphism of schemes. Let CX/Y be the category whose objects
are commutative diagrams

(115.19.0.1)08T6
X

��

Uoo

��

i
// A

��
Y Voo

of schemes where
(1) U is an open subscheme of X,
(2) V is an open subscheme of Y , and
(3) there exists an isomorphism A = V × Spec(P ) over V where P is a poly-

nomial algebra over Z (on some set of variables).
In other words, A is an (infinite dimensional) affine space over V . Morphisms are
given by commutative diagrams.
Notation. An object of CX/Y , i.e., a diagram (115.19.0.1), is often denoted U → A
where it is understood that (a) U is an open subscheme of X, (b) U → A is a
morphism over Y , (c) the image of the structure morphism A → Y is an open
V ⊂ Y , and (d) A→ V is an affine space. We’ll write U → A/V to indicate V ⊂ Y
is the image of A → Y . Recall that XZar denotes the small Zariski site X. There
are forgetful functors

CX/Y → XZar, (U → A) 7→ U and CX/Y 7→ YZar, (U → A/V ) 7→ V.

Lemma 115.19.1.08T7 Let X → Y be a morphism of schemes.
(1) The category CX/Y is fibred over XZar.
(2) The category CX/Y is fibred over YZar.

https://stacks.math.columbia.edu/tag/08T7
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(3) The category CX/Y is fibred over the category of pairs (U, V ) where U ⊂
X, V ⊂ Y are open and f(U) ⊂ V .

Proof. Ad (1). Given an object U → A of CX/Y and a morphism U ′ → U of XZar

consider the object i′ : U ′ → A of CX/Y where i′ is the composition of i and U ′ → U .
The morphism (U ′ → A)→ (U → A) of CX/Y is strongly cartesian over XZar.

Ad (2). Given an object U → A/V and V ′ → V we can set U ′ = U ∩ f−1(V ′) and
A′ = V ′×V A to obtain a strongly cartesian morphism (U ′ → A′)→ (U → A) over
V ′ → V .

Ad (3). Denote (X/Y )Zar the category in (3). Given U → A/V and a morphism
(U ′, V ′)→ (U, V ) in (X/Y )Zar we can consider A′ = V ′×V A. Then the morphism
(U ′ → A′/V ′)→ (U → A/V ) is strongly cartesian in CX/Y over (X/Y )Zar. □

We obtain a topology τX on CX/Y by using the topology inherited from XZar (see
Stacks, Section 8.10). If not otherwise stated this is the topology on CX/Y we will
consider. To be precise, a family of morphisms {(Ui → Ai) → (U → A)} is a
covering of CX/Y if and only if

(1) U =
⋃
Ui, and

(2) Ai = A for all i.
We obtain the same collection of sheaves if we allow Ai ∼= A in (2). The functor u
defines a morphism of topoi π : Sh(CX/Y )→ Sh(XZar).

The site CX/Y comes with several sheaves of rings.
(1) The sheaf O given by the rule (U → A) 7→ O(A).
(2) The sheaf OX = π−1OX given by the rule (U → A) 7→ O(U).
(3) The sheaf OY given by the rule (U → A/V ) 7→ O(V ).

We obtain morphisms of ringed topoi

(115.19.1.1)08T8

(Sh(CX/Y ),OX)
i
//

π

��

(Sh(CX/Y ),O)

(Sh(XZar),OX)

The morphism i is the identity on underlying topoi and i♯ : O → OX is the obvious
map. The map π is a special case of Cohomology on Sites, Situation 21.38.1. An
important role will be played in the following by the derived functors Li∗ : D(O) −→
D(OX) left adjoint to Ri∗ = i∗ : D(OX) → D(O) and Lπ! : D(OX) −→ D(OX)
left adjoint to π∗ = π−1 : D(OX)→ D(OX).

Remark 115.19.2.08TA We obtain a second topology τY on CX/Y by taking the topology
inherited from YZar. There is a third topology τX→Y where a family of morphisms
{(Ui → Ai) → (U → A)} is a covering if and only if U =

⋃
Ui, V =

⋃
Vi

and Ai ∼= Vi ×V A. This is the topology inherited from the topology on the site
(X/Y )Zar whose underlying category is the category of pairs (U, V ) as in Lemma
115.19.1 part (3). The coverings of (X/Y )Zar are families {(Ui, Vi)→ (U, V )} such
that U =

⋃
Ui and V =

⋃
Vi. There are morphisms of topoi

Sh(CX/Y ) = Sh(CX/Y , τX) Sh(CX/Y , τX→Y )oo // Sh(CX/Y , τY )

https://stacks.math.columbia.edu/tag/08TA
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(recall that τX is our “default” topology). The pullback functors for these arrows
are sheafification and pushforward is the identity on underlying presheaves. The
diagram of topoi

Sh(XZar)

f

��

Sh(CX/Y )
π
oo Sh(CX/Y , τX→Y )oo

��
Sh(YZar) Sh(CX/Y , τY )oo

is not commutative. Namely, the pullback of a nonzero abelian sheaf on Y is a
nonzero abelian sheaf on (CX/Y , τX→Y ), but we can certainly find examples where
such a sheaf pulls back to zero on X. Note that any presheaf F on YZar gives a
sheaf F on CY/X by the rule which assigns to (U → A/V ) the set F(V ). Even
if F happens to be a sheaf it isn’t true in general that F = π−1f−1F . This is
related to the noncommutativity of the diagram above, as we can describe F as
the pushforward of the pullback of F to Sh(CX/Y , τX→Y ) via the lower horizontal
and right vertical arrows. An example is the sheaf OY . But what is true is that
there is a map F → π−1f−1F which is transformed (as we shall see later) into an
isomorphism after applying π!.

115.20. Deformations and obstructions of flat modules

08VZ In this section we sketch a construction of a deformation theory for the stack of
coherent sheaves for any algebraic space X over a ring Λ. This material is obsolete
due to the improved discussion in Quot, Section 99.6.
Our setup will be the following. We assume given

(1) a ring Λ,
(2) an algebraic space X over Λ,
(3) a Λ-algebra A, set XA = X ×Spec(Λ) Spec(A), and
(4) a finitely presented OXA -module F flat over A.

In this situation we will consider all possible surjections
0→ I → A′ → A→ 0

where A′ is a Λ-algebra whose kernel I is an ideal of square zero in A′. Given A′

we obtain a first order thickening XA → XA′ of algebraic spaces over Spec(Λ). For
each of these we consider the problem of lifting F to a finitely presented module F ′

on XA′ flat over A′. We would like to replicate the results of Deformation Theory,
Lemma 91.12.1 in this setting.
To be more precise let Lift(F , A′) denote the category of pairs (F ′, α) where F ′ is a
finitely presented module on XA′ flat over A′ and α : F ′|XA → F is an isomorphism.
Morphisms (F ′

1, α1) → (F ′
2, α2) are isomorphisms F ′

1 → F ′
2 which are compatible

with α1 and α2. The set of isomorphism classes of Lift(F , A′) is denoted Lift(F , A′).
Let G be a sheaf of OX ⊗Λ A-modules on Xétale flat over A. We introduce the
category Lift(G, A′) of pairs (G′, β) where G′ is a sheaf of OX ⊗Λ A

′-modules flat
over A′ and β is an isomorphism G′ ⊗A′ A→ G.

Lemma 115.20.1.08W0 Notation and assumptions as above. Let p : XA → X denote the
projection. Given A′ denote p′ : XA′ → X the projection. The functor p′

∗ induces
an equivalence of categories between

https://stacks.math.columbia.edu/tag/08W0
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(1) the category Lift(F , A′), and
(2) the category Lift(p∗F , A′).

Proof. FIXME. □

Let H be a sheaf of O⊗ΛA-modules on CX/Λ flat over A. We introduce the category
LiftO(H, A′) whose objects are pairs (H′, γ) where H′ is a sheaf of O⊗ΛA

′-modules
flat over A′ and γ : H′ ⊗A A′ → H is an isomorphism of O ⊗Λ A-modules.
Let G be a sheaf of OX⊗ΛA-modules on Xétale flat over A. Consider the morphisms
i and π of Cotangent, Equation (92.27.1.1). Denote G = π−1(G). It is simply given
by the rule (U → A) 7→ G(U) hence it is a sheaf of OX ⊗Λ A-modules. Denote i∗G
the same sheaf but viewed as a sheaf of O ⊗Λ A-modules.

Lemma 115.20.2.08W1 Notation and assumptions as above. The functor π! induces an
equivalence of categories between

(1) the category LiftO(i∗G, A′), and
(2) the category Lift(G, A′).

Proof. FIXME. □

Lemma 115.20.3.08W2 Notation and assumptions as in Lemma 115.20.2. Consider the
object

L = L(Λ, X,A,G) = Lπ!(Li∗(i∗(G)))
of D(OX ⊗Λ A). Given a surjection A′ → A of Λ-algebras with square zero kernel
I we have

(1) The category Lift(G, A′) is nonempty if and only if a certain class ξ ∈
Ext2

OX⊗A(L,G ⊗A I) is zero.
(2) If Lift(G, A′) is nonempty, then Lift(G, A′) is principal homogeneous under

Ext1
OX⊗A(L,G ⊗A I).

(3) Given a lift G′, the set of automorphisms of G′ which pull back to idG is
canonically isomorphic to Ext0

OX⊗A(L,G ⊗A I).

Proof. FIXME. □

Finally, we put everything together as follows.

Proposition 115.20.4.08W3 With Λ, X, A, F as above. There exists a canonical object
L = L(Λ, X,A,F) of D(XA) such that given a surjection A′ → A of Λ-algebras
with square zero kernel I we have

(1) The category Lift(F , A′) is nonempty if and only if a certain class ξ ∈
Ext2

XA(L,F ⊗A I) is zero.
(2) If Lift(F , A′) is nonempty, then Lift(F , A′) is principal homogeneous un-

der Ext1
XA(L,F ⊗A I).

(3) Given a lift F ′, the set of automorphisms of F ′ which pull back to idF is
canonically isomorphic to Ext0

XA(L,F ⊗A I).

Proof. FIXME. □

Lemma 115.20.5.08W4 In the situation of Proposition 115.20.4, if X → Spec(Λ) is locally
of finite type and Λ is Noetherian, then L is pseudo-coherent.

Proof. FIXME. □

https://stacks.math.columbia.edu/tag/08W1
https://stacks.math.columbia.edu/tag/08W2
https://stacks.math.columbia.edu/tag/08W3
https://stacks.math.columbia.edu/tag/08W4
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115.21. The stack of coherent sheaves in the non-flat case

0CXY In Quot, Theorem 99.5.12 the assumption that f : X → B is flat is not necessary. In
this section we modify the method of proof based on ideas from derived algebraic
geometry to get around the flatness hypothesis. An entirely different method is
used in Quot, Section 99.6 to get exactly the same result; this is why the method
from this section is obsolete.
The only step in the proof of Quot, Theorem 99.5.12 which uses flatness is in the
application of Quot, Lemma 99.5.11. The lemma is used to construct an obstruc-
tion theory as in Artin’s Axioms, Section 98.24. The proof of the lemma relies on
Deformation Theory, Lemmas 91.12.1 and 91.12.5 from Deformation Theory, Sec-
tion 91.12. This is how the assumption that f is flat comes about. Before we go
on, note that results (2) and (3) of Deformation Theory, Lemmas 91.12.1 do hold
without the assumption that f is flat as they rely on Deformation Theory, Lemmas
91.11.7 and 91.11.4 which do not have any flatness assumptions.
Before we give the details we give some motivation for the construction from derived
algebraic geometry, since we think it will clarify what follows. Let A be a finite type
algebra over the locally Noetherian base S. Denote X⊗LA a “derived base change”
of X to A and denote i : XA → X ⊗L A the canonical inclusion morphism. The
object X ⊗L A does not (yet) have a definition in the Stacks project; we may think
of it as the algebraic space XA endowed with a simplicial sheaf of rings OX⊗LA

whose homology sheaves are

Hi(OX⊗LA) = TorOS
i (OX , A).

The morphism X ⊗L A→ Spec(A) is flat (the terms of the simplicial sheaf of rings
being A-flat), so the usual material for deformations of flat modules applies to it.
Thus we see that we get an obstruction theory using the groups

ExtiX⊗LA(i∗F , i∗F ⊗AM)
where i = 0, 1, 2 for inf auts, inf defs, obstructions. Note that a flat deformation of
i∗F to X ⊗L A′ is automatically of the form i′∗F ′ where F ′ is a flat deformation of
F . By adjunction of the functors Li∗ and i∗ = Ri∗ these ext groups are equal to

ExtiXA(Li∗(i∗F),F ⊗AM)
Thus we obtain obstruction groups of exactly the same form as in the proof of Quot,
Lemma 99.5.11 with the only change being that one replaces the first occurrence
of F by the complex Li∗(i∗F).
Below we prove the non-flat version of the lemma by a “direct” construction of
E(F) = Li∗(i∗F) and direct proof of its relationship to the deformation theory
of F . In fact, it suffices to construct τ≥−2E(F), as we are only interested in the
ext groups ExtiXA(Li∗(i∗F),F ⊗A M) for i = 0, 1, 2. We can even identify the
cohomology sheaves

Hi(E(F)) =


0 if i > 0
F if i = 0
0 if i = −1

TorOS
1 (OX , A)⊗OX

F if i = −2

This observation will guide our construction of E(F) in the remarks below.
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Remark 115.21.1 (Direct construction).09DN Let S be a scheme. Let f : X → B be
a morphism of algebraic spaces over S. Let U be another algebraic space over B.
Denote q : X×B U → U the second projection. Consider the distinguished triangle

Lq∗LU/B → LX×BU/B → E → Lq∗LU/B [1]

of Cotangent, Section 92.28. For any sheaf F of OX×BU -modules we have the
Atiyah class

F → LX×BU/B ⊗
L
OX×BU

F [1]
see Cotangent, Section 92.19. We can compose this with the map to E and choose
a distinguished triangle

E(F)→ F → F ⊗L
OX×BU

E[1]→ E(F)[1]

in D(OX×BU ). By construction the Atiyah class lifts to a map

eF : E(F) −→ Lq∗LU/B ⊗L
OX×BU

F [1]

fitting into a morphism of distinguished triangles

F ⊗L Lq∗LU/B [1] // F ⊗L LX×BU/B [1] // F ⊗L E[1]

E(F) //

eF

OO

F //

Atiyah

OO

F ⊗L E[1]

=

OO

Given S,B,X, f, U,F we fix a choice of E(F) and eF .

Remark 115.21.2 (Construction of obstruction class).09DP With notation as in Remark
115.21.1 let i : U → U ′ be a first order thickening of U over B. Let I ⊂ OU ′ be the
quasi-coherent sheaf of ideals cutting out B in B′. The fundamental triangle

Li∗LU ′/B → LU/B → LU/U ′ → Li∗LU ′/B [1]

together with the map LU/U ′ → I[1] determine a map eU ′ : LU/B → I[1]. Com-
bined with the map eF of the previous remark we obtain

(idF ⊗ Lq∗eU ′) ∪ eF : E(F) −→ F ⊗OX×BU
q∗I[2]

(we have also composed with the map from the derived tensor product to the usual
tensor product). In other words, we obtain an element

ξU ′ ∈ Ext2
OX×BU

(E(F),F ⊗OX×BU
q∗I)

Lemma 115.21.3.09DQ In the situation of Remark 115.21.2 assume that F is flat over
U . Then the vanishing of the class ξU ′ is a necessary and sufficient condition for
the existence of a OX×BU ′ -module F ′ flat over U ′ with i∗F ′ ∼= F .

Proof (sketch). We will use the criterion of Deformation Theory, Lemma 91.11.8.
We will abbreviate O = OX×BU and O′ = OX×BU ′ . Consider the short exact
sequence

0→ I → OU ′ → OU → 0.
Let J ⊂ O′ be the quasi-coherent sheaf of ideals cutting out X×BU . By the above
we obtain an exact sequence

TorOB
1 (OX ,OU )→ q∗I → J → 0

https://stacks.math.columbia.edu/tag/09DN
https://stacks.math.columbia.edu/tag/09DP
https://stacks.math.columbia.edu/tag/09DQ
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where the TorOB
1 (OX ,OU ) is an abbreviation for

Torh
−1OB

1 (p−1OX , q−1OU )⊗(p−1OX⊗h−1OB
q−1OU ) O.

Tensoring with F we obtain the exact sequence

F ⊗O TorOB
1 (OX ,OU )→ F ⊗O q∗I → F ⊗O J → 0

(Note that the roles of the letters I and J are reversed relative to the notation in
Deformation Theory, Lemma 91.11.8.) Condition (1) of the lemma is that the last
map above is an isomorphism, i.e., that the first map is zero. The vanishing of this
map may be checked on stalks at geometric points z = (x, u) : Spec(k)→ X ×B U .
Set R = OB,b, A = OX,x, B = OU,u, and C = Oz. By Cotangent, Lemma 92.28.2
and the defining triangle for E(F) we see that

H−2(E(F))z = Fz ⊗ TorR1 (A,B)

The map ξU ′ therefore induces a map

Fz ⊗ TorR1 (A,B) −→ Fz ⊗B Iu
We claim this map is the same as the stalk of the map described above (proof
omitted; this is a purely ring theoretic statement). Thus we see that condition (1)
of Deformation Theory, Lemma 91.11.8 is equivalent to the vanishing H−2(ξU ′) :
H−2(E(F))→ F ⊗ I.

To finish the proof we show that, assuming that condition (1) is satisfied, condition
(2) is equivalent to the vanishing of ξU ′ . In the rest of the proof we write F ⊗ I to
denote F ⊗O q∗I = F ⊗O J . A consideration of the spectral sequence

Exti(H−j(E(F)),F ⊗ I)⇒ Exti+j(E(F),F ⊗ I)

using that H0(E(F)) = F and H−1(E(F)) = 0 shows that there is an exact
sequence

0→ Ext2(F ,F ⊗ I)→ Ext2(E(F),F ⊗ I)→ Hom(H−2(E(F)),F ⊗ I)

Thus our element ξU ′ is an element of Ext2(F ,F⊗I). The proof is finished by show-
ing this element agrees with the element of Deformation Theory, Lemma 91.11.8 a
verification we omit. □

Lemma 115.21.4.09DR In Quot, Situation 99.5.1 assume that S is a locally Noetherian
scheme and S = B. Let X = CohX/B . Then we have openness of versality for X
(see Artin’s Axioms, Definition 98.13.1).

Proof (sketch). Let U → S be of finite type morphism of schemes, x an object
of X over U and u0 ∈ U a finite type point such that x is versal at u0. After
shrinking U we may assume that u0 is a closed point (Morphisms, Lemma 29.16.1)
and U = Spec(A) with U → S mapping into an affine open Spec(Λ) of S. We will
use Artin’s Axioms, Lemma 98.24.4 to prove the lemma. Let F be the coherent
module on XA = Spec(A)×S X flat over A corresponding to the given object x.

Choose E(F) and eF as in Remark 115.21.1. The description of the cohomology
sheaves of E(F) shows that

Ext1(E(F),F ⊗AM) = Ext1(F ,F ⊗AM)

https://stacks.math.columbia.edu/tag/09DR
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for any A-module M . Using this and using Deformation Theory, Lemma 91.11.7
we have an isomorphism of functors

Tx(M) = Ext1
XA(E(F),F ⊗AM)

By Lemma 115.21.3 given any surjection A′ → A of Λ-algebras with square zero
kernel I we have an obstruction class

ξA′ ∈ Ext2
XA(E(F),F ⊗A I)

Apply Derived Categories of Spaces, Lemma 75.23.3 to the computation of the Ext
groups ExtiXA(E(F),F ⊗A M) for i ≤ m with m = 2. We omit the verification
that E(F) is in D−

Coh; hint: use Cotangent, Lemma 92.5.4. We find a perfect object
K ∈ D(A) and functorial isomorphisms

Hi(K ⊗L
AM) −→ ExtiXA(E(F),F ⊗AM)

for i ≤ m compatible with boundary maps. This object K, together with the
displayed identifications above gives us a datum as in Artin’s Axioms, Situation
98.24.2. Finally, condition (iv) of Artin’s Axioms, Lemma 98.24.3 holds by a variant
of Deformation Theory, Lemma 91.12.5 whose formulation and proof we omit. Thus
Artin’s Axioms, Lemma 98.24.4 applies and the lemma is proved. □

Theorem 115.21.5.0CXZ Let S be a scheme. Let f : X → B be morphism of algebraic
spaces over S. Assume that f is of finite presentation and separated. Then CohX/B
is an algebraic stack over S.

Proof. This theorem is a copy of Quot, Theorem 99.6.1. The reason we have this
copy here is that with the material in this section we get a second proof (as discussed
at the beginning of this section). Namely, we argue exactly as in the proof of
Quot, Theorem 99.5.12 except that we substitute Lemma 115.21.4 for Quot, Lemma
99.5.11. □

115.22. Modifications

0AS3 Here is a obsolete result on the category of Algebraization of Formal Spaces, Equa-
tion (88.30.0.1). Please visit Algebraization of Formal Spaces, Section 88.30 for the
current material.

Lemma 115.22.1.0AE4 Let (A,m, κ) be a Noetherian local ring. The category of Alge-
braization of Formal Spaces, Equation (88.30.0.1) for A is equivalent to the category
Algebraization of Formal Spaces, Equation (88.30.0.1) for the henselization Ah of
A.

Proof. This is a special case of Algebraization of Formal Spaces, Lemma 88.30.3.
□

The following lemma on rational singularities is no longer needed in the chapter on
resolving surface singularities.

Lemma 115.22.2.0B50 In Resolution of Surfaces, Situation 54.9.1. Let M be a finite
reflexive A-module. Let M⊗AOX denote the pullback of the associatedOS-module.
Then M ⊗A OX maps onto its double dual.

https://stacks.math.columbia.edu/tag/0CXZ
https://stacks.math.columbia.edu/tag/0AE4
https://stacks.math.columbia.edu/tag/0B50
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Proof. Let F = (M ⊗A OX)∗∗ be the double dual and let F ′ ⊂ F be the image of
the evaluation map M ⊗A OX → F . Then we have a short exact sequence

0→ F ′ → F → Q→ 0

Since X is normal, the local rings OX,x are discrete valuation rings for points of
codimension 1 (see Properties, Lemma 28.12.5). Hence Qx = 0 for such points by
More on Algebra, Lemma 15.23.3. Thus Q is supported in finitely many closed
points and is globally generated by Cohomology of Schemes, Lemma 30.9.10. We
obtain the exact sequence

0→ H0(X,F ′)→ H0(X,F)→ H0(X,Q)→ 0

because F ′ is generated by global sections (Resolution of Surfaces, Lemma 54.9.2).
Since X → Spec(A) is an isomorphism over the complement of the closed point,
and since M is reflexive, we see that the maps

M → H0(X,F ′)→ H0(X,F)

induce isomorphisms after localization at any nonmaximal prime of A. Hence these
maps are isomorphisms by More on Algebra, Lemma 15.23.13 and the fact that
reflexive modules over normal rings have property (S2) (More on Algebra, Lemma
15.23.18). Thus we conclude that Q = 0 as desired. □

115.23. Intersection theory

0AYK
Lemma 115.23.1.0FIG Let b : X ′ → X be the blowing up of a smooth projective scheme
over a field k in a smooth closed subscheme Z ⊂ X. Picture

E
j
//

π

��

X ′

b

��
Z

i // X

Assume there exists an element of K0(X) whose restriction to Z is equal to the class
of CZ/X in K0(Z). Then [Lb∗OZ ] = [OE ] · α′′ in K0(X ′) for some α′′ ∈ K0(X ′).

Proof. The schemes X, X ′, E, Z are smooth and projective over k and hence we
have K ′

0(X) = K0(X) = K0(Vect(X)) = K0(Db
Coh(X))) and similarly for the other

3. See Derived Categories of Schemes, Lemmas 36.38.1, 36.38.4, and 36.38.5. We
will switch between these versions at will in this proof. Consider the short exact
sequence

0→ F → π∗CZ/X → CE/X′ → 0

of finite locally free OE-modules defining F . Observe that CE/X′ = OX′(−E)|E
is the restriction of the invertible OX -module OX′(−E). Let α ∈ K0(X) be an
element such that i∗α = [CZ/X ] in K0(Z). Let α′ = b∗α − [OX′(−E)]. Then
j∗α′ = [F ]. We deduce that j∗λi(α′) = [∧i(F)] by Weil Cohomology Theories,
Lemma 45.13.1. This means that [OE ]·α′ = [∧iF ] in K0(X), see Derived Categories
of Schemes, Lemma 36.38.8. Let r be the maximum codimension of an irreducible
component of Z in X. A computation which we omit shows that H−i(Lb∗OZ) =

https://stacks.math.columbia.edu/tag/0FIG
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∧iF for i ≥ 0, 1, . . . , r − 1 and zero in other degrees. It follows that in K0(X) we
have

[Lb∗OZ ] =
∑

i=0,...,r−1
(−1)i[∧iF ]

=
∑

i=0,...,r−1
(−1)i[OE ]λi(α′)

= [OE ]
(∑

i=0,...,r−1
(−1)iλi(α′)

)
This proves the lemma with α′′ =

∑
i=0,...,r−1(−1)iλi(α′). □

Lemma 115.23.2.02TL Let (S, δ) be as in Chow Homology, Situation 42.7.1. Let X be
locally of finite type over S. Let X be integral and n = dimδ(X). Let a ∈ Γ(X,OX)
be a nonzero function. Let i : D = Z(a)→ X be the closed immersion of the zero
scheme of a. Let f ∈ R(X)∗. In this case i∗divX(f) = 0 in An−2(D).

Proof. Special case of Chow Homology, Lemma 42.30.1. □

Remark 115.23.3.02SA This remark used to say that it wasn’t clear whether the arrows
of Chow Homology, Lemma 42.23.2 were isomorphisms in general. However, we’ve
now found a proof of this fact.

02SY 115.23.4. Blowing up lemmas. In this section we prove some lemmas on represent-
ing Cartier divisors by suitable effective Cartier divisors on blowups. These lemmas
can be found in [Ful98, Section 2.4]. We have adapted the formulation so they also
work in the non-finite type setting. It may happen that the morphism b of Lemma
115.23.11 is a composition of infinitely many blowups, but over any given quasi-
compact open W ⊂ X one needs only finitely many blowups (and this is the result
of loc. cit.).

Lemma 115.23.5.02SZ Let (S, δ) be as in Chow Homology, Situation 42.7.1. Let X, Y
be locally of finite type over S. Let f : X → Y be a proper morphism. Let D ⊂ Y
be an effective Cartier divisor. Assume X, Y integral, n = dimδ(X) = dimδ(Y )
and f dominant. Then

f∗[f−1(D)]n−1 = [R(X) : R(Y )][D]n−1.

In particular if f is birational then f∗[f−1(D)]n−1 = [D]n−1.

Proof. Immediate from Chow Homology, Lemma 42.26.3 and the fact that D is the
zero scheme of the canonical section 1D of OX(D). □

Lemma 115.23.6.02T0 Let (S, δ) be as in Chow Homology, Situation 42.7.1. Let X be
locally of finite type over S. Assume X integral with dimδ(X) = n. Let L be an
invertible OX -module. Let s be a nonzero meromorphic section of L. Let U ⊂ X
be the maximal open subscheme such that s corresponds to a section of L over U .
There exists a projective morphism

π : X ′ −→ X

such that
(1) X ′ is integral,
(2) π|π−1(U) : π−1(U)→ U is an isomorphism,
(3) there exist effective Cartier divisors D,E ⊂ X ′ such that

π∗L = OX′(D − E),

https://stacks.math.columbia.edu/tag/02TL
https://stacks.math.columbia.edu/tag/02SA
https://stacks.math.columbia.edu/tag/02SZ
https://stacks.math.columbia.edu/tag/02T0
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(4) the meromorphic section s corresponds, via the isomorphism above, to
the meromorphic section 1D ⊗ (1E)−1 (see Divisors, Definition 31.14.1),

(5) we have
π∗([D]n−1 − [E]n−1) = divL(s)

in Zn−1(X).

Proof. Let I ⊂ OX be the quasi-coherent ideal sheaf of denominators of s, see
Divisors, Definition 31.23.10. By Divisors, Lemma 31.34.6 we get (2), (3), and
(4). By Divisors, Lemma 31.32.9 we get (1). By Divisors, Lemma 31.32.13 the
morphism π is projective. We still have to prove (5). By Chow Homology, Lemma
42.26.3 we have

π∗(divL′(s′)) = divL(s).
Hence it suffices to show that divL′(s′) = [D]n−1 − [E]n−1. This follows from the
equality s′ = 1D ⊗ 1−1

E and additivity, see Divisors, Lemma 31.27.5. □

Definition 115.23.7.02T1 Let (S, δ) be as in Chow Homology, Situation 42.7.1. Let X
be locally of finite type over S. Assume X integral and dimδ(X) = n. Let D1, D2
be two effective Cartier divisors in X. Let Z ⊂ X be an integral closed subscheme
with dimδ(Z) = n− 1. The ϵ-invariant of this situation is

ϵZ(D1, D2) = nZ ·mZ

where nZ , resp. mZ is the coefficient of Z in the (n−1)-cycle [D1]n−1, resp. [D2]n−1.

Lemma 115.23.8.02T2 Let (S, δ) be as in Chow Homology, Situation 42.7.1. Let X be
locally of finite type over S. Assume X integral and dimδ(X) = n. Let D1, D2 be
two effective Cartier divisors in X. Let Z be an open and closed subscheme of the
scheme D1∩D2. Assume dimδ(D1∩D2 \Z) ≤ n−2. Then there exists a morphism
b : X ′ → X, and Cartier divisors D′

1, D
′
2, E on X ′ with the following properties

(1) X ′ is integral,
(2) b is projective,
(3) b is the blowup of X in the closed subscheme Z,
(4) E = b−1(Z),
(5) b−1(D1) = D′

1 + E, and b−1D2 = D′
2 + E,

(6) dimδ(D′
1 ∩D′

2) ≤ n− 2, and if Z = D1 ∩D2 then D′
1 ∩D′

2 = ∅,
(7) for every integral closed subscheme W ′ with dimδ(W ′) = n− 1 we have

(a) if ϵW ′(D′
1, E) > 0, then setting W = b(W ′) we have dimδ(W ) = n−1

and
ϵW ′(D′

1, E) < ϵW (D1, D2),
(b) if ϵW ′(D′

2, E) > 0, then setting W = b(W ′) we have dimδ(W ) = n−1
and

ϵW ′(D′
2, E) < ϵW (D1, D2),

Proof. Note that the quasi-coherent ideal sheaf I = ID1 + ID2 defines the scheme
theoretic intersection D1 ∩D2 ⊂ X. Since Z is a union of connected components
of D1 ∩D2 we see that for every z ∈ Z the kernel of OX,z → OZ,z is equal to Iz.
Let b : X ′ → X be the blowup of X in Z. (So Zariski locally around Z it is the
blowup of X in I.) Denote E = b−1(Z) the corresponding effective Cartier divisor,
see Divisors, Lemma 31.32.4. Since Z ⊂ D1 we have E ⊂ f−1(D1) and hence
D1 = D′

1 + E for some effective Cartier divisor D′
1 ⊂ X ′, see Divisors, Lemma

31.13.8. Similarly D2 = D′
2 + E. This takes care of assertions (1) – (5).

https://stacks.math.columbia.edu/tag/02T1
https://stacks.math.columbia.edu/tag/02T2
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Note that if W ′ is as in (7) (a) or (7) (b), then the image W of W ′ is contained
in D1 ∩ D2. If W is not contained in Z, then b is an isomorphism at the generic
point of W and we see that dimδ(W ) = dimδ(W ′) = n − 1 which contradicts the
assumption that dimδ(D1 ∩D2 \ Z) ≤ n − 2. Hence W ⊂ Z. This means that to
prove (6) and (7) we may work locally around Z on X.
Thus we may assume that X = Spec(A) with A a Noetherian domain, and D1 =
Spec(A/a), D2 = Spec(A/b) and Z = D1 ∩D2. Set I = (a, b). Since A is a domain
and a, b ̸= 0 we can cover the blowup by two patches, namely U = Spec(A[s]/(as−
b)) and V = Spec(A[t]/(bt − a)). These patches are glued using the isomorphism
A[s, s−1]/(as − b) ∼= A[t, t−1]/(bt − a) which maps s to t−1. The effective Cartier
divisor E is described by Spec(A[s]/(as− b, a)) ⊂ U and Spec(A[t]/(bt−a, b)) ⊂ V .
The closed subscheme D′

1 corresponds to Spec(A[t]/(bt − a, t)) ⊂ U . The closed
subscheme D′

2 corresponds to Spec(A[s]/(as − b, s)) ⊂ V . Since “ts = 1” we see
that D′

1 ∩D′
2 = ∅.

Suppose we have a prime q ⊂ A[s]/(as− b) of height one with s, a ∈ q. Let p ⊂ A
be the corresponding prime of A. Observe that a, b ∈ p. By the dimension formula
we see that dim(Ap) = 1 as well. The final assertion to be shown is that

ordAp
(a)ordAp

(b) > ordBq
(a)ordBq

(s)
where B = A[s]/(as − b). By Algebra, Lemma 10.124.1 we have ordAp

(x) ≥
ordBq

(x) for x = a, b. Since ordBq
(s) > 0 we win by additivity of the ord function

and the fact that as = b. □

Definition 115.23.9.02T3 Let X be a scheme. Let {Di}i∈I be a locally finite collection
of effective Cartier divisors on X. Suppose given a function I → Z≥0, i 7→ ni.
The sum of the effective Cartier divisors D =

∑
niDi, is the unique effective

Cartier divisor D ⊂ X such that on any quasi-compact open U ⊂ X we have
D|U =

∑
Di∩U ̸=∅ niDi|U is the sum as in Divisors, Definition 31.13.6.

Lemma 115.23.10.02T4 Let (S, δ) be as in Chow Homology, Situation 42.7.1. Let X be
locally of finite type over S. Assume X integral and dimδ(X) = n. Let {Di}i∈I be
a locally finite collection of effective Cartier divisors on X. Suppose given ni ≥ 0
for i ∈ I. Then

[D]n−1 =
∑

i
ni[Di]n−1

in Zn−1(X).

Proof. Since we are proving an equality of cycles we may work locally on X. Hence
this reduces to a finite sum, and by induction to a sum of two effective Cartier
divisors D = D1 + D2. By Chow Homology, Lemma 42.24.2 we see that D1 =
divOX(D1)(1D1) where 1D1 denotes the canonical section of OX(D1). Of course we
have the same statement for D2 and D. Since 1D = 1D1⊗1D2 via the identification
OX(D) = OX(D1)⊗OX(D2) we win by Divisors, Lemma 31.27.5. □

Lemma 115.23.11.02T5 Let (S, δ) be as in Chow Homology, Situation 42.7.1. Let X be
locally of finite type over S. Assume X integral and dimδ(X) = d. Let {Di}i∈I
be a locally finite collection of effective Cartier divisors on X. Assume that for all
{i, j, k} ⊂ I, #{i, j, k} = 3 we have Di ∩Dj ∩Dk = ∅. Then there exist

(1) an open subscheme U ⊂ X with dimδ(X \ U) ≤ d− 3,
(2) a morphism b : U ′ → U , and

https://stacks.math.columbia.edu/tag/02T3
https://stacks.math.columbia.edu/tag/02T4
https://stacks.math.columbia.edu/tag/02T5
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(3) effective Cartier divisors {D′
j}j∈J on U ′

with the following properties:
(1) b is proper morphism b : U ′ → U ,
(2) U ′ is integral,
(3) b is an isomorphism over the complement of the union of the pairwise

intersections of the Di|U ,
(4) {D′

j}j∈J is a locally finite collection of effective Cartier divisors on U ′,
(5) dimδ(D′

j ∩D′
j′) ≤ d− 2 if j ̸= j′, and

(6) b−1(Di|U ) =
∑
nijD

′
j for certain nij ≥ 0.

Moreover, if X is quasi-compact, then we may assume U = X in the above.

Proof. Let us first prove this in the quasi-compact case, since it is perhaps the most
interesting case. In this case we produce inductively a sequence of blowups

X = X0
b0←− X1

b1←− X2 ← . . .

and finite sets of effective Cartier divisors {Dn,i}i∈In . At each stage these will have
the property that any triple intersection Dn,i∩Dn,j ∩Dn,k is empty. Moreover, for
each n ≥ 0 we will have In+1 = In ⨿ P (In) where P (In) denotes the set of pairs of
elements of In. Finally, we will have

b−1
n (Dn,i) = Dn+1,i +

∑
i′∈In,i′ ̸=i

Dn+1,{i,i′}

We conclude that for each n ≥ 0 we have (b0 ◦ . . . ◦ bn)−1(Di) is a nonnegative
integer combination of the divisors Dn+1,j , j ∈ In+1.
To start the induction we set X0 = X and I0 = I and D0,i = Di.
Given (Xn, {Dn,i}i∈In) let Xn+1 be the blowup of Xn in the closed subscheme
Zn =

⋃
{i,i′}∈P (In) Dn,i ∩Dn,i′ . Note that the closed subschemes Dn,i ∩Dn,i′ are

pairwise disjoint by our assumption on triple intersections. In other words we may
write Zn =

∐
{i,i′}∈P (In) Dn,i ∩ Dn,i′ . Moreover, in a Zariski neighbourhood of

Dn,i ∩ Dn,i′ the morphism bn is equal to the blowup of the scheme Xn in the
closed subscheme Dn,i ∩ Dn,i′ , and the results of Lemma 115.23.8 apply. Hence
setting Dn+1,{i,i′} = b−1

n (Di ∩Di′) we get an effective Cartier divisor. The Cartier
divisors Dn+1,{i,i′} are pairwise disjoint. Clearly we have b−1

n (Dn,i) ⊃ Dn+1,{i,i′}
for every i′ ∈ In, i′ ̸= i. Hence, applying Divisors, Lemma 31.13.8 we see that
indeed b−1(Dn,i) = Dn+1,i+

∑
i′∈In,i′ ̸=iDn+1,{i,i′} for some effective Cartier divisor

Dn+1,i on Xn+1. In a neighbourhood of Dn+1,{i,i′} these divisors Dn+1,i play the
role of the primed divisors of Lemma 115.23.8. In particular we conclude that
Dn+1,i∩Dn+1,i′ = ∅ if i ̸= i′, i, i′ ∈ In by part (6) of Lemma 115.23.8. This already
implies that triple intersections of the divisors Dn+1,i are zero.
OK, and at this point we can use the quasi-compactness of X to conclude that the
invariant
(115.23.11.1)

02T6 ϵ(X, {Di}i∈I) = max{ϵZ(Di, Di′) | Z ⊂ X,dimδ(Z) = d− 1, {i, i′} ∈ P (I)}
is finite, since after all each Di has at most finitely many irreducible components.
We claim that for some n the invariant ϵ(Xn, {Dn,i}i∈In) is zero. Namely, if not
then by Lemma 115.23.8 we have a strictly decreasing sequence

ϵ(X, {Di}i∈I) = ϵ(X0, {D0,i}i∈I0) > ϵ(X1, {D1,i}i∈I1) > . . .
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of positive integers which is a contradiction. Take n with invariant ϵ(Xn, {Dn,i}i∈In)
equal to zero. This means that there is no integral closed subscheme Z ⊂ Xn

and no pair of indices i, i′ ∈ In such that ϵZ(Dn,i, Dn,i′) > 0. In other words,
dimδ(Dn,i, Dn,i′) ≤ d− 2 for all pairs {i, i′} ∈ P (In) as desired.
Next, we come to the general case where we no longer assume that the scheme X is
quasi-compact. The problem with the idea from the first part of the proof is that
we may get and infinite sequence of blowups with centers dominating a fixed point
of X. In order to avoid this we cut out suitable closed subsets of codimension ≥ 3
at each stage. Namely, we will construct by induction a sequence of morphisms
having the following shape

X = X0

U0

j0

OO

X1
b0oo

U1

j1

OO

X2
b1oo

U2

j2

OO

X3
b2oo

Each of the morphisms jn : Un → Xn will be an open immersion. Each of the mor-
phisms bn : Xn+1 → Un will be a proper birational morphism of integral schemes.
As in the quasi-compact case we will have effective Cartier divisors {Dn,i}i∈In
on Xn. At each stage these will have the property that any triple intersection
Dn,i∩Dn,j∩Dn,k is empty. Moreover, for each n ≥ 0 we will have In+1 = In⨿P (In)
where P (In) denotes the set of pairs of elements of In. Finally, we will arrange it
so that

b−1
n (Dn,i|Un) = Dn+1,i +

∑
i′∈In,i′ ̸=i

Dn+1,{i,i′}

We start the induction by setting X0 = X, I0 = I and D0,i = Di.
Given (Xn, {Dn,i}) we construct the open subscheme Un as follows. For each pair
{i, i′} ∈ P (In) consider the closed subscheme Dn,i ∩ Dn,i′ . This has “good” irre-
ducible components which have δ-dimension d−2 and “bad” irreducible components
which have δ-dimension d− 1. Let us set

Bad(i, i′) =
⋃

W⊂Dn,i∩Dn,i′ irred. comp. with dimδ(W )=d−1
W

and similarly
Good(i, i′) =

⋃
W⊂Dn,i∩Dn,i′ irred. comp. with dimδ(W )=d−2

W.

Then Dn,i ∩Dn,i′ = Bad(i, i′)∪Good(i, i′) and moreover we have dimδ(Bad(i, i′)∩
Good(i, i′)) ≤ d− 3. Here is our choice of Un:

Un = Xn \
⋃

{i,i′}∈P (In)
Bad(i, i′) ∩Good(i, i′).

By our condition on triple intersections of the divisors Dn,i we see that the union
is actually a disjoint union. Moreover, we see that (as a scheme)

Dn,i|Un ∩Dn,i′ |Un = Zn,i,i′ ⨿Gn,i,i′
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where Zn,i,i′ is δ-equidimensional of dimension d−1 and Gn,i,i′ is δ-equidimensional
of dimension d−2. (So topologically Zn,i,i′ is the union of the bad components but
throw out intersections with good components.) Finally we set

Zn =
⋃

{i,i′}∈P (In)
Zn,i,i′ =

∐
{i,i′}∈P (In)

Zn,i,i′ ,

and we let bn : Xn+1 → Xn be the blowup in Zn. Note that Lemma 115.23.8 applies
to the morphism bn : Xn+1 → Xn locally around each of the loci Dn,i|Un ∩Dn,i′ |Un .
Hence, exactly as in the first part of the proof we obtain effective Cartier divisors
Dn+1,{i,i′} for {i, i′} ∈ P (In) and effective Cartier divisors Dn+1,i for i ∈ In such
that b−1

n (Dn,i|Un) = Dn+1,i +
∑
i′∈In,i′ ̸=iDn+1,{i,i′}. For each n denote πn : Xn →

X the morphism obtained as the composition j0 ◦ . . . ◦ jn−1 ◦ bn−1.

Claim: given any quasi-compact open V ⊂ X for all sufficiently large n the maps

π−1
n (V )← π−1

n+1(V )← . . .

are all isomorphisms. Namely, if the map π−1
n (V ) ← π−1

n+1(V ) is not an isomor-
phism, then Zn,i,i′ ∩ π−1

n (V ) ̸= ∅ for some {i, i′} ∈ P (In). Hence there exists an
irreducible component W ⊂ Dn,i ∩Dn,i′ with dimδ(W ) = d − 1. In particular we
see that ϵW (Dn,i, Dn,i′) > 0. Applying Lemma 115.23.8 repeatedly we see that

ϵW (Dn,i, Dn,i′) < ϵ(V, {Di|V })− n

with ϵ(V, {Di|V }) as in (115.23.11.1). Since V is quasi-compact, we have ϵ(V, {Di|V }) <
∞ and taking n > ϵ(V, {Di|V }) we see the result.

Note that by construction the difference Xn \ Un has dimδ(Xn \ Un) ≤ d− 3. Let
Tn = πn(Xn \ Un) be its image in X. Traversing in the diagram of maps above
using each bn is closed it follows that T0∪ . . .∪Tn is a closed subset of X for each n.
Any t ∈ Tn satisfies δ(t) ≤ d− 3 by construction. Hence Tn ⊂ X is a closed subset
with dimδ(Tn) ≤ d−3. By the claim above we see that for any quasi-compact open
V ⊂ X we have Tn∩V ̸= ∅ for at most finitely many n. Hence {Tn}n≥0 is a locally
finite collection of closed subsets, and we may set U = X \

⋃
Tn. This will be U as

in the lemma.

Note that Un ∩ π−1
n (U) = π−1

n (U) by construction of U . Hence all the morphisms

bn : π−1
n+1(U) −→ π−1

n (U)

are proper. Moreover, by the claim they eventually become isomorphisms over each
quasi-compact open of X. Hence we can define

U ′ = limn π
−1
n (U).

The induced morphism b : U ′ → U is proper since this is local on U , and over
each compact open the limit stabilizes. Similarly we set J =

⋃
n≥0 In using the

inclusions In → In+1 from the construction. For j ∈ J choose an n0 such that j
corresponds to i ∈ In0 and define D′

j = limn≥n0 Dn,i. Again this makes sense as
locally over X the morphisms stabilize. The other claims of the lemma are verified
as in the case of a quasi-compact X. □
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115.24. Commutativity of intersecting divisors

0AYE The results of this section were originally used to provide an alternative proof of the
lemmas of Chow Homology, Section 42.28 and a weak version of Chow Homology,
Lemma 42.30.5.

Lemma 115.24.1.02TC Let (S, δ) be as in Chow Homology, Situation 42.7.1. Let X be
locally of finite type over S. Let {ij : Dj → X}j∈J be a locally finite collection
of effective Cartier divisors on X. Let nj > 0, j ∈ J . Set D =

∑
j∈J njDj , and

denote i : D → X the inclusion morphism. Let α ∈ Zk+1(X). Then

p :
∐

j∈J
Dj −→ D

is proper and
i∗α = p∗

(∑
nji

∗
jα
)

in CHk(D).

Proof. The proof of this lemma is made a bit longer than expected by a subtlety
concerning infinite sums of rational equivalences. In the quasi-compact case the
family Dj is finite and the result is altogether easy and a straightforward conse-
quence of Chow Homology, Lemma 42.24.2 and Divisors, Lemma 31.27.5 and the
definitions.

The morphism p is proper since the family {Dj}j∈J is locally finite. Write α =∑
a∈Ama[Wa] with Wa ⊂ X an integral closed subscheme of δ-dimension k + 1.

Denote ia : Wa → X the closed immersion. We assume that ma ̸= 0 for all a ∈ A
such that {Wa}a∈A is locally finite on X.

Observe that by Chow Homology, Definition 42.29.1 the class i∗α is the class of a
cycle

∑
maβa for certain βa ∈ Zk(Wa∩D). Namely, if Wa ̸⊂ D then βa = [D∩Wa]k

and if Wa ⊂ D, then βa is a cycle representing c1(OX(D)) ∩ [Wa].

For each a ∈ A write J = Ja,1 ⨿ Ja,2 ⨿ Ja,3 where
(1) j ∈ Ja,1 if and only if Wa ∩Dj = ∅,
(2) j ∈ Ja,2 if and only if Wa ̸= Wa ∩D1 ̸= ∅, and
(3) j ∈ Ja,3 if and only if Wa ⊂ Dj .

Since the family {Dj} is locally finite we see that Ja,3 is a finite set. For every
a ∈ A and j ∈ J we choose a cycle βa,j ∈ Zk(Wa ∩Dj) as follows

(1) if j ∈ Ja,1 we set βa,j = 0,
(2) if j ∈ Ja,2 we set βa,j = [Dj ∩Wa]k, and
(3) if j ∈ Ja,3 we choose βa,j ∈ Zk(Wa) representing c1(i∗aOX(Dj)) ∩ [Wj ].

We claim that
βa ∼rat

∑
j∈J

njβa,j

in CHk(Wa ∩D).

Case I: Wa ̸⊂ D. In this case Ja,3 = ∅. Thus it suffices to show that [D ∩Wa]k =∑
nj [Dj ∩Wa]k as cycles. This is Lemma 115.23.10.

Case II: Wa ⊂ D. In this case βa is a cycle representing c1(i∗aOX(D))∩ [Wa]. Write
D = Da,1 + Da,2 + Da,3 with Da,s =

∑
j∈Ja,s njDj . By Divisors, Lemma 31.27.5

https://stacks.math.columbia.edu/tag/02TC
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we have

c1(i∗aOX(D)) ∩ [Wa] = c1(i∗aOX(Da,1)) ∩ [Wa] + c1(i∗aOX(Da,2)) ∩ [Wa]
+c1(i∗aOX(Da,3)) ∩ [Wa].

It is clear that the first term of the sum is zero. Since Ja,3 is finite we see that
the last term agrees with

∑
j∈Ja,3 njc1(i∗aLj) ∩ [Wa], see Divisors, Lemma 31.27.5.

This is represented by
∑
j∈Ja,3 njβa,j . Finally, by Case I we see that the middle

term is represented by the cycle
∑
j∈Ja,2 nj [Dj ∩Wa]k =

∑
j∈Ja,2 njβa,j . Whence

the claim in this case.

At this point we are ready to finish the proof of the lemma. Namely, we have
i∗D ∼rat

∑
maβa by our choice of βa. For each a we have βa ∼rat

∑
j βa,j

with the rational equivalence taking place on D ∩ Wa. Since the collection of
closed subschemes D ∩Wa is locally finite on D, we see that also

∑
maβa ∼rat∑

a,jmaβa,j on D! (See Chow Homology, Remark 42.19.6.) Ok, and now it is clear
that

∑
amaβa,j (viewed as a cycle on Dj) represents i∗jα and hence

∑
a,jmaβa,j

represents p∗
∑
j i

∗
jα and we win. □

Lemma 115.24.2.02TD Let (S, δ) be as in Chow Homology, Situation 42.7.1. Let X be
locally of finite type over S. Assume X integral and dimδ(X) = n. Let D, D′ be
effective Cartier divisors on X. Assume dimδ(D ∩ D′) = n − 2. Let i : D → X,
resp. i′ : D′ → X be the corresponding closed immersions. Then

(1) there exists a cycle α ∈ Zn−2(D ∩ D′) whose pushforward to D repre-
sents i∗[D′]n−1 ∈ CHn−2(D) and whose pushforward to D′ represents
(i′)∗[D]n−1 ∈ CHn−2(D′), and

(2) we have
D · [D′]n−1 = D′ · [D]n−1

in CHn−2(X).

Proof. Part (2) is a trivial consequence of part (1). Let us write [D]n−1 =
∑
na[Za]

and [D′]n−1 =
∑
mb[Zb] with Za the irreducible components of D and [Zb] the

irreducible components of D′. According to Chow Homology, Definition 42.29.1,
we have i∗D′ =

∑
mbi

∗[Zb] and (i′)∗D =
∑
na(i′)∗[Za]. By assumption, none of

the irreducible components Zb is contained in D, and hence i∗[Zb] = [Zb ∩D]n−2
by definition. Similarly (i′)∗[Za] = [Za ∩D′]n−2. Hence we are trying to prove the
equality of cycles ∑

na[Za ∩D′]n−2 =
∑

mb[Zb ∩D]n−2

which are indeed supported on D∩D′. Let W ⊂ X be an integral closed subscheme
with dimδ(W ) = n − 2. Let ξ ∈ W be its generic point. Set R = OX,ξ. It is a
Noetherian local domain. Note that dim(R) = 2. Let f ∈ R, resp. f ′ ∈ R be an
element defining the ideal of D, resp. D′. By assumption dim(R/(f, f ′)) = 0. Let
q′

1, . . . , q
′
t ⊂ R be the minimal primes over (f ′), let q1, . . . , qs ⊂ R be the minimal

primes over (f). The equality above comes down to the equality∑
i=1,...,s

lengthRqi
(Rqi/(f))ordR/qi(f ′) =

∑
j=1,...,t

lengthRq′
j

(Rq′
j
/(f ′))ordR/q′

j
(f).

https://stacks.math.columbia.edu/tag/02TD
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By Chow Homology, Lemma 42.3.1 applied with M = R/(f) the left hand side of
this equation is equal to

lengthR(R/(f, f ′))− lengthR(Ker(f ′ : R/(f)→ R/(f)))

OK, and now we note that Ker(f ′ : R/(f) → R/(f)) is canonically isomorphic to
((f) ∩ (f ′))/(ff ′) via the map x mod (f) 7→ f ′x mod (ff ′). Hence the left hand
side is

lengthR(R/(f, f ′))− lengthR((f) ∩ (f ′)/(ff ′))

Since this is symmetric in f and f ′ we win. □

Lemma 115.24.3.02TE Let (S, δ) be as in Chow Homology, Situation 42.7.1. Let X be
locally of finite type over S. Assume X integral and dimδ(X) = n. Let {Dj}j∈J
be a locally finite collection of effective Cartier divisors on X. Let nj ,mj ≥ 0 be
collections of nonnegative integers. Set D =

∑
njDj and D′ =

∑
mjDj . Assume

that dimδ(Dj ∩Dj′) = n − 2 for every j ̸= j′. Then D · [D′]n−1 = D′ · [D]n−1 in
CHn−2(X).

Proof. This lemma is a trivial consequence of Lemmas 115.23.10 and 115.24.2 in
case the sums are finite, e.g., if X is quasi-compact. Hence we suggest the reader
skip the proof.

Here is the proof in the general case. Let ij : Dj → X be the closed immersions
Let p :

∐
Dj → X denote coproduct of the morphisms ij . Let {Za}a∈A be the

collection of irreducible components of
⋃
Dj . For each j we write

[Dj ]n−1 =
∑

dj,a[Za].

By Lemma 115.23.10 we have

[D]n−1 =
∑

njdj,a[Za], [D′]n−1 =
∑

mjdj,a[Za].

By Lemma 115.24.1 we have

D · [D′]n−1 = p∗

(∑
nji

∗
j [D′]n−1

)
, D′ · [D]n−1 = p∗

(∑
mj′i∗j′ [D]n−1

)
.

As in the definition of the Gysin homomorphisms (see Chow Homology, Definition
42.29.1) we choose cycles βa,j on Dj ∩ Za representing i∗j [Za]. (Note that in fact
βa,j = [Dj ∩ Za]n−2 if Za is not contained in Dj , i.e., there is no choice in that
case.) Now since p is a closed immersion when restricted to each of the Dj we can
(and we will) view βa,j as a cycle on X. Plugging in the formulas for [D]n−1 and
[D′]n−1 obtained above we see that

D · [D′]n−1 =
∑

j,j′,a
njmj′dj′,aβa,j , D′ · [D]n−1 =

∑
j,j′,a

mj′njdj,aβa,j′ .

Moreover, with the same conventions we also have

Dj · [Dj′ ]n−1 =
∑

dj′,aβa,j .

https://stacks.math.columbia.edu/tag/02TE
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In these terms Lemma 115.24.2 (see also its proof) says that for j ̸= j′ the cycles∑
dj′,aβa,j and

∑
dj,aβa,j′ are equal as cycles! Hence we see that

D · [D′]n−1 =
∑

j,j′,a
njmj′dj′,aβa,j

=
∑

j ̸=j′
njmj′

(∑
a
dj′,aβa,j

)
+
∑

j,a
njmjdj,aβa,j

=
∑

j ̸=j′
njmj′

(∑
a
dj,aβa,j′

)
+
∑

j,a
njmjdj,aβa,j

=
∑

j,j′,a
mj′njdj,aβa,j′

= D′ · [D]n−1

and we win. □

Lemma 115.24.4.02TF Let (S, δ) be as in Chow Homology, Situation 42.7.1. Let X be
locally of finite type over S. Assume X integral and dimδ(X) = n. Let D, D′ be
effective Cartier divisors on X. Then

D · [D′]n−1 = D′ · [D]n−1

in CHn−2(X).

First proof of Lemma 115.24.4. First, let us prove this in case X is quasi-compact.
In this case, apply Lemma 115.23.11 to X and the two element set {D,D′} of
effective Cartier divisors. Thus we get a proper morphism b : X ′ → X, a finite
collection of effective Cartier divisors D′

j ⊂ X ′ intersecting pairwise in codimension
≥ 2, with b−1(D) =

∑
njD

′
j , and b−1(D′) =

∑
mjD

′
j . Note that b∗[b−1(D)]n−1 =

[D]n−1 in Zn−1(X) and similarly for D′, see Lemma 115.23.5. Hence, by Chow
Homology, Lemma 42.26.4 we have

D · [D′]n−1 = b∗
(
b−1(D) · [b−1(D′)]n−1

)
in CHn−2(X) and similarly for the other term. Hence the lemma follows from the
equality b−1(D) · [b−1(D′)]n−1 = b−1(D′) · [b−1(D)]n−1 in CHn−2(X ′) of Lemma
115.24.3.

Note that in the proof above, each referenced lemma works also in the general case
(when X is not assumed quasi-compact). The only minor change in the general
case is that the morphism b : U ′ → U we get from applying Lemma 115.23.11 has
as its target an open U ⊂ X whose complement has codimension ≥ 3. Hence by
Chow Homology, Lemma 42.19.3 we see that CHn−2(U) = CHn−2(X) and after
replacing X by U the rest of the proof goes through unchanged. □

Second proof of Lemma 115.24.4. Let I = OX(−D) and I ′ = OX(−D′) be the
invertible ideal sheaves of D and D′. We denote ID′ = I ⊗OX

OD′ and I ′
D =

I ′ ⊗OX
OD. We can restrict the inclusion map I → OX to D′ to get a map

φ : ID′ −→ OD′

and similarly
ψ : I ′

D −→ OD
It is clear that

Coker(φ) ∼= OD∩D′ ∼= Coker(ψ)

https://stacks.math.columbia.edu/tag/02TF
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and
Ker(φ) ∼=

I ∩ I ′

II ′
∼= Ker(ψ).

Hence we see that
γ = [ID′ ]− [OD′ ] = [I ′

D]− [OD]
in K0(Coh≤n−1(X)). On the other hand it is clear that

[I ′
D]n−1 = [D]n−1, [ID′ ]n−1 = [D′]n−1.

and that
OX(D′)⊗ I ′

D = OD, OX(D)⊗ ID′ = OD′ .

By Chow Homology, Lemma 42.69.7 (applied two times) this means that the ele-
ment γ is an element of Bn−2(X), and maps to both c1(OX(D′)) ∩ [D]n−1 and to
c1(OX(D)) ∩ [D′]n−1 and we win (since the map Bn−2(X) → CHn−2(X) is well
defined – which is the key to this proof). □

115.25. Dualizing modules on regular proper models

0C6D In Semistable Reduction, Situation 55.9.3 we let ω•
X/R = f !OSpec(R) be the rela-

tive dualizing complex of f : X → Spec(R) as introduced in Duality for Schemes,
Remark 48.12.5. Since f is Gorenstein of relative dimension 1 by Semistable Re-
duction, Lemma 55.9.2 we can use Duality for Schemes, Lemmas 48.25.10, 48.21.7,
and 48.25.4 to see that

ω•
X/R = ωX [1]

for some invertible OX -module ωX . This invertible module is often called the
relative dualizing module of X over R. Since R is regular (hence Gorenstein) of
dimension 1 we see that ω•

R = R[1] is a normalized dualizing complex for R. Hence
ωX = H−2(f !ω•

R) and we see that ωX is not just a relative dualizing module but also
a dualizing module, see Duality for Schemes, Example 48.22.1. Thus ωX represents
the functor

Coh(OX)→ Sets, F 7→ HomR(H1(X,F), R)
by Duality for Schemes, Lemma 48.22.5. This gives an alternative definition of the
relative dualizing module in Semistable Reduction, Situation 55.9.3. The formation
of ωX commutes with arbitrary base change (for any proper Gorenstein morphism of
given relative dimension); this follows from the corresponding fact for the relative
dualizing complex discussed in Duality for Schemes, Remark 48.12.5 which goes
back to Duality for Schemes, Lemma 48.12.4. Thus ωX pulls back to the dualizing
module ωC of C over K discussed in Algebraic Curves, Lemma 53.4.2. Note that
ωC is isomorphic to ΩC/K by Algebraic Curves, Lemma 53.4.1. Similarly ωX |Xk is
the dualizing module ωXk of Xk over k.

Lemma 115.25.1.0C6E In Semistable Reduction, Situation 55.9.3 the dualizing module
of Ci over k is

ωCi = ωX(Ci)|Ci
where ωX is as above.

Proof. Let t : Ci → X be the closed immersion. Since t is the inclusion of an
effective Cartier divisor we conclude from Duality for Schemes, Lemmas 48.9.7 and

https://stacks.math.columbia.edu/tag/0C6E
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48.14.2 that we have t!(L) = L(Ci)|Ci for every invertible OX -module L. Consider
the commutative diagram

Ci t
//

g

��

X

f

��
Spec(k) s // Spec(R)

Observe that Ci is a Gorenstein curve (Semistable Reduction, Lemma 55.9.2) with
invertible dualizing module ωCi characterized by the property ωCi [0] = g!OSpec(k).
See Algebraic Curves, Lemma 53.4.1, its proof, and Algebraic Curves, Lemmas
53.4.2 and 53.5.2. On the other hand, s!(R[1]) = k and hence

ωCi [0] = g!s!(R[1]) = t!f !(R[1]) = t!ωX

Combining the above we obtain the statement of the lemma. □

115.26. Duplicate and split out references

09AQ This section is a place where we collect duplicates and references which used to say
several things at the same time but are now split into their constituent parts.

Lemma 115.26.1.05JR Let X be a scheme. Assume X is quasi-compact and quasi-
separated. Let F be a quasi-coherent OX -module. Then F is the directed colimit
of its finite type quasi-coherent submodules.

Proof. This is a duplicate of Properties, Lemma 28.22.3. □

Lemma 115.26.2.03IF Let S be a scheme. Let X be an algebraic space over S. The
map {Spec(k)→ X monomorphism} → |X| is injective.

Proof. This is a duplicate of Properties of Spaces, Lemma 66.4.12. □

Theorem 115.26.3.03QZ Let S = Spec(K) with K a field. Let s be a geometric point of
S. Let G = Galκ(s) denote the absolute Galois group. Then there is an equivalence
of categories Sh(Sétale)→ G-Sets, F 7→ Fs.

Proof. This is a duplicate of Étale Cohomology, Theorem 59.56.3. □

Remark 115.26.4.06IF You got here because of a duplicate tag. Please see Formal
Deformation Theory, Section 90.12 for the actual content.

Lemma 115.26.5.08E6 Let X be a locally ringed space. A direct summand of a finite
free OX -module is finite locally free.

Proof. This is a duplicate of Modules, Lemma 17.14.6. □

Lemma 115.26.6.08XU Let R be a ring. Let E be an R-module. The following are
equivalent

(1) E is an injective R-module, and
(2) given an ideal I ⊂ R and a module map φ : I → E there exists an

extension of φ to an R-module map R→ E.

Proof. This is Baer’s criterion, see Injectives, Lemma 19.2.6. □

Lemma 115.26.7.02PI Let R be a local ring.

https://stacks.math.columbia.edu/tag/05JR
https://stacks.math.columbia.edu/tag/03IF
https://stacks.math.columbia.edu/tag/03QZ
https://stacks.math.columbia.edu/tag/06IF
https://stacks.math.columbia.edu/tag/08E6
https://stacks.math.columbia.edu/tag/08XU
https://stacks.math.columbia.edu/tag/02PI
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(1) If (M,N,φ, ψ) is a 2-periodic complex such that M , N have finite length.
Then eR(M,N,φ, ψ) = lengthR(M)− lengthR(N).

(2) If (M,φ, ψ) is a (2, 1)-periodic complex such that M has finite length.
Then eR(M,φ, ψ) = 0.

(3) Suppose that we have a short exact sequence of 2-periodic complexes
0→ (M1, N1, φ1, ψ1)→ (M2, N2, φ2, ψ2)→ (M3, N3, φ3, ψ3)→ 0
If two out of three have cohomology modules of finite length so does the
third and we have
eR(M2, N2, φ2, ψ2) = eR(M1, N1, φ1, ψ1) + eR(M3, N3, φ3, ψ3).

Proof. This follows from Chow Homology, Lemmas 42.2.3 and 42.2.4. □

Lemma 115.26.8.08S8 Let A be a ring and let I be an A-module.
(1) The set of extensions of rings 0 → I → A′ → A → 0 where I is an ideal

of square zero is canonically bijective to Ext1
A(NLA/Z, I).

(2) Given a ring map A → B, a B-module N , an A-module map c : I → N ,
and given extensions of rings with square zero kernels:
(a) 0→ I → A′ → A→ 0 corresponding to α ∈ Ext1

A(NLA/Z, I), and
(b) 0→ N → B′ → B → 0 corresponding to β ∈ Ext1

B(NLB/Z, N)
then there is a map A′ → B′ fitting into Deformation Theory, Equation
(91.2.0.1) if and only if β and αmap to the same element of Ext1

A(NLA/Z, N).

Proof. This follows from Deformation Theory, Lemmas 91.2.3 and 91.2.5. □

Lemma 115.26.9.08UD Let (S,OS) be a ringed space and let J be an OS-module.
(1) The set of extensions of sheaves of rings 0→ J → OS′ → OS → 0 where
J is an ideal of square zero is canonically bijective to Ext1

OS
(NLS/Z,J ).

(2) Given a morphism of ringed spaces f : (X,OX)→ (S,OS), an OX -module
G, an f -map c : J → G, and given extensions of sheaves of rings with
square zero kernels:
(a) 0→ J → OS′ → OS → 0 corresponding to α ∈ Ext1

OS
(NLS/Z,J ),

(b) 0→ G → OX′ → OX → 0 corresponding to β ∈ Ext1
OX

(NLX/Z,G)
then there is a morphism X ′ → S′ fitting into Deformation Theory,
Equation (91.7.0.1) if and only if β and α map to the same element of
Ext1

OX
(Lf∗ NLS/Z,G).

Proof. This follows from Deformation Theory, Lemmas 91.7.4 and 91.7.6. □

Lemma 115.26.10.08UL Let (Sh(B),OB) be a ringed topos and let J be an OB-module.
(1) The set of extensions of sheaves of rings 0→ J → OB′ → OB → 0 where
J is an ideal of square zero is canonically bijective to Ext1

OB
(NLOB/Z,J ).

(2) Given a morphism of ringed topoi f : (Sh(C),O) → (Sh(B),OB), an O-
module G, an f−1OB-module map c : f−1J → G, and given extensions of
sheaves of rings with square zero kernels:
(a) 0→ J → OB′ → OB → 0 corresponding to α ∈ Ext1

OB
(NLOB/Z,J ),

(b) 0→ G → O′ → O → 0 corresponding to β ∈ Ext1
O(NLO/Z,G)

then there is a morphism (Sh(C),O′)→ (Sh(B,OB′) fitting into Deforma-
tion Theory, Equation (91.13.0.1) if and only if β and α map to the same
element of Ext1

O(Lf∗ NLOB/Z,G).

https://stacks.math.columbia.edu/tag/08S8
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Proof. This follows from Deformation Theory, Lemmas 91.13.4 and 91.13.6. □

Remark 115.26.11.0D3H This tag used to point to a section describing several examples
of deformation problems. These now each have their own section. See Deformation
Problems, Sections 93.4, 93.5, 93.6, and 93.7.

Lemma 115.26.12.0D3M Deformation Problems, Examples 93.4.1, 93.5.1, 93.6.1, and
93.7.1 satisfy the Rim-Schlessinger condition (RS).

Proof. This follows from Deformation Problems, Lemmas 93.4.2, 93.5.2, 93.6.2, and
93.7.2. □

Lemma 115.26.13.0D3N We have the following canonical k-vector space identifications:
(1) In Deformation Problems, Example 93.4.1 if x0 = (k, V ), then Tx0F = (0)

and Infx0(F) = Endk(V ) are finite dimensional.
(2) In Deformation Problems, Example 93.5.1 if x0 = (k, V, ρ0), then Tx0F =

Ext1
k[Γ](V, V ) = H1(Γ,Endk(V )) and Infx0(F) = H0(Γ,Endk(V )) are fi-

nite dimensional if Γ is finitely generated.
(3) In Deformation Problems, Example 93.6.1 if x0 = (k, V, ρ0), then Tx0F =

H1
cont(Γ,Endk(V )) and Infx0(F) = H0

cont(Γ,Endk(V )) are finite dimen-
sional if Γ is topologically finitely generated.

(4) In Deformation Problems, Example 93.7.1 if x0 = (k, P ), then Tx0F and
Infx0(F) = Derk(P, P ) are finite dimensional if P is finitely generated over
k.

Proof. This follows from Deformation Problems, Lemmas 93.4.3, 93.5.3, 93.6.3, and
93.7.3. □
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CHAPTER 116

GNU Free Documentation License

02C1
Version 1.2, November 2002

Copyright ©2000, 2001, 2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble
The purpose of this License is to make a manual, textbook, or other functional

and useful document "free" in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either commer-
cially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

116.1. APPLICABILITY AND DEFINITIONS

05BG This License applies to any manual or other work, in any medium, that contains
a notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited
in duration, to use that work under the conditions stated herein. The "Document",
below, refers to any such manual or work. Any member of the public is a licensee,
and is addressed as "you". You accept the license if you copy, modify or distribute
the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or authors
of the Document to the Document’s overall subject (or to related matters) and

7490
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contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical connec-
tion with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are desig-
nated, as being those of Invariant Sections, in the notice that says that the Docu-
ment is released under this License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant. The Document may
contain zero Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public, that is
suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely
available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence
of markup, has been arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTeX input format, SGML or XML using
a publicly available DTD, and standard-conforming simple HTML, PostScript or
PDF designed for human modification. Examples of transparent image formats in-
clude PNG, XCF and JPG. Opaque formats include proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes
only.

The "Title Page" means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires to
appear in the title page. For works in formats which do not have any title page
as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title
either is precisely XYZ or contains XYZ in parentheses following text that translates
XYZ in another language. (Here XYZ stands for a specific section name mentioned
below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".)
To "Preserve the Title" of such a section when you modify the Document means
that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
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disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

116.2. VERBATIM COPYING

05BH You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices, and
the license notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this License.
You may not use technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept compensa-
tion in exchange for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

116.3. COPYING IN QUANTITY

05BI If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover, and
continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along with
each Opaque copy, or state in or with each Opaque copy a computer-network lo-
cation from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably pru-
dent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

116.4. MODIFICATIONS

05BJ You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified Ver-
sion under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version
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to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to

the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving

the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add to it

an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
"History" in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the Doc-
ument itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve
the Title of the section, and preserve in the section all the substance
and tone of each of the contributor acknowledgements and/or dedications
given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.
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If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing
but endorsements of your Modified Version by various parties–for example, state-
ments of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

116.5. COMBINING DOCUMENTS

05BK You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are multiple
Invariant Sections with the same name but different contents, make the title of
each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the
various original documents, forming one section Entitled "History"; likewise combine
any sections Entitled "Acknowledgements", and any sections Entitled "Dedications".
You must delete all sections Entitled "Endorsements".

116.6. COLLECTIONS OF DOCUMENTS

05BL You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in the
various documents with a single copy that is included in the collection, provided that
you follow the rules of this License for verbatim copying of each of the documents
in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into the
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extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

116.7. AGGREGATION WITH INDEPENDENT WORKS

05BM A compilation of the Document or its derivatives with other separate and inde-
pendent documents or works, in or on a volume of a storage or distribution medium,
is called an "aggregate" if the copyright resulting from the compilation is not used
to limit the legal rights of the compilation’s users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not ap-
ply to the other works in the aggregate which are not themselves derivative works
of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

116.8. TRANSLATION

05BN Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant Sections
with translations requires special permission from their copyright holders, but you
may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License,
and all the license notices in the Document, and any Warranty Disclaimers, provided
that you also include the original English version of this License and the original
versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or
"History", the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

116.9. TERMINATION

05BP You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

116.10. FUTURE REVISIONS OF THIS LICENSE

05BQ The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems or
concerns. See https://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License "or any later
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version" applies to it, you have the option of following the terms and conditions
either of that specified version or of any later version that has been published (not
as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.

116.11. ADDENDUM: How to use this License for your documents

05BR To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices just
after the title page:

Copyright ©YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later ver-
sion published by the Free Software Foundation; with no Invari-
ant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, re-
place the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with
the Front-Cover Texts being LIST, and with the Back-Cover
Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such
as the GNU General Public License, to permit their use in free software.
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CHAPTER 117

Auto generated index

117.1. Alphabetized definitions

(−1)-index in 55.3.8
(−2)-index in 55.3.16
(2, 1)-category in 4.30.1
(2, 1)-periodic complex in 42.2.1
(Fn) canonically extends to X in 52.16.7
(Fn) extends to X in 52.16.5
(Fn) satisfies the (a, b)-inequalities in
52.19.1
(Fn) satisfies the strict (a, b)-inequalities
in 52.19.1
(Spaces/S)étale in 73.4.5
(Spaces/S)fppf in 73.7.6
(Spaces/S)ph in 73.8.5
(Spaces/X)étale in 73.4.6
(Spaces/X)fppf in 73.7.7
(Spaces/X)ph in 73.8.6
(A,B)-bimodule in 10.12.6
(A,B)-bimodule in 22.28.1
(Rk) in 10.157.1
(Rk) in 28.12.1
(Sk) in 10.157.1
(Sk) in 28.12.1
(Sk) in 30.11.1
(Sk) in 30.11.1
(U ′, R′, s′, t′, c′) is cartesian over
(U,R, s, t, c) in 39.21.1
1-morphisms in 4.29.1
2-category of algebraic stacks over S in
94.12.3
2-category of categories fibred in
groupoids over C in 4.35.6
2-category of categories fibred in setoids
over C in 4.39.3
2-category of categories fibred in sets
over C in 4.38.3
2-category of categories over C in 4.32.1

2-category of fibred categories over C in
4.33.9
2-category of stacks in groupoids over C
in 8.5.5
2-category of stacks in setoids over C in
8.6.5
2-category of stacks over C in 8.4.5
2-category in 4.29.1
2-morphisms in 4.29.1
2-periodic complex in 42.2.1
α-small with respect to I in 19.2.4
δ is compatible with γ in 60.4.1
δ-dimension of T in 82.2.5
δ-dimension of Z in 42.7.6
δ-functor from A to D in 13.3.6
δ-functor in 12.12.1
δ-invariant of A in 33.39.3
δ-invariant of X at x in 33.39.7
δ(τ) in 111.41.2
δnj : [n− 1]→ [n] in 14.2.1
ℓ-adic cohomology in 64.18.8
ℓ-adic sheaf in 64.18.1
ϵ-invariant in 115.23.7
Ext-group in 12.6.2
Hom(U, V ) in 14.14.1
Hom(U, V ) in 14.15.1
Hom(U, V ) in 14.17.1
κ-generated in 28.23.1
Zℓ-sheaf in 64.18.1
A0 in 22.25.3
CΛ in 90.3.1
F has length d at x in 82.4.2
F is flat over S in dimensions ≥ n in
38.20.10
F is flat over Y in dimensions ≥ n in
77.11.3
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G-torsor in 20.4.1
G-torsor in 21.4.1
I is cofinal in J in 4.17.1
I is initial in J in 4.17.3
KX in 31.23.1
KX in 71.10.1
O∗ in 18.32.1
O1-derivation in 17.28.1
O1-derivation in 18.33.1
OX -module in 96.7.1
S is endowed with the topology inherited
from C in 8.10.2
SF in 4.36.2
SF in 4.37.2
X is relatively representable over Y in
4.42.3
grd in 53.3.1
QC (A,d) in 24.33.1
QC (O) in 21.43.1
ϕ lies over f in 4.32.2
Sh(C) in 7.7.5
σnj : [n+ 1]→ [n] in 14.2.1
τ G-torsor in 39.11.3
τ G-torsor in 78.9.3
τ local on the base in 35.22.1
τ local on the base in 74.10.1
τ local on the source in 35.26.1
τ local on the source in 74.14.1
τ local on the target in 35.22.1
τ local on the target in 74.10.1
τ torsor in 39.11.3
τ torsor in 78.9.3
τ -covering in 59.20.1
Adeq((Sch/S)τ ,O) in 46.5.7
Adeq(O) in 46.5.7
Adeq(S) in 46.5.7
Filf (A) in 111.30.4
U in 7.12.3
φ-derivation in 17.28.1
φ-derivation in 18.33.1
ĈΛ in 90.4.1
A is a wedge of A1, . . . , An in 33.40.4
A-biderivation in 92.13.1
B-rational map from X to Y in 67.47.1
c-adic in 87.7.1
C in 35.4.9
Cr in 59.67.5
CS/R in 10.149.2

d(M) in 10.59.8
Dc(Xétale,Λ) in 59.76.1
Dctf (Xétale,Λ) in 59.77.1
fs−1 in 4.27.12
f has relative dimension d at x in 67.33.1
F is relatively representable over G in
4.8.2
f -ample in 29.37.1
f -ample in 71.14.1
F -crystal on X/S (relative to σ) in
60.26.2
f -map φ : G → F in 66.18.9
f -map ξ : G → F in 6.21.7
f -relatively ample in 29.37.1
f -relatively ample in 71.14.1
f -relatively very ample in 29.38.1
f -very ample in 29.38.1
f−1S in 8.12.9
f∗ in 35.4.19
f∗S in 8.12.4
G-equivariant quasi-coherent OX -
module in 39.12.1
G-equivariant quasi-coherent OX -
module in 78.10.1
G-equivariant in 39.10.1
G-equivariant in 78.8.1
G-invariant in 83.3.1
G-module in 59.57.1
G-set in 58.2.1
G-torsor in the τ topology in 39.11.3
G-torsor in the τ topology in 78.9.3
G-torsor in 39.11.3
G-trace of f on P in 64.15.2
G-Sets in 58.2.1
g!F = (gp!F)# in 18.16.1
gp!F in 18.16.1
Hi+k(A•) −→ Hi(A[k]•) in 12.14.8
H1-regular ideal in 15.32.1
H1-regular immersion in 31.21.1
H1-regular immersion in 76.44.2
H1-regular in 15.30.1
H1-regular in 31.20.2
Hi+k(A•)→ Hi(A[k]•) in 12.14.2
I-adically complete in 10.96.2
I-adically complete in 10.96.2
I-depth in 10.72.1
I-depth in 51.13.1
I-power torsion module in 15.88.1



117.1. ALPHABETIZED DEFINITIONS 7501

I-projective in 15.70.4
ith Chern class of E in 82.28.2
ith Chern class in 42.38.8
ith Chow group of M in 45.5.1
ith extension group in 13.27.1
ith right derived functor RiF of F in
13.16.2
k-cycle associated to F in 42.10.2
k-cycle associated to F in 82.6.1
k-cycle associated to Y in 82.5.2
k-cycle associated to Z in 42.9.2
k-cycle in 42.8.1
k-cycle in 82.3.1
k-shifted chain complex A[k]• in 12.14.1
k-shifted cochain complex A[k]• in
12.14.7
k-shifted module in 22.4.3
kth Fitting ideal in 15.8.3
kth shifted A-module in 22.11.3
kth shifted A-module in 22.11.3
L-function of F in 64.19.1
L-function of F in 64.19.3
M 7→M∨ in 15.55.5
M -H1-regular in 15.30.1
M -Koszul-regular in 15.30.1
m-pseudo-coherent relative to R in
15.81.4
m-pseudo-coherent relative to R in
15.81.4
m-pseudo-coherent relative to S in
37.59.2
m-pseudo-coherent relative to S in
37.59.2
m-pseudo-coherent relative to Y in
76.45.3
m-pseudo-coherent relative to Y in
76.45.3
m-pseudo-coherent in 15.64.1
m-pseudo-coherent in 15.64.1
m-pseudo-coherent in 20.47.1
m-pseudo-coherent in 20.47.1
m-pseudo-coherent in 21.45.1
m-pseudo-coherent in 21.45.1
M -quasi-regular in 10.69.1
M -regular sequence in I in 10.68.1
M -regular sequence in 10.68.1
m-regular in 33.35.7
n-simplex of U in 14.11.1

n-truncated simplicial object of C in
14.12.1
R-bilinear in 10.12.1
R-derivation in 10.131.1
R-equivalent in 83.5.4
R-invariant in 39.19.1
R-invariant in 39.19.1
R-invariant in 39.19.1
R-invariant in 78.18.1
R-invariant in 78.18.1
R-invariant in 78.18.1
R-invariant in 83.3.1
R-linear category A in 22.24.1
R-linear functor in 22.24.2
R-linear in 90.11.1
R-module of finite presentation in 10.5.1
R-orbit in 83.5.1
R-orbit in 83.5.4
R-perfect in 15.83.1
R-G-module in 59.57.1
R(f) in 111.27.3
S is a finite type R-algebra in 10.6.1
S-birational in 29.49.11
S-derivation D : OX/S → F in 60.12.1
S-derivation in 17.28.10
S-perfect in 36.35.1
S-pure in 38.16.1
S-pure in 38.16.1
S-rational map from X to Y in 29.49.1
s−1f in 4.27.4
T is proper over Y in 75.7.2
U -admissible blowup in 31.34.1
U -admissible blowup in 71.19.1
x is a point of codimension d on X in
66.10.2
x is an associated point of X in 71.2.2
x is associated to F in 71.2.2
X is regular at x in 66.25.2
x lies over U in 4.32.2
Xaffine,étale in 66.18.5
Xspaces,étale in 66.18.2
Y is cartesian over X in 85.27.1
Y -derivation in 18.33.10
Y -perfect in 76.52.1
Y -pure in 77.3.1
Y -pure in 77.3.1
Z is proper over S in 30.26.2
(additive) Herbrand quotient in 42.2.2
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2-fibre product of f and g in 4.31.2
2-morphism from f to g in 7.36.1
2-morphism from f to g in 18.8.1
étale at q in 10.143.1
étale at x ∈ X in 29.36.1
étale at x ∈ X in 41.11.4
étale at x in 67.39.1
étale covering of T in 34.4.1
étale covering of X in 73.4.1
étale covering in 59.4.1
étale covering in 59.27.1
étale equivalence relation in 65.9.2
étale homomorphism of local rings in
41.11.1
étale local on source-and-target in
35.32.3
étale local on the source-and-target in
35.33.1
étale local ring of S at s in 59.33.2
étale local ring of X at x in 66.22.2
étale locally constructible in 66.8.2
étale local in 35.21.1
étale neighborhood in 59.29.1
étale neighborhood in 66.19.2
étale neighbourhood of (S, s) in 37.35.1
étale sheaf in 96.4.3
étale topos in 59.21.1
étale topos in 66.18.7
étale-smooth local on source-and-target
in 74.21.1
étale in 10.143.1
étale in 29.36.1
étale in 35.20.2
étale in 41.11.4
étale in 59.26.1
étale in 66.16.2
étale in 101.35.1
a Serre functor exists in 57.3.2
abelian presheaf over X in 6.4.4
abelian presheaf in 59.9.1
abelian sheaf on X in 6.8.1
abelian sheaves in 59.11.4
abelian variety in 39.9.1
abelian in 12.5.1
absolute frobenius of X in 33.36.1
absolute Galois group in 59.56.1
absolute ramification index in 15.113.3
absolute weak normalization in 29.47.8

absolutely flat in 15.104.1
absolutely flat in 15.104.1
absolutely flat in 37.64.1
absolutely integrally closed in 15.14.1
absolutely weakly normal in 29.47.1
absolutely weakly normal in 29.47.3
abuts to H(K) in 12.23.6
abuts to H∗(K•) in 12.24.9
abuts to Hn(Tot(K•,•)) in 12.25.2
abuts to Hn(Tot(K•,•)) in 12.25.2
action of G on the algebraic space X/B
in 78.8.1
action ofG on the schemeX/S in 39.10.1
acts freely in 65.14.4
acyclic for LF in 13.15.3
acyclic for RF in 13.15.3
acyclic in 12.13.4
acyclic in 12.13.10
additive monoidal category in 12.17.1
additive in 12.3.1
additive in 12.3.8
adequate in 46.3.2
adequate in 46.5.1
adic constructible in 61.28.1
adic constructible in 61.29.4
adic lisse in 61.28.1
adic lisse in 61.29.4
adic morphism in 87.23.2
adic* in 87.9.7
adic in 15.36.1
adic in 87.6.1
adic in 87.9.7
admissible epimorphism in 22.7.1
admissible monomorphism in 22.7.1
admissible relation in 42.68.2
admissible short exact sequence in 22.7.1
admissible in 15.36.1
admissible in 42.68.2
affine n-space over R in 27.5.1
affine n-space over S in 27.5.1
affine blowup algebra in 10.70.1
affine cone associated to A in 27.7.1
affine formal algebraic space in 87.9.1
affine scheme in 26.5.5
affine stratification number in 37.73.4
affine stratification in 37.73.1
affine variety in 33.26.1
affine in 29.11.1
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affine in 67.20.2
affine in 101.9.1
algebraic k-scheme in 33.20.1
algebraic closure of k in K in 9.26.9
algebraic closure in 9.10.3
algebraic extension in 9.8.1
algebraic space over S in 65.6.1
algebraic space structure on Z in 66.12.5
algebraic stack over S in 94.12.1
algebraic stack structure on Z in
100.10.4
algebraic stack in 105.5.1
algebraically closed in K in 9.26.9
algebraically closed in 9.10.1
algebraically independent in 9.26.1
algebraic in 9.8.1
algebraic in 9.28.1
algebraic in 59.56.1
algebraic in 97.8.1
almost cocontinuous in 7.42.3
almost integral over R in 10.37.3
alteration of X in 29.51.12
alteration of X in 72.8.3
alternating Čech complex in 20.23.1
alternating Čech complex in 69.6.2
amalgamated sum in 4.5.1
ample family of invertible modules on X
in 29.12.1
ample on X/S in 29.37.1
ample on X/Y in 71.14.1
ample in 28.26.1
an f -power torsion module in 15.88.1
an ideal of definition of R in 10.59.1
analytically unramified in 10.162.9
analytically unramified in 10.162.9
annihilator of m in 10.40.3
annihilator of M in 10.40.3
annihilator in 17.23.1
approximation by perfect complexes
holds in 36.14.2
approximation by perfect complexes
holds in 75.14.2
approximation holds for the triple in
36.14.1
approximation holds for the triple in
75.14.1
arithmetic frobenius in 64.3.8
Artinian in 10.53.1

Artinian in 12.9.2
Artinian in 12.9.2
Artinian in 111.6.16
associated étale site in 96.4.1
associated affine étale site in 96.24.2
associated affine fppf site in 96.24.2
associated affine site in 96.24.1
associated affine smooth site in 96.24.2
associated affine syntomic site in 96.24.2
associated affine Zariski site in 96.24.2
associated fppf site in 96.4.1
associated graded ring in 17.25.7
associated morphism of fppf topoi in
96.4.5
associated points of X in 31.2.1
associated simple complex in 12.18.3
associated smooth site in 96.4.1
associated syntomic site in 96.4.1
associated total complex in 12.18.3
associated Zariski site in 96.4.1
associated in 10.63.1
associated in 31.2.1
associates in 10.120.1
at-worst-nodal of relative dimension 1 in
53.20.2
at-worst-nodal of relative dimension 1 in
76.55.1
Atiyah class in 92.17.1
Atiyah class in 92.19.1
augmentation ϵ : U → X of U towards
an object X of C in 14.20.1
auto-associated in 15.15.1
automorphism functor of x in 90.19.5
automorphisms of E over F in 9.15.8
automorphisms of E/F in 9.15.8
Bézout domain in 15.124.5
base change of F ′ to S in 65.16.2
base change in 10.14.1
base change in 10.14.1
base change in 26.18.1
base change in 26.18.1
base change in 26.18.1
base change in 83.3.4
base extension along f in 35.4.15
base for the topology on X in 5.5.1
base point in 58.6.1
basis for the topology on X in 5.5.1
big τ -site of S in 59.20.2
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big τ -topos in 59.21.1
big étale site of S in 34.4.8
big étale site over S in 59.27.3
big étale site in 34.4.6
big affine étale site of S in 34.4.8
big affine fppf site of S in 34.7.8
big affine h site of S in 38.34.13
big affine ph site of S in 34.8.11
big affine pro-étale site of S in 61.12.8
big affine smooth site of S in 34.5.8
big affine syntomic site of S in 34.6.8
big affine Zariski site of S in 34.3.7
big crystalline site in 60.8.4
big fppf site of S in 34.7.8
big fppf site in 34.7.6
big h site of S in 38.34.13
big h site in 38.34.10
big ph site of S in 34.8.11
big ph site in 34.8.9
big pro-étale site of S in 61.12.8
big pro-étale site in 61.12.7
big smooth site of S in 34.5.8
big smooth site in 34.5.6
big syntomic site of S in 34.6.8
big syntomic site in 34.6.6
big Zariski site of S in 34.3.7
big Zariski site in 34.3.5
big in 59.27.3
birational in 29.49.11
birational in 29.50.1
birational in 67.47.7
birational in 68.22.1
bivariant class c of degree p for f in
42.33.1
bivariant class c of degree p for f in
82.26.1
blowing up X ′ → X of X at x in 89.4.1
blowing up of X along Z in 31.32.1
blowing up of X along Z in 71.17.1
blowing up of X in the ideal sheaf I in
31.32.1
blowing up of X in the ideal sheaf I in
71.17.1
blowup algebra in 10.70.1
bounded above in 12.24.7
bounded above in 13.8.1
bounded below in 12.24.7
bounded below in 13.8.1

bounded derived category in 13.11.3
bounded filtered derived category in
13.13.7
bounded in 12.24.7
bounded in 13.8.1
bounds the degrees of the fibres of f in
29.57.1
Bourbaki-proper in 5.17.2
Brauer group in 11.5.2
Brauer group in 59.61.4
canonical descent datum in 8.3.5
canonical descent datum in 35.2.3
canonical descent datum in 35.34.10
canonical descent datum in 35.34.11
canonical descent datum in 74.3.3
canonical descent datum in 74.22.10
canonical descent datum in 74.22.11
canonical scheme structure on T in
29.26.3
canonical section in 31.14.1
canonical topology in 7.47.12
Cartan-Eilenberg resolution in 13.21.1
cartesian in 4.6.2
cartesian in 39.21.1
cartesian in 85.12.1
cartesian in 85.12.1
cartesian in 85.12.1
cartesian in 85.12.1
cartesian in 85.13.1
cartesian in 85.14.1
cartesian in 85.27.1
Cartier divisor in 111.49.1
categorical moduli space in C in 106.12.1
categorical moduli space in 106.12.1
categorical quotient in C in 83.4.1
categorical quotient in schemes in 83.4.1
categorical quotient in the category of
schemes in 83.4.1
categorical quotient in 83.4.1
categorically compact in 4.26.1
category F̂ of formal objects of F in
90.7.1
category cofibered in groupoids over C in
90.5.1
category fibred in discrete categories in
4.38.2
category fibred in setoids in 4.39.2
category fibred in sets in 4.38.2
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category of (cochain) complexes in 13.8.1
category of complexes of A in 22.26.3
category of cosimplicial objects of C in
14.5.1
category of finite filtered objects of A in
13.13.1
category of graded objects of A in
12.16.1
category of groupoids in functors on C in
90.21.1
category of sheaves of sets in 59.11.4
category of simplicial objects of C in
14.3.1
category in 4.2.1
catenary in 5.11.4
catenary in 10.105.1
catenary in 28.11.1
catenary in 68.25.1
catenary in 111.18.1
catenary in 111.18.1
centered in 10.50.1
center in 31.32.1
center in 71.17.1
central in 11.2.4
chain of irreducible closed subsets in
5.10.1
chain of prime ideals in 10.60.1
change of base of X ′ in 94.19.3
characteristic in 9.5.1
Chern classes of E on X in 42.37.1
Chern classes of E are defined in 42.46.3
choice of pullbacks in 4.33.6
Chow cohomology in 42.34.1
Chow cohomology in 82.26.2
Chow group of k-cycles modulo rational
equivalence on X in 42.19.1
Chow group of k-cycles modulo rational
equivalence on X in 82.15.1
Chow group of k-cycles on X in 42.19.1
Chow group of k-cycles on X in 82.15.1
class group of A in 111.22.3
classical case in 90.3.1
classical generator in 13.36.3
classical Weil cohomology theory in
45.7.3
classical in 87.9.7
closed immersion of ringed spaces in
17.13.1

closed immersion in 7.43.7
closed immersion in 26.4.1
closed immersion in 26.10.2
closed immersion in 65.12.1
closed immersion in 87.27.1
closed immersion in 100.9.1
closed subgroup scheme in 39.4.3
closed subscheme in 26.10.2
closed subspace of X associated to the
sheaf of ideals I in 26.4.4
closed subspace in 65.12.1
closed substack in 100.9.9
closed subtopos in 7.43.6
closed in 5.17.2
closed in 67.9.2
closed in 101.13.2
closed in 111.6.22
coarse quotient in schemes in 83.6.1
coarse quotient in 83.6.1
coarser in 7.47.8
cocartesian in 4.9.2
cocontinuous in 7.20.1
cocycle condition in 8.3.1
cocycle condition in 35.2.1
cocycle condition in 35.3.1
cocycle condition in 35.34.1
cocycle condition in 59.16.1
cocycle condition in 74.3.1
cocycle condition in 74.22.1
codimension in 5.11.1
codirected in 4.20.1
codirected in 4.20.1
coefficient ring in 10.160.4
coequalizer in 4.11.1
cofiltered in 4.20.1
cofiltered in 4.20.1
cofinal in 4.17.1
Cohen ring in 10.160.5
Cohen-Macaulay at x in 37.22.1
Cohen-Macaulay at x in 76.26.2
Cohen-Macaulay morphism in 37.22.1
Cohen-Macaulay morphism in 76.26.2
Cohen-Macaulay in 10.103.1
Cohen-Macaulay in 10.103.12
Cohen-Macaulay in 10.104.1
Cohen-Macaulay in 10.104.6
Cohen-Macaulay in 28.8.1
Cohen-Macaulay in 30.11.4
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Cohen-Macaulay in 111.28.1
coherent OX -module in 17.12.1
coherent module in 10.90.1
coherent ring in 10.90.1
coherent in 18.23.1
coherent in 69.12.1
coherent in 103.17.2
coherent in 111.36.6
cohomological δ-functor in 12.12.1
cohomological dimension of f in 59.96.1
cohomological dimension of I in A in
51.4.2
cohomological dimension of X in 59.95.1
cohomological in 13.3.5
cohomology modules in 42.2.1
cohomology modules in 42.2.1
cohomology of K with compact support
in 63.12.1
coimage of f in 12.3.9
cokernel in 12.3.9
colimit in 4.14.2
colimit in 111.2.3
combinatorially equivalent in 7.8.2
commutative in 22.3.3
compact object in 13.37.1
compactly generated in 13.37.5
compactly supported cohomology of K
in 63.12.1
compatible with the differential graded
structure in 23.6.5
compatible with the triangulated struc-
ture in 13.5.1
complete dévissage of F/X/S at x in
38.5.2
complete dévissage of F/X/S over s in
38.5.1
complete dévissage of N/S/R at q in
38.6.4
complete dévissage of N/S/R over r in
38.6.2
complete intersection (over k) in
10.135.5
complete intersection in 23.8.5
complete local ring in 10.160.1
completed principal localization in
88.14.7
completed tensor product in 87.4.7
completely decomposed in 37.78.1

completely decomposed in 37.78.1
completely normal in 10.37.3
completion (U,R, s, t, c)∧ of (U,R, s, t, c)
in 90.22.2
completion of F in 90.7.3
completion of X along T in 87.14.3
completion of X along T in 87.37.3
completion of X along Z in 87.38.1
complex in 12.5.7
composition f ◦ g in 7.15.1
composition of φ and ψ in 6.21.9
composition of morphisms of germs in
35.20.1
composition of morphisms of ringed sites
in 18.6.1
composition of morphisms of ringed
spaces in 6.25.3
composition of morphisms of ringed
topoi in 18.7.1
composition in 4.29.1
composition in 7.14.5
compositum of K and L in Ω in 9.27.1
computes in 13.14.10
computes in 13.14.10
condition (RS) in 90.16.1
condition (RS) in 98.5.1
condition (RS*) in 98.18.1
conditions (S1) and (S2) in 90.10.1
cone π : C → S over S in 27.7.2
cone associated to A in 27.7.1
cone in 13.9.1
cone in 22.6.1
cone in 24.22.2
connected component in 5.7.1
connected component in 111.6.26
connected in 4.16.1
connected in 5.7.1
connected in 111.6.26
conormal algebra CZ/X,∗ of Z in X in
31.19.1
conormal algebra CZ/X,∗ of Z in X in
76.6.1
conormal algebra of f in 31.19.1
conormal algebra of i in 76.6.1
conormal module in 10.149.2
conormal sheaf CZ/X of Z inX in 29.31.1
conormal sheaf CZ/X of Z in X in 76.5.1
conormal sheaf of i in 29.31.1
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conormal sheaf of i in 76.5.1
conormal sheaf of Z over X in 37.7.2
conormal sheaf of Z over X in 76.15.5
conservative in 7.38.1
constant presheaf with value A in 6.3.2
constant sheaf with value A in 6.7.4
constant sheaf with value A in 59.64.1
constant sheaf with value E in 59.64.1
constant sheaf with value M in 59.64.1
constant sheaf in 18.43.1
constant sheaf in 59.23.1
constant sheaf in 59.64.1
constant sheaf in 59.64.1
constant sheaf in 59.64.1
constructible Λ-sheaf in 61.28.1
constructible in 5.15.1
constructible in 59.71.1
constructible in 59.71.1
constructible in 59.71.1
constructible in 61.27.1
constructible in 61.29.1
content ideal of x in 15.24.1
continuous group cohomology groups in
59.57.2
continuous in 7.13.1
contravariant in 4.3.2
converges to H∗(K•) in 12.24.9
converges to Hn(Tot(K•,•)) in 12.25.2
converges to Hn(Tot(K•,•)) in 12.25.2
coproduct in 4.5.1
coproduct in 4.14.7
coregular in 12.24.7
cosimplicial abelian group in 14.5.1
cosimplicial object U of C in 14.5.1
cosimplicial set in 14.5.1
cotangent complex LX/Y of X over Y in
92.24.1
cotangent complex LX/Y of X over Y in
92.26.1
cotangent complex in 92.3.2
cotangent complex in 92.18.2
cotangent complex in 92.20.1
cotangent complex in 92.22.1
countably indexed in 87.10.2
coverings of C in 7.6.2
coverings in 59.10.2
covering in 25.3.1
covering in 25.3.1

covers F in 26.15.3
crystal in OX/S-modules in 60.11.1
crystal in finite locally free modules in
60.11.3
crystal in quasi-coherent modules in
60.11.3
crystalline site in 60.9.1
curve in 33.43.1
curve in 59.67.9
cycle on X in 42.8.1
cycle on X in 82.3.1
de Rham complex of B over A in 17.30.1
de Rham complex of log poles for Y ⊂ X
over S in 50.15.3
de Rham complex of log poles is defined
for Y ⊂ X over S in 50.15.1
de Rham complex in 17.30.4
decent in 68.6.1
decent in 68.17.1
decent in 101.48.1
decomposition group of m in 15.112.3
decreasing filtration in 12.19.1
Dedekind domain in 10.120.14
defined in a point x ∈ X in 29.49.8
defined in a point x ∈ |X| in 67.47.4
defines a nodal singularity in 53.16.2
defines a nodal singularity in 53.19.1
defines a rational singularity in 54.8.3
deformation category in 90.16.8
degeneracy of x in 14.11.1
degenerates at Er in 12.20.2
degenerate in 14.11.1
degree d finite Hilbert stack of X over Y
in 95.18.2
degree of X over Y in 29.51.8
degree of X over Y in 72.5.2
degree of Z with respect to L in 33.45.10
degree of a zero cycle in 42.41.1
degree of a zero cycle in 82.32.1
degree of inseparability in 9.14.7
degree in 9.7.1
degree in 29.48.1
degree in 33.44.1
degree in 33.44.1
degree in 67.46.2
Deligne-Mumford stack in 94.12.2
depth k at a point in 30.11.1
depth k at a point in 30.11.1
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depth in 10.72.1
depth in 51.13.1
derivation in 10.131.1
derived category of (A,d) in 24.26.4
derived category of (A,d) in 22.22.2
derived category of A in 13.11.3
derived category of OX -modules with
quasi-coherent cohomology sheaves in
104.5.1
derived category of OX -modules with
quasi-coherent cohomology sheaves in
75.5.1
derived colimit in 13.33.1
derived complete with respect to I in
52.6.4
derived complete with respect to I in
15.91.4
derived complete with respect to I in
15.91.4
derived equivalent in 57.18.1
derived internal hom in 24.29.2
derived limit in 13.34.1
derived pullback in 24.28.2
derived pushforward in 24.29.2
derived tensor product in 15.59.13
derived tensor product in 20.26.14
derived tensor product in 21.17.13
derived tensor product in 24.28.2
descent datum (Fi, φij) for quasi-
coherent sheaves in 35.2.1
descent datum (Fi, φij) for quasi-
coherent sheaves in 74.3.1
descent datum (N,φ) for modules with
respect to R→ A in 35.3.1
descent datum (Vi, φij) relative to the
family {Xi → S} in 35.34.3
descent datum (Vi, φij) relative to the
family {Xi → X} in 74.22.3
descent datum (Xi, φij) in S relative to
the family {fi : Ui → U} in 8.3.1
descent datum for V/X/S in 35.34.1
descent datum for V/Y/X in 74.22.1
descent datum relative to X → S in
35.34.1
descent datum relative to Y → X in
74.22.1
descent datum in 59.16.1
descent datum in 59.16.5

descent morphism for modules in 35.4.15
determinant of (M,φ, ψ) in 42.68.13
determinant of the finite length R-
module M in 42.68.2
differential dφ : TF → TG of φ in
90.12.3
differential graded (A,B)-bimodule in
24.17.1
differential graded (A,B)-bimodule in
22.28.1
differential graded A-module in 24.13.1
differential graded algebra over R in
22.3.1
differential graded category A over R in
22.26.1
differential graded direct sum in 22.26.4
differential graded module in 22.4.1
differential graded module in 24.13.1
differential object in 12.22.1
differential operator D : F → G of order
k in 17.29.1
differential operator D : F → G of order
k in 18.34.1
differential operator D : M → N of or-
der k in 10.133.1
differential operator of order k on X/S
in 17.29.8
different in 49.9.1
dimension function in 5.20.1
dimension of X at x in 100.12.2
dimension of X at x in 28.10.1
dimension of X at x in 66.9.1
dimension of the local ring of X at x in
107.6.3
dimension of the local ring of X at x in
66.10.2
dimension of the local ring of the fibre of
f at x in 67.33.1
dimension in 5.10.1
dimension in 28.10.1
dimension in 66.9.2
dimension in 100.12.3
direct image functor in 7.25.1
direct image functor in 18.19.1
direct image with compact support in
63.3.3
direct image with compact support in
63.4.4
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direct image in 59.35.1
direct image in 59.35.3
direct sum dévissage in 10.84.1
direct sum in 12.3.5
directed inverse system in 4.21.4
directed partially ordered set in 4.21.1
directed set in 4.21.1
directed set in 111.2.1
directed system in 4.21.4
directed system in 10.8.1
directed in 4.19.1
directed in 4.19.1
discrete G-module in 59.57.1
discrete G-set in 58.2.1
discrete valuation ring in 10.50.13
discrete in 4.38.1
discriminant of L/K in 9.20.8
distance between M and M ′ in 10.121.5
distinguished triangle of K(A) in 13.10.1
distinguished triangles in 13.3.2
distinguished triangle in 22.8.2
divided power A-derivation in 60.6.1
divided power envelope of J in B relative
to (A, I, γ) in 60.2.2
divided power ring in 23.3.1
divided power scheme in 60.7.2
divided power structure γ in 60.7.1
divided power structure in 23.2.1
divided power structure in 23.6.1
divided power thickening of X relative
to (S, I, γ) in 60.8.1
divided power thickening in 60.5.2
divided power thickening in 60.7.3
DM over S in 101.4.2
DM in 101.4.1
DM in 101.4.2
domain of definition in 29.49.8
domain of definition in 67.47.4
domain in 9.2.2
dominant in 29.8.1
dominant in 29.49.10
dominant in 67.18.1
dominant in 67.47.6
dominates in 10.50.1
dominates in 10.88.2
dotted arrow in 101.39.1
double complex in 12.18.1
dual numbers in 33.16.1

dual numbers in 111.35.1
dualizing complex normalized relative to
ω•
S in 48.20.5

dualizing complex in 47.15.1
dualizing complex in 48.2.2
dualizing complex in 86.2.2
effective Cartier divisor in 31.13.1
effective Cartier divisor in 71.6.1
effective Cartier divisor in 111.49.1
effective descent morphism for modules
in 35.4.15
effective epimorphism in 7.12.1
effective in 8.3.5
effective in 35.2.3
effective in 35.3.4
effective in 35.34.10
effective in 35.34.11
effective in 42.8.4
effective in 59.16.1
effective in 59.16.6
effective in 62.8.1
effective in 74.3.3
effective in 74.22.10
effective in 74.22.11
effective in 98.9.4
Eilenberg-Maclane object K(A, k) in
14.22.3
elementary étale localization of the ring
map R→ S at q in 38.6.1
elementary étale neighbourhood in
37.35.1
elementary étale neighbourhood in
68.11.5
elementary distinguished square in
75.9.1
elementary divisor domain in 15.124.5
elementary standard in A over R in
16.2.3
embedded associated point in 31.4.1
embedded associated primes in 10.67.1
embedded component in 31.4.1
embedded point in 31.4.1
embedded primes of R in 10.67.1
embedding dimension of X at x in
33.46.1
embedding dimension of X/k at x in
33.46.2
embedding in 7.43.1
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enough P objects in 7.40.2
enough injectives in 12.27.4
enough projectives in 12.28.4
enough weakly contractible objects in
7.40.2
envelope in 42.22.1
epimorphism in 4.13.1
equalizer in 4.10.1
equidimensional in 5.10.5
equidimensional in 62.7.1
equivalence of categories in 4.2.17
equivalence relation on U over B in
78.4.1
equivalence relation on U over S in
39.3.1
equivalent types in 55.3.2
equivalent in 4.29.4
equivalent in 13.27.4
equivalent in 29.49.1
equivalent in 59.61.3
equivalent in 67.47.1
equivariant quasi-coherent OX -module
in 39.12.1
equivariant quasi-coherent OX -module
in 78.10.1
equivariant in 39.10.1
equivariant in 78.8.1
essential extension of in 47.2.1
essential surjection in 90.3.9
essentially constant inverse system in
4.22.2
essentially constant system in 4.22.2
essentially constant in 4.22.1
essentially constant in 4.22.1
essentially of finite presentation in
10.54.1
essentially of finite type in 10.54.1
essentially surjective in 4.2.9
essential in 47.2.1
essential in 47.2.1
Euler characteristic of F in 33.33.1
Euler characteristic of F in 72.17.1
Euler-Poincaré function in 111.26.2
everywhere defined in 13.14.9
everywhere defined in 13.14.9
exact at xi in 12.5.7
exact at y in 12.5.7
exact complex in 12.5.7

exact couple in 12.21.1
exact functor in 13.3.3
exact sequences of graded modules in
111.26.3
exact sequence in 12.5.7
exact in 4.23.1
exact in 12.5.7
exact in 42.2.1
excellent in 15.52.1
exceptional divisor in 31.32.1
exceptional divisor in 71.17.1
exhaustive in 12.19.1
existence part of the valuative criterion
in 101.39.10
extends in 23.4.1
extension E of B by A in 12.6.1
extension j!F of F by 0 in 6.31.5
extension j!F of F by e in 6.31.5
extension jp!F of F by 0 in 6.31.5
extension jp!F of F by e in 6.31.5
extension by 0 in 6.31.5
extension by 0 in 6.31.5
extension by zero in 18.19.1
extension by zero in 59.70.1
extension by zero in 59.70.1
extension by zero in 61.26.1
extension by zero in 61.26.1
extension of F by the empty set j!F in
6.31.3
extension of F by the empty set jp!F in
6.31.3
extension of G by the empty set in 7.25.1
extension of discrete valuation rings in
15.111.1
extension of valuation rings in 15.123.1
extremally disconnected in 5.26.1
face of x in 14.11.1
faithfully flat in 10.39.1
faithfully flat in 10.39.1
faithfully flat in 41.9.1
faithfully flat in 41.9.3
faithful in 4.2.9
family of morphisms with fixed target in
7.6.1
family of morphisms with fixed target in
59.10.1
fibre category in 4.32.2
fibre of f over s in 26.18.4
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fibre product of V and W over U in
14.7.1
fibre product of V and W over U in
14.10.1
fibre product in 4.6.1
fibre product in 26.17.1
fibred category over C in 4.33.5
fibred in groupoids in 4.35.1
fibres of f are universally bounded in
29.57.1
fibres of f are universally bounded in
68.3.1
field extension in 9.6.2
field of rational functions in 29.49.6
field of rational functions in 72.4.3
field in 9.2.1
filtered acyclic in 13.13.2
filtered acyclic in 111.30.7
filtered complex K• of A in 12.24.1
filtered derived category of A in 13.13.5
filtered derived functor in 64.8.1
filtered differential object in 12.23.1
filtered injective in 13.26.1
filtered injective in 64.7.1
filtered injective in 111.30.3
filtered object of A in 12.19.1
filtered quasi-isomorphism in 13.13.2
filtered quasi-isomorphism in 64.7.1
filtered quasi-isomorphism in 111.30.6
filtered in 4.19.1
filtered in 4.19.1
final object in 4.31.1
final in 4.12.1
finer in 7.47.8
finite Tor-dimension in 64.12.1
finite R-module in 10.5.1
finite free in 18.17.1
finite global dimension in 10.109.10
finite injective dimension in 15.69.1
finite locally constant in 18.43.1
finite locally constant in 59.64.1
finite locally constant in 59.64.1
finite locally free of rank r in 10.78.1
finite locally free of rank r in 17.14.1
finite locally free in 10.78.1
finite locally free in 17.14.1
finite locally free in 18.23.1
finite locally free in 29.48.1

finite locally free in 67.46.2
finite locally free in 111.22.1
finite presentation at x ∈ X in 29.21.1
finite presentation at x in 67.28.1
finite presentation in 10.6.1
finite presentation in 17.11.1
finite presentation in 29.21.1
finite presentation in 111.2.8
finite projective dimension in 10.109.2
finite projective dimension in 15.68.1
finite tor dimension in 15.66.1
finite tor dimension in 15.66.1
finite tor dimension in 20.48.1
finite tor dimension in 21.46.1
finite type at x ∈ X in 29.15.1
finite type at x in 67.23.1
finite type point in 29.16.3
finite type point in 67.25.2
finite type point in 101.18.2
finite type in 10.6.1
finite type in 17.9.1
finite type in 29.15.1
finite type in 87.24.1
finitely generated R-module in 10.5.1
finitely generated field extension in 9.6.6
finitely presented R-module in 10.5.1
finitely presented relative to R in 15.80.2
finitely presented relative to S in 37.58.1
finite in 9.7.1
finite in 10.7.1
finite in 11.2.1
finite in 12.19.1
finite in 29.44.1
finite in 67.45.2
finite in 101.10.1
first Chern class in 42.34.4
first order infinitesimal neighbourhood
in 37.5.1
first order infinitesimal neighbourhood
in 76.12.1
first order thickening in 37.2.1
first order thickening in 76.9.1
first order thickening in 106.3.3
flabby in 20.12.1
flasque in 20.12.1
flat (resp. faithfully flat) in 41.9.1
flat at x ∈ X in 41.9.3
flat at x over Y in 67.31.2
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flat at x in 17.17.3
flat at x in 17.20.1
flat at x in 67.30.1
flat at x in 101.26.2
flat at a point x ∈ X in 29.25.1
flat base change property in 103.7.1
flat base change in 83.3.4
flat group scheme in 39.4.5
flat local complete intersection over R in
10.136.1
flat over (Sh(D),O′) in 18.31.3
flat over S at a point x ∈ X in 29.25.1
flat over S in 29.25.1
flat over Y at x ∈ X in 41.9.3
flat over Y at a point x ∈ X in 17.20.3
flat over Y in 17.20.3
flat over Y in 67.31.2
flat pullback of α by f in 42.14.1
flat pullback of α by f in 82.10.1
flat-fppf site in 103.14.1
flattening stratification in 38.21.3
flattening stratification in 38.21.3
flat in 10.39.1
flat in 10.39.1
flat in 17.17.1
flat in 17.20.1
flat in 18.28.1
flat in 18.28.1
flat in 18.28.1
flat in 18.28.1
flat in 18.31.1
flat in 18.31.1
flat in 29.25.1
flat in 41.9.1
flat in 41.9.3
flat in 67.30.1
flat in 88.13.4
flat in 101.25.1
formal algebraic space in 87.11.1
formal branches of X through x0 in
107.4.1
formal modification in 88.24.1
formal object ξ = (R, ξn, fn) of F in
90.7.1
formal object in 98.9.1
formal spectrum in 87.9.9
formally étale over R in 10.150.1
formally étale in 37.8.1

formally étale in 76.13.1
formally étale in 76.16.1
formally catenary in 15.109.1
formally principally homogeneous under
G in 39.11.1
formally principally homogeneous under
G in 78.9.1
formally smooth for the n-adic topology
in 15.37.3
formally smooth over R in 10.138.1
formally smooth over R in 15.37.1
formally smooth in 37.11.1
formally smooth in 76.13.1
formally smooth in 76.19.1
formally smooth in 106.8.1
formally unramified over R in 10.148.1
formally unramified in 37.6.1
formally unramified in 76.13.1
formally unramified in 76.14.1
Fourier-Mukai functor in 57.8.1
Fourier-Mukai kernel in 57.8.1
fppf covering of T in 34.7.1
fppf covering of X in 73.7.1
fppf sheaf in 96.4.3
fpqc covering of T in 34.9.1
fpqc covering of X in 73.9.1
fpqc covering in 59.15.1
free O-module in 18.17.1
free abelian presheaf on G in 59.18.4
free abelian presheaf in 18.4.1
free abelian sheaf in 18.5.1
free module in 15.55.5
free in 39.10.2
free in 78.8.2
full subcategory in 4.2.10
fully faithful in 4.2.9
function field in 29.49.6
function field in 72.4.3
functor of R-linear categories in 22.24.2
functor of differential graded categories
over R in 22.26.2
functor of graded categories over R in
22.25.2
functor of monoidal categories in 4.43.2
functor of symmetric monoidal cate-
gories in 4.43.11
functorial injective embeddings in
12.27.5
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functorial projective surjections in
12.28.5
functor in 4.2.8
functor in 4.29.5
fundamental group in 58.6.1
G-ring in 15.50.1
G-unramified at q in 10.151.1
G-unramified at x ∈ X in 29.35.1
G-unramified at x in 67.38.1
G-unramified in 10.151.1
G-unramified in 29.35.1
G-unramified in 67.38.1
Galois category in 58.3.6
Galois cohomology groups of K with co-
efficients in M in 59.57.2
Galois cohomology groups in 59.57.2
Galois group in 9.21.3
Galois in 9.21.1
Galois in 9.28.1
generalizations lift along f in 5.19.4
generalization in 5.19.1
generalization in 111.6.22
generalizing in 5.19.4
generated by r global sections in 18.17.1
generated by finitely many global sec-
tions in 18.17.1
generated by global sections in 17.4.1
generated by global sections in 18.17.1
generates the field extension in 9.6.6
generate in 17.4.1
generator in 13.36.3
generator in 19.10.1
generic point in 5.8.6
generic point in 111.6.12
genus in 44.6.3
genus in 53.8.1
geometric frobenius in 64.3.4
geometric frobenius in 64.3.10
geometric genus in 53.11.1
geometric point lying over x in 66.19.1
geometric point in 59.29.1
geometric point in 66.19.1
geometric quotient in 83.10.1
geometrically connected over k in
10.48.3
geometrically connected in 33.7.1
geometrically connected in 72.12.1
geometrically integral over k in 10.49.1

geometrically integral in 33.9.1
geometrically integral in 72.14.1
geometrically irreducible over k in
10.47.4
geometrically irreducible in 33.8.1
geometrically irreducible in 72.13.1
geometrically normal at x in 33.10.1
geometrically normal in 10.165.2
geometrically normal in 33.10.1
geometrically pointwise integral at x in
33.9.1
geometrically pointwise integral in 33.9.1
geometrically reduced at x in 33.6.1
geometrically reduced at x in 72.11.1
geometrically reduced over k in 10.43.1
geometrically reduced in 33.6.1
geometrically reduced in 72.11.1
geometrically regular at x in 33.12.1
geometrically regular over k in 33.12.1
geometrically regular in 10.166.2
geometrically unibranch at x in 28.15.1
geometrically unibranch at x in 66.23.2
geometrically unibranch at x in 100.13.1
geometrically unibranch in 15.106.1
geometrically unibranch in 28.15.1
geometrically unibranch in 66.23.2
gerbe over in 8.11.4
gerbe over in 101.28.1
gerbe in 8.11.1
gerbe in 101.28.1
germ of X at x in 35.20.1
global complete intersection over k in
10.135.1
global dimension in 10.109.10
global finite presentation in 18.17.1
global Lefschetz number in 64.14.1
global presentation in 18.17.1
global sections in 7.45.1
going down in 10.41.1
going up in 10.41.1
going-down theorem in 111.24.1
going-up theorem in 111.24.1
good quotient in 83.9.1
good reduction in 55.14.8
good stratification in 5.28.2
Gorenstein at x in 48.25.2
Gorenstein at x in 76.27.2
Gorenstein morphism in 48.25.2
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Gorenstein morphism in 76.27.2
Gorenstein in 47.21.1
Gorenstein in 47.21.1
Gorenstein in 48.24.1
graded (A,B)-bimodule in 24.8.1
graded (A,B)-bimodule in 22.28.1
graded A-module in 24.4.1
graded A-algebra in 111.26.3
graded category A over R in 22.25.1
graded direct sum in 22.25.4
graded functor in 22.25.2
graded ideals in 111.26.3
graded injective in 24.25.2
graded module M over a graded A-
algebra B in 111.26.3
graded module in 24.4.1
graded module in 111.26.2
graded submodules in 111.26.3
Grassmannian over Z in 27.22.2
Grassmannian over R in 27.22.2
Grassmannian over S in 27.22.2
Grothendieck abelian category in 19.10.1
Grothendieck group of X in 36.38.2
Grothendieck group of coherent sheaves
on X in 36.38.2
group algebraic space over B in 78.5.1
group cohomology groups in 59.57.2
group of infinitesimal automorphisms of
x′ over x in 90.19.1
group of infinitesimal automorphisms of
x0 in 90.19.2
group scheme over S in 39.4.1
groupoid in algebraic spaces over B in
78.11.1
groupoid in functors on C in 90.21.1
groupoid over S in 39.13.1
groupoid scheme over S in 39.13.1
groupoid in 4.2.5
Gysin homomorphism in 42.29.1
Gysin homomorphism in 82.22.1
gysin map in 42.59.4
h covering of T in 38.34.2
H-projective in 29.43.1
H-quasi-projective in 29.40.1
has coproducts of pairs of objects in 4.5.2
has enough points in 7.38.1
has fibre products in 4.6.3
has products of pairs of objects in 4.4.2

has property (β) in 68.17.1
has property (β) in 68.17.1
has property P at x in 66.7.5
has property P at x in 100.7.5
has property P in 66.7.2
has property P in 67.22.2
has property P in 100.7.2
has property P in 101.16.2
has property P in 101.34.2
has property Q at x in 67.22.6
Hausdorff in 111.6.6
height in 10.60.3
henselian local ring of X at x in 68.11.7
henselian pair in 15.11.1
henselian in 10.153.1
henselian in 59.32.2
henselization of OS,s in 59.33.2
henselization of S at s in 59.33.2
henselization in 10.155.3
higher direct images in 59.35.4
Hilbert function in 111.26.2
Hilbert polynomial in 10.59.6
Hilbert polynomial in 33.35.15
Hilbert polynomial in 111.26.2
Hodge filtration in 50.7.1
homogeneous spectrum Proj(R) in
111.27.2
homogeneous spectrum of A over S in
27.16.7
homogeneous spectrum of A over X in
71.11.3
homogeneous spectrum in 10.57.1
homogeneous spectrum in 27.8.3
homogeneous in 111.27.1
homological in 13.3.5
homology of K in 25.4.1
homology in 12.22.3
homomorphism of differential graded
(A,B)-bimodules in 24.17.1
homomorphism of differential graded A-
modules in 24.13.1
homomorphism of differential graded O-
algebras in 24.12.1
homomorphism of differential graded al-
gebras in 22.3.2
homomorphism of differential graded
modules in 22.4.1
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homomorphism of divided power rings in
23.3.1
homomorphism of divided power thick-
enings in 60.5.2
homomorphism of graded (A,B)-
bimodules in 24.8.1
homomorphism of graded A-modules in
24.4.1
homomorphism of graded O-algebras in
24.3.1
homomorphism of systems in 10.8.6
homomorphism of topological groups in
5.30.1
homomorphism of topological modules
in 5.30.10
homomorphism of topological modules
in 15.36.1
homomorphism of topological rings in
5.30.7
homomorphism of topological rings in
15.36.1
homomorphisms of graded mod-
ules/rings in 111.26.3
homotopic in 14.26.1
homotopic in 14.28.1
homotopic in 22.5.1
homotopic in 24.21.1
homotopy between f and g in 22.5.1
homotopy between f and g in 24.21.1
homotopy category of A in 22.26.3
homotopy category in 22.5.3
homotopy category in 24.21.2
homotopy colimit in 13.33.1
homotopy equivalence in 12.13.2
homotopy equivalence in 12.13.8
homotopy equivalence in 14.26.6
homotopy equivalent in 12.13.2
homotopy equivalent in 12.13.8
homotopy equivalent in 14.26.6
homotopy from a to b in 14.26.1
homotopy from a to b in 14.28.1
homotopy limit in 13.34.1
horizontal in 4.28.1
horizontal in 4.29.1
hypercovering of G in 25.6.1
hypercovering of X in 25.3.3
hypercovering in 25.6.1
ideal of definition in 15.36.1

ideal sheaf of denominators of s in
31.23.10
identifies local rings in 61.3.1
image of φ in 7.3.5
image of f in 12.3.9
image of the short exact sequence under
the given δ-functor in 13.3.6
immediate specialization in 5.20.1
immersion in 26.10.2
immersion in 65.12.1
immersion in 100.9.1
impurity of F above s in 38.15.2
impurity of F above y in 77.2.2
in the same homotopy class in 14.26.1
in the same homotopy class in 14.28.1
ind-étale in 61.7.1
ind-quasi-affine in 37.66.1
ind-quasi-affine in 37.66.1
ind-Zariski in 61.4.1
indecomposable in 47.5.5
induced filtration in 12.19.1
induced filtration in 12.23.4
induced filtration in 12.24.5
inductive system over I in C in 4.21.2
inertia fibred category IS of S in 4.34.2
inertia group of m in 15.112.3
initial in 4.12.1
initial in 4.17.3
injective hull in 47.5.1
injective resolution of A in 13.18.1
injective resolution of K• in 13.18.1
injective-amplitude in [a, b] in 15.69.1
injective in 6.16.2
injective in 6.16.2
injective in 7.3.1
injective in 7.11.1
injective in 12.5.3
injective in 12.27.1
injective in 15.55.1
inseparable degree in 9.14.7
integral closure of OX in A in 29.53.2
integral closure of OX in A in 67.48.2
integral closure in 10.36.9
integral domain in 9.2.2
integral over I in 10.38.1
integral over R in 10.36.1
integrally closed in 10.36.9
integral in 10.36.1
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integral in 28.3.1
integral in 29.44.1
integral in 67.45.2
integral in 72.4.1
integral in 101.10.1
integral in 101.50.1
integral in 111.33.12
interior in 5.21.1
intersect properly in 43.13.5
intersect properly in 43.13.5
intersection number in 33.45.3
intersection number in 72.18.3
intersection with the jth Chern class of
E in 42.38.1
intersection with the first Chern class of
L in 42.25.1
intersection with the first Chern class of
L in 82.18.1
inverse image f−1(Z) of the closed sub-
scheme Z in 26.17.7
inverse image f−1(Z) of the closed sub-
space Z in 67.13.2
inverse image in 59.36.1
inverse system over I in C in 4.21.2
invertible OX -module in 17.25.1
invertible OX -module in 111.40.1
invertible module M in 111.40.4
invertible module in 111.22.1
invertible sheaf OS(D) associated to D
in 31.14.1
invertible sheaf OX(D) associated to D
in 71.7.1
invertible in 4.43.4
invertible in 15.117.1
invertible in 18.32.1
irreducible component in 5.8.1
irreducible component in 111.6.18
irreducible in 5.8.1
irreducible in 10.120.1
irreducible in 111.6.9
irreducible in 111.6.9
isolated point in 5.27.2
isomorphism in 4.2.4
J-0 in 15.47.1
J-1 in 15.47.1
J-2 in 15.47.1
J-2 in 29.19.1
Jacobson ring in 10.35.1

Jacobson in 5.18.1
Jacobson in 28.6.1
Japanese in 10.161.1
Japanese in 28.13.1
K-flat in 15.59.1
K-flat in 20.26.2
K-flat in 21.17.2
K-injective in 13.31.1
K-injective in 24.25.7
Kähler different in 49.7.1
Kan complex in 14.31.1
Kan fibration in 14.31.1
Kaplansky dévissage in 10.84.1
Karoubian in 12.4.1
kernel of F in 13.6.5
kernel of H in 13.6.5
kernel of the functor F in 12.10.5
kernel in 12.3.9
Kolmogorov in 5.8.6
Koszul at x in 37.62.2
Koszul at x in 76.48.1
Koszul complex on f1, . . . , fr in 15.28.2
Koszul complex on f1, . . . , fr in 17.24.2
Koszul complex in 15.28.1
Koszul complex in 17.24.1
Koszul morphism in 37.62.2
Koszul morphism in 76.48.1
Koszul-regular ideal in 15.32.1
Koszul-regular immersion in 31.21.1
Koszul-regular immersion in 76.44.2
Koszul-regular in 15.30.1
Koszul-regular in 31.20.2
Koszul in 101.44.1
Krull dimension of X at x in 5.10.1
Krull dimension in 5.10.1
Krull dimension in 10.60.2
lattice in V in 10.121.3
left acyclic for F in 13.15.3
left adjoint in 4.24.1
left admissible in 13.40.9
left derivable in 13.14.9
left derived functor LF is defined at in
13.14.2
left derived functors of F in 13.15.3
left dual in 4.43.5
left exact in 4.23.1
left multiplicative system in 4.27.1
left orthogonal in 13.40.1
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Leibniz rule in 10.131.1
Leibniz rule in 17.28.1
Leibniz rule in 18.33.1
length in 5.10.1
length in 10.52.1
length in 10.60.1
length in 111.9.1
lies over in 59.29.1
lies over in 98.9.1
lift of x along f in 90.17.1
lift in 4.32.2
lift in 4.32.2
limit preserving in 70.3.1
limit preserving in 70.3.1
limit preserving in 98.11.1
limit preserving in 102.3.1
limit in 4.14.1
limit in 12.20.2
linear series of degree d and dimension r
in 53.3.1
linearly adequate in 46.3.2
linearly disjoint over k in Ω in 9.27.2
linearly topologized in 15.36.1
linearly topologized in 15.36.1
lisse-étale site in 103.14.1
lisse in 61.28.1
lisse in 64.18.1
local complete intersection morphism in
37.62.2
local complete intersection morphism in
76.48.1
local complete intersection morphism in
101.44.1
local complete intersection over k in
10.135.1
local complete intersection over k in
29.30.1
local complete intersection in 15.33.2
local complete intersection in 23.8.5
local homomorphism of local rings in
10.18.1
local in the τ -topology in 35.15.1
local isomorphism in 61.3.1
local Lefschetz number in 64.14.2
local on the base for the τ -topology in
35.22.1
local on the base for the τ -topology in
74.10.1

local on the source for the τ -topology in
35.26.1
local on the source for the τ -topology in
74.14.1
local ring map φ : R→ S in 10.18.1
local ring of X at x in 26.2.1
local ring of the fibre at q in 10.112.5
local ring in 10.18.1
localization morphism in 7.25.1
localization morphism in 7.30.4
localization morphism in 18.19.1
localization morphism in 18.21.2
localization of A with respect to S in
10.9.2
localization of the ringed site (C,O) at
the object U in 18.19.1
localization of the ringed topos
(Sh(C),O) at F in 18.21.2
localization of the site C at the object U
in 7.25.1
localization of the topos Sh(C) at F in
7.30.4
localization in 10.9.6
localized pth Chern class in 42.50.3
localized Chern character in 42.50.3
locally P in 28.4.2
locally acyclic at x relative to K in
59.93.1
locally acyclic relative to K in 59.93.1
locally acyclic in 59.93.1
locally adic* in 87.20.7
locally algebraic k-scheme in 33.20.1
locally closed immersion in 26.10.2
locally closed subspace in 65.12.1
locally closed substack in 100.9.9
locally connected in 5.7.10
locally constant in 18.43.1
locally constant in 59.64.1
locally constant in 59.64.1
locally constant in 59.64.1
locally constructible in 5.15.1
locally countably indexed and classical
in 87.20.7
locally countably indexed in 87.20.7
locally finite in 5.28.4
locally finite in 20.24.2
locally finite in 111.26.2
locally free in 10.78.1
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locally free in 17.14.1
locally free in 18.23.1
locally generated by r sections in 18.23.1
locally generated by sections in 17.8.1
locally generated by sections in 18.23.1
locally has finite tor dimension in 20.48.1
locally has finite tor dimension in 21.46.1
locally nilpotent in 10.32.1
locally Noetherian in 5.9.1
locally Noetherian in 28.5.1
locally Noetherian in 87.20.7
locally Noetherian in 111.36.5
locally of finite presentation over S in
70.3.1
locally of finite presentation in 29.21.1
locally of finite presentation in 67.28.1
locally of finite presentation in 70.3.1
locally of finite presentation in 70.3.1
locally of finite presentation in 101.27.1
locally of finite type in 29.15.1
locally of finite type in 67.23.1
locally of finite type in 87.24.1
locally of finite type in 101.17.1
locally of type P in 29.14.2
locally principal closed subscheme in
31.13.1
locally principal closed subspace in
71.6.1
locally projective in 28.21.1
locally projective in 29.43.1
locally projective in 66.31.2
locally quasi-coherent in 60.11.1
locally quasi-coherent in 96.12.1
locally quasi-compact in 5.13.1
locally quasi-finite in 29.20.1
locally quasi-finite in 67.27.1
locally quasi-finite in 101.23.2
locally quasi-projective in 29.40.1
locally ringed site in 18.40.4
locally ringed space (X,OX) in 26.2.1
locally ringed in 18.40.6
locally separated over S in 65.13.2
locally separated in 66.3.1
locally separated in 66.3.1
locally separated in 67.4.2
locally trivial in 39.11.3
locally trivial in 78.9.3
locally weakly adic in 87.20.7

local in 28.4.1
local in 29.14.1
maximal Cohen-Macaulay in 10.103.8
McQuillan in 87.9.7
meromorphic function in 31.23.1
meromorphic function in 71.10.1
meromorphic section of F in 31.23.3
meromorphic section of F in 71.10.3
minimal model in 55.8.4
minimal polynomial in 9.9.1
minimal in 55.3.12
minimal in 90.14.4
minimal in 90.27.1
miniversal in 90.14.4
Mittag-Leffler condition in 12.31.2
Mittag-Leffler directed system of mod-
ules in 10.88.1
Mittag-Leffler in 10.86.1
Mittag-Leffler in 10.88.7
mixed characteristic in 15.113.3
ML in 12.31.2
modification of X in 29.51.11
modification of X in 72.8.1
module of differentials in 10.131.2
module of differentials in 17.28.3
module of differentials in 18.33.3
module of Kähler differentials in
10.131.2
module of principal parts of order k in
10.133.4
module of principal parts of order k in
17.29.4
module of principal parts of order k in
18.34.4
module-valued functor in 46.3.1
moduli stack of smooth proper curves of
genus g in 109.16.4
moduli stack of smooth proper curves in
109.16.4
moduli stack of stable curves of genus g
in 109.22.4
moduli stack of stable curves in 109.22.4
monoidal category in 4.43.1
monomorphism in 4.13.1
monomorphism in 26.23.1
monomorphism in 67.10.1
monomorphism in 87.26.1
monomorphism in 100.8.1
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morphism (A,F ) → (B,F ) of filtered
objects in 12.19.1
morphism (N,φ) → (N ′, φ′) of descent
data in 35.3.1
morphism (U,R, s, t, c)→ (U ′, R′, s′, t′, c′)
of groupoids in functors on C in 90.21.1
morphism ψ : (Fi, φij) → (F ′

i , φ
′
ij) of

descent data in 35.2.1
morphism ψ : (Fi, φij) → (F ′

i , φ
′
ij) of

descent data in 74.3.1
morphism ψ : (G,m) → (G′,m′) of
group algebraic spaces over B in 78.5.1
morphism ψ : (G,m) → (G′,m′) of
group schemes over S in 39.4.1
morphism ψ : (Vi, φij)→ (V ′

i , φ
′
ij) of de-

scent data in 35.34.3
morphism ψ : (Vi, φij)→ (V ′

i , φ
′
ij) of de-

scent data in 74.22.3
morphism ψ : (Xi, φij) → (X ′

i, φ
′
ij) of

descent data in 8.3.1
morphism φ : F → G of presheaves of
O-modules on B in 6.30.11
morphism φ : F → G of presheaves of
O-modules in 6.6.1
morphism φ : F → G of presheaves of
O-modules in 18.9.1
morphism φ : F → G of presheaves of
sets on B in 6.30.1
morphism φ : F → G of presheaves of
sets on X in 6.3.1
morphism φ : F → G of presheaves with
value in C in 6.5.1
morphism φ : F → G of presheaves with
values in C on B in 6.30.8
morphism a : ξ → η of formal objects in
90.7.1
morphism f : (U,R, s, t, c) →
(U ′, R′, s′, t′, c′) of groupoid schemes
over S in 39.13.1
morphism f : (U,R, s, t, c) →
(U ′, R′, s′, t′, c′) of groupoids in algebraic
spaces over B in 78.11.1
morphism f : (V/X,φ) → (V ′/X,φ′)
of descent data relative to X → S in
35.34.1
morphism f : (V/Y, φ) → (V ′/Y, φ′)
of descent data relative to Y → X in
74.22.1

morphism f : F → F ′ of algebraic spaces
over S in 65.6.3
morphism f : p→ p′ in 7.37.2
morphism f : X → Y of schemes over S
in 26.18.1
morphism from U to V in 7.8.1
morphism of δ-functors from F to G in
12.12.2
morphism of G-torsors in 20.4.1
morphism of G-torsors in 21.4.1
morphism of G-modules in 59.57.1
morphism of G-sets in 58.2.1
morphism of n-truncated simplicial ob-
jects in 14.12.1
morphism of R-G-modules in 59.57.1
morphism of étale neighborhoods in
59.29.1
morphism of étale neighborhoods in
66.19.2
morphism of étale neighbourhoods in
37.35.1
morphism of abelian presheaves over X
in 6.4.4
morphism of affine formal algebraic
spaces in 87.9.1
morphism of affine schemes in 26.5.5
morphism of cones in 27.7.2
morphism of cosimplicial objects U →
U ′ in 14.5.1
morphism of differential objects in
12.22.1
morphism of divided power schemes in
60.7.2
morphism of divided power thickenings
of X relative to (S, I, γ) in 60.8.1
morphism of dotted arrows in 4.44.1
morphism of dotted arrows in 101.39.1
morphism of elementary étale neigh-
bourhoods in 68.11.5
morphism of exact couples in 12.21.1
morphism of extensions in 12.6.1
morphism of families of maps with fixed
target of C from U to V in 7.8.1
morphism of formal algebraic spaces in
87.11.1
morphism of formal objects in 98.9.1
morphism of functors in 4.2.15
morphism of germs in 35.20.1
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morphism of groupoid schemes cartesian
over (U,R, s, t, c) in 39.21.1
morphism of lifts in 90.17.1
morphism of locally ringed sites in
18.40.9
morphism of locally ringed spaces in
26.2.1
morphism of locally ringed topoi in
18.40.9
morphism of module-valued functors in
46.3.1
morphism of Postnikov systems in
13.41.1
morphism of predeformation categories
in 90.6.2
morphism of presheaves on X in 96.3.1
morphism of pseudo G-torsors in 21.4.1
morphism of ringed sites in 18.6.1
morphism of ringed spaces in 6.25.1
morphism of ringed topoi in 18.7.1
morphism of schemes in 26.9.1
morphism of sheaves of O-modules in
6.10.1
morphism of sheaves of O-modules in
18.10.1
morphism of sheaves of sets on B in
6.30.2
morphism of sheaves of sets in 6.7.1
morphism of simplicial objects U → U ′

in 14.3.1
morphism of simplicial systems of the
derived category of modules in 85.14.1
morphism of simplicial systems of the
derived category in 85.13.1
morphism of sites in 7.14.1
morphism of spectral sequences in
12.20.1
morphism of thickenings in 37.2.1
morphism of thickenings in 76.9.1
morphism of thickenings in 106.3.1
morphism of topoi in 7.15.1
morphism of triangles in 13.3.1
morphism of vector bundles over S in
27.6.2
Morphisms of presheaves in 7.2.1
morphisms of thickenings over Z in
106.3.1

morphisms of thickenings over B in
76.9.1
morphisms of thickenings over S in
37.2.1
morphisms of type P satisfy descent for
τ -coverings in 35.36.1
morphism in 7.2.2
morphism in 64.18.1
multicross singularity in 53.16.2
multiplicative subset of R in 10.9.1
multiplicative system in 4.27.1
multiplicity of M for the ideal of defini-
tion I in 43.15.1
multiplicity of Z in F in 82.6.1
multiplicity of Z in Y in 82.5.2
multiplicity of Z ′ in F in 42.10.2
multiplicity of Z ′ in Z in 42.9.2
multiplicity of a formal branch of X
through x0 in 107.4.3
multiplicity in 42.2.2
multiplicity in 107.3.4
N-1 in 10.161.1
N-2 in 10.161.1
Nagata ring in 10.162.1
Nagata in 28.13.1
naive cotangent complex of f in 37.13.1
naive cotangent complex of f in 76.21.1
naive cotangent complex in 10.134.1
naive cotangent complex in 17.31.1
naive cotangent complex in 17.31.6
naive cotangent complex in 18.35.1
naive cotangent complex in 18.35.4
naive obstruction theory in 98.23.5
naively rig-flat in 88.15.2
natural transformation in 4.2.15
nilpotent in 10.32.1
node in 53.16.2
node in 53.19.1
Noetherian in 5.9.1
Noetherian in 12.9.3
Noetherian in 12.9.3
Noetherian in 28.5.1
Noetherian in 66.24.1
Noetherian in 87.9.7
Noetherian in 101.8.1
Noetherian in 111.6.16
Noetherian in 111.36.5
nondegenerate in 60.26.2
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nonsingular projective model of X in
53.2.7
nonsingular in 28.9.1
nontrivial solution in 59.67.5
normal at x in 37.20.1
normal bundle in 31.19.5
normal bundle in 76.6.5
normal closure E over F in 9.16.4
normal cone CZX in 31.19.5
normal cone CZX in 76.6.5
normal crossings divisor in 41.21.4
normal morphism in 37.20.1
normalization of X in Y in 29.53.3
normalization of X in Y in 67.48.3
normalization in 29.54.1
normalization in 67.49.6
normalization in 101.46.3
normalized blowup of X at x in 54.5.1
normalized blowup of X at x in 89.5.1
normalized in 90.27.1
normal in 9.15.1
normal in 9.28.1
normal in 10.37.1
normal in 10.37.11
normal in 28.7.1
norm in 9.20.1
nowhere dense in 5.21.1
number field in 9.7.8
number of branches of A in 15.106.6
number of branches of X at x in 28.15.4
number of branches of X at x in 68.24.4
number of geometric branches of X at x
in 100.13.1
number of geometric branches of A in
15.106.6
number of geometric branches of X at x
in 28.15.4
number of geometric branches of X at x
in 66.23.4
numerical polynomial in 10.58.3
numerical polynomial in 111.26.1
numerical type associated to X in
55.11.4
numerical type of genus g in 55.3.4
numerical type in 55.3.1
obstruction modules in 98.22.1
obstruction theory in 98.22.1
obstruction in 98.22.1

of finite presentation relative to S in
37.58.1
of finite presentation in 18.23.1
of finite presentation in 67.28.1
of finite presentation in 101.27.1
of finite type in 18.23.1
of finite type in 67.23.1
of finite type in 101.17.1
Oka family in 10.28.2
one step dévissage of F/X/S at x in
38.4.2
one step dévissage of F/X/S over s in
38.4.1
open immersion in 7.43.7
open immersion in 26.3.1
open immersion in 26.10.2
open immersion in 65.12.1
open immersion in 100.9.1
open subgroup scheme in 39.4.3
open subscheme in 26.10.2
open subspace of (X,O) associated to U
in 6.31.2
open subspace of X associated to U in
26.3.3
open subspace in 65.12.1
open substack in 100.9.9
open subtopos in 7.43.4
openness of versality in 98.13.1
openness of versality in 98.13.1
open in 29.23.1
open in 64.27.1
open in 67.6.2
open in 101.11.2
opposite algebra in 11.2.5
opposite category in 4.3.1
opposite differential graded algebra in
22.11.1
orbit space for R in 83.5.18
orbit in 83.5.1
orbit in 83.5.4
order of vanishing along R in 10.121.2
order of vanishing of f along Z in 31.26.3
order of vanishing of f along Z in 72.6.4
order of vanishing of s along Z in 31.27.1
order of vanishing of s along Z in 72.7.1
ordered Čech complex in 20.23.2
ordinary double point in 53.16.2
ordinary double point in 53.19.1
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p-basis of K over k in 15.46.1
p-independent over k in 15.46.1
parasitic for the τ -topology in 35.12.1
parasitic in 35.12.1
parasitic in 103.9.1
partial order in 4.21.1
partially ordered set in 4.21.1
partition in 5.28.1
parts in 5.28.1
perfect at x in 76.47.1
perfect closure in 10.45.5
perfect relative to R in 15.83.1
perfect relative to S in 36.35.1
perfect relative to Y in 76.52.1
perfect ring map in 15.82.1
perfect in 10.45.1
perfect in 15.74.1
perfect in 15.74.1
perfect in 20.49.1
perfect in 20.49.1
perfect in 21.47.1
perfect in 21.47.1
perfect in 37.61.2
perfect in 64.10.1
perfect in 76.47.1
ph covering of T in 34.8.4
ph covering of X in 73.8.1
Picard functor in 44.4.1
Picard group of A in 111.22.3
Picard group of T in 55.4.1
Picard group of X in 111.40.7
Picard group in 17.25.9
Picard group in 18.32.6
PID in 10.120.12
point p of the site C in 7.32.2
point p in 7.52.1
point of the topos Sh(C) in 7.32.1
point in 66.4.1
point in 100.4.2
pondération in 37.75.2
Postnikov system in 13.41.1
pre-adic in 15.36.1
pre-admissible in 15.36.1
pre-equivalence relation in 39.3.1
pre-equivalence relation in 78.4.1
pre-relation in 39.3.1
pre-relation in 78.4.1
pre-triangulated category in 13.3.2

pre-triangulated subcategory in 13.3.4
preadditive in 12.3.1
predeformation category in 90.6.2
preordered set in 4.21.1
preorder in 4.21.1
presentation of F by (U,R, s, t, c) in
90.25.1
presentation in 65.9.3
presentation in 94.16.5
preserved under arbitrary base change in
26.18.3
preserved under arbitrary base change in
26.18.3
preserved under base change in 26.18.3
preserved under base change in 26.18.3
presheaf F of sets on B in 6.30.1
presheaf F of sets on X in 6.3.1
presheaf F on X with values in C in 6.5.1
presheaf F with values in C on B in
6.30.8
presheaf of O-modules F on B in 6.30.11
presheaf of O-modules in 6.6.1
presheaf of O-modules in 18.9.1
presheaf of abelian groups on X in 6.4.4
presheaf of isomorphisms from x to y in
8.2.2
presheaf of modules on X in 96.7.1
presheaf of morphisms from x to y in
8.2.2
presheaf of sets on C in 4.3.3
presheaf of sets in 7.2.1
presheaf of sets in 59.9.1
presheaf on X in 96.3.1
presheaf in 4.3.3
presheaf in 7.2.2
prestable family of curves in 109.20.1
prime divisor in 31.26.2
prime divisor in 72.6.2
prime divisor in 111.49.1
prime subfield of F in 9.5.1
prime in 10.120.1
principal divisor associated to f in
42.17.1
principal divisor associated to f in
82.13.1
principal homogeneous G-space over B
in 78.9.3
principal homogeneous space in 39.11.3
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principal homogeneous space in 78.9.3
principal ideal domain in 10.120.12
principal Weil divisor associated to f in
31.26.5
principal Weil divisor associated to f in
72.6.7
pro-étale covering of T in 61.12.1
product U × V exists in 14.13.1
product U × V of U and V in 14.13.1
product category in 4.2.20
product of U and V in 14.6.1
product of U and V in 14.9.1
product in 4.4.1
product in 4.14.6
profinite group in 5.30.5
profinite in 5.22.1
projective n-space over Z in 27.13.2
projective n-space over R in 27.13.2
projective n-space over S in 27.13.2
projective bundle associated to E in
27.21.1
projective cover in 47.4.1
projective dimension in 10.109.2
projective envelope in 47.4.1
projective resolution of A in 13.19.1
projective resolution of K• in 13.19.1
projective system over I in C in 4.21.2
projective variety in 33.26.1
projective-amplitude in [a, b] in 15.68.1
projective in 10.77.1
projective in 12.28.1
projective in 29.43.1
projective in 64.7.1
proper relative cycle in 62.9.1
proper variety in 33.26.1
property P in 65.5.1
property P in 80.4.1
property P in 94.10.1
proper in 5.17.2
proper in 29.41.1
proper in 67.40.1
proper in 87.31.1
proper in 101.37.1
prorepresentable in 90.6.1
prorepresentable in 90.22.1
pseudo G-torsor in 21.4.1
pseudo G-torsor in 39.11.1
pseudo G-torsor in 78.9.1

pseudo functor in 4.29.5
pseudo torsor in 21.4.1
pseudo-catenary in 107.5.14
pseudo-coherent at x in 76.46.1
pseudo-coherent relative to R in 15.81.4
pseudo-coherent relative to R in 15.81.4
pseudo-coherent relative to S in 37.59.2
pseudo-coherent relative to S in 37.59.2
pseudo-coherent relative to Y in 76.45.3
pseudo-coherent relative to Y in 76.45.3
pseudo-coherent ring map in 15.82.1
pseudo-coherent in 15.64.1
pseudo-coherent in 15.64.1
pseudo-coherent in 20.47.1
pseudo-coherent in 20.47.1
pseudo-coherent in 21.45.1
pseudo-coherent in 21.45.1
pseudo-coherent in 37.60.2
pseudo-coherent in 76.46.1
pullback x−1F of F in 96.9.2
pullback functor in 4.33.6
pullback functor in 8.3.4
pullback functor in 35.34.7
pullback functor in 35.34.9
pullback functor in 74.22.7
pullback functor in 74.22.9
pullback of S along f in 8.12.9
pullback of D by f is defined in 31.13.12
pullback of D by f is defined in 71.6.10
pullback of S by f in 7.47.4
pullback of the effective Cartier divisor
in 31.13.12
pullback of the effective Cartier divisor
in 71.6.10
pullbacks of meromorphic functions are
defined for f in 31.23.4
pullbacks of meromorphic functions are
defined for f in 71.10.6
pullback in 6.26.1
pullback in 18.13.1
pullback in 39.3.3
pullback in 59.36.1
pullback in 78.4.3
pure above y in 77.3.1
pure above y in 77.3.1
pure along Xs in 38.16.1
pure along Xs in 38.16.1
pure extension module in 46.8.8
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pure injective resolution in 46.8.5
pure injective in 46.8.1
pure projective resolution in 46.8.5
pure projective in 46.8.1
pure relative to S in 38.16.1
pure relative to S in 38.16.1
pure relative to Y in 77.3.1
pure relative to Y in 77.3.1
purely inseparable in 9.14.1
purely inseparable in 9.14.1
purely inseparable in 9.28.1
purely transcendental extension in 9.26.1
pure in 10.108.1
pushforward of S along f in 8.12.4
pushforward in 6.26.1
pushforward in 7.44.1
pushforward in 18.13.1
pushforward in 42.12.1
pushforward in 59.35.1
pushforward in 59.35.3
pushforward in 82.8.1
pushout of V and W over U in 14.8.1
pushout in 4.9.1
qc covering in 21.31.2
quasi-affine in 28.18.1
quasi-affine in 29.13.1
quasi-affine in 67.21.2
quasi-coherent OX -module in 96.11.1
quasi-coherent module on (U,R, s, t, c)
in 39.14.1
quasi-coherent module on (U,R, s, t, c)
in 78.12.1
quasi-coherent module on X in 96.11.1
quasi-coherent sheaf of OX -modules in
17.10.1
quasi-coherent in 18.23.1
quasi-coherent in 59.17.2
quasi-coherent in 60.11.1
quasi-coherent in 66.29.1
quasi-coherent in 111.36.1
quasi-compact in 5.12.1
quasi-compact in 5.12.1
quasi-compact in 7.17.1
quasi-compact in 7.17.4
quasi-compact in 7.17.4
quasi-compact in 26.19.1
quasi-compact in 66.5.1
quasi-compact in 67.8.2

quasi-compact in 87.17.2
quasi-compact in 87.17.4
quasi-compact in 100.6.1
quasi-compact in 101.7.2
quasi-compact in 111.6.4
quasi-DM over S in 101.4.2
quasi-DM in 101.4.1
quasi-DM in 101.4.2
quasi-excellent in 15.52.1
quasi-finite at q in 10.122.3
quasi-finite at x in 67.27.1
quasi-finite at a point x ∈ X in 29.20.1
quasi-finite in 10.122.3
quasi-finite in 29.20.1
quasi-finite in 67.27.1
quasi-finite in 101.24.1
quasi-inverse in 4.2.17
quasi-isomorphism in 12.13.4
quasi-isomorphism in 12.13.10
quasi-isotrivial in 39.11.3
quasi-isotrivial in 78.9.3
quasi-projective variety in 33.26.1
quasi-projective in 29.40.1
quasi-proper in 5.17.2
quasi-regular ideal in 15.32.1
quasi-regular immersion in 31.21.1
quasi-regular immersion in 76.44.2
quasi-regular sequence in 10.69.1
quasi-regular in 31.20.2
quasi-separated over S in 65.13.2
quasi-separated over S in 101.4.2
quasi-separated in 26.21.3
quasi-separated in 26.21.3
quasi-separated in 66.3.1
quasi-separated in 66.3.1
quasi-separated in 67.4.2
quasi-separated in 87.16.3
quasi-separated in 87.30.1
quasi-separated in 101.4.1
quasi-separated in 101.4.2
quasi-sober in 5.8.6
quasi-split over u in 79.15.1
quasi-splitting of R over u in 79.15.1
quotient category D/B in 13.6.7
quotient category cofibered in groupoids
[U/R]→ C in 90.21.9
quotient filtration in 12.19.1
quotient functor in 13.6.7
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quotient morphism U → [U/R] in
90.21.9
quotient of U by G in 65.14.4
quotient representable by an algebraic
space in 78.19.3
quotient representable by an algebraic
space in 78.19.3
quotient sheaf U/R in 39.20.1
quotient sheaf U/R in 78.19.1
quotient stack in 78.20.1
quotient stack in 78.20.1
quotient in 12.5.3
radicial in 29.10.1
radicial in 76.3.1
ramification index in 15.111.1
rank r in 18.32.1
rank in 10.102.5
rank in 29.48.1
rank in 67.46.2
rational function on X in 29.49.3
rational function on X in 67.47.2
rational map from X to Y in 29.49.1
rational map from X to Y in 67.47.1
rationally equivalent to zero in 42.19.1
rationally equivalent to zero in 82.15.1
rationally equivalent in 42.19.1
rationally equivalent in 82.15.1
reasonable in 68.6.1
reasonable in 68.17.1
reduced induced algebraic space struc-
ture in 66.12.5
reduced induced algebraic stack struc-
ture in 100.10.4
reduced induced scheme structure in
26.12.5
reduced in 26.12.1
reduction Xred of X in 100.10.4
reduction Xred of X in 26.12.5
reduction Xred of X in 66.12.5
reduction to rational singularities is pos-
sible for A in 54.8.3
Rees algebra in 10.70.1
refinement in 7.8.1
refines in 5.28.1
reflexive hull in 15.23.9
reflexive hull in 31.12.1
reflexive in 15.23.1
reflexive in 31.12.1

regular at x in 37.21.1
regular ideal in 15.32.1
regular immersion in 31.21.1
regular in codimension ≤ k in 10.157.1
regular in codimension k in 28.12.1
regular local ring in 10.60.10
regular locus in 28.14.1
regular morphism in 37.21.1
regular section in 31.14.6
regular section in 71.7.4
regular sequence in 10.68.1
regular system of parameters in 10.60.10
regular in 10.110.7
regular in 12.24.7
regular in 15.41.1
regular in 28.9.1
regular in 31.20.2
regular in 31.23.7
regular in 71.10.9
relation in 10.11.2
relation in 39.3.1
relation in 78.4.1
relative H1-regular immersion in 31.22.2
relative r-cycle on X/S in 62.6.1
relative assassin of F in X over S in
31.7.1
relative assassin ofN over S/R in 10.65.2
relative cotangent space in 90.3.6
relative dimension ≤ d at x in 29.29.1
relative dimension ≤ d in 29.29.1
relative dimension ≤ d in 67.33.2
relative dimension d in 29.29.1
relative dimension d in 67.33.2
relative dimension of S/R at q in
10.125.1
relative dimension of in 10.125.1
relative dimension in 107.5.7
relative dualizing complex in 47.27.1
relative dualizing complex in 48.28.1
relative dualizing complex in 86.9.1
relative dualizing sheaf in 109.19.2
relative effective Cartier divisor in
31.18.2
relative effective Cartier divisor in 71.9.2
relative Frobenius morphism of X/S in
33.36.4
relative global complete intersection in
10.136.5
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relative homogeneous spectrum of A
over S in 27.16.7
relative homogeneous spectrum of A
over X in 71.11.3
relative inertia of S over S ′ in 4.34.2
relative Proj of A over S in 27.16.7
relative Proj of A over X in 71.11.3
relative quasi-regular immersion in
31.22.2
relative sheaf of automorphisms of x in
101.5.3
relative sheaf of isomorphisms from x1
to x2 in 101.5.3
relative spectrum of A over S in 27.4.5
relative spectrum of A over X in 67.20.8
relative weak assassin of F in X over S
in 31.8.1
relative weak assassin of F in X over Y
in 71.4.5
relatively ample in 29.37.1
relatively ample in 71.14.1
relatively limit preserving in 70.3.1
relatively prime in 9.11.1
relatively very ample in 29.38.1
representable by a scheme in 26.15.1
representable by algebraic spaces in
80.3.1
representable by algebraic spaces in
94.9.1
representable by an algebraic space over
S in 94.8.1
representable by open immersions in
26.15.3
representable quotient in 39.20.2
representable quotient in 39.20.2
representable quotient in 78.19.3
representable quotient in 78.19.3
representable sheaves in 7.12.3
representable in 4.3.6
representable in 4.6.4
representable in 4.8.2
representable in 4.40.1
representable in 4.42.3
representable in 26.15.1
representable in 90.21.4
residual degree in 15.111.1
residual degree in 15.123.1
residual gerbe of X at x exists in 100.11.8

residual gerbe of X at x in 100.11.8
residual space of X at x in 68.13.6
residue degree in 15.111.1
residue degree in 15.123.1
residue field of X at x in 26.2.1
residue field of X at x in 68.11.2
resolution functor in 13.23.2
resolution of M by finite free R-modules
in 10.71.2
resolution of M by free R-modules in
10.71.2
resolution of singularities by normalized
blowups in 54.14.2
resolution of singularities by normalized
blowups in 89.8.2
resolution of singularities in 54.14.1
resolution of singularities in 89.8.1
resolution property in 36.36.1
resolution property in 75.28.1
resolution in 10.71.2
restriction (U,R, s, t, c)|C′ of (U,R, s, t, c)
to C′ in 90.21.7
restriction of (U,R, s, t, c) to U ′ in
39.18.2
restriction of (U,R, s, t, c) to U ′ in
78.17.2
restriction of F to C/U in 7.25.1
restriction of F to C/U in 18.19.1
restriction of F to Uétale in 96.9.2
restriction of G to U in 6.31.2
restriction of G to U in 6.31.2
restriction of G to U in 6.31.2
restriction to the small étale site in
34.4.15
restriction to the small étale site in
73.4.9
restriction to the small pro-étale site in
61.12.14
restriction to the small Zariski site in
34.3.15
restriction in 39.3.3
restriction in 78.4.3
retrocompact in 5.12.1
rig-étale over (A, I) in 88.8.1
rig-étale in 88.20.1
rig-closed in 88.14.2
rig-etale in 88.19.2
rig-flat in 88.15.4
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rig-flat in 88.16.1
rig-smooth over (A, I) in 88.4.1
rig-smooth in 88.17.2
rig-smooth in 88.18.1
rig-surjective in 88.21.1
right acyclic for F in 13.15.3
right adjoint in 4.24.1
right admissible in 13.40.9
right derivable in 13.14.9
right derived functor RF is defined at in
13.14.2
right derived functors of F in 13.15.3
right dual in 4.43.5
right exact in 4.23.1
right multiplicative system in 4.27.1
right orthogonal in 13.40.1
ring of rational functions on X in 29.49.4
ring of rational functions on X in 67.47.3
ringed site in 18.6.1
ringed site in 59.17.2
ringed space in 6.25.1
ringed topos in 18.7.1
satisfies the existence part of the valua-
tive criterion in 26.20.3
satisfies the existence part of the valua-
tive criterion in 67.41.1
satisfies the sheaf property for the fpqc
topology in 34.9.12
satisfies the sheaf property for the fpqc
topology in 59.15.5
satisfies the sheaf property for the given
family in 34.9.12
satisfies the sheaf property for the V
topology in 34.10.11
satisfies the sheaf property for the
Zariski topology in 26.15.3
satisfies the uniqueness part of the valu-
ative criterion in 26.20.3
satisfies the uniqueness part of the valu-
ative criterion in 67.41.1
satisfies the valuative criterion in 67.41.1
saturated in 4.27.20
saturated in 13.6.1
scheme over R in 26.18.1
scheme over S in 26.18.1
scheme structure on Z in 26.12.5
scheme theoretic closure of U in X in
29.7.1

scheme theoretic closure of U in X in
67.17.3
scheme theoretic fibre Xs of f over s in
26.18.4
scheme theoretic image in 29.6.2
scheme theoretic image in 67.16.2
scheme theoretic image in 101.38.1
scheme theoretic intersection in 29.4.4
scheme theoretic intersection in 67.14.4
scheme theoretic support of F in 29.5.5
scheme theoretic support of F in 67.15.4
scheme theoretic union in 29.4.4
scheme theoretic union in 67.14.4
scheme theoretically dense in X in 29.7.1
scheme theoretically dense in X in
67.17.3
scheme in 26.9.1
sections with compact support in 63.3.7
semi-representable objects over X in
25.2.1
semi-representable objects in 25.2.1
seminormalization of X in Y in 29.55.6
seminormalization in 29.47.8
seminormal in 29.47.1
seminormal in 29.47.3
semistable family of curves in 109.21.2
semistable reduction in 55.14.6
separable degree in 9.12.6
separable degree in 9.14.7
separable over k in 10.42.1
separable solution in 15.115.1
separable in 9.12.2
separable in 9.12.2
separable in 9.12.2
separable in 9.28.1
separably generated over k in 10.42.1
separated group scheme in 39.4.5
separated over S in 65.13.2
separated over S in 101.4.2
separated presheaf in 59.11.1
separated in 5.4.1
separated in 6.11.2
separated in 7.10.9
separated in 7.49.2
separated in 12.19.1
separated in 26.21.3
separated in 26.21.3
separated in 66.3.1
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separated in 66.3.1
separated in 67.4.2
separated in 87.16.3
separated in 87.30.1
separated in 101.4.1
separated in 101.4.2
separates R-orbits in 83.5.8
separates orbits in 83.5.8
Serre functor in 57.3.2
Serre subcategory in 12.10.1
set-theoretic equivalence relation in
83.5.13
set-theoretic pre-equivalence relation in
83.5.13
set-theoretically R-invariant in 39.19.1
set-theoretically R-invariant in 83.5.8
setoid in 4.39.1
sheaf F of O-modules on B in 6.30.11
sheaf F of sets on B in 6.30.2
sheaf F of sets on X in 6.7.1
sheaf F with values in C on B in 6.30.8
sheaf associated to F in 7.10.11
sheaf associated to F in 7.49.4
sheaf associated to the module M and
the ring map α in 17.10.6
sheaf associated to the module M in
17.10.6
sheaf for the étale topology in 96.4.3
sheaf for the fppf topology in 96.4.3
sheaf for the smooth topology in 96.4.3
sheaf for the syntomic topology in 96.4.3
sheaf for the Zariski topology in 96.4.3
sheaf of O-modules associated to F in
35.8.2
sheaf of O-modules associated to F in
35.8.2
sheaf of O-modules in 6.10.1
sheaf of O-modules in 18.10.1
sheaf of OX -modules in 96.7.1
sheaf of R-invariant functions on X in
83.8.1
sheaf of abelian groups on X in 6.8.1
sheaf of automorphisms of x in 101.5.3
sheaf of differential graded O-algebras in
24.12.1
sheaf of differential graded algebras in
24.12.1

sheaf of differentials ΩX/S of X over S
in 17.28.10
sheaf of differentials ΩX/S of X over S
in 29.32.1
sheaf of differentials ΩX/Y of X over Y
in 18.33.10
sheaf of differentials ΩX/Y of X over Y
in 76.7.2
sheaf of graded O-algebras in 24.3.1
sheaf of graded algebras in 24.3.1
sheaf of isomorphisms from x1 to x2 in
101.5.3
sheaf of meromorphic functions on X in
31.23.1
sheaf of meromorphic functions on X in
71.10.1
sheaf of total quotient rings KS in
111.49.1
sheaf theoretically empty in 7.42.1
sheaf in 6.9.1
sheaf in 7.7.1
sheaf in 7.7.6
sheaf in 7.47.10
sheaf in 59.11.1
sheaf in 96.4.3
shift in 12.16.4
short exact sequence in 12.5.7
siblings in 57.10.1
siblings in 57.12.1
sibling in 57.10.1
sibling in 57.12.1
sieve on U generated by the morphisms
fi in 7.47.3
sieve S on U in 7.47.1
similar in 59.61.3
simple in 10.52.9
simple in 11.2.3
simple in 11.2.3
simple in 12.9.1
simplicial A•-module in 21.41.1
simplicial abelian group in 14.3.1
simplicial object U of C in 14.3.1
simplicial scheme associated to f in
85.27.3
simplicial set in 14.3.1
simplicial sheaf of A•-modules in 21.41.1
simplicial system of the derived category
of modules in 85.14.1
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simplicial system of the derived category
in 85.13.1
singular ideal of A over R in 16.2.1
singular locus in 28.14.1
singularities of X are at-worst-nodal in
53.19.1
site in 7.6.2
site in 59.10.2
size in 19.11.2
skew field in 11.2.2
skyscraper sheaf at x with value A in
6.27.1
skyscraper sheaf in 6.27.1
skyscraper sheaf in 6.27.1
skyscraper sheaf in 6.27.1
skyscraper sheaf in 6.27.1
skyscraper sheaf in 7.32.6
small τ -site of S in 59.20.2
small étale site Xétale in 66.18.1
small étale site of S in 34.4.8
small étale site over S in 59.27.3
small étale site in 87.34.1
small étale topos in 59.21.1
small étale topos in 66.18.7
small affine étale site of S in 34.4.8
small affine Zariski site of S in 34.3.7
small extension in 10.141.1
small extension in 90.3.2
small pro-étale site of S in 61.12.8
small Zariski site FZar in 65.12.6
small Zariski site of S in 34.3.7
small Zariski sites in 59.27.3
small Zariski topos in 59.21.1
smooth at q in 10.137.11
smooth at x ∈ X in 29.34.1
smooth at x in 67.37.1
smooth covering of T in 34.5.1
smooth covering of X in 73.5.1
smooth group scheme in 39.4.5
smooth groupoid in 94.16.4
smooth local on source-and-target in
74.20.1
smooth local in 35.21.1
smooth of relative dimension d in
29.34.13
smooth sheaf in 96.4.3
smooth variety in 33.26.1
smooth in 10.137.1

smooth in 29.34.1
smooth in 35.20.2
smooth in 67.37.1
smooth in 90.8.1
smooth in 90.9.1
smooth in 90.23.1
smooth in 101.33.1
smooth in 105.4.3
sober in 5.8.6
solution for A ⊂ B in 15.115.1
special cocontinuous functor u from C to
D in 7.29.2
specializations lift along f in 5.19.4
specialization in 5.19.1
specialization in 111.6.22
specialization in 111.36.2
specializing in 5.19.4
spectral sequence associated to (A, d, α)
in 12.22.5
spectral sequence associated to the exact
couple in 12.21.3
spectral sequence in A in 12.20.1
spectral in 5.23.1
spectral in 5.23.1
spectrum of A over S in 27.4.5
spectrum of A over X in 67.20.8
spectrum in 10.17.1
spectrum in 26.5.3
split category fibred in groupoids in
4.37.2
split equalizer in 35.4.2
split fibred category in 4.36.2
split node in 53.19.10
split over u in 79.15.1
splits in 11.8.1
splitting field of P over F in 9.16.2
splitting field in 11.8.1
splitting of R over u in 79.15.1
split in 12.5.9
split in 14.18.1
split in 14.18.1
stabilizer of the groupoid in algebraic
spaces (U,R, s, t, c) in 78.16.2
stabilizer of the groupoid scheme
(U,R, s, t, c) in 39.17.2
stable family of curves in 109.22.2
stable under base change in 29.14.1
stable under composition in 29.14.1
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stable under generalization in 5.19.1
stable under specialization in 5.19.1
stably free in 15.3.1
stably isomorphic in 15.3.1
stack in discrete categories in 8.6.1
stack in groupoids in 8.5.1
stack in setoids in 8.6.1
stack in sets in 8.6.1
stack in 8.4.1
stalk in 59.29.6
stalk in 64.18.6
stalk in 66.19.6
standard τ -covering in 59.20.4
standard étale covering in 34.4.5
standard étale in 10.144.1
standard étale in 29.36.1
standard étale in 59.26.3
standard fppf covering in 34.7.5
standard fpqc covering in 34.9.9
standard h covering in 38.34.11
standard open covering in 26.5.2
standard open covering in 26.5.2
standard open covering in 27.8.2
standard opens in 10.17.3
standard ph covering in 34.8.1
standard pro-étale covering in 61.12.6
standard resolution of B over A in
92.18.1
standard resolution of B over A in 92.3.1
standard shrinking in 38.4.6
standard shrinking in 38.5.5
standard smooth algebra over R in
10.137.6
standard smooth covering in 34.5.5
standard smooth in 29.34.1
standard syntomic covering in 34.6.5
standard syntomic in 29.30.1
standard V covering in 34.10.1
standard Zariski covering in 34.3.4
strata in 5.28.3
stratification in 5.28.3
strict henselization of OS,s in 59.33.2
strict henselization of R with respect to
κ ⊂ κsep in 10.155.3
strict henselization of S at s in 59.33.2
strict henselization of X at x in 66.22.2
strict henselization in 10.155.3
strict map of topological spaces in 5.6.3

strict morphism of thickenings in 91.3.2
strict morphism of thickenings in 91.9.2
strict normal crossings divisor in 41.21.1
strict transform of M along R → R[ Ia ]
in 15.26.1
strict transform in 31.33.1
strict transform in 31.33.1
strict transform in 71.18.1
strict transform in 71.18.1
strictly commutative in 22.3.3
strictly full in 4.2.10
strictly henselian in 10.153.1
strictly henselian in 59.32.6
strictly perfect in 20.46.1
strictly perfect in 21.44.1
strictly standard in A over R in 16.2.3
strict in 12.19.3
strong generator in 13.36.3
strong splitting of R over u in 79.15.1
stronger in 7.47.8
strongly C-cartesian morphism in 4.33.1
strongly cartesian morphism in 4.33.1
strongly split over u in 79.15.1
strongly transcendental over R in
10.123.7
structure morphism in 26.18.1
structure of site on S inherited from C
in 8.10.2
structure sheaf OSpec(R) of the spectrum
of R in 26.5.3
structure sheaf OProj(S) of the homoge-
neous spectrum of S in 27.8.3
structure sheaf of X in 96.6.1
structure sheaf of the big site (Sch/S)τ
in 35.8.2
structure sheaf of the small site in 35.8.2
structure sheaf in 18.6.1
structure sheaf in 18.7.1
structure sheaf in 59.23.3
structure sheaf in 66.21.2
sub 2-category in 4.29.2
subbase for the topology on X in 5.5.4
subbasis for the topology on X in 5.5.4
subcanonical in 7.12.2
subcategory in 4.2.10
subfield in 9.2.1
subfunctor H ⊂ F in 26.15.3
submersive in 5.6.3
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submersive in 29.24.1
submersive in 67.7.2
submersive in 101.12.2
subobject in 12.5.3
subpresheaf in 6.16.2
subpresheaf in 7.3.3
subsheaf generated by the si in 17.4.5
subsheaf of sections annihilated by I in
28.24.3
subsheaf of sections annihilated by I in
70.14.3
subsheaf of sections supported on T in
28.24.6
subsheaf of sections supported on T in
70.14.6
subsheaf in 6.16.2
subtopos in 7.43.2
sum of the effective Cartier divisors D1
and D2 in 31.13.6
sum of the effective Cartier divisors D1
and D2 in 71.6.6
sum of the effective Cartier divisors in
115.23.9
support of F in 17.5.1
support of F in 59.31.3
support of F in 66.20.3
support of σ in 59.31.3
support of σ in 66.20.3
support of M in 10.40.1
support of s in 17.5.1
supported on T in 36.6.1
supported on T in 75.3.2
support in 42.8.3
surjective in 6.16.2
surjective in 6.16.2
surjective in 7.3.1
surjective in 7.11.1
surjective in 12.5.3
surjective in 29.9.1
surjective in 67.5.2
surjective in 87.25.1
surjective in 100.5.1
symbol associated to M,a, b in 42.68.29
symbolic power in 10.64.1
symbol in 42.68.2
symmetric monoidal category in 4.43.9
syntomic at x ∈ X in 29.30.1
syntomic at x in 67.36.1

syntomic covering of T in 34.6.1
syntomic covering of X in 73.6.1
syntomic of relative dimension d in
29.30.15
syntomic sheaf in 96.4.3
syntomic in 10.136.1
syntomic in 29.30.1
syntomic in 67.36.1
system (Fi, φi′i) of sheaves on (Xi, fi′i)
in 59.51.1
system (Mi, µij) of R-modules over I in
10.8.1
system of parameters of R in 10.60.10
system of rings in 111.2.1
system over I in C in 4.21.2
tame inertia group of m in 15.112.6
tame symbol in 42.68.31
tamely ramified with respect to A in
15.111.7
tangent space TF of F in 90.12.1
tangent space TF of F in 90.11.9
tangent space of X over S at x in 33.16.3
tangent space of X over S in 111.35.3
tangent vector in 33.16.3
tangent vector in 111.35.3
tautologically equivalent in 7.8.2
taut in 87.5.1
tensor power in 17.25.6
tensor product differential graded alge-
bra in 22.3.4
tensor product in 87.4.7
termwise split exact sequence of com-
plexes of A in 13.9.9
termwise split injection α : A• → B• in
13.9.4
termwise split surjection β : B• → C• in
13.9.4
the fibre of f : X → Y at y is geometri-
cally reduced in 76.29.2
the fibre of f over y is locally Noetherian
in 71.4.2
the fibre of X over z is flat at x over the
fibre of Y over z in 76.23.2
the fibre of X over z is flat over the fibre
of Y over z in 76.23.2
the fibres of f are locally Noetherian in
71.4.2
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the Fourier-Mukai kernel of a relative
equivalence from X to Y over S in
57.15.1
the functions on X are the R-invariant
functions on U in 83.8.1
the gysin map for f exists in 42.59.4
the relative dimension in 107.5.2
the restriction of F to its fibre over z is
flat at x over the fibre of Y over z in
76.23.2
thickenings over Z in 106.3.1
thickenings over B in 76.9.1
thickenings over S in 37.2.1
thickening in 37.2.1
thickening in 76.9.1
thickening in 106.3.1
topological genus of T in 55.3.11
topological group in 5.30.1
topological module in 5.30.10
topological module in 15.36.1
topological ring in 5.30.7
topological ring in 15.36.1
topological space in 66.4.7
topological space in 100.4.8
topologically nilpotent in 87.4.8
topologically of finite type over in
87.29.1
topology associated to C in 7.48.2
topology on C in 7.47.6
topos in 7.15.1
tor dimension ≤ d in 15.66.1
tor dimension ≤ d in 20.48.1
tor dimension ≤ d in 21.46.1
Tor independent over B in 75.20.2
Tor independent over R in 15.61.1
Tor independent over S in 36.22.2
tor-amplitude in [a, b] in 15.66.1
tor-amplitude in [a, b] in 20.48.1
tor-amplitude in [a, b] in 21.46.1
torsion free in 15.22.1
torsion free in 31.11.2
torsion in 15.22.1
torsion in 31.11.2
torsion in 64.18.6
torsor in 20.4.1
torsor in 21.4.1
Tor in 20.26.15
Tor in 21.17.14

total Chern class of E on X in 42.37.1
total Chern class of E in 82.28.2
total Chern class in 42.38.8
total left derived functor of G in 64.6.4
total right derived functor of F in 64.6.4
totally acyclic in 21.13.4
totally disconnected in 5.7.8
totally ramified with respect to A in
15.111.7
tower in 9.6.3
trace element in 49.4.1
trace pairing in 9.20.6
trace in 9.20.1
trace in 59.66.1
trace in 64.4.1
transcendence basis in 9.26.1
transcendence degree of x/f(x) in
67.33.1
transcendence degree in 9.26.4
transition maps in 4.21.2
triangle associated to 0 → K → L →
M → 0 in 22.8.2
triangle associated to the termwise split
sequence of complexes in 13.9.9
triangle in 13.3.1
triangulated category of quasi-coherent
objects in the derived category in 96.26.1
triangulated category in 13.3.2
triangulated functor in 13.3.3
triangulated subcategory in 13.3.4
trivial G-torsor in 20.4.1
trivial G-torsor in 21.4.1
trivial descent datum in 8.3.5
trivial descent datum in 35.2.3
trivial descent datum in 35.34.10
trivial descent datum in 74.3.3
trivial descent datum in 74.22.10
trivial Kan fibration in 14.30.1
trivial in 15.117.1
trivial in 17.25.1
trivial in 39.11.1
trivial in 78.9.1
trivial in 111.40.4
twist of the structure sheaf of Proj(S) in
27.10.1
twist of the structure sheaf in 27.21.1
two-sided admissible in 13.40.9
type of algebraic structure in 6.15.1
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UFD in 10.120.4
underlying presheaf of sets of F in 6.5.2
unibranch at x in 28.15.1
unibranch at x in 68.24.2
unibranch in 15.106.1
unibranch in 28.15.1
unibranch in 68.24.2
uniform categorical moduli space in C in
106.12.1
uniform categorical moduli space in
106.12.1
uniform categorical quotient in 83.4.4
uniformizer in 10.119.8
uniformly in 83.7.1
unique factorization domain in 10.120.4
uniqueness part of the valuative criterion
in 101.39.6
universal δ-functor in 12.12.3
universal φ-derivation in 17.28.3
universal φ-derivation in 18.33.3
universal S-derivation in 29.32.1
universal Y -derivation in 18.33.10
universal Y -derivation in 76.7.2
universal categorical quotient in 83.4.4
universal effective epimorphism in 7.12.1
universal first order thickening in
10.149.2
universal first order thickening in 37.7.2
universal first order thickening in 76.15.5
universal flattening of F exists in 38.21.1
universal flattening of F exists in 77.11.1
universal flattening of X exists in 38.21.1
universal flattening of X exists in 77.11.1
universal homeomorphism in 29.45.1
universal homeomorphism in 67.53.2
universal homeomorphism in 101.15.2
universally S-pure in 38.16.1
universally Y -pure in 77.3.1
universally catenary in 10.105.3
universally catenary in 29.17.1
universally catenary in 68.25.4
universally closed in 5.17.2
universally closed in 26.20.1
universally closed in 67.9.2
universally closed in 101.13.2
universally exact in 10.82.1
universally injective in 10.82.1
universally injective in 29.10.1

universally injective in 35.4.5
universally injective in 67.19.3
universally injective in 101.14.2
universally Japanese in 10.162.1
universally Japanese in 28.13.1
universally locally acyclic relative to K
in 59.93.1
universally locally acyclic in 59.93.1
universally open in 29.23.1
universally open in 67.6.2
universally open in 101.11.2
universally pure above y in 77.3.1
universally pure along Xs in 38.16.1
universally pure relative to S in 38.16.1
universally pure relative to Y in 77.3.1
universally submersive in 29.24.1
universally submersive in 67.7.2
universally submersive in 101.12.2
universally in 83.7.1
unobstructed in 90.9.1
unramified at q in 10.151.1
unramified at x ∈ X in 29.35.1
unramified at x in 41.3.5
unramified at x in 67.38.1
unramified cusp form on GL2(A) with
values in Λ in 64.31.1
unramified homomorphism of local rings
in 41.3.1
unramified with respect to A in 15.111.7
unramified in 10.151.1
unramified in 29.35.1
unramified in 41.3.5
unramified in 67.38.1
unramified in 101.36.1
V covering of T in 34.10.7
valuation ring in 10.50.1
valuation in 10.50.13
value group in 10.50.13
value of LF at X in 13.14.2
value of RF at X in 13.14.2
value in 4.22.1
value in 4.22.1
variety in 33.3.1
variety in 59.67.9
vector bundle π : V → S over S in 27.6.2
vector bundle associated to E in 27.6.1
versal ring to X at x0 in 107.2.2
versal in 90.8.9
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versal in 98.12.1
versal in 98.12.2
vertical in 4.29.1
very ample on X/S in 29.38.1
very reasonable in 68.6.1
very reasonable in 68.17.1
viewed as an algebraic space over S′ in
65.16.2
viewed as an algebraic stack over S′ in
94.19.2
w-contractible in 61.11.1
w-local in 61.2.3
w-local in 61.2.3
weak R-orbit in 83.5.4
weak dimension ≤ d in 15.104.3
weak functor in 4.29.5
weak generator in 13.36.3
weak ideal of definition in 87.4.8
weak normalization of X in Y in 29.55.6
weak normalization in 29.55.8
weak orbit in 83.5.4
weak Serre subcategory in 12.10.1
weak solution for A ⊂ B in 15.115.1
weaker than the canonical topology in
7.12.2
weaker in 7.47.8
weakly R-equivalent in 83.5.4
weakly étale in 15.104.1
weakly étale in 37.64.1
weakly adic in 87.7.1
weakly adic in 87.9.7
weakly admissible in 87.4.8
weakly associated points of X in 31.5.1
weakly associated points of X in 71.2.2
weakly associated in 10.66.1
weakly associated in 31.5.1
weakly associated in 71.2.2
weakly contractible in 7.40.2
weakly converges to H(K) in 12.23.6
weakly converges to H∗(K•) in 12.24.9
weakly converges to Hn(Tot(K•,•)) in
12.25.2
weakly converges to Hn(Tot(K•,•)) in
12.25.2
weakly normal in 29.55.9
weakly pre-adic in 87.7.1
weakly pre-admissible in 87.4.8
weakly unramified in 15.111.1

weakly unramified in 15.123.1
weighting in 37.75.2
Weil cohomology theory in 45.11.4
Weil divisor [D] associated to an effec-
tive Cartier divisor D ⊂ X in 111.49.1
Weil divisor associated to L in 42.24.1
Weil divisor associated to L in 82.17.1
Weil divisor associated to s in 31.27.4
Weil divisor associated to s in 42.24.1
Weil divisor associated to s in 72.7.4
Weil divisor associated to s in 82.17.1
Weil divisor associated to a Cartier divi-
sor in 111.49.1
Weil divisor associated to a rational
function f ∈ K(X)∗ in 111.49.1
Weil divisor class associated to L in
31.27.4
Weil divisor class associated to L in
72.7.4
Weil divisor class group in 31.26.7
Weil divisor class group in 72.6.9
Weil divisor in 31.26.2
Weil divisor in 72.6.2
Weil divisor in 111.49.1
well-nigh affine in 106.13.1
which associates a presheaf to a semi-
representable object in 25.2.2
wild inertia group of m in 15.112.6
Yoneda extension in 13.27.4
Zariski covering of T in 34.3.1
Zariski covering of X in 73.3.1
Zariski covering in 65.12.5
Zariski locally quasi-separated over S in
65.13.2
Zariski locally quasi-separated in 66.3.1
Zariski locally quasi-separated in 66.3.1
Zariski pair in 15.10.1
Zariski sheaf in 96.4.3
Zariski topos in 59.21.1
Zariski, étale, smooth, syntomic, or fppf
covering in 60.8.4
Zariski in 10.17.3
zero object in 12.3.3
zero scheme in 31.14.8
zero scheme in 71.7.6
zeroth K-group of A in 12.11.1
zeroth K-group of D in 13.28.1
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zeroth Čech cohomology group in
59.13.1
Čech cohomology groups in 20.9.1
Čech cohomology groups in 21.8.1

Čech cohomology groups in 59.18.1
Čech complex in 20.9.1
Čech complex in 21.8.1
Čech complex in 59.18.1

117.2. Definitions listed per chapter

Introduction

Conventions

Set Theory

Categories

In 4.2.1: category
In 4.2.4: isomorphism
In 4.2.5: groupoid
In 4.2.8: functor
In 4.2.9: faithful, fully faithful, essen-
tially surjective
In 4.2.10: subcategory, full subcategory,
strictly full
In 4.2.15: natural transformation, mor-
phism of functors
In 4.2.17: equivalence of categories,
quasi-inverse
In 4.2.20: product category
In 4.3.1: opposite category
In 4.3.2: contravariant
In 4.3.3: presheaf of sets on C, presheaf
In 4.3.6: representable
In 4.4.1: product
In 4.4.2: has products of pairs of objects
In 4.5.1: coproduct, amalgamated sum
In 4.5.2: has coproducts of pairs of ob-
jects
In 4.6.1: fibre product
In 4.6.2: cartesian
In 4.6.3: has fibre products
In 4.6.4: representable
In 4.8.2: representable, F is relatively
representable over G
In 4.9.1: pushout
In 4.9.2: cocartesian
In 4.10.1: equalizer
In 4.11.1: coequalizer
In 4.12.1: initial, final
In 4.13.1: monomorphism, epimorphism

In 4.14.1: limit
In 4.14.2: colimit
In 4.14.6: product
In 4.14.7: coproduct
In 4.16.1: connected
In 4.17.1: I is cofinal in J , cofinal
In 4.17.3: I is initial in J , initial
In 4.19.1: directed, filtered, directed, fil-
tered
In 4.20.1: codirected, cofiltered, codi-
rected, cofiltered
In 4.21.1: preorder, preordered set, di-
rected set, partial order, partially or-
dered set, directed partially ordered set
In 4.21.2: system over I in C, inductive
system over I in C, inverse system over I
in C, projective system over I in C, tran-
sition maps
In 4.21.4: directed system, directed in-
verse system
In 4.22.1: essentially constant, value, es-
sentially constant, value
In 4.22.2: essentially constant system, es-
sentially constant inverse system
In 4.23.1: left exact, right exact, exact
In 4.24.1: left adjoint, right adjoint
In 4.26.1: categorically compact
In 4.27.1: left multiplicative system,
right multiplicative system, multiplica-
tive system
In 4.27.4: s−1f
In 4.27.12: fs−1

In 4.27.20: saturated
In 4.28.1: horizontal
In 4.29.1: 2-category, 1-morphisms, 2-
morphisms, vertical, composition, hori-
zontal
In 4.29.2: sub 2-category
In 4.29.4: equivalent
In 4.29.5: functor, weak functor, pseudo
functor
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In 4.30.1: (2, 1)-category
In 4.31.1: final object
In 4.31.2: 2-fibre product of f and g
In 4.32.1: 2-category of categories over C
In 4.32.2: fibre category, lift, x lies over
U , lift, ϕ lies over f
In 4.33.1: strongly cartesian morphism,
strongly C-cartesian morphism
In 4.33.5: fibred category over C
In 4.33.6: choice of pullbacks, pullback
functor
In 4.33.9: 2-category of fibred categories
over C
In 4.34.2: relative inertia of S over S ′,
inertia fibred category IS of S
In 4.35.1: fibred in groupoids
In 4.35.6: 2-category of categories fibred
in groupoids over C
In 4.36.2: split fibred category, SF
In 4.37.2: split category fibred in
groupoids, SF
In 4.38.1: discrete
In 4.38.2: category fibred in sets, cate-
gory fibred in discrete categories
In 4.38.3: 2-category of categories fibred
in sets over C
In 4.39.1: setoid
In 4.39.2: category fibred in setoids
In 4.39.3: 2-category of categories fibred
in setoids over C
In 4.40.1: representable
In 4.42.3: representable, X is relatively
representable over Y
In 4.43.1: monoidal category
In 4.43.2: functor of monoidal categories
In 4.43.4: invertible
In 4.43.5: left dual, right dual
In 4.43.9: symmetric monoidal category
In 4.43.11: functor of symmetric
monoidal categories
In 4.44.1: morphism of dotted arrows

Topology

In 5.4.1: separated
In 5.5.1: base for the topology on X, ba-
sis for the topology on X
In 5.5.4: subbase for the topology on X,
subbasis for the topology on X

In 5.6.3: strict map of topological spaces,
submersive
In 5.7.1: connected, connected compo-
nent
In 5.7.8: totally disconnected
In 5.7.10: locally connected
In 5.8.1: irreducible, irreducible compo-
nent
In 5.8.6: generic point, Kolmogorov,
quasi-sober, sober
In 5.9.1: Noetherian, locally Noetherian
In 5.10.1: chain of irreducible closed sub-
sets, length, dimension, Krull dimension,
Krull dimension of X at x
In 5.10.5: equidimensional
In 5.11.1: codimension
In 5.11.4: catenary
In 5.12.1: quasi-compact, quasi-compact,
retrocompact
In 5.13.1: locally quasi-compact
In 5.15.1: constructible, locally con-
structible
In 5.17.2: closed, Bourbaki-proper,
quasi-proper, universally closed, proper
In 5.18.1: Jacobson
In 5.19.1: specialization, generalization,
stable under specialization, stable under
generalization
In 5.19.4: specializations lift along f ,
specializing, generalizations lift along f ,
generalizing
In 5.20.1: immediate specialization, di-
mension function
In 5.21.1: interior, nowhere dense
In 5.22.1: profinite
In 5.23.1: spectral, spectral
In 5.26.1: extremally disconnected
In 5.27.2: isolated point
In 5.28.1: partition, parts, refines
In 5.28.2: good stratification
In 5.28.3: stratification, strata
In 5.28.4: locally finite
In 5.30.1: topological group, homomor-
phism of topological groups
In 5.30.5: profinite group
In 5.30.7: topological ring, homomor-
phism of topological rings
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In 5.30.10: topological module, homo-
morphism of topological modules
Sheaves on Spaces
In 6.3.1: presheaf F of sets on X, mor-
phism φ : F → G of presheaves of sets
on X
In 6.3.2: constant presheaf with value A
In 6.4.4: presheaf of abelian groups on
X, abelian presheaf over X, morphism
of abelian presheaves over X
In 6.5.1: presheaf F on X with values in
C, morphism φ : F → G of presheaves
with value in C
In 6.5.2: underlying presheaf of sets of F
In 6.6.1: presheaf of O-modules, mor-
phism φ : F → G of presheaves of O-
modules
In 6.7.1: sheaf F of sets on X, morphism
of sheaves of sets
In 6.7.4: constant sheaf with value A
In 6.8.1: abelian sheaf on X, sheaf of
abelian groups on X
In 6.9.1: sheaf
In 6.10.1: sheaf of O-modules, morphism
of sheaves of O-modules
In 6.11.2: separated
In 6.15.1: type of algebraic structure
In 6.16.2: subpresheaf, subsheaf, injec-
tive, surjective, injective, surjective
In 6.21.7: f -map ξ : G → F
In 6.21.9: composition of φ and ψ
In 6.25.1: ringed space, morphism of
ringed spaces
In 6.25.3: composition of morphisms of
ringed spaces
In 6.26.1: pushforward, pullback
In 6.27.1: skyscraper sheaf at x with
value A, skyscraper sheaf, skyscraper
sheaf, skyscraper sheaf, skyscraper sheaf
In 6.30.1: presheaf F of sets on B, mor-
phism φ : F → G of presheaves of sets
on B
In 6.30.2: sheaf F of sets on B, morphism
of sheaves of sets on B
In 6.30.8: presheaf F with values in C on
B, morphism φ : F → G of presheaves
with values in C on B, sheaf F with val-
ues in C on B

In 6.30.11: presheaf of O-modules F on
B, morphism φ : F → G of presheaves of
O-modules on B, sheaf F of O-modules
on B
In 6.31.2: restriction of G to U , restric-
tion of G to U , open subspace of (X,O)
associated to U , restriction of G to U
In 6.31.3: extension of F by the empty
set jp!F , extension of F by the empty
set j!F
In 6.31.5: extension jp!F of F by 0, ex-
tension j!F of F by 0, extension jp!F of
F by e, extension j!F of F by e, exten-
sion by 0, extension by 0
Sites and Sheaves
In 7.2.1: presheaf of sets, Morphisms of
presheaves
In 7.2.2: presheaf, morphism
In 7.3.1: injective, surjective
In 7.3.3: subpresheaf
In 7.3.5: image of φ
In 7.6.1: family of morphisms with fixed
target
In 7.6.2: site, coverings of C
In 7.7.1: sheaf
In 7.7.5: Sh(C)
In 7.7.6: sheaf
In 7.8.1: morphism of families of maps
with fixed target of C from U to V, mor-
phism from U to V, refinement
In 7.8.2: combinatorially equivalent, tau-
tologically equivalent
In 7.10.9: separated
In 7.10.11: sheaf associated to F
In 7.11.1: injective, surjective
In 7.12.1: effective epimorphism, univer-
sal effective epimorphism
In 7.12.2: weaker than the canonical
topology, subcanonical
In 7.12.3: representable sheaves, U
In 7.13.1: continuous
In 7.14.1: morphism of sites
In 7.14.5: composition
In 7.15.1: topos, morphism of topoi,
composition f ◦ g
In 7.17.1: quasi-compact
In 7.17.4: quasi-compact, quasi-compact
In 7.20.1: cocontinuous
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In 7.25.1: localization of the site C at the
object U , localization morphism, direct
image functor, restriction of F to C/U ,
extension of G by the empty set
In 7.29.2: special cocontinuous functor u
from C to D
In 7.30.4: localization of the topos Sh(C)
at F , localization morphism
In 7.32.1: point of the topos Sh(C)
In 7.32.2: point p of the site C
In 7.32.6: skyscraper sheaf
In 7.36.1: 2-morphism from f to g
In 7.37.2: morphism f : p→ p′

In 7.38.1: conservative, has enough
points
In 7.40.2: weakly contractible, enough
weakly contractible objects, enough P
objects
In 7.42.1: sheaf theoretically empty
In 7.42.3: almost cocontinuous
In 7.43.1: embedding
In 7.43.2: subtopos
In 7.43.4: open subtopos
In 7.43.6: closed subtopos
In 7.43.7: open immersion, closed immer-
sion
In 7.44.1: pushforward
In 7.45.1: global sections
In 7.47.1: sieve S on U
In 7.47.3: sieve on U generated by the
morphisms fi
In 7.47.4: pullback of S by f
In 7.47.6: topology on C
In 7.47.8: finer, stronger, coarser, weaker
In 7.47.10: sheaf
In 7.47.12: canonical topology
In 7.48.2: topology associated to C
In 7.49.2: separated
In 7.49.4: sheaf associated to F
In 7.52.1: point p
Stacks
In 8.2.2: presheaf of morphisms from x
to y, presheaf of isomorphisms from x to
y
In 8.3.1: descent datum (Xi, φij) in S
relative to the family {fi : Ui →
U}, cocycle condition, morphism ψ :
(Xi, φij)→ (X ′

i, φ
′
ij) of descent data

In 8.3.4: pullback functor
In 8.3.5: trivial descent datum, canonical
descent datum, effective
In 8.4.1: stack
In 8.4.5: 2-category of stacks over C
In 8.5.1: stack in groupoids
In 8.5.5: 2-category of stacks in
groupoids over C
In 8.6.1: stack in setoids, stack in sets,
stack in discrete categories
In 8.6.5: 2-category of stacks in setoids
over C
In 8.10.2: structure of site on S inherited
from C, S is endowed with the topology
inherited from C
In 8.11.1: gerbe
In 8.11.4: gerbe over
In 8.12.4: f∗S, pushforward of S along f
In 8.12.9: f−1S, pullback of S along f
Fields
In 9.2.1: field, subfield
In 9.2.2: domain, integral domain
In 9.5.1: characteristic, prime subfield of
F
In 9.6.2: field extension
In 9.6.3: tower
In 9.6.6: generates the field extension,
finitely generated field extension
In 9.7.1: degree, finite
In 9.7.8: number field
In 9.8.1: algebraic, algebraic extension
In 9.9.1: minimal polynomial
In 9.10.1: algebraically closed
In 9.10.3: algebraic closure
In 9.11.1: relatively prime
In 9.12.2: separable, separable, separable
In 9.12.6: separable degree
In 9.14.1: purely inseparable, purely in-
separable
In 9.14.7: separable degree, inseparable
degree, degree of inseparability
In 9.15.1: normal
In 9.15.8: automorphisms of E over F ,
automorphisms of E/F
In 9.16.2: splitting field of P over F
In 9.16.4: normal closure E over F
In 9.20.1: trace, norm
In 9.20.6: trace pairing
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In 9.20.8: discriminant of L/K
In 9.21.1: Galois
In 9.21.3: Galois group
In 9.26.1: algebraically independent,
purely transcendental extension, tran-
scendence basis
In 9.26.4: transcendence degree
In 9.26.9: algebraic closure of k in K, al-
gebraically closed in K
In 9.27.1: compositum of K and L in Ω
In 9.27.2: linearly disjoint over k in Ω
In 9.28.1: algebraic, separable, purely in-
separable, normal, Galois

Commutative Algebra

In 10.5.1: finite R-module, finitely gen-
erated R-module, finitely presented R-
module, R-module of finite presentation
In 10.6.1: finite type, S is a finite type
R-algebra, finite presentation
In 10.7.1: finite
In 10.8.1: system (Mi, µij) of R-modules
over I, directed system
In 10.8.6: homomorphism of systems
In 10.9.1: multiplicative subset of R
In 10.9.2: localization of A with respect
to S
In 10.9.6: localization
In 10.11.2: relation
In 10.12.1: R-bilinear
In 10.12.6: (A,B)-bimodule
In 10.14.1: base change, base change
In 10.17.1: spectrum
In 10.17.3: Zariski, standard opens
In 10.18.1: local ring, local homomor-
phism of local rings, local ring map φ :
R→ S
In 10.28.2: Oka family
In 10.32.1: locally nilpotent, nilpotent
In 10.35.1: Jacobson ring
In 10.36.1: integral over R, integral
In 10.36.9: integral closure, integrally
closed
In 10.37.1: normal
In 10.37.3: almost integral over R, com-
pletely normal
In 10.37.11: normal
In 10.38.1: integral over I

In 10.39.1: flat, faithfully flat, flat, faith-
fully flat
In 10.40.1: support of M
In 10.40.3: annihilator of m, annihilator
of M
In 10.41.1: going up, going down
In 10.42.1: separably generated over k,
separable over k
In 10.43.1: geometrically reduced over k
In 10.45.1: perfect
In 10.45.5: perfect closure
In 10.47.4: geometrically irreducible over
k
In 10.48.3: geometrically connected over
k
In 10.49.1: geometrically integral over k
In 10.50.1: dominates, valuation ring,
centered
In 10.50.13: value group, valuation, dis-
crete valuation ring
In 10.52.1: length
In 10.52.9: simple
In 10.53.1: Artinian
In 10.54.1: essentially of finite type, es-
sentially of finite presentation
In 10.57.1: homogeneous spectrum
In 10.58.3: numerical polynomial
In 10.59.1: an ideal of definition of R
In 10.59.6: Hilbert polynomial
In 10.59.8: d(M)
In 10.60.1: chain of prime ideals, length
In 10.60.2: Krull dimension
In 10.60.3: height
In 10.60.10: system of parameters of R,
regular local ring, regular system of pa-
rameters
In 10.63.1: associated
In 10.64.1: symbolic power
In 10.65.2: relative assassin of N over
S/R
In 10.66.1: weakly associated
In 10.67.1: embedded associated primes,
embedded primes of R
In 10.68.1: M -regular sequence, M -
regular sequence in I, regular sequence
In 10.69.1: M -quasi-regular, quasi-
regular sequence
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In 10.70.1: blowup algebra, Rees algebra,
affine blowup algebra
In 10.71.2: resolution, resolution of M by
free R-modules, resolution of M by finite
free R-modules
In 10.72.1: I-depth, depth
In 10.77.1: projective
In 10.78.1: locally free, finite locally free,
finite locally free of rank r
In 10.82.1: universally injective, univer-
sally exact
In 10.84.1: direct sum dévissage, Kaplan-
sky dévissage
In 10.86.1: Mittag-Leffler
In 10.88.1: Mittag-Leffler directed sys-
tem of modules
In 10.88.2: dominates
In 10.88.7: Mittag-Leffler
In 10.90.1: coherent module, coherent
ring
In 10.96.2: I-adically complete, I-
adically complete
In 10.102.5: rank
In 10.103.1: Cohen-Macaulay
In 10.103.8: maximal Cohen-Macaulay
In 10.103.12: Cohen-Macaulay
In 10.104.1: Cohen-Macaulay
In 10.104.6: Cohen-Macaulay
In 10.105.1: catenary
In 10.105.3: universally catenary
In 10.108.1: pure
In 10.109.2: finite projective dimension,
projective dimension
In 10.109.10: finite global dimension,
global dimension
In 10.110.7: regular
In 10.112.5: local ring of the fibre at q
In 10.119.8: uniformizer
In 10.120.1: associates, irreducible,
prime
In 10.120.4: unique factorization do-
main, UFD
In 10.120.12: principal ideal domain,
PID
In 10.120.14: Dedekind domain
In 10.121.2: order of vanishing along R
In 10.121.3: lattice in V
In 10.121.5: distance between M and M ′

In 10.122.3: quasi-finite at q, quasi-finite
In 10.123.7: strongly transcendental over
R
In 10.125.1: relative dimension of S/R at
q, relative dimension of
In 10.131.1: derivation, R-derivation,
Leibniz rule
In 10.131.2: module of Kähler differen-
tials, module of differentials
In 10.133.1: differential operator D :
M → N of order k
In 10.133.4: module of principal parts of
order k
In 10.134.1: naive cotangent complex
In 10.135.1: global complete intersection
over k, local complete intersection over
k
In 10.135.5: complete intersection (over
k)
In 10.136.1: syntomic, flat local complete
intersection over R
In 10.136.5: relative global complete in-
tersection
In 10.137.1: smooth
In 10.137.6: standard smooth algebra
over R
In 10.137.11: smooth at q
In 10.138.1: formally smooth over R
In 10.141.1: small extension
In 10.143.1: étale, étale at q
In 10.144.1: standard étale
In 10.148.1: formally unramified over R
In 10.149.2: universal first order thicken-
ing, conormal module, CS/R
In 10.150.1: formally étale over R
In 10.151.1: unramified, G-unramified,
unramified at q, G-unramified at q
In 10.153.1: henselian, strictly henselian
In 10.155.3: henselization, strict
henselization of R with respect to
κ ⊂ κsep, strict henselization
In 10.157.1: (Rk), regular in codimension
≤ k, (Sk)
In 10.160.1: complete local ring
In 10.160.4: coefficient ring
In 10.160.5: Cohen ring
In 10.161.1: N-1, N-2, Japanese
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In 10.162.1: universally Japanese, Na-
gata ring
In 10.162.9: analytically unramified, an-
alytically unramified
In 10.165.2: geometrically normal
In 10.166.2: geometrically regular
Brauer groups
In 11.2.1: finite
In 11.2.2: skew field
In 11.2.3: simple, simple
In 11.2.4: central
In 11.2.5: opposite algebra
In 11.5.2: Brauer group
In 11.8.1: splits, splitting field
Homological Algebra
In 12.3.1: preadditive, additive
In 12.3.3: zero object
In 12.3.5: direct sum
In 12.3.8: additive
In 12.3.9: kernel, cokernel, coimage of f ,
image of f
In 12.4.1: Karoubian
In 12.5.1: abelian
In 12.5.3: injective, surjective, subobject,
quotient
In 12.5.7: complex, exact at y, exact at
xi, exact, exact sequence, exact complex,
short exact sequence
In 12.5.9: split
In 12.6.1: extension E of B by A, mor-
phism of extensions
In 12.6.2: Ext-group
In 12.9.1: simple
In 12.9.2: Artinian, Artinian
In 12.9.3: Noetherian, Noetherian
In 12.10.1: Serre subcategory, weak Serre
subcategory
In 12.10.5: kernel of the functor F
In 12.11.1: zeroth K-group of A
In 12.12.1: cohomological δ-functor, δ-
functor
In 12.12.2: morphism of δ-functors from
F to G
In 12.12.3: universal δ-functor
In 12.13.2: homotopy equivalence, homo-
topy equivalent
In 12.13.4: quasi-isomorphism, acyclic

In 12.13.8: homotopy equivalence, homo-
topy equivalent
In 12.13.10: quasi-isomorphism, acyclic
In 12.14.1: k-shifted chain complex A[k]•
In 12.14.2: Hi+k(A•)→ Hi(A[k]•)
In 12.14.7: k-shifted cochain complex
A[k]•
In 12.14.8: Hi+k(A•) −→ Hi(A[k]•)
In 12.16.1: category of graded objects of
A
In 12.16.4: shift
In 12.17.1: additive monoidal category
In 12.18.1: double complex
In 12.18.3: associated simple complex,
associated total complex
In 12.19.1: decreasing filtration, filtered
object of A, morphism (A,F ) → (B,F )
of filtered objects, induced filtration,
quotient filtration, finite, separated, ex-
haustive
In 12.19.3: strict
In 12.20.1: spectral sequence in A, mor-
phism of spectral sequences
In 12.20.2: limit, degenerates at Er
In 12.21.1: exact couple, morphism of ex-
act couples
In 12.21.3: spectral sequence associated
to the exact couple
In 12.22.1: differential object, morphism
of differential objects
In 12.22.3: homology
In 12.22.5: spectral sequence associated
to (A, d, α)
In 12.23.1: filtered differential object
In 12.23.4: induced filtration
In 12.23.6: weakly converges to H(K),
abuts to H(K)
In 12.24.1: filtered complex K• of A
In 12.24.5: induced filtration
In 12.24.7: regular, coregular, bounded,
bounded below, bounded above
In 12.24.9: weakly converges to H∗(K•),
abuts to H∗(K•), converges to H∗(K•)
In 12.25.2: weakly converges
to Hn(Tot(K•,•)), abuts to
Hn(Tot(K•,•)), converges toHn(Tot(K•,•)),
weakly converges to Hn(Tot(K•,•)),
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abuts to Hn(Tot(K•,•)), converges to
Hn(Tot(K•,•))
In 12.27.1: injective
In 12.27.4: enough injectives
In 12.27.5: functorial injective embed-
dings
In 12.28.1: projective
In 12.28.4: enough projectives
In 12.28.5: functorial projective surjec-
tions
In 12.31.2: Mittag-Leffler condition, ML
Derived Categories
In 13.3.1: triangle, morphism of triangles
In 13.3.2: triangulated category, distin-
guished triangles, pre-triangulated cate-
gory
In 13.3.3: exact functor, triangulated
functor
In 13.3.4: pre-triangulated subcategory,
triangulated subcategory
In 13.3.5: homological, cohomological
In 13.3.6: δ-functor from A to D, image
of the short exact sequence under the
given δ-functor
In 13.5.1: compatible with the triangu-
lated structure
In 13.6.1: saturated
In 13.6.5: kernel of F , kernel of H
In 13.6.7: quotient category D/B, quo-
tient functor
In 13.8.1: category of (cochain) com-
plexes, bounded below, bounded above,
bounded
In 13.9.1: cone
In 13.9.4: termwise split injection α :
A• → B•, termwise split surjection β :
B• → C•

In 13.9.9: termwise split exact sequence
of complexes of A, triangle associated to
the termwise split sequence of complexes
In 13.10.1: distinguished triangle of
K(A)
In 13.11.3: derived category of A,
bounded derived category
In 13.13.1: category of finite filtered ob-
jects of A
In 13.13.2: filtered quasi-isomorphism,
filtered acyclic

In 13.13.5: filtered derived category of A
In 13.13.7: bounded filtered derived cat-
egory
In 13.14.2: right derived functor RF is
defined at, value of RF at X, left de-
rived functor LF is defined at, value of
LF at X
In 13.14.9: right derivable, everywhere
defined, left derivable, everywhere de-
fined
In 13.14.10: computes, computes
In 13.15.3: right derived functors of F ,
left derived functors of F , right acyclic
for F , acyclic for RF , left acyclic for F ,
acyclic for LF
In 13.16.2: ith right derived functor RiF
of F
In 13.18.1: injective resolution of A, in-
jective resolution of K•

In 13.19.1: projective resolution of A,
projective resolution of K•

In 13.21.1: Cartan-Eilenberg resolution
In 13.23.2: resolution functor
In 13.26.1: filtered injective
In 13.27.1: ith extension group
In 13.27.4: Yoneda extension, equivalent
In 13.28.1: zeroth K-group of D
In 13.31.1: K-injective
In 13.33.1: derived colimit, homotopy
colimit
In 13.34.1: derived limit, homotopy limit
In 13.36.3: classical generator, strong
generator, weak generator, generator
In 13.37.1: compact object
In 13.37.5: compactly generated
In 13.40.1: right orthogonal, left orthog-
onal
In 13.40.9: right admissible, left admis-
sible, two-sided admissible
In 13.41.1: Postnikov system, morphism
of Postnikov systems
Simplicial Methods
In 14.2.1: δnj : [n−1]→ [n], σnj : [n+1]→
[n]
In 14.3.1: simplicial object U of C, sim-
plicial set, simplicial abelian group, mor-
phism of simplicial objects U → U ′, cat-
egory of simplicial objects of C
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In 14.5.1: cosimplicial object U of
C, cosimplicial set, cosimplicial abelian
group, morphism of cosimplicial objects
U → U ′, category of cosimplicial objects
of C
In 14.6.1: product of U and V
In 14.7.1: fibre product of V and W over
U
In 14.8.1: pushout of V and W over U
In 14.9.1: product of U and V
In 14.10.1: fibre product of V and W
over U
In 14.11.1: n-simplex of U , face of x, de-
generacy of x, degenerate
In 14.12.1: n-truncated simplicial object
of C, morphism of n-truncated simplicial
objects
In 14.13.1: product U × V of U and V ,
product U × V exists
In 14.14.1: Hom(U, V )
In 14.15.1: Hom(U, V )
In 14.17.1: Hom(U, V )
In 14.18.1: split, split
In 14.20.1: augmentation ϵ : U → X of
U towards an object X of C
In 14.22.3: Eilenberg-Maclane object
K(A, k)
In 14.26.1: homotopy from a to b, homo-
topic, in the same homotopy class
In 14.26.6: homotopy equivalence, homo-
topy equivalent
In 14.28.1: homotopy from a to b, homo-
topic, in the same homotopy class
In 14.30.1: trivial Kan fibration
In 14.31.1: Kan fibration, Kan complex
More on Algebra
In 15.3.1: stably isomorphic, stably free
In 15.8.3: kth Fitting ideal
In 15.10.1: Zariski pair
In 15.11.1: henselian pair
In 15.14.1: absolutely integrally closed
In 15.15.1: auto-associated
In 15.22.1: torsion, torsion free
In 15.23.1: reflexive
In 15.23.9: reflexive hull
In 15.24.1: content ideal of x
In 15.26.1: strict transform of M along
R→ R[ Ia ]

In 15.28.1: Koszul complex
In 15.28.2: Koszul complex on f1, . . . , fr
In 15.30.1: M -Koszul-regular, M -H1-
regular, Koszul-regular, H1-regular
In 15.32.1: regular ideal, Koszul-regular
ideal, H1-regular ideal, quasi-regular
ideal
In 15.33.2: local complete intersection
In 15.36.1: topological ring, topologi-
cal module, homomorphism of topolog-
ical modules, homomorphism of topo-
logical rings, linearly topologized, lin-
early topologized, ideal of definition, pre-
admissible, admissible, pre-adic, adic
In 15.37.1: formally smooth over R
In 15.37.3: formally smooth for the n-
adic topology
In 15.41.1: regular
In 15.46.1: p-independent over k, p-basis
of K over k
In 15.47.1: J-0, J-1, J-2
In 15.50.1: G-ring
In 15.52.1: quasi-excellent, excellent
In 15.55.1: injective
In 15.55.5: M 7→M∨, free module
In 15.59.1: K-flat
In 15.59.13: derived tensor product
In 15.61.1: Tor independent over R
In 15.64.1: m-pseudo-coherent, pseudo-
coherent, m-pseudo-coherent, pseudo-
coherent
In 15.66.1: tor-amplitude in [a, b], finite
tor dimension, tor dimension ≤ d, finite
tor dimension
In 15.68.1: finite projective dimension,
projective-amplitude in [a, b]
In 15.69.1: finite injective dimension,
injective-amplitude in [a, b]
In 15.70.4: I-projective
In 15.74.1: perfect, perfect
In 15.80.2: finitely presented relative to
R
In 15.81.4: m-pseudo-coherent relative
to R, pseudo-coherent relative to R, m-
pseudo-coherent relative to R, pseudo-
coherent relative to R
In 15.82.1: pseudo-coherent ring map,
perfect ring map
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In 15.83.1: R-perfect, perfect relative to
R
In 15.88.1: I-power torsion module, an
f -power torsion module
In 15.91.4: derived complete with respect
to I, derived complete with respect to I
In 15.104.1: absolutely flat, weakly étale,
absolutely flat
In 15.104.3: weak dimension ≤ d
In 15.106.1: unibranch, geometrically
unibranch
In 15.106.6: number of branches of A,
number of geometric branches of A
In 15.109.1: formally catenary
In 15.111.1: extension of discrete valu-
ation rings, ramification index, weakly
unramified, residual degree, residue de-
gree
In 15.111.7: unramified with respect to
A, tamely ramified with respect to A,
totally ramified with respect to A
In 15.112.3: decomposition group of m,
inertia group of m
In 15.112.6: wild inertia group of m, tame
inertia group of m
In 15.113.3: mixed characteristic, abso-
lute ramification index
In 15.115.1: weak solution for A ⊂ B,
solution for A ⊂ B, separable solution
In 15.117.1: invertible, trivial
In 15.123.1: extension of valuation
rings, weakly unramified, residual de-
gree, residue degree
In 15.124.5: Bézout domain, elementary
divisor domain

Smoothing Ring Maps

In 16.2.1: singular ideal of A over R
In 16.2.3: elementary standard in A over
R, strictly standard in A over R

Sheaves of Modules

In 17.4.1: generated by global sections,
generate
In 17.4.5: subsheaf generated by the si
In 17.5.1: support of F , support of s
In 17.8.1: locally generated by sections
In 17.9.1: finite type

In 17.10.1: quasi-coherent sheaf of OX -
modules
In 17.10.6: sheaf associated to the mod-
ule M and the ring map α, sheaf associ-
ated to the module M
In 17.11.1: finite presentation
In 17.12.1: coherent OX -module
In 17.13.1: closed immersion of ringed
spaces
In 17.14.1: locally free, finite locally free,
finite locally free of rank r
In 17.17.1: flat
In 17.17.3: flat at x
In 17.20.1: flat at x, flat
In 17.20.3: flat over Y at a point x ∈ X,
flat over Y
In 17.23.1: annihilator
In 17.24.1: Koszul complex
In 17.24.2: Koszul complex on f1, . . . , fr
In 17.25.1: invertible OX -module, trivial
In 17.25.6: tensor power
In 17.25.7: associated graded ring
In 17.25.9: Picard group
In 17.28.1: O1-derivation, φ-derivation,
Leibniz rule
In 17.28.3: module of differentials, uni-
versal φ-derivation
In 17.28.10: S-derivation, sheaf of differ-
entials ΩX/S of X over S
In 17.29.1: differential operator D : F →
G of order k
In 17.29.4: module of principal parts of
order k
In 17.29.8: differential operator of order
k on X/S
In 17.30.1: de Rham complex of B over
A
In 17.30.4: de Rham complex
In 17.31.1: naive cotangent complex
In 17.31.6: naive cotangent complex

Modules on Sites

In 18.4.1: free abelian presheaf
In 18.5.1: free abelian sheaf
In 18.6.1: ringed site, structure sheaf,
morphism of ringed sites, composition of
morphisms of ringed sites
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In 18.7.1: ringed topos, structure sheaf,
morphism of ringed topoi, composition
of morphisms of ringed topoi
In 18.8.1: 2-morphism from f to g
In 18.9.1: presheaf of O-modules, mor-
phism φ : F → G of presheaves of O-
modules
In 18.10.1: sheaf of O-modules, mor-
phism of sheaves of O-modules
In 18.13.1: pushforward, pullback
In 18.16.1: gp!F , g!F = (gp!F)#

In 18.17.1: free O-module, finite free,
generated by global sections, generated
by r global sections, generated by finitely
many global sections, global presenta-
tion, global finite presentation
In 18.19.1: localization of the ringed site
(C,O) at the object U , localization mor-
phism, direct image functor, restriction
of F to C/U , extension by zero
In 18.21.2: localization of the ringed
topos (Sh(C),O) at F , localization mor-
phism
In 18.23.1: locally free, finite locally
free, locally generated by sections, lo-
cally generated by r sections, of finite
type, quasi-coherent, of finite presenta-
tion, coherent
In 18.28.1: flat, flat, flat, flat
In 18.31.1: flat, flat
In 18.31.3: flat over (Sh(D),O′)
In 18.32.1: rank r, invertible, O∗

In 18.32.6: Picard group
In 18.33.1: O1-derivation, φ-derivation,
Leibniz rule
In 18.33.3: module of differentials, uni-
versal φ-derivation
In 18.33.10: Y -derivation, sheaf of dif-
ferentials ΩX/Y of X over Y , universal
Y -derivation
In 18.34.1: differential operator D : F →
G of order k
In 18.34.4: module of principal parts of
order k
In 18.35.1: naive cotangent complex
In 18.35.4: naive cotangent complex
In 18.40.4: locally ringed site
In 18.40.6: locally ringed

In 18.40.9: morphism of locally ringed
topoi, morphism of locally ringed sites
In 18.43.1: constant sheaf, locally con-
stant, finite locally constant

Injectives

In 19.2.4: α-small with respect to I
In 19.10.1: generator, Grothendieck
abelian category
In 19.11.2: size

Cohomology of Sheaves

In 20.4.1: torsor, G-torsor, morphism of
G-torsors, trivial G-torsor
In 20.9.1: Čech complex, Čech cohomol-
ogy groups
In 20.12.1: flasque, flabby
In 20.23.1: alternating Čech complex
In 20.23.2: ordered Čech complex
In 20.24.2: locally finite
In 20.26.2: K-flat
In 20.26.14: derived tensor product
In 20.26.15: Tor
In 20.46.1: strictly perfect
In 20.47.1: m-pseudo-coherent, pseudo-
coherent, m-pseudo-coherent, pseudo-
coherent
In 20.48.1: tor-amplitude in [a, b], finite
tor dimension, locally has finite tor di-
mension, tor dimension ≤ d
In 20.49.1: perfect, perfect

Cohomology on Sites

In 21.4.1: pseudo torsor, pseudo G-
torsor, morphism of pseudo G-torsors,
torsor, G-torsor, morphism of G-torsors,
trivial G-torsor
In 21.8.1: Čech complex, Čech cohomol-
ogy groups
In 21.13.4: totally acyclic
In 21.17.2: K-flat
In 21.17.13: derived tensor product
In 21.17.14: Tor
In 21.31.2: qc covering
In 21.41.1: simplicial A•-module, simpli-
cial sheaf of A•-modules
In 21.43.1: QC (O)
In 21.44.1: strictly perfect
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In 21.45.1: m-pseudo-coherent, pseudo-
coherent, m-pseudo-coherent, pseudo-
coherent
In 21.46.1: tor-amplitude in [a, b], finite
tor dimension, locally has finite tor di-
mension, tor dimension ≤ d
In 21.47.1: perfect, perfect

Differential Graded Algebra

In 22.3.1: differential graded algebra over
R
In 22.3.2: homomorphism of differential
graded algebras
In 22.3.3: commutative, strictly commu-
tative
In 22.3.4: tensor product differential
graded algebra
In 22.4.1: differential graded module, ho-
momorphism of differential graded mod-
ules
In 22.4.3: k-shifted module
In 22.5.1: homotopy between f and g,
homotopic
In 22.5.3: homotopy category
In 22.6.1: cone
In 22.7.1: admissible monomorphism,
admissible epimorphism, admissible
short exact sequence
In 22.8.2: triangle associated to 0 →
K → L → M → 0, distinguished tri-
angle
In 22.11.1: opposite differential graded
algebra
In 22.11.3: kth shifted A-module, kth
shifted A-module
In 22.22.2: derived category of (A,d)
In 22.24.1: R-linear category A
In 22.24.2: functor of R-linear categories,
R-linear functor
In 22.25.1: graded category A over R
In 22.25.2: functor of graded categories
over R, graded functor
In 22.25.3: A0

In 22.25.4: graded direct sum
In 22.26.1: differential graded category
A over R
In 22.26.2: functor of differential graded
categories over R

In 22.26.3: category of complexes of A,
homotopy category of A
In 22.26.4: differential graded direct sum
In 22.28.1: (A,B)-bimodule, graded
(A,B)-bimodule, differential graded
(A,B)-bimodule
Divided Power Algebra
In 23.2.1: divided power structure
In 23.3.1: divided power ring, homomor-
phism of divided power rings
In 23.4.1: extends
In 23.6.1: divided power structure
In 23.6.5: compatible with the differen-
tial graded structure
In 23.8.5: complete intersection, local
complete intersection
Differential Graded Sheaves
In 24.3.1: sheaf of graded O-algebras,
sheaf of graded algebras, homomorphism
of graded O-algebras
In 24.4.1: graded A-module, graded
module, homomorphism of graded A-
modules
In 24.8.1: graded (A,B)-bimodule,
homomorphism of graded (A,B)-
bimodules
In 24.12.1: sheaf of differential graded
O-algebras, sheaf of differential graded
algebras, homomorphism of differential
graded O-algebras
In 24.13.1: differential graded A-module,
differential graded module, homomor-
phism of differential graded A-modules
In 24.17.1: differential graded (A,B)-
bimodule, homomorphism of differential
graded (A,B)-bimodules
In 24.21.1: homotopy between f and g,
homotopic
In 24.21.2: homotopy category
In 24.22.2: cone
In 24.25.2: graded injective
In 24.25.7: K-injective
In 24.26.4: derived category of (A,d)
In 24.28.2: derived tensor product, de-
rived pullback
In 24.29.2: derived internal hom, derived
pushforward
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In 24.33.1: QC (A,d)
Hypercoverings
In 25.2.1: semi-representable objects,
semi-representable objects over X
In 25.2.2: which associates a presheaf to
a semi-representable object
In 25.3.1: covering, covering
In 25.3.3: hypercovering of X
In 25.4.1: homology of K
In 25.6.1: hypercovering of G, hypercov-
ering
Schemes
In 26.2.1: locally ringed space (X,OX),
local ring of X at x, residue field of X
at x, morphism of locally ringed spaces
In 26.3.1: open immersion
In 26.3.3: open subspace of X associated
to U
In 26.4.1: closed immersion
In 26.4.4: closed subspace of X associ-
ated to the sheaf of ideals I
In 26.5.2: standard open covering, stan-
dard open covering
In 26.5.3: structure sheaf OSpec(R) of the
spectrum of R, spectrum
In 26.5.5: affine scheme, morphism of
affine schemes
In 26.9.1: scheme, morphism of schemes
In 26.10.2: open immersion, open sub-
scheme, closed immersion, closed sub-
scheme, immersion, locally closed im-
mersion
In 26.12.1: reduced
In 26.12.5: scheme structure on Z, re-
duced induced scheme structure, reduc-
tion Xred of X
In 26.15.1: representable by a scheme,
representable
In 26.15.3: satisfies the sheaf property for
the Zariski topology, subfunctor H ⊂ F ,
representable by open immersions, cov-
ers F
In 26.17.1: fibre product
In 26.17.7: inverse image f−1(Z) of the
closed subscheme Z
In 26.18.1: scheme over S, structure mor-
phism, scheme over R, morphism f :

X → Y of schemes over S, base change,
base change, base change
In 26.18.3: preserved under arbitrary
base change, preserved under base
change, preserved under arbitrary base
change, preserved under base change
In 26.18.4: scheme theoretic fibre Xs of
f over s, fibre of f over s
In 26.19.1: quasi-compact
In 26.20.1: universally closed
In 26.20.3: satisfies the existence part
of the valuative criterion, satisfies the
uniqueness part of the valuative criterion
In 26.21.3: separated, quasi-separated,
separated, quasi-separated
In 26.23.1: monomorphism
Constructions of Schemes
In 27.4.5: relative spectrum of A over S,
spectrum of A over S
In 27.5.1: affine n-space over S, affine n-
space over R
In 27.6.1: vector bundle associated to E
In 27.6.2: vector bundle π : V → S over
S, morphism of vector bundles over S
In 27.7.1: cone associated to A, affine
cone associated to A
In 27.7.2: cone π : C → S over S, mor-
phism of cones
In 27.8.2: standard open covering
In 27.8.3: structure sheaf OProj(S) of the
homogeneous spectrum of S, homoge-
neous spectrum
In 27.10.1: twist of the structure sheaf of
Proj(S)
In 27.13.2: projective n-space over Z,
projective n-space over S, projective n-
space over R
In 27.16.7: relative homogeneous spec-
trum of A over S, homogeneous spec-
trum of A over S, relative Proj of A over
S
In 27.21.1: projective bundle associated
to E , twist of the structure sheaf
In 27.22.2: Grassmannian over Z, Grass-
mannian over S, Grassmannian over R
Properties of Schemes
In 28.3.1: integral
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In 28.4.1: local
In 28.4.2: locally P
In 28.5.1: locally Noetherian, Noetherian
In 28.6.1: Jacobson
In 28.7.1: normal
In 28.8.1: Cohen-Macaulay
In 28.9.1: regular, nonsingular
In 28.10.1: dimension, dimension of X at
x
In 28.11.1: catenary
In 28.12.1: regular in codimension k,
(Rk), (Sk)
In 28.13.1: Japanese, universally Japan-
ese, Nagata
In 28.14.1: regular locus, singular locus
In 28.15.1: unibranch at x, geometrically
unibranch at x, unibranch, geometrically
unibranch
In 28.15.4: number of branches of X at
x, number of geometric branches of X at
x
In 28.18.1: quasi-affine
In 28.21.1: locally projective
In 28.23.1: κ-generated
In 28.24.3: subsheaf of sections annihi-
lated by I
In 28.24.6: subsheaf of sections sup-
ported on T
In 28.26.1: ample
Morphisms of Schemes
In 29.4.4: scheme theoretic intersection,
scheme theoretic union
In 29.5.5: scheme theoretic support of F
In 29.6.2: scheme theoretic image
In 29.7.1: scheme theoretic closure of U
in X, scheme theoretically dense in X
In 29.8.1: dominant
In 29.9.1: surjective
In 29.10.1: universally injective, radicial
In 29.11.1: affine
In 29.12.1: ample family of invertible
modules on X
In 29.13.1: quasi-affine
In 29.14.1: local, stable under base
change, stable under composition
In 29.14.2: locally of type P
In 29.15.1: finite type at x ∈ X, locally
of finite type, finite type

In 29.16.3: finite type point
In 29.17.1: universally catenary
In 29.19.1: J-2
In 29.20.1: quasi-finite at a point x ∈ X,
locally quasi-finite, quasi-finite
In 29.21.1: finite presentation at x ∈ X,
locally of finite presentation, finite pre-
sentation
In 29.23.1: open, universally open
In 29.24.1: submersive, universally sub-
mersive
In 29.25.1: flat at a point x ∈ X, flat
over S at a point x ∈ X, flat, flat over S
In 29.26.3: canonical scheme structure
on T
In 29.29.1: relative dimension ≤ d at x,
relative dimension ≤ d, relative dimen-
sion d
In 29.30.1: syntomic at x ∈ X, syntomic,
local complete intersection over k, stan-
dard syntomic
In 29.30.15: syntomic of relative dimen-
sion d
In 29.31.1: conormal sheaf CZ/X of Z in
X, conormal sheaf of i
In 29.32.1: sheaf of differentials ΩX/S of
X over S, universal S-derivation
In 29.34.1: smooth at x ∈ X, smooth,
standard smooth
In 29.34.13: smooth of relative dimension
d
In 29.35.1: unramified at x ∈ X, G-
unramified at x ∈ X, unramified, G-
unramified
In 29.36.1: étale at x ∈ X, étale, stan-
dard étale
In 29.37.1: relatively ample, f -relatively
ample, ample on X/S, f -ample
In 29.38.1: relatively very ample, f -
relatively very ample, very ample on
X/S, f -very ample
In 29.40.1: quasi-projective, H-quasi-
projective, locally quasi-projective
In 29.41.1: proper
In 29.43.1: projective, H-projective, lo-
cally projective
In 29.44.1: integral, finite
In 29.45.1: universal homeomorphism
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In 29.47.1: seminormal, absolutely
weakly normal
In 29.47.3: seminormal, absolutely
weakly normal
In 29.47.8: seminormalization, absolute
weak normalization
In 29.48.1: finite locally free, rank, de-
gree
In 29.49.1: equivalent, rational map from
X to Y , S-rational map from X to Y
In 29.49.3: rational function on X
In 29.49.4: ring of rational functions on
X
In 29.49.6: function field, field of rational
functions
In 29.49.8: defined in a point x ∈ X, do-
main of definition
In 29.49.10: dominant
In 29.49.11: birational, S-birational
In 29.50.1: birational
In 29.51.8: degree of X over Y
In 29.51.11: modification of X
In 29.51.12: alteration of X
In 29.53.2: integral closure of OX in A
In 29.53.3: normalization of X in Y
In 29.54.1: normalization
In 29.55.6: seminormalization of X in Y ,
weak normalization of X in Y
In 29.55.8: weak normalization
In 29.55.9: weakly normal
In 29.57.1: bounds the degrees of the
fibres of f , fibres of f are universally
bounded
Cohomology of Schemes
In 30.11.1: depth k at a point, depth k
at a point, (Sk), (Sk)
In 30.11.4: Cohen-Macaulay
In 30.26.2: Z is proper over S
Divisors
In 31.2.1: associated, associated points
of X
In 31.4.1: embedded associated point,
embedded point, embedded component
In 31.5.1: weakly associated, weakly as-
sociated points of X
In 31.7.1: relative assassin of F in X over
S

In 31.8.1: relative weak assassin of F in
X over S
In 31.11.2: torsion, torsion free
In 31.12.1: reflexive hull, reflexive
In 31.13.1: locally principal closed sub-
scheme, effective Cartier divisor
In 31.13.6: sum of the effective Cartier
divisors D1 and D2
In 31.13.12: pullback of D by f is de-
fined, pullback of the effective Cartier di-
visor
In 31.14.1: invertible sheaf OS(D) asso-
ciated to D, canonical section
In 31.14.6: regular section
In 31.14.8: zero scheme
In 31.18.2: relative effective Cartier divi-
sor
In 31.19.1: conormal algebra CZ/X,∗ of Z
in X, conormal algebra of f
In 31.19.5: normal cone CZX, normal
bundle
In 31.20.2: regular, Koszul-regular, H1-
regular, quasi-regular
In 31.21.1: regular immersion, Koszul-
regular immersion, H1-regular immer-
sion, quasi-regular immersion
In 31.22.2: relative quasi-regular immer-
sion, relative H1-regular immersion
In 31.23.1: sheaf of meromorphic func-
tions on X, KX , meromorphic function
In 31.23.3: meromorphic section of F
In 31.23.4: pullbacks of meromorphic
functions are defined for f
In 31.23.7: regular
In 31.23.10: ideal sheaf of denominators
of s
In 31.26.2: prime divisor, Weil divisor
In 31.26.3: order of vanishing of f along
Z
In 31.26.5: principal Weil divisor associ-
ated to f
In 31.26.7: Weil divisor class group
In 31.27.1: order of vanishing of s along
Z
In 31.27.4: Weil divisor associated to s,
Weil divisor class associated to L
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In 31.32.1: blowing up of X along Z,
blowing up of X in the ideal sheaf I,
exceptional divisor, center
In 31.33.1: strict transform, strict trans-
form
In 31.34.1: U -admissible blowup
Limits of Schemes

Varieties
In 33.3.1: variety
In 33.6.1: geometrically reduced at x, ge-
ometrically reduced
In 33.7.1: geometrically connected
In 33.8.1: geometrically irreducible
In 33.9.1: geometrically pointwise inte-
gral at x, geometrically pointwise inte-
gral, geometrically integral
In 33.10.1: geometrically normal at x, ge-
ometrically normal
In 33.12.1: geometrically regular at x, ge-
ometrically regular over k
In 33.16.1: dual numbers
In 33.16.3: tangent space of X over S at
x, tangent vector
In 33.20.1: algebraic k-scheme, locally al-
gebraic k-scheme
In 33.26.1: affine variety, projective vari-
ety, quasi-projective variety, proper vari-
ety, smooth variety
In 33.33.1: Euler characteristic of F
In 33.35.7: m-regular
In 33.35.15: Hilbert polynomial
In 33.36.1: absolute frobenius of X
In 33.36.4: relative Frobenius morphism
of X/S
In 33.39.3: δ-invariant of A
In 33.39.7: δ-invariant of X at x
In 33.40.4: A is a wedge of A1, . . . , An
In 33.43.1: curve
In 33.44.1: degree, degree
In 33.45.3: intersection number
In 33.45.10: degree of Z with respect to
L
In 33.46.1: embedding dimension of X at
x
In 33.46.2: embedding dimension of X/k
at x
Topologies on Schemes

In 34.3.1: Zariski covering of T
In 34.3.4: standard Zariski covering
In 34.3.5: big Zariski site
In 34.3.7: big Zariski site of S, small
Zariski site of S, big affine Zariski site
of S, small affine Zariski site of S
In 34.3.15: restriction to the small
Zariski site
In 34.4.1: étale covering of T
In 34.4.5: standard étale covering
In 34.4.6: big étale site
In 34.4.8: big étale site of S, small étale
site of S, big affine étale site of S, small
affine étale site of S
In 34.4.15: restriction to the small étale
site
In 34.5.1: smooth covering of T
In 34.5.5: standard smooth covering
In 34.5.6: big smooth site
In 34.5.8: big smooth site of S, big affine
smooth site of S
In 34.6.1: syntomic covering of T
In 34.6.5: standard syntomic covering
In 34.6.6: big syntomic site
In 34.6.8: big syntomic site of S, big
affine syntomic site of S
In 34.7.1: fppf covering of T
In 34.7.5: standard fppf covering
In 34.7.6: big fppf site
In 34.7.8: big fppf site of S, big affine
fppf site of S
In 34.8.1: standard ph covering
In 34.8.4: ph covering of T
In 34.8.9: big ph site
In 34.8.11: big ph site of S, big affine ph
site of S
In 34.9.1: fpqc covering of T
In 34.9.9: standard fpqc covering
In 34.9.12: satisfies the sheaf property for
the given family, satisfies the sheaf prop-
erty for the fpqc topology
In 34.10.1: standard V covering
In 34.10.7: V covering of T
In 34.10.11: satisfies the sheaf property
for the V topology

Descent
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In 35.2.1: descent datum (Fi, φij) for
quasi-coherent sheaves, cocycle condi-
tion, morphism ψ : (Fi, φij)→ (F ′

i , φ
′
ij)

of descent data
In 35.2.3: trivial descent datum, canoni-
cal descent datum, effective
In 35.3.1: descent datum (N,φ) for mod-
ules with respect to R→ A, cocycle con-
dition, morphism (N,φ) → (N ′, φ′) of
descent data
In 35.3.4: effective
In 35.4.2: split equalizer
In 35.4.5: universally injective
In 35.4.9: C
In 35.4.15: base extension along f , de-
scent morphism for modules, effective
descent morphism for modules
In 35.4.19: f∗
In 35.8.2: structure sheaf of the big site
(Sch/S)τ , structure sheaf of the small
site, sheaf of O-modules associated to F ,
sheaf of O-modules associated to F
In 35.12.1: parasitic, parasitic for the τ -
topology
In 35.15.1: local in the τ -topology
In 35.20.1: germ of X at x, morphism
of germs, composition of morphisms of
germs
In 35.20.2: étale, smooth
In 35.21.1: étale local, smooth local
In 35.22.1: τ local on the base, τ local
on the target, local on the base for the
τ -topology
In 35.26.1: τ local on the source, local on
the source for the τ -topology
In 35.32.3: étale local on source-and-
target
In 35.33.1: étale local on the source-and-
target
In 35.34.1: descent datum for V/X/S,
cocycle condition, descent datum rel-
ative to X → S, morphism f :
(V/X,φ) → (V ′/X,φ′) of descent data
relative to X → S
In 35.34.3: descent datum (Vi, φij) rela-
tive to the family {Xi → S}, morphism
ψ : (Vi, φij)→ (V ′

i , φ
′
ij) of descent data

In 35.34.7: pullback functor

In 35.34.9: pullback functor
In 35.34.10: trivial descent datum,
canonical descent datum, effective
In 35.34.11: canonical descent datum, ef-
fective
In 35.36.1: morphisms of type P satisfy
descent for τ -coverings

Derived Categories of Schemes

In 36.6.1: supported on T
In 36.14.1: approximation holds for the
triple
In 36.14.2: approximation by perfect
complexes holds
In 36.22.2: Tor independent over S
In 36.35.1: perfect relative to S, S-
perfect
In 36.36.1: resolution property
In 36.38.2: Grothendieck group of X,
Grothendieck group of coherent sheaves
on X

More on Morphisms

In 37.2.1: thickening, first order thick-
ening, morphism of thickenings, thick-
enings over S, morphisms of thickenings
over S
In 37.5.1: first order infinitesimal neigh-
bourhood
In 37.6.1: formally unramified
In 37.7.2: universal first order thicken-
ing, conormal sheaf of Z over X
In 37.8.1: formally étale
In 37.11.1: formally smooth
In 37.13.1: naive cotangent complex of f
In 37.20.1: normal at x, normal mor-
phism
In 37.21.1: regular at x, regular mor-
phism
In 37.22.1: Cohen-Macaulay at x,
Cohen-Macaulay morphism
In 37.35.1: étale neighbourhood of (S, s),
morphism of étale neighbourhoods, ele-
mentary étale neighbourhood
In 37.58.1: finitely presented relative to
S, of finite presentation relative to S
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In 37.59.2: m-pseudo-coherent relative
to S, pseudo-coherent relative to S, m-
pseudo-coherent relative to S, pseudo-
coherent relative to S
In 37.60.2: pseudo-coherent
In 37.61.2: perfect
In 37.62.2: Koszul at x, Koszul mor-
phism, local complete intersection mor-
phism
In 37.64.1: weakly étale, absolutely flat
In 37.66.1: ind-quasi-affine, ind-quasi-
affine
In 37.73.1: affine stratification
In 37.73.4: affine stratification number
In 37.75.2: weighting, pondération
In 37.78.1: completely decomposed, com-
pletely decomposed
More on Flatness
In 38.4.1: one step dévissage of F/X/S
over s
In 38.4.2: one step dévissage of F/X/S
at x
In 38.4.6: standard shrinking
In 38.5.1: complete dévissage of F/X/S
over s
In 38.5.2: complete dévissage of F/X/S
at x
In 38.5.5: standard shrinking
In 38.6.1: elementary étale localization
of the ring map R→ S at q
In 38.6.2: complete dévissage of N/S/R
over r
In 38.6.4: complete dévissage of N/S/R
at q
In 38.15.2: impurity of F above s
In 38.16.1: pure along Xs, universally
pure along Xs, pure along Xs, univer-
sally S-pure, universally pure relative to
S, S-pure, pure relative to S, S-pure,
pure relative to S
In 38.20.10: F is flat over S in dimen-
sions ≥ n
In 38.21.1: universal flattening of F ex-
ists, universal flattening of X exists
In 38.21.3: flattening stratification, flat-
tening stratification
In 38.34.2: h covering of T
In 38.34.10: big h site

In 38.34.11: standard h covering
In 38.34.13: big h site of S, big affine h
site of S
Groupoid Schemes
In 39.3.1: pre-relation, relation, pre-
equivalence relation, equivalence rela-
tion on U over S
In 39.3.3: restriction, pullback
In 39.4.1: group scheme over S, mor-
phism ψ : (G,m) → (G′,m′) of group
schemes over S
In 39.4.3: closed subgroup scheme, open
subgroup scheme
In 39.4.5: smooth group scheme, flat
group scheme, separated group scheme
In 39.9.1: abelian variety
In 39.10.1: action of G on the scheme
X/S, equivariant, G-equivariant
In 39.10.2: free
In 39.11.1: pseudo G-torsor, formally
principally homogeneous under G, triv-
ial
In 39.11.3: principal homogeneous space,
G-torsor, G-torsor in the τ topology, τ
G-torsor, τ torsor, quasi-isotrivial, lo-
cally trivial
In 39.12.1: G-equivariant quasi-coherent
OX -module, equivariant quasi-coherent
OX -module
In 39.13.1: groupoid scheme over S,
groupoid over S, morphism f :
(U,R, s, t, c) → (U ′, R′, s′, t′, c′) of
groupoid schemes over S
In 39.14.1: quasi-coherent module on
(U,R, s, t, c)
In 39.17.2: stabilizer of the groupoid
scheme (U,R, s, t, c)
In 39.18.2: restriction of (U,R, s, t, c) to
U ′

In 39.19.1: set-theoretically R-invariant,
R-invariant, R-invariant, R-invariant
In 39.20.1: quotient sheaf U/R
In 39.20.2: representable quotient, repre-
sentable quotient
In 39.21.1: cartesian, (U ′, R′, s′, t′, c′)
is cartesian over (U,R, s, t, c), mor-
phism of groupoid schemes cartesian
over (U,R, s, t, c)
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More on Groupoid Schemes

Étale Morphisms of Schemes
In 41.3.1: unramified homomorphism of
local rings
In 41.3.5: unramified at x, unramified
In 41.9.1: flat, faithfully flat, flat (resp.
faithfully flat)
In 41.9.3: flat over Y at x ∈ X, flat at
x ∈ X, flat, faithfully flat
In 41.11.1: étale homomorphism of local
rings
In 41.11.4: étale at x ∈ X, étale
In 41.21.1: strict normal crossings divi-
sor
In 41.21.4: normal crossings divisor
Chow Homology and Chern Classes
In 42.2.1: 2-periodic complex, cohomol-
ogy modules, exact, (2, 1)-periodic com-
plex, cohomology modules
In 42.2.2: multiplicity, (additive) Her-
brand quotient
In 42.7.6: δ-dimension of Z
In 42.8.1: cycle on X, k-cycle
In 42.8.3: support
In 42.8.4: effective
In 42.9.2: multiplicity of Z ′ in Z, k-cycle
associated to Z
In 42.10.2: multiplicity of Z ′ in F , k-
cycle associated to F
In 42.12.1: pushforward
In 42.14.1: flat pullback of α by f
In 42.17.1: principal divisor associated to
f
In 42.19.1: rationally equivalent to zero,
rationally equivalent, Chow group of k-
cycles on X, Chow group of k-cycles
modulo rational equivalence on X
In 42.22.1: envelope
In 42.24.1: Weil divisor associated to s,
Weil divisor associated to L
In 42.25.1: intersection with the first
Chern class of L
In 42.29.1: Gysin homomorphism
In 42.33.1: bivariant class c of degree p
for f
In 42.34.1: Chow cohomology
In 42.34.4: first Chern class

In 42.37.1: Chern classes of E on X, total
Chern class of E on X
In 42.38.1: intersection with the jth
Chern class of E
In 42.38.8: ith Chern class, total Chern
class
In 42.41.1: degree of a zero cycle
In 42.46.3: Chern classes of E are defined
In 42.50.3: localized Chern character, lo-
calized pth Chern class
In 42.59.4: the gysin map for f exists,
gysin map
In 42.68.2: admissible, symbol, admis-
sible relation, determinant of the finite
length R-module M
In 42.68.13: determinant of (M,φ, ψ)
In 42.68.29: symbol associated to M,a, b
In 42.68.31: tame symbol
Intersection Theory
In 43.13.5: intersect properly, intersect
properly
In 43.15.1: multiplicity of M for the ideal
of definition I

Picard Schemes of Curves
In 44.4.1: Picard functor
In 44.6.3: genus
Weil Cohomology Theories
In 45.5.1: ith Chow group of M
In 45.7.3: classical Weil cohomology the-
ory
In 45.11.4: Weil cohomology theory
Adequate Modules
In 46.3.1: module-valued functor, mor-
phism of module-valued functors
In 46.3.2: adequate, linearly adequate
In 46.5.1: adequate
In 46.5.7: Adeq(O), Adeq((Sch/S)τ ,O),
Adeq(S)
In 46.8.1: pure projective, pure injective
In 46.8.5: pure projective resolution,
pure injective resolution
In 46.8.8: pure extension module
Dualizing Complexes
In 47.2.1: essential, essential extension
of, essential
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In 47.4.1: projective cover, projective en-
velope
In 47.5.1: injective hull
In 47.5.5: indecomposable
In 47.15.1: dualizing complex
In 47.21.1: Gorenstein, Gorenstein
In 47.27.1: relative dualizing complex
Duality for Schemes
In 48.2.2: dualizing complex
In 48.20.5: dualizing complex normalized
relative to ω•

S

In 48.24.1: Gorenstein
In 48.25.2: Gorenstein at x, Gorenstein
morphism
In 48.28.1: relative dualizing complex
Discriminants and Differents
In 49.4.1: trace element
In 49.7.1: Kähler different
In 49.9.1: different
de Rham Cohomology
In 50.7.1: Hodge filtration
In 50.15.1: de Rham complex of log poles
is defined for Y ⊂ X over S
In 50.15.3: de Rham complex of log poles
for Y ⊂ X over S
Local Cohomology
In 51.4.2: cohomological dimension of I
in A
In 51.13.1: I-depth, depth
Algebraic and Formal Geometry
In 52.6.4: derived complete with respect
to I
In 52.16.5: (Fn) extends to X
In 52.16.7: (Fn) canonically extends to
X
In 52.19.1: (Fn) satisfies the (a, b)-
inequalities, (Fn) satisfies the strict
(a, b)-inequalities
Algebraic Curves
In 53.2.7: nonsingular projective model
of X
In 53.3.1: linear series of degree d and
dimension r, grd
In 53.8.1: genus

In 53.11.1: geometric genus
In 53.16.2: multicross singularity, node,
ordinary double point, defines a nodal
singularity
In 53.19.1: node, ordinary double point,
defines a nodal singularity, singularities
of X are at-worst-nodal
In 53.19.10: split node
In 53.20.2: at-worst-nodal of relative di-
mension 1

Resolution of Surfaces

In 54.5.1: normalized blowup of X at x
In 54.8.3: defines a rational singularity,
reduction to rational singularities is pos-
sible for A
In 54.14.1: resolution of singularities
In 54.14.2: resolution of singularities by
normalized blowups

Semistable Reduction

In 55.3.1: numerical type
In 55.3.2: equivalent types
In 55.3.4: numerical type of genus g
In 55.3.8: (−1)-index
In 55.3.11: topological genus of T
In 55.3.12: minimal
In 55.3.16: (−2)-index
In 55.4.1: Picard group of T
In 55.8.4: minimal model
In 55.11.4: numerical type associated to
X
In 55.14.6: semistable reduction
In 55.14.8: good reduction

Functors and Morphisms

Derived Categories of Varieties

In 57.3.2: a Serre functor exists, Serre
functor
In 57.8.1: Fourier-Mukai functor,
Fourier-Mukai kernel
In 57.10.1: siblings, sibling
In 57.12.1: siblings, sibling
In 57.15.1: the Fourier-Mukai kernel of a
relative equivalence from X to Y over S
In 57.18.1: derived equivalent

Fundamental Groups of Schemes
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In 58.2.1: G-set, discrete G-set, mor-
phism of G-sets, G-Sets
In 58.3.6: Galois category
In 58.6.1: fundamental group, base point
Étale Cohomology
In 59.4.1: étale covering
In 59.9.1: presheaf of sets, abelian
presheaf
In 59.10.1: family of morphisms with
fixed target
In 59.10.2: site, coverings
In 59.11.1: separated presheaf, sheaf
In 59.11.4: category of sheaves of sets,
abelian sheaves
In 59.13.1: zeroth Čech cohomology
group
In 59.15.1: fpqc covering
In 59.15.5: satisfies the sheaf property for
the fpqc topology
In 59.16.1: descent datum, cocycle con-
dition, effective
In 59.16.5: descent datum
In 59.16.6: effective
In 59.17.2: ringed site, quasi-coherent
In 59.18.1: Čech complex, Čech cohomol-
ogy groups
In 59.18.4: free abelian presheaf on G
In 59.20.1: τ -covering
In 59.20.2: big τ -site of S, small τ -site of
S
In 59.20.4: standard τ -covering
In 59.21.1: étale topos, small étale topos,
Zariski topos, small Zariski topos, big τ -
topos
In 59.23.1: constant sheaf
In 59.23.3: structure sheaf
In 59.26.1: étale
In 59.26.3: standard étale
In 59.27.1: étale covering
In 59.27.3: big étale site over S, small
étale site over S, big, small Zariski sites
In 59.29.1: geometric point, lies over,
étale neighborhood, morphism of étale
neighborhoods
In 59.29.6: stalk
In 59.31.3: support of F , support of σ
In 59.32.2: henselian
In 59.32.6: strictly henselian

In 59.33.2: étale local ring of S at s,
strict henselization ofOS,s, henselization
of OS,s, strict henselization of S at s,
henselization of S at s
In 59.35.1: direct image, pushforward
In 59.35.3: direct image, pushforward
In 59.35.4: higher direct images
In 59.36.1: inverse image, pullback
In 59.51.1: system (Fi, φi′i) of sheaves on
(Xi, fi′i)
In 59.56.1: absolute Galois group, alge-
braic
In 59.57.1: G-module, discrete G-
module, morphism of G-modules, R-G-
module, morphism of R-G-modules
In 59.57.2: continuous group cohomology
groups, group cohomology groups, Ga-
lois cohomology groups, Galois cohomol-
ogy groups of K with coefficients in M
In 59.61.3: similar, equivalent
In 59.61.4: Brauer group
In 59.64.1: constant sheaf with value E,
constant sheaf, locally constant, finite lo-
cally constant, constant sheaf with value
A, constant sheaf, locally constant, fi-
nite locally constant, constant sheaf with
value M , constant sheaf, locally constant
In 59.66.1: trace
In 59.67.5: Cr, nontrivial solution
In 59.67.9: variety, curve
In 59.70.1: extension by zero, extension
by zero
In 59.71.1: constructible, constructible,
constructible
In 59.76.1: Dc(Xétale,Λ)
In 59.77.1: Dctf (Xétale,Λ)
In 59.93.1: locally acyclic at x relative to
K, locally acyclic relative to K, univer-
sally locally acyclic relative to K, locally
acyclic, universally locally acyclic
In 59.95.1: cohomological dimension of
X
In 59.96.1: cohomological dimension of f

Crystalline Cohomology

In 60.2.2: divided power envelope of J in
B relative to (A, I, γ)
In 60.4.1: δ is compatible with γ
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In 60.5.2: divided power thickening, ho-
momorphism of divided power thicken-
ings
In 60.6.1: divided power A-derivation
In 60.7.1: divided power structure γ
In 60.7.2: divided power scheme, mor-
phism of divided power schemes
In 60.7.3: divided power thickening
In 60.8.1: divided power thickening of
X relative to (S, I, γ), morphism of di-
vided power thickenings of X relative to
(S, I, γ)
In 60.8.4: Zariski, étale, smooth, syn-
tomic, or fppf covering, big crystalline
site
In 60.9.1: crystalline site
In 60.11.1: locally quasi-coherent, quasi-
coherent, crystal in OX/S-modules
In 60.11.3: crystal in quasi-coherent
modules, crystal in finite locally free
modules
In 60.12.1: S-derivation D : OX/S → F
In 60.26.2: F -crystal on X/S (relative to
σ), nondegenerate

Pro-étale Cohomology

In 61.2.3: w-local, w-local
In 61.3.1: local isomorphism, identifies
local rings
In 61.4.1: ind-Zariski
In 61.7.1: ind-étale
In 61.11.1: w-contractible
In 61.12.1: pro-étale covering of T
In 61.12.6: standard pro-étale covering
In 61.12.7: big pro-étale site
In 61.12.8: big pro-étale site of S, small
pro-étale site of S, big affine pro-étale
site of S
In 61.12.14: restriction to the small pro-
étale site
In 61.26.1: extension by zero, extension
by zero
In 61.27.1: constructible
In 61.28.1: constructible Λ-sheaf, lisse,
adic lisse, adic constructible
In 61.29.1: constructible
In 61.29.4: adic lisse, adic constructible

Relative Cycles

In 62.6.1: relative r-cycle on X/S
In 62.7.1: equidimensional
In 62.8.1: effective
In 62.9.1: proper relative cycle

More Étale Cohomology

In 63.3.3: direct image with compact
support
In 63.3.7: sections with compact support
In 63.4.4: direct image with compact
support
In 63.12.1: cohomology of K with com-
pact support, compactly supported co-
homology of K

The Trace Formula

In 64.3.4: geometric frobenius
In 64.3.8: arithmetic frobenius
In 64.3.10: geometric frobenius
In 64.4.1: trace
In 64.6.4: total right derived functor of
F , total left derived functor of G
In 64.7.1: filtered injective, projective,
filtered quasi-isomorphism
In 64.8.1: filtered derived functor
In 64.10.1: perfect
In 64.12.1: finite Tor-dimension
In 64.14.1: global Lefschetz number
In 64.14.2: local Lefschetz number
In 64.15.2: G-trace of f on P
In 64.18.1: Zℓ-sheaf, ℓ-adic sheaf, lisse,
morphism
In 64.18.6: torsion, stalk
In 64.18.8: ℓ-adic cohomology
In 64.19.1: L-function of F
In 64.19.3: L-function of F
In 64.27.1: open
In 64.31.1: unramified cusp form on
GL2(A) with values in Λ

Algebraic Spaces

In 65.5.1: property P
In 65.6.1: algebraic space over S
In 65.6.3: morphism f : F → F ′ of alge-
braic spaces over S
In 65.9.2: étale equivalence relation
In 65.9.3: presentation
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In 65.12.1: open immersion, open sub-
space, closed immersion, closed sub-
space, immersion, locally closed sub-
space
In 65.12.5: Zariski covering
In 65.12.6: small Zariski site FZar
In 65.13.2: separated over S, locally sep-
arated over S, quasi-separated over S,
Zariski locally quasi-separated over S
In 65.14.4: acts freely, quotient of U by
G
In 65.16.2: base change of F ′ to S,
viewed as an algebraic space over S′

Properties of Algebraic Spaces
In 66.3.1: separated, locally separated,
quasi-separated, Zariski locally quasi-
separated, separated, locally separated,
quasi-separated, Zariski locally quasi-
separated
In 66.4.1: point
In 66.4.7: topological space
In 66.5.1: quasi-compact
In 66.7.2: has property P
In 66.7.5: has property P at x
In 66.8.2: étale locally constructible
In 66.9.1: dimension of X at x
In 66.9.2: dimension
In 66.10.2: dimension of the local ring of
X at x, x is a point of codimension d on
X
In 66.12.5: algebraic space structure
on Z, reduced induced algebraic space
structure, reduction Xred of X
In 66.16.2: étale
In 66.18.1: small étale site Xétale

In 66.18.2: Xspaces,étale

In 66.18.5: Xaffine,étale

In 66.18.7: étale topos, small étale topos
In 66.18.9: f -map φ : G → F
In 66.19.1: geometric point, geometric
point lying over x
In 66.19.2: étale neighborhood, mor-
phism of étale neighborhoods
In 66.19.6: stalk
In 66.20.3: support of F , support of σ
In 66.21.2: structure sheaf
In 66.22.2: étale local ring of X at x,
strict henselization of X at x

In 66.23.2: geometrically unibranch at x,
geometrically unibranch
In 66.23.4: number of geometric
branches of X at x
In 66.24.1: Noetherian
In 66.25.2: X is regular at x
In 66.29.1: quasi-coherent
In 66.31.2: locally projective

Morphisms of Algebraic Spaces

In 67.4.2: separated, locally separated,
quasi-separated
In 67.5.2: surjective
In 67.6.2: open, universally open
In 67.7.2: submersive, universally sub-
mersive
In 67.8.2: quasi-compact
In 67.9.2: closed, universally closed
In 67.10.1: monomorphism
In 67.13.2: inverse image f−1(Z) of the
closed subspace Z
In 67.14.4: scheme theoretic intersection,
scheme theoretic union
In 67.15.4: scheme theoretic support of
F
In 67.16.2: scheme theoretic image
In 67.17.3: scheme theoretic closure of U
in X, scheme theoretically dense in X
In 67.18.1: dominant
In 67.19.3: universally injective
In 67.20.2: affine
In 67.20.8: relative spectrum of A over
X, spectrum of A over X
In 67.21.2: quasi-affine
In 67.22.2: has property P
In 67.22.6: has property Q at x
In 67.23.1: locally of finite type, finite
type at x, of finite type
In 67.25.2: finite type point
In 67.27.1: locally quasi-finite, quasi-
finite at x, quasi-finite
In 67.28.1: locally of finite presentation,
finite presentation at x, of finite presen-
tation
In 67.30.1: flat, flat at x
In 67.31.2: flat at x over Y , flat over Y
In 67.33.1: dimension of the local ring of
the fibre of f at x, transcendence degree
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of x/f(x), f has relative dimension d at
x
In 67.33.2: relative dimension ≤ d, rela-
tive dimension d
In 67.36.1: syntomic, syntomic at x
In 67.37.1: smooth, smooth at x
In 67.38.1: unramified, unramified at x,
G-unramified, G-unramified at x
In 67.39.1: étale at x
In 67.40.1: proper
In 67.41.1: satisfies the uniqueness part
of the valuative criterion, satisfies the
existence part of the valuative criterion,
satisfies the valuative criterion
In 67.45.2: integral, finite
In 67.46.2: finite locally free, rank, de-
gree
In 67.47.1: equivalent, rational map from
X to Y , B-rational map from X to Y
In 67.47.2: rational function on X
In 67.47.3: ring of rational functions on
X
In 67.47.4: defined in a point x ∈ |X|,
domain of definition
In 67.47.6: dominant
In 67.47.7: birational
In 67.48.2: integral closure of OX in A
In 67.48.3: normalization of X in Y
In 67.49.6: normalization
In 67.53.2: universal homeomorphism
Decent Algebraic Spaces
In 68.3.1: fibres of f are universally
bounded
In 68.6.1: decent, reasonable, very rea-
sonable
In 68.11.2: residue field of X at x
In 68.11.5: elementary étale neighbour-
hood, morphism of elementary étale
neighbourhoods
In 68.11.7: henselian local ring of X at x
In 68.13.6: residual space of X at x
In 68.17.1: has property (β), has prop-
erty (β), decent, reasonable, very reason-
able
In 68.22.1: birational
In 68.24.2: unibranch at x, unibranch
In 68.24.4: number of branches of X at
x

In 68.25.1: catenary
In 68.25.4: universally catenary
Cohomology of Algebraic Spaces
In 69.6.2: alternating Čech complex
In 69.12.1: coherent
Limits of Algebraic Spaces
In 70.3.1: limit preserving, locally of fi-
nite presentation, locally of finite presen-
tation over S, limit preserving, locally of
finite presentation, relatively limit pre-
serving
In 70.14.3: subsheaf of sections annihi-
lated by I
In 70.14.6: subsheaf of sections sup-
ported on T

Divisors on Algebraic Spaces
In 71.2.2: weakly associated, weakly as-
sociated points of X, x is associated to
F , x is an associated point of X
In 71.4.2: the fibre of f over y is locally
Noetherian, the fibres of f are locally
Noetherian
In 71.4.5: relative weak assassin of F in
X over Y
In 71.6.1: locally principal closed sub-
space, effective Cartier divisor
In 71.6.6: sum of the effective Cartier di-
visors D1 and D2
In 71.6.10: pullback of D by f is defined,
pullback of the effective Cartier divisor
In 71.7.1: invertible sheaf OX(D) associ-
ated to D
In 71.7.4: regular section
In 71.7.6: zero scheme
In 71.9.2: relative effective Cartier divi-
sor
In 71.10.1: sheaf of meromorphic func-
tions on X, KX , meromorphic function
In 71.10.3: meromorphic section of F
In 71.10.6: pullbacks of meromorphic
functions are defined for f
In 71.10.9: regular
In 71.11.3: relative homogeneous spec-
trum of A over X, homogeneous spec-
trum of A over X, relative Proj of A
over X
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In 71.14.1: relatively ample, f -relatively
ample, ample on X/Y , f -ample
In 71.17.1: blowing up of X along Z,
blowing up of X in the ideal sheaf I,
exceptional divisor, center
In 71.18.1: strict transform, strict trans-
form
In 71.19.1: U -admissible blowup
Algebraic Spaces over Fields
In 72.4.1: integral
In 72.4.3: function field, field of rational
functions
In 72.5.2: degree of X over Y
In 72.6.2: prime divisor, Weil divisor
In 72.6.4: order of vanishing of f along
Z
In 72.6.7: principal Weil divisor associ-
ated to f
In 72.6.9: Weil divisor class group
In 72.7.1: order of vanishing of s along Z
In 72.7.4: Weil divisor associated to s,
Weil divisor class associated to L
In 72.8.1: modification of X
In 72.8.3: alteration of X
In 72.11.1: geometrically reduced at x,
geometrically reduced
In 72.12.1: geometrically connected
In 72.13.1: geometrically irreducible
In 72.14.1: geometrically integral
In 72.17.1: Euler characteristic of F
In 72.18.3: intersection number
Topologies on Algebraic Spaces
In 73.3.1: Zariski covering of X
In 73.4.1: étale covering of X
In 73.4.5: (Spaces/S)étale
In 73.4.6: (Spaces/X)étale
In 73.4.9: restriction to the small étale
site
In 73.5.1: smooth covering of X
In 73.6.1: syntomic covering of X
In 73.7.1: fppf covering of X
In 73.7.6: (Spaces/S)fppf
In 73.7.7: (Spaces/X)fppf
In 73.8.1: ph covering of X
In 73.8.5: (Spaces/S)ph
In 73.8.6: (Spaces/X)ph
In 73.9.1: fpqc covering of X

Descent and Algebraic Spaces

In 74.3.1: descent datum (Fi, φij) for
quasi-coherent sheaves, cocycle condi-
tion, morphism ψ : (Fi, φij)→ (F ′

i , φ
′
ij)

of descent data
In 74.3.3: trivial descent datum, canoni-
cal descent datum, effective
In 74.10.1: τ local on the base, τ local
on the target, local on the base for the
τ -topology
In 74.14.1: τ local on the source, local on
the source for the τ -topology
In 74.20.1: smooth local on source-and-
target
In 74.21.1: étale-smooth local on source-
and-target
In 74.22.1: descent datum for V/Y/X,
cocycle condition, descent datum rel-
ative to Y → X, morphism f :
(V/Y, φ) → (V ′/Y, φ′) of descent data
relative to Y → X
In 74.22.3: descent datum (Vi, φij) rela-
tive to the family {Xi → X}, morphism
ψ : (Vi, φij)→ (V ′

i , φ
′
ij) of descent data

In 74.22.7: pullback functor
In 74.22.9: pullback functor
In 74.22.10: trivial descent datum,
canonical descent datum, effective
In 74.22.11: canonical descent datum, ef-
fective

Derived Categories of Spaces

In 75.3.2: supported on T
In 75.5.1: derived category of OX -
modules with quasi-coherent cohomol-
ogy sheaves
In 75.7.2: T is proper over Y
In 75.9.1: elementary distinguished
square
In 75.14.1: approximation holds for the
triple
In 75.14.2: approximation by perfect
complexes holds
In 75.20.2: Tor independent over B
In 75.28.1: resolution property

More on Morphisms of Spaces

In 76.3.1: radicial
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In 76.5.1: conormal sheaf CZ/X of Z in
X, conormal sheaf of i
In 76.6.1: conormal algebra CZ/X,∗ of Z
in X, conormal algebra of i
In 76.6.5: normal cone CZX, normal
bundle
In 76.7.2: sheaf of differentials ΩX/Y of
X over Y , universal Y -derivation
In 76.9.1: thickening, first order thick-
ening, morphism of thickenings, thicken-
ings over B, morphisms of thickenings
over B
In 76.12.1: first order infinitesimal neigh-
bourhood
In 76.13.1: formally smooth, formally
étale, formally unramified
In 76.14.1: formally unramified
In 76.15.5: universal first order thicken-
ing, conormal sheaf of Z over X
In 76.16.1: formally étale
In 76.19.1: formally smooth
In 76.21.1: naive cotangent complex of f
In 76.23.2: the restriction of F to its fi-
bre over z is flat at x over the fibre of Y
over z, the fibre of X over z is flat at x
over the fibre of Y over z, the fibre of X
over z is flat over the fibre of Y over z
In 76.26.2: Cohen-Macaulay at x,
Cohen-Macaulay morphism
In 76.27.2: Gorenstein at x, Gorenstein
morphism
In 76.29.2: the fibre of f : X → Y at y
is geometrically reduced
In 76.44.2: Koszul-regular immersion,
H1-regular immersion, quasi-regular im-
mersion
In 76.45.3: m-pseudo-coherent relative
to Y , pseudo-coherent relative to Y , m-
pseudo-coherent relative to Y , pseudo-
coherent relative to Y
In 76.46.1: pseudo-coherent, pseudo-
coherent at x
In 76.47.1: perfect, perfect at x
In 76.48.1: Koszul morphism, local com-
plete intersection morphism, Koszul at x
In 76.52.1: perfect relative to Y , Y -
perfect

In 76.55.1: at-worst-nodal of relative di-
mension 1
Flatness on Algebraic Spaces
In 77.2.2: impurity of F above y
In 77.3.1: pure above y, universally pure
above y, pure above y, universally Y -
pure, universally pure relative to Y , Y -
pure, pure relative to Y , Y -pure, pure
relative to Y
In 77.11.1: universal flattening of F ex-
ists, universal flattening of X exists
In 77.11.3: F is flat over Y in dimensions
≥ n

Groupoids in Algebraic Spaces
In 78.4.1: pre-relation, relation, pre-
equivalence relation, equivalence rela-
tion on U over B
In 78.4.3: restriction, pullback
In 78.5.1: group algebraic space over B,
morphism ψ : (G,m) → (G′,m′) of
group algebraic spaces over B
In 78.8.1: action of G on the algebraic
space X/B, equivariant, G-equivariant
In 78.8.2: free
In 78.9.1: pseudo G-torsor, formally
principally homogeneous under G, triv-
ial
In 78.9.3: principal homogeneous space,
principal homogeneous G-space over B,
G-torsor in the τ topology, τ G-torsor, τ
torsor, quasi-isotrivial, locally trivial
In 78.10.1: G-equivariant quasi-coherent
OX -module, equivariant quasi-coherent
OX -module
In 78.11.1: groupoid in algebraic spaces
over B, morphism f : (U,R, s, t, c) →
(U ′, R′, s′, t′, c′) of groupoids in algebraic
spaces over B
In 78.12.1: quasi-coherent module on
(U,R, s, t, c)
In 78.16.2: stabilizer of the groupoid in
algebraic spaces (U,R, s, t, c)
In 78.17.2: restriction of (U,R, s, t, c) to
U ′

In 78.18.1: R-invariant, R-invariant, R-
invariant
In 78.19.1: quotient sheaf U/R



117.2. DEFINITIONS LISTED PER CHAPTER 7561

In 78.19.3: quotient representable by an
algebraic space, representable quotient,
representable quotient, quotient repre-
sentable by an algebraic space
In 78.20.1: quotient stack, quotient stack
More on Groupoids in Spaces
In 79.15.1: strongly split over u, strong
splitting of R over u, split over u, split-
ting ofR over u, quasi-split over u, quasi-
splitting of R over u
Bootstrap
In 80.3.1: representable by algebraic
spaces
In 80.4.1: property P
Pushouts of Algebraic Spaces

Chow Groups of Spaces
In 82.2.5: δ-dimension of T
In 82.3.1: cycle on X, k-cycle
In 82.4.2: F has length d at x
In 82.5.2: multiplicity of Z in Y , k-cycle
associated to Y
In 82.6.1: multiplicity of Z in F , k-cycle
associated to F
In 82.8.1: pushforward
In 82.10.1: flat pullback of α by f
In 82.13.1: principal divisor associated to
f
In 82.15.1: rationally equivalent to zero,
rationally equivalent, Chow group of k-
cycles on X, Chow group of k-cycles
modulo rational equivalence on X
In 82.17.1: Weil divisor associated to s,
Weil divisor associated to L
In 82.18.1: intersection with the first
Chern class of L
In 82.22.1: Gysin homomorphism
In 82.26.1: bivariant class c of degree p
for f
In 82.26.2: Chow cohomology
In 82.28.2: ith Chern class of E , total
Chern class of E
In 82.32.1: degree of a zero cycle
Quotients of Groupoids
In 83.3.1: R-invariant, G-invariant
In 83.3.4: base change, flat base change

In 83.4.1: categorical quotient, categori-
cal quotient in C, categorical quotient in
the category of schemes, categorical quo-
tient in schemes
In 83.4.4: universal categorical quotient,
uniform categorical quotient
In 83.5.1: orbit, R-orbit
In 83.5.4: weakly R-equivalent, R-
equivalent, weak orbit, weak R-orbit, or-
bit, R-orbit
In 83.5.8: set-theoretically R-invariant,
separates orbits, separates R-orbits
In 83.5.13: set-theoretic pre-equivalence
relation, set-theoretic equivalence rela-
tion
In 83.5.18: orbit space for R
In 83.6.1: coarse quotient, coarse quo-
tient in schemes
In 83.7.1: uniformly, universally
In 83.8.1: sheaf of R-invariant functions
on X, the functions on X are the R-
invariant functions on U
In 83.9.1: good quotient
In 83.10.1: geometric quotient
More on Cohomology of Spaces

Simplicial Spaces
In 85.12.1: cartesian, cartesian, carte-
sian, cartesian
In 85.13.1: simplicial system of the de-
rived category, cartesian, morphism of
simplicial systems of the derived cate-
gory
In 85.14.1: simplicial system of the de-
rived category of modules, cartesian,
morphism of simplicial systems of the
derived category of modules
In 85.27.1: cartesian, Y is cartesian over
X
In 85.27.3: simplicial scheme associated
to f
Duality for Spaces
In 86.2.2: dualizing complex
In 86.9.1: relative dualizing complex
Formal Algebraic Spaces
In 87.4.7: tensor product, completed ten-
sor product
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In 87.4.8: topologically nilpotent,
weak ideal of definition, weakly pre-
admissible, weakly admissible
In 87.5.1: taut
In 87.6.1: adic
In 87.7.1: weakly pre-adic, c-adic, weakly
adic
In 87.9.1: affine formal algebraic space,
morphism of affine formal algebraic
spaces
In 87.9.7: McQuillan, classical, weakly
adic, adic, adic*, Noetherian
In 87.9.9: formal spectrum
In 87.10.2: countably indexed
In 87.11.1: formal algebraic space, mor-
phism of formal algebraic spaces
In 87.14.3: completion of X along T
In 87.16.3: quasi-separated, separated
In 87.17.2: quasi-compact
In 87.17.4: quasi-compact
In 87.20.7: locally countably indexed, lo-
cally countably indexed and classical, lo-
cally weakly adic, locally adic*, locally
Noetherian
In 87.23.2: adic morphism
In 87.24.1: locally of finite type, finite
type
In 87.25.1: surjective
In 87.26.1: monomorphism
In 87.27.1: closed immersion
In 87.29.1: topologically of finite type
over
In 87.30.1: separated, quasi-separated
In 87.31.1: proper
In 87.34.1: small étale site
In 87.37.3: completion of X along T
In 87.38.1: completion of X along Z
Algebraization of Formal Spaces
In 88.4.1: rig-smooth over (A, I)
In 88.8.1: rig-étale over (A, I)
In 88.13.4: flat
In 88.14.2: rig-closed
In 88.14.7: completed principal localiza-
tion
In 88.15.2: naively rig-flat
In 88.15.4: rig-flat
In 88.16.1: rig-flat
In 88.17.2: rig-smooth

In 88.18.1: rig-smooth
In 88.19.2: rig-etale
In 88.20.1: rig-étale
In 88.21.1: rig-surjective
In 88.24.1: formal modification

Resolution of Surfaces Revisited

In 89.4.1: blowing up X ′ → X of X at x
In 89.5.1: normalized blowup of X at x
In 89.8.1: resolution of singularities
In 89.8.2: resolution of singularities by
normalized blowups

Formal Deformation Theory

In 90.3.1: CΛ, classical case
In 90.3.2: small extension
In 90.3.6: relative cotangent space
In 90.3.9: essential surjection
In 90.4.1: ĈΛ
In 90.5.1: category cofibered in
groupoids over C
In 90.6.1: prorepresentable
In 90.6.2: predeformation category, mor-
phism of predeformation categories
In 90.7.1: category F̂ of formal objects
of F , formal object ξ = (R, ξn, fn) of F ,
morphism a : ξ → η of formal objects
In 90.7.3: completion of F
In 90.8.1: smooth
In 90.8.9: versal
In 90.9.1: smooth, unobstructed
In 90.10.1: conditions (S1) and (S2)
In 90.11.1: R-linear
In 90.11.9: tangent space TF of F
In 90.12.1: tangent space TF of F
In 90.12.3: differential dφ : TF → TG of
φ
In 90.14.4: minimal, miniversal
In 90.16.1: condition (RS)
In 90.16.8: deformation category
In 90.17.1: lift of x along f , morphism of
lifts
In 90.19.1: group of infinitesimal auto-
morphisms of x′ over x
In 90.19.2: group of infinitesimal auto-
morphisms of x0
In 90.19.5: automorphism functor of x
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In 90.21.1: category of groupoids in
functors on C, groupoid in func-
tors on C, morphism (U,R, s, t, c) →
(U ′, R′, s′, t′, c′) of groupoids in functors
on C
In 90.21.4: representable
In 90.21.7: restriction (U,R, s, t, c)|C′ of
(U,R, s, t, c) to C′

In 90.21.9: quotient category cofibered
in groupoids [U/R] → C, quotient mor-
phism U → [U/R]
In 90.22.1: prorepresentable
In 90.22.2: completion (U,R, s, t, c)∧ of
(U,R, s, t, c)
In 90.23.1: smooth
In 90.25.1: presentation of F by
(U,R, s, t, c)
In 90.27.1: normalized, minimal
Deformation Theory
In 91.3.2: strict morphism of thickenings
In 91.9.2: strict morphism of thickenings
The Cotangent Complex
In 92.3.1: standard resolution of B over
A
In 92.3.2: cotangent complex
In 92.13.1: A-biderivation
In 92.17.1: Atiyah class
In 92.18.1: standard resolution of B over
A
In 92.18.2: cotangent complex
In 92.19.1: Atiyah class
In 92.20.1: cotangent complex
In 92.22.1: cotangent complex
In 92.24.1: cotangent complex LX/Y of
X over Y
In 92.26.1: cotangent complex LX/Y of
X over Y
Deformation Problems

Algebraic Stacks
In 94.8.1: representable by an algebraic
space over S
In 94.9.1: representable by algebraic
spaces
In 94.10.1: property P
In 94.12.1: algebraic stack over S
In 94.12.2: Deligne-Mumford stack

In 94.12.3: 2-category of algebraic stacks
over S
In 94.16.4: smooth groupoid
In 94.16.5: presentation
In 94.19.2: viewed as an algebraic stack
over S′

In 94.19.3: change of base of X ′

Examples of Stacks

In 95.18.2: degree d finite Hilbert stack
of X over Y

Sheaves on Algebraic Stacks

In 96.3.1: presheaf on X , morphism of
presheaves on X
In 96.4.1: associated Zariski site, associ-
ated étale site, associated smooth site,
associated syntomic site, associated fppf
site
In 96.4.3: Zariski sheaf, sheaf for the
Zariski topology, étale sheaf, sheaf for
the étale topology, smooth sheaf, sheaf
for the smooth topology, syntomic sheaf,
sheaf for the syntomic topology, fppf
sheaf, sheaf, sheaf for the fppf topology
In 96.4.5: associated morphism of fppf
topoi
In 96.6.1: structure sheaf of X
In 96.7.1: presheaf of modules on X , OX -
module, sheaf of OX -modules
In 96.9.2: pullback x−1F of F , restric-
tion of F to Uétale
In 96.11.1: quasi-coherent module on X ,
quasi-coherent OX -module
In 96.12.1: locally quasi-coherent
In 96.24.1: associated affine site
In 96.24.2: associated affine Zariski site,
associated affine étale site, associated
affine smooth site, associated affine syn-
tomic site, associated affine fppf site
In 96.26.1: triangulated category of
quasi-coherent objects in the derived
category

Criteria for Representability

In 97.8.1: algebraic

Artin’s Axioms

In 98.5.1: condition (RS)
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In 98.9.1: formal object, morphism of
formal objects, lies over
In 98.9.4: effective
In 98.11.1: limit preserving
In 98.12.1: versal
In 98.12.2: versal
In 98.13.1: openness of versality, open-
ness of versality
In 98.18.1: condition (RS*)
In 98.22.1: obstruction theory, obstruc-
tion modules, obstruction
In 98.23.5: naive obstruction theory

Quot and Hilbert Spaces

Properties of Algebraic Stacks

In 100.4.2: point
In 100.4.8: topological space
In 100.5.1: surjective
In 100.6.1: quasi-compact
In 100.7.2: has property P
In 100.7.5: has property P at x
In 100.8.1: monomorphism
In 100.9.1: open immersion, closed im-
mersion, immersion
In 100.9.9: open substack, closed sub-
stack, locally closed substack
In 100.10.4: algebraic stack structure
on Z, reduced induced algebraic stack
structure, reduction Xred of X
In 100.11.8: residual gerbe of X at x ex-
ists, residual gerbe of X at x
In 100.12.2: dimension of X at x
In 100.12.3: dimension
In 100.13.1: number of geometric
branches of X at x, geometrically uni-
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